Math 4720: Statistical Methods

9^{th} Week Summary (03/22/25)

• INFERENCE ABOUT POPULATION STANDARD DEVIATION.....

• Test for the population standard deviation (σ):

Given the data is coming from normal distribution we can use the chi-squared test to test $H_0: \sigma = \sigma_0$:

Test Statistics:
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$
 follows $\chi^2(\nu = n-1)$
 $100(1-\alpha)\%$ CI for σ : $\sqrt{\frac{(n-1)s^2}{\chi_{\alpha/2}^2}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_{1-\alpha/2}^2}}$

R: EnvStats::varTest(data, sigma.squared = 1)

• Test for the equality of the standard deviations $(H_0: \sigma_1 = \sigma_2)$:

Given the data-sets are coming from normal distribution we can use the F test to test

$$H_0: \sigma_1 = \sigma_2$$

Test Statistics:
$$F = \frac{\max(s_1^2, s_2^2)}{\min(s_1^2, s_2^2)}$$
 follows $F(\nu_1 = n_{num} - 1, \nu_2 = n_{den} - 1)$

R: var.test(x, y, ratio = 1)

• Test for equality of the standard deviations for more than two populations $(H_0: \sigma_1 = \sigma_2 = \cdots = \sigma_t)$:

F test can be extended to more than two populations (Hartley's $F_{\rm max}$ test), but it is very sensitive to departures from normality.

We prefer to use Brown-Forsythe-Levene(BFL) test:

R: lawstat::levene.test(data, group)

• ANOVA

- ANalysis Of VAriance (ANOVA) is a popular statistical tool to analyze the effect of a categorical variable with different levels of treatments (factor) on a numerical variable (response).
- In general, we can write:

Total Variation = Variation Between Treatments + Variation Within Treatments.

• Hypothesis Testing

$$H_0: \mu_1 = \mu_2 = \dots = \mu_t$$

 $H_a: \mu_i \neq \mu_j$ for some pair (i, j) .

Test Statistic:
$$F = \frac{SSB/df_B}{SSE/df_E}$$

Decision Rule: Reject H_0 in favor of H_a if $F > F_{\alpha}(df_B, df_E)$.