

Kurz zu mir

ANDRE ESSING

Senior Consultant Trainer

Microsoft

Solutions Expert

Data Platform

Microsoft

Trainer

Profil

DBA und Senior Consultant,
Microsoft Certified Solutions
Expert, Trainer und SQL Server
Enthusiast

- Seit 1998 in der IT
- SQL Server seit Version 7.0
- Schwerpunkte sind
 SQL Server Infrastruktur
 und Mission Critical Systems
- Microsoft Certified Trainer und MCSE: Data Platform
- Microsoft P-TSP Data Platform
- Friend of Redgate
- PASS Chapter Leader Bayern

Kontakt

Web & Mail

www www.trivadis.com

Blog www.andreessing.de

E-Mail <u>andre.essing@trivadis.com</u>

Social

Twitter twitter.com/aessing

Xing xing.com/profile/Andre Essing

LinkedIn linkedin.com/in/aessing

Docs.com docs.com/aessing

Do more. Achieve more.

Deeper insights across data

Hyperscale cloud

Do more. Achieve more.

Performance

Sicherheit

Verfügbarkeit

Skalierbarkeit

Operational analytics

Analyse operativer Daten in Echtzeit; funktionsfähig mit In-Memory oder diskbasiertem OLTP

Optimierungen bei In-memory OLTP

Erweiterte T-SQL Unterstützung, sowie Unterstützung für mehrere Terabyte Arbeitsspeicher und parallel arbeitende Prozessoren

Query data store

Überwachung und Optimierung von Abfrageplänen

Native JSON

Unterstützung des JSON Datenformats

Temporal database support

Zeitbezogene Abfrage von Daten

Always encrypted

Sensible Daten können durchgängig verschlüsselt werden, sind jedoch jederzeit abrufbar.

Row-level security

Feingranulare Vergabe von Zugriffsrechten auf Zeilenebene

Dynamic data masking

Verschleierung von Daten in Echtzeit als Zugriffsschutz

Weitere Optimierungen

Auditieren von Erfolg- und Misserfolg bei Datenbankoperationen

TDE Support für In-Memory OLTP

Verbessertes AlwaysOn

Automatischer Failover und synchrone Spiegelung für bis zu drei Replicas, auch über Domänengrenzen hinweg

Lastverteilung per Round-Robin für lesbare Replicas

Automatischer Failover, basierend auf dem Zustand der Datenbank

DTC Unterstützung für eine Transaktionsintegrität über Datenbankinstanzen hinweg, auch zusammen mit AlwaysOn

Unterstützung von SSIS im Zusammenspiel mit AlwaysOn

Verbessertes database caching

Optimierung des automatischen Caching von Daten, mehrere TempDB Dateien auf Instanzen mit mehr als einem Core

Performance

SICHEITIE

Verfügbarkeit

Skalierbarkeit

Operational analytics

Analyse operativer Daten in Echtzeit; funktionsfähig mit In-Memory oder diskbasiertem OLTP

Optimierungen bei In-memory OLTP

Erweiterte T-SQL Unterstützung, sowie Unterstützung für mehrere Terabyte Arbeitsspeicher und parallel arbeitende Prozessoren

Query data store

Überwachung und Optimierung von Abfrageplänen

Native JSON

Unterstützung des JSON Datenformats

Temporal database support

Zeitbezogene Abfrage von Daten

Always encrypted

Sensible Daten können durchgängig verschlüsselt werden sind jedoch jederzeit abrufbar.

Row-level security

Feingranulare Vergabe von Zugriffsrechten auf Zeilenebene

Dynamic data masking

Verschleierung von Daten in Echtzeit als Zugriffsschutz

Weitere Optimierungen

Auditieren von Erfolg- und Misserfolg bei Datenbankoperationen

TDE Support für In-Memory OLTP

Verbessertes AlwaysOn

Automatischer Failover und synchrone Spiegelung für bis zu drei Replicas, auch über Domänengrenzen hinweg

Lastverteilung per Round-Robin für lesbare Replicas

Automatischer Failover, basierend auf dem Zustand der Datenbank

DTC Unterstützung für eine Transaktionsintegrität über Datenbankinstanzen hinweg, auch zusammen mit AlwaysOn

Unterstützung von SSIS im Zusammenspiel mit AlwaysOn

Verbessertes database caching

Optimierung des automatischen Caching von Daten, mehrere TempDB Dateien auf Instanzen mit mehr als einem Core

Traditionelle transaktionale/analytische Architektur

Problemstellungen

Komplexe Implementierung

Benötigt zwei Datenbank Server (Anschaffungskosten und Betriebskosten)

Verzögerungen bei der Analyse der Daten

Echtzeitanalyse der Daten wird durch Fachbereiche gefordert

Optimierte transaktionale/analytische Architektur

Vorteile

Keine Verzögerungen

Kein ETL Prozess

Kein zusätzliches Datawarehouse

Herausforderungen

Analytische Abfragen sind häufig ressourcenintensiv und können Blocks verursachen

Die gegenseitige Beeinflussung von analytischer und transaktionaler Workload

Analytische Abfragen laufen nicht optimal auf transaktionalen Datenbankstrukturen

In-memory Optimierungen Operational Analytics & verbesserte Performance

Möglichkeiten

In-Memory ColumnStore Indexes können mit In-Memory oder diskbasierten Tabellen kombiniert werden Erweiterte T-SQL Unterstützung Bessere Skalierung von CPU und Speicher

Vorteile

- → Anders als bei den Mitbewerbern,
 Analytics auf operationalen Daten &
 30x schnellere Transaktionen & 100x
 schnellere Abfragen
- In-Memory mit mehr Anwendungen kompatibel als zuvor

Query data store

Sammelt alle Abfragen, Abfragepläne und Laufzeitstatistiken (+ aller relevanten Eigenschaften)

Speicherung aller Abfragepläne und Performance-Metriken

Funktioniert auch über Neustarts, Upgrades oder Rekompilierungen hinweg

Vereinfacht und beschleunigt die Analyse von Performanceproblemen

Intuitives und einfaches forcieren von Abfrageplänen

Datenaustausch mit JSON


```
"Number": "SO43659",
"Date": "2011-05-31T00:00:00"
"AccountNumber": "AW29825",
"Price":59.99,
"Quantity":1
"Number": "SO43661",
"Date": "2011-06-01T00:00:00"
"AccountNumber": "AW73565",
"Price":24.99,
"Quantity":3
```

Temporal database support

Temporal database support

Performance

Sicherheit

Verfügbarkeit

Skalierbarkeit

Operational analytics

Analyse operativer Daten in Echtzeit; funktionsfähig mit In-Memory oder diskbasiertem OLTP

Optimierungen bei In-memory OLTP

Erweiterte T-SQL Unterstützung, sowie Unterstützung für mehrere Terabyte Arbeitsspeicher und parallel arbeitende Prozessoren

Query data store

Überwachung und Optimierung von Abfrageplänen

Native JSON

Unterstützung des JSON Datenformats

Temporal database support

Zeitbezogene Abfrage von Daten

Always encrypted

Sensible Daten können durchgängig verschlüsselt werden, sind jedoch jederzeit abrufbar.

Row-level security

Feingranulare Vergabe von Zugriffsrechten auf Zeilenebene

Dynamic data masking

Verschleierung von Daten in Echtzeit als Zugriffsschutz

Weitere Optimierungen

Auditieren von Erfolg- und Misserfolg bei Datenbankoperationen

TDE Support für In-Memory OLTP

Verbessertes AlwaysOn

Automatischer Failover und synchrone Spiegelung für bis zu drei Replicas, auch über Domänengrenzen hinweg

Lastverteilung per Round-Robin für lesbare Replicas

Automatischer Failover, basierend auf dem Zustand der Datenbank

DTC Unterstützung für eine Transaktionsintegrität über Datenbankinstanzen hinweg, auch zusammen mit AlwaysOn

Unterstützung von SSIS im Zusammenspiel mit AlwaysOn

Verbessertes database caching

Optimierung des automatischen Caching von Daten, mehrere TempDB Dateien auf Instanzen mit mehr als einem Core

Always Encrypted

Schützt Daten während der Lagerung und Verarbeitung, in der Cloud und on-Premise

Row-level security

Datenschutz durch Zugriffsberechtigungen auf Zeilenebene

Feingranulare Zugriffsberechtigung auf spezifische Zeilen einer Tabelle

Hilft unautorisierten Zugriffen vorzubeugen wenn mehrere Anwender die gleichen Tabellen nutzen oder bei der Anbindung von unterschiedlichen Mandanten

Verwaltung durch das SQL Server Management Studio oder die SQL Server Data Tools

Die Zugriffslogik wird innerhalb der Datenbank und dem Schema abgelegt und so an die Tabelle gebunden

Row-level security in drei Schritten

Ensitéeesss

Dier Pholiney het it stretz febrie leines trabit äusiche witte lief Auftregat der autend sepianeen betricht auf die Frührende berinden die seine der Pholiney het in die seine der Pholine

idaple identien Tabelle Patients

Dynamic Data Masking

Verhindern Sie den Missbrauch von Daten durch die Verschleierung der Daten

Zugriffsverwaltung auf Tabellen- und Spaltenebene für eine definierte Gruppe von Nutzern

Verschleierung der Daten in Echtzeit, basierend auf Richtlinien

Unterschiedliche Verschleierungsmethoden (komplett oder teilweise) für verschiedene Kategorien von Daten verfügbar

Performance

Sicherheit

Verfügbarkeit

Skalierbarkeit

Operational analytics

Analyse operativer Daten in Echtzeit; funktionsfähig mit In-Memory oder diskbasiertem OLTP

Optimierungen bei In-memory OLTP

Erweiterte T-SQL Unterstützung, sowie Unterstützung für mehrere Terabyte Arbeitsspeicher und parallel arbeitende Prozessoren

Query data store

Überwachung und Optimierung von Abfrageplänen

Native JSON

Unterstützung des JSON Datenformats

Temporal database support

Zeitbezogene Abfrage von Daten

Always encrypted

Sensible Daten können durchgängig verschlüsselt werden, sind jedoch jederzeit abrufbar.

Row-level security

Feingranulare Vergabe von Zugriffsrechten auf Zeilenebene

Dynamic data masking

Verschleierung von Daten in Echtzeit als Zugriffsschutz

Weitere Optimierungen

Auditieren von Erfolg- und Misserfolg bei Datenbankoperationen

TDE Support für In-Memory OLTP

Verbessertes AlwaysOn

Automatischer Failover und synchrone Spiegelung für bis zu drei Replicas, auch über Domänengrenzen hinweg

Lastverteilung per Round-Robin für lesbare Replicas

Automatischer Failover, basierend auf dem Zustand der Datenbank

DTC Unterstützung für eine Transaktionsintegrität über Datenbankinstanzen hinweg, auch zusammen mit AlwaysOn

Unterstützung von SSIS im Zusammenspiel mit AlwaysOn

Verbessertes database caching

Optimierung des automatischen Caching von Daten, mehrere TempDB Dateien auf Instanzen mit mehr als einem Core

Verbesserte AlwaysOn Availability Groups

Gesteigerte Skalierbarkeit:

Lastverteilung zwischen sekundären Servern
Größere Anzahl von automatischen Failover Knoten
Verbesserte Performance beim Log Transport

Effizientere Verwaltung:

DTC & SSISDB Unterstützung

Zustandsüberwachung der Datenbanken

Group managed service account

Windows 2016 – Domain less oder Cross Domains Nodes

Performance

Sicherheit

Verfügbarkeit

Skalierbarkeit

Operational analytics

Analyse operativer Daten in Echtzeit; funktionsfähig mit In-Memory oder diskbasiertem OLTP

Optimierungen bei In-memory OLTP

Erweiterte T-SQL Unterstützung, sowie Unterstützung für mehrere Terabyte Arbeitsspeicher und parallel arbeitende Prozessoren

Query data store

Überwachung und Optimierung von Abfrageplänen

Native JSON

Unterstützung des JSON Datenformats

Temporal database support

Zeitbezogene Abfrage von Daten

Always encrypted

Sensible Daten können durchgängig verschlüsselt werden, sind jedoch jederzeit abrufbar.

Row-level security

Feingranulare Vergabe von Zugriffsrechten auf Zeilenebene

Dynamic data masking

Verschleierung von Daten in Echtzeit als Zugriffsschutz

Weitere Optimierungen

Auditieren von Erfolg- und Misserfolg bei Datenbankoperationen

TDE Support für In-Memory OLTP

Verbessertes AlwaysOn

Automatischer Failover und synchrone Spiegelung für bis zu drei Replicas, auch über Domänengrenzen hinweg

Lastverteilung per Round-Robin für lesbare Replicas

Automatischer Failover, basierend auf dem Zustand der Datenbank

DTC Unterstützung für eine Transaktionsintegrität über Datenbankinstanzen hinweg, auch zusammen mit AlwaysOn

Unterstützung von SSIS im Zusammenspiel mit AlwaysOn

Verbessertes database caching

Optimierung des automatischen Caching von Daten, mehrere TempDB Dateien auf Instanzen mit mehr als einem Core

