Exercícios de programação lista # 3

- 1. Faça um programa em C para apresentar os números no intervalo de 0 a 30:
- 2. Faça um programa em C para apresentar os números de 30 até 0 em ordem decrescente.
- 3. Faça um programa em C para apresentar os números pares no intervalo de 0 a 30;
- 4. Criar um programa que imprima os números pares entre 1 (inclusive) a 1.000 (inclusive) em ordem crescente.
- 5. Criar um programa que imprima os números ímpares entre 1 (inclusive) a 1.000 (inclusive) em ordem decrescente.
- 6. Escreva um algoritmo que imprima as seguintes seqüências de números: (1, 1 2 3 4 5 6 7 8 9 10) , (2, 1 2 3 4 5 6 7 8 9 10) (3, 1 2 3 4 5 6 7 8 9 10) (4, 1 2 3 4 5 6 7 8 9 10) e assim sucessivamente, até que o primeiro número (antes da vírgula), também chegue a 10.
- 7. Em uma eleição presidencial há três candidatos representados pelos códigos 1, 2 e 3 respectivamente. O código 4 representa voto nulo e o código 5 representa voto em branco. Escreva um programa em C que leia os votos dos eleitores e calcule a quantidade de votos de cada candidato, bem como a quantidade de votos nulos e em branco e a quantidade total de votos. Ao digitar a opção 0, o algoritmo é encerrado e resultados são exibidos;
- 8. Faça um programa em C que lê um valor inteiro informado pelo usuário e apresenta a tabuada (até o 10) deste número;
- 9. Faça um programa em C que converte a temperatura de Farenheit para Celsius (Celsius = 5.0 * (Fahrenheit 32)/9). O programa deve ler várias temperaturas e realizar a conversão até que o usuário informe o valor -1 para encerrar o programa;
- 10. Um objeto é lançado para cima com velocidade inicial (v_0) informada pelo usuário. Considerando que a velocidade (v) do objeto ao longo do tempo (t) é dada por $v=v_o+g.t$ e sendo a gravidade (g) uma constante

- com valor $9.81m/s^2$, faça um programa em C para apresentar a velocidade do objeto no intervalo de t = 0 até o instante em que o objeto inicia sua queda;
- 11. Faça um programa em C que lê dois valores inteiros a e b informados pelo usuário (sendo obrigatoriamente $a \le b$) e apresenta a tabuada (até o 10) dos números inteiros no intervalo de a até b;
- 12. Faça um programa em C que leia dois números inteiros x e y e (i) calcule o produto entre x e y utilizando apenas a operação de soma; (ii) calcule o quociente e o resto da divisão de x por y usando apenas a operação de subtração; e (ii) calcule x^y utilizando apenas a operação de multiplicação;
- 13. Faça um programa em C para ler uma série de números inteiros digitados pelo usuário (a leitura de valores é interrompida quando o usuário digitar o valor 0) e ao final calcule e apresente: a média dos valores digitados; o menor valor digitado; o maior valor digitado; o número de elementos pares digitados e o número de elementos impares digitados;
- 14. Faça um programa em C para calcular o fatorial de um número inteiro informado pelo usuário;
- 15. Crie um programa que escreva os números da sequencia Fibonacci menores que um número n inserido pelo usuário;
- 16. O máximo divisor comum (MDC) de dois números inteiros n e m é o maior número inteiro pelo qual ambos podem ser divididos sem que sobre um resto da divisão. Crie um programa em C que leia dois números digitados pelo usuário e retorne o MDC;
- 17. O superfatorial de um número é definido por sf(n)=1!*2!*3!*...*(n-1)!*n!. Crie um programa para calcular e imprimir na tela o superfatorial de um número inserido pelo usuário;
- 18. Faça um programa em C para ler dois valores inteiros a, b que indicam o início e o fim de um intervalo e um terceiro valor c. Após a leitura dos valores, apresente como saída do programa os valores do intervalo de a até b que são múltiplos do valor c;
- 19. Faça um programa para gerar todas gerar combinações de 6 números (de 1 a 20) para apostar na loteria. Todos os números das combinações devem ser diferentes e também devem ser eliminadas as combinações nas quais a soma das diferenças de cada elemento com seu próximo for menor que 10 (i.e. $n_2 n_1 + n_3 n_2 + n_4 n_3 + n_5 n_4 + n_6 n_5 < 10$)
- 20. Faça um programa para apresentar todos os números primos em um intervalo de a até b. Os valores do intervalor a, b será informados pelo usuário.

21. Criar um programa que leia um número inteiro maior que zero e que calcule a soma dos algarismos que compõem esse número. Por exemplo, se o número lido for 7254, o cálculo será realizado da seguinte forma:

$$7 + 2 + 5 + 4 = 18$$

- 22. Bob deseja construir uma casa e quer escolher o construtor que faça o trabalho pelo menor preço. Ele tem três construtores em vista. O construtor A cobra um valor fixo por cada dia de trabalho. O construtor B cobra um valor no primeiro dia e a cada novo dia cobra o dobro do que foi cobrado no dia anterior. O construtor C, por sua vez, cobra um mesmo valor no primeiro e no segundo dia e, a partir do terceiro dia, cobra a soma dos valores cobrados nos dois dias anteriores. Escreva um programa que auxilie Bob a decidir qual a melhor proposta. O programa deve solicitar que o usuário informe o número de dias de trabalho previstos e o valor que cada construtor cobrará no primeiro dia. Como saída, o programa deve imprimir:
 - (a) O valor total a ser cobrado por cada construtor
 - (b) Qual construtor fez a melhor proposta.

A tabela abaixo ilustra um exemplo para cinco dias de trabalho .

	A	B	C
Primeiro dia	100	10	30
Segundo dia	100	20	30
Terceiro dia	100	40	60
Quarto dia	100	80	90
Quinto dia	100	160	150
Total	500	310	360

23. Criar um programa que leia um número inteiro n maior que 1 e imprima quadrados de tamanho $n \times n$ utilizando o caractere "*". Por exemplo, se o número informado for 3, o resultado impresso será

24. Criar um programa que leia um número inteiro n maior que 1 e imprima uma "árvore de natal" com n linhas utilizando o caractere "*". Por exemplo, se o numero lido for 4, o resultado impresso será

25. São dados N azulejos de dimensões 10cm x 10cm. Com eles, você deve montar um conjunto de quadrados de modo a utilizar TODOS os azulejos dados. Inicialmente você deve montar o maior quadrado possível com os azulejos dados; então, com os azulejos que sobraram, você deve montar o maior quadrado possível, e assim sucessivamente. Por exemplo, se forem dados 31 azulejos, o conjunto montado terá quatro quadrados, conforme ilustra a figura abaixo.

Elabore um programa de computador que calcule quantos quadrados de k azulejos podem ser montados quando é dado um total de N azulejos. No exemplo acima, para 31 azulejos, o programa deve imprimir o segunte resultado:

- 1 quadrado de lado 5
- 1 quadrado de lado 2
- 1 quadrado de lado 1
- $\bullet\,\,$ 1 quadrado de lado 1
- 26. A notação $\sum_{n=x}^{y} f(n)$ é utilizada para representar a soma dos resultados da função f(n) para n assumindo os valores compreendidos entre x e y, (i.e. $x \le n \le y$). Escreva um programa de computador em que o usuário informe os valores de x e y e que retorne $\sum_{n=x}^{y} n^2$.
- 27. (3 pontos) A média aritmética simples é a forma mais comum de calcular a média entre diversos valores. Outro tipo de média, um pouco diferente, é a média harmônica. A fórmula para cálculo da média harmônica H de n números $\{x_1, x_2, \dots, x_n\}$ é:

$$H = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

Escreva um programa de computador em que o usuário informe uma determinada quantidade de alunos em uma turma, informando depois a nota semestral de cada um desses alunos. Ao final, o programa deve calcular a média harmônica das notas da turma.