Assignment 05: On Device Control

PH1050 Computational Physics

Pranav S Ramanujam

1st year EP

Department of Physics, IIT Madras

Problem Statement

We must monitor a region continuously and raise a beep/voice alert when an intrusion (movement) is detected. We also have to plot the parameter being considered.

Aim

To monitor and display the region being monitored continuously and raise a beep/voice alert when an intrusion (movement) is detected. We also have to plot the value of the parameter being considered (plot is of parameter vs time).

Introduction

In order to ensure the monitoring of the region, we must allow mathematica to access our computer's camera using the function DeviceOpen["Camera"]. The main idea for motion detection is to store the first image captured in a variable (img1) and see values of Mean[Mean[Total[ImageData[img1,CurrentImage[]]]]] for subsequent images captured. When the value of this exceeds 20 (this value was arrived at by trial and error), the alarm must go off as this is a clear indication that some motion has occured. (As now the CurrentImage[] and the original image are significantly different.) Plotting of the graph was done by appending the values of {time, mean pixel value of ImageDifference} to a list and then plotting the list using ListLinePlot[] function.

Code Organization

Part1: Alarm going off

1)Capturing the original state and assigning it to a variable img1

2)using the function Dynamic[] to continuously display the image being captured at that moment.

3)Declaring a while loop in which we capture images at regular intervals of 0.5 seconds using the function Pause[].

We define the while loop such that it exits when the value of Mean[Mean[Total[ImageData[img1,CurrentImage[]]]]] > 20 (Indicating that motion has occured)

4) Once it exits the While loop, the i have placed the alarm which is to go off and a voice which says "Intruder detected".

Part 2: Plotting

- 1)When the while loop runs, we simultaneously append the values of {time, mean pixel value of ImageDifference} to a list
- 2)Then using ListLinePlot[] we plot the graph.

Code for computation

```
In[629]:=
       $ImagingDevices
Out[629]=
       {HP True Vision 5MP Camera}
In[813]:=
       Clear["Global`*"]
In[814]:=
       dev = DeviceOpen["Camera"]
       list1 = {};
       img1 = CurrentImage[];
       Dynamic[CurrentImage[]]
       t = 0;
       While[Mean[Mean[Total[ImageData[ImageDifference[img1, CurrentImage[]]]]]] < 20,</pre>
        AppendTo[list1,
          {t, Mean[Mean[Total[ImageData[ImageDifference[img1, CurrentImage[]]]]]]]}];
        IntImage = CurrentImage[];
        Pause [0.5;
          t += 0.5]
       DeviceClose[dev]
       list1
       s = SpeechSynthesize["Intruder Detected"]
       EmitSound[s]
       signal = Play[Sin[1500 \times 2 Pi t^2], \{t, 0, 5\}]
       EmitSound[signal]
       IntruderImage = IntImage
       ListLinePlot[list1, Filling → Axis,
        FrameLabel → {{"Mean Value of Pixel Difference"}, {"Time"}}, PlotLabel → "Graph"]
Out[814]=
                                Status: Not connected (HP True Vision 5MP Camera)
Out[817]=
       $Aborted
Out[821]=
       \{\{0, 17.0539\}, \{0.5, 41.8069\}\}
Out[822]=
         00:00
                      ---- 00:02 ◄) =
         Data in File[...9-20T22-43-05.wav] \Rightarrow
```


Results

(*The list with the values of $\{t,mean\ pixel\ value\ of\ ImageDifference\}$ the alarms which go off*)

(*The image captured at the moment of intrusion andd the graph of $\{time, mean\ pixel\ value\ of\ ImageDifference}_{\star})$

Comments

This assignment was definitely more interesting and cooler than the others.

References

1. https://chat.openai.com/