Sequential Logic Synthesis

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Module 1

- Objective
 - **▲** Motivation and assumptions for sequential synthesis
 - **▲** Finite-state machine design and optimization

Synchronous logic circuits

- Interconnection of
 - **▲** Combinational logic gates
 - **▲** Synchronous delay elements
 - **▼** Edge-triggered, master/slave
- Assumptions
 - **▲** No direct combinational feedback
 - **▲** Single-phase clocking
- Extensions to
 - **▲** Multiple-phase clocking
 - ▲ Gated latches

Modeling synchronous circuits

- State-based model:
 - **▲** Model circuits as finite-state machines (FSMs)
 - **▲**Represent by state tables/diagrams
 - **▲** Apply exact/heuristic algorithms for:
 - **▼** State minimization
 - **▼** State encoding
- Structural model
 - **▲**Represent circuit by synchronous logic network
 - Apply
 - **▼** Retiming
 - **▼** Logic transformations

Modeling synchronous circuits

- Advantages and disadvantages of models
- State-based model
 - **▲** Explicit notion of state
 - ▲ Implicit notion of area and delay
- Structural model
 - **▲** Implicit notion of state
 - **▲** Explicit notion of area and delay
- Transition from a model to another is possible
 - **▲** State encoding
 - **▲** State extraction

Sequential logic optimization

Typical flow

- **△**Optimize FSM state model first
 - **▼**Reduce complexity of the model
 - **▼**E.g., apply state minimization
 - **▼**Correlates to area reduction
- Encode states and obtain a structural model
 - **▼**Apply retiming and transformations
 - **▼**Achieve performance enhancement
- **▲**Use state extraction for verification purposes

State-based optimization

FSM Specification

State Encoding

State Minimization

Combinational Optimization

Formal finite-state machine model

- A set of primary input patterns X
- A set of primary output patterns Y
- A set of states S
- A state transition function: δ : X × S \rightarrow S
- An output function:
 - \triangle λ : $X \times S \rightarrow Y$ for Mealy models
 - \triangle λ : S \rightarrow Y for Moore models

State minimization

- Classic problem
 - **▲** Exact and heuristic algorithms are available
 - **△**Objective is to reduce the number of states and hence the area
- Completely-specified finite-state machines
 - ▲ No don't care conditions
 - **▲**Polynomial-time solutions
- Incompletely-specified finite-state machines
 - **▲** Unspecified transitions and/or outputs
 - **▼** Usual case in synthesis
 - **▲**Intractable problem:
 - ▼ Requires binate covering

State minimization for completely-specified FSMs

- Equivalent states:
 - **▲**Given any input sequence, the corresponding output sequence match
- Theorem:
 - **▲**Two states are equivalent if and only if:
 - **▼** They lead to identical outputs and their next-states are equivalent
- Equivalence is transitive
 - **▲** Partition states into equivalence classes
 - **▲** Minimum finite-state machine is unique

State minimization for completely-specified FSMs

- Stepwise partition refinement:
 - **▲** Initially:
 - **▼** All states in the same partition block
 - **▲** Iteratively:
 - **▼** Refine partition blocks
 - **▲** At convergence:
 - **▼** Partition blocks identify equivalent states
- Refinement can be done in two directions
 - ▲ Transitions *from* states in block to other states
 - **▼** Classic method. Quadratic complexity
 - **▲** Transitions *into* states of block under consideration
 - **▼** Inverted tables. Hopcroft's algorithm.

Example of refinement

Initial partition:

Iteration:

 All_{k+1} : States belong to the same block if they were previously in the same block and their next states are in the same block of Π_k for any input

Convergence:

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	s_5	1
0	s_2	s_3	1
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	s_4	84	0
1	s_4	s_5	1
0	s_5	84	1
1	s_5	s_1	0

$$\bullet \Pi_1 = \{ \{ S_1, S_2 \}, \{ S_3, S_4 \}, \{ S_5 \} \}$$

$$\bullet \Pi_2 = \{ \{ S_1, S_2 \}, \{ S_3 \}, \{ S_4 \}, \{ S_5 \} \}$$

- $\bullet \Pi_2$ is a partition into equivalence classes
 - **▲**No further refinement is possible

 \triangle States $\{s_1, s_2\}$ are equivalent $\frac{0}{1}$

1/1\0/1

1/1

1/0

1/1

0/0

State minimization for incompletely-specified finite-state machines

- Applicable input sequences
 - **▲** All transitions are specified
- Compatible states
 - ▲ Given any applicable input sequence, the corresponding output sequence match
- Theorem:
 - **▲**Two states are compatible if and only if:
 - **▼** They lead to identical outputs
 - (when both are specified)
 - **▼** And their next state is compatible
 - (when both are specified)

State minimization for incompletely-specified finite-state machines

- Compatibility is not an equivalence relation
- Minimum finite-state machine is not unique
- Implication relation make the problem intractable
 - **▲**Two states may be compatible, subject to other states being compatible.
 - **▲**Implications are binate satisfiability clauses

INPUT	STATE	N-STATE	OUTPUT
0	s_1	s_3	1
1	s_1	s_5	*
0	s_2	s_3	*
1	s_2	s_5	1
0	s_3	s_2	0
1	s_3	s_1	1
0	84	84	0
1	84	s_5	1
0	s_5	84	1
1	<i>s</i> ₅	s_1	0

Trivial method

- Consider all possible don't care assignments
 - ▲n don't care imply
 - **▼ 2**ⁿ completely specified FSMs
 - **▼ 2**ⁿ solutions
- Example:
 - ▲ Replace * by 1

$$\nabla \Pi_1 = \{ \{ s_1, s_2 \}, \{ s_3 \}, \{ s_4 \}, \{ s_5 \} \} \}$$

▲ Replace * by 0

$$\nabla \Pi_1 = \{ \{ s_1, s_5 \}, \{ s_2, s_3, s_4 \} \}$$

Compatibility and implications Example

- **◆**Compatible states {s₁, s₂}
- ◆If {s₃, s₄} are compatible
 - \triangle Then $\{s_1, s_5\}$ are also compatible
- ◆Incompatible states {s₂, s₅}

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	s_5	*
0	s_2	<i>s</i> ₃	*
1	s_2	<i>s</i> ₅	1
0	s_3	<i>s</i> ₂	0
1	s_3	s_1	1
0	s_4	84	0
1	84	<i>s</i> ₅	1
0	s_5	84	1
1	s_5	s_1	0

Compatibility and implications

Compatible pairs:

- $\blacktriangle \{S_1, S_2\}$
- $\blacktriangle \{S_1, S_5\} \leftarrow \{S_3, S_4\}$
- $\blacktriangle \{S_2, S_4\} \leftarrow \{S_3, S_4\}$
- $\blacktriangle \{S_2, S_3\} \leftarrow \{S_1, S_5\}$
- $\blacktriangle \{s_3, s_4\} \leftarrow \{s_2, s_4\} \cup \{s_1, s_5\}$

Incompatible pairs

- $\blacktriangle \{S_2, S_5\}$
- $\blacktriangle \{S_3, S_5\}$
- $\blacktriangle \{S_1, S_4\}$
- $\blacktriangle \{S_4, S_5\}$
- $\blacktriangle \{S_1, S_3\}$

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	<i>s</i> ₅	*
0	s ₂	<i>s</i> 3	*
1	s_2	85	1
0	<i>s</i> 3	<i>s</i> ₂	0
1	s_3	s_1	1
0	84	84	0
1	84	<i>s</i> ₅	1
0	s_5	84	1
1	s_5	s_1	0

Compatibility and implications

- A class of compatible states is such that all state pairs are compatible
- A class is maximal
 - ▲ If not subset of another class
- Closure property
 - ▲ A set of classes such that all compatibility implications are satisfied
- **◆** The set of maximal compatibility classes
 - ▲ Has the closure property
 - **▲** May not provide a minimum solutions

Maximum compatibility classes

Example:

- $\blacktriangle \{S_1, S_2\}$
- $\blacktriangle \{S_1, S_5\} \leftarrow \{S_3, S_4\}$
- $\blacktriangle \{S_2, S_3, S_4\} \leftarrow \{S_1, S_5\}$

Cover with all MCC has cardinality 3

Exact problem formulation

- Prime compatibility classes:
 - ▲ Compatibility classes having the property that they are not subset of other classes implying the same (or subset) of classes
- Compute all prime compatibility classes
- Select a minimum number of prime classes
 - Such that all states are covered
 - ▲ All implications are satisfied
- Exact solution requires binate cover
- Good approximation methods exists
 - **▲** Stamina

Prime compatibility classes

Example:

- $\blacktriangle \{S_1, S_2\}$
- $\blacktriangle \{S_1, S_5\} \leftarrow \{S_3, S_4\}$
- $\blacktriangle \{S_2, S_3, S_4\} \leftarrow \{S_1, S_5\}$

Minimum cover:

- $\blacktriangle \{S_1, S_5\}, \{S_2, S_3, S_4\}$
- **▲**Minimun cover has cardinality 2

State encoding

- Determine a binary encoding of the states
 - **△**Optimizing some property of the representation (mainly area)
- Two-level model for combinational logic
 - **▲** Methods based on symbolic optimization
 - **▼** Minimize a symbolic cover of the finite state machine
 - **▼** Formulate and solve a constrained encoding problem
- Multiple-level model
 - **▲** Some heuristic methods that look for encoding which privilege cube and/or kernel extraction
 - **▲** Weak correlation with area minimality

INPUT	P-STATE	N-STATE	OUTPUT
0	s1	s3	0
1	s1	s3	0
0	s2	s3	0
1	s2	s1	1
0	s3	s5	0
1	s3	s4	1
0	s4	s2	1
1	s4	s3	0
0	s5	s2	1
1	s5	s5	0

(c) Giovanni De Micheli

28

• Minimum symbolic cover:

*	s1s2s4	s3	0
1	s2	s1	1
0	s 4 s 5	s2	1
1	s3	s4	1

• Encoded cover:

*	1**	001	0
1	101	111	1
0	*00	101	1
1	001	100	1

(c) Giovanni De Micheli

29

Summary finite-state machine optimization

- FSM optimization has been widely researched
 - **▲** Classic and newer approaches
- State minimization and encoding correlate to area reduction
 - **▲**Useful, but with limited impact
- Performance-oriented FSM optimization has mixed results
 - **▲**Performance optimization is usually done by structural methods

Module 2

- Objective
 - **▲** Structural representation of sequential circuits
 - **▲** Retiming
 - **▲**Extensions

Structural model for sequential circuits

- Synchronous logic network
 - Variables
 - **▲**Boolean equations
 - **▲** Synchronous delay annotation
- Synchronous network graph
 - **▲** Vertices ↔ equations ↔ I/O, gates
 - **▲**Edges ↔ dependencies ↔ nets
 - **▲**Weights ↔ synchronous delays ↔ registers

$$a^{(n)} = i^{(n)} \oplus i^{(n-1)}$$
 $a = i \oplus i@1$
 $b^{(n)} = i^{(n-1)} \oplus i^{(n-2)}$ $b = i@1 \oplus i@2$
 $c^{(n)} = a^{(n)}b^{(n)}$ $c = a b$
 $d^{(n)} = c^{(n)} + d'^{(n-1)}$ $d = c + d@1'$
 $e^{(n)} = d^{(n)}e^{(n-1)} + d'^{(n)}b'^{(n)}$ $e = d e@1 + d' b'$
 $v^{(n)} = c^{(n)}$ $v = c$
 $s^{(n)} = e^{(n-1)}$ $s = e@1$

Approaches to sequential synthesis

- Optimize combinational logic only
 - ▲ Freeze circuit at register boundary
 - **▲** Modify equation and network graph topology
- Retiming
 - **▲** Move register positions. Change weights on graph
 - **▲** Preserve network topology
- Synchronous transformations
 - ▲ Blend combinational transformations and retiming
 - **▲**Powerful, but complex to use

Example of local retiming

(c) Giovanni De Micheli

(d)

(b)

Retiming

- Global optimization technique
- Change register positions
 - **▲**Affects area:
 - **▼**Retiming changes register count
 - **▲** Affects cycle-time
 - **▼**Changes path delays between register pairs
- Retiming algorithms have polynomial-time complexity

Retiming assumptions

- Delay is constant at each vertex
 - **▲** No fanout delay dependency
- Graph topology is invariant
 - **▲** No logic transformations
- Synchronous implementation
 - **▲**Cycles have positive weights
 - ▼ Each feedback loop has to be broken by at least one register
 - **▲** Edges have non-negative weights
 - **▼** Physical registers cannot anticipate time
- Consider topological paths
 - **▲** No false path analysis

Retiming

- Retiming of a vertex v
 - ▲Integer r_v
 - ▲ Registers moved from output to input r_v positive
 - \blacktriangle Registers moved from input to output r_v negative
- Retiming of a network
 - **▲** Vector whose entries are the retiming at various vertices
- A family of I/O equivalent networks are specified by:
 - **▲**The original network
 - ▲ A set of vectors satisfying specific constraints
 - **▼** Legal retiming

Example

Retimed graph

Definitions and properties

Definitions:

- \triangle w(v_i , v_j) weight on edge (v_i , v_j)
- $(v_i, ..., v_j)$ path from v_i to v_j
- \triangle w(v_i , ..., v_j) weight on path from v_i to v_j
- \triangle d(v_i , ..., v_j) combinational delay on path from v_i to v_j

Properties:

 \triangle Retiming of an edge (v_i, v_j)

$$\nabla$$
 $\hat{\mathbf{w}}_{ij} = \mathbf{w}_{ij} + \mathbf{r}_j - \mathbf{r}_i$

$$\nabla$$
 \hat{w} ($v_i, ..., v_j$) = $w(v_i, ..., v_j) + r_j - r_i$

▲Cycle weights are invariant

Legal retiming

- Clock period φ
- A retiming vector is legal if:
 - **▲** No edge weight is negative

$$\nabla \hat{w}_{ij} (v_i, v_j) = w_{ij} (v_i, v_j) + r_j - r_i \ge 0$$
 for all i, j

▲ Each path $(v_i, ..., v_j)$ with d $(v_i, ..., v_j) > φ$ has at least one register:

```
\nabla \hat{w} (v_i, ..., v_j) = w (v_i, ..., v_j) + r_j - r_i \ge 1 for all i, j
```

 \triangle Equivalently, each combinational path delay is less than φ

Refined analysis

- Least-register path
 - \blacktriangle W (v_i , v_j) = min w (v_i , ..., v_j) over all paths between v_i and v_j
- Critical delay:
 - ▲D $(v_i, v_j) = \max d(v_i, ..., v_j)$ over all paths between v_i and v_j with weight W (v_i, v_j)
- ◆ There exist a vertex pair (v_i, v_j) whose delay D (v_i, v_j) bounds the cycle time

Example

•Vertices: V_a, V_e

•Paths: (v_a, v_b, v_c, v_e) and $(v_a, v_b, v_c, v_d, v_e)$

• $W(v_a, v_e) = 2$

 $\cdot D(v_a, v_e) = 16$

Minimum cycle-time retiming problem

- Find the minimum value of the clock period φ such that there exist a retiming vector where:
 - $ightharpoonup r_i r_j \le w_{ij}$ for all (v_i, v_j)
 - **▼** All registers are implementable
 - $ightharpoonup r_i r_i \le W(v_i, v_i) 1$ for all (v_i, v_i) such that $D(v_i, v_i) > \varphi$
 - **▼** All timing path constraints are satisfied
- Solution
 - ▲ Given a value of φ
 - **△** Solve linear constraints $A r \le b$
 - **▼** Mixed integer-linear program
 - ▲ A set of inequalities has a solution if the constraint graph has no positive cycles
 - **▼** Bellman-Ford algorithm compute longest path
 - ▲ Iterative algorithm
 - **▼** Relaxation

Minimum cycle-time retiming algorithm

- Compute all pair path weights W (v_i, v_j) and delays D (v_i, v_j)
 - **▲** Warshall-Floyd algorithms with complexity O(|V|³)
- ◆ Sort the elements of D (v_i, v_i) in decreasing order
 - Because an element of D is the minimum φ
- Binary search for a φ in D (v_i, v_i) such that
 - **▲** There exists a legal retiming
 - ▲ Bellman-Ford algorithm with complexity O(|V|³)
- Remarks
 - ▲ Result is a global optimum
 - ▲ Overall complexity is O(|V|³ log |V|)

Example: original graph

•Constraints (first type):

- $r_a r_b \le 1$ or equivalently $r_b \ge r_a 1$
- $r_c r_b \le 1$ or equivalently $r_c \ge r_b 1$

•

Example: constraint graph

•Constraints (first type):

• $r_a - r_b \le 1$ or equivalently $r_b \ge r_a - 1$

• $r_c - r_b \le 1$ or equivalently $r_c \ge r_b - 1$

•

Example

- Sort elements of D:
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
- Select φ = 19
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
 - **▲** Pass: legal retiming found
- Select φ = 13
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
 - **▲** Pass: legal retiming found
- Select φ < 13
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
 - ▲ Fail: no legal retiming found
- Fastest cycle time is $\varphi = 13$. Corresponding retiming vector is used

Example $\phi = 13$

 $r_a-r_e\leq 2-1$ or equivalently $r_e\geq r_a-1$ $r_e-r_f\leq 0-1$ or equivalently $r_f\geq r_e+1$ $r_f-r_g\leq 0-1$ or equivalently $r_g\geq r_f+1$ $r_g-r_f\leq 2-1$ or equivalently $r_f\geq r_g-1$ $r_g-r_c\leq 3-1$ or equivalently $r_c\geq r_g-2$

Example $\varphi = 13$

Constraint graph:

Longest path from source

-[12342100]

Retimed graph

Example $\varphi = 13$

◆The solution is not unique

Relaxation-based retiming

- Most common algorithm for retiming
 - **▲** Avoids storage of matrices W and D
 - **▲** Applicable to large circuits
- Rationale
 - \triangle Search for decreasing φ in fixed step
 - \blacksquare Look for values of φ compatible with peripheral circuits
 - **▲**Use efficient method to determine legality
 - **▼** Network graph is often very sparse
 - **▲** Can be coupled with topological timing analysis

Relaxation-based retiming

- Start with a given cycle-time φ
- Look for paths with excessive delays
- Make such paths shorter
 - **▲**By bringing the terminal register closer
 - **▲** Some other paths may become longer
 - **▲**Namely, those path whose tail has been moved
- Use an iterative approach

Relaxation-based retiming

- Define data ready time at each node
 - **▲**Total delay from register boundary
- Iterative approach
 - \triangle Find vertices with data ready > φ
 - ▲ Retime these vertices by 1
- Algorithm properties
 - ightharpoonup If at some iteration there is no vertex with *data ready* > φ, a legal retiming has been found
 - ightharpoonup If a legal retiming is not found in |V| iterations, then no legal retiming exists for that ϕ

Example $\phi = 13$ iteration = 1

Example $\phi = 13$ iteration = 2

Example $\phi = 13$ iteration = 3

Retiming for minimum area

- Find a retiming vector that minimizes the number of registers
- Simple area modeling
 - **▲** Every edge with a positive weight denotes registers
 - **▲**Total register area is proportional to the sum of all weights
- Register sharing model
 - ▲ Every set of positively-weighted edges with common tail is realized by a shift registers with taps
 - ▲ Total register area is proportional to the sum, over all vertices, of the maxima of weights on outgoing edges

Example

Minimum area retiming simple model

- Register variation at node v
 - $ightharpoonup r_v$ (indegree(v) outdegree(v))
- Total area variation:
 - $\Delta \Sigma r_v$ (indegree(v) outdegree(v))
- Area minimization problem:
 - \blacktriangle Min Σ r_v (indegree(v) outdegree(v))
 - \blacktriangle Such that $r_i r_j \le w_{ij}$ for all (v_i, v_j)

Minimum area retiming under timing constraint

- Area recovery under timing constraint
 - \blacktriangle Min Σ r_v (indegree(v) outdegree(v)) such that:
 - $Arr r_i r_j \le w_{ij}$ for all (v_i, v_j) and
 - $r_i r_j \le W(v_i, v_j) 1$ for all (v_i, v_j) such that $D(v_i, v_j) > \varphi$
- Common implementation is by integer linear program
 - ▲ Problem can alternatively be transformed into a matching problem and solved by Edmonds-Karp algorithm
- Register sharing
 - **▲** Construct auxiliary network and apply this formulation.
 - **▲** Auxiliary network construction takes into account register sharing

Other problems related to retiming

- Retiming pipelined circuits
 - **▲**Balance pipe stages by using retiming
 - **▲**Trade-off latency versus cycle time
- Peripheral retiming
 - **▲**Use retiming to move registers to periphery of a circuit
 - ▲ Restore registers after optimizing combinational logic
- Wire pipelining
 - **▲**Use retiming to pipeline interconnection wires
 - Model sequential and combinational macros
 - **▲** Consider wire delay and buffering

Summary of retiming

- Sequential optimization technique for:
 - **▲**Cycle time or register area
- Applicable to
 - **▲** Synchronous logic networks
 - ▲ Architectural models of data paths
 - **▼** Vertices represent complex (arithmetic) operators
 - **▲** Exact algorithm in polynomial time
- Extension and issues
 - **▲** Delay modeling
 - **▲** Network granularity

Module 3

- Objective
 - ▲ Relating state-based and structural models
 - **▲** State extraction

Relating the sequential models

- State encoding
 - ▲ Maps a state-based representation into a structural one
- State extraction
 - ▲ Recovers the state information from a structural model
- Remark
 - ▲ A circuit with n registers may have 2ⁿ states
 - **▲**Unreachable states

State extraction

- State variables: p, q
- ◆Initial state p=0; q=0;
- Four possible states

67

State extraction

Reachability analysis

- ▲ Given a state, determine which states are reachable for some inputs
- **▲** Given a state subset, determine the reachable state subset
- **▲** Start from an initial state
- **▲** Stop when convergence is reached

Notation:

- ▲ A state (or a state subset) is represented by an expression over the state variables
- **▲**Implicit representation

Reachability analysis

- State transition function: f
- ◆ Initial state: r₀
- **◆** States reachable from r₀
 - **▲** Image of r₀ under f
- States reachable from set r_k
 - **▲** Image of r_k under f
- Iteration
 - $Arr r_{k+1} = r_k U$ (image of r_k under f)
- Convergence
 - $Arr r_{k+1} = r_k$ for some k

Example

- Initial state $r_0 = p'q'$.
- The state transition function $\mathbf{f} = \begin{bmatrix} x'p'q' + pq \\ xp' + pq' \end{bmatrix}$

Example

- Image of p'q' under f:
 - ▲ When (p = 0 and q = 0), f reduces to $[x'x]^T$
 - **▲**Range is [0 1]^T U [1 0]^T
- States reachable from the reset state:

$$\triangle$$
 (p = 1; q = 0) and (p = 0; q = 1)

$$r_1 = p'q' + pq' + p'q = p' + q'$$

- **◆**States reacheable from r₁:
 - ▲[00] TU[01] TU [10] T
- **Convergence:**

$$A s_0 = p'q'; s_1 = pq'; s_2 = p'q;$$

Completing the extraction

- **◆**Determine state set
 - ▲ Vertex set
- **◆Determine transitions and I/O labels**
 - **▲** Edge set
 - **▲** Inverse image computation
 - ▲ Look at conditions that lead into a given state

Example

- **◆**Transition into $s_0 = p'q'$
 - **△** Patterns that make $f = [0 \ 0]^T$ are:

$$(x'p'q' + pq)'(xp' + pq')' = x'p'q$$

▲ Transition from state $s_2 = p'q$ under

input x'

Remarks

- Extraction is performed efficiently with implicit methods
- Model transition relation χ (i,x,y) with BDDs
 - **▲**This function relates possible triples:
 - ▼ (input, current_state, next_state)
 - \triangle Image of r_k :
 - $ightharpoonup S_{i,x} (\chi(i,x,y) r_k(x))$
 - \blacksquare Where r_k depends on inputs x
 - **▲** Smoothing on BDDs can be achieved efficiently

Summary

- State extraction can be performed efficiently to:
 - **▲** Apply state-based optimization techniques
 - **▲** Apply verification techniques
- State extraction is based on forward and backward state space traversal:
 - **▲** Represent state space implicitly with BDDs
 - ▲Important to manage the space size, which grows exponentially with the number of registers