Lecture 5: K-Nearest Neigbhor Rules

Tianpei Xie

Dec. 19th., 2022

Contents

1	Nearest Neighbor Rules		
	1.1	The Classification Rule	2
2	Consistency		3
	2.1	Asymptotic Consistency	ç
	2.2	Stone's Lemma	ç
	2.3	The Asymptotic Probability of Error	ç
	2.4	Stone's Theorem	ć

Figure 1: Varona partition of K-NN rules [Devroye et al., 2013].

1 Nearest Neighbor Rules

1.1 The Classification Rule

• Definition (Nearest Neighbor Rules)
Formally, we define the k-NN rule by

$$g_n(x) = \begin{cases} 1 & \sum_{i=1}^n w_{n,i} \mathbb{1} \{Y_i = 1\} > \sum_{i=1}^n w_{n,i} \mathbb{1} \{Y_i = 0\} \\ 0 & \text{o.w.} \end{cases}$$

where $w_{n,i} = 1/k$ if X_i is among the k nearest neighbors of x, and $w_{n,i} = 0$ elsewhere.

 X_i is said to be **the** k-**th nearest neighbor** of x if the distance $d(x, X_i)$ is the k-th smallest among $d(x, X_1), \ldots, d(x, X_n)$ In case of a distance tie, the candidate with the smaller index is said to be closer to x. The decision is based upon a **majority vote**. It is convenient to let k be odd, to avoid voting ties.

• Remark (Voronoi Partition)

At every point the decision is the label of the closest data point. The set of points whose nearest neighbor is X_i is called <u>the Voronoi cell</u> of X_i . The partition induced by the Voronoi cells is a **Voronoi partition**.

• Remark (Ordered Statistic)

We fix $x \in \mathbb{R}^d$, and **reorder** the data $(X_1, Y_1), \ldots, (X_n, Y_n)$ according to **increasing values** of $d(x, X_i)$. The reordered data sequence is denoted by

$$(X_{(1)}(x), Y_{(1)}(x)), \dots, (X_{(n)}(x), Y_{(n)}(x))$$

where $X_{(k)}(x)$ is the k-th nearest neighbor of x. For short, we write it as $(X_{(k)}, Y_{(k)})$.

2 Consistency

2.1 Asymptotic Consistency

- **Definition** Denote the probability measure for X by \mathcal{P}_X and let $B_{x,\epsilon}$ be the **closed ball** centered at x of radius $\epsilon > 0$. The collection of all x with $\mathcal{P}_X(B_{x,\epsilon}) > 0$ for all $\epsilon > 0$ is called **the support** of X or \mathcal{P}_X .
- Lemma 2.1 [Devroye et al., 2013] If $x \in support(\mathcal{P}_X)$ and $\lim_{n \to \infty} k/n = 0$, then

$$d(x, X_{(k)}(x)) \to 0$$
, a.s.

If X is independent of the data and has probability measure \mathcal{P}_X , then

$$d(X, X_{(k)}(x)) \to 0$$
, a.s.

whenever $k/n \to 0$.

2.2 Stone's Lemma

• Lemma 2.2 (Stone's Lemma) [Devroye et al., 2013] For any integrable function f, any n, and any $k \le n$:

$$\sum_{i=1}^{k} \mathbb{E}\left[\left|f\left(X_{(i)}(X)\right)\right|\right] \le k\gamma_d \mathbb{E}\left[\left|f(X)\right|\right],\tag{1}$$

where $\gamma_d \leq \left(1 + 2/\sqrt{2 - \sqrt{3}}\right)^d - 1$ depends upon the **dimension** only.

• Lemma 2.3 (Approximation with K-NN) [Devroye et al., 2013] For any integrable function f,

$$\frac{1}{k} \sum_{i=1}^{k} \mathbb{E}\left[\left| f(X) - f\left(X_{(i)}(X)\right) \right| \right] \to 0$$

as $n \to \infty$ whenever $k/n \to 0$.

2.3 The Asymptotic Probability of Error

2.4 Stone's Theorem

• Remark (Estimate Posterior Conditional Probability with Weighted Averages) Consider a rule based on an estimate of the a posteriori probability η of the form

$$\eta_n(x) = \sum_{i=1}^n \mathbb{1} \{Y_i = 1\} W_{n,i}(x) = \sum_{i=1}^n Y_i W_{n,i}(x)$$

where the weights $W_{n,i}(x) = W_{n,i}(x, X_1, \dots, X_n)$ are nonnegative and sum to one:

$$\sum_{i=1}^{n} W_{n,i}(x) = 1.$$

 η_n is a weighted average estimator of η .

The $classification \ rule$ is defined as

$$\begin{split} g_n(x) &= \left\{ \begin{array}{ll} 0 & \sum_{i=1}^n \mathbbm{1} \left\{ Y_i = 1 \right\} W_{n,i}(x) \leq \sum_{i=1}^n \mathbbm{1} \left\{ Y_i = 0 \right\} W_{n,i}(x) \\ &= \left\{ \begin{array}{ll} 0 & \sum_{i=1}^n Y_i W_{n,i}(x) \leq \frac{1}{2} \\ 1 & \text{o.w.} \end{array} \right. \end{split}$$

- Remark It is intuitively clear that pairs (X_i, Y_i) such that X_i is close to x should provide more information about $\eta(x)$ than those far from x. Thus, the weights are typically much larger in the neighborhood of X, so η_n is roughly a (weighted) relative frequency of the X_i 's that have label 1 among points in the neighborhood of X. Thus, η_n might be viewed as a local average estimator, and g_n a local (weighted) majority vote.
- Theorem 2.4 (Stone's Theorem, Universal Consistency of Local Average Estimator) [Devroye et al., 2013]

Assume that for any distribution of X, the weights satisfy the following three conditions:

1. There is a constant c such that, for every **nonnegative** measurable function f satisfying $\mathbb{E}[f(X)] < \infty$,

$$\mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) f(X_i)\right] \le c \mathbb{E}\left[f(X)\right].$$

2. For all a > 0,

$$\lim_{n \to \infty} \mathbb{E}\left[\sum_{i=1}^{n} W_{n,i}(X) \mathbb{1}\left\{d(X, X_i) > a\right\}\right] = 0$$

3.

$$\lim_{n \to \infty} \mathbb{E} \left[\max_{1 \le i \le n} W_{n,i}(X) \right] = 0.$$

Then g_n is universally consistent.

- **Remark** 1. Condition (1) is technical.
 - 2. Condition (2) requires that the overall weight of X_i 's outside of any ball of a fixed radius centered at X must go to zero. In other words, only points in a shrinking neighborhood of X should be taken into account in the averaging.
 - 3. Condition (3) requires that **no single** X_i has **too large** a contribution to the estimate. Hence, the **number of points** encountered in the **averaging** must tend to **infinity**.

References

Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, 2013.