

Dinámica de Galaxias

Dylan Castellanos y Juan Felipe Rodríguez

El modelo de galaxia

Bulbo Galáctico

Discos Estelares

Discos de Gas

Aura de Materia Oscura

Los Datos Observacionales

• Eilers, et al., 2018 - The Circular Velocity Curve of the Milky Way from 5 to 25 kpc.

$$(5 - 25 \text{ kpc})$$

• Mroz, et al., 2019 - Microlensing optical depth and event rate toward the Galactic bulge from 8 yr of OGLE-IV observations.

$$(5 - 20 \text{ kpc})$$

• Galkin, et al., 2017 - A new compilation of the Milky Way rotation curve data.

$$(1 - 20 \text{ kpc})$$

• Huang, et al., 2016 - The Milky Way's rotation curve out to 100 kpc and its constraint on the Galactic mass distribution.

$$(4 - 100 \text{ kpc})$$

Modelo matemático

Teorema del Virial

$$2K + U = 0$$

$$K = \frac{1}{2} m_S v^2$$
 $U = \frac{-G M(r) m_S}{r}$

Se halla v:

$$v = \sqrt{\frac{G M(r)}{r}}$$

$$\rho_{\rm b} = \frac{\rho_{0,\rm b}}{(1 + r'/r_0)^{\alpha}} \exp\left[-(r'/r_{\rm cut})^2\right]$$

Density profile stellar discs

(McMillan, 2016)

$$\rho_{\rm d}(R,z) = \frac{\Sigma_0}{2z_{\rm d}} \exp\left(-\frac{|z|}{z_{\rm d}} - \frac{R}{R_{\rm d}}\right).$$

Density profile gas discs

(McMillan, 2016)

$$\rho_{\rm d}(R,z) = \frac{\Sigma_0}{4z_{\rm d}} \exp\left(-\frac{R_{\rm m}}{R} - \frac{R}{R_{\rm d}}\right) \, {\rm sech}^2(z/2z_{\rm d})$$

Density profile dark matter halo

$$ho(r) = rac{
ho_{crit}\delta_c}{\left(rac{r}{r_s}
ight)\left(1+rac{r}{r_s}
ight)^2}$$
 (Navarro, Frenk, White, 1996)

Bulbo Galáctico

$$\rho_{\rm b} = \frac{\rho_{0,\rm b}}{(1 + r'/r_0)^{\alpha}} \exp\left[-(r'/r_{\rm cut})^2\right]$$

Best Fitting Model:

$$ho_{0,b} = 9.84e10 \left[rac{M_{sun}}{kpc^2}
ight]
ho_{0,b} = 0.075 \left[kpc
ight] ext{(fijo)}
ho_{cut} = 2.1 \left[kpc
ight] ext{(fijo)}
ho_{a} = 1.8 ext{(fijo)}$$

$$\rho_{0,b} = 9.73e10 \pm 9.7 \left[\frac{M_{sun}}{kpc^2} \right]$$

Disco Galáctico

$$\rho_{\rm d}(R,z) = \frac{\Sigma_0}{2z_{\rm d}} \exp\left(-\frac{|z|}{z_{\rm d}} - \frac{R}{R_{\rm d}}\right)$$

Best Fitting Model:

$$\Sigma_{0,thin} = 896e6 \left[rac{M_{sun}}{kpc^2}
ight]$$
 $\Sigma_{0,thick} = 183e6 \left[rac{M_{sun}}{kpc^2}
ight]$
 $Z_{d,thin} = 0.3 \left[kpc \right] ext{ (fijo)}$
 $Z_{d,thick} = 0.9 \left[kpc \right] ext{ (fijo)}$
 $Z_{d,thick} = 3.02 \left[kpc \right]$

$$\Sigma_{0,thin} = 886.7e6 \pm 116.2e6 \left[\frac{M_{sun}}{kpc^2} \right]$$
 $\Sigma_{0,thick} = 156.7e6 \pm 58.9e6 \left[\frac{M_{sun}}{kpc^2} \right]$
 $R_{d,thin} = 2.53 \pm 0.14 \left[kpc \right]$
 $R_{d,thick} = 3.38 \pm 0.54 \left[kpc \right]$

Disco de Gas

$$\rho_{\rm d}(R,z) = \frac{\Sigma_0}{4z_{\rm d}} \exp\left(-\frac{R_{\rm m}}{R} - \frac{R}{R_{\rm d}}\right) \, {\rm sech}^2(z/2z_{\rm d}).$$

Best Fitting Model:

$$\Sigma_{0,thin} = 896e6 \left[\frac{M_{sun}}{kpc^2} \right]$$
 $R_{d,thin} = 2.5 \left[kpc \right]$

$$\Sigma_{0,thick} = 183e6 \left[rac{M_{sun}}{kpc^2}
ight]$$
 $R_{d,thick} = 3.02 \left[kpc \right]$

$$R_m = 12.0 [kpc]$$
 (fijo)
 $z_{d,gas} = 0.045 [kpc]$ (fijo)

$$\Sigma_{0,thin} = 886.7e6 \pm 116.2e6 \left[\frac{M_{sur}}{kpc^2} \right]$$
 $R_{d,thin} = 2.53 \pm 0.14 \left[\frac{M_{sur}}{kpc} \right]$

$$\Sigma_{0,thin} = 886.7e6 \pm 116.2e6 \left[rac{M_{sun}}{kpc^2}
ight] \qquad \Sigma_{0,thick} = 156.7e6 \pm 58.9e6 \left[rac{M_{sun}}{kpc^2}
ight]
 R_{d,thin} = 2.53 \pm 0.14 \left[kpc
ight] \qquad R_{d,thick} = 3.38 \pm 0.54 \left[kpc
ight]$$

Aún falta masa...

Halo de Materia Oscura

$$ho(r) = rac{
ho_{crit} \delta_c}{\left(rac{r}{r_s}
ight) \left(1 + rac{r}{r_s}
ight)^2}$$
 (NFW profile)

Best Fitting Model:

$$ho_{crit} = rac{(3H^2)}{8\pi G} \left[rac{M_{sun}}{kpc^2}
ight] pprox 8.86e6 \left[rac{M_{sun}}{kpc^2}
ight] ext{(fijo)} \ r_s = 19.6[kpc] \ \delta_c = 5.0 ext{ (fijo)}$$

$$r_s = 19.0 \pm 4.9 [kpc]$$

Modelo Completo

Conclusiones

• Se logró modelar las distintos componentes de una galaxia y obtener la velocidad de una estrella en función de su radio.

 Se comprobó que este modelo es consistente con los datos observacionales.

• En futuros estudios se recomienda la variación individual de los parámetros en los modelos de disco, así como el uso de datos de otras galaxias.

Gracias!

When someone uses light years instead of parsecs

Never Ask A Woman Her Age

A Man, His Salary

An Astrophysicist

What they use to kludge together Dark Matter in their galaxy simulations

We are literally thousands of light years away from you

Modelo de Concentración

$$M = \int_0^{R_{
m vir}} 4\pi r^2
ho(r) \, dr = 4\pi
ho_0 R_s^3 \left[\ln(1+c) - rac{c}{1+c}
ight]$$

Best Fitting Model:

$$\rho_0 \equiv \rho_{crit}$$

$$R_s \equiv r$$

$$r = cr_s$$

$$\rightarrow c = \frac{r}{r_s}$$

$$c \in (0, \infty)$$

$$ho_{crit} pprox 8.86e6 \left[rac{M_{sun}}{kpc^2}
ight]$$
 (fijo)
$$r_s = 19.6[kpc]$$

$$r_s = 19.0 \pm 4.9 [kpc]$$

Modelo de Concentración Completo

