TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond Tarkvarateaduse instituut

Tõnn Talvik 132619IAPM

EFEKTIANALÜÜSIDEL PÕHINEVATE PROGRAMMITEISENDUSTE SERTIFITSEERIMINE

Magistritöö

Juhendaja: Tarmo Uustalu

Professor

Autorideklaratsioon

Kinnitan, et olen koostanud antud lõputöö iseseisvalt ning seda ei ole kellegi teise poolt varem kaitsmisele esitatud. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad, kirjandusallikatest ja mujalt pärinevad andmed on töös viidatud.

Autor: Tõnn Talvik

8. mai 2017

Annotatsioon

[tekst]

Lõputöö on kirjutatud eesti keeles ning sisaldab teksti [lehekülgede arv töö põhiosas] leheküljel, [peatükkide arv] peatükki, 30 joonist, [tabelite arv] tabelit.

Abstract Certification of effect-analysis based program transformations

[text] The thesis is in Estonian and contains [pages] pages of text, [chapters] chapters, 30 figures, [tables] tables.

Sisukord

1	Sisse	ejuhatus	8
2	Erai	ndid	9
	2.1	Eranditega keel	9
	2.2	Erandite gradeering	12
		2.2.1 Erandite efekti hinnang	12
		2.2.2 Eeljärjestatud monoid	14
		2.2.3 Gradeeritud monaad	14
	2.3	Tüübi- ja efektituletus	15
		2.3.1 Alamtüübid	15
		2.3.2 Rafineeritud keel	18
		2.3.3 Termide tüübituletus	20
		2.3.4 Termide rafineerimine	22
	2.4	Semantika	26
	2.5	Optimisatsioonid	32
3	Mitt	re-determinism	36
	3.1	Mitte-deterministlik keel	36
	3.2	Mitte-determinismi gradeering	36
	3.3	Termide tüübituletus ja rafineerimine	38
	3.4	Semantika	40
	3.5	Optimisatsioonid	42
4	Kok	kuvõte	44

Jooniste loetelu

1	Eranditega keele tuubid.	10
2	Eranditega keele väärtus- ja arvutustermid	11
3	Näidisavaldised eranditega keeles	11
4	Erandite efektid ja operatsioonid nendel	13
5	Erandite efektide järjestus.	13
6	Eeljärjestatud monoid.	15
7	Gradeeritud monaad	16
8	Väärtus- ja arvutustüüpide alamtüüpimine	17
9	Eranditega keele rafineeritud termid	19
10	Eranditega keele väärtustermide tüübituletus.	22
11	Eranditega keele arvutustermide tüübituletus	23
12	Väärtus- ja arvutustermide rafineerimiste tüübikonstruktorid	23
13	Eranditega keele väärtustermide rafineerimine	25
14	Eranditega keele arvutustermide rafineerimine, I osa	27
15	Eranditega keele arvutustermide rafineerimine, II osa	28
16	Väärtus-, arvutustüüpide ja konteksti semantika	29
17	Eranditega keele väärtustermide semantika	29
18	Eranditega keele arvutustermide semantika	31
19	Konteksti ja termide lõdvendamine.	33
20	Konteksti ja termide kontraheerimine.	33
21	Monaadi spetsiifilised, efektist sõltumatud optimisatsioonid	34
22	Monaadi spetsiifilised, efektist sõltuvad optimisatsioonid	35
23	Mitte-deterministliku keele arvutustermid	37
24	Mitte-determinismi eeljärjestatud monoid	38

25	Ülalt tõkestatud vektor	39
26	Mitte-determinismi gradeeritud monaad	39
27	Mitte-determistliku keele tüübituletus ja rafineerimine	41
28	Mitte-deterministliku keele semantika	41
29	Mitte-determinismi monaadi spetsiifilised, efektist sõltumatud teisendused.	43
30	Mitte-determinismi efekti spetsiifilised optimisatsioonid	43

1 Sissejuhatus

Motivatsioon. Taust: efektid ja monaadid. Moggi, Benton, Katsumata.

Efektisüsteemid on staatilised programmi analüüsid, mis hindavad arvutuste võimalikke efekte. See võimaldab mh viia läbi optimeerivaid programmiteisendusi.

Agda on sõltuvate tüüpidega funktsionaalne programmeerimiskeel ja interaktiivne tõestusassistent, mis põhineb intuitsionistlikul tüübiteoorial. Selles kirjutatud programm on tõlgendatav ja automaatselt kontrollitav kui matemaatiline tõestus.

Selle töö eesmärgiks on realiseerida programmeerimiskeeles Agda idee tõendamise raamistu efektide analüüsiks ja nendele põhinevateks programmiteisendusteks. Samas raamistus peab saama näidata, et need analüüsid ja teisendused on korrektsed.

Agda on eksperimentaalne keel ja sedalaadi ülesande realisatsioon selles keeles on uudne. Uurimuse käigus tahame teada, kas niisugune töö on teostatav mõistliku vaevaga, kui õppimisele kuluv aeg maha arvata.

Teoreetilisel tasemel on uudne, et efektide analüüsid ja optimisatsioonid toimivad keele juures, mis toetab andmetüüpe, milleks antud töös on naturaalarvud.

Teises peatükis realiseeritakse näitekeel, mille efektiks on erandid. Järgmiseks defineeritakse selliste efektide hindamine. Seejärel arendatakse näitekeelele tüübisüsteem, mille käigus rafineeritakse keelt lisades selle arvutustele efektid ja tüübid. Edasi antakse rafineeritud keele semantika ning tuuakse mõningased programmiteisendused, näidates, et semantiliselt on tulemus sama.

Kolmandaks peatükis tuuakse efektianalüüs ja optimeerimise näited mitte-determinismi toetava keele kohta.

Töö käigus valminud lähtekood on tulemuste reprodutseerimiseks allalaetav aadressilt https://github.com/tonn-talvik/msc. Lähtekoodi kompileerimiseks on kasutatud Agda versiooni 2.5.1.1 koos standardteegi versiooniga 0.12. Mainitud tarkvarapaketid on tasuta installeeritavad Ubuntu 16.04 LTS või teistest varamutest.

2 Erandid

Selles peatükis vaadeldakse keele laiendust eranditega. Baaskeeleks on tüübitud lambdaarvutus koos tõeväärtuste, naturaalarvude ja korrutistega. Järgnevates alapeatükkides defineeritakse selline keel Agdas, viiakse läbi tüübituletus koos efektianalüüsiga, määratakse
hästi tüübitud avaldiste semantika ning tuuakse mõned optimeerivate programmiteisenduste näited. Ühtlasi näidatakse analüüsi ja teisenduste korrektsust.

2.1 Eranditega keel

Näitekeele grammatika saab esitada Backus-Naur kujul (BNF) järgnevalt, kus t on tüübid, v on väärtused ja c on arvutused:

```
\begin{array}{l} {\sf t} \,::=\, {\sf nat} \,\mid\, {\sf bool} \,\mid\, {\sf t} \,\bullet\, {\sf t} \,\mid\, {\sf t} \Rightarrow e \,/\, {\sf t} & (e \in {\sf E}) \\ {\sf v} \,::=\, {\sf TT} \,\mid\, {\sf FF} \,\mid\, {\sf ZZ} \,\mid\, {\sf SS} \,\, {\sf v} \,\mid\, \langle\, {\sf v} \,,\, {\sf v} \,\rangle\, \mid\, {\sf FST} \,\, {\sf v} \,\mid\, {\sf SND} \,\, {\sf v} \\ &\mid\, {\sf VAR} \,\, n \,\mid\, {\sf LAM} \,\, {\sf t} \,\, {\sf c} & (n \in \mathbb{N}) \\ {\sf c} \,::=\, {\sf VAL} \,\, {\sf v} \,\mid\, {\sf FAIL} \,\, {\sf t} \,\mid\, {\sf TRY} \,\, {\sf c} \,\, {\sf WITH} \,\, {\sf c} \\ &\mid\, {\sf IF} \,\, {\sf v} \,\, {\sf THEN} \,\, {\sf c} \,\, {\sf ELSE} \,\, {\sf c} \,\mid\, {\sf v} \,\, {\sf v} \,\, |\, {\sf PREC} \,\, {\sf v} \,\, {\sf c} \,\, {\sf c} \,\, |\, {\sf LET} \,\, {\sf c} \,\, {\sf IN} \,\, {\sf c} \end{array}
```

Agdas vastastikku defineeritud väärtus- ja arvutustüübid on toodud joonisel 1. Lubatud väärtustüübid VType on naturaalarvud, tõeväärtused, teiste väärtustüüpide korrutised ja tüübitud lambda-arvutused. Arvutustüüpideks on efektiga E annoteeritud väärtustüübid. Efekt E on defineeritud alapeatükis 2.2.1.

Vastastikku defineeritud väärtus- ja arvutustermid on toodud joonisel 2. Termide konstruktorite nimetamisel on kasutatud suurtähti vältimaks võimalikke nimekonflikte Agda standardfunktsioonidega. Järgnevalt on selgitatud väärtustermi vTerm konstruktorite tähendust.

- TT ja FF koostavad vastavalt tõeväärtused tõene ja väär.
- ZZ koostab naturaalarvu 0 ja konstruktor SS oma argumendist järgneva naturaalarvu.

mutual

data VType : Set where

nat : VType
bool : VType

 $_ \bullet _$: VType \rightarrow VType \rightarrow VType $_ \Rightarrow _$: VType \rightarrow CType \rightarrow VType

data CType : Set where $_/_$: E \rightarrow VType \rightarrow CType

Joonis 1: Eranditega keele tüübid.

- $\langle _, _ \rangle$ koostab oma argumentide paari e. korrutise.
- FST ja SND koostavad vastavalt argumendina antud korrutise esimese ja teise projektsiooni.
- VAR koostab De Bruijn'i indeksiga määratud muutuja.
- LAM on funktsiooni abstraktsioon, seejuures funktsiooni parameetri väärtustüüp on eksplitsiitselt annoteeritud. Funktsiooni kehaks on arvutusterm.

Järgnevalt on selgitatud arvutustermi cTerm konstruktorite (jn 2) tähendust ja vastavas arvutuses kätketud efekti.

- VAL tähistab õnnestunud arvutust, seejuures arvutuse tulemuseks on väärtustermiga antud konstruktori argument.
- FAIL tähistab arvutuse, mille väärtustüüp on eksplitsiitselt annoteeritud, ebaõnnestumist.
- TRY_WITH_ on erandikäsitlejaga arvutus: kogu arvutuse tulemuseks on esimese argumendiga antud termi arvutus, kui see õnnestub, vastasel korral aga teise argumendiga antud termi arvutus.
- IF_THEN_ELSE_ on valikuline arvutus: vastavalt väärtustermi tõeväärtusele on tulemuseks kas esimese (tõene haru) või teise (väär haru) arvutustermiga antud arvutus.
- _\$_ on esimese väärtustermiga antud funktsiooni rakendamine teise väärtustermiga antud väärtusele, kusjuures rakendamise efektiks on funktsioonis peituv efekt.
- PREC on primitiivne rekursioon, mille sammude arv on määratud väärtustermi argumendiga. Esimene arvutusterm vastab rekursiooni baasile ja teine sammule, kusjuures sammuks on akumulaatori ja sammuloenduri parameetritega funktsioon. Kogu arvutuse efekt vastab kõigi osaarvutuste järjestikku sooritamisele.

```
mutual
  data vTerm : Set where
    TT FF : vTerm
    ZZ : vTerm
    SS : vTerm → vTerm
    \langle \_, \_ \rangle : vTerm \rightarrow vTerm \rightarrow vTerm
    FST SND : vTerm → vTerm
    VAR : \mathbb{N} \rightarrow vTerm
    LAM : VType → cTerm → vTerm
  data cTerm : Set where
    VAL : vTerm → cTerm
    FAIL : VType → cTerm
    TRY_WITH_ : cTerm → cTerm → cTerm
    IF_THEN_ELSE_ : vTerm → cTerm → cTerm
    _$_ : vTerm → vTerm → cTerm
    PREC : vTerm → cTerm → cTerm
    LET_IN_ : cTerm → cTerm → cTerm
```

Joonis 2: Eranditega keele väärtus- ja arvutustermid.

■ LET_IN_ lisab esimese arvutustermiga antud väärtuse teise arvutustermi kontekstis esimeseks muutujaks. Arvutuse efekt vastab osaarvutuste järjestikku sooritamisele.

Joonisel 3 on toodud kahe naturaalarvu liitmise funktsioon väärtustermina ADD ning naturaalarvude 3 ja 4 liitmine arvutustermina ADD-3-and-4. Lisaks on toodud näide arvutustermist BAD-ONE, mida annab konstrueerida, kuid mis ei oma sisu: naturaalarvu null ei saa rakendada tõeväärtusele tõene. Sellised halvasti tüübitud termid tuvastatakse tüübituletusega (alaptk 2.3).

Joonis 3: Näidisavaldised eranditega keeles.

2.2 Erandite gradeering

Selles alapeatükis defineeritakse erandite efekti hinnangud, operatsioonid hinnangutel ja hinnangute omavaheline järjestus. Sellega võimaldatakse alamtüüpide koostamine. Ühtlasi näidatakse, et selline hindamine rahuldab eeljärjestatud monoidi ja gradeeritud monaadi omadusi, millele tuginevad semantika (alaptk 2.4) ja optimisatsioonid (alaptk 2.5).

2.2.1 Erandite efekti hinnang

Erandite efekti hinnang Exc on toodud joonisel 4: konstruktor err vastab arvutuse ebaõnnestumisele, konstruktor ok arvutuse õnnestumisele ja konstruktor errok arvutusele, mille kohta pole teada, kas see õnnestub või mitte.

Efektide korrutamine _ · _ (jn 4) vastab arvutuste järjestikule sooritamisele. Kui esimene osaarvutus õnnestub, siis kogu arvutuse efekt on määratud teise osaarvutuse efektiga. Kui üks osaarvutustest ebaõnnestub, siis ebaõnnestub kogu arvutus. Ülejäänud juhtudel puudub teadmine arvutuse õnnestumisest või ebaõnnestumisest. Efektide korrutamine leiab aset LET_IN_ arvutuses (alaptk 2.1).

Erandikäsitleja võib parandada kogu arvutuse hinnangut. Põhiarvutuse ja erandikäsitleja efeki kombineerimine _\$\rightarrow\$ on defineeritud joonisel 4. Kui põhiarvutus ebaõnnestub, siis on kogu arvutuse efekt määratud erandikäsitleja efektiga. Põhiarvutuse õnnestumisel on kogu arvutus õnnestunud ja erandikäsitlejat ei arvutata. Kui põhiarvutuse õnnestumine pole teada, aga erandikäsitleja kindlasti õnnestub, siis õnnestub ka kogu arvutus. Ülejäänud juhtudel pole teada, kas kogu arvutus tervikuna õnnestub või mitte. Efekti hinnangu parandus leiab aset TRY_WITH_ arvutuses (alaptk 2.1).

Hinnangu Exc konstruktorid moodustavad järgneva võre:

Hinnangute osaline järjestusseos _⊑_ on toodud joonisel 5. See seos on refleksiivne ⊑-refl. Transitiivsuse ⊑-trans tõestus seisneb argumentide kuju juhtumi analüüsil. Transitiivsuse seost on võimalik kodeerida järjestusseose konstruktorina, kuid see pole otstarbekas, kuna hilisemates tõestuses tekib sellest täiendavad juhtumid, mida peab analüüsima.

```
data Exc : Set where
  err : Exc
  ok : Exc
  errok : Exc

_·_ : Exc → Exc → Exc
ok · e = e
err · e = err
errok · err = err
errok · ok = errok
errok · errok = errok

_◇_ : Exc → Exc → Exc
err ◇ e' = e'
ok ◇ _ = ok
errok ◇ ok = ok
errok ◇ _ = errok
```

Joonis 4: Erandite efektid ja operatsioonid nendel.

Joonis 5: Erandite efektide järjestus.

Loomulikul viisil saab defineerida erandi hinnangu ülemise ja alumise raja ning näidata nende sümmeetrilisust. Lihtsuse huvides on toodud ainult vastavad tüübisignatuurid, aga mitte definitsioonid (jn 5). Kuna kahel hinnangul ei pruugi leiduda alumine raja, siis on _□_ tulemus mähitud Maybe monaadi.

2.2.2 Eeljärjestatud monoid

Hulk E, millel on defineeritud korrutamine $_\cdot_$ ja ühikelement i, st i on ühik korrutamise suhtes nii vasakult lu kui ka paremalt ru, ning korrutamine on assotsiatiivne ass, nimetatakse monoidiks. Kui sellel hulgal on osaline järjestusseos $_\sqsubseteq_$, mis on refleksiivne \sqsubseteq -refl ja transitiivne \sqsubseteq -trans, ning kehtib korrutamise monotoonsus mon, siis on tegemist eeljärjestatud monoidiga. Joonisel 6 on toodud eeljärjestatud monoidi kirje tüüp Agdas.

Saab näidata, et erandite hinnag Exc, korrutamine _·_, mille ühikuks on konstruktor ok, ja osaline järjestusseos _⊑_ moodustavad eeljärjestatud monoidi instantsi. Vasakühiku tõestus tuleneb vahetult korrutamise definitsioonist. Paremühiku tõestamisel tuleb teha juhtumi analüüs varjatud argumendi konstruktori kuju peal ja seejärel lähtuda korrutamise definitsioonist. Assotsiatiivsus tõestatakse sarnaselt kasutades juhtumite analüüsi ja korrutamise definitsiooni. Monotoonsuse tõestuses analüüsitakse nii võimalikke efekte kui ka nendevahelisi järjestusseoseid. Kõik mainitud tõestused on toodud töö käigus valminud lähtekoodis.

2.2.3 Gradeeritud monaad

Efektiga E parametriseeritud tüübikonstruktor T koos tagastamisega η ja sidumisega bind moodustab monaadi. Neelduvus sub on refleksiivne sub-refl, transitiivne sub-trans ja sidumise suhtes monotoonne sub-mon. Täidetud on monaadi seadused mlaw1, mlaw2 ja mlaw3.

Joonisel 7 on toodud gradeeritud monaadi kirje tüüp Agdas.

Saab näidata, et erandite järjestatud monoidil saab põhineda gradeeritud monaad.

```
record OrderedMonoid : Set where

field
    E : Set
    _-'_ : E → E → E
    i : E

lu : {e : E } → i · e ≡ e
    ru : {e : E } → e ≡ e · i
    ass : {e e' e'' : E} → (e · e') · e'' ≡ e · (e' · e'')

____ : E → E → Set
    _-refl : {e : E} → e ⊑ e
    _-trans : {e e' e'' : E} → e ⊑ e' → e' ⊑ e'' → e ⊑ e''

mon : {e e' e'' e''' : E} → e ⊑ e'' → e' ⊑ e''' → e · e' ⊑ e'' · e'''

Joonis 6: Eeljärjestatud monoid.
```

2.3 Tüübi- ja efektituletus

2.3.1 Alamtüübid

Väärtus- ja arvutustüüpide osaline järjestus on vastastikku defineeritud (jn 8). Konstruktoriga st-bn loetakse tõeväärtused naturaalarvude alamtüübiks. Kehtib väärtustüüpide refleksiivsus st-refl. Üks väärtustüübi paar on teise alamtüüp st-prod, kui paaride vastavad projektsioonid on omakorda alamtüübid. Funktsioonid on alamtüübid st-func, kui funktsioonide kehade arvutused on alamtüübid, ja funktsioonide argumendid on kontravariantsed. Arvutustüüp on teise arvutustüübi alamtüüp st-comp, kui nende efektid ja väärtustüübid on järjestatud.

Väärtus-ja arvutustüüpide alamtüüpide transitiivsus on defineeritud vastastikku joonisel 8. Kui väärtustüüpide transitiivsuse st-trans üks argument on alamtüüpide refleksiivsuse st-refl kujul, siis transitiivsus on määratud teise argumendiga. Kui üks argument on alamtüüpide korrutise st-prod kujul, siis ka teine argument peab olema paratamatult samal kujul. Sellisel juhul on transitiivsuseks alamtüüpide korrutis, mille korrutatavad on rekursiivselt määratud transitiivsusega st-trans. Kui üks argument on funktsiooni alamtüüpide st-func kujul, siis on samal kujul ka teine argument. Transitiivsuseks on funktsiooni argumentide alamtüüpide kontravariantne transitiivsus st-trans ja kehade arvutustüüpide transitiivsus sct-trans. Arvutustüüpide transitiivsuse sct-trans argumendid saavad olla ainult arvutuste alamtüüpide st-comp kujul. Vastav transitiivsus koostatakse arvutuste efektide järjestuse transitiivsusest ⊑-trans ja väärtustüüpide transitiivsusest st-trans.

```
subeq : \{E : Set\} \rightarrow \{T : E \rightarrow Set \rightarrow Set\} \rightarrow \{e \ e' : E\} \rightarrow \{X : Set\} \rightarrow \{E : Se
                                        e \equiv e' \rightarrow T e X \rightarrow T e' X
 subeq refl p = p
record GradedMonad : Set where
           field
                    OM : OrderedMonoid
          open OrderedMonoid OM
           field
                    T : E \rightarrow Set \rightarrow Set
                    \eta : {X : Set} \rightarrow X \rightarrow T i X
                    bind : \{e \ e' \ : \ E\} \ \{X \ Y \ : \ Set\} \rightarrow (X \rightarrow T \ e' \ Y) \rightarrow (T \ e \ X \rightarrow T \ (e \cdot e') \ Y)
                    sub : \{e \ e' \ : \ E\} \ \{X \ : \ Set\} \rightarrow e \ \sqsubseteq \ e' \rightarrow T \ e \ X \rightarrow T \ e' \ X
                    sub-mon : {e e' e'' e''' : E} \{X \ Y : Set\} \rightarrow
                                                                      (p : e \sqsubseteq e'') \rightarrow (q : e' \sqsubseteq e''') \rightarrow
                                                                      (f : X \rightarrow T e' Y) \rightarrow (c : T e X) \rightarrow
                                                                      sub (mon p q) (bind f c) \equiv bind (sub q \circ f) (sub p c)
          sub-eq : \{e \ e' \ : \ E\} \ \{X \ : \ Set\} \rightarrow e \ \equiv \ e' \rightarrow T \ e \ X \rightarrow T \ e' \ X
          sub-eq = subeq \{E\} \{T\}
          field
                    sub-refl : \{e : E\} \{X : Set\} \rightarrow (c : T e X) \rightarrow sub \sqsubseteq -refl c \equiv c
                    sub-trans : \{e e' e'' : E\} \{X : Set\} \rightarrow
                                                                                (p : e \sqsubseteq e') \rightarrow (q : e' \sqsubseteq e'') \rightarrow (c : T e X) \rightarrow
                                                                               sub q (sub p c) \equiv sub (\sqsubseteq -trans p q) c
                    sub-eq lu (bind f (\eta x)) \equiv f x
                    mlaw2 : \{e : E\} \rightarrow \{X : Set\} \rightarrow (c : T e X) \rightarrow
                                                            sub-eq ru c \equiv bind \eta c
                    mlaw3 : {e e' e'' : E} \rightarrow {X Y Z : Set} \rightarrow
                                                            (f : X \rightarrow T \ e' \ Y) \rightarrow (g : Y \rightarrow T \ e'' \ Z) \rightarrow (c : T \ e \ X) \rightarrow
                                                            sub-eq ass (bind g (bind f c)) \equiv bind (bind g \circ f) c
          T_1: {e : E} {X Y : Set} \rightarrow (X \rightarrow Y) \rightarrow T e X \rightarrow T e Y
          T_1 f = sub-eq (sym ru) \circ bind (\eta \circ f)
```

Joonis 7: Gradeeritud monaad.

```
mutual
   data \_\le V_\_ : VType \rightarrow VType \rightarrow Set where
       st-bn : bool ≤V nat
       st-refl : {\sigma : VType} \rightarrow \sigma \leq V \sigma
       st-prod : {\sigma \sigma' \tau \tau' : VType} \rightarrow
                         \sigma \leq V \ \sigma' \rightarrow \tau \leq V \ \tau' \rightarrow \sigma \bullet \tau \leq V \ \sigma' \bullet \tau'
       st-func : {\sigma \sigma' : VType} {\tau \tau' : CType} \rightarrow
                          \sigma' \leq V \sigma \rightarrow \tau \leq C \tau' \rightarrow \sigma \Rightarrow \tau \leq V \sigma' \Rightarrow \tau'
   data \_\leq C_-: CType \rightarrow CType \rightarrow Set where
       st-comp : {e e' : E} {\sigma \sigma' : VType} \rightarrow
                          e \sqsubseteq e' \rightarrow \sigma \leq V \sigma' \rightarrow e / \sigma \leq C e' / \sigma'
mutual
   st-trans : \{\sigma \ \sigma' \ \sigma'' : VType\} \rightarrow \sigma \le V \ \sigma' \rightarrow \sigma' \le V \ \sigma'' \rightarrow \sigma \le V \ \sigma''
   st-trans st-refl q = q
   st-trans p st-refl = p
   st-trans (st-prod p p') (st-prod q q') = st-prod (st-trans p q)
                                                                                              (st-trans p' q')
   st-trans (st-func p p') (st-func q q') = st-func (st-trans q p)
                                                                                              (sct-trans p' q')
   \mathsf{sct-trans} \; : \; \{\sigma \; \sigma' \; \sigma'' \; : \; \mathsf{CType}\} \; \rightarrow \; \sigma \; \leq \mathsf{C} \; \sigma' \; \rightarrow \; \sigma' \; \leq \mathsf{C} \; \sigma'' \; \rightarrow \; \sigma \; \leq \mathsf{C} \; \sigma''
   sct-trans (st-comp p q) (st-comp p' q') = st-comp (\subseteq-trans p p')
                                                                                                (st-trans q q')
```

Joonis 8: Väärtus- ja arvutustüüpide alamtüüpimine.

2.3.2 Rafineeritud keel

Joonisel 9 on toodud vastastikku defineeritud rafineeritud väärtus- ja arvutustermid. Võrreldes alaptk 2.1-s toodud termidega, on rafineeritud termid parametriseeritud kontekstiga Γ ning indekseeritud vastavalt väärtus- ja arvutustüüpidega. Kontekst Ctx on defineeritud kui väärtusttüüpide list, mille elementide järjekord vastab vabade muutujate sissetoomise järjekorrale.

- Konstruktorid TT ja FF koostavad tõeväärtustüüpi termi.
- Konstruktor ZZ koostab naturaalarvu tüüpi termi. Konstruktor SS koostab antud naturaalarvu tüüpi termi järglase, mis on samuti naturaalarvu tüüpi.
- ⟨__,__⟩ koostab kahest antud väärtustermist paari, mille tüüp on termide tüüpide korrutis.
- FST ja SND projekteerivad paari tüüpi termist vastavalt esimese või teise korrutatava tüüpi termi.
- VAR võtab tõestuse, et mingi tüüp on konteksti element, ning annab väärtustermi, mille tüüp on kõnealuse elemendiga määratud tüüp.
- LAM võtab väärtustüübi ja arvutustermi, mille kontekst on parameetriga antud kontekstist täpselt väärtustüübi argumendi võrra suurem, ning annab funktsiooniruumile vastava väärtustermi.
- VCAST suurendab ettantud väärtustermi tüüpi vastavalt alamtüübi tõestusele. See võimaldab erinevate alamtüüpidega väärtustermid ühtlustada, mis on vajalik rafineeritud arvutustermide koostamisel.

Rafineeritud arvutustermid (jn 9) määravad täpselt osaarvutuste efektide kombineerimise.

- VAL koostab antud väärtustermist õnnestunud arvutuse.
- FAIL koostab väärtustüübist ebaõnnestunud arvutuse.
- TRY_WITH_ parandab põhiarvutustermi efekti erandikäsitleja arvutustermi efektiga. Kitsendusena peavad arvutustermid omama sama väärtustüüpi.
- IF_THEN_ELSE_ eeldab tõeväärtustüüpi tingimust. Kogu arvutustermi efekt on määratud harude, millede väärtustüübid peavad ühtima, efektide ülemise rajaga.

```
Ctx = List VType
mutual
  data VTerm (\Gamma : Ctx) : VType \rightarrow Set where
      {\tt TT\ FF\ :\ VTerm\ }\Gamma\ {\tt bool}
      ZZ : VTerm \ \Gamma nat
      \mathsf{SS} \; : \; \mathsf{VTerm} \; \Gamma \; \mathsf{nat} \; \rightarrow \; \mathsf{VTerm} \; \Gamma \; \mathsf{nat}
      \langle \_, \_ \rangle : {\sigma \sigma' : VType} \rightarrow
                        VTerm \Gamma \sigma \rightarrow \text{VTerm } \Gamma \sigma' \rightarrow \text{VTerm } \Gamma (\sigma \bullet \sigma')
      \mathsf{FST} \; : \; \{\sigma \; \sigma' \; : \; \mathsf{VType}\} \; \rightarrow \; \mathsf{VTerm} \; \Gamma \; (\sigma \; \bullet \; \sigma') \; \rightarrow \; \mathsf{VTerm} \; \Gamma \; \sigma
      SND : \{\sigma \ \sigma' : VType\} \rightarrow VTerm \ \Gamma \ (\sigma \bullet \sigma') \rightarrow VTerm \ \Gamma \ \sigma'
      VAR : \{ \sigma : VType \} \rightarrow \sigma \in \Gamma \rightarrow VTerm \Gamma \sigma
      LAM : (\sigma : VType) {\tau : CType} \rightarrow
                    CTerm (\sigma :: \Gamma) \tau \rightarrow VTerm \Gamma (\sigma \Rightarrow \tau)
      VCAST : \{\sigma \ \sigma' \ : \ VType\} \ \rightarrow \ VTerm \ \Gamma \ \sigma \ \rightarrow \ \sigma \ \leq V \ \sigma' \ \rightarrow \ VTerm \ \Gamma \ \sigma'
  data CTerm (\Gamma : Ctx) : CType \rightarrow Set where
      VAL : \{\sigma : \forall Type\} \rightarrow \forall Term \ \Gamma \ \sigma \rightarrow \mathsf{CTerm} \ \Gamma \ (\mathsf{ok} \ / \ \sigma)
      FAIL : (\sigma : VType) \rightarrow CTerm \Gamma (err / \sigma)
      TRY_WITH_ : {e e' : E} {\sigma : VType} \rightarrow CTerm \Gamma (e / \sigma) \rightarrow
                                 CTerm \Gamma (e' / \sigma) \rightarrow CTerm \Gamma (e \diamondsuit e' / \sigma)
      \texttt{IF\_THEN\_ELSE\_} \; : \; \{ \texttt{e} \; \texttt{e'} \; : \; \texttt{E} \} \; \; \{ \sigma \; : \; \texttt{VType} \} \; \rightarrow \; \texttt{VTerm} \; \; \Gamma \; \; \texttt{bool} \; \rightarrow \;
                                   CTerm \Gamma (e / \sigma) \rightarrow CTerm \Gamma (e' / \sigma) \rightarrow CTerm \Gamma (e \sqcup e' / \sigma)
      _{\text{s}} : \{ \sigma : \forall \forall \forall \forall \forall \forall \tau : \forall \forall \tau \in \mathcal{T} \} \rightarrow \mathcal{T} 
                    PREC : {e e' : E} {\sigma : VType} \rightarrow VTerm \Gamma nat \rightarrow
                      CTerm \Gamma (e / \sigma) \rightarrow CTerm (\sigma :: nat :: \Gamma) (e' / \sigma) \rightarrow
                      e \cdot e' \sqsubseteq e \rightarrow CTerm \Gamma (e / \sigma)
      LET_IN_ : {e e' : E} {\sigma \sigma' : VType} \rightarrow CTerm \Gamma (e / \sigma) \rightarrow
                            CTerm (\sigma :: \Gamma) (e' / \sigma') \rightarrow CTerm \Gamma (e \cdot e' / \sigma')
      CCAST : {e e' : E} {\sigma \sigma' : VType} \rightarrow CTerm \Gamma (e / \sigma) \rightarrow
                        e / \sigma \leq C e' / \sigma' \rightarrow CTerm \Gamma (e' / \sigma')
```

Joonis 9: Eranditega keele rafineeritud termid.

- _\$_ rakendab esimesega väärtustermiga antud funktsiooni teise väärtustermiga argumendile, seejuures peavad funktsiooni parameetri ja argumendi väärtustüübid ühtima. Kogu arvutuse efekt ja väärtustüüp on määratud funktsiooni keha arvutustüübiga.
- PREC eeldab sammude arvuna naturaalarvude tüüpi väärtustermi. Baasarvutuse väärtustüüp on lisatud koos naturaalarvu tüüpi sammuloenduriga sammu arvutustermi konteksti. Täiendava kitsendusena on nõutud, et baasi efekt oleks sammu efektiga korrutamisel püsipunkt.
- LET_IN_ lisab esimese arvutustermi väärtustüübi teise arvutustermi konteksti. Kogu arvutuse efektis on arvutustermide korrutis ning väärtustüüp on määratud teise arvutustermi tüübiga.
- CCAST suurendab etteantud arvutustermi tüüpi vastavalt alamtüübi tõestusele.

2.3.3 Termide tüübituletus

Etteantud kontekstis saab väärtustermile tuletada vastava väärtustüübi (jn 10). Kuna vaste võib puududa, siis on infer-vtype tulemus mähitud Maybe monaadi. Väärtustüübi tuletamisel lähtutakse väärtustüübi konstruktori kujust.

- TT ja FF annavad kindlasti tõeväärtustüübi.
- ZZ on kindlasti naturaalarvu tüüpi. SS t korral tuleb täiendavalt kontrollida, kas alamterm t on samas kontekstis naturaalarvu tüüpi. Vastasel korral on term halvasti koostatud ja selle tüüp puudub.
- Paari ⟨ t , t' ⟩ tüüp on määratud, kui alamtermide t ja t' tüübid on samas kontekstis määratud. Paari tüübiks on alamtermide tüüpide korrutis. Ülejäänud juhtudel pole paari tüüp määratud.
- FST t ja SND t on määratud, kui alamterm t on paar, st antud kontekstis on ta korrutise tüüpi. Projektsiooni tüübiks on vastavalt esimene või teine korrutatav.
- VAR x korral tuleb kontrollida, et naturaalarv x on väiksem kui kontekst Γ pikkus. Selleks on kasutatud lahendajat _<?_. Naturaalarvude võrratusest p on koostatud konteksti pikkusega piiratud naturaalarv fromN≤ p, mida kasutatakse muutujale vastava tüübi otsimiseks kontekstist 1kp Γ.
- LAM σ t puhul tuleb kontrollida, et arvutustermiga t antud keha on hästi tüübitud kontekstis, mida on laiendatud parameetri σ võrra. Arvutustermi tüübituletus infer-ctype on toodud allpool.

Joonisel 11 on toodud etteantud kontekstis arvutustermile tüübi tuletamine. Nagu väärtustermide tüübituletuse puhul, on ka arvutustermide tüübituletus infer-ctype tulemus mähitud Maybe monaadi. Väärtustüübi tuletamisel lähtutakse väärtustüübi konstruktori kujust.

- VAL x on tüübitud, kui väärtustermi x tüübituletus õnnestub. Arvutuse väärtustüübiks on tuletatud tüüp. Efekti hinnang ok tähistab arvutuse õnnestumist.
- FAIL σ on alati väärtustüübi σ ebaõnnestumise tüüpi, mille efekti hinnang on err.
- TRY t WITH t' on tüübitud, kui arvutustermid t ja t' on hästi tüübitud. Kogu arvutuse tüübiks on põhiarvutuse tüübi \(\tau \) parandamine erandikäsitleja tüübiga \(\tau \)'. Arvutustüüpide parandus _\$\iffsigle C_\) on defineeritud efektide paranduse _\$\iffsigle \) ja väärtustüüpide ülemise raja _\$\infty\$U__\ abil.
- IF x THEN t ELSE t'eeldab, et väärtusterm x on tõeväärtustüüpi. Kogu arvutuse tüüp on määratud harude tüüpide τ ja τ ' ülemise rajaga τ \sqcup C τ '.
- f \$ t korral kontrollitakse, et väärtustermi f tüübiks on funktsiooniruum ja väärtustermile t tuletatud tüüp on f parameetri alamtüüp. Ülejäänud juhtudel ei ole funktsiooni rakendamine hästi tüübitud.
- PREC x t t' korral kontollitakse viit tingimust.
 - Väärtusterm x peab olema antud kontekstis naturaalarvu tüüpi.
 - Baasi arvutusterm t peab olema antud kontekstis hästi tüübitud.
 - Sammu arvutusterm t' peab olema tüübitud kontekstis, kuhu on lisatud naturaalarvu tüübi sammuloendur ja arvutustermi t väärtustüüpi σ akumulaator.
 - Osaarvutustele tuletatud väärtustüübid peavad olema samad. Selleks kasutatakse lahendajat _≡V?_.
 - Osaarvutuste efektide korrutis ei tohi olla suurem, kui baasi efekt. Seda kontrollitakse lahendajaga _⊑?_.

Kui kõik tingimused kehtivad, siis kogu arvutuse tüüp on määratud baasi efekti ja väärtustüübiga.

■ LET t IN t' on tüübitud, kui arvutusterm t on tüübitud antud kontekstis ja arvutusterm t' on tüübitud kontekstis, mida on laiendatud esimese osaarvutuse väärtustüübi võrra. Arvutuse efektiks on osarvutuste efektide korrutis ning väärtustüübiks teise osaarvutuse väärtustüüp. Kui üks osaarvutust ei ole hästi tüübitud, siis ei ole ka kogu arvutus tüübitud.

```
infer-vtype : Ctx → vTerm → Maybe VType
infer-vtype \Gamma TT = just bool
infer-vtype \Gamma FF = just bool
infer-vtype \Gamma ZZ = just nat
infer-vtype \Gamma (SS t) with infer-vtype \Gamma t
... | just nat = just nat
                  = nothing
infer-vtype \Gamma \langle t , t' \rangle with infer-vtype \Gamma t | infer-vtype \Gamma t'
... | just \sigma | just \sigma' = just (\sigma \bullet \sigma')
               | _ = nothing
infer-vtype \Gamma (FST t) with infer-vtype \Gamma t
... | just (\sigma \bullet \_) = just \sigma
                     = nothing
infer-vtype \Gamma (SND t) with infer-vtype \Gamma t
... | just (\_ \bullet \sigma') = just \sigma'
... | _
                  = nothing
infer-vtype \Gamma (VAR x) with x <? \Gamma
... | yes p = just (lkp \Gamma (from\mathbb{N} \leq p))
\dots | no \neg p = nothing
infer-vtype \Gamma (LAM \sigma t) with infer-ctype (\sigma :: \Gamma) t
... | just \tau = just (\sigma \Rightarrow \tau)
... | _ = nothing
```

Joonis 10: Eranditega keele väärtustermide tüübituletus.

2.3.4 Termide rafineerimine

Kui n-ö "toorele" termile õnnestub mingis kontekstis tuletada tüüp, siis saab sellest termist konstrueerida rafineeritud termi. Joonisel 12 on toodud väärtus- ja arvutustermide rafineeritud tüübikonstruktorid. Tipp-tüüp \top tähistab tüübituletuse ebaõnnestumist.

Väärtustermide rafineerimine etteantud kontekstis (jn 13) matkib väärtustermide tüübituletust (alaptk 2.3.3).

- TT ja FF korral konstrueeritakse vastav rafineeritud väärtusterm.
- ZZ puhul konstrueeritakse rafineeritud väärtusterm null ZZ. SS t korral kontrollitakse, et väärtusterm t on hästi tüübitud ja on naturaalarvu tüüpi. Rafineeritud naturaalarvu järglane SS koostatakse alamväärtuse t rafineeringust u. Kui väärtustermi t tüübituletus ei õnnestu või tuletatud tüüp ei ole naturaalarvu tüüpi, siis rafineeringu tulemuseks koostatakse tipp-tüübi element tt.
- \(\tau \), \(\tau ' \) korral kontrollitakse, et m\(\tilde{\text{lemad}} \) v\(\tilde{\text{airtustermid}} \) t ' on kontekstis
 h\(\tilde{\text{sti}} \) t\(\tilde{\text{uibitud}} \) ja t' on kontekstis
 h\(\tilde{\text{sti}} \) t\(\tilde{\text{uibitud}} \) ja t' on kontekstis
 h\(\tilde{\text{sti}} \) t\(\tilde{\text{uibitud}} \) ja t' on kontekstis
 h\(\tilde{\text{sti}} \) t\(\tilde{\text{uibitud}} \) ja t' on kontekstis
 h\(\tilde{\text{sti}} \) t\(\tilde{\text{uibitud}} \) ja t' on kontekstis
 h\(\tilde{\text{sti}} \) t\(\tilde{\text{uibitud}} \) ja u'.

 \[
 \text{viabitud} \) ja t'
 \(\tilde{\text{uibitud}} \) ja u'.
 \[
 \text{viabitud} \] ja u'.
 \[
 \text{viabitud} \) ja u'.
 \[
 \text{viabitud} \] ja u'.
 \[
 \text{v
- FST t puhul peab väärtustermile t tuletatud tüüp olema korrutis. Rafineeritud projektsiooni saab koostada t rafineeringust u. SND t juhtum on analoogne.

```
infer-ctype : Ctx → cTerm → Maybe CType
infer-ctype \Gamma (VAL x) with infer-vtype \Gamma x
... | just \sigma = just (ok / \sigma)
... | _ = nothing
infer-ctype \Gamma (FAIL \sigma) = just (err / \sigma)
infer-ctype \Gamma (TRY t WITH t') with infer-ctype \Gamma t | infer-ctype \Gamma t'
... | just \tau | just \tau' = \tau \diamondsuit C \tau'
                           = nothing
... | _ | _
infer-ctype \Gamma (IF x THEN t ELSE t')
    with infer-vtype \Gamma x | infer-ctype \Gamma t | infer-ctype \Gamma t'
... | just bool | just \tau | just \tau' = \tau \sqcup C \tau'
                   1_
                              1 _
                                          = nothing
infer-ctype \Gamma (f $ t) with infer-vtype \Gamma f | infer-vtype \Gamma t
... | just (\sigma \Rightarrow \tau) | just \sigma' with \sigma' \leq V? \sigma
                                    | yes _{-} = just \tau
                                    | no _ = nothing
infer-ctype \Gamma (f $ t) | _ | _ = nothing
infer-ctype \Gamma (PREC x t t')
    with infer-vtype \Gamma x
\dots | just nat with infer-ctype \Gamma t
             | nothing = nothing
             | just (e / \sigma) with infer-ctype (\sigma :: nat :: \Gamma) t'
                                | nothing = nothing
                                | just (e' / \sigma') with e \cdot e' \sqsubseteq? e | \sigma \equivV? \sigma'
                                                    | yes _ | yes _ = just (e / \sigma)
                                                    infer-ctype \Gamma (PREC x t t') | _ = nothing
infer-ctype \Gamma (LET t IN t') with infer-ctype \Gamma t
... | nothing = nothing
... | just (e / \sigma) with infer-ctype (\sigma :: \Gamma) t'
                                     = nothing
                       | nothing
                       | just (e' / \sigma') = just (e · e' / \sigma')
. . .
```

Joonis 11: Eranditega keele arvutustermide tüübituletus.

```
refined-vterm : Ctx \rightarrow vTerm \rightarrow Set refined-vterm \Gamma t with infer-vtype \Gamma t ... | nothing = \Gamma ... | just \tau = VTerm \Gamma \tau refined-cterm : Ctx \rightarrow cTerm \rightarrow Set refined-cterm \Gamma t with infer-ctype \Gamma t ... | nothing = \Gamma ... | just \tau = CTerm \Gamma \tau
```

Joonis 12: Väärtus- ja arvutustermide rafineerimiste tüübikonstruktorid.

- VAR x korral koostatakse lahendist p, mis näitab, et naturaalarv x on väiksem kui konteksti Γ pikkus, rafineeritud muutuja tõestusega, et x-iga määratud muutuja on kontekstis.
- LAM σ t juhtumis lisatakse parameetri tüüp σ konteksti ja kontrollitakse arvutustermi t hästi-tüübitust. Rafineeritud funktsiooni abstraktsioon koostatakse uues kontekstis rafineeritud arvutusest u.

Arvutustermide rafineerimine on toodud joonistel 14 ja 15.

- VAL t korral kontrollitakse, et väärtusterm t on hästi tüübitud, ja rafineeritud arvutus koostatakse vastavast rafineeritud väärtustermist u.
- FAIL σ rafineerimisel näidatakse, et selle arvutustermi tüübituletus alati õnnestub.
- TRY t WITH t' korral kontrollitakse, et mõlemad osaarvutused on hästi tüübitud ja tuletatud väärtustüüpidel leidub ülemine raja. Rafineeritud arvutuse konstrueerimiseks suurendatakse rafineeritud osaarvutuste u ja u' tüüpi ülemise rajani vastavalt alamtüübi tõestusele p.
- IF x THEN t ELSE t' korral peab väärtusterm x olema tõeväärtustüüpi ning arvutustermid t ja t' peavad olema hästi tüübitud. Kui harude arvutuste väärtustüüpidel leidub ülemine raja, siis rafineeritud tingimuslause tingimus on rafineeritud väärtusterm x' ja tingimuslause harudes suurendatakse rafineeritud arvutuste u ja u' tüüpi vastavalt alamtüübi tõestusele p. Ülejäänud juhtudel koostatakse tipp-tüübi element tt.
- f \$ x korral peab väärtusterm f olema funktsiooniruumi tüüpi ja seejuures peab argumendile x tuletatud tüüp olema mainitud funktsiooniruumi parameetri alamtüüp. Rafineeritud funktsiooni f' rakendamise koostamisel on rafineeritud argumendi x' tüüpi suurendatud vastavalt alamtüübi tõestusele p.
- PREC x t t' korral kontrollitakse, et väärtusterm x on tõeväärtustüüpi ning baasile vastav arvutus t hästi tüübitud. Seejärel, et sammule vastav arvutus t' on hästi tüübitud kontekstis, kuhu on lisatud naturaalarvu tüüpi sammuloendur ning baasi väärtustüübile vastav akumulaator. Viimaks kontrollitakse, et baasi ja sammule efektide korrutamine ei ületaks baasi efekti ning et baasile ja sammule vastavad väärtustüübid langevad kokku. Rafineeritud primitiivse rekursiooni term koostatakse vastavatest rafineeritud termidest x', u, u' ja efektide püsipunkti tõestusest p.

```
refine-vterm : (\Gamma : Ctx) (t : vTerm) \rightarrow refined-vterm \Gamma t
\texttt{refine-vterm}\ \Gamma\ \texttt{TT}\ =\ \texttt{TT}
refine-vterm \Gamma FF = FF
refine-vterm \Gamma ZZ = ZZ
refine-vterm \Gamma (SS t) with infer-vtype \Gamma t | refine-vterm \Gamma t
\dots | just nat | u = SS u
... | just bool | _ = tt
... | just (_ • _) | _ = tt
\dots | just (\_ \Rightarrow \_) | \_ = tt
... | nothing | _ = tt
refine-vterm \Gamma \langle t, t' \rangle
     with infer-vtype \Gamma t | refine-vterm \Gamma t |
           infer-vtype \Gamma t' | refine-vterm \Gamma t'
... | just _ | u | just _ | u' = ( u , u' )
... | just _ | _ | nothing | _ = tt
... | nothing | _ | _
                                | _ = tt
refine-vterm \Gamma (FST t) with infer-vtype \Gamma t | refine-vterm \Gamma t
... | just nat | _ = tt
... | just bool | _ = tt
\dots | just (\_ \bullet \_) | u = FST u
\dots | just (\_ \Rightarrow \_) | \_ = tt
... | nothing | _ = tt
refine-vterm \Gamma (SND t) with infer-vtype \Gamma t | refine-vterm \Gamma t
... | just nat | _ = tt
... | just bool | _ = tt
\dots | just (\_ \bullet \_) | u = SND u
\dots | just (\_ \Rightarrow \_) | \_ = tt
... | nothing | _ = tt
refine-vterm \Gamma (VAR x) with x <? \Gamma
... | yes p = VAR (trace \Gamma (from N≤ p))
... | no _ = tt
refine-vterm \Gamma (LAM \sigma t)
     with infer-ctype (\sigma :: \Gamma) t | refine-cterm (\sigma :: \Gamma) t
... | just \_ | u = LAM \sigma u
\dots | nothing | u = tt
```

Joonis 13: Eranditega keele väärtustermide rafineerimine.

■ LET t IN t' puhul peab osaarvutus t olema hästi tüübitud antud kontekstis ja osaarvutus t' tüübitud kontekstis, kuhu on lisatud t-le tuletatud tüüp σ . Rafineeritud arvutuste sidumine koostatakse rafineeritud osaarvutustest u ja u'.

2.4 Semantika

Joonisel 16 on toodud vastastikku defineeritud väärtus- ja arvutustüüpide ning konteksti semantiline interpretatsioon metakeeles Agda.

- lacktriangle nat interpreteeritakse kui naturaalarvud $\mathbb N$ ja bool kui tõeväärtused Bool.
- σ σ ' korral tehakse rekursiivsed väljakutsed korrutatavatele ning tulemused korrutatakse Agdas _x_.
- $\sigma \Rightarrow \tau$ interpretatsioon vastab Agda funktsioonile, mille parameetri ja tulemuse tüüp on interpreeritud vastavalt väärtustüübist σ ja arvutustüübist τ .
- Arvutustüübi ϵ / σ interpreteerimiseks rakendatakse gradeeritud monaadi tüübikonstruktorit T efektile ϵ ja väärtustüübi σ interpretatsioonile.
- Tühi kontekst vastab tipp-tüübile ⊤. Mitte-tühja konteksti pea-element interpreteeritakse ja korrutatakse rekursiivselt interpreteeritud sabaga.

Joonisel 17 on toodud rafineeritud väärtustermi interpretatsioon antud konteksti interpretatsioonis.

- TT ja FF seatakse vastavusse tõese ja vääraga.
- ZZ vastab nullile. SS t on t interpretatsiooni järglane.
- ⟨ t , t' ⟩ tõlgendatakse kui t ja t' interpretatsioonide paari.
- FST t ja SND t teevad vastavalt esimese ja teise projektsiooni t interpretatsioonist.
- VAR x projekteerib konteksti interpretatsioonist ρ tõestusele x vastava (n-ö x-nda) väärtuse.
- LAM σ t interpreteeritakse kui lambda abstraktsiooni, mille seotud muutuja \mathbf{x} lisatakse arvutustermi t interpreteerimise konteksti.
- VCAST t p puhul interpreteeritakse väärtusterm t ja konverteeritakse see vastavalt alamtüübi tõestusele p.

```
refine-cterm : (\Gamma : Ctx) (t : cTerm) \rightarrow refined-cterm \Gamma t
refine-cterm \Gamma (VAL t) with infer-vtype \Gamma t | refine-vterm \Gamma t
\dots | nothing | u = tt
\dots | just _{-} | u = VAL u
refine-cterm \Gamma (FAIL \sigma) with infer-ctype \Gamma (FAIL \sigma)
... | _{-} = FAIL \sigma
refine-cterm \Gamma (TRY t WITH t')
     with infer-ctype \Gamma t | refine-cterm \Gamma t |
           infer-ctype \Gamma t' | refine-cterm \Gamma t'
... | nothing
                     | _ | _
                                                 | _ = tt
... | just _ | _ | nothing
                                                | _ = tt
... | just (e / \sigma) | u | just (e' / \sigma') | u'
           with \sigma \sqcup V \sigma' | inspect (\sqcup V \_ \sigma) \sigma'
           | nothing | _ = tt
           | just _ | [ p ] =
     TRY CCAST u (⊔V-subtype p)
     WITH CCAST u' (\sqcupV-subtype-sym {\sigma} p)
refine-cterm \Gamma (IF x THEN t ELSE t')
     with infer-vtype \Gamma x | refine-vterm \Gamma x
... | nothing | _ = tt
... | just nat | _ = tt
... | just (_ • _) | _ = tt
\dots | just (\_ \Rightarrow \_) | \_ = tt
... | just bool | x'
           with infer-ctype \Gamma t | refine-cterm \Gamma t
           | nothing | u = tt
           | just (e / \sigma) | u
                 with infer-ctype \Gamma t' | refine-cterm \Gamma t'
                 | nothing | u' = tt
                 | just (e' / \sigma') | u'
                       with \sigma \sqcup \forall \sigma ' | inspect (\_\sqcup \forall_\_ \sigma) \sigma '
                       | nothing | _ = tt
                       | just \sqcup \sigma | [p] =
     IF x' THEN CCAST u (⊔V-subtype p)
            ELSE CCAST u' (\sqcupV-subtype-sym {\sigma} p)
```

Joonis 14: Eranditega keele arvutustermide rafineerimine, I osa.

```
--refine-cterm : (\Gamma : Ctx) (t : cTerm) → refined-cterm \Gamma t
refine-cterm \Gamma (f $ x)
    with infer-vtype \Gamma f | refine-vterm \Gamma f |
          infer-vtype \Gamma x | refine-vterm \Gamma x
... | nothing
                 | _ | _ | _ = tt
... | just nat | _ | _ | _ = tt
... | just bool | _ | _ | _ = tt
... | just (_ • _) | _ | _ | _ = tt
\dots | just (\_ \Rightarrow \_) | \_ | nothing | \_ = tt
... | just (\sigma \Rightarrow \tau) | f' | just \sigma' | x' with \sigma' \leq V? \sigma
                                              | no _ = tt
                                              | yes p = f' $ VCAST x' p
refine-cterm \Gamma (PREC x t t') with infer-vtype \Gamma x | refine-vterm \Gamma x
... | nothing | _ = tt
... | just bool | _ = tt
... | just (_ • _) | _ = tt
... | just (_ ⇒ _) | _ = tt
... | just nat | x'
         with infer-ctype \Gamma t | refine-cterm \Gamma t
         | nothing | _ = tt
         | just (e / \sigma) | u
              with infer-ctype (\sigma :: nat :: \Gamma) t' |
                    refine-cterm (\sigma :: nat :: \Gamma) t'
              | nothing | _ = tt
              | just (e' / \sigma') | u' with e \cdot e' \sqsubseteq? e | \sigma \equivV? \sigma'
                                        | no _ | _ = tt
                                        | yes _ | no _ = tt
refine-cterm \Gamma (PREC x t t')
     | just nat | x'
         | just (e / \sigma) | u
              | just (e' / .\sigma) | u' | yes p | yes refl = PREC x' u u' p
refine-cterm \Gamma (LET t IN t') with infer-ctype \Gamma t | refine-cterm \Gamma t
... | nothing | _ = tt
... | just (e / \sigma) | u with infer-ctype (\sigma :: \Gamma) t' |
                                 refine-cterm (\sigma :: \Gamma) t'
                           | nothing
                                          | _ = tt
                           | just (e' / \sigma') | u' = LET u IN u'
. . .
```

Joonis 15: Eranditega keele arvutustermide rafineerimine, II osa.

```
mutual  \langle\!\langle \_ \rangle\!\rangle V : VType \to Set \\ \langle\!\langle \text{ nat } \rangle\!\rangle V = \mathbb{N} \\ \langle\!\langle \text{ bool } \rangle\!\rangle V = Bool \\ \langle\!\langle \sigma \bullet \sigma' \rangle\!\rangle V = \langle\!\langle \sigma \rangle\!\rangle V \times \langle\!\langle \sigma' \rangle\!\rangle V \\ \langle\!\langle \sigma \Rightarrow \tau \rangle\!\rangle V = \langle\!\langle \sigma \rangle\!\rangle V \to \langle\!\langle \tau \rangle\!\rangle c \\ \langle\!\langle \_ \rangle\!\rangle c : CType \to Set \\ \langle\!\langle \epsilon / \sigma \rangle\!\rangle c = T \epsilon \langle\!\langle \sigma \rangle\!\rangle V \\ \langle\!\langle \_ \rangle\!\rangle X : Ctx \to Set \\ \langle\!\langle G :: \Gamma \rangle\!\rangle X = T
```

Joonis 16: Väärtus-, arvutustüüpide ja konteksti semantika.

Joonis 17: Eranditega keele väärtustermide semantika.

Rafineeritud arvutustermi semantiline interpretatsioon etteantud konteksti interpretatsioonis on toodud joonisel 18.

- VAL x interpreteerib väärtustermi x antud kontekstis ja tagastab selle gradeeritud monaadis.
- Kuna arvutustüübi, mille efekt on err, interpretatsioon erandite gradeeritud monaadis on tipp-tüüp Τ, siis FAIL σ koostab selle ainsa elemendi tt.
- TRY_WITH_ e e' t t' kombineerib osaarvutuste t ja t' interpretatsioonid vastavalt arvutuste efektidele. Semantiline erandikäsitlus or-else käitub järgnevalt. Kui esimese osaarvutuse efektiks on ebaõnnestumine err, siis kogu arvutus on määratud erandikäsitlejaga. Kui esimene arvutus õnnestub efektiga ok, siis kogu arvutuseks ongi esimene arvutus. Kui esimese arvutuse õnnestumine pole teada, st efektiks on errok, siis analüüsitakse ka erandikäsitleja efekti. Kui erandikäsitleja efekt on err, siis on kogu arvutus määratud põhiarvutusega. Ülejäänud juhtudel analüüsitakse esimese arvutuse tulemuse kuju: kui esimene arvutus ikkagi õnnestus (konstruktor just), siis saab sealt ka kogu arvutuse tulemuse; vastasel korral on kogu arvutuse tulemuseks erandikäsitleja tulemus.
- IF_THEN_ELSE_ korral interpreteeritakse tingimus, kusjuures kummagi haru efekt neeldub efektide ülemises rajas.
- PREC x t t' p interpretatsioon vastab primitiivsele rekursioonile, mille sammude arv on on väärtustermi x interpretatsioon, baas on arvutustermi t interpretatsioon ja sammuks on arvutustermi t' interpretatsioon kontekstis, kuhu on lisatud sammuloendur ja vahetulemuse akumulaator. Semantiline primitiivne rekursioon primrecT on defineeritud induktsiooniga sammude arvul. Nulli korral on tulemuseks baasile vastav arvutus z. Sammu korral rakendatakse sammule vastavat funktsiooni s sammuloendurile n ja saadud funktsioon seotakse bind-iga rekursiive väljakutsega. Tulemuse efekt neeldub efektide püsipunkti tõestuse p tõttu baasarvutuse efektis.
- f \$ x korral rakendatakse väärtustermi f interpretatsiooni väärtustermi x interpretatsioonile.
- LET_IN_ seob osaarvutused: esimese osarvutuse interpretatsioon lisatakse teise osaarvutuse interpreteerimise konteksti.
- CCAST t p puhul interpreteeritakse arvutusterm t ja konverteeritakse see vastavalt alamtüübi tõestusele p.

```
or-else : (e e' : E) \{X : Set\} \rightarrow T e X \rightarrow T e' X \rightarrow T (e \diamondsuit e') X
or-else err \_ \_ x' = x'
or-else ok \_ x \_ = x
or-else errok err x _ = x
or-else errok ok (just x) _ = x
or-else errok ok nothing x' = x'
or-else errok errok (just x) x' = just x
or-else errok errok nothing x' = x'
primrecT : \{e e' : E\} \{X : Set\} \rightarrow
                   \mathbb{N} \rightarrow \mathsf{T} \ \mathsf{e} \ \mathsf{X} \rightarrow (\mathbb{N} \rightarrow \mathsf{X} \rightarrow \mathsf{T} \ \mathsf{e}' \ \mathsf{X}) \rightarrow \mathsf{e} \cdot \mathsf{e}' \sqsubseteq \mathsf{e} \rightarrow \mathsf{T} \ \mathsf{e} \ \mathsf{X}
primrecT zero z s p = z
primrecT \{e\} \{e'\} (suc n) z s p =
       sub p (bind {e} {e'} (s n) (primrecT n z s p))
[\![ ]\!]C : {\Gamma : Ctx} {\tau : CType} \rightarrow CTerm \Gamma \tau \rightarrow \langle \langle \Gamma \rangle \rangleX \rightarrow \langle \langle \tau \rangle \rangleC
\llbracket VAL \times \rrbracket C \rho = \eta (\llbracket \times \rrbracket V \rho)
\llbracket \text{ FAIL } \sigma \ \rrbracket \text{C } \rho = \text{tt}
\llbracket \text{ IF\_THEN\_ELSE\_ } \{e\} \ \{e'\} \ \text{x t t'} \ \llbracket \text{C } \rho = \text{if} \ \llbracket \ \text{x} \ \rrbracket \text{V } \rho 
                                                                    then (sub (lub e e') (\llbracket t \rrbracket C \rho))
                                                                    else (sub (lub-sym e' e) (\llbracket t' \llbracketC \rho))
| PREC x t t' p | C \rho = primrecT (| x | V \rho) (| t | C \rho)
                                                         ((\lambda i acc \rightarrow [t']C (acc, i, \rho))) p
\llbracket \text{ LET\_IN\_ } \{e\} \ \{e'\} \ \text{m n } \llbracket \text{C } \rho = \emptyset \}
       bind {e} {e'} (\lambda x \rightarrow [n] C (x, \rho)) ([m] C \rho)
\llbracket \text{ CCAST to } \rrbracket \text{C } \rho = \text{ccast o } (\llbracket \text{ t } \rrbracket \text{C } \rho)
```

Joonis 18: Eranditega keele arvutustermide semantika.

2.5 Optimisatsioonid

Etteantud konteksti saab laiendada lisades selle mingisse kohta kindla tüübi. Seda nimetatakse lõdvendamiseks dropX (jn 19). Samamoodi saab lõdvendada rafineeritud väärtusterme wkV ja arvutusterme wkC. Teades konteksti ja sinna lisatava tüübi interpretatsiooni, saab koostada lõdvendatud konteksti interpretatsiooni drop. Lemmad lemma-wkV ja lemma-wkC näitavad, et lõdventatud termi interpretatsioon lõdventatud kontekstis on sama, mis selle termi interpretatsioon. Lihtsuse huvides pole mainitud definitsioone ja tõestusi siinkohal toodud.

Monaadi spetsiifilised, efektist sõltumatud optimisatsioonid on toodud joonisel 21. the-same näitab, et arvutust mei saa parandada, lisades sellele erandikäsitlejana sama arvutuse. Erandikäsitlejate assotsiatiivsus on näidatud handler-ass'iga. Selle tõestus matkib arvutuse parandusoperaatori assotsiatiivsuse ♦-ass tõestust, mis seisneb efektide juhtumite analüüsil.

Monaadi spetsiifilised, efektist sõltuvad optimisatsioonid on toodud joonisel 22. Iga arvutuse m, mille efekt on err, saab samaväärselt asendada arvutusega FAIL X. Samaväärsus failure m põhineb asjaolul, et ebaõnnestunud arvutuse semantiline interpretatsioon erandite gradeeritud monaadis on tipp-tüüp T, milles ongi ainult üks element ja seetõttu on tõestus triviaalne.

Lihtsustus dead-comp (jn 22) näitab, et kui kindlasti õnnestuvat osaarvutust m ei pruugita osaarvutuses n, siis nende sidumisel pole mõtet ja võib kasutada lihtsalt osaarvutust n. Tõestus on eespool antud arvutustermi lõdvenduse lemma-wkC rakendus.

Lihtsustus dup-comp (jn 22) võimaldab arvutuse m topelt arvutamise asendada ühekordse arvutamisega. Tõestusel analüüsitakse kõige pealt arvutuse n efekti kuju.

- Kui see arvutus ebaõnnestub, siis kogu arvutuse interpretatsioon on paratamatult tipp-tüübi element tt ja seega tõestus on triviaalne.
- Kui arvutuse n efektiks on ok, siis analüüsitakse arvutuse m interpretatsiooni. Õnnestunud arvutuse just x korral näidatakse ülesande tüüpi nõrgendamise lemma-wkC ja m-i uuritud interpretatsooni eq-ga ringi kirjutades, et tulemus on kongruentne m-i väärtuse x kontraheerimise lemma-ctrC tõttu. Ebaõnnestunud arvutuse korral pole arvutusse n ühtegi väärtust siduda ja kogu arvutuse interpretatsiooniks on nothing.
- Kui efektiks on errok, siis on tõestus analoogne efekti ok juhtumiga, v.a. asjaolu, et arvutuse n interpretatsioon on Maybe tüüpi ja seega pole vaja näidata kongruentsust.

```
dropX : (\Gamma : Ctx) \{ \sigma : VType \} (x : \sigma \in \Gamma) \rightarrow Ctx
-- proof omitted
mutual
    \mathsf{wkV} \; : \; \{\Gamma \; : \; \mathsf{Ctx}\} \; \{\sigma \; \tau \; : \; \mathsf{VType}\} \; \; (\mathsf{x} \; : \; \sigma \; \in \; \Gamma) \; \rightarrow \;
                 VTerm (dropX \Gamma x) \tau \rightarrow VTerm \Gamma \tau
    -- proof omitted
    wkC : \{\Gamma : \mathsf{Ctx}\}\ \{\sigma : \mathsf{VType}\}\ \{\tau : \mathsf{CType}\}\ (\mathtt{x} : \sigma \in \Gamma) \to \mathsf{VType}\}
                 CTerm (dropX \Gamma x) \tau \rightarrow CTerm \Gamma \tau
    -- proof omitted
drop : \{\Gamma : Ctx\} \rightarrow \langle \langle \Gamma \rangle \rangle X \rightarrow \{\sigma : VType\} \rightarrow (x : \sigma \in \Gamma) \rightarrow \langle \langle drop X \Gamma x \rangle \rangle X
-- proof omitted
mutual
    lemma-wkV : {\Gamma : Ctx} (\rho : \langle\langle \Gamma \rangle\rangleX) \rightarrow
                               \{\sigma : VType\} (x : \sigma \in \Gamma) \rightarrow
                               \{\tau : VType\} (t : VTerm (dropX <math>\Gamma x) \tau) \rightarrow
                               \llbracket \  \, \mathsf{wkV} \  \, \mathsf{x} \  \, \mathsf{t} \  \, \rrbracket \mathsf{V} \  \, \rho \  \, \mathsf{\equiv} \  \, \llbracket \  \, \mathsf{t} \  \, \rrbracket \mathsf{V} \  \, (\mathsf{drop} \  \, \rho \  \, \mathsf{x})
    -- proof omitted
    lemma-wkC : \{\Gamma : \mathsf{Ctx}\}\ (\rho : \langle\langle \Gamma \rangle\rangle \mathsf{X}) \rightarrow
                               \{\sigma : VType\} (x : \sigma \in \Gamma) \rightarrow
                               \{\tau : \mathsf{CType}\}\ (\mathsf{t} : \mathsf{CTerm}\ (\mathsf{drop}\mathsf{X}\ \Gamma\ \mathsf{x})\ \tau) \to
                               \llbracket \text{ wkC x t } \rrbracket \text{C } \rho \equiv \llbracket \text{ t } \rrbracket \text{C } (\text{drop } \rho \text{ x}) \rrbracket
    -- proof omitted
                                     Joonis 19: Konteksti ja termide lõdvendamine.
    dupX : {\Gamma : Ctx} {\sigma : VType} \rightarrow \sigma \in \Gamma \rightarrow Ctx
    -- proof omitted
    mutual
         ctrV : {\Gamma : Ctx} {\sigma : VType} {\tau : VType} (p : \sigma \in \Gamma) \rightarrow
                        VTerm (dupX p) \tau \rightarrow VTerm \Gamma \tau
         -- proof omitted
         ctrC : \{\Gamma : Ctx\} \{\sigma : VType\} \{\tau : CType\} (p : \sigma \in \Gamma) \rightarrow
                        CTerm (dupX p) \tau \rightarrow CTerm \Gamma \tau
         -- proof omitted
    dup : \{\Gamma : Ctx\} \rightarrow \langle\langle \Gamma \rangle\rangle X \rightarrow \{\sigma : VType\} \rightarrow (p : \sigma \in \Gamma) \rightarrow \langle\langle dupX p \rangle\rangle X
    -- proof omitted
    mutual
         lemma-ctrV : \{\Gamma : \mathsf{Ctx}\}\ (\rho : \langle\!\langle \Gamma \rangle\!\rangle \mathsf{X}) \rightarrow
                                     \{\sigma : VType\} (p : \sigma \in \Gamma) \rightarrow
                                     \{\tau : VType\} (t : VTerm (dupX p) \tau) \rightarrow
                                      \llbracket t \rrbracket V (ctr \rho p) \equiv \llbracket ctr V p t \rrbracket V \rho \rrbracket
         -- proof omitted
         lemma-ctrC : \{\Gamma : \mathsf{Ctx}\}\ (\rho : \langle\!\langle\ \Gamma\ \rangle\!\rangle \mathsf{X}) \to
                                     \{\sigma : VType\} (p : \sigma \in \Gamma) \rightarrow
                                     \{\tau : \mathsf{CType}\}\ (\mathsf{t} : \mathsf{CTerm}\ (\mathsf{dup}\mathsf{X}\ \mathsf{p})\ \tau) \to
                                      -- proof omitted
```

Joonis 20: Konteksti ja termide kontraheerimine.

```
\lozenge-itself : (e : Exc) \rightarrow e \lozenge e \equiv e
◇-itself err = refl
\diamondsuit-itself ok = refl
◇-itself errok = refl
the-same : {e : Exc} {\Gamma : Ctx} {\rho : \langle\langle \Gamma \rangle\rangleX} {X : VType}
               (m : CTerm \Gamma (e / X)) \rightarrow
               sub-eq (\diamondsuit-itself e) (\llbracket TRY m WITH m \rrbracketC \rho) \equiv \llbracket m \rrbracketC \rho
the-same \{err\} m = refl
the-same \{ok\} m = refl
the-same {errok} {\rho = \rho} m with \llbracket m \rrbracketC \rho
... | just _ = refl
... | nothing = refl
\lozenge-ass : (e e' e'' : Exc) \rightarrow e \lozenge (e' \lozenge e'') \equiv (e \lozenge e') \lozenge e''
◇-ass err e' e'' = refl
◇-ass ok e' e'' = refl
◇-ass errok err e'' = refl
◇-ass errok ok e'' = refl
◇-ass errok errok err = refl
◇-ass errok errok ok = refl
♦-ass errok errok errok = refl
handler-ass : \{e_1 \ e_2 \ e_3 \ : Exc\} \ \{\Gamma \ : \ Ctx\} \ \{\rho \ : \ \langle \langle \Gamma \rangle \rangle X\} \ \{X \ : \ VType\}
                   (m_1 : CTerm \Gamma (e_1 / X)) (m_2 : CTerm \Gamma (e_2 / X))
                   (m_3 : CTerm \Gamma (e_3 / X)) \rightarrow
                   sub-eq (\diamondsuit-ass e_1 e_2 e_3)
                             ([TRY m_1 WITH (TRY m_2 WITH m_3)]C \rho)
                   \equiv \parallel TRY (TRY m_1 WITH m_2) WITH m_3 \parallelC \rho
handler-ass \{err\} m_1 m_2 m_3 = refl
handler-ass \{ok\} m_1 m_2 m_3 = refl
handler-ass \{errok\} \{err\} m_1 m_2 m_3 = refl
handler-ass \{errok\} \{ok\} m_1 m_2 m_3 = refl
handler-ass {errok} {errok} {err} m<sub>1</sub> m<sub>2</sub> m<sub>3</sub> = refl
handler-ass {errok} {errok} {ok} {\rho = \rho} m_1 m_2 m_3 with m_1 p
... | just _ = refl
... | nothing = refl
handler-ass {errok} {errok} {\rho = \rho} m_1 m_2 m_3 with m_1 p
\dots | just x = refl
... | nothing = refl
```

Joonis 21: Monaadi spetsiifilised, efektist sõltumatud optimisatsioonid.

```
failure : {\Gamma : Ctx} {X : VType} (m : CTerm \Gamma (err / X)) \rightarrow
                [ m ] C \equiv [ FAIL X ] C
failure m = refl
dead-comp : \{\Gamma : \mathsf{Ctx}\}\ \{\sigma \ \tau : \mathsf{VType}\}\ \{\epsilon : \mathsf{Exc}\}
                    (m : CTerm \Gamma (ok / \sigma)) (n : CTerm \Gamma (\epsilon / \tau ) ) \rightarrow
                    (\rho : \langle \langle \Gamma \rangle \rangle X) \rightarrow
                    {[\![} LET m IN (wkC zero n) {]\![}C \rho \equiv {[\![} n {]\![}C \rho
dead-comp m n \rho = lemma-wkC \rho (\llbracket m \rrbracketC \rho) zero n
errok-seq : (e : Exc) \rightarrow errok \cdot (errok \cdot e) \equiv errok \cdot e
errok-seq e = sym (ass {errok} {errok} {e})
\texttt{dup-comp} \; : \; \{\texttt{e} \; : \; \texttt{Exc}\} \; \{\Gamma \; : \; \texttt{Ctx}\} \; \{\texttt{X} \; \, \texttt{Y} \; : \; \texttt{VType}\}
                  (m : CTerm \Gamma (errok / X)) (n : CTerm (dupX here) (e / Y)) \rightarrow
                  (\rho : \langle \langle \Gamma \rangle \rangle X) \rightarrow
                  sub-eq (errok-seq e)
                              (\llbracket LET m IN LET wkC here m IN n \llbracketC \rho)
                  \equiv [ LET m IN ctrC here n ]C \rho
dup-comp {err} m n \rho = refl
\texttt{dup-comp \{ok\} m n } \rho \texttt{ with } \llbracket \texttt{ m } \rrbracket \texttt{C} \ \rho \ | \ \texttt{inspect } \llbracket \texttt{ m } \rrbracket \texttt{C} \ \rho
... | just x | [ eq ] rewrite lemma-wkC (x , 
ho) here m | eq
                              = cong just (lemma-ctrC (x , \rho) here n)
\dots | nothing | _ = refl
dup-comp {errok} m n \rho with \llbracket m \rrbracketC \rho | inspect (\llbracket m \rrbracketC) \rho
... | just x | [ eq ] rewrite lemma-wkC (x , 
ho) here m | eq
                              = lemma-ctrC (x , \rho) here n
... | nothing | _ = refl
```

Joonis 22: Monaadi spetsiifilised, efektist sõltuvad optimisatsioonid.

3 Mitte-determinism

Selles peatükis vaadeldakse keele laiendust mitte-deterministliku valikuga. Baaskeeleks on tüübitud lambda-arvutus koos tõeväärtuste, naturaalarvude ja korrutistega. Kuna baaskeel on sama, mis peatükis 2, siis järgnevates alapeatükkides on toodud välja ainult olulisemad muudatused keele laienduse, tüübituletuse, semantika ja efektianalüüsi osas.

3.1 Mitte-deterministlik keel

Järgnev BNF esitab mitte-deterministliku keele grammatika.

Võrreldes eranditega keelega (ptk 2) on erandikäsitlusega arvutus TRY_WITH_ asendunud arvutusega CHOOSE, mis valib mitte-deterministlikult, kumba osaarvutust täita.

Sellise keele rafineeritud ja rafineerimata arvutustermid on toodud joonisel 23. Väärtustermid on mõlemal keelel defineeritud samamoodi. Muutunud on arvutuste efekti hinnang E, mis defineeritakse alapeatükis 3.2. Arvutuse õnnestumise rafineeritud arvutustermi VAL efekti hinnanguks on 1 ja ebaõnnestumise arvutustermi FAIL hinnanguks on 0.

3.2 Mitte-determinismi gradeering

Naturaalarvud N, nende korrutamine _*_ ja ühik 1 moodustavad monoidi. Naturaalarvude järjestusseos _≤_ on refleksiivne refl≤, transitiivne trans≤ ja korrutamise suhtes monotoonne mon*. Korrutamise vasakühiku lu*, paremühiku ru* ja assotsiatiivsuse ass*

```
data cTerm : Set where
   VAL : vTerm → cTerm
   FAIL : VType → cTerm
   CHOOSE : cTerm → cTerm → cTerm
   IF\_THEN\_ELSE\_ : vTerm \rightarrow cTerm \rightarrow cTerm \rightarrow cTerm
   _$_ : vTerm → vTerm → cTerm
   PREC : vTerm → cTerm → cTerm → cTerm
   LET_IN_ : cTerm → cTerm → cTerm
data CTerm (\Gamma : Ctx) : CType \rightarrow Set where
   VAL : \{\sigma : VType\} \rightarrow VTerm \Gamma \sigma \rightarrow CTerm \Gamma (1 / \sigma)
   FAIL : (\sigma : VType) \rightarrow CTerm \Gamma (0 / \sigma)
   CHOOSE : {e e' : E} {\sigma : VType} \rightarrow CTerm \Gamma (e / \sigma) \rightarrow
                 CTerm \Gamma (e' / \sigma) \rightarrow CTerm \Gamma ((e \diamondsuit e') / \sigma)
   IF_THEN_ELSE_ : {e e' : E} {\sigma : VType} \rightarrow VTerm \Gamma bool \rightarrow
                  CTerm \Gamma (e / \sigma) \rightarrow CTerm \Gamma (e' / \sigma) \rightarrow CTerm \Gamma ((e \sqcup e') / \sigma)
   \_\$\_ : {\sigma : VType} {\tau : CType} \rightarrow
            PREC : {e e' : E} \{\sigma : VType\} \rightarrow VTerm \Gamma \text{ nat } \rightarrow
             CTerm \Gamma (e / \sigma) \rightarrow CTerm (\sigma :: nat :: \Gamma) (e' / \sigma) \rightarrow
              e \cdot e' \sqsubseteq e \rightarrow CTerm \Gamma (e / \sigma)
   LET_IN_ : {e e' : E} {\sigma \sigma' : VType} \rightarrow CTerm \Gamma (e / \sigma) \rightarrow
                  CTerm (\sigma :: \Gamma) (e' / \sigma') \rightarrow CTerm \Gamma (e \cdot e' / \sigma')
   CCAST : {e e' : E} {\sigma \sigma' : VType} \rightarrow CTerm \Gamma (e / \sigma) \rightarrow
               e / \sigma \leq C e' / \sigma' \rightarrow CTerm \Gamma (e' / \sigma')
```

Joonis 23: Mitte-deterministliku keele arvutustermid.

ning järjestuse tõestused on toodud töö lähtekoodis. Sellega rahuldatakse eeljärjestatud monoidi tingimusi (alaptk 2.2.2) ja saab moodustada vastava instantsi \mathbb{N}^* (jn 24).

Ülalt tõkestatud vektor BVec (jn 25) mingi hulga X jaoks on indekseeritud naturaalarvuga n, mis näitab vektoris olevate elementide suurimat võimalikku arvu. Ainsaks konstruktoris on bv, mis moodustab täpse pikkusega vektorist ja n-ö "lõtku" tõestusest, et selles vektoris ei ole rohkem elemente kui n, uue ülalt n-iga tõkestatud vektori. Ülalt tõkestatud vektori päisesse elemendi lisamine _::bv_ lisab selle elemendi täpse pikkusega vektori päisesse ning suurendab võrratuse tõestust ühe võrra. Vektorite liitmisel _++bv_ liidetakse täpse pikkusega vektorid omavahel ja elementide lõtku tõestus koostatakse liitmise monotoonsusega kummagi vektori lõtkude tõestusest.

Eeljärjestatud monoid \mathbb{N}^* ja parametriseeritud tüübikonstruktor TBV, mis annab vastava ülalt tõkestatud vektori tüübi, rahuldavad gradeeritud monaadi omadusi (alaptk 2.2.3). Tagastamine η BV koostab üheelemendilise ülalt tõkestatud ja ilma lõtkuta vektori. Sidumine bindBV rakendab antud funktsiooni igale vektori elemendile ja liidab saadud ülalt tõkestatud vektorid. Vastav gradeeritud monaadi instants NDBV on toodud joonisel 26.

3.3 Termide tüübituletus ja rafineerimine

Efektide järjestus võimaldab defineerida alamtüübid. Kuna see definitsioon on sama, mis eranditega keele puhul (alaptk 2.3.1), siis pole seda siinkohal toodud mitte-deterministliku keele jaoks.

Osa arvutustermide tüübituletusest on esitatud joonisel 27.

■ VAL x on hästi tüübitud, kui väärtusterm x on antud kontekstis tüübitud. Arvutuse

Joonis 24: Mitte-determinismi eeljärjestatud monoid.

```
data BVec (X : Set) : (n : \mathbb{N}) \rightarrow Set where bv : {m n : \mathbb{N}} \rightarrow Vec X m \rightarrow m \leq n \rightarrow BVec X n 

_::bv_ : {X : Set} {n : \mathbb{N}} \rightarrow X \rightarrow BVec X n \rightarrow BVec X (suc n) 

x ::bv (bv xs p) = bv (x :: xs) (s\leqs p) 

_++bv_ : {X : Set} {m n : \mathbb{N}} \rightarrow BVec X m \rightarrow BVec X n \rightarrow BVec X (m + n) 

bv xs p ++bv bv xs' q = bv (xs ++ xs') (mon+ p q)
```

Joonis 25: Ülalt tõkestatud vektor.

```
TBV = \lambda e X \rightarrow BVec X e
\eta BV : \{X : Set\} \rightarrow X \rightarrow BVec X i
\etaBV x = bv (x :: []) (s \le s z \le n)
bindBV : \{m \ n : \mathbb{N}\}\ \{X \ Y : Set\} \rightarrow
           (X \rightarrow BVec Y n) \rightarrow BVec X m \rightarrow BVec Y (m \cdot n)
bindBV f (bv [] z \le n) = bv [] z \le n
bindBV f (bv (x :: xs) (s \leq s p)) = (f x) ++bv bindBV f (bv xs p)
NDBV : GradedMonad
NDBV = record { OM = \mathbb{N}^*
                  ; T = TBV
                   ; \eta = \eta BV
                   ; bind = \lambda {e} {e'} \rightarrow bindBV {e} {e'}
                   ; sub = subBV
                   ; sub-mon = subBV-mon
                   ; sub-refl = subBV-refl
                   : sub-trans = subBV-trans
                   : mlaw1 = blaw1
                   ; mlaw2 = blaw2
                   ; mlaw3 = blaw3
                   }
```

Joonis 26: Mitte-determinismi gradeeritud monaad.

efekt 1 tähistab ühte tulemust, mille tüüp σ vastab väärtustermile tuletatud tüübile.

- FAIL σ korral on efektiks 0, kuna ühtki σ tüüpi tulemust ei teki.
- CHOOSE t t' on hästi tüübitud, kui mõlemad arvutustermid t ja t' on hästi tüübitud. Kogu arvutuse tüüp on määratud vastavalt tuletatud tüüpide τ ja τ' kombinatsiooniga τ ◇C τ': efektid liidetakse _◇_-ga ning väärtustüübiks on väärtustüüpide ülemine raja. Kui ülemine raja puudub, siis pole arvutus hästi tüübitud.

Rafineeritud arvutustermid on toodud joonisel 23. "Toorete" arvutustermide rafineerimine on esitatud joonisel 27.

- VAL t korral kontrollitakse, et väärtusterm t on hästi tüübitud, ja rafineeritud arvutusterm koostatakse vastavast rafineeritud väärtustermist u.
- FAIL σ korral näidatakse, et selle arvutustermi tüübituletus õnnestub, ning koostatakse samasugune rafineeritud arvutusterm.
- CHOOSE t t' puhul peavad mõlemad osaarvutused t ja t' olema hästi tüübitud. Kui neile tuletatud arvutustüüpide väärtustüüpidel on ülemine raja, siis rafineeritud arvutus koostatakse vastavate rafineeringutest u ja u', suurendades neid vastavalt ülemise raja tõestusele p.

3.4 Semantika

Väärtustermide semantika on antud samamoodi nagu eranditega keeles (alaptk 2.4). Joonisel 28 on toodud osa arvutustermide semantikast.

- VAL x korral tagastab η -ga väärtustermi x interpretatsiooni.
- FAIL σ korral koostatakse tühi ülalt tõkestatud vektor funktsiooniga sfail. Selle vektori elementide tüüp on määratud väärtustüübi σ interpretatsiooniga.
- CHOOSE t t' interpretatsioon vastab mitte-determistlikule valikule arvutuste t ja t' vahel. See on realiseeritud vastavate arvutustermide interpretatsioonidega koostatud vektorite liitmisega.
- Ülejäänud arvutustermi konstruktorite semantika on nii nagu eranditega keeles.

```
infer-ctype : (\Gamma : Ctx) \rightarrow cTerm \rightarrow Maybe CType
infer-ctype \Gamma (VAL x) with infer-vtype \Gamma x
... | just \sigma = just (1 / \sigma)
\dots \mid \_ = nothing
infer-ctype \Gamma (FAIL \sigma) = just (0 / \sigma)
infer-ctype \Gamma (CHOOSE t t') with infer-ctype \Gamma t | infer-ctype \Gamma t'
... | just \tau | just \tau' = \tau \diamond c \tau'
                I _
                            = nothing
-- rest of definition omitted
refine-cterm : (\Gamma : Ctx) (t : cTerm) \rightarrow refined-cterm \Gamma t
refine-cterm \Gamma (VAL t) with infer-vtype \Gamma t | refine-vterm \Gamma t
\dots | just _{-} | u = VAL u
\dots | nothing | u = tt
refine-cterm \Gamma (FAIL \sigma) with infer-ctype \Gamma (FAIL \sigma)
... | _ = FAIL \sigma
refine-cterm \Gamma (CHOOSE t t')
     with infer-ctype \Gamma t | refine-cterm \Gamma t |
           infer-ctype \Gamma t' | refine-cterm \Gamma t'
... | nothing | _ | _ | _ = tt
... | just _ | _ | nothing | _ = tt
... | just (e / \sigma) | u | just (e' / \sigma') | u'
          with \sigma \sqcupV \sigma' | inspect (\_\sqcupV\_ \sigma) \sigma'
          | nothing | _ = tt
          | just _ | [ p ] =
  CHOOSE (CCAST u (⊔V-subtype p))
           (CCAST u' (\sqcupV-subtype-sym {\sigma} p))
-- rest of definition omitted
```

Joonis 27: Mitte-determistliku keele tüübituletus ja rafineerimine.

```
sfail : {X : Set} \rightarrow T 0 X sfail = bv []V z \leq n  
sor : (e e' : E) {X : Set} \rightarrow T e X \rightarrow T e' X \rightarrow T (e \diamondsuit e') X sor e e' = _++bv__

[_]C : {\Gamma : Ctx} {\tau : CType} \rightarrow CTerm \Gamma \tau \neq (\lambda \tau)\rangle \tau \rangle \tau)\rangle \tau \rangle \tau \rangl
```

Joonis 28: Mitte-deterministliku keele semantika.

3.5 Optimisatsioonid

Struktuursed teisendused – lõdvendamine ja kontraheerimine – toimivad mitte-deterministliku keele puhul analoogselt eranditega keelega. Vastavad tüübisignatuurid on samad, mis alapeatükis 2.5 joonistel 19 ja 20 esitatud.

Mitte-determinismi monaadi spetsiifilised, kuid konkreetsest efektist sõltumatud optimisatsioonid on toodud joonisel 29. Lihtsustus fail-or-m näitab, et valides mitte-determistlikult arvutuste FAIL X ja m vahel on tulemus sama nagu ainult m arvutamisel. Kuna konstruktori CHOOSE interpretatsioonile vastab osaarvutuste interpreteerimisel saadud tõkestatud vektorite liitmine ja konstruktori FAIL interpretatsioon on lihtsalt tühi vektor, siis ekvivalentsi tõestus taandub ülalt tõkestatud vektorite liitmise definitsioonile.

Mitte-deterministlik valik on assotsiatiivne. Selline teisendus choose-ass on näidatud joonisel 29. Tõestus tugineb ülalt tõkestatud vektorite liitmise assotsiatiivusel, mis on tõestatud töö lähtekoodis.

Lihtsustus fails-earlier (jn 29) näitab, et kui siduda ebaõnnestunuv arvutus mingi arvutusega m, siis tulemus on sama kui kogu arvutus ebaõnnestuks. Sidumise konstruktori LET_IN_ interpretatsioon seob kõik väärtused esimese osaarvutuse interpretatsioonist, milleks arvutuse FAIL X korral on tühi vektor, teise osaarvutusega. Kuna esimesest osaarvutusest ei tekkinud ühtegi väärtust, siis sidumisel ei saa ka ühtegi väärtust tekkida. Seega on samaväärsus triviaalne.

Joonisel 30 on toodud mitte-determinismi efekti spetsiifilised teisendused. Lihtsustus failure näitab, et iga arvutuse m, mille arvutuse tulemusena ei teki mitte ühtegi väärtust (teisisõnu: arvutusel on ülimalt $\mathbf{0}$ väärtust), võib samaväärsena asendada arvutuse ebaõnnestumise konstruktsiooniga FAIL. Kuna arvutustermi m interpretatsioon antud konteksti interpretatsioonis ρ on tühi ülalt $\mathbf{0}$ -ga tõkestatud vektor, siis tõestus on triviaalne.

Samaväärsus dup-comp (jn 30) näitab, et iga arvutust m, mille efekt on ülimalt 1, pole vaja topelt arvutada. Põhjendus on järgnev: kui m tulemuseks on täpselt üks väärtus, siis LET_IN_ sidumisel m-iga ei teki väärtuseid juurde ja võib kohe selle väärtuse siduda n-iga; kui m arvutuse tulemusel ühtegi väärtust ei teki, siis pole ka järgnevatesse arvutustesse midagi siduda. Tõestus on antud töö lähtekoodis.

```
fail-or-m : {\Gamma : Ctx} {X : VType} {e : \mathbb{N}} (m : CTerm \Gamma (e / X)) \rightarrow
                     (\rho : \langle \langle \Gamma \rangle \rangle X) \rightarrow
                     \llbracket CHOOSE (FAIL X) m \rrbracketC \rho \equiv \llbracket m \rrbracketC \rho
fail-or-m m \rho with \llbracket m \rrbracketC \rho
\dots | bv xs p = refl
choose-ass : \{e_1 \ e_2 \ e_3 \ : \mathbb{N}\}\ \{\Gamma \ : \ \mathsf{Ctx}\}\ \{X \ : \ \mathsf{VType}\}
                       (m_1 : CTerm \Gamma (e_1 / X)) (m_2 : CTerm \Gamma (e_2 / X))
                       (m_3 : CTerm \Gamma (e_3 / X)) (\rho : \langle \langle \Gamma \rangle \rangle X) \rightarrow
                       sub-eq (+ass \{e_1\} \{e_2\} \{e_3\})
                                    (\llbracket CHOOSE m_1 (CHOOSE m_2 m_3) \llbracketC \rho)
                       \equiv \parallel CHOOSE (CHOOSE m_1 m_2) m_3 \parallelC \rho
choose-ass m_1 m_2 m_3 \rho with [\![ m_1 \]\!] C \rho [\![ m_2 \]\!] C \rho [\![ m_3 \]\!] C \rho
\dots | bv_1 | bv_2 | bv_3 = lemma-ass++ bv_1 bv_2 bv_3
fails-earlier : {e : \mathbb{N}} {\Gamma : Ctx} {\rho : \langle\!\langle \Gamma \rangle\!\rangleX} {X Y : VType}
                            (m : CTerm (X :: 1 \Gamma) (e / Y)) \rightarrow
                            \llbracket LET FAIL X IN m \rrbracketC \rho \equiv \llbracket FAIL Y \rrbracketC \rho
fails-earlier m = refl
```

Joonis 29: Mitte-determinismi monaadi spetsiifilised, efektist sõltumatud teisendused.

```
failure : {\Gamma : Ctx} {X : VType} (m : CTerm \Gamma (0 / X)) \rightarrow (\rho : \langle\langle \Gamma \rangle\rangleX) \rightarrow [ m ]C \rho \equiv [ FAIL X ]C \rho failure m \rho with [ m ]C \rho ... | bv [] z\leqn = refl dup-comp : {e : N} {\Gamma : Ctx} {X Y : VType} (m : CTerm \Gamma (1 / X)) (n : CTerm (dupX here) (e / Y)) \rightarrow (\rho : \langle\langle \Gamma \rangle\rangleX) \rightarrow sub-eq (errok-seq e) ([ LET m IN LET wkC here m IN n ]C \rho) \equiv [ LET m IN ctrC here n ]C \rho -- proof omitted
```

Joonis 30: Mitte-determinismi efekti spetsiifilised optimisatsioonid.

4 Kokkuvõte

Kokkuvõttes esitab autor töö põhieesmärgi, vastused sissejuhatuses püstitatud küsimustele, toob välja töö olulisemad tulemused ja järeldused. This is obvious [1]. [2]

Viited

- [1] Nick Benton, Andrew Kennedy, Martin Hofmann, and Vivek Nigam. *Counting Successes: Effects and Transformations for Non-deterministic Programs*, pages 56–72. Springer International Publishing, Cham, 2016.
- [2] Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. *SIGPLAN Not.*, 49(1):633–645, January 2014.