

ν 0p_{1/2} – ν 0p_{3/2} spin-orbit splitting in ²⁰0

M. Lozano-González, B. Fernández-Domínguez, J. Lois-Fuentes,

T. Roger, F. Delaunay

IGFAE-USC, GANIL and LPC-Caen

EuNPC 2025 - Caen

A recap on the SO splitting

Introduced by M. Goeppert-Mayer, reproduces magic numbers for stable nuclei.

SO splitting is mainly a surface effect:

$${
m V_{SO}} = -rac{1}{\hbar^2} {
m V_{so}}(ec{l}\cdotec{s}) \left(rac{1}{r}rac{{
m d}V}{{
m d}r}
ight)$$

which yields a I-depending gap:

$$\Delta_{\mathsf{so}} = \frac{\hbar^2}{2} (2\ell + 1)\xi$$

⇒ Expected to evolve towards more exotic nuclei, where surface blurs

A recap on the SO splitting

G .Mairle et al. (PLB 304 (1993)) found systematic trends easily parametrizable.

Proton-neutron interactions drive **shell evolution**

Deviations from the trend are found due to:

- Loosely bound orbitals
- Nuclear matter depletion (35Si?)
- Role of tensor force

SO gap for Z = 8 isotopes

Evolution of the SO gap is plotted below for neutron-rich O isotopes.

Will ²⁰O follow the trend?

Could be determine the pn tensor contribution?

Physics case

E796 to measure **transfer** reactions probing single-particle occupancies in ²⁰O.

1. Proton removal $^{20}O(d,^{3}He)^{19}N$ to investigate persistence of Z=6

Tensor V_{pn} reduces Z = 6 gap as neutrons are added to $v0d_{5/2}$

Schematic view of tensor interaction in ²⁰O

Physics case

E796 to measure **transfer** reactions probing single-particle occupancies in ²⁰O.

2. Neutron removal $^{20}O(d,t)^{19}O$ to extract N = 6 SO gap

Experimental setup

E796 @ LISE in 2022. First transfer experiment with ACTAR TPC!

Silicon sizes: 80 x 50 x 0.5 mm³

Gas mixture: $90\% D_2 + 10\% iC_4H_{10}$ at 952 mbar

A window to the analysis

Intricate analysis to extract reactions of interest out of noisy data.

Unique advantages from the TPC:

- Precise vertex determination
- Improved ΔE corrections

- Factor 10 in target number
- Implicit PID with ΔE_{gas}

A window to the analysis

Two steps are needed after a binary reaction has been identified.

1. PID of tritons by plotting $\Delta E_{gas} vs \Delta E_{Sil}$

Masked punch-through to 2nd front layer

2. E_x reconstructed by the **missing- mass** technique

Results: E_x spectrum

- 11 observed states
- At E_x > 15 MeV (p,d)
 contamination appears

- Isospin T = 3/2 and 5/2
- Assigned based on ²⁰O(d, ³He)¹⁹N

Results: cross-sections

DBWA with Fresco

- OMP:
 - ²⁰O + d: Daehnick
 - ¹⁹O + t: Pang
- (d|t) from ab-initio GFMC
- $\langle ^{20}OI^{19}O \rangle$ from standard WS

- g.s: 5/2⁺, taking up 71% of the occupation
- 1st: 1/2+, with 8% of 1s_{1/2} occupancy

A window to the analysis

Grazas!

