Contrôle 4: Analyse 2

Cours de mathématiques spéciales (CMS)

15 Juin 2018 Semestre de printemps ID: -999

(écrire lisiblement s.v.p)
Nom:
Prénom:
Groupe:

Question	Pts max.	Pts
1	5	
2	5	
3	5	
4	5	
Total	20	

Note (barème sur 20 points) :

Indications

- Durée de l'examen : 105 minutes.
- Posez votre **carte d'étudiant** sur la table.
- La réponse à chaque question doit être rédigée **à l'encre** sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Formulaire

- $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{n!}x^n + o(x^n).$
- $\cos(x) = 1 \frac{1}{2!}x^2 + \ldots + \frac{(-1)^n}{(2n)!}x^{2n} + o(x^{2n+1}).$
- $\bullet \ \frac{d}{dx} \cosh^{-1}(x) = \frac{1}{\sqrt{x^2 1}}.$
- $\sum_{1 \le j_1 < \dots < j_k \le n} (-r_{j_1}) \dots (-r_{j_k}) = \frac{a_{n-k}}{a_n}.$

Les questions

Question 1 (à 5 points)

Points obtenus: (laisser vide)

Soient les polynômes $P,Q\in\mathbb{C}[Z]$ donnés par

$$P(Z) = Z^{27} + Z^{26} + \ldots + Z + 1 = \sum_{k=0}^{27} Z^k$$

$$Q(Z) = Z^{11} + Z^{10} + \ldots + Z + 1 = \sum_{k=0}^{11} Z^k.$$

Trouvez le PGCD de P(Z) et de Q(Z).

Réponse à la question 1:

laisser la marge vide

ID: -999

Question 2 (à 5 points)

Points obtenus: (laisser vide)

A l'aide des formules de Viète, trouvez quatre nombres x,y,z,t qui vérifient

$$\begin{cases} x + y + z + t = 10\\ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} = \frac{5}{3}\\ x^2 + y^2 + z^2 + t^2 = 30\\ \frac{xy}{6} - \frac{4}{zt} = 0 \end{cases}$$

Réponse à la question 2:

laisser la marge vide

ID: -999

Question 3 (à 5 points)

Points obtenus: (laisser vide)

Calculez le développement limité à l'ordre 5 autour de $x_0=0$ de la fonction f qui vérifie

- f(0)=1,
- $f'(x) = e^{|\cos(x)|}.$

Réponse à la question 3:

laisser la marge vide

ID: -999

Question 4 Points obtenus: (laisser vide)

Dans le plan complexe on définit pour $A \ge 0$

$$C_A := \{ z \in \mathbb{C} : |\cos(z)| = A \}.$$

- (a) (3 points) Pour $A \ge 1$, trouvez les valeurs de y en fonction de la valeur de x pour que $z = x + iy \in C_A$.
- (b) (2 points) Pour A < 1, trouvez les valeurs de y en fonction des valeurs de x permises pour que $z = x + iy \in C_A$.

Réponse à la question 4:

laisser la marge vide

ID: -999

