"量子コンピューターの頭の中"

く第1章 量子コンピューターへのいざない> く第2章 量子コンピューターの入門以前>

要点整理

第1章 量子コンピュータへのいざない

■量子ビット

ビット数	量子ビット
1量子ビット	0> 1>
2量子ビット	00> 01> 10> 11>

*量子ビットのnビットが同時にもてる値・・・2のn乗通り(古典ビットでは1通り)

- ■ユニタリ行列(unitary matrix)
 - ・ベクトル (x)にかけても長さを変えない (x)行列 (u)

■量子コンピュータの計算で必要な数学

- ・行列・ベクトル
- 確率
- 複素数

■量子コンピュータにおける重要ワード

- ・ブラケット記法
- ・ユニタリ行列
- ・テンソル積

*量子コンピュータは、どんなに複雑なアルゴリズムでも、 行列のかけ算を繰り返しているだけ。行列の計算方法に慣れれば、怖がる必要はありません。

■行列の「行」と「列」・・・2 (行)×2 (列)行列(サイズ)

```
第1行
第2
列
列
第2行
3
4
```

■ベクトルの定義

- ・成分・・・行列に並べられた数字(上記・・1,2,3,4)
- ・サイズ・・・m(行)×n(列)
- ・正方行列・・・行と列の大きさが同じ(n×n)
- ・行ベクトル・・・行が1つの行列
- ・列ベクトル・・・列が1つの行列
- *ベクトルの長さ・・・ベクトルの各成分を2乗したものの 和に対して平方根をとった値

■行列の和・差

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

":="「左辺(新しい概念の数式)を右辺(既知の数式)で定義する」

$$A+B := \begin{pmatrix} 1 & + & 2 & 1 & + & 2 \\ 1 & + & 2 & & 1 & + & 2 \end{pmatrix}$$

行列の(和)、(差)を 使うところってある?

$$A-B := \begin{pmatrix} 1 & -2 & 1 & -2 \\ 1 & -2 & 1 & -2 \end{pmatrix}$$

*サイズの合わない行列は、和・差を定義出来ない!

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \\ 3 & 3 \end{pmatrix} A + B := \begin{pmatrix} 1 & + & 2 \\ 1 & + & 2 \\ 2 & + & 3 \end{pmatrix}$$

■行列とベクトルの積

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 $\nu = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ ベクトル:列がひとつの行列

• (積) $A*v := \begin{pmatrix} 1 & 2 & + & 1 & * & 2 \\ 1 & * & 2 & + & 1 & * & 2 \\ 1 & * & 2 & + & 1 & * & 2 \end{pmatrix}$

***「行列の列数」と「ベクトルのサイズ」が異なると定義できないb**

■行列と行列の積

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \nu = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

• (積)
$$A*v := \begin{pmatrix} 1*2+1*2 & 1*2+1*2 \\ 1*2+1*2 & 1*2+1*2 \\ 1*2+1*2 & 1*2+1*2 \end{pmatrix}$$

*「行列の列数」と「行列のサイズ」が異なると定義できない

■行列とベクトルの積のサイズ

■行列と行列の積のサイズ

■分配法則

(1) 左分配法則

A,B,C をA+B,AC,B+C が計算できるサイズの行列とすると

A(B+C) = AB + AC

(1) 右分配法則

A,B,C をAC,AC,A+B が計算できるサイズの行列とすると (A+B) C = AC + BC

■行列とベクトルの積のサイズ

法則		実数	行列	定理
結合法則	(A+B)+C = A+(B+C)	成り立つ	成り立つ	和の結合法則
	(AB)C = A(BC)	成り立つ	成り立つ	積の結合法則
交換法則	A+B = B+A	成り立つ	成り立つ	和の交換法則
	AB = BA	成り立つ	成り立たない	
分配法則	A(B+C) = AB+AC	成り立つ	成り立つ	左分配法則
	(A+B)C = AC+BC	成り立つ	成り立つ	右分配法則

■単位行列

・単位行列(identity matrix)・・・n次正方行列で 「行と列が同じ成分が1で、行と列が異なる成分がO」

$$In := \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \cdots & \cdots & 0 \\ 0 & 0 & \cdots & 1 \end{pmatrix} \qquad n=2 \qquad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$n=3 \qquad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

■正規行列

・正規行列 (reguiar matrix)・・・n 次正方行列Aに対し以下の2つの条件を満たすn次正方行列Bが存在する時の行列A

$$AB=I_n$$
, $BA=I_n$

■逆行列

・逆行列 (inverse matrix)・・・n 次正方行列A に対し、 $AB=I_n$, $BA=I_n$ を満たすn 次正方行列B が存在する時の行列BをAの逆行列といい A^{-1} と書く

•
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 の場合、逆行列 $A^{-1} = \frac{1}{ad-bd} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

*ad - bc = 0のときは逆行列は存在しない。 $ad - bc \neq 0$ のときのみ逆行列は存在する。

$$AA^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_n$$

$$A^{-1}A = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_n$$

■集合(ものの集まり)

- ・外延的記法・・・集合を構成しているものをすべて列挙 {1, 2, 3, 4, 5}
- ・内延的記法・・・集合を構成しているものの性質を記述 { n | n は 1 から 5 までの 自然数 }

「丨」の左は集合を構成している変数、「丨」の右は集合を構成しているものの性質

■要素(elemennt)・・集合を構成するひとつひとつのもの

- 「1が{1,2,3,4,5}の要素である」1 ∈ {1,2,3,4,5}
- ・「6が {1,2,3,4,5} の要素でない」6 ∉ {1,2,3,4,5}
- ・「集合が {1,2,3} は {1,2,3,4,5} に含まれる」 {1,2,3} ⊂ {1,2,3,4,5}

■よく使う集合の記号

```
N := 自然数 (natural number) 全体の集合 { 1,2,3 }

ℤ := 整数 (integer) 全体の集合 { ..., -3, -2, -1,0,1,2,3..}

ℝ := 実数 (real number) 全体の集合 { 1, π,√2 }

ℂ := 複素数 (complex number) 全体の集合 { 1,i,1+√2i }

<上記集合は包含関係がある>

N ⊂ℤ ⊂ ℝ ⊂ ℂ
```

- ■積集合・・・複数の集合の組 (tuple) を表す集合
 - ・RXR 又は R・・・積集合の要素は(1,0)
 - ・コンピュータの世界はビットを O, 1で表す 1ビットの集合・・・{0,1} nビットの集合・・・{0,1}ⁿ 2ビットの集合の要素 (0.0),(0.1),(1.0),(1.1) ∈ {0.1}²

■複素数

- ・虚数単位 (imaginary unit) 「i」・・・2乗するとー1 $i^2 = -1$
- · 複素数 (complex number)
 - ・・・2つの実数x、yと虚数単位iで表せる数 α + y_i

$$z = x + y_i(x, y は実数)$$

```
x を実部 (real part)・・・・Re ( z )
y を虚部 (imaginary part)・・・・Im ( z )
```

■複素平面(complex plane)

■複素数の和と積

$$z_1 = x_1 + y_1i(x_1,y_1は実数)$$

 $z_2 = x_2 + y_2i(x_2,y_2は実数)$

•(和)
$$z_1 + z_2 = (x_1 + x_2) + (y_1 + y_2)i$$

•(積)
$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$$

■絶対値・・・複素数の大きさ(複素平面の原点からの距離)

$$|z| = \sqrt{x^2 + y^2}$$

 $|z| \ge 0$

■複素数の絶対値

■複素共役(complex conjugate)・・・y の符号を変更

■転地行列と随伴行列

- *実行列 (real matrix)・・行列の成分が実数であるもの
- *複素行列(complex matrix)・・行列の成分が複素数であるもの
 - 1転置行列(transposed matrix)
 - ・・・行列Aの行と列を入れ替えた行列

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}^T = \begin{pmatrix} 1 & 2 \end{pmatrix}$ * m X n 行列の転置行列はm X n 行列 $(aij)^T = (aji)$ となります

- ②複素共役行列 (complex conjugate of a matrix)
 - ・・・行列Aの各成分を複素共役にした行列

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^* = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \begin{pmatrix} \sqrt{5} & 2 \\ \mathbf{i} & 3+\mathbf{i} \end{pmatrix}^* = \begin{pmatrix} \sqrt{5} & 2 \\ -\mathbf{i} & 3-\mathbf{i} \end{pmatrix}$$

(aij)*= (a*ij) となります

■随伴行列

- ①随伴行列 (adjoint matrix) = エルミート行列
 - ・・・「複素共役して転置した行列」(A^{*})^Tと 「転置して複素共役した行列」(A^T)^{*}は同じ

$$A^{\dagger} := (A^*)^T = (A^T)^*$$
ダガー(dagger)

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{\dagger} = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \qquad \begin{pmatrix} \sqrt{5} & 2 \\ \mathbf{i} & 3+\mathbf{i} \end{pmatrix}^{\dagger} = \begin{pmatrix} \sqrt{5} & -\mathbf{i} \\ 2 & 3-\mathbf{i} \end{pmatrix}$$

■ユニタリー行列

- ①ユニタリー行列 (unitary matrix)
 - ・・・随伴行列が逆行列となる正方行列U

* 上記3個の式のどれか一個でも成り立てば他の2個も成り立つ

■ユ<u>ニタリー行列・・・随</u>伴行列が逆行列となる正方行列

■ブラケット記法

- ・量子力学では、列ベクトル φ(ファイ) = (a1 a2 → | φ> l φ> l φ> l φ>
- ・記号"< | "ブラ(bra)・・ケットの随伴行列(行ベクトル)

$$\langle \phi | := | \phi \rangle^{\dagger} = (a_1^* a_2^*)$$

*|
$$\phi$$
> = $\begin{pmatrix} 1+2i \\ 3+4i \end{pmatrix}$ の場合
 $\langle \phi | = | \phi \rangle^{\dagger} = \begin{pmatrix} 1+2i \\ 3+4i \end{pmatrix}^{\dagger} = \begin{pmatrix} 1-2i \\ 3-4i \end{pmatrix}$
転置…m、n行列 \rightarrow n, m行列

■内積 (inner product) の定義

*
$$|\phi\rangle = \begin{pmatrix} 1 \\ i \end{pmatrix}, |\psi\rangle = \begin{pmatrix} 1+i \\ 2 \end{pmatrix}$$
 の場合

$$\langle \boldsymbol{\Phi} \boldsymbol{\Psi} \rangle = \begin{pmatrix} 1^* & i^* \end{pmatrix} \begin{pmatrix} 1+i \\ 2 \end{pmatrix} = \begin{pmatrix} 1 & -i \end{pmatrix} \begin{pmatrix} 1+i \\ 2 \end{pmatrix} = \mathbf{1} - i$$

■内積 (inner product) の定理

Φ, Φ 1, Φ 2とΨ, Ψ 1, Ψ 2をベクトルとし、 Zを複素数とする。 このとき、次の式が成り立つ。

$$(1) < \phi \ 1 + \phi \ 2|\psi\rangle = < \phi \ 1|\psi\rangle + < \phi \ 2|\psi\rangle$$

(2)
$$\langle \phi | \psi 1 + \psi 2 \rangle = \langle \phi | \psi 1 \rangle + \langle \phi | \psi 2 \rangle$$

$$(3)$$
 $\langle Z \phi | \psi \rangle = Z^* \langle \phi | \psi \rangle$ (前に出したZが複素共役になる点に注意)

$$(4) < \phi |_{Z} \psi > = z < \phi |_{\psi} >$$

$$(5)$$
 $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$ (順番を入れ替えると複素共役になる)

複素数2が|2|=1を満たすとする。 このとき、以下の式が成り立つ。

$$|\langle \phi | Z \psi \rangle|^2 = |\langle \phi | \psi \rangle|^2$$

■テンソル積 (tensor product) の定義・・・2量子ビット以上

・m x n行列A=(aij)とr x s行列Bに対してmr x rS行列A⊗B

$$C = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $D = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ の場合

$$\mathbf{C} \otimes \mathbf{D} = \begin{pmatrix} \mathbf{1} & \mathbf{D} \\ \mathbf{2} & \mathbf{D} \end{pmatrix} = \begin{pmatrix} \mathbf{1} \begin{pmatrix} \mathbf{3} \\ \mathbf{4} \end{pmatrix} \\ \mathbf{2} \begin{pmatrix} \mathbf{3} \\ \mathbf{4} \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \mathbf{3} \\ \mathbf{4} \\ \mathbf{6} \\ \mathbf{8} \end{pmatrix}$$

行列サイズは 2x1行列Cと2x1行列Dより2·2 X 1·1 = 4 X 1行列

■テンソル積 (tensor product) の定理

A,A1,A2 をm x n 行列、B,B1,B2 をn x n 行列、Zを複素数とする。 このとき、次の式が成り立つ。

- $(1) A \otimes (B1 + B2) = A \otimes B1 + A B2$
- (2) $(A+A2) \otimes B = A1 \otimes B + A2 \otimes B$
- (3) $(zA) \otimes B = A \otimes (zB) = z (A \otimes B)$
- (4) $(A1 \otimes B1) (A2 \otimes B2) = A1A2 \otimes B1B2$
- $(5) (A \otimes B)^{\dagger} = A^{\dagger} \otimes B^{\dagger}$
- (6) $A^{-1}B^{-1}$ が存在するとき、 $(A \otimes B)^{-1} = A^{-1} \otimes B$
- (7) $lm \otimes ln = lmn$ (サイズm の単位行列とサイズn のテンソル積は、サイズmn の単位行列になる)
 - ⊗ はテンソル積を表し、記号を省略している積は通常の行列積を表す。

■古典回路における真理値表

* ANDの演算

A	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

かけ算と同じ演算 論理積(*A・B*)

* ORの演算

A	В	A AND B
0	0	0
0	1	1
1	0	1
1	1	1

足し算と同じ演算 論理和(A+B)

* NOTの演算

A	В
0	1
1	0

ビットを反転させる演算(0と1を入れ替え)

■古典回路におけるゲート

* ANDの古典ゲート

* ORの古典ゲート

* NOTの古典ゲート

■半加算器・・・2個の1ビットデータの足し算

* NOT ((A AND B) OR C)を表す回路

* 半加算器の真理値表と対応する計算

入力1	入力2	出力1	出力2	対応する計算
0	0	0	0	0 + 0 = 00
0	1	0	1	0 + 1 = 01
1	0	0	1	1 + 0 = 01
1	1	1	0	1 + 1 = 10

■半加算器・・・2個の1ビットデータの足し算

* XORの古典ゲート

* XORの演算・・・排他的論理和 (exclusive or)

A	В	A AND B
0	0	0
0	1	1
1	0	1
1	1	0

* XORを利用して簡素化した半加算器の古典回路

