University of Nevada – Reno Computer Science & Engineering Department

CS454/654 Reliability and Security of Computing Systems - Fall 2024

Lecture 12

Dr. Batyr Charyyev bcharyyev.com

CHAPTER 6

ADVANCED ENCRYPTION STANDARD

- 6.1 Finite Field Arithmetic
- 6.2 AES Structure

General Structure
Detailed Structure

6.3 AES Transformation Functions

Substitute Bytes Transformation ShiftRows Transformation MixColumns Transformation AddRoundKey Transformation

6.4 AES Key Expansion

Key Expansion Algorithm Rationale

6.5 An AES Example

Results
Avalanche Effect

6.6 AES Implementation

Equivalent Inverse Cipher Implementation Aspects

6.7 Key Terms, Review Questions, and Problems

Appendix 6A Polynomials with Coefficients in GF(28)

Advanced Encryption Standard (AES)

- The Advanced Encryption Standard (AES) was published by the National Institute of Standards and Technology (NIST) in 2001.
- AES is a symmetric block cipher that is intended to replace Data Encryption Standard (DES) as the approved standard for a wide range of applications.
- Key length 16, 24, 32, bytes (128, 192, or 256 bits) referred to as AES-128, AES-192, or AES-256, depending on the key length.
- Input plaintext is 16 bytes (128 bits).

Table	6.1	AES	Paramet	ters

Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

The key (16 bytes) that is provided as input is expanded into an array of 44 words (each of which is 4 bytes).

Both Encryption/Decryption starts with AddRoundKey, followed by set of Rounds.

For each round, 4 following stages are performed:

- Substitute bytes
- ShiftRows
- MixColumns
- AddRoundKey

Only AddRoundKey makes use of

the key.

No. of rounds	Key Length (bytes)
10	16
12	24
14	32

Key Expansion Algorithm

Takes as input a 4-word (16-byte) key and produces a linear array of 44 words each 4 bytes and total is 176 bytes.

Table 6.1 AES Parameters			
Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

The input key of size 16-byte converted into matrix of 4x4.

k_0	k ₄	<i>k</i> ₈	k ₁₂
k_1	k ₅	k9	k ₁₃
k ₂	<i>k</i> ₆	k ₁₀	k ₁₄
<i>k</i> ₃	k ₇	k ₁₁	k ₁₅

iteration	word
O	EA D2 73 21
1	B5 8D BA D2
2	31 2B F5 60
3	7F 8D 29 2F

RotWord performs a one-byte circular left shift on a word. Input word [Bo, B1, B2, B3] is transformed into [B1, B2, B3, B0].

SubWord performs a byte substitution on each byte of its input word, using the S-box (Table 6.2a - given in next slide).

The result of the two from **RotWord** and **SubWord** is XORed with a round constant, Rcon[j].

The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column value.

The hexadecimal value {95} references row 9, column 5 of the S-box, which contains the value {2A}.

EA	04	65	85
83	45	5D	96
5C	33	98	В0
F0	2D	AD	C5

Table 6.2 AES S-Boxes

			112	-11	37	-				y							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
x	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	В8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7 A	AE	08
	С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	ВВ	16

(a) S-box

			y														
200	55909	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
x	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	A	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	A0	E0	3B	4D	AE	2A	F5	В0	C8	EB	ВВ	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

(b) Inverse S-box

The result of the two from **RotWord** and **SubWord** is XORed with a **round constant**, Rcon[j]. Three rightmost bytes of round constant is always o. Thus, Rcon[j]=[RC[j], o, o, o]

RC[1]=1, RC[j]=2*RC[j-1] a multiplication defined over the field $GF(2^8)$.

					7.	2				
j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

Values for 16-byte key

No. of rounds	Key Length (bytes)
10	16
12	24
14	32

Note, in j=5 the RC[j]= 0x10 (not integer 10)

When RC[9] is computed from 2*RC[8] the reduction is needed.

2*RC[8]= 0001 0000 0000 (but we have only 8 bits so reduction is needed). The irreducible polynomial used in AES is $m(x) = x^8 + x^4 + x^3 + x + 1$ which is 0x11B (1 0001 1011)

j	1	2	3	4	5	6	7	8	9	10
RC[j]	01	02	04	08	10	20	40	80	1B	36

When RC[9] is computed from 2*RC[8] the reduction is needed. 2*RC[8]= 0001 0000 0000 (but we have only 8 bits so reduction is needed). The irreducible polynomial used in AES is $m(x) = x^8 + x^4 + x^3 + x + 1$ which is 0x11B (1 0001 1011)

$$2*RC[8] = 0001 0000 0000 = x^8 = f(x) \qquad m(x) = x^8 + x^4 + x^3 + x + 1$$
$$x^8 \mod m(x) = [m(x) - x^8] = (x^4 + x^3 + x + 1)$$

 $x^4 + x^3 + x + 1 = 00011011 = 0x1B$ (a value of RC[9]).

Iteration is i=36 meaning we are generating the word 36

 Table 6.3
 Example Round Key Calculation

Description	Value
i (decimal)	36
temp = w[i - 1]	7F8D292F
RotWord (temp)	8D292F7F
SubWord (RotWord (temp))	5DA515D2
Rcon (9)	1B000000
SubWord (RotWord (temp)) Rcon (9)	46A515D2
w[i-4]	EAD27321
$w[i] = w[i - 4] \oplus SubWord (RotWord (temp)) \oplus Rcon (9)$	AC7766F3

```
KeyExpansion (byte key[16], word w[44])
    word temp
    for (i = 0; i < 4; i++) w[i] = (key[4*i], key[4*i+1],
                                       key[4*i+2],
                                       key[4*i+3]);
    for (i = 4; i < 44; i++)
    temp = w[i - 1];
    if (i mod 4 = 0) temp = SubWord (RotWord (temp))
                                 \oplus Rcon[i/4];
    w[i] = w[i-4] \oplus temp
                            3
                                       6
                                                       10
           RC[j]
                    01
                                       20
                                                  1B
                                                       36
```

Input plaintext 16 bytes converted to 4x4 square of bytes and copied to State array, modified at each step and after final iteration copied to output matrix.

Figure 6.2 AES Data Structures

AddRoundKey Transformation

The 16-bytes of State array are bitwise XORed with the 16-bytes the round key.

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A 6	BC

(b) Add round key transformation

Substitute bytes.

The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column value.

the hexadecimal value {95} references row 9, column 5 of the S-box, which contains the value {5 \Delta }

EA	04	65	85		87	F2	4D	97
83	45	5D	96		EC	6E	4C	90
5C	33	98	B0	\rightarrow	4A	C3	46	E7
F0	2D	AD	C5		8C	D8	95	A6

There also exist inverse S-Box for decryption. Rationale: The S-box is designed to be resistant to known cryptanalytic attacks. Specifically, there should be a low correlation between input bits and output bits and output bits and output should not be the linear function of input.

Table 6.2 AES S-Boxes

			y														
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
Α.	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	Е	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

(a) S-box

ShiftRows Transformation

For the 1st row of State is not altered. For the 2nd row, a 1-byte circular left shift is performed.

For the 3rd row, a 2-byte circular left shift is performed.

For the 4th row, a 3-byte circular left shift is performed.

87	F2	4D	97
EC	6E	4C	90
4A	С3	46	E7
8C	D8	95	A6

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

Inverse shift row transformation performs the circular shifts in the opposite direction.

Rationale: transformation ensures that the 4 bytes of one column are spread out to four different columns (diffusion)

MixColumns Transformation

Each byte of a column is mapped into a new value that is a function of all four bytes in that column.

The transformation can be defined by the following matrix multiplication on State.

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} =$$

Individual addition and multiplication are performed in GF(2⁸) field.

Inverse MixColumns Transformation

$$\begin{bmatrix} 0\mathsf{E} & 0\mathsf{B} & 0\mathsf{D} & 09 \\ 09 & 0\mathsf{E} & 0\mathsf{B} & 0\mathsf{D} \\ 0\mathsf{D} & 09 & 0\mathsf{E} & 0\mathsf{B} \\ 0\mathsf{B} & 0\mathsf{D} & 09 & 0\mathsf{E} \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} =$$

Kev

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

$$=\begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2⁸), with the irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$. Consider the two polynomials $f(x) = x^6 + x^4 + x^2 + x + 1$ and $g(x) = x^7 + x + 1$. Then $f(x) + g(x) = x^6 + x^4 + x^2 + x + 1 + x^7 + x + 1 \\ = x^7 + x^6 + x^4 + x^2$ $f(x) \times g(x) = x^{13} + x^{11} + x^9 + x^8 + x^7 \\ + x^7 + x^5 + x^3 + x^2 + x \\ + x^6 + x^4 + x^2 + x + 1$ $= x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$ $x^8 + x^4 + x^3 + x + 1 \sqrt{x^{13} + x^{11} + x^9 + x^8} + x^6 + x^5 + x^4 + x^3 + 1$ $x^{13} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$ $x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1$ $x^{11} + x^7 + x^6 + x^4 + x^3 + x^4 + x^3 + 1$ Therefore, $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$.

$$x \times f(x) = (b_6 x^7 + b_5 x^6 + b_4 x^5 + b_3 x^4 + b_2 x^3 + b_1 x^2 + b_0 x) + (x^4 + x^3 + x + 1)$$

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with (00011011), which represents $(x^4 + x^3 + x + 1)$. To summarize,

$$x \times f(x) = \begin{cases} (b_6 b_5 b_4 b_3 b_2 b_1 b_0 0) & \text{if } b_7 = 0\\ (b_6 b_5 b_4 b_3 b_2 b_1 b_0 0) \oplus (00011011) & \text{if } b_7 = 1 \end{cases}$$
 (5.6)

Multiplication by a higher power of x can be achieved by repeated application of Equation (5.6). By adding intermediate results, multiplication by any constant in $GF(2^8)$ can be achieved.

$$f(x) * x^2$$
, $b_7 = 1$, so left shift
And xor with $m(x) = 00011011$

x + 1, and $m(x) = x^8 + x^4 + x^3 + x + 1$, we have $f(x) \times g(x) \mod m(x) = x^7 + x^6 + 1$. Redoing this in binary arithmetic, we need to compute $(01010111) \times (10000011)$. First, we determine the results of multiplication by powers of x: $(01010111) \times (00000010) = (10101110) \quad \mathbf{f(x)} \times \mathbf{x} \qquad \mathbf{b_7} = \mathbf{0} \text{ so just left shift}$ --\(\bigcup (01010111) \times (00000100) = (01011100) \oplus (00011011) = (01000111) \\ $(01010111) \times (0001000) = (10001110) \oplus (00011011) = (00000111) \\
<math display="block">(01010111) \times (00100000) = (00011100) \oplus (00011011) = (00000111) \\
<math display="block">(01010111) \times (01000000) = (00011100) \oplus (\mathbf{x}) \times \mathbf{x}^7. \quad \mathbf{b_7} = \mathbf{0} \text{ so just left shift}$ So, $(01010111) \times (10000011) = (01010111) \times [(00000001) \oplus (00000010) \oplus (10000000)]$

which is equivalent to $x^7 + x^6 + 1$. *1

 $= (01010111) \oplus (10101110) \oplus (00111000) = (11000001)$

In an earlier example, we showed that for $f(x) = x^6 + x^4 + x^2 + x + 1$, $g(x) = x^7 + x^4 + x^2 + x + 1$

MixColumns Transformation

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \text{ used m(x)} = x^8 + x^4 + x^3 + x + 1$$

The following is an example of MixColumns:

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

For the first equation, we have $\{02\} \cdot \{87\} = (0000 \ 1110) \oplus (0001 \ 1011) =$ $(0001\ 0101)$ and $\{03\} \cdot \{6E\} = \{6E\} \oplus (\{02\} \cdot \{6E\}) = (0110\ 1110) \oplus (1101\ 1100) =$ (1011 0010). Then,

$$\{02\} \cdot \{87\} = 0001\ 0101$$

 $\{03\} \cdot \{6E\} = 1011\ 0010$
 $\{46\} = 0100\ 0110$
 $\{A6\} = \underline{1010\ 0110}$
 $0100\ 0111 = \{47\}$

1000 0111 0000 0010 $g(x) = x^{2} + x^{2} + x + 1$ f(x) = x f(x).g(x) = x8 + x3 + x2 +x reduce with m(x) = x + x + x + x + x + x + 1 We didn't using formula x mod m(x) = m(x) - x have to use it X + X + X + X + X + X + X + X + 1 X8+X7+X3+X+1 addition and - X4 + x2+1 subtraction in 6F(2) is xor > remainder $(x^2+1)-x^4$ 0000 0101 XX 000 1 0000 0000 0101 0000 0000 00010101

02-87 = 0000 0010 1000 0111 ba=1 so left shit 1000 0111 > 0000 1110 XOR with m(x) = 0001 1011 XOR 0001 0101

6.5 AN AES EXAMPLE

Plaintext:	0123456789abcdeffedcba9876543210
Key:	0f1571c947d9e8590cb7add6af7f6798
Ciphertext:	ff0b844a0853bf7c6934ab4364148fb9

 Table 6.4
 Key Expansion for AES Example

Key Words	Auxiliary Function
w0 = 0f 15 71 c9	RotWord (w3) = 7f 67 98 af = x1
w1 = 47 d9 e8 59	SubWord (x1) = d2 85 46 79 = y1
w2 = 0c b7 ad d6	Rcon (1) = 01 00 00 00
w3 = af 7f 67 98	y1 \oplus Rcon (1) = d3 85 46 79 = z1
w4 = w0 \oplus z1 = dc 90 37 b0	RotWord (w7) = 81 15 a7 38 = x2
w5 = w4 \oplus w1 = 9b 49 df e9	SubWord (x2) = 0c 59 5c 07 = y2
w6 = w5 \oplus w2 = 97 fe 72 3f	Rcon (2) = 02 00 00 00
w7 = w6 \oplus w3 = 38 81 15 a7	y2 Rcon (2) = 0e 59 5c 07 = z2
w8 = w4 \oplus z2 = d2 c9 6b b7	RotWord (w11) = ff d3 c6 e6 = x3
w9 = w8 \oplus w5 = 49 80 b4 5e	SubWord (x3) = 16 66 b4 83 = y3
w10 = w9 \oplus w6 = de 7e c6 61	Rcon (3) = 04 00 00 00
w11 = w10 \oplus w7 = e6 ff d3 c6	y3 \oplus Rcon (3) = 12 66 b4 8e = z3

Key Words	Auxiliary Function
$w12 = w8 \oplus z3 = c0$ af df 39	RotWord (w15) = ae 7e c0 b1 = x4
$w13 = w12 \oplus w9 = 89$ 2f 6b 67	SubWord (x4) = e4 f3 ba c8 = y4
$w14 = w13 \oplus w10 = 57$ 51 ad 06	Rcon (4) = 08 00 00 00
$w15 = w14 \oplus w11 = b1$ ae 7e c0	y4 Rcon (4) = ec f3 ba c8 = 4
$w16 = w12 \oplus z4 = 2c \ 5c \ 65 \ f1$	RotWord (w19) = 8c dd 50 43 = x5
$w17 = w16 \oplus w13 = a5 \ 73 \ 0e \ 96$	SubWord (x5) = 64 c1 53 1a = y5
$w18 = w17 \oplus w14 = f2 \ 22 \ a3 \ 90$	Rcon(5) = 10 00 00 00
$w19 = w18 \oplus w15 = 43 \ 8c \ dd \ 50$	y5 \oplus Rcon (5) = 74 c1 53 1a = z5
w20 = w16 \oplus z5 = 58 9d 36 eb	RotWord (w23) = 40 46 bd 4c = x6
w21 = w20 \oplus w17 = fd ee 38 7d	SubWord (x6) = 09 5a 7a 29 = y6
w22 = w21 \oplus w18 = 0f cc 9b ed	Rcon(6) = 20 00 00 00
w23 = w22 \oplus w19 = 4c 40 46 bd	y6 \oplus Rcon(6) = 29 5a 7a 29 = z6
$w24 = w20 \oplus z6 = 71 \text{ c7 4c c2}$	RotWord (w27) = a5 a9 ef cf = x7
$w25 = w24 \oplus w21 = 8c 29 74 \text{ bf}$	SubWord (x7) = 06 d3 bf 8a = y7
$w26 = w25 \oplus w22 = 83 \text{ e5 ef 52}$	Rcon (7) = 40 00 00 00
$w27 = w26 \oplus w23 = \text{cf a5 a9 ef}$	y7 ⊕ Rcon(7) = 46 d3 df 8a = z7
w28 = w24 \oplus z7 = 37 14 93 48	RotWord (w31) = 7d a1 4a f7 = x8
w29 = w28 \oplus w25 = bb 3d e7 f7	SubWord (x8) = ff 32 d6 68 = y8
w30 = w29 \oplus w26 = 38 d8 08 a5	Rcon (8) = 80 00 00 00
w31 = w30 \oplus w27 = f7 7d a1 4a	y8 \oplus Rcon(8) = 7f 32 d6 68 = z8
w32 = w28 \oplus z8 = 48 26 45 20	RotWord (w35) = be 0b 38 3c = x9
w33 = w32 \oplus w29 = f3 1b a2 d7	SubWord (x9) = ae 2b 07 eb = y9
w34 = w33 \oplus w30 = cb c3 aa 72	Rcon (9) = 1B 00 00 00
w35 = w34 \oplus w32 = 3c be 0b 3	y9 Rcon (9) = b5 2b 07 eb = z9
w36 = w32 \oplus z9 = fd 0d 42 cb	RotWord (w39) = 6b 41 56 f9 = x10
w37 = w36 \oplus w33 = 0e 16 e0 1c	SubWord (x10) = 7f 83 b1 99 = y10
w38 = w37 \oplus w34 = c5 d5 4a 6e	Rcon (10) = 36 00 00 00
w39 = w38 \oplus w35 = f9 6b 41 56	y10 \oplus Rcon (10) = 49 83 b1 99 = z10
w40 = w36 \oplus z10 = b4 8e f3 52 w41 = w40 \oplus w37 = ba 98 13 4e w42 = w41 \oplus w38 = 7f 4d 59 20 w43 = w42 \oplus w39 = 86 26 18 76	

Table 6.5 AES Example

Start of Round	After SubBytes	After ShiftRows	After MixColumns	Round Key
01 89 fe 76				0f 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	ъ9 94 57 75	dc 9b 97 38
36 72 6b 2b	05 40 7f f1	40 7f f1 05	e4 8e 16 51	90 49 fe 81
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 1e 52	b7 5e 61 c6
5c 6b 05 f4	4a 7f 6b bf	4a 7f 6b bf	b1 c1 0b cc	c0 89 57 b1
7b 72 a2 6d	21 40 3a 3c	40 3a 3c 21	ba f3 8b 07	af 2f 51 ae
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	f9 1f 6a c3	df 6b ad 7e
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73 cb ab 62 37	5c 73 22 8c
26 74 c7 bd 24 7e 22 9c	f7 92 c6 7a 36 f3 93 de	c6 7a f7 92		65 0e a3 dd
		de 36 f3 93	19 b7 07 ec	f1 96 90 50
f8 b4 0c 4c 67 37 24 ff	41 8d fe 29	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c
	85 9a 36 16	9a 36 16 85 78 87 e4 06	83 e8 18 ba	9d ee cc 40 36 38 9b 46
ae a5 c1 ea e8 21 97 bc	e4 06 78 87 9b fd 88 65	65 9b fd 88	84 18 27 23 eb 10 0a f3	eb 7d ed bd
72 ba cb 04	40 f4 1f f2	40 f4 1f f2	7b 05 42 4a	71 8c 83 cf
1e 06 d4 fa	72 6f 48 2d	6f 48 2d 72	1e d0 20 40	c7 29 e5 a5
b2 20 bc 65	37 b7 65 4d	65 4d 37 b7	94 83 18 52	4c 74 ef a9
00 6d e7 4e	63 3c 94 2f	2f 63 3c 94	94 c4 43 fb	c2 bf 52 ef
0a 89 c1 85	67 a7 78 97	67 a7 78 97	ec 1a c0 80	37 bb 38 f7
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d
d8 f7 f7 fb	61 68 68 Of	68 Of 61 68	3b d7 00 ef	93 e7 08 a1
56 7b 11 14	b1 21 82 fa	fa b1 21 82	b7 22 72 e0	48 f7 a5 4a
db a1 f8 77	b9 32 41 f5	b9 32 41 f5	b1 1a 44 17	48 f3 cb 3c
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38
f9 e9 8f 2b	99 1e 73 f1	99 1e 73 f1	31 30 3a c2	fd 0e c5 f9
1b 34 2f 08	af 18 15 30	18 15 30 af	ac 71 8c c4	0d 16 d5 6b
4f c9 85 49	84 dd 97 3b	97 3b 84 dd	46 65 48 eb	42 e0 4a 41
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2		b4 ba 7f 86
a1 67 59 af	32 85 cb 79	85 cb 79 32		8e 98 4d 26
04 85 02 aa	f2 97 77 ac			f3 13 59 18
a1 00 5f 34	32 63 cf 18	18 32 63 cf		52 4e 20 76
ff 08 69 64				
0b 53 34 14				
84 bf ab 8f				
4a 7c 43 b9				

Avalanche Effect

Avalanche Effect when 8th bit of the plaintext is changed. The 2nd column of the table shows the value of the State matrix (as a vector) at the end of each round for the two plaintexts.

Table 6.6 Avalanche Effect in AES: Change in Plaintext

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294 fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58
3	7115262448dc747e5cdac7227da9bd9c ec093dfb7c45343d689017507d485e62	59
4	f867aee8b437a5210c24c1974cffeabc 43efdb697244df808e8d9364ee0ae6f5	61
5	721eb200ba06206dcbd4bce704fa654e 7b28a5d5ed643287e006c099bb375302	68
6	0ad9d85689f9f77bc1c5f71185e5fb14 3bc2d8b6798d8ac4fe36a1d891ac181a	64
7	db18a8ffa16d30d5f88b08d777ba4eaa 9fb8b5452023c70280e5c4bb9e555a4b	67
8	f91b4fbfe934c9bf8f2f85812b084989 20264e1126b219aef7feb3f9b2d6de40	65
9	cca104a13e678500ff59025f3bafaa34 b56a0341b2290ba7dfdfbddcd8578205	61
10	ff0b844a0853bf7c6934ab4364148fb9 612b89398d0600cde116227ce72433f0	58

Avalanche Effect

Avalanche Effect when 8th bit of the key is changed. The 2nd column of the table shows the value of the State matrix (as a vector) at the end of each round for the two plaintexts.

Table 6.7 Avalanche Effect in AES: Change in Key

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210 0123456789abcdeffedcba9876543210	0
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c5a9ad090ec7ff3fc1e8e8ca4cd02a9c	22
2	5c7bb49a6b72349b05a2317ff46d1294 90905fa9563356d15f3760f3b8259985	58
3	7115262448dc747e5cdac7227da9bd9c 18aeb7aa794b3b66629448d575c7cebf	67
4	f867aee8b437a5210c24c1974cffeabc f81015f993c978a876ae017cb49e7eec	63
5	721eb200ba06206dcbd4bce704fa654e 5955c91b4e769f3cb4a94768e98d5267	81
6	0ad9d85689f9f77bc1c5f71185e5fb14 dc60a24d137662181e45b8d3726b2920	70
7	db18a8ffa16d30d5f88b08d777ba4eaa fe8343b8f88bef66cab7e977d005a03c	74
8	f91b4fbfe934c9bf8f2f85812b084989 da7dad581d1725c5b72fa0f9d9d1366a	67
9	cca104a13e678500ff59025f3bafaa34 0ccb4c66bbfd912f4b511d72996345e0	59
10	ff0b844a0853bf7c6934ab4364148fb9 fc8923ee501a7d207ab670686839996b	53