Bayesian Classification: Why?

- Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical approaches to certain types of learning problems
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct. Prior knowledge can be combined with observed data.
- Probabilistic prediction: Predict multiple hypotheses, weighted by their probabilities
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Bayesian Theorem: Basics

- Let X be a data sample whose class label is unknown
- Let H be a hypothesis that X belongs to class C
- For classification problems, determine P(H/X): the probability that the hypothesis holds given the observed data sample X
- ▶ P(H): prior probability of hypothesis H (i.e. the initial probability before we observe any data, reflects the background knowledge)
- \triangleright P(X): probability that sample data is observed
- Arr P(X|H): probability of observing the sample X, given that the hypothesis holds

Bayesian Theorem

• Given training data X, posteriori probability of a hypothesis H, P(H|X) follows the Bayes theorem

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

- ► Informally, this can be written as posterior =likelihood x prior / evidence
- MAP (maximum posteriori) hypothesis

$$h_{MAP} = \underset{h \in H}{\operatorname{argmax}} P(h|D) = \underset{h \in H}{\operatorname{argmax}} P(D|h)P(h).$$

 Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Naïve Bayes Classifier

A simplified assumption: attributes are conditionally independent:

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- The product of occurrence of say 2 elements x_1 and x_2 , given the current class is C, is the product of the probabilities of each element taken separately, given the same class $P([y_1,y_2],C) = P(y_1,C) * P(y_2,C)$
- No dependence relation between attributes
- ▶ Greatly reduces the computation cost, only count the class distribution.
- Once the probability $P(X|C_i)$ is known, assign X to the class with maximum $P(X|C_i)*P(C_i)$

Training dataset

Class:

C1:buys_computer= 'yes'

C2:buys_computer= 'no'

Data sample
X =(age<=30,
Income=medium,
Student=yes
Credit_rating=
Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: Example

Compute P(X/Ci) for each class

```
P(age="<30" | buys_computer="yes") = 2/9=0.222
P(age="<30" | buys_computer="no") = 3/5 = 0.6
P(income="medium" | buys_computer="yes")= 4/9 = 0.444
P(income="medium" | buys_computer="no") = 2/5 = 0.4
P(student="yes" | buys_computer="yes")= 6/9 = 0.667
P(student="yes" | buys_computer="no")= 1/5=0.2
P(credit_rating="fair" | buys_computer="yes")=6/9=0.667
P(credit_rating="fair" | buys_computer="no")=2/5=0.4
```

X=(age<=30,income =medium, student=yes,credit_rating=fair)

```
P(X|Ci): P(X|buys_computer="yes")= 0.222 x 0.444 x 0.667 x 0.667 =0.044

P(X|buys_computer="no")= 0.6 x 0.4 x 0.2 x 0.4 =0.019

P(X|Ci)*P(Ci): P(X|buys_computer="yes") * P(buys_computer="yes")=0.028

P(X|buys_computer="no") * P(buys_computer="no")=0.007
```

X belongs to class "buys_computer=yes"

Naïve Bayesian Classifier: Comments

Advantages :

- Easy to implement
- ▶ Good results obtained in most of the cases

Disadvantages

- ► Assumption: class conditional independence, therefore loss of accuracy
- Practically, dependencies exist among variables
- ► E.g., hospitals: patients: Profile: age, family history etc Symptoms: fever, cough etc., Disease: lung cancer, diabetes etc
- ► Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- ▶ How to deal with these dependencies?
 - Bayesian Belief Networks

Bayesian Networks

- Bayesian belief network allows a *subset* of the variables conditionally independent
- A graphical model of causal relationships
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution

- □Nodes: random variables
- □Links: dependency
- $\square X, Y$ are the parents of Z, and Y is the
- parent of P
- ■No dependency between Z and P
- ☐ Has no loops or cycles

Bayesian Belief Network: An Example

~LC

Bayesian Belief Networks

	(FH, S)	(FH, ~S)	(~FH, S)	(~FH, ~S)
LC	0.8	0.5	0.7	0.1	

0.5

0.2

The conditional probability table for the variable LungCancer: Shows the conditional probability for each possible combination of its parents n

 $P(z_1,...,z_n) = \prod_{i=1}^{n} P(z_i | Parents(Z_i))$

0.3

0.9

Learning Bayesian Networks

Several cases

- ► Given both the network structure and all variables observable: learn only the CPTs
- Network structure known, some hidden variables: method of gradient descent, analogous to neural network learning
- Network structure unknown, all variables observable: search through the model space to reconstruct graph topology
- Unknown structure, all hidden variables: no good algorithms known for this purpose
- D. Heckerman, Bayesian networks for data mining

Support Vector Machines (SVM)

Oct 28, 2015

Linear Separators

• Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

• Which of the linear separators is optimal?

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are *support vectors*.
- *Margin* ρ of the separator is the distance between support vectors.

Maximum Margin Classification

- Maximizing the margin is good according to intuition
- Implies that only support vectors matter; other training examples are ignorable.

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbf{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \leq -\rho/2 \quad \text{if } y_{i} = -1$$

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \geq \rho/2 \quad \text{if } y_{i} = 1 \qquad \Longleftrightarrow \qquad y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq \rho/2$$

- For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is $r = \frac{\mathbf{y}_s(\mathbf{w}^T\mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$
- Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Linear SVMs Mathematically (cont.)

Then we can formulate the *quadratic optimization problem*:

Find w and b such that

$$\rho = \frac{2}{\|\mathbf{w}\|}$$
 is maximized

and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$

Which can be reformulated as:

Find w and b such that

$$\Phi(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^T \mathbf{w}$$
 is minimized

 $\mathbf{\Phi}(\mathbf{w}) = ||\mathbf{w}||^2 = \mathbf{w}^{\mathrm{T}}\mathbf{w} \text{ is minimized}$ and for all (\mathbf{x}_i, y_i) , i=1..n: $y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1$

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Soft Margin Classification Mathematically

• The old formulation:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^{\mathrm{T}}\mathbf{w} is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1
```

• Modified formulation incorporates slack variables:

```
Find \mathbf{w} and \mathbf{b} such that \mathbf{\Phi}(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{w} + C\Sigma \xi_{i} \text{ is minimized} and for all (\mathbf{x}_{i}, y_{i}), i=1..n: y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \ge 1 - \xi_{i}, \xi_{i} \ge 0
```

• Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

• General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

SVM applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik *et al.* '97], principal component analysis [Schölkopf *et al.* '99], etc.
- Tuning SVMs remains a black art: selecting a specific kernel and parameters is usually done in a try-and-see manner.