Statistical Methods

immediate

July 12, 2022

Likelihood

The likelihood in Eyalshiv et al. (2016) has the form,

$$\log \mathcal{L}(\theta) = \sum_{v \in \mathcal{V}} \sum_{i \neq j \in \mathcal{S}} \log(P(O_{i,j}(v)|\theta))$$
(1)

where \mathcal{V} is the set of putatively neutral sites, \mathcal{S} is the set of samples, and θ are the BGS parameters. The indicator variable $O_{i,j}(v)$ is 1 if samples i and j are different at site v, and zero otherwise. Thus as they specify in the paper,

$$P(O_{i,j}(v)|\theta) = \begin{cases} \pi(v|\theta), & O_{i,j}(v) = 1\\ 1 - \pi(v|\theta), & O_{i,j}(v) = 0 \end{cases}$$
 (2)

The total size of the set of samples S is $n_S = |S|$. Assuming all sites are biallelic, we can simplify the inner summation by counting the number of possible same and different pairwise combinations. If a site v's vector of allele counts is $[c_1, c_2]$, the total number of pairwise combinations with the same alleles is

$$n_s(v) = \binom{c_1}{2} + \binom{c_2}{2} \tag{3}$$

and the number of different pairwise combinations is

$$n_d(v) = n_T - n_s(v) \tag{4}$$

where $n_T = n_S(n_S - 1)/2$ is the total number of pairwise combinations across the sample set S. Note that these site-specific counts allow us to use allelic counts directly, and can vary across sites. Our likelihood is then,

$$\log \mathcal{L}(\theta) = \sum_{v \in \mathcal{V}} \left[\log(\pi(v|\theta)) n_{\mathcal{D}}(v) + \log(1 - \pi(v|\theta)) n_{\mathcal{S}}(v) \right]. \tag{5}$$

In practice, we calculate these values across bins. For each bin, we treat $\pi(v|\theta)$ as fixed, assuming that at this scale, the variation in expected diversity across sites is minimal. For a particular chromosome, we have two classes of sites: those included in the diversity calculation and those ignored. The former sites are all putatively neutral and have reliably called genotypes, and the other sites are possibly non-neutral or do have reliably called genotypes. The total log-likelihood is the sum of bin likelihoods, $\mathcal{L}(b)$

$$\mathcal{L}(\theta) = \sum_{b} \mathcal{L}(b|\theta) \tag{6}$$

The likelihood within a bin is then,

$$\log \mathcal{L}(b|\theta) = \log(\bar{\pi}(b|\theta)) \sum_{v \in \mathcal{V}_b} n_D(v) + \log(1 - \bar{\pi}(b|\theta)) \sum_{v \in \mathcal{V}_b} n_S(v)$$
 (7)

$$= \log(\bar{\pi}(b|\theta))Y_D(b) + \log(1 - \bar{\pi}(b|\theta))Y_S(b)$$
(8)

where the two sum terms as $Y_D(b)$ and $Y_S(b)$ are data reductions at the bin level.

If the data are such that only polymorphic sites are considered, we can adapt this by partitioning the set \mathcal{V} of neutral sites into polymorphic (\mathcal{P}) and fixed sites (\mathcal{F}) , i.e. $\mathcal{V} = \mathcal{P} \cup \mathcal{F}$ and $\mathcal{P} \cap \mathcal{F} = \emptyset$. For all $v \in \mathcal{F}$, $n_d(v) = 0$ and $n_s(v) = n_T$.

Then,

$$\log \mathcal{L}(\theta) = \sum_{v \in \mathcal{V}} \left[\log(\pi(v|\theta)) n_{\mathcal{D}}(v) + \log(1 - \pi(v|\theta)) n_{\mathcal{S}}(v) \right]$$
(9)

$$= \sum_{v \in \mathcal{P}} [\log(\pi(v|\theta)) n_{D}(v) + \log(1 - \pi(v|\theta)) n_{S}(v)] + \sum_{v \in \mathcal{F}} \log(1 - \pi(v|\theta)) n_{T}(v)$$
 (10)

(11)

$$\log \mathcal{L}(b|\theta) = \log(\bar{\pi}(b|\theta)) \sum_{v \in \mathcal{P}_b} n_{\mathcal{D}}(v) + \log(1 - \bar{\pi}(b|\theta)) \left(\sum_{v \in \mathcal{P}_b} n_{\mathcal{S}}(v) + \sum_{v \in \mathcal{F}_b} n_{\mathcal{T}}(v) \right). \tag{12}$$

Note that if we assume that the total number of combinations at each fixed site is constant, e.g. $n_T = n_T(v)$ for all v, then we can use $\sum_v n_T(v) = n_T |\mathcal{F}_b|$.

Windowed Diversity

Although we use the components of diversity, n_t and n_s , to calculate the likelihood, it is still of interest to calculate diversity from these in a window. The raw allele count data a $L \times 2$ matrix,

1 B Scores