



## Introducción a los átomos ultrafríos

#### Felipe Isaule

Investigador Postdoctoral ANID Instituto de Física, PUC

1ra Escuela Chilena de Átomos Ultrafríos 20/01/2025, PUC, Santiago, Chile

#### Literatura

- C. J. Foot, Atomic physics (Oxford university press, 2005).
- C. J. Pethick and H. Smith, *Bose-Einstein Condensation in Dilute Gases* (Cambridge University Press, Cambridge, 2008).
- I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
- L. P. Pitaevskii and S. Stringari, *Bose-Einstein Condensation and Superfluidity* (Oxford University Press, Oxford, 2016).

¿Qué son los **átomos ultrafríos**? ¿Por qué se han vuelto tan **relevantes** en las últimas tres décadas? ¿Qué tipo de **sistemas físicos** se pueden estudiar?

## ¿Por qué enfriar átomos?



### Los átomos ultrafríos son interdisciplinarios

## Física Atómica y Molecular

C. Foot, Atomic physics (Oxford university press, 2005).

# Óptica cuántica

I. Mekhov and H. Ritsch, J. Phys. B 45, 102001 (2012)

#### Materia Condensada

M. Lewenstein et al., Adv. Phys., 56, 243 (2007)

#### Simulaciones Numéricas

A. Minguzzi et al., Phys. Rep. 395, 223 (2004).

#### Física Nuclear

N. T. Zinner and A. S. Jensen, J. Phys. G **40**, 053101 (2013)

## **Historia:** Enfriamiento y atrapamiento

• En los 80's se desarrollaron técnicas **experimentales** con láser de **enfriamiento** y **atrapamiento** de átomos e iones.

H. J, Metcalf and P. van der Straten, Laser cooling and trapping, Springer Science & Business Media (1999).

#### Algunos hitos:

→ 1975: Primeras propuestas para enfriamiento Doppler.

T. W. Hänsch and A. L. Schawlow, Opt. Commun. 13, 68 (1975).

D. Wineland and H. Dehmelt, Bull. Am. Phys. Soc. 20, 637 (1975).

→ <u>~1980</u>: **Desaceleramiento láser** de átomos neutros. W. D. Phillips and H. Metcalf, Phys. Rev. Lett. **48**, 596 (1982).

- → 1985: Molasas ópticas para enfriar hasta los μK. S. Chu *et al.*, Phys. Rev. Lett. **55**, 48(1985).
- → 1987: Trampas magneto-ópticas (MOT) y enfriamiento sub-Doppler para enfriar bajo los μK.

E. L. Raab et al., Phys. Rev. Lett. **59**, 2631 (1987). Paul D. Lett et al., Phys. Rev. Lett. **61**, 169 (1988).

→ 1997: Premio Nobel a S. Chu, C. Cohen-Tannoudji y W. D. Phillips.

W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).



## ¿Por qué enfriar átomos?: Mecánica Cuántica

 A temperaturas ultrafrías podemos observar efectos cuánticos.

Degeneración cuántica:

$$n\lambda_{\mathrm{dB}}^3 \gg 1$$
  $\longrightarrow$ 

Longitud de de Broglie es mucho más grande que la distancia entre partículas.

Longitud de de Broglie:

$$\lambda = \sqrt{\frac{2\pi\hbar^2}{mk_BT}}$$

m: densidad m: masa átomo T: Temperatura

• Un **gas** con una densidad "*típica*" de  $n^{-1/3} \simeq 100 \mathrm{nm}$  y a una temperatura de  $T = 100 \mathrm{nK}$ :

$$\lambda_{\rm dB} \sim 1 \,\mu{\rm m} \longrightarrow n\lambda_{\rm dB}^3 \sim 10^3.$$

#### Condensación de Bose-Einstein

 Un condensado de Bose-Einstein (BEC) es un estado de la materia donde bosones ocupan macroscópicamente el estado fundamental.

S. N. Bose, Zeitschrift für Physik **26**, 178 (1924). A. Einstein, Sitzungsberichte der Preussischen Akademie der Wissenschaften **1**, 3 (1924)

Es una manifestación macroscópica de la mecánica cuántica.



## Historia: Gases cuánticos degenerados

- Las técnicas de enfriamiento y atrapamiento permitieron la realización de **gases cuánticos**.
- Algunos hitos:
  - → 1995: Realización experimental un BEC.

    JILA (87Rb): M. H. Anderson *et al.*, Science 269, 198 (1995).

    MIT (23Na): K. B. Davis *et al.*, Phys. Rev. Lett. 75, 3969 (1995).
  - → 2001: Premio Nobel a E. Cornell y C. Wieman y W. Ketterle.

E. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 (2002). W. Ketterle, Rev. Mod. Phys. 74, 1131 (2002).

- → 2001: Gas degenerado de Fermi.

  JILA: B. DeMarco, S. B. Papp, and D. S. Jin, Phys. Rev. Lett. 86, 5409 (2001).
- → 2002: Transición aislante-superfluído de bosones en redes ópticas.

MPQ: M. Greiner et al., Nature 415, 39 (2002).

- → 2017: Supersólidos en BECs. MIT: J. R. Li et al., Nature 543, 91 (2017). ETH Zürich: J. Léonard et al., Nature 543, 87 (2017).
- → 2023: Realización de un condensado de móleculas polares.

COLUMBIA: N. Bigagli et al., Nature 631, 289 (2024).



Distribución de velocidad de un gas de <sup>87</sup>Rb.

## ¿Cuáles átomos se enfrían?



#### **Estadística**

• El isótopo dicta la estadística.





• Es decir, se puede escoger la estadística de las partículas.

#### Confinamiento

• En primera instancia, átomos ultrafríos son confinados en **trampas armónicas**:

$$V_{\text{ext}}(\vec{r}) = \frac{m}{2} \left( \omega_x^2 x^2 + \omega_y^2 y^2 + \omega_z^2 z^2 \right).$$

• Las frecuencias  $\omega_i$  se pueden controlar, permitiendo confinar gases de átomos en geometrías quasi uno-dimensionales (cuchuflí) o dos-dimensionales (pizza).





#### Confinamiento

• Es también posible confinar átomos en **anillos**,

L. Amico, A. Osterloh and F. Cataliotti, Phys. Rev. Lett. 95, 063201 (2005). O. Morizot et al., Phys. Rev. A 74, 023617 (2006).



#### cajas,

A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).



#### e incluso cáscaras esféricas en microgravedad.

R. A. Carollo et al., Nature 606, 281 (2022). A. Tononi, and L. Salasnich, Phys. Rep. 1072, 1 (2024).



## Redes ópticas

• Es también posible confinar átomos en redes ópticas.

I. Bloch, Nat. Phys. 1, 23 (2005).



• Átomos ultrafríos en redes ópticas son ideales para **simular** sistemas de **materia condensada**.

- La interacción inter-atómica es repulsiva a corto alcance (Coulomb).
- Pero tiene una cola atractiva de largo alcance (van der Waals).
- Para entender la interacción interatómica debemos analizar el problema de scattering entre dos átomos.



[Kai Nordlund 26.12.2014]

Expansión en ondas parciales:

$$f(m{k},m{k}') = \sum_{\ell=0}^{\infty} (2\ell+1) f_\ell(k) P_\ell(\cos heta).$$
 Amplitud de scattering 
$$1 + 2ik f_\ell(k) = e^{2i\delta_\ell(k)}$$
 Phase shifts

• En experimentos se tiene que  $kr_{\rm eff} \ll 1$  (bajas energías y corto alcance).



Velocidad átomo: 
$$v \sim 1 \mathrm{mm/s}$$
 (ultralento)

• Por tanto, la interacción es dominada por la onda-s.

$$f_0(k) = -\frac{1}{a^{-1}-k^2r_{\rm eff}/2+ik} \qquad \qquad \begin{array}{l} a : \mbox{longitud de scattering de onda-s} \\ r_{\rm eff} : \mbox{rango efectivo} \\ a = -\lim_{k \to 0} \frac{\delta_0(k)}{k} \end{array}$$

• La interacción está completamente definida por los observables a y  $r_{\rm eff}$  .

- Teóricamente, se puede utilizar cualquier potencial de corto alcance que recupere los mismos observables de scattering.
- Usualmente se utiliza un potencial de contacto.

$$a \longrightarrow V({m r}_1 - {m r}_2) = g \delta({m r}_1 - {m r}_2).$$
 Longitud de scattering Potencial inter-atómico Potencial de contacto efectivo

• La longitud de scattering a (observable) define la constante de la interacción de contacto g (teoría).

$$\mathcal{T}(k) = -\frac{4\pi\hbar^2}{m} f_0(k) \longrightarrow n \sim 10^3 \frac{\text{atomos}}{\text{cm}^3} \quad \stackrel{r_{\text{eff}} \approx 0}{\longrightarrow} \quad g = \frac{4\pi\hbar^2 a}{m}$$

• La interacción se puede **controlar libremente** con técnicas de **resonancias de Feshbach**.

C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010).

- Es decir, se puede controlar la longitud de scattering a.
- Este control no es posible en otros sistemas físicos.



Figura tomada de: T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003).

#### Simuladores cuánticos

 Sistemas de átomos ultrafríos pueden ser utilizados como simuladores cuánticos de otros sistemas físicos.

R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

• <u>Ejemplo:</u> Átomos fermiónicos de spin ½ en una red óptica se modelan con un **modelo de Hubbard**.

D. Jaksch and P Zoller, Annals of physics 52, 315 (2005).



$$\hat{H} = -t \sum_{\sigma = \uparrow, \downarrow} \sum_{\langle i, j \rangle} \left( \hat{c}_{\sigma, i}^{\dagger} \hat{c}_{\sigma, j} + \text{h.c.} \right) + U \sum_{i} \hat{n}_{\uparrow, i} \hat{n}_{\downarrow, i}.$$

 Corresponde al mismo Hamiltoniano utilizado para describir electrones en sólidos.

J. Hubbard, Proc. R. Soc. Lond. A 276, 238 (1963).

• Sin embargo, con átomos ultrafrios la constante U se puede **controlar** con resonancias de Feshbach.

## Sistemas de muchos cuerpos

- Sistemas de átomos ultrafríos permiten realizar nuevos sistemas de muchos cuerpos y fases cuánticas.
  - → Condensados y superfluidos.
  - → Supersólidos.
  - → Aislantes de Mott.
  - → Gotas y líquidos cuánticos.
  - → Formación de pares y clusters.

## Sistemas de muchos cuerpos

- Teóricamente, los sistemas de muchos cuerpos pueden ser muy desafiantes de describir.
- Sistemas fuertemente interactúantes, transiciones de fase, etc, suelen requerir ser descritos por técnicas sofisticadas.
  - → Simulaciones de Monte-Carlo, DMRG, técnicas diagramáticas, diagonalización exacta, etc.
- No existe la mejor técnica.
- El método a utilizar depende del problema.
  - → Sistema físico (dimensión, estadística, interacciones, etc.).
  - → Qué se quiere describir (estado fundamental, excitaciones, dinámica, etc).



#### **Conclusiones**

- Los átomos ultrafríos es una de las ramas de la física que más ha avanzado en las últimas tres décadas.
- Se encuentran en la intersección de varias ramas de la física.
- Ofrecen un grado de **control** sin precedentes.
- Tienen potenciales aplicaciones tecnológicas.
- Pero también tienen un gran interés académico para entender sistemas de muchos cuerpos.
- Es un área tremendamente **activa**, con constante desarrollo **teórico** y **experimental**.