Tables for supersymmetry. Based on [1-2]. "Ed.": Bruno Le Floch, Princeton University, December 23, 2015.

1. Lie (super)algebras

Simple complex Lie algebras. Infinite series $A_{n\geq 1}$, $B_{n\geq 1}$, $C_{n\geq 1}, \ D_{n\geq 2} \text{ with } A_1=B_1=C_1, \ B_2=C_2, \ D_2=A_1\oplus \bar{A}_1,$ $D_3 = A_3$. Five exceptions with $\dim(E_6) = 78$, $\dim(E_7) = 133$, $\dim(E_8) = 248$, $\dim(F_4) = 52$, $\dim(G_2) = 14$.

Type	Dimension	Lie algebra
A_n	n(n+2)	$sl(n+1,\mathbb{C}) = \{\text{traceless}\}$
B_n	n(2n+1)	$so(2n+1,\mathbb{C}) = \{\text{antisymmetric}\}\$
C_n	n(2n+1)	$sp(2n,\mathbb{C}) = \left\{ \begin{pmatrix} 0 & \mathbb{I}_n \\ -\mathbb{I}_n & 0 \end{pmatrix} \times \text{symmetric} \right\}$
D_n	$n(2n\!-\!1)$	$so(2n,\mathbb{C}) = \{\text{antisymmetric}\}\$

Real forms. Denote $sl(n) = sl(n, \mathbb{R}), sp(2n) = sp(2n, \mathbb{R}),$ $su^*(2n) = sl(n, \mathbb{H}), \ so^*(2n) = o(n, \mathbb{H}), \ usp(2m, 2n) = u(m, n, \mathbb{H}).$ A Lie algebra is "compact" if it exponentiates to a compact Lie group. In $E_{r(s)}$, s is the number of (non-compact) – (compact) generators.

	Real form	\mathbf{N}	Iax "compa	act" subalgel	ora Range
	su(n)		"compact"	,	
\widehat{z}	sl(n)		so(n)		
sl	sl(n) su(n-p,p))	su(n-p)	$\ni su(p) \oplus u(1)$	0
	$su^*(n)$		usp(n)		n even
	so(n) $so(p,n-p)$		"compact"	,	
$\hat{\sigma}$	so(p,n-p)		$so(p) \oplus so($	(n-p)	0
s	$so^*(2n)$		u(n)		n even
\overline{a}	usp(2n)		"compact"	,	
<u>S</u>	sp(2n)		u(n)		
st	usp(2n-2)	p,2p)	usp(2n-2)	$(p) \oplus usp(2p)$	0
	$E_{6(-78)}$	"comp	oact"	$E_{8(-248)}$	"compact"
	$E_{6(-26)}$	F_4		$E_{8(-24)}$	$E_{7,-133} \oplus su(2)$
	$E_{6(-14)}$		$\oplus so(2)$	$E_{8(8)}$	so(16)
	$E_{6(2)}$		$\oplus su(2)$		
	$E_{6(6)}$	usp(8))	$G_{2(-14)}$	"compact"
_	$E_{7(-133)}$	"comp	act"	$G_{2(2)}$	$su(2) \oplus su(2)$
	$E_{7(-25)}$		$s \oplus so(2)$	$F_{4(-52)}$	"compact"
	$E_{7(-5)}$		$\oplus su(2)$	$F_{4(-20)}$	so(9)
	-1(-3)	()	~~~(-)	T D ` '	(0) 0 (0)

 $F_{4(4)}$

Accidental isomorphisms.

su(8)

 $E_{7(7)}$

$$so(2) = u(1), \quad so(1,1) = \mathbb{R} \qquad so(4,1) = usp(2,2)$$

$$so(3) = su(2) = su^*(2) \qquad so(3,2) = sp(4)$$

$$so(2,1) = su(1,1) = sl(2) = sp(2) \qquad so(6) = su(4)$$

$$so(4) = su(2) \oplus su(2) \qquad so(5,1) = su^*(4)$$

$$so(3,1) = sl(2,\mathbb{C}) = sp(2,\mathbb{C}) \qquad so(4,2) = su(2,2)$$

$$so(2,2) = sl(2) \oplus sl(2) \qquad so(3,3) = sl(4)$$

$$so^*(4) = su(1,1) \oplus su(2) \qquad so^*(6) = su(3,1)$$

$$so(5) = usp(4) \qquad so^*(8) = so(6,2)$$

Classical Lie superalgebras: the bosonic algebra acts on the fermionic generators in a completely reducible representation. This excludes Cartan-type superalgebras W(n), S(n), $\tilde{S}(n)$ and H(n). In this table, $m,n \ge 1$ and we do not list purely bosonic Lie algebras. The factor \mathbb{C} of sl(m|n) must be removed if m=n.

	Bosonic algebra	Fermionic repr.
sl(m n)	$sl(m,\mathbb{C}) \oplus sl(n,\mathbb{C}) \oplus \mathbb{C}$	$(m,\overline{n})\oplus(\overline{m},n)$
osp(m 2n)	$so(m,\mathbb{C}) \oplus sp(2n)$	(m,2n)
$D(2,1,\alpha)$	$sl(2,\mathbb{C})^3$	(2,2,2)
F(4)	$so(7,\mathbb{C}) \oplus sl(2,\mathbb{C})$	(8,2)
G(3)	$G_2 \oplus sl(2,\mathbb{C})$	(7,2)
P(m)	$sl(m+1,\mathbb{C})$	$sym \oplus (antisym)^*$
Q(m)	$sl(m+1,\mathbb{C})$	adjoint

Real forms of Lie superalgebras, starting from their "compact" form (p = q = 0). P(m) has no "compact" form. Here, $m,n \ge 1, 0 \le p \le m/2, 0 \le q \le n/2$. The forms su^* , osp^* , Q^* only exist for even rank; sl' only if m=n.

Real form	Bosonic algebra
	$\begin{array}{c} su(m-p,p) \oplus su(n-q,q) \oplus u(1)^\S \\ sl(m) \oplus sl(n) \oplus so(1,1)^\S \\ sl(n,\mathbb{C}) \\ su^*(m) \oplus su^*(n) \oplus so(1,1)^\S \end{array}$
osp(m-p,p 2n) osp*(m 2n-2q,2q) (m)	$so(m-p,p) \oplus sp(2n)$ $n \text{ even}) so^*(m) \oplus usp(2n-2q,2q)$
$D^p(2,1,\alpha)^{\P}$	$so(4-p,p) \oplus sl(2) (p=0,1,2)$
$F^{p}(4)$ for $p=0,3$ $F^{p}(4)$ for $p=1,2$	$so(7-p,p) \oplus sl(2)$ $so(7-p,p) \oplus su(2)$
$G_s(3)$ for $s=-14,2$	$G_{2(s)} \oplus sl(2)$
P(m)	sl(m+1)
$ \begin{array}{c} UQ(m-p,p) \\ Q(m) \end{array} $	su(m+1-p,p) $sl(m+1)$
$Q^*(m)$ $(m \text{ odd})$	$su^*(m+1)$

 $\overline{\ }$ For m=n, u(1) and so(1,1) factors are absent. Additionally, one can project down to a single bosonic factor.

¶ The three sl(2) bosonic factors of $D(2,1,\alpha)$ appear with weights 1, α and $-1-\alpha$ in fermion anticommutators. For D^0 and D^2 , α is real. For D^1 , $\alpha = 1 + ia$ with a real.

Some isomorphisms: su(1,1|1) = sl(2|1) = osp(2|2) and $su(2|1) = osp(2^*|2,0)$. For $\alpha = 1$, $D^p(2,1,1) = osp(4-p,p|2)$.

2. Spinors

 $usp(6) \oplus su(2)$

Clifford algebra. Let h_{ab} be diagonal with s '+1' and t '-1', and d = s + t. The Clifford algebra $\{\Gamma_a, \Gamma_b\} = 2h_{ab}$ has real dimension 2^d and is isomorphic to a matrix algebra $M_{2\#}(\bullet)$ with

Charge conjugation. $(-\eta)\Gamma_a^T = \mathcal{C}\Gamma_a\mathcal{C}^{-1}$ are conjugate for $\eta = \pm 1$ because they obey the same algebra. Get $\mathcal{C}^T = -\varepsilon\mathcal{C}$ with $\varepsilon = \pm 1$ by transposing twice. Let $\Gamma^{(n)} = \Gamma_{a_1...a_n}$. Using $\big(\mathcal{C}\Gamma^{(n)}\big)^T = -\epsilon(-)^{n(n-1)/2}(-\eta)^n\mathcal{C}\Gamma^{(n)}$ find which $n \bmod 4$ give symmetric $\mathcal{C}\Gamma^{(n)}$. The sum of $\binom{d}{n}$ must be $2^{\lfloor d/2 \rfloor}(2^{\lfloor d/2 \rfloor}+1)/2$. This fixes ϵ, η . Odd d require $\eta = (-1)^{d(d+1)/2}$ to preserve $\Gamma^{(d)}$. Even d allow two choices of signs: consult the rows $d\pm 1$.

$d \bmod 8$	n	ϵ	η
$0\langle 1$	0, 1	-1	-1
$\frac{2\langle 3 \rangle}{4/3}$	1, 2	+1	+1
6/5	2, 3	+1	-1
7	0, 3	-1	+1

Reduced spinors. $M_{ab} \in so(s,t)$ acts as $\gamma_a \gamma_b$ on representations of the Clifford algebra. But the $2^{\lceil d/2 \rceil}$ -dimensional representation is not irreducible as a representation of so(s,t).

In even d, Weyl (or chiral) spinors $\Gamma^{(d)}\lambda=\pm\lambda$ have $2^{d/2-1}$ real components. Let B be defined by $\Gamma^*_a=-\eta(-1)^tB\Gamma_aB^{-1}$. Majorana spinors $\lambda^*=B\lambda$ exist for $s-t\equiv 0,\pm 1,\pm 2 \mod 8$; the case $s-t\equiv \pm 2$ requires $\eta=\mp(-1)^{d/2}$. When $s-t\equiv 3,4,5$, a set of 2n spinors can be symplectic Majorana: $(\lambda^I)^*=B\Omega_{IJ}\lambda^J$ for $\Omega=((0,\mathbb{1}_n);(-\mathbb{1}_n,0))$. (Symplectic) Majorana–Weyl spinors exist for $s-t\equiv 0,4 \mod 8$. The table also includes the real dimension of the minimal spinor.

d	$t \equiv 0$	1	2	$3 \bmod 4$
1	M 1	M 1		
2	M^- 2	MW 1	M^+ 2	
3	s 4	M = 2	M = 2	s 4
4	sW = 4	M^+ 4	MW 2	M^- 4
5	s 8	s 8	M = 4	M = 4
6	M^+ 8	sW = 8	M^- 8	MW = 4
7	M 8	s 16	s 16	M 8
8	MW 8	M^{-} 16	sW 16	M^{+} 16
9	M 16	M 16	s 32	s = 32
10	M^{-} 32	MW 16	M^{+} 32	sW 32
11	s 64	M = 32	M = 32	s 64
12	sW 64	M^{+} 64	MW 32	M ⁻ 64

Flavour symmetries of N minimal spinors. This is also the R-symmetry of the N-extended superalgebra. For (symplectic) Majorana Weyl spinors, specify $N = (N_L, N_R)$ left/right-handed.

$$\begin{aligned} \mathbf{M} & \begin{cases} u(N) & \text{if } d \text{ even} \\ so(N) & \text{if } d \text{ odd} \end{cases} \\ \mathbf{MW}: so(N_L) \times so(N_R) \\ \mathbf{s} & : usp(N) \\ \mathbf{sW} & : usp(N_L) \times usp(N_R) \end{aligned}$$

Products of spinor representations. For odd d=2m+1, let $\mathcal S$ be a spinor representation of complex dimension 2^m . The symmetric product $S^2\mathcal S$ consists of k-forms with $k\equiv m \mod 4$. Since k-forms and (d-k)-forms are the same representation, other descriptions can be given. For the antisymmetric product $\Lambda^2\mathcal S$, take $k\equiv m-1 \mod 4$. See the list of forms in the table.

d	1	3	5	7	9	11
$\dim_{\mathbb{C}} S$	1	2	4	8	16	32
$S^2\mathcal{S}$	0	1	2	0,3	0,1,4	1,2,5
$\Lambda^2 \mathcal{S}$		0	0,1	1,2	2,3	$0,\!3,\!4$

For even d=2m, let \mathcal{S}_{\pm} be the Weyl spinor representations of complex dimension 2^{m-1} . The tensor product $\mathcal{S}_{+}\otimes\mathcal{S}_{-}$ consists of (m-1-2j)-forms for $0 \leq j \leq (m-1)/2$. The symmetric products $S^2\mathcal{S}_{\pm}$ decompose into the (anti)-self-dual m-forms and (m-4j)-forms for $0 < j \leq m/4$. The antisymmetric products $\Lambda^2\mathcal{S}_{\pm}$ decompose into (m-2-4j)-forms for $0 \leq j \leq (m-2)/4$.

\overline{d}	2	4	6	8	10	12
$\mathrm{dim}_{\mathbb{C}}\mathcal{S}_{\pm}$	1	2	4	8	16	32
$S^2 S_{\pm}$	1^{\dagger}	2^{\dagger}	3^{\dagger}	$0,4^{\dagger}$	$1,5^{\dagger}$	$2,6^{\dagger}$
$\Lambda^2 \mathcal{S}_\pm$		0	1	2	3	0,4
$\mathcal{S}_{+}\!\otimes\!\mathcal{S}_{-}$	0	1	0,2	1,3	0,2,4	1,3,5

Note that $S^2(S_+ \oplus S_-) = S^2 S_+ \oplus (S_+ \otimes S_-) \oplus S^2 S_-$

$$\Lambda^2(\mathcal{S}_+ \oplus \mathcal{S}_-) = \Lambda^2 \mathcal{S}_+ \oplus (\mathcal{S}_+ \otimes \mathcal{S}_-) \oplus \Lambda^2 \mathcal{S}_-$$

3. Supersymmetry algebras

The Poincaré algebra is $\mathbb{R}^{s,t} \times so(s,t)$, the semi-direct product of translations by rotations. Namely, $[P_a, P_b] = 0$, $[M_{ab}, P_c] = 2ih_{c[a}P_{b]}$, and $[M_{ab}, M^{cd}] = 4ih_{[a}^{[c}M_{b]}^{d]}$.

Super-Poincaré algebra. Add supercharges in some spinor representation Q of the Poincaré algebra (so $[P_a,Q]=0$). Their anticommutator transforms in the representation S^2Q and should include the one-form P. Depending on s,t they can include other k-forms Z, called central charges because [P,Z]=[Z,Z]=0. The super-Poincaré algebra is $((\mathbb{R}^{s,t}\times Z).Q)\rtimes (so(s,t)\times R)$, where the R-symmetry acts on Q. This Lie superalgebra is graded: $\operatorname{gr}(\mathbb{R}^{s,t}\times Z)=-2,\ \operatorname{gr}(Q)=-1,\ \operatorname{and}\ \operatorname{gr}(so(s,t)\times R)=0$. The supertranslations consist of $(\mathbb{R}^{s,t}\times Z).Q$.

Example: M-theory algebra. d=10+1 super-Poincaré algebra with Q= Majorana. Since S^2Q has 1, 2, and 5-forms, there are 2-form and 5-form central charges $Z_{(2)}$ and $Z_{(5)}$ (under which M2 and M5 branes are charged):

which M2 and M5 branes are charged):
$$\{Q_{\alpha},Q_{\beta}\} = (\gamma^{M}C)_{\alpha\beta}P_{M} + \frac{1}{2}(\gamma_{MN}C)_{\alpha\beta}Z_{(2)}^{MN} + \frac{1}{5!}(\gamma_{MNPQR}C)_{\alpha\beta}Z_{(5)}^{MNPQR}$$
 Altogether the M-theory algebra is $osp(1|32)$.

Superconformal algebras are the same as super AdS_{d+1} . The bosonic part is so(d,2) and R-symmetries. As a supermatrix: $\begin{pmatrix} so(d,2) & Q+S \\ Q-S & R \end{pmatrix}$ or $so(d,2) \leftrightarrow R$. Note that $\{Q,S\}$ contains R.

For d=2, the finite conformal algebra is $so(2,2)=so(2,1)\oplus so(2,1)$, sum of two d=1 algebras, so the superalgebra is sum of two d=1 superalgebras.

\overline{d}	Superalgebra	R-symmetries	#Q+#S
1	osp(N 2)	o(N)	2N
	su(N 1,1)	$su(N) \oplus u(1)$ for $N \neq 2$	4N
	su(2 1,1)	su(2)	8
	$osp(4^* 2N)$	$su(2) \oplus usp(2N)$	8N
	G(3)	G_2	14
	$F^{0}(4)$	so(7)	16
	$D^{0}(2,1,\alpha)$	$su(2) \oplus su(2)$	8
3	osp(N 4)	so(N)	4N
4	su(2,2 N)	$su(N) \oplus u(1)$ for $N \neq 4$	8N
	su(2,2 4)	su(4)	32
5	$F^{2}(4)$	su(2)	16
6	$osp(8^* N)$	usp(N) (N even)	8N

4. Supermultiplets with spins ≤ 1

For 16 supercharges, there is only the vector.

For 8 supercharges, vector and hyper.

For 4 supercharges, vector, chiral, linear multiplets.

For 2 supercharges, vector, chiral, linear, Fermi, ...

[2] Various Wikipedia articles.

^[1] Tools for supersymmetry by Antoine Van Proeyen