

Breathing and exchange of gases

Para-17.1 **Introduction and Respiratory Organs**

In which of the following gaseous exchange between O2 and CO2 occurs through general body surface? [Pg-268,E]

(A) Sponges

(B) Coelenterates

(C) Flatworms

(D) All

2.	Match the follo	orrectly. [Pg-268,E]				
	Animals		Respiratory			
			Organs			
A.	Earthworms	1.	Lungs			
В.	Most aquatic	2.	Trachea			
	arthropods					
C.	Fishes	3.	Gills			
D.	Birds/Reptiles	4.	Moist			
			cuticle			
E.	Insects					

- (A) A-IV, B and C-III, D-I, E-II
- (B) A- IV, B III C and D -I, E III
- (C) A-II, B and C III, D I, E IV
- (D) A-III, B and C-I, D-II, E-IV
- Amphibians e.g. frogs respire [Pg-268,E] 3.
 - (A) Through moist skin
 - (B) Lungs
 - (C) Both a and b
 - (D) Trachea

Para-17.1.1 **Human Respiratory System**

- 4. Which is the correct sequence of air passages in man? [Pg-269,E]
 - (A) External Nostril→ Nasal passage→ Internal nostril→ Pharynx → Larynx→ Trachea \rightarrow Bronchi \rightarrow Bronchioles \rightarrow Alveoli
 - (B) Nose→ Larynx→ Pharynx→ Bronchioles→ Bronchi → Alveoli
 - (C) Nose→ Pharynx →Trachea→ Larynx→ Bronchi → Bronchioles → Alveoli
 - (D) Nose → Larynx→ Bronchi→ Pharynx→ Trachea→ Bronchioles → Alveoli
- 5. Which is correct about nasopharynx?
 - [Pg-269,E]
 - (A) Internal nostrils open nasopharynx
 - (B) It is the common passage for both air and food
 - (C) It opens through gullet of the larynx region into the trachea

(D) All

Which of the following options is wrong about the larynx (sound box)?

[Pg-269,E]

- (A) It is a bony box
- (B) Glottis is the opening into the larynx
- (C) During swallowing of food glottis is covered by epiglottis to prevent food entry into the larynx
- 7. Trachea divides into right and left primary bronchi at _____ thoracic vertebra.

[Pg-269,E]

(A) 4

(B) 5 (D) 9

- (C) 6
- Incomplete cartilaginous rings support all of the following except-[Pg-269,E]
 - (A) Trachea
 - (B) Primary, secondary and tertiary bronchi
 - (C) Respiratory bronchioles
 - (D) Initial bronchioles
- 9. Which of the following has the smallest [Pg-269,E] diameter?
 - (A) Trachea
 - (B) Terminal bronchiole
 - (C) Tertiary bronchus
 - (D) Secondary bronchus
- 10. Lungs are comprised by -[Pg-269,E]
 - (A) Only alveoli
 - (C) Pleura
 - (C) Different types of bronchi
 - (D) Network of bronchi, bronchioles and alveoli
- 11. Sites of gaseous exchange in lungs are -

[Pg-270,E]

(A) Alveoli

12.

- (B) Tracheoles
- (C) Bronchioles
- (D) Pleura
- [Pg-269,M]
- I. It is double layered and covers the lungs
- II. Fluid between the layers reduces friction on lung-surface
- III. Outer layer is in contact with thoracic
- IV. Inner layer is in contact with lungs The above features refer to -
- (A) Pericardium
- (B) Peritoneum
- (C) Pleura
- (D) None
- 13. The part starting with the external nostrils upto the terminal bronchioles constitute the -[Pg-270,E]

- (A) Respiratory or exchange part of respiratory system
- (B) Inspiratory part
- (C) Conducting part
- (D) Expiratory part
- 14. Respiratory or exchange part of the respiratory system consists of- [Pg-270,E]
 - (A) The parts starting with external nostrils upto terminal bronchioles
 - (B) Alveoli and their ducts
 - (C) All bronchi and terminal bronchioles
 - (D) All bronchioles
- 15. The conducting part of the respiratory system has functions. **[Pg-270,E]**
 - (A) Filter, warm and moisten the air
 - (B) Gaseous exchange
 - (C) Filtering the air only
 - (D) Warm the air
- 16. The chamber formed dorsally by the vertebral column, ventrally by sternum, laterally by ribs and on the lower side by dome-shaped diaphragm is -[Pg-270,M]
 - (A) Abdominal cavity (B) Thoracic cavity
 - (C) Pelvic cavity (D) Cranial cavity
- 17. Respiration involves following steps -

[Pg-270,M]

- I) Diffusion of gases O_2 and CO_2 across alveolar membrane
- II) Transport of gases by blood
- III) Utilization of O_2 by cell for catabolic reactions and resultant release of CO_2
- IV) Pulmonary ventilation by which atmospheric air is drawn in and \mathcal{CO}_2 rich alveolar air is released out
- V) Diffusion of O_2 and CO_2 between blood and tissues.

The correct sequence of steps is -

- $(A) I) \rightarrow II) \rightarrow III) \rightarrow IV) \rightarrow V)$
- (B) V) \rightarrow IV) \rightarrow III) \rightarrow II) \rightarrow I)
- (C) IV) \rightarrow I) \rightarrow II) \rightarrow V) \rightarrow III)
- (D) III) \rightarrow II) \rightarrow V) \rightarrow I) \rightarrow IV)
- 18. Study the given diagram and identify A, B, C and D. [Pg-269,E]

(A) A- Epiglottis, B -Alveoli, C- Bronchus, D - Diaphragm

- (B) A- Epiglottis, B -Alveoli, C Bronchioles, D Diaphragm
- (C) A- Sound box, B -Alveoli, C Bronchus, D Diaphragm
- (D) A-Sound box, B-Alveoli, C- Bronchioles, D– Diaphragm

Para- 17.2 Mechanism of Breathing

19. The lungs expand in inspiration/inhalation because –

[Pg-270,E]

- (A) Diaphragm contracts upward
- (B) The volume of thoracic cavity increases
- (C) External intercostal muscles relax
- (D) Diaphragm relaxes
- 20. The process of exhalation / expiration is begun mainly due to **[Pg-271,E]**
 - (A) The contraction of intercostal muscles
 - (B) The contraction of the diaphragm
 - (C) The relaxation of muscles
 - (D) Low pressure in thoracic cavity
- 21. Which of the following statements about the mechanism of ventilation/breathing is false? [Pg-271,M]
 - (A) As the diaphragm relaxes, air is expelled from the respiratory system
 - (B) During inspiration the lungs act as suction pump
 - (C) Inspiration is a passive and expiration is an active process.
 - (D) For quiet breathing external intercostal muscles and diaphragm play an important role.
- 22. Inspiration occurs when there is a negative pressure in the lungs with respect to atmospheric pressure. This negative pressure is achieved when [Pg-271,M]
 - (A) Intrapulmonary pressure is less than the atmospheric pressure
 - (B) Intra pulmonary pressure is greater than the atmospheric pressure
 - (C) Intrapulmonary pressure is equal to the atmospheric pressure
 - (D) Intrapleural pressure becomes more than the intra-alveolar pressure
- 23. Expiration takes place when the intrapulmonary pressure is [Pg-271,E]
 - (A) Greater than the atmospheric pressure
 - (B) Lesser than the atmospheric pressure
 - (C) Equal to atmospheric pressure
 - (D) Equal to intrapleural pressure
 - 24. Which of the following sequences is correct to initiate inspiration? [Pg-270,271,M]
 - I. The contraction of external intercostal muscles raises the ribs and sternum

- II. Volume of thorax increases in the dorso-ventral axis
- III. Intrapulmonary pressure decreases
- IV. Diaphragm contraction
- V. Air rushes into lungs
- VI. Volume of thorax increases in the anterio-posterior axis
- (A) I, II, IV, V, III, VI (B) I, II, III, IV, V
- (C) I, II, IV, VI, III, V (D) VI, I, II, III, V
- 25. Which of the following sequences is correct to initiate expiration? [Pg-270,271M]
 - Relaxation of external intercostal muscles and return of diaphragm and sternum to their normal position
 - II. Air expelled from lungs
 - III. Volume of thorax decreases
 - IV. Intrapulmonary pressure increases
 - (A) I, III IV, II (B) II, IV, III, I
 - (C) IV, III, II, I (D) I, II, III, IV
- 26. On an average, a healthy human breathes _ times /minute-[Pg-271,E]
 - (A) 20 40
- (B) 1-6
- (C) 12-16
- (D) 16-25
- 27. Additional muscles for forceful breathing [Pg-270,E]
 - (A) Diaphragm and external intercostal muscles
 - (B) Abdominal muscles and internal intercostal .muscles
 - (C) Diaphragm and abdominal muscles
 - (D) External and internal intercostal muscles
- illustration depicts 28. Following the mechanism of breathing. In which of the following option all the parts A. B, C and D are correctly labelled? [Pg-271,E]

- (A) A-Air entering into lungs; B- Ribs and sternum raised: C-Diaphragm contracted; D-Volume of thorax raised
- (B) A Air expelled from lungs; B Ribs and sternum return to original position; C -Diaphragm relaxed; D - Volume of thorax decreased
- (C) A-Air expelled from lungs; B- Ribs and sternum raised; C - Diaphragm relaxed; D -Volume of thorax decreased
- (D) A-Air expelled from lungs; B- Ribs and sternum raised: C-Diaphragm

contracted: D-Volume of thorax decreased

Para-17.2.1 Respiratory Volumes and Capacities

<u> 29.</u>	Match the follow	[Pg-271,272,M]		
	Column A		Column B	
1.	Tidal Volume	A.	Tidal volume and	
			inspiratory reserve	
			volume and	
			expiratory reserve	
			volume	
2.	Residual	В.	Additional amount of	
	Volume		air inhaled beyond	
			tidal volume when	
			taking a very deep	
			breath	
3.	Expiratory	C.	Amount of air	
	reserve volume		remaining in lungs	
			after expiratory	
			reserve volume is	
			expelled	
4.	Inspiratory	D.	Tidal volume and	
	reserve volume		inspiratory reserve	
			volume	
5.	Inspiratory	E.	Volume of air in one	
	Capacity		breath	
6.	Vital Capacity	F.	Amount of air	
			exhaled in forced	
			exhalation	
			exhalation	

- (A) 1 C, 2 E, 3 B, 4 F, 5 D, 6 -A
- (B) 1 E, 2 F, 3 C, 4 B, 5 A, 6 D
- (C) 1 E, 2 C, 3 F, 4 B, 5 D, 6 -A
- (D) 1 E, 2 C, 3 B, 4 F, 5 A, 6 D

30. Match the following - [Pg-271,272,M]

	Column A		Column B
1.	Tidal Volume	A.	2500-3000 mL of
			air
2.	Inspiratory reserve	B.	1000 mL of air
	volume		
3.	Expiratory reserve	C.	500 mL of air
	volume		
4.	Residual volume	D.	3400-4800 mL of
			air
5.	Vital Capacity	E.	1200 mL of air

- (A) 1 C, 2 D, 3 B, 4 A, 5 E
- (B) 1 C, 2 -A, 3 B, 4 E, 5 D
- (C) 1 C, 2 -A, 3 D, 4 E, 5 B
- (D) 1 E, 2 A, 3 B, 4 E, 5 D
- 31. Arrange the following in order of increasing volume -[Pg-271,272,E]
 - 1. Tidal volume
 - 2. Residual volume
 - 3. Expiratory reserve volume
 - 4. Vital capacity
 - (A) 1 < 2 < 3 < 4
- (B) 1 < 4 < 3 < 2

- (C) 1 < 3 < 2 < 4
- (D) 1 < 4 < 2 < 3
- below-

32. Different respiratory volumes are given

- [Pg-272,M]
- I. Tidal Volume= 500 ml
- II. Residual Volume= 1000 ml
- III. Inspiratory Reserve Volume= 2500 ml
- IV. Expiratory Reserve Volume = 1000 ml The functional residual capacity (FRC) is-
- (A) 3500 ml
- (B) 2000 ml
- (C) 600 ml
- (D) 3000 ml
- 33. Expiratory capacity is equal to -

[Pg-272,E]

- (A) TV+ ERV
- (B) ERV+ IRV
- (C) ERV+ RV
- (D) ERV+ RV
- 34. A spirometer cannot be used to measure -
 - [Pg-272,E]

(A) IC

- (B) RV
- (C) ERV
- (D) IRV
- 35. The maximum volume of air you can forcefully exhale after taking the deepest possible breath is called [Pg-272,E]
 - (A) Tidal volume
 - (B) Total respiratory volume
 - (C) Residual volume
 - (D) Vital capacity

Para- 17.3 **Exchange of Gases**

- 36. Exchange of gases -
- [Pg-272,E]
- (A) Occurs between the alveoli and pulmonary blood capillary
- (B) Occurs between blood and tissues
- (C) By diffusion
- (D) All
- 37. Which of the following factors affect the diffusion of gases? [Pg-272,E]
 - (A) Partial pressure of diffusing gases
 - (C) Solubility of gases
 - (C) The thickness of diffusion membrane
 - (D) All
- 38. Which of the following statements about the partial pressure of CO₂ is true?

[Pg-273,M]

- (A) It is higher in alveoli than in pulmonary artery
- (B) It is higher in the systemic arteries than in tissues
- (C) It is higher in systemic veins than in systemic arteries
- (D) It is higher in the pulmonary veins than in pulmonary arteries
- 39. The partial pressure of CO₂ in the venous blood is -[Pg-273,E]
 - (A) Greater than in the tissue spaces

- (B) Lesser than in the tissue spaces
- (C) Lesser than in the arterial blood
- (D) Less than in alveoli
- 40. A section of an alveolus with a pulmonary capillary indicates the presence of major layers constituting diffusion membrane-

[Pg-273,E]

- (A) 3
- (C) 6

- B) 2 (D) 10
- 41. Partial pressures (in mmHg) of O₂ in atmospheric air, alveoli deoxygenated blood, oxygenated blood and tissues are-

[Pg-273,M]

- (A) 40, 95, 40, 104, 159
- (B) 104, 40, 40, 95, 159
- (C) 159, 104, 40, 95, 40
- (D) 195, 104, 95, 40, 40
- 42. Partial pressure (in mm Hg) of CO2 in atmospheric air, alveoli, deoxygenated blood, oxygenated blood and tissues are-

[Pg-273,M]

- (A) 0.3, 40, 45, 40, 45
- (B) 40, 45, 40, 45, 0.3
- (C) 40, 40, 45, 45, 0.3
- (D) 0.3, 45, 45, 40, 40
- 43. Name the blood vessels A to D-[Pg-273,M]

	A	В	С	D	
A	Systemic	Pulmonary	Pulmonary	Systemic	
	vein	artery	vein	artery	
В	Systemic artery	Pulmonary artery	Pulmonary vein	Systemic vein	
С	Pulmonary	Systemic	Pulmonary	Systemic	
	artery	vein	vein	artery	
D	Systemic	Pulmonary	Pulmonary	Systemic	
	vein	vein	artery	artery	

- 44. In comparison to solubility of O₂ in blood the solubility of CO₂ is -[Pg-273,E]
 - (A) 20 25 times lesser
 - (B) Slightly higher
 - (C) Slightly greater
 - (D) 20 25 times higher
- 45. Study the given figure and identify A to C.

[Pg-273,M]

	A	В	С
(A)	Basement membrane	RBC	Alveolar wall
(B)	O_2	CO_2	Alveolar O ₂
(C)	Pleura	RBC	Pericardium
(D)	Pleura	WBC	Pulmonary vein

46. The barrier between the air in alveolus and blood in pulmonary capillary consists of 3 layers and its total thickness is-

[Pg-273,E]

- (A) 1 mm
- (B) more than 1 mm
- (C) much less than 1 mm
- (D) 2 mm

Para-17.4, 17.4.1 and 17.4.2 Transport of Gases (Transport of Oxygen and Transport of Carbon dioxide)

- 47. Total percentage of O₂ transported by haemoglobin or RBC is -[Pg-274,E]
 - (A) 3%
- (B) 97%
- (C) 49%
- (D) 100%
- 48. Besides RBC blood plasma also carries O₂ in solution. The percentage is - [Pg-274,E] (B) 97%
 - (A) 3%
- (D) 25%
- (C) 49%

- 49. CO₂ is transported –
- [Pg-274,E]

- (A) By RBC
 - (B) As bicarbonates
 - (C) In a dissolved state through plasma
 - (D) All
- 50. The majority of CO₂ is transported as [Pg-274,E]
 - (A) Carbonates
 - (B) Bicarbonates
 - (C) Carbaminohaemoglobin
 - (D) Dissolved state in blood

51. Blood carries the CO_2 in 3 forms. The correct percentages of CO₂ in these forms [Pg-274,M] are-

	arc	L-	5
	As carbaminohaemoglobin in RBC	As bicarbona tes	Dissolved form in plasma
Α	20 -25%	70%	7%
В	70%	20 -25%	7%
С	20 -25%	7%	70%
D	7%	20 -25%	70%

- 52. Each molecule of haemoglobin when fully saturated carries how many molecules of O_2 –
 - (A) 1

[Pg-274,E] (B) 2

(C) 4

- (D) 20
- 53. Dissociation curve is associated with -

[Pg-274,E]

- (A) Carbonic anhydrase
- (B) CO
- (C) CHCl₃
- (D) Oxyhaemoglobin
- 54. Binding of O₂ with haemoglobin is primarily related to -[Pg-274,E]
 - (A) pO_2
- (B) pCO₂
- (C) H⁺ conc.
- (D) None
- 55. Besides pO₂ the other factor(s) affecting the binding of O2 with haemoglobin is/are [Pg-274,E]
 - (A) pCO_2
- (B) H+conc.
- (C) Temperature (D)All
- 56. Oxygen dissociation curve is [Pg-274,E]
 - (A) J-shaped
- (B) S-shaped
- (C) L-shaped
- (D) Zig-zag
- 57. Which of the following statements is wrong? [Pg-274,M]
 - (A) O₂ binds with haemoglobin in a reversible manner to form oxyhaemoglobin.
 - (B) Every 100 mL of oxygenated blood can deliver around 5 ml of O2 to the tissue
 - (C) Occupational respiratory disorder are characterised by fibrosis (proliferation of fibrous tissues)
 - (D) None
- 58. What will be the pO_2 and pCO_2 in the atmospheric air compared to those in the alveolar? [Pg-274,M]
 - (A) pO₂ lesser, pCO₂ higher
 - (B) pO2 higher, pCO2 lesser
 - (C) pO₂ higher, pCO₂ higher
 - (D) pO₂ lesser, pCO₂ lesser
- 59. Which of the following would have the same O2 content? [Pg-274]

- (A) Blood entering the lungs blood leaving the lungs
- (B) Blood entering the right side of the heart - blood leaving the right side of the heart
- (C) Blood entering the right side of the heart- blood leaving the left side of the heart
- (D) Blood entering the tissue capillaries blood leaving the tissue capillaries
- 60. CO₂ dissociates from carbaminohaemoglobin when -

[Pg-274,M]

(A) $pO_2 \downarrow$, $pCO_2 \downarrow$

(B) $pO_2 \uparrow$, $pCO_2 \uparrow$

(C) $pO_2 \downarrow$, $pCO_2 \uparrow$ (D) $pO_2 \uparrow$, $pCO_2 \downarrow$

- 61. Which of the following situations would result in the greatest degree of O2 saturation for haemoglobin, assuming pO₂ remains constant -[Pg-275,M]
 - (A) Increased CO₂ levels, decreased temperature
 - CO₂ (B) Increased levels, increased temperature
 - (C) Decreased CO2 levels, decreased temperature
 - CO2 (D) Decreased levels, increased temperature
- 62. Which of the following factors favour the formation of oxyhaemoglobin in lungs?

[Pg-274,E]

- (A) $pO_2 \downarrow$, $pCO_2 \uparrow$, $H+\uparrow$, Temperature \uparrow
- (B) $pO_2 \uparrow$, $pCO_2 \uparrow$, $H+\downarrow$, Temperature \uparrow
- (C) $pO_2 \uparrow$, $pCO_2 \downarrow$, $H+\downarrow$, Temperature \downarrow
- (D) $pO_2 \downarrow$, $pCO_2 \uparrow$, $pH \uparrow$, Temperature \downarrow
- 63. All of the following favour the dissociation of oxyhaemoglobin to deliver O2 to tissues except-[Pg-274,M]
 - (A) $pO_2 \uparrow$
- (B) $pCO_2 \uparrow OR H + \uparrow$
- (C) Temperature↑ (D) $pO_2 \downarrow$
- 64. The transport of CO₂ by the blood is primarily dependent on – [Pg-274,M]
 - (A) The solubility of CO₂in blood
 - (B) The presence of carbonic anhydrase in **RBCs**
 - (C) The ability of haemoglobin to bind and transport CO₂
 - (D) The ability of other blood proteins
- 65. Which of the following statements is false?

[Pg-274,275,M]

- (A) pO₂ is the major factor which affects the binding of CO₂ with haemoglobin
- (B) pCO_2 is low and pO_2 is high as in the tissues, more binding of CO₂ with Hb occurs

- (C) RBC contains a very high conc. of carbonic anhydrase and minute quantities of the same in the plasma
- (D) Every 100 mL of deoxygenated blood delivers approximately 4 mL of CO₂ to the alveoli.
- 66. Which of the following equation is correct? [Pg-275,E]
 - A) $CO_2 \longrightarrow H_2CO_3 \longrightarrow HCO_3^- + H^+$
 - B) $CO_2 \longrightarrow H_2O \xrightarrow{Carbonic anhydrase} H_2CO_3$ $\frac{\text{Carbonic anhydrase}}{\longleftarrow} \quad \text{H}^+ + \text{HCO}_3^-$
 - C) $CO_2 \longrightarrow H_2O \longrightarrow CH_4 + 2O_2$
 - D) $CO_2 \longrightarrow H_2O \longleftarrow CO + H_2O_2$
- 67. Which of the following is incorrect about the given graph. [Pg-274,E]

- (A) Increase in partial pressure of CO2 shift the curve to right.
- (B) At low temperature the curve shifts to
- (C) At high pH the curve shifts to right.
- (D) Decrease in partial pressure of oxygen shifts the curve to right.
- 68. Assertion- The maximum pO_2 in alveoli is considerably less than in the atmosphere. Reason- Lungs in mammals do not completely empty with each breath and inhalation occurs through the same airways as exhalation, so each inhalation mixes fresh air with oxygen depleted [Pg-274,H] residual air.
 - A) Both assertion and reason are true and reason is correct explanation of assertion.
 - B) Both assertion and reason are true and reason is not correct explanation of assertion.
 - C) Assertion is true but reason is false.
 - D) Both assertion and reason are false.

- 69. How does an increase in the CO₂ concentration in the blood affect the pH of CSF? [Pg-275,E]
 - (A) pH↑
 - (B) pH↓
 - (C) pH remains same.
 - (D) pH may increase or decrease.
- 70. Assertion A drop in the blood pH causes an increase in heart rate.

Reason- Increased Heart Rate increases the rate at which CO₂ is delivered to the lungs, where CO₂ is removed. [Pg-275,H]

- A) Both assertion and reason are true and reason is correct explanation of assertion.
- B) Both assertion and reason are true and reason is not correct explanation of assertion.
- C) Assertion is true but reason is false.
- D) Both assertion and reason are false.

Para-17.5 Regulation of Respiration

71. Respiratory process is regulated by certain specialized centres in the brain. One of the following listed centres can reduce the inspiratory duration upon stimulation –

[Pg-275,E]

- (A) Medullary inspiratory centre
- (B) Pneumotaxic centre
- (C) Chemosynthetic centre
- (D) Apneustic centre
- 72. Pneumotaxic centre is present in -

[Pg-275,E]

- (A) Pons
- (B) Medulla oblongata
- (C) Cerebrum (D) Cerebellum
- 73. The breathing centre initiates ventilation in response to **[Pg-275,E]**
 - (A) A decrease in air pressure
 - (B)A decrease in O2
 - (C) An increase in CO2
 - (D) The rate of gas exchange in the alveoli
- 74. All of the following factors play role in the regulation of respiratory rhythm except –

[Pg-275,E]

- (A) CO₂
- (B) H+ conc.
- (C) O_2
- (D) None of the above is correct
- 75. Receptors associated with aortic arch and carotid artery can recognise changes in ____ and ___ conc. and send necessary signal to ____ for remedial action.

[Pg-275,E]

- (A) O₂, CO₂, Pneumothorax
- (B) CO₂, H+, rhythm centre
- (C) CO₂, H+, apneustic centre
- (D) 0 2, H+, Pneumothorax
- 76. Respiratory centre of brain is stimulated by- [Pg-275,E]
 - (A) CO₂ content in venous blood
 - (B) CO₂ content in arterial blood
 - (C) O₂ content in arterial blood
 - (D) O₂ content in venous blood

Para-17.6

Disorders of Respiratory System-

- 77. Asthma is caused by
 - (A) Infections of lungs
 - (B) Infection of trachea
 - (C) Spasm in bronchial muscles
 - (D) Infection in nose
- 78. One reason for emphysema is [Pg-275,E]
 - (A) Cigarette smoking
 - (B) Drug addiction
 - (C) Wine consumption
 - (D) Heavy exercise
- 79. Emphysema is characterised by -

[Pg-275,E]

[Pg-275,E]

- (A) Permanent enlargement and destruction of alveolar area leading to reduction in respiratory surface
- (B) Inhibition of respiratory centre
- (C) Accumulation of fluid in lungs
- (D) Spasm of muscles of trachea
- 80. Why do human beings have difficulty breathing at high elevations? [Pg-276,M]
 - (A) O₂ makes up lower percentage of air there
 - (B) The temperature is lower there
 - (C) The barometric pressure is higher there
 - (D) pO₂ is lower there
- 81. Which of the following diseases are occupational respiratory disorder?

[Pg-276,M]

- (A) Silicosis, Fibrosis and asbestosis
- (B) Emphysema and mountain sickness
- (C) Asthma and Emphysema
- (D) Asthma and Hepatitis
- 82. If an injury tore a small hole in the membrane surrounding lungs, what effect on lung function would you expect?

[Pg-276,M]

- (A) Pneumothorax with lung collapse
- (B) Pneumothorax without lung collapse
- (C) Silicosis with lung collapse
- (D) Silicosis without lung collapse

Answer Key
BREATHING AND EXCHANGE OF GASES

Q	01	02	03	04	05	06	07	08	09	10
Ans	D	Α	Α	Α	Α	С	В	С	В	D
Q	11	12	13	14	15	16	17	18	19	20
Ans	A	С	Α	A	A	В	С	A	В	C
Q	21	22	23	24	25	26	27	28	29	30
Ans	C	A	A	A	Α	С	В	A	С	В
Q	31	32	33	34	35	36	37	38	39	40
Ans	С	A	A	В	D	D	D	D	С	A
Q	41	42	43	44	45	46	47	48	49	50
Ans	С	С	A	D	A	A	В	A	D	В
Q	51	52	53	54	55	56	57	58	59	60
Ans	A	С	D	A	D	В	D	В	В	С
Q	61	62	63	64	65	66	67	68	69	70
Ans	D	С	A	A	В	В	D	В	В	A
Q	71	72	73	74	75	76	77	78	79	80
Ans	В	A	С	С	В	A	С	A	A	D
Q	81	82								
Ans	A	A								

NEET MBBS DOCTORS