Dynamic Optimization

Jesús Bueren

EUI

Dynamic Optimization

- In this chapter we are going to characterize solutions to dynamic optimization problems
- In order to solve them, we are going to introduce discrete dynamic programming.
- Along our way, we are going to revise some mathematical concepts covered by Villanacci.
- References: The PhD Macro Book (Ch 4), Acemoglu (Ch 6), and SLP (Ch 4).

Motivating the Recursive Formulation

A Cake Eating Problem

- We will go over a very simple dynamic optimization problem.
- Suppose that you are presented with a cake of size W_1 .
- At each point in time $t=1,2,\ldots,T$, you can eat some of the cake but must save the rest.
- Let c_t be your consumption at time t and $u(c_t)$ represent the flow of utility.
- u twice differentiable, strictly increasing, strictly concave, $\lim_{c\to 0} u'(c) = \infty$.
- Discount factor: $0 < \beta < 1$

The Sequential Formulation

A Cake Eating Problem

• The agent is solving:

$$\max_{\{c_{t}, W_{t+1}\}_{t=0}^{T}} \sum_{t=0}^{I} \beta^{t} u(c_{t})$$
s.t. $c_{t} + W_{t+1} = W_{t} \ \forall t$
 $W_{T+1} \geq 0$

The Lagrangian associated to this problem is given by:

$$\mathcal{L} = \sum_{t=0}^{T} \beta^{t} u(c_{t}) + \sum_{t=0}^{T} \lambda_{t} (W_{t} - c_{t} - W_{t+1}) + \phi W_{T+1}$$

The Sequential Formulation

A Cake Eating Problem

FOCs:

$$\beta^{t} u_{c}(c_{t}) = \lambda_{t}$$

$$\lambda_{t} = \lambda_{t+1}$$

$$\lambda_{T} = \phi$$

$$\phi \geq 0 \text{ with } \phi W_{T+1} = 0 \Rightarrow \beta^{T} u_{c}(c_{t}) W_{T+1} = 0$$

$$u'(c_{t}) = \beta u'(c_{t+1}) \ \forall t \in [0, T-1]$$

$$W_{T+1} = 0$$

• With the set of T intertemporal equations (euler equations), an initial condition and a terminal condition

A Cake Eating Problem

- In order to solve finite-horizon dynamic programming problems, we are going to proceed by backwards induction.
- For t = T, given the properties of u and the constraint, the optimal solution is given by:

$$c_T = W_T$$
$$u(c_T) = u(W_T)$$

A Cake Eating Problem

We define the value function at time T for the problem at time T as:

$$V_T(W_T) = \max_{c_T} u(c_T)$$
$$c_T + W_{T+1} = W_T$$

The optimal cake-saving decision is thus:

$$g_T(W_T)=0$$

and the value function is given by:

$$V_T(W_T) = u(W_T)$$

A Cake Eating Problem

• Now let's go to t = T - 1 given that we have solved the problem for t = T and define V_{T-1} .

$$V_{T-1}(W_{T-1}) = \max_{c_{T-1}, c_T, W_T, W_{T+1}} u(c_{T-1}) + \beta u(c_T)$$
s.t. $c_{T-1} + W_T = W_{T-1}$

$$c_T + W_{T+1} = W_T$$

• Given that we already we know what is optimal to do in the next period, we can simplify the problem at T-1 as:

$$V_{T-1}(W_{T-1}) = \max_{c_{T-1}, W_T} u(c_{T-1}) + \beta V_T(W_T)$$

s.t. $c_{T-1} + W_T = W_{T-1}$

A Cake Eating Problem

• Le's write the optimality conditions as:

$$u'(c_{T-1}) = \beta V'_T(W_T)$$

$$u'(c_{T-1}) = \beta u'_T(W_T)$$

- The solution coincides with the sequential formulation in the last period.
- We are in good track but what about previous periods?

A Cake Eating Problem

• Since it's going to be useful let's first derive the value of $V'_{T-1}(W_{T-1})$ given the optimal cake saving decision $g_{T-1}(W_{T-1})$ obtained from the previous FOC.

$$\begin{split} V_{T-1}(W_{T-1}) &= u(W_{T-1} - g_{T-1}(W_{T-1})) + \beta V_T(g_{T-1}(W_{T-1})) \\ \frac{\partial V_{T-1}(W_{T-1})}{\partial W_{T-1}} &= u_c(c_{T-1}) - u_c(c_{T-1}) \frac{\partial g_{T-1}(W_{T-1})}{\partial W_{T-1}} + \\ & \beta \frac{\partial g_{T-1}(W_{T-1})}{\partial W_{T-1}} \frac{V_T(W_T)}{\partial W_T} \\ \frac{\partial V_{T-1}(W_{T-1})}{\partial W_{T-1}} &= u_c(c_{T-1}) + \frac{\partial g_{T-1}(W_{T-1})}{\partial W_{T-1}} \Big(\beta \frac{V_T(W_T)}{\partial W_T} - u_c(c_{T-1})\Big) \\ \frac{\partial V_{T-1}(W_{T-1})}{\partial W_{T-1}} &= u_c(c_{T-1}) \end{split}$$

A Cake Eating Problem

• At T-2 the problem can be written as:

$$V_{T-2}(W_{T-2}) = \max_{c_{T-2}, W_{T-1}} u(c_{T-2}) + \beta V_{T-1}(W_{T-1})$$

s.t. $c_{T-2} + W_{T-1} = W_{T-2}$

With FOCs:

$$u_c(c_{T-2}) = \beta \frac{\partial V_{T-1}(W_{T-1})}{\partial W_{T-1}} = \beta u_c(c_{T-1})$$

Practical Dynamic Programming

Finite Horizon

- Define a discretized grid of cake: $W \in \{W^1, \dots, W^{nkk}\}$.
- Define $V_T(W_T)$ for each W_T^i in the cake grid: $V_T(W_T^i) = u(W_T^i)$ and $g_T(W_T^i) = 0 \ \forall \ i \in \{1, \dots, nkk\}$
- Go to the previous period. We want to find $g_{T-1}(W_{T-1})$
- Grid search: For each W_{T-1}^i , $i \in \{1, ..., nkk\}$, the agent has i possible cake saving decisions W_T^j where $j \in \{1, ..., i\}$.
- Compute the value for each j:

$$V_{T-1}(W_{T-1}^i, W_{T-1}^j) = u(W_{T-1}^i - W_T^j) + \beta V(W_j)$$

and select the W_{T-1}^j which achieves the highest utility: j^* , set $g_{T-1}(W_{T-1}^i) = W_T^{j^*}$ and $V_{T-1}(W_{T-1}^i) = V_{T-1}(W_{T-1}^i, W_{T-1}^{j^*})$

• Move to period T-2

A Cake Eating Problem

- Suppose for the cake-eating problem, we allow the horizon to go to infinity.
- The main advantage of an infinite horizon is that the agent problem becomes stationary: the maximization problem at date t is exactly the same as in period t+1
- Unlike in finite horizon case, we don't have a terminal condition in the cake eating problem we will thus need to impose a transversality condition:

$$\lim_{t\to\infty}\beta^t u_c(c_t)W_{t+1}=0$$

if discounted marginal utility is positive, the amount of cake needs to go to zero to rule out over-accumulation

A Cake Eating Problem

One can consider solving the infinite horizon sequence given by:

$$\max_{\{c_{t}, W_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^{t} u(c_{t})$$
s.t. $c_{t} + W_{t+1} = W_{t} + y \ \forall \ t$

$$\lim_{t \to \infty} \beta^{t} u_{c}(c_{t}) W_{t+1} = 0$$

Written in recursive form:

$$V(W_t) = \max_{\{c_t, W_{t+1}\}} u(c_t) + \beta V(W_{t+1})$$
s.t. $c_t + W_{t+1} = W_t + y$

$$\lim_{t \to \infty} \beta^t V(W_t) = 0$$
(2)

The transversality condition (2) is frequently avoided because assuming V being bounded, its is satisfied for $\beta < 1$.

A Cake Eating Problem

- Equation (1) is referred as the Bellman equation.
- It is a functional equation: the unknown represents as function.
- By FOCs:

$$u_c(c_t) = \beta \frac{\partial V(W_{t+1})}{\partial W_{t+1}} \tag{3}$$

• Let's define g(W) the optimal savings function associated with equation (1):

$$g(W_t) = \arg \max_{W_{t+1}} u(W_t + y - W_{t+1}) + \beta V(W_{t+1})$$
$$V(W_t) = u(W_t + y - g(W_t)) + \beta V(g(W_t))$$

A Cake Eating Problem

Provided that g is differentiable we can now compute:

$$\frac{\partial V(W_t)}{\partial W_t} = u_c(c_t) + \frac{\partial g(W_t)}{\partial W_t} \left(\beta \frac{\partial V(W_{t+1})}{\partial W_{t+1}} - u_c(c_t) \right)$$
$$\frac{\partial V(W_t)}{\partial W_t} = u_c(c_t) \Rightarrow \frac{\partial V(W_{t+1})}{\partial W_{t+1}} = u_c(c_{t+1})$$

Then we can write equation (3) as:

$$u_c(c_t) = \beta u_c(c_{t+1})$$

A Cake Eating Problem

- Under what conditions V exists? Is it unique?
- How to find V in the infinite horizon case?
- Is g a function or a correspondence? Is it differentiable?

The Dynamic Programming Approach

- Buiding on the intuition gained from the cake eating problem, we now consider a more formal treatment of the dynamic programming approach to answer the previous questions.
- We begin with the nonstochastic case and then add uncertainty to the formulation.

The Dynamic Programming Approach

- Consider the infinite horizon optimization problem of an agent with payoff function $\tilde{\sigma}(s_t, c_t)$.
- state vector: s_t ; control vector: c_t .
- Transition equation: $s_{t+1} = \tilde{\tau}(s_t, c_t)$.
- The state summarizes all the information from the past that is needed to make a forward-looking decision.
- $s \in \mathcal{S}$ and $c \in \mathcal{C}(s)$.
- Let β be the discount factor and assume $0 < \beta < 1$.

The Dynamic Programming Approach

The sequential problem can be written as:

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \tilde{\sigma}(s_t, c_t) \ s.t. \ s_{t+1} = \tilde{\tau}(s_t, c_t) \ c_t \in \tilde{\mathcal{C}}(s_t)$$

 We can rewrite the problem as Henriette and Matteo prefer by imposing the law of motion of the state:

$$V^*(s_0) = \max_{\{s_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t \sigma(s_t, s_{t+1})$$
 s.t. $s_{t+1} \in \mathcal{C}(s_t)$,

Where V^* denotes the highest possible value the the objective function can reach

• The basic idea of dynamic programming is to turn the sequential problem into a functional equation:

$$V(s) = \max_{s' \in \mathcal{C}(s)} \sigma(s, s') + \beta V(s)$$
 (4)

- Instead of choosing a sequence $\{s_t\}_{t=0}^{\infty}$, we choose a policy, which determines the control s' as a function of the state s.
- Given that V appears both in both sides of the equation 4 and thus it is defined recursively.
- Equation 4 is also referred as the Bellman equation after Richard Bellman, who was the first to introduce the dynamic programming formulation.
- A solution to the functional equation is thus a fixed point.

Math Review

Brouwer's Fixed Point Theorem

- Let \mathcal{F} be a nonempty compact (closed and bounded) convex set.
- Let T be a continuous function that maps each point $x \in \mathcal{F}$ to itself.
- Then T has a fixed point $x^* \in \mathcal{F}$ such that $T(x^*) = x^*$
- More questions:
 - To which set does V belong to?
 - Does the operator defined in the functional equation map each element of that set to itself?
 - Is the fixed point unique?

Math Review

What is a Contraction Mapping?

• Let (\mathcal{M}, d) be a metric space where \mathcal{M} is a set and d is a metric.

A metric space is a set and a function such that for all $x, y, z \in S$:

- 1. $d(x, y) \ge 0$, with equality iff x = y
- 2. d(x, y) = d(y, x)
- $3. d(x,y) \leq d(x,z) + d(z,y)$
- Let $T: \mathcal{M} \to \mathcal{M}$ be an function mapping \mathcal{M} into itself.
- If there exists a $\beta \in (0,1)$ such that,

$$d(\mathit{Tz}_1, \mathit{Tz}_2) \leq \beta d(z_1, z_2) \ \forall \ z_1, z_2 \in S$$

then T is a **contraction mapping** with modulus β .

• In other words, a contraction mapping brings elements of the space ${\cal M}$ uniformly closer to one another.

Math Review

Contraction Mapping Theorem

Let (\mathcal{M},d) be a complete metric space and suppose $T:\mathcal{M}\to\mathcal{M}$ is a contraction mapping.

A metric space is complete if every Cauchy sequence is a convergent sequence.

- A sequence $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence if for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that for all I, n > N, $d(x_I, x_n) < \epsilon$
- A sequence $\{x_n\}_{n=0}^{\infty}$ is a convergent sequence to $\underline{x_0 \in \mathcal{M}}$ if for all $\epsilon > 0$, there exist here exists an $N \in \mathbb{N}$ such that for any n > N, $d(x_n, x_0) < \epsilon$
- Then, T has a **unique** fixed point \hat{z} and for any $z_0 \in \mathcal{M}$, and any $n \in \mathbb{N}$ we have $d(T^n z_0, \hat{z}) \leq \beta^n d(z_0, \hat{z})$.
- That is there exists a unique $\hat{z} \in \mathcal{M}$ such that

$$T\hat{z} = \hat{z}$$

and regardless of the starting guess z_0 , the sequence $\{T^n z_0\}_{n=0}^{\infty}$ converges to \hat{z} .

Match Review

Blackwell's Sufficient Conditions for a Contraction

- Let $s \in \mathcal{S}$ and (\mathcal{M}, d) be the metric space where \mathcal{M} is the set of bounded function equipped with the sup norm.
- Let $T: \mathcal{M}(s) \to \mathcal{M}(s)$ satisfying:
 - 1. Monotonicity: If $W(s) \ge Q(s)$, for all $s \in S$, then $TW(s) \ge TQ(s)$.
 - 2. Discounting: for any constant k there exists $\tilde{\beta} \in [0,1)$ such that $T(W+k)(s) \leq T(W)(s) + \beta k$.
- Then T is a contraction.

- In order to apply the Blackwell sufficient conditions, we need V to belong to the set of bounded functions.
- For this to be true, we need some assumption on the primitive objects.

- $\sigma(s_t, s_{t+1})$ needs to be bounded so that it does not yield infinite returns: we cannot compare two choices of s_{t+1} that deliver infinite value.
- With $\beta \in (0,1)$ and bounded σ , the V will be bounded for the problems that we will see in this course.
- Problems might arise in models of growth: you would need growth in the return function to be "smaller" than the rate of discounting such that discounted returns are bounded.
- This assumption will allow us to define the set of V: the set of continuous bounded functions.
- Equipped with the supremum norm forms a complete metric space.

- If σ is continuous and $\mathcal C$ is convex, nonempty and compact (closed and bounded).
 - \Rightarrow Unique value function satisfying the functional equation and therefore it is possible to find V(x) by an iterative process
 - 1. Select any initial value $V_0(s) \ \forall x \in \mathcal{S}$.
 - 2. Define a sequence of functions:

$$V_n(x) = \max_{s' \in C(s)} \sigma(s, s') + \beta V_{n-1}(s)$$

3. The sequence $\{V_0, V_1, \dots, V_n\}_{n=0}^{\infty}$ converges to V

- Even if V is unique it could be that the policy associated could be a correspondence unless we put further restrictions of σ and C:
 - 1. $\sigma(s, s')$: strictly concave, continuous, and differentiable.
 - 2. C(s): convex
 - \Rightarrow We have a continuous and differentiable policy function
- The Enveloppe theorem holds:

$$\frac{\partial v(s)}{\partial s} = \frac{\partial \sigma(s, s')}{\partial s}$$