Package 'BioIndex'

September 20, 2024

-						
Type Package						
Title collection of functions used to perform analyses on data in MEDITS format						
Version 0.5.01						
Author Walter Zupa						
Maintainer Walter Zupa <zupa@fondazionecoispa.org>, <walter@zupa.it></walter@zupa.it></zupa@fondazionecoispa.org>						
Description The package is a collection of functions used by BioIndex software.						
License GPL-3						
Depends R (>= 4.1),stringr,ggplot2,tidyterra						
Imports hms,marmap,gridExtra,reshape2, dplyr, magrittr,terra,methods,zip						
Encoding UTF-8						
LazyData TRUE						
LazyDataCompression xz						
RoxygenNote 7.2.3						
Suggests rmarkdown, knitr						
VignetteBuilder knitr						
R topics documented:						
BioIndex bubbleplot_RS_by_hauls bubble_plot_by_haul_indexes centroidi cgpmgrid check_date_haul check_dictionary check_hauls_TBTA check_numeric_range						
a and in and						

 convert_coordinates
 9

 dd.distance
 9

 dd.to.MEDITS
 10

 hauls_position
 10

 index_on_grid
 11

 index_recr
 11

2 BioIndex

111	dex_spawn	. 13
in	dex_ts_F	. 13
in	dex_ts_M	. 1
in	dices_ts	. 1
L	FD	. 1:
L	_l uant	. 1
M	EDITS.distance	. 1
M	EDITS.to.dd	. 1
m	erge_TATBTC	. 1
M	IŴ	. 1
ж	erlayGrid	. 19
qι	ant	. 19
se	x_ratio	. 20
se	x_ratio_on_grid	. 20
sp	ear	. 2
sp	earman	. 2
st	rata_scheme	. 2
st	ratification	. 2
	ratum 0 125	
st	ratum 0 200	. 2
	ratum_0_35	
	ratum_0_45	
	ratum 0 800	
	ratum 200 800	
	 \	
	A cols	
	3 cols	
	Z	
-	5_4410	
		2

Description

BioIndex

R code to perform analysis of trawl survey data using MEDITS file format

BioIndex

Usage

```
BioIndex(
   ta,
   tb,
   tc,
   sspp,
   rec_threshold,
   spaw_threshold = 30,
   sexes = "all",
   depth,
```

BioIndex 3

```
GSA,
  country = "all",
  map_lim,
  depth_lines = c(10, 200, 800),
  strata = BioIndex::strata_scheme,
  stratification_tab = BioIndex::stratification,
  resolution = 1,
  buffer = 0.1,
  wd,
  zip = TRUE,
  save = TRUE,
  verbose = TRUE
)
```

Arguments

ta data frame of the TA table in the MEDITS format
tb data frame of the TB table in the MEDITS format
tc data frame of the TC table in the MEDITS format
sspp reference species for the analysis

rec_threshold cutoff threshold for recruits spaw_threshold cutoff threshold for spawners

haul_threshold minimum number of individuals to be used in estimation of the spatial indicati-

cators

sexes reference sex for the analysis

depth reference depth range

GSA reference GSA for the analysis

country reference country

map_lim coordinates limits for the maps

depth_lines depth contours to be plotted in the maps (3 values allowed)

strata data frame of the reference strata for the study area

stratification_tab

data frame of the stratification scheme

resolution resolution of the depth line buffer buffer around the map

wd path of the working directory

zip boolean. If TRUE the results are stored in a zip file into the working directory

save boolean. If TRUE the results are stored in the working directory

verbose boolean. If TRUE messages are promted in the console

Examples

BioIndex(ta=TA, tb=TB, tc=TC, sspp="MERLMER",rec_threshold=200, spaw_threshold=210,sexes="all", depth=c(10,8

```
bubbleplot_RS_by_hauls
```

Bubbleplot of abundance indices for recruits and spawners

Description

The function generates bubbleplots of abundance indices for recruits and spawners

Usage

```
bubbleplot_RS_by_hauls(
   mTATC,
   map_range,
   thresh_rec,
   thresh_spaw,
   depths = c(50, 200, 800),
   res = 1,
   buffer = 0.1,
   wd,
   save = FALSE,
   verbose = FALSE
)
```

Arguments

mTATC table mTATC map_range range of coordinates for the map threshold value to select recruits data from mTATC table thresh_rec thresh_spaw threshold value to select spawners data from mTATC table depths three reference bathymetric lines to be plotted in the maps res resolution of the depth lines buffer buffer around the map wd working directory boolean. If TRUE the outputs are saved in the local folder save

```
bubble_plot_by_haul_indexes
```

Bubble plot of abundance and biomass indices by haul

boolean. If TRUE messages are prompted in the console

Description

verbose

The function generates bubble plot of abundance and biomass indices by haul

centroidi 5

Usage

```
bubble_plot_by_haul_indexes(
  mTATB,
  map_lim,
  depth_lines,
  buffer = 0,
  res = 0.1,
  wd = NA,
  save = TRUE,
  verbose = TRUE
)
```

Arguments

mTATB	data frame
map_lim	coordinates limits for the plotted map
depth_lines	vector of three depth bathymetrical lines to be plotted
buffer	buffer to the coordinate limits in map units
res	resolution of the bathymetrical lines
wd	working directory
save	boolean. If TRUE the plot is saved in the user defined working directory (wd)
verbose	boolean. If TRUE a message is printed

ntroidi <i>centroidi</i>
Centrolai

Description

centroidi

Usage

centroidi

Format

An object of class PackedSpatVector of length 1.

6 check_date_haul

cgpmgrid

Description

cgpmgrid

Usage

cgpmgrid

Format

An object of class PackedSpatVector of length 1.

	ck date consistency		check_date_haul
--	---------------------	--	-----------------

Description

The function allows to check the consistency of date among the tables befor mergin them together.

Usage

```
check_date_haul(DataTA, Data, year, wd = NA, suffix, verbose = TRUE)
```

Arguments

DataTA data frame of the TA table

Data data frame of one table among TB, TC, TE and TL

year reference year for the analysis

wd working directory suffix name of the logfile

verbose boolean. If TRUE messages are reported in the console

check_dictionary 7

check_dictionary

Check dictionary (RoME)

Description

The function checks whether the values contained in specific fields are consistent with the allowed values of the dictionaries.

Usage

```
check_dictionary(
  ResultData,
  Field,
  Values,
  year,
  wd = NA,
  suffix,
  verbose = FALSE
)
```

Arguments

ResultData data frame in MEDITS tables
Field field of the table to be checked
Values vector of the allowed values
year reference year for the analysis

wd working directory suffix name of the log file

verbose boolean. If TRUE messages are promted in the console

check_hauls_TBTA

Check presence in TB of the hauls in TA

Description

The function check the presence of the TB (catch data table) hauls in the TA (haul data table)

Usage

```
check_hauls_TBTA(DataTA, DataTB, year, wd = NA, suffix, verbose = FALSE)
```

Arguments

DataTA data frame of TA table
DataTB data frame of TB table

year reference year for the analysis

wd working directory suffix name of the logfile

verbose boolean. If TRUE messages are promted in the console

8 continent

check_numeric_range

Check consistency of numeric ranges

Description

The function checks whether the values contained in specific fields are consistent within the allowed range of values.

Usage

```
check_numeric_range(
  Data,
  Field,
  Values,
  year,
  wd = NA,
  suffix,
  verbose = FALSE
)
```

Arguments

Data data frame of a table in MEDITS format

Field field of the table to be checked

Values vector of the allowed values

year reference year for the analysis

wd working directory suffix name of the log file

verbose boolean. If TRUE messages are promted in the console

continent continent

Description

continent

Usage

continent

Format

An object of class PackedSpatVector of length 1.

convert_coordinates 9

convert_coordinates

MEDITS coordinates in decimal degrees

Description

The function returns the data frame of the TA table with the coordinates expressed as decimal degrees.

Usage

```
convert_coordinates(Data)
```

Arguments

Data

data frame of TA table

Value

the function return the same data frame with the coordinates converted in the decimal degrees format

dd.distance

Estimate hauls distances (decimal degrees)

Description

Function to estimate the hauls length using TA (table A, hauls data) with coordinates in the decimal degrees format (dd.ddd). The distances could be returned expressed in meters, kilometers and nautical miles.

Usage

```
dd.distance(data, unit = "m", verbose = TRUE)
```

Arguments

data frame of the hauls data (TA, table A) with coordinates reported as decimal

degrees

unit string value indicating the measure unit of the distance. Allowed values: "m"

for meters, "km" for kilometers and "NM" for nautical miles.

verbose give verbose output reporting in the output the selected measure unit of the dis-

tance.

Value

The function returns the vector of the distances expressed in the selected measure unit.

10 hauls_position

dd.to.MEDITS

Conversion of decimal degrees coordinates in MEDITS format

Description

Conversion of decimal degrees coordinates in MEDITS format

Usage

```
dd.to.MEDITS(data)
```

Arguments

data

data frame of the hauls data (TA, table A) in MEDITS format

Value

The function returns the data frame of the TA (table A) reporting the coordinates in MEDITS format.

hauls_position

Plot of hauls time series

Description

Plot of hauls time series

Usage

```
hauls_position(
  mTATB,
  country = "all",
  map_lim,
  depth_lines,
  buffer = 0,
  res = 0.1,
  wd = NA,
  save = TRUE,
  verbose = TRUE
)
```

Arguments

mTATB data frame

country code as reported in MEDITS format. "all" code to perform the analysis

on all the countries of the same GSA

map_lim coordinates limits for the plotted map

depth_lines vactor of three depth bathymetrical lines to be plotted

buffer buffer to the coordinate limits in map units

index_on_grid 11

res resolution of the bathymetrical lines

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

verbose boolean. If TRUE a message is printed

index_on_grid Generating maps of indexes

Description

Generating maps of indexes

Usage

```
index_on_grid(
  mTATBsp,
  stratum,
  wd,
  map_range,
  threshold = 30,
  verbose = FALSE,
  save = FALSE
)
```

Arguments

mTATBsp spatial mTATB

stratum reference stratum range (allowed values: "10,200","10,800","200,800","5,35","5,45")

wd working directory

map_range range of coordinates for the map

threshold minimum number of individuals per haul

verbose boolean. If TRUE messages are promted in the console

save boolean. If TRUE the results are stored in the working directory

index_recr Estimation of abundance indices for recruits

Description

Estimation of abundance indices for recruits

index_spawn

Usage

```
index_recr(
  mTATB,
  mTATC,
  GSA,
  country,
  depth_range,
  cutoff,
  stratification,
  wd = NA,
  save = TRUE
)
```

Arguments

mTATB data frame mTATC data frame

GSA reference GSA for the analysis

country vector of reference countries for the analysis

depth_range range of depth strata to perform the analysis (min, max)

cutoff cutoff value for splitting recruits portion of population

stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

index_spawn

Estimation of abundance indices for spawners (females)

Description

Estimation of abundance indices for spawners (females)

Usage

```
index_spawn(
   mTATB,
   mTATC,
   GSA,
   country,
   depth_range,
   cutoff,
   stratification,
   wd = NA,
   save = TRUE
)
```

 $index_ts_F$

Arguments

mTATB data frame mTATC data frame

GSA reference GSA for the analysis

country vector of reference countries for the analysis

depth_range range of depth strata to perform the analysis (min, max) cutoff cutoff value for splitting spawner portion of population

stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

 $index_ts_F$

Estimation of abundance indices for females

Description

Estimation of abundance indices for females

Usage

```
index_ts_F(
   mTATB,
   GSA,
   country_analysis,
   depth_range,
   strata_scheme,
   stratification,
   wd = NA,
   save = TRUE
)
```

Arguments

mTATB data frame

GSA reference GSA for the analysis

country_analysis

vector of reference countries for the analysis

depth_range range of depth strata to perform the analysis (min, max)

 $\verb|strata_scheme| & data frame of the stratification scheme|\\$

stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

14 indices_ts

index_ts_M

Estimation of abundance indices for males

Description

Estimation of abundance indices for males

Usage

```
index_ts_M(
   mTATB,
   GSA,
   country_analysis,
   depth_range,
   strata_scheme,
   stratification,
   wd = NA,
   save = TRUE
)
```

Arguments

mTATB data frame

GSA reference GSA for the analysis

country_analysis

vector of reference countries for the analysis

depth_range range of depth strata to perform the analysis (min, max)

 $strata_scheme$ data frame of the stratification scheme

stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

indices_ts

Estimation of abundance and biomass indices

Description

Estimation of abundance and biomass indices

Usage

```
indices_ts(
  mTATB,
  GSA,
  country = "all",
  depth_range,
  strata_scheme,
```

LFD 15

```
stratification,
wd = NA,
save = TRUE
)
```

Arguments

mTATB data frame

GSA reference GSA for the analysis

country reference countries in the GSA for the analysis

depth_range range of depth strata to perform the analysis (min, max)

strata_scheme data frame of the stratification scheme stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

LFD

Length Frequency Distribution

Description

Length Frequency Distribution

Usage

```
LFD(
   mTATC,
   sex = "all",
   GSA,
   country = "all",
   depth_range,
   strata_scheme,
   stratification,
   wd = NA,
   save = TRUE,
   verbose = TRUE
)
```

Arguments

mTATC data frame of the merged TA and TC

sex reference sef for the analysis. Allowed values: F, M, I, N. "all" code for com-

bined sex

GSA reference GSA for the analysis

country vector of reference countries for the analysis

depth_range range of depth strata to perform the analysis (min, max)

strata_scheme data frame of the stratification scheme

16 MEDITS.distance

stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

verbose boolean. If TRUE messages are reported in the console

Lquant Estimation of L50 and L95

Description

Estimation of L50 and L95

Usage

```
Lquant(lfd, wd = NA, sspp, GSA, save = TRUE, verbose = TRUE)
```

Arguments

1fd data frame of combined LFD

wd working directory

sspp MEDITS code for the selected species

GSA reference area for the analysis

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

verbose boolean. If TRUE messages are reported in the console

MEDITS. distance Estimation of haul distance

Description

Estimation of haul distance

Usage

```
MEDITS.distance(data, unit = "m", verbose = TRUE)
```

Arguments

data frame containing the hauls data (TA, table A).

unit string value indicating the measure unit of the distance. Allowed values: "m"

for meters, "km" for kilometers and "NM" for nautical miles.

verbose give verbose output reporting in the output the selected measure unit of the dis-

tance.

Value

The function returns the vector of the distances expressed in the selected measure unit.

MEDITS.to.dd 17

MEDITS.to.dd

Conversion of MEDITS format coordinates in decimal degrees format

Description

Conversion of MEDITS format coordinates in decimal degrees format

Usage

```
MEDITS.to.dd(data)
```

Arguments

data

data frame of the hauls data (TA, table A) in MEDITS format

Value

The function returns the data frame of the TA table with the coordinates expressed as decimal degrees

merge_TATBTC

Merge Ta-TB and TA-TC tables

Description

Merge Ta-TB and TA-TC tables

Usage

```
merge_TATBTC(
   ta,
   tb,
   tc,
   species,
   country = "all",
   strata = BioIndex::strata_scheme,
   wd = NA,
   save = TRUE,
   verbose = TRUE
)
```

Arguments

ta	MEDITS or MEDITS-like TA table
tb	MEDITS or MEDITS-like TB table
tc	MEDITS or MEDITS-like TC table
species	species rubin code (MEDITS format, e.g. "MERLMER")
country	country code as reported in MEDITS format. "all" code to perform the analysis

on all the countries of the same GSA

18 MIW

strata data frame of the stratification scheme adopet by the MEDITS survey

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

verbose boolean. If TRUE a message is printed

Value

A list of two data frames is returned. The first element contains the TA-TB merged tables, while the second element contains the TA-TC merged tables

Examples

```
m <- merge_TATBTC(ta=TA, tb=TB, tc=TC, species="MERLMER", country="all", wd=tempdir(), verbose=TRUE)
mTATB <- m[[1]]
mTATC <- m[[2]]</pre>
```

MIW

Estimation of Mean Individual Weight (MIW) time series

Description

Estimation of Mean Individual Weight (MIW) time series

Usage

```
MIW(
   mTATB,
   GSA,
   country = "all",
   depth_range,
   strata_scheme,
   stratification,
   wd = NA,
   save = TRUE,
   verbose = TRUE
)
```

Arguments

mTATB data frame of the merged TA and TB
GSA reference GSA for the analysis

country reference countries in the GSA for the analysis

depth_range range of depth strata to perform the analysis (min, max)

strata_scheme data frame of the stratification scheme stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

verbose boolean. If TRUE messages are reported in the console

overlayGrid 19

overlayGrid

Overlay mTATB and mTATC on GFCM spatial grid

Description

Overlay mTATB and mTATC on GFCM spatial grid

Usage

```
overlayGrid(
  mTATB,
  mTATC,
  GSA = NA,
  country = "all",
  wd = NA,
  save = TRUE,
  verbose = FALSE
)
```

Arguments

mTATB data frame of the merged TA and TB
mTATC data frame of the merged TA and TC
GSA reference GSA for the analysis
country reference countries for the analysis
wd working directory used to save results

save boolean. If TRUE the outputs are saved in the local folder verbose boolean. If TRUE messages are prompted in the console

quant Quantile estimation

Description

Quantile estimation

Usage

```
quant(weighted, qlin = 0.95)
```

Arguments

weighted LFD data.frame

qlin reference quantile for the analysis

20 sex_ratio_on_grid

sex_ratio

Sex ratio

Description

Sex ratio

Usage

```
sex_ratio(
  mTATB,
  GSA,
  country,
  depth_range,
  stratas,
  stratification,
  wd = NA,
  save = TRUE,
  verbose = FALSE
)
```

Arguments

mTATB data frame of the merged TA and TB

GSA reference GSA for the analysis

country vector of reference countries for the analysis

depth_range range of depth strata to perform the analysis (min, max)

stratas data frame of the reference strata for the study area

stratification data frame of strata surface area

wd working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

verbose boolean. If TRUE a message is printed

sex_ratio_on_grid

Plot sex ratio spatial distribution

Description

Plot sex ratio spatial distribution

spear 21

Usage

```
sex_ratio_on_grid(
  mTATBsp,
  depth,
  wd,
  map_range,
  threshold = 30,
  verbose = FALSE,
  save = FALSE
)
```

Arguments

mTATBsp spatial mTATB
depth reference depth range
wd working directory

map_range range of coordinates for the map

threshold minimum number of individuals per haul

verbose boolean. If TRUE messages are prompted in the console save boolean. If TRUE the outputs are saved in the local folder

spear

Spearman test for timeseries

Description

Spearman test for timeseries

Usage

spear(x)

Arguments

x time series

spearman

Spearman test

Description

Spearman test

Usage

```
spearman(abundance = NA, biomass = NA, years, sspp = NA, wd = NA, save = TRUE)
```

22 stratification

Arguments

abundance data frame of abundance indices
biomass data frame of biomass indices
years reference years for the analysis
sspp reference species for the analysis

wd path of working directory

save boolean. If TRUE the plot is saved in the user defined working directory (wd)

strata_scheme

stratification scheme

Description

stratification scheme

Usage

strata_scheme

Format

An object of class data.frame with 142 rows and 5 columns.

Author(s)

Walter Zupa <zupa@fondazionecoispa.it>

stratification stratification

Description

stratification

Usage

stratification

Format

An object of class data.frame with 277 rows and 6 columns.

stratum_0_125 23

 $stratum_0_125$

 $stratum_0_125$

Description

stratum_0_125

Usage

 ${\sf stratum_0_125}$

Format

An object of class PackedSpatVector of length 1.

stratum_0_200

 $stratum_0_200$

Description

stratum_0_200

Usage

 $stratum_0_200$

Format

An object of class PackedSpatVector of length 1.

 $stratum_0_35$

 $stratum_0_35$

Description

stratum_0_35

Usage

stratum_0_35

Format

An object of class PackedSpatVector of length 1.

24 stratum_200_800

 $stratum_0_45$

 $stratum_0_45$

Description

 $stratum_0_45$

Usage

 $stratum_0_45$

Format

An object of class PackedSpatVector of length 1.

 $stratum_0_800$

 $stratum_0_800$

Description

stratum_0_800

Usage

 $stratum_0_800$

Format

An object of class PackedSpatVector of length 1.

stratum_200_800

stratum_200_800

Description

stratum_200_800

Usage

stratum_200_800

Format

An object of class PackedSpatVector of length 1.

TA 25

TΑ

TA table example

Description

TA table example

Usage

TΑ

Format

An object of class data. frame with 100 rows and 43 columns.

TA_cols

TA table headings

Description

TA table headings

Usage

TA_cols

Format

An object of class character of length 22.

Author(s)

Walter Zupa <zupa@fondazionecoispa.it>

ТВ

TB table example

Description

TB table example

Usage

ТВ

Format

An object of class data.frame with 3059 rows and 19 columns.

26 TC_cols

TB_cols

TB table headings

Description

TB table headings

Usage

TB_cols

Format

An object of class character of length 8.

Author(s)

Walter Zupa <zupa@fondazionecoispa.it>

TC

TC table example

Description

TC table example

Usage

TC

Format

An object of class data. frame with 11185 rows and 22 columns.

TC_cols

TC table headings

Description

TC table headings

Usage

TC_cols

Format

An object of class character of length 11.

Author(s)

Walter Zupa < zupa@fondazionecoispa.it>

Index

* MEDITS	check_hauls_TBTA, 7	
stratification, 22	<pre>check_numeric_range, 8</pre>	
TA, 25	continent, 8	
TB, 25	convert_coordinates, 9	
TC, 26		
* TA	dd.distance, 9	
TA, 25	dd.to.MEDITS, 10	
TA_cols, 25		
* TB	hauls_position, 10	
TB, 25	inday on amid 11	
TB_cols, 26	<pre>index_on_grid, 11 index_recr, 11</pre>	
* TC		
TC, 26	index_spawn, 12	
TC_cols, 26	index_ts_F, 13	
* centroidi	<pre>index_ts_M, 14 indices_ts, 14</pre>	
centroidi, 5	marces_ts, 14	
* cgpmgrid	LFD, 15	
cgpmgrid, 6	Lquant, 16	
* continent	_qaa, 10	
continent, 8	MEDITS.distance, 16	
* stratification	MEDITS.to.dd, 17	
strata_scheme, 22	merge_TATBTC, 17	
stratification, 22	MIW, 18	
* stratum_0_125		
stratum_0_125, <u>23</u>	overlayGrid, 19	
* stratum_0_200		
stratum_0_200, 23	quant, 19	
* stratum_0_35		
stratum_0_35, 23	sex_ratio, 20	
* stratum_0_45	sex_ratio_on_grid, 20	
stratum_0_45, 24	spear, 21	
* stratum_0_800	spearman, 21	
stratum_0_800, 24	strata_scheme, 22	
* stratum_200_800	stratification, 22	
stratum_200_800,24	stratum_0_125, 23	
Distriction 2	stratum_0_200, 23	
BioIndex, 2	stratum_0_35, 23	
bubble_plot_by_haul_indexes, 4	stratum_0_45, 24	
bubbleplot_RS_by_hauls,4	stratum_0_800, 24	
centroidi, 5	stratum_200_800, 24	
cgpmgrid, 6	TA, 25	
check_date_haul, 6	TA_cols, 25	
check_dictionary, 7	TB, 25	
CHECK_UICTIONAL Y, /	10, 43	

28 INDEX

TB_cols, 26 TC, 26 TC_cols, 26