Dynamic Network Analysis of Bitcoin's Lightning Network

Ferenc Béres¹, István András Seres², Claas Brüß³, and András Benczúr⁴

1,4 MTA SZTAKI

²Department of Computer Algebra, Eötvös Loránd University ³Technise Universität München

May 31, 2019

Abstract

Keywords: Bitcoin, Lightning Network, Temporal Network Analysis, Simulation, Network Topology, Payment Channel Network

1 Introduction

1.1 Related work

Our contribution:

2 Background

2.1 Network properties

Let E(t) and N(t) denote the number of edges and nodes at time t respectively.

2.2 Bitcoin and Lightning Network

- 3 Data
- 4 Experiments
- 4.1 Simulating transactions on LN
- 4.2 LN's evolution

4.2.1 Macroscopic evolution

Ever since LN had been launched its popularity steadily grew, causing its average degree increasing over time. In [1] it was shown that densification of real networks follow power-law distribution, i.e.:

$$E(t) \propto N(t)^a,$$
 (1)

where we call a the power law densification exponent, where $1 \le a \le 2$. If a = 1, then average degree of the network is constant over time, on the other hand if a = 2, the network is an extremely dense graph, where each node has, on average, edges to a constant fraction of all nodes [1]. We found that LN is no exception to the DPL rule (4.2.1).

Figure 1: LN follows the Densification Power Law relation with exponent a=1.55634117. Goodness-of-fit: $\mathbb{R}^2=0.98$.

4.2.2 Densification of LN

4.2.3 Link prediction

5 Results

6 Acknowledgements

Antoine and Altangent Labs

References

[1] Jurij Leskovec. *Dynamics of large networks*. PhD thesis, Carnegie Mellon University, School of Computer Science, Machine Learning . . . , 2008.