Task 6 - Airline Flight Data

Description:

An airline collects data on flights including route, departure/arrival times, delays, aircraft type, and passenger counts. The airline wants to analyze delays, optimize routes, and improve operational efficiency.

Dataset:

	_	_																				
_ A		В	С	D		Е	F	G	Н		J K	L	M	N	0	Р	Q	R	S	T	U	V
1 id	yea		month	day				dep_delay a			arr_delay carrier	flight	tailnum	origin	dest		distance hou		minute	time_hour		
2	0	2013		1	1	517 533	515	2	830 850	819 830	11 UA		N14228	EWR	IAH	227 227	1400	5		.5 ########		
3	1	2013		1	1		529	4			20 UA		N24211	LGA	IAH		1416	5		9 #######		
4	2	2013		1	1	542	540	2	923	850	33 AA		N619AA	JFK	MIA	160	1089	5		10 #######		
5	3	2013		1	1	544	545	-1	1004	1022	-18 B6		N804JB	JFK	BQN	183		5		15 #######		
6	4	2013		1	1	554	600	-6	812	837	-25 DL		N668DN	LGA	ATL	116		6		0 #######		
7	5	2013		1	1	554	558	-4	740	728	12 UA		N39463	EWR	ORD	150	719	5		8 #######		
8	6	2013		1	1	555	600	-5	913	854	19 B6		N516JB	EWR	FLL	158		6		0 #######		
9	7	2013		1	1	557	600	-3	709	723	-14 EV	5708	N829AS	LGA	IAD	53		6		0 #######		
10	8	2013		1	1	557	600	-3	838	846	-8 B6	79	N593JB	JFK	MCO	140	944	6		0 #######	JetBlue Air	ways
11	9	2013		1	1	558	600	-2	753	745	AA 8	301	N3ALAA	LGA	ORD	138	733	6		0 #######	American	Airlines Inc
12	10	2013		1	1	558	600	-2	849	851	-2 B6	49	N793JB	JFK	PBI	149	1028	6		0 #######	JetBlue Air	ways
13	11	2013		1	1	558	600	-2	853	856	-3 B6	71	N657JB	JFK	TPA	158	1005	6		0 #######	JetBlue Air	ways
	12	2013		1	1	558	600	-2	924	917	7 UA	194	N29129	JFK	LAX	345	2475	6		0 #######	United Air	Lines Inc.
15	13	2013		1	1	558	600	-2	923	937	-14 UA	1124	N53441	EWR	SFO	361	2565	6		0 #######	United Air	Lines Inc.
16	14	2013		1	1	559	600	-1	941	910	31 AA	707	N3DUAA	LGA	DFW	257	1389	6		0 #######	American	Airlines Inc
17	15	2013		1	1	559	559	0	702	706	-4 B6	1806	N708JB	JFK	BOS	44	187	5	5	9 #######	JetBlue Air	ways
18	16	2013		1	1	559	600	-1	854	902	-8 UA	1187	N76515	EWR	LAS	337	2227	6		0 #######	United Air	Lines Inc.
19	17	2013		1	1	600	600	0	851	858	-7 B6	371	N595JB	LGA	FLL	152	1076	6		0 #######	JetBlue Air	ways
20	18	2013		1	1	600	600	0	837	825	12 MQ	4650	N542MO	LGA	ATL	134	762	6		0 #######		
_	19	2013		1	1	601	600	1	844	850	-6 B6	343	N644JB	EWR	PBI	147	1023	6		0 #######		wavs
	20	2013		1	1	602	610	-8	812	820	-8 DL	1919	N971DL	LGA	MSP	170	1020	6	1	0 #######	Delta Air Li	ines Inc.
_	21	2013		1	1	602	605	-3	821	805	16 MO		N730MO		DTW	105	502	6		5 ########		
_	22	2013		1	1	606	610	-4	858	910	-12 AA		N633AA	EWR	MIA	152		6		.0 #######		Airlines Inc
	23	2013		1	1	606	610	-4	837	845	-8 DL		N3739P	JFK	ATL	128		6		.0 #######		
	24	2013		1	1	607	607	0	858	915	-17 UA		N53442	EWR	MIA	157	1085	6		7 ########		
	25	2013		1	1	608	600	8	807	735	32 MO		N9EAMO		ORD	139	719	6		0 ########		Lines inc.
	26	2013		1	1	611	600	11	945	931	14 UA		N532UA	JFK	SEO	366	2586	6		0 #######		Lines Inc
	27	2013		1	1	613	610	3	925	921	4 B6		N635JB	JFK	RSW	175	1074	6		.0 #######		
	28	2013		1	1	615	615	0	1039	1100	-21 B6		N794JB	JFK	SJU	182		6		.5 ########		
_	28 29	2013		1	1	615	615	0	833	842	-21 B6 -9 DL		N326NB	FWR		120		6		.5 ######## .5 #########		•
_		2013		-				-							ATL	342				.5 ####### 80 ########		
_	30			1	1	622	630	-8	1017	1014	3 US		N807AW	EWR	PHX			6				
22	31	2013		1	1	623	610	13	920	915	5 AA	1837	N3EMAA	LGA	MIA	153	1096	6	1	.0 #######	American	Airtines Inc

1. Explain how color schemes can highlight flight delays.

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('flights.csv')
sns.histplot(df['dep_delay'], bins=30, kde=True, palette='coolwarm')
plt.title("Color-coded Flight Delays")
plt.xlabel("Delay (minutes)")
plt.ylabel("Frequency")
plt.show()
```

Using a warm-to-cool color scheme helps highlight delay severity — red tones for high delays and blue tones for lower delays. This improves visual contrast and draws attention to problem zones.

2. Design a visualization pipeline from raw flight data to dashboards.

Program:

```
df.dropna(subset=['dep_delay'], inplace=True)

df['DelayCategory'] = pd.cut(df['dep_delay'], bins=[-10, 0, 30, 60, 120, 1000],

labels=['Early', 'On-Time', 'Slight Delay', 'Moderate Delay', 'Severe Delay'])

agg_data = df.groupby('name')['dep_delay'].mean().reset_index()

sns.barplot(x='name', y='dep_delay', data=agg_data)

plt.title("Average Delay per Airline")

plt.xticks(rotation=90)

plt.show()
```

Inference:

This pipeline cleans, categorizes, aggregates, and visualizes flight data. It transforms raw input into actionable dashboards for analyzing airline performance.

3. Apply Gestalt principles to highlight delay-prone routes.

Program:

```
df['Route'] = df['origin'] + ' -> ' + df['dest']
route_delay =
df.groupby('Route')['dep_delay'].mean().reset_index().rename(columns={'dep_delay': 'Delay'})
top_10_routes = route_delay.sort_values('Delay', ascending=False).head(10)
sns.barplot(x='Route', y='Delay', data=top_10_routes, palette='Reds')
plt.xticks(rotation=90)
plt.title("Top Delay-Prone Routes")
plt.show()
```

Inference:

By applying **similarity and proximity**, routes with similar delay patterns are grouped and colored alike. This visually clusters delay-prone routes, simplifying pattern recognition.

4. Perform univariate analysis:

a. Histogram of delay times.

Program:

```
plt.hist(df['dep_delay'], bins=30, color='skyblue', edgecolor='black')
plt.title("Distribution of Flight Delays")
plt.xlabel("Delay (minutes)")
plt.ylabel("Frequency")
plt.show()
```

Inference:

Most delays are clustered near shorter durations, with a long tail showing rare but severe delays — indicating skewness in delay distribution.

OutPut:

b. Pie chart of aircraft types.

```
plt.figure(figsize=(10, 6))
sns.countplot(data=df, x='name', hue='DelayCategory', palette='coolwarm')
plt.title("Delay Category Distribution by Airline")
plt.xlabel("Airline Name")
plt.ylabel("Number of Flights")
```

```
plt.xticks(rotation=90)
plt.legend(title="Delay Category")
plt.show()
```

The pie chart shows which aircraft models are most used. A few dominant aircraft types contribute to most flights, showing operational preference.

OutPut:

5. Perform bivariate analysis:

a. Scatterplot of delay vs. distance.

```
import seaborn as sns
import matplotlib.pyplot as plt
sns.scatterplot(x='distance', y='dep_delay', hue='name', data=df, palette='coolwarm')
plt.title("Delay vs Flight Distance")
plt.xlabel("Flight Distance (miles)")
plt.ylabel("Departure Delay (minutes)")
plt.show()
```

There is a mild positive correlation — longer routes tend to have slightly higher delays, possibly due to weather or air traffic factors.

OutPut:

b. Box plot of delays across airlines.

Program:

```
sns.boxplot(x='name', y='dep_delay', data=df)
plt.title("Delay Distribution by Airline")
plt.xlabel("Airline")
plt.ylabel("Departure Delay (minutes)")
plt.xticks(rotation=90)
plt.show()
```

Inference:

Some airlines show higher median delays and variability, indicating inconsistent punctuality compared to others.

OutPut:

- 6. Perform multivariate analysis:
- a. Pair plot of delay, passenger count, and distance.

Program:

sns.pairplot(df[['dep_delay', 'distance']], diag_kind='kde')

plt.show()

Inference:

Pair plots reveal correlations among multiple factors — e.g., higher passenger counts might correspond with longer routes and increased delays.

b. Suggest combined visualization to summarize multiple variables.

Program:

sns.heatmap(df[['dep_delay', 'distance']].corr(), annot=True, cmap='coolwarm')
plt.title("Correlation Matrix")
plt.show()

Inference:

A correlation heatmap succinctly summarizes relationships among variables, helping to spot strong positive or negative correlations instantly.

OutPut:

7. Design hierarchical visualization of flights by airline and route.

Program:

```
title="Hierarchical Visualization of Flights by Airline and Route (Delay-based)"
)
fig.show()
```

A treemap allows hierarchical comparison — airlines and their routes sized by passengers and colored by delay. High-delay routes stand out immediately.

OutPut:

Hierarchical Visualization of Flights by Airline and Route (Delay-based)

8. Construct network graph showing connectivity of airports.

Program:

```
import networkx as nx
import matplotlib.pyplot as plt

G = nx.from_pandas_edgelist(df, 'origin', 'dest', ['distance'])
plt.figure(figsize=(10,7))
nx.draw(G, with_labels=True, node_size=500, font_size=8)
plt.title("Airport Connectivity Network")
plt.show()
```

Inference:

The graph reveals hub airports (high connectivity) and isolated nodes, aiding route optimization and identifying bottlenecks.

OutPut:

9. Analyze passenger feedback (text data):

a. Convert feedback to vector space.

Program:

from sklearn.feature extraction.text import CountVectorizer

feedback = pd.Series(["Late flight", "Comfortable seats", "Rude staff", "Delayed

baggage"])

vectorizer = CountVectorizer()

X = vectorizer.fit_transform(feedback)

print(pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names_out()))

Inference:

Text vectorization converts qualitative feedback into numerical vectors, enabling sentiment and topic analysis on passenger opinions.

	baggage	comfortable	delayed	flight	late	rude	seats	staff	
0	0	0	0	1	1	0	0	0	
1	0	1	0	0	0	0	1	0	
2	0	0	0	0	0	1	0	1	
3	1	0	1	0	0	0	0	0	

b. Word cloud of common complaints.

Program:

```
from wordcloud import WordCloud
```

```
text = " ".join(feedback)
```

wc = WordCloud(background color='white', colormap='coolwarm').generate(text)

plt.imshow(wc, interpolation='bilinear')

plt.axis('off')

plt.show()

Inference:

Frequent complaint terms (like "delay" or "rude") appear larger, helping quickly identify key areas for service improvement.

OutPut:

10. Steps to design effective dashboards combining hierarchical, network, and text data.

Steps to design effective dashboards:

- # Conceptual (not code)
- # Combine:
- # Treemap for hierarchy
- # Network graph for connectivity
- # Word cloud for feedback
- # Use Plotly Dash / Power BI / Tableau for integration

```
11. Visualize point data: Map flights' origin and destination locations.
Program:
import geopandas as gpd
import matplotlib.pyplot as plt
import requests
import os
url = "https://www.naturalearthdata.com/downloads/110m-cultural-
vectors/110m cultural vectors.zip"
filename = "110m cultural vectors.zip"
extracted folder = "110m cultural vectors"
shapefile path = os.path.join(extracted folder, "ne 110m admin 0 countries.shp")
if not os.path.exists(filename):
  print(f"Downloading {filename}...")
  response = requests.get(url)
  with open(filename, 'wb') as f:
     f.write(response.content)
  print("Download complete.")
if not os.path.exists(extracted folder):
  import zipfile
  print(f"Extracting {filename}...")
  with zipfile.ZipFile(filename, 'r') as zip ref:
    zip ref.extractall(extracted folder)
  print("Extraction complete.")
world = gpd.read file(shapefile path)
plt.figure(figsize=(15, 10))
world.plot(color='lightgray', ax=plt.gca())
plt.scatter(df['Origin Long'], df['Origin Lat'], c='blue', label='Origin', alpha=0.5)
```

```
plt.scatter(df['Dest Long'], df['Dest Lat'], c='red', label='Destination', alpha=0.5)
plt.legend()
plt.title("Flight Origin and Destination Points")
plt.xlabel("Longitude")
plt.ylabel("Latitude")
plt.show()
print(df.columns)
Inference:
Points show spatial flight coverage. High-density clusters near major cities reveal central
hubs in the network.
OutPut:
Index(['id', 'year', 'month', 'day', 'dep time', 'sched dep time', 'dep delay',
    'arr time', 'sched arr time', 'arr delay', 'carrier', 'flight',
    'tailnum', 'origin', 'dest', 'air time', 'distance', 'hour', 'minute',
    'time hour', 'name', 'DelayCategory', 'Route'],
   dtype='object')
12. Visualize line data: Show flight paths across the map.
Program:
for i, row in df.iterrows():
  plt.plot([row['Origin Long'], row['Dest Long']],
        [row['Origin Lat'], row['Dest Lat']], 'k-', alpha=0.3)
plt.title("Flight Paths")
plt.show()
```

Lines connecting origins to destinations show geographic flight routes, visually illustrating air traffic flow and route overlap.

Inference:

OutPut:

13. Visualize area data: Heatmap of airport congestion.

Program:

sns.kdeplot(x=df['Origin_Long'], y=df['Origin_Lat'], fill=True, cmap='Reds')
plt.title("Airport Congestion Heatmap")
plt.show()

Inference:

Heatmap areas indicate zones of dense flight activity — revealing highly congested airspaces and potential delay-prone regions.

14. Design animated visualization of flight delays over time.

Program:

import plotly.express as px

fig.show()

Inference:

Animation shows temporal delay trends across months, helping track seasonal peaks and performance fluctuations

OutPut:

15. Plot time series of average delays by month.

```
monthly = df.groupby('Month')['Delay'].mean().reset_index()
plt.plot(monthly['Month'], monthly['Delay'], marker='o')
plt.title("Average Monthly Delays")
plt.show()
```

The line graph highlights monthly delay patterns — e.g., spikes during monsoon or holiday seasons.

OutPut:

16. Compare weekday vs. weekend delays.

Program:

df['DayType'] = df['Date'].apply(lambda x: 'Weekend' if pd.to_datetime(x).weekday() >=5
else 'Weekday')

sns.boxplot(x='DayType', y='Delay', data=df)

plt.title("Weekday vs Weekend Delays")

plt.show()

Inference:

Delays often increase on weekends due to higher passenger traffic and flight congestion.

17. Use regression/clustering to analyze factors affecting delays.

Program:

import seaborn as sns

import statsmodels.api as sm

X = df[['Distance', 'Passengers']]

y = df['Delay']

X = sm.add constant(X)

model = sm.OLS(y, X).fit()

print(model.summary())

Inference:

Regression identifies significant predictors (like distance) affecting delays — useful for predictive planning and scheduling.

OutPut:

OLS Regression Results

Dep. Variable: dep delay R-squared: 0.001

Model: OLS Adj. R-squared: 0.001

Method: Least Squares F-statistic: 85.08

Date: Tue, 21 Oct 2025 Prob (F-statistic): 2.93e-20

Time: 17:03:47 Log-Likelihood: -4.3906e+05

No. Observations: 89403 AIC: 8.781e+05

Df Residuals: 89401 BIC: 8.781e+05

Df Model: 1

Covariance Type: nonrobust

coef std err **P**>|t| [0.025]0.975] 9.2613 48.498 0.000 8.887 9.636 const 0.191 -0.0014 distance 0.000 -9.224 0.000 -0.002 -0.001**Omnibus: 107614.227 Durbin-Watson:** 1.573 **Prob(Omnibus):** 0.000 Jarque-Bera (JB): 30275947.028 Skew: 6.181 **Prob(JB)**: 0.00 92.301 Cond. No. **Kurtosis:** 2.21e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.21e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- 18. Evaluate predictive models for delays: Plot predicted vs. actual values

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model = LinearRegression()
model.fit(X[['Distance', 'Passengers']], y)
y_pred = model.predict(X[['Distance', 'Passengers']])
plt.scatter(y, y_pred)
plt.xlabel("Actual Delay")
plt.ylabel("Predicted Delay")
```

plt.title("Predicted vs Actual Delay")

plt.show()

Inference:

The scatter plot close to a 45° line shows prediction accuracy — tighter alignment indicates better model performance.

OutPut:

Your Model Evaluation Metrics:

R² Score : 0.0005 MAE (minutes) : 23.1610 MSE : 1616.0848 RMSE (minutes): 40.2006