# Learning as Inference DD2421

Giampiero Salvi

HT2018

#### Outline

- Introduction
  - Probabilistic Classification and Regression
  - Discriminative vs Generative Models
  - Parametric vs Non-parametric Inference
- Maximum Likelihood Estimation
  - Regression
  - Classification
- Special Cases
  - Naïve Bayes Classifier
  - Logistic Regression

# Probabilistic Classification and Regression

In both cases estimate posterior

$$P(y \mid x) = \frac{P(x \mid y)P(y)}{P(x)}$$

- Classification: y is discrete
- Regression: y is continuous

Until now we assumed we knew:

- $P(y) \leftarrow Prior$
- $P(x | y) \leftarrow Likelihood$
- $P(x) \leftarrow Evidence$

How can we obtain this information from observations (data)?

### Learning as Inference

#### Given:

- the training data  $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$
- a new observation x

Estimate the posterior probability of the answer y:

$$P(y|\mathbf{x}, \mathcal{D})$$

#### Discriminative vs Generative Models



Figure from Nguyen et al. 2015. http://www.evolvingai.org/fooling

### Discriminative vs Generative Models

#### Discriminative:

- learn the posterior  $P(y|\mathbf{x}, \mathcal{D})$  directly
- examples: linear regression, logistic regression

#### Generative:

- learn a model of data generation: priors  $P(y|\mathcal{D})$  and likelihoods  $P(\mathbf{x}|y,\mathcal{D})$
- use Bayes rule to obtain posterior  $P(y|\mathbf{x}, \mathcal{D})$
- example: classification

### Parametric vs Non-parametric Inference

#### Parametric:

- First make the model parameters explicit:  $P(y|\mathbf{x}) = P(y|\mathbf{x}, \theta)$
- estimate the optimal parameters  $\hat{\theta}$  using the data (point estimate)
- compute the posterior  $P(y|\mathbf{x}, \hat{\theta})$

Learning corresponds to finding  $\hat{\theta}$ 

#### Non-Parametric:

- Use a parametric model as before:  $P(y|\mathbf{x}) = P(y|\mathbf{x}, \theta)$
- but estimate the posterior of the parameters given the data:  $P(\theta|\mathcal{D})$
- Compute the posterior  $P(y|\mathbf{x},\mathcal{D})$  by marginalizing out the parameters  $\theta$

The number of parameters can grow with the data!

### Three Approaches

#### Parametric:

- Maximum Likelihood (ML)
- Maximum A Posteriori (MAP)

#### Non-parametric:

Bayesian methods

# Fundamental Assumption: i.i.d.

Samples from each class are independent and identically distributed:

$$\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

The likelihood of the whole data set can be factorized:

$$P(\mathcal{D}) = P(\mathbf{x}_1, \dots, \mathbf{x}_N) = \prod_{i=1}^N P(\mathbf{x}_i)$$

And the log-likelihood becomes:

$$\log P(\mathcal{D}) = \sum_{i=1}^{N} \log P(\mathbf{x}_i)$$

### Maximum Likelihood Estimate

define parametric form for the distributions:

$$P(\mathbf{x}|y) \equiv P(\mathbf{x}|y,\theta)$$
 or  $P(y|\mathbf{x}) \equiv P(y|\mathbf{x},\theta)$ 

• find optimal value for the parameter  $\theta_{ML}$  by maximizing the likelihood of the data:

$$\theta_{\mathsf{ML}} = \arg\max_{\theta} P(\mathcal{D}|\theta)$$

 approximate the distribution given the data with this distribution:

$$P(\mathbf{x}|y, \mathcal{D}) \approx P(\mathbf{x}|y, \theta_{\mathsf{ML}})$$
 or  $P(y|\mathbf{x}, \mathcal{D}) \approx P(y|\mathbf{x}, \theta_{\mathsf{ML}})$ 

# Probabilistic Linear Regression

Model (deterministic):

$$y = \mathbf{w}^T \mathbf{x} + \epsilon$$

But now:

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

Therefore:

$$y \sim \mathcal{N}(\mu_Y(\mathbf{x}), \sigma_Y^2(\mathbf{x}))$$
$$= \mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$$



Learning: find w that maximizes  $P(Y|X, \mathbf{w}, \sigma^2)$ 

Maximize the posterior directly  $\implies$  discriminative method

# MLE for Probabilistic Linear Regression

$$\log P(Y|X, \mathbf{w}, \sigma^2) = \log \prod_{i} P(y_i|\mathbf{x}_i, \mathbf{w}, \sigma^2)$$

$$= \sum_{i} \log P(y_i|\mathbf{x}_i, \mathbf{w}, \sigma^2)$$

$$= \sum_{i} \log \left[ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mathbf{w}^T \mathbf{x}_i)^2}{2\sigma^2}} \right]$$

$$= \sum_{i} \left[ -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y_i - \mathbf{w}^T \mathbf{x}_i)^2}{2\sigma^2} \right]$$

$$\arg \max_{\mathbf{w}} \left[ P(Y|X, \mathbf{w}, \sigma^2) \right] = \arg \min_{\mathbf{w}} \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Maximizing  $P(Y|X, \mathbf{w}, \sigma^2)$  equivalent to minimizing sum of squares!

### MLE for Classification

#### Classification



features:  $\mathbf{x} \in \mathbb{R}^d$ 

class:  $y \in \{y_1, \dots, y_K\}$ 

 $\begin{aligned} k_{\mathsf{MAP}} &= \arg\max_{k} P(y_k|\mathbf{x}) \\ &= \arg\max_{k} P(y_k) P(\mathbf{x}|y_k) \end{aligned}$ 



# Assumption: Class Independence



samples from class i do not influence estimate for class  $j,\ i\neq j$ 

### Assumption: Class Independence



- each distribution for class  $y_i$  is a likelihood in the form  $P(\mathbf{x}|\theta_i)$
- ullet in the following we drop the class index i and write  $P(\mathbf{x}|\theta)$
- also we call  $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$  the set of data point belonging to a single class  $y_i$

#### ML estimation of Gaussian mean

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu,\sigma^2\}$$

Log-likelihood of data (i.i.d. samples):

$$\log P(\mathcal{D}|\theta) = \sum_{i=1}^{N} \log \mathcal{N}(x_i|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma^2}\right) - \sum_{i=1}^{N} \frac{(x_i - \mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log P(\mathcal{D}|\theta)}{d\mu} = \sum_{i=1}^{N} \frac{(x_i - \mu)}{\sigma^2} = \frac{\sum_{i=1}^{N} x_i - N\mu}{\sigma^2} \iff$$
$$\mu_{\mathsf{ML}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

# ML estimation of Gaussian parameters

$$\mu_{\mathsf{ML}} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$\sigma_{\mathsf{ML}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_{\mathsf{ML}})^2$$

- same result by minimizing the sum of square errors!
- but we make assumptions explicit

### MLE with Discrete Variables

Will I play tennis dependent on the weather?

$$x \in \{\text{sunny}, \text{overcast}, \text{rainy}\}\$$
  
 $y \in \{\text{yes}, \text{no}\}$ 

$$x \sim \mathsf{Cat}(\lambda_1, \dots, \lambda_k)$$
  
 $y \sim \mathsf{Bernoulli}(\alpha)$   
 $x|y \sim \mathsf{Cat}(\lambda'_1, \dots, \lambda'_k)$   
 $y|x \sim \mathsf{Bernoulli}(\alpha')$ 

#### Training data

|         |          | umm   | 5 4414  |          |       |
|---------|----------|-------|---------|----------|-------|
| i       | $x_i$    | $y_i$ | i       | $x_i$    | $y_i$ |
| example | outlook  | play  | example | outlook  | play  |
| 1       | sunny    | no    | 8       | sunny    | no    |
| 2       | sunny    | no    | 9       | sunny    | yes   |
| 3       | overcast | yes   | 10      | rainy    | yes   |
| 4       | rainy    | yes   | 11      | sunny    | yes   |
| 5       | rainy    | yes   | 12      | overcast | yes   |
| 6       | rainy    | no    | 13      | overcast | yes   |
| 7       | overcast | yes   | 14      | rainy    | no    |
|         |          |       |         |          |       |

#### MLE: Bernoulli

$$P(y) = \begin{cases} \alpha & \text{if } y = \text{yes} \\ 1 - \alpha & \text{if } y = \text{no} \end{cases}$$

- **1** compute (log) likelihood of the data  $P(\mathcal{D}|\alpha)$
- ② find  $\alpha_{\mathsf{ML}}$  that optimizes  $P(\mathcal{D}|\alpha)$

| $\overline{i}$ | $x_i$    | $y_i$ | i       | $x_i$    | $y_i$ |
|----------------|----------|-------|---------|----------|-------|
| example        | outlook  | play  | example | outlook  | play  |
| 1              | sunny    | no    | 8       | sunny    | no    |
| 2              | sunny    | no    | 9       | sunny    | yes   |
| 3              | overcast | yes   | 10      | rainy    | yes   |
| 4              | rainy    | yes   | 11      | sunny    | yes   |
| 5              | rainy    | yes   | 12      | overcast | yes   |
| 6              | rainy    | no    | 13      | overcast | yes   |
| 7              | overcast | yes   | 14      | rainy    | no    |

#### MLE: Bernoulli

$$p(y) = \begin{cases} \alpha & \text{if } y = \text{yes} \\ 1 - \alpha & \text{if } y = \text{no} \end{cases}$$

Likelihood of the data (n=number of yes in  $\mathcal{D}$ , N=number of examples):

$$P(\mathcal{D}|\alpha) = \prod_{i} P(y_{i}|\alpha) = \prod_{i \text{ s.t. } y = \text{yes}} \alpha \prod_{i \text{ s.t. } y = \text{no}} (1 - \alpha)$$

$$= \alpha^{n} (1 - \alpha)^{N - n}$$

$$\log P(\mathcal{D}|\alpha) = n \log \alpha + (N - n) \log (1 - \alpha)$$

$$\frac{d}{d\alpha} \log P(\mathcal{D}|\alpha) = \frac{n - N\alpha}{\alpha (1 - \alpha)} = 0 \iff \alpha_{\text{ML}} = \frac{n}{N}$$

# MLE Example: Discrete Variables

Will I play tennis dependent on the weather?

$$\begin{array}{lcl} x & \in & \{\mathsf{sunny}, \mathsf{overcast}, \mathsf{rainy}\} \\ y & \in & \{\mathsf{yes}, \mathsf{no}\} \end{array}$$

$$\begin{array}{rcl} y & \sim & \mathsf{Bernoulli}(\alpha) \\ \alpha_{\mathsf{ML}} & = & \frac{9}{14} \end{array}$$

#### Training data

| Irailling uata |          |       |         |          |       |  |  |  |  |
|----------------|----------|-------|---------|----------|-------|--|--|--|--|
| i              | $x_i$    | $y_i$ | i       | $x_i$    | $y_i$ |  |  |  |  |
| example        | outlook  | play  | example | outlook  | play  |  |  |  |  |
| 1              | sunny    | no    | 8       | sunny    | no    |  |  |  |  |
| 2              | sunny    | no    | 9       | sunny    | yes   |  |  |  |  |
| 3              | overcast | yes   | 10      | rainy    | yes   |  |  |  |  |
| 4              | rainy    | yes   | 11      | sunny    | yes   |  |  |  |  |
| 5              | rainy    | yes   | 12      | overcast | yes   |  |  |  |  |
| 6              | rainy    | no    | 13      | overcast | yes   |  |  |  |  |
| 7              | overcast | yes   | 14      | rainy    | no    |  |  |  |  |

# MLE: Categorical

Similar derivation:

$$\lambda_{k,\mathsf{ML}} = \frac{n_k}{N}$$

where  $n_k$  is the number of examples of the kth category

| x                    | $\sim$ | $Cat(\lambda_{sunny}, \lambda_{overcast}, \lambda_{rainy})$ Training data |              |               |            |              |               |            |  |
|----------------------|--------|---------------------------------------------------------------------------|--------------|---------------|------------|--------------|---------------|------------|--|
| $\lambda_{ML}$       | =      | $\{\frac{3}{14}, \frac{1}{14}, \frac{3}{14}\}$                            | i<br>example | $x_i$ outlook | $y_i$ play | i<br>example | $x_i$ outlook | $y_i$ play |  |
|                      |        | 5 (2)                                                                     | 1            | sunny         | no         | 8            | sunny         | no         |  |
| x y                  | $\sim$ | $Cat(\lambda_1',\ldots,\lambda_k')$                                       | 2            | sunny         | no         | 9            | sunny         | yes        |  |
| _                    |        | $(2\ 4\ 3)$                                                               | 3            | overcast      | yes        | 10           | rainy         | yes        |  |
| $\lambda'_{ML}(yes)$ | =      | J l                                                                       | 4            | rainy         | yes        | 11           | sunny         | yes        |  |
| IVIL (3              |        | $^{1}9, ^{3}9, ^{3}$                                                      | 5            | rainy         | yes        | 12           | overcast      | yes        |  |
|                      |        | 3  2                                                                      | 6            | rainy         | no         | 13           | overcast      | yes        |  |
| $\lambda'_{ML}(no)$  | =      | $\{\frac{1}{5}, 0, \frac{1}{5}\}$                                         | 7            | overcast      | yes        | 14           | rainy         | no         |  |
|                      |        |                                                                           |              |               |            |              |               |            |  |

### But..., will I play tennis?

Let's say it is rainy:

$$\begin{split} P(y = \mathsf{yes} | \mathsf{outlook} = \mathsf{rainy}) &= \frac{P(\mathsf{outlook} = \mathsf{rainy} | y = \mathsf{yes}) P(y = \mathsf{yes})}{P(\mathsf{outlook} = \mathsf{rainy})} = \frac{\frac{3}{9} \frac{9}{14}}{\frac{5}{14}} = \frac{3}{5} \\ P(y = \mathsf{no} | \mathsf{outlook} = \mathsf{rainy}) &= \frac{P(\mathsf{outlook} = \mathsf{rainy} | y = \mathsf{no}) P(y = \mathsf{no})}{P(\mathsf{outlook} = \mathsf{rainy})} = \frac{\frac{2}{5} \frac{5}{14}}{\frac{5}{14}} = \frac{2}{5} \end{split}$$

Then

$$y_{\mathsf{MAP}} = rg \max_{y} P(y|\mathsf{outlook=rainy}) = \mathsf{yes}$$
  $y_{\mathsf{ML}} = rg \max_{y} P(\mathsf{outlook=rainy}|y) = \mathsf{no}$ 

#### Source of confusion

We did Maximum a Posteriori (MAP) and Maximum Likelihood (ML) classification

$$y_{\mathsf{MAP}} = \arg \max_{y} P(y|x, \theta_{\mathsf{ML}})$$
  
 $y_{\mathsf{ML}} = \arg \max_{y} P(x|y, \theta_{\mathsf{ML}})$ 

with parameters  $\theta$  estimated by Maximum Likelihood (ML):

$$\theta_{\mathsf{ML}} = \arg\max_{\theta} P(D|y, \theta) = \arg\max_{\theta} \prod_{i} P(x_i|y_i, \theta)$$

# Problem: Curse of Dimensionality

| i       |          | $\mathbf{x}_i$ |          |       | $y_i$ |
|---------|----------|----------------|----------|-------|-------|
| example | outlook  | temperature    | humidity | windy | play  |
| 1       | sunny    | hot            | high     | false | no    |
| 2       | sunny    | hot            | high     | true  | no    |
| 3       | overcast | hot            | high     | false | yes   |
| 4       | rainy    | mild           | high     | false | yes   |
| 5       | rainy    | cool           | normal   | false | yes   |
| 6       | rainy    | cool           | normal   | true  | no    |
| 7       | overcast | cool           | normal   | true  | yes   |
| 8       | sunny    | mild           | high     | false | no    |
| 9       | sunny    | cool           | normal   | false | yes   |
| 10      | rainy    | mild           | normal   | false | yes   |
| 11      | sunny    | mild           | normal   | true  | yes   |
| 12      | overcast | mild           | high     | true  | yes   |
| 13      | overcast | hot            | normal   | false | yes   |
| 14      | rainy    | mild           | high     | true  | no    |

difficult to model P(outlook, temperature, humidity, windy|play)

### Problem: Curse of Dimensionality

- Size of feature space exponential in number of features.
- More features  $\implies$  more difficult to model  $P(\mathbf{x} \mid y)$ .

#### Approximation: Naïve Bayes classifier

- All features (dimensions) regarded as conditionally independent.
- Instead of modelling one D-dimensional distribution: P(outlook, temperature, humidity, windy|play) model D one-dimensional distributions: P(outlook|play), P(temperature|play), P(humidity|play), P(windy|play)

# Naïve Bayes Classifier

- $\mathbf{x}$  is a vector  $(x_1, \dots, x_D)$  of attribute or feature values.
- Let  $\mathcal{Y} = \{1, 2, \dots, Y\}$  be the set of possible classes.
- The MAP estimate of y is

$$y_{\mathsf{MAP}} = \arg \max_{y \in \mathcal{Y}} P(y \mid x_1, \dots, x_D) = \arg \max_{y \in \mathcal{Y}} \frac{P(x_1, \dots, x_D \mid y) P(y)}{P(x_1, \dots, x_D)}$$
$$= \arg \max_{y \in \mathcal{Y}} P(x_1, \dots, x_D \mid y) P(y)$$

- Naïve Bayes assumption:  $P(x_1, \ldots, x_D \mid y) = \prod_{d=1}^D P(x_d \mid y)$
- Naïve Bayes classifier:

$$y_{\mathsf{MAP}} = \arg\max_{y \in \mathcal{Y}} P(y) \prod_{d=1}^{D} P(x_d \mid y)$$

### Naïve Bayes Classifier

One of the most common learning methods.

#### When to use:

- Moderate or large training set available.
- Features  $x_i$  of a data instance x are conditionally independent given classification (or at least reasonably independent, still works with a little dependence).

#### Successful applications:

- Medical diagnoses (symptoms independent)
- Classification of text documents (words independent)
- Acoustic modelling in Automatic Speech Recognition

Question: Will I go and play tennis given the forecast?

My measurements:

- outlook ∈ {sunny, overcast, rainy},
- temperature ∈ {hot, mild, cool},
- humidity ∈ {high, normal},
- windy  $\in$  {false, true}.

Possible decisions:  $y \in \{\text{yes, no}\}$ 

#### What I did in the past:

| i       |          | $\mathbf{x}_i$ |          |       | $y_i$ |
|---------|----------|----------------|----------|-------|-------|
| example | outlook  | temperature    | humidity | windy | play  |
| 1       | sunny    | hot            | high     | false | no    |
| 2       | sunny    | hot            | high     | true  | no    |
| 3       | overcast | hot            | high     | false | yes   |
| 4       | rainy    | mild           | high     | false | yes   |
| 5       | rainy    | cool           | normal   | false | yes   |
| 6       | rainy    | cool           | normal   | true  | no    |
| 7       | overcast | cool           | normal   | true  | yes   |
| 8       | sunny    | mild           | high     | false | no    |
| 9       | sunny    | cool           | normal   | false | yes   |
| 10      | rainy    | mild           | normal   | false | yes   |
| 11      | sunny    | mild           | normal   | true  | yes   |
| 12      | overcast | mild           | high     | true  | yes   |
| 13      | overcast | hot            | normal   | false | yes   |
| 14      | rainy    | mild           | high     | true  | no    |

#### Counts of when I played tennis (did not play)

| Outlook |          |       | Temperature |       |       | Hui   | nidity | Windy |       |
|---------|----------|-------|-------------|-------|-------|-------|--------|-------|-------|
| sunny   | overcast | rain  | hot         | mild  | cool  | high  | normal | false | true  |
| 2 (3)   | 4 (0)    | 3 (2) | 2 (2)       | 4 (2) | 3 (1) | 3 (4) | 6 (1)  | 6 (2) | 3 (3) |

#### Prior of whether I played tennis or not

#### Likelihood of attribute when tennis played $P(x_i | y=yes)(P(x_i | y=no))$

| Outlook                     |                             |                                          | Temperature                 |                                          |                                          | Hum                                      | nidity                      | Windy                                    |                             |
|-----------------------------|-----------------------------|------------------------------------------|-----------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------|------------------------------------------|-----------------------------|
| sunny                       | overcast                    | rain                                     | hot                         | mild                                     | cool                                     | high                                     | normal                      | false                                    | true                        |
| $\frac{2}{9} (\frac{3}{5})$ | $\frac{4}{9} (\frac{0}{5})$ | $\frac{3}{9} \left( \frac{2}{5} \right)$ | $\frac{2}{9} (\frac{2}{5})$ | $\frac{4}{9} \left( \frac{2}{5} \right)$ | $\frac{3}{9} \left( \frac{1}{5} \right)$ | $\frac{3}{9} \left( \frac{4}{5} \right)$ | $\frac{6}{9} (\frac{1}{5})$ | $\frac{6}{9} \left( \frac{2}{5} \right)$ | $\frac{3}{9} (\frac{3}{5})$ |

Inference: Use the learnt model to classify a new instance.

New instance:

$$\mathbf{x} = (\mathsf{sunny}, \mathsf{cool}, \mathsf{high}, \mathsf{true})$$

Apply Naïve Bayes Classifier:

$$y_{\mathsf{MAP}} = \arg\max_{y \in \{\mathsf{yes, no}\}} P(y) \prod_{i=1}^{4} P(x_i \mid y)$$

$$P(\mathsf{yes}) \ P(\mathsf{sunny} \, | \, \mathsf{yes}) \ P(\mathsf{cool} \, | \, \mathsf{yes}) \ P(\mathsf{high} \, | \, \mathsf{yes}) \ P(\mathsf{true} \, | \, \mathsf{yes}) = \frac{9}{14} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} = .005$$
 
$$P(\mathsf{no}) \ P(\mathsf{sunny} \, | \, \mathsf{no}) \ P(\mathsf{cool} \, | \, \mathsf{no}) \ P(\mathsf{high} \, | \, \mathsf{no}) \ P(\mathsf{true} \, | \, \mathsf{no}) = \frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = .021$$

$$\implies y_{\mathsf{MAP}} = \mathsf{no}$$

### Naïve Bayes: Independence Violation

• Conditional independence assumption:

$$P(x_1, x_2, ..., x_D | y) = \prod_{d=1}^{D} P(x_d | y)$$

often violated - but it works surprisingly well anyway!

- **Note:** Do not need the posterior probabilities  $P(y \mid \mathbf{x})$  to be correct. Only need  $y_{\mathsf{MAP}}$  to be correct.
- Since dependencies ignored, naïve Bayes posteriors often unrealistically close to 0 or 1.
  - Different attributes say the same thing to a higher degree than we expect as they are correlated in reality.

# Naïve Bayes: Estimating Probabilities

• **Problem:** What if none of the training instances with target value y have attribute  $x_i$ ? Then

$$P(x_i | y) = 0 \implies P(y) \prod_{i=1}^{D} P(x_i | y) = 0$$

- Simple solution: add pseudocounts to all counts so that no count is zero
- This is a form of regularization or smoothing

### Logistic Regression



Figure from Prince

- binary classification problem:  $y \in \{0, 1\}$
- treat as regression problem:  $\mathbf{x} \to \lambda$  (Bernoulli parameter)

$$y \sim \operatorname{Bernoulli}(\lambda) = \lambda^y (1 - \lambda)^{(1-y)}$$
  
 $\lambda = \lambda(\mathbf{x}) = \operatorname{sig}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$ 

$$y|\mathbf{x} \sim = \lambda(\mathbf{x})^y (1 - \lambda(\mathbf{x}))^{(1-y)}$$

# Logistic Regression vs Gaussian Classifier





#### Same posterior $P(y|\mathbf{x})$ iff:

- equal prior distributions
- shared covariance matrix

#### Different learning:

- ullet Gaussians: generative model, optimize  $P(\mathbf{x}|y_0)$  and  $P(\mathbf{x}|y_1)$
- Logistic Regression: discriminative model, optimize  $P(y_1|\mathbf{x})$

### Logistic Regression: MLE

Learning: maximize  $P(Y|\mathbf{X})$  (discriminative method)

$$P(Y|\mathbf{X}, \mathbf{w}) = \prod_{i=1}^{N} \lambda(\mathbf{x}_{i})^{y_{i}} (1 - \lambda(\mathbf{x}_{i}))^{(1-y_{i})} \Rightarrow$$

$$\log P(Y|\mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} \left[ y_{i} \log \lambda(\mathbf{x}_{i}) + (1 - y_{i}) \log (1 - \lambda(\mathbf{x}_{i})) \right] =$$

$$= \sum_{i=1}^{N} \left[ y_{i} \log \operatorname{sig}(\mathbf{w}^{T}\mathbf{x}_{i}) + (1 - y_{i}) \log \left( 1 - \operatorname{sig}(\mathbf{w}^{T}\mathbf{x}_{i}) \right) \right]$$

Optimize by setting: no close form solution! Use gradient descent

$$\frac{d}{d\mathbf{w}}\log P(Y|\mathbf{X}, \mathbf{w}) = \sum_{i=1}^{N} (y_i - \operatorname{sig}(\mathbf{w}^T \mathbf{x}_i)) \mathbf{x}_i = 0$$

# Hints: derivatives of sigmoid

$$\frac{d}{d\mathbf{w}}\operatorname{sig}(\mathbf{w}^T\mathbf{x}) = \operatorname{sig}(\mathbf{w}^T\mathbf{x}) \left(1 - \operatorname{sig}(\mathbf{w}^T\mathbf{x})\right)\mathbf{x}$$

$$\frac{d}{d\mathbf{w}}\operatorname{log}\left(\operatorname{sig}(\mathbf{w}^T\mathbf{x})\right) = \frac{\operatorname{sig}(\mathbf{w}^T\mathbf{x}) \left(1 - \operatorname{sig}(\mathbf{w}^T\mathbf{x})\right)}{\operatorname{sig}(\mathbf{w}^T\mathbf{x})}\mathbf{x} = \left(1 - \operatorname{sig}(\mathbf{w}^T\mathbf{x})\right)\mathbf{x}$$

$$\frac{d}{d\mathbf{w}}\operatorname{log}\left(1 - \operatorname{sig}(\mathbf{w}^T\mathbf{x})\right) = \frac{-\operatorname{sig}(\mathbf{w}^T\mathbf{x}) \left(1 - \operatorname{sig}(\mathbf{w}^T\mathbf{x})\right)}{1 - \operatorname{sig}(\mathbf{w}^T\mathbf{x})}\mathbf{x} = -\operatorname{sig}(\mathbf{w}^T\mathbf{x})\mathbf{x}$$

# Logistic Regression vs Conditional Gaussian

#### Number of parameters (*D* dimensions):

Gaussian distributions (equal priors)

$$2 \times D$$
 (mean vectors)  
 $D(D+1)/2$  (shared covariance)  
 $D(D+5)/2$  (total, quadratic in  $D$ )

Logistic Regression

D (weights)

#### Training:

Gaussian distributions

- closed form solution
- generative model

Logistic Regression

- gradient descent
- discriminative model

### Summary

- Introduction
  - Probabilistic Classification and Regression
  - Discriminative vs Generative Models
  - Parametric vs Non-parametric Inference
- Maximum Likelihood Estimation
  - Regression
  - Classification
- Special Cases
  - Naïve Bayes Classifier
  - Logistic Regression

### Further Reading

#### Some books on Probabilistic Machine Learning

- C. M. Bishop, Pattern Recognition and Machine Learning, Springer Verlag, 2006.
- Kevin P. Murphy, Machine Learning A probabilistic Perspective, MIT Press, 2012.
- Gelman et al., Bayesian Data Analysis, CRC Press, 2014.
- David Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012.