Section 9.6

Exercise 9

The directed graph is not a partial order as it is not transitive since there is an edge $a \to b$ and $b \to c$ but no edge $b \to c$.

Exercise 18

b) open, opened, opener, opera, operand

Exercise 27

```
(a, a),(a, g),(a, d),(a, e),(a, f),

(b, b),(b, g),(b, d),(b, e),(b, f),

(c, c),(c, g),(c, d),(c, e),(c, f),

(d, d),

(e, e),

(f, f),

(g, d),(g, e),(g, f),(g, g)
```

Exercise 32

- Elements l and m are maximal elements
- Elements a, b and c are minimal elements
- There is no greatest element
- There is no least element
- k, l and m are upper bounds of $\{a, b, c\}$
- The least upper bound of $\{a,b,c\}$ is k
- There is no lower bound for $\{f, g, h\}$
- Because of g) there is no greatest lower bound

Section 10.2

Exercise 18

For a graph with n where $n \le 2$ vertices the degree of one of those vertices can be at most of degree n-1 and at least of degree 1, this means we have n-1 different possible degrees. For n vertices and a maximum of n-1 unique degrees, at least two of them must have the same degree.

Exercise 22

The graph is bipartite where a, c is on one side, and b, d, e on the other.

Exercise 26

- a) K_n is bipartite only for n=2
- b) C_n is bipartite for $n \leq 4$ and n is even.
- c) W_n is not bipartite for any n.

Exercise 55

A regular graph of degree 4 with n vertices has $\frac{4n}{2}$ edges, which means the number of nodes is half the number of edges, which is 5 nodes in this case.

Section 10.3

Exercise 17

Exercise 19

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Exercise 23

