# Propuesta de un método alternativo de programación por guiado basado en visión artificial



I Concurso de Aplicaciones Robóticas CFZ Cobots

Diciembre de 2018



- Motivación y objetivos
  - Introducción
  - Objetivos
- Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- 3 Análisis de resultados
- 4 Alternativas

- Motivación y objetivos
  - Introducción
  - Objetivos
- Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



#### Tipos de programación

- Textual
- Por guiado
  - Discreta: Mover el robot hasta puntos, almacenarlos y usarlos en un programa
  - Directa: Realizar tarea con herramienta anclada

### Programación por guiado directa

- Ventajas:
  - Conservar el arte del operario
  - Sencillez
- Desventajas:
  - Imprecisión
  - Incomodidad
  - Limitaciones
  - Esfuerzo extra

- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



#### Objetivos

- Mantener ventajas y reducir desventajas
- Propuesta, NO alternativa real
- Prototipo mínimo que permita:
  - Demostrar posibilidad de implementación
  - Proponer un punto de partida
  - Descubrir errores y mejoras

#### **Target**

- Herramienta plug & play
- Tracking de identificador (invariante a dimensiones, relaciones e iluminación)
- Almacenar correcciones relativas
- Reproducir correcciones
- Robusto → Cambios de iluminación, entornos diferentes, etc.
- Efectivo → Seguimiento, velocidad, suavidad, precisión, etc.
- Sencillo → user-friendliness y plug & play
- Práctico → Embedido, pequeño y manejable



- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



- Motivación y objetivos
  - Introducción
  - Objetivos
- Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



#### Modelo 3D



#### Otras opciones

- Primer anclaje → Bridas y cinta adhesiva
- **Segundo anclaje** → Placas paralelas
- Otros diseños → Adaptar carcasas de RPi y soportes para cámara

#### Herramienta desarrollada

Script de programación Script de reproducción Programa del robot

#### Segundo anclaje









#### Herramienta desarrollada Script de programación Script de reproducción

#### Versión definitiva



#### Versión definitiva



- Motivación y objetivos
  - Introducción
  - Objetivos
- Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



#### Diagrama de flujo



#### Umbralización





#### Extracción de contornos





#### Doble discriminación











#### Bucle principal: Cálculo de correcciones



#### Cálculo de la corrección máxima

 $\alpha = \frac{62.2}{2} = 31.1^{\circ}$ h = lectura del sensor de distancia

$$\beta = 90^{\circ}$$
  
 $\gamma = 180 - 90 - 31.1 = 180 - 121.1 =$ 

Teorema del seno:

$$\frac{CORR\_MAX\_X}{sen(\alpha)} = \frac{h}{sen(\gamma)}$$

$$\mathbf{CORR\_MAX\_X} = \frac{h \cdot sen(\alpha)}{sen(\gamma)} =$$

$$= \frac{h \cdot sen(31,1)}{sen(58,9)} = \mathbf{0.6032386 \cdot h}$$

#### Cálculo de la corrección máxima

én Y Ángulo de visión en Y =  $48.8^{\circ}$  $\alpha = \frac{48.8}{2} = 24.4^{\circ}$ 

h = lectura del sensor de distancia  $\beta = 90^{\circ}$ 

$$\gamma = 180 - 90 - 24,4 = 180 - 114,4 = 65.6^{\circ}$$

Teorema del seno:

$$\frac{CORR\_MAX.Y}{sen(\alpha)} = \frac{h}{sen(\gamma)}$$

$$CORR\_MAX\_Y = \frac{h \cdot sen(\alpha)}{sen(\gamma)} =$$

$$= \frac{h \cdot sen(24,4)}{sen(65,6)} = 0.4507694 \cdot h$$

### Bucle principal: Cálculo de correcciones



#### Bucle principal: Procesado de correcciones

- Escribir correcciones en registros Modbus-TCP
  - 128 y 129 para datos
  - 130 y 131 para signos ("1" para positivos y "0" para negativos)
- Dividir corrección por 2 (reduce velocidad y oscilación)
- Escribir en el logfile

#### Proceso de finalización

- Poner a 0 los registros
- Liberar cámara
- Cerrar socket
- Liberar archivo de historial
- Reset de GPIOs

- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



#### Diagrama de flujo



- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



### Diagrama de flujo



- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



### Consumo temporal (s)

| Proceso                 | Medida 1 | Medida 2 | Medida 3 | Medida 4 | Medida 5 | Media    |
|-------------------------|----------|----------|----------|----------|----------|----------|
| Caputra de imagen       | 0.00433  | 0.00439  | 0.00493  | 0.00459  | 0.00461  | 0.00457  |
| Conversión RGB-HSV      | 0.01514  | 0.01584  | 0.01526  | 0.01539  | 0.01482  | 0.01529  |
| Segmentación            | 0.00923  | 0.02191  | 0.00941  | 0.00917  | 0.00871  | 0.011686 |
| Búsqueda contornos      | 0.00397  | 0.004    | 0.00413  | 0.00418  | 0.00364  | 0.003984 |
| Búsqueda área máxima    | 0.0002   | 0.00017  | 0.0001   | 0.00011  | 0.00013  | 0.000142 |
| Cálculo centroide       | 0.00018  | 0.00018  | 0.0001   | 0.00014  | 0.00014  | 0.000148 |
| Media móvil             | 0.00008  | 0.00005  | 0.0001   | 0.00006  | 0.00007  | 0.000072 |
| Cálculo de correcciones | 0.00004  | 0.00003  | 0.00003  | 0.00005  | 0.00005  | 0.00004  |
| Escritura Modbus        | 0.00540  | 0.00704  | 0.00637  | 0.0099   | 0.00674  | 0.00709  |

#### Consumo temporal

- Tiempo medio: 0.048496 s (5x vel. máxima de envío de órdenes del robot)
- Mayor gasto: Procesado visual (0.0312 s, 70% del total)

 $\downarrow \downarrow$ 

Optimizar procesado de imagen

- Motivación y objetivos
  - Introducción
  - Objetivos
- 2 Resultados
  - Herramienta desarrollada
  - Script de programación
  - Script de reproducción
  - Programa del robot
- Análisis de resultados
- 4 Alternativas



#### Alternativas

- Herramientas
- Identificadores
- Procesado de imagen
- Control/cálculo de correcciones
- Comunicaciones
- Adquisición de datos

## Gracias por vuestra atención



CFZ Cobots I Concurso de Aplicaciones Robóticas