

The Radar Detector Company

A manufacturer of radar detectors produces LaserStop & SpeedBuster. LaserStop makes a profit of \$3 and SpeedBuster makes a profit of \$2. LaserStop uses 4 units of Component A and 2 units of Component B. SpeedBuster uses 2 units of Component A and 3 units of Component B. There is a limit of 20 units of component A and 18 of component B. How many of each radar detector should be produced to maximize profit?

Let's Read this Example Again

- A manufacturing company makes two products LaserStop and SpeedBuster
- Resources A and B are used in producing the two detectors
- One LaserStop requires 4 units of A and 2 units of B
- One SpeedBuster requires 2 units of A and 3 units of B
- 20 units of A and 18 units of B are available
- The company makes a profit of \$3 on one LaserStop and a profit of \$2 on one SpeedBuster
- Find the product mix (i.e. number of LaserStops and SpeedBusters produced) that gives maximum profit

Representation of the Data for Example Problem

Resource	Resource Required per batch Product		Resource Available
	LaserStop	SpeedBuster	
А	4	2	20
В	2	3	18
Profit per Item	\$3	\$2	

Now, Formulate as an LP Problem

Unknowns / Decision Variables:

- x_1 = number of LaserStops to be produced
- x_2 = number of SpeedBusters to be produced

Objective Function:

z = total profit from producing products (in \$'s)

And don't forget your constraints:

These are the elements of the problem which keep up from maximizing profits to infinity, or minimizing costs to zero — the realities of life

LP Problem in Mathematical Language

Maximize
$$Z = 3x_1 + 2x_2$$

Subject to resource availability restrictions

$$4x_1 + 2x_2 \le 20$$

$$2x_1 + 3x_2 \le 18$$

and

$$\mathbf{x}_1 \geq 0, \mathbf{x}_2 \geq 0$$

Resource	Resource Required Product		Resource Available
	LaserStop	SpeedBuster	
А	4	2	20
В	2	3	18
Profit per detector	\$3	\$2	

- A graphical procedure can be used since the problem has only two unknowns
- Steps:
 - ▶ Construct a graph with x_1 and x_2 as the axes
 - ▶ Identify the values of (x_1, x_2) or the region permitted by the restrictions
 - ▶ Pick out the point that maximizes the value of Z

Constraint #1

$$4x_1 + 2x_2 \le 20$$

Constraint #2

 $2x_1 + 3x_2 \le 18$

On top of that area, outlined by the constraint functions, we superimpose the objective function – remember, our goal is represented by the objective function

