

COMP90038 Algorithms and Complexity

Lecture 9: Decrease-and-Conquer-by-a-Constant (with thanks to Harald Søndergaard)

Toby Murray

DMD 8.17 (Level 8, Doug McDonell Bldg)

http://people.eng.unimelb.edu.au/tobym

②tobycmurray

Decrease-and-Conquerby-a-Constant

- In this approach, the size of the problem is reduced by some **constant** in each iteration of the algorithm.
- A simple example is the following approach to sorting: To sort an array of length n, just
 - 1. sort the first n 1 items, then
 - 2. locate the cell that should hold the last item, shift all elements to its right to the right, and place the last element.

A:	23	9	52	12	41	83	46
	0	1	2	3	4	5	6

Sort first n-1 items

Sort first n-1 items

A:	9	12	23	41	52	83	46
	0	1	2	3	4	5	6

A:	9	12	23	41	52	83	46
	0	1	2	3	4	5	6

A:	9	12	23	41	46	52	83
	0	1	2	3	4	5	6

A:	9	12	23	41	52	83	46
	0	1	2	3	4	5	6

Insertion Sort

- Sorting an array A[0]..A[n 1]:
- To sort A[0] .. A[i] first sort A[0] .. A[i-1], then insert A[i] in its proper place

```
function INSERTIONSORT(A[\cdot], n)

for i \leftarrow 1 to n-1 do

v \leftarrow A[i]

j \leftarrow i-1

while j \geq 0 and v < A[j] do

A[j+1] \leftarrow A[j]

j \leftarrow j-1

A[j+1] \leftarrow v
```

Complexity of Insertion Sort MELBOURNE

- The for loop is traversed n 1 times. In the ith round, the test v < A[i] is performed i times, in the worst case.
- Hence the worst-case running time is

$$\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1$$

What does input look like in the worst case?

Complexity of Insertion Sort MELBOURNE

- The for loop is traversed n 1 times. In the ith round, the test v < A[i] is performed i times, in the worst case.
- Hence the worst-case running time is

$$\sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \sum_{i=1}^{n-1} i =$$

What does input look like in the worst case?

Complexity of Insertion Sort MELBOURNE

- The for loop is traversed n 1 times. In the ith round, the test v < A[i] is performed i times, in the worst case.
- Hence the worst-case running time is

$$\sum_{i=1}^{n-1} \sum_{i=0}^{i-1} 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

What does input look like in the worst case?

The Trick of Posting a Sentinel

 If we are sorting elements from a domain that is bounded from below, that is, there is a minimal element min, and the array A was known to have a free cell to the left of A[0], then we could simplify the test. Namely, we would place min (a sentinel) in that cell (A[-1]) and change the test from

$$j \ge 0$$
 and $v < A[j]$

to just

- That will speed up insertion sort by a constant factor.
- For this reason, extreme array cells (such as A[0] in C, and/or A[n + 1]) are sometimes left free deliberately, so that they can be used to hold sentinels; only A[1] to A[n] hold proper data.

Posting a Sentinel

Test required: $j \ge 0$ and v < A[j]

Posting a Sentinel

Test required: V < A[j]

Properties of Insertion Sort

- Easy to understand and implement.
- Average-case and worst-case complexity both quadratic.
- However, linear for almost-sorted input.
- Some cleverer sorting algorithms perform almost-sorting and then let insertion sort take over.
- Very good for small arrays (say, a couple of hundred elements).
- In-place?
- Stable?

Properties of Insertion Sort

- Easy to understand and implement.
- Average-case and worst-case complexity both quadratic.
- However, linear for almost-sorted input.
- Some cleverer sorting algorithms perform almost-sorting and then let insertion sort take over.
- Very good for small arrays (say, a couple of hundred elements).
- In-place? yes
- Stable?

Properties of Insertion Sort

- Easy to understand and implement.
- Average-case and worst-case complexity both quadratic.
- However, linear for almost-sorted input.
- Some cleverer sorting algorithms perform almost-sorting and then let insertion sort take over.
- Very good for small arrays (say, a couple of hundred elements).
- In-place? yes
- Stable?

key: 4	key: 3	key: 4	key: 3
val: ab	val: bc	val: de	val: fg
0	1	2	

key: 4 val: ab	key: 3 val: bc	key: 4 val: de	key: 3 val: fg
0	1	2	3

key: 3	key: 4	key: 4	key: 3
val: bc	val: ab	val: de	val: fg
0	1	2	

key: 3 val: bc	key: 4 val: ab	key: 4 val: de	key: 3 val: fg
0	1	2	3

key: 3	key: 3	key: 4	key: 4
val: bc	val: fg	val: ab	val: de
0	1	2	

Insertion Sort Stability

key: 3	key: 3	key: 4	key: 4
val: bc	val: fg	val: ab	val: de
0	1	2	

Stable

Properties of Insertion Sort

- Easy to understand and implement.
- Average-case and worst-case complexity both quadratic.
- However, linear for almost-sorted input.
- Some cleverer sorting algorithms perform almost-sorting and then let insertion sort take over.
- Very good for small arrays (say, a couple of hundred elements).
- In-place?
- Stable?

Properties of Insertion Sort

- Easy to understand and implement.
- Average-case and worst-case complexity both quadratic.
- However, linear for almost-sorted input.
- Some cleverer sorting algorithms perform almost-sorting and then let insertion sort take over.
- Very good for small arrays (say, a couple of hundred elements).
- In-place? yes
- Stable?

Properties of Insertion Sort

- Easy to understand and implement.
- Average-case and worst-case complexity both quadratic.
- However, linear for almost-sorted input.
- Some cleverer sorting algorithms perform almost-sorting and then let insertion sort take over.
- Very good for small arrays (say, a couple of hundred elements).
- In-place? yes
- Stable? yes

A:	9	8	7	6	5	4	3
	0	1	2	3	4	5	6

It would be better if we could move the 9, 8, etc. to the right faster

Sort the yellow entries

Sort the yellow entries

Sort the yellow entries

Sort the blue entries

Sort the blue entries

Sort the blue entries

Sort the pink entries

Sort the blue entries

Sort the pink entries

Sort the blue entries

Sort the pink entries

Notice how it is now almost sorted

Sort the blue entries

Sort the pink entries

Notice how it is now almost sorted

Now do a final round of insertion sort over the entire array

Sort the blue entries

Sort the pink entries

Notice how it is now almost sorted

Now do a final round of insertion sort over the entire array

Shellsort

- We just did a shellsort for k=3
- In general:
 - Think of the array as an interleaving of k lists
 - Sort each list separately using insertion sort
 - Then sort the resulting entire array using a final pass of insertion sort

Shellsort Passes and Gap Sequences

- For large files, start with larger k and then repeat with smaller ks
- It is common to start from somewhere in the sequence 1, 4, 13, 40, 121, 364, 1093, ... and work backwards.
 - what is the sequence?
- For example, for an array of size 20,000, start by 364-sorting, then 121-sort, then 40-sort, and so on.
- Sequences with smaller gaps (a factor of about 2.3) appear to work better, but nobody really understands why.

- Fewer comparisons than insertion sort. Known to be worst-case $O(n\sqrt{n})$ for good gap sequences.
- Conjectured to be $O(n^{1.25})$ but the algorithm is very hard to analyse.
- Very good on medium-sized arrays (up to size 10,000 or so).
- In-place?
- Stable?

- Fewer comparisons than insertion sort. Known to be worst-case $O(n\sqrt{n})$ for good gap sequences.
- Conjectured to be $O(n^{1.25})$ but the algorithm is very hard to analyse.
- Very good on medium-sized arrays (up to size 10,000 or so).
- In-place? yes
- Stable?

- Fewer comparisons than insertion sort. Known to be worst-case $O(n\sqrt{n})$ for good gap sequences.
- Conjectured to be $O(n^{1.25})$ but the algorithm is very hard to analyse.
- Very good on medium-sized arrays (up to size 10,000 or so).
- In-place? yes
- Stable?

after sorting the blues

relative order of the two 4s has changed!

- Fewer comparisons than insertion sort. Known to be worst-case $O(n\sqrt{n})$ for good gap sequences.
- Conjectured to be $O(n^{1.25})$ but the algorithm is very hard to analyse.
- Very good on medium-sized arrays (up to size 10,000 or so).
- In-place?
- Stable?

- Fewer comparisons than insertion sort. Known to be worst-case $O(n\sqrt{n})$ for good gap sequences.
- Conjectured to be $O(n^{1.25})$ but the algorithm is very hard to analyse.
- Very good on medium-sized arrays (up to size 10,000 or so).
- In-place? yes
- Stable?

- Fewer comparisons than insertion sort. Known to be worst-case $O(n\sqrt{n})$ for good gap sequences.
- Conjectured to be $O(n^{1.25})$ but the algorithm is very hard to analyse.
- Very good on medium-sized arrays (up to size 10,000 or so).
- In-place? yes
- Stable? No

Other Instances of Decrease-andTHE UNIVERSITY OF Conquer by a Constant MELBOURNE

- Insertion sort is a simple instance of the "decreaseand-conquer by a constant" approach.
- Another is the approach to topological sorting that repeatedly removes a source.
- In the next lecture we look at examples of "decrease by some factor", leading to methods with logarithmic time behaviour or better!