Rules of Inference for Quantified Statements
C is an element (arbitrary or particular)] Yx P(x) Instantiation If c is an element in the domain, and P(x) is true for all elements in the domain, then P(c) is true
== (c is a particular element) \(\text{P(c)} \) * each use of existential instantiation must define a new element with its own name (ex: \(\cdot \), or \(\delta ' \)) * There is a case in the domain where P(x) is true, then cis a particular element where P(x) is true, so P(c) is true
C is an arbitrary element P(c) Universal generalization Let P(x) Cis an element representative of all domain elements, and P(c) is true, there fore P(x) is true for all domain elements
C is an element (arbitrary or particular) P(c) I = Existential generalization * C is an element in the domain, and P(c) is true, therefore

there exists a case in the Domain where P(x) is true