Introduction to Machine Learning

Hyperparameter Tuning In a Nutshell

Learning goals

- Understand the main idea behind tuning,
- fulfilling the untouched-test set principle via nested resampling,
- and pipelines

WHAT IS TUNING?

- Tuning is the process of selecting the best hyperparameters, denoted as
 \(\lambda \), for a machine learning model.
- Hyperparameters are the parameters of the learner (versus model parameters θ).
- Consider a guitar analogy: Hyperparameters are akin to the tuning pegs. Learning the best parameters $\hat{\theta}$ playing the guitar is a separate process that depends on tuning.

WHY TUNING MATTERS

- Just like a guitar won't perform well when out-of-tune, properly tuning a learner can drastically improve the resulting model performance.
- Tuning helps find a balance between underfitting and overfitting.

× CO × X

Comparing AUCs of different values for hyperparameters maxdepth, k, gamma, and C

HOW HARD COULD IT BE?

- Very difficult: There are lots of different configurations to choose from, known as the hyperparameter space, denoted by Λ (analogous to Θ).
- Black box: If one opts for a configuration $\lambda \in \Lambda$, how can its performance be measured (and compared)?
- ⇒ Well-thought-out Black-Box Optimization Techniques are needed.

Exponential growth of Λ : For two discrete hyperparameters with each 10 possible values, $10\cdot 10=100$ configurations can be evaluated

NAÏVE APPROACHES

Goal: Find a best configuration $\lambda^* \in \arg\min_{\lambda \in \Lambda} \widehat{\mathrm{GE}}(\mathcal{I}, \rho, \lambda)$

 \Rightarrow Tuners au, e.g., **Grid Search** and **Random Search**, output a $oldsymbol{\lambda}^*$

Random Search

Sophisticated techniques, based on assumptions about the objective function, search for optimal solutions more efficiently.

UNTOUCHED-TEST-SET PRINCIPLE

We've found a $\lambda^* \in \Lambda$. How well does it perform?

- Careful: We cannot use the same data for both tuning and performance estimation, as this would lead to (optimistically) biased performance estimates!
- \bullet To obtain an unbiased $\widehat{GE},$ we need an untouched test set:

NESTED RESAMPLING

To decrease variance of the $\widehat{\mathrm{GE}}$, Nested Resampling is used:

ullet Just as we generalized holdout splitting to resampling, we generalize the three-way split to nested resampling (as we first have to find λ^*):

PIPELINES IN MACHINE LEARNING

Pipelines are like the assembly lines in machine learning. They automate the sequence of data processing and model building tasks.

Why Pipelines Matter:

- Streamlined Workflow: Automates the flow from data preprocessing to model training.
- Reproducibility: Ensures that results can be reproduced consistently.
- Error Reduction: Minimizes the chance of human errors in the model building process.

