

Part III Category learning with a pLoT

Fausto Carcassi

Summary so far

pLoT as a picture of cognition

Some formal tools:

- Probabilistic PCFG
- Compositional interpretation
- Bayesian inference

Part I	Introduction: On the very idea of an LoT
Part II	Technical background
Part III	Bayesian program induction (LOTlib3)
Part IV	Case studies

Plan for session

- We'll consider some examples
- Combine the technical tools
- Build up to a pLoT category learning simulation

Part I	Introduction: On the very idea of an LoT	
Part II	Technical background	
Part III Bayesian program induction (LOTlib3)		
Part IV	Case studies	

Our grand plan for the pLoT

Example 1: The visual domain

Shape grammar

What could we mean by *shape grammar*?

What would you include in a shape grammar?

Shape grammar

```
\langle START \rangle \rightarrow chain(\langle DRAWING \rangle)
     \langle DRAWING \rangle \rightarrow \langle MOVEMENT \rangle, \langle DRAWING \rangle
                                    \rightarrow \epsilon
\langle MOVEMENT \rangle \rightarrow forward(\langle DISTANCE \rangle)
                                   \rightarrow backward(\langle DISTANCE \rangle)
                                   \rightarrow \operatorname{right}(\langle \operatorname{ANGLE} \rangle)
                                   \rightarrow \operatorname{left}(\langle \operatorname{ANGLE} \rangle)
                                   \rightarrow \text{circle}(\langle \text{DISTANCE} \rangle, \langle \text{ANGLE} \rangle)
                                   \rightarrow goto(0,0)
    \langle \text{DISTANCE} \rangle \rightarrow 50 \mid 100 \mid 120
            \langle ANGLE \rangle \rightarrow 30 \mid 60 \mid 90 \mid 170
```


Shape semantics

chain(forward(100), circle(50,90), forward(100),)

chain(right(60), circle(100,60), forward(120), goto(0,0), circle(50,170), backward(120), right(170), circle(50,90), goto(0,0), right(170), forward(120), right(90), properties and the second of the

Shape observations

Noise:

- Random pixel flip (salt & pepper)
- W/ probability p

Can we write a likelihood?

Priors and likelihoods

Bayesian inference in the shape grammar

```
chain(
circle_{-}(50,90),
backward_{-}(10),
right_(90),
right_(170),
right_{-}(30),
forward_{-}(10),
right_(90),
left_{-}(170),
goto_{-}(0,0),
circle_{-}(20,60),
right_(30),
goto_{-}(0,0),
goto_{-}(0,0),
goto_{-}(0,0),
backward_{-}(20),
forward_{-}(20),
goto_{-}(0,0),
circle_{-}(10,60),
circle_(20,60),
circle_{-}(50,60),
left_{-}(170),
goto_{-}(0,0),
right_(60),
left_{-}(30),
```

True shape

LoT learning models: the big picture

Interpreted PCFG
 Defines hypotheses H
 Defines a prior over H

1. Shapes grammar
Each H is a sentence...
...which encodes a shape

2. Observations O
Generated by true H

2. Image (with noise)
Multiple H produce same shape!

3. Likelihood P(O | H)

- 3. Likelihood P(image| shape)
- 4. Bayesian inference algorithm Approximate!
- 4. MCMC w/ e.g., LOTlib3
 Gives us samples from posterior!

Example 2: The auditory domain

Sound grammar

What could we mean by *sound grammar*?

What would you include in a sound grammar?

Sound grammar

```
\begin{split} \langle \text{TUNE} \rangle &\to \langle \text{NOTE} \rangle \\ &\to \text{successive}(\langle \text{TUNE} \rangle, \langle \text{TUNE} \rangle) \\ &\to \text{melt}(\langle \text{TUNE} \rangle, \langle \text{TUNE} \rangle) \\ \langle \text{NOTE} \rangle &\to \text{defineNote}(\langle \text{FREQ} \rangle, \langle \text{TIME} \rangle) \\ \langle \text{TIME} \rangle &\to 0.1 \mid 0.2 \mid 0.3 \\ \langle \text{FREQ} \rangle &\to \text{A} \mid \text{Bb} \mid \text{B} \mid \text{C} \mid \text{Db} \mid \text{D} \mid \text{Eb} \mid \text{E} \mid \text{F} \mid \text{Gb} \mid \text{G} \mid \text{Ab} \end{split}
```

(For the sake of our ears, let's only keep A, C, D, E, G)

Sound semantics

melt(defineNote(E, 1), defineNote(D, 2))

```
successive(defineNote('D', 0.3), melt(defineNote('A', 0.3), ""melt(melt(melt(defineNote('E',
1.), "successive(melt(successive(defineNote('D', 0.6), successive(defineNote('E',
""0.6), defineNote('E', 0.6))), melt(successive(melt(melt(defineNote('C', ""0.3),
successive(melt(melt(successive(successive(defineNote('G', 0.3), " "melt(defineNote('E',
1.), defineNote('A', 0.6))), successive(defineNote('A', ""0.6), successive(defineNote('E',
0.6), melt(defineNote('G', 0.3), "melt(defineNote('G', 1.), successive(defineNote('A',
0.6), defineNote('D', ""0.3)))))), melt(defineNote('D', 0.6), successive(defineNote('C',
1.), "successive(defineNote('D', 1.), defineNote('G', 1.)))), "successive(successive(melt(defineNote('C',
1.), "successive(successive(melt(melt(successive(melt(successive(melt(defineNote('E',
 " "0.3), defineNote('E', 0.6)), defineNote('E', 0.6)), defineNote('C', 0.3)), " "de-
fineNote('A', 0.3)), defineNote('A', 0.6)), " "successive(melt(melt(defineNote('E',
0.3), defineNote('A', 1.)), ""successive(melt(defineNote('E', 1.), successive(defineNote('G',
0.3), "successive(melt(melt(defineNote('D', 0.3), defineNote('D', 1.)), "de-
fineNote('A', 1.)), defineNote('A', 0.3)))), melt(defineNote('A', 0.3), ""melt(defineNote('E',
0.6), melt(successive(defineNote('A', 0.3), ""defineNote('C', 0.6)), melt(defineNote('C',
0.3), defineNote('E', " "0.3)))))), defineNote('E', 1.))), defineNote('E', 1.)),
defineNote('A', ""0.3))), melt(defineNote('G', 1.), melt(defineNote('C', 1.), "
"melt(defineNote('D', 0.6), defineNote('D', 0.6))))), defineNote('G', 1.))), "suc-
cessive(melt(defineNote('C', 0.6), successive(defineNote('G', 0.6), " "defineNote('C',
0.3))), successive(melt(defineNote('C', 0.6), ""defineNote('C', 1.)), defineNote('E',
0.6))))), defineNote('E', 0.3)), " "defineNote('D', 1.)), defineNote('D', 0.3))),
melt(defineNote('C', 0.3), ""successive(defineNote('A', 0.6), successive(melt(successive(defineNote('E',
""0.3), successive(defineNote('D', 1.), defineNote('E', 0.3))), ""successive(melt(successive(melt(defineNote('G',
0.3), defineNote('D', 0.3)), "successive(successive(defineNote('E', 1.), defineNote('C',
0.6)), "successive(melt(defineNote('D', 0.3), defineNote('E', 0.3)), defineNote('D',
""0.6)))), defineNote('D', 0.6)), defineNote('E', 0.3))), defineNote('G', ""0.3)))))),
defineNote('C', 0.3)), successive(melt(defineNote('D', 0.3), " "melt(melt(defineNote('A',
0.6), successive(successive(defineNote('C', 0.3), ""successive(defineNote('D', 1.),
defineNote('A', 0.3))), defineNote('C', ""1.))), defineNote('G', 0.3))), defineNote('C',
1.))), "successive(defineNote('D', 0.3), defineNote('E', 0.3))))
```

Audio observations

successive (defineNote('G', 0.6), successive (defineNote('D', 0.6), successive (successive (successive (successive (defineNote('G', 0.3), melt(melt(defineNote('A', 0.3), successive (defineNote('C', 1.), defineNote('D', 0.3))), defineNote('G', 0.6))), defineNote('E', 0.6)), defineNote('E', 0.6)), successive (melt(melt(defineNote('E', 0.6), successive (defineNote('C', 0.3), defineNote('D', 1.))), defineNote('G', 0.3)), defineNote('G', 0.3)))))

Priors and likelihoods

Learning: Bayesian inference in a PCFG

melt(defineNote('G', 0.3), successive(successive(defineNote('A', 0.6), defineNote('C', 1.)), defineNote('E', 1.)))

MAP

successive(successive(defineNote('A', 1.), defineNote('A', 1.)), defineNote('D', 0.6))

LoT learning models: the big picture

- Interpreted PCFG
 Defines hypotheses H
 Defines a prior over H
- 1. Sound grammar
 Each H is a sentence...
 ...which encodes a sound

2. Observations O
Generated by true H

2. Sound (with noise)
Multiple H produce same sound!

3. Likelihood P(O | H)

3. Likelihood P(audio | sound)

4. Bayesian inference Approximate!

4. MCMC w/ e.g., LOTlib3
Gives us samples from posterior!

Summary: Building a pLoT model

- 1. Pick a domain, e.g., music, geometry, logical concepts
- 2. Write a (plausible) list of primitive concepts
- 3. Write a PCFG
- 4. Define a likelihood function
- 5. Produce an observation
 - 1. Sample from the PCFG
 - 2. Hand-design
 - 3. Use naturally occurring
- 6. Run inference algorithm

Interim remarks

Important features

Simpler representations have a higher prior

• Simpler <--> More probable in the pLoT (PCFG)

Three ways probabilities enter the picture

- 1. Likelihood function
- 2. Prior given by PCFG
- 3. Stochastic primitives

Important features

What we have been doing is essentially *program induction*

- Define a simple programming language
- Find (a distribution over) programs that produce some output given some input

In domains above, pLoT sentences denoted single objects

- ...but each sentence in the pLoT can denote a **function**
- Observations are (inputs, output) tuples

Categories (sets) are a special case with Boolean output

- Observations can be e.g., samples from the category
- Size effect!

Some hypotheses types

Input	Output	Stochastic primitives	Meaning	Example
Ø	Domain object	No	Single domain object	
Ψ		Yes	Graded category	
Domain	Boolean	No	Category	
object		Yes	Graded category	
Domain	Domain object	No	Transformation	
object		Yes	Stochastic transf	
•••	•••	•••	•••	

Example 3: Binary strings

Let's build it together!

- 1. Write a PCFG
- 2. Write an interpretation function
- 3. Construct an example of data
- 4. Run the inference

Conclusions

- We saw how to construct a model of category learning w/ a pLoT
- Two example domains:
 - Shapes
 - Sounds
 - Many more to be explored!
- Next step: Literature using this kind of model.

Part I	Introduction: On the very idea of an LoT
Part II	Technical background
Part III	Bayesian program induction (LOTlib3)
5 . 1) /	
Part IV	Case studies