Facultad de Ciencias Programa FOGEC ÁLGEBRA I 1er. semestre 2021 Prof. Mario Marotti $_{\text{CLASE No.}}24$

Teorema de descomposición factorial

Antes que nada ... más ejemplos de utilización del esquema de Ruffini de división sintética por $(x - \alpha)$. Ya vimos dos ejemplos la clase pasada.

Ejemplo 3

Hallar A y B para que el polinomio

$$p(x) = x^4 - 3x^3 - 10x^2 + Ax + B$$

sea divisible entre $x^2 + 3x + 2$.

Solución:

Si p(x) es divisible entre $x^2 + 3x + 2$ deberá tener las raíces de ese polinomio. Resolvemos:

$$x^2 + 3x + 2 = 0$$

Encontramos raíces

$$x = -1$$
 y $x = -2$.

Bajamos p(x) por -1 y por -2. Los restos deberán ser 0.

	1	-3	-10	A	В
-1		-1	4	6	-A - 6
	1	-4	-6	A+6	-A + B - 6 = 0
	1	-3	-10	A	В
-2		-2	10	0	-2ª
	1	-5	0	A	-2A + B = 0

Resolvemos el sistema de ecuaciones de los dos restos igualados a cero,

$$\begin{cases} -A + B = 6 \\ -2A + B = 0 \end{cases}$$

Encontramos que:

$$A = 6$$
 y $B = 12$

El polinomio buscado es:

$$p(x) = x^4 - 3x^3 - 10x^2 + 6x + 12$$

Ejemplo 4:

Otro ejemplo de aplicación del algoritmo de Ruffini. En este caso, con raíces complejas. Se tiene

$$p(x) = x^3 - 7x^2 + 31x - 25$$

Hallar las raíces de p(x) y factorizar el polinomio.

Solución:

Comenzamos aplicando una propiedad que es bastante fácil de ver:

"Si en un polinomio, sus coeficientes suman 0, entonces x=1 es raíz de ese polinomio" (Intenten demostrar dicha propiedad para un polinomio genérico de 3er. grado. Es fácil)

Aplicamos la propiedad: la suma de los coeficientes es

$$1 - 7 + 31 - 25 = 0$$

por tanto x = 1 es raíz.

Dividimos el polinomio entre (x - 1)por Ruffini e igualamos resto a 0:

	1	-7	31	-25
1		1	-6	25
	1	-6	25	0 ← Confirmado que 1 es raíz.

Por tanto, por el teorema del factor, como 1 es raíz del polinomio, éste es divisible entre (x-1).

$$p(x) = (x - 1)(x^2 - 6x + 25)$$

Ese cociente no tiene raíces reales ya que su discriminante es negativo:

$$B^2 - 4AC = -64$$

El polinomio $x^2 - 6x + 25$ es, por tanto, **irreductible en R**. No se puede factorizar. Al desarrollar el tema Números Complejos, se verá como hacerlo.

Consecuencias:

"Todo polinomio de coeficientes reales puede ser escrito como producto de factores de 1er. grado (correspondientes a las raíces reales) y/o factores de 2do. grado irreductibles en R".

"Todo polinomio de grado impar tiene por lo menos una raíz real"

Teorema de la raíz racional:

(Hipótesis)

El polinomio

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

 $p(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_2x^2+a_1x+a_o$ de coeficientes reales, tiene una raíz $x=\frac{p}{q}$ con $p,q\in Z$ y $q\neq 0$ (una raíz racional)

Asumimos además que, de haber simplificaciones posibles en la fracción $\frac{p}{a}$, ya fueron realizadas todas. O sea, p y q son coprimos, MCD(p,q)=1.

(Tesis)

El numerador p de la raíz es uno de los divisores enteros del término independiente a_0 del polinomio.

$$p \in div(a_o)$$

El denominador q de la raíz es uno de los divisores enteros de a_n (esto es, del coeficiente principal del polinomio).

$$q \in div(a_n)$$

El teorema permite detectar raíces racionales (esto es que puedan ser expresadas como fracciones) de un polinomio.

Ejemplo 5:

Busquemos raíces racionales del polinomio:

$$p(x) = 5x^3 - x^2 - 15x + 3$$

Solución:

El coeficiente del término independiente $a_0=3$ que tiene divisores enteros $\pm 1, \pm 3$

El coeficiente del término de mayor grado $a_3 = 5$ que tiene divisores $\pm 1, \pm 5$.

Observa que como son divisores enteros ambos signos (+ y -) son posibles.

Formamos todas las fracciones posibles candidatas a raíz (tomando numeradores de la primer lista y denominadores de la segunda):

Candidatas:
$$\left\{\pm 1, \pm 3, \pm \frac{1}{5}, \pm \frac{3}{5}\right\}$$

Si p(x) tiene una raíz racional, tiene que estar en esa lista.

Finalmente, probamos con las ocho candidatas, buscando cuál de ellas tiene resto 0 al bajar por Ruffini.

Encontramos,

		5	-1	-15	+3
-	$\frac{1}{5}$		1	0	-3
Ī	-	5	0	-15	0 ← confirmado

Factorizando,

$$p(x) = (x - \frac{1}{5})(5x^2 - 15)$$

Las otras raíces del polinomio las encontramos resolviendo la ecuación

$$5x^2 - 15 = 0$$

y son:

$$x = -\sqrt{3} \quad y \quad x = +\sqrt{3}$$

Finalmente factorizamos,

$$p(x) = 5(x - \frac{1}{5})(x + \sqrt{3})(x - \sqrt{3})$$

Nota: Observa que el teorema no permite detectar las raíces irracionales $\sqrt{3}$ y $-\sqrt{3}$. De ahí su nombre, "teorema de la raíz racional".