# **Self Organised and Function + Pure function**

We assume the final string representing the stable FP as a combination of substring of the self organised and functional substring (denoted by A) plus the purely functional substring (denoted by B).

## 0.1 Some diagrams and introduction to the problem



#### These are the following fixed parameters:

- $\bullet$  p, the developmental noise, specifically the relative distance due to the developmental noise.
- q, the complexity parameter related to the number of fixed points.
- $\hat{r}$ , which the relative distance between some ideal *copy* to the noisefree copy.

Where both  $0 \le p, q \le \frac{1}{2}$ . We see a case (Section 0.5.2.1) where  $\hat{r}$  and hence  $r = \hat{r} \oplus p$ , be constrained in the following region  $0 \le \hat{r} < \frac{1}{4}$ , in order for the inqualities obtained by the positivity of the probabilities to be consistent.

The information (in bits) given by the initial condition is given as:

$$k = n(\alpha)(1 - H(q)) \tag{1}$$

Now going back to Figure 1(c) and Figure 1(d), we may easily write the following inquality on the initial string:

$$(1-\alpha)\frac{1}{2} + \alpha(p \oplus s \oplus p) \le q \tag{2}$$

$$\begin{split} p \oplus \left(s\alpha + \frac{1}{2}(1-\alpha)\right) \oplus p &\leq q \\ p \oplus \overline{s} \oplus p &\leq q \end{split} \tag{3}$$

where,

$$\overline{s} = \left(s\alpha + \frac{1}{2}(1-\alpha)\right)$$

Going back to Equation 3, we may now write:

$$\overline{s} \le \frac{1}{2} \left( \frac{q - p \oplus p}{\frac{1}{2} - p \oplus p} \right) \tag{4}$$

$$s \le \frac{1}{2\alpha} \left[ \left( \frac{q - p \oplus p}{\frac{1}{2} - p \oplus p} \right) - 1 \right] + \frac{1}{2} = s_{max}$$
 (5)

for ease we can write

$$1 - \left(\frac{q - p \oplus p}{\frac{1}{2} - p \oplus p}\right) = D(q, p)$$

since  $0 \le q \le \frac{1}{2}$ ,  $D(q, p) \ge 0$ . From Equation 5 we have the following:

$$s \le -\frac{D(q,p)}{2\alpha} + \frac{1}{2} = s_{max} \tag{6}$$

Let us now take a moment to rewrite all the constraints and inqualities that we have so far:

$$0 \le p \le \frac{1}{2},$$
 
$$0 \le q \le \frac{1}{2},$$
 
$$s \le -\frac{D(q,p)}{2\alpha} + \frac{1}{2} = s_{max},$$
 
$$0 \le \alpha \le 1,$$
 
$$\beta = 1 - 2\alpha,$$
 
$$r = \hat{r} \oplus p$$

#### 0.2 Contribution of the A term

Without going into details we just write the probability of the strings is:

$$P = 2^{-l_s D_{KL}(\{\tilde{s}_i || p_i\})} \tag{7}$$

in our case  $l_s=\alpha n.$  We have the observed probabilities as:

$$\tilde{s}_1 = 1 - \frac{1}{2}(2\hat{r} + s) \tag{8}$$

$$\tilde{s}_2 = \tilde{s}_3 = \frac{s}{2} \tag{9}$$

$$\tilde{s}_4 = \left(\hat{r} - \frac{s}{2}\right) \tag{10}$$

And assuming that the generation of the strings is random  $(p_i = \frac{1}{4})$ , we have:

$$D_{KL}(\{\tilde{s}_i || p_i\}) = 2 - H(\{\tilde{s}_i\}) \tag{11}$$

and we can use that to get,

$$P = 2^{-\alpha n(2 - H(\tilde{s}_i))} \tag{12}$$

and then we can compute  $\log(\frac{1}{P})$  as,

$$\log\left(\frac{1}{P}\right) = \alpha n(2 - H(\tilde{s}_i)) \tag{13}$$

## 0.3 Contribution of the B part

The contribution of the B part is straightforward to write:

$$\log\left(\frac{1}{P_B}\right) = \beta n(1 - H(r)) \tag{14}$$

## 0.4 A and B string together

From Equation 1, Equation 13 and Equation 14, we write:

$$k + l = \alpha n(\alpha)(2 - H(\tilde{s}_i)) + \beta n(\alpha)(1 - H(r)) \tag{15}$$

Plugging in the value of k from Equation 1 and subtracting it from the right-hand side:

$$l = \alpha n(\alpha)(2 - H(\{\tilde{s}_i\})) + \beta n(\alpha)(1 - H(r)) - n(\alpha)(1 - H(q))$$

$$l = n(\alpha)[\alpha(2 - H(\{\tilde{s}_i\})) + \beta(1 - H(r)) - (1 - H(q))]$$
(16)

remembering that  $\beta = 1 - 2\alpha$ ,

$$l = n(\alpha)[\alpha(2 - H(\{\tilde{s}_i\})) + (1 - 2\alpha)(1 - H(r)) - (1 - H(q))]$$
(17)

where,

$$n(\alpha) = \frac{n_0}{1 - \alpha} \tag{18}$$

Let us rename the following:

$$A(\{\tilde{s}_i\}) = (2 - H(\{\tilde{s}_i\})) \tag{19}$$

$$B(r) = (1 - H(r)) (20)$$

$$C(q) = (1 - H(q)) (21)$$

Now we may rewrite Equation 17 as

$$l = n(\alpha)[\alpha A(\{\tilde{s}_i\}) + (1 - 2\alpha)B(r) - C(q)] \tag{22}$$

Now again since  $n(\alpha) \geq 0$ , the positivity constraint on l implies that

$$\left[\alpha A(\{\tilde{s}_i\}) + (1 - 2\alpha)B(r) - C(q)\right] \ge 0 \tag{23}$$

for now I have not looked much into this constraint but it should be kept in mind moving forward, since it is a much general constraint that is true irrespective of the domains we shall talk about. (In Mathematica we simply assert  $l \ge 0$ ). If this is positivity constraint is not kept in mind the optimizer fails, citing imaginary values of the function.

**TODO**: Implement a numerical solver to find minimum l given the bounds on the  $\alpha$  and  $\hat{r}$ . Keeping q and p fixed. Also need to make sure all these bounds that we pass would be consistent.

On taking the derivative of Equation 22 with respect to  $\alpha$ , we have

$$\frac{dl}{d\alpha} = \left(\frac{n(\alpha)}{1-\alpha}\right) \left[A(\{\tilde{s}_i\}) - B(r) - C(q) + \alpha(1-\alpha) \sum_i \frac{dA}{d\tilde{s}_i} \frac{d\tilde{s}_i}{d\alpha}\right] \tag{24}$$

I might omit the function arguments of A, B and C sometimes, it is implied that they are functions of  $\{\tilde{s}_i\}$ , r and q respectively.

# **0.5** The Two Regimes $\hat{r} \oplus \hat{r} < s_{max}$ and $\hat{r} \oplus \hat{r} \geq s_{max}$

There are two regimes,

- if  $\hat{r} \oplus \hat{r} < s_{max}$  , then  $s = \hat{r} \oplus \hat{r}$  is a natural distance.
- if  $\hat{r}\oplus\hat{r}\geq s_{max}$ , we use  $s=s_{max}$ , and in that case  $s=s(\alpha)$  and  $\tilde{s}_i=\tilde{s}_i(\alpha)$

## **0.5.1 Regime 1:** $\hat{r} \oplus \hat{r} < s_{max}$

In this regime,  $\frac{dl}{d\alpha} = 0$ , then we have:

$$\frac{dl}{d\alpha} = \left(\frac{n(\alpha)}{1-\alpha}\right)[A-B-C] \tag{25}$$

$$A - B - C = H(r) + H(q) - H(\{\tilde{s}_i\})$$
(26)

$$\frac{dl}{d\alpha} = \frac{n(\alpha)}{1 - \alpha} [H(r) + H(q) - H(\{\tilde{s}_i\})] \tag{27}$$

#### **0.5.2 Regime 2:** $\hat{r} \oplus \hat{r} \geq s_{max}$

In the unexpanded form, (leaving all the  $\tilde{s}_i$ 's as is) the derivative of l in this regime is given by

$$\frac{dl}{d\alpha} = \frac{n(\alpha)}{1-\alpha} \left[ A(\alpha) - B - C + \alpha(1-\alpha) \frac{D(q,p)}{4\alpha^2} \log_2 \left( \frac{\tilde{s}_1(\alpha)\tilde{s}_4(\alpha)}{s_2^2(\alpha)} \right) \right]$$
(28)

#### 0.5.2.1 Positivity constraint on probabilities will give a bound on $\hat{r}$

Now in this regime we put  $s = s_{max}$  and then the probabilies  $\{\tilde{s}_i\}$  are a function of  $\alpha$ . There is a positivity constraint on the probability.

$$\begin{split} \tilde{s}_1 &= 1 - \frac{1}{2}(2\hat{r} + s(\alpha)) \geq 0 \\ \tilde{s}_2 &= \tilde{s}_3 = s(\alpha) \geq 0 \\ \tilde{s}_4 &= \hat{r} - \frac{s(\alpha)}{2} \geq 0 \end{split}$$

from these constraints and plugging  $s=s_{max}$  from Equation 6, we get the following equations

$$s_{max} \le 2(1 - \hat{r})$$

$$s_{max} \leq 2\hat{r}$$

and since  $\hat{r} \leq \frac{1}{2}$ , these will be redundant and we can just write:

$$s_{max} \le 2\hat{r} \tag{29}$$

and then we have additional constraint from positivity of  $\tilde{s}_2 = \tilde{s}_3 = \frac{s}{2}$ 

$$s_{max} \ge 0 \tag{30}$$

After plugging in the value of  $s_{max}$ , we get the two inequalities:

$$D(q, p) \le \alpha \tag{31}$$

and an upper bound from Equation 29

$$\alpha \le \frac{D(q,p)}{1-4\hat{r}} \tag{32}$$

therefore, for the bounds given by Equation 32 and Equation 31 to be consistent, recalling that  $D(q, p) \ge 0$ , we require:

so we cannot set  $\hat{r}$  to be any value in 0 to  $\frac{1}{2}$  like we do with p and q.