<u>Problem Set 4 – Second Order Statistics of Random Vectors,</u> Gaussian Random Vector

Problem 1:

In the course lecture you learned that the correlation and covariance matrices are positive semi-definite. In this problem, you are required to prove a number of simple characteristics relating positive semi-definite matrices.

Let B be a positive semi-definite matrix. Prove the following characteristics:

- 1. The elements on the diagonal of B are non-negative.
- 2. If *B* is positive definite, then *B* is invertible.
- 3. The eigenvalues of B are non-negative.

Problem 2:

Given $X \sim N(\mu, \sigma^2)$. Find the characteristic function of X.

<u>Hint:</u> Start by calculating the characteristic function of Z, a standard Gaussian random variable, $Z \sim N(0,1)$.

Problem 3:

 \underline{X} is a Gaussian random vector with expectation η and covariance matrix C.

For constants a and b, prove that:

$$P\left(\underline{a}^{T} \underline{X} \ge b\right) = Q\left(\frac{b - \underline{a}^{T} \underline{\eta}}{\sqrt{\underline{a}^{T} C \underline{a}}}\right)$$
where $Q(t) = \frac{1}{\sqrt{2\pi}} \int_{t}^{\infty} e^{-S^{2}/2} dS$

Problem 4:

Consider $X \sim N(0, \sigma^2)$, and let us denote W = |X|, $B = sign(X) = \begin{cases} 1 & X \ge 0 \\ -1 & X < 0 \end{cases}$.

- 1. Find the marginal distributions of W and B.
- 2. Prove that W and B are independent of each other.

Problem 5:

Given a Gaussian random vector with expected value 0 and variance 1, $X \sim N(0,1)$

The following random variables are defined:

$$Y = \cos(X), Z = \sin(X)$$

And also: $W = Y^2 + Z^2$.

- 1. Find E(W).
- 2. Find $E(Z^2)$.
- 3. Find $E(Z^2 | Z \ge 0)$. Hint: use symmetry.
- 4. Can one use symmetry in order to calculate $E(Y^2 | Y \ge 0)$? Explain.

Problem 6:

Given is a sequence of N i.i.d standard Gaussian random variables $\{V_0, V_1, ..., V_{N-1}\}$.

Let us denote a new sequence of random variables in the following way: $X_{i+1} = \beta X_i + V_i$ i = 0,1,2,3,...,N-1 (N in this question is a deterministic constant). Given: $X_0 \sim N(0,\sigma^2)$ independent of the sequence and $\beta \neq 0$.

- 1. Is the vector $\begin{bmatrix} V_0 & V_1 & \cdots & V_{N-1} \end{bmatrix}^T$ a Gaussian random vector?
- 2. Is the vector $\underline{X} = \begin{bmatrix} X_0 & X_1 & \cdots & X_N \end{bmatrix}^T$ a Gaussian random vector? Are the elements of the vector independent?
- 3. Find the expected value and variance of X_i .