Mécanismes de la conduction électrique dans les solides

7 juin 2025

Référence

Expérience: Mesure de la conductivité du cuivre en fonction de T (mesure 4 points)

- Physique PC/PC* Tout-en-un, Dunod, 2022
- Physique PSI Tout-en-un, Dunod, 2022
- Physique pour l'agrégation, FFR (modèle quantique des électrons gaz de fermions)
- Physique de l'état solide, C. Kittel

Prérequis :

- Modèle de Drude
- Mécanique quantique (états stationnaires particule libre, CL périodiques)
- Physique statistique (Fermi Dirac...)

Niveau: Licence

Introduction

Modèle de Drude 1

Hypothèses et résultats

Mettre les hypothèses et les résultats avec ODG

1.2 Limites du modèle

Mettre en valeur les limites du modèle et le besoin de prendre un modèle quantique (calculer la longueur de De Broglie par exemple)

2 Modèle quantique des électrons libres

Quantification de l'énergie

Soit une boîte périodique de côté L dans laquelle

Hypothèses:

- les électrons sont décrits une fonction d'onde $\psi(\overrightarrow{r},t)$ et sont dans leur état fondamental
- ils sont libres dans le solide et indépendants

L'équation de Schrödinger s'écrit ici : $i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m}\Delta \psi$ Comme le potentiel est indépendant du temps, on peut écrire la fonction d'onde ψ sous la forme d'une onde stationnaire $\psi(\overrightarrow{r},t) = f(t) \times \phi(\overrightarrow{r})$

$$\phi(\overrightarrow{r})$$
 vérifie l'équation de Schrödinger stationnaire : $E\phi=-\frac{\hbar^2}{2m}\Delta\phi$ où $E=i\hbar\frac{\partial f(t)}{\partial t}\times\frac{1}{f(t)}$

Les solutions pour ϕ s'écrivent $\phi(\overrightarrow{r}) = A \exp^{i\overrightarrow{k}\cdot\overrightarrow{r}}$ où \overrightarrow{k} appartient à R^3 et $k^2 = \frac{2mE}{\hbar^2}$ Conditions aux limites périodiques : $\phi(0,y,z) = \phi(L,y,z) \mid \forall y,z$ et $\phi(x,0,z) = \phi(x,L,z) \mid \forall x,z$

et $\phi(x, y, 0) = \phi(x, y, L) \mid \forall x, y$

Dans le modèle quantique des électrons libres, les fonctions d'ondes des électrons sont décrits par $\overrightarrow{k} = \frac{2\pi}{L} (n_x \overrightarrow{e_x} + n_y \overrightarrow{e_y} + n_z \overrightarrow{e_z})$ où n_x , n_y et n_z sont des entiers.

On a donc quantification de l'énergie des électrons.

Graphe de E en fonction de kx pour illustrer les états accessibles.

2.2**Energie de Fermi**

Principe d'exclusion de Pauli : 2 électrons ne peuvent pas se trouver dans le même état quantique On peut donc s'intéresser à l'énergie du dernier état occupé par un électron (l'énergie de Fermi). Pour cela, on considère un système à N électrons à température nulle. Le vecteur $\overrightarrow{k_F}$ associé à ϵ_F vaut $\epsilon_F = \frac{\hbar^2 k_F^2}{2m}$.

On sait qu'un électron occupe un volume $\left(\frac{2\pi}{L}\right)^3$ dans l'espace des k. On peut donc exprimer N comme étant le rapport du volume occupé par des électrons dans l'espace des k sur le volume occupé par un électron dans l'espace des k. De plus comme un électron peut être de spin + ou -1/2, un volume $\left(\frac{2\pi}{L}\right)^3$ contient en réalité deux électrons. Ainsi on a $N=2\frac{4\pi k_F^3}{(2\pi)^3}$ où le facteur 2 correspond aux valeurs possibles du spin de l'électron.

Ainsi on peut exprimer k_F et ϵ_F

AN à partir du FFR (p455)

Comparaison avec le modèle de Drude?

Le déplacement des électrons est limité par les interactions avec les phonons et les impuretés du réseau.

3 Théorie des bandes

Interaction avec le réseau

On peut prendre en compte les interactions entre les électrons et un réseau périodique de période a.

Dans le cas d'un modèle à 1D, on définit le réseau comme un potentiel périodique. En reprenant les calculs faits dans le cas précédent en rajoutant ce potentiel, on peut montrer que le produit $k \cdot a$ est 2π -périodique.

On définit la première zone de Brillouin pour $k \in \left[-\frac{\pi}{a}; \frac{\pi}{a}\right]$. Faire le schéma de E en fonction de k en illustrant la première zone de Brillouin.

Parler du fait qu'il y a un phénomène de résonance pour $|k| = \frac{\pi}{a}$ du fait de l'interaction des électrons sur le réseau -> fait apparaître des bandes d'énergie interdites entre les bandes de conduction.

3.2Différents types de solides

Suivant le remplissage des bandes de conduction, on peut mettre en évidence 3 catégories de matériaux : les conducteurs (ex : métaux), les semi-conducteurs (Eg de l'ordre de 1 eV) et les isolants (Eg de l'ordre de quelques eV).

Retour sur les expériences quantitatives.

Expérience quantitative

Objectif de l'expérience

Vérifier la dépendance en température de la résistance d'un conducteur et retrouver la conductivité du cuivre.

Matériels

- Fil de cuivre (pour mesure 4 points)
- Multimètres x2 et multimètres pour mesure 4 points
- Alimentation continue allant jusqu'à 10 A
- Bouilloire
- Thermocouple

Protocole

Mesurer la conductivité du cuivre à différentes températures pour exprimer la dépendance en température de la résistance.

Précautions expérimentales

Bien expliquer le principe de la mesure 4 points Mettre en évidence les limites du modèle de Drude avec notamment la dépendance en température de la conductivité.

Expérience quantitative

Objectif de l'expérience

Vérifier la dépendance en température de la résistance d'un semi-conducteur et retrouver l'énergie de gap du germanium (0.67 eV).

Matériels

- Plaquette de germanium
- Multimètres x2 (dont 1 pouvant mesurer au moins 0.01mV)
- Alimentation continue (6V, 5A)

Protocole

Chauffer progressivement la plaque de germanium avec l'alimentation continue jusqu'à 6V ou 5A. Diminuer le chauffage pour avoir un refroidissement plus lent et prendre les points pendant le refroidissement.

Précautions expérimentales

S'assurer d'avoir un refroidissement le plus lent possible pour les mesures.