		Numer indeksu:	Grupa
Wersja:	$oldsymbol{A}$	000000	8-10 8-10 12-14
		Logika dla infor	matyków
		Sprawdzian nr 1, 21 l czas pisania: 30+	-
$A\cap (B\cup C)$	$C) = B \cap (A \cup A)$	cty). Jeśli istnieją takie zbiory $\cup C$), to w prostokąt poniżej wpadku wpisz słowo "NIE".	
		$A = \{1\}, B = \{2\}$	$\}, C = \{3\}$

prawdzian nr 1,	21 listopada 2014
czas pisania:	30+60 minut

 $Grupa^1$:

8–10 s. 5

8-10 s. 105

 $\overline{12-14}$ LPA

8–10 s.103

8-10 s.140

14-16 s. 105

8-10 s.104

12–14 zaaw 14-16 s.139

biory A, B, C, że $A \neq B$, $A \neq C$, $B \neq C$ oraz ej wpisz dowolny przykład takich trzech zbiorów.

$$A=\{1\}, B=\{2\}, C=\{3\}$$

Zadanie 2 (2 punkty). W prostokąt poniżej wpisz formułę w dysjunkcyjnej postaci normalnej równoważną formule $\neg(p \Leftrightarrow q)$

Zadanie 3 (2 punkty). Jeśli zbiór klauzul $\{\neg p \lor r, \ \neg q \lor p, \ s \lor q, \ \neg r \lor \neg p, \ \neg s \lor q\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

$$\frac{\neg p \lor r \quad \neg r \lor \neg p}{\neg p} \qquad \frac{s \lor q \quad \neg s \lor q}{q} \quad \neg q \lor p}{\bot}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4	(2	punkty)	. W	${\it prostokat}$	poniżej	wpisz	dowód	tautologii

$((p \Rightarrow r)$	$\wedge (q \Rightarrow$	$r)) \Rightarrow 0$	$((p \vee$	$q) \Rightarrow r$
----------------------	-------------------------	---------------------	------------	--------------------

v systemie nati	ıralnej dedukcji.				
ż 1 wspólnych zględnie pierv niennych, naw	punkty). Mówimy, że lin dzielników. Na przykła zsze, bo 3 jest wspólnym zsiasów, spójników ∧,∨,⇒ terpretowana w zbiorze	d liczby 14 i 15 s n dzielnikiem 12 i \Rightarrow , \Leftrightarrow i symboli $+$,	są względnie pierwi 15. Używając ty $-, \times, =, \neq$ wpisz	wsze, a 12 i 15 nie ylko kwantyfikator prostokąt poniżej i	e są ów, for-

Numer

~ 1	
(trupat	٠
Grupa	٠

- · · · ·		
8–10 s. 5	8-10 s. 103	8–10 s.104
8 10 s. 105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14–16 s.139

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \lor \psi$ jest spełnialna oraz ψ jest sprzeczna, to φ jest spełnialna.
- 2. Jeśli $\varphi \lor \psi$ jest tautologią oraz ψ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

φ	ψ	$\varphi \oplus \psi$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij przez indukcję, że każda formuła zbudowana wyłącznie ze zmiennej zdaniowej p i spójnika \oplus (oraz nawiasów) jest równoważna jednej z dwóch formuł: p lub \bot .

Zadanie 8 (5 punktów). Niech A, B i C będą dowolnymi zbiorami. Udowodnij, że $A \subseteq A \cup B$ i $B \subseteq A \cup B$. Udowodnij, że jeśli $A \subseteq C$ oraz $B \subseteq C$, to $A \cup B \subseteq C$. Innymi słowy suma zbiorów A i B jest najmniejszym (w sensie inkluzji) zbiorem zawierającym zbiory A i B.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

		Numer indeksu:
Wersja:	${f C}$	000000
		Logika dla info
		Sprawdzian nr 1, 21

Grupa ⁺ :		
8–10 s. 5	8-10 s. 103	8–10 s.104
8 10 s. 105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14–16 s.139

ormatyków

1 listopada 2014 czas pisania: 30+60 minut

Zadanie 1 (2 punkty).	W prostokąt	poniżej wpisz	$formułę\ w$	dysjunkcyjnej	postaci	normalnej
równoważną formule $\neg(p$	$\Rightarrow (q \wedge r))$					

Zadanie 2 (2 punkty). Jeśli zbiór klauzul $\{s \lor q, \neg r \lor s, p \lor r, \neg q \lor \neg s, \neg p \lor r\}$ jest sprzeczny, to w prostokąt poniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przypadku wpisz wartościowanie spełniające ten zbiór.

$$\sigma(p)=\mathsf{T},\,\sigma(q)=\mathsf{F},\,\sigma(r)=\mathsf{T},\,\sigma(s)=\mathsf{T}$$

Zadanie 3 (2 punkty). Jeśli istnieją takie zbiory A, B, C, że $A \neq B$, $A \neq C$, $B \neq C$ oraz $A \cap (B \cup C) \neq B \cap (A \cup C)$, to w prostokąt poniżej wpisz dowolny przykład takich trzech zbiorów. W przeciwnym przypadku wpisz słowo "NIE".

$$A=\{1\}, B=\{2,3\}, C=\{3\}$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). W prostokąt poniżej wpisz dowód tautologii
$((p \Rightarrow q) \land (p \Rightarrow r)) \Rightarrow (p \Rightarrow (q \land r))$
w systemie naturalnej dedukcji.
Zadanie 5 (2 punkty). Mówimy, że liczby m i n są $względnie pierwsze$, jeśli nie mają innych niż 1 wspólnych dzielników. Na przykład liczby 14 i 15 są względnie pierwsze, a 12 i 15 nie są względnie pierwsze, bo 3 jest wspólnym dzielnikiem 12 i 15. Używając tylko kwantyfikatorów, zmiennych, nawiasów, spójników \land , \lor , \Rightarrow , \Leftrightarrow i symboli $+$, $-$, \times , $=$, \neq wpisz prostokąt poniżej formułę, która, interpretowana w zbiorze liczb naturalnych, mówi że liczby m i n nie sq względnie pierwsze.

Wersja:

 \mathbf{C}

Numer indeksu:	
000000	

 $Grupa^1$:

8–10 s. 5	8–10 s.103	8–10 s.104
8–10 s.105	8–10 s.140	12–14 zaaw
12–14 LPA	14-16 s. 105	14–16 s.139

Zadanie 6 (5 punktów). Które z poniższych zdań są prawdziwe dla dowolnych formuł φ i ψ rachunku zdań?

- 1. Jeśli $\varphi \Leftrightarrow \psi$ jest spełnialna oraz ψ jest sprzeczna, to φ jest sprzeczna.
- 2. Jeśli $\varphi \Leftrightarrow \psi$ jest tautologią oraz ψ jest spełnialna, to φ jest spełnialna.

Podaj dowody ich prawdziwości. W pozostałych przypadkach wskaż kontrprzykłady.

Zadanie 7 (5 punktów). Rozważmy spójnik logiczny \oplus zdefiniowany tabelką

ψ	$\varphi \oplus \psi$
F	F
Т	Т
F	Т
Т	F
	F

Spójnik ten jest czasem nazywany alternatywą wykluczającą lub xor. Udowodnij przez indukcję, że dla każdej formuły zbudowanej wyłącznie ze zmiennych zdaniowych i spójnika \oplus (oraz nawiasów) istnieje równoważna jej formuła zbudowana wyłącznie ze zmiennych zdaniowych i spójników \Leftrightarrow , \neg (oraz nawiasów).

Zadanie 8 (5 punktów). Niech A, B i C będą dowolnymi zbiorami. Udowodnij, że $A \cap B \subseteq A$ i $A \cap B \subseteq B$. Udowodnij, że jeśli $C \subseteq A$ oraz $C \subseteq B$, to $C \subseteq A \cap B$. Innymi słowy przekrój zbiorów A i B jest największym (w sensie inkluzji) zbiorem zawartym w zbiorach A i B.

¹Proszę zakreślić właściwą grupę ćwiczeniową.