zero-base/

Chapter 18. Boosting Algorithm

앙상블 기법

- 앙상블은 전통적으로 Voting, Bagging, Boosting, 스태깅 등으로 나눔
- 보팅과 배깅은 여러개의 분류기가 투표를 통해 최종 예측 결과를 결정하는 방식
- 보팅과 배깅의 차이점은 보팅은 각각 다른 분류기, 배깅은 같은 분류기를 사용
- 대표적인 배깅 방식이 랜덤 포레스트

Boosting 의 개요

배깅과 부스팅의 차이

Adaboost - STEP1)

Adaboost - STEP2)

Adaboost - STEP3)

Adaboost - STEP4)

부스팅 기법

GBM Gradient Boosting MachineAdaBoost 기법과 비슷하지만, 가중치를 업데이트할 때 경사하강법(Gradient Descent)을 사용XGBoost (eXtra Gradient Boost)GBM에서 PC의 파워를 효율적으로 사용하기 위한 다양한 기법에 채택되어 빠른 속도와 효율을 가짐

LightGBM

XGBoost보다 빠른 속도를 가짐

Bagging = Bootstrap AGGregatING

Bagging과 Boosting의 차이

와인~~~ 또 봐요

데이터 읽고 맛에 대한 컬럼을 만들고~~

이번에는 pipeline이 아니라 직접 StandardScaler를 적용

```
from sklearn.preprocessing import StandardScaler

sc = StandardScaler()
X_sc = sc.fit_transform(X)
```

Scaler 적용 후에 데이터 나누기

아직 혼돈이 오면 안되는데, 이 상태에서 cross-validation을 한다면 X_train만 대상이 된다

모든 컬럼의 히스토그램 조사

```
import matplotlib.pyplot as plt
%matplotlib inline

wine.hist(bins=10, figsize=(15, 10))
plt.show()
```

잘 분포되어 있는 컬럼이 좋을 때가 많다

혹시나 하고, quality 별 다른 특성이 어떤지 확인해보자

사실 눈으로 그게 보일리가~~~^^

	alcohol	chlorides	citric	acid	density	fixed acidity	\
quali	ty						
3	10.15	0.0550		0.33	0.995900	7.45	
4	10.00	0.0505		0.26	0.994995	7.00	
5	9.60	0.0530		0.30	0.996100	7.10	
6	10.50	0.0460		0.31	0.994700	6.90	
7	11.40	0.0390		0.32	0.992400	6.90	
8	12.00	0.0370		0.32	0.991890	6.80	
9	12.50	0.0310		0.36	0.990300	7.10	
	free sul	fur dioxide	рН	resi	dual sugar.	sulphates \	
quali	ty						
3		17.0	3.245		3.15	0.505	
4		15.0	3.220		2.20	0.485	
5		27.0	3.190		3.00	0.500	
6		29.0	3.210		3.10	0.510	
7		30.0	3.220		2.80	0.520	
8		34.0	3.230		4.10	0.480	
9		28.0	3.280		2.20	0.460	
total sulfur dioxide volatile acidity							
quali	ty						
3		102.	5		0.415		
4		102.0	9		0.380		
5		127.0	9		0.330		
6		117.0	9		0.270		
7		114.0	9		0.270		
8		118.0	9		0.280		
9		119.0	9		0.270		

quality에 대한 나머지 특정들의 상관관계는?

```
corr_matrix = wine.corr()
print(corr_matrix["quality"].sort_values(ascending=False))
                         1.000000
 quality
 taste
                         0.814484
 alcohol
                        0.444319
 citric acid
                        0.085532
 free sulfur dioxide
                        0.055463
 sulphates
                         0.038485
 рН
                        0.019506
 residual sugar
                        -0.036980
 total sulfur dioxide
                        -0.041385
 fixed acidity
                        -0.076743
 color
                        -0.119323
 chlorides
                        -0.200666
 volatile acidity
                       -0.265699
 density
                        -0.305858
 Name: quality, dtype: float64
```

taste 컬럼의 분포는

또 다른 시도, 다양한 모델을 한 번에 테스트해보자

결과를 저장하기 위한 작업

```
from sklearn.model_selection import KFold, cross_val_score, KFold
results = []
names = []
for name, model in models:
    kfold = KFold(n_splits=5, random_state=13, shuffle=True)
    cv_results = cross_val_score(model, X_train, y_train,
                                 cv=kfold, scoring='accuracy')
    results.append(cv_results)
    names.append(name)
    print(name, cv_results.mean(), cv_results.std())
 RandomForestClassifier 0.8200825497889982 0.017566331518921702
 DecisionTreeClassifier 0.7567800029614274 0.010054702536658161
 AdaBoostClassifier 0.7533103205745169 0.02644765901536818
 GradientBoostingClassifier 0.7663959428444511 0.021596556352125432
 LogisticRegression 0.74273191678389 0.015548839626296565
```

cross-validation 결과를 일목요연하게 확인하기

```
fig = plt.figure(figsize=(14, 8))
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
```

일단 지금은 RandomForest가 유리해 보인다. - 방법할까 -

테스트 데이터에 대한 평가 결과

```
from sklearn.metrics import accuracy_score

for name, model in models:
    model.fit(X_train, y_train)
    pred = model.predict(X_test)
    print(name, accuracy_score(y_test, pred))

RandomForestClassifier 0.8369230769230769
DecisionTreeClassifier 0.79
AdaBoostClassifier 0.7553846153846154
GradientBoostingClassifier 0.7884615384615384
LogisticRegression 0.7469230769230769
```