Consultas SparQl a Estructuras RDF

BRYAN ASMAT, DANILO BLAS, VICTOR CHAVEZ, WILLIAM GUADALUPE Universidad Nacional de Ingenieria Lima,Perú

basmatf@uni.pe, iblass@uni.pe, vchavezb@uni.pe, wguadalupeq@uni.pe

Resumen—La información en la web se puede representar bajo un formato de datos llamado RDF

En el presente trabajo se implementaron consultas de tipos SPARQL que permiten hacer la busqueda en distintas fuentes de datos.

Índice de Términos— RNN, modelos secuencia mecanismos de atención.

I. Introducción

Una tendencia dada en el ICRL ¹ y en el NAACL- HLT ² celebrados en

Los Transformers, presentados en 2017, introdujeron un nuevo enfoque: módulos de atención. Este modelo ha conllevado a una enorme cantidad de variantes que mejoran el desempeño de tareas del NLP, como el Transformer Universal, BERT (google) o el Transformer-XL; la mayoría de modelos de vanguardia que requieren gran cantidad de datos de entrenamiento y días de entrenamiento en hardware haciéndolo costoso. Sin embargo, con el lanzamiento de librerías especializadas en NLP y arquitecturas Transformer, ahora pueden ser utilizados en datos reducidos. lograsdas

lorem lorem holamundo x 10000

De esta manera, el presente trabajo busca explorar la aplicación de estos modelos sobre el conjunto de datos reducido AG News y Multi30k. En primer lugar se realizará la definición del modelo Transformer. A continuación, se describirá el estado del arte de modelos basados en el Transformer, para diferentes tareas del NLP. Posteriomente, se explica la metodología a utilizar en los experimentos con diferentes arquitecturas. Las secciones siguientes tratarán los resultados experimentales, las conclusiones y discusiones, y los trabajos futuros que se pueden realizar con esta nueva familia de técnicas del NLP.

II. ESTRUCTURA RDF

III. QUE ES RDF?

El modelo Transformer, propuesto en el artículo Attention Is All You Need [1], se basa en la auto-atención sin el uso de RNN. Como resultado, es altamente paralelo y requiere menos tiempo para entrenamiento, al tiempo

que establece resultados de vanguardia en modelamiento de lenguaje y la traducción automática.

El Transformer se basa en una estructura encoderdecoder. La diferencia entre este y cualquier otro modelo es que el Transformer se basa completamente en mecanismos de atención.

Figura 1. Encoder-Decoder del Transformer. Fuente The Transformer: Attention Is All You Need. [1]

El encoder está formado por una pila de N=6 capas, cada una de las cuales está compuesta por dos subcapas: un mecanismo de atención de múltiples cabeceras y una red de alimentación directa completamente conectada más conexiones residuales [2] en ambas etapas, seguidas de un procedimiento de normalización de capas [3]. El decoder se define de manera similar, solo que cada capa está compuesta de 3 subcapas: atención de múltiples cabeceras, capas completamente conectadas y atención de múltiples cabeceras enmascarada.

Este modelo fue entrenado durante 300000 pasos, aproximadamente 3,5 días, utilizando 8 GPU NVIDIA P100. De esta manera, el modelo Transformer alcanzó un puntaje BLUE [4] de 26,4 cuando se aplicó sobre el conjunto de datos newstest2013 como un conjunto de prueba, que estableció un nuevo resultado de vanguardia.

El Transformer es una mejora con respecto a los modelos seq2seq basados en RNN, pero tiene algunas limitaciones.

- La atención solo puede ocuparse de cadenas de texto de longitud fija, lo cual implica que el texto debe dividirse en un cierto número de segmentos antes de ser alimentado al sistema como entrada.
- Esta segmentación del texto provoca la fragmentación del contexto ³. Por ejemplo, si una oración se divide en dos, se pierde una cantidad significativa de contexto. En otras palabras, el texto se divide sin considerar la oración o cualquier otro límite semántico.

¹International Conference on Learning Representations

²Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

³Context fragmentation

IV. CONSULTAS SPARQL

Con la aparición del Transformer, han surgido diversas variantes y mejoras del modelo para mejorar las limitaciones y el desempeño en diversas tareas del NLP. En esta sección describiremos algunas relacionadas a este trabajo.

IV-A. Transformer Universal

El Transformer Universal, propuesto en el artículo del mismo nombre Universal Transformers [5], es una variante del modelo Transformer que tiene como objetivo lograr un buen rendimiento tanto en traducción de lenguaje como en tareas algorítmicas con un solo modelo. Los autores del Transformer Universal señalan que es un modelo completo de Turing.

De acuerdo al artículo, las principales diferencias entre el Transformer y el Transformer Universal consistn en que el Transformer Universal aplica el encoder para un número variable de pasos para cada token de entrada/salida (T pasos), mientras que el Transformador aplica exactamente 6 capas de encoder/decoder, respectivamente. Así mismo, el Transformer Universal utiliza una representación de entrada ligeramente diferente: incluye un embedding de paso de tiempo además de la codificación posicional.

Los números variables de pasos presentes en el Transformer Universal se logran mediante el uso de Adaptive Computation Time, un mecanismo propuesto por Alex Graves [6] que permite la aplicación del encoder y decoder un número variable de veces.

IV-B. Transformer-XL

El transformer-XL es uno de los primeros modelos exitosos en abordar el problema de poseer una longitud fija en la secuencia de entrada. En el artículo Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context [7] se propone este método novedoso para el modelado de lenguaje, que permite que una arquitectura transformer aprenda dependencia a largo plazo, a través de un mecanismo de recurrencia, más allá de una longitud fija sin alterar la coherencia temporal.

Se introduce un mecanismo recurrente a nivel de segmento que permite que el modelo reutilice estados ocultos anteriores en el momento del entrenamiento, abordando tanto los problemas del contexto de longitud fija como la fragmentación del contexto. En otras palabras, la información histórica se puede reutilizar y se puede extender tanto como lo permita la memoria de la GPU.

Para reutilizar adecuadamente los estados ocultos, los autores proponen un mecanismo llamado codificaciones posicionales relativas que ayuda a evitar la confusión temporal. Los modelos actuales no pueden distinguir la diferencia posicional entre entradas en diferentes segmentos en diferentes capas. La codificación de posición relativa soluciona este problema al codificar el sesgo de información posicional en los estados ocultos, que difiere de otros enfoques que realizan esto como el nivel de entrada.

Figura 2. Transformer XL: Entrenamiento y Evaluación. Fuente: Transformer XL [7]

El transformer-XL reduce el puntaje de perplejidad SoTA anterior en varios conjuntos de datos como text8, enwiki8, One Billion Word y WikiText-103. Los autores afirman que el método es más flexible, más rápido durante la evaluación (aceleración de 1874 veces), se generaliza bien en conjuntos de datos pequeños y es eficaz para modelar secuencias cortas y largas.

Así mismo, los autores proponen una nueva métrica llamada Relative Effective Context Length que proporciona una manera justa de comparar modelos que se prueban con mayores longitudes de contexto.

IV-C. XLNet

XLNet es un modelo presentado en el artículo XLNet: Generalized Autoregressive Pretraining for Language Understanding [8] que es un lenguaje autoregresivo que genera la probabilidad conjunta de una secuencia de tokens basada en la arquitectura del Transformer con recurrencia. Este modelo introduce una variante de modelado de lenguaje llamada modelado de lenguaje de permutación. Los modelos de lenguaje de permutación están entrenados para predecir un token dado el contexto anterior como el modelo de lenguaje tradicional, pero en lugar de predecir los tokens en orden secuencial, predice los tokens en un orden aleatorio.

Además de usar el modelado de lenguaje de permutación, XLNet mejora BERT al usar el Transformer XL como su arquitectura base. XLNet utiliza las dos ideas clave de Transformer XL: embeddings posicionales relativas y el mecanismo de recurrencia. Los estados ocultos del segmento anterior se almacenan en caché y se congelan mientras se realiza el modelado del lenguaje de permutación para el segmento actual. Como todas las palabras del segmento anterior se usan como entrada, no es necesario conocer el orden de permutación del segmento anterior.

IV-D. BERT

Este modelo [9],publicado el 2018, esta conformado por una pila de bloques Transformers, la cual esta preentrenada en un corpus de dominio general con 800 millones de palabras. Este modelo obtiene un mejor rendimiento que modelos anteriores a su publicación debido a su naturaleza bidireccional donde la atención se centra en toda la secuencia.

IV-E. RoBERTa

Es un modelo introducido en Facebook. El enfoque BERT robustamente optimizado RoBERTa [10], es un reentrenamiento de BERT con una metodología de entrenamiento mejorada, un 1000 % más de datos y potencia de cálculo. Para mejorar el procedimiento de entrenamiento, RoBERTa elimina tareas como Next Sentence Prediction (NSP) del entrenamiento previo de BERT e introduce el enmascaramiento dinámico para que el token enmascarado cambie durante las épocas de entrenamiento.

RoBERTa supera a BERT y XLNet en los resultados de referencia de GLUE.

IV-F. DistilBERT

Este modelo aprende una versión destilada (aproximada) de BERT, que retiene el 95 % de rendimiento pero utiliza solo la mitad del número de parámetros. Espec'ificamente, no tiene embeddings de tipo token, pooler y retiene solo la mitad de las capas del BERT de Google.

DistilBERT [11], utiliza una técnica llamada destilation, que se aproxima a BERT de Google. La idea es que una vez que se ha entrenado una gran red neuronal, sus distribuciones de salidas completas se pueden aproximar usando una red más pequeña. Una de las funciones clave de optimización utilizadas para la aproximación posterior en las estadísticas bayesianas es la divergencia de Kulback-Leiber.

V. CONCLUSIONES

- Se ha realizado clasificación multiclase utilizando la librería simpletransformers y modelos preentrenados, basados en BERT, obteniendo buenos resultados en métricas de clasificación, especialmente del modelo distilBERT, que tiene un menor número de paramétros que BERT y que utiliza el aprendizaje teacher-students, donde se entrena a una red de students para imitar la distribución de salida completa de la red del teacher (su conocimiento) y retiene el rendimiento de BERT.
- En la tarea de traducción, se realizaron comparaciones entre distintos modelos seq2seq y los modelos transformers, donde estos últimos obtuvieron mejores resultados. Sin embargo el modelo Transformer XL modificado no logró superar al Transformer original.

REFERENCIAS

- [1] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
- [2] Sergey Ioffe, Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (2015). Disponible en https://arxiv.org/abs/1502.03167.
- Lei Ba, Jamie Ryan Kiros, Geoffrey E.Hinton. Layer Normalization (2016). Disponible https://arxiv.org/abs/1607.06450.

- [4] Kishore Papineni , Salim Roukos , Todd Ward , Wei-jing Zhu (2002). BLEU: a Method for Automatic Evaluation of Machine Translation, pp. 311-318. Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL).
- [5] Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, Łukasz Kaiser. Universal Transformers (2018). ICLR 2019. Disponible en https://arxiv.org/abs/1807.0383
- [6] Alex Graves. Adaptive Computation for Neural Recurrent Networks (2017).Disponible en
- [7] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov. Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context (2019). Disponible en https://arxiv.org/abs/1901.02860.
- [8] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Language Understanding (2019). Disponible en https://arxiv.org/abs/
- [9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Tou-tanova. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018). Disponible en bs/1810.0480
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov- RoBERTa: A Robustly Optimized BERT Pretraining Approach (2019). Disponible en https://arxiv.org/abs/1907.11692.
- [11] Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf. DistilBERT, a distilled version of BERT: smaller, lighter (2019).and faster, cheaper Disponible /arxiv.org/abs/1910.01108
- [12] Pytorch-Transform:Implementación de transformer para NLP. https://pytorch.org/hub/huggingface_pytorch-transformers/.
- [13] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Jamie Brew. Transformers: State-ofthe-art Natural Language Processing (2019), HuggingFace Inc. Disponible en https://arxiv.org/abs/1910.03771.
- [14] SimpleTransformers https://pypi.org/project/simpletransformers/.[15] Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification(2015). Disponible en https://arxiv.org/abs/1509.01626
- [16] Desmond Elliott, Stella Frank, Khalil Sima'an, Lucia Specia. Multi30K: Multilingual English-German Image Descriptions(2016). Disponible en https://arxiv.org/abs/1605.00459.
- [17] TransformerXL from Scratch notebook.