

SF1681 Linjär algebra, fk HT20

# SF1681 LINJÄR ALGEBRA, FORTSÄTTNINGSKURS FÖRELÄSNING 1

#### DAVID RYDH

#### 1. VEKTORRUM OCH BASER

## Målet för idag.

- Repetition från SF1672 Linjär algebra när det gäller
  - Vektorrum
  - Delrum
  - Linärt oberoende och baser
  - Koordinater och basbyten
- Nya perspektiv
  - Skalärer från godtyckliga kroppar
  - Oändligdimensionella vektorrum
- Nya begrepp
  - Direkt summa  $V \oplus W$
  - Kvotrum V/W [ej på föreläsningen]

### Vektorrum.

**Definition 1.1.** Ett *vektorrum* är en mängd V med *addition* och ett speciellt element 0 och en *multiplikation* med skalärer som uppfyller följande

- Additionen gör V till en abelsk grupp dvs
  - (kommutativ)  $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
  - (associativ)  $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$
  - (identitet) x + 0 = 0 + x = x
- (invers)  $\forall x\exists y\colon x+y=y+x=0$  (vi skriver y=-x)
   Skalärerna utgör en  $kropp^1$  och  $multiplikationen\ med\ skalärer$  uppfyller
  - (associativ)  $(ab)\mathbf{x} = a(b\mathbf{x})$
  - (distributiv vänster)  $(a+b)\mathbf{x} = (a\mathbf{x}) + (b\mathbf{x})$
  - (distributiv höger)  $a(\mathbf{x} + \mathbf{y}) = (a\mathbf{x}) + (a\mathbf{y})$
  - (identitet) 1x = x

### **Exempel 1.2.** Följande är vektorrum.

- $\mathbb{R}^n$  (med reella skalärer) och  $\mathbb{C}^n$  (med reella eller komplexa skalärer)
- $\mathbb{R}[x]$  vilket betecknar alla polynom med koefficienter i  $\mathbb{R}$ .

Date: 2020-10-29.

1

 $<sup>^{1}</sup>$ dvs uppfyller de räknelagar vi kan för  $\mathbb{Q}$ ,  $\mathbb{R}$  och  $\mathbb{C}$ 

- $\mathbb{R}[x]_{\leq n}$  vilket betecknar alla polynom av grad  $\leq n$ .
- $C^{d}([a,b])$  vilket betecknar funktioner  $[a,b] \longrightarrow \mathbb{R}$  vars dte derivata är kontinuerlig.

### Kroppar.

**Definition 1.3.** En kropp är en mängd k med addition och multiplikation och speciella element 0 och 1 som uppfyller

- Additionen gör k till en abelsk grupp dvs
  - -a+b=b+a
  - -(a+b)+c=a+(b+c)
  - -a+0=0+a=a
  - $\forall a \exists b$ : a + b = b + a = 0.
- Multiplikationen gör  $k^{\times} = k \setminus \{0\}$  till en abelsk grupp dvs
  - -ab=ba
  - -(ab)c = a(bc)
  - $-1 \cdot a = a$
  - $\forall a \neq 0 \exists b : ab = ba = 1.$
- Addition tillsammans med multiplikation uppfyller de distributiva lagarna
  - -(a+b)c = (ac) + (bc)
  - -a(b+c) = (ab) + (ac)

**Exempel 1.4.** Ni känner alla till de rationella talen  $\mathbb{Q}$ , de reella talen  $\mathbb{R}$  och de komplexa talen  $\mathbb{C}$ . Det finns även ändliga kroppar. Om p är ett primtal så är heltalen modulo p, vilket betecknas  $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} = \{0,1,2,\ldots,p-1\}$ , en kropp. I  $\mathbb{F}_p$  identifierar vi två heltal x och y om p delar x-y, dvs om x och y är kongruenta modulo p. I t ex  $\mathbb{F}_2$  så är 1+1=2=0 och i  $\mathbb{F}_3$  så är 1+1=2=-1 och  $2\cdot 2=4=1$ .

Vi identifierar en kropp k med det 1-dimensionella vektorrummet  $k^1$ .

#### Delrum.

**Definition 1.5.** En delmängd  $W \subseteq V$  utgör ett *delrum* av V om restriktionen av addition och multiplikation med skalär till W gör W till ett vektorrum.

**Sats 1.6.** En delmängd  $W \subseteq V$  utgör ett delrum av V om och endast om

- $\mathbf{0} \in W$ .
- $\mathbf{x} + \mathbf{y} \in W$  om  $\mathbf{x}, \mathbf{y} \in W$ ,
- $a\mathbf{x} \in W$  om  $\mathbf{x} \in W$  och a är skalär.

Vi säger att W är *slutet* under addition och multiplikation med skalär.

**Exempel 1.7.** Varje vektorrum har det *trivial delrummet*  $\{0\} \subseteq V$  och det *oäkta delrummet*  $V \subseteq V$ .

**Exempel 1.8.** Vektorrummet k[x] av polynom med koefficienter i kroppen k har två delrum bestående av jämna och udda polynom

$$k[x]_{even} = \{ p(x) \in k[x] : p(-x) = p(x) \ \forall x \}$$
  
$$k[x]_{odd} = \{ p(x) \in k[x] : p(-x) = -p(x) \ \forall x \}$$

Notera att det enda polynomet som både är jämnt och udda är 0. Alltså är  $k[x]_{even} \cap k[x]_{odd} = \{0\}$ .

**Exempel 1.9.** Följande delmängd av kontinuerliga funktioner är ett delrum:

$$V = \{ f(x) \in C^0([0,1]) : f(1) = 0 \}$$

Vad händer om vi istället kräver f(1) = 1?

**Exempel 1.10.** Vektorrummet  $M_{n,n}(\mathbb{R})$  av  $n \times n$ -matriser har två delrum

$$M_{n,n}^{s}(\mathbb{R}) = \{A \in M_{n,n}(\mathbb{R}) : A^{T} = T\}$$
  
 $M_{n,n}^{as}(\mathbb{R}) = \{A \in M_{n,n}(\mathbb{R}) : A^{T} = -T\}$ 

av symmetriska respektive anti-symmetriska (skev-symmetriska) matriser.

#### Linjärt oberoende och baser.

**Definition 1.11.** En delmängd  $\mathscr{S} \subseteq V$  är *linjärt oberoende* om för alla skalärer  $a_{\mathbf{x}}$ 

$$\sum_{\mathbf{x} \in \mathscr{L}} a_{\mathbf{x}} \mathbf{x} = 0 \quad \implies \quad a_{\mathbf{x}} = 0, \, \forall \mathbf{x} \in \mathscr{S}$$

där summan bara kan ha ändligt många nollskilda termer.

**Definition 1.12.** En delmängd  $\mathscr{S} \subseteq V$  *spänner upp V* om

$$V = \operatorname{Span} \mathscr{S} = \left\{ \sum_{\mathbf{x} \in \mathscr{S}} a_{\mathbf{x}} \mathbf{x} \colon a_{\mathbf{x}} \neq 0 \text{ för ändligt antal } \mathbf{x} \in \mathscr{S} \right\}$$

**Definition 1.13.** En *bas* för *V* är en linjärt oberoende delmängd som spänner upp *V*.

**Sats 1.14.** Varje vektorrum V har en bas  $\mathcal{B}$ . Varje bas har lika många element.

*Bevis*. För ett bevis av det första påstående, se extramaterialet i Appendix A nedan (använder Zorns lemma). Det andra påståendet är Corollary 2.8 i kursboken (ALA av Sadun). □

Anmärkning 1.15. En bas för ett vektorrum behöver inte vara ändlig. Om basen inte är ändlig kallas *V* oändligdimensionellt.

**Koordinater.** Om  $\mathcal{B}$  är en bas för V så kan varje vektor  $\mathbf{v} \in V$  skrivas *unikt* som en linjärkombination:

$$\mathbf{v} = \sum_{\mathbf{b} \in \mathscr{B}} a_{\mathbf{b}} \mathbf{b}$$

Vi kallar  $(a_{\mathbf{b}})_{\mathbf{b} \in \mathscr{B}}$  för koordinaterna till  $\mathbf{v}$  i basen  $\mathscr{B}$ .

Speciellt, om  $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$  är en ändlig bas så har vi:

$$\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{b}_i$$

och vi låter

$$[\mathbf{v}]_{\mathscr{B}} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

beteckna koordinatvektorn för  $\mathbf{v}$  i basen  $\mathcal{B}$ .

Om vi har två olika baser  $\mathscr{B}$  och  $\mathscr{D}$  så gäller

$$[\mathbf{v}]_{\mathscr{D}} = P_{\mathscr{D}\mathscr{B}}[\mathbf{v}]_{\mathscr{B}}$$

för en matris  $P_{\mathscr{D}\mathscr{B}}$  vars jte kolumn består av  $[\mathbf{b}_j]_{\mathscr{D}}$ , dvs koordinaterna för den jte basvektorn i  $\mathscr{B}$  uttryckta i basen  $\mathscr{D}$ . (se Sadun, Thm. 2.9). Vidare är  $P_{\mathscr{D}\mathscr{B}}$  inverterbar med invers  $P_{\mathscr{B}\mathscr{D}}$  (se Sadun, Thm. 2.10).

## Direkt summa.

**Definition 1.16** (Yttre direkt summa). Om V och W är två vektorrum är den *direkta summan*,  $V \oplus W$ , det vektorrum vars underliggande mängd är  $V \times W$  och där operationerna utförs komponentvis.

**Definition 1.17** (Inre direkt summa). Om V och W är två delrum av ett vektorrum U är säger vi att U är den (inre) *direkta summan* av V och W om varje vektor i U kan skrivas som  $\mathbf{v} + \mathbf{w}$  på ett unikt sätt där  $\mathbf{v} \in V$  och  $\mathbf{w} \in W$ . Vi skriver  $U = V \oplus W$ .

**Lemma 1.18.** U är en inre direkt summa av V och W om och endast om:

- (1) U = V + W, dvs varje vektor i  $u \in U$  går att skriva som en summa u = v + w där  $v \in V$  och  $w \in W$ .
- (2)  $V \cap W = \{0\}.$

*Bevis.* (1) Om  $U = V \oplus W$  och  $\mathbf{u} \in V \cap W$  så kan vi skriva  $\mathbf{u} = \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u}$  där första termen är i V och andra termen är i W. Eftersom dekompositionen är unik så är  $\mathbf{u} = \mathbf{0}$ .

(2) Omvänt, antag att U = V + W och  $V \cap W = \{0\}$ . Låt  $\mathbf{u} \in U$  och antag att vi på två sätt kan skriva  $\mathbf{u} = \mathbf{v}_1 + \mathbf{w}_1 = \mathbf{v}_2 + \mathbf{w}_2$ . Då är  $\mathbf{x} := \mathbf{v}_1 - \mathbf{v}_2 = \mathbf{w}_2 - \mathbf{w}_1$  ett element i  $V \cap W$  och alltså är  $\mathbf{x} = \mathbf{0}$ . Dvs  $\mathbf{v}_1 = \mathbf{v}_2$  och  $\mathbf{w}_1 = \mathbf{w}_2$  så dekompositionen är unik.

**Exempel 1.19** (Plan och linje). Låt  $V = \mathbb{R}^3$  och  $W_1 \subseteq V$  planet  $x_1 = 0$  och  $W_2 \subseteq V$  linjen  $x_2 = x_3 = 0$ . Vi har då att  $V = W_1 \oplus W_2$  som en inre direkt summa i och med att  $(x_1, x_2, x_3) = (0, x_2, x_3) + (x_1, 0, 0)$ . På samma sätt är  $V = W_1 \oplus W_2$  om  $W_1$  är ett godtyckligt plan och  $W_2$  en godtycklig linje som ej ligger i planet  $W_1$ .

**Exempel 1.20** (Jämna och udda polynom). Vektorrummet  $\mathbb{R}[x]$  är en inre direkt summa av  $\mathbb{R}[x]_{even}$  och  $\mathbb{R}[x]_{odd}$  ty  $p(x) = \frac{p(x) + p(-x)}{2} + \frac{p(x) - p(-x)}{2}$ . Unicitet följer av  $\mathbb{R}[x]_{even} \cap \mathbb{R}[x]_{odd} = \{0\}$ .

Notera att en bas för  $\mathbb{R}[x]_{even}$  är  $\{1, x^2, x^4, \dots\}$  och en bas för  $\mathbb{R}[x]_{odd}$  är  $\{x, x^3, x^5, \dots\}$ . Tillsammans utgör dessa en bas för  $\mathbb{R}[x]$ .

I allmänhet gäller att om  $\mathscr{B}$  en bas för V och  $\mathscr{D}$  är en bas för W så är  $U = V \oplus W$  om och endast om  $\mathscr{B} \cap \mathscr{D} = \emptyset$  och  $\mathscr{B} \cup \mathscr{D}$  är en bas för U.

**Exempel 1.21** (Symmetriska och anti-symmetriska matriser). Vektorrummet  $M_{n,n}(\mathbb{R})$  av  $n \times n$ -matriser är en direkt summa av delrummen av symmetriska matriser  $M_{n,n}^s(\mathbb{R})$  och anti-symmetriska matriser  $M_{n,n}^{as}(\mathbb{R})$ . Vi kan nämligen skriva varje matris A som en summa

$$A = \frac{A + A^T}{2} + \frac{A - A^T}{2}$$

av en symmetrisk och en anti-symmetrisk matris, och den enda matrisen som är både symmetrisk och anti-symmetrisk är noll-matrisen.

Låt V och W vara delrum av U. Då har vi en linjär avbildning (se nästa föreläsning)  $L: V \oplus W \to U$  definierad av  $L((\mathbf{v}, \mathbf{w})) = \mathbf{v} + \mathbf{w}$ . Följande sats förklarar varför vi har samma notation för både yttre och inredirekta summor.

**Sats 1.22** (Sadun, Thm. 2.12). *Avbildningen L*:  $V \oplus W \to U$  *ovan är en isomorfi om och endast om U är en inre direkt summa av V och W*.

Bevis. Att L är surjektiv betyder att U = V + W, dvs att varje vektor  $\mathbf{u}$  i U går att skriva (på minst ett sätt) som en summa  $\mathbf{v} + \mathbf{w}$  med  $\mathbf{v} \in V$  och  $\mathbf{w} \in W$ . Att L är injektiv betyder att varje vektor  $\mathbf{u}$  i U går att skriva på högst ett sätt som en summa  $\mathbf{v} + \mathbf{w}$ .

Anmärkning 1.23. Båda yttre och inre direkta summor kan generaliseras till godtyckligt antal summander om vi kräver att bara ett ändligt antal termer (element) får vara nollskilda.

$$\bigoplus_{i\in I} W_i \subseteq \prod_{i\in I} W_i \quad \text{och} \quad V = \bigoplus_{i\in I} W_i, \, \text{där } W_i \subseteq V$$

## BILAGA A. EXTRAMATERIAL TILL F1 (INGÅR EJ I KURSEN)

Varje vektorrum har en bas. För att se att varje vektorrum har en bas behövs Zorns lemma.

**Sats A.1** (Zorns lemma). I en icke-tom partialordnad mängd där varje kedja har en övre gräns finns minst ett maximalt element.

**Definition A.2.** En *partialordning* är en relation  $\leq$  som uppfyller

•  $a \le b$  och  $b \le c \implies a \le c$ 

(transitivititet)

•  $a \le b$  och  $b \le a \implies a = b$ 

(anti-symmetri)

 $\bullet$   $a \leq a$ 

(reflexivitet)

K är en kedja, eller en  $totalordnad\ delmängd$ , om antingen  $a \le b$  eller  $b \le a$  gäller för alla  $a,b \in K$ . Ett element b är en  $\ddot{o}vre\ gr\ddot{a}ns$  för en delmängd S om  $a \le b\ \forall a \in S$ . Ett element a är ett maximalt element om  $a \le b \Rightarrow a = b$ .

## Varje vektorrum har en bas.

**Sats A.3.** Varje vektorrum V har en bas  $\mathcal{B}$ .

Fyll i detaljerna i detta bevis själv.

- Låt S vara mängden av linjärt oberoende delmängder i V, partiellt ordnade under inklusion.
- Kontrollera att S uppfyller villkoret i Zorns lemma.
- Låt  $\mathcal{B}$  vara ett maximalt element i S.
- Kontrollera att  $\mathscr{B}$  måste vara en bas för V eftersom  $\mathscr{B}$  är maximalt element i S.

#### BILAGA B. KVOTRUM — ATT TAS UPP SENARE

**Kvotrum.** Detta material kommer tas upp senare. Läs gärna i förväg. Även i Sadun avsnitt 2.5.

**Definition B.1.** En *sidoklass* till ett delrum  $W \subseteq V$  är en delmängd på formen

$$\mathbf{x} + W = {\mathbf{x} + \mathbf{w} \colon \mathbf{w} \in W} \subseteq V$$

**Lemma B.2.** Sidoklasserna  $\mathbf{x} + W$  och  $\mathbf{y} + W$  sammanfaller om och endast om  $\mathbf{x} - \mathbf{y} \in W$ .

Bevis. Om  $\mathbf{x} - \mathbf{y} \in W$  och  $\mathbf{w} \in W$  så är  $\mathbf{x} + \mathbf{w} = \mathbf{y} + (\mathbf{x} - \mathbf{y} + \mathbf{w}) = \mathbf{y} + \mathbf{w}'$  och  $\mathbf{y} + \mathbf{w} = \mathbf{x} + (-(\mathbf{x} - \mathbf{y}) + \mathbf{w}) = \mathbf{x} + \mathbf{w}''$  för några  $\mathbf{w}', \mathbf{w}'' \in W$ . Alltså är  $\mathbf{x} + W = \mathbf{y} + W$ .

Omvänt om 
$$\mathbf{x} + W = \mathbf{y} + W$$
 så är  $\mathbf{x} + \mathbf{0} = \mathbf{y} + \mathbf{w}$  för något  $\mathbf{w} \in W$  och alltså  $\mathbf{x} - \mathbf{y} = \mathbf{w} \in W$ .

Det följer att om  $\mathbf{x} \in \mathbf{y} + W$  så är  $\mathbf{x} + W = \mathbf{y} + W$ . Observera att sidoklasser ej är delrum, förutom sidoklassen  $\mathbf{0} + W = W$ , eftersom ett delrum alltid innehåller vektorn  $\mathbf{0}$ .

Man kan också införa en *ekvivalensrelation* på V genom att definiera att två vektorer  $\mathbf{x}$  och  $\mathbf{y}$  är ekvivalenta, vilket skrivs som  $\mathbf{x} \sim \mathbf{y}$ , om  $\mathbf{x} - \mathbf{y} \in W$ . *Ekvivalensklassen* till  $\mathbf{x}$  betecknas  $[\mathbf{x}]$  och består av alla vektorer  $\mathbf{y}$  som är ekvivalenta med  $\mathbf{x}$ . Enligt ovan är alltså  $[\mathbf{x}] = \mathbf{x} + W$ . När man skriver  $[\mathbf{x}]$  istället för  $\mathbf{x} + W$  behöver det framgå från sammanhanget vilket delrum kvoten avser.

Sidoklasserna/ekvivalensklasserna partitionerar V, dvs varje element x tillhör exakt en klass.

**Definition B.3.** Om  $W \subseteq V$  är ett delrum är *kvotrummet*, V/W, det vektorrum vars element är sidoklasser till W och där addition och multiplikation med skalär ges av

- $\bullet (\mathbf{x} + W) + (\mathbf{y} + W) = (\mathbf{x} + \mathbf{y}) + W$
- $\bullet$   $a(\mathbf{x} + W) = (a\mathbf{x}) + W$ .

Anmärkning B.4. Vi måste kontrollera att addition och multiplikation med skalär inte beror på val av representant  $\mathbf{x}$  för sidoklassen  $\mathbf{x}+W$ . Om  $\mathbf{x}+W=\mathbf{x}'+W$  och  $\mathbf{y}+W=\mathbf{y}'+W$  så är  $\mathbf{x}-\mathbf{x}'\in W$  och  $\mathbf{y}-\mathbf{y}'\in W$  enligt lemmat. Alltså är  $(\mathbf{x}+\mathbf{y})+W=(\mathbf{x}'+\mathbf{y}')+(\mathbf{x}-\mathbf{x}')+(\mathbf{y}-\mathbf{y}')+W=(\mathbf{x}'+\mathbf{y}')+W$ . På samma sätt är  $(a\mathbf{x})+W=a\mathbf{x}'+a(\mathbf{x}-\mathbf{x}')+W=(a\mathbf{x}')+W$ .

Anmärkning B.5. Sidoklasserna är delmängder (ej delrum) till V men kvoten V/W är **inte** en delmängd av V. Det finns däremot en linjär avbildning  $V \to V/W$  som skickar  $\mathbf{x}$  på  $\mathbf{x} + W$ .

Nollan i kvoten V/W ges av sidoklassen  $\mathbf{0} + W$  och  $\mathbf{x} + W = \mathbf{0} + W$  betyder att  $\mathbf{x} \in W$ . Alltså identifieras alla element i W med  $\mathbf{0}$  genom att bilda kvoten V/W.

**Exempel B.6.** Betrakta linjen  $L = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$  i  $\mathbb{R}^2$ . Då är  $\mathbb{R}^2/L$  mängden av linjer som är parallella med L. Nollan i kvotrummet består av linjen genom i origo (dvs L). Varje linje parallell med L kan skrivas som y = 2x + m. Vi kan alltså identifiera  $\mathbb{R}^2/L$  med  $\mathbb{R}$  genom  $\{y = 2x + m\} \subset \mathbb{R}^2 \leftrightarrow \{m \in \mathbb{R}\}$ .

Om  $M \neq L$  är en linje genom origo så skär varje linje parallell med L linjen M i en unik punkt. På så sätt kan vi också identifiera varje punkt i  $\mathbb{R}^2/L$  med en punkt på M. Andra linjer ger andra identifikationer. Om vi betraktar  $\mathbb{R}^2$  med den vanliga inre produkten så är ett naturligt val  $M = L^{\perp}$  — linjen vinkelrät mot L.

**Exempel B.7** (Kvot). Låt  $V = \mathbb{R}^3$  och  $W \subseteq V$  planet  $x_1 = 0$ . Sidoklasserna är då plan parallella med detta med  $x_1 = a$  för alla olika a. Kvoten V/W blir isomorf med  $\mathbb{R}$  genom att identifiera varje plan med sin första koordinat.

Liksom förut kan vi också identifiera planet  $x_1 = a$  med skärningen med linjen (t,0,0), alltså (a,0,0). Andra linjer ger andra identifikationer.