

POLITECHNIKA POZNAŃSKA

Wydział Inżynierii Środowiska i Energetyki

INSTYTUT INŻYNIERII ŚRODOWISKA I INSTALACJI BUDOWLANYCH

Jakub Nonna

Charakterystyka energetyczna budynku użyteczności publicznej

Praca Inżynierska

Kierujący pracą: dr inż. Michał Szymański

pracy dyplomowej inżynierskiej

Uczelnia: Politechnika Poznańska	Profil studiów: Ogólnoakademicki
Kierunek: Inżynieria Środowiska	Forma studiów: Stacjonarne
Studia w zakresie:	Poziom studiów: I stopnia

Zobowiązuję/zobowiązujemy się samodzielnie wykonać pracę w zakresie wyspecyfikowanym niżej. Wszystkie elementy (m.in. rysunki, tabele, cytaty, programy komputerowe, urządzenia itp.), które zostaną wykorzystane w pracy, a nie będą mojego/naszego autorstwa będą w odpowiedni sposób zaznaczone i będzie podane źródło ich pochodzenia. Jeżeli w wyniku realizacji pracy zostanie dokonany wynalazek, wzór użytkowy, wzór przemysłowy, znak towarowy, prawa do rozwiązań przysługiwać będą Politechnice Poznańskiej. Prawo to zostanie uregulowane odrębną umową. Oświadczam, iż o wyniku prac wskazanych powyżej, a także o innych, w tym tych, które mogą być przedmiotem tajemnicy Politechniki Poznańskiej, niezwłocznie powiadomie promotora pracy. Zobowiązuję się ponadto do zachowania w tajemnicy wszystkich informacji technicznych, technologicznych, organizacyjnych, uzyskanych w Politechnice Poznańskiej w okresie od daty rozpoczęcia realizacji prac do 5 lat od daty zakończenia wykonania prac.

	Imię i nazwisko	Nr albumu	Data i podpis
Student:	Jakub NONNA	135109	25.01.22 Nouna

Tytuł pracy:	Charakterystyka energetyczna budynku użyteczności publicznej				
Wersja angielska tytułu:	Energy performance of public building				
Dane wejściowe:	Literatura związana z tematem pracy. Dokumentacja projektowa i eksploatacyjna wybranego obiektu, normy, akty prawne				
Zakres pracy:	 Przegląd literatury Analiza dokumentacji projektowej i/lub wizja lokalna wybranego obiektu Analiza danych pomiarowych i/lub faktur za media dla wybranego obiektu Obliczenia charakterystyki energetycznej wybranego obiektu Podsumowanie i wnioski 				
Termin oddania pracy:	31 stycznia 2022r.				
Promotor:	dr inż. Michał Szymański				
Jednostka organizacyjna promotora:	Instytut Inżynierii Środowiska i Instalacji Budowlanych				

Rektor Politechniki Poznańskiej prof. dr hab. inż. Teofil Jesionowski Asino Chall

z up. dr hab. inż. Alina Pruss, prof. PP Prodziekan

18.10.2021r.

podpis dyrektora/kierownika jednostki organizacyjnej promotora

DYREKTOR

Instytutu Inżynierii Środowiska i Instalacji Budowlanych

prof. dr kab. inż. Janusz Wojtkowiak

data i podpis Dziekana

Spis treści

Streszczenie	
Spis oznaczeń	
1 Wstęp 1.1 Czym jest charakterystyka energetyczna	
1.1.1 Kto może wykonać świadectwo charakterystyki ener	
1.2 Charakterystyka energetyczna na tle wymagań	
1.3 Cel wykonania obliczeń charakterystyki energetycznej	
1.4 Przedstawienie tematu pracy	
2 Analiza dokumentacji projektowej	13
2.2 Podstawowe informacje o obiekcie	13
2.2.1 Centralne ogrzewanie	13
2.2.2 Wentylacja	13
2.2.3 Ciepła woda użytkowa	13
2.2.4 System chłodzenia	13
2.2.5 Oświetlenie	13
Przedstawienie metodologii obliczeń charakterystyki energe 3.1 Wyznaczenie rocznego zapotrzebowania na energię uży	
3.1.1 Roczne zapotrzebowanie na energię użytkową do og	rzewania i wentylacji 14
3.1.2 Roczne zapotrzebowanie na energię użytkową do og strefie ogrzewanej	• •
3.1.2.1 Całkowita ilość ciepła przenoszonego ze strefy miesiącu roku	•
3.1.2.1.1 Wyznaczenie całkowitej ilości ciepła przeno ogrzewanej przez przenikanie w n-tym miesiącu roku	•
3.1.2.1.2 Całkowita ilość ciepła przenoszonego ze strowentylację w n-tym miesiącu roku	, ,
3.1.2.2 Współczynnik wykorzystania zysków ciepła ze miesiącu roku	
3.1.2.3 Całkowite zyski ciepła w strefie ogrzewanej w	n-tym miesiącu roku 17
3.1.2.3.1 Miesięczne zyski ciepła od promieniowania drzwi balkonowe lub powierzchnie oszklone	
3.1.2.3.2 Miesięczne wewnętrzne zyski ciepła	18
3.1.3 Wyznaczenie rocznego zapotrzebowania na energię ciepłej wody użytkowej	

3.1	.4 Wy	yznaczenie rocznego zapotrzebowania na energię użytkową do chłodzenia.	18
3.1	.5 Zap	potrzebowanie na energię użytkową do chłodzenia w strefie chłodzonej	19
3	3.1.5.1	Obliczenia całkowitych miesięcznych zysków ciepła	19
	3.1.5.	1.1 Miesięczne zewnętrzne zyski ciepła w strefie chłodzonej	19
3.2 budyr	•	naczenie rocznego zapotrzebowania na energię końcową dostarczaną do części budynku dla systemów technicznych	20
3.2	.1 Roo	czne zapotrzebowanie na energię końcową dla systemu ogrzewania	20
_	3.2.1.1 energii d	Średnia sezonowa sprawność wytwarzania ciepła z nośnika energii lub dostarczanych do źródła ciepła	21
	3.2.1.2 orzestrze	Średnia sezonowa sprawność regulacji i wykorzystania ciepła w eni ogrzewanej	21
	3.2.1.3 ogrzewa	Średnia sezonowa sprawność przesyłu ciepła ze źródła ciepła do przestranej	
	3.2.1.4 oojemno	Średnia sezonowa sprawność akumulacji ciepła w elementach ościowych systemu ogrzewania	22
		czne zapotrzebowanie na energię końcową dla systemu przygotowania ciep kowej	
	3.2.2.1 energii c	Średniej rocznej sprawności wytwarzania ciepła z nośnika energii lub dostarczanych do źródła ciepła	23
	3.2.2.2 zerpaln	Średnią roczną sprawność przesyłu ciepła ze źródła ciepła do zaworównych	23
	3.2.2.3 oojemno	Średnią roczną sprawność akumulacji ciepła w elementach ościowych systemu przygotowania ciepłej wody użytkowej	23
3.2	.3 Roo	czne zapotrzebowanie na energię końcową dla systemu chłodzenia	24
	3.2.3.1 shłodu z	Średni sezonowy współczynnik efektywności energetycznej wytwarzani z nośnika energii lub energii dostarczanych do źródła chłodu	
	3.2.3.2 oojemno	Średnia sezonowa sprawność akumulacji chłodu w elementach ościowych systemu chłodzenia	25
_	3.2.3.3 orzestrze	Średnia sezonowa sprawność przesyłu chłodu ze źródła chłodu do eni chłodzonej	25
	3.2.3.4 v przest	Wartości średniej sezonowej sprawności regulacji i wykorzystania chłodrzeni chłodzonej	
3.2	.4 Zap	potrzebowanie na energię dla systemu wbudowanej instalacji oświetlenia	26
3	3.2.4.1	Liczbowy wskaźnik energii oświetlenia	26
3.2	.5 Roo	czne zapotrzebowanie na energię pomocniczą końcową	26
3	3.2.5.1	Zapotrzebowanie na energie pomocnicza dla systemu ogrzewania	. 27

		Zapotrzebowanie na energię pomocniczą dla systemu przygotowania y użytkowej	27
	3.2.5.3	Zapotrzebowanie na energię pomocniczą dla systemu chłodzenia	27
	•	anie rocznego zapotrzebowania na nieodnawialną energię pierwotną d cznych:	
	3.3.1 Zapota	zebowanie na nieodnawialną energię pierwotną dla systemu ogrzewan	ia 28
	1	zebowanie na nieodnawialną energię pierwotną dla systemu a ciepłej wody użytkowej	29
	3.3.3 Zapota	zebowanie na nieodnawialną energię pierwotną dla systemu chłodzeni	a.29
	_	zebowanie na nieodnawialną energię pierwotną dla systemu wbudowa etlenia	-
4		arakterystyki energetycznej wybranego obiektuapotrzebowanie na energię użytkową	
	4.1.1 Roczn	e zapotrzebowanie na energię użytkową do ogrzewania i wentylacji	30
		Obliczenia całkowitych zysków ciepła w strefie ogrzewanej w n-tym ku	30
	4.1.1.1.1	Obliczenia miesięcznych wewnętrznych zysków ciepła	30
		Obliczenia miesięcznego zysku ciepła od promieniowania słoneczne na, drzwi balkonowe lub powierzchnie oszklone	_
		Obliczenia współczynnika wykorzystania zysków ciepła ze strefy w n-tym miesiącu roku	33
		Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej	
		Obliczenia całkowitego współczynnika przenoszenia ciepła przez nie dla strefy ogrzewanej	34
	4.1.1.3 ogrzev	3.1.1 Obliczenia całkowitej ilości ciepła przenoszonego ze strefy wanej przez przenikanie w n-tym miesiącu roku	35
		Obliczenia współczynnika przenoszenia ciepła przez wentylację ze s nej	
		2.2.1 Obliczenia całkowitej ilości ciepła przenoszonego ze strefy wanej przez wentylację w n-tym miesiącu roku	39
		1.3.2.1.1 Obliczenia zapotrzebowania na ciepło do ogrzewania i tylacji w strefie ogrzewanej w n-tym miesiącu roku	41
	4.1.2 Roczn	e zapotrzebowanie na energię użytkową do przygotowania ciepłej wod	ly
	4.1.3 Roczn	e zapotrzebowanie na energie użytkowa do chłodzenia	42

4.1.3.1 Obliczenia całkowitych zysków ciepła w strefie chłodzonej w n-tym miesiącu roku	42
4.1.3.1.1 Obliczenia miesięcznych wewnętrznych zysków ciepła w strefie chłodzonej	42
4.1.3.1.2 Obliczenia miesięcznych zysków ciepła od promieniowania słoneczneg przez okna drzwi balkonowe i powierzchnie oszklone	-
4.1.3.2 Obliczenia bezwymiarowego czynnika wykorzystania strat ciepła w strefie chłodzonej w n-tym miesiącu roku	
4.1.3.3 Obliczenia całkowitej ilości ciepła przenoszonego przez przenikanie i wentylację w strefie chłodzonej w n-tym miesiącu roku	45
4.1.3.3.1 Obliczenia zapotrzebowania na ciepło do chłodzenia w strefie chłodzonej w n-tym miesiącu roku	46
4.2 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemów technicznych	47
4.2.1 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub częśc budynku dla systemu ogrzewania	
4.2.1.1 Obliczenia średniej sezonowej sprawności całkowitej systemu ogrzewania	
4.2.1.1.1 Obliczenia średniej sezonowej akumulacji ciepła w elementach pojemnościowych systemu ogrzewania	47
4.2.1.1.2 Obliczenia średniej sezonowej sprawności przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej	48
4.2.1.1.3 Obliczenia średniej sezonowej sprawności regulacji i wykorzystania ciepła w przestrzeni ogrzewanej	48
4.2.1.1.4 Obliczenia średniej sezonowej sprawność wytwarzania ciepła z nośnika energii lub energii dostarczonych ze źródła ciepła	
4.2.2 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub częśc budynku dla systemu przygotowania ciepłej wody użytkowej	
4.2.3 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub częśc budynku dla systemu chłodzenia	
4.2.4 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku dla wbudowanej instalacji oświetlenia	52
4.2.4.1 Obliczenia jednostkowej mocy opraw oświetlenia przypadającej na powierzchnie budynku	52
4.2.5 Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych	54
4.2.5.1 Obliczenia rocznego zapotrzebowania na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	54

		dos	2.5.2 Obliczenia rocznego zapotrzebowania na energię pomocniczą końcową starczaną do budynku lub części budynku dla systemu przygotowania ciepłej wodytkowej	•
			2.5.3 Obliczenia rocznego zapotrzebowania na energię pomocniczą końcową starczaną do budynku lub części budynku dla systemu chłodzenia	56
	4.3 tech		Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemów znych	57
			Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wania	57
			Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu gotowania ciepłej wody użytkowej	58
			Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu lzenia	59
			Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu lowanej instalacji oświetlenia	59
5	P 5.1		wnanie wyników obliczeń z wartościami z fakturZużycie ciepła	
	5.2	7	Zużycie energii elektrycznej	63
6			umowanie i wnioski	
7	L	itera	atura	67

Streszczenie

W niniejszej pracy inżynierskiej zajęto się obliczeniami charakterystyki energetycznej budynku ZS nr1 w Swarzędzu. Dla lepszego zaznajomienia się z obiektem, przeprowadzono również wizję lokalną. Obliczenia przeprowadzono na podstawie metodologii z 2015r. Wszystkie kalkulacje przeprowadzono w programie Excel. Wyniki porównano z wartościami rzeczywistymi znajdującymi się na fakturach. W ostatnim kroku, czyli w podsumowaniu, postarano się wskazać możliwe przyczyny ewentualnych rozbieżności.

Abstract

This engineering thesis deals with the calculations of the energy performance of school complex number one building in Swarzędz. For a better acquaintance with the object, an onsite inspection was also carried out. Calculation were made based on the methodology from year 2015. All calculations were made in Excel program. The results were compared with actual values on the invoices. In the last step, in conclusions, an attempt was made to indicate possible reasons for any discrepancies.

Spis oznaczeń

 $Q_{H,nd}$ – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji, [kWh/rok] $Q_{W,nd}$ – roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody, [kWh/rok]

Q_{C.nd} – roczne zapotrzebowanie na energię użytkową do chłodzenia, [kWh/rok]

Q_{H,nd,s} – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji w strefie ogrzewanej, [kWh/rok]

s – liczba stref ogrzewanych, [-]

Q_{H,nd,s,n} – zapotrzebowanie na ciepło do ogrzewania i wentylacji w strefie ogrzewanej w n-tym miesiącu roku (uwzględnia się wartości większe od zera), [kWh/mies.]

 $Q_{H,ht,s,n}$ – całkowita ilość ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku, [kWh/mies.]

 $\eta_{H,gn,s,n}$ – współczynnik wykorzystania zysków ciepła w strefie ogrzewanej w n-tym miesiącu roku, [-]

Q_{H,gn,s,n} – całkowite zyski ciepła w strefie ogrzewanej w n-tym miesiącu roku, [kWh/mies.]

 $Q_{tr,s,n}$ – całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku, [kWh/mies.]

 $Q_{ve,s,n}$ – całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku, [kWh/mies.]

 $H_{tr,s}$ – całkowity współczynnik przenoszenia ciepła przez przenikanie dla strefy ogrzewanej, [W/K]

 $\theta_{int,s,H}$ – średnia temperatura wewnętrzna w strefie ogrzewanej, [°C]

 $\theta_{e,n}$ – średnia miesięczna temperatura powietrza zewnętrznego według danych klimatycznych najbliższej stacji meteorologicznej względem lokalizacji budynku, [°C]

t_M – liczba godzin w miesiącu, [h]

 $H_{tr,ie}$ – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) bezpośrednio do środowiska zewnętrznego (e), [W/K]

 $H_{tr,iue}$ – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) przez przyległe przestrzenie nieogrzewane w budynku lub przyległym budynku (u) do otoczenie (e), [W/K]

H_{tr,ig} – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) do gruntu (g), [W/K]

 $H_{tr,ij}$ – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) do przyległej strefy ogrzewanej w budynku lub przyległym budynku (j), [W/K]

H_{ve.s} – współczynnik przenoszenia ciepła przez wentylację ze strefy ogrzewanej, [W/K]

 $\theta_{int,s,H}$ – średnia temperatura wewnętrzna w strefie ogrzewanej, [°C]

 $\rho_a * c_a - \text{pojemność cieplna powietrza}, [J/(m^3 * K)]$

 $V_{ve,k,n}-$ uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej, $[m^3/s]$

k – identyfikator strumienia powietrza zewnętrznego, [-]

 σ_H – parametr numeryczny, [-]

σ_{H.0} – bezwymiarowy referencyjny współczynnik, [-]

τ_{H.0} – stała czasowa referencyjna, [h]

τ – stała czasowa dla strefy budynku lub całego budynku, [h]

C_m – wewnętrzna pojemność cieplna strefy budynku lub całego budynku, [J/K]

c_{ii} – ciepło właściwe materiału warstwy i-tej w elemencie j-tym, [J/(kg*K)]

ρ_{ii} – gęstość materiału warstwy i-tej w elemencie j-tym, [kg/m³]

d_{ii} – grubość warstwy i-tej w elemencie j-tym, [m]

A_i – pole powierzchni j-elementu budynku, [m²]

Q_{sol,H} – miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone, [kWh/mies.]

Q_{int,H} – miesięczne wewnętrzne zyski ciepła [kWh/mies.]

C_i – udział pola powierzchni oszklenia do całkowitego pola powierzchni okna, [-]

 A_i – pole powierzchni okna, drzwi balkonowych lub powierzchni oszklonej w świetle otworu w przegrodzie, $[m^2]$

 I_i – energia promieniowania słonecznego padająca w danym miesiącu na płaszczyznę, w której jest usytuowane okno, drzwi balkonowe lub powierzchnia oszklona, według danych klimatycznych z najbliższej stacji meteorologicznej względem lokalizacji budynku, [kWh/(m²*mies.)]

 $F_{sh,gl}$ – czynni redukcyjny ze względu na zacienienie dla ruchomych urządzeń zacieniających, [-]

F_{sh} – czynnik redukcyjnych ze względu na zacienienie od przegród zewnętrznych

g_{gl} – całkowita przepuszczalność energii promieniowania słonecznego dla przezroczystej części okna, drzwi balkonowych lub powierzchni oszklonej, [-]

q_{int} – obciążenie cieplne pomieszczeń wewnętrznych zyskami ciepła, [W/m²]

 V_{Wi} – jednostkowe dobowe zapotrzebowanie na ciepła wodę użytkową, $[dm^3/(m^2*dobra)]$

c_W – ciepło właściwe wody, [kJ/(kg*K)]

 ρ_W – gęstość wody, [kg/dm³]

 θ_W – obliczeniowa temperatura ciepłej wody użytkowej w zaworze czerpalnym, [°C]

 θ_0 – obliczeniowa temperatura wody przed podgrzaniem, [°C]

 k_R – współczynnik korekcyjny ze względu na przerwy w użytkowaniu ciepłej wody użytkowej, [-]

t_R – liczba dni w roku, [doba]

Q_{C,gn,z,n} – całkowite zyski ciepła w strefie chłodzonej w n-tym miesiącu roku, [kWh/mies.]

 $\eta_{C,ln,z,n}$ – bezwymiarowy czynnik wykorzystania strat ciepła w strefie chłodzonej w n-tym miesiącu roku, [-]

 $Q_{C,ht,z,n}$ – całkowita ilość ciepła przenoszona przez przenikanie i wentylację w strefie chłodzonej w n-tym miesiącu roku, [kWh/mies.]

 A_f – powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia chłodzona), $\lceil m^2 \rceil$

 $Q_{k,H}$ – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania, [kWh/rok]

 $Q_{k,W}$ – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody, [kWh/rok]

 $Q_{k,C}$ – roczne zapotrzebowanie na energię końcową dostarczoną do budynku lub części budynku dla systemu chłodzenia, [kWh/rok]

 $Q_{k,L}$ – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu wbudowanej instalacji oświetlenia, [kWh/rok]

 $E_{el,pom}$ – roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych, [kWh/rok]

η_{H,tot} – średnia sezonowa sprawność całkowita systemu ogrzewania, [-]

 $\eta_{H,g}$ – średnia sezonowa sprawność wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła, [-]

 $\eta_{H,e}$ – średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej, [-]

 $\eta_{H,d}$ – średnia sezonowa sprawność przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej, [-]

 $\eta_{H,s}$ – średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania, [-]

X – stosunek mocy cieplnej grzejników usytuowanych przy ścianach zewnętrznych do sumy mocy cieplnej wszystkich grzejników w systemie ogrzewania, [-]

 $\eta_{H,e}$ ' – obliczeniowa średnia sezonowa sprawność regulacji wykorzystania ciepła w przestrzeni ogrzewanej, [-]

Q_{H,nd} – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji, [kWh/rok]

 $\Delta Q_{H,e}$ – sezonowe straty ciepła w systemie ogrzewania w wyniku niedoskonałej regulacji i przekazywania ciepła, [kWh/rok]

 $\Delta Q_{H,d} - sezonowe straty ciepła w instalacji przesyłu ciepła, [kWh/rok]$

 $\eta_{H,e}$ – średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej, [-]

l_{zi} – zastępcza długość i-tego odcinka instalacji przesyłu ciepła, [m]

 $q_{li}-jednostkowe straty ciepła i-tego odcinka instalacji przsyłu ciepła, <math display="inline">\left[W/m\right]$

t_{sG} – czas trwania sezonu ogrzewania [h]

l_i – rzeczywista długość i-tego odcinka instalacji przsyłu ciepła, [m]

 Δ_l – dodatek do długości l_i ze względu na straty ciepła zainstalowanej armatury, [m]

 $\Delta Q_{H,s}$ – sezonowe straty ciepła w instalacji przeysłu ciepła, [kWh/rok]

V_S – pojemność zasobnika ciepła [dm³]

qs – jednostkowa strata ciepła zasobnika ciepła, [W/dm³]

 $\eta_{W,tot}$ – średnia roczna sprawność całkowita systemu przygotowania ciepłej wody użytkowej, [-]

 $\eta_{W,g}$ – średnia roczna sprawność wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła, [-]

 $\eta_{W,s}$ – średnia roczna sprawność akumulacji ciepła w elementach pojemnościowych systemu przygotowania ciepłej wody użytkowej [-]

 $\eta_{W,d}-$ średnia roczna sprawność przesyłu ciepła ze źródłem ciepła do zaworów czerpalnych [-]

η_{W,e} – średnia roczna sprawność wykorzystania ciepła, [-]

 $\Delta Q_{W,d} - roczne \ straty \ ciepła w instalacji przesyłu ciepłej wody użytkowej, [kWh/rok]$

l_{zi} – zastępcza długość i-tego odcinka instalacji przesyłu ciepłej wody użytkowej, [m]

 q_{li} – jednostkowe straty ciepła i-tego odcinka instalacji przsyłu ciepłej wody użytkowej, [W/m]

t_{sW} – liczba godzin w roku [h]

l_i – rzeczywista długość i-tego odcinka instalacji przsyłu ciepłej wody użytkowej, [m]

 Δ_{l} – dodatek do długości l_{i} ze względu na straty ciepła zainstalowanej armatury, [m]

 $\Delta Q_{W,s}$ – roczne straty ciepła w zasobnikach ciepłej wody użytkowej, [kWh/rok]

V_S – pojemność zasobnika ciepłej wody użytkowej, [dm³]

q_S – jednostkowa strata ciepła zasobnika ciepłej wody użytkowej, [W/dm³]

η_{C,tot} – średnia sezonowa sprawność całkowita systemu chłodzenia, [-]

SEER – średnia sezonowy współczynnik efektywności energetycznej wytwarzania chłodu z nośnika energii lub energii dostarczanych do źródła chłodu, [-]

 $\eta_{C,s}$ – średnia sezonowa sprawność akumulacji chłodu w elementach pojemnościowych systemu chłodzenia, [-]

 $\eta_{C,d}$ - średnia sezonowa sprawność przesyłu chłodu ze źródła chłodu do przestrzeni chłodzonej, [-]

 $\eta_{C,e}$ - średnia sezonowa sprawność regulacji i wykorzystania chłodu w przestrzeni chłodzonej, [-]

c_i - współczynnik korekcyjny w zależności od systemu chłodzenia, [-]

LENI - liczbowy wskaźnik energii oświetlenia, [kWh/(m²*rok)]

A_L - powierzchnia pomieszczeń wyposażonych w system wbudowanej instalacji oświetlenia równa powierzchni przyjętej do obliczenia wskaźnika LENI,[m²]

P_N – jednostkowa moc opraw oświetlenia podstawowego budynku, [W/m²]

P_{rzecz} – rzeczywista moc wbudowanej instalacji oświetlenia, [W]

A_L. – powierzchnia pomieszczeń z zainstalowanymi oprawami, [m²]

t_d – czas użytkowania oświetlenia w ciągu dnia, [h/rok]

t_N – czas użytkowania oświetlenia w ciągu nocy, [h/rok]

t_y – liczba godzin w roku, [h]

 F_d – współczynnik uwzględniający wykorzystanie światła dziennego w oświetleniu, [-]

F₀ – współczynnik uwzględniający nieobecność użytkowników w miejscu pracy, [-]

 F_C – współczynnik uwzględniający obniżenie natężenia oświetlenia do poziomu wymaganego, [-]

m = 1 gdy stosowane jest oświetlenie awaryjne, w przeciwnym razie m = 0, [-]

n = 1 gdy stosowane jest sterowanie opraw, w przeciwnym razie n = 0, [-]

E_{el,pom,H} – roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania, [kWh/rok]

E_{el,pom,W} – roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej, [kWh/rok]

 $E_{el,pom,C}$ - roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia [kWh/rok]

 $q_{el,H,i}$ - zapotrzebowanie na moc elektryczną do napędu i-tego urządzenia pomocniczego w systemie ogrzewania, $[W/m^2]$

 $t_{\text{el},i}$ – czas działania i-tego urządzenia pomocniczego w systemie ogrzewania w ciągu roku, $\lceil h/\text{rok} \rceil$

 A_f - powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia ogrzewana), $[m^2]$

q_{el,W,j}- zapotrzebowanie na moc elektryczną do napędu i-tego urządzenia pomocniczego w systemie przygotowania ciepłej wody użytkowej, [W/m²]

 $t_{el,j}$ – czas działania i-tego urządzenia pomocniczego w systemie przygotowania ciepłej wody użytkowej w ciągu roku, [h/rok]

 $q_{el,C,k}$ - zapotrzebowanie na moc elektryczną do napędu i-tego urządzenia pomocniczego w systemie chłodzenia, $[W/m^2]$

 $t_{el,j}$ – czas działania i-tego urządzenia pomocniczego w systemie chłodzenia w ciągu roku, $\lceil h/rok \rceil$

 $Q_{\text{p,H}}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania, $\lceil kWh/\text{rok} \rceil$

 $Q_{p,W}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowe, [kWh/rok]

 $Q_{p,C}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia, [kWh/rok]

 $Q_{p,L}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia, [kWh/rok]

W_H – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu ogrzewania, [-]

 W_{el} – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej [-]

W_W – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu przygotowania ciepłej wody użytkowej, [-]

 W_{el} – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej [-]

 W_C – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu chłodzenia, [-]

1 Wstęp

1.1 Czym jest charakterystyka energetyczna

Charakterystyka energetyczna jest to dokument, który zawiera informacje na temat zapotrzebowania energii na cele ogrzewania i wentylacji, przygotowania ciepłej wody użytkowej, chłodzenia oraz oświetlenia. Głównym dokumentem, w którym przedstawiona jest metodologia obliczeń charakterystyki energetycznej, jest "Rozporządzenie ministra infrastruktury i rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej".

1.1.1 Kto może wykonać świadectwo charakterystyki energetycznej

Po pierwsze, jak w przypadku prawdopodobnie wystawiania każdego innego dokumentu, osoba taka musi posiadać pełną zdolność do czynności prawnych. Co więcej nie może być skazana za przestępstwo przeciwko mieniu, wiarygodności dokumentów, obrotowi gospodarczemu czy obrotowi pieniędzmi i papierami wartościowymi lub za przestępstwo skarbowe. Osoba taka musi również ukończyć studia wyższe z tytułem zawodowego inżyniera, inżyniera architekta, inżyniera architekta krajobrazu, inżyniera pożarnictwa, magistra inżyniera architekta, magistra inżyniera architekta krajobrazu, magistra inżyniera pożarnictwa albo magistra inżyniera, albo studia wyższe inne niż wymienione, które obejmują zagadnienia poruszane przez charakterystykę energetyczną.

1.2 Charakterystyka energetyczna na tle wymagań

Ważnym dokumentem dotyczącym wyników obliczeń charakterystyki jest "Obwieszczenie ministra infrastruktury i rozwoju z dnia 17 lipca 2015 r. w sprawie ogłoszenia jednolitego tekstu rozporządzenia Ministra Infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie". W powyższym dokumencie znajdziemy informacje na temat maksymalnych wartości wskaźników zapotrzebowania na nieodnawialną energię pierwotną dla danego rodzaju budynku.

1.3 Cel wykonania obliczeń charakterystyki energetycznej

Celów jest wiele lecz jednym z ważniejszych jest np. otrzymanie świadectwa charakterystyki energetycznej budynku. Dzięki świadectwu charakterystyki energetycznej jesteśmy w stanie oszacować przyszłe koszty eksploatacji budynku lub jego części. Dowiemy się również czy obiekt, którego charakterystyka dotyczy, spełnia wymagania prawne podane w [16]. Po przedstawieniu świadectwa możemy się również starać o dofinansowanie do odnawialnych źródeł energii (OZE). Świadectwo przedstawia także informacje ważne dla inwestora lub właściciela obiektu, który na ich podstawie może wszcząć działania mające na celu zwiększenie energooszczędności budynku.

1.4 Przedstawienie tematu pracy

W owej pracy inżynierskiej zajęto się problemem dokładności obliczeń charakterystyki energetycznej. Problemem metodologii jest to, że nie pozwala ona na realne odwzorowanie warunków użytkowania. Może to mieć ogromny wpływ na obliczenia. Wyniki zostały poddane analizie i porównane z informacjami znajdującymi się na fakturach danego obiektu. Pozwoli to na dokładną ocenę ewentualnych rozbieżności dokonanych obliczeń ze stanem faktycznym.

2 Analiza dokumentacji projektowej

2.1 Przedstawienie obiektu

Obiektem, którego dotyczyć będą prowadzone obliczenia jest budynek użyteczności publicznej a mianowicie ZS1 im. Powstańców Wielkopolskich w Swarzędzu. Szkoła składa się z dwóch części. Starej, której budowę rozpoczęto w 2001 roku oraz nowej, od roku 2016. Prowadzone obliczenia charakterystyki energetycznej dotyczyć będą jednak tylko starej części szkoły. Budynek jest dwukondygnacyjny. Składa się ona z trzech głównych części. Ze skrzydła lewego, do którego od strony południowej przylega hala sportowa, z części środkowej, tzw. łącznika oraz ze skrzydła lewego.

2.2 Podstawowe informacje o obiekcie

2.2.1 Centralne ogrzewanie

Źródłem ciepła jest węzeł ciepłowniczy. Ogrzewanie w całym obiekcie realizowane jest przez płytowe grzejniki Cosmo-Nova. Instalacja rozprowadzająca, od rozdzielaczy do grzejników, wykonana jest z rur wielowarstwowych typu PE-Xc firmy Tece. Instalacja między siecią rozdzielczą a rozdzielaczami grzewczymi wykonać z rur wielowarstwowych z wkładką aluminiową typu TC-PEX. Reszta instalacji wykonana jest z rur stalowych instalacyjnych czarnych, do średnicy DN50 ze szwem, powyżej tej średnicy bez szwu. Wszystkie przewody zaizolowane są zgodnie z obowiązującymi w trakcie budowy WT. Temperatura zasilania instalacji wynosi $T_z = 80^{\circ}$ C a powrotu $T_p = 60^{\circ}$ C. W instalacji brak zasobnika ciepła.

2.2.2 Wentylacja

Wentylacja w analizowanym obiekcie realizowana jest przez 24 centrale wentylacyjne firmy Swegon serii COMPACT Air model 02. Centrale te stosowane są do montażu bezpośrednio w pomieszczeniach wentylowanych. Zdecydowano się na taki a nie inny rodzaj central z uwagi na brak sufitów podwieszanych.

W budynku znajdują się również kominy wentylacji grawitacyjnej.

2.2.3 Ciepła woda użytkowa

Dzięki przeprowadzonej wizji lokalnej wiadomo, że zapotrzebowanie na ciepłą wodę użytkową realizowane jest poprzez węzeł ciepłowniczy.

2.2.4 System chłodzenia

Dla rozpatrywanego obiektu zastosowano jednostki typu split i multisplit marki GREE serii CHANGE INWERTER oraz FREE MATCH INVERTER. Cały system składa się z 12 jednostek zewnętrznych i 26 jednostek wewnętrznych. Wszystkie przewody instalacji zaizolowane są zgodnie z obowiązującymi w trakcie budowy WT.

2.2.5 Oświetlenie

Całe oświetlenie pomieszczeń budynku za wyjątkiem sali sportowej zaprojektowano oprawami jarzeniowymi oraz oprawami energooszczędnymi ze świetlówkami kompaktowymi. Sala sportowa oświetlona będzie oprawami wyładowczymi, z uwagi na jej wysokość, z podziałem na obwody umożliwiające zróżnicowanie natężenia oświetlenia np. podczas rozgrywek sportowych czy lekcji wychowania fizycznego.

3 Przedstawienie metodologii obliczeń charakterystyki energetycznej

3.1 Wyznaczenie rocznego zapotrzebowania na energię użytkową wybranego obiektu

Roczne zapotrzebowanie na energię użytkową Qu wyznacza się według wzoru:

$$Q_u = Q_{H,nd} + Q_{W,nd} + Q_{C,nd} \tag{1}$$

gdzie:

 $Q_{\text{H},\text{nd}} - \text{roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji,} \left[kWh/\text{rok}\right]$

 $Q_{W,nd}-\mbox{roczne}$ zapotrzebowanie na energię użytkową do przygotowania ciepłej wody,

[kWh/rok]

Q_{C,nd} – roczne zapotrzebowanie na energię użytkową do chłodzenia, [kWh/rok]

3.1.1 Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji

Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji $Q_{H,nd}$ wyznacz się według wzoru:

$$Q_{H,nd} = \sum_{s} Q_{H,nd,s} \tag{2}$$

gdzie:

 $Q_{H,nd,s}$ – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji w strefie ogrzewanej, [kWh/rok]

s – liczba stref ogrzewanych, [-]

3.1.2 Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji w strefie ogrzewanej

Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji w strefie ogrzewanej $Q_{H,nd,s}$ wyznacza się według wzoru:

$$Q_{H,nd,s} = \sum_{s} Q_{H,nd,s,n} \tag{3}$$

gdzie:

$$Q_{H,nd,s,n} = Q_{H,ht,s,n} - \eta_{H,an,s,n} * Q_{H,an,s,n}$$

$$\tag{4}$$

gdzie:

Q_{H,nd,s,n} – zapotrzebowanie na ciepło do ogrzewania i wentylacji w strefie ogrzewanej w n-tym miesiącu roku (uwzględnia się wartości większe od zera), [kWh/mies.]

 $Q_{H,ht,s,n}$ – całkowita ilość ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku, [kWh/mies.]

 $\eta_{H,gn,s,n}$ – współczynnik wykorzystania zysków ciepła w strefie ogrzewanej w n-tym miesiącu roku, [-]

 $Q_{H,gn,s,n}-\text{całkowite zyski ciepła } w \text{ strefie ogrzewanej } w \text{ n-tym miesiącu roku, } [kWh/\text{mies.}]$

3.1.2.1 Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku

Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku $Q_{H,ht,s,n}$ wyznacza się według wzoru:

$$Q_{H,ht,s,n} = Q_{tr,s,n} + Q_{ve,s,n} \tag{5}$$

gdzie:

 $Q_{tr,s,n}$ – całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku, [kWh/mies.]

 $Q_{ve,s,n}$ – całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku, [kWh/mies.]

3.1.2.1.1 Wyznaczenie całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku

Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku $Q_{tr,s,n}$ wyznacza się według wzoru:

$$Q_{tr.s.n} = H_{tr.s} * (\theta_{int.s.H} - \theta_{e.n}) * t_M * 10^{-3}$$
(6)

gdzie:

$$H_{tr,s} = H_{tr,ie} + H_{tr,iue} + H_{tr,ij} + H_{tr,iq}$$

$$\tag{7}$$

gdzie:

 $H_{tr,s}$ – całkowity współczynnik przenoszenia ciepła przez przenikanie dla strefy ogrzewanej, $\lceil W/K \rceil$

 $\theta_{int,s,H}$ - średnia temperatura wewnętrzna w strefie ogrzewanej, [°C]

 $\theta_{e,n}$ – średnia miesięczna temperatura powietrza zewnętrznego według danych klimatycznych najbliższej stacji meteorologicznej względem lokalizacji budynku, [°C]

t_M – liczba godzin w miesiącu, [h]

 $H_{tr,ie}$ – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) bezpośrednio do środowiska zewnętrznego (e), [W/K]

 $H_{tr,iue}$ – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) przez przyległe przestrzenie nieogrzewane w budynku lub przyległym budynku (u) do otoczenie (e), [W/K]

H_{tr,ig} – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) do gruntu (g), [W/K]

 $H_{tr,ij}$ – współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) do przyległej strefy ogrzewanej w budynku lub przyległym budynku (j), [W/K]

3.1.2.1.2 Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku

Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku $Q_{ve,s,n}$ wyznacza się według wzoru:

$$Q_{ve,s,n} = H_{ve,s} * (\theta_{int,s,H} - \theta_{e,n}) * t_M * 10^{-3}$$
(8)

gdzie:

$$H_{ve,s} = \rho_a * c_a * \sum_{k} b_{ve,k} * V_{ve,k,n}$$
 (9)

gdzie:

H_{ve,s} – współczynnik przenoszenia ciepła przez wentylację ze strefy ogrzewanej, [W/K]

 $\theta_{int,s,H}$ – średnia temperatura wewnętrzna w strefie ogrzewanej, [°C]

 $\theta_{e,n}$ – średnia miesięczna temperatura powietrza zewnętrznego według danych klimatycznych z najbliższej stacji meteorologicznej względem lokalizacji budynku, [°C]

t_M – liczba godzin w miesiącu, [h]

 $\rho_a * c_a - pojemność cieplna powietrza, [J/(m^3 * K)]$

 $V_{ve,k,n}$ – uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej, [m³/s]

k – identyfikator strumienia powietrza zewnętrznego, [-]

3.1.2.2 Współczynnik wykorzystania zysków ciepła ze strefy ogrzewanej w ntym miesiącu roku

Wartość współczynnika wykorzystania zysków ciepła ze strefy ogrzewanej w n-tym miesiącu roku $\eta_{H,gn,s,n}$ zależy od stosunku zysków ciepła do strat:

$$\Upsilon_{H,gn,s,n} = \frac{Q_{H,gn,s,n}}{Q_{H,ht,s,n}} \tag{10}$$

W projekcie stosunek ten, w żadnym z przypadków, nie jest równy jedności. Oznacza to, że wartość współczynnika wykorzystania zysków ciepła ze strefy ogrzewanej w n-tym miesiącu roku $\eta_{H,g_{n,s,n}}$ wyznacza się według wzoru:

$$\eta_{H,gn,s,n} = \frac{1 - \Upsilon_{H,gn,s,n}^{\sigma_H}}{1 - \Upsilon_{H,gn,s,n}^{\sigma_{H+1}}} \tag{11}$$

gdzie:

$$\sigma_H = \sigma_{H,0} + \frac{\tau}{\tau_{H,0}} \tag{12}$$

gdzie:

 σ_H – parametr numeryczny, [-]

σ_{H.0} – bezwymiarowy referencyjny współczynnik, [-]

τ_{H.0} – stała czasowa referencyjna, [h]

τ – stała czasowa dla strefy budynku lub całego budynku, [h]

Wartość stałej czasowej dla strefy budynku lub całego budynku τ wyznacza się według wzoru:

$$\tau = \frac{C_m/3600}{H_{tr.s} + H_{ve.s}} \tag{13}$$

gdzie:

$$C_m = \sum_{i} \sum_{i} \left(C_{ij} * \rho_{ij} * d_{ij} * A_j \right) \tag{14}$$

gdzie:

 $H_{tr,s}$ – całkowity współczynnik przenoszenia ciepła przez przenikanie dla strefy ogrzewanej, $\lceil W/K \rceil$

H_{ve,s} – współczynnik przenoszenia ciepła przez wentylację ze strefy ogrzewanej, [W/K]

C_m – wewnętrzna pojemność cieplna strefy budynku lub całego budynku, [J/K]

 c_{ij} – ciepło właściwe materiału warstwy i-tej w elemencie j-tym, [J/(kg*K)]

ρ_{ij} – gęstość materiału warstwy i-tej w elemencie j-tym, [kg/m³]

d_{ii} – grubość warstwy i-tej w elemencie j-tym, [m]

A_j – pole powierzchni j-elementu budynku, [m²]

3.1.2.3 Całkowite zyski ciepła w strefie ogrzewanej w n-tym miesiącu roku

Całkowite zyski ciepła w strefie ogrzewanej w n-tym miesiącu roku $Q_{H,gn,s,n}$ wyznacza się według wzoru:

$$Q_{H,gn,s,n} = Q_{sol,H} + Q_{int,H} \tag{15}$$

gdzie:

Q_{sol,H} – miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone, [kWh/mies.]

Q_{int,H} – miesięczne wewnętrzne zyski ciepła [kWh/mies.]

3.1.2.3.1 Miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone

Miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone $Q_{\text{sol},H}$ wyznacza się według wzoru:

$$Q_{sol,H} = \sum_{i} C_{i} * A_{i} * I_{i} * F_{sh,gl} * F_{sh} * g_{gl}$$
(16)

gdzie:

C_i – udział pola powierzchni oszklenia do całkowitego pola powierzchni okna, [-]

 A_i – pole powierzchni okna, drzwi balkonowych lub powierzchni oszklonej w świetle otworu w przegrodzie, $[m^2]$

 I_i – energia promieniowania słonecznego padająca w danym miesiącu na płaszczyznę, w której jest usytuowane okno, drzwi balkonowe lub powierzchnia oszklona, według danych klimatycznych z najbliższej stacji meteorologicznej względem lokalizacji budynku, $\lceil kWh/(m^2*mies.) \rceil$

 $F_{\text{sh,gl}}$ – czynni redukcyjny ze względu na zacienienie dla ruchomych urządzeń zacieniających,

 F_{sh} – czynnik redukcyjnych ze względu na zacienienie od przegród zewnętrznych

g_{gl} – całkowita przepuszczalność energii promieniowania słonecznego dla przezroczystej części okna, drzwi balkonowych lub powierzchni oszklonej, [-]

3.1.2.3.2 Miesięczne wewnętrzne zyski ciepła

Miesięczne wewnętrzne zyski ciepła Q_{int.H} wyznacza się według wzoru:

$$Q_{int,H} = q_{int} * A_f * t_M * 10^{-3}$$
 (17)

gdzie:

 q_{int} – obciążenie cieplne pomieszczeń wewnętrznych zyskami ciepła, $[W/m^2]$

 A_f – powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia ogrzewana), $[m^2]$

t_M – liczba godzin w miesiącu, [h]

3.1.3 Wyznaczenie rocznego zapotrzebowania na energię użytkową do przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej $Q_{w,nd}$ wyznacza się według wzoru:

$$Q_{W,nd} = V_{Wi} * A_f * c_W * \rho_W * (\theta_W - \theta_0) * k_R * t_R / 3600$$
(18)

gdzie:

 V_{Wi} – jednostkowe dobowe zapotrzebowanie na ciepła wodę użytkową, $[dm^3/(m^2*dobra)]$

A_f – powierzchnia pomieszczeń o regulowanej temperaturze powietrza, [m²]

c_w – ciepło właściwe wody (jest równe 4,19), [kJ/(kg*K)]

ρ_W – gęstość wody (jest równa 1), [kg/dm³]

 θ_W – obliczeniowa temperatura ciepłej wody użytkowej w zaworze czerpalnym (jest równa 55), [°C]

 θ_0 – obliczeniowa temperatura wody przed podgrzaniem (jest równa 10), [°C]

 k_R – współczynnik korekcyjny ze względu na przerwy w użytkowaniu ciepłej wody użytkowej, [-]

t_R – liczba dni w roku (jest równa 365), [doba]

3.1.4 Wyznaczenie rocznego zapotrzebowania na energię użytkową do chłodzenia

Wyznaczenie rocznego zapotrzebowania na energię użytkową do chłodzenia $Q_{C,nd}$ wyznacza się według wzoru:

$$Q_{C,nd} = \sum_{z} Q_{C,nd,z} \tag{19}$$

gdzie:

 $Q_{C,nd}$ – zapotrzebowanie na energię użytkową do chłodzenia w strefie chłodzonej, [kWh/rok] z – liczba stref chłodzonych, [-]

3.1.5 Zapotrzebowanie na energię użytkową do chłodzenia w strefie chłodzonej

Zapotrzebowanie na energię użytkową do chłodzenia w strefie chłodzonej $Q_{C,nd,z}$ wyznacza się według wzoru:

$$Q_{C,nd,z} = \sum_{n} Q_{C,nd,z,n} \tag{20}$$

gdzie:

$$Q_{C,nd,z,n} = Q_{C,an,z,n} - \eta_{C,ln,z,n} * Q_{C,ht,z,n}$$
(21)

gdzie:

 $Q_{C,nd,z,n}$ – zapotrzebowanie na ciepło do chłodzenia w strefie chłodzonej w n-tym miesiącu roku (uwzględnia się wartości większe od 0), [kWh/mies.]

 $Q_{C,gn,z,n}$ – całkowite zyski ciepła w strefie chłodzonej w n-tym miesiącu roku, [kWh/mies.]

 $\eta_{C,ln,z,n}$ – bezwymiarowy czynnik wykorzystania strat ciepła w strefie chłodzonej w n-tym miesiącu roku (zgodnie z punktem (3.1.2.2)), [-]

 $Q_{C,ht,z,n}$ – całkowita ilość ciepła przenoszona przez przenikanie i wentylację w strefie chłodzonej w n-tym miesiącu roku,(zgodnie z punktem(3.1.2.1)) [kWh/mies.]

3.1.5.1 Obliczenia całkowitych miesięcznych zysków ciepła

Obliczenia całkowitych miesięcznych zysków ciepła Q_{C,gn,z,n} wyznacza się według wzoru:

$$Q_{C,an,z,n} = Q_{sol,C} + Q_{int,C} \tag{22}$$

gdzie:

 $Q_{sol,C}$ – miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe i powierzchnie oszklone, (zgodnie z punktem (3.1.2.3.1)) [kWh/mies.]

Q_{int,C} – miesięczne wewnętrzne zyski ciepła w strefie chłodzonej, [kWh/mies.]

3.1.5.1.1 Miesięczne zewnętrzne zyski ciepła w strefie chłodzonej

Miesięczne wewnętrzne zyski ciepła w strefie chłodzonej Q_{int,C} wyznacza się według wzoru:

$$Q_{int,C} = q_{int} * A_f * t_M * 10^{-3}$$
 (23)

gdzie:

 $q_{\text{int}}-$ obciążenie cieplne pomieszczeń strefy chłodzonej wewnętrznymi zyskami ciepła, $\lceil W/m^2 \rceil$

 $A_{\rm f}$ – powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia chłodzona), $[{\rm m}^2]$

t_M – liczba godzin w miesiącu, [h]

3.2 Wyznaczenie rocznego zapotrzebowania na energię końcową dostarczaną do budynku lub części budynku dla systemów technicznych

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemów technicznych Q_k wyznacza się według wzoru:

$$Q_k = Q_{k,H} + Q_{k,C} + Q_{k,C} + Q_{k,L} + Q_{el,nom}$$
 (24)

gdzie:

 $Q_{k,H}$ – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania, [kWh/rok]

Q_{k,W} – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody, [kWh/rok]

 $Q_{k,C}$ – roczne zapotrzebowanie na energię końcową dostarczoną do budynku lub części budynku dla systemu chłodzenia, [kWh/rok]

Q_{k,L} – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu wbudowanej instalacji oświetlenia, [kWh/rok]

E_{el,pom}– roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych, [kWh/rok]

3.2.1 Roczne zapotrzebowanie na energię końcową dla systemu ogrzewania

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania $Q_{k,H}$ wyznacza się według wzoru:

$$Q_{k,H} = Q_{H,nd}/\eta_{H,tot} \tag{25}$$

gdzie:

$$\eta_{H,tot} = \eta_{H,a} * \eta_{H,e} * \eta_{H,d} * \eta_{H,s}$$
(26)

gdzie:

 $Q_{H,nd}$ – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji, [kWh/rok] $\eta_{H,tot}$ – średnia sezonowa sprawność całkowita systemu ogrzewania, [-]

 $\eta_{H,g}$ – średnia sezonowa sprawność wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła, [-]

 $\eta_{H,e}$ – średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej, [-]

 $\eta_{H,d}$ – średnia sezonowa sprawność przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej, [-]

 $\eta_{H,s}$ – średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania, [-]

3.2.1.1 Średnia sezonowa sprawność wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła

Wartość $\eta_{H,g}$ najlepiej wyznaczyć na podstawie danych udostępnionych przez producenta, dostawcę źródła ciepła lub na podstawie przeprowadzonych kontroli systemu ogrzewania. W przypadku braku takich danych przyjmuje się wartość podaną w [14].

3.2.1.2 Średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej

Średnią sezonową sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej $\eta_{H,e}$ wyznacza się według wzoru:

$$\eta_{He} = \eta'_{He} + (0.03 * X) - 0.03 \tag{27}$$

gdzie:

X – stosunek mocy cieplnej grzejników usytuowanych przy ścianach zewnętrznych do sumy mocy cieplnej wszystkich grzejników w systemie ogrzewania, [-]

 $\eta_{H,e}$ ' – obliczeniowa średnia sezonowa sprawność regulacji wykorzystania ciepła w przestrzeni ogrzewanej, [-]

3.2.1.3 Średnia sezonowa sprawność przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej

Wartość średniej sezonowej sprawności przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej $\eta_{H,d}$ wyznacza się według wzoru:

$$\eta_{H,d} = \frac{Q_{H,nd} + \Delta Q_{H,e}}{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d}}$$
(28)

gdzie:

$$\Delta Q_{H,e} = Q_{H,nd} * (1/\eta_{H,e} - 1) \tag{29}$$

$$\Delta Q_{H,d} = \sum_{i} (l_{zi} * q_{li} * t_{sG}) * 10^{-3}$$
(30)

gdzie:

$$l_{zi} = l_i + \Delta l \tag{31}$$

gdzie:

 $Q_{H,nd}$ – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji, [kWh/rok] $\Delta Q_{H,e}$ – sezonowe straty ciepła w systemie ogrzewania w wyniku niedoskonałej regulacji i przekazywania ciepła, [kWh/rok]

ΔQ_{H,d} – sezonowe straty ciepła w instalacji przesyłu ciepła, [kWh/rok]

 $\eta_{H,e}$ – średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej, [-]

I_{zi} – zastępcza długość i-tego odcinka instalacji przesyłu ciepła, [m]

q_{ii} – jednostkowe straty ciepła i-tego odcinka instalacji przsyłu ciepła, [W/m]

t_{sG} – czas trwania sezonu ogrzewania [h]

 I_i – rzeczywista długość i-tego odcinka instalacji przsyłu ciepła, [m] Δ_i – dodatek do długości I_i ze względu na straty ciepła zainstalowanej armatury, [m]

W przypadku braku odpowiednich danych wartość η_{H,d} przyjmuje się wartość podaną w [14].

3.2.1.4 Średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania

Średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania $\eta_{H.s}$ wyznacza się według wzoru:

$$\eta_{H,s} = \frac{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d}}{Q_{H,nd} + \Delta Q_{H,e} + \Delta Q_{H,d} + \Delta Q_{H,s}}$$
(32)

gdzie:

$$\Delta Q_{H,s} = \sum_{i} (V_s * q_s * t_{sG}) * 10^{-3}$$
(33)

gdzie:

Q_{H,nd} – roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji, [kWh/rok]

 $\Delta Q_{H,e}$ – sezonowe straty ciepła w systemie ogrzewania w wyniku niedoskonałej regulacji i przekazywania ciepła, [kWh/rok]

ΔQ_{H,d} – sezonowe straty ciepła w instalacji przesyłu ciepła, [kWh/rok]

ΔQ_{H,s} – sezonowe straty ciepła w instalacji przeysłu ciepła, [kWh/rok]

V_S – pojemność zasobnika ciepła [dm³]

q_s – jednostkowa strata ciepła zasobnika ciepła, [W/dm³]

t_{sG} – czas trwania sezonu grzewczego [h]

W przypadku braku odpowiednich danych wartość $\eta_{H,s}$ przyjmuje się wartość podaną w [15].

3.2.2 Roczne zapotrzebowanie na energię końcową dla systemu przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej $Q_{k,W}$ wyznacza się według wzoru:

$$Q_{k,W} = Q_{W,nd}/\eta_{W,tot} \tag{34}$$

gdzie:

$$\eta_{W,tot} = \eta_{W,g} * \eta_{W,s} * \eta_{W,d} * \eta_{W,e}$$
 (35)

gdzie:

 $Q_{W,nd}$ – roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej, [kWh/rok]

 $\eta_{W,tot}$ – średnia roczna sprawność całkowita systemu przygotowania ciepłej wody użytkowej, [-]

 $\eta_{W,g}$ – średnia roczna sprawność wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła, [-]

 $\eta_{W,s}$ – średnia roczna sprawność akumulacji ciepła w elementach pojemnościowych systemu przygotowania ciepłej wody użytkowej [-]

 $\eta_{W,d}$ – średnia roczna sprawność przesyłu ciepła ze źródłem ciepła do zaworów czerpalnych [-] $\eta_{W,e}$ – średnia roczna sprawność wykorzystania ciepła, [-]

3.2.2.1 Średniej rocznej sprawności wytwarzania ciepła z nośnika energii lub energii dostarczanych do źródła ciepła

Wartość rocznej sprawności wytwarzania ciepła z nośnika energii lub energii dostarczonej do źródła ciepła $\eta_{W,g}$ najlepiej wyznaczyć na podstawie danych udostępnionych przez producenta, dostawcę źródła ciepła lub na podstawie przeprowadzonych kontroli systemu ogrzewania. W przypadku braku takich danych przyjmuje się wartość podaną w [15].

3.2.2.2 Średnią roczną sprawność przesyłu ciepła ze źródła ciepła do zaworów czerpalnych

Średnią roczną sprawność przesyłu ciepła ze źródła ciepła do zaworów czerpalnych $\eta_{W,d}$ wyznacza się według wzoru:

$$\eta_{W,d} = \frac{Q_{W,nd}}{Q_{W,nd} + \Delta Q_{H,d}} \tag{36}$$

gdzie:

$$\Delta Q_{W,d} = \sum_{i} (l_{zi} * q_{li} * t_{sW}) * 10^{-3}$$
(37)

gdzie:

$$l_{zi} = l_i + \Delta l \tag{38}$$

gdzie:

 $Q_{W,nd}-$ roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej, [kWh/rok]

 $\Delta Q_{W,d}$ – roczne straty ciepła w instalacji przesyłu ciepłej wody użytkowej, [kWh/rok]

 l_{zi} – zastępcza długość i-tego odcinka instalacji przesyłu ciepłej wody użytkowej, [m]

 $q_{li}-jednostkowe straty ciepła i-tego odcinka instalacji przsyłu ciepłej wody użytkowej,$

[W/m]

t_{sW} – liczba godzin w roku [h]

l_i – rzeczywista długość i-tego odcinka instalacji przsyłu ciepłej wody użytkowej, [m]

 Δ_l – dodatek do długości l_i ze względu na straty ciepła zainstalowanej armatury, [m]

W przypadku braku odpowiednich danych wartość $\eta_{W,d}$ przyjmuje się wartość podaną w [15].

3.2.2.3 Średnią roczną sprawność akumulacji ciepła w elementach pojemnościowych systemu przygotowania ciepłej wody użytkowej

Wartość średniej rocznej sprawności akumulacji ciepła w elementach pojemnościowych systemu przygotowania ciepłej wody użytkowej $\eta_{W,s}$ wyznacza się według wzoru:

$$\eta_{W,s} = \frac{Q_{W,nd} + \Delta Q_{W,d}}{Q_{W,nd} + \Delta Q_{W,d} + \Delta Q_{W,s}}$$
(39)

gdzie:

$$\Delta Q_{W,s} = \sum_{i} (V_s * q_s * t_{sW}) * 10^{-3}$$
(40)

gdzie:

 $Q_{W,nd}$ – roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej, [kWh/rok]

ΔQ_{W,d} – roczne straty ciepła w instalacji przesyłu ciepłej wody użytkowej, [kWh/rok]

 $\Delta Q_{W,s}$ – roczne straty ciepła w zasobnikach ciepłej wody użytkowej, [kWh/rok]

V_S – pojemność zasobnika ciepłej wody użytkowej, [dm³]

q_s – jednostkowa strata ciepła zasobnika ciepłej wody użytkowej, [W/dm³]

t_{sW} – liczba godzin w roku [h]

W przypadku braku odpowiednich danych wartość $\eta_{W,s}$ przyjmuje się wartość podaną w [15].

3.2.3 Roczne zapotrzebowanie na energię końcową dla systemu chłodzenia

Roczne zapotrzebowanie na energię końcową do budynku lub części budynku dla systemu chłodzenia $Q_{k,C}$ wyznacza się według wzoru:

$$Q_{k,C} = Q_{C,nd}/\eta_{C,tot} \tag{41}$$

gdzie:

$$\eta_{C,tot} = SEER * \eta_{C,s} * \eta_{C,d} * \eta_{C,e}$$
 (42)

gdzie:

Q_{C,nd} – roczne zapotrzebowanie na energię użytkową do chłodzenia, [kWh/rok]

η_{C.tot} – średnia sezonowa sprawność całkowita systemu chłodzenia, [-]

SEER – średnia sezonowy współczynnik efektywności energetycznej wytwarzania chłodu z nośnika energii lub energii dostarczanych do źródła chłodu, [-]

 $\eta_{C,s}$ – średnia sezonowa sprawność akumulacji chłodu w elementach pojemnościowych systemu chłodzenia, [-]

η_{C,d} - średnia sezonowa sprawność przesyłu chłodu ze źródła chłodu

do przestrzeni chłodzonej, [-]

η_{C,e} - średnia sezonowa sprawność regulacji i wykorzystania chłodu

w przestrzeni chłodzonej, [-]

Wartość SEER najlepiej odczytać ze specyfikacji technicznej wyrobu. W przypadku braku takich danych wyznaczyć zgodnie z punktem (3.2.3.1.)

3.2.3.1 Średni sezonowy współczynnik efektywności energetycznej wytwarzania chłodu z nośnika energii lub energii dostarczanych do źródła chłodu

Średni sezonowy współczynnik efektywności energetycznej wytwarzania chłodu z nośnika energii lub energii dostarczanych do źródła chłodu SEER wyznacza się według wzoru:

$$SEER = SEER_{ref} * \left(1 + \sum_{i} c_{i}\right)$$
 (43)

gdzie:

SEER_{ref} - referencyjny średni współczynnik efektywności energetycznej wytwarzania chłodu z nośnika energii lub energii dostarczanych do źródła chłodu, [-] c_i - współczynnik korekcyjny w zależności od systemu chłodzenia, [-]

Jako wartość SEERref dla agregatów do schładzania cieczy przyjmuje się wartość ESEER (średniego europejskiego współczynnika efektywności chłodzenia) na podstawie specyfikacji technicznej wyrobu, a w przypadku braku takich danych według danych z [15].

3.2.3.2 Średnia sezonowa sprawność akumulacji chłodu w elementach pojemnościowych systemu chłodzenia

By wyliczyć średnią sezonową sprawność akumulacji chłodu w elementach pojemnościowych systemu chłodzenia, zyski ciepła elementów pojemnościowych w systemie chłodzenia należy obliczyć w taki sposób jak straty elementów pojemnościowych w systemie ogrzewania (wzór 28) lub w systemie przygotowania ciepłej wody użytkowej (wzór 32). W przypadku braku takich danych wartość tą przyjmuje się według danych z [15].

3.2.3.3 Średnia sezonowa sprawność przesyłu chłodu ze źródła chłodu do przestrzeni chłodzonej

By wyliczyć średnią sezonową sprawność przesyłu chłodu ze źródła chłodu do przestrzeni chłodzonej, zyski ciepła instalacji przesyłania chłodu w systemie chłodzenia należy obliczać w taki sam sposób jak straty ciepła elementów pojemnościowych w systemie ogrzewania (wzór 25) i w systemie przygotowania ciepłej wody użytkowej (wzór 32). W przypadku braku takich danych wartość tą przyjmuje się według danych z [15].

3.2.3.4 Wartości średniej sezonowej sprawności regulacji i wykorzystania chłodu w przestrzeni chłodzonej

Wartości średniej sezonowej sprawności regulacji i wykorzystania chłodu w przestrzeni chłodzonej $\eta_{C,e}$ podaje się na podstawie informacji zawartych w [15].

3.2.4 Zapotrzebowanie na energię dla systemu wbudowanej instalacji oświetlenia

Roczne zapotrzebowania na energię końcową dostarczaną do budynku dla wbudowanej instalacji oświetlenia Q_{k,L} wyznacza się według wzoru:

$$Q_{kL} = LENI * A_L \tag{44}$$

gdzie:

LENI - liczbowy wskaźnik energii oświetlenia, [kWh/(m²*rok)]

A_L - powierzchnia pomieszczeń wyposażonych w system wbudowanej instalacji oświetlenia równa powierzchni przyjętej do obliczenia wskaźnika LENI, [m²]

3.2.4.1 Liczbowy wskaźnik energii oświetlenia

Wskaźnik LENI wyznacza się według wzoru:

$$LENI = \left\{ F_c * \frac{P_n}{1000} * \left[(t_d * F_d * F_0) + (t_N * F_0) \right] \right\} + m + n * \left\{ \frac{5}{t_y} * \left[t_y - (t_d + t_n) \right] \right\}$$
(45)

gdzie:

$$P_N = \frac{P_{rzecz}}{A_L} \tag{46}$$

gdzie:

P_N – jednostkowa moc opraw oświetlenia podstawowego budynku, [W/m²]

P_{rzecz} – rzeczywista moc wbudowanej instalacji oświetlenia, [W]

A_L. – powierzchnia pomieszczeń z zainstalowanymi oprawami, [m²]

t_d – czas użytkowania oświetlenia w ciągu dnia, [h/rok]

t_N – czas użytkowania oświetlenia w ciągu nocy, [h/rok]

t_v – liczba godzin w roku, [h]

F_d – współczynnik uwzględniający wykorzystanie światła dziennego w oświetleniu, [-]

F₀ – współczynnik uwzględniający nieobecność użytkowników w miejscu pracy, [-]

 F_C – współczynnik uwzględniający obniżenie natężenia oświetlenia do poziomu wymaganego,

m = 1 gdy stosowane jest oświetlenie awaryjne, w przeciwnym razie m = 0, [-]

n = 1 gdy stosowane jest sterowanie opraw, w przeciwnym razie n = 0, [-]

3.2.5 Roczne zapotrzebowanie na energię pomocniczą końcową

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych $E_{\text{el,pom}}$ wyznacza się według wzoru:

$$E_{el,pom} = E_{el,pom,H} + E_{el,pom,W} + E_{el,pom,C}$$
(47)

gdzie:

 $E_{\rm el,pom,H}-$ roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania, [kWh/rok]

 $E_{el,pom,W}$ – roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej, [kWh/rok]

 $E_{el,pom,C}$ - roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia [kWh/rok]

3.2.5.1 Zapotrzebowanie na energię pomocniczą dla systemu ogrzewania

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania $E_{\text{el,pom,H}}$ wyznacza się według wzoru:

$$E_{el,pom,H} = \sum_{i} q_{el,H,i} * t_{el,i} * A_f * 10^{-3}$$
(48)

gdzie:

 $q_{\text{el},H,i}$ - zapotrzebowanie na moc elektryczną do napędu i-tego urządzenia pomocniczego w systemie ogrzewania, $[\text{W/m}^2]$

 $t_{\rm el,i}-$ czas działania i-tego urządzenia pomocniczego w systemie ogrzewania w ciągu roku, $\lceil h/{\rm rok} \rceil$

 A_f - powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia ogrzewana), $[m^2]$

3.2.5.2 Zapotrzebowanie na energię pomocniczą dla systemu przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej $E_{\mbox{\tiny el,pom,W}}$ wyznacza się według wzoru:

$$E_{el,pom,W} = \sum_{j} q_{el,W,j} * t_{el,j} * A_f * 10^{-3}$$
 (49)

gdzie:

 $q_{el,W,j}$ - zapotrzebowanie na moc elektryczną do napędu i-tego urządzenia pomocniczego w systemie przygotowania ciepłej wody użytkowej, $[W/m^2]$

 $t_{el,j}-$ czas działania i-tego urządzenia pomocniczego w systemie przygotowania ciepłej wody użytkowej w ciągu roku, [h/rok]

 A_f - powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia ogrzewana), $[m^2]$

3.2.5.3 Zapotrzebowanie na energię pomocniczą dla systemu chłodzenia

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub część i budynku dla systemu chłodzenia $E_{\text{el,pom,C}}$ wyznacza się według wzoru:

$$E_{el,pom,C} = \sum_{j} q_{el,C,k} * t_{el,k} * A_f * 10^{-3}$$
 (50)

gdzie:

 $q_{el,C,k}$ - zapotrzebowanie na moc elektryczną do napędu i-tego urządzenia pomocniczego w systemie chłodzenia, $[W/m^2]$

 $t_{el,j}$ – czas działania i-tego urządzenia pomocniczego w systemie chłodzenia w ciągu roku, [h/rok]

A_f - powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia chłodzona), [m²]

3.3 Wyznaczanie rocznego zapotrzebowania na nieodnawialną energię pierwotną dla systemów technicznych:

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemów technicznych Q_P wyznacza się według wzoru:

$$Q_p = Q_{p,H} + Q_{p,W} + Q_{p,C} + Q_{p,L} (51)$$

gdzie:

 $Q_{p,H}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania, [kWh/rok]

 $Q_{p,W}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowe, [kWh/rok]

 $Q_{\text{p,C}}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia, $\left\lceil kWh/\text{rok}\right\rceil$

 $Q_{p,L}$ - roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia, [kWh/rok]

3.3.1 Zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania $Q_{p,H}$ wyznacza się według wzoru:

$$Q_{p,H} = Q_{k,H} * W_H + E_{el,pom,H} * W_{el}$$
 (52)

gdzie:

 $Q_{k,H}-$ roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania, [kWh/rok]

W_H – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu ogrzewania, [-]

 $E_{el,pom,H}-$ roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania, [kWh/rok]

 W_{el} – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej [-]

3.3.2 Zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowej $Q_{p,W}$ wyznacza się według wzoru:

$$Q_{p,W} = Q_{k,W} * W_W + E_{el,pom,W} * W_{el}$$
 (53)

gdzie:

 $Q_{k,W}$ – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej, [kWh/rok]

 W_W – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu przygotowania ciepłej wody użytkowej, [-]

 $E_{el,pom,W}-roczne\ zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej , [kWh/rok]$

 W_{el} – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej [-]

3.3.3 Zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia $Q_{p,C}$ wyznacza się według wzoru:

$$Q_{p,C} = Q_{k,C} * W_C + E_{el,pom,C} * W_{el}$$
 (54)

gdzie:

 $Q_{k,C}-$ roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia, [kWh/rok]

 W_C – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu chłodzenia, [-]

 $E_{\text{el,pom,C}}-$ roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia, [kWh/rok]

 W_{el} – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej [-]

3.3.4 Zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia Q_{p,L} wyznacza się według wzoru:

$$Q_{p,L} = Q_{k,L} * W_{el} \tag{55}$$

gdzie:

Q_{k,L} – roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu wbudowanej instalacji oświetlenia, [kWh/rok]

 W_{el} – współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej [-]

4 Obliczenia charakterystyki energetycznej wybranego obiektu

4.1 Roczne zapotrzebowanie na energię użytkową

4.1.1 Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji

4.1.1.1 Obliczenia całkowitych zysków ciepła w strefie ogrzewanej w n-tym miesiącu roku

4.1.1.1 Obliczenia miesięcznych wewnętrznych zysków ciepła

Tabela 1. Obliczenia miesięcznych wewnętrznych zysków ciepła

Miesięczne wewnętrzne zyski ciepła	Obciążenie cieplne pomieszczeń wewnętrznymi zyskami ciepła	Powierzchnia pomieszczeń o regulowanej temperaturze powietrza (pow. ogrzewna)	Liczba godzni w miesiącu	
[kWh/mies.]	$[W/m^2]$	$[m^2]$	[h]	
$Q_{int,H}$	$q_{ m int}$	$A_{ m f}$	t_{M}	
21831,90	4,67	6287,99	744	
11972,33	2,83	6287,99	672	
21831,90	4,67	6287,99	744 720 744	
21127,65	4,67	6287,99		
21831,90	4,67	6287,99		
21127,65	4,67	6287,99	720	
4678,26	1,00	6287,99	744	
4678,26	1,00	6287,99	744	
21127,65	4,67	6287,99	720	
21831,90	4,67	6287,99	744	
21127,65	4,67	6287,99	720	
15999,66	3,42	6287,99	744	

Wartość obciążenia cieplnego pomieszczeń wewnętrznymi zysami ciepła określona została na podstawie tabeli nr26 z [15]. Powierzchnia ogrzewana natomiast została obliczona na podstawie projektu centralnego ogrzewania. Wartość Q_{int,H} obliczono na podstawie wzoru (18).

4.1.1.1.2 Obliczenia miesięcznego zysku ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone

Tabela 2. Miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone

Miesięczne zyski ciepła od promieniowania słonecznego przez okna, drzwi balkonowe lub powierzchnie oszklone	Udział pola powierzchni oszklenia do całkowitego pola powierzchni okna	balkon	owych lu	nni okna dr b powierze vietle otwo rody	chni	Energia promieniowania słonecznego padająca w danym miesiącu na płaszczyznę Czynnik redukcyjny ze względu na zacienienie dla ruchomych urządzeń zacieniających					Całkowita przepuszczalność energii promieniowania słonecznego dla przezroczystej części okna, drzwi balkonowych lub powierzchni oszklonej				
[kWh/mies.]	[-]		[m²	²]		[kWh/(m ² *mies.)]				[-]	[-]				[-]
$Q_{\mathrm{sol},H}$	C_{i}	$A_{i,N}$	$A_{i,E}$	$A_{i,S}$	$A_{i,W}$	I _i			$F_{\rm sh,gl}$	$F_{\rm sh}$			$ m g_{gl}$		
14486,20	0,9	147,6	425,6	255,8	414,5	25,9	28,5	56,4	28,6	0,57	0,8	0,9	0,9	0,9	0,75
18555,27	0,9	147,6	425,6	255,8	414,5	35,2	41,3	59,9	38,7	0,57	0,8	0,9	0,9	0,9	0,75
34823,18	0,9	147,6	425,6	255,8	414,5	57,5	78,3	111,9	74,9	0,57	0,8	0,9	0,9	0,9	0,75
51602,80	0,9	147,6	425,6	255,8	414,5	97,3	124,7	140,1	114,3	0,57	0,8	0,9	0,9	0,9	0,75
63507,15	0,9	147,6	425,6	255,8	414,5	119,8	151,6	157,3	151,8	0,57	0,8	0,9	0,9	0,9	0,75
71262,66	0,9	147,6	425,6	255,8	414,5	147,2	173,2	166,2	169,5	0,57	0,8	0,9	0,9	0,9	0,75
67379,76	0,9	147,6	425,6	255,8	414,5	138,9	168,6	157,0	155,4	0,57	0,8	0,9	0,9	0,9	0,75
55703,33	0,9	147,6	425,6	255,8	414,5	111,9	134,6	140,0	128,1	0,57	0,8	0,9	0,9	0,9	0,75
42337,43	0,9	147,6	425,6	255,8	414,5	82,6	97,3	117,9	96,1	0,57	0,8	0,9	0,9	0,9	0,75
24429,43	0,9	147,6	425,6	255,8	414,5	48,6	52,6	73,2	55,6	0,57	0,8	0,9	0,9	0,9	0,75
15531,74	0,9	147,6	425,6	255,8	414,5	28,2	30,5	55,5	33,7	0,57	0,8	0,9	0,9	0,9	0,75
10348,20	0,9	147,6	425,6	255,8	414,5	22,5	22,6	30,8	22,7	0,57	0,8	0,9	0,9	0,9	0,75

Wartość udziału pola powierzchni oszklenia do całkowitego pola powierzchni okna obliczone zostały za pomocą zestawienia stolarki okiennej obiektu. Powierzchnie okien policzono na podstawie dokumentacji budowlanej oraz dokumentacji stolarki okiennej obiektu. Energię promieniowania słonecznego odczytana natomiast na podstawie danych pobranych ze strony [10]. Wartości czynników redukujących podane zostały natomiast na podstawie [13]. Całkowita przepuszczalność energii promieniowania słonecznego dla podwójnego szklenia okna odczytana została z [16]. Wartość Q_{sol,H} obliczono na podstawie wzoru (17).

Tabela 3. Całkowite zyski ciepła w strefie ogrzewanej w n-tym miesiącu roku

Całkowite zyski ciepła w strefie ogrzewanej w n-tym miesiącu roku	Miesięczne zyski ciepła od promieniowania słonecznego przez okna drzwi balkonowe lub powierzchnie oszklone	Miesięczne wewnętrzne zyski ciepła
[kWh/mies.]	[kWh/mies.]	[kWh/mies.]
$Q_{H,gn,s,n}$	$Q_{sol,H}$	$Q_{int,H}$
36318,10	14486,20	21831,90
30527,61	18555,27	11972,33
56655,09	34823,18	21831,90
72730,45	51602,80	21127,65
85339,05	63507,15	21831,90
92390,31	71262,66	21127,65
72058,02	67379,76	4678,26
60381,60	55703,33	4678,26
63465,07	42337,43	21127,65
46261,33	24429,43	21831,90
36659,39	15531,74	21127,65
26347,86	10348,20	15999,66

Wartość $Q_{H,gn,s,n}$ obliczono na podstawie wzoru (16).

4.1.1.2 Obliczenia współczynnika wykorzystania zysków ciepła ze strefy ogrzewanej w n-tym miesiącu roku

Tabela 4. Obliczenia współczynnika wykorzystania zysków ciepła ze strefy ogrzewanej w n-tym miesiącu roku

Współczynnik wykorzystania zysków ciepła w strefie ogrzewanej w n-tym miesiącu roku	Stodunek zysków do strat	Parametr numeryczny	Bezwymiarowy referencyjny współczynnik	Stała czasowa referencyjna	stała czasowa dla strefy budynku lub całego budynku	Wewnętrzna pojemność cieplna strefy budynku lub całego budynku
[-]	[-]	[-]	[-]	[h]	[h]	[J/K]
$\eta_{H,gn,s,n}$	Υ_{H}	$\sigma_{\rm H}$	$\sigma_{\mathrm{H},0}$	$ au_{ ext{H},0}$	τ	C_{m}
1,00	0,29	24,52	1	15	352,81	10656987910
1,00	0,32	24,89	1	15	358,30	10656987910
1,00	0,66	24,52	1	15	352,81	10656987910
0,77	1,30	24,52	1	15	352,81	10656987910
0,57	1,77	24,52	1	15	352,81	10656987910
0,11	9,00	24,52	1	15	352,81	10656987910
0,46	2,18	25,26	1	15	363,97	10656987910
0,39	2,55	25,26	1	15	363,97	10656987910
0,53	1,90	24,52	1	15	352,81	10656987910
1,00	0,80	24,52	1	15	352,81	10656987910
1,00	0,45	24,52	1	15	352,81	10656987910
1,00	0,26	24,77	1	15	356,53	10656987910

Dla przegród, których konstrukcja została opisana w dokumentacji budowlanej, wewnętrzna pojemność cieplna budynku została wyznaczona na podstawie tejże dokumentacji. Dla pozostałych przegród starano się dobrać materiały najbardziej zbliżone standardom dla roku 2001 (rok rozpoczęcia budowy obiektu). Właściwości fizyczne poszczególnych materiałów odczytano z [19]. Wartość η_{H.gn,s,n} obliczono na podstawie wzoru (11).

4.1.1.3 Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku

4.1.1.3.1 Obliczenia całkowitego współczynnika przenoszenia ciepła przez przenikanie dla strefy ogrzewanej

Tabela 5. Obliczenia całkowitego współczynnika przenoszenia ciepła przez przenikanie dla strefy ogrzewanej

Całkowity współczynnik przenoszenia ciepła przez przenikanie dla strefy ogrzewanej	Współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) bezpośrednio do środowiska zewnętrzengo (e)	Współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) przez przyległe przestrzenie nieogrzewane w budynku lub przyległym budynku (u) do otoczenia (e)	współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) do gruntu (g)	Współczynnik przenoszenia ciepła ze strefy ogrzewanej (i) do przyległej strefy ogrzewanej lub w przyległym budynku (j)
[W/K]	[W/K]	[W/K]	[W/K]	[W/K]
$H_{tr,s}$	$H_{tr,ie}$	$H_{tr,iue}$	$H_{ m tr,ig}$	$H_{tr,ij}$
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0
4397	4056	0	341	0

Obliczenia Htr,ie oraz Htr,ig dokonano w oparciu o Normę PN-EN 12831. Z tym uproszczeniem, iż współczynniki przenikania ciepła U zostały założone. Odpowiednio współczynniki te wynoszą:

$$U_{\text{podlogi}} = 0.3 \text{ [W/(m}^2*\text{K)]}$$

$$U_{SZ} = 0.55 [W/(m^2*K)]$$

$$U_{stropodach} = 0.2 \text{ [W/(m}^2*\text{K)]}$$

$$U_{\text{okna}} = 1,55 \text{ [W/(m}^2*\text{K})]$$

$$U_{fasady \, szklane} = 1.8 \, [W/(m^2*K)]$$

$$U_{\text{drzwi zew.}} = 2.2 [W/(m^2*K)]$$

 $U_{luksfery} = 2,5 \text{ [W/(m}^2*\text{K)]}$

Wartości współczynnika przenikania ciepła liniowego mostka cieplnego oraz jego typ podano w oparciu o Normę PN-EN ISO 14683. Współczynniki te wynoszą:

Tabela 6. Wartości współczynnika przenikania liniowego mostka cieplnego wraz z rodzajem mostka

Wartości ψ mostków cieplnych				
naroże wklęsłe	C5	-0,15		
naroże wypukłe	C1	0,15		
strop- ściana zew	IF1	0,1		
okna drzwi-ściana zew	W7	0,45		
dach -ściana zewnętrzna	R11	0,25		
podłoga na gruncie	GF5	0,75		

Wartość H_{tr.s} obliczono na podstawie wzoru (7).

W projekcie pominięto obliczenia współczynników $H_{tr,iue}$ oraz $H_{tr,ij}$ z uwagi na fakt, iż po pierwsze w rozpatrywanym budynku znaczna większość pomieszczeń jest ogrzewana oraz znaczna większość pomieszczeń posiada projektowaną temperaturę wewnętrzną na poziomie 20° C. Odstąpiono więc od obliczeń tych parametrów z uwagi na ich marginalny wpływ na wyniki

4.1.1.3.1.1 Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku

Tabela 7. Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiacu roku

Całkowita ilość ciepłą przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku	Całkowity współczynnik przenoszenia ciepła przez przenikanie dla strefy ogrzewanej	Średnia temperatura wewnętrzna w strefie ogrzewanej	Średnia temperatura powietrza zewnętrznego	Liczba godzni w miesiącu
[kWh/mies.]	[W/K]	[°C]	[°C]	[h]
$Q_{tr,s,n}$	$H_{tr,s}$	$\theta_{\mathrm{int,s,H}}$	$\theta_{\mathrm{e,n}}$	t_{M}
66540,98	4397	20,1	-0,2	744
49464,29	4397	20,1	3,4	672
44949,93	4397	20,1	6,4	744
29253,63	4397	20,1	10,9	720
25321,70	4397	20,1	12,4	744
5381,93	4397	25,0	23,3	720
17338,27	4397	25,0	19,7	744
12431,21	4397	25,0	21,2	744
17540,01	4397	20,1	14,6	720
30228,75	4397	20,1	10,9	744
42866,76	4397	20,1	6,6	720
53782,63	4397	20,1	3,7	744

Średnią temperaturę wewnętrzną w strefie ogrzewanej obliczono na podstawie przyjętej temperatury wewnętrznej na podstawie danych z [16]. Jest to średnia warzona po sumie po-

wierzchni pomieszczeń z daną temperaturą. Średnia temperatura powietrza zewnętrznego obliczona została na podstawie danych meteorologicznych z najbliższej stacji pomiarowej względem lokalizacji budynku. Najbliższą stacją pomiarową dla ZS1 Swarzędz jest stacja Poznań. Średnia miesięczna temperatura jest wartością obliczoną z danych godzinowych temperatury z roku 2019. Wartość Q_{tr,s,n} obliczono na podstawie wzoru (6).

4.1.1.3.2 Obliczenia współczynnika przenoszenia ciepła przez wentylację ze strefy ogrzewanej

Tabela 8. Obliczenia wartości $b_{ve,k}$ oraz $V_{ve,k,n}$ dla wentylacji nawiewno-wywiewnej i identyfikatora strumienia powietrza zewnętrznego k=1

we ntylaca me chaniczna nawie wno-wywie wna k=1					
Czynnik korekty temperatury dla strumienia powietrza zewnętrznego k	Uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej	Udział czasu działania wentylatorów wentylacji mechanicznej w miesiącu równy wykorzystaniu budynku w miesiącu	Łączna miesięczna skuteczność zastosowania urządzenia do odzysku ciepła z powietrza wywiewanego	Skutecznosć odzysku ciepła z powietrza wywiewanego	Skuteczność gruntowego wymiennika ciepła
[-]	$[m^3/s]$	[-]	[-]	[-]	[-]
$b_{\mathrm{ve,k}}$	$V_{ve,k,n} = V_{su}$	β	$\eta_{oc,n}$	$\eta_{oc1,n}$	$\eta_{\mathrm{GWC},n}$
0,05	4,3	0,33	0,85	0,85	0
0,025	4,3	0,17	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0	4,3	0,00	0,85	0,85	0
0	4,3	0,00	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0,05	4,3	0,33	0,85	0,85	0
0,033	4,3	0,22	0,85	0,85	0

W obliczeniach założono, że wentylacja mechaniczna działa tylko w godzinach użytkowania obiektu tj. przez osiem godzin każdego dnia tygodnia. W okres działania szkoły wliczone zostały również weekendy, ponieważ szkoła prowadzi zajęcia policealne. Uwzględniono również dłuższe przerwy użytkowania obiektu takie jak ferie zimowe czy wakacje letnie kiedy wentylacja mechaniczna nie jest używana. Strumień powietrza zewnętrznego nawiewanego przez centrale oraz wartość skuteczności odzysku ciepła obrane zostały na podstawie projektu wentylacji i klimatyzacji obiektu. W projekcie przeczytamy również, że wszelkie nawiewniki podokienne oraz inne podobne urządzenia zostały zabudowane bądź uszczelnione. Z tego powodu zakłada się brak dodatkowego strumienia powietrza zewnętrznego w okresie użytkowania budynku jaki poza nim zarówno dla wentylacji mechanicznej jak i grawitacyjnej. Sama wartość czynnika korekty temperatury b_{ve,k} obliczona została według zależności podanej w tabeli nr22 w [15].

Tabela 9. Obliczenia wartości $b_{ve,k}$ oraz $V_{ve,k,n}$ dla wentylacji grawitacyjnej i identyfikatora strumienia powietrza zewnętrznego k=1

wentylacja grawitacyjna k=1					
Czynnik korekty temperatury dla strumienia powietrza zewnętrznego k	Uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej	Udział czasu działania wentylatorów wentylacji mechanicznej w miesiącu równy wykorzystaniu budynku w miesiącu			
[-]	$[m^3/s]$	[-]			
b _{vek}	$V_{ve,k,n} = Vo$	β			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			
0,70	4,10	0,70			

Założono, iż wentylacja grawitacyjna działa przez cały rok, z tym, że nie zawsze z pełną wydajnością. Dlatego wartość β nie jest równa 1. Tak jak w przypadku wentylacji mechanicznej, dodatkowy strumień powietrza zewnętrznego nie występuje. Zarówno w godzinach użytkowania jaki poza nimi występuje tylko podstawowy strumień powietrza zewnętrznego. Uśredniony w czasie strumień powietrza zewnętrznego wentylacji grawitacyjnej, dla sal lekcyjnych oraz sanitariatów, obliczony został na podstawie przyjętych wartości jednostkowego strumienia powietrza, ilości osób i współczynnika jednoczesności przebywania. Dla korytarzy natomiast do obliczenia strumienia powietrza zewnętrznego przyjęto kryterium krotności wymian. Dalej postępowano według [15]. Szczegółowo obliczenia ilości powietrza wentylacji grawitacyjnej przedstawia poniższa tabela.

Tabela 10. Obliczenia uśrednionego w czasie strumienia powietrza zewnętrznego k=1 w strefie ogrzewanej dla wentylacji grawitacyjnej

	Jednostkowy strumień powietrza	Krotność wymian	Ilość osób	Współczynnik jednoczesności	Objętość korytarzy	Obliczeniowa ilość powietrza	Obliczeniowa ilość powietrza
	$[m^3/(h*os)]$	[1/h]	[os.]	[-]	$[m^3]$	$[m^3/h]$	m3/s
sale lekcyjne	30	-	400	0,9	-	10800,00	3,00
sanitariaty zgodnie z normą	50	-	400	0,1	-	2000,00	0,56
korytarze	-	0,5	-	-	3897	1948,67	0,54
		_				_	4,10

Tabela 11. Obliczenia wartości $b_{ve,k}$ oraz $V_{ve,k,n}$ dla wentylacji grawitacyjnej i identyfikatora strumienia powietrza zewnętrznego k=3

wentylacja grawitacyjna k=3					
Czynnik korekty	Uśredniony w				
temperatury dla	czasie strumień				
strumienia	powietrza				
powietrza	zewnętrznego k w				
zewnętrznego k	strefie ogrzewanej				
[-]	$[m^3/s]$				
$b_{\rm vek}$	$V_{ve,k,n} = 0,2* Vo$				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				
0,30	0,82				

Wartość strumienia V_{ve,k,n} obliczono na podstawie tabeli nr22 z [15].

Tabela 12. Obliczenia współczynnika przenoszenia ciepła przez wentylację ze strefy ogrzewanej

		wentylacja grawitacyjna k=1		wentylacja gra	awitacyjna k=3	wentylaca mechaniczna nawiewno- wywiewna k=1	
Współczynnik przenoszenia ciepła przez wentylację ze strefy ogrzewanej	Pojemność cieplna powietrzna (1200)	Czynnik korekty temperatury dla strumienia powietrza zewnętrznego k	Uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej	Czynnik korekty temperatury dla strumienia powietrza zewnętrznego k	Uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej	Czynnik korekty temperatury dla strumienia powietrza zewnętrznego k	Uśredniony w czasie strumień powietrza zewnętrznego k w strefie ogrzewanej
[W/K]	[J/(m ³ *K)]	[-]	$[m^3/s]$	[-]	$[m^3/s]$	[-]	$[m^3/s]$
$H_{ve,s}$	$\rho_a * c_a$	b _{vek}	$V_{\mathrm{ve},k,n} = Vo$	b _{vek}	V _{ve,k,n} =0,2* Vo	$b_{ve,k}$	$V_{ve,k,n} = V_{su}$
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3865,0	1200	0,70	4,10	0,30	0,82	0,025	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3736,3	1200	0,70	4,10	0,30	0,82	0	4,3
3736,3	1200	0,70	4,10	0,30	0,82	0	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3993,6	1200	0,70	4,10	0,30	0,82	0,05	4,3
3906,1	1200	0,70	4,10	0,30	0,82	0,033	4,3

Wartość pojemności cieplnej powietrza przyjęto według [15]. Obliczenia H_{ve,s} przeprowadzono według wzoru (9).

4.1.1.3.2.1 Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku

Tabela 13. Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku

Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku	Współczynnik przenoszenia ciepła przez wentylację ze strefy ogrzewanej	Średnia temperatura wewnętrzna w strefie ogrzewanej	Średnia temperatura powietrza zewnętrznego	Liczba godzni w miesiącu
[kWh/mies.]	[W/K]	[°C]	[°C]	[h]
$Q_{ve,s,n}$	$\mathrm{H}_{\mathrm{ve,s}}$	$\theta_{\mathrm{int,s,H}}$	$\theta_{\mathrm{e,n}}$	t_{M}
60436,08	3993,6	20,1	-0,2	744
44926,12	3865,0	20,1	3,4	672
40825,93	3993,6	20,1	6,4	744
26569,72	3993,6	20,1	10,9	720
22998,52	3993,6	20,1	12,4	744
4888,16	3993,6	25,0	23,3	720
15747,54	3736,3	25,0	19,7	744
11290,69	3736,3	25,0	21,2	744
15930,78	3993,6	20,1	14,6	720
27455,37	3993,6	20,1	10,9	744
38933,89	3993,6	20,1	6,6	720
48848,27	3906,1	20,1	3,7	744

Obliczenia Q_{ve,s,n} przeprowadzone zostały na podstawie wzoru (8). Sposób otrzymania pozostałych wartości został opisany powyżej.

Tabela 14. Obliczenia całkowitej ilości ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku

Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku	Całkowita ilość ciepłą przenoszonego ze strefy ogrzewanej przez przenikanie w n-tym miesiącu roku	Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej przez wentylację w n-tym miesiącu roku
[kWh/mies.]	[kWh/mies.]	[kWh/mies.]
Q _{H,ht,s,n}	$Q_{tr,s,n}$	$Q_{\mathrm{ve},s,n}$
126977,06	66540,98	60436,08
94390,42	49464,29	44926,12
85775,86	44949,93	40825,93
55823,35	29253,63	26569,72
48320,22	25321,70	22998,52
10270,09	5381,93	4888,16
33085,81	17338,27	15747,54
23721,90	12431,21	11290,69
33470,79	17540,01	15930,78
57684,13	30228,75	27455,37
81800,65	42866,76	38933,89
102630,89	53782,63	48848,27

Obliczenia Q_{H,ht,s,n} przeprowadzone zostały na podstawie wzoru (5).

4.1.1.3.2.1.1 Obliczenia zapotrzebowania na ciepło do ogrzewania i wentylacji w strefie ogrzewanej w n-tym miesiącu roku

Tabela 15. Zapotrzebowanie na ciepło do ogrzewania i wentylacji w strefie ogrzewanej w n-tym miesiącu roku

Zapotrzebowanie na ciepło do ogrzewania i wentylacji w strefie ogrzewanej w n-tym miesiącu roku	Całkowite zyski ciepła w strefie ogrzewanej w n- tym miesiącu roku	Współczynnik wykorzystania zysków ciepła w strefie ogrzewanej w n-tym miesiącu roku	Całkowita ilość ciepła przenoszonego ze strefy ogrzewanej w n-tym miesiącu roku
[kWh/mies.]	[kWh/mies.]	[-]	[kWh/mies.]
$Q_{H,nd,s,n}$	$Q_{H,gn,s,n}$	$\eta_{H,gn,s,n}$	$Q_{H,ht,s,n}$
90658,96	36318,10	1,00	126977,06
63862,81	30527,61	1,00	94390,42
29120,77	56655,09	1,00	85775,86
-179,09	72730,45	0,77	55823,35
-323,04	85339,05	0,57	48320,22
107,16	92390,31	0,11	10270,09
-60,88	72058,02	0,46	33085,81
173,08	60381,60	0,39	23721,90
-165,69	63465,07	0,53	33470,79
11422,80	46261,33	1,00	57684,13
45141,26	36659,39	1,00	81800,65
76283,03	26347,86	1,00	102630,89

Obliczenia $Q_{H,nd,s,n}$ przeprowadzone zostały na podstawie wzoru (4). Nie pozostaje nic jak zsumować miesięczne wartości $Q_{H,nd,s,n}$ by otrzymać roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji $Q_{H,nd}$.

Tabela 16. Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji

Roczne
zapotrzebowanie
na energię
użytkową do
ogrzewania i
wentylacji
[kWh/rok]
$Q_{H,nd}$
316769,87

4.1.2 Roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej

Tabela 17. Roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na energię użytkową do przygotowania ciepłej wody użytkowej	dohowe	Powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia ogrzewana)	Ciepło właściwe wody	Gęstość wody	Obliczeniowa temperatura ciepłej wody użytkowej w zaworze czerpalnym	Obliczeniowa temperatura wody przed podgrzaniem	Współczynnik korekcyjny ze względu na przerwy w użytkowaniu cieplej wody użytkowej	Liczba dni w roku
[kWh/rok]	[dm ³ /(m ² *doba)]	[m ²]	[kJ/(kg*K)]	[kg/m ³]	[°C]	[°C]	[-]	[doba]
$Q_{W,nd}$	V_{wi}	A_{f}	$c_{\rm w}$	$\rho_{\rm w}$	θ_{w}	θ_0	k_R	t_R
52890,96	0,8	6287,99	4,19	1	55	10	0,55	365

Wszystkie wartości, z wyjątkiem powierzchni ogrzewanej, której obliczenie zostało opisane wcześniej, wybrane zostały z [15]. Obliczenia $Q_{W,nd}$ przeprowadzone zostały na podstawie wzoru (19).

4.1.3 Roczne zapotrzebowanie na energię użytkową do chłodzenia

4.1.3.1 Obliczenia całkowitych zysków ciepła w strefie chłodzonej w n-tym miesiącu roku

4.1.3.1.1 Obliczenia miesięcznych wewnętrznych zysków ciepła w strefie chłodzonej

Tabela 18. Miesięczne wewnętrzne zyski ciepła

Miesięczne wenętrzne zyski ciepła w strefie chłodzonej	Obciążenie cieplne pomieszczeń strefy chłodzoenej wenętrznymi zyskami ciepła	Powierzchnia pomieszczeń o regulowanej temperaturze powietrza (powierzchnia chłodzona)	Liczba godzin w miesiącu
[kWh/mies.]	$[W/m^2]$	$[m^2]$	[h]
$Q_{int,C}$	q_{int}	A_{f}	t _m
4472,73	4,67	1288,23	744
2452,79	2,83	1288,23	672
4472,73	4,67	1288,23	744
4328,45	4,67	1288,23	720
4472,73	4,67	1288,23	744
4328,45	4,67	1288,23	720
958,44	1,00	1288,23	744
958,44	1,00	1288,23	744
4328,45	4,67	1288,23	720
4472,73	4,67	1288,23	744
4328,45	4,67	1288,23	720
3277,88	3,42	1288,23	744

Powierzchnia chłodzona budynku została obliczona na podstawie projektu wentylacji i klimatyzacji obiektu. Obciążenie cieplne natomiast przyjęto na podstawie informacji zawartych w tabeli nr26 z [15]. Wartość Q_{int.c} obliczono przy pomocy wzoru (24).

4.1.3.1.2 Obliczenia miesięcznych zysków ciepła od promieniowania słonecznego przez okna drzwi balkonowe i powierzchnie oszklone

Wartość miesięcznych zysków ciepła od promieniowania słonecznego przez okna drzwi balkonowe i powierzchnie oszklone oblicza się tak samo jak dla punktu (4.1.1.2).

Tabela 19. Całkowite zyski ciepła w strefie chłodzonej w n-tym miesiącu roku

	Miesięczne zyski	
	ciepła od	
Całkowite zyski	promieniowania	NC: :
ciepła w strefie	słonecznego przez	Miesięczne wenętrzne zyski ciepła w strefie
chłodzonej w n-tym	okna drzwi	chłodzonej
miesiącu roku	balkonowe lub	J
	powierzchnie	
	oszklone	
[kWh/mies.]	[kWh/mies.]	[kWh/mies.]
$Q_{C,gn,z,n}$	$Q_{\mathrm{sol,C}}$	$Q_{int,C}$
18958,93	14486,20	4472,73
21008,06	18555,27	2452,79
39295,92	34823,18	4472,73
55931,26	51602,80	4328,45
67979,88	63507,15	4472,73
75591,12	71262,66	4328,45
68338,20	67379,76	958,44
56661,78	55703,33	958,44
46665,88	42337,43	4328,45
28902,16	24429,43	4472,73
19860,20	15531,74	4328,45
13626,07	10348,20	3277,88

Wartość $Q_{c,gn,z,n}$ obliczono na podstawie wzoru (22).

4.1.3.2 Obliczenia bezwymiarowego czynnika wykorzystania strat ciepła w strefie chłodzonej w n-tym miesiącu roku

Tabela 20. Bezwymiarowy czynnik wykorzystania strat ciepła w strefie chłodzonej w n-tym miesiącu roku

Bezwymiarowy czynnik wykorzystania strat ciepła w strefie chłodzonej w n- tym miesiącu roku	Stosunek zysków do strat	Parametr numeryczny	Bezwymiarowy referencyjny współczynnik	Stała czasowa referencyjna	Stała czasowa dla strefy budynku lub całego budynku	Wewnętrzna pojemność cieplna strefy budynku lub całego budynku
[-]	[-]	[-]	[-]	[h]	[h]	[J/K]
$\eta_{\text{C,ln,z,n}}$	Υ_{H}	σ_{H}	σ _{н,0}	τ _{н,0}	τ	C _m
0,15	0,15	24,52	1	15	352,81	10656987910
0,22	0,22	24,89	1	15	358,30	10656987910
0,46	0,46	24,52	1	15	352,81	10656987910
0,96	1,00	24,52	1	15	352,81	10656987910
1,00	1,41	24,52	1	15	352,81	10656987910
1,00	7,36	24,52	1	15	352,81	10656987910
1,00	2,07	25,26	1	15	363,97	10656987910
1,00	2,39	25,26	1	15	363,97	10656987910
1,00	1,39	24,52	1	15	352,81	10656987910
0,50	0,50	24,52	1	15	352,81	10656987910
0,24	0,24	24,52	1	15	352,81	10656987910
0,13	0,13	24,77	1	15	356,53	10656987910

Obliczenia $\eta_{C,ln,z,n}$ wykonujemy analogicznie do $\eta_{H,gn,s,n}$ z tą różnicą, iż zarówno w liczniku jak i mianowniku przed wykładnikiem obu potęg dodajemy znak minus. Uwzględniając w ten sposób straty ciepła a nie zyski jak to było w przypadku ogrzewania.

4.1.3.3 Obliczenia całkowitej ilości ciepła przenoszonego przez przenikanie i wentylację w strefie chłodzonej w n-tym miesiącu roku

Tabela 21. Całkowita ilość ciepła przenoszona przez przenikanie i wentylację w strefie chłodzonej n-tym miesiącu roku

Całkowita ilość	Całkowita ilość	
ciepła	ciepła	
przenoszonego w	przenoszonego w	
strefie chłodzonej	strefie chłodzonej	
przez przenikanie w	przez wentylację w	
n-tym miesiącu	n-tym miesiącu	
roku	roku	
[kWh/mies.]	[kWh/mies.]	
$Q_{tr,z,n}$	$Q_{ve,z,n}$	
66540,98	60436,08	
49464,29	44926,12	
44949,93	40825,93	
29253,63	26569,72	
25321,70	22998,52	
5381,93	4888,16	
17338,27	15747,54	
12431,21	11290,69	
17540,01	15930,78	
30228,75	27455,37	
42866,76	38933,89	
53782,63	48848,27	
	ciepła przenoszonego w strefie chłodzonej przez przenikanie w n-tym miesiącu roku [kWh/mies.] Q _{tr,z,n} 66540,98 49464,29 44949,93 29253,63 25321,70 5381,93 17338,27 12431,21 17540,01 30228,75 42866,76	

Obliczenia $Q_{C,ht,z,n}$ przeprowadza się zgodnie z punktem (3.1.2.1).

4.1.3.3.1 Obliczenia zapotrzebowania na ciepło do chłodzenia w strefie chłodzenie w n-tym miesiącu roku

Tabela 22. Zapotrzebowanie na ciepło do chłodzenia w strefie chłodzonej w n-tym miesiącu roku

Zapotrzebowanie na ciepło do chłodzenia w strefie chlodzonej w n-tym miesiącu roku	Całkowite zyski ciepła w strefie chłodzonej w n-tym miesiącu roku	Bezwymiarowy czynnik wykorzystania strat ciepła w strefie chłodzonej w n-tym miesiącu roku	Całkowita ilość ciepła przenoszona przez przenikanie i wentylację w strefie chłodzonej w n-tym miesiącu roku
[kWh/mies.]	[kWh/mies.]	[-]	[kWh/mies.]
$Q_{C,nd,z,n}$	$Q_{C,gn,z,n}$	$\eta_{C,In,z,n}$	$Q_{C,ht,z,n}$
-87,63	18958,93	0,15	126977,06
242,17	21008,06	0,22	94390,42
-160,98	39295,92	0,46	85775,86
2340,84	55931,26	0,96	55823,35
19659,66	67979,88	1,00	48320,22
65321,02	75591,12	1,00	10270,09
35252,39	68338,20	1,00	33085,81
32939,87	56661,78	1,00	23721,90
13195,09	46665,88	1,00	33470,79
60,10	28902,16	0,50	57684,13
228,04	19860,20	0,24	81800,65
284,06	13626,07	0,13	102630,89

Wartości zapotrzebowania na ciepło do chłodzenia w strefie chłodzonej w n-tym miesiącu roku obliczona za pomocą wzoru (21).

Tabela 23. Roczne zapotrzebowanie na energię użytkową do chłodzenia

Tabela 24. Roczne zapotrzebowania energii użytkowych wraz z wartościami wskaźników rocznego zapotrzebowania energii użytkowych

	Energia użytkowa				
	$Q_{H,nd}$ $Q_{W,nd}$ $Q_{C,nd}$ Q_{u}				
wartość obliczona	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	
wartose obliczona	316770	52891	169523	539184	
wartość odniesiona do	[kWh/(m ² *rok)]	[kWh/(m ² *rok)]	[kWh/(m ² *rok)]	[kWh/(m ² *rok)]	
powierzchni budynku	47,12	7,87	25,22	80,21	
procentowy udział	58,75	9,81	31,44	100,00	

- 4.2 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemów technicznych
- 4.2.1 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania
- 4.2.1.1 Obliczenia średniej sezonowej sprawności całkowitej systemu ogrzewania
- 4.2.1.1.1 Obliczenia średniej sezonowej akumulacji ciepła w elementach pojemnościowych systemu ogrzewania

Tabela 25. Średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania

Średnia sezonowa
sprawność
akumulacji ciepła w
elementach
pojemnościowych
systemu ogrzewania
[-]
$\eta_{\mathrm{H.s}}$
1,00

Z uwagi na brak zasobnika ciepła w systemie ogrzewania, wartość średniej sezonowej sprawności akumulacji ciepła w elementach pojemnościowych $\eta_{H,s}$ wynosi 1.

4.2.1.1.2 Obliczenia średniej sezonowej sprawności przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej

Tabela 26. Średnia sezonowa sprawność przesyłu ciepła ze źródła ciepła do przestrzeni ogrzewanej

Średnia sezonowa
sprawność przesyłu
ciepła ze źródła ciepła
do przestrzeni
ogrzewanej
[-]
$\eta_{\mathrm{H,d}}$
0,96

Wartość $\eta_{H,d}$ została podana na podstawie tabeli nr6 znajdującej się w [15]. Ogrzewanie centralne wodne z lokalnego źródła ciepła usytuowanego w ogrzewanym budynku z zaizolowanymi przewodami, armaturą i urządzeniami, które są zaizolowane w przestrzeni ogrzewanej.

4.2.1.1.3 Obliczenia średniej sezonowej sprawności regulacji i wykorzystania ciepła w przestrzeni ogrzewanej

Tabela 27. Średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej

Średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej	Stosunek sumy mocy cieplnej grzejników usytuowanych przy ścianach zewnętrznych do sumy mocy cieplnej wszystkich grzejników w systemie ogrzewania	Obliczeniowa średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej
[-]	[-]	[-]
$\eta_{H,e}$	X	$\eta_{ m H,e}^{'}$
0,90	0,78	0,88

Obliczeniowa średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej dobrana została na podstawie tabeli nr3 z [15] dla wartości przypisanej do ogrze-

wania wodnego z grzejnikami członowymi lub płytowymi w przypadku regulacji centralnej i miejscowej z zaworem termostatycznym o działaniu proporcjonalnym z zakresem proporcjonalności P-2K. Stosunek sumy mocy cieplnej grzejników usytuowanych przy ścianach zewnętrznych do sumy mocy cieplnej wszystkich grzejników w systemie ogrzewania obliczony został na podstawie zestawienia materiałów skąd odczytano rodzaj grzejnika oraz ich ilość. Moce poszczególnych grzejników odczytano na podstawie materiałów producenta grzejników a ich usytuowanie względem ścian zostało określone przy pomocy rysunku instalacji centralnego ogrzewania. Wartość $\eta_{H,e}$ obliczono za pomocą wzoru (27).

4.2.1.1.4 Obliczenia średniej sezonowej sprawność wytwarzania ciepła z nośnika energii lub energii dostarczonych ze źródła ciepła

Tabela 28. Średnia sezonowa sprawność wytwarzania ciepła z nośnika energii lub energii dostarczonych ze źródła ciepła

Średnia sezonowa
sprawność
wytwarzania ciepła z
nośnika energii lub
energii
dostarczonych ze
źródła ciepła
[-]
$\eta_{\mathrm{H,g}}$
0,95

Wartość $\eta_{H,g}$ odczytana została z tabeli nr2 z [15]. Źródło ciepła jako węzeł ciepłowniczy kompaktowy bez obudowy o mocy nominalnej powyżej 300 kW.

Tabela 29. Średnia sezonowa sprawność całkowita systemu ogrzewania

Średnia sezonowa sprawność całkowita systemu ogrzewania	Średnia sezonowa sprawność wytwarzania ciepła z noścnika energii lub energii dostarczonych ze źródła ciepła	Średnia sezonowa sprawność regulacji i wykorzystania ciepła w przestrzeni ogrzewanej	Średnia sezonowa sprawność przesyłu ciepła ze żródła ciepła do przestrzeni ogrzewanej	Średnia sezonowa sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania
[-]	[-]	[-]	[-]	[-]
$\eta_{H, \mathrm{tot}}$	$\eta_{ m H,g}$	$\eta_{ m H,e}$	$\eta_{ ext{H,d}}$	$\eta_{\mathrm{H,s}}$
0,82	0,95	0,90	0,96	1,00

Wartość η_{H,tot} obliczona na podstawie wzoru (26).

Tabela 30. Roczne zapotrzebowanie na energię końcową dostarczoną do budynku lub części budynku dla systemu ogrzewania

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	Roczne zapotrzebowanie na energię użytkową do ogrzewania i wentylacji	Średnia sezonowa sprawność całkowita systemu ogrzewania
[kWh/rok]	[kWh/rok]	[-]
$Q_{k,H}$	$Q_{H,nd}$	$\eta_{H, \mathrm{tot}}$
384922,35	316769,87	0,82

Wartość Q_{k,H} obliczona na podstawie wzoru (25).

4.2.2 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej

Tabela 31. Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania cieplej wody	1 2 2	sprawność całkowita	Średnia roczna sprawność wytwarzania ciepła z nośnika energii lub energii dostarczanych ze źródła ciepła	Średnia roczna sprawność akumulacji ciepła w elementach pojemnościowych systemu ogrzewania ciepłej wody użytkowej	Średnia roczna sprawność przesyłu ciepła ze źródła ciepła do zaworów czerpalnych	Średnia roczna sprawność wykorzystania ciepła
[kWh/rok]	[kWh/rok]	[-]	[-]	[-]	[-]	[-]
$Q_{k,W}$	$Q_{W,nd}$	$\eta_{\mathrm{W,tot}}$	$\eta_{ m W,g}$	$\eta_{\mathrm{W,s}}$	$\eta_{\mathrm{W,d}}$	$\eta_{\mathrm{W,e}}$
96869,88	52890,96	0,55	0,91	1	0,6	1

Wartość $\eta_{W,tot}$ obliczono przy pomocy wzoru (35). Wartości wszystkich składowych sprawności, z uwagi na brak dokumentacji c.w.u. zostały podane na podstawie przeprowadzonej wizji lokalnej oraz danych podanych w tabelach nr9, nr12, nr14 z [15]. Wartość $Q_{k,W}$ została obliczona na podstawie wzoru (34).

4.2.3 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia

Tabela 32. Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia	Roczne zapotrzebowania na energię użytkową do chłodzenia	sprawność całkowita	Średni sezonowy współczynnik efektywności energetycznej wytwarzania chłodu z nośnika energii lub energii dostarczanych do źródła chłodu	pojemnościowych	Średnia sezonowa sprawność przesyłu chłodu ze źródła chłodu do przestrzeni chłodzonej	Średnia sezonowa sprawność regulacji i wykorzystania chłodu w przestrzeni chłodzonej
[kWh/rok]	[kWh/rok]	[-]	[-]	[-]	[-]	[-]
$Q_{k,C}$	$Q_{C,nd}$	$\eta_{C, \text{tot}}$	SEER	$\eta_{\mathrm{C,s}}$	$\eta_{C,d}$	$\eta_{C,e}$
31367,63	169523,24	5,40	5,73	1	0,98	0,96

Wartość średniej sezonowej sprawności regulacji i wykorzystania chłodu w przestrzeni chłodzonej zostały dobrane na podstawie wizji lokalnej obiektu oraz na podstawie wartości podanej w tabeli nr19 z [15], instalacja hydrauliczna systemu chłodzenia wyposażona w zawory regulacyjne trójdrogowe zainstalowane przy chłodnicach powietrza z regulacją ciągłą. Wartość η_{C,d} podana została na podstawie tabeli nr18 z [15] dla każdego z obiegów, a następnie uśredniona. W systemie chłodzenia nie występuje zasobnik chłodu dlatego sprawność akumulacji wynosi 1. Współczynnik SEER natomiast został obliczony na podstawie danych technicznych podanych w specyfikacji produktu, a następnie jego wartość uśredniono.

Tabela 33. Zestawienie jednostek klimatyzacyjnych

jednostki zew.	SEER	jednostki wew.	nr. pom.	$\eta_{\text{C,d}}$	pobór m	ocy ele.
[-]	[-]	[-]	[-]	[-]	[K'	/ /
GWH12KF-K3DNA6G	5,6	1xGWH(12)KF(LCLH)	34	1	1,	55
GWHD(36)NK3BO	5,6	2x GWH(24)RDK3DNA3E	22	0,98	3,	69
GWHD(24)NK3MO	6,1	2x GWH(12)RBK3DNA3E	6.7.0	0.00	2.22	22
GWHD(24)NKSIVIO	0,1	1xGWH(09)RBK3DNA3E	6,7,9	0,98	2,33	
GWHD(24)NK3MO	6,1	3xGWH(09)RBK3DNA3E	29,30,31	0,98	2,	33
		1xGWH(12)RBK3DNA3E	40		0,05	
GWHD(28)NK3KO	6,1	1xGWH(09)RBK3DNA3E	55	0,98	0,	05
		1xGWH(18)RCK3DNA3E	142		2,59	
GWHD(36)NK3BO	5,6	2x GWH(24)RDK3DNA3E	2x GWH(24)RDK3DNA3E 50 0,98		3,	69
GWHD(36)NK3BO	5,6	1x GWH(24)RDK3DNA3E	52	0.00	3,6	
GWUD(20)INV2BO		1xGWH(18)RCK3DNA3E	54	0,98		
GWHD(36)NK3BO	5,6	2x GWH(24)RDK3DNA3E	109	0,98	3,	69
GWHD(36)NK3BO	5,6	2x GWH(24)RDK3DNA3E	111	0,98	3,	69
GWHD(42)NK3A0	5,6	2xGWH(18)RCK3DNA3E	141a,b	0,98	2	7.1
GWHD(42)NK3AU	3,0	1xGWH(12)RBK3DNA3E	1410,0	0,96	3,74	
GWHD(36)NK3BO	5,6	2x GWH(24)RDK3DNA3E	143	0,98	3,69	
GWH(18)KG	5,6	1xGWH(18)KGK3 144 1		2,	65	
					37340	W
					37,34	[kW]

Średnia roczna sprawność całkowita systemu chłodzenia obliczona została na podstawie wzoru (42). Do obliczenia wartości $Q_{k,C}$ posłużył wzór (41).

4.2.4 Roczne zapotrzebowanie na energię końcową dostarczaną do budynku dla wbudowanej instalacji oświetlenia

4.2.4.1 Obliczenia jednostkowej mocy opraw oświetlenia przypadającej na powierzchnie budynku

Tabela 34. Jednostkowa moc opraw oświetlenia podstawowego budynku

Jednostkowa moc opraw oświetlenia podstawowego budynku	Rzeczywista moc wbudowanej instalacji oświetlenia	Powierzchnia budynku z zainstalowanymi oprawami
$[W/m^2]$	[W]	$[m^2]$
P_{N}	P _{rzecz}	${ m A_{L.}}$
6,15	35000	5689,31
P_N	P _{rzecz}	$A_{L.}$
3,87	4000	1033,1

Rzeczywista moc wbudowanej instalacji oświetlenia została oszacowana na podstawie obliczonej ilości opraw oświetlenia oraz mocy pojedynczej oprawy dla danego rodzaju oświetlenia. Obie wartości odczytano z projektu instalacji elektrycznej. Wartość P_N obliczono na podstawie wzoru (46).

Tabela 35. Liczbowy wskaźnik energii oświetlenia dla hali oraz reszty budynku

Liczbowy wskaźnik energii oświetlenia	Współczynnik uwzględniający obniżenie natężenia oświetlenia do poziomu wymaganego	Jednostkowa moc opraw oświetlenia podstawowego budynku	Czas użytkowania oświetlenia w ciągu dnia	Współczynnik uwzględniający wykorzystanie światła dziennego w oświetleniu	Współczynnik uwzględniający nieobecność użytkowników w miejscu pracy	oswietienia w	Liczba godzin w roku	Gdy stosowane jest oświetlenie awaryjne, w przeciwnym razie m = 0	Gdy stosowane jest sterowanie opraw, w przeciwnym razie n = 0
[kWh/(m ² *rok)]	[-]	$[W/m^2]$	[h/rok]	[-]	[-]	[h/rok]	[h]	[-]	[-]
LENI reszta	F _c	P_N	t _d	F_d	Fo	t_N	t _y	m	n
8,24	1	6,15	1800	0,5	0,5	200	8760	1	0
LENI hala	F _c	P_N	t _d	F_d	Fo	t_N	t _y	m	n
7,99	1	3,87	1800	0,5	0,5	200	8760	1	1

Wskaźnik LENI jest liczony osobno z uwagi na zróżnicowany rodzaj oświetlenia na hali sportowej i reszty budynku. Reszta wartości została dobrana na podstawie [5]. Wartość wskaźnika LENI obliczono na podstawie wzoru (45).

Tabela 36. Roczne zapotrzebowanie na energię końcową dostarczaną do budynku dla wbudowanej instalacji oświetlenia

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku dla wbudowanej instalacji oświetlenia	Liczbow wskaźnik energii oświetlenia	Powierzchnia pomieszczeń wyposarzona w system wbudowanej instalacji oświetlenia
[kWh/rok]	[kWh/(m ² *rok)]	$[m^2]$
$Q_{k,L}$	LENI	$A_{L.}$
109104,36	16,23	6722,41

Wartość Q_{k,L} obliczono na podstawie wzoru (44)

4.2.5 Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych

4.2.5.1 Obliczenia rocznego zapotrzebowania na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania

Tabela 37. Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	Rodzaj urządzenia pomocniczego	Zapotrzebowanie na moc elektryczą do napędu i-tego urządzenia pomocniczego w systemie ogrzewania	Czas działania i- tego urządzenia pomocniczego w systemie ogrzewania w ciągu roku
[kWh/rok]	[-]	$[W/m^2]$	[h/rok]
$E_{\rm el,pom,H}$	-	$q_{\rm el,H,i}$	t _{el,i}
	regulacja węzła cieplnego	0,09	8760,00
31979,87	wentylatory centrali nawiewno wywiewnej	1,3	248 112 248 240 248 240 0 0 0 248 240 40 248 240 163,68 suma 2227,68
	Pompy obiegowe w systemie ogrzewania z grzejnikami członowymi lub płytowymi przy granicznej temp. ogrzewania:10 °C w budynku o powierzchni Af powyżej 250 m²	0,30	4700

Wszystkie wartości służące do obliczenia wartości rocznego zapotrzebowania na energię pomocniczą końcową dostarczoną do budynku lub części budynku dla systemu ogrzewania dobrano na podstawie tabeli nr20 z [15]. Wartość $E_{el,pom,H}$ obliczono na podstawie wzoru (48).

4.2.5.2 Obliczenia rocznego zapotrzebowania na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej

Tabela 38. Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej	Rodzaj urządzenia pomocniczego	Zapotrzebowanie na moc elektryczą do napędu i-tego urządzenia pomocniczego w systemie przygotowania ciepłej wody użytkowej	Czas działania i-tego urządzenia pomocniczego w systemie przygotowania ciepłej wody użytkowej w ciągu roku
[kWh/rok]	[-]	$[W/m^2]$	[h/rok]
$E_{\rm el,pom,W}$	-	$q_{\mathrm{el},\mathrm{W,j}}$	t _{el,j}
1468,87	Pompy cyrkulacyjne w systemie przygotowania ciepłej wody użytkowej o pracy przerywanej do 8 godzin na dobę w budynku o powierzchni powyżej 250m2	0,04	5840

Wszystkie wartości służące do obliczenia wartości rocznego zapotrzebowania na energię pomocniczą końcową dostarczoną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej dobrano na podstawie tabeli nr20 z [15]. Wartość $E_{\text{el,pom,W}}$ obliczono na podstawie wzoru (49).

4.2.5.3 Obliczenia rocznego zapotrzebowania na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia

Tabela 39. Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia	Rodzaj urządzenia pomocniczego	Zapotrzebowanie na moc elektryczą do napędu i-tego urządzenia pomocniczego w systemie chłodzenia	Czas działania i-tego urządzenia pomocniczego w systemie chłodzenia w ciągu roku
[kWh/rok]	[-]	$[W/m^2]$	[h/rok]
$E_{\rm el,pom,C}$	-	$q_{\rm el,C,k}$	t _{el,k}
15799,44	Pobór mocy elektrycznej zainstalowanej klimatyzacji	5,55	2208

Wartość $q_{el,C,k}$ jest sumą poboru mocy energii elektrycznej dla urządzeń klimatyzacyjnych, odczytaną z projektu wentylacji i klimatyzacji, odniesioną do powierzchni budynku. Wartość $E_{el,pom,C}$ obliczono na podstawie wzoru (50).

Tabela 40. Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych

Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub częsci budynku dla systemów technicznych	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody użytkowej	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia
[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]
$E_{el,pom}$	$E_{\rm el,pom,H}$	$E_{\rm el,pom,W}$	$E_{\rm el,pom,C}$
49248,19	31979,87	1468,87	15799,44

Wartość E_{el,pom} obliczono na podstawie wzoru (47).

Tabela 41. Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemów technicznych

Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemów technicznych	Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu przygotowania ciepłej wody	chłodzenia	Roczne zapotrzebowanie na energię końcową dostarczaną do budynku dla wbudowanej instalacji oświetlenia	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemów technicznych
[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]
Q_k	$Q_{k,H}$	$Q_{k,W}$	$Q_{k,C}$	$Q_{k,L}$	$E_{\rm el,pom}$
671512,41	384922,35	96869,88	31367,63	109104,36	49248,19

Wartość Q_k obliczono na podstawie wzoru (24).

Tabela 42. Roczne zapotrzebowania energii końcowych wraz z wartościami wskaźników rocznego zapotrzebowania energii końcowych

	Energia końcowa					
	$Q_{k,H}$	$Q_{k,W}$	$Q_{k,C}$	$Q_{k,L}$	$E_{\rm el,pom}$	Q_k
wartość obliczona	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]
	384922	96870	31368	109104	49248	671512
wartość odniesiona do	[kWh/m ² *rok]					
powierzchni budynku	57,26	14,41	4,67	16,23	7,33	99,89
procentowy udział	57,32	14,43	4,67	16,25	7,33	100,00

4.3 Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemów technicznych

4.3.1 Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania

Tabela 43. Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania	Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu ogrzewania	Roczne zapotrzebowanie na energię pomocniczą końcową dostarczaną do budynku lub części budynku dla systemu ogrzewania	Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej
[kWh/rok]	[kWh/rok]	[-]	[kWh/rok]	[-]
$Q_{p,H}$	$Q_{k,H}$	W_{H}	$E_{\rm el,pom,H}$	W_{el}
408496,56	384922,35	0,812	31979,87	3,00

Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu ogrzewania zostały odczytane ze strony dostawcy ciepła [4]. Natomiast wartość współczynnika nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej została odczytana w tabeli nr1 z [15]. Obliczenia Q_{p,H} przeprowadzono na podstawie wzoru (52).

4.3.2 Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowej

Tabela 44. Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowej

		Współczynnik	Roczne	
Roczne	Roczne	nakładu	zapotrzebowanie na	Współczynnik
zapotrzebowanie na	zapotrzebowanie na	nieodnawialnej	energię pomocniczą	nakładu
nieodnawialną	energię końcową	energii pierwotnej na	końcową	nieodnawialnej
energię pierwotną	dostarczaną do	wytworzenie i	dostarczaną do	energii pierwotnej na
dla systemu	budynku lub części	dostarczenie nośnika	budynku lub części	wytworzenie i
przygotowania	budynku dla systemu	energii lub energii	budynku dla systemu	dostarczenie energii
ciepłej wody	przygotowania	dla systemu	przygotowania	elektrycznej
użytkowej	ciepłej wody	przygotowania	ciepłej wody	elekti yezhej
	użytkowej	ciepłej wody	użytkowej	
[kWh/rok]	[kWh/rok]	[-]	[kWh/rok]	[-]
$Q_{p,W}$	$Q_{k,W}$	W_{W}	$E_{\mathrm{el,pom,W}}$	W_{el}
83064,97	96869,88	0,812	1468,87	3,00

Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu przygotowania ciepłej wody użytkowej zostały odczytane ze strony dostawcy ciepła [4]. Obliczenia Q_{p,W} przeprowadzono na podstawie wzoru (53).

4.3.3 Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia

Tabela 45. Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia	Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu chłodzenia	Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie nośnika energii lub energii dla systemu chłodzenia	dostarczana do	Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej
[kWh/rok]	[kWh/rok]	[-]	[kWh/rok]	[-]
$Q_{p,C}$	$Q_{k,C}$	W_{C}	$E_{\rm el,pom,C}$	W_{el}
141501,23	31367,63	3,00	15799,44	3,00

Z uwagi na fakt iż jedyną energią dostarczoną do systemu chłodzenia jest energia elektryczna wartość współczynnika W_c odczytano w tabeli nr1 z [15], a jako sposób zasilania wybrano sieć elektroenergetyczna systemową. Obliczenia Q_{p,C} przeprowadzono na podstawie wzoru (54).

4.3.4 Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia

Tabela 46. Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia	Roczne zapotrzebowanie na energię końcową dostarczaną do budynku lub części budynku dla systemu wbudowanej instalacji oświetlenia	Współczynnik nakładu nieodnawialnej energii pierwotnej na wytworzenie i dostarczenie energii elektrycznej
[kWh/rok]	[kWh/rok]	[-]
$Q_{p,L}$	$Q_{k,L}$	W_{el}
327313,07	109104,36	3,00

Obliczenia Q_{p,L} przeprowadzono na podstawie wzoru (55).

Tabela 47. Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemów technicznych

Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemów technicznych	Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu ogrzewania	Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu przygotowania ciepłej wody użytkowej	Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu chłodzenia	Roczne zapotrzebowanie na nieodnawialną energię pierwotną dla systemu wbudowanej instalacji oświetlenia
[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]
Qp	$Q_{p,H}$	$Q_{p,W}$	$Q_{p,C}$	$Q_{p,L}$
960375,83	408496,56	83064,97	141501,23	327313,07

Obliczenia Q_p przeprowadzono na podstawie wzoru (51).

Tabela 48. Roczne zapotrzebowania nieodnawialnych energii pierwotnych wraz z wartościami wskaźników rocznego zapotrzebowania energii pierwotnych

	Energia pierwotna						
	$Q_{p,H}$	$Q_{p,W}$	$Q_{p,C}$	$Q_{p,L}$	Q_p		
wartość obliczona	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]	[kWh/rok]		
wartosc obliczona	408497	83065	141501	327313	960376		
wartość odniesiona do	[kWh/m ² *rok]						
powierzchni budynku	60,77	12,36	21,05	48,69	142,86		
procentowy udział	42,54	8,65	14,73	34,08	100,00		

Tabela 49. Zestawienie najważniejszych wskaźników rocznego zapotrzebowania energii

	Wskaźniki	Wskaźniki rocznego zapotrzebowania					
	Q_{u}	Q_k	Q_p				
wartość obliczona	[kWh/rok]	[kWh/rok]	[kWh/rok]				
wartose obliczona	539184	671512	960376				
wartość odniesiona do	[kWh/(m ² *rok)]	[kWh/m ² *rok]	[kWh/m ² *rok]				
powierzchni budynku	80,21	99,89	142,86				

5 Porównanie wyników obliczeń z wartościami z faktur

5.1 Zużycie ciepła

Tabela 50. Zużycie rzeczywiste ciepła

Data	Ok	ros	Ko	szyt	Zużwaja	rzeczywiste	Udział
wystawienia	OK.	168	Netto	Brutto	Zuzycie	12eczywiste	procentowy
faktury	od	do	[2	zł]	[GJ]	[kWh]	[%]
02.01.2019	18.11.2018	12.12.2018	14705,62	18087,91	225,20	62555,56	13,83
01.02.2019	12.12.2018	18.01.2019	19804,52	24359,56	348,60	96833,33	21,41
01.03.2019	18.01.2019	15.02.2019	17738,51	21818,37	298,60	82944,44	18,34
01.04.2019	15.02.2019	18.03.2019	14337,87	17635,58	216,30	60083,33	13,28
02.05.2019	18.03.2019	12.04.2019	10379,42	12766,69	120,50	33472,22	7,40
03.06.2019	12.04.2019	20.05.2019	8631,59	10616,86	78,20	21722,22	4,80
01.07.2019	20.05.2019	14.06.2019	6743,26	8294,21	32,50	9027,78	2,00
01.08.2019	14.06.2019	17.07.2019	6582,10	8095,98	28,60	7944,44	1,76
02.09.2019	17.07.2019	19.08.2019	6721,65	8267,63	27,80	7722,22	1,71
01.10.2019	19.08.2019	17.09.2019	6748,45	8300,59	28,30	7861,11	1,74
04.11.2019	17.09.2019	17.10.2019	8220,53	10111,25	63,50	17638,89	3,90
02.12.2019	17.10.2019	18.11.2019	12277,21	15100,97	160,30	44527,78	9,84

Tabela 51. Porównanie mocy rzeczywistej z faktur do wartości obliczonej w charakterystyce

Suma zużycia rzeczywistego	Roczne obliczone zapotrzebowanie na ciepło	Nadwyżka mocy obliczonej	Różnica procentowa
[kWh/rok]	[kWh/rok]	[kWh/rok]	[%]
452333,33	481792,24	29458,90	6,51%

Roczne obliczone zapotrzebowanie na ciepło dla rozpatrywanego obiektu jest sumą energii końcowej na cele ogrzewania oraz ciepłej wody użytkowej a jego wartość wyniosła 481792,24 kWh/rok. Suma zużycia ciepła z faktur za rok 2019 wyniosła natomiast 452333,33 kWh/rok. Co daje nadwyżkę mocy obliczeniowej w wysokości 29458,90 kWh/rok. Zatem rzeczywiste zużycie ciepła jest o 6,51% mniejsze od wartości obliczonej. Jest to niewielka różnica lecz ma ona znaczny wpływ na koszty. W dalszej części zdecydowano się również na szczegółowe przedstawienie kosztów rzeczywistej i obliczeniowej energii ciepła. W obliczeniach uwzględniono również opłaty za przesył (zmienne i stałe) oraz koszt mocy zamówionej.

Tabela 52. Szczegółowe koszty ciepła rzeczywistego

Roczne koszty ciepła rzeczywistego									
Miesiąc	Cena za	Cena	Cena za	Cena	Koszt mocy	Opłata	Koszt mocy	Opłata stała	
wystawienia	ciepło	przesyłu	ciepło	przeyłu	zamówionej	stała za	zamówionej	za przesył +	Suma
faktury	Netto	Netto	Brutto	Brutto	Zamowionej	przesył	+VAT	VAT	
[-]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]
styczeń	6044,37	3260,90	7434,57	4010,90	4032,24	1368,12	4959,65	1682,79	18087,91
luty	9356,42	5047,73	11508,40	6208,71	4032,24	1368,12	4959,65	1682,79	24359,55
marzec	8014,42	4323,73	9857,74	5318,19	4032,24	1368,12	4959,65	1682,79	21818,37
kwiecień	5805,49	3132,02	7140,76	3852,39	4032,24	1368,12	4959,65	1682,79	17635,58
maj	3234,22	1744,84	3978,09	2146,15	4032,24	1368,12	4959,65	1682,79	12766,68
czerwiec	2098,89	1132,34	2581,63	1392,77	4032,24	1368,12	4959,65	1682,79	10616,84
lipiec	872,30	470,60	1072,93	578,84	4032,24	1368,12	4959,65	1682,79	8294,21
sierpień	767,62	414,13	944,18	509,38	4032,24	1368,12	4959,65	1682,79	8095,99
wrzesień	316,55	170,78	389,35	210,05	4274,44	1290,51	5257,56	1587,33	8267,63
Wizesien	454,73	214,64	559,32	264,01	4274,44	1290,51	5257,56	1587,33	8207,03
październik	804,00	379,50	988,92	466,79	4274,44	1290,51	5257,56	1587,33	8300,60
listopad	1804,04	851,54	2218,96	1047,39	4274,44	1290,51	5257,56	1587,33	10111,24
grudzień	4554,12	2149,62	5601,57	2644,04	4274,44	1290,51	5257,56	1587,33	15090,50
				•					163445,10

Tabela 53. Szczegółowe koszty ciepła obliczeniowego

	Roczne koszty ciepła obliczeniowego								
Miesiąc	Cena za	Cena	Cena za	Cena	Koszt mocy	Opłata	Koszt mocy	Opłata stała	
wystawienia	ciepło	przesyłu	ciepło	przeyłu	zamówionej	stała za	zamówionej	za przesył +	Suma
faktury	Netto	Netto	Brutto	Brutto	zamowionej	przesył	+VAT	VAT	
[-]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]	[zł]
styczeń	6438,02	3473,27	7918,76	4272,12	4032,24	1368,12	4959,65	1682,79	18833,32
luty	9965,78	5376,47	12257,90	6613,06	4032,24	1368,12	4959,65	1682,79	25513,40
marzec	8536,38	4605,32	10499,74	5664,54	4032,24	1368,12	4959,65	1682,79	22806,72
kwiecień	6183,58	3336,00	7605,81	4103,28	4032,24	1368,12	4959,65	1682,79	18351,53
maj	3444,85	1858,48	4237,17	2285,92	4032,24	1368,12	4959,65	1682,79	13165,53
czerwiec	2235,58	1206,08	2749,76	1483,48	4032,24	1368,12	4959,65	1682,79	10875,68
lipiec	929,11	501,25	1142,81	616,54	4032,24	1368,12	4959,65	1682,79	8401,78
sierpień	817,62	441,10	1005,67	542,55	4032,24	1368,12	4959,65	1682,79	8190,66
wrzesień	337,16	181,90	414,71	223,73	4274,44	1290,51	5257,56	1587,33	8360,29
Wizesien	484,35	228,62	595,75	281,20	4274,44	1290,51	5257,56	1587,33	0300,29
październik	856,36	404,22	1053,33	497,19	4274,44	1290,51	5257,56	1587,33	8395,41
listopad	1921,53	906,99	2363,48	1115,60	4274,44	1290,51	5257,56	1587,33	10323,96
grudzień	4850,72	2289,62	5966,38	2816,23	4274,44	1290,51	5257,56	1587,33	15627,50
		•							168845,79

Sumę ciepła obliczeniowego podzielono między miesiące proporcjonalnie do miesięcznych zużyć ciepła rzeczywistego. Cena ciepła rzeczywistego wynosi 163445,10zł natomiast cena ciepła obliczeniowego to 168845,79zł. Jak można było się spodziewać, koszt ciepła obliczeniowego jest wyższy od rzeczywistego. Nadwyżka płatności za ciepło wyniosła by 5400,69zł.

5.2 Zużycie energii elektrycznej

Tabela 54. Zużycie rzeczywiste energii elektrycznej

Data	Ok	ros	Kos	zyt	Zużycie	Udział
wystawienia	OK	168	Netto	Brutto	rzeczywiste	procentowy
faktury	od	do	[z	ł]	[kWh]	[%]
04.02.2019	01.01.2019	31.01.2019	3578,73	4401,84	18330	9,90
04.03.2019	01.02.2019	28.02.2019	3774,01	4642,03	20260	10,94
01.04.2019	01.03.2019	31.03.2019	3693,01	4542,40	19736	10,66
06.05.2019	01.04.2019	30.04.2019	3175,36	3905,69	13328	7,20
03.06.2019	01.05.2019	31.05.2019	3396,40	4177,57	16135	8,72
02.07.2019	01.06.2019	30.06.2019	3416,97	4202,87	16357	8,84
01.08.2019	01.07.2019	31.07.2019	2504,25	3080,23	5521	2,98
03.09.2019	01.08.2019	31.08.2019	2527,06	3108,28	6036	3,26
01.10.2019	01.09.2019	30.09.2019	3212,32	3951,15	15068	8,14
04.11.2019	01.10.2019	31.10.2019	3669,69	4513,72	18762	10,13
02.12.2019	01.11.2019	30.11.2019	3645,84	4484,38	18426	9,95
01.03.2020	01.12.2019	31.12.2019	3621,91	4454,95	17177	9,28

Tabela 55. Porównanie mocy rzeczywistej z faktur do wartości obliczonej w charakterystyce

Suma zużycia rzeczywistego	Roczne obliczone zapotrzebowanie na energię elektryczną	apotrzebowanie na mocy	
[kWh/rok]	[kWh/rok]	[kWh/rok]	[%]
185136,00	189720,18	4584,18	0,02

Roczne obliczone zapotrzebowanie na energię elektryczną dla rozpatrywanego obiektu jest sumą energii końcowej na cele chłodzenia, oświetlenia i energii elektrycznej pomocniczej a jego wartość wyniosła 189720,18 kWh/rok. Suma zużycia ciepła z faktur za rok 2019 wyniosła natomiast 185136,00 kWh/rok. Co daje nadwyżkę mocy obliczeniowej w wysokości 4584,18 kWh/rok. Zatem rzeczywiste zużycie energii elektrycznej jest o 0,02% mniejsze od wartości obliczonej. W tym przypadku wyniki obliczeń są niemal identyczne. Zdecydowano się również na przedstawienie kosztów rzeczywistej i obliczeniowej energii elektrycznej.

Tabela 56. Koszty energii elektrycznej rzeczywistej

Koszty energii elektrycznej rzeczywistej							
Miesiąc	Obliczeniowe	Cena					
wystawienia	miesięczne	Brutto za					
faktury	zużycie energii	kWh					
[-]	[kWh]	[zł]					
styczeń	18330	4401,84					
luty	20260	4642,03					
marzec	19736	4542,40					
kwiecień	13328	3905,69					
maj	16135	4177,57					
czerwiec	16357	4202,87					
lipiec	5521	3080,23					
sierpień	6036	3108,28					
wrzesień	15068	3951,15					
październik	18762	4513,72					
listopad	18426	4484,38					
grudzień	17177	4454,95					
		49465,13					

Tabela 57. Koszty energii elektrycznej obliczeniowej

Koszty energii elektrycznej obliczeniowej			
Miesiąc	Obliczeniowe	Jednostko	Cena
wystawienia	miesięczne	wa cena	Brutto za
faktury	zużycie energii	Brutto za	kWh
[-]	[kWh]	[zł/kWh]	[zł]
styczeń	18784	0,24	4510,83
luty	20762	0,23	4756,97
marzec	20225	0,23	4654,88
kwiecień	13658	0,29	4002,40
maj	16535	0,26	4281,01
czerwiec	16762	0,26	4306,94
lipiec	5658	0,56	3156,50
sierpień	6185	0,51	3185,25
wrzesień	15441	0,26	4048,99
październik	19227	0,24	4625,48
listopad	18882	0,24	4595,42
grudzień	17602	0,26	4565,26
			50689,94

Sumę obliczeniowej energii elektrycznej podzielono między miesiące proporcjonalnie do miesięcznych zużyć rzeczywistej energii elektrycznej. Cena energii elektrycznej rzeczywistej wynosi 49465,13zł natomiast cena energii elektrycznej obliczeniowej to 50689,94zł..

6 Podsumowanie i wnioski

Jak wynika z powyższych obliczeń, wartości obliczeniowe zapotrzebowania na ciepło i energii elektrycznej możemy uznać za bliskie rzeczywistym. Zbieżność wyników jest jednak kwestią wysoce losową. Różnice między obliczeniami a rzeczywistością mogą wynikają z pewnych przybliżeń wartości dotyczących obiektu jaki i metod przedstawionych w [15]. Dane wejściowe podane w metodologii są standaryzowane [1]. Przed rokiem 2015 metodologia dawała możliwość samodzielnego określenia niektórych parametrów. Od 2015 roku, powściągnięto się od takiej możliwości. Spowodowało to, iż obliczenia przeprowadzane są w sposób ujednolicony lecz niekoniecznie bardziej precyzyjny.

Miejsc, w których mogą występować rozbieżności jest kilka. Jednym z narzucających się jest różnica między otrzymaną dokumentacją a rzeczywistym stanem budynku oraz instalacji. Posiadana dokumentacja pochodzi z lat 2001-2003, jedynie projekt instalacji wentylacyjnej oraz klimatyzacji pochodzą z roku 2016. Przez dwadzieścia lat istnienia obiektu przeprowadzono zapewne wiele napraw oraz zmian w stosunku co do oryginalnych projektów. Mimo przeprowadzonej wizji lokalnej, całkowite porównanie stanu projektowego z rzeczywistym jest niemożliwe.

Kolejną rzeczą wartą uwagi jest natężenie przepływu wentylacji mechanicznej jak i grawitacyjnej. Wiadomo, że dokładna ilość powietrza wentylacji grawitacyjnej jest trudna do przewidzenia. Ilość przepływającego powietrza ściśle bowiem zależy od różnicy temperatur między wnętrzem budynku a zewnętrzem. Odpowiednia różnica temperatur wywołuje różnice ciśnień co umożliwia samodzielny przepływ powietrza. Problem z ustaleniem ilości powietrza nie występuje jednak tylko w przypadku wentylacji grawitacyjnej. Gdy nie posiadamy urządzeń pomiarowych, gdy nie znamy dokładnego czasu ani sposobu użytkowania obiektu oraz gdy nie wiemy jaka wartość regulacji została wybrana dla danej jednostki wentylacyjnej problem ilości powietrza zewnętrznego pojawia się również w przypadku wentylacji mechanicznej.

Obliczenia wewnętrznych zysków ciepła również zostały obliczone w sposób przybliżony. Nie da się bowiem określić dokładnych zysków od ludzi czy od sprzętu elektronicznego. Czas przebywania ludzi jak i użytkowania sprzętu jest bardzo zmienny. Metodologia podaje , iż dla szkoły wartość zysków ciepła jest uzależniona od współczynnika β co również daje możliwość otrzymania wartości nieprecyzyjnej.

Z uwagi na braki w dokumentacji wykonanie dokładnych obliczeń sprawności systemów nie mogło zostać przeprowadzone. W obliczeniach energii końcowej miary większości sprawności dobrane zostały na podstawie [15].

Metodologia, co wielokrotnie podkreślano, bazuje na pewnych założeniach, przybliżeniach. W większości przypadków takie działania powodują błędy w wynikach względem rzeczywistych pomiarów, dlatego zaczęto spekulować nie tylko nad udoskonaleniem metodologii ale również nad tym czym ją zastąpić. Pojawiło się wiele pomysłów ale najbardziej przekonujący wydaje się być ten przedstawiony w [1]. Dotyczy on stworzenia, czegoś w rodzaju zestawienia, najkorzystniejszych rozwiązań, które gwarantowałyby spełnienie coraz to surowszych wymagań narzuconych przez WT21. Pomysł z pewnością zasługuje na uwagę.

Podsumowując, w projekcie wykonano charakterystykę energetyczną budynku ZS1 w Swarzędzu. Dokonano porównania wartości obliczonych z wartościami rzeczywisty-

mi/pomiarowymi udostępnionymi na fakturach. Zwrócono uwagę na powody rozbieżności oraz zaproponowano działania zmierzające do sprecyzowania obliczeń charakterystyki energetycznej, zarówno te leżące po stronie samych obliczeń jak i te znajdujące się po stronie metodologii.

7 Literatura

- 1 Bandurski K., Ratajczak K., Amanowicz Ł.: *Transformacja energetyczna a Metodologia sporządzania charakterystyki energetycznej budynków*. Ciepłownictwo, ogrzewnictwo, wentylacja 52/10 (2021), pp. 20-26.
- 2 Grzegorczyk L.: Praca doktorska *Zmiany obciążeń cieplnych budynków niemal zero energetycznych i ich wpływ na topologię układów grzewczych*. Poznań, 2019 r.
- 3 https://danepubliczne.imgw.pl/ [dostęp 15 września 2021].
- 4 https://energiadlapoznania.pl/wazne-informacje/efektywnosc-energetyczna/
- 5 https://fs.siteor.com/jeleniewo/files/Downloads/20170704075528/16.Obliczenie_rocznego_zu%C5%BCycia_energii_do_o%C5%9Bwietlenia.pdf?1499155595
- 6 https://muratordom.pl/prawo/formalnosci-budowlane/kto-moze-wystawic-swiadectwo-energetyczne-aa-DV7s-2o3j-aQp4.html
- 7 https://poznan.stat.gov.pl/files/gfx/poznan/pl/defaultstronaopisowa/1082/5/1/rocz_poznan_2021_dzial_01_geografia.pdf [dostęp 15 września 2021].
- 8 https://ugstromiec.naszbip.pl/pliki/plik/9-dobieszynwt2021-certyfikat-1609414864.pdf [dostęp 21 stycznia 2022].
- 9 https://www.biznes.gov.pl/pl/opisy-procedur/-/proc/642
- 10 https://www.gov.pl/web/archiwum-inwestycje-rozwoj/dane-do-obliczen-energetycznych-budynkow [dostęp 15 września 2021].
- 11 https://www.rekuperatory.pl/wentylacja-grawitacyjna/ [dostęp 23 października 2021].
- 12 Koczyk H., Basińska M.: Zasady obliczania charakterystyki energetycznej budynku. Instal 3 (2009), pp. 3-9.
- 13 Obliczenia zapotrzebowania na ciepło budynku wg. PN-EN 832:2001. INTERsoft 2008.
- 14 PN-EN ISO 14683. Mostki cieplne w budynkach. Liniowy współczynnik przenikania ciepła. Metody uproszczone i wartości orientacyjne.
- 15 Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. w sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej (Dz. U. poz. 1200 oraz z 2015 r. poz. 151).
- 16 Rozporządzenie Ministra Infrastruktury z dnia 14 listopada 2017 r. zmieniające rozporządzenie w sprawie warunków technicznych jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. z 2017 r. poz. 1332 i 1529).
- 17 Strzeszewski M., Wereszczyński P.: *Metoda obliczania obciążenia cieplnego budynków wg normy PN-EN 12831*. wydanie 2. [online]. Warszawa: Elektra, 2016 r. [dostęp 28 grudnia 2021]. Dostępny w Internecie: https://elektra.pl/download/pl/katalogi/nowa_norma.pdf
- 18 Strzeszewski M., Wereszczyński P.: *Norma PN-EN 12831 nowa metoda obliczania projektowego obciążenia cieplnego*. wydanie 1. [online]. Warszawa: Purmo, 2009 r. [dostęp 28 grudnia 2021]. Dostępny w Internecie: https://www.purmo.com/docs/Poradnik-Purmo-nowa-metoda-obliczania 12831 01 2012.pdf
- 19 Zestawienie parametrów fizycznych materiałów/wyrobów budowlanych wg. PN-EN 12524:2003, PN-EN ISO 6946:1999 i PN-91 /B-02020. [online]. Dostępny w Internecie: http://kurtz.zut.edu.pl/fileadmin/BE/Tablice_materialowe.pdf