Liz Lyon Chapman University

E-COMMERCE ANALYSIS

CUSTOMER SEGMENTS

MONTHLY TRAFFIC

https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset

CONSUMPTION BEHAVIOR

https://archive.ics.uci.edu/ml/datasets/Online+Shoppers+Purchasing+Intention+Dataset

LET'S DISCUSS — AND ANALYZE

Question 1

Which variables have the strongest impact on a successful customer transaction (Revenue column)?

Question 2

Are there any definitive clusters between the ExitRate and BounceRate columns? If so, are there any outliers?

Question 3

Are there any methods to reduce the dimensionality of the continuous variables in your data set? If so, which method, how can you tell, and how many variables do you need to retain 80% of the original variance?

Which variables have the strongest impact on a successful customer transaction (Revenue column)?

Methods:

- Separated X & Y
- 20/80 TTS
- Z-scored
- Logistic Regression Model
- Predicted Vals
- Accuracy Score
- Confusion Matrix
- Coefs in Odds

Q1) Findings

Accuracy score: 0.8860502838605029

Confusion matrix:

Coefs:

	Coefs	Names	Odds Coefs
0	-0.003486	Administrative	0.996520
1	-0.023688	Administrative_Duration	0.976591
2	0.053742	Informational	1.055213
3	-0.002796	Informational_Duration	0.997208
4	0.110005	ProductRelated	1.116284
5	0.118537	ProductRelated_Duration	1.125849
6	-0.089224	BounceRates	0.914641
7	-0.882084	ExitRates	0.413919
8	1.453265	PageValues	4.277055
9	-2.250173	intercept	0.105381

Q1) GGPlot

Q1) GGPlot

greatest impact

Are there any definitive clusters between the ExitRate and BounceRate columns? If so, are there any outliers?

Methods:

- Create DF
- Z-scored
- Mins & Eps using Elbow Method
- DBSCAN
- Silhouette Score

Q2) GGPlot

eps = 0.50, min_samples = 150

Q2) GGPlot & Findings

clustered silhouette score: 0.7704227278237737 overall silhouette score: 0.7665787790290162

Are there any methods to reduce the dimensionality of the continuous variables in your data set? If so, which method, how can you tell, and how many variables do you need to retain 80% of the original variance?

Methods:

- Selected predictor columns
- Z-scored
- PCA
- DF of PC's
- Scree & 80% Variance Plot
- Logistic Regression
- PC score

Q3) GGPlot

Q3) GGPlot & Findings

All data: 0.884022708840227 6 PCs: 0.8816707218167072 4 PCs: 0.8814274128142742

EXEC SUMMARY

Finding 1

The variables that are positively impactful on Revenue include Informational, ProductRelated, ProductRelated_Duration, PageValues. In terms of Odds, PageValues is dominating.

Finding 2

DBSCAN picked up on 4 cluster groups and one data point classified as 'Noise'.

Finding 3

PCA was used to reduce variable dimensionality.

The 80% variance plot indicated that 4 PC's are needed to retain all information available within the dataset.

THE END THANKYOU