Machine Translation

Dan Klein UC Berkeley

Translation Task

- Text is both the input and the output.
- Input and output have roughly the same information content.
- Output is more predictable than a language modeling task.
- Lots of naturally occurring examples (but not much metadata).

English-German News Test 2013 (a standard dev set)

Republican leaders justified their policy by the need to combat electoral fraud.

```
Führungskräfte der Republikaner
Die
                  of the republican
The Executives
rechtfertigen ihre Politik
                          mit
                                 der
  justify your politics
                            With of the
Notwendigkeit
             , den Wahlbetrug
                                   zu
             , the election fraud
   need
                                   to
bekämpfen
 fight
```

Variety in Translations?

Human-generated reference translation

A small planet, whose is as big as could destroy a middle sized city, passed by the earth with a distance of 463 thousand kilometers. This was not found in advance. The astronomists got to know this incident 4 days later. This small planet is 50m in diameter. The astronomists are hard to find it for it comes from the direction of sun.

A commercial system from 2002

A volume enough to destroy a medium city small planet is big, flit earth within 463,000 kilometres of close however were not in advance discovered, astronomer just knew this matter after four days. This small planet diameter is about 50 metre, from the direction at sun, therefore astronomer very hard to discovers it.

Google Translate, 2020

An asteroid that was large enough to destroy a medium-sized city, swept across the earth at a short distance of 463,000 kilometers, but was not detected early. Astronomers learned about it four days later. The asteroid is about 50 meters in diameter and comes from the direction of the sun, making it difficult for astronomers to spot it.

From https://catalog.ldc.upenn.edu/LDC2003T17

BLEU Score

BLEU score: geometric mean of 1-, 2-, 3-, and 4-gram precision vs. a reference, multiplied by brevity penalty (harshly penalizes translations shorter than the reference).

Evaluation with BLEU

In this sense, the measures will partially undermine the American democratic system.

In this sense, these measures partially undermine the democratic system of the United States.

BLEU = 26.52, 75.0/40.0/21.4/7.7 (BP=1.000, ratio=1.143, hyp_len=16, ref_len=14)

(Papineni et al., 2002) BLEU: a method for automatic evaluation of machine translation.

Corpus BLEU Correlations with Average Human Judgments

These are ecological correlations over multiple segments; segment-level BLEU scores are noisy.

Commercial machine translation providers seem to all perform human evaluations of some sort.

(Ma et al., 2019) Results of the WMT19 Metrics Shared Task: Segment-Level and Strong MT Systems Pose Big Challenges

Human Judgments

Figure from G. Doddington (NIST)

Human Evaluations

Direct assessment: adequacy & fluency

- Monolingual: Ask humans to compare machine translation to a human-generated reference. (Easier to source annotators)
- Bilingual: Ask humans to compare machine translation to the source sentence that was translated. (Compares to human quality)
- Annotators can assess segments (sentences) or whole documents.
- Segments can be assessed with or without document context.

Ranking assessment:

- Raters are presented with 2 or more translations.
- A human-generated reference may be provided, along with the source.
- "In a pairwise ranking experiment, human raters assessing adequacy and fluency show a stronger preference for human over machine translation when evaluating documents as compared to isolated sentences." (Laubli et al., 2018)

Editing assessment: How many edits required to reach human quality

(Akhbardeh et al., 2021) Findings of the 2021 Conference on Machine Translation

Fachfakh trat am selben Tag zurück, als die Partei ein Misstrauensvotum gegen ihn einreichte

Fakhfakh trat am selben Tag zurück, an dem die Partei einen Misstrauensantrag gegen ihn einreichte

Translationese and Evaluation

Translated text can: (Baker et al., 1993; Graham et al., 2019)

- be more explicit than the original source
- be less ambiguous
- be simplified (lexical, syntactically and stylistically)
- display a preference for conventional grammaticality
- avoid repetition
- exaggerate target language features
- display features of the source language

"If we consider only original source text (i.e. not translated from another language, or translationese), then we find evidence showing that human parity has not been achieved." (Toral et al., 2018)

How are We Doing? Example: WMT 2019 Evaluation

2019 segment-in-context direct assessment (Barrault et al, 2019):

- √ German to English: many systems are tied with human performance;
- × English to Chinese: all systems are outperformed by the human translator;
- × English to Czech: all systems are outperformed by the human translator;
- × English to Finnish: all systems are outperformed by the human translator;
- ✓ English to German: Facebook-FAIR achieves super-human translation performance; several systems are tied with human performance;

- × English to Gujarati: all systems are outperformed by the human translator;
- × English to Kazakh: all systems are outperformed by the human translator;
- × English to Lithuanian: all systems are outperformed by the human translator;
- ✓ English to Russian: Facebook-FAIR is tied with human performance.

Statistical Machine Translation (1990 - 2015)

When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode."

Warren Weaver (1949)

Levels of Transfer: Vauquois Triangle (1968)

Data-Driven Machine Translation

Stitching Together Fragments

Evolution of the Noisy Channel Model

$$P(e|f) \propto P(f|e) \cdot P(e)$$

$$P(e|f) \propto P(f|e)^{\phi_{\rm tm}} \cdot P(e)^{\phi_{\rm lm}}$$

$$P(e|f) \propto \exp\left\{ \sum_i w_i \cdot f_i(e,f)
ight\}$$
 E.g., \log P(e)

Word Alignment and Phrase Extraction

Extracting Translation Rules

Counting Aligned Phrases

d'assister à la reunion et ||| to attend the meeting and assister à la reunion ||| attend the meeting la reunion et ||| the meeting and nous ||| we

- Relative frequencies are the most important features in a phrase-based or syntax-based model.
- Scoring a phrase under a lexical model is the second most important feature.
- Estimation does not involve choosing among segmentations of a sentence into phrases.

Translation Options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Decoding: Find Best Path

Phrase-Based Decoding

这	7人	中包括	来自	法国	和	俄罗斯	的	宇航	员	
the	7 people	including by some		and the russi		the russian	the	the astronauts		,
it	7 people included		by france		and the	the russian	2	international astronautical	of rapporteur .	
this	7 out	including the	from	the french	and the	russian	the fift	h		
these	7 among	including from		the french a	and	of the russian	of	space	members	
that	7 persons	including from	the	of france	and to	russian	of the	aerospace	members .	
	7 include		from the	of france and		russian		astronauts		. the
	7 numbers include		from france		and russian o		of astro	ronauts who		. "
	7 populations include		those from france		and russian		astronauts.			
	7 deportees included		come from	e from france		ssia	in	astronautical	personnel	;
	7 philtrum including thos		e from	france and		russia	a space		member	
	including repre		esentatives from	france and	he russia		astronaut	3		
		include came from		france and russia		by cost	smonauts			
		include representatives from		french	and russia		A 100	cosmonauts		
		include	came from france		and russia 's		cosmonauts.			
		includes	coming from	french and		russia 's	7	cosmonaut	9/3	
				french and russian			's	astronavigation	member .	
				french and ru		ssia	astro	nauts		
					and russia 's				special rapporteur	
					, and	russia			rapporteur	
					, and russia				rapporteur.	
					, and russia		0		(
					or	russia 's				

Machine Translation

Dan Klein UC Berkeley

Word Alignment

Given a sentence pair, which words correspond to each other?

Word Alignment?

Is the English word does aligned to the German wohnt (verb) or nicht (negation) or neither?

Word Alignment?

How do the idioms kicked the bucket and biss ins grass match up? Outside this exceptional context, bucket is never a good translation for grass

Unsupervised Word Alignment

Input: a bitext: pairs of translated sentences

```
nous acceptons votre opinion .
we accept your view .
```

- Output: alignments: pairs of translated words
 - When words have unique sources, can represent as a (forward) alignment function a from French to English positions

Word Alignment

- Even today models are often built on the IBM alignment models
- Create probabilistic word-level translation models
- The models incorporate latent (unobserved) word alignments
- Optimize the probability of the observed words
- Use the imputed alignments to reveal word-level correspondence
- Throw out the translation models themselves

Alignment

• In a parallel text (or when we translate), we align words in one language with the words in the other

• Word positions are numbered 1–4

Alignment Function

- Formalizing alignment with an alignment function
- ullet Mapping an English target word at position i to a German source word at position j with a function $a:i \to j$
- Example

$$a:\{1\rightarrow 1,2\rightarrow 2,3\rightarrow 3,4\rightarrow 4\}$$

Reordering

Words may be reordered during translation

$$a:\{1\rightarrow 3,2\rightarrow 4,3\rightarrow 2,4\rightarrow 1\}$$

One-to-Many Translation

A source word may translate into multiple target words

$$a: \{1 \to 1, 2 \to 2, 3 \to 3, 4 \to 4, 5 \to 4\}$$

Dropping Words

Words may be dropped when translated (German article das is dropped)

$$a: \{1 \to 2, 2 \to 3, 3 \to 4\}$$

Inserting Words

- Words may be added during translation
 - The English just does not have an equivalent in German
 - We still need to map it to something: special NULL token

$$a:\{1\rightarrow 1,2\rightarrow 2,3\rightarrow 3,4\rightarrow 0,5\rightarrow 4\}$$

IBM Model 1: Allocation

IBM Model 1 (Brown 93)

 Alignments: a hidden vector called an *alignment* specifies which English source is responsible for each French target word.

Example

das

e	t(e f)		
the	0.7		
that	0.15		
which	0.075		
who	0.05		
this	0.025		

-	•	т				
	⊢	4	2	1	1	C
			~			

e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

•		
-	\sim	+
	•	
	J	L

e	t(e f)
is	0.8
's	0.16
exists	0.02
has	0.015
are	0.005

e	t(e f)
small	0.4
little	0.4
short	0.1
minor	0.06
petty	0.04

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028\epsilon \end{split}$$

IBM Models 1/2

Model Parameters

Translation: P($F_1 = Gracias \mid E_{A_1} = Thank$) *Alignment*: P($A_2 = 3$)

- Incomplete data
 - if we had *complete data*, would could estimate *model*
 - if we had *model*, we could fill in the *gaps* in the data
- Expectation Maximization (EM) in a nutshell
 - 1. initialize model parameters (e.g. uniform)
 - 2. assign probabilities to the missing data
 - 3. estimate model parameters from completed data
 - 4. iterate steps 2–3 until convergence

... la maison ... la maison blue ... la fleur ...

the house ... the blue house ... the flower ...

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the

... la maison ... la maison blue ... la fleur ...

the house ... the blue house ... the flower ...

- After one iteration
- Alignments, e.g., between la and the are more likely

... la maison ... la maison bleu ... la fleur ...

the house ... the blue house ... the flower ...

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

- Convergence
- Inherent hidden structure revealed by EM

• Parameter estimation from the aligned corpus

IBM Model 1 and EM

- EM Algorithm consists of two steps
- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assign values as fact
 - collect counts (weighted by probabilities)
 - estimate model from counts
- Iterate these steps until convergence

IBM Model 1 and EM

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

IBM Model 1 and EM

Probabilities

$$p(\mathsf{the}|\mathsf{la}) = 0.7$$
 $p(\mathsf{house}|\mathsf{la}) = 0.05$ $p(\mathsf{the}|\mathsf{maison}) = 0.1$ $p(\mathsf{house}|\mathsf{maison}) = 0.8$

Alignments

la •• the maisor• the maisor• the maisor• house maisor• house
$$p(\mathbf{e}, a|\mathbf{f}) = 0.56$$
 $p(\mathbf{e}, a|\mathbf{f}) = 0.035$ $p(\mathbf{e}, a|\mathbf{f}) = 0.08$ $p(\mathbf{e}, a|\mathbf{f}) = 0.005$ $p(a|\mathbf{e}, \mathbf{f}) = 0.0824$ $p(a|\mathbf{e}, \mathbf{f}) = 0.052$ $p(a|\mathbf{e}, \mathbf{f}) = 0.118$ $p(a|\mathbf{e}, \mathbf{f}) = 0.007$

Counts

$$c(\mathsf{the}|\mathsf{la}) = 0.824 + 0.052 \qquad c(\mathsf{house}|\mathsf{la}) = 0.052 + 0.007 \\ c(\mathsf{the}|\mathsf{maison}) = 0.118 + 0.007 \qquad c(\mathsf{house}|\mathsf{maison}) = 0.824 + 0.118$$

Convergence

e	f	initial	1st it.	2nd it.	3rd it.	•••	final
the	das	0.25	0.5	0.6364	0.7479		1
book	das	0.25	0.25	0.1818	0.1208	•••	0
house	das	0.25	0.25	0.1818	0.1313	•••	0
the	buch	0.25	0.25	0.1818	0.1208	•••	0
book	buch	0.25	0.5	0.6364	0.7479	•••	1
a	buch	0.25	0.25	0.1818	0.1313		0
book	ein	0.25	0.5	0.4286	0.3466	•••	0
a	ein	0.25	0.5	0.5714	0.6534	•••	1
the	haus	0.25	0.5	0.4286	0.3466	•••	0
house	haus	0.25	0.5	0.5714	0.6534	•••	1

Perplexity

- How well does the model fit the data?
- Perplexity: derived from probability of the training data according to the model

$$\log_2 PP = -\sum_s \log_2 p(\mathbf{e}_s | \mathbf{f}_s)$$

• Example (ϵ =1)

	initial	1st it.	2nd it.	3rd it.	•••	final
p(the haus das haus)	0.0625	0.1875	0.1905	0.1913	•••	0.1875
p(the book das buch)	0.0625	0.1406	0.1790	0.2075		0.25
p(a book ein buch)	0.0625	0.1875	0.1907	0.1913		0.1875
perplexity	4095	202.3	153.6	131.6	•••	113.8

Problems with Model 1

- There's a reason they designed models 2-5!
- Problems: alignments jump around, align everything to rare words
- Experimental setup:
 - Training data: 1.1M sentences of French-English text, Canadian Hansards
 - Evaluation metric: alignment error Rate (AER)
 - Evaluation data: 447 handaligned sentences

IBM Model 2: Global Monotonicity

Monotonic Translation

Japan shaken by two new quakes

Le Japon secoué par deux nouveaux séismes

Local Order Change

Japan is at the junction of four tectonic plates

Le Japon est au confluent de quatre plaques tectoniques

IBM Model 2

Alignments tend to the diagonal (broadly at least)

$$P(f, a|e) = \prod_{j} P(a_{j} = i|j, I, J) P(f_{j}|e_{i})$$

$$P(dist = i - j\frac{I}{J})$$

$$\frac{1}{Z} e^{-\alpha(i-j\frac{I}{J})}$$

EM for Models 1/2

Model 1 Parameters:

```
Translation probabilities (1+2) P(f_j|e_i) Distortion parameters (2 only) P(a_j=i|j,I,J)
```

- Start with $P(f_j|e_i)$ uniform, including $P(f_j|null)$
- For each sentence:
 - For each French position j
 - Calculate posterior over English positions

$$P(a_j = i|f, e) = \frac{P(a_j = i|j, I, J)P(f_j|e_i)}{\sum_{i'} P(a_j = i'|j, I, J)P(f_j|e_i')}$$

- (or just use best single alignment)
- Increment count of word f_j with word e_i by these amounts
- Also re-estimate distortion probabilities for model 2
- Iterate until convergence

HMM Model: Local Monotonicity

Phrase Movement

On Tuesday Nov. 4, earthquakes rocked Japan once again

Des tremblements de terre ont à nouveau touché le Japon jeudi 4 novembre.

The HMM Model

Model Parameters

Emissions: P($F_1 = Gracias \mid E_{A_1} = Thank$) *Transitions:* P($A_2 = 3 \mid A_1 = 1$)

The HMM Model

- Model 2 preferred global monotonicity
- We want local monotonicity:
 - Most jumps are small
- HMM model (Vogel 96)

$P(f, a e) = \prod P(a_j a_{j-1})P(f_j e_i)$	
$P(a_j - a_{j-1})$ ———	

f	$t(f \mid e)$
nationale	0.469
national	0.418
nationaux	0.054
nationales	0.029

- Re-estimate using the forward-backward algorithm
- Handling nulls requires some care
- What are we still missing?

Models 3+: Fertility

IBM Models 3/4/5

[from Al-Onaizan and Knight, 1998]

Examples: Translation and Fertility

the

f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
le	0.497	1	0.746
la	0.207	0	0.254
les	0.155		
l'	0.086		
ce	0.018		
cette	0.011		

not

f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
ne	0.497	2	0.735
pas	0.442	0	0.154
non	0.029	1	0.107
rien	0.011		

farmers

f	$t(f \mid e)$	$\overline{\phi}$	$n(\phi \mid e)$
agriculteurs	0.442	2	0.731
les	0.418	1	0.228
cultivateurs	0.046	0	0.039
producteurs	0.021		

Example: Idioms

nodding

f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
signe	0.164	4	0.342
la	0.123	3	0.293
tête	0.097	2	0.167
oui	0.086	1	0.163
fait	0.073	0	0.023
que	0.073		!
hoche	0.054		
hocher	0.048		
faire	0.030		
me	0.024		
approuve	0.019		
qui	0.019		
un	0.012		1
faites	0.011		

Example: Morphology

should

f	$t(f \mid e)$	ϕ	$n(\phi \mid e)$
devrait	0.330	1	0.649
devraient	0.123	0	0.336
devrions	0.109	2	0.014
faudrait	0.073	l.	
faut	0.058		
doit	0.058		
aurait	0.041		
doivent	0.024		
devons	0.017		
devrais	0.013	_	

Word Alignment with IBM Models

- IBM Models create a **many-to-one** mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (no many-to-one mapping)
- Real word alignments have **many-to-many** mappings

Symmetrization

- Run IBM Model training in both directions
- \rightarrow two sets of word alignment points
 - Intersection: high precision alignment points
 - Union: high recall alignment points
 - Refinement methods explore the sets between intersection and union

Example

english to spanish

spanish to english

Growing Heuristics

black: intersection

grey: additional points in union

- Add alignment points from union based on heuristics:
 - directly/diagonally neighboring points
 - finally, add alignments that connect unaligned words in source and/or target
- Popular method: grow-diag-final-and

Phrase-Based Model

- Foreign input is segmented in phrases
- Each phrase is translated into English
- Phrases are reordered

Phrase Translation Table

- Main knowledge source: table with phrase translations and their probabilities
- Example: phrase translations for natuerlich

Translation	Probability $\phi(\bar{e} f)$
of course	0.5
naturally	0.3
of course,	0.15
, of course ,	0.05

Scoring Phrase Translations

- Phrase pair extraction: collect all phrase pairs from the data
- Phrase pair scoring: assign probabilities to phrase translations
- Score by relative frequency:

$$\phi(\bar{f}|\bar{e}) = \frac{\operatorname{count}(\bar{e}, \bar{f})}{\sum_{\bar{f}_i} \operatorname{count}(\bar{e}, \bar{f}_i)}$$

Real Example

• Phrase translations for den Vorschlag learned from the Europarl corpus:

English	$\phi(ar{e} ar{f})$	English	$\phi(ar{e} ar{f})$	
the proposal	0.6227	the suggestions	0.0114	
's proposal	0.1068	the proposed	0.0114	
a proposal	0.0341	the motion	0.0091	
the idea	0.0250	the idea of	0.0091	
this proposal	0.0227	the proposal,	0.0068	
proposal	0.0205	its proposal	0.0068	
of the proposal	0.0159	it	0.0068	
the proposals	0.0159	•••	•••	

- lexical variation (proposal vs suggestions)
- morphological variation (proposal vs proposals)
- included function words (the, a, ...)
- noise (it)

Extracting Phrase Pairs

extract phrase pair consistent with word alignment:

assumes that / geht davon aus , dass

Consistent

All words of the phrase pair have to align to each other.

Phrase Pair Extraction

Smallest phrase pairs:

```
michael — michael
assumes — geht davon aus / geht davon aus ,
that — dass / , dass
he — er
will stay — bleibt
in the — im
house — haus
```

unaligned words (here: German comma) lead to multiple translations

Larger Phrase Pairs

michael assumes — michael geht davon aus / michael geht davon aus , assumes that — geht davon aus , dass ; assumes that he — geht davon aus , dass er that he — dass er / , dass er ; in the house — im haus michael assumes that — michael geht davon aus , dass michael assumes that he — michael geht davon aus , dass er michael assumes that he will stay in the house — michael geht davon aus , dass er im haus bleibt assumes that he will stay in the house — geht davon aus , dass er im haus bleibt that he will stay in the house — dass er im haus bleibt ; dass er im haus bleibt , he will stay in the house — er im haus bleibt ; will stay in the house — im haus bleibt

More Feature Functions

- Bidirectional alignment probabilities: $\phi(\bar{e}|\bar{f})$ and $\phi(\bar{f}|\bar{e})$
- Rare phrase pairs have unreliable phrase translation probability estimates
 - \rightarrow lexical weighting with word translation probabilities

$$\operatorname{lex}(\bar{e}|\bar{f},a) = \prod_{i=1}^{\operatorname{length}(\bar{e})} \frac{1}{|\{j|(i,j)\in a\}|} \sum_{\forall (i,j)\in a} w(e_i|f_j)$$

Distance-Based Reordering

phrase	translates	movement	distance
1	1–3	start at beginning	0
2	6	skip over 4–5	+2
3	4–5	move back over 4–6	-3
$\overline{4}$	7	skip over 6	+1

Scoring function: $d(x) = \alpha^{|x|}$ — exponential with distance

Translation Options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation Options

- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- \rightarrow Search problem solved by heuristic beam search

Decoding: Precompute Translation Options

consult phrase translation table for all input phrases

Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

Computational Complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)

Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same foreign words translated
 - same English words in the output

• Worse hypothesis is dropped

- Hypothesis expansion in a stack decoder
 - translation option is applied to hypothesis
 - new hypothesis is dropped into a stack further down

Stack Decoding Algorithm

```
1: place empty hypothesis into stack 0
2: for all stacks 0...n - 1 do
     for all hypotheses in stack do
        for all translation options do
4:
          if applicable then
 5:
            create new hypothesis
 6:
            place in stack
7:
            recombine with existing hypothesis if possible
8:
            prune stack if too big
9:
          end if
10:
        end for
11:
     end for
12:
13: end for
```


Pruning

- Pruning strategies
 - histogram pruning: keep at most k hypotheses in each stack
 - stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)
- Computational time complexity of decoding with histogram pruning

 $O(\max \operatorname{stack} \operatorname{size} \times \operatorname{translation} \operatorname{options} \times \operatorname{sentence} \operatorname{length})$

• Number of translation options is linear with sentence length, hence:

 $O(\max \text{ stack size} \times \text{ sentence length}^2)$

• Quadratic complexity

Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words worse hypothesis has better score

Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
 - language model: output words known, but not context
 - \rightarrow estimate without context
 - reordering model: unknown, ignored for future cost estimation

Cost Estimates from Translation Options

cost of cheapest translation options for each input span (log-probabilities)

Cost Estimates for all Spans

• Compute cost estimate for all contiguous spans by combining cheapest options

first	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		•
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1		-	
this	-1.4	-2.4	-2.7	-3.7	-3.7		_		
for	-1.0	-1.3	-2.3	-2.3		_			
the	-1.0	-2.2	-2.3		-				
first	-1.9	-2.4		-					
time	-1.6		•						

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost: -6.1 → total cost -11.98
 - middle hypothesis starts with easiest part: the first time score: -4.11, future cost: -9.3 → total cost -13.41
 - right hypothesis picks easy parts: this for ... time score: -4.86, future cost: -9.1 \rightarrow total cost -13.96

A* Search

- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created