Machine Learning: Problem Set 1

Justin D. Thomas

April 5, 2013

1. Newton's method for computing least squares

(a) Find the Hessian of the cost function $J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (\theta^{\top} x^{(i)} - y^{(i)})^2$. Solution to 1-(a):

Note that $x^{(i)} \in \mathbb{R}^N$, where N is the number of features. For vocabulary practice m is the number of training samples. We have $\theta^{\top}x^{(i)} \in \mathbb{R}$ and $y^{(i)} \in \mathbb{R}$. The function J goes from \mathbb{R}^N to \mathbb{R} . So the Hessian of J is an $N \times N$ symmetric matrix of functions $\mathbb{R}^N \to \mathbb{R}$. In fact, we will see that the Hessian of J is an $N \times N$ matrix of constant functions.

By the chain rule, we compute

$$\partial J/\partial \theta_j = \sum_i x_j^{(i)} (\theta^\top x^{(i)} - y^{(i)}). \tag{1}$$

Thus the Hessian of J is

$$H(J)_{jk} = \sum_{i=1}^{m} x_j^{(i)} x_k^{(i)}, \tag{2}$$

which does not depend on θ , so is a matrix of constant functions, as claimed.

(b) Show that the first iteration of Newton's method gives us

$$\theta^{\star} = (X^{\top}X)^{-1}X^{\top}\vec{y},$$

the solution to the least squares problem.

Solution to 1-(b):

By definition, X is the matrix whose i^{th} row vector is $x^{(i)}$. Thus $X_{ij} = x_j^{(i)}$ and

$$(X^{\top}X)_{jk} = \sum_{i} X_{ji}^{\top} X_{ik} = \sum_{i} x_{j}^{(i)} x_{k}^{(i)} = H(J)_{jk},$$
(3)

where the last equality is (2). We apply Newton's method to find a zero of ∇J with initial guess $\theta_0 = 0$. Recall that since $J \colon \mathbb{R}^N \to \mathbb{R}$ we have $\nabla J \colon \mathbb{R}^N \to \mathbb{R}^N$. We write ∇J as an N-dimensional column vector of \mathbb{R} -valued functions of N variables. In particular, the j^{th} row of ∇J is $\nabla_j J \coloneqq \partial J/\partial \theta_j$. By definition of Newton's method, we have

$$\theta_1 = \theta_0 - H(J)^{-1}(\nabla J)(\theta_0). \tag{4}$$

In this description θ_i is a column vector in \mathbb{R}^N . Since ∇J has dimension $N \times 1$ and $H(J)^{-1}$ has dimension $N \times N$, we see that the right hand side in the equation above is well-defined. Recall that ∇J is a function of θ . When $\theta = 0$ we see by equation (1) that

$$(\nabla J)(0) = -\sum_{i} x_{j}^{(i)} y^{(i)} = -\sum_{i} X_{ij} y^{(i)} = X^{\top} \vec{y},$$
 (5)

where, by definition, \vec{y} is the $N \times 1$ vector whose i^{th} row is $y^{(i)}$, the i^{th} observed value in the training set. Putting $\theta_0 = 0$ into (4) and using equations (3) and (5), we have

$$\theta_1 = -(X^\top X)^{-1}(-X^\top \vec{y}) = (X^\top X)^{-1} X^\top \vec{y},\tag{6}$$

as desired.

2. Locally-weighted logistic regression

Recall that logistic regression given by choosing $\theta \in \mathbb{R}^N$ to give the maximum likelihood of the sample set with the following prediction function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\top} x}}.\tag{7}$$

In this model, $h_{\theta}(x)$ is predicting y, which takes values in $\{0,1\}$. Given θ , then for each sample i the value

$$L_i(\theta) = h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}$$

is close to 1 if $h_{\theta}(x^{(i)})$ is close to $y^{(i)}$. Thus the product $L(\theta) = \prod_i L_i(\theta)$ is close to 1 if h_{θ} is a good predictor of $y^{(i)}$ given $x^{(i)}$ for all i. We think of this product as the likelihood of the sample $\{(x^{(i)}, y^{(i)}) \mid i = 1, \dots, n\}$ when the parameter θ is given and h_{θ} is used to predict $y^{(i)}$ as a function of $x^{(i)}$. We want to maximize $L(\theta)$, but it is easier and equivalent to maximize $\ell(\theta) := \log L(\theta)$.

$$\ell(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) = \sum_{i=1}^{m} \ell_{i}(\theta)$$
 (8)

The log likelihood for logistic regression.

Now we localize this around $x \in \mathbb{R}^N$ using the weight function

$$w^{(i)}(x) = \exp(-\left|x - x^{(i)}\right|^2 / (2\tau^2)),\tag{9}$$

where τ is a constant parameter. This gives us

$$\ell(\theta, x) = \sum_{i=1}^{m} w^{(i)}(x)\ell_i(\theta)$$
(10)

Locally-weighted log likelihood linear regression.

For reasons I don't understand, Newton's method does not work well for any (or some?) value(s) of x when finding maxima of the function $\theta \mapsto \ell(\theta, x)$. We can fix this by adding a linear term to $\partial_{\theta}\ell(\theta, x)$, or a θ -quadratic term to $\ell(\theta, x)$. We take a quadratic term of the form $(-\lambda/2) |\theta|^2$, or $\lambda \theta^{\top} \theta$, where λ is very small, say $\lambda = 0.0001$. The addition of a linear term to a function will adjust the critical points, but when the linear term is small, they are not too far off. Our adjusted likelihood function for locally weighted linear regression is

$$\ell'(\theta, x) = -\frac{\lambda}{2}\theta^{\top}\theta + \ell(\theta, x) \tag{11}$$

Adjusted log likelihood for locally-weighted linear regression.

Now we compute $\partial_{\theta}\ell$ (really the gradient). Clearly $\partial_{\theta}(-\lambda/2)|\theta|^2 = -\lambda\theta$. Also $\partial_{\theta}\ell(\theta,x) = \sum_{i} w^{(i)}(x)\partial_{\theta}\ell_{i}(\theta)$. So we need to compute $\partial_{\theta}\ell_{i}(\theta)$. We use

$$\partial_{\theta_j} h_{\theta}(x) = \partial_{\theta_j} \frac{1}{1 + e^{-\theta^{\top} x}}$$

$$= \frac{x_j e^{-\theta^{\top} x}}{(1 + e^{-\theta^{\top} x})^2}$$

$$= x_j h_{\theta}(x) (1 - h_{\theta}(x))$$
(12)

Thus

$$\partial_{\theta_j} \log h_{\theta}(x^{(i)}) = x_j^{(i)} (1 - h_{\theta}(x^{(i)})),$$

$$\partial_{\theta_j} \log(1 - h_{\theta}(x^{(i)})) = -x_j^{(i)} h_{\theta}(x^{(i)}).$$

Now if we set $z \in \mathbb{R}^m$ to be the column vector with i^{th} entry, z_i , given by

 $w^{(i)}(y^{(i)} - h_{\theta}(x^{(i)}))$ we have

$$\partial_{\theta_{j}} \ell'(\theta, x) = -\lambda \theta_{j} + \sum_{i=1}^{m} w^{(i)}(x) x_{j}^{(i)}(y^{(i)}(1 - h_{\theta}(x^{(i)})) - (1 - y^{(i)}) h_{\theta}(x^{(i)}))$$

$$= -\lambda \theta_{j} + \sum_{i=1}^{m} w^{(i)}(x) x_{j}^{(i)}(y^{(i)} - h_{\theta}(x^{(i)}))$$

$$= -\lambda \theta_{j} + \sum_{i=1}^{m} X_{ji}^{\top} z_{i}$$

$$= -\lambda \theta_{j} + (X^{\top} z)_{j}$$

Dropping j from the notation we get an equality of functions $\mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N$,

$$\nabla_{\theta} \ell'(\theta, x) = -\lambda \theta + X^{\top} z \tag{13}$$

Going further, we get $\partial_{jk}\ell' = \partial_j(X^\top z)_k - \lambda \delta_{jk}$. Note that $\partial_j z_i = -\partial_j h_\theta(x^{(i)})$. By (12), $\partial_j h_\theta(x^{(i)}) = x_j^{(i)} h_\theta(x^{(i)})(1 - h_\theta(x^{(i)}))$. Together, these equations give

$$H\ell'(\theta, x)_{jk} = \partial_{jk}\ell'(\theta, x)$$

$$= -\lambda \delta_{jk} + \sum_{i} X_{ki}^{\top} \partial_{j} z_{i}$$

$$= (-\lambda I)_{jk} + \sum_{i} X_{ki}^{\top} x_{j}^{(i)} h_{\theta}(x^{(i)}) (1 - h_{\theta}(x^{(i)}))$$

$$= (-\lambda I)_{jk} + \sum_{i,l} X_{ki}^{\top} h_{\theta}(x^{(l)}) (1 - h_{\theta}(x^{(l)})) \delta_{il} X_{lj}$$

$$= (-\lambda I + X^{\top} DX)_{jk}, \tag{14}$$

where $D_{il} = h_{\theta}(x^{(l)})(1 - h_{\theta}(x^{(l)}))\delta_{il}$ is a diagonal $m \times m$ matrix.

(a) Implement the Newton-Raphson algorithm for optimizing $\ell(\theta)$ for a new query point x, and use this to predict the class of x.

Solution to 2-(a):

Recall that the Newton-Raphson algorithm is just another name for the update rule

$$\theta := \theta - H^{-1} \nabla_{\theta} \ell(\theta),$$

used for finding the critical points of $\ell(\theta)$.