Reszty

Odpuśćmy sobie w tym zadaniu literacki opis kłopotów matematycznych Jasia i Małgosi. Kluczowe jest to, że mamy układ równań:

$$\begin{cases} a_1 \equiv b_1 \ (mod \ m) \\ a_2 \equiv b_2 \ (mod \ m) \\ \vdots \\ a_n \equiv b_n \ (mod \ m) \end{cases}$$

 $\begin{cases} a_1 \equiv b_1 \ (mod \ m) \\ a_2 \equiv b_2 \ (mod \ m) \\ \vdots \\ a_n \equiv b_n \ (mod \ m) \end{cases}$ Mając dane a_i oraz b_i , przy czym $a_i > b_i$, znaleźć największe m, dla którego układ jest spełniony.

Wejście

W pierwszym wierszu wejścia znajduje się liczba t odpowiadająca liczbie przypadków testowych. Opis każdego przypadku testowego składa się z trzech wierszy. W pierwszym wierszu znajduje się jedna liczba całkowita n (1 <= n <= 100 000) oznaczająca liczbę równań. W drugim wierszu znajduje się n liczb całkowitych $a_1, a_2, \dots a_n$ pooddzielanych pojedynczymi odstępami, są to liczby występujące po lewej stronie kolejnych równań. W trzecim wierszu wejścia znajduje się n liczb całkowitych $b_1, b_2, \dots b_n$, pooddzielanych pojedynczymi odstępami, są to liczby występujące po prawej stronie kolejnych równań. Wiemy też, że $10^{18} > a_i > b_i$

Wyjście

W pierwszym i jedynym wierszu wyjścia należy wypisać największą liczbę m, dla której podany układ równań jest spełniony.

Przykład

Wyjście
4
1