Segundo examen parcial (14/11/2017)

Nambrai	Carrara	Nra Haica
Nombre:DNI:		Nro. Holas:

Regularización

- 1. Considere una lente biconvexa con una distancia focal de 4 cm en el aire.
- 1.1 (4/10). Calcule la distancia a la que debe ubicar un objeto luminoso (a la izquierda de la lente) para obtener una imagen nítida sobre una pantalla ubicada a 12cm (a la derecha de la lente).
- 1.2 (2/10). Calcule el tamaño la imagen si el objeto tiene 2 cm de alto.
- **2** (4/10). Una fuente de *luz no polarizada* de intensidad I_0 se dirige sobre dos polarizadores cuyos ejes de transmisión forman un ángulo de 70 grados. Calcule la intensidad luego de atravesar los dos polarizadores, en relación a la intensidad incidente.

Promoción

- **1** La siguiente función, $E(x,t) = -10 \text{sen}[(9 \cdot 10^5)x (2 \cdot 10^{14})t]j$, con unidades del SI, representa una onda plana electromagnética en el plano cartesiano x,y.
- 1.1 (2/10) Indique a qué rango del espectro electromagnético pertenece y cuál es el índice de refracción del medio en el que se propaga.
- 1.2 (1/10) Obtenga la función que corresponde al campo magnético **B** de esta onda escrito en forma vectorial.
- **2** (1/10). Considere el ejercicio 2 de regularización. Indique cómo varía el resultado obtenido si se intercala un tercer polarizador ubicado entre los polarizadores iniciales y con su eje de transmisión a 35° de los ejes de cada uno.
- **3.** Un haz de luz no polarizada en el aire incide con ángulo de 53° con respecto a la normal sobre una superficie plana de un material transparente. En estas condiciones el haz reflejado se encuentra linealmente polarizado por completo.
- 3.1 (1/10). Obtenga el índice de refracción del material.
- 3.2 (1/10). Calcule cuál es el ángulo de refracción del haz transmitido e indique su estado de polarización.
- **4**. Se construye una lente delgada utilizando vidrio de índice de refracción 1.55 con las dimensiones que se muestran en la figura.
- 4.1 (1/10). Obtenga la posición en la que se formará la imagen de un objeto ubicado a 30 cm a la izquierda de la lente. Indique qué tipo de imagen es y cuál es su magnificación.
- 4.2 (1/10). Realice la marcha de rayos a escala.
- **5** (2/10. En la siguiente tabla se muestran los valores de la densidad lineal de las cuerdas de una guitarra y la frecuencia de oscilación de su modo fundamental (λ =L/2). Teniendo en cuenta que la longitud de las cuerdas en una guitarra es L = 65 cm, obtenga tensión a la que deben afinarse las cuerdas E(1), G(3) y A(5).

Denominación de la cuerda	Sonido que emite (tocado en el aire)	μ (kg/m)	f (Hz)
E (1)	Mi agudo	3,99x10 ⁻⁴	329,6
B (2)	Si	4,77x10 ⁻⁴	246,9
G (3)	Sol	1,03x10 ⁻³	196,0
D (4)	Re	1,62x10 ⁻³	146,8
A (5)	La	3,50x10-3	110,0
E (6)	Mi Grave	5.78×1.0-3	82.41

Datos de Daryl Achilles; Tension of Guitar Strings; EMI; 12 diciembre 2000