KNN

```
In [136]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

In [137]:

```
df=pd.read_csv('C:/Users/USER/Desktop/petrol_consumption.csv')
```

In [106]:

```
df.head()
```

Out[106]:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consumpt
0	9.0	3571	1976	0.525	
1	9.0	4092	1250	0.572	ţ
2	9.0	3865	1586	0.580	ţ
3	7.5	4870	2351	0.529	4
4	8.0	4399	431	0.544	4
4					•

In [105]:

```
df.shape
```

Out[105]:

(48, 6)

In [107]:

```
col_names = ['Petrol_tax','Average_income','Paved_Highways','Population_Driver_licence(%)',
df.columns = col_names
df.columns
```

Out[107]:

In [108]:

```
for var in df.columns:
    print(df[var].value_counts())
7.00
         19
8.00
         10
9.00
          8
7.50
          4
8.50
          3
10.00
          1
6.58
          1
5.00
          1
6.00
          1
Name: Petrol_tax, dtype: int64
5126
        1
3571
4045
        1
3846
        1
4188
        1
        1
3601
3640
        1
3333
        1
3063
        1
In [109]:
df.isnull().sum()
Out[109]:
Petrol_tax
                                  0
                                  0
Average_income
Paved_Highways
                                  0
Population_Driver_licence(%)
                                  0
Petrol_Consumption
                                  0
target
                                  0
dtype: int64
In [110]:
df.isna().sum()
Out[110]:
Petrol_tax
                                  0
Average_income
                                  0
Paved_Highways
                                  0
Population_Driver_licence(%)
                                  0
Petrol_Consumption
                                  0
                                  0
target
```

dtype: int64

```
In [114]:
df['target'].value_counts()
Out[114]:
1
     28
     20
Name: target, dtype: int64
In [115]:
df['target'].unique()
Out[115]:
array([1, 0], dtype=int64)
In [116]:
df['target'].isna().sum()
Out[116]:
0
In [117]:
plt.rcParams['figure.figsize']=(30,25)
df.plot(kind='hist', bins=10, subplots=True, layout=(5,2), sharex=False, sharey=False)
plt.show()
In [118]:
X = df.drop(['target'], axis=1)
y = df['target']
```

```
In [119]:
```

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0
```

In [120]:

```
X_train.shape, X_test.shape
```

Out[120]:

```
((38, 5), (10, 5))
```

In [121]:

```
cols = X_train.columns
```

In [122]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
```

In [123]:

```
X_train = pd.DataFrame(X_train, columns=[cols])
```

In [124]:

```
X_test = pd.DataFrame(X_test, columns=[cols])
```

In [125]:

```
X_train.head()
```

Out[125]:

	Petrol_tax	Average_income	Paved_Highways	Population_Driver_licence(%)	Petrol_Consumpt
0	-0.132526	1.505774	2.258546	-0.915791	-0.9654
1	-0.628193	-1.833670	0.212334	-1.128527	-0.256
2	-0.132526	-1.788970	-0.454195	-0.525775	0.3762
3	-0.132526	-0.878213	0.877245	0.041521	0.401
4	-0.628193	1.274825	1.074805	0.289713	-0.512
4					•

In [126]:

```
from sklearn.neighbors import KNeighborsClassifier
```

```
In [127]:
```

```
knn = KNeighborsClassifier(n_neighbors=3)
In [128]:
knn.fit(X_train, y_train)
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                     metric_params=None, n_jobs=None, n_neighbors=3, p=2,
                     weights='uniform')
Out[128]:
KNeighborsClassifier(n_neighbors=3)
In [131]:
y_pred = knn.predict(X_test)
y_pred
Out[131]:
array([1, 0, 0, 0, 0, 1, 1, 0, 0, 0], dtype=int64)
In [132]:
knn.predict_proba(X_test)[:,0]
Out[132]:
array([0.33333333, 1.
                             , 0.66666667, 0.66666667, 0.66666667,
                                          , 0.66666667, 0.66666667])
                 , 0.3333333, 1.
In [134]:
from sklearn.metrics import accuracy_score
print('Model accuracy score: {0:0.2f}'. format(accuracy_score(y_test, y_pred)))
Model accuracy score: 0.40
In [ ]:
```