最长公共子序列

子序列

设序列X,Z,

$$X = \langle x_1, x_2, ..., x_m \rangle$$

 $Z = \langle z_1, z_2, ..., z_k \rangle$

$$z_j = x_{i_j}, j = 1, 2, ..., k$$

则称 Z 是 X 的子序列

X与 Y的公共子序列 Z: Z 是 X 和 Y 的子序列

子序列的长度:子序列的元素个数。

最长公共子序列

问题:给定序列

$$X = \langle x_1, x_2, \dots, x_m \rangle$$

$$Y = \langle y_1, y_2, \dots, y_n \rangle$$

求X和Y的最长公共子序列

实例:

X: A B C B D A B

Y: B D C A B A

最长公共子序列: B C B A, 长度4

蛮力算法

不妨设 $m \le n$, |X| = m, |Y| = n 算法: 依次 检查 X 的每个子序列在 Y 中是否出现

时间复杂度:

每个子序列 O(n) 时间 $X \neq 2^m$ 个子序列

最坏情况下时间复杂度: $O(n 2^m)$

子问题界定

子问题间的依赖关系

设 $X=\langle x_1,x_2,...,x_m\rangle$, $Y=\langle y_1,y_2,...,y_n\rangle$, $Z=\langle z_1,z_2,...,z_k\rangle$ 为X和Y的LCS,那么

- (1) 若 $x_m = y_n \Rightarrow z_k = x_m = y_n$, 且 $Z_{k-1} \not= Z_{m-1} \mapsto Y_{n-1} \mapsto LCS$;
- (2) 若 $x_m \neq y_n$, $z_k \neq x_m \Rightarrow$ $Z \not\in X_{m-1} \to Y$ 的 LCS;
- (3) 若 $x_m \neq y_n$, $z_k \neq y_n \Rightarrow$ Z 是 $X = Y_{n-1}$ 的 LCS.

满足优化原则和子问题重叠性

优化函数的递推方程

令 X 与 Y 的子序列 $X_i = \langle x_1, x_2, \dots, x_i \rangle, \quad Y_i = \langle y_1, y_2, \dots, y_i \rangle$ C[i,j]: X_i 与 Y_i 的 LCS 的长度 C[i,j] $= \begin{cases} 0 & \exists i = v \Rightarrow j - v \\ C[i-1,j-1]+1 & \exists i,j > 0, x_i = y_j \\ \max\{C[i,j-1],C[i-1,j]\} & \exists i,j > 0, x_i \neq y_j \end{cases}$

标记函数

标记函数: B[i,j], 值为 \setminus 、 \leftarrow 、 \uparrow

 $C[i,j]=C[i-1,j-1]+1: \ \ \ \ C[i,j]=C[i,j-1]: \leftarrow$

 $C[i,j]=C[i-1,j]: \uparrow$

8

伪码

子问题

初值

算法 LCS (X, Y, m, n)

- 1. for $i\leftarrow 1$ to m do $C[i,0]\leftarrow 0$
- 2. for $i \leftarrow 1$ to n do $C[0,i] \leftarrow 0$
- 3. for $i \leftarrow 1$ to m do
- 4. for $j \leftarrow 1$ to n do
- 5. if X[i]=Y[j]
- 6. then $C[i, j] \leftarrow C[i-1, j-1]+1$
- 8. else if $C[i-1, j] \ge C[i, j-1]$
- 9. then $C[i,j] \leftarrow C[i-1,j]$
- 10. $B[i,j] \leftarrow "\uparrow"$
- 11. else $C[i,j] \leftarrow C[i,j-1]$
- 12. $B[i,j] \leftarrow " \leftarrow "$

追踪解

算法 Structure Sequence(B, i, j)

输入: B[i,j]

输出: X与Y的最长公共子序列

- 1. if i=0 or j=0 then return //序列为空
- 2. if $B[i,j] = " \setminus "$
- 3. then 输出*X*[*i*]
- 4. Structure Sequence (B, i-1, j-1)
- 5. else if $B[i,j] = "\uparrow"$
- 6. then Structure Sequence (B, i-1, j)
- 7. else Structure Sequence (B, i, j-1)

标记函数的实例

输入: $X = \langle A, B, C, B, D, A, B \rangle$, $Y = \langle B, D, C, A, B, A \rangle$,

	1	2	3	4	5	6
1	<i>B</i> [1,1]=↑	<i>B</i> [1,2]=↑	<i>B</i> [1,3]=↑	<i>B</i> [1,4]= [►] \	<i>B</i> [1,5]=←	B[1,6]=\
2	<i>B</i> [2,1]= [►] \	<i>B</i> [2,2]=←	<i>B</i> [2,3]=←	<i>B</i> [2,4]=↑	<i>B</i> [2,5]= [►] \	<i>B</i> [2,6]=←
3	<i>B</i> [3,1]=↑	B[3,2]=↑	<i>B</i> [3,3]= [►] \	<i>B</i> [3,4]=←	$B[3,5]=\uparrow$	<i>B</i> [3,6]=↑
4	<i>B</i> [4,1]=↑	B[4,2]=↑	$B[4,3]=\uparrow$	<i>B</i> [4,4]=↑	<i>B</i> [4,5]= [►] \	<i>B</i> [4,6]=←
5	<i>B</i> [5,1]=↑	<i>B</i> [5,2]=↑	$B[5,3]=\uparrow$	<i>B</i> [5,4]=↑	$B[5,5]=\uparrow$	<i>B</i> [5,6]=↑
6	<i>B</i> [6,1]=↑	<i>B</i> [6,2]=↑	<i>B</i> [6,3]=↑	<i>B</i> [6,4]= [►] \	B[6,5]=↑	<i>B</i> [6,6]= [►] \
7	<i>B</i> [7,1]=↑	<i>B</i> [7,2]=↑	$B[7,3]=\uparrow$	<i>B</i> [7,4]=↑	$B[7,5]=\uparrow$	<i>B</i> [7,6]=↑

解: X[2],X[3], X[4], X[6], 即 B, C, B, A

算法的时空复杂度

计算优化函数和标记函数:

赋初值,为O(m)+O(n)计算优化、标记函数迭代 O(mn)次, 循环体内常数次运算,时间为O(mn)

构造解:

每步缩小X或Y的长度,时间 $\Theta(m+n)$

算法时间复杂度: $\Theta(mn)$

空间复杂度: $\Theta(mn)$

小结

- 最长公共子序列问题的建模
- 子问题边界的界定
- 递推方程及初值,优化原则判定
- 伪码
- 标记函数与解的追踪
- 时间复杂度