Overview

This OTG HID example is a simple demonstration program based on the KSDK. User can test the OTG functions by using the menu that is printed in the vcom.

System Requirement

Hardware requirements

- · Mini/micro USB cable
- USB A to micro AB cable
- Hardware (tower/base board, ...) for a specific device
- Personal Computer(PC)

Software requirements

• The project path is:

```
<SDK_Install>/boards/<board>/usb_examples/usb_otg_hid_mouse/<rtos>/<toolchain>.
```

Note

The <rtos> is Bare Metal or FreeRTOS OS.

Getting Started

Hardware Settings

• The Jumper settings:

J25 1-2 3-5, J20 2-3 Remove all jumpers from J22.

• The Jumper settings for twr-ser1:

```
J16 5-6, J11 7-8.
```

Note

The jumpers of the hardware (tower system/base module) needs to be set to default setting at first.

Prepare the example

- 1. Download the program to the target board.
- 2. Power off the target board and power on again.
- 3. Connect one board to another board.

Note

For detailed instructions, see the appropriate board User's Guide.

Run the example

- 1. Use the menu to operate the OTG functions, the menu is different for different state, you can input 'p' to get the menu information. The menu is as follow:
 - The state is a_idle (A-device is idle):

```
    bus request;
    bus release (set bus request false);
    set bus drop false;
    set bus drop true.
```

• The state is a_host (A-device works as host function):

```
    bus release;
    set bus drop true.
```

• The state is a_peripheral (A-device works as device function):

```
    bus request;
    set bus drop true.
```

• The state is b_idle (B-device is idle):

```
1. bus request (SRP).
```

• The state is b_peripheral (B-device works as device function):

```
1. bus request (HNP).
```

• The state is b_host (B-device works as host function):

```
2. bus release.
```

• The state is a_vbus_err (A-device works as error state):

```
5. clear error.
```

- 2. Connect the two boards UART to the PC and open the COM port in terminal tools.
- 3. You can do the following tests.
- Test1: Plug OTG cable to one board, the board works as A-device; plug out the cable, the board works as B-device.
- Test2: Plug one board to the PC. The PC recognizes it as an USB mouse device and the mouse moves around the screen.
- Test3 (bus request test):
 - 1. Plug OTG calbe to one board (board_1);
 - 2. plug another board (board_2) to the board_1;
 - 3. On the com port of the board_1, press "1" key to request bus; Or On the com port of the board_2, press "1" key to request bus;
 - 4. board_1 will work as host, board_2 work as device.

```
The logs are as follow if press "1" on the board_2.
On the com port of the board_1 displays:
        enter a host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                            Right
                                            Right
                                            Right
                                            Right
                                            Right
                                            Right
                                            Right
                                            Right
                                            Right
                                            . . . . . . . . . . . .
On the com port of the board_2 displays:
        1. bus request (SRP)
        enter b_srp_init
        enter b_idle
        device init success
        enter b_peripheral
```

- Test4 (SRP test):
 - 1. Plug OTG calbe to one board (board_1);
 - 2. plug another board (board_2) to the board_1;
 - 3. reset board_2, Or On the com port of the board_2, press "1" key to do SRP;
 - 4. board_1 will work as host, board_2 work as device as follow:

```
On the com port of the board_1 displays:
        enter a host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                           Right
                                           Right
                                          Right
                                          Right
                                           Right
                                           Right
                                           Right
                                           Right
                                          Right
On the com port of the board_2 displays (reset the board_2):
        usb otg stack init done
        enter b_idle
        enter b_srp_init
        enter b_idle
        device init success
        enter b_peripheral
```

• Test5 (HNP test):

- 1. Do as test3, test4 or other ways, make sure: board_1 work as A-device and host, board_2 work as B-device and peripheral;
- 2. On the com port of the board_2, press "1" key, the board_2 requests the bus and would like to become host, the host and peripheral functions are swapped. board_1 now becomes peripheral and borad_2 becomes host;

```
On the com port of the board_2 displays
       1. bus request (HNP)
       device deinit success
       enter b_wait_acon
       enter b host
        host init success
       hid mouse attached:pid=0x7cvid=0x1fc9 address=1
       mouse attached
                                          Right
                                          Right
                                          Right
On the com port of the board_1 displays
       mouse detached
        host deinit success
       enter a suspend
        device init success
        enter a_peripheral
```

3. On the com port of the board_2, press "2" key, the board_2 releases the bus and becomes peripheral and board_1 becomes host;

```
On the com port of the board_1 displays
        device deinit success
        enter a_wait_bcon
        enter a_host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                              Left
                              Left
                              T.eft
                              Left
                              Left
On the com port of the board_2 displays
        2. bus release
        mouse detached
        host deinit success
        device init success
        enter b_peripheral
```

4. On the com port of the board_2, press "1" key, the host and peripheral functions are swapped as step 2;

5. On the com port of the board_1, press "1" key, the board_1 requests the bus and would like to become host, the host and device functions are swapped.

```
On the com port of the board_1 displays
        1. bus request
        device deinit success
        enter a_wait_bcon
        enter a_host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                                 ΠP
                                                 UP
                                                 ΠP
                                                 UP
                                                 UP
                                                 ΠP
                                                 UP
                                                 ΠP
                                                 IJP
On the com port of the board_2 displays
        mouse detached
        host deinit success
        device init success
        enter b_peripheral
```

- Test6 (bus drop and bus request test):
 - 1. Do as test3, test4 or other ways, make sure: board_1 work as A-device and host, board_2 work as B-device and peripheral;
 - 2. On the com port of the board_1, press "4" key, vbus is dropped; board_1 becomes a_idle and board_2 becomes b_idle;

```
On the com port of the board_1 displays
4. set bus drop true
mouse detached
host deinit success
enter a_wait_vfall
enter a_idle
2. bus release (set bus request false)
On the com port of the board_2 displays
device deinit success
enter b_idle
```

3. On the com port of the board_1, press "3" key, vbus is controlled by board_1; press "1" key, the board_1 requests the bus and would like to become host, board_1 becomes a_host and board_2 becomes b_peripheral;

```
On the com port of the board_1 displays
        3. set bus drop false
        1. bus request
        enter a_wait_vrise
        enter a_wait_bcon
        enter a_host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                          Right
                                           Right
                                           Right.
                                           Right
On the com port of the board_2 displays
        device init success
        enter b_peripheral
```

4. On the com port of the board_1, press "2" key, the board_1 release the bus; board_1 becomes a_idle and board_2 become b_idle;

```
On the com port of the board_1 displays
2. bus release
mouse detached
host deinit success
enter a_suspend
enter a_wait_vfall
enter a_idle
On the com port of the board_2 displays
device deinit success
enter b_idle
```

5. On the com port of the board_1, press "1" key, the board_1 request the bus; board_1 becomes a_host and board_2 become b_peripheral;

```
On the com port of the board_1 displays
        1. bus request
        enter a_wait_vrise
        enter a_wait_bcon
        enter a_host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                           Right
                                           Right
                                           Right
                                           Right
                                           Right
On the com port of the board_2 displays
        device init success
        enter b_peripheral
```

6. On the com port of the board_1, press "2" key, the board_1 release the bus; board_1 becomes a_idle and board_2 become b_idle. the com port of the board_2, press "1" key, the board_2 request a session; board_1 becomes a_host and board_2 become b_peripheral.

```
On the com port of the board_1 displays
        2. bus release
        mouse detached
        host deinit success
        enter a_suspend
        enter a_wait_vfall
        enter a_idle
        enter a_wait_vrise
        enter a_wait_bcon
        enter a_host
        host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                                 Down
                                                 Down
                                                 Down
                                                 Down
                                                 Down
On the com port of the board_2 displays
        device deinit success
        enter b idle
        1. bus request (SRP)
        enter b_srp_init
        enter b_idle
        device init success
        enter b_peripheral
```

- Test7 (hotplug test):
 - 1. Do as test3, test4 or other ways, make sure: board_1 work as A-device and host, board_2 work as B-device and peripheral;
 - 2. Unplug the usb cable at the board_2 side, wait until board_1 becomes a_idle and board_2 becomes b_idle;

```
On the com port of the board_1 displays

UP
UP
UP
UP

mouse detached
host deinit success
enter a_wait_bcon
enter a_wait_vfall
enter a_idle

On the com port of the board_2 displays
device deinit success
enter b_idle
```

3. Plug the usb cable at board_2, on the com port of the board_2, press "1" key, the board_2 requests a session; board_1 becomes a_host and board_2 becomes b_peripheral;

```
enter a_wait_vrise
enter a_wait_bcon
enter a_host
```

```
host init success
        hid mouse attached:pid=0x7cvid=0x1fc9 address=1
        mouse attached
        set device HNP feature enable success
                                                 UP
                                                 UP
                                                 UP
                                                 IJP
                                                 UP
                                                 UP
                                                 UP
On the com port of the board_2 displays
       1. bus request (SRP)
        enter b_srp_init
        enter b_idle
        device init success
        enter b_peripheral
```

4. Unplug the USB cable at board_2 side, wait until board_1 becomes a_idle and board_2 becomes b_idle. Plug the USB calbe at board_2 side, on the com port of the board_1 press "1" key, the board_1 requests the bus; board_1 becomes a_host and board_2 becomes b_peripheral.

IJP UP mouse detached host deinit success enter a_wait_bcon enter a_wait_vfall enter a_idle 1. bus request enter a_wait_vrise enter a_wait_bcon enter a_host host init success hid mouse attached:pid=0x7cvid=0x1fc9 address=1 mouse attached set device HNP feature enable success UP UP Right Right Right On the com port of the board_2 displays device deinit success enter b_idle device init success enter b_peripheral