

Carmer's rule

For any $n \times n$ matrix A and any \mathbf{b} in \mathbb{R}^n , let $A_i(\mathbf{b})$ be the matrix obtained from A by replacing column i by the vector \mathbf{b} .

$$A_i(\mathbf{b}) = [\mathbf{a}_1 \quad \cdots \quad \mathbf{b} \quad \cdots \quad \mathbf{a}_n]$$

THEOREM 7

Cramer's Rule

Let A be an invertible $n \times n$ matrix. For any **b** in \mathbb{R}^n , the unique solution **x** of A**x** = **b** has entries given by

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A}, \qquad i = 1, 2, \dots, n \tag{1}$$

PROOF Denote the columns of A by $\mathbf{a}_1, \dots, \mathbf{a}_n$ and the columns of the $n \times n$ identity matrix I by $\mathbf{e}_1, \dots, \mathbf{e}_n$. If $A\mathbf{x} = \mathbf{b}$, the definition of matrix multiplication shows that

$$A \cdot I_i(\mathbf{x}) = A \begin{bmatrix} \mathbf{e}_1 & \cdots & \mathbf{x} & \cdots & \mathbf{e}_n \end{bmatrix} = \begin{bmatrix} A\mathbf{e}_1 & \cdots & A\mathbf{x} & \cdots & A\mathbf{e}_n \end{bmatrix}$$

= $\begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{b} & \cdots & \mathbf{a}_n \end{bmatrix} = A_i(\mathbf{b})$

By the multiplicative property of determinants,

$$(\det A)(\det I_i(\mathbf{x})) = \det A_i(\mathbf{b})$$

The second determinant on the left is simply x_i . (Make a cofactor expansion along the ith row.) Hence $(\det A) \cdot x_i = \det A_i(\mathbf{b})$. This proves (1) because A is invertible and $\det A \neq 0$.

SOLUTION View the system as $A\mathbf{x} = \mathbf{b}$. Using the notation introduced above,

$$A = \begin{bmatrix} 3 & -2 \\ -5 & 4 \end{bmatrix}, \qquad A_1(\mathbf{b}) = \begin{bmatrix} 6 & -2 \\ 8 & 4 \end{bmatrix}, \qquad A_2(\mathbf{b}) = \begin{bmatrix} 3 & 6 \\ -5 & 8 \end{bmatrix}$$

Since $\det A = 2$, the system has a unique solution. By Cramer's rule,

$$x_1 = \frac{\det A_1(\mathbf{b})}{\det A} = \frac{24 + 16}{2} = 20$$

 $x_2 = \frac{\det A_2(\mathbf{b})}{\det A} = \frac{24 + 30}{2} = 27$

Application to Engineering

A number of important engineering problems, particularly in electrical engineering and control theory, can be analyzed by *Laplace transforms*. This approach converts an appropriate system of linear differential equations into a system of linear algebraic equations whose coefficients involve a parameter. The next example illustrates the type of algebraic system that may arise.

EXAMPLE 2 Consider the following system in which s is an unspecified parameter. Determine the values of s for which the system has a unique solution, and use Cramer's rule to describe the solution.

$$3sx_1 - 2x_2 = 4$$
$$-6x_1 + sx_2 = 1$$

SOLUTION View the system as $A\mathbf{x} = \mathbf{b}$. Then

$$A = \begin{bmatrix} 3s & -2 \\ -6 & s \end{bmatrix}, \quad A_1(\mathbf{b}) = \begin{bmatrix} 4 & -2 \\ 1 & s \end{bmatrix}, \quad A_2(\mathbf{b}) = \begin{bmatrix} 3s & 4 \\ -6 & 1 \end{bmatrix}$$

Since

$$\det A = 3s^2 - 12 = 3(s+2)(s-2)$$

the system has a unique solution precisely when $s \neq \pm 2$. For such an s, the solution is (x_1, x_2) , where

$$x_1 = \frac{\det A_1(\mathbf{b})}{\det A} = \frac{4s+2}{3(s+2)(s-2)}$$

$$x_2 = \frac{\det A_2(\mathbf{b})}{\det A} = \frac{3s+24}{3(s+2)(s-2)} = \frac{s+8}{(s+2)(s-2)}$$

$$A^{-1} = \frac{1}{C_{12}} \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \end{bmatrix}$$
(4)

$$\det A \begin{bmatrix} \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

The matrix of cofactors on the right side of (4) is called the **adjugate** (or **classical adjoint**) of A, denoted by adj A. (The term *adjoint* also has another meaning in advanced texts on linear transformations.) The next theorem simply restates (4).

THEOREM 8

An Inverse Formula

Let A be an invertible $n \times n$ matrix. Then

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

NUMERICAL NOTES

Theorem 8 is useful mainly for theoretical calculations. The formula for A^{-1} permits one to deduce properties of the inverse without actually calculating it. Except for special cases, the algorithm in Section 2.2 gives a much better way to compute A^{-1} , if the inverse is really needed.

Cramer's rule is also a theoretical tool. It can be used to study how sensitive the solution of $A\mathbf{x} = \mathbf{b}$ is to changes in an entry in \mathbf{b} or in A (perhaps due to experimental error when acquiring the entries for \mathbf{b} or A). When A is a 3×3 matrix with *complex* entries, Cramer's rule is sometimes selected for hand computation because row reduction of $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ with complex arithmetic can be messy, and the determinants are fairly easy to compute. For a larger $n \times n$ matrix (real or complex), Cramer's rule is hopelessly inefficient. Computing just *one* determinant takes about as much work as solving $A\mathbf{x} = \mathbf{b}$ by row reduction.

THEOREM 9

If A is a 2×2 matrix, the area of the parallelogram determined by the columns of A is $|\det A|$. If A is a 3×3 matrix, the volume of the parallelepiped determined by the columns of A is $|\det A|$.

FIGURE 1 Area =
$$|ad|$$
.

$$\left| \det \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} \right| = |ad| = \begin{cases} \text{area of } \\ \text{rectangle} \end{cases}$$

See Fig. 1. It will suffice to show that any 2×2 matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2]$ can be transformed into a diagonal matrix in a way that changes neither the area of the associated parallelogram nor $|\det A|$. From Section 3.2, we know that the absolute value of the determinant is unchanged when two columns are interchanged or a multiple of one column is added to another. And it is easy to see that such operations suffice to transform A into a diagonal matrix. Column interchanges do not change the parallelogram at all. So it suffices to prove the following simple geometric observation that applies to vectors in \mathbb{R}^2 or \mathbb{R}^3 :

Let \mathbf{a}_1 and \mathbf{a}_2 be nonzero vectors. Then for any scalar c, the area of the parallelogram determined by \mathbf{a}_1 and \mathbf{a}_2 equals the area of the parallelogram determined by \mathbf{a}_1 and $\mathbf{a}_2 + c \mathbf{a}_1$.

Linear Transformations

Determinants can be used to describe an important geometric property of linear transformations in the plane and in \mathbb{R}^3 . If T is a linear transformation and S is a set in the domain of T, let T(S) denote the set of images of points in S. We are interested in how the area (or volume) of T(S) compares with the area (or volume) of the original set S. For convenience, when S is a region bounded by a parallelogram, we also refer to S as a parallelogram.

THEOREM 10

Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation determined by a 2 × 2 matrix A. If S is a parallelogram in \mathbb{R}^2 , then

$$\{\text{area of } T(S)\} = |\det A| \cdot \{\text{area of } S\}$$
 (5)

If T is determined by a 3×3 matrix A, and if S is a parallelepiped in \mathbb{R}^3 , then

$$\{\text{volume of } T(S)\} = |\det A| \cdot \{\text{volume of } S\}$$
 (6)

FIGURE 7 Approximating T(R) by a union of parallelograms.

The conclusions of Theorem 10 hold whenever S is a region in \mathbb{R}^2 with finite area or a region in \mathbb{R}^3 with finite volume.