Task 1 - Orthogonal vectors

Which of the following vectors is orthogonal to $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$?

$$\Box \left(\begin{array}{c} -1 \\ 0 \end{array} \right)$$

$$\boxtimes \left(\begin{array}{c} -1\\ \frac{1}{2} \end{array}\right)$$

$$\Box \left(\begin{array}{c} -1 \\ 2 \end{array} \right)$$

Task 2 - Matrix multiplication

$$\left(\begin{array}{c} 2 \\ 1 \end{array}\right) \cdot \left(\begin{array}{cc} 0 & 3 \end{array}\right) =$$

 \square 3

$$\Box \left(\begin{array}{c} 0\\3 \end{array}\right)$$

$$\boxtimes \left(\begin{array}{cc} 0 & 6 \\ 0 & 3 \end{array} \right)$$

Task 3 - Inverse Matrices

Let $A \in \mathbb{R}^{d \times d}$ be a symmetric, invertible matrix and $\mathbf{v}, \mathbf{w} \in \mathbb{R}^d$ vectors. Which of the following statements is always true?

$$\boxtimes (A\mathbf{v})^T\mathbf{w} = \mathbf{v}^T(A\mathbf{w})$$

$$\Box (A\mathbf{v})^T (A\mathbf{w}) = \mathbf{v}^T \mathbf{w}$$

$$\Box (A\mathbf{v})^T \mathbf{w} = \mathbf{v}^T (A^{-1}\mathbf{w})$$

Denn:
$$(A\mathbf{v})^T\mathbf{w} = \mathbf{v}^T A^T\mathbf{w} = \mathbf{v}^T A\mathbf{w}$$

Task 4 - Scalar product and rotation

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and let $U \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, i.e. $UU^T = U^TU = I$. Show: The multiplication with U is invariant with respect to the scalar product, i.e. :

$$(U\mathbf{x})^T U\mathbf{y} = \mathbf{x}^T \mathbf{y}.$$

Task 5 - Matrix algebra and eigenvectors

Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix. A has rank n, and $m \neq n$. We define $B := A^T A$ und $C := AA^T$.

- 1. What are the dimensions of B and C?
- 2. Is m > n or m < n?
- 3. Is C invertible?
- 4. Is B symmetric?
- 5. Let $\mathbf{x} \in \mathbb{R}^n$ be an arbitrary vector. Show: $\mathbf{x}^T B \mathbf{x} \geq 0$
- 6. Let $\mathbf{v} \in \mathbb{R}^n$, $\|\mathbf{v}\| = 1$ be an eigenvector of B with eigenvalue λ , that is $B\mathbf{v} = \lambda \mathbf{v}$. Find an expression for $\mathbf{v}^T B \mathbf{v}$ that depends only on λ .

1

7. Combine (5) and (6). What do we know about the sign of λ ?

Solutions

Task 1 - Scalar product and rotation

$$(U\mathbf{x})^T U\mathbf{y} = \mathbf{x}^T U^T U\mathbf{y} = \mathbf{x}^T I\mathbf{y} = \mathbf{x}^T \mathbf{y}$$

Task 2 - Matrix algebra and eigenvectors

- 1. $B: n \times n, C: m \times m$
- 2. m > n. This is because if m < n, the rank of A could be maximum m. But we know the rank of A is n.
- 3. No, C has dimensionality $m \times m$, but (at most)¹ rank n.
- 4. Yes:

$$B^{T} = (A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A = B$$

5. We have:

$$\mathbf{x}^T B \mathbf{x} = \mathbf{x}^T A^T A \mathbf{x} = (A \mathbf{x})^T (A \mathbf{x}) = ||A \mathbf{x}||^2 \ge 0$$

6. We know from the task description that $B\mathbf{v} = \lambda \mathbf{v}$. It follows:

$$\mathbf{v}^T B \mathbf{v} = \mathbf{v}^T \lambda \mathbf{v} = \lambda \mathbf{v}^T \mathbf{v} = \lambda \|\mathbf{v}\|^2 = \lambda$$

7. We know that $\lambda \geq 0$:

$$0 \stackrel{(5)}{\leq} \mathbf{v}^T B \mathbf{v} \stackrel{(6)}{=} \lambda$$

 $^{^1}$ It can be proven that C has rank n