Image Shell en Intensity

Meetrapport

Namen: Koen de Groot, René de Kluis

Klas: TICT-V3A2
Docent: Arno Kamphuis

Versie: V.2.0.0 Datum 27/03/2018

Inhoudsopgave

Inh	oudsopgave	2
1.	Doel	3
2.	Hypothese	3
3.	Werkwijze	3
4.	Resultaten	4
5.	Verwerking	6
6.	Conclusie	7
7.	Evaluatie	7
8. <i>A</i>	appendix	8
A	Appendix A - Gebruikte afbeeldingen	8
P	Appendix B - Resultaten Grayscale methoden	9

1. Doel

Het doel van deze opdracht is dat er een correct werkende conversie van RGB naar Intensity (ook wel Grayscale genoemd) wordt gemaakt. Arno Kamphuis heeft een grayscaling manier uitgewerkt, wat in een programma voor gezichtsherkenning verwerkt zit. Het doel van deze opdracht is dat onze uitwerking een vergelijkbaar en/of beter resultaat geeft dan de uitwerking in het programma.

In dit meetrapport zal gekeken worden naar de snelheid van de omzetting van de verschillende Grayscale methoden. Voor elke methode zijn vier afbeeldingen gekozen die 50 keer omgezet zullen worden. De gekozen afbeeldingen kunnen teruggevonden worden in appendix A.

Door deze afbeeldingen 50 keer om te zetten, kan met de resultaten hiervan een conclusie getrokken worden welke methode van Grayscaling het snelste is en of de snelheid van omzetting afbeelding afhankelijk is.

2. Hypothese

Is de Luminance of de Single Color Channel Grayscale methode sneller dan de standaard implementatie die gegeven is in het gezichtsherkenning programma van Arno Kamphuis?

Onze verwachting van de uitkomst op deze vraag zal zijn dat de Single Color Channel (SCC) methode sneller zal zijn dan de Luminance implementatie. Het is namelijk dat de SCC methode één van de mist gecompliceerd is in de omzetting naar Grayscale. Echter, zal nog geen verwachte uitkomst gegeven kunnen worden over de standaard implementatie, aangezien het niet bekend is welke methode hier gebruikt is.

3. Werkwijze

De snelheid zal bepaald worden door elk van de methoden 50 keer uit te voeren over 4 verschillende afbeeldingen en de tijd die het programma nodig heeft om de grayscale conversie uit te voeren op te slaan. Aan de hand van deze tijden zal een grafiek gemaakt worden waarin af te lezen is welke conversie het snelst was. Ook kan aan de hand van deze tijden een conclusie worden getrokken welke welke afbeelding het snelst geconverteerd kan worden bij de verschillende methoden.

4. Resultaten

In dit hoofdstuk zullen de resultaten besproken worden die verworven zijn a.d.h.v. de testen die in hoofdstuk 3 besproken zijn. Voor een duidelijke visualisatie van de resultaten is gekozen om de data op te delen in vier lijngrafieken en een staafdiagram. De lijngrafieken zullen de snelheid van omzetting op elke afbeelding per methode weergeven. Op de X-as zullen de testnummers staan en op de Y-as de tijd in milliseconden. In appendix B kunnen de volledige testresultaten teruggevonden worden.

Grafiek 4.1. Snelheden omzetting Grayscale methoden op de afbeelding Male-3

Grafiek 4.2. Snelheden omzetting Grayscale methoden op de afbeelding Male-2

Grafiek 4.3. Snelheden omzetting Grayscale methoden op de afbeelding Child-1

Grafiek 4.4. Snelheden omzetting Grayscale methoden op de afbeelding Female-1

5. Verwerking

Om een antwoord op de onderzoeksvraag te kunnen geven zullen de resultaten die in het vorige hoofdstuk besproken zijn geanalyseerd moeten worden.

Wat direct opviel bij de lijngrafieken is dat de standaard implementatie in het gezichtsherkenning programma het minst stabiel is in de omzetting. Deze implementatie heeft bij alle testen op de verschillende afbeeldingen minimaal één keer een omzettingstijd gehad dat minstens een derde hoger is dan het gemiddelde. De methode die het meest stabiel blijft in de snelheid van omzetting is de SCC (Single Color Channel) methode.

Om de snelheden van de verschillende methoden goed te kunnen vergelijken, zullen de gemiddelde snelheden van de gebruikte methoden op de verschillende afbeeldingen tegen elkaar uitgezet worden. Voor een duidelijke weergave hiervan is een staafdiagram opgesteld, zie Diagram 5.1.

Diagram 5.1. Gemiddelde snelheden van de Grayscale methoden a.d.h.v. de geteste afbeeldingen.

In het bovenstaande staafdiagram is te zien dat de gemiddelde snelheid van de standaard implementatiemethode bij elke afbeelding het langzaamst is en SCC het snelst. Ook is te zien dat de snelheid van omzetting varieert per afbeelding. Bij de afbeelding Child-1 ligt de gemiddelde snelheid van omzetting een stuk lager dan bij de afbeelding Male-3. Hierdoor kan gesteld worden dat de afbeelding invloed kan hebben op de snelheid van de omzetting methoden.

6. Conclusie

Het doel van dit meetrapport was om te kijken welke conversie methode (luminance, Single Color Channel (SCC) of de standaard implementatie) het snelste was om een RGB afbeelding om te zetten naar intensiteit (Grayscale).

Om hier een antwoord op kunnen geven is in dit document een test gedraaid waarbij vier RGB afbeeldingen 50 keer omgezet werden naar Grayscale m.b.v. de drie genoemde omzetting methoden.

Uit deze testen kan geconcludeerd worden dat SCC de snelste en meest stabiele methode is voor het omzetten van een RGB afbeelding naar Grayscale. De standaard implementatie die gegeven is in het gezichtsherkenning programma kwam als traagste uit deze testen. Het snelheidsverschil tussen deze twee methoden bedraagt gemiddeld 5 milliseconden. Zoals gezegd is SCC ook het meest stabiel in de conversie. Het is namelijk dat de omzettingen van luminance en van de standaard implementaties vaker en hoger uitschieten qua tijd. Ook is uit de testen gebleken dat de afbeeldingen die gebruikt wordt, invloed heeft op de snelheid van omzetting. Hierbij bleek dat de afbeelding Child-1 het snelst omgezet kon worden en Male-3 als langzaamst.

de onderzoeksvraag dat dit document geleid heeft was: "Is de Luminance of de Single Color Channel Grayscale methode sneller dan de standaard implementatie die gegeven is in het gezichtsherkenning programma van Arno Kamphuis?". Aan de hand van dit testrapport is hierop een concreet antwoord te geven. Zoals eerder beschreven, is de SCC methode het snelst van de drie methoden en de standaard implementatie uit het gezichtsherkenning programma het traagst. Hierdoor kan de onderzoeksvraag beantwoord worden met Ja.

7. Evaluatie

Uit de testen bleek dat bij de omzetting, alle methoden soms een uitschieter hadden qua tijd. Hierbij kan gekeken worden dat hier "meetfouten" tussen zitten. Echter, heeft de standaard implementatie dusdanig vaak uitschieters, dat dit bijna niet meer als enkel meetfouten gezien kan worden. Hierdoor hebben wij besloten om alle waarden mee te laten tellen voor de verwerking van de resultaten. Uit deze testen is ook onze verwachting werkelijkheid geworden. Als voorspelling van de uitkomst hadden wij namelijk gesteld dat de SCC methode het snelst was en dit is ook gebleken uit de resultaten.

8. Appendix

Appendix A - Gebruikte afbeeldingen

Figuur 1. Male-3

Figuur 3. Child-1

Figuur 2. Male-2

Figuur 4. Female-1

Appendix B - Resultaten Grayscale methoden

Single Color Channel snelheid in milliseconde					
Inr.	Female-1	Child-1	Male-2	Male-3	
1	356	350	355	359	
2	357	361	357	363	
3	370	350	357	371	
4	368	348	360	368	
5	364	354	357	363	
6	369	348	367	362	
7	373	352	358	367	
8	365	366	369	365	
9	357	352	371	365	
10	363	349	353	362	
11	361	352	355	364	
12	358	350	350	364	
13	363	353	356	363	
14	362	350	357	363	

15	367	361	355	363
16	358	352	355	363
17	357	357	353	365
18	362	361	353	363
19	357	352	357	362
20	358	348	354	363
21	362	353	356	389
22	357	351	358	363
23	358	353	356	364
24	362	353	355	362
25	357	351	356	362
26	361	350	354	363
27	362	349	352	359
28	362	344	361	362
29	356	362	353	365
30	358	353	351	362
31	370	353	353	364
32	364	351	357	366

33	355	350	373	363
34	358	353	350	376
35	368	352	353	364
36	394	366	353	363
37	354	363	352	358
38	355	351	358	362
39	362	350	352	359
40	358	357	354	363
41	365	353	354	362
42	359	357	356	361
43	355	349	353	362
44	361	360	354	359
45	366	353	357	358
46	360	353	363	370
47	354	350	368	360
48	354	349	353	363
49	374	352	354	368
50	356	351	360	363

gem				
	361.64	353.16	353.56	363.86

Luminace snelheid in millisecond.						
Inr.	Female-1	Child-1	Male-2	Male-3		
1	360	348	367	382		
2	370	352	358	374		
3	359	356	359	376		
4	367	357	354	374		
5	375	355	357	376		
6	370	360	359	384		
7	363	359	356	384		
8	382	355	358	381		
9	358	350	358	374		
10	361	352	378	380		
11	362	361	359	374		
12	359	360	356	378		
13	363	369	362	380		
14	358	352	360	379		

15	363	353	363	377
16	358	353	361	379
17	363	351	356	384
18	364	354	382	376
19	354	388	357	384
20	361	354	366	373
21	356	353	353	357
22	361	362	359	362
23	375	362	359	356
24	362	359	352	360
25	359	380	357	358
26	365	355	369	356
27	351	361	363	357
28	359	352	356	359
29	368	353	368	360
30	355	350	357	360
31	361	358	361	354
32	363	357	362	359

33	371	366	359	357
34	356	358	360	354
35	368	360	357	358
36	364	355	359	361
37	366	369	407	356
38	357	359	352	361
39	359	365	358	363
40	366	359	353	355
41	357	359	358	356
42	360	357	350	357
43	359	364	358	360
44	419	356	355	365
45	357	359	363	363
46	356	368	355	356
47	356	359	362	362
48	359	359	353	356
49	367	364	365	370
50	363	353	352	354

gem	363.3	358.6	360.36	366.62
	303.5	330.0	300.30	300.02

Standaard snelheid in millisecond					
Lnr.	Female-1	Child-1	Male-2	Male-3	
1	356	351	434	431	
2	353	361	373	376	
3	365	358	359	378	
4	360	351	363	377	
5	355	357	361	374	
6	358	359	387	382	
7	361	355	358	385	
8	359	378	436	401	
9	365	379	354	381	
10	361	349	354	377	
11	355	357	357	378	
12	368	357	358	372	
13	363	351	361	388	
14	359	360	351	385	

15	455	355	379	375
16	358	366	363	377
17	361	352	363	382
18	358	356	379	379
19	352	378	355	390
20	354	348	361	367
21	355	352	351	373
22	382	355	364	387
23	357	434	363	353
24	356	356	355	359
25	379	362	385	372
26	360	397	359	360
27	365	352	386	359
28	363	353	360	359
29	383	353	357	360
30	396	400	374	357
31	376	355	366	354
32	378	346	355	366

33	373	356	361	356
34	366	366	350	355
35	367	361	367	359
36	364	358	356	434
37	358	355	361	352
38	361	351	356	367
39	382	354	362	356
40	356	344	356	358
41	363	351	352	357
42	351	354	455	356
43	361	358	358	360
44	385	355	356	356
45	357	353	359	380
46	369	356	358	356
47	357	353	361	359
48	362	353	358	351
49	359	354	364	359
50	360	410	361	356

gem				
	365.54	360.7	366.64	370.82