

第八章 非线性方程和方程组的数值解法

第二节一元方程的基本迭代法

8.2.1 基本迭代法及其收敛性

$$f(x) = 0 \Leftrightarrow x = \varphi(x)$$
 (等价变换)

f(x) 的根 $\iff \varphi(x)$ 的不动点。

构造迭代过程 $x_{k+1} = \varphi(x_k)$, k = 0,1,2,...。(8.2.3)

对于给定的初始值 x_0 ,由此生成的数列 $\{x_k\}$ 。

式(8.2.3)称为基本迭代公式, $\varphi(x)$ 称为迭代函数。

由于收敛点 x^* 满足 $x^* = \varphi(x^*)$,故称 x^* 为 $\varphi(x)$ 的不动点,(8.2.3)也称为不动点迭代公式。 φ

例 8.2.1: 求
$$f(x) = x^3 - x - 1 = 0$$
的一个实根。

解: 把它转换成两种等价形式~

$$x = \varphi_1(x) = \sqrt[3]{x+1}$$
, $x = \varphi_2(x) = x^3 - 1$

对应的基本迭代法分别为心

(1)
$$x_{k+1} = \sqrt[3]{x_k + 1}$$
 ($k = 0, 1, 2, ...$); (2) $x_{k+1} = x_k^3 - 1$ ($k = 0, 1, 2, ...$)

取 $x_0 = 1.5$, 此方程有唯一实根 $x^* = 1.32471795724475$ 。

表 8-2-1: 例 8.2.1 中两种方法的比较表↓

-DC D3 1 1 311 72 14 42 5 61 50 60						
k ₽	0 ₽	I₽	2₽	₽	11₽	Þ
方法(1)的 <i>x_k ↔</i>	1.5₽	1.35720881₽	1.33086096₽	₽	1.32471796₽	ę)
方法(2)的 <i>x¸ ↔</i>	1.5₽	2.37500000₽	12.3964844	₽	→∞+	Ę,

方法(1)收敛,方法(2)发散。

基本迭代法的收敛性质与迭代函数 $\varphi(x)$ 的选取有关。

例 8.2.2: 求
$$f(x) = x^2 - 2 = 0$$
 的根 $x^* = \pm \sqrt{2}$ 的近似值。

解: 把它转换成等价形式
$$x = \varphi(x) = \frac{1}{2}(x + \frac{2}{x})$$
,

基本的迭代法为
$$x_{k+1} = \frac{1}{2}(x_k + \frac{2}{x_k}), \quad k = 0,1,2,...$$

取初值 $x_0=\pm 1.0$, 迭代结果分别收敛到 $x^*=\pm \sqrt{2}$, 如表 8-2-2 所示。 +

表 8-2-2: 例 8.2.2 中两实根的迭代法的计算表↓

<i>k</i>	0 ₽	<i>1</i> ₽	2₽	<i>3</i> ₽	4₽	50 0
<i>X</i> _k <i>↔</i>	1.0₽	1.5₽	1.41666667₽	1.41421569₽	1.41421356₽	1.414213560
X _k ↔	-1.0₽	-1.5₽	-1.41666667₽	-1.41421569 ₄	-1.41421356 <i>₽</i>	-1.414213560

基本迭代法的收敛性质与初值 x₀ 的选取有关。

问题: 此方法的收敛条件?

简单迭代法收敛基本定理

(1) 映内性
$$a \le \varphi(x) \le b$$
, $\forall x \in [a,b]$

(8.2.4) ₽

(2) 压缩性 存在常数 0 < L < 1 (L 为压缩系数),使得 ϕ

$$|\varphi(x)-\varphi(y)| \le L|x-y|, \quad \forall x,y \in [a,b]$$

 $(8.2.5) \leftrightarrow$

则(1)函数 $\varphi(x)$ 在闭区间[a,b]上存在**唯一的不动点** x^* 。 φ

(2) 对于任何初值 $x_0 \in [a,b]$, 由迭代法 (8.2.3) 生成的点 x_k 都在区间 [a,b]中,并且 **收敛**到 x^* ,即 $\{x_k\}_{k=0}^{\infty} \subset [a,b]$, $\lim_{k \to a} x_k = x^*$ 。其中, $\{x_k\}_{k=0}^{\infty} \subset [a,b]$ 称为迭代的适定性。 \emptyset

(3) 这时有误差估计式↓

$$|x_{k} - x^{*}| \le \frac{L}{1 - L} |x_{k} - x_{k-1}|$$
 (8.2.6)

提示: (1) 构造 $\psi(x) = x - \varphi(x)$ 连续函数介值定理证明存在性,压缩性证 明唯一性:

(2) 考察
$$|x_k - x^*| = |\varphi(x_{k-1}) - \varphi(x^*)| \le L|x_{k-1} - x^*| \le L^k|x_0 - x^*|$$
;

$$(3) |x_{k+p} - x_k| \le |x_{k+p} - x_{k+p-1}| + \dots + |x_{k+1} - x_k|, p \to \infty$$

收敛基本定理的说明

注 (1)(8.2.5)可用更强的条件。

$$|\varphi'(x)| \le L < 1, \quad \forall x \in (a,b)$$
 (8.2.8)

由微分中值定理,对任何 $x,y \in [a,b]$ 都有。

$$|\varphi(x)-\varphi(y)| = |\varphi'(\zeta)||x-y| \le L|x-y|$$
,从而条件(8.2.5)成立 φ

若 $|\varphi'(x)|>1$, $\forall x \in (a,b)$, 则迭代发散。

(2) 迭代终止准则通常采用
$$\frac{|x_k - x_{k-1}|}{1 + |x_k|} < \varepsilon$$
 (8.2.9)

其中的 $\varepsilon > 0$ 为给定的相对误差容限。

- (3) 几何解释。
- (4) 式 (8.2.6) 是事后误差估计,事前误差估计是 $|x_k x^*| \le \frac{L^k}{1-L} |x_1 x_0|$

注: (4) 中L越小,收敛越快,证明与事后误差估计类似

收敛判别的例题

例 8.2.3: 对于例 8.2.1 中的两种迭代法,讨论它们的收敛性。

解: 方法 (1): 迭代函数及其导数分别为 $\varphi_1(x) = \sqrt[3]{x+1}$ 和 $\varphi_1'(x) = \frac{1}{3}(x+1)^{(-2/3)}$ 。易

知 $\varphi(x)$ 在区间[1,2]上满足映内性和压缩性条件: \checkmark

 $\varphi_1(x) \in [1.26, 1.45], |\varphi_1'(x)| \le 0.21 < 1, \forall x \in [1, 2]$

因此根据定理 8.2.1,对于任何初值 $x_0 \in [1,2]$,迭代法(1)都能收敛到区间[1,2]上的唯一不动点 $x^* \approx 1.32471796$ 。4

方法(2): 迭代函数以及导数分别为 $\varphi_2(x) = x^3 - 1$ 和 $\varphi_2'(x) = 3x^2$ 。显然, $\varphi_2(x)$ 不满足定理 8.2.1 的条件。特别地,在 x^* 的邻域内有 $\varphi_2'(x) > 1$ 。 。 该迭代必定发散。

例2 对方程 $x^5 - 4x - 2 = 0$ 构造收敛的迭代格式, 求其最小正根, 计算过程保留4位小数。

解 容易判断[1,2]是方程的有根区间,且在此区间内 $f'(x)=5x^4-4>0$,所以此方程在区间[1,2]有且仅有一根。将原方程改写成以下两种等价形式。

①
$$x = \frac{x^5 - 2}{4}$$
, $|\varphi(x)| = \frac{x^5 - 2}{4}$, $|\varphi'(x)| = \frac{5x^4}{4} > 1$ $x \in [1, 2]$

不满足收敛条件。

②
$$x = \sqrt[5]{4x+2}$$
, $\mathbb{P} \varphi(x) = \sqrt[5]{4x+2} \in [1.43,1.59]$, $|\phi'(x)| = \frac{4}{5\sqrt[5]{(4x+2)^4}} < \frac{4}{5\sqrt[5]{(4+2)^4}} \approx 0.8 < 1 \quad x \in [1,2]$

此时迭代公式满足迭代收敛条件。

例 用迭代法求方程 $f(x) = x^2 - x - 1 = 0$ 的根+

解 因 f(1.5) = -0.25 < 0, f(2) = 1 > 0, 有根区间[1.5,2]

(1)
$$x = \sqrt{x+1} = \varphi_1(x)$$
, $\mathbb{E} \varphi_1(x) \in [1.5, 2]$, $|\varphi_1'(x)| = \frac{1}{2\sqrt{x+1}} \le \frac{1}{2\sqrt{2.5}} = \frac{1}{3.162}$

(2)
$$x = 1 + \frac{1}{x} = \varphi_2(x)$$
, $\exists \varphi_2(x) \in [1.5, 2]$, $|\varphi_1'(x)| = \frac{1}{x^2} \le \frac{1}{1.5^2} = \frac{1}{2.25}$

根据定理 8.2.1,任取 $x_0 \in [1.5,2]$,由这两种等价方程所构造的**迭代法都收敛**,且**第一种所产生的迭代序列收敛较快**。

8.2.2 局部收敛性和收敛阶

注:定理 8.2.1 为全局收敛性定理,可将 [a,b] 缩小,定义局部收敛性。

定义 8.2.1: 设 x^* 是 $\varphi(x)$ 的不动点,对于某个 $\delta>0$,称闭区间 $[x^*-\delta,x^*+\delta]$ 为 x^* 的一个邻域,记作 ω

$$N(x^*, \delta) = [x^* - \delta, x^* + \delta] \cup$$

若存在 x^* 的一个邻域 $N(x^*, \delta)$,使得对任何初值 $x_0 \in N(x^*, \delta)$,由迭代法(8.2.3)生成的序列满足适定性 $\{x_k\}_{k=0}^\infty \subset N(x^*, \delta)$,且有 $\lim_{k\to\infty} x_k = x^*$,则称迭代法(8.2.3)是**局部收敛**的。

定理 8.2.2: 设 x^* 为 $\varphi(x)$ 的不动点。若 $\varphi'(x)$ 在 x^* 的某个领域上连续,并且有 $|\varphi'(x^*)| < 1$,则不动点迭代法(8.2.3)局部收敛。 φ

提示: (1) 压缩性利用连续函数局部有界性推得, $\exists \delta > 0, L < 1, s.t. |\varphi(x)| \le L < 1, \forall x \in N(x^*, \delta)$

(2) 映内性 $\varphi(x) \in N(x^*, \delta), \forall x \in N(x^*, \delta)$

收敛阶定义和线性判别定理

定义 8.2.2: 设序列 $\{x_k\}_{k=0}^{\infty}$ 收敛到 x^* ,记误差 $e_k = x_k - x^*$,若存在常数 $p \ge 1$ 和 $c \ne 0$,使得 ω

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^p} = c \tag{8.2.11}$$

则称 $\{x_k\}_{k=0}^{\infty}$ 为 p **阶收敛**, c 称为渐近误差常数。当 p=1 时称为**线性收敛**,当 p>1 时称为**超线性收敛**,当 p=2 时称为二**次收敛或平方收敛**。 φ

数p的大小反映了迭代法收敛的速度的快慢,p愈大,则收敛的速度愈快,故迭代法的收敛阶是对迭代法收敛速度的一种度量。

推论 8.2.1: 若定理 8.2.2 中还有 $\varphi'(x^*) \neq 0$,即 $\varphi'(x^*)$ 满足 $0 \triangleleft \varphi'(x^*) \mid < 1$,则不动点 迭代法(8.2.3)是**线性收敛的**。 $\varphi'(x^*) \mid < 1$,则不动点

提示:
$$\lim_{k\to\infty}\frac{|e_{k+1}|}{|e_k|}=\lim_{k\to\infty}\frac{|\varphi(x_k)-\varphi(x^*)|}{|x_k-x^*|}=\lim_{k\to\infty}|\varphi'(\xi_k)|=|\varphi'(x^*)|\neq 0$$

一般收敛阶判别定理

定理 8.2.3: 设 x^* 为 $\varphi(x)$ 的不动点,若有整数 $p \ge 2$,使得 $\varphi^{(p)}(x)$ 在 x^* 的某邻域上连续,其满足。

$$\varphi^{(l)}(x^*) = 0 \quad (l = 1, 2, ..., p-1), \quad \varphi^{(p)}(x^*) \neq 0$$
 (8.2.12)

则不动点迭代法(8.2.3)局部收敛。并且迭代误差 $e_k = x_k - x^*$,满足。

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k^p} = \frac{\varphi^{(p)}(x^*)}{p!}$$
 (8.2.13)

从而方法是 p 阶收敛的。。

提示:
$$e_{k+1} = \varphi(x_k) - \varphi(x^*) = \varphi'(x^*)(x_k - x^*) + \dots + \frac{\varphi^{(p-1)}(x^*)}{(p-1)!}(x_k - x^*)^{p-1} + \frac{\varphi^{(p)}(\xi_k)}{p!}(x_k - x^*)^p = \frac{\varphi^{(p)}(\xi_k)}{p!}(x_k - x^*)^p$$

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k^p} = \frac{\varphi^{(p)}(x^*)}{p!} \neq 0$$

收敛阶判别定理的应用

例 8.2.4: 求方程 $f(x) = xe^x - 1 = 0$ 的根。

解:此方程等价于 $x = \varphi(x) = e^{-x}$ 。作函数y = x和 $y = e^{-x}$ 的图像,见图 8-2-2。显然,

 $\varphi(x)$ 只有一个不动点 $x^* > 0$ 。

因为对任何 x > 0 都有 $0 < |\varphi'(x)| = e^{-x} < 1$,

所以由推论 8.2.1 可知,迭代法 $x_{k+1} = e^{-x_k}$

是线性收敛的。₽

表 8-2-3: 例 8.2.4 中迭代计算数值表4

k	0₽	1₽	₽	28₽	29₽	Þ
$x_k \sim$	0.5₽	0.606530660	٠	0.567143282₽	0.567143295₽	Þ

例 8.2.5: 对于例 8.2.2 中的方程 $f(x) = x^2 - 2 = 0$,求它的根 $f(x) = x^2 - 2 = 0$ 的近似值。 \downarrow

解: 在例 8.2.2 中,迭代函数 $\varphi(x) = \frac{1}{2}(x + \frac{2}{x})$,它的 1,2 阶导数分别为 φ

$$\varphi'(x) = \frac{1}{2} (1 - \frac{2}{x^2}), \varphi'(x^*) = 0$$

$$\varphi''(x) = \frac{2}{x^3}, \varphi''(x^*) = \pm \frac{1}{\sqrt{2}} \neq 0$$

从而,由定理 8.2.3 可知,迭代法 $x_{k+1} = \frac{1}{2}(x_k + \frac{2}{x_k})$ 平方收敛。

现在改用迭代函数 $\varphi(x)=x-\frac{1}{2}(x^2-2)$ 。显然 $x=\varphi(x)$ 与 f(x)=0 等价。这时。

$$\varphi'(x) = 1 - x, \varphi'(\sqrt{2}) \approx -0.414214$$

根据推论 8.2.1,对于 $x^* = \sqrt{2}$, 迭代法

$$x_{k+1} = x_k - \frac{1}{2}(x_k^2 - 2)$$

线性收敛。

表 8-2-4: 例 8.2.5 中平方收敛法比线性收敛法比较表~

_							_
	k	0₽	¢⊃	5₽	₽	20₽	ته
	平方收敛方法 🗶 ₽	± 1.0₽	¢	± 1.41421356¢	₽	47	þ
	线性收敛方法 x_* 。	1.0₽	ته	1.41689675₽	₽	1.41421356	9

平方收敛比线性收敛快得多。

 $\varphi'(x)=1-x$, $\varphi'(-\sqrt{2})\approx -2.414214$,只要初值 $x_0\neq -\sqrt{2}$, 迭代法(8.2.14)不可能收敛到 $x^*\neq -\sqrt{2}$ 。

(8.2.14)

局部收敛总结

 $\ddot{x}^* \neq \varphi(x)$ 的不动点, $\varphi'(x)$ 在 x^* 的某个领域上连续。 $0 < |\varphi'(x^*)| < 1$,那么迭代法(8.2.3)局部线性收敛; $|\varphi'(x^*)| = 1$ 为临界情况,这时或者局部线性收敛,或者不收敛; $|\varphi'(x^*)| > 1$ 时,肯定不收敛。 $|\varphi'(x^*)| > 1$ 时,

为了使迭代过程收敛或提高收敛的速度,可设法

- ① 提高初值的精度以减少迭代的次数
- ② 提高收敛的阶数 p

