Reálná čísla

 $\mathbb{N} \dots p \check{r}irozen \acute{a} \check{c}isla: \{1, 2, 3, \dots\}$ \mathbb{Z} ... $cel\acute{a}$ čísla: $\{0,\pm 1,\pm 2,\pm 3,\dots\}$ \mathbb{Q} ... racionální čísla: $\left\{\frac{a}{b}: a \in \mathbb{Z}, b \in \mathbb{N}\right\}$ \mathbb{R} ... reálná č.: délky, doplnění limit, suprem/infim, řezy $\mathbb{R} \setminus \mathbb{Q} \dots iracionální čísla (\sqrt{2}, \pi, e, \dots)$ \mathbb{C} ... komplexní čísla: $\{x+\mathrm{i}y\colon x,y\in\mathbb{R}\},\ \mathrm{i}^2=-1$

Tvrzení. Číslo $\sqrt{2}$ je iracionální.

Důkaz: Sporem, předpokládejme $\sqrt{2} = \frac{a}{b}, a, b \in \mathbb{N}$ nesoudělná. Pak $2b^2=a^2$; a je dělitelné 2; existuje $c\in\mathbb{N}$ tak, že a=2c; $b^2=2c^2$; b je dělitelné 2; a, b soudělná – spor.

Tvrzení. Racionální čísla jsou právě ta, která mají konečný nebo periodický dekadický rozvoj.

Důkaz: \Rightarrow : Při použití algoritmu dělení celých čísel a/b jsou možné zbytky jen $0, 1, \dots, b-1$, po přechodu přes desetinnou čárku se připisují jen 0, takže se po nejvýše (b-1)krocích vše opakuje.

 \Leftarrow : Přenásobením číslem $10^{\text{délka periody}}$ a odečtením dostaneme, že celočíselný násobek má konečný dekadický rozvoj.

Tvrzení. Nenulová čísla s konečným dekadickým rozvojem mají dva dekadické rozvoje.

Příklady. $1/7 = 0,\overline{142857}, 1/3 = 0,\overline{3}, 1/6 = 0,1\overline{6}; 2,7 =$ $=\frac{27}{10}$; $2,7\overline{31} = \frac{2704}{990}$; $2,3 = 2,2\overline{9}$.

(lineární) uspořádání \mathbb{R} , reálná osa

Definice. Reálné číslo x se nazývá: $kladn\acute{e}$, pokud x > 0; z'a porn'e, pokud x < 0; $nez\acute{a}porn\acute{e}$, pokud $x \geq 0$;

 $nekladn\acute{e}$, pokud $x \leq 0$.

Definice. Pro každé $a,b \in \mathbb{R}$, a < b, rozeznáváme tyto typy intervalů s krajními body a, b:

 $(a,b) = \{x \in \mathbb{R} : a < x < b\} \ (otev\check{r}en\acute{y});$

 $\langle a, b \rangle = \{ x \in \mathbb{R} : a \le x \le b \} \ (uzav \check{r}en \acute{y});$

 $(a,b) = \{x \in \mathbb{R} : a < x \le b\}$ (zleva ot., zprava uz.);

 $\langle a, b \rangle = \{ x \in \mathbb{R} : a \le x < b \}$ (zleva uz., zprava ot.).

Body intervalu, které nejsou krajní, nazýváme vnitřní.

Tvrzení. V každém intervalu existuje nekonečně mnoho $racionálních i iracionálních čísel (hustota <math>\mathbb{Q} i \mathbb{R} \setminus \mathbb{Q} v \mathbb{R}).$

Důkaz: Pomocí dekadických rozvojů.

Definice. Rozšířená množina reálných čísel je $\mathbb{R} = \mathbb{R} \cup$ $\cup \{-\infty, +\infty\}$, kde $-\infty$ a $+\infty$ se nazývají nevlastní čísla. Pro každé $x \in \mathbb{R}$ pokládáme:

1) $-\infty < x < +\infty$

2) $|-\infty| = |+\infty| = +\infty$

 $x + \infty = \infty$, $\infty, \qquad -\infty - \infty = -\infty,$ $x \cdot \infty = \begin{cases} +\infty, & x > 0, \\ -\infty, & x < 0, \end{cases} \qquad \infty \cdot \infty = \infty,$ $\frac{x}{n} = 0$ $x - \infty = -\infty,$

Nedefinujeme: $\infty - \infty$, $0 \cdot \infty$, $\frac{\infty}{\infty}$.

Poznámka. Využití: věty o limitách, popisy intervalů: $(-\infty, 0) = \{x \in \mathbb{R} : -\infty < x < 0\} = \{x \in \mathbb{R} : x < 0\},\$ $(-\infty, +\infty) = \mathbb{R}$ (otevřené i s $\pm \infty$).

Definice. Nechť $M \subset \mathbb{R}$. Číslo $z \in \overline{\mathbb{R}}$ se nazývá: horní závora M, pokud $M \leq z$ ($x \leq z$ pro každé $x \in M$); dolní závora M, pokud $z \leq M$ ($z \leq x$ pro každé $x \in M$). Množina M se nazývá: shora omezená, pokud má reálnou horní závoru; zdola omezená, pokud má reálnou dolní závoru; omezená, pokud je shora i zdola omezená.

Příklady.

- 1) N je zdola omezená, není shora omezená.
- 2) $\mathbb Z$ není omezená ani zdola, ani shora.
- 3) (0,1) je omezená.

Definice. Necht $M \subset \mathbb{R}$.

 $Maximum \ M \ (\max M)$ je největší prvek M. $Minimum \ M \ (min \ M)$ je nejmenší prvek M. $Supremum\ M\ (\sup M)$ je nejmenší horní závora M.Infimum M (inf M) je největší dolní závora M.

Příklady.

 $\max \mathbb{N}$ neexistuje, $\sup \mathbb{N} = +\infty$, $\max(0,1) = 1$, $\sup(0,1) = 1$, $\max(0,1)$ neexistuje, $\sup(0,1)=1$ $\sup \emptyset = -\infty$, $\inf \emptyset = +\infty$

Poznámky. (Podobně pro inf/min)

- 1) sup $M = +\infty$ právě tehdy, když M není shora omezená.
- 2) Jestliže existuje $\max M$, pak $\sup M = \max M$.
- 3) max M existuje právě tehdy, když sup $M \in M$.

Věta. Každá množina reálných čísel má supremum i infimum (jediné).

 $Rez(A|B): A, B \subset \mathbb{Q}$ neprázdné, $A \cup B = \mathbb{Q}, A < B$. Řezy s $\max A$ nebo $\min B$ odpovídají racionálním číslům

(uvažujeme např. druhý typ), ostatní iracionálním. Rozšiřujeme relace a operace z Q:

 $(A_1|B_1) \leq (A_2|B_2) \text{ pro } A_1 \subset A_2;$

 $(A_1|B_1) + (A_2|B_2) = (\dots |B_1 + B_2);$

 $(A_1|B_1) \cdot (A_2|B_2) = (\dots |B_1 \cdot B_2) \text{ pro } 0 \in A_1 \cap A_2.$

Platí $\sup_{x \in M} (A_x | B_x) = (\bigcup_{x \in M} A_x | \dots)$, pokud přidáme $(\mathbb{Q},\emptyset) \sim +\infty.$

Korespondence řezů a dekadických rozvojů.

Věta (princip vnořených intervalů). *Jsou-li* I_n $(n \in \mathbb{N})$ uzavřené intervaly a $I_1 \supset I_2 \supset \cdots$, pak $\bigcap_{n \in \mathbb{N}} I_n \neq \emptyset$. Jestliže navíc délky intervalů I_n jdou k nule, pak je tento průnik jednobodový.

Důkaz: Označme $I_n = \langle a_n, b_n \rangle$ pro každé $n \in \mathbb{N}.$ Z předpokladů vyplývá, že $a_1 \leq a_2 \leq a_3 \leq \cdots \leq b_3 \leq b_2 \leq b_1$. Množina $\{a_n: n \in \mathbb{N}\}$ je neprázdná, shora omezená každým číslem b_n , má tedy v \mathbb{R} supremum, označme ho a. Protože $a \leq b_n$ pro každé $n \in \mathbb{N}$, má množina $\{b_n : n \in \mathbb{N}\}$ v \mathbb{R} infimum, označme ho b. Protože $a \leq b$, je $\bigcap_{n \in \mathbb{N}} I_n = \{x \in \mathbb{R} : a \leq b \}$ $a \leq x \leq b$ $\neq \emptyset$. Jestliže délky intervalů I_n jdou k nule, pak a = b.

Poznámka. Podmínka uzavřenosti intervalů ve výše uvedené větě je podstatná: je-li $I_n = (0, \frac{1}{n})$ pro každé $n \in \mathbb{N}$, pak $I_1 \supset I_2 \supset I_3 \supset \cdots$ a $\bigcap_{n \in \mathbb{N}} I_n = \emptyset$.

Funkce

Definice. (Reálná) funkce (reálné proměnné) f je zobrazení $A \to \mathbb{R}$, kde $A \subset \mathbb{R}$ je neprázdná. Množina A je definiční obor funkce f (D(f)), množina

 $f(A) = \{f(x) : x \in A\}$ je obor hodnot funkce f(R(f)). Graf funkce f je množina $\{[x, f(x)] : x \in D(f)\}$.

Poznámky. Pokud není zadán definiční obor, bereme maximální možný.

vzor
$$A: f^{-1}(A) = \{x \in D(f): f(x) \in A\}$$

Definice. Funkce $f: A \to B$ je:

 $prost\acute{a}$, pokud různým vzorům odpovídají různé obrazy; $na\ B$, pokud její obor hodnot je $B\ (f\colon A \xrightarrow{\mathrm{na}} B)$; $vz\acute{a}jemn\check{e}\ jednozna\check{c}n\acute{a}\ (bijekce)$, pokud je prostá na B.

Příklady.

- 1) x^2 není prostá (f(1) = f(-1)), je na $(0, +\infty)$.
- 2) x^3 je prostá na \mathbb{R} .

Poznámka. Neostré uspořádání $f \leq g$ a operace sčítání, odčítání, násobení a dělení funkcí definujeme "bodově".

Definice. Složení funkcí $f: A \to B$ a $g: B \to C$ je funkce $g \circ f: A \to C$ definovaná předpisem $(g \circ f)(x) = g(f(x))$.

Příklad. o není nekomutativní: f(x) = 2x, $g(x) = x^2$ $(g \circ f)(x) = g(f(x)) = (f(x))^2 = (2x)^2 = 4x^2$, $(f \circ g)(x) = f(g(x)) = 2g(x) = 2x^2$.

Definice. Inverzní funkce k $f: A \to \mathbb{R}$ je $f_{-1}: R(f) \to A$ taková, že $(f_{-1} \circ f)(x) = x$ pro každé $x \in A$.

Věta. Funkce f má inverzní funkci právě tehdy, když je prostá. Pak $D(f_{-1}) = R(f)$, $R(f_{-1}) = D(f)$, f je inverzní funkce k f_{-1} a graf f_{-1} je symetrický s grafem f podle $(p\check{r}\acute{m}ky\ o\ rovnici\ y=x)$.

Příklad. $f(x) = e^x : \mathbb{R} \xrightarrow{\text{na}} (0, +\infty)$ je prostá, má inverzní $f_{-1}(x) = \ln x : (0, +\infty) \xrightarrow{\text{na}} \mathbb{R}; f_{-1} \circ f \neq f \circ f_{-1}.$

Definice. Funkce f je (zdola, shora) omezená na $A \subset C$ C(f), pokud je (zdola, shora) omezená množina f(A).

Poznámka. Pokud neurčujeme A, myslíme D(f).

Příklady

- 1) x^2 je zdola omezená $(x^2 \ge 0)$, není shora omezená.
- 2) arctg x je omezená.
- 3) x^3 není omezená zdola ani shora.

Definice. Funkce f je rostoucí (klesající, neklesající, nerostoucí) na množině $A \subset D(f)$, pokud f(x) < f(y) $(f(x) > f(y), f(x) \le f(y), f(x) \ge f(y))$ pro všechna $x, y \in A$ taková, že x < y. Takové funkce se nazývají monotonní, rostoucí a klesající funkce se nazývají ryze monotonní.

Příklady.

- 1) x^2 je klesající na $(-\infty, 0)$, rostoucí na $(0, +\infty)$.
- 2) sign x je neklesající.
- 3) $\frac{1}{x}$ je klesající na $(-\infty,0)$ a na $(0,+\infty)$, není monotonní.

Věta. Rostoucí (klesající) funkce je prostá a má inverzní funkci, která je rovněž rostoucí (klesající).

Definice. Funkce f je:

 $sud\acute{a}$, pokud f(-x)=f(x) pro každé $x\in D(f)$; $lich\acute{a}$, pokud f(-x)=-f(x) pro každé $x\in D(f)$.

Příklady. 1) x^2 je sudá. 2) x^3 je lichá.

Poznámka. Graf sudé funkce je symetrický podle osy y, graf liché funkce je symetrický podle počátku.

Definice. Funkce f je periodická s periodou p > 0, pokud f(x+p) = f(x-p) = f(x) pro každé $x \in D(f)$.

Poznámka. Pro periodu p, jsou i np $(n \in \mathbb{N})$ periody. Nejmenší perioda (pokud existuje) se nazývá základní.

Příklad. Funkce $\sin x$ má základní periodu 2π .

Lineární transformace a graf funkce:

- 1) Graf f(x) + c je posunutý o c ve směru osy y.
- 2) Graf f(x+c) je posunutý o -c ve směru osy x.
- 3) Graf c f(x) je c-krát roztažený od osy x.
- 4) Graf f(cx) $(c \neq 0)$ je c-krát stažený k ose y. (Pro c < 0 opačná orientace nebo překlopení.)

Definice. Množiny A, B mají stejnou mohutnost (kardinalitu), pokud existuje bijekce $A \xrightarrow{\text{na}} B$. Množiny které mají mohutnost \mathbb{N} , se nazývají spočetné.

Tvrzení. \mathbb{Q} je spočetná, \mathbb{R} je nespočetná.

Důkaz: 1) $\frac{a}{b} \in \mathbb{Q}$ v základním tvaru přiřadíme přirozeným číslům primárně vzestupně podle |a| + b, pak libovolně.

2) Pro $f: \mathbb{N} \to \mathbb{R}$ najdeme dekadický rozvoj čísla, které není v $f(\mathbb{N})$: jako n-tou cifru dekadického rozvoje vybereme cifru různou od n-té cifry dekadického rozvoje f(n) a od 9.

Elementární funkce

Mocniny x^a

 $a \in \mathbb{N}$: $x^a = x \cdot \ldots \cdot x \ (a \times)$; inverzní $\sqrt[a]{x} \ (\sqrt{x} = \sqrt[2]{x})$; $x^0 = 1$ i pro x = 0; $x^{-a} = 1/x^a$;

 $x^{p/q} = \sqrt[q]{x^p}, p \in \mathbb{Z}, q \in \mathbb{N}, p, q$ nesoudělná:

$$\begin{array}{c|c|c|c} D(x^{p/q}) & \parallel q \text{ lich\'e} & q \text{ sud\'e } (x \geq 0) \\ \hline p \geq 0 & \mathbb{R} & \langle 0, +\infty \rangle \\ \hline p < 0 \ (x \neq 0) & \mathbb{R} \setminus \{0\} & (0, +\infty) \end{array}$$

pro $a \notin \mathbb{Q}$ pokládáme $x^a = e^{a \ln x}$, tedy $D(f) = (0, +\infty)$.

Exponenciální o základu $a \in (0, +\infty) \setminus \{1\}$: a^x (impl. e^x); inverzní: logaritmus o základu a: $log_a x$;

 $(\log x = \log_{10} x \ dekadick\acute{y}, \ln x = \log_{e} x \ p\check{r}irozen\acute{y}).$

Pro $x \in \mathbb{Q}$ je a^x definováno (viz mocniny),

pro $x \notin \mathbb{Q}$ dodefinujeme monotónně, tj. např. pro a > 1: $a^x = \sup\{a^q \colon q \in \mathbb{Q}, \ q < x\} = \inf\{a^q \colon q \in \mathbb{Q}, \ q > x\}.$

Pro každé $x,y\in\mathbb{R}$ a každé a>0 platí

$$a^{x+y} = a^x \cdot a^y, \qquad (a^x)^y = a^{xy}.$$

Pro každé $a \in (0,1) \cup (1,+\infty)$ platí

$$\log_a(xy) = \log_a x + \log_a y, \qquad x, y > 0,$$

$$\log_a x^y = y \log_a x, \qquad x > 0.$$

Exponenciální funkce i logaritmy lze převést na základ e:

$$a^x = e^{x \cdot \ln a}$$
, $\log_a x = \frac{\ln x}{\ln a}$.

$$goniometrick\'e: \sin x, \cos x, \operatorname{tg} x = \frac{\sin x}{\cos x}, \operatorname{cotg} x = \frac{\cos x}{\sin x};$$
 inverzn\'e: $\operatorname{arccos} x, \operatorname{arccotg} x, \operatorname{arccotg} x$.
$$\sin^2 x + \cos^2 x = 1$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\sin^2 x = \frac{1}{2} \left(1 - \cos 2x\right)$$

$$\cos^2 x = \frac{1}{2} \left(1 + \cos 2x\right)$$

$$\frac{x \mid 0 \mid \pi/6 \mid \pi/4 \mid \pi/3 \mid \pi/2}{\sin x \mid 0 \mid 1/2 \mid \sqrt{2}/2 \mid \sqrt{3}/2 \mid 1}$$

 $f(x)^{g(x)} \stackrel{\text{def.}}{=} \mathrm{e}^{g(x) \ln f(x)}$ pokudgnení racionální konstanta

Poznámka. V
$$\mathbb{C}$$
: $\cos x = \frac{1}{2} (e^{ix} + e^{-ix}), \sin x = \frac{1}{2i} (e^{ix} - e^{-ix}).$

Poznámka. hyperbolické:

 $\cosh x = \frac{1}{2} (e^x + e^{-x})$, $\sinh x = \frac{1}{2} (e^x - e^{-x})$ (tgh, cotgh podobně jako pro goniometrické) inverzní: $\operatorname{argsinh} x$, $\operatorname{argcosh} x$, $\operatorname{argtgh} x$, $\operatorname{argcotgh} x$ $\cosh^2 x - \sinh^2 x = 1$

Limity a spojitost funkcí

Definice. Okolí bodu
$$a \in \mathbb{R}$$
 o poloměru $r > 0$ je $U(a,r) = \{x \in \mathbb{R} : |x-a| < r\} = (a-r,a+r).$ Prstencové okolí bodu $a \in \mathbb{R}$ o poloměru $r > 0$ je $P(a,r) = U(a,r) \setminus \{a\} = (a-r,a) \cup (a,a+r).$ Okolí bodů $\pm \infty$ jsou $(r \text{ je reálné číslo}):$ $U(-\infty,r) = P(-\infty,r) = \{x \in \mathbb{R} : x < r\} = (-\infty,r),$ $U(+\infty,r) = P(+\infty,r) = \{x \in \mathbb{R} : x > r\} = (r,+\infty).$

Definice. Funkce f definovaná v prstencovém okolí bodu $a \in \overline{\mathbb{R}}$ má v bodě a limitu $b \in \overline{\mathbb{R}}$ ($\lim_{x \to a} f(x) = b$, $f(x) \xrightarrow{x \to a} b$), jestliže platí: Ke každému okolí U bodu b existuje prstencové okolí P bodu a tak, že $f(P) \subset U$.

Poznámka. Obecněji limita v hromadném bodě definičního oboru (v každém prstencovém okolí leží bod D(f)) je dána podmínkou $f(P \cap D(f)) \subset U$.

Tvrzení. Pro každé $a \in \mathbb{R}$ platí:

- 1) $\lim_{x\to a} c = c \ pro \ ka\check{z}d\acute{e} \ c \in \mathbb{R}$.
- 2) $\lim_{x\to a} x = a$.

Důkaz: 1) $f^{-1}(U) = \mathbb{R}$ pro každé U, např. P = P(a, 1). 2) $f^{-1}(U) = U$ pro každé U, např. $P = U \setminus \{a\}$.

Příklad. $\lim_{x\to 1} x^2 = 1$

Příklad. $\lim_{x\to+\infty} \sin x$ neexistuje: pro $b\in \mathbb{R}$ existuje $U_b \not\supset \langle -1,1\rangle, \ f^{-1}(U_b)$ neobsahuje prstencové okolí $+\infty$.

Jednostranné limity zleva/zprava pro levá/pravá prstencová okolí a (body prstencového okolí nalevo/napravo od a).

Příklad. $\lim_{x\to 0-} \operatorname{sign} x = -1$, $\lim_{x\to 0+} \operatorname{sign} x = +1$.

Věta. Pro funkci f definovanou v prstencovém okolí bodu $a \in \mathbb{R}$ je $\lim_{x \to a} f(x) = b$ právě tehdy, když $\lim_{x \to a-} f(x) = \lim_{x \to a+} f(x) = b$.

Důkaz: \Rightarrow : pro $P(a, \delta)$ bereme jednostranná prstencová okolí $(a - \delta, a), (a, a + \delta)$ \Leftarrow : pro $(a - \delta_-, a), (a, a + \delta_+), \delta = \min\{\delta_-, \delta_+\}$ bereme $P(a, \delta)$

Poznámka. Věty lze formulovat i pro jednostranné limity.

Věta (o jednoznačnosti). *Každá funkce má v každém bodě nejvýše jednu limitu.*

Důkaz: Pokud má v a limitu b, tak jiné číslo $c \in \mathbb{R}$ není limitou: existují disjunktní okolí U_b, U_c bodů $b, c, f^{-1}(U_c)$ je disjunktní s $f^{-1}(U_b)$ a neobsahuje tedy prstencové okolí a.

Věta (o monotonii). *Je-li* $f \leq g$ na prstencovém okolí $a \in \mathbb{R}$, $\lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$, pak $b \leq c$.

Důkaz (sporem): Pro b>c existují disjunktní okolí U_b, U_c bodů b, c a prstencová okolí $P_f \subset f^{-1}(U_b), P_g \subset g^{-1}(U_c)$ bodu a, pro $x \in P_f \cap P_g$ je f(x) > g(x) – spor.

Příklad. Ne pro <: 0 < $\frac{1}{x}$ na $(0,+\infty),$ v $+\infty$ stejná limita.

Věta. Funkce s vlastní limitou v $a \in \mathbb{R}$ je omezená na prstencovém okolí a.

Důkaz: Existuje omezené okolí U limity, k němu P.

Věta. Funkce s kladnou (zápornou) limitou v $a \in \mathbb{R}$ je na prstencovém okolí a kladná (záporná).

Důkaz: Existuje okolí U limity neobsahující 0, k němu P.

Věta.
$$\lim_{x\to a} f(x) = 0$$
 právě tehdy, $když \lim_{x\to a} |f(x)| = 0$.

Důkaz: $f(x) \in U(0,\varepsilon)$ právě tehdy, když $|f(x)| \in U(0,\varepsilon)$.

Věta. Monotonní funkce na otevřeném intervalu má v jeho krajních bodech příslušné jednostranné limity (supremum a infimum funkčních hodnot).

Důkaz (pro f nekles. na $I=(a,b), \to b-$): $s=\sup f(I),$ pro U okolí s od c existuje $d\in I$ tak, že f(d)>c, (d,b) je levé prstencové okolí b, $f((d,b))\subset U$.

Příklad.
$$e^x : \mathbb{R} \xrightarrow{\text{na}} (0, +\infty)$$
 je rostoucí, tedy $\lim_{x \to -\infty} e^x = \inf(0, +\infty) = 0$, $\lim_{x \to +\infty} e^x = \sup(0, +\infty) = +\infty$.

$$\begin{aligned} \mathbf{P} \widecheck{\mathbf{r}} \widehat{\mathbf{k}} \mathbf{lad.} \\ & \lim_{x \to +\infty} x^a = \begin{cases} +\infty \,, & a > 0 \,, \\ 1 \,, & a = 0 \,, & \lim_{x \to 0+} x^a = \begin{cases} 0 \,, & a > 0 \,, \\ 1 \,, & a = 0 \,, \\ +\infty \,, & a < 0 \,. \end{cases} \end{aligned}$$

Věta (limita součtu, rozdílu, součinu a podílu funkcí). Limita součtu (rozdílu, součinu, podílu) funkcí je součet (rozdíl, součin, podíl) limit, pokud je definován (včetně operací s nevlastními čísly).

Důkaz (pro součet vlastních limit): Pro $U(b+c,\varepsilon)$ uvažujme $f(P_f) \subset U(b,\frac{\varepsilon}{2})$ a $g(P_g) \subset U(c,\frac{\varepsilon}{2})$, pak $(f+g)(P_f \cap P_g) \subset \subset U(b+c,\varepsilon)$.

Příklady.

1)
$$\lim_{x \to +\infty} (2x^2 - 3x + 1) = |\infty - \infty + 1|$$
 nedefinováno
$$= \lim_{x \to +\infty} x^2 (2 - 3x^{-1} + x^{-2}) = (+\infty) \cdot 2 = +\infty,$$

$$\begin{split} 2) \quad &\lim_{x\to -\infty} \frac{2x-1}{x^2+1} = \left|\frac{-\infty}{+\infty}\right| \quad \text{nedefinováno} \\ &= \lim_{x\to -\infty} \frac{2x^{-1}-x^{-2}}{1+x^{-2}} = \frac{0-0}{1+0} = 0 \,, \end{split}$$

3)
$$\lim_{x \to 1} \frac{x-1}{x^2-1} = \left| \frac{0}{0} \right|$$
 nedefinováno
$$= \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}.$$

Věta. Je-li $\lim_{x\to a} f(x) > 0$, $\lim_{x\to a} g(x) = 0$ a g(x) > 0 na prstencovém okolí $a \in \mathbb{R}$, pak $\lim_{x\to a} f(x)/g(x) = +\infty$.

Poznámka. $\left|\frac{1}{0\pm}\right| = \pm \infty$.

Příklady.

1)
$$\lim_{x \to 1\pm} \frac{2}{x-1} = \left| \frac{2}{0\pm} \right| = \pm \infty.$$

2)
$$\lim_{x \to 1} \frac{-2}{(x-1)^2} = \left| \frac{-2}{0+} \right| = -\infty.$$

3)
$$\lim_{x \to 2-} \frac{\ln(2-x)}{x^2 - 4} = \left| \frac{-\infty}{0-} \right| = +\infty.$$

Věta (o sevření). *Je-li* $f \leq h \leq g$ na prst. okolí $a \in \overline{\mathbb{R}}$, $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = b \in \overline{\mathbb{R}}$, pak $\lim_{x \to a} h(x) = b$.

Příklad. $\lim_{x\to 0} \frac{\sin x}{x} = 1.$

stačí $x \to 0+$ (sudá) a $x \in (0, \frac{\pi}{2})$, věta o sevření:

$$\frac{1}{2}\sin x < \frac{x}{2} < \frac{1}{2}\frac{\sin x}{\cos x}$$

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$1 > \frac{\sin x}{x} > \cos x$$

Věta. Je-li $\lim_{x\to a} f(x) = 0$, g je omezená na prstencovém okolí $a \in \mathbb{R}$, pak $\lim_{x\to a} f(x) g(x) = 0$.

Důkaz: $|g| \le M$, $0 \le |f(x)g(x)| \le M |f(x)|$, věta o sevření.

Poznámka. $|0 \cdot \text{om.}| = \left| \frac{\text{om.}}{\pm \infty} \right| = 0.$

Příklad. $\lim_{x\to 0} x \sin \frac{1}{x} = |0 \cdot \text{om.}| = 0.$

Věta. Je-li $f \leq g$ na prst. okolí $a \in \overline{\mathbb{R}}$, $\lim_{x \to a} f(x) = +\infty$, $(\lim_{x \to a} g(x) = -\infty)$, pak $\lim_{x \to a} g(x) = +\infty$ $(\lim_{x \to a} f(x) = -\infty)$.

Věta. Je-li $\lim_{x\to a} f(x) = b \in \{\pm \infty\}$ a g je omezená na prstencovém okolí $a \in \overline{\mathbb{R}}$, pak $\lim_{x\to a} (f(x) + g(x)) = b$.

Důkaz: Pro $+\infty$: $q \ge M$, $f(x)+g(x) \ge f(x)+M \xrightarrow{x\to a} +\infty$.

Poznámka. $|\pm \infty + \text{om.}| = \pm \infty$.

Příklad. $\lim_{x\to\infty}(x+\cos x)=|+\infty+\text{om.}|=+\infty.$

Věta. Jestliže $\lim_{x\to a} f(x)$ neexistuje, pak platí:

- 1) Je-li $\lim_{x\to a} g(x)$ vlastní, pak $\lim_{x\to a} \left(f(x)\pm g(x)\right)$ nee-xistuje.
- 2) Je-li $\lim_{x\to a} g(x)$ vlastní a nenulová, pak neexistují $\lim_{x\to a} (f(x)\cdot g(x))$ a $\lim_{x\to a} (f(x)/g(x))$.

Důkaz: Sporem, existovala by $\lim_{x\to a} f(x)$ podle věty o limitě součtu, součinu, podílu.

Příklad. $\lim_{x\to+\infty} \frac{\sin x}{1-2^{-x}} = \left|\frac{\text{neex.}}{1}\right|$ neexistuje.

Věta (limita složené funkce). *Nechť pro* $a, b, c \in \overline{\mathbb{R}}$ *platí:*

- $(1) \lim_{x \to a} f(x) = b,$
- $(2) \lim_{y \to b} g(y) = c,$
- (3) g(b) = c nebo $f(x) \neq b$ na prstencovém okolí a. $Pak \lim_{x \to a} (g \circ f)(x) = c$.

Důkaz: U_c

- (2): existuje $P_b: P_b \xrightarrow{g} U_c$
- (1): existuje $P_a: P_a \xrightarrow{f} P_b \cup \{b\}$
- (3): pro g(b) = c je $P_b \cup \{b\} \xrightarrow{g} U_c$, $P_a \xrightarrow{g \circ f} U_c$, jinak existuje P'_a : $P'_a \xrightarrow{f} P_b$, $P'_a \xrightarrow{g \circ f} U_c$

Příklad. $\lim_{x\to +\infty} e^{1/x} = \lim_{y\to 0} e^y = 1 \ (\frac{1}{x} \neq 0 \text{ i } e^0 = 1).$

Příklad. $f(x) = x \sin \frac{1}{x}$: $\lim_{x\to 0} f(x) = 0$; g(y) = 0 pro $y \neq 0$, g(0) = 1: $\lim_{y\to 0} g(y) = 0$; $(g \circ f)(x) = 1$ pro $x \in \{\frac{1}{k\pi} : k \in \mathbb{Z} \setminus \{0\}\}$, jinak 0; $\lim_{x\to 0} (g \circ f)(x)$ neexistuje.

Definice. Funkce f je spojitá v bodě $a \in D(f)$, pokud ke každému okolí U bodu f(a) existuje okolí V bodu a tak, že $f(V \cap D(f)) \subset U$. Funkce je spojitá, pokud je spojitá v každém bodě svého definičního oboru.

Věta. Funkce f definovaná v okolí bodu a je v bodě a spojitá právě tehdy, když $\lim_{x\to a} f(x) = f(a)$.

Poznámka. Funkce f je spojitá v izolovaných bodech D(f) (pro které je D(f) disjunktní s některým prst. okolím).

Poznámka. Podobně spojitosti zleva/zprava.

Příklady. 1) konstanty, x jsou spojité.

- 2) sign x je spojitá v bodech $\mathbb{R} \setminus \{0\}$, není spojitá v bodě 0.
- 3) Charakteristická funkce $(0, +\infty)$ je spojitá v bodech $\mathbb{R} \setminus \{0\}$, zprava spojitá v 0.
- 4) Dirichletova funkce není spojitá v žádném bodě (v žádném nemá limitu):

$$d(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}. \end{cases}$$

Poznámka. *Po částech spojitá funkce*: v každém omezeném intervalu jen konečně mnoho bodů nespojitosti, v nich konečné jednostranné limity.

Věta. 1) Jsou-li f, g spojité v a, pak $f \pm g$, $f \cdot g$, f/g (pokud je definována), |f| jsou spojité v a.

- 2) Je-li f spojitá v a, pak je omezená na okolí a.
- 3) Je-li f spojitá v a, f(a) > 0, pak f(x) > 0 na okolí <math>a.
- 4) Je-li f spojitá v a, g v f(a), pak $g \circ f$ je spojitá v a.

Věta. Racionální funkce jsou spojité.

Důkaz: Spojitost konstant, x, součtu, součinu a podílu.

Věta. Mocniny, exponenciální a goniometrické funkce a funkce k nim inverzní jsou spojité.

Posloupnosti

Definice. (Nekonečná) posloupnost (reálných čísel) je zobrazení $\mathbb{N} \to \mathbb{R}$. Značíme $(a_n)_{n=1}^{\infty}$, a_n je n-tý člen.

nekonečněrozměrný aritmetický vektor obecněji $(a_n)_{n=n_0}^{\infty}, \, n_0 \in \mathbb{Z}$

Příklady.

1) $(2^n)_{n=1}^{\infty} = (2,4,8,\dots)$ $a_n = a_1 q^{n-1} \dots$ (geometrická s kvocientem q) 2) rekurentně $a_1 = a_2 = 1, \ a_{n+2} = a_n + a_{n+1}$ pro $n \in \mathbb{N}$: $(1,1,2,3,5,8,\dots)$ (Fibonacciho)

Pojmy a věty jako pro funkce: omezená, monotonní (stačí vztahy mezi a_n, a_{n+1}), limita (v ∞ jako pro $f(x) = a_n$ na (n, n+1)).

Věta. Posloupnost $(a_n)_{n=1}^{\infty}$ má limitu $a \in \overline{\mathbb{R}}$ ($\lim_{n\to\infty} a_n = a$, $a_n \xrightarrow{n\to\infty} a$), pokud pro každé okolí U bodu a existuje $n_0 \in \mathbb{N}$ tak, že pro všechna $n > n_0$ je $a_n \in U$.

Definice. Posloupnost s vlastní limitou je konvergentní.

Věta. Konvergentní posloupnost je omezená.

Věta. Nechť f je definována na prstencovém okolí a. $Pak \lim_{x\to a} f(x) = b$ právě tehdy, $když \lim_{n\to\infty} f(a_n) = b$ pro každou posloupnost $(a_n)_{n=1}^{\infty}$ čísel z $D(f) \setminus \{a\}$ s $\lim_{n\to\infty} a_n = a$.

Příklady.

- 1) $\lim_{n\to\infty} \frac{e^n}{n} = +\infty$ protože $\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$
- 2) $\lim_{x\to+\infty} \sin x$ neexistuje:

$$\lim_{n\to\infty} \pi n = +\infty, \lim_{n\to\infty} \sin \pi n = 0,$$

$$\lim_{n\to\infty} \left(\frac{\pi}{2} + 2\pi n\right) = +\infty, \lim_{n\to\infty} \left(\frac{\pi}{2} + 2\pi n\right) = 1$$

Definice. Vybraná posloupnost (podposloupnost) z posloupnosti $(a_n)_{n=1}^{\infty}$ je posloupnost $(a_{n_k})_{k=1}^{\infty}$, kde $(n_k)_{k=1}^{\infty}$ je rostoucí posloupnost přirozených čísel.

Definice. Číslo $a \in \mathbb{R}$ je hromadná hodnota posloupnosti, pokud v každém okolí a leží nekonečně mnoho jejích členů.

Věta. Limita posloupnosti je její hromadnou hodnotou. Hromadná hodnota posloupnosti je limitou některé její vybrané posloupnosti.

Důkaz: 1. Zřejmé. 2. Okolí U_k hromadné hodnoty smršťující se k ní, $a_{n_k} \in U_k$ tak, aby $(n_k)_{k=1}^\infty$ byla rostoucí.

Příklad. Posl. $\left((-1)^n\right)_{n=1}^\infty$ má hromadné hodnoty ±1.

Věta. Každá posloupnost má alespoň jednu hromadnou hodnotu (omezená posloupnost vlastní).

Důkaz: $-\infty$ nebo $+\infty$, pokud není omezená. Pro omezenou sestrojíme posloupnost vnořených (poloviční délky) uzavřených intervalů obsahujících nekonečně mnoho členů posloupnosti, jejich průnik obsahuje hromadnou hodnotu.

Věta. Supremum a infimum množiny hromadných hodnot posloupnosti jsou hromadné hodnoty této posloupnosti.

Důkaz: Okolí U obsahuje hrom. hodnotu a její okolí $U' \subset U$.

limes superior ($\limsup_{n\to\infty} a_n$) limes inferior ($\liminf_{n\to\infty} a_n$)

Věta. Pro posloupnost je ekvivalentní:

- 1) Má limitu.
- 2) Má jedinou hromadnou hodnotu.
- 3) Limes inferior a limes superior posloupnosti jsou stejné.
- 4) Každá vybraná posloupnost má stejnou limitu.

Vlastnosti spojitých funkcí na intervalu

Věta (Weierstrass). Spojitá funkce na uzavřeném intervalu nabývá největší a nejmenší hodnoty.

Důkaz: Pro $m = \sup f(I)$ existuje posloupnost $(a_n)_{n=1}^{\infty}$ taková, že $f(a_n) \xrightarrow{n \to \infty} m$, ta má v I hromadnou hodnotu a, k ní konverguje vybraná posloupnost $(a_{n_k})_{k=1}^{\infty}$, ze spojitosti f vyplývá $f(a_{n_k}) \xrightarrow{k \to \infty} f(a)$, tedy m = f(a).

Příklady.

- 1) f(x) = x+1 na $\langle -1,0 \rangle$, f(0) = 0, f(x) = x-1 na (0,1) nenabývá extrémů (spojitost podstatná).
- 2) $f(x) = \frac{1}{x}$ na (0,1) (ryze monotonní na otevřeném intervalu) nenabývá extrémů (uzavřený interval podstatný).

Věta (o mezihodnotě). *Je-li funkce f spojitá na intervalu I a nabývá-li v něm hodnot m a M, m < M, pak v tomto intervalu nabývá všech hodnot z intervalu* $\langle m, M \rangle$.

Důkaz: $c \in \langle m, M \rangle$, m, M se nabývají v krajních bodech intervalu I_1 , sestrojíme posloupnost vnořených (poloviční délky) intervalů s hodnotami v krajních bodech kolem c, jejich průnik obsahuje a, pro které f(a) = c.

Důsledky.

- 1) Pro spojitou nekonstantní funkci je obrazem intervalu interval (uzavřeného uzavřený).
- 2) Spojitá funkce na intervalu je prostá (má inverzní funkci) právě tehdy, když je ryze monotonní.

Důkaz: 2) Např. pro $x_1 < x_2 < x_3$, $f(x_1) < f(x_2) > f(x_3)$, $f(x_1), f(x_3) < c < f(x_2)$ ex. vzory c v (x_1, x_2) i v (x_2, x_3) .

Poznámka. Metoda bisekce pro hledání nulového bodu spojité funkce na intervalu $\langle a,b\rangle,\ f(a)\,f(b)<0,$ používá metodu důkazu věty o mezihodnotě.

Věta. Inverzní funkce k ryze monotonní funkci na intervalu je spojitá.

Důkaz: f na I, $a \in D(f_{-1})$, a = f(b), např. b vnitřní bod I, $U = (c, d) \subset I$ okolí b, existuje okolí V bodu a neobsahující f(c), f(d), $f_{-1}(V \cap D(f_{-1})) \subset U$.

Příklad. f(x) = x na (0,1), f(x) = x - 1 na (2,3) je rostoucí (i spojitá), inverzní není spojitá v 1.

Derivace funkce

"Okamžitá" změna funkce jako limita průměrných změn.

Definice. Derivace funkce f v bodě a je

$$\frac{\mathrm{d}f}{\mathrm{d}x}(a) = f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Poznámky.

1)
$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}.$$

- 2) Podobně jednostranné derivace
- 3) Derivace funkce v bodě: f'(a) (číslo, i nevlastní).

Derivace funkce: $f': a \mapsto f'(a)$ (funkce, jen vlastní hod.).

Derivace: $': f \mapsto f'$ (operátor).

4) Funkce f má derivaci na intervalu I, pokud f' existuje na I (v případných krajních bodech I příslušná jednostranná).

Příklad. Pro funkci $f(x) = \sqrt[3]{x}$ je

$$f'(0) = \lim_{h \to 0} \frac{\sqrt[3]{h} - \sqrt[3]{0}}{h} = \lim_{h \to 0} \frac{1}{\sqrt[3]{h^2}} = \left| \frac{1}{0+} \right| = +\infty.$$

Věta.

0)
$$(c)' = 0$$
 $x \in \mathbb{R} \ (c \in \mathbb{R} \ \text{je konstanta}).$

1)
$$(x^a)' = ax^{a-1}$$
 $x \in D(x^a)$ pro $a \notin (0,1)$,

$$x \in D(x^a) \setminus \{0\} \text{ pro } a \in (0,1).$$

$$(e^x)' = e^x x \in \mathbb{R}.$$

3)
$$(\sin x)' = \cos x$$
 $x \in \mathbb{R}$.

$$(\cos x)' = -\sin x \quad x \in \mathbb{R}.$$

Důkaz: 0) $(c)' = \lim_{h \to 0} \frac{c-c}{h} = \lim_{h \to 0} 0 = 0.$

1) pro
$$a \in \mathbb{N}$$
: $(x^n)' = \lim_{h \to 0} \frac{1}{h} [(x+h)^n - x^n] =$

$$= \lim_{h \to 0} \frac{1}{h} (x^n + nx^{n-1}h + \dots + h^n - x^n) =$$

$$=\lim_{n\to\infty}(nm^{n-1}+b^{n-1})=nm^{n-1}$$

$$= \lim_{h \to 0} (nx^{n-1} + \dots + h^{n-1}) = nx^{n-1}.$$
2) $(e^x)' = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \cdot \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \cdot 1 = e^x.$

3) pro
$$\sin x$$
: $(\sin x)' = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h} =$

$$=\lim_{h\to 0} \frac{2\cos(x+h/2)\sin h/2}{h} =$$

$$= \lim_{h \to 0} \cos(x + h/2) \cdot \lim_{h/2 \to 0} \frac{\sin h/2}{h/2} = \cos x \cdot 1 = \cos x.$$

Příklady.

1)
$$(x^3)' = 3x^{3-1} = 3x^2, x \in \mathbb{R}.$$

2)
$$(\sqrt[3]{x})' = (x^{1/3})' = \frac{1}{3}x^{1/3-1} = 1/(3\sqrt[3]{x^2}), x \neq 0.$$

Věta. Funkce je spojitá v každém bodě, ve kterém má vlastní derivaci.

Důkaz:
$$f(x) = f(a) + \frac{f(x) - f(a)}{x - a} \cdot (x - a) \xrightarrow{x \to a} f(a) + f'(a) \cdot 0 = f(a).$$

Příklady.

1) $\operatorname{sign} x$ je nespojitá v 0,

$$\operatorname{sign}'(0) = \lim_{h \to 0} \frac{\operatorname{sign} h - \operatorname{sign} 0}{h} = \lim_{h \to 0} \frac{1}{|h|} = \left| \frac{1}{0+} \right| = +\infty.$$

2) $f(x) = \sqrt[3]{x}$ je spojitá v 0, $f'(0) = +\infty$.

3)
$$f(x) = |x|$$
 je spojitá v 0, $f'(0)$ neexistuje: $f'_{\pm}(0) = \lim_{h \to 0\pm} \frac{|h| - |0|}{h} = \lim_{h \to 0\pm} \pm 1 = \pm 1.$

Poznámka. Existuje funkce spojitá na \mathbb{R} , která nemá v žádném bodě derivaci.

Věta (o derivaci součtu, rozdílu, součinu a podílu). *Mají-li* funkce f, g vlastní derivace v bodě a, pak:

- 1) $(f \pm g)'(a) = f'(a) \pm g'(a)$;
- 2) $(f \cdot g)'(a) = f'(a) g(a) + f(a) g'(a);$
- 3) je- $li\ g(a) \neq 0$, pak

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) g(a) - f(a) g'(a)}{g(a)^2}$$

Důkaz:

$$\frac{(f \pm g)(x) - (f \pm g)(a)}{x - a} = \frac{f(x) - f(a)}{x - a} \pm \frac{g(x) - g(a)}{x - a}$$

$$\xrightarrow{x \to a} f'(a) \pm g'(a);$$

$$\frac{(f \cdot g)(x) - (f \cdot g)(a)}{x - a} =$$

$$= \frac{f(x) - f(a)}{x - a} \cdot g(x) + f(a) \cdot \frac{g(x) - g(a)}{x - a}$$

$$\xrightarrow{x \to a} f'(a) g(a) + f(a) g'(a);$$

$$\begin{split} &\frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \\ &= \frac{1}{g(a)\,g(x)} \left[\frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \cdot \frac{g(x) - g(a)}{x - a} \right] \\ &\xrightarrow{x \to a} \frac{1}{g(a)^2} \left[f'(a)\,g(a) - f(a)\,g'(a) \right]. \end{split}$$

Poznámky.

- 1) Podobně pro derivace funkcí (nejen v bodě).
- 2) Pro $c \in \mathbb{R}$ je (cf)' = (c)'f + cf' = cf' ("derivace násobku je násobek derivace").
- 3) Zobrazení ': $f \to f'$ je lineární.
- 4) $(f_1 + f_2 + \dots + f_n)' = f'_1 + f'_2 + \dots + f'_n,$ $(f_1 f_2 \dots f_n)' = f'_1 f_2 \dots f_n + f_1 f'_2 \dots f_n + \dots + f_1 f_2 \dots f'_n.$

Příklady.

- 1) $(3x^2 + 2x + 7)' = 6x + 2$.
- 2) $(x^2 e^x \sin x)' = 2x e^x \sin x + x^2 e^x \sin x + x^2 e^x \cos x$.
- 3) $(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{(\sin x)' \cos x \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$

Věta (o derivaci složené funkce). Má-li f vlastní derivaci $v \ a, \ g \ vlastn'i \ derivaci \ v \ f(a) = b, \ pak \ g \circ f \ m'a \ v \ a \ derivaci$ $(q \circ f)'(a) = q'(b) \cdot f'(a).$

Důkaz: Označme f(x) = y. Funkce

$$t(y) = \begin{cases} \frac{g(y) - g(b)}{y - b}, & y \neq b, \\ g'(b), & y = b, \end{cases}$$

je spojitá v b, v okolí b je g(y) - g(b) = t(y)(y - b), platí

$$\frac{(g \circ f)(x) - (g \circ f)(a)}{x - a} = \frac{g(f(x)) - g(f(a))}{x - a} =$$

$$= \frac{g(y) - g(b)}{x - a} = \frac{t(y)(y - b)}{x - a} =$$

$$= t(y) \frac{f(x) - f(a)}{x - a} \xrightarrow{x \to a \ (\Rightarrow y \to b)} g'(b) f'(a).$$

Poznámky.

- 1) $(f_n \circ \cdots \circ f_2 \circ f_1)' = f'_n \cdots f'_2 f'_1$.
- 2) Schematicky pro f(x)=y, g(y)=z: $\frac{\mathrm{d}z}{\mathrm{d}x}=\frac{\mathrm{d}z}{\mathrm{d}u}\cdot\frac{\mathrm{d}y}{\mathrm{d}x}$.

Příklady.

1) $(\sin x^2)' = \cos x^2 \cdot 2x$.

2) $(e^{\cos x^3})' = e^{\cos x^3} \cdot (-\sin x^3) \cdot 3x^2$.

3) $(f(ax))' = f'(ax) \cdot a$.

Poznámka. Obecnější vzorce pro $a \in \mathbb{R}$ (na \mathbb{R}): $(e^{ax})' = a e^{ax}$, $(\sin ax)' = a \cos ax$, $(\cos ax)' = -a \sin ax$.

Derivací $(f_{-1} \circ f)(x) = x$ dostaneme $f'_{-1}(f(x)) \cdot f'(x) = 1$.

Věta (o derivaci inverzní funkce). Je-li funkce f spojitá a ryze monotonní na intervalu I a existuje-li nenulová derivace funkce f v $a \in I$, pak

$$f'_{-1}(f(a)) = \frac{1}{f'(a)}.$$

Důkaz: Označme y = f(x), b = f(a). f(I) je otevřený interval, existuje spojitá f_{-1} na f(I).

$$\frac{f_{-1}(y) - f_{-1}(b)}{y - b} = \frac{1}{\frac{f(x) - f(a)}{x - a}} \xrightarrow{y \to b \ (\Rightarrow x \to a)} \frac{1}{f'(a)}.$$

Poznámka. Obvykle vycházíme z funkce, jejíž derivaci chceme spočítat, takže podmínky monotonie a nenulovosti derivace ověřujeme pro inverzní funkci.

Příklad. $\ln x$ je inverzní k e^y , která je spojitá, rostoucí a má nenulovou derivaci. Pro $x \in D(\ln) = (0, +\infty)$ je

$$(\ln x)' = \frac{1}{(e^y)'} = \frac{1}{e^y} = \frac{1}{e^{\ln x}} = \frac{1}{x}.$$

Věta.

$$(\operatorname{arctg} x)' = \frac{1}{x^2 + 1}, \quad (\operatorname{arccotg} x)' = \frac{-1}{x^2 + 1}, \quad x \in \mathbb{R}$$

Příklad. Důkaz vzorce o derivaci x^a pro $a \in \mathbb{R}$, x > 0: $(x^a)' = (e^{a \ln x})' = e^{a \ln x} \cdot \frac{a}{x} = a x^{a-1}$.

Definice. Derivaci řádu n (n-tou derivaci) funkce f značíme $f^{(n)}$ nebo $\frac{\mathrm{d}^n f}{\mathrm{d} x^n}$ a definujeme rekurentně

$$f^{(0)} = f$$
, $f^{(n)} = (f^{(n-1)})'$ pro $n \in \mathbb{N}$.

Příklad. Pro $f(x) = 1/x = x^{-1}$ dostáváme

$$f'(x) = (-1)x^{-2}$$

$$f''(x) = ((-1)x^{-2})' = (-1)(-2)x^{-3}$$

$$f'''(x) = ((-1)(-2)x^{-3})' = (-1)(-2)(-3)x^{-4}$$

$$\vdots$$

$$f^{(n)}(x) = (-1)^n \frac{n!}{x^{n+1}}$$

Poznámky.

1) Derivace řádu n je lineární zobrazení, takže

$$(c_1f_1 + c_2f_2 + \dots + c_kf_k)^{(n)} = c_1f_1^{(n)} + c_2f_2^{(n)} + \dots + c_kf_k^{(n)}.$$

2) Derivace součinu dvou funkcí se počítají následovně: $(fg)' = f'g + fg'\,,$

$$(fg)'' = (f'g + fg')' = f''g + 2f'g' + fg'',$$

$$(fg)''' = f'''g + 3f''g' + 3f'g'' + fg''',$$

$$\vdots$$

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}g^{(k)}.$$

Aplikace derivací

Geometrické aplikace

 $\frac{f(x)-f(a)}{x-a}$... směrnice sečny body [a, f(a)], [x, f(x)]f'(a) ... směrnice tečny v [a, f(a)]tečna: y-f(a)=f'(a)(x-a)

$$y = f(a) + f'(a)(x - a)$$

směrový vektor tečny (kolmý k normále): (1, f'(a)) normála:

$$x = a,$$

$$pro f'(a) = 0,$$

$$y = f(a) - \frac{1}{f'(a)}(x - a) \quad pro f'(a) \neq 0.$$

Příklad. Určete tečnu a normálu grafu funkce $f(x) = e^x$ v bodě [1,?].

$$f(1) = e, f'(x) = e^x, f'(1) = e$$

tečna: $y = f(1) + f'(1)(x - 1) = e + e(x - 1) = ex$
normála: $y = e - \frac{1}{e}(x - 1) = -\frac{1}{e}x + (e + e^{-1})$

Věty o střední hodnotě

Věta (Rolleova). Nechť pro funkci f platí

(1) f(a) = f(b);

(2) je spojitá na intervalu $\langle a, b \rangle$;

(3) má derivaci v každém bodě intervalu (a,b). Pak f'(c) = 0 pro některý bod $c \in (a,b)$.

Důkaz: pro konstantní je f'=0 na (a,b); nekonstantní nabývá minima nebo maxima uvnitř $\langle a,b\rangle$; například pro maximum v bodě $c\in(a,b)$:

$$f'(c) = f'_{-}(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} \ge 0,$$

$$f'(c) = f'_{+}(c) = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} \le 0.$$

Příklady. Žádný předpoklad nelze vypustit.

1) Funkce f(x) = x na (0,1) nesplňuje (1).

2) Funkce f(x) = x na (0,1), f(1) = 0 nesplňuje (2).

3) Funkce f(x) = |x| na $\langle -1, 1 \rangle$ nesplňuje (3).

Věta (Lagrangeova, o přírůstku funkce). Nechť funkce f je spojitá na $\langle a,b \rangle$ a má derivaci v každém bodě (a,b). Pak existuje $c \in (a,b)$ tak, že

$$f(b) - f(a) = f'(c) \cdot (b - a).$$

Důkaz: funkce $g(x) = f(x) - \left[f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right]$ splňuje podmínky Rolleovy věty, existuje $c \in (a, b)$: $0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}.$

Tvrzení. Je-li funkce f spojitá v bodě a zprava a existuje-li f'(a+), pak $f'_{+}(a) = f'(a+)$.

Důkaz: z existence f'(a+) plyne existence vlastní derivace a tedy i spojitost f na pravém okolí a; pro x z tohoto okolí podle Lagrangeovy věty existuje $c_x \in (a, x)$; pro $x \to a+$ je $c_x \to a+$; $f'_+(a) = \lim_{x\to a+} \frac{f(x)-f(a)}{x-a} = \lim_{x\to a+} f'(c_x) = \lim_{x\to a+} f'(c_x) = f'(a+)$

Poznámka. Podobně pro derivaci zleva, oboustrannou.

Příklad. $f(x) = \sqrt[3]{x}$ je spojitá na \mathbb{R} . $f'(0) = \lim_{x \to 0} \frac{1}{3\sqrt[3]{x^2}} = \left| \frac{1}{0+} \right| = +\infty.$

Příklad. $f(x) = x^2 \sin \frac{1}{x}$ pro $x \neq 0$, f(0) = 0: f'(0) = 0, $\lim_{x\to 0} f'(x) = \lim_{x\to 0} (2x\sin\frac{1}{x} - \cos\frac{1}{x})$ neex.

Tvrzení (Cauchy). Nechť funkce f, g jsou spojité na intervalu $\langle a,b\rangle$, mají vlastní derivaci na (a,b) a $g'(x) \neq 0$ na (a,b). Pak existuje $c \in (a,b)$ tak, že

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

Důkaz: funkce h(x) = (f(b) - f(a)) g(x) - (g(b) - g(a)) f(x)splňuje podmínky Rolleovy věty, existuje $c \in (a, b)$: 0 = h'(c) = (f(b) - f(a)) g'(c) - (g(b) - g(a)) f'(c),protože $g'(x) \neq 0$ na (a, b), je $g'(c) \neq 0$ a také $g(b) \neq g(a)$

l'Hospitalovo pravidlo

Věta (l'Hospitalovo pravidlo). Nechť pro funkce f, g platí: (1) $\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) = 0$ nebo

 $\lim_{x \to a+} |g(x)| = +\infty,$

(2) existuje $\lim_{x\to a+} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}$.

Pak

$$\lim_{x \to a+} \frac{f(x)}{g(x)} = \lim_{x \to a+} \frac{f'(x)}{g'(x)}$$

Důkaz: pro $\lim_{x\to a+} f(x) = \lim_{x\to a+} g(x) = 0$: f',g' existují a $g'(x) \neq 0$ na některém (a,b), položme f(a) = g(a) = 0 (pak f, g jsou spojité na $\langle a, b \rangle$); podle Cauchyovy věty pro $\langle a, x \rangle$ $(x \in (a, b))$ existuje $c_x \in (a, x)$: $\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c_x)}{g'(c_x)} \xrightarrow{x \to a+} \lim_{x \to a+} \frac{f'(x)}{g'(x)}$

- 1) Podobně pro limitu zleva či oboustrannou.
- 2) L'Hospitalovo pravidlo lze použít opakovaně.
- 3) Limita může existovat, i když limita podílu derivací neexistuje.
- 4) Limity typu $0\cdot\infty$ lze převést na typ
 $\frac{0}{0}$ nebo (někdy) $\frac{\infty}{\infty},$ typy ∞^0 , 0^0 , 1^∞ lze převést na typ $e^{0\cdot\infty}$.

1)
$$\lim_{x\to 0} \frac{\ln(1+x)}{x} = \left| \frac{0}{0} \right| \stackrel{\text{l'H}}{=} \lim_{x\to 0} \frac{\frac{1}{1+x}}{1} = 1.$$

2)
$$\lim_{x \to +\infty} \frac{\ln x}{\sqrt[4]{x}} = \left| \frac{+\infty}{+\infty} \right|^{1} = \lim_{x \to +\infty} \frac{1/x}{(1/4)x^{-3/4}} = \lim_{x \to +\infty} \frac{4}{\sqrt[4]{x}} = 0.$$

3)
$$\lim_{x \to +\infty} \frac{e^x}{x^2} = \left| \frac{+\infty}{+\infty} \right| \stackrel{\text{l'H}}{=} \lim_{x \to +\infty} \frac{e^x}{2x} =$$

$$= \left| \frac{+\infty}{+\infty} \right| \stackrel{\text{l'H}}{=} \lim_{x \to +\infty} \frac{e^x}{2} = +\infty.$$

4)
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 0$$
, $\lim_{x \to +\infty} \frac{\cos x}{1}$ neexistuje
5) $\lim_{x \to 0+} x \ln x = |0 \cdot (-\infty)| = \lim_{x \to 0+} \frac{\ln x}{1/x} =$

5)
$$\lim_{x \to 0+} x \ln x = |0 \cdot (-\infty)| = \lim_{x \to 0+} \frac{\ln x}{1/x} =$$

= $\left| \frac{-\infty}{+\infty} \right| \stackrel{\text{l'H}}{=} \lim_{x \to 0+} \frac{1/x}{-1/x^2} = \lim_{x \to 0+} (-x) = 0.$

6)
$$\lim_{x \to +\infty} (1 + a/x)^x = \lim_{x \to +\infty} \exp[x \ln(1 + a/x)] =$$

 $= \exp\left[\lim_{x \to +\infty} \frac{\ln(1 + a/x)}{1/x}\right] =$
 $\stackrel{\text{l'H}}{=} \exp\left[\lim_{x \to +\infty} \frac{1/(1 + a/x) \cdot (-a)/x^2}{-1/x^2}\right]$
 $= \exp\left[\lim_{x \to +\infty} \frac{a}{1 + a/x}\right] = \exp a = e^a.$

$$= \exp\left[\lim_{x \to +\infty} \frac{1}{-1/x^2}\right]$$
$$= \exp\left[\lim_{x \to +\infty} \frac{a}{1+a/x}\right] = \exp a = e^a$$

Poznámka. L'Hospitalovo pravidlo lze použít i pro výpočet limit posloupností, pokud najdeme vhodnou funkci. Například $\lim_{n\to\infty} e^n/n = \lim_{x\to+\infty} e^x/x = +\infty$.

Taylorův polynom

Věta (Taylor). Nechť funkce f má spojité derivace do řádu $n \geq 0$ na $\langle a, x \rangle$, $f^{(n+1)}$ existuje v každém bodě (a, x). Pak existuje $c \in (a, x)$ tak, že

$$f(x) = \underbrace{f(a) + \frac{f'(a)}{1!}(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n}_{T_n(x)} + \underbrace{\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}}_{T_n(x)}.$$

 $T_n(x)$: Taylorův polynom funkce f v bodě a řádu n, zbytek v Lagrangeově tvaru.

Poznámky.

- 1) Podobně pro $\langle x, a \rangle$.
- 2) n = 0: f(x) = f(a) + f'(c)(x a) (Lagrange).
- 3) $f^{(n+1)}$ spojitá, xblízko a ... cblízko a ... $f^{(n+1)}(c)$ blízko $f^{(n+1)}(a)$... T_{n+1} přesnější

Důkaz:

$$T_n(a) = f(a)$$

$$T'_n(a) = f'(a)$$

$$\vdots$$

$$T_n^{(n)}(a) = f^{(n)}(a)$$

$$f(x) = T_n(x) + M(x - a)^{n+1}$$

$$g(t) = f(t) - T_n(t) - M(t - a)^{n+1}, t \in \langle a, x \rangle$$

Rolle (n+1)-krát:

$$g(x) = 0 \qquad g(a) = 0$$

$$\exists c_1 \in (a, x) \colon \qquad g'(c_1) = 0 \qquad g'(a) = 0$$

$$\vdots$$

$$\exists c_n \in (a, c_{n-1}) \colon \qquad g^{(n)}(c_n) = 0 \qquad g^{(n)}(a) = 0$$

$$\exists c \in (a, c_n) \colon \qquad g^{(n+1)}(c) = 0$$

$$f^{(n+1)}(c) - 0 - M \cdot (n+1)! = 0$$

$$M = \frac{f^{(n+1)}(c)}{(n+1)!}$$

Příklady.

$$e^{x} \sim 1 + \frac{1}{1!} x + \frac{1}{2!} x^{2} + \dots + \frac{1}{n!} x^{n}$$

$$\cos x \sim 1 - \frac{1}{2!} x^{2} + \frac{1}{4!} x^{4} - \frac{1}{6!} x^{6} + \dots$$

$$\sin x \sim x - \frac{1}{3!} x^{3} + \frac{1}{5!} x^{5} - \frac{1}{7!} x^{7} + \dots$$

Poznámky.

- 1) Taylorův p. sudé (liché) funkce v 0 je funkce sudá (lichá).
- 2) Taylorův p. řádu n pro polynom P stupně $\leq n$ je P.
- 3) Taylorova řada: nekonečný součet.

Pro výpočet sinu nebo kosinu stačí interval $\langle 0, \frac{\pi}{4} \rangle$.

Příklad. Odhadněte sin $\frac{\pi}{6}$ Taylorovým p. řádu 3 v 0.

$$T_3(x) = x - \frac{1}{6}x^3, T_3(\frac{\pi}{6}) = 0,499674...$$

$$T_3(x) = x - \frac{1}{6} x^3, T_3(\frac{\pi}{6}) = 0,499674...$$

Protože $T_3 = T_4$, je chyba
 $|\sin(\frac{\pi}{6}) - T_4(\frac{\pi}{4})| = \left|\frac{\sin^{(5)}(c)}{5!} \cdot (\frac{\pi}{6})^5\right| \le \frac{1}{120} \cdot (\frac{\pi}{6})^5 = 0,000327...$

Skutečná chyba je dost přesně rovna tomuto odhadu, T_5 dá výrazně přesnější hodnotu 0,500 002...

Příklad. Spočtěte číslo e s přesností 10^{-3} , víte-li, že e < 3. $f(x) = e^x$, a = 0, $e = f(1) \approx T_n(1)$

chyba
$$\left| \frac{e^c}{(n+1)!} 1^{n+1} \right| \le \frac{3}{(n+1)!} \le 10^{-3} \text{ pro } n \ge 6$$

 $T_6(1) = 2,718 \, 0\overline{5}$, chyba 0,000 226..., odhad 0,000 595...

Průběh funkce

Monotonie a extrémy

Věta (o monotonii). Je-li funkce f spojitá na intervalu I a má-li v každém vnitřním bodě I derivaci, pak:

- 1) Je-li f'(x) > 0 uvnitř I, pak f je rostoucí na I.
- 2) Je-li f'(x) < 0 uvnitř I, pak f je klesající na I.
- 3) Je-li $f'(x) \ge 0$ uvnitř I, pak f je neklesající na I.
- 4) Je-li $f'(x) \leq 0$ uvnitř I, pak f je nerostoucí na I.

Důkaz: $x, y \in I, x < y$

Lagrange: $f(x) - f(y) = f'(c)(x - y), c \in (x, y)$

- 1) $f(x) f(y) < 0 \dots f(x) < f(y) \dots \text{ rostoucí}$
- 2)-4) podobně

Poznámky.

- 1) Je-li f'=0 na intervalu, pak f je konstantní.
- 2) Je-li f' = g' na intervalu, pak f, g se liší o konstantu.

Příklad.
$$f(x) = x^3 - 3x + 1$$

 $f'(x) = 3x^2 - 3 = 3(x - 1)(x + 1)$
 $f' > 0$ na $(-\infty, -1) \cup (1, +\infty) \dots f$ rostoucí na $(-\infty, -1)$, $\langle 1, +\infty \rangle$
 $f' < 0$ na $(-1, 1) \dots f$ klesající na $\langle -1, 1 \rangle$

Příklad.
$$f(x) = x^3$$

 $f'(x) = 3x^2$
 $f' > 0$ na $(-\infty, 0), (0, +\infty)$
... f rostoucí na $(-\infty, 0), (0, +\infty)$... rostoucí na \mathbb{R}

Tvrzení. Je-li f'(a) > 0, pak existuje okolí U bodu a tak, že pro $x, y \in U$, x < a < y, je f(x) < f(a) < f(y) (f je rostoucí v bodě a).

$$0 < f'(a) = \begin{cases} \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}, & f(x) < f(a) \text{ vlevo} \\ \lim_{y \to a^{+}} \frac{f(y) - f(a)}{y - a}, & f(y) > f(a) \text{ vpravo} \end{cases}$$

Poznámky.

- 1) $f'(a) < 0 \dots f$ je klesající v bodě a.
- 2) Pro f'(a) = 0 se nic netvrdí.

Definice. Funkce f má v bodě a lokální minimum (lokální maximum), jestliže $f(x) \ge f(a)$ ($f(x) \le f(a)$) na některém prstencovém okolí bodu a.

Poznámky.

- 1) Lokální extrém: lok. minimum nebo lok. maximum.
- 2) Ostrý lokální extrém: ostrá nerovnost.

Věta. Má-li funkce f v bodě a lokální extrém, pak buď f'(a)neexistuje nebo f'(a) = 0 (a je stacionární bod f).

Důkaz: $f'(a) > 0 \dots f$ rostoucí v $a \dots$ není lokální extrém $f'(a) < 0 \dots f$ klesající v $a \dots$ není lokální extrém

Příklad.
$$f(x) = x^3 - 3x + 1$$
 (viz dříve) $f'(x) = 3x^2 - 3$, existuje všude, nulová v ± 1 $f(-1) = 3 \dots$ ostré lokální maximum $f(1) = -1 \dots$ ostré lokální minimum

Příklad.
$$f(x) = |x|$$

 $f'(x) = \text{sign } x \text{ pro } x \neq 0, f'(0) \text{ neexistuje}$
 $f(0) = 0$ ostré lokální minimum

Příklad. $f(x) = x^3$ $f'(x) = 3x^2$ existuje všude, nulová v 0 f(0) = 0 není lokální extrém

Věta. Nechť f'(a) = 0.

- 1) Je-li f''(a) > 0, pak f má v a ostré lokální minimum.
- 2) Je-li f''(a) < 0, pak f má v a ostré lokální maximum.

Důkaz: 1) $f''(a) > 0 \dots f'$ rostoucí v $a \dots f'(x) < f'(a) =$ y = 0 < f'(y) pro x < a < y v některém okolí ... f klesající vlevo, rostoucí vpravo \dots v a ostré lok. minimum 2) podobně nebo přechodem k-f

Příklad.
$$f(x) = x^3 - 3x + 1$$
 (viz dříve) $f'(x) = 3x^2 - 3$, $x_{1,2} = \pm 1$, $f''(x) = 6x$ $f''(-1) = -6 < 0$... ostré lokální maximum $f''(1) = 6 > 0$... ostré lokální minimum

Příklad.
$$f(x) = x^3$$

 $f'(x) = 3x^2$, $x_{1,2} = 0$, $f''(x) = 6x$
 $f''(0) = 0$... kritérium nerozhodne, není l. e.

Příklad.
$$f(x) = x^4$$
 $f'(x) = 4x^3$, $x_{1,2,3} = 0$, $f(0) = 0$ ostré lok. minimum $f''(x) = 12x^2$, $f''(0) = 0$... kritérium nerozhodne, je l. e. $f^{(3)}(x) = 24x$, $f^{(3)}(0) = 0$ $f^{(4)}(x) = 24$, $f^{(4)}(0) = 24 > 0$

Poznámka. Pro
$$f'(a)=\cdots=f^{(2n-1)}(a)=0$$
: 1) $f^{(2n)}(a)>0\ldots$ ostré lokální minimum,

2) $f^{(2n)}(a) < 0$... ostré lokální maximum.

Věta. Spojitá funkce na uzavřeném intervalu nabývá maxima (minima) buď v bodě, ve kterém má lokální maximum (minimum), nebo v některém krajním bodě intervalu.

Důkaz: Extrém ve vnitřním bodě je lokální.

Poznámka. Porovnáváme hodnoty v bodech, kde derivace není nebo je nulová, v krajních bodech intervalu, které do něj patří. Ověříme limity v nepatřících krajních bodech.

Příklad.
$$f(x) = x^2 + 2x$$
 na $\langle -2, +\infty \rangle$. $f'(x) = 2x + 2$, nemá derivaci: \emptyset , stacionární body: -1 , $f(-1) = -1$, patřící krajní body: -2 , $f(-2) = 0$, nepatřící krajní body: $+\infty$, $\lim_{x \to +\infty} f(x) = +\infty$, $\min f = f(-1) = -1$, $\max f$ neexistuje.

Konvexita, konkavita, inflexní body

Konvexita: 1) spojnice grafu nad grafem, 2) tečna pod grafem, 3) směrnice sečen rostou.

Definice. Funkce f je konvexn' na intervalu I, jestliže pro každé $x, y, z \in I$, x < y < z, platí

$$\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(y)}{z-y}$$
 (konkávní pro \geq , ryze konv. pro $<$, ryze konk. pro $>$).

Věta. Je-li f spojitá na intervalu I a má-li v každém vnitřním bodě I druhou derivaci, pak:

- 1) Je-li f''(x) > 0 uvnitř I, pak f je konvexní na I.
- 2) Je-li $f''(x) \leq 0$ uvnitř I, pak f je konkávní na I. (Ryze pro ostré nerovnosti.)

Důkaz: 1) x < y < z: f' je neklesající, Lagrange . . . existují $c \in (x, y), d \in (y, z)$:

$$\frac{f(y) - f(x)}{y - x} = f'(c) \le f'(d) = \frac{f(z) - f(y)}{z - y}$$

Příklad. $f(x) = x^3 - 3x + 1$ $f'(x) = 3x^2 - 3$, f''(x) = 6x, ryze konkávní: $(-\infty, 0)$, ryze konvexní: $(0, +\infty)$

Definice. Bod [a, f(a)] je inflexním bodem grafu funkce f(funkce f má v bodě a inflexi), pokud je funkce f spojitá v bodě a, existuje f'(a) a funkce f je na některém jednostranném okolí a ryze konvexní a na některém jednostranném okolí a ryze konkávní.

Věta.

- 1) Má-li f v a inflexi, pak f''(a) neexistuje nebo f''(a) = 0.
- 2) Je-li f''(a) = 0, $f'''(a) \neq 0$, pak f má v a inflexi.

Poznámka. $f''(a) = \cdots = f^{(2n)}(a) = 0, f^{(2n+1)}(a) \neq 0$ \dots inflexe v a.

Příklad.
$$f(x) = x^3 - 3x + 1$$

 $f'(x) = 3x^2 - 3$, $f''(x) = 6x$, $x_1 = 0$
 $f'''(x) = 6$, $f'''(0) \neq 0$... v 0 je inflexe

Asymptoty

$$f(x) \sim px + q$$

Definice. Má-li funkce f v bodě $a \in \mathbb{R}$ alespoň jednu jednostrannou limitu nevlastní, nazýváme přímku o rovnici x = a asymptotou grafu funkce f v bodě a. Asymptota grafu funkce f v bodě $a \in \{\pm \infty\}$ je přímka o rovnici y = px + qtaková, že:

$$\lim_{x \to a} (f(x) - px - q) = 0.$$

Příklad.
$$f(x) = \frac{1}{x-1} + \frac{1}{2}x$$
, $D(f) = \mathbb{R} \setminus \{1\}$ $\lim_{x \to 1\pm} f(x) = \pm \infty \dots x = 1$ je asymptota v 1 $\lim_{x \to \pm \infty} \left(f(x) - \frac{1}{2}x \right) = 0 \dots y = \frac{1}{2}x$ je asymptota v $\pm \infty$

Věta. Graf funkce f má v $a \in \{\pm \infty\}$ asymptotu o rovnici $y = px + q \ pr\'{a}v\check{e} \ tehdy, \ kdy\check{z}$

$$p = \lim_{x \to a} \frac{f(x)}{x}$$
, $q = \lim_{x \to a} (f(x) - px)$.

Důkaz:

 $\lim_{x\to a} (f(x) - px - q) = 0 \dots q = \lim_{x\to a} (f(x) - px)$ vydělením x:

$$\lim_{x \to a} \left(\frac{f(x)}{x} - p - \frac{q}{x} \right) = 0 \dots p = \lim_{x \to a} \frac{f(x)}{x}$$

Příklady.

1) $f(x) = x \sin x$

 $\lim_{x\to\infty} f(x)/x = \lim_{x\to\infty} \sin x$ neex. ... as. $v + \infty$ neex. $2) f(x) = x^2$

 $\lim_{x\to\infty} f(x)/x = \lim_{x\to\infty} x = +\infty$... as. $v + \infty$ neex. $3) f(x) = \ln x$

 $\lim_{x \to \infty} (\ln x)/x = \lim_{x \to \infty} \frac{1}{x} = 0$ (l'H) $\lim_{x\to\infty} (\ln x - 0 \cdot x) = +\infty$... as. $v + \infty$ neex. **Příklad.** $f(x) = x + |x| + 1 + \frac{1}{x-1}, D(f) = \mathbb{R} \setminus \{1\}$ $\lim_{x\to 1^+} f(x) = \pm \infty$... asymptota x=1 $\lim_{x\to +\infty} \frac{f(x)}{x} = 2$, $\lim_{x\to +\infty} (f(x) - 2x) = 1$... asymptota y = 2x + 1 v $+\infty$ $\lim_{x \to -\infty} \frac{f(x)}{x} = 0, \lim_{x \to -\infty} f(x) = 1$... asymptota $y = 1 \text{ v} - \infty$

Poznámky.

- 1) Je-li $\lim_{x\to a} f(x) = b \in \mathbb{R}$ pro $a \in \{\pm \infty\}$, pak asymptota v a má rovnici y = b.
- 2) Existují-li asymptota v $a \in \{\pm \infty\}$ o rovnic
iy = px + qa $\lim_{x\to a} f'(x)$, pak $p = \lim_{x\to a} f'(x)$.

Příklad.
$$f(x) = \frac{1}{x} \sin x^2$$
 $\lim_{x \to \pm \infty} f(x) = 0 \dots$ asymptota $y = 0$ v $\pm \infty$ $\lim_{x \to \pm \infty} f'(x) = \lim_{x \to \pm \infty} \left(-\frac{1}{x^2} \sin x^2 + 2 \cos x^2 \right) \dots$ neex.

Shrnutí vyšetřování průběhu funkce

f: definiční obor, sudost, lichost, perioda, spojitost, limity v hraničních bodech D(f), v bodech nespojitosti, asymptoty. f': monotonie, (lokální) extrémy, obor hodnot, tečny grafu v hraničních bodech D(f), D(f'), v bodech inflexe. f'': konvexita/konkavita, inflexní body.

Příklad.
$$f(x) = x^3 - 3x^2 + 3|x|$$

Příklad.
$$f(x) = \frac{x^2}{(x+1)^2}$$

Asymptotické chování funkcí

Definice. Nechť funkce g je definována na prstencovém okolí $a \in \overline{\mathbb{R}}$.

- 1) Funkce f je třídy O(g) $(f \in O(g), f = O(g))$ pro $x \to a$, pokud existuje číslo M a prstencové okolí P bodu a tak, že $|f(x)| \le M |g(x)|$ pro každé $x \in P$.
- 2) Funkce f je třídy $\Theta(g)$ $(f \in \Theta(g), f = \Theta(g))$ pro $x \to a$, pokud existují kladná čísla m, M a prstencové okolí P bodu a tak, že $m|g(x)| \leq |f(x)| \leq M|g(x)|$ pro každé $x \in P$.

Poznámka. Podobně pro jednostranné limity, posloupnosti.

Poznámka. $f \in \Theta(g)$ právě tehdy, když platí $f \in O(g)$ a $g \in O(f)$, tj. právě tehdy, když $g \in \Theta(f)$.

- **Věta.** Nechť $a \in \overline{\mathbb{R}}$. 1) Je- $li \lim_{x \to a} \frac{f(x)}{g(x)} \in \mathbb{R}$, $pak \ f \in O(g)$ pro $x \to a$.
- 2) Je- $li \lim_{x\to a} \frac{f(x)}{g(x)} \in \mathbb{R} \setminus \{0\}, \ pak \ f \in \Theta(g) \ pro \ x \to a.$

Důkaz: 1) Vlastní limita . . . omezenos
tMna prstencovém okolí P bodu a, tj. $\left|\frac{f(x)}{g(x)}\right| \leq M$ na P.

2) Limita abs. hodnoty b ... existuje m \in (0,b), M \in $\in (b,+\infty)$ a prstencové okolí Pbodu atak, že $m \leq \left|\frac{f(x)}{g(x)}\right| \leq$ $\leq M$ na P.

Příklad.
$$f(x) = 2x^3 - 3x^2 + 5x$$

$$\lim_{x \to +\infty} \frac{f(x)}{x^3} = 2 \in \mathbb{R} \setminus \{0\}, \ f \in \Theta(x^3) \text{ pro } x \to +\infty$$

$$\lim_{x \to 0} \frac{f(x)}{x} = 5 \in \mathbb{R} \setminus \{0\}, \ f \in \Theta(x) \text{ pro } x \to 0$$

Poznámky.

1) Stačí příslušná "omezenost" |f/g|na prstencovém okolí a $(\limsup_{x\to a} \left| \frac{f(x)}{g(x)} \right| < \infty$, pro Θ navíc $\liminf_{x\to a} \left| \frac{f(x)}{g(x)} \right| > 0$).

2) Existují různé definice Θ (jen pro kladné/nezáporné funkce, bez absolutních hodnot), shodují se pro kladné.

3) $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$: $f \sim g$ (asymptoticky ekvivalentní, speciální případ $f \in \Theta(g)$).

4) $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$: $f \in o(g) \ (o(g) \subset O(g))$.

5) Pokud označíme $f \in o(g)$ pro $n \to \infty$ jak
o $f \prec g$: $\ln n \prec n^a \, (a > 0) \prec a^n \, (a > 1) \prec n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n} \prec n^n.$

6) Obvykle $x \to 0(+)$ (např. chyba aproximace Taylorovým polynomem), $x \to +\infty$ (např. konvergence integrálu), $n \to \infty$ (např. konvergence řad, složitost algoritmů).

Věta. Uvažujme $x \to a$ pro $a \in \mathbb{R}$, g, g_1, g_2 funkce na prstencovém okolí a.

1) Třída O(g) je uzavřena na součet a násobek.

2) $Je-li \ f_1 \in O(g_1) \ a \ f_2 \in O(g_2), \ pak \ f_1f_2 \in O(g_1g_2).$

Důkaz:

1) $f_1, f_2 \in O(g), c_1, c_2 \in \mathbb{R}$; pro $i \in \{1, 2\}$ existuje číslo M_i a prstencové okolí P_i bodu a tak, že $|f_i(x)| \leq M_i |g(x)|$ na P_i ; $|c_1 f_1(x) + c_2 f_2(x)| \le |c_1| |f_1(x)| + |c_2| |f_2(x)| \le$ $\leq (|c_1|M_1 + |c_2|M_2)|g(x)| \text{ na } P_1 \cap P_2.$

2) Pro $i \in \{1,2\}$ existuje číslo M_i a prstencové okolí P_i bodu a tak, že $|f_i(x)| \leq M_i |g_i(x)|$ na P_i ; $|f_1(x)| \leq M_i |g_i(x)|$ $\leq M_1 M_2 |g_1(x) g_2(x)|$ na $P_1 \cap P_2$.

Poznámka. Speciálně pro $f \in O(g)$, h, platí $fh \in O(gh)$.

Příklad.

$$\lim_{x \to 0} \frac{1}{x^2} \left(1 - \cos x \right) = \lim_{x \to 0} \frac{1}{x^2} \left(1 - \left(1 - \frac{1}{2} x^2 + O(x^3) \right) \right) = \lim_{x \to 0} \frac{1}{x^2} \left(\frac{1}{2} x^2 + O(x^3) \right) = \lim_{x \to 0} \left(\frac{1}{2} + O(x) \right) = \frac{1}{2}.$$

Neurčitý integrál

 ${\bf Definice.}\,$ Funkce Fse nazývá primitivní funkce k funkcif na intervalu I, jestliže F' = f na I.

Poznámky.

1) V krajních bodech jednostranné derivace.

2) Lze zobecnit: na sjednocení intervalů; F' = f až na konečnou (či jinou) množinu.

3) Ne všechny funkce mají primitivní.

Tvrzení (vlastnost mezihodnoty pro derivaci). Nechť f je derivací F na intervalu I, $a, b \in I$, f(a) < d < f(b). Pak existuje c mezi a, b takové, že f(c) = d.

Důkaz: G(x) = F(x) - dx má vlastní derivaci . . . je spojitá ... nabývá minima v c ... $G'_{(\pm)}(a) < 0 < G'_{(\pm)}(b)$, tj. cmezi $a, b \dots G'(c) = 0 \dots f(c) = d$.

Příklad. sign x není derivací žádné funkce.

Věta. Spojitá funkce na intervalu má primitivní funkci.

Poznámka. Primitivní funkce k e^{-x^2} existuje, ale nelze ji vyjádřit pomocí elementárních funkcí.

Poznámka. Primitivní funkce je spojitá, derivace být nemusí, tj. i nespojitá může mít primitivní.

Věta.

1) Je-li F primitivní funkce k f na I, $c \in \mathbb{R}$, pak F + c je primitivni funkce k f na I.

2) Jsou-li F_1, F_2 primitivní funkce k f na I, pak $F_1 - F_2$ je konstantní na I.

Důkaz:

1)
$$(F+c)'=F'+0=F'=f$$

2) $(F_1-F_2)'=F_1'-F_2'=f-f=0\ldots F_1-F_2$ konst. na I

Příklad. Na disjunktních intervalech mohou být konstanty různé, např. pro $f(x) = \operatorname{sign} x, x \neq 0$:

$$F(x) = \left\{ \begin{array}{ll} -x + c_1 \,, & x < 0 \,, \\ x + c_2 \,, & x > 0 \,. \end{array} \right.$$

Definice. Množinu všech primitivních funkcí k funkci f na intervalu I nazýváme neurčitým integrálem f na I (pokud je neprázdná).

$$\int f = \int f(x) \, dx = \{F + c : c \in \mathbb{R}\} = F + c.$$

Tabulkové integrály:

$$\int x^a \, dx = \frac{x^{a+1}}{a+1} + c, \qquad \text{intervaly } D(x^a) \ (a \neq -1)$$

$$\int \frac{dx}{x} = \ln|x| + c, \qquad x \in (-\infty, 0), \ x \in (0, +\infty)$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax} + c, \qquad x \in \mathbb{R} \ (a \neq 0)$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + c, \qquad x \in \mathbb{R} \ (a \neq 0)$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + c, \qquad x \in \mathbb{R} \ (a \neq 0)$$

$$\int \frac{dx}{x^2 + 1} = \operatorname{arctg} x + c, \qquad x \in \mathbb{R}$$

Příklady.

1) $\int x^6 dx = \frac{1}{7}x^7 + c, x \in \mathbb{R}$.

2) $\int \frac{\mathrm{d}x}{x^3} = \frac{-1}{2x^2} + c, \ x \in (-\infty, 0), \ x \in (0, +\infty).$

3) $\int \sqrt[4]{x} \, dx = \frac{4}{5} x \sqrt[4]{x} + c, \ x \in (0, +\infty).$ 4) $\int \sqrt[5]{x} \, dx = \frac{5}{6} x \sqrt[5]{x} + c, \ x \in \mathbb{R}.$

Věta (linearita). Jsou-li F_1, \ldots, F_n primitivní funkce k f_1, \ldots, f_n na $I, c_1, \ldots, c_n \in \mathbb{R}$, pak $c_1F_1 + \cdots + c_nF_n$ je primitivní funkce k $c_1f_1 + \cdots + c_nf_n$ na I.

$$(c_1F_1 + \dots + c_nF_n)' = c_1F_1' + \dots + c_nF_n' = c_1f_1 + \dots + c_nf_n$$

$$\int \frac{(x+3)^2}{x} = \frac{1}{2} x^2 + 6x + 9 \ln|x| + c, x \in (-\infty, 0), x \in (0, +\infty)$$

Věta (integrace per partes). Nechť na intervalu I existují $u', v', \int u'v$. Pak

$$\int uv' = uv - \int u'v \ na \ I.$$

Důkaz: $(uv - \int u'v)' = u'v + uv' - u'v = uv'$.

Příklad.
$$\int (x+1)\sin x \, dx = \begin{vmatrix} u = x+1 & v' = \sin x \\ u' = 1 & v = -\cos x \end{vmatrix} =$$
$$= -(x+1)\cos x - \int -\cos x \, dx = -(x+1)\cos x + \sin x + c,$$
$$x \in \mathbb{R}$$

Příklad.
$$\int x^2 e^{2x} dx = (\frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4})e^{2x} + c, x \in \mathbb{R}$$

Poznámka. Podobně $P(x) e^{ax}$, $P(x) \sin ax$, $P(x) \cos ax$ $(P \text{ polynom}, a \neq 0).$

Příklad.
$$I = \int e^x \sin x \, dx = \begin{vmatrix} u = e^x & v' = \sin x \\ u' = e^x & v = -\cos x \end{vmatrix} =$$

$$= -e^x \cos x + \int e^x \cos x \, dx = \begin{vmatrix} u = e^x & v' = \cos x \\ u' = e^x & v = \sin x \end{vmatrix} =$$

$$= -e^x \cos x + e^x \sin x - I$$

$$I = \frac{1}{2} e^x (\sin x - \cos x) + c, x \in \mathbb{R}$$

Poznámka. Podobně $e^{ax} \sin bx$, $e^{ax} \cos bx$ $(a, b \neq 0)$.

Příklad.
$$I = \int \frac{1}{x} \ln x \, dx = \begin{vmatrix} u = \ln x & v' = 1/x \\ u' = 1/x & v = \ln x \end{vmatrix} = \ln^2 x - I, \ I = \frac{1}{2} \ln^2 x + c, \ x \in (0, +\infty)$$

Příklad.
$$\int \ln x \, dx = \int \ln x \cdot 1 \, dx = \begin{vmatrix} u = \ln x & v' = 1 \\ u' = 1/x & v = x \end{vmatrix} = x \ln x - \int 1 \, dx = x (\ln x - 1) + c, \ x \in (0, \infty)$$

Příklad. $a \neq -1, b \neq 0$:

$$\int x^{a} \ln bx \, dx = \begin{vmatrix} u = \ln bx & v' = x^{a} \\ u' = 1/x & v = x^{a+1}/(a+1) \end{vmatrix} = \frac{x^{a+1}}{a+1} \ln bx - \int \frac{x^{a}}{a+1} \, dx = \frac{x^{a+1}}{a+1} \left(\ln bx - \frac{1}{a+1} \right) + c, \\ x \in (0, +\infty) \text{ pro } b > 0, \ x \in (-\infty, 0) \text{ pro } b < 0$$

Věta (substituce). Nechť $(\alpha, \beta) \xrightarrow{\varphi} (a, b) \xrightarrow{f} \mathbb{R}$, φ' existuje $na(\alpha, \beta), F(x)$ je primitivní funkce k f(x) na(a, b).

$$\int f(\varphi(t)) \varphi'(t) dt = F(\varphi(t)) + c \ na \ (\alpha, \beta).$$

2) Je-li $\varphi: (\alpha, \beta) \xrightarrow{\text{na}} (a, b)$ prostá a G je primitivní funkce $k f(\varphi(t)) \varphi'(t) na(\alpha, \beta), pak$

$$\int f(x) \, dx = G(\varphi_{-1}(x)) + c \, na \, (a, b).$$

Důkaz: 1) $\frac{d}{dt}F(\varphi(t)) = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t)$. 2) G(t) i $F(\varphi(t))$ jsou primitivní k $f(\varphi(t)) \cdot \varphi'(t) \dots G(t) =$ $= F(\varphi(t)) + c_0$; existuje $\varphi_{-1}(x) \dots G(\varphi_{-1}(x)) = F(x) + c_0$ je primitivní k f.

Používáme (v obou směrech)

$$\int f(x) dx = \begin{vmatrix} x = \varphi(t) \\ dx = \varphi'(t) dt \end{vmatrix} = \int f(\varphi(t)) \varphi'(t) dt.$$

1)
$$\int x e^{-x^2} dx = \begin{vmatrix} -x^2 = t \\ x dx = -\frac{1}{2} dt \end{vmatrix} = \dots = -\frac{1}{2} e^t + c, x \in \mathbb{R}$$

2)
$$\int \frac{1}{x} \ln x \, dx = \left| \frac{\ln x = t}{\frac{1}{x} dx = dt} \right| = \frac{1}{2} \ln^2 x + c, \, x \in (0, +\infty)$$

3)
$$\int \frac{1}{x} \ln x \, dx = \begin{vmatrix} x = e^t \\ dx = e^t dt \end{vmatrix} = \frac{1}{2} \ln^2 x + c, \ x \in (0, +\infty)$$

Pfiklady.

1)
$$\int x e^{-x^2} dx = \begin{vmatrix} -x^2 = t \\ x dx = -\frac{1}{2} dt \end{vmatrix} = \dots = -\frac{1}{2} e^t + c, x \in \mathbb{R}$$

2) $\int \frac{1}{x} \ln x dx = \begin{vmatrix} \ln x = t \\ \frac{1}{x} dx = dt \end{vmatrix} = \frac{1}{2} \ln^2 x + c, x \in (0, +\infty)$

3) $\int \frac{1}{x} \ln x dx = \begin{vmatrix} x = e^t \\ dx = e^t dt \end{vmatrix} = \frac{1}{2} \ln^2 x + c, x \in (0, +\infty)$

4) $\int \frac{dx}{\sqrt{1-x^2}} = \begin{vmatrix} x = \sin t \\ dx = \cos t dt \end{vmatrix} = \int dt = t + c = \arcsin x + c, x \in (-1, 1), t \in (-\frac{\pi}{2}, \frac{\pi}{2})$

Poznámky.

1)
$$\int f(ax+b) dx = \begin{vmatrix} ax+b=t \\ a dx = dt \end{vmatrix} = \frac{1}{a} F(ax+b) + c \ (a \neq 0).$$
2)
$$\int \frac{f'(x)}{f(x)} dx = \begin{vmatrix} f(x)=t \\ f'(x) dx = dt \end{vmatrix} = \int \frac{dt}{t} = \ln|f(x)| + c.$$

2)
$$\int \frac{f'(x)}{f(x)} dx = \begin{vmatrix} f(x) = t \\ f'(x) dx = dt \end{vmatrix} = \int \frac{dt}{t} = \ln|f(x)| + c.$$

Příklady.

- 1) $\int (x+1)^4 dx = \frac{1}{5} (x+1)^5 + c, x \in \mathbb{R}$
- $\begin{array}{l} 2) \int \operatorname{tg} x \, \mathrm{d} x = -\int \frac{-\sin x}{\cos x} \, \mathrm{d} x = -\ln|\cos x| + c, \\ x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) + k\pi, \, k \in \mathbb{Z} \\ 3) \int \frac{x-2}{x^2 4x + 5} \, \mathrm{d} x = \frac{1}{2} \int \frac{2x 4}{x^2 4x + 5} \, \mathrm{d} x = \frac{1}{2} \ln(x^2 4x + 5) + c, \\ x \in \mathbb{R} \end{array}$
- $x \in \mathbb{R}$ 4) $\int \operatorname{arctg} x \, dx = \begin{vmatrix} u = \operatorname{arctg} x & v' = 1 \\ u' = 1/(x^2 + 1) & v = x \end{vmatrix} =$ $= x \operatorname{arctg} x - \frac{1}{2} \int \frac{2x}{x^2 + 1} dx = x \operatorname{arctg} x - \frac{1}{2} \ln(x^2 + 1) + c,$

Integrace racionálních funkcí

Rozklad racionální funkce

Definice. Racionální (lomená) funkce je podíl dvou polynomů $\frac{P}{Q},$ kde Q je nenulový. $Ryze\ lomená$ funkce je podíl dvou polynomů $\frac{P}{Q}$, kde st P < st Q (st 0 = -1). Parciální zlomky jsou funkce ve tvaru

$$\frac{A}{(x-a)^n}\,,\;\frac{Ax+B}{(x^2+px+q)^n}\,,\quad A,B,a,p,q\in\mathbb{R},\;n\in\mathbb{N},$$
kde (x^2+px+q) nemá reálný kořen, tj. $p^2-4q<0$.

Poznámka. V \mathbb{C} jen první typ parciálních zlomků.

Věta. Nenulový polynom lze (jednoznačně) napsat ve tvaru

$$a(x-a_1)^{k_1}\cdots(x-a_r)^{k_r}(x^2+p_1x+q_1)^{l_1}\cdots(x^2+p_sx+q_s)^{l_s},$$

 $kde\ r, s \in \mathbb{N} \cup \{0\},\ k_1, \dots, k_r, l_1, \dots, l_s \in \mathbb{N},$ $a, a_1, \ldots, a_r, p_1, \ldots, p_s, q_1, \ldots, q_s \in \mathbb{R},$

 a_1, \ldots, a_r jsou různé reálné kořeny,

 $x^2+p_ix+q_i$ $(i=1,\ldots,s)$ jsou různé a nemají reálné kořeny.

Věta. Racionální funkce se dá (jednoznačně) rozložit na součet polynomu a parciálních zlomků. Jmenovatelé těchto zlomků dělí jmenovatel dané racionální funkce.

Důkaz: (částečný) Dělením polynomů dostaneme součet polynomu a ryze lomené funkce $P_1 + L_1$. Pro jiný zápis $P_2 + L_2$ je $P_1 - P_2 = L_2 - L_1$ polynom i ryze lomená funkce, tj. nulová funkce a tedy $P_2=P_1,\ L_2=L_1.$ Pro nenulovou ryze lomenou funkci P/Q a k-násobný kořen a polynomu Q(k>0) je $Q(x)=(x-a)^kQ_1(x)$ pro některý polynom Q_1 $Q_1(a) \neq 0.$

$$\frac{P(x)}{Q(x)} - \frac{\frac{P(a)}{Q_1(a)}}{(x-a)^k} = \frac{P(x) - \frac{P(a)}{Q_1(a)} Q_1(x)}{(x-a)^k Q_1(x)}.$$

Čitatel má za kořen a, je tedy roven $(x-a)\tilde{P}(x)$ (\tilde{P} nulový pro nulový čitatel),

$$\frac{P(x)}{Q(x)} - \frac{\frac{P(a)}{Q_1(a)}}{(x-a)^k} = \frac{\tilde{P}(x)}{(x-a)^{k-1}Q_1(x)}.$$

Snížili jsme stupeň jmenovatele, pokračujeme dokud je akořen jmenovatele a pak pro další kořeny. V C nebo v R bez imaginárních kořenů Q tak dostaneme rozklad.

Postup:

- 1) Dělení (polynom + ryze lomená funkce).
- 2) Rozklad jmenovatele na součin kořenových činitelů a ireducibilních kvadratických polynomů.
- 3) Rozpis na parciální zlomky s "neurčitými koeficienty".
- 4) Určení koeficientů.

Příklad. $\frac{2x^2+x-24}{x^2-2x-8}=2+\frac{5x-8}{(x-4)(x+2)}=2+\frac{A}{x-4}+\frac{B}{x+2}.$ Určení koeficientů: porovnání po přenásobení jmenovatelem:

$$5x - 8 = A(x + 2) + B(x - 4)$$

A) Stejné koeficienty, řešení (regulární) soustavy lin. rovnic:

$$x^{1}$$
: $5 = A + B$ $A = 2$
 x^{0} : $-8 = 2A - 2B$ $B = 3$

B) Dosazení kořenů (lineární rovnice s 1 proměnnou):

$$x = 4:$$
 $12 = 6A$ $A = 2$
 $x = -2:$ $-18 = -6B$ $B = 3$

B') Zakrývací pravidlo:

$$A = \frac{5x - 8}{(x + 2)} \Big|_{x=4} = 2$$
, $B = \frac{5x - 8}{(x - 4)} \Big|_{x=-2} = 3$

Příklad. $\frac{-2x+5}{(x-1)^2(x+2)}=\frac{A}{(x-1)^2}+\frac{B}{x-1}+\frac{C}{x+2}.$ Zakrývacím pravidlem $A=1,\,C=1.$ Porovnáme

$$-2x + 5 = A(x+2) + B(x-1)(x+2) + C(x-1)^{2}$$

A) Jen potřebné rovnice, dosadíme už určené koef., např.

$$x^2: 0 = B + C = B + 1 \qquad B = -1$$

B) Dosadíme do derivace

$$-2 = A + B(x+2) + B(x-1) + C \cdot 2(x-1)$$

vícenásobné kořeny

$$x = 1$$
: $-2 = A + 3B = 1 + 3B$ $B = -1$

C) Odečteme parciální zlomek pro vícenásobný kořen, zakrývací pravidlo pro zjištění koeficientu u nižší mocniny

$$\frac{-2x+5}{(x-1)^2(x+2)} - \frac{1}{(x-1)^2} = \frac{-3x+3}{(x-1)^2(x+2)} = \frac{-3}{(x-1)(x+2)}$$

Integrace parciálních zlomků

1) Mocnina lineárního polynomu ve jmenovateli:

$$\int \frac{\mathrm{d}x}{(x-a)^n} = \left| \begin{array}{c} x-a=t \\ \mathrm{d}x = \mathrm{d}t \end{array} \right| = \int \frac{\mathrm{d}t}{t^n}$$

2) Mocnina kvadratického polynomu ve jmenovateli:

$$\int \frac{Ax+B}{(x^2+px+q)^n} dx = \int \frac{\frac{A}{2}(2x+p) + \left(B - \frac{Ap}{2}\right)}{(x^2+px+q)^n} dx$$

2a) V čitateli derivace kvadratického polynomu:

$$\int \frac{2x+p}{(x^2+px+q)^n} dx = \begin{vmatrix} x^2+px+q=t\\ (2x+p) dx = dt \end{vmatrix} = \int \frac{dt}{t^n}$$

2b) V čitateli konstanta: převedeme na $\int \frac{dt}{(t^2+1)^n} = I_n$. Pro n > 1 upravíme

$$I_n = \int \frac{\mathrm{d}t}{(t^2 + 1)^n} = \int \frac{t^2 + 1 - t^2}{(t^2 + 1)^n} \, \mathrm{d}t = I_{n-1} + \int \frac{-t^2 \, \mathrm{d}t}{(t^2 + 1)^n}$$

$$= \begin{vmatrix} u = t & v' = \frac{-t}{(t^2 + 1)^n} \\ u' = 1 & v = \frac{1}{2(n-1)(t^2 + 1)^{n-1}} \end{vmatrix} =$$

$$= I_{n-1} + \frac{t}{2(n-1)(t^2 + 1)^{n-1}} - \frac{1}{2(n-1)} I_{n-1},$$

dostaneme rekurentní vzorec

$$\begin{split} I_n &= \frac{t}{2(n-1)(t^2+1)^{n-1}} + \frac{2n-3}{2n-2} \, I_{n-1} \,, \quad n \in \mathbb{N} \setminus \{1\} \,, \\ I_1 &= \operatorname{arctg} t + c \,. \end{split}$$

Příklad.
$$\int \frac{5}{x^2 - 2x + 5} dx = 5 \int \frac{dx}{(x - 1)^2 + 4} = \frac{5}{4} \int \frac{dx}{\left(\frac{x - 1}{4}\right)^2 + 1} =$$

= $\left| \frac{x - 1}{2} = t \right| = \frac{5}{2} \int \frac{dt}{t^2 + 1}$.

Příklad.
$$\int \frac{2}{(x^2 - 6x + 10)^2} dx = \int \frac{2}{\left((x - 3)^2 + 1\right)^2} dx =$$

$$= \left| x - 3 = t \right| = 2I_2 = \frac{t}{t^2 + 1} + I_1 = \frac{t}{t^2 + 1} + \arctan t + c =$$

$$= \frac{x - 3}{x^2 - 6x + 10} + \arctan(x - 3) + c, \ x \in \mathbb{R}.$$

Integrace dalších typů funkcí

1)
$$\int R(e^{ax}) dx = \begin{vmatrix} e^{ax} = t \\ x = \frac{1}{a} \ln t \\ dx = \frac{1}{at} dt \end{vmatrix} = \int R(t) \frac{1}{at} dt$$
$$x \in \mathbb{R} \leftrightarrow t \in (0, +\infty) \quad (a \neq 0)$$

Příklad. $\int \frac{e^{4x} + 2e^{2x} + 3}{e^{4x} - 1} dx = \left| e^{2x} = t \right| = \int \frac{t^2 + 2t + 3}{2t(t^2 - 1)} dt,$ $\int \frac{e^{4x} + 2e^{2x} + 3}{e^{4x} - 1} dx = \left| e^x = t \right| = \int \frac{t^4 + 2t^2 + 3}{t(t^4 - 1)} dt.$

2)
$$\int \frac{R(\ln ax)}{x} dx = \left| \frac{\ln ax}{\frac{1}{x}} dx = t \right| = \int R(t) dt \quad (a \neq 0)$$

Příklad. $\int \frac{2}{x(\ln^2 x + 4)} dx = |\ln x = t| = \int \frac{2}{t^2 + 4} dt$.

3)
$$\int R(\sin x, \cos x) \, dx = \begin{vmatrix} \operatorname{tg} \frac{x}{2} = t \\ x = 2 \operatorname{arctg} t \\ dx = \frac{2}{t^2 + 1} \, dt \end{vmatrix}$$
$$x \in (-\pi, \pi) \ (+2k\pi) \leftrightarrow t \in \mathbb{R}$$
$$\sin x = \frac{2 \sin \frac{x}{2} \cos \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{2 \operatorname{tg} \frac{x}{2}}{\operatorname{tg}^2 \frac{x}{2} + 1} = \frac{2t}{t^2 + 1}$$
$$\cos x = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}} = \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{\operatorname{tg}^2 \frac{x}{2} + 1} = \frac{1 - t^2}{t^2 + 1}$$

Někdy nutno spojovat přes sousední intervaly.

Příklad. $\int \frac{2}{5-3\cos x} dx = \int \frac{2 dt}{4t^2+1} = \operatorname{arctg}(2 \operatorname{tg} \frac{x}{2}) + k\pi + c$ pro $x \in (-\pi, \pi) + 2k\pi$ $(k \in \mathbb{Z})$, limity v $\pi + 2k\pi$.

3a) "sudé mocniny" $(R(-\sin x, -\cos x) = R(\sin x, \cos x))$:

$$\int R(\sin^2 x, \cos^2 x, \sin x \cos x) \, dx = \begin{vmatrix} \operatorname{tg} x = t \\ x = \operatorname{arctg} t \\ dx = \frac{1}{t^2 + 1} \, dt \end{vmatrix}$$
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) (+k\pi) \leftrightarrow t \in \mathbb{R}$$
$$\sin^2 x = \frac{\sin^2 x}{\sin^2 x + \cos^2 x} = \frac{\operatorname{tg}^2 x}{\operatorname{tg}^2 x + 1} = \frac{t^2}{t^2 + 1}$$
$$\cos^2 x = \frac{\cos^2 x}{\sin^2 x + \cos^2 x} = \frac{1}{\operatorname{tg}^2 x + 1} = \frac{1}{t^2 + 1}$$
$$\sin x \cos x = \frac{\sin x \cos x}{\sin^2 x + \cos^2 x} = \frac{\operatorname{tg} x}{\operatorname{tg}^2 x + 1} = \frac{t}{t^2 + 1}$$

Příklad. $\int \frac{\mathrm{d}x}{\cos^4 x} = \left| \operatorname{tg} x = t \right| = \int (t^2 + 1) \ \mathrm{d}t.$ Není nutné spojovat. Pro $\int \frac{\mathrm{d}x}{\sin^4 x}$ lépe $\cot x = t$.

3b) "lichá" v sin nebo v cos:

$$\int R(\sin^2 x, \cos x) \sin x \, dx = \begin{vmatrix} \cos x = t \\ -\sin x \, dx = dt \\ \sin^2 x = 1 - t^2 \end{vmatrix}$$

$$\int R(\sin x, \cos^2 x) \cos x \, dx = \begin{vmatrix} \sin x = t \\ \cos x \, dx = dt \\ \cos^2 x = 1 - t^2 \end{vmatrix}$$

Příklad.
$$\int \frac{dx}{\cos^5 x} = \left| \sin x = t \right| = \int \frac{dt}{(1-t^2)^3}$$
.

3c) $\int \sin^n x \cdot \cos^m x \, dx$: pro liché m či n viz 3b); pro sudá m, n přechod k dvojnásobnému argumentu

$$\sin^2 x = \frac{1}{2}(1 - \cos 2x), \qquad \cos^2 x = \frac{1}{2}(1 + \cos 2x).$$

Příklad. $\int \sin^3 x \cdot \cos^4 x \, dx = |\cos x = t| = \int (t^6 - t^4) \, dt.$

Příklad. $\int \sin^4 x \, dx = \int \left(\frac{1}{4} - \frac{1}{2}\cos 2x + \frac{1}{4}\cos^2 2x\right) \, dx = \int \left(\frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x\right) \, dx.$

4)
$$n > 1$$
, $ad - bc \neq 0$:
$$\int R\left(x, \sqrt[n]{\frac{ax+b}{cx+d}}\right) dx = \begin{vmatrix} \sqrt[n]{\frac{ax+b}{cx+d}} = t \\ x = R_{s}(t) \\ dx = R'_{s}(t) dt \end{vmatrix}$$

5) Odmocnina z kvadratická funkce: vytknutím koef. u x^2 , doplněním na čtverec a lineární substitucí upravíme na integrál ve tvaru $\int R(x, \sqrt{\pm x^2 \pm a^2})$, a > 0. Lze použít různé substituce: goniometrické, hyperbolické, Eulerovy.

5a)
$$\int R(x, \sqrt{a^2 - x^2}) dx$$
, $x \in (-a, a)$, například

- $x = a \sin t, t \in (-\frac{\pi}{2}, \frac{\pi}{2}), \sqrt{a^2 x^2} = a \cos t;$
- upravíme $\sqrt{a^2 x^2} = (a + x)\sqrt{(a x)/(a + x)}$ a použijeme substituci pro typ 4 (Eulerova).

Příklad. $\int \sqrt{4-x^2} \, dx = |x = 2\sin t| = \int 4\cos^2 t \, dt = 2\arcsin\frac{x}{2} + \frac{x}{2}\sqrt{4-x^2} + c, x \in \langle -2, 2 \rangle.$

5b)
$$\int R(x, \sqrt{x^2 + a^2}) dx, x \in \mathbb{R}$$
, například

- $x = a \sinh t$, $\sqrt{x^2 + a^2} = a \cosh t$;
- $\sqrt{x^2 + a^2} + x = t$ (Eulerova).

Příklad.

$$\int \frac{dx}{\sqrt{x^2 + 2x + 5}} = \int \frac{dx}{\sqrt{(x+1)^2 + 4}} = |x + 1| = 2\sinh t = \int dt.$$

5c) $\int R(x,\sqrt{x^2-a^2})\;\mathrm{d}x,\,x\in(-\infty,-a),\,x\in(a,+\infty),$ například

- $x = a \cosh t$, $\sqrt{x^2 + a^2} = a |\sinh t|$;
- $\sqrt{x^2 a^2} + x = t$ (Eulerova).

Určitý integrál

Definice. *Dělení intervalu* $\langle a, b \rangle$ je konečná množina $D \subset \langle a, b \rangle$ obsahující a, b.

Značíme
$$D = \{x_0, \dots, x_n\}, a = x_0 < x_1 < \dots < x_n = b.$$

Definice. Pro omezenou funkci f na $\langle a, b \rangle$ a dělení D intervalu $\langle a, b \rangle$ zavádíme dolní a horní integrální součet:

$$\underline{S}(f,D) = \sum_{i=1}^{n} \inf f(\langle x_{i-1}, x_i \rangle) \cdot (x_i - x_{i-1})$$
$$\bar{S}(f,D) = \sum_{i=1}^{n} \sup f(\langle x_{i-1}, x_i \rangle) \cdot (x_i - x_{i-1})$$

Přidáme-li k dělení další bod, dolní součet se nezmenší a horní se nezvětší. Pro libovolná dělení D_1, D_2 dostaneme:

$$\underline{S}(f, D_1) \leq \underline{S}(f, D_1 \cup D_2) \leq \overline{S}(f, D_1 \cup D_2) \leq \overline{S}(f, D_2)$$
.

Každý dolní součet je menší nebo roven každému hornímu součtu, supremum dolních integrálních součtů je menší nebo rovno infimu horních integrálních součtů.

Definice. Je-li pro omezenou funkci f na $\langle a,b \rangle$ supremum dolních integrálních součtů rovno infimu horních integrálních součtů, nazýváme tuto hodnotu určitý (Riemannův) integrál funkce f na $\langle a,b \rangle$. Čísla a,b se nazývají dolní a horní mez integrálu.

Značení: $\int_a^b f$, $\int_a^b f(x) dx$, (R) $-\int_a^b f$, (R) $-\int_a^b f(x) dx$.

Poznámka. Obecnější limita pro $c_i \in \langle x_{i-1}, x_i \rangle$:

$$\lim_{\max_{i}(x_{i}-x_{i-1})\to 0} \sum_{i} f(c_{i}) \cdot (x_{i}-x_{i-1}).$$

Věta. Pro omezenou funkci f na $\langle a, b \rangle$ existuje $\int_a^b f$ právě tehdy, když existuje posloupnost $(D_n)_{n=1}^{\infty}$ dělení $\langle a, b \rangle$ taková, že $\lim_{n \to \infty} \underline{S}(f, D_n) = \lim_{n \to \infty} \bar{S}(f, D_n).$

V takovém případě je integrál roven těmto limitám.

Důkaz: \Rightarrow : existují $(D'_n)_{n=1}^{\infty}$, $(D''_n)_{n=1}^{\infty}$: $\underline{S}(f, D'_n) \xrightarrow{n \to \infty} \int_a^b f$, $\overline{S}(f, D''_n) \xrightarrow{n \to \infty} \int_a^b f$, $\underline{S}(f, D'_n) \leq \underline{S}(f, D'_n \cup D''_n) \leq \overline{S}(f, D''_n)$, $(D'_n \cup D''_n)_{n=1}^{\infty}$ je hledaná posloupnost dělení. \Leftarrow : $\sup_D \underline{S}(f, D) \geq \lim_{n \to \infty} \underline{S}(f, D_n) = \lim_{n \to \infty} \overline{S}(f, D_n) \geq \inf_D \overline{S}(f, D) \geq \sup_D \underline{S}(f, D)$, ... všude rovnosti.

Poznámka. Pro existenci integrálu ve výše uvedené větě stačí $\lim_{n\to\infty} (\bar{S}(f,D_n) - \underline{S}(f,D_n)) = 0$: $0 \le \inf_D \bar{S}(f,D) - \sup_D S(f,D) \le \bar{S}(f,D_n) - S(f,D_n)$.

Příklad.
$$\int_{a}^{b} c \, dx = c(b-a)$$

 $\underline{S}(c, D_n) = \overline{S}(c, D_n) = \sum_{i=1}^{n} c(x_i - x_{i-1}) = c(b-a).$

Příklad.
$$\int_0^2 \operatorname{sign} x \, dx = 2$$
: $D_n = \{0, \frac{1}{n}, 2\}, \, \underline{S}(f, D_n) = 2 - \frac{1}{n} \xrightarrow{n \to \infty} 2, \, \overline{S}(f, D_n) = 2.$

Poznámka. Hodnota integrálu nezávisí na hodnotách funkce v konečně mnoha bodech.

Poznámka. Lebesgueův integrál – dělení v oboru hodnot:

$$\sum_{I} d_{I} \cdot \lambda (f^{-1}(I)), \quad d_{I} \in I.$$

Nezávisí na hodnotách funkce ve spočetně mnoha bodech.

Příklad. d(x)=1 pro $x\in\mathbb{Q}$, jinak 0. $(R)-\int_0^1 d(x) \ \mathrm{d}x$ neex.: $\underline{S}(f,D)=0, \ \bar{S}(f,D)=1$. $(L)-\int_0^1 d(x) \ \mathrm{d}x=(L)-\int_0^1 0 \ \mathrm{d}x=0$, nebo $0\cdot\lambda(\langle 0,1\rangle\setminus\mathbb{Q})+1\cdot\lambda(\langle 0,1\rangle\cap\mathbb{Q})=0$ (Lebesgueova míra spočetných mn. je nulová, tj. $\lambda(\mathbb{Q})=0$).

Věta. Monotonní funkce na uzavřeném intervalu má určitý integrál.

Důkaz: $D_n = \{a, a + \frac{b-a}{n}, \dots, b\}$ (ekvidistantní na n částí), $\bar{S}(f, D_n) - \underline{S}(f, D_n) = \frac{b-a}{n} \cdot |f(b) - f(a)| \xrightarrow{n \to \infty} 0.$

Tvrzení. Z každého pokrytí uzavřeného intervalu otevřenými lze vybrat konečné pokrytí.

Důkaz: Sporem. Střed intervalu je pokryt některým otevřeným intervalem, zůstanou nejvýše 2 nepokryté uzavřené intervaly, alespoň jeden se nedá pokrýt konečně mnoha danými intervaly, ten vezmeme a postup opakujeme. Dostaneme posloupnost $(I_n)_{n=1}^{\infty}$ vnořených uzavřených intervalů, jejichž délky klesají k nule. $\bigcap_{n=1}^{\infty}I_n=\{c\}, c$ je pokryto některým otevřeným intervalem, který ale pokrývá všechny dostatečně krátké I_n – spor.

Tvrzení. Je-li funkce f spojitá na uzavřeném intervalu I, pak pro každé $\varepsilon > 0$ existuje $\delta > 0$ tak, že $|f(y) - f(z)| < \varepsilon$ pro $y, z \in I$ taková, že $|y - z| < \delta$ (stejnoměrná spojitost).

Důkaz: $\varepsilon > 0$; pro $x \in I$ ex. $\delta_x > 0$: $|f(u)-f(x)|<\frac{\varepsilon}{2}$ pro $u\in U(x,\delta_x)\cap I; u\in\{y,z\}$ $|f(y) - f(z)| < \varepsilon \text{ pro } y, z \in U(x, \delta_x) \cap I;$ $\{U(x, \delta_x): x \in I\}$ je pokrytí I, vezmeme konečné; označme δ nejmenší vzdálenost (různých) krajních bodů; pro $y, z \in I$, $0 < z - y < \delta$ je v $\langle y, z \rangle$ nejvýše 1 krajní bod; pokud 0, pak y je pokryto $U(x, \delta_x) \ni z$; pokud 1, pak je pokryt $U(x, \delta_x) \ni y, z$.

Příklad. Funkce $\frac{1}{x}$ není stejnoměrně spojitá na $(0, +\infty)$.

Věta. Spojitá funkce na uzavřeném intervalu má určitý integrál.

Důkaz: f na $\langle a, b \rangle$; pro $\frac{1}{n}$ ex. δ_n : $|f(y)-f(z)|<\frac{1}{n}$ pro $|y-z|<\delta_n,\,y,z\in\langle a,b\rangle;$ ex. D_n s intervaly kratšími než $\delta_n;$ $0 \le \bar{S}(f, D_n) - \underline{S}(f, D_n) < \frac{1}{n} (b - a) \xrightarrow{n \to \infty} 0.$

Věta. Nechť funkce f, g jsou omezené na $\langle a, b \rangle$, $\int_a^b f$, $\int_a^b g$ existují, $c \in \mathbb{R}$. Pak:

- 1) $\int_a^b cf = c \int_a^b f.$
- 2) $\int_{a}^{b} (f+g) = \int_{a}^{b} f + \int_{a}^{b} g$.
- 3) Je-li $f \leq g$ na $\langle a, b \rangle$, pak $\int_a^b f \leq \int_a^b g$.
- 4) $\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$.

Důkaz: 1) c > 0:

$$\sup \underline{S}(cf,D) = \sup c\underline{S}(f,D) = c\sup \underline{S}(f,D) = c\int_a^b f,$$

$$\inf \overline{S}(cf,D) = \inf c\overline{S}(f,D) = c\inf \overline{S}(f,d) = c\int_a^b f;$$

$$c < 0:$$

$$\sup \underline{S}(cf,D) = \sup c\overline{S}(f,D) = c\inf \overline{S}(f,D) = c\int_a^b f,$$

$$\inf \overline{S}(cf,D) = \inf c\underline{S}(f,D) = c\sup \overline{S}(f,d) = c\int_a^b f.$$

2) sup/inf int. součtů f, g jsou limity pro společ. $(D_n)_{n=1}^{\infty}$; $\inf f(I) + \inf g(I) \le (f+g)(I),$

 $\inf f(I) + \inf g(I) \le \inf (f + g)(I),$

 $\underline{S}(f, D_n) + \underline{S}(g, D_n) \leq \underline{S}(f + g, D_n) \leq \overline{S}(f + g, D_n) \leq$ $\leq \bar{S}(f, D_n) + \bar{S}(g, D_n)$ (podobně), limita pro $n \to \infty$.

- 3) $\int_a^b f = \sup S(f, D) \le \sup S(g, D) = \int_a^b g$.
- 4) $f_{+}(x) = \max\{f(x), 0\}, f_{-}(x) = \max\{-f(x), 0\},$ ex. $(D_n)_{n=1}^{\infty}$: $\underline{S}(f,D_n), \overline{S}(f,D_n) \to \int_a^b f$,

ex.
$$(D_n)_{n=1}^{\infty}$$
: $\underline{S}(f, D_n)$, $S(f, D_n) \to \int_a f$,
 $0 \le \overline{S}(f_+, D_n) - \underline{S}(f_+, D_n) \le \overline{S}(f, D_n) - \underline{S}(f, D_n) \xrightarrow{n \to \infty} 0$,
 $\int_a^b f_+ \exp$, $\int_a^b f_- = \int_a^b (f_+ - f) \exp$, $\int_a^b |f| = \int_a^b (f_+ + f_-) \exp$,
 $-|f| \le f \le |f| \dots - \int_a^b |f| \le \int_a^b f \le \int_a^b |f|$

Příklad. $\int_0^1 \left(d(x) - \frac{1}{2}\right) dx$ neexistuje, $\int_0^1 \left|d(x) - \frac{1}{2}\right| dx = \frac{1}{2}$.

Poznámka. Omezené integrovatelné funkce na $\langle a,b \rangle$ tvoří lineární prostor, zobrazení $\int_a^b: f \mapsto \int_a^b f$ je lineární.

Věta. Nechť a < b < c a funkce f je omezená na $\langle a, c \rangle$. $Pak \int_a^c f$ existuje právě tehdy, když existují $\int_a^b f$ a $\int_b^c f$. $V \ takov\acute{e}m \ p\check{r}\acute{i}pad\check{e} \ \int_a^c f = \int_a^b f + \int_b^c f.$

Důkaz: D' dělení $\langle a, b \rangle$, D'' dělení $\langle b, c \rangle$, $D = D' \cup D''$ je dělení $\langle a, c \rangle$ obsahující b, $\underline{S}(f, D') + \underline{S}(f, D'') = \underline{S}(f, D),$ $\bar{S}(f, D') + \bar{S}(f, D'') = \bar{S}(f, D),$ přechodem k supremu a infimu:

$$\sup_{D'} \underline{S}(f, D') + \sup_{D''} \underline{S}(f, D'') = \sup_{D} \underline{S}(f, D),$$

$$\inf_{D'} \overline{S}(f, D') + \inf_{D''} \overline{S}(f, D'') = \inf_{D} \overline{S}(f, D),$$

stejné sčítance pod sebou právě tehdy, když stejné součty.

Definice. Definujeme $\int_a^a f = 0$, $\int_b^a f = -\int_a^b f$ pro a < b.

Poznámka. Rovnost v předešlé větě pro libovolná a, b, c.

Poznámka. Po částech spojité funkce (konečně mnoho bodů nespojitosti s konečnými jednostrannými limitami) i po částech monotonní funkce jsou integrovatelné.

Věta. Nechť funkce f je omezená na $\langle a,b \rangle$, $\int_a^b f$ existuje, $F(x) = \int_a^x f(t) dt \ pro \ x \in \langle a, b \rangle. \ Pak$

- 1) F je spojitá.
- 2) F'(x) = f(x) v bodech spojitosti funkce f.

Důkaz: F je definována (aditivita na definičním oboru) $F(x+h) - F(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt,$ 1) $|f| \leq M$ na $\langle a, b \rangle$, $|F(x+h) - F(x)| = \left| \int_x^{x+h} f(t) \, \mathrm{d}t \right| \le \operatorname{sign} h \int_x^{x+h} |f(t)| \, \mathrm{d}t \le$ $\leq \operatorname{sign} h \int_{x}^{x+h} M \, dt = M \cdot |h| \xrightarrow{h \to 0(\pm)} 0.$ 2) $\left| \frac{1}{h} \left(F(x+h) - F(x) \right) - f(x) \right| =$ $= \left| \frac{1}{h} \int_{x}^{x+h} f(t) dt - \frac{1}{h} \int_{x}^{x+h} f(x) dt \right| =$ $= \left|\frac{1}{h} \int_{x}^{x+h} \left(f(t) - f(x)\right) \, \mathrm{d}t \right| \leq \frac{1}{h} \int_{x}^{x+h} |f(t) - f(x)| \, \mathrm{d}t \leq (f \text{ spoj. v } x \text{: pro } \varepsilon > 0 \text{ je } |f(t) - f(x)| < \varepsilon \text{ na okolí } x)$ $\leq \frac{1}{h} \int_{x}^{x+h} \varepsilon \, \mathrm{d}t = \frac{1}{h} \cdot h\varepsilon = \varepsilon.$

Důsledek. Funkce spojitá na intervalu má na tomto intervalu primitivní funkci.

Důkaz: $a \in I$, $F(x) = \int_a^x f(t) dt$ (případně +F(a)).

 $\mathbf{Poznámka}$. Derivace integrálu podle horní meze (pro fspojitou): $\frac{d}{dx} \int_a^x f(t) dt = f(x)$.

Poznámka. Po částech spojitá f: jednostranné derivace Fjsou rovny příslušným jednostranným limitám f.

Příklad. $f(x) = \sin x$: $F(x) = \int_0^x f(t) \, dt = \left\{ \begin{array}{ll} \int_0^x 1 \, dt = x, & x \ge 0 \\ \int_0^x -1 \, dt = -x, & x \le 0 \end{array} \right\} = |x|,$ $F'_{-}(0) = -1 = f(0-), F'_{+}(0) = 1 = f(0+).$

Věta (Newtonova–Leibnizova formule). Nechť funkce f je omezená na $\langle a,b\rangle$, $\int_a^b f$ existuje a F je primitivní funkce k f na (a,b). Pak

$$\int_{a}^{b} f(x) dx = F(b-) - F(a+) \qquad [F(x)]_{a}^{b}.$$

Důkaz: $|f| \leq M$ na $\langle a, b \rangle$, $a_n = a + \frac{1}{n} \in \langle a, b \rangle$ pro $n \geq n_0$, pro $x \in (a, a_n)$ (Lagrange):

pro
$$x \in (a, a_n)$$
 (Lagrange):

$$|F(x) - F(a_n)| = |f(c_{x,n}) \cdot (x - a_n)| \leq \frac{M}{n},$$

$$F((a, a_n)) \subset \langle F(a_n) - \frac{M}{n}, F(a_n) + \frac{M}{n} \rangle = I_n,$$

$$(I_n)_{n=n_0}^{\infty} \text{ uzavřené vnořené intervaly délek } \frac{2M}{n} \xrightarrow{n \to \infty} 0,$$

$$\bigcap_{n=n_0}^{\infty} I_n = \{F(a+)\}, F(a+) \text{ existuje (podobně } F(b-));$$

$$D = \{x_0, x_1, \dots, x_n\},$$

$$F(b-) - F(a+) = \sum_{i=1}^{n} (F(x_i) - F(x_{i-1})) = (\text{Lagrange})$$

$$= \sum_{i=1}^{n} F'(c_i)(x_i - x_{i-1}) = \sum_{i=1}^{n} f(c_i)(x_i - x_{i-1})$$

$$\underline{S}(f, D) \leq F(b-) - F(a+) \leq \overline{S}(f, D)$$

Příklady.

1)
$$\int_0^1 x \, dx = \left[\frac{1}{2} x^2\right]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}$$
.

1)
$$\int_0^1 x \, dx = \left[\frac{1}{2} x^2\right]_0^1 = \frac{1}{2} - 0 = \frac{1}{2}.$$

2) $\int_0^{\pi} x \sin x \, dx = \begin{vmatrix} u = x & v' = \sin x \\ u' = 1 & v = -\cos x \end{vmatrix} = \begin{bmatrix} -x \cos x \end{bmatrix}_0^{\pi} + \int_0^{\pi} \cos x \, dx = \pi - 0 + \left[\sin x\right]_0^{\pi} = \pi + (0 - 0) = \pi.$

 $\sup_{D} S(f, D) < F(b-) - F(a+) < \inf_{D} \bar{S}(f, D)$

3)
$$\int_0^1 x \sqrt{x^2 + 1} \, dx = \begin{vmatrix} x^2 + 1 = t \\ 2x \, dx = dt \end{vmatrix} = \int_1^2 \frac{1}{2} \sqrt{t} \, dt = \frac{\sqrt{8} - 1}{3}$$
.

4)
$$\int_0^{\pi} \sin x \cdot \cos x \, dx = \begin{vmatrix} \sin x = t \\ \cos x \, dx = dt \end{vmatrix} = \int_0^0 t \, dt = 0.$$

Poznámka. Newtonův int.: (N)– $\int_a^b f = F(b-) - F(a+)$. Existuje-li Riemannův i Newtonův integrál, jsou stejné.

Příklady.

1) $r(x) = \frac{1}{b}$ pro $x = \frac{a}{b}$, $a \in \mathbb{Z}$, $b \in \mathbb{N}$ nesoudělná, jinak 0, (N) $-\int_{-1}^{1} r(x) dx$ neex., (R) $-\int_{-1}^{1} r(x) dx = 0$.

2) (N)– $\int_0^1 \mathrm{e}^{-x^2} \ \mathrm{d}x$ ex., (R)– $\int_0^1 \mathrm{e}^{-x^2} \ \mathrm{d}x$ ex., Fnelze "dobře"

3) (N)- $\int_0^1 x^{-1/2} dx = 2$, (R)- $\int_0^1 x^{-1/2} dx$ neex. 4) (N)- $\int_1^\infty x^{-2} dx = 1$, (R)- $\int_1^\infty x^{-2} dx$ neex.

Nevlastní integrál

I neomezené funkce či intervaly, nevlastní hodnoty.

Definice. Nechť $f:(a,b)\to\mathbb{R}\ (a,b\in\overline{\mathbb{R}})$ není omezená nebo (a,b)není omezený, $\int_c^d f$ existuje pro každý $\langle c,d\rangle\subset\subset(a,b).$ Definujeme $nevlastní\ integrál:$

$$\int_{a}^{b} f(x) \, dx = \lim_{c \to a+} \int_{c}^{e} f(x) \, dx + \lim_{d \to b-} \int_{e}^{d} f(x) \, dx,$$

pokud je výraz vpravo definován pro některé $e \in (a, b)$. Je-li konečný, řekneme, že integrál konverguje.

Poznámka. Výběr e není podstatný, pro e' je: $\lim_{c\to a+} \int_c^{e'} f = \lim_{c\to a+} \int_c^e f + \int_e^{e'} f,$ $\lim_{d\to b-} \int_{e'}^{d} f = \lim_{d\to b-} \int_{e}^{d} f - \int_{e'}^{e'} f.$

Příklady.

- 1) $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2+1} = [\arctan x]_{-\infty}^{+\infty} = \frac{\pi}{2} (-\frac{\pi}{2}) = \pi$, konverguje.
- 2) $\int_{1}^{+\infty} \frac{dx}{x} = [\ln x]_{1}^{\infty} = \infty 0 = \infty$, existuje, nekonverguje.
- 3) $\int_{-\infty}^{+\infty} \frac{x}{x^2+1} dx = \frac{1}{2} \left[\ln(x^2+1) \right]_{-\infty}^{+\infty} = \infty \infty$, neexistuje.
- 4) $\int_0^{+\infty} \sin x \, dx = [-\cos x]_0^{+\infty} = |\text{neex.} \dots| \text{ neex.}$

1)
$$\int_0^{+\infty} x e^{-x} dx = \begin{vmatrix} u = x & v' = e^{-x} \\ u' = 1 & v = -e^{-x} \end{vmatrix} = \dots =$$

$$= \left[e^{-x} (-x - 1) \right]_0^{+\infty} = \lim_{x \to +\infty} \frac{-x - 1}{e^x} - (-1) = 0 + 1 = 1.$$
2) $\int_1^{+\infty} x^{-2} e^{-1/x} dx = \begin{vmatrix} -x^{-1} = t \\ x^{-2} dx = dt \end{vmatrix} = \int_{-1}^0 e^t dt =$

$$= \left[e^t \right]_{-1}^0 = 1 - \frac{1}{e}.$$

3)
$$\int_{1}^{+\infty} \frac{dx}{x^2 + x} = \int_{1}^{+\infty} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx = \left[\ln \frac{x}{x+1}\right]_{1}^{+\infty} = \ln 2,$$

nelze $\int_{1}^{+\infty} \frac{1}{x} dx - \int_{1}^{+\infty} \frac{1}{x+1} dx = \infty - \infty.$

Poznámka. Linearita, monotonie, odhad absolutní hodnoty integrálu integrálem z absolutní hodnoty platí i pokud připustíme nevlastní integrály (pokud existují příslušné násobky či součty pro případné nevlastní hodnoty).

Poznámka. Definice integrálu by šla vylepšit v případě potřeby jako součet integrálů přes vhodné podintervaly. Například $\int_{-1}^{1} x^{-2/3} dx = \int_{-1}^{0} x^{-2/3} dx + \int_{0}^{1} x^{-2/3} dx = 6.$

Poznámka. Alternativní rozšíření o nevlastní integrály: Pro $(a,b) = \bigcup_{n=1}^{\infty} \langle a_n, b_n \rangle$ skoro disjunktní takové, že $\int_{a_n}^{b_n} f$ existují, existují $\int_{a_n}^{b_n} f_{\pm}$ a $I_{\pm} = \sum_{n=1}^{\infty} \int_{a_n}^{b_n} f_{\pm}$. Pokládáme $\int_a^b f = I_+ - I_-$, pokud je rozdíl definován. Pokud tento integrál konverguje, pak i $\int_a^b |f| = I_+ + I_-$ konverguje (absolutní konverence integrálu). Newtonův integrál ani zavedený nevlastní integrál nejsou absolutně konvergentní.

Příklad. $\int_0^{+\infty} \frac{\sin x}{x} dx$ konverguje, $\int_0^{+\infty} \left| \frac{\sin x}{x} \right| dx = +\infty$.

Věta. 1) Jestliže $f \leq g$ na (a,b) $(a,b \in \mathbb{R})$, $\int_a^b f = +\infty$ a g je po částech spojitá, pak $\int_a^b g = +\infty$.

2) Jestliže $|f| \leq g$ na (a,b) $(a,b \in \overline{\mathbb{R}}), \int_a^b g$ konverguje a fje po částech spojitá, pak $\int_a^b f$ konverguje.

$$\int_0^1 x^a \, \mathrm{d}x = \begin{cases} [\ln x]_0^1 = 0 - (-\infty) = \infty \,, & a = -1 \\ \left[\frac{x^{a+1}}{a+1}\right]_0^1 = \begin{cases} \frac{1}{a+1} - \frac{\infty}{a+1} = \infty \,, & a < -1 \\ \frac{1}{a+1} - 0 = \frac{1}{a+1} \,, & a > -1 \end{cases}$$

$$\int_1^\infty x^a \, \mathrm{d}x = \begin{cases} [\ln x]_1^\infty = \infty - 0 = \infty \,, & a = -1 \\ \left[\frac{x^{a+1}}{a+1}\right]_1^\infty = \begin{cases} \infty - \frac{1}{a+1} = \infty \,, & a > -1 \\ 0 - \frac{1}{a+1} = \frac{-1}{a+1} \,, & a < -1 \end{cases}$$

 ${f Tvrzení.}$ Nechť P,Q jsou nenulové polynomy, Q nemá v $\langle a, +\infty \rangle$ kořeny. Pak $\int_a^{+\infty} \frac{P}{Q}$ konverguje právě tehdy, když $\operatorname{st} Q > \operatorname{st} P + 2.$

Důkaz:
$$n=\operatorname{st} P-\operatorname{st} Q\in\mathbb{Z}$$
 $\lim_{x\to\infty}\frac{P(x)}{Q(x)\,x^n}=A\in\mathbb{R}\setminus\{0\},$ např. $A>0$ existuje $b>a,0$ tak, že $\frac{P(x)}{Q(x)\,x^n}\in\left(\frac{1}{2}A,\frac{3}{2}A\right)$ pro $x>b$ $\frac{1}{2}Ax^n<\frac{P(x)}{Q(x)}<\frac{3}{2}Ax^n$ $(\frac{P}{Q}\in\Theta(x^n)$ pro $x\to+\infty)$ $\int_b^\infty\frac{3}{2}Ax^n$ konv. pro $n<-1,$ $\int_b^\infty\frac{1}{2}Ax^n=\infty$ pro $n\geq-1$ $\int_b^\infty\frac{P}{Q}$ a $\int_a^\infty\frac{P}{Q}$ konv. právě pro $n<-1,$ tj. $n\leq-2$

Příklady. $\int_0^\infty \frac{x^2 + 4x + 5}{x^4 + 1} dx$ konv., $\int_0^\infty \frac{x^2 + 4x + 5}{x^3 + 1} dx = +\infty$.

Tvrzení. Nechť P,Q jsou nenulové polynomy, $c \in \langle a,b \rangle$ je jediný kořen polynomu Q v $\langle a,b \rangle$ násobnosti n, není kořen polynomu P. Pak $\int_a^b \frac{P}{Q} \in \{\pm \infty\}$ pro n sudé nebo $c \in \{a,b\}$,

Důkaz: $\frac{P}{Q} \in \Theta\left(\frac{1}{(x-c)^n}\right)$ pro $x \to c$.

Příklady. $\int_{-2}^{0} \frac{x^2 + 4x + 5}{x^3 + 1} dx$ neex., $\int_{-2}^{0} \frac{x^2 + 4x + 5}{(x + 1)^2} dx = +\infty$.

Příklad (Laplaceova transformace). $(0,+\infty) \to \mathbb{R}$ je po částech spojitá a má omezený exponenciální růst, tj. existují konstanty $M, a \in \mathbb{R}$ tak, že $|f(t)| \leq M e^{at} \ (f = O(e^{at}))$. Laplaceovým obrazem funkce f je funkce F daná předpisem

$$F(p) = \int_0^{+\infty} f(t) e^{-pt} dt.$$

Je definována pro p > a (Re p > a v \mathbb{C}):
$$\begin{split} |f(t)\,\mathrm{e}^{-pt}| &\leq M\,\mathrm{e}^{(a-p)t},\\ \int_0^\infty M\,\mathrm{e}^{(a-p)t}\,\,\mathrm{d}t &= \left[\frac{M}{a-p}\,\mathrm{e}^{(a-p)t}\right]_0^\infty = 0 - \frac{M}{a-p} \text{ konverguje}. \end{split}$$

Příklad.
$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt.$$

Konverguje pro x > 0:

 $\begin{aligned} |t^{x-1} e^{-t}| &\leq t^{x-1}, \ \int_0^1 t^{x-1} \ \mathrm{d}t \ \text{konverguje pro} \ x > 0; \\ \text{pro} \ n &\geq x - 1 \ \text{je} \ |t^{x-1} e^{-t}| \ \leq \ t^n e^{-t}, \ \int_1^\infty t^n e^{-t} \ \mathrm{d}t \ = \end{aligned}$ $= (\text{per partes}) = [P_n(t) e^{-t}]_1^{\infty} = 0 - P_n(1) e^{-1} \text{ konverguje.}$ $\Gamma(1) = \int_0^{\infty} e^{-t} dt = [-e^{-t}]_0^{\infty} = 0 - (-1) = 1.$ $\Gamma(x+1) = \int_0^{\infty} t^x e^{-t} dt = \begin{vmatrix} u = t^x & v' = e^{-t} \\ u' = xt^{x-1} & v = -e^{-t} \end{vmatrix} = \frac{1}{2} \int_0^{\infty} t^x e^{-t} dt = \frac{1}{2} \int_0^{\infty} t^x$ $= [-t^x e^{-t}]_0^{\infty} + \int_0^{\infty} x t^{x-1} e^{-t} dt = x \Gamma(x).$ $\Gamma(n) = (n-1)\Gamma(n-1) = \cdots = (n-1)! \Gamma(1) = (n-1)!$

Aplikace určitého integrálu

Definice. Střední hodnota funkce f na intervalu $\langle a, b \rangle$ je

$$\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x,$$

pokud integrál konverguje.

Příklad. Střídavé napětí $u(t) = U_0 \sin \frac{2\pi t}{T}$ má na odporu Rokamžitý výkon $p(t)=\frac{1}{R}\,u^2(t)=\frac{U_0^2}{R}\sin^2\frac{2\pi t}{T}.$ Jeho střední hodnota (například na intervalu (0,T)) je $\frac{U_0^2}{2R}$ což pro stejnosměrný proud odpovídá napětí $U_{\rm e} = \frac{\sqrt{2}}{2} U_0$ (efektivní napětí střídavého proudu).

Věta (o střední hodnotě). Spojitá spojitá funkce na uzavřeném intervalu nabývá své střední hodnoty.

Důkaz: f na $\langle a,b\rangle$ má primitivní F, podle Lagrangeovy věty je $\frac{F(b)-F(a)}{b-a}=F'(c)=f(c)$ pro některé $c\in(a,b)$.

Poznámka. Aritmetický průměr $(f(i))_{i=1}^n$ je střední hodnota f, pokud použijeme Lebesgueův integrál vzhledem k součtu Diracových měr $\mu = \sum_{i=1}^n \delta_i \ (\delta_i(M) = 1 \text{ pro } i \in M,$ jinak 0): $\left(\int_1^n f \ \mathrm{d}\mu\right) / \left(\int_1^n 1 \ \mathrm{d}\mu\right) = \frac{1}{n} \sum_{i=1}^n f(i).$ **Věta.** Nechť funkce $f \leq g$ jsou po částech spojité na (a,b), $a, b \in \mathbb{R}$. Obsah $\{[x, y] : a < x < b, f(x) \le y \le g(x)\}$ je

$$\int_a^b (g(x) - f(x)) \, \mathrm{d}x.$$

Důkaz: $\langle c, d \rangle \subset (a, b)$:

ex. $(D_{f,n})_{n=1}^{\infty}$: $\underline{S}(f, D_{f,n}), \overline{S}(f, D_{f,n}) \xrightarrow{n \to \infty} \int_{c}^{d} f,$

ex. $(D_{g,n})_{n=1}^{\infty}$: $\underline{S}(g, D_{g,n}), \overline{S}(g, D_{g,n}) \xrightarrow{n \to \infty} \int_{c}^{d} g,$ pro $D_n = D_{f,n} \cup D_{g,n}$:

$$\underline{S}(g, D_n) - \overline{S}(f, D_n) \le P \le \overline{S}(g, D_n) - \underline{S}(f, D_n),$$

$$\int_c^d (g - f) \le P \le \int_c^d (g - f);$$

limity $c \to a+, \ d \to b-.$

Příklad. Obsah plochy uvnitř elipsy $(x/a)^2 + (y/b)^2 = 1$ je $4 \int_0^a b \sqrt{1 - (x/a)^2} \, dx = \pi ab.$

Příklad. Obsah plochy mezi grafy $\frac{1}{x}$ a $\frac{1}{x+1}$ na $(1,\infty)$ je

Věta. Nechť funkce f má po částech spojitou derivaci na (a,b). Délka grafu funkce f je

$$\int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

Důkaz: Pro uzavřený interval (pak případně limity): délka = supremum délek po částech lineárních interpolací, $l(D) = \sum_{i=1}^{n} \sqrt{(x_i - x_{i-1})^2 + [f(x_i) - f(x_{i-1})]^2} =$ $= \sum_{i=1}^{n} \sqrt{(x_i - x_{i-1})^2 + [f'(c_i)(x_i - x_{i-1})]^2} =$ $= \sum_{i=1}^{n} \sqrt{1 + [f'(c_i)]^2} (x_i - x_{i-1}), c_i \in (x_{i-1}, x_i),$ $S(\sqrt{1+(f')^2},D) \le l(D) \le \bar{S}(\sqrt{1+(f')^2},D),$ integrál i supremum délek interpolací jako limity

Délka astroidy $(x/r)^{2/3} + (y/r)^{2/3} = 1$ je $4\int_0^r \sqrt{1 + [((r^{2/3} - x^{2/3})^{3/2})']^2} dx = 6r.$

Věta. Nechť funkce f je po částech spojitá na (a,b), $a,b \in$ $\in \mathbb{R}$. Objem $\{[x, y, z]: a < x < b, y^2 + z^2 \le f^2(x)\}\ je$ $\pi \int_{a}^{b} f^{2}(x) dx$.

Důkaz: Pro uzavřený interval (pak případně limity): pro dělení D uvažujeme vepsané/opsané válce:

$$\underline{S}(\pi f^2, D) \le V \le \overline{S}(\pi f^2, D)$$
$$\pi \int_a^b f^2 \le V \le \pi \int_a^b f^2$$

Objem kužele $(f(x) = \frac{r}{v}x \text{ na } (0,v))$ je $\pi \int_0^v r^2 x^2 / v^2 dx = \frac{1}{3} \pi r^2 v.$

Věta. Nechť funkce f má po částech spojitou derivaci na (a,b). Obsah plochy vzniklé rotací grafu f kolem osy x je

$$2\pi \int_a^b f(x) \sqrt{1 + [f'(x)]^2} \, dx$$
.

Důkaz (náznak pro uzavřený interval): supremum pro po částech lineární interpolace f, obsah pláště komolého kužele: $2\pi \frac{r_1+r_2}{2} s$,

$$\sum_{i=1}^{n} 2\pi f(c_i) \sqrt{(x_i - x_{i-1})^2 + [f(x_i) - f(x_{i-1})]^2} = \sum_{i=1}^{n} 2\pi f(c_i) \sqrt{1 + [f'(c_i')]^2} (x_i - x_{i-1}) \sim \sim S(2\pi f \sqrt{1 + (f')^2}, D) \rightarrow 2\pi \int_a^b f \sqrt{1 + (f')^2}$$

Příklad. Obsah sféry $(f(x) = \sqrt{r^2 - x^2} \text{ na } \langle -r, r \rangle)$ je $2\pi \int_{-r}^{r} \sqrt{r^2 - x^2} \cdot \sqrt{1 + \left[\frac{1}{2}(r^2 - x^2)^{-1/2}(-2x)\right]^2} dx = 4\pi r^2.$

Souřadnice těžiště v rovině:

$$x_{\scriptscriptstyle \rm T} = \frac{M_y}{m} \,, \qquad y_{\scriptscriptstyle \rm T} = \frac{M_x}{m} \,. \label{eq:xtilde}$$

Momenty lineárních útvarů (λ je lineární hustota):

$$M_y = \lambda \int_a^b x \sqrt{1 + [f'(x)]^2} dx,$$

 $M_x = \lambda \int_a^b f(x) \sqrt{1 + [f'(x)]^2} dx.$

Příklad. Těžiště čtvrtkružnice $(f(x) = \sqrt{r^2 - x^2} \text{ na } \langle 0, r \rangle)$ má souřadnice $x_{\text{\tiny T}} = y_{\text{\tiny T}} = \frac{2}{\pi} r$.

Momenty plošných útvarů ($f \ge 0$, σ je plošná hustota):

$$M_y = \sigma \int_a^b x f(x) dx$$
, $M_x = \frac{\sigma}{2} \int_a^b f^2(x) dx$.

Příklad. Těžiště plochy pod obloukem kosinusoidy (f(x) = $=\cos x$ na $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$) má souřadnice $x_{\rm T}=0, y_{\rm T}=\frac{\pi}{8}.$

Číselné řady

Definice. (Nekonečná číselná) řada je výraz $\sum_{k=1}^{\infty} a_k =$ $=a_1+a_2+\cdots$, kde $(a_k)_{k=1}^\infty$ je posloupnost čísel. Číslo a_k je k-tý člen, $\sum_{k=1}^{n} a_k = a_1 + \dots + a_n$ je n-tý částečný součet (s_n) , limita posloupnosti částečných součtů je součet. Řekneme, že řada konverguje, má-li konečný součet; diverguje, má-li nekonečný součet; osciluje, nemá-li součet.

Poznámky.

- 1) Obecněji $\sum_{k=n}^{\infty} a_k$ pro $n \in \mathbb{Z}$ (lze přeindexovat \mathbb{N}).
- 2) $\sum_{k=1}^{\infty} a_k \leftrightarrow \left(\sum_{k=1}^{n} a_k\right)_{n=1}^{\infty}$. 3) $\sum_{k=1}^{\infty} a_k \leftrightarrow \int_1^{\infty} f \, d\mu, f(k) = a_k, \mu(M) = \operatorname{card}(M \cap \mathbb{N})$.

Příklady.

- 1) $\sum_{k=1}^{\infty} 1$ diverguje: $s_n = n$, $\lim_{n \to \infty} s_n = +\infty$. 2) $\sum_{k=1}^{\infty} (-1)^{k-1} = 1 1 + 1 1 + \cdots$ osciluje: $s_n = 1$ pro n liché, $s_n = 0$ pro n sudé.
- 3) $\sum_{k=1}^{\infty} 2^{-k} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = \lim_{n \to \infty} (1 2^{-n}) = 1$

Definice. Geometrická řada s kvocientem q je řada $\sum_{k=1}^{\infty} a_1 q^{k-1} = a_1 + a_1 q + a_1 q^2 + \cdots$

Věta. $\sum_{k=1}^{\infty} a_1 q^{k-1} = \frac{a_1}{1-q} \ pro \ |q| < 1, \ pro \ |q| \ge 1 \ a \ a_1 \ne 0$ řada nekonverguje.

$$s_n = a_1(1 + q + \dots + q^{n-1})$$

$$qs_n = a_1(q + \dots + q^{n-1} + q^n)$$

$$(1 - q)s_n = a_1(1 - q^n)$$

$$s_n = \frac{a_1(1 - q^n)}{1 - q}, (q \neq 1)$$

Příklad.
$$\sum_{k=1}^{\infty} \frac{4}{3^n} = \frac{4/3}{1-1/3} = 2 \ (a_1 = \frac{4}{3}, \ q = \frac{1}{3}).$$

Věta. Jestliže $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ mají součet, $c \in \mathbb{R}$, pak 1) $\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$, 2) $\sum_{k=1}^{\infty} ca_k = c \sum_{k=1}^{\infty} a_k$,

pokuď je příslušný výraz vpravo definován.

Důkaz: Použití vět o limitách součtu a součinu pro posloupnosti částečných součtů.

Poznámka. Ve výše uvedené větě postupujeme zprava doleva, obráceně to obecně nejde. Část 1) je speciální případ nekonečné komutativity a asociativity, část 2) je nekonečná distributivita.

Věta (nutná podmínka konvergence). *Jestliže* $\sum_{k=1}^{\infty} a_k$ konverguje, pak $\lim_{k\to\infty} a_k = 0$.

Důkaz:
$$\lim_{k\to\infty} a_k = \lim_{k\to\infty} (s_k - s_{k-1}) = \lim_{k\to\infty} s_k - \lim_{k\to\infty} s_{k-1} = s - s = 0.$$

Věta. Řada s nezápornými členy má součet.

Důkaz: Posloupnost částečných součtů je neklesající, má tedy limitu.

Příklad. $\sum_{k=1}^{\infty}\frac{1}{k^a}=+\infty$ pro $a\leq 0$: nekonverguje (členy nejdou k nule), má součet (členy jsou nezáporné).

Věta (srovnávací kr.). Nechť $0 \le a_k \le b_k$ pro každé $k \in \mathbb{N}$.

- 1) Jestliže $\sum_{k=1}^{\infty} b_k$ konverguje, pak i $\sum_{k=1}^{\infty} a_k$ konverguje. 2) Jestliže $\sum_{k=1}^{\infty} a_k$ diverguje, pak i $\sum_{k=1}^{\infty} b_k$ diverguje.

Důkaz: $\sum_{k=1}^n a_k \leq \sum_{k=1}^n b_k$, limity pro $n \to \infty$ existují (předcházející věta), věta o monotonii pro limity.

Příklady.

1) Harmonická řada:

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots$$

$$\geq 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots = +\infty.$$

- 2) $a \le 1$: $\sum_{k=1}^{\infty} 1/k^a \ge \sum_{k=1}^{\infty} 1/k$, diverguje. 3) konvergence dekadického zápisu:

 $0,a_1a_2\cdots=\sum_{k=1}^\infty a_k\cdot 10^{-k}\leq \sum_{k=1}^\infty 9\cdot 10^{-k},$ geometrická řada s kvocientem $10^{-1}<1$ konverguje.

Definice. Řada $\sum_{k=1}^{\infty} a_k$ konverguje absolutně, pokud konverguje $\sum_{k=1}^{\infty} |a_k|$.

Věta. Absolutně konvergentní řada konverguje.

Důkaz:
$$a_k \in \mathbb{R}$$
: $a^+ = \max\{a, 0\}$, $a^- = \max\{-a, 0\}$
 $a = a^+ - a^-$, $|a| = a^+ + a^-$, $0 \le a^+, a^- \le |a|$
 $\sum_{k=1}^{\infty} |a_k|$ konverguje ...
 $\sum_{k=1}^{\infty} a_k^+$, $\sum_{k=1}^{\infty} a_k^-$ konvergují (srovnávací kritérium) ...
 $\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} (a_k^+ - a_k^-) = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^-$ konv.

Poznámka. Geometrická řada konverguje absolutně (když konverguje).

Poznámka. Pro řadu, která konverguje, ale ne absolutně, je $\sum_{k=1}^{\infty} a_k^+ = \sum_{k=1}^{\infty} a_k^- = +\infty$. Pro každé $c \in \mathbb{R}$ ji pak lze přerovnat tak, abychom dostali součet c.

Pro $c \in \mathbb{R}$ opakujeme:

- 1) bereme nezáp. členy, dokud součet nebude (poprvé) > c
- 2) bereme záporné členy, dokud součet nebude (poprvé) < cPro $c = +\infty$ $(c = -\infty)$ použijeme v *n*-tém kroku n(-n).

Věta (podílové kritérium). *Nechť* $a_k \neq 0$ *pro každé* $k \in \mathbb{N}$.

1) Je-li $\left|\frac{a_{k+1}}{a_k}\right| \leq q < 1$ pro každé $k \in \mathbb{N}$, pak $\sum_{k=1}^{\infty} a_k$ $konverguje \ (absolutn \check{e}).$

2) $Je-li\left|\frac{a_{k+1}}{a_k}\right| \geq 1$ pro každé $k \in \mathbb{N}$, pak $\sum_{k=1}^{\infty} a_k$ nekonv.

1)
$$|a_k| \le |a_{k-1}| q \le \dots \le |a_1| q^{k-1}$$
, $\sum_{k=1}^{\infty} |a_1| q^{k-1}$ konv.
2) $|a_k| \ge |a_{k-1}| \ge \dots \ge |a_1| > 0$, $a_k \ne 0$

2)
$$|a_k| \ge |a_{k-1}| \ge \cdots \ge |a_1| > 0, \ a_k \not\to 0$$

Poznámka. Stačí, aby byly nerovnosti splněny pro dostatečně velká k, tj. počínaje některým k_0 .

Věta (limitní tvar podílového kritéria).

- 1) Je- $li \lim_{k\to\infty} \left| \frac{a_{k+1}}{a_k} \right| < 1$, $pak \sum_{k=1}^{\infty} a_k$ konv. (abs.). 2) Je- $li \lim_{k\to\infty} \left| \frac{a_{k+1}}{a_k} \right| > 1$, $pak \sum_{k=1}^{\infty} a_k$ nekonverguje.

Příklady.

- 1) $\sum_{k=0}^{\infty} \frac{1}{k!}$ konverguje: $\left|\frac{a_{k+1}}{a_k}\right| = \frac{1}{k+1} \to 0$. 2) $\sum_{k=1}^{\infty} \frac{k!}{2^k}$ diverguje: $\left|\frac{a_{k+1}}{a_k}\right| = \frac{k+1}{2} \to +\infty$. 3) $\sum_{k=1}^{\infty} \frac{1}{k}$ kr. nerozhodne: $\left|\frac{a_{k+1}}{a_k}\right| = \frac{k}{k+1} \nearrow 1$ (diverguje nestačí, aby podíly byly menší než 1). 4) $\sum_{k=1}^{\infty} \frac{1}{k^2}$ kr. nerozhodne: $\left|\frac{a_{k+1}}{a_k}\right| = \frac{k^2}{(k+1)^2} \nearrow 1$ (konv.).

Věta (odmocninové kritérium).

- 1) Je-li $\sqrt[k]{|a_k|} \leq q < 1$ pro každé $k \in \mathbb{N}$, pak $\sum_{k=1}^{\infty} a_k$ $konverguje\ (absolutn\check{e}).$
- 2) Je-li $\sqrt[k]{|a_k|} \ge 1$ pro každé $k \in \mathbb{N}$, pak $\sum_{k=1}^{\infty} a_k$ nekonv.

- 1) $|a_k| \le q^k$, $\sum_{k=1}^{\infty} q^k$ konverguje 2) $|a_k| \ge 1$, $a_k \not\to 0$

Věta (limitní tvar odmocninového kritéria).

- 1) Je- $li \lim_{k\to\infty} \sqrt[k]{|a_k|} < 1$, $pak \sum_{k=1}^{\infty} a_k$ konv. (abs.). 2) Je- $li \lim_{k\to\infty} \sqrt[k]{|a_k|} > 1$, $pak \sum_{k=1}^{\infty} a_k$ nekonverguje.

Příklad. $\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^k$ kr. nerozhodne: $\sqrt[k]{|a_k|} = \frac{k}{k+1} \nearrow 1$, $\lim_{k\to\infty} a_k = \lim_{k\to\infty} \left[\left(1 + \frac{1}{k}\right)^k \right]^{-1} = e^{-1} \neq 0$ - nekonv.

Poznámka. V limitních tvarech podílového a odmocninového kritéria stačí $\limsup < 1$ nebo $\liminf > 1$.

Příklad. $a_{2k-1} = 2^{-k}, a_{2k} = 2^{1-k}$: $\sum_{k=1}^{\infty} a_k = \frac{1}{2} + 1 + \frac{1}{4} + \frac{1}{2} + \frac{1}{8} + \frac{1}{4} + \dots = 3,$ $\left| \frac{a_{k+1}}{a_k} \right| \in \{2, \frac{1}{4}\} - \text{podílové kritérium nerozhodne},$ $\sqrt[k]{|a_k|} \to 2^{-1/2} < 1$ – konverguje podle odmocninového kr.

Věta (integrální kritérium). Nechť f je nezáporná nerostoucí funkce na $(1,+\infty)$. Pak $\sum_{k=1}^{\infty} f(k)$ konverguje právě tehdy, když konverguje $\int_{1}^{+\infty} f(x) dx$.

Důkaz:
$$f(k) \ge \int_k^{k+1} f(x) dx \ge f(k+1),$$

 $\sum_{k=1}^{\infty} f(k) \ge \int_1^{+\infty} f(x) dx \ge \sum_{k=1}^{\infty} f(k) - f(1)$

Příklad. $\sum_{k=1}^{\infty} \frac{1}{k^a}$ konv. pro a > 1: $\int_{1}^{+\infty} x^{-a} dx = \frac{1}{a-1}$.

Věta (Leibnizovo kr.). Je- $li\ (a_k)_{k=1}^{\infty}$ nerostoucí posloupnost s nulovou limitou, pak $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ konverguje.

Důkaz: $s_1 \geq s_3 \geq \cdots \searrow s', s_2 \leq s_4 \leq \cdots \nearrow s'' \leq s',$ $s' - s'' = \lim_{k \to \infty} a_k.$

Poznámka. Jiná formulace: Alternující řada (střídají se znaménka) s $|a_k| \searrow 0$ konverguje.

Poznámka. Stačí pro $k \geq k_0$.

Příklad. $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots (= \ln 2)$ konverguje: střídají se znaménka, $|a_k| = \frac{1}{k} \setminus 0$. Ne absolutně: $\sum_{k=1}^{\infty}|a_k|=\sum_{k=1}^{\infty}\frac{1}{k}=+\infty$ (podle integrálního kritéria).

Příklad. $a_{2k-1}=1/k,\,a_{2k}=-1/2^k.$ Střídají se znaménka, $|a_k|\to 0,\,$ ale ne monotónně. $\sum_{k=1}^\infty a_k=+\infty-\frac12=+\infty$ (rozdíl harmonické a geometrické řady).

Definice. Přerovnáním řady $\sum_{k=1}^{\infty} a_k$ nazýváme každou řadu $\sum_{k=1}^{\infty} a_{f(k)}$, kde f je bijekce na \mathbb{N} .

Věta. Jestliže řada konverguje absolutně, pak každé její přerovnání konverguje (absolutně) a má stejný součet.

 Důkaz: 1) $a_k \geq 0$: označme $m_n = \max\{f(1), \ldots, f(n)\}$ $\sum_{k=1}^n a_{f(k)} \leq \sum_{k=1}^{m_n} a_k$, tedy $\sum_{k=1}^\infty a_{f(k)} \leq \sum_{k=1}^\infty a_k$ opačná nerovnost: první řada je přerovnáním druhé pro f_{-1} důsledek: přerovnání abs. konv. řady je abs. konv.

2)
$$a_k \in \mathbb{R}$$
: $\sum_{k=1}^{\infty} a_{f(k)} = \sum_{k=1}^{\infty} a_{f(k)}^+ - \sum_{k=1}^{\infty} a_{f(k)}^- = \sum_{k=1}^{\infty} a_k^+ - \sum_{k=1}^{\infty} a_k^- = \sum_{k=1}^{\infty} a_k$

Věta. Jestliže řada $\sum_{k=1}^{\infty} a_k$ konverguje absolutně, pak $\sum_{k=1}^{\infty} a_{2k-1}$, $\sum_{k=1}^{\infty} a_{2k}$ konvergují (absolutně) a jejich součet je roven součtu původní řady.

Důkaz:
$$\sum_{k=1}^{\infty} |a_{2k-1}|$$
, $\sum_{k=1}^{\infty} |a_{2k}| \le \sum_{k=1}^{\infty} |a_k|$... konv. $\sum_{k=1}^{\infty} a_{2k-1} + \sum_{k=1}^{\infty} a_{2k} = \sum_{k=1}^{\infty} (a_{2k-1} + a_{2k}) = \sum_{k=1}^{\infty} a_k$

Důsledek. Rozdělením absolutně konvergentní řady na konečně mnoho přerovnaných částí se součet nezmění.

Poznámka. Neabsolutně konv. řada má nekonečně součty nezáporných i záporných členů, jejich rozdíl není definován.

Numerická integrace

Chyby: metody, výpočtu.

Metody: na 1 pokus, iterační (posloupnost konv. k řešení). Řád: popisuje rychlost konv. při zlepšování parametru.

$$I = \int_a^b f(x) \, \mathrm{d}x \approx (b-a) \big(w_1 f(x_1) + \dots + w_k f(x_k) \big) \, .$$

Střední hodnotu funkce aproximujeme váženým průměrem hodnot v uzlech $x_i \in \langle a, b \rangle$ s váhami w_i $(w_1 + \cdots + w_k = 1)$. Uzly dle metody, váhy pro největší řád, integrují se přesně polynomy menšího stupně. $M_n = \max_{x \in \langle a, b \rangle} |f^{(n)}(x)|$.

Gaussova metoda

Optimální volba uzlů, řád je dvojnásobek jejich počtu. Řešíme soustavu rovnic pro střední hodnoty mocnin.

Pro k = 1 je $w_1 = 1$, $x_1 = \frac{a+b}{2}$, odhad chyby $M_2(b-a)^3/24$. Pro k = 2 na $\langle -1, 1 \rangle$ je $w_{1,2} = \frac{1}{2}, x_{1,2} = \pm \sqrt{1/3}$ řešením

$$x^0: 1 = w_1 + w_2$$

$$x^1: 0 = w_1 x_1 + w_2 x_2$$

$$x^2: \quad \frac{1}{3} = w_1 x_1^2 + w_2 x_2^2$$

$$x^3: 0 = w_1 x_1^3 + w_2 x_2^3$$

Odhad chyby je $M_4(b-a)^5/4320$.

Newtonovy-Cotesovy metody

Uzly z ekvidistantního dělení $\langle a,b\rangle$, včetně (uzavřená metoda) nebo bez (otevřená metoda) krajních bodů a,b. Řád metody je počet uzlů zaokrouhlený na sudé číslo nahoru.

Poznámka. Někdy nekonvergují (pro rostoucí počet uzlů).

Složené metody

Interval $\langle a,b \rangle$ rozdělíme na n částí délek (b-a)/n=h s krajními body $a=x_0 < x_1 < \cdots < x_n=b$, na každé použijeme vybranou metodu. Zlepšujeme zvětšováním n.

Obdélníková metoda používá otevřenou Newtonovu–Cotesovu metodu pro jeden uzel (uprostřed, váha je 1):

$$R(h) = h\left[f\left(\frac{x_0 + x_1}{2}\right) + \dots + f\left(\frac{x_{n-1} + x_n}{2}\right)\right].$$

Věta. $M\acute{a}$ - $li\ f\ na\ \langle a,b\rangle\ spojitou\ druhou\ derivaci,\ pak$

$$|I - R(h)| \le \frac{M_2}{24} (b - a)h^2$$
, $M_2 = \max_{x \in \langle a, b \rangle} |f''(x)|$.

Důkaz: $\langle x_0, x_1 \rangle$, $s_1 = (x_0 + x_1)/2$. Taylorova věta:

$$f(x) = f(s_1) + f'(s_1)(x - s_1) + \frac{f''(c_x)}{2}(x - s_1)^2$$

pro některý bod $c_x \in (x_0, x_1)$. Chyba integrace je

$$\left| \int_{x_0}^{x_1} f(x) \, dx - h f(s_1) \right| = \left| \int_{x_0}^{x_1} \left(f(x) - f(s_1) \right) \, dx \right|$$

$$= \left| f'(s_1) \underbrace{\int_{x_0}^{x_1} (x - s_1) \, dx}_{=0} + \frac{1}{2} \int_{x_0}^{x_1} f''(c_x) (x - s_1)^2 \, dx \right|$$

$$\leq \frac{1}{2} \int_{x_0}^{x_1} |f''(c_x)| (x - s_1)^2 dx \leq \frac{M_2}{2} \int_{x_0}^{x_1} (x - s_1)^2 dx$$
$$= \begin{vmatrix} x - s_1 = t \\ dx = dt \end{vmatrix} = M_2 \int_0^{h/2} t^2 dt = M_2 \left[\frac{t^3}{3} \right]_0^{h/2} = \frac{M_2}{24} h^3.$$

Stejný odhad je na ostatních podintervalech:

$$|I - R(h)| \le \frac{M_2}{24} h^3 n = \frac{M_2}{24} (b - a) h^2$$
.

Lichoběžníková metoda používá uzavřenou Newtonovu– Cotesovu metodu pro 2 uzly (váhy jsou 1/2):

$$T(h) = h \left[\frac{1}{2} f(a) + f(x_1) + \dots + f(x_{n-1}) + \frac{1}{2} f(b) \right].$$

Věta. Je-li P lineární interpolace funkce f se spojitou druhou derivací na intervalu $\langle x_0, x_1 \rangle$ (tj. P je lineární funkce, $P(x_0) = f(x_0), P(x_1) = f(x_1)$), pak pro $x \in \langle x_0, x_1 \rangle$ je

$$|f(x) - P(x)| \le \frac{M_2}{2} |(x - x_0)(x - x_1)|.$$

Důkaz: Pro $x \in (x_0, x_1)$ má funkce

$$g(t) = f(t) - P(t) - (f(x) - P(x)) \frac{(t - x_0)(t - x_1)}{(x - x_0)(x - x_1)}$$

tři nulové body x_0, x_1, x . Podle Rolleovy věty má g' dva nulové body v (x_0, x_1) a g'' nulový bod $c_x \in (x_0, x_1)$:

$$0 = g''(c_x) = f''(c_x) - (f(x) - P(x)) \frac{2}{(x - x_0)(x - x_1)}$$
$$f(x) - P(x) = \frac{f''(c_x)}{2} (x - x_0)(x - x_1),$$
$$|f(x) - P(x)| \le \frac{M_2}{2} |(x - x_0)(x - x_1)|.$$

Poznámka. Je-li P polynomiální interpolace funkce f se spojitou derivací řádu n+1 na intervalu $\langle a,b\rangle$ pro různé body $x_0,\ldots,x_n\in\langle a,b\rangle$, pak pro $x\in\langle a,b\rangle$ je

$$|f(x) - P(x)| \le \frac{M_{n+1}}{(n+1)!} |(x - x_0) \dots (x - x_n)|.$$

Věta. $M\acute{a}$ -li f na $\langle a,b \rangle$ spojitou druhou derivaci, pak

$$|I - T(h)| \le \frac{M_2}{12} (b - a)h^2$$
, $M_2 = \max_{x \in \langle a, b \rangle} |f''(x)|$.

Důkaz: $\langle x_0, x_1 \rangle$, $s_1 = (x_0 + x_1)/2$. Chyba integrace je

$$\left| \int_{x_0}^{x_1} (f(x) - P(x)) \, dx \right| \le \int_{x_0}^{x_1} |f(x) - P(x)| \, dx$$

$$\le \frac{M_2}{2} \int_{x_0}^{x_1} |(x - x_0)(x - x_1)| \, dx = \begin{vmatrix} x - s_1 = t \\ dx = dt \end{vmatrix}$$

$$= \frac{M_2}{2} \int_{-h/2}^{h/2} \left(\frac{h^2}{4} - t^2 \right) \, dt = M_2 \left[\frac{1}{4} h^2 t - \frac{1}{3} t^3 \right]_0^{h/2}$$

$$= M_2 \left(\frac{1}{8} h^3 - \frac{1}{24} h^3 \right) = \frac{M_2}{12} h^3.$$

Stejný odhad je na ostatních podintervalech:

$$|I - T(h)| \le \frac{M_2}{12} h^3 n = \frac{M_2}{12} (b - a) h^2.$$

Poznámka. Odhad chyby obdélníkové metody je lepší než u lichoběžníkové, přestože se používá horší polynom. Využití středu intervalu odpovídá totiž aproximaci tečnou.

Simpsonova metoda používá uzavřenou Newtonovu–Cotesovu metodu pro 3 uzly. Rozděluje tedy každý podinterval na dva. Pro lepší srovnání označme n (sudý) počet všech takto vzniklých podintervalů. Hodnoty vah získáme integrací kvadratické interpolace, kterou dostaneme lineární kombinací Lagrangeových polynomů P_i , $P_i(x_j) = \delta_{i,j}$:

$$\int_{x_0}^{x_2} P(x) \, dx = \begin{vmatrix} (x - x_1) = ht \\ dx = h \, dt \end{vmatrix} = h \int_{-1}^{1} \tilde{P}(t) \, dt$$

$$= h \int_{-1}^{1} \left(f(x_0) P_0(t) + f(x_1) P_1(t) + f(x_2) P_2(t) \right) \, dt$$

$$= h \int_{-1}^{1} \left(f(x_0) \frac{(t - 0)(t - 1)}{(-1 - 0)(-1 - 1)} + f(x_1) \frac{(t + 1)(t - 1)}{(0 + 1)(0 - 1)} + f(x_2) \frac{(t + 1)(t - 0)}{(1 + 1)(1 - 0)} \right) \, dt$$

$$= h \left[\frac{1}{3} f(x_0) + \frac{4}{3} f(x_1) + \frac{1}{3} f(x_2) \right].$$

Sečtením přes dvojice podintervalů dostaneme

$$S(h) = \frac{h}{3} \left[f(x_0) + 4 f(x_1) + 2 f(x_2) + \dots + 4 f(x_{n-1}) + f(x_n) \right].$$

Věta. $M\acute{a}$ - $li\ f\ na\ \langle a,b\rangle\ spojitou\ \check{c}tvrtou\ derivaci,\ pak$

$$|I - S(h)| \le \frac{M_4}{180} (b - a)h^4$$
, $M_4 = \max_{x \in (a,b)} |f^{(4)}(x)|$.

Poznámka. Simpsonova metoda je řádu 4 a je tedy přesná i pro polynomy stupně 3. Pro ověření stačí (linearita integrálu i S(h)) spočítat $\int_{x_1-h}^{x_1+h} x^3 dx = 2x_1^3h + 2x_1h^3 = S(h)$.

Richardsonova extrapolace

Pro metodu F řádu p konvergující k F(0) je

$$F(h) = F(0) + ah^p + O(h^q),$$

kde $a\in\mathbb{R},\ q\in\mathbb{N},\ q>p.$ Uvažujme h>0 a proložme body $[h^p,F(h)]$ a $[(2h)^p,F(2h)]$ přímku:

$$P(x) = F(h) + \frac{F(2h) - F(h)}{(2^p - 1)h^p} (x - h^p).$$

Richardsonova extrapolace je $P(0) \approx F(0)$, tj.

$$F(h) + \frac{F(h) - F(2h)}{2^p - 1} = F_1(h).$$

Věta. Nechť $F(h) = F(0) + ah^p + O(h^q), \ p, q \in \mathbb{N}, \ p < q.$ Pak $F_1(h) = F(0) + O(h^q).$

Důkaz: $O(h^q)$ je uzavřeno na lineární kombinace:

$$F(2h) = F(0) + a2^{p}h^{p} + O(h^{q})$$

$$F_{1}(h) = F(0) + ah^{p} + \frac{a(1 - 2^{p})h^{p}}{2^{p} - 1} + O(h^{q}) =$$

$$= F(0) + O(h^{q}).$$

Příklady. Uvedené metody mají chyby jen sudých řádů:

$$T_1(h) = T(h) + \frac{1}{3} (T(h) - T(2h))$$
 řádu 4,

$$S_1(h) = S(h) + \frac{1}{15} (S(h) - S(2h))$$
 řádu 6.

Poznámky. Odstraníme chybu nejnižšího řádu.

1) Dostaneme přesnější metodu.

2) Přičítaná hodnota dobře odhaduje chybu (nemusí to být horní odhad), což můžeme použít v iteračním postupu: Spočteme pro h, opakovaně počítáme pro poloviční krok a odhadujeme chybu, dokud nedosáhneme požadované přesnosti. Pro lichoběžníkovou a Simpsonovu metodu stačí dopočítat hodnoty jen v nových bodech (můžeme mít dokonce uloženy součty pro předcházející krok).

Poznámka.
$$T_1(h) = \frac{4}{3}T(h) - \frac{1}{3}T(2h) =$$

= $\frac{4h}{3}(\frac{1}{2}f(x_0) + f(x_1) + f(x_2) + \cdots) - \frac{2h}{3}(f(x_0) + f(x_2) + \cdots) =$
= $\frac{h}{3}(f(x_0) + 4f(x_1) + 2f(x_2) + \cdots) = S(h)$.

Rombergova metoda

Začneme s lichoběžníkovou metodou, při přechodu k polovičnímu kroku dopočítáme všechny dostupné Richardsonovy extrapolace (v k-tém sloupci je metoda řádu 2k), odhadujeme chyby hodnot pod diagonálou:

Příklad. Spočtěte $\int_0^1 \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$ s přesností $\varepsilon = 10^{-6}$.

Pro uvedené složené metody (R, T, S) můžeme využít odhady chyb, ve kterých přepíšeme h = (b - a)/n.

$$\begin{split} M_2 &= \max_{x \in \langle 0, 1 \rangle} \left| \frac{1}{\sqrt{2\pi}} \, \mathrm{e}^{-x^2/2} (x^2 - 1) \right| = \frac{1}{\sqrt{2\pi}} \,, \\ M_4 &= \max_{x \in \langle 0, 1 \rangle} \left| \frac{1}{\sqrt{2\pi}} \, \mathrm{e}^{-x^2/2} (x^4 - 6x^2 + 3) \right| = \frac{3}{\sqrt{2\pi}} \,. \end{split}$$

$$\begin{split} \varepsilon &> \frac{M_2(b-a)^3}{24n_R^2} \quad n_R > \sqrt{\frac{M_2(b-a)^3}{24\varepsilon}} \stackrel{.}{=} 128,9 \quad n_R \ge 129 \\ \varepsilon &> \frac{M_2(b-a)^3}{12n_T^2} \quad n_T > \sqrt{\frac{M_2(b-a)^3}{12\varepsilon}} \stackrel{.}{=} 182,3 \quad n_T \ge 183 \\ \varepsilon &> \frac{M_4(b-a)^5}{180n_S^4} \quad n_S > \sqrt[4]{\frac{M_4(b-a)^5}{180\varepsilon}} \stackrel{.}{=} 7,2 \quad n_S \ge 8 \end{split}$$

Skutečné chyby jsou o něco menší:

Stačilo by:

Iterační proces by skončil:

Diferenciální rovnice

(*Obyčejná*) dif. rovnice řádu n: $F(t, x, x', \dots, x^{(n)}) = 0$. Speciální tvar: $x^{(n)} = f(t, x, \dots, x^{(n-1)})$.

Řešení na intervalu I: funkce $x: I \to \mathbb{R}$ taková, že pro každé $t \in I$ je $x^{(n)}(t) = f(t, x(t), \dots, x^{(n-1)}(t))$.

Cauchyova úloha: navíc počáteční podmínky:

$$x(t_0) = x_{0,0}, x'(t_0) = x_{0,1}, \dots, x^{(n-1)}(t_0) = x_{0,n-1}.$$

Počáteční podmínky "obvykle" vyberou jedno z pole řešení. Jednoznačnost Cauchyovy úlohy: řešení splývají na okolí t_0 .

Separovatelné diferenciální rovnice 1. řádu

$$x' = g(t) h(x), x(t_0) = x_0$$

Věta. Nechť I, J jsou otevřené intervaly, funkce g je spojitá na $I \ni t_0$, funkce h je spojitá na $J \ni x_0$. Pak x' = g(t) h(x), $x(t_0) = x_0$, má řešení na intervalu $I' \subset I$ obsahujícím t_0 . Je-li navíc h' spojitá na J, pak je toto řešení jednoznačné.

Postup řešení:

- 1) $h(x_0) = 0 \dots x(t) = x_1, t \in I$ je stacionární řešení
- 2) $h(x_0) \neq 0 \dots h(x) \neq 0$ na okolí x_0

$$x'(t) = g(t) h(x(t))$$

$$\int \frac{x'(t)}{h(x(t))} dt = \int g(t) dt$$

$$\begin{vmatrix} x(t) = y \\ x'(t) dt = dy \end{vmatrix} : \int \frac{dy}{h(y)} = \int g(t) dt$$

$$H_1(y) = G(t) + c$$

$$x(t) = y = \dots$$

3) Počáteční podmínka: dopočítat c nebo

$$\int_{x_0}^{x(t)} \frac{\mathrm{d}y}{h(y)} = \int_{t_0}^t g(u) \, \mathrm{d}u$$

4) Interval řešení: graf řešení se "zarazí" o hranici $I \times J$.

Poznámka. Separaci proměnných lze použít pouze pro nestacionární řešení!!!

Příklad. $x' = \frac{x^2-1}{2t}$.

 $g(t)=\frac{1}{t},$ spojitá na $(-\infty,0),~(0,+\infty),~h(x)=\frac{x^2-1}{2},~h'(x)=x$ spojité na \mathbb{R},\ldots existence a jednoznačnost; stacionární řešení: $x_{1,\pm}(t)=\pm 1,~t\in (-\infty,0),~x_{2,\pm}(t)=\pm 1,~t\in (0,+\infty);$

nestacionární řešení:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{x^2 - 1}{2t}$$

$$\int \frac{2}{x^2 - 1} \, \mathrm{d}x = \int \frac{\mathrm{d}t}{t}$$

$$\ln \left| \frac{x - 1}{x + 1} \right| = \ln |t| + \ln |c| \qquad (c > 0)$$

$$\frac{x - 1}{x + 1} = ct \qquad (c \neq 0)$$

$$x(t) = \frac{1 + ct}{1 - ct}$$

intervaly řešení: $t \neq 0$, $t \neq \frac{1}{c}$; pro počáteční podmínky:

a) x(0) = 2: nelze $(t \neq 0)$;

b) x(1) = -1: stac. x(t) = -1, $t \in (0, +\infty)$;

c)
$$x(1) = 0$$
: $c = -1$, $x(t) = \frac{1-t}{1+t}$, $t \in (0, +\infty)$;

d)
$$x(-\frac{1}{2}) = 3$$
: $c = -1$, $x(t) = \frac{1-t}{1+t}$, $t \in (-1,0)$;

e) x(1) = -1: c = 3, $x(t) = \frac{1+3t}{1-3t}$, $t \in (\frac{1}{3}, 0)$.

Příklad. $x' = 3x^{2/3}$.

 $g(t)=1,\ h(x)=3x^{2/3}$ spojité na \mathbb{R} ... existence, navíc $h'(x)=2x^{-1/3}$ spojitá na $\mathbb{R}\setminus\{0\}$... jedn. pro $x\neq 0$; stacionární řešení: $x(t)=0,\ t\in\mathbb{R}$; nestacionární řešení:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3x^{2/3}$$

$$\int \frac{1}{3} x^{-2/3} \, \mathrm{d}x = \int \, \mathrm{d}t$$

$$x^{1/3} = t - c$$

$$x(t) = (t - c)^3, \quad t \in (-\infty, c), \ t \in (c, +\infty)$$

Řešení se v bodech nejednoznačnosti dají spojovat, obecné řešení je

$$x_{c,d}(t) = \begin{cases} (t-c)^3, & t \le c, & c \in \mathbb{R} \cup \{-\infty\}, \\ 0, & c < t < d, & c \le d, \\ (t-d)^3, & d \le t, & d \in \mathbb{R} \cup \{+\infty\}. \end{cases}$$

Příklad. Za jak dlouho namrzne na rybníku 10cm vrstva ledu při -5 °C?

h(t): tloušťka ledu v čase t: $h'=\frac{\lambda\,\Delta T}{l\rho h},\,h(0+)=0$ $t=\frac{l\rho h^2}{2\lambda\,\Delta T}\doteq 39$ hodin

Lineární diferenciální rovnice (LDR)

$$x^{(n)} + a_{n-1}(t) x^{(n-1)} + \dots + a_1(t) x' + a_0(t) x = b(t)$$

 a_{n-1}, \ldots, a_0 jsou koeficienty, b je pravá strana. (*Přidružená*) homogenní LDR: b(t) = 0.

Předpoklady: a_{n-1}, \ldots, a_0, b spojité na intervalu $I \ni t_0$.

Věta. Cauchyova úloha má právě jedno řešení na I.

C(I): lineární prostor funkcí spojitých na I. $C^n(I)$: lineární prostor funkcí se spoj. n-tou derivací na I. Lineární diferenciální operátor $D\colon C^n(I)\to C(I)$: $x\mapsto x^{(n)}+a_{n-1}x^{(n-1)}+\cdots+a_1x'+a_0\,x.$

Věta. 1) Jsou-li x_1, x_2 řešení LDR, pak $x_1 - x_2$ je řešení přidružené homogenní rovnice.

- 2) Je-li x řešení LDR a \tilde{x} řešení přidružené homogenní rovnice, pak $x + \tilde{x}$ je řešení dané LDR.
- 3) Jsou-li x_1, x_2 řešení pro pravé strany b_1, b_2 , pak $x_1 + x_2$ je řešení pro pravou stranu $b_1 + b_2$ (princip superpozice).
- 4) Množina řešení homogenní LDR řádu n tvoří lineární prostor dimenze n.

Poznámka. Obecné řešení LDR lze zapsat ve tvaru $x(t) = \hat{x}(t) + \tilde{x}(t)$, kde $\hat{x}(t)$ je libovolné (partikulární) řešení a $\tilde{x}(t)$ je obecné řešení přidružené homogenní rovnice.

Lineární diferenciální rovnice 1. řádu

Homogenní LDR 1. řádu x'+a(t) x=0 je separovatelná: x'=-a(t) x. Stacionární řešení je $x_{\rm s}(t)=0,\ t\in I$. Nestacionární řešení dostaneme separací proměnných

$$\tilde{x}(t) = -a(t) \, \tilde{x}(t)$$

$$\int \frac{\tilde{x}(t)}{x(t)} \, dt = \int -a(t) \, dt$$

$$\ln |\tilde{x}(t)| = -A(t) + \ln |c| \quad (c > 0)$$

$$|\tilde{x}(t)| = |c| e^{-A(t)}$$

$$\tilde{x}(t) = c e^{-A(t)} \quad (c \neq 0)$$

Přidáme stacionární řešení: $\tilde{x}(t) = c e^{-A(t)}, t \in I \ (c \in \mathbb{R}).$

Partikulární řešení LDR 1. řádu x' + a(t) x = b(t) najdeme variaci konstanty, tj. ve tvaru obecného řešení přidružené homogenní rovnice, ve kterém konstantu nahradíme funkcí: $\hat{x}(t) = c(t) \, \mathrm{e}^{-A(t)}$. Dostaneme:

$$c'(t) e^{-A(t)} + c(t) e^{-A(t)} a(t) + a(t) c(t) e^{-A(t)} = b(t)$$

$$c'(t) = b(t) e^{A(t)}$$

integrací najdeme některou funkci c(t).

Příklad. $x' = 0.1 + \frac{x}{t+0.1}$, x(0) = 0, $t \in (0, +\infty)$. $a(t) = -\frac{1}{t+0.1}$, b(t) = 0.1 spojité na $(0, +\infty)$... existence a jednoznačnost na $(0, +\infty)$; řešení přidružené homogenní rovnice:

$$\int \frac{\tilde{x}'(t)}{\tilde{x}(t)} dt = \int \frac{dt}{t+0,1}$$
$$\ln |\tilde{x}(t)| = \ln |t+0,1| + \ln |c|$$
$$|\tilde{x}(t)| = |c(t+0,1)|$$
$$\tilde{x}(t) = c(t+0,1)$$

partikulární řešení ve tvaru $\hat{x}(t) = c(t) (t + 0.1)$:

$$c'(t) (t + 0.1) + c(t) \cdot 1 = c(t) + 0.1$$

$$c'(t) = \frac{0.1}{t + 0.1}$$

$$c(t) = 0.1 \ln(t + 0.1)$$

$$\hat{x}(t) = c(t) (t + 0.1) = 0.1 (t + 0.1) \ln(t + 0.1)$$
$$x(t) = \hat{x}(t) + \tilde{x}(t) = (t + 0.1) (0.1 \ln(t + 0.1) + c)$$

pro počáteční podmínku: 0 = 0,1 (0,1 ln(t + 0,1) + c), tj. c = -0,1 ln 0,1:

$$x(t) = 0.1 (t + 0.1) \ln(10t + 1), \quad t \in (0, +\infty).$$

Lineární diferenciální rovnice s konstantními koeficienty

Funce $e^{\lambda t}$ vyhovuje homogenní LDR s konstantními koeficienty právě tehdy, když $e^{\lambda t}(\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0) = 0$.

Charakteristická rovnice pro LDR s konstantními koeficienty: $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = 0$.

Má-li reálný polynom imaginární kořen, pak má za kořen i číslo k němu komplexně sdružené (stejné násobnosti). Pro imaginární kořeny $\alpha \pm \beta i$ dostaneme komplexní řešení

$$x_1(t) = e^{\alpha + \beta i} = e^{\alpha t} (\cos \beta t + i \sin \beta t),$$

$$x_2(t) = e^{\alpha - \beta i} = e^{\alpha t} (\cos \beta t - i \sin \beta t).$$

Z těchto komplexních řešení dostaneme reálná řešení

$$\frac{1}{2}(x_1(t) + x_2(t)) = e^{\alpha t} \cos \beta t = \operatorname{Re} x_1(t),$$

$$\frac{1}{2}(x_1(t) - x_2(t)) = e^{\alpha t} \sin \beta t = \operatorname{Im} x_1(t).$$

Věta. Bázi prostoru řešení homogenní LDR s konstantními koeficienty dostaneme z kořenů její charakteristické rovnice:
1) Pro každý k-násobný reálný kořen λ vezmeme

$$e^{\lambda t}$$
, $t e^{\lambda t}$, ..., $t^{k-1} e^{\lambda t}$.

2) Pro každou dvojici k-násobných imaginárních kořenů $\alpha \pm \beta$ i $(\alpha, \beta \in \mathbb{R})$ vezmeme

$$e^{\alpha t}\cos\beta t$$
, $te^{\alpha t}\cos\beta t$, ..., $t^{k-1}e^{\alpha t}\cos\beta t$,
 $e^{\alpha t}\sin\beta t$, $te^{\alpha t}\sin\beta t$, ..., $t^{k-1}e^{\alpha t}\sin\beta t$.

Partikulární řešení LDR najdeme variaci konstant. Při derivování si přidáváme podmínky, dostaneme soustavu rovnic pro neznámé $c_i'(t)$ (pro každé $t \in I$ regulární soustavu lineárních rovnic):

$$\tilde{x}(t) = c_1 x_1(t) + \dots + c_n x_n(t)
\hat{x}(t) = c_1(t) x_1(t) + \dots + c_n(t) x_n(t)
\hat{x}'(t) = c_1(t) x_1'(t) + \dots + c_n(t) x_n'(t)
+ \underbrace{c_1'(t) x_1(t) + \dots + c_n'(t) x_n(t)}_{=0}
\hat{x}''(t) = c_1(t) x_1''(t) + \dots + c_n(t) x_n''(t)
+ \underbrace{c_1'(t) x_1'(t) + \dots + c_n'(t) x_n'(t)}_{=0}
\vdots
\hat{x}^{(n)}(t) = c_1(t) x_1^{(n)}(t) + \dots + c_n(t) x_n^{(n)}(t)
+ c_1'(t) x_1^{(n-1)}(t) + \dots + c_n'(t) x_n^{(n-1)}(t)$$

$$\begin{split} \mathbf{P} \check{\mathbf{r}} \mathbf{\hat{k}} \mathbf{lad.} \ \, x'' + x &= \frac{1}{\cos t}, \, t \in I = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right). \\ \mathbf{LDR}, \, \text{funkce } 1, \, \frac{1}{\cos t} \, \text{spojit\'e na } I, \, \check{\mathbf{r}} \check{\mathbf{e}} \check{\mathbf{s}} \check{\mathbf{e}} \check{\mathbf{n}} \check{\mathbf{n}} I. \\ \mathbf{Char.} \, \, \mathbf{rovnice} \, \lambda^2 + 1 &= 0, \, \lambda_{1,2} &= \pm \mathbf{i}, \, \, \mathsf{b\'aze} \, \left\{ \cos t, \sin t \right\}, \\ \tilde{x}(t) &= c_1 \cos t + c_2 \sin t, \, \hat{x}(t) = c_1(t) \cos t + c_2(t) \sin t, \\ c'_1(t) \cos t + c'_2(t) \sin t &= 0 \\ -c'_1(t) \sin t + c'_2(t) \cos t &= \frac{1}{\cos t} \\ c'_1(t) &= - \operatorname{tg} t, \, c_1(t) = \ln |\cos t|, \, c'_2(t) = 1, \, c_2(t) = t, \\ x(t) &= \ln(\cos t) \cdot \cos t + t \sin t + c_1 \cos t + c_2 \sin t. \end{split}$$

Metoda~odhadu~pro nalezení partikulárního řešení LDR s konstantními koef. a kvazipolynomiální pravou stranou: Jsou-li P,Q polynomy stupně nejvýše m,

$$b(t) = e^{\alpha t} (P(t) \cos \beta t + Q(t) \sin \beta t),$$

 $(\alpha+\beta\,\mathrm{i}\,)$ (číslo pravé strany) je k-násobnýkořen charakteristické rovnice, pak existuje partikulární řešení ve tvaru

$$\hat{x}(t) = t^k e^{\alpha t} (\hat{P}(t) \cos \beta t + \hat{Q}(t) \sin \beta t),$$

kde \hat{P}, \hat{Q} jsou polynomy stupně nejvýše m.

Příklad. $x'' - 4x = e^{2t} - 4\cos 2t$.

Pravá strana je spojitá na \mathbb{R} , řešení budou na \mathbb{R} . Charakteristická rovnice: $\lambda^2-4=0$, řešení $\lambda_{1,2}=\pm 2$. Obecné řešení přidružené hom.: $\tilde{x}(t)=c_1\,\mathrm{e}^{2t}+c_2\,\mathrm{e}^{-2t}$. Pro $b_1(t)=\mathrm{e}^{2t}$: číslo pravé strany $2+0\mathrm{i}=2$ je kořen char. rovnice násobnosti 1, partikulární řešení $\hat{x}_1(t)=At\,\mathrm{e}^{2t}$. Pro $b_2(t)=-4\cos t$: $0+2\mathrm{i}=2\mathrm{i}$ není kořen char. rovnice, partikulární řešení $\hat{x}_2(t)=B\cos 2t+C\sin 2t$. Princip superpozice: $\hat{x}(t)=At\,\mathrm{e}^{2t}+B\cos 2t+C\sin 2t$. Do DR: $4A\,\mathrm{e}^{2t}-8B\cos 2t-8C\sin 2t=\mathrm{e}^{2t}-4\cos 2t$. Provnáním koeficientů u jednotlivých funkcí:

$$e^{2t}$$
: $4A = 1$,
 $\cos 2t$: $-8B = -4$,
 $\sin 2t$: $-8C = 0$.

Řešení soustavy lineárních rovnic: $A=\frac{1}{4},\,B=\frac{1}{2},\,C=0.$ Partikulární řešení: $\hat{x}(t)=\frac{1}{4}t\,\mathrm{e}^{2t}+\frac{1}{2}\cos 2t.$

Obecné řešení: $x(t) = \frac{1}{4} t e^{2t} + \frac{1}{2} \cos 2t + c_1 e^{2t} + c_2 e^{-2t},$ $t \in \mathbb{R} (c_1, c_2 \in \mathbb{R}).$