Predictive Analytics for Netflix: LSTM, CNN, and Random Forest Models

Exploring LSTM, CNN, and Random Forest Models for Stock Price & Subscriber Growth Predictions

Project Overview

Focus:

Building a real-time AI-based system for Netflix stock price prediction and regional subscriber growth forecasting.

Models:

LSTM and CNN for stock price forecasting.

Random Forest Regressor (RFR) for predicting subscriber growth.

Visualization:

Power BI for interactive and real-time stock and subscriber growth insights.

Project Objectives & Research Questions

Stock Price Prediction

Create LSTM and CNN models to predict real-time stock price of Netflix Inc. (NFLX) using historical data obtained from Yahoo Finance and compare their performance for accuracy and reliability.

Subscriber Growth Rate Prediction

Implement a machine
learning model as Random
Forest Regressor, to predict
subscriber growth in each
region, and examine
regional factors that
influence subscriber trends
to support strategic
decision-making.

Visualization with Power BI

Integrate Power BI to
visualize historical stock
price movements, predicted
subscriber growth rates,
and comparative analysis,
providing stakeholders
with interactive dashboards
to explore data insights and
making informed
decisions.

Research Questions

Can AI models accurately predict Netflix stock price movements?

How can regional subscriber growth be forecasted using machine learning techniques?

METHODOLOGY OVERVIEW

Methodology and Data Sources

Overview of the Approach and Data Utilization

CRISP-DM Methodology

Utilizes a structured framework comprising six phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.

Stock Price Data

Incorporates Netflix stock price data sourced from Yahoo Finance through the yFinance API for accurate financial analysis.

Subscriber Growth Insights

Analyzes subscriber growth using the Netflix Userbase dataset in CSV format to forecast user trends effectively.

Integration of Data Sources

Applies distinct modeling techniques for each dataset to enhance predictive accuracy and provide a comprehensive analysis of Netflix's performance.

MODELING TECHNIQUES

Model Development and Training

Key Techniques for AI-Powered Forecasting Models

Development Tools

Utilizes Google Colab, Python, TensorFlow, Keras, and scikit-learn for streamlined model development.

Random Forest Regressor (RFR)

Handles high-dimensional data efficiently for predicting subscriber growth in a complex environment.

Long Short-Term Memory (LSTM)

Ideal for capturing temporal dependencies in stock prices, enhancing forecasting accuracy.

Convolutional Neural Network (CNN)

Effective in detecting patterns within time-series data, improving model responsiveness.

LSTM OVERVIEW

LSTM Model Architecture

Understanding the Structure for AI-Powered Forecasting

Input Layer

Dense Layer

prices.

Utilizes normalized sequences to ensure data consistency.

Final Dense layer outputs predictions for stock

Import the necessary libraries from keras.models import Sequential from keras.layers import LSTM, Dense, Input

3.1 Build & Train LSTM model

lstm model = Sequential()

Add Input layer

lstm model.add(Input(shape=(time step, 1)))

Add LSTM layers

lstm_model.add(LSTM(50, return_sequences=True))

lstm_model.add(LSTM(50, return_sequences=False))

Add Dense layers

lstm model.add(Dense(25))

lstm model.add(Dense(1))

Compile the model

lstm_model.compile(optimizer='adam', loss='mean_squared_error'

Training Process

Configured with a batch size of 1 and trained for 1 epoch.

Train the model lstm_model.fit(X, y, batch_size=1, epochs=1)

LSTM Layers

Two LSTM layers with 50 units each for capturing temporal dependencies.

Compilation

Employs Adam optimizer with MSE loss for efficient training.

CNN ARCHITECTURE

CNN Model Architecture

Key Components of a Convolutional Neural Network for Prediction

Input Layer

Normalized input sequence prepares data for processing.

Import the necessary libraries from keras.models import Sequential from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense, Input

Pooling Laver

MaxPooling1D reduces dimensionality for efficient computation.

Dense Layers

Final dense layer outputs predictions for stock price forecasting.

3.2 Build & Train CNN model cnn_model = Sequential() # Add Input layer cnn_model.add(Input(shape=(time_step, 1))) # Add Convolutional layers cnn_model.add(Conv1D(filters=64, kernel_size=2, activation='relu')) cnn_model.add(MaxPooling1D(pool_size=2)) # Add Flatten and Dense layers cnn_model.add(Flatten()) cnn_model.add(Dense(50, activation='relu')) cnn_model.add(Dense(1)) # Compile the model cnn_model.compile(optimizer='adam', loss='mean_squared_error') # Train the model

cnn model.fit(X, y, batch size=1, epochs=1)

Convolutional Layers

Utilizes Conv1D with 64 filters and kernel size 2 for feature extraction.

Flatten Layer

Transforms 2D features into a 1D vector for the dense layers.

Compilation and Training

Uses Adam optimizer and MSE loss; trained with batch size of 1 for 1 epoch.

MODEL OVERVIEW

Random Forest Regressor Model

Leveraging Ensemble Methods for Predictive Analytics

01 Ensemble Method

Utilizes 100 decision trees to improve prediction accuracy and reduce overfitting.

02 Training with Data

Employs subscriber growth data, ensuring robust model training via split datasets.

03 Performance Evaluation

Assesses model effectiveness using Rsquared (R²) and RMSE metrics for accuracy.

04 Predictive Insights

Delivers insights into subscriber trends, enabling strategic decision-making.

MODEL COMPARISON

Evaluation and Results: Netflix Stock Price Prediction

Comparative Analysis of LSTM and CNN Model Performance

LSTM Model Performance

Mean Squared Error (MSE): 111.74

Root Mean Squared Error (RMSE): 10.57

Outperforms CNN in accuracy

Better suited for time series data

CNN Model Performance

Mean Squared Error (MSE): 430.90

Root Mean Squared Error (RMSE): 20.76

Less accurate than LSTM

Typically used for image processing

MODEL PERFORMANCE COMPARISON

Evaluation and Results: Subscriber Growth Prediction

Comparative Analysis of Random Forest Model Metrics

Random Forest Regressor

Subscriber growth prediction accuracy.
Important factors: Region, subscription type, revenue.

Random Forest Model Performance

R-squared (R²): 0.9861 indicates excellent predictive accuracy. RMSE: 43.73, showing low error in predictions. Highly effective for forecasting subscriber growth.

Key Insights

High accuracy in predicting regional subscriber growth.

STOCK PRICE PREDICTIONS

Power BI Integration: Stock Price Predictions

Comparative Analysis of Actual Prices vs. Model Predictions

SUBSCRIBER GROWTH ANALYSIS

Power BI Integration: Subscriber Growth Predictions

Analyzing Actual vs. Predicted Subscriber Growth Across Regions

Conclusion and Recommendations

Random Forest Regressor provided accurate subscriber growth predictions across

Power BI enhanced data interpretation through interactive visualizations.

forecasting.

regions.

Enhance data integration for more robust real-time forecasts.

Recommendations

Summary

LSTM outperformed CNN in stock price predictions, demonstrating strong temporal

Extend models to other streaming platforms.

Explore additional AI techniques (e.g., transformers, hybrid models).