

Compilers

- 1. Lexical Analysis
- 2. Parsing
- 3. Semantic Analysis
- 4. Optimization
- 5. Code Generation

```
if (i == j)
    Z = 0;
else
    Z = 1;
```

$$tif (i == i) \n ttz = 0; \n telse \n ttz = 1;$$

- Token Class (or Class)
 - In English:

– In a programming language:

- Token classes correspond to sets of strings.
- Identifier:
 - strings of letters or digits, starting with a letter
- Integer:
 - a non-empty string of digits
- Keyword:
 - "else" or "if" or "begin" or ...
- Whitespace:
 - a non-empty sequence of blanks, newlines, and tabs

- Classify program substrings according to role
- Communicate tokens to the parser

$$tif (i == j) \n ttz = 0; \n telse \n ttz = 1;$$

For the code fragment below, choose the correct number of tokens in each class that appear in the code fragment

$$x = 0; \n \t (x < 10) {\n \t x++; \n}$$

- \bigcirc W = 9; K = 1; I = 3; N = 2; O = 9
- \bigcirc W = 11; K = 4; I = 0; N = 2; O = 9
- \bigcirc W = 9; K = 4; I = 0; N = 3; O = 9
- \bigcirc W = 11; K = 1; I = 3; N = 3; O = 9

W: Whitespace

K: Keyword

I: Identifier

N: Number

O: Other Tokens:

An implementation must do two things:

- 1. Recognize substrings corresponding to tokens
 - The lexemes

2. Identify the token class of each lexeme