Cálculo Diferencial e Integral II Ficha de trabalho 6

(Extremos condicionados)

- 1. Para cada um dos casos seguintes, determine os extremos da função f no conjunto S:

 - $\begin{array}{ll} \text{a)} \ f(x,y)=x^4+y^2, & S=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2=1\}. \\ \text{b)} \ f(x,y)=x^4+y^2, & S=\{(x,y)\in\mathbb{R}^2:\ x^2+y^2\leq 1\}. \\ \text{c)} \ f(x,y,z)=x+y+z, & S=\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^2+z^2=3\}. \end{array}$
 - $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 4; x + z = 1\}.$ d) f(x, y, z) = z,
- 2. Use o Método dos Multiplicadores de Lagrange para determinar os extremos absolutos da função $f(x,y,z) = x^2 + y^2 + 2z^2 - x - y$ na bola $B = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 2\}.$
- 3. Determine os ponto da superfície $z=x^2-y^2+1$ mais próximos da origem.
- 4. Determine o ponto da reta y=x mais próximo da parábola $y=x^2+2$.
- 5. Determine as dimensões da caixa rectangular com volume igual a $1~\mathrm{m}^3$ que minimizam a respec-
- 6. Determine o valor máximo da área de um retângulo inscrito numa elipse de semieixos a e b.
- 7. Seja A uma matriz $n \times n$ definida positiva com valores próprios todos distintos. Prove que o ponto do elipsóide $E=\{x\in\mathbb{R}^n:\langle Ax,x\rangle=1\}$ mais próximo (respetivamente, mais distante) da origem se encontra na direção do vetor próprio de A correspondente ao maior (respetivamente, menor) valor próprio.
- 8. Seja $f:\mathbb{R}^n\to\mathbb{R}$ uma função de classe C^1 tal que a superfície $S=\{x\in\mathbb{R}^n:f(x)=0\}$ é compacta, não vazia e satisfaz $\nabla f(x) \neq 0$ para todo o $x \in S$. Mostre que a reta que une um dado ponto $x_1 \notin S$ ao ponto $x_0 \in S$ mais próximo de x_1 intersecta S ortogonalmente em x_0 .