Telecommunication Networks 15B11EC611

PERFORMANCE ISSUES

> APPENDIX 7A PERFORMANCE ISSUES

Kindly refer page numbers: 216 to 222 of the Book_2_Data-and-Computer-Communications-by-WilliamStallings (8th Edition) for detailed discussion.

Performance analysis over noisy channel

 Frame transmitted over a noisy channel may get corrupted/lost. Therefore it may require several retransmissions.

Average number of transmissions of a frame

Probability that a bit is in error = p

Probability that a bit is not in error = 1-p

Probability that all the L bits are not in error = $(1-p)^{L}$

Probability (P_f) of one/more errors in a frame = 1- $(1-p)^L$

Probability that (i-1) frames are received with one/more errors $= P_f^{j-1}$

Probability that ith frame is without errors = $P_f^{i-1}(1-P_f)$

Average number of transmissions of a frame

$$N_r = \sum_{0}^{\infty} i P_f^{i-1} (1 - P_f) = \frac{1}{1 - P_f} = \frac{1}{(1 - p)^L}$$

Note
$$\sum_{i=1}^{\infty} (iX^{i-1}) = \frac{1}{(1-P)^2}$$
 where $-1 < X < 1$

Link Utilization in Stop-and-Wait protocol

Number of transmissions required for a frame $= N_r$

Time out interval $= t_0$

Time required for sending a frame correctly = $(N_r - 1) t_0 + t_f + 2t_p$

Minimum value of t_0 = $(t_f + 2t_p)$

Min. time for transmission of a frame correctly = $N_r (t_f + 2t_p)$

Link utilization

$$U = \frac{t_f}{N_f(t_f + 2t_p)} = \frac{1 - P_f}{1 + 2A}$$

$$N_r = \sum_{0}^{\infty} i P_f^{i-1} (1 - P_f) = \frac{1}{1 - P_f} = \frac{1}{(1 - p)^L}$$

Link Utilization in Sliding Window: Go-back-N

Case (1) W ≥ 1+2A

Transmissions required for one frame $= N_r = 1/(1 - P_f)$ Time wasted in retransmissions $= (N_r - 1)$ Link time effectively utilized $= t_f$

Link utilization efficiency

ne =
$$N_r = 1/(1 - P_f)$$

 = $(N_r - 1) (t_f + 2t_p)$
 = t_f
 $U = t_f/[t_f + (N_r - 1)(t_f + 2t_p)]$
 = $1/[1 + (N_r - 1)(2A + 1)]$
 = $(1 - P_f)/[(1 - P_f) + P_f(2A + 1)]$
 = $(1 - P_f)/(1 + 2P_f A)$

Link Utilization in Sliding Window: Go-back-N

Case (2) W < 1+2A

When a frame is received correctly, frames sent in $(t_f + 2t_p) = W$

Average link engagement time per frame = $(t_f + 2t_p)$ /W

Time wasted in retransmissions = $(N_r - 1)(t_f + 2t_p)$

Link utilization efficiency = $t_f/[(N_r - 1)(t_f + 2t_p) + (t_f + 2t_p)/W]$

 $= W/[(2A+1)(1+W(N_r-1))]$

 $= W(1-P_f)/[(2A+1)(1-P_f+WP_f)]$

Link Utilization in Sliding Window: Selective-reject

Case (1) W ≥ 1+2A

- Sender receives acknowledgement before it exhausts its window i.e. when W≥1+2A.
 - Channel is continuously occupied before arrival of acknowledgement.

Frames transmitted during $(t_f + 2t_p)$ = $(t_f + 2t_p)/t_f$ Frames received with errors = $P_f(t_f + 2t_p)/t_f$ Link time wasted = $t_f P_f(t_f + 2t_p)/t_f = P_f(t_f + 2t_p)$ Link time effectively utilized = $(t_f + 2t_p) - P_f(t_f + 2t_p)$ Link utilization efficiency U = $(t_f + 2t_p) - P_f(t_f + 2t_p)/(t_f + 2t_p)$ = $1 - P_f$

Link Utilization in Sliding Window: Selective-reject

Case (2) W < 1+2A

- Sender exhausts its window before it receives an acknowledgement i.e. W<1+2A.
 - Channel is idle after window is exhausted.

Frames transmitted during $(t_f + 2t_p) = W$

Frames received with errors

Link time wasted

Link time effectively utilized

Link utilization efficiency *U*

$$= P_f W$$

$$= t_f P_f W$$

$$= W t_f - t_f P_f W$$

$$= (W t_f - t_f P_f W)/(t_f + 2t_p)$$

$$= W(1 - P_f)/(1 + 2A)$$

Link utilization efficiency (U) - No errors / Noiseless channel

Stop-and- Wait,
$$U = t_f / (t_f + 2t_p) = 1/(1+2A)$$
 where $A = t_p / t_f$

Sliding-window
$$U = \begin{cases} W/2A+1 & W < 2A+1 \\ 1 & W \ge 2A+1 \end{cases}$$

Link utilization efficiency (U) - With errors / Noisy channel

Stop-and- Wait, U = (1-P)/(1+2A)

Sliding-window – Selective Reject
$$U = \begin{cases} W(1-P)/2A + 1 & W < 2A + 1 \\ 1-P & W \geq 2A + 1 \end{cases}$$

Sliding-window – Go-back-N
$$U = \begin{cases} W(1-P)/(2A+1)(1-P+WP) & W < 2A+1 \\ (1-P)/(1+2AP) & W \geq 2A+1 \end{cases}$$

THANK YOU