Mikrokontroler AVR ATmega32 - wykład 9

Adam Szmigielski aszmigie@pjwstk.edu.pl

Cechy μC ATmega32

- 1. Architektura RISC 131 instrukcji procesora (wykonywanych w jednym cyklu zegara), 32 × 8-bitowych rejestrów ogólnego przeznaczenia,
- 2. Nieulotna pamięć programu i danych 32kB pamięci programu, ISP, z opcją Bootloadera, 1024 bajty pamięci danych EEPROM, 2kB wewnętrznej pamięci SRAM,
- 3. Peryferia 8-bitowe i 16-bitowy timery/liczniki z opcją preskalera, cztery kanały PWM, $8 \times 10 bitowych$ przetworników ADC, interface Two-wire, programowalny Serial USART, interface Master/Slave SPI, programowalny Watchdog, komparator analogowy,
- 4. Inne cechy wewnętrzny generator RC, wewnętrzne i zewnętrzne źródła przerwań, układy oszczędności energii, zasilanie 4.5-5.5V, częstotliwość pracy zegara do 16MHz.

Wyprowadzenia μC AVR ATmega32

- VCC Zasilanie układu,
- GND Masa,
- Port A $(PA_7 \dots PA_0)$ Wejścia przetworników AC,
- **Port B** $(PB_7 ... PB_0)$ Dwukierunkowe porty I/O z wewnętrznymi rezystorami podciągającymi,
- **Port C** $(PC_7 ... PC_0)$ Dwukierunkowe porty I/O z wewnętrznymi rezystorami podciągającymi,
- **Port D** $(PD_7 ... PD_0)$ Dwukierunkowe porty I/O z wewnętrznymi rezystorami podciągającymi,
- \overline{RESET} wejście przerwania RESET,
- XTAL1, XTAL2 wejścia zewnętrznego generatora (zegara),
- AREF wejście zewnętrznego napięcia odniesienia przetwornika AC,

General Purpose Working Registers

Dostępne rejestry μC AVR ATmega32

- **Status Register** rejestr flag monitorujący stan operacji ALU (znaczenia bitów w dokumentacji),
- Rejestry ogólnego przeznaczenia

R0	7	0	Addr.	
R2 \$02 \$0D R13 \$0D R14 \$0E R15 \$0F R16 \$10 R17 \$11 \$1A X-register Low Byte R26 \$1A X-register High Byte R27 \$1B X-register Low Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R0		\$00	
R13 \$0D R14 \$0E R15 \$0F R16 \$10 R17 \$11 R26 \$1A X-register Low Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R1		\$01	
R13 \$0D R14 \$0E R15 \$0F R16 \$10 R17 \$11 \$1A X-register Low Byte R26 \$1A X-register High Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R2		\$02	
R14 \$0E R15 \$0F R16 \$10 R17 \$11 \$1A X-register Low Byte R26 \$1A X-register High Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte				
R15 \$0F R16 \$10 R17 \$11 R26 \$1A X-register Low Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R13		\$0D	
R16 \$10 R17 \$11 R26 \$1A X-register Low Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R14		\$0E	
R17 \$11 R26 \$1A X-register Low Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R15		\$0F	
R26 \$1A X-register Low Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R16		\$10	
R26 \$1A X-register Low Byte R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R17	,	\$11	
R27 \$1B X-register High Byte R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte				
R28 \$1C Y-register Low Byte R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R26		\$1A	X-register Low Byte
R29 \$1D Y-register High Byte R30 \$1E Z-register Low Byte	R27		\$1B	X-register High Byte
R30 \$1E Z-register Low Byte	R28		\$1C	Y-register Low Byte
, ,	R29		\$1D	Y-register High Byte
R31 \$1F Z-register High Byte	R30		\$1E	Z-register Low Byte
	R31		\$1F	Z-register High Byte

• Wskaźnik stosu (ang. Stack Pointer) - Dwa 8-bitowe rejestry SPH, SPL wskazujący obecne miejsce na stosie (szczyt stosu). Musi być powyżej adresu \$60F w pamięci RAM, jest dekrementowany.

• **Rejestry X, Y i Z** - rejestry ogólnego przeznaczenia, dodatkowo służące do adresowania pośredniego w przestrzeni danych:

• **Rejestry EEARH, EEARL, EEDR i EECR** - rejestry umożliwiające dostęp do pamięci danych EEPROM. Znaczenia rejestrów: EEARH i EEARL - adres, EEDR - wpisywane lub odczytywane dane, EECR - rejestr kontrolny.

Dokładny opis wszystkich rejestrów w dokumentacji.

Pamięć programu μC AVR ATmega32

- 32kB pamięci Flesh do przechowywania programu o organizacji $16k \times 16$. Instrukcje AVR są 16 lub 32 bitowe. Licznik programu (PC) jest 14 bitowy, umożliwia zaadresowanie $2^{14} = 16kB$ komórek pamięci.
- Pamięć programu jest podzielona na dwa obszary *sekcja aplikacji* i *sekcja bootloadera*.

• Pamięć FLESH przewidziana jest na 10.000 cykli zapisu/kasowania.

Pamięć danych SRAM μC AVR ATmega32

 Najmłodsze 2144 komórek pamięci zawiera rejestry ogólnego przeznaczenia (32), rejestry wejścia/wyjścia (64 komórek) oraz wewnętrzną pamięć SRAM

(2048 komórek),

Register File	Data Address Space
R0	\$0000
R1	\$0001
R2	\$0002
R29	\$001D
R30	\$001E
R31	\$001F
I/O Registers	
\$00	\$0020
\$01	\$0021
\$02	\$0022
\$3D	\$005D
\$3E	\$005E
\$3F	\$005F
	Internal SRAM

Internal SRAM \$0060 \$0061 ... \$085E \$085F

- Istnieje pięć różnych trybów adresowania: Bezpośrednie, Pośrednie,
 Pośrednie z przesunięciem, Pośrednie z pre i post inkrementacją.
 Adresowania pośrednie odbywją się z wykorzystaniem rejestrów X,Y i Z,
- Do każdej komórka pamięci SRAM można się odwołać w dowolnym trybie adresowania.

Nieulotna pamięć danych EEPROM μC AVR ATmega32

- μC AVR ATmega32 zawiera 1024 bajty nieulotnej pamięci danych, zorganizowanej w osobnej przestrzeni adresowej.
- W przestrzeni tej mogą być zapisane lub odczytane pojedyncze bajty,
- Pamięć EEPROM data przewidziana jest na 100.000 cykli zapisu/kasowania,
- Dostęp do tej pamięci możliwy jest za pomocą rejestrów EEARH,
 EEARL, EEDR i EECR. Rejestry te pełnią następujące funkcje:
 EEARH i EEARL adres, EEDR wpisywane lub odczytywane dane, EECR rejestr kontrolny,
- Pamięć EEPROM data jest chroniona przed zniszczeniem, które może powodować zbyt niskie napięcie zasilania V_{CC} .

Pamięć urządzeń wejścia/wyjścia μC AVR ATmega32

- Do wszystkich peryferii μC AVR ATmega32 odwołuje się za pomocą rejestrów I/O umieszczonych w tej samej przestrzeni adresowej co *Rejestry ogólnego przeznaczenia* i pamięć SRAM,
- Używając mnemoników IN lub OUT należy używać adresów \$00 \$3F, w przypadku, gdy odwołujemy się do nich używając mnemoników LD i ST należy dodać $\$20_{HEX}$ tj. 32_{10} do ich adresu (gdyż poprzedzają je 32 rejestry ogólnego przeznaczenia).
- Niektóre rejestry I/O, w zależności od pełnionej funkcji w urządzeniach peryferynych, są chronione przed zapisem. Do niektórych rejestrów można się odwołać dopiero po ustawieniu odpowiedniej flagi (patrz dokumentacja).

Źródła sygnału zegara w μC AVR ATmega32

- Wewnętrzny generator nie wymaga żadnych elementów zewnętrznych. Uzyskane nominalne częstotliwości wynoszą 1, 2, 4, lub 8 MHz,
- Zewnętrzny rezonator kwarcowy

Wejścia XTAL1 i XTAL2 są wejściami wzmacniacza wewnętrznego układu. Maksymalna częstotliwość pracy wynosi 16MHz,

• Zewnętrzny generator niskich częstotliwości - Kwarc powinien być dołączony jak w poprzednim przypadku. Dołączane są wewnętrzne pojemności 36pF. Uzyskana częstotliwość wynosi 32,768kHz.

Źródła sygnału zegara w μC AVR ATmega32 cd.

• Zewnętrzny generator RC

Zewnętrzne elementy R i C są wykorzystane do budowy generatora,

• Zegar zewnętrzny

Umożliwia podanie zewnętrznego sygnału zegarowego.

Reset w μC AVR ATmega32

- Power-on Reset μC resetuje się wskutek obniżenia napięcia zasilającego poniżej pewnego progu V_{POT} ,
- External Reset μC resetuje się wskutek podania na pin RESETU niskiego poziomu przez odpowiednio długi czas,
- Watchdog Reset μC resetuje się wskutek przekroczenia okresu oczekiwania przez Watchdoga (Watchdog musi być włączony),
- Brown-out Reset μC resetuje się, gdy napięcie zasilania V_{CC} spadnie poniżej poziomu V_{BOT} (detektor Brown-out musi być włączony),
- $JTAG\ AVR\ Reset$ μC resetuje się, gdy jest logiczna 1 w Reset Register (możliwość wykrycia tylko w ramach systemu JTAG).

System przerwań μC AVR ATmega32

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	INT2	External Interrupt Request 2
5	\$008	TIMER2 COMP	Timer/Counter2 Compare Match
6	\$00A	TIMER2 OVF	Timer/Counter2 Overflow
7	\$00C	TIMER1 CAPT	Timer/Counter1 Capture Event
8	\$00E	TIMER1 COMPA	Timer/Counter1 Compare Match A
9	\$010	TIMER1 COMPB	Timer/Counter1 Compare Match B
10	\$012	TIMER1 OVF	Timer/Counter1 Overflow
11	\$014	TIMER0 COMP	Timer/Counter0 Compare Match
12	\$016	TIMER0 OVF	Timer/Counter0 Overflow
13	\$018	SPI, STC	Serial Transfer Complete
14	\$01A	USART, RXC	USART, Rx Complete
15	\$01C	USART, UDRE	USART Data Register Empty
16	\$01E	USART, TXC	USART, Tx Complete
17	\$020	ADC	ADC Conversion Complete
18	\$022	EE_RDY	EEPROM Ready
19	\$024	ANA_COMP	Analog Comparator
20	\$026	TWI	Two-wire Serial Interface
21	\$028	SPM_RDY	Store Program Memory Ready

Alternatywne funkcje portów μC AVR ATmega32

Port Pin	Alternate Function	Port Pin	Alternate Functions
PA7	ADC7 (ADC input channel 7)	PB7	SCK (SPI Bus Serial Clock)
PA6	ADC6 (ADC input channel 6)	PB6	MISO (SPI Bus Master Input/Slave Output)
PA5	ADC5 (ADC input channel 5)	PB5	MOSI (SPI Bus Master Output/Slave Input)
PA4	ADC4 (ADC input channel 4)	PB4	SS (SPI Slave Select Input)
PA3	ADC3 (ADC input channel 3)	PB3	AIN1 (Analog Comparator Negative Input)
PA2	ADC2 (ADC input channel 2)	1 55	OC0 (Timer/Counter0 Output Compare Match Output)
PA1	ADC1 (ADC input channel 1)	PB2	AIN0 (Analog Comparator Positive Input)
PA0	ADC0 (ADC input channel 0)		INT2 (External Interrupt 2 Input)
		PB1	T1 (Timer/Counter1 External Counter Input)
		PB0	T0 (Timer/Counter0 External Counter Input) XCK (USART External Clock Input/Output)

Port Pin	Alternate Function	Port Pin	Alternate Function
PC7	TOSC2 (Timer Oscillator Pin 2)	PD7	OC2 (Timer/Counter2 Output Compare Match Output)
PC6	TOSC1 (Timer Oscillator Pin 1)	PD6	ICP (Timer/Counter1 Input Capture Pin)
PC5	TDI (JTAG Test Data In)	PD5	OC1A (Timer/Counter1 Output Compare A Match Output)
PC4	TDO (JTAG Test Data Out)	PD4	OC1B (Timer/Counter1 Output Compare B Match Output)
PC3	TMS (JTAG Test Mode Select)	PD3	INT1 (External Interrupt 1 Input)
PC2	TCK (JTAG Test Clock)	PD2	INT0 (External Interrupt 0 Input)
PC1	SDA (Two-wire Serial Bus Data Input/Output Line)	PD1	TXD (USART Output Pin)
PC0	SCL (Two-wire Serial Bus Clock Line)	PD0	RXD (USART Input Pin)

Przerwania zewnętrzne

- Przerwania zewnętrzne są wyzwalane na pinach INT0, INT1, i INT2,
- Jeśli system przerwań jest włączony wejścia INT0, INT1, i INT2 wykryją przerwanie, nawet jeśli piny są ustawione jako wyjścia umożliwia to wykorzystanie ich jako przerwania programowe,
- Przerwania mogą być wyzwalane zboczem narastającym, opadającym lub poziomem (INT2 tylko zboczem).

Liczniki i timery - Timer0 i Timer1

- Możliwość wyzerowania liczników,
- Generator częstotliwości,
- Licznik zdarzeń zewnętrznych,
- Możliwość pracy w trybie PWM,
- Preskaler zegara 10 bitowy,
- Przepełnienie licznika jest źródłem przerwania.

Interface szeregowy SPI - ang. Serial Peripheral Interface

Pin	Direction, Master SPI	Direction, Slave SPI
MOSI	User Defined	Input
MISO	Input	User Defined
SCK	User Defined	Input
SS	User Defined	Input

- Full-duplex, synchroniczny transfer danych, 7 programowalnych prędkości transmisji,
- Możliwość pracy w trybie Master lub Slave,
- Koniec transmisji identyfikowany flagą przerwań.

Interfejs szeregowy USART

- Full Duplex Operation, transmisja synchroniczna i asynchroniczna,
- Możliwość transmisji danych 5, 6, 7, 8 lub 9 bitowych z 1 lub 2 bitami stopu, bit parzystości wykrywany sprzętowo, wykrywanie błędów transmisji,
- Przerwania: TX Complete, TX Data Register Empty, RX Complete.

Interface szeregowy - Two-wire

- Obsługa trybów Master i Slave, arbitraż Multi-master,
- 7-bitowy adres (128 adresów Slave), w pełni programowalny adres Slave-a w ramach General Call Support
- Prędkość transmisji do 400kHz

Przetworniki analogowo-cyfrowy ADC

- Rozdzielczość 10-bitowa,
- Nieliniowość na poziomie ¹/₂ LSB,
- Dokładność bezwzględna na poziomie ± 2 LSB,
- Czas konwersji $65 \div 260 \mu s$,
- 8 multipleksowanych kanałów,
- 7 kanałów różnicowych,
- 2 wejść różnicowych ze wzmocnieniem $10 \times$ and $200 \times$,
- Zakres mierzonych napięć $0 \div V_{CC}$,
- \bullet Wybór napięcia odniesienia: wewnętrzne 2,56V lub zewnętrzne,
- W tryb konwersji Single przetwornik pracuje w sposób ciągły,
- Zgłaszane przerwanie po zakończeniu konwersji.

Interface JTAG

JTAG Debuging System umożliwia:

- Kontrolę wszystkich jednostek peryferyjnych,
- Kontrolę pamięci RAM, EEPROM data i pamięć FLESH,
- Kontrolę rejestrów wewnętrznych oraz rejestr PC,
- Analizę uszkodzeń,
- Programowanie pamięci Flash, EEPROM,
- Odblokowanie flag,
- inne.

Programowanie μC AVR ATmega32

Programowanie μC AVR ATmega32 może odbywać się:

- Z użyciem programatorów,
- poprzez bootloader.

Istnieje kilka środowisk programistycznych, w skład których wchodzą kompilator, symulator, programator, terminal i inne elementy. Najbardziej popularne to:

- AVR Studio,
- Bascom AVR.

Bascom-AVR

To środowisko będzie używane na ćwiczeniach.

- Licencja: Shareware, Wersja DEMO do 4k kodu
- System operacyjny: Windows XP, 98, NT
- Środowisko do pisania i debugging-u układów AVR
- Do pobrania na stronie producenta: http://www.bipom.com
- Wymaga instalacji

BASCOM-AVR, język Basic - typy zmiennych

- Bit $(\frac{1}{8}$ byte),
- Byte (1 byte) liczba 8-bitowa bez znaku (0 \div 255),
- Integer (dwa bajty) liczby całkowitoliczbowe ze znakiem ($-32,768 \div +32,767$),
- Word (dwa bajty) liczba całkowitoliczbowa bez znaku (0 \div 65535),
- Long (cztery bajty) liczby całkowitoliczbowe ze znakiem ($-2147483648 \div 2147483647$),
- Single (32 bity) liczba zmiennoprzecinkowa ze znakiem (1.5x10⁻⁴⁵ \div 3.4x10³⁸),
- Double (64 bity) liczba zmiennoprzecinkowa ze znakiem $(5.0x10^{-324} \div 1.7x10^{308})$,
- String (do 254 bajtów) -przechowywane jako bajty i zakończone 0-bajtem tj. rozmiar stringa jest o jeden większy.

Układy AVR nie posiadają koprocesora. Operacje na liczbach zmiennoprzecinkowych (*Single, Double*) są emulowane.

Kontroler ARV ATmega32 używany na ćwiczeniach Wejście A/D Przycisk Czujnik Sharp RESERT Wyjście LCD 1 wire wyjście SERWO Dioda Przycisk INT0

Zadania na ćwiczenia

- 1. Zrealizuj kalkulator wykonujący operacje dodawania "+" i odejmowania "-" na dwóch operandach w notacji infiksowej. Do wczytywania użyj funkcji *input()*. Każdą daną (w tym liczby i znaki) należy zatwierdzić enterem.
- 2. Zrealizuj kalkulator wykonujący operacje dodawania "+", odejmowania "-", mnożenia "*" i dzielenia "\" na dwóch operandach w notacji infiksowej. Do wczytywania użyj funkcji *waitkey()*. Operandy powinny być typu *byte*, wynik typu *integer*. W przypadku przekroczenia zakresu operandów lub nieprawidłowych danych należy wyświetlić stosowny komunikat.
- 3. Zrealizuj kalkulator wykonujący operacje dodawania "+", odejmowania "-", mnożenia "*" i dzielenia "\" na dwóch operandach w notacji infiksowej. Wykorzystując funkcję *input()* wczytaj całe wyrażenie, następnie dokonaj analizy poprawności danych. Załóż, że dane są reprezentowane poprzez bajt a wynik może być innym typem danych.