LÓGICA / MATEMÁTICA DISCRETA II

1^a chamada

CURSOS: Engenharia Informática / Engenharia de Sistemas e Informática

Duração: 2 horas

Nota: Justifique convenientemente cada uma das suas respostas.

1. Seja T o conjunto de fórmulas do Cálculo Proposicional dado pela seguinte definição indutiva determinista:

$$\frac{\varphi \in T \quad \psi \in T}{\varphi_i \vee \neg p_i \in T} \quad i \quad (i \in \mathbb{N}_0) \qquad \frac{\varphi \in T \quad \psi \in T}{\varphi \vee \psi \in T} \vee_1 \qquad \frac{\varphi \in T \quad \psi \in T}{\varphi \vee \neg \psi \in T} \vee_2 \qquad \frac{\varphi \in T \quad \psi \in T}{\neg \varphi \vee \psi \in T} \vee_3$$

- (a) Dê exemplos de
 - 1 um elemento de T que seja uma forma normal disjuntiva;
 - 2 um elemento de T que não seja uma forma normal disjuntiva;
 - 3 uma tautologia cujos conectivos pertençam ao conjunto $\{\neg, \lor\}$, e que não seja um elemento de T.

R: 1 - $p_0 \lor \neg p_0 \in T$, já que tem a seguinte árvore de formação $\overline{p_0 \lor \neg p_0 \in T}$. Além disso, $p_0 \lor \neg p_0$ é uma forma normal disjuntiva, já que é uma disjunção de dois literais.

2 - $(p_0 \vee \neg p_0) \vee \neg (p_1 \vee \neg p_1) \in T$, como se pode ver pela seguinte árvore de formação

$$\frac{p_0 \vee \neg p_0 \in T}{(p_0 \vee \neg p_0) \vee \neg (p_1 \vee \neg p_1) \in T} \stackrel{1}{\vee_2} \vee_2$$

No entanto, esta fórmula não é uma forma normal, pois nela ocorre a negação de uma fórmula que não é uma variável proposicional (nomeadamente, de $p_1 \vee \neg p_1$).

- 3 $\neg p_0 \lor p_0$ é uma tautologia (qualquer que seja a valoração v, $v(\neg p_0 \lor p_0) = \max(v(\neg p_0), v(p_0)) = \max(v(p_0), 1 v(p_0)) = \max(0, 1) = 1$); além disso, os conectivos que ocorrem em $\neg p_0 \lor p_0$ são precisamente \neg e \lor . Por outro lado, $\neg p_0 \lor p_0 \not\in T$: a única forma de um elemento de T começar com \neg é resultar de uma aplicação da regra \lor 3; mas esse \neg inicial tem de estar aplicado a um outro elemento de T (φ no esquema da regra acima), e não a uma variável como p_0 .
- (b) Defina, por recursão estrutural em T, a função $f:T\to\mathbb{N}$ que a cada $\varphi\in T$ faz corresponder o número de ocorrências do conectivo \vee em φ .

R: f é a única função de T em \mathbb{N} tal que $\forall_{i \in \mathbb{N}_0}$, $f(p_i \vee \neg p_i) = 1$, e $\forall_{\varphi, \psi \in T}$, $f(\varphi \vee \psi) = f(\varphi \vee \neg \psi) = f(\neg \varphi \vee \psi) = f(\varphi) + f(\psi) + 1$.

- (c) Prove, por indução estrutural em T, que $\#var(\varphi) \leq f(\varphi)$, para qualquer $\varphi \in T$.
 - **R**: Seja $P(\varphi)$ a seguinte propriedade de elementos φ de T: "# $var(\varphi) \leq f(\varphi)$ ".
 - 1 $P(p_i \vee \neg p_i)$, $\forall_{i \in \mathbb{N}_0}$: De facto, sendo i um inteiro qualquer, $\#var(p_i \vee \neg p_i) = \#\{p_i\} = 1 = f(p_i \vee \neg p_i)$.
 - 2 $\forall_{\varphi,\psi\in T}$, $P(\varphi) \in P(\psi) \Rightarrow P(\varphi \lor \psi)$, $P(\varphi \lor \neg \psi) \in P(\neg \varphi \lor \psi)$:

Sejam φ e ψ elementos quaisquer de T, e admitamos que $\#var(\varphi) \leq f(\varphi)$ e que $\#var(\psi) \leq f(\psi)$.

Então, $\#var(\varphi \lor \psi) = \#var(\varphi \lor \neg \psi) = \#var(\neg \varphi \lor \psi) = \#(var(\varphi) \cup var(\psi)) \le \#var(\varphi) + \#var(\psi) \le (\text{hip. ind.}) f(\varphi) + f(\psi) < f(\varphi) + f(\psi) + 1 = f(\varphi \lor \psi) = f(\varphi \lor \neg \psi) = f(\neg \varphi \lor \psi).$

De 1 e 2, e do Teorema de Indução Estrutural para T, resulta que $P(\varphi)$ é verdade para qualquer $\varphi \in T$.

- 2. Diga se cada uma das seguintes afirmações é verdadeira ou falsa.
 - (a) Para quaisquer fórmulas φ, ψ e σ do Cálculo Proposicional, $\varphi \leftrightarrow (\psi \leftrightarrow \sigma) \models (\varphi \leftrightarrow \psi) \leftrightarrow \sigma$.

R: Chamemos φ_0 à fórmula $\varphi \leftrightarrow (\psi \leftrightarrow \sigma)$ e φ_1 à fórmula $(\varphi \leftrightarrow \psi) \leftrightarrow \sigma$. (Queremos mostrar que qualquer valoração que atribua valor 1 a φ_0 também atribui valor 1 a φ_1 .) Consideremos que v é uma valoração que atribui valor 1 a φ_0 .

Se $v(\varphi) = v(\psi \leftrightarrow \sigma) = 1$, como $v(\psi)$ e $v(\sigma)$ são ambos 1 ou ambos 0, então ambos os lados da equivalência φ_1 assumem valor 1 (no primeiro caso) ou assumem valor 0 (no segundo caso) pelo que φ_1 assume valor 1 para v.

De outro modo, $v(\varphi) = v(\psi \leftrightarrow \sigma) = 0$. Se $v(\psi) = 1$, então $v(\sigma) = 0$, pelo que $\varphi \leftrightarrow \psi$ assume valor 0 e, portanto, φ_1 assume valor 1 para v. Senão, $v(\psi) = 0$ e $v(\sigma) = 1$, pelo que $\varphi \leftrightarrow \psi$ assume valor 1 para v, tal como φ_1 .

(b) Para quaisquer fórmulas φ, ψ e σ e qualquer conjunto de fórmulas Γ do Cálculo Proposicional, se $\varphi \leftrightarrow (\psi \leftrightarrow \sigma)$ é um teorema de DNP e $\psi \leftrightarrow \sigma$ é uma tautologia, então $\Gamma \vdash \varphi$.

R: Sendo $\varphi \leftrightarrow (\psi \leftrightarrow \sigma)$ um teorema de DNP, existe uma derivação D_1 desta fórmula, onde não há hipóteses por cancelar. Da hipótese de que $\psi \leftrightarrow \sigma$ é uma tautologia, pelo Teorema da Completude, podemos concluir que esta fórmula é também um teorema de DNP e, com tal, existe uma derivação D_2 de $\psi \leftrightarrow \sigma$ onde todas as hipóteses estão canceladas. Assim,

$$\frac{D_1}{\psi \leftrightarrow \sigma} \quad \frac{D_2}{\varphi \leftrightarrow (\psi \leftrightarrow \sigma)} \quad E \leftrightarrow_2$$

é uma derivação de φ , onde não há hipóteses por cancelar. Deste modo, o conjunto de hipóteses não canceladas desta derivação está contido em qualquer conjunto de fórmulas Γ , pelo que $\Gamma \vdash \varphi$ para qualquer conjunto de fórmulas Γ .

3. Apresente uma derivação em DNP para provar que: $p_0 \lor (\neg p_1 \lor p_2) \vdash p_1 \to (p_0 \lor p_2)$.

 \mathbf{R} :

$$\frac{p_{0} \vee (\neg p_{1} \vee p_{2}) \quad \cancel{p}_{0}^{(2)}}{p_{0} \vee p_{2}} I \vee_{1} \quad \frac{\neg p_{1} \not \vee p_{2}^{(2)}}{p_{0} \vee p_{2}} \frac{\cancel{p}_{1}^{(3)} \quad \neg \cancel{p}_{1}^{(1)}}{p_{0} \vee p_{2}} E \neg \quad \cancel{p}_{2}^{(1)}}{p_{0} \vee p_{2}} I \vee (1)}{\frac{p_{0} \vee p_{2}}{p_{1} \rightarrow (p_{0} \vee p_{2})} I \rightarrow (3)} I \rightarrow (3)$$

- 4. Considere as seguintes afirmações, relativas a um conjunto de números.
 - 1) Há um número menor do que todos os os outros números.
 - 2) Os números não são todos negativos, nem todos positivos.
 - (a) Represente as duas afirmações como L-fórmulas para uma linguagem L adequada, explicitando esta linguagem.

R: Por exemplo, tome-se a linguagem $L_0 = (\{0\}, \{=, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$ e $\mathcal{N}(=) = \mathcal{N}(<) = 2$ e tomem-se as L_0 -fórmulas que se seguem (respectivamente):

- 1) $\exists_{x_0} \forall_{x_1} (\neg (x_0 = x_1) \rightarrow x_0 < x_1)$
- 2) $\neg \forall_{x_0} (x_0 < 0) \land \neg \forall_{x_0} (0 < x_0)$
- (b) As duas afirmações são contraditórias?

 \mathbf{R} : As afirmações não são contraditórias. Por exemplo, ambas as afirmações são verdadeiras em relação ao conjunto $\{-1,1\}$ (e às usuais interpretações de menor, de número positivo e de número negativo).

- 5. Seja $L = (\{c, f\}, \{P, R\}, \mathcal{N})$ a linguagem em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = \mathcal{N}(P) = 1$, e $\mathcal{N}(R) = 2$. Seja ainda φ_0 a L-fórmula $\forall_{x_0}(P(x_0) \leftrightarrow R(x_0, x_1))$.
 - (a) Indique um L-termo t tal que VAR $(t) \subseteq \{x_0, x_1\}$, x_0 é substituível por t em φ_0 sem captura de variáveis, e x_1 não é substituível por t em φ_0 sem captura de variáveis.

R: Por exemplo, $t = f(x_0)$: VAR $(f(x_0)) = \{x_0\} \subseteq \{x_0, x_1\}$; x_0 é substituível por qualquer L-termo (e em particular por $f(x_0)$) em φ_0 sem captura de variáveis, já que não ocorre livre em φ_0 ; e x_1 não é substituível por $f(x_0)$ em φ_0 sem captura de variáveis, pois x_1 ocorre livre em φ_0 no alcance de um quantificador de x_0 , e $x_0 \in VAR(f(x_0))$.

(b) Indique uma L-estrutura E e atribuições a_1, a_2 , tais que $E \models \varphi_0[a_1]$ e $E \not\models \varphi_0[a_2]$.

R: Seja $E = (\{d_1, d_2\}, \overline{})$ a L-estrutura em que $\overline{c} = d_1, \overline{f}$ é a função identidade em $\{d_1, d_2\}, \overline{P} = \{d_1\}, \overline{R} = \{(d_1, d_2)\}.$

Sejam ainda a_1 a atribuição em E que a cada variável x_i faz corresponder d_1 se i for par e d_2 se i for impar, e a_2 a atribuição em E que a cada variável x_i faz corresponder d_1 se i for impar e d_2 se i for par.

$$\varphi_0[a_1] = 1$$
, porque $(P(x_0) \leftrightarrow R(x_0, x_1)) \left[a_1 \begin{pmatrix} x_0 \\ d \end{pmatrix} \right] = 1$ para todo o $d \in \{d_1, d_2\}$:

$$(P(x_0) \leftrightarrow R(x_0, x_1)) \left[a_1 \left(\begin{array}{c} x_0 \\ d_1 \end{array} \right) \right] = 1$$
, pois $d_1 \in \overline{P}$ e $(d_1, d_2) \in \overline{R}$;

e
$$(P(x_0) \leftrightarrow R(x_0, x_1)) \left[a_1 \begin{pmatrix} x_0 \\ d_2 \end{pmatrix} \right] = 1$$
, pois $d_2 \notin \overline{P}$ e $(d_2, d_2) \notin \overline{R}$.

 $\varphi_0[a_2] = 0$, porque existe um $d \in \{d_1, d_2\}$, nomeadamente $d = d_1$, tal que

$$(P(x_0) \leftrightarrow R(x_0, x_1)) \left[a_2 \left(\begin{array}{c} x_0 \\ d \end{array} \right) \right] = 0: d_1 \in \overline{P}, \text{ mas } (d_1, d_1) \notin \overline{R}.$$

(c) A fórmula $\forall_{x_0} P(f(x_0)) \to \exists_{x_0} P(x_0)$ é universalmente válida?

R: Sim. Sejam $E=(D,\overline{})$ uma L-estrutura e a uma atribuição em E quaisquer (na verdade, a atribuição será irrelevante, pois a fórmula é uma L-sentença). Suponhamos que $E\models \forall_{x_0}P(f(x_0))[a]$. Então, qualquer que seja $d\in D$, $\overline{f}(d)\in \overline{P}$; daqui segue que existe pelo menos um elemento d' de D (por exemplo $d'=\overline{f}(\overline{c})$) tal que $d'\in \overline{P}$, e portanto $E\models \exists_{x_0}P(x_0)[a]$. Segue da definição de valor lógico de L-fórmulas que $E\models \forall_{x_0}P(f(x_0))\to \exists_{x_0}P(x_0)[a]$.

Cotação:

1. 5,5 valores 2. 4 valores 3. 2,5 valores 4. 3,5 valores 5. 4,5 valores