Consider the following initial-boundary value problem modeling heat flow in a wire.

(PDE)
$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$$
 for $0 < x < \pi$, $t > 0$

(BC)
$$u(0,t) = 0, u(\pi,t) = 0, t > 0$$

(IC)
$$u(x, 0) = \sin^2(x)$$
, for $0 < x < \pi$

The general solution is given by, $u(x,t) = \sum_{n=1}^{\infty} b_n e^{-2n^2 t} \sin(nx)$,

with coefficients
$$b_n = \frac{2}{\pi} \int_0^{\pi} \sin^2(x) \sin(nx) dx = \frac{1}{\pi} \int_0^{\pi} (1 - \cos(2x)) \sin(nx)$$
.

For the even coefficients, $\{b_2, b_4, b_6, ...\}$, the integrand will have *ODD* symmetry about $x = \pi/2$ implying $b_n = 0$.

Determine b_n when n is odd. ¹ Evaluate the first three coefficients, $\{b_1, b_3, b_5\}$, and write out the final solution, u(x, t), through the first three non-zero terms in its series representation.