Федеральное государственное автономное образовательное учреждение высшего образования Университет ИТМО

обновлено: 19 мая 2024 г.

Методы декомпозиции задачи булевой выполнимости для синтеза и верификации моделей автоматных программ

Чухарев Константин

Специальность 2.3.5 (05.13.11)

Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

Диссертация на соискание учёной степени кандидата технических наук

> Научный руководитель: Семёнов Александр Анатольевич к.т.н., доцент

Санкт-Петербург, Россия 2024

Оглавление

введени	ie		8
Глава 1.	Обзор	р предметной области	13
1.1	Конечн	ные автоматы	13
1.2	Булевы	ı схемы	13
1.3	Между	народный стандарт IEC 61499	15
1.4	Методн	ы синтеза конечно-автоматных моделей	16
1.5	Линейі	ная темпоральная логика	19
1.6	Синтез	в булевых формул и схем	19
1.7	Задача	проверки эквивалентности булевых схем	24
1.8	Задача	генерации тестовых шаблонов для верификации булевых схем	26
1.9	Задача	булевой выполнимости	28
1.10	Основн	ные алгоритмы решения SAT	29
	1.10.1	Неполные алгоритмы решения SAT	30
	1.10.2	Полные алгоритмы решения SAT	33
	1.10.3	Алгоритм DPLL	34
	1.10.4	Концепция CDCL и базирующиеся на ней современные	
		SAT-решатели	36
	1.10.5	SAT-решатели	41
1.11	Методн	ы сведения задач к SAT	41
1.12	Декомі	позиционная трудность	41
1.13	Вероят	ностный подход к оцениванию трудности булевых формул .	42
Выво	оды по і	главе 1	45
Глава Э	Сипте	ез конечно-автоматных моделей на основе сведения к	
17aba 2.		е булевой выполнимости (SAT)	46
2.1		синтеза конечно-автоматных моделей монолитных логических	10
2.1		одлеров по примерам поведения	46
	2.1.1	Кодирование структуры автомата	47
	2.1.2	BFS-предикаты нарушения симметрии для состояний автомата	
	2.1.2	Кодирование отображения позитивного дерева сценариев .	51
	2.1.3	Кодирование ограничений на количество переходов	52
	2.1.5	Алгоритм Basic	52 52
	2.1.5	-	52 53
	∠.⊥.∪	Кодирование структуры охранных условий	JJ

	2.1./	вь вы выстранции в вы выпушения симметрии для охранных условии	54					
	2.1.8	Кодирование ограничений на суммарный размер охранных						
		условий	55					
	2.1.9	Aaroputm Extended	55					
	2.1.10	Кодирование отображения негативного дерева сценариев .	56					
	2.1.11	Алгоритм Сомрете	57					
2.2	Синтез	з минимальных монолитных моделей	57					
	2.2.1	Алгоритм Basic-min	58					
	2.2.2	Алгоритмы Extended-min и Complete-min	58					
	2.2.3	Алгоритм Extended-min-UB	59					
2.3	Индук	тивный синтез, основанный на контрпримерах	60					
	2.3.1	Алгоритм CEGIS	61					
	2.3.2	Алгоритм CEGIS-мін	61					
2.4	Програ	аммное средство	62					
2.5	Экспер	риментальное исследование: Pick-and-Place манипулятор	63					
	2.5.1	Синтез минимальной конечно-автоматной модели по						
		примерам поведения	64					
	2.5.2	Синтез минимальной конечно-автоматной модели по						
		примерам поведения и LTL-спецификации	65					
2.6	Экспер	риментальное исследование: SYNTCOMP	67					
Выв	оды по	главе 2	70					
Глава З	. Мето	ды оценивания декомпозиционной трудности булевых						
		ул в применении к задачам тестирования и верификации						
	логич	неских схем	72					
3.1	Трудно	ость относительно разбиения и вероятностный алгоритм её						
	оценки	и	72					
3.2	Два но	овых метода разбиения SAT для CircuitSAT	74					
3.3	Экспериментальное исследование							
3.4	Вычислительные эксперименты							
	3.4.1	Тестовые данные	78					
	3.4.2	Эксперименты по оценке декомпозиционной сложности	79					
	3.4.3	Эксперименты по поиску прообразов MD4	82					
Выв	оды по	главе 3	83					

Заключение			•	•	•	•				•	•	•	•	•	•	•	•	•			•	•	•	84
Список литера	атур	ы																						85

Введение

Актуальность темы. В современном мире существует множество различных приложений, в которых возникают задачи большой размерности. Особенно это актуально в контексте задач синтеза и верификации дискретных управляющих (ДУ) систем, таких как конечные автоматы и цифровые схемы, которые используются в различных областях, включая робототехнику, электронику, информационную безопасность. Основыми проблемами в области дискретных систем управления являются их синтез и верификация. Синтез ДУ-модели заключается в построении модели системы, которая обладает заданными свойствами. Верификация ДУ-модели заключается в проверке того, что модель удовлетворяет заданной спецификации. Важно отметить, что задачи синтеза и верификации ДУ-моделей являются NP-полными. Это означает, что на сегодняшний день не существует эффективных алгоритмов, способных решать эти задачи за разумное время для всех возможных входных данных. Это приводит к тому, что существующие методы не всегда применимы для решения задач большой размерности. Таким образом, развитие методов и алгоритмов, способных решать подобные задачи более эффективно, остается актуальной и важной задачей в области дискретной математики и компьютерных наук.

Распространённым подходом к автоматическому синтезу и верификации является сведение к классическим NP-полным задачам, таким как задача выполнимости булевой формулы (Boolean satisfiability problem, SAT), задача максимальной выполнимости (MaxSAT) и задача выполнимости в теориях (Satisfiability Modulo Theory, SMT), с последующим применением так называемых решателей, реализующих современные алгоритмы решения этих задач. Данные задачи являются «универсальными», в том смысле что они могут быть использованы для решения широкого класса задач, исключая тем самым необходимость разработки специализированных алгоритмов для каждой конкретной задачи.

Одной из центральных проблем в области синтеза и верификации ДУ-моделей является отсутствие априорных оценок времени работы алгоритмов решения задачи SAT. В рамках данной диссертационной работы предлагаются и развиваются методы и алгоритмы, которые позволяют строить такие оценки. Для этого используются специальные декомпозиционные представления булевых формул. Идеи построения декомпозиций уже выдвигались ранее, но они обладают меньшей точностью. Методы декомпозиции, предложенные в данной работе, учитывают особенности исходной

задачи, которая решается с помощью сведения к SAT, например, особенности задачи синтеза конечно-автоматных моделей или задачи проверки эквивалентности логических схем.

Резюмируя, предложенные в диссертации методы и алгоритмы позволяют повысить эффективность комбинаторных алгоритмов в применении к задачам синтеза и верификации ДУ-моделей. Эти методы могут быть использованы для решения различных задач в области автоматизированного проектирования и управления дискретными системами.

Цель работы. Целью данной работы является повышение эффективности работы полных алгоритмов решения задачи булевой выполнимости (SAT) в применении к задачам синтеза и верификации ДУ-моделей за счет оригинальных методов и техник декомпозиции булевых формул.

Задачи работы. Для достижения поставленной цели были решены следующие научно-технические задачи:

- 1. Разработаны оригинальные алгоритмы кодирования в SAT задач синтеза конечно-автоматных моделей с заданным поведением и свойствами, отличающиеся от существующих добавлением кодирования структуры охранных условий в виде деревье разбора соответствующих формул.
- 2. Разработаны оригинальные алгоритмы кодирования в SAT задачи синтеза модульных конечно-автоматных моделей с заданным поведением и свойствами, отличающиеся от существующих автоматизированным модульным разбиением.
- 3. Разработаны оригинальные алгоритмы кодирования в SAT задачи синтеза булевых схем и булевых формул по заданной таблице истинности, отличающиеся от существующих возможностью использования произвольных элементарных гейтов.
- 4. Разработаны оригинальные методы оценивания декомпозиционной трудности булевых формул, кодирующих задачи синтеза конечно-автоматных моделей и верификации булевых схем, отличающиеся от существующих учётом особенностей исходной задачи, а также низкой дисперсией времени решения подзадач.
- 5. С применением разработанных алгоритмов решены трудные примеры задач синтеза ДУ-моделей (как конечно-автоматных моделей, так и логических схем).

- 6. Разработан новый SAT решатель, использующий вероятностные лазейки для вывода новой информации при работе с трудными булевыми формулами.
- 7. Разработана программная библиотека для взаимодействия с SAT-решателями через API (программный интерфейс).
- 8. Проведены масштабные вычислительные эксперименты для подтверждения эффективности всех разработанных методов.

Научная новизна. Новыми являются все основные результаты, полученные в диссертации, в том числе:

- 1. Новые алгоритмы синтеза конечно-автоматных и модульных конечноавтоматных моделей, основанные на сведении к проблеме булевой выполнимости (SAT).
- 2. Новые методы оценивания декомпозиционной трудности булевых формул, кодирующих задачи синтеза ДУ-моделей.
- 3. Оригинальные алгоритмы решения трудных инстансов задачи SAT, использующие объединение нескольких вероятностных лазеек.
- 4. Решение экстремально трудных задач синтеза ДУ-моделей при помощи разработанных алгоритмов.

Основные положения, выносимые на защиту.

- 1. Оригинальные алгоритмы кодирования в SAT задачи синтеза конечноавтоматных моделей, отличающиеся от существующих добавлением кодирования структуры охранных условий в виде деревье разбора соответствующих формул.
- 2. Оригинальные алгоритмы кодирования в SAT задачи синтеза булевых схем и булевых формул по заданной таблице истинности, отличающиеся от существующих возможностью использования произвольных элементарных гейтов.
- 3. Оригинальные алгоритмы оценивания декомпозиционной трудности булевых формул применительно к задачам верификации логических схем, отличающиеся от существующих учётом особенностей исходной задачи.
- 4. Программная библиотека^{1,2} для взаимодействия с различными SATрешателями через API (программный интерфейс), отличающаяся от существующих полнотой, гибкостью и удобством.

¹Для языка Kotlin: https://github.com/Lipen/kotlin-satlib

²Для языка Rust: https://github.com/Lipen/sat-nexus

Теоретическая и практическая значимость. Теоретическая значимость диссертации заключается в разработанных в ней концепциях и алгоритмах решения задач синтеза ДУ-моделей и методах построения оценок трудности таких задач. Практическая значимость диссертации состоит в том, что основные разработанные в ней алгоритмы применимы к индустриальным задачам синтеза и верификации ДУ-моделей, а также в том, что на целом ряде конкретных примеров практическая реализация и апробация разработанных алгоритмов демонстрируют лучшую эффективность в сравнении с известными подходами.

Методы и инструменты исследования. Теоретическая часть работы использует методологию дискретной математики и математической логики, теории вычислительной сложности,а также теорию эволюционных вычислений. Для синтеза конечно-автоматных моделей был использован программный комплекс fbSAT, разработанный в рамках данной диссертации³. При построении вычислительных задач из области проверки логической эквивалентности схем использовалась программная система Transalg⁴. Для решения конкретных инстансов задачи SAT использовались различные современные SAT-решатели, находящиеся в открытом доступе, такие как MiniSAT, Glucose, Kissat, CaDiCaL. В вычислительных экспериментах задействовался вычислительный кластер.

Соответствие специальность. Содержание научно-квалификационной работы охватывает такие направления как: синтез и верификация управляющих систем дискретной природы; разработку проблемно-ориентированных комбинаторных алгоритмов, применимых к автоматическому проектированию и верификации ДУ-моделей; разработку алгоритмов декомпозиции сложных эксземпляров комбинаторных задач; разработку программных средств для эффективного взаимодействия и SAT-решателями; разработку специализированных SAT-решателей, учитывающих особенности решаемых задач. Программная библиотека, являющаяся одним из основных практических результатов диссертации, обеспечивает эффективное взаимодействие с SAT-решателями через программный интерфейс (API), а также содержит дополнительный функционал для кодирования (сведения) комбинаторных задач в SAT. Таким образом, можно утверждать, что работа соответствует паспорту специальности 2.3.5 (05.13.11) в пунктах 1 и 3.

Достоверность результатов проведённых исследований. [TODO]

³https://github.com/ctlab/fbSAT

⁴https://gitlab.com/transalg/transalg

Апробация работы. Основные результаты диссертации докладывались на следующих конференциях:

- VIII Конгресс молодых ученых, Университет ИТМО, Санкт-Петербург, 2019.
- Конференция СПИСОК-2019, СПбГУ, Санкт-Петербург, 2019.
- ІХ Конгресс молодых ученых, Университет ИТМО, Санкт-Петербург, 2020.
- Конференция ППС 2021, Университет ИТМО, Санкт-Петербург, 2021.
- Х Конгресс молодых ученых, Университет ИТМО, Санкт-Петербург, 2021.
- Воркшоп SAT/SMT Solvers: Theory and Practice, Санкт-Петербург, 2021.
- XI Конгресс молодых ученых, Университет ИТМО, Санкт-Петербург, 2022. Диссертационная работа была выполнена при поддержке грантов и проектов:
- Грант РФФИ №19-07-01195 А «Разработка методов машинного обучения на основе SAT-решателей для синтеза модульных логических контроллеров киберфизических систем».
- Грант №19-37-51066 Научное наставничество «Разработка методов синтеза конечно-автоматных алгоритмов управления для программируемых логических контроллеров в распределенных киберфизических системах».
- НИР-ФУНД 77051 «Исследование алгоритма тестирования на основе обучения и улучшения его эффективности», 2020-2021.
- НИР-ПРИКЛ 222004 «Алгоритмы решения SAT для логических схем и анализа программ», 2021-2023.
- НИР-ПРИКЛ 223099 «Алгоритмы решения SAT для логических схем и анализа программ», 2023-2024.

Публикации по теме диссертации. Основные результаты по теме диссертации изложены в 9 публикациях. Из них 3 опубликовано в изданиях, индексируемых в базе цитирования Scopus.

Структура и объём работы. Диссертация состоит из введения, 3 глав, заключения и 0 приложений. Полный объём диссертации составляет 87 страниц, включая 7 рисунков и 4 таблицы. Список литературы содержит 69 наименований.

Глава 1. Обзор предметной области

В данной главе представлены основные понятия и существующие результаты.

1.1 Конечные автоматы

Конечный автомат (КА) — это одна из простых моделей вычислений, свойствам которых посвящено огромное число работ. [ТООО ссылки] КА описывает систему с конечным числом состояний и переходов между ними. Конечный автомат может быть задан в виде пятерки $\mathcal{A} = \langle \Sigma, Q, q_0, F, \delta \rangle$, где:

- Σ алфавит входных символов;
- Q (конечное) множество состояний;
- q_0 ∈ Q начальное состояние;
- $F \subseteq Q$ множество терминальных (принимающих) состояний;
- δ : $Q \times \Sigma$ → Q функция переходов.

Конечный автомат *принимает* (accepts) слово $w = w_1 w_2 \dots w_n \in \Sigma^*$, если после прочтения w автомат оказывается в одном из терминальном состоянии $s_n \in F$, то есть существует последовательность состояний s_0, s_1, \dots, s_n такая, что $s_0 = q_0$, $s_{i+1} = \delta(s_i, w_{i+1})$ для всех $i \in \{0, 1, \dots, n-1\}$ и $s_n \in F$.

В настоящей работе исследуются задачи синтеза КА, обладающих определенными свойствами, а также задачи верификации уже построенных КА на предмет соответствия конкретным спецификациям [1].

1.2 Булевы схемы

Булева схема — это направленный ациклический ориентированный граф $G = \langle V, E \rangle$, где V — множество вершин, а $E \subseteq V^2$ — множество рёбер ($\partial y \varepsilon$). Вершины такого графа делятся на три типа: входные вершины (inputs), выходные вершины (outputs) и внутренние вершины (gates). Pebpo (dyea) представляет собой упорядоченную пару вершин. Для каждой дуги (u,v) $\in E$, вершина u называется

родителем v, а v — потомком u. Множество всех родителей вершины v обозначается как P_v . Вершина называется входной, если у нее нет родителей, и выходной, если у нее нет потомков¹. Множества входов и выходов обозначаются как $V^{\rm in} \subseteq V$ и $V^{\rm out} \subseteq V$ соответственно. Любая вершина $v \in V \setminus V^{\rm in}$ называется гейтом (логическим вентилем). В булевой схеме каждому гейту сопоставляется некоторый логический элемент из предопределенного набора, называемого базисом (например, $\{\land, \neg\}$). Таким образом, любой логический элемент интерпретирует некоторую элементарную булеву функцию. Пример булевой схемы представлен на Рисунке 1.

Рисунок 1 — Пример булевой схемы с тремя входами (i_1, i_2, i_3) и восьмью гейтами

Булева схема с n входами и m выходами естественным образом задает (тотальную) дискретную функцию $f \colon \{0,1\}^n \to \{0,1\}^m$, где под $\{0,1\}^k$ мы понимаем множество всех возможных двоичных слов длины $k \in \mathbb{N}^+$. Имея это в виду, мы будем использовать обозначение S_f для представления булевой схемы, задающей функцию f. Каждому гейту схемы S_f сопоставлена булева функция, которая соответствует логическому элементу, назначенному этому гейту.

Пусть $\alpha \in \{0,1\}^n$ произвольное слово, поданное на вход S_f . Проходя по гейтам схемы в фиксированном порядке (обычно указанном топологической сортировкой [2]) и вычисляя значения элементарных функций, сопоставленных гейтам, мы получаем значение функции f на входном слове α в качестве результата. Этот процесс называется интерпретацией схемы S_f на входе α .

Каждой вершине в схеме S_f сопоставим булеву переменную. Обозначим множество переменных, ассоциированных с входами $V^{\rm in}$ схемы S_f , как $X^{\rm in}=\{x_1,\ldots,x_n\}$. Переменные, связанные с гейтами, мы будем называть вспомогательными (auxiliary). Пусть u — некоторая вспомогательная переменная, соответствующая гейту v, и

¹Здесь стоит отметить, что вполне возможны вариации данных определений. В некоторых ситуациях *входными/выходными* вершинами в схеме считаются некоторые заранее выбранные вершины, но при этом у них могут быть родители/потомки, соотвественно. В зависимости от контекста, эти родители/потомки игнорируются в соответствующих определениях, связанных с обходом вершин графа от *входов* к *выходам*.

 U_v — множество переменных, связанных с вершинами из P_v . Предположим, что h_v — булева функция, соответствующая логическому элементу, назначенному гейту v, и $F(h_v)$ — булева формула над U_v , которая задает функцию h_v . Обозначим через C_v КНФ-представление формулы $F(h_v) \equiv u$.

Рассмотрим следующую КНФ:

$$C_f = \bigwedge_{v \in V \setminus V^{\text{in}}} C_v \tag{1}$$

Мы будем обозначать (1) как *шаблонную КНФ* для функции f. Заметим, что C_f является КНФ-формулой, полученной применением преобразований Цейтина [3] к схеме S_f .

Ниже, следуя работе [4], будем использовать обозначение x^{σ} , где $\sigma \in \{0,1\}$, предполагая, что x^0 обозначает отрицательный литерал $\neg x$, а x^1 обозначает положительный литерал x, а также обозначение $\{0,1\}^{|B|}$, что означает множество всех возможных назначений переменных из B. Следующий факт был многократно установлен в литературе, например, см. [5; 6]. Он использует простой механизм булевой дедукции, известный как правило распространения единичного дизъюнкта (Unit Propagation — UP) [7].

Лемма 1. Применение UP к КНФ-формуле $x_1^{\alpha_1} \wedge \cdots \wedge x_n^{\alpha_n} \wedge C_f$ для любого $\alpha = (\alpha_1, \ldots, \alpha_n)$, $\alpha \in \{0,1\}^{|X^{in}|}$ выводит (в форме единичных дизъюнкций) значения всех переменных, связанных с гейтами из $V \setminus V^{in}$, включая переменные y_1, \ldots, y_m , связанные с выходами схемы S_f : $y_1 = \gamma_1, \ldots, y_m = \gamma_m$, $f(\alpha) = \gamma = (\gamma_1, \ldots, \gamma_m)$.

Стоит отметить, что Лемма 1 в сущности означает, что процесс интерпретации схемы S_f на входном слове α может быть смоделирован последовательным применением UP к КНФ $C_f \wedge x_1^{\alpha_1} \wedge \cdots \wedge x_n^{\alpha_n}$ для любого $\alpha = (\alpha_1, \dots, \alpha_n)$. Лемма 1 очень полезна при доказательстве свойств, связанных с булевыми схемами и SAT.

1.3 Международный стандарт IEC 61499

Международный стандарт распределенных систем управления и автоматизации IEC 61499 [8] нацелен на упрощение разработки распределенных киберфизических систем. Стандарт отличается от «предыдущего» стандарта IEC 61131[9] тем, что в IEC 61499 используется событийная модель исполнения. Этот стандарт предлагает

использование так называемых *функциональных блоков* (ФБ), являющихся, посути, контейнерами для базовых элементов — управляющих конечных автоматов. Основные типы описываемых в стандарте IEC 61499 функциональных блоков — *базовые* и *композитные*. Функционал композитных блоков определяется сетью базовых ФБ. Базовые ФБ являются совокупностью интерфейса (описания входных и выходных событий и переменных) и управляющего конечного автомата (*Execution Control Chart* — ECC).

1.4 Методы синтеза конечно-автоматных моделей

Задача поиска минимального детерминированного конечно автомата по примерам поведения является NP-полной задачей [10], а сложность задачи LTL-синтеза дважды экспоненциальная от размера LTL-спецификации. Не смотря на это, синтез различных типов конечно-автоматных моделей по примерам поведения и/или формальной спецификации был исследован во многих научных работах [11—22], где используются методы, основанные на эвристическом объединении состояний (state merging), эволюционные алгоритмы, а также методы, основанные на применении SAT-и SMT-решателей. В данной работе рассматриваются только точные и эффективные методы, поэтому внимание уделяется методам с применением SAT-решателей.

Расширенный конечный автомат (Extended Finite State Machine — EFSM) является моделью, наиболее близкой к рассматриваемой в данной работе модели ECC. EFSM является объединением автомата Мили и Мура, расширенный условными переходами. Переходы в EFSM помечены входными событиями и охранными условиями — булевыми функциями от входных переменных, а состояния EFSM имеют ассоциированные выходные действия. Для синтеза EFSM по примерам поведения и LTL-спецификации существует несколько подходов [12; 23], основанных на сведении к задаче SAT. В [12] LTL-спецификация учитывается путём применения итеративного подхода запрета контрпримеров. Существенным недостатком [12] является то, что охранные условия должны быть известны заранее, а также то, что синтезируемые алгоритмы в состояниях EFSM являются лишь указаниями на некоторые внешние процедуры. В [23] решается задача синтеза вычислимых выходных алгоритмов, однако предполагается, что базовая модель автомата (то есть его структура — состояния и переходы между ними) известна заранее или получается отдельно. В

общем случае, при использовании исходных данных, получаемых при black-box тестировании системы, информация о внутреннем устройстве системы, а также о доступных внешних процедурах и их поведении, оказывается недоступной, поэтому существующие методы синтеза EFSM не подходят для решения задачи синтеза модели ECC, рассматриваемой в данной работе.

Программное средство BoSy [15; 24] реализует так называемый ограниченный синтез (bounded synthesis) системы переходов (transition system) по LTL-спецификации. Синтез «ограничен» в том смысле, что позволяет синтезировать систему заданного размера, либо гарантировать отсутствие решения заданного размера. В BoSy реализовано не только сведение задачи LTL-синтеза к SAT, но также разработано более эффективное (при рассмотренной авторами постановке задачи) сведение с использованием Quantified SAT (QSAT). При использовании SAT-кодировки, синтезируемые системы переходов являются «явными» (explicit) — охранные условия на переходах являются полными зависят от всех входных переменных. При использовании QSAT-кодировки, системы получаются «символьными» (symbolic) — охранные условия синтезируются в виде полноценных булевых формул. Используемые в ВоЅу подход ограниченного синтеза позволяет синтезировать минимальные модели в терминах числа состояний, однако важный вопрос о размере охранных условий обходится стороной — синтезируемые модели, как правило, обладают огромными охранными условиями, что сильно затрудняет их восприятие человеком, а также ограничивает применимость таких моделей во встраиваемых системах. В [25] предлагается способ упрощения генерируемых моделей, заключающийся в дополнении SAT сведения специальными ограничениями для минимизации числа циклов в системе переходов, однако это слабо влияет на размеры и форму охранных условий. Также стоит упомянуть, что отличительной особенностью LTL-синтеза является то, что в качестве входных данных не используются примеры поведения, так как предполагается полнота входной спецификации — в том смысле, что она описывает все желаемое поведение системы. Не смотря на то, что примеры поведения могут быть представлены в виде LTLсвойств, этот подход становится крайне неэффективным уже на небольших наборах данных. Другие программные средства для LTL-синтеза, например G4LTL-ST [21] и Strix [26], обладают аналогичными недостатками по отношению к рассматриваемой задаче, а именно, отсутствие минимизации охранных условий и невозможность (эффективного) учета примеров поведения.

В статье [27] предлагается метод FBCSP для синтеза конечно-автоматных моделей функциональных блоков по примерам поведения, основанный на сведении

к задаче удовлетворения ограничений (Constraint Satisfaction Problem — CSP). Однако методу FBCSP присущи следующие ограничения. Получаемые модели обладают полными охранными условиями — соответствующие булевы формулы зависят от всех входных переменных. Такие модели практически не обобщаются (generalize), то есть некорректно работают на входных данных, которые не были использованы в процессе «обучения» (синтеза). В [27] это отчасти исправляется дополнительной жадной минимизацией охранных условий, однако жадный подход не гарантирует, что охранные условия будут наименьшими. В работе [28] метод FBCSP был расширен процедурой запрета контрпримеров для учета LTL-спецификации (в дальнейшем это расширение будет называться FBCSP+LTL), аналогично работе [12]. При этом охранные условия в генерируемых моделях представляются в виде конъюнкции литералов входных переменных. Основным недостатком этого подхода является его низкая эффективность в тех случаях, когда темпоральная спецификация покрыта сценариями выполнения не полностью.

В работе [29] разработан двухэтапных подход: сначала генерируется *базовая* модель с использованием метода, основанного на SAT, а затем охранные условия полученной модели отдельно минимизируются с помощью CSP — деревья разбора булевых формул, соответствующих охранным условиям, кодируются в CSP, а затем минимизируется их суммарный размер. Таким образом, получаемая модель является минимальной, однако независимость двух этапов приводит к тому, что модель не является наименьшей (в терминах суммарного размера охранных условий).

Резюмируя, ни один из рассмотренных методов, каждый из которых по своему хорош при конкретной постановке задачи, не позволяет одновременно и эффективно учитывать при синтезе конечно-автоматных моделей как (1) примеры поведения, так и (2) LTL-спецификацию, а также (3) минимальность генерируемых моделей. В ходе выполнения данной работы был разработан метод, который фактически является расширением [29] — объединением двух независимых этапов в один — и вносит вклад в расширение state-of-the-art конечно-автоматного синтеза с применением SAT-решателей, а именно: одновременно поддерживает учет позитивных примеров поведения, реализует индуктивный синтез, основанный на контрпримерах — для учета LTL-спецификации, а также позволяет генерировать минимальные модели — как в терминах числа состояний, так и в терминах суммарного размера охранных условий.

1.5 Линейная темпоральная логика

Формальная спецификация может быть проверена с помощью верификатора (model checker) — специализированного программного средства, которое проверяет выполнение заданных свойств в системе и генерирует контрпримеры к нарушенным свойствам. В данной работе был использован символьный верификатор NuSMV [30], а рассмотренные спецификация систем были составлены на языке линейной темпоральной логики (Linear Temporal Logic — LTL) [31], полностью поддерживаемом NuSMV. Для так называемых «свойств безопасности» (safety properties), выражающих отсутствие нежелательного поведения (например, «с системой никогда не произойдёт ничего плохого»), контрпримером является конечная последовательность вычислительных состояний (execution state), приводящая к нежелательному поведению. Для так называемых «свойств живости» (liveness properties), выражающих присутствие желаемого поведения (например, «с системой точно произойдет что-то хорошее»), контрпримером является бесконечная, но циклическая последовательность состояний, представляющая нежелательное циклическое поведение системы, и которая может быть представлена в виде конечного префикса с последующим циклом конечной длины [32].

1.6 Синтез булевых формул и схем

Задача синтеза булевой формулы заключается в построении логической формулы, зависящей от N переменных $x_1 \dots x_N$ (возможно, не от всех, то есть некоторые переменные могут не использоваться в полученной формуле), по заданной таблице истинности, с использованием заданных логических операций. Заданная таблица истинности может быть как полной (размера 2^{2^N}), так и частичной — для некоторых наборов переменных (в дальнейшем также называемых «входами») значение логической функции может быть не определено. Соответствующая логическая функция имеет ровно один логических выход, значения для которого на различных входах и записаны в таблице истинности. Стоит отметить, что список допустимых логических операций может варьироваться, также как и возможность применения операций к подвыражениям, в зависимости от желаемого результата (например, формулы в так

называемой нормальной форме отрицания (negation normal form) могут содержать логическое отрицание, применяемое только к переменным, но не к комплексным выражениям). В данной работе рассматривается задача синтеза булевой формулы, содержащей следующие логические операции, без дополнительных ограничений на их применимость к подвыражениям: \land (логическое И), \lor (логическое ИЛИ) и \neg (логическое отрицание).

В данной работе рассматривается задача синтеза минимальной булевой формулы, то есть формулы минимального размера, удовлетворяющей заданной таблице истинности. Несмотря на простоту формулировки, задача синтеза минимальной булевой формулы по полной или частичной таблице истинности является NPтрудной [Aks18]. На практике данная задача обычно решается с помощью эвристических подходов, не гарантирующих минимального ответа. Наиболее часто используемым подходом является использование метода Espresso [Bra84], реализация которого доступна в виде одноименного программного средства. Несмотря на то, что этот эвристический подход был разработан относительно давно, его успех до сих пор не был существенно преодолен — многие современные подходы в той или иной степени являются модификациями Espresso, например, BOOM-II [Fis06]. Метод Espresso позволяет синтезировать «минимальные» булевы формулы по заданным полным или частичным таблицам истинности, включая возможность синтезировать функции с множественными выходами. В процессе минимизации могут использоваться различные оптимизационные критерии, например, суммарное число логических вентилей или число использованных литералов. Отличительной особенностью данного метода является его высокая эффективность. Однако стоит отметить, что получаемое с помощью Espresso решение не является «точным», то есть не является наименьшим — возможно существование меньшего решения, даже при использовании большого числа итераций. В тех случаях, когда требуется «точное» решение, то есть наименьшая из возможных булевых формул, необходимо использование других подходов, например, программирование в ограничениях, а именно, сведение к задаче выполнимости.

Для логической формулы может быть построено дерево разбора — укорененное (rooted) дерево, во внутренних узлах которого находятся логические операции, а вершины-листья отмечены переменными $x_1 \dots x_N$. Связи между вершинами соответствуют применению соответствующих операций к вершинам-потомкам. Каждое поддерево такого дерева разбора может рассматриваться как некоторое подвыражение исходной формулы. Размер дерева разбора — число вершин, из

которых оно состоит (включая вершины-листья). Размер логической формулы — размер соответствующего дерева разбора. В дальнейшем размер дерева разбора или булевой формулы будет обозначаться как P.

Сведение задачи к SAT обычно выглядит как декларативное описание с помощью логических переменных и ограничений структуры желаемого решения и его взаимодействия с исходными данными. Вкратце, в случае рассматриваемой задачи синтеза булевой формулы от N переменных, необходимо закодировать структуру дерева разбора синтезируемой формулы заданного размера P, а также логические значения каждой вершины дерева разбора (каждая вершина соответствует некоторому подвыражению; корень дерева соответствует всей формуле) на различных входах. После этого необходимо добавить ограничение на соответствие значений синтезируемой функции значениям в заданной таблице истинности. Полученную в результате такого сведения SAT-формулу (в КНФ) необходимо решить с помощью SAT-решателя для получения либо искомой булевой формулы заданного размера P, либо доказательства ее несуществования для заданного P.

Для нахождения минимальной булевой формулы необходимо каким-либо образом определить минимальное значение P, при котором решение существует. Для этого в данной работе используется перебор параметра P снизу вверх, начиная с единицы — таким образом, первое найденное решение будет минимальным из возможных. При этом в данной работе используется два подхода: (1) итеративный подход, при котором SAT-решатель перезапускается на каждом шаге для каждого нового значения P; и (2) инкрементальный подход, при котором на очередной итерации перебора параметра P сведение расширяется только теми ограничениями, которые зависят от нового значения P, а вызовы SAT-решателя производятся с использованием предположений (assumptions), что позволяет не перезапускать SAT-решатель даже после получения UNSAT — сообщения об отсутствии решения при заданных ограничениях.

Рассмотрим подробнее составляющие сведения к SAT. Параметр P отвечает за размер синтезируемой формулы — число вершин дерева разбора. Вершины дерева разбора нумеруются последовательно, начиная с корневой, имеющей индекс 1. В общем случае порядок индексации вершин не имеет значения, однако на практике использование нумерации вершин дерева в порядке BFS-обхода (Breadth- $First\ Search$ — поиск в ширину) позволяет существенно сократить размер сведения, а также избавиться от большого числа изоморфных решений, что положительно влияет на эффективность метода — это так называемое «нарушение симметрий» [33],

широко используемое при решении задач с помощью методов программирования в ограничениях. Для обеспечения BFS-нумерации необходимо, во-первых, чтобы для любой пары смежных вершин дерева (родитель–потомок) номер родительской вершины был меньше номера потомка; а во-вторых, чтобы вершины-потомки нумеровались по порядку, без пропусков индексов. В рассматриваемой задаче вершины могут иметь не более двух потомков — с номерами c и (c+1), где c>p.

Каждая вершина дерева может быть либо одной из допустимых логических операций (\land,\lor,\lnot) , либо терминалом, что кодируется с помощью переменной $\tau_p\in\{\land,\lor,\lnot,\bot\}$, где $p\in[1..P]$, а \bot соответствует вершине-терминалу. Переменная $\chi_p\in[0..N]$ кодирует номер переменной (от 1 до N), которой соответствует вершина p. Только вершины-терминалы имеют ассоциированные переменные: $(\tau_p=\bot)\iff (\chi_p=0)$.

Переменная $\pi_p \in [0..(p-1)]$, где $p \in [1..P]$, кодирует номер родительской вершины для вершины p. Как было упомянуто выше, номер родителя при использовании BFS-нумерации должен быть меньше номера самой вершины p, поэтому доменом этой переменной является диапазон от 0 до (p-1). При этом $\pi_p = 0$ означает, что у вершины p в дереве нет родителя — это выполняется только для корневой вершины.

Переменная $\sigma_p \in \{0\} \cup [(p+1)..P]$, где $p \in [1..P]$ кодирует номер левого потомка вершины p. Взаимосвязь между переменными π и σ кодируется следующим образом: $(\sigma_p = c) \to (\pi_c = p)$. В том случае, если тип вершины p — терминал, то такая вершина не имеет потомков: $(\tau_p = \bot) \to (\sigma_p = 0)$. В том случае, если вершина p имеет тип бинарной операции (\wedge или \vee), то вершина p считается правым потомком вершины p: $(\tau_p \in \{\wedge, \vee\}) \wedge (\sigma_p = c) \to (\pi_{c+1} = p)$.

Переменная $\vartheta_{p,u} \in \mathbb{B}$ ($p \in [1..P]$, $u \in U$) кодирует логическое значение вершины p на входе u. Значение корневой вершины соответствует значению всей синтезируемой функции и должно совпадать со значением, указанным в заданной таблице истинности. Значения вершин рассчитываются исходя из их типа, что декларативно можно описать следующими ограничениями:

$$(\tau_{p} = \bot) \land (\chi_{p} = x) \to \bigwedge_{u \in U} (\vartheta_{p,u} \iff u_{x})$$

$$(\tau_{p} = \land) \land (\sigma_{p} = c) \to \bigwedge_{u \in U} (\vartheta_{p,u} \iff \vartheta_{c,u} \land \vartheta_{c+1,u})$$

$$(\tau_{p} = \lor) \land (\sigma_{p} = c) \to \bigwedge_{u \in U} (\vartheta_{p,u} \iff \vartheta_{c,u} \lor \vartheta_{c+1,u})$$

$$(\tau_p = \neg) \land (\sigma_p = c) \rightarrow \bigwedge_{u \in U} (\vartheta_{p,u} \iff \neg \vartheta_{c,u})$$

Экспериментальное исследование

Был произведен синтез минимальных формул для всех 256 булевых функций от X=3 переменных с использованием двух подходов поиска минимального значения параметра P — размера дерева разбора синтезируемой формулы: (1) итеративный перебор с перезапуском SAT-решателя на каждом шаге (суммарное время — 171 с), (2) инкрементальное расширение сведения с использованием предположений на каждом шаге (суммарное время — 185 с). Результаты проведенного экспериментального сравнения представлены на Рисунке 2 (слева), где оси соответствуют времени (в секундах, в логарифмической шкале) поиска минимальной булевой формулы двумя подходами, а каждая точка (всего 256 точек) соответствует отдельной булевой функции от X=3 переменных. Пунктирная красная линия (baseline) соответствует равенству времени работы двух подходов. Скопление точек сосредоточено около базовой линии, что свидетельствует о том, что оба подхода позволяют решать поставленную задачу примерно одинаково эффективно.

Можно заметить, что большинство минимальных формул для функций от трех переменных были найдены менее, чем за одну секунду — сравнение на таких масштабах времени в контексте решения NP-трудных задач не является целесообразным. Поэтому были проведен дополнительный набор экспериментов на данных большей размерности и более «сложных» булевых функциях — от X=5 переменных. Результаты приведены на $Puc.\ 1$ (справа), где показаны только точки со временем работы, превышающим 10 секунд (всего 54 точки). Данный график — а именно, точки в правой части графика под базовой линией — позволяет судить о том, что инкрементальный подход действительно обеспечивает лучшую производительность в рассмотренной задаче синтеза минимальной булевой формулы.

Рисунок 2 — Графики сравнения времени работы алгоритма синтеза минимальной булевой формулы (слева — от трех переменных, справа — от пяти переменных) для двух подходов: итеративный (горизонтальная ось) и инкрементальный (вертикальная ось). Время работы указано в секундах (слева — на логарифмической шкале). Каждая точка на графике соответствует булевой функции. На правом графике показаны только точки со временем работы, превышающим 10 секунд.

1.7 Задача проверки эквивалентности булевых схем

Задача проверки эквивалентности булевых схем (Logical Equivalence Checking — LEC) является одной из ключевых комбинаторных проблем в автоматизации проектирования электроники. В этом разделе даны основные понятия о LEC, которые будут использованы в дальнейшем.

Рассмотрим две булевы схемы S_f , S_h , определяющие функции $f,h:\{0,1\}^n \to \{0,1\}^m$. Задача LEC заключается в том, чтобы определить, являются ли две заданные схемы эквивалетными, то есть обладают одинаковыми выходами на всех возможных входах, что выражается в том, что соответствующие функции поточечно равны, $f\cong h$. Задача LEC может быть сведена к задаче выполнимости булевых формул (SAT), ниже это показано на примерах.

Используя S_f и S_h , построим новую схему, обозначаемую $S_{f \triangle h}$ (см. Рисунок 3), которая получается из S_f и S_h путем «склейки» вместе входных вершин — обозначим её $S_{f \triangle h}$. Она имеет тот же набор входов $V^{\rm in}$ как и S_f и S_h , и определяет следующую

Рисунок 3 — Склеенная схема $S_{f \triangle h}$, построенная с использованием одного и того же набора входов для двух схем S_f и S_h

функцию:

$$f \triangle h \colon \{0,1\}^n \to \{0,1\}^{2m}$$
 (2)

Обозначим через V_f^{out} и V_h^{out} множества выходов схем S_f , S_h , а через $Y_f = \{y_1^f, \ldots, y_m^f\}$ и $Y_h = \{y_1^h, \ldots, y_m^h\}$ множества переменных, связанных с вершинами из V_f^{out} и V_h^{out} соответственно, упорядоченные согласно семантике схем. Теперь рассмотрим формулу $(y_1^f \oplus y_1^h) \vee \cdots \vee (y_m^f \oplus y_m^h)$, которая задает булеву функцию $\mathcal{M} \colon \{0,1\}^{2m} \to \{0,1\}$, называемую miter [34]. Мы обозначим булеву схему, реализующую функцию $\mathcal{M} \circ (f \triangle h)$ как $S_{f \oplus h}$ и будем ссылаться на нее как на miter-схему. Рассмотрим формулу

$$C_{f \oplus h} = C_{f \triangle h} \wedge C(\mathcal{M}), \tag{3}$$

где $C_{f riangle h}$ — шаблонная CNF для функции (2), а $C(\mathcal{M})$ выглядит следующим образом:

$$C(\mathcal{M}) = C(w_1 \equiv (y_1^f \oplus y_1^h)) \wedge \cdots \wedge \\ \wedge C(w_m \equiv (y_m^f \oplus y_m^h)) \wedge \\ \wedge (w_1 \vee \cdots \vee w_m),$$

где $C(w_j \equiv (y_j^f \oplus y_j^h)), j \in \{1, \dots, m\}$ — CNF-представление булевой функции, заданной формулой $w_j \equiv (y_j^f \oplus y_j^h)$. Из Леммы 1 непосредственно следует, что S_f и S_h эквивалентны тогда и только тогда, когда $C_{f \oplus h}$ невыполнима.

1.8 Задача генерации тестовых шаблонов для верификации булевых схем

В этом разделе рассматривается задача автоматической генерации тестовых шаблонов (Automatic Test Pattern Generation — ATPG) для верификации булевых схем. Сначала вводится понятие модели неисправностей (fault model). Затем формулируется задача генерации шаблонов (ATPG) для комбинационных (combinational) булевых схем. Также упоминается секвенциальная (sequential) постановка задачи ATPG для схем с элементами памяти, такими как триггеры (flip-flops). Наконец, кратко рассматриваются классические алгоритмы ATPG, работающие на структуре схемы. В разделе ?? отдельно рассматриваются методы решения задачи ATPG, основанные на сведении к задаче выполнимости (SAT), как наиболее релевантные к текущей работе.

Модель неисправности Stuck-At

После производства чипа необходимо проверить его функциональную корректность относительно спецификации схемы на уровне булевых элементов. Без этой проверки некорректный чип будет доставлен заказчикам, что может привести к неполадкам в конечном продукте. Это, конечно же, недопустимо. С другой стороны, из-за дефектов материала, вариаций процесса во время производства и т. д. возможен широкий диапазон неисправностей. Но непосредственная проверка всех возможных физических дефектов невозможна. Поэтому вводится абстракция в виде модели неисправности. Модель неисправности Stuck-At (SAFM) [BF76] хорошо известна и широко используется на практике. В этой модели неисправности предполагается, что одна линия застряла на фиксированном значении вместо зависимости от значений входов. Когда линия застряла на значении 0, это называется неисправностью stuck-at-0 (SA0). Аналогично, если линия застряла на значении 1, это называется неисправностью stuck-at-1 (SA1).

Пример. Рассмотрим схему, показанную на рисунке 27.7(а). Когда на линии d вводится неисправность SAO, получается неисправная схема, показанная на рисунке 27.7(b). Выход элемента И отключается, и вход элемента ИЛИ постоянно принимает значение O.

Помимо SAFM было предложено ряд других моделей неисправностей, например, клеточная модель неисправностей [Fri73], где меняется функция одного элемента, или модель мостовой неисправности [KP80], где предполагается, что две линии устанавливаются в одно значение. Эти модели неисправностей в основном охватывают статические физические дефекты, такие как обрывы или замыкания. Динамические эффекты охватываются моделями неисправностей задержки. В модели неисправности по задержке пути [Smi85] одна неисправность означает, что изменение значения вдоль пути от входов к выходам в схеме не приходит в течение времени цикла тактового сигнала. Вместо путей модель неисправности задержки на входах элементов [HRVD77, SB77] учитывает задержку в элементах.

Далее рассматривается только SAFM из-за его высокой значимости в практических применениях. Эту значимость можно объяснить двумя наблюдениями: количество неисправностей имеет порядок размера схемы, и моделирование неисправностей в SAFM относительно просто, то есть для статической модели неисправностей вычислительная сложность генерации тестовых шаблонов ниже по сравнению с динамическими моделями неисправностей.

Комбинационный ATPG

Автоматическая генерация тестовых шаблонов (ATPG) — это задача определения всех набора тестовых шаблонов для заданной схемы с учетом модели неисправностей. Тестовый шаблон для конкретной неисправности — это назначение на основные входы схемы, которое приводит к различным выходным значениям в зависимости от наличия неисправности. Вычисление булевой разности между бездефектной и неисправной схемами дает все тестовые шаблоны для конкретной неисправности. Эта конструкция аналогична схеме *miter* [34], поскольку ее можно использовать для проверки эквивалентности комбинационных схем.

Пример. Снова рассмотрим неисправность SA0 в схеме на рисунке 27.7. Назначение входов $a=1,\,b=1,\,c=1$ приводит к значению выхода f=1 для корректной схемы и к значению выхода f=0 в случае наличия неисправности. Поэтому это назначение входов является тестовым шаблоном для неисправности SA0 на линии d. Конструкция для вычисления булевой разности бездефектной и неисправной схем показана на рисунке 27.8.

Когда тестовый шаблон существует для конкретной неисправности, эта неисправность классифицируется как *тестируемая* (*testable*). Если тестовый шаблон отсутствует, неисправность называется *избыточной* (*redundant*). Проблема классификации неисправности как тестируемой или избыточной является NP-полной. Задача ATPG заключается в классификации всех неисправностей и создании набора тестовых шаблонов, содержащего хотя бы один тестовый шаблон для каждой испытуемой неисправности.

Генерация тестовых шаблонов для схем, содержащих элементы состояния (памяти), такие как триггеры (flip-flops), вычислительно более сложна, потому что элементы памяти не могут быть непосредственно установлены в определенное значение. Вместо этого поведение схемы во времени должно рассматриваться во время АТРG. Было предложено ряд инструментов, которые непосредственно решают эту секвенциальную проблему, например, HITEC [NP91]. Но на практике получаемая модель часто слишком сложна для обработки с помощью инструментов АТРG. Поэтому обычно рассматривается полный режим сканирования для преодоления этой проблемы путем подключения всех элементов состояния в цепочку сканирования [WA73, EW77]. В режиме тестирования цепочка сканирования объединяет все элементы состояния в сдвиговый регистр, в нормальном режиме работы элементы состояния управляются обычной логикой в схеме. В результате элементы состояния могут рассматриваться как основные входы и выходы для тестирования, и получается комбинационная постановка задачи АТРG, уже рассмотренная выше.

1.9 Задача булевой выполнимости

Задача выполнимости булевых формул (Boolean satisfiability problem — SAT) формулируется следующим образом [35]: для произвольной булевой формулы $\varphi(x_1,\ldots,x_n)$ необходимо определить, существует ли подстановка значений переменных X_{SAT} , при которой формула становится истинной, то есть, формально, $\exists X_{\text{SAT}} \in \{0,1\}^n: \varphi(X_{\text{SAT}}) = 1$. Если такая подстановка существует, то она называется удовлетворяющей (satisfying assignment; также используются термины модель и интерпретация), а формула φ называется выполнимой (SATisfiable). В противном случае, если удовлетворяющая подстановка не существует, φ называется невыполнимой (UNSATisfiable).

Задача SAT является первой задачей, для которой была доказана NPполнота [36]. [TODO Описание универсальности задачи SAT]

Если булева формула ϕ представлена в конъюктивной нормальной форме (КНФ), то соответствующую задачу называют CNF-SAT. Любая булева формула может быть преобразована в эквивалентную КНФ, однако при этом размер формулы может увеличиться экспоненциально, например:

$$n \ \text{конъюнкций} \begin{cases} (x_1 \wedge y_1) \vee & (x_1 \vee x_2 \vee \cdots \vee x_n) \wedge \\ (x_2 \wedge y_2) \vee & \xrightarrow{\text{КНФ}} & (y_1 \vee x_2 \vee \cdots \vee x_n) \wedge \\ \dots & \dots & \\ (x_n \wedge y_n) & (y_1 \vee y_2 \vee \cdots \vee y_n) \end{cases} 2^n \ \text{дизъюнкций}$$

С помощью преобразований Цейтина [3] возможно привести любую булеву формулу в КНФ — с сохранением выполнимости (equisatisfiable CNF), но с добавлением новых переменных (auxiliary variable) — при этом размер формулы увеличится лишь линейно. В данной работе подразумевается, что все булевы выражения, кодирующие задаваемые ограничения, подвергаются либо эквивалентным логическим преобразованиям, либо преобразованиям Цейтина, то есть по итогу представляются в виде КНФ.

1.10 Основные алгоритмы решения SAT

С учетом сказанного в предыдущем разделе, везде далее под задачей о булевой выполнимости (она же SAT) в распознавательном варианте понимается задача распознавания выполнимости произвольной булевой формулы в КНФ. SAT является исторически первой NP-полной задачей. Данный факт был установлен С.А. Куком (без привлечения точного определения NP-полноты) в статье [1], которая является основополагающей работой для структурной теории сложности алгоритмов. Помимо распознавательного варианта далее нас будет интересовать поисковый вариант SAT — когда требуется распознать выполнимость КНФ, и в случае ее выполнимости найти произвольный выполняющий набор. Данная задача, соответственно, NP-трудна. Сказанное означает, что в предположении $P \neq NP$, SAT не может быть решена в общем случае за полиномиальное время. При всем этом существует масса разнообразных аргументов в пользу того, что SAT (как и многие другие NP-трудные задачи) не является сложной в большинстве своих частных случаев. Именно этот

факт позволяет использовать современные алгоритмы решения SAT в задачах, комбинаторная размерность которых может быть колоссальной. Так, в символьной верификации удается успешно решать SAT в отношении КНФ, включающих миллионы дизъюнктов. Число переменных, встречающихся в таких КНФ, может исчисляться десятками и сотнями тысяч. В настоящем разделе мы кратко коснемся алгоритмов решения SAT, которые могут применяться к обращению функций вида (1)-(2). Существуют два больших класса алгоритмов решения SAT — полные и неполные. Неполные алгоритмы плохо подходят или не подходят совсем для решения задач, в которых требуется доказывать невыполнимость (соответственно, например, для символьной верификации). Однако они вполне могут использоваться для обращения функций.

В настоящей работе основным вычислительным инструментом являются полные алгоритмы решения SAT. Именно такие алгоритмы позволяют точно решать задачи верификации автоматов и булевых схем, то есть находить решение, если оно существует, либо гарантировать его отсутствие при заданных параметрах, что в том числе позволяет точно решать задачу минимизации.

1.10.1 Неполные алгоритмы решения SAT

Неполные алгоритмы решения SAT не гарантируют ответ SAT/UNSAT за конечное время для произвольной КНФ. Существует целый ряд различных концепций, лежащих в основе таких алгоритмов. Статья [2] представляет собой детальный обзор по данному вопросу, содержащий ключевые ссылки. В дальнейшем нас будут интересовать только те неполные алгоритмы решения SAT, в основе которых лежит идеология локального поиска или (в отдельных случаях) эволюционные стратегии. В таких алгоритмах задача SAT в отношении КНФ C над множеством из n переменных, состоящей из m дизъюнктов, рассматривается в форме задачи максимизации псевдобулевой функции

$$f_C: \{0,1\}^n \to \{0,1,\ldots,m\}.$$
 (9)

Напомним здесь, что псевдобулевой (см, например, [<mark>3</mark>]) называется любая функция вида

$$f \colon \{0,1\}^n \to \mathbf{R} . (10)$$

На произвольном наборе $\alpha \in \{0,1\}^n$ значение функции (9) равно числу дизъюнктов в C, которые на этом наборе обращаются в 1. Фактически в данном случае мы рассматриваем задачу SAT в оптимизационной постановке, известной как MaxSAT.

Рассматривая $\{0,1\}^n$ в роли пространства поиска, можно ввести на нем функцию окрестностей [4] $\mathbf{\aleph}: \{0,1\}^n \to 2^{\{0,1\}^n}$. Проще всего для этой цели использовать метрику Хэмминга [5], в рамках которой для произвольной точки $\alpha \in \{0,1\}^n$ ее окрестность Хэмминга радиуса $r,r \geqslant 1$, определяется следующим образом:

$$\aleph_r(\alpha) = \left\{ \alpha' \in \{0,1\}^n : \rho_H(\alpha, \alpha') \leqslant r \right\}. (11)$$

В (11) через $\rho_H(\alpha,\alpha')$ обозначено расстояние Хэмминга между словами α и α' . Чаще всего рассматриваются окрестности радиуса 1. В такой постановке для решения SAT и MaxSAT может использоваться, без преувеличения, огромный арсенал методов локального поиска. Мы проиллюстрируем общую идею, лежащую в основе таких методов, на примере простейшего алгоритма, известного как «Восхождение к вершине» («Hill Climbing» — далее НС) [6]. Опишем вариант НС, применимый для максимизации произвольной псевдобулевой функции вида (10).

- 1. выбираем (вообще говоря, произвольным образом, например, случайно в соответствии с равномерным распределением на $\{0,1\}^n$) стартовую точку $\alpha_0 \in \{0,1\}^n$, вычисляем $f(\alpha_0)$; считаем α_0 текущей точкой, а $f(\alpha_0)$ текущим значением f;
- 2. пусть $\alpha \in \{0,1\}^n$ текущая точка; обходим в некотором порядке $\aleph_1(\alpha) \setminus \{\alpha\}$, вычисляя для каждой точки α' из данного множества $f(\alpha')$. Если найдена такая точка $\alpha^{'} \in \aleph_1(\alpha) \setminus \{\alpha\}$, что $f(\alpha') > f(\alpha)$, перейти на шаг 2, в противном случае перейти на шаг 3;
- 3. $\alpha \leftarrow \alpha', f(\alpha) \leftarrow f(\alpha')$, перейти на шаг 1;
- 4. $(\alpha, f(\alpha))$ локальный максимум функции f на $\{0,1\}^n$ (поскольку для любой $\alpha' \in \aleph_1(\alpha) \setminus \{\alpha\}$ имеет место $f(\alpha') \leqslant f(\alpha)$); в этом случае алгоритм либо останавливается и выдает в качестве ответа $(\alpha, f(\alpha))$, либо запускает некоторую процедуру выхода из локального максимума.

Для выхода из локальных экстремумов можно дополнять приведенный выше базовый алгоритм различными техниками, основанными на эвристических и метаэвристических соображениях. Зачастую, выйдя из точки локального экстремума, можно оказаться в точке с худшим значением f. Такого сорта «выпрыгивания» из локальных экстремумов могут осуществляться в процессе поиска неоднократно. В этом случае обычно хранится точка с самым лучшим значением функции f, достигнутым за все историю поиска. Такое значение называется $pekop \partial om$ ($best\ known$)

value - BKV). Современные техники выхода из локальных экстремумов позволяют даже при решении весьма трудных задач многократно улучшать рекорд в процессе поиска. Если некоторое количество попыток выхода из локальных экстремумов не дает улучшения текущего рекорда f^* , достигнутого в точке α^* , то алгоритм останавливается и выдает в качестве ответа пару (α^*, f^*) .

Предположим, что НС применяется к задаче максимизации произвольной функции вида (9). Легко понять, что даже если дополнить НС какой-либо процедурой выхода из точек локального максимума, это не позволит безошибочно распознавать невыполнимость невыполнимых КНФ. С другой стороны, если рассматривается КНФ с большим числом выполняющих наборов, то НС (даже в самом простом варианте) может случайно натолкнуться на такой набор за приемлемое время. Известный пример данного типа — успешное использование НС для решения SAT в отношении КНФ, кодирующих задачу размещения k ферзей на шахматной доске размерности $k \times k$ [7]. Однако, к сожалению, НС и известные его модификации напрямую неприменимы к КНФ, кодирующим обращение интересных с практической точки зрения криптографических функций. Причем это верно даже в отношении КНФ с огромным числом выполняющих наборов — например, для КНФ, кодирующих задачи обращения криптографических хеш-функций.

Если некоторый алгоритм локального поиска, решающий задачу максимизации функции вида (9), слишком долго не может улучшить текущий рекорд $(\alpha, f_C(\alpha))$, где $f_C(\alpha) < m$, то данный алгоритм можно остановить с ответом «UNSAT» в отношении КНФ С. Этот ответ может оказаться ошибочным. Однако существуют специальные техники рандомизации локального поиска, использование которых позволяет оценивать вероятность ошибки указанного типа и даже снижать эту вероятность за счет выполнения алгоритмом большого числа некоторых случайных шагов. Один из самых известных примеров такого рода — алгоритм, предложенный У. Шёнингом в [<mark>8</mark>]. Данный алгоритм решает задачу о выполнимости произвольной k-КНФ, $k \ge 2$, то есть КНФ, каждый дизъюнкт которой имеет длину k. Алгоритм Шёнинга пытается улучшить значение функции (9), достигнутое в точке $\alpha \in \{0,1\}^n$, за счет случайного выбора и модификации тех дизъюнктов в КНФ C, которые обращаются в 0 на наборе α . Получаемый в результате процесс интерпретируется в рамках хорошо изученной в теории вероятностей модели случайных блужданий [9]. Как результат, если алгоритм Шёнинга, сделав $O\left(n\cdot\left(2-\frac{2}{k}\right)^n\right)$ простых случайных действий, не находит выполняющий набор, то вероятность ошибиться, заключив, что C невыполнима, не превосходит $1-\frac{1}{p(n)}$, где через $p(\cdot)$ обозначен некоторый

полином. Очевидно, что если повторение упомянутого выше списка действий, скажем, $n \cdot p(n)$ раз не дает выполняющий набор, то заключение о невыполнимости C будет справедливым с вероятностью, которая близка к $1-e^{-n}$. Идеи, лежащие в основе алгоритма Шёнинга, позволили для SAT в отношении 3-КНФ построить нетривиальные верхние оценки сложности, которые долгое время оставались лучшими среди аналогичных по смыслу оценок (см. [10], [11]).

Алгоритмы, в которых базовые схемы локального поиска (например, НС) дополняется различными стратегиями рандомизации, относятся к классу, известному как Stochastic Local Search methods (SLS). К большому сожалению, имеющиеся на сегодняшний день SLS-алгоритмы плохо подходят для обращения криптографических функций. Как будет показано далее, лучшие такие алгоритмы позволяют успешно решать задачи криптоанализа лишь весьма простых генераторов ключевого потока.

1.10.2 Полные алгоритмы решения SAT

Алгоритм решения SAT называется полным, если для любой КНФ C он за конечное число шагов выдает верный ответ вида SAT/UNSAT. Как и в ситуации с неполными, для построения полных алгоритмов решения SAT можно использовать множество различных базовых концепций. Так, довольно естественно решать SAT, основываясь на широко применяемой в комбинаторной оптимизации идеологии ветвей, границ и отсечений [12]. Хорошо известна сводимость SAT к задаче 0-1-Целочисленное линейное программирование (0-1-ЦЛП), после осуществления которой можно использовать для решения полученной задачи из семейства 0-1-ЦЛП богатый набор программных средств. Также довольно просто перейти от SAT к задаче поиска решений системы алгебраических уравнений степени не выше 2 над полем GF(2). К таким системам можно применять известный алгоритм Б. Бухбергера (он же «метод баз Грёбнера») [13], а также специальные техники работы с разреженными квадратичными системами над GF(2) (см., например, [14], [15]).

Многие авторы сходятся во мнении, что лучших результатов в решении трудных вариантов SAT из целого ряда областей, среди которых символьная верификация и криптоанализ, удается добиться за счет использования алгоритмов, относящихся к направлению, которое правильнее всего назвать «Вычислительная логика». Ранние алгоритмы из данного класса лежали в основе первых программных реализаций

систем автоматического доказательства теорем (Automated theorem proving, ATP). Одним из таких алгоритмов был «метод Девиса-Патнема» (Davis-Putnam method) [16]. Усовершенствованная версия данного алгоритма, известная как DPLL (от фамилий Davis, Putnam, Logemann, Loveland) [17], до настоящего момента продолжает использоваться в основе высокоэффективных полных SAT-решателей. DPLL представляет собой обход дерева поиска, в рамках которого выход из тупиковых ветвей организован в форме процедуры, называемой хронологическим бэктрекингом (chronological backtracking) Остановимся подробнее на тех деталях DPLL, которые потребуются нам в дальнейшем.

1.10.3 Алгоритм DPLL

Пусть C — произвольная КНФ над множеством переменных X. Пусть $S \subset L_X$ — произвольное множество литералов над переменными из X, которое не содержит контрарных литералов. Пусть X_S — множество, включающее все те переменные из X, литералы над которыми содержатся в S ($X_S \subseteq X$). Рассмотрим отображение $\sigma\colon X_S \to \{0,1\}$, заданное по следующему правилу: σ ($x\in X_S$) = $\begin{cases} 1, x\in S \\ 0, \neg x\in S \end{cases}$. (12)

Иными словами, отображение (12) связывает с выбираемыми из L_X литералами значения соответствующих переменных: выбор литерала x интерпретируется как присвоение переменной x значения 1, выбор же $\neg x$, соответствует принятию x значения 0. Множество S будем называть списком литералов, выбранных из L_X . Теперь опишем собственно алгоритм DPLL.

единичного дизъюнкта. К КНФ C' и литералу l' можно снова применить правило единичного дизъюнкта. Если в результате применения UP вывелось несколько литералов, они все ставятся в очередь, после чего к ним и соответствующим КНФ последовательно применяется UP.

Пусть $S_k = \{l_1, \ldots, l_k\}$ — список угаданных литералов. Обозначим через \widetilde{S}_k список всех литералов, которые были выведены по правилу UP в соответствии с описанной выше процедурой. Пусть C_k — полученная в результате КНФ. Проанализируем несколько ситуаций, которые могут при этом возникнуть.

- 1. Пусть \widetilde{S}_k не содержит контрарных литералов, а C_k содержит только единичные дизъюнкты. Тогда C выполнима. Несложно показать, что в этом случае существует выполняющий C набор, в котором значения части (или всех) переменных определяются при помощи отображения (12), применяемого к литералам из $S_k \cup \widetilde{S}_k$.
- 2. Пусть \widetilde{S}_k не содержит контрарных литералов, а C_k содержит дизъюнкты длины не менее 2. Пусть \widetilde{C}_k КНФ, составленная из этих дизъюнктов, а \widetilde{X}_k множество переменных, встречающихся в \widetilde{C}_k . Тогда выберем из $L_{\widetilde{X}_k}$ произвольный литерал l_{k+1} , построим список $S_{k+1} = S_k \cup \{l_{k+1}\}$ и применим UP к \widetilde{C}_k и l_{k+1} .
- 3. Список \widetilde{S}_k содержит контрарные литералы, то есть пару вида $(l, \neg l)$ для некоторого $l \in L_X$. В этой ситуации будем говорить, что список угаданных литералов S_k породил конфликт. Сам по себе конфликт еще не означает, что исходная КНФ невыполнима вполне возможно, что она выполнима, но были угаданы такие литералы, что сочетание соответствующих им в смысле отображения (12) значений переменных не встречается ни в одном из выполняющих C наборов.

Пусть $S_k = \{l_1, \ldots, l_k\}$ — список угаданных литералов, такой что после угадывания l_k по UP был выведен конфликт. В этой ситуации перейдем от списка S_k к списку $S_k^{'} = \{l_1, \ldots, \neg l_k\}$, помечая литерал $\neg l_k$ как «инвертированный». Предположим, что для некоторого k оба списка $S_k = \{l_1, \ldots, l_k\}$ и $S_k^{'} = \{l_1, \ldots, \neg l_k\}$ порождают конфликты. Пусть l_r — ближайший предшествующий l_k литерал в списке S_k , который ранее не был инвертирован. Тогда новым списком является $S_r^{'} = \{l_1, \ldots, \neg l_r\}$ (везде здесь предполагалось, что $k,r \geqslant 2$).

Описанная выше процедура перехода к списку $S_r^{'}$ называется хронологическим (обычным) бэктрекингом. Можно заметить, что процесс бэктрегинга соответствует обходу с возвратом бинарного дерева специального вида. Вершинам этого дерева

приписаны переменные из X. Из произвольной вершины, которой приписана переменная x, выходит два ребра, символизирующие литералы x и $\neg x$. Корню данного дерева приписана переменная, над которой берется литерал l_1 . Произвольная ветвь соответствует некоторому списку угаданных литералов. Если такой список порождает конфликт, то соответствующую ветвь назовем тупиковой.

Если для некоторого k списки S_k и $S_k^{'}$ порождают конфликты, и при этом все литералы, предшествующие l_k , включая первый, были инвертированы, то каждая ветвь описанного выше дерева поиска является тупиковой. Легко понять, что данный факт означает невыполнимость КНФ C. Также в силу всего сказанного выше можно заметить, что число вершин в таком дереве поиска не превосходит $M=2^{n+1}-1$. Отметим, что в реальности это число может быть существенно меньше за счет большого числа литералов, выведенных по UP. Таким образом, применив UP не более M раз, мы либо достигнем ситуации, описанной в пункте 1, и это будет означать, что C выполнима, либо докажем невыполнимость C. Все сказанное означает полноту алгоритма DPLL.

1.10.4 Концепция CDCL и базирующиеся на ней современные SAT-решатели

Концепция решения SAT, известная сегодня как Conflict Driven Clause Learning (CDCL), включает в себя ряд важных техник, дополняющих алгоритм DPLL. Первая и главная из них позволяет записывать информацию о конфликте, который возник в процессе обхода дерева поиска, в виде специальным образом построенного дизъюнкта. Такой дизъюнкт называется конфликтным (conflict-induced clause). Если C — исходная КНФ, а D — конфликтный дизъюнкт, то имеет место: C \rightarrow D, то есть D — это логическое следствие (импликация) из C. Соответственно, КНФ C выполнима тогда и только тогда, когда выполнима КНФ C \wedge D.

Конфликтные дизъюнкты можно строить различными способами. Приведем простейший пример. Пусть список угаданных литералов $S_k = \{l_1, \ldots, l_k\}$ породил конфликт в рамках DPLL. Построим следующий конфликтный дизъюнкт: $D = (\neg l_1 \lor \ldots \lor \neg l_k)$. Данный дизъюнкт запрещает одновременный выбор всех литералов из списка S_k . Рассмотрим КНФ $C \land D$ (C — исходная КНФ). Если мы применим к КНФ $C \land D$ DPLL, используя список угаданных литералов $S_{k-1} = \{l_1, \ldots, l_{k-1}\}$, то единичный дизъюнкт $\neg l_k$ будет выведен по правилу UP. В этом случае говорят, что

вывод литерала $\neg l_k$ индуцирован конфликтом. Очень важно, что в данном случае литерал $\neg l_k$ не угадывается, а выводится по правилу UP на основе информации, полученной в результате анализа конфликта.

Впервые идея использовать конфликтные дизъюнкты для записи информации о тупиковых ветвях в DPLL-поиске была предложена в конференционной статье Ж. Маркеша-Сильвы и К. Сакаллы в 1996 году (см. [19]). В более детальном виде она была представлена этими же авторами в журнальной статье [20]. По сути, именно в этих двух работах были заложены основы концепции CDCL. Еще одна важная техника, которая была описана в [19],[20], заключается в использовании для представления процесса решения SAT специальных графов, называемых графами вывода (implication graph). Граф вывода позволяет эффективно выявлять литералы (причем, что важно, как угаданные, так и выведенные по UP), которые ответственны за рассматриваемый конфликт. Графы вывода очень информативны. Разные способы обхода IG соответствуют различным эвристикам формирования конфликтных дизъюнктов. Некоторые такие эвристики также были приведены в [19],[20].

Основное концептуальное отличие CDCL от DPLL заключается в том, что CDCL использует память для хранения информации о ходе поиска в форме конфликтных дизъюнктов. Это позволяет вместо хронологического бэктрекинга в ряде случаев осуществлять нехронологический бэктрекинг (non-chronological backtracking), называемый также бэкджампингом (backjumping). Бэкджампинг — это ситуация, когда после анализа конфликта откат в списке угаданных литералов происходит не к ближайшему (от конфликта) литералу, который не был ранее инвертирован, а к угаданному еще раньше (иногда существенно раньше). Во многих случаях бэкджампинг позволяет эффективно отсекать значительные части дерева поиска, запрещая при помощи конфликтных дизъюнктов последующий поиск в этих областях. Первым SAT-решателем, фактически использующим CDCL, был GRASP [19].

Следующий шаг был сделан в работах [21],[22], где были введены еще несколько важных техник, дополняющих базовый CDCL. Так, в [21] был описан механизм выбора порядка угадывания литералов, основанный на их «мере конфликтности». Соответствующая эвристика получила называние VSIDS (Variable State Independent Decaying Sum). Также в [21] была описана весьма эффективная техника итеративного применения правила UP, использующая т.н. «ленивые» (*lazy*) структуры данных, известные как *watched literals*, применяются в настоящее время в большинстве CDCL SAT-решателей. Еще одно важное достижение [21] — экспериментальная аргументация пользы рестартов. В статье [22] было проведено детальное исследо-

вание различных способов построения конфликтных дизъюнктов за счет анализа графов вывода. На основе результатов работ [21],[22] был построен решатель zchaff — первый по-настоящему высокоэффективный SAT решатель, базирующийся на концепции CDCL. С использованием zchaff еще в 2002 году удавалось решать задачи криптоанализа некоторых поточных шифров существенно быстрее простого перебора.

В 2003 году в работе [23] были описаны общие принципы построения высокоскоростного CDCL SAT-решателя с эффективно модифицируемой архитектурой. Исходный код соответствующего решателя, получившего название minisat, был представлен авторами [23] в открытом доступе. Решатель minisat на протяжении многих лет остается де-факто стандартом программной основы эффективных SATрешателей как широкого профиля, так и нацеленных на конкретную прикладную область. Еще одной важной частью minisat стали процедуры периодической чистки баз конфликтных дизъюнктов. Здесь следует отметить, что грамотно реализованный CDCL в процессе работы может генерировать огромные массивы конфликтной информации. Чрезмерное количество конфликтных дизъюнктов увеличивает число срабатываний правила UP и, как следствие, приводит к падению эффективности вывода. Соответственно, часть конфликтной информации можно попытаться удалить. Однако неудачное удаление конфликтных дизъюнктов может привести к их повторной генерации. В данном контексте особенно ценны эвристики, которые позволяют удалять большое число слабо релевантных конфликтных дизъюнктов. Первые относительно нетривиальные такие эвристики были предложены в статье [24].

Алгоритмы решения SAT, основанные на CDCL, оказались весьма удачно приспособленными для применения к ним различных концепций распараллеливания. Основными двумя такими концепциями являются т.н. *Portfolio approach* и *Partitioning approach* (далее соответственно, «портфолио-подход» и «подход на основе разбиений»). Детальное сравнение эффективности этих двух подходов предпринято в диссертации А. Хиваринена [25].

Портфолио-подход предполагает запуск нескольких копий решателя на исходном пространстве поиска, при этом каждая копия начинает работу, используя некоторый набор значений входных параметров SAT решателя (разным копиям соответствуют различные наборы значений параметров). В процессе работы копии решателей могут обмениваться друг с другом конфликтными дизъюнктами. Для достижения высокой скорости такой обмен обычно организуется через оперативную память вычислительного устройства с использованием технологий многопоточного

программирования. Соответствующая техника получила название *clause sharing* («обмен конфликтными дизъюнктами»). Одна из первых эффективных реализаций обмена конфликтными дизъюнктами была представлена в [26].

Подход на основе разбиений (SAT-partitioning) предполагает разбиение пространства поиска (т.е. фактически множества $\{0,1\}^n$, где n- число переменных в КНФ) на непересекающиеся подобласти, которые обрабатываются независимо друг от друга. Данный подход позволяет организовать решение SAT в параллельной среде со слабо связанными или даже независимыми рабочими процессами (в частности, в грид-средах). Как будет показано далее, подход на основе разбиений дает хорошие результаты при решении SAT-задач, кодирующих криптоанализ блочных и поточных шифров, поскольку естественным образом ассоциируется с атаками, относящимися к классу «угадывай и определяй» (guess and determine) [27].

Скажем здесь несколько слов по поводу теоретических аргументов эффективности CDCL. Соответствующие результаты относятся к теории сложности пропозициональных доказательств. В этой области исследуется задача доказательства невыполнимости невыполнимой формулы в КНФ. Пусть С — произвольная невыполнимая КНФ и x_C — двоичное слово, представляющее C в некоторой «разумной» системе кодирования. Пусть $\Sigma_U \subset \{0,1\}^*$ — множество слов x_C по всем возможным невыполнимым КНФ С. Пусть А — произвольный полный алгоритм решения SAT. Любой такой алгоритм называется также системой пропозиционального доказательства (Propositional proof system). Получив на вход x_C , алгоритм A выдает двоичное слово s, которое будем называть A-доказательством невыполнимости C(см., например, [28]). Рассмотрим функцию $\omega_A: \{0,1\}^* \to \{0,1\}^*$, определенную следующим образом. Если слово является А-доказательством невыполнимости некоторой КН Φ C, то ω_A сопоставляет этому слову слово x_C . В противном случае выходом ω_A является двоичный код символа \varnothing . Несложно понять, что для одной и той же C могут существовать различные A – доказательства ее невыполнимости (особенно хорошо это видно на примере метода резолюций). С произвольным $x_C \in \Sigma_U$ свяжем длину кратчайшего A-доказательства невыполнимости C. Можно заметить, что если для некоторого A функция длины кратчайшего A-доказательства по всем $x_C \in \Sigma_U$ растет как полином от $|x_C|$, то NP = coNP (см. [29]). Однако для целого ряда алгоритмов несложно указать примеры бесконечных семейств невыполнимых КНФ с полиномиально растущей длиной кратчайшего A-доказательства на этих КНФ.

Пусть теперь A и B — два полных алгоритма решения SAT. Пусть C — произвольная формула из Σ_U . Если существует полиномиальный алгоритм, который

произвольное A—доказательство невыполнимости C преобразует в B—доказательство ее невыполнимости, то говорят, что система доказательств B полиномиально моделирует систему доказательств A. Если A полиномиально моделирует B, а B полиномиально моделирует A, то данные системы доказательств называются полиномиально эквивалентными. Если на некотором (бесконечном) семействе противоречий $\Sigma'_U \subset \Sigma_U$ длина кратчайшего A—доказательства растет как полином от длины КНФ, а длина кратчайшего B— доказательства как экспонента, то очевидно, что B не может полиномиально моделировать A. Если при этом A полиномиально моделирует B, то разумно считать систему A мощнее системы B.

В серии работ конца 90-х –начала 00-х годов были получены результаты, касающиеся сложности доказательств в системах, связанных с методом резолюций [30]. В данном контексте важнейший для нас результат содержится в статьях [31],[32], где было показано, что «общая резолюция» (general resolution) в ее пропозициональном варианте полиномиально эквивалентна алгоритму CDCL с рестартами. Данный факт, в частности, означает, что CDCL имеет экспоненциальную сложность. Действительно, в работе [33] было установлено, что общая резолюция экспоненциальна на семействе логических противоречий, известных как «формулы Дирихле» (Pigeon Hole Principle formulas, PHP_n^{n+1} , [34]). В силу сказанного выше, это означает, что и CDCL будет иметь на PHP_n^{n+1} экспоненциальную сложность. В то же время, CDCL является более мощной системой доказательств, чем DPLL (см. [31],[32],[34]).

Algorithm 1: DPLL Algorithm with Conflict Analysis and Clause Learning

Input: Boolean formula F, current assignment σ

Output: satisfying assignment or indication of unsatisfiability

1 **while** not all variables assigned **do**

```
Branch on unassigned variable v

if F becomes unsatisfiable under \sigma \cup \{v\} then

\beta \leftarrow \text{AnalyzeConflict}(F, \sigma, v)

F \leftarrow F \cup \{\beta\}
Backtrack to previous decision level

else

Continue recursive exploration
```

1.10.5 SAT-решатели

На практике для решения задачи SAT используются специализированные программные средства — SAT-решатели. Несмотря на то, что задача SAT имеет экспоненциальную оценку сложности (при условии, что $P \neq NP$), современные SAT-решатели способны решать формулы с миллионами переменных за обозримое время. Для выбора наиболее эффективного SAT-решателя можно руководствоваться результатами соревнования SAT Comptetition [37]: среди текущих лидеров можно выделить MapleCOMSPS [38], Cadical [39], CryptoMiniSat [40], Glucose [41] и Plingeling [42], хотя на практике эффективность решателей может значительно отличаться, в зависимости от класса рассматриваемых задач. В некоторых случаях хорошие результаты также показывает MiniSat [43], являющийся минимальной реализацией CDCL-решателя (Conflict-Driven Clause Learning [44]) и служащий основой для многих других решателей (например, CryptoMiniSat и Glucose).

[ТООО Инкрементальность]

1.11 Методы сведения задач к SAT

[ТОДО Пример сведения задачи раскраски графа к SAT – описание переменных и ограничений. Дополнительно – оптимизационная постановка задачи.]

[TODO LEC as SAT]
[TODO ATPG as SAT]

1.12 Декомпозиционная трудность

Концепция лазеек (backdoors) была введена в классической работе [45]. В частности, множество переменных B в произвольной КНФ-формуле C является сильной лазейкой (Strong Backdoor Set — SBS) для C относительно некоторого полиномиального алгоритма P (называемого вспомогательным решателем (subsolver)), если формула $C[\beta/B]$ решается с помощью P (то есть получается ответ SAT/UNSAT за

полиномиальное время) для любого $\beta \in \{0,1\}^{|B|}$. Здесь через $C[\beta/B]$ обозначается формула, полученная подстановкой значений β в переменные из B в C. Можно заметить [46], что если B — некоторый SBS, то сложность C ограничена сверху значением $poly(|C|) \cdot 2^{|B|}$, где $poly(\cdot)$ — некоторый полином.

В статье [47] было предложено использовать полный детерминированный SAT-решатель A в качестве вспомогательного решателя, вместо традиционного полиномиального алгоритма P. Для оценки производительности решателя, введём следующие обозначения. Пусть $t_A(C)$ обозначает время работы A на КН Φ -формуле C. Сложность формулы C относительно множества B и солвера A может быть определена следующим образом:

$$\mu_{A,B}(C) = \sum_{\beta \in \{0,1\}^{|B|}} t_A(C[\beta/B])$$
(4)

Минимальное значение (4) по всем возможным множествам $B \in 2^X$ называется ∂ екомпозиционной трудностью (decomposition hardness) формулы C относительно алгоритма A.

Как показано в [47], значение (4) можно выразить с использованием математического ожидания случайной величины ξ_B , связанной с множеством B, которая задается следующим соотношением:

$$\mu_{A,B}(C) = 2^{|B|} \cdot \mathbb{E}\left[\xi_B\right] \tag{5}$$

Для оценки значения (4) можно использовать метод Монте-Карло и формулу (??). Это сводит задачу оценки сложности декомпозиции к задаче псевдо-булевой black-box оптимизации, которая включает перебор различных множеств B и оценку сложности C относительно каждого B в попытке минимизировать это значение в пространстве 2^X . В [47] для этой цели использовались метаэвристические алгоритмы.

1.13 Вероятностный подход к оцениванию трудности булевых формул

Предлагаемые в главе 3 конструкции для декомпозиции формул, кодирующих трудные примеры LEC, основаны на концепции *декомпозиционной трудности*, предложенной в [47]. Данная концепция в свою очередь базируется на понятии *лазейки*, введенном в [45].

Пусть рассматривается произвольная формула C в КНФ над множеством переменных X. Для произвольного $B\subseteq X$ через $\{0,1\}^{|B|}$ обозначается множество всех возможных наборов значений переменных из B. Пусть P- некоторый полиномиальный алгоритм, который получает на вход произвольную КНФ, а на выход выдает ответ из следующего множества $\{SAT,UNSAT,INDET\}$, ответ INDET соответствует ситуации, когда P не может за отведенное время решить, выполнима ли рассматриваемая КНФ. Если применение алгоритма P к формуле C выдает ответ из множества $\{SAT,UNSAT\}$, то будем обозначать данный факт через $C\in \Sigma(P)$. Если же результатом применения P к C является ответ INDET, то обозначим данную ситуацию через $C\notin \Sigma(P)$.

Через $C[\beta/B]$ обозначим формулу, полученную из C в результате подстановки набора β значений переменных из B. Тогда множество B называется сильной лазейкой (Strong Backdoor Set, SBS), если для любого $\beta \in \{0,1\}^{|B|}$ имеет место $C[\beta/B] \in \Sigma(P)$.

В статье [Ansotegui2008] было отмечено, что любое SBS B, существенно меньшее X, дает нетривиальную верхнюю оценку трудности формулы C, поскольку существует алгоритм со сложностью $poly(|C|) \cdot 2^{|B|}$, определяющий выполнимость C, для некоторого полинома $poly(\cdot)$.

На основании этой идеи в статье [CP2021] был предложен подход к оцениванию трудности произвольных булевых формул, используя их декомпозиционные представления, называемые также разбиениями (Partitioning [Hyvarinen2011]). Более того, оказалось, что оценивать декомпозиционную трудность можно при помощи вероятностных алгоритмов, традиционно относимых к методу Монте-Карло [MetrUlam1949]. Кратко изложим здесь основную суть данного подхода.

Прежде всего напомним понятие разбиения. Согласно [Hyvarinen2011] разбиение (Paritioning) произвольной КНФ над множеством переменных X— это множество формул $\Pi = \{G_1, \ldots, G_s\}$ над X, такое что выполнены два следующих требования:

- 1. для любых $i,j \in \{1,\ldots,s\}: i \neq j$ формула $C \wedge G_i \wedge G_j$ невыполнима;
- 2. формула C выполнима тогда и только тогда, когда выполнима формула $C \wedge (G_1 \vee \ldots \vee G_s)$.

Очевидно, что если Π — некоторое разбиение, то на задачу о выполнимости C, можно смотреть как на семейство аналогичных задач для формул вида $C \land G_i, i \in \{1, \ldots, s\}$. Для решения последних можно использовать параллельные вычисления. SAT задачи для формул вида $C \land G_i$ могут быть существенно проще

SAT для C: если, например, множество Π -это множество из 2^k различных кубов над переменными $B = \{\widetilde{x}_1, \ldots, \widetilde{x}_k\}$.

Если Π — некоторое разбиение C, то по аналогии с понятием лазейки можно определить трудность формулы C относительно Π и некоторого алгоритма A решения SAT. Если рассмотреть в роли A некоторый полный SAT решатель, то иногда удается найти относительно небольшие по размеру разбиения, которые вполне можно использовать для решения трудных индустриальных примеров SAT (в том числе верификационной природы). Таким образом, имеет смысл определить трудность C относительно разбиения Π как следующую величину:

$$\mu_{A,\Pi}(C) = \sum_{G \in \Pi} t_A(G \wedge C)$$

где через $t_A(C)$ обозначено время работы полного SAT решателя A на формуле C.

Возникает вопрос, как для конкретного разбиения Π вычислить, или хотя бы оценить величину $\mu_{A,\Pi}(C)$ в ситуации, когда s велико ? Именно для этой цели может быть использован метод Монте-Карло.

Зададим на Π равномерное распределение, приписав каждому G_i , $i \in \{1, \ldots, s\}$ вероятность 1/s и получив таким способом некоторое пространство элементарных исходов. С каждым G_i свяжем значение случайной величины $\xi_\Pi: \Pi \to R^+$, которое на произвольном $G \in \Pi$ равно $t_A(G \wedge C)$. Пусть $Spec(\xi_\Pi) = \{\xi_1, \ldots, \xi_r\}$ — спектр величины ξ_Π , а $P(\xi_\Pi) = \{p_1, \ldots, p_r\}$ — закон распределения данной величины. Как показано в [CP2021], имеет место следующий факт:

$$\mu_{A,\Pi}(C) = s \cdot E[\xi_{\Pi}]$$

 $E\left[\xi_\Pi\right]$ — математическое ожидание величины ξ_Π . В соответствии с методом Монте-Карло можно оценить величину $\mu_{A,\Pi}(C)$ через значение $\overline{\xi_\Pi}=\frac{1}{N}\cdot\sum_{j=1}^N\xi^j$, где $\xi^j,j=1\dots N$ — это независимые наблюдения величины ξ_Π . Использование неравенства Чебышёва [Feller1968] даёт следующее соотношение:

$$\Pr\left\{ (1 - \varepsilon)E\left[\xi_{\Pi}\right] \leqslant \overline{\xi_{\Pi}} \leqslant (1 + \varepsilon)E\left[\xi_{\Pi}\right] \right\} \geqslant 1 - \delta \tag{1},$$

справедливое для любых фиксированных $\varepsilon, \delta \in (0,1)$ и натурального числа N (число наблюдений), связанных следующим образом:

$$\delta = \frac{Var(\xi_{\Pi})}{\varepsilon^2 N E^2 \left[\xi_{\Pi}\right]} \tag{2}$$

Таким образом, с увеличением N точность оценивания $\mu_{A,\Pi}(C)$ величиной $\overline{\xi_\Pi}$ будет возрастать. Следует особо отметить, что не существует полных гарантий точности таких оценок: при большой дисперсии и малом N получаемые оценки могут быть сколь угодно неточны. Тем не менее, можно использовать стандартные статистические аргументы точности получаемых оценок. Один метод такого рода описан в [CP2021] и основан на периодическом увеличении объема выборки N до тех пор, пока не выполнится неравенство

$$N \geqslant \frac{s^2(\xi_{\Pi})}{\delta \varepsilon^2 \left(\overline{\xi_{\Pi}}\right)^2} (3)$$

в котором $s^2\left(\xi_\Pi\right)$ — выборочная дисперсия. Неравенство (3) является статистическим аналогом неравенства

$$N \geqslant \frac{Var(\xi_{\Pi})}{\varepsilon^2 \delta E^2 [\xi_{\Pi}]}.(4)$$

Заметим, что условие ($\frac{1}{1}$) при фиксированных $\varepsilon, \delta \in (0,1)$ имеет место для любого N, для которого выполнено ($\frac{4}{1}$).

Также возможно построение доверительных интервалов для $\mu_{A,\Pi}(C)$ с использованием Центральной предельной теоремы.

Выводы по главе 1

[ТОDО Завершение обзора]

Глава 2. Синтез конечно-автоматных моделей на основе сведения к задаче булевой выполнимости (SAT)

Данная глава посвящена решению задачи синтеза монолитных конечноавтоматных моделей логических контроллеров по примерам поведения и формальной спецификации. В разделе 2.1 предлагается метод синтеза по примерам поведения, основанный на сведении к задаче выполнимости SAT, приводится описание разработанных алгоритмов: Basic — для синтеза базовых моделей, Extended для синтеза расширенных моделей, Сомрьете — для учета негативных сценариев выполнения. В разделе 2.2 рассматривается задача синтеза минимальных моделей, приводится описание разработанных алгоритмов Basic-min, Extended-min, Сомрыете-мін и Ехтендер-мін-UB. В разделе 2.3 рассматривается подход индуктивного синтеза, основанного на контрпримерах (Counterexample-Guided Inductive Synthesis — CEGIS) [48; 49], используемый для учета при синтезе формальной спецификации, приводится описание алгоритмов CEGIS и CEGIS-мін. Раздел 2.5 содержит экспериментальное сравнение разработанных методов с существующими на примере задачи синтеза конечно-автоматной модели логического контроллера, управляющего Pick-and-Place манипулятором. Раздел 2.6 посвящен применению разработанных методов для минимизации систем переходов, полученных с помощью программного средства для LTL-синтеза BoSy [15; 24] по исходным данным с соревнования по реактивному синтезу SYNTCOMP [50]. Все разработанные в данной работе методы реализованы в виде программного средства FBSAT [51].

2.1 Метод синтеза конечно-автоматных моделей монолитных логических контроллеров по примерам поведения

В этом разделе приводится описание разработанного метода синтеза минимальных моделей базовых функциональных блоков по примерам поведения и LTL-спецификации. Сначала рассматривается решение базовой задачи (алгоритм Basic) — синтеза моделей с использованием только сценариев выполнения — приводится описание переменных и ограничений, составляющих сведение к задаче SAT и предлагается итеративный подход к синтезу минимальных моделей. Следом, сведение

к SAT расширяется (алгоритм Ехтендер) кодированием структуры деревьев разбора произвольных булевых формул охранных условий, что приводит к возможности учета их суммарного размера при минимизации. В заключение, решается задача синтеза модели, не только удовлетворяющей заданным примерам поведения, но и лишенной нежелательного поведения, выражаемого в виде негативных сценариев выполнения (алгоритм Сомрьете).

2.1.1 Кодирование структуры автомата

Сведение обозначенной задачи синтеза к задаче SAT заключается в построении булевой формулы, которая истина тогда и только тогда, когда существует конечный автомат размера |Q|=C, удовлетворяющий заданному набору позитивных сценариев выполнения S^+ . Для этого необходимо рассмотреть процесс проверки соответствия автомата дереву сценариев и закодировать его в SAT 1 . При этом также необходимо закодировать структуру синтезируемого объекта — конечного автомата, а точнее, ЕСС. Здесь и далее в этом разделе предполагается, что $b \in \mathbb{B} = \{\top, \bot\}, q \in Q, k \in [1..K], e \in E^I, u \in \mathcal{U}, v \in V$, если не указано иное.

Искомый автомат состоит из C состояний, каждое из которых имеет ассоциированное ∂ ействие (выходное событие и алгоритм) и не более K выходящих (outgoing) переходов, упорядоченных в порядке их приоритета. Выходное событие состояния $q \in Q$ кодируется с помощью переменной $\varphi_q \in E^O \cup \{\varepsilon\}$. Так как алгоритм является функцией, независимо изменяющей значения выходных переменных, то он кодируется с помощью переменной $\gamma_{q,z,b} \in \mathbb{B}$, где $q \in Q$ — состояние автомата, $z \in \mathcal{Z}$ — выходная переменная, $b \in \mathbb{B}$ — текущее значение выходной переменной. Каждый переход в автомате ассоциирован с охранным условием — парой из входного события и булевой формулы, зависящей от входных переменных X соответствующего базового функционального блока. Переменная $\tau_{q,k} \in Q_0 = Q \cup \{q_0\}$ кодирует конец k-го перехода из состояния $q \in Q$. «Переходы» в фиктивное состояние q_0 называются нулевыми (null-transitions) и означают отсутствие перехода в автомате. Входное событие на переходе кодируется с помощью переменной $\xi_{q,k} \in E^I \cup \{\varepsilon\}$. Так как каждый переход должен обладать входным событием, то ε -событием отмечены только

¹Здесь и далее фраза «закодировать в SAT» означает построение соответствующей булевой формулы в КНФ, кодирующей структуру и требуемые ограничения задачи синтеза.

нулевые (несуществующие) переходы: $(\tau_{q,k} = q_0) \iff (\xi_{q,k} = \varepsilon)$. Переменная $\delta_{q,k,e,u} \in \mathbb{B}$ кодирует функцию активации охранного условия, то есть выполнение перехода при входном действии e[u]. Переменная $\theta_{q,k,u} \in \mathbb{B}$ кодирует таблицу истинности охранного условия, то есть значение соответствующей булевой функции на входе $u \in \mathcal{U}$. Взаимосвязь между этими переменная задается следующим образом:

$$\delta_{q,k,e,u} \iff (\xi_{q,k} = e) \wedge \theta_{q,k,u}.$$

В соответствии со стандартом IEC 61499, переходы ECC обладают приоритетом. Переменная $ff_{q,e,u} \in [0..K]$ кодирует индекс перехода, который выполняется первым при входном действии e[u] — только этот переход будет учтен в момент исполнения ECC, даже если следующие переходы также выполняются. При этом $ff_{q,e,u} = 0$ означает, что ни один переход не выполняется при входном действии e[u]. Некоторый k-й переход выполняется первым тогда и только тогда, когда (1) он выполняется ($\delta_{q,k,e,u} = \top$) и (2) не выполняются все предыдущие (k' < k) переходы. Наивный способ кодирования переменной ff выглядит следующим образом:

$$(ff_{q,e,u} = k) \iff \delta_{q,k,e,u} \land \bigwedge_{1 \le k' < k} (\neg \delta_{q,k',e,u}).$$

Более эффективный способ кодирования заключается в определении специальной переменной $nf_{q,k,e,u} \in \mathbb{B}$ для кодирования того факта, что все переходы с 1 по k-й не выполняются. При этом можно заметить, что такая переменная может быть определена рекурсивно:

$$nf_{q,k,e,u} \iff \neg \delta_{q,k,e,u} \wedge nf_{q,k-1,e,u},$$

где следует считать, что $nf_{q,0,e,u} = \bot$. Исходя из этого, эффективный способ кодирования переменной ff выглядит следующим образом:

$$(ff_{q,e,u}=k)\iff \delta_{q,k,e,u}\wedge nf_{q,k-1,e,u}.$$

Рассмотрим сценарий выполнения $s \in S^+$ и автомат \mathcal{A} , изначально находящийся в стартовом состоянии q_{init} . Автомат последовательно обрабатывает входные действия из сценария и, возможно (если выполняется какой-либо переход, то есть соответствующее охранное условие становится истинным), изменяет состояние, продуцируя выходные действия. Когда автомат находится в состоянии q и обрабатывает входное действие $e^I[\bar{x}]$, он либо (1) переходит в состояние q', либо (2) «игнорирует» входное действие, оставаясь в том же состоянии. Такое поведение

описывается переменной $\lambda_{q,e,u} \in Q_0$, где $\lambda_{q,e,u} = q_0$ соответствует второму (2) случаю. Заметим, что в первом случае автомат может перейти по переходу-петле и остаться в исходном состоянии q'=q, что, однако, отличается от случая $q'=q_0$, при котором не происходит генерации выходного действия, ассоциированного с состоянием q.

2.1.2 BFS-предикаты нарушения симметрии для состояний автомата

Дополнительно, стоит добавить ограничения нарушения симметрии (symmetry breaking predicates) [33], форсирующие нумерацию состояний автомата в порядке BFS-обхода (breadth-first search), то есть в том порядке, в котором они были бы посещены при выполнении поиска в ширину из стартового состояния. Такие ограничения позволяют существенно сократить пространство поиска, что позитивно влияет на время решения задачи SAT. Стоит отметить, что данные ограничения не влияют на корректность решения — если решение существует, то оно будет найдено независимо от нумерации состояний автомата.

Суть BFS-предиката нарушения симметрии заключается в следующем наблюдении относительно дерева BFS-обхода: родителем каждой вершины может быть только вершина с меньшим номером, а потомки каждой вершины следуют в строгом возрастающем порядке — номера соседних (sibling) вершин отличаются на 1. Из этого следует, что для каждой вершины i > 1 верно следующее: родитель соседней (i+1) вершины либо совпадает с родителем вершины i, либо имеет больший номер. Для кодирования такого ограничения в SAT, необходимо объявить следующие переменные. Переменная $\tau_{q_i,q_j}^{\text{BFS-}\mathcal{A}} \in \mathbb{B}$ $(q_i,q_j \in Q)$ кодирует наличие любого перехода из q_i в q_j в автомате:

$$\tau_{q_i,q_j}^{\text{BFS-}\mathcal{A}} \iff \bigvee_{k \in [1..K]} (\tau_{q_i,k} = q_j).$$

Переменная $\pi_{q_j}^{\text{вFS-}\mathcal{H}} \in \{q_1,\dots,q_{j-1}\}\ (q_j \in Q)$ кодирует родителя вершины q_j в дереве BFS-обхода:

$$(\pi_{q_j}^{\text{BFS-}\mathcal{A}} = q_i) \iff \tau_{q_i,q_j}^{\text{BFS-}\mathcal{A}} \land \bigwedge_{r < i} \neg \tau_{q_r,q_j}^{\text{BFS-}\mathcal{A}}.$$

Непосредственно BFS-ограничение выглядит следующим образом:

$$(\pi_{q_j}^{{\scriptscriptstyle \mathsf{BFS-}}\mathcal{A}} = q_i) \implies (\pi_{q_{j+1}}^{{\scriptscriptstyle \mathsf{BFS-}}\mathcal{A}} \geqslant q_i).$$

Можно заметить, что в BFS-ограничении присутствует отношение $(\pi_{q_{j+1}}^{\text{\tiny BFS-}\mathcal{A}}\geqslant q_i).$ Наивный способ кодирования такого ограничения в SAT выглядит следующим образом:

$$(\pi_{q_j}^{\text{BFS-}\mathcal{A}} = q_i) \implies \bigwedge_{r < i} (\pi_{q_{j+1}}^{\text{BFS-}\mathcal{A}} \neq q_r).$$

Однако существуют и другие, теоретически более эффективные способы. Например, можно использовать так называемые «переменные, кодирующие порядок» (orderencoding) [52]. Перед тем, как перейти к их описанию, необходимо напомнить, что привычные переменные с ограниченным доменом, например, $x \in \{2, 3, 5\}$, кодируются следующим образом, называемым в разных источниках как «onehot», «sparse encoding», «direct encoding» [53], «pairwise encoding»: для каждого значения из домена создается отдельная булева переменная, кодирующая равенство переменной этому значению, например, $x \bowtie_{onehot} \{x_2, x_3, x_5\}$, где $x_2 \equiv (x = 2)$, $x_3 \equiv (x=3), x_5 \equiv (x=5)$. Аналогичным образом определяются и order-encoded переменные, однако кодируют они не равенство, а отношение порядка, например, $x\bowtie_{order} \{x_2',x_3',x_4',x_5'\}$, где $x_i'\equiv (x\geqslant i)$. Заметим, что на практике домены переменных являются непрерывными², поэтому кодирующих переменных будет столько же, сколько и при onehot-кодировании³. Детальное описание order encoding присутствует в [52] и в данной работе не приводится. Таким образом, BFS-предикат с использованием order-encoded переменной $\pi_{q_i}^{\text{BFS-}\mathcal{A}(order)} \equiv (\pi_{q_i}^{\text{BFS-}\mathcal{A}} \geqslant q_j)$ может быть сформулирован следующим образом:

$$(\pi_{q_j}^{{\scriptscriptstyle \mathrm{BFS-}}\mathcal{A}} = q_i) \implies \pi_{q_i}^{{\scriptscriptstyle \mathrm{BFS-}}\mathcal{A}(\mathit{order})}.$$

К сожалению, данное усовершенствование не привело к видимым изменениям производительности сведения (результаты экспериментального исследования не приводятся), поэтому здесь и далее в данной работе считается, что используется наивный способ кодирования BFS-предиката нарушения симметрии.

Рисунок 4 — Пример отображения дерева сценариев на автомат

2.1.3 Кодирование отображения позитивного дерева сценариев

Для обеспечения соответствия автомата дереву сценариев, необходимо построить отображение $\mu:V\to Q$ вершин дерева на состояния автомата. Пример такого отображения приведен на рисунке 4. Переменная $\mu_v\in Q$ кодирует удовлетворяющее состояние, в котором автомат оказывается после обработки вершины дерева $v\in V$. Корень дерева ρ отображается в стартовое состояние автомата: $\mu_\rho=q_{\rm init}$. Пассивные вершины ($toe(v)=\varepsilon$) соответствуют ситуации, когда автомат должен проигнорировать входное действие, не изменяя своего состояния, что может быть выражено с помощью следующих ограничений: $\mu_v=\mu_p$ и $\lambda_{q,e,u}=q_0$, где $v\in V^{\rm (passive)}$, $p=tp(v),\ q=\mu_p,\ e=tie(v),\ u=tin(v)$. Активные вершины ($toe(v)\neq\varepsilon$) соответствуют ситуации, когда автомат должен отреагировать на входное действие и продуцировать определенное (непустое) выходное действие, что может быть закодировано следующим образом:

$$(\mu_{\nu} = q') \implies (\lambda_{q,e,u} = q') \wedge (\varphi_{q'} = o) \wedge \bigwedge_{z \in Z} (\gamma_{q',z,b} = b'),$$

где $v \in V^{(active)}$, p = tp(v), $q = \mu_p$, $q' \in Q$, e = tie(v), u = tin(v), o = toe(v), $z \in Z$, b = tov(p,z), b' = tov(v,z).

 $^{^{2}}$ Под «непрерывным» доменом здесь подразумевается дискретная последовательность без «пропусков», что в случае численных доменов выражается в виде интервала [low .. high].

³Можно заметить, что в рассмотренном примере переменная $x_2' \equiv (x \ge 2)$ всегда истинна, а значит ее можно не вводить, поэтому корректнее говорить, что *order-encoded* переменных всегда на одну меньше *onehot*.

2.1.4 Кодирование ограничений на количество переходов

Для того, чтобы ограничить количество переходов в автомате, то есть закодировать ограничение вида «суммарное число ненулевых переходов в автомате не больше T», можно воспользоваться техникой totalizer (раздел ??) и закодировать в SAT ozpa-ничение на kapduhanbhocmb $\Phi(\mathcal{D},0,T)$, где $\mathcal{D}=\{\tau_{q,k}\neq q_0\mid q\in Q,k\in[1..K]\}$ — множество интересующих переменных, T — верхняя граница для суммарного числа ненулевых переходов в автомате. Стоит отметить, что на практике интерес представляет задача минимизации числа переходов в автомате, рассматриваемая в данной работе далее, поэтому нижняя граница принимается равной нулю. Техника totalizer позволяет кодировать сразу две границы, что может быть полезно при иных постановках задачи — например, возможно синтезировать автомат с точным (заранее известным) числом переходов T^* , для чего необходимо закодировать обе границы, равные T^* — однако такие задачи в данной работе не рассматриваются.

2.1.5 Алгоритм Ваѕіс

Описанные выше переменные и ограничения позволяют синтезировать вычислимые конечно-автоматные модели, то есть модели, способные реагировать на входные воздействия, генерируя выходные действия. Обозначим Basic* (S^+, C, T) процедуру нахождения автомата, который удовлетворяет заданному набору позитивных сценариев выполнения S^+ , и в котором C состояний и суммарно не более T переходов. Данная процедура состоит из (1) построения позитивного дерева сценариев \mathcal{T}^+ , (2) формирования сведения к SAT (кодирование структуры автомата, отображения дерева сценариев и ограничения на кардинальность) и (3) вызова SAT-решателя. Результатом работы данной процедуры является либо искомый конечный автомат, либо доказательство отсутствия автомата заданного размера. Также введем обозначение Basic $(S^+,C)=\mathrm{Basic}^*(S^+,C,T=\infty)$ для случая, когда число переходов в автомате остается неограниченным. Стоит отметить, что параметр K — максимальное число переходов из каждого состояния — здесь и далее принимается равным $K=C\cdot|E^I|$, так как при меньших значениях возможно отсутствие решения из-за слишком сильных ограничений на искомую модель, а

дополнительный перебор подходящего значения K является обременительной задачей.

2.1.6 Кодирование структуры охранных условий

В вышеописанном сведении охранные условия представляются в виде таблиц истинности соответствующих булевых формул — посредством переменной θ . Однако такие охранные условия сложны для восприятия человеком, а также неприменимы в средствах разработки систем управления, таких так Matlab или nxtSTUDIO [54], где охранные условия должны быть явно представлены в виде булевых формул. Поэтому сведение расширяется кодированием деревьев разбора произвольных булевых формул, зависящих от входных переменных \mathcal{X} .

Каждое дерево разбора охранного условия на k-м переходе ($k \in [1..K]$) из состояния $q \in Q$ состоит из P вершин, где P является параметром разрабатываемого метода. Каждая вершина типизирована и может быть либо булевым оператором, либо терминальной вершиной, соответствующей входной переменной. Здесь стоит отметить, что параметр P является «глобальным» для всего автомата, то есть все охранные условия состоят из P вершин. Так как существуют булевы формулы, для записи которых достаточно менее P вершин в дереве разбора, некоторые вершины могут быть «нетипизированными» (none-typed), то есть не включаться в дерево. Размер дерева разбора определяется как число munusuposahhus вершин в нем. Здесь и далее будут использованы следующие обозначения, если не указано иное: $p \in [1..P], x \in \mathcal{X}, u \in \mathcal{U}$.

Переменная $\eta_{q,k,p} \in \{\Box, \land, \lor, \neg, \bullet\}$ кодирует тип вершины дерева разбора p, где « \Box » обозначает терминальные вершины, « \land », « \lor », « \neg » — логические операторы, а « \bullet » — нетипизированные вершины. Без потери общности можно задать ограничение на то, что нетипизированные вершины имеют наибольшие номера в дереве: $(\eta_{q,k,p} = \bullet) \implies (\eta_{q,k,p+1} = \bullet)$. Переменная $\chi_{q,k,p} \in \mathcal{X} \cup \{0\}$ кодирует входную переменную (или ее отсутствие: $\chi_{q,k,p} = 0$), ассоциированную с терминальной вершиной p. Только терминальные вершины могут иметь ассоциированные входные переменные: $(\eta_{q,k,p} = \Box) \iff (\chi_{q,k,p} \neq 0)$.

Для задания структуры дерева разбора, а именно, для определения родительских связей между вершинами, используются переменные $\pi_{q,k,p} \in [0 \dots (p-1)]$ и

 $\sigma_{q,k,p} \in \{0\} \cup [(p+1) \dots P]]$, кодирующие, соответственно, родителя и *левого* ребенка вершины p (либо их отсутствие: $\pi_{q,k,p} = 0$, $\sigma_{q,k,p} = 0$). Взаимосвязь между этими переменными задается следующим образом: $(\sigma_{q,k,p} = ch) \implies (\pi_{q,k,ch} = p)$. Только типизированные вершины, кроме корня (p=1), имеют родительские вершины: $(\pi_{q,k,p} \neq 0) \iff (\eta_{q,k,p} \neq \bullet)$. Стоит отметить, что правый ребенок вершины дерева разбора не кодируется явно — для бинарных операторов предполагается, что он имеет номер на единицу больше левого ребенка $(c \in [(p+1) \dots (P-1)]]$):

$$(\eta_{q,k,p} \in \{\land,\lor\}) \land (\sigma_{q,k,p} = c) \implies (\pi_{q,k,c+1} = p).$$

Переменная $\vartheta_{q,k,p,u} \in \mathbb{B}$ кодирует значение подформулы — булевого выражения, соответствующего поддереву с корнем p — на входе u. Значение корня дерева разбора соответствует значению всей булевой формулы охранного условия, а значит, можно переиспользовать переменную $\theta_{q,k,u}$, объявленную ранее: $\theta_{q,k,u} \equiv \vartheta_{q,k,1,u}$. Значения терминальных вершин соответствуют значениям ассоциированных входных переменных; значения вершин-операторов могут быть вычислены на основе значений вершин-потомков; значения нетипизированных вершин для определенности принимаются равными False, однако это является лишь технической деталью реализации — значения нетипизированных вершин впоследствии не используются:

2.1.7 BFS-предикаты нарушения симметрии для охранных условий

Дополнительно, стоит добавить ограничения нарушения симметрии, форсирующие BFS-нумерацию вершин дерева разбора охранного условия. Фактически, они аналогичны BFS-ограничениям для состояний автомата (раздел 2.1.2), но применяются не ко всему автомату, а к каждому дереву разбора охранного условия поотдельности: для каждого $q \in Q, k \in [1..K]$. Переменная $\tau_{i,j}^{\text{BFS-}\mathcal{G}} \in \mathbb{B}$ $(1 \leqslant i < j \leqslant P)$

задает существование «перехода» из i-й вершины в j-ю:

$$\tau_{i,j}^{\text{\tiny BFS-}\mathcal{G}} \iff (\pi_{q,k,j}=i).$$

Переменная $\pi_j^{\text{вгs-}\mathcal{G}} \in [1 ... (j-1)] \ (j \in [2 ... P])$ кодирует родителя j-й вершины в дереве BFS-обхода:

$$(\pi_{j}^{\text{BFS-}\mathcal{G}} = i) \iff \tau_{i,j}^{\text{BFS-}\mathcal{G}} \land \bigwedge_{r < i} \neg \tau_{r,j}^{\text{BFS-}\mathcal{G}}.$$

Непосредственно BFS-ограничение задается следующим образом:

$$(\pi_j^{\text{BFS-}\mathcal{G}} = i) \implies \bigwedge_{r < i} (\pi_{j+1}^{\text{BFS-}\mathcal{G}} \neq r).$$

2.1.8 Кодирование ограничений на суммарный размер охранных условий

Для того, чтобы ограничить размер охранных условий в автомате, то есть закодировать ограничение вида «суммарное число *типизированных* вершин в деревьях разбора булевых формул, соответствующих охранным условиям на переходах автомата не больше N», можно воспользоваться техникой totalizer (раздел ??) и закодировать в SAT *ограничение на кардинальность* $\Phi(\mathcal{H}, 0, N)$, где $\mathcal{H} = \{\eta_{q,k,p} \neq \bullet \mid q \in Q, k \in [1..K], p \in [1..P]\}$ — множество интересующих переменных, N — верхняя граница для суммарного размера охранных условий в автомате.

2.1.9 Алгоритм Ехтендер

Обозначим Ехтеnded* (S^+ , C, P, N) процедуру нахождения автомата, который удовлетворяет заданному набору позитивных сценариев выполнения S^+ , и в котором C состояний, максимальный размер охранного условия P, а суммарный размер охранных условий не больше N. Стоит отметить, что параметр T — число ненулевых переходов в автомате — здесь и далее не рассматривается. Данная процедура состоит из (1) построения позитивного дерева сценариев \mathcal{T}^+ , (2) формирования сведения к SAT (кодирование структуры автомата и охранных условий, отображения дерева

сценариев и ограничения на кардинальность) и (3) вызова SAT-решателя. Также введем обозначение Extended $(S^+, C, P) = \text{Extended}^*(S^+, C, P, N = \infty)$ для случая, когда суммарный размер охранных условий в автомате остается неограниченным.

2.1.10 Кодирование отображения негативного дерева сценариев

Отображение $\widehat{\mu}:\widehat{V}\to Q_0$ вершин негативного дерева сценариев \mathcal{T}^- на состояния автомата очень похоже на отображение позитивного дерева, однако главным отличием является то, что негативное дерево представляет нежелательное поведение системы, включая нежелательное циклическое поведение, которое необходимо запретить.

Переменная $\widehat{\mu}_{\widehat{v}} \in Q_0$ кодирует удовлетворяющее состояние (либо его отсутствие: $\widehat{\mu}_{\widehat{v}} = q_0$). Стоит отметить, что автомат может не обладать поведением, заданным в негативном дереве сценариев, то есть его поведение может отличаться от записанного в вершине дерева $\widehat{v} \in \widehat{V}$ — в этом (и только в этом) случае $\widehat{\mu}_{\widehat{v}} = q_0$. Если некоторая вершина $\widehat{v} \in \widehat{V}$ никуда не отображается (то есть отображается в q_0), то это распространяется далее через потомков: $(\widehat{\mu}_{\widehat{tp}(\widehat{v})} = q_0) \implies (\widehat{\mu}_{\widehat{v}} = q_0)$. Корень негативного дерева $\widehat{\rho}$ отображается в стартовое состояние автомата: $\widehat{\mu}_{\widehat{o}} = q_{\text{init}}$.

Пассивные вершины дерева сценариев описывают поведение, когда автомат игнорирует входное действие и не изменяет своего состояния, значит, если автомат соответствует такому поведению, то пассивная вершина отображается — аналогично позитивному дереву — в то же состояние, что и ее родитель, иначе же вершина никуда не отображается: $(\widehat{\mu}_{\widehat{v}} = \widehat{\mu}_{\widehat{t}\widehat{v}(\widehat{v})}) \vee (\widehat{\mu}_{\widehat{v}} = q_0)$, где $\widehat{v} \in \widehat{V}^{(\text{passive})}$.

В свою очередь активные вершины дерева сценариев описывают поведение, когда автомат должен отреагировать на входное воздействие определенным образом, значит, если автомат соответствует такому поведению, то отображение активной вершины аналогично позитивному дереву, иначе же вершина никуда не отображается:

$$(\widehat{\mu}_{\widehat{v}} = q') \iff (\widehat{\lambda}_{q,e,u} = q') \land (\varphi_{q'} = o) \land \bigwedge_{z \in \mathcal{I}} (\gamma_{q',z,b} = b'),$$

где $\widehat{v} \in \widehat{V}^{(\text{active})}$, $\widehat{p} = \widehat{tp}(\widehat{v})$, $q = \mu_{\widehat{p}}$, $q' \in Q$, $e = \widehat{tie}(\widehat{v})$, $u = \widehat{tin}(\widehat{v})$, $o = \widehat{toe}(\widehat{v})$, $z \in \mathcal{Z}$, $b = \widehat{tov}(\widehat{p},z)$, $b' = \widehat{tov}(\widehat{v},z)$. Стоит отметить, что в этом ограничении используется " \iff », что позволяет не рассматривать отдельно определение для случая $q' = q_0$,

при котором было бы необходимо учитывать различные варианты несоответствия поведения автомата поведению, записанному в вершине негативного дерева.

В заключение, необходимо запретить в автомате нежелательное циклическое поведение, представляемое с помощью *обратных ребер*. Для этого необходимо, чтобы вершины негативного дерева, являющиеся началом и концом обратного ребра, отображались в различные состояния, либо же не отображались вовсе:

$$\bigwedge_{\widehat{v}\in\widehat{V}} \bigwedge_{\widehat{v}'\in\widehat{tbe}(\widehat{v})} \left[(\widehat{\mu}_{\widehat{v}} \neq \widehat{\mu}_{\widehat{v}'}) \vee (\widehat{\mu}_{\widehat{v}} = \widehat{\mu}_{\widehat{v}'} = q_0) \right].$$

2.1.11 Алгоритм Сомрьете

Обозначим Сомрьете* (S^+ , S^- , C, P, N) процедуру нахождения автомата, который удовлетворяет заданному набору позитивных сценариев выполнения S^+ и не удовлетворяет набору негативных сценариев S^- , и в котором C состояний, максимальный размер охранного условия P, а суммарный размер охранных условий не больше N. Данная процедура состоит из (1) построения позитивного дерева сценариев \mathcal{T}^+ и негативного дерева сценариев \mathcal{T}^- , (2) формирования сведения к SAT (кодирование структуры автомата и охранных условий, отображения позитивного и негативного дерева сценариев, а также ограничения на кардинальность) и (3) вызова SAT-решателя. Также введем обозначение Сомрьете (S^+ , S^- , C, P) = Сомрьете* (S^+ , S^- , C, P, $N = \infty$) для случая, когда суммарный размер охранных условий в автомате остается неограниченным.

2.2 Синтез минимальных монолитных моделей

Разработанные в данной работе методы синтеза монолитных конечноавтоматных моделей зависят от трех параметров: число состояний автомата C, максимальный размер каждого охранного условия P и суммарный размер всех охранных условий N. В реальности эти параметры неизвестны заранее, а их оценки, полученные какими-либо сторонними способами, могут быть далеки от оптимальных. На практике гораздо большей ценностью обладают модели меньших размеров, ввиду их эффективности и простоты. Обе задачи — *автоматизация* поиска параметров и их *минимизация* — могут быть решены одновременно путем применения *итеративного* подхода к синтезу минимальных моделей, рассматриваемому в текущем разделе.

2.2.1 Алгоритм Basic-min

Для быстрой оценки минимального числа состояний автомата, удовлетворяющего заданным сценариям выполнения S^+ , используется алгоритм $\operatorname{Basic}(S^+,C)$ с итеративным перебором параметра C «снизу вверх». После нахождения минимального числа состояний C_{\min} производится минимизация числа переходов в автомате с использованием алгоритма $\operatorname{Basic}^*(S^+,C_{\min},T)$ с итеративным перебором параметра T «сверху вниз», начиная с синтеза неограниченной модели: $T=\infty$. Псевдокод полученного алгоритма $\operatorname{Basic-min}(S^+)$ представлен в листинге $\operatorname{Percor}(S^+)$ вместе со вспомогательными функциями $\operatorname{Basic-min}(S^+)$ представлен в листинге $\operatorname{Percor}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{Percor}(S^+)$ выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{Percor}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{C}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{C}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{C}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{C}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{C}(S^+)$ вместе со выполняют минимизацию каждого параметра: $\operatorname{C}(S^+)$ и $\operatorname{C}(S^+)$ представлен в листинге $\operatorname{C}(S^+)$ вместе $\operatorname{C}(S^+)$ вмест

2.2.2 Алгоритмы Extended-min и Complete-min

Пусть параметр P — максимальный размер охранного условия в автомате — известен, а число состояний C оценено с помощью алгоритма Basic-мinC. Последующая минимизация суммарного размера охранных условий в автомате производится аналогично алгоритму Basic-мinT: с использованием алгоритма Extended* (S^+, C, P, N) путем итеративного перебора параметра N «сверху вниз», начиная с синтеза неограниченной модели: $N = \infty$. Псевдокод полученного алгоритма Extended-мin (S^+, P) приведен в листинге ??. Алгоритм Сомрьете-мin (S^+, S^-, P) определяется аналогично алгоритму Extended-мin: S^+ и S^- — наборы позитивных и негативных сценариев выполнения, P — максимальный размер охранного условия, внутри используется алгоритм Сомрьете*.

2.2.3 Aaroputm Extended-min-UB

На данном этапе возникает закономерный вопрос — как выбрать подходящее значение параметра P? Можно заметить, что решение задачи синтеза существует только если параметр P достаточно большой для того, чтобы охранные условия в автомате обладали достаточной выразительностью для представления желаемого поведения автомата. Самый простой способ перебора параметра P — «снизу вверх», начиная с P=1, до тех пор, пока не будет найдено (с помощью алгоритма Ехтепрером решение с суммарным размером охранных условий $N=N_{\min}^*$ для некоторого $P=P^*$. Однако при этом может существовать некоторое $P'>P^*$, при использовании которого будет найдено еще меньшее решение: $N'_{\min} < N_{\min}^*$. Поэтому для нахождения глобально-наименьшего автомата в терминах N, необходимо продолжать поиск для $P>P^*$. Однако при этом возникает вопрос: в какой момент необходимо остановить перебор параметра P и считать найденное ранее решение оптимальным?

Для ответа на этот вопрос, рассмотрим некоторый момент перебора, когда P=P'. Заметим, что в лучшем случае все охранные условия в автомате имеют размер 1, кроме одного, имеющего размер P'. Также заметим, что в лучшем случае в автомате ровно T_{\min} переходов, где значение T_{\min} определено с помощью алгоритма Ваѕіс-мінт. Исходя из этого, в лучшем случае суммарный размер охранных условий в автомате равен $N'_{\min}=T_{\min}-1+P'$. Обозначим N^{best}_{\min} лучшее, то есть наименьшее значение, найденное в текущий момент. Так как перебор параметра P производится с целью нахождения $N'_{\min} < N^{\text{best}}_{\min}$, то есть $T_{\min}-1+P' < N^{\text{best}}_{\min}$, то из этого следует, что верхняя граница для параметра P: $P' \leqslant N^{\text{best}}_{\min}-T_{\min}$.

Процесс перебора P до теоретической верхней границы может потребовать значительного количества времени, поэтому предлагается следующая эвристика для ускорения этого процесса. Рассмотрим два последовательных значения P' и P'' = P' + 1, а также соответствующим им значения N'_{\min} и N''_{\min} . Равенство $N'_{\min} = N''_{\min}$ говорит о том, что процесс поиска оптимального P находится в локальном минимуме — на плато. Если при увеличении P'' равенство сохраняется, то в таком случае увеличивается ширина плато, равная P'' - P'. Обозначим w критическое значение ширины плато, при достижении которого останавливается перебор P. Выбор подходящего значения w обеспечивает компромисс между временем выполнения и глобальной минимальностью полученного решения. На практике, значение w = 2 является оптимальным. Стоит отметить, что при использовании данной эвристики

Рисунок 5 — Цикл «Синтез-Верификация» — индуктивный синтез, основанный на контрпримерах

разработанные методы остаются *точными*, то есть синтезированные автоматы так же соответствуют заданному поведению.

Обозначим Ехтеnded-міn-UB(S^+, w) процесс синтеза минимальной модели, удовлетворяющей заданным сценариям выполнения S^+ , с автоматическим перебором параметра P с учетом значения критической ширины плато w: если w=0, то первое найденное решение считается оптимальным, если w>0, то используется описанная выше эвристика, если $w=\infty$, то перебор производится до теоретической верхней границы, также описанной выше. Псевдокод алгоритма Ехтеnded-міn-UB(S^+, w) приведен в листинге ??.

2.3 Индуктивный синтез, основанный на контрпримерах

Для того, чтобы производить синтез конечно-автоматных моделей не только примерам поведения в виде сценариев выполнения, но и с использованием LTL-спецификации — заданного набора LTL-свойств — в данной работе используется подход индуктивного синтеза, основанного на контпримерах (Counterexample-Guided Inductive Synthesis — CEGIS) [48; 49]. CEGIS является итеративным подходом и его общий вид изображен на рисунке 5. На каждой итерации производится (1) синтез модели (конечного автомата \mathcal{A}) с помощью алгоритма Сомрьете, а затем (2) верификация — проверка выполнения заданных LTL-свойств с помощью верификатора NuSMV [30]. Если какие-то LTL-свойства не выполняются, верификатор генерирует контрпримеры, которые затем конвертируются в негативные сценарии

и учитываются на следующей итерации CEGIS. В конечном итоге будет получен автомат \mathcal{A} , полностью удовлетворяющий заданной LTL-спецификации \mathcal{L} , либо же будет доказано его отсутствие при заданных параметрах C,P,T,N — в этом случае необходимо повторить процесс CEGIS с другими значениями параметров, например, ослабить ограничения на размер автомата.

2.3.1 Алгоритм CEGIS

Обозначим CEGIS* (S^+ , \mathcal{L} , C, P, T, N) процедуру, реализующую индуктивный синтез, основанный на контрпримерах, для нахождения конечного автомата \mathcal{A} , который удовлетворяет заданному набору позитивных сценариев выполнения S^+ и LTL-спецификации \mathcal{L} , и в котором C состояний, суммарно не более T переходов, максимальный размер охранного условия P, а суммарный размер охранных условий не больше N. Также введем обозначение CEGIS(S^+ , \mathcal{L} , C, P) = CEGIS* (S^+ , \mathcal{L} , C, P, $T = \infty$, $N = \infty$) для случая, когда число переходов и суммарных размер охранных условий в автомате остаются неограниченными.

2.3.2 Алгоритм CEGIS-MIN

Рассмотрим автомат \mathcal{A} , полученный с помощью алгоритма CEGIS(\mathcal{S}^+ , \mathcal{L} , C,P). Если мы будем минимизировать суммарный размер охранных условий N, то автомат в общем случае перестанет удовлетворять заданной LTL-спецификации \mathcal{L} , однако уже учтеные ранее негативные сценарии продолжат не выполняться. Поэтому, для синтеза минимальных моделей в данной работе предлагается поддерживать минимальную модель на каждой итерации CEGIS. Как правило, запуск процесса CEGIS начинается с оценки параметров автомата с помощью алгоритма Extended-min-UB — обозначим полученные оценки C^* , P^* и N^* . Следом, с помощью алгоритма CEGIS*(S^+ , \mathcal{L} , C^* , P^* , $T=\infty$, N^*) производится попытка синтезировать конечный автомат, удовлетворяющий спецификации \mathcal{L} . Отсутствие решения (случай UNSAT на рисунке 5) означает, что заданная верхняя граница для суммарного размера охранных условий N слишком мала, поэтому необходимо ослабить это ограничение

(например, взять значение N'=N+1) и повторить CEGIS. Стоит отметить, что это является единственным моментом, когда прерывается процесс *инкрементального* решения с помощью SAT-решателя. Обозначим CEGIS-мін (S^+, \mathcal{L}, C, P) алгоритм, реализующий индуктивный синтез для нахождения *минимальной* конечно-автоматной модели, которая удовлетворяет заданному набору позитивных сценариев выполнения S^+ и LTL-спецификации \mathcal{L} , и в которой C состояний, максимальный размер охранного условия P, а суммарный размер охранных условий является минимальным: N_{\min} .

2.4 Программное средство FBSAT

Все предложенные в данной работе методы были реализованы в виде программного средства FBSAT с использованием языка программирования Kotlin. Исходный код распространяется под лицензией GNU GPLv3 и доступен онлайн [51]. В качестве бэкенда возможно использование любого SAT-решателя, поддерживающего работу через стандартный ввод или файлы формата DIMACS [55].

Стоит отметить, что существующие текстовые интерфейсы общения с SAT-решателями не позволяют использовать возможность решать последовательные SAT задачи *инкрементально*, без потери процесса решения при перезапуске. В ходе выполнения работы была реализована обертка *incremental-cryptominisat* [56] для SAT-решателя CryptoMiniSat, позволяющая формулировать и решать инкрементальные задачи через текстовый интерфейс с использованием формата iCNF (расширенный формат DIMACS).

Альтернативой является нативный интерфейс, однако его поддержка требует отдельной реализации для каждого SAT-решателя. В данной работе для этих целей была использована технология JNI (Java Native Interface) [57]. Совместно со студенткой второго курса Гречишкиной Дарьей была разработана библиотека kotlin-jnisat [58; 59], содержащая реализации нативных интерфейсов для современных SAT-решателей: MiniSat, CryptoMiniSat, Cadical, Glucose. Библиотека написана на языке Kotlin с поддержкой возможности ее использования из других JVM языков, например, из Java.

При проведении экспериментов в данной работе был использован SAT-решатель Cadical посредством реализованного нативного интерфейса. Данный выбор обоснован тем, что Cadical является наиболее эффективным и робастным решателем, то есть

способен решать как простые, так и сложные задачи, в отличие от, например, решателя MiniSat, который не всегда справляется с большими экземплярами задачи SAT. Однако стоит отметить, что в большинстве случаев решатели Cadical, CryptoMiniSat и Glucose показывают схожие результаты.

2.5 Экспериментальное исследование: Pick-and-Place манипулятор

В данном разделе приводится экспериментальное исследование, посвященное применению разработанных методов к задаче синтеза конечно-автоматной модели логического контроллера, управляющего Pick-and-Place (PnP) манипулятором. Синтезированные модели верифицируются программно и проверяются вручную в виртуальной среде исполнения nxtSTUDIO [54].

TODO Рисунок 6 — Pick-and-Place манипулятор

Ріск-аnd-Place (PnP) манипулятор, изображенный на рисунке 6, состоит из двух горизонтальных пневматических цилиндров (I, II), одного вертикального цилиндра (III) и захватывающего устройства с вакуумной присоской (IV) для подъема рабочий деталей. Когда рабочая деталь оказывается во входном лотке (1,2,3), горизонтальные цилиндры располагают актюатор над деталью, вертикальный цилиндр опускает захватывающее устройство, который в свою очередь захватывает деталь, после чего вся система аналогичным образом приходит в движение для переноса захваченной детали в выходной лоток (V). Данная система управления реализована в соответствии со стандартом IEC 61499 с использованием функциональных блоков в среде моделирования nxtSTUDIO [54]. Логический контроллер, осуществляющий управление, выполнен в виде базового функционального блока, интерфейс которого включает в себя одно входное событие REQ (request), одно выходное событие CNF (confirmation), а также десять входных и семь выходных переменных. Контроллер PnP-манипулятора оперирует следующими входными сигналами X, поступающими от объекта управления — среды исполнения:

c1Home/c1End — горизонтальный цилиндр I находится в крайнем левом/правом положении;

Таблица 1 — Результаты синтеза минимальной конечно-автоматной модели логического контроллера PnP-манипулятора по примерам поведения с помощью двухэтапного метода Two-stage [29] и алгоритма Extended-мin-UB TODO

- c2Home/c2End горизонтальный цилиндр II находится в крайнем левом/правом положении;
- vcHome/vcEnd вертикальный цилиндр III находится в крайнем верхнем/нижнем положении;
- pp1/pp2/pp3 рабочая деталь находится на входном лотке 1/2/3;
- vac вакуумная присоска включена.

В свою очередь контроллер PnP-манипулятора может посылать следующие сигналы ${\mathcal Z}$ объекту управления:

- c1Extend/c1Retract удлинить/втянуть цилиндр I;
- c2Extend/c2Retract удлинить/втянуть цилиндр II;
- vcExtend удлинить цилиндр III;
- vacuum_on/vacuum_off включить/выключить ваккумную присоску.

2.5.1 Синтез минимальной конечно-автоматной модели по примерам поведения

Для исследования эффективности и практической применимости разработанных методов синтеза минимальных моделей по примерам поведения, производится сравнение с двухэтапным подходом из [29], где на первом этапе производится построение базовой модели, удовлетворяющей заданым сценариям выполнения, с помощью SAT-решателя, а затем охранные условия полученной модели минимизируются с помощью CSP-решателя. Стоит отметить, что превосходство данного двухэтапного метода над другими методами, например, EFSM-tools [12], уже было показано в [29], поэтому сравнение происходит только с двухэтапным методом, впоследствии называемым «Тwo-stage».

Для синтеза минимальной конечно-автоматной модели контроллера PnP-манипулятора по заданным сценариям выполнения S^+ был применен алгоритм Extended-min-UB(S^+ , w) с различными значениями параметра w — ширины плато для поиска локального минимума: w=0 для случая, когда первое найденное

решение считается финальным, $w=\infty$ для нахождения глобально-минимального решения, а также w=2 для случая использования предложенной эвристики. Результаты эксперимента представлены в таблице 1, где S^+ — набор сценариев выполнения, $|\mathcal{T}^+|$ — размер дерева сценариев; «Время, с» — время работы в секундах, N_{\min} — минимальный суммарный размер охранных условий; для метода Two-stage [29]: C_{\min} — минимальное число состояний, T_{\min} — минимальное число переходов; для метода Extended-min-UB: минимальное число состояний опущено, так как совпадает с C_{\min} для двухэтапного метода, P — максимальный размер каждого охранного условия, T — число переходов (не было минимизировано), w — критическая ширина плато для предложенной эвристики. Результаты свидетельствуют о том, что разработанный метод Еxtended-мin-UB способен генерировать более компактные конечные автоматны, чем двухэтапный метод, при этом значения эвристического параметра w=2 достаточно для получения оптимального результата в терминах N_{\min} .

2.5.2 Синтез минимальной конечно-автоматной модели по примерам поведения и LTL-спецификации

Следующий эксперимент посвящен учету формальной спецификации с помощью применения индуктивного синтеза, основанного на контрпримерах. Для использования LTL-свойств \varkappa ивости (liveness) верификация моделей с помощью NuSMV проводилась в замкнутом цикле [60] с заранее подготовленной формальной моделью объекта управления — PnP-манипулятора. Эта модель определяет состояние объекта управления в зависимости от команд управления контроллера — синтезированной конечно-автоматной модели. Набор использованых LTL-свойств представлен в таблице ?? и включает в себя как свойства безопасности ϕ_1 – ϕ_6 («система не окажется в нежелательном состояния»), так и свойства живости ϕ_7 – ϕ_{10} («что-то полезное когда-нибудь произойдет»). При этом свойства ϕ_1 – ϕ_7 зафиксированы, то есть используются во всех экспериментах, а использование свойств ϕ_8 – ϕ_{10} разнится. Стоит отметить, что эти три свойства определяют тот факт, что если рабочая деталь (1–3) размещается на входном лотке, то она когданибудь будет обработана. Однако в оригинальной системе PnP-манипулятора [61] выполняется только свойство ϕ_8 , касающееся первой детали — если в первом

входном лотке всегда присутствует рабочая деталь (при ее подъеме на ее месте в этот же момент появляется новая), то рабочие детали во втором и третьем входных лотках никогда не будут обработаны, что нарушает свойства живости ϕ_9 и ϕ_{10} . Поэтому каждое дополнительное (по отношению к ϕ_1 – ϕ_7) свойство ϕ_8 – ϕ_{10} рассматривается отдельно от остальных, при этом предполагается, что рабочие детали появляются только на соответствующих входных лотках. Для эксперимента с использованием дополнительного LTL-свойства ϕ_9 был использован специальный набор сценариев $\mathcal{S}^{(1)}$ ", состоящий из одного сценария, описывающего обработку детали во втором входном лотке. Аналогично, для свойства ϕ_{10} был использован специальный набор сценариев $\mathcal{S}^{(1)}$ ", состоящий из одного сценария, описывающего обработку детали в третьем входном лотке.

Проведенное экспериментальное сравнение включало в себя три метода: два разработанных метода CEGIS и CEGIS-мін, входящие в состав FBSAT, а также расширение метода FBCSP для учета LTL-спецификации, называемое впоследствии FBCSP+LTL [28]. Для обоих разработанных методов параметры C^* и P^* были предварительно оценены с помощью алгоритма Extended-міn-UB с параметром w = 2, время работы было учтено в суммарном времени работы алгоритма СЕGIS. Дополнительно, синтезированные модели были вручную протестированы в nxtSTUDIO [54] — загружены в симуляционную среду и проверены на соответствие желаемому поведению. Результаты данного экспериментального исследования представлены в таблице 3, где «Дополнительное LTL-свойство» — одно из свойств ϕ_8 — ϕ_{10} , использованное в дополнение к свойствам ϕ_1 - ϕ_7 , S^+ — набор использованых позитивных сценариев выполнения S^+ , $N_{\rm init}$ — начальный минимальный суммарный размер охранных условий (для автомата, полученного с помощью алгоритма Extended-min-UB(S^+, w)), «Время, с» — время работы в секундах, P — максимальный размер охранного условия, N — финальный суммарный размер охранных условий (при использовании алгоритма CEGIS-мін это значения является минимальным), «#iter» — число итераций CEGIS.

Анализируя полученные результаты, можно заметить, что модели, найденные с помощью подхода CEGIS всегда имеют больший размер (в терминах суммарного размера охранных условий N), нежели модели, построенные только по сценариям выполнения. Это объясняется тем, что используемые сценарии выполнения не полностью покрывают рассмотренную LTL-спецификацию. Поэтому алгоритм CEGIS-мім всегда находит наименьшее решение и во всех случаях превосходит FBCSP+LTL [28], как по времени работы, так и по размеру моделей. Наиболее интересным результатом

является то, что CEGIS-міn позволяет эффективно синтезировать модели по наборам сценариев $S^{(1)}$, $S^{(1)'''}$ и $S^{(1)'''}$ — эти сценарии «не покрывают» соответствующие свойства живости ϕ_8 — ϕ_{10} в том смысле, что эти сценарии описывают процесс обработки только одной рабочей детали. Существующий метод FBCSP+LTL [28] не справился в этих случаях, в то время как разработанный метод CEGIS-міn с легкостью преуспел. Также стоит отметить, что алгоритм CEGIS позволяет синтезировать модели быстрее, однако не обеспечивает минимальности охранных условий.

2.6 Экспериментальное исследование: SYNTCOMP

В этом разделе описывается применение разработанных методов к задаче синтеза системы переходов (transition system) [15; 24] по входным данным с соревнования по реактивному синтезу SYNTCOMP [50]. Один из треков соревнования SYNTCOMP — трек последовательного синтеза (sequential synthesis track) — посвящен задаче синтеза системы переходов по заданной LTL-спецификации, также известной как задача LTL-синтеза. Существует множество различных программных средств, осуществляющих LTL-синтез, среди которых можно выделить BoSy [15; 24] и Strix [26]. Стоит отметить, что среди всех доступных программных средств только BoSy ограничивает размеры (число состояний) генерируемых систем переходов, однако BoSy не минимизирует размеры охранных условий, что значительно затрудняет анализ получаемых систем человеком. Также стоит отметить, что на текущий момент разработанное в данной работе программное средство гвSAT неприменимо в явном виде к задаче LTL-синтеза, так как для гвSAT необходимым условием является наличие некоторого множества позитивных сценариев выполнения S^+ . Несмотря на это, гвSAT может быть применен для минимизации систем переходов, генерируемых BoSy.

Формально⁴, система переходов \mathcal{T} это кортеж $\langle T, t_0, \Sigma = I \cup O, \tau \rangle$, где T — множество состояний, $t_0 \in T$ — стартовое состояние, Σ — алфавит системы, I — множество пропозициональных переменных, управляемых окружением (входы), O — множество пропозициональных переменных, управляемых системой (выходы), $\tau: T \times 2^I \to \mathbb{R}$

 $^{^4}$ Здесь стоит отметить, что в данном разделе для описания системы переходов используется *оригинальная* нотация из [24]. Эта нотация может конфликтовать с другими частями данной работы — следует считать, что все объявления в данном разделе действуют только здесь. Также стоит отметить, что в оригинальной нотации для обозначения *множества всех наборов значений* пропозициональных переменных используется нотация 2^X , где X — множество пропозициональных переменных, однако более корректным обозначением было бы $\mathbb{B}^{|X|}$.

 $2^O \times T$ — функция перехода, отображающая состояние t и входной набор $i \in 2^I$ в выходной набор $o \in 2^O$ и новое состояние t'. Можно заметить сходство систем переходов и конечно-автоматных моделей ЕСС базовых функциональных блоков. Если система переходов обладает семантикой, схожей с семантикой автомата Мура (то есть выходы в функции перехода зависят от состояния системы), то такая система может быть смоделирована в виде ЕСС, а значит и синтезирована с помощью FвSAT.

Наборы данных (*инстансы*) на соревновании SYNTCOMP представляют собой JSON-файлы с описанием интерфейса системы и набора инвариантов — свойств на языке LTL, которые должны выполняться в каждый момент времени работы системы. В листинге ?? приведен пример инстанса lilydemo19, описывающего систему с семантикой автомата Мили. Данная система оперирует входами {ec, ets} и выходами {fl, hl}. Логика работы системы описывается с помощью LTL-свойств, указанных в поле guarantees, а дополнительные глобальные ограничения (предположения) записаны в поле assumptions.

При выполнении данной работы был использован набор из 136 инстансов с соревнования SYNTCOMP 2018. Для получения конечно-автоматных моделей в формате NuSMV по имеющимся LTL-спецификациям было использовано программное средство BoSy (input-symbolic, QBF-encoding, максимальное число состояний: 10, максимальное время работы: 1 час), в результате чего только только для 97 из 136 инстансов были получены результирующие модели. В листинге ?? приведена NuSMV модель для инстанса lilydemo19. Все полученные модели были просимулированы с помощью NuSMV с целью получения случайных сценариев выполнения различных длин. Для этого была использована команда «simulate -r -k <length>» для симуляции (<length> — число шагов симуляции) и команда «show_traces -a -v» для сохранения трассировок. Полученные трассировки были сконвертированы в сценарии выполнения в соответствии с разделом ??.

Полученные сценарии выполнения были использованы для синтеза конечно-автоматных моделей с помощью FBSAT. На рисунке 7 представлена синтезированная модель для описанного выше инстанса lilydemo19. Для синтеза было использовано пять сценариев длины 10 (scenarios-k5-l10), алгоритм Extended-міn-UB(w=0), время синтеза составило менее секунды. Модель состоит из C=2 состояний и T=4 переходов, а охранные условия имеют суммарный размер N=6. Дополнительный этап верификации подтвердил соответствие синтезированной системы исходной LTL-спецификации, указанной во входном файле lilydemo19. json. Как можно заметить,

синтезированная модель полностью эквивалентна исходной NuSMV модели, поэтому необходимо рассмотрение более «сложного» инстанса.

TODO

Рисунок 7 — Конечно-автоматная модель для инстанса lilydemo19, синтезированная с помощью FBSAT

Рассмотрим инстанс full_arbiter_3 — данная система оперирует входами $\{r_0,r_1,r_2\}$ и выходами $\{g_0,g_1,g_2\}$. Полученная с помощью BoSy система переходов $\mathcal{T}_{\text{original}}$ изображена на рисунке $\ref{eq:property}$ и состоит из C=8 состояний и T=28 переходов, а суммарный размер охранных условий N=147. На этом этапе можно предположить, что полученная модель не является минимальной, а значит, возможно применение FBSAT для синтеза минимальной модели, также соответствующей исходной LTL-спецификации — для этого был использован алгоритм CEGIS-міп. Стоит заметить, что для более эффективного синтеза необходимо полное покрытие состояний сценариями выполнения. Поэтому было использовано 20 сценариев, каждый длины 20 (scenarios-k20-120).

Стоит отметить, что формальное определение системы переходов, данное выше, не обязывает функцию переходов τ быть детерминированной, однако FBSAT всегда генерирует детерминированные модели. Также стоит отметить, что формальное определение системы переходов не включает в себя функцию приоритета переходов, которая присутствует в определении ЕСС. Для того, чтобы модели, синтезируемые FBSAT, соответствовали моделям, получаемым с помощью BoSy, в FBSAT было добавлено ограничение на «дизъюнктивные переходы» — в каждом состоянии $q \in Q$ для каждого входа $u \in \mathcal{U}$ выполняется не более одного перехода. В результате была синтезирована модель $\mathcal{H}_{\text{deterministic}}$, изображенная на рисунке $\ref{eq:condition}$, с тем же числом состояний и переходов, что и $\ref{foriginal}$, однако с меньшим суммарным размером охранных условий: N=105.

Если же не использовать введенное ограничение на «дизъюнктивные переходы», то есть использовать FBSAT в оригинальном виде, то синтезируемые модели будут детерминированными ЕСС (из-за функции приоритета переходов), но недетерминированными системами переходов. В таком случае результирующая модель $\mathcal{A}_{\text{non-deterministic}}$, изображенная на рисунке $\ref{eq:condition}$, обладает наименьшим суммарным размером охранных условий: N=52.

 $^{^5}$ Флаг --encode-disjunctive-transitions в FвSAT

Полученные результаты показывают, что предложенный подход к явному кодированию деревьев разбора булевых формул, соответствующих охранным условиям на переходах автомата, позволяет существенно сократить суммарный размер охранных условий в автомате. Стоит также отметить, что данный подход применим не только после LTL-синтеза — возможно расширить SAT-/QBF-сведение в BoSy предложенной кодировкой для охранных условий для их минимизации непосредственно в процессе синтеза.

Выводы по главе 2

В данной главе была рассмотрена задача синтеза монолитных конечно-автоматных моделей логических контроллеров по примерам поведения и формальной спецификации. Для решения этой задачи были разработаны методы, основанные на сведении к задаче выполнимости SAT и применении SAT-решателей. Отдельное внимание было уделено решению задачи синтеза минимальных моделей. Разработанные методы были реализованы в виде программного средства FвSAT [51]. Работоспособность и эффективность разработанных методов были проверены в ходе экспериментального исследования, посвященному синтезу модели логического контроллера, управляющего Pick-and-Place манипулятором. Дополнительно, разработанные методы были применены для минимизации конечно-автоматных моделей, получаемых в ходе LTL-синтеза с помощью программного средства BoSy по исходным данным с соревнования по реактивному синтезу SYNTCOMP.

Таблица 3 — Результаты применения подхода CEGIS к синтезу конечно-автоматной модели логического контроллера PnP-манипулятора по примерам поведения и LTL-спецификации

TODO

Глава 3. Методы оценивания декомпозиционной трудности булевых формул в применении к задачам тестирования и верификации логических схем

В данной главе описывается общий подход к оценке трудности примеров SAT, связанных с булевыми схемами, относительно одного класса методов разбиения этих примеров на подформулы. Такого рода оценка трудности, фактически представляет собой некоторую верхнюю границу сложности рассматриваемой формулы, выраженной в некоторых единицах, которые можно использовать для измерения времени работы полного SAT-решателя. Также предлагаются две простые конструкции разбиения, которые показали хорошие результаты в вычислительных экспериментах.

3.1 Трудность относительно разбиения и вероятностный алгоритм её оценки

Легко видеть, что можно связать с определенным разбиением SAT Π и конкретным полным SAT-решателем A случайную величину ξ_{Π} так, что общее время работы A на всех SAT-экземплярах из разбиения Π может быть выражено через математическое ожидание ξ_{Π} (которое мы обозначаем как $\mathbb{E}\left[\xi_{\Pi}\right]$). Этот факт дает теоретические основания для оценки трудности относительно разбиения с помощью простого алгоритма Монте-Карло.

Рассмотрим произвольную КНФ C над переменными X, и пусть A – полный SAT-решатель. Пусть $\Pi = \{G_1, \ldots, G_s\}$ – произвольное разбиение C. Можно рассматривать Π как пространство элементарных событий [62], где G_i , $i \in \{1, \ldots, s\}$ – элементарные события. Далее, пусть p_i – положительные числа, связанные с каждым G_i таким образом, что $\sum_{i=1}^s p_i = 1$. Установим $p_i = 1/s$ для каждого $i \in \{1, \ldots, s\}$, задав таким образом равномерное распределение на Π . Затем определим случайную величину $\xi_{\Pi} \colon \Pi \to \mathbb{R}^+$ следующим образом:

$$\xi_{\Pi}(G \in \Pi) = t_A(G \wedge C), \tag{6}$$

где $t_A(G \wedge C)$ обозначает время, затраченное A на определение выполнимости формулы $G \wedge C$.

Определение 1. Трудность C относительно алгоритма A и разбиения Π определяется как значение:

$$\mu_{A,\Pi}(C) = \sum_{i=1}^{s} t_A(G_i \wedge C) \tag{7}$$

Теорема 1. Справедливо соотношение: $\mu_{A,\Pi}(C) = s \cdot \mathbb{E}[\xi_{\Pi}].$

Доказательство. В контексте сказанного выше, имеем вероятностное пространство, где $\Pi = \{G_1, ..., G_s\}$ — пространство элементарных событий, а ξ_{Π} – определенная на нем случайная величина. Пусть $Spec(\xi_{\Pi}) = \{\xi_1, ..., \xi_r\}$ $(r \leq s)$ – спектр ξ_{Π} , где $\xi_k \in \mathbb{R}^+, k \in \{1, ..., r\}$. Обозначим через $\#\xi_k$ число элементарных событий в Π , для которых случайная величина ξ_{Π} принимает значение ξ_k . Тогда вероятность события $\{\xi_{\Pi} = \xi_k\}$ равна $p_k = \#\xi_k/s$, и ξ_{Π} имеет закон распределения $P(\xi_{\Pi}) = \{p_1, ..., p_k\}$ (поскольку выполняются все аксиомы Колмогорова [62]). Таким образом:

$$\sum_{i=1}^{s} t_{A}(G_{i} \wedge C) = \sum_{k=1}^{r} \# \xi_{k} \cdot \xi_{k} = s \cdot \sum_{k=1}^{r} \frac{\# \xi_{k}}{s} \cdot \xi_{k} = s \cdot \mathbb{E} \left[\xi_{\Pi} \right]$$

Используя Теорему 1, можно оценить $\mu_{A,\Pi}(C)$ с помощью метода Монте-Карло [63]. Сначала проведем N независимых вероятностных экспериментов, где каждый эксперимент включает выбор $G \in \Pi$ с учетом вероятностного распределения $P = \{p_1, \ldots, p_s\}$, с $p_i = 1/s$, $i \in \{1, \ldots, s\}$. Затем вычислим выборочное среднее ξ_Π как $\hat{\mu} = \frac{1}{N} \sum_{j=1}^N \xi^j$, где ξ^j – значение ξ_Π , наблюдаемое в j-ом эксперименте. Наконец, оценим $\mu_{A,\Pi}(C)$ как $\widetilde{\mu}_{A,\Pi} = s \cdot \hat{\mu}$.

Будем говорить, что $\widetilde{\mu}_{A,\Pi}(C)$ является (ε,δ) -приближением [64] для $\mu_{A,\Pi}(C)$, если выполняется следующее неравенство (вариация условия $(\ref{eq:condition})$:

$$\Pr\{\left|\mu_{A,\Pi}(C) - \widetilde{\mu}_{A,\Pi}(C)\right| \le \varepsilon \cdot \mu_{A,\Pi}(C)\} \ge 1 - \delta. \tag{8}$$

Как следует из неравенства Чебышева, неравенство (8) выполняется для всех $N \geqslant \frac{Var(\xi_{\Pi}(C))}{\varepsilon^2 \cdot \delta \cdot E[\xi_{\Pi}]^2}$, где ξ_{Π} определена относительно (6). Однако на практике $Var(\xi_{\Pi}(C))$ может быть очень большим, и использование малых значений N может привести к недостаточной точности оценки $\mu_{A,\Pi}(C)$. Эта проблема возникает в таких методах разбиения, как стандартная техника Cube-and-Conquer, а также схема разбиения из [CP2021]. В следующем разделе мы представим две конструкции построения разбиений, которые позволяют уменьшить дисперсию $Var(\xi_{\Pi})$ и, следовательно, улучшить точность оценки $\mu_{A,\Pi}(C)$.

3.2 Два новых метода разбиения SAT для CircuitSAT

В данном подразделе мы представляем два метода для построения разбиений SAT, нацеленных, главным образом, на проблемы из области CircuitSAT. Соответствующие конструкции могут быть применены как к LEC, так и к задачам обращения криптографических функций. Ниже приведено описание для LEC.

Рассмотрим проблему LEC для двух булевых схем S_f, S_h , задающих функции $f,h:\{0,1\}^n \to 0,1^m$. Определим первую конструкцию следующим образом:

Конструкция 1. Рассмотрим множество переменных $X^{in} = \{x_1, \ldots, x_n\}$, связанных c входами схем $S_f, S_h, S_{f \triangle h}$. Затем выберем целое число k такое, что 1 < k < n и разделим X^{in} на $q = \lceil n/k \rceil$ попарно непересекающихся множеств X^j , где $j \in \{1, \ldots, q\}$. Если n делится на k, то каждое множество X^j содержит k переменных. В противном случае разделим X^{in} на q-1 множества X^1, \ldots, X^{q-1} по k переменных каждое и множество X^q размером r, так что $n = k \cdot \lfloor \frac{n}{k} \rfloor + r$, где $r \in \{1, \ldots, k-1\}$.

Рассмотрим произвольную булеву функцию $\lambda\colon\{0,1\}^l\to\{0,1\}$, где $l\in\mathbb{N}^+$, и предположим, что λ не зафиксирована. Пусть $\neg\lambda\colon\{0,1\}^l\to\{0,1\}$ обозначает отрицание λ . С каждым $X^j,\,j\in\{1,\ldots,q\}$, свяжем две КНФ ϕ_1^j и ϕ_2^j , которые определяют функции $\lambda^j\colon\{0,1\}^{|X^j|}\to\{0,1\}$ и $\neg\lambda^j\colon\{0,1\}^{|X^j|}\to\{0,1\}$ соответственно.

Теорема 2. Пусть φ^j обозначает обе формулы φ_1^j и φ_2^j . Множество Π всех $2^{\lceil n/k \rceil}$ возможных формул вида $\varphi^1 \wedge \cdots \wedge \varphi^{\lceil n/k \rceil}$ формирует SAT-разбиение формулы (3).

Доказательство. Сначала докажем, что формула $C_{f \triangle h}$ имеет ровно 2^n выполняющих наборов. Действительно, рассмотрим множество $X^{in} = \{x_1, \dots, x_n\}$ и пусть $\alpha = (\alpha_1, \dots, \alpha_n)$ – произвольное назначение переменных из X^{in} . Затем рассмотрим формулу $\Phi(X,\alpha) = x_1^{\alpha_1} \wedge \dots \wedge x_n^{\alpha_n} \wedge C_{f \triangle h}$ над множеством переменных X. Из Леммы 1 следует, что применение UP к $\Phi(X,\alpha)$ приведет к выводу значений всех переменных из этой КНФ без конфликтов. Для каждого $\alpha \in \{0,1\}^n$ построим такое назначение переменных из X и скажем, что это назначение генерируется соответствующим α . Обозначим построенное множество назначений над X через $\Lambda(X)$. Легко видеть, что все назначения из $\Lambda(X)$ различны. Далее, рассмотрим множество переменных $\tilde{X} = X \setminus X^{in}$. С каждым назначением $\lambda \in \Lambda(X)$ свяжем часть λ , содержащую назначения переменных из \tilde{X} . Обозначим построенное множество назначений как $\Lambda(\tilde{X})$. Пусть $\gamma \in \{0,1\}^{|\tilde{X}|}$ – произвольное назначение переменных из \tilde{X} такое, что

 $\gamma \notin \Lambda(\tilde{X})$. Очевидно, что подстановка γ в $C_{f \triangle h}$ приводит к тому, что результирующая КНФ $C_{f \triangle h}[\gamma/\tilde{X}]$ является невыполнимой, поскольку для любого $\alpha=(\alpha_1,\ldots,\alpha_n)$ применение UP к формуле $x_1^{\alpha_1}\wedge\cdots\wedge x_n^{\alpha_n}\wedge C_{f \triangle h}[\gamma/\tilde{X}]$ приведет к конфликту. Таким образом, любой выполняющий набор $C_{f \triangle h}$ — это назначение, сгенерированное некоторым $\alpha\in\{0,1\}^{|X^{in}|}$, и различные назначения из $\{0,1\}^{|X^{in}|}$ порождают различные выполняющие наборы $C_{f \triangle h}$. Таким образом, у формулы $C_{f \triangle h}$ ровно 2^n выполняющих наборов. С другой стороны, нетрудно видеть, что любое $\alpha\in\{0,1\}^{|X^{in}|}$ выполняет ровно одну формулу $G_i,\ i\in\{1,\ldots,2^{\lceil n/k\rceil}\}$ описанного выше вида. Таким образом, формулы $C_{f \triangle h}$ и $(G_1\vee\ldots G_{2^{\lceil n/k\rceil}})$ имеют одинаковые выполняющие наборы, и, следовательно, формулы $C_{f \triangle h} \wedge C(M)$ и $(G_1\vee\ldots G_{2^{\lceil n/k\rceil}}) \wedge C_{f \triangle h} \wedge C(M)$ равновыполнимы.

Важный вопрос состоит в том, как выбрать функции λ^j и $\neg \lambda^j$ таким образом, чтобы гарантировать малую дисперсию $Var(\xi_\Pi)$ для разбиения SAT описанного выше типа? Здравый смысл подсказывает, что имеет смысл использовать *сбалансированнаые* булевы функции, т.е. такие функции, которые принимают значение 1 на 2^{l-1} входных словах, в качестве функции $\lambda\colon\{0,1\}^l\to\{0,1\}$. Очевидно, что отрицание сбалансированной функции тоже является сбалансированной функцией. Хорошим примером такого рода функции для l>1 является функция, задаваемая формулой $x_1\oplus\ldots\oplus x_l$.

Далее проведем несколько неформальный анализ свойств Конструкции 1, и используем его результаты в качестве основы для Конструкции 2, которая показала налучшие результаты среди всех рассмотренных методов в экспериментах с некоторыми чрезвычайно сложными примерами LEC в виде SAT. Рассмотрим функцию (2) и шаблонную КНФ $C_{f\triangle h}$. Многочисленные эксперименты показывают, что даже когда SAT для $C_{f\triangle h} \wedge C(\mathcal{M})$ является чрезвычайно сложной, SAT для $C_{f\triangle h}$ остается простой: любой CDCL SAT-решатель, получив на вход $C_{f\triangle h}$ и не имея никакой дополнительной информации о структуре схемы, способен найти выполняющий набор для $C_{f\triangle h}$. Этот набор можно рассматривать как сертификат выполнимости для $C_{f\triangle h}$. Как мы отмечали выше, всего для КНФ $C_{f\triangle h}$ существует 2^n таких сертификатов. Таким образом, доказательство невыполнимости $C_{f\triangle h} \wedge C(\mathcal{M})$ можно рассматривать как процесс, который опровергает все эти сертификаты. Более того, если функции λ^j сбалансированы для каждого $j\in\{1,\ldots,\lceil n/k\rceil\}$, то каждая формула вида $\phi^1\wedge\cdots\wedge\phi^{\lceil n/k\rceil}\wedge C_{f\triangle h}$ имеет $2^{n-\lceil n/k\rceil}$ выполняющих

наборов, которые также являются сертификатами удовлетворимости. Таким образом, можно сделать два предположения:

- 1. Алгоритму A намного легче доказать невыполнимость формулы $\phi^1 \wedge \cdots \wedge \phi^{\lceil n/k \rceil} \wedge C_{f \triangle h} \wedge C(\mathcal{M})$, потому что ему необходимо опровергнуть $2^{n-\lceil n/k \rceil}$ сертификатов вместо 2^n .
- 2. Для сбалансированных функций λ^{j} , $j \in \{1, \dots, \lceil n/k \rceil\}$, все $2^{\lceil n/k \rceil}$ различных формул вида $\phi^{1} \wedge \dots \wedge \phi^{\lceil n/k \rceil} \wedge C_{f \wedge h} \wedge C(\mathcal{M})$ должны быть более или менее схожи по времени работы алгоритма A на них, т.е. разбиение Π , заданное Конструкцией 1, должно иметь малую дисперсию $Var(\xi_{\Pi})$.

Хотя представленные аргументы лишены строго формального доказательства, на практике их выводы экспериментально подтверждаются. Ниже опишем еще одну конструкцию, при разработке которой были учтены указанные выше свойства.

Основная идея описанной ниже конструкции заключается в том, чтобы рассмотреть произвольное назначение переменных из $X^{\mathrm{in}} = \{x_1, \dots, x_n\}$ в качестве коэффициентов двоичного представления числа из $N_0^n = \{0,1,\dots,2^n-1\}$. Таким образом, существует взаимно однозначное отображение вида $\{0,1\}^n \to N_0^n$. Для произвольных $a,b \in N_0^n$ назовем множество чисел $\{q \in N_0^n \mid a \leqslant q \leqslant b\}$ интервалом и обозначим такой интервал как [a,b]. Рассмотрим множество булевых векторов из $\{0,1\}^n$, которые являются двоичными представлениями чисел из [a,b], как множество решений следующего целочисленного неравенства, предполагая, что $x_i, i \in \{1,\dots,n\}$ принимают значения из $\{0,1\}$:

$$a \le x_n + 2 \cdot x_{n-1} + \dots + 2^{n-1} \cdot x_1 < b$$
 (9)

Скажем, что множество \mathcal{R}^n , образованное интервалами описанного вида, является полной системой интервалов, если никакие два интервала из \mathcal{R}^n не пересекаются и любое число из N_0^n принадлежит какому-либо интервалу в \mathcal{R}^n . Это означает, что любая полная система интервалов порождает разбиение $\{0,1\}^n$ на непересекающиеся подмножества, образованные решениями соответствующих неравенств (9).

Конструкция 2. Пусть \mathbb{R}^n — полная система интервалов. С произвольным $I \in \mathbb{R}^n$, I = [a,b], ассоциируем неравенство вида (9) и CNF C_I , полученное путем кодирования (9) в SAT с использованием соответствующих техник, например, представленных в [65]. Определим $\Pi = \{C_I\}_{I \in \mathbb{R}^n}$.

Теорема 3. Множество $\Pi = \{C_I\}_{I \in \mathcal{R}^n}$, полученное с использованием Конструкции 2, формирует SAT-разбиение формулы $C_{f\Delta h} \wedge C(\mathcal{M})$.

Доказательство. Аналогично доказательству Теоремы 2, используем Лемму 1, чтобы показать, что любое назначение, удовлетворяющее $C_{f \triangle h}$, также удовлетворяет ровно одну формулу вида $G_i \wedge C_{f \triangle h}$, $i \in \{1, \ldots, s\}$. Следовательно, мы можем заключить, что $C_{f \triangle h} \wedge C(\mathcal{M})$ и $C_{f \triangle h} \wedge C(\mathcal{M}) \wedge (G_1 \vee \cdots \vee G_s)$ равновыполнимы. С другой стороны, ясно, что любая КНФ вида $G_i \wedge G_j$, $i \neq j, i, j \in \{1, \ldots, s\}$, невыполнима, что означает, что $\Pi = \{G_1, \ldots, G_s\}$ является SAT-разбиением формулы $C_{f \triangle h} \wedge C(\mathcal{M})$. \square

Заметим, что в случае, когда \mathcal{R}^n формируется интервалами равного размера 2^l , где $1 \leqslant l < n$, то можно указать любой интервал $I \in \mathcal{R}^n$ без использования кодировок из [65]. Действительно, в этом конкретном случае интервал с номером $k \in \{1,\ldots,2^{n-l}\}$ состоит из чисел вида $(k-1)\cdot 2^l+j$, где $j=0,\ldots,2^l-1$. Следовательно, этот интервал можно указать с помощью двоичного вектора $\lambda_{l+1}\ldots\lambda_n$, где λ_q , $q\in\{l+1,\ldots,n\}$, являются коэффициентами из $\{0,1\}$ в двоичном представлении числа $(k-1)\cdot 2^l$ из n бит.

Заметим, что описанный подход не применим к интервалам произвольного вида. В самом деле, рассмотрим небольшой пример: для n=6 вектор (010111) указывает на число 23, а вектор (101000) соответствует числу 40. Тогда, не существует числа $i\in\{1,\ldots,6\}$ такого, что x_i принимает одно и то же значение во всех числах из интервала $[23,40]\cap N_0$. Поэтому в общем случае необходимо применять техники, такие как например, описанные в [65], для кодирования интервалов вида (9) в SAT.

3.3 Экспериментальное исследование

[TODO Вычислительные эксперименты и их результаты] [TODO Multipliers, Sorters, Cryptography] [TODO Статистические оценки, результаты из IEEE, доверительные интервалы, обоснование мощности выборки]

3.4 Вычислительные эксперименты

Все эксперименты, представленные в данном разделе, были проведены на кластере Университета ИТМО, каждый узел которого оснащен двумя 18-ядерными

процессорами Intel Xeon E5-2695 v4 и 128 ГБ оперативной памяти. В качестве SAT-решателя были использованы Kissat¹ (версия 3.0.0) и CaDiCaL² (версия 1.9.5) из-за их высокой производительности, широких возможностей по настройке и программному взаимодействию через API. Это было согласовано даже при использовании подхода CnC с инкрементальными решателями (включая те, которые интегрированы в репозиторий CnC и последнюю версию CaDiCaL). Kissat выделялся при решении кубов на всех тестовых наборах и решателях.

Основным вопросом, который мы изучали в вычислительных экспериментах, была точность оценок сложности относительно разбиения (в смысле формулы (1)). Ситуации, когда сложность относительно разбиения меньше или близка к времени работы последовательного решателя на исходной задаче, являются особенно интересными, потому что в таких случаях соответствующие разбиения позволяют не только точно оценить время решения задачи (в отличие от случая последовательного решения), но и обеспечивают более эффективную стратегию решения соответствующего экземпляра LEC.

3.4.1 Тестовые данные

Мы рассматриваем два класса тестовых наборов (бенчмарков). Первый класс состоит из (невыполнимых) экземпляров задачи LEC для схем, представляющих алгоритмы умножения, такие как «умножение столбиком», «дерево Уоллеса» [2], «алгоритм Карацубы» [66] и «умножитель Дадда» [67]. Эти экземпляры обозначаются как AvB_k , где A и B означают алгоритмы умножения, а k — количество бит в умножаемых числах. Например, CvK_{16} представляет собой экземпляр LEC для проверки эквивалентности умножения двух 16-битных чисел (16х16 умножитель) методом столбика и алгоритмом Карацубы. Известно, что такого рода тестыи крайне сложны для современных SAT-решателей [**СР2021**; 68].

Второй класс состоит из нескольких (выполнимых) экземпляров, связанных с алгебраическим криптоанализом [bard2009], а именно, SAT-кодировок атаки поиска прообраза для хеш-функции MD4 с уменьшенным числом раундов. Эта проблема была недавно решена в [69] с использованием подхода Cube and Conquer. Набор тестовых

¹https://github.com/arminbiere/kissat

²https://github.com/arminbiere/cadical

примеров на основе MD4 служит для того, чтобы показать, что предложенная техника применима к (1) выполнимым тестам (2) тестам не из области LEC.

3.4.2 Эксперименты по оценке декомпозиционной сложности

В первом наборе экспериментов оценим сложность экземпляров LEC для умножителей относительно предложенных разбиений SAT, где мы разбиваем множество входов $X^{\rm in}$ на непересекающиеся подмножества, называемые *чанками*, в соответствии с Конструкцией 1. Мы рассматриваем следующие виды функций λ^j :

- 2-XOR: $\lambda^1 = x_1 \oplus x_2$, 3-XOR: $\lambda^1 = x_1 \oplus x_2 \oplus x_3$, $u \ m.\partial$.;
- 2-DIS: $\lambda^1 = x_1 \vee x_2$;
- 3-МАЈ: $\lambda^1 = majority(x_1, x_2, x_3)$, где $majority(a, b, c) = (a \wedge b) \vee (a \wedge c) \vee (b \wedge c)$;

Функции λ^j для j>1 определены на соответствующих непересекающихся чанках входов, например, $\lambda^2=x_4\oplus x_5\oplus x_6$ для 3-ХОR. Во всех случаях формулы, соответствующие $\lambda_1^j=\lambda^j$ и $\lambda_2^j=\neg\lambda^j$, были закодированы в КНФ.

Аналогично, для разбиений SAT, построенных в соответствии с Конструкцией 2, мы используем обозначение INT-s, где s обозначает количество интервалов, например, INT-65536 соответствует разбиению на 65 536 подзадач.

Чтобы обеспечить достоверность и актуальность наших результатов, среди всех составленных бенчмарков были выбраны только те экземпляры, которые представляют практический интерес, то есть те, которые не решаются за несколько секунд, но при этом могут быть решены за разумное время. Для тестовых наборов алгоритмов сортировки были выбраны экземпляры, которые кодируют LEC для k=9 и l=4. Среди умножителей были выбраны экземпляры двух разных уровней сложности (умножители 12x12 и 16x16, например, CvK_{12} или KvW_{16}) для демонстрации гибкости нашего подхода в решении задач с различной сложностью. Для каждого выбранного тестового примера были построены соответствующие разбиения и были решены все подзадачи, чтобы вычислить истинные значения математического ожидания $\mathbb{E}\left[\xi_{\Pi}\right]$ и дисперсии $Var(\xi_{\Pi})$.

Кроме того, были рассмотрены разбиения, построенные с использованием техники Cube and Conquer (CnC). Для этой цели были построены кубы с помощью

march_cu³. В частности, были подобраны значения опций -d <depth> и -n <number> таким образом, чтобы размеры полученных разбиений были аналогичны разбиениям, построенным с помощью методов, предложенных в данной работе. Для некоторых «простых» экземпляров также был запущен march_cu с параметрами по умолчанию, которые могут рассматриваться как базовый уровень в этом экспериментальном исследовании. Отметим, что для некоторых «более сложных» тестов march_cu в режиме по умолчанию не смог выдать результаты (т.е. набор кубов) за разумное время (24 часа), что привело к пропуску этих экспериментов. Затем все полученные кубы были независимо решены параллельно. Далее в этом документе будем обозначать разбиения, сгенерированные в идеологии CnC, как CnC-d*, CnC-n* и CnC-default.

Графики на Рисунке $\ref{eq:prop:sub}$ визуализируют дисперсию времени выполнения SAT-решателя при использовании рассматриваемых схем разбиения. Для конструкций 1 и 2 (разбиения 2–XOR и INT, соотвественно) время работы SAT-решателя имеет относительно низкую дисперсию, что указывает на то, что мы можем точно оценить необходимое общее время выполнения, используя относительно небольшой объем выборки. Напротив, для Cube and Conquer и разбиений 2–DIS дисперсия значительно больше из-за неравномерного распределения сложности подзадач. Для последнего это можно объяснить несбалансированностью функции $\lambda = a \lor b$, используемой в 2–DIS. Эти результаты подчеркивают важность выбора подходящих схем разбиения для достижения построения точной оценки общего времени выполнения.

Экспериментальные результаты показывают, что оценка для разбиения не всегда согласуется с временем работы последовательного решателя на исходной задаче. При этом, интересно, что наши результаты показывают, что общее время, необходимое для решения всех подзадач для умножителей, существенно меньше времени, необходимого для последовательного решения соответствующих тестовых примеров. В частности, для 16-битных умножителей однопоточный решатель не смог

³https://github.com/marijnheule/CnC

завершить работу даже после 10 дней, в то время как все подзадачи в разбиении были решены за разумное и *предсказуемое* время, соответствующее оценке. Для «Sequential» строки в таблицах следует уточнить, что решатель работал на одном ядре, в то время как все остальные эксперименты вычислялись параллельно, и представленное общее время CPU является суммой времени работы на всех подзадачах.

В контексте всего сказанного выше, одной из основных проблем является точность полученных оценок $\mathbb{E}\left[\xi_{\Pi}\right]$, так как дисперсия $\mathit{Var}(\xi_{\Pi})$ оказывает отрицательное влияние на точность. Однако результаты в Таблице \ref{tagray} показывают, что предложенные методы SAT-разбиения дают очень низкую дисперсию на рассматриваемых бенчмарках. Это является значительным преимуществом предложенного метода, так как он позволяет использовать небольшую случайную выборку для получения надежной оценки $\mathbb{E}\left[\xi_{\Pi}\right]$. Для демонстрации этого проведем дополнительный анализ полученных результатов.

Для различных значений N сгенерируем P = 1000 случайных выборок размера N и вычислим средние значения выборок $(\hat{\xi}^1,\dots,\hat{\xi}^p)$, где каждое $\hat{\xi}^r=$ $\frac{1}{N}\sum j=1^N\xi_j^r$. Также вычислим среднее значение средних значений выборок $\Xi(N)=$ $\frac{1}{p} \sum_{r=1}^{p} \hat{\xi}^{r}$ и минимальные и максимальные значения среди $\hat{\xi}$, которые мы обозначаем как $M_*(N)$ и $M^*(N)$, соответственно. Далее все значения нормализуем путем деления их на $\mathbb{E}[\xi_{\Pi}]$. Распределения нормализованных средних значений для различных размеров выборки показаны на Рисунке ??, где горизонтальная ось представляет размер случайной выборки N. Здесь мы рассматриваем экземпляр пример, кодирующий LEC задачу для умножителей CvK₁₆ и два различных разбиения: INT-65536 (предложенное разбиение на 65 536 интервалов) и CnC-d16 (Cube and Conquer, построенное при помощи march_cu -d 16). На графиках показаны нормализованные линии для минимальных и максимальных значений, представленных как $M_*(N)/\mathbb{E}\left[\xi_{\Pi}\right]$ (зеленая линия, внизу) и $M^*(N)/\mathbb{E}\left[\xi_{\Pi}\right]$ (оранжевая линия, сверху), соответственно. Результаты показывают, что выборочное среднее ξ является надежной оценкой $\mathbb{E}[\xi_{\Pi}]$, даже когда N гораздо меньше общего размера разбиения. Например, размер выборки $N \approx 30$ из общего числа 65 536подзадач для разбиения INT-65536 для теста CvK₁₆ достаточен для получения оценки в пределах 10%-интервала $\mathbb{E}[\xi_{\Pi}]$. Наоборот, достаточный размер выборки для разбиений CnC обычно значительно больше, в частности, для CnC-d16 (которое также имеет размер 65 536), он составляет как минимум $N \approx 1000$.

Таблица 4 — Экспериментальные результаты для разбиений экземпляров MD4 TODO

3.4.3 Эксперименты по поиску прообразов MD4

Чтобы показать, что предложенные конструкции применимы и к другим сложным экземплярам CircuitSAT, помимо невыполнимых LEC-бенчмарков, мы применили их к задаче поиска прообразов для хэш-функции MD4 с уменьшенным числом раундов. Эта проблема интересна тем, что лучшие известные результаты для нее были получены с помощью метода Cube-and-Conquer со специализированной стратегией поиска параметров CnC.

В наших экспериментах мы взяли две CNF (md4_40steps_11.30-32Dobb_one_constr_one oбозначаемую как MD4₄₀, и md4_43steps_12Dobb_one_constr_one_hash, обозначаемую как MD4₄₃) из репозитория⁴, представленного в [69]. Эти CNF соответствуют двум не слишком легким и не слишком трудным случаям криптоанализа. Используя Конструкцию 2, мы провели серию оценок времени выполнения, варьируя количество интервалов, и использовали наилучшие найденные параметры разбиения для полного решения обеих задач. Как и в [69], были решены все подзадачи, то есть процесс не останавливался как только был найден выполняющий набор.

Результаты этой серии экспериментов обобщены в Таблице 4. Они сравниваются с результатами, опубликованными в [69], обозначенными как CnC (время выполнения последних было представлено для 12 ядер CPU, поэтому мы масштабировали их для одного ядра CPU). Стоит отметить, что в статье [69] также использовалась стратегия, адаптированная к данной конкретной задаче, для поиска оптимальных параметров разложения CnC, хотя время нахождения этих параметров не включено в Таблицу 4, а также использовалась вычислительная платформа с более быстрыми ядрами CPU. Тем не менее, используя наш простой метод, удалось решить рассмотренные задачи за время, сравнимое с временем в [69]. В Таблице 4 строки, помеченные «(est.)», соответствуют оценкам времени работы, построенным по случайным выборкам размером N=1000, а строки, помеченные «(full)», соответствуют решению всех подзадач из построенного разбиения. Оцененное время работы также отмечено звездочкой в колонке «Тime». Из распределения выборочных средних для $MD4_{40}$, представленного на правом графике на Pucynke ??, видно, что выбранного значения

⁴https://github.com/olegzaikin/MD4-CnC

размера выборки (N=1000) достаточно для построения точных оценок времени работы. Расхождения между реальным временем решения и расчетным временем в Таблице 4 еще раз показывают, что предложенные конструкции дают небольшую дисперсию в трудности подзадач.

Выводы по главе 3

[ТООО В этой главе были представлены результаты экспериментального исследования, которые показывают, что предложенные методы разбиения задачи SAT позволяют получить точные оценки время работы SAT-решателя.]

Заключение

Список литературы

- 1. *Hachtel G. D., Somenzi F.* Logic Synthesis and Verification Algorithms. New York: Springer New York, NY, 1996. 596 p.
- 2. *Cormen T. H.*, *Leiserson C. E.*, *Rivest R. L.* Introduction to Algorithms. 1st ed. MIT Press, 1990.
- 3. *Tseitin G. S.* On the Complexity of Derivation in Propositional Calculus // Studies in Constructive Mathematics and Mathematical Logic, Part II / ed. by A. Slisenko. Steklov Mathematical Institute, 1970. P. 115–125. (Seminars in Mathematics).
- 4. *Szeider S*. Backdoor Sets for DLL Subsolvers // Journal of Automated Reasoning. 2006. Oct. 5. Vol. 35, no. 1–3. P. 73–88. (Visited on 05/03/2024).
- 5. Circuit Complexity and Decompositions of Global Constraints / C. Bessière [et al.] // IJCAI'09: 21st International Joint Conference on Artificial Intelligence. Pasadena, CA, United States, 07/2009. P. 412–418. (Constraints, Satisfiability, and Search). URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-00382608 (visited on 05/03/2024).
- 6. *Drechsler R., Junttila T. A., Niemelä I.* Non-Clausal SAT and ATPG // Handbook of Satisfiability. 1st ed. 2009. P. 655–693.
- 7. *Marques-Silva J., Lynce I., Malik S.* Conflict-Driven Clause Learning SAT Solvers // Handbook of Satisfiability. Vol. 185 / ed. by A. Biere [et al.]. IOS Press, 2009. P. 131–153. (Frontiers in Artificial Intelligence and Applications).
- 8. *Vyatkin V.* IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-Art Review // IEEE Transactions on Industrial Informatics Information. 2011. Vol. 7, no. 4. P. 768–781.
- 9. IEC 61131-1:2003. URL: https://webstore.iec.ch/publication/4550 (visited on 06/17/2020).
- 10. *Gold M.* Complexity of Automaton Identification from Given Data // Information and Control. 1978. Vol. 37, no. 3. P. 302–320.
- 11. *Heule M. J. H.*, *Verwer S.* Exact DFA Identification Using SAT Solvers // Grammatical Inference: Theoretical Results and Applications. Springer Berlin Heidelberg, 2010. P. 66–79.

- 12. *Ulyantsev V.*, *Buzhinsky I.*, *Shalyto A.* Exact finite-state machine identification from scenarios and temporal properties // International Journal on Software Tools for Technology Transfer. 2018. Vol. 20, no. 1. P. 35–55.
- 13. Efficient Symmetry Breaking for SAT-Based Minimum DFA Inference / I. Zakirzyanov [et al.] // Language and Automata Theory and Applications. Springer International Publishing, 2019. P. 159–173.
- 14. *Buzhinsky I.*, *Vyatkin V.* Automatic Inference of Finite-State Plant Models From Traces and Temporal Properties // IEEE Transactions on Industrial Informatics Information. 2017. Vol. 13, no. 4. P. 1521–1530.
- 15. *Faymonville P., Finkbeiner B., Tentrup L.* BoSy: An Experimentation Framework for Bounded Synthesis // Computer Aided Verification. Springer, 2017. P. 325–332.
- 16. *Tsarev F.*, *Egorov K.* Finite State Machine Induction Using Genetic Algorithm Based on Testing and Model Checking // Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation. ACM, 2011. P. 759–762.
- 17. *Giantamidis G.*, *Tripakis S.* Learning Moore Machines from Input-Output Traces // Formal Methods. Springer International Publishing, 2016. P. 291–309.
- 18. *Avellaneda F.*, *Petrenko A.* FSM Inference from Long Traces // Formal Methods. Springer, 2018. P. 93–109.
- 19. FSM inference and checking sequence construction are two sides of the same coin / A. Petrenko [et al.] // Software Quality Journal. 2019. P. 651–674.
- 20. *Neider D.*, *Topcu U.* An Automaton Learning Approach to Solving Safety Games over Infinite Graphs // Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin Heidelberg, 2016. P. 204–221.
- 21. G4LTL-ST: Automatic Generation of PLC Programs / C.-H. Cheng [et al.] // Computer Aided Verification. Springer International Publishing, 2014. P. 541–549.
- 22. *Smetsers R.*, *Fiterău-Broștean P.*, *Vaandrager F.* Model Learning as a Satisfiability Modulo Theories Problem // Language and Automata Theory and Applications. Springer International Publishing, 2018. P. 182–194.
- 23. *Walkinshaw N.*, *Taylor R.*, *Derrick J.* Inferring extended finite state machine models from software executions // Empirical Software Engineering. 2015. Vol. 21, no. 3. P. 811–853.

- 24. Encodings of Bounded Synthesis / P. Faymonville [et al.] // Tools and Algorithms for the Construction and Analysis of Systems. 2017. P. 354–370.
- 25. *Finkbeiner B.*, *Klein F.* Bounded Cycle Synthesis // Computer Aided Verification. Springer International Publishing, 2016. P. 118–135.
- 26. *Meyer P. J., Sickert S., Luttenberger M.* Strix: Explicit Reactive Synthesis Strikes Back! // Computer Aided Verification. Springer International Publishing, 2018. P. 578–586.
- 27. CSP-based inference of function block finite-state models from execution traces / D. Chivilikhin [et al.] // 15th IEEE International Conference on Industrial Informatics. 2017. P. 714–719.
- 28. Counterexample-guided inference of controller logic from execution traces and temporal formulas / D. Chivilikhin [et al.] // 23rd IEEE International Conference on Emerging Technologies and Factory Automation. IEEE, 2018. P. 91–98.
- 29. Function Block Finite-State Model Identification Using SAT and CSP Solvers / D. Chivilikhin [et al.] // IEEE Transactions on Industrial Informatics. 2019. Vol. 15, no. 8. P. 4558–4568.
- 30. NuSMV: a new symbolic model checker / A. Cimatti [et al.] // International Journal on Software Tools for Technology Transfer. 2000. Vol. 2, no. 4. P. 410–425.
- 31. *Manna Z.*, *Pnueli A.* Temporal Verification of Reactive Systems: Safety. Springer-Verlag, 1995. P. 512.
- 32. Clarke E. M., Grumberg O., Peled D. Model Checking. MIT Press, 1999. 330 p.
- 33. *Ulyantsev V., Zakirzyanov I., Shalyto A.* BFS-Based Symmetry Breaking Predicates for DFA Identification // Language and Automata Theory and Applications. Springer International Publishing, 2015. P. 611–622.
- 34. *Brand D*. Redundancy and Don't Cares in Logic Synthesis // IEEE Transactions on Computers. 1983. Okt. T. C—32, № 10. C. 947—952.
- 35. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications / A. Biere [et al.]. IOS Press, 2009.
- 36. *Cook S. A.* The Complexity of Theorem-Proving Procedures // Proceedings of the Third Annual ACM Symposium on Theory of Computing. ACM, 1971. P. 151–158.
- 37. SAT Competitions. URL: http://www.satcompetition.org/ (visited on 06/13/2020).

- 38. Learning Rate Based Branching Heuristic for SAT Solvers / J. Liang [et al.] // Theory and Applications of Satisfiability Testing SAT 2016. Springer International Publishing, 2016. P. 123–140.
- 39. CaDiCaL Simplified Satisfiability Solver. URL: http://fmv.jku.at/cadical/(visited on 06/13/2020).
- 40. *Soos M.*, *Nohl K.*, *Castelluccia C.* Extending SAT Solvers to Cryptographic Problems // Theory and Applications of Satisfiability Testing. Springer Berlin Heidelberg, 2009. P. 244–257.
- 41. *Audemard G., Simon L.* Predicting Learnt Clauses Quality in Modern SAT Solvers // Proceedings of the 21st International Jont Conference on Artifical Intelligence. Morgan Kaufmann Publishers Inc., 2009. P. 399–404.
- 42. Lingeling, Plingeling and Treengeling. URL: http://fmv.jku.at/lingeling/ (visited on 06/13/2020).
- 43. *Eén N.*, *Sörensson N.* An Extensible SAT-solver // Theory and Applications of Satisfiability Testing. Springer Berlin Heidelberg, 2003. P. 502–518.
- 44. *Marques-Silva J. P.*, *Sakallah K. A.* GRASP—A new search algorithm for satisfiability // Proceedings of International Conference on Computer Aided Design. IEEE Comput. Soc. Press, 1996. P. 220–227.
- 45. Williams R., Gomes C. P., Selman B. Backdoors to Typical Case Complexity // Proceedings of the 18th International Joint Conference on Artificial Intelligence. Vol. 3 (IJCAI). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 08/09/2003. P. 1173–1178.
- 46. Measuring the Hardness of SAT Instances / C. Ansótegui [μ др.] // Proceedings of the 23rd National Conference on Artificial Intelligence Volume 1. Chicago, Illinois : AAAI Press, 13.07.2008. C. 222—228. (AAAI'08).
- 47. Evaluating the Hardness of SAT Instances Using Evolutionary Optimization Algorithms / A. Semenov [et al.] // (27th International Conference on Principles and Practice of Constraint Programming). 2021. P. 18.
- 48. Combinatorial sketching for finite programs / A. Solar-Lezama [et al.] // ACM SIGOPS Operating Systems Review. 2006. Vol. 40, no. 5. P. 404–415.
- 49. Counterexample Guided Inductive Synthesis Modulo Theories / A. Abate [et al.] // Computer Aided Verification. Springer International Publishing, 2018. P. 270–288.

- 50. The 5th Reactive Synthesis Competition (SYNTCOMP 2018): Benchmarks, Participants & Results / S. Jacobs [et al.]. 2019. arXiv: 1904.07736 [cs.L0].
- 51. *Chukharev K.* fbSAT Tool / Computer Technologies Laboratory. URL: https://github.com/ctlab/fbSAT (дата обр. 29.04.2024).
- 52. *Petke J., Jeavons P.* The Order Encoding: From Tractable CSP to Tractable SAT // Theory and Applications of Satisfiability Testing SAT 2011. Vol. 6695. Springer Berlin Heidelberg, 2011. P. 371–372.
- 53. *Walsh T.* SAT v CSP // 6th International Conference on Principles and Practice of Constraint Programming. Springer Berlin Heidelberg, 2000. P. 441–456.
- 54. nxtControl nxtStudio. URL: http://www.nxtcontrol.com/en/engineering (visited on 06/17/2020).
- 55. Benchmarks submission guidelines. URL: http://www.satcompetition.org/2009/format-benchmarks2009.html (visited on 06/17/2020).
- 56. Chukharev K. Wrapper for incremental SAT solving using Cryptominisat. URL: https://github.com/Lipen/incremental-cryptominisat (visited on 06/17/2020).
- 57. JNI APIs and Developer Guides. URL: https://docs.oracle.com/javase/8/docs/technotes/guides/jni/ (visited on 06/17/2020).
- 58. *Chukharev K.*, *Grechishkina D.* Lipen/kotlin-jnisat: JNI wrappers for SAT-solvers in Kotlin. URL: https://github.com/Lipen/kotlin-jnisat (visited on 06/17/2020).
- 59. *Гречишкина Д.*, *Чухарев К.* Программный интерфейс для SAT-решателей на основе технологии JNI // Сборник тезисов докладов конгресса молодых ученых. Электронное издание. СПб: Университет ИТМО, 2020. URL: https://kmu.itmo.ru/digests/article/4456 (дата обр. 17.06.2020).
- 60. Closed-Loop Modeling in Future Automation System Engineering and Validation / V. Vyatkin [et al.] // IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2009. Vol. 39, no. 1. P. 17–28.
- 61. *Patil S.*, *Vyatkin V.*, *Sorouri M.* Formal verification of Intelligent Mechatronic Systems with decentralized control logic // IEEE Conference on Emerging Technologies and Factory Automation. IEEE, 2012. P. 1–7.

- 62. *Feller W.* An Introduction to Probability Theory and Its Applications. T. 2. 2-е изд. John Wiley & Sons, Inc., 1971.
- 63. *Metropolis N.*, *Ulam S.* The Monte Carlo Method // Journal of the American Statistical Association. 1949. Sept. Vol. 44, no. 247. P. 335–341.
- 64. *Karp R. M.*, *Luby M.*, *Madras N.* Monte-Carlo Approximation Algorithms for Enumeration Problems // Journal of Algorithms. 1989. Sept. Vol. 10, no. 3. P. 429–448.
- 65. *Eén N.*, *Sörensson N.* Translating Pseudo-Boolean Constraints into SAT // Journal on Satisfiability, Boolean Modeling and Computation / ed. by D. Le Berre, L. Simon. 2006. Mar. 1. Vol. 2, no. 1–4. P. 1–26.
- 66. *Knuth D. E.* The Art of Computer Programming: Volume 2: Seminumerical Algorithms: in 7 vols. Vol. 2. 3rd ed. Massachusetts: Addison-Wesley, 1997. 762 p. URL: https://www-cs-faculty.stanford.edu/~knuth/taocp.html (visited on 05/08/2024).
- 67. *Dadda L*. Some schemes for parallel multipliers // Alta Frequenza. 1965. Май. Т. 34, № 5. С. 349—356.
- 68. *Kaufmann D., Biere A., Kauers M.* Verifying Large Multipliers by Combining SAT and Computer Algebra // 2019 Formal Methods in Computer Aided Design (FMCAD). 2019. C. 28—36.
- 69. *Zaikin O.* Inverting 43-Step MD4 via Cube-and-Conquer //. Vol. 3 (Thirty-First International Joint Conference on Artificial Intelligence). International Joint Conferences on Artificial Intelligence Organization, 07/16/2022. P. 1894–1900.