$\begin{array}{c} \text{COMPLEX NETWORKS - SPRING 2025} \\ \text{HOMEWORK 2} \end{array}$

INSTRUCTOR: JIA LIU SOLUTION BY: RENAN MONTEIRO BARBOSA

- \bullet DUE on 02/23/2025 11:59pm C.T.
- You can write on the separate work sheet or type your quiz. (Word or Latex or similar)
- If you use the handwriting, Solutions must be neat, clear and legible.
- If you need to scan you quiz, save it as a PDF file. Do not use jpeg, png, jpg etc. Do not submit more than one file.
- Please check your scanned file before submission. Make sure it is readable, correct order, properly oriented. Make sure it does include all pages.
- Please name your file as follows: LastnameInitials-MAP5990quiz1.pdf. If your name is Alan David Roberts, file name is RobertsAD-MAP5990quiz1.pdf.
- Try to keep the file size less than 4MB.
- You can resubmit the quiz if you want. Please specify which one is the one to be graded. Otherwise I will grade the most recent version.
- DO NOT EMAIL me the quiz. All quizzes are submitted via Canvas.

Date: 02/23/2025.

(1) Demonstrate the following for undirected networks:

2

(a) A 3 regular graph must have an even number of nodes.

(b) The average degree of a tree is strictly less than 2.

- (2) A star graph consists of a single central node with n-1 other nodes connected to it.
 - (a) Find the adjacency matrix of the following start network with nodes $_{\rm N^{\raisebox{-3pt}{\text{\circle*{1.5}}}}}$

(b) Find the largest eigenvalue of the adjacency matrix.

	C	COMPLEX NETWORKS - SPRING 2025	HOMEWORK 2	3
(3)	a grerules	erage degree of a growing network As owing undirected network. The network es: At time $t = 1$ there is a single isolated no At each time $t > 1$ a new node is added to to the existing network by a new link. sider the network at time $t = T$. What is the total number of nodes N?	volves in time by this simplede.	ple
	(b)	What is the total number of links L?		
	(c)	What is the average degree $\langle k \rangle$?		
	(d)	What is the average degree in the limit T	$\rightarrow +\infty$?	
(4)	that	can calculate the diameter of certain types each of these network has network size N What is the diameter of a fully connected		me
	(b)	What is the diameter of a star network?		
	(c)	What is the diameter of a linear chain of	N nodes?	

(d) What is the small world diameter property?

networks have SWDP?

(e) Which of the above networks are small-world? In another word, which

4 INSTRUCTOR: JIA LIU SOLUTION BY: RENAN MONTEIRO BARBOSA

- (5) Please submit the network for your final project, including the following. This is a group work. Please discuss with your team members but each one needs to submit the individual report.
 - (a) What is your network?
 - (b) Where you get the data?
 - (c) Describe your network including the application area, size, nodes.
 - (d) Why you (or your team) want to study this network.