Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem (Odd) Examination Dec-2022 CS3CO31 / IT3CO02 / BC3CO36 Data Structures

Branch/Specialisation: CSE All / IT / Programme: B.Tech. /B.Sc.(CS) Computer Science

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

- **Duration: 3 Hrs. Maximum Marks: 60** Q.1 (MCQs) should be written in full instead of only a, b, c or d. Q.1 i. Which of the following is not true about abstract data type (ADT): 1 (a) An abstract data type is a mathematical model (b) Abstract data types are generalizations of primitive data types (c) ADT's specification depends upon implementation (d) ADT's specification is independent of any particular implementation ii. Any problem which is implemented with recursion can be 1 implemented with: (a) Switch case (b) Loop (c) If-else (d) If elif else iii. Which of the following operations is performed more efficiently by 1 doubly linked list than by singly linked list? (a) Deleting a node whose location in given (b) Searching of an unsorted list for a given item

 - (c) Inserting a node after the node with given location
 - (d) Traversing a list to process each node
 - iv. A variant of the linked list in which none of the node contains NULL 1 pointer is-
 - (a) Singly linked list
- (b) Doubly linked list
- (c) Circular linked list
- (d) None of these
- Consider the following sequence of operations on an empty stack. push(31)

push(65)

pop()

push(25)

push(22)

X = pop()

P.T.O.

[2	
_	Ц

Consider the following sequence of operations on an empty queue.

	enqueue(90)	
	enqueue(14)	
	dequeue()	
	enqueue(21)	
	enqueue(77)	
	Y = dequeue()	
	The value of $X + Y$ is	
	(a) 38 (b) 36 (c) 99 (d) 112	
vi.	The following postfix expression with single digit operands is	1
	evaluated using a stack: 16 2 4 $^{\wedge}$ / 3 4 * + 7 9 * - note that $^{\wedge}$ is the	
	exponentiation operator. The top two elements of the stack after the	
	first * is evaluated are:	
	(a) 5,7 (b) 12,1	
	(c) 16, 2 (d) 5,1	
vii.	Which one of the following in place sorting algorithms needs the	1
	minimum number of swaps?	
	(a) Insertion sort (b) Bubble sort	
	(c) Selection Sort (d) Quick sort	
viii.	Which one of the following sorting algorithms sort the following array	1
	by using minimum number of comparisons?	
	23 37 53 59 64 72 89 94 156 197	
	(a) Insertion sort (b) Bubble sort	
	(c) Selection Sort (d) Quick sort	
ix.	The postorder traversal of a binary tree is 8, 9, 6, 7, 4, 5, 2, 3, 1. The	1
	inorder traversal of the same tree is 8, 6, 9, 4, 7, 2, 5, 1, 3. The height	
	of a tree is the length of the longest path from the root to any leaf. The	
	height of the binary tree above is-	
	(a) 2 (b) 3 (c) 4 (d) 5	
х.	Most suitable data structure for breadth first search (BFS)	1
	implementation is-	
	(a) Stack (b) Queue (c) Linked list (d) Tree	
i.	What do you understand by data structure? Give a real-life example	2
	where it can be used.	

Q.2

[3]

ii. A 2-dimensional array is stored row by row, then what is the address 3 of matrix element A[i,j] for n row and m column matrix? How array representation of polynomial $2x^2+5xy+y^2$ can be done? iii. Write a program to copy an array into other array with the use of 5 pointer. OR iv. Explain linear and non-linear data structure with the help of example. List some applications of linked list? 2 Q.3 i. ii. Illustrate doubly linked list. Write down benefits and disadvantages of doubly linked list over singly linked list. OR iii. (a) Illustrate Circular linked list. 8 (b) Write an algorithm for insertion in sorted linked list. What do you understand by 'stack underflow' condition. Write a 3 Q.4 i. statement to detect it. ii. Write down some disadvantages of simple queue. How to overcome 7 OR iii. Write an algorithm to convert postfix expression into infix expression. 7 Demonstrate algorithm by evaluating postfix expression in tabular form: 35 * 62 / +?Demonstrate binary search to search a key=54 in following array: O.5 i. 4 166 54 82 124 ii. (a) Enumerate methods for choosing the pivot element in quick sort. (b) Compare the various hashing techniques. OR iii. Consider the hash table of size 10. Using quadratic probing, insert the 6 keys 72, 27, 36, 24, 63, 81, and 101 into hash table. Take c1=1 and c2=3.Q.6 Attempt any two: i. Demonstrate applicability of graph data structure? Describe the 5 various representation of graph with example? ii. Brief the properties of AVL trees. Explain about rotations performed 5

iii. Enumerate benefits for threaded tree. Write an algorithm for inorder 5

for insertion in AVL search tree with example.

traversal in a threaded binary tree.

Marking Scheme

CS3CO31 / IT3CO02 / BC3CO36 Data Structures

Q.1	i.	Which of the following is not true about abstract data type (ADT):	1									
		(c) ADT's specification depends upon implementation	_									
	ii.	Any problem which is implemented with recursion can be	1									
		implemented with:										
		(b) Loop Which of the following operations is performed more efficiently by 1										
	iii.											
		doubly linked list than by singly linked list?										
		(a) Deleting a node whose location in given										
	iv.	A variant of the linked list in which none of the node contains NULL	1									
		pointer is-										
		(c) Circular linked list										
	v.	Consider the following sequence of operations on an empty stack.	1									
		push(31)										
		push(65)										
		pop()										
		push(25)										
		push(22)										
		X = pop()										
		Consider the following sequence of operations on an empty queue.										
		enqueue(90)										
		enqueue(14)										
		dequeue()										
		enqueue(21)										
		enqueue(77)										
		Y = dequeue()										
		The value of $X + Y$ is										
		(b) 36	_									
	vi.	The following postfix expression with single digit operands is	1									
		evaluated using a stack: 16 2 4 ^ / 3 4 * + 7 9 * - note that ^ is the										
		exponentiation operator. The top two elements of the stack after the										
		first * is evaluated are:										
		(b) 12,1	_									
	vii.	Which one of the following in place sorting algorithms needs the	1									
		minimum number of swaps?										
		(c) Selection Sort										
	V111.	Which one of the following sorting algorithms sort the following array	1									

		by using	minim	ium nu	mber o	of com	parison	ıs?				
		23	37	53	59	64	72	89	94	156	197	
	ix.	(a) Insert The post inorder t	order t raversa	raversa	e same	e tree i	s 8, 6,	9, 4, 7	, 2, 5, 1	1, 3. The	height	1
	х.	of a tree height of (c) 4 Most s impleme (b) Queu	the bi	nary tro	ee abo	ve is-	-			search		1
Q.2	i.	Definition real-life				icture.					ark ark	2
	ii.	Address	-				or n rov	v and n	n colun			3
		Array rej								2 m	arks ark	
	iii.	Program	to cop	y an ar	ray int	o othe	r array	with th	ne use o	of pointe	er.	5
		Declarati				cture					nark	
ΟD	•	Complete		U 1	_	1:	1-44				narks	_
OR	iv.	Definitio Example									arks arks	5
Q.3	i.	List som At least t			of lin	ked lis	t					2
	ii.	Illustrate	doubl	y linke	d list.	Defini	tion			2 m	arks	8
		Diagram									arks	
		Benefits		ıbly Li	nked L	List Ov	er Sing	gly Lin	ked Lis		arks	
OR	:::	Disadvar	_		inkad	list				2 m	arks	8
UK	iii.	(a) Illustr Definitio		icuial I	IIIKEU	1181.				2 m	narks	o
		Diagram									arks	
		(b) Algor		or inse	rtion i	n sorte	d linke	d list.			arks	

2 marks

1 mark

3 marks

4 marks

3

7

Q.4 i. Stack underflow' condition.

Statement to detect it.

Solution to overcome it

ii. Some disadvantages of simple queue.

OR	iii.	Algorithm to convert postfix expression into infix expression.		
			3 marks	
		Algorithm by evaluating postfix expression in tab	oular form: 3 5 * 6 2 /	
		+?	4 marks	
Q.5	i.	Demonstrate binary search to search a key=54		4
	ii.	(a) Methods for choosing the pivot element in quie	ck sort.	6
			3 marks	
		(b) Compare the various hashing techniques.	3 marks	
OR	iii.	Approach to solve problem	3 marks	6
		Correct Solution	3 marks	
Q.6		Attempt any two:		
	i.	Applicability of Graph data structure	2 marks	5
		Various representation of graph with example	3 marks	
	ii.	Properties of AVL trees.	2 marks	5
		Rotations performed for insertion in AVL search	tree	
			2 marks	
		Example.	1 mark	
	iii.	Benefits for threaded tree.	2 marks	5
		Algorithm for inorder traversal in a threaded bina	ry tree	
			3 marks	
