סטטיסטיקה 2

תרגיל בית 6

שאלה 1 – רשות

א. יהי X משתנה מקרי עם פונקציית צפיפות $f(x; \theta)$. נרצה לבטא את הצפיפות באמצעות פרמטר חדש X א. יהי g כלומר נרצה לבצע טרנספורמציה g באשר g באשר g באשר g בישר לבצע טרנספורמציה ויין.

$$I(\mu) = I(g(\mu))[g'(\mu)]^2$$

(זוהי נוסחת הטרנספורמציה עבור האינפורמציה של פישר במקרה החד מימדי)

, Jeffreys Prior ב. בעת הניחו ש-g היא בנוסף מונוטונית עולה. הוכיחו את תכונת האינווריאנטיות של בנוסף מונוטונית עולה. בלומר הוכיחו כי אם נבחר

$$\pi(\theta) = \sqrt{I(\theta)}$$

אז עבור הטרנספורמציה נקבל את הפריור

$$\pi(\mu) = \sqrt{I(\mu)}$$

שאלה 2

 $. heta \sim Beta(a,b)$ - heta ונבחר פריור עבור $X| heta \sim Geo(heta)$ נתון מדגם X^n המגיע ממודל פרמטרי

- X_1,\ldots,X_n בהינתן מדגם $X| heta \sim Geo(heta)$ א. חשבו את הפוסטריור עבור הפריור והמודל הפרמטרי
- ב. הציעו אומד נקודתי ל-heta המבוסס על תוחלת הפוסטריור. הראו כי ניתן להציג אותו כקומבינציה לינארית של האנ"מ ל-heta ותוחלת הפריור.
 - ג. הניחו כי a,b>1 והציעו אומד נקודתי ל-heta המבוסס על הערך השכיח של התפלגות הפוסטריור a,b>1. הראו כי ניתן להציג אותו כקומבינציה לינארית של האנ"מ והערך השכיח של הפריור. האם קיבלתם את אותה תוצאה מסעיף ב'? מדוע?
 - ד. מצאו רווח מהימנות ל-heta ברמה $\alpha-1$. הסבירו כיצד ניתן לחשב את רווח המהימנות ל- θ ברמה סימולציה.

שאלה 3

(התפלגות אחידה אחידה הציפה) און הפריור (התפלגות הפרמטרי הפרמטרי הפרמטרי הפרמטרי התפלגות הפריור $\pi(\theta) \propto \frac{1}{\theta}$

- א. מהי ההתפלגות האפוסטריורית?
- ב. מצאו אומד נקודתי באמצעות תוחלת הפוסטריור ובאמצעות MAP

שאלה 4

נתונה התפלגות אפריורית σ,m ו- τ י דועים. הוכיחו ונתונים $\mu{\sim}N(m,\tau^2)$, באשר $\mu{\sim}N(m,\tau^2)$ בי מתקיים כי מתקיים

$$\mu|X^n \sim N\left(\alpha \bar{X}_n + (1-\alpha)m, \frac{\tau^2 \frac{\sigma^2}{n}}{\tau^2 + \frac{\sigma^2}{n}}\right)$$

 $.lpha = rac{ au^2}{rac{\sigma^2}{n} + au^2}$ כאשר