λ -演算与类型论

Fulcrum 4 Math

目录

1	λ -演算	2
	1.1 无类型 λ-演算	
	1.2 简单类型 \(\lambda\)-演算	
2	类型论	
	2.1 类型系统	
	2.2 简单类型论	
	2.3 依值类型论	;

1 λ-演算 2

1 λ -演算

1.1 无类型 λ -演算

定义 1.1.1 λ -项 (λ -terms)

公理 1.1 应用规则

1.2 简单类型 λ -演算

2 类型论

2.1 类型系统

定义 2.1.1 类型判断

a: A 是判断

定义 2.1.2 依定义相等判断

 $a \equiv b : A$ 是判断

定义 2.1.3 良上下文判断 (Well-Formed Context)

 $\Gamma(ctx)$ 是判断

公理 2.1 类型宇宙

设 $n: \mathbb{N}, \mathcal{U}_0, \mathcal{U}_1, \ldots$ 称为类型宇宙.

有: $U_n:U_{n+1}$

类型宇宙是累计的, 即若 $A: U_n$, 则 $A: U_{n+1}$.

性质 2.1.3.1 类型宇宙的元素是类型

注 **2.1.3.1** 规定类型宇宙 $U_{\infty}:U_{\infty}$ 将导致矛盾, 因此使用分层设计.

公理 2.2 归纳类型构造规则

类型构造规则 构造子 / 引入规则 消去子 / 消去规则 计算规则 (β-规约) 唯一性原理 (η-展开) 2 类型论 3

2.2 简单类型论

公理 2.3 函数类型构造规则

设 A, B 是类型,则由 $A \subseteq B$ 的函数类型是类型,记作 $A \rightarrow B$.

注 **2.2.0.1** 规定函数类型算子是右结合的, 即将 $A \rightarrow B \rightarrow C$ 解释为 $A \rightarrow (B \rightarrow C)$.

注 **2.2.0.2** 将多元函数 $A \times B \to C$ 表示为一元函数的嵌套 $A \to (B \to C)$, 这种习惯称为**函数** 的 Curry 化表示.

公理 2.4 函数构造规则

公理 2.5 函数应用规则

定义 2.2.1 依值类型 / 类型族 (Dependent Type / Type Family)

2.3 依值类型论

公理 2.6 依值函数类型构造规则

设 A 是类型, β 是 A 上的依值类型, 则由 A 至 β 的依值函数类型是类型, 记作 $\prod_{(x:A)}\beta(x)$.

性质 2.3.0.1 非依值的依值函数类型等价于函数类型

公理 2.7 依值函数构造规则

公理 2.8 依值函数应用规则