Espaços Vetoriais Reais

Álgebra Linear e Geometria Analítica - A

Folha Prática 3

Subespaços vetoriais

- 1. Averigue se são subespaços vetoriais reais dos espaços indicados, com as operações usuais de adição e multiplicação por um escalar:
 - (a) o conjunto dos vetores (x, y, z) de \mathbb{R}^3 tais que x + 2y = 0 e z = 1;
 - (b) o conjunto dos vetores (x, y, z) de \mathbb{R}^3 colineares a (1, 2, 3), incluindo o vetor nulo;
 - (c) conjunto das funções reais de variável real que são pares.
- 2. (a) No espaço vetorial \mathbb{R}^2 , o conjunto dos vetores (x,y) tais que
 - i. x + y = 0; ii. $(x, y) \neq (1, 1)$.
 - (b) No espaço vetorial \mathbb{R}^3 , o conjunto dos vetores (x,y,z) tais que $x^2+y^2+z^2=1$.
 - (c) No espaço vetorial \mathcal{P}_2 dos polinómios em x de grau não superior a 2, o conjunto dos polinómios $ax^2 + bx + c$ com
 - i. b = 0; ii. b = 1; iii. bc = 0.
 - (d) No espaço vetorial $M_{n \times n}$ das matrizes quadradas de ordem n, o conjunto das matrizes
 - i. simétricas; ii. triangulares (n > 1); iii. de determinante 1; iv. invertíveis;
 - v. $X \in M_{n \times n}$ tais que AX = O; vi. $X \in M_{n \times n}$ tais que $AX = I_n$, sendo $A \in M_{n \times n}$.
 - (e) No espaço vetorial \mathbb{R}^m , o conjunto $\{AX: X \in \mathbb{R}^n\}$, sendo $A \in M_{m \times n}$.
 - (f) No espaço vetorial \mathbb{R}^n , o conjunto dos vetores que são ortogonais a um dado vector $X \in \mathbb{R}^n$.
- 3. Sejam \mathcal{V} um espaço vetorial real e $X_1, X_2, X_3 \in \mathcal{V}$. Mostre que o conjunto

$$S = \{a_1X_1 + a_2X_2 + a_3X_3 : a_1, a_2, a_3 \in \mathbb{R}\}\$$

é um subespaço de \mathcal{V} . (\mathcal{S} é o subespaço de \mathcal{V} gerado por X_1, X_2, X_3 .)

Combinação linear, espaço gerado e independência linear

- 4. Escreva, sempre que possível, o vetor
 - (a) (2, -3, -4, 3) como combinação linear dos vetores (1, 2, 1, 0) e (4, 1, -2, 3);
 - (b) (1,1,0) como combinação linear dos vetores (2,1,-2), (1,0,0) e (1,1,1);
 - (c) $-t^2 + t + 4$ como combinação linear dos vetores $t^2 + 2t + 1$, $t^2 + 3$ e t 1;
 - $\text{(d) } \left[\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array} \right] \text{ como combinação linear dos vetores } \left[\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & -1 \\ 0 & 3 \end{array} \right], \left[\begin{array}{cc} 2 & 2 \\ -1 & 1 \end{array} \right].$
- 5. Determine o espaço gerado pelos conjuntos de vetores indicados.
 - (a) $\{(0,1),(2,1),(2,2)\}$ em \mathbb{R}^2 ;
 - (b) $\{(0,1),(0,2)\}$ em \mathbb{R}^2 ;
 - (c) $\{(2,2,3),(-1,-2,1),(0,1,0)\}$ em \mathbb{R}^3 ;
 - (d) $\{(1,1,1),(1,0,0),(2,2,2)\}$ em \mathbb{R}^3 ;
 - (e) $\{t^2+1, t^2+t, t+1\}$ em \mathcal{P}_2 .
- 6. Determine um conjunto gerador do espaço nulo da matriz

$$A = \left[\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 2 \\ 2 & 1 & 3 & 1 \\ 1 & 1 & 2 & 1 \end{array} \right].$$

- 7. Considere o espaço vetorial \mathbb{R}^2 e u um vetor não nulo de \mathbb{R}^2 .
 - (a) Verifique que $\langle u \rangle$ é a recta que passa pela origem e tem a direcção de u.
 - (b) Represente geometricamente $\langle (1, -1) \rangle$.
- 8. Considere o espaço vetorial \mathbb{R}^3 e os vetores u_1 e u_2 de \mathbb{R}^3 linearmente independentes.
 - (a) Mostre que o subespaço gerado por u_1 é a recta que passa pela origem e tem a direção do vector u_1 .
 - (b) Mostre que o subespaço gerado pelos vetores u_1 e u_2 é o plano que passa pela origem e que contém os vetores u_1 e u_2 .
 - (c) Represente geometricamente:

```
ii. \langle (1,0,1), (0,0,1) \rangle; iii. \langle (1,-1,1), (-2,2,-2) \rangle.
i. \langle (1, -1, 2) \rangle;
```

- 9. Averigue quais dos seguintes conjuntos de vetores são linearmente independentes.
 - (a) $\{(1,1,0),(0,2,3),(1,2,3),(1,-1,1)\};$
 - (b) $\{(1,2,3),(1,1,1),(1,0,1)\};$
 - (c) $\{(1,1,1,1),(1,-1,2,3),(1,3,0,-1)\};$
 - (d) $\{2t^2+1, t-2, t+3\}.$
- 10. Seja $A = \{X_1, X_2, X_3\}$ um conjunto linearmente independente num espaço vetorial real \mathcal{V} . Averigue se conjunto $B = \{X_1 + X_2, X_1 + X_3, X_2 + X_3\}$ é linearmente independente em \mathcal{V} .
- 11. Seja $\{X_1,\ldots,X_n\}$ um conjunto de vetores de \mathbb{R}^n linearmente independente. Mostre que, se A é uma matriz quadrada de ordem n invertível, então $\{AX_1,\ldots,AX_n\}$ é linearmente independente.

Bases e dimensão

- 12. Dos seguintes conjuntos de vetores indique os que são bases dos espaços vetoriais indicados:
 - (a) $\{(1,2),(2,4)\}$ em \mathbb{R}^2 ;
 - (b) $\{(1,0,1),(1,1,0),(0,1,1)\}$ em \mathbb{R}^3 ;
 - (c) $\{(1,0,1),(2,1,0),(3,1,1)\}$ em \mathbb{R}^3 ;
 - (d) $\{(1,1,0,0),(0,0,1,1),(1,0,0,1),(0,1,1,1)\}$ em \mathbb{R}^4 ;
 - (e) $\left\{ \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array}\right] \right\} \text{ em } M_{2\times 2};$
 - (f) $\{3t^2+2t+1, t^2+t+1, t^2+1\}$ em \mathcal{P}_2
- 13. Determine uma base e a dimensão do subespaço gerado pelos vetores:

 - (a) $(1,3,0), (-1,1,0) \text{ em } \mathbb{R}^3;$ (b) $(1,-1,1), (0,2,1), (1,1,2) \text{ em } \mathbb{R}^3;$
 - (c) $t^2 + 1$, $t^2 t + 1$ em \mathcal{P}_2 .
- 14. Determine todos os valores de a para os quais $\{(a^2,0,1),(0,a,2),(1,0,1)\}$ é uma base de \mathbb{R}^3 .
- 15. Determine uma base de \mathbb{R}^4 que contenha os vetores (1,0,1,0) e (0,1,-1,0).
- 16 Seja $S = \{(x, y, z) \in \mathbb{R}^3 : x y + 3z = 0\}.$
 - (a) Verifique que S é um subespaço vetorial de \mathbb{R}^3 .
 - Determine um conjunto gerador de S e verifique se ele é linearmente independente.
 - (a) Indique, justificando, a dimensão de S.
- 17. Mostre que, se $\{X_1, X_2, \dots, X_n\}$ for uma base de um espaço vetoriais real \mathcal{V} , então
 - (a) $\{cX_1, X_2, \dots, X_n\}$ com $c \neq 0$ é também uma base de \mathcal{V} ;
 - (b) $\{X_1 + X_2 + \cdots + X_n, X_2 + \cdots + X_n, \dots, X_n\}$ é ainda uma base de \mathcal{V} .

Espaço das linhas e espaço das colunas, espaço nulo e nulidade

18. Considere a matriz

$$A = \left[\begin{array}{cccc} 1 & 1 & 2 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 2 \end{array} \right].$$

- Determine uma base do espaço nulo de A e indique, justificando, a nulidade de A.
- (b) Determine o subespaço $S = \{AX : X \in \mathbb{R}^4\}.$
 - (c) Mostre que $\{(1, -1, -1), (4, -3, -2)\}$ é uma base de S.
- 19. Para cada uma das matrizes $A \in M_{m \times n}$ a seguir:

$$\begin{pmatrix}
1 & 0 & 1 \\
2 & 1 & -1 \\
-3 & 2 & 3 \\
1 & 2 & 3
\end{pmatrix}$$
(b)
$$\begin{bmatrix}
1 & 0 & 2 & 1 \\
3 & 4 & -1 & -2
\end{bmatrix}$$
(c)
$$\begin{bmatrix}
1 & 2 & 3 & 2 & 1 \\
3 & 1 & 0 & -1 & 2 \\
0 & 2 & 1 & 1 & 1
\end{bmatrix}$$
(d)
$$\begin{bmatrix}
1 & 2 & -3 \\
-1 & 2 & 3 \\
0 & 1 & 1
\end{bmatrix}$$
(e)
$$\begin{bmatrix}
1 & 2 & 0 & 0 \\
2 & 1 & 0 & 4 \\
0 & 0 & 0 & 0 \\
2 & -1 & 0 & 1
\end{bmatrix}$$
(f)
$$\begin{bmatrix}
1 & 2 & 3 \\
1 & 0 & -1 \\
-1 & -1 & 0
\end{bmatrix}$$
(g)
$$\begin{bmatrix}
1 & -2 & -1 \\
2 & -1 & 3 \\
1 & 0 & 3 \\
1 & 1 & 1
\end{bmatrix}$$
(h)
$$\begin{bmatrix}
1 & 1 & 4 & 0 \\
0 & 2 & 0 & 1 \\
-1 & 3 & 2 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}$$

- i. determine uma base para o espaço nulo de A;
- ii. determine bases para o espaço das linhas e o espaço das colunas de A;
- iii. calcule a característica e a nulidade, e verifique que car(A) + nul(A) = n;
- iv. diga, usando a informação dada pela característica, se as linhas de A são linearmente independentes.
- 20. Seja A uma matriz $m \times n$ e B uma matriz $n \times p$. Mostre que
 - (a) o espaço das colunas de A é o conjunto $\{AX: X \in \mathbb{R}^n\}$;
 - (b) o espaço das colunas de AB está contido no espaço das colunas de A.

Coordenadas e mudança de base

21. Considere a base $\mathcal{B} = (X_1, X_2, X_3, X_4)$ de \mathbb{R}^4 constituída pelos vetores

$$X_1 = (1, 1, 0, 0), \quad X_2 = (1, 0, 0, 0), \quad X_3 = (1, 1, 1, 0), \quad X_4 = (1, 1, 1, 1).$$

Determine as coordenadas dos seguintes vetores na base \mathcal{B} .

- (a) (-1, 2, -6, 5);
- (b) (2,1,0,0);
- (c) (1, 2, 3, 4).
- 22. Considere as bases $\mathcal{B}_1 = ((1,2,1),(0,2,0),(0,0,-1))$ e $\mathcal{B}_2 = ((1,0,-1),(1,1,1),(2,3,-1))$ de \mathbb{R}^3 .
 - (a) Calcule $[X]_{\mathcal{B}_1}$ e $[X]_{\mathcal{B}_2}$ para $X = (2,3,5); \qquad \text{ii. } X = (-1,2,0); \qquad \text{iii. } X = (1,1,1).$
 - (b) Determine a matriz P de mudança da base \mathcal{B}_1 para a base \mathcal{B}_2 . Confirme os resultados obtidos em (a) usando P.
- 23. Sejam S = ((1,2),(0,1)) e T = ((1,1),(2,3)) duas bases de \mathbb{R}^2 e o vetor X = (1,5). Determine
 - (a) as coordenadas de X na base T;
 - (b) o vetor Z tal que $[Z]_T = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$;
 - (c) a matriz P de mudança da base T para a base S;
 - (d) as coordenadas de X na base S usando P;
 - (e) as coordenadas de X na base S diretamente;
 - (f) a matriz Q de mudança da base S para a base T;
 - (g) as coordenadas de X na base T usando Q.

24. Sejam $S = (X_1, X_2, X_3)$ e $T = (Y_1, Y_2, Y_3)$ bases de \mathbb{R}^3 com $X_1 = (-1, 1, 0)$, $X_2 = (1, 0, 1)$ e $X_3 = (0, 0, 1)$. Determine T, sabendo que a matriz de mudança da base T para a base S é

$$\left[\begin{array}{ccc} 1 & 1 & 2 \\ 2 & 1 & 1 \\ -1 & -1 & 1 \end{array}\right].$$

- 25. Diga se as seguintes afirmações são verdadeiras ou falsas, justificando convenientemente.
 - (a) Todos os vetores da forma (a,0,-a) com $a \in \mathbb{R}$ formam um subespaço de \mathbb{R}^3 .
 - (b) Todo o conjunto de vetores de \mathbb{R}^3 com dois vetores é linearmente independente.
 - (c) O espaço das soluções do sistema homogéneo AX = 0 é gerado pelas colunas de A.
 - (d) Se as colunas de uma matriz $n \times n$ formarem uma base de \mathbb{R}^n , então o mesmo acontece com as linhas.
 - (e) Se A é uma matriz 8×8 tal que o sistema homogéneo AX = 0 só tem a solução trivial, então car(A) < 8.
 - (f) Todo o conjunto de 5 vetores em \mathbb{R}^5 é uma base em \mathbb{R}^5 .
 - (g) Todo o conjunto de vetores de \mathbb{R}^3 linearmente independente contém 3 vetores.
 - (h) Se A é uma matriz simétrica $n \times n$, então car(A) = n.
 - (i) Todo o conjunto de vetores que geram \mathbb{R}^3 contém pelo menos 3 vetores.