МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «ОЭВМиС»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр. 9383	 Крейсманн К.В.
Преподаватель	 Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Изучить представление целых чисел, научиться их обрабатывать, познакомиться с организаций ветвящихся процессов.

Задание:

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Замечания:

- 1) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 2) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
 - 3) при вычислении функций f1 и f2 нельзя использовать процедуры;
- 4) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

$$f1 = \{15-2*i, при a>b$$
 $\{3*i+4, при a<=b\}$ $f2 = \{-(6*I+8), при a>b\}$

$$\{9-3*(i-1),\$$
при a<=b
$$f3 = \{|i1|+|i2|, \qquad$$
при k<0
$$\{\max(6,|i1)|, \qquad$$
при k>=0

Ход работы:

Для считывания чисел была разработана процедура input. В этой процедуре считывается код символа, если он является кодом знака минуса, то в регистр dx заносится значение 1, которое затем используется, для преобразования числа в отрицательное. Если является кодом цифры, то цифра записывается в число и так продолжается до нажатия enter. Если является кодом клавиши enter то считывание завершается и в нужную переменную кладется значение.

Процедура Input вызывается в цикле 4 раза для получения значений а ,b ,i ,k.

Первая функция вычисляется следующим образом: сравниваются значения а и b, если a<=b, то происходит переход на метку, иначе в переменную результата первой функции resf1 кладется значение 15, затем в ах заносится значение і и оно умножается на 2 с помощью сдвига влево. Затем из переменной resf1 вычитается полученное в ах. Если произошел переход на метку, то в resf1 заносится 4, затем в ах заносится і и умножается на 3 сдвигом влево и сложением, после этого к resf1 прибавляется ах.

Для уменьшение количества команд во второй функции были преобразованы выражения -(6*i+8) = -8-6*i, 9-3*(i-1) = 12-3*i. Функция вычисляется следующим образом:

сравниваются значения а и b, если a<=b, то происходит переход на метку, иначе в переменную результата второй функции resf2 кладется значение -8, а в ах кладется значение i, затем оно умножается на 6, путем двойного сдвига влево и прибавления выражения 2*I, которое вычисляется одним сдвигом влево. После этого из resf2 вычитается значение, хранящееся в ах. Если произошел переход на метку, то в resf2 заносится значение 12, затем в ах заносится значение i и оно

умножается на 3 путем сдвига влево и прибавления і. После этого из resf2 вычитается значение, лежащее в ах.

Третья функция вычисляется следующим образом:

Сравниваем resf1 и resf2 с нулем, если они отрицательны, то делаем их положительными с помощью команды neg. Затем сравниваем k с 0, если k отрицательно, то переходим на метку, где в resf3 кладем сумму модулей resf1 и resf2. Если k>=0, то сравниваем модуль resf1 с 6 и устанавливаем максимум из них в resf3.

Тестирование программы:

1. Входные данные: 3 4 5 2

начение resf1 = 19

начение resf2 = -3

начение resf3 = 19

2. Входные данные: 3 3 -4 1

начение resf1 = -8

начение resf2 = 24

начение resf3 = 8

3. Входные данные: 3 3 -4 -100

начение resf1 = -8

начение resf2 = 24

начение resf3 = 32

4. Входные данные: -2 4 20 6

начение resf1 = 64

начение resf2 = -48

начение resf3 = 64

5. Входные данные: -2 4 20 -12

начение resf1 = 64

начение resf2 = -48

начение resf3 = 112

6. Входные данные: 10 5 5 3

3начение resf1 = 5

3начение resf2 = -38

3начение resf3 = 6

Содержимое файла lr3.asm представлено в приложении A.

Содержимое файла 13.1st представлено в приложении Б.

Вывод:

Изучено представление целых чисел, получены навыки работы с целыми числами и ветвящимися процессами.

Приложение А

```
lr.asm:
.186
DOSSEG
 .model small
 .STACK 100h
 .DATA
a dw 0
b dw 0
i dw 0
k dw 0
resf1 dw 0
resf2 dw 0
resf3 dw 0
 .CODE
begin:
   mov ax, @DATA
   mov ds,ax
   mov di,offset a
                         ;счетчик, 4, т.к. нужно ввести 4 значения
   mov cx,4
inputNumbers:
                            ;ввод значений
   mov dx, 0
                         :для знака
   call input
                         ;вызов процедуры которая считывает число
                         ;сравниваем dx c 0
   cmp dx, 0
   je ContinueInputNumbers
                                ;если равен 0 то переходим на метку
   neg Word Ptr es:[di]
                             ;делаем отрицательной переменную
ContinueInputNumbers:
   inc di
   inc di
   loop inputNumbers
;Вычисляем первую функцию: 15 - 2*i if a>b else 3*i+4
   mov ax,a
   cmp ax,b
   mov ax,i
                     ;заносим в ах і
   JNG MarkF1
                        ;a \le b
   shl ax, 1
                     ;умножаем ах на 2 сдвигом
   mov resf1,15
                       ;заносим в результат 15
   sub resf1,ax
                      ; resf1 = 15-2*i
   jmp F2
                     ;переходим в вычислению второй функции
 MarkF1:
                      ;a \le b
   mov resf1,4
                      ;заносим в результат 4
   shl ax, 1
                     ;умножаем ах на 2 сдвигом
   add ax,i
                     ;прибавляем к ах і
   add resf1,ax
                       ; resf1 = 4+3*i
F2:
                    ;Вычисляем вторую функцию:-(6*i+8) if a>b else 9-3*(i-1)
   mov ax,a
                      ;заносим в ах а
   cmp ax,b
                      ;сравниваем a и b
   mov ax,i
                     ;заносим в ах значение і
   mov dx.ax
                      ;копируем ах в dх
```

```
JNG MarkF2
                         :a \le b
   mov resf2,-8
                       ;заносим в результат -8
   shl dx, 1
                    ;e dx: i*2
   shl ax.2
                    ;в ах: i*4
                      ;ax = i*4+i*2 = i*6
   add ax,dx
                      ; resf2 = -8 - i*6 = -(6*i+8)
   sub resf2,ax
   jmp F3
                     ;переходим к вычислению третьей функции
MarkF2:
                      :a \le b
   mov resf2,12
                       ;заносим в ах 12
   shl ax, 1
                     ;умножаем ах на 2 сдвигом
   add ax,i
                     ;ax = 3*i
                      ; resf2=12 - 3*i = 9 - 3*(i-1)
   sub resf2,ax
F3:
                    ;Вычисляем третью функцию |resf1| + |resf2| if k < 0 else max(6, |resf1|)
   mov ax,RESF1
                         ;заносим в ax resfl
   mov bx,RESF2
                         ;заносим в bx resf2
   cmp \ ax, 0
                      ;сравниваем ах с 0
   jnl MarkF3 1
                        ;ecлu\ ax>=0 то переходим на метку
   neg ax
                     ;иначе делаем положительным
MarkF3_1:
   cmp bx,0
                     ;сравниваем bx c0
                        ;ecлu\ bx>=0 то переходим на метку
   jnl MarkF3 2
                     ;иначе делаем положительным
   neg bx
MarkF3 2:
   mov cx,k
                     заносим в сх значение к
   cmp \ cx, 0
                     ;сравниваем с 0
   jl MarkF3 3
                       ;ecлu\ k<0\ nepexodum\ на метку
                      ;сравниваем ах с б
   cmp ax,6
   jl Set 6
                    ; если 6 больше то установить значение 6
   mov resf3,ax
                       ; иначе установить значение |resf1/
   jmp Endprog
                        ; переходим в конец программы
Set_6:
   mov resf3,6
                      ; устанавливаем 6
   jmp Endprog
                        ; переходим в конец программы
MarkF3 3:
                       :eсли k<0
   add ax.bx
                      ;складываем ах и bх
   mov resf3,ax
                       ;заносим в resf3
Endprog:
   mov ah,4ch
   int 21h
INPUT PROC NEAR
                             ;процедура ввода числа
   mov bx,10
                      ;для увеличения разряда
   push cx
                     ;сохраняем значение сх
Mark1:
   mov ah,1h
   int 21h
   cmp al,2dh
                      ; сравниваем с кодом минуса
   ine Continue
                       ; если не минус переходим на метку
   mov dx, 1
                      f; если dx=1 то число затем будет преобразовано в отрицательное
   jmp Mark1
Continue:
   sub al,30h
                      ; вычитаем чтобы получить цифру а не код символа
   mov ah,0
                      ; расширяем до слова
```

```
; первая цифра в сх
   mov cx,ax
Mark2:
   mov ah,1h
   int 21h
   cmp al,0dh
                      ;сравнивем с кодом enter
   je EndInput
                      ;если enter mo заканчиваем ввода числа
   sub al,30h
                     ;получаем цифру
   mov ah,0h
                      ;расширяем до слова
   xchg ax,cx
                     ;в сх следующее число, в ах предыдущее
   push dx
                     ;сохраняем dx в стек
   mul bx
                    ;умножаем предыдущее число на 10
   pop dx
                    ;вытаскиваем dx
   add cx,ax
                     cx = ax*10 + cx
   jmp Mark2
EndInput:
                     ;конец ввода
   mov ax,seg a
                      ;кладем в ах начало сегмента с переменными
                     ;переносим его в es
   mov es, ax
   mov WORD PTR es:[di],cx ; переносим значение из сх в переменную
   pop cx
   ret
input endp
  end
end begin
```

Приложение Б

13.1st:

Microsoft (R) Macro Assembler Version 5.10 10/22/20 01:28:0
Page 1-1

```
.186
                          DOSSEG
                           .model small
                           .STACK 100h
                           .DATA
0000 0000
                          a dw 0
0002 0000
                          b dw 0
0004 0000
                          i dw 0
0006 0000
                          k dw 0
                          resf1 dw 0
0008 0000
000A 0000
                          resf2 dw 0
                          resf3 dw 0
000C 0000
                           .CODE
0000
                          begin:
0000 B8 ---- R
                             mov ax, @DATA
0003 8E D8
                             mov ds,ax
0005 BF 0000 R
                             mov di,offset a
0008 B9 0004
                                    mov cx,4
                                                          ;счет
                          чик, 4, т.к. нужно ввести 4 з
                          начения
000B
                          inputNumbers:
                                                      ;6600
                          значений
000B BA 0000
                                    mov dx, 0
                                                          ;для 🄣
                          Фнака
000E E8 00B5 R
                             call input
                                                   ;вызо
                          в процедуры которая считы
                          вает число
0011 83 FA 00
                                    cmp dx, 0
                                                          ;срав
                          ниваем dx с 0
0014 74 03
                             je ContinueInputNumbers
                                                          :если
                          равен 0 то переходим на ме
                          тку
0016 26: F7 1D
                             neg Word Ptr es:[di]
                                                       ;дела
                          ем отрицательной перемен 🤣
                          ₽ую
0019
                          ContinueInputNumbers:
0019 47
                             inc di
001A 47
                             inc di
001B E2 EE
                             loop inputNumbers
                          ;Вычисляем первую функцию
                          : 15 - 2*i \text{ if } a>b \text{ else } 3*i+4
001D A1 0000 R
                             mov ax,a
0020 3B 06 0002 R
                             cmp ax,b
0024 A1 0004 R
                             mov ax,i
                                               ;заносим
                          в ах і
```

```
0027 7E 0F
                             JNG MarkF1
                                                   ;a \le b
0029 D1 E0
                             shl ax, 1
                                               ;умножае
                          м ах на 2 сдвигом
002B C7 06 0008 R 000F
                             mov resf1,15
                                                 ;заносим
                           в результат 15
0031 29 06 0008 R
                             sub resf1,ax
                                                ; resf1 = 15-2*i
                                    jmp F2
0035 EB 11 90
                                                      ;переход
                          им в вычислению второй фу�
                          Фкции
 Microsoft (R) Macro Assembler Version 5.10
                                                     10/22/20 01:28:0
                                  Page 1-2
0038
                           MarkF1:
                                                 :a \le b
0038 C7 06 0008 R 0004
                             mov resf1,4
                                                 ;заносим
                           в результат 4
003E D1 E0
                             shl ax.1
                                               ;умножае
                          м ах на 2 сдвигом
0040 03 06 0004 R
                             add ax,i
                                               ;прибавл
                          яем к ах і
0044 01 06 0008 R
                             add resf1,ax
                                                 ; resf1 = 4+3*i
0048
                          F2:
                                              ;Вычисля
                          ем вторую функцию:-(6*i+8) if a>
                          b else 9-3*(i-1)
0048 A1 0000 R
                             mov ax,a
                                                ;заносим
                           в ах а
004B 3B 06 0002 R
                             cmp ax,b
                                                ;сравнив
                          аем а и ь
004F A1 0004 R
                             mov ax,i
                                                ;заносим
                           в ах значение і
0052 8B D0
                             mov dx,ax
                                                ;копируе
                          м ах в дх
0054 7E 14
                             JNG MarkF2
                                                   ;a \le b
0056 C7 06 000A R FFF8
                             mov resf2,-8
                                                 ;заносим
                           в результат -8
005C D1 E2
                             shl dx, 1
                                               ;в dx: i*2
                                                      ;e ax: i*4
005E C1 E0 02
                                    shl ax, 2
0061 03 C2
                                                ax = i*4+i*2 =
                             add ax, dx
0063 29 06 000A R
                             sub resf2,ax
                                                ;resf2 = -8 - i
                          *6 = -(6*i+8)
0067 EB 11 90
                                    jmp F3
                                                      ;переход
                          им к вычислению третьей ф �
                          Фнкции
                          MarkF2:
006A
                                                 :a \le b
006A C7 06 000A R 000C
                             mov resf2,12
                                                 ;заносим
                           в ax 12
0070 D1 E0
                             shl ax, 1
                                               ;умножае
                          м ах на 2 сдвигом
0072 03 06 0004 R
                             add ax,i
                                               ax = 3*i
0076 29 06 000A R
                             sub resf2,ax
                                                ; resf2=12 - 3*
                          i = 9 - 3*(i-1)
```

```
007A
                         F3:
                                            ;Вычисля
                         ем третью функцию |resf1| + |res|
                         f2/if k<0 else max(6,|resf1|)
007A A1 0008 R
                            mov ax,RESF1
                                                ;заносим
                         в ax resf1
007D 8B 1E 000A R
                            mov bx,RESF2
                                               ;заносим
                         в bx resf2
0081 3D 0000
                                   cmp \ ax, 0
                                                    ;сравнив
                         аем ах с 0
0084 7D 02
                            jnl MarkF3 1
                                                ;если ах>=
                         0 то переходим на метку
0086 F7 D8
                            neg ax
                                             ;иначе д�
                         Флаем положительным
0088
                         MarkF3_1:
0088 83 FB 00
                                   cmp bx,0
                                                    ;сравнив
                                                  10/22/20 01:28:0
 Microsoft (R) Macro Assembler Version 5.10
                                Page 1-3
                         аем bx c0
008B 7D 02
                            jnl MarkF3 2
                                                ;ecлu bx>=0
                         то переходим на метку
008D F7 DB
                                             ;иначе д�
                            neg bx
                         Флаем положительным
008F
                         MarkF3 2:
008F 8B 0E 0006 R
                            mov cx,k
                                             ;заносим
                         в сх значение k
0093 83 F9 00
                                  cmp \ cx, 0
                                                    ;сравнив
                         aeм c 0
0096 7C 14
                            jl MarkF3 3
                                               ;если k<0 ♦
                         Фереходим на метку
0098 3D 0006
                                   cmp ax,6
                                                    ;сравнив
                         аем ах с б
009B 7C 06
                            jl Set 6
                                            ; если 6 б
                         ольше то установить значе
                         ние б
009D A3 000C R
                            mov resf3,ax
                                               ; иначе у
                         становить значение |resf1/
00A0 EB 0F 90
                                  jmp Endprog
                                                      ; nepexo 🚱
                         фим в конец программы
00A3
                         Set_6:
00A3 C7 06 000C R 0006
                            mov resf3,6
                                              ; устана 🌮
                         Дливаем 6
                                  jmp Endprog
00A9 EB 06 90
                                                      ; nepexo 🄣
                         Фим в конец программы
00AC
                         MarkF3 3:
                                               ;если k<0
00AC 03 C3
                            add ax,bx
                                              ;складыв
                         аем ax u bx
00AE A3 000C R
                            mov resf3,ax
                                              ;заносим
                         в resf3
00B1
                         Endprog:
```

00B1 B4 4C	mov ah,4ch			
00B3 CD 21	int 21h			
00B5	INPUT PROC NEAR	;процеду		
	ра ввода числа	, 1 , , ,		
00B5 BB 000A	mov bx,10	;для уве 🏚		
	Ф ичения разряда	• • •		
00B8 51	push cx	;сохраня		
	ем значение сх	-		
00B9	Mark1:			
00B9 B4 01	mov ah,1h			
00BB CD 21	int 21h			
00BD 3C 2D	cmp al,2dh	; сравни 🔣		
	🕏аем с кодом мину	ca		
00BF 75 05	jne Continue	; если не		
	минус переходим на	а метку		
00C1 BA 0001	mov dx, 1	; если dx=1		
	то число затем бус	dem npeo		
	бразовано в отрица	тельно 🄣		
	•			
00C4 EB F3	jmp Mark1			
00C6	Continue:			
00C6 2C 30	sub al,30h	; вычита 🄣		
Microsoft (R) Macro	Assembler Version 5.10	10/22/20 01:28:0		
	Page 1-4			
	ум чтобы получитре код символа	ь цифру а 🄣		
00C8 B4 00	mov ah,0	; расшир 🕏		
	Д ем до слова	, 1 1 1		
00CA 8B C8	mov cx,ax	; первая		
	цифра в сх	•		
00CC	Mark2:			
00CC B4 01	mov ah,1h			
00CE CD 21	int 21h			
00D0 3C 0D	cmp al,0dh	;сравнив		
	ем с кодом enter			
00D2 74 0D	je EndInput	;если enter		
	то заканчиваем ввода чис 🄣			
	P a			
00D4 2C 30	sub al,30h	;получае		
	м цифру			
00D6 B4 00	mov ah,0h	;расширя		
	ем до слова			
00D8 91	xchg ax,cx	;в сх след		
	ующее число, в ах пр	реоыдуще		
0000 50	e			
00D9 52	push dx	;сохраня		
00D4 E7 E2	ем dx в стек mul bx			
00DA F7 E3	mul by	111111001000		
	тиг ох м предыдущее число	;умножае		

00DC 5A	рор dx ваем dx	;вытаски
00DD 03 C8	вием ах add cx,ax	cx = ax*10 + c
	X	
00DF EB EB	jmp Mark2	
00E1	EndInput: ∲ o∂a	;конец в 🌮
00E1 B8 R	mov ax,seg a	;кладем 🄣
	♦ ах начало сег.	. *
	Ф енными	
00E4 8E CO	mov es, ax	;перенос
00E(2(00 0E	им его в еѕ	
00E6 26: 89 0D		PTR es:[di],cx ; перенос
	им значение из с ную	х в перемен
00E9 59	pop cx	
00EA C3	ret	
00EB	input endp	
	end	
Microsoft (R) Macro Asse		
	Symbols	-1
Segments and Groups:		
N a m e	Length Align Combine Class	
DGROUP	GROUP	
_DATA	000E WORDPU	UBLIC 'DATA'
$STACK \dots \dots$	0100 PARA ST	
_TEXT	00EB WORDPU	UBLIC 'CODE'
Symbols:		
N a m e	Type Value Ai	ttr
A	L WORD 00	00 _DATA
	L WORD 00	00 <u>_</u> D/11/1
B	L WORD 00	02 _DATA
BEGIN	L NEAR 00	00 _TEXT
CONTINUE	L NEAR 00	C6 _TEXT
CONTINUEINPUTNUMBI		NEAR 0019 TEXT
ENDINPUT	L NEAR 00	E1 _TEXT
ENDPROG	L NEAR 00	B1 _TEXT
F2	L NEAR 00	48 _TEXT
F3		7A _TEXT
10	<i>L</i> 11 <i>L</i> 111 00	,,, _1 <i>L</i> ,,,
$I \dots L WC$	ORD 0004 _L	OATA
INPUT	-	$B5 _TEXTLength = 0036$
		13

INPUTNUMBERS	L NEA	\R	000B _TEXT
<i>K</i>	L WORD	0006	_DATA
MARK1 MARK2 MARKF1 MARKF2	L NEAR L NEAR L NEAR L NEAR	00CC 0038	_TEXT _TEXT _TEXT _TEXT
MARKF3_1	L NEAR L NEAR	0088 008F	_TEXT _TEXT _TEXT
RESF1 RESF2 RESF3		000A	_DATA _DATA _DATA
<i>SET_6</i>			_TEXT
@CODESIZE	TEXT TEXT 259 TEXT 0 TEXT TEXT 510	0	10/22/20 01:28:0
<i>y</i> (<i>)</i>		ools-2	

121 Source Lines

121 Total Lines

41 Symbols

47870 + 449148 Bytes symbol space free

0 Warning Errors

0 Severe Errors