

We use artificial intelligence to simplify your diet

Supervisor Er. Krishna Khadka **Our Team**

Aiyana Koirala Binod Adhikari Pratigya Dhakal

"Food" is a massive global health issues

Risk Factor For morbidity and mortality

Diabetes, heart disease, stroke and cancers can be related to food

Overweight and
Obesity
Increased these days

INTRODUCTION

- Food snap is an end to end CNN Image Classification Model recognizes the food in your image to help people understand the nutritional composition of the food they eat in a more simple way.
- Also provide food information for people with diabetes.

OBJECTIVE

 To develop an efficient image classification app, which employs state-of-the-art AI to recognize foods and provide nutrition content and diabetic recommendation

BENEFITS

- Eat Better with Quick Nutritional Info
- Receives Diabetic Recommendation

"Food" Learning

1. Classification:

Dataset:

- 1. 3 differents sources
- 2. 101 labels
- 3. 100,000 images

EfficientNetB1:

- Architecture for image classification
- strike a good balance between model size and accuracy.

Faster Working:

- 1. T4 GPU(7.5 capacity)
- 2. Tensorflow

Table 1 : DataSet

FOOD 101 datasets (Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc, 2022)	1000 images of 101 food each
Nutrients datasets (<i>Nutrition Dataset</i> , 2022)	60 food
Diabetic Food Datasets(Horn, 2018)	56 food

Table 2:Splits

Split	Examples		
'train'	75,750		
'validation'	25,250		

Provide nutrition based on the datasets we have per 100grams

Also early stopping while training is done

Using VGG16:

loss: 0.5758 - accuracy: 0.7645

Using EfficientNetB1: Sklearn's Accuracy Score without using RELU

loss: 0.7474 - accuracy: 0.8364

Using EfficientNetB1: Sklearn's Accuracy Score using RELU

loss: 0.6977 - accuracy: 0.8384

BLOCK DIAGRAM

Figure: Food snap Block Diagram

Figure : Accuracy Before Using RELU

Figure : Loss Before Using RELU

Figure : Loss After Using RELU

Figure : Accuracy After Using RELU

HOW FOODSNAP WORKS?

HOW FASTAPI WORK WITH MACHINE LEARNING MODEL

HOW FAST API INTEGRATED WITH FLUTTER

LITERATURE REVIEW

 Table 3: Comparison Table

SYSTEM FEATURES	FOOD SNAP	Cook pad	Yum mly	Paprika Recipe Manager	Super Cook	Fridge Pal	Allrecip es	Calorie Mama
Recipe Sharing	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Nutrient Information	Yes	No	No	No	No	No	No	Yes
Search Recipe	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Virtual cookbook.	No	Yes	Yes	Yes	Yes	Yes	Yes	No
Analyze food for diabetic patients	Yes	No	No	No	No	No	No	No 15

TOOLS USED

TOOLS	USE			
Flutter	For Frontend			
Figma (Figma, Inc, 2016)	For Design UI/UX			
Fast API (Sebastián Ramírez, 2018)	For Backend			
Google Collab (Google, 2020)	For Machine Learning Model			
Firebase (Google & James Tamplin, Andrew Lee, 2011)	For Authentication			
Draw.io (JGraph Ltd & Alder, 2011)	For UML Diagram			
GitHub (Tom Preston-Werner, Chris Wanstrath, Scott Chacon, P. J. Hyett & Microsoft Corporation, 2008)	For Version Control			
VS Code	For IDE			
Google Docs (Google, 2006)	For Documentation			
Google Slide (Google, 2006)	For Presentation			

Table 4: Tools Used

USE CASE

Figure :Use Case Diagram

SYSTEM SEQUENCE DIAGRAM

DESIGN CLASS DIAGRAM

Figure : Design Class Diagram

INTERACTION DIAGRAM

Figure :Interaction Diagram

CHALLENGES

- Limited Dataset for Diabetic
 Foods
- Reliable Nutritional Information

SOLUTION

- Classify and recommendation
- Optimize for rapid, real-time suggestions.

PROJECT SCOPE AND APPLICATION

- swiftly identifies food items from images, providing nutritional details and diabetic recommendations.
- empowers users with real-time insights, facilitating quick decisions about meals and healthier lifestyles.

LIMITATION AND FUTURE ENHANCEMENT

- Limited food category
- Limited diabetic food recommendation and nutritional content datasets
- No predicted history

APPENDICES

Figure: Food Snap Web App

Figure :Landing Page

Figure :SignUp Page

Figure :Login Page

G 🖺 🖀 G Welcome, Aiyana **Identify What's in Your Food Photos** Upload an image of food and let us identify it for **Upload Image** \rightarrow Logout lacksquare

Figure : Forgot Password Page

Figure :Home Page

Figure :ImagePicker Page

Figure :After food selection

Figure :Prediction

Figure : Analysis Result

Thank You