SCIENCE MADE EASY

Summary of each Demonstration

Dr. Henry Brouwer Redeemer University College

1. INTRODUCTION (DVD 1)

Demo	Title	Purpose
1.1	Introduction to Series	To describe the purpose of this DVD series of science demonstrations
1.2	Why do Science Demonstrations	To explain the importance of doing activities with students
1.3	Tips for Doing Science Demonstrations	To give some tips on how to do science demonstrations successfully
1.4	Acknowledgements	To thank those who helped make this project possible
1.5	Basic Lab Equipment	To show the basic equipment needed to carry out science activities To learn the proper names for common science equipment To learn how to use some of the basic equipment
1.6	Heat Sources	To show different types of heat sources that can be used in the elementary classroom To discuss advantages and disadvantages of different heat sources
1.7	Common Chemicals	To show some of the common chemicals that can be obtained locally in different retail outlets To learn the common and chemical names and what these chemicals are used for
1.8	Solvents	To discuss different sources of water for use in science activities To identify other solvents available locally
1.9	Distribution of Chemicals	To suggest ways of storing and dispensing chemicals and reagents for student use To make it easier to do teacher demonstrations
1.10	Working with Glass Tubing	To show some basic skills required to work with glass tubing (cutting, polishing, bending, drawing out)

2. PROPERTIES OF MATTER (DVD 1)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
2.1	Compressibility of Gases, Liquids and Solids	To demonstrate the compressibility of gases but not of solids or liquids	Large syringe	1. Why can a gas be compressed but not a solid or liquid?2. What does this demonstration tell you about the particles making up each substance?		
2.2	Boiling Points of Water and Methanol	To show that different liquids have different boiling points	Thermometers, water, methanol, test tubes, stand, clamp, burner, small stones	1. What is the 'boiling point'? 2. Does each liquid have its own unique boiling point? 3. Why might you boiling points be off slightly? 4. Does the temperature continue to rise once the liquid boils? What can you conclude about the temperature during a change in state?	Have students determine the boiling point of water; teacher should do methanol	See also: PROPERTIES OF WATER – 3.5
2.3	Vaporization of Water	To show that the vaporization of water causes cooling	Two thermometers, gauze, water	Why did the thermometer with the wet gauze cool down? What happened to the heat energy? Trees evaporate large quantities of water through their leaves. What effect will that have on surrounding temperatures?	Place a drop of water on student's skin and ask them to describe its effect	See also: WEATHER – 18.3
2.4	Melting of Ice	To show that the melting of ice takes energy To show that melting occurs at 0°C	Crushed ice, beaker, stand, ring clamp, burner, thermometer	1. Why must the ice-water mixture be stirred continuously? 2. What happened to the heat energy added to the beaker? Why did the temperature not rise? 3. What is the difference between heat and temperature? 4. What can you conclude about the temperature during a change in state?	Have students record temperature every 30 seconds while heating crushed ice; graph results with time along x-axis, temp. along y-axis	See also: HEAT – 7.8
2.5	Sublimation of Moth Balls	To demonstrate sublimation of moth balls	Two beakers (50 and 100 mL), ice, moth balls (naphthalene), burner, ring clamp, stand	1. What is meant by 'sublimation'? 2. In order for you to smell a solid, what must be happening to its molecules? 3. Why was the cold beaker necessary? 4. How do the crystals get to the inner beaker? 5. Give other examples of sublimation.		Bring heated moth balls outside after demo is finished. See also: WEATHER – 18.5

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
2.6	Diffusion in Gases	To demonstrate diffusion in a gas	Water bottle, ammonia, phenolphthalein indicator, cotton balls	1. Why was it necessary to show the diffusion of ammonia in a closed bottle? 2. If there were no convection currents in a room, estimate how long it would take for the smell of ammonia to travel from the front to the back of the room.	Let students measure how long it took before the indicator started to change colour	See CHEMISTRY – 13.7 re: phenolphthalein indicator
2.7	Diffusion in Liquids	To demonstrate diffusion in a liquid	Test tube, water, food colouring	1. Why is it important not to disturb the test tube for the duration of this demonstration? 2. What does this demonstration show about the rate of diffusion in a liquid?		Let the test tube stand undisturbed for several days
2.8	One Volume + One Volume = Two Volumes??	To show that, when two different liquids are mixed, the combined volume is less than the sum of the two	Graduated cylinders, water, methanol	1. When 50 mL of each liquid were mixed, what was the final volume? 2. Why is there a decrease in the total volume?		You must measure the volumes carefully!
2.9	Shrinking Liquids	To show that, when two liquids are mixed, their total volume decreases	Test tubes fitted with stopper and long tube	1. Why was it important to carefully add the methanol to the water? What would happen if the water were added to the methanol? 2. Why did the liquid in the tube go down when the test tube was inverted? What does that tell you about the change in volume?		

Many of the other topics also deal with properties of matter (e.g. Density, Magnetism, Chemistry, Properties of Water)

3. PROPERTIES OF WATER (DVD 1)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
3.1	Expansion of Ice	To show that when water freezes, it expands	Glass bottle with cap, freezer	Why should the bottle be wrapped in heavy plastic? What could happen to a water pipe if the water freezes in the winter?	·	
3.2	Lifting an Ice Cube	To lift an ice cube out of a glass of water without touching it To demonstrate the effect of salt on ice	Glass of water with an ice cube, thread, salt	 What do you notice on the surface of the ice cube before salt is added? What happens after the salt is sprinkled on the ice cube? What does the salt do to the melting point of ice? 	Students could do activities 3.2, 3.7 and 3.8	
3.3	Cold Ice	To show how the addition of salt to ice lowers its freezing point	Crushed ice, salt, thermometer	1. How cold did the ice get? 2. In order for the temperature to go down, the heat has to go somewhere; where does it go? 3. Why is salt not very effective on roads if the temperature is very cold (e.g15°C)?		See also WEATHER – 18.5
3.4	Wire Through Ice	To show that pressure can lower the melting point of ice	Block of ice, thin wire, two weights (2 L pop bottles filled with water), stand, ring clamp	 What evidence is there that the pressure of the wire on the ice causes it to melt? Why does the water refreeze above the wire? Do you think this would happen if the ice were really cold (e.g15°C)? Why is it hard to skate on ice when the ice is really cold? 		
3.5	Raising Boiling Point by Adding Salt	To show how the addition of salt affects the boiling point of water	Test tube, thermometer, salt, burner, stand, clamp	1. How much did the boiling point increase when salt was added to the water? 2. The antifreeze used in automobile radiators is a mixture of water and ethylene glycol; would you expect its boiling point to be 100°C?		
3.6	Floating Metal Objects on Water	To place metal objects on the surface of water To show the effect of detergent	Tray, water, paper clip, copper wire, thumb tack, tweezers, detergent	 Why is it important to place the objects carefully on the surface of the water? What prevents the metal objects from breaking through the surface? Why does detergent cause the objects to sink? 		
3.7	Scattered Chalk Dust	To show the effect of detergent on chalk dust floating on water	Large tray, water, chalk dust, detergent	 Why does the chalk dust float on the water? Describe what happened when a drop of detergent was added in the centre of the tray. Where do you think the detergent is? Why? 		
3.8	Centering a Cork in a Glass of Water	To move a cork from the edge of a glass to the center	Glass of water, cork (e.g. from a wine bottle)	Why does the cork appear to stick to the side of the glass when the glass is partially full? As water is added to the glass until it is almost full, what happens to the film of water between the cork and the inside of the glass		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
3.9	Adding Pennies to a Full Glass of Water	To show how water can form a 'head' on a glass of water To demonstrate the effect of adding a detergent	Glass of water, pennies, detergent	 What did you observe about the water level in the glass as the pennies were added? Why was it important to add the pennies carefully? What prevented the water from overflowing the glass? What was the effect of adding a drop of detergent? Why? 		
3.10	Pouring Water Along a String	To show how a wet string can be used to transfer water	Length of yarn, two beakers	Why did the water travel along the wet string but not along the dry string? What is meant by the terms 'adhesion' and 'cohesion'? How do they apply in this example?		
3.11	Capillary Action	To show how water creeps up a thin tube	Glass tubes of different diameters, water	 In which tube did the water creep the highest, the thinner one of the wider one? Why does water creep up the glass? What causes a drop water to spread out on a piece of paper? How can water move through soil? 		Tubes can be made from glass tubing. See INTRODUCTION 1-10
3.12	Three Become One	To show the presence of cohesive forces in water	Plastic container, water, stand, ring clamp	 What had to be done to change the three streams of water into one stream? What force kept the three streams together? Would this work if the holes were further apart? Try it! 		
3.13	Holey Nylon	To show how nylon can keep water in a container	Jar with large mouth, part of nylon stocking, elastic band	1. Why did the water flow through the nylon initially, but not when the jar was inverted?2. What must enter the jar in order for the water to flow out?3. If the jar is tilted, the water will flow out. Why?		See also AIR PRESSURE – 6.6
3.14	Inverted Bottles of Water	To show how a bottle of water can be inverted To show how window screen can keep water in	Two bottles with screw rings, fiberglass window screen	 Why does the paper over the mouth of the bottle keep the water in? Why did the water in the second bottle not come out after the paper was moved? 		
3.15	Coloured Streamers	To show convection currents in warm and cold water	Coloured ice cube, large clear container	What causes the movement of water as seen by the coloured streamers?		See also DENSITY – 4.11
3.16	Which Contains Warm Water?	To allow inverted bottles of water to mix and predict which contains warm or cold water	Four juice bottles, small pieces of transparency sheets	In which set of bottles did mixing occur? Which set of bottles contains warm water in the bottom and cold in the top? How do you know?		See also WEATHER – 18.9
3.17	Maximum Density of Water	To show that water near 4°C is more dense than warmer or colder water	Large fish bowl, thermometer	1. After standing in the freezer for a while, the temperature near the surface is close to 0°C yet at the bottom is around 4°C. What does that tell you about the different densities? 2. Why does the bottom of a lake never freeze?		

4. DENSITY (DVD 1)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
4.1	Introduction	To explain the concept of density		1. What is the difference between heavy and dense?2. Which is heavier, 1 kg of rock or 1 kg of feathers?		
4.2	Density of Liquids	To determine the density of water and methanol	Balance, graduated cylinders	Why does the measurement of density not depend on the volume of liquid used? What are the units for the density of a liquid? What is a 'physical property'?	Measure density of different volumes of water; graph results	Teacher should do density of methanol to avoid spills of methanol
4.3	Density of Solids	To determine the density of some regular solids	Balance, ruler, calipers, various regular solids	 Why is the density measurement the same for a given material, regardless of size? What is meant by a 'physical property'? 	Calculate volume of various regular solids, measure mass, calculate density	Good activity to integrate math and science
4.4	Volume by Displacement	To determine the density of irregular objects	Graduated cylinder, overflow can, irregular shaped objects, balance	What is meant by 'displacement'? Could a liquid other than water be used as well? Would the results be the same?	Determine the volume of various irregular objects and calculate density	
4.5	Floating and Sinking Candles	To reinforce the concept of density	Two different sized candles, water, methanol, beakers	Does the ability of an object to float in a liquid depend on its size? Explain. Why did the candles float in water but sink in methanol? What does that tell you about the approximate density of the candles?		Be sure to start with large candle in methanol
4.6	Regular vs Diet Coke	To show the difference in density between two cans of Coke	Can of regular Coke and can of diet Coke	Do the two cans have the same volume? Why would the regular Coke can sink while the diet Coke can floats?		
4.7	Floating Egg	To prepare a liquid in which an egg floats partway	Egg, water, salt	1. Does an egg normally float in water? Try it! What does that tell you about the density of an egg? 2. What happens to the density of water when salt is dissolved in the water? 3. Why did the salt water and regular water not mix completely?		
4.8	Ice, Water and Oil	To show how ice and water behave in vegetable oil	Ice cube, vegetable oil	What does this demonstration tell you about the density of ice and of water relative to that of vegetable oil? Explain why the ice cube floated but the cold water from the melting ice cube sunk.		Be sure to use a large ice cube

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
4.9	Layered Liquids	To show how liquids with different densities can be layered	Water, salt, antifreeze, methanol, vegetable oil, food colouring	Why is it important to carefully pour the antifreeze solution over the salt water solution? If you were to shake up the liquids in the graduated cylinder, would they separate again?	Let this stand for seve how slowly mixing or top with plastic film t evaporation.	ccurs. Cover the
4.10	Non-Level Liquid	To set up a U-tube containing two liquids with different densities	Plastic tubing, cardboard, stand, salt water, methanol	Why are the two liquids not at the same level in the U-tube? Which liquid is denser? Why was salt water used rather than plain water?		
4.11	Convection Currents in Water	To show that warm water will rise in cold water	Clear container, stand, ring clamp, burner, food colouring	Why does warm water rise in cold water? Does the density change with temperature? Why does the warm water stay at the surface?		See also: PROPERTIES OF WATER – 3.15, 3.16 HEAT – 7.14, 7.15
4.12	Cartesian Diver	To demonstrate how the depth of an object in water can be controlled	Pipette, plastic bottle	Why does the diver sink when the bottle is squeezed and rise when released? How is the depth of a submarine controlled?		

5. SOUND (DVD 1)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
5.1	Sources of Sound	To show that sound is caused	Bobby pins	1. What is required to produce a sound?	Feel vocal chords	
3.1		by a vibrating object		2. Identify other sources of sound	Use bobby pin	
	Using a Tuning	How to strike a tuning fork	2 tuning forks with	1. How can you tell that the tuning fork		
	Fork	Show that tines vibrate	different frequencies,	vibrates?		
5.2			beaker of water, ping	2. Which tuning fork has the highest pitch		
			pong ball	(frequency), the short one or the longer		
				one?		
5.3	Vibrating Metal	To show that various metals	Metal pipes, metal rod	1. Can you identify other examples of		
		can vibrate	(hardware store)	vibrating solids?		
	Dancing Salt	To show that loud sounds can	Can with both ends	1. What caused the salt crystals to dance up	Stand around can	
5.4		cause a membrane to vibrate	removed, membrane	and down?	and SHOUT	
			(balloon or disposable	2. Where did the energy come from? How		
	D: 1 1		glove),salt, elastic	did it get to the salt?	** 1 11	0 11 1
	Pitch and	To show that pitch depends on	Bobby pin, comb, index	1. How does the pitch change as you	Use bobby pin and	Could also use a
5.5	Frequency	number of vibrations per second	card	shorten the vibrating bobby pin?	vary its length	guitar to show
5.5		second		2. How does the pitch change as you run the card faster along the comb?	while plucking it	relationship between size of
				the card faster along the como?		wire and pitch
	Sounding Board	To show that a solid can	Tuning fork	1. Why did placing the tuning fork on the		wire and pitch
	Sounding Doard	intensify sound	Tulling fork	table affect its sound?		
5.6		intensity sound		2. How is this principle used in musical		
				instruments?		
	Transmission of	To show that a solid is a better	Bobby pin, desk, wooden	1. Why were the sounds much louder when	Use bobby pin;	
	Sound	conductor of sound than air	dowel	you placed your ear on the desk?	listen to sound by	
5.7				2. Why can you hear better through a	placing ear on desk	
				wooden dowel than through air?	Listen through	
					dowel	
	Sound Amplifier	To show how sound can be	Funnel, plastic tubing	1. How does the funnel help to amplify the	Speak into funnel	
	Using a Funnel	amplified		sound?	with tubing to the	
5.8				2. How does the shape of your ear help you	ear canal	
				to hear better?		
	D: : C1 1	T 1:		3. Could this be used as a hearing aid?	* · · · · ·	D 1
	Ringing Church	To listen to the vibrations of	Spoons, string, wire coat	1. Why were the sounds much richer and	Listen to ringing	Prepare several
5.9	Bell	common metal objects	hanger	louder when you placed the string against	spoon and coat	coat hangers so
				your ear?	hanger	students can do
	String Telephone	To show how sound can be	Plastic cups, tooth picks,	1. Why does the string have to be taut?	Make string	this activity A MUST
	Sumg relephone	transmitted by a solid	thin string	2. Why can you not hear the other person	telephone and	activity!
5.10		transmitted by a solid	unn sumg	when the string is held between your	experiment with it	activity!
5.10				fingers?	experiment with it	
				3. How does the 'party line' work?		
L		l	l	3. 110 w does the party line work!	I]

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
5.11	Sound Through Bone	To show transmission of sound through a solid	Pen or pencil	1. How do you know that sound is not going through the air?2. Why can you hear the sound of tapping the pen so clearly?	Hold pen between teeth; tap pen and listen to sounds	
5.12	Listening Through a Solid	To use a wooden dowel to listen to sounds	Wooden dowel	Why do sounds appear much louder when the dowel is placed to your ear? Why do mechanics sometimes use this principle to locate a noise in an engine?		
5.13	Measuring Sound Intensity	To explain how sound intensity is measured	Sound meter (if available)	1. How much does the sound intensity increase if the sound level goes from 50 db to 80 db? 2. Why are continuous loud sounds harmful? 3. How can you reduce exposure to loud sounds?	Stress importance of hearing protection to prevent hearing loss	See PM-4 for Table of Sound Intensity Levels
5.14	Resonating Air Column	To show that sound can be intensified in an air column	Tuning forks Bottles with water Plastic pipe (e.g. 1.5" ABS)	Why does the sound change when you pour water into a tall vessel? Try it! What causes the vibrations in an organ pipe?		
5.15	Using a Slinky to Represent a Longitudinal Wave	To demonstration how sound is transmitted	Slinky	 What is a compression and a rarefaction? Why does a solid (or liquid) transmit sounds much better than air? Why is lightning followed by a loud thunder clap? 		

6. AIR PRESSURE (DVD 2)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
6.1	The Plugged Funnel	To show that air occupies space	Funnel, one-hole stopper, bottle	 Why could the water not be poured into the bottle using the funnel? Why did air bubbles move up through the water? What does this tell you about air? 		Use funnel with narrow neck
6.2	Air Occupies Space	To show that air is a substance that occupies space	Drinking glass or beaker, large container of water	1. Why did the water not go into the inverted glass?		
6.3	Dry Paper Under Water	To show that air occupies space	Drinking glass or beaker, large container of water	Why did the paper not get wet? What would happen if you left the paper in the inverted beaker in the water overnight? Try it!		
6.4	Transferring Air Under Water	To show that air can be transferred from one container to another	Two glasses or beakers, large clear container of water	Why does the air go from the 'empty' beaker into the 'full' beaker? Can air, a gas, be poured? Explain.		
6.5	Air Candle Snuffer	To show that air can be used to blow out a candle	Pop bottle with hole in cap, candle	1. How do you know that air came out of the bottle when it was squeezed?2. What do these demonstrations tell you about air?		
6.6	Paper Seal	To show that a sheet of paper can hold water in an inverted bottle	Bottle filled with water, piece of paper	Why does the water not come out when the bottle in completely inverted? Why does the water run out when you hold the bottle at an angle? What must come in?	Let students try this with a test tube and piece of paper	See also PROPERTIES OF WATER – 3.13
6.7	Siphon	To show how a liquid can be transferred from one container to another	Two containers, tubing, water	 Why is it necessary to first fill the tube with water? What causes the water to flow up initially? What happens if the open end of the tubing is higher than the liquid in the upper container? What is a 'siphon'? 		
6.8	Perpetual Fountain	To demonstrate an apparent perpetual flow of water	Special apparatus described in video	What initiated the flow of water? What is the purpose of the tube connecting the two jugs? What happens if the lower jug is moved and the water collected in another container?		Good activity to stimulate critical thinking
6.9	Collapsing Pop Can	To demonstrate how air pressure can crush a pop can	Pop can, tongs, heat source, container of water	1. Why was it necessary to add water to the can and then heat it strongly for several minutes? 2. When the can was inverted in the cold water, what happened to the steam inside the can? 3. Why did the can suddenly collapse?		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
6.10	Collapsing Can	To collapse a large metal can using air pressure	4-L metal can with cap, torch, stand and ring clamp	Why must the water be added to the can first and then heated strongly? What happens to the air in the can? Why does it take a little while for the can to collapse after the cap is put on tightly?	•	
6.11	Heavy Newspaper	To show that air can resist motion	Slat of wood, newspaper	Why was it important to carefully smooth out the newspaper over the slat of wood? Why did the newspaper not lift up when the wooden slat was given a sharp blow?		
6.12	Self-filling Beaker	To fill an inverted beaker with water by heating the water	Two beakers, burner, stand, ring clamp	1. Why must the water be boiled for several minutes? What happens inside the inverted beaker? 2. Why does the water rise in the inverted beaker after the heat is turned off?		
6.13	Inflating a Balloon Using Reduced Pressure	To 'blow up' a balloon by reducing the external pressure	Special apparatus described in video	1. What happens to the pressure inside the bottle when air is sucked out?2. Why does the balloon expand?		
6.14	Finger Controlled Water Flow	To control the flow of water in a pop bottle using your finger	Pop bottle with hole in bottom and in cap	1. Why does water not come out of the bottom hole when the hole in the cap is closed?2. Why is a gasoline container fitted with a vent cap that must be opened when you transfer gasoline to a lawnmower, for example?		
6.15	Air Has Mass	To demonstrate that air has mass	Volleyball, pump, lever and weight, balance	 Did the ball change its size when it was pumped up? Why did the mass of the ball increase after pumping it up? Is air an example of matter? 		
6.16	Fountain in a Flask	To create a fountain in a bottle using the siphon effect	Special apparatus	Why is one of the tubes drawn into a thin tube? Why must some water be added to the upper bottle? Why must the end of the drain tube be placed below the desk top?		See 1.10 for making apparatus using glass tubing
6.17	Egg into a Flask	To insert a peeled, hard boiled egg into a flask and remove it again	Flask or bottle with opening just a bit smaller than the peeled egg	1. Is it possible to gently push the egg into the flask? Why not? 2. Why did the egg pop into the flask after putting a piece of burning paper in the flask? 3. How could you get the egg out of the flask again? Try it!		
6.18	Sticky Plungers	To show how air pressure can be used to stick plungers together	Two plungers	1. Why must the plungers be pushed together tightly? Why does it help to wet the flat edge of each plunger? 2. Why is it so difficult to pull the plungers apart? 3. Identify some applications of this demonstration.		

7. HEAT (DVD 2)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
7.1	Conduction of Different Metals	To show that different metals conduct heat at different rates	Conductometer, burner	How does the heat energy transfer along the metal? Which metal is best to use for cooking pans?		
7.2	Ball and Ring	To show expansion of a metal when heated	Ball and ring apparatus	 Why did the heated ball not fit through the ring? Why do train tracks have spaces between the rails? Explain expansion in terms of molecular motion. 		
7.3	Bimetallic Strip	To show bending of a metal strip when heated.	Bimetallic strip	 Why does the strip bend when heated? Would this happen if it consisted of a single metal? Explain how a bimetallic strip can be used as a temperature sensor. 		
7.4	Conductivity of Copper and Wood	To show that copper is a better conductors of heat than wood	Wooden dowel and copper pipe	Why does the paper wrapped around the wooden dowel scorch but not around the copper pipe? Why do metals feel colder than wood?	Ask students to feel which is colder – their desk top or the metal legs of their desk (or chair).	
7.5	Convection in Air (Smoke Box)	To show a convection current in air using a smoke box	Smoke box	1. What is the purpose of the candle under the one glass chimney?2. Why does the smoke go down the second chimney?		
7.6	Convection in Air (Pop Bottle)	To show convection currents in air using a pop bottle	Pop bottle, ammonia, hydrochloric acid, alcohol burner	 Why was it necessary to add ammonia and hydrochloric acid? What is necessary to have a convection current in air? Is wind an example of a convection current? Explain. 		$NH_{3(gas)} + HCl_{(gas)}$ $\rightarrow NH_4Cl_{(solid)}$ (forms solid particles = smoke)
7.7	Heat and Molecular Motion	To illustrate the Kinetic Molecular Theory to explain heat.	Petri dish (or other clear container), beads, overheard projector	1. What happens to the particles in matter when a substance is heated?2. Will all particles have exactly the same kinetic energy?		
7.8	Temperature and Heat	To illustrate and explain the difference between heat and temperature	Two different sizes of iron bolts, water, thermometers	1. Was the temperature of the two iron bolts the same initially? How do you know? 2. Which bolt contained more heat energy? How do you know? 3. Can a cold object contain more heat energy than a hot object? Give an example.		Most students have difficulty understanding the difference between heat and temperature

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
7.9	Expansion of Liquids	To show that liquids expand at different rates when heated.	Water, methanol, test tubes, stoppers with glass tubes	1. Which liquid expanded more when heated? 2. Why does a liquid expand when heated? 3. If the ocean warm up slightly, how will that affect the water level?		
7.10	Squeezing a Glass Bottle	To demonstrate that air expands when heated.	Large bottle, stopper with glass tube, water	1. Why did bubbles of air come out of the glass tube? Where did the heat come from? 2. Could a plastic pop bottle be used for this demonstration?		
7.11	Air Thermometer	To show how changes in temperature can be measured using expansion of air	Large bottle, stopper with glass tube, water	What causes the water level to move up or down in the glass tube? How could a change in the atmospheric pressure affect the water level?	Record water level over a few days and graph results.	If a barometer is available, also record the air pressure
7.12	Liquid Thermometer	To use water to show changes in temperature.	Large bottle, stopper with glass tube, water	Why does this apparatus take a long time to respond to temperature changes in the room? Is this apparatus affected by air pressure?	Record water level over a few days and graph results.	
7.13	Radiant Heat Energy	To show that a black surface absorbs radiant heat more readily than a shiny surface.	Cans, thermometers, light source	1. Why is it important to place the cans the same distance from the light source? 2. Why did the black surface get warmer? 3. What colour of clothes should you wear in the summer to stay cooler? Why?	Record temperature every minute and graph results	See also: MOTION –13.9 (Radiometer)
7.14	Convection Currents in Water	To demonstrate the presence of currents in water when heated.	Clear container, dye, water, alcohol burner	1. Why did the water rise where it was heated? 2. Why was a dye added to the water? 3. Why did the coloured water stay near the surface?		See also: PROPERTIES OF MATTER 3.15
7.15	Convection in Water	To set up a convection current in a loop filled with water	Plastic tubing with T- connector, food colouring, stand	 Why is it important not to have any air trapped in the loop? What is the purpose of lowering the loop into the warm water bath? How are convection currents set up in the ocean? 		
7.16	Heating Water in a Paper Container	To show that a paper container can be used to heat water	Stand, ring clamp, wire mesh, burner	 Why does the paper not burn when heated? How does water help to put out a fire? Could water be boiled in a bark container? 		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
7.17	Ice in Boiling Water	To demonstrate that water is a poor conductor of heat	Ice, test tube, test tube clamp, weight, burner	 Why does the ice at the bottom of the test tube not melt? Is water a good conductor of heat? What about glass? Could heat not be conducted to the bottom by convection currents in the test tube? 		This demo also demonstrates all three phases of water at the same time
7.18	Wire Candle Snuffer	To control a candle flame using a copper wire coil	Candle, copper wire (14 gauge)	What causes the white smoke that comes off a candle when it is blown out? Why is the 'smoke' given off by the candle when the coil is partially placed over the flame? Why does the copper coil extinguish the flame? Would iron work as well? Try it!		
7.19	Burning Money	To show that paper can burn with pure methanol but not with a methanol/water solution	Methanol, water, tongs	1. Why does the paper burn with pure methanol? 2. What happens with the methanol/water solution? Why did the paper not burn? 3. What is meant by 'ignition temperature'?		
7.20	Thermos Bottle	To show how a thermos bottle is designed to keep heat in or out	Thermos bottle that can be disassembled	Describe the three ways by which heat is transferred. Explain how the thermos bottle is designed to minimize heat transfer. What happens if the little tip in the bottom is broken?		
7.21	Insulation	To demonstrate different types of insulation and explain how they work	Samples of different types of insulation	 If insulation is compressed, would it still be a good insulator? How can windows reduce heat loss or gain? Would a vacuum be a good insulator? Explain. 		
7.22	Expansion of Wire	To show that a wire expands when heated.	Special apparatus, torch	1. Why does a metal expand when heated? 2. Why are overhead electric wires not strung tight?		
7.23	Drinking Bird	To determine how the drinking bird works To demonstrate energy changes during evaporation	Drinking bird, beaker of water	 Why is the liquid drawn up the tube (bird's neck)? What is the purpose of the water? Would the bird work if the relative humidity was 100%? Devise an experiment to test your answer! 		This science novelty is available from a science supply company

8. LIGHT (DVD 2)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
8.1	Light Sources	To demonstrate some of the common sources of light	Variety of different types of lights	 What is meant by the term 'incandescent'? Which light source is the least efficient? Why? 	·	
8.2	Making Laser Light Visible	To show that light is only visible when it is reflected To show that light travels in a straight line	Laser pointer, chalk dust	 Could you see the laser light as the light travels from the pointer to the wall? Why does the light beam become visible when chalk dust is in its path? Why can you sometimes see a sunbeam coming into a room through a window? 		Works best in a darkened room
8.3	Transparent, Translucent, Opaque	To classify different materials as transparent, translucent or opaque	Variety of materials, light source	Define the terms transparent, translucent, opaque. Give additional examples of each type of optical medium.		
8.4	Supplies for Student Activities	To describe what students need for doing experiments on light				
8.5	Law of Reflection Using a Laser	To measure the angles of incidence and reflection	Laser pointer, mirror	Define: angle of incidence, angle of reflection What can you conclude about the angle of incidence and angle of reflection?		Works best in a darkened room
8.6	Law of Reflection Using Pins	To demonstrate the law of reflection in a plane mirror	Mirror, pins, paper, cardboard	 Why is it necessary to close one eye when lining up the pins? Why did you use four pins? State the Law of Reflection. 	Good student activity	
8.7	Locating the Image in a Plane Mirror	To find the location of the image of a candle in a plane mirror	Candle, mirror	1. Why is it important to close one eye when positioning the candle behind the mirror? 2. What happens to the candle and the image of the candle as you view from different positions if the two are not at the correct position? 3. What can you conclude about the location of the image in a plane mirror?	Good student activity	
8.8	Reflection Using a Concave Mirror	To show how two beams of light are reflected by a concave mirror	Two lasers, make-up mirror, chalk dust	Describe where the two reflected beams of light meet. What is this point called? (Focal point) Describe some applications of this type of mirror.		
8.9	Refraction (using a laser)	To show that a beam of light refracts when it passes through a different medium	Laser, square bottle, chalk dust, drop of milk	1. Why were a few drops of milk added to the water? 2. Trace the path of the laser beam through the bottle. What happened to the beam of light as it passed from the air into the bottle? From the bottle into the air again? 3. Define 'refraction'.		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
8.10	Refraction Through a Bottle	To trace the path of light through a different medium using pins	Square bottle, pins, paper, cardboard	 Why is it necessary to close one eye when lining up the pins? Why is it necessary to use four pins? Describe what happens to the light as it passes from air into the bottle and into the air again. What happens if the pins are placed perpendicular to the bottle? Try it! 		
8.11	Refraction Through a Convex Lens	To show how two beams of light pass through a lens	Two lasers, magnifying glass, chalk dust	What happens to the two beams after they pass through the lens? Why do the beams change direction? Why are lenses curved?		
8.12	Disappearing Coin	To show that a coin under a glass is no longer visible as the glass is filled with water	Tall glass, coin, water	Why does the coin become invisible as water is poured into the glass? What must happen to the light reflected from the coin? Is the coin visible when you look straight down into the glass and then fill it with water? Try it!	Good group activity	
8.13	Apparent Depth	To show that the bottom of a container appears less deep when fill with water than with air	Tall container, water	How deep does the container appear to be when viewed through the water? Why does a swimming pool appear less deep than it actually is?	Good group activity	Could also use a graduated cylinder or even a test tube
8.14	Spectrum of White Light	To show that white light is composed of many different colours	Overhead projector, beaker, cardboard	1. Identify the colours of the spectrum.2. Are the colours in the same order as those found in a rainbow?		The beaker should be nearly full
8.15	Scattering of Light: Why is the Sky Blue?	To show that, when white light is scattered, the blue component is scattered the most	Overhead projector, beaker, sodium thiosulfate, acid	 What happens to the sodium thiosulfate solution when an acid is added? What colour of light is scattered the most by the finely divided sulfur in the beaker? What is the colour of the light transmitted through the solution onto the screen? Why does the sky appear blue? 		If sodium thiosulfate is not available, you can also use milk (see Demo 14)
8.16	Scattering of Light Using Milk	To show that, when white light is scattered, the blue component is scattered the most	Overhead projector, beaker	Why is milk added to the water? Why does skim milk appear slightly blue in colour? Why does a major volcanic eruption often lead to spectacular sunsets?		
8.17	Optical Illusions Using Two Mirrors	To look at your image in two plane mirrors perpendicular to each other	Two plane mirrors, modeling clay	What happens to your image if the mirrors are not quite perpendicular? Describe your image when you look at yourself in the two mirrors. How is it different from a single mirror? Why?	Good student activity	
8.18	Optical Illusions	To demonstrate a few optical illusions		 What is meant by an 'optical illusion'? Try to explain the optical illusions. 		

9. STATIC ELECTRICITY (DVD 3)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
0.1	Sticky Balloons	To show how charged balloons can be stuck to a	Balloons	1. Why is it necessary to rub the balloons first?		Could be used to introduce unit
9.1		surface		2. What makes them stick to a surface?3. Why does the charge not transfer to the surface and cause repulsion?		
9.2	Bending a Stream of Water	To show that a charged object can bend a stream of water	Pop bottle with hole in bottom, stand, ring clamp	 Why was the pen or glass rubbed against a cloth? Why was the stream of water deflected or bent by the charged pen or glass rod? What would happen to the charge if the water touched the pen? Try it! 		If a water tap is available in the room, it could be used instead of the pop bottle
9.3	Charged Objects: Attraction and Repulsion	To show that there are two kinds of charges To show that similarly charged objects repel	Wire holder, stand, clamp, pens, test tubes, cloth	 Why do similar objects rubbed with the same cloth repel each other? What causes a negative chare on an object? A positive charge? Would the cloth used to charge a pen be attracted or repelled by the pen? Try it! 	Students could do ma this topic as group act equipment is needed.	
9.4	Suspended Aluminum Ball	To use a small ball of aluminum foil as a detector of charge	Thread, aluminum foil, stand, clamp	1. Sometimes you observe the ball first attracted to the charged pen and then suddenly jump away. Why does that happen?		
9.5	Jumping Bits of Paper and Foil	To show how a charged object may attract and repel bits of paper or foil	Paper, aluminum foil	Why were the bits of paper and foil attracted to the charged pen? Which were attracted more strongly? Sometimes bits of foil jumped to the pen and then off again. Why?		
9.6	Jumping Salt and Pepper	To cause salt and pepper to jump in a Petri dish	Two Petri dishes, salt and pepper	1. Why did the salt and pepper jump when the lid of the Petri dish was rubbed? 2. How could the effect of a charged pen or test tube pass through the lid? Do you think it would work with an aluminum foil cover? Try it!		
9.7	Rolling Can	To show how a metal can may be attracted by a charged pen	Empty pop can	1. Why does the can roll towards the charged pen?2. Does it matter whether an object that is being attracted is a metal or non-metal?	Try other round objects as well	See also FORCES – 16.5
9.8	Simple Electroscope	To construct and test a simple electroscope	Conical flask, copper wire, aluminum foil	 Why is it best to hang two foil pieces on the wire rather than a single piece? What is an 'electroscope'? Why is it enclosed in a flask? 		Best done as a teacher demo

10. CURRENT ELECTRICITY (DVD 3)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
10.1	Measuring an Electric Current	To show how an electric current may be detected	Compass, wire, multimeter	Why does the compass needle move when a current passes through the wires? Would more coils of wire around the compass make the detector more sensitive? Why?		An inexpensive digital multimeter is the best detector
10.2	A Lemon Cell	To build a simple electrochemical cell	Lemon, copper wire, galvanized (zinc-coated) nail, connectors	1. What is required for making a cell?2. Why is this cell not able to cause a light bulb to glow?3. What is the purpose of the lemon? What could be used instead of the lemon?		
10.3	Clock Powered by an Electrochemical Cell	To operate a battery powered clock with an electrochemical cell	Drain cleaner, copper wire, aluminum foil, beaker	Examine the aluminum foil after being in the solution (rinse off first). Describe what has happened to it. Could this cell be used for a long time period?		Magnesium and copper electrodes in orange juice work better
10.4	Using a Magnet to Generate Electricity	To show that when a magnet is moved inside a coil of wire, an electric current is induced in the coil	Coil of wire, strong magnet	What is necessary to induce a slight voltage in the coil, as shown by the multimeter? How could this device be made more efficient?		
10.5	A Circuit Board – Parallel and Series Circuits	To construct a simple circuit board for students To build series and parallel circuits using two batteries and two lamps	Circuit board (lamp socket, Fahnestock clips, wires), batteries, battery holders, lamps	 What is meant by a circuit? Define parallel and series as applied to circuits. What is the effect of placing (a) batteries and (b) lamps in series and in parallel? 	Allow students to put together parallel and series circuits	
10.6	A Circuit Board for Teacher Demos	To construct various circuits using three lamps	Circuit board with three (or more) lamps, batteries	 Describe the flow of electrons in each of the circuits. Explain why the lights vary in intensity. 		
10.7	A Simple Fuse	To make and show the operation of a simple fuse	Steel wool, aluminum foil, tape	 What is the purpose of a fuse in a circuit? What happens to a fuse if the circuit is overloaded? Why should you never replace a fuse with one at a higher rating? 		Several fuses can be made ahead of time
10.8	Conduction Tester	To test different materials for their ability to conduct electricity	Circuit board, batteries	Define the terms 'conductor' and 'insulator' as they apply to electricity. Classify the things you tested.	Allow students to test a variety of common objects in the classroom	

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
10.9	Electric Heat	To show how an electric current can generate heat	Steel wool, batteries	1. Why might the length of the steel wool fiber affect its ability to conduct electricity? Which work better, a short or a long strand? 2. Why would iron not be a good metal to use in an electric heater used at home?		Also see: CHEMISTRY – 13.18
10.10	Electromagnet	To make an electromagnet and test its ability to pick up paper clips	Large nail, long piece of wire (2-3 m), batteries	Does the iron nail retain its magnetism after the battery is disconnected? What does the strength of an electromagnet depend on?	Have students make and test an electromagnet	
10.11	Drawing Circuit Diagrams	To show how some circuit diagrams can be drawn using simple symbols		Give the symbol for each of the following: battery (or dry cell), lamp, switch, fuse. Draw a diagram of a circuit with three batteries in series with three lamps in series. Include a fuse and a switch.	Let students draw a circuit diagram of each circuit constructed earlier	
10.12	A Battery-less Flashlight	To show a device using ideas discussed in this unit	Flashlight that requires shaking to light it	1. What moves back and forth when you shake the flashlight? How does that create an electric current? 2. What is an LED lamp? What other applications use such a lamp? Does the lamp get hot?		

11. MAGNETISM (DVD 3)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
11.1	Types of Magnets	To identify different types of magnets	Assortment of magnets	1. What type of magnet would a fridge magnet be?2. Why are keepers used on bar magnets?3. Why must magnets never be dropped or heated?	Many of these activiti students or as teacher	
11.2	Suspended Magnets: Attraction and Repulsion	To show how magnets can attract or repel each other	Bar magnets, magnet holder	How do you know that a bar magnet has ends with different polarity? Why is one end called North and the other South?		
11.3	Making a Needle into a Magnet	To magnetize a needle	Strong magnet, sewing needle, dish with water	1. Why is it important to stroke the needle in one direction only? What happens if it is stroked back and forth? Try it! 2. How can you identify the N and S poles of the needle?		
11.4	Testing for Magnetic Property	To test different materials to determine which are magnetic	Magnet, variety of different substances	Which substances were attracted to the magnet? What general conclusion can you make about substances that are magnetic?	Test various things in the classroom for magnetic property	Include an assortment of coins
11.5	Magnetic Forces Using Iron Filings	To make the magnetic field surrounding a magnet visible	Various magnets, iron filings	1. Explain why N and S poles attract and N—N or S—S poles repel each other 2. Where is the magnetic field the strongest around a bar magnet? A horseshoe magnet?		
11.6	Magnetizing Iron Filings	To show how iron filings can be magnetized To explain why magnetism occurs	Test tube filled with iron filings, strong magnet	Why is it important to first stroke the test tube with a strong magnet? What evidence is there that the iron filings are magnetized? Why does shaking the test tube result in a loss of magnetism? How does this model what happens in a bar magnet?		The filings can represent iron atoms; lining them up causes a magnet. Shaking them up results in loss of magnetism
11.7	Induced Magnetism	To show how magnetism can be induced in another object	Strong magnet, nail, paper clips	1. Does the strength of the induced magnet depend on how close the nail is held to the magnet? Try it! 2. Explain how the nail becomes magnetized when held near the magnet. 3. Define 'induced magnetism'.	Let students experiment with different types of magnets and sizes of nails	

12. SOLUTIONS (DVD 3)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
	Solutions and	To distinguish between	Water, methanol,	1. Name some properties of solutions and	Many of these demo	
	Mixtures	solutions and mixtures	vegetable oil, sugar, salt	of mixtures.	also be done as stud	ent activities
12.1				2. What is meant by 'phase'? How many		
12.1				phases are there for a solution? A mixture?		
				3. Could you separate the components of a		
				solution by filtration?		
	Types of	To consider examples of	Variety of solvents and	1. Is it possible to have a solution involving		
	Solutions	different types of solutions	solutes, examples of	a solid in a gas?		
12.2			solutions	2. What would be correct – a mixture of		
				gases or a solution of gases?		
	D (C	T 1	T 1 1	3. What gas is found in water?		
	Rate of	To determine what factors	Test tubes or beakers,	1. What factors affect the rate at which a		
12.3	Dissolution	affect the rate at which a solid solute dissolves in water	sugar, water, heat source	solid dissolves?		
12.3		solute dissolves in water		2. Explain why, based on the Kinetic Molecular Theory, the factors mentioned in		
				(1) affect the rate of dissolving.		
	Unsaturated,	To prepare solutions having	Magnesium sulfate,	1. Can a solution be saturated at 25°C,		
	Saturated, and	different amounts of solute	beaker, heat source	unsaturated at 80°C and supersaturated at		
	Supersaturated	different amounts of solute	beaker, near source	0°C?		
12.4	Supersulatura			2. How can you tell what a solution is		
12				saturated?		
				3. Why does a supersaturated solution of		
				magnesium sulfate eventually form a solid?		
	Identification of	To determine what gas is	Pop, limewater	Describe the limewater test for carbon		See CHEMISTRY
12.5	Gas in Pop	found in soda pop		dioxide.		13.1 for preparing
				2. Why is carbon dioxide added to pop?		limewater
	Amount of	To determine the quantity of	Pop, heat source, tubing,	1. Why do you hear a gas escaping when		
	Carbon Dioxide	carbon dioxide dissolved in	stopper	you open a container of pop?		
12.6	in Pop	pop		2. Why was the pop warmed up?		
				3. Why does shaking help to 'undissolve'		
				the carbon dioxide?		
	Concentration of	To understand the significance	Food colouring, gasoline,	1. Could you see the presence of food		
	Solutions	of ppm (part per million)	dropper	colouring at a concentration of 1 ppm?		
10.7				2. Would you want to drink this solution if		
12.7				you knew it contained a toxic chemical at this level?		

				3. Could you still smell the gasoline at the		
				ppm level?		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
12.8	Cleaning Dirty	To show how alum can be	Alum, water, test tubes,	1. Which sample looked cleaner after 30		Let samples
	Water Using	used to clean dirty water	soil, laser pointer	minutes?		stand overnight
	Alum			2. Which sample transmits the laser light		
				better? Why is that?		Filter both water
				3. Carefully examine the deposit at the		samples to see
				bottom. Describe any differences between		which sample
				the two samples.		filters best
				4. Which sample could be filtered more		
				easily? Why?		
				5. At what stage do you think alum should		
				be added in a water treatment system?		

13. CHEMISTRY (DVD 3)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
13.1	Preparation of Limewater	To show how a solution of limewater can be prepared To test for carbon dioxide	Lime, straws	Why is it important to let the mixture of lime and water stand overnight? What is a common test for carbon dioxide? Is limewater a mixture or solution?	Blow through a solution of limewater in a test tube	
13.2	Physical and Chemical Changes	To be able to identify physical and chemical changes	Variety of chemicals, test tubes, rack	What is a physical change? A chemical change? Identify other physical and chemical changes.	Students could be asked to perform the activities in groups	
13.3	Foam Production	To show how a foam can be made	Baking soda, detergent, acid, graduated cylinder	 What happens when an acid is added to baking soda? Why was the detergent added? What is Styrofoam? 		
13.4	Blowing up a Balloon	To use baking soda and an acid to blow up a balloon To test for the gas produced	Balloon, bottle, baking soda, acid, limewater, straw	I. Is this a physical or chemical change? What is the gas produced?		
13.5	Carbon dioxide as a Fire Extinguisher	To show that CO ₂ does not support combustion To show that CO ₂ is more dense than air	Baking soda, acid, large bottle, candle	 How do you know that CO₂ is denser than air? Does CO₂ burn? Does it support combustion? Why does the candle go out? Why does the candle smoke? 		Could also be done under PROPERTIES OF MATTER
13.6	Products of Combustion	To show that CO ₂ and water vapour are produced when a fuel burns	Air sampler (to be constructed), limewater, beaker with ice water	1. What caused the fogging of the cold beaker? 2. Can heat cause the fogging? (Try it with a hot plate) 3. What did the limewater test tell you?		Hold hand over flame – you can feel the high humidity from the water vapour
13.7	Phenolphthalein Indicator	To prepare a phenolphthalein solution To test this solution with acids and bases	Phenolphthalein powder (or prepared solution), various acids and bases	What colour would phenolphthalein be in a neutral solution? Describe what you would do to test whether an unknown liquid is an acid or a base.		
13.8	Invisible Ink	To show how an indicator can be used to make invisible ink	Phenolphthalein solution, ammonia, sprayer	 Why did the letters not show up initially? What type of substance is ammonia? Why does the colour slowly fade? 		Ammonia is a gas and will be slowly released into the air
13.9	Red Cabbage Indicator	To show how an extract from red cabbage changes colour at different pH levels	Red cabbage, various acidic and basic compounds	How could you use red cabbage extract to tell whether a solution is acidic or basic? Why is this substance not commonly used as an indicator in chemistry? What would be the effect of adding	Students could test various substances with the cabbage juice and classify them	

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
		_		vinegar to red cabbage?	_	
13.10	Mystery Colour Changes	To have students explain why some solutions change colour but not others	Phenolphthalein, 1 M NaOH, 1 M HCl, 6 test tubes, rack, Styrofoam	1. Why did the colour of some solutions turn pink?2. What could cause the pink colour to turn		
13.10			cup	colourless? 3. What was in each container at the beginning of this demonstration?		
13.11	Percentage of Oxygen in Air	To determine the percentage of oxygen in air	Steel wool, vinegar, 100 mL graduated cylinder, beaker, stand, clamp	Why did the water move up in the graduated cylinder? Did you notice a colour change in the steel wool? What caused that?		
13.12	Methanol Cannon	To explode a mixture of methanol and air in a plastic bottle	Modified detergent bottle with cork stopper, igniter, wires, methanol, stand with clamp	1. Why did the cork shoot out?2. Why did the mixture not ignite the second time?3. What are some safety precautions?		Stress safety with this demonstration
13.13	Testing Common Household Powders	To perform chemical and physical tests on common household powders To identify an unknown powder	Various household powders, iodine solution, acid solution, aluminum foil, alcohol burner	Describe the results of each test. Determine whether the change is physical or chemical. How were you able to identify your unknown?	Test each powder and use results to identify one or more unknowns	Charts for tests and student observations are found in PM-5
13.14	Oxygen Gas from Hydrogen Peroxide	To decompose hydrogen peroxide and test the gas released	3% hydrogen peroxide, manganese dioxide (or potato slices), wood splint	1. What did you observe when the manganese dioxide powder (or potato slices) was added to the hydrogen peroxide solution? 2. What happened to the glowing splint? 3. What is a test for oxygen gas? 4. Why does the glowing splint not burst into flame in normal air? 5. Is oxygen gas flammable? Does it support combustion?		
13.15	Hydrogen Gas from Aluminum Foil and Drain Cleaner	To react aluminum foil with sodium hydroxide, collect the gas released and test it with a flame	Drain cleaner or sodium hydroxide, aluminum foil, wood splint	 Why was the gas collected in the second test tube placed over the test tube with the reagents? What does this tell you about the density of hydrogen gas? Is hydrogen gas flammable? Could hydrogen be used in balloons? 		Could also be done under PROPERTIES OF MATTER
13.16	Flubber	To prepare a polymer having some interesting properties	White glue, Borax, disposable containers	I. Is flubber a solid? Is it a liquid? Why does it break if you pull it apart quickly but stretch if you pull it slowly?	Give students small amounts of flubber and let them experiment with it	Could also be done under PROPERTIES OF MATTER

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
	Dust Explosion	To show how surface area can	Corn starch, funnel with	1. What makes the starch burn so rapidly		
		affect the rate of a reaction	tubing, candle or burner	when it is blown into a flame?		
		To understand what is meant		2. Why should only a small quantity of		
13.17		by a 'dust explosion'		starch be used?		
13.17				3. Would road dust cause the same effect?		
				Explain.		
				4. Give examples of where a dust explosion		
				might occur.		
	Burning Steel	To show how surface area	Super fine steel wool,	1. Why does the steel wool burn so readily		Super fine steel
	Wool	affects the rate of a reaction	sparker (or 9 V battery or	but not a steel nail (or car, or)?		wool (0000)
13.18		To demonstrate the rapid	even a match), metal	2. Why does a rusting nail not feel hot?		must be used
		rusting (oxidation) of iron	plate or aluminum pie	3. How can you prevent iron from rusting		
			plate	(oxidizing)?		
	Absorbent	To demonstrate how certain	Disposable diaper	1. How is this polymer able to absorb so		Could also be
13.19	Polymer	polymers can absorb water	Beaker, water	much water?		done under
13.17				2. Why does the water not just flow		PROPERTIES
				through the polymer?		OF WATER
	Skewered	To study characteristics of	Sharpened knitting	1. Why must the needle be inserted into the		
	Balloon	polymers	needle, balloons, Ziploc	end of the balloon?		
		To insert a needle through an	bag	2. Why does the balloon break if the needle		
13.20		air-filled and a water-filled		is inserted into the stretch part of the		
		balloon		balloon?		
				3. Why does the Ziploc bag not break when		
				the needle is inserted through it?		

14. FLUIDS IN MOTION (DVD 4)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
14.1	Smoke Ring Box	To build a box to produce smoke rings To demonstrate Bernoulli's Principle	Box, plastic sheet, pieces of wood, hooks, elastics, ammonia, muriatic acid, shallow dishes (large lids)	 What caused the candle to go out when the box was directed at the burning candle? What is Bernoulli's Principle? What causes the smoke ring to form? What happens if you place your hand in the path of the smoke ring? Try it! 		
14.2	Lifting by Blowing	To show that when you blow over a sheet of paper, the paper is lifted up	Sheet of paper	Explain why the sheet of paper lifts up when you blow over its surface. Why is it important to hold the paper just right?	Let students try this.	
14.3	Blowing into a ∧- Shaped Paper	To illustrate the differences in air pressure between moving air and still air	Sheet of paper	 Describe what happens when you blow into the ∧ formed by the paper. What does this tell you about the pressure of the moving air in the ∧ relative to the still air above the paper? 	Let students do this demo.	
14.4	Blow Together	To show what happens when you blow between two suspended balls	Ping pong balls, string, stand, clamp	What happened when you blew between the balls? Why does that happen? Does it depend on how hard you blow? Try it!		
14.5	Anti-Gravity Funnel	To suspend a ping pong ball in an inverted funnel by blowing	Ping pong ball, funnel, plastic tubing	1. Why can you not blow the ping pong ball out of the funnel? 2. Explain why the ball stays in the inverted funnel as long as you keep blowing. 3. Why is a ping pong ball used instead of a golf ball, for example?		Make sure the funnel does not have ribs inside
14.6	Filling a Large Bag with One Breath of Air	To use Bernoulli's Principle to assist in filling a large plastic bag with air	Large plastic bag	1. How many breaths would it take to fill up the bag if you were to blow it up by holding it against your mouth? 2. Why does it fill up so much faster when you hold the open bag a little ways in front of your mouth?		
14.7	Suspended Ping Pong Ball in a Stream of Air	To show how a ping pong ball can be suspended in an air column	Air blower (vacuum cleaner in reverse), ping pong ball	 What forces are acting on the ping pong ball? What prevents the ball from moving out of the air stream? Does the air stream have to be vertical? What happens if it is non-vertical? Try it! 		Use a straight pipe at the end of the hose so the air blows out straight; it reduces turbulence

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
	Water Sprayer	To show how a stream of air	Air blower, short tube,	1. Why does the water rise in the tube		
		can cause water to rise in a	water, funnel	when air passes over it?		
		tube		2. What happens to the speed of the air		
14.8				stream when it is directed through a		
				funnel?		
				3. What causes the water to spray out?		
				4. Give some other examples of how Bernoulli's Principle is used.		
	Blowing	To blow out a candle	Candle, bottle	1. Why does it appear that the person is		
	Through a Bottle	positioned behind a bottle	Candie, bottle	blowing through the bottle?		
14.9	Tillough a Doule	positioned bening a bottle		2. Explain how the air flows when you		
				blow against the bottle.		
	Coloured Rings	To show that a drop of	Food colouring, dropper,	Describe what happens to the drop of		
	in Water	coloured water added to a	basin	coloured water when it is dropped into the		
		basin of water will form rings		water.		
1410				2. Why must the water in the basin be very		
14.10				still?		
				3. How does this relate to the smoke ring		
				generated from the smoke box?		
				4. What is meant by a fluid?		
	Hydraulics	To show how a forces can be	Several syringes, tubing	1. Why is it important to completely fill the		
		transferred through a fluid		syringes and tubing with water?		
				2. If small and large syringes are connected		
14.11				together, which is easier to push in? Why?		
1				3. Give samples of how hydraulic systems		
				are used in construction equipment.		
				4. Why is oil used instead of water as a		
	TCCD:	To an aim to the man Company	D. 1	fluid in hydraulic equipment?		
	Transfer of Ping	To use air to transfer a ping	Beaker, margarine tub,	1. Why does the ping pong ball move up		
14.12	Pong Ball	pong ball from one container into another	ping pong ball	when you blow across the open beaker? 2. What happens if you blow really hard?		
		into another		Try it!		
				TTY It!		

15. MOTION (DVD 4)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
15.1	Inertia	To explain and demonstrate	Ball	1. What is required to cause a change in		
	Simple Examples	the concept of inertia		motion?		
15.2	of Inertia			2. If there were no frictional forces, what		
13.2				would happen to a rolling ball?		
				3. Why is it so hard to push a car by hand?		
	Fresh or Boiled	To use rotation to distinguish	Two eggs, one fresh, the	1. Explain why the fresh egg does not		
	Egg?	between a fresh and a boiled	other boiled	rotate easily at first.		
15.3		egg		2. Why does the boiled egg rotate so much		
10.5				easier?		
				3. Why does the fresh egg start to rotate		
				again after it was stopped momentarily?		
	Falling Ball and	To show the effect of air	Ball and sheet of paper	1. Why did the sheet of paper fall much		
	Paper	resistance on a falling object		slower than the ball?		
15.4				2. Why was there no noticeable difference		
15.4				in the rate of falling of the ball and		
				crumpled sheet?		
				3. How does a parachute slow a person's fall?		
	Falling Danning	To show that horizontal and	The sains in day and	1. What do you observe about the two		
	Falling Pennies	vertical motion are	Two coins, index card	pennies – the one that dropped straight		
		independent		down and the other that was shot out		
15.5		maependent		horizontally?		
				2. Why did both coins hit the floor at the		
				same time?		
	Action and	To demonstrate the principle	Toy water rocket	1. Why was the rocket only half-filled with		This demo is
	Reaction – Water	of a rocket engine	Toy water focket	water and then compressed air?		best done
15.6	Rocket	of a focket engine		2. What caused the rocket to shoot up?		outside
	ROCKET			3. What is fired out of a rocket in space?		outside
	Alka-Seltzer	To use an Alka-Seltzer tablet	Plastic bottle with small	What is free out of a focket in space: What gas is produced when the Alka-		This demo is
	Rocket	to propel a plastic bottle	opening, rubber stopper	Seltzer tablet is added to water?		best done
	11001101	to proper a plantic control	opening, ruce et stepper	2. What would happen if the stopper were		outside
15.7				put on loosely? Try it!		0 0000
				3. What would happen if the container		
				were not inverted? Try it!		
	Action and	To move a balloon along a	Balloons, nylon fishing	1. What was the purpose of attaching the	Have groups of	
	Reaction –	long string	line	balloon to the line?	students compete	
15.8	Balloon Rocket			2. What force caused the balloon to travel	for distance the	
				along the string?	balloon travels	
				3. What were the action and the reaction?		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
	Action and	To demonstrate how radiant	Radiometer, light source	1. Which side of each vane rotates away		See also:
	Reaction -	energy can cause rotational		from the light source – the dark side or the		HEAT – 7.13
	Radiometer	motion		light side?		
15.9				2. Which side of the vane would get hotter?		
				3. Explain why the vanes rotate.		
				4. Would the vanes rotate if there were no		
				air in the glass globe? Why or why not?		
	Rotating Water	To show how flowing water	Water bottle with holes	1. What would happen if the bottle had		
	Bottle	can cause rotation	in bottom	only one hole in the bottom? Try it!		
15.10				2. What would happen if the holes were on		
				opposite sides of the ridges?		
				3. What is the action and the reaction?		

16. Forces, Work and Simple Machines (DVD 4)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
16.1	Mass and Weight	To distinguish between mass and weight; to define force	Spring scales, weights	Why does weight vary but mass always stays constant? Why does weight have a different unit than mass?		
16.2	Buoyant Force	To show that a liquid exerts an upward force on an object	Spring scales, various objects, water	Does the water level change when an object is placed in a container with water? How can an iron ship float? What forces act on a floating piece of wood?		See also demonstrations in DENSITY
16.3	Magnetic Force	To show how a magnet can exert a force of attraction or repulsion	Magnets	1. Is the magnetic force a 'contact force' or an 'action-at-a-distance force'? 2. Does attraction to a magnetic object depend on the pole? Try it!		See also demonstrations in MAGNETISM
16.4	Force of Friction	To demonstrate the force of friction and show how it can be reduced	Spring scales, heavy book, straws	1. In what direction does the force of friction act with respect to motion?2. Is friction always a 'bad' force?3. How can friction be reduced?		See also demonstrations in MOTION
16.5	Electrostatic Force	To demonstrate how a charged object can exert a force	Meter stick, pen	1. Why is it necessary to rub the pen first? What does that do?		See also demonstrations in STATIC ELECTRICITY
16.6	Centrifugal and Centripetal Forces	To show different forces associated with a rotating object	Different masses, string, plastic tubing	Define centrifugal force. What force keeps the rotating mass from flying off? What force keeps the moon in its orbit?		
16.7	The Weird Meter Stick	To demonstrate the force of friction and gravity	Meter stick	 Explain the behaviour of the meter stick. Why does the frictional force between the meter stick and fingers change? 	Let a few students try this as well	
16.8	Work: A Scientific Definition	To explain what is meant by the terms work and energy		1. What two conditions are required for work to be done on an object?2. What is the relationship between force, work and energy?	Ask students to write down what they think 'work' means in science	
16.9	A Cart to Study Work	To describe a low-friction cart that can be used in the study of work		 Why should the cart have a large mass and low friction? Suggest other things that could be used for the study of work. 		

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
16.10	Inclined Plane	To measure the work done in moving an object vertically by lifting or by an inclined plane	Cart, spring scale, board	Why does it take more work to use an inclined plane to more the cart up? What is the advantage of using an inclined plane? What is another name for an inclined plane? Give additional examples of inclined planes.	_	
16.11 16.12	Levers: An Introduction First Class Lever	To show how a simple lever can be made for student activities	Stand, meter stick, spring scales, weights, hooks	Why is it important to locate the meter stick over the base of the stand? What are some sources of errors	Perform measurements on each class of lever	See PM-6 A Study of Levers for chart
16.13	Second Class Lever	To make measurements on each class of lever		associated with the measurements? 3. State the Law of the Lever.		to record data
16.14 16.15	Third Class Lever Law of the Lever	To derive an expression for the Law of the Lever				
16.16	Classes of Levers - Some Examples	To illustrate different types of levers in the home and school	Variety of devices employing levers	Give examples of different types of levers found on a bicycle. Are there any devices in the classroom that are based on a lever?	Identify type of lever in each device	
16.17	Pulleys	To show how various combinations of pulleys can be used in changing forces	Stands, clamps, pulleys, string, weights	What is a simple way to determine the mechanical advantage of a pulley system? Give examples of where pulleys are used.	Measure forces with different pulley arrangements	
16.18	Wheel and Axle	To demonstrate variations of the wheel and axle	Cardboard, pencil, wire, string	How is the wheel and axle used on a bicycle? What is a winch? How does it relate to the wheel and axle?		
16.19	Screw	To show how an inclined plane can generate a screw To show applications of the screw	Paper and pencil, devices that use a screw	1. Which type of vice could develop a greater force for a given effort – one with a fine screw or one with a course screw? 2. Identify some common tools that use the screw.		
16.20	Wedge	To show how a wedge is derived from the inclined plane		1. What type of force does a wedge exert?In what direction?2. Why is it necessary to swing an axe hard to split wood?		
16.21	Obedient Can	To demonstrate a can that rolls back when rolled down the floor	Large can, elastics, weight, glue gun	1. Without touching or opening the can, try to explain the can's behaviour.	This demo can also be done as a fun activity to get students to think about the scientific principles.	
16.22	Balancing Nails	To balance 12 nails on a stand	12 large nails, stand with long screw or nail	1. Why must the nails have large heads?2. Where is the centre of gravity?	You could set this up students to solve	

See also FLUIDS IN MOTION – 14.11 for a demonstration on hydraulic forces

17. EARTH SCIENCE (DVD 4)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
	Day and Night	To explain how the earth	Globe, light source	1. When looking at a globe, determine	There are some excell	
		rotates on a daily basis		where N, S, E and W lie.	relating to daily and se	easonal changes
				2. In what direction does the earth rotate?	and eclipses	
17.1				3. What is the relative position of the earth	http://kids.msfc.nasa.g	
				and sun at midnight? At noon?	EarthSeasons.asp (nea	
					http://en.wikipedia.org	
	G 1	m 1:1	C1 1 1: 1:	1 777 - 1 - 1 - 1 - 1 - 1 - 1	http://www.explorato	rium.edu/eclipse/
	Seasonal	To explain how seasonal	Globe, light source	1. What does it mean that the earth's axis is		
	Changes	changes occur		tilted at 23° to its orbit?		
				2. Does the N-pole always point in the same direction relative to the sun?		
17.2				3. Using the globe, what is the position of		
				the earth relative to the sun to give the		
				longest day in North America? The shortest		
				day?		
	Eclipse by the	To show the position of the	Globe, light source, ball	1. Where does the moon have to be relative		
	Moon	moon, sun and earth to		to the sun and earth to give an eclipse?		
		observe an solar eclipse		2. Why is the eclipse only visible in certain		
17.3				regions of the earth?		
17.5				3. Why don't we observe an eclipse more		
				frequently?		
				4. What is the difference between a solar		
	7 1: 00 :1		2 1 1 1 21	eclipse and a lunar eclipse?		
	Leaching of Soil	To show how water is able to	Soil sample, salt, filter	1. Why was salt mixed in with the soil?		
		leach minerals from soil		2. Why was the salt present in the water		
				after the water leached through the soil? 3. Where do the minerals in groundwater		
17.4				come from?		
				4. What eventually happens to all the		
				minerals in water?		
				5. Why is ocean water salty?		
	Model of a	To demonstrate how a geyser	Funnel, beaker, stand,	1. Why does the water have to boil		
	Geyser	works	heat source	vigorously before water starts to shoot out		
17.5	-	To demonstrate how a coffee		of the funnel?		
		percolator works		2. What is the purpose of the funnel?		
				3. What causes water to boil in a geyser?		

18. WEATHER (DVD 4)

Demo	Title	Purpose	Materials	Questions	Student Activity	Comments
18.1	Cloud Formation in a Bottle	To demonstrate what is necessary for clouds to form	Clear pop bottle, bicycle pump, needle to inflate balls	Why did the presence of smoke make such a difference? What role does the smoke play? What does a cloud consist of?		
18.2	Measuring Air Pressure using a Barometer	To show how changes in air pressure can cause a column of water to rise or fall To demonstrate an aneroid barometer	Special apparatus to vary pressure in a container, Aneroid barometer	Why does the water level change when the pressure is changed? What causes changes in air pressure? Why is the bottle barometer not a good instrument to measure changes in air pressure?		
18.3	Relative Humidity	To show how relative humidity can be measured	Two thermometers, gauze	1. Why does the wet bulb thermometer cool down? What determines how much it cools? 2. Define 'humidity', 'relative humidity'. 3. How can a low relative humidity (as occurs inside in the winter) make you feel chilly?	Measure the relative humidity in different parts of the school or at different times of the day.	See PM-7 for Table to Determine Relative Humidity
18.4	Hair Hygrometer	To construct a hygrometer based on properties of a hair	Water bottle, long hair, toothpick, tape	What is the purpose of making holes near the bottom and top of the bottle? Why does the pointer change position as the humidity in the air changes?	Have students note the position of the pointer over a period of several days	
18.5	Dew Point	To show how the dew point can be measured	Beaker, crushed ice	How does the dew point relate to relative humidity? What weather conditions favour the formation of dew?		
18.6	Frost Formation	To show the formation of frost	Beaker or metal can, crushed ice, salt	1. Why is salt added to the ice?2. What change in state is observed as frost forms?3. What weather conditions favour frost formation?		
18.7	Temperature Inversion	To demonstrate what is meant by the temperature inversion of an air mass	4 Juice bottles, food colouring,	 What is the normal temperature gradient in the atmosphere? Why? How could an abnormal situation occur? Why would air pollutants accumulate in air experiencing a temperature inversion? 		
18.8	Tornado Cloud	To demonstrate a tornado funnel cloud using water	Two clear pop bottles, connector with hole	1. What is a funnel cloud? Why is it often so destructive?2. What causes a funnel cloud to form?		