Chemistry I-H Gaseous Equilibrium Calculations

For exercises 1-5, write equilibrium constant expressions for the following systems in equilibrium:

- 1. $2N_2H_4(g) + 2NO_2(g) = 3N_2(g) + 4H_2O(g)$
- 2. $I_2(g) \leftrightarrows 2I(g)$
- 3. $C_6H_6(1) \leftrightarrows C_6H_6(g)$
- 4. $Fe_3O_4(s) + 4H_2(g) = 3Fe(s) + 4H_2O(g)$
- 5. $2NbCl_4(g) \leftrightarrows NbCl_3(g) + NbCl_5(g)$
- 6. Consider the following reaction: $2SO_3(g) \leftrightarrows 2SO_2(g) + O_2$ If $[SO_3] = 0.0160$ M, $[SO_2] = 0.00560$ M, and $[O_2] = 0.00210$ M, what is the K_C for this equilibrium?
- 7. When solid ammonium chloride is put in a reaction vessel at 323K, the equilibrium concentrations of both ammonia and hydrogen chloride are found to be 0.0660 M. Calculate K_C . $NH_4Cl(s) \leftrightarrows NH_3(g) + HCl(g)$
- 8. For the following reaction, the K_C is 1.60 at 933K. $H_2(g) + CO_2(g) \leftrightarrows H_2O(g) + CO(g)$ Calculate the equilibrium concentration of hydrogen, $[H_2]$, when $[CO_2] = 0.320M$, $[H_2O] = 0.240M$, and [CO] = 0.280M.