計算機構成論 第13回 一性能評価一

大連理工大学・立命館大学 国際情報ソフトウェア学部 大森 隆行

- ■性能評価
- ➡■スループット、応答時間、CPU実行時間
 - クロック・サイクルとCPI
 - MIPS
 - ■ベンチマーク
 - ■アムダールの法則
 - ■ムーアの法則

スループットと応答時間

- ■スループット (throughput)
 - ■単位時間あたりに終了した作業量
- ■応答時間 (response time)
 - ■コンピュータがタスクを完了させるのに 必要な時間
 - ■ディスク・アクセス、メモリ・アクセス、 入出力動作、OSのオーバヘッド、CPU実行時間 等を含む
 - Q. 以下の場合、スループット、応答時間のどちらが (あるいは両方)が改善するか?
 - 1. プロセッサを高速なものに取り替える
 - 2. 複数プロセッサを使用してタスクを分担しているシステムに プロセッサを追加する

実行時間の内訳

■あるコンピュータXに関して以下が成立

実行時間が半分 = 性能が2倍

※ここでの「性能」は、 時間的な性能

- 実行時間=応答時間=経過時間
 - ディスク・アクセス、メモリ・アクセス、 入出力動作、OSのオーバヘッド、CPU実行時間 等
 - CPU(実行)時間 = システムCPU時間 + ユーザCPU時間
 - ユーザCPU時間: CPUがあるユーザプログラムに関して、実際に処理を行った時間
 - システムCPU時間: OSのオーバヘッドの作業時間

CPU実行時間

■ あるプログラムのCPU実行時間 = そのプログラム実行に必要な CPUクロック・サイクル数× クロック・サイクル時間

■ クロック・サイクル時間(秒)= 1 / クロック周波数 (Hz)

- ■単位時間あたりに終了した作業量を (1)と呼ぶ。
- ■コンピュータの性能が2倍になると、 実行時間は(2)倍になる。
- CPU実行時間= (3)CPU時間+(4)CPU時間
- ■クロック・サイクル時間が0.25ナノ秒の時、 クロック周波数は(5)GHz。

- ■性能評価
 - ■スループット、応答時間、CPU実行時間

- ■クロック・サイクルとCPI
- MIPS
- ■ベンチマーク
- ■アムダールの法則
- ■ムーアの法則

命令の実行にかかるクロック・サイクル数

- 複雑な命令(乗算、除算等)には複数 クロック・サイクルが必要
- パイプライン処理などを使う場合、状況により 必要なCPUクロック・サイクル数は変化する

- CPI (clock cycles per instruction)
 - ■命令あたりの平均クロック・サイクル数
 - ■普通、一つのプログラム全体での平均を取る
- あるプログラムの実行に必要な CPUクロック・サイクル数 = 命令数 × CPI

■同じ命令セットアーキテクチャを実現した 以下の2種類のコンピュータがあるとする。

	クロック・サイクル時間	あるプログラムXでのCPI
コンピュータA	250ps	2.0
コンピュータB	500ps	1.2

どちらのコンピュータが、どれだけ速いか?

「□の方が□倍速い」という形で答えてください

■ 2つのコード系列がある。ある同じプログラムから生成されるコードの命令数は各系列で以下のように異なる。

	命令クラスごとの実行命令数				
コード系列	А	В	С		
1	2	1	2		
2	4	1	1		

命令クラスごとのCPIが以下のとき、どちらのコード系列の方が実行速度が速いか。また、それぞれのCPIはいくつか。

	命令クラスごとのCPI		
CPI	Α	В	С
	1	2	3

- ■性能評価
 - ■スループット、応答時間、CPU実行時間
 - ■クロック・サイクルとCPI
- MIPS
- ■ベンチマーク
- ■アムダールの法則
- ■ムーアの法則

MIPS

- not MIPS architecture
- million instructions per second

■ 長所

■ 単位時間あたりの実行命令数に比例するので、 直感的にわかりやすい

■短所

- 命令の中身を考慮していない
 → 異なる命令セット同士で比べられない
- 同じコンピュータでもプログラムが違えば 実行命令数が違ってくる

■クロック周波数4GHzのCPUで、 命令クラスごとのCPI、出現率が 以下のとき、MIPS値はいくらか。

	命令クラス		
	А	В	С
CPI	1	2	3
出現率	70%	20%	10%

有効桁3桁で計算

- ■性能評価
 - ■スループット、応答時間、CPU実行時間
 - ■クロック・サイクルとCPI
 - MIPS

- ■ベンチマーク
- ■アムダールの法則
- ■ムーアの法則

ベンチマーク

- どちらの方が良いか?
 - 計算機Aはプログラム1を1秒、プログラム2を1000秒
 - 計算機Bはプログラム1を10秒、プログラム2を100秒
- 多くのプログラムで調べて平均を取ればいい →どんなプログラムに対して評価するか?
- ベンチマーク: コンピュータの性能評価を目的として選定された プログラム群
- SPEC (Standard Performance Evaluation Corporation)
 - ベンチマークを策定している組織
 - 実際によく使われるアプリケーションがベンチマークとして採用
 - 最新版 SPEC CPU2006 → CPU2017に更新された
 - SPEC ratio
 - 基準プロセッサでの実行時間/測定対象での実行時間 = 基準の何倍速いか
 - 2つの計算機間で比較するときは、SPEC ratioの幾何平均をとる

(例) Intel Core i7のベンチマーク

説明	名前	命令数 (×10°)	CPI	クロックサイクル時間 (ナノ秒)	実行時間 (秒)	基準時間 (秒)	SPECratio
有意の文字列処理	perl	2,252	0.60	0.376	508	9,770	19.2
ブロック・ソート圧縮	bzip2	2,390	0.70	0.376	629	9,650	15.4
GNU C コンパイラ	gcc	794	1.20	0.376	358	8,050	22.5
組み合わせ最適化	mcf	221	2.66	0.376	221	9,120	41.2
囲碁 (AI)	go	1.274	1.10	0.376	527	10,490	19.9
遺伝子系列の検索	hmmer	2.616	0.60	0.376	590	9,330	15.8
チェス (AI)	sjeng	1,948	0.80	0.376	586	12,100	20.7
量子コンピュータ・ シミュレーション	libquantum	659	0.44	0.376	109	20,720	190.0
ビデオ圧縮	h264avc	3,793	0.50	0.376	713	22,130	31.0
離散事象シミュレーション のライブラリ	omnetpp	367	2.10	0.376	290	6,250	21.5
ゲーム/経路発見	astar	1.250	1.00	0.376	470	7.020	14.9
XML処理	xalancbmk	1.045	0.70	0.376	275	6,900	25.1
幾何平均							25.7

図 1.18 2.66GHz の Intel Core i7 920上で実行した SPECINTC2006.

(例) 電力消費に関するベンチマーク

負荷レベル	性能 平均電力 (ssj_ops) (ワット)	
100%	100% 865,618	
90%	786,688	242
80%	698,051	224
70%	607,826	204
60%	521,391	185
50%	436.757	170
40%	345,919	157
30%	262,071	146
20%	176,061	135
10%	86.784	121
0%	0	80
승計	4,787,166	1,922
$\Sigma_{ m ssj_ops} / \Sigma$ 電力=		2,490

図 1.19 デュアル・ソケットで 2.66GHz の Intel Xeon X5650上で、16G バイトの DRAM と 1 台の 100G バイト・ディスクを用いて実行した SPECpower_ssj2008.

- ■性能評価
 - ■スループット、応答時間、CPU実行時間
 - クロック・サイクルとCPI
 - MIPS
 - ベンチマーク
- □ アムダールの法則
- ➡┗ムーアの法則

アムダールの法則 (Amdahl's law)

■ ある改善を行った結果の性能の向上は、改善 した機能を使用する割合によって制約される。

```
改善の影響を受ける実行時間 改善の影響を受けない
改善後の実行時間 = ひ善の影響を受けない
改善度 実行時間
```

- 例:90%がCPU処理、10%がI/O処理
 - ■10倍速いCPUを使うと全体の時間はどうなるか?
 - 100倍だと?
 - ■無限に速いCPUだと?

ムーアの法則 (Moore's law)

図1.17 1980年代中盤以降のプロセッサの性能の向上.

1.5年で面積あたりのトランジスタ数が2倍に →容量・性能の向上、値段下落

- ■以下の説明に合う用語を答えよ。
 - ■1.5年で面積あたりのトランジスタ数が2倍に なるという法則(予測)
 - ■ある改善を行った結果の性能の向上は、改善 した機能を使用する割合によって制約される という法則
 - ■コンピュータの性能評価を目的として 選定されたプログラム群

参考文献

- ■コンピュータの構成と設計 上 第5版 David A.Patterson, John L. Hennessy 著、 成田光彰 訳、日経BP社
- ■山下茂 「計算機構成論1」講義資料

■ 画像は教科書からのスキャンです。 転載・頒布を禁止します。