קוואזי-מצבים טופולוגיים

כנס חפירות על מתמטיקה, 25/01/2021

עדי דיקשטיין, אוניברסיטת תל אביב

רקע וסקירה היסטורית

- בשנת John von Neumann 1932 ניסח מודל עבור מכניקת הקוונטים.
- האובייקטים המרכזיים במודל הם גדלים מדידים (observables) ומצבים (states).
 - \mathcal{H} הגדלים הם אופרטורים הרמיטיים על מרחב הילבט מרוכב $oldsymbol{\cdot}$
 - ימרחב הגדלים יש מבנה של אלגברת לי \mathcal{A}_q כאשר סוגר לי נתון ע"י •

$$[A,B]_{\hbar} := \frac{i}{\hbar}(AB - BA).$$

 \mathcal{A}_q מצבים הינם פונקציונלים לינאריים ממשיים, חיוביים ומנורמלים על •

רקע וסקירה היסטורית

- מספר פיזיקאים התנגדו לאקסיומת הלינאריות בהגדרה של מצבים.
- הסיבה להתנגדות הייתה הטענה שאפריורי, אדטיביות של מצב צריכה להתקיים הסיבה להתנגדות שניתן למדוד למדוד סימולטנית. A,B
 - מבחינה מתמטית משמעות הדבר היא ש-A ו-B תחלפים, כלומר

$$[A,B]_{\hbar} = 0 \Leftrightarrow AB = BA.$$

רקע וסקירה היסטורית

- על כן, הוכללה ההגדרה של מצב והוגדר אובייקט כללי יותר שנקרא קוואזי-מצב (quasi-state), זהו פונקציונל חיובי ומנורמל על מרחב הגדלים המדידים, כך שהצמצום שלו לתת-אלגבראות חילופיות הוא לינארי.
 - השאלה המתבקשת היא האם קיים קוואזי-מצב לא טריוויאלי?
 - התשובה לשאלה זו נתונה ע"י המשפט הבא.

משפט 1957 Gleason

. אזי כל קוואזי-מצב הוא לינארי. dim $\mathcal{H} \geq 3$ יהי \mathcal{H} מרחב הילברט עם

סימולטניות

ע"פ עקרון אי-הוודאות, שני גדלים A,B ניתנים למדידה בסימולטנית אם ורק אם • הם מתחלפים, כלומר,

$$[A, B]_{\hbar} = 0 \Leftrightarrow AB = BA.$$

• כיוון שבמודל של von Neumann גדלים מיוצגים ע"י אופרטורים הרמיטיים על מרחב הילברט, נוכל לנסח מחדש את מושג החילופיות בעזרת הטענה הבאה:

טענה

יהיו A,B אופרטורים על מרחב הילברט סוף-מימדי. אזי A,B מתחלפים אם ורק יהיו B=q(C) ו-ו-A=p(C) עבורם עופרטור ופולינומים ופולינומים אופרטור

• על כן, נוכל לנסח מחדש את דרישת האדטיביות בהגדרת קוואזי-מצבים כך שהצמצומים שלהם לתת-אלגבראות הנוצרות ע"י איבר אחד - יהיו לינאריים.

קוואזי-מצב טופולוגי

- יהי X מרחב האוסדורף קומפקטי. •
- X את אלגברת הפונקציות הממשיות אלגברת אלגברת את C(X) נסמן ע"י נסמן י
 - לכל arphiי נגדיר את תת-האלגברה הנוצרת ע"י arphi להיות arphi

$$C(\varphi) := \left\{ f \circ \varphi \, : \, f \in C(\operatorname{im} \varphi) \right\} = \operatorname{Cl} \left(\left\{ p \circ \varphi \, : \, p \in \mathbb{R}[x] \right\} \right).$$

הגדרה

פונקציונל אם הוא מקיים את נקרא קוואזי-מצב טופולוגי על $ho \colon C(X) o \mathbb{R}$ פונקציונל האקסיומות הבאות:

- ho(1)=1 (נרמול) •
- $F \geq 0$ עבור $ho(F) \geq 0$ (חיוביות) •
- $\varphi \in C(X)$ לכל לינארי הוא לינארי הצמצום (קוואזי-לינאריות) •

קוואזי-מצב טופולוגי

דוגמה

יהי X מרחב האוסדורף קומפקטי ותהי μ מידת החברות על X יהי ρ : $C(X) o \mathbb{R}$ נוכל להגדיר פונקציונל

$$\rho(f) := \int_X f \, d\mu.$$

זהו למעשה פונקציונל לינארי, ולכן מדובר בדוגמה טריוויאלית של קוואזי-מצב.

• השאלה המתבקשת היא האם קיימות דוגמאות לא טריוויאלית?

משפט J. Aarnes, משפט

כל קוואזי-מצב טופולוגי הוא לינארי.

• אך לאחר כמה חודשים מהפרסום נמצאו טעויות במאמר וההוכחה התבררה כשגויה.

קוואזי-מצב טופולוגי

- Aarnes המשיך לחקור את הסוגיה הזו, עד שלבסוף הכריע את הבעיה:

משפט J. Aarnes, משפט

קיימים קוואזי-מצבים טופולוגיים לא טריוויאלים.

- פרסם מספר מאמרים בהם הציג כמה בניות של קוואזי-מצבים ופיתח את התורה של קוואזי-מצבים טופולוגיים.
- הכלי העיקרי בהוכחת הקיום של קוואזי-מצבים היה הגדרת ומתן דוגמה לאובייקט חדש, שנקרא **קוואזי-מידה**.
 - נציג תיאור גיאומטרי לאחת הדוגמאות החשובות ביותר של קוואזי-מצב טופולוגי.

- S^2 ותהי σ מידת לבג המנורמלת על \mathbb{R}^3 ותהי ספירת היחידה ב S^2
 - . תהי $f\colon S^2 o \mathbb{R}$ פונקציית מורס
- נסמן ב- $m_{\sigma}(f)$ את רכיב הקשירות היחיד של קו-גובה של $m_{\sigma}(f)$ את רכיב הקשירות היחיד של הוא בעל שטח $S^2\setminus m_{\sigma}(f)$ של
 - $\zeta(f):=f(m_{\sigma}(f))$ נגדיר את **קוואזי-מצב החציון** של f להיות
 - $C(S^2)$ מתרחב באופן רציף יחיד על כל ζ

- $f \geq 0$ עבור $\zeta(f) \geq 0$ •
- הפונקציה 1 היא אינה פונקציית מורס, אך ניתן לקרב אותה במידה שווה ע"י פונקציות מורס, ולכן נסיק כי מתקיים $\zeta(1)=1$.
- נשים לב כי אם f,g הן פונקציות מורס על S^2 עבורן הן הן פונקציות הן פונקציות אורם ל-f,gיש את אותם קווי הגובה ולכן ל-f,gיש את אותם קווי הגובה ולכן

$$\zeta(f+g) = \zeta(f) + \zeta(g).$$

תכונה זו מתרחבת לכל מרחב הפונקציות הרציפות, ולכן ζ אכן מקיים את תכונת קוואזי-הלינאריות, ומכאן ζ הוא אכן קוואזי-מצב.

• השאלה המתבקשת היא: האם ζ הוא קוואזי-מצב לא טריוויאלי? כלומר, האם ζ הוא אינו פונקציונל לינארי?

ζ דוגמה: חוסר לינאריות של

- \mathbb{R}^3 נסמן ב-x,y,z את פונקציות הקואורדינטות על x,y,z המתקבלות מ
 - קל להשתכנע כי

$$\zeta(x^2) = \zeta(y^2) = \zeta(z^2) = 0.$$

ולכן $x^2 + y^2 + z^2 = 1$ ולכן •

$$\zeta(x^2 + y^2 + z^2) = \zeta(1) = 1 \neq 0 = \zeta(x^2) + \zeta(y^2) + \zeta(z^2).$$

כי לא קיימת מידת בורל על Riesz יוון ש- ζ לא לינארי, נסיק ממשפט ההצגה של ζ - מיוון ש- ζ שמאפשרת לחשב את ערכי ζ ע"י אינטגרציה לפיה.

תכונות בסיסיות

אינווריאנטי ביחס לדיפאומורפיזמים שומרי שטח. ζ • ליפאומורפיזמים דיפאומר מטח, אז לכל פונקציה $T\colon S^2\to S^2$ מתקיים רציפה $f\colon S^2\to \mathbb{R}$ מתקיים

$$T_*\zeta(f) := \zeta(f \circ T) = \zeta(f).$$

לכל $f,g\in C(S^2)$ מתקיים כי •

$$f^{-1}(\zeta(f)) \cap g^{-1}(\zeta(g)) \neq \varnothing.$$

Borsuk-Ulam נעזר בתכונות אלה בכדי לספק הוכחה חדשה למשפט Siburg • במימד 2.

משפט בורסוק-אולם

משפט בורסוק-אולם

תהי $S^2 \to \mathbb{R}^2$ עבורה רציפה. אזי קיימת $V:S^2 \to \mathbb{R}^2$

$$V(x_0) = V(-x_0)$$

הוכחה:

- תהי $S^2 \to S^2$. נשים לב כי זו העתקה האנטיפודלית $\sigma:S^2 \to S^2$. נשים לב כי זו העתקה שומרת שטח.
 - $F(x) = V(x) V \circ \sigma(x) = (f_1, f_2)(x)$ נגדיר
 - הפונקציות f_1,f_2 הן אי-זוגיות, לכן מתקיים כי •

$$\zeta(f_i) = \zeta(f_i \circ \sigma) = \zeta(-f_i) = -\zeta(f_i), \quad i = 1, 2 \implies \zeta(f_1) = \zeta(f_2) = 0.$$

אנומכאן , $x_0\in f_1^{-1}(0)\cap f_2^{-1}(0)$ לכן קיים י
 $V(x_0)=V\circ\sigma(x_0)=V(-x_0).$

אלגוריתם לחישוב קוואזי-מצב החציון

לקוואזי-מצב החציון ζ ישנם שימושים רבים נוספים, על כן נשאלת השאלה כיצד ניתן לחשב אותו באופן כללי. המשפט הבא נותן מענה לשאלה זו.

משפט D.-Zapolsky, משפט

N ופרמטר שלם $f\in C(S^2)$ קיים אלגוריתם שמקבל כקלט פונקציית ליפשיץ אלגוריתם שמקבל כקלט מספר אשר נבדל מ $\zeta(f)$ בלא יותר מאשר גדול מספיק - ומחזיר כפלט מספר אשר נבדל מ

$$\frac{C}{N} \cdot \|f\|_{\mathsf{Lip}}$$

עבור איזשהו קבוע C>0, כאשר

$$\|f\|_{\mathrm{Lip}} := \inf \left\{ L > 0 \, : \, |f(x) - f(y)| \leq L \cdot d(x,y), \ \, \forall \, x,y \in X \right\}.$$

 $O(N^2\log N)$ אלגוריתם זה הוא בעל סיבוכיות של

. יתכן כי ניתן להקטין משמעותית הערכה זו. C pprox 91.3 כיום אנו יודעים להוכיח כי C pprox 91.3

Aarnes קוואזי-מצב

בכדי לתאר את האלגוריתם נציג דוגמה נוספת של קוואזי-מצב.

- .#Z=2n+1 קבוצה המורכבת ממספר אי-זוגי של נקודות, נסמן $Z\subset S^2$.
 - . תהי $\mathbb{R} o F: S^2 o \mathbb{R}$ פונקציית מורס
- נסמן ב- $m_Z(F)$ את רכיב הקשירות היחיד של קו-גובה של $m_Z(F)$ נסמן ב-מכיל לכל היותר $m_Z(F)$ מכיל לכל היותר $m_Z(F)$
 - $\zeta_Z(F) \coloneqq F(m_Z(F))$ של F להיות **Aarnes נ**גדיר את קוואזי-מצב
 - $C(S^2)$ מתרחב באופן רציף יחיד על כל ζ_Z •

Reeb גרף

.Reeb בכדי לחשב את נציג את נציג ל $\zeta_Z(F)$ בכדי נבדי לחשב את

- . לצורך פשטות נניח כי $F\colon S^2 o \mathbb{R}$ היא פונקציית מורס גנרית.
- נמצאים באותו רכיב x,y נמצאים באותו רכיב בגדיר על S^2 יחס שקילות באופן הבא: $\alpha\in\mathbb{R}$ נמצאים באותו רכיב הקשירות של $F^{-1}(\alpha)$, עבור איזשהו
- מרחב המנה שמתקבל הוא עץ, נסמנו Γ_F , ונשים לב כי קודקודים שלו מתאימים פרחב המנה שמתקבל הוא עץ, נסמנו Γ_F נקרא גרף Reeb לנקודות הקריטיות של

Aarnes קוואזי-מצב

- Reeb תהי $\pi\colon S^2 o \Gamma_F$ העתקת המנה לגרף פונקציית מורס ותהי $F\colon S^2 o \mathbb{R}$ העתקת המנה לגרף $F\colon S^2 o \mathbb{R}$ של
 - $Z \subset S^2$ תת-קבוצה סופית בעלת עוצמה $Z \subset S^2$ תהי
 - . נתבונן בקבוצה $\pi(Z)\subset \Gamma_F$, יתכן כי היא בעלת כפילויות.
- למכיל $\Gamma_F\setminus\{m_F'\}$ שבירות כל רכיב קשירות עבורה $m_Z'\in\Gamma_F$ מכיל פילויות. $\pi(Z)$ מתוך מכיל מתוך לכל היותר ת $\pi(Z)$
 - ולכן $\pi(m_Z(F)) = m_Z'$ ולכן •

$$\zeta_Z(F) = F(\pi^{-1}(m_Z')).$$

את נוכל לחשב את אז נוכל לחשב את במידה נודע כיצד לחשב את Γ_F את כיצד לחשב פמידה מכך, במידה $\zeta_Z(F)$

קירוב של קוואזי-מצב החציון בעזרת קוואזי-מצב Aarnes

 S^2 הוכיח ב-1995 כי לכל k טבעי קיימת חלוקה של הספירה Yanmu Zhou • לתחומים שווי שטח בעלי קוטר $7/\sqrt{k} \geq 7$

Partition of the Sphere into 400 Pieces

משפט D.-Zapolsky, משפט

יהי k אי-זוגי, ונסמן ב- Z_k קבוצה בת k נקודות אשר כל אחת מהן שייכת לתחום יהי $f\colon S^2 \to \mathbb{R}$ מתקיים יחיד מתוך התחומים של Zhou.

$$|\zeta(f) - \zeta_{Z_k}(f)| \le \frac{7}{\sqrt{k}} \cdot \|f\|_{\mathsf{Lip}}.$$

האלגוריתם לחישוב קוואזי-מצב החציון

- $\zeta_Z(F):$ ליפשיץ, $N\geq 27$ ליפשיץ $f\colon S^2 o\mathbb{R}$ פלט: •
- $(O(N^2)$ שילוש של S^2 עם $20N^2$ משולשים. \mathcal{T}_N
- $(O(N^2)$ קירוב לינארי למקוטעין של f ביחס ל- $F:S^2 o\mathbb{R}$
 - $\|F\|_{\mathsf{Lip}} \leq c_2 \cdot \|f\|_{\mathsf{Lip}}$ -I $\|F f\|_{C^0} \leq c_1 \cdot \|f\|_{\mathsf{Lip}}/N$ $(c_1 \approx 1.323, \ c_2 \approx 7.544$ כאשר)
- נבחר k אי-זוגי כך שכל תחום ב-k חלוקה של Zhou נבחר אי-זוגי כך שכל תחום ב-k חלוקה של Z_k תהי בחירה של k קודקודים כנ"ל. אזי יתקיים

$$7/\sqrt{k} \le c_3/N$$
.

(O(N) סיבוכיות, $c_3 pprox 11.879$ (כאשר)

האלגוריתם לחישוב קוואזי-מצב החציון

נקבל כי C^0 נקבל כי -ליפשיץ ביחס לנורמת C^0 נקבל כי

$$\begin{split} |\zeta(f) - \zeta_{Z}(F)| &\leq |\zeta(f) - \zeta(F)| + |\zeta(F) - \zeta_{Z}(F)| \\ &\leq \|f - F\|_{C^{0}} + (7/\sqrt{k}) \cdot \|F\|_{\mathsf{Lip}} \\ &\leq (c_{1} + c_{2} \cdot c_{3}) \cdot \|f\|_{\mathsf{Lip}}/N. \end{split}$$

 $(c_1 + c_2 \cdot c_3 \approx 91.302)$ (כאשר)

.Reeb הערך $\zeta_Z(F)$ ניתן לחישוב באופן אלגוריתמי באמצעות שימוש גרף יתך הערך ($O(N^2\log N)$

נעיר כי חישוב גרף Reeb הוא החלק באלגוריתם בעל הסיבוכיות הגבוהה ביותר.

- יהי X מרחב האוסדוף קומפקטי.
- נסמן ע"י (X) את אוסף הקבוצות הסגורות של X, ע"י (X) את אוסף הקבוצות נסמן ע"י (X) את אוסף הקבוצות הפתוחות של X, ונגדיר (X) וועדיר (X) נסמן של X

הגדרה

פונקציה את היא מקיימת את $\tau \colon \mathcal{CO}(X) \to [0,1]$ פונקציה $\tau \colon \mathcal{CO}(X) \to [0,1]$ האקסיומות הבאות:

- . au(X) = 1 (נרמול) •
- $A\subseteq B$ עבור $au(A)\leq au(B)$ (מונוטוניות) •
- אז $A \cup B \in \mathcal{CO}(X)$ וגם $A \cap B = arnothing$ אז •

$$\tau(A \cup B) = \tau(A) + \tau(B).$$

: מתקיים U מתקיים σ

$$\tau(U) = \sup\{\tau(K) : K \subset U, K \text{ compact}\}.$$

:F. Zapolsky בכדי להציג דוגמאות לקוואזי-מידות נעזור טיעון הבא של

תהי X יריעה n-מימדית, אזי קוואזי-מידות על X נקבעות ביחידות ע"פ הערכים אזה על תת-יריעות n-מימדיות קומפקטיות עם שפה.

בפרט, קוואזי-מידות על S^2 נקבעות ביחידות ע"פ הערכים שלהן על דיסקים בעלי שפה חלקה.

דוגמה

. תהי $Z\subset S^2$ קבוצה המורכבת מ-3 נקודות שונות. עבור דיסק סגור עם שפה חלקה $D\subset S^2$ נגדיר

$$\tau_Z(D) := \left\{ \begin{array}{ll} 1, & \#Z \cap D \ge 2, \\ 0, & \#Z \cap D \le 1. \end{array} \right.$$

נשים לב כי אם D_1,D_2 הם שני דיסקים קטנים וזרים שכל אחד מהם מכיל נקודה $Q=S^2\setminus (D_1\cup D_2)$, בנוסף, $\tau_Z(D_1)=\tau_Z(D_2)=0$ אחת בלבד מ-Z, אזי מכיל נקודה אחת בלבד, אבל $\tau_Z(Q)=1$ אין כאן סתירה עם ההגדרה של $T_Z(Q)=1$ משום ש- $T_Z(Q)=1$ משום ש- $T_Z(Q)=1$

קוואזי-מידה זו נקראת **קוואזי-מידת Aarnes**.

ניתן להכליל דוגמה זו למקרה בו Z מורכב ממספר אי-זוגי כלשהו של נקודות.

דוגמה

 S^2 תהי σ מידת לבג המנורמלת על $D\subset S^2$ נגדיר עבור דיסק סגור עם שפה חלקה

$$\tau(D) := \left\{ \begin{array}{ll} 1, & \sigma(D) \ge 1/2, \\ 0, & \sigma(D) < 1/2. \end{array} \right.$$

נשים לב כי אם D_1,D_2 הם שני דיסקים סגורים וזרים עם מידה D_1,D_2 אז המשלים נשים לב כי אם $Q=S^2\setminus (D_1\cup D_2)$

$$\tau(D_1) = \tau(D_2) = 0, \quad \tau(Q) = 1 - \tau(D_1) - \tau(D_2) = 1.$$

נשים לב כי ניתן לכסות את Q ע"י איחוד של שני דיסקים סגורים A,B עם מידות קטנות, אז נקבל כי $Q\subset A\cup B$ אבל $Q\subset A\cup B$ אבל הבחנה זו מדגישה את העובדה כי T היא אינה מידה. קוואזי-מידה זו נקראת קוואזי-מידת החציון.

אינטגרציה ביחס לקוואזי-מידה

- יהי X מרחב האוסדורף קומפקטי, ותהי au קוואזי-מידה עליו. •
- aעבור פונקציה $a \in C(X)$ נרצה להגדיר את נרצה $a \in C(X)$ עבור פונקציה
 - לצורך כך, נגדיר את הפונקציה

$$\hat{a}: \mathbb{R} \to [0,1], \ \hat{a}(\alpha) = \tau \left(\{ x \in X : a(x) \ge \alpha \} \right).$$

ע"ט $\mathbb R$ על σ_a יורדת ורציפה משמאל, ולכן ניתן להגדיר מידה $\hat a$ יורדת ורציפה •

$$\sigma_a([\alpha,\beta)) = \hat{a}(\alpha) - \hat{a}(\beta).$$

להיות au להיות האינטגרל של au להיות •

$$\int_X a \, d\tau := \int_{\mathbb{R}} \alpha \, d\sigma_a(\alpha)$$

אינטגרציה ביחס לקוואזי-מידה

טענה Aarnes

 $a:X o \mathbb{R}$ יהי אוסדורף קומקפקטי, תהי au קוואזי-מידה על X ותהי והי אזי לכל $\phi \in C(\mathsf{im}\,a)$ מתקיים

$$\int \phi(a) d\tau = \int_{\mathbb{R}} \phi(\alpha) d\sigma_a(\alpha)$$

מסקנה

יאזי $arphi, \psi \in C(\mathsf{im}\,a)$ אזי מונקציה רציפה, ותהיינה $a\colon X o \mathbb{R}$

$$\int_X (\varphi(a) + \psi(a)) d\tau = \int_X \varphi(a) d\tau + \int_X \psi(a) d\tau.$$

משפט ההצגה של Aarnes

- $ho_ au$ כתוצאה מהמסקנה האחרונה נסיק כי כל קוואזי-מידה au מגדירה קוואזי-מצב י שמוגדר ע"י $ho_ au(f):=\int_X f\,d au.$
 - Aarnes הכליל את משפט ההצגה של Riesz והוכיח את המשפט הבא:

משפט ההצגה של 1991 Aarnes

. המצבים קוואזי-המידות למרחב קוואזי-המצבים בייקציה בין מרחב קוואזי-המצבים. $au \mapsto
ho_{ au}$

דוגמאות

- . אם au היא קוואזי-מידת החציון על S^2 אז $ho_ au=\zeta$ קוואזי-מצב החציון.
- אם $Z\subset S^2$ היא קבוצה המורכבת ממספר אי-זוגי של נקודות, אז קוואזי- Aarnes המצב au_Z המתאים לקוואזי-מידת המצב ζ_Z

תודה רבה!