CLAIMS

What is claimed is:

1	1.	A method, comprising:
2		receiving a selection signal;
3		receiving an erase-mode signal;
4		determining a level-shifter signal from the selection signal and the erase-
5		mode signal;
6		determining an inverter signal from the level-shifter signal and the
7		selection signal;
8		outputting the erase-mode signal in response to a first combination of the
9		inverter signal and the level-shifter signal; and
10		outputting a read-mode signal in response to a second combination of the
11		inverter signal and the level-shifter signal.
1	2.	The method of claim 1, further comprising:
2		receiving a non-erase-mode signal; and
3		outputting the read-mode signal.
1	3.	The method of claim 2, wherein outputting the read-mode signal comprises
2		supplying a low impedance, low voltage current.
1	4.	The method of claim 1, wherein said receiving a selection signal comprises
2		combining a first signal and a second signal with a nand operation.
		e e e e e e e e e e e e e e e e e e e
1	5.	The method of claim 1, wherein said receiving an erase-mode signal comprises
2	٠.	receiving an erase-mode signal having a negative voltage.
_		receiving an orase mode signal having a negative voltage.
1	6.	The method of claim 1 whomin said determine 1 1 1 1 2
	U.	The method of claim 1, wherein said determining a level-shifter signal from the
2		selection signal and the erase-mode signal comprises pulling up a voltage from a
3		negative erase-mode voltage.

- The method of claim 1, wherein said determining an inverter signal from the level-shifter signal and the selection signal comprises choosing between the level-shifter signal and the selection signal.
- The method of claim 1, wherein said outputting the erase-mode signal in response to a first combination of the inverter signal and the level-shifter signal comprises outputting a negative erase-mode voltage in response to a positive voltage inverter signal and a negative voltage level-shifter signal.
- The method of claim 1, wherein said outputting a read-mode signal in response to a second combination of the inverter signal and the level-shifter signal comprises outputting the read-mode signal in response to a negative voltage inverter signal and a negative voltage level-shifter signal.

1	10.	An apparatus, comprising:
2		a level shift stage circuit coupled to a selection signal input and coupled a
3		negative charge pump input;
4		an invert stage circuit coupled to said level shift stage circuit and
5		responsively coupled to the selection signal input; and
6		an output stage circuit coupled to said invert stage circuit to switch an
7		output between a read-mode signal and an erase-mode signal
8		dependent upon the selection signal input.
1	11.	The apparatus of claim 10, wherein said level shift stage circuit comprises:
2		a current source pull-down circuit; and
3		an active source pull-up circuit coupled to the current source pull-down
4		circuit.
1	12.	The apparatus of claim 11, wherein the current source pull-down circuit
2		comprises:
3		a first transistor having a gate coupled to a bias input and a source/drain
4		coupled to a negative charge pump input; and
5		a first cascode transistor having a source/drain coupled a drain/source of
6		the first transistor, and a gate coupled to a cascode input.
1	13.	The apparatus of claim 11, wherein the active source pull-up circuit comprises:
2		a second transistor having a source/drain coupled to a pull-up input and a
3		gate coupled to the selection signal input; and
4		a second cascode transistor having a source/drain coupled to a drain/source
5		of the second transistor, a drain/source coupled to the current
5		source pull-down circuit, and a gate coupled to a cascode input.
l	14.	The apparatus of claim 11, wherein the current pull-down circuit comprises a
2		triple-well, n-channel, insulated gate transistor.

1	15.	The apparatus of claim 11, wherein the active pull-up circuit comprises a p-
2		channel transistor.
1	16.	The apparatus of claim 10, wherein said invert stage circuit comprises:
2		an invert-to-read-mode-signal circuit; and
3		an invert-to-erase-mode-signal circuit coupled to the invert-to-read-mode-
4	•	signal circuit.
1	17.	The apparatus of claim 16, wherein the invert-to-read-mode-signal circuit comprises:
3		a third transistor having a source/drain coupled to the selection signal input
4		and a gate coupled to a circuit ground; and
5		a third cascode transistor having a source/drain coupled to a drain/source
6		of the third transistor, a drain/source coupled to the invert-to-erase-
7		mode-signal circuit, and a gate coupled to the cascode input.
1	18.	The apparatus of claim 16, wherein the invert-to-erase-mode-signal circuit comprises:
3		a fourth transistor having a source/drain coupled to the negative charge
4		pump input and a gate coupled to said level shift stage circuit; and
5		a fourth cascode transistor having a source/drain coupled to a drain/source
6		of the fourth transistor, a drain/source coupled to the drain/source
7		of the third cascode transistor, and a gate coupled to the cascode
3		input.
l	19.	The apparatus of claim 10, wherein said output stage circuit comprises:
2		an output-read-mode-signal circuit coupled to an output; and
3		an output-erase-mode-signal circuit coupled to the output.
l	20.	The apparatus of claim 19, wherein the output-read-mode-signal circuit comprises
2		a fifth transistor having a source/drain coupled to the circuit ground, a gate
}		coupled to said invert stage circuit, and a drain/source coupled to the output.

- 1 21. The apparatus of claim 20, wherein the fifth transistor comprises a low resistance channel.
- 1 22. The apparatus of claim 19, wherein the output-erase-mode-signal circuit comprises:
- a sixth transistor having a source/drain coupled to the negative charge
 pump input, and a gate coupled to said invert stage circuit; and
 a sixth cascode transistor having a source/drain coupled to a drain/source
 of the sixth transistor, a gate coupled to a cascode input, and a
 drain/source coupled to the output.
- 1 23. The apparatus of claim 10, wherein said level shift stage circuit comprises a transistor having a ringed drain/source.
- 1 24. The apparatus of claim 10, wherein the erase-mode signal comprises a high magnitude negative voltage.

1	25.	A system, comprising:
2		a memory array; and
3		a memory array controller comprising
4		a negative charge pump; and
5		a block controller coupled to the negative charge pump,
6		comprising:
7		a negative level shifter to switch an output between a read-
8		mode voltage and an erase-mode voltage dependent
9		upon a selection signal input;
10		a positive voltage switch coupled to the negative level shift
11		circuit;
12		a bit line driver coupled to the positive switch and coupled
13		to said memory array; and
14		a word line driver coupled to said positive switch, coupled
15		to the negative level shifter, and coupled to said
16		memory array.
1	26.	The system of claim 25, wherein the negative level shifter comprises an output
2		stage comprising an n-channel transistor.
1	27.	The system of claim 25, wherein the negative level shifter comprises an active
2		pull-up circuit coupled to a current source pull-down circuit.
1	28.	The system of claim 25, wherein the erase-mode voltage comprises a high
2	20.	magnitude negative voltage.
	29.	The gratem of claim 25, wherein the need made valtage commisses a law valtage
1	29.	The system of claim 25, wherein the read-mode voltage comprises a low voltage
2		current from the negative charge pump via a low resistance n-channel transistor.
	20	
1	30.	The system of claim 25, wherein said memory array comprises a block coupled to
2		the block controller and having a bit line, a word line, and a source line.

- The system of claim 25, wherein said memory array controller comprises the block controller to apply a signal to a first block within said memory array to erase the first block.
- The system of claim 25, wherein said memory array controller comprises a second block controller to apply a signal to a second block within said memory array to read a memory cell of the second block substantially simultaneously with erasure of a first block within said memory array.
- 1 33. The system of claim 25, wherein the negative charge pump comprises an output circuit to output the erase-mode voltage.
- The system of claim 25, wherein the negative level shifter comprises an output stage circuit coupled to said memory array to apply the erase-mode voltage to a source line of said memory array.
- The system of claim 34, wherein the output stage circuit comprises a transistor to couple the output of the negative charge pump to the source line.
- The system of claim 25, wherein the negative level shifter comprises a first circuit to pull up an output of the negative charge pump to apply a read-mode voltage to a first memory cell of said memory array.
- The system of claim 36, further comprising a second negative level shifter coupled to the negative charge pump to couple the output of the negative charge pump to a second memory cell of said memory array substantially simultaneously with the application of the read-mode voltage to the first memory cell of said memory array.
- 1 38. The system of claim 36, wherein the first circuit comprises circuitry to substantially prevent current burn within the negative level shifter.

- 1 39. The system of claim 36, wherein the first circuit comprises an output stage circuit to
- apply a low resistance current to the first memory cell.

1	40.	A method, comprising:
2		receiving a signal to erase a first block within a memory array;
3		lowering an output of a negative charge pump to a negative voltage;
4		applying the output of the negative charge pump to a source line of the first
5		block; and
6		pulling up the output of the negative charge pump to apply a read-mode voltage
7		to a memory cell of a second block within the memory array
8		substantially simultaneously with said applying the output.
1	41.	The method of claim 40, further comprising applying a signal to a word line and a bit
2		line to erase the first block.
1	42.	The method of claim 40, further comprising applying a signal to a word line and a bit
2		line of the second block to read the memory cell substantially simultaneously with
3		erasing the first block.
1 .	43.	The method of claim 40, wherein said receiving a signal to erase a first block within a
2		memory array comprises:
3		receiving an instruction to erase the first block; and
4		receiving an instruction to read the memory cell prior to erasure of the first
5		block.
1	44.	The method of claim 40, wherein said lowering an output of a negative charge pump to
2		a negative voltage comprises lowering the output of the negative charge pump to a
3		high magnitude, negative voltage.
1	45.	The method of claim 40, wherein said applying the output of the negative charge pump
2		to a source line of the first block comprises coupling the output of the negative charge
3		pump to the source line.
1	46.	The method of claim 40, wherein said pulling up the output comprises turning off
2		transistors to substantially prevent current burn within a negative level shifter coupled
3		to the second block of memory.

- 1 47. The method of claim 40, wherein said pulling up the output comprises applying a low
- 2 resistance current to the memory cell.

1	48.	An apparatus, comprising:
2		a negative charge pump; and
3		a block controller coupled to the negative charge pump, comprising:
4		a negative level shifter to switch an output between a read-mode
5		voltage and an erase-mode voltage dependent upon a selection
6		signal input; and
7		a positive voltage switch coupled to the negative level shifter.

- 1 49. The apparatus of claim 48, wherein the negative level shifter comprises an output stage 2 circuit to couple to said negative charge pump to output the erase-mode voltage.
- 1 50. The apparatus of claim 48, wherein the negative level shifter comprises a first circuit to pull up an output of said negative charge pump to output a read-mode voltage.
- The apparatus of claim 50, further comprising a second negative level shifter to couple to said negative charge pump to output an erase-mode voltage substantially simultaneously with an output of the read-mode voltage by the negative level shifter.