7188840873

a f	0.2 0.25 0.3 0.4 0.5 0.6	0.5 0.48 0.46 0.42 0.37 0.34	0.42 0.38	0.51 0.49 0.47 0.43 0.39 0.36	0.39	0.47 0.43	0.48 0.44 0.4	0.48	0.45 0.41	0.49 0.45	0.45 0.42 0.37	0.47 0.44 0.41	0.48 0.48 0.44 0.41 0.39 0.37	0.45 0.43 0.41 nag nag nag
	0.1 0.15	0.5	0.51 0.51	0.51 0.51	0.51 0.52	0.51 0.52	0.52 0.52	0.52 0.52	0.52 0.52	0.52 0.52	0.52 0.52	0.54 0.52	0.53 0.51	0.52 0.48
	0 0.05	0.48 0.49	0.48 0.5	0.48 0.5	0.48 0.5	0.48 0.5	0.48 0.51	0.48 0.51	0.48 0.52	0.48 0.52	0.48 0.52	0.48 0.54	0.48 0.56	0.48 0.55

OWSEM

Efficiency Factor Σ for Thickness Ratios (a2) versus Width Ratio (a1). Double-T Shapes.

Efficiency Factor Σ versus Thickness Ratios (a2) and Width Ratio (a1), for Double T Shape. .0.36 Efficiency Factor) a1 (Width Ratio) €.0 9.0 ۲.0 6.0 3.333 1.428 1.11 0.833 a2 (Thickness Ratio) 0.625

Alcoa Engineered Products

Tel: (800) 233-3165 Fax: (800) 252-4646

STRUCTURAL I-BEAMS, AMERICAN STANDARD

Alloy 6061-T6 25 Ft. Lengths ASTM B 308 Spot Marked

					WHEN IN PAR		Anthon in the state of the stat
1. 数据: "这一点的,我们是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人的。"				101.0	BELLEVIE		
	.170	.270	.125	1.963	483	10	851A
加格文字。 	.170	.270	100	2.595	518	8	851D
	.190	.290	.110	2.644	536	8	8518
開発に対象の 現代 1985年 日本 1985年 1985年	.190	.290	.110	3.284	506	6	851F
湖南。	.230	.330	.140	4.303	1066	10	851K
事間(11) ## 開展表表面散出版。(2) 期底	.230	.330	140	5.054	1004	- 8	851L
建筑 行 : 清晰 60% (1) : 新聞 80% (1) : 沙田	.270	.370	.160	6.348	970	. 6	851G
建设设计算 	.350	.450	.210	10.993	1096	4	851T

TWPMDouble-T Shape

PAGE 1 OF 4)

Alicoa Structural I-Beams, American Standard vs. Optimum Weight Structural Flament (OWSE)

SECTION	ALLOY	INTENSITY			INCHE:		EST.	WEIGHT
		(LB/INCH^2)	A	В	TK	Z	WT/FT(LB)	REDUCTION (%
		L			I			
851A	8081-T8	<u> </u>	3.000	2.330	0.170	0.170	2.166	
OWSE	I 6061-76	T 14.0	5.052	1.427	10.148	0.298	1.817	18,080
(for 851A)	00010	12.0	5.089	1.440	0.144		1.793	17.167
(1	10.0	5.118	1.451	0.140	0.281	1.755	18.929
	l .	8.0	8.143	1.462	0.135	0.270	1.704	21,272
	1	8.0	5.000	1.425	0.124	0.249	1.529	29.346
	6062-TB	14.0	4.963	1.462	0.145	0.290	1.753	19.031
	1 0002-10	12.6	4.992	1.413	0.142	0.283	1.728	20.281
	I .	10.0	8.009	1.420	0.137	0.278	1.652	22.299
	ſ	8.0	4.973	1.373	8.131	0.261	1.593	26.395
	l .	8.0	4.832	1.378	<u> 8. 136 </u>	0.241	1.429	34.006
		0.0	4.032	1.378	10.120	0.241	1.428	34.008
851B	6081-16		4.000	2.660	0.190	0.190	2.040	
	T 888 22							
OWSE	BOB1-YE	14.0	5.119	1.446	0.160	0.299	1.868	8.597
(for 8518)	`	12.0	5.220	1.477	0.148	0.298	1.887	7.489
	1	10.0	5.315	1.507	0.146	0.291	1.894	7.173
	1	8.0	5.384	1.530	0.142	0.283	1.867	8.459
		6.0	5.467	1.558	0.136	0.272	1.829	10.366
•	6082-16	14.0	5.072	1.433	0.148	0.296	1.830	10.272
•]	12.0	5.179	1.465	0.147	0.294	1.867	8.959
	i	10.6	5.274	1.496	0.145	0.289	1.885	6.550
	1	8.0	5.336	1.517	0.140	0.280	1.834	10.096
	L	6.8	5.407	1.541	0.135]	0.269	1788	12.332
851F	6061-T6		4.000	2.796	0.328	0.190	2.710	
OWSE	6061-16	14.0	5.838	1.649	0.171	0.341	2.424	10.664
(for 861F)	l i	12.0	5.881	1.664	0.167	0.334	2.395	11.613
		10.0	5.931	1.682		0.325	2.359	12.975
		8.0	5.986	1.702		0.318	2.309	14.812
	AAAA 974	6.6	6.046	1.724		0.301	2.237	17.474
	6082-16	14.0	5.770	1.630		0.337	2.369	12.580
		12.0	6.808	1.643		0.330	2.336	13.819
í		10.0	6.848	1.668		0.321	2.293	16,406
		8.0	5.890	1.674		0.310	2.235	17.535
		6.0	6.927 I	1.690	0.148	0.296	2.140	20.693

^{*} Note: Intensity ≃ (Compressive Force)/(Length^2). Intensity for eviation structures lies in the range 2.84 --14.2 lb/inch^2

(PAGE 2 OF 4)

Alicoa Structural I-Beams, American Standard vs. Optimum Weight Structural Element (OWSE

SECTION	ALLOY	INTENSITY		91	a 2			
		(LB/INCH^2)	ь	_ e	<u>Ф</u> Ь	őc_	(=c/b)	(=ōc/ōb)
851A	I 6061-T6	 	2.83	1 1.17	0.17	0.17	0.41	
	0000	· · · · · · · · · · · · · · · · · · ·		· ····	· · · · · · · · · · · · · · · · · · ·	<u> </u>	- 0	<u> </u>
OWSE	6061-T6	14.0	4.78	0.71	0.15	0.3	0.15	1 2
(for 851A)	1	12.0	4.8	0.72	0.14	0.29	0.15	- 3
	1	10.0	4.84	0.73	0.14	0.28	0.15	2
	1	8.0	4.87	0.73	0.14	0.27	0.15	2
	<u>L</u>	6.0	4.75	0.71	0.12	0.25	0.15	2
	6082-T6	14.0	4.67	0.7	0.14	0.29	0.15	- 2
	1	12.0	4.71	0.71	0.14	0.28	0.15	2
•	ł	10.0	4.73	0.71	0.14	0.27	0.16	2
	į .	8.0	4.71	6.71	0.13	0.26	0.15	2
		6.0	4.59	0.69	0.12	5.24	0.15	2
8518	6061-16		3.81	1.33	0.19	0.19	0.35	
0310	1 000 1-10		3.61	1.33	0.19	1	0.30	·
OWSE	6061-T6	14.0	4.82	0.72	0.15	0.3	0.15	2
(for 851E)		12.0	4.92	0.74	0.15	0.3	0.15	2
		10.0	5.02	0.76	0.15	0.29	0.15	
		8.0	5.1	0.77	0.14	0.28	0.15	2
		6.0	5.19	0.78	0.14	0.27	0.16	2
	6082-T6	14.0	4.78	0.72	0.15	0.3	0.18	2
i	!	12.0	4.88	0.73	0.15	0.29	0.18	
		10.0	4.99	0.75	0.14	0.29	0.18	2
		8.0	5.06	0.76	0.14	0.28	0.18	2
		6.0	5.14	0.77	0.13	0.27	0.15	2
851F	6061-76		3.81	1.4	0.33	0.19	0.37	0.58
							1	
OWSE	6061-T6	14.0	6.6	0.82	0.17	0.34	0.16	2
(for 851P)	1	12.0	5.55	0.83	0.17	0.33	0.16	2
	i	10.0	8.61	0.84	0.16	0.33	0.15	2
		8.0	5.67	0.85	0.16	0.31	0.15	2
		6.0	5.75	0.86	0.18	0.3	0.15	2
	8082-T6	14.0	5.43	0.81	0.17	0.34	0.15	2
	I.	12.0	5.48	0.82	0.16	0.33	0.15	2
	. [10.0	6.53	0.83	0.16	0.32	0.15	2
-	li.	8.0	5.58	0.84	0.15	0.31	0.15	2
1	II.	6.0	5.63	0.84	0.15	0.3	0.15	2

^{*} Note: Intensity ≈ (Compressive Force)/(Length^2). Intensity for aviation structures lies in the range 2,84 --14.2 lb/inch^2

7188840873

(PAGE 3 OF 4)

Allcoa Structural I-Beams, American Standard vs. Optimum Weight Structural Element (OWSE)

SECTION	ALLOY	INTENSITY*		SIZE	, INCHÉ	EST.	WEIGHT	
		(LB/INCH^2)	Α	В	TK	N	WT/FT(LB)	REDUCTION (%)
851G	6061-T6		8.000	4.000	0.270	0.270	4.995	
OWSE	6061-T6	14.0	7.678	2.169	0.224	0.449	4.196	15.996
(for 851G)		12.0	7.831	2.216	0.222	0.444	4.246	14.978
		10.0	8.020	2.274	0.220	0.440	4.312	13.674
	i	8.0	8.264	2.349	0.217	0.434	4.400	11.913
		6.0	8.603	2.452	0.214	0.428	4.528	9.339
	6082-76	14.0	7.543	2.131	0.220	0.441	4.049	18.934
		12.0	7.702	2.180	0.219	0.437	4.108	17.747
		10.0	7.900	2.240	0.217	0.433	4.184	16.222
		8.0	8.158	2.319	0.214	0.429	4.288	14.157
		6.0	8.518	2.428	0.212	0.424	4.439	11.125
851T	6061-16	1	12.000	5.000	0.350	0.250	8.911	
0011	0001-10	l	,2.000	3.000	0.550	0.300	0.911	
OWSE	6061-T6	14.0	10.212	2.885	D.298	0.597	7.421	16.720
(for 851T)		12.0	10.415	2.947	0.296	0.591	7.511	15.711
		10.0	10.666	3.024	0.292	0.585	7.626	14.418
		8.0	10.991	3.124	0.289	0.578	7.782	12.672
		6.0	11,442	3.262	0.285	0.569	8.009	10.120
	6082-T6	14.0	10.023	2.831	0.293	0.586	7.149	19.772
		12.0	10.235	2.896	0.290	0.581	7.254	18.597
		10.0	10.498	2.977	0.288	0.576	7.388	17.088
		8.0	10.840	3.081	0.285	0.570	7.571	15.044
		6.0	11.319	3.227	0.282	0.563	7.838	12.043

^{*} Note: Intensity = (Compressive Force)/(Length^2). Intensity for aviation structures lies in the range 2.84 –14.2 lb/inch^2

7188840873

(PAGE 4 QF 4)

Allcoa Structural I-Beams, American Standard vs. Optimum Weight Structural Element (OWSE)

SECTION	ALLOY	INTENSITY"		SIZE, INC	a1	a2		
		(LB/INCH^2)	ь	C	δb	δc	(=c/b)	(=Öc/öb)
851G	6061-T6		7.73	2	0.27	0.27	0.26	1
OWSE	6061-16	14.0	7.23	1.08	0.22	0.45	0.15	2
(for 851G)		12.0	7.39	1.11	0.22	0.44	0.15	2
		10.0	7.58	1.14	0.22	0.44	0.15	2
		8.0	7.83	1.17	0.22	0.43	0.15	2
		6.0	8.17	1.23	0.21	0.43	0.15	2
	6082-T6	14.0	7.1	1.07	0.22	0.44	0.15	2
		12.0	7.27	1.09	0.22	0.44	0.15	2
		10.0	7.47	1.12	0.22	0.43	0.15	2
		8.0	7.73	1.16	0.21	0.43	0.15	2
		6.0	8.09	1.21	0.21	0.42	0.15	2
851T	6061-T6		11.65	2.5	0.35	0.35	0.21	1
			•		W			
OWSE	6061 -T6	14.0	9.62	1.44	0.3	0.6	0.15	2
(for 851T)	'	12.0	9.82	1.47	0.3	0.59	0.15	2
		10.0	10.08	1.51	0.29	0.58	0.15	2
		8.0	10.41	1.56	0.29	0.58	0.15	2
		6.0	10.87	1.63	0.28	0.57	0.15	2
	6082-T6	14.0	9.44	1.42	0.29	0.59	0.15	2
		12.0	9.65	1.45	0.29	0.58	0.15	2
	1	′10.0	9.92	1.49	0.29	0.58	0.15	2
		8.0	10.27	1.54	0.28	0.57	0.15	2
		6.0	10.76	1.61	0.28	0.56	0.15	2

^{*} Note: Intensity = (Compressive Force)/(Length^2). Intensity for aviation structures lies in the range 2.84 --14.2 lb/inch^2