Нижние оценки приближений алгебраическими многочленами

30 ноября 2019 г.

В теории приближений изучается возможность приближения сложных объектов более простыми. Погрешность приближения (назовём её E) редко удаётся найти точно, поэтому задача разбивается на две: получения верхних оценок: $E\leqslant\ldots$, и нижних оценок: $E\geqslant\ldots$ Для верхних оценок, как правило, применяются конкретные методы аппроксимации: ряды Фурье, интерполяция, и т.д. Эту часть теории приближения можно назвать конструктивной теорией приближения. В этой и ближайших лекциях мы поговорим о нижених оценках, когда мы доказываем, что объект является в том или ином смысле большим, сложным, и не может быть слишком хорошо приближен. Конечно, это более теоретическая задача, однако нижние оценки показывают предел наших возможностей и позволяют заявлять об оптимальности тех или иных методов.

Пусть X — нормированное пространство, $x \in X$, $M \subset X$. Через $E(x,M)_X$ обозначается расстояние от x до M, то есть $\inf_{y \in M} \|x-y\|$. Для множества $K \subset X$ через $E(K,M)_X$ обозначаем уклонение от K до M, или, другими словами, величину наилучшего приближения множества K множеством M:

$$E(K, M)_X := \sup_{x \in X} E(x, M)_X = \sup_{x \in X} \inf_{y \in Y} ||x - y||_X.$$

Если из контекста ясно, о каком X идёт речь, не пишем его: E(K, M).

На этой лекции будем работать в пространстве непрерывных функций X = C[a, b]; норма $\|\cdot\|$ обозначает норму в этом пространстве. Через \mathcal{P}_n обозначаем множество вещественных алгебраических многочленов степени не выше n.

Напомним классическую теорему теории приближений.

Теорема 1 (Weierstrass, 1885). Для любой $f \in C[a,b]$ имеем

$$E(f, \mathcal{P}_n)_{C[a,b]} \to 0 \quad npu \ n \to \infty.$$

Как быстро должна стремиться к нулю последовательность $E(f, \mathcal{P}_n)$? Несложное рассуждение показывает, что сходимость может быть сколь угодно медленной.

Утверждение 1. Для любой последовательности $\alpha_n \to 0 \ (n \to \infty)$ существует $f \in C[a,b]$, такая что $E(f,\mathcal{P}_n) \geqslant \alpha_n$.

Доказательство. В качестве "кирпичиков" для построения функции f используем многочлены Чебышёва: $\mathbf{H}_n(\cos\theta) = \cos n\theta$. Известно, что $\|\mathbf{H}_n\| = 1$ и $E(\mathbf{H}_n, \mathcal{P}_{n-1}) = 1$.

Выберем подпоследовательность номеров n_k , так что $\alpha_n < \frac{1}{2} 3^{-k-1}$ при $n \geqslant n_k$. Положим

$$f := \sum_{k=1}^{\infty} 3^{-k} \mathbf{I}_{n_k}.$$

Оценим $E(f,\mathcal{P}_n)$; пусть $n_{j-1}\leqslant n< n_j$. Ряд для f разбивается на основное слагаемое $\sum_{k=1}^j$ и "хвост" $\sum_{k>j}$, норма которого не превосходит $\sum_{k>j} 3^{-k} = \frac{1}{2} 3^{-j}$. Следовательно, в силу того, что $n< n_j$, получаем

$$E(f, \mathcal{P}_n) \geqslant E(\sum_{k=1}^{j} 3^{-k} \mathbf{H}_{n_k}, \mathcal{P}_n) - \frac{1}{2} 3^{-j} = 3^j - \frac{1}{2} 3^{-j} = \frac{1}{2} 3^{-j}.$$

В силу выбора $\{n_k\}$, последняя величина не меньше α_n . (Индексы индексы $n < n_1$ остались не рассмотрены; поправьте f, чтобы охватить и их.)

Имеется значительно более тонкая теорема; приводим её без доказательства.

Теорема 2 (С.Н. Бернштейн, 1954). Пусть последовательность α_n стремится к нулю и невозрастает. Тогда существует функция $f \in C[a,b]$, такая что $E(f,\mathcal{P}_n) = \alpha_n$ при всех n.

Отметим современный результат С.В. Конягина (2014).

Теорема 3. Пусть X — произвольное бесконеномерное банахово пространство, $Y_1 \subset Y_2 \subset \ldots$ — произвольная система строго вложенных подпространств, числовая последовательность α_n невозрастает $u \lim_{n\to\infty} \alpha_n = 0$. Тогда найдётся элемент $x \in X$, для которого $\alpha_n \leqslant E(x,Y_n)_X \leqslant 8\alpha_n$ при $n=1,2,\ldots$

Альтернанс Валле Пуссена. Напомним определение. Линейное n-мерное подпространство $\Phi \subset C[a,b]$ называется uebumeeckum, если любая функция $\varphi \in \Phi$ имеет не более n-1 нуля на [a,b]. Важнейшим примером чебышёвского подпространства является пространство \mathcal{P}_n (следует помнить, что dim $P_n = n + 1$).

Теорема 4 (Валле Пуссен). Пусть $\Phi - n$ -мерное чебышёвское подпространство, $f \in C[a,b], \ \phi \in \Phi$, и точки $a \leqslant x_0 < x_1 < \ldots < x_n \leqslant b$ образуют валле-пуссеновский альтернанс, то есть знаки $f(x_k) - \varphi(x_k)$ чередуются. Тогда

$$E(f, \Phi) \geqslant \min_{k=0..n} |f(x_k) - \varphi(x_k)|.$$

Доказательство. Действительно, пусть найдётся функция $\psi \in \Phi$, для которой $||f - \psi|| < \min |f(x_k) - \varphi(x_k)|$. Тогда знак разности $\psi(x_k) - \varphi(x_k)$ совпадает со знаком $f(x_k) - \varphi(x_k)$. Следовательно, $\psi - \varphi$ меняет знак не менее n раз и, по непрерывности, имеет n нулей. В силу чебышёвости $\psi \equiv \varphi$, противоречие.

Отметим, что мы на самом деле доказали оценку на сетке:

$$E(f,\Phi)_{C[a,b]} \geqslant E(f,\Phi)_{\ell_{\infty}\{x_k\}_{k=0}^n} \geqslant \min_{k} |f(x_k) - \varphi(x_k)|.$$

Рассмотрим упорядоченный набор точек $\mathbf{x} = (x_i)_1^{n+1}$. Для любого вектора $\mathbf{y} = (y_i)_1^{n+1}$ составим систему уравнений

$$y_i - \varphi(x_i) = (-1)^i \Lambda, \quad i = 1, \dots, n+1.$$
 (1)

Упражнение 1. Докажите, что система имеет единственное решение $(\varphi, \Lambda) \in \Phi \times \mathbb{R}$.

Обозначим компоненту Λ решения через $\Lambda(\Phi, \mathbf{x}; \mathbf{y})$; это линейный функционал от \mathbf{y} . Из теоремы Валле Пуссена следует оценка

$$\forall \mathbf{x} \quad E(f, \Phi)_C \geqslant |\Lambda(\Phi, \mathbf{x}, (f(x_i))_1^{n+1})|.$$

Равенства (1) ещё не означают, что точки образуют чебышёвский альтернанс, поскольку свойство $|\Lambda| = \|f - \varphi\|$, вообще говоря, не выполнено. Однако из теоремы Чебышёва об альтернансе следует, что при некотором ${\bf x}$ равенство достигается и тогда $|\Lambda| = E(f,\Phi)$. На этих соображениях основан следующий алгоритм поиска многочлена наилучшего приближения.

Алгоритм Ремеза. Пусть $f \in C[a,b]$. Будем строить последовательность упорядоченных наборов точек $\mathbf{x}^{(0)}$, $\mathbf{x}^{(1)}$, и т.д., которые в пределе сходятся к чебышёвском альтернансу $\mathbf{x}^{(n)} \to \mathbf{x}^*$.

Набор $\mathbf{x}^{(0)}$ и элемент $\varphi \in \Phi$ выберем произвольно (или исходя из априорной информации о функции f.

Шаг алгоритма. Построим $\mathbf{x}^{(s+1)}$. Для набора $\mathbf{x}^{(s)}$ и функции f строим решение (φ, Λ) уравнений (1). Находим $D_s := \|f - \varphi\|$ и полагаем $d_s := |\Lambda|$, $\varphi^{(s)} := \varphi$. Тогда, из сказанного выше,

$$d_s \leqslant E(f, \Phi) \leqslant ||f - \varphi^{(s)}|| \leqslant D_s.$$

Пусть x^* — точка максимума $|f-\varphi^{(s)}|$; набор $\mathbf{x}^{(s+1)}$ получается из $\mathbf{x}^{(s)}$ заменой одной из точек на x^* , так, чтобы значки разности $f-\varphi^{(s)}$ попрежнему чередовались.

Доказывается, что D_s-d_s стремится к нулю со скоростью геометрической прогрессии, и, следовательно, $\varphi^{(s)}$ стремится к элементу наилучшего приближения.

Примеры. Рассмотрим частный случай $\Phi = \mathcal{P}_{n-1}$.

Упражнение 2. Рассмотрев набора $\{\cos(\pi k/n)\}_{k=0}^n$ на отрезке [-1,1], получить следствие:

$$E(f, \mathcal{P}_{n-1})_{C[-1,1]} \ge |\Lambda_n(f)|,$$

$$\Lambda_n(f) := \frac{1}{n} \left(\frac{1}{2} f(1) + \sum_{k=1}^{n-1} (-1)^k f\left(\cos\frac{\pi k}{n}\right) + (-1)^n \frac{1}{2} f(-1) \right). \quad (2)$$

Упражнение 3. Доказать неравенство с классической п-й разностью:

$$E(f, \mathcal{P}_{n-1})_{C[0,1]} \geqslant 2^{-n}\omega_n(f, 1/n).$$
 (3)

Напомним, $\omega_n(f,\delta) := \max_{0 \leq h \leq \delta} \|\Delta_h^n(f)\|$, где Δ_h — оператор разности с шагом h, $\Delta_h f(x) = f(x+h) - f(x)$.

Положительные операторы Нам потребуется неравенство $E(|x|, \mathcal{P}_n)_{C[-1,1]} \geqslant c/n$, с абсолютной постоянной c > 0 (на самом деле, имеет место асимптотика c/n(1+o(1)); константа c неизвестна). Здесь проще всего перейти к тригонометрическим полиномам $\mathcal{T}_n = \{\sum_{|k| \leqslant n} c_k e^{ikx} \pmod{p}$

– в следующей лекции). Мы докажем эквивалентное (почему?) неравенство $E(|\cos t|, \mathcal{T}_n) \geqslant c/n$. Известно, что суммы Валле Пуссена обладают свойствами: 1) $V_n f = f$ при $t \in \mathcal{T}_n$; 2) $||V_n f|| \leqslant 3||f||$. Отсюда вытекает неравенство Лебега:

$$||f - V_n f|| = ||(f - T_n^*) - V_n (f - T_n^*)|| \le 4E(f, \mathcal{T}_n).$$

Можно смотреть на это неравенство как на нижнюю оценку для наилучшего приближения. Применим его для $f = |\cos t|$; выпишем ряд Фурье

$$f(t) = |\cos t| = \frac{2}{\pi} + \frac{4}{\pi} \sum_{k=1}^{\infty} (-1)^{k+1} \frac{\cos 2kt}{4k^2 - 1},$$

в точке излома $t=\pi/2$ имеем значение $f(\pi/2)=0$ и знакопостоянный ряд

$$f(\pi/2) = 0 = \frac{2}{\pi} - \frac{4}{\pi} \sum_{k=1}^{\infty} (4k^2 - 1)^{-1}.$$

Отсюда легко видеть, что $S_n(f, \pi/2) \geqslant c/n$, значит, и $V_n(f, \pi/2) \geqslant c/n$.

Определение 1. Оператор $U \colon C[a,b] \to C[a,b]$ называется положительным, если $f \geqslant 0$ влечёт $Uf \geqslant 0$.

Стандартным образом обозначаем (Uf)(x) = U(f, x).

Упражнение 4. Докажите неравенство:

$$|U(fg,x)| \le U(f^2,x)^{1/2}U(g^2,x)^{1/2}.$$
 (4)

Пример семейства положительных операторов: многочлены Бернштейна

$$B_n(f,x) := \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k}.$$

Другой известный пример — суммы Фейера.

Положительные операторы обладают рядом хороших свойств. Имеется теорема Коровкина (1957), утверждающая, что для равномерной сходимости $U_n f \Rightarrow f$ при всех $f \in C[a,b]$ достаточно сходимости для трёх функций $e_0(x) \equiv 1$, $e_1(x) \equiv x$, $e_2(x) \equiv x^2$. Однако, положительные операторы обладают свойством насыщения, сходимость не может быть слишком быстрой.

Теорема 5 (Коровкин). Пусть U_n — семейство положительных полиномиальных операторов $C[a,b] \to \mathcal{P}_n$. Тогда величина

$$\lambda_n := \max_{k=0,1,2} \|e_k - U_n e_k\|$$

не может стремиться к нулю слишком быстро: $\lambda_n \neq o(1/n^2)$.

Доказательство. Введём обозначения: $h(x) = |x|, h_t(x) = |x-t|$. Мы предположим, что $\lambda_n = o(1/n^2)$, выведем отсюда, что $||U_n h - h|| = o(1/n)$ и придём к противоречию с оценкой $E(|x|, \mathcal{P}_n)_{C[-1,1]} \geqslant c/n$.

Итак, оценим $|U_n(h,x)-h(x)|$:

$$|U_n(h,t) - h(t)| = |U_n(h - |t|e_0, t) + |t|U_n(e_0, t) - |t|| \le |U_n(h - |t|e_0, t)| + |t|(U_n(e_0, t) - 1)| \le |U_n(h - |t|e_0, t)| + \lambda_n.$$

Далее, $||x|-|t|| \leq |x-t| = h_t(x)$, поэтому $|U_n(h-|t|e_0,t)| \leq U_n(h_t,t)$. Воспользуемся (4):

$$U_n(h_t, t) \leqslant U_n(h_t^2, t)^{1/2} U_n(e_0^2, t)^{1/2} \leqslant U_n(h_t^2, t)^{1/2} \sqrt{1 + \lambda_n}.$$

Наконец,

$$U_n(h_t^2, t) = U_n((x - t)^2, t) = U_n(e_2 - 2te_1 + t^2e_0, t) =$$

$$(U_n(e_2, t) - t^2) - 2t(U_n(e_1, t) - t) + t^2(U_n(e_0, t) - 1) \le 4\lambda_n.$$

Окончательно, $|U_n(h,t)-h(t)|\leqslant 2\sqrt{\lambda_n(1+\lambda_n)}=o(1/n)$, что невозможно.

Задача 1. Возможено ли $\lambda_n = O(1/n^2)$?