# Geometría Básica Capítulo III: Isometrías del plano

Jackie Harjani y Belén López.

UNED, C.A. Las Palmas

Marzo 2011

## ENUNCIADO

#### Ejercicio 3.1

Sea  $\tau \in Isom(P)$  una traslación y  $c \subset P$  una recta tal que  $\tau(c) = c.$ 

- A. Para toda recta  $a \perp c$  existen rectas  $b, b' \perp c$ , únicamente determinadas, tales que  $\tau = \sigma_b \sigma_a = \sigma_a \sigma_{b'}$ .
- B. Para toda recta  $r \subset P$  se tiene

$$au(r) = r \iff r ext{ es paralela a } c$$

# Solución

Sea A la intersección de las rectas a y c,  $B{=}{\rm medio}[A,\tau(A)]$  y b la recta que verifica  $b\bot_B c$ .



Podemos observar que  $\sigma_b \tau$  realiza las siguientes transformaciones:

- Deja la recta c invariante:  $\sigma_b \tau(c) = c$ .
- El punto A queda fijo:  $\sigma_b \tau(A) = A$ .
- Los semiplanos determinados por la recta c son invariantes:  $\sigma_b \tau(H^i) = H^i$ .

 $\sigma_b \tau$  es una isometría por ser composición de isometrías, por lo que mantendrá las distancias y la ortogonalidad en sus transformaciones. Como la recta a es ortogonal a c,  $\sigma_b \tau(a)$  será ortogonal a  $\sigma_b \tau(c) = c$ . Por ser A un punto fijo y la recta c invariante la recta a también será invariante, pues su transformada por  $\sigma_b \tau$  tiene que ser una recta ortogonal a c que pase por A y sólo existe una única recta cumpliendo estos requisitos: la recta a (ver Teorema 2.29).

Sea P un punto de a, entonces  $d(\sigma_b\tau(P),\sigma_b\tau(A))=d(\sigma_b\tau(P),A)$ , con lo que  $\sigma_b\tau(P)$  tiene que ser un punto de la recta a a la misma distancia de A que P. De las dos posibilidades sólo podemos quedarnos con  $\sigma_b\tau(P)=P$  porque  $\sigma_b\tau$  mantiene invariantes los semiplanos determinados por c (ver la figura siguiente).



La recta a es una recta de puntos fijos y el Teorema 3.6 nos dice que o bien  $\sigma_b \tau = \sigma_a$  o bien  $\sigma_b \tau = i d_P$ . Este último caso implicaría

$$\sigma_b \tau = \mathrm{id}_P \Rightarrow (\sigma_b)^{-1} \sigma_b \tau = (\sigma_b)^{-1} \mathrm{id}_P \Rightarrow \tau = (\sigma_b)^{-1} \Rightarrow \tau = \sigma_b,$$

pero una traslación no tiene puntos fijos, por lo que llegamos a una contradicción.

Entonces tiene que ser  $\sigma_b \tau = \sigma_a$  de donde  $\tau = (\sigma_b)^{-1} \sigma_a = \sigma_b \sigma_a$ . Haciendo un razonamiento similar con  $\tau^{-1}$ , que también es una traslación, obtenemos

$$\sigma_{b'}\tau^{-1} = \sigma_a \Rightarrow \tau^{-1} = \sigma_{b'}\sigma_a.$$

Aplicando las propiedades de la función inversa

$$(\tau^{-1})^{-1} = (\sigma_{b'}\sigma_a)^{-1} \Rightarrow \tau = (\sigma_a)^{-1}(\sigma_{b'})^{-1} \Rightarrow \tau = \sigma_a\sigma_{b'}.$$



Veamos que la recta b es única. Supongamos que existe otra recta r verificando  $\tau = \sigma_r \sigma_a$ . Entonces

$$\sigma_r \sigma_a = \sigma_b \sigma_a \Rightarrow \sigma_r \sigma_a (\sigma_a)^{-1} = \sigma_b \sigma_a (\sigma_a)^{-1} \Rightarrow \sigma_r = \sigma_b$$

y como una reflexión esta determinada por su eje, tenemos que r=b. Análogamente se prueba la unicidad de  $b^\prime$ .

## Solución apartado B.

Para toda recta  $r \subset P$  se tiene

$$\tau(r) = r \iff r \text{ es paralela a } c$$

 $\Rightarrow$ 

$$\tau(r) = r \Rightarrow \tau(r \cap c) = \tau(r) \cap \tau(c) = r \cap c$$

pero por ser  $\tau$  una traslación no tiene puntos, con lo que  $r \cap c = \emptyset$ .



 $\Leftarrow$ 

Sabemos que  $\tau=\sigma_b\sigma_a$ ,  $a\bot c, b\bot c$ . Si r||c entonces  $r\bot a$  y  $r\bot b$  (ver Teorema 2.33). Como toda reflexión deja invariante las rectas ortogonales al eje (Teorema 2.26) tenemos que  $\sigma_a(r)=r$  y  $\sigma_b(r)=r$ , de donde

$$\tau(r) = \sigma_b \sigma_a(r) = \sigma_b(r) = r.$$