

Facultad de Ciencias E.T.S. de Ingenierías Informática y de Telecomunicación

Grado en Ingeniería Informática y Matemáticas

TRABAJO DE FIN DE GRADO

Aplicación de la topología algebraica en redes neuronales

Presentado por: Pablo Olivares Martínez

Curso académico 2023-2024

Aplicación de la topología algebraica en redes neuronales

Pablo Olivares Martínez

Pablo Olivares Martínez *Aplicación de la topología algebraica en redes neuronales*. Trabajo de fin de Grado. Curso académico 2023-2024.

Responsable de tutorización

Miguel Ortega Titos Departamento de Geometría y Topología

Julián Luengo Martín Departamento de Ciencias de la Computación e Inteligencia Artificial

Grado en Ingeniería Informática y Matemáticas

> Facultad de Ciencias E.T.S. de Ingenierías Informática y de Telecomunicación

Universidad de Granada

Declaración de originalidad

D./Dña. Pablo Olivares Martínez

Declaro explícitamente que el trabajo presentado como Trabajo de Fin de Grado (TFG), correspondiente al curso académico 2023-2024, es original, entendido esto en el sentido de que no he utilizado para la elaboración del trabajo fuentes sin citarlas debidamente.

En Granada a 25 de mayo de 2024

Fdo: Pablo Olivares Martínez

Dedicatoria (opcional) Ver archivo preliminares/dedicatoria.tex

Índice general

Ag	radec	imientos	VII
Su	mma	ry	ΙX
Int	roduc	cción	ΧI
	1.	Motivación	ΧI
	2.	Objetivos	ΧI
	3.	Presupuesto	ΧI
	4.	Planificación	ΧI
I.	Fu	ndamento matemático	1
1.	Fund	damentos del álgebra homológica	3
	1.1.	Módulos	3
	1.2.	Sucesiones exactas	7
	1.3.	Categorías y funtores	8
	1.4.	Módulos diferenciales	9
	_	Complejos de cadenas	11
	1.6.	Subcomplejos y complejos cociente	14
2.	Sím	plices y complejos simpliciales	17
	2.1.	Símplices	17
	2.2.	Complejos simpliciales	19
	2.3.	Celdas y CW-complejos	22
	2.4.	Aplicaciones simpliciales	26
	2.5.	Complejos simpliciales abstractos	28
3.	Hom	nología simplicial	31
	3.1.	Homología simplicial orientada	31
	3.2.	Homología del complejo cono	35
	3.3.	Sucesión de Mayer-Vietoris	37
	3.4.	Conexión y el módulo de homología $H_0(K;R)$	41
4.		nología persistente	45
	4.1.	Complejos de Čech y Vietoris-Rips	
	4.2.	Módulos de homología persistente	
	4.3.	Representación de la homología persistente	46
	4.4.	Estabilidad de los diagramas de persistencia	53

Índice general

	Informática	55
5.	Conceptos y estado del arte	57
	5.1. Aprendizaje automático	58
	5.2. Visión artificial	59
	5.3. Redes neuronales artificiales	59
	9 9	60
	5.3.2. Redes neuronales artificiales	60
	5.3.3. Funciones de activación	61
		63
	5.3.5. Regularización de redes neuronales	67
	5.4. Redes neuronales convolucionales	68
	5.4.1. La corteza visual y el Neocognitrón	69
		69
		74
	5.5. Análisis de datos topológico	78
6.	Metodología	8
	6.1. Entorno de experimentación	8:
	6.2. Preprocesamiento de datos	81
	6.3. Proceso de entrenamiento	81
	6.4. Postprocesamiento de resultados	81
7.	Resultados experimentales	83
	7.1. Entorno de experimentación	8:
	7.2. Resultados	8:
	7.3. Discusión	83
8.	Conclusión	8!
	8.1. Trabajo futuro	8
		8
	0.2. Conclusion	

Agradecimientos

 $A grade cimientos \ (opcional, ver archivo\ preliminares/agrade cimiento.\ tex).$

Summary

An english summary of the project (around 800 and 1500 words are recommended). File: preliminares/summary.tex

Introducción

De acuerdo con la comisión de grado, el TFG debe incluir una introducción en la que se describan claramente los objetivos previstos inicialmente en la propuesta de TFG, indicando si han sido o no alcanzados, los antecedentes importantes para el desarrollo, los resultados obtenidos, en su caso y las principales fuentes consultadas.

Ver archivo preliminares/introduccion.tex

- 1. Motivación
- 2. Objetivos
- 3. Presupuesto
- 4. Planificación

Parte I. Fundamento matemático

1. Fundamentos del álgebra homológica

La teoría de homología es una rama de la topología que trata de resolver problemas topológicos en el ámbito del álgebra. Por este motivo es importante conocer muy bien algunas herramientas algebraicas que iremos utilizando con frecuencia. En todo el capítulo usaremos como referencia principal [Mac12].

1.1. Módulos

La estructura de módulo surge con la idea de generalizar el concepto de espacio vectorial sobre un cuerpo a un anillo. Nuestro interés en ellos radica en que la teoría de homología se construye sobre módulos y por ello es necesario hacer una introducción al campo. Esta sección recoge algunas definiciones y resultados de interés vistos en la asignatura de Álgebra Moderna y complementada con los contenidos de [DF04].

Definición 1.1. Sea R un anillo con elemento identidad $1 \neq 0$. Un R-módulo izquierdo M es un grupo abeliano aditivo junto con una función $p: R \times M \to M$ con $(r, m) \to rm$ tal que dados $r, r' \in R$, $m, m' \in A$ se tiene

```
1. (r+r')m = rm + r'm,
```

2.
$$(rr')m = r(r'm)$$
,

3.
$$r(m + m') = rm + rm'$$
,

4.
$$1m = m$$
.

De la definición anterior se sigue que 0m = 0 y (-1)m = -m.

De manera análoga, definimos R-módulo derecho donde el anillo actúa por la derecha en vez de por la izquierda de forma que $p: M \times R \to M$. Si R es un anillo conmutativo, los R-módulos izquierdos y derechos coinciden y les llamamos simplemente R-módulos. Como los resultados de R-módulos izquierdos y derechos son análogos, trabajaremos con los R-módulos izquierdos y nos referiremos a ellos como R-módulos o módulos a menos que se indique explícitamente lo contrario.

Ejemplo 1.1. El interés de los R-módulos subyace en la cantidad de estructuras conocidas que engloba. Si por ejemplo consideramos el K-módulo donde K es un cuerpo, éste adquiere la estructura de **espacio vectorial**. Ahora sea M un \mathbb{Z} -módulo. Definimos el producto p de forma que para $n \in \mathbb{Z}$ y $m \in M$ con n > 0, $nm = m + m + \ldots + m$ (n veces), 0m = 0 y (-n)m = -(nm). Entonces M ha de tener estructura de **grupo abeliano**. En particular, si R es un anillo entonces es también un R-módulo.

Definición 1.2. Sea M un R-módulo izquierdo y N un subconjunto de M. Diremos que N es un **submódulo** de M, esto es, $N \subset M$, si N es cerrado respecto a la suma y si $r \in R$, $n \in N$ entonces $rn \in N$.

De la definición anterior se deduce que *N* es un *R*-módulo.

Definición 1.3. Sea R un R-módulo. Si un submódulo de R es un subconjunto $I \subset R$ cerrado respecto a la suma tal que $\langle I \rangle = \{ri : i \in I\} \subset I$ para todo $r \in R$, lo llamaremos **ideal** de R. En particular, si I consta de un único elemento $i \in I$, diremos que es el **ideal generado por** i y lo denotaremos por $\langle i \rangle$.

Definición 1.4. Sea M un R-módulo y sea $m \in M$. El conjunto $\langle m \rangle = \{rm : r \in R\}$ es un submódulo de M que denominaremos **submódulo cíclico generado por** m.

Observación 1.1. Nótese que si *R* es un *R*-módulo, el submódulo cíclico generado por un elemento es el ideal generado por el mismo elemento.

Definición 1.5. Sea M un R-módulo y sean S un subconjunto de M. Sea $\langle S \rangle$ el submódulo formado por la intersección de todos los submódulos de M que contienen a S. Diremos entonces que $\langle S \rangle$ es el **submódulo generado por** S y los elementos de S los llamaremos **generadores** de S.

Definición 1.6. Sea M un R-módulo. Un submódulo N de M es **finitamente generado** si existe un subconjunto finito $S \subset M$ tal que $N = \langle S \rangle$.

Definición 1.7. Sean M, N R-módulos. Definimos el **homomorfismo de** R-**módulos** de M a N como la aplicación $\alpha: M \to N$ tal que

```
1. \alpha(m+m')=\alpha(m)+\alpha(m'),
```

2.
$$\alpha(rm) = r\alpha(m)$$

para todo $m, m' \in M, r \in R$.

Cuando $\alpha:M\to N$ sea un homomorfismo de R-módulos, diremos que M es el **dominio** y N el **rango**. La **imagen** de α es el conjunto $\mathrm{Im}(\alpha)=\{\alpha(m):m\in M\}$. El **núcleo** será el conjunto de elementos que se anulan en su imagen, esto es, $\ker(\alpha)=\{m\in M:\alpha(m)=0\}$. Diremos que α es un **epimorfismo** cuando α sea sobreyectiva, un **monomorfismo** cuando α sea inyectiva y un **isomorfismo** si α es un epimorfismo y un monomorfismo a la vez. Si existe un isomorfismo entre M y N diremos que son **isomorfos** y lo notaremos $A\cong B$. Un homomorfismo $\alpha:M\to M$ lo llamaremos **endomorfismo**.

Dado que el núcleo y la imagen de un homomorfismo de *R*-módulos coincide con el de los grupos abelianos subyacentes, la siguiente caracterización es inmediata de la ya conocida para grupos:

Proposición 1.1. Sea $\alpha: M \to N$ un homomorfismo de R-módulos. Entonces

- 1. α es un monomorfismo si, y sólo si, $ker(\alpha) = 0$.
- 2. α es un epimorfismo si, y sólo si, $\text{Im}(\alpha) = N$.

Es frecuente escribir el homomorfismo de R-módulos $\alpha:M\to N$ como $M\stackrel{\alpha}{\to} N$. Respecto a la notación de la imagen de un elemento $m\in M$ por α , pondremos $\alpha(m)$ o simplemente αm . En cuanto a la imagen de A por α , lo representaremos de manera análoga por $\alpha(M)$ o αM .

Dados dos homomorfismos de R-módulos $\alpha_1, \alpha_2 : M \to N$, su **suma** $\alpha_1 + \alpha_2$ la definimos como $(\alpha_1 + \alpha_2)(m) = \alpha_1(m) + \alpha_2(m)$ para todo $m \in M$. Además, dados dos homomorfismos de R-módulos $\alpha : M \to N$, $\beta : N \to P$, su **composición** $\beta \circ \alpha : M \to P$ es también un homomorfismo de R-módulos. Nótese que para que la composición sea posible, el rango de

 α tiene que ser igual al dominio de β . En ocasiones usaremos la notación por yuxtaposición $\alpha\beta=\alpha\circ\beta$. Llamaremos **inversa** (por ambos lados) de $\alpha:M\to N$ al homomorfismo $\alpha^{-1}:N\to M$ tal que $\alpha^{-1}\circ\alpha=\mathrm{id}_M$ y $\alpha\circ\alpha^{-1}=\mathrm{id}_N$. Una **inversa izquierda** de α es una función $\gamma:N\to M$ tal que $\gamma\circ\alpha=\mathrm{id}_M$. De manera análoga, el homomorfismo $\theta:M\to N$ es **inversa derecha** de α si $\alpha\circ\theta=\mathrm{id}_N$.

Si $T \subseteq N$, el conjunto $\alpha^{-1}T = \{m \in M : \alpha(m) \in T\}$ es un submódulo de M, llamado la **imagen inversa** (completa) de T. En particular, ker $\alpha = \alpha^{-1}0$, donde 0 denota el submódulo de N que consiste solo del elemento cero.

Sea $T\subseteq N$ donde N es un R-módulo, llamaremos **inclusión** o **inyección canónica** al homomorfismo $i:T\to N$ tal que i(t)=t para todo $t\in T$. En particular, i es un monomorfismo. Las **clases laterales** de T en N son los conjuntos $n+T=\{n+t:t\in T\}$ donde $n\in N$. Dos clases laterales n_1+T , n_2+T son iguales si $n_1-n_2\in T$. Como T es un submódulo, el grupo abeliano N/T se convierte en un R-módulo cuando r(n+T)=rn+T para todo $r\in R$. A este R-módulo lo llamaremos el **módulo cociente** de N sobre T. El homomorfismo $\pi:N\to N/T$ tal que $\pi(n)=n+T$ es un epimorfismo que llamaremos **proyección canónica** de N.

Proposición 1.2 (Teorema de factorización). Sea $\beta: M \to M'$ un homomorfismo de módulos con $T \subset \ker \beta$. Existe entonces un único homomorfismo de módulos $\beta': M/T \to M'$ con $\beta'\pi = \beta$; es decir, el siguiente diagrama con $\beta(T) = 0$

$$\begin{array}{c|c}
N & \xrightarrow{\pi} M/T \\
& \downarrow^{\beta'} \\
M'
\end{array}$$

es conmutativo. Al homomorfismo β' lo llamaremos **homomorfismo inducido** por β .

Teorema 1.1 (Primer teorema de isomorfía). *Sea* β : $M \rightarrow M'$ *un homomorfismo de R-módulos. Entonces*

$$\frac{M}{\ker \beta} \cong \operatorname{Im} \beta.$$

Definición 1.8. Sea $\{M_i\}_{i\in I}$ una familia de R-módulos indexada por I. Definimos el **producto** directo o **producto** directo externo de $\{M_i\}_{i\in I}$ como el producto cartesiano

$$\prod_{i\in I} M_i = \{(x_i)_{i\in I} : x_i \in M_i\}$$

donde las operaciones se definen componente a componente:

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I}$$

 $r(x_i)_{i \in I} = (rx_i)_{i \in I}$

para todo $r \in R$, $x_i, y_i \in M_i$, $i \in I$.

Definición 1.9. Sea $\{M_i\}_{i\in I}$ una familia de R-módulos indexada por I. Definimos la **suma** directa o **suma** directa interna de $\{M_i\}_{i\in I}$ como el submódulo de $\prod_{i\in I} M_i$ tal que

$$\bigoplus_{i\in I} M_i = \{(x_i)_{i\in I} : x_i = 0 \text{ p.c.t. } i \in I\}$$

1. Fundamentos del álgebra homológica

Nota. Recordemos que una condición se cumple "para casi todo"(p.c.t.) elemento de un conjunto si se cumple para todo elemento en él salvo en un subconjunto finito de elementos.

Definición 1.10. Sea B un conjunto y sea M el R-módulo tal que $M = \bigoplus_{b \in B} R_b$ donde $R_b = R$ para todo $b \in B$. Llamaremos a dicho R-módulo el R-módulo libre de base B y lo notaremos por $R\langle B \rangle$. De esta forma, cada $x \in R\langle B \rangle$ se representa por $x = \sum_{b \in B} \lambda_b \cdot b$ donde $\lambda_b \in R$ son coeficientes no nulos en un número finito de posiciones b.

Teorema 1.2 (Propiedad universal de los módulos libres). *Sean B un conjunto, M un R-módulo* $y \varphi : B \to M$ una aplicación entre conjuntos. Entonces existe un único homomorfismo de R-módulos $\varphi : R\langle B \rangle \to M$ de forma que $\varphi(b) = \varphi(b)$ para todo $b \in B$. Es decir, el diagrama

conmuta.

Definición 1.11. Sea M un R-módulo libre. Si para toda base B de M, B tiene la misma cardinalidad, entonces decimos que M tiene **rango** rg M = #B, donde #B es la cardinalidad alguna base de M.

Definición 1.12. Sea x un elemento de un R-módulo. Decimos que x es un **elemento de torsión** si existe un $r \in R \setminus \{0\}$ tal que rx = 0. Por otro lado, x es un **elemento sin torsión** si el único elemento $r \in R$ que satisface rx = 0 es r = 0. Un R-módulo se clasifica como **módulo de torsión** si cada uno de sus elementos es un elemento de torsión. Análogamente, un **módulo sin torsión** es aquel cuyos elementos no nulos son elementos sin torsión.

Definición 1.13. Sea M un R-módulo. Definimos el **anulador de** M como el submódulo $Ann(M) = \{r \in R : rm = 0, \ \forall m \in M\}$. De manera análoga, llamaremos **anulador de** $m \in M$ al submódulo $Ann(M) = \{r \in R : rm = 0, \ \forall m \in M\}$.

Definición 1.14. Definimos el **submódulo de torsión** de un *R*-módulo *M* como el conjunto $Tor(M) = \{x \in M : Ann(x) \neq \{0\}\}$. Es decir, el conjunto de todos los elementos de torsión de *M*.

Teorema 1.3 (Descomposición cíclica primaria). Sea R un dominio de ideales principales y sea M un R-módulo finitamente generado. Entonces M se descompone como la suma directa

$$M \cong R^f \oplus \bigoplus_{i=1}^k \frac{R}{\langle r_i \rangle}$$

donde R^f es un módulo libre de rango f y $R/\langle r_1 \rangle, \ldots, R/\langle r_k \rangle$ son módulos cíclicos con anuladores $\langle r_1 \rangle, \ldots, \langle r_k \rangle$. Además, f y los ideales $\langle r_1 \rangle, \ldots, \langle r_k \rangle$ de R generados por $r_1, \ldots, r_k \in R$ están determinados de manera única salvo el orden por M.

Ejemplo 1.2. Consideremos un espacio vectorial V. Entonces podemos considerar, por ejemplo, su base canónica y generar todo V a partir de ella. En consecuencia, V es un módulo libre. Además, aplicando el teorema de Descomposición cíclica primaria, es claro que la parte libre de la descomposición es isomorfa a V y por tanto V carece de parte cíclica.

1.2. Sucesiones exactas

Definición 1.15. Sea $\{A_i, \alpha_i\}_{i \in \mathbb{Z}}$ una familia de R-módulos A_i y homomorfismos entre ellos tal que $\alpha_i : A_i \to A_{i+1}$. Diremos que la sucesión

$$\cdots \xrightarrow{\alpha_{i-2}} A_{i-1} \xrightarrow{\alpha_{i-1}} A_i \xrightarrow{\alpha_i} A_{i+1} \xrightarrow{\alpha_{i+1}} \cdots$$

es **exacta** en A_i cuando Im $\alpha_i = \ker \alpha_{i+1}$. Si la sucesión es exacta para todo $i \in \mathbb{Z}$, diremos que la sucesión es **exacta larga** o simplemente exacta.

Definición 1.16. Sean A, B y C R-módulos y $\sigma: A \to B$, $\gamma: B \to C$ homomorfismos entre ellos. Diremos que la **sucesión exacta** es **corta** si

$$(\sigma, \gamma): 0 \to A \xrightarrow{\sigma} B \xrightarrow{\gamma} C \to 0.$$

Es decir, una sucesión exacta de cinco *R*-módulos con los dos módulos exteriores siendo cero (y por lo tanto las dos funciones exteriores triviales).

Proposición 1.3. Sean A, B y C R-módulos y $\sigma: A \to B$, $\gamma: B \to C$ homomorfismos entre ellos. Entonces

- 1. La sucesión $0 \to A \xrightarrow{\sigma} B$ es exacta (en A) si, y sólo si, σ es inyectiva.
- 2. La sucesión $B \to C \xrightarrow{\gamma} 0$ es exacta (en C) si, y sólo si, γ es sobreyectiva.

Demostración. El único homomorfismo que cumple $0 \to A$ tiene imagen 0 en A y por tanto, el núcleo de σ será este si, y sólo si, σ es inyectiva. De manera similar, el único homomorfismo $C \to 0$ es el homomorfismo nulo para todo elemento de C, que es la imagen de γ si, y sólo si, γ es sobreyectiva.

Corolario 1.1. La sucesión $0 \to A \xrightarrow{\sigma} B \xrightarrow{\gamma} C \to 0$ es exacta si, y sólo si, σ es inyectiva, γ es sobreyectiva y $\operatorname{Im} \sigma = \ker \gamma$.

Como acabamos de probar, la exactitud en A significa que σ es un monomorfismo, en B significa que $\sigma A = \ker \gamma$ y en C que γ es un epimorfismo. Así la sucesión exacta corta puede escribirse como $A \xrightarrow{\sigma} B \xrightarrow{\gamma} C$, con exactitud en B. Ahora σ induce un isomorfismo $\sigma': A \to \sigma A$ y γ un isomorfismo $\gamma': B/\sigma A \to C$; juntos estos proveen un isomorfismo de sucesiones exactas cortas, en la forma de un diagrama conmutativo

$$0 \longrightarrow A \xrightarrow{\sigma} B \xrightarrow{\gamma} C \longrightarrow 0$$

$$\downarrow^{\sigma'} \qquad \qquad \downarrow^{(\gamma')^{-1}}$$

$$0 \longrightarrow \sigma A \xrightarrow{i} B \longrightarrow B/\sigma A \longrightarrow 0.$$

En resumen, una sucesión exacta corta es simplemente otro nombre para un submódulo y su cociente.

Ejemplo 1.3. Respecto al Teorema de factorización, la inclusión i y la proyección π producen una sucesión exacta corta.

$$0 \to T \xrightarrow{i} M \xrightarrow{\pi} M/T \to 0.$$

1.3. Categorías y funtores

La teoría de categorías fue introducida por primera vez por Samuel Eilenberg y Saunders MacLane en [EM45]. En particular, las categorías son estructuras algebraicas que capturan la noción de composición. Gracias a ellas podemos analizar y comparar estructuras algebraicas, permitiendo sacar conclusiones comunes y trasladar problemas complejos a otros espacios donde resolverlos es más sencillo. En esta sección haré una breve introducción de las categorías apoyándome en [ML13].

Definición 1.17. Una categoría C es una tripleta (O, hom, \circ) formada por

- 1. Una clase \mathcal{O} , cuyos elementos denominamos **objetos** de \mathcal{C} y notamos por $Obj(\mathcal{C})$.
- 2. Por cada par de objetos (A, B) de \mathcal{C} , un conjunto hom(A, B) cuyos elementos son llamados **morfismos** de A a B. Si $f \in hom(A, B)$, normalmente escribiremos $f : A \to B$ o $A \xrightarrow{f} B$
- 3. Una **ley de composición** que asocia a cada morfismo $f:A\to B$ y a cada morfismo $g:B\to C$ un morfismo $g\circ f:A\to C$ que satisface
 - **Asociatividad**. Si $f: A \to B$, $g: B \to C$ y $h: C \to D$ son morfismos de C, entonces $h \circ (g \circ f) = (h \circ g) \circ f$.
 - **Identidad**. A cada objeto B le podemos asociar un morfismo identidad id $_B : B \to B$ tal que si $f : A \to B$ y $g : B \to C$ entonces $g \circ id_B = g$ y $id_B \circ f = f$.

Llamaremos a este morfismo la **composición** de f y g.

Ejemplo 1.4. Como veremos a continuación, la definición anterior nos va a permitir trabajar con un gran número de espacios matemáticos que ya conocemos en el contexto de la teoría de categorías. Algunos de ellos son:

- La categoría de conjuntos Set, cuyos objetos son todos los conjuntos y sus morfismos todas las aplicaciones entre conjuntos.
- La categoría de grupos Grp, donde los objetos son todos los grupos y los morfismos todos los homomorfismos de grupos.
- La categoría de espacios topológicos Top, donde los objetos son todos los espacios topológicos y los morfismos todas las aplicaciones continuas entre espacios topológicos $f: X \to Y$.
- La categoría de *R*-módulos *R*-Mod, donde los objetos son todos los *R*-módulos y los morfismos todos los homomorfismos de módulos.
- La categoría de sucesiones exactas de R-módulos de longitud n. Los objetos son dichas sucesiones $S: A_1 \to \cdots \to A_n$. Para dos sucesiones S: S', los morfismos son de la forma $\Gamma: S \to S'$ tal que $\Gamma = (\gamma_1, \ldots, \gamma_n)$ es una tupla donde los $\gamma_i: A_i \to A_i'$ son homomorfismos de R-módulos tal que

conmuta para todo $i \in \{1, \dots, n\}$.

Definición 1.18. Sea $f \in \text{hom}(A, B)$ un morfismo en la categoría \mathcal{C} . Diremos que f es una **equivalencia** en \mathcal{C} si existe en \mathcal{C} otro morfismo $g \in \text{hom}(B, A)$ tal que $g \circ f = \text{id}_A$ y $f \circ g = \text{id}_B$.

Observación 1.2. Nótese que si $f \in \text{hom}(A, B)$ es una equivalencia en C, $g \in \text{hom}(B, A)$ debe ser única. En efecto, si suponemos que existe $g' \in \text{hom}(B, A)$ tal que $g' \circ f = \text{id}_A$, entonces $g = g' \circ f \circ g = g' \circ \text{id}_B = g'$.

Dentro de la teoría de categorías, los funtores tienen un papel principal, pues nos van a permitir llevar objetos y morfismos de una categoría a otra preservando identidades y composiciones.

Definición 1.19. Sean C, D dos categorías. Un **funtor covariante** de C a D es una pareja de funciones *denotadas por la misma letra T* tal que:

- 1. Una **función objeto** que asigna a cada objeto $C \in \mathcal{C}$ un objeto $T(C) \in \mathcal{D}$.
- 2. Una **función de morfismos** qu asigna a cada morfismo $\gamma: C \to C'$ de \mathcal{C} un morfismo $T(\gamma): T(C) \to T(C')$ de \mathcal{D} . Este par de funciones satisfacen las siguientes condiciones:

$$T(1_C)=\mathrm{id}_{T(C)}, \qquad C\in\mathcal{C},$$
 $T(eta\gamma)=T(eta)T(\gamma), \qquad eta\gamma ext{ definido en }\mathcal{C}.$

Es decir, un funtor covariante $T: \mathcal{C} \to \mathcal{D}$ es una aplicación que preserva el rango, dominio, identidades y composiciones de \mathcal{C} en \mathcal{D} .

1.4. Módulos diferenciales

Comenzaremos definiendo lo que es un módulo de homología y estableceremos la terminología que emplearemos cuando trabajemos con ellos.

Definición 1.20. Sea C un R-módulo junto a un endomorfismo $d:C\to C$ tal que $d^2=d\circ d=0$. Diremos entonces que C es un **módulo diferencial** y llamaremos a d **operador borde** de C.

Llamaremos a los elementos de C cadenas. El submódulo de ciclos será $Z(C) = \ker d$, y el submódulo de bordes $B(C) = \operatorname{Im} d$. Si nos fijamos, el requisito $d^2 = 0$ es equivalente a exigir que $\operatorname{Im} d \subset \ker d$.

Definición 1.21. Sea C un módulo diferencial. Definimos el R-módulo de homología de C como el módulo cociente H(C;R) tal que

$$H(C;R) = \frac{Z(C)}{B(C)}$$

En particular, cuando C sea un \mathbb{Z} -módulo diferencial, lo llamaremos **grupo diferencial** y notaremos $H(C;\mathbb{Z})$ simplemente por H(C).

Por tanto, el módulo de homología de un módulo diferencial C está formado por las clases laterales [c] = c + B(C) donde c es un ciclo de C. A los elementos de H(C;R) los llamaremos **clases de homología**. Dos ciclos c y c' diremos que son **homólogos** si ambos pertenecen a la misma clase de homología, esto es, $c \sim c'$.

Definición 1.22. Sean C y C' dos módulos diferenciales y d, d' sus respectivos operadores borde. Diremos que $f: C \to C'$ es un **homomorfismo de módulos diferenciales** si f es un homomorfismo de módulos y además d'f = fd.

La anterior definición nos permite preservar la estructura algebraica del módulo diferencial. De esta forma, si tomamos una cadena $c \in C$, que sea un ciclo o un borde, y $f \colon C \to C'$ es un homomorfismo de módulos diferenciales, $f(c) \in C'$ seguirá siendo un ciclo o un borde de manera correspondiente. En efecto, si $z \in Z(C)$, entonces

$$d'f(z) = f(dz) = f(0) = 0.$$

Esto es, $f(z) \in \ker d'$. Ahora, si $b \in B(C)$, entonces existe $c \in C$ tal que dc = b. En consecuencia,

$$d'f(c) = f(dc) = f(b),$$

y por tanto, $f(b) \in \operatorname{im} d'$.

Los grupos diferenciales definen una categoría donde los objetos son los módulos diferenciales y los morfismos son los homomorfismos de módulos diferenciales. Tomemos como ley de composición interna la composición de dichos homomorfismos. Claramente es asociativa pues si $C, C', \bar{C}, \tilde{C} \in Obj()$, y $f: C \to C', g: C' \to \bar{C}$, $h: \bar{C} \to \tilde{C}$, entonces $h \circ (g \circ f)$ se cumple si, y sólo si,

$$\begin{split} \tilde{d}(h\circ(g\circ f)) &= (\tilde{d}h)\circ(g\circ f) = (h\bar{d})\circ(g\circ f) = h\circ(\bar{d}g)\circ f \\ &= h\circ(gd')\circ f = h\circ g\circ(d'f) = h\circ g\circ(fd) = (h\circ g)\circ fd \\ &= ((h\circ g)\circ f)d \end{split}$$

y por tanto $h \circ (g \circ f) = (h \circ g) \circ f$. La propiedad de identidad se sigue de existir el homomorfismo identidad de módulos.

Definición 1.23. Sean C, C' módulos diferenciales y $f: C \to C'$ un homomorfismo de módulos diferenciales. Definimos la función $f_* = H(f): H(C;R) \to H(C';R)$ tal que

$$f_*([c]) = [f(c)]$$

Diremos que H(f) es el **homomorfismo inducido** por f.

Proposición 1.4. En estas condiciones, H es un funtor covariante de la categoría de módulos diferenciales a la categoría de módulos.

Demostración. Por la definición dada del módulo de homología, es claro que la función objeto H asigna a cada grupo diferencial C un grupo de homología H(C;R). En cuanto a la función de morfismos, la identidad de grupos diferenciales se preserva pues $H(\mathrm{id})([c]) = \mathrm{id}_*([c]) = [\mathrm{id}(c)] = [c]$ para todo $c \in C$. Además, si $f,g \in \mathrm{hom}(C)$, entonces

$$H(g \circ f)([c]) = (g \circ f)_*([c]) = [(g \circ f)(c)] = [g(f(c))]$$

= $g_*([f(c)]) = g_*(f_*([c])) = (H(g) \circ H(f))([c])$

para todo $c \in C$, manteniendo la ley de composición.

1.5. Complejos de cadenas

Definición 1.24. Sea R un anillo. Un **complejo de cadenas** C_{\bullet} de R-módulos es una familia $\{C_n, \partial_n\}$ donde C_n son R-módulos y $\partial_n : C_n \to C_{n-1}$ homomorfismos de R-módulos tales que $\partial_n \partial_{n+1} = 0$ para todo $n \in \mathbb{Z}$.

Nota. Usualmente notaremos directamente ∂ al homomorfismo ∂_n independientemente del valor de n siempre y cuando se sobrentienda por el contexto.

Observación 1.3. La última condición es equivalente a que $\operatorname{Im} \partial_{n+1} \subset \ker \partial_n$.

Un complejo C₀ es por tanto una sucesión doblemente infinita

$$C_{\bullet}: \cdots \to C_1 \to C_0 \to C_{-1} \to \cdots$$

donde toda composición de homomorfismos de dicha familia es el homomorfismo nulo. La **homología** $H(C_{\bullet})$ es la familia de R-módulos

$$H_n(C_{\bullet}) = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$$

donde $H_n(C_{\bullet})$ es el *n*-ésimo módulo de homología de C_{\bullet} .

Luego $H_n(C_{\bullet})=0$ implica que la sucesión C_{\bullet} es exacta en C_n . A los elementos de C_n los llamaremos **n-cadenas** o **cadenas** de dimensión n. Un **n-ciclo** o **ciclo** de dimensión n de C_{\bullet} es un elemento del submódulo $Z_n(C_{\bullet})=\ker\partial_n$. Un **n-borde** o **borde** de dimensión n es un elemento de $B_n(C_{\bullet})=\operatorname{Im}\partial_{n+1}$. La clase lateral de un ciclo c la notaremos por $[c]=c+\partial_{n+a}C_{n+1}$. Dos n-ciclos c, $c'\in C_n$ pertenecientes a la misma clase lateral [c] decimos que son **homólogos**, es decir, $c\sim c'$.

Nota. Si la dimensión se sobrentiende en estos casos, no la indicaremos de manera explícita.

Definición 1.25. Sea $\{C_{\bullet}^i, \partial^i\}_{i \in I}$ una familia de complejos de cadenas. Su **suma directa** la definimos como el complejo de cadenas $\bigoplus_{i \in I} C_{\bullet}^i$ cuyos operadores borde vienen dados por $\bigoplus_{i \in I} \partial_n^i : \bigoplus_{i \in I} C_n^i \to \bigoplus_{i \in I} C_{n-1}^i$ para todo $n \in \mathbb{Z}$.

Proposición 1.5. Sea $\{C_{\bullet}^i, \partial^i\}_{i \in I}$ una familia de complejos de cadenas. Entonces su homología conmuta con la suma directa, esto es, $H_n(\bigoplus_{i \in I} C_{\bullet}^i) \cong \bigoplus_{i \in I} H_n(C_{\bullet}^i)$ para todo $n \in \mathbb{Z}$.

Demostración. Para demostrar que la homología conmuta con sumas directas, queremos mostrar que para una colección de complejos de cadenas $\{C_{\bullet}^i, \partial^i\}_{i \in I}$, los homomorfismos

$$\phi: H_n\left(\bigoplus_{i\in I} C^i_{\bullet}\right) \to \bigoplus_{i\in I} H_n(C^i_{\bullet}): [(c_i)] \mapsto ([c_i]),$$

$$\psi:igoplus_{i\in I}H_n(C^i_ullet) o H_n\left(igoplus_{i\in I}C^i_ullet
ight):([c_i])\mapsto [(c_i)],$$

están bien definidos y son inversos mutuos.

En primer lugar, para comprobar que dichas aplicaciones están bien definidas, observemos que $[(c_i)] = [(c_i')]$ si, y sólo si, $[0] = [(c_i - c_i')]$. Esto ocurre si, y sólo si, existe un $b_i \in C^i_{\bullet}$ tal que $\partial_i(b_i) = (c_i - c_i')$, lo cual es equivalente a $c_i + \partial_i(b_i) = c_i'$ para cada $i \in I$. Por lo tanto, $[(c_i)] = [(c_i')]$ si, y sólo si, $\phi([(c_i)]) = \phi([(c_i')]) = [(c_i' + \partial_i(b_i))] = [(c_i')]$. De manera análoga,

1. Fundamentos del álgebra homológica

 $[(c_i)] = [(c_i')]$ si, y sólo si, $\psi([(c_i)]) = \psi([(c_i')])$. Esto implica que tanto ϕ como ψ están bien definidos

En segundo lugar, es claro que ϕ y ψ son homomorfismos de R-módulos. Además, ϕ lleva la clase de equivalencia $[(c_i)]$ a $([c_i])$, mientras que ψ lleva $([c_i])$ a $[(c_i)]$, lo que demuestra que son inversos el uno del otro.

Por lo tanto, ϕ es un isomorfismo con ψ como su inverso, mostrando que $\bigoplus_{i \in I} H_n(C^i_{\bullet}) \cong H_n(\bigoplus_{i \in I} C^i_{\bullet})$.

Definición 1.26. Sean C_{\bullet} , C'_{\bullet} complejos de cadenas. Una **aplicación de cadenas** o **morfismo de cadenas** $f: C_{\bullet} \to C'_{\bullet}$ es una familia de homomorfismos de R-módulos $f_n: C_n \to C'_n$ tal que $\partial'_n f_n = f_{n-1} \partial_n$ para todo $n \in \mathbb{Z}$.

$$\cdots \longleftarrow C_{n-1} \stackrel{\partial_n}{\longleftarrow} C_n \stackrel{\partial_{n+1}}{\longleftarrow} C_{n+1} \longleftarrow \cdots$$

$$\downarrow^{f_{n-1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n+1}}$$

$$\cdots \longleftarrow C'_{n-1} \stackrel{\partial'_n}{\longleftarrow} C'_n \stackrel{\partial'_{n+1}}{\longleftarrow} C'_{n+1} \longleftarrow \cdots$$

Cuando se sobrentienda del contexto, notaremos simplemente por ∂ a los correspondientes ∂_n y ∂'_n .

Los complejos de cadenas, junto con sus morfismos, forman una categoría que denotaremos por R- Ch_{\bullet} . Esto se debe a que existe la identidad y se cumple la propiedad de asociatividad para la composición de morfismos. En efecto, para tres morfismos $f: C_{\bullet} \to C'_{\bullet}$, $g: C'_{\bullet} \to C''_{\bullet}$ y $h: C''_{\bullet} \to \overline{C}_{\bullet}$, se tiene que

$$h_n \circ (g_n \circ f_n) = (h_n \circ g_n) \circ f_n$$

para cada $n \in \mathbb{Z}$, ya que son homomorfismos de módulos diferenciales. En consecuencia, $h \circ (g \circ f) = (h \circ g) \circ f$.

Sea $f: C_{\bullet} \to C'_{\bullet}$ un morfismo de complejos de cadenas. Definimos $H_n(f) = f_*: H_n(C_{\bullet}) \to H_n(C'_{\bullet})$ tal que

$$f_*([c]) = f_*(c + \partial C_{n+1}) = fc + \partial C'_{n+1}.$$

Entonces f_* es un homomorfismo de R-módulos, como recoge el siguiente resultado.

Proposición 1.6. Cada H_n es un funtor covariante de la categoría de complejos de cadenas y morfismos de cadenas a la categoría de R-módulos.

Demostración. Como vimos anteriormente, H_n asigna a cada complejo de cadenas C_{\bullet} un R-módulo. Para demostrar que H_n también asigna a cada morfismo de cadenas un homomorfismo de R-módulos, consideremos $[c], [c'] \in H_n(C_{\bullet})$ y $r, s \in R$. Entonces, podemos ver

que

$$f_*(r[c] + s[c']) = f_*(r(c + \partial C_{n+1}) + s(c' + \partial C_{n+1}))$$

$$= f_*(rc + \partial C_{n+1} + sc' + \partial C_{n+1})$$

$$= f_*(rc + sc' + \partial C_{n+1})$$

$$= f(rc + sc') + \partial C'_{n+1}$$

$$= rf(c) + sf(c') + \partial C'_{n+1}$$

$$= r(f(c) + \partial C'_{n+1}) + s(f(c') + \partial C'_{n+1})$$

$$= r(f_*(c + \partial C_{n+1})) + s(f_*(c' + \partial C_{n+1}))$$

$$= rf_*([c]) + sf_*([c']).$$

Además, si consideramos $f=\operatorname{id}$ la identidad, es claro que id_* es la identidad de R-módulos.

Definición 1.27. Sean C_{\bullet} , C'_{\bullet} complejos de cadenas y $f,g:C_{\bullet}\to C'_{\bullet}$ dos aplicaciones de cadenas entre ellos. Una **homotopía de cadenas** u **homotopía algebraica** s es una familia de homomorfismos de módulos $s_n:C_n\to C'_{n+1}$ para cada $n\in\mathbb{Z}$ tal que

$$\partial'_{n+1}s_n + s_{n-1}\partial_n = f_n - g_n$$

Diremos entonces que f y g son **algebraicamente homotópicas** y escribiremos $f \simeq g$.

Teorema 1.4. Si s es una homotopía de cadenas entre $f,g:C_{\bullet}\to C'_{\bullet}$, entonces

$$H_n(f) = H_n(g) : H_n(C_{\bullet}) \to H_n(C'_{\bullet})$$

Demostración. Si c es un ciclo de C_n , tenemos que $\partial_n c = 0$. Por la Def. 1.27 se cumple que $f_n c - g_n c = \partial s_n c$. Como consecuencia $f_n c$ y $g_n c$ son homólogos lo que implica que $[f_n c] = [g_n c]$ en $H_n(C'_{\bullet})$, como queríamos demostrar.

Definición 1.28. Una aplicación de cadenas $f: C_{\bullet} \to C'_{\bullet}$ es una **equivalencia de cadenas** si existe otra aplicación $h: C'_{\bullet} \to C_{\bullet}$ y homotopías $s: h \circ f \to \mathrm{id}_{C_{\bullet}}$, $t: f \circ h \to \mathrm{id}'_{C_{\bullet}}$ tales que $h \circ f \simeq \mathrm{id}_{C_{\bullet}}$, $f \circ h \simeq \mathrm{id}_{C'_{\bullet}}$.

Como $H_n(\mathrm{id}_{C\bullet}) = \mathrm{id}_{H_n(C_\bullet)}$, del anterior teorema se deduce lo siguiente.

Corolario 1.2. Si $f: C_{\bullet} \to C'_{\bullet}$ es una equivalencia de cadenas, la aplicación inducida $H_n(f): H_n(C_{\bullet}) \to H_n(C'_{\bullet})$ es un isomorfismo para cada $n \in \mathbb{Z}$.

Proposición 1.7. Sean $f,g:C_{\bullet}\to C'_{\bullet}$ y $f',g':C'_{\bullet}\to C''_{\bullet}$ aplicaciones de cadenas. Sean $s:f\to g$, $s':f'\to g'$ homotopías de cadenas entre ellas tales que $f\simeq g$, $f'\simeq g'$. Entonces la composición

$$f's + s'g : f' \circ f \to g' \circ g$$
 $g' \circ g : C_{\bullet} \to C''_{\bullet}$

es una homotopía de cadenas.

Demostración. Por ser s,s' homotopías de cadenas tenemos que $\partial s + s\partial = f - g$ y $\partial s' + s'\partial = f' - g'$. Aplicando f' a la izquierda de la primera expresión y g a la derecha de la segunda nos queda

$$\begin{cases} f'\partial s + f's\partial = f' \circ f - f' \circ g, \\ \partial s'g + s'\partial g = f' \circ g - g' \circ g. \end{cases}$$

Sumando ambas igualdades

$$f'\partial s + f's\partial + \partial s'g + s'\partial g = f' \circ f - f' \circ g + f' \circ g - g' \circ g,$$

$$f'\partial s + f's\partial + \partial s'g + s'\partial g = f' \circ f - g' \circ g,$$

$$\partial f's + f's\partial + \partial s'g + s'g\partial = f' \circ f - g' \circ g,$$

donde finalmente queda

$$\partial (f's + s'g) + (f's + s'g)\partial = f' \circ f - g' \circ g.$$

1.6. Subcomplejos y complejos cociente

Definición 1.29. Un **subcomplejo** S_{\bullet} de C_{\bullet} es una familia de submódulos $S_n \subset C_n$ tal que para cada $n \in \mathbb{Z}$, $\partial S_n \subset S_{n-1}$.

Por tanto, S_{\bullet} es un complejo en sí con el operador borde ∂ inducido de C_{\bullet} y la inclusión $i: S_{\bullet} \to C_{\bullet}$ es una aplicación de cadenas.

Definición 1.30. Sea S_{\bullet} un subcomplejo de C_{\bullet} . El **complejo cociente** C_{\bullet}/S_{\bullet} es la familia $(C_{\bullet}/S_{\bullet})_n = C_n/S_n$ de módulos cocientes con operador borde $\partial'_n : C_n/S_n \to C_{n-1}/S_{n-1}$ inducido por $\partial_{C_{\bullet}}$.

Definición 1.31. Sean $f: C_{\bullet} \to C'_{\bullet}$, $g: C'_{\bullet} \to C''_{\bullet}$ aplicaciones de cadenas. La sucesión de complejos

$$C_{\bullet} \xrightarrow{f} C'_{\bullet} \xrightarrow{g} C''_{\bullet}$$

es **exacta** en C'_{\bullet} si Im(f) = ker(g); es decir, si cada sucesión $C_n \xrightarrow{f_n} C'_n \xrightarrow{g_n} C''_n$ de módulos es exacta en C'_n .

Definición 1.32. Un complejo C_{\bullet} es **positivo** si $C_n=0$ para todo n<0 con $n\in\mathbb{Z}$. Su n-ésimo módulo de homología es entonces positivo ya que $H_n(C_{\bullet})=0$ para todo n<0. De manera análoga, un complejo C_{\bullet} es **negativo** si $C_n=0$ para todo n>0 con $n\in\mathbb{Z}$.

Definición 1.33. Sea C_{\bullet} un complejo positivo de R-módulos. Denominaremos **aumento de** C_{\bullet} al homomorfismo sobreyectivo $\varepsilon: C_0 \to R$ de forma que $\varepsilon \circ \partial_1 = 0$.

Definición 1.34. Sea C_{\bullet} un complejo de cadenas positivo, $\varepsilon: C_0 \to R$ un aumento de C_{\bullet} y sea $n \in \mathbb{Z}$. Consideremos el complejo positivo \widetilde{C}_{\bullet} tal que $\widetilde{C}_n = C_n$ para todo $n \geq 0$, $\widetilde{C}_n = 0$ para todo n < -1 y $\widetilde{C}_{-1} = R$. Consideremos también $\widetilde{\partial}_n = \partial_n$ para todo $n \geq 1$ y $\widetilde{\partial}_0 = \varepsilon$. Llamaremos a este complejo **complejo aumentado** de C_{\bullet} .

Definición 1.35. Sea A un módulo. Definimos el siguiente complejo positivo donde $A_0 = A$, $A_n = 0$ para $n \neq 0$ y $\partial = 0$. Un **complejo sobre** A es un complejo positivo C_{\bullet} junto con una aplicación de cadenas $\varepsilon: C_{\bullet} \to A$ donde ε es un homomorfismo de módulos $\varepsilon: C_0 \to A$ tal que $\varepsilon \partial = 0: C_1 \to A$.

Definición 1.36. Una homotopía contráctil para $\varepsilon: C_{\bullet} \to A$ es una aplicación de cadenas $f: A \to C_{\bullet}$ tal que $\varepsilon f = \mathrm{id}_A$ junto con una homotopía $s: \mathrm{id}_{C_{\bullet}} \to f \varepsilon$ donde $\mathrm{id}_{C_{\bullet}} \simeq f \varepsilon$. En

otras palabras, una homotopía contráctil consiste en homomorfismos de módulos $f: A \to C_0$ y $s_n: C_n \to C_{n+1}, n=0,1,...$, tal que

$$\varepsilon f = \mathrm{id}_A$$
, $\partial_1 s_0 + f \varepsilon = \mathrm{id}_{C_0}$, $\partial_{n+1} s_n + s_{n-1} \partial_n = \mathrm{id}_{C_n}$ $n > 0$.

Podemos extender el complejo estableciendo $C_{-1}=A$, $\partial_0=\varepsilon:C_0\to C_{-1}$ y $s_{-1}=f$. Aplicando la Def. 1.36, $s:\mathrm{id}_{C\bullet}\to 0$ es una homotopía de cadenas. Si $\varepsilon:C_\bullet\to A$ tiene una homotopía contráctil, sus grupos de homología son isomorfos por $\varepsilon_*:H_0(C_\bullet)\to A$ para n=0 y $H_n(C_\bullet)=0$ para n>0.

Consideremos un complejo de cadenas $C_{\bullet} = \{C_n, d_n\}_{n \in \mathbb{Z}}$, donde cada C_n es un \mathbb{Z} -módulo libre y $d_n : C_n \to C_{n-1}$ es el operador diferencial de C_{\bullet} que cumple $d_{n-1} \circ d_n = 0$ para todo n. Este tipo de complejos aparece frecuentemente en el estudio de espacios topológicos.

Supongamos además que cada C_n es finitamente generado. Entonces, el n-ésimo grupo de homología de C_{\bullet} , definido como

$$H_n(C_{\bullet}) = \frac{\ker(d_n)}{\operatorname{Im}(d_{n+1})},$$

es un grupo abeliano finitamente generado. Este resultado se sigue del hecho de que el núcleo y la imagen de los morfismos entre \mathbb{Z} -módulos libres finitamente generados son también finitamente generados.

El teorema de Descomposición cíclica primaria y, en particular, el teorema de estructura para grupos abelianos finitamente generados afirma que cualquier grupo abeliano finitamente generado G puede expresarse como una suma directa de grupos cíclicos de la forma

$$G \cong \mathbb{Z}^{\beta} \oplus \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_k}$$
,

donde β es el rango de G y cada \mathbb{Z}_{m_i} es un grupo cíclico de orden m_i , donde m_i divide a m_{i+1} para cada $i \in \{1, ..., k\}$. Aplicando este teorema al n-ésimo módulo de homología $H_n(C_{\bullet})$, obtenemos que

$$H_n(C_{\bullet}) \cong \mathbb{Z}^{\beta_n} \oplus \mathbb{Z}_{m_1} \oplus \ldots \oplus \mathbb{Z}_{m_k}$$

donde β_n es el rango de $H_n(C_{\bullet})$, conocido como el **n-ésimo número de Betti** de C_{\bullet} , y los m_i son los **n-ésimos coeficientes de torsión**, donde m_i divide a m_{i+1} para cada $i \in \{1, ..., k\}$.

Definición 1.37. Sea C_{\bullet} un complejo de cadenas y k un entero no negativo. El k-ésimo número de Betti, $\beta_n(C_{\bullet})$, se define como el rango del n-ésimo módulo de homología de C_{\bullet} sobre el dominio de ideales principales R, $H_n(C_{\bullet};R)$. Esto es, $\beta_n(C_{\bullet}) = \operatorname{rg}(H_n(C_{\bullet};R))$. Si no hay lugar a confusión lo notaremos simplemente por β_n .

Definición 1.38. Dado un complejo de cadenas C_{\bullet} y considerando la descomposición en sumas directas del n-ésimo módulo de homología $H_n(C_{\bullet}; R)$ sobre un dominio de ideales principales R, definimos los n-ésimos coeficientes de torsión como los $m_i \in R$ donde $i \in \{1, \ldots, k\}$ que aparecen en la descomposición

$$H_n(C_{\bullet};R) \cong R^{\beta_n} \oplus \frac{R}{\langle m_1 \rangle} \oplus \ldots \oplus \frac{R}{\langle m_k \rangle},$$

donde cada m_i divide a m_{i+1} .

Los números de Betti β_n proporcionan una medida de la dimensionalidad de la n-ésima homología, mientras que los coeficientes de torsión $\{m_i\}$ representan los órdenes de los

1. Fundamentos del álgebra homológica

sumandos cíclicos de torsión en la descomposición de homología y reflejan la estructura torsional de $H_n(C_{\bullet}; R)$.

La homología con coeficientes en \mathbb{Z} es fundamental en topología algebraica, proporcionando una rica estructura para el estudio de espacios topológicos. Sin embargo, el uso de coeficientes en otros anillos, particularmente en cuerpos, puede simplificar significativamente los cálculos y aún así ofrecer información valiosa para ciertas aplicaciones. La elección de un cuerpo como coeficientes, por ejemplo \mathbb{Z}_2 , reduce la complejidad de los cálculos al evitar problemas relacionados con la torsión, facilitando la manipulación algebraica. Al estudiar la homología con estos coeficientes alternativos, aunque se obtiene una visión menos detallada del espacio, a menudo es suficiente para resolver problemas específicos dentro de un contexto dado, tales como la detección de características topológicas esenciales o la simplificación de la clasificación de espacios topológicos.

2. Símplices y complejos simpliciales

Los espacios topológicos pueden llegar a ser complicados de estudiar. Los complejos simpliciales tienen la ventaja de ser estructuras fáciles de estudiar. Por este motivo, los dotaremos de cierta topología que nos permitirá construir homeomorfismos a un gran número de espacios topológicos. En este capítulo nos centraremos en la definición y el estudio de estos objetos en profundidad en la línea de [Mun18] y lo complementaremos con algunas aportaciones de [Lee10].

2.1. Símplices

Con la finalidad de generalizar estructuras como el triángulo y el tetraedro, a finales del siglo XIX nace un nuevo concepto: el símplice. Su sencillez y propiedades lo convirtieron en una herramienta muy versátil en el estudio de la topología algebraica, dando lugar a lo que hoy conocemos como homología simplicial. En esta sección definiremos lo que es un símplice y algunos conceptos asociados a él que nos serán de gran utilidad en el estudio de dicho campo. Comenzamos recordando algunos conceptos de la geometría afín.

Como tan sólo será necesario trabajar en el espacio afín usual N-dimensional, lo notaremos simplemente por \mathbb{R}^N .

Definición 2.1. Sea $\{a_0, \ldots, a_p\}$ un conjunto de puntos en \mathbb{R}^N . Diremos que dicho conjunto es **afínmente independiente** si para cualesquiera $t_i \in \mathbb{R}$, las ecuaciones

$$\sum_{i=0}^{p} t_i = 0 \quad \mathbf{y} \quad \sum_{i=0}^{p} t_i a_i = 0$$

implican que $t_0 = t_1 = \ldots = t_p$.

Definición 2.2. Sea $\{a_0, \ldots, a_p\}$ un conjunto de puntos afínmente independiente. Definimos el **plano afín** P generado por $\{a_0, \ldots, a_p\}$ como el conjunto de puntos $x \in \mathbb{R}^N$ tales que

$$x = \sum_{i=0}^{p} t_i a_i = a_0 + \sum_{i=1}^{p} t_i (a_i - a_0)$$

para algunos $t_1, ..., t_p \in \mathbb{R}$. Diremos entonces que P es el plano que pasa por a_0 paralelo a los vectores $a_i - a_0$, $i \in \{1, ..., p\}$.

Nótese que la transformación afín T de \mathbb{R}^N tal que $T(x)=x-a_0$ es una traslación que lleva el plano P al subespacio vectorial de \mathbb{R}^N con base $a_1-a_0,a_2-a_0,\ldots,a_p-a_0$. Si componemos dicha transformación con una aplicación lineal que lleve cada vector $a_1-a_0,a_2-a_0,\ldots,a_p-a_0$ a los primeros N vectores de la base usual, obtenemos una transformación afín $S:P\to\mathbb{R}^N\times\{0\}$ tal que $S(a_i)=(0,\stackrel{i-1}{\ldots},0,1,0,\stackrel{i+1}{\ldots},0)$ con $i\in\{1,\ldots,p\}$.

Definición 2.3. Sea $\{a_0,\ldots,a_p\}$ un conjunto de puntos afínmente independiente en \mathbb{R}^N . Definimos el **p-símplice** o **símplice** $\sigma=[a_0,\ldots,a_p]$ generado por a_0,\ldots,a_p como el conjunto de todos los $x\in\mathbb{R}^N$ tales que

$$x = \sum_{i=0}^{p} t_i a_i$$
 y $\sum_{i=0}^{p} t_i = 1$

con $t_i \ge 0$, $i \in \{0, 1, ..., p\}$. Diremos que t_i es la i-ésima coordenada baricéntrica de x respecto a $a_0, a_1, ..., a_p$.

Proposición 2.1. Sea σ un k-símplice definido como en 2.3. Entonces, para cualquier $p \in \sigma$, las coordenadas baricéntricas t_0, \ldots, t_k de p están determinadas de manera única.

Demostración. Por definición, cualquier punto arbitrario $p \in \sigma$ puede escribirse como una combinación convexa de los puntos a_i . Esto garantiza la existencia de una solución (no negativa) al sistema lineal

$$At = \begin{pmatrix} a_{01} & \cdots & a_{k1} \\ \vdots & \ddots & \vdots \\ a_{0N} & \cdots & a_{kN} \\ 1 & \cdots & 1 \end{pmatrix} \begin{pmatrix} t_0 \\ \vdots \\ t_k \end{pmatrix} = \begin{pmatrix} p_1 \\ \vdots \\ p_N \\ 1 \end{pmatrix} = p^*,$$

donde A es la matriz que contiene a los a_i como columnas, extendidos con un 1 en la última fila para incorporar la condición de que la suma de t_i sea igual a 1, asegurando que estamos considerando combinaciones convexas.

Para demostrar la unicidad, supongamos la existencia de otro vector t' tal que $At'=p^*$. Esto lleva a A(t-t')=0. Supongamos que A(t-t')=Av=0, donde v=t-t'. Esto implica que para $v_i=t_i-t'_i$ para todo $i\in\{0,\ldots,k\}$

$$\sum_{i=0}^{k} v_i \cdot \begin{pmatrix} a_{0i} \\ \vdots \\ a_{ki} \\ 1 \end{pmatrix} = 0,$$

lo que lleva a que $v_0=v_1=\cdots=v_k=0$, debido a la independencia lineal de las columnas de A. En consecuencia, t=t', demostrando así que las coordenadas baricéntricas son únicas para cualquier punto p en σ .

Los puntos a_0, \ldots, a_p que generan σ los llamaremos **vértices** de σ y al número p lo llamaremos la **dimensión** de σ , que notaremos por dim σ .

Definición 2.4. Sea $\sigma = [a_0, \dots, a_p]$ un símplice. Una **cara de dimensión** p de σ será cualquier símplice generado por un subconjunto no vacío de $\{a_0, \dots, a_p\}$.

En particular, la cara de σ generada por $a_0,\ldots,a_{i-1},a_{i+1},\ldots,a_p$ la llamamos la **cara opuesta** de $a_i,i\in\{0,\ldots,p\}$. Las caras de σ diferentes de σ diremos que son **caras propias** de σ y la unión de todas ellas la llamaremos el **borde** de σ y lo notaremos Bd σ . Finalmente, definimos el **interior** de σ , Int σ , como el conjunto de puntos de σ que no pertenecen a su borde.

En ocasiones, para dos símplices σ y τ , escribiremos $\tau \leq \sigma$ si τ es cara de σ . En caso de ser cara propia, lo notaremos por $\tau \prec \sigma$.

Figura 2.1.: Símplices de dimensión 0, 1, 2 y 3

Proposición 2.2. Si σ es un símplice, entonces es unión disjunta del interior de todas sus caras.

Demostración. Sea x un elemento del símplice $\sigma = [a_0, \ldots, a_p]$ y sean t_0, \ldots, t_p sus coordenadas baricéntricas. Consideremos ahora σ_k el símplice resultante de eliminar los vértices cuya coordenada tenía valor nulo. Esto es, tomamos el símplice $\sigma_k = [a_{i_1}, \ldots, a_{i_k}]$ donde $t_{i_s} > 0$ para todo $s \in \{1, \ldots, k\}$. Por la construcción de σ_k , tenemos que s pertenece a su interior.

Ahora sabemos que todo punto de un símplice pertenece al interior de una cara. Finalmente, la unicidad de las coordenadas baricéntricas nos garantiza que la unión del interior de dos caras es disjunta. \Box

Dado un símplice σ podemos definir un orden sobre sus vértices. Dos órdenes de σ los consideraremos equivalentes si podemos pasar de uno a otro con un número par de permutaciones. Así, los ordenamientos posibles para los vértices de σ se pueden agrupar en dos clases de equivalencia distintas, que definimos como las **orientaciones del símplice** σ .

Definición 2.5. Decimos que un símplice $\sigma = [a_0, a_1, \dots, a_p]$ está **orientado** si se le ha asignado una de estas orientaciones. Utilizaremos $[a_0a_1 \dots a_p]$ para denotar la clase de equivalencia dada por la orientación $a_0 < a_1 < \dots < a_p$ del símplice generado por los vértices a_0, a_1, \dots, a_p .

2.2. Complejos simpliciales

La importancia de los complejos simpliciales reside en su capacidad para descomponer espacios topológicos en componentes manejables, permitiendo un análisis detallado de su estructura. Al considerar la forma en que estos símplices se conectan y orientan entre sí, los complejos simpliciales facilitarán la definición de cadenas y ciclos simpliciales que serán indispensables en el estudio de la homología simplicial.

Definición 2.6. Un **complejo simplicial** (finito) K en \mathbb{R}^N es una colección (finita) de símplices en \mathbb{R}^N tal que:

- 1. Toda cara de un símplice de *K* está en *K*.
- 2. La intersección de cualesquiera dos símplices de *K* o es el vacío o es una cara de ambos símplices.

Nota. Si bien los complejos simpliciales se pueden formular sin la restricción de finitud, nosotros trabajaremos principalmente en el caso finito por simplicidad en algunos resultados.

En ciertas ocasiones puede ser interesante saber si dada una colección cualquiera de símplices, esta es un complejo simplicial o no. Para ello, el siguiente lema nos puede ser de utilidad.

Lema 2.1. Una colección K de símplices es un complejo simplicial si, y sólo si, se cumplen las siguientes condiciones:

Figura 2.2.: Visualización de un complejo simplicial.

- 1. Toda cara de un símplice de K está en K.
- 2. La intersección dos a dos del interior de los símplices de K es vacía.

Demostración. Primero, asumamos que K es un complejo simplicial. Dados dos símplices $\sigma, \tau \in K$ veamos que si el interior de ambos tiene un punto x en común, entonces $\sigma = \tau$. Sea $s = \sigma \cap \tau$ y considero $x \in s$. Si s fuera una cara propia de σ , entonces x pertenecería a la frontera de σ , lo cual no se cumple ya que x pertenece al interior de σ . Por tanto $s = \sigma$. De manera análoga, $s = \tau$, luego $\sigma = \tau$.

Asumamos ahora que se cumplen (1) y (2). Queremos ver que si el conjunto $\sigma \cap \tau \neq \emptyset$, dicha intersección es la cara σ' de σ generada por los vértices b_0, \ldots, b_m de σ que están en τ . Primero, $\sigma' \subset \sigma \cap \tau$ por ser $\sigma \cap \tau$ convexa y contener a b_0, \ldots, b_m . Para la otra inclusión supongamos que $x \in \sigma \cap \tau$. Esto implica que $x \in \text{Int } s \cap \text{Int } t$ para alguna cara s de σ y alguna cara t de τ . Se sigue de (2) que s = t por lo que los vértices de s están en τ y por definición, son elementos del conjunto $\{b_0, \ldots, b_m\}$. Concluimos entonces que s es una cara de s0, lo que implica que s1, como queríamos ver.

Definición 2.7. Si L es una subcolección del complejo simplicial K que contiene todas las caras de sus elementos, entonces L es un complejo simplicial que llamaremos **subcomplejo** de K.

Definición 2.8. Sea K un complejo simplicial. Diremos **p-esqueleto** de K al subcomplejo formado por todas las caras de K cuya dimensión sea menor o igual que p. Lo denotaremos por $K^{(p)}$. En particular, $K^{(0)}$ lo llamaremos el **conjunto de vértices** de K.

Definición 2.9. Sea K un complejo simplicial de \mathbb{R}^N y sea |K| el subconjunto de \mathbb{R}^N tal que |K| es la unión de todos los símplices de K. Definimos el **politopo** o **espacio subyacente** de K como el espacio topológico $(|K|, \mathcal{T})$ donde los abiertos de \mathcal{T} son aquellos $O \subseteq |K|$ tal que $O \cap \sigma$ es abierto en σ con la topología inducida de \mathbb{R}^N para todo $\sigma \in K$.

Veamos que en efecto $(|K|, \mathcal{T})$ es un espacio topológico. \emptyset , $|K| \in \mathcal{T}$ ya que son abiertos trivialmente en σ , pues $\emptyset \cap \sigma = \emptyset$ y $|K| \cap \sigma = \sigma$ para todo $\sigma \in K$. Si $O_1, O_2 \in \mathcal{T}$, entonces $O_1 \cap \sigma$, $O_2 \cap \sigma$ son abiertos en σ luego $(O_1 \cap O_2) \cap \sigma = (O_1 \cap \sigma) \cap (O_2 \cap \sigma)$ es abierto en σ para todo $\sigma \in K$. Por tanto $O_1 \cap O_2 \in \mathcal{T}$. Finalmente, consideremos una familia $\{O_i\}_{i \in I} \subset \mathcal{T}$ donde I es un conjunto de índices. Para cada $\sigma \in K$, $(\bigcup_{i \in I} O_i) \cap \sigma = \bigcup_{i \in I} (O_i \cap \sigma)$ que efectivamente es una unión arbitraria de abiertos de σ . En consecuencia, $\bigcup_{i \in I} O_i \in \mathcal{T}$.

En general, la topología de |K| es más fina que la inducida de la topología usual de \mathbb{R}^N . Si A es cerrado en |K| con la topología inducida de la usual, $A = B \cap |K|$ para algún cerrado B

de \mathbb{R}^N y por tanto $B \cap \sigma$ sería cerrado en σ para cada símplice σ de K. Como consecuencia, $B \cap |K| = A$ es cerrado en |K| con la topología \mathcal{T} definida anteriormente. No obstante, la otra inclusión no tiene por qué cumplirse:

Ejemplo 2.1. Consideremos el complejo no finito K en \mathbb{R} cuyos símplices son todos los intervalos [m,m+1] con $m\in\mathbb{Z}\backslash\{0\}$, todos los intervalos de la forma [1/(n+1),1/n] donde $n\in\mathbb{N}$ y todas sus respectivas caras. Como resultado tenemos que $|K|=\mathbb{R}$, donde $F=\{1/n:n\in\mathbb{N}\}$ es cerrado en nuestra topología \mathcal{T} pero no en la inducida por la usual. Dicho de otra forma, $\mathbb{R}\backslash F$ es abierto en \mathcal{T} pero no en la usual.

Si no hay lugar a confusión, simplemente notaremos al politopo de K por |K| y lo llamaremos el **poliedro** |K|.

A continuación, mencionemos algunas propiedades relevantes de este espacio topológico. Para ello fijemos un complejo simplicial finito K en \mathbb{R}^N .

Proposición 2.3. Sea K un complejo simplicial finito. Entonces el poliedro |K| es compacto.

Demostración. Si K es un complejo simplicial, sus símplices son conjuntos cerrados y acotados. En consecuencia, |K| es unión finita de conjuntos cerrados y acotados, luego es cerrado y acotado en \mathbb{R}^N . Por lo tanto, es compacto.

Proposición 2.4. Sea K un complejo simplicial. Si $x \in |K|$, entonces existe un único símplice en K tal que x pertenece a su interior.

Demostración. Si $x \in |K|$, entonces existe algún símplice σ de K tal que $x \in \sigma$. Por la Proposición 2.2, x pertenece al interior de alguna cara τ de σ . Supongamos ahora que existe otro símplice ρ de K tal que $x \in \operatorname{Int} \rho$. Por consiguiente, si $x \in \operatorname{Int} \rho \cap \operatorname{Int} \tau$, entonces x pertenecería a una cara común μ de ρ y τ . Esto es, $\mu = \rho \cap \tau$. Ahora si $\rho \neq \mu$, el elemento x debería tener alguna coordenada baricéntrica nula respecto a los vértices de ρ , en contradicción con que x pertenece al interior de ρ . En consecuencia, $\rho = \mu$. De manera análoga obtenemos $\tau = \mu$ y por tanto, $\rho = \tau$.

Definición 2.10. Sea K un complejo simplicial y sea $x \in |K|$. Llamaremos **símplice soporte de** x al único símplice que contiene a x en su interior y lo notaremos por sop(x).

Corolario 2.1. Sean σ, τ símplices de K tal que Int $\sigma \cap \tau$ es no vacía. Entonces σ es una cara de τ .

Demostración. Consideremos $x \in \operatorname{Int} \sigma \cap \tau$. Por la Proposición 2.2 sabemos que τ es la unión de todas sus caras lo que implica que existe una cara μ de τ cuyo interior contiene a x. Por lo tanto, $x \in \operatorname{Int} \mu \cap \operatorname{Int} \sigma$ y como consecuencia de la Proposición 2.4, $\mu = \sigma$.

Lema 2.2. Sea K un complejo simplicial y X un espacio topológico. Una aplicación $f:|K| \to X$ es continua si, y sólo si, $f|_{\sigma}$ es continua para cada $\sigma \in K$.

Demostración. Si f es continua, también lo es $f|_{\sigma}$ por ser σ un subespacio de K. Supongamos ahora que $f|_{\sigma}$ es continua para cada $\sigma \in K$. Si C es un cerrado de X, $f^{-1}(C) \cap \sigma = f|_{\sigma}^{-1}(C)$ es un cerrado en σ por la continuidad de $f|_{\sigma}$. Concluimos que $f^{-1}(C)$ es cerrado en |K| por definición.

Definición 2.11. Un espacio topológico X es **triangulable** si existe un complejo simplicial K cuyo espacio subyacente es homeomorfo a X. Diremos entonces que el homeomorfismo $h: |K| \to X$ es una **triangulación**.

2.3. Celdas y CW-complejos

A continuación presentamos una generalización del concepto de complejo simplicial, propuesta por J.H.C. Whitehead en [Whi49]. Los CW-complejos reemplazan la estructura simplicial tradicional por estructuras homeomorfas a bolas abiertas, facilitando el estudio de una gama más amplia de espacios topológicos.

Iniciaremos esta sección estableciendo la notación que utilizaremos. Denotaremos la **bola abierta** centrada en x_0 y de radio r en el espacio \mathbb{R}^N con la topología usual por el conjunto $B_r(x_0) = \{x \in \mathbb{R}^N : \|x - x_0\| < r\}$. Además, para cualquier subconjunto U de \mathbb{R}^N , definiremos su **clausura** como \overline{U} y su **frontera** como Bd U. Por último, la **esfera unidad** de dimensión n será representada simplemente como S^{n-1} .

Definición 2.12. Sea X un espacio topológico. Diremos que X es una **celda** abierta (cerrada) de dimensión p o p-celda si X es homeomorfo a la bola unidad abierta (cerrada) de dimensión p.

Sería interesante disponer de resultados que nos digan cuándo un subconjunto dado puede ser una celda. Para ello, recordemos el siguiente resultado de topología básica:

Lema 2.3. Sean X, Y espacios topológicos y sea $f: X \to Y$ una aplicación continua entre ellos. Si X es compacto e Y es Hausdorff, entonces f es una aplicación cerrada.

La siguiente proposición será de gran utilidad para ver que los complejos simpliciales no son más que un caso particular de los CW-complejos.

Proposición 2.5. Si $D \subseteq \mathbb{R}^n$ es un subconjunto convexo compacto con interior no vacío, entonces D es una n-celda cerrada y su interior es una n-celda abierta. De hecho, dado cualquier punto $p \in \text{Int } D$, existe un homeomorfismo $F : \overline{B}_1(0) \to D$ que envía 0 a p, $B_1(0)$ a Int D, $y \in \mathbb{S}^{n-1}$ a Bd D.

Demostración. Sea p un punto interior de D. Reemplazando D por su imagen bajo la traslación $x\mapsto x-p$, podemos suponer que $p=0\in {\rm Int}\,D$. Entonces existe algún $\varepsilon>0$ tal que la bola $B_{\varepsilon}(0)$ está contenida en D. Utilizando la dilatación $x\mapsto x/\varepsilon$, podemos asumir $B_1(0)\subseteq D$. A continuación demostraremos que cada semirrecta cerrada que comienza en el origen interseca Bd D en exactamente un punto. Sea R tal semirrecta cerrada. Dado que D es compacto, su intersección con R es compacta; por lo tanto, hay un punto x_0 en esta intersección donde la distancia al origen alcanza su máximo. Este punto se identifica fácilmente como parte del borde de D. Para demostrar que solo puede haber un punto así, mostramos que el segmento de línea desde 0 hasta x_0 consta enteramente de puntos interiores de D, excepto x_0 mismo. Cualquier punto en este segmento que no sea x_0 se puede escribir en la forma λx_0 para $0 \le \lambda < 1$. Supongamos que $z \in B_{1-\lambda}(x_0)$, z_0 se puede escribir en la forma z_0 para z_0 se sigue de la convexidad que z_0 como z_0 y z_0 están ambos en z_0 y z_0 están abos en z_0 está contenida en z_0 , lo que implica que z_0 es un punto interior.

Ahora definamos una aplicación $f : \operatorname{Bd} D \to \mathbb{S}^{n-1}$ por

$$f(x) = \frac{x}{|x|}.$$

En palabras, f(x) es el punto donde el segmento de línea que parte del origen hasta x interseca la esfera unidad. Puesto que f es la restricción de una aplicación continua, es continua, por lo que la discusión del párrafo anterior muestra que es biyectiva. Dado que ∂D es compacto, f es un homeomorfismo por el Lema 2.3.

Figura 2.3.: Esquema que muestra la idea de que cada rayo tan sólo tiene un punto en la frontera en la demostración de la Proposición 2.5. Recurso obtenido de [Lee10].

Finalmente, definamos $F : \overline{B}_1(0) \to D$ de forma que

$$F(x) = \begin{cases} |x|f^{-1}\left(\frac{x}{|x|}\right), & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Entonces F es continua lejos del origen porque f^{-1} lo es, y también lo es en el origen pues la acotación de f^{-1} implica que $F(x) \to 0$ conforme $x \to 0$. Geométricamente, F lleva cada segmento de línea radial que conecta 0 con un punto $\omega \in \mathbb{S}^{n-1}$ linealmente sobre el segmento radial de 0 al punto $f^{-1}(\omega) \in \operatorname{Bd} D$. Por convexidad, F toma sus valores en D. La aplicación F es inyectiva, ya que puntos en rayos distintos van a rayos distintos, y cada segmento radial se lleva linealmente a su imagen. Es sobreyectiva porque cada punto $g \in D$ está en algún rayo desde $g \in D$. Por el Lema 2.3, $g \in D$ está en homeomorfismo.

Definición 2.13. Sea (X, \mathcal{E}) , donde X es un espacio topológico Hausdorff y \mathcal{E} una colección de celdas abiertas. Diremos entonces que que (X, \mathcal{E}) es un **CW-complejo** si se cumple que:

- **(C)** Para cada p-celda $e \in \mathcal{E}$, existe una aplicación continua $f_e : B^p \to X$ de forma que el interior de B^p es homeomorfo a la celda e y lleva la frontera de B^p en una unión finita de celdas de dimensión menor a p. A dicha función la llamaremos **función característica**.
- **(W)** Un subconjunto F de X es cerrado si $F \cap \overline{e}$, donde \overline{e} denota la clausura de e, es cerrado para todo $e \in \mathcal{E}$.

Normalmente denotaremos al CW-complejo (X, \mathcal{E}) simplemente por X.

Observación 2.1. En la formulación original de Whitehead, la primera condición denotaba la propiedad de clausura finita. Por otro lado, la segunda condición denotaba que la topología empleada era la topología débil (del inglés, weak).

Definición 2.14. Sea X un espacio topológico. Diremos que una celda $e \subset X$ es **regular** si admite una función característica que sea un homeomorfismo sobre \bar{e} . Además, diremos que un CW-complejo es **regular** si todas sus celdas son regulares.

2. Símplices y complejos simpliciales

Figura 2.4.: Visualización de un CW-complejo para S².

Una propiedad importante de los CW-complejos es que mantienen su estructura en subconjuntos bajo ciertas condiciones razonables.

Definición 2.15. Sea X un CW-complejo. Diremos que $Y \subseteq X$ es un **subcomplejo** de X si es unión de celdas de X de forma que si Y contiene una celda, entonces también contiene su clausura.

Teorema 2.1. Sea X un CW-complejo y sea Y un subcomplejo de X. Entonces Y es cerrado en X y, además, es un CW-complejo con la topología y la colección de celdas inducidas.

Demostración. Es claro que Y es Hausdorff. Además, por definición tenemos que Y es la unión disjunta de sus celdas. Sea $e \subseteq Y$ una celda abierta de Y. Como su clausura también está contenida en Y, entonces existe un número finito de celdas de X con intersección no vacía con \overline{e} que, a su vez, son celdas de Y. En consecuencia, la condición (C) se cumple. Es más, cualquier aplicación característica $f_e : \to X$ de X lo es también de Y para cualquier celda $e \subseteq Y$.

En cuanto a la condición (W), supongamos que S es un subconjunto de Y tal que $S \cap \overline{e}$ es cerrado en \overline{e} para toda celda en Y. Sea ahora e una celda de X que no esté contenida en Y. Sabemos que $\overline{e} \setminus e$ está contenido en la unión de un número finito de celdas de X, de las cuales un subconjunto de ellas están contenidas en Y. Llamemos a dichas celdas e_1, \ldots, e_n . Por consiguiente, $\overline{e}_1 \cup \cdots \cup \overline{e}_n \subseteq Y$ y además,

$$S \cap \overline{e} = S \cap (\overline{e}_1 \cup \cdots \cup \overline{e}_n) \cap \overline{e} = ((S \cap \overline{e}_1) \cup \cdots \cap (S \cap \overline{e}_n)) \cap \overline{e}$$

luego $S \cap \overline{e}$ es cerrado en \overline{e} . Es decir, S es cerrado en X y por tanto en Y. Finalmente, concluimos que Y es cerrado en X tomando S = Y.

Definición 2.16. Sea X un CW-complejo. Diremos que el subespacio $X^{(p)}$ de X es el p-**esqueleto** de X si es igual a la unión de todas las celdas de dimensión menor o igual que p.
En particular, es un subcomplejo de dimensión p de X.

Teorema 2.2. Sea X un CW-complejo. Entonces las siguientes propiedades son equivalentes:

- 1. X es conexo por caminos.
- 2. X es conexo.
- 3. El 1-esqueleto de X es conexo.
- 4. Algún n-esqueleto de X es conexo para algún n.

Demostración. Obviamente, $(1) \Rightarrow (2)$ y $(3) \Rightarrow (4)$, por lo que basta con demostrar que $(2) \Rightarrow (3)$ y $(4) \Rightarrow (1)$.

Para probar $(2) \Rightarrow (3)$ razonaremos por contrarrecíproco. Supongamos que $X^{(1)} = X'^{(1)} \cup X''^{(1)}$ es una unión no conexa del 1-esqueleto de X. Veamos por inducción en n que para cada n>1, el n-esqueleto $X^{(n)}$ puede expresarse como unión no conexa $X^{(n)} = X'^{(n)} \cup X''^{(n)}$ tal que $X'^{(n)} \subseteq X'^{(n-1)}$ y $X''^{(n)} \subseteq X''^{(n-1)}$ para cada n. Supongamos $X^{(n-1)} = X'^{(n-1)} \cup X''^{(n-1)}$ es una unión no conexa de $X^{(n-1)}$ para algún n>1. Para cada celda n-dimensional e, la restricción de su aplicación función característica $f_e \colon D^n \to X^{(n)}$ a ∂D^n es continua en $X^{(n-1)}$. Dado que $\partial D^n \cong \mathbb{S}^{n-1}$ es conexo, su imagen debe estar contenida en uno de los conjuntos $X'^{(n)}$ o $X''^{(n)}$. Por lo tanto, $\overline{f_e(D)}$ tiene una intersección no trivial con $X'^{(n)}$ o $X''^{(n)}$, pero no con ambos. Dividimos las n-celdas en dos colecciones disjuntas \mathcal{E}' y \mathcal{E}'' , según si sus clausuras intersecan $X'^{(n-1)}$ o $X''^{(n-1)}$, respectivamente, y definimos

$$X'^{(n)} = X'^{(n-1)} \cup \left(\bigcup_{e \in \mathcal{E}'} \overline{f_e(e)}\right), \quad X''^{(n)} = X''^{(n-1)} \cup \left(\bigcup_{e \in \mathcal{E}''} \overline{f_e(e)}\right).$$

Claramente, $X^{(n)}$ es la unión disjunta de $X'^{(n)}$ y $X''^{(n)}$, y ambos conjuntos son no vacíos debido a la hipótesis de inducción.

Ahora, definamos $X' = \bigcup_n X'^{(n)}$ y $X'' = \bigcup_n X''^{(n)}$. Como antes, $X = X' \cup X''$, y ambos conjuntos son no vacíos. Por el mismo argumento que arriba, si e es cualquier celda de X de cualquier dimensión, su clausura debe estar contenida en uno de estos conjuntos. Así, X' y X'' son ambos abiertos y cerrados en X, lo que implica que X no es conexo.

Para demostrar $(4) \Rightarrow (1)$, supongamos que X es un CW-complejo cuyo n-esqueleto es conexo para algún $n \geq 0$. Mostremos por inducción en k que $X^{(k)}$ es conexo por caminos para cada $k \geq n$. Primero, necesitamos mostrar que $X^{(n)}$ en sí mismo es conexo por caminos. Si n = 0, entonces $X^{(n)}$ es discreto y conexo, así que es un conjunto unitario y por lo tanto conexo por caminos. En caso contrario, elijamos cualquier punto $x_0 \in X^{(n)}$ y consideremos S_n la componente de camino de $X^{(n)}$ que contiene a x_0 . Para cada celda e de $X^{(n)}$, notemos que $\overline{f_e(e)}$ es la imagen continua de un espacio conexo por caminos, así que es conexo por caminos. Por lo tanto, si $\overline{f_e(e)}$ tiene una intersección no trivial con la componente de camino S_n , debe estar contenida en S_n . En consecuencia, S_n es cerrado y abierto en $X^{(n)}$. Como estamos asumiendo que $X^{(n)}$ es conexo, entonces $S_n = X^{(n)}$.

estamos asumiendo que $X^{(n)}$ es conexo, entonces $S_n = X^{(n)}$.

Ahora, supongamos que hemos demostrado que $X^{(k-1)}$ es conexo por caminos para algún k > n y sea S_k la componente de camino de $X^{(k)}$ que contiene a $X^{(k-1)}$. Para cada k-celda e, su clausura $\overline{f_e(e)}$ es un subconjunto de $X^{(k)}$ conexo por caminos que tiene intersección no trivial con $X^{(k-1)}$ y, por lo tanto, está contenido en S_k . Se sigue que $X^{(k)} = S_k$, completando la inducción.

Lema 2.4. Sea X un CW-complejo. Entonces la clausura de cada celda está contenida en un subcomplejo finito.

Demostración. Consideremos cualquier n-celda $e \in X$ y probemos el lema por inducción. Para el caso n = 0, $\bar{e} = e$ es trivialmente un subcomplejo finito. Supongamos ahora el lema cierto para las celdas de dimensión menor o igual que n y veámoslo para n + 1. Por la condición (C), $\bar{e} \setminus e$ está contenido en la unión de un número finito de celdas de dimensión menor que n + 1. Dichas celdas están contenidas en subcomplejo finitos por hipótesis de inducción. Sin embargo, la unión de dichos subcomplejos finitos con e es de hecho un subcomplejo finito que contiene a \bar{e} . □

Lema 2.5. Sea X un CW-complejo. Un subconjunto de X es discreto si, y sólo si, su intersección con cada celda es finita.

Demostración. Sea S un subconjunto discreto de X. Entonces, la intersección de la clausura de cada celda e de X con S es un subconjunto discreto de un conjunto compacto, luego es finito. En consecuencia, $S \cap e$ también lo es.

Para la otra implicación supongamos que S es un subconjunto cuya intersección con cualquier celda es finita. Como la clausura de cada celda está contenida en un subcomplejo finito, entonces por hipótesis tenemos que $S \cap \overline{e}$ es finito para cada celda e de X. Esto significa que $S \cap \overline{e}$ es cerrado en \overline{e} y por la condición (W), S es cerrado en X. Sin embargo, este argumento podemos aplicarlo a cualquier subconjunto de S, luego todo subconjunto de S es cerrado en X. Por lo tanto, la topología inducida en S es discreta.

Teorema 2.3. Sea X un CW-complejo. Un subconjunto de X es compacto si, y sólo si, es cerrado en X y está contenido en un subcomplejo finito.

Demostración. Todo subcomplejo finito de *X* es compacto pues es unión finita de clausuras de celdas, las cuales son compactas. En consecuencia, si *K* es un subconjunto cerrado de *X* contenido en un subcomplejo finito, entonces es compacto.

Supongamos ahora que $K \subseteq X$ es compacto. Si K intersecara una cantidad infinita de celdas, podríamos tomar un punto de cada intersección de forma que tuviéramos un subconjunto infinito discreto de K, lo cual es imposible. Es decir, K está contenido en la unión de un número finito de celdas y por el Lema 2.4, está contenido en un subcomplejo finito.

Corolario 2.2. Un CW-complejo es compacto si, y sólo si, es un complejo finito.

Proposición 2.6. Todo p-símplice es una celda cerrada de dimensión p.

Demostración. Inmediato por la Proposición 2.5.

Una vez discutidas algunas propiedades básicas de los CW-complejos, ya estamos en condiciones de verificar que efectivamente los complejos simpliciales son CW-complejos.

Proposición 2.7. Si K es un complejo simplicial finito, entonces el poliedro |K| junto con la colección \mathcal{E} de interiores de los símplices de K forman un CW-complejo.

Demostración. Supongamos que K es un complejo simplicial finito en \mathbb{R}^N . La condición (C) se obtiene de manera directa a partir de la Proposición 2.5.

En cuanto a la propiedad (W), consideremos F como un subconjunto de |K|. Sea $\{x_n\}_{n\in\mathbb{N}}$ una sucesión que converge a x en |K| y sea U un entorno de x. Por la compacidad de |K| y el hecho de que \mathcal{E} es un recubrimiento por abiertos de |K|, podemos escoger un subrecubrimiento finito e_1, \ldots, e_k tal que $x \in U \subseteq \overline{e_1} \cup \ldots \cup \overline{e_k}$.

Fijemos $n_0 \in \mathbb{N}$ tal que $x_{n_i} \in U$ para todo $n_i \geq n_0$. Como hay un número finito de e_j e infinitos x_{n_i} , existe una parcial convergente $\{x_{n_i}\}_{i\in\mathbb{N}}$ que converge a x contenido en algún \overline{e}_j para cierto $j \in \{1, \ldots, k\}$. Esto muestra que $x \in \overline{e}_j$ y, puesto que $x_{n_i} \in F \cap \overline{e}_j$ para todo $n_i \geq n_0$, y $F \cap \overline{e}_j$ es cerrado en \overline{e}_j , concluimos que $x \in F \cap \overline{e}_k$.

2.4. Aplicaciones simpliciales

Cuando trabajemos con complejos simpliciales, será interesante tener en cuenta cuándo las transformaciones entre ellos pueden ser continuas o incluso homeomorfismos.

Lema 2.6. Sean K y L dos complejos simpliciales y sea $f: K^{(0)} \to L^{(0)}$ una aplicación entre los conjuntos de vértices de K y L. Supongamos que siempre que los vértices v_0, \ldots, v_n de K generen un símplice en K, los puntos $f(v_0), \ldots, f(v_n)$ son vértices de un símplice de L. Entonces podemos extender f a una aplicación continua $|f|: |K| \to |L|$ tal que

$$x = \sum_{i=0}^{n} t_i v_i \implies |f|(x) = \sum_{i=0}^{n} t_i f(v_i)$$

Llamaremos a g la aplicación simplicial (lineal) inducida por f.

Demostración. Por hipótesis, los vértices $f(v_0),\ldots,f(v_n)$ generan un símplice τ en L. Por ser K un complejo simplicial, la suma de sus coeficientes t_i , con $i\in\{0,\ldots,n\}$, es igual a uno, luego $|f|(x)=\sum_{i=0}^n t_i f(v_i)$ es un punto de τ . Es decir, |f| es una aplicación lineal del símplice σ generado por v_0,\ldots,v_n al símplice τ generado por $f(v_0),\ldots,f(v_n)$. Por ser $|f|:\sigma\to\tau$ lineal en un espacio de dimensión finita, entonces es continua.

Ahora tan solo nos queda ver que $|f|:|K|\to |L|$ es continua. Bien, pues por ser $|f|:\sigma\to\tau$ continua, también lo es $|f|:\sigma\to |L|$. Finalmente por el Lema 2.2, $|f|:|K|\to |L|$ es continua.

Consideremos las funciones de la forma de f descrita en 2.6. Para cualquier complejo K, existe una aplicación identidad id $_K \colon K \to K$ que corresponde a la aplicación identidad en los vértices. Dadas tres aplicaciones $f \colon K \to L$, $g \colon L \to M$ y $h \colon M \to N$, la aplicación compuesta $h \circ (g \circ f) = (h \circ g) \circ f$, pues es una composición de aplicaciones de conjuntos que preserva símplices. Por lo tanto, existe una categoría de complejos simpliciales y estas funciones que denotaremos por **Csim**.

Por otro lado, veamos que el Lema 2.6 nos garantiza la existencia de un funtor covariante entre esta categoría y los espacios topológicos.

Proposición 2.8. Existe un funtor covariante $|\cdot|$: **CSim** \rightarrow **Top** de la categoría de aplicaciones simpliciales a la categoría de espacios topológicos.

Demostración. Para cada complejo simplicial K, la identidad en **CSim** es la función identidad id $_K: K \to K$. La aplicación simplicial inducida $|\operatorname{id}_K|: |K| \to |K|$ es tal que

$$| id_K | \left(\sum_{i=0}^n t_i v_i \right) = \sum_{i=0}^n t_i i_K(v_i) = \sum_{i=0}^n t_i v_i,$$

lo cual es precisamente la identidad en el espacio topológico |K|. Esto muestra que $|\cdot|$ preserva las identidades.

Sean ahora $f: K \to L$ y $g: L \to M$ dos morfismos en **CSim**. La composición en **CSim** es $g \circ f: K \to M$, y necesitamos demostrar que $|(g \circ f)| = |g| \circ |f|$. Para cualquier punto $x = \sum_{i=0}^{n} t_i v_i$ en |K|,

$$|(g \circ f)|(x) = \sum_{i=0}^{n} t_i(g \circ f)(v_i) = \sum_{i=0}^{n} t_i g(f(v_i)).$$

Por otro lado,

$$(|g| \circ |f|)(x) = |g| \left(|f| \left(\sum_{i=0}^{n} t_i v_i \right) \right) = |g| \left(\sum_{i=0}^{n} t_i f(v_i) \right) = \sum_{i=0}^{n} t_i g(f(v_i)).$$

Ambas expresiones son iguales y por tanto, $|\cdot|$ preserva la composición de morfismos. \square

Normalmente abusaremos de la notación de forma que escribiremos la aplicación simplicial inducida $|f|:|K|\to |L|$ simplemente por $f:|K|\to |L|$.

Lema 2.7. Supongamos que $f: K^{(0)} \to L^{(0)}$ es una aplicación biyectiva tal que los vértices v_0, \ldots, v_n de K generan un símplice de K si, y sólo si, $f(v_0), \ldots, f(v_n)$ generan un símplice de L. Entonces la aplicación simplicial inducida $g: |K| \to |L|$ es un homeomorfismo. Diremos entonces que g es un homeomorfismo simplicial de K con L.

Demostración. Por hipótesis, cada símplice $\sigma \in K$ se identifica con otro símplice $\tau \in L$. Por tanto, debemos comprobar que la aplicación lineal $h: \tau \to \sigma$ inducida por la correspondencia de vértices f^{-1} es la inversa de $g: \sigma \to \tau$. Si consideramos $x = \sum_{i=0}^n t_i v_i$, entonces por definición $g(x) = \sum_{i=0}^n t_i f(v_i)$. Luego

$$h(g(x)) = h(\sum_{i=0}^{n} t_i f(v_i)) = \sum_{i=0}^{n} t_i f^{-1}(v_i) = \sum_{i=0}^{n} t_i v_i = x$$

2.5. Complejos simpliciales abstractos

Si bien la definición actual de los complejos simpliciales puede llegar a ser de gran utilidad, en la práctica muchas veces no es necesario usar las herramientas que nos proporciona la geometría afín. Es por ello que vamos a introducir una descripción puramente combinatoria de los complejos simpliciales que, aun siendo más simple, nos serán de gran utilidad a la hora de trabajar con espacios topológicos.

Definición 2.17. Un **complejo simplicial abstracto** (o simplemente complejo abstracto) es una colección S de conjuntos finitos no vacíos tal que si $A \in S$, entonces para todo $B \subset A$ con B no vacío, $B \in S$. Además, diremos que el complejo abstracto es **finito** si dicha colección es finita.

Al elemento A de S lo llamaremos **símplice** de $A \in S$. La **dimensión** de A es una menos que el número de elementos que le pertenecen. Todo subconjunto de A lo llamaremos **cara** de A. En cuanto a la **dimensión** de S, diremos que es igual al máximo de las dimensiones de sus elementos o en caso de no haberlo, diremos que la dimensión de S es infinita. El **conjunto de vértices** S diremos que es la unión de elementos de S que contienen un único punto. Llamaremos **subcomplejo** de S a cualquier subcolección de S que sea un complejo simplicial abstracto en sí.

Sean V_S , V_T los conjuntos de vértices de los complejos abstractos S, T respectivamente. Dos complejos abstractos S y T diremos que son **isomorfos** si existe una aplicación biyectiva $f: V_S \to V_T$ tal que $\{a_0, \ldots, a_p\} \in S$ si, y sólo si, $\{f(a_0), \ldots, f(a_p)\} \in T$.

Definición 2.18. Sean K un complejo simplicial y V su conjunto de vértices. Sea K la colección de todos los subconjuntos $\{a_0,\ldots,a_p\}\subset V$ tales que los vértices a_0,\ldots,a_p generan un símplice de K. Entonces llamaremos a la colección K el **esquema de vértices** de K.

Definición 2.19. Si el complejo simplicial abstracto S es isomorfo al esquema de vértices del complejo simplicial K, diremos que K es una **realización geométrica** de S.

Proposición 2.9. Sea S un complejo simplicial abstracto finito de dimensión N. Entonces existe una realización geométrica de S en \mathbb{R}^{2N+1} .

Demostración. Consideremos un conjunto de puntos $p_i \in \mathbb{R}^{2N+1}$ de forma sus componentes son potencias de su índice i. Veamos que cualquier conjunto de 2N+2 de estos puntos es afínmente independiente. Es decir, que los vectores formados por las diferencias entre estos puntos son linealmente independientes.

Para demostrarlo, consideremos un subconjunto de puntos $\{p_{j_k}: 1 \le k \le 2N+2\}$ de esta forma y analicemos el determinante de la matriz formada por los vectores correspondientes,

$$\begin{vmatrix} j_2 - j_1 & j_3 - j_1 & \cdots & j_{2n+2} - j_1 \\ j_2^2 - j_1^2 & j_3^2 - j_1^2 & \cdots & j_{2n+2}^2 - j_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ j_2^{2n+1} - j_1^{2n+1} & j_3^{2n+1} - j_1^{2n+1} & \cdots & j_{2n+2}^{2n+1} - j_1^{2n+1} \end{vmatrix}$$

Simplificando mediante operaciones elementales de fila, este determinante se transforma en el determinante de Vandermonde, cuyo valor es conocido y se calcula como el producto de las diferencias entre los términos seleccionados,

$$\prod_{1 \le k < l \le 2N+2} (j_k - j_l).$$

Este resultado no es cero siempre que todos los j_k sean distintos, asegurando así la independencia lineal.

Respecto a la construcción del complejo simplicial, tomemos un símplice abstracto A en \mathcal{S} con vértices $\{v_{i_0}, v_{i_1}, \ldots, v_{i_m}\}$ y consideremos el símplice geométrico $\sigma_A = [p_{i_0}, p_{i_1}, \ldots, p_{i_m}]$ en \mathbb{R}^{2N+1} . Dado que $m+1 \leq 2N+2$, el símplice σ_A tiene dimensión m. Definimos K como el conjunto que contiene todos los símplices σ_A para cada $A \in \mathcal{S}$. Veamos que la intersección de dos símplices σ_A y σ_B en K es igual a $\sigma_{A\cap B}$ con $A,B\in \mathcal{S}$. Consideremos τ como el símplice en \mathbb{R}^{2N+1} cuyos vértices son la unión de los vértices pertenecientes a σ_A y a σ_B , lo cual es posible ya que la suma de sus dimensiones no supera 2N. De esta manera, la intersección $\sigma_A\cap\sigma_B$ resulta ser la cara de τ determinada por los vértices que σ_A y σ_B comparten, es decir, aquellos asociados a $A\cap B$. Concluimos entonces que $\sigma_A\cap\sigma_B=\sigma_{A\cap B}$.

Como consecuencia inmediata de la proposición anterior y del Lema 2.7, tenemos el siguiente corolario.

Corolario 2.3. Las siguientes afirmaciones son ciertas:

- (a) Todo complejo abstracto finito S es isomorfo al esquema de vértices de algún complejo simplicial K.
- (b) Dos complejos simpliciales son afínmente isomorfos si, y sólo si, sus esquemas de vértices son isomorfos como complejos simpliciales abstractos.

3. Homología simplicial

Este capítulo se centra en la homología simplicial, una rama de estudio crucial de la topología algebraica que utiliza complejos simpliciales para analizar y comprender la estructura de espacios topológicos triangulables. Tras explorar los fundamentos del álgebra homológica y la teoría de complejos simpliciales, ahora profundizamos en las propiedades teóricas y aplicaciones prácticas de la homología simplicial siguiendo los contenidos de [RAo3].

3.1. Homología simplicial orientada

Consideremos Σ_p el conjunto de todos los símplices de dimensión p de un complejo simplicial K. Para cada $\sigma \in \Sigma_p$, definimos Σ_p^+ y Σ_p^- como los conjuntos que contienen, respectivamente, un símplice orientado σ^+ y el símplice con orientación opuesta σ^- . En lo que sigue, R siempre será un **anillo unitario commutativo**, a menos que se indique de manera explícita lo contrario.

Definición 3.1. Sea K un complejo simplicial y sea R un anillo. Consideremos el conjunto. Definimos $C_p(K;R)$, el R-módulo de las p-cadenas simpliciales orientadas de K, como el cociente del R-módulo libre generado por $\Sigma_p^+ \cup \Sigma_p^-$ sobre el submódulo generado por el conjunto $\{\sigma^+ + \sigma^- : \sigma \in \Sigma_p\}$. Esto es,

$$C_p(K;R) = \frac{R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle}{\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle}.$$

Para p < 0 o $p > \dim(K)$, definimos $C_p(K; R)$ como el R-módulo trivial.

El interés de definir el *R*-módulo de *p*-cadenas simpliciales orientadas radica tanto en la identificación de los elementos que contiene como en las operaciones algebraicas aplicables sobre ellos. Esta construcción nos permite manejar un símplice orientado y su opuesto como opuestos algebraicos en un marco formal. Veámoslo.

Nuestro objetivo es demostrar que efectivamente

$$\frac{R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle}{\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle} \cong R\langle \tilde{\Sigma}_p \rangle,$$

donde $\tilde{\Sigma}_p$ representa el conjunto de p-símplices en Σ_p con una orientación arbitrariamente fija para cada uno.

Para ello, definamos la aplicación $f: \Sigma_p^+ \cup \Sigma_p^- \to R\langle \tilde{\Sigma}_p \rangle$. Esta aplicación asigna a cada símplice orientado σ^+ en Σ_p^+ , un representante σ en $R\langle \tilde{\Sigma}_p \rangle$ con una orientación fija elegida arbitrariamente, y a cada σ^- en Σ_p^- , le asigna $-\sigma$ en $R\langle \tilde{\Sigma}_p \rangle$, donde $-\sigma$ refleja el elemento opuesto de σ .

La aplicación f respeta las relaciones de orientación al asignar a símplices con orientaciones opuestas a elementos que son opuestos algebraicos en $R\langle \tilde{\Sigma}_p \rangle$. Por la Propiedad universal de

los módulos libres, esta aplicación induce un homomorfismo $\tilde{f}: R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle \to R\langle \tilde{\Sigma}_p \rangle$ que resulta ser sobreyectivo, ya que cada elemento en $R\langle \tilde{\Sigma}_p \rangle$ tiene al menos una preimagen en $R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle$.

Por definición de f, para cada elemento de la forma $\sigma^+ + \sigma^-$ en $\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$, tenemos que $\tilde{f}(\sigma^+ + \sigma^-) = f(\sigma^+) + f(\sigma^-) = \sigma - \sigma = 0$, demostrando que todo el submódulo $\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$ tiene imagen cero por \tilde{f} y, por ende, está contenido en el núcleo de \tilde{f} .

Además, si consideramos un elemento x en $R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle$ tal que $\tilde{f}(x)=0$, este elemento puede expresarse como una combinación lineal de elementos en Σ_p^+ y Σ_p^- . La condición $\tilde{f}(x)=0$ implica que la suma de las imágenes bajo f de los términos en esta combinación lineal debe ser cero en $R\langle \tilde{\Sigma}_p \rangle$. Esto solo ocurre si para cada σ , la suma total de los coeficientes correspondientes a σ^+ y σ^- es cero, lo que significa que cada término en x que contribuye a esta suma cero debe ser de la forma $\sigma^+ + \sigma^-$ o un múltiplo de este, luego $\tilde{f}(x)=0$ implica que $x \in \langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$.

Por tanto, el núcleo de \tilde{f} coincide precisamente con $\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle$, y aplicando el Primer teorema de isomorfía, concluimos que

$$\frac{R\langle \Sigma_p^+ \cup \Sigma_p^- \rangle}{\langle \sigma^+ + \sigma^- : \sigma \in \Sigma_p \rangle} \cong R\langle \tilde{\Sigma}_p \rangle,$$

estableciendo la estructura algebraica deseada y completando la prueba.

Observación 3.1. En particular, la anterior construcción asigna a cada símplice orientado una cadena cuyo coeficiente del anillo es 1, 0 o -1. A estas cadenas las llamaremos p-cadenas elementales. En ocasiones abusaremos de la notación para designar por σ a la cadena elemental respectiva del símplice orientado σ .

Definición 3.2. Sea K un complejo simplicial y sean $C_p(K;R)$, $C_{p-1}(K;R)$ R-módulos de p-cadenas. Definimos el **operador borde de** p-cadenas como el homomorfismo $\partial_p : C_p(K;R) \to C_{p-1}(K;R)$ tal que

$$\partial_p(\sigma) = \partial_p([v_0, v_1, \dots, v_p]) = \sum_{i=0}^p (-1)^i [v_0, \dots, \hat{v}_i, \dots, v_p].$$

donde \hat{v}_i denota el vértice a eliminar.

Lema 3.1. El operador borde $\partial_p : C_p(K;R) \to C_{p-1}(K;R)$ está bien definido. En particular, si σ^+ y σ^- son las dos orientaciones del p-símplice σ , tenemos que

$$\partial_p(\sigma^+ + \sigma^-) = 0$$

Demostración. Probaremos que la suma de la imagen por el operador borde de $\sigma^+ = [v_0v_1 \dots v_p]$ y $\sigma^- = [v_1v_0 \dots v_p]$ es igual a 0. Para ello, observamos que

$$egin{aligned} \partial_p \sigma^+ &= [v_1 v_2 \ldots] - [v_0 v_2 \ldots] + \sum_{i
eq 0, 1} (-1)^i [v_0 v_1 \ldots \hat{v}_i \ldots v_p], \ \partial_p \sigma^- &= [v_0 v_2 \ldots] - [v_1 v_2 \ldots] + \sum_{i
eq 0, 1} (-1)^i [v_1 v_0 \ldots \hat{v}_i \ldots v_p]. \end{aligned}$$

Al sumar ambas expresiones, los dos primeros términos de $\partial_p \sigma^+$ y $\partial_p \sigma^-$ se cancelan entre sí. Como consecuencia de la definición de $C_{p-1}(K;R)$, los términos restantes definen

orientaciones opuestas del mismo símplice por lo que se cancelan y $\partial_p(\sigma^+ + \sigma^-) = 0$.

Lema 3.2. Sean $\partial_p: C_{p+1}(K;R) \to C_p(K;R)$, $\partial_p: C_p(K;R) \to C_{p-1}(K;R)$ operadores borde. Entonces $\partial_p \circ \partial_{p+1} = 0$.

Demostración.

$$\begin{split} \partial_p \partial_{p+1} [v_0, \dots, v_{p+1}] &= \partial_p \left(\sum_{i=0}^{p+1} (-1)^i [v_0 \dots \hat{v}_i \dots v_{p+1}] \right) \\ &= \sum_{i=0}^{p+1} (-1)^i \left[\sum_{j>i}^{p+1} (-1)^j [v_0 \dots, \hat{v}_i \dots \hat{v}_j \dots v_{p+1}] + \sum_{j=0}^{j< i} (-1)^j [v_0 \dots \hat{v}_j \dots \hat{v}_i \dots v_{p+1}] \right]. \end{split}$$

Es decir, el símplice $[v_0 \dots, \hat{v}_k \dots, \hat{v}_t \dots, v_{p+1}]$ aparece dos veces en la anterior expresión con signos opuestos, donde $k, t \in \{0, \dots, p+1\}$. Esto nos lleva a discutir los siguientes casos. Supongamos sin pérdida de generalidad que k < t. En el primer caso, i = k < j = t donde el coeficiente es $(-1)^k (-1)^{t-1}$. En el segundo caso, i = t > j = k con coeficiente $(-1)^t (-1)^k$. Concluimos por tanto que todo símplice de la expresión se anula y al anularse sobre los generadores, $\partial_{p-1}\partial_p$ es el homomorfismo nulo.

Definición 3.3. El complejo de cadenas positivo $C_{\bullet}(K;R) = \{C_p(K;R), \partial_p\}$ lo llamaremos **complejo de cadenas simpliciales** de K. La homología de dicho complejo la notaremos por $H_p(K;R)$ y lo llamaremos p-ésimo R-módulo de homología de K.

Si $R = \mathbb{Z}$, el módulo $H_p(K; \mathbb{Z})$ lo notaremos simplemente por $H_p(K)$ y diremos que es el p-ésimo grupo de homología de K.

Proposición 3.1. Sea K un complejo simplicial no vacío. Entonces el complejo de cadenas positivo $\{C_p(K;R), \partial_p\}$ admite un aumento.

Demostración. Sea $\varepsilon: C_0(K;R) \to R$ el homomorfismo que extiende linealmente $\varepsilon(v) = 1$ para todo vértice $v \in K$. Veamos que $\varepsilon \circ \partial_1: C_1(K;R) \to R$ es nulo. Tomando $[v_0,v_1] \in C_1(K;R)$ obtenemos que $\varepsilon(\partial_1[v_0,v_1]) = \varepsilon(v_1-v_0) = 1-1=0$, como queríamos ver.

Definición 3.4. Sea $\widetilde{C}_{\bullet}(K;R)$ el complejo aumentado del complejo de cadenas simpliciales $C_{\bullet}(K;R)$. Denominaremos p-ésimo módulo de homología reducida de K al módulo de homología $H_p(\widetilde{C}_{\bullet};R)$ y lo denotaremos por $\widetilde{H}(K;R)$.

Proposición 3.2. Sean K y L dos complejos simpliciales junto con una aplicación simplicial $f: |K| \to |L|$. Esta aplicación induce un homomorfismo entre los complejos de cadenas, C(f), el cual se define extendiendo linealmente la función

$$C(f)([v_0 \dots v_p]) = \begin{cases} [f(v_0) \dots f(v_p)] & \text{si los v\'ertices son distintos entre s\'i,} \\ 0 & \text{en caso contrario.} \end{cases}$$

En particular, si f es la identidad, entonces C(f) es simplemente la identidad también. Además, si $g: |L| \longrightarrow |M|$ es otra aplicación simplicial, se cumple que $C(g \circ f) = C(g) \circ C(f)$.

Demostración. Para demostrar esto, primero observamos que la definición de C(f) es independiente de la orientación de los símplices. Luego, verificamos la igualdad $\partial_p \circ C(f) = C(f) \circ \partial_p$.

Si no hay vértices repetidos, se tiene que:

$$C(f)\partial_{p}([v_{0}\dots v_{p}]) = C(f)\left(\sum_{i=0}^{p}(-1)^{i}[v_{0}\dots \hat{v}_{i}\dots v_{p}]\right) = \sum_{i=0}^{p}(-1)^{i}[f(v_{0})\dots \widehat{f(v_{i})}\dots f(v_{p})] = \partial_{p}C(f)([v_{0}\dots v_{p}]).$$

Si hay vértices repetidos, digamos $f(v_i) = f(v_j)$, entonces $\partial_p C(f)([v_0 \dots v_p]) = 0$. Por otro lado,

$$\sum_{i=0}^{p} (-1)^{i} C(f)([v_0 \dots \hat{v}_i \dots v_p]) = 0$$

debido a que $C(f)([v_0 \dots \hat{v}_k \dots v_p]) = 0$ para $k \neq i, j$ y cuando i < j,

$$(-1)^{i}[f(v_0)\dots\widehat{f(v_i)}\dots f(v_j)\dots f(v_p)] + (-1)^{j}[f(v_0)\dots f(v_i)\dots\widehat{f(v_j)}\dots f(v_p)] = 0$$

también se anula. Esto se debe a que si no hay más vértices repetidos, como $f(v_i) = f(v_j)$, el número de trasposiciones necesarias para cambiar de un símplice orientado al otro es j-i-1, dado que $f(v_j)$ ocupa el lugar j-1 en el primer símplice. La fórmula $C(g \circ f) = C(g)C(f)$ se sigue directamente de la definición de C(f).

Observación 3.2. El resultado anterior nos garantiza que $C: \mathbf{Csim} \to R\text{-}\mathbf{Ch}_{\bullet}$ es un funtor covariante entre la categoría de complejos simpliciales y la categoría de complejos de cadenas.

Definición 3.5. Sea $f: |K| \to |L|$ una aplicación simplicial y sea $C(f): C_{\bullet}(K; R) \to C_{\bullet}(L; R)$ una aplicación de cadenas definida como en la Proposición 3.2. Llamaremos a C(f) la aplicación de cadenas inducida por f y la notaremos por $f_{\#}$.

Corolario 3.1. Toda aplicación simplicial inducida $f:|K|\to |L|$ induce un homomorfismo de R-módulos

$$H_p(f): H_p(K;R) \to H_p(L;R)$$

que notaremos por f_* y que cumple que si $g:|L|\to |M|$ es otra aplicación simplicial, entonces $(g\circ f)_*=g_*\circ f_*$ e $\mathrm{id}_*=\mathrm{id}.$

Observación 3.3. La última implicación del corolario se traduce en que tenemos un funtor covariante que va de la categoría de complejos simpliciales con los homeomorfismos simpliciales a la categoría de *R*-módulos con sus homomorfismos.

Lema 3.3. La aplicación de cadenas $f_\#: C_\bullet(K;R) \to C_\bullet(L;R)$ preserva el homomorfismo de aumento y como resultado, induce un homomorfismo f_* de módulos de homología reducida.

Demostración. Sea $f: |K| \to |L|$ una aplicación simplicial, $f_\#$ su aplicación de cadenas inducida y sean $ε: C_0(K;R) \to R$, $ε: C_0(L;R) \to R$ aumentos de $C_\bullet(K;R), C_\bullet(L;R)$ respectivamente. Llamemos indistintamente ε a ambos aumentos en función del dominio en el que nos encontremos. Ahora definamos $ε(f_\#(v)) = 1$ y ε(v) = 1 para todo vértice de K y extendamos por linealidad. Por consiguiente $ε \circ f_\# = ε$. Esta ecuación implica que $f_\#$ lleva el núcleo de $ε_K: C_0(K;R) \to R$ al núcleo de $ε_L: C_0(L;R) \to R$, lo que induce un homomorfismo $f_*: \widetilde{H}_0(K;R) \to \widetilde{H}_0(L;R)$.

Demostración. Sea z un p-ciclo de K. Entonces

$$g_*(z) - f_*(z) = \partial sz + s\partial z = \partial sz + 0$$

por lo que f(z) y g(z) tienen la misma clase de homología. Por tanto, $f_*([z]) = g_*([z])$ como se quería.

3.2. Homología del complejo cono

A continuación, exploraremos un nuevo complejo simplicial que construiremos a partir de otro dado. El complejo cono nos facilitará la obtención de algunos resultados relevantes en homología.

Definición 3.6. Sea K un complejo simplicial de \mathbb{R}^N y sea $w \in \mathbb{R}^N$ tal que cada semirrecta con origen w corta a |K| a lo sumo en un punto. Definimos el **cono sobre** K **con vértice** w como el conjunto cuyos elementos son los símplices de K o símplices de la forma $[w, v_0, \ldots, v_p]$, donde $[v_0, \ldots, v_p] \in K$. Lo denotaremos por w * K.

Lema 3.4. El cono w * K es un complejo simplicial.

Demostración. Sea $\sigma = [v_0, \ldots, v_p]$ un símplice de K. Primero veamos que el conjunto $\{w, v_0, \ldots, v_p\}$ es afínmente independiente. Si w perteneciera al plano P generado por los puntos v_0, \ldots, v_p , podríamos considerar el segmento que une w con un punto de $x \in \operatorname{Int} \sigma$. Dicho conjunto, por ser abierto en P, contendría un intervalo de puntos en el segmento, contradiciendo la hipótesis de que las semirrectas que parten de w cortan a lo sumo en un punto a |K|.

Veamos ahora que w*K es un complejo simplicial. Los símplices de w*K pueden ser de tres tipos:

- 1. Símplices $[v_0, \ldots, v_p]$ pertenecientes a K.
- 2. Símplices de la forma $[w, v_0, \dots, v_p]$.
- 3. El 0-símplice [w].

Si σ, τ son símplices del primer tipo, entonces $\operatorname{Int} \sigma \cap \operatorname{Int} \tau = \emptyset$ puesto que K es un complejo simplicial. El símplice $\operatorname{Int}[w,v_0,\ldots,v_p]$ es la unión de todos los segmentos abiertos que unen w con v_0,\ldots,v_p , luego dos símplices de esta forma tienen intersección vacía pues las semirrectas que parten de w cortan a K a lo sumo en un punto. Finalmente, si σ es del primer tipo y τ del segundo, $\operatorname{Int} \sigma \cap \operatorname{Int} \tau = \emptyset$ por el mismo argumento recién dado.

Proposición 3.3. Sea K un complejo simplicial y sea w * K el cono sobre K de vértice w. Entonces la homología orientada de w * K es $H_p(w * K; R) = 0$ para todo $p \neq 0$ y $H_0(w * K; R) \cong R$. En el caso de la homología reducida, $\widetilde{H}_0(w * K; R) = 0$ para todo $p \in \mathbb{Z}$.

3. Homología simplicial

Figura 3.1.: Cono sobre el complejo formado por el 2-símplice [a, b, c] y todas sus caras con vértice w.

Demostración. Sea $D_{\bullet} = \{D_p, \partial_p\}$ un complejo de cadenas tal que $D_p = 0$ para todo $p \neq 0$ y $D_0 = R$. Definimos la aplicación de cadenas $f: D_{\bullet} \to C_{\bullet}(w*K;R)$ de forma que $f_p = 0$ para todo $p \neq 0$ y $f_0(r) = rw$. Por otro lado, por la Proposición 3.1 podemos definir el aumento $\varepsilon: C_{\bullet}(w*K;R) \to D_{\bullet}$ dado por $\varepsilon_p = 0$ para todo $p \neq 0$ y $\varepsilon_0(v) = 1$ para todo vértice v del cono. Nuestro objetivo es ver que efectivamente f es una equivalencia de cadenas junto a ε . De manera directa tenemos que $\varepsilon \circ f = \mathrm{id}_D$, luego $\varepsilon \circ f \simeq \mathrm{id}_D$. Veamos ahora que $f \circ \varepsilon$ es homotópica a la identidad. Para ello vamos a definir s como la familia $\{s_p\}$ de homomorfismos $s_p: C_p(w*K;R) \to C_{p+1}(w*K;R)$ tal que

$$s_p([v_0 \dots v_p]) = \begin{cases} [wv_0 \dots v_p] & \text{si } v_i \neq w \quad 0 \leq i \leq p, \quad p \geq 0 \\ 0 & \text{en caso contrario} \end{cases}$$

induce una extensión lineal. Dicha familia está bien definida para $C_p(w*K;R)$. Veamos que $\partial_{p+1}s_p+s_{p-1}\partial_p=\mathrm{id}_{C_p(w*K;R)}-f_p\varepsilon_p$ se cumple, por lo que s es una homotopía de cadenas. Para el caso en que $p\in\mathbb{Z}$ es menor que 0 se cumple de manera trivial. Si p=0 distinguimos dos casos. Cuando $v\neq w$ tenemos que $(\partial_1s_0+s_{-1}\partial_0)(v)=\partial_1[w,v]=v-w=(\mathrm{id}_0-f_0\varepsilon_0)(v)$. Por el contrario si v=w, $(\partial_1s_0+s_{-1}\partial_0)(v)=0$ y también $(\mathrm{id}_0-f_0\varepsilon_0)(v)=\mathrm{id}_0(w)-(f_0\varepsilon_0)(w)=w-w=0$. Por último, veamos que sucede cuando p>0. Supongamos primero que $w\neq v_i$. Entonces

$$(\partial_{p+1}s_p + s_{p-1}\partial_p)[v_0 \dots v_p] = \partial_{p+1}[wv_0 \dots v_p] + s_{p-1} \left(\sum_{i=0}^p (-1)^i [v_0 \dots \hat{v}_i \dots v_p] \right)$$

$$= [v_0 \dots v_p] + \sum_{i=0}^p (-1)^{i+1} [wv_0 \dots \hat{v}_i \dots v_p] + \sum_{i=0}^p (-1)^i [wv_0 \dots \hat{v}_i \dots v_p]$$

$$= [v_0 \dots v_p] = (id_{C_p} - f_p \varepsilon_p)[v_0 \dots v_p].$$

Finalmente si $w = v_{i_0}$ para algún i_0 entonces

$$\begin{aligned} (\partial_{p+1} s_p + s_{p-1} \partial_p) [v_0 \dots v_p] &= s_{p-1} \partial_p [v_0 \dots v_p] = s_{p-1} \left(\sum_{i=0}^{p-1} (-1)^i [v_0 \dots \hat{v}_i \dots v_p] \right) \\ &= (-1)^{i_0} s_{p-1} [v_0 \dots \hat{v}_{i_0} \dots v_p] = (-1)^{i_0} [w v_0 \dots \hat{v}_{i_0} \dots v_p] \\ &= (-1)^{i_0} [v_{i_0} v_0 \dots \hat{v}_{i_0} \dots v_p] = [v_0 \dots v_p]. \end{aligned}$$

Es decir, $f \circ \varepsilon \simeq \mathrm{id}_{C(w*K;R)}$ y por el Corolario 1.2 induce un isomorfismo $\varepsilon_* : H_p(w*K;R) \to H_p(D;R)$.

Para el caso reducido consideremos el complejo aumentado D_{\bullet} dado por el aumento $\mathrm{id}_R:D_0\to R$. Como consecuencia, la homología de \widetilde{D} es trivial. Además, podemos extender los homomorfismos ε y f a homomorfismos $\widetilde{\varepsilon}$ y \widetilde{f} para los complejos aumentados de forma que $\widetilde{\varepsilon}_{-1}=\widetilde{f}_{-1}=\mathrm{id}_R$. Por la misma homotopía s obtenemos que $\widetilde{\varepsilon}$ y \widetilde{f} son equivalencias homotópicas entre los complejos aumentados y por tanto, $\widetilde{H}_p(w*K;R)=0$ para todo $p\in \mathbb{Z}$.

Corolario 3.2. La homología simplicial reducida de cualquier símplice es nula.

Corolario 3.3. Sea σ un n-símplice y sea Bd σ su borde. Entonces $\widetilde{H}_p(\operatorname{Bd}\sigma;R)=0$ es trivial si p=n-1 y $\widetilde{H}_{n-1}(\operatorname{Bd}\sigma;R)\cong R$. Además, para el caso no trivial, un generador es la clase de la cadena $\partial(\sigma)$.

Demostración. Dado el símplice anterior, los complejos de cadenas aumentados de σ y su borde coinciden hasta dimensión $p \leq n-1$. Por el Corolario 3.2 deducimos que $\widetilde{H}_p(\operatorname{Bd}\sigma;R)=0$ para $p \leq n-2$. Además, $C_p(\operatorname{Bd}\sigma;R)=0$ para $p \geq n$. Por lo tanto, $\widetilde{H}_{n-1}(\operatorname{Bd}\sigma;R)=\ker\partial_{n-1}$. Aquí, ∂_{n-1} representa el operador borde en ambos complejos aumentados (es decir, $\partial_0=\varepsilon$ indica el aumento). Dado que el complejo aumentado de σ tiene homología trivial, entonces $\ker\partial_{n-1}=\operatorname{Im},\partial_n$, y además ∂_n es inyectivo donde el operador borde $\partial_n:C_n(\sigma;R)\to C_{n-1}(\sigma;R)=C_{n-1}(\operatorname{Bd}\sigma;R)$ aparece en el complejo de σ . Puesto que $C_n(\sigma;R)$ es isomorfo a R generado por σ , se sigue que $\operatorname{Im}\partial_n$, y por tanto $\widetilde{H}_{n-1}(\operatorname{Bd}\sigma;R)$, es isomorfo a R generado por $\partial(\sigma)$.

3.3. Sucesión de Mayer-Vietoris

Nombrada en honor a los matemáticos austriacos Walther Mayer y Leopold Vietoris, la sucesión de Mayer-Vietoris es una herramienta esencial en la topología algebraica y la teoría de homología. Esta sucesión permite analizar la homología de un complejo simplicial a partir de la homología de sus subcomplejos, de manera análoga a como el teorema de Seifert-van Kampen describe el grupo fundamental de un espacio topológico a partir de subespacios abiertos y conexos por caminos.

Lema 3.5 (Lema de la serpiente). Sean $A_{\bullet} = \{A_n, \partial_A\}$, $B_{\bullet} = \{B_n, \partial_A\}$ y $C_{\bullet} = \{C_n, \partial_C\}$ complejos de cadenas y sean f, g aplicaciones de cadenas tales que la sucesión

$$0 \to A_{\bullet} \stackrel{f}{\to} B_{\bullet} \stackrel{g}{\to} C_{\bullet} \to 0$$

es exacta. Existe entonces una sucesión exacta de homología

$$\cdots \to H_p(A_{\bullet};R) \xrightarrow{f_*} H_p(B_{\bullet};R) \xrightarrow{g_*} H_p(C_{\bullet};R) \xrightarrow{\partial_*} H_{p-1}(A_{\bullet};R) \xrightarrow{f_*} H_{p-1}(B_{\bullet};R) \to \cdots$$

donde ∂_* es el operador borde inducido en B_{\bullet} que llamaremos operador conector.

Demostración. Para realizar esta prueba usaremos una persecución de diagramas. Usaremos el siguiente diagrama como guía:

 $Paso\ 1$. Para definir el operador conector ∂_* , primero tenemos que comprobar que si tenemos un ciclo de C_p , entonces podemos asignarle un único ciclo en A_{p-1} . Por tanto, sea c_p un ciclo de C_p (esto es, $c_p \in \ker \partial_C$) y escojamos $b_p \in B_p$ tal que $g(b_p) = c_p$ (recordemos que g es sobreyectiva por ser la sucesión exacta corta). El elemento $\partial_B b_p$ de B_{p-1} pertenece al núcleo de g pues $g(\partial_B b_p) = \partial_C g(b_p) = \partial_C c_p = 0$. Por tanto, existe un elemento $a_{p-1} \in A_{p-1}$ tal que $f(a_{p-1}) = \partial_B b_p$, pues $\ker g = \operatorname{Im} f$. Tenemos que dicho elemento es único por ser f inyectiva. Además, a_{p-1} es un ciclo. Como $f(\partial_A a_{p-1}) = \partial_B f(a_{p-1}) = \partial_B \partial_B b_p = 0$, entonces $\partial_A a_{p-1} = 0$ por ser f inyectiva. Definimos $\partial_* [c_p] = [a_{p-1}]$ donde los corchetes denotan la clase de homología.

Paso 2. Queremos probar ahora que ∂_* es un homomorfismo de módulos bien definido. Sean c_p, c_p' dos elementos del núcleo de $\partial_C: C_p \to C_{p-1}$. Sean b_p, b_p' elementos de B_p tal que $g(b_p) = c_p$ y $g(b_p') = c_p'$. Escojamos ahora a_{p-1} y a_{p-1}' tal que $f(a_{p-1}) = \partial_B b_p$ y $f(a_{p-1}') = \partial_B b_p'$.

Para probar que ∂_* está bien definido, veamos que no depende del b_p y c_p escogido. Supongamos que $c_p \sim c_p'$ y veamos entonces que a_{p-1} y a_{p-1}' también lo son. Por tanto, supongamos que $c_p - c_p' = \partial_C c_{p+1}$. Escogemos b_{p+1} tal que $g(b_{p+1}) = c_{p+1}$. Esto implica que

$$f(b_p - b_p' - \partial_B b_{p+1}) = c_p - c_p' - \partial_C g(b_{p+1}) = c_p - c_p' - \partial_C c_{p+1} = 0$$

En consecuencia, podemos tomar a_p tal que $f(a_p) = b_p - b'_p - \partial_B b_{p+1}$ luego

$$f(\partial_A a_p) = \partial_B f(a_p) = \partial_B (b_p - b_p') - 0 = f(a_{p-1} - a_{p-1}')$$

Por ser f inyectiva, $\partial_A a_p = a_{p-1} - a'_{p-1}$, como buscábamos.

Ya sabemos que ∂_* está bien definido, veamos que es un homomorfismo de módulos. Para ello basta fijarnos en que $g(b_p+b'_p)=c_p+c'_p$ y que $f(a_{p-1}+a'_{p-1})=\partial_B(b_p+b'_p)$. Por tanto $\partial_*[c_p+c'_p]=[a_{p-1}+a'_{p-1}]$ por definición y en consecuencia, $\partial_*[c_p+c'_p]=\partial_*[c_p]+\partial_*[c'_p]$. Ahora si $\lambda\in R$, de manera análoga obtenemos que $\lambda\partial_*[b_p]=\lambda[c_p]=[\lambda c_p]=\partial_*[\lambda b_p]$.

Paso 3. Probaremos la exactitud de $H_p(B_{\bullet};R)$ por doble inclusión. Como $g \circ f = 0$ tenemos que $g_* \circ f_* = 0$. Esto implica que si $\gamma \in \text{Im } f_*$, entonces $g_*(\gamma) = 0$.

Para probar la otra inclusión, consideremos $\gamma = [b_p]$ y supongamos que $g_*(\gamma) = 0$. Entonces $g(b_p) = \partial_C c_{p+1}$ para algún $c_{p+1} \in C_p$. Escojamos b_{p+1} de manera que $g(b_{p+1}) = c_{p+1}$. Entonces

$$g(b_p - \partial_B b_{p+1}) = g(b_p) - \partial_C g(b_{p+1}) = g(b_p) - \partial_C c_{p+1} = 0$$

luego $b_p - \partial_B b_{p+1} = f(a_p)$ para algún a_p . Ahora, a_p es un ciclo pues

$$f(\partial_A a_p) = \partial_B f(a_p) = \partial_B b_p - 0 = 0$$

y f es inyectiva. Es más, $f_*[a_p] = [f(a_p)] = [b_p - \partial_B b_{p+1}] = [b_p]$ y por tanto $[b_p] \in \operatorname{Im} f_*$ como queríamos.

Paso 4. Probemos la exactitud en $H_p(C_\bullet;R)$. Sea $\alpha=[c_p]$ un elemento de $H_p(C_\bullet;R)$. Escojamos b_p tal que $g(b_p)=c_p$ y ahora tomemos a_{p-1} tal que $f(a_{p-1})=\partial_B b_p$. En consecuencia, $\partial_*\alpha=[a_{p-1}]$ por definición.

Procederemos de nuevo por doble inclusión. Consideremos primero que $\alpha \in \text{Im } g_*$. Entonces $\alpha = [g(b_p)]$ donde b_p es un ciclo en B. Esto implica que $f(a_{p-1}) = 0$ de donde $a_{p-1} = 0$ y por tanto $\partial_* \alpha = 0$.

Supongamos ahora que $\partial_*\alpha=0$. Entonces $a_{p-1}=\partial_A a_p$ para algún a_p . Deducimos entonces que $b_p-f(a_p)$ es un ciclo y que $\alpha=g_*[b_p-f(a_p)]$ luego $\alpha\in\operatorname{Im} g_*$. Realizando los cálculos obtenemos que

$$\partial_B(b_p - f(a_p)) = \partial_B(b_p) - \partial_B(f(a_p)) = \partial_B(b_p) - f(a_{p-1}) = 0$$
$$g_*[b_p - f(a_p)] = [g(b_p) - 0] = [c_p] = \alpha$$

Paso 5. Finalmente obtengamos la exactitud para $H_{p-1}(A_{\bullet};R)$. Si $\beta \in \operatorname{Im} \partial_*$, entonces $\beta = [a_{p-1}]$ donde $f(a_{p-1}) = \partial_B b_p$ para algún b_p por definición. En consecuencia,

$$f_*(\beta) = [f(a_{v-1})] = [\partial_B b_v] = 0$$

Consideremos ahora el caso donde $f_*(\beta) = 0$. Sea $\beta = [a_{p-1}]$. Entonces $[f(a_{p-1})] = 0$ por lo que $f(a_{p-1}) = \partial_B b_p$ para algún b_p . Definimos $c_p = g(b_p)$. En consecuencia, c_p es un ciclo ya que $\partial_c c_p = g(\partial_B b_p) = g(f(a_{p-1})) = 0$ y $\beta = \partial_* [c_p]$ por definición. Esto es, $\beta \in \text{Im } \partial_*$. \square

Definición 3.7. En las condiciones del anterior lema, llamaremos a la sucesión obtenida sucesión exacta larga de homología.

Una consecuencia importante del resultado anterior es su naturalidad, un concepto de gran interés en teoría de categorías.

Teorema 3.2. Consideremos el siguiente diagrama conmutativo

$$0 \longrightarrow A_{\bullet} \xrightarrow{f} B_{\bullet} \xrightarrow{g} C_{\bullet} \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A'_{\bullet} \xrightarrow{f'} B'_{\bullet} \xrightarrow{g'} C'_{\bullet} \longrightarrow 0$$

donde las sucesiones horizontales son sucesiones exactas de complejos de cadenas. Entonces el diagrama

$$\longrightarrow H_{p}(A_{\bullet};R) \xrightarrow{f_{*}} H_{p}(B_{\bullet};R) \xrightarrow{g_{*}} H_{p}(C_{\bullet};R) \xrightarrow{\partial_{*}} H_{p-1}(A_{\bullet};R) \longrightarrow$$

$$\downarrow^{\alpha_{*}} \qquad \downarrow^{\beta_{*}} \qquad \downarrow^{\gamma_{*}} \qquad \downarrow^{\alpha_{*}}$$

$$\longrightarrow H_{p}(A'_{\bullet};R) \xrightarrow{f'_{*}} H_{p}(B'_{\bullet};R) \xrightarrow{g'_{*}} H_{p}(C'_{\bullet};R) \xrightarrow{\partial'_{*}} H_{p-1}(A'_{\bullet};R) \longrightarrow.$$

es conmutativo, siendo α , β , γ aplicaciones de cadenas.

Demostración. Es claro que el diagrama

$$H_{p}(A_{\bullet};R) \xrightarrow{f_{*}} H_{p}(B_{\bullet};R) \xrightarrow{g_{*}} H_{p}(C_{\bullet};R)$$

$$\downarrow^{\alpha_{*}} \qquad \qquad \downarrow^{\beta_{*}} \qquad \qquad \downarrow^{\gamma_{*}}$$

$$H_{p}(A'_{\bullet};R) \xrightarrow{f'_{*}} H_{p}(B'_{\bullet};R) \xrightarrow{g'_{*}} H_{p}(C'_{\bullet};R)$$

es conmutativo, pues los homomorfismos inducidos de las aplicaciones de cadenas conservan la conmutatividad. Por tanto, basta estudiar la conmutatividad en

$$H_{p}(C_{\bullet};R) \xrightarrow{\partial_{*}} H_{p-1}(A_{\bullet};R)$$

$$\downarrow^{\gamma_{*}} \qquad \qquad \downarrow^{\alpha_{*}}$$

$$H_{p}(C'_{\bullet};R) \xrightarrow{\partial'_{*}} H_{p-1}(A'_{\bullet};R) .$$

Sea $[a] \in H_p(A_\bullet;R)$ y tomemos b_p de manera que $g(b_p)=c_p$. Además tomemos $a_{p-1} \in A_p$ de forma que $f(a_{p-1})=\partial_B b_p$. En consecuencia, $\partial'_*[c_p]=[a_{p-1}]$ por definición. Consideremos ahora $c'_p=\gamma(c_p)$. Nuestro objetivo es ver que $\partial'_*[c'_p]=\alpha_*[a_{p-1}]$. Está claro que $\beta(b_p)$ es preimagen de c_p por g', pues $g'\beta(b_p)=\gamma g(b_p)=\gamma(c_p)=e'_p$. Así mismo, $\alpha(c_{p-1})$ lo es de $\partial'_D\beta(b_p)$, pues $f'\alpha(a_{p-1})=\beta f(a_{p-1})=\beta(\partial_B b_p)=\partial'_D\beta(b_p)$. Esto es, $\partial'_*[c_p]=[\alpha(a_{p-1})]$ por definición.

Proposición 3.4 (Sucesión de Mayer-Vietoris). *Sea K un complejo simplicial y sean K*₁, K_2 *sub-complejos de K tales que K* = $K_1 \cup K_2$. *Entonces existe una sucesión exacta*

$$\cdots \to H_p(K_1 \cap K_2; R) \xrightarrow{f} H_p(K_1; R) \oplus H_p(K_2; R) \xrightarrow{g} H_p(K; R) \to H_{p-1}(K_1 \cap K_2; R) \to \cdots$$

tal que $f(c) = (i_{1\#}(c), -i_{2\#}(c)), g(d, e) = j_{1\#}(d) + j_{2\#}(e)$ donde $i_t : K_1 \cap K_2 \to K_t \ y \ j_t : K_t \to K_1 \cup K_2$ para $t \in \{1, 2\}$ son las respectivas inclusiones.

Demostración. La demostración consiste en construir la sucesión exacta corta de complejos de cadena

$$0 \to C_{\bullet}(K_1 \cap K_2; R) \xrightarrow{f} C_{\bullet}(K_1; R) \oplus C_{\bullet}(K_2; R) \xrightarrow{g} C_{\bullet}(K; R) \to 0$$

y aplicar el Lema de la serpiente.

Para ello comencemos describiendo el complejo de cadenas $C_{\bullet}(K_1; R) \oplus C_{\bullet}(K_2; R)$. Recordemos que la suma directa de un complejo de cadenas se definía como la suma directa de los

R-módulos de dimensión p $C_p(K_1; R) \oplus C_p(K_2; R)$, cuyo operador borde $\partial'(d, e) = (\partial_1 d, \partial_2 e)$ donde ∂_1, ∂_2 corresponden a los operadores borde de K_1 y K_2 respectivamente.

Para comprobar la exactitud de la sucesión, comencemos estudiando la exactitud en los extremos de ésta. Es claro que f es inyectiva por ser una inclusión. En cuanto a la sobreyectividad de g, tomemos $d \in C_p(K;R)$ donde d sea la suma de símplices orientados. Notemos por d_1 a los elementos de dicha suma provenientes de K_1 . Entonces $d-d_1 \in K_2$ y $g(d_1,d-d_1)=d$.

Para estudiar la exactitud en $C_{\bullet}(K_1;R) \oplus C_{\bullet}(K_2;R)$, consideremos la inclusión $k:K_1 \cap K_2 \to K$ y la respectiva inclusión de cadenas inducida $k_\#:C_{\bullet}(K_1 \cap K_2;R) \to C_{\bullet}(K;R)$. Nótese que $g(f(c))=k_\#(c)-k_\#(c)=0$. Sea ahora g(d,e)=0, entonces d=-e si las consideramos como cadenas de K. Como d proviene de K_1 y e de K_2 , ambas deben de provenir de $K_1 \cap K_2$ y en consecuencia, (d,e)=(d,-d)=f(d), como queríamos.

La homología de $C_{\bullet}(K_1; R) \oplus C_{\bullet}(K_2; R)$ de dimensión p, que notaremos por $H_p(K_1 \oplus K_2; R)$, es entonces

$$H_{\mathfrak{p}}(K_1 \oplus K_2; R) \cong H_{\mathfrak{p}}(K_1; R) \oplus H_{\mathfrak{p}}(K_2; R)$$

por la Proposición 1.5. Finalmente aplicamos el Lema de la serpiente y en consecuencia tenemos la sucesión deseada.

Para obtener la sucesión de Mayer-Vietoris de homología reducida, reemplazaremos los complejos de cadenas anteriores por sus correspondientes complejos de cadenas aumentados. Consideremos para ello el siguiente diagrama

$$0 \longrightarrow C_0(K_1 \cap K_2; R) \longrightarrow C_0(K_1; R) \oplus C_0(K_2; R) \longrightarrow C_0(K; R) \longrightarrow 0$$

$$\downarrow^{\varepsilon_{K_1 \cap K_2}} \qquad \qquad \downarrow^{\varepsilon_{1} \oplus \varepsilon_{2}} \qquad \qquad \downarrow^{\varepsilon}$$

$$0 \longrightarrow R \xrightarrow{\widetilde{f}} R \oplus R \xrightarrow{\widetilde{g}} R \longrightarrow 0$$

La conmutatividad y la exactitud se mantienen en la parte inferior del diagrama si definimos $\widetilde{f}(r)=(r,r)$ y $\widetilde{g}(r',r)=r'+r$. Las aplicaciones $\varepsilon_{K_1\cap K_2}, \varepsilon_1\oplus \varepsilon_2$ y ε son sobreyectivas pues la intersección de K_1 y K_2 es no vacía. De este modo, la homología de sus respectivos complejos de cadenas es nula en dimensión -1 y en dimensión 0 es igual a la de sus respectivos módulos de homología reducida $\widetilde{H}_0(K_1\cap K_2;R),\,\widetilde{H}_0(K_1;R)\oplus\widetilde{H}_0(K_2;R)$ y $\widetilde{H}_0(K;R)$. Para finalizar, aplicamos de nuevo el Lema de la serpiente.

3.4. Conexión y el módulo de homología $H_0(K; R)$

Uno de los resultados más destacados en la teoría de homología simplicial es su capacidad para identificar y clasificar las componentes conexas de un complejo simplicial. Utilizando el módulo de homología de dimensión cero, H_0 , veremos que es posible determinar directamente el número de componentes conexas en el complejo.

Proposición 3.5. Sea K un complejo simplicial. Entonces K se puede partir en subcomplejos disjuntos K_1, K_2, \ldots, K_s cuyos poliedros son las componentes conexas del poliedro |K|.

Demostración. Consideremos las componentes conexas X_1, X_2, \ldots, X_s del politopo de K. Para cada j, consideremos K_j como la colección de todos los símplices σ de K tales que $\sigma \subset X_j$. Si un símplice pertenece a K_j para algún j, entonces todas sus caras también pertenecen a K_j . Por lo tanto, K_1, K_2, \ldots, K_s son subcomplejos de K. Estos subcomplejos son disjuntos

entre sí, debido a que las componentes conexas X_1, X_2, \ldots, X_s del poliedro |K| son disjuntos. Además, si $\sigma \in K$ entonces $\sigma \subset X_j$ para algún j, ya que σ es un subconjunto conexo del espacio topológico |K|, y todo subconjunto conexo de un espacio topológico se encuentra contenido en alguna componente conexa. Por consiguiente, σ pertenece a K_j . En consecuencia, $K = K_1 \cup K_2 \cup \ldots \cup K_s$ y $|K| = |K_1| \cup |K_2| \cup \ldots \cup |K_s|$.

Definición 3.8. Sea K un complejo simplicial y sean v, w dos vértices de K. Diremos que v, w pueden unirse por un **camino de aristas** si existen vértices v_0, \ldots, v_k en K de forma que $v_0 = v, v_k = w$ y $[v_i, v_{i+1}]$ es un 1-símplice para todo $i \in \{0, \ldots, k-1\}$.

Lema 3.6. El poliedro |K| de un complejo simplicial K es un espacio topológico conexo si, y sólo si, cualesquiera dos vértices de K pueden ser unidos por un camino de aristas.

Demostración. Consideremos un par de vértices cualesquiera del camino de aristas v_{i_0}, v_{j_0} de K. Claramente si $i_0 = j_0$ entonces es trivialmente conexo. Supongamos entonces sin pérdida de generalidad $i_0 < j_0$. Entonces podemos definir una aplicación lineal y continua $\alpha_i : \left[\frac{i-i_0}{j_0-i_0}, \frac{i+1-i_0}{j_0-i_0}\right] \to [v_i, v_{i+1}]$ tal que

$$\alpha_i(\lambda) = (1 - \lambda)v_{i_0} + \lambda v_{j_0 + 1}$$

para todo $i \in \{i_0, \ldots, j_0 - 1\}$. Por tanto, la función $\alpha : [0,1] \to [v_{i_0}v_{j_0}]$ tal que $\alpha(\lambda) = \alpha_i(\lambda)$ si $\lambda \in [i,i+1]$ es un arco que conecta ambos vértices. En consecuencia, [v,w] es arco conexo. Por ser cada símplice convexo, y por tanto arco conexo, |K| es arco conexo. Concluimos aplicando el Teorema 2.2.

Teorema 3.3. Sea K un complejo simplicial y R un anillo. Supongamos que el poliedro |K| de K es conexo. Entonces $H_0(K;R) \cong R$.

Demostración. Consideremos el complejo de cadenas aumentado $\widetilde{C}(K;R)$ y su respectiva homología reducida $\widetilde{H}(K;R)$. Es claro que el submódulo de bordes del complejo aumentado $B_0(K;R)$ está contenido en ker $\widetilde{\partial}_0$, dado que $\widetilde{\partial}_0 \circ \widetilde{\partial}_1 = 0$.

Para la otra inclusión, consideremos w_0, w_1, \ldots, w_m vértices de K que determinan un camino de aristas. Cada $w_j - w_{j-1}$ es una arista de K para $j = 1, 2, \ldots, m$, y se sigue que:

$$[w_m] - [w_0] = \sum_{j=1}^m ([w_j] - [w_{j-1}]) = \widetilde{\partial}_1 \left(\sum_{j=1}^m [w_j, w_{j-1}] \right) \in B_0(K; R).$$

Dado que |K| es conexo, por el Lema 3.6 sabemos que cualquier par de vértices de K puede ser unido por un camino de aristas. Por lo tanto, $v-u \in B_0(K;R)$ para cualquier par de vértices u y v de K.

Escojamos un vértice $u \in K$. Entonces, para cualquier conjunto de coeficientes $r_1, r_2, \ldots, r_s \in R$ y vértices v_1, v_2, \ldots, v_s de K, tenemos que

$$\sum_{j=1}^{s} r_{j}[v_{j}] = \sum_{j=1}^{s} r_{j}([v_{j}] - [u]) + \left(\sum_{j=1}^{s} r_{j}\right)[u],$$

y, por lo tanto,

$$\sum_{j=1}^{s} r_{j}([v_{j}] - [u]) \in B_{0}(K; R).$$

En consecuencia,

$$z - \widetilde{\partial}_0([u]) \in B_0(K; R)$$

para todo $z \in \widetilde{C}_0(K;R)$. Esto muestra que ker $\widetilde{\partial}_0 \subseteq B_0(K;R)$. Finalmente, el homomorfismo $\widetilde{\partial}_0 : \widetilde{C}_0(K;R) \to R$ es sobreyectivo y su núcleo es $B_0(K;R)$. Además, sabemos que $Z_0(K;R) = C_0(K;R)$, pues $\widetilde{\partial}_0$ es el homomorfismo nulo. Entonces

$$H_0(K;R) = \frac{Z_0(K;R)}{B_0(K;R)} = \frac{C_0(K;R)}{B_0(K;R)}.$$

Por el Primer teorema de isomorfía, el homomorfismo $\widetilde{\partial_0}$ induce un isomorfismo de $H_0(K;R)$ a R, y por lo tanto $H_0(K;R) \cong R$, como se requería.

Corolario 3.4. Sea K un complejo simplicial y sea R un anillo. Entonces $H_0(K;R) \cong R^s$, donde s es el número de componentes conexas del poliedro |K|.

Demostración. Procederemos por inducción sobre el número de componentes conexas de |K|. Si |K| es conexo, entonces el resultado se sigue del Teorema 3.3. Supongamos ahora que podemos descomponer K en subcomplejos K_1, \ldots, K_s disjuntos dos a dos. Por la Sucesión de Mayer-Vietoris, tenemos que la sucesión

$$\cdots \to H_0(K_1 \cap K \backslash K_1; R) \to H_0(K_1; R) \oplus H_0(K \backslash K_1; R) \to \to H_0(K; R) \to H_{-1}(K_1 \cap K \backslash K_1; R) \to \cdots$$

es exacta, donde $K \setminus K_1 = \bigcup_{i=2}^{n+1} K_i$. Sin embargo, la intersección $K_1 \cap K \setminus K_1$ es vacía luego su módulo de homología de dimensión 0 y -1 es el trivial. Por hipótesis de inducción, $H_0(K_1) \oplus H_0(K \setminus K_1; R) \cong R \oplus R^{s-1} = R^s$. Finalmente, por ser la secuencia exacta en $H_0(K; R)$ y ser $H_{-1}(K_1 \cap K \setminus K_1; R)$ el módulo trivial, el núcleo del operador conector es todo $H_0(K; R)$ y por tanto, $H_0(K; R) \cong H_0(K_1; R) \oplus H_0(K \setminus K_1; R)$.

4. Homología persistente

4.1. Complejos de Čech y Vietoris-Rips

Definición 4.1. Sea X un espacio topológico y sea $\mathcal{U} = \{U_v\}_{v \in V}$ un recubrimiento de X. Llamaremos **nervio** de \mathcal{U} al complejo simplicial abstracto con conjunto de vértices V tal que la familia v_0, \ldots, v_p genera un p-símplice si, y sólo si, $U_{v_0} \cap \cdots \cap U_{v_p} \neq \emptyset$. Lo notaremos por $N(\mathcal{U})$.

Teorema 4.1 (del Nervio). Sea X un espacio topológico y sea $\mathcal{U} = \{U_v\}_{v \in V}$ un recubrimiento por abiertos numerable de X. Supongamos además que para todo subconjunto no vacío de vértices $S \subseteq V$ tenemos que $\bigcap_{s \in S} U_s$ es contráctil o vacío. Entonces $N(\mathcal{U})$ es homotópicamente equivalente a X.

Demostración. contenidos... □

Definición 4.2. Sea (X,d) un espacio métrico y sea V un subconjunto de puntos de X.Definimos el **complejo de Čech** $C(V,\varepsilon)$ como el nervio $N(\mathcal{B}_{\varepsilon})$, donde

$$\mathcal{B}_{\varepsilon} = \{B_{\varepsilon}(v) : v \in V\},\,$$

siendo $B_{\varepsilon}(v)$ la bola abierta de centro x y radio $\varepsilon > 0$.

Definición 4.3. Sea (X,d) un espacio métrico y sea V un subconjunto de puntos de X. Definimos el **complejo de Vietoris-Rips** $VR(V,\varepsilon)$ como el complejo simplicial cuyo conjunto de vértices es V, de forma que $\{v_0,v_1,\ldots v_p\}\subseteq V$ genera un p-símplice si, y sólo si, $d(v_i,v_j)\leq \varepsilon$ para todo $0\leq i,j\leq p$.

Proposición 4.1. Sea (X, d) un espacio métrico y sea V un subconjunto de puntos de X. Entonces

$$C(V,\varepsilon) \subseteq VR(V,2\varepsilon) \subseteq C(V,2\varepsilon).$$

Demostración. La primera imnclusión es inmediata pues si un punto x pertenece a la intersección $\bigcap_{v \in V} B(v, \varepsilon)$, entonces la distancia para cada par de puntos de V es, a lo sumo, 2ε . En consecuencia, cualquier símplice de $C(V, \varepsilon)$ se encuentra en $VR(V, 2\varepsilon)$.

Para la segunda inclusión, consideremos ahora un símplice $\sigma = \{v_0, \ldots, v_p\}$ de $VR(V, 2\varepsilon)$. Por la definición de complejo de Vietoris-Rips, tenemos que $d(v_i, v_j) \leq 2\varepsilon$ para todo $i, j \in \{0, \ldots, p\}$. Considerando las bolas abiertas de radio 2ε centradas en v_i y en v_j , tenemos que su intersección es no vacía, pues $v_i \in \overline{B}_{2\varepsilon}(v_j)$ y $v_j \in \overline{B}_{2\varepsilon}(v_i)$. En el supuesto de que los puntos pertenecieran a la frontera de las bolas, la intersección de las bolas abiertas también sería no vacía pues $\varepsilon > 0$. En consecuencia, tenemos que $\sigma \in C(V, 2\varepsilon)$.

4.2. Módulos de homología persistente

Definición 4.4. Sea K un complejo simplicial. Una **filtración** \mathcal{F} de K es una familia totalmente ordenada de subcomplejos $\{K^n\}_{n\in\mathbb{N}}$ tal que \emptyset , $K\in\mathcal{F}$ y si $i\leq j$, entonces $K^i\subseteq K^j$. En particular, llamaremos a dicho orden **filtro**.

A partir de la definición anterior, podemos construir los complejos de cadenas asociados $C(K^i;R)$ para todo $i \in \mathbb{N}$. Así mismo, podemos obtener sus respectivos submódulos de ciclos Z^i_p y bordes B^i_p para cada cadena $C_p(K^i;R)$.

Definición 4.5. Sea \mathcal{F} una filtración, sea p un número natural y sean $i, j \in \{0, ..., n\}$. Definimos el (i, j)-ésimo R-módulo de homología persistente de nivel p asociado a \mathcal{F} como

$$H_p^{i\to j}(\mathcal{F}) := \operatorname{Im} f_p^{i\to j}.$$

El rango de $H_p^{i\to j}(\mathcal{F})$ diremos que es el (i,j)-ésimo número de Betti de persistencia de nivel p y lo notaremos por $\beta_p^{i,j}$.

Proposición 4.2. Sea $\mathcal F$ una filtración del complejo simplicial K. Entonces

$$H_p^{i \to j}(\mathcal{F}) \cong \frac{Z_p(K_j)}{B_p(K_j) \cap Z_p(K_i)}$$

es un isomorfismo de R-módulos.

Demostración. Sabemos que el cociente anterior está bien definid,o pues $Z_p(K_i) \cap B_p(K_j)$ es un submódulo de $Z_p(K_i)$. Para ver que en efecto existe un isomorfismo, consideraremos la proyección canónica $\pi_i: Z_p(K_i) \to H_p(K_j)$. Aplicando el Primer teorema de isomorfía, tenemos que

$$\frac{Z_p(K_i)}{\ker \pi_i} \cong \operatorname{Im} \pi_i$$

es un isomorfismo. Sin embargo, nótese que

$$\ker \pi_i = \{ z \in Z_p(K_i) : \pi_i(z) = [0] \} = \{ z \in Z_p(K_i) : [z] = [0] \}$$
$$= \{ z \in Z_p(K_i) : z \in B_p(K_i) \} = B_p(K_i) \cap Z_p(K_i).$$

Además.

$$H_p^{i \to j}(\mathcal{F}) = \operatorname{Im} f_p^{i \to j} = \{ f_p^{i \to j}([z]) : [z] \in H_p(K_i) \}$$

= \{ \[(i_{i,j_*})_p(z) \] : \(z \in Z_p(K_i) \) \} = \{ \pi_i(z) : \(z \in Z_p(K_i) \) \} = \text{Im } \pi_i.

Definición 4.6. Dada una filtración \mathcal{F} , decimos que un elemento $\alpha \neq 0$ en $H^p(K_i)$ nace en K_i si $\alpha \notin H^{p-1}(K_{i-1}, \mathcal{F})$. Además, decimos que α muere entrando en K_j si se fusiona con una clase proveniente de un nivel anterior cuando se desplaza de K_j a K_{j-1} ; es decir, si $f_{i,j-1}^p(\alpha) \notin H^{p-1}(K_{i-1}, \mathcal{F})$ pero $f_{i,j}^p(\alpha) \in H^{p-1}(K_j, \mathcal{F})$.

4.3. Representación de la homología persistente

Lema 4.1. Sea A un R-módulo. A es finitamente generado por n elementos si, y sólo si, existe un epimorfismo $\phi: \mathbb{R}^n \to A$.

46

Demostración. Sea M un módulo generado por un conjunto finito de elementos $\{m_1, \ldots, m_n\}$. Consideremos el homomorfismo $\phi : R^n \to M$ definido por

$$\phi(a_1,\ldots,a_n)=\sum_{i=1}^n a_i m_i.$$

Este homomorfismo ϕ es claramente sobreyectivo, ya que cada elemento m en M puede ser expresado como $\phi(a_1, \ldots, a_n)$ para algunos $a_1, \ldots, a_n \in R$.

Por otro lado, si existe un homomorfismo sobreyectivo $\phi: R^n \to M$, entonces, para cada $m \in M$ existe una n-tupla (a_1, \ldots, a_n) en R^n tal que $\phi(a_1, \ldots, a_n) = m$. Los elementos $\phi(e_i)$, donde e_i es el i-ésimo vector de la base canónica de R^n , generan M. De aquí se sigue que M es finitamente generado.

Definición 4.7. Sea A un R-módulo finitamente generado por n elementos y sea $\phi: R^n \to A$ un epimorfismo. Diremos que A es **finitamente presentado** si ker ϕ es finitamente generado.

Definición 4.8. ARREGLAR Sea $\{M_i\}_{i\in\mathbb{N}}$ una familia de R-módulos. Diremos que dicha familia es un **módulo de persistencia discreto** sobre el anillo R si para cada $i \leq j$ existe un homomorfismo de R-módulos $f_{i,j}: A_i \to A_j$ tal que:

- 1. $f_{i,i} = id_{A_i}$ para todo $i \in \mathbb{N}$.
- 2. $f_{i,k} \circ f_{i,j} = f_{i,k}$ para todo $i \leq j \leq k$.

Definición 4.9. Sean $\mathcal{M} = \{\{M_i\}_{i \in \mathbb{N}}, \{f_{i,j}\}_{i \leq j \in \mathbb{N}}\}, \mathcal{N} = \{\{N_i\}_{i \in \mathbb{N}}, \{g_{i,j}\}_{i \leq j \in \mathbb{N}}\}$ dos módulos de persistencia discretos. Diremos que la familia de homomorfismos $\varphi_{\bullet} = \{\varphi_i\}_{i \in \mathbb{N}}$ tales que $\varphi_i : M_i \to N_i$ es un homomorfismo de módulos de persistencia discreto si $g_{i,j} \circ \varphi_i = \varphi_j \circ f_{i,j}$.

La anterior definición es equivalente a decir que el diagrama

$$M_{0} \xrightarrow{f_{0}} M_{1} \xrightarrow{f_{1}} \cdots \xrightarrow{f_{i-1}} M_{i} \xrightarrow{f_{i}} M_{i+1} \xrightarrow{f_{i+1}} \cdots$$

$$\downarrow \varphi_{0} \qquad \qquad \downarrow \varphi_{1} \qquad \qquad \downarrow \varphi_{i} \qquad \qquad \downarrow \varphi_{i+1}$$

$$\downarrow \varphi_{0} \qquad \qquad \downarrow \varphi_{i+1} \qquad \qquad$$

conmuta. En las condiciones anteriores, los módulos de persistencia discretos junto a sus homomorfismos forman una categoría que notaremos por *R*-**PersMod**.

Definición 4.10. Sea *R* un anillo. Diremos que *R* es un **anillo graduado** si puede descomponerse como una suma directa

$$R = \bigoplus_{n=0}^{\infty} R_n,$$

donde $R_m R_n \subseteq R_{m+n}$ para todos $m, n \in \mathbb{Z}$. Los elementos de R_n distintos de cero se denominan **homogéneos de grado** n.

Definición 4.11. Sea R un anillo graduado y sea M un R-módulo. Diremos que M es un **módulo graduado** si puede escribirse como

$$M=\bigoplus_{n=0}^{\infty}M_n,$$

donde M_n son grupos abelianos y $R_m M_n \subseteq M_{m+n}$ para todos $m, n \in \mathbb{Z}$. Un elemento de M_n distinto de cero se llama **homogéneo de grado** n.

VER QUE LOS MODULOS RGADUADOS FORMAN UNA CATEGORIA

Los módulos de persistencia discretos sobre un anillo R y los R[t]-módulos graduados son conceptos íntimamente relacionados. Si $\mathcal M$ es un módulo de persistencia discreto, podemos definir un R[t]-módulo graduado $\alpha(\mathcal M)$ como

$$\alpha(\mathcal{M}) = \bigoplus_{i \in \mathbb{N}} M_i$$
,

donde el producto por t lo definimos como $t \cdot m_i = f_{i,i+1}(m_i)$ para todo $m_i \in M_i$. Análogamente, podemos definir un módulo de persistencia discreto a partir de un R[t]-módulo $\bigoplus_{i \in \mathbb{N}} M_i$, de forma que

$$\beta\left(\bigoplus_{i\in\mathbb{N}}M_i\right)=\mathcal{M}.$$

Aquí, los morfismos los obtenemos a partir del producto por t, esto es, $f_{i,i+1}(m_i) = t \cdot m_i$ para todo $m_i \in M_i$. El siguiente resultado nos proporciona formalmente cómo de íntima es esta relación.

Lema 4.2. Las aplicaciones α y β definidas anteriormente forman una pareja isomorfa de funtores entre R-**PersMod** y R[t]-**Gr-Mod**. En particular, ambas categorías son isomorfas.

Demostración. Sea $\varphi_{ullet}: \mathcal{M} \to \mathcal{N}$ un morfismo de módulos de persistencia discretos. Definamos

$$\alpha(\varphi_{\bullet}): \bigoplus_{i\in\mathbb{N}} M_i \to \bigoplus_{i\in\mathbb{N}} N_i$$

donde a cada $m_i \in M_i$ le asignamos $\varphi_i(m_i)$ para cada $i \in \mathbb{N}$. Veamos que $\alpha : R$ -**PersMod** \to R[t]-**Gr-Mod** es un funtor. Primero veamos que $\alpha(\varphi_{\bullet})$ es un morfismo de módulos graduados. Tenemos que $\alpha(\varphi_{\bullet})$ es un homomorfismo de grupos pues cada φ_i lo es, cumple que $\alpha(\varphi_i)(M_i) \subseteq N_i$ y además, si $m = (m_0, m_1, \ldots)$ es un elemento de \mathcal{M} , entonces

$$\alpha(\varphi_{\bullet})(tm) = \alpha(\varphi_{\bullet})(0, tm_0, tm_1, \ldots) = (0, \varphi_0(tm_0), \varphi_1(tm_1), \ldots)$$

= $(0, t\varphi_0(m_0), t\varphi_1(m_1), \ldots) = t\alpha(\varphi_{\bullet})(m),$

donde la última igualdad es consecuencia de la propiedad (2) de los morfismos de módulos de persistencia discretos. En cuanto a las propiedades funtoriales, es evidente que α lleva identidades en identidades. Además, si ψ_{\bullet} es otro morfismo de módulos de peristencia discretos, tenemos que

$$(\alpha(\psi_{\bullet} \circ \varphi_{\bullet}))(m) = (\psi_i(\varphi_i(m_i)))_{i \in \mathbb{N}} = \alpha(\psi_{\bullet})(\varphi_i(m_i))_{i \in \mathbb{N}} = (\alpha(\psi_{\bullet}) \circ \alpha(\varphi_{\bullet}))(m).$$

Consideremos ahora el homomorfismo de R[t]-módulos graduados

$$\eta:\bigoplus_{i\in\mathbb{N}}M_i\to\bigoplus_{i\in\mathbb{N}}N_i,$$

que para cada $i\in\mathbb{N}$ induce un homomorfismo $\eta_i:M_i\to N_i$ compatible con el producto por

t. En consecuencia, el diagrama

$$M_{0} \xrightarrow{t} M_{1} \xrightarrow{t} \cdots \xrightarrow{t} M_{i} \xrightarrow{t} M_{i+1} \xrightarrow{t} \cdots$$

$$\downarrow \eta_{0} \qquad \qquad \downarrow \eta_{1} \qquad \qquad \downarrow \eta_{i} \qquad \qquad \downarrow \eta_{i+1}$$

$$N_{0} \xrightarrow{t} N_{1} \xrightarrow{t} \cdots \xrightarrow{t} N_{i} \xrightarrow{t} N_{i+1} \xrightarrow{t} \cdots$$

es conmutativo. Definamos ahora $\beta(\eta)=(\eta_0,\eta_1,\ldots)$ y veamos que es un homomorfismo de módulos de persistencia discretos entre \mathcal{M} y \mathcal{N} . En consecuencia, β nos da homomorfismos de grupos $\eta_i:M_i\to N_i$ que, a su vez, son homomorfismos de R-módulos. Para comprobarlo, basta tomar cualquier $r\in R$ y $m_i\in M_i$ y vemos que $\eta_i(rm_i)=\eta(rm_i)=r\eta(m_i)=r\eta_i(m_i)$. Como los homomorfismos de R-módulos de \mathcal{M} y \mathcal{N} se obtienen mediante la multiplicación por t, entonces para todo $m_i\in M_i$ tenemos que

$$\eta_{i+1}(tm_i) = \eta(tm_i) = t\eta(m_i) = t\eta_i(m_i),$$

por lo que $\beta(\eta)$ es un homomorfismo de módulos de persistencia discretos. Claramente β conserva la identidad. Luego para otro $\theta: \mathcal{M} \to \mathcal{N}$ y cualquier $m = (m_i)_{i \in \mathbb{N}} \in \mathcal{M}$,

$$(\beta(\theta \circ \eta))(m) = (\theta(\eta(m_i)))_{i \in \mathbb{N}} = \beta(\theta)(\eta(m_i))_{i \in \mathbb{N}} = (\beta(\theta) \circ \beta(\eta))(m).$$

Esto es, β es un funtor. Finalmente, por la construcción de α y β tenemos que $\beta \circ \alpha$ es el funtor identidad en R[t]-**Gr-Mod** y que $\alpha \circ \beta$ es el funtor identidad en R-**PersMod**.

En la práctica generalmente trabajaremos con módulos de persistencia que cumplen ciertas condiciones de finitud. Por ello, resulta de gran interés conocer si la correspondencia recién realizada se sigue cumpliendo bajo estos casos.

Definición 4.12. Diremos que un módulo de persistencia discreto \mathcal{M} es de **tipo finito** si existe $n \in \mathbb{N}$ de forma que para todo $i, j \in \mathbb{N}$ tal que $n \leq i \leq j$ la aplicación $f_{i,j}$ es un isomorfismo.

Definición 4.13. Diremos que un módulo de persistencia discreto \mathcal{M} es de **finitamente presentado (generado)** si es de tipo finito y además, M_i es finitamente presentado (generado) para todo $i \in \mathbb{N}$.

Lema 4.3. Sea \mathcal{M} un módulo de persistencia discreto. Si \mathcal{M} es finitamente presentado, entonces $\alpha(\mathcal{M})$ es finitamente presentado.

Demostración. Consideremos $N \in \mathbb{N}$ de forma que $f_{i,j}: M_i \to N_i$ es un isomorfismo para todo $N \le i \le j$. Sea G un conjunto de generadores de M_i . Queremos ver que $G = \bigcup_{i=1}^N G_i$ es un sistema de generadores también para $\alpha(\mathcal{M})$. Para ello, veamos que todo elemento homogéneo de $\alpha(\mathcal{M})$ está generado por la unión de los G_i . Fijemos $k \in \mathbb{N}$ y sea $m_k \in \alpha(\mathcal{M})$ un elemento homogéneo de grado k. Si $k \le N$, entonces m_k está generado por los elementos de G_k por construcción. Si k > N, veamos que m_k está generado por G_N . Por ser $f_{N,k}$ un isomorfismo, podemos tomar $m_N = f_{N,k}^{-1}(m_k)$. Pero como m_D está generado por G_N , entonces m_k está generado por $f_N, k(G_N)$. Por como hemos construido $\alpha, f_{N,k}(G_N) = t^{k-N}G_N$ y como $t^{k-N} \in R[t]$, entonces m_k está generado por G_N . En consecuencia, $\alpha(\mathcal{M})$ es finitamente generado.

Para ver que $\alpha(\mathcal{M})$ es finitamente presentado, consideremos el epimorfismo $\mu_i: R^{n_i} \to M_i$ que genera M_i por extensión lineal sobre G_i . Considerando $n = \sum_{i=1}^N n_i$, existe una aplicación $\mu: R[t]^N \to \alpha(\mathcal{M})$ que corresponde al sistema de generadores G. Para cada $g_i \in G$, denotemos por e_i a su correspondiente elemento en el sistema de generadores de $R[t]^N$.

A continuación definamos un conjunto finito de elementos del núcleo de μ . sea H_i el sistema de generadores de $\ker \mu_i$ para cada $0 \le i \le N$. Es claro que $H_i \subseteq \ker \mu_i$. Es más, para cualquier $0 \le i < j \le N$ y cualquier $g_i \in G_i$ tal que $f_{i,j}(g_i) \ne 0$, tenemos que

$$f_{i,j}(g_i) = \sum_{k=0}^{n_j} \lambda_k g_{jk}$$

donde $\lambda_k \in R$ y $G_i = \{g_{j_0}, g_{j_1}, \dots, g_{j_k}\}$. Por tanto, el correspondiente elemento

$$t^{j-i}e_i - \sum_{k=0}^{n_j} \lambda_k e_{jk}$$

pertenece al ker μ . Denotemos ahora por $H_{i,j}$ al conjunto finito obtenido tomando los elementos de la forma de la expresión anterior para cada $g_i \in G_i$ tal que $f_{i,j}(g_i) \neq 0$. Sea $H = \bigcup_{i=0}^N H_i \cup \bigcup_{0 < i < j < N} H_{i,j}$.

A continuación, fijemos un elemento x del núcleo de μ de la forma

$$x = \sum_{l} \lambda_{l} e_{l}$$

de forma que $\lambda_l \in R[t]$ y e_l es un generador de $R[t]^n$. Podemos suponer sin pérdida de generalidad que x es homogéneo de algún grado k. Veamos por casos que x es finitamente generado por los elementos de H_k .

Supongamos que $k \le N$ y que todos los escalares λ_l son de grado 0. Entonces, todos los e_l que aparecen en x son del mismo grado y por tanto, sus imágenes por μ son generadores de M_k . Es decir, x está generado por H_k .

Supongamos ahora qe $k \le N$ y que algún λ_l es de grado positivo. Por ser x homogéneo, entonces λ_l es de la forma $r_l t^{d_l}$, donde $r_l \in R$ y $d_l > 0$. Como el grado de e_l es $k - d_l$, entonces existe un elemento $h_l \in H_{k-d_l,k}$ de la forma

$$h_l = t^{d_l} e_l - \sum_{m=0}^{n_l} \tilde{\lambda}_m e_{lm},$$

donde todos los e_{lm} son de grado k y $\tilde{\lambda}_m \in R$. Por consiguiente, en $x - r_l h_l$ el coeficiente de e_l en x es 0 en t y por tanto, sólo estamos introduciendo sumandos de grado 0 en t.

Iterando esta construcción para cada sumando de con coeficiente de grado positivo, obtenemos un elemento $x' = x - \sum_w r_w h_w$, donde $r_w \in R$, $h_w \in H$ y x' tiene solamente coeficientes de grado 0 en t. Esto es, $x = x' \sum_w r_w h_w$. Finalmente, aplicando la primera parte de la demostración tenemos que x es generado por H.

Para concluir, consideremos k > N. En dicho caso, cada λ_l es de grado al menos k - N, pues el grado maximal de e_l es N. Luego $x = t^{k-N}x'$, donde x' es homogéneo de grado N. Como $0 = \mu(x) = t^{k-N}\mu(x')$, entonces $x' \in \ker \mu$. Por la segunda parte de la demostración, concluimos que x' es generado por H y por tanto, x también.

Para los siguientes dos lemas, fijaremos el R[t]-módulo graduado finitamente presentado $\mathbf{M} = \bigoplus_{i \in \mathbb{N}} M_i$ junto con la aplicación $\mu : R[t]^n \to \mathbf{M}$ cuyo núcleo es finitamente generado. Consideremos además el sistema de generadores $G = \{g_1, \dots, g_n\}$ de \mathbf{M} y sea $H = \{h_1, \dots, h_m\}$ un sistema de generadores de ker μ . Además, consideremos que tanto los elementos de G como de H son homogéneos del grado del respectivo módulo. Finalmente, vamos a asumir que dichos elementos están ordenados por grado en orden no decreciente.

Lema 4.4. Cada M_i de **M** está finitamente presentado como un R-módulo.

Demostración. Veamos primero que M_i es finitamente generado. Sea d_j el grado de g_j para $1 \le j \le n$. Sea n_i el número de elementos de G con grado menor o igual que i. Definamos $\mu_i : R^{n_i} \to M_i$ de forma que μ_i asigne al j-ésimo generador $e_{ij} \in R^{n_i}$ el elemento $t^{i-d_j}g_j$. VER QUE ES SOBREYECTIVA, y por tanto M_i es finitamente generado.

A continuación veamos que ker μ_i también es finitamente generado. Sean e_1, \ldots, e_n los generadores de $R[t]^n$ con imagen g_1, \ldots, g_n por μ respectivamente. Sea m_i el número de elementos h_j de H cuyo grado d'_j es menor o igual que i. Para cada h_j tal que $1 \le j \le m_i$, consideremos $t^{i-d'_j}h_j$ que podemos reescribir como

$$t^{i-d'_j}h_j = \sum_{k=1}^{m_i} r_k t^{i-d_k} e_k$$

para ciertos $r_k \in R$. Definamos ahora

$$h_{j_i} = \sum_{k=1}^{n_i} r_k e_{ki}$$

y definamos $H_i = \{h_{j_i} : 1 \le i \le m_i\}$. Veamos que H_i genera el núcleo de μ . Es claro que $\mu_i(h_{j_i}) = \mu(h_j) = 0$. Fijemos ahora un elemento arbitrario x de ker μ_i . Tenemos entonces que x es combinación lineal de $\{e_{1i}, \ldots, e_{n_{ii}}\}$ con coeficientes en R. Reemplazando e_{j_i} por $t^{i-d_j}e_j$, obtenemos un elemento homogéneo $x' \in R[t]^n$ de grado i. Por hipótesis, podemos escribir x' como combinación de elementos de H de forma que

$$x' = \sum_{k=1}^{m_i} r'_k t^{i - d'_k} h_{ki}$$

donde $r'_k \in R$. En consecuencia, veamos que

$$x = \sum_{k=1}^{m_i} r'_k h_{ki}.$$

Para ello, procederemos comparando coeficientes. Consideremos $j \in \{1, \ldots, n_i\}$ y sea $c_j \in R$ el coeficiente de e_{j_i} en x. Sea c_j' el coeficiente de e_{j_i} en la suma de la expresión anterior, escribiendo cada h_{ki} como combinación lineal de los e_{j_i} . Por la construcción realizada, c_j es el coeficiente de $t^{i-d_j}e_j$ en x' y c_j' es el coeficiente de $t^{i-d_j}e_j$ en la suma $\sum_{k=1}^{m_i} r_k' t^{i-d_k'} h_{ki}$. Esto es, $c_j = c_j'$. Como x se escogió de manera arbitraria de ker μ_i , entonces H_i lo genera.

Lema 4.5. $\beta(\mathbf{M})$ *es de tipo finito. En particular, es de tipo finitamente presentado (lema anterior).*

Demostración. Sea N el grado máximo de los $g_j \in G_j$, $h_k \in H_k$ de forma que $1 \le j \le n$, $1 \le k \le m$. Veamos que la multiplicación por t induce un isomorfismo entre M_i y M_{i+1} para todo $i \ge N$.

Si $y \in M_{i+1}$, entonces existen $\lambda_j \in R[t]$ de grado al menos 1 de forma que $y = \sum_{j=1}^n \lambda_j g_j$. Por tanto, y = ty' donde $y' \in M_i$ mostrando que la multiplicación por t es sobreyectiva.

Para ver que es inyectiva, consideremos $y \in M_i$ de forma que ty = 0. Sea $x \in R[t]^n$ tal que $\mu(x) = y$. Entonces $\mu(tx) = ty = 0$ y por tanto, veamos tx se puede escribir como

$$tx = \sum_{j=0}^{m} \tilde{\lambda}_j h_j,$$

donde cada λ_j no trivial es un polinomio de grado al menos 1. Es inmediato, pues cada h_j es de grado menor o igual que N y tx es de grado mayor o igual que N+1. En consecuencia, también podemos descomponer tx como

$$tx = \sum_{j=0}^{m} t\lambda_j h_j = t \sum_{j=0}^{m} \lambda_j h_j.$$

Por ser $R[t]^n$ un módulo libre, tenemos que $x = \sum_{j=0}^m \lambda_j h_j$ y por tanto, $x \in \ker \mu$ lo que implica que y = 0.

Teorema 4.2. Sea R un anillo unitario. Entonces, un isomorfismo entre la categoría de R[t]-módulos graduados finitamente presentados y la categoría de módulos de persistencia discretos.

Teorema 4.3 (Teorema de descomposición de módulos graduados). Sea A un R[t]-módulo graduado finitamente generado. Entonces A se descompone de manera única, salvo isomorfismos, como

$$A \cong \left(\bigoplus_{i=1}^{n-m} R[t](-a_i)\right) \oplus \left(\bigoplus_{j=1}^{m} R[t]/(t^{c_j})(-b_j)\right),$$

donde $a_i, b_j, c_j \in \mathbb{N}$, y para cada j, t^{c_j} es un elemento homogéneo tal que divide a $t^{c_{j+1}}$. Demostración. Véase [Web85].

4.4. Estabilidad de los diagramas de persistencia

Definición 4.14. Sea X un espacio topológico Hausdorff no vacío. Diremos que X es una m-variedad si cada punto de X tiene un entorno homeomorfo a un subconjunto abierto de \mathbb{R}^m con la topología usual. Análogamente, diremos que X es una m-variedad con borde si cada punto tiene un entorno homeomorfo al semiespacio $\mathbb{H}^m = \{(x_1, x_2, \dots, x_m) \in \mathbb{R}^m : x_i \geq 0, 1 \leq i \leq m\}.$

Observación 4.1. Nótese que toda m-variedad es una m-variedad con borde. Para verlo, consideremos x en la m-variedad y un entorno homeomorfo a un subconjunto abierto de \mathbb{R}^m . Entonces, tiene un entorno abierto homeomorfo a cualquier bola abierta de \mathbb{R}^m y en particular, a una contenida en \mathbb{H} .

Parte II. Informática

5. Conceptos y estado del arte

La **inteligencia artificial** (IA) se define en [RN16] como el campo de estudio de la informática que se centra en la creación de agentes inteligentes, es decir, sistemas que perciben su entorno y toman acciones que maximizan sus posibilidades de éxito en algún objetivo o tarea.

La inteligencia artificial abarca una amplia variedad de problemas y aplicaciones, entre los que destacan:

- Resolución de Problemas y Búsqueda: La IA desarrolla algoritmos para encontrar soluciones óptimas o satisfactorias en espacios de búsqueda complejos. Esto incluye problemas clásicos como el ajedrez, el rompecabezas del cubo de Rubik o la planificación de rutas.
- Representación del Conocimiento y Razonamiento: Este área se centra en cómo representar información sobre el mundo de manera que un ordenador pueda utilizarla para resolver problemas complejos y tomar decisiones. Ejemplos incluyen sistemas expertos y razonamiento basado en casos.
- Aprendizaje Automático: Como veremos posteriormente, el aprendizaje automático se enfoca en el desarrollo de algoritmos que permitan a los ordenadores aprender a partir de los datos y mejorar con la experiencia.
- Procesamiento del Lenguaje Natural (NLP): El NLP busca permitir que los ordenadores comprendan, interpreten y respondan al lenguaje humano de manera útil. Algunas aplicaciones de este campo incluyen la traducción automática, el análisis de sentimientos y la implementación de agentes conversacionales.
- Visión Artificial: Este campo se enfoca en que los ordenadores sean capaces de interpretar y comprender el contenido de imágenes y vídeos. Aplicaciones incluyen el reconocimiento facial, la conducción autónoma y la detección de objetos.
- Robótica: La IA aplicada a la robótica busca diseñar agentes que interactúen con el mundo físico. Esto incluye tareas como la navegación, la manipulación de objetos y la interacción humano-robot.

Es importante destacar que los problemas que aborda la inteligencia artificial pueden involucrar múltiples áreas. Por ejemplo, un sistema de conducción autónoma requiere la integración de visión artificial para interpretar el entorno, aprendizaje automático para mejorar su desempeño a partir de la experiencia y toma de decisiones, y algoritmos de planificación para determinar la mejor ruta a seguir. Esta interrelación de diferentes áreas y técnicas permite a los sistemas de IA abordar problemas complejos y dinámicos de manera más eficaz.

5.1. Aprendizaje automático

El aprendizaje automático o *machine learning* es la subdisciplina de la IA que se centra en el desarrollo de algoritmos y técnicas que permiten a los ordenadores aprender y hacer predicciones o tomar decisiones basadas en datos. Esta capacidad de aprendizaje se logra a través de la construcción de modelos que pueden mejorar su rendimiento en tareas específicas mediante la experiencia y los datos disponibles. Este enfoque supuso un cambio de paradigma respecto al diseño de algoritmos tradicional, donde su desempeño dependía explícitamente del conocimiento sobre el problema de los ingenieros que lo implementaban.

Existen varios paradigmas del aprendizaje automático en función del nivel de supervisión humana necesaria durante el proceso de aprendizaje. Los tres tipos principales son:

- Aprendizaje Supervisado: En este tipo, el algoritmo aprende a partir de un conjunto de datos etiquetados. Cada ejemplo en el conjunto de datos incluye una entrada y una salida esperada. El objetivo es que el modelo aprenda a identificar las salidas correctas a partir de las entradas para poder hacer predicciones sobre datos nuevos. Aplicaciones comunes incluyen la clasificación y la regresión.
- Aprendizaje No Supervisado: A diferencia del aprendizaje supervisado, en el aprendizaje no supervisado los datos no están etiquetados. El objetivo es descubrir estructuras o patrones ocultos en los datos. Las técnicas de agrupamiento o clustering, y la reducción de dimensionalidad son ejemplos comunes de aprendizaje no supervisado.
- Aprendizaje por Refuerzo: En este enfoque, un agente aprende a tomar decisiones mediante la interacción con un entorno dinámico. El agente recibe recompensas o penalizaciones en función de las acciones que realiza, y su objetivo es maximizar la recompensa acumulada a lo largo del tiempo. Este tipo de aprendizaje es especialmente útil en problemas de toma de decisiones secuenciales, como en juegos y robótica.

El aprendizaje automático se utiliza para abordar una amplia variedad de problemas en diferentes dominios. Algunos de los problemas más destacados incluyen:

- Clasificación: El objetivo de la clasificación es asignar una etiqueta a una entrada entre un conjunto de etiquetas posibles. Ejemplos de problemas de clasificación incluyen el reconocimiento de imágenes, el filtrado de spam y el diagnóstico médico.
- Regresión: La regresión se centra en predecir un valor continuo a partir de una entrada.
 Un ejemplo clásico es la predicción de precios de viviendas basándose en características como el tamaño y la ubicación.
- Agrupamiento (Clustering): Este problema implica agrupar un conjunto de datos en subconjuntos, o clusters, de tal manera que los datos en el mismo cluster sean más similares entre sí que con los datos de otros clusters. Aplicaciones incluyen segmentación de mercado y análisis de imágenes.
- Reducción de Dimensionalidad: La reducción de dimensionalidad se utiliza para simplificar modelos complejos reduciendo el número de variables en el análisis de datos. Técnicas como el Análisis de Componentes Principales (PCA) o *Locally Linear Embedding* (LLE) son comunes en este campo.

 Detección de Anomalías: También conocido como detección de outliers, este problema implica identificar datos que no se ajustan al comportamiento normal esperado. Es crucial en áreas como la detección de fraudes y el monitoreo de sistemas.

El avance en el aprendizaje automático ha llevado a desarrollos significativos en múltiples campos, transformando la manera en que se analizan los datos y se toman decisiones en el mundo real.

5.2. Visión artificial

Como hemos comentado anteriormente de manera breve, la **visión artificial** es la rama de la IA cuyo objetivo es comprender el mundo que percibimos a partir de una o más imágenes y reconstruir propiedades suyas como su forma, iluminación o distribución de colores. Su objetivo final es desarrollar sistemas que puedan interpretar y comprender el entorno visual de manera efectiva.

La **visión artificial** es un campo muy diverso que integra métodos de varias áreas del conocimiento para lograr su objetivo principal. Como resultado, abarca una amplia gama de aplicaciones y tareas. Algunas de las más destacadas incluyen:

- Clasificación de objetos: identificar y categorizar objetos en una imagen, lo que es fundamental en aplicaciones como la detección de objetos en imágenes de seguridad o la clasificación de productos en una tienda en línea.
- Generación de imágenes: crear imágenes a partir de modelos o datos, lo que tiene aplicaciones en la creación de gráficos 3D, la síntesis de imágenes para la publicidad o la creación de contenido en redes sociales.
- Reconstrucción de entornos 3D: reconstruir entornos tridimensionales a partir de imágenes 2D, lo que es fundamental en aplicaciones como la creación de modelos 3D de edificios o la planificación de rutas en un entorno desconocido.
- Detección de objetos: detectar la presencia de objetos en una imagen, lo que es fundamental en aplicaciones como la seguridad en espacios públicos o la detección de anomalías en la producción industrial.
- Segmentación de imágenes: dividir una imagen en regiones significativas, lo que es fundamental en aplicaciones como la medicina, la agricultura o la minería.

La visión artificial es un campo en constante evolución que se ha desarrollado significativamente en las últimas décadas, al punto de haber superado a los seres humanos en ciertas aplicaciones específicas, como el reconocimiento de imágenes y la detección de objetos. Sin embargo, aún quedan numerosos desafíos por abordar, especialmente en contextos más complejos y variados, como la interpretación de escenas en tiempo real y la comprensión de imágenes en condiciones adversas.

5.3. Redes neuronales artificiales

Dentro de los distintos modelos de aprendizaje automático, nosotros trabajaremos con redes neuronales artificiales. Para entender mejor su funcionamiento, primero hablaremos de las neuronas biológicas y su inspiración en los modelos artificiales.

5.3.1. Neuronas biológicas

Las neuronas biológicas son células especializadas del sistema nervioso que desempeñan roles clave en la recepción, procesamiento y transmisión de señales. Estas células son fundamentales para la comunicación neuronal, permitiendo el flujo de información a través de complejas redes en el cerebro y otros componentes del sistema nervioso.

Las neuronas biológicas están compuestas por tres partes principales: el **soma**, que es el cuerpo celular conteniendo el núcleo y orgánulos celulares; las **dendritas**, extensiones que reciben señales de otras neuronas; y el **axón**, una prolongación especializada que conduce los potenciales de acción desde el soma hasta las terminaciones sinápticas. Estas terminaciones sinápticas se encuentran en las sinapsis, donde se produce la transmisión de señales a otras neuronas o tejidos.

Figura 5.1.: Representación esquemática de una neurona biológica, mostrando el soma, las dendritas y el axón.

Esta compleja red de conexiones y la regulación electroquímica hacen que las neuronas biológicas sean fundamentales para coordinar y ejecutar numerosas funciones, desde simples reflejos hasta procesos cognitivos avanzados.

5.3.2. Redes neuronales artificiales

Las **neuronas artificiales** se inspiran en las neuronas biológicas en el sentido de que ambas tienen la capacidad de recibir, procesar y transmitir señales. En el caso de las neuronas artificiales, estas reciben señales de otras neuronas dentro de una red y las procesan mediante una combinación lineal de una matriz de **pesos** ajustables **W** y un vector de **sesgo** o *bias* **b**. Durante el entrenamiento de la red, estos parámetros se refinan para optimizar el rendimiento de la red en tareas específicas como clasificación o regresión. Cada neurona artificial aplica una función escalar denominada **función de activación** $\theta: \mathbb{R}^m \to \mathbb{R}$, que transforma la combinación lineal de sus entradas:

$$f(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \theta(\mathbf{W}\mathbf{x} + \mathbf{b}), \quad \forall \mathbf{x} \in \mathbb{R}^d, \mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^m.$$

Donde d es la dimensión de entrada y m es el número de neuronas en la capa.

Estas neuronas se agrupan en capas dentro de una red neuronal artificial (ANN). La estructura de la red se define por su profundidad, que corresponde al número de capas

Figura 5.2.: Estructura de una FNN. Muestra una red neuronal hacia adelante con tres tipos de capas: entrada (verde), oculta (azul), y salida (rojo). Cada neurona de la capa de entrada está conectada a todas las neuronas en la capa oculta, demostrando un ejemplo de capas totalmente conectadas.

ocultas, y su anchura, que se refiere al número de neuronas en cada capa.

En el caso de las **redes neuronales hacia adelante** o *feedforward networks* (FNNs), la red está compuesta por varias capas cuyas neuronas solamente están conectadas a neuronas en capas posteriores. En el caso donde todas las salidas de una capa están conectadas a todas las neuronas de la siguiente capa se les conoce como **capas totalmente conectadas** o *fully connected layers* (FC). Las funciones de cada capa en una FNN pueden describirse como:

$$f_j(\mathbf{x}) = \theta\left(\mathbf{W}_j\mathbf{x} + \mathbf{b}_j\right)$$
,

donde W_j es la matriz de pesos y \mathbf{b}_j es el vector de sesgo para la capa j. Estos elementos son fundamentales para determinar cómo se transforman las entradas en salidas que serán utilizadas por la siguiente capa. La estructura funcional de las FNNs se describe entonces mediante la composición de estas funciones organizadas en capas:

$$\nu = s \circ f_l \circ f_{l-1} \circ \ldots \circ f_2 \circ f_1(\mathbf{x}),$$

donde *l* denota el número total de capas. La última capa de la red utiliza una función de activación *s*, que convierte la salida de la capa final en uno o varios valores en función de la tarea designada a la red. Esta función de salida es crítica para aplicaciones como clasificación, donde el resultado necesita expresarse como una probabilidad, o para regresión, donde se ajusta a un rango específico.

5.3.3. Funciones de activación

Las funciones de activación son de gran importancia en la arquitectura de las ANNs, ya que introducen no linealidades en el modelo, permitiendo a la red aprender y modelar relaciones complejas en los datos. Sin estas funciones, la red no podría resolver tareas más complejas que una simple regresión lineal.

Anteriormente, hemos definido las funciones de activación en un contexto vectorial, apli-

cando una única transformación a todas las entradas procedentes de la capa anterior. Sin embargo, en la práctica es habitual emplear una función de activación escalar $\theta: \mathbb{R} \to I$, donde I es un intervalo específico, de forma que se aplica componente a componente a cada combinación lineal de entrada.

Una de las funciones de activación más antiguas es la sigmoide, que se define como:

$$\theta(z) = \frac{1}{1 + e^{-z}},$$

donde $\theta: \mathbb{R} \to [0,1]$ y z es la combinación lineal de entradas, pesos y sesgo de la neurona. La función sigmoide transforma los valores de entrada a un rango entre 0 y 1, modelando de esta forma probabilidades. Aunque su uso ha disminuido en redes profundas debido al problema del **desvanecimiento del gradiente**, problema que consiste en que los gradientes van disminuyendo progresivamente conforme profundizan en las capas de la red, impidiendo así su actualización. A pesar de ello, sigue siendo relevante en la capa de salida de ANNs para clasificación binaria.

La función **Softmax** es una generalización de la sigmoide para múltiples clases y se define para un vector $z \in \mathbb{R}^K$ como:

$$\theta(z)_i = \frac{e^{z_i}}{\sum_{k=1}^K e^{z_k}}$$
 para $i = 1, \dots, K$,

donde $\theta: \mathbb{R}^K \to [0,1]^K$. Cada componente de la salida, $\theta(z)_i$, representa la probabilidad de que la entrada pertenezca a la clase i, y se utiliza principalmente en la capa de salida de las redes neuronales para tareas de clasificación multiclase.

La tangente hiperbólica (tanh), que se define como:

$$\theta(z) = \tanh(z) = \frac{2}{1 + e^{-2z}} - 1$$
,

donde $\theta: \mathbb{R} \to [-1,1]$, es preferida sobre la sigmoide en algunos escenarios por su salida centrada en cero, que facilita la optimización durante el entrenamiento. Aunque también sufre del problema de desvanecimiento de gradiente, su uso en capas ocultas es bastante frecuente.

La Rectified Linear Unit (ReLU), definida como:

$$\theta(z) = \max(0, z),$$

donde $\theta: \mathbb{R} \to [0,\infty)$, es la más utilizada en aprendizaje profundo por su simplicidad y eficiencia computacional. ReLU se utiliza generalmente en capas ocultas, pero no es adecuada para la capa de salida en tareas de clasificación debido a su rango no acotado. Además, ReLU sufre de un problema de "**muerte de neuronas**.º "*dying ReLU*", que sucede cuando los valores de entrada son menores o iguales a cero. Debido a que la salida de ReLU es cero para estos valores, los gradientes también son cero durante la retropropagación. Como resultado, estas neuronas dejan de aprender y contribuyen poco o nada al modelo, afectando negativamente el rendimiento de la red.

La Leaky ReLU es una variante de la ReLU definida como:

$$\theta(z) = \max(\alpha z, z),$$

Figura 5.3.: Figura

donde α es un coeficiente real positivo y θ : $\mathbb{R} \to \mathbb{R}$. Esta función se utiliza también en capas ocultas para evitar la muerte de neuronas que puede ocurrir con ReLU.

Finalmente tenemos la *Sigmoid Linear Unit* (SiLU), también conocida como **Swish**, es una de las funciones de activación más recientes que combina elementos de la función sigmoide y linealidad. Se define como:

$$\theta(z) = \frac{z}{1 + e^{-z}},$$

donde $\theta: \mathbb{R} \to \mathbb{R}$. A diferencia de la ReLU y sus variantes, la SiLU permite que valores negativos tengan una contribución, aunque moderada, a la activación, lo que resulta en una capacidad mejorada para ajustar gradientes durante el entrenamiento. Esta característica hace que la SiLU sea particularmente útil en capas profundas de redes neuronales. Esta función ha mostrado ventajas en términos de rendimiento de convergencia y eficacia en comparación con funciones más tradicionales [RZL17].

Cada una de estas funciones de activación juega un papel crucial en la arquitectura de una red neuronal, y la elección de una sobre otra puede depender del problema específico que se esté abordando, del comportamiento de la red durante el entrenamiento y de la naturaleza de los datos.

5.3.4. Optimización en redes neuronales

El entrenamiento de estas redes se realiza mediante el uso de métodos de optimización que ajustan iterativamente los parámetros de la red para minimizar una función denominada **función de pérdida** o **coste**, denotada por \mathcal{L} . Esta función evalúa la diferencia entre las salidas predichas por la red $\hat{\mathbf{y}}$ y los valores reales o esperados \mathbf{y} .

Una elección típica de función de pérdida en tareas de clasificación multiclase es la **entropía cruzada** o *cross entropy*, que se utiliza en combinación con la función de activación **Softmax**. Softmax se aplica en la última capa de la red para convertir las salidas lineales en un vector de probabilidades que suman uno, siendo cada componente *i* la evaluación de Softmax en la

respectiva clase. De esta forma,

$$\hat{\mathbf{y}} = \text{Softmax}(\mathbf{z}) = \left(\frac{e^{z_1}}{\sum_{j=1}^{N} e^{z_j}}, \frac{e^{z_2}}{\sum_{j=1}^{N} e^{z_j}}, \dots, \frac{e^{z_N}}{\sum_{j=1}^{N} e^{z_j}}\right),\,$$

donde **z** representa las salidas de la última capa de la red antes de la aplicación de Softmax. Con el vector de probabilidades establecido por Softmax, la entropía cruzada se calcula entonces como:

$$\mathcal{L}(\mathbf{y}, \mathbf{\hat{y}}) = -\sum_{i=1}^{N} y_i \log(\hat{y}_i),.$$

Aquí, $\mathbf{y} = (y_1, y_2, \dots, y_N)$ es el vector de etiquetas reales en formato *one-hot*, donde $y_i = 1$ si la clase i es la correcta y $y_i = 0$ en caso contrario. Cada elemento \hat{y}_i en $\hat{\mathbf{y}}$ indica la probabilidad predicha de que la entrada pertenezca a la clase i, y la suma de todas las probabilidades es igual a uno. La función de entropía cruzada mide entonces la diferencia entre las distribuciones de las etiquetas reales y las probabilidades predichas, y su minimización lleva al modelo a mejorar la precisión de sus predicciones.

En el ámbito del aprendizaje profundo también es común notar la función de pérdida como $\mathcal{L}(\mathcal{W}; \mathbf{x}, \mathbf{y})$, siendo \mathcal{W} el conujnto de pesos de la red y \mathbf{x} el vector de entrada, de forma que $\mathcal{L}(\mathcal{W}; \mathbf{x}, \mathbf{y}) = \mathcal{L}(\nu(\mathbf{x}), \mathbf{y})$.

El principal método de entrenamiento de redes neuronales consta de dos pasos: el **paso** hacia adelante o *forward pass*, que calcula la salida de la red a partir de la entrada; y la **propagación hacia atrás**, también conocida como **retropropagación** o *backpropagation*. Este algoritmo es un método para calcular el gradiente de la función de pérdida con respecto a cada parámetro de la red aplicando la regla de la cadena. Este proceso se inicia en la capa de salida y se propaga hacia atrás a través de la red, de la siguiente manera:

$$\frac{\partial \mathcal{L}}{\partial w_{ij}^{(l)}} = \frac{\partial \mathcal{L}}{\partial x_i^{(l+1)}} \cdot \frac{\partial x_i^{(l+1)}}{\partial z_i^{(l+1)}} \cdot \frac{\partial z_i^{(l+1)}}{\partial w_{ij}^{(l)}},$$

donde \mathcal{L} es la función de pérdida, $w_{ij}^{(l)}$ son los pesos de la capa l, $x_i^{(l+1)}$ es la salida de la neurona i en la capa l+1, y $z_i^{(l+1)}$ es la entrada en forma de combinación lineal a la neurona i en la capa l+1, que se calcula como $z_i^{(l+1)} = \sum_j w_{ij}^{(l)} x_j^{(l)} + b_i^{(l)}$. La derivada $\frac{\partial x_i^{(l+1)}}{\partial z_i^{(l+1)}}$ es la derivada de la función de activación θ aplicada a $z_i^{(l+1)}$.

Como los métodos de optimización que emplearemos están basados en el cálculo del gradiente, restringiremos la optimización a los vectores de pesos \mathbf{w} en las distintas capas. En consecuencia, definiremos la función a optimizar como **función objetivo** J tal que $J(\mathcal{W}) = \mathcal{L}(\mathcal{W}; \mathbf{x}, \mathbf{y})$. Sin embargo, por comodidad abusaremos de la notación y escribiremos el gradiente de J respecto al vector \mathbf{w} , $\nabla_{\mathbf{w}}J(\mathcal{W})$, simplemente por $\nabla J(\mathbf{w})$.

La optimización efectiva de estos pesos es crucial para el rendimiento de la red, y se lleva a cabo a través de varias iteraciones de entrenamiento, ajustando progresivamente los parámetros para reducir el error y mejorar la precisión de la clasificación o la predicción de la red.

5.3.4.1. Descenso del gradiente

El algoritmo de **descenso del gradiente** [Cau47] es el enfoque más básico de optimización, donde los pesos se actualizan en la dirección opuesta al gradiente de la función objetivo:

$$\mathbf{w}_{\text{nuevo}} = \mathbf{w}_{\text{viejo}} - \alpha \nabla J(\mathbf{w}_{\text{viejo}}),$$

donde α representa la **tasa de aprendizaje** y $\nabla J(\mathbf{w}_{\text{viejo}})$ es el gradiente de la función de pérdida con respecto a los pesos anteriores. El descenso del gradiente puede implementarse de varias maneras dependiendo de cómo se seleccionan y utilizan los datos para calcular el gradiente de la función de pérdida. Una forma es el **descenso del gradiente estocástico** (SGD), que actualiza el conjunto de pesos después de cada ejemplo de entrenamiento, siendo muy utilizado en grandes conjuntos de datos. Otra variante es el **descenso del gradiente por lotes**, que calcula el gradiente utilizando todo el conjunto de datos antes de realizar una actualización, asegurando una actualización consistente de los pesos. Finalmente, el **descenso del gradiente por mini-lotes** divide el conjunto de datos en pequeños lotes y realiza actualizaciones de los pesos después de procesar cada mini-lote, combinando aspectos de las dos técnicas anteriores.

5.3.4.2. Momentum

Una técnica que mejora la eficacia del descenso del gradiente es el *momentum* [RHW86], que ayuda a acelerar el algoritmo en la dirección correcta mientras suaviza las actualizaciones de pesos. En lugar de actualizar los pesos basándose únicamente en el gradiente actual, el *momentum* también considera los gradientes anteriores para obtener una dirección más estable y consistente. Esto se logra mediante la introducción de una variable \mathbf{v}_t , conocida como el **término de** *momentum*, que acumula los gradientes pasados con un **factor de descuento** γ , normalmente fijado entre 0.9 y 0.99. La fórmula de actualización con *momentum* es entonces:

$$\mathbf{v}_t = \gamma \mathbf{v}_{t-1} + \alpha \nabla J(\mathbf{w}_{\text{viejo}}),$$

 $\mathbf{w}_{\text{nuevo}} = \mathbf{w}_{\text{viejo}} - \mathbf{v}_t,$

donde α es la tasa de aprendizaje. Este enfoque no solo acelera la convergencia, sino que también puede ayudar a evitar los mínimos locales subóptimos, haciendo que el algoritmo sea más eficaz y robusto en práctica.

5.3.4.3. Adagrad

Adaptative Gradient Algorithm (Adagrad) [DHS11] es un algoritmo de optimización que adapta individualmente la tasa de aprendizaje de cada parámetro basándose en la magnitud acumulada de sus gradientes. La actualización de los pesos **w** se realiza mediante la siguiente fórmula:

$$\mathbf{w}_{\text{nuevo}} = \mathbf{w}_{\text{viejo}} - \frac{\alpha}{\sqrt{\mathbf{G}^{(t)} + \epsilon}} \odot \nabla J(\mathbf{w}_{\text{viejo}}),$$

donde $\mathbf{G}^{(t)}$ es una matriz diagonal en la que cada elemento $G_{ii}^{(t)}$ representa la suma acumulada de los cuadrados de las derivadas parciales de los gradientes con respecto a cada componente w_i de \mathbf{w} hasta el instante de tiempo t. El **producto de Hadamard** $\odot: \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$ se define como el producto escalar componente a componente. El término ϵ es un pequeño

valor constante añadido a cada elemento de $\mathbf{G}^{(t)}$ para garantizar estabilidad numérica y evitar la división por cero. Cada elemento $G_{ii}^{(t)}$ de la matriz se actualiza como sigue:

$$G_{ii}^{(\mathrm{nuevo})} = G_{ii}^{(\mathrm{viejo})} + \left(\frac{\partial J}{\partial w_i}(\mathbf{w}_{\mathrm{viejo}})\right)^2$$
,

permitiendo que las tasas de aprendizaje sean más bajas para parámetros con gradientes altos y mayores para aquellos con gradientes menores, lo cual facilita una convergencia más rápida y estable del algoritmo.

5.3.4.4. RMSProp

Root Mean Square Propagation (RMSProp) [HSS12] modifica Adagrad para mejorar su rendimiento manteniendo un promedio móvil del cuadrado de los gradientes. Esto ajusta la tasa de aprendizaje de manera más adecuada para problemas a largo plazo:

$$\mathbf{v}_t = \beta \mathbf{v}_{t-1} + (1 - \beta)(\nabla J(\mathbf{w}_{\text{viejo}}))^2,$$

$$\mathbf{w}_{\text{nuevo}} = \mathbf{w}_{\text{viejo}} - \frac{\alpha}{\sqrt{\mathbf{v}_t + \epsilon}} \odot \nabla J(\mathbf{w}_{\text{viejo}}),$$

donde \mathbf{v}_t es la media móvil del cuadrado de los gradientes y β es un factor de descuento que determina la ponderación de dicha media.

5.3.4.5. Adam

Adaptive Moment Estimation (Adam) [KB14] combina las ideas detrás de momentum y RMSprop. Mantiene estimaciones de los primeros y segundos momentos de los gradientes para ajustar la tasa de aprendizaje de cada parámetro de manera individual:

$$\begin{split} \mathbf{m}_t &= \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \nabla J(\mathbf{w}_{\text{viejo}}), \\ \mathbf{v}_t &= \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) (\nabla J(\mathbf{w}_{\text{viejo}}))^2, \\ \hat{\mathbf{m}}_t &= \frac{\mathbf{m}_t}{1 - \beta_1^t}, \\ \hat{\mathbf{v}}_t &= \frac{\mathbf{v}_t}{1 - \beta_2^t}, \\ \mathbf{w}_{\text{nuevo}} &= \mathbf{w}_{\text{viejo}} - \frac{\alpha}{\sqrt{\hat{\mathbf{v}}_t + \epsilon}} \odot \hat{\mathbf{m}}_t, \end{split}$$

donde \mathbf{m}_t y \mathbf{v}_t son estimaciones del primer y segundo momento respectivamente, $\hat{\mathbf{m}}_t$ y $\hat{\mathbf{v}}_t$ son sus correcciones sesgadas, y β_1 , β_2 son tasas de decaimiento exponencial para los momentos estimados.

La selección del algoritmo de optimización es una decisión clave que puede variar dependiendo de la naturaleza del problema y el tipo de red neuronal que se está entrenando. SGD y Adam son especialmente populares debido a su robustez y buen desempeño en una amplia variedad de problemas. Sin embargo, la eficiencia de estos algoritmos no solo se debe a su diseño, sino también a la selección adecuada de hiperparámetros, como la tasa de aprendizaje y los coeficientes de momentum. Una tasa de aprendizaje mal configurada puede llevar al

algoritmo a converger demasiado lentamente o a no converger en absoluto [BCN18]. Por lo tanto, el ajuste fino de estos hiperparámetros, que a menudo requiere experimentación y experiencia, es importante para maximizar el rendimiento del modelo.

5.3.5. Regularización de redes neuronales

Un problema muy conocido en el ámbito del aprendizaje profundo es el **sobreajuste** u *overfitting*, el cual ocurre cuando una red neuronal aprende patrones específicos del conjunto de entrenamiento en lugar de las verdaderas relaciones subyacentes entre los datos. Este fenómeno resulta en un rendimiento deficiente cuando la red se expone a datos nuevos y no vistos durante el entrenamiento. Para combatir el sobreajuste y mejorar la capacidad de generalización de las redes neuronales, se utilizan técnicas de **regularización**.

5.3.5.1. Regularización L1 y L2

Entre las técnicas más populares de regularización se encuentran la **regularización L1 y L2**, también conocidas como *Lasso* y *Ridge* respectivamente. Estas técnicas modifican la función objetivo añadiendo términos que penalizan los pesos grandes de la red.

La regularización L1, o Lasso, añade a la función objetivo original $J(\mathbf{w})$ un término proporcional a la suma de los valores absolutos de los pesos:

$$J_{L1}(\mathbf{w}) = J(\mathbf{w}) + \lambda \sum_{i} |w_{i}|,$$

donde λ es el parámetro de regularización. Este método es particularmente útil para generar modelos más interpretables al promover la **dispersión** o *sparsity* de los pesos, lo que resulta en que algunos de ellos sean exactamente cero, reduciendo así la complejidad del modelo.

Por otro lado, la regularización *L*2, o *Ridge*, añade un término proporcional a la suma de los cuadrados de los pesos:

$$J_{L2}(\mathbf{w}) = J(\mathbf{w}) + \lambda \sum_{i} w_i^2.$$

A diferencia de la regularización *L*1, la regularización *L*2 penaliza más agresivamente los valores grandes de los pesos, favoreciendo soluciones con pesos más uniformemente distribuidos y pequeños. Esto contribuye a una mejor generalización del modelo al desincentivar los pesos grandes, lo que lleva a soluciones más homogéneas y en consecuencia, a modelos que pueden generalizar mejor ante nuevos datos.

5.3.5.2. Dropout

Dropout es otra técnica ampliamente utilizada que implica desactivar aleatoriamente una proporción de neuronas durante cada iteración del entrenamiento:

$$x'=x\odot\mathcal{B}(p),$$

donde x es la salida de la función de activación de una capa y $\mathcal{B}(p)$ es un vector binario aleatorio donde cada elemento tiene una probabilidad $p \in [0,1]$ de ser cero. Esta técnica reduce el sobreajuste al forzar a la red a aprender representaciones redundantes.

5.3.5.3. Early stopping

El *early stopping* es una técnica de regularización diseñada para prevenir el sobreajuste al detener el entrenamiento de un modelo de aprendizaje automático antes de que se manifieste el sobreajuste. Este método consiste en monitorear el rendimiento del modelo en un conjunto de validación separado durante el entrenamiento. Si el error de validación no solo comienza a incrementar, sino que lo hace por un margen mayor a un **umbral** definido δ , entonces indica que el modelo está empezando a aprender el ruido y las particularidades del conjunto de entrenamiento en lugar de las relaciones generales, por lo que el entrenamiento se detiene. La implementación de *early stopping* requiere definir otro hiperparámetro comunmente denominado **paciencia**, que establece el número de épocas que se permite que el error de validación continúe aumentando antes de cesar el entrenamiento. Esta técnica no solo ayuda a mejorar la generalización del modelo sino que también puede reducir el tiempo de entrenamiento al evitar iteraciones innecesarias.

5.3.5.4. Regularización de datos

La regularización de datos abarca técnicas que modifican los datos de entrada para hacer el modelo menos sensible a pequeñas variaciones en los datos de entrenamiento. Una de las formas más comunes es el aumento de datos o data augmentation, que consiste en aplicar transformaciones a los datos de entrenamiento para generar nuevas muestras. Este método de regularización es muy empleado sobre conjuntos de imágenes dado sus buenos resultados [?]. Ejemplos de este tipo incluyen rotación, escalado, traslación y cambios en la intensidad del color de imágenes. Esta práctica enriquece el conjunto de entrenamiento y ayuda a que el modelo sea más robusto frente a variaciones en la entrada, lo que es especialmente útil en tareas de visión artificial.

Por último, la **normalización por lotes** o *batch normalization* es una técnica que normaliza las salidas de una capa a una media y desviación estándar calculadas sobre el conjunto de datos de un mini-lote. Se define por:

$$\hat{x}_i = \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}},$$

donde x_i son las salidas de la capa anterior antes de la normalización, μ_B y σ_B^2 son la media y varianza calculadas para el mini-lote \mathcal{B} y ϵ es un pequeño valor para asegurar la estabilidad numérica. La normalización por lotes no solo reduce el problema del desplazamiento de covarianza durante el entrenamiento, sino que también permite el uso de tasas de aprendizaje más altas y reduce la sensibilidad a la inicialización de los pesos.

Estas técnicas, ya sea de forma independiente o combinada, ayudan a asegurar que las redes neuronales no solo minimicen el error en el conjunto de entrenamiento, sino que también mantengan una buena capacidad de generalización a nuevos datos.

5.4. Redes neuronales convolucionales

Las **redes neuronales convolucionales** (CNNs) son un tipo de modelo de ANN fundamental en el campo de la visión artificial y el procesamiento de imágenes. Fue introducido por Yann LeCun et al. en 1998 y desde entonces ha sido ampliamente utilizado en una gran variedad

Figura 5.4.: Diagrama del neocognitrón mostrando el flujo de procesamiento de una imagen a través de varias capas. Las capas U_S (simple) y U_C (compleja) procesan la información de forma jerárquica, comenzando con la imagen original U_0 y extrayendo características cada vez más complejas en U_{S1} , U_{C1} , U_{S2} , U_{C2} , U_{S3} y U_{C3} .

de aplicaciones, desde problemas como la detección de objetos hasta la segmentación de imágenes.

5.4.1. La corteza visual y el Neocognitrón

La comprensión del funcionamiento de la corteza visual en los seres humanos y otros animales ha sido una fuente de inspiración significativa para el desarrollo de algoritmos en el campo del aprendizaje profundo, especialmente en el diseño de CNNs. La corteza visual, ubicada en el lóbulo occipital del cerebro, es fundamental para el procesamiento de información visual. Estudios realizados por Hubel y Wiesel en la década de 1960 demostraron que ciertas neuronas en la corteza visual responden preferentemente a bordes específicos y orientaciones espaciales dentro de una región visual limitada [HW62]. Estas neuronas, conocidas como células de orientación selectiva, exhiben una organización jerárquica que permite la percepción compleja a partir de la combinación de respuestas simples.

Inspirado en estas observaciones, Kunihiko Fukushima desarrolló el **neocognitrón** en 1980, una red neuronal que es considerada uno de los precursores de las modernas CNNs [Fuk80]. El neocognitrón fue diseñado para reconocer patrones visuales complejos de manera robusta frente a traslaciones y otras pequeñas distorsiones de la imagen. Esta red consta de múltiples capas que alternan entre capas convolucionales, que detectan características locales y capas que agregan las respuestas de los detectores de características sobre áreas locales (Figura ??). La estructura de esta red capta de manera efectiva la forma en que la corteza visual procesa la información visual, implementando una forma primitiva de invarianza a la traslación y la capacidad de extraer características jerárquicas.

La influencia de la corteza visual y el neocognitrón en el diseño de las CNNs es una muestra de la utilidad de estudios interdisciplinarios entre neurociencia y aprendizaje automático. Estos estudios no solo han facilitado avances tecnológicos en visión artificial sino que también han ofrecido nuevas perspectivas sobre cómo los seres humanos procesamos la información visual, proponiendo un puente entre la inteligencia artificial y la biológica [SOPo7].

5.4.2. Arquitectura de una CNN

Las CNNs, introducidas por Yann LeCun, supusieron un avance significativo respecto al neocognitrón. Mientras que el neocognitrón sentó las bases al proponer una arquitectura

Figura 5.5.: Arquitectura de una CNN. Muestra la secuencia de capas en la red, iniciando con la capa de entrada, seguida por múltiples bloques convolucionales (resaltados en naranja), continuando con capas ocultas totalmente conectadas (resaltadas en azul) y finalmente la capa de salida.

inspirada en el procesamiento visual del cerebro, LeCun implementó un método de entrenamiento supervisado utilizando retropropagación, lo que permitió mejorar notablemente el rendimiento y la capacidad de generalización de las redes neuronales [LBBH98]. Además, LeCun sentó las bases de la arquitectura de CNNs, optimizando la eficiencia y escalabilidad de los modelos, incorporando capas como las capas convolucionales y de muestreo [LBD+89].

Una CNN típicamente consiste en una secuencia de capas que transforman la entrada de imagen bruta en representaciones cada vez más abstractas y útiles para la tarea en cuestión. Cada tipo de capa dentro de una CNN tiene un propósito específico y contribuye de manera distinta al proceso de aprendizaje. Generalmente, las distintas capas de una CNN suelen agruparse para cumplir distintas funciones. Las principales agrupaciones que componen una CNN son:

- Capa de entrada: Es la primera capa de la red, donde se introduce la imagen original o preprocesada. Su función principal es preparar y escalar la imagen para las operaciones de las capas siguientes.
- Bloques convolucionales: Estos bloques contienen una o más capas convolucionales seguidas frecuentemente por capas de normalización y funciones de activación. Cada capa convolucional aplica diferentes filtros a la entrada para crear mapas de características que resalten aspectos específicos de la imagen. Estos bloques suelen ir consecutivos intercalando capas de muestreo.
- Capas totalmente conectadas: Después de varias capas convolucionales y de muestreo, la información en forma de matrices y tensores se aplana en vectores y se pasa a través de capas FC. Estas capas integran la información aprendida por las capas anteriores para realizar la clasificación final.
- Capa de salida: La última capa de una CNN, donde se obtiene el resultado final. En tareas de clasificación, esta capa suele usar una función de activación como la Softmax para asignar probabilidades a las distintas clases posibles.

A continuación, vamos a explorar las diferentes capas que componen estos bloques y cómo trabajan juntas para detectar y aprender patrones importantes en los datos.

5.4.2.1. Capa convolucional

La **capa convolucional** es el bloque de construcción fundamental de una CNN. Utiliza un conjunto de filtros que se aplican a la entrada mediante el operador de **convolución discreta**. Cada filtro detecta características específicas en una región local de la entrada. El operador de convolución discreta se puede expresar como:

$$S(i,j) = (I*K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n),$$

donde m, n son las coordenadas en la imagen o matriz de entrada I de la región a convolucionar, i, j son las coordenadas del centro del **kernel** o **filtro** K y S es la matriz de salida o **mapa de características**. La convolución discreta es un **operador lineal**, lo que implica que satisface propiedades como la **conmutatividad**, **asociatividad** y **distributividad**.

Estos filtros se desplazan sobre toda la superficie de la entrada, generando un mapa de características que resume la presencia de las particularidades de dicha entrada.

Figura 5.6.: Ejemplo de convolución discreta. La matriz de entrada I se muestra con un segmento resaltado en naranja, mostrando la región afectada por el filtro K, en color verde. La matriz resultante I * K destaca los valores resultantes de la convolución, con el resultado de la convolución en dicha región en azul.

Además de las propiedades del operador de convolución, las capas convolucionales muestran varias propiedades más que las hacen especialmente adecuadas para tareas de procesamiento de imágenes y visión artificial. Entre estas propiedades destacan:

- Conectividad local: Cada neurona en una capa convolucional está conectada solo a un pequeño número de neuronas cercanas en la capa anterior. Esta estructura imita la manera en que los campos receptivos en el sistema visual humano se organizan, concentrándose en pequeñas regiones del espacio visual. La conectividad local permite a la red detectar características locales de la entrada sin la influencia de la estructura global, reduciendo la complejidad y el número total de parámetros necesarios.
- Compartición de parámetros: En una CNN, el mismo filtro se utiliza para cada posición de la entrada, a diferencia de una red neuronal completamente conectada donde cada peso es único para cada conexión. Esta compartición de parámetros permite que la red sea más eficiente en términos de memoria y computación. Además, también implica que las características aprendidas por un filtro son útiles en toda la imagen, lo que mejora la eficiencia del aprendizaje y ayuda a la red a generalizar mejor.

Equivarianza frente a traslaciones: Debido al uso de la misma función de convolución a lo largo de toda la entrada, las CNNs son naturalmente equivariantes a las traslaciones. Esto significa que si la entrada se traslada, las características detectadas por la red también se trasladarán de manera correspondiente. Esta propiedad es particularmente interesante en tareas de visión artificial, donde la relevancia de una característica no suele depender de su posición específica en el espacio de entrada.

Los hiperparámetros de **paso** o *stride*, y **relleno** o *padding* son especialmente relevantes en la manipulación dimensional durante la convolución en CNNs. El *stride* define el paso con el que el filtro se desplaza sobre la imagen o mapa de características, afectando la reducción dimensional del mapa resultante y permitiendo la captura de características a diversas escalas. Por otro lado, el *padding* consiste en añadir píxeles artificiales alrededor de la imagen de entrada, lo que permite que el filtro acceda completamente a los bordes y mantiene el tamaño del volumen de salida, preservando la información en los bordes cruciales para la interpretación completa de la imagen.

Figura 5.7.: Convolución de un filtro de 3x3 sobre una entrada de 5x5. La operación se realiza utilizando *strides* de 2x2 y sin agregar relleno (*padding* = 0), lo que resulta en una matriz de salida más pequeña y eficientemente espaciada. Fuente [DV16].

Figura 5.8.: Convolución de un filtro de 3x3 sobre una entrada de 5x5. Se emplea un relleno de 2 unidades y pasos unitarios (*stride* = 1), asegurando que la matriz de salida aumente las dimensiones de la matriz de entrada, al expandir el borde de la imagen original. Fuente [DV16].

La elección de dichos hiperparámetros influye directamente en las dimensiones del mapa de características de salida, cuya altura $H_{\rm out}$ y anchura $W_{\rm out}$ vienen dadas de la siguiente manera:

$$H_{\text{out}} = \left\lfloor \frac{H_{\text{in}} + 2P - H_{\text{f}}}{S} + 1 \right\rfloor, \quad W_{\text{out}} = \left\lfloor \frac{W_{\text{in}} + 2P - W_{\text{f}}}{S} + 1 \right\rfloor,$$

donde H_{in} y W_{in} son las dimensiones de entrada, H_{f} y W_{f} son las del filtro, P es el *padding*, S es el *stride* y $\lfloor \cdot \rfloor$ denota la función suelo. La profundidad del mapa de salida, D_{out} , está determinada por el número de filtros aplicados, donde D_{out} = número de filtros.

Estas convoluciones, aunque predominantemente asociadas con dimensiones bidimensionales, pueden extenderse a contextos tridimensionales (3D) donde se aplican filtros 3D sobre

varios canales al mismo tiempo. Por ejemplo, un filtro de tamaño $1 \times 1 \times 1$ puede transformar linealmente los mapas de características en cada ubicación del volumen de entrada. Las dimensiones de salida se mantienen como:

$$H_{\text{out}} = H_{\text{in}}$$
, $W_{\text{out}} = W_{\text{in}}$, $D_{\text{out}} = \text{número de filtros}$.

Nótese que estas convoluciones son importantes para ajustar la dimensionalidad de los canales dentro de redes profundas, pues con una sola **convolución** 1×1 podemos colapsar todos los canales de entrada en uno solo. Esto supone una reducción efectiva de parámetros y de la complejidad computacional en datos tridimensionales.

Otro tipo de convoluciones que surge en este contexto son las **convoluciones en profundidad** o *depthwise convolutions*. En ellas, cada filtro se aplica de manera independiente a cada canal del volumen de entrada, permitiendo un procesamiento separado de las dimensiones espaciales y de profundidad. La fórmula para las dimensiones de salida se mantiene, pero esta vez manteniendo el número de canales:

$$H_{\text{out}} = \left\lfloor \frac{H_{\text{in}} + 2P - H_{\text{f}}}{S} + 1 \right\rfloor, \quad W_{\text{out}} = \left\lfloor \frac{W_{\text{in}} + 2P - W_{\text{f}}}{S} + 1 \right\rfloor, \quad D_{\text{out}} = D_{\text{in}}.$$

Estas convoluciones son eficaces para optimizar el rendimiento computacional en aplicaciones donde el manejo eficiente de los recursos es esencial.

5.4.2.2. Capa de muestreo

Las capas de **muestreo**, conocidas generalmente como capas de *pooling*, buscan reducir la dimensionalidad espacial de los mapas de características, lo que permite disminuir la cantidad de parámetros y de cómputo en la red al mismo tiempo que se mantiene la información más relevante. Las capas de *pooling* más comunes son las de **máximo** o *max pooling*, y las de **promedio** o *average pooling*. El *max pooling* toma la mayor activación en la ventana del filtro como:

$$P(i,j) = \max_{m,n \in W} I(i+m,j+n),$$

donde *W* es la ventana del filtro de **pooling**. Esta operación ayuda a hacer la representación obtenida invariante a pequeñas traslaciones y distorsiones. Por otro lado, el *average pooling* calcula el promedio de las activaciones dentro de la ventana del filtro, proporcionando una representación que suaviza las características de entrada:

$$P(i,j) = \frac{1}{|W|} \sum_{a,b \in W} I(i+a,j+b),$$

donde |W| es el número de elementos en la ventana del filtro. Ambas técnicas de pooling tienen sus aplicaciones específicas dependiendo de la naturaleza del problema y de la arquitectura de la red. Mientras que el max pooling es generalmente preferido para tareas relacionadas con la detección de características debido a su capacidad para preservar las activaciones más fuertes, el average pooling puede ser más adecuado para tareas donde la uniformidad de las características es más importante [KSH12].

Figura 5.9.: Comparación de técnicas de *pooling*. Arriba, *max pooling* y abajo, *average pooling*, ambas con un filtro de 2x2 y *stride* de 2, mostrando la transformación de la matriz original.

5.4.3. Modelos y estado del arte en CNNs

Desde su concepción, las arquitecturas de CNNs han experimentado una evolución significativa, marcada por una serie de innovaciones clave que han mejorado su rendimiento y eficiencia. Como vimos anteriormente, la historia de las CNNs comenzó con el neocognitrón de Fukushima en los años 80 [Fuk80], un modelo pionero que introdujo el concepto de capas convolucionales y de pooling. Posteriormente, la introducción de LeNet-5 por LeCun et al. en los años 90 [LBBH98] demostró la eficacia de las CNNs en tareas de reconocimiento de dígitos y documentos, mostrando que este tipo de arquitecturas podían aprender a resolver problemas de aprendizaje supervisado. Posteriormente AlexNet, desarrollada por Krizhevsky et al. en 2012 [KSH12], revolucionó el campo del aprendizaje profundo, utilizando técnicas como paralización del entrenamiento, profundización de la red, ReLU y dropout para ganar el desafío de ImageNet con una reducción drástica en la tasa de error. A partir de ahí, surgieron modelos más sofisticados como VGG [SZ14], GoogLeNet con su módulo Inception [SLJ⁺15], o ResNet, que introdujo las conexiones residuales permitiendo entrenar redes mucho más profundas [HZRS16]. Cada una de estas arquitecturas ha contribuido a comprender mejor cómo diseñar redes eficientes para procesar y aprender de imágenes a gran escala. En la actualidad, modelos más recientes como DenseNet, que conecta cada capa directamente con todas las anteriores [HLVDMW17], y EfficientNet, que escala de manera uniforme todas las dimensiones de la red [TL19], continúan empujando los límites de lo que las CNNs pueden lograr, optimizando el rendimiento y la eficiencia para aplicaciones en tiempo real y en dispositivos con recursos limitados.

5.4.3.1. ResNet

Las **Redes Neuronales Residuales** (ResNet) introducidas por He et al. en 2015, supusieron un avance significativo en la arquitectura de redes profundas para el reconocimiento de

Figura 5.10.: Diagrama de una conexión residual. La entrada x pasa a través de la Capa 1 y una función de activación, fluyendo luego hacia la Capa 2. Paralelamente, x se suma directamente al final de la Capa 2 mediante una conexión residual.

imágenes. A diferencia de sus predecesores como AlexNet y VGG, ResNet aborda el problema del desvanecimiento del gradiente que suele presentarse en redes muy profundas mediante la introducción de una conexión de identidad que salta una o más capas.

La clave de la arquitectura de ResNet es el **bloque residual**, que incorpora una **conexión residual** directamente conectando la entrada del bloque a su salida, lo que permite que la señal se propague directamente a través de la red. El bloque residual se puede expresar como:

$$H(\mathbf{x}_l) = \mathcal{F}(\mathbf{x}_l, \{W_i\}) + \mathbf{x}_l$$

donde \mathbf{x}_l y $H(\mathbf{x}_l)$ son la entrada y la salida del l-ésimo bloque residual respectivamente, \mathcal{F} representa las capas intermedias de la red y $\{W_i\}$ denota el conjunto de pesos de estas capas.

A diferencia de AlexNet, que tiene 8 capas, y VGG, que tiene 16 o 19 capas, ResNet se diseñó con capacidades mucho más profundas, con versiones que van desde 18 hasta 152 capas. Lo revolucionario de ResNet no es simplemente añadir más capas, sino su habilidad para entrenar redes muy profundas sin sufrir desvanecimiento del rendimiento gracias a sus conexiones residuales. Estas conexiones ayudan a preservar el gradiente a lo largo del proceso de aprendizaje, lo que permite entrenar redes que son significativamente más profundas que las posibles anteriormente.

El diseño del bloque residual permite que ResNet no solo evite el problema del desvanecimiento del gradiente sino que también mejore la eficiencia del entrenamiento. Los experimentos demuestran que las redes con bloques residuales superan a las arquitecturas convencionales en varias métricas importantes, como la precisión en conjuntos de datos de imágenes de gran escala, incluido ImageNet.

5.4.3.2. DenseNet

Las Redes Convolucionales Densamente Conectadas (DenseNet) propuestas por Huang et al. en 2017, representan otra evolución significativa en el diseño de redes neuronales profundas. DenseNet mejora la idea de conexiones de salto de ResNet mediante la integración de cada capa directamente con todas las capas posteriores de una manera densamente conectada.

La principal innovación de DenseNet es su estructura de conexiones densas, donde cada

Figura 5.11.: Arquitectura de DenseNet. La figura ilustra la configuración de la red DenseNet, mostrando cómo las capas están conectadas entre sí, donde cada capa recibe como entrada todas las salidas de las capas anteriores. Fuente [HLVDMW17].

capa recibe como entrada todas las salidas de las capas anteriores, concatenando estas salidas. Esto se formula como sigue:

$$\mathbf{x}_l = H_l([\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{l-1}])$$

donde x_l es la salida de la capa l, $[\cdot]$ denota la operación de concatenación y H_l es una función que representa las operaciones dentro de la capa l, normalmente compuesta por operaciones de *Batch Normalization*, activación ReLU, y convolución.

Aunque tanto ResNet como DenseNet utilizan conexiones que saltan capas, DenseNet ofrece una mejora en la eficiencia y la efectividad del entrenamiento al promover la reutilización de características de manera más intensiva. Mientras que las conexiones de salto en ResNet suman entradas, en DenseNet la información fluye a través de la red mediante la concatenación de características, lo que resulta en una mejora del flujo de información y gradientes a través de la red, reduciendo así el problema del desvanecimiento del gradiente de manera más efectiva.

DenseNet ha demostrado ser particularmente eficaz en conjuntos de datos como ImageNet y en aplicaciones donde la conservación de la información a lo largo de la red es crítica. Además, DenseNet tiende a ser más eficiente en términos de parámetros que ResNet debido a su capacidad para reutilizar características, lo que permite la construcción de redes profundas que son tanto compactas como potentes.

5.4.3.3. EfficientNet

EfficientNet, introducido por Tan y Le en 2019, es un ejemplo de cómo se puede mejorar la eficiencia y la efectividad de las redes neuronales mediante una cuidadosa optimización de sus dimensiones. Esta método de diseñar arquitecturas destaca por utilizar un enfoque sistemático para escalar el ancho, la profundidad y la resolución de las redes.

Figura 5.12.: Estructura de un bloque MBConv, la unidad básica en la arquitectura de EfficientNet. Incluye capas convolucionales con activaciones Swish y normalización por lotes, intercaladas con capas SE para una afinación eficiente de características. La secuencia de procesamiento termina en una capa de *dropout* antes de la salida final. Fuente [TCW⁺24].

Lo innovador de EfficientNet es su metodología de escalado compuesto, que escala uniformemente todas las dimensiones de la red (profundidad, ancho y resolución de la imagen) con un conjunto fijo de coeficientes de escalado. La fórmula de escalado se representa como:

profundidad :
$$d = \alpha^{\phi}$$
, anchura : $w = \beta^{\phi}$, resolución : $r = \gamma^{\phi}$,

tal que

$$\alpha \cdot \beta^2 \cdot \gamma^2 \approx 2$$
, $\alpha \ge 1$, $\beta \ge 1$, $\gamma \ge 1$,

donde ϕ es un coeficiente que determina la cantidad de recursos disponibles para el escalado, y α , β , γ son constantes que definen cómo deben escalar la profundidad, el ancho y la resolución, respectivamente, para lograr un equilibrio óptimo entre precisión y eficiencia.

EfficientNet-Bo es el modelo base en la familia de modelos EfficientNet, que se caracteriza por aplicar un escalado uniforme a una arquitectura optimizada mediante búsqueda de arquitectura neuronal (NAS). La arquitectura inicia con una capa convolucional de 3×3 que maneja la imagen de entrada, aplicando la función de activación Swish y normalización por lotes para preparar las características para las etapas subsiguientes. A continuación, EfficientNet-Bo implementa una serie de **bloques MBConv**. Cada bloque MBConv sigue un patrón específico:

- Expansión: Primero, una convolución 1 x 1 incrementa el número de canales. Esta técnica de expansión prepara los canales para una manipulación más intensiva, facilitando una rica extracción de características.
- 2. Convolución de profundidad: Seguidamente, se aplica una convolución en profundidad con un filtro 3 × 3 o 5 × 5. Esta técnica permite la extracción de características locales de manera eficiente, sin el incremento significativo en el número de parámetros que se observaría con convoluciones regulares. La convolución de profundidad provoca una expansión inicial que permite un procesamiento detallado antes de condensar la información nuevamente.
- 3. Capa Squeeze and Excitation (SE): Esta capa sigue a la convolución de profundidad.

Funciona primero reduciendo espacialmente cada canal a un valor escalar (*squeeze*), que luego se utiliza para recalibrar los canales (*excitation*) mediante operaciones de reescalado. Este proceso permite al modelo aprender a enfocar dinámicamente su atención en características informativas y suprimir las menos útiles.

4. **Compresión:** Después de la capa SE, una convolución 1 × 1 reduce el número de canales, consolidando las características importantes, lo cual asegura la eficiencia de la red y prepara la salida para la siguiente etapa del procesamiento.

Las capas de reducción, situadas entre grupos de bloques MBConv, emplean convoluciones con un paso de 2 para reducir las dimensiones espaciales, aumentando el nivel de abstracción y reduciendo la carga computacional en las capas más profundas. Estas capas de transición son cruciales para preparar las características para las etapas de procesamiento subsiguientes.

Finalmente, conexiones residuales se incorporan en cada bloque MBConv para facilitar el entrenamiento de la red al prevenir el desvanecimiento del gradiente. La red culmina con una capa de pooling promedio global que transforma la salida de los bloques MBConv en un vector único por imagen, el cual es procesado por una capa FC para realizar la clasificación final.

Las características clave de EfficientNet-Bo, como la función de activación swish y la normalización por lotes después de cada convolución, contribuyen a la estabilidad y la eficiencia del entrenamiento, mejorando la generalización del modelo en aplicaciones de visión por computadora.

A diferencia de ResNet y DenseNet, que principalmente se enfocan en mejorar la profundidad de la red o la densidad de las conexiones, EfficientNet proporciona un marco holístico que ajusta de manera equilibrada todas las dimensiones de la red. Esto no solo mejora el rendimiento sino que también aumenta la eficiencia del modelo, permitiendo que Efficient-Net supere a modelos anteriores en precisión con un número significativamente menor de parámetros y una menor cantidad de operaciones de punto flotante (FLOPs).

En la actualidad, la clasificación de imágenes es considerada por muchos en el campo de la visión artificial como un problema resuelto", gracias a los avances en las arquitecturas de redes neuronales convolucionales (CNNs). Modelos como ResNet, Inception y EfficientNet han establecido nuevos estándares de precisión en benchmarks como ImageNet, donde las tasas de error se han reducido de manera significativa en comparación con los métodos tradicionales basados en características manuales. Estas arquitecturas avanzadas han demostrado no solo una gran capacidad de generalización sobre grandes conjuntos de datos, sino también una notable robustez frente a variaciones y perturbaciones en las imágenes. Además, la integración de técnicas como el aumento de datos y la **transferencia de aprendizaje** o *transfer learning*, ha permitido aplicar modelos entrenados en un dominio específico a nuevos conjuntos de datos con poco o ningún ajuste adicional. Este progreso ha transformado la clasificación de imágenes de ser un desafío técnico a una herramienta utilitaria, con aplicaciones en múltiples industrias, desde el reconocimiento automático de contenido en redes sociales hasta sistemas avanzados de asistencia al conductor en vehículos autónomos.

5.5. Análisis de datos topológico

El **análisis de datos** es una disciplina esencial en la ciencia de datos que se vale de métodos estadísticos, aprendizaje automático y sistemas de procesamiento para transformar grandes cantidades de datos crudos en información útil, crucial para tomar decisiones en

Figura 5.13.: Comparación de tamaño de modelo y precisión en ImageNet. EfficientNet supera notablemente al resto de modelos de CNNs. En general, EfficientNet muestra una mejora destacable en eficiencia y rendimiento comparado con modelos previos como ResNet-152.

diversos campos. Con el desarrollo de esta área, se han integrado técnicas avanzadas como la **topología algebraica**, que explora propiedades que se mantienen constantes a pesar de las transformaciones físicas de los objetos, enfocándose en aspectos como la continuidad y la conectividad más allá de la forma exacta.

Recordemos que dentro de este contexto, la **homología** destaca como una herramienta de la topología algebraica diseñada para detectar y analizar características como componentes conexas, agujeros y vacíos en múltiples dimensiones de un espacio. Los conjuntos de datos, que a menudo se presentan como nubes de puntos, representan muestras discretas que podrían sugerir estructuras subyacentes similares a **variedades topológicas**. Para explorar estas estructuras sin introducir sesgos en cómo se conectan estos puntos, se considera un amplio rango de estructuras en función de la distancia denominadas filtraciones, dando origen a la **homología persistente**. Esta herramienta no solo identifica características topológicas sino también evalúa su persistencia a lo largo de diversas escalas, lo que ayuda a distinguir entre el ruido y las estructuras significativas.

El Análisis de Datos Topológico (TDA) aprovecha estas técnicas en una metodología avanzada que se centra en desentrañar la estructura subyacente de los datos, basándose en su "forma". Utilizando la homología persistente como su herramienta principal, el TDA ofrece una forma robusta y detallada de identificar las características fundamentales de los datos, permitiendo revelar patrones y relaciones no evidentes mediante métodos tradicionales. Esta metodología se ha aplicado con éxito en varios campos, como la neurociencia para analizar la conectividad cerebral, en genómica para explorar la interacción entre genes, y en ciencia de materiales para estudiar la estructura microscópica de los materiales. Estos casos de uso demuestran cómo el TDA puede proporcionar conocimiento relevante y renovar nuestra

5. Conceptos y estado del arte

comprensión de los sistemas complejos en investigación, ingeniería y análisis social [CM21]. El proceso de TDA se organiza en tres fases esenciales que facilitan una comprensión profunda tanto de la topología como de la geometría de los conjuntos de datos:

- 1. Preparación de datos: Inicialmente, se asume que los datos están dispuestos en un espacio métrico, típicamente el espacio euclídeo R^N, utilizando la distancia euclídea como métrica. La elección de esta métrica es crucial, ya que influye directamente en cómo se perciben las distancias y relaciones entre los puntos dentro del conjunto de datos.
- 2. Construcción de filtraciones: Posteriormente, se desarrolla una serie de complejos simpliciales, estructuras geométricas que se generan al conectar puntos dentro de una distancia determinada. Esta construcción es fundamental para visualizar la evolución de las conexiones entre los puntos conforme se varían los parámetros de escala.
- 3. Extracción de características topológicas: Finalmente, se emplea la homología persistente para analizar las filtraciones construidas, obteniendo descriptores topológicos que revelan la presencia de características como agujeros y conexiones en diversas dimensiones. Estos descriptores proporcionan una visión detallada de las propiedades topológicas y geométricas de los datos, ayudando a distinguir entre rasgos estructurales significativos y el ruido.

Figura 5.14.: text

El TDA ofrece una perspectiva única que es invaluable en numerosos campos donde la forma y la conectividad de los datos son esenciales para entender procesos complejos. Esta herramienta no solo mejora nuestra capacidad para analizar conjuntos de datos complejos, sino que también facilita la detección de patrones y estructuras subyacentes significativas en diversas aplicaciones prácticas y teóricas.

6. Metodología

- 6.1. Entorno de experimentación
- 6.2. Preprocesamiento de datos
- 6.3. Proceso de entrenamiento
- 6.4. Postprocesamiento de resultados

7. Resultados experimentales

- 7.1. Entorno de experimentación
- 7.2. Resultados
- 7.3. Discusión

- 8. Conclusión
- 8.1. Trabajo futuro
- 8.2. Conclusión

Bibliografía

- [BCN18] Léon Bottou, Frank E Curtis, y Jorge Nocedal. Optimization methods for large-scale machine learning. *SIAM review*, 60(2):223–311, 2018.
- [Cau47] Augustin Cauchy. Méthode générale pour la résolution des systemes d'équations simultanées. *Comp. Rend. Sci. Paris*, 25(1847):536–538, 1847.
- [CM21] Frédéric Chazal y Bertrand Michel. An introduction to topological data analysis: Fundamental and practical aspects for data scientists. Frontiers in Artificial Intelligence, 4, 2021.
- [DFo4] David Steven Dummit y Richard M Foote. *Abstract algebra*, volumen 3. Wiley Hoboken, 2004.
- [DHS11] John Duchi, Elad Hazan, y Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. *Journal of machine learning research*, 12(7), 2011.
- [DV16] Vincent Dumoulin y Francesco Visin. A guide to convolution arithmetic for deep learning. *ArXiv*, abs/1603.07285, 2016.
- [EM45] Samuel Eilenberg y Saunders MacLane. General theory of natural equivalences. *Transactions of the American Mathematical Society*, 58:231–294, 1945.
- [Fuk8o] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological cybernetics*, 36(4):193–202, 1980.
- [HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, y Kilian Q Weinberger. Densely connected convolutional networks. En *Proceedings of the IEEE conference on computer vision and pattern recognition*, páginas 4700–4708, 2017.
- [HSS12] Geoffrey Hinton, Nitish Srivastava, y Kevin Swersky. Lecture 6a overview of minibatch gradient descent. *Coursera Lecture slides https://class. coursera. org/neuralnets-2012-001/lecture,[Online, 2012.*
- [HW62] David H Hubel y Torsten N Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. *The Journal of physiology*, 160(1):106, 1962.
- [HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, y Jian Sun. Deep residual learning for image recognition. En *Proceedings of the IEEE conference on computer vision and pattern recognition*, páginas 770–778, 2016.
- [KB14] Diederik P Kingma y Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [KSH12] Alex Krizhevsky, Ilya Sutskever, y Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- [LBBH98] Y. Lecun, L. Bottou, Y. Bengio, y P. Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- [LBD⁺89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, y L. D. Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989.
- [Lee10] John Lee. *Introduction to topological manifolds*, volumen 202. Springer Science & Business Media, 2010.

- [Mac12] Saunders MacLane. Homology. Springer Science & Business Media, 2012.
- [ML13] Saunders Mac Lane. *Categories for the working mathematician,* volumen 5. Springer Science & Business Media, 2013.
- [Mun18] James R Munkres. Elements of algebraic topology. CRC press, 2018.
- [RA03] A.Q.T.A.Q.E.D. Rafael Ayala. Elementos de la teoría de homología clásica. Serie Ciencias / Universidad de Sevilla. Secretariado de Publicaciones, Universidad de Sevilla, 2003.
- [RHW86] David E Rumelhart, Geoffrey E Hinton, y Ronald J Williams. Learning representations by back-propagating errors. *nature*, 323(6088):533–536, 1986.
- [RN16] Stuart Jonathan Russell y Peter Norvig. *Artificial Intelligence: A Modern Approach*. Pearson Education, England, third edición, 2016.
- [RZL17] Prajit Ramachandran, Barret Zoph, y Quoc V. Le. Searching for activation functions, 2017.
- [SLJ⁺15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, y Andrew Rabinovich. Going deeper with convolutions. En *Proceedings of the IEEE conference on computer vision and pattern recognition*, páginas 1–9, 2015.
- [SOPo7] Thomas Serre, Aude Oliva, y Tomaso Poggio. A feedforward architecture accounts for rapid categorization. *Proceedings of the national academy of sciences*, 104(15):6424–6429, 2007.
- [SZ14] Karen Simonyan y Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- [TCW⁺24] Hui Tang, Yuanbin Chen, Tao Wang, Yuanbo Zhou, Longxuan Zhao, Qinquan Gao, Min Du, Tao Tan, Xinlin Zhang, y Tong Tong. Htc-net: A hybrid cnn-transformer framework for medical image segmentation. *Biomedical Signal Processing and Control*, 88:105605, 2024.
- [TL19] Mingxing Tan y Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. En *International conference on machine learning*, páginas 6105–6114. PMLR, 2019.
- [Web85] Cary Webb. Decomposition of graded modules. *Proceedings of the American Mathematical Society*, 94(4):565–571, 1985.
- [Whi49] J. H. C. Whitehead. Combinatorial homotopy. I. Bull. Amer. Math. Soc., 55:213–245, 1949.