NHIS Smoking Trends Analysis Report

Assignment 2 - Analysis of Large-Scale Data 2025

Authors: Xuange Liang [xl2493], Zexuan Yan [zy2654]

Date: September 30, 2025

Data Source: National Health Interview Survey (NHIS) 1997-2018

Question 1: Plot the trend in smoking over the 10+ year period

We analyzed smoking trends using NHIS data from 1997-2018 (22 years, exceeding the 10-year requirement). The outcome variable is "ever smoked 100 cigarettes in life" among adults aged 18+.

Sample: 666,708 adults with complete data

Key Findings:

- Smoking prevalence declined from 47.0% in 1997 to 39.7% in 2018
- Overall decline of 7.3 percentage points over 22 years
- Average annual decline of approximately 0.33 percentage points per year
- The trend shows a consistent decline with some year-to-year variation

Question 2: Test trend significance using two methods

Method 1: Linear Time Trend

Results:

Source	SS	df	MS	Number	of obs	= 666,708
+				F(1, 6	56706) =	1372.34
Model	334.456994	1	334.456994	Prob >	F =	0.0000
Residual	162484.309	666,706	.243712084	R-squai	red =	0.0021
+				Adj R-	squared =	0.0021
Total	162818.766	666,707	.244213374	Root MS	SE =	.49367
ever_smoked	Coefficient	Std. err.	t I	P> t	[95% conf	. interval]
+						
year_cente~d	0034675	.0000936	-37.05	0.000	003651	0032841
_cons	.4599715	.0011455	401.54	0.000	.4577263	.4622167

• Linear trend coefficient: -0.00347 (decline of 0.347 percentage points per year)

• **P-value**: <0.001 (highly significant)

R-squared: 0.0021

Method 2: Year Dummy Variables

reg ever_smoked year_2-year_22

Results:

- Joint F-test P-value: <0.001 (highly significant)
- **Model significance**: F(21, 666686) = 86.34, Prob > F = 0.0000

Interpretation: Both tests indicate significant variation over time. The linear trend test shows a consistent yearly decline, while the year dummy test confirms that smoking rates differ significantly across years, suggesting the trend is not perfectly linear but contains year-specific variations.

Question 3: Linear trend with demographic controls

Results:

ever_smoked					[95% conf.	-
year_cente~d		.0000936	-43.88	0.000	0042901	0039233
age	.0044885	.0000252	178.41	0.000	.0044392	.0045378
female	0385596	.0007501	-51.40	0.000	0400299	0370893
excellen~th	0471166	.0007708	-61.15	0.000	0486274	0456058
_cons	.2715549	.0029139	93.22	0.000	.2658437	.2772661

- Year coefficient: -0.00411 (P < 0.001) 0.411 percentage point decline per year
- **Age effect**: +0.00449 per year of age (P < 0.001)
- Female effect: -0.03856 (P < 0.001) females 3.86 percentage points less likely to smoke
- Excellent health effect: -0.04712 (P < 0.001) healthy individuals 4.71 percentage points less likely to smoke

Why control for these variables:

- Age: Smoking initiation patterns differ across birth cohorts
- Sex: Historical differences in smoking uptake between men and women
- Health status: Health-conscious individuals are less likely to initiate smoking

The declining trend remains highly significant and actually strengthens after controlling for demographic factors.

Question 4: Gender interaction with linear time trend

reg ever_smoked year_centered age female excellent_health female_x_year

Results:

ever_smoked				P> t	[95% conf	. interval]
year_cente~d age		.0001353	-40.77 178.42	0.000 0.000	0057826 .0044395	0052522 .0045382
female excellen~th		.0010856	-21.81 -61.13	0.000 0.000	0257987 0486151	0215429 0455935
female_x_y~r		.0001883	9.77	0.000	.0014702	.0022082
_cons	.2737102	.0029184	93.80	0.000	.2679901	.2794303

- Male trend: -0.00552 per year (coefficient for year_centered)
- **Female trend**: -0.00368 per year (= -0.00552 + 0.00184)
- **Gender interaction**: +0.00184 per year (P < 0.001)
- Interaction significance: t = 9.77, P < 0.001

Interpretation: Both men and women show significant declines in smoking rates, but men's smoking rates are declining 1.84 percentage points faster per year than women's. This gender difference in trends is highly statistically significant, indicating different patterns of smoking cessation or initiation between genders over time.

Question 5: Gender interaction with year dummies

```
reg ever_smoked year_2-year_22 age female excellent_health female_x_year_2-female_x_year_22
```

This analysis uses year dummy variables instead of linear time trend to assess if smoking trends differ by gender. The gender × year dummy interactions allow for non-linear differences between men and women across different years, rather than assuming a constant linear difference as in Question 4.

Results: The interaction terms reveal that gender differences in smoking vary across specific years, providing a more flexible assessment of how male and female smoking patterns diverged over time.

Question 6: Weighted analysis using NHIS survey weights

```
svyset psu [pweight=sampweight], strata(strata)
svy: reg ever_smoked year_centered age female excellent_health female_x_year
```

Why use weights: NHIS uses complex sampling design with stratification and clustering. Survey weights are necessary to:

- Correct for sampling bias and unequal selection probabilities
- Ensure results are representative of the U.S. population
- Account for survey design effects on variance estimation
- Provide appropriate standard errors for complex sampling

Survey Design Setup:

```
svyset psu [pweight=sampweight], strata(strata)
```

Weighted Results:

Survey: Linear regression

Number of strata	=	297			Number of	obs	=	666,708
Number of PSUs	=	590			Populatio	n size	= 63	,968.685
					Design df	:	=	293
					F(5, 289))	=	1638.95
					Prob > F		=	0.0000
					R-squared	l	=	0.0299
							. – – – -	
1		Linea	rized					
ever_smoked	Coe	f. Std.	Err.	t	P> t	[95%	Conf.	<pre>Interval]</pre>
+								
year_cente~d	00550	16 .000	1669	-32.95	0.000	0058	3297	0051735
age	.00449	13 .000	0427	105.22	0.000	.0044	1074	.0045753
female	02326	93 .001	5754	-14.77	0.000	0263	8681	0201705
excellen~th -	.045947	6 .0012	421	-36.99	0.000	04838	859 -	0435093
female_x_y~r	.00181	99 .000	2284	7.97	0.000	.0013	3711	.0022686

Key Findings: The weighted analysis confirms the same substantive conclusions:

- Significant declining trend in smoking (-0.55 percentage points per year)
- Significant gender interaction (men declining faster by 0.18 percentage points per year)

_cons | .2721046 .0041825 65.06 0.000 .2638655 .2803438

All demographic controls remain significant

Question 7: Variable information and analysis limitations

Variable Information

Based on IPUMS documentation, the smoking variable asks about lifetime cigarette consumption (100+ cigarettes), which has remained consistent across survey years with standardized wording.

Analysis Limitations

- 1. **Recall Bias**: Self-reported smoking history may be inaccurate due to memory issues or social desirability bias, potentially leading to underreporting.
- Survival Bias: Heavy smokers may have higher mortality rates and be less likely to survive to participate in later surveys, potentially causing underestimation of smoking prevalence in older age groups.
- Changing Social Norms: As smoking becomes less socially acceptable, respondents may be increasingly reluctant to report smoking behavior, which could artificially inflate the apparent decline in smoking rates.
- 4. **Cross-sectional Design**: NHIS follows different individuals each year rather than the same people over time, limiting our ability to assess individual-level changes in smoking behavior.

Despite these limitations, NHIS provides the best available population-representative data for tracking US smoking trends over time.

Analysis completed using Stata 18.0 MP
All analyses based on NHIS data 1997-2018
Using Claude 4.5 for generating and formatting code and report text