MAT0501 e MAT5734 - Anéis e Módulos - 2010

Lista 1

- 1. Seja *R* um anel e *S* um subanel de *R*. Pode acontecer que:
 - (a) *R* seja anel com unidade e *S* não.
 - (b) *S* seja anel com unidade e *R* não.
 - (c) *R* e *S* sejam anéis com unidade, mas a unidade de *R* é diferente da unidade de *S*.

Dar exemplos que ilustrem cada uma das situações acima.

- 2. Seja $R = M_n(D)$ o anel das matrizes $n \times n$ sobre um anel com divisão D. Mostre que:
 - (a) $Z(R) = {\lambda I_n, \lambda \in Z(D)}$, onde I_n é a matriz identidade $n \times n$.
 - (b) Mostre que *R* é um anel simples.
- 3. Seja R um anel comutativo tal que $R^2 \neq \{0\}$ e possuindo exatamente dois ideais. Prove que R é um corpo.
- 4. Seja R um anel com unidade e $I \neq R$ um ideal de R. Mostre, usando o Lema de Zorn, que I está contido em um ideal maximal de R.
- 5. Seja *R* um anel comutativo com 1. Prove que:
 - (a) M é um ideal maximal de R se, e somente se, R/M é um corpo.
 - (b) P é um ideal primo de R se, e somente se, R/P é um domínio de integridade.
 - (c) Todo ideal maximal de *R* é primo.
- 6. Seja *I* um ideal à esquerda de um anel *R*. O conjunto

$$Anl(I) = \{ x \in R | xa = 0 \forall a \in I \}$$

é chamado **anulador** de I. Mostre que Anl(I) é um ideal (bilateral) de R.

- 7. Seja R um anel com unidade, finito. Mostre que para todo $x \neq 0$ em R temos que, ou x é inversível, ou x é divisor de 0.
- 8. Seja R um anel com unidade e suponha que exista $x \in R$, tal que x é inversível à esquerda, mas não é inversível à direita. Mostre que x possui infinitos inversos à esquerda. Dê um exemplo de um anel que tenha um elemento como o descrito acima.
- 9. Seja R um anel com unidade e sejam $a, b \in R$. Mostre que 1 ab é inversível se, e somente se, 1 ba é inversível. Nesse caso, determine $(1 ab)^{-1}$.
- 10. Seja R um anel tal que $x^2=x$ para todo $x\in R$. Mostre que R é comutativo.
- 11. Seja R um anel sem elementos nilpotentes não nulos. Mostre que se $e \in R$ é idempotente, então $e \in Z(R)$.
- 12. Seja R um anel tal que $x^3 = x$ para todo $x \in R$. Mostre que R é comutativo.

13. Seja

$$S = \left\{ \left[\begin{array}{cc} x + y & 4y \\ -y & x - y \end{array} \right] | x, y \in \mathbb{Q} \right\}.$$

Mostre que S é um subcorpo de $M_2(\mathbb{Q})$ isomorfo ao corpo

$$\mathbb{Q}(\sqrt{-3}) = \{a + b\sqrt{-3} \ a, b \in \mathbb{Q}\}.$$

(Sugestão : Considere a matriz $\alpha = \begin{bmatrix} 1 & 4 \\ -1 & -1 \end{bmatrix}$.)

14. Seja $\mathbb H$ o subconjunto de $M_2(\mathbb C)$ constituído pelas matrizes da forma

$$\mathbf{q} = \left[egin{array}{ccc} a+ib & c+id \ -c+id & a-ib \end{array}
ight]$$
, $a,b,c,d \in \mathbb{R}$.

Mostre que $\mathbb H$ é um subanel de $M_2(\mathbb C)$. Mostre que $\mathbb H$ é um anel com divisão não comutativo. Sejam

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $\mathbf{i} = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $\mathbf{j} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $\mathbf{k} = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} \in H$.

Então $\mathbf{q} = a\mathbf{1} + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}, a, b, c, d \in \mathbb{R}$. Este anel é o **anel dos quatérnios**. Determine o centro $Z(\mathbb{H})$ de \mathbb{H} .

- 15. Mostre que $\left[egin{array}{ccc} \mathbb{Z} & \mathbb{Q} \\ 0 & \mathbb{Z} \end{array} \right]$ e $\left[egin{array}{ccc} \mathbb{Z} & \mathbb{R} \\ 0 & \mathbb{Z} \end{array} \right]$ são subanéis de $M_2(\mathbb{R})$.
- 16. Seja $R = \begin{bmatrix} \mathbb{Z} & \mathbb{Q} \\ 0 & 0 \end{bmatrix}$. Mostre que todo ideal à direita de R é um ideal de R e que existem ideais à esquerda de R que não são ideais de R.
- 17. Seja (M, +, 0) um grupo abeliano. Denote por End(M) o conjunto dos endomorfismos de M. Se $f, g \in End(M)$, defina f + g e fg por (f + g)(x) = f(x) + g(x) e (fg)(x) = f(g(x)) para todo $x \in M$. Mostre que (End(M), +, ., 0, 1) (aqui 0 indica o endomorfismo nulo e 1 é a identidade) é um anel com unidade.
- 18. Determine End(M) para :
 - (a) $(M, +) = (\mathbb{Z}, +)$
 - (b) $(M, +) = (\mathbb{Q}, +)$
 - (c) $(M, +) = (\mathbb{Z}_n, +)$ (Aqui \mathbb{Z}_n denota o grupo aditivo dos inteiros módulo n.)
 - (d) $(M, +) = (\mathbb{Z} \times \mathbb{Z}, +)$ (Aqui a adição é definida por

$$(m,n) + (k,l) = (m+k,n+l)$$

para todo $m, n, k, l \in \mathbb{Z}$.)

19. Em vários casos que consideramos, obtivemos que $\operatorname{End}(R,+,0)\cong R$ para um anel R. Isso é verdade em geral? Isso é verdade quando R é um corpo? O que acontece quando $(R,+)=(\mathbb{R},+)$?