

Graph Convolutional Networks

欧阳剑波 2018.11.30

Outline

- Overview
- Spectral domain method
- □ Spatial domain method

Non Euclidean Structure

- □ Euclidean Structure
 - Video 3D grid
 - Image 2D grid
 - Voice 1D grid
- □ Non Euclidean Structure
 - 社交网络
 - 信息网络
 - 化合物结构
- □ CNN处理的数据是Euclidean Structure Data
- □ CNN无法处理Non Euclidean Structure Data
 - 拓扑图中每个顶点的相邻顶点数目都可能不同,无法用一个同样尺寸的卷积核来进行卷积运算

Task

- □ 提取拓扑图的空间特征
 - 预测graph中节点的标签
 - 预测graph的标签

Two direction

- Spectral domain
 - Based on the spectral graph theory
 - Convolution operation is defined in the Fourier domain
- Spatial domain
 - Define convolutions directly on the graph

图的傅里叶变换

- $lacksymbol{\square}$ 传统傅里叶变换 $F(\omega)=\mathcal{F}[f(t)]=\int f(t)e^{-i\omega t}dt$
- \square 拉普拉斯算子 $\triangle = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$
- □ 特征方程 $\triangle g = \lambda g$
- \square e^{-jwt} 是特征方程的解 $\triangle e^{-iwt} = \frac{\partial^2}{\partial x_i^2} e^{-iwt} = -w^2 e^{-iwt}$

□ 傅里叶变换是时域信号与拉普拉斯算子特征函数乘积的 积分

拉普拉斯矩阵的谱分解

- □ 图G=(V,E)
- □ 拉普拉斯矩阵L = D A ,对称矩阵
 - D: 顶点的度矩阵(对角矩阵)
 - ✓ 度:某个顶点的度是图中与该顶点相连的边的数目
 - A: 图的邻接矩阵
 - ✓ 若节点i与j相连,则A(i, j)=1,否则为0
- \Box 归一化拉普拉斯矩阵 $L^{sys} = D^{-1/2}LD^{-1/2}$

口 谱分解
$$L=Uegin{pmatrix} \lambda_1 & & & & \ & \ddots & & \ & & \lambda_n \end{pmatrix}U^{-1} \qquad U=(\overrightarrow{u_1},\overrightarrow{u_2},\cdots,\overrightarrow{u_n})$$

- U:列向量为单位特征向量的矩阵

拉普拉斯矩阵的谱分解

- \square U是正交矩阵,即 $UU^T = E$
- □ 谱分解写为:

$$L = U \left(egin{array}{ccc} \lambda_1 & & & \ & \ddots & & \ & & \lambda_n \end{array}
ight) U^T$$

图的傅里叶变换

- □ 傅里叶变换是时域信号与拉普拉斯算子特征函数乘积的积分
- □ 推广到图:图上的傅里叶变换是时域信号与图的拉普拉斯方程的特征向量的和

$$F(\lambda_l) = \hat{f}\left(\lambda_l
ight) = \sum_{i=1}^N f(i) u_l^*(i)$$

□ 写成矩阵形式

$$egin{pmatrix} \hat{f}\left(\lambda_1
ight) \ \hat{f}\left(\lambda_2
ight) \ dots \ \hat{f}\left(\lambda_N
ight) \end{pmatrix} = egin{pmatrix} u_1(1) & u_1(2) & \dots & u_1(N) \ u_2(1) & u_2(2) & \dots & u_2(N) \ dots & dots & \ddots & dots \ u_N(1) & u_N(2) & \dots & u_N(N) \end{pmatrix} egin{pmatrix} f(1) \ f(2) \ dots \ f(N) \end{pmatrix}$$

$$\hat{f} = U^T f$$

图的傅里叶逆变换

传统的傅里叶逆变换
$$\mathcal{F}^{-1}[F(\omega)]=rac{1}{2\Pi}\int F(\omega)e^{i\omega t}d\omega$$

迁移到图

$$f(i) = \sum_{l=1}^N \hat{f}\left(\lambda_l
ight) u_l(i)$$

矩阵形式
$$\begin{pmatrix} f(1) \\ f(2) \\ \vdots \\ f(N) \end{pmatrix} = \begin{pmatrix} u_1(1) & u_2(1) & \dots & u_N(1) \\ u_1(2) & u_1(2) & \dots & u_N(2) \\ \vdots & \vdots & \ddots & \vdots \\ u_1(N) & u_2(N) & \dots & u_N(N) \end{pmatrix} \begin{pmatrix} \hat{f}(\lambda_1) \\ \hat{f}(\lambda_2) \\ \vdots \\ \hat{f}(\lambda_N) \end{pmatrix}$$

$$f = U\hat{f}$$

卷积定理

- 函数卷积的傅里叶变换是函数傅里叶变换的乘积
- 对非欧式结构的数据无法直接做卷积运算, 所以现在傅 里叶域做乘积,再做逆变换
- 卷积核h在图上的傅里叶变换 $\hat{h}(\lambda_l) = \sum_{i=1}^N h(i) u_l^*(i)$ 写成对角矩阵 $\begin{pmatrix} \hat{h}(\lambda_1) & & & \\ & \ddots & & \\ & & \hat{\iota}(\lambda_1) \end{pmatrix}$

$$egin{pmatrix} \hat{h}(\lambda_1) & & & & & \ & \ddots & & & & \ & & \hat{h}(\lambda_n) \end{pmatrix}$$

最终形式

$$(f*h)_G = U egin{pmatrix} \hat{h}(\lambda_1) & & & \ & \ddots & & \ & & \hat{h}(\lambda_n) \end{pmatrix} U^T f$$

第1代谱卷积

□ 缺点

- 计算复杂度高
- 没有体现传统CNN的空间局部性,每次卷积要考虑所有的节点
- 卷积核有n个参数

第2代谱卷积

□ 推导可得

$$U\sum_{j=0}^K lpha_j \Lambda^j U^T = \sum_{j=0}^K lpha_j U \Lambda^j U^T = \sum_{j=0}^K lpha_j L^j$$

$$y_{output} = \sigma \left(\sum_{j=0}^K lpha_j L^j x
ight)$$

- □ 优势
 - 卷积核参数量为K, k<<n
 - 不再需要做谱分解

第2代谱卷积

□ 优势

- 卷积核具有良好的空间局部性
- 拉普拉斯矩阵的性质
 - ✓ 若两节点i, j不相连, 则L(i, j)=0
 - ✓ 若d(m,n)>s, 则 $L^s(m,n)=0$
- 卷积核的感受野大小为K,每次卷积会将中心顶点K-hop neighbor上的feature进行加权求和

第2代谱卷积

- □ 切比雪夫多项式逼近
- □ 切比雪夫展开式
- □ 最终形式

$$egin{aligned} T_0(x) &= 1 \ T_1(x) &= x \ T_k(x) &= 2xT_{k-1}(x) - T_{k-2}(x) \end{aligned}$$

$$g_{ heta'} \star x pprox \sum_{k=0}^K heta'_k T_k(\tilde{L}) x$$
 $\tilde{L} = rac{2}{\lambda_{max}} L - I_N$

第3代谱卷积

- □ 二代卷积的基础上,令K=1,卷积只考虑直接领域,类似于3*3卷积核
- □ 为了简化运算,定义 $\lambda_{max} \approx 2$
- □ 得到一阶近似 $g_{\theta'} \star x \approx \theta'_0 x + \theta'_1 (L I_N) x = \theta'_0 x \theta'_1 D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x$
- \square 进一步简化 $\theta = \theta_0' = -\theta_1'$ 得到 $g_{\theta} \star x \approx \theta \left(I_N + D^{-\frac{1}{2}}AD^{-\frac{1}{2}}\right)x$
- \square 最终形式 $Z = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$,

$$ilde{A} = A + I_N$$
 , $ilde{D}_{ii} = \Sigma_j ilde{A}_{ij}$

第3代谱卷积

□ 实验

$$\mathcal{L} = -\sum_{l \in \mathcal{Y}_L} \sum_{f=1}^F Y_{lf} \ln Z_{lf}$$

Spatial domain

- Define convolutions directly on the graph
 - 图的节点有不同数量的邻节点
- □ 选取固定大小的邻域做卷积

□ 将image看作特殊的graph

- □ 需要体现出邻域的空间位置信息
- □ 算法流程
 - 选出合适的节点
 - 为每个节点建立邻域,构成子图
 - 将节点及其邻域节点特征表示为feature map

- □ 选出合适的节点
 - 对输入图选定节点个数为w
 - 对图中的节点进行排序
 - ✓ 中心化:某节点与其余所有节点的距离之和越小,越处于图的中心

□ 选出节点的邻域大小为k

neighborhood normalization (exactly k=4 nodes)

neighborhood assembly (at least k=4 nodes)

node sequence selection (w=6 nodes)

□ 组成feature map

1958 1958 Individual of the state of the sta

□ Train

class = 0

Summary

- □ 谱图卷积在傅里叶域做卷积变换,有完整的理论支持。
- □ 空间卷积更加灵活,核心点在于选取定量的邻域。