Трансформации и AST. Обработка ошибок. Проблема соотвествия Поста

Теория формальных языков $2022 \ z$.

$LR(k) \rightarrow LR(1)$, Mickunas–Lancaster–Shneider

$$\begin{array}{cccc} S' \to S & S \to Abb & S \to Bbc \\ A \to \alpha A & A \to \alpha & B \to \alpha B \\ & B \to \alpha & \end{array}$$

He LR(1), из-за свёрток $A \to a$, $B \to a$. Используем трансформацию присоединения правого контекста:

$$\begin{array}{lll} S' \rightarrow S & S \rightarrow [Ab]b & S \rightarrow [Bb]c \\ [Ab] \rightarrow \alpha [Ab] & [Ab] \rightarrow \alpha b & [Bb] \rightarrow \alpha [Bb] \\ & [Bb] \rightarrow \alpha b & \end{array}$$

$\mathsf{LR}(\mathsf{k}) \to \mathsf{LR}(1) \text{, Mickunas-Lancaster-Shneider}$

$$S' \rightarrow S$$
 $S \rightarrow bSS$ $S \rightarrow a$
 $S \rightarrow aac$

He LR(1), конфликт свёртки на префиксе ba с контекстом a.

Используем трансформацию уточнения правого контекста:

$$\begin{array}{lll} S \to bS\alpha[\alpha/S] & S \to bSb[b/S] & S \to \alpha & S \to \alpha\alphac \\ [\alpha/S] \to \epsilon & [\alpha/S] \to \alphac & [b/S] \to S\alpha[\alpha/S] & [b/S] \to Sb[b/S] \end{array}$$

Теперь присоединим правые контексты:

Присоединение правого контекста

- Пусть нужно присоединить правые контексты к нетерминалу А. Для всех правил вида $C \to \gamma_1 A t \gamma_2$, где t терминал, порождаем нетерминал [At] и заменяем им часть At данного правила.
- Для всех правил вида $A \to \delta$ добавляем правило $[At] \to \delta t.$
- Данное преобразование не может быть применено к правилу вида $C \to \gamma_1 A B \gamma_2$. Поэтому, если нужно присоединять контекст в таком правиле, необходимо воспользоваться алгоритмом уточнения правого контекста.

3 / 18

Уточнение правого контекста

- Пусть нужно уточнить правый контекст у A по правилу $C \to \gamma_1 A B \gamma_2$. Положим, что FIRST(B) не содержит ε .
- Для каждого элемента $c \in FIRST(B)$ строим нетерминал [c/B] и правило $C \to \gamma_1 Ac[c/B]\gamma_2$.
- Для всех правил вида $B \to c \delta$ строим правила $[c/B] \to \delta$.
- Для всех правил вида $B \to D\delta$ таких, что $c \in FIRST(D)$, строим правила вида $[c/B] \to [c/D]\delta$. Рекурсивно замыкаем процедуру (до неподвижной точки).
- Если нужно уточнить контекст A по правилу $C \to \Phi A$, тогда ищем все правила $C' \to \Psi_1 C \Psi_2$, которые порождают C, получаем правила $C' \to \Psi_1 \Phi A \Psi_2$ и действуем с ними так же, как при обычном уточнении правого контекста.
- В полученной грамматике могут появиться ε-правила.
 Поэтому их придётся в дальнейшем устранить.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

Видно, что если язык L распознаётся DPDA (т.е. является LR(1)-языком), то он также является LR(0)-языком, поскольку удовлетворяет префикс-свойству. Действительно, любое слово этого языка содержит единственную букву c, причём она расположена точно в середине слова.

Построим пробную КС-грамматику для языка L:

$$S \rightarrow aSb | aCa | bCb | c$$

$$C \rightarrow aCa|bCb|c$$

Проверим, является ли она LR(0)-грамматикой. Для этого построим LR(0)-автомат и проанализируем его на конфликты.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

```
Пробная грамматика для L: \begin{array}{ccc} S & \to & aSb \mid aCa \mid bCb \mid c \\ C & \to & aCa \mid bCb \mid c \end{array}
```

Начинаем строить LR(0)-автомат. Для этого вводим новое стартовое состояние S' (состояние окончательной свёртки) и начинаем разбор правила $S' \to \bullet S$.

Поскольку отмеченная позиция в правиле находится перед нетерминалом S, добавляем в состояние все ситуации вида $S \to \bullet \alpha$.

Переходы по нетерминалу S и терминалу с ведут к бесконфликтным свёрткам, поэтому малоинтересны. Разберёмся с переходом по а.

$$\begin{array}{c} S' \rightarrow \bullet S \\ S \rightarrow \bullet \alpha S b \\ S \rightarrow \bullet \alpha C \alpha \\ S \rightarrow \bullet b C b \\ S \rightarrow \bullet c \end{array}$$

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

```
Пробная грамматика для L:  \begin{array}{ccc} S & \to & aSb \,|\, aCa \,|\, bCb \,|\, c \\ C & \to & aCa \,|\, bCb \,|\, c \end{array}
```

Переходы по нетерминалу S и терминалу с ведут к бесконфликтным свёрткам, поэтому малоинтересны. Разберёмся с переходом по а.

$$\begin{pmatrix}
S' \to \bullet S \\
S \to \bullet aSb \\
S \to \bullet aCa \\
S \to \bullet bCb \\
S \to \bullet c
\end{pmatrix}$$

$$\begin{vmatrix}
S \to a \bullet Sb \\
S \to a \bullet Ca \\
S \to \bullet aSb \\
S \to \bullet aCa \\
S \to \bullet bCb \\
S \to \bullet c \\
C \to \bullet aCa \\
C \to \bullet bCb \\
C \to \bullet c$$

Похоже, что есть потенциальный конфликт (даже два) по свёрткам в S и C. Построим конфликтное состояние явно.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

Пробная грамматика для L: $\begin{array}{ccc} S & \to & \alpha Sb \,|\, \alpha C\alpha \,|\, bCb \,|\, c \\ C & \to & \alpha C\alpha \,|\, bCb \,|\, c \end{array}$

Похоже, что есть потенциальный конфликт (даже два) по свёрткам в S и C. Построим конфликтное состояние явно.

$$\begin{pmatrix} S' \rightarrow \bullet S \\ S \rightarrow \bullet \alpha Sb \\ S \rightarrow \bullet \alpha Sb \\ S \rightarrow \bullet \alpha Ca \\ S \rightarrow \bullet bCb \\ S \rightarrow \bullet c \end{pmatrix} \xrightarrow{\alpha} \begin{pmatrix} S \rightarrow \alpha \bullet Sb \\ S \rightarrow \alpha \bullet Ca \\ S \rightarrow \bullet \alpha Ca \\ S \rightarrow \bullet bCb \\ S \rightarrow \bullet c \\ C \rightarrow \bullet \alpha Ca \\ C \rightarrow \bullet bCb \\ C \rightarrow \bullet c \end{pmatrix} \xrightarrow{c} \begin{pmatrix} S \rightarrow c \bullet \\ C \rightarrow c \bullet \end{pmatrix}$$

Присоединим к конфликтующим S и C-нетерминалам их правые контексты.

Исследовать на детерминированность язык $L = \{a^n w c w^R b^n | w \in \{a, b\}^*\}.$

```
Пробная грамматика для L:  \begin{array}{ccc} S & \to & aSb \,|\, aCa \,|\, bCb \,|\, c \\ C & \to & aCa \,|\, bCb \,|\, c \end{array}
```

Грамматика для L после присоединения правых контекстов к нетерминалам S и C методом MLS (новые нетерминалы выделены красным):

Можно построить LR(0)-автомат для этой грамматики и убедиться, что он не содержит конфликтов. Значит язык L — детерминированный (более того, LR(0)).

LL-подгонка

- Устранение левой рекурсии;
- Извлечение левого контекста:

Если даны $A \to \Phi \gamma_1, A \to \Phi \gamma_2$, тогда можно построить эквивалентные правила $A \to \Phi \, A', \, A' \to \gamma_1 \, | \, \gamma_2.$

Абстрактное синтаксическое дерево

Переход от конкретного дерева разбора к дереву разбора, содержащему только значащие нетерминалы, называется переходом к AST.

- Можно сливать транзитные узлы;
- Можно стирать ветви дерева разбора.

При применении подгонок и упрощений дерево разбора тоже меняется:

- устранение ε-правил добавление новой абстрактной структуры;
- извлечение левого контекста слияние сиблингов;
- присоединение и извлечение правого контекста зависит от лексера и синхронизирующих токенов;
- устранение левой рекурсии полностью перестраивает структуру дерева.

 Множество к.э. по Майхиллу–Нероуду бесконечно ⇒ синхронизация учитывает стек.

- Множество к.э. по Майхиллу–Нероуду бесконечно ⇒ синхронизация учитывает стек.
- Стандартный подход: множество синхронизирующих терминалов строится для каждого нетерминала отдельно.

- Множество к.э. по Майхиллу–Нероуду бесконечно ⇒ синхронизация учитывает стек.
- Стандартный подход: множество синхронизирующих терминалов строится для каждого нетерминала отдельно.
- (режим паники) При восстановлении после ошибки отбрасывается не только префикс ошибочного входа, но и вершина стека.

- Множество к.э. по Майхиллу–Нероуду бесконечно ⇒ синхронизация учитывает стек.
- Стандартный подход: множество синхронизирующих терминалов строится для каждого нетерминала отдельно.
- (режим паники) При восстановлении после ошибки отбрасывается не только префикс ошибочного входа, но и вершина стека.
- (режим починки) При восстановлении после ошибки стек не отбрасывается, а вход подгоняется под стек.
 Набор действий может зависеть от ячейки таблицы, содержащей ошибку.

Panic mode для LL-разбора

Ошибочная ситуация

Терминал в стеке не совпадает с терминалом на ленте, либо переход по таблице правил приводит к ошибке.

- Отбрасываем вершину стека до синхронизирующего токена и входные символы до успеха перехода по нему.
- Возможное удаление \Rightarrow для токена A синхронизирующими могут предполагаться элементы FOLLOW(A).
- Возможная вставка ⇒ синхронизирующие FIRST(A). Если конфликт терминалов интерпретируем как возможную вставку.

Panic mode для LR-разбора

Ошибочная ситуация

Переход по таблице правил приводит к ошибке.

- Вводим специальный токен «ошибка» в правиле $A \to \beta \bullet \alpha$, на котором она произошла.
- Отбрасываем вершину стека до свёртки по правилу
 А → «ошибка» α, не добавляя ничего в стек (если есть lookahead, то до совпадения с lookahead-ом).
 Продолжаем разбор дальше.

Альтернатива: поиск «починки» — минимального количества действий, позволяющего возобновить парсинг.

10 / 18

Пример panic mode в LR(0)-парсере

Пример panic mode в LR(0)-парсере

Разбор строки ()()\$: ([0], ()()\$) \rightarrow ([1, 0],)()\$) \rightarrow ([2, 1, 0], ()\$) \rightarrow ([3, 0], ()\$) На этом шаге происходит ошибка. Строим S \rightarrow •«ошибка»\$, отбрасываем () и редуцируемся в S.

Бурке-Фишер и его вариации

Идея алгоритма

При заранее заданном k и ошибке на i-ом терминале входа рассмотреть возможные последовательности терминалов от i-ого до i+k-1-ого, продолжающие парсинг, и выбрать в качестве «починки» ту из них, расстояние Левенштейна до которой от реального входа наименьшее.

- (Corchuello et al) Также разрешается делать операции сдвига по lookahead-y.
- (Diekmann et al) Ищутся все возможные варианты «починки» и выбирается тот из них, который позволяет продолжить разбор на наибольшую глубину.

Разрешимость проблем в грамматиках

Разрешимые проблемы

- Пустота языка
- Вхождение слова в язык
- Бесконечность языка

Неразрешимые проблемы

...большинство остальных.

Подход к доказательству неразрешимости: машины Тьюринга «с историей».

«История» вычислений

Плоская конфигурация машины Тьюринга — это $P_1q_ip_jP_2$, где P_1 — это лента слева от головки МТ, q_i — состояние МТ, p_j — ячейка ленты, на которой стоит головка, P_2 — лента справа от головки.

Тогда шаг MT описывается как SRS на конфигурациях.

- Пусть в состоянии q_i , прочитав символ p_i , МТ записывает p_i' и сдвигает головку вправо, переходя в состояние q_j . Тогда правило переписывания имеет вид $q_i p_i \to p_i' q_i$.
- Пусть в состоянии q_i , прочитав символ p_i , МТ записывает p_i' и сдвигает головку влево, переходя в состояние q_j , причём слева от ячейки стоит символ p_{i-1} . Тогда правило переписывания имеет вид $p_{i-1}q_ip_i \to q_ip_{i-1}p_i'$.

История вычисления МТ — это $w_0 \# w_1 \# \dots \# w_F$, где w_0 — стартовая, w_F — финальная конфигурации, и w_{i+1} получается из w_i применением SRS, описывающей шаги МТ.

Пересечение КС-грамматик

Рассмотрим следующие истории:

$$w_0 \# w_1^R \# w_2 \# w_3^R \dots \# w_F^G$$

Где w_i — конфигурации, начиная со стартовой и кончая какой-нибудь финальной (но не обязательно согласующиеся с правилами MT); $w_{2,i}^{G}$ — это просто $w_{2,i}$; $w_{2,i+1}^{G}$ — это $w_{2,i}^{R}$ (реверсированная конфигурация).

- Язык $\mathcal{L}_1 = \{w_0 \# w_1^R \# w_2 \# w_3^R \dots \# w_F^G \mid$ $\#w_{2,i}$ согласована с $\#w_{2,i+1}$ относительно правил MT} является КС (достаточно попарно разобрать конфигурации как слова, получающиеся из палиндромов конечным числом правил).
- Язык $\mathcal{L}_2 = \{w_0 \# w_1^R \# w_2 \# w_3^R \dots \# w_{\mathtt{L}}^G \mid$ $\#w_{2,i+1}$ согласована с $\#w_{2,i+2}$ относительно правил MT является КС (аналогично).

Пересечение КС-грамматик

- Язык $\mathcal{L}_1 = \{w_0 \# w_1^R \# w_2 \# w_3^R \dots \# w_F^G \mid \\ \# w_{2 \cdot i} \text{ согласована с } \# w_{2 \cdot i+1} \text{ относительно правил MT}$ является КС (достаточно попарно разобрать конфигурации как слова, получающиеся из палиндромов конечным числом правил).
- Язык $\mathcal{L}_2 = \{w_0 \# w_1^R \# w_2 \# w_3^R \dots \# w_F^G \mid \# w_{2 \cdot i+1} \text{ согласована с } \# w_{2 \cdot i+2} \text{ относительно правил MT} \}$ является КС (аналогично).
- $\mathscr{L}_1 \cap \mathscr{L}_2 \neq \varnothing \Leftrightarrow$ язык, порождаемый МТ, не пуст.
- ullet Следовательно, проблема $\mathcal{L}_1 \cap \mathcal{L}_2 \stackrel{?}{=} \varnothing$ неразрешима для КС-языков.

Неразрешимость всеобщности

Язык $\mathscr{L}_{fail} = \Sigma^* \setminus (\mathscr{L}_1 \cap \mathscr{L}_2)$ является КС. КС-грамматика — объединение грамматики для языка, где хотя бы один переход с чётного шага истории на нечётный не согласуется с правилами МТ, грамматики для языка, где несогласование есть при переходе с нечётного шага на чётный, и грамматики для языка слов, имеющих неправильную лексическую структуру.

Следствие

Вопрос $\mathscr{L} \stackrel{?}{=} \Sigma^*$ неразрешим для КС-грамматик (т.к. если есть способ разрешать $\mathscr{L}_{\text{fail}} \stackrel{?}{=} \Sigma^*$, тогда есть способ и разрешить проблему пустоты языка МТ).

Проблема соответствия Поста

Рассмотрим «домино» из пар $\langle u, w \rangle \in \langle \Sigma^*, \Sigma^* \rangle$. Пусть имеется п таких пар вида $\langle u_i, w_i \rangle$. Существует ли последовательность индексов, такая что $u_{i_1} \dots u_{i_k} = w_{i_1} \dots w_{i_k}$?

- Неразрешима рассмотрим пошаговые «истории» МТ.
- Следствие вопрос о неоднозначности КС-грамматики тоже неразрешим; вопрос о вхождении палиндрома в КС-язык неразрешим; вопрос о вхождении квадрата в КС-язык неразрешим.

Теорема Грейбах

Пусть С — семейство языков, содержащее все регулярные языки, для которого неразрешима проблема всеобщности. Если это семейство замкнуто относительно объединения и приписывания регулярных языков, то для него неразрешимо никакое свойство, выполняющееся для всех регулярных языков и замкнутое относительно производных.