

Вещество молекулы атомы

Строение атома:

которую превратился атом при отдаче или присоединении электронов (ионы

могут быть «+» и «-»)

- Электрический ток направленное (упорядоченное) движение частиц носителей электрического заряда Такими носителями могут являться:
- 1.в <u>металлах</u> электроны,
- 2.в электролитах -
- ионы (катионы и анионы)
- 3.в <u>газах</u> <u>ионы</u> и <u>электроны</u>,
- 4.в вакууме при определённых условиях — электроны

ЭЛЕКТРИЧЕСКИЙ TOK B **МЕТАЛЛИЧЕСКИХ** ПРОВОДНИКАХ ПРЕДСТАВЛЯЕТ СОБОЙ **УПОРЯДОЧЕННОЕ ДВИЖЕНИЕ** ЭЛЕКТРОНОВ ПОД **ДЕЙСТВИЕМ ЭЛЕКТРИЧЕСКОГО** поля

Электрический ток – упорядоченное движение заряженных частиц.

Для существования электрического тока необходимы следующие условия:

- 1) наличие свободных электрических зарядов в проводнике;
- 2) наличие внешнего электрического поля для проводника.

Сила тока — физическая величина, равная отношению количества заряда ΔQ , прошедшего за некоторое время Δt через поперечное сечение проводника, к величине этого промежутка времени.

$$I = rac{\Delta Q}{\Delta t}.$$

СИЛА ТОКА — это количество заряженных частиц (электроны, протоны, ионы), протекающих через поперечное сечение проводника.

СИЛА ТОКА ИЗМЕРЯЕТСЯ В АМПЕРАХ!!! АМПЕР

Один ампер соответствует перемещению через поперечное сечение проводника в течение одной секунды (c) заряда электричества величиной в один кулон (Кл): **1A** = **1**Кл/с.

1 Ампер = 1000 миллиампер= 1000000 микроампер

Наименование	Обознач	Множитель		
任	русское	международное		
тера	T	T	1012	
гига	Γ	G	10 ⁹	
мега	м	M	106	
кило	к	к	10³	
милли	м	m	10-3	
микро	мк	μ	10-6	
нано	н	n	10-9	
пико	п	р	10-12	

0,5 A	2000 мкА	0,7 кА	0,06 A	1200 mA	0,05 KA	1400 mA	0,2 A
мА	мА	А	мкА	А	A	мкА	мА
0,03 A	3A	0,35кА	100 mA	400мА	10000 мкА	0,2 A	1500мкА
мА	мА	А	мкА	A	А	мкА	мА
1,6 A	0,05 A	40000 мкА	0,007 A	60 mA	0,05 кА	5 mA	0,2 A
мА	мА	A	мкА	A	A	мкА	мА

Электрическое сопротивление — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему

Чем ниже сопротивление проводника тем выше ток, электрическая энергия расходуемая на преодоление сопротивления превращается в тепловую энергию

В зависимости от вида материала, сопротивление может стремиться к нулю быть минимальным (млОм мкОм проводники, металлы), Находится в пределах нагрузочной способности (Ом, кОм) или быть очень большим (мОм, гОм изоляция, диэлектрики).

1 кОм = 1000 Ом 1 мОм = 1000000 Ом

РЕЗИСТОРЫ

Рези́стор (англ. resistor, от <u>лат.</u> resisto — сопротивляюсь) — пассивный элемент <u>электрических цепей</u>, обладающий определённым значением <u>электрического сопротивления</u>, предназначенный для линейного преобразования <u>силы тока</u> в напряжение и <u>напряжения</u> в силу тока, ограничения тока,

Конструкция керамических резисторов

Соединение резисторов

А) Последовательное соединение сопротивлений

Rэкв. = Rобщ.

При последовательном соединении сопротивлений эквивалентное сопротивление цепи равно сумме величин отдельных сопротивлений.

Последовательное соединение резисторов

$$R = R_1 + R_2 + R_3 + \dots$$

 При последовательном соединении резисторов их сопротивления складываются

 $\mathbf{R}_{\text{экв.}} = \text{R1} + \text{R2} + \text{R3} + \text{R4} + \text{R5} + \text{R6} + \text{R7} + \text{R8} + \text{R9} + \text{R10} + \text{R11}$

При параллельном соединении сопротивлений величина обратная эквивалентному сопротивлению равна сумме обратных величин этдельных сопротивлений.

Параллельное соединение резисторов

При <u>параллельном</u> соединении резисторов складываются величины, обратные пропорциональные сопротивлению (то есть общая проводимость складывается из проводимостей каждого резистора)

Пример решения. Определить эквивалентное (общее) сопротивление цепи.

Решение:

$$\frac{1}{R_{1,2}} = \frac{1}{400} + \frac{1}{400} = \frac{2}{400} = \frac{400}{2} = 200 \text{ Om}$$

$$R_{1,2} = 200 \text{ Om}$$

$$R_{3 \text{ KB.}} = R_{1,2} + R_3 + R_4 = 200 + 100 + 700 = 1000 \ Om$$

$$1kOm$$

Расчетная работа №3 Основы электротехники

ТЕМА: Определение эквивалентного сопротивления резисторов

- 1. Вычертить схему соединения восьми резисторов из задания.
- 2. Произвести расчет эквивалентного $R_{\mbox{\tiny ЭКВ.}}$ (общего) сопротивления соединенных резисторов.(подробная запись)
- 3. Полученный результат перевести в кОм

