RECUPERATORIO DEL SEGUNDO PARCIAL 21/12/2015

Nombre y Apellido:

Número de libreta:

1	2	3	4	5	Calificación

Ejercicio 1. Calcular las componentes conexas y arcoconexas del siguiente subconjunto de \mathbb{R}^2 :

$$(\{0\} \times [-1,1]) \cup \left\{ \left(x, \sin \frac{1}{x}\right) : x > 0 \right\}.$$

Ejercicio 2. Consideramos en C[0,1] las siguientes normas:

$$||f||_1 = \int_0^1 |f(s)| ds$$
 y $||f||_\infty = \sup_{s \in [0,1]} |f(s)|$.

Sea $T: (C[0,1],||\cdot||_1) \to (C[0,1],||\cdot||_{\infty})$ el operador dado por

$$T(f)(x) = \int_0^1 (x-s)^2 f(s) ds.$$

Calcular ||T||.

Ejercicio 3. Sea $(E, ||\cdot||)$ un espacio normado y sea $S = \{x \in E : ||x|| = 1\}$. Probar que E es de Banach si y solo si S es completo.

Ejercicio 4.

- a) Analizar la convergencia puntual y uniforme de $f_n(x) = e^{-\frac{x^2}{n}}$ en \mathbb{R} .
- b) Analizar la convergencia puntual y uniforme de la serie $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+x^2}$ en \mathbb{R} .

Ejercicio 5. Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ diferenciable tal que $\sup_{x \in \mathbb{R}^n} \|Df(x)\| = k < 1$. Probar que $g: \mathbb{R}^n \to \mathbb{R}^n$ dada por g(x) = f(x) - x es biyectiva.

Aclaración: aquí $\|A\| = \sup_{y \in \mathbb{R}^n} \frac{\|Ay\|}{\|y\|}.$