浙江大学 20_16_ - 20_17_学年_春夏_学期 《 大学物理乙 1 》课程期末考试试卷

课程号: <u>761T0030</u>, 开课学院: <u>物理学系</u>

考试试卷: A V 卷、B 卷 (请在选定项上打 V)

考试形式:闭√、开卷(请在选定项上打√),允许带 无存储功能的计算器 入场

考试日期: __2017_年__6_月_26_日, 考试时间: ___120__分钟

诚信考试,沉着应考,杜绝违纪.

考生姓名	学号				任课老师		编号		
题序	填空	计1	计 2	计 3	计4	计 5	री 6	总	分
得分				- 1			7		
评卷人			d fire		k 100				
阿伏伽 真空介 电子静	体常量 $R=8$ 德罗常量 N 电常数 ε_0 = 止质量 m_e	$f_A = 6.02$ = 8.85×10 = 9.11×10	$\times 10^{23}$ (mc) $^{-12}$ (C ² ·) $^{-31}$ (kg)	ol ⁻¹) N ⁻¹ · m ⁻²)	真空中 电子伏	光速 c=		s)	-1)
一作 则其振动	4分)3269 =简谐振动的: 能量为 (4分)3401		振子质量		统振动频	ī率为 1000	Hz.振幅为	J 0.5 cn	1,
	同方向同频率	率的简谐 扼	辰动,其振	动表达式分	分别为 x	$c_1 = 6 \times 10$	$^{-2}\cos(5t +$	$-\frac{\pi}{2}$) (S	SI)
和 $x_2 = 2$ 为	×10 ⁻² cos(5	$5t-\frac{\pi}{2}$) (S	SI),它们]的合振动[的振幅为_		r	n; 初木	目位
一平 质密度ρ= 向上面积 4. (本题	4分)t001 面简谐波在分 = 800 kg·m ⁻³ . 为 S=4×10 ⁻⁴ t 4分)t002 报器发出频率	则该波的 m ² 平面的	的强度为_ 能量为		W/n J .	n²; 60 s 内	通过垂直 ⁻	于波传	播方
	报器反出频等 s,观察者接回						态压丝例	· 口知	严迷

5. (本题 4 分) 4042

某气体在温度 T= 273K 时,压强 p= 1.0×10^{-2} atm,密度 ρ = 1.24×10^{-2} kg/m³,则该气体分子的方均根速率为 m/s.

6. (本题 4分) 4559

下列各图所示的速率分布曲线,_____图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线.

7. (本题 4分) 4670

一定质量的理想气体,先经过等体过程使其热力学温度升高一倍,再经过等温过程使 其体积膨胀为原来的两倍,则分子的平均自由程变为原来的 倍.

8. (本题 4分) 4454

9. (本题 4分) 4591

10. (本题 4分) 3333

1 摩尔单原子理想气体从初始状态 p_0 、 V_0 开始加热, 先经等压膨胀到体积为 $4V_0$; 然后经等体冷却到压强变为 $0.5p_0$,则上述两过程中总的熵变为 .

11. (本题 4分) 1573

图中曲线表示一种球对称性静电场的场强大小 E 的分布 , r 表 示 离 对 称 中 心 的 距 离 . 这 是 由 产生的电场.

12. (本题 4分) 1367

如图所示,真空中两个正点电荷 Q,相距 2R. 若以其中一点电荷所在处 o 点为中心,以 R 为半径作高斯球面 S,则通过该球面的电通量为______; 高斯面上 a、b 两点的电场强度大小分别为______、

二、计算题: (共6题,共52分)

1. (本题 10 分) τ003

一定滑轮半径为 R, 转动惯量为 I, 其上挂一轻绳, 绳的一端系一质量为 m 的物体, 另一端与一固定的轻弹簧相连, 如图所示. 弹簧劲度系数为 k, 绳与滑轮间无相对滑动, 滑轮转轴处的摩擦可忽略. 将物体从平衡位置拉下一微小距离后放手, 求其振动周期.

2. (本题 8分) 3144

一平面简谐波沿 ox 轴的负方向传播,波长为 λ ,P处质点的振动规律如图所示. (1) 求 P处质点的振动方程; (2) 求此波的波动表达式; (3) 若图中的 $d=\lambda/2$,求坐标原点 o处质点的振动方程.

3. (本题 8分) 3139

图中 A、B 是两个相干的点波源,它们的振动相位差为 π (反相)。A、B 相距 30 cm,观察点 P 和 B 点相距 40 cm,且 $\overline{BP} \perp \overline{AB}$ 。若发自 A、B 的两波在 P 点处最大限度地相互削弱,则最长的波长是多少?。

4、(本题 8 分) 5793

已知某粒子系统中粒子的速率分布曲线如图所示,相应的速

率分布函数为:
$$f(v) = \begin{cases} kv^3 & (0 \le v \le v_0) \\ 0 & (v_0 < v < \infty) \end{cases}$$

试求: (1) 比例常数 k: (2) 粒子的平均速率 \overline{v} : (3) 速率在 $0 \sim v_1$ 之间的粒子数占总粒子数的 $\frac{1}{16}$ 时, v_1 为多大? (答案 均以 v_0 表示)

5. (本题 10分) o001

0.02kg 的氦气(视为理想气体),温度由 17°C 升为 27°C,若在升温过程中,(1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量. 试分别求出气体内能的增量、吸收的热量和对外作的功.(氦气的摩尔质量为 4×10⁻³ kg/mol)

6. (本题 8 分) o002

一半径为 R 的细圆环, 电荷线密度为 $\lambda = \lambda_0 \cos \theta$, λ_0 为常量, θ 为半径 R 与 x 轴的夹角. 求环中心 o 处的电场强度.

试卷参考答案

一、填空题: (12题,共48分)

1.
$$\omega = \sqrt{\frac{k}{m}} = 2\pi v$$
, $k = \omega^2 m = (2\pi v)^2 m$

$$E = \frac{1}{2}kA^2 = \frac{1}{2}(2\pi\nu)^2 mA^2 = 2\pi^2\nu^2 mA^2 = 2\times\pi^2\times1000^2\times2\times(0.5\times10^{-2})^2 = 987 \text{ (J)}$$

2.
$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)} = \sqrt{6^2 + 2^2 + 24\cos\pi} \times 10^{-2} = 4 \times 10^{-2} \text{(SI)}$$

$$\varphi_1 = \varphi = \frac{\pi}{2}$$

3.
$$I = \frac{1}{2} \rho A^2 \omega^2 u = 1.58 \times 10^5 \text{ W/m}^2$$
, $E = ISt = 3.79 \times 10^3 \text{ J}$

4.
$$v = \frac{340}{340 - v_s} v_s = \frac{340}{340 - 10} \times 1000 = 1030 \text{ (Hz)}$$

5.
$$pV = \frac{M}{\mu}RT$$
, $\mu = \frac{\rho RT}{p}$, $\sqrt{\overline{v^2}} = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3p}{\rho}} = 495 \text{ (m/s)}$

7.
$$\overline{\lambda} = \frac{1}{\sqrt{2\pi d^2 n}} = \frac{V}{\sqrt{2\pi d^2 N}} = \frac{2V_0}{\sqrt{2\pi d^2 N}} = 2\overline{\lambda}_0$$

8.
$$\Delta E = v \frac{i}{2} R \Delta T = 1246.5 \text{ J} = 1.25 \times 10^3 \text{ J}$$

9: (1) 对卡诺循环有:
$$T_1/T_2 = Q_1/Q_2$$
 : $T_2 = T_1Q_2/Q_1 = 320 \text{ K}$

(2) 热机效率:
$$\eta = 1 - \frac{Q_2}{Q_1} = 20\%$$

10.
$$\Delta S = \nu C_{\nu} \ln \frac{T}{T_0} + \nu R \ln \frac{V}{V_0} = R(\frac{3}{2} \ln \frac{0.5 \times 4}{1} + \ln \frac{4}{1}) = \frac{7}{2} R \ln 2 = 20.16$$

11. 半径为 R 的均匀带电球面

12.
$$\Phi_e = \frac{Q}{\varepsilon_0}$$
, $E_a = \frac{Q}{4\pi\varepsilon_0 R^2} - \frac{Q}{4\pi\varepsilon_0 R^2} = 0$, $E_b = \frac{Q}{4\pi\varepsilon_0 R^2} + \frac{Q}{4\pi\varepsilon_0 (3R)^2} = \frac{5Q}{18\pi\varepsilon_0 R^2}$

二、计算题: (6题, 共52分)

1.
$$M: mg - T = ma = m\frac{d^2x}{dt^2}$$
, $(T - F)R = I\alpha$, $a = R\alpha$, $F = k(x + x_0)$, $mg = kx_0$

得:
$$\frac{d^2x}{dt^2} + \frac{k}{m+I/R^2}x = 0$$
 或 $a = -\frac{k}{m+I/R^2}x$

$$\omega = \sqrt{\frac{k}{m + I/R^2}} = \sqrt{\frac{kR^2}{mR^2 + I}} = R\sqrt{\frac{k}{mR^2 + I}} \quad , \qquad T = 2\pi\sqrt{\frac{mR^2 + I}{kR^2}} = \frac{2\pi}{R}\sqrt{\frac{mR^2 + I}{k}}$$

2.
$$M$$
: (1) $\frac{T}{4} = 1$, $T = 4$ (s), $\omega = \frac{2\pi}{T} = \frac{\pi}{2}$ (rad/s), $\varphi_p = \pi$, $y_p = A\cos(\frac{\pi}{2}t + \pi)$

(2)
$$\varphi = \varphi_r - \frac{2\pi d}{\lambda}$$
 $y = A\cos\left[\frac{\pi}{2}t + \frac{2\pi}{\lambda}(x - d) + \pi\right]$

(3)
$$y_0 = A\cos[\frac{\pi}{2}t + \frac{2\pi}{\lambda}(0 - \frac{\lambda}{2}) + \pi] = A\cos\frac{\pi}{2}t$$

3.
$$\overrightarrow{AP} = \sqrt{\overline{AB}^2 + \overline{BP}^2} = 50 \text{ (cm)} = 0.1 \text{ m}$$

$$\varphi_2 - \varphi_1 - \frac{2\pi}{\lambda} (\overline{BP} - \overline{AP}) = \pm (2k+1)\pi \qquad (k = 0, 1, 2, \cdots)$$

$$\pi + \frac{2\pi}{\lambda} \times 0.1 = (2k+1)\pi \quad \lambda = \frac{0.1}{k} \quad (k = 1, 2, 3, \cdots)$$

$$k_{\min} = 1 \qquad \lambda_{\max} = 0.1 \text{ (m)}$$

4. 解: (1)
$$\int_0^{v_0} f(v) dv = \int_0^{v_0} kv^3 dv = \frac{1}{4} k v_0^4 = 1$$

$$k = \frac{4}{v_0^4}$$

(2)
$$\int_0^{v_0} v f(v) dv = \int_0^{v_0} k v^4 dv = \frac{1}{5} k v_0^5 = \frac{4}{5} v_0$$

(3)
$$\frac{\Delta N}{N} = \int_0^{v_1} f(v) dv = \int_0^{v_1} k v^3 dv = \frac{1}{4} k v_1^4 = (\frac{v_1}{v_0})^4 = \frac{1}{16}$$
, $v_1 = \frac{1}{2} v_0$

5. 解:
$$i=3$$

$$\Delta E = \nu C_{\nu} (T_2 - T_1) = \frac{0.02}{4 \times 10^{-3}} \cdot \frac{3}{2} \cdot 8.31 \cdot (27 - 17) = 623 \text{ (J)}$$

$$Q = \Delta E = 623 \text{ (J)}$$

(2) 等压过程,内能的增量同上,
$$\Delta E = 623$$
 (J)

$$Q = \nu C_p (T_2 - T_1) = \frac{0.02}{4 \times 10^{-3}} \cdot \frac{5}{2} \cdot 8.31 \cdot (27 - 17) = 1039 \text{ (J)}$$

$$W = Q - \Delta E = 1039 - 623 = 416 \text{(J)}$$

(3) 绝热过程:
$$Q=0$$
 , $\Delta E = 623$ (J), $W = Q - \Delta E = -623$ (J)

6.
$$M: dq = \lambda dl = \lambda_0 \cos\theta \cdot Rd\theta$$
 , $dE = \frac{dq}{4\pi\varepsilon_0 R^2} = \frac{\lambda_0 \cos\theta d\theta}{4\pi\varepsilon_0 R}$,

$$\mathrm{d}E_x = \frac{\lambda_0 \cos\theta \,\mathrm{d}\theta}{4\pi\varepsilon_0 R} \cos\theta \ ,$$

$$E_{x} = \int dE_{x} = 2 \int_{0}^{\pi} \frac{\lambda_{0} \cos^{2} \theta}{4\pi \varepsilon_{0} R} d\theta = \frac{\lambda_{0}}{4\varepsilon_{0} R} \quad , \quad E_{y} = 0 \quad , \quad E = E_{x} = \frac{\lambda_{0}}{4\varepsilon_{0} R}$$

方向沿x轴负向