Aturan Kelas ONLINE

Aturan kelas online:

- Sopan dan rapi
- Tidak mengenakan kaos oblong
- · Login menggunakan email nim@std.umk.ac.id
- Menyiapkan buku, pensil dan penghapus

Aljabar Boolean

Kode Mata Kuliah: IFT-103

Semester: 1 (satu)

Program Studi Teknik Informatika
Universitas Muria Kudus

TRI LISTYORINI

Gedung J.Lt.II.11

Universitas Muria Kudus

Pengantar

- Aljabar Boolean ditemukan oleh George Boole, pada tahun 1854.
- Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (perhatikan kemiripan hukum-hukum aljabar logika dan hukumhokum aljabar himpunan).
- Dalam buku The Laws of Thought, Boole memaparkan aturan-aturan dasar logika.
- Aturan dasar logika ini membentuk struktur matematika yang disebut aljabar Boolean.
- Aplikasi: perancangan rangkaian pensaklaran, rangkaian digital, dan rangkaian IC (integrated circuit) komputer

Pengantar

Peraga digital

Integarted Circuit (IC)

Jaringan saklar

Definisi Aljabar Boolean

DEFINISI. Misalkan *B* adalah himpunan yang didefinisikan pada dua operator biner, + dan ·, dan sebuah operator uner, '. Misalkan 0 dan 1 adalah dua elemen yang berbeda dari *B*. Maka, tupel

$$< B, +, \cdot, ', 0, 1 >$$

disebut aljabar Boolean jika untuk setiap $a, b, c \in B$ berlaku aksioma berikut:

- 1. Identitas
 - (i) a + 0 = a
 - (ii) $a \cdot 1 = a$
- 2. Komutatif
 - (i) a + b = b + a
 - (ii) $a \cdot b = b \cdot a$
- 3. Distributif
 - (i) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
 - (ii) $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 4. Komplemen

Untuk setiap $a \in B$ terdapat elemen unik $a' \in B$ sehingga

- (i) a + a' = 1
- (ii) $a \cdot a' = 0$

- Berhubung elemen-elemen B tidak didefinisikan nilainya (kita bebas menentukan anggota-anggota B), maka terdapat banyak sekali aljabar boolean.
- Untuk mempunyai sebuah aljabar Boolean, orang harus memperlihatkan:
 - 1.elemen-elemen himpunan B,
 - 2.kaidah/aturan operasi untuk dua operator biner dan operator uner,
 - 3.himpunan B, bersama-sama dengan dual operator tersebut, memenuhi keempat aksioma di atas

- Aljabar himpunan dan aljabar logika proposisi juga merupakan aljabar Boolean karena memenuhi empat aksioma di atas.
- Dengan kata lain, aljabar himpunan dan aljabar proposisi adalah himpunan bagian (subset) dari aljabar Boolean.
- Pada aljabar proposisi misalnya:
 - B berisi semua proposisi dengan n peubah.
 - dua elemen unik berbeda dari B adalah T (true) dan F (false),
 - operator biner: V dan A, operator uner: ~
 - semua aksioma pada definisi di atas dipenuhi

Dengan kata lain <B, V, A,~, F, T> adalah aljabar Booelan

Aljabar Boolean 2-Nilai

- Merupakan aljabar Boolean yang paling popular, karena aplikasinya luas.
- Pada aljabar 2-nilai:

i.
$$B = \{0, 1\},$$

- ii. operator biner: + dan . , operator uner: '
- iii.Kaidah untuk operator biner dan operator uner:

а	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

а	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

а	a'	
0	1	
1	0	

i. Keempat aksioma di atas dipenuhi

Ekspresi Boolean

• Ekspresi Boolean dibentuk dari elemen-elemen B dan/atau peubah-peubah yang dapat dikombinasikan satu sama lain dengan operator +, . , dan ' .

Contoh 1:

O

1

a

h

a + b

a.b

a' . (b + c)

a.b'+a.b.c'+b', dan sebagainya

Hukumhukum Aljabar Boolean

1.	Hukum identitas: (i) $a + 0 = a$ (ii) $a \cdot 1 = a$	2.	Hukum idempoten: (i) $a + a = a$ (ii) $a \cdot a = a$
3.	Hukum komplemen: (i) $a + a' = 1$ (ii) $aa' = 0$	4.	Hukum dominansi: (i) $a \cdot 0 = 0$ (ii) $a + 1 = 1$
5.	Hukum involusi: (i) $(a')' = a$	6.	Hukum penyerapan: (i) $a + ab = a$ (ii) $a(a + b) = a$
7.	Hukum komutatif: (i) $a + b = b + a$ (ii) $ab = ba$	8.	Hukum asosiatif: (i) $a + (b + c) = (a + b) + c$ (ii) $a (b c) = (a b) c$
9.	Hukum distributif: (i) $a + (b c) = (a + b) (a + c)$ (ii) $a (b + c) = a b + a c$	10.	Hukum De Morgan: (i) $(a + b)' = a'b'$ (ii) $(ab)' = a' + b'$
11.	Hukum 0/1 (i) 0' = 1 (ii) 1' = 0		

Contoh 2: Buktikan bahwa untuk sembarang elemen a dan b dari aljabar Boolean maka kesamaaan berikut:

$$a + a'b = a + b dan a(a' + b) = ab$$

adalah benar.

Penyelesaian:

```
i. a + a'b = (a + ab) + a'b
                                 (Hukum Penyerapan)
        = a + (ab + a'b)
                                 (Hukum Asosiatif)
        = a + (a + a')b
                                 (Hukum Distributif)
        = a + 1.b
                                 (Hukum Komplemen)
        = a + b
                                 (Hukum Identitas)
ii. a(a' + b) = a a' + ab
                                 (Hukum Distributif)
                                 (Hukum Komplemen)
            = o + ab
                                 (Hukum Identitas)
            = ab
```

Fungsi Boolean

Contoh-contoh fungsi Boolean:

$$f(x) = x$$
 $f(x, y) = x'y + xy' + y'$
 $f(x, y) = x'y'$
 $f(x, y) = (x + y)'$
 $f(x, y, z) = xyz'$

- Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut literal.
- Fungsi h(x, y, z) = xyz' terdiri dari 3 buah literal, yaitu x, y, dan z'.
- Jika diberikan x = 1, y = 1, z = 0, maka nilai fungsinya:

$$h(1, 1, 0) = 1 \cdot 1 \cdot 0' = (1 \cdot 1) \cdot 1 = 1 \cdot 1 = 1$$

Bentuk Kanonik

- Ekspresi Boolean yang menspesifikasikan suatu fungsi dapat disajikan dalam dua bentuk berbeda.
- Pertama, sebagai penjumlahan dari hasil kali dan kedua sebagai perkalian dari hasil jumlah.
- Contoh 3:
- f(x, y, z) = x'y'z + xy'z' + xyz
- dan
- g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)
- adalah dua buah fungsi yang sama.

- Minterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil kali
- Maxterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil jumlah.
- Contoh 4:

$$f(x, y, z) = x'y'z + xy'z' + xyz \rightarrow 3$$
 buah minterm: $x'y'z, xy'z', xyz$
 $g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$
 \rightarrow 5 buah maxterm: $(x + y + z), (x + y' + z), (x + y' + z'), (x' + y + z'), (x' + y + z'), (x' + y' + z')$

- Misalkan peubah (variable) fungsi Boolean adalah x, y, dan z
- Maka:

 Ekspresi Boolean yang dinyatakan sebagai penjumlahan dari satu atau lebih minterm atau perkalian dari satu atau lebih maxterm disebut dalam bentuk kanonik.

- Jadi, ada dua macam bentuk kanonik:
- 1. Penjumlahan dari hasil kali (sum-of-product atau SOP)
- 2. Perkalian dari hasil jumlah (product-of-sum atau POS)

- Fungsi f(x, y, z) = x'y'z + xy'z' + xyz dikatakan dalam bentuk SOP
- •Fungsi g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z) dikatakan dalam bentuk POS

Cara membentuk *minterm* dan *maxterm*:

- •Untuk *minterm*, setiap peubah yang bernilai o dinyatakan dalam bentuk komplemen, sedangkan peubah yang bernilai 1 dinyatakan tanpa komplemen.
- •Sebaliknya, untuk *maxterm*, setiap peubah yang bernilai o dinyatakan tanpa komplemen, sedangkan peubah yang bernilai 1 dinyatakan dalam bentuk komplemen.

• Cara membentuk minterm dan maxterm dari tabel kebenaran untuk dua peubah:

		Mir	ıterm	Maxterm		
x	y	Suku	Lambang	Suku	Lambang	
0	0	x'y'	m_0	x + y	M_0	
0	1	x'y	m_1	x + y x + y	M_1	
1	0	xy	m_2	x' + y	M_2	
1	1	xy	m_3	x' + y'	M_3	

• Cara membentuk minterm dan maxterm dari tabel kebenaran untuk tiga peubah:

			Mi	nterm	Maxterm		
x	y	Z	Suku Lambang		Suku	Lambang	
0	0	0	<i>x</i> ' <i>y</i> ' <i>z</i> '	m_0	x+y+z	M_0	
0	0	1	x'y'z	m_1	x+y+z	M_1	
0	1	0	x'y z'	m_2	x + y' + z	M_2	
0	1	1	x' y z	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x'+y+z	M_4	
1	0	1	xy'z	<i>m</i> 5	x'+y+z'	M_5	
1	1	0	x y z	m_6	x'+y'+z	M_6	
1	1	1	x y z	m_7	x'+y'+z'	M_7	

•Jika diberikan sebuah tabel kebenaran, kita dapat membentuk fungsi Boolean dalam bentuk kanonik (SOP atau POS) dari tabel tersebut dengan

Cara:

 mengambil minterm dari setiap nilai fungsi yang bernilai 1 (untuk SOP)

atau

 mengambil maxterm dari setiap nilai fungsi yang bernilai o (untuk POS). Contoh 5: Tinjau fungsi Boolean yang dinyatakan oleh Tabel di bawah ini. Nyatakan fungsi tersebut dalam bentuk kanonik SOP dan POS

х	y	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m1 + m4 + m7 = \Sigma (1, 4, 7)$$

POS

X	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan o adalah ooo, o10, o11, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = Mo M_2 M_3 M_5 M_6 = \Pi(0, 2, 3, 5, 6)$$

• Contoh 6: Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS. Penyelesaian:

a) SOP

Lengkapi terlebih dahulu literal untuk setiap suku agar jumlahnya sama.

$$x = x(y + y')$$

$$= xy + xy'$$

$$= xy (z + z') + xy'(z + z')$$

$$= xyz + xyz' + xy'z + xy'z'$$

dan

$$y'z = y'z (x + x') = xy'z + x'y'z$$

Jadi $f(x, y, z) = x + y'z$

$$= xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$$

$$= x'y'z + xy'z' + xy'z + xyz' + xyz$$
atau $f(x, y, z) = m1 + m4 + m5 + m6 + m7 = \Sigma (1,4,5,6,7)$

b) POS

$$f(x, y, z) = x + y'z$$
$$= (x + y')(x + z)$$

Lengkapi terlebih dahulu literal pada setiap suku agar jumlahnya sama:

Contoh 7: Nyatakan fungsi Boolean f(x, y, z) = xy + x'z dalam bentuk kanonik POS. Penyelesaian:

$$f(x, y, z) = xy + x'z$$

$$= (xy + x') (xy + z)$$

$$= (x + x') (y + x') (x + z) (y + z)$$

$$= (x' + y) (x + z) (y + z)$$

Lengkapi literal untuk setiap suku agar jumlahnya sama:

$$x' + y = x' + y + zz' = (x' + y + z) (x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z) (x + y' + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$

Konversi Antar Bentuk Kanonik

 Misalkan f adalah fungsi Boolean dalam bentuk SOP dengan tiga peubah:

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m0 + m2 + m3$$

 Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS:

$$f(x, y, z) = (f'(x, y, z))' = (mo + m2 + m3)' = mo' \cdot m2' \cdot m3'$$

$$= (x'y'z')' (x'y z')' (x'y z)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= Mo M2 M3 = \Pi(o, 2, 3)$$

Jadi, $f(x, y, z) = \Sigma (1, 4, 5, 6, 7) = \Pi (0,2,3)$.

• Kesimpulan: $m_j' = M_j$

Rangkaian Logika

- Fungsi Boolean dapat juag direpresentasikan dalam bentuk rangkaian logika.
- Ada tiga gerbang logika dasar: gerbang AND, gerbang OR, dan gerbang NOT

• Contoh 8: Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika. Penyelesaian: Ada beberapa cara penggambaran

Gerbang logika turunan: NAND, NOR, XOR, dan XNOR

 Keempat gerbang di atas merupakan kombinasi dari gerbang-gerbang dasar, misalnya gerbang NOR disusun oleh kombinasi gerbang OR dan gerbang NOT:

 Selain itu, dengan menggunakan hukum De Morgan, kita juga dapat membuat gerbang logika yang ekivalen dengan gerbang NOR dan NAND di atas:

Transistor untuk gerbang logika

Sumber gambar: http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/trangate.html#c3

Penyederhana an Fungsi Boolean

• Menyederhanakan fungsi Boolean artinya mencari bentuk fungsi lain yang ekivalen tetapi dengan jumlah literal atau operasi yang lebih sedikit.

Contoh: f(x, y) = x'y + xy' + y' disederhanakan menjadi f(x, y) = x' + y'

 Dipandang dari segi aplikasi aljabar Boolean, fungsi Boolean yang lebih sederhana berarti rangkaian logikanya juga lebih sederhana (menggunakan jumlah gerbang logika lebih sedikit).

- Tiga metode yang dapat digunakan untuk menyederhanakan fungsi Boolean:
- 1. Secara aljabar, menggunakan hukum-hukum aljabar Boolean.
- 2. Metode Peta Karnaugh.
- 3. Metode Quine-McCluskey (metode tabulasi)

Yang dibahas hanyalah Metode Peta Karnaugh

Peta Karnaugh

- Peta Karnaugh (atau K-map) merupakan metode grafis untuk menyederhanakan fungsi Boolean.
- Metode ini ditemukan oleh Maurice Karnaugh pada tahun 1953. Peta Karnaugh adalah sebuah diagram/peta yang terbentuk dari kotak-kotak (berbentuk bujursangkar) yang bersisian.
- Tiap kotak merepresentasikan sebuah minterm.
- Tiap kotak dikatakan bertetangga jikal minterm-minterm yang merepresentasikannya berbeda hanya 1 buah literal.

Peta Karnaugh dengan dua peubah

Peta Karnaugh dengan tiga peubah

		00	yz 01	11	10
x	0	<i>x</i> ' <i>y</i> ' <i>z</i> '	x'y'z	x'yz	x'yz'
	1	xy'z'	xy'z	xyz	xyz'

Peta Karnaugh dengan empat peubah

					yz 00	01	11	10
m_0	m_1	m_3	m_2	wx 00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
m_4	m_5	m_7	m_6	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
m_{12}	m ₁₃	m_{15}	m_{14}	11	wxy'z'	wxy'z	wxyz	wxyz'
m_8	<i>m</i> ₉	m_{11}	m_{10}	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

Cara mengisi peta Karnaugh

- Kotak yang menyatakan minterm diisi "1"
- Sisanya diisi "o"

Contoh: f(x, y, z) = x'yz' + xyz' + xyz

	00	yz 01	11	10
x 0	0	0	0	1
1	0	0	1	1

Contoh: f(x, y, z) = xz' + y

xz': Irisan antara:

x → semua kotak pada baris ke-2

z' → semua kotak pada kolom ke-1 dan kolom ke-4

y:

y → semua kotak pada kolom ke-3 dan kolom ke-4

		<i>yz</i> 00	01	11	10	
х	0	0	0	1	1	
	1	1	0	1	1	
xz'+y						

Pengisian peta Karnaugh dari tabel kebenaran

x	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Tinjaun hanya nilai fungsi yang memberikan 1. Fungsi Boolean yang merepresentasikan tabel kebenaran adalah f(x, y) = x'y'z + xy'z' + xy'z + xyz.

	00	<i>yz</i> 01	11	10	
x 0	0	1	0	0	
1	1	1	1	0	

Teknik Minimisasi Fungsi Boolean dengan Peta Karnaugh

- Penggunaan Peta Karnaugh dalam penyederhanaan fungsi Boolean dilakukan dengan cara menggabungkan kotak-kotak yang bernilai 1 dan saling bersisian.
- Kelompok kotak yang bernilai 1 dapat membentuk:
 - 1. pasangan (dua),
 - 2. kuad (empat),
 - 3. oktet (delapan).

Pasangan

Bukti secara aljabar:

$$f(w, x, y, z) = wxyz + wxyz'$$

$$= wxy(z + z')$$

$$= wxy(1)$$

$$= wxy$$

- Sebelum disederhanakan: f(w, x, y, z) = wxyz + wxyz'
- Sesudah disederhanakan: f(w, x, y, z) = wxy

Kuad (1)

Bukti secara aljabar (kuad = 2 buah pasangan):

$$f(w, x, y, z) = wxy' + wxy$$

$$= wx(z' + z)$$

$$= wx(1)$$

$$= wx$$

- Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wxyz + wxyz'
- Sesudah: f(w, x, y, z) = wx

Kuad (2)

yz wx	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	0	0
10	1_	1	0	0

- Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wx'y'z' + wx'y'z'
- Sesudah: f(w, x, y, z) = wy'

Oktet

yz wx	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1

- Sebelum: f(w, x, y, z) = wxy'z' + wxy'z + wxyz' + wxy'z + wx'y'z' + wx'y'z + wx'yz + wx'yz'
- Sesudah: f(w, x, y, z) = w

Penggulungan (1)

Gambar (a) Peta Karnaugh "normal" dengan 3 peubah

(b) Peta Karnaugh dengan sisi kiri dan sisi kanan ditautkan (seperti digulung).

Penggulungan (2)

Contoh: Sederhanakan f(x, y, z) = x'yz + xy'z' + xyz + xyz'.

- Sebelum: f(x, y, z) = x'yz + xy'z' + xyz + xyz'
- Sesudah: f(x, y, z) = yz + xz'

Ketidakunikan Hasil Penyederhanaan

Hasil penyederhanaan dengan peta Karnaugh tidak selalu unik.

Artinya, mungkin terdapat beberapa bentuk fungsi minimasi yang berbeda meskipun jumlah literal dan jumlah term-nya sama

f(w,x,y,z) = w'x'y + w'xy'z + wxz' + wyz + wx'y'

Tips menyederhanakan dengan Peta Karnaugh

- Kelompokkan 1 yang bertetangga sebanyak mungkin
- Dimulai dengan mencari oktet sebanyak-banyaknya terlebih dahulu, kemudian kuad, dan terakhir pasangan.

Contoh minimisasi 1:

Hasil penyederhanaan:

$$f(w, x, y, z) = wy' + yz' + w'x'z$$

Contoh minimisasi 2:

Hasil penyederhanaan:

$$f(w, x, y, z) = z + xy + wx'y'$$

Hasil penyederhanaan:

$$f(w, x, y, z) = wx + wz + wy + xyz$$

Tentukan bentuk sederhana dari fungsi Boolean yang merepresentasikan tabel kebenaran berikuit dalam bentuk baku SOP dan bentuk baku POS.

х	y	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Penyelesaian:

(a) Bentuk baku SOP: kelompokkan 1

Fungsi minimasi: f(x, y, z) = x'z + xz'

(b)Bentuk baku POS: kelompokkan 0

Fungsi minimasi: f(x, y, z) = (x' + z')(x + z)

• Minimisasi fungsi Boolean $f(x, y, z) = \Sigma$ (0, 2, 4, 5, 6)

Penyelesaian:

Peta Karnaugh untuk fungsi tersebut adalah:

Hasil penyederhanaan: f(x, y, z) = z' + xy'

• Minimisasi f(w, x, y, z) = w'x'y' + x'yz' + w'xyz' + wx'y' Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = x'y' + x'z' + w'yz'

• Minimisasi fungsi Boolean $f(w, x, y, z) = \Sigma$ (0,1,2,4,5,6,8,9,12,13,14)

Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = y' + w'z' + xz'

- Sederhanakan fungsi f(w,x,y,z) = (w + x')(w + x + y)(w' + x' + y')(w' + x + y + z').
- Hasil penyederhanaan dalam bentuk baku SOP dan POS.

Penyelesaian:

- Hasil penyederhanaan
- SOP: f(w, x, y, z) = x'y + wxy' + wy'z' (garis penuh)
- POS: f(w, x, y, z) = (x' + y')(w + y)(x + y + z') (garis putus-putus)

Sederhanakan fungsi f(x, y, z, t) = xy' + xyz + x'y'z' + x'yzt'
 Penyelesaian:

Fungsi minimasi: f(x, y, z, t) = y'z' + xz + yzt'

 Minimasi fungsi yang telah dipetakan ke peta Karnaugh di bawah ini dalam bentuk baku SOP dan bentuk baku POS.

Penyelesaian:

- SOP : f(w, x, y, z) = yz + wz + xz + w'xy' (garis penuh)
- POS: f(w, x, y, z) = (y' + z)(w' + z)(x + z)(w + x + y) (garis putus-putus)

Sederhanakan rangkaian logika berikut:

• Penyelesaian: Fungsi yang berkoresponden dengan rangkaian logika tsb: f(x, y, z) = x'yz + x'yz' + xy'z' + xy'z

Fungsi Boolean hasil minimisasi: f(x, y, z) = x'y + xy'

Rangkaian logika hasil penyederhanaan:

Peta Karnaugh untuk Lima Peubah

Dua kotak dianggap bertetangga jika secara fisik berdekatan dan merupakan pencerminan terhadap garis ganda

Contoh: Carilah fungsi sederhana dari

$$f(v, w, x, y, z) = \Sigma (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)$$

Peta Karnaugh dari fungsi tersebut adalah:

vw xy2	000	001	110	010	110	111	101	100
00_	1	0	0	1	1	0	0	1
01	0	1	1	0	0	1	1	0
11	0	1	1	0	0	1	1	0
10	0	1	0	0	0	0	1	0
·								

Fungsi minimasi: f(v, w, x, y, z) = wz + v'w'z' + vy'z

Keadaan don't care

- Keadaan don't care adalah kondisi nilai peubah yang tidak diperhitungkan oleh fungsinya.
- Artinya nilai 1 atau o dari peubah don't care tidak berpengaruh pada hasil fungsi tersebut.

Contoh:

- peraga digital angka desimal o sampai 9.
- Jumlah bit yang diperlukan untuk merepresentasikan = 4 bit.
- Bit-bit untuk angka 10-15 tidak terpakai

Keadaan don't care

W	х	y	Z	Desimal
0	0	0	0	0
0 0 0 0 0 0 0 1 1 1 1	0 0 0	0 0 1 1 0 0 1 1 0 0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1 0 0 0	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0 0 1	1 0 1 0 1 0 1 0 1	2 3 4 5 6 7 8 9 X X X
1	1	1	0	X
1	1	1	1	X

don't care

- Dalam menyederhanakan Peta Karnaugh yang mengandung keadaan don't care, ada dua hal penting sebagai pegangan.
- Pertama, kita anggap semua nilai don't care (X) sama dengan 1 dan kemudian membentuk kelompok sebesar mungkin yang melibatkan angka 1 termasuk tanda X tersebut.
- ·Kedua, semua nilai X yang tidak termasuk dalam kelompok tersebut kita anggap bernilai o.
- Dengan cara ini, keadaan-keadaan X telah dimanfaatkan semaksimal mungkin, dan kita boleh melakukannya secara bebas.

Contoh: Sebuah fungsi Boolean, f, dinyatakan dengan tabel berikut. Minimisasi fungsi f sesederhana mungkin.

•				
w	X	у	Z	f(w, x, y, z)
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	X
1	0	0	1	X
1	0	1	0	X
1	0	1	1	X
1	1	0	0	X
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X
	•			

Penyelesaian:

Hasil penyederhanaan: f(w, x, y, z) = xz + y'z' + yz'

Contoh: Minimisasi fungsi Boolean berikut (dalam bentuk baku SOP dan bentuk baku POS): $f(w, x, y, z) = \Sigma (1, 3, 7, 11, 15)$

dengan kondisi don't care adalah d(w, x, y, z) = Σ (0, 2, 5). Penyelesaian:

Hasil penyederhanaan:

SOP: f(w, x, y, z) = yz + w'z (kelompok garis penuh)

 \overline{POS} : f(w, x, y, z) = z (w' + y) (kelompok garis putus-putus)

Perancangan Rangkaian Logika 1. Majority gate merupakan sebuah rangkaian digital yang keluarannya sama dengan 1 jika mayoritas masukannya bernilai 1 (mayoritas = 50% + 1). Keluaran sama dengan o jika tidak memenuhi hal tersebut di atas. Dengan bantuan tabel kebenaran, carilah fungsi Boolean yang diimplementasikan dengan 3input majority gate. Sederhanakan fungsinya, lalu gambarkan rangkaian logikanya.

Penyelesaian

Tabel kebenaran:

_				
	x	у	Z	f(x, y, z)
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

$$f(x,\,y,\,z)\,=xz+xy+yz$$

Rangkaian logika:

2. Gunakan Peta Karnaugh untuk merancang rangkaian logika yang dapat menentukan apakah sebuah angka desimal yang direpresentasikan dalam bit biner merupakan bilangan genap atau bukan (yaitu, memberikan nilai 1 jika genap dan 0 jika tidak).

Penyelesaian:

Angka desimal: o .. 9 (direpresentasikan dalam 4 bit biner, misalkan a_oa₁a₂a₃).

Fungsi f(a_o, a₁, a₂, a₃) bernilai 1 jika representasi desimal dari a_oa₁a₂a₃ menyatakan bilangan genap, dan bernilai o jika tidak genap

Tabel kebenaran:

<i>a</i> ₀	a_1	a_2	<i>a</i> ₃	Desimal	$f(a_0, a_1, a_2, a_3)$
0	0	0	0	0	1
0	0	0	1	1	0
0	0	1	0	2	1
0	0	1	1	3	0
0	1	0	0	4	1
0	1	0	1	5	0
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	1
1	0	0	1	9	0
1	0	1	0	10	X
1	0	1	1	11	X
1	1	0	0	12	X
1	1	0	1	13	X
1	1	1	0	14	X
1	1	1	1	15	X

a_2a	¹ ₃ 00	01	11	10
00	1	0	0	1
01	1	0	0	1
11	X	X	X	X
10_	1	0	X	X

$$f(a_0, a_1, a_2, a_3) = a_3'$$

Rangkaian logika:

3. Di dalam unit aritmetika komputer (Arithmetic Logical Unit – ALU) terdapat rangkaian penjumlah (adder). Salah satu jenis rangkaian penjumlah adalah penjumlah-paruh (half adder). Rangkaian ini menjumlahkan 2 bit masukan dengan keluarannya adalah SUM (jumlah) dan CARRY (pindahan).

Sekedar pengetahuan, di bawah ini rangkaian untuk full adder

Sumber gambar: http://www.circuitstoday.com/ripple-carry-adder

4. Buatlah rangkaian logika yang menerima masukan dua-bit dan menghasilkan keluaran berupa kudrat dari masukan. Sebagai contoh, jika masukannya 11 (3 dalam sistem desimal), maka keluarannya adalah 1001 (9 dalam sistem desimal).

Penyelesaian:

Misalkan 2-bit masukan kita simbolkan dengan xy, dan kuadratnya (4-bit) kita simbolkan dengan abcd.

Tabel kebenaran:

Masukan		Keluaran				
X	а	ь	С	d		
0	0	0	0	0		
1	0	0	0	1		
0	0	1	0	0		
1	1	0	0	1		
	0 1 0 1	0 0 0 1 0 0 1 1 1	x a b 0 0 0 1 0 0 0 0 1 1 1 0	x a b c 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0		

Rangkaian logikanya pengkuadrat 2-bit biner:

- 5. Sebuah instruksi dalam sebuah program adalah if A > B then writeln(A) else writeln(B);
- Nilai A dan B yang dibandingkan masing-masing panjangnya dua bit (misalkan $a_1 a_2$ dan $b_1 b_2$).
 - a) Buatlah rangkaian logika (yang sudah disederhanakan tentunya) yang menghasilkan keluaran 1 jika A > B atau o jika tidak.
 - b)Gambarkan kembali rangkaian logikanya jika hanya menggunakan gerbang NAND saja (petunjuk: gunakan hukum de Morgan)

Penyelesaian:

(a)

Desimal		Biner				
A	В	aı	a_2	b_1	b_1	$f(a_1, a_2, b_1, b_2)$
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	2	0	0	1	0	0
0	3	0	0	1	1	0
1	0	0	1	0	0	1
1	1	0	1	0	1	0
1	2	0	1	1	0	0
1	3	0	1	1	1	0
2	0	1	0	0	0	1
2	1	1	0	0	1	1
2	2	1	0	1	0	0
2	3	1	0	1	1	0
3	0	1	1	0	0	1
3	1	1	1	0	1	1
3	2	1	1	1	0	1
3	3	1	1	1	1	0

$b_1 b_2$	00	01	11	10	
00	0	0	0	1	
01	1	0	0	0	
11_	1	1	0	1	
10	1	1	0	0	

$$f(a_1,\,a_2,\,b_1,\,b_2)=a_1b_1{}'+a_2b_1{}'b_2{}'+a_1a_2b_2{}'$$

(b) f(a1, a2, b1, b2) = a1b1' + a2b1'b2' + a1a2b2'= ((a1b1')' (a2b1'b2')' (a1a2b2')')' (De Morgan)

Rangkaian logika:

