Predicting Flight Delays

Data-Driven Insights for Operational Efficiency

Created By: Anusha Bhat, Kirthi Rao, Manas Vemuri, and Sumasree Ragi

Agenda

Business Problem

- ➤ Flight delays disrupt operations and customer satisfaction, requiring airlines to manage schedules proactively.
- Using binomial regression, we aim to predict the probability of a flight delay based on factors like departure time, distance, and origin-destination pairs.
- ➤ This model will enable data-driven decisions to reduce delays and improve airline reliability.

Data Summary

- Dataset containing time and travel information of all domestic US flights in January 2019
 - Total of 583,985 flights
 - 346 airports
- Collected by Bureau of Transportation Statistics, sourced from Kaggle
- Flights during all times of day, from high, medium, and low volume airports, and both budget and non-budget airlines
- 21 original features, 8 retained
- Departure delay is our target column
 - 17.42% of flights were delayed

Data Cleaning

- Originally had 21 columns on day of month, day of week, different carrier codes, arrival and departure airports, tail number, flight number, departure and arrival time, diverted, cancelled, and distance
- Only retained 8 columns
 - Independent variables: Day of month, day of week, carrier type, departure and arrival airport type, departure time block, and distance
 - Dependent Variable: Delay.
- Reclassified carrier type from IATA codes to the categories budget v.s. non-budget
- Reclassified departure time block from hourly intervals to time of day categories
 - Pre-dawn, early morning, morning, noon, afternoon, evening, night
- Created a new columns for arrival and departure airport type
 - Originally had airport codes
 - New columns have 3 categories: high, medium, and low volume flight traffic

More flights were delayed compared to the number of flights that were cancelled or diverted

 Due to the discrepancy in count, we only used departure delay as the dependent variable.

Most Flights Experienced No Delay

 Indicates potential need to undersample for a balanced model.

Most of the Delayed Flights Were From High-Volume

Airports

	Origin	Destination		
Low volume	3.20%	3.30%		
Medium volume	6.43%	6.959%		
High volume	90.37%	89.752%		

Most Delayed Flights are Later in the Day, after 12:00 pm

Most Delayed Flights Were From Non-Budget Airlines (Delta, **United Airlines**, **American Airlines**, and Subsidiaries)

Thursday Has the Highest Percentage of **Delayed** Flights, while Saturday has the Lowest **Percentage**

The Beginning of the Month and Days 20-25 Have Higher Proportions of Delayed Flights

Model Choice

Model	Notes			
Linear Regression	 Works for continuous outcome variables and for our case we are working with a categorical outcome Would Work if: predicting how long a flight was delayed for 			
Count Regression	 Since we are not attempting to count the occurrences of something, this model was not a good fit Would Work if: predicting number of delays 			
Multinomial Regression	 Since we are only predicting two categories this model was not used Would Work if: predicting more outcomes like cancelled and diverted flights 			
Binomial Logistic Regression	 Optimal choice since we are predicting two outcomes: delay or no delay Using the logit link function we can output the percentage chance of a delay, which can allow for adjusting the model depending on user's risk tolerance 			

Logistic Regression - Logit Function

Logistic Regression is a form of Binomial Regression that uses the logit link function.

- The logit function maps the probability of an event to the log-odds
- Allows for a linear model to be applied to a binary outcome

$$\implies logit(p) = ln(\frac{p}{1-p})$$

Logistic Regression - Logistic Function

- Logistic function: inverse of logit function
- Used to convert the log-odds
 back into probability values
- This value tells you the probability of the response variable occurring
 - Threshold prediction of 1 if $p \ge 0.5$

$$\Rightarrow p = \frac{1}{1 + e^{-logit(p)}}$$

Model Estimation Method

Maximum Likelihood Estimation (MLE) via Iteratively Reweighted Least Squares (IRLS)

- Iterative method that combines the Newton-Raphson method with weighted least squares to find the maximum likelihood estimates of the model parameters
- MLE is a statistical method aimed at finding the best-fit parameters for a model
- IRLS is a specific algorithm used to achieve this goal in the context of GLMs

$$l(eta;y,x) = \sum_{i=1}^{N} \left[y_i log(p_i) + (n_i - y_i) log(1-p_i) + loginom{n_i}{y_i}
ight]$$

where:

$$p_i = rac{e^{x_i^T \cdot eta}}{1 + e^{x_i^T \cdot eta}}$$

Model Creation

Undersampling Delays

The dataset contained only 17% delayed flights. To allow the model to predict more delays we undersampled the on-time flights by randomly sampling 60% of them

Run Model with All Combinations

Created an intercept only model. Then using itertools we train the GLM with a logit link function for each combination of the available features

Evaluate Metrics

For each model we examine the BIC. Using this goodness of fit measure we are able to see what set of features perform the best

Intercept-Only Model

Generalized Linear Model Regression Results

===========	=======		=====	======		======	
Dep. Variable:		DEP_DE	L15	No. Ob	servations:		397341
Model:			GLM	Df Res	iduals:		397340
Model Family:		Binom	nial	Df Mod	el:		0
Link Function:		Lo	git	Scale:			1.0000
Method:		I	RLS	Log-Li	kelihood:	1.	-1.8375e+05
Date:	Fri,	06 Dec 2	024	Devian	ce:		3.6750e+05
Time:		11:30	:14	Pearso	n chi2:		3.97e+05
No. Iterations:			4	Pseudo	R-squ. (CS):		3.331e-16
Covariance Type:		nonrob	ust				
	======		=====	======		======	
	coef	std err		z	P> z	[0.025	0.975]
const -1.	5563	0.004	-372	.062	0.000	-1.565	-1.548
=============	======		=====	======	========	======	

Interpretation:

- Intercept represents the log-odds of a flight being delayed when all predictor variables are zero
- Negative intercept suggests a low probability of delay

Final Model Construction Using BIC

Generalized Linear Model Regression Results

=======================================			=========
Dep. Variable:	DEP_DEL15	No. Observations:	397341
Model:	GLM	Df Residuals:	397327
Model Family:	Binomial	Df Model:	13
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-1.7909e+05
Date:	Fri, 06 Dec 2024	Deviance:	3.5818e+05
Time:	17:57:22	Pearson chi2:	3.98e+05
No. Iterations:	5	Pseudo R-squ. (CS):	0.02318
Covariance Type:	nonrobust		

	========	========		=======	========	=======
	coef	std err	z	P> z	[0.025	0.975]
const	-1.4679	0.014	-101.611	0.000	-1.496	-1.440
DAY_OF_MONTH	0.0090	0.000	19.079	0.000	0.008	0.010
DISTANCE	8.229e-05	7.26e-06	11.330	0.000	6.81e-05	9.65e-05
OP_UNIQUE_CARRIER_Non-budget	-0.1462	0.009	-15.745	0.000	-0.164	-0.128
DEST_AIRPORT_TYPE_Medium Volume	0.0033	0.017	0.195	0.845	-0.030	0.037
DEST_AIRPORT_TYPE_Low Volume	-0.1036	0.024	-4.325	0.000	-0.150	-0.057
ORIGIN_AIRPORT_TYPE_Medium Volume	0.0976	0.018	5.577	0.000	0.063	0.132
ORIGIN_AIRPORT_TYPE_Low Volume	0.0704	0.024	2.901	0.004	0.023	0.118
DEP_TIME_BLK_Early Morning	-0.9758	0.015	-66.328	0.000	-1.005	-0.947
DEP_TIME_BLK_Evening	0.1863	0.012	15.569	0.000	0.163	0.216
DEP_TIME_BLK_Morning	-0.3504	0.013	-26.899	0.000	-0.376	-0.325
DEP_TIME_BLK_Night	0.0784	0.015	5.389	0.000	0.050	0.107
DEP_TIME_BLK_Noon	-0.1431	0.018	-7.851	0.000	-0.179	-0.107
DEP_TIME_BLK_Pre Dawn	-1.0224	0.035	-28.812	0.000	-1.092	-0.953
	.========	========		=======		

Interpretation:

- As both day of month and distance increase, delay odds slightly increase
- Early morning, morning, noon, and pre-dawn departures have lower delay odds compared to afternoon departures
- Evening and night departures have
 higher delay odds compared to
 afternoon departures

Sample Predictions

Flight 1:

Origin: Long Beach (LGB)

Destination: Boston (BOS)

Airline: JetBlue

• **Date:** Thursday, 01/31/2020

• **Time:** 8:33 PM

• **Distance:** 2,602 miles

Predicted Delay Odds: 31.2%

Flight 2:

• Origin: Lubbock, TX (LBB)

Destination: Dallas, TX (DAL)

• **Airline:** Southwest

• **Date:** Wednesday, 01/02/2020

• **Time:** 5:27 AM

• **Distance**: 293 miles

Predicted Delay Odds: 6.3%

Model Evaluation Metrics

Confusion Matrix

True Positives	False Positives
87,846	52,724
False Negatives	True Negatives
13,854	15,865

F1 Score: 32%

- Poor balance between precision and recall
- 32% in training data as well

Accuracy: 61%

- Our model correctly predicts delays 61% of the time
 - Using a threshold of 20% for predicting delays
- Accuracy in training data is also 61%

Future Improvements

Key Takeaways

The final model effectively identifies key factors influencing flight delays, improving classification accuracy to 61%.

Significant Features

Distance, day of month, departure times, airline types, and airport volume emerged as the most impactful predictors of delays.

Operational Insights

Early morning and pre-dawn flights are the most reliable, while evening departures face higher risks of delays.

Business Implications

Non-budget carriers and low-volume destination airports offer better on-time performance.

Thank you!

Appendix

Link to Dataset

https://www.kaggle.com/datasets/divyansh22/flight-delay-prediction

Combinations between LAX-SFO, ORD-LGA, JFK-LAX, and LAS-LAX have the highest number of flights to and from each airport.

ORD, ATL, DFW, LGA, and DEN Have the Most Delayed Flights For Origin Airports

ORD, LGA, ATL, SFO, and DFW Have the Most Delayed Flights For Destination Airports

Combinations between LAX-SFO, **ORD-LGA**, and **BOS-LGA**, have the highest number of delayed flights to and from each airport

Heatmap of Delayed Flights by Origin and Destination Airport: Top 20 Combinations

