Given 3 True/False questions, in how many ways can we answer them?

Total number of ways = 2 * 2 * 2 = 8

There are 10 girls and 7 boys in a hall. In how many ways can we pick one boy-girl pair?

Total number of ways = 10 * 7 = 70

There are 3 ways to move from Hyderabad to Mumbai.

There are 4 ways to move from Mumbai to Delhi.

What are the total ways of moving from Hyderabad to Delhi?

Total number of ways = 3 * 4 = 12

There are 2 ways to move from Hyderabad to Nagpur.

There are 3 ways to move from Nagpur to Delhi.

What are the total ways of moving from Hyderabad to Delhi?

Total number of ways = 2 * 3 = 6

There are 3 ways to move from Hyderabad to Mumbai, and 4 ways to move from Mumbai to Delhi.

There are 2 ways to move from Hyderabad to Nagpur, and 3 ways to move from Nagpur to Delhi.

In how many ways can we move from Hyderabad to Delhi?

Via Mumbai 3 * 4 = 12

Via Nagpur 2 * 3 = 6

$$Total = 12 + 6 = 18$$

Gift shop

There are 3 pens, 3 rings, 3 chocolates, 5 books, 7 flowers

3 pens

You can gift one of the following combos:

3 rings

1 Pen and 1 Book

1 Flower and 1 Chocolate

1 Ring

How many such combinations can you make?

3 chocolates

1 Pen and 1 Book

3 * 5 = 15

1 Flower and 1 Chocolates

7 * 3 = 21

1 Ring

3

5 books

Total = 15 + 21 + 3 = 39

Permutations

Arrangement of objects

Order matters!

$$(i,j) \neq (j,i)$$

$$a b \neq b a$$

What is the number of ways of arranging 3 characters: A, B, C?

Total number of ways = 3 * 2 * 1 = 6

This number is called 3 factorial

What is the number of ways of arranging 4 characters: A, B, C, D?

Total number of ways =4!=4*3*2*1=244 factorial

What is the number of ways of arranging N distinct objects?

$$N*(N-1)*(N-2)*\cdots*3*2*1 = N!$$

N factorial

Given 5 different characters, in how many ways can we arrange them in 2 places?

Total number of ways =
$$5*4 = 20$$

$${}^{5}P_{2} = 5*4 = \frac{5*4*3*2*1}{3*2*1} = \frac{5!}{3!}$$

Given "N" distinct objects, count the number of ways in which can we arrange them in 3 places.

$$^{N}P_{3} = N*(N-1)*(N-2)$$

Given "N" distinct objects, count the number of ways in which can we arrange them in 4 places.

$${}^{N}P_{4} = N * (N - 1) * (N - 2) * (N - 3)$$

Given "N" distinct objects, count the number of ways in which can we arrange them in "k" places.

$${}^{N}P_{k} = N*(N-1)*(N-2)*(N-3)*\cdots*(N-k+1)$$

$${}^{N}P_{k} = \frac{N*(N-1)*(N-2)*(N-3)*\cdots*(N-k+1)*(N-k)*(N-k-1)*\cdots3*2*1}{(N-k)*(N-k-1)*\cdots3*2*1}$$

$${}^{N}P_{k} = \frac{N!}{(N-k)!}$$

Let us see the same for 5 objects in 2 places

$${}^{5}P_{2} = 5*4 = \frac{5*4*3*2*1}{3*2*1} = \frac{5!}{3!}$$

$$N = 5 k = 2 N - k = 3$$

$$\frac{N!}{(N-k)!} = \frac{5!}{(5-2)!} = \frac{5!}{3!}$$

There are 4 players P1, P2, P3, and P4 who can play in the top-order positions of 1, 2, and 3.

How many arrangements of top-order can we make from 3 of these 4 players?

P1, P2, P3	P1, P2, P4	P1, P3, P4	P2, P3, P4
P1, P3, P2	P1, P4, P2	P1, P4, P3	P2, P4, P3
P2, P1, P3	P2, P1, P4	P3, P1, P4	P3, P2, P4
P2, P3, P1	P2, P4, P1	P3, P4, P1	P3, P4, P2
P3, P1, P2	P4, P1, P2	P4, P1, P3	P4, P2, P3
P3, P2, P1	P4, P2, P1	P4, P3, P1	P4, P3, P2

$$24 = 4 * 3 * 2$$
 $^{4}P_{3}$

Sachin, Sehwag, Kohli, Rohit

Suppose we have to select 3 players out of 4 players in our team.

In how many ways can we do this?

P1,	P2,	P3
P1,	P3,	P2
P2,	P1,	P3
P2,	P3,	P1
P3,	P1,	P2
P3,	P2 ,	P1

P1, P2, P3

P1, P2, P4

P2, P3, P4

P1, P3, P4

$$(i,j) = (j,i)$$

$${}^{n}C_{k} = \frac{{}^{n}P_{k}}{k!}$$

Suppose we have to <u>select</u> 2 players out of 5 players in our team. In how many ways can we do this?

$${}^{5}C_{2} = \frac{5*4}{2*1} = 10$$