7	Conection paget/TD du 30/12
	On souhaile à présent resouche le
	$\frac{\partial L}{\partial t} - \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = \Delta$
	arec en plus des conditions init limites.
	Memposé sura de = 17.
	$\mathcal{L}(0,x,y)=g(x,y)$
	Enlen escolicile O(At) C.S. Rappels = D Euler implicite O(At) I.S. Cronch Nicol O(At') I.S. St stable CII # conditionnellement stable. Incon stable. Ces résultats se d'eluisert de Von Neumann.

Euler Explicite. * facile!.

Le s-hima est:

$$\begin{cases} S_{x}U_{ij} = \frac{1}{h_{x}^{2}} \left(U_{i+1j} - 2U_{ij} + U_{i-1j} \right). \\ S_{y}U_{ij} = \frac{1}{h_{y}^{2}} \left(U_{ij+1} - 2U_{ij} + U_{ij-1} \right). \end{cases}$$

On conserve la disposition entrelacée stoggeroit.

On traite alors le problème de manière

identique au TP de la pernaine

dernière. $\frac{1}{2}(u_{-1}, g + u_{-0}) = u_{g}$

CL pun le bord quas.

Euler implició. du - v Δu = 5 SUM+1 - V (8 x U + 8 Mm.) = D Luis # 1 (un+1 m+1 m+1 his) + 1 (Win + 2 Win + Wing-1) suppos sil ny a pas de cellule voisine de la comoti forontière a los on con cela ne pose pas de problème. Sinon il feut tenir compte de CL. Exemple: on formule pour (i,j) = (0,0) Luij # 1 (uit, 2 ui, + 2 ui, - uij) + 1 (Wi)+1 - 7 Wi) + 2 Wi - Wi)

 $Lu_{ij} = \frac{1}{h^{2}x} \left(\frac{u_{i+1,j}^{+1} - 3u_{ij}^{+1}}{h^{2}x} \right) + \frac{2u_{ij}^{+1}}{h^{2}x}$ $+ \frac{1}{h^{2}y} \left(\frac{u_{i+1,j}^{+1} - 3u_{ij}^{+1}}{h^{2}x} \right) + \frac{2u_{ij}^{+1}}{h^{2}x}$ on a 2 contributions - pune implicité. = Day second ments uf et ub In Atv Chara On note Iuis le système linéaire modifié par les clair Les Oshema! $\frac{u^{n+1}u^{n}}{\Lambda +} + oY \underbrace{\sum_{i,j}^{n+1} + (1-o)}_{i,j} = \Delta_{i,j}$

21 Les os schema est donche 2 pour 9=1/2 1 smon.

D=0 # euler escaplicite CS $\Delta t \propto 1 \Delta x^2$ $\Delta t \propto 1 \Delta x^2$

On va utiliser la mithèle de solutions manufacturées...

Doit u(sc, y, t) une solution que l'on de donne par escemple

U(x,y,t) = sign(271x) sin(271y)

alors dell + - v (doc u + dgu)

= 0 x-V (- (2TT) X2 Din (2TT x) Din (2TT y)

= V (2TI) 2 X Z Din(2TI) Din(2TIY)

= + (20, 4)

Pour remplacer une condition limite. de sord son utili Neuman. or écut la CL de Neuman: dell= g. $\frac{1}{1} m_{\infty} = g$ Vialuelle! Tox $U_{m_x} = 2g_{\chi} U_{m_x-1}$ (1) va lossame le noverde de frontière intervient, on il suffit de substituer. la cellule phant ôme par la relation (1). Il faut penser à utiliser les mms pour de Sugger.

