Rechnen mit \mathbb{C} , wie in \mathbb{R} mit $i^2 = -1$

Es sei $z_1 = a + bi, z_2 = c + di$

Addition: (a+bi)+(c+di)=(a+c)+(b+d)*iSubstraktion: (a+bi)-(c+di)=(a-c)+(b-d)*i

Multiplikation: $(a+bi)^{+}(c+di)=ac+adi+bci+bdi^{2}=(ac-bd)+(ad+cb)^{*}i$ Division: $\frac{a+bi}{c+di}*1=\frac{a+bi}{c+di}*\frac{c-di}{c-di}$, mit $c+di\neq 0$ Definition: Für $z=a+bi\in\mathbb{C}$ nennt man $\bar{z}=a-bi$, die zu z konjugiert komplexe Zahl.

Bemerkung: $(\mathbb{C};+,*)$ nennt man Körper der komplexen Zahlen