Name:

Quiz 5

Part I (10 points). You will get 1 point for each correct answer, 0 points for each blank answer, and -1 point for each incorrect answer. The minimum possible score for this section is 0.

- (1) There exists a unique polynomial of degree at most 3 whose graph passes through the T F points (0,1), (1,-1), (2,-1), and (3,2).
- (2) Suppose $T \in \mathcal{L}(\mathbf{F}^5)$ is not surjective and dim E(2,T)=4. Then T is diagonalizable.
- (3) Suppose $T \in \mathcal{L}(\mathbf{F}^3)$ has eigenvectors u, v, w with the property that none of these three T F vectors is a scalar multiple of either of the others. Then T is diagonalizable.
- (4) Suppose $T \in \mathcal{L}(V)$, U is an invariant subspace, and W is a subspace such that $V = U \oplus W$. Then W is invariant.
- (5) Suppose $T \in \mathcal{L}(\mathbf{F}^5)$ and dim E(4,T) = 4. Then either T 2I or T + 2I is invertible.
- (6) Suppose $T \in \mathcal{L}(\mathbf{F}^3)$ has two distinct invariant subspaces of dimension 2. Then there exists $T = \mathbf{F}$ an invariant subspace of dimension 1.
- (7) Suppose $T \in \mathcal{L}(V)$ has no eigenvalues. Then T^2 has no eigenvalues.
- (8) Suppose $T \in \mathcal{L}(\mathbf{F}^3)$ and u, v, w are linearly independent eigenvectors. If u + v, v + w, w T F are also eigenvectors, then T is a scalar multiple of the identity.
- (9) Suppose $T \in \mathcal{L}(\mathbf{F}^6)$ and U is a 5 dimensional invariant subspace such that the restriction T F operator $T|_U$ is diagonalizable. Then T is diagonalizable.
- (10) Suppose 2 is an eigenvalue of $T \in \mathcal{L}(\mathbf{F}^5)$ such that the eigenspace U = E(2, T) has dimension 2 and the quotient operator T/U has eigenvalues 4, 5, 6. Then T is diagonalizable.

Part II (10 points).

(11) Let $T \in \mathcal{L}(\mathbf{F}^2)$ be given by T(x,y) = (x+y,3y). Is T diagonalizable? If so, find a basis of \mathbf{F}^2 such that M(T) is diagonal. Otherwise, explain why no such basis exists.

(12) Let V be a finite dimensional vector space over \mathbb{C} and suppose $T \in \mathcal{L}(V)$ is an operator such that 4 is an eigenvalue of T^2 . Show that

$$\dim \operatorname{null}(T - 2I) + \dim \operatorname{null}(T + 2I) > 0.$$