Arquitetura de Computadores I 4ª série de problemas

7.12.2015

I - Single-Cycle Datapath

Instruction	RegDst	ALUSrc	Memto- Reg	Reg- Write	Mem- Read		Branch	ALUOp1	ALUOp0
R-format	1	0	0	1	0	0	0	1	0
lw	0	1	1	1	1	0	0	0	0
SW	Х	1	X	0	0	1	0	0	0
beq	Х	0	Х	0	0	0	1	0	1

- 1. Descreva o efeito que teriam os seguintes bloqueios ("stuck-at") dos sinais de control a 0 ou a 1, indicando para cada caso quais as instruções que não executariam corretamente:
 - a. RegWrite = 0
 - b. RegWrite = 1
 - c. ALUop0 = 0
 - d. ALUop0 = 1
 - e. ALUop1 = 0
 - f. ALUop1 = 1
 - g. Branch = 0
 - h. Branch = 1
 - i. MemRead = 0
 - i. MemRead = 1

- k. MemWrite = 0
- 1. MemWrite = 1
- 2. Pretende-se que o processador execute tambem a instrução *jump register*. Indique o que seria necessário acrescentar ao datapath e as alterações a introduzir na tabela com os valores dos sinais de control (Nota: na instrução *jr* o campo rs do código de instrução indica o registo que contem o endereço da instrução seguinte a executar).

II - Multi-Cycle Datapath

- 3. Descreva o efeito que teriam os seguintes bloqueios ("*stuck-at*") dos sinais de control a 0 ou a 1, indicando para cada caso quais as instruções que não executariam corretamente:
 - a. RegWrite = 0
 - b. MemRead = 0
 - c. MemRead = 1
 - d. MemWrite = 0
 - e. MemWrite = 1
 - f. IRWrite = 0
 - g. IRWrite = 1
 - h. PCWrite = 0
 - i. PCWrite = 1
 - j. PCWriteCond = 0
 - k. PCWriteCond = 1
- 4. Pretende-se que o processador execute tambem a instrução *add immediate* (addi). Indique as modificações a introduzir na máquina de estados que representa a unidade de controle e

- nas respetivas saídas e eventuais alterações necessárias no datapath. Indique o valor dos sinais de control em cada ciclo da execução de addi.
- 5. Assuma que a unidade de controle é microprogramada. Escreva um microprograma que implemente **addi**.

III - Pipelined Datapath

6. Utilizando a representação multicycle do pipeline mostre os reencaminhamentos de dados (*forwarding paths*) necessários para executar a seguinte sequência de instruções:

```
add $3, $4, $6
sub $5, $3, $2
lw $7, 100($5)
add $8, $7, $2
```

7. Identifique todas as dependências de dados na sequência de instruções seguinte. Quais dessas dependências podem ser resolvidas com *forwarding* e quais e quais introduzem uma bolha (*bubble*) no pipeline.

```
add $3, $4, $2
sub $5, $3, $1
lw $6, 200($3)
add $7, $3, $6
```

8. A seguinte sequência de instruções é executada no pipeline:

```
Iw $5, 40($2)
add $6, $3, $2
or $7, $2, $1
and $8, $2, $3
sub $9, $2, $1
```

Cada registo tem o valor inicial 10_{10} + número do registo (p.ex. o registo \$8 tem o valor 18_{10}). Cada posição da memória de dados tem o valor inicial 1000_{10} + o seu endereço (p.ex. Memory[8] tem o valor 1008_{10}). No ciclo 5 o PC tem o valor 100_{10} , o endereço da instrução **sub.**

Indique o valor em cada campo dos 4 registos do pipeline, IF/ID, ID/EX, EX/MEM, MEM/WB, no ciclo 5.