ДОМАШНЕЕ ЗАДАНИЕ

- 1.1. Среднее потребление электорэнергии в мае в некотором населенном пункте составляет 360 000 кВт⋅ч.
 - а) С использованием первого неравенства Чебышева оценить вероятность того, что в мае очередного года это значение превысит $1\,000\,000~{\rm kBt}$ -ч.
 - б) Оценить вероятность события из п. а) с использованием второго неравенства Чебышева, если дополнительно известно, что среднеквадратичное отклонение потребления энергии в этом населенном пункте в мае составляет 40 000 кВт·ч.

Ответ: a) $P\{X > 1\,000\,000\} < 0.36$; б) $P\{X > 1\,000\,000\} < 1/256$.

1.2. Среднее квадратичное отклонение погрешности измерения курса самолета составляет 2°. Считая, что систематические ошибки измерения отстутствуют (то есть математическое ожидание погрешности измерения равно нулю), оценить вероятность того, что погрешность очередного измерения курса самолета превысит 5°.

Ответ: P {погрешность превысит 5° } < 0.16.

1.3. Проверить, применим ли к последовательности X_1, X_2, \ldots независимых непрерывных случайных величин закон больших чисел в форме Чебышева (закон больших чисел в форме Чебышева с ослабленным условием), если функция плотности распределения вероятностей случайной величины X_n имеет вид

$$f_n(x) = \frac{(n+1) n^{2(n+1)} |x|}{(x^2 + n^2)^{n+2}}, \quad x \in \mathbb{R}, \ n \in \mathbb{N}.$$

Ответ: нет, неприменим (с ослабленным условием тоже неприменим).

1.4. Значение некоторой величины a находят как среднее результатов n измерений, которые содержат ошибки. Считая, что систематические ошибки отсутствуют, а среднеквадратичное отклонение величины ошибки равно σ , найти вероятность p_0 того, что в результате n=100 измерений найденное значение будет отличаться от a не более, чем на 0.1σ . Сколько измерений нужно сделать, чтобы гарантировать значение вероятности этого события не менее, чем $(1+p_0)/2$?

Ответ: a) $p_0 = 0.68$; б) $n \ge 198$.

1.5. Известно, что в среднем 5% студентов носят очки. Оценить вероятность того, что среди 200 находящихся в аудитории студентов не менее 10% носят очки.

Ответ: 0.00059.

- 1.6. Вероятность рождения мальчика равна 0.512. Считая применимой интегральную теорему Маувра-Лапласа, найти вероятность того, что среди 100 последовательно родившихся в некотором роддоме детей
 - а) мальчиков, больше, чем девочек (событие A);
 - б) количество мальчиков будет отличаться от количества девочек не более чем на 10 единиц (событие B).

Ответ: а) 0.516; б) 0.669.

- 1.7. Оценить, сколько необходимо произвести испытаний по схеме Бернулли, чтобы с вероятностью не менее 0.975 гарантировать выполнение неравенства $|\hat{p}-p|<\varepsilon$, где \hat{p} наблюденная частота успеха в серии, p=1/2 теоретическая частота успеха (вероятность успеха в одном испытании), $\varepsilon=0.1$. Решить задачу
 - а) с использованием второго неравенства Чебышева;
 - б) с использованием интегральной теоремы Муавра-Лапласа.

Ответ: a) $n \ge 1000$; б) $n \ge 126$.