

BLANK PAGE

Indian Standard

GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART V COMPLIANCE TEST PLANS FOR SUCCESS RATIO

UDC 621.31+621.38.038:621-192:620.113.2

© Copyright 1981

INDIAN STANDARDS INSTITUTION
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

Indian Standard

GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART V COMPLIANCE TEST PLANS FOR SUCCESS RATIO

Reliability of Electronic and Electrical Components and Equipment Sectional Committee, LTDC 3

Chairman

PROF S. SAMPATH
(Union Public Service Commission, New Delhi)

Members

Representing

Brig R. C. Dhingra Ministry of Defence (DGI) Lt-Col V. K. Khanna (Alternate)

DIRECTOR, STANDARDS (S&T), Railway Board (Ministry of Railways)
RDSO

JOINT DIRECTOR STANDARDS

(S&T)-II, RDSO (Alternate I) JOINT DIRECTOR ELECTRICALS

JOINT DIRECTOR ELECTRICALS
(MRS), RDSO (Alternate II)

DR P. K. DUTTA Peico Electronics and Electricals Ltd, Bombay SHRI S. P. KULKARNI (Alternate)

SHRI B. P. GHOSH

National Test House, Calcutta

SHRI B. C. MUKHERJEE (Alternate)

SHRI A. P. GUPTA Instrumentation Ltd, Kota

SHRI I. S. SULAKH (Alternate)

SHRI H. S. JOLLY All India Radio, New Delhi SHRI N. J. NAIR (Alternate)

SHRI K. KRISHMASWAMY Hindustan Aeronautics Ltd, Hyderabad

SQN-LDR I. M. GANDOTRA (Alternate)

Shri S. P. Kulkarni The Radio Electronic & Television Manufacturers' Association, Bombay

SHRI S. M. KHURSALE (Alternate)

Manager (Standardization) Tata Engineering & Locomotive Co Ltd,

Jamshedpur

ASSISTANT MANAGER
(STANDARDIZATION) (Alternate)

Shri H. C. Mathur Posts and Telegraphs Board, New Delhi Shri U. R. G. Acharya (Alternate)

(Continued on page 2)

© Copyright 1981

INDIAN STANDARDS INSTITUTION

This publication is protected under the *Indian Copyright Act* (XIV of 1957) and reproduction in whole or in part by any means except with written permission of the publisher shall be deemed to be an infringement of copyright under the said Act.

IS: 8161 (Part V) - 1981

(Continued from page 1)

Members

SHRIS. R. MEHTA

SHRI T. C. GOSALIA (Alternate) Dr. K. B. MISRA

Representing

Indian Electrical Manufacturers' Association, Bombay

In personal capacity (Department of Electrical Technology, Engineering, Indian Institute of Kharagbur)

Department of Electronics, New Delhi SHRI E. G. NAGARAJAN Lucas-TVS Ltd, Madras SHRIK, R. ANANDAKUMARAN NAIR

SHRI C. RANGANATHAN (Alternate)

Bhabha Atomic Research Centre, Trombay, SHRI D. V. PETKAR Bombay

SHRI A. K. BABAR (Alternate) SHRI K. S. PRAKASA RAO SHRI S. S. SONWALKAR (Alternate)

SHRI P. S. K. PRASAD SHRI K. RAMGOPAL

SHRI SIHARAN DE (Alternate)

SHRI R. SOMASUNDARAM

SHRI I. C. MATHUR (Alternate) SHRI K. N. TIWARI

SHRI P. K. SHUKLA (Alternate)

SHRI B. VIRESALINGAM SHRI V. MUTHAIAH (Alternate)

SHRI VISWA NATH SHRI C. D. GUPTA

Dr R. P. Wadhwa SHRI R. C. JAIN,

Head (Electronics). (Secretary)

Electronics Corporation of India Ltd, Hyderabad

Bharat Electronics Ltd, Bangalore ISRO Satellite Centre (ISAC), Bangalore

Directorate of Technical Development Production (AIR), Ministry of Defence

Ministry of Defence (R & D)

Indian Telephone Industries Ltd, Bangalore

Directorate General of Civil Aviation, New Delhi

National Physical Laboratory (CSIR), New Delhi Director General, ISI (Ex-officio Member)

Study of Statistical Problems of Reliability of Electronic and Electrical Items Subcommittee, LTDC 3:1

Convener

DR P. K. DUTTA

Members

LT-COL V. K. KHANNA MAJ S. P. MURGAI (Alternate)

SHRI V. NARAYANA SHRIP, S. K. PRASAD SHRIK. RAMGOPAL

DR S. M. SINHA DR Y. V. SOMAYAJULU

SHRI V. N. SHARMA (Alternate)

SHRI K. N. TIWARI SHRI P. K. SHUKLA (Alternate) Peico Electronics & Electricals Ltd, Bombay

Ministry of Defence (DGI)

Indian Statistical Institute, Calcutta Bharat Electronics Ltd, Bangalore ISRO Satellite Centre (ISAC), Bangalore Faculty of Mathematics, University of Delhi National Physical Laboratory (CSIR), New Delhi

Ministry of Defence (LCSO)

Indian Standard

GUIDE FOR EQUIPMENT RELIABILITY TESTING

PART V COMPLIANCE TEST PLANS FOR SUCCESS RATIO

0. FOREWORD

- **0.1** This Indian Standard (Part V) was adopted by the Indian Standards Institution on 21 April 1981, after the draft finalized by the Reliability of Electronic and Electrical Components and Equipment Sectional Committee had been approved by the Electronics and Telecommunication Division Council.
- 0.2 This standard which deals with the reliability requirements when these are expressed as a success ratio is the fifth in the series of Indian Standards for equipment reliability testing. To be able to write a detailed reliability test specification and perform a reliability test, the test engineer will need additional information which are dealt with in detail in other standards in this series. A list of standards envisaged in this series some of which are under consideration is given on page 14.
- 0.3 This standard is based on IEC Document 56 (Central Office) 74 Draft-Equipment reliability testing: Part 5 Compliance test plans for success ratio' issued by the International Electrotechnical Commission.
- **0.4** This standard is one of a series of Indian Standards on reliability of electronic and electrical components and equipment.
- 0.5 For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS: 2-1960*. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.

1. SCOPE

1.1 This standard (Part V) covers reliability requirements when these are expressed as a success ratio.

^{*}Rules for rounding off numerical values (revised).

IS: 8161 (Part V) - 1981

1.2 The test plans given in this standard are applicable to reusable as well as non-reusable (one-shot) devices. Reusable devices may be repaired between successive trials, provided that the state and performance are the same at the start of all trials. For non-reusable devices, one test item is used for each trial.

Note — These plans are based on the assumption that each trial is statistically independent.

2. TERMINOLOGY

- 2.0 For the purpose of this standard, the terms and definitions covered in IS: 1885 (Part XXXIX)-1979* shall apply in addition to the following.
- 2.1 Specified Success Ratio This is the probability, that an item will perform a required function, or a trial will be successful, under stated conditions.
- 2.2 Observed Success Ratio This is the ratio of the number of non-failed items or trials at the completion of testing to the total number of test items or occasions of trial.
- **2.3 Producer's Risk** The probability of rejection if the equipment has the acceptance value of the specified reliability characteristic.
- **2.4 Consumer's Risk** The probability of acceptance if the equipment has the unacceptable value of the specified reliability characteristic.

3. LIST OF SYMBOLS

3 1 The characteristice and sumbale used in this standard are:

axis of the sequential test diagram (see Fig. 1)

 n_t = fixed number of trials required for acceptance

 n_s = accumulated number of trials in a sequential test plan

 n_t = number of trials at truncation (see Fig. 1)

= accumulated number of failures

 r_{Re} = number of failures for rejection

 $r_{\rm t}$ = number of failures at truncation (see Fig. 1)

R = true value of success ratio

 R_0 = acceptable value of success ratio

 R_1 = unacceptable value of success ratio

^{*}Electrotechnical vocabulary: Part XXXIX Reliability of electronic and electrical items (first revision).

- s = slope of accept and reject lines in the sequential test diagram (see Fig. 1)
- $\alpha = (\text{nominal})$ producer's risk, that is, probability of rejection when $R = R_0$
- β = (nominal) consumer's risk, that is, probability of acceptance when $R = R_1$

 $D_{\mathrm{R}} = \left[\frac{1-R_{\mathrm{1}}}{1-R_{\mathrm{0}}}\right]$ discrimination ratio associated with success ratio

Fig. 1 Example of a Truncated Sequential Test

4. STATISTICAL TEST PLANS AND GENERAL TEST PROCEDURE

- 4.1 Test plans are given for two types of tests:
 - a) Truncated sequential tests, and
 - b) Fixed number of trials.

IS: 8161 (Part V) - 1981

- **4.1.1** A trial is defined as the operation or cycle described in the detailed reliability test specification that is to be applied to the test item(s).
- **4.2** These plans are based on the binomial distribution and characterized by the parameters R_0 , D_R , α and β . The true producer's and consumer's risks for the test plans differ slightly from the nominal characteristics α and β due to the necessary approximations to whole numbers and to the truncation of the sequential tests.
- 4.3 The detailed reliability test specification shall state which type of test and test plan are to be used. Guidance for the choice of type of test is similar to that given in 8.4 of IS: 8161 (Part I)-1976* for truncated sequential and time/failure terminated tests when the reliability characteristic is a function of time.
- 4.4 The test items shall be subjected to the number of trials according to the relevant test plan. For reusable and/or repairable devices, the detailed reliability test specifications should preferably state the number of test items as well as the maximum number of trials for each test item. The total number of possible trials shall suit the test plan used. The number of relevant failures [see 10.2 of IS: 8161 (Part I)-1976*] is counted and compared with the decision criteria of the test plan.

5. TRUNCATED SEQUENTIAL TEST PLANS

5.1 Table 1 gives the appropriate test plans for various values of the specified R_0 , D_R , α and β . The table contains parameter values of h, s, n_t , r_t for each test plan, the meanings of which are shown in Fig. 1. Criteria are based on the following bases:

Accept when $r \leq sn_s - h$ Reject when $r \geq sn_s + h$ Continue when $sn_s - h < r < sn_s + h$

5.1.1 The sequential test plans shall be truncated at lines based on the values given in Table 1. The accept/reject criteria are thereby completed by the following bases:

Accept when $r < r_t$ at $n_s = n_t$ Reject when $r > r_t$

5.1.2 The accumulated results are checked against criteria after each trial, and if the test is to continue, another trial is performed.

Note — The truncation affects the true values of α and β . However, the truncation values of Table 1 are chosen so that the maximum true values of α and β are less than 0.055, 0.105, 0.205 and 0.305 for normal values 0.05, 0.10, 0.20 and 0.30 respectively. The truncation values were obtained from a computer programme which calculated the actual values of α and β for increasing values of n_t and r_t until the maximum values were within the above stated bounds.

^{*}Guide for equipment reliability testing: Part I Principles and procedures.

5.2 Operating Characteristic Curve

5.2.1 For any of the truncated sequential tests, the following approximate points on the operating characteristic (OC) curve (see Fig. 2) are given.

True Success Ratio R	PROBABILITY OF ACCEPTANCE			
1.0	1.0			
R_0	1 — a			
1-s	0.5			
R_1				
0	0			

Fig. 2 Operating Characteristic Curve

5.3 Expected Number of Trials to Decision

5.3.1 For any of the truncated sequential test plans, the following approximate points may be determined for the curve of the expected number of trials to decision versus the true success ratio (see Fig. 3).

IS: 8161 (Part V) - 1981

TRUE SUCCESS RATIO, R	EXPECTED NUMBER OF TRIALS, n ₈
1.0	_hs
R_0	$\frac{h(1-2\alpha)}{s-(1-R_0)}$
(1-s)	$\frac{h^2}{s(1-s)}$
R_1	$\frac{h(1-2\beta)}{(1-R_1)-s}$
0	$\frac{h}{1-s}$

Fig. 3 Curve of Expected Number of Trials

5.4 Alternate Test Plans

5.4.1 If test plans are needed that are not given in Table 1, the values of s and h may be evaluated by the following equations which are valid only when $\alpha = \beta$.

$$s = \frac{\log_{e}\left(\frac{R_{o}}{R_{t}}\right)}{\log_{e}\left(\frac{R_{o}}{R_{1}}\right) - \log_{e}\left(\frac{1 - R_{o}}{1 - R_{1}}\right)}$$
$$h = \frac{\log_{e}\left(\frac{1 - \beta}{\alpha}\right)}{\log_{e}\left(\frac{R_{o}}{R_{1}}\right) - \log_{e}\left(\frac{1 - R_{o}}{1 - R_{1}}\right)}$$

5.4.2 Truncation values may be interpolated from values within the table and should not be extrapolated beyond the ranges of R_0 , D, α and β in Table 1.

6. TEST PLANS FOR FIXED NUMBER OF TRIALS

6.1 Table 2 gives the appropriate test plans for various values of the specified R_0 , D_R , α and β . The table contains the number of trials, n_t , required to make an accept decision and the number of failures, r_{Re} , for a reject decision.

Example:

 $R_0=0.99$, $D_R=3.0$ ($R_1=0.97$). $\alpha=\beta=0.10$. From Table 2 a number of trials $n_1=308$ would be required and a reject decision is made if $r_{Re}=6$ or more failures are observed.

6.2 Indian Standard Sampling plans and procedures for inspection by attributes for electronic items (under preparation) may be used for compliance test plans for success ratio. They are, however, not based on fixed risks. If this standard is used as a basis for reliability testing, the test plans have the producer's risk range from 0.01 to 0.20 and the specified success ratio R_0 is equal to one minus the AQL (Acceptable Quality Level). The test plans give the required number of trials (sample size) and the acceptance and rejection numbers for a large number of test plans. This standard does not generally use the consumer's risk as a basis for determining the number of trials.

10

TABLE 1 TRUNCATED SEQUENTIAL TESTS

(Clauses 5.1, 5.1.1, 5.1.2, 5.4.1 and 5.4.2)

_				•		, 5.1.1, 5.	•		J.4.4 j					
Ro	DR	S	α ==	$\beta = 0$	-05	α =	$\beta = 0$	0.10	α =	$\beta =$	0.20	α =	β ==	0.30
			h	$n_{\mathbf{t}}$	rt	h	пt	$r_{\rm t}$	$\frac{a}{h}$	nt	rt		nt	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
0.999 5	1.50	0.000 62	7.257 4	207 850	122	5.415 7	125 370	73	3.4169	50 249	29	2.088 4	17 641	10
	1.75	0.000 67	5.258 0	97 383	60	3.923 7	58 035	36	2.475 6	22 665	14	1.513 1	3 201	5
	2·00 3·00	0·000 72 0·000 91	4·244 9 2·677 7	57 176 17 223	38 14	3·167 6 1·998 2	33 121 9 873	22 8	1·998 6 1·260 7	13 361 3 434	9 3	1·221 5 0·770 5	4 396 1 945	$\frac{3}{2}$
	J 00	0 000 31	2 077 7	17 223	14	1 930 4	3 0/3	0	1 200 /	3 737	J	0 770 3	1 343	4
0.999 0	1.50	0.001 23	7.252 9	102 220	121	5.412 3	61 291	72	3.4148	25 125	29	2.087 1	8 819	10
	1.75	0.001 34	5.254 5	47 677	60	3.921 0	29 040	36	2.473 9	11 334	14	1.512 0	4 093	5
	2·00 3·00	0.001 44 0.001 82	4·241 8 2·675 3	28 536 8 609	38 14	3·165 4 1·996 4	16 563 4 932	22 8	1·997 1 1·259 6	6 930 1 718	9 3	1.220 6 0.769 8	2 197 973	3 2
	3 00	0 001 02	2 073 3	0 003	1.1	1 330 T	7 334	U	1 433 0	1 /10	J	0 703 0	313	4
0.995	1.50	0.006 17	7.217 1	20 038	119	5.385 6	12 037	71	3.397 9	5 025	29	2.0768	1 766	10
	1.75	0.006 70	5.226 3	9 269	59	3.900 0	5 561	35	2.460 6	2 269	14	1.503 9	817	5
	2·00 3·00	0·007 22 0·009 11	4·217 3 2·655 7	5 458 1 540	37 13	3·147 1 1·981 8	3 296 971	22 8	1.985 6 1.250 4	1 384 342	9 3	1·213 6 0·764 2	439 194	3 2
	3 00	0 003 11	2 033 7	1 340	13	1 901 0	9/1	0	1.230 4	344	3	0.704.2	194	2
3.990	1 50	0.012 33	7·172 3	9 803	117	5.352 2	5 912	70	3.376 9	2 508	29	2.063 9	883	10
	1.75	0.013 41	5.191 0	4 530	58	3.873 7	2 765	35	2.444 0	1 129	14	1.4938	406	5
	2·00 3·00	0·014 44 0·018 24	4·186 6 2·631 3	2 634 767	36 13	3·124 2 1·963 5	1 638 482	22 8	1.971 1	691		1.204 7	220	3
	3 00	0 010 24	2 031 3	767	13	1 903 3	482	ö	1.238 8	173	3	0.757 2	97	2
0.980	1.50	0.024 67	7· 0 82 7	4 713	113	5·285 3	2 856	68	3.334 7	1 196		2.038 1	439	10
	1.75	0.026 82	5.120 4	2 169	56	3.821 0	1 329	34	2.410 8	560		1.473 5	204	5
	2·00 3·00	0·028 89 0·036 55	4·125 2 2·582 2	1 263 374	35 13	3·078 4 1·926 9	767 234	21 8	1·942 2 1·215 7	340 83		1·187 1 0·743 1	108 48	$\frac{3}{2}$
	3 00	0 030 33	2 302 2	3/4	13	1 920 9	234	0	1.713 /	03	Э	0.743 1	40	4
0.970	1.50	0.037 01	6.993 1	3 015	109	5.218 4	1 833	66	3.292 5	760		2.0123	291	10
	1.75	0.040 25	5.049 8	1 389	54	3.768 3	827		2.377 5	371		1.453 1	134	5
	2·00 3·00	0·043 36 0·054 93	4·063 7 2·532 9	817 228	$\frac{34}{12}$	3·032 5 1·890 1	481 152	20 8	1·913 3 1·192 5	193 57		1·169 4 0·728 9	73 32	$\frac{3}{2}$
	3 00	0 034 33	2 332 3	440	14	1 090 1	134	0	1 194 3	37	3	0 720 9	32	4
0.960	1.50	0.049 36	6.903 4	2 220	107	5.151 5	1 356		3.2503	571		1.986 5	216	10
	1.75	0.053 69	4.979 1	1 017	53	3.715 5	619		2.344 2	255		1.4328	101	5
	2·00 3·00	0·057 85 0·073 39	4·002 2 2·483 5	589 170	33 12	2·986 5 1 853 2	361 99		1.884 3	146		1.151 7	55	3
	5 00	0 0/3 39	4 403 3	170	12	1 000 2	99	7	1.1693	43	3	0.7146	24	2

0.950	1 50 1·75 2 00 3·00	0·067 14 0·072 36	4·908 3 3·940 6	1 721 781 455 133	105 51 32 12	3.662 7 2.940 6	1 047 476 286 79	63 31 20 7	2·310 9 1·855 3	436 201 116 32	26 13 8 5	1·960 7 1·412 4 1·133 9 0·700 3	176 79 43 19	10 5 3 2
0.940	1·50 1·75 2·00 3 00	0.080 60	4·837 5 3·878 8	1 419 636 366 103	103 50 31 11	5·017 6 3·609 9 2·894 5 1·778 9	857 383 238 62	62 30 20 7	3·165 8 2·277 6 1·826 2 1·122 3	363 167 94 26	26 13 8 3	1.934 9 1.392 0 1.116 2 0.686 0	126 65 36 16	9 5 3 2
0.93)	1·50 1·75 2·00 3·00	0·086 43 0·094 07 0·101 44 0·129 30	4·766 6 3·817 0	1 177 533 303 86	100 49 30 11	4·950 6 3·557 0 2·848 4 1·741 4	722 327 192 54	61 30 19 7	3·123 5 2·244 2 1·797 1 1·098 7	299 143 82 23	25 13 8 3	1·909 1 1·371 6 1·098 4 0·671 5	108 56 31 13	9 5 3 2
0.920	1·50 1·75 2·00 3·00	0.988 0 0.107 55 0.116 02 0.148 14	3.755 1	1 008 455 264 74	98 48 30 11	4·883 6 3·504 0 2·802 2 1·703 7	609 276 158 46	59 30 18 7	3·081 2 2·210 8 1·768 0 1·074 9	249 115 70 19	24 12 8 3	1.883 2 1.351 2 1.080 6 0.657 0	93 49 26 11	9 5 3 2
0.910	1·50 1·75 2·00 3·00	0·111 17 0·121 05 0·130 62 0·167 09	6·454 6 4·624 6 3·693 1 2·232 3	881 395 234 64	86 47 30 11	4·816 6 3·451 0 2·755 9 1·665 8	589 236 132 39	57 29 17 6	3·038 9 2·177 4 1·738 8 1·051 0	220 102 63 17	24 12 8 3	1·857 4 1·330 8 1·062 7 0·642 4	85 43 22 10	9 5 3 2
0.900	1·50 1·75 2·00 3·00	0·123 55 0·134 56 0·145 24 0·186 17	6·36‡ 7 4·553 5 3·630 9 2·181 2	772 343 204 54	85 46 28 10	4·749 5 3·398 0 2·709 5 1·627 7	461 212 119 32	56 28 17 6	2·996 6 2·143 9 1·709 5 1·026 9	190 92 49 15	23 12 7 3	1·831 5 1·310 3 1·044 8 0·627 7	75 38 20 9	9 5 3 2
0.850	1·50 1·75 2·00 3·00	0·185 55 0·202 36 0·218 82 0·283 79	5·914 4 4·196 8 3·318 4 1·919 5	457 204 115 31	84 41 25 9	4·413 5 3·131 8 2·476 3 1·432 4	278 119 69 19	51 24 15 6	2·784 6 1·975 9 1·562 4 0·903 8	114 55 31 -9	21 11 7 3	1·702 0 1·207 7 0·954 9 0·552 4	53 21 13 6	8 4 3 2
0.800	2.00	0·247 74 0·270 63 0·293 30 0·386 85	5·462 8 3·837 6 3·002 0 1·643 3	304 137 78 17		4·076 5 2·863 7 2·240 2 1·226 3	187 81 44 12	46 22 13 5	2·572 0 1·806 8 1·413 4 0·773 7	77 36 20 5	19 10 6 2	1·572 0 1·104 3 0·863 9 0·472 9	28 13 10 4	7 4 2 2

IS: 8161 (Part V) - 1981

				(Clause 6.	1)				
$R_{\rm O}$ $D_{\rm R}$		$\alpha = 0$		$ \alpha = 0 \\ \beta = 0 $		$\alpha = 0$		$\begin{array}{c} \alpha = 0.30 \\ \beta = 0.30 \end{array}$	
		$n_{\rm f}$	r_{Re}	nf	$r_{\rm Re}$	$n_{\rm f}$	$r_{\rm Re}$	$n_{\rm f}$	$r_{ m Re}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0 ·999 5	1·50	108 002	67	65 849	41	28 584	18	10 814	7
	1·75	51 726	35	32 207	22	14 306	10	5 442	4
	2·00	31 410	23	20 125	15	9 074	7	3 615	3
	3·00	10 467	10	6 181	6	2 852	.3	1 626	2
0·999 0	1·50	53 998	67	32 922	41	14 291	18	5 407	7
	1·75	25 861	35	16 102	22	7 152	10	2 721	4
	2:00	15 703	23	10 061	15	4 537	7	1 807	3
	3·00	5 232	10	3 090	6	1 426	3	813	2
0 ·995 0	1·50	10 647	66	6 851	41	2 857	18	1 081	7
	1·75	5 168	35	3 218	22	1 429	10	544	4
	2·00	3 137	23	1 893	14	906	7	361	3
	3·00	1 044	10	617	6	285	3	162	2
0·990 0	1.50	5 320	66	3 215	40	1 428	18	540	7
	1.75	2 581	35	1 607	22	714	10	272	4
	2.00	1 567	23	945	14	453	7	180	3
	3.00	521	10	308	6	142	3	81	2
0.980 0	1·50	2 620	65	1 605	40	713	18	270	7
	1·75	1 288	35	770	21	356	10	136	4
	2·00	781	23	471	14	226	7	90	3
	3·00	259	10	153	6	71	3	40	2
0·970 0	1·50	1 720	64	1 044	39	450	17	180	7
	1·75	835	34	512	21	237	10	90	4
	2·00	519	23	313	14	150	7	60	3
	3·00	158	9	101	6	47	3	27	2
0.960 0	1·50	1 288	64	782	39	337	17	135	7
	1·75	625	34	383	21	161	9	68	4
	2·00	374	22	234	14	98	6	45	3
	3·00	117	9	76	6	35	3	20	2
0.950 0	1·50	1 014	63	610	38	269	17	108	7
	1·75	486	33	306	21	129	9	54	4
	2·00	298	22	187	14	78	6	36	3
	3·00	93	9	60	6	28	3	16	2
0.940 0	1·50 1·75 2·00 3·00	832 404 248 77	62 33 22 9	508 244 155 50	38 20 14 6	224 107 65 23	17 9 6 3	90 45 30 13 (Cont	7 4 3 2

IS: 8161 (Part V) - 1981

TABLE 2 FIXED NUMBER OF TRIALS — Contd										
R_{O}	$D_{\mathbf{R}}$	$\begin{array}{l} \alpha = 0.05 \\ \beta = 0.05 \end{array}$		$\alpha = \beta = \beta$		$\alpha = 0$ $\beta = 0$		$\begin{array}{l} \alpha = 0.30 \\ \beta = 0.30 \end{array}$		
		$n_{\rm f}$	r _{Re}	nf	rRe	nf	rRe	$n_{\rm f}$	rRe	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
0.930 0	1.50	702	61	424	37	192	17	77	7	
	1.75	336	32	208	20	92	9	38	4	
	2 00	203	21	125	13	55	6	25	3 2	
	3.00	66	9	42	6	20	3	11	2	
0.920 0	1.50	613	61	371	37	168	17	67	7	
	1.75	294	32	182	20	80	9	34	4	
	2.00	117	21	109	13	48	6	22	3 2	
	3.00	5 7	9	37	6	17	3	10	2	
0.910 0	1.50	536	60	329	37	149	17	60	7	
	1.75	253	31	154	19	71	9	30	4	
	2.00	157	21	96	13	43	6	20	3	
	3.00	51	9	33	6	15	3	9	2	
0.900 0	1.50	474	59	288	36	134	17	53	7	
	1.75	227	31	138	19	64	9	27	4	
	2.00	135	20	86	13	39	6	18	3 2	
	3.00	41	8	25	5	14	3	8	2	
0.850 0	1.50	294	55	181	34	79	15	35	7	
	1.75	141	29	87	18	42	9	18	4	
	2.00	85	19	53	12	21	5 3	12	3	
	3.00	26	8	16	5	9	3	5	3 2	
0.800 0	1.50	204	51	127	32	55	14	26	7	
	1.75	98	27	61	17	28	9	13	4	
	2.00	60	18	36	11	19	6	9	3	
	3.00	17	7	9	4	4	2	4	2	

INDIAN STANDARDS

ON

EQUIPMENT RELIABILITY TESTING

IS:

8161 Guide for equip	oment reliability testing:
(Part I)-1976	Principles and procedures
(Part II)	Design for test cycles (under preparation)
(Part III)	Preferred test conditions for equipment reliability testing ($under\ consideration$)
(Part IV)	Procedures for determining point estimates and confidence limits from equipment reliability determination tests (under consideration)
(Part V)-1981	Compliance test plans for success ratio
(Part VI)	Tests for the validity of a constant failure rate assumption (under preparation)
(Part VII)-1977	Compliance test plans for failure rate and mean time between failures assuming constant failure rate
(Part VIII)	Tests for the validity of a non-constant failure rate assumption (under consideration)
(Part IX)	Compliance tests plans assuming Weibull distribution of times to failure (under consideration)
(Part X)	Compliance test plans assuming normal distribution of times to failure (under consideration)
(Part XI)	Flow chart describing preparations for and execution of reliability tests