I. On Midterm Fxam – could be covered on final exam

Week 1-2: Overview of analytics, sample, population, sampling methods, probabilities, random variables, normal distribution, summary stats and graphs, Sampling distribution and inferential statistics, CLT, hypothesis testing and p-value

- 1. Overview of analytics
 - a. What is analytics?
 - b. Types of data & questions
 - c. Progression of analytics over time
- 2. Analytics Process
 - a. CRISP-DM
 - b. SEMMA
 - c. Business Analytics Process (BAP)
- 3. Sources and Types of Data
 - a. Internal versus External Sources
 - b. Structured versus Unstructured
- 4. Different Types of Variables
 - a. Dependent versus Independent variable
 - b. Categorical versus Continuous, Nominal, Binary, Ordinal, Interval and Continuous
 - c. Reliability vs. Validity of measures
 - d. Recommended analysis for each type of variable
- 5. Sample, Population and Confidence Intervals
 - a. Sample and population
 - b. Sampling methods probability and non-probability
 - c. Confidence Intervals for descriptive statistics
- 6. Events and Probabilities
 - a. Types of events
 - b. Types of probabilities
 - c. Types of event probabilities
- 7. Probability Formulas
 - d. Independent events
 - e. Mutually exclusive and collectively exhaustive
- 8. Discrete Random Variables
 - f. Distributions
 - g. Expected values and dispersion
- 9. Continuous Random Variables
 - h. Normal Distribution
 - i. How to talk about CRV
- 10. Normal Probability Calculation
 - j. Examples
- 11. Summarize Quantitative Variables

- k. Quantiles, Boxplots, & Moments
- I. Measures of Shape
- m. Outliers
- 12. Basics of Inference based on Sampling
 - a. Process of inference
 - b. Estimators
 - c. Confidence Intervals
 - d. Sampling error
- 13. Hypothesis Testing
 - e. Null and alternative
 - f. P-values
- 14. Errors in Hypothesis Testing
 - g. Errors in hypothesis testing

Week 3

- 1. Two-sample t-test
 - a. Types of questions it can answer
 - b. Mechanics
 - c. Interpretation
- 2. Paired sample t-test
 - d. Types of questions it can answer
 - e. Mechanics
 - f. Interpretation
- 3. Chi-square tests
 - g. Types of questions it can answer
 - h. Mechanics
 - i. Interpretation
- 4. Correlations
 - j. Types of questions it can answer
 - k. Types and Mechanics
 - I. Interpretation

Week 4: Simple and Multiple Regression Basics

- 1. Simple Regression Basics
 - a. SR vs correlation
 - b. Baseline vs regression model
- 2. Mechanics & Interpretation
 - a. Model
 - b. Least Squares Regression
 - c. R², Regression Coefficients, model outputs
- 3. Prediction and Diagnostics
 - a. Predicting using regression equation
 - b. Diagnostics
 - c. Confidence intervals

- 4. Multiple Regression
 - a. Theory and Mechanics
 - b. Interpretation
 - c. Importance

Week 5: Tableau content

- 1. Visualization basics
 - a. Rules
 - b. Mistakes to avoid
- 2. Discrete and continuous variables
 - a.
 - b. Measure
- 3. Dashboards and stories
- 4. Formatting dashboards & worksheets
- 5. Calculated fields
- 6. Mapping

Week 6: Power BI

- 1. Types of Data
- 2. Types of Visualization
- 3. Layout of System

II. Not covered on Midterm Exam – will be on final exam

Week 7: Visual Analytics

- 1. Overview of visual analytics
- 2. Accessing Content in SAS Drive
- 3. Organizing and Sharing Content in SAS Drive
- 4. Explorations Basics
- 5. Exploration Enhancements
- 6. Viewing a Report in SAS VA
- 7. Creating a Basic Report in SAS VA
- 8. Creating a Multi-Page Report in SAS VA

Week 9: Logistic Regression

- 4. Basics & Advanced Concepts of Logistic Regression
 - a. Binary target variable
 - b. Odds
 - c. Logistic Regression Model
 - d. Mechanics
 - e. Results & Interpretation

- f. Importance of variables
- g. Issues
- 5. Variable Selection
- 6. Diagnostics
- 7. applications

Week 10: ANOVA

- 1. Experimental Design
- 2. Basics of Single Factor ANOVA
- 3. Factorial Design ANOVA

Week 11: Overview of Predictive Modeling & Decision Trees

- 1. Overview of Predictive Modeling
 - a. statistical vs. machine learning approaches
 - b. How to predict new cases
 - c. How to select input
 - d. How to optimize model complexity
- 2. Basics of Predictive Modeling
- 3. Basics of Decision Trees
- 4. Overview of decision tree

Week 12: Neural Networks

- 1. Basics of ANN
- 2. Selecting useful inputs in ANN
- 3. Optimizing complexity in ANN
- 4. Applications of ANN

Week 13: Segmentation and RFM Analysis

- 1. Components
- 2. Methods of calculation
- 3. Segmentation

Week 14: Text Analytics

- 1. Overview
- 2. Basics of Text Parsing
- 3. Case Studies and Next Steps