Университет ИТМО ФПИиКТ

Лабораторная работа №6 по Вычислительной математике

Выполнил: Балтабаев Дамир

Группа: Р3210

Вариант: 3

Преподаватель: Малышева Татьяна Алексеевна

Цель лабораторной работы:

Решить задачу Коши численными методами.

Для исследования использовать:

- Одношаговые методы;
- Многошаговые методы.

Порядок выполнения:

- 3. Программная реализация задачи:
- 2.1. Исходные данные: ОДУ вида y' = f(x, y), начальные условия $y(x_0)$, интервал дифференцирования [a, b], шаг h, точность ε .
- 2.2. Составить таблицу приближенных значений интеграла дифференциального уравнения, удовлетворяющего начальным условиям. Для оценки точности использовать правило Рунге.
- 2.3. Построить графики точного решения и полученного численного решения (разными цветами).
- 4. Анализ результатов работы: апробация и тестирование.

Рабочие формулы:

$$y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

$$k_1 = h \cdot f(x_i, y_i)$$

$$k_2 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$k_3 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$

$$k_4 = h \cdot f(x_i + h, y_i + k_3)$$

а) этап прогноза:

$$y_i^{\text{прогн}} = y_{i-4} + \frac{4h}{3}(2f_{i-3} - f_{i-2} + 2f_{i-1})$$

б) этап коррекции:

$$y_i^{\text{корр}} = y_{i-2} + \frac{h}{3}(f_{i-2} + 4f_{i-1} + f_i^{\text{прогн}})$$
$$f_i^{\text{прогн}} = f(x_i, y_i^{\text{прогн}})$$

2. по правилу Рунге:

$$R = \frac{y^h - y^{2h}}{2^p - 1},$$

где y^h - решение задачи Коши с шагом h в точке x+2h y^{2h} - решение задачи Коши с шагом 2h в точке x+2h p – порядок точности метода

Листинг программы

Одношаговый метод Рунге-Кутта 4-го порядка:

```
public Map-Double, Double> y1 = new TreeMap<>();
    Map-Double, Double> y2 = new TreeMap<>();
    Map-Double, Double> y2 = new TreeMap<>();

    Double scale = Math.pow(10, 5);

    double x = a;
    y1.put(x, finstValue);
    for (int i = 1; i < n + 1; i++) {
        double k1 = n * function.calculate(x x + h / 2, |x y1.get(x) + k1 / 2);
        double k2 = h * function.calculate(x x + h / 2, |x y1.get(x) + k2 / 2);
        double k3 = n * function.calculate(x x + h / 2, |x y1.get(x) + k3);
        y1.put(Math.round((x + h) * scale) / scale, (y1.get(x) + ((double) 1 / 6) * (k1 + 2 * k2 + 2 * k3 + k4)));
        x = Hath.round((x + h) * scale) / scale, (y1.get(x) + ((double) 1 / 6) * (k1 + 2 * k2 + 2 * k3 + k4)));
        x = a;
        y2.cut(x) + instvalue);
    for (int i = 1; i < n + 1; i++) {
        double k1_r = h * function.calculate(x x + h / 2, |x y2.get(x) + k1_r / 2);
        double k1_r = h * function.calculate(x x + h / 2, |x y2.get(x) + k2_r / 2);
        double k2_r = h * function.calculate(x x + h / 2, |x y2.get(x) + k2_r / 2);
        double k3_r = h * function.calculate(x x + h / 2, |x y2.get(x) + k3_r + k4_r)));
        y2.put(xhth.round((x + h) * scale) / scale, (y2.get(x) + ((double) 1 / 6) * (k1_r + 2 * k2_r + 2 * k3_r + k4_r)));
        y x = Math.round((x + h) * scale) / scale;
}</pre>
```

```
int counter = 0;
for (Double key : y1.keySet()) {
    if (Math.abs(y2.get(key) - y1.get(key)) / 15 < e) {
        counter++;
        this.rungeRuleValues.put(key, Math.abs(y2.get(key) - y1.get(key)));
    }
}

if (counter == y1.size()) {
    printTable(y1);
    graphics.drawFunction(y1);
    return y1;
    }
    this.rungeRuleValues.clear();
    y1.clear();
    y1 = y2;
}</pre>
```

Многошаговый метод Милна:

```
public void solve(Map<Double, Double> rungeKuttaMap, Map<Double, Double> rungeRuleMap) {
    Vector<Double> xRungeKutta = new Vector<>();
    Vector<Double> yRungeKutta = new Vector<>();
    Vector<Double> rungeRuleValues = new Vector<>();

    Double scale = Math.pow(10, 5);

int i = 0;
    int coeff = 0;
    int counter = 0;
    for (Double key : rungeKuttaMap.keySet()) {
        if (counter = 4) break;

        if (Math.round((a + h * coeff) * scale) / scale == key) {
            xRungeKutta.add(i, key);
            yRungeKutta.add(i, rungeKuttaMap.get(key));
            rungeRuleValues.add(i, rungeRuleMap.get(key));
            i++;
            coeff++;
            counter++;
        }
}

Double x = xRungeKutta.lastElement();

Double yProgn;
Double yProgn;
Double yCorr;
```

Результаты выполнения программы:

i i	Xi	Yi	Оценка правилом Рунге
,	1.0	-1.0	0.00000000
	1.025	-0.9756097588102673	0.00000000
	1.05	-0.9523809573255356	0.00000000
	1.075	-0.9302325649118065	0.00000000
	1.1	-0.9090909173505819	0,00000000
	1.125	-0.888888898349118	0.00000000
	1.15	-0.8695652278100668	0.00000000
	1.175	-0.8510638409601978	0.00000000
	1.2	-0.8333333450879373	0.00000000
	1.225	-0.8163265428027686	0.00000000
	1.25	-0.8000000125034442	0.00000000
	1.275	-0.7843137382028316	0.00000000
	1.3	-0.7692307820652367	0.00000000
	1.325	-0.7547169940149423	0.00000000
	1.35	-0.7407407536104381	0,00000000
	1.375	-0.727272740077804	0.00000000
	1.4	-0.7142857269833552	0.00000000
	1.425	-0.7017543985196797	0.00000000
	1.45	-0.6896551847965542	0,00000000
	1.475	-0.6779661138819275	0.00000000
	1.5	-0.6666666786387963	0.00000000
	1.525	-0.6557377166600857	0.00000000
	1.55	-0.6451613018227296	0.00000000
	1.575	-0.6349206461699273	0,00000000
	1.6	-0.6250000109919354	0.00000000
	1.625	-0.6153846261147823	0.00000000
	1.65	-0.6060606165263691	0.00000000
	1.675	-0.5970149355733648	0.00000000
	1.7	-0.5882353040524909	0,00000000
	1.725	-0.5797101545982138	0.00000000
	1.75	-0.5714285808372047	0,00000000
	1.775	-0.5633802908396044	0.00000000
	1.8	-0.5555555644493481	0.00000000
	1.825	-0.5479452141215854	0.00000000
	1.85	-0.5405405489354439	0.00000000
	1.875	-0.533333341485771	0.00000000
	1.9	-0.5263157973886846	0.00000000
	1.9	-0.5194805271633137	0,00000000
	1.95	-0.5128205202764823	0,00000000
	1.95	-0.5128205202764823 -0.506329121158682	0.00000000
	2.0	-0.500329121138082	0,00000000
	2.025	-0.49382716730247594	0,00000000
	2.025	-0.49382/16/3024/594 -0.48780488465282396	0.00000000
	2.05	-0.48780488465282396	0.00000000
	2.1	-0.47619048240199335	0,00000000
	2.125	-0.47058824131762	0,00000000
	2.15	-0.4651162849106658	0,00000000
	2.175	-0.4597701206061527	0,00000000

i	Xi	Yi	Оценка правилом Рунге
	1.0	-1.0	0,00000000
	1.1	-0.9090909173505819	0,00000000
	1.2	-0.8333333450879373	0,00000000
	1.3	-0.7692307820652367	0,00000000
	1.4	-0.7142830637011622	0,00000063
	1.5	-0.6666657751018722	0,00000036
	1.6	-0.6249968705907591	0,000000022
	1.7	-0.5882346416709834	0,00000014
	1.8	-0.5555525003148281	0,00000008
	1.9	-0.5263157451357181	0,000000090
	2.0	-0.4999971281809025	0,00000050
	2.1	-0.47619100291718364	0,00000047
	2.2	-0.4545426776126376	0,000000021
	2.3	-0.43478365146071457	0,00000028
	2.4	-0.41666389252930186	0,000000008
	2.5	-0.40000151271763	0,00000020
	2.6	-0.38461252301401483	0,000000009
	2.7	-0.37037232395186154	0,00000015
	2.8	-0.3571398971104103	0,00000060
	2.9	-0.34482995297148045	0,00000013
	3.0	-0.3333301580879659	0,000000006
	3.1	-0.3225834234209584	0.00000012
	3.2	-0.31249655698669687	0.00000008
	3.3	-0.30303350068402524	0.00000012
	3.4	-0.29411388737817235	0.00000009
	3.5	-0.28571791867280394	0.00000012
	3.6	-0.2777738546230769	0,00000010
	3.7	-0.2702743612572239	0.00000012
	3.8	-0.2631533619694307	0,00000011
	3.9	-0.2564148341153611	0.00000013
	4.0	-0.24999501101171195	0,00000012
	4.1	-0.24390753754562955	0.00000013
	4.2	-0.23808974489009588	0,00000013
	4.3	-0.23256379804709768	0.00000013
	4.4	-0.2272666797079409	0.00000014
	4.5	-0.222284848204819	0.00000014
	4.6	-0.21738464948605088	0.00000015
	4.7	-0.21778904948000088	0,00000016
	4.8		0,00000017
	4.9	-0.20832601486932836 -0.20408925538960143	0.00000017
	5.0		
	5.0	-0.1999919577338953 -0.196086820300351	0,00000018
	5.2	-0.19229886164396118	0,00000019
	5.3	-0.1886884649321307	0,00000020
	5.4	-0.18517549664147875	0,000000021
	5.5	-0.1818283024190612	0,000000022
	5.6	-0.17856080728507567	0,000000022
	5.7	-0.17544969433307	0,000000023
	5.8	-0.1724021583260114	0,000000024
	5.9	-0.16950368326376605	0,00000025
	6.0	-0.16665393123875766	0.00000026

Вывод:

В результате выполнения данной лабораторной работы, я познакомился с методами решения ОДУ. Узнал о понятиях "одношаговый метод" и "многошаговый метод", поработал с одношаговым методом Рунге-Кутта 4-го порядка, а также с многошаговым методом Милна и начертил их графики, после чего сравнил их с графиком точного значения. Для оценки погрешностей использовал правило Рунге.