

Linear Algebra

G V V Sharma*

CONTENTS

- 1 June 2019 1
- 2 December 2018 3
- 3 June 2018 5
- **4 December 2017** 8
- 5 Problem

 $\label{lem:abstract} \textbf{Abstract} \textbf{—This book provides solved examples on Linear Algebra.}$

1 June 2019

1.1. Consider the vector space \mathbb{P}_n of real polynomials in x of degree $\leq n$. Define

$$T: \mathbb{P}_2 \to \mathbb{P}_3 \tag{1.1.1}$$

by

$$(Tf)(x) = \int_0^x f(t) dt + f'(x).$$
 (1.1.2)

Then find the matrix representation of T with respect to the bases

$$\{1, x, x^2\}$$
 and $\{1, x, x^2, x^3\}$ (1.1.3)

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1.2. Let $P_A(x)$ denote the characteristic polynomial of a matrix A. Then for which of the following matrices is

$$P_A(x) - P_{A^{-1}}(x) \tag{1.2.1}$$

a constant?

a)
$$\begin{pmatrix} 3 & 3 \\ 2 & 4 \end{pmatrix}$$
 c) $\begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$ b) $\begin{pmatrix} 4 & 3 \\ 2 & 3 \end{pmatrix}$ d) $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$

1.3. Which of the following matrices is not diagonalizable over \mathbb{R} ?

a)
$$\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 c) $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$

1.4. What is the rank of the following matrix?

$$\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 & 3 \\
1 & 2 & 3 & 4 & 4 \\
1 & 2 & 3 & 4 & 5
\end{pmatrix}$$
(1.4.1)

1.5. Let V denote the vector space of real valued continuous functions on the close interval [0,1]. Let W be the subspace of V spanned by $\{\sin x, \cos x, \tan x\}$. Find the dimension of W over \mathbb{R} .

1.6. Let V be the vector space of polynomials in the variable t of degree at most 2 over \mathbb{R} . An inner product on V is defined by

$$f^T g = \int_0^1 f(t)g(t) dt, \quad f, g \in V.$$
 (1.6.1)

Let

$$W = span \left\{ 1 - t^2, 1 + t^2 \right\}$$
 (1.6.2)

and W^{\perp} be the orthogonal complement of W in V. Which of the following conditions is satisfied for all $h \in W^{\perp}$?

- a) h is an even function
- b) h is an odd function
- c) h(t) = 0 has a real solution
- d) h(0) = 0
- 1.7. Consider solving the following system by Jacobi iteration scheme

$$\begin{pmatrix} 1 & 2m & -2m \\ n & 1 & n \\ 2m & 2m & 1 \end{pmatrix} (x) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 (1.7.1)

where $m, n \in \mathbb{Z}$. With any initial vector, the scheme converges provided m, n satisfy

- a) m + n = 3
- c) m < n
- b) m > n
- d) m = n
- 1.8. Consider a Markov Chain with state space $\{0, 1, 2, 3, 4\}$ and transition matrix

$$P = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 3 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 4 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
(1.8.1)

Then find

$$\lim_{n \to \infty} p_{23}^{(n)} \tag{1.8.2}$$

- 1.9. Let $L(\mathbb{R})^n$ be the space of \mathbb{R} -linear maps from \mathbb{R}^n to \mathbb{R}^n . If Ker(T) denotes the kernel of T then which of the following are true?
 - a) There exists $T \in L(\mathbb{R}^5)$ {0} such that Range(T) = Ker(T)
 - b) There does not exist $T \in L(\mathbb{R}^5)$ {0} such that Range(T) = Ker(T)

- c) There exists $T \in L(\mathbb{R}^6)$ {0} such that Range(T) = Ker(T)
- d) There does not exist $T \in L(\mathbb{R}^6)$ {0} such that Range(T) = Ker(T)
- (1.6.1) 1.10. Let V be a finite dimensional vector space over \mathbb{R} and $T:V\to V$ be a linear map. Can you always write $T = T_2 \circ T_1$ for some linear maps

$$T_1: V \to W, T: W \to V,$$
 (1.10.1)

where W is some finite dimensional vector space such that

- a) both T_1 and T_2 are onto
- b) both T_1 and T_2 are one to one
- c) T_1 is onto, T_2 is one to one
- d) T_1 is one to one, T_2 is onto
- 1.11. Let $A = |a_{ij}|$ be a 3×3 complex matrix. Identify the correct statements

a)
$$det\left|\left(-1\right)^{i+j}a_{ij}\right| = det(A)$$

a)
$$det \left[(-1)^{i+j} a_{ij} \right] = det(A)$$

b) $det \left[(-1)^{i+j} a_{ij} \right] = -det(A)$

c)
$$det\left[\left(\sqrt{-1}\right)^{i+j}a_{ij}\right] = det(A)$$

c)
$$det \left[\left(\sqrt{-1} \right)^{i+j} a_{ij} \right] = det(A)$$

d) $det \left[\left(\sqrt{-1} \right)^{i+j} a_{ij} \right] = -det(A)$

1.12. Let

$$p(x) = a_0 + a_1 x + \dots + a_n x^n$$
 (1.12.1)

be a non-constant polynomial of degree $n \ge 1$. Consider the polynomial

$$q(x) = \int_0^x p(t) dt, r(x) = \frac{d}{dx} p(x)$$
 (1.12.2)

Let V denote the real vector space of all polynomials in x. Then which of the following are true?

- a) q and r are linearly independent in V
- b) q and r are linearly dependent in V
- c) x^n belongs to the linear span of q and r
- d) x^{n+1} belongs to the linear span of q and r.
- 1.13. Let $M_n(\mathbb{R})$ be the ring of $n \times n$ matrices over \mathbb{R} . Which of the following are true for every $n \geq 2$?
 - a) there exist matrices $A, B \in M_n(\mathbb{R})$ such that $AB - BA = I_n$, where I_n denotes the identity matrix.
 - b) If $A, B \in M_n(\mathbb{R})$ and AB = BA, then A is diagonalisable over \mathbb{R} if and only if B is diagonalisable over \mathbb{R} .
 - c) If $A, B \in M_n(\mathbb{R})$, then AB and BA have the

same minimal polynomial.

d) If $A, B \in M_n(\mathbb{R})$, then AB and BA have the same eigenvalues in \mathbb{R} .

1.14. Consider a matrix

$$A = [a_{ij}], 1 \le i, j \le 5$$
 (1.14.1)

such that

$$a_{ij} = \frac{1}{n_i + n_i + 1}, \quad n_i, n_j \in \mathbb{N}$$
 (1.14.2)

Then in which of the following cases A is a positive definite matrix?

- a) $n_i = 1 \forall i = 1, 2, 3, 4, 5$.
- b) $n_1 < n_2 < \cdots < n_5$.
- c) $n_1 = n_2 = \cdots = n_5$.
- d) $n_1 > n_2 > \cdots > n_5$.

1.15. For a nonzero $w \in \mathbb{R}^n$, define

$$T_w: \mathbb{R}^n \to \mathbb{R}^n \tag{1.15.1}$$

by

$$T_w = v - \frac{2v^T w}{w^T w} w, \quad v \in \mathbb{R}^n$$
 (1.15.2)

Which of the following are true?

- a) $det(T_w) = 1$
- b) $T_w(v_1)_w^T(v_2) = v_1^T v_2 \forall v_1, v_2 \in \mathbb{R}^n$ c) $T_w = T_w^{-1}$
- d) $T_{2w} = 2T_w$

1.16. Consider the matrix

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \tag{1.16.1}$$

over the field Q of rationals. Which of the following matrices are of the form $P^{T}AP$ for suitable 2×2 invertible matrix P over \mathbb{Q} ?

a)
$$\begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$
 c) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
b) $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 3 & 4 \\ 4 & 5 \end{pmatrix}$

1.17. Consider a Markov Chain with state space $\{0, 1, 2\}$ and transition matrix

$$P = \begin{array}{ccc} 0 & 1 & 2 \\ 0 \begin{pmatrix} \frac{1}{4} & \frac{5}{8} & \frac{1}{8} \\ \frac{1}{4} & 0 & \frac{3}{4} \\ 2 \begin{pmatrix} \frac{1}{2} & \frac{3}{2} & \frac{1}{2} \end{pmatrix} \end{array}$$
(1.17.1)

Then which of the following are true?

a)
$$\lim_{n\to\infty} p_{12}^{(n)} = 0$$

- a) $\lim_{n\to\infty} p_{12}^{(n)} = 0$ b) $\lim_{n\to\infty} p_{12}^{(n)} = \lim_{n\to\infty} p_{21}^{(n)}$ c) $\lim_{n\to\infty} p_{22}^{(n)} = \frac{1}{8}$ d) $\lim_{n\to\infty} p_{21}^{(n)} = \frac{1}{3}$

2 December 2018

2.1. Consider the subspaces W_1 and W_2 of \mathbb{R}^3 given

$$W_1 = \{ \mathbf{x} \in \mathbb{R}^3 : (1 \quad 1 \quad 1) \mathbf{x} = 0 \}$$
 (2.1.1)

$$W_2 = \{ \mathbf{x} \in \mathbb{R}^3 : (1 -1 1) \mathbf{x} = 0 \}.$$
 (2.1.2)

If $W \subseteq \mathbb{R}^3$, such that

a)
$$W \cap W_2 = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

b) $\{W \cap W_1\} \perp \{W \cap W_2\}$

a)
$$W = \operatorname{span} \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

b)
$$W = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$$

c)
$$W = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

d)
$$W = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

2.2. Let

$$C = \left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 2\\1 \end{pmatrix} \right\} \tag{2.2.1}$$

be a basis of \mathbb{R}^2 and

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + y \\ x - 2y \end{pmatrix}. \tag{2.2.2}$$

If T [C] represents the matrix of T with respect to the basis C then which among the following is true?

a)
$$T[C] = \begin{pmatrix} -3 & -2 \\ 3 & 1 \end{pmatrix}$$

b)
$$T[C] = \begin{pmatrix} 3 & -2 \\ -3 & 1 \end{pmatrix}$$

a)
$$T[C] = \begin{pmatrix} -3 & -2 \\ 3 & 1 \end{pmatrix}$$

b) $T[C] = \begin{pmatrix} 3 & -2 \\ -3 & 1 \end{pmatrix}$
c) $T[C] = \begin{pmatrix} -3 & -1 \\ 3 & 2 \end{pmatrix}$

d)
$$T[C] = \begin{pmatrix} 3 & -1 \\ -3 & 2 \end{pmatrix}$$

2.3. Let $W_1 = \{ \mathbf{x} \in \mathbb{R}^4 : \}$

$$(1 \ 1 \ 1 \ 0) \mathbf{x} = 0$$
 (2.3.1)
 $(0 \ 2 \ 0 \ 1) \mathbf{x} = 0$ (2.3.2)

$$(2 \quad 0 \quad 2 \quad -1) \mathbf{x} = 0$$
 (2.3.3)

and $W_2 = \left\{ \mathbf{x} \in \mathbb{R}^4 : \right\}$

$$(1 1 0 1) \mathbf{x} = 0 (2.3.4)$$

$$(1 0 1 -2) \mathbf{x} = 0 (2.3.5)$$

$$(0 \quad 1 \quad 0 \quad -1)\mathbf{x} = 0. \tag{2.3.6}$$

Then which among the following is true?

- a) $\dim(W_1) = 1$
- b) $\dim(W_2) = 2$
- c) dim $(W_1 \cap W_2) = 1$
- d) $\dim(W_1 + W_2) = 3$
- 2.4. Let A be an $n \times n$ complex matrix. Assume that A is self-adjoint and let B denote the inverse of A + II. Then all eigenvalues of (A - II)B are
 - a) purely imaginary
 - b) of modulus one
 - c) real
 - d) of modulus less than one
- 2.5. Let $\{u_1, u_2, \dots, u_n\}$ be an orthonormal basis of \mathbb{C}^n as column vectors.Let

$$\mathbf{M} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_k \end{pmatrix}, \tag{2.5.1}$$

$$\mathbf{N} = \begin{pmatrix} \mathbf{u}_{k+1} & \mathbf{u}_{k+2} & \dots & \mathbf{u}_n \end{pmatrix} \tag{2.5.2}$$

and **P** be the diagonal $k \times k$ matrix with diagonal entries $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$. Then which of the following is true?

- a) rank(**MPM***) = k whenever $\alpha_i \neq \alpha_j$, 1 \leq $i, j \leq k$.
- b) $\operatorname{tr}(\mathbf{MPM}^*) = \sum_{i=1}^k \alpha_i$
- c) $rank(\mathbf{M}^*\mathbf{N}) = min(k, n k)$
- d) $\operatorname{rank}(\mathbf{MM}^* + \mathbf{NN}^*) < n$.
- 2.6. Let $B: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be the function

$$B(a,b) = ab \tag{2.6.1}$$

Which of the following is true?

- a) B is a linear transformation
- b) B is a positive definite bilinear form
- c) B is symmetric but not positive definite
- d) B is neither linear nor bilinear
- 2.7. Let A be an invertible real $n \times n$ matrix. Define

a function

$$F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \tag{2.7.1}$$

by

$$F(\mathbf{x}, \mathbf{y}) = (F\mathbf{x})^T \mathbf{y} \tag{2.7.2}$$

Let $DF(\mathbf{x}, \mathbf{y})$ denote the derivate of F at (\mathbf{x}, \mathbf{y}) which is a linear transformation from

$$\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \tag{2.7.3}$$

Then, if

- a) $\mathbf{x} \neq 0, DF(\mathbf{x}, \mathbf{0}) \neq 0$
- b) $y \neq 0, DF(0, y) \neq 0$
- c) $(x, y) \neq (0, 0), DF(x, 0) \neq 0$
- d) x = 0 or y = 0, DF(x, y) = 0
- 2.8. Let

$$T: \mathbb{R}^n \to \mathbb{R}^n \tag{2.8.1}$$

be a linear map that satisfies

$$T^2 = T - I. (2.8.2)$$

Then which of the following is true?

- a) T is invertible.
- b) T I is not invertible.
- c) T has a real eigenvalue.
- d) $T^3 = -I$.
- 2.9. Let

$$\mathbf{M} = \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 \\ 0 & 1 & 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 & 4 & 4 \\ 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$
 (2.9.1)

$$\mathbf{b}_{1} = \begin{pmatrix} 5 \\ 1 \\ 1 \\ 4 \end{pmatrix}, \mathbf{b}_{2} = \begin{pmatrix} 5 \\ 1 \\ 3 \\ 3 \end{pmatrix}. \tag{2.9.2}$$

Then which of the following are true?

- a) both systems $Mx = b_1$ and $Mx = b_2$ are inconsistent.
- b) both systems $Mx = b_1$ and $Mx = b_2$ are consistent.
- c) the system $\mathbf{M}\mathbf{x} = \mathbf{b}_1 \mathbf{b}_2$ is consistent.
- d) the system $\mathbf{M}\mathbf{x} = \mathbf{b}_1 \mathbf{b}_2$ is inconsistent.
- 2.10. Let

$$\mathbf{M} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & 4 \\ -2 & 1 & -4 \end{pmatrix}. \tag{2.10.1}$$

Given that 1 is an eigenvalue of M, then which among the following are correct?

- a) The minimal polynomial M is (x-1)(x+4)
- b) The minimal polynomial of M $(x-1)^2(x+4)$
- c) M is not diagonalizable.
- d) $\mathbf{M}^{-1} = \frac{1}{4} (\mathbf{M} + 3\mathbf{I}).$
- 2.11. Let A be a real matrix with characteristic polynomial $(x-1)^3$. Pick the correct statements from below:
 - a) A is necessarily diagonalizable.
 - b) If the minimal polynomial of **A** is $(x-1)^3$, then A is diagonalizable.
 - c) The characteristic polynomial of A^2 is $(x-1)^3$
 - d) If A has exactly two Jordan blocks, then $(\mathbf{A} - \mathbf{I})^2$ is diagonalizable.
- 2.12. Let P_3 be the vector space of polynomails with real coefficients and of degree at most 3. Consider the linear map

$$T: P_3 \to P_3$$
 (2.12.1)

defined by

$$T(p(x)) = p(x-1) + p(x+1)$$
 (2.12.2)

Which of the following properties does the matrix of T with respect to the standard basis $B = \{1, x, x^2, x^3\}$ of P_3 satisfy?

- a) detT = 0.
- b) $(T 2I)^4 = 0$ but $(T 2I)^3 \neq 0$.
- c) $(T 2I)^3 = 0$ but $(T 2I)^2 \neq 0$.
- d) 2 is an eigenvalue with multiplicity 4.
- 2.13. Let **M** be an $n \times n$ Hermitian matrix of rank $k, k \neq n$. If $\lambda \neq = 0$ is an eigenvalue of M with corresponding unit column vector **u**, then which of the following are true?
 - a) $\operatorname{rank}(\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*) = k 1$.
 - b) $\operatorname{rank}(\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*) = k$.
 - c) rank($\mathbf{M} \lambda \mathbf{u} \mathbf{u}^*$) = k + 1.
 - d) $(\mathbf{M} \lambda \mathbf{u}\mathbf{u}^*)^n = \mathbf{M}^n \lambda^n \mathbf{u}\mathbf{u}^*$.
- 2.14. Define a real valued function B on $\mathbb{R}^2 \times \mathbb{R}^2$ as

$$B(\mathbf{x}, \mathbf{y}) = x_1 y_1 - x_1 y_2 - x_2 y_1 + 4 x_2 y_2 \quad (2.14.1)$$

Let
$$\mathbf{v}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and

$$W = \left\{ \mathbf{v} \in \mathbb{R}^2 : B(\mathbf{v}_0, \mathbf{v}) = 0 \right\}$$
 (2.14.2)

Then W

- a) is not a subspace of \mathbb{R}^2 .
- b) equals **0**.
- c) is the y axis
- d) is the line passing through $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
- 2.15. Consider the Quadratic forms

$$Q_1(x, y) = xy (2.15.1)$$

$$Q_2(x, y) = x^2 + 2xy + y^2 (2.15.2)$$

$$Q_3(x, y) = x^2 + 3xy + 2y^2$$
 (2.15.3)

on \mathbb{R}^2 . Choose the correct statements from below

- a) Q_1 and Q_2 are equivalent.
- b) Q_1 and Q_3 are equivalent.
- c) Q_2 and Q_3 are equivalent.
- d) all are equivalent.
- 2.16. Consider a Markov Chain with state space $\{0, 1, 2\}$ and transition matrix

$$P = \begin{array}{ccc} 0 & 1 & 2 \\ 0 \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{3}{4} \\ 2 \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix} \end{array}$$
 (2.16.1)

For any two states i and j, let $p_{ij}^{(n)}$ denote the *n*-step transition probability of going from *i* to *j.* Identify correct statements.

- a) $\lim_{n\to\infty} p_{11}^{(n)} = \frac{2}{9}$ b) $\lim_{n\to\infty} p_{21}^{(n)} = 0$ c) $\lim_{n\to\infty} p_{32}^{(n)} = \frac{1}{3}$ d) $\lim_{n\to\infty} p_{13}^{(n)} = \frac{1}{3}$

3 June 2018

- 3.1. Let **A** be a $(m \times n)$ matrix and **B** be a $(n \times m)$ matrix over real numbers with m < n. Then
 - a) **AB** is always nonsingular.
 - b) **AB** is always singular.
 - c) **BA** is always nonsingular.
 - d) **BA** is always singular.
- 3.2. If **A** is a (2×2) matrix over \mathbb{R} with $det(\mathbf{A} + \mathbf{I}) = 1 + det(\mathbf{A})$. Then we can conclude that
 - a) $det(\mathbf{A}) = 0$.
 - b) **A**= 0.
 - c) tr(A) = 0.
 - d) A is nonsingular.

3.3. The system of equations

$$x + 2x^2 + 3xy = 6 (3.3.1)$$

$$x + x^2 + 3xy + y = 5 (3.3.2)$$

$$x - x^2 + y = 7 (3.3.3)$$

- a) has solutions in rational numbers.
- b) has solutions in real numbers.
- c) has solutions in complex numbers.
- d) has no solutions.
- 3.4. The trace of the matrix

$$\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}^{20} \tag{3.4.1}$$

is

- a) 7^{20} .
- b) $2^{20} + 3^{20}$
- c) $2^{21} + 3^{20}$.
- d) $2^{20} + 3^{20} + 1$.
- 3.5. Given that there are real constants a, b, c, dsuch that the identity

$$\lambda x^2 + 2xy + y^2 = (ax + by)^2 + (cx + dy)^2,$$

 $\forall x, y \in \mathbb{R} \quad (3.5.1)$

This implies that

- a) $\lambda = -5$
- b) $\lambda \geq 1$
- c) $0 < \lambda < 1$
- d) There is no such $\lambda \in \mathbb{R}$
- 3.6. Let $\mathbb{R}, n \geq 2$, be equipped with the standard inner product. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be n column vectors forming an orthonormal basis of \mathbb{R}^n . Let A be the $n \times n$ matrix formed by the column vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$. Then
 - a) $A = A^{-1}$
- b) $\mathbf{A} = \mathbf{A}^{\mathsf{T}}$
- c) $\mathbf{A}^{-1} = \mathbf{A}^{\top}$ d) $det(\mathbf{A}) = 1$
- 3.7. Consider a Markov Chain with state space $\{1, 2, 3, 4\}$ and transition matrix

$$P = \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 0 & \frac{1}{2} & 0 \\ 2 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \end{array}$$

a)
$$\lim_{n\to\infty} p_{22}^{(n)} = 0$$
, $\sum_{n=0}^{\infty} p_{22}^{(n)} = \infty$
b) $\lim_{n\to\infty} p_{22}^{(n)} = 0$, $\sum_{n=0}^{\infty} p_{22}^{(n)} < \infty$
c) $\lim_{n\to\infty} p_{22}^{(n)} = 1$, $\sum_{n=0}^{\infty} p_{22}^{(n)} = \infty$
d) $\lim_{n\to\infty} p_{22}^{(n)} = 1$, $\sum_{n=0}^{\infty} p_{22}^{(n)} < \infty$

- 3.8. Let V denote the vector space of all sequences $\mathbf{a} = (a_1, a_2, \dots)$ of real numbers such that

$$\sum_{n} 2^n |a|_n \tag{3.8.1}$$

converges. Define

$$\|\cdot\|: V \to \mathbb{R} \tag{3.8.2}$$

by

$$\|\mathbf{a}\| = \sum_{n} 2^n |a|_n.$$
 (3.8.3)

Which of the following are true?

- a) V contains only the sequence $(0,0,\ldots)$
- b) V is finite dimensional
- c) V has a countable linear basis
- d) V is a complete normed space
- 3.9. Let V be a vector space over \mathbb{C} with dimension n. Let $T: V \to V$ be a linear transformation with only 1 as eigenvalue. Then which of the following must be true?
 - a) T I = 0
 - b) $(T-I)^{n-1}=0$
 - c) $(T-I)^n=0$
 - d) $(T I)^{2n} = 0$
- 3.10. If **A** is a 5×5 matrix and the dimension of the solution space of Ax = 0 is at least two, then
 - a) $\operatorname{rank}(\mathbf{A}^2) \leq 3$
 - b) $\operatorname{rank}(\mathbf{A}^2) \ge 3$
 - c) rank $(\mathbf{A}^2) = 3$
 - d) $det(\mathbf{A}^2) = 0$
- 3.11. Let $\mathbf{A} \in M_3(\mathbb{R})$ be such that $\mathbf{A}^3 = \mathbf{I}_{3\times 3}$. Then
 - a) minimal polynomial of A can only be of
 - b) minimal polynomial of A can only be of degree 3
 - c) either A = I or A = -I
 - d) there can be uncountably many A satisfying the above.
- (3.7.1) 3.12. Let **A** be an $n \times n$, n > 1 matrix satisfying

$$\mathbf{A}^2 - 7\mathbf{A} + 12\mathbf{I} = \mathbf{0} \tag{3.12.1}$$

Then which of the following statements is true?

Then,

a) A is invertible

- b) $t^2 7t + 12n = 0$ where t = tr(A)
- c) $d^2 7d + 12 = 0$ where d = det(A)
- d) $\lambda^2 7\lambda + 12 = 0$ where λ is an eigenvalue of
- 3.13. Let **A** be a 6×6 matrix over \mathbb{R} with characteristic polynomial

$$(x-3)^2 (x-2)^4$$
 (3.13.1)

and minimal polynomial

$$(x-3)(x-2)^2$$
 (3.13.2)

Then the Jordan canonical form of A can be

- $(3 \ 0 \ 0 \ 0 \ 0)$ 0 3 0 0 0 0 0 0 0 2 1 $0 \ 0 \ 0 \ 0 \ 0$ 0 0 0 2 0 0 0 0 0 2 1 0 3 0 0 0 0
- 3.14. Let V be an inner product space and S be a subset of V. Let \bar{S} denote the closure of S in V with respect to the topology induced by the metric given by the inner product. Which of the following statements is true?

a)
$$S = (S^{\perp})^{\perp}$$

b)
$$\bar{S} = (S^{\perp})^{\perp}$$

c)
$$\overline{span(S)} = (S^{\perp})^{\perp}$$

c)
$$\frac{S - (S)}{span(S)} = (S^{\perp})^{\perp}$$

d) $S^{\perp} = ((S^{\perp})^{\perp})^{\perp}$

3.15. Let

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix} \tag{3.15.1}$$

and

$$Q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} \tag{3.15.2}$$

Which of the following statements is true?

- a) The matrix of second order partial derivatives of the quadratic form Q is 2A
- b) The rank of the quadratic form O is 2
- c) The signature of the quadratic form Q is ++0
- d) The quadratic form Q take the value 0 for some non-zero vector x
- 3.16. Assume that a non-singular matrix

$$\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{U} \tag{3.16.1}$$

where L and U are lower and upper triangular matrices respectively with all diagonal entries are zero, and **D** si a diagonal matrix. Let \mathbf{x}^* be the solution of Ax = b. Then the Gauss-Seidel iteration method

$$\mathbf{x}_{k+1} = \mathbf{H}\mathbf{x}_k + \mathbf{c}, k = 0, 1, 2, \dots$$
 (3.16.2)

with $\|\mathbf{H}\| < 1$ converges to \mathbf{x}^* provided \mathbf{H} is equal to

a)
$$-\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})$$

b)
$$-(D + L)^{-1} U$$

c)
$$-\mathbf{D}(\mathbf{L} + \mathbf{U})^{-1}$$

d)
$$-(L - D)^{-1} U$$

3.17. Consider a Markov Chain with state space S = $\{1, 2, 3\}$ and transition matrix

$$P = \begin{array}{ccc} 1 & 2 & 3 \\ 1 & 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{array}$$
(3.17.1)

Let π be a stationary distribution of the Markov chain and d(1) denote the period of state 1. Which of the following statements are correct?

- a) d(1) = 1
- b) d(1) = 2
- c) $\pi_1 = \frac{1}{2}$ d) $\pi_1 = \frac{1}{3}$

4 December 2017

4.1. Let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$. Then the smallest positive integer n such that $\mathbf{A}^n = \mathbf{I}$ is

Solution: Property of eigen values of A: Let A be an arbitary $n \times n$ matrix of complex numbers with eigen values $\lambda_1, \lambda_2, \ldots, \lambda_n$. Then the eigen values of k^{th} power of A, that is the eigen values of A^k , for any positive integer k are $\lambda_1^k, \lambda_2^k, \ldots, \lambda_n^k$. Let us calculate the eigen values of A.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \tag{4.1.1}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0 \tag{4.1.2}$$

$$\begin{vmatrix} -\lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = 0 \tag{4.1.3}$$

$$-\lambda(1 - \lambda) + 1 = 0 (4.1.4)$$

$$\lambda^2 - \lambda + 1 = 0 \tag{4.1.5}$$

$$\implies \lambda = \frac{-1 \pm \sqrt{3}i}{2} \tag{4.1.6}$$

From the above property, the eigen values of A^n are λ^n . Also as it is given that $A^n = I$,

$$\implies \lambda^n = 1$$
 (4.1.7)

$$\implies \left(\frac{-1 \pm \sqrt{3}i}{2}\right)^n = 1 \tag{4.1.8}$$

Clearly $n \neq 1$. For n = 2,

$$\left(\frac{-1 \pm \sqrt{3}i}{2}\right)^2 = \frac{-1 \mp \sqrt{3}i}{2} \tag{4.1.9}$$

For n = 4,

$$\left(\frac{-1 \pm \sqrt{3}i}{2}\right)^4 = \frac{-1 \pm \sqrt{3}i}{2} \tag{4.1.10}$$

For n = 6,

$$\left(\frac{-1 \pm \sqrt{3}i}{2}\right)^6 = 1\tag{4.1.11}$$

Hence n = 6 is the smallest positive integer.

4.2. Let
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 2 & 3 & \alpha \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ 3 \\ \beta \end{pmatrix}$. Then the

system AX = b over the real numbers has

- a) No solution when $\beta \neq 7$
- b) Infinite number of solutions when $\alpha \neq 2$

- c) Infinite number of solutions when $\alpha = 2$ and $\beta \neq 7$
- d) A unique solution if $\alpha \neq 2$

Solution: First we derive the Row Reduced Echelon Form (RREF) of the augmented matrix of the system $\mathbf{AX} = \mathbf{b}$ as follows,

$$\begin{pmatrix}
1 & -1 & 1 & 1 \\
1 & 1 & 1 & 3 \\
2 & 3 & \alpha & \beta
\end{pmatrix}
\xrightarrow{R_2 = R_2 - R_1}
\xrightarrow{R_3 = R_3 - 2R_1}
\begin{pmatrix}
1 & -1 & 1 & 1 \\
0 & 2 & 0 & 2 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_2 = \frac{1}{2}R_2}
\begin{pmatrix}
1 & -1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\xrightarrow{R_1 = R_1 + R_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 5 & \alpha - 2 & \beta - 2
\end{pmatrix}$$

$$\stackrel{R_3=R_3-5R_2}{\longleftrightarrow} \begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & 0 & 1 \\
0 & 0 & \alpha-2 & \beta-7
\end{pmatrix}$$
(4.2.4)

From the RREF of the augmented matrix of the system $\mathbf{AX} = \mathbf{b}$ in (4.2.4) we make the following observations for different values of α and β in Table 4.2.1.

Values	Observations
	Then the existence of solution and
$\beta \neq 7$	the number of solutions will entirely
	depend on value of α
	Then RREF in (4.2.4) will contain
$\alpha = 2$	Zero Row in R_3 . Moreover solvability
$\beta \neq 7$	condition will not satisfy.
	⇒ system will have Zero solutions
	RREF in (4.2.4) will have all pivots
$\alpha \neq 2$	\implies RREF in (4.2.4) will be fullrank
	\implies AX = b have unique solution.

TABLE 4.2.1

Hence, if $\alpha \neq 2$ then the system $\mathbf{AX} = \mathbf{b}$ has unique solution.

4.3. Consider a Markov chain $\{X_n | n \ge 0\}$ with state space $\{1, 2, 3\}$ and transition matrix

$$\mathbf{P} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

Then, $P(X_3 = 1 | X_0 = 1)$ equals **Solution:**

5 Problem

The three step transitional probabilities are given as,

$$P(X_3 = j | X_0 = i) = P(X_{n+3} = j | X_n = i) =$$

$$(\mathbf{P}^3)_{ij} \text{ for any } n$$
(5.3.1)

$$\mathbf{P}^{3} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}^{3} = \begin{pmatrix} \frac{1}{4} & \frac{3}{8} & \frac{3}{8} \\ \frac{3}{8} & \frac{1}{4} & \frac{3}{8} \\ \frac{3}{8} & \frac{3}{8} & \frac{1}{4} \end{pmatrix}$$
(5.3.2)

From (5.3.2),

$$P(X_3 = 1 \mid X_0 = 1) = (\mathbf{P}^3)_{11} = \frac{1}{4}$$
 (5.3.3)

- 5.4. For every 4×4 real symmetric non-singular matrix **A** there exists a positive integer p such that
 - a) $p\mathbf{I} + \mathbf{A}$ is positive definite
 - b) A^p is positive definite
 - c) A^{-p} is positive definite
 - d) $\exp(p\mathbf{A}) \mathbf{I}$ is positive definite

Solution: A matrix is real symmetric implies its eigen values are real and eigen vectors are orthogonal, that is its eigen value decomposition is

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{5.4.1}$$

D is the diagonal matrix containing the real eigen values of **A**

P has the corresponding eigen vectors

$$\mathbf{P}\mathbf{P}^T = \mathbf{P}^T\mathbf{P} = \mathbf{I} \tag{5.4.2}$$

A real matrix is positive definite if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \tag{5.4.3}$$

$$\implies \mathbf{x}^T \lambda \mathbf{x} > 0 \tag{5.4.4}$$

$$\implies \lambda \mathbf{x}^T \mathbf{x} > 0 \tag{5.4.5}$$

$$\implies \lambda > 0$$
 (5.4.6)

In other words, all the eigen values of A are positive See Table 5.4.1

Let A be

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^T \tag{5.4.7}$$

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix}$$
 (5.4.8)

From the table, the choices would be option 1,2,3

5.5. Consider a Markov chain with five states $\{1, 2, 3, 4, 5\}$ and transition matrix

$$P = \begin{pmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0\\ 0 & \frac{1}{7} & 0 & 0 & \frac{6}{7}\\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5}\\ \frac{1}{3} & 0 & 0 & \frac{2}{3} & 0\\ 0 & \frac{5}{8} & 0 & 0 & \frac{3}{8} \end{pmatrix}$$
 (5.5.1)

Which of the following are true?

- a) 3 and 1 are in the same communicating class
- b) 1 and 4 are in the same communicating class
- c) 4 and 2 are in the same communicating class
- d) 2 and 5 are in the same communicating class

Solution: See Tables 5.5.1 and 5.5.2

OPTIONS	DERIVATIONS	
	$p\mathbf{I} + \mathbf{A} = \mathbf{P}(p\mathbf{I})\mathbf{P}^T + \mathbf{P}\mathbf{D}\mathbf{P}^T$	(5.4.9)
	$= \mathbf{P}\mathbf{D}_1\mathbf{P}^T$	(5.4.10)
Choice 1	$\mathbf{D}_1 = \begin{pmatrix} \lambda_1 + p & 0 & 0 & 0 \\ 0 & \lambda_2 + p & 0 & 0 \\ 0 & 0 & \lambda_3 + p & 0 \\ 0 & 0 & 0 & \lambda_4 + p \end{pmatrix}$	(5.4.11)
	Some of the eigen values of A may be negative. All the eigen values in D_1 are positive only if	
	$p > \lambda_i \ \forall i \in [1, 4]$	(5.4.12)
	$A^2 = AA$	(5.4.13)
	$= (\mathbf{P}\mathbf{D}\mathbf{P}^T)(\mathbf{P}\mathbf{D}\mathbf{P}^T)$	(5.4.14)
	$= \mathbf{P}\mathbf{D}^2\mathbf{P}^T$	(5.4.15)
Choice 2	Similarly, $\mathbf{A}^p = \mathbf{P}\mathbf{D}^p\mathbf{P}^T$	(5.4.16)
	$\mathbf{D}^{p} = \begin{pmatrix} \lambda_{1}^{p} & 0 & 0 & 0 \\ 0 & \lambda_{2}^{p} & 0 & 0 \\ 0 & 0 & \lambda_{3}^{p} & 0 \\ 0 & 0 & 0 & \lambda_{4}^{p} \end{pmatrix}$	(5.4.17)
	\mathbf{A}^p is positive definite only if p is even.	
	$\mathbf{A}^{-p} = \mathbf{P}\mathbf{D}^{-p}\mathbf{P}^T$	(5.4.18)
Choice 3	$\mathbf{D}^{-p} = \begin{pmatrix} \lambda_1^{-p} & 0 & 0 & 0\\ 0 & \lambda_2^{-p} & 0 & 0\\ 0 & 0 & \lambda_3^{-p} & 0\\ 0 & 0 & 0 & \lambda_4^{-p} \end{pmatrix}$	(5.4.19)
	\mathbf{A}^{-p} is positive definite only if p is even.	
	$\exp(p\mathbf{A}) = \sum_{k=0}^{\infty} \frac{(p\mathbf{A})^k}{k!}$	(5.4.20)
	$\implies \exp(p\mathbf{A}) - \mathbf{I} = \mathbf{P}\exp(p\mathbf{D})\mathbf{P}^T - \mathbf{P}\mathbf{I}\mathbf{P}^T$	(5.4.21)
Choice 4	$= \mathbf{P}(\exp(p\mathbf{D}) - \mathbf{I})\mathbf{P}^T$	(5.4.22)
	$\exp(p\mathbf{D}) - \mathbf{I} = \begin{pmatrix} e^{\lambda_1} - 1 & 0 & 0 & 0\\ 0 & e^{\lambda_2} - 1 & 0 & 0\\ 0 & 0 & e^{\lambda_3} - 1 & 0\\ 0 & 0 & 0 & e^{\lambda_4} - 1 \end{pmatrix}$	(5.4.23)
	A is non-singular	
	$\implies \forall i \in [1,4], \lambda_i \neq 0$	(5.4.24)
	$e^{\lambda_i} < 1$	(5.4.25)
	So, $\exp(p\mathbf{A}) - \mathbf{I}$ is not positive definite.	, ,

TABLE 5.4.1: Solution

Accessibility of states in Markov's chain	We say that state j is accessible from state i , written as $i \to j$, if $p_{ij}^{(n)} > 0$ for some n. Every state is accessible from itself since $p_{ii}^{(0)} = 1$
Communication between states	Two states i and j are said to communicate, written as $i \leftrightarrow j$, if they are accessible from each other. In other words, $i \leftrightarrow j \text{ means } i \to j \text{ and } j \to i.$
Communicating class	For each Markov chain, there exists a unique decomposition of the state space S into a sequence of disjoint subsets $C_1, C_2,,$ $S = \bigcup_{i=1}^{\infty} C_i$ in which each subset has the property that all states within it communicate. Each such subset is called a communication class of the Markov chain.

TABLE 5.5.1: Definition and Result used

	$\implies \boxed{4 \leftrightarrow 2}$ Therefore, 4 and 2 are not in the same communicating class.
Checking whether the states 2 and 5 are in the same communicating class	Here, State 2 is accessible from the state 5. Also, State 5 is accessible from the state 2 i.e. $5 \rightarrow 2$, $2 \rightarrow 5$ $\Rightarrow 2 \leftrightarrow 5$ Therefore, 2 and 5 are in the same communicating class.
Conclusion	Communication classes are: $S = \{1, 4\} \cup \{3\} \cup \{2, 5\}$ Option 2) and 4) are true.

TABLE 5.5.2: Solution