

CQT-based Convolutional Neural Networks for Audio Scene Classification and Domestic Audio Tagging

Thomas Lidy (lidy@ifs.tuwien.ac.at), Alexander Schindler (alexander.schindler@ait.ac.at)

Motivation and Goal

Identification of urban and domestic audio events in the IEEE AASP DCASE 2016 Challenge: Detection and Classification of Acoustic Scenes and Events (Tasks 1 and 4)

Audio Pre-processing

- mono conversion
- apply Constant-Q-Transform (CQT):
 - adapted wavelet transform
 - geometrically spaced frequency bins
 - 12 bands per octave
 - we use a total number of 80 bands (4 highest cut off)
 - analyze 82 consecutive CQT frames (0.94 seconds) as one audio segment
- log10 transform
- process a multitude of short-term segments from an audio example to be learned by the neural network (30 seconds audio results in 31 CQT excerpts)

CQT provides a better resolution in the low frequencies and achieves better accuracies on the development set

Transform	Bands/Frames	Acc max prob	Acc maj vote	
Mel	40 x 80	76,23%	75,62%	
Mel	80 x 80	76,55%	76,38%	
CQT	80 x 82	80,25%	80,07%	
CQT	84 x 82	78,11%	77,59%	
CQT	126 x 82	79,39%	79,14%	

Neural Network Architecture

parallel Convolutional Neural Network (CNN)

- two pipelines of CNN Layers capturing:
 - frequency domain relations
 - temporal relations
- both layers
 - use the same input segment
 - are followed by MaxPooling
- flattened
- merge layers by concatenation
- add fully connected layer and Softmax output
- classification of an audio file by:
 - maximum probability summing all segments
 - majority Vote of decision by segments

Models

Task 1:

- Model 1: as depicted left
- Model 2: improved by 2-class models to overcome biggest class confusions between:
 - park vs. residential area
 - cafe/restaurant vs. train
 - home vs. library

Task 4:

 Model 1: as depicted left, with Sigmoid output

Challenge Results

Task 1: Acoustic Scene Classification

categorize an audio sample into one of these 15 classes:

• beach, bus, cafe/restaurant, car, city center, forest path, grocery store, home, library, metro station, office, park, residential area, train, tram

Task 4: Domestic Audio Tagging

predict the probabilities of all of these 6 classes:

• child speech, adult male speech, adult female speech, video-game/TV, percussive sounds, other identifiable sounds

