

2/12/2018

MTECH KE-5107 (DMMM)

PCA/FACTOR/CLUSTER ANALYSIS REPORT

FMA MUSIC ANALYSIS

SUBMITTED TO

INSITITUTE OF SYSTEM SCIENCE
NATIONAL UNIVERSITY OF SINGAPORE

PREPARED BY

SAURABH SEMWAL
VIKNESHKUMAR BALAKRISHNAN
ANJALI SINHA
GOPALAKRISHNAN SAISUBRAMANIAM

MASTER OF TECHNOLOGY IN KNOWLEDGE ENGINEERING BATCH KE-30(2018)

PAGE 0 OF 9

1. ABSTRACT

Principal Component Analysis (PCA) is a popular statistics technique used primarily in the field of data mining for dimensionality reduction. It uses an orthogonal transformation to reduce a set of possibly correlated variables in a multivariate dataset into a set of linearly combination of the original variables, referred to as Principal Components. This report serves to showcase the usefulness of PCA by applying it on a real world dataset - FMA (Free Music Archive). The rotated loading matrix from the technique (varimax rotated PCA) is used to provide domain relevant names to orthogonal variables. The following independent sub-tasks are also considered after generation of the principal components: i. Using a clustering technique with the reduced feature set to profile music tracks, ii. Performing nominal regression analysis using the reduced number of orthogonal variables and analyzing the prediction quality using standard metrics. All related experiments and analysis are conducted using the software - JMP Pro 13.

2. DATASET

a) DATA SOURCE

The dataset under consideration is a dump of the **Free Music Archive (FMA)**, an interactive library of high-quality, legal audio downloads ^[1] The dataset was created by a group of researchers at EPFL, Switzerland.^[2]

b)SUBSET SELECTION

The full version of the dataset has ~13k observations and has information suitable for multi-label prediction, but for the purpose of this assignment a subset was constructed specifically for the simpler problem of single-label prediction by careful selection of higher quality tracks that have a single root genre and have meta-data completeness. This subset shall be henceforth referred to simply as the *dataset* in this document.

c) DATA DESCRIPTION

The original dataset contains 781 variables and 13129 observations.

Index	Column Number	Variable Name	Туре	Description
Α	1	Track id	Continuous	Unique identifier of the song
В	2-13	Social & Audio features	Continuous	Scores of songs on the basis of various features such as valence, liveness, danceability, tempo, acousticness, energy, and instrumentalness. Scores of artists on basis of discovery, familiarity and hotness.
С	14-237	Temporal Echonest features ^[4]	Continuous	It consists calculations of statistical moments of various segments such as pitch, timbre, loudness, derived using Echonest API [5]

D	238-241	Album attributes	Various	Consists of album type, album listens,					
				album tracks and album active days					
E	242-244	Artist info	Various	Consists of artist id, artist location					
F	245-246	Set info	Categorical	Column for dataset split and subset.					
G	247-263	Track info	Continuous	Track details such as genre, duration, days					
				active, number of time it was selected as					
				favorite, number of listens.					
Н	264-515	Chroma calculations	Continuous	Chroma features represent audio by					
				projecting the entire spectrum onto 12					
				bins representing the 12 distinct					
				semitones of the musical octave. Different					
				representations of chroma values using					
				various techniques are derived using					
				Librosa package ^[3]					
I	516-655	Mfcc stats	Continuous	Features representing speech in compact					
				form. ^[6]					
J	656-662	Rmse stats	Continuous	The RMS level is proportional to the					
				amount of energy over a period of time in					
				the signal.					
K	663-774	Tonnetz stats	Continuous	A planar representation of pitch relations					
				showing harmonic relationships in					
				European classical music. ^[7]					
L	775-781	Zcr stats	Continuous	Rate at which the signal changes from					
				positive to negative or back.					

[Table 1: Data Description]

3. PRELIMINARY EXPLORATORY ANALYSIS

i. CLEANING AND TREATMENT OF MISSING VALUES

ii. Transformations

- > track_num_days_active: The difference between the date of track creation and current date.
- artist_num_days_active: The difference between the start of artist career and current date.

iii. FINAL PREDICTORS

Out of the original 781 variables, we identified and removed those that exhibit near-zero variance and whose p-values were insignificant (p-value > 0.05). We finally ended up with 40 input predictors, and the track_genre as the response variable.

4. DIMENSIONALITY REDUCTION

i. GENERATION OF PRINCIPAL COMPONENTS

In JMP, we used Principal Component Analysis (under Multivariate option) and generate the orthogonal components. The below figures represent the variance explained by each component (Fig 4-1) and the orthogonal vectors representation. (Fig 4-2)

[Figure 4-2: Orthogonal Components]

[Figure 4-1: Principal Components Eigen Value]

[Figure 4-3: Scree Plot]

As per Kaiser's criterion, the eigen values over 1 are considered stable. For eigen values >=1, 73.271% of the data is retained (13 components) but in order to slightly improve the retention, we included the 14th component also. (75.672%)

ii. Naming the Orthogonal Variables from the Rotated Loading Matrix

The loading matrix is rotated for the sake of interpretation of extracted components in PCA.

Rotated Factor Loading	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9	Factor 10	Factor 11	Factor 12	Factor 13	Factor 14
temporal features 120	0.968601	0.016322	-0.023928	-0.001228	0.035894	0.040776	0.027832	0.008562	-0.033912	-0.044970	-0.134279	-0.039160	-0.012117	-0.035833
temporal features 194	0.913638					0.192074					-0.130734			
temporal features 210	0.895891			-0.145773						-0.129013	0.132930			
temporal features 123	0.279733			-0.311868		0.489827		-0.097406	0.130547	-0.198767	0.390868		0.165870	0.15280
mfcc skew 1	0.258222	-0.378806			0.237402	0.657476				-0.165137			0.121049	
spectral contrast std 1	0.176514		-0.240907	-0.276578	0.196560				0.146544	-0.472168		0.091518		
temporal features 216	0.096719	0.848119	-0.108457		0.156640	-0.145880				0.075758	-0.230342	0.109075		
rmse max 1				-0.122475		0.121553			0.857962					
temporal features 67		-0.227862				0.168106			0.232425			-0.342162	0.288834	-0.13249
temporal features 99	0.063884	-0.094903	-0.164778	-0.104707	-0.181660	0.161773				-0.482661	0.520172	0.461721		
audio features acousticness			-0.474049	0.398631	0.367205				-0.179073			-0.132781	0.357674	
track interest							0.949385							
mfcc_std_6			0.222531		-0.135969	0.384303		-0.151374		-0.558690	0.075474	-0.394448		
track listens							0.945058							
temporal features 72				0.264275	0.601231	-0.192872			-0.106361	0.127674				
temporal features 200		0.957695	-0.081902			-0.114556					-0.115542			
spectral contrast mean 4			-0.238450	0.194361	0.700794				-0.139232	-0.162693				
track days active		0.072743						-0.048914	-0.120406		0.097785	0.135965	0.807774	
temporal features 100			-0.468606	-0.369779	0.097045				-0.094135	-0.114442	0.117680	-0.470873	-0.300583	
temporal features 3		0.082907		0.053194	-0.714711	-0.092191		-0.075834		-0.077470		-0.108936		
social features artist familiarity				0.096519		-0.085417		0.930574	-0.064284					
social features artist hottmesss					0.063424			0.936831						
audio features instrumentalness			-0.110189	0.167462					0.070209		-0.097689	0.801345	0.165755	
artist_favorites				0.074202	0.144080		0.483191	0.260477	0.122835	-0.203865	-0.093247	0.118418		
audio_features_danceability		-0.197945	0.101250	-0.299342		0.512856			0.126498	-0.100117	0.554265			
album_days_active			-0.040814	-0.110649	-0.072347			0.157061	-0.287050		-0.115412	0.100622	0.416714	-0.43034
track_number				-0.145779	-0.145178	0.083457		-0.090276	-0.131904		-0.162488	0.094307		0.74449
mfcc_median_6			0.903526	-0.230679	-0.134338			-0.074693			0.066634	-0.097269		
temporal features 98		0.149490	-0.312371	0.427798	-0.069298	-0.549931			-0.224846	-0.336131		0.081596	-0.127366	
mfcc_mean_6		-0.098943	0.904211	-0.221812	-0.121660				0.088260		0.078498	-0.091289		
temporal_features_202		0.909030		-0.092259										
album_tracks				0.114401				0.117247		0.114001	0.303996	-0.154846		0.67479
mfcc_min_4										0.830641			-0.098174	
mfcc median 2	-0.099921		-0.250258	0.843840	0.229944						-0.113208	0.135337		

Factor 1: This component is highly loaded with 3 of the temporal features (120,194,210). **Name:** Temporal features

Factor 2: This component represents three temporal features (200,202,216) whose eigen vectors lie along one direction and the vector of the mfcc component(mfcc_skew_1) is in the opposite direction. **Name:** High frequency temporal features

Factor 3: This component is loaded with speech recognition components whose eigen vectors lie along one direction (mfcc_median_6 & mfcc_mean_6) and vector of acousticsness component which is a measure of usage natural musical sounds. Lower the value of the acousticsness, it means usage of electronic instruments rather than natural sounds. **Name:** Measure of Low frequency instrumental sounds

Factor 4: This component is highly dependent low frequency speech components (mfcc_mean_2 & mfcc_mean_median 2) and also the acousticsness which is basically natural sounds (like human voice) **Name:** Measure of Human voice

Factor 5: This component is highly dependent on spectral contrast mean 4 which explains the frequency band of the sound and the acousticsness variable. It inversely varies with the energy variable. **Name:** Measure of Low frequency natural sounds

Factor 6: It is highly loaded with two low frequency speech components of mfcc(mfcc_skew_1 & mfcc_std_6), 1 temporal feature(123) & also highly correlated with danceability of the audio feature. **Name:** Track danceability

Factor 7: This component is highly loaded with track interest, track listens and artist favorites. On the whole, this explains the popularity of a track. **Name:** Track Popularity

Factor 8: This consists of artist hotness and familiarity. Name: Artist Popularity

Factor 9: This component highly varied by the values of rmse_max_1 and rmse_mean_1 which is a function of energy component of the audio. **Name:** Track energy

Factor 10: This component is inversely dependent on spectral_contrast_1, temporal feature_99 and mfcc_std_6 which makes it a measure of high frequency range and also directly varied by mfcc min 4. **Name:** Measure of high frequency sounds

Factor 11: This component mostly influenced by n the valence, danceability and the temporal feature_99. Valence explains the emotions of the audio in the scale of sad to happy. **Name:** track emotion

Factor 12: This is directly proportionate to instrumentalness and temporal feature_99 and inversely proportional to low frequency mfcc component (mfcc_std6) and the temporal feature_100. **Name:** Instrumental usage

Factor 13: It is heavily loaded with variables track days active and album days active. **Name:** track lifespan

Factor 14: It is heavily loaded with variables like album tracks, track number and negatively correlated to album days active. **Name:** Album Size

5. CLUSTERING

i. Profile / Description

[Figure-5-1 Clusters]

Cluster 1: The mean of the variables like audio_danceability, audio_energy, track interest and track listens are very high in this cluster.

Profile: Upbeats

Cluster 2: The mean of the audio_acousticness is high which means tracks which doesnot use electronic musical instruments come under this group. Also, the mean of audio_danceability, energy and valence are low. Low valence signifies the songs revolve around sadness which will have less energy and danceability. Profile: Underrated Blues

Cluster 3: This cluster has higher means for artist_familiarity, artist_hotness and artist_favorites. The tracks under this cluster are just listened and liked because of the popularity of the artist. Profile: Celebrity Hypes

6. REGRESSION ANALYSIS

i. METHODOLOGY

Since our problem statement is classifying four types of genre, we have opted to use multinomial logistic regression (nominal) for the same. In JMP, this is achieved by selecting the *Fit Model* option. The Principal Components and artist_location features are added as input predictors (X variables) and the track_genre is selected as the response (Y variable). The personality (method) is Nominal Logistic with degree=2.

ii. Performance Metrics

Various performance metrics observed using the JMP software are shown below.

EFFECT SUMMARY

The effect summary table gives us the **LogWorth** and **p-values** corresponding to the fields. The LogWorth of all the Sources is > 2, therefore all sources play a significant role in determining the genre. Based on LogWorth, Prin1 and artist_location seem to be the prime sources.

[Figure 6-1: Effect Summary of Nominal Logistic fit]

WHOLE MODEL TEST

In the Whole Model Test report, the chi-square statistic (5811.857) has a small p-value (<0.0001), which indicates that the overall model is significant. The RSquare (U) tends to be small for logistic models. [10]

[Figure 6-2: Whole Model Test]

CONFUSION MATRIX

The confusion matrix for the genre prediction task using Nominal Regression:

▼ Confusion Matrix

Training

Actual	Predicted Count								
track_genre	Electronic	Folk	Hip-Hop	Rock					
Electronic	616	53	80	87					
Folk	33	702	37	90					
Hip-Hop	66	28	757	43					
Rock	65	79	37	680					

[Figure 6-3: Confusion Matrix for multiclass genre prediction]

Accuracy:

(TP+TN)/(TP+TN+FP+FN) = 2755/3453 = 0.797
 We have close to 80% accuracy from this model.

Sensitivity (True Positive Rate):

- Sensitivity(Electronic) = (TP)/(TP+FN) = 616/836 = 0.74
- Sensitivity(Folk) = (TP)/(TP+FN) = 702/862= 0.81
- Sensitivity(Hip-Hop) = (TP)/(TP+FN) = 757/894 = 0.85
- Sensitivity(Rock) = (TP)/(TP+FN) = 680/861 = 0.79

Specificity (True Negative Rate):

- Specificity(Electronic) = (TN)/(FP+TN) = 2453/2617 = 0.94
- Specificity(Folk) = (TN)/(FP+TN) = 2431/2591 = 0.94
- Specificity(Hip-Hop) = (TN)/(FP+TN) = 2405/2559 = 0.94
- Specificity(Rock) = (TN)/(FP+TN) = 2372/2592 = 0.92

Eg:- For calculating the Specificity of Electronic genre,

TN = 702+37+90+28+757+43+79+37+680 = 2453

FP = 33+66+65=164

Specificity = (TN)/(FP+TN) = 2453/(164 + 2453) = 0.94

ROC

The area under the curve(AUC) is > 0.9 for all genres and this indicates that a value closer to 1 is likely to have better overall classifier performance.

[Figure 6-4: ROC curve]

MEASURE OF THE MODEL

The value of Generalized RSquare (0.8685) is closer to 1, indicating a better model fit. RMSE(0.4122) indicates a decent fit.

Misclassification Rate (0.2021) indicates a better model fit. [10]

Measure	Training	Definition
Entropy RSquare	0.6072	1-Loglike(model)/Loglike(0)
Generalized RSquare		(1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)
Mean -Log p		Σ -Log(ρ[j])/n
RMSE		$\sqrt{\sum (y[j]-\rho[j])^2/n}$
Mean Abs Dev	0.2939	Σ [y[j]-ρ[j]]/n
Misclassification Rate	0.2021	∑ (p[j]≠pMax)/n
N		n

[Figure 6-5: Fit details]

7. LIMITATIONS IN THE FINDINGS

The limitations

8. CONCLUSION & FUTURE SCOPE

We conclude

9. References

- 1. FMA: A DATASET FOR MUSIC
 ANALYSIS https://arxiv.org/pdf/1612.01840.pdf
- 2. FMA DATASET GITHUB PAGE https://github.com/mdeff/fma
- 3. LIBROSA, A PYTHON PACKAGE FOR MUSIC AND AUDIO ANALYSIS https://librosa.github.io/librosa/
- 4. ECHONEST https://developer.spotify.com/web-api/get-several-audio-features/
- 5. Temporal Echonest Features http://www.ifs.tu wien.ac.at/~schindler/pubs/AMR2012.pdf
- 6. MFCC
 - http://musicweb.ucsd.edu/~sdubnov/CATbox/Reader/logan00mel.pdf
- 7. DETECTING HARMONIC CHANGE IN MUSIC AUDIO http://www.ofai.at/~martin.gasser/papers/oefai-tr-2006-13.pdf
- 8. EFFECT OF MFCC FILTERS IN DISTINGUISHING LOW VS HIGH FREQUENCY SOUND http://www.speech.cs.cmu.edu/15-492/slides/03 mfcc.pdf

- 9. INSTRUMENTS AND FREQUENCIES
 https://www.headphonezone.in/blogs/audiop-hile-guide/mid-range-high-range-frequencies
- 10. WHOLE MODEL TEST
 https://www.jmp.com/support/help/13-2/Whole_Model_Test.shtml

