Problem 2. Gradient Descent Algorithm and Logistic Regression (40 points):

1. In logistic regression method, please derive the derivative of the negative logarithm of the likelihood function with respect to parameter *w*. You need to show the detailed steps to obtain the following results.

$$\nabla w \ \varepsilon(w) = \Sigma \ (f(xn) - yn)xn$$

	Answer: 1
8	General formula for logistic regression ps, $P(Y=y X=x) = \delta(w^Tx)^y [1-\delta(w^Tx)^y]$
>	log-likelihood function for the above equalion, $LL(w) = \log \frac{1}{1-1} P(Y = y_0 \mid X = x_0)$
	= log TT 5 (wTrug) gp [1 - 6 (wTrug)] (1- yp)
70	= \(\langle \
⇒	Now, calculating derivative of logistic signoid
	$\frac{\partial}{\partial a} \frac{6(a)}{\partial a} = \frac{e^{-a}}{(1 + e^{-a})^2}$
	= e ⁻⁹ × 1 1+e ⁻⁹ 1+e ⁻⁹
1	$= \frac{1}{1+e^{-q}} \left(1 - \frac{1}{1+e^{-q}} \right) = \sigma(q) \left[1 - \sigma(q) \right]$

Hence, arguax
$$\varepsilon(\omega) = -arguin (U(\omega))$$

$$\frac{\partial}{\partial \omega} \varepsilon(\omega) = -\frac{\partial}{\partial \omega} U(\omega)$$

$$\frac{\partial}{\partial \omega} \varepsilon(\omega) = \frac{\nabla}{\partial \omega} \left[\frac{\nabla}{\nabla} \left(\frac{\partial}{\partial \omega} \right) - \frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega} \right) \right] + \frac{\partial}{\partial \omega} \left[\frac{\partial}{\partial \omega} \left(\frac{\partial}{\partial \omega}$$

Problem 3: Principal Component Analysis (PCA) (20 points):

1. Given labels of the data, the goal of Fisher's Linear Discriminant is to find the projection direction that maximizes the ratio of between-class variance and the within-class variance. While PCA aims to reduce the dimension of the data by finding projection directions that maximizes the variance after projection. Note that PCA does not consider the label information. In the following figures, consider round points as positive class, and both diamond and square points as negative class. Please draw (a) the direction of the first principal component in the left figure by ignoring the label of the data points, and (b) the Fisher's linear discriminant direction in the right figure. Please draw a line to show the direction for each of them.

I have used Paint in order to plot the line in the graph.

1(b) First LDA component

- 2. Consider 3 data points in the 2D space: (2,2), (0,0), (-2,-2). Please answer the following questions.
 - a) Calculate the first principal component by calculating the eigenvalue (non-zero) and eigenvector of the covariance matrix. You need to provide the actual vector of the first principal component (with length=1). You can use the unbiased estimation of the covariance

(AL)	A
(A)	Answer 2 (a):
	2 1 4
	2 2
	0 0
	0 0 -2 -2
-	mean for $X_{+} \Rightarrow \frac{1}{3}(2+0-2) = 0$
(0)-	mean for $\frac{4}{3}$ (2+0-2) = 0
	31
	variance for x, = 1 [(2-0)2+(0-0)2+(2-0)2]
407	
	59malarly, variance for y > 4

	Now,	1	x / y	of Agus	10000000	7338	
		H	0 0				138
		6	2 2	CO150X			
			14	A	Cusax		
	Now,	standar	dizing	each pope	t hi	2-0.0	
		2ne	w =	x - 4	100 00	aury	
		AT TA	TWO E	al allow	we ge	ial (
			Znew	ynew		Znew	Frew
	d.l.	111	2	02		0	0
		0	OA	0	var	4	4
			-2	-2			
			4	- d Ja			
->	Now, -	the con	variance	matrex	Ps,		
Sol	112mg (151	- xneu	0 , 800	y new	And A	of 6	
	Kneu	o vari	(xnew)	cov (znew,	Ynew)	400	
	Ynew	100V (X	new, Inew)	var (yne	w)		
			× 10 3 11	(PAA)	1dh		1
	COV	1(x, 1	1) = (× (x,	, - x)(4n - 4	
	British Am		N-	1 n=1	4		
	CON (200)	io, yneu)=1	(2-0)(2	-0)+(0-0)(0-0)
			3-1	<u> </u>	1	11	7
	The same of the sa		- () -	18 - 51+	(-2-0))(-2-	0)]
					7	11.	7
	-	2 30	1= 11	4+0	+4/=	- (A	_
			2 (- 1		٨	to
	0. 1112 .	4.65	value	Pn co	vaniance	mat	rix,
	Furng	20	gen value	10 co			1
	we g	les 1					

a) If we project the three data points into the 1D subspace by the principal component obtained in (a), what are the new coordinates of the three data points in the 1D subspace? What is the variance of the data after projection?

*	Answer S	2(6): (1)	OV.
⇒	The eigen	matrox from 250 previou	us solution is
	1=0	1 -1 1-6	
	λ=8	(x)	2811

c) What is the cumulative explained variance of the first principal component? Is there any variance that is not captured by it?

*	Answer 2(c):
	Eigen value corosponding to first principal component will be 8. So, cumulative explained variance of the first principal component = 40 total variance = 8/8+0 = 100 %
=>	59nce, we got 100 % of total variance captured by pricipal component first, there is nothing left to capture.
1	Hence, answer for "75 there any variance that is not captured by it?" will be [NO]

Problem 4: Support Vector Machines (20 points):

Given 10 points in Table 1, along with their classes and their Lagranian multipliers (αi), answer the following questions:

Data	X_{i1}	X_{i1}	Y	α_{i}
X_1	4	2.9	1	0.414
X_2	4	4	1	0
X ₃	1	2.5	-1	0
X_4	2.5	1	-1	0.018
X_5	4.9	4.5	1	0
X_6	1.9	1.9	-1	0
X_7	3.5	4	1	0.018
X_8	0.5	1.5	-1	0
X_9	2	2.1	-1	0.414
X_{10}	4.5	2.5	1	0

¹⁾ What is the equation of the SVM hyperplane h(x)? Draw the hyperplane with the 10 points.

2) What is the distance of x_6 from the hyperplane? Is it within the margin of the classifier?

*	Answer 4(2):
-	The distance between any pornt to the hyperplane is given by,
al stag	$d = \left[\overrightarrow{\omega} \cdot \overrightarrow{z} + b \right]$ $ \omega $
	here we have $x = x_6 = (1.9, 1.9)$
	$d = \begin{bmatrix} (0.846 & 0.385) (1.9) - 3.5005 \end{bmatrix}$
	(8.846)2+ (8.3185)2
	= 1.1619/0.9295
	of de troda25
>	pornt x6 (1.9, 1.9) rs withrn the margin of classifier and classifier as negative

3) Classify the point $z = (3,3)^{T}$ using h(x) from above.

*	Answer 4(3):			
→	To classify the point Z = (3, 3),			
	let's compute the value of h(x) for the given point,			
	h(x) = (0.846)(3) - 3.5005 $(0.385)(3)$			
	= 3.693 - 3.5005			
	h(x) = 0.1925 > 0.			
>	As we can see, the value of $h(x)$ is greater. than 0, hence we can classify point $Z = (3,3) \text{ as } positive \text{ with } y = 1.$			