A Trick to Unify Notation for Returns

- ☐ In episodic tasks, we number the time steps of each episode starting from zero.
- \square We usually do not have to distinguish between episodes, so instead of writing $S_{t,j}$ for states in episode j, we write just S_t
- ☐ Think of each episode as ending in an absorbing state that always produces reward of zero:

$$(S_0)$$
 $R_1 = +1$ (S_1) $R_2 = +1$ (S_2) $R_3 = +1$ (S_2) $R_3 = +1$ $(S_3 = +1)$ $(S_4 = 0)$ $(S_5 = 0)$ $(S_5 = 0)$

■ We can cover <u>all</u> cases by writing $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$,

where γ can be 1 only if a zero reward absorbing state is always reached.

Rewards and returns

- The objective in RL is to maximize long-term future reward
- That is, to choose A_t so as to maximize $R_{t+1}, R_{t+2}, R_{t+3}, \ldots$
- But what exactly should be maximized?
- The <u>discounted return</u> at time t:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

the discount rate

$$\gamma \in [0,1)$$

γ	Reward sequence	Return
0.5(or any)	1000	1
0.5	002000	0.5
0.9	002000	1.62
0.5	-1 2 6 3 2 0 0 0	2

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma=0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma=0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 =$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = -4$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma=0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

• Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

$$G =$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma=0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

• Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

$$G = \frac{1}{1 - \gamma}$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \qquad \gamma \in [0, 1)$$

• Suppose $\gamma = 0.5$ and the reward sequence is

$$R_1 = 1, R_2 = 6, R_3 = -12, R_4 = 16$$
, then zeros for R_5 and later

What are the following returns?

$$G_4 = 0$$
 $G_3 = 16$ $G_2 = -4$ $G_1 = 4$ $G_0 = 3$

• Suppose $\gamma = 0.5$ and the reward sequence is all 1s.

$$G = \frac{1}{1 - \gamma} = 2$$

What we learned so far

- ☐ Finite Markov decision processes!
 - States, actions, and rewards
 - And returns
 - And time, discrete time
 - They capture essential elements of life state, causality
- ☐ The goal is to optimize expected returns
 - returns are discounted sums of future rewards
- \Box Thus we are interested in *values* expected returns

4 value functions

	state values	action values
prediction	v_{π}	q_{π}
control	v_*	q_*

- All theoretical objects, mathematical ideals (expected values)
- Distinct from their estimates:

$$V_t(s)$$
 $Q_t(s,a)$

Values are expected returns

The value of a state, given a policy:

$$v_{\pi}(s) = \mathbb{E}\{G_t \mid S_t = s, A_{t:\infty} \sim \pi\} \qquad v_{\pi} : S \to \Re$$

The value of a state-action pair, given a policy:

$$q_{\pi}(s, a) = \mathbb{E}\{G_t \mid S_t = s, A_t = a, A_{t+1:\infty} \sim \pi\} \qquad q_{\pi} : S \times A \to \Re$$

• The optimal value of a state:

$$v_*(s) = \max_{\pi} v_{\pi}(s) \qquad v_* : S \to \Re$$

• The optimal value of a state-action pair:

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) \qquad q_* : S \times A \to \Re$$

• Optimal policy: π_* is an optimal policy if and only if

$$\pi_*(a|s) > 0$$
 only where $q_*(s,a) = \max_b q_*(s,b)$ $\forall s \in S$

• in other words, π_* is optimal iff it is *greedy* wrt q_*

Bellman Equation for a Policy π

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$

So:

$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} | S_{t} = s \right\}$$

$$= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} \left(S_{t+1} \right) | S_{t} = s \right\}$$

Or, without the expectation operator:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

Gridworld

- Actions: north, south, east, west; deterministic.
- \square If would take agent off the grid: no move but reward = -1
- \Box Other actions produce reward = 0, except actions that move agent out of special states A and B as shown.

	3.3	8.8	4.4	5.3	1 .5	
ŀ	1.5	3.0	2.3	1.9	0.5	
	0.1	0.7	0.7	0.4	-0.4	
[-1.0	-0.4	-0.4	-0.6	-1.2	
[1.9	-1.3	-1.2	-1.4	-2.0	
(b)						

State-value function for equiprobable random policy; $\gamma = 0.9$

Golf

- State is ball location
- Reward of −1 for each stroke until the ball is in the hole
- ☐ Value of a state?
- Actions:
 - putt (use putter)
 - driver (use driver)
- putt succeeds anywhere on the green

Optimal Value Functions

☐ For finite MDPs, policies can be **partially ordered**:

$$\pi \ge \pi'$$
 if and only if $v_{\pi}(s) \ge v_{\pi'}(s)$ for all $s \in S$

- There are always one or more policies that are better than or equal to all the others. These are the **optimal policies**. We denote them all π_* .
- Optimal policies share the same optimal state-value function:

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$
 for all $s \in S$

Optimal policies also share the same optimal action-value function:

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$
 for all $s \in S$ and $a \in A$

This is the expected return for taking action *a* in state *s* and thereafter following an optimal policy.

Why Optimal State-Value Functions are Useful

Any policy that is greedy with respect to v_* is an optimal policy.

Therefore, given v_* , one-step-ahead search produces the long-term optimal actions.

E.g., back to the gridworld:

a) gridworld

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

b) ν_*

c) π_*

Optimal Value Function for Golf

- We can hit the ball farther with driver than with putter, but with less accuracy
- \square q_* (s,driver) gives the value or using driver first, then using whichever actions are best

What About Optimal Action-Value Functions?

Given q_* , the agent does not even have to do a one-step-ahead search:

$$\pi_*(s) = \arg\max_a q_*(s,a)$$

Bellman Equation for a Policy π

The basic idea:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4} + \cdots$$

$$= R_{t+1} + \gamma \left(R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots \right)$$

$$= R_{t+1} + \gamma G_{t+1}$$

So:
$$v_{\pi}(s) = E_{\pi} \left\{ G_{t} | S_{t} = s \right\}$$
$$= E_{\pi} \left\{ R_{t+1} + \gamma v_{\pi} \left(S_{t+1} \right) | S_{t} = s \right\}$$

Or, without the expectation operator:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

More on the Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

This is a set of equations (in fact, linear), one for each state. The value function for π is its unique solution.

Backup diagrams:

Bellman Optimality Equation for v_*

The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$v_{*}(s) = \max_{a} q_{\pi_{*}}(s, a)$$

$$= \max_{a} \mathbb{E}[R_{t+1} + \gamma v_{*}(S_{t+1}) \mid S_{t} = s, A_{t} = a]$$

$$= \max_{a} \sum_{s', r} p(s', r | s, a) [r + \gamma v_{*}(s')].$$

The relevant backup diagram:

 V_* is the unique solution of this system of nonlinear equations.

Bellman Optimality Equation for q_*

$$q_*(s, a) = \mathbb{E} \left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a \right]$$
$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma \max_{a'} q_*(s', a') \right].$$

The relevant backup diagram:

 q_* is the unique solution of this system of nonlinear equations.

Solving the Bellman Optimality Equation

- ☐ Finding an optimal policy by solving the Bellman Optimality Equation requires the following:
 - accurate knowledge of environment dynamics;
 - we have enough space and time to do the computation;
 - the Markov Property.
- ☐ How much space and time do we need?
 - polynomial in number of states (via dynamic programming methods; Chapter 4),
 - BUT, number of states is often huge (e.g., backgammon has about 10²⁰ states).
- ☐ We usually have to settle for approximations.
- ☐ Many RL methods can be understood as approximately solving the Bellman Optimality Equation.

Summary

- Agent-environment interaction
 - States
 - Actions
 - Rewards
- Policy: stochastic rule for selecting actions
- ☐ Return: the function of future rewards agent tries to maximize
- Episodic and continuing tasks
- Markov Property
- Markov Decision Process
 - Transition probabilities
 - Expected rewards

- Value functions
 - State-value function for a policy
 - Action-value function for a policy
 - Optimal state-value function
 - Optimal action-value function
- Optimal value functions
- Optimal policies
- Bellman Equations
- The need for approximation