Universidad del Valle de Guatemala

Departamento de Matemática

Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

E-mail: rom19857@uvg.edu.gt

Carné: 19857

MM2034 - Análisis de Variable Real 1 - Catedrático: Dorval Carías 6 de junio de 2021

HT 6

Las siguientes definiciones/teoremas (demostrados) fueron vistos en clase:

Homeomorfismo

Un homeomorfismo es una función bicontinua y biyectiva entre dos espacios topológicos. Es decir:

$$f:(x,\tau_x)\to (y,\tau_y).$$

 $\implies f$ es homeomorfismo si y solo si:

- 1. f es continua.
- 2. f es biyectiva (i.e f tiene inversa).
- 3. La inversa de f es continua.

En este caso, x y y son espacios homeomorfos, es decir topológicamente indistinguibles.

Definición de continuidad

Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$ y sea $x_0 \in A$. Se dice que f es continua en x_0 , si $\lim_{x \to x_0} f(x) = f(x_0)$. (i.e. Si $\forall \varepsilon > 0 \exists \delta > 0 \ni$ si $x \in A$, $|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$.)

Definición de continuidad uniforme

Una función $f: A \subset \mathbb{R} \to \mathbb{R}$ es uniformemente continua sobre A si, $\forall \varepsilon \exists \delta > 0 \ni x, x' \in A, |x - x'| < \delta \implies |f(x) - f(x')| < \varepsilon$.

Definición de Lipschitz

Si $f: I \to \mathbb{R} \to \mathbb{R}$, se dice que f es Lipschitz, si $\exists A > 0 \ni$

$$|f(x) - f(x')| \le A|x - x'|, \forall x, x' \in I.$$

Definición de punto fijo

 x_0 es un punto fijo de una función f si y solo si $f(x_0) = x_0$.

Teorema del Valor Intermedio - Bolzano (Demostrado en clase)

Sea H un subconjunto de $\mathbb R$ y sea f una función continua y acotada sobre H con valores en $\mathbb R$. Si $k \in \mathbb R \ni$

$$\inf\{f(x) : x \in H\} < k < \sup\{f(x) : x \in H\}.$$

$$\implies \exists c \in H \ni f(c) = k.$$

1. Problema 1

Definición del valor intermedio

Si f(a) < c < f(b), entonces f(x) = c para algún x entre a y b.

Teorema 1 (Demostrado en clase)

La imagen de un compacto bajo un mapeo continuo es compacto.

Definición de punto límite de Rudin et al. (1976)

Si p es un punto límite de un conjunto E, entonces cada vecindad de p contiene infinitos puntos contables de E.

Caracterización secuencial de compacto (Demostrado en clase)

Un subconjunto K de \mathbb{R} es compacto si y solo si cada sucesión en K tiene una subsucesión que converge a un punto en K.

Demuestre que la función $f: \mathbb{R} \to \mathbb{R}$ es continua ssi f tiene la propiedad del valor intermedio y mapea conjuntos compactos en conjuntos compactos.

Demostración. Nótese que es una prueba de ida y de vuelta.

 \rightarrow A probar: f tiene la propiedad del valor intermedio y mapea conjuntos compactos en conjuntos compactos. Por hipótesis sabemos que f es continua, entonces por el teorema del valor intermedio de Bolzano f debe tener la propiedad del valor intermedio.

$$\implies \exists c \in \mathbb{R} \ni f(c) = k, \quad k \in \mathbb{R}.$$

Por lo tanto, por la caracterización secuencial de compactos, nos garantiza que el subconjunto que mapea la función es compacto en un intervalo [a,b] si cada sucesión en el subconjunto tiene una subsucesión que converge a algún punto en el subconjunto (a mayor detalle en la prueba de regreso). Además, por el teorema 1, la compacidad de conjuntos compactos se preserva bajo un mapeo continuo.

 \leftarrow Por contradicción. Sea asume que f no es continua. Además, tenemos:

- a) Una función mapea conjuntos compactos en conjuntos compactos. Además, nótese que por Heine-Borel, un conjunto compacto es cerrado y acotado. Entonces, tenemos una función f que mapea $[a,b] \rightarrow [a,b]$.
- b) Considérese la caracterización secuencial del compacto. Entonces dígase que si $x_n \to x_0$. Pero ahora, nótese que nos dicen que f tiene la propiedad del valor intermedio tal que:

$$f(x_0) < c < f(x_n),$$
 $c \in [a, b]$ y $\forall n.$

Entonces, $f(z_n) = c$, en donde $z_n \in (x_0, x_n)$. Por lo que podemos asumir que, $z_n \to x_0$. Ahora, notamos que x_0 debe ser un **punto límite** del conjunto z, tal que f(z) = c; sin embargo, por el inciso **a** sabemos que [a, b] es cerrado, pero z no pertenece al conjunto x_0 . $(\to \leftarrow)$ Entonces f debe ser continua.

2. Problema 2

Teorema 3.2 de Rudin et al. (1976)

Let $\{p_n\}$ be a sequence in a metric space X.

- 1. $\{p_n\}$ converges to $p \in X$ if and only if every neighborhood of p contains all but finitely many of the terms of $\{p_n\}$
- 2. If $p \in X, p' \in X$, and if $\{p_n\}$ converges to p and to p', then p' = p.
- 3. If $\{p_n\}$ converges, then $\{p_n\}$ is bounded.
- 4. If $E \subset X$ and if p is a limit point of E, then there is a sequence $\{p_n\}$ in E such that $p = \lim_{n \to \infty} p_n$.

Sean X y Y espacios métricos y sea A un subconjunto no vacío de X. Si f y g son mapeos continuos de X en Y, tales que f(x) = g(x), $\forall x \in A$, demuestre que f(x) = g(x), $\forall x \in \overline{A}$.

Demostración. A probar: $f(x) = g(x), \ \forall \ x \in \overline{A}$. Observamos que el problema consiste:

Sea x_n una sucesión en el espacio métrico X. Entonces el inciso 4 del teorema 3.2 de Rudin et al. (1976) nos garantiza que si $A \subset X$ y si x es un punto límite (de acumulación) de A, entonces hay una sucesión $\{x_n\}$ en A tal que:

$$x = \lim_{n \to \infty} x_n.$$

Ahora por hipótesis, si usamos el mapeo continuo de X en Y, tales que:

$$f(x_n) = g(x_n),$$
 para cada n .

Por lo tanto, $f(x_n) = g(x_n)$ están en el espacio métrico Y; lo que implicaría

$$f(x) = g(x), \qquad x \in \overline{A}.$$

3. Problema 3

Definición 4.28 (Funciones monótonas) de Rudin et al. (1976)

Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if a < x < y < b implies $f(x) \le f(y)$. If the last inequality is reversed, we obtain the definition of a monotonically decreasing function. The class of monotonic functions consists of both the increasing and the decreasing functions.

Teorema 1 (Fue dejado como tarea demostrarlo)

Sea f continua e inyectiva en I = [a, b]. Entonces es estrictamente monótona en I.

Demostración. Vamos a tomar como referencia la deducción de Walker (2012). Entonces, por hipótesis tenemos que f es continua e inyectiva. Como es inyectiva, se sabe que $f(a) \neq f(b)$. Entonces, ahora tenemos dos casos:

- 1. f(a) < f(b) entonces f es estrictamente creciente. Entonces tenemos que f(a) < f(b). Entonces, consideremos el teorema del valor medio del Bolzano, tal que f(a) < f(x) < f(b) para todo a < x < b. $\Longrightarrow y \in [x,b] \ni f(y) = f(a)$. Pero entonces, eso implicaría que que no es inyectiva $(\to \leftarrow)$. De la misma forma, $f(x) \ge f(b)$ no sería posible. Digamos $x < y \in I$, tenemos que $f(x) \ge f(y)$, entonces por el teorema del valor medio de Bolzano existe un $z \in [a,x]$ tal que f(z) = f(y). Por lo tanto, f no sería inyectiva $(\to \leftarrow)$.
- 2. f(a) > f(b) entonces f es estrictamente decreciente. La prueba es la misma al inciso anterior, pero con los signos cambiados.
- \therefore $x < y \in I$ y entonces tenemos f(x) < f(y). Además tenemos f(x) > (y); que son estrictamente creciente y decreciente respectivamente.

Pruebe que si $f:[a,b] \to [a,b]$ es un homeomorfismo, entonces a y b son puntos fijos de f, o f(a) = b y f(b) = a.

Demostración. Conocemos $f:[a,b] \to [a,b]$ es un homeomorfismo si y solo si: (1) Es biyectiva. (2) Función continua. (3) La inversa de la función es continua. Por el teorema 1, las condiciones se cumplen trivialmente:

1. Si f es creciente. Entonces:

$$f([a,b]) = [f(a), f(b)] = [a,b].$$

a y b son puntos fijos de f. Es decir, por la definición de punto fijo.

$$f(a) = a$$
 y $f(b) = b$.

2. Si f es decreciente. Entonces:

$$f([a,b]) = [f(b), f(a)] = [a,b].$$

Tal que:

$$f(a) = b$$
 y $f(b) = a$.

4. Problema 4

Sea $f : \mathbb{R} \to (-1, 1), f(x) = \frac{x}{1 + |x|}$.

Notación (

Nótese que la función se puede reescribir como:

$$f(x) = \frac{x}{1+|x|} = \begin{cases} \frac{x}{1-x} & , -\infty < x < 0\\ \frac{x}{1+x} & , 0 \le x < \infty \end{cases}$$

1. Pruebe que f es un homeomorfismo.

Demostración. Considérese la definición de homeomorfismo.

- a) Comprobar f es continua. Tómese como referencia la definición de continuidad. Tenemos 2 casos:
 - 1) $f(x) = \frac{x}{1+x}$. Sea $x_0 \in [0, \infty)$. Entonces, si $\forall \varepsilon > 0 \exists \delta := \min\{0, 2\varepsilon\} > 0$, tal que:

$$|x-x_0|<\delta.$$

$$\implies |f(x) - f(x_0)| = \left| \frac{x}{1+x} - \frac{x_0}{x_0} \right| = \left| \frac{x(1+x_0) - x_0(1+x)}{(1+x)(1+x_0)} \right|$$

$$= \left| \frac{x + xx_0 - x_0 - x_0x}{(1+x)(1+x_0)} \right| = \left| \frac{x - x_0}{(1+x)(1+x_0)} \right| =$$

$$= \frac{1}{|(1+x)(1+x')|} \cdot |x - x'| \le \frac{1}{2} \cdot |x - x'|.$$

Entonces, ahora tenemos

$$\frac{1}{2} \cdot |x - x_0| < \epsilon \implies |x - x_0| < 2\epsilon.$$

Por lo cual, seleccionamos $\delta := \min\{0, 2\varepsilon\}$.

2) $f(x) = \frac{x}{1-x}$. Mismo argumento que el anterior con el signo e intervalo cambiado.

Por lo tanto, f es continua.

- b) Comprobar f es biyectiva. Es decir, primero probaremos que es inyectiva y luego sobreyectiva.
 - 1) Inyectiva. Tenemos dos casos:

a' $f(x) = \frac{x}{1-x}$. Entonces, se proponen dos funciones:

$$f(x_1) = \frac{x_1}{1 - x_1}$$
 y $f(x_2) = \frac{x_2}{1 - x_2}$.

$$f(x_1) = f(x_2) \implies \frac{x_1}{1 - x_1} = \frac{x_2}{1 - x_2} \implies x_1(1 - x_2) = x_2(1 - x_1) \implies$$
$$\implies x_1 - x_1x_2 = x_2 - x_2x_1 \implies x_1 = x_2. \therefore \text{ Es inyectiva.}$$

b' $f(x) = \frac{x}{1+x}$. Mismo argumento que el inciso anterior, únicamente el signo cambiado.

 $\therefore f$ es inyectiva.

2) Sobreyectiva. Tenemos dos casos:

a' $f(x) = \frac{x}{1-x}$. Entonces, debemos despejar para x. Se propone:

$$y = \frac{x}{1 - x}.$$

$$\implies y = \frac{x}{1-x} \implies y(1-x) = x \implies y - yx = x \implies$$

$$y = xy + x \implies y = x(y+1) \implies x = \frac{y}{y+1} \therefore \text{ Es sobreyectiva.}$$

b' $f(x) = \frac{x}{1+x}$. Mismo argumento que el inciso anterior, únicamente el signo cambiado.

 $\therefore f$ es sobreyectiva.

- :. Una función inyectiva y sobreyectiva es biyectiva.
- c) Comprobar f^{-1} es biyectiva. Nuevamente, tenemos 2 casos:
 - 1) $f(x) = \frac{x}{1-x}$. En donde $f(x)^{-1} = \frac{x}{x+1}$. Sea $x_0 \in (-\infty, 0)$. Entonces, $\forall \epsilon > 0 \exists \delta := \min\{2\varepsilon, 0\} > 0$, tal que:

$$|x-x_0|<\delta.$$

$$\implies |f(x) - f(x_0)| = \left| \frac{x}{x+1} - \frac{x_0}{x_0+1} \right| = \left| \frac{x(x_0+1) - x_0(x+1)}{(x+1)(x_0+1)} \right| = \left| \frac{xx_0 + x - x_0x - x_0}{(x+1)(x_0+1)} \right| = \left| \frac{x - x_0}{(x+1)(x_0+1)} \right| = \frac{1}{|(x+1)(x_0+1)|} \cdot |x - x_0|$$

Entonces:

$$\frac{1}{|(x+1)(x_0+1)|} \cdot |x-x_0| \le \frac{1}{2}|x-x_0| < \varepsilon.$$

$$\implies |x-x_0| < 2\varepsilon.$$

Por lo cual, seleccionamos arbitrariamente $\delta := \min \{2\varepsilon, 0\}$.

2) $f(x) = \frac{x}{1+x}$. Mismo argumento del inciso anterior con los signos cambiados. Por lo tanto, la inversa de f es continua.

- \therefore f es un homeomorfismo.
- 2. Demuestre que f es Lipschitz.

Demostración. Tenemos dos casos:

a) $f(x) = \frac{x}{1+x}$. Debemos probar que $\exists A > 0$:

$$|f(x) - f(x')| \le A|x - x'|, \forall x, x' \in I.$$

$$\implies \left| \frac{x}{1+x} - \frac{x'}{1+x'} \right| = \left| \frac{x(1+x') - x'(1+x)}{(1+x)(1+x')} \right| = \left| \frac{x + xx' - x' - x'x}{(1+x)(1+x')} \right| = \left| \frac{x - x'}{(1+x)(1+x')} \right| = \frac{1}{|(1+x)(1+x')|} \cdot |x - x'| \le \frac{1}{2} \cdot |x - x'|.$$

b) $f(x) = \frac{x}{1-x}$. Mismo argumento que el anterior con el signo cambiado.

$$\therefore f(x)$$
 es Lipschitz.

Teorema 1 de Lipschitz (demostrado en clase)

Si $f: I \to \mathbb{R}$ es Lipschitz de orden α . $\Longrightarrow f$ es continuamente uniforme.

3. Deduzca que f es uniformemente continua.

Demostración. Por el teorema 1 de Lipschitz (demostrado en clase), para el caso particular en donde $\alpha=1$, entonces podemos concluir que f es uniformemente continua.

5. Problema 5

Mapeo expansivo

Sea X un subconjunto no vacío de \mathbb{R} . Un mapeo $f: X \to X$ es expansivo si

$$|f(x) - f(y)| \ge |x - y|, \quad \forall \ x, y \in X.$$

Demuestre que si $f: \mathbb{R} \to \mathbb{R}$ es continua y expansiva, entonces es un homeomorfismo con inversa Lipschitz.

-Literatura-

Para la realización de esta prueba, se consultaron las siguientes fuentes:

- 1. Georgiev and Zennir (2020). El teorema 1.9.6 se ofrece una de las generalizaciones y trata un caso específico de un teorema similar.
- 2. Carothers (2000). Este libro profundiza en las definiciones de homeomorfismos desde su punto analítico y topológico.
- 3. Brouwer (1911). Teorema de la invarianza del dominio (deducción avanzada con temas de topología).

Demostraci'on. A probar: f es un homeomorfismo ([1] biyectiva, [2] continua, [3] inversa continua) que su inversa es Lipschitz. Por hipótesis tenemos un subconjunto \mathbb{R} y un mapeo $f: \mathbb{R} \to \mathbb{R}$ continuo tal que:

$$|f(x) - f(y)| \ge |x - y|, \quad \forall \ x, y \in \mathbb{R}.$$

 \implies Nótese que la inyectividad se cumple trivialmente y además por hipótesis sabemos que es continua. Hace falta comprobar que posee la sobreyectividad para ser biyectiva; y finalmente, comprobar que su inversa también es continua. Estos dos factores se demuestran por el teorema de la invarianza del dominio de Brouwer (literatura - inciso 3). Por lo tanto, tenemos que f es un homeomorfismo. $\implies f$ tiene inversa. Por lo tanto, podemos asumir, tomando como referencia el caso general de literatura - inciso 1:

$$|x - y| \ge |f^{-1}(x) - f^{-1}(y)|.$$

Que claramente es Lipschitz con $\alpha = 1, A = 1$.

Referencias

- Brouwer, L. E. (1911). Beweis der invarianz des n-dimensionalen gebiets. *Mathematische Annalen*, 71(3):305–313.
- Carothers, N. L. (2000). Real analysis. Cambridge University Press.
- Georgiev, S. G. and Zennir, K. (2020). Multiple Fixed-point Theorems and Applications in the Theory of ODEs, FDEs and PDEs. CRC Press.
- Rudin, W. et al. (1976). *Principles of mathematical analysis*, volume 3. McGraw-hill New York.
- Walker, P. (2012). Examples and theorems in analysis. Springer Science & Business Media.