A Quick Survey of Discrete Gaussian Curvature Algorithm

Sing-Yuan Yeh
Advisor: Prof. Meiheng Yueh

Institute of Applied Mathematical Sciences
National Taiwan University

January, 2020

Table of Contents

- Introduction
- 2 An example
- Result

Outline

- Introduction
 - Idea
 - Voronoi region
 - Voronoi area
 - Mixed area
- 2 An example
- Result

Introduction January, 2020 3 / 22

Gauss Bonnet Theorem

Gauss Bonnet Theorem (with boundary version)

Given surface M with piecewise smooth boundary ∂M , then

$$\int_{M} K dA + \int_{\partial M} \kappa_{g} ds + \sum_{j} \epsilon_{j} = 2\pi \chi(M)$$

where K is Gaussian curvature κ_g is geodesic curvature and ϵ_j is external angle.

Especially, M is 2-dim surface, so $\chi(M)=1$.

Statement of the idea

In discrete case, how do we measure the Gaussian curvature at α ?

The idea is that segment a region near α and the edge is geodesic. Hence, the Gauss Bonnet theorem can be written as

$$\int_M K dA + \sum_j \epsilon_j = 2\pi$$

Voronoi Region

However, how to choose the area of M is important. The method is choose Voronoi region. Hence, the Gauss curvature operator is

$$K(\mathit{v}_{lpha}) = (2\pi - \sum_{j \in \mathcal{N}}^{\#f} heta_j)/A$$

where $\theta_j = \epsilon_j$.

Voronoi area

The area of the green region is

$$\frac{1}{8}(|PR|^2\cot\angle Q+|PQ|^2\cot\angle R)$$

Voronoi area

The area of the Voronoi region around the vertex i is

$$\mathcal{A}_v(v_i) = rac{1}{8} \sum_{j \in \mathcal{N}(i)} (\cot heta_{ij} + \cot heta_{ji}) \|v_i - v_j\|^2$$

where $\mathcal{N}(i)$ is neighborhood of vertex i. Note the orientation of the surface.

Remark

The cotangent term is seemed like discrete Laplace Beltrami operator. Hence, we could compute it more efficiently.

Mixed area

In fact, the shape of the triangle causes the approximation inaccurate. Hence, if the triangle is non-obtuse, then we have to add some term to correct it. Please refer to Meye [1].

Outline

- Introduction
- 2 An example
 - Vertex and Edge matrix
 - Laplacian Beltrami operator
 - Voronoi area
 - Angles
 - Approximate Gaussian curvature by tents
- 3 Result

An example January, 2020 10 / 22

An example

In this section, an example will be introduced to explain my algorithm. The example is tetrahedron.

An example January, 2020 11 / 22

Vertex and Edge matrix

$$V = egin{bmatrix} v_1 \ v_2 \ v_3 \ v_4 \end{bmatrix}$$

and

$$F = egin{bmatrix} 1 & 2 & 3 \ 1 & 3 & 4 \ 1 & 4 & 2 \ 2 & 4 & 3 \end{bmatrix}$$

Note the orientation.

Discrete Laplace Beltrami operator

The Discrete Laplace Beltrami operator is

$$L_{ij} = \left\{ egin{array}{ll} rac{1}{2} \sum_{i
eq j} \left(\cot heta_{ji} + \cot heta_{ij}
ight), & ext{if } i = j \ - \sum_{k
eq i} L_{ik}, & ext{if } i
eq j \ 0, & ext{otherwise} \end{array}
ight..$$

Hence, first compute

$$K = [\cot heta_{ij}] = [rac{e_{ki} \cdot e_{kj}}{e_{ki} imes e_{kj}}] \,.$$

Hence, $L=-\frac{1}{2}(K+K^T)$ except for diagonal. Therefore, $L_{ii}=-\sum_{k\neq i}L_{ik}.$

Orientation

Remark

The orientation is important. Choose $i \in F = [F_1 \ F_2 \ F_3]$ corresponding to $j \in [F_2 \ F_3 \ F_1]$ at same position. It means outward direction.

Discrete Laplace Beltrami operator

$$L = \begin{bmatrix} \sqrt{3} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} & \sqrt{3} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \sqrt{3} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \sqrt{3} \end{bmatrix}$$

Voronoi area

Now, according to the formula we mentioned

$$\mathcal{A}_v(v_i) = rac{1}{8} \sum_{j \in \mathcal{N}(i)} (\cot heta_{ij} + \cot heta_{ji}) \lVert v_i - v_j
Vert^2,$$

the Voronoi area is $\frac{2\sqrt{3}}{3}$, which equals to the value we compute it by intuition.

An example Voronoi area January, 2020 16 / 22

Angles

Second, compute the angles

$$T=\left[heta_{ij}
ight]$$
 .

 $heta_{ij}$ can compute by cosine formula. Now, no matter the direction go to v_i or leave to v_i , the angle corresponding to this edge must be sum up.

Hence, the angle

$$\sum_{j=1}^{\#f}lpha_j=\sum_{j=1}^{\#f}\pi-S$$

where $S = T + T^T$.

Angles

The angle $\sum_{j=1}^{\#f} \alpha_j = \pi$, which equals to the value we compute it by intuition.

An example Angles January, 2020 18 / 22

Approximate Gaussian curvature by tents

By the discrete Gaussian curvature operator, the Gaussian curvature is

$$K(v_lpha) = (2\pi - \sum_{j \in \mathcal{N}(lpha)}^{\#f} heta_j)/\mathcal{A} = rac{\pi\sqrt{3}}{2} pprox 2.72 \,.$$

Outline

- Introduction
- 2 An example
- Result

Result January, 2020 20 / 22

Test error

TBA

Result January, 2020 21 / 22

Reference

[1] M. MEYER, M. DESBRUN, P. SCHRODER AND A. BARR, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds (2003).

Result January, 2020 22 / 22