Paper Title*

1st Given Name Surname

dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

2nd Given Name Surname

dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract— Index TermsSo each IaaS provider try to solve following optimizaiton problem:

I. INTRODUCTION

II. SYSTEM MODEL

$$\varphi_s(R_s) = \log(\sum_{i=1}^{N_I} r_{i,s}) - \sum_{i=1}^{N_I} p_i r_{i,s} F_s$$
(1)

$$t_{s} = \frac{1}{\sum_{i=1}^{N_{I}} r_{i,s}} \sum_{i=1}^{N_{I}} r_{s,i} (t_{i,s}^{sensors} + t_{i,s} + t_{i,s}^{actuators})$$
 (2)

$$t_{i,s} = \frac{1}{u_{i,s}C_i - r_{i,s}F_s} \tag{3}$$

$$\max_{p_i, U_i, \Lambda_S^i} \varphi_i(p_i, U_i, \Lambda_S^i) \tag{7a}$$

subject to:

$$0 \le u_s^i, \forall s \in \{1, \dots, N_S\} \tag{7b}$$

$$\sum_{s=1}^{N_S} u_s^i \le 1 \tag{7c}$$

$$P_{idle}^{i} + (P_{max}^{i} - P_{idle}^{i}) \sum_{s=1}^{N_S} u_s^{i} \le \bar{P}^{i}$$
 (7d)

$$\Lambda_s^i \in SOL(F_s), \forall s \tag{7e}$$

$$\max_{\Lambda_s} \varphi_s(R_s) \tag{4a}$$

subject to:

$$R_s^{min} \le \sum_{k=1}^{N_I} r_{k,s} \tag{4b}$$

$$0 \le r_{j,s}, \forall j \in \{1, \dots, N_I\} \tag{4c}$$

$$r_{j,s}R_s \le 0.9u_{j,s}C_j, \forall j \in \{1,\dots,N_I\}$$
 (4d)

$$r_{j,s}R_s \le 0.9u_{j,s}C_j, \forall j \in \{1, \dots, N_I\}$$
 (4d)
 $t_{j,s} + \frac{1}{u_{j,s}C_j - r_{j,s}F_s} \le 0$ (4e)

$$\pi(x^{i}, x^{-i}) - \pi(y^{i}, x^{-i}) = \varphi_{i}(x^{i}, x^{-i}) - \varphi_{i}(y^{i}, x^{-i})$$
 (8)

It's easy to show that any global minimum of function π is a nash equilibrium of corresponding game.

show or not??? For IaaS providers exact potential function can be writen as:

(9)

$$\varphi_i(p_i, U_i, \Lambda_S^i) = \sum_{s=1}^{N_S} p_i \lambda_{i,s}^i R_s - P^{electrical}(P_i(\sum_{s=1}^{N_S} (u_{i,s})))$$
(5)

$$P_i(u_i) = P_i^{idle} + (P_i^{max} - P_i^{idle})u_i$$
 (6)
$$\pi(x^i, x^{-i}) = \sum_{i=1}^{N_I} \varphi_i(x^i, x^{-i})$$

III. PROBLEM FORMULATION

$$\max_{p^i, U^i, \Lambda_S^i, \sigma_S^i, \gamma_S^i, \nu_S^i, \eta_S^i} \varphi(p_i, U^i, \Lambda_S^i)$$
(10a)

subject to:

$$\sum_{s=1}^{N_S} u_s^i \le 1 \tag{10b}$$

$$0 \le u_s^i, \forall s \in \{1, \dots, N_S\}$$

$$\tag{10c}$$

$$P_{idle}^{i} + (P_{max}^{i} - P_{idle}^{i}) \sum_{s=1}^{N_S} u_s^{i} \le \bar{P}^{i}$$
 (10d)

$$0 \le \lambda_{s,i}^i \tag{10e}$$

$$\lambda_s^{min} - \sum_{j=1}^{N_I} \lambda_{j,s}^i \le 0, \forall s \in \{1, \dots, N_S\}$$
 (10f)

$$\lambda_{j,s}^i R_s \le 0.9 \mu_{j,s} C_j, \forall s \& j \tag{10g}$$

$$\sum_{j=1}^{N_I} \lambda_{j,s}^i(t_{j,s}^{sensors} + \frac{1}{\mu_{j,s}^i - \lambda_{j,s}^i} + t_{j,s}^{actuators} - t_s^{\max}) \tag{10h}$$

$$\leq 0, \forall s$$

$$\sigma_{j,s}^i \lambda_{j,s}^i = 0, \forall j \& s \tag{10i}$$

$$\gamma_s^i(\lambda_s^{min} - \sum_{i=1}^{N_I} \lambda_{j,s}^i) = 0, \forall s$$
 (10j)

$$\nu_{j,s}^{i}(\lambda_{j,s}R_{s} - 0.9\mu_{j,s}C_{j}) = 0 \forall j \& s$$
 (10k)

$$\eta_{s}^{i} \sum_{j=1}^{N_{I}} \lambda_{j,s}^{i} (t_{j,s}^{sensors} + \frac{1}{\mu_{j,s} C_{j} - \lambda_{j,s} R_{s}} + t_{j,s}^{actuators} - t_{s}^{\max})$$

$$= 0, \forall s$$

$$\tag{101}$$

$$\frac{1}{\sum_{k=1}^{N_I} \lambda_{k,s}^i} - p_j R_s + \frac{1}{\sum_{k=1}^{N_I} \lambda_{k,s}^i} - q_j R_s + \frac{1}{\sum_{k=1}^{N_I} \lambda_{k,s}^i} - q_j R_s \nu_{j,s}^i - q_j R_s$$

$$0 \le \sigma_{i,s}^i, \sigma_{i,s}^i, \nu_{i,s}^i \& \sigma_{i,s}^i, \forall s \& j$$

$$\tag{10n}$$

Here $\lambda_{s,i}$ is $[\lambda_1^i,\cdots,\lambda_{N_S}^i]$ and λ_s^i is conjecture of λ_s by PaaS provider $i,\ u^i$ is $[u_{i,1},\cdots,u_{i,N_S}]$ and $u_i=\sum_{i=1}^{N_S}u_{i,s}$. A potential function can be defined for this game.

Function π is potential function of this game:

$$\pi(x^{i}, y^{i}, x^{-i}, y^{-i}) = \sum_{i=1}^{N_{I}} P(u_{i}) - p_{i}u_{i}$$
 (11)

here x^i and y^i are a tuple of (p^i,u^i) and $(\lambda_{s,i},\nu_S^i,\gamma_S^i)$

REFERENCES