TD n°4: Espaces vectoriels (suite)

Exercice 1: On se place dans \mathbb{R}^2 et on définit les vecteurs suivants : $v_1 = (1,1), v_2 = (-2,1), v_3 = (3,0).$

- a) Le système $\{v_1, v_2, v_3\}$ est-il générateur de \mathbb{R}^2 ?
- b) Le système $\{v_1, v_2\}$ est-il générateur de \mathbb{R}^2 ?
- c) Quelle base peut-on extraire du système $\{v_1, v_2, v_3\}$? Quelle est donc la dimension de Vect $\{v_1, v_2, v_3\}$?

Exercice 2: On se place dans \mathbb{R}^4 et on définit les vecteurs suivants : $v_1 = (0, 1, 0, 0), v_2 = (2, 0, 2, -1), v_3 = (1, 1, 1, 0), v_4 = (1, -1, 1, -1).$

- a) Le système $\{v_1, v_2, v_3, v_4\}$ est-il libre? Est-il générateur?
- b) Le système $\{v_1, v_3, v_4\}$ est-il libre? Est-il générateur?
- c) Donner une base de Vect $\{v_1, v_2, v_3, v_4\}$ et en déduire sa dimension.

Exercice 3: Soit $\mathbb{R}_3[X]$ l'ensemble des polynômes de degré inférieur ou égal à 3. On définit $P_0(x) = x + 1$, $P_1(x) = x - 1$, $P_2(x) = x^3 - x - 2$, $P_3(x) = x^3 + x^2$.

- a) La famille de vecteurs $\{P_0, P_1, P_2, P_3\}$ est-elle génératrice de $\mathbb{R}_3[X]$?
- b) Est-elle libre?
- c) Quelle est la dimension de $\mathbb{R}_3[X]$?

Exercice 4: On se place dans $\mathbb{R}_4[X]$. On note

$$\mathcal{P} = \left\{ P \in \mathbb{R}[X] \mid P(x) = ax^4 + bx^2 + c \right\}, \quad a, b, c \in \mathbb{R}$$
$$\mathcal{I} = \left\{ P \in \mathbb{R}[X] \mid P(x) = ax^3 + bx \right\}, \quad a, b \in \mathbb{R}$$

- a) Avec l'exercice précédent, que peut-on dire de la dimension de $\mathbb{R}_4[X]$?
- b) Montrer que \mathcal{P} et \mathcal{I} sont des sev de $\mathbb{R}_4[X]$.
- c) Montrer que $\mathbb{R}_4[X] = \mathcal{P} \oplus \mathcal{I}$.
- d) Donner une base de \mathcal{P} , une base de \mathcal{I} . En déduire une base de $\mathbb{R}_4[X]$. Quelles sont les dimensions de \mathcal{P} et \mathcal{I} ?

Exercice 5: On se place dans \mathbb{R}^3 . On note

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + 2z = 0\}$$
$$V = \{(x, y, z) \in \mathbb{R}^3 \mid -2y + z = 0\}$$

- a) Donner une base de U et une base de V.
- b) En déduire une base de \mathbb{R}^3 .

Exercice 6: Déterminer si les sev de \mathbb{R}^3 suivants sont en somme directe.

- a) $U = \{(x, x, x) \in \mathbb{R}^3\}$ et $V = \{(0, x, y) \in \mathbb{R}^3\}$
- b) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x y + z = 0\}$ et $V = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$
- c) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\} \text{ et } V = \{(x, x, 0) \in \mathbb{R}^3\}$
- d) $U = \{(x, x, 0) \in \mathbb{R}^3\}$ et $V = \{(x, -x, 0) \in \mathbb{R}^3 \mid x + y + z = 0\}$
- e) $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\} \text{ et } V = \{(x, y, x) \in \mathbb{R}^3\}$