Contents

```
% Created 2019-12-09 19:28 % Intended LATEX compiler: pdflatex [11pt]article
[utf8]inputenc [T1]fontenc graphicx grffile longtable wrapfig rotating [nor-
malem ulem amsmath textcomp amssymb capt-of hyperref minted
   [dvipsnames]xcolor
   forest qtree/.style= baseline, for tree= parent anchor=south, child an-
chor=north, align=center, inner sep=1pt,
   mathtools pgfplots amsthm amsmath commath amsfonts amssymb stmaryrd
empheq tikz tikz-cd arrows.meta [most]tcolorbox actuarialsymbol threepart-
table scalerel, stackengine stackrel dsfont newpxtext
   definition
                definition remark Remark
   large symbols "62\\
   graphicx
   largesymbolsAUtxexamn largesymbolsA16
   mathxUmathxmn 1mathx"91 mathaUmathamn 2matha"63
   { pdfauthor={Qi'ao Chen}, pdftitle={Notes on Set Theory}, pdfkey-
words={}, pdfsubject={}, pdfcreator={Emacs 26.3 (Org mode 9.3)}, pdflang={English}}
```

Notes on Set Theory

Qi'ao Chen

December 9, 2019

Contents

1 Foreword

Notes for the entrance examination

2 Models of Set - Sertraline

2.1 Some mathematical logic

Theorem 2.1 (Gödels second incompleteness theorem) If a consistent recursive axiom set T contains **ZFC**, then

$$T \not\vdash \operatorname{Con}(t)$$

especially, $\mathbf{ZFC} \not\vdash \operatorname{Con}(\mathbf{ZFC})$

Definition 2.2 () Suppose (M, E_M) and (N, E_N) are two models of set theory, then

- 1. if for any formula σ , $M \models \sigma$ if and only if $N \models \sigma$, then M and N are elementary equivalent, denoted by $M \equiv N$
- 2. If bijection $f: M \to N$ satisfies: for any $a, b \in M$, $aE_M b$ iff $f(a)E_N f(b)$, then $f: M \cong N$ is an **isomorphism**
- 3. If $M \subseteq N$ and $E_M = E_N \upharpoonright M$, then M is N's submodel
- 4. If M is isomorphic to a submodel of N by injection f, and for any formula $\varphi(x_1, \ldots, x_n)$, for any $a_1, \ldots, a_n \in M$, $M \models \varphi[a_1, \ldots, a_n]$ iff $N \models \varphi[f(a_1), \ldots, f(a_n)]$, then f is called an **elementary embedding** from M to N, written as $f: M \prec N$
- 5. If $M \subseteq N$ and $M \prec N$, then M is a **elementary submodel** of N

Lemma 2.3 () Suppose $N \models \mathbf{ZFC}, M \subseteq N$, then $M \prec N$ iff $\forall \varphi(x, x_1, \ldots, x_n)$, $\forall (a_1, \ldots, a_n) \in M$, if $\exists a \in N$ s.t. $N \models \varphi[a, a_1, \ldots, a_n]$, then $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$

Definition 2.4 () Suppose $(M, E) \models \mathbf{ZFC}$

1. $h_{\varphi}: M^n \to M$ is φ 's **Skolem function** if $\forall a_1, \ldots, a_n \in M$, if $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$, then $M \models \varphi[h_{\varphi}(a_1, \ldots, a_n), a_1, \ldots, a_n]$. requires \mathbf{AC}

2. Let $\mathcal{H} = \{h_{\varphi} \mid \varphi \text{ is a formula on set theory}\}$. For any $S \subseteq M$, **Skolem** hull $\mathcal{H}(S)$ is the smallest set consisting of S and closed under \mathcal{H}

Lemma 2.5 () $N \models \mathbf{ZFC}, S \subseteq N, \text{ if } M = \mathcal{H}(S), \text{ then } M \prec N$

Theorem 2.6 (Löwenheim-Skolem theorem) Suppose $N \models \mathbf{ZFC}$ and is infinite, then there is a model M s.t. $M = \omega$ and $M \prec N$

2.2 Cumulative Hierarchy

This section works in $\mathbf{ZF}(a.k.a.\ \mathbf{ZF}\ - axiom\ of\ foundation)$

Definition 2.7 () For any α , define sequence V_{α}

- 1. $V_0 = \emptyset$
- 2. $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
- 3. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\beta < \lambda} V_{\beta}$

And
$$\mathbf{WF} = \bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$$

Lemma 2.8 () For any ordinal α

- 1. V_{α} is transitive
- 2. if $\xi \leq \alpha$, then $V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible cardinal, then $V_{\kappa} = \kappa$
- 1. Obviously $\kappa \leq V_{\kappa}$. Since κ is inaccessible, then for any $\alpha < \kappa$, $V_{\alpha} < \kappa$.

Definition 2.9 () For any set $x \in WF$,

$$rank(x) = min\{\beta \mid x \in V_{\beta+1}\}\$$

Lemma 2.10 () 1. $V_{\alpha} = \{x \in \mathbf{WF} \mid \text{rank}(x) < \alpha\}$

- 2. WF is transitive
- 3. For any $x, y \in \mathbf{WF}$, if $x \in y$, then $\operatorname{rank}(x) < \operatorname{rank}(y)$
- 4. for any $y \in \mathbf{WF}$, $\operatorname{rank}(y) = \sup \{ \operatorname{rank}(x) + 1 \mid x \in y \}$

Lemma 2.11 () Supoose α is an ordinal

- 1. $\alpha \in \mathbf{WF}$ and $\operatorname{rank}(\alpha) = \alpha$
- 2. $V_{\alpha} \cap \mathbf{On} = \alpha$

Lemma 2.12 () 1. If $x \in WF$, then $\bigcup x, \mathcal{P}(x), \{x\} \in WF$, and their ranks are all less than $\operatorname{rank}(x) + \omega$

- 2. If $x, y \in \mathbf{WF}$, then $x \times y, x \cup y, x \cap y, \{x, y\}, (x, y), x^y \in \mathbf{WF}$, and their ranks are all less than $\operatorname{rank}(x) + \operatorname{rank}(y) + \omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
- 4. for any set $x, x \in \mathbf{WF}$ iff $x \subset \mathbf{WF}$

Lemma 2.13 () Suppose AC

- 1. for any group G, there exists group $G' \cong G$ in WF
- 2. for any topological space T, there exists $T' \cong T$ in **WF**

Definition 2.14 () Binary relation < on set A is well-founded if for any nonempty $X \subseteq A$, X has minimal element under <

Theorem 2.15 () If $A \in WF$, then \in is a well-founded relation on A

Lemma 2.16 () If set A is transitive and \in is well-founded on A, then $A \in \mathbf{WF}$

Lemma 2.17 () For any set x, there is a smallest transitive set trcl(x) s.t. $x \subseteq trcl(x)$

$$x_0 = x$$

$$x_{n+1} = \bigcup_{n < \omega} x_n$$

$$\operatorname{trcl}(x) = \bigcup_{n < \omega} x_n$$

trcl(x) is called **transitive closure** of x

Lemma 2.18 () Without axiom of power set

- 1. if x is transitive, then trcl(x) = x
- 2. if $y \in x$, then $trcl(y) \subseteq trcl(x)$
- 3. $\operatorname{trcl}(x) = x \cup \bigcup \{\operatorname{trcl}(y) \mid y \in x\}$

Theorem 2.19 () For any set X, the following are equivalent

- 1. $X \in \mathbf{WF}$
- 2. $\operatorname{trcl}(X) \in \mathbf{WF}$
- $3. \in is \ a \ well-founded \ relation \ on \ trcl(X)$

Theorem 2.20 () The following propositions are equivalent

- 1. Axiom of foundation
- 2. For any set $X, \in is$ a well-founded relation on X
- β . V = WF

2.3 Relativization

Definition 2.21 () Let M be a class φ a formula, the **relativization** of φ to M is φ^M defined inductively

$$(x \in y)^{M} \leftrightarrow x = y$$
$$(x \in y)^{M} \leftrightarrow x \in y$$
$$(\varphi \to \psi)^{M} \leftrightarrow \varphi^{M} \to \psi^{M}$$
$$(\neg \varphi)^{M} \leftrightarrow \neg \varphi^{M}$$
$$(\forall x \varphi)^{M} \leftrightarrow (\forall x \in M) \varphi^{M}$$

Note $\varphi^{\mathbf{V}} = \varphi$ and

$$f^{\mathbf{M}} = \{(x_1, \dots, x_n, x_{n+1}) \in \mathbf{M} \mid \varphi^{\mathbf{M}}(x_1, \dots, x_n, x_{n+1})\}$$

Definition 2.22 () For any theory T, any class M, $M \models T$ iff for any axiom φ of T, φ^M holds

Theorem 2.23 (ZF) $WF \models ZF$

• Axiom of existence

 $(\exists x(x=x))^{\mathbf{M}} \leftrightarrow \exists x \in \mathbf{M} \ (x=x)$, which is equivalent to \mathbf{M} being nonempty

• Axiom of extensionality

$$\forall X \forall Y \forall u ((u \in X \leftrightarrow u \in Y) \to X = Y)^{\mathbf{M}} \Leftrightarrow \\ \forall X \in \mathbf{M} \ \forall Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ ((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 2.24 If M is transitive, then axiom of extensionality holds in M

• Axiom schema of specification

$$\forall X \in \mathbf{M} \ \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow u \in X \land \varphi^{\mathbf{M}} \ (u))$$

Since for any $X \in \mathbf{WF}$, $\mathcal{P}(X) \subseteq \mathbf{WF}$

- Axiom of paring
- Axiom of union
- Axiom of power set

$$\forall X \in \mathbf{M} \ \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow (u \subseteq X)^{\mathbf{M}})$$

and

$$(u \subseteq X)^{\mathbf{M}} \leftrightarrow \forall x \in \mathbf{M} \ (x \in u \to x \in X) \leftrightarrow u \cap \mathbf{M} \subseteq X$$

- Axiom of foundation
- Axiom schema of replacement

2.4 Absoluteness

Definition 2.25 () For any formula $\psi(x_1,\ldots,x_n)$ and any class M, N, $M\subseteq N$, if

$$\forall x_1 \dots \forall x_n \in \mathbf{M} \ (\psi^{\mathbf{M}} \ (x_1, \dots, x_n) \leftrightarrow \psi^{\mathbf{N}} \ (x_1, \dots, x_n))$$

then $\psi(x_1,\ldots,x_n)$ is absolute for M ,cn. If N=V , then ψ is absolute for M

Lemma 2.26 () Suppose $M \subseteq N$ and φ, ψ are formulas, then

- 1. if φ, ψ are absolute for M, cn, then so are $\neg \varphi, \varphi \rightarrow \psi$
- 2. if φ doesn't contain any quantifiers, then φ is absolute for any M
- 3. if M, N are transitive and φ is absolute for them, then so are $\forall x \in y\varphi$

Definition 2.27 () Δ_0 formula

- 1. $x = y, x \in y$ are Δ_0 formulas
- 2. if φ, ψ are Δ_0 , then so are $\neg \varphi, \varphi \rightarrow \psi$
- 3. if φ is Δ_0 , y is any set, then $(\forall x \in y)\varphi$ is Δ_0

If φ is Δ_0 , then $\exists x_1 \ldots \exists x_n \varphi$ is Σ_1 formula, $\forall x_1 \ldots \forall x_n \varphi$ is Π_1

Lemma 2.28 () $M \subseteq N$ are both transitive, $\psi(x_0, ..., x_n)$ is a formula, then

- 1. if ψ is Δ_0 , then it's absolute for M, cn
- 2. if ψ is Σ_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{M}} (x_1, \dots, x_n) \to \psi^{\mathbf{N}} (x_1, \dots, x_n))$$

3. if ψ is Π_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{N}}(x_1, \dots, x_n) \to \psi^{\mathbf{M}}(x_1, \dots, x_n))$$

Lemma 2.29 () If $M \subseteq N$, $M \models \Sigma$, $N \models \Sigma$ and

$$\Sigma \vdash \forall x_1 \dots \forall x_n (\varphi(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n))$$

then φ is absolute for M, N if and only if ψ is absolute for M, N

Definition 2.30 () Suppose $M \subseteq N$, $f(x_1, ..., x_n)$ is a function. f is absolute for M and N if and only if $\varphi(x_1, ..., x_n, x_{n+1})$ defining f is absolute.

Theorem 2.31 () Following relations and functions can be defined in \mathbf{ZF}^- –Pow-Inf and are equivalent to some Δ_0 formulas. So they are absolute for any transitive model \mathbf{M} on \mathbf{ZF}^- –Pow-Inf

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x,y\}$
- 5. $\{x\}$
- 6. (x, y)
- 7. Ø
- 8. $x \cup y$
- 9. x y
- 10. $x \cap y$
- 11. x^+
- 12. x is a transitive set
- 13. $\bigcup x$
- 14. $\bigcap x \ (\bigcap \emptyset = \emptyset)$

Lemma 2.32 () Absoluteness is closed under operation composition

Theorem 2.33 () Following relations and functions are absolute for any transitive model M on $\mathbf{ZF}^- - Pow - Inf$

- 1. z is an ordered pair
- 2. $A \times B$
- 3. R is a relation

- $4. \operatorname{dom}(R)$
- 5. ran(R)
- 6. f is a function
- 7. f(x)
- 8. f is injective

2.5 Relative consistence of the axiom of foundation

Lemma 2.34 () Suppose transitive class $M \models \mathbf{ZF}^- - Pow - inf$ and $\omega \in M$, then the axiom of infinity is true in M. Hence the axiom of infinity is true in WF

Theorem 2.35 () Let T be a theory of set theory language and Σ a set of sentences. Suppose M is a class and $T \vdash M \neq \emptyset$, then if $M \models_T \Sigma$, then

- 1. for any sentences φ , if $\Sigma \vdash \varphi$, then $T \vdash \varphi^{M}$
- 2. if T is consistent, then so is $Cn(\Sigma)$

Theorem 2.36 () The axiom of foundation is consistent with ZF.

By ??, let T be \mathbf{ZF} , Σ be \mathbf{ZF} and \mathbf{M} be \mathbf{WF}

Lemma 2.37 (ZF⁻) Suppose transitive model $M \models \mathbf{ZF}^- - Pow - Inf$. If $X, R \in M$ and R is a well-order on X, then

 $(R \text{ is a well-order on } X)^M$