Лабораторная работа № 1 ДО

ПРОХОЖДЕНИЕ СИГНАЛОВ ЧЕРЕЗ *RC*-ЦЕПИ

1. Цель работы

Исследование частотных и временных характеристик простейших RC—цепей, экспериментальное определение граничных частот и временных параметров таких цепей и изучение связи между временными и частотными параметрами.

2. Схемы эксперимента и методика исследования

Исследование схем осуществляется методом математического моделирования с помощью программы **DISIGNE LAB 8.0** [1]. В ее среде собираются и исследуются RC—цепи с интегрирующим (рис.1) и разделительным (рис.2) конденсатором, снимаются частотные и временные характеристики, определяются временные и частотные параметры этих цепей.

Рис. 1. *RC*-цепь с интегрирующим конденсатором.

Рис. 2. *RC*-цепь с разделительным конденсатором.

3. Подготовка к работе

Для схем с интегрирующим (рис. 1) и разделительным (рис. 2) конденсатором:

- вывести выражение для амплитудно-частотной H(f) и временной $u_{\text{вых}}(t)$ характеристик;
- построить графики данных зависимостей и по ним определить для схемы рис. 1:

 $f_{\rm B}$ – верхнюю граничную частоту,

 t_{Φ} – длительность фронта выходного импульса,

для схемы рис. 2:

 $f_{\scriptscriptstyle \rm H}$ – нижнюю граничную частоту,

 δu — относительный спад плоской вершины при заданной длительности импульса.

Параметры элементов схем определяются по следующим формулам:

$$R_1 = (1 + 0.15M + 0.17N)$$
 кОм,
 $C_1 = (1 + 0.15M + 0.17N)$ нФ,
 $R_2 = (2 + 0.15M + 0.17N)$ кОм,
 $C_2 = (50 + 0.15M + 0.17N)$ нФ,
 $U_m = (2 + 0.3 M + 0.25 N)$ В,

где N – порядковый номер фамилии студента в учебном журнале, М – номер группы.

Длительность импульса входного сигнала определяется через постоянную времени цепи схемы рис. 2: $t_{\text{и вх}} = 0.2\tau_2 = 0.2R_2C_2$.

4. Рабочее задание

Исследование частотных характеристик

- 4.1. В операционной системе *Windows* под управлением программы *Schematics* собрать схему для исследования частотных свойств RC—цепи с интегрирующим конденсатором (рис. 1). Снять амплитудно—частотную характеристику и по AЧX определить верхнюю граничную частоту $f_{\rm B}$. Результат занести в таблицу.
 - С помощью формулы связи между временными и частотными параметрами частотно-избирательных цепей рассчитать длительность фронта временной характеристики через найденную граничную частоту. Результат занести в таблицу.
- 4.2. Собрать схему для исследования частотных свойств RC-цепи с разделительным конденсатором (рис. 2). Снять амплитудно-частотную характеристику и по AЧX определить нижнюю граничную частоту $f_{\rm H}$. Результат занести в таблицу.
 - С помощью формулы связи между временными и частотными параметрами частотно—избирательных цепей рассчитать относительный спад плоской вершины временной характеристики через найденную граничную частоту. Результат занести в таблицу.

Исследование временных характеристик

4.3. Собрать схему для исследования временных характеристик RC—цепи с интегрирующим конденсатором (рис. 1), задать входное напряжение в виде прямоугольного импульса. Снять осциллограммы входного и выходного сигналов. Для выходного сигнала определить длительности фронта t_{ϕ} и среза t_{c} . Результаты занести в таблицу. С помощью формулы связи между временными и частотными параметрами частотно—избирательных цепей

рассчитать граничную частоту через найденный фронт. Результаты занести в таблицу.

4.4. Собрать схему для исследования временных характеристик RC-цепи с разделительным конденсатором (рис. 2), задать входное напряжение в виде прямоугольного импульса. Снять осциллограммы входного и выходного сигналов. Для выходного импульса определить амплитуду U_m и спад плоской вершины Δu . По этим данным рассчитать относительный спад плоской вершины δu . Результат занести в таблицу. С помощью формулы связи между временными и частотными параметрами частотно—избирательных цепей рассчитать граничную частоту через найденный спад плоской вершины. Результат занести в таблицу.

Таблица 1

Схема	<i>RC</i> -цепь	с инте	сгрирующим	<i>RC</i> -цепь с	разделительным
	конденсатором			конденсатором	
Параметр	$f_{\scriptscriptstyle m B}$, к Γ ц	t_{ϕ} , мкс	$t_{\rm c}$, MKC	$f_{\scriptscriptstyle m H}$, к Γ ц	δ <i>u</i> , %
Теоретический расчет			***		
Эксперимент					
Расчет по формулам связи			***		

4.5. Исследовать дифференцирующую RC-цепь. Для этого в схеме предыдущего пункта (рис. 2) уменьшить емкость конденсатора C_2 в 100 раз. Снять временные осциллограммы входного и выходного сигналов. По уровню $0,5U_m$ определить длительности положительного и отрицательного импульсов выходного сигнала. Рассчитать длительности импульсов по теоретической формуле и сравнить с экспериментом.