

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

6087072568

FURTHER MATHEMATICS

9231/13

Paper 1 Further Pure Mathematics 1

October/November 2022

2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

a)	Show that $4b^3 + 27d = 0$.	[5
	G: d (2 2 . 2 2) C 1d 1 . C1 17	FG
)) '	Given that $2\alpha^2 + \gamma^2 = 3b$, find the values of b and d.	[3

Prove by mathematical induction that, for all positive integers n , $7^{2n} + 97^n - 50$ is divisible by 4		•••••	•••••	•••••			•••••	•••••••
								••••••
	Prov	ve by mathema	atical induction	n that, for all	positive integ	gers $n, 7^{2n} + 9$	$7^n - 50$ is div	isible by 48.
	•••••		•••••	•••••				•••••
	•••••							
	•••••		•••••	•••••				•••••
				•••••				
	•••••		•••••	•••••				•••••
	•••••							
	•••••							
	•••••							

$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1).$	
 	•••••

	$S_n = 1^2 + 3 \times 2^2 + 3^2 + 3 \times 4^2 + 5^2 + 3 \times 6^2 + \dots + \left(2 + \left(-1\right)^n\right)n^2$. Show that $S_{2n} = \frac{1}{3}n(2n+1)(an+b)$, where a and b are integers to be determined.	[3]
		•••••
		•••••
		•••••
		•••••
(-)	S_{2n}	 Г17
(c)	State the value of $\lim_{n \to \infty} \frac{S_{2n}}{n^3}$.	[1]
		•••••

1	Find a Cartesian equation of Π , giving your answer in the form $ax + by + cz = d$.
•	
•	
•	

The	The line <i>l</i> passes through the point <i>P</i> with position vector $2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and is parallel to the vector $\mathbf{j} + \mathbf{k}$.					
(b)	Find the acute angle between l and Π .	[3]				
(c)	Find the position vector of the foot of the perpendicular from P to Π .	[4]				

5	The	matrix M is given by $\mathbf{M} = \begin{pmatrix} \frac{1}{2}\sqrt{2} & -\frac{1}{2}\sqrt{2} \\ \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{2} \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$, where k is a constant.
	(a)	The matrix \mathbf{M} represents a sequence of two geometrical transformations.
		State the type of each transformation, and make clear the order in which they are applied. [2]
	(b)	The triangle ABC in the x – y plane is transformed by \mathbf{M} onto triangle DEF .
		Find, in terms of k , the single matrix which transforms triangle DEF onto triangle ABC . [2]

through the origin.	[7]

(a)	Show that the curve with Cartesian equation	
	$(x^2 + y^2)^2 = 36(x^2 - y^2)$	
	has polar equation $r^2 = 36\cos 2\theta$.	[3
The	curve C has polar equation $r^2 = 36\cos 2\theta$, for $-\frac{1}{4}\pi \le \theta \le \frac{1}{4}\pi$.	
	curve C has polar equation $r^2 = 36\cos 2\theta$, for $-\frac{1}{4}\pi \le \theta \le \frac{1}{4}\pi$.	F
	curve C has polar equation $r^2 = 36\cos 2\theta$, for $-\frac{1}{4}\pi \le \theta \le \frac{1}{4}\pi$. Sketch C and state the maximum distance of a point on C from the pole.	[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3
		[3]
		[3
		[3

(c)	Find the area of the region enclosed by C.	[2]
(d)	Find the maximum distance of a point on C from the initial line, giving the answ	ver in exact form.

(-)	curve C has equation $y = \frac{5x^2}{5x - 2}$.	
(a)	Find the equations of the asymptotes of <i>C</i> .]
(b)	Find the coordinates of the stationary points on <i>C</i> .	I

(c) Sketch *C*. [3]

(d) Sketch the curve with equation $y = \left| \frac{5x^2}{5x - 2} \right|$ and find in exact form the set of values of x for which $\left| \frac{5x^2}{5x - 2} \right| < 2$. [6]

 •••••
•••••
•••••
•••••
•••••

Additional page

If you use the following page to complete the answer to any question, the shown.	e question number must be clearly

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.