Lab 3. Logistic Regression

Intro to Machine Learning Fall 2018, Innopolis University

Lecture recap

- Extension of linear regressions
 - Interaction
 - Polynomial
- Classification
- Logistic Regression
- Confusion Metric

Questions about the lecture

Was the material already familiar to you?

What new things have you learned?

What was hard to understand?

Binary classification

$$y \in \{0, 1\}$$

We will estimate the probability for the class 1

Logistic Regression

$$\hat{p}(x) = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$$

$$\hat{y} = \begin{cases} 1 & \hat{p}(x) > threshold \\ 0 & othwrwise \end{cases}$$

Cost Function

$$L(\hat{p}(x_i), y_i) = \begin{cases} -\log(\hat{p}(x_i)), & y_i = 1\\ -\log(1 - \hat{p}(x_i)), & y_i = 0 \end{cases}$$

$$L(\hat{p}(x_i), y_i) = -y_i \log(\hat{p}(x_i)) - (1 - y)_i \log(1 - \hat{p}(x_i))$$

Find derivations

 $\sigma(z) = \frac{e^z}{1+e^z}$

Find

 $\frac{\partial \sigma(z)}{\partial z} = \sigma(z)(1 - \sigma(z))$

 $L(\hat{p}(x_i), y_i) = -y_i \log(\hat{p}(x_i)) - (1 - y)_i \log(1 - \hat{p}(x_i))$

 $e^{\beta_0+\beta_1x}$

Gradient Descent

$$\begin{array}{rcl} \frac{\partial L}{\partial \beta_0} & = & \sigma(z) - y \\ \frac{\partial L}{\partial \beta_1} & = & x(\sigma(z) - y) \end{array}$$

How to use partial derivatives in a gradient descent?

Gradient Descent

$$\begin{array}{rcl} \frac{\partial L}{\partial \beta_0} & = & \sigma(z) - y \\ \frac{\partial L}{\partial \beta_1} & = & x(\sigma(z) - y) \end{array}$$

How to use partial derivatives in a gradient descent?

$$\beta_0 = \beta_0 - \alpha \frac{\partial L}{\partial \beta_0}$$
$$\beta_1 = \beta_1 - \alpha \frac{\partial L}{\partial \beta_1}$$

Feature Scaling and GD

Without feature scaling

https://www.kaggle.com/jannesklaas/ai-bootcamp-9-feature-data-prep

Feature Scaling

$$-1 \le x_1 \le 1 \qquad OK$$

$$0 \le x_2 \le 1 \qquad OK$$

$$0 \le x_2 \le 1$$
 OK
 $0 \le x_3 \le 3$ OK
 $-1000 \le x_4 \le 1000$ X
 $-0.001 \le x_5 \le 0.001$ X

Feature Scaling

Get every feature into approximately a $-1 \le x \le 1$ range

$$x' = \frac{x - mean}{max - min}$$

Or

$$x' = \frac{x - \mu}{\sigma}$$

Confusion Matrix

https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/

Confusion Matrix

http://wiki.fast.ai/index.php/Lesson_2_Notes

Confusion Matrix

https://www.researchgate.net/figure/Normalized-confusion-matrix-of-best-performing-models-on-devel-subset-a-SVM fig2 324226324

Recall and Precision

$$\hat{y} = \begin{cases} 1 & \hat{p}(x) > threshold \\ 0 & othwrwise \end{cases}$$
True positives

$$Precision = \frac{1}{True\ positives + False\ positives}$$

$$Recall = \frac{True\ positives}{True\ positives + False\ negatives}$$

Classification Threshold

Changing the threshold we are getting

different recall and precision.

How to show the model quality

without a free parameter?

Changing the threshold we are getting different recall and precision.

How to show the model quality

without a free parameter?

https://qiita.com/bmj0114/items/460424c110a8ce22d945

What are the properties of the curve?

How to select a threshold?

Which model is better?

https://stats.stackexchange.com/questions/264477/will-roc-curve-for-a-model-always-be-symmetric-if-we-have-enough-training-data

Exercise

- 1. Download iris dataset (from the first lab or import form sklearn datasets)
- 2. Select one feature and two out of three classes
- 3. Split data to the train and test parts
- 4. Try your GD for logistic regression on this data
- 5. Measure accuracy for selected threshold

Sklearn Logistic Regression

```
from sklearn.model selection import train test split
from sklearn.datasets import load iris
from sklearn.linear model import LogisticRegression
from sklearn.metrics import accuracy score
iris = load iris()
X = iris.data
y = iris.target
X train, X test, y train, y test = train test split(X, y, test size=0.2)
model = LogisticRegression()
model.fit(X train, y train)
y pred = model.predict(X test)
accuracy = accuracy score(y pred, y test)
print(accuracy)
```

HW Task 1

Finalize GD for a logistic regression

HW Task 2

- Download the Kickstarter projects dataset https://www.kaggle.com/kemical/kickstarter-projects
- 2. Select a columns for a logistic regression. Do the necessary preprocessing
- 3. Split data to the test and train parts
- 4. Remove all cancelled projects
- 5. Predict the probability of the success by the sklearn Logistic regression
- 6. Calculate the recall and precision for your model
- 7. Train the logistic regression for all data, including cancelled projects as well
- 8. Calculate the recall and precision for the new model

That's it for today! Questions?