EXPERIMENT 1

Aim: Study of Digital ICs and basic components like power supply, DSO, etc.

Summary of the experiment: Study of basic digital ICs and verifying their functionality, learning the usage of function generator (FG) and digital storage oscilloscope (DSO), and rigging up of circuits.

Components used: IC 7404, 7408, 7432, 7486, 1kilo-ohm resistor array, DIP switches, LED displays, breadboard, power supply.

Design Procedure:

→ NOT gate:	X	X	NOTX	
	0	1		
NOTO	1	0		
				ē,
- AND gate:	X	Y	X. Y=	X AND Y
J	0	0	0	
×	0	1	0	
AND X.Y	t	0	0	
Y	. 1	1	1	

-> OR gate:	X	У	X+Y	X OR Y
	0	0	0	
X	0	1	1	1
y OR Xty	1	0	1	
	1	1	1	
→ XOR gate:	×	7	х⊕у	= X XOR Y
0	0	0	0	
x M xo	, 0	1		
Y XOR	1	0	1	
11	1	1	0	
				P S
-> NAND gate:	×	4	X.Y	= X NAND Y
	0	0	1.	
X XOY	0	- 1	1	1842
y NANDO XOT	1	0	1	
	1	1	0	

→	NOR gate:	X	Y	X+Y	= X NOR Y
	U	0	0	1	
	X X+Y	0	1	0 -	<
	y NOR	1	0	0	
		1	1	0	e las
	-				.5
				+	
<i>→</i>	KNOR gate:	Х	Y	XOY	= X XNOR)
<i>→</i>	KNOR gate:	X	y	XOY	= X XNOR
<i>→</i>	(n	X 0	У 0 1	χ©γ 1	= X XNOR
<i>→</i>	XNOR gate:		y 0 1	1 ,	= X XNOR

Circuit Diagrams:

Results and Discussions:

- 1. We can verify the outputs obtained using the truth tables.
- 2. We constructed the complex logic gates like NAND, NOR and XNOR using the combinations of NOT with AND, OR and XOR respectively.

Conclusion:

- We have verified the functionality of basic digital Integrated Circuits (ICs).

(Circuit Snapshots attached)

NOT:

1 -> 0

0 -> 1

AND:

1_0 -> 0

OR:

1_0 -> 1

0_1 -> 1

1_1 -> 1

XOR:

0_1 -> 1

1_0 -> 1

1_1 -> 0

NAND:

1_1 -> 0

1_0 -> 1

NOR:

$$0_1 -> 0$$

1_0 -> 0

1_1 -> 0

XNOR:

0_0 -> 1

 $0_1 -> 0$