COMPITO A

PARZIALE 1, Algebra e Geometria, Fisica (Fioresi)

	4 Novembre, 2019	
NOME:		

NUMERO DI MATRICOLA:

COGNOME:

(Si indichi la data di nascita se non si e' in possesso del numero di matricola).

Ci sono 3 esercizi per un totale di 150 punti. Tutto il lavoro deve essere svolto su queste pagine. Non fate la brutta e siate chiari nei ragionamenti.

REGOLE

- ullet a e b sono le ultime due cifre NON NULLE e DISTINTE del proprio numero di matricola. Esempio: se il numero di matricola e' 624040066 allora $a=4,\ b=6$. Nel SOLO caso in cui non si disponga del proprio numero di matricola, a =ultima cifra del mese di nascita b =ultima cifra dell'anno di nascita. NON e' permesso risolvere l'esercizio lasciando i parametri a e b indicati.
- NON e' ammesso in nessun caso l'uso delle formule per la geometria tridimensionale eccetto quelle viste in classe e presenti nel Lang. NON e' permesso l'uso del concetto di DETERMINANTE e del calcolo differenziale (derivate e integrali).
- Non sono permessi calcolatrici, telefonini, libri o appunti.

1	
2	
3	
Totale	

Esercizio 1 (60 punti)

- a) Dati in ${\bf R}^3$ il piano π di equazione cartesiana $\pi: -x+2y-2z+3a=0$ e il piano di equazioni parametriche $\pi': x=t, \ y=s, \ z=t+s.$
- 1) Trovare (se esistono) equazioni parametriche e cartesiane per $r = \pi \cap \pi'$.
- 2) Si determini la distanza di r dall'origine.
- b) Sia V uno spazio vettoriale sul campo $\mathbb K$ e U un suo sottospazio vettoriale (anche infinito dimensionali).

Si consideri il sotto
insieme W del prodotto cartesiano $W \subset V \times V$
definito come:

$$W = \{(u, u) \mid u \in U\}$$

W e' un sottospazio vettoriale di $V \times V$? Si motivi la risposta.

II) Nel caso di risposta affermativa al punto (I), se dim(V) = n e dim(U) = m < n qual'e' la dimensione di W? Si motivi accuratamente la risposta.

Esercizio 2 (40 punti)

- a) Si consideri l'applicazione lineare $f: \mathbf{C}^2 \longrightarrow \mathbf{C}^4$, $f(\mathbf{e}_1) = -\mathbf{e}_1 + i\mathbf{e}_2 i\mathbf{e}_3 2ak\mathbf{e}_4$, $f(\mathbf{e}_2) = i\mathbf{e}_1 + \mathbf{e}_2 \mathbf{e}_3 + 2i\mathbf{e}_4$. Si discuta al variare di k se l'applicazione lineare e' iniettiva, suriettiva e/o biettiva. Si motivi chiaramente la risposta.
- b) Scelto un valore di k a piacere, si trovi una base dell'immagine e la si completi ad una base del codominio.
- c) Posto k=0, si determini per quali valori (se esistono) del parametro $\alpha \in \mathbf{C}$ il vettore $(\alpha,0)$ appartiene al nucleo di f.

Esercizio 3 (50 punti)

- a) Si enunci chiaramente il teorema di Rouche' Capelli.
- b) Siano $\mathbf{u}, \mathbf{v} \in V$. Si dimostri che span $\{\mathbf{u}, \mathbf{v}\} = \text{span}\{\mathbf{u}, a\mathbf{u} + b\mathbf{v}\}$ a partire dalle definizioni, cioe' senza utilizzare alcun risultato.
- c) Si risponda vero o falso dando una motivazione accurata alla risposta.
- I) Siano f e g due applicazioni lineari $f,g:V\longrightarrow V$ con V spazio vettoriale sul campo \mathbb{K} (anche infinito dimensionale). Se $f\circ g$ e' isomorfismo, allora f e' isomorfismo.
- II) $\mathbb{K}_n[x]$ e' sempre isomorfo a $M_{r,s}(\mathbb{K})$ scegliendo opportuni r ed s. CREDITO EXTRA (15 punti). Sia $A \in M_{n,n}(\mathbf{R})$. Si dimostri che $e^{PAP^{-1}} = Pe^AP^{-1}$.