Technical University of Crete

School of Electrical and Computer Engineering

Course: Generative Artificial Intelligence

Assignment 2

Angelopoulos Dimitris - 2020030038

Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs) consist of a forward and a backward process. The goal is to minimize the KL distance between the distribution of the forward process $(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0))$ and the backward process $(p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t))$ at a given time instance t and consequently predict \mathbf{x}_{t-1} . To achieve that, we define the simplified loss that is based on the KL divergence, as follows

$$\mathcal{L} = \mathbb{E}_{t,\mathbf{x}_0,\boldsymbol{\epsilon}}[\|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\mathbf{x}_t(\mathbf{x}_0,t),t)\|^2]$$

where ϵ is white Gaussian noise and ϵ_{θ} is the neural network that predicts the noise.

Results

For some realization of the problem we got the following loss curve

While the DDPM Chamfer distance was computed to be $C(q,p_{\theta})=16.2925$

Last but not least, for visualization of the sampled particles and for the specific realization of the problem, we got the following figure

