Safe Compositional Equation-based Modeling of Constrained Flow Networks

Nate Soule - Azer Bestavros - Assaf Kfoury - Andrei Lapets

Boston University

Introduction: Constrained Flow Networks

- Flows between nodes regulated by constraints
- Example domain: Vehicular Road Traffic

EOOLT 2011

Introduction: NetSketch

• **Problem:** Traditional analysis of constrained flow networks doesn't scale well,

cope with unknowns

• Solution: NetSketch

- Lightweight, efficient, scalable modeling and analysis
- Formalism/DSL
- Web-based Tool

Introduction: NetSketch

Whole System Analysis →

Compositional Analysis

EOOLT 2011

Compositional Analysis via Type Approximations

```
int add(int a, int b) {
return a + b;
}
```

Type system allows the compiler to verify this is safe without knowledge of the exact values or representation of vars

NetSketch DSL

Example Model

Element	Represents
Boston_4	Module (untyped network)
Construction_8	Hole (untyped network)
CurRotary_9	Replacement (untyped network)
ProposedRotary_10	Replacement (untyped network)
Cap_Code_11	Typed Network

Untyped Network (Exact Network)

EOOLT 2011

7

Type System

- Current implementation:
 - Types are open/closed intervals over IR
 - Linear constraints are analyzed to determine:
 - Safe intervals for input ports
 - Safe intervals for output ports

EOOLT 2011

Type Inference: Input Types

Linear constraints form a convex hull

 Input types approximate the feasible region

- Types derived from maximally enclosed axis-aligned hyperrectangle
- Made unique via:
 - Center point
 - Aspect ratio

Type Inference: Output Types

 Again constraints form convex hull

- Must use maximally enclosing hyperrectangle
- Unique without further user input

NetSketch Tool

NetSketch Architecture

- Web Based Front End
 - JavaScript
 - HTML
- Server Back End
 - Haskell
 - C
 - C++
- Asynchronous JavaScript and XML (AJAX) based communication

Harnessing Modelica

Computation Platform

Simulation Platform

```
Conn [(c,x)]
   Module Mod1 [a,b] [c] [a+b=c]
   Module Mod2 [x] [y,z] [x=y+z]
Package TranslatedNetSketch
Connector OutPort = output Real;
Connector InPort = input Real;
Class Mod1
   InPort a;
   InPort b;
   OutPort c;
Equation
   a + b = c;
End Mod1
```

Current and Future Work

- Constraint and type extensions
 - Adaptive Dynamic Types
 - Variations of constraints
- Tool extensions
 - Bi-directional flow, extended Let functionality, internal variables, export to Modelica
- Modelica integration
 - Extend/refine HModelica
 - Modelica -> NetSketch translation

Thank You

More info at: http://www.cs.bu.edu/groups/ibench