Efficient green energy sources report

Alejandro Barajas, Gary Layman, Trevor Olmo, Add your names here 2025-10-14

R and Python libary set up

• Overall goal The goal is to identify which sources deliver the most energy per dollar while minimizing environmental impact

Data Preparation

```
#### Commented this out because we no longer need it
# energy <- eia_data(
# dir = "electricity/electric-power-operational-data",
# data = c("ash-content", "consumption-for-eg", "consumption-for-eg-btu", "consumption-uto"
# freq = "quarterly",
# start = "2020",
# end = "2025"
#)
# All columns are <char> and will need to be cleaned
```

YOUR CODE HERE

Data Collection & Cleaning

- What sources are used?
- What cleaning steps are necessary?

We already scraped the data from the EIA website, so we can use that data directly. We just need to read it in from the csvs it has been saved in.

```
# YOUR CODE HERE
#Find all csv files in the directory, read them in, and store them in a single df
eia_csvs = glob("datasets/*.csv")
dfs = [pd.read_csv(csv) for csv in eia_csvs]
energy_df = pd.concat(dfs, ignore_index=True)
energy_df.head()
```

```
period location ... total-consumption-btu
                                               total-consumption-btu-units
0 2016-Q3
                IN ...
                                       8.93140
                                                              million MMBtu
1 2016-Q3
                                       0.31604
                IN ...
                                                              million MMBtu
2 2016-Q3
                MD ...
                                                              million MMBtu
                                          {\tt NaN}
3 2016-Q3
                                       0.00000
                                                              million MMBtu
                MD ...
                                                              million MMBtu
4 2016-Q3
                MD ...
                                      1.65269
```

[5 rows x 37 columns]

Data Organization & Conditioning

- How is the data structured?
- Are there transformations or feature engineering steps?

Here I just check number of rows and columns.

```
# YOUR CODE HERE
# Number of rows
print("Rows: ", energy_df.shape[0])
# Number of columns
print("Columns: ", energy_df.shape[1])
```

Rows: 530986 Columns: 37

Columns Types

```
#Data types
energy_df.dtypes
```

```
period object location object stateDescription object
```

sectorid	int64
sectorDescription	object
fueltypeid	object
${\tt fuelTypeDescription}$	object
ash-content	float64
ash-content-units	object
consumption-for-eg	float64
consumption-for-eg-units	object
consumption-for-eg-btu	float64
consumption-for-eg-btu-units	object
consumption-uto	float64
consumption-uto-units	object
consumption-uto-btu	float64
consumption-uto-btu-units	object
cost	float64
cost-units	object
cost-per-btu	float64
cost-per-btu-units	object
generation	float64
generation-units	object
heat-content	float64
heat-content-units	object
receipts	float64
receipts-units	object
receipts-btu	float64
receipts-btu-units	object
stocks	float64
stocks-units	object
sulfur-content	float64
sulfur-content-units	object
total-consumption	float64
total-consumption-units	object
total-consumption-btu	float64
total-consumption-btu-units	object
dtype: object	-

Data Storage

- Where and how is the data stored?
- Is it accessible and secure?

Find the number of missing values in each column.

YOUR CODE HERE energy_df.isna().sum()

period	0
location	0
stateDescription	0
sectorid	0
sectorDescription	0
fueltypeid	0
${\tt fuelTypeDescription}$	0
ash-content	189444
ash-content-units	0
consumption-for-eg	49532
consumption-for-eg-units	0
consumption-for-eg-btu	49532
consumption-for-eg-btu-units	0
consumption-uto	49532
consumption-uto-units	0
consumption-uto-btu	49532
consumption-uto-btu-units	0
cost	433700
cost-units	0
cost-per-btu	485548
cost-per-btu-units	0
generation	15880
generation-units	0
heat-content	170783
heat-content-units	0
receipts	170783
receipts-units	0
receipts-btu	166205
receipts-btu-units	0
stocks	507804
stocks-units	0
sulfur-content	187923
sulfur-content-units	0
total-consumption	49532
total-consumption-units	0
total-consumption-btu	49532
total-consumption-btu-units	0
dtype: int64	

Shows the fuel types that have missing cost values

```
# YOUR CODE HERE
missing_cost = energy_df[energy_df["cost"].isna()]
missing_cost["fuelTypeDescription"].unique()
array(['renewable', 'petroleum', 'residual fuel oil',
       'natural gas & other gases', 'natural gas', 'fossil fuels',
       'distillate fuel oil', 'all coal products',
       'coal, excluding waste coal', 'bituminous coal',
       'waste oil and other oils', 'onshore wind turbine', 'biomass',
       'other renewables', 'wood and wood wastes', 'wind',
       'renewable waste products', 'bituminous coal and synthetic coal',
       'all renewables', 'all fuels', 'solar', 'subbituminous coal',
       'solar photovoltaic', 'refined coal', 'petroleum liquids', 'other',
       'biogenic municipal solid waste', 'municiapl landfill gas',
       'landfill gas', 'conventional hydroelectric', 'petroleum coke',
       'nuclear', 'lignite coal', 'hydro-electric pumped storage',
       'solar thermal', 'waste coal', 'other gases', 'geothermal',
       'anthracite coal', 'offshore wind turbine'], dtype=object)
```

Finds the counts for each fuel type

```
# YOUR CODE HERE
missing_cost["fuelTypeDescription"].value_counts()
```

```
fuelTypeDescription
biomass
                                       38855
all fuels
                                       23127
fossil fuels
                                       21748
natural gas & other gases
                                       20655
renewable
                                       20351
all renewables
                                       19817
petroleum
                                       19020
distillate fuel oil
                                       18418
renewable waste products
                                       15839
natural gas
                                       15181
petroleum liquids
                                       13586
coal, excluding waste coal
                                       12871
solar photovoltaic
                                       12593
solar
                                       12580
```

other	12218
municiapl landfill gas	11917
landfill gas	11126
conventional hydroelectric	11015
bituminous coal	10502
bituminous coal and synthetic coal	10489
wind	10406
onshore wind turbine	10318
other renewables	10218
wood and wood wastes	9830
all coal products	9372
residual fuel oil	8522
waste oil and other oils	8066
subbituminous coal	7656
nuclear	4644
biogenic municipal solid waste	4461
other gases	4277
refined coal	3267
hydro-electric pumped storage	2614
waste coal	2071
petroleum coke	1986
geothermal	1487
lignite coal	1338
solar thermal	796
offshore wind turbine	236
anthracite coal	227
Name: count dtype: int64	

Name: count, dtype: int64

Exploratory Data Analysis (EDA)

- What are the high-level patterns?
- What intuitive insights emerge?
- Is the data consistent across sources?
- What assumptions are we making?
- What new questions arise from the EDA?

 ${f Note}:$ Be mindful of $confirmation\ bias$ —avoid interpreting data only to support your initial hypothesis.

YOUR CODE HERE

Model Planning

- Model Type: Classification, clustering, regression—what fits best?
- Success/Failure Definitions: Refine what constitutes a good or bad outcome.
- EDA for Modeling:
 - Identify relevant variables
 - Explore correlations
 - Apply domain knowledge
 - Verify assumptions
 - Prototype modeling ideas

```
# YOUR CODE HERE
```

YOUR CODE HERE

Model Building

- What models are being trained?
- How are they tested?
- What metrics are used to evaluate performance?

```
# YOUR CODE HERE
```

YOUR CODE HERE

Communicating Results

- Are the results **robust** across different scenarios?
- Are they statistically significant?
- Why do these results **matter** to stakeholders?
- How do they compare to your definitions of success and failure?

Operationalization

• Presentation:

- Who is the audience?
- Is the code and analysis well-documented and replicable?

• Deployment:

- Are models deployed on live data?
- Are they behaving as expected?