Shusen Wang

Matrix Multiplication

- Let **A** and **B** be $n \times n$ matrices.
- The multiplication $C = AB \cos O(n^3)$ time (nested for-loop).
- Can the time complexity be lower?

- Strassen algorithm [1969] has $O(n^{2.807})$ time complexity.
- Coppersmith–Winograd algorithm [1990] has $O(n^{2.3755})$ time complexity.
- Le Gall [2014] improves the time complexity to $O(n^{2.3729})$.

Divide-and-Conquer Matrix Multiplication

$C_{1,1}$ $C_{1,2}$	A ₁ 1 A ₁ 2	$\mathbf{B}_{1,1}$ $\mathbf{B}_{1,2}$
$\mathbf{C}_{2,1}$ $\mathbf{C}_{2,2}$	$\mathbf{A}_{2,1}$ $\mathbf{A}_{2,2}$	B _{2,1} B _{2,2}

•
$$C_{1.1} =$$

•
$$C_{1,1} =$$

•
$$C_{1,1} = A_{1,1}B_{1,1} +$$

•
$$C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$
.

- $C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$.
- $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$.

- $C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$.
- $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$.
- $C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$.

- $C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$.
- $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$.
- $C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$.
- $C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$.

$\mathbf{C}_{1,1}$	$\mathbf{C}_{1,2}$
$C_{2,1}$	$C_{2,2}$

$\mathbf{B}_{1,1}$	$B_{1,2}$
$\mathbf{B}_{2,1}$	$\mathbf{B}_{2,2}$

$$\begin{array}{l} \bullet \quad C_{1,1} \ = \ A_{1,1}B_{1,1} \ + \ A_{1,2}B_{2,1}. \\ \bullet \quad C_{1,2} \ = \ A_{1,1}B_{1,2} \ + \ A_{1,2}B_{2,2}. \\ \bullet \quad C_{2,1} \ = \ A_{2,1}B_{1,1} \ + \ A_{2,2}B_{2,1}. \\ \bullet \quad C_{2,2} \ = \ A_{2,1}B_{1,2} \ + \ A_{2,2}B_{2,2}. \end{array}$$

•
$$C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$$

•
$$\mathbf{C}_{2,1} = \mathbf{A}_{2,1} \mathbf{B}_{1,1} + \mathbf{A}_{2,2} \mathbf{B}_{2,1}$$

•
$$C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$$

Divide-and-Conquer

- Further partition \mathbf{A}_{ij} and \mathbf{B}_{jl} into sub-matrices.
- Recursively apply the block multiplication to compute $\mathbf{A}_{ij}\mathbf{B}_{jl}$.

• Partition the $n \times n$ matrices **A** and **B** into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices.

- Partition the $n \times n$ matrices **A** and **B** into $\frac{n}{2} \times \frac{n}{2}$ sub-matrices.
- To compute the $n \times n$ matrix multiplication $\mathbf{C} = \mathbf{AB}$, perform
 - $\frac{n}{2} \times \frac{n}{2}$ matrix multiplications for 8 times,
 - $\frac{n}{2} \times \frac{n}{2}$ matrix additions for 4 times.

- T(n): time complexity for multiplying $n \times n$ matrices.
- Repeating $\frac{n}{2} \times \frac{n}{2}$ matrix multiplications for 8 times costs time:

$$8 \cdot T\left(\frac{n}{2}\right)$$
.

• Matrix additions cost $c \cdot n^2$ time. (c is a constant.)

- T(n): time complexity for multiplying $n \times n$ matrices.
- Repeating $\frac{n}{2} \times \frac{n}{2}$ matrix multiplications for 8 times costs time:

$$8 \cdot T\left(\frac{n}{2}\right)$$
.

• Matrix additions cost $c \cdot n^2$ time. (c is a constant.)

Recurrence relation: $T(n) = 8 \cdot T(n/2) + c \cdot n^2$.

Recurrence relation: $T(n) = a \cdot T(n/b) + c \cdot n^d$.

Recurrence relation: $T(n) = \mathbf{a} \cdot T(n/\mathbf{b}) + c \cdot n^{\mathbf{d}}$.

The master theorem:

$$T(n) = \begin{cases} O(n^d), & \text{if } a < b^d; \\ O(n^d \log n), & \text{if } a = b^d; \\ O(n^{\log_b a}), & \text{if } a > b^d. \end{cases}$$

• For block matrix multiplication, a = 8, b = 2, and d = 2.

Recurrence relation: $T(n) = \mathbf{a} \cdot T(n/\mathbf{b}) + c \cdot n^{\mathbf{d}}$.

• The master theorem:

$$T(n) = \begin{cases} O(n^d), & \text{if } a < b^d; \\ O(n^d \log n), & \text{if } a = b^d; \\ O(n^{\log_b a}), & \text{if } a > b^d. \end{cases}$$

- For block matrix multiplication, a = 8, b = 2, and d = 2.
- Thus, $T(n) = O(n^{\log_2 8}) = O(n^3)$.
- No speedup at all.

Recurrence relation: $T(n) = a \cdot T(n/b) + c \cdot n^d$.

• The master theorem:

$$T(n) = \begin{cases} O(n^d), & \text{if } a < b^d; \\ O(n^d \log n), & \text{if } a = b^d; \\ O(n^{\log_b a}), & \text{if } a > b^d. \end{cases}$$

- For block matrix multiplication, a = 8, b = 2, and d = 2.
- Thus, $T(n) = O(n^{\log_2 8}) = O(n^3)$.
- No speedup at all.

•
$$\mathbf{M}_1 = (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}).$$

•
$$\mathbf{M}_2 = (\mathbf{A}_{2,1} + \mathbf{A}_{2,2}) \mathbf{B}_{1,1}$$
.

•
$$\mathbf{M}_3 = \mathbf{A}_{1,1} (\mathbf{B}_{1,2} - \mathbf{B}_{2,2}).$$

•
$$\mathbf{M}_4 = \mathbf{A}_{2,2} (\mathbf{B}_{2,1} - \mathbf{B}_{1,1}).$$

$$\mathbf{M}_5 = (\mathbf{A}_{1,1} + \mathbf{A}_{1,2}) \mathbf{B}_{2,2}.$$

•
$$\mathbf{M}_6 = (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2}).$$

•
$$\mathbf{M}_7 = (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2}).$$

•
$$C_{1,1} = M_1 + M_4 - M_5 + M_7$$
.

•
$$C_{1,2} = M_3 + M_5$$
.

•
$$C_{2.1} = M_2 + M_4$$
.

•
$$C_{2.2} = M_1 - M_2 + M_3 + M_6$$
.

- 7 matrix multiplications
- 18 matrix additions

- Divide-and-conquer: recursively compute $\mathbf{A}_{ij}\mathbf{B}_{kl}$.
- To compute the $n \times n$ matrix multiplication C = AB, perform
 - $\frac{n}{2} \times \frac{n}{2}$ matrix multiplications for 7 times,
 - $\frac{n}{2} \times \frac{n}{2}$ matrix additions for 18 times.
- Recursion relation: $T(n) = 7 \cdot T\left(\frac{n}{2}\right) + 18c\left(\frac{n}{2}\right)^2$.

Recurrence relation: $T(n) = \mathbf{a} \cdot T(n/\mathbf{b}) + c \cdot n^{\mathbf{d}}$.

• The master theorem:

$$T(n) = \begin{cases} O(n^d), & \text{if } a < b^d; \\ O(n^d \log n), & \text{if } a = b^d; \\ O(n^{\log_b a}), & \text{if } a > b^d. \end{cases}$$

• For Strassen Algorithm, a = 7, b = 2, and d = 2.

Recurrence relation: $T(n) = \mathbf{a} \cdot T(n/\mathbf{b}) + c \cdot n^{\mathbf{d}}$.

• The master theorem:

$$T(n) = \begin{cases} O(n^d), & \text{if } a < b^d; \\ O(n^d \log n), & \text{if } a = b^d; \\ O(n^{\log_b a}), & \text{if } a > b^d. \end{cases}$$

- For Strassen Algorithm, a = 7, b = 2, and d = 2.
- Thus, $T(n) = O(n^{\log_2 7}) \approx O(n^{2.807})$.

Summary

- Naively multiplying two $n \times n$ matrices costs $O(n^3)$ time.
- Block matrix multiplication:
 - Partition $n \times n$ matrices into four $\frac{n}{2} \times \frac{n}{2}$ sub-matrices.
 - Perform 8 multiplications and 4 additions.

- Naively multiplying two $n \times n$ matrices costs $O(n^3)$ time.
- Block matrix multiplication:
 - Partition $n \times n$ matrices into four $\frac{n}{2} \times \frac{n}{2}$ sub-matrices.
 - Perform 8 multiplications and 4 additions.
- Divide-and-conquer does not help!
- The time complexity is still $O(n^{\log_2 8}) = O(n^3)$.

- Strassen algorithm also performs block matrix multiplication.
- It reduces the number of multiplications from 8 to 7.
- The time complexity is reduced to

$$O(n^{\log_2 7}) \approx O(n^{2.807}).$$

• There are better algorithms than Strassen algorithm.

Thank You!