Data Structures and Algorithms

Lecture Outline February 04, 2016

Simplified Master Theorem. Let $a \geq 1$, b > 1 be constants and let T(n) be the recurrence

$$T(n) = aT\left(\frac{n}{b}\right) + \Theta(n^k)$$

defined for $n \ge 0$ (we assume that n is a power of b, though this does not make a difference in asymptotic analysis). The base case, T(1) can be any constant value. Then

Case 1: if $a > b^k$, then $T(n) \in \Theta(n^{\log_b a})$.

Case 2: if $a = b^k$, then $T(n) \in \Theta(n^k \log_b n)$.

Case 3: if $a < b^k$, then $T(n) \in \Theta(n^k)$.

Example. Using Master Theorem, prove bounds on T(n) for the following recurrences.

a.
$$T(n) = T(n/2) + n^2/2 + n$$

b.
$$T(n) = 2T(n/4) + \sqrt{n}$$

c.
$$T(n) = 3T(n/2) + (3/4)n$$

d.
$$T(n) = 2T(n/4) + 5$$

Solution.

a. a = 1, b = 2, and k = 2, thus case 3 applies and we get $T(n) = O(n^2)$.

b. a = 2, b = 4, and k = 1/2, thus case 2 applies and we get $T(n) = O(\sqrt{n} \log n)$.

c. a = 3, b = 2, and k = 1, thus case 1 applies and we get $T(n) = O(n^{\log_2 3})$.

d. a=2,b=4, and k=0, thus case 1 applies and we get $T(n)=O(n^{\log_4 2})=O(\sqrt{n})$.

There are recurrences for which none of the above cases apply. In that case, we solve them using other techniques that we have learned. An example of such a recurrence is $T(n) = T(n/4) + \lg n$.

Example. Consider the following recurrence. We assume n is a power of 2.

$$T(n) = \begin{cases} 2T(n/2) + n \lg n, & n \ge 2\\ 1, & \text{otherwise} \end{cases}$$

Express T(n) as $\Theta(f(n))$.

2 Lecture Outline February 04, 2016

Solution. Note that the above recurrence cannot be solved using the Simplified Master Theorem. We use the method of expansion.

$$T(n) = 2T(n/2) + n \lg n$$

$$= 2^{2}T(n/2^{2}) + n \lg(n/2) + n \lg n$$

$$= 2^{3}T(n/2^{3}) + n \lg(n/4) + n \lg(n/2) + n \lg n$$
...
...
$$= 2^{k}T(n/2^{k}) + n \lg(n/2^{k-1}) + \dots + n \lg(n/4) + n \lg(n/2) + n \lg n$$

$$= 2^{k}T(n/2^{k}) + n \sum_{i=0}^{k-1} \lg(n/2^{i})$$

$$= 2^{k}T(n/2^{k}) + n \sum_{i=0}^{k-1} (\lg n - \lg 2^{i})$$

$$= 2^{k}T(n/2^{k}) + n \sum_{i=0}^{k-1} (\lg n - i)$$

$$= 2^{k}T(n/2^{k}) + kn \lg n - nk(k-1)/2$$

$$= 2^{k}T(n/2^{k}) + kn \lg n - nk^{2}/2 + nk/2$$

The recursion bottoms out when $n/2^k = 1$, i.e., $k = \lg n$. Thus, we get

$$T(n) = nT(1) + n \lg^{2} n - n \lg^{2} n/2 + n \lg n/2$$

= $n + n \lg^{2} n/2 + n \lg n/2$
= $\Theta(n \lg^{2} n)$