1) Nonlinear System

$$\pi t = g(\pi_{t-1}, u_t) + \varepsilon_t$$

$$System noise$$

$$y_t = h(\pi_t) + S_t$$

$$Startement noise$$

(2) Nonlinear System Solution

State Estimenton	Model	Assumed Distribution	Computation Cosk
Kalman Filter	Linear	Gaussian	Low
Extended Kalman Filter	Locally	Gausian	Low Medium
Unscented Kalmen Filter	Nonlinear	Gaessian	Medium
Particle Filter	Non/inear	Non Gaussia	High

(3) Extended Kalman Filter – Ist order Tayor Series

Step 1. Predict

Predicted Scale Estimate $\chi_{k|k-1} = f(\chi_{k-1|k-1}, U_k)$ Predicted Covariance Estimate $f_{k|k-1} = F_k f_{k-1|k-1}, U_k$ $F_k = \frac{\partial f}{\partial x} \Big|_{\chi_{k-1|k-1}, U_k}$

Step 2. Update

Innovation / measurement $\hat{y}_{k} = Z_{k} - h(\hat{x}_{k|k-1})$ residual

Innovation covariance $S_{k} = H_{k}P_{k|k-1}H_{k}^{T} + R_{k}$ Near-Optimal Kalman Gain $K_{k} = P_{k}H_{k} + H_{k}^{T} + K_{k}$ Updated Scate Estimate $\hat{x}_{k} = \hat{x}_{k} + K_{k} + K_{$

Initialize $\hat{\chi}_{i|0} = \left[\left[\chi(t_0) \right] \right]$ $P_{0|0} = E\left[\left(\chi(t_0) - \hat{\chi}(t_0) \right) \left(\chi(t_0) - \hat{\chi}(t_0) \right)^{T} \right]$

(4) Unscented Kalman Filter - 3rd order Talyor Series

Pr = Pr - K Prink KT