Многочлены, интерполяция

- 1. Существует ли многочлен $f(x) \in K[x]$, где K поле, который в различных точках x_0, \ldots, x_n принимает данные значения $y_0 = f(x_0), \ldots, y_n = f(x_n)$? Единственный ли этот многочлен?
- **2.** Пусть a, b взаимно простые числа. а) Докажите, что существует n такое, что $n \equiv 1, n \equiv 0.$
- б) Докажите, что для любого $0 \leqslant r_1 < a$ существует n такое, что $n \equiv r_1, n \equiv 0$.
- B) Prove that for every integer numbers $0 \le r_1 < a, 0 \le r_2 < b$, there exist n such that $n \equiv r_1$, $n \equiv r_2$.
- r) Докажите, что число n из предыдущей задачи единственно по модулю ab.
- 3 (Китайская теорема об остатках). Пусть m_1, m_2, \ldots, m_k попарно взаимно простые числа, $m = m_1 m_2 \cdots m_k$. Тогда для любых остатков $r_i, \ 0 \leqslant r_i < m_i$, существует единственный остаток $r, \ 0 \leqslant r < m$ такой, что $r \equiv r_i$.
- **4.** а) Постройте многочлен P, который в точках x_1, \ldots, x_n равен нулю, а в остальных точках отличен от нуля.
- б) Постройте многочлен P степени n, который в точке x_0 принимает значение 1, а в точках x_1, x_2, \ldots, x_n равен нулю.
- в) Постройте многочлен P степени n, который в точке x_0 принимает значение y_0 , а в точках x_1, x_2, \ldots, x_n равен нулю.
- г) Постройте многочлен P степени n, который в точке x_1 принимает значение y_1 , а во всех точках x_0, x_2, \ldots, x_n равен нулю.
- д) Постройте многочлен P степени n выше n, который в точке x_0 принимает значение y_0 , в точке x_1 принимает значение y_1 , а в точках x_2, \ldots, x_n равен нулю.
- е) Постройте многочлен P степени n выше n такой, что $P(x_i) = y_i$, где $i = 0, 1, \ldots, n$
- **5.** Опишите все многочлены, которые в точках x_0, x_1, \ldots, x_n принимают значения y_0, y_1, \ldots, y_n .

Определение 1. Интерполяционный многочлен в виде

$$P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$
 (1)

называется интерполяционным многочленом Ньютона.

- **6.** Докажите, что для любых точек x_0, x_1, \ldots, x_n и значений y_0, y_1, \ldots, y_n существуют числа a_i такие, что многочлен (1) в точках x_0, x_1, \ldots, x_n принимает значения y_0, y_1, \ldots, y_n .
- 7. Квадратный трехчлен P(x) принимает целые значения при всех целых x. Докажите, что все коэффициенты многочлена 2P(x) целые.
- 8. Многочлен f(x) имеет целые коэффициенты, причём f(0) и f(1) чётные. Докажите, что для любого целого числа n значение f(n) чётное число.

- **9.** Докажите, что если многочлен n-ой степени в n+1 последовательном целомчисле принимает целые значения, то он принимает целые значения во всех целых числах.
- **10.** Многочлен P(x) степени n удовлетворяет равенствам:а) P(k)=1; б) $P(k)=(-1)^k k$; в) $P(k)=\frac{k}{k+1}$, где $k=0,1,\ldots,n$. Найти P(n+1).