Related Work

We let λ be the security parameter given to the setup algorithm such that a security level of 256 bits is realised. We let G be some BDH parameter generator. S is the set of desired recipients i with i=1,...,n. Symmetric encryption and decryption is done using AES Galois Counter Mode $GCM_{enc}(P,A,K,IV)$ and $GCM_{dec}(P,A,K,IV)$ respectively.

Setup(λ): Given a security parameter $\lambda \in \mathbb{Z}^+$, the algorithm works as follows:

- 1. Run G on input λ to generate a prime q, two groups $\mathbb{G}_1, \mathbb{G}_2$ of order q, and an admissible bilinear map $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$. Choose a random generator $P \in \mathbb{G}_1$
- 2. Pick a random $s \in \mathbb{Z}_q^*$ and set $P_{pub} = sP$
- 3. Choose a cryptographic hash function $H_1:\{0,1\}^*\to \mathbb{G}_1^*$ and $H_2:\mathbb{G}_T^*\to\{0,1\}^{256}$. The security analysis will view H_1,H_2 as random oracles.

The symmetric key space is $K = \{0,1\}^{256} = \{K_1||IV\}$ with $K_1 = \{0,1\}^{128}$ and $IV = \{0,1\}^{128}$. The ciphertext space is $C_i = \mathbb{G}_1^* \times \{0,1\}^{256}$. The system parameters are $params = \{q, \mathbb{G}_1, \mathbb{G}_2, e, P, P_{pub}, H_1, H_2\}$. The master key is $s \in \mathbb{Z}_q^*$.

 $KeyGen(\lambda, ID_i)$: For a given string $ID_i \in \{0, 1\}^*$ the algorithm does:

- 1. Compute $Q_{\text{ID}_i} = H_1(ID_i)$
- 2. Set the private key d_{ID_i} to be $d_{\text{ID}_i} = sQ_{\text{ID}_i}$ where s is the master key.
- 3. Return d_{ID_i} to the corresponding user ID_i over a secure channel.

 $Encrypt(params, \lambda, K, S)$: To encrypt K under the public keys $\{ID_i \in S\}$:

- 1. Generate a random symmetric session key $K_1=\{0,1\}^{128}$. Generate a random initialisation vector $IV=\{0,1\}^{128}$ and set $K=\{K_1||IV\}$
- 2. Choose a random $r \in \mathbb{Z}_q^*$
- 3. For each recipient $ID_i \in S, i = 1..n$, calculate the ciphertext

$$C_i = K \oplus H_2\left(g_{\text{ID}_i}^r\right)$$
 where $g_{\text{ID}_i} = e\left(Q_{\text{ID}_i}, P_{pub}\right) \in \mathbb{G}_T^*$

4. Apply GCM with initialisation vector IV and secret key K_1 . Plaintext is set to $P_{text} = K$ and the additional authenticated data $A = \{rP||C_1||C_2||..||C_n\}$. GCM then outputs a ciphertext C_T and an authentication tag T such that

$$\{C_T, T\} = GCM_{enc}(P_{text}, A, K_1, IV)$$

5. The following message is then broadcasted over an insecure network

$$M = \{C_T ||A||T\}$$

Decrypt(params, d_{ID_i}, M): Parse broadcasted message M as $\{C_T||A||T\}$. For each $C_i \in A = \{rP||C_1||C_2||...||C_n\}$ do the following:

1. Decrypt C_i using the private key d_{ID_i} by calculating

$$C_i \oplus H_2(e(d_{\text{ID}}, rP)) = K = \{K_1 | |IV\}$$

2. Decrypt C_T by

$$\{P_{text}, T_{dec}\} = GCM_{dec}(C_T, A, K_1, IV)$$

3. Verify whether T_{dec} corresponds to T in M. If $T \neq T_{dec}$, try next C_i . When all C_i are parsed (i=n) and still $T \neq T_{dec}$, return \bot .