题目描述

- 1. (本题30分) 贝尔态,也称EPR态,因其纠缠的特性在量子计算和量子通信中具有重要作用,尝试使用pyqpanda解决下面问题:
- (1) 构造一个量子线路,在输入比特为数学公式: 00,01,10,11四种情况下分别得到四个不同的贝尔态 $|eta_{00}
 angle=\frac{|00
 angle+|11
 angle}{\sqrt{2}}$, $|eta_{01}
 angle=\frac{|01
 angle+|10
 angle}{\sqrt{2}}$, $|eta_{10}
 angle=\frac{|00
 angle-|11
 angle}{\sqrt{2}}$, $|eta_{10}
 angle=\frac{|01
 angle-|10
 angle}{\sqrt{2}}$ (9分)
- (2) 使用(1)中的线路,增加线路实现量子隐形传态(Quantum teleportation),即,将需要传递的第三个量子比特的信息赋予EPR对中的第一个量子比特上(提示:可能会用到Qif线路)。(21分)

答题要求:

- (1) 选手需在IDE中编写上述线路的python代码,并提供一份该文件的说明文档;
- (2) 题目中的两问应当包含在同一份说明文档中;
- (3) 在第一问的程序中,选手的函数应接受一个字符串('00', '01', '10', '11'之一)作为输入;
- (4) 第二问的程序中,第三个量子比特的初始信息由RY门构建,选手应输入一个实数作为RY门参数,输出第一个量子比特的振幅模方,即概率值(二维向量)。(注:可以使用get_qstate()方法获得量子态,或使用runprob_run_list方法获得精确概率)

问题1

本题所使用的量子门有: X 门、H 门以及 CNOT 门, 具有以下性质:

$$egin{aligned} X|0
angle &=|1
angle & X|1
angle &=|0
angle \ H|0
angle &=rac{(|0
angle+|1
angle)}{2} & H|1
angle &=rac{(|0
angle-|1
angle)}{2} \end{aligned}$$

 $CNOT = C_X$, 当控制位为 $|1\rangle$ 时对目标位进行翻转

线路实现

贝尔态作为最大纠缠态,构造它的核心线路可通过一个 H 门与 CNOT 门来实现,如下所示:

图1.构造贝尔态的核心线路

具体来说,当输入 $|xy\rangle=|00\rangle$ 时,经过H门量子态变为 $(|0\rangle+|1\rangle)|0\rangle/\sqrt{2}$,再经过受控非门给出输出态 $(|00\rangle+|11\rangle)/2$,即贝尔态 $|\beta_{00}\rangle$,其余贝尔态的制备可通过改变输入量子态 $|xy\rangle$ 来得到,具体对应关系如下表所示:

	/ L>==+A	~ -	-44-1	. — –		
表1	线路输	$\lambda =$	74前十	! 罱 –	← ₹\\\\\\\\	心干幺

输入 $ xy angle$	输出
$ 00\rangle$	$(\ket{00}+\ket{11})/2=\ket{eta_{00}}$
$ 01\rangle$	$(01\rangle+ 10\rangle)/2= \beta_{01}\rangle$
10 angle	$(\ket{00}-\ket{11})/2=\ket{eta_{10}}$
$ 11\rangle$	$(01\rangle - 10\rangle)/2 = \beta_{11}\rangle$

而初始态中 $|1\rangle$ 态的制备只需对 $|0\rangle$ 态作用 X 门即可得到。

由于函数的输入参数 input 从左到右依次对应量子比特的高位到低位,因此 input [0] 决定 $|x\rangle$ 的初态,而 input [1] 决定 $|y\rangle$ 的初态,于是我们可以得到以下关系:

```
1  if input[0] == '1':
2    prog << X(qubits[1])
3  if input[1]== '1':
4    prog << X(qubits[0])
5  prog << H(qubits[1]) << CNOT(qubits[1], qubits[0])</pre>
```

线路测试

运行完整线路,在不同输入参数下分别可得到如下四个不同的贝尔态:

当输入字符串为"00"时,为 $|eta_{00}\rangle$:

当输入字符串为"01"时,为 $|\beta_{01}\rangle$:

当输入字符串为"10"时,为 $|\beta_{10}\rangle$:

当输入字符串为"11"时,为 $|\beta_{11}\rangle$:

量子隐形传态

量子隐形传态是利用量子纠缠的性质,通过经典信道,实现远距离传输一个量子态的模型。具体来说,假设 Alice 与 Bob 提前分别持有贝尔态 $|\beta_{00}\rangle$ 中的一个量子比特,分别记为 A 和 B,并共享一条经典信道来传输经典信息,现 Alice 需要向 Bob 传输一个未知的量子态 $|\psi\rangle$,其编码在粒子 S 上,则他们仅需按照以下步骤进行操作即可完成任务:

- 1. Alice 对她所持有的两个量子比特系统,以 S 为控制位,A 为目标位做 CNOT 操作,然后对量子比特 S 作 H 门操作,产生量子纠缠;
- 2. Alice 对其手中的两个量子比特 S 和 A 在计算基上测量得到经典信息比特 $M_1, M_2 \in \{0, 1\}$;
- 3. Alice 将测量所得经典信息 M_1, M_2 通过经典信道传输给 Bob;
- 4. 最后 Bob 按照接收到的通讯结果来对他持有的量子比特系统 B 进行量子门操作 $Z^{M1}X^{M2}$,即可还原出量子态 $|\psi\rangle$

具体线路图如图 2 所示,其中量子比特 S 和 A 属于 Alice, 而 B 属于 Bob:

图2.基于 | β00>的量子隐形传态线路

假设要传送的量子态 $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$,则图 2 中所示的各阶段量子态分别为:

$$\begin{split} |\Psi_0\rangle = &|\psi\rangle|\beta_{00}\rangle = \frac{1}{\sqrt{2}}[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|00\rangle + |11\rangle)] \\ |\Psi_1\rangle = &\frac{1}{\sqrt{2}}[\alpha|0\rangle(|00\rangle + |11\rangle) + \beta|1\rangle(|10\rangle + |01\rangle)] \\ |\Psi_2\rangle = &\frac{1}{2}[\alpha(|0\rangle + |1\rangle)(|00\rangle + |11\rangle) + \beta(|0\rangle - |1\rangle)(|10\rangle + |01\rangle)] \\ = &\frac{1}{2}[|00\rangle(\alpha|0\rangle + \beta|1\rangle) + |01\rangle(\alpha|1\rangle + \beta|0\rangle) + |10\rangle(\alpha|0\rangle - \beta|1\rangle) + |11\rangle(\alpha|1\rangle - \beta|0\rangle)] \end{split}$$

当 Alice 对前两个量子比特测量后,系统的量子态 $|\Psi_3\rangle$ 分别以 1/4 的概率处于以下四个态之一:

$$\begin{aligned} &|00\rangle(\alpha|0\rangle + \beta|1\rangle) \\ &|01\rangle(\alpha|1\rangle + \beta|0\rangle) \\ &|10\rangle(\alpha|0\rangle - \beta|1\rangle) \\ &|11\rangle(\alpha|1\rangle - \beta|0\rangle) \end{aligned}$$

Alice 将手中粒子 SA 的测量结果编码为经典信息 M_1M_2 ,并发送给 Bob。根据收到的经典信息 M_1 M_2 , Bob 只需对其手中的粒子 B 施加相应的酉变换,即可将其恢复为 Alice 初始要发送的量子 态 $|\psi\rangle$,它们之间的对应关系如表2所示。

表2.基于 | β00>的量子隐形传态中测量结果与酉变换操作间的关系

Alice的测量结果 M_1M_2	测量后 Bob 粒子 B 的量子态	Bob需要做的酉变换
00	$ \Psi_3(00) angle \equiv [lpha 0 angle + eta 1 angle]$	I
01	$ \Psi_3(01) angle \equiv [lpha 1 angle + eta 0 angle]$	X
10	$ \Psi_3(10) angle \equiv [lpha 0 angle - eta 1 angle]$	Z
11	$ \Psi_3(11) angle \equiv [lpha 1 angle - eta 0 angle]$	Z,X

附注:本案例中量子隐形传态所使用的Bell态为 $|eta_{00}\rangle$,使用其它Bell态也可以完成任务。所搭建的线路相同,只是上表 Alice 的测量结果 M_1 M_2 与 Bob 所需做的酉变换之间的对应关系有所改变,分别如表3、表4、表5所示,其中 $\sigma_{\Gamma}=-I=\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ 。

表3.基于 | β₀₁>的量子隐形传态中测量结果与酉变换操作间的关系

Alice的测量结果 M_1M_2	测量后 Bob 粒子 B 的量子态	Bob需要做的酉变换
00	$ \Psi_3(00) angle \equiv [lpha 1 angle + eta 0 angle]$	X
01	$ \Psi_3(01) angle \equiv [lpha 0 angle + eta 1 angle]$	I
10	$ \Psi_3(10) angle \equiv [lpha 1 angle - eta 0 angle]$	Z, X
11	$ \Psi_3(11) angle \equiv [lpha 0 angle - eta 1 angle]$	Z

表4.基于 | β10>的量子隐形传态中测量结果与酉变换操作间的关系

Alice的测量结果 M_1M_2	测量后 Bob 粒子 B 的量子态	Bob需要做的酉变换
00	$ \Psi_3(00) angle \equiv [lpha 0 angle - eta 1 angle]$	Z
01	$ \Psi_3(01) angle \equiv [-lpha 1 angle + eta 0 angle]$	Z,X,σ_{Γ}
10	$ \Psi_3(10) angle \equiv [lpha 0 angle + eta 1 angle]$	I
11	$ \Psi_3(11) angle \equiv [-lpha 1 angle -eta 0 angle]$	X,σ_{Γ}

表5.基于 | β11>的量子隐形传态中测量结果与酉变换操作间的关系

Alice的测量结果 M_1M_2	测量后 Bob 粒子 B 的量子态	Bob需要做的酉变换
00	$ \Psi_3(00) angle \equiv [lpha 1 angle - eta 0 angle]$	Z, X
01	$ \Psi_3(01) angle \equiv [lpha 1 angle + eta 0 angle]$	Z,σ_{Γ}
10	$ \Psi_3(10) angle \equiv [lpha 0 angle - eta 1 angle]$	X
11	$ \Psi_3(11) angle \equiv [lpha 1 angle - eta 0 angle]$	σ_{Γ}

初态制备

RY门是一种单比特量子门,其效应为将量子比特的bloch向量绕y轴逆时针旋转一定角度,常用于量子态的制备,其对应的矩阵如下:

$$RY(heta) = e^{-i heta\sigma_y/2} = egin{pmatrix} \cos(heta/2) & -\sin(heta/2) \ \sin(heta/2) & \cos(heta/2) \end{pmatrix}$$

当其作用在 $|0\rangle$ 态上,得到要传送的量子态 $|\psi\rangle$ 为:

$$RY(\theta)|0\rangle = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos(\theta/2) \\ \sin(\theta/2) \end{pmatrix}$$

线路实现

量子隐形传态线路主要包含四个部分:

- 1. 贝尔态 $|\beta_{00}\rangle$ 的制备
- 2. 建立贝尔态与信息比特的纠缠
- 3. 发送方测量持有的两个比特,并将获得的两比特信息通过经典信道发给接收方
- 4. 接收方根据经典信息对持有的比特进行酉变换

根据上述分析,量子隐形传态线路如下所示(应题目要求,此处 q_2 为 Alice 手中待传送的量子态, q_0 和 q_1 为Alice 和 Bob 共享的Bell态,其中 Alice 持有 q_1 , Bob 持有 q_0):

线路测试

当传入 RY 门旋转角度的参数 $\theta=0.5$,即待传送的量子态 $|\psi\rangle=cos(\frac{1}{4})|0\rangle+sin(\frac{1}{4})|1\rangle$ 时,有:

经验证: $|||\psi\rangle||^2=[cos(\frac{1}{4})^2,sin(\frac{1}{4})^2]=[0.9387912809451863,0.06120871905481365]$,即正确地将第三个量子比特信息赋予到了 EPR 对中的第一个量子比特上。

源码

```
from pyqpanda import *
 2
    import math
 3
    import numpy as np
 4
 5
 6
    def question1(input: str) -> list:
 7
        qvm = CPUQVM()
 8
        qvm.init_qvm()
 9
        qubits = qvm.qAlloc_many(2)
10
        prog = QProg()
11
12
        # 解析输入字符串,构造量子初态
13
        if input[0] == '1':
14
            prog << X(qubits[1])</pre>
        if input[1]== '1':
15
16
            prog << X(qubits[0])</pre>
17
        # 搭建量子线路
        prog << H(qubits[1]) << CNOT(qubits[1],qubits[0])</pre>
18
19
        # 测量并获取最终量子态
20
        qvm.prob_run_dict(prog, qubits, -1)
21
        stat = qvm.get_qstate()
22
        qvm.finalize()
23
        return stat
24
25
26
    def question2(theta: float) -> list:
27
        qvm = CPUQVM()
28
        qvm.init_qvm()
29
        qubits = qvm.qAlloc_many(3)
30
        cbits = qvm.cAlloc_many(3)
31
        prog = QProg()
32
33
        # Alice:
        # 制备待传送的量子态
34
35
        prog << RY(qubits[2], theta) \</pre>
36
        # 贝尔态 beta_00 的制备
            << H(qubits[1]) << CNOT(qubits[1], qubits[0]) \</pre>
37
38
        # 建立贝尔态与信息比特的纠缠
39
            << CNOT(qubits[2], qubits[1]) << H(qubits[2]) \</pre>
        # 发送方测量持有的两个比特
40
41
            << measure_all(qubits[1:3], cbits[1:3])</pre>
42
43
        # Bob:
        # 接收方根据经典信息对持有的比特进行酉变换
44
45
        prog << create_if_prog(cbits[1], X(qubits[0])) \</pre>
            << create_if_prog(cbits[2], Z(qubits[0]))</pre>
46
47
        # 测量并返回量子态的概率值
        result = qvm.prob_run_list(prog, qubits[0], -1)
48
49
        qvm.finalize()
        return result
50
```

```
51
52  if __name__ == "__main__":
53     # question1("00")
54     # question1("01")
55     # question1("10")
56     # question1("11")
57     prob = question2(0.5)
58     print(prob)
```

参考文献

张国帅,许道云.量子隐形传态的通用线路.软件学报,2019,30(12):3579-3589.