Equileninderivate, Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel

Die vorliegende Erfindung betrifft neue Equileninderivate, Verfahren zu deren Herstellung sowie diese Verbindungen enthaltende Arzneimittel.

Equilenin selbst ist ein estrogenes Steroid, welches aus dem Harn trächtiger Stuten gewinnbar ist.

Die erfindungsgemäßen neuen Equileninderivate weisen eine Sauerstoffunktion am C-Atom 11 und eine α -ständige Methylenbrücke zwischen den C-Atomen 14 und 15 auf. Equileninderivate mit einer Sauerstoffunktion am C-Atom 11 sind bekannt. So wurde racemischer 11-Oxo-equileninmethylether durch Totalsynthese erhalten (Tetrahedron Lett. 2763 (1967); Aust. J. Chem. 23, 547 (1970); J. Org. Chem. 39, 2193 (1974)). Auf totalsynthetischem Weg war auch racemische 11-Oxo-3methoxy-estra-1,3,5(10),6,8,14-hexaen-17ß-yl-carbonsäure zugänglich (Tetrahedron Lett. 479 (1968)). 14α , 17α -überbrückte Equileninderivate mit einer 11-Sauerstoffunktion wurden partialsynthetisch erhalten. Die Einführung der 11-Sauerstoffunktion in das Molekül erfolgte mit Cer-IV-ammoniumnitrat (Tetrahedron Lett. 35, 8599 (1994)). Equileninderivate mit einer α - oder β -ständigen Methylenbrücke zwischen den C-Atomen 14 und 15 wurden ebenfalls partialsynthetisch hergestellt, wobei der B-Ring mit Dichlordicyanobenzochinon (DDQ) dehydriert wurde (Tetrahedron Lett. 35, 2329 (1994)).

Aufgabe der vorliegenden Erfindung ist es, neue Equileninderivate sowie ein Verfahren zu deren Herstellung zur Verfügung zu stellen.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß Equileninderivate der allgemeinen Formel I

(I)

geschaffen werden, in der

R₁ ein Wasserstoffatom, eine C₁-C₅-Alkyl- oder eine C₁-C₅-Acylgruppe oder eine Benzoylgruppe bedeutet,

R₂ ein Wasserstoffatom und R₂' ein Wasserstoffatom, ein Fluoratom, Hydroxygruppe oder eine C₁-C₅-Acyloxygruppe darstellt oder R₂ und R₂' zusammen eine Oxogruppe darstellen,

R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,

R₄ ein Wasserstoffatom und R₄' eine Hydroxygruppe oder eine C₁-C₁₁-Acyloxygruppe darstellt oder R_4 und R_4 zusammen eine Oxogruppe, eine Methylengruppe, eine Halogenmethylengruppe oder eine Dihalogenmethylengruppe darstellen und R₅ ein Wasserstoffatom oder eine Methylgruppe ist.

Erfindungsgemäß bevorzugt ist es, wenn R₅ ein Wasserstoffatom ist.

Erfindungsgemäß besonders bevorzugte Equileninderivate sind beispielsweise:

- 1) $14\alpha, 15\alpha$ -Methylen-estra-1,3,5(10),6,8-pentaen-3,11 β ,17 β -triol,
- 2) 11β , 17β -Dihydroxy- 14α , 15α -methylen-estra-1, 3, 5(10), 6, 8-pentaen-3-yl-benzoat,
- 3) 11β , 17β -Dihydroxy- 14α , 15α -methylen-estra-1, 3, 5(10), 6, 8-pentaen-3-yl-propionat,
- 4) $3,11\beta$ -Dihydroxy- $14\alpha,15\alpha$ -methylen-estra-1,3,5(10),6,8-pentaen- 17β -yl-decanoat,
- 5) $3,11\beta$ -Dihydroxy- $14\alpha,15\alpha$ -methylen-estra-1,3,5(10),6,8-pentaen-17-on,
- 6) 3-Methoxy-14 α ,15 α -methylen-estra-1,3,5(10),6,8-pentaen-11 α ,17 β -diyl-diacetat,
- 7) 15ß-Methyl-14 α ,15 α -methylen-estra-1,3,5(10),6,8-pentaen-3,11 β ,17ß-triol,
- 8) 11β -Fluor- 14α , 15α -methylen-estra-1, 3, 5(10), 6, 8-pentaen-3, 17 β -diol,
- 9) 3,17β-Dihydroxy-14α,15α-methylen-1,3,5(10),6,8-pentaen-11-on,
- 10) 3-Methoxy-14 α ,15 α -methylen-estra-1,3,5(10),6,8-pentaen-11 α ,17 α -diyl-diacetat,
- 11) 3-Methoxy-14 α , 15 α -methylen-11-oxo-estra-1,3,5(10),6,8-pentaen-17 α -yl-acetat,

- 12) 11β -Hydroxy-17,17-difluormethylen- 14α , 15α -methylen-estra-1,3,5(10),6,8-pentaen-3-yl-benzoat und
- 13) 14α , 15α , 17, 17-Bis-methylen-estra-1, 3, 5(10), 6, 8-pentaen-3, 11α -diol.

Unter " C_1 - C_5 -Alkyl" wird im Sinne der vorliegenden Erfindung ein verzweigter oder geradkettiger Alkylrest verstanden. Als Beispiele seien eine Methyl-, Ethyl-, n-Propyl-, i-Propyl-, n-Butyl-, i-Butyl- oder tert.-Butyl-, n-Pentyl- oder i-Pentylgruppe genannt.

Unter dem Begriff "C₁₋₅- bzw. C₁₋₁₁-Acyl-" wird im Sinne der vorliegenden Anmeldung ein Rest mit 1 bis 5 bzw. 1 bis 11 Kohlenstoffatomen der geradkettigen oder verzweigten Alkancarbonsäuren, wie beispielsweise der Ameisensäure, Essigsäure, Propionsäure, Butansäure, iso-Butansäure, Heptansäure oder Undecansäure, verstanden.

Unter dem Begriff "Halogen" wird im Sinne der vorliegenden Erfindung ein Fluor-, Chlor-, Brom- oder lodatom verstanden.

Die erfindungsgemäßen Equileninderivate sind neu. Sie wurden bisher weder hergestellt noch wurden ihre Eigenschaften beschrieben. Die erfindungsgemäßen Equileninderivate weisen antioxidative Aktivität bei geringer systemischer hormoneller Wirkung auf. Die antioxidative Wirkung wurde unter anderem durch Hemmung der Eisen-II-katalysierten Lipidperoxidation in synaptosomalen Membranfraktionen der Hemmung der Kupfer-II-sulfat-induzierten LDL-Cholesterol-Oxidation und Hemmung der Xanthinoxidase sowie verschiedener anderer Monooxygenasen bestimmt. Auf systemische estrogene Wirkung wurde im Allen-Doisy-Test an der Ratte geprüft. Das gemessene Wirkungsspektrum der erfindungsgemäßen Equileninderivate bietet Möglichkeiten für eine therapeutische Anwendung in all jenen Fällen, in denen Sauerstoffradikale in ursächlichem Zusammenhang mit Erkrankungen von Organen oder Geweben stehen, wie beispielsweise bei Hirn- und Wirbelsäulenverletzungen, Schockzuständen, Emphysemen, ARDS, Alterungsprozessen, Gewebeschädigungen nach Myokardinfarkt, Vergiftungs- und Verstrahlungsschäden, Verbrennungen und transplantationsbedingten Immunreaktionen. wie Organschäden der Reperfusionphase nach Transplantationen, beim spinalen Trauma, bei Schlaganfall, Arteriosklerose, Ischämie, chronisch-degenerativen Erkrankungen des ZNS, seniler Demenz vom Alzheimer-Typ (SDAT), Asthma, muskulärer Dystrophie degenerativen neurologischen Krankheiten u. a. in Form von ZNS-Intoxikations- bzw. Degenerationszuständen. Ein bevorzugtes Anwendungsfeld hierbei die ist

Geroprophylaxe bei Frauen und - bedingt durch die geringe feminisierende Wirkung der Verbindungen - auch bei Männern.

Hierbei können die erfindungsgemäßen Verbindungen sowohl oral als auch parenteral verabreicht werden. Bei der oralen Applikation sind Prodrugs in Form von Carbonsäureestern besonders vorteilhaft, da sie langanhaltend gleichbleibende Wirkstoffspiegel ermöglichen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Equileninderivate der allgemeinen Formel I

$$R_2$$
 R_5 C R_4 R_4 R_4 R_3 R_1 R_3 R_1 R_2 R_3

worin R_1 , R_2 , R_2 ', R_3 , R_4 , R_4 ' und R_5 die oben angegebene Bedeutung haben, indem man eine Verbindung der allgemeinen Formel II

$$R_{2}$$
 R_{5} R_{4} R_{4} R_{4} R_{5} R_{7} R_{1} R_{1} R_{2} R_{1} R_{2} R_{3} R_{1}

worin R_1 , R_2 , R_2 ', R_3 , R_4 , R_4 ' und R_5 die oben angegebene Bedeutung haben, mit Diphosphortetraiodid in Gegenwart von Pyridin zur Reaktion bringt und die so erhaltenen Verbindungen in an sich bekannter Weise zu den Verbindungen der allgemeinen Formel I umsetzt.

Es ist bekannt, daß Diphosphortetraiodid mit Epoxiden und Alkoholen reagiert. So können Epoxide mit Diphosphortetraiodid zu Olefinen reduziert werden (Synthesis 905 (1978); Nouv. J. Chem. 3, 745 (1979)). Alkohole reagieren mit Diphosphortetraiodid unter Bildung von Iodiden (Tetrahedron Letters 1801(1979); J. C. S. Chem. Commun. 229 (1983)) oder unter Eliminierung zu Olefinen (Helv. Chim. Acta 11,106 (1928)) oder zu Kumulenen (Ber. 71, 1899 (1938); ibid. 85, 386 (1952); ibid. 87, 598 (1954); J. C. S. Chem. Commun. 885 (1975)). Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, daß die Einwirkung von Diphosphortetraiodid auf Verbindungen der allgemeinen Formel II zur Eliminierung der 8,9-Oxidogruppe und gleichzeitig zur Einführung einer zusätzlichen Doppelbindung zwischen den C-Atomen 6 und 7 führt. Damit wird die Herstellung der erfindungsgemäßen Equileninderivate der allgemeinen Formel I aus Verbindungen der allgemeinen Formel II in einem Schritt möglich und eine zusätzliche Reaktionsstufe zur Einführung der 6,7-Doppelbindung (Tetrahedron Letters 35, 2329 (1994)) umgangen. Das erfindungsgemäße Verfahren zeichnet sich weiterhin dadurch aus, daß - sofern man Verbindungen der allgemeinen Formel II, in der R₂ Wasserstoff und R₂'eine Hydroxygruppe bedeutet, zum Einsatz bringt - weder eine Eliminierung der ungeschützten Hydroxygruppe zum betreffenden Olefin noch eine Substitution der Hydroxygruppe durch lod erfolgt. Der Verlauf und die hohe Selektivität des erfindungsgemäßen Verfahrens sind überraschend und waren vom Fachmann nicht vorhersehbar.

Verbindungen der allgemeinen Formel II sind aus Verbindungen der allgemeinen Formel III, in der R_1 und R_3 bis R_5 , die unter Verbindung II genannten Bedeutungen zukommen, zugänglich, indem man diese mit überschüssiger Peroxycarbonsäure behandelt.

$$R_5CH_2$$
 R_4
 R_4
 R_3
 R_1O
 R_1O
 R_1O
 R_2O
 R_3O
 RCO_3H
 R_1O
 RCO_3H
 R_1O

Die erfindungsgemäß erhaltenen Equileninderivate können gegebenenfalls nach an sich bekannten Methoden weiter strukturell abgewandelt werden. So ist es beispielsweise möglich, Verbindungen der allgemeinen Formel I, in der R₂' eine α-Hydroxygruppe und R₂ einen β-Wasserstoff bedeutet, in an sich bekannter Weise einer Oxidation mit aktiviertem Dimethylsulfoxid zu unterziehen. wobei die entsprechenden 11-Oxoverbindungen entstehen, deren Reduktion mit einem komplexen Metallhydrid die entsprechenden 11β-Hydroxyderivate ergibt. Alternativ führt die Reaktion von Verbindungen der allgemeinen Formel I, in der R₂' eine α-Hydroxygruppe und R₂ einen β-Wasserstoff bedeutet, mit Diethylamino-Schwefeltrifluorid (DAST) zu Verbindungen mit einer 11β-Fluorgruppe. Verbindungen der allgemeinen Formel I, in der R₄' einen C₁-C₅-Alkylrest darstellt, sind in an sich bekannter Weise mit Bortribromid oder Diisobutylaluminiumhydrid in die freien Phenole überführbar. Verbindungen der allgemeinen Formel I, in der R₄' eine α -Hydroxygruppe und R₄ einen β -Wasserstoff darstellt, können in an sich bekannter Weise mit aktiviertem Dimethylsulfoxid oxidiert werden, wobei die entsprechenden 17-Oxosteroide entstehen, deren Reduktion mit Boran oder Oxazaborolidinen die entsprechenden 17β-Hydroxyverbindungen ergibt.

Die Cyclopropano-Steroide der allgemeinen Formel II

$$R_2$$
 R_5 C R_4 R_4 R_4 R_5 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_5 R_4 R_5 R_5 R_5 R_5 R_4 R_5 R_5

in der

 R_1 ein Wasserstoffatom, eine C_1 - C_5 -Alkyl- oder eine C_1 - C_5 -Acylgruppe oder eine Benzoylgruppe bedeutet,

 R_2 ein Wasserstoffatom und R_2 ' ein Wasserstoffatom, ein Fluoratom, eine Hydroxygruppe oder eine C_1 - C_5 -Acyloxygruppe darstellt oder R_2 und R_2 ' zusammen eine Oxogruppe darstellen,

R₃ ein Wasserstoffatom oder eine Methylgruppe darstellt,

 R_4 ein Wasserstoffatom und R_4 ' eine Hydroxygruppe oder eine C_1 - C_{11} -Acyloxygruppe darstellt oder R_4 und R_4 ' zusammen eine Oxogruppe, eine Methylengruppe, eine Halogenmethylengruppe oder eine Dihalogenmethylengruppe darstellen und

R₅ ein Wasserstoffatom oder eine Methylgruppe ist, sind neu und bisher nicht beschrieben worden.

Besonders bevorzugt sind hierbei die folgenden beispielhaft genannten Cyclopropano-Steroide.

- 1) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17 α -ol,
- 2) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17 α -yl-acetat,
- 3) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-18a-homo-estra-1,3,5(10)-trien-17 α -yl-propionat,
- 4) 14α , 15α -Methylen- 8α , 9α -oxido-estra-1, 3, 5(10)-trien-3, 17α -diyl-diacetat,
- 5) 3-Methoxy-15ß-methyl-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17ß-ol,
- 6) 11α -Hydroxy-3-methoxy- 14α , 15α -methylen- 8α , 9α -oxido-estra-1,3,5(10)-trien- 17α -yl-acetat,
- 7) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-11 α ,17 α -diyl-diacetat und
- 8) 3-Methoxy-11 α -hydroxy-8 α ,9 α -oxido-14 α ,15 α -methylen-estra-1,3,5(10)-trien-17 β -yl-acetat.

Diese Verbindungen stellen neue Zwischenprodukte zu den erfindungsgemäßen Equileninderivaten dar und sind somit ein weiterer Gegenstand der vorliegenden Erfindung.

Gegenstand der vorliegenden Erfindung sind auch Arzneimittel zur oralen, transdermalen, rektalen, subcutanen, intravenösen oder intramuskulären Applikation, die neben üblichen Träger- und Verdünnungsmitteln eine Verbindung der allgemeinen Formel I als Wirkstoff enthalten.

Die Arzneimittel der Erfindung werden mit den üblichen festen oder flüssigen Trägerstoffen oder Verdünnungsmitteln und den üblicherweise verwendeten pharmazeutisch-technischen Hilfsstoffen entsprechend der gewünschten Applikationsart mit einer geeigneten Dosierung in bekannter Weise hergestellt. Die bevorzugten

Zubereitungen bestehen in einer Darreichungsform, die zur oralen Applikation geeignet ist. Solche Darreichungsformen sind beispielsweise Tabletten, Filmtabletten, Dragees, Kapseln, Pillen, Pulver, Lösungen oder Suspensionen oder Depotformen.

Selbstverständlich kommen auch parenterale Zubereitungen wie Injektionslösungen in Betracht. Weiterhin seien als Zubereitungen beispielsweise auch Suppositorien genannt.

Entsprechende Tabletten können beispielsweise durch Mischen des Wirkstoffs mit bekannten Hilfsstoffen, beispielsweise inerten Verdünnungsmitteln wie Dextrose, Zukker, Sorbit, Mannit, Polyvinylpyrrolidon, Sprengmitteln wie Maisstärke oder Alginsäure, Bindemitteln wie Stärke oder Gelantine, Gleitmitteln wie Magnesiumstearat oder Talk und/oder Mitteln zur Erzielung eines Depoteffektes wie Carboxylpolymethylen, Carboxylmethylcellulose, Celluloseacetatphthalat oder Polyvinylacetat, erhalten werden. Die Tabletten können auch aus mehreren Schichten bestehen.

Entsprechend können Dragees durch Überziehen von analog den Tabletten hergestellten Kernen mit üblicherweise in Drageeüberzügen verwendeten Mitteln, beispielsweise Polyvinylpyrrolidon oder Schellack, Gummiarabicum, Talk, Titandioxid oder Zucker, hergestellt werden. Dabei kann auch die Drageehülle aus mehreren Schichten bestehen, wobei die oben bei den Tabletten erwähnten Hilfsstoffe verwendet werden können.

Lösungen oder Suspensionen mit dem erfindungsgemäßen Wirkstoff können zusätzlich geschmacksverbessernde Mittel wie Saccharin, Cyclamat oder Zucker sowie z. B. Aromastoffe wie Vanillin oder Orangenextrakt enthalten. Sie können außerdem Suspendierhilfsstoffe wie Natriumcarboxymethylcellulose oder Konservierungsstoffe wie p-Hydroxybenzoate enthalten. Wirkstoffe enthaltende Kapseln können beispielsweise hergestellt werden, indem man den Wirkstoff mit einem inerten Träger wie Milchzucker oder Sorbit mischt und in Gelatinekapseln einkapselt.

Geeignete Suppositorien lassen sich beispielsweise durch Vermischen mit dafür vorgesehenen Trägermitteln wie Neutralfetten oder Polyethylenglykol bzw. deren Derivaten herstellen.

Transdermale Applikationsformen können beispielsweise aus wirkstoffhaltigen Pflastern bestehen. Derartige Systeme sind bekannt.

Die nachfolgenden Beispiele erläutern die Erfindung.

Beispiel 1

11 α -Hydroxy-3-methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17 α -ylacetat aus 3-Methoxy-14 α ,15 α -methylen-estra-1,3,5(10),8-tetraen-17 α -yl-acetat

Eine Lösung aus dem Steroid-Tetraen (3,5 g) in Dichlormethan (120 ml) wird bei Raumtemperatur mit Peroxyessigsäure (32 %ig, 5,5 ml) versetzt. Man läßt die Reaktionsmischung über Nacht bei Raumtemperatur stehen. Danach behandelt man die Lösung nacheinander mit wäßriger Natriumthiosulfatlösung (20 %ig), gesättigter wäßriger Natriumhydrogencarbonatlösung und mit Wasser. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Den Rückstand unterwirft man einer Flashchromatographie an Kieselgel (Eluent: Cyclohexan: Ethylacetat 3:2 v/v). Umkristallisation aus Aceton/n-Hexan ergibt die Titelverbindung;

Fp. 159-162,5 °C. ¹H-NMR (CDCl₃/TMS): 7.80 (d, J = 8,8 Hz, H-1), 6,79 (dd, J = 8,8, 2,8 Hz, H-2), 6,65 (d, J = 2,8 Hz, H-4), 4,93 (q, J = 7,9 Hz, H-11), 4,78 (d, J = 5,9 Hz, H-17), 3,80 (s, -OCH3), 2,03 (s, -OOC-CH₃), 1,11 (dd, J = 5,4, 3,2 Hz, 14,15-CH₂-), 0,88 (s, H-18), 0,69 (ddd, J = 6,6, 5,4, 1,7 Hz, 14,15-CH₂-). MS (m/z): 354 (M⁺), 336, 294, 277, 261.

Beispiel 2

3-Methoxy- 14α , 15α -methylen- 8α , 9α -oxido-estra-1, 3, 5(10)-trien- 11α , 17α -diyl-diacetat aus 11α -Hydroxy-3-methoxy- 14α , 15α -methylen- 8α , 9α -oxido-estra-1, 3, 5(10)-trien- 17α -yl-acetat

Zu einer Lösung des 11α -Hydroxysteroids $(0,4\ g)$ in Pyridin $(4\ ml)$ gibt man bei Raumtemperatur Acetanydrid $(4\ ml)$ und Dimethylaminopyridin $(0,04\ g)$. Man rührt das Gemisch 3 Stunden bei Raumtemperatur und gießt dann in Eiswasser. Der entstandene Niederschlag wird abfiltriert, mit Wasser neutral gewaschen und an der Luft getrocknet.

Durch Flashchromatographie an Kieselgel (Eluent: Cyclohexan:Ethylacetat 7:3 v/v) erhält man die Titelverbindung.

Fp. 151-154 °C. ¹H-NMR (CDCl₃/TMS) : 7,80 (d, J = 8,8 Hz, H-1), 6,79 (dd, J = 8,8, 2,8 Hz, H-2), 6,65 (d, J = 2,8 Hz, H-4), 4,93 (q, J = 7,9 Hz, H-11), 4,78 (d, J = 5,9 Hz, H-17), 3,80 (s, -OCH3), 2,03 (s, -OOC-CH₃), 1,11 (dd, J = 5,4, 3,2 Hz, 14,15-CH₂-), 0,88 (s, H-18), 0,69 (ddd, J = 6,6, 5,4, 1,7 Hz, 14,15-CH₂-). MS (m/z) : 354 (M⁺) 336, 294, 277, 261.

Beispiel 3

3-Methoxy-14 α ,15 α -methylen-estra-1,3,5(10),6,8-pentaen-11 α ,17 α -diyl-diacetat aus 3-Methoxy- 14α , 15α -methylen- 8α , 9α -oxido-estra-1, 3, 5(10)-trien- 11α , 17α -diyl-diacetat Zu einer gerührten Suspension von Diphosphortetraiodid (0,14 g) in Chloroform (2,4 ml) wird unter Argonschutz und bei Raumtemperatur eine Lösung, bestehend aus dem Steroiddiacetat (0,1 g), Chloroform (2,4 ml) und Pyridin (0,24 ml) zugetropft. Anschließend wird 13 Stunden unter Rühren am Rückfluß zum Sieden erhitzt. Man gibt Wasser zu, trennt die organische Phase ab und extrahiert die wäßrige Phase mit Chloroform erschöpfend nach. Die vereinigten organischen Phasen werden nacheinander mit Salzsäure (1 N), Wasser, gesättigter wäßriger Natriumhydrogencarbonatlösung und gesättigter wäßriger Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Den Rückstand unterwirft man der Flashchromatographie, wobei die Titelverbindung erhalten wird.

¹H-NMR (CDCl₃/TMS): 7,66 (d, J = 8,8 Hz, H-6,7), 7,58 (d, J = 9,5 Hz, H-1), 7,17 (dd, J = 9,5, 2,8 Hz, H-2), 7,13 (d, J = 2,8 Hz, H-4), 6,85 (d, J = 8,8 Hz, H-6,7), 6,78 (q, J = 8,1 Hz, H-11), 4,98 (d, J = 6,1 Hz, H-17), 3,92 (s, -OCH3), 2,11 (s, -OOC-CH3), 2,09 (s, -OCC-CH₃), 1,46 (dd, J = 4,9, 3,2 Hz, 14,15-CH₂-), 0,97 (s, H-18), 0,57 (dd**d**, J = 8,2, 4,9, 1,7 Hz, 14,15-CH₂-). MS (m/z): 394 (M⁺), 334, 274, 259.

Beispiel 4

 11α -Hydroxy-3-methoxy- 14α , 15α -methylen-estra-1,3,5(10),6,8-pentaen- 17α -yl-acetat aus 11α -Hydroxy-3-methoxy- 14α , 15α -methylen- 8α , 9α -oxido-estra-1,3,5(10)-trien- 17α -yl-acetat

Analog zu Beispiel 3 wird die 11-Hydroxyverbindung mit Diphosphortetraiodid behandelt, wobei man die Titelverbindung erhält.

¹H-NMR (CDCl₃ / TMS): 8,26 (d, J = 9,4 Hz, H-1), 7,62 (d, J = 8,3 Hz, H-6,7), 7,22 (dd, J = 9,4, 2,7 Hz, H-2), 7,12 (d, J = 2,7 Hz, H-4), 6,83 (d, J = 8,3 Hz, H-6,7), 5,68 (q, J = 7,7 Hz, H-11), 4,99 (d, J = 6,3 Hz, H-17), 3,92 (s, -OCH₃), 2,10 (s, -OOC-CH₃), 0,93 (s, H-18), 0,57 (ddd, J = 7,6, 4,8, 1,6 Hz, 14,15-CH₂-). MS (m /z): 370 (M⁺), 353, 310, 292, 277, 267.

Patentansprüche

1. Equileninderivate der allgemeinen Formel I

$$R_2$$
 R_5 C R_4 R_4 R_4 R_3 R_1 R_2 R_3 R_4 R_4 R_3 R_4 R_5 R_4 R_5 R_5 R_4 R_5 R_4 R_5 R_5

 R_1 ein Wasserstoffatom, eine C_1 - C_5 -Alkyl- oder eine C_1 - C_5 -Acylgruppe oder eine Benzoylgruppe bedeutet, R_2 ein Wasserstoffatom und R_2 ' ein Wasserstoffatom, ein Fluoratom, eine Hydroxygruppe oder eine C_1 - C_5 -Acyloxygruppe darstellt oder R_2 und R_2 ' zusammen eine Oxogruppe darstellen, R_3 ein Wasserstoffatom oder eine Methylgruppe darstellt, R_4 ein Wasserstoffatom und R_4 ' eine Hydroxygruppe oder eine C_1 - C_{11} -Acyloxygruppe darstellt oder R_4 und R_4 ' zusammen eine Oxogruppe, eine Methylengruppe, eine Halogenmethylengruppe oder eine Dihalogenmethylengruppe darstellen und R_5 ein Wasserstoffatom oder eine Methylgruppe ist.

- 2. Equileninderivate gemäß Anspruch 1, dadurch gekennzeichnet, daß R_5 ein Wasserstoffatom ist.
- 3. Equileninderivate gemäß Anspruch 1, nämlich
 - 1) 14α , 15α -Methylen-estra-1, 3, 5(10), 6, 8-pentaen-3, 11β , 17β -triol,
 - 2) 11β , 17β -Dihydroxy- 14α , 15α -methylen-estra-1, 3, 5(10), 6, 8-pentaen-3-yl-benzoat,
 - 3) $11\beta,17$ ß-Dihydroxy- $14\alpha,15\alpha$ -methylen-estra-1,3,5(10),6,8-pentaen-3-yl-propionat,
 - 4) 3,11 β -Dihydroxy-14 α ,15 α -methylen-estra-1,3,5(10),6,8-pentaen-17 β -yldecanoat,
 - 5) $3,11\beta$ -Dihydroxy- $14\alpha,15\alpha$ -methylen-estra-1,3,5(10),6,8-pentaen-17-on,
 - 6) 3-Methoxy- 14α , 15α -methylen-estra-1, 3, 5(10), 6, 8-pentaen- 11α , 17β -diyldiacetat,

- 7) 15ß-Methyl-14 α , 15 α -methylen-estra-1,3,5(10),6,8-pentaen-3,11 β ,17ß-triol,
- 8) 11β -Fluor- 14α , 15α -methylen-estra-1, 3, 5(10), 6, 8-pentaen-3, 17 β -diol,
- 9) 3,17ß-Dihydroxy-14 α ,15 α -methylen-1,3,5(10),6,8-pentaen-11-on,
- 10) 3-Methoxy-14 α ,15 α -methylen-estra-1,3,5(10),6,8-pentaen-11 α ,17 α -diyldiacetat,
- 11) 3-Methoxy-14 α ,15 α -methylen-11-oxo-estra-1,3,5(10),6,8-pentaen-17 α -yl-acetat,
- 12) 11β -Hydroxy-17,17-difluormethylen- 14α , 15α -methylen-estra-1,3,5(10),6,8-pentaen-3-yl-benzoat und
- 13) 14α , 15α , 17, 17-Bis-methylen-estra-1, 3, 5(10), 6, 8-pentaen-3, 11α -diol.
- Verfahren zur Herstellung der erfindungsgemäßen Equileninderivate der allgemeinen Formel I

$$R_2$$
 R_5 C R_4 R_4 R_4 R_3 R_1 R_2 R_3 R_4 R_3

worin R_1 , R_2 , R_2' , R_3 , R_4 , R_4' und R_5 die in Anspruch 1 gegebene Bedeutung haben, indem man eine Verbindung der allgemeinen Formel II

$$R_{2}$$
 R_{5} R_{4} R_{4} R_{4} R_{5} R_{10} R_{10} R_{10} R_{10} R_{10} R_{10}

worin R_1 , R_2 , R_2 , R_3 , R_4 , R_4 und R_5 die in Anspruch 1 gegebene Bedeutung haben, mit Diphosphortetraiodid in Gegenwart von Pyridin zur Reaktion bringt und

die so erhaltenen Verbindungen in an sich bekannter Weise zu den Verbindungen der allgemeinen Formel I umsetzt.

- 5. Pharmazeutische Zusammensetzung, die mindestens eine Verbindung der allgemeinen Formel I nach den Ansprüchen 1 bis 3, gegebenenfalls zusammen mit pharmazeutisch verträglichen Hilfs- und Trägerstoffen enthält.
- 6. Verwendung der Verbindungen der allgemeinen Formel I nach den Ansprüchen 1 bis 3 zur Geroprophylaxe bei Mann und Frau.
- 7. Verbindungen der allgemeinen Formel I nach den Ansprüchen 1 bis 3 zur Anwendung als therapeutische Wirkstoffe.
- 8. Cyclopropano-Steroide der allgemeinen Formel II

$$R_2$$
 R_5 C R_4 R_4 R_4 R_4 R_5 R_6 R_7 R_8 R_8 R_9 R_9

worin R_1 , R_2 , R_2 , R_3 , R_4 , R_4 und R_5 die in Anspruch 1 gegebene Bedeutung haben.

- 9. Cyclopropano-Steroide gemäß Anspruch 8, nämlich
 - 1) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17 α -ol,
 - 2) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17 α -yl-acetat,
 - 3) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-18a-homo-estra-1,3,5(10)-trien-17 α -yl-propionat,
 - 4) 14α , 15α -Methylen- 8α , 9α -oxido-estra-1, 3, 5(10)-trien-3, 17α -diyl-diacetat,
 - 5) 3-Methoxy-15ß-methyl-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-17ß-ol,

- 6) 11α -Hydroxy-3-methoxy- 14α , 15α -methylen- 8α , 9α -oxido-estra-1,3,5(10)-trien- 17α -yl-acetat,
- 7) 3-Methoxy-14 α ,15 α -methylen-8 α ,9 α -oxido-estra-1,3,5(10)-trien-11 α ,17 α -diyldiacetat und
- 8) 3-Methoxy-11 α -hydroxy-8 α ,9 α -oxido-14 α ,15 α -methylen-estra-1,3,5(10)-trien-17ß-yl-acetat.

Zusammenfassung

Beschrieben sind neue Equileninderivate der allgemeinen Formel I

$$R_2$$
 R_5 CH_2 R_4 R_4 R_4 R_3 R_1 R_2 R_3 R_4 R_4 R_3

sowie Verfahren zu deren Herstellung und diese Verbindungen enthaltende Arzneimittel.

Die neuen Verbindungen weisen antioxidative Wirksamkeit auf und sind in der Geroprophylaxe bei Frauen und Männern einsetzbar.