BASIC FORMULAE

$\frac{d}{dx}(x^n) = nx^{n-1}$	$\frac{d}{dx}(a^x) = a^x loga$
$\frac{d}{dx}(\log x) = \frac{1}{x}$	$\frac{d}{dx}(e^x) = e^x$
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\sinh x) = \cosh x$
$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{-}(\cosh x) = \sinh x$
$\frac{d}{dx}(\tan x) = \sec x^2$	$\frac{dx}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{1+x^2}$
$\frac{\frac{d}{dx}(\tan x) = \sec x^2}{\frac{d}{dx}(\cot x)}$ $= \csc^2 x$	$\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$
$\int x^n dx = \frac{x^{n+1}}{n+1} + C$	$\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$
$\int e^x dx = e^x + C$	$\int \frac{1}{x} dx = \log x + C$
$\int_{C} \sin x dx = -\cos x$	$\int a^x dx = \frac{a^x}{\log a} + C$
$\int \cos x dx$	
$=\sin x + C$	1 4
$\int sec^2x dx = tan x$	$\frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$
+ <i>C</i>	
$\int \sec x \tan x dx$	$\int cosec^2 x dx = -\cot x + C$
$= \sec x + C$	

$\int \sinh x dx$ $= \cosh x$	$\int \frac{dx}{a^2 - x^2} = \sin^{-1} \frac{x}{a} + C$	
+ C		
$\frac{d}{dx}(cosec\ x)$	$\int \cosh x dx = \sinh x + C$	
$=-cosecx\ cotx + C$		
d(uv)=u dv + v du	$d\left(\frac{u}{v}\right) = \frac{v du - u dv}{v^2}, v \neq 0$	
$\int e^{ax} cosbx dx = \frac{e^{ax}}{a^2 + b^2} [acosbx + bsinbx] + C$		
$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} [a \sin bx - b \cos bx] + C$		
$\int uv = uv_1 - u'v_2 + \mathbf{u''}v_3 - \dots$		