Universidade Federal do Acre Centro de Ciências Exatas e Tecnológicas Curso de Bacharelado em Sistemas de Informação

Qualidade e Medição de Software

Prof. Daricélio Moreira Soares

A Garantia da Qualidade Depende:

Envolvidos e grau de envolvimento no projeto

Como avaliar?

Galinhas x Porcos

Galinhas x Porcos

Galinhas x Porcos

Como avaliar?

Medição isolada

Processo de medição + baselines = Garantia da Qualidade

O que é qualidade de software?

- Qualidade, de forma simplista, significa que o produto deve esta de acordo com a especificação.
- Problemas:
 - Tensão entre requisitos do cliente:
 - Eficiência, confiança, etc.
 - ...e os requisitos do desenvolvedor:
 - Reusabilidade, Manutenibilidade
 - Especificações podem ser ambíguas, incompletas e inconsistentes.

Gerenciamento da Qualidade

- Visa assegurar que o nível de qualidade requerido é atingido pelo software
- Envolve a definição apropriada de procedimentos e padrões de qualidade
- Deve proporcionar uma cultura da qualidade onde esta seja vista como uma responsabilidade de cada um dos envolvidos
- Não é apenas reduzir defeitos, mas garantir outras qualidades do produto.

Atividade da gerência da qualidade

- Garantia de Qualidade (Quality Assurance)
 - Estabelecer procedimentos e padrões organizacionais que conduzam a um software de qualidade
- Planejamento da Qualidade
 - Selecionar procedimentos e padrões específicos para um certo projeto.
- Controle de qualidade
 - Assegurar que os procedimentos e padrões são cumpridos pela equipe de desenvolvimento.

Processo de software e gerenciamento da qualidade

Garantia e padrões de qualidade

- Padrões (ou normas) são a chave para a garantia da qualidade
- Padrões podem ser internacionais, nacionais ou organizacionais.
 - Organizações internacionais de padronização:
 - ISO, IEEE, ANSI, etc
- Padrões de produto definem características que todos os componentes do software devem possuir
- Padrões de processo definem como o processo de software deve ser conduzido de forma a assegurar a qualidade do produto

Qualidade do Processo e Produto

- Qualidade do Processo
 - A qualidade do produto está relacionada a qualidade do processo
 - Melhoria do processo de software
- Qualidade do Produto
 - Verificação de fatores de qualidade
 - Fatores Externos são visíveis aos usuários
 - Fatores Internos de interesse dos desenvolvedores

Abordagens de melhoria do processo

- ▶ ISO/IEC 9126
- CMMI Capability Maturity Model Integration
- SPICE Software Process Improvement and dEtermination
- MPS.BR Melhoria do Processo de Sofware
- ▶ ISO/IEC 12207 TI

Correção

 Um software precisa funcionar corretamente. Um software correto é aquele que satisfaz a sua especificação e que não possui falhas ou erros.

Validade

 Um software válido é aquele cuja especificação satisfaz aos requisitos dos usuários e da organização, isto é, está de acordo com as necessidades dos usuários.

Robustez

 O software deve prever que o usuário pode agir de forma não esperada e deve ser capaz de resistir a estas eventuais situações incomuns, sem apresentar falhas.

Confiabilidade

 Um software correto e robusto ganha a confiança dos usuários uma vez que ele deve se comportar como esperado e não falha em situações inesperadas.

Eficiência

- O software deve realizar suas tarefas em um tempo adequado à complexidade de cada uma delas.
 - A utilização dos recursos de hardware (memória, disco, tráfego de rede) também deve ser feita de forma eficiente.

Reusabilidade

 Diversos componentes de um software devem poder ser reutilizados por outras aplicações.

Usabilidade

 O software precisa ser fácil de aprender e de usar, permitir maior produtividade do usuário, flexibilidade de utilização, flexibilidade de aplicação e proporcionar satisfação de uso.

Manutenibilidade

 Todo software precisa de manutenção, seja para corrigir erros ou atender a novos requisitos. O software deve ser fácil de manter para que estas correções ou atualizações sejam feitas com sucesso.

Evolutibilidade

 Todo software precisa evoluir para atender novos requisitos, para incorporar novas tecnologias ou para expansão de sua funcionalidade.

Portabilidade

 O software deve poder ser executado no maior número possível de equipamentos de hardware.

Interoperabilidade

- Software em diferentes plataformas devem poder interagir entre si.
 - Esta qualidade é essencial em sistemas distribuídos uma vez que o software pode estar sendo executado em diferentes computadores e sistemas operacionais.
 - É interessante que diferentes elementos de software distintos possam ser utilizados em ambos. Por exemplo, uma certo arquivo com uma imagem feita num aplicativo deve poder ser vista em outros aplicativos.
 - Conhecida também como compatibilidade

Qualidade e métricas

- Métricas de software são medidas associadas ao processo ou ao produto de software, incluindo à sua documentação.
 - Linhas de código, ponto-de-função, número de pessoas-mês, complexidade ciclomática
- Métricas permitem a quantificação de valores que permite avaliação da qualidade e comparações entre técnicas e processos.
- Muitas vezes é difícil relacionar as métricas existentes aos fatores de qualidade.

Métricas

- **Entender**: ajudam a entender o comportamento e o funcionamento de produtos de software.
- Avaliar: utilizadas para determinar padrões, metas e critérios de aceitação.
- Controlar: utilizadas para controlar processos, produtos e serviços de software.
- Prever: utilizadas para prever valores de atributos.

Métricas

- Planejamento, Gerenciamento e Avaliação são realizados com base em métricas
- A medição possibilita
 - Avaliar a qualidade dos produtos
 - Avaliar a produtividade da equipe
 - Avaliar métodos e ferramentas
 - Realizar estimativas no planejamento
- Métricas do processo
 - Métricas de produtividade
- Métricas do produto
 - Métricas da qualidade e métricas técnicas

Métricas para Planejamento e Gerenciamento

Objetivos

- Dimensão dos produtos
 - Modelos, protótipos, documentos e software
- Esforço de produção
 - Pessoas necessárias num período de tempo
- Produtividade
 - Quantidade produzida por esforço
- Defeitos
 - Número de erros encontrados
- Custo de produção
 - Valor do esforço de produção e correção de erros

Principais Métricas

Métricas	Objetivos
Linhas-de-Código (LOC)	Dimensão do produto
Pontos-por-função (FP)	Dimensão do produto
LOC/FP	Dimensão do produto
Pessoa-Mês (PM)	Esforço humano
Pessoa-Mês/LOC	Produtividade linear
Defeitos/LOC	Qualidade
Custo/LOC	Custo

Propriedades desejáveis de uma métrica

- Facilmente calculada, entendida e testada
- Passível de estudos estatísticos
- Expressa em alguma unidade
- Obtida o mais cedo possível no ciclo de vida do software
- Passível de automação
- Repetível e independente do observador
- Sugere uma estratégia de melhoria

Em resumo...

- Uma métrica deve ser:
 - Válida: quantifica o que queremos medir
 - Confiável: produz os mesmos resultados dadas as mesmas condições
 - Prática: barata, fácil de computar e fácil de interpretar
- Dois contextos para medição de software
 - Processo: ex. produtividade
 - Produto: ex. qualidade

Categorização de Métricas

- Métricas diretas (fundamentais ou básicas)
 - Medida realizada em termos de atributos observados (usualmente determinada pela contagem)
 - Ex.: custo, esforço, no. linhas de código, capacidade de memória,
 no. páginas, no. diagramas, etc.
- Métricas indiretas (derivadas)
 - Medidas obtidas a partir de outras métricas
 - Ex.: complexidade, eficiência, confiabilidade, facilidade de manutenção

Categorização de Métricas

Métricas orientadas a tamanho

- São medidas diretas do tamanho dos artefatos de software associados ao processo por meio do qual o software é desenvolvido.
- Ex.: esforço, custo, no. KLOC, no. páginas de documentação, no. erros

Métricas orientadas por função

 Consiste em um método para medição de software do ponto de vista do usuário, determinando de forma consistente o tamanho e a complexidade de um software.

Categorização de Métricas

Métricas de produtividade

- Concentram-se na saída do processo de engenharia de software.
- Ex.: no. de casos de uso/iteração.

Métricas de qualidade

- Oferecem uma indicação de quanto o software se adequa às exigências implícitas e explícitas do cliente.
- Ex.: erros

Métricas técnicas

- Concentram-se nas características do software e não no processo por meio do qual o software foi desenvolvido.
- Ex.: complexidade lógica e grau de manutenibilidade

Possíveis problemas com métricas

- Ex: Comparar a produtividade de engenheiros em termos de linha de código
 - Está sendo utilizado a mesma unidade de medida?
 - O que é uma linha de código válida?
 - O contexto considerado é o mesmo?
 - ▶ Todos os engenheiros são familiarizados com a linguagem de programação?
 - O que se quer realmente é o tamanho do código?
 - ► E a qualidade do código?
 - Como o resultado será interpretado?
 - Produtividade média de um engenheiro?
 - O que se quer com o resultado?
 - Comparar a produtividade do processo de software?

Dúvidas

