Hashing

<u>Livro de Sedgewick e Wayne</u>: sec.3.4, p.458. Website do livro: <u>resumo sec.3.4</u>, <u>slides</u>. Código fonte, documentação, e dados de teste de todos os programas do livro: veja <u>algs4.cs.princeton.edu/code/</u>.

Esta página trata da implementação de TSs (tabelas de símbolos) por meio de *tabelas de dispersão* e *tabelas de hash*. A teoria é simples mas o sucesso das implementações depende de truques práticos. Pode-se dizer que essas implementações envolvem mais arte que ciência.

Hashing tem dois ingredientes fundamentais: uma *função de hashing* e um mecanismo de *resolução de colisões*.

Resumo:

- função de espalhamento (hash function)
- colisões
- hashing modular (resto da divisão)
- o papel dos números primos
- os métodos hashCode() de Java
- hipótese do hashing uniforme
- resolução de colisões por encadeamento (lista ligada)
- resolução de colisões por sondagem linear
- · redimensionamento da tabela de hash

Pré-requisitos:

• tabelas de símbolos

Ideias preliminares

• Exemplo 1: Imagine um pequeno país (bem menos que 100 mil cidadãos) onde os números de CPF têm apenas 5 dígitos decimais. Considere a tabela que leva CPFs em nomes:

```
chave valor associado
01555 Ronaldo
01567 Pelé
...
80114 Maradona
80320 Dunga
95222 Romário
```

Como armazenar a tabela? Resposta: vetor de 100 mil posições. Use *a própria chave* como índice do vetor!

- o O vetor é conhecido com "tabela de hash" e
- o terá muitas posições vagas (desperdício de espaço), mas
- a busca (get) e a inseção (put) serão extremamente rápidas.
- Exemplo 2: Imagine uma lista ligada cujas chaves são nomes de pessoas. Suponha que a lista está em ordem alfabética.

cnave	vaior associado
Antonio Silva	8536152
Arthur Costa	7210629
Bruno Carvalho	8536339
··· Vitor Sales	 8535922

Wellington Lima 5992240 Yan Ferreira 8536023

Para acelerar as buscas, divida a lista em 26 pedaços: os nomes que começam com "A", os que começam com "B", etc. Nesse caso,

- o vetor de 26 posições é a "tabela de hash" e
- o cada posição do vetor aponta para o começo de uma das listas.

Exercícios 1

- 1. Qual a diferença entre o exemplo dos CPFs acima e a implementação BinarySearchST já discutida?
- 2. Qual a diferença entre o exemplo das listas ligadas de nomes e a implementação <u>SequentialSearchST</u> já discutida?

Funções de hashing

- Uma *tabela de dispersão* ou *tabela de hash* (hash table) é um vetor cada uma de cujas posições armazena zero, uma, ou mais chaves (e valores associados). (O conceito é propositalmente vago.)
- Parâmetros importantes:
 - *M* : número de posições na tabela de hash
 - *N* : número de chaves da tabela de símbolos
 - $\alpha = N/M$: fator de carga (load factor)
- Função de espalhamento ou função de hashing (hash function): transforma cada chave em um índice da tabela de hash.
- A função de hashing responde a pergunta "Em qual posição da tabela de hash devo colocar esta chave?". A função de hashing *espalha* as chaves pela tabela de hash.
- A função de hashing associa um *valor hash* (hash value), entre o e M-1, a cada chave.
- No exemplo dos CPFs temos α < 1 e a função de hashing é a identidade.
- No exemplo dos nomes de pessoas temos $\alpha > 1$ e a função de hashing é nome.charAt(0).
- A função de hashing produz uma *colisão* quando duas chaves diferentes têm o mesmo valor hash e portanto são levadas na mesma posição da tabela de hash:

Hashing: the crux of the problem

• Exemplo: Chaves são números de identificação (7 dígitos) de estudantes da universidade e *M* vale 100.

```
8536152
7210629
8536339
8536002
...
8067490
8536106
8536169
8531845
```

Uma possível função de hashing: 2 primeiros dígitos da chave. Outra possibilidade: 2 dígitos do meio. Outra possibilidade: 2 últimos dígitos. Qual dessas espalha melhor as chaves pelo intervalo 0..99?

- Outro exemplo: função de hashing que leva qualquer número de CPF brasileiro (que tem nove dígitos) no correspondente "dígito verificador" (um número entre o e 99). (Por exemplo, leva 111444777 em 35.) O "dígito verificador" de um CPF depende de *todos* os dígitos do CPF.
- Ideal: a função de hashing deveria usar *todos* os dígitos da chave; assim, chaves ligeiramente diferentes serão levadas em números muito diferentes. (Subproduto: podemos usar o valor hash como *checksum* para <u>verificar a integridade</u> de um texto!)
- Escolha *M* e a função de hashing de modo a
 - diminuir o número de colisões;
 - *espalhar* bem as chaves pelo intervalo 0..M-1.

Função de hashing modular

- Que funções de hashing são usadas na prática?
- Se as chaves são inteiros positivos, podemos usar a função modular (resto da divisão por *M*):

```
private int hash(int key) {
    return key % M;
}
```

• Exemplos com M = 100 e com M = 97:

key	hash (<i>M</i> = 100)	hash (<i>M</i> = 97)
212	12	18
618	18	36
302	2	11
940	40	67
702	2	23
704	4	25
612	12	30
606	6	24
772	72	93
510	10	25
423	23	35
650	50	68
317	17	26
907	7	34
507	7	22
304	4	13
714	14	35
857	57	81
801	1	25
900	0	27
413	13	25
701	1	22
418	18	30
601	1	19

Modular hashing

- Em hashing modular, <u>é bom que M seja primo</u> (por algum motivo não óbvio).
- No caso de strings, podemos iterar hashing modular sobre os caracteres da string:

```
int h = 0;
for (int i = 0; i < s.length(); i++)
    h = (31 * h + s.charAt(i)) % M;
```

No lugar do multiplicador 31, poderia usar qualquer outro inteiro R, de preferência primo, mas suficientemente pequeno para que os cálculos não produzam overflow.

Exercícios 2

- 1. Qual o valor da expressão key % M se key é negativo?
- 2. Por que convém evitar overflow no cálculo do valor hash de uma string?
- 3. (SW 3.4.4) Escreva um programa para encontrar valores de a e M, com Mo menor possível, tais que a função de hashing (a*k) % M, que transforma a k-ésima letra do alfabeto em um valor hash, não produza colisões quando aplicada às chaves S E A R C H X M P L. (Isso é conhecido como função de hashing perfeita.)

Os métodos hashCode de Java

• Em Java, todo tipo-de-dados tem uma método padrão hashCode() que produz um inteiro entre -2³¹ e 2³¹-1 (aproximadamente 2 bilhões negativos a 2 bilhões positivos). Exemplo:

```
String s = StdIn.readString();
int h = s.hashCode();
```

• Para converter o hashCode() em um número entre o e *M*-1, tome o resto da divisão por *M*. Antes, é melhor desprezar o bit mais sigificativo para evitar que % lide com números negativos e produza um resultado negativo:

```
private int hash(Key x) {
    return (x.hashCode() & 0x7fffffff) % M;
}
```

(O uso da máscara 0x7fffffff seria desnecessário se Java tivesse um tipo-de-dados unsigned int.)

O que se espera de uma função de hashing ideal

- Queremos uma função de hashing que
 - o possa ser calculada eficientemente e
 - espalhe bem as chaves pelo intervalo 0...M-1.
- Exemplo: Valores hash calculados a partir do hashCode() padrão como <u>acima</u> para o conjunto de palavras (excluídas as repetidas) em <u>tale.txt</u>, com *M* = 97. No histograma, cada barra dá o número de palavras que têm o valor hash indicado na ordenada. O histograma sugere que a função espalha bem as palavras.

Hash value frequencies for words in *Tale of Two Cities* (10,679 keys, M = 97)

- Hipótese do Hashing Uniforme: Vamos *supor* que nossas funções de hashing distribuem as chaves pelo intervalo de inteiros o . . *M*–1 de maneira *uniforme* (todos os valores hash igualmente prováveis) e *independente*.
- Exemplo: Supõe-se que os números sorteados pela Loteria Federal são todos igualmente prováveis. Supõe-se também que são independentes: só porque 8888888888 nunca foi sorteado, ele não tem maior probabilidade de sair no próximo sorteio.
- Na verdade, nenhuma função determinística satisfaz a Hipótese do Hashing Uniforme. (Essa impossibilidade é uma questão profunda e fundamental em Ciência da Computação.) Mas a hipótese é útil porque permite fazer cálculos para prever o desempenho aproximado de tabelas de hash.
- A função de hashing que <u>usamos acima para analisar o livro tale.txt</u> parece ser aproximadamente uniforme.

- 1. Elimine as palavras repetidas de tale.txt. Depois, faça um histograma como o mostrado acima mas usando M = 100.
- 2. Faça um histograma como o mostrado acima para as palavras de tale.txt (sem repetições), com M=97, mas alguma função de hashing diferente da usada acima.
- 3. Faça um histograma como o acima para as palavras de quincasborba. txt (depois de eliminadas as repetidas).
- 4. É fácil implementar operações como min(), max(), floor() e ceiling() em tabelas de símbolos implementadas com tabelas de hash?

Implementação 1: hashing com encadeamento

- Agora que cuidamos das funções de hashing, podemos tratar de métodos de resolução de colisões.
- Precisamos inventar um meio de resolver colisões.

Hashing: the crux of the problem

• Resolução de colisões por *encadeamento* (separate chaining): *M* listas ligadas, cada uma implementa uma tabela de símbolos.

Hashing with separate chaining for standard indexing client

- Em geral, N > M e portanto $\alpha > 1$.
- Algoritmo 3.5: Hashing com encadeamento, classe SeparateChainingHashST (usa SequentialSearchST):

```
public class SeparateChainingHashST<Key, Value> {
    private int N; // número de chaves
    private int M; // tamanho da tabela de hash

private SequentialSearchST<Key,Value>[] st; // vetor de TSs

public SeparateChainingHashST(int M) {
```

```
this.M = M;
    st = (SequentialSearchST<Key,Value>[]) new SequentialSearchST[M];
    for (int i = 0; i < M; i++)
        st[i] = new SequentialSearchST<Key,Value>();
}
public SeparateChainingHashST() {
    this(997); // tamanho de tabela default
private int hash(Key key) {
    return (key.hashCode() & 0x7fffffff) % M;
public Value get(Key key) {
    int h = hash(key);
    return st[h].get(key);
public void put(Key key, Value val) {
    int h = hash(key);
    st[h].put(key, val);
}
```

- (Com 997 listas, espera-se que esse código seja cerca de 1000 vezes mais rápido que SequentialSearchST.)
- Veja código completo em <u>algs4/SeparateChainingHashST.java</u> (usa redimensionamento da tabela de hash).

Análise

- O comprimento $m\acute{e}dio$ das listas é N/M. Mas poderíamos ter uma lista muito longa e todas as demais muito curtas, não? Para eliminar essa possibilidade, precisamos saber ou supor algo sobre os dados.
- Proposição K: Em uma tabela de hash encadeada com *M* listas e *N* chaves, se vale a <u>hipótese do hashing uniforme</u>, a probabilidade de que o número de chaves em cada lista não passa de *N/M* multiplicado por uma pequena constante, essa probabilidade é muito próxima de 1.
- Exemplo: Se N/M = 10, a probabilidade de que uma lista tem comprimento maior que 20 é inferior a 0.8%.
- A prova da Proposição K usa apenas teoria de probabilidades clássica. Graças à hipótese do hashing uniforme, a probabilidade de que uma determinada lista tem exatamente *k* elementos é

Resta apenas mostrar que essa distribuição binomial é "bem concentrada" em torno de α , ou seja, que a probabilidade de que a lista tenha, digamos, mais que 2 α chaves é muito pequena.

• Exemplo: SW aplicou <u>FrequencyCounter</u> com SeparateChainingHashST de 997 listas às palavras do livro <u>tale.txt</u>. No gráfico, a altura de cada barra sobre o ponto *k* do eixo horizontal dá o número de listas que têm comprimento *k*:

List lengths for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST

Exemplo: SW usou o programa-cliente FrequencyCounter com SeparateChainingHashST de 997 listas para examinar as palavras com 8 ou mais letras do livro tale.txt. O gráfico mostra o número de nós visitados (= número de comparações feitas) por cada chamada de put(). Os pontos vermelhos dão a média acumulada. (Compare com os gráficos de <u>SequentialSearchST</u>, <u>BST</u> e <u>RedBlackBST</u>.)

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (M = 997)

• Como escolher o valor de *M*? Escolha *M* tão grande que as listas sejam curtas mas não tão grande que muitas listas fiquem vazias. Felizmente, o valor de *M* não é crítico.

- 1. Podemos ter α < 1 numa tabela de hash com encadeamento?
- 2. (SW 3.4.1) Insira as chaves E A S Y Q U T I O N, nessa ordem, usando hashing com encadeamento, em uma tabela com M=5 listas. Use a função de hashing 11*k % M para transformar a k-ésima letra do alfabeto em um índice da tabela de hash.
- 3. Repita os experimentos com o livro tale.txt usando valores de *M* diferentes de 997 (tente valores que são potência de 2, por exemplo).
- 4. (SW 3.4.9) Acrescente um método delete() à classe SeparateChainingHashST. O seu método deve ser <u>ansioso</u>: ele deve remover o chave solicitada imediatamente (e não simplesmente marcá-la com null para remoção posterior).
- 5. (SW 3.4.19) Acrescente um iterador keys() à classe SeparateChainingHashST.
- 6. Acrescente um método a SeparateChainingHashST que calcule o custo médio de uma busca bem-sucedida, supondo que cada chave tem a mesma probabilidade de ser buscada. (O custo da busca é o número de comparações de chaves.)
- 7. Acrescente um método a SeparateChainingHashST que calcule o custo médio de uma busca malsucedida sob a hipótese de hashing uniforme. (O custo da busca é o número de comparações de chaves.)
- 8. (SW 3.4.36) Faixa de comprimentos de listas. Escreva um programa que insira N chaves inteiras (números int) aleatórias em uma tabela de tamanho N/100 usando hashing com encadeamento e depois determine o comprimento da lista mais curta e da mais longa. Faça isso para N igual a 10^3 , 10^4 , 10^5 , 10^6 . (Faça um pequeno relatório sobre os resultados e acrescente o relatório, como comentário, ao final do seu programa.)

Implementação 2: hashing com sondagem linear

- Outro jeito de resolver colisões é a *sondagem linear* (linear probing): se uma posição da tabela estiver ocupada, tente a próxima!
- Precisamos ter $N \le M$ e portanto $\alpha \le 1$.
- Exemplo: Rastreamento de hashing com sondagem linear para as chaves S E A R C H E X A M P L E e tabela de hash de tamanho M=16:

Trace of linear-probing ST implementation for standard indexing client

- Veja a <u>animação de hashing com sondagem linear</u> no website do livro.
- Algoritmo 3.6: Hashing com sondagem linear, classe **LinearProbingHashST** (sem redimensionamento):

```
private int hash(Key key) {
    return (key.hashCode() & 0x7fffffff) % M;
public void put(Key key, Value val) {
    int i;
    for (i = hash(key); keys[i] != null; i = (i + 1) \% M)
        if (keys[i].equals(key)) {
            vals[i] = val;
            return;
    keys[i] = key;
    vals[i] = val;
}
public Value get(Key key) {
    for (int i = hash(key); keys[i] != null; i = (i + 1) % M)
        if (keys[i].equals(key))
            return vals[i];
    return null;
}
```

- Note que a tabela de hash é preenchida com null no início.
- Mantenha o fator de carga α sempre bem abaixo de 1. Se N chegar perto de M, a operação de inserção pode demorar muito tempo procurando por uma posição vaga na tabela.

Análise

- Se a função de hashing satisfaz a hipótese de hashing uniforme, poderíamos pensar que as chaves ficam espalhadas "por igual" pela tabela. Mas não é bem assim...
- A sondagem linear tem a tendência de produzir *clusters* (grumos, pelotas, caroços, agrupamentos contíguos) na tabela de hash.
- Exemplo: clusters em uma tabela de hash com 64 posições:

Clustering in linear probing (M = 64)

• Exemplo: padrões de ocupação de tabela de hash com sondagem linear comparada com ocupação aleatória. (Acho que "8192" está errado; deveria ser "8191". O que você acha?):

Table occupancy patterns (2,048 keys, tables laid out in 128-position rows)

- Se vale a <u>hipótese do hashing uniforme</u>, clusters longos tendem a crescer mais que os curtos.
- Proposição M: Supondo que vale a hipótese do hashing uniforme, e que α está entre o e 1 mas não muito perto de 1, o número médio de sondagens em buscas bem-sucedidas é aproximadamente

$$\frac{1}{2}\left(1+\frac{1}{1-\alpha}\right)$$

e o número médio de sondagens em buscas malsucedidas (ou inserções) é aproximadamente

$$\frac{1}{2}\left(1+\frac{1}{(1-\alpha)^2}\right)$$

- Exemplo: quando $\alpha = 0.5$, temos aproximadamente 1.5 sondagens por busca bem-sucedida e aproximadamente 2.5 sondagens por busca malsucedida.
- Exemplo: quando $\alpha = 0.25$, temos aproximadamente 1.16 sondagens por busca bem-sucedida e aproximadamente 1.39 por busca malsucedida.
- Prova da Proposição M: Knuth provou em 1962 (não é muito fácil).
- Car parking problem: Knuth faz analogia com automóveis procurando vaga de estacionamento em uma rua que já tem carros estacionados. Quantas tentativas um automóvel precisa fazer, em média?

- 1. Por que a análise das buscas malsucedidas e bem-sucedidas é feita em separado?
- 2. (SW 3.4.10) Insira as chaves E A S Y Q U T I O N, nessa ordem, usando hashing com sondagem linear, em uma tabela com M=16 posições. Use a função de hashing 11*k % M para transformar a k-ésima letra do alfabeto em um índice da tabela de hash. Repita o exercício com M=10.
- 3. Quero acrescentar à classe LinearProbingHashST um método delete() que remova uma dada chave key da tabela. Mostre, por meio de um exemplo simples, que o código a seguir não resolve o problema.

```
public void delete(Key key) {
   if (!contains(key)) return;
   int i = hash(key);
   while (!key.equals(keys[i]))
        i = (i + 1) % M;
   keys[i] = null;
   vals[i] = null;
}
```

- 4. (SW 3.4.17, p.471) Acrescente à classe LinearProbingHashST um método delete() que remova uma dada chave (e o valor associado).
- 5. (SW 3.4.19) Acrescente um iterador keys() à classe LinearProbingHashST.
- 6. (SW 3.4.20) Acrescente à classe LinearProbingHashST um método que calcule o custo médio de uma busca bemsucedida, supondo que cada chave da tabela tem a mesma probabilidade de ser buscada. (O custo da busca é o número de sondagens, ou seja, o número de posição visitadas da tabela de hash.) Use o código de LinearProbingHashST sem redimensionamento. Escreva um cliente CustoSondagemLinear.java que teste o novo método usando um gerador de números aleatórios. Use VisualAccumulator para fazer um gráfico de custos em função do número N de chaves. Superponha o gráfico com as previsões dadas na Proposição M.
- 7. (SW 3.4.21) Acrescente à classe LinearProbingHashST um método que calcule o custo médio de uma busca malsucedida supondo uma função de hashing aleatória. (O custo da busca é o número de sondagens, ou seja, o número de posição visitadas da tabela de hash.) (Observação: Não é necessário calcular nenhum função de hash para resolver essa questão.) Use o código de LinearProbingHashST sem redimensionamento. Escreva um cliente CustoSondagemLinear.java que teste o novo método usando um gerador de números aleatórios. Use VisualAccumulator para fazer um gráfico de custos em função do número N de chaves. Superponha o gráfico com as previsões dadas na Proposição M.

Redimensionamento da tabela de sondagem linear

- Na sondagem linear, é essencial que α fique bem abaixo de 1. Convém manter $\alpha \le 1/2$ (ou seja, $N \le M/2$).
- Para manter α sob controle, a tabela de hash deve ser redimensionada, quando necessário, no início de put().
- Algoritmo 3.6, continuação: redimensionamento em LinearProbingHashST:

```
public void put(Key key, Value val) {
    if (N >= M/2) resize(2*M);
    . . .
    . . .
}

private void resize(int cap) {
    LinearProbingHashST<Key, Value> temp;
    temp = new LinearProbingHashST<Key, Value>(cap);
    for (int i = 0; i < M; i++) {
        if (keys[i] != null) {
            temp.put(keys[i], vals[i]);
        }
    }
    keys = temp.keys;
    vals = temp.vals;
    M = temp.M;
}</pre>
```

- Também é bom manter $\alpha > 1/8$, para evitar desperdício de espaço. Isso se faz com redimensionamento no fim de delete() quando necessário.
- Veja o código completo em <u>algs4/LinearProbingHashST.java</u>.
- A troca de M por 2*M em put() vai contra o conselho de usar números primos como valores de M. Uma ideia melhor é usar uma tabela de primos para trocar M pelo primo imediatamente acima de 2*M.

- A análise de desempenho do hashing com redimensionamento deve ser feita, necessariamente, em termos <u>amortizados</u>. A conclusão é previsível: o consumo de tempo esperado de qualquer sequência de *T* operações que começam com uma tabela vazia é proporcional a *T*.
- Exemplo: O livro aplicou FrequencyCounter com LinearProbingHashST com redimensionamento para examinar as palavras com 8 ou mais letras do livro tale.txt. O gráfico mostra o número de nós visitados (= número de comparações feitas) por cada chamada de put(). Os pontos vermelhos dão a média acumulada.

Costs for java FrequencyCounter 8 < tale.txt using LinearProbingHashST (with doubling)

- Redimensionamento também pode ser aplicado ao hashing <u>com encadeamento</u>, mas nesse caso o redimensionamento não é essencial.
- Exemplo: O livro aplicou FrequencyCounter com SeparateChainingHashST com redimensionamento para examinar as palavras com 8 ou mais letras do livro tale.txt. O gráfico mostra o número de nós visitados (= número de comparações feitas) por cada chamada de put(). Os pontos vermelhos dão a média acumulada.

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (with doubling)

- 1. Escreva uma versão de SeparateChainingHashST que faça redimensionamento da tabela de hash.
- 2. (SW 3.4.26) Remoção preguiçosa sob sondagem linear. Acrescente um método delete() à classe LinearProbingHashST. Para remover uma chave da tabela, o método deve atribuir null ao valor associado à chave e adiar a efetiva remoção da chave (e do valor associado) até o momento em que a tabela for redimensionada. (Observação: Você deve sobrescrever o valor null se uma operação put() subsequente associar um novo valor à chave.) O desafio é decidir quando resize() deve ser chamado. Para tomar a decisão de redimensionar, seu método deve levar em conta não só o número de posições vagas da tabela mas também o número de posições "mortas".

Perguntas e respostas

- PERGUNTA: Eu não deveria escrever "n mod M" para indicar o resto da divisão de n por M?
 RESPOSTA: É verdade. Essa é a notação tradicional em matemática. Mas eu prefiro escrever "n % M" porque é assim que se escreve em Java e C.
- PERGUNTA: Qual o valor Math.abs(-2147483648)?
 RESPOSTA: A resposta é -2147483648, por estranho que pareça. É o efeito do overflow em números do tipo int.
- PERGUNTA: Qual o resultado de % (resto da divisão) para números negativos?
 RESPOSTA: O quociente a/b é arredondado em direção a 0. O resto a % b é definido de modo que (a / b) * b + a % b seja igual a a. Por exemplo, -14/3 e 14/-3 valem -4, mas -14 % 3 vale -2 enquanto 14 % -3 vale 2.
- PERGUNTA: Por que não implementar hash(x) simplesmente como x.hashCode() % M? RESPOSTA: Porque o resultado do operador % pode ser negativo!
- PERGUNTA: As funções de hashing da biblioteca Java satisfazem a hipótese do hashing uniforme?
 RESPOSTA: Não.

Quora: "If Hash Map has the search complexity of O(1) and B tree has O(Log n), why does the database index use B tree and not Hash Map?" Resposta de Michael Veksler.

www.ime.usp.br/~pf/estruturas-de-dados/ Atualizado em 2018-05-21 Paulo Feofiloff Departamento de Ciência da Computação Instituto de Matemática e Estatística da USP

