43. Find an example for a sequence with the following properties, if possible:

- (a) a bounded sequence that is divergent.
- (b) a non-increasing bounded sequence that is divergent.
- (c) a strictly increasing sequence converging to π .
- (d) an unbounded null sequence.

Solution:

- (a) e.g. $a_n = (-1)^n$
- (b) this is not possible, as the monotonicity principle (Theorem 3.20) asserts that any monotonous bounded sequence is convergent.
- (c) e.g. $a_n = \pi \frac{1}{n}$
- (d) this is not possible, as any convergent sequence is bounded (Theorem 3.6)

44. Show that the sequence $(a_n)_{n\in\mathbb{N}}$ defined by $a_n := (-1)^n \left(\frac{n+\cos n\pi}{2n}\right)$ for $n\in\mathbb{N}$ is not convergent.

Solution:

Consider the expression for a_n :

$$a_n = (-1)^n \left(\frac{n + \cos(n\pi)}{2n} \right).$$

First, note that $\cos(n\pi)$ takes the values 1 for even values of n and -1 for odd values of n. So, we can express a_n as:

$$a_n = (-1)^n \left(\frac{n + (-1)^n}{2n} \right).$$

Now, let's consider the cases for even and odd n:

• For even n:

$$a_{2k} = (-1)^{2k} \left(\frac{2k + (-1)^{2k}}{4k} \right) = \frac{2k+1}{4k} = \frac{1}{2} + \frac{1}{4k}.$$

• For odd n:

$$a_{2k+1} = (-1)^{2k+1} \left(\frac{2k+1+(-1)^{2k+1}}{4k+2} \right) = -\frac{2k}{4k+2} = -\frac{1}{2} + \frac{1}{4k+2}.$$

By definition, if $(a_n)_{n\in\mathbb{N}}$ is a convergences to $a\in\mathbb{R}$, then for all $\epsilon>0$ there exists $N\in\mathbb{N}$ such that for n>N we have

$$|a_n - a| < \epsilon$$
.

Assume that $\lim_{n\to\infty} a_n = a$, let $\epsilon = \frac{1}{4}$, we have

$$|a_n - a| < \frac{1}{4}.$$

For all 2k > N we have

$$|a_{2k} - a_{2k+1}| = |a_{2k} - a + a - a_{2k+1}| \le |a_{2k} - a| + |a - a_{2k+1}| \le \frac{1}{4} + \frac{1}{4} \le \frac{1}{2}.$$

On the other hand

$$|a_{2k} - a_{2k+1}| = \left| \frac{1}{2} + \frac{1}{4k} - \left(-\frac{1}{2} + \frac{1}{4k+2} \right) \right| = \left| 1 + \frac{1}{4k} - \frac{1}{4k+2} \right|$$
$$= \left| 1 + \frac{1}{2k(4k+2)} \right|$$
$$\ge 1 > \frac{1}{2}.$$

This is a contradiction. Therefore, the sequence $(a_n)_{n\in\mathbb{N}}$ is not convergent. \square

- 45. Give an example for non-constant sequences $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}$ satisfying
 - (a) $\lim_{n\to\infty} a_n = 3, b_n \neq 0$ and $\lim_{n\to\infty} (a_n b_n^2) = 0$.
 - (b) $\lim_{n\to\infty} a_n = 5, |b_n| \neq |a_n| \text{ and } \lim_{n\to\infty} (a_n + (-1)^n b_n) = 0.$

Solution:

- (a) $(b_n^2)_{n\in\mathbb{N}}$ has to converge to 0, e.g., $b_n=\frac{1}{\sqrt{n}}$. Then by Theorem 3.24 we have $\lim_{n\to\infty}(a_nb_n^2)=0$. We can choose any sequence $(a_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty}a_n=3$, e.g., $a_n=3+\frac{1}{n}$.
- (b) $a_n = 5 + \frac{1}{n}, b_n = (-1)^n (-5 + \frac{1}{n}) \Rightarrow a_n + (-1)^n b_n = (-1)^{2n} \frac{2}{n}$. Then $\lim_{n \to \infty} (a_n + (-1)^n b_n) = \lim_{n \to \infty} \frac{2}{n} = 0$.

46. Determine the limits of sequences

$$a_n = \sqrt{n^2 + n} - n,$$

$$b_n = \frac{n^2 + n + 1}{n^2 + n \sin n + 1},$$

$$c_n = \frac{n!(n+5) + 2^n}{(n+1)! + 3^n},$$

$$d_n = \sqrt[n]{3^n + 4^n},$$

$$e_n = \frac{n^3 - 3n + 7}{7n + 1},$$

$$t_n = \sqrt{n^3 - n^2 + 1} - n,$$

where $n \in \mathbb{N}$.

Solution:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{(\sqrt{n^2 + n} - n)(\sqrt{n^2 + n} + n)}{\sqrt{n^2 + n} + n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{\frac{1}{n} + 1} + 1} = \frac{1}{2}$$

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n^2 \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)}{n^2 \left(1 + \frac{\sin n}{n} + \frac{1}{n^2}\right)} = 1$$

$$\lim_{n \to \infty} c_n = \lim_{n \to \infty} \frac{(n+1)! \left(\frac{n+5}{n+1} + \frac{2^n}{(n+1)!}\right)}{(n+1)! \left(1 + \frac{3^n}{(n+1)!}\right)} = \frac{\lim_{n \to \infty} \left(\frac{n+5}{n+1} + \frac{2^n}{(n+1)!}\right)}{\lim_{n \to \infty} \left(1 + \frac{3^n}{(n+1)!}\right)} = 1,$$
since $0 < \frac{2^n}{(n+1)!} < \left(\frac{2}{3}\right)^n$ with n large enough, $\lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0,$

$$\Rightarrow \lim_{n \to \infty} \frac{2^n}{(n+1)!} = 0.$$
Similarly, $\lim_{n \to \infty} \frac{3^n}{(n+1)!} = 0.$

 $\lim_{n \to \infty} d_n = 4$ (by using the example in slide 51.)

$$\lim_{n \to \infty} e_n = \lim_{n \to \infty} \frac{n^3 \left(1 - \frac{3}{n^2} + \frac{7}{n^3}\right)}{n^3 \left(\frac{7}{n^2} + \frac{1}{n^3}\right)} = \frac{\lim_{n \to \infty} \left(1 - \frac{3}{n^2} + \frac{7}{n^3}\right)}{\lim_{n \to \infty} \left(\frac{7}{n^2} + \frac{1}{n^3}\right)} = \infty$$

$$\lim_{n \to \infty} t_n = \lim_{n \to \infty} \frac{(\sqrt{n^3 - n^2 + 1} - n)(\sqrt{n^3 - n^2 + 1} + n)}{\sqrt{n^3 - n^2 + 1} + n}$$

$$= \lim_{n \to \infty} \frac{n^3 - 2n^2 + 1}{\sqrt{n^3 - n^2 + 1} + n} = \lim_{n \to \infty} \frac{n^3 \left(1 - \frac{2}{n} + \frac{1}{n^3}\right)}{n^3 \left(\sqrt{\frac{1}{n^3} - \frac{2}{n^4} + \frac{1}{n^6}} + \frac{1}{n^2}\right)}$$

$$= \lim_{n \to \infty} n^{3/2} \frac{1 - \frac{2}{n} + \frac{1}{n^3}}{\sqrt{1 - \frac{1}{n} + \frac{1}{n^3}} + \frac{1}{n^{\frac{1}{2}}}} = \infty$$

47. Let q > 0, determine the limit of sequences $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$, and $(c_n)_{n \in \mathbb{N}}$, defined by

$$a_n = (q^n + 5^n + 11^n)^{\frac{1}{n}},$$

$$b_n = \sqrt[n]{q^n + n^2},$$

$$c_n = \frac{\sin(q^n \pi)}{n}, \text{ where } n \in \mathbb{N}.$$

Solution:

• $\lim_{n\to\infty} a_n$

+ If $0 < q \le 11$, we have

$$11 = \sqrt[n]{11^n} \le \sqrt[n]{q^n + 5^n + 11^n} \le \sqrt[n]{3.11^n}.$$

Using Sandwich law and $\lim_{n\to\infty} \sqrt[n]{3.11^n} = 11$, we obtain

$$\lim_{n\to\infty} a_n = 11.$$

+ If q > 11, we have

$$q = \sqrt[n]{q^n} \le \sqrt[n]{q^n + 5^n + 11^n} \le \sqrt[n]{3q^n}.$$

Using Sandwich law and $\lim_{n\to\infty} \sqrt[n]{3q^n} = q$, then

$$\lim_{n \to \infty} a_n = q.$$

• $\lim_{n\to\infty} b_n$

+ If 0 < q < 1, we have $\lim_{n\to\infty} q^n = 0$, then as n approaches infinity, the term n^2 dominates q^n . Therefore,

$$\sqrt[n]{n^2} \le \sqrt[n]{q^n + n^2} \le \sqrt[n]{2n^2}.$$

Since $\lim_{n\to\infty} \sqrt[n]{n^2} = \lim_{n\to\infty} \sqrt[n]{n^2} = 1$, then $\lim_{n\to\infty} b_n = 1$

+ If $q \ge 1$, then as n approaches infinity, the term q^n dominates n^2 . Therefore,

$$\sqrt[n]{q^n} \le \sqrt[n]{q^n + n^2} \le \sqrt[n]{2q^n}.$$

Since $\lim_{n\to\infty} \sqrt[n]{q^n} = \lim_{n\to\infty} \sqrt[n]{2q^n} = q$, then $\lim_{n\to\infty} b_n = q$.

• For all q > 0 we have

$$0 \le \left| \frac{\sin(q^n \pi)}{n} \right| \le \frac{1}{n}.$$

Therefore, $\lim_{n\to\infty} c_n = 0$, by using Sandwich law, and $\lim_{n\to\infty} \frac{1}{n} = 0$.

48. Let $\lim_{n\to\infty} a_n = a$. We define $b_n = \frac{1}{n} \sum_{j=1}^n a_j$ for $n \in \mathbb{N}$. Prove that

$$\lim_{n\to\infty} b_n = a$$

Hint: Use the boundedness of sequence $(a_n)_{n\in\mathbb{N}}$ and $a=\frac{\sum_{i=1}^n a}{n}$ for $a\in\mathbb{C}, n\in\mathbb{N}$. Solution:

Assume that $\lim_{n\to\infty} a_n = a$. Sequence $(a_n)_{n\in\mathbb{N}}$ is convergent and thus bounded. There exist C>0 such that

$$|a| \le C$$
, and $|a_n| \le C$ for $n \in \mathbb{N}$. (1)

By the definition of limit there exists $K \in \mathbb{N}$ such that for n > K

$$|a_n - a| \le \frac{\varepsilon}{2} \tag{2}$$

Observe that

$$|b_n - a| = \left| \frac{\sum_{j=1}^n a_j}{n} - a \right| = \left| \frac{\sum_{j=1}^n a_j - \sum_{j=1}^n a}{n} \right|$$

$$= \left| \frac{\sum_{j=1}^n (a_j - a)}{n} \right|$$

$$\leq \frac{\sum_{j=1}^n |a_j - a|}{n}$$

$$= \frac{\sum_{j=1}^K |a_j - a|}{n} + \frac{\sum_{j=K+1}^n |a_j - a|}{n}$$

By (1) we have

$$\sum_{j=1}^{K} |a_j - a| \le \sum_{j=1}^{K} (|a_j| + |a|) \le \sum_{j=1}^{K} 2C = 2KC.$$

By (2) we have

$$\sum_{j=K+1}^{n} |a_j - a| \le \sum_{j=K+1}^{n} \frac{\varepsilon}{2} = \frac{(n-K)\varepsilon}{2}$$

Therefore for all $n > \frac{4KC}{\varepsilon}$ we get

$$|b_n - a| \le \frac{2KC}{n} + \frac{(n - K)\varepsilon}{2n} \le \frac{2KC\varepsilon}{4KC} + \frac{\varepsilon}{2} \le \varepsilon.$$