Wprowadzenie do algorytmów genetycznych

Łukasz Biedak

Politechnika Gdańska

08.11.2011

Wprowadzenie do algorytmów genetycznych

Jaka będzie ta prezentacja?

Powstało wiele książek traktujących o Algorytmach Genetycznych, znajdziecie w nich historię, wstęp teoretyczny z teorii prawdopodobieństwa, równań różniczkowych, bla bla bla - same niepotrzene rzeczy...

Wprowadzenie do algorytmów genetycznych

Jaka będzie ta prezentacja?

Powstało wiele książek traktujących o Algorytmach Genetycznych, znajdziecie w nich historię, wstęp teoretyczny z teorii prawdopodobieństwa, równań różniczkowych, bla bla bla - same niepotrzene rzeczy...

Jaka będzie ta prezentacja?

... właściwie to może i potrzebne, ale tutaj ich nie będzie;-)

Dlaczego powstały AG?

Wiele zadań z którymi próbują się zmierzyć matematycy nie należy do klasy problemów łatwych. Weźmy prosty w sformułowaniu lecz NP-trudny problem komiwojażera. W grafie pełnym o 20 wierzchołkach ma $19!/2 \approx 6,1*10^{16}$ rozwiązań.

Dlaczego powstały AG?

Wiele zadań z którymi próbują się zmierzyć matematycy nie należy do klasy problemów łatwych. Weźmy prosty w sformułowaniu lecz NP-trudny problem komiwojażera. W grafie pełnym o 20 wierzchołkach ma $19!/2\approx 6,1*10^{16}$ rozwiązań. Całkiem sporo!

Dlaczego powstały AG?

Wiele zadań z którymi próbują się zmierzyć matematycy nie należy do klasy problemów łatwych. Weźmy prosty w sformułowaniu lecz NP-trudny problem komiwojażera. W grafie pełnym o 20 wierzchołkach ma $19!/2\approx 6,1*10^{16}$ rozwiązań.

Całkiem sporo!

Aby nie przeszukiwać całej przestrzeni rozwiązań powstały algorytmy probabilistyczne - w tym najbardziej znane AG, dzięki którym można przeszukać niewielką podprzestrzeń, w której być może [bardzo często] znajduje się rozwiązanie bliskie optymalnemu.

Skąd się wzięły AG?

Uczeni od dawna interesowali się wykorzystaniem w naukach ścisłych mechanizmów dobrze sprawdzających się w przyrodzie.

Skąd się wzięły AG?

Uczeni od dawna interesowali się wykorzystaniem w naukach ścisłych mechanizmów dobrze sprawdzających się w przyrodzie.

Jednym z takich mechanizmów jest ewolucja, a ściślej mówiąc dobór naturalny, który leży u jej podstaw.

Skąd się wzięły AG?

Uczeni od dawna interesowali się wykorzystaniem w naukach ścisłych mechanizmów dobrze sprawdzających się w przyrodzie.

Jednym z takich mechanizmów jest ewolucja, a ściślej mówiąc dobór naturalny, który leży u jej podstaw.

Dzięki niej 320 lat temu umieliśmy liczyć tylko proste całki, a dzisiaj umiemy już liczyć kilka trudniejszych.

Skąd się wzięły AG?

Uczeni od dawna interesowali się wykorzystaniem w naukach ścisłych mechanizmów dobrze sprawdzających się w przyrodzie.

Jednym z takich mechanizmów jest ewolucja, a ściślej mówiąc dobór naturalny, który leży u jej podstaw.

Dzięki niej 320 lat temu umieliśmy liczyć tylko proste całki, a dzisiaj umiemy już liczyć kilka trudniejszych.

Puenta

Algorytmy genetyczne są niczym innym niż ewolucją w *kwarcowej probówce*.

Skąd się wzięły AG?

Uczeni od dawna interesowali się wykorzystaniem w naukach ścisłych mechanizmów dobrze sprawdzających się w przyrodzie.

Jednym z takich mechanizmów jest ewolucja, a ściślej mówiąc dobór naturalny, który leży u jej podstaw.

Dzięki niej 320 lat temu umieliśmy liczyć tylko proste całki, a dzisiaj umiemy już liczyć kilka trudniejszych.

Puenta

Algorytmy genetyczne są niczym innym niż ewolucją w *kwarcowej probówce*.

Uproszczony opis działania.

Losujemy populację złożoną z N osobników, każdy z nich reprezentowany jest przez M chromosomów.

Uproszczony opis działania.

Losujemy populację złożoną z N osobników, każdy z nich reprezentowany jest przez M chromosomów.

Genotyp, czyli zbiór chromosomów odwzorowujemy w **fenotyp**, dzięki któremu możemy określić jakość/przystosowanie danego osobnika. Używamy do tego FUNKCJI OCENY.

Uproszczony opis działania.

Losujemy populację złożoną z N osobników, każdy z nich reprezentowany jest przez M chromosomów.

Genotyp, czyli zbiór chromosomów odwzorowujemy w **fenotyp**, dzięki któremu możemy określić jakość/przystosowanie danego osobnika. Używamy do tego FUNKCJI OCENY.

Osobniki najlepiej przystosowane mają największą szansę na ${
m Krzy\dot{z}owanie}$ się z innymi, dzięki któremu powstaje nowa populacja o tej samej liczności.

Uproszczony opis działania.

Losujemy populację złożoną z N osobników, każdy z nich reprezentowany jest przez M chromosomów.

Genotyp, czyli zbiór chromosomów odwzorowujemy w **fenotyp**, dzięki któremu możemy określić jakość/przystosowanie danego osobnika. Używamy do tego FUNKCJI OCENY.

Osobniki najlepiej przystosowane mają największą szansę na ${
m Krzy\dot{z}owanie}$ się z innymi, dzięki któremu powstaje nowa populacja o tej samej liczności.

Rodzice umierają (bądź w zależności od metody $\mathrm{SELEKCJI}$ przeżywa część z nich). Podczas tych złożonych procesów może dojść do $\mathrm{Mutacji}$ któregoś z osobników (jednego lub kilku).

```
alg_genetyczny()
{
   T=0;
   P(T)=generuj_losowa_populacje();
```

```
alg_genetyczny()
{
   T=0;
   P(T)=generuj_losowa_populacje();
   ocen_chromosomy(P(T));
```

```
alg_genetyczny()
{
   T=0;
   P(T)=generuj_losowa_populacje();
   ocen_chromosomy(P(T));
   while(!warunek_konca())
```

```
alg_genetyczny()
{
   T=0;
   P(T)=generuj_losowa_populacje();
   ocen_chromosomy(P(T));
   while(!warunek_konca())
    {
      T=T+1;
      C(T)=wybierz(P(T-1));
}
```

```
alg_genetyczny()
{
    T=0;
    P(T)=generuj_losowa_populacje();
    ocen_chromosomy(P(T));
    while(!warunek_konca())
    {
        T=T+1;
        C(T)=wybierz(P(T-1));
        CR(T)=przetwarzaj(C(T),PK,PM); /* Krzyzowanie i
mutacja */
```

```
alg_genetyczny()
  T=0;
  P(T)=generuj_losowa_populacje();
  ocen_chromosomy(P(T));
  while(!warunek_konca())
    T=T+1;
    C(T)=wybierz(P(T-1));
    CR(T)=przetwarzaj(C(T),PK,PM); /* Krzyzowanie i
mutacja */
    ocen_chromosomy(CR(T));
```

```
alg_genetyczny()
  T=0;
  P(T)=generuj_losowa_populacje();
  ocen_chromosomy(P(T));
  while(!warunek_konca())
    T=T+1;
    C(T)=wybierz(P(T-1));
    CR(T)=przetwarzaj(C(T),PK,PM); /* Krzyzowanie i
mutacja */
    ocen_chromosomy(CR(T));
    P(T)=wybierz(CR(T),P(T-1));
```

Reprezentacja

Jak reprezentowac chromosomy?

Istnieje kilka reprezentacji chromosomów, najpopularniejszą z nich i najbardziej uproszczoną jest reprezentacja binarna.

Reprezentacja

Jak reprezentowac chromosomy?

Istnieje kilka reprezentacji chromosomów, najpopularniejszą z nich i najbardziej uproszczoną jest reprezentacja binarna.

Chromosom o długości 10 ma np. reprezentację 1 0 0 0 1 1 1 0 1 0

Reprezentacja

Jak reprezentowac chromosomy?

Istnieje kilka reprezentacji chromosomów, najpopularniejszą z nich i najbardziej uproszczoną jest reprezentacja binarna.

Chromosom o długości 10 ma np. reprezentację 1 0 0 0 1 1 1 0 1 0

Taka reprezentacja jest stosowana np. w problemach szukania ekstremów funkcji, ale sprawia wiele kłopotów w problemach kombinatorycznych, na przykład problemie komiwojażera (Wyjaśnienie na tablicy).

Co to w ogóle jest? Trochę więcej o reprezentacji danych Operatory genetyczne Symulacja

Funkcja oceny

Jak ocenić przystosowanie osobników

Aby określić, które osobniki są lepsze od innych stosuje się funkcję oceny, która jest miarą jego jakości

Funkcja oceny

Jak ocenić przystosowanie osobników

Aby określić, które osobniki są lepsze od innych stosuje się funkcję oceny, która jest miarą jego jakości

W najprostszych przypadkach może to być wartość funkcji, której ekstremum szukamy.

Funkcja oceny

Jak ocenić przystosowanie osobników

Aby określić, które osobniki są lepsze od innych stosuje się funkcję oceny, która jest miarą jego jakości

W najprostszych przypadkach może to być wartość funkcji, której ekstremum szukamy. W problemie komiwojażera będzie to długość cyklu Hamiltona.

Funkcja oceny

Jak ocenić przystosowanie osobników

Aby określić, które osobniki są lepsze od innych stosuje się funkcję oceny, która jest miarą jego jakości

W najprostszych przypadkach może to być wartość funkcji, której ekstremum szukamy. W problemie komiwojażera będzie to długość cyklu Hamiltona.

Oczywiście dla bardziej złożonych problemów stosuje się bardziej skomplikowane funkcje oceny.

Metody selekcji

Jak wybrać te najlepsze

Istnieje kilka metod wyboru osobników do rozrodu:

Najpopularniejsze z nich to:

Metody selekcji

Jak wybrać te najlepsze

Istnieje kilka metod wyboru osobników do rozrodu:

Najpopularniejsze z nich to:

- metoda rankingowa

Metody selekcji

Jak wybrać te najlepsze

Istnieje kilka metod wyboru osobników do rozrodu:

Najpopularniejsze z nich to:

- metoda rankingowa
- metoda ruletki

Co to w ogóle jest? Trochę więcej o reprezentacji danych Operatory genetyczne Symulacja

Krzyżowanie i mutacja

Niech się rozmnażają!

Krzyżowanie to operator wieloargumentowy z conajmniej dwóch osobników robi conajmniej dwóch potomnych.

Co to w ogóle jest? Trochę więcej o reprezentacji danych Operatory genetyczne Symulacja

Krzyżowanie i mutacja

Niech się rozmnażają!

Krzyżowanie to operator wieloargumentowy z conajmniej dwóch osobników robi conajmniej dwóch potomnych.

Krzyżowanie w reprezentacji binarnej polega na wylosowaniu miejsca przecięcia genów i wyprodukowaniu dwóch potomków

Krzyżowanie i mutacja

Niech się rozmnażają!

Krzyżowanie to operator wieloargumentowy z conajmniej dwóch osobników robi conajmniej dwóch potomnych.

Krzyżowanie w reprezentacji binarnej polega na wylosowaniu miejsca przecięcia genów i wyprodukowaniu dwóch potomków

Mutujemy mosty

Mutacja jest operatorem jednoargumentowym. Losujemy gen, który chcemy zmodyfikować i go modyfikujemy.

Krzyżowanie i mutacja

Niech się rozmnażają!

Krzyżowanie to operator wieloargumentowy z conajmniej dwóch osobników robi conajmniej dwóch potomnych.

Krzyżowanie w reprezentacji binarnej polega na wylosowaniu miejsca przecięcia genów i wyprodukowaniu dwóch potomków

Mutujemy mosty

Mutacja jest operatorem jednoargumentowym. Losujemy gen, który chcemy zmodyfikować i go modyfikujemy.

Prawdopodobieństwo zajścia mutacji powinno być niewielkie.

Co to w ogóle jest? Trochę więcej o reprezentacji danych Operatory genetyczne Symulacja

No to spróbujmy coś policzyć

Czas na SYMULACJĘ!

Co to w ogóle jest? Trochę więcej o reprezentacji danych Operatory genetyczne Symulacja

No to spróbujmy coś policzyć

Czas na SYMULACJĘ!
JUUPII!!!

Na koniec

Dziękuję za uwagę!