

#### УРАВНЕНИЯ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ С УЧЁТОМ ПЕРЕНОСА ЛУЧИСТОЙ ЭНЕРГИИ



**Механика сплошных сред** на основе методов, развитых в классической теоретической механике, рассматривает движение материальных тел, которые заполняют пространство **непрерывно**, **пренебрегая их молекулярным строением (сплошная среда)**. Физический смысл такого представления состоит в том, что линейные размеры, с которыми мы имеем дело при описании СС, значительно больше межмолекулярных расстояний. Минимально возможный объём рассматриваемой СС, который позволяет исследовать свойства СС, называется представительным или **элементарным физическим объёмом (ЭФО)**..



Теории на основе феноменологического подхода описывают только наблюдаемые, как правило, макроскопические свойства объектов без детализации происходящих в них внутренних механизмов,. Например, рассматриваются переходы из одного состояния в другое без детального рассмотрения механизма этих переходов. Такие связи входных и выходных состояний называют эффектами или явлениями (феномен).

Сплошная среда непрерывным (сплошным) образом заполняет определённое пространство бесконечной совокупностью ЭФО; поэтому описание изменчивости состояния СС (например, движения) связано с заданием характеризующих движение величин в каждой точке рассматриваемой области пространства, т.е. в центре каждого ЭФО.

В зависимости от задачи и модели СС (жидкость, газ, плазма, твердое тело и пр.) **макроскопические свойства** — физические параметры, которые характеризуют состояние ЭФО в реальном пространственно-временном континууме. Например, температура или давление жидкости скорость потока или скорость течения, содержание примеси в жидкости или газе и т.п. Все макроскопические свойства СС могут быть представлены в виде полей скалярных и векторных величин<sub>27.09.2024</sub>



## ВЫВОД СИСТЕМЫ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ПОЛЯ ИЗЛУЧЕНИЯ (1)





Для подавляющего числа прикладных задач (физика атмосферы, океана, климатология, дистанционное зондирование и пр.) к ключевым макроскопическим свойствам относятся:

**Скалярные величины**:  $\rho(\vec{r},t)$  – плотность среды в целом;  $P(\vec{r},t)$  – давление;  $T(\vec{r},t)$  - температура;  $C_{\alpha}(\vec{r},t) = {}^{\rho_{\alpha}}/{}_{\rho}$  – концентрация в среде частиц сорта  $\alpha$  ( $\alpha$ =1,2,...N), где  $\rho_{\alpha}(\vec{r},t)$  - плотность частиц сорта  $\alpha$ , N – полное число частиц СС. **Векторные величины**:  $\vec{v}(\vec{r},t)$  - вектор скорости движения СС; в общем случае надо учитывать макроскопическое электромагнитное поле, присутствующее в СС: векторы напряженностей электрического  $\vec{E}(\vec{r},t)$  и магнитного  $\vec{H}(\vec{r},t)$  полей.

**Условие сплошности** среды:  ${m l} \ll \sqrt[3]{m V} \ll {m R}$ , где  ${m l}$ - длина свободного пробега частиц, из которых состоит многокомпонентная среда;  ${m V}$  — характерная величина объема ЭФО;  ${m R}$ - характерный размер области СС

# Оценка условия сплошности для «приземного» слоя (0 -10 км) земной атмосферы. Простейшая оценка: $l={}^1/_{n\sigma}$ , где n- среднее число частиц в единице объема (объемная концентрация); $\sigma=\pi d^2$ - площадь сечения столкновения (d – характерный размер частиц). Для воздуха более полезная формула: $l=5\cdot 10^{-5}P^{-1}$ , м, где P — авление в мм. рт. ст. Используя формулу: $P(h)=P_0\exp\left(-\frac{Mgh}{RgT}\right)$ , где $P_0$ — давление на уровне моря, M=0,0.29 кг/моль — молярная масса сухого воздуха; g=9,81 м/с2 , R=8,31 Дж/(моль·К). Т.е. $P(h)=P_0\exp(-0,0.34 h/T)$ , где h — высота в м, T — температура в грдK. Модель однородной атмосферы- $T=273+20=293K \rightarrow P(h)=P_0\exp(-0,0.0012h)$ в Если $P_0=760$ мм рт.ст., $l=0,65\cdot 10^{-7}\exp(0,0.0012h)$ м.

| <i>h,</i> км                | <i>I,</i> 10 <sup>-8</sup> м |
|-----------------------------|------------------------------|
| 0                           | 6,5                          |
| 1                           | 7,2                          |
| 10                          | 21,5                         |
| $\sqrt[3]{V}$ - минимальный |                              |
| размер турбулентных         |                              |

вихрей ~ 0,1мм



## ВЫВОД СИСТЕМЫ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ПОЛЯ ИЗЛУЧЕНИЯ (2)



**Задача.** В рамках феноменологического подхода вывести систему уравнений, описывающих при задании соответствующих начальных и граничных условий пространственно-временную изменчивость следующих макроскопических характеристик СС:  $\rho(\vec{r},t)$ ,  $P(\vec{r},t)$ ,  $T(\vec{r},t)$ ,  $C_{\alpha}(\vec{r},t)$  ( $\alpha$ =1,2,...N),  $\vec{v}(\vec{r},t)$  ( $v_{x}(\vec{r},t)$ ,  $v_{y}(\vec{r},t)$ ,  $v_{z}(\vec{r},t)$ ) при наличии излучения.

**Метод полевого баланса.** Пусть  $\xi(\mathbf{r}, t)$  — удельное (на единицу массы) значение какой-либо скалярной величины из рассматриваемого набора. Общее количество этой величины  $J(\mathbf{r}, t)$  в рассматриваемом ЭФО (рисунок на слайде 2) равно:

$$J(\vec{r},t) = \int_{V} \xi(\vec{r},t) \, \rho(\vec{r},t) \, dV \, (1)$$

Внутри ЭФО и на его границах имеют место процессы, обусловленные **внешними факторами** (NB! сила тяжести, сила Кориолиса), а также **внутренними факторами**, связанными с взаимодействием рассматриваемого ЭФО с соседними ЭФО (перенос тепла, трение и др.). Обобщенное **уравнение материального («полевого») баланса**:

$$\frac{d}{dt} \int\limits_{V} \mathsf{p} \xi \, dV = A_V + A_S \quad \textbf{(2)}$$

В (2) 
$$A_V(\vec{r},t)$$
 и  $A_S(\vec{r},t)$  – соответственно **объемные** и **поверхностные** факторы, приводящие к изменению  $J(\vec{r},t)$ .  $A_V(\vec{r},t) = \int_V a(\vec{r},t) dV$  (3);  $A_S(\vec{r},t) = -\oint \vec{A}(\vec{r},t) d\vec{S}$  (4)



ЭФО в момент t и  $t + \Delta t$ 

В (3)  $a(\vec{r},t)$  — удельный (на единицу массы) объемный фактор;  $\vec{A}(\vec{r},t)$  - вектор поверхностных факторов (на элемент поверхности ЭФО. В (2) слева — полная производная от интеграла, пределы интегрирования которого зависят от времени (ЭФО —»жидкий» объем. Необходимо аккуратно провести интегрирование. Полная производная:

$$\frac{d}{dt} \int_{V} \rho(\vec{r}, t) \xi(\vec{r}, t) dV = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \left[ \int_{V'} \rho(\vec{r}, t + \Delta t) \xi(\vec{r}, t + \Delta t) dV - \int_{V} \rho(\vec{r}, t) \xi(\vec{r}, t) dV \right] = 0$$

$$= \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{V} [\rho(\vec{r}, t + \Delta t) \xi(\vec{r}, t + \Delta t) - \rho(\vec{r}, t) \xi(\vec{r}, t)] dV = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{V' - V} [\rho(\vec{r}, t) \xi(\vec{r}, t)] dV$$
 (5)



## ВЫВОД СИСТЕМЫ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ПОЛЯ ИЗЛУЧЕНИЯ (3)



$$\frac{d}{dt} \int_{V} (\rho \xi) dV = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{V} \left[ \rho(\mathbf{r}, t + \Delta t) \xi(\mathbf{r}, t + \Delta t) dV - \rho(\mathbf{r}, t) \xi(\mathbf{r}, t) \right] dV + \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{V' - V} \rho(\mathbf{r}, t) \xi(\mathbf{r}, t) dV$$
 (5)

Первое слагаемое в правой части (5):

$$\int_{V} \frac{\partial}{\partial t} \rho(\vec{r}, t) \xi(\vec{r}, t) dV$$
 (6).

Второе слагаемое преобразуем, учитывая, что:

$$\rho(\vec{r},t)\xi(\vec{r},t)dV = \rho(\vec{r},t)\xi(\vec{r},t)\vec{v}\vec{n}\Delta t dS = \rho(\vec{r},t)\xi(\vec{r},t)\vec{v}\Delta t dS$$

$$\lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{V'-V} \rho(\vec{r},t)\xi(\vec{r},t)dV = \lim_{\Delta t \to 0} \frac{1}{\Delta t} \int_{S} \rho(\vec{r},t)\xi(\vec{r},t)\vec{v}\Delta t dS = \int_{S} \rho(\vec{r},t)\xi(\vec{r},t)\vec{v}\Delta$$

$$= \int_{S} \rho(\vec{r}, t) \xi(\vec{r}, t) \vec{v} d\vec{S}$$
 (7)

$$\frac{d}{dt}\int\limits_{V} \rho\xi dV = A_V + A_S \qquad (2) \qquad \text{Из (6) и (7) следует:}$$
 
$$\frac{d}{dt}\int\limits_{V}^{V} \rho\xi dV = \int\limits_{V}^{\partial} \frac{\partial}{\partial t} (\rho\xi) dV + \int\limits_{S}^{} (\rho\xi) \vec{v} d\vec{S} \ (8), \text{т. e. (2)}$$
 
$$\int\limits_{V}^{\partial} \frac{\partial}{\partial t} (\rho\xi) dV = \int\limits_{V}^{} adV - \int\limits_{S}^{} (\rho\xi) \vec{v} d\vec{S} - \int\limits_{S}^{} \vec{A} d\vec{S} \ (9).$$
 
$$\int\limits_{V}^{} \frac{\partial}{\partial t} (\rho\xi) dV = \int\limits_{V}^{} adV - \int\limits_{V}^{} div(\rho\xi\vec{v}) d\vec{S} - \int\limits_{V}^{} div\vec{A} d\vec{S} \ (10).$$
 
$$(10) \text{- интегральное уравнение материального баланса}$$

При V→0 из (10) следует **дифференциальное уравнение материального баланса**, которое получило распространение в гидромеханике и смежных дисциплинах:

$$\frac{\partial(\rho\xi)}{\partial t} = a - div(\rho\xi\vec{v}) - div\vec{A} \qquad (11)$$



# ВЫВОД СИСТЕМЫ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ Л НАЛИЧИИ ПОЛЯ ИЗЛУЧЕНИЯ (4)



Для вывода уравнений, описывающих изменение введённых выше макроскопических свойств СС, будем придавать в (11) скаляру  $\xi(\vec{r},t)$  конкретный физический смысл.

$$\frac{\partial(\rho\xi)}{\partial t} = a - div(\rho\xi\vec{v}) - div\vec{A}$$
 (11)

1) Пусть ξ = 1. В этом случае речь идёт об изменении полной плотности среды  $\rho(\vec{r},t) = \sum_{\alpha}^{N} \rho_{\alpha}(\vec{r},t)$ . В этом случае a = 0 и  $\vec{A} = 0$  и из (11):

$$rac{\partial 
ho}{\partial t} + div(
ho ec{v}) = 0$$
 (12) уравнение неразрывности

Альтернативная форма уравнения (11):

$$\rho \frac{\partial \xi}{\partial t} + \xi \frac{\partial \rho}{\partial t$$

$$\rho \frac{d\xi}{dt} = \rho \frac{\partial \xi}{\partial t} + \rho \vec{v}(\nabla \xi) = a - div\vec{A}$$
(13) 
$$\rho \frac{d\xi}{dt} = \rho \frac{\partial \xi}{\partial t} + \rho v_k \frac{\partial \xi}{\partial x_k} = a - \frac{\partial A_k}{\partial x_k}$$

$$\rho \frac{d\xi}{dt} = \rho \frac{\partial \xi}{\partial t} + \rho v_k \frac{\partial \xi}{\partial x_k} = \alpha - \frac{\partial A_k}{\partial x_k}$$
 (13a)

2) Пусть  $\xi = v_i$  — і-тая компонента вектора скорости  $\vec{v}$ . Из (13) имеем 3 скалярных уравнения или одно векторное.  $a_i = 
ho F_i$ , где для задач (геофизические приложения)  $F_i$  —ускорение силы тяжести или Кориолиса (вращающаяся система координат). Поверхностные факторы в данном случае - силы, действующие по нормали и/или по касательной к поверхности ЭФО, т.е. являются **тензором**:  $A_{ik} = \delta_{ik}P - \tau_{ik}$   $(\stackrel{\leftrightarrow}{A} = \stackrel{\leftrightarrow}{\delta}P - \stackrel{\leftrightarrow}{\tau})$  (14). В (14) P — давление;  $\delta_{ik}$  - единичный тензор;  $\tau_{ik}$  - тензор вязких напряжений.  $\tau_{ik}$ =0 – идеальная жидкость. **Уравнение движения:** 

$$\rho \frac{d\vec{v}}{dt} = \rho \vec{F} - \nabla P - div\vec{\tau}$$
 (15) 
$$\rho \frac{dv_i}{dt} = \rho F_i - \frac{\partial P}{\partial x_i} - \frac{\partial A_{ik}}{\partial x_k}$$
 (*i*, *k* = 1,2,3) (15*a*)



## ВЫВОД СИСТЕМЫ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ПОЛЯ ИЗЛУЧЕНИЯ (5)



3) Пусть 
$$\xi = C_{\alpha} = \frac{\rho_{\alpha}}{\rho} = \frac{m_{\alpha}n_{\alpha}}{\sum_{\alpha}^{N}m_{\alpha}n_{\alpha}}$$
. Единственный объемный фактор:  $a_{\alpha} = \dot{w}_{\alpha} = \dot{w}_{\alpha}^{(f)} = \dot{w}_{\alpha}^{(r)}$  скорость химической

реакции, протекающей в каждой точке ЭФО - разность между скоростью прямой (f — образование) и обратной (r — исчезновение) реакцией. **Поверхностный фактор** связан с плотностью потока через поверхность ЭФО

массы частицы сорта  $\alpha$  за счёт диффузии — вектор  $\vec{j}_{\alpha}$ . Таким образом из (13)  $\rho \frac{d\xi}{dt} = \rho \frac{d\xi}{\partial t} + \rho \vec{v}(\nabla \xi) = a - div \vec{A}$ 

Уравнение баланса массы частиц сорта α:  $\rho \frac{\partial C_{\alpha}}{\partial t} + \rho \vec{v}(\nabla C_{\alpha}) = \dot{w}_{\alpha} - div\vec{j}_{\alpha} \ (\alpha = 1, 2, ... N -$ число частиц) (16)

 $\sum_{\alpha=1}^{N} C_{\alpha} = 1$  и  $\sum_{\alpha=1}^{N} \dot{w}_{\alpha} = 0$  т. к. суммарная масса всех частиц не меняется в результате химических реакций. После почленного суммирования 16) получаем  $\sum_{\alpha=1}^{n} \vec{J}_{\alpha} = 0$ . Т.е из N уравнений (16) независимыми являются только N –1.

**4) Пусть:**  $\xi = E = U + \frac{|\vec{v}|^2}{2} + \Pi + \varepsilon_R$  (17)- полная энергия, содержащаяся в ЭФО: U - внутренняя энергия (на единицу массы;  $\frac{\vec{v}^2}{2}$  — кинетическая энергия;  $\Pi -$  потенциальная энергия силового поля ( $\vec{F} = -\nabla\Pi$ );  $\epsilon_R -$  энергия излучения, содержащаяся в ЭФО. Т.к. речь идет о полной энергии ЭФО, то a = 0. Поверхностные факторы: плотности потоков всех видов энергии, а также

представленная в векторном виде работа сил давления и вязких сил:  $ec{A}=ec{q}+ec{q}_R+ec{v}ig(\overleftrightarrow{\delta}P-\overleftrightarrow{ au}ig)$  (18)

Таким образом, из (13) –уравнение баланса полной энергии ЭФО:  $\rho \frac{dE}{dt} = -div(\vec{q} + \vec{q}_R) - div[\vec{v}(\overleftrightarrow{\delta}P - \overleftrightarrow{\tau})] \quad (19)$ 



### СИСТЕМА УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ПОЛЯ ИЗЛУЧЕНИЯ



Число подлежащих определению неизвестных макроскопических переменных  $\vec{v}(\vec{r},t)$ ,  $P(\vec{r},t)$ ,  $P(\vec{r},t$ 

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0 \tag{1}$$

$$\rho \frac{d\vec{v}}{dt} = \rho \vec{F} - \nabla P - di v \vec{\tau}$$
 (2)

$$\rho \frac{dC_{\alpha}}{dt} = \dot{w_{\alpha}} - div\vec{j_{\alpha}} \quad (\alpha = 1, 2, ...N)$$
 (3)

$$\sum_{\alpha=1}^{n} C_{\alpha} = 1$$

$$\rho \frac{dE}{dt} = -\operatorname{div}(\vec{q} + \overrightarrow{q_R}) - \operatorname{div}[\vec{v}(\overleftarrow{\delta}P - \overleftarrow{\tau})] \quad (4)$$

$$U = f(\rho, P, T, \dots) \tag{5}$$

Формально число неизвестных макроскопических переменных v(r, t), P(r, t),  $\rho(r, t)$ ,  $c\alpha(r, t)$  ( $\alpha = 1, 2, ..., N$ ), T(r, t) и число уравнений: скалярные уравнения неразрывности (1) и баланса полной энергии (4), векторное уравнение баланса количества движения (2) и (N-1)- скалярных уравнений баланса массы частиц сорта  $\alpha$  (2.18) ( $\alpha$  = 1, 2, . . . , N) на единицу больше, чем число уравнений. В рамках феноменологического подхода разрешения рассогласования: привлечение дополнительного уравнения (обычно эмпирического), которое связывает между собой, как правило, термодинамические макроскопические свойства среды, такие как внутренняя энергия, температура, давление, плотность и др. Это уравнение состояния! Выбор уравнения состояния зависит от конкретной задачи. NB! В случае модели идеального газа таким уравнением является известное уравнение PV=RT.



#### ПРОБЛЕМА ЗАМЫКАНИЯ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ИЗЛУЧЕНИЯ



$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0 \tag{1}$$

$$\rho \frac{d\vec{v}}{dt} = \rho \vec{F} - \nabla P - di v \vec{\tau}$$
 (2)

$$\rho \frac{dC_{\alpha}}{dt} = \dot{w_{\alpha}} - div \vec{j_{\alpha}} \quad (\alpha = 1, 2, ...N)$$
 (3)

$$\rho \frac{dE}{dt} = -\operatorname{div}(\vec{q} + \overrightarrow{q_R}) - \operatorname{div}[\vec{v}(\vec{\delta}P - \vec{\tau})] \quad (4)$$

$$U = f(\rho, P, T, \dots) \tag{5}$$

Проблема замыкания - вывод соотношений, связывающих введённые скалярные  $(\dot{w}_{lpha})$ , векторные  $(\vec{F}, \vec{J}_{lpha}, \vec{q}, \vec{q}, \vec{q}_R)$  и тензорные  $(\vec{ au})$ характеристики с искомыми макроскопическими свойствами  $T, \rho, P, C_{lpha}$  и  $\vec{v}$  аргументами задачи: t и r.

Доопределение векторных и тензорных величин (**кроме**  $\vec{q}_R$ ) в (1)-(4) сложная задача, которая в рамках феноменологического подхода рассматривается в науке, получившей название **термодинамика необратимых процессов** (ТНП) {Пригожин И. Введение в термодинамику необратимых процессов / Москва-Ижевск. – 2001. – 160 С.].

#### Ключевые положения ТНП, используемые в нашем курсе:

В состоянии полного термодинамического равновесия (ПТР) все макроскопические величины  $T, \rho, P, C_{\alpha}$  и  $\vec{v}$  - постоянны в пространстве и времени; все векторные и тензорные потоки  $\vec{q}, \vec{j}_{\alpha}$  и  $\vec{\tau}$  ( $\tau_{ik}$ ) = 0. Если имеет место малое отклонение от состояния ПТР, в первом приближении все потоки - линейные однородные функции от градиентов соответствующих макроскопических величин. Для изотропной среды, коэффициенты перед этими градиентами — скалярные величины,

зависящие только от локальных значений T,  $\rho$ ,P,  $C\alpha$ . Поэтому потоки (за исключением  $\vec{q}_R$ )  $\vec{q}$ , $\vec{J}_{\alpha}$  и  $\vec{\tau}$  ( $\tau_{ik}$ ) представляются линейными однородными функциями со скалярными коэффициентами от  $\nabla P$ , $\nabla T$ , $\nabla \rho$ , $\nabla C_{\alpha}$  и тензорных производных  $\frac{\partial v_i}{\partial x_k}$  и  $\frac{\partial v_k}{\partial x_i}$ .

2) **Принцип Кюри ТНП.** Для изотропной среды линейная однородная функция с векторными аргументами и скалярными коэффициентами не может быть тензором; и наоборот — линейная однородная функция с тензорными аргументами не может быть вектором: векторные характеристики — потоки  $\vec{q}$  и  $\vec{J}_{\alpha}$  не могут зависеть от  $\frac{\partial v_i}{\partial x_k}$  и  $\frac{\partial v_k}{\partial x_i}$ , а тензорный поток  $\vec{\tau}$  ( $\tau_{ik}$ ) не может зависеть от  $\nabla P$ ,  $\nabla T$ ,  $\nabla \rho$  и  $\nabla C_{\alpha}$ . Выражения для **векторных потоков**  $\vec{q}$  и  $\vec{J}_{\alpha}$  с учётом (5) в общем случае имеют вид:  $\vec{q} = A\nabla T + B\nabla P + \sum_{\alpha=1}^{N} D_{\alpha}\nabla C_{\alpha}$  (6)  $\vec{J}_{\alpha} = A_{\alpha}\nabla T + B_{\alpha}\nabla P + \sum_{\beta=1}^{N} D_{\alpha\beta}\nabla C_{\beta}$  (7).

Выражение для тензора напряжений приведем (без вывода) в виде, принятом в классической гидродинамике вязкой жидкости:

$$au_{ik} = \mu^{(1)} \left( \frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} + \frac{2}{3} \delta_{ik} div \vec{v} \right) + \mu^{(2)} \delta_{ik} div \vec{v} \ (8)$$
, где  $\mu^{(1)}$  и  $\mu^{(2)}$  - соответственно 1-й и 2-й коэффициенты вязкости.

Доопределение  $\dot{w}_{\alpha}$  -для конкретной модели исходного химического состава СС и модели возможных химических реакций  $\dot{w}_{\alpha} = \dot{w}_{\alpha}(P,T,C_{\alpha})$  задается из результатов теории химических реакций (физическая химия); вектор  $\vec{F}$  для геофизических задач: либо сила тяжести  $(\vec{g})$ , либо сила Кориолиса (вращающаяся система коррдинат)



#### ПРОБЛЕМА ЗАМЫКАНИЯ УРАВНЕНИЙ МНОГОКОМПОНЕНТНОЙ ГИДРОДИНАМИКИ ПРИ НАЛИЧИИ ИЗЛУЧЕНИЯ



$$\vec{q} = A\nabla T + B\nabla P + \sum_{\alpha=1}^{N} D_{\alpha} \nabla C_{\alpha}$$
 (6)  

$$\vec{J}_{\alpha} = A_{\alpha} \nabla T + B_{\alpha} \nabla P + \sum_{\beta=1}^{N} D_{\alpha\beta} \nabla C_{\beta}$$
 (7)  

$$\tau_{ik} = \mu^{(1)} \left( \frac{\partial v_{i}}{\partial x_{k}} + \frac{\partial v_{k}}{\partial x_{i}} + \frac{2}{3} \delta_{ik} div\vec{v} \right) + \mu^{(2)} \delta_{ik} div\vec{v}$$
 (8)

В (6), (7) и (8) скалярные коэффициенты A, B,  $D_{\alpha}$ ,  $A_{\alpha}$ ,  $B_{\alpha}$ ,  $D_{\alpha\beta}$ ,  $\mu^{(1)}$ ,  $\mu^{(2)}$  характеризуют явления **переноса**: тепла, диффузии и импульса, в т.ч. перекрёстные эффекты, как **термо**- или **бародиффузия** (7) или перенос тепла за счёт градиентов давления и концентрации частиц в (6). В (8) (тензор вязких напряжений Навье –Стокса,  $\mu$ (1) и  $\mu$ (2) —первый и второй коэффициенты вязкости.

#### В простейших случаях:

- 1) Для однородной по химическому составу среды ( $C_{\alpha}=const$ ) и, пренебрегая, как правило, малым вкладом фактора  $B\nabla P$ , т.е. B = 0, (6) переходит в **классический закон теплопроводности Фурье**:
- $\vec{q} = AVT = -\lambda VT$  (9), где  $\lambda = \lambda(P,T)$  обычный коэффициент теплопроводности.
- 2) Для бинарной (двухкомпонентной) смеси  $\alpha$  = 1, 2 смеси и, пренебрегая перекрёстными эффектами термо- и бародиффузии ( $A_{\alpha}=B_{\alpha}$ =0), (7) переходит в **классический закон бинарной диффузии (закон Фика**):

$$\vec{J}_{\alpha} = -D_{\alpha\beta} \nabla C_{\alpha}$$
 (10) ( $\alpha=1,2$ ). где  $D_{\alpha\beta}(T,P,C_{\alpha}) = D_{12}$  — коэффициент бинарной диффузии.

При решении практических задач эти коэффициенты (кинетические или коэффициенты переноса), каждый из которых имеет чёткий физический смысл (коэффициенты теплопроводности, различные коэффициенты диффузии и вязкости) рассчитываются по формулам молекулярно-кинетической теории, либо определяются эмпирическими соотношениями.

Итог. Уравнения (1)-(5) (в отсутствие излучения) и соотношения (6)-(8) при условии, что все скалярные коэффициенты переноса, скорости химических реакций и модель потенциальной силы заданы, представляют собой полностью замкнутую систему нестационарных уравнений из в частных производных относительно 6+N скалярных неизвестных  $P, T, \rho, \vec{v}(v_x, v_y, v_z)$  и  $\mathcal{C}_{\alpha}(\alpha=1,2,...N)$ .

При учете излучения для замыкания (1)-(5) необходимо вывести соотношения, связывающие входящие в уравнение (4)

$$ho rac{dE}{dt} = -div(\vec{q}_2 + \vec{q}_R) - ext{div}[\vec{v}(\delta_{ik}P - au_{ik})] \ (E = U + rac{|\vec{v}|^2}{2} + \Pi + m{arepsilon}_R) \ \vec{q}_R(\vec{r},t)$$
- интегральные по спектру вектор плотности потока излучения  $m{arepsilon}_R \ (\vec{r},t)$  с макроскопическими свойствами среды, описывающими перенос лучистой энергии.