Folha Prática 5

Para revisão...

Qualquer AFD que reconheça $L = \{x \mid x \in \{a,b\}^*, |x| \neq 2 \text{ e } |x| \neq 0\}$ tem de separar as palavras de comprimento 0, 1, 2 e maior do que 2. O AFD mínimo para L tem quatro estados:

Os dois AFDs representados abaixo aceitam L mas não são mínimos (subdividem alguns dos grupos referidos e ficam com mais estados do que os necessários).

Estamos a usar a notação C_s para denotar o conjunto das palavras de Σ^* que levam o AFD do estado inicial ao estado s, sendo totalmente consumidas. As palavras de C_s são indistinguíveis (isto é, são equivalentes) para o autómato.

Palavras indistinguíveis para um dado AFD A

Seja $A=(S,\Sigma,\delta,s_0,F)$ um AFD e sejam x e y duas palavras de Σ^\star que levam o AFD A do estado inicial s_0 a um mesmo estado s. A partir do estado s, o AFD A não conseguirá distinguir xz de yz, qualquer que seja $z\in\Sigma^\star$.

$$\xrightarrow{g_0} \xrightarrow{y} \xrightarrow{s} \xrightarrow{z}$$

Para formalizar esta propriedade, definimos a função $\hat{\delta}$ por $\hat{\delta}(s,\varepsilon)=s$ e $\hat{\delta}(s,aw)=\hat{\delta}(\delta(s,a),w)$, para todo $s\in S,\,a\in\Sigma$ e $w\in\Sigma^\star$, para indicar o estado em o AFD fica se consumir uma certa palavra a partir de um certo estado (em particular, $\hat{\delta}(s,aw)$ designa o estado em que o AFD A fica se consumir a palavra aw a partir do estado s).

Podemos mostrar que $\hat{\delta}$ satisfaz: $\hat{\delta}(s, wv) = \hat{\delta}(\hat{\delta}(s, w), v)$, para todo $w, v \in \Sigma^*$ e $s \in S$.

Assim, a propriedade que enunciámos acima corresponde a

se
$$\hat{\delta}(s_0,x)=\hat{\delta}(s_0,y)$$
 então $\hat{\delta}(s_0,xz)=\hat{\delta}(s_0,yz)$, para todo $z\in\Sigma^\star$,

e diz-nos que se as palavras x e y levam o AFD A do estado inicial ao mesmo estado então, qualquer que seja $z \in \Sigma^*$, as palavras xz e yz levam o AFD A de s_0 a um mesmo estado. Portanto, ou xz e yz são ambas aceites pelo AFD A ou xz e yz são ambas rejeitadas pelo AFD A. Isto é, sendo L a linguagem que o AFD A reconhece, tem-se:

se
$$\hat{\delta}(s_0, x) = \hat{\delta}(s_0, y)$$
 então $\forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L)$.

Palavras que todos os AFDs que aceitam L distinguem

O AFD mínimo que reconhece uma dada linguagem regular L satisfaz uma propriedade mais forte: distingue somente palavras que todos os AFDs que aceitam L são obrigados a distinguir. Para o AFD mínimo tem-se a condição seguinte:

$$\hat{\delta}(s_0,x) = \hat{\delta}(s_0,y) \text{ se e s\'o se } \forall z \in \Sigma^\star \ (xz \in L \Leftrightarrow yz \in L).$$

o que quer dizer que $\hat{\delta}(s_0, x) \neq \hat{\delta}(s_0, y)$ só se existir $z \in \Sigma^*$ tal que $xz \in L \land yz \notin L$ ou $xz \notin L \land yz \in L$.

Tal condição define a relação de equivalência R_L que carateriza os estados do AFD mínimo que reconhece L.

Corolário do teorema de Myhill-Nerode

O teorema de Myhill-Nerode diz que L é uma linguagem regular se e só se o conjunto das classes de equivalência da relação R_L é **finito**, sendo R_L dada por $R_L = \{(x,y) \mid x,y \in \Sigma^* \text{ e } \forall z \in \Sigma^* (xz \in L \Leftrightarrow yz \in L)\}.$

Da prova do teorema obtém-se a caraterização do AFD mínimo para L (que é único a menos das designações dos estados).

Corolário do teorema de Myhill-Nerode:

Se L é uma linguagem regular, então o AFD mínimo que reconhece L é dado por $\mathcal{A}=(\Sigma^\star/R_L,\Sigma,\delta,[\varepsilon],F)$, com $F=\{[x]\mid x\in L\}$, e $\delta([x],a)=[xa]$, para todo $[x]\in \Sigma^\star/R_L$ e todo $a\in \Sigma$.

O conjunto das classes de equivalência da relação R_L é denotado por Σ^\star/R_L (isto é, $\frac{\Sigma^\star}{R_L}$). Usámos a notação [x], para designar a classe de equivalência de x segundo R_L . Por definição de classe de equivalência, $[x] = \{y \mid y \in \Sigma^\star \text{ e } (x,y) \in R_L\}$, isto é, [x] é o conjunto das palavras que são equivalentes a x segundo R_L . Qualquer elemento de uma classe pode ser usado como seu representante nas operações que precisarmos de efetuar.

Em particular, importa salientar que:

- O valor de $\delta([x], a)$ não depende do representante que usamos para designar a classe, o que é importante para que δ seja uma função de transição de $(\Sigma^*/R_L) \times \Sigma$ em Σ^*/R_L . Se [x] = [y] então [xa] = [ya], para todo $a \in \Sigma$. Portanto, se y fosse usado como representante de [x], o valor de $\delta([y], a)$ seria igual a $\delta([x], a)$.
- No AFD mínimo, o estado inicial é $[\varepsilon]$ e tem-se $\hat{\delta}([\varepsilon], x) = [x]$, para todo $x \in \Sigma^*$. Assim, vemos que $\hat{\delta}([\varepsilon], x) = \hat{\delta}([\varepsilon], y)$ se e só se [x] = [y]. Portanto, o AFD mínimo distingue x e y se e só se $(x, y) \notin R_L$. Ou seja, como notámos acima, o AFD mínimo não distingue x e y se $xz \in L \Leftrightarrow yz \in L$, para todo $z \in \Sigma^*$.

Estamos a supor que nos é dada uma descrição de L e de Σ . Assim, dados x e y em Σ^* :

- para concluirmos que $(x,y) \notin R_L$, temos que descobrir $z \in \Sigma^*$ tal que $xz \in L \land yz \notin L$ ou $xz \notin L \land yz \in L$;
- se concluirmos que não pode existir z nessas condições, então $(x,y) \in R_L$. A justificação da não existência desse z obriga-nos a descobrir qual a condição mais geral sobre z para que $xz \in L$, a fazer o mesmo para $yz \in L$, e a verificar que as condições são iguais (ver exemplo a seguir). Notar que, se $xz \notin L$, para todo $z \in \Sigma^*$, a condição referida para x seria $z \in \{\}$, como no exemplo.

Exemplo de aplicação do corolário do teorema de Myhill-Nerode para obter o AFD mínimo

Seja $L = \{x \mid x \text{ começa por 0}\}$, com $\Sigma = \{0, 1, 2\}$. Não é díficil convencermo-nos de que qualquer AFD que aceite L tem pelo menos três estados, sendo o AFD mínimo o seguinte:

Se a palavra dada for ε , o autómato permanece no estado s_0 . Como $\varepsilon \notin L$, o estado s_0 não é final. Nenhuma outra palavra leva este AFD de s_0 a s_0 , o que é lógico, pois a análise do primeiro símbolo da palavra permite-nos decidir se a palavra é ou não é da linguagem L: se começar por 1 ou 2 terá de ser rejeitada, independentemente dos restantes símbolos que tiver (é o que s_2 faz); se começar por 0 será aceite, independentemente dos restantes símbolos que tiver (é o que faz s_1). À semelhança deste AFD, qualquer outro AFD que reconheça L deve distinguir as palavras ε , 0, e 1. Logo, o autómato representado é o AFD mínimo para L. Esta distinção corresponde à não equivalência das palavras ε , 0, e 1 segundo a relação R_L (o que implica que $[\varepsilon]$, [0] e [1] sejam classes distintas).

A relação R_L ajuda-nos a sistematizar e justificar a necessidade de criar cada um dos estados do AFD (classes de R_L).

Partindo do estado inicial $[\varepsilon]$ e, usando o corolário do Teorema de Myhill-Nerode, construimos o AFD mínimo para L assim:

- $[\varepsilon]$ é o estado inicial; $[\varepsilon]$ não pertencerá ao conjunto de estados finais F pois $\varepsilon \notin L$.
- $\delta([\varepsilon], 0) \stackrel{\text{def}}{=} [\varepsilon 0] = [0] \neq [\varepsilon]$, pois $(0, \varepsilon) \notin R_L$, porque $0 \in L$ e $\varepsilon \notin L$. Notar que para ver que $(0, \varepsilon) \notin R_L$, tomamos $z = \varepsilon$ para ter $0z \in L$ e $\varepsilon z \notin L$, pois nada falta a 0 para ser de L. Consequentemente, [0] será um novo estado de A e, como $0 \in L$, teremos $[0] \in F$.
- $\delta([\varepsilon], 1) \stackrel{\text{def}}{=} [\varepsilon 1] = [1]$. Concluimos que [1] é um novo estado e não será final porque $1 \notin L$ e:
 - $[1] \neq [0]$ pois, como $1 \notin L$ e $0 \in L$, temos $(1,0) \notin R_L$. Bastaria escolher $z = \varepsilon$.
 - $[1] \neq [\varepsilon]$ pois, embora $1 \notin L$ e $\varepsilon \notin L$, sabemos que $1z \notin L$, para todo $z \in \Sigma^*$, o que não é verdade para ε . De facto, por exemplo, para z = 0, temos $\varepsilon z = \varepsilon 0 = 0 \in L$ e $1z = 10 \notin L$.
- $\delta([\varepsilon], 2) \stackrel{\text{def}}{=} [2] = [1]$, porque se tem $2z \notin L$, para todo $z \in \Sigma^*$, à semelhança de 1. As palavras que comecem por 1 ou 2 são rejeitadas independentemente dos símbolos seguintes.

- $\delta([0], 0) \stackrel{\text{def}}{=} [00] = [0]$, porque $00z \in L$, para todo $z \in \Sigma^*$, à semelhança de 0. As palavras que comecem por 0 são aceites independentemente dos símbolos seguintes.
 - $\delta([0],1) \stackrel{\text{def}}{=} [01] = [0], \text{ porque } 01z \in L, \text{ para todo } z \in \Sigma^{\star}.$ $\delta([0],2) \stackrel{\text{def}}{=} [02] = [0], \text{ porque } 02z \in L, \text{ para todo } z \in \Sigma^{\star}.$
- $\delta([1],0) = \delta([1],1) = \delta([1],2) = [1]$, porque [10] = [11] = [12] = [1]. Isso resulta de $1z \notin L$, $10z \notin L$, $11z \notin L$, $12z \notin L$, para todo $z \in \Sigma^*$.

Em suma, o AFD mínimo que reconhece $L = \{x \mid x \text{ começa por } 0\}$, de alfabeto $\Sigma = \{0, 1, 2\}$, é

$$\mathcal{A} = (\{ [\varepsilon], [0], [1] \}, \Sigma, \delta, [\varepsilon], \{ [1] \})$$

para δ indicada acima, e o diagrama de transição de \mathcal{A} é:

A menos da designação que escolhemos para os estados, o AFD mínimo é único. Nesse sentido, o AFD que obtivemos, não difere do que tinhamos anteriormente definido.

Observação: Se descartarmos o estado [1], não teriamos um AFD, de acordo com a definição dada. De facto, tal definição obriga os AFDs a serem *completos* (para cada estado $s \in S$, há exatamente uma transição por cada símbolo $a \in \Sigma$; qualquer palavra de Σ^* pode ser processada pelo AFD até ao fim).

Algoritmo de Moore para minimização de um AFD dado

Dado um AFD $A=(S,\Sigma,\delta,s_0,F)$, podemos aplicar o algoritmo de Moore para decidir se A é ou não o AFD mínimo que reconhece $\mathcal{L}(A)$ e, simultaneamente, para obter o AFD mínimo que reconhece $\mathcal{L}(A)$, se A não for mínimo. Para isso, **irá identificar estados equivalentes em** A: dois estados s e s' são equivalentes, i.e., *indistinguíveis para* $R_{\mathcal{L}(A)}$, sse **não** existir uma palavra $z \in \Sigma^*$ tal que se consumir z a partir de s chega a estado final e se consumir s a partir de s' não chega a estado final, ou vice-versa. Na descrição do algoritmo, s denota a relação de equivalência entre estados.

Algoritmo de Moore:

Começamos por retirar de S os estados não acessíveis de s_0 . Seja $S' = \{s_0, s_1, \ldots, s_m\}$ o conjunto dos restantes. Como a relação \equiv é simétrica, vamos considerar apenas os pares (s_i, s_j) , para $0 \le i \le j \le m$. Para visualização, construimos uma tabela, onde os símbolos \equiv , X e ? denotam \equiv , \neq e decisão pendente. Na aplicação do algoritmo, cada par pode ter uma lista de pares pendentes associada (a qual ficará na sua entrada na tabela). Inicialmente, essas listas são vazias. Aplicar o procedimento seguinte:

- Assinalar com \equiv todas as entradas (s_i, s_i) , para todo i.
- Para todo (s_i, s_j) , com $s_i \in F \land s_j \notin F$ ou $s_i \notin F \land s_j \in F$, assinalar $s_i \not\equiv s_j$, colocando $x \in (s_i, s_j)$.
- Para $1 \le j \le m$ e $0 \le i < j$, se (s_i, s_j) não contém X, averiguar se já é conhecido que $\delta(s_i, a) \not\equiv \delta(s_j, a)$, para algum $a \in \Sigma$ (para isso, ver se existe X na entrada do par $(\delta(s_i, a), \delta(s_j, a))$.
 - Se, para algum a ∈ Σ, já for conhecido que δ(s_i, a) ≠ δ(s_j, a), registar s_i ≠ s_j, assinalando (s_i, s_j) com X, e propagar a informação a todos os pares que estiverem na lista de pendentes de (s_i, s_j).
 Propagar significa assinalar com X cada um dos pares nessa lista e, recursivamente, propagar aos pares que estiverem nas listas de pendentes desses.
 - Se já se sabe que $\delta(s_i, a) \equiv \delta(s_j, a)$, para todo $a \in \Sigma$, isto é, todos já estão marcados com \equiv na tabela, então registar $s_i \equiv s_j$, assinalando a entrada (s_i, s_j) com \equiv .
 - Nas restantes situações, (s_i, s_j) aguardará as decisões para $(\delta(s_i, a), \delta(s_j, a))$, com $a \in \Sigma$: para todos os pares $(\delta(s_i, a), \delta(s_j, a))$ sem marcação \equiv , acrescentar (s_i, s_j) à lista de pendentes de $(\delta(s_i, a), \delta(s_j, a))$ e assinalar a entrada (s_i, s_j) com o símbolo ? (fica pendente).
- Quando todos os pares estiverem analisados, substituir ? por \equiv nas entradas que se mantiverem pendentes (cada entrada que não tem X, corresponde a um par de estados equivalentes).
- O conjunto de estados do AFD mínimo A' equivalente ao AFD A corresponde ao conjunto de classes de equivalência de \equiv (restrita a $S' = \{s_0, s_1, \ldots, s_m\} \subseteq S$). Se [s] denotar a classe do estado s, então a função de transição δ' é dada por $\delta'([s], a) = [\delta(s, a)]$, para todo $a \in \Sigma$. O estado inicial de A' é $[s_0]$ e o conjunto de estados finais é $F' = \{[s] \mid s \in F \cap S'\}$.

Ideia que suporta o algoritmo:

Para cada par de estados (s,s'), ambos acessíveis de s_0 , o algoritmo vai determinar se existe uma palavra $z \in \Sigma^\star$ que obrigue a manter s e s'. Se existir z tal que $\hat{\delta}(s,z) \in F$ e $\hat{\delta}(s',z) \notin F$ ou existir z tal que $\hat{\delta}(s,z) \notin F$ e $\hat{\delta}(s',z) \notin F$, então s e s' não são equivalentes. Se não existir s nessas condições, então s e s' são equivalentes (podiamos uni-los num único estado).

Os esquemas seguintes ilustram a situação.

Se $\hat{\delta}(s,z) \in F$ e $\hat{\delta}(s',z) \notin F$ então se x levar o AFD de s_0 a s e y levar o AFD de s_0 a s', tem-se $xz \in \mathcal{L}(A)$ e $yz \notin \mathcal{L}(A)$. Portanto, não se podia unir s e s' num estado só (esquema representado à esquerda). O caso $\hat{\delta}(s,z) \notin F$ e $\hat{\delta}(s',z) \in F$, representado à direita, é similar.

Exemplo:

Por aplicação do algoritmo de Moore, vamos averiguar se o AFD representado é mínimo.

A tabela inicial encontra-se acima à direita. Para os restantes pares, tem-se:

Se seguirmos o algoritmo passo a passo, a decisão (s_1, s_3) fica pendente até ao fim, pois não há informação global sobre o número de pares que podem decidir a não equivalência de (s_1, s_3) . Apenas no passo final se troca? por \equiv .

As classes de eqivalência de \equiv são:

A tabela final corresponde à (parte triangular inferior da) matriz da relação \equiv , se substituirmos \equiv por 1 e \times por 0.

Exercícios

- **1.** Sejam $L_1 = \mathcal{L}(0 + (11)^*)$ e $L_2 = \mathcal{L}((0+1)^*101)$ linguagens de alfabeto $\Sigma = \{0, 1\}$.
- a) Defina informalmente L_1 e L_2 .
- **b**) Sem aplicar explicitamente o corolário do teorema de Myhill-Nerode, apresente AFDs que reconheçam L_1 e L_2 . Justifique a necessidade de cada estado que indicar.
- c) Por aplicação do corolário do teorema de Myhill-Nerode, determine o AFD mínimo que reconhece L_1 e o AFD mínimo que reconhece L_2 .
- **2.** Para cada questão determine a resposta correta e justifique. #S denota o cardinal de S, i.e., |S|.
 - 1. Seja $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ o AFD mínimo para $\mathcal{L}(\mathcal{A}) = \{aa\}\Sigma^*, \text{ com } a \in \Sigma \text{ fixo e } \Sigma \setminus \{a\} \neq \emptyset.$
 - (a) #S = 3, qualquer que seja Σ .
 - (b) #S = 4, qualquer que seja Σ .
 - (c) $\#S \ge 1$ e nada mais se pode dizer sem conhecer Σ .
 - 2. Seja $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ o AFD mínimo para $\mathcal{L}(\mathcal{A}) = \Sigma^*\{aa\}$, com $a \in \Sigma$ fixo.
 - (a) #S = 3, qualquer que seja Σ .
 - (b) #S = 4, qualquer que seja Σ .
 - (c) $\#S \ge 1$ e nada mais se pode dizer sem conhecer Σ .
- **3.** Justifique a veracidade ou falsidade de cada uma das afirmações seguintes.
- a) Para todo o alfabeto Σ , o AFD mínimo que reconhece a linguagem \emptyset de Σ^{\star} não tem estados finais.
- **b)** Existe uma linguagem L de alfabeto $\Sigma = \{a,b\}$ tal que o AFD mínimo que reconhece L não tem transições por b em nenhum estado.
- **4.** Usando o corolário do teorema de Myhill-Nerode, que define o AFD mínimo para L e para \overline{L} , demonstre que, qualquer que seja a linguagem regular L de alfabeto Σ , o AFD mínimo para L e para \overline{L} tem exatamente o mesmo conjunto de estados e a mesma função de transição, diferindo apenas no conjunto de estados finais: se $\mathcal{A}=(S,\Sigma,\delta,s_0,F)$ é o AFD mínimo que reconhece L então $\mathcal{A}'=(S,\Sigma,\delta,s_0,F)$ é o AFD mínimo que reconhece a linguagem complementar de L.
- **5.** Por aplicação do algoritmo de Moore, determine o AFD mínimo que reconhece $\mathcal{L}(A)$ para

$$A = (\{q_0, q_1, q_2, q_3, q_4\}, \Sigma, \delta, q_0, \{q_3, q_4\}),$$

$$\begin{array}{l} \text{com } \delta(q_0,0) = q_1, \, \delta(q_0,1) = q_2, \, \delta(q_1,0) = \delta(q_1,1) = q_1, \, \delta(q_2,1) = q_4, \, \delta(q_2,0) = q_3, \, \delta(q_3,0) = q_1, \\ \delta(q_4,0) = q_1, \, \delta(q_4,1) = q_2, \, \text{e} \, \delta(q_3,1) = q_2, \, \text{de alfabeto} \, \Sigma = \{0,1\}. \end{array}$$

- **6.** Por aplicação do método de Thompson, do método de conversão de um AFND- ε para AFD e do algoritmo de Moore, determine o AFD mínimo que reconhece a linguagem definida pela expressão regular, sobre $\Sigma = \{0, 1\}$, indicada em cada alínea.
- a) ((10) + (11))
- c) $((1((10)^*))^*)$
- **b)** $(((10) + (11))^*)$
- **d**) $((((1^*) + (10)) + (11))^*)$

- **7.** Seja L a linguagem das palavras de alfabeto $\{0,1\}$ que terminam em 010 ou em 101. Determine o AFD mínimo que reconhece L, aplicando o método descrito em cada alínea.
- **a**) Construa um AFND que reconheça *L*, tirando partido do não determinismo. Justifique sucintamente que está correto e, a seguir, converta-o para um AFD por aplicação do algoritmo de conversão. Finalmente, minimize tal AFD por aplicação do algoritmo de Moore.
- **b**) Use a descrição de L e aplique o corolário do teorema de Myhill-Nerode para construir o AFD mínimo.
- c) Partindo da descrição de L, construa um AFD que reconheça L tendo cuidado de justificar a necessidade de cada estado (e o que memoriza sobre a palavra consumida do estado inicial até esse estado). Essa justificação deverá constituir uma prova de correção do AFD (sucinta mas clara) bem como de ser mínimo.