Chapter 1: Signal

1. Energy and Power of Signal

	Continuous time - CT	Discrete time - DT
Periodic	$P_{x} = \frac{1}{T_{0}} \int_{t_{0}}^{t_{0} + T_{0}} x(t) ^{2} dt$	$P_x = \frac{1}{N_0} \sum_{n=0}^{N_0 - 1} x[n] ^2$
	$E_x = \lim_{k \to \infty} kT_0 P_x$	$E_x = \lim_{k \to \infty} kT_0 P_x$
Anoriodic	$E_x = \int_{-\infty}^{+\infty} x(t) ^2 dt$	$E_x = \sum_{n=-\infty}^{+\infty} x[n] ^2$
Aperiodic	$P_{x} = \lim_{T_{0} \to \infty} \frac{1}{2T_{0}} \int_{-T_{0}}^{+T_{0}} x(t) ^{2} dt$	$P_{x} = \lim_{N_{0} \to \infty} \frac{1}{2N_{0} + 1} \sum_{n = -N_{0}}^{N_{0}} x[n] ^{2}$

Note that:

- 1. If $E_x < M$, M is finite, then the signal is called as energy signal. If $P_x < M$, Mis finite, then the signal is called as power signal.
- 2. An aperiodic signal can be energy signal with zero average power. A periodic signal can be power signal with infinite total energy.
- 3. If a signal is summation of sine with amplitude A_i , i = 0,...,n and cosine with amplitude B_i , i=0,...,m, then the power of this signal is given by $P_x = \sum_{i=0}^n \frac{A_i^2}{2} + \sum_{i=0}^m \frac{B_i^2}{2}$

$$P_{x} = \sum_{i=0}^{n} \frac{A_{i}^{2}}{2} + \sum_{i=0}^{m} \frac{B_{i}^{2}}{2}$$

4. A signal is called as **causal signal** if and only if $x(t) = 0, \forall t < 0$ for CT signal or x[n] = 0, $\forall n < 0$ for DT signal, respectively.

2. Basic Signal Functions

	Continuous time - CT	Discrete time - DT
	$\delta(t) = \begin{cases} 1, & t = 0 \\ 0, & t \neq 0 \end{cases}$	$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$
Impulse		
	$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$	$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$
Unit step		

Chapter 2: System

1. Properties of System

1. 1. Causality

A causal system is a system where the output y only depends on present and past values of input x but not the future inputs.

1. 2. Linearity

A system **H** is called linear system if and only if it satisfies the condition

$$\mathbf{H}\{a_1x_1 + a_2x_2\} = a_1y_1 + a_2y_2$$

Check for linearity:

• Step 1: Calculate the output for linear combinations of input

$$x = a_1 x_1 + a_2 x_2 \xrightarrow{\mathbf{H}} y = \mathbf{H} \{a_1 x_1 + a_2 x_2\} = ?(1)$$

• Step 2: Calculate linear combination of output for independent inputs

$$\begin{cases} x_1 \stackrel{\mathsf{H}}{\to} y_1 = \mathbf{H}\{x_1\} \\ x_2 \stackrel{\mathsf{H}}{\to} y_2 = \mathbf{H}\{x_2\} \end{cases} \to a_1 y_1 + a_2 y_2 = ? (2)$$

• Step 3: Compare (1) and (2), if it equals, conclude that the system is linear.

1.3. Time Invariant

If a time-delay on the input directly equates to a time-delay of the output function, the system will be considered time-invariant.

Check for time invariant:

• Step 1: Delay input, calculate its output

$$x_T(t) = x(t-T) \xrightarrow{H} y_T(t) = \mathbf{H}\{x(t-T)\} = ?(1)$$

• Step 2: Calculate the delaying output for the normal input.

$$x(t) \stackrel{\mathrm{H}}{\to} y(t) = \mathbf{H}\{x\} \to y(t-T)$$
 (2)

• Step 3:

Compare (1) and (2), if it equals, conclude that the system is time invariant. (Similarly for discrete system, calculate: $y[n-N], y_N = \mathbf{H}\{x[n-N]\}$ and compare)

1.4. Bounded-input Bounded-output (BIBO) Stable

If the system has bounded for all input (|x(t)| < M, M is finite) which leads to all output is bounded (|y(t)| < N, N is finite) then the system is said to be BIBO system.

Check for BIBO system:

• Assume that |x(t)| < M, $\forall t$, M is finite. Calculate |y(t)|, if we can prove that |y(t)| < N, N is finite, then the system is BIBO system.

Continuous time BIBO System

• If the impulse response of the continuous time system h(t) is absolutely integrable, the system is said to be BIBO stable.

$$\int_{-\infty}^{+\infty} |h(t)| dt < M, M \text{ is finite}$$

Discrete time BIBO System

• If the impulse response of the discrete time system h[n] is absolutely integrable, the system is said to be BIBO stable.

$$\sum_{n=-\infty}^{+\infty} |h[n]| < M, M \text{ is finite}$$

1.5. Memory

A system is said to be memoryless if for all value of t_0 , the output $y(t_0)$ only depends on value of input at t_0 , i.e. $x(t_0)$.

A system which is not memoryless is considered to have memory.

1. 6. Invertibility

If there is exists a system **S** for the given system **H** such that

$$S\{H\{x\}\} = x$$

the system **S** is said to be the inverse of system **H**, denoted by \mathbf{H}^{-1} .

Check for non-invertible system:

• If there are exists two different inputs x_1 and x_2 that produce the same output $\mathbf{H}\{x_1\} = \mathbf{H}\{x_2\}$, the given system is non-invertible.

2. Block Diagram Represent for Systems

	Block Diagram
Cascade	
Parallel	
Feedback	

Chapter 3: Convolution

1. Convolution

Continuous time	Discrete time
$y(t) = x(t) * h(t)$ $= \int_{-\infty}^{+\infty} x(\tau)h(t - \tau)d\tau$ $= \int_{-\infty}^{+\infty} x(t - \tau)h(\tau)d\tau$	$y[n] = x[n] * h[n]$ $= \sum_{\substack{k = -\infty \\ +\infty}}^{+\infty} x[k]h[n - k]$ $= \sum_{\substack{k = -\infty}}^{+\infty} x[n - k]h[k]$

2. Convolution properties

Name	Formula	
Linearity	$(a_1f + a_2g) * h = a_1(f * h) + a_2(g * h)$	
Associativity	(f*g)*h = f*(g*h)	
Identity	$f * \delta = f$ $f(t) * \delta(t - a) = f(t - a)$	

Chapter 4: Transformations

1. Summary of Transformations

		Time domain		
		Continuous	Discrete	
Fourier transform (Frequency domain)	Periodic Discrete	$X[k] = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jk\omega_0 t} dt$ $x(t) = \sum_{k = -\infty}^{+\infty} X[k] e^{jk\omega_0 t}$	$X[k] = \sum_{k=0}^{n-1} x[n]e^{-j2\pi nk/N_0}$ $x[n] = \frac{1}{N_0} \sum_{k=0}^{n-1} X[k]e^{j2\pi nk/N_0}$	
	Non-Periodic Continuous	$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega)e^{j\omega t}d\omega$	$X(\Omega) = \sum_{n = -\infty}^{+\infty} x[n]e^{-j\Omega n}$ $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega)e^{j\Omega n} d\omega$	
Laplace and z- transform		Laplace transform: $X(s) = \mathcal{L}\{x(t)\} = \int_{0^{-}}^{+\infty} x(t)e^{-st}dt$	z-transform: $X(z) = Z\{x[n]\} = \sum_{n=0}^{+\infty} x[n]z^{-n}$	
Convolution		$y(t) = x(t) * h(t)$ $\begin{cases} Y(s) = X(s).H(s) \\ X(\omega) = X(\omega).H(\omega) \\ Y[k] = X[k].H[k] \end{cases}$	$y[n] = x[n] * h[n]$ $\begin{cases} Y(z) = X(z).H(z) \\ X(\omega) = X(\omega).H(\omega) \\ Y[k] = X[k].H[k] \end{cases}$	

2. Laplace Transform

2. 1. Definition

If f(t) is continuous and there are positive numbers M, a such that $|f(t)| < Me^{at}$, for all $t \ge c$. Then $F(s) = \mathcal{L}\{f(t)\}$ is defined for all s > c.

$$\mathcal{L}{f(t)} = \int_0^\infty f(t)e^{-st}dt$$

2. 2. Properties

f(t)	$\mathcal{L}\{f(t)u(t)\}$	f(t)	$\mathcal{L}\{f(t)u(t)\}$
f(at)	$\frac{1}{ a }F\left(\frac{s}{a}\right)$	$e^{-at}f(t)$	F(s+a)
$t^n f(t)$	$(-1)^n F^{(n)}(s)$	f(t-a)u(t-a)	$e^{-as}F(s)$
f'(t)	sF(s)-f(0)	(f*g)(t)	F(s).G(s)
f''(t)	$s^2F(s) - sf(0) - f'(0)$	$\frac{f(t)}{t}$	$\int_{s}^{+\infty} F(\tau) d\tau$
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{n-1}(0)$	$\int_0^t f(\tau)d\tau = u(t) * f(t)$	$\frac{1}{s}F(s)$

2.3. Formulas

f(t)	$\mathcal{L}\{f(t)u(t)\}$	f(t)	$\mathcal{L}\{f(t)u(t)\}$
1	$\frac{1}{s}$	$\delta(t-a)$	e ^{-as}
t^n	$\frac{n!}{s^{n+1}}$	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
e ^{-at}	$\frac{1}{s+a}$	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$	t cos ωt	$\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$	$t \sin \omega t$	$\frac{2\omega s}{(s^2+\omega^2)^2}$
cosh at	$\frac{s}{s^2 - a^2}$	$t^n e^{-at}$	$\frac{n!}{(s+a)^{n+1}}$
sinh at	$\frac{a}{s^2 - a^2}$	tf(t)	-F'(s)

2.4. Initial and Final Value Theorem

Initial-value theorem

$$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s) = f(0^+)$$

Final-value theorem

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} sF(s)$$

2.5. Convolution

Solving a convolution: Find x(t) * h(t) or (x * h)(t)

Let:
$$y(t) = x(t) * h(t)$$

$$\to Y(s) = \mathcal{L}\{x(t) * h(t)\} = X(s).H(s)$$

Taking inverse Laplace transform to find the result of the convolution:

$$y(t) = \mathcal{L}^{-1}\{Y(s)\}$$

3. z-transform

3.1. Definition

Causal sequence: $\{x_n\}_{0}^{\infty} = \{x_0, x_1, x_2, ...\}$

Infinite sequence: $\{x_n\}_{-\infty}^{\infty} = \{..., x_{-2}, x_{-1}, x_0, x_1, x_2, ...\}$

The z-transform of an **infinite sequence** is defined whenever the sum exists and where z is a complex variable

$$Z{x_n}_{-\infty}^{\infty} = X(z) = \sum_{n=-\infty}^{\infty} \frac{x_n}{z^n}$$

The z-transform of a **causal sequence**:

$$\mathcal{Z}\{x_n\}_0^\infty = X(z) = \sum_{n=0}^\infty \frac{x_n}{z^n}$$

 $Z\{x_n\}_0^\infty=X(z)=\sum_{n=0}^\infty\frac{x_n}{z^n}$ Where: Z is the z-Transform operator, $\{x_k\}-X(z)$: is a z-transform pair.

3.2. Properties

x_n	$\mathcal{Z}\{x_n\}$	x_n	$\mathcal{Z}\{x_n\}$
$a^n x_n$	$X\left(\frac{z}{a}\right)$	$n^m x_n$	$-z^m \frac{d^m}{dz^m} X(z)$
x_{-n}	$X\left(\frac{1}{z}\right)$	x_{n-1}	$\frac{X(z)}{z}$
x_{n+1}	$zX(z)-zx_0$	x_{n+2}	$z^2X(z) - z^2x_0 - zx_1$

3.3. Formulas

x_n	$\mathcal{Z}\{x_n\}$	x_n	$\mathcal{Z}\{x_n\}$
δ_{n-n_0}	z^{-n_0}	1	$\frac{z}{z-1}$
a^n	$\frac{z}{z-a}$	n	$\frac{z}{(z-1)^2}$
na^{n-1}	$\frac{z}{(z-a)^2}$	e^{-nT}	$\frac{z}{z - e^{-T}}$
$a^n \cos(n\omega T)$	$\frac{z(z-\cos\omega T)}{z^2-2za\cos\omega T+a^2}$	$a^n \sin(n\omega T)$	$\frac{z\sin\omega T}{z^2 - 2za\cos\omega T + a^2}$

3. 4. Initial and Final Value Theorem

Initial-value theorem

$$\lim_{n\to 0} x_n = \lim_{z\to \infty} X(z) = x_0$$

Final-value theorem

$$\lim_{n\to\infty} x_n = \lim_{z\to 1} \left(1 - \frac{1}{z}\right) X(z)$$

Chapter 5: Fourier Series

1. Full Range Series

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{+\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{+\infty} b_k \sin(k\omega_0 t)$$

Where:

$$a_0 = \frac{2}{T_0} \int_{t_0}^{t_0 + T_0} x(t) dt \; ; \; a_k = \frac{2}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \cos(k\omega_0 t) \, dt \; ; \; b_k = \frac{2}{T_0} \int_{t_0}^{t_0 + T_0} x(t) \sin(k\omega_0 t) \, dt$$

Odd function: $a_0 = a_k = 0$, and

$$b_k = \frac{4}{T_0} \int_0^{T_0/2} x(t) \sin(k\omega_0 t) \, dt$$

Even function: $b_k = 0$, and

$$a_0 = \frac{4}{T_0} \int_0^{T_0/2} x(t) dt$$
; $a_k = \frac{4}{T_0} \int_0^{T_0/2} x(t) \cos(k\omega_0 t) dt$

Parseval's identity:

$$\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt = \frac{1}{4} a_0^2 + \frac{1}{2} \sum_{k=1}^{+\infty} (a_k^2 + b_k^2)$$

2. Half Range Series

2. 1. Half Range Sine Series:

$$x(t) = \sum_{k=1}^{+\infty} b_k \sin\left(\frac{k\pi t}{L}\right); \ b_n = \frac{2}{L} \int_0^L x(t) \sin\left(\frac{k\pi t}{L}\right) dt$$

2. 2. Half Range Cosine Series:

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{+\infty} a_k \cos\left(\frac{k\pi t}{L}\right); \ a_0 = \frac{2}{L} \int_0^L x(t)dt; \ a_k = \frac{2}{L} \int_0^L x(t) \cos\left(\frac{k\pi t}{L}\right)dt$$

3. Exponential Fourier Series

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t}$$

where:

$$c_k = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jk\omega_0 t} dt$$

4. Frequently Used Formulas

Euler's formula

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}; \quad \sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

Sine, cosine of odd number of pi

$$\cos \pi n = (-1)^n$$

$$\sin \pi n = 0$$

Helpful integration

$$I_{1} = \int (at+b)\sin ct \, dt = -\frac{at+b}{c}\cos ct + \frac{a}{c^{2}}\sin ct$$

$$I_{2} = \int (at+b)\cos ct \, dt = \frac{at+b}{c}\sin ct + \frac{a}{c^{2}}\cos ct$$

$$I_{3} = \int \sin(at+b)\sin(ct+d) \, dt = \frac{1}{2} \left(\frac{\sin(t(a-c)+b-d)}{a-c} - \frac{\sin(t(a+c)+b-d)}{a+c} \right)$$

$$I_{4} = \int \cos(at+b)\cos(ct+d) \, dt = \frac{1}{2} \left(\frac{\sin(t(a-c)+b-d)}{a-c} + \frac{\sin(t(a+c)+b-d)}{a+c} \right)$$

$$I_{5} = \int \sin(at+b)\cos(ct+d) \, dt = -\frac{1}{2} \left(\frac{\cos(t(a-c)+b-d)}{a-c} + \frac{\cos(t(a+c)+b-d)}{a+c} \right)$$