Lecture 19: ANOVA Part I

Chapter 5.5

We use the t distribution when you have

We use the t distribution when you have

▶ *n* is small.

We use the t distribution when you have

- n is small.
- ▶ Independence: $n \le 10\%$ rule

We use the t distribution when you have

- \triangleright n is small.
- ▶ Independence: $n \le 10\%$ rule
- ▶ Observations come from a nearly normal distribution:
 - ► Look at a histogram of the data (difficult when *n* is small)
 - Consider whether any previous experiences alert us that the data may be normal

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

A farmer has the choice of four tomato fertilizers and wants to compare their performance in terms of crop yield.

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

 $ightharpoonup n_i$ plants assigned to each of the k=4 fertilizers:

n_1	n_2	n_3	<i>n</i> ₄	total n
3	7	4	6	20

We have k = 4 groups AKA levels of a factor: the 4 types of fertilizer.

 $ightharpoonup n_i$ plants assigned to each of the k=4 fertilizers:

Count the number of tomatoes on each plant

Tomato Fertilizer

We observe the following, where each point is one tomato plant.

Tomato Fertilizer

We observe the following, where each point is one tomato plant. Plot the sample mean of each level.

Tomato Fertilizer

We observe the following, where each point is one tomato plant. Plot the sample mean of each level. Question: are the mean tomato yields different?

Analysis of Variance

Say we have k groups and want to compare the k means:

$$\mu_1, \mu_2, \ldots, \mu_k$$

Analysis of Variance

Say we have k groups and want to compare the k means:

$$\mu_1, \mu_2, \ldots, \mu_k$$

We could do $\binom{k}{2}$ individual two-sample tests.

Analysis of Variance

Say we have k groups and want to compare the k means:

$$\mu_1, \mu_2, \ldots, \mu_k$$

We could do $\binom{k}{2}$ individual two-sample tests.

Ex. for groups 1 & 2:

$$H_0: \qquad \mu_1=\mu_2$$

vs.
$$H_a$$
: $\mu_1 \neq \mu_2$

Numerator: the between-group variation refers to the variability between the levels (the 4 horizontal lines):

Denominator: the within-group variation refers to the variability within each level (the 4 vertical arrows):

Now compare the following two plots. Which has "more different" means?

F Distributions

F Distributions

For $df_1 = 4$ and $df_2 = 6$, the F distribution looks like:

F Distributions

p-values are computed where "more extreme" means larger. Say the F=3, the p-value is the area to the right of 3 and is computed in R: pf(3,df1=4,df2=6,lower.tail=FALSE)

Conducting An *F*-Test

The results are typically summarized in an ANOVA table:

Source of Variation	df	SS	MS	F	<i>p</i> -value
Between groups	k – 1	SSTr	$MSTr = \frac{SSTr}{k-1}$	MSTr MSE	р
Within groups	n-k	SSE	$MSE = \frac{\hat{S}SE}{n-k}$		
Total	n-1	SST			

Conditions

1. The observations have to be independent. 10% rule.

Conditions

- 1. The observations have to be independent. 10% rule.
- 2. Trade off of *n* and normality of observations within each group.

Conditions

- 1. The observations have to be independent. 10% rule.
- 2. Trade off of *n* and normality of observations within each group.
- 3. Each of the groups has constant variance $\sigma_1^2 = \ldots = \sigma_k^2 = \sigma^2$. Check via:
 - boxplots
 - ightharpoonup comparing the sample standard deviations s_1, \ldots, s_k

Discussion of Quiz

Question 1: Why did $\frac{1}{20}$ studies yield a positive/significant result i.e. that there is a link between jelly beans and acne?

Discussion of Quiz

Question 1: Why did $\frac{1}{20}$ studies yield a positive/significant result i.e. that there is a link between jelly beans and acne?

Not that the p-value is 0.05, rather that $\alpha = 0.05$:

- significance level AKA
- type I error rate AKA
- false positive rate

i.e. we expect 1 out of 20 results to be significant even if there is no effect.

Publication bias: people only highlight significant/positive results.

Publication bias: people only highlight significant/positive results. From Wikipedia: "Publication bias occurs when the publication of research results depends on their nature and direction."

Publication bias: people only highlight significant/positive results. From Wikipedia: "Publication bias occurs when the publication of research results depends on their nature and direction."

To counter this, some prominent medical journals including

- New England Journal of Medicine
- ▶ The Lancet
- ▶ Journal of the American Medical Association

Publication bias: people only highlight significant/positive results. From Wikipedia: "Publication bias occurs when the publication of research results depends on their nature and direction."

To counter this, some prominent medical journals including

- New England Journal of Medicine
- ▶ The Lancet
- ▶ Journal of the American Medical Association

require registration of a trial before it starts so that unfavorable results are not withheld from publication.

Publication bias: people only highlight significant/positive results. From Wikipedia: "Publication bias occurs when the publication of research results depends on their nature and direction."

To counter this, some prominent medical journals including

- New England Journal of Medicine
- ▶ The Lancet
- Journal of the American Medical Association

require registration of a trial before it starts so that unfavorable results are not withheld from publication.

Journal of Negative Results: http://www.jnrbm.com/

Publication Bias

From: Sterne JA, Davey Smith G (2001) Sifting the evidence - What's wrong with significance tests. BMJ 322: 226231.

What α to Use?

Should I use $\alpha=0.05$ as my significance level? Before using it, put some thought into the balance between:

What α to Use?

Should I use $\alpha=0.05$ as my significance level? Before using it, put some thought into the balance between:

▶ Type I errors. Setting a smaller α yields a more conservative procedure: all things being equal, you will reject H_0 less often.

What α to Use?

Should I use $\alpha=0.05$ as my significance level? Before using it, put some thought into the balance between:

- ▶ Type I errors. Setting a smaller α yields a more conservative procedure: all things being equal, you will reject H_0 less often.
- ▶ Type II errors. Setting a bigger α yields a more liberal procedure: all things being equal, you will reject H_0 more often.

A related issue is the statistical concept of multiple testing.

A related issue is the statistical concept of multiple testing.

Say we are conducting many experiments, and H_0 is true for all of them.

A related issue is the statistical concept of multiple testing.

Say we are conducting many experiments, and H_0 is true for all of them.

If you repeat experiments many times, you're bound to get a significant result eventually just by chance alone.

What do people do?

What do people do? Make the α stricter! i.e.

ightharpoonup make the lpha smaller

What do people do? Make the α stricter! i.e.

- ightharpoonup make the α smaller
- lacktriangle i.e. less chance the p-value is smaller than lpha

What do people do? Make the α stricter! i.e.

- ightharpoonup make the α smaller
- ightharpoonup i.e. less chance the p-value is smaller than lpha
- \blacktriangleright i.e. less chance of incorrectly rejecting H_0 when it is true

What do people do? Make the α stricter! i.e.

- ightharpoonup make the α smaller
- lacktriangle i.e. less chance the p-value is smaller than lpha
- \blacktriangleright i.e. less chance of incorrectly rejecting H_0 when it is true

Use the Bonferroni correction to α : If you are conducting n tests, use $\alpha^* = \frac{\alpha}{n}$. You'll study its properties in HW8.