Model Compression

Mohammadreza Banaei

Outline

- Motivation
- Compression methods
 - Pruning
 - Quantization
 - Weight factorization
 - Knowledge distillation
 - Weight Sharing
- Sub-quadratic Transformers

Why do we need compression?

Growth of model parameters

• Exponential growth in model parameters

Growth of model parameters

- Exponential growth in model parameters
 - Scaling laws

Growth of model parameters

- Exponential growth in model parameters
 - Scaling laws
 - Emergent abilities of LLMs

- Cloud processing not always possible
 - Latency issue
 - Data privacy

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference time for edge devices

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference time for edge devices
- Memory issue
 - ~350 GB just for storing a LLM weights!

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference time for edge devices
- Memory issue
 - ~350 GB just for storing a LLM weights!
- Finetuning LLMs
 - Time-consuming
 - Expensive

- Cloud processing not always possible
 - Latency issue
 - Data privacy
- Inference
- Memory
 ~350 GB
 Finetunir
 Finetunir

 - - Time-consuming
 - Expensive

• Large models are more robust to compression techniques than small models

- Large models are more robust to compression techniques than small models
- For given test-time constraints (e.g., inference time, #parameter)
 - o heavily compressed, large models > lightly compressed, small models

- Large models are more robust to compression techniques than small models
- For given test-time constraints (e.g., inference time, #parameter)
 - heavily compressed, large models > lightly compressed, small models

Comparing downstream task performance for discussed scenarios

- Large models are more robust to compression techniques than small models
- For given test-time constraints (e.g., inference time, #parameter)
 - o heavily compressed, large models > lightly compressed, small models

Li, Zhuohan et al. "Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers." ArXiv abs/2002.11794 (2020)

How is the compression done?

Compression Methods

- Pruning
- Quantization
- Weight factorization
- Knowledge Distillation
- Weight sharing

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning		
Quantization		
Weight Factorization		
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

W1

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

- Sparse connectivity inspired by biological neural networks
- Unstructured pruning Vs. structured pruning

What is the potential benefit of structured pruning?

How to choose pruned weights?

Pruning: case study

- Goal: a BERT-based sentiment classifier model
 - constraints: 50% of weights should be pruned

Pruning: case study

- Goal: a BERT-based sentiment classifier model
 - constraints: 50% of weights should be pruned

which weights should be pruned?

Pruning: case study

- Goal: a BERT-based sentiment classifier model
 - constraints: 50% of weights should be pruned

which weights should be pruned?

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level
- Iterative magnitude pruning
 - pruning gradually during training

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level
- Iterative magnitude pruning
 - pruning gradually during training
- Movement pruning

- Magnitude pruning
 - Pruning weights with small magnitude
 - Pruning x% at global Vs. Module level
- Iterative magnitude pruning
 - pruning gradually during training
- Movement pruning
- (Differentiable) masking as a pruning method
 - Example: attention head masking

- Structured pruning for Transformer language models
 - Pruning neurons

<u>'</u>

- Structured pruning for Transformer language models
 - Pruning neurons
 - Pruning attention heads

Michel, Paul, Omer Levy, and Graham Neubig. "Are sixteen heads really better than one?." *Advances in neural information processing systems* 32 (2019). Voita, Elena, et al. "Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the rest can be pruned." *arXiv preprint arXiv:1905.09418* (2019).

- Structured pruning for Transformer language models
 - Pruning neurons
 - Pruning attention heads
 - Pruning sub-layers
 - Example: pruning feed-forward sub-layer

- Structured pruning for Transformer language models
 - Pruning neurons
 - Pruning attention heads
 - Pruning sub-layers
 - Example: pruning feed-forward sub-layer
 - Pruning layers
 - Example: pruning the last K layers

Pruning Attention Heads

How can we prune attention heads?

 $MultiHead(Q, K, V) = Concat_i(head_i)W^O$

Pruning Attention Heads

How can we prune attention heads?

$$\begin{aligned} \text{MultiHead}(Q,K,V) &= \text{Concat}_i(\text{head}_i)W^O \\ \\ \text{MultiHead}(Q,K,V) &= \text{Concat}_i(g_i \cdot \text{head}_i)W^O \end{aligned}$$

Pruning Attention Heads

How can we prune attention heads?

$$\label{eq:MultiHead} \begin{split} \text{MultiHead}(Q,K,V) &= \text{Concat}_i(\text{head}_i)W^O \\ \\ \text{MultiHead}(Q,K,V) &= \text{Concat}_i(g_i \cdot \text{head}_i)W^O \end{split}$$

- L0 regularization over attention heads' mask paramet
 - Example: Translation task

$$L = L_{xent} + \lambda L_C \qquad \lambda = 0.01$$

Pruning Attention Heads

• Large fraction of Transformer attention heads can be removed at test time!

Layer		Layer	
1	-0.01%	7	0.05%
2	0.10%	8	-0.72%
3	-0.14%	9	-0.96%
4	-0.53%	10	0.07%
5	-0.29%	11	-0.19%
6	-0.52%	12	-0.12%

(Delta accuracy by layer when only one head is kept for MNLI BERT model)

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization		
Weight Factorization		
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

Quantization

• How else can we compress a given neural module?

Quantization

• How else can we compress a given neural module?

Quantization

• How else can we compress a given neural module?

- Number of parameters remains the same!
 - Improvement in memory footprint + inference time
- Quantization is mostly applied on a trained model

Binarized Network

- Essentially using 1 bit per parameter!
- Deterministic Binarization
 - c1 and c2 from K-means over the weights
 - c1 and c2 tuned on downstream task

$$w_b = \begin{cases} c_1 & \text{if } w \ge (c_1 + c_2)/2 \\ c_2 & \text{if } w < (c_1 + c_2)/2 \end{cases}$$

Binarized Network

- Essentially using 1 bit per parameter!
- Deterministic Binarization
 - c1 and c2 from K-means over the weights
 - c1 and c2 tuned on downstream task

$$w_b = \begin{cases} c_1 & \text{if } w \ge (c_1 + c_2)/2 \\ c_2 & \text{if } w < (c_1 + c_2)/2 \end{cases}$$

Question: How can we improve the binarized network performance?

General Quantized Networks

- Uniform Quantization
 - Not necessarily optimal

- Better fitted for non-uniform weights!
- Example: Decide bin boundaries using clustering!

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization		
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

Weight Factorization

• The weight modules are replaced by their factorized matrices

Weight Factorization

• The weight modules are replaced by their factorized matrices

- Factorization methods
 - Two low-rank matrices (similar to SVD)
 - Tensor decomposition
 - Non-linear factorization by using Auto-encoders

Case Study: ALBERT

- #parameters issue in token embedding matrix
 - ~23M out of 110M parameters in BERT-base
 - More than half of the parameters in mBERT
- Token embedding dimension are generally tied to the hidden dimension
 - What if we disentangle them by factorizing the embedding matrix?

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing		
Knowledge distillation		
Sub-quadratic Transformer		

Weight Sharing

- A common example of parameter compression/efficiency
 - Finding weight blocks that can share the same weight

Weight Sharing

- A common example of parameter compression/efficiency
 - Finding weight blocks that can share the same weight
- Examples of weight sharing
 - Sharing token embedding and LM decoder head
 - Parameter sharing in the embedding matrix
 - Cross-layer parameter sharing (e.g., ALBERT)

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing	Yes	No
Knowledge distillation		
Sub-quadratic Transformer		

- Training a smaller student network by distilling a large teacher model
 - The student's goal is to imitate teacher's behavior!
- Can we have the best of the two worlds?
 - Good performance of teacher model + faster & parameter-efficient student model

- Training a smaller student network by distilling a large teacher model
 - The student's goal is to imitate teacher's behavior!
- Can we have the best of the two worlds?
 - Good performance of teacher model + faster & parameter-efficient student model
- Knowledge distillation Vs. Transfer learning
 - Transfer learning → deals with shared architecture/layers
 - Knowledge distillation \rightarrow often the student model has a different smaller architecture

How can we distill the teacher's knowledge?

Intuition behind knowledge distillation

- Intuition behind knowledge distillation
- Consider a 3-class sentiment analysis dataset
 - We pass the following 2 samples to the teacher model to get class probabilities

	Positive	Negative	Neutral
Groundtruth	1	0	0
Teacher prob.	0.94	0.01	0.05

	Positive	Negative	Neutral
Groundtruth	1	0	0
Teacher prob.	0.67	0.02	0.31

Soft Labels

- How to leverage soft labels for the student model?
 - Additional cross-entropy to soft labels (soft loss)
 - Cross-entropy loss to ground-truth labels → hard loss

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + (1 - \alpha) \cdot \mathcal{L}_{distill}$$
Hard Loss
Soft Loss

- How to leverage soft labels for the student model?
 - Additional cross-entropy to soft labels (soft loss)
 - Cross-entropy loss to ground-truth labels → hard loss

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + (1 - \alpha) \cdot \mathcal{L}_{distill}$$
Hard Loss

Soft Loss

- Teacher making confident prediction for easy downstream tasks
 - Solution: increase softmax temperature to get suitably soft targets!

- How to leverage soft labels for the student model?
 - Additional cross-entropy to soft labels (soft loss)
 - Cross-entropy loss to ground-truth labels → hard loss

$$\mathcal{L} = \alpha \cdot \mathcal{L}_{CE} + (1 - \alpha) \cdot \mathcal{L}_{distill}$$
Hard Loss
Soft Loss

- Teacher making confident prediction for easy downstream tasks
 - Solution: increase softmax temperature to get suitably soft targets!

#	[ode]	SST-2	QQP	MNLI-m	MNLI-mm
	1110401	Acc	F ₁ /Acc	Acc	Acc
1	BERT _{LARGE} (Devlin et al., 2018)	94.9	72.1/89.3	86.7	85.9
2	BERT _{BASE} (Devlin et al., 2018)	93.5	71.2/89.2	84.6	83.4
3	OpenAI GPT (Radford et al., 2018)	91.3	70.3/88.5	82.1	81.4
4	BERT ELMo baseline (Devlin et al., 2018)	90.4	64.8/84.7	76.4	76.1
5	GLUE ELMo baseline (Wang et al., 2018)	90.4	63.1/84.3	74.1	74.5
6	Distilled BiLSTM _{SOFT}	90.7	68.2/88.1	73.0	72.6
7	BiLSTM (our implementation)	86.7	63.7/86.2	68.7	68.3

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

I absolutely [MASK] natural language processing field.

BERT-base

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

```
BERT-base

| Beart-base | Beart
```

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

- 6-layer student model distilled from BERT-base (i.e., teacher)
 - Initialize the student from the teacher by taking one layer out of two
- Distillation on MLM loss
 - Improving LM generalization

```
I absolutely [MASK] natural language processing field.

I absolutely [MASK] natural la
```

Competitive performance to the teacher

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

0.241 I absolutely hate natural language processing field.

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing	Yes	No
Knowledge distillation	Yes	Yes
Sub-quadratic Transformer		

Processing Long Contexts

• Issue with trained position embeddings

- Example: BERT model

Processing Long Contexts

- Issue with trained position embeddings
 - Example: BERT model
- Sinusoidal position embedding
 - Example: (original) Transformer paper

$$egin{aligned} oldsymbol{\omega_k} &= rac{1}{10000^{2k/d}} & ec{p_t} = egin{bmatrix} \sin(\omega_1.t) \ \cos(\omega_1.t) \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ dots \ & dots \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ & dots \ \cos(\omega_2.t) \ & dots \ & dots \ \cos(\omega_{d/2}.t) \ & dots \$$

Processing Long Contexts

- Issue with trained position embeddings
 - Example: BERT model
- Sinusoidal position embedding
 - Example: (original) Transformer paper
- Relative positional encoding
 - Rotary Position Embedding (RoPE)
 - Attention with Linear Biases (ALiBi)

$$egin{aligned} \omega_k = rac{1}{10000^{2k/d}} & ec{p_t} = egin{bmatrix} \sin(\omega_1.t) \ \cos(\omega_1.t) \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ dots \ & dots \ \sin(\omega_2.t) \ \cos(\omega_2.t) \ \end{bmatrix}_{d imes 1} \end{aligned}$$

ALiBi

- No additive position embeddings in the input layer
- adding a linear bias to each attention score

ALiBi

- No additive position embeddings in the input layer
- adding a linear bias to each attention score

Inference time for long inputs?

Sub-quadratic Transformers

- Time and activation memory grows quadratically with the sequence length
 - Especially important for long sequences
 - Potentially limiting the maximum sequence length

Sub-quadratic Transformers

- Time and activation memory grows quadratically with the sequence length
 - Especially important for long sequences
 - Potentially limiting the maximum sequence length
- Do tokens need to directly attend to every other token?
 - What if attention is performed more locally! → Longformer
 - Masking attention between far tokens (using M matrix)

$$\operatorname{Attention}(\boldsymbol{Q},\boldsymbol{K},\boldsymbol{V},\boldsymbol{M}) = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\top}}{\sqrt{d}}\odot\boldsymbol{M}\right)\boldsymbol{V}$$

Longformer

Every token should attend to its neighbor tokens

Full n^2 attention

Sliding window attention

Longformer

- Every token should attend to its neighbor tokens
- Need for some global tokens to bridge across the sequence
 - [CLS] for text classification
 - Question tokens for QA

Full n^2 attention

Sliding window attention

Global+sliding window

Methods Overview

Approach	Improvement on memory footprint	Improvement on inference time
Pruning	Y/N	Y/N
Quantization	Yes	Yes
Weight Factorization	Yes	No
Weight Sharing	Yes	No
Knowledge distillation	Yes	Yes
Sub-quadratic Transformer	No	Yes

Recap

- Compression leads to improving:
 - Number of parameters
 - Inference time
 - Size-performance trade-off
 - heavily compressed large models > lightly compressed small models
- Different compression techniques
 - o Pruning, quantization, factorization, weight sharing, knowledge distillation
- Improvement over quadratic attention mechanism

