

polynomial function is a proper map

Canonical name PolynomialFunctionIsAProperMap

Date of creation 2013-03-22 18:30:49 Last modified on 2013-03-22 18:30:49 Owner joking (16130) Last modified by joking (16130)

Numerical id 8

Author joking (16130)
Entry type Theorem
Classification msc 12D99
Related topic ProperMap

Related topic PolynomialFunction

Assume that \mathbb{K} is either the field of real numbers or the field of complex numbers and let $W : \mathbb{K} \to \mathbb{K}$ be a polynomial function in one variable over \mathbb{K} with positive degree.

Proposition. Polynomial function $W : \mathbb{K} \to \mathbb{K}$ is a proper map, i.e. for any compact subset $K \subseteq \mathbb{K}$ the preimage $W^{-1}(K)$ is compact.

Proof. Assume that

$$W(x) = \sum_{k=0}^{m} a_k \cdot x^k,$$

where $m = \deg(W) \ge 1$ is the degree of W.

Recall that $K \subseteq \mathbb{K}$ is compact if and only if K is closed and bounded. Since polynomial functions are continous, it is sufficient to show that preimage of a bounded set is bounded. So assume that K is bounded and $W^{-1}(K)$ is not bounded. Take a sequence $\{x_n\}_{n=1}^{\infty} \subseteq K$ such that

$$\lim_{n \to \infty} ||x_n|| = +\infty,$$

where ||x|| denotes the Euclidean norm of $x \in \mathbb{K}$.

Recall that for any $x, y \in \mathbb{K}$ we have $||x+y|| \ge ||x|| - ||y||$. Thus we have:

$$\|W(x)\| = \|\sum_{k=0}^m a_k \cdot x^k\| \ge \|a_m \cdot x^m\| - \sum_{k=0}^{m-1} \|a_k \cdot x^k\| = \|a_m\| \cdot \|x\|^m - \sum_{k=0}^{m-1} \|a_k\| \cdot \|x\|^k.$$

Let

$$V(x) = ||a_m|| \cdot x^m - \sum_{k=0}^{m-1} ||a_k|| \cdot x^k.$$

Then V is a real polynomial of degree m and the leading coefficient of V is positive, which implies that

$$\lim_{x \to +\infty} V(x) = +\infty.$$

Now for each $n \in \mathbb{N}$ we have

$$||W(x_n)|| \ge V(||x_n||),$$

but $V(||x_n||)$ tends to infinity, therefore $||W(x_n)||$ tends to infinity. Contradiction, since for each $n \in \mathbb{N}$ we have that $W(x_n) \in K$ and K is bounded. \square

Corollary 1. Polynomial functions on \mathbb{K} are closed maps.

Proof. Note that \mathbb{K} is compactly generated Hausdorff space and therefore every proper and continous map $f: \mathbb{K} \to \mathbb{K}$ is closed. Thus (due to proposition) polynomial functions are closed. \square

Corollary 2. Assume that $W: \mathbb{K} \to \mathbb{K}$ is a polynomial function such that $W(x) \neq 0$ for any $x \in \mathbb{K}$. Let $f: \mathbb{K} \to \mathbb{K}$ be a map defined by the formula

$$f(x) = \frac{1}{W(x)}.$$

Then f is bounded.

Proof. We wish to show that there exists M>0 such that for all $x\in\mathbb{K}$ the inequality $\|f(x)\|\leq M$ holds. Since polynomial functions are closed maps, then the image $\mathrm{Im}(W)$ of W is a closed subset of \mathbb{K} . Therefore $\mathbb{K}\setminus\mathrm{Im}(W)$ is open and it contains 0, thus there exists $\epsilon>0$ such that the ball around 0 with radius ϵ has empty intersection with $\mathrm{Im}(W)$. This means that for all $x\in\mathbb{K}$ we have that $\|W(x)\|\geq\epsilon>0$. Now for $M=\epsilon^{-1}$ and for any $x\in\mathbb{K}$ we have:

$$||f(x)|| = \left\|\frac{1}{W(x)}\right\| = \frac{1}{\|W(x)\|} \le \frac{1}{\epsilon} = M$$

which completes the proof. \Box