UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142.

PRACTICA 10. NUMEROS COMPLEJOS

Problema 1. Para $z \in \mathbb{C}$ pruebe que:

[Práctica: 1.3]

1.1.
$$z \neq 0 \Longrightarrow |z^{-1}| = |z|^{-1}$$
 1.2. $Re(z) \le$

1.1.
$$z \neq 0 \Longrightarrow |z^{-1}| = |z|^{-1}$$
 1.2. $Re(z) \leq |z|$, $Im(z) \leq |z|$
1.3. $z \neq 0 \Longrightarrow z^{-1} = \frac{\overline{z}}{|z|^2}$ 1.4. $Im(iz) = Re(z)$

Problema 2. Demuestre que
$$\forall n \in \mathbb{N}$$
:
2.1). $i^{4n} = 1$, 2.2). $i^{4n+1} = i$, 2.3). $i^{4n+2} = -1$, 2.4). $i^{4n+3} = -i$.

Problema 3. Sabiendo que $\frac{z}{w}=z\cdot w^{-1}, w\neq 0$. Evalúe los siguientes números complejos:

3.1.
$$\frac{1}{z}$$
; 3.2. $\sqrt{2+3i}$; 3.3. $-4(1+\frac{i}{12})+4(1-\frac{1}{12i})$.
3.4. $\frac{1}{2}(\frac{1}{1+\frac{z-2}{2}})$; 3.5. $|(2+3i)(3+4i)i|$; 3.6. $\frac{1+2i}{3-4i}+\frac{2-i}{5i}+\frac{2}{5}$.

Problema 4. Considere $z_1, z_2, ... z_n \in \mathbb{C}$.

- 4.1) Pruebe que $|z_1 + z_2| \le |z_1| + |z_2|$ y $|z_1 + z_2| \ge |z_1| |z_2|$.
- 4.2) Demuestre la generalización de la desigualdad triangular para un número finito de términos. Esto es: [Práctica.]

$$|z_1 + z_2 + \ldots + z_n| \le |z_1| + |z_2| + \ldots + |z_n|, \quad \forall n \in \mathbb{N}.$$

Problema 5. Pruebe que $|z_1 + z_2| \ge ||z_1| - |z_2||$ y deduzca que [Práctica.]

$$|z_1 - z_2| \le |z_1| + |z_2|, \qquad |z_1 - z_2| \ge ||z_1| - |z_2||$$

Indicación: Use $|z_1| = |(z_1 + z_2) + (-z_2)| < |z_1 + z_2| + |z_2|$.

Problema 6. Pruebe que $|Im(1-\overline{z}+z^2)| < 3$, para |z| < 1.

Problema 7. Encuentre el valor de z = x + yi tal que: [Práctica: 7.2 y 7.4.]

7.1.
$$(x+yi)^2 = i;$$
 7.2. $\sqrt{x^2 + y^2} = 1 - 2x + yi.$
7.3. $iz = x + 1 + 2yi;$ 7.4. $\operatorname{sen}(e^x) + i\cos(x) = 1 + i\sin(y).$

7.3.
$$iz = x + 1 + 2yi$$
; 7.4. $sen(e^x) + icos(x) = 1 + isen(y)$.

Problema 8. Describir el conjunto de puntos z que satisfacen la condición dada.

8.1.
$$|z| \le 2$$
;

8.2.
$$|z - 5i| = 0$$
; 8.3. $|z + 1 - 2i| > 3$.

8.1.
$$|z| \le 2;$$
 8.2. $|z - 5i| = 0;$ 8.3. $|z + 1 - 2i| > 3.$
8.4. $Im(z - 4 + 2i) \le 3;$ 8.5. $Re(\frac{1}{z}) \le \frac{1}{2};$ 8.6. $Re((1 + i)z) < 0.$

Problema 9. Escriba las siguiente expresiones en la forma x + yi y en la forma polar.

9.1.
$$(-2+2i)^5$$
; 9.2. $[3cis(\frac{-\pi}{4})]^4$; 9.3. $(1+i)^{\frac{-1}{4}}$
9.4. $(27)^{\frac{1}{4}}1^{\frac{1}{4}}$; 9.5. $[2cis(\frac{-\pi}{3})]^{-4}$; 9.6. $(1+i)^{20}$.

9.4.
$$(27)^{\frac{1}{4}}1^{\frac{1}{4}}$$
; 9.5. $[2cis(\frac{-\pi}{3})]^{-4}$; 9.6. $(1+i)^{20}$

Problema 10. Utilice la fórmula de De Moivre para escribir $\cos(3\alpha)$ y $\sin(3\alpha)$ en términos de $\cos(\alpha)$ y $\sin(\alpha)$. [Práctica.]

Problema 11. Para $a, b \in \mathbb{R}$, considere el producto (1 + ai)(1 + bi) y el argumento de cada uno de los factores para: [Práctica: 11.1 y 11.2.]

11.1.- Verificar que

$$\operatorname{arc} \operatorname{tg}(a) + \operatorname{arc} \operatorname{tg}(b) = \operatorname{arc} \operatorname{tg}\left(\frac{a+b}{1-ab}\right).$$

11.2.- Demostrar que

$$\frac{\pi}{4} = \arctan \left(\frac{1}{2}\right) + \arctan \left(\frac{1}{3}\right).$$

11.3.- Encontrar una fórmula para

$$\operatorname{arc} \operatorname{tg}(a) + \operatorname{arc} \operatorname{tg}(b) + \operatorname{arc} \operatorname{tg}(c).$$

Problema 12. Resuelva las siguientes ecuaciones:

[Práctica: 12.2 y 12.6.]

12.1.
$$z^2 + 3i = 6;$$

12.2.
$$z^6 - 2z^3 + 2 = 0$$
; 12.3. $z^4 - i = 1$

12.1.
$$z^2 + 3i = 6;$$
 12.2. $z^6 - 2z^3 + 2 = 0;$ 12.3. $z^4 - i = 1.$
12.4. $|2e^{it}| = 2, \ 0 \le t \le 2\pi;$ 12.5. $z^8 - \frac{1+i}{\sqrt{3}-i} = 0;$ 12.6. $z^{\frac{2}{3}} - i = 0.$

Problema 13. Pruebe que:

[Práctica: 13.2 y 13.6.]

13.1.
$$|e^{it}| = 1$$
; 13.2. $\operatorname{sen}(t) = \frac{e^{it} - e^{-it}}{2i}$; 13.3. $(e^{it})^n = e^{nti}$.
13.4. $\overline{e^{it}} = e^{-it}$; 13.5. $\cos(t) = \frac{e^{it} + e^{-it}}{2}$; 13.6. $\frac{1}{\cos(t) + i \sin(t)} = \cos(t) - i \sin(t)$.

23.05.2003.

ACQ/LNB/acq.