Minería de Datos II

Clase 6 - Hive

Permite crear infraestructuras de tipo de data warehouse sobre Hadoop para realizar análisis de grandes volúmenes de datos

Asigna una estructura tabular (metadata) a los datos en bruto almacenados en HDFS

SELECT * FROM clientes;

- HiveQL (Hive Query Language)

Hive utiliza un subconjunto de comandos SQL.

Data Definition Language

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

Data Manipulation Language

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML

Importante: las operaciones de UPDATE y DELETE no están habilitadas por defecto.

- Tipos de Tablas

MANAGED	EXTERNAL	
Hacen referencia a un path dentro de HDFS que es administrado por Hive	Generan metadata para un path de HDFS que no es administrado por Hive	
El valor por defecto se especifica en en el parámetro hive.metastore.warehouse.dir y tipicamente es /user/hive/warehouse/	Debemos agregar la palabra clave EXTERNAL y especificar el path de HDFS en la sección LOCATION	
En caso de realizar una operación de tipo DROP TABLE, Hive eliminaría la metadata de la tabla y los datos	En caso de realizar una operación de tipo DROP TABLE, Hive eliminaría la metadata de la tabla pero no los datos	

-Tipos de Dato

Hive, además de los tipos de datos comunes a todos los motores de bases de datos relacionales, ofrece una nueva categoría de tipos de datos complejos

Complex Types
ARRAY<data_type>
MAP<primitive_type, data_type>
STRUCT<col_name : data_type, ...>

•	\$	Name	♦ Type
0	<u>ա</u> id		int
1	<u>Ш</u> la	stname	string
2	<u>lau</u> fir	rstname	string
3	lill do	ob	date
4	<u>lilil</u> ne	ewsletter	boolean
5	dil co	ontacts	map <string,string></string,string>
6	<u>ılıl</u> or	rders	array <string></string>
7	<u>ılıl</u> si	te	string

-Formatos de Almacenamiento

Hive permite leer y escribir datos en diferentes formatos de archivos.

Habitualmente se utilizan 2 formatos:

- CSV para los datos en bruto
- Parquet para los datos procesados

-Particiones

El particionamiento es una forma de dividir una tabla en partes relacionadas en función de los valores de columnas particulares (por ej. fecha, la ciudad y el departamento).

Cada tabla puede tener una o más claves de partición para identificar una partición particular.

Esta forma de almacenar los datos permite realizar consultas más eficientes.

-Ejemplo Hive

-Hue (Hadoop User Experience)

Es una interfaz web que permite ejecutar consultas SQL hacia diferentes motores de bases de datos, principalmente relacionados a Big Data.

Bases de datos soportadas Conectores

Entorno de prueba gratuito Demo

-Ranger:

Proporciona una gestión de seguridad y control de acceso basada en políticas para entornos de big data. Su objetivo principal es proporcionar una capa de seguridad unificada y centralizada para proteger los datos almacenados y procesados:

Atlas:

Proporciona una gestión de metadatos de Big Data utilizada para catalogar, descubrir y gestionar los metadatos en un ecosistema de big data. Su principal objetivo es proporcionar una vista centralizada y unificada de los metadatos de los activos de datos en todo el ecosistema:

Laboratorio:

Se trabajará con el siguiente entorno de Docker Compose:

Instrucciones para su configuración:

- git clone https://github.com/tech4242/docker-hadoop-hive-parquet.git
- cd docker-hadoop-hive-parquet/
- sudo docker-compose up

Analizar Datos con Hive

Ingresar a Hue (ver imágenes) http://<ip>:8888/hue

En la sección de archivos, cargar los archivos de la carpeta data y replicar la misma estructura de directorios en HDFS

En la sección de mis documentos, cargar el archivo clase-03.json y luego seleccionar el editor Hive.

Enlace sugerido para lectura:

Towardsdatascience: Big-data-with-hadoop-hive-parquet-hue-and-docker

 $\textbf{Fuente:} \ \ \textbf{https://towardsdatascience.com/making-big-moves-in-big-data-with-hadoop-hive-parquet-hue-and-docker-320a52ca175}$