Representations of Lines and Planes

In this section, we review the different ways we can represent lines and planes, including parametric representations.

Representations of Lines

When you think of describing a line algebraically, you might think of the standard form

$$y = mx + b,$$

where m is the slope and b is the y-intercept. This is often called slope-intercept form.

In addition to slope-intercept form, there are several other ways to represent lines. For example, you may remember using *point-slope* form in single variable calculus. We can describe a line of slope m going through a point (x_0, y_0) with the equation

$$y - y_0 = m(x - x_0).$$

It's important to note that there are many different possible choices for the point (x_0, y_0) . Because of this, unlike slope-intercept form, point-slope form does not give a unique representation of a line.

In linear algebra, we saw that we could parametrize a line using a vector $\vec{v} = (v_1, v_2)$ giving the direction of the line, and a point (x_0, y_0) that the line passes through. We parametrize the line as

$$\vec{x}(t) = (v_1, v_2)t + (x_0, y_0),$$

= $(v_1t + x_0, v_2t + y_0).$

Note that this representation works a bit differently from the previous two representations. In slope-intercept form and point-slope form, the line was the set of points (x, y) satisfying the given equation. However, in the parametrization, we plug in values for the parameter t in order to get points on the line.

Unlike slope-intercept form and point-slope form, the parametrization of a line can easily be generalized to three or more dimensions. That is, a line in \mathbb{R}^n through the point \vec{a} and in the direction of the vector \vec{v} can be parametrized as

$$\vec{x}(t) = \vec{v}t + \vec{a}$$

Learning outcomes: Review equations and parametrizations of lines and planes. Author(s): Melissa Lynn

for $t \in \mathbb{R}$.

If we would like to describe a line in higher dimensions using equations (rather than a parametrization), we would need more than one equation. For example, in \mathbb{R}^3 , we would require two equations to determine a line.

Representations of Planes

We also have multiple ways to represent planes. Here, we'll focus on planes in \mathbb{R}^3 .

Recall that a plane can be determined by two vectors (giving the "direction" of the plane) and a point that the plane passes through. We can use this to give a parametrization for the plane through the point \vec{a} and parallel to the vectors \vec{v} and \vec{w} :

$$\vec{x}(s,t) = \vec{v}s + \vec{w}t + \vec{a},$$

for s and t in \mathbb{R} . Note that we require two parameters for the parametrization of the plane.

We can also describe a plane using a single linear equation in x, y, and z. For example,

$$2x + 4y - z = 9$$

defines a plane. A standard way to do this is using a point on the plane and a normal vector to the plane. Recall that a normal vector is perpendicular to every vector in the plane. If $\vec{n} = (n_1, n_2, n_3)$ is a normal vector to a plane passing through the point $\vec{a} = (a_1, a_2, a_3)$, the plane is defined by the equation

$$\vec{n} \cdot (\vec{x} - \vec{a}) = 0.$$

This can be rewritten as

$$n_1(x-a_1) + n_2(y-a_2) + n_3(z-a_3) = 0.$$