Rucksack Problem

Algorithmen und Datenstrukturen II

Sebastian Baumann, Korbinian Karl, Ehsan Moslehi June 23, 2019

Hochschule für Angewandte Wissenschaften München

Table of contents

- 1. Beschreibung des Problems
- 2. Lösungsansätze

Beschreibung des Problems

Rucksack Problem

Mathematische Beschreibung

Gegeben:

- Ggegenstände 1, 2, 3, ..., *n*
 - w_i : Wert vom Gegenstand i
 - $v_i \in \mathbb{N}$: Volumen vom Gegenstand i
- ullet Rucksack mit dem Volumen $V\in\mathbb{N}$

Gesucht:

Eine Rucksackfüllung mit maximalen Gesamtwert, wobei das Volumen V nicht überschritten werden darf.

$$max\Big\{\sum_{i=1}^n w_i t_i \mid \sum_{i=1}^n v_i t_i \leq V, \forall i: t_i \in \{0,1\}\Big\}$$

3

Mathematische Beschreibung

Ganzzahliges Lineares Optimierungsproblem

Mathematische Beschreibung

Ganzzahliges Lineares Optimierungsproblem NP-Vollständig

Lösungsansätze

- 1. Brute Force
- 2. Greedy
- 3. Dynamische Programmierung

Figure 2: Probiere alle Teilmengen!

Optimale globale Lösung wird gefunden.

Optimale globale Lösung wird gefunden.

Exponentielle Laufzeit $O(2^n)$

Greedy Algorithmus

Strategien:

1. Absteigende Sortierung nach Wert

Packe solange Gegenstände in den Rucksack, bis kein Gegenstand mehr rein passt!

Strategien:

- 1. Absteigende Sortierung nach Wert
- 2. Aufsteigende Sortierung nach Volumen

Packe solange Gegenstände in den Rucksack, bis kein Gegenstand mehr rein passt!

Strategien:

- 1. Absteigende Sortierung nach Wert
- 2. Aufsteigende Sortierung nach Volumen
- 3. Absteigende Sortierung nach Wertdichte $d_i = rac{w_i}{v_i}$

Packe solange Gegenstände in den Rucksack, bis kein Gegenstand mehr rein passt!

Optimale globale Lösung wird NICHT gefunden.

Optimale lokale Lösung wird gefunden.

Optimale globale Lösung wird **NICHT** gefunden.

Optimale lokale Lösung wird gefunden.

Laufzeit $O(n \cdot \log n)$

1. Teile das Problem in gleichartige Teilprobleme!

- 1. Teile das Problem in gleichartige Teilprobleme!
- 2. Speichere die Resultate der Teilprobleme systematisch, um wiederholte Berechnungen zu vermeiden!

- 1. Teile das Problem in gleichartige Teilprobleme!
- 2. Speichere die Resultate der Teilprobleme systematisch, um wiederholte Berechnungen zu vermeiden!
- 3. Setze die optimale Lösung aus den optimalen Lösungen der Teilprobleme zusammen!

Idee:

 Löse das Problem für eine Menge von Gegenständen mit einem Gegenstand und einem Rücksack mit Volumen eins. Speichere das Ergebnis in einer Tabelle.

Idee:

- Löse das Problem für eine Menge von Gegenständen mit einem Gegenstand und einem Rücksack mit Volumen eins. Speichere das Ergebnis in einer Tabelle.
- 2. Wiederhole das für verschiedene Rucksäcke mit volumen 2, ..., V und benutze dabei die vorherige Ergebnisse.

Idee:

- Löse das Problem für eine Menge von Gegenständen mit einem Gegenstand und einem Rücksack mit Volumen eins. Speichere das Ergebnis in einer Tabelle.
- 2. Wiederhole das für verschiedene Rucksäcke mit volumen 2, ..., V und benutze dabei die vorherige Ergebnisse.
- 3. Wiederhole die vorherigen Schritte für Mengen mit zwei, drei, ..., n Gegenständen.

```
for i := 1; i <= numItems; i++ {</pre>
        for j := 1; j <= capacity; j++ {</pre>
2
           if is[i-1].volume <= j {</pre>
3
             valueOne := float64(matrix[i-1][j])
4
             valueTwo := float64(is[i-1].worth + matrix[i-1][j-
      is[i-1].volume])
             matrix[i][j] = int(math.Max(valueOne, valueTwo))
6
           } else {
7
             matrix[i][j] = matrix[i-1][j]
8
9
10
12
```

Beispiel:

Rucksack mit Volumen 5.

Gegenstände:

- 1. $v_1 = 3, w_1 = 5$
- 2. $v_2 = 2, w_2 = 3$
- 3. $v_3 = 1, w_3 = 4$

Fülle die Tabelle!

V: I:	1	2	3	4	5
1 (3, 5)	0	0	5	5	5
2 (2, 3)	0	3	5	5	8
3 (1, 4)	4	4	7	9	9

- Fange unten Rechts an.
- Vergleiche den Wert mit dem Wert in der Zelle drüber.
 - 1. Die Werte sind gleich \Rightarrow Der Gegenstand ist nicht genommen.
 - Die Werte sind nicht gleich ⇒ Der Gegenstand genommen. So gehe eine Zeile hoch und um Volumen vom Gegenstand nach links.
- Wiederhole bis der Zeiger aus der Tabelle raus geht.

V: I:	1	2	3	4	5
1 (3, 5)	0	0	5	(5)	5
2 (2, 3)	0	3	5	5	8
3 (1, 4)	4	4	7	9	9

Optimale globale Lösung wird gefunden.

Optimale globale Lösung wird gefunden.

Exponentielle Laufzeit O(n.V)

Optimale globale Lösung wird gefunden.

Exponentielle Laufzeit O(n.V)

Ist NP=P bewisen?

