Assignment 3

Chayapon Thunsetkul 6280742

October 7, 2022

Question 1. Let

$$h = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

then, for $n \in \mathbb{Z}$ we have

$$h^n = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

and the determinant of h^n is 1. Futhermore, the identity matrix is simply h^0 . Thus, $H = \langle h \rangle \leqslant \operatorname{GL}_2$

- **Question 2.** 1. The positive divisors of 20 are $\{1, 2, 4, 5, 10, 20\}$, hence \mathbb{Z} has 6 subgroups; $\{0\}$, $\langle 1 \rangle$, $\langle 2 \rangle$, $\langle 4 \rangle$, $\langle 5 \rangle$, $\langle 10 \rangle$
 - 2. The positive divisors of 21 are $\{1, 3, 7, 21\}$, hence \mathbb{Z} has 4 subgroups; $\{e\}, \langle g\rangle, \langle g^3\rangle, \langle g^7\rangle$ where e is the identity in G.
- **Question 4.** $\langle 10 \rangle \cap \langle 21 \rangle$ is simply $\{g : g = [\operatorname{lcm}(10, 21) \operatorname{mod}(24)]^n, n \in \mathbb{Z}\}$ since the elements in the intersection must be divisible by 10 and 21. Thus, $\langle 10 \rangle \cap \langle 24 \rangle = \langle 18 \rangle$
- **Question 5.** The cyclic subgroups of U(15) are $\langle 1 \rangle, \langle 2 \rangle, \langle 4 \rangle, \langle 7 \rangle, \langle 11 \rangle, \langle 14 \rangle$
- **Question 6.** We will prove by contraposition. The converse of the proposition is if G is a non-cylic group then there exists non-trivial proper subgroup of G.

First, assume that G is a non-cyclic subgroup. Then, there must exist two elements $a, b \in G$ such that for any $n \in \mathbb{Z}$, $a \neq b^n$ and $b \neq a^n$. Now, we can let a be a generator of cyclic subgroup of G; $\langle a \rangle < G$. This subgroup is proper since $b \notin \langle a \rangle$. Thus, the original proposition must be true.

- Question 7. Let $\mu = o(a)$ and $\nu = o(b)$. Now, since ab = ba, we can distribute $(ab)^{\mu\nu} = a^{\mu\nu}b^{\mu\nu} = e^{\nu}e^{\mu} = e$. It follows that $\mu\nu$ must be an integer multiple of the order of ab. Thus, o(ab)|o(a)o(b).
- **Question 8.** By the Fundamental Theorem of Cyclic Groups, there is exactly one subgroup of $G = \langle g \rangle$ of order d, namely, $\langle g^k \rangle$ where n = dk. Now, the order of this group is clearly d. Thus, by a lemma, there are $\phi(d)$ elements that can generate $\langle g^k \rangle$.
- **Question 9.** By the Fundamental Theorem of Cyclic Groups, the divisors of n are clearly $\{1,7,n\}$. The only positive integer with this set of divisors is 49. Generally, for any prime number p, we will have $n=p^2$ since the divisors of p^2 are $\{1,p,p^2\}$.