R: WAVE OPTICS * Interference: superposition of Two waves. Essential conditions; 1 coherent source. Oconstant phase difference B same Frequency. Desirable conditions's [same Amplitude]. -) In Young's Experiment. 1) Distance b/w two slits is small. & pistance bli screen and sits is large. Ex for Interference !-Let y = A sin wit 12 = Azsir(wt+p). y = y, +y2 = y = A sinut + A (sinut cosp + cosut sing). =) y = (A1+A2 cosp) sinut + A2 sind cosut - >1) Let $A_1+A_2\cos\phi = R\cos\phi$.

Assimp = Rsing substitute @ in 1) = y = R sin (wt +0). [Here, R&O are Arbitary constant From (2) } $\Rightarrow R^2 = (A_1 + A_2 \cos \phi)^2 + A_2^2 \sin^2 \phi$ $\Rightarrow p = \sqrt{(A_1 + A_2 \cos \phi)^2 + A_2^2 \sin^2 \phi}.$ = R= (.A12+A2+2A1A2 cos \$ (cos2\$ +sincp) = (A12+A22+ 2A1A2 Casq . substitute @ & @ in ear (A). Rsing = Azsing

Rcoso = Azsing - y= R sin (wotto) = 1 0 = tan (Azsing) - (

· Chilip of ja of -Intensity & (amplitude)? $J = R^2 = J_1 + J_2 + 2(J_1 J_2) \cos \phi$ * case-li); constructive Interference; Here Rmax when $\cos\phi = +1$. [. $\phi = 0$, 2π , 4π , $2\pi \pi$] · · \p = 2ntt. -) phase difference Rmax = A1+A2 Path difference, $\Delta = \frac{\lambda}{20}$ [phase difference]. $\Delta = \frac{\lambda}{2M} (kn\sqrt{M}) = 1 D = n\lambda$ Imax=4A * case-(i); Destructive Interference; Here Pmin when cosp = -1. [\$=1,30,50, (2n+1)] (2n+1) (1 iphase., D= χ. (2n+1) (1. Δ= (2n+1)) Romin = A12+A21-2A1A2. Romin=A1-A2 Romin=O. Inth =0

* Young's pauble sit Experiment's [prission of Waveling do Path difference $\Delta = S_2 P - S_1 P = \sqrt{D^2 + (y + \frac{d}{2})^2} - \sqrt{D^2 + (y - \frac{d}{2})^2}.$ $\Rightarrow D = D \left[1 + \left(\frac{y+d}{2} \right)^2 + \left(\frac{y-d}{2} \right)^2 \right]$ $\Rightarrow 0 = 0 \qquad [(y+\frac{d}{2})^2 - (y-\frac{d}{2})^2] \cdot (1+1)$ =) $\Delta = \frac{1}{2D} \left[\left(y + \frac{d}{2} \right)^2 - \left(y - \frac{d}{2} \right)^2 \right]$. $\left[- \left(a + b \right)^2 - \left(a - b \right)^2 + ab$ $D = \frac{1}{20} \left[\frac{4y}{y} \right].$ = 10= yd . 0185 2007 1 - 4 1900011114 16.7 .: Path difference; D= 4d. For constructive Intereference [Bright Fringe]; D=n\(\lambda\) = n\(\lambda\) \(\frac{1}{D} = n\(\lambda\) \(\lambda\) \(\lamb For Destructive Intereference D=(2n+1)2 = yd (2n+1)2 - yn=(2n+1)2D

For Normal Incidence,
$$r+0=0$$
.

For Normal Incidence, $r+0=0$.

For constructive interference, $\Delta = h\lambda$.

For constructive interference, $\Delta = h\lambda$.

For constructive interference, $\Delta = (n+1)\lambda$.

For constru

$$\Rightarrow t = \frac{r^2}{2R}$$
For enight Fringer Bright Pring :

Exhibitite 't' in eqn(2)

$$\Rightarrow 2 \mu \left[\frac{r^2}{2R} \right] = (2n+1) \frac{\lambda}{2}.$$

$$\Rightarrow 2 \mu \left[\frac{r^2}{2R} \right] = (2n+1) \frac{\lambda}{2}.$$

Now, $r_n = D_n$ (: an is Diameter)

$$\Rightarrow D_n^2 = (2n+1) \frac{\lambda}{2}.$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = 2(2n+1) \frac{\lambda}{2}.$$

For Dark Ring:

$$\Rightarrow D_n = (2\lambda R) (2n+1).$$

For Dark Ring:

$$\Rightarrow D_n = (2\lambda R) (2n+1).$$

For Dark Ring:

$$\Rightarrow D_n = (2\lambda R) (2n+1).$$

For Dark Ring:

$$\Rightarrow D_n = (2\lambda R) (2n+1).$$

For Dark Ring:

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

For Air, $\mu = 1$

$$\Rightarrow D_n^2 = \frac{n\lambda}{2R}$$

$$\Rightarrow D_n^$$

We know, Dn = 4 PMR

For pth ring, Drup = 4(n+p) > R.

9/(11-9)

$$R = \frac{D^{2}n+p-D^{2}}{4p\lambda}$$

$$\lambda = \frac{\Omega_{n+p} - \rho_n^2}{4pR}$$

For Refractive Index of Liquid:

$$pl = \left(\frac{O_{n+p}^2 - D_n^2}{O_{n+p}^2 - D_n^2}\right)_{\text{Liquid}}$$

* piffraction :

The phenomenon of Bending of light into its Geometrical shape is called Diffraction.

* Types of piffraction;

- 1) Francel Diffraction.
- @ Fraun Hoffer Diffraction.

central Secondary
maxima Maxima
(un)
principle
maxima

* Single Slit [Fraun Hoffer] Diffraction 1.

Here path difference, BK = asino.

phase difference = 201 (asino).

vector Theorem;

R=A Sinx Here, A=na X= n8

Now, $\lambda = 207a \sin \theta$ [-'Two successive sources]. $R = A \sin \alpha$

 $\Rightarrow I = R^2 = A^2 \frac{\sin^2 \alpha}{\alpha^2}$

For maxima & minima intensity $\frac{dI}{dx} = 0$.

Scanned with CamScanner

Here
$$m=\pm 1,\pm 2,\pm 3,\ldots$$

Here $m=\pm 1,\pm 2,\pm 3,\ldots$

A sing $=\pm (9m+1)A$ secondary maximals.

if $m=1, \alpha=3T$ (secondary first maxima)

 $m=2, \alpha=5T$ [secondary third maxima]

 $m=3, \alpha=\frac{2}{2}T$ [secondary Third maxima].

 $T=A^2 \cdot \frac{\sin^2 x}{\sqrt{2}} = A^2 \cdot \sin^2 \frac{2T}{2} = A^2 \cdot \frac{4}{9T^2} = \left(\frac{2r}{9T^2}\right) T_0$

If $=4r \cdot 5r^2$ of T_0 .

 $T_2=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 \left(\frac{5T}{2}\right) = A^2 \cdot \frac{4}{9T^2} = A^2 \cdot \frac{4}{9T^2}$
 $T_3=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 \left(\frac{5T}{2}\right) = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 \left(\frac{5T}{2}\right) = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \frac{4}{9T^2}$
 $T_4=A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \cos^2 x = A^2 \cdot \cos^2 x = A^2 \cdot \sin^2 x = A^2 \cdot \cos^2 x = A^2 \cdot \cos^$