Assignment: MATH 3490 Numerical Analysis

Deadline: Dec 15, 2021

Instructor: Dr. Puneet Rana

UNIT 12-15: AS1 Nonlinear Equations and Boundary Value Problems (50 Points)

Question 1: The nonlinear system

$$5x_1^2 - x_2^2 = 0$$
, $x_2 - 0.25(\sin x_1 + \cos x_2) = 0$

has a solution near $\left(\frac{1}{4}, \frac{1}{4}\right)^t$.

- **a.** Find a function **G** and a set *D* in \mathbb{R}^2 such that **G** : $D \to \mathbb{R}^2$ and **G** has a unique fixed point in *D*.
- **b.** Apply functional iteration to approximate the solution to within 10^{-5} in the l_{∞} norm.
- **c.** Does the Gauss-Seidel method accelerate convergence?

Question 2: Use Broyden's method with $x^{(0)} = (1,1)^t$ to compute $x^{(2)}$ for each of the following nonlinear systems.

$$3x_1^2 - x_2^2 = 0,$$

$$3x_1x_2^2 - x_1^3 - 1 = 0.$$

Question 3: Use the method of Steepest Descent to approximate minima to within 0.005 for the following function,

$$g(x_1, x_2) = \cos(x_1 + x_2) + \sin x_1 + \cos x_2$$

Question 4: The boundary-value problem (Use step size, $h=\pi/4$)

$$y'' = y' + 2y + \cos x$$
, $0 \le x \le \frac{\pi}{2}$, $y(0) = -0.3$, $y(\frac{\pi}{2}) = -0.1$

has the solution $y(x) = -\frac{1}{10}(\sin x + 3\cos x)$. Use the Linear Shooting method to approximate the solution, and compare the results to the actual solution.

Question 5: Use the Linear Finite-Difference Algorithm to approximate the solution to the following boundary value problems (Use step size, h=1/4)

$$y'' = -3y' + 2y + 2x + 3, \quad 0 \le x \le 1, y(0) = 2, y(1) = 1;$$

OR

Project:

- (1) Solving any ordinary nonlinear differential equation by shooting or finite difference method.
- (2) Write an algorithm (pseudocode) and source code in any programing language.
- (3) Show graphical results.
