UFMS - Universidade Federal de Mato Grosso do Sul Facom - Faculdade de Computação

Curso: Engenharia de Computação

Professor: Dr. Victor Leonardo Yoshimura

Disciplina: Circuitos Eletrônicos

Prática Experimental 5 - Regiões de Operação do TBJ

Objetivos

• Determinar as regiões de funcionamento do TBJ: corte, ativa e saturação.

• Operar o TBJ como chave eletrônica.

Material

ullet 2 fontes de tensão ajustáveis

• 3 multímetros

• Matriz de contatos (protoboard)

• 2 transistores BC548

• 1 transistor BC558

• Resistores: 470Ω e $5.6k\Omega$ (dois)

• 2 LEDs (cores diferentes)

• Fios e cabos para conexões

Procedimento

Monte os circuitos da Figura 1.

Figura 1: Circutos para levantamento da curva $I_b \times I_c$.

Para cada circuito, varie a tensão aplicada ao circuito de base, V_{bb} e meça as correntes de base e de coletor. Preencha, então, a tabela:

Tabela 1: Leituras para os circuitos da Figura 1.

$V_{bb}(V) \parallel 0.6$	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0	3,0	5,0	9,0	12,0
$I_b(\mathrm{mA}) \parallel$													
$I_c(\mathrm{mA})$													
$V_{ce}(V)$													
$V_{bb}(V) \parallel 0$	3,0	7,0	9,0	10,0	10,2	10,4	10,6	10,8	11,0	11,1	11,2	11,3	11,4
$\begin{array}{c c} \hline V_{bb}(\mathbf{V}) & \parallel & 0 \\ \hline I_b(\mathbf{mA}) & \parallel \\ \hline \end{array}$	3,0	7,0	9,0	10,0	10,2	10,4	10,6	10,8	11,0	11,1	11,2	11,3	11,4
	3,0	7,0	9,0	10,0	10,2	10,4	10,6	10,8	11,0	11,1	11,2	11,3	11,4

Monte os circuitos da Figura 2.

Figura 2: Circuitos práticos com TBJ em corte e saturação.

Em cada circuito da Figura 2, faça $V_{bb}=0$ e $V_{bb}=12\mathrm{V}$ (e $V_{bb}=-12\mathrm{V}$ no último). Verifique o comportamento do LED.

Tratamento de Dados

- Para os circuitos da Figura 1, trace as curvas $I_b \times I_c$. Determine V_{cesat} .
- O que acontece com o ganho de corrente? Explique.
- Quando os TBJs estão em cada região de operação? O que se observa nos LEDs?
- Analise os circuitos da Figura 2. Explique seus funcionamentos.
- Repita os procedimentos em PSpice.

Referências

- [1] Sedra, Adel S. e Kenneth C. Smith: Microeletrônica. Pearson, São Paulo, 4ª edição, 2007.
- [2] Capuano, Francisco Gabriel e Maria Aparecida Mendes Marino: Laboratório de Eletricidade e Eletrônica. Érica, São Paulo, 14ª edição, 1999.