

DCC GARCH

Amath 546/Econ 589
Eric Zivot
Spring 2013
Updated: May 13, 2013

Rolling Covariances and Correlations

UW

EWMA Covariances and Correlations

 $\lambda = 0.94$

EWMA Covariance between MSFT and S&P500

EWMA Correlation between MSFT and S&P500

Specify DCC Model

```
mivariate normal GARCH(1,1) for each series
  garch11.spec = ugarchspec(mean.model = list(armaOrder = c(0,0)),
                            variance.model = list(garchOrder = c(1,1),
                            model = "sGARCH"),
                            distribution.model = "norm")
# dcc specification - GARCH(1,1) for conditional correlations
> dcc.garch11.spec = dccspec(uspec = multispec( replicate(2,
garch11.spec) ),
                             dccOrder = c(1,1),
                             distribution = "mvnorm")
> dcc.garch11.spec
    DCC GARCH Spec
Model
                      : DCC(1,1)
Estimation
                         2-step
Distribution
                         mvnorm
No. of Parameters
                         11
No. of Series
```

UW

Estimate DCC Model

```
dcc.fit = dccfit(dcc.garch11.spec, data = MSFT.GSPC.ret)
Iter: 1 fn: 2261.1651 Pars: 0.02425 0.96193
Iter: 2 fn: 2261.1651 Pars: 0.02425 0.96192
solnp--> Completed in 2 iterations
> class(dcc.fit)
[1] "DCCfit"
attr(, "package")
[1] "rmgarch"
> slotNames(dcc.fit)
[1] "mfit" "model"
> names(dcc.fit@mfit)
 [1] "coef"
                         "matcoef"
                                             "garchnames"
 [4] "dccnames"
                         "cvar"
                                             "scores"
 [7] "R"
                         "H"
                                             "0"
[10] "stdresid"
                         "11h"
                                             "log.likelihoods"
[13] "timer"
                         "convergence"
                                             "Nbar"
[16] "Qbar"
                           © Eric Zivot 2012
```


Estimate DCC Model

names(dcc.fit@model) [1] "modelinc" "modeldesc" "modeldata" "varmodel" "fixed.pars" "start.pars" [5] "pars" "maxgarchOrder" [9] "maxdccOrder" "pos.matrix" "pidx" "mu" "ipars" [13] "residuals" "sigma" "mpars" "umodel" [17] "midx" "eidx"

```
# many extractor functions - see help on DCCfit object
# coef, likelihood, rshape, rskew, fitted, sigma,
# residuals, plot, infocriteria, rcor, rcov
# show, nisurface
```


Estimate DCC Model

```
*-----*

* DCC GARCH Fit *

*----*
```

Distribution : mvnorm
DCC Order : 1 1
Asymmetric : FALSE
No. of Parameters : 11

[VAR GARCH DCC UncQ] : [0+8+2+1]

No. of Series : 2
No. of Observations : 3082
Log-Likelihood : 18417
Av.Log-Likelihood : 5.98

Optimal Parameters

	Estimate	Std. Error	t value	Pr(> t)
[MSFT].mu	0.000343	0.000289	1.1881	0.234808
[MSFT].omega	0.000005	0.000002	2.4441	0.014522
[MSFT].alpha1	0.069238	0.029389	2.3559	0.018478
[MSFT].beta1	0.920378	0.029791	30.8943	0.000000
[GSPC].mu	0.000434	0.000168	2.5894	0.009613
[GSPC].omega	0.00001	0.000000	3.3236	0.000889
[GSPC].alpha1	0.088147	0.014425	6.1109	0.000000
[GSPC].beta1	0.903222	0.016831	53.6630	0.000000
[Joint]dcca1	0.024249	← 0.011018	2.2008	0.027749
[Joint]dccb1	0.961925	0.022314	43.1090	0.000000

Conditional correlation parameters (with covariance targeting)

© Eric Zivot 2012

DCCfit Plot Method

```
> plot(dcc.fit)

Make a plot selection (or 0 to exit):

1:    Conditional Mean (vs Realized Returns)
2:    Conditional Sigma (vs Realized Absolute Returns)
3:    Conditional Covariance
4:    Conditional Correlation
5:    EW Portfolio Plot with conditional density VaR limits
Selection:
```

UW

GARCH(1,1) Conditional Variances

DCC Conditional Sigma

Conditional Correlations

DCC Conditional Correlation GSPC-MSFT

DCC Forecasts

```
# 100-step ahead forecasts of conditional covariances
# and conditional correlations
> dcc.fcst = dccforecast(dcc.fit, n.ahead=100)
> class(dcc.fcst)
[1] "DCCforecast"
attr(,"package")
[1] "rmgarch"
> slotNames(dcc.fcst)
[1] "mforecast" "model"
> class(dcc.fcst@mforecast)
[1] "list"
> names(dcc.fcst@mforecast)
[1] "H"
           "R"
                  "0"
                          "Rbar" "mu"
```


DCC Forecasts

```
DCC GARCH Forecast
Distribution
Horizon
Roll Steps
0-roll forecast:
First 2 Correlation Forecasts
, , 1
      [,1] [,2]
[1,] 1.0000 0.6324
[2,] 0.6324 1.0000
, , 2
[,1] [,2]
[1,] 1.0000 0.6324
[2,] 0.6324 1.0000
Last 2 Correlation Forecasts
, , 1
     [,1] [,2]
[1,] 1.0000 0.6298
[2,] 0.6298 1.0000
, , 2
      [,1] [,2]
[1,] 1.0000 0.6298
```

[2,] 0.6298 1.0000

DCC Forecasts

```
> plot(dcc.fcst)
```

Make a plot selection (or 0 to exit):

- 1: Conditional Mean Forecast (vs Realized Returns)
- 2: Conditional Sigma Forecast (vs Realized Absolute Returns)
- 3: Conditional Covariance Forecast
- 4: Conditional Correlation Forecast
- 5: EW Portfolio Plot with forecast conditional density VaR limits

Selection:

Conditional Variance Forecasts

Conditional Covariance Forecasts

DCC Unconditional Covariance Forecast GSPC-MSFT

Conditional Correlation Forecast

DCC Unconditional Correlation Forecast GSPC-MSFT

