3.2 Project Management Techniques

Project Management Process

- Initiation
- Planning
- Execution
- Closing down

Project Management Tools

• Gantt Chart:

- Used to plan time scale for project
- Estimate resources required
- O Graphical illustration of schedule of tasks to complete
- Helps to plan, coordinate and track specific tasks for a project

Project Planning Documentation							Page: 1 of 3 Date: 17 Jul 04				
System: ABC Second-Hand Books											
Legend: Scheduled Activity Completed Activity		Analyst: Harry Chen						Signature:			
Activities	Individual assigned	Week									
		1	2	3	4	5	6	7	8	9	10
1 Systems Planning											
1.1 Determine requirements	HC, John		_								
1.2 Evaluate alternative plan	HC			_							
1.3 Prepare design specifications	John										
	-										
2 Develop Data Storage							1				
2.1 Determine requirements	HC				_	-					
2.2 Evaluate alternative structures	HC, Jack				-						
2.3 Design data structure & interfaces	Jack					-	-				
2.4 Build test database	Jack							-			
2.5 Code & test interfaces	HC, Ryan									\vdash	
2.6 Build production database	Ryan								-		+
3 Develop Data Retrieval											
3.1 Training on 4th generation tools	Team										
3.2 Code programs	John, Bob										
3.3 Test with test database	John, Bob										
3.4 test with production database	John										

• PERT Chart:

- O Displays inter-dependency between tasks
- Ability to calculate critical path (path that effectively

indicates completion time of project)

- Dependent events: events where one can't be started until another one has been completed
- Concurrent events: events that can happen at the same time
- Use of critical path:
 - Good visual communication and planning tool for effective time management
 - Displays clearly interdependent relationships
 - Arranges tasks into optimal sequence of events for project to be completed most efficiently
 - Highlights critical / crucial tasks
 - ◆ Enables more effective resource allocation resources can be diverted from non-critical tasks to critical tasks to ensure critical tasks are finished on time
 - Highlight "float times" for all activities (i.e. amt of time an activity can overrun without delaying the project)
- Process of critical path analysis:
 - 1. Breakdown project into logical sequence to be completed
 - 2. Estimate time duration for each task
 - 3. Arrange activities in the most efficient sequence
 - 4. Estimate total duration for project

Event 6, 31 is the earliest start time and 33 is the latest start time.

It takes 23 unit of time to complete Activity A

Critical Path (path which effectively dictates the completion time of the project)