4.4连续值与缺失值

4.4.1连续值处理

C4.5算法:

- 1. 二分法,每次将数据分隔为2部分
- 2. 找到使得信息增益Gain(D,a)最大的阈值
- 3. 确定是否要分叉

4.4.3缺失值处理

C4.5例子

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷		是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

思路: 将缺失值去除后的样本 \bar{D} 计算 $Ent(\bar{D})$,取出后剩余14个样本,对不同属性计算 $Ent(\hat{D}^i)$,可得信息增益,找到信息增益最大的那个属性作为根进行划分。

做法:

在学习开始时,根结点包含样本集 D 中全部 17 个样例,各样例的权值 均为 1. 以属性 "色泽"为例,该属性上无缺失值的样例子集 \tilde{D} 包含编号为 $\{2,3,4,6,7,8,9,10,11,12,14,15,16,17\}$ 的 14 个样例.显然, \tilde{D} 的信息熵为

$$\operatorname{Ent}(\tilde{D}) = -\sum_{k=1}^{2} \tilde{p}_{k} \log_{2} \tilde{p}_{k}$$

$$= -\left(\frac{6}{14} \log_{2} \frac{6}{14} + \frac{8}{14} \log_{2} \frac{8}{14}\right) = 0.985.$$

令 \tilde{D}^1 , \tilde{D}^2 与 \tilde{D}^3 分别表示在属性 "色泽" 上取值为 "青绿" "乌黑"以及 "浅白" 的样本子集, 有

$$\operatorname{Ent}(\tilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1.000 ,$$

$$\operatorname{Ent}(\tilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{2}{6}\right) = 0.918 ,$$

$$\operatorname{Ent}(\tilde{D}^3) = -\left(\frac{0}{4}\log_2\frac{0}{4} + \frac{4}{4}\log_2\frac{4}{4}\right) = 0.000 ,$$

因此, 样本子集 \tilde{D} 上属性 "色泽" 的信息增益为

$$Gain(\tilde{D}, 色泽) = Ent(\tilde{D}) - \sum_{v=1}^{3} \tilde{r}_v \operatorname{Ent}(\tilde{D}^v)$$
$$= 0.985 - \left(\frac{4}{14} \times 1.000 + \frac{6}{14} \times 0.918 + \frac{4}{14} \times 0.000\right)$$
$$= 0.306.$$

于是, 样本集 D 上属性"色泽"的信息增益为

$$\mathrm{Gain}(D,$$
色泽) = $\rho \times \mathrm{Gain}(\tilde{D},$ 色泽) = $\frac{14}{17} \times 0.306 = 0.252$.

类似地可计算出所有属性在 D 上的信息增益:

$$Gain(D, 色泽) = 0.252; Gain(D, 根蒂) = 0.171;$$

$$Gain(D, 敲声) = 0.145; Gain(D, 纹理) = 0.424;$$

$$Gain(D, 脐部) = 0.289; \quad Gain(D, 触感) = 0.006.$$

(疑问: ρ 为什么是 $\frac{14}{17}$ 而不是 $\frac{17}{14}$)

其他方法

- 众数填充
- 相关性最高的列填充

连续值

- 中位数
- 相关性最高的列做线性回归进行估计