第 13 周作业解答

练习 1. 求矩阵 $A = \begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix}$ 的特征值和特征向量。

解

• 解特征方程 $|\lambda I - A| = 0$ 。

$$|\lambda I - A| = \begin{vmatrix} \lambda - 3 & 2 \\ 2 & \lambda - 3 \end{vmatrix} = (\lambda - 3)^2 - 2^2 = (\lambda - 1)(\lambda - 5)$$

所以特征值为 $\lambda_1 = 1$, $\lambda_2 = 5$ 。

• 关于特征值 $\lambda_1 = 1$, 求解 $(\lambda_1 I - A)x = 0$ 。

$$(\lambda_1 I - A \vdots 0) = \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

同解方程组为

$$x_1 - x_2 = 0 \qquad \Rightarrow \qquad x_1 = x_2$$

自由变量取为 x_2 。取 $x_2 = 1$,得基础解系

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
.

所以对应于特征值 $\lambda_1 = 1$ 的所有特征向量为:

$$c_1 \alpha_1 = c_1 \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

其中 c_1 是任意非零常数。

• 关于特征值 $\lambda_2 = 5$, 求解 $(\lambda_2 I - A)x = 0$ 。

$$(\lambda_1 I - A \vdots 0) = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

同解方程组为

$$x_1 + x_2 = 0 \qquad \Rightarrow \qquad x_1 = -x_2$$

自由变量取为 x_2 。取 $x_2 = 1$,得基础解系

$$\alpha_1 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$
.

所以对应于特征值 $\lambda_2 = 5$ 的所有特征向量为:

$$c_2 \alpha_2 = c_2 \left(\begin{array}{c} -1 \\ 1 \end{array} \right)$$

其中 c2 是任意非零常数。

练习 2. 已知
$$A = \begin{pmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{pmatrix}$$
 有特征值 2, 6, 求 x 的值。

解设 A 的第 3 个特征值为 $λ_3$,所以成立

$$\begin{cases} 2+6+\lambda_3 = x+4+5 \\ 2\times 6\times \lambda_3 = \begin{vmatrix} x & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & 5 \end{vmatrix} \end{cases}$$

化简得:

$$\begin{cases} \lambda_3 - x = 1\\ 12\lambda_3 = 14x + 10 \end{cases}$$

所以

$$\lambda_3 = 2, \qquad x = 1.$$

练习 3. 判断矩阵 $A=\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$ 可否对角化。若能,求出相应的对角阵 Λ ,和可逆矩阵 P,使得 $P^{-1}AP=\Lambda$ 。

解

• 解特征方程 $|\lambda I - A| = 0$ 。

$$|\lambda I - A| = \begin{vmatrix} \lambda - 1 & 3 & -3 \\ -3 & \lambda + 5 & -3 \\ -6 & 6 & \lambda - 4 \end{vmatrix} \xrightarrow{c_3 + c_2} \begin{vmatrix} \lambda - 1 & 3 & 0 \\ -3 & \lambda + 5 & \lambda + 2 \\ -6 & 6 & \lambda + 2 \end{vmatrix}$$
$$= (\lambda + 2) \begin{vmatrix} \lambda - 1 & 3 & 0 \\ -3 & \lambda + 5 & 1 \\ -6 & 6 & 1 \end{vmatrix} \xrightarrow{r_2 - r_3} (\lambda + 2) \begin{vmatrix} \lambda - 1 & 3 & 0 \\ 3 & \lambda - 1 & 0 \\ -6 & 6 & 1 \end{vmatrix}$$
$$= (\lambda + 2) \begin{vmatrix} \lambda - 1 & 3 \\ 3 & \lambda - 1 \end{vmatrix} = (\lambda + 2)(\lambda^2 - 2\lambda - 8) = (\lambda + 2)^2(\lambda - 4)$$

所以特征值为 $\lambda_1 = -2$ (二重特征值), $\lambda_2 = 4$ 。

• 关于特征值 $\lambda_1 = -2$, 求解 $(\lambda_1 I - A)x = 0$ 。

$$(-2I - A \vdots 0) = \begin{pmatrix} -3 & 3 & -3 & 0 \\ -3 & 3 & -3 & 0 \\ -6 & 6 & -6 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

同解方程组为

$$x_1 - x_2 + x_3 = 0$$
 \Rightarrow $x_1 = x_2 - x_3$

自由变量取为 x_2, x_3 。分别取 $\begin{pmatrix} x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 和 $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$,得基础解系

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad \alpha_2 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}.$$

所以对应于特征值 $\lambda_1=-2$ 的有 2 个线性无关特征向量。(等价于 r(-2I-A)=3-2=1。)

• 关于特征值 $\lambda_1 = 4$,求解 $(\lambda_1 I - A)x = 0$ 。

$$\begin{aligned} (-2I-A \vdots 0) &= \begin{pmatrix} 3 & 3 & -3 & | & 0 \\ -3 & 9 & -3 & | & 0 \\ -6 & 6 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{3} \times r_1} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 1 & -3 & 1 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{r_2 - r_1}{r_3 - r_2}} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -4 & 2 & | & 0 \\ 0 & -2 & 1 & | & 0 \end{pmatrix} \\ \xrightarrow{\frac{-1}{2} \times r_2} \begin{pmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 2 & -1 & | & 0 \\ 0 & -2 & 1 & | & 0 \end{pmatrix} \xrightarrow{\frac{r_1 - r_2}{r_3 + r_2}} \begin{pmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

同解方程组为

$$\begin{cases} x_1 - x_2 = 0 \\ 2x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = x_2 \\ x_3 = 2x_2 \end{cases}$$

自由变量取为 x_2 。取 $x_2 = 1$,得基础解系

$$\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}.$$

• 可见 A 有 3 个线性无关特征向量 $\alpha_1, \alpha_2, \alpha_3$,所以 A 可对角化。令

$$P = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} -2 & \\ & -2 & \\ & & 4 \end{pmatrix}$$

则

$$P^{-1}AP = \Lambda.$$

 $egin{aligned}$ 注. P 的选取不唯一。 Λ 也可以是 $\left(egin{array}{ccc} -2 & & & \ & 4 & & \ & & -2 \end{array}
ight)$ 或 $\left(egin{array}{cccc} 4 & & & \ & -2 & & \ & & -2 \end{array}
ight)$,但此时 P 要作相应调整。