Yavar Internship Selection Assessment – May 2025 Assessment Problem Statement-2

Image Captioning from Contextual Metadata Using Vision-Language Models (VLMs)

Approach Overview

Developed an end-to-end image captioning system using a **fine-tuned Vision-Language Model (VLM)** — specifically, the **BLIP model (Salesforce/blip-image-captioning-base)**.

The goal was to generate both a **concise** and a **detailed** caption for each image, grounded in both its **visual content** and **surrounding textual metadata**.

Each image is paired with a structured metadata file that contains fields such as section_header, above_text, caption, below_text, and footnote. Our system combines these textual fields into a meaningful context, which is used alongside the image during both training and inference.

The pipeline includes preprocessing, model fine-tuning, caption generation, confidence scoring, inconsistency detection, and annotated output generation.

Preprocessing

Image Preprocessing:

- All images are resized to 384×384 pixels to match the BLIP model's expected input size.
- Images are normalized using ImageNet mean and standard deviation.
- Images are converted to RGB and passed as tensors to the model.

Metadata Preprocessing:

- Each image has a corresponding .txt file with fields:
 - o section_header

- above_text
- o caption
- o below_text
- footnote
- concise_caption (ground truth)
- detailed_caption (ground truth)
- Missing values (marked as null) are replaced with empty strings.
- These fields are combined into a single context string used during training and inference.

Model Architecture

- Used the BLIP (Bootstrapped Language-Image Pretraining) model from Hugging Face.
- The model accepts both an image and text input to generate captions.
- During training, the model learns to map image + metadata context → target caption.

Training Details

- Model: Salesforce/blip-image-captioning-base
- **Training Data**: Images wnot given for training dataith paired metadata [ground-truth concise_caption and detailed_caption not given for training data]
- Loss Function: Cross-entropy loss on generated token sequence
- Batch Size: 4
- **Epochs**: 5 (can be increased for better results)

- Learning Rate: 5e-5
- Fine-Tuning Modes:
 - Trained separately on concise and detailed captions
 - Controlled by a config flag (TRAINING_CAPTION_TYPE)
- Optimiser:

AdamW

Inference & Caption Generation

- For each image:
 - Metadata fields are combined into a rich context.
 - The model generates:
 - A concise caption (short summary, 30 tokens max)
 - A detailed caption (longer explanation, up to 100 tokens)
- Captions are saved in captions. json and overlaid on the image using OpenCV.

Evaluation & Verifiability

- Each caption is scored using :
 - o ROUGE-L
- A confidence score (0–1) is assigned to each caption.

Since the model not generated a meaningful caption. Metadata is reflected in the output.

- Captions are checked for consistency against metadata:
 - $\circ\quad$ If the section header has no overlap with the caption \rightarrow marked as inconsistent

- Low-confidence or inconsistent captions are:
 - Logged in a timestamped log file
 - Underlined and highlighted in yellow in the annotated output

Output Structure

Outputs are saved in output_folder/:

- - Blue text = Concise caption
 - underline = Low confidence or inconsistency
- aptions.json file with:
 - o Concise & detailed captions
 - Confidence scores
 - Context used
 - Inconsistency reports

Related Images

1.Architecture overview

2. Component Breakdown

A. Data Preparation Layer

	Data Preparati	on
Image Preprocessor	Metadata Extractor	 Dataset Validator
- Resize images - Normalize - Augment	- Parse text files - Extract fields - Clean text	 - Verify image-metadata correspondence - Check caption quality

B. Model Training Layer

	Model Training Stack
BLIP Model	Training Controller Evaluation Module
- Base VLM - Custom head - Multi-task loss	- LR scheduling - ROUGE/BLEU metrics - Batch management - Visual grounding check - Early stopping - Overfitting detection

C. Inference Layer

Inference Pipeline				
 Caption Generator 	 Context Integrator 	 Output Formatter 		
	 - Metadata fusion - Attention masking - Confidence calc.	- JSON output - Image annotation - Highlight low confidence		

#3. Data Flow

```
    Input Phase:
        [Image] → Preprocessing → [Normalized Image Tensor]
        [Metadata] → Parsing → [Structured Context Embedding]
    Training Phase:
        [Image Tensor] → [BLIP Encoder] → [Multimodal Fusion] → [Decoder] → [Loss Calc]
        [Context Embedding] → [Context Embedding] → [Context Refinement] → [Confidence Scoring] → [Formatted Output]
```

Features

BLIP-based image captioning (Salesforce/blip-image-captioning-base)

Custom dataset support with metadata (section headers, captions, etc.)

Training and inference scripts

Caption verifiability checks (semantic similarity, consistency)

Annotated output images with generated captions and confidence scores

Folder Structure

```
img_folder/
                      # Input images
metadata_folder/
                      # Metadata files (one per image, .txt format)
output_folder/
                      # Output images and results
                      # Configuration file
config.py
                      # Custom dataset loader
data_loader.py
train.py
                      # Training script
                      # Inference and evaluation script
inference.py
utils.py
                      # Utility functions
requirements.txt
                      # Python dependencies
```


Metadata File Format

section_header: "Section Title"
above_text: "Text above the image"
caption: "Ground-truth caption"
picture_id: "image_file_name"
footnote: "Footnote text"

below_text: "Text below the image"

concise: "Short summary"

detailed: "Detailed description"

Training

output

e1_annotated.jp	9			
CID	NAME head	CLASS	MARK	GENDER
1	John Deo	Four	75	female
2	Max Ruin	Three	85	male
3	Arnold	Three	55	male
Detail	Krish Staron _ head	er : "Folludent	record ^{§0} " abov	e _female
tegt :	Joshudget perform	ance posta incl	uding 🤲 name	female
Cigss,	Alex John	Four	table : stud	male
incon	Myelobre Bob e. g.,	john Fä⁄eo 'm	arked 28 female) male
below	Astaut : " marks	range Figem 55	to 8585with m	
0.00)	Tes Qry	Six	s. " (Confidence	male
10	Big John	Four	55	female

Setup

1.Clone the repository git clone https://github.com/DharaniSowmiyan/YaavarHackathon-22PD11

cd your-repo

2.Install dependencies: pip install -r requirements.txt

3.Prepare your data: Place images in img_folder/

Place corresponding metadata .txt files in metadata_folder/

Resources:

Creating an image dataset:

https://huggingface.co/docs/datasets/image_dataset

Fine-tune BLIP on an image captioning dataset:

 $\label{love-solution} \mbox{$https://colab.research.google.com/drive/1lbqiSiA0sDF7JDWPeS0tccrM85LloVha?usp=sharing\#scrollTo=AFGnjCqDoLlJ} \mbox{$https://colab.research.google.com/drive/1lbqiSiA0sDF7JDWPeS0tccrM85LloVha?usp=sharing\#scrollTo=AFGnjCqDoLlJ} \mbox{$https://colab.research.google.com/drive/1lbqiSiA0sDF7JDWPeS0tccrM85LloVha?usp=sharing#scrollTo=AFGnjCqDoLlJ} \mbox{$https://colab.research.go$

Various other models explored:

1.Florence-2 https://blog.roboflow.com/fine-tune-florence-2-object-detection/

	hot compute	er visior	models		
model	task	license	self-deploy	speed (fps)**	parameters
Florence-2	captioning, detection, segmentation, grounding, OCR	міт	\$	4	230M, 770M
PaliGemma	captioning, VQA detection, segmentation	custom	\$\$	1	3B
LLaVA	captioning, VQA, OCR	Apache-2.0*	\$\$\$	0.25	13B
GPT-4V/4o	captioning, VQA, OCR	×	×	×	×
YOLO-World	zero-shot detection	GPL-3.0	\$	52 - 74	13M - 48M (77M - 110M)*
GroundingDINO	zero-shot detection	Apache-2.0	\$\$	1.5	172M
YOLOv8	detection	AGPL-3.0	\$	78 - 565	3.2M - 68.2M

Why it did not work:

Florence-2 requires flash-attn, which needs:

- GPUs like A100, L4, or H100.
- CUDA 11.8+ and PyTorch 2.1+.
- 2.Salesforce/blip2-opt-2.7b

https://huggingface.co/Salesforce/blip2-opt-2.7b

3.Salesforce/blip2-flan-t5-xl

https://huggingface.co/Salesforce/blip2-flan-t5-x

(2,3)Why it did not work: while running the model-out of memory since my gpu VRAM is 4GB

4.huggingface.co/yifeihu/TF-ID-base

https://huggingface.co/yifeihu/TF-ID-base

Why it did not work: it detects tables/figures image captioning not supported.

Future work:

Making them(image+context and caption) better Relevance: How well the caption aligns with both the image and the provided context.