Rosa Lívia Freitas de Almeida¹ José Gomes Bezerra Filho¹ José Ueleres Braga¹¹

Francismeire Brasileiro Magalhães^{III}

Marinila Calderaro Munguba Macedo^{IV}

Kellyanne Abreu Silva^v

- Departamento de Saúde Comunitária. Faculdade de Medicina. Universidade Federal do Ceará. Fortaleza, CE, Brasil
- Departamento de Medicina Interna.
 Universidade do Estado do Rio de Janeiro.
 Rio de Janeiro, RJ, Brasil
- Programa de Pós-Graduação em Associação Ampla: Universidade Estadual do Ceará. Universidade Federal do Ceará. Universidade de Fortaleza. Fortaleza, CE, Brasil
- Faculdade de Medicina do Cariri. Universidade Federal do Ceará. Fortaleza, CE. Brasil
- Programa de Pós-Graduação em Saúde Pública. Faculdade de Medicina. Universidade Federal do Ceará. Fortaleza, CE, Brasil

Correspondência | Correspondence:

Rosa Lívia Freitas de Almeida Departamento de Saúde Comunitária Faculdade de Medicina – UFC Rua Prof. Costa Mendes, 1608 5° andar Rodolfo Teófilo 60430-140 Fortaleza, CE, Brasil E-mail: rliviafa@gmail.com

Recebido: 18/8/2011 Aprovado: 21/2/2013

Artigo disponível em português e inglês em: www.scielo.br/rsp

Via, homem e veículo: fatores de risco associados à gravidade dos acidentes de trânsito

Man, road and vehicle: risk factors associated with the severity of traffic accidents

RESUMO

OBJETIVO: Analisar as características das vítimas, vias e veículos envolvidos em acidentes de trânsito e os fatores de risco de acidentes com ocorrência de óbito.

MÉTODOS: Estudo de coorte não concorrente considerando os acidentes de trânsito em Fortaleza, CE, de janeiro de 2004 a dezembro de 2008. Foram utilizados dados do Sistema de Informação de Acidente de Trânsito de Fortaleza, do Sistema de Informações de Mortalidade, do Sistema de Informações Hospitalares e dos bancos de dados de Habilitação e Veículos do Departamento Estadual de Trânsito. Técnicas de relacionamento determinístico e probabilístico foram aplicadas para integrar as bases de dados. Efetuou-se a análise descritiva das variáveis relativas às pessoas, às vias, aos veículos e ao tempo. Foram utilizados os modelos lineares generalizados na investigação de fatores de risco para óbito por acidente de trânsito. O ajuste do modelo foi verificado pela razão de verossimilhança e análise ROC.

RESULTADOS: Registraram-se 118.830 acidentes no período. Predominaram colisão/abalroamento (78,1%), atropelamentos (11,9%) e choque com obstáculo fixo (3,9%) e com motocicletas (18,1%). Ocorreram óbitos em 1,4% dos acidentes. Estiveram independentemente associados ao óbito por acidente de trânsito: bicicletas (OR = 21,2; IC95% 16,1;27,8), atropelamentos (OR = 5,9; IC95% 3,7;9,2), choque com obstáculo fixo (OR = 5,7; IC95% 3,1;10,5) e acidentes com motociclistas (OR = 3,5; IC95% 2,6;4,6). Os principais fatores contribuintes foram envolvimento de uma única pessoa (OR = 6,6; IC95% 4,1;10,73), presença de condutores não habilitados (OR = 4,1; IC95% 2,9;5,5) um único veículo envolvido (OR = 3,9; IC95% 2,3;6,4), sexo masculino (OR = 2,5; IC95% 1,9;3,3), tráfego em vias de jurisdição federal (OR = 2,4; IC95% 1,8;3,7), horário madrugada (OR = 2,4; IC95% 1,8;3,0) e dia de domingo (OR = 1,7; IC95% 1,3;2,2), todas ajustadas segundo modelo log-binomial.

CONCLUSÕES: As ações de promoção e prevenção de acidentes no trânsito devem focar os acidentes com veículos de duas rodas, que mais frequentemente envolvem uma única pessoa, não habilitada, do sexo masculino, em horários noturnos, em finais de semana e nas vias onde se desenvolvem maiores velocidades.

DESCRITORES: Acidentes de Trânsito, mortalidade. Fatores de Risco. Sistemas de Informação Hospitalar. Registros de Mortalidade. População Urbana.

ABSTRACT

OBJECTIVE: To describe the main characteristics of victims, roads and vehicles involved in traffic accidents and the risk factors involved in accidents resulting in death.

METHODS: A non-concurrent cohort study of traffic accidents in Fortaleza, CE, Northeastern Brazil, in the period from January 2004 to December 2008. Data from the Fortaleza Traffic Accidents Information System, the Mortality Information System, the Hospital Information System and the State Traffic Department Driving Licenses and Vehicle database. Deterministic and probabilistic relationship techniques were used to integrate the databases. First, descriptive analysis of data relating to people, roads, vehicles and weather was carried out. In the investigation of risk factors for death by traffic accident, generalized linear models were used. The fit of the model was verified by likelihood ratio and ROC analysis.

RESULTS: There were 118,830 accidents recorded in the period. The most common types of accidents were crashes/collisions (78.1%), running over pedestrians (11.9%), colliding with a fixed obstacle (3.9%), and with motorcycles (18.1%). Deaths occurred in 1.4% of accidents. The factors that were independently associated with death by traffic accident in the final model were bicycles (OR = 21.2, 95%CI 16.1;27.8), running over pedestrians OR = 5.9 (95%CI 3.7;9.2), collision with a fixed obstacle (OR = 5.7, 95%CI 3.1;10.5) and accidents involving motorcyclists (OR = 3.5, 95%CI 2.6;4.6). The main contributing factors were a single person being involved (OR = 6.6, 95%CI 4.1;10.73), presence of unskilled drivers (OR = 4.1, 95%CI 2.9;5.5) a single vehicle (OR = 3.9, 95%CI 2.3;6,4), male (OR = 2.5, 95%CI 1.9;3.3), traffic on roads under federal jurisdiction (OR = 2.4, 95%CI 1.8;3.7), early morning hours (OR = 2.4, 95%CI 1.8;3.0), and Sundays (OR = 1.7, 95%CI 1.3;2.2), adjusted according to the log-binomial model.

CONCLUSIONS: Activities promoting the prevention of traffic accidents should primarily focus on accidents involving two-wheeled vehicles that most often involves a single person, unskilled, male, at nighttime, on weekends and on roads where they travel at higher speeds.

DESCRIPTORS: Accidents, Traffic, mortality. Risk Factors. Hospital Information Systems. Mortality Registries. Urban Population.

INTRODUÇÃO

Os acidentes de trânsito mantêm-se como importante problema da saúde pública no Brasil e demandam diferentes abordagens em ações de prevenção. A dinâmica desse fenômeno, multicausal em sua gênese, atinge suas vítimas com diferentes graus de severidade segundo tipo de acidente (atropelamento, com motocicleta e outros tipos de acidentes com veículo a motor)¹ e atributos demográficos (sexo, idade, cor, estado civil e grau de instrução). ^{12,20} Possui distribuição mensal diferenciada dos dias da semana e dos horários de ocorrência. ⁵ Pesquisas que utilizam técnicas de análise para compreensão desses atributos mostram-se relevantes

para a reorientação das ações que buscam a redução da gravidade dos acidentes.

Os fatores presentes, implícita ou explicitamente, que podem contribuir com a casuística em maior ou menor grau, são: homem; veiculo; via e meio ambiente; e os referentes à legislação e seu cumprimento. ⁴ A desagregação desses fatores e o estudo de suas associações são necessários para compreender e melhor intervir no fenômeno do acidente de trânsito. Isso porque sua combinação pode aumentar a probabilidade de ocorrência de acidentes de forma diferenciada em determinados locais. ^{a,b}

^a Raia Jr AA, Santos L. Acidente zero: utopia ou realidade? 15º Congresso brasileiro de transporte e trânsito. 2005; Goiânia, BR, Goiânia: Centro de Convenções de Goiânia; 2005. p.7.

^b Raia Jr AA. Identificação de pontos críticos de acidentes de trânsito no Município de São Carlos, SP, Brasil: análise comparativa entre um banco de dados relacional – BDR e a técnica de Agrupamentos pontuais. Anais do 2º Congresso Luso Brasileiro para o Planejamento, Urbano, Regional, Integrado, Sustentável, 2006; Braga, PT, Braga: Universidade do Minho; 2006.

Expressivo número de estudos realizados no Brasil aborda a mortalidade por acidentes de trânsito. Entretanto, poucos fazem referência às vítimas sobreviventes, o que leva alguns autores a destacar a importância da realização de pesquisas que incluam casos não fatais. 9,10,14,18,c Além de escassos, esses estudos empregam metodologias diversificadas e diferentes fontes de informações. Grande parte dessa produção refere-se aos problemas de cobertura e qualidade dos sistemas oficiais de informações como fatores limitantes para o conhecimento desse fenômeno. 20

Para especialistas, a falta de um sistema de informação integrado com base em um boletim de ocorrência de acidentes de trânsito padronizado impossibilita o conhecimento sobre a acidentalidade no País e o consequente equacionamento das medidas que poderiam mitigá-lo.⁷ Como alternativa para superar essa dificuldade, utilizaram-se técnicas de relacionamento de bancos de dados para aprimorar a qualidade da informação quanto ao número de variáveis investigadas, número de registros válidos, alcançando, portanto, maior completitude da informação.

Este estudo tem por objetivo descrever características de vítimas, vias e veículos envolvidos em acidentes de trânsito e fatores de risco para acidentes com ocorrência de óbito.

MÉTODOS

Estudo de coorte não concorrente, considerando os acidentes de trânsito ocorridos dentro dos limites geográficos de Fortaleza, CE, de 1º de janeiro de 2004 a 31 de dezembro de 2008. O conjunto das ocorrências abrangeu as registradas nos Boletins de Ocorrência (BO) captadas pelo Sistema de Informações de Acidentes de Trânsito do Município de Fortaleza (SIAT-FOR) e gerenciadas pela Autarquia Municipal de Trânsito de Fortaleza (AMC). Foi considerado acidente de trânsito todo aquele ocorrido em via pública, abrangendo não somente colisões entre veículos, mas também choques com objetos fixos, colisões entre pedestres e ciclistas, capotagem, atropelamento e tombamento.¹⁷ Foi considerado critério de inclusão o acidente registrado em BO com ou sem vítimas feridas ou fatais e como exclusão, o acidente de trânsito sem registro em BO.

Fortaleza é uma aglomeração metropolitana da Região Nordeste do Brasil classificada como a quinta maior cidade do País. O espaço urbano está cortado por aproximadamente 3.700 km de malha viária. Desse total, cerca de 35 km são de jurisdição estadual e 25 km de

jurisdição federal. d O traçado viário obedece a uma tipologia radioconcêntrica e constitui os principais eixos de ligação entre a zona urbana e municípios vizinhos. Suas vias são estreitas com forte traço de sua origem tipológica em xadrez definida no berço da fundação da cidade e, por falta de controle no uso e na ocupação do solo, é inviável seu alargamento, tornando o sistema viário insuficiente.

Foram coletados dados do sistema SIAT-FOR, que inclui dez órgãos envolvidos na prestação de atendimento às ocorrências de trânsito no município.

Foram coletadas também informações dos bancos de dados de Habilitação e Veículos do Departamento Estadual de Trânsito (DETRAN-CE), do Sistema de Informações de Mortalidade (SIM), que contém as declarações de óbito, e do Sistema de Informações Hospitalares (SIH), objetivando a complementação de informações. Os bancos de dados de internação e óbito (SIH e SIM) foram obtidos com a Secretaria Estadual de Saúde do Estado do Ceará (SESA). Os dados do SIM referiram-se a todos os óbitos ocorridos no Ceará de janeiro de 2004 a março de 2009, considerando que acidentes ocorridos em dezembro poderiam evoluir para óbitos em 2009. Quanto à internação, os dados foram obtidos em hospitais da rede SUS de Fortaleza, de janeiro 2004 a julho de 2009, considerando que, para fins de cobrança, as AIH são apresentadas ao gestor local até seis meses seguintes à sua autorização.

Os dados de veículos e de habilitados foram obtidos com o DETRAN-CE e referiram-se a todos os veículos e habilitados do estado do Ceará até 31 de dezembro de 2008.

As variáveis investigadas foram categorizadas em quatro grupos: características da vítima, subdivididas em sociodemográficas, tempo de habilitação e adequação da habilitação ao veículo no momento do acidente; variáveis relativas às condições de tempo (ano, horário e semana); vias de jurisdição, posição do acidente na quadra e iluminação; natureza do acidente, tipo de veículo e idade da frota.

Os bancos de dados foram vinculados por técnicas de relacionamento entre bancos de dados para formar um único banco com informações sobre o veículo, via, condutor e pessoas envolvidas.

Esse processo foi realizado por meio de dois métodos: o relacionamento determinístico e o relacionamento probabilístico.^{6,13}

As informações dos acidentes coletadas pelo sistema SIAT-FOR foram complementadas segundo os dois tipos de relacionamento, compreendendo duas fases

^cSoares DFPP. Acidentes de trânsito em Maringá-PR: Análise do perfil epidemiológico e dos fatores de risco de internação e de óbito. 2003 [tese de doutorado]. Campinas: Universidade Estadual de Campinas; 2003.

d Departamento Nacional de Trânsito (BR). Anuário estatístico de acidentes de trânsito de Fortaleza - 2008. Ceará; 2009.

^eMuniz MPC. O Plano Diretor Como Instrumento de Gestão da Cidade: o caso da cidade de Fortaleza/CE. Ceará: Universidade Federal do Rio Grande do Norte; 2006.

distintas. Na primeira, fase determinística, o banco de dados do SIAT-FOR fornecido pela AMC, relativo aos veículos que se envolveram em acidentes de trânsito, foi relacionado com o banco de dados do DETRAN-CE pela placa do veículo para obtenção dos dados ano e tipo do veículo. Os dados do condutor: categoria de habilitação, ano da habilitação, sexo, estado civil, nível de instrução, data de nascimento e nome da mãe, foram obtidos do banco de dados de habilitados do DETRAN- CE a partir do identificador número da CNH (carteira nacional de habilitação) registrado no banco de dados de pessoas envolvidas em acidentes de trânsito do sistema SIAT-FOR.

A complementação dos dados relativos às pessoas envolvidas em acidentes de trânsito da categoria pedestre e passageiro foi realizada por relacionamento probabilístico junto aos sistemas SIM e SIH. Foram variáveis-chaves: nome, idade da vítima e data do acidente quando foram a óbito ou internadas na rede SUS.

Para analisar os acidentes de trânsito, um conjunto de covariáveis foi criado a partir das variáveis descritas: tipo de veículo envolvido, número de veículos, tipo de pessoa, número de pessoas, idade da frota, sexo dos condutores, situação da habilitação dos condutores, tempo de habilitação dos condutores, idade dos condutores, situação civil dos condutores e escolaridade dos condutores.

Foram apresentados os dados descritivos, segundo as variáveis de interesse. Utilizaram-se teste Qui-quadrado de Pearson, exato de Fisher e teste *t* de *Student* na análise comparativa. O risco estimado de acidente com óbito foi verificado na análise bivariada por meio de *odds ratio*, com intervalo de 95% de confiança. Foram selecionadas as variáveis cuja associação com acidente com óbito pelo teste Qui-quadrado apresentou p < 0,20 para serem incluídas na análise multinomial.¹¹

A análise multinomial foi realizada utilizando-se o Modelo Linear Generalizado (MLG) com distribuição binomial e função de ligação logística. A escolha dessa distribuição justifica-se, uma vez que a medida do desfecho é da forma dicotômica.

A modelagem seguiu a estratégia recomendada por Hosmer & Lemeshow e a retirada de cada variável foi feita após a comparação da razão de verossimilhança (-2logL) dos modelos com e sem a variável em questão. A permanência da variável no modelo deu-se em função de justificativas teóricas e da significância estatística.

O modelo final foi avaliado pela sensibilidade, especificidade, acurácia e com base no percentual de melhoria do modelo em relação à *deviance* inicial (razão de verossimilhança). O valor da área sob a curva ROC foi de 0,86, indicando elevado poder discriminante. Pesquisa

aprovada pelo Comitê de Ética da Universidade Federal do Ceará (Processo nº 90/2008).

RESULTADOS

Foram registrados 118.830 acidentes de trânsito em Fortaleza de janeiro de 2004 a dezembro de 2008, 1,4% com óbitos e 46,6% com feridos graves ou leves. Dos sinistros, 78,1% estavam categorizados como colisão/abalroamento e 11,9% eram devido a atropelamentos, 3,9% a choque com obstáculo fixo, 0,5% a capotamento e 5,6% a queda/tombamento e outros acidentes na via pública (Tabela 1).

A média anual de acidentes para o período foi de 23.767 acidentes/ano, o maior número de eventos foi registrado em 2008 (20,8%; p < 0,001). A média mensal do período foi de 1.981 acidentes/mês. O trimestre de outubro a dezembro destacou-se pelo elevado número de acidentes (média de 6.382 acidentes), enquanto o trimestre de janeiro a março abrigou o menor volume de acidentes (média de 5.421 acidentes; p < 0,001) (Tabela 1).

Cerca de 43,7% dos acidentes ocorreram entre automóveis e/ou caminhonetes; 26,5% envolveram motociclista e participaram apenas motociclistas em 8,5%. Acidentes com mais de dois veículos foram minoria durante todo o período, sobretudo em 2005 (4,7%; p < 0,001) (Tabela 1).

Em 75,1% dos acidentes, figuraram apenas o condutor de veículo motorizado. Os acidentes que incluíram passageiros de qualquer tipo de veículo foram minoria em todo o período (5,2%). A média de pessoas envolvidas em acidentes foi de 2,03 pessoas/acidente.

Ocorreram em seguimentos contínuos 65,1% dos sinistros, categorizados como meio de quadra, seguida da intersecção em cruz (30,0%); 67,6% ocorreram à luz do dia, 13,1% no período da noite em vias iluminadas e 11,6% à luz do entardecer. As vias mal iluminadas ou sem iluminação responderam por 3,7% e luz do amanhecer por 4,0% dos acidentes; 63,2% dos acidentes ocorreram durante o dia. O período da tarde, horário compreendido entre 12 e 18 horas, teve o maior número de sinistros registrado (35,1%) (Tabela 1).

A quase totalidade (92,6%) ocorreu sob a jurisdição municipal, seguida da jurisdição estadual (4,5%), consequência da distribuição da malha viária por jurisdição na cidade. O sábado foi o dia em que mais ocorrem acidentes (17,3%), seguido da sexta-feira (15,9%) e do domingo (14,5%). As terças e quartas-feiras são os dias em que ocorrem menos acidentes (12,7% e 12,9%, respectivamente) (Tabela 1).

Acidentes envolvendo bicicletas apresentaram maior risco bruto (OR = 3,95; IC95% 3,44;5,17) para

Tabela 1. Frequência absoluta e relativa dos acidentes de trânsito segundo variáveis do estudo e ano de ocorrência. Fortaleza, CE, 2004 a 2008.

2004	20		2005)5	2006	9	2005 2006 2007)7	2008	8(Acidentes	tes
Variaveis	С	%	۵	%	u	%	u	%	c	%	u.	%
Natureza do acidente												
Colisão/albarroamento	17.381	76,1	18.074	74,8	18.093	77,2	18.912	8'62	20.387	82,7	92.847	78,1
Atropelamento	3.027	13,2	3.160	13,1	2.784	11,9	2.746	11,6	2.366	9'6	14.083	11,9
Queda/tombamento e outros	1.441	6,3	1.784	7,4	1.494	6,4	981	4,1	925	3,8	6.625	2,6
Choque com obstáculo fixo	878	3,8	666	4,1	952	4,1	953	4,0	870	3,5	4.652	3,9
Capotamento	126	9′0	155	9′0	120	0,5	108	0,5	114	0,5	623	0,5
Total	22.853	100,0	24.172	100,0	23.443	100,0	23.700	100,0	24.662	100,0	118.830	100,0
Veículos envolvidos												
Só automóvel/caminhonete	9.622	42,1	10.761	44,5	10.267	43,8	10.430	44,0	10.857	44,0	51.937	43,7
Só motocicletas	1.941	8,5	2.238	6,3	2.161	9,2	1.966	8,3	1.852	7,5	10.158	8,5
Com motocicletas	3.857	16,9	4.149	17,2	4.299	18,3	4.360	18,4	4.788	19,4	21.453	18,1
Com veículos pesados	3.568	15,6	3.396	14,0	3.534	15,1	3.888	16,4	4.678	19,0	19.064	16,0
Com bicicletas	2.226	2'6	2.328	9'6	2.051	8,7	1.599	6,7	1.552	6,3	9.756	8,2
Veículos diversos	1.639	7,2	1.300	5,4	1.131	4,8	1.457	6,1	935	3,8	6.462	5,4
Total		100,0		100,0		100,0		100,0		100,0		100,0
Número de veículos envolvidos												
Um veículo	5.383	23,6	6.013	24,9	5.289	22,6	4.713	19,9	4.177	16,9	25.575	21,5
Dois veículos	16.375	71,7	17.019	70,4	16.984	72,4	17.659	74,5	19.091	77,4	87.128	73,3
Mais de dois veículos	1.095	4,8	1.140	4,7	1.170	2,0	1.328	2,6	1.394	5,7	6.127	5,2
Total		100,0		100,0		100,0		100,0		100,0		100,0
Tipo de pessoa envolvida												
Só condutor	16.332	71,5	17.571	72,7	17.442	74,4	18.182	76,7	19.728	0'08	89.255	75,1
Com passageiro	1.352	6′5	1.211	2,0	1.246	5,3	1.251	5,3	1.113	4,5	6.173	5,2
Com pedestre e/ou ciclista	5.169	22,6	5.390	22,3	4.755	20,3	4.267	18,0	3.821	15,5	23.402	19,7
Total		100,0		100,0		100,0		100,0		100,0		100,0
Número de pessoas envolvidas												
Uma pessoa	2.130	6′3	2.615	10,8	2.269	2'6	1.781	7,5	1.701	6′9	10.496	8'8
Duas pessoas	18.448	2'08	19.338	0'08	18.860	80,5	19.397	8,18	20.600	83,5	96.643	81,3
Mais de duas pessoas	2.275	10,0	2.219	9,2	2.314	6'6	2.522	10,6	2.361	9'6	11.691	8'6
Total		100,0		100,0		100,0		100,0		100,0		100,0
:												

Continua

Continuação

Tipo de interseção												
Cruz	7.121	31,2	7.205	29,8	7.186	30,7	7.170	30,3	7.006	28,4	35.688	30,0
T e duplo T, Y, rotatória e outros	829	3,6	1.002	4,1	1.179	5,0	1.219	5,1	1.233	5,0	5.462	4,6
Com via férrea	09	6,3	54	0,2	59	6,0	61	0,3	30	0,1	264	0,2
Em meio de quadra	14.843	64,9	15.911	65,8	15.019	64,1	15.250	64,3	16.393	99'2	77.416	65,1
Total		100,0		100,0		100,0		100,0		100,0		100,0
Jurisdição												
Municipal	21.331	63,3	22.627	93,6	21.907	93,4	21.811	92,0	22.385	8′06	110.065	92,6
Estadual	1.048	4,6	994	4,1	991	4,2	1.122	4,7	1.199	4,9	5.354	4,5
Federal	474	2,1	551	2,3	545	2,3	292	3,2	1.078	4,4	3.415	2,9
Total		100,0		100,0		100,0		100,0		100,0		100,0
Tipo de pavimentação												
Não asfaltado	8.881	38,9	9.336	38,6	8.839	37,2	8.805	37,2	8.489	34,4	44.350	37,3
Com asfalto	13.972	61,1	14.836	61,4	14.895	62,8	14.895	62,8	16.173	9'59	74.480	62,7
Total		100,0		100,0		100,0		100,0		100,0		100,0
Condições de iluminação												
Luz do dia	12.481	67,5	13.145	0'29	12.785	8′99	13.246	9'29	14.357	6′89	66.014	9′29
Amanhecer	292	4,1	857	4,4	822	4,3	839	4,3	648	3,1	3.933	4,0
Anoitecer	2.213	12,0	2.359	12,0	2.293	12,0	2.218	11,3	2.245	10,8	11.328	11,6
Via iluminada	2.224	12,0	2.481	12,7	2.531	13,2	2.629	13,4	2.933	14,1	12.798	13,1
Mal iluminada/não iluminada	802	4,3	763	3,9	705	3,7	699	3,4	299	3,2	3.606	3,7
Total		100,0		100,0		100,0		100,0		100,0		100,0
Tipo de sinalização												
Semáforo	3.491	17,3	4.166	18,6	4.297	19,5	4.291	19,3	4.557	19,4	20.802	18,9
Sinalização vertical	3.168	15,7	3.752	16,8	4.212	19,1	4.096	18,4	4.770	20,3	19.998	18,1
Sinalização lateral	13.540	0'29	14.452	64,6	13.487	61,3	13.895	62,4	14.170	60,3	69.544	63,0
Total		100,0		100,0		100,0		100,0		100,0		100,0

Continua

	C	כ
5	C	3
	C	ರ
	Ξ	3
	2	Ξ
:	Ξ	5
	2	Ξ
	C)
()
	_	•

Horário												
Manhã	6.084	27,2	6.466	27,3	6.223	27,2	6.519	28,0	7.375	30,4	32.667	28,1
Tarde	7.755	34,6	8.202	34,7	8.100	35,4	8.192	35,2	8.646	35,7	40.895	35,1
Noite	6.637	29,6	6.834	28,9	6.525	28,5	6.460	27,8	6.474	26,7	32.930	28,3
Madrugada	1.912	8,5	2.143	9,1	2.053	0′6	2.098	0′6	1.741	7,2	9.947	8,5
Total		100,0		100,0		100,0		100,0		100,0		100,0
Semana												
Segunda a sexta-feira	15.334	67,1	15.898	8'59	15.684	6′99	16.314	8'89	17.820	72,3	81.054	68,2
Sábado e domingo	7.519	32,9	8.274	34,2	7.759	33,1	7.386	31,2	6.842	27,7	37.780	31,8
Total		100,0		100,0		100,0		100,0		100,0		100,0
Dias da semana												
Quarta-feira	2.806	12,3	3.015	12,5	2.952	12,6	3.100	13,1	3.482	14,1	15.355	12,9
Quinta-feira	3.110	13,6	3.076	12,7	3.177	13,6	3.141	13,3	3.397	13,8	15.901	13,4
Sexta-feira	3.780	16,5	3.711	15,4	3.572	15,2	3.778	15,9	3.996	16,2	18.837	15,9
Sábado	4.085	17,9	4.443	18,4	4.121	17,6	4.093	17,3	3.818	15,5	20.560	17,3
Domingo	3.434	15,0	3.831	15,8	3.638	15,5	3.293	13,9	3.024	12,3	17.220	14,5
Segunda-feira	2.912	12,7	3.122	12,9	3.097	13,2	3.270	13,8	3.495	14,2	15.896	13,4
Terça-feira	2.726	11,9	2.974	12,3	2.886	12,3	3.025	12,8	3.450	14,0	15.061	12,7
Total		100,0		100,0		100,0		100,0		100,0		100,0
Trimestre												
Janeiro a março	5.042	22,1	5.377	22,2	5.573	23,8	5.351	22,6	5.761	23,4	27.104	22,8
Abril a junho	5.915	25,9	5.982	24,7	5.940	25,3	5.857	24,7	6.305	25,6	29.999	25,2
Julho a setembro	5.686	24,9	6.330	26,2	5.844	24,9	5.963	25,2	5.993	24,3	29.816	25,1
Outubro a dezembro	6.210	27,2	6.483	26,8	980.9	26,0	6.529	27,5	6.603	26,8	31.911	26,9
Total		100,0		100,0		100,0		100,0		100,0		100,0

acidentes com óbito na análise bivariada, tomando como base acidentes com automóveis ou caminhonetes. Os acidentes em que estiveram envolvidas apenas motocicletas configuraram o segundo maior risco bruto para acidentes com óbito ($OR=2,88;\ IC95\%\ 2,48;3,34$). Acidentes envolvendo apenas um veículo apresentam maior risco bruto para acidentes com óbito ($OR=4,15;\ IC95\%\ 3,77;4,57$) comparados com acidentes com dois veículos (Tabela 2).

O atropelamento (OR = 6.32; IC95% 5.71;6.98) apresentou maior risco bruto para acidentes com óbito seguido pelos acidentes devido a capotamento (OR = 4.90; IC95% 3.32;7.24) e o choque com obstáculo fixo (OR = 3.57; IC95% 2.98;4.28), comparados com colisões ou abalroamentos (Tabela 2).

Os condutores com menos de cinco anos de habilitação ($OR=1,78;\ IC95\%\ 1,52;2,08$) apresentaram maior risco bruto para acidentes com óbito comparados com

Tabela 2. Análise bivariada para investigação de fatores relativos às vias. aos veículos e ao tempo associados ao óbito por acidentes de trânsito. Fortaleza, CE. 2004 a 2008.

		Aci	dentes d	de trâr	nsito					
Variáveis	Tota	al	Com	óbito	Sem ó	bito	OR	IC95%	χ^2	р
	n	%	n	%	n	%				
Natureza do acidente										
Colisão/albarroamento	92.847	78,1	760	0,8	92.087	99,2				
Atropelamento	14.083	11,9	728	5,2	13.355	94,8	6,32	5,71;6,98	1530,95	0,0000
Queda	6.625	5,6	49	0,7	6.576	99,3	0,90	0,68;1,20	1,92	0,4895
Choque com obstáculo fixo	4.652	3,9	136	2,9	4.516	97,1	3,57	2,98;4,28	182,41	0,0000
Capotamento	623	0,5	25	4,0	598	96,0	4,90	3,32;7,24	24,37	0,0000
Tipo de veículos										
Só automóvel/caminhonete	51.937	43,7	462	0,9	51.475	99,1				
Só motocicleta	10.158	8,5	260	2,6	9.898	97,4	2,88	2,48;3,34	387,77	0,0000
Com motociclistas	21.453	18,1	203	0,9	21.250	99,1	1,06	0,90;1,25	136,96	0,0000
Com veículos pesados	19.064	16,0	269	1,4	18.795	98,6	1,59	1,37;1,84	1771,98	0,0000
Com bicicletas	9.756	8,2	343	3,5	9.413	96,5	3,95	3,44;4,17	117,54	0,0000
Veículos diversos	6.462	5,4	161	2,5	6.301	97,5	2,80	2,35;3,34		0,0000
Número de veículos envolvidos										
Dois veículos	87.128	73,3	745	0,9	86.383	99,1				
Um veículo	25.575	21,5	907	3,5	24.668	96,5	4,15	3,77;4,57	991,56	0,0000
Mais de dois veículos	6.127	5,2	46	0,8	6.081	99,2	0,88	0,65;1,18	0,74	0,0000
Idade da frota										
Com veículos com mais de 10 anos	32.944	27,7	133	0,4	32.811	99,6				
Com veículos entre 6 a 10 anos	23.986	20,2	501	2,1	23.485	97,9	5,17	4,28;6,26	357,85	0,0000
Somente veículos até 5 anos	25.810	21,7	452	1,8	25.358	98,2	4,34	3,58;5,26	266,58	0,0000
Posição na quadra										
Cruz	35.688	30,0	302	0,8	35.386	99,2				
T, Duplo T, Y, rotatória e outras	5.462	4,6	51	0,9	5.411	99,1	1,10	0,82;1,48	1,66	0,5137
Com via férrea	264	0,2	19	7,2	245	92,8	8,50	5,44;13,30	7,60	0,0000
Meio de quadra	77.416	65,1	1.326	1,7	76.090	98,3	2,02	1,79;2,19	128,22	0,0000
Jurisdição										
Municipal	110.061	92,6	1.402	1,3	108.659	98,7				
Estadual	5.354	4,5	109	2,0	5.245	98,0	1,60	1,32;1,94	22,95	0,0000
Federal	3.415	2,9	187	5,5	3.228	94,5	4,30	3,70;4,99	423,58	0,0000
Tipo de pavimentação										
Sem asfalto	44.350	37,3	495	1,1	43.855	98,9				
Com asfalto	74.880	63,0	1.203	1,6	73.677	98,4	1,44	1,30;1,60	47,72	0,0000
Condições de iluminação										
Luz do dia	65.337	55,0	725	1,1	64.612	98,9				
Luz do amanhecer	4.402	3,7	136	3,1	4.266	96,9	2,78	2,32;3,34	97,97	0,0000
Luz do anoitecer	11.323	9,5	211	1,9	11.112	98,1	1,68	1,44;1,96	42,24	0,0000

Continua

Continuação										
Via iluminada	12.759	10,7	217	1,7	12.542	98,3	1,53	1,32;1,78	28,22	0,0000
Mal iluminada/não iluminada	22.898	19,3	406	1,8	22.492	98,2	1,60	1,42;1,80	36,15	0,0000
Tipo de sinalização										
Sinalização vertical	19.998	16,8	160	0,8	19.838	99,2				
Semáforo	20.802	17,5	185	0,9	20.617	99,1	1,11	0,90;1,37	0,97	0,3249
Sinalização lateral	69.544	58,5	1.256	1,8	68.288	98,2	2,26	1,92;2,66	100,99	0,0000
Horário										
Manhã	32.667	27,5	372	1,1	32.295	98,9				
Tarde	40.895	34,4	498	1,2	40.397	98,8	1,07	0,94;1,22	0,97	0,3248
Noite	32.930	27,7	554	1,7	32.376	98,3	1,48	1,30;1,68	34,82	0,0000
Madrugada	9.951	8,4	274	2,8	9.677	97,2	2,42	2,07;2,82	127,57	0,0000
Semana										
Segunda a sexta-feira	81.054	68,2	956	1,2	80.098	98,8				
Sábado e domingo	37.780	31,8	742	2,0	37.038	98,0	1,67	1,51;1,83	112,59	0,0000
Dias da semana										
Quarta-feira	15.355	12,9	165	1,1	15.190	98,9				
Quinta-feira	15.901	13,4	186	1,2	15.715	98,8	1,15	0,93;1,41	1,69	0,1931
Sexta-feira	18.837	15,9	240	1,3	18.597	98,7	1,19	0,97;1,44	2,88	0,0899
Sábado	20.560	17,3	351	1,7	20.209	98,3	1,59	1,32;1,91	24,84	0,0001
Domingo	17.220	14,5	391	2,3	16.829	97,7	2,11	1,76;2,53	69,21	0,0000
Segunda-feira	15.896	13,4	198	1,2	15.698	98,8	1,16	0,94;1,42	1,99	0,1584
Terça-feira	15.061	12,7	167	1,1	14.894	98,9	1,03	0,83;1,28	0,08	0,7738
Trimestre										
Outubro a dezembro	31.911	26,9	432	1,4	31.479	98,6				
Janeiro a março	27.104	22,8	387	1,4	26.717	98,6	1,05	0,92;1,21	0,59	0,4434
Abril a junho	29.999	25,2	451	1,5	29.548	98,5	1,11	0,97;1,27	2,46	0,1160
Julho a setembro	29.816	25,1	428	1,4	29.388	98,6	1,06	0,93;1,21	0,75	0,3867

condutores com mais de cinco anos de habilitação. Condutores com habilitação inadequada (OR = 1,95; IC95% 1,74;2,18) apresentaram maior risco bruto para acidentes com óbito comparados aos condutores com habilitação adequada (Tabela 3).

Acidentes em segmentos contínuos ou meio de quadra (OR = 2,02; IC95% 1,79;2,19) apresentaram maior risco bruto para acidentes com óbito e ocorreram com maior frequência, diferentemente de acidentes em cruzamento com via férrea (OR = 8,50; IC95% 5,44;13,30), que envolveram maior risco bruto para acidentes com óbito, porém com menor frequência. Cerca de 18,9% dos sinistros ocorreram em semáforos e não apresentaram risco bruto para acidentes com óbito quando comparados com a sinalização vertical. Os acidentes mediante sinalização vertical na lateral (OR = 2,26; IC95% 1,92;2,66) representam 63% do total e apresentaram risco bruto para acidentes com óbito quando comparados com a sinalização vertical (Tabelas 1 e 2).

A gravidade dos acidentes mostrou-se mais acentuada no nível federal (OR=4,30; IC95% 3,70;4,99), seguido do estadual em comparação ao municipal. O risco bruto para acidentes com óbito foi maior sob a luz do amanhecer (OR=2,78; IC95% 2,32;3,34) quando comparados com acidentes à luz do dia. O domingo (OR=2,11; IC95% 1,76;2,53) apresentou maior risco bruto para acidentes

com óbito quando comparado com a quarta-feira. O risco bruto para acidentes com óbito foi maior na madrugada (OR = 2,42; IC95% 2,07;2,82), seguido da noite (OR = 1,48; IC95% 1,30;1,68) quando comparados com o período da manhã (Tabela 2).

Presença de condutores não habilitados (OR = 4,1; IC95% 2,9;5,5) ou com habilitação inadequada ao tipo de veículo (OR = 1,6; IC95% 1,2;1,9), tráfego em vias de jurisdição federal (OR = 2,4; IC95% 1,8;3,1), horário da madrugada (OR = 2,4; IC95% 1,8;3,0) e dia de domingo (OR = 1,7; IC95% 1,3;2,2) destacaram-se como fatores contribuintes para o acidente com óbito na análise multinomial (Tabela 3).

Os acidentes com motociclistas (OR = 3,5; IC95% 2,6;4,5) foram potenciais acidentes com óbito. Acidentes de trânsito que apresentaram maior risco para o óbito foram aqueles que envolveram bicicletas (OR = 21,2; IC95% 16,1;27,8), atropelamento OR = 5,9 (IC95% 3,7;9,2) e colisão com obstáculos fixos OR = 5,7 (IC95% 3,1;10,4).

DISCUSSÃO

O Brasil desponta no cenário mundial por seu desenvolvimento econômico promissor; entretanto,

Tabela 3. Análise bivariada para investigação de fatores relativos às vias, aos veículos e ao tempo associados ao óbito por acidentes de trânsito. Fortaleza, CE, 2004 a 2008.

		Acid	lentes d	e trâr	sito					
Variáveis	Tota	I	Com ć	bito	Sem óbi	to	OR	IC95%	χ^2	р
	n	%	n	%	n	%				
Sexo dos condutores										
Apenas sexo feminino	10.696	9,0	106	1.0	10.590	99,0				
Apenas sexo masculino	73.955	62,2	1.249	1.7	72.706	98,3	1,70	1,40;2,08	28,89	0,0000
Ambos os sexos	26.919	22,7	338	1.3	26.581	98,7	1,27	1,02;1,57	4,59	0,0302
Idade dos condutores										
Entre 25 e 64 anos	63.369	53,3	972	1.5	62.397	98,5				
Menos de 25 anos	27.407	23,1	503	1.8	26.904	98,2	1,20	1,08;1,33	10,87	0,0000
Presença de condutor com mais de 65 anos	5.513	4,6	223	4.0	5.290	96,0	2,64	2,29;3,04	187,60	0,0000
Situação civil do condutor										
Casados	26.998	22,7	253	0.9	26.745	99,1				
Entre solteiros	23.469	19,8	435	1.9	23.034	98,1	1,98	1,70;2,31	78,41	0,0000
Casados e solteiros	41.835	35,2	586	1.4	41.249	98,6	1,49	1,29;1,73	29,29	0,0000
Escolaridade do condutor										
Somente nível superior	18.665	15,7	107	0.6	18.558	99,4				
Com nível médio e superior	36.490	30,7	347	1.0	36.143	99,0	1,66	1,34;2,06	50,91	0,0000
Com nível fundamental	42.837	36,0	1.166	2.7	41.671	97,3	4,75	3,90;5,78	549,99	0,0000
Tipo de pessoa envolvida										
Só condutor	89.255	75,1	395	0.4	88.860	99,6				
Com passageiro	6.173	5,2	241	3.9	5.932	96,1	8,82	7,53;10,33	1046,09	0,0000
Com pedestre e/ou ciclista	23.402	19,7	1.062	4.5	22.340	95,5	10,25	9,41;11,50	2457,98	0,0000
Número de pessoas envolvidas										
Duas pessoas	96.643	81,3	1.206	1.2	95.439	98,8				
Mais de três pessoas	11.691	9,8	350	3.0	11.340	97,0	2,40	2,13;2,70	224,61	0,0000
Uma pessoa	10.496	8,8	142	1.4	10.353	98,6	1,08	0,91;1,29	0,84	0,3586
Situação da habilitação dos condutores										
Habilitação adequada	52.557	44,2	578	1.1	51.979	98,9				
Presença de condutor com habilitação inadequada	27.902	23,5	598	2.1	27.304	97,9	1,95	1,74;2,18	1,21	0,0000
Presença de condutor não habilitado	27.219	22,9	522	1.9	26.697	98,1	1,74	1,55;1,96	19,80	0,0000
Tempo de habilitação dos condutores										
Entre condutores com mais de 5 anos de habilitação	53.027	44,6	546	1.0	52.481	99,0				
Entre condutores com menos de 5 anos de habilitação	11.998	10,1	220	1.8	11.778	98,2	1,78	1,52;2,08	54,33	0,0000

a morbimortalidade por acidente de trânsito é reconhecidamente um fenômeno de grande magnitude e de elevada complexidade. Representa uma expressão tardia da relação investimentos em segurança viária, política de desenvolvimento econômica centrada na indústria automobilística e educação para o trânsito.

A análise dos fatores que interferem na ocorrência dos acidentes de trânsito é um procedimento complexo porque são numerosos e não são independentes.⁸ Os resultados do presente estudo permitem a ampliação

do olhar sobre o fenômeno acidente de trânsito a partir da análise de suas características de vias, indivíduos e veículos envolvidos. Esse aspecto destaca a importância de práticas intersetoriais para melhor enfrentamento do agravo, haja vista sua complexidade e multiplicidade de fatores relacionados com as diversas áreas do conhecimento humano.

A estrutura das vias como sinalização e iluminação, o dia da semana e o horário da ocorrência estão relacionados à gravidade dos acidentes de trânsito.

Tabela 4. Modelo final da análise multivariada para fatores associados ao óbito por acidente de trânsito. Fortaleza, CE, 2004 a 2008.

Fatores			Erro		
	OR	Padrão	Z	р	IC95%
Natureza do acidente					
Colisão/albarroamento	1				
Atropelamento	6,31	1,33	8,72	0,0000	4,17;9,55
Queda	1,27	0,71	0,43	0,6690	0,42; 3,83
Choque com obstáculo fixo	5,87	1,69	6,15	0,0000	3,34;10,31
Capotamento	2,38	1,17	1,76	0,0780	0,91;6,23
Dia da semana					
Quarta-feira	1				
Quinta-feira	1,06	0,16	0,40	0,6910	0,79;1,43
Sexta-feira	1,29	0,18	1,78	0,0750	0,98;1,70
Sábado	1,42	0,19	2,60	0,0090	1,09;1,86
Domingo	1,73	0,24	3,98	0,0000	1,32;2,26
Segunda-feira	1,11	0,17	0,70	0,4840	0,83;1,49
Terça-feira	1,08	0,17	0,51	0,6100	0,80;1,46
Horário					
Manhã	1				
Tarde	1,04	0,10	0,45	0,6510	0,87;1,26
Noite	1,33	0,13	2,96	0,0030	1,10;1,61
Madrugada	2,36	0,30	6,73	0,0000	1,84;3,03
Jurisdição					
Municipal	1				
Estadual	1,45	0,21	2,62	0,0090	1,10;1,92
Federal	2,56	0,34	7,04	0,0000	1,97;3,32
Posição na quadra					
Cruz	1				
T, Duplo T, Y, rotatória e outras	0,93	0,18	-0,39	0,6970	0,64;1,35
Com via férrea	2,99	1,44	2,26	0,0240	1,16;7,71
Meio de quadra	1,09	0,09	0,96	0,3350	0,92;1,29
Número de veículos envolvidos					
Mais de dois veículos	1				
Dois veículos	2,28	0,42	4,41	0,0000	1,58;3,28
Um veículo	8,44	2,59	6,95	0,0000	4,62;15,40
Tipo de veículos	,	,	,	,	
Só automóvel/caminhonete	1				
Só motocicleta	1,77	0,24	4,30	0,0000	1,37;2,30
Com motociclistas	3,39	0,46	8,97	0,0000	2,60;4,43
Com veículos pesados	2,14	0,33	4,90	0,0000	1,58;2,90
Com bicicletas	20,89	2,86	22,20	0,0000	15,97;27,32
Veículos diversos	1,40	1,01	0,47	0,6420	0,34;5,73
Idade da frota	.,.0	.,	0, .,	0,01.20	0,3 1,3,7 3
Com veículos com mais de 10 anos	1				
Com veículos entre 6 e 10 anos	1,63	0,19	4,10	0,0000	1,29;2,06
Somente veículos até 5 anos	1,52	0,13	3,46	0,0000	1,20;1,92
Situação da habilitação dos condutores	1,34	0,10	3,40	0,0010	1,40,1,34
Habilitação adequada	1				
Presença de condutor com habilitação inadequada	1,55	0,19	3,63	0,0000	1,22;1,96
Presença de condutor não habilitado		0,19	-5,01	0,0000	0,28;0,57
Continue	0,40	0,07	-5,01	0,0000	0,20,0,5/

Continua

Continuação

3					
Tempo de habilitação dos condutores					
Entre condutores com mais de 5 anos de habilitação	1				
Entre condutores com menos de 5 anos de habilitação	1,09	0,11	0,84	0,3980	0,89;1,33
Com a presença de não habilitados	3,87	0,60	8,68	0,0000	2,85;5,25
Número de pessoas envolvidas					
Duas pessoas	1				
Mais de três pessoas	2,45	0,58	3,79	0,0000	1,54; 3,90
Uma pessoa	6,79	1,65	7,89	0,0000	4,22;10,92
Escolaridade do condutor					
Somente nível superior	1				
Com nível médio e superior	1,01	0,13	0,07	0,9420	0,79;1,29
Com nível fundamental	2,10	0,25	6,11	0,0000	1,65;2,66
Sexo dos condutores					
Apenas sexo feminino	1				
Apenas sexo masculino	1,48	0,30	1,94	0,0520	1,00;2,20
Ambos os sexos	0,62	0,15	-1,98	0,0480	0,39;1,00
Situação civil do condutor					
Casados	1				
Entre solteiros	1,07	0,10	0,76	0,4480	0,90;1,28
Casados e solteiros	1,34	0,14	2,79	0,0050	1,09;1,65

Pesquisadores encontraram resultados semelhantes e atribuíram a maior ocorrência de óbito no final de semana e nos horários da madrugada ao uso de álcool e excesso de velocidade.² Por outro lado, é importante considerar a má qualidade da iluminação e sinalização das vias.¹⁶ O planejamento de ações preventivas deve contemplar o nível de iluminação das vias e a sinalização adequada como parâmetro de segurança.

A gravidade dos acidentes relaciona-se com o tipo de jurisdição da via, apresentando maior risco aquelas do nível federal, seguidas do estadual, em comparação ao municipal. A velocidade permitida para cada tipo de via e o fluxo de veículos diferem e ocasionam congestionamentos em vias municipais, levando a acidentes mais leves, sem vítimas feridas.

Os condutores com menos de cinco anos de habilitação apresentaram maior risco de óbito em acidentes, diferente do encontrado em outros estudos, que apontam motoristas mais velhos como significativamente mais envolvidos em acidentes graves e fatais, quando os números são ajustados para as diferenças na exposição.²² Essa informação coloca em discussão a qualidade do processo de habilitação no Brasil. A inexperiência dos novos habilitados denuncia que a rigidez do código de trânsito que prevê carteira provisória até um ano não é suficiente para deixá-los aptos a dirigir veiculos.

As condições de tráfego, das vias e o maior fluxo de indivíduos no deslocamento casa-trabalho aumentam a exposição ao agravo. Soma-se a isso a cultura punitiva

em detrimento da educativa desenvolvida em torno do fenômeno. Esses entraves impedem a melhoria dos indicadores, apesar da implantação de políticas públicas que tentam mitigar o fenômeno. Grupos populacionais com maior vulnerabilidade (pedestres, ciclistas e motociclistas) tornam-se vítimas das condições das vias, dos veículos e dos usuários.

Existem diferenças na manifestação da gravidade dos acidentes de trânsito segundo a tipologia. Atropelamentos e acidentes envolvendo ciclistas e motociclistas são descritos como de maior gravidade. Esse fato, explicado pela cinemática do trauma, continuará a ser problema de vulnerabilidade até que haja equidade no trânsito.

A posição que o indivíduo assume no trânsito é determinante da gravidade das vítimas. O risco de morte é maior para ciclistas e pedestres. Esse fato também é apresentado em outros estudos, em que pedestres e ciclistas são os usuários mais vulneráveis do sistema viário e compõem o maior percentual entre vítimas. ¹⁹ Enquanto os ciclistas carecem de local próprio para circular e precisam disputar com os veículos um espaço na via em meio a opressão e fumaça, os pedestres deparam-se com calçadas estreitas e sem conservação. Isso ocorre apesar de Fortaleza tratar-se de uma cidade plana em que essas formas de se transportar deveriam ser prioridade por razões diversas: preservação ambiental, salubridade e economia.

Congestionamentos nas grandes cidades, ineficiência do transporte coletivo, serviço de tele-entrega e mototáxistas ocasionaram a rápida disseminação das motocicletas, o que representou aumento de 700% nas mortes de 1998 a 2008.³ O baixo custo e as facilidades de financiamento do veículo são responsáveis pelo expressivo aumento das motocicletas. A problemática da gravidade desse tipo de acidente evidenciada por este e outros estudos suscita necessidade de pensar na segurança desse usuário.

Acidentes envolvendo apenas um veículo apresentam maior risco de óbito quando comparados com acidentes com dois veículos. Conflitos no trânsito com veículos mais suscetíveis, como motos e bicicletas, acabam levando o condutor à queda. Segundo a cinemática do trauma, a gravidade mostra-se mais acentuada onde há maior transferência de energia cinética. Isso foi comprovado por este estudo, em que os principais tipos de acidentes envolvendo vítimas fatais foram aqueles que envolveram choques com obstáculo fixo e atropelamentos. A velocidade é o mais importante produtor dessa energia.

A gravidade e incidência dos acidentes eleva-se no período noturno e nos finais de semana, o que remete ao trânsito livre, sem congestionamentos e ao uso de bebidas alcoólicas, haja vista ser conhecido o efeito devastador da combinação de uso de bebidas alcoólicas e alta velocidade.

Foi observada diferença na distribuição da ocorrência de acordo com mês, dia da semana e horário. Fatores sociodemográficos como sexo, idade e escolaridade estão relacionados com a gravidade e ocorrência de acidentes. 12,20

Existe risco maior de acidentes graves ou fatais para solteiros, mesmo quando ajustado para sexo, idade e álcool do que para os casados,²¹ o que pode

ser justificado pelo fato de os solteiros se exporem mais aos fatores de risco, o que foi confirmado pelo presente estudo. Os horários e vias em que ocorrem os acidentes fatais sugerem trânsito menos congestionado e deslocamento para atividades de lazer, caracterizando a imprudência. Isso sinaliza para a necessidade de investimentos em prevenção de acidentes e promoção de trânsito seguro por meio de estratégias educativas, estabelecendo a cultura de paz no trânsito.

As ações de promoção e prevenção de acidentes no trânsito devem prioritariamente focar os acidentes com veículos de duas rodas que com frequência envolvem uma única pessoa, não habilitada, do sexo masculino, em horários noturnos, em finais de semana e nas vias onde se desenvolvem maiores velocidades.

É possível unificar várias fontes de dados de setores diferentes para melhor entendimento dos acidentes de trânsito para fomentar políticas públicas intersetoriais que visem à redução das mortes por este agravo. A análise das características de risco no acidente, considerando o ser humano, os veículos, as vias por onde trafegam veículos e pessoas, constitui importante contribuição desse estudo para ampliação do número de fatores desvelados que apresentam relação com o fenômeno.

A utilização de dados secundários pode ser possível limitação do estudo. Porém, acreditamos que as técnicas de relacionamento de bancos de dados utilizadas repercutem como inovação alavancada por este estudo na abordagem dos fatores que concorrem para a gravidade dos acidentes de trânsito. Entretanto, o esforço desenvolvido para integrar as diferentes bases de dados empregadas e os resultados alcançados de forma alguma substituem a necessidade da implantação de um sistema de informação unificado que contemple as variáveis necessárias à análise da situação do trânsito no Brasil.

REFERÊNCIAS

- Alves EF. Características dos acidentes de trânsito com vítimas de atropelamento no município de Maringá-Pr, 2005-2008. Saud Pesq. 2010;3(1):25-32.
- Abreu AMM, Lima JMB, Griep RH. Acidentes de trânsito e a frequência dos exames de alcoolemia com vítimas fatais na cidade do Rio de Janeiro. Esc Anna Nery Rev Enferm. 2009;13(1):44-50. DOI:10.1590/S1414-81452009000100007
- Bacchieri G, Barros AJD. Acidentes de trânsito no Brasil de 1998 a 2010: muitas mudanças e poucos resultados. Rev Saude Publica. 2011;45(5):949-63. DOI:10.1590/S0034-89102011005000069
- Barss P, Kahn JP, Mastroianni AC, Sugarman J. Injury prevention: an international perspective epidemiology, surveillance, and policy. New York: Oxford University Press; 1998.

- Bastos YGL, Andrade SM, Soares DA. Características dos acidentes de trânsito e das vítimas atendidas em serviço pré-hospitalar em cidade do Sul do Brasil, 1997/2000. Cad Saude Publica. 2005;21(3):815-22. DOI:10.1590/S0102-311X2005000300015
- 6. Blakely T, Salmond C. Probabilistic record linkage and a method to calculate the positive predictive value. *Int J Epidemiol*. 2002;31(6):1246-52.
- Branco AG. A falta de estatísticas confiáveis dificulta a formatação de políticas públicas para solucionar os problemas no trânsito. Rev ABRAMET. 2003;11(21):33-47.
- 8. Crundall D, Clarke D, Ward P, Bartle C. Road safety good practice guide. London: Defence Terrain Research Laboratory; 2001.

- Deslandes SF, Silva C. Análise da morbidade hospitalar por acidentes de trânsito em hospitais públicos do Rio de Janeiro, RJ, Brasil. Rev Saude Publica. 2000;34(4):367-72. DOI:10.1590/S0034-89102000000400009
- Gawryszewski VP, Koizumi MS, Mello-Jorge MHP. As causas externas no Brasil no ano 2000: comparando a mortalidade e a morbidade. *Cad Saude Publica*. 2004;20(4):995-1003. DOI:10.1590/S0102-311X2004000400014
- 11. Hosmer DW, Lemeshow S. Applied logistic regression. 2 ed. New York: Wiley-Interscience; 2000.
- 12. Kmet L, Brasher P, Macarthur C. A small area study of motor vehicle crash fatalities in Alberta, Canada. *Accid Anal Prev*. 2003;35(2):177-82. DOI:10.1016/S0001-4575(01)00101-4
- Machado CJ, Hill K. Probabilistic record linkage and an automated procedure to minimize the undecided-matched pair problem. Cad Saude Publica 2004;20(4):915-25. DOI:10.1590/S0102-311X2004000400005
- Mello Jorge MHP, Gawryszewski VP, Latorre MI. Análise dos dados de mortalidade. Rev Saude Publica. 1997;31(4Suppl):5-25. DOI:10.1590/S0034-89101997000500002
- Méray N, Reitsma JB, Ravelli ACJ, Bonsel GJ. Probabilistic record linkage is a valid and transparent tool to combine databases without a patient identification number. J Clin Epidemiol. 2007;60(9):883. DOI:10.1016/j.jclinepi.2006.11.021
- Montenegro MMS, Duarte E, Ruscitto RP, Nascimento AF. Mortalidade de motociclistas em acidentes de transporte no Distrito Federal, 1996

- a 2007. Rev Saude Publica. 2011;45(3):529-38. DOI:10.1590/S0034-89102011000300011
- Organização Mundial de Saúde. Classificação internacional de doenças e problemas relacionados à saúde. 10. ed. rev. São Paulo: Editora Edusp; Universidade de São Paulo; 2007. v.1.
- Ott EA, Favaretto ALF, Neto AFPR, Zechin JG, Bordin R. Traffic accidents: characterization accidents and lesions in an urban center of southern Brazil. Rev Saude Publica. 1993;27(5):350-6. DOI:10.1590/S0034-89101993000500005
- 19. Silva DW, Andrade SM, Soares DA, Paula Soares DFP, Mathias TAF. Perfil do trabalho e acidentes de trânsito entre motociclistas de entregas em dois municípios de médio porte do Estado do Paraná, Brasil. Cad Saude Publica. 2008;24(11):2643-52. DOI:10.1590/S0102-311X2008001100019
- Soares DFPP, Barros MBA. Fatores associados ao risco de internação por acidentes de trânsito no Município de Maringá-PR. Rev Bras Epidemiol. 2006;9(2):193-205. DOI:10.1590/S1415-790X2006000200006
- 21. Whitlock G, Norton R, Clark T, Jackson R, MacMahon S. Motor vehicle driver injury and marital status: a cohort study with prospective and retrospective driver injuries. *Inj Prev*. 2004;10(1):33. DOI:10.1136/ip.2003.003020
- Young-Jun Kweon, Kara M. Kockelman, Overall injury risk to different drivers: combining exposure, frequency, and severity models.
 Accident Analysis & Prevention, Volume 35, Issue 4, July 2003, Pages 441-450, ISSN 0001-4575.
 DOI:10.1016/S0001-4575(02)00021-0.

Estudo financiado pela Coordenação de Aperfeiçoamento do Pessoal de Nível Superior (CAPES) através de bolsa de pósgraduação, nível doutorado, concedida a Almeida R.L.F.

Estudo baseado na tese de doutorado de Almeida R.L.F., intitulada: "Epidemiologia dos Acidentes de Trânsito no Município de Fortaleza no período de 2004 a 2008", apresentada à Faculdade de Medicina da Universidade Federal do Ceará, em 2011. Os autores declaram não haver conflito de interesses.