Analyse vectorielle, intégrales multiples

Examen deuxième session juin 2016

Deux heures, documents, portables et calculatrices interdits.

On rappelle la formule $cos(2t) = 1 - 2sin^2(t)$.

Exercice 1 : Soit \mathcal{C} l'ellipse paramétrée de \mathbb{R}^2 donnée par

$$x(t) = 2\cos(t), \ y(t) = \sin(t) \text{ avec } 0 \le t \le 2\pi.$$

- a) Calculer un vecteur tangent à \mathcal{C} au point M(t) = (x(t), y(t)), puis un vecteur unitaire tangent.
- b) Soit \vec{V}_1 le champ de vecteurs défini par $\vec{V}_1(x,y) = (x+y,4y)$. Calculer le travail de \vec{V}_1 le long de la courbe paramétrée C.
- c) Soit ω_2 la 1-forme différentielle $(y+ye^x)dx+(x+e^x)dy$. Calculer sa différentielle extérieure.
- d) Montrer qu'il existe f telle que $df = \omega$ et calculer f.
- e) Calculer l'intégrale curviligne $\oint_{\mathcal{C}} \omega$.

Solution de l'exercice 1.

- a) Un vecteur tangent au point M(t) est donné par $\vec{V}(t) = (-2\sin(t), \cos(t))$. Un vecteur unitaire tangent est donné par $\vec{U}(t) = \frac{1}{\sqrt{4\sin^2(t) + \cos^2(t)}} \vec{V}(t)$.
- b) On a

$$\begin{split} \int_{\mathcal{C}} \vec{V}_1(M) \cdot d\vec{M} &= \int_0^{2\pi} [(x(t) + y(t))x'(t) + 4y(t)y'(t)]dt \\ &= \int_0^{2\pi} [(2\cos(t) + \sin(t))(-2\sin(t)) + 4\sin(t)\cos(t)]dt \\ &= -2 \int_0^{2\pi} \sin^2(t)dt \\ &= -2 \int_0^{2\pi} \frac{1 - \cos(2t)}{2}dt \\ &= -2[x/2 - \sin(2t)/4]_0^{2\pi} \\ &= -2\pi \end{split}$$

c) On a

$$d\omega_2 = d(y + ye^x) \wedge dx + d(x + e^x) \wedge dy = dy \wedge dx + e^x dy \wedge dx + dx \wedge dy + e^x dx \wedge dy = 0.$$

- d) La différentielle extérieure étant nulle sur un domaine sans trou, le Lemme de Poincaré donne l'existence d'une primitive. En intégrant chacun des deux termes, on trouve $f = xy + e^xy + c$ avec c une constante réelle.
- e) Comme la courbe est fermée et la forme exacte, l'intégrale est nulle car elle vaut f(2,0) f(2,0) = 0.

Exercice 2 : Soit \mathcal{D} la surface de \mathbb{R}^2 donnée par l'intérieur de l'ellipse \mathcal{C} , et paramétrée par

$$x(r,t) = 2r\cos(t), \ y(r,t) = r\sin(t) \text{ avec } 0 < r < 1 \text{ et } 0 < t < 2\pi.$$

- a) Calculer la surface S de \mathcal{D} en utilisant la paramétrisation donnée (on pourra calculer son jacobien).
- b) Calculer directement l'intégrale $\oint_{\mathcal{C}} \eta$ de la 1-forme $\eta = (x+y)dx$ sur le bord \mathcal{C} de \mathcal{D} .
- c) Interpréter ce calcul en termes de champs de vecteurs.
- d) Donner une méthode alternative pour calculer $\oint_{\mathcal{C}} \eta$.
- e) Interpréter ce calcul en termes de champs de vecteurs.

Solution de l'exercice 2.

a) Le jacobien est 2r donc $dx(r,t) \wedge dy(r,t) = 2rdr \wedge dt$ et la surface vaut par Fubini

$$\oint_{\mathcal{D}} dx \wedge dy = \oint_{[0,1] \times [0,2\pi]} 2r dr \wedge dt = \int_{0}^{2\pi} (\int_{0}^{1} 2r dr) dt = 2\pi [r^{2}]_{0}^{1} = 2\pi.$$

b) On a

$$\oint_{\mathcal{C}} \eta = \int_{0}^{2\pi} (2\cos(t) + \sin(t))(-2\sin(t))dt
= \int_{0}^{2\pi} (-4\cos(t)\sin(t) - 2\sin^{2}(t))dt
= -2\int_{0}^{2\pi} \sin^{2}(t)dt
= -2\pi$$

par un calcul déjà fait dans l'exercice précédent.

- c) On a calculé la circulation du champ de vecteurs de coordonnées (x+y,0) le long de la courbe $\mathcal{C}.$
- d) Par la formule de Stokes sur le domaine \mathcal{D} et en utilisant le résultat de la première question, on obtient

$$\oint_{\mathcal{C}} \eta = \oint_{\mathcal{D}} d\eta = \oint_{\mathcal{D}} dy \wedge dx = -\oint_{\mathcal{D}} dx \wedge dy = -2\pi.$$

e) La circulation du champ de vecteurs de coordonnées (x+y,0) le long de la courbe $\mathcal C$ est égale à l'intégrale de son rotationnel scalaire $-1=\frac{\partial}{\partial x}0-\frac{\partial}{\partial y}(x+y)$ sur la surface $\mathcal D$ entourée par la courbe.

Exercice 3 : Soit $\mathcal{V} = \{(x,y,z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 \le 1, \ z \ge 0\}$ la demi-boule unité et $\mathcal{S} = \{(x,y,z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 = 1, \ z \ge 0\}$ la demi-sphère unité orientée par la normale qui pointe vers le haut.

- a) Donner les paramétrisations sphériques de \mathcal{V} et \mathcal{S} (on pourra faire un dessin).
- b) Soit \vec{V} le champ de vecteurs $\vec{V}(x,y,z)=(z,x,2y).$ Soit ω la 1-forme associée à \vec{V} . Calculer $\eta=d\omega.$
- c) Décrire le bord de S et le paramétrer. En déduire, par la formule de Stokes, la valeur de $\oint_S \eta$.
- d) Comment s'interprète ce calcul en termes de champs de vecteurs?
- e) Soit \vec{W} le champ de vecteurs $\vec{W}(x,y,z) = (x,y,z)$ et $\nu = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$ la 2-forme associée. Soit $\partial \mathcal{V}$ le bord de la demi-boule unité, orienté vers l'extérieur (c'est l'union de la demi-sphère et d'un disque). Calculer $\oint_{\partial \mathcal{V}} \nu$ en utilisant la formule de Stokes.
- f) Interpréter ce calcul en termes du champ de vecteurs \vec{W} .

Solution de l'exercice 3.

- a) On paramètre \mathcal{V} par les coordonnées sphériques $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$ avec $(r, \phi, \theta) \in D = [0, 1] \times [0, \pi/2] \times [0, 2\pi]$ et de la même manière \mathcal{S} par $x = \sin \phi \cos \theta$, $y = \sin \phi \sin \theta$, $z = \cos \phi$ avec $(\phi, \theta) \in E = [0, \pi/2] \times [0, 2\pi]$. Le déterminant jacobien est $r^2 \sin \phi$.
- b) On a $\omega = zdx + xdy + 2ydz$ donc $d\omega = dz \wedge dx + dx \wedge dy + 2dy \wedge dz$.
- c) Le bord de S est le cercle donné par $x^2 + y^2 = 1$ et z = 0. On le paramètre par $x = \cos \theta$, $y = \sin \theta$ et z = 0 pour $\theta \in [0, 2\pi]$. On a alors par la formule de Stokes

$$\oint_{\mathcal{S}} \eta = \oint_{\partial \mathcal{S}} \omega$$

$$= \int_{0}^{2\pi} 0 + \cos(\theta) \cos(\theta) d\theta + 0$$

$$= \int_{0}^{2\pi} [1 - \sin^{2} \theta] d\theta$$

$$= 2\pi - \pi$$

$$= \pi$$

- d) Le flux du champ de vecteur $(1,1,2) = \overrightarrow{rot}(z,x,2y)$ à travers la surface S est égale au travail le long du cercle du champ de vecteur (z,x,2y), qui vaut π .
- e) On a $d\nu = dx \wedge dy \wedge dz + dy \wedge dz \wedge dx + dz \wedge dx \wedge dy = 3dx \wedge dy \wedge dz$, donc la formule de Stokes nous donne

$$\oint_{\partial \mathcal{V}} \nu = \oint_{\mathcal{V}} d\nu = 3 \oint_{\mathcal{V}} dx \wedge dy \wedge dz$$

ce qui donne trois fois le volume de la demi-sphère, donc 3/2 du volume de la sphère, qui vaut par Fubini

$$\int_0^1 (\int_0^\pi (\int_0^{2\pi} r^2 \sin \phi d\theta) d\phi) dr = [r^3/3]_0^1 \cdot [\theta]_0^{2\pi} \cdot [-\cos \phi]_0^\pi = \frac{4\pi}{3}.$$

En fin de compte, on obtient

$$\oint_{\partial \mathcal{V}} \nu = 2\pi.$$

f) Le flux du champ de vecteur \vec{W} à travers la surface $\partial \mathcal{V}$ est égal à l'intégrale de sa divergence 3 sur le volume \mathcal{V} .

3