Ciência da Computação

Prof. Tiago J. Arruda

Exercícios Propostos¹

\triangle Integral indefinida

1. Encontre a primitiva mais geral da função, isto é, a integral indefinida de f(x) com respeito a x: $\int f(x)dx = F(x) + C$, onde F'(x) = f(x).

(a) $f(x) = 9x^2 + 5x + 2$ (c) $f(x) = \frac{2}{x\sqrt{x}} + \sqrt[3]{x}$ (e) $f(x) = 7x^4 - \sec^2 x$ (b) $f(x) = x^{3/4} + \left(\frac{3}{4}\right)^x$ (d) $f(x) = e^{4x} + 3\cos x$ (f) $f(x) = 3e^x + \frac{1}{4x} - \sin x$

2. Resolva os problemas de valor inicial (PVI) abaixo.

(a) $\frac{dy}{dx} = 2x - 5$, y(2) = 0

(d) $\frac{d^2y}{dx^2} = 2 - 6x$; y'(0) = 4, y(0) = 1 (sugestão: defina u = y'(x) e u' = y''(x))

(b) $y' = x^{-1}$, $y(\pi) = -3$

(c) $y' = \frac{1}{x^2} + x$, x > 0; y(2) = 1 (e) $y'' = x + \sqrt{x}$; y'(1) = 2, y(1) = 1

<u>∧ Teorema Fu</u>ndamental do Cálculo

3. Determine o valor das integrais abaixo usando o teorema da variação total.

(a) $\int_{1}^{5} (1+3x) dx$ (d) $\int_{2}^{-1} \left(\frac{1}{x^3} + \frac{2}{x} + x\right) dx$ (g) $\int_{0}^{\pi/4} \sec^2 x dx$

(b) $\int_{-2}^{0} (x^2 + x) dx$ (e) $\int_{0}^{\pi/2} (x + \cos x) dx$ (h) $\int_{0}^{2} (e^x + x^e) dx$

(c) $\int_0^1 (x^3 - 3x^2 + 8) dx$ (f) $\int_0^\pi (2 \sin x - 5^x) dx$ (i) $\int_1^4 \frac{1}{2\sqrt{x}} dx$

4. Calcule as integrais definidas usando a propriedade $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

(a) $\int_0^4 f(x)dx$, onde $f(x) = \begin{cases} x^2, & \text{se } 0 \leq x \leq 2\\ 2x, & \text{se } 2 < x \leq 4 \end{cases}$

(b) $\int_0^3 f(x)dx$, onde $f(x) = \begin{cases} 7 - x, \text{ se } x < 2\\ x + 3, \text{ se } x \ge 2 \end{cases}$

(c) $\int_{-1}^{4} f(x)dx$, onde f(x) = |x - 1|

5. Use o teorema fundamental do cálculo para encontrar a derivada da função g.

(a) $g(x) = \int_0^x \sqrt{1 + \sec^2 t} dt$ (c) $g(x) = \int_0^2 \frac{u^3}{1 + u^2} du$ (e) $g(x) = \int_0^0 \tan(t^2) dt$

(b) $g(x) = \int_{1}^{x} \ln u \ du$ (d) $g(x) = \int_{1}^{\cos x} t^2 \sin t \ dt$

¹Resolva os exercícios sem omitir nenhuma passagem em seus cálculos. Respostas sem resolução e/ou justificativa não serão consideradas. Data máxima de entrega: 27/03/2025 até 14:00 horas

Ciência da Computação

Prof. Tiago J. Arruda

<u>∧</u> Valor médio de uma função

- 6. O valor médio M_f de uma função contínua f(x) no intervalo [a,b] é definido como $M_f = \frac{1}{b-a} \int_a^b f(x) dx$. Calcule o valor médio das funções no intervalo dado.
 - (a) $f(x) = x^2 1$, $[0, \sqrt{3}]$
- (d) $g(x) = \sqrt{x}$, [1,4]
- (b) $f(x) = \frac{1}{x}$, [1,4]
- (e) $f(t) = e^{-t}$, [0, 5]
- (c) $g(x) = \cos x$, $[0, \pi/2]$
- (f) $f(\theta) = \sec \theta \tan \theta$, $[0, \pi/4]$
- 7. Uma partícula move-se ao longo de uma reta com posição s(t) e velocidade instantânea v(t) = s'(t). Seja a(t) = v'(t) = 2t 1 sua aceleração instantânea e v(0) = -6 m/s sua velocidade inicial.
 - (a) Encontre v(t) e estude seu sinal para $t \ge 0$.
 - (b) Determine o deslocamento da partícula durante o período de tempo $1 \leq t \leq 4$ usando o teorema da variação total, isto é, $\Delta s = s(4) s(1) = \int_1^4 v(t) dt$, e calcule a velocidade média $v_{\rm m} = \Delta s/\Delta t$ da partícula nesse período de tempo.
 - (c) Determine a distância percorrida pela partícula nesse mesmo período de tempo, isto é, calcule $\int_1^4 |v(t)| dt$. (O módulo de v(t) é necessário para incluir no cálculo as distâncias percorridas com velocidade negativa que foram subtraídas no cálculo do deslocamento.)

<u> Á</u>rea entre gráficos

- 8. Determine a área da região delimitada por:
 - (a) $y = f(x) = x e y = g(x) = x^2 x$.
 - (b) y = f(x) = -x + 1, o eixo x e as retas x = -2 e x = 0.
 - (c) $y = f(x) = x^2 e y = g(x) = -x^2 + 4x$.
 - (d) $y = f(x) = 7 2x^2$ e $y = g(x) = x^2 + 4$.
- 9. Calcule a área assinalada nas figuras a seguir.

