موضوع الرياضيات لشعبة العلوم التجريبية في بكالوريا 2011

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: جوان 2011

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المسدّة: 03 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03 نقاط)

 $u_{n+1}=3u_n+1$ ، $u_n=-1$ عدد طبيعي $u_0=-1$: با المتتالية العددية المعرقة با $u_n=-1$

 $v_n = u_n + \frac{1}{2} : + n$ المنتالية العددية المعرفة من أجل كل عدد طبيعي (v_n

في كل حالة من الحالات الثلاث الآتية اقترحت ثلاث إجابات، إجابة واحدة فقط منها صحيحة، حدّدها مع التطيل.

المتتالية (ν,):

۲- لا حسابية و لا هندسية.

أ- حساسة.

نهایة المنتالیة (سی) هی :

$$-\infty$$
 $-\frac{1}{2}$ $-\psi$

+00

 $S_n = -\frac{1}{2} \left[1 + e^{\ln 3} + e^{2\ln 3} + e^{3\ln 3} + ... + e^{n\ln 3} \right]$ ، n عدد طبیعی من أجل كل عدد طبیعی 3.

$$S_n = \frac{1 - 3^{n+1}}{4} \longrightarrow S_n = \frac{1 - 3^n}{4} \longrightarrow S_n = \frac{3^{n+1} - 1}{2}$$
 i

$$S_n = \frac{1-3^n}{4} - \cdot \cdot$$

$$S_n = \frac{3^{n+1} - 1}{2}$$
 .

التمرين الثاني: (05 نقاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد و المتجانس (O;i,j,k) ، المستوي (\mathscr{P}) الذي يشمل النقطة x + 2y - 7 = 0 شعاع ناظمي له ؛ وليكن (\mathcal{Q}) المستوي ذا المعادلة n (-2;1;5) و A (1;-2;1)

- 1. اكتب معادلة ديكارتية للمستوى (\mathcal{P}) .
- 2. أ-تحقّق أنّ النقطة B(-1;4;-1) مشتركة بين المستويين (\mathcal{P}) و (\mathcal{Q}) .

 $m{\psi}$ - بين أنّ المستويين (\mathscr{D}) و (\mathscr{D}) متقاطعان وفق مستقيم (Δ) يطلب تعيين تمثيل وسيطيّ له.

لتكن النقطة (5;-2;-1)

أ - احسب المسافة بين النقطة C و المستوي (\mathscr{D}) ثم المسافة بين النقطة C والمستوي (\mathscr{D})

 $\boldsymbol{\varphi}$ - أثبت أنّ المستويين (\mathcal{P}) و (\mathcal{Q}) متعامدان.

 (Δ) والمستقيم (Δ)

التمرين الثالث: (05 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ ، النقط B ، A و C التي لاحقاتها على $z_C = -4 + i$ و $z_B = 2 + 3i$ ، $z_A = -i$ الترتيب:

$$\frac{z_C-z_A}{z_B-z_A}$$
 المجبري العدد المركب الشكل الجبري. 1. أ - إكتب على الشكل الجبري

$$ABC$$
 المثلث طويلة العدد المركب $\frac{z_C-z_A}{z_B-z_A}$ وعمدة له ؛ ثمّ استنتج طبيعة المثلث $\frac{z_C-z_A}{z_B-z_A}$

2. نعتبر التحويل النقطى T في المستوي الذي يرفق بكل نقطة M ذات اللاحقة z ، النقطة M ذات اللاحقة z حيث: z' = i z - 1 - i

$$T$$
 ما هي صورة النقطة B بالتحويل.

.
$$z_D = -6 + 2i$$
 لتكن D النقطة ذات اللاحقة D

$$D$$
 الذي مركزه A و يحول B الذي مركزه A و يحول B الحول B الخول B الحول B

التمرين الرابع: (07 نقاط)

$$g(x) = \frac{x-1}{x+1}$$
 : $+ \mathbb{R} - \{-1\}$ المعرفة على g المعرفة على (I

و (\mathcal{C}_{g}) تمنالها البياني في المستوي المنسوب إلى المعلم المتعامد المتجانس

(الشكل المقابل) ، بقراءة بياتية:
$$(O; \vec{i}, \vec{j})$$

$$g(x)>0$$
 بيانيا المتراجحة $g(x)>0$

$$0 < g(x) < 1$$
 التي يكون من أجلها x التي يكون من أجلها

$$f\left(x\right) = \frac{x-1}{x+1} + \ln\left(\frac{x-1}{x+1}\right)$$
 : با $\left[1;+\infty\right]$ المعرفة على المجال $\left[1;+\infty\right]$ المعرفة على المجال $\left[1;+\infty\right]$

و
$$(C_f)$$
 تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس (i,j) .

المسب
$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ ثمّ فسّر التتيجتين هندسيا.

$$g'(x) = \frac{2}{(x+1)^2}$$
،] $I;+\infty[$ من المجال x من عدد حقیقی x من المجال f أنه من أجل كل عدد حقیقی f من المجال f أو ادرس إشارتها ثم شكل جدول تغیرات الدالة f

$$oldsymbol{arphi}$$
 - احسب $f'(x)$ و ادرس إشارتها ثم شكل جنول تغيرات الدالة f

.]1;+∞[المعال الجزء المحال المؤلل ج - ، عين إشارة العبارة
$$\ln\left(\frac{x-1}{x+1}\right)$$
 على المجال المؤلل على المعال 3.

$$\cdot]lpha;+\infty[$$
 على المجال $x\mapsto \ln(x-lpha)$ على المجال $x\mapsto (x-lpha)\ln(x-lpha)$ على المجال ال

ج- تحقق أنه من اجل كل عدد حقيقي
$$x$$
 من المجال $[1;+\infty]$ ، $[1;+\infty]$ ثم عين دالة أصلية للدالة f على المجال $[1;+\infty]$. $[1;+\infty]$ أمجال $[1;+\infty]$.

الموضوع الثانى

التمرين الأول (04 نقاط)

α عدد حقيقي موجب تماما ويختلف عن 1.

 $u_{n+1}=lpha u_n+1$ ، n عند طبیعی عدیهٔ معرفهٔ علی $u_0=6$: $u_0=0$ عند طبیعی معرفهٔ علی $u_n=0$

 $v_n = u_n + \frac{1}{\alpha - 1}$: به معرقة من أجل كل عدد طبيعي n به عددية معرقة من أجل كل عدد طبيعي (v_n)

. α متتالية هندسية أساسها α .1

 u_n عبارة α عبارة ν عبارة ν عبارة ν عبارة α عبارة α عبارة α

 $\alpha = \frac{3}{2}$ نضع. 2

 $T_n = u_0 + u_1 + ... + u_n$ و $S_n = v_0 + v_1 + ... + v_n$ عين $S_n = v_0 + v_1 + ... + v_n$ المجموعين $S_n = v_0 + v_1 + ... + v_n$ - احسب بدلالة $S_n = v_0 + v_1 + ... + v_n$

التمرين الثاني: (04 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(O; \vec{u}, \vec{v})$ ، النقط C ه B ، B و C التي المتعامد و المتجانس $z_R = 3 + 2i$ ، $z_A = 3 - 2i$

1. أ - علم النظ A ، A و D . 1

ب - ما طبيعة الرباعي OABC ؟ علَّل إجابتك.

ج - عين لاحقة النقطة Ω مركز الرباعي OABC.

 $MO + \overline{MA} + \overline{MB} + \overline{MC} = 12$ عَيْنَ ثُمَّ أَنشَىٰ M مجموعة النقط M من المستوي التي تحقّق: 2

 $z^2 - 6z + 13 = 0$: التالية: z = 0 التالية: z = 0 المعادلة ذات المجهول z = 0 التالية: z = 0 المعادلة.

. z بنكن M نقطة من المستوي لاحقتها العدد المركب

 $|z-z_0|=|z-z_1|$ عين مجموعة النقط M من المستوي التي تحقق:

التمرين الثالث: (05 نقاط)

C(3;-3;6) و B(2;1;7) ، A(0;1;5) النقط $O(\vec{i},\vec{j},\vec{k})$ و والمتجانس والمتجانس والمتجانس المخام المتعامد والمتجانس المخام المتعامد والمتجانس المخام المتعامد والمتجانس المخام المتعامد والمتجانس المتعامد والمتجانس المتعامد والمتجانس المتعامد والمتعامد والمتجانس المتعامد والمتعامد والمتعام

1. أ - اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة B و (1;-4;-1) شعاع توجيه له.

 (Δ) بـ تحقق أن النقطة C تنتمي إلى المستقيم

ج - بيّن أن الشعاعين \overline{AB} و \overline{BC} متعامدان.

 (Δ) د - استنج المسافة بين النقطة A و المستقيم

- $h(t) = AM: \mathbb{R}$ المعرفة على h المعرفة على M(2+t;1-4t;7-t) عدد حقيقي ؛ ولتكن الدالة h المعرفة على M(t) = AM: h(t) بدلالة h(t) مدلالة h(t) عبارة h(t)
 - $h'(t) = \frac{18t}{\sqrt{18t^2 + 8}} + t$ عدد حقیقی عدد عند من أمن أنه من أجل كل عدد عدد عقیقی
 - ج استنتج قيمة العدد الحقيقي t التي تكون من أجلها المسافة AM أصغر ما يمكن.
 - قارن بين القيمة الصغرى للدالة h، و المسافة بين النقطة A و المستقيم (Δ) .

التمرين الرابع: (07 نقاط)

 $f(x)=e^{x}-ex-1:$ نعتبر الدالة العددية f المعرفة على \mathbb{R}

 $(O; \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(G; \vec{i}, \vec{j})$.

 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 1.$

ب - احسب f'(x) ثمّ ادرس إشارتها.

ج- شكل جدول تغيرات الدالة f.

 $(-\infty)$ بجوار (\mathcal{C}_r) بجوار (\mathcal{C}_r) بجوار ($(-\infty)$) بجوار ($(-\infty)$) بخوار (

.0 مادلة للمستقيم T مماس المنحنى $C_{\mathcal{F}}$ في النقطة ذات الفاصلة

lpha عقبل في المجادلة $f\left(x\right)=0$ حلا وحيدا $f\left(x\right)=0$ حلا وحيدا lpha

د - ارسم المستقيمين (Δ) و (T) ثم المنحنى (G) على المجال [C] .

3. أ - احسب بدلالة α ، المساحة $A(\alpha)$ للحيّز المستوي المحدّد بالمنحنى (C_f) و حامل محور الغواصل والمستقيمين $x=\alpha$. x=0 اللّذين معادلتيهما: $x=\alpha$ و x=0 .

ب - أثبت أن : ua (ua) ua ua) ua (ua) ua) ua : أثبت أن : ua) ua : أثبت أن : ua) ua أثبت أن : ua أن : ua أثبت أن : ua أن : ua

التصحيح الرسمي لموضوع الرياضيات لشعبة علوم تجريبية بكالوريا 2011

الإجابة النموذ في ق الوضوع امتحان: ..شهادة المحالوريا... دورة: .. 2011. الحبار مادة: .. 10 ساعات ونصف

عدد الصفحات 4

الإجابة النموذجية

العلامة		1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
المجموع	مجزاة	عناصر الإجابة الموضوع الأول		
)		لتمرين الأول (3 نقاط)		
	0,75+0,25	$V_{n+1} = 3 \; V_n$. الإجابة الصحيحة هي (ب \cdot) لأن \cdot		
3 نقاط	0,75+0,25	$\lim_{n\to +\infty} 3^n = +\infty$ و $U_n = -\frac{1}{2}3^n - \frac{1}{2}$ لأن $\frac{1}{2}$ 'لأن $U_n = -\frac{1}{2}3^n - \frac{1}{2}$ و $U_n = -\frac{1}{2}3^n - \frac{1}{2}$		
	0,75+0,25	$S_n = V_0 + V_1 + + V_n = -\frac{1}{2} \frac{3^{n+1} - 1}{2}$ كأن $\frac{1}{2}$ كأن 3.		
		لتمرين الثاني (5 نقاط)		
	1	$-2x+y+5z-1=0$: هي (\mathscr{S}) هي . $-1=0$		
	0,5	(\mathcal{Q}) و (\mathcal{P}) من التحقّق أنّ إحداثيات $B\left(-1;4;-1 ight)$ تحقق معادلة كل من (\mathcal{P}) و		
	0,5	(Δ) عير متوازيين و منه (\mathscr{D}) و (\mathscr{D}) متقاطعان وفق مستقيم $ec{n}'(1;2;0)$		
5 نقاط	0,5	$t \in \mathbb{R}$ $\begin{cases} x = 7 - 2t \\ y = t \end{cases}$ تمثيله الوسيطي: $z = 3 - t$		
	0,5	$ extbf{d}_1 = rac{3\sqrt{30}}{5} \ : \left(\mathscr{P} ight)$ و C ا- المسافة بين C ا		
	0,5	$ ext{d}_2 = rac{6\sqrt{5}}{5}: \left(\mathcal{Q} ight)$ و C المسافة بين C		
	1	ب $\vec{n}.ec{n}'=0$ و منه (\mathcal{P}) و (\mathcal{P}) متعامدان.		
	0,5	$\operatorname{d}(C;(\Delta))=\sqrt{d_1^2+d_2^2}=3\sqrt{2}:(\Delta)$ والمستقيم C والمستقاح المسافة بين النقطة C		
5 نفاط		التمرين الثالث (5 نقاط)		
	0.75	$rac{z_C-z_A}{z_B-z_A}=i$ الشكل الجبري للعدد المركب: 1- الشكل الجبري العدد المركب.		
	0.5 x 2	$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \frac{\pi}{2} g \left \frac{z_C - z_A}{z_B - z_A}\right = 1 : 4 \text{ sace } g \left(\frac{z_C - z_A}{z_B - z_A}\right)$		
	0,5	ABC طبيعة المثلث ABC : المثلث ABC متساوي الساقين وقائم في ABC		
	0,5	$rac{\pi}{2}$. أ - طبيعة T محدّدا عناصره المميّزة: T هو الدوران ذو المركز A والزاوية $rac{\pi}{2}$		
	0,5	$T\left(B ight)\!=\!C$: T بالتحويل B بالتحويل T		

العلامة		صار مادّة: الرياضيات علوم تجريبيا
المجموع		تابع عناصر الإجابة للموضوع الأول
	0,5	و منه A، C، A في استقامية. $\overrightarrow{AD} = \frac{3}{2} \; \overrightarrow{AC} \; .1$ و منه D، C، A و منه D، C، A
	0,5	$K=rac{z_D-z_A}{z_C-z_A}=rac{3}{2}:h$ ب. تعیین نسبة التحاکي $K=rac{z_D-z_A}{z_C-z_A}=rac{3}{2}$
	0,75	$a=rac{3}{2}$ و منه $z_D-z_A=a(z_B-z_A)$ و منه $z_D-z_A=a(z_B-z_A)$ عناصر التشابه z_D هي المركز z_D والنسبة $z_D-z_A=a(z_B-z_A)$ عناصر التشابه $z_D-z_A=a(z_B-z_A)$
		التمرين الرابع (7 نقاط)
	0,5	(I) أ - جدول تغيرات الدالة g .
	0,5	$x \in]-\infty;-1[\cup]1;+\infty[$ تكافئ $g\left(x ight)>0$ ب
	0,5	$x \in]1;+\infty[$ تکافئ $0 < g(x) < 1$ ج
7 ثقاط	1	$\lim_{x \to +\infty} f(x) = 1$ و $\lim_{x \to +\infty} f(x) = -\infty$.1 (II)
	0,5	C_f و $y=1$ معادلتا مستقیمین مقاربین ل $x=1$
	0,5	$g'(x) = \frac{2}{(x+1)^2}$ ،]1;+ ∞ [من المجال x من عدد حقيقي x من المجال 2. أ - ثبيان أنه من أجل كل عدد حقيقي
	0,5+1	$x > 1$ $y'(x) > 0$ $f'(x) = \frac{2}{(x+1)^2} \left(\frac{2x}{x-1}\right) - 4$
	0,5	$x = -$ جدول تغیرات الدالة $f:$ $+\infty$ $+\infty$ $f'(x)$ $+$ $f(x)$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$ $+\infty$
	0,5	$:]1;+\infty[$
	0,5	$h'(x) = \ln(x - \alpha)$ و منه $h(x) = (x - \alpha)\ln(x - \alpha) - x$
	0,5	$F(x) = x - (x + 3) \ln(x + 1) + (x - 1) \ln(x - 1), g(x) = 1 - \frac{2}{-1}$

العلامة		عناصر الإجابة للموضوع الثابي
المجمو	مجزأة	gu (34) 44; 3
القاط 4		لتمرين الأول (4 نقاط)
	1	$v_{n+1}=lpha\;v_n$: أ $=(v_n)$ هندسية أساسها $lpha$ لأن $=(v_n)$
	0,5	$v_n = \left(6 + \frac{1}{\alpha - 1}\right) \alpha^n : \alpha$ و α : α و α عبارة α بدلالة α
	0,5	$u_n = \left(6 + \frac{1}{\alpha - 1}\right) \alpha^n - \frac{1}{\alpha - 1}$: α و α بدلالة α و α بدلالة α بدلالة α
	0,5	$lpha\in]0;1[$ متقاربة إذا كان متقاربة المتتالية (u_n) متقاربة عند
	0,75	$S_n = 16 \left[\left(\frac{3}{2} \right)^{n+1} - 1 \right] : S_n$ نضع $\alpha = \frac{3}{2}$ نضع $\alpha = \frac{3}{2}$ نضع $\alpha = \frac{3}{2}$ نضع و نضع المجموع .2
	0,75	$T_n = 16 \left(\frac{3}{2}\right)^{n+1} - 2n - 18$: T_n المجموع ، المجموع .
القاط 4		تمرين الثاني (4 نقاط)
	0,75	 أ - تعليم النقط A ، A و C :
	0,75	$\overrightarrow{OA} = \overrightarrow{CB}$ أي $\frac{z_B - z_C}{z_A} = 1$ التعليل: $OABC$ أي $OABC$
	0,5	$z_{\Omega} = \frac{3}{2} + i:OABC$ مركز الرباعي Ω مركز الرباعي
	0,75	2. لدينا : $\Omega = 3$ (E) الدائرة التي مركزها Ω و نصف قطرها Ω + الإنشاء
	0,75	3. أ $= (2i)^2 - \Delta' = (2i)^2$ وعليه $z_0 = 3 - 2i$ و $z_0 = 3 - 2i$ أو العكس.
		$ z-z_0 = z-z_1 $ معناه $ z-z_0 = z-z_1 $ ؛ إذن المجموعة المطلوبة هي محور

اختبار مادة: الرياضيات الشعة/السلك: علوم تجريبية عناصر الإجابة للموضوع الثابي مجزأة المجموع التمرين الثالث (5 نقاط) $y = 1 - 4\lambda$; $\lambda \in \mathbb{R}$: (Δ) المستقيم الم 1 $\overrightarrow{\mathrm{BC}} = \overrightarrow{\mathrm{u}}$ الأنه بالتعويض بإحداثيات C نجد $\lambda = 1$ أو $\lambda = 1$ أو $\lambda = 1$ 0,5 $\overrightarrow{AB}.\overrightarrow{BC} = 0$ $\overrightarrow{BC}(1;-4;-1)$ $\overrightarrow{AB}(2;0;2)$ 1 $d(A,(\Delta)) = AB = 2\sqrt{2} - \Delta$ 0,5 $h(t) = AM = \sqrt{8 + 18t^2}$: بدلالة $h(t) = AM = \sqrt{8 + 18t^2}$: بدلالة الم 0,75 5 نقاط $h'(t) = \frac{18t}{\sqrt{18t^2 + 8}} + t$ عدد حقیقی $t = \frac{18t}{\sqrt{18t^2 + 8}}$ 0,5t=0 أصغر ما يمكن عندما يكون h'(t)=0 أي h'(t)=00,75 $h(0) = d(A,(\Delta))$ ومنه $h(0)=2\sqrt{2}$ هي $h(0)=2\sqrt{2}$ القيمة الحدية الصغرى للدالة الم التمرين الرابع: (07 نقاط) : $\lim_{x \to +\infty} f(x) = +\infty$ و $\lim_{x \to -\infty} f(x) = +\infty$.1 0.5×2 0.5 $f'(x) = e^x - e : f'(x)$ باسم - ب دراسة إشارة (x): f'(x) 0.5 0.5 ج- - جدول تغيرات الدالة f: ا $\frac{x}{f'(x)}$ f(x)7 نقاط $\lim_{x \to \infty} [f(x) - (-ex - 1)] = 0 - 1.2$ 0,5 y=(1-e)x:0 أمماس (\mathcal{C}_f) عند النقطة ذات الفاصلة (T) معادلة (T) عند النقطة ذات الفاصلة 0,5 f(1,76) = 0,028 f(1,75) = -0,0024[1,75;1,76] على الما على ال 1 .] $-\infty$; 2] على المجال (C_f) ثم المنحني (C_f) على المجال (Δ) و (Δ) على المجال 1 $A(\alpha) = \left(-e^{\alpha} + \frac{1}{2}e^{\alpha^2} + \alpha + 1\right)ua : A(\alpha)$ المساحة α ، المساحة α .3 1 : و بالتعویض نجد أن $e^{\alpha} = e\alpha + 1$ نجد أن $e^{\alpha} = e\alpha + 1$ 0,5 $A(\alpha) = \left(\frac{1}{2}e\alpha^2 - e\alpha + \alpha\right)ua$