Table 1: Performance Comparison on Four Binary Classification Benchmarks (50×2 Training Samples, 200×2 Testing Samples), where "ACC." refers to accuracy and "F1." refers to F1-Score. Note: numbers in **Red** refer to the largest values, **Blue** refers to the second-largest values, and **Orange** refers to the third-largest values.

Parameter	Data Source					
	Adult1		Adult2		Adult3	
	ACC.	F1.	ACC.	F1.	ACC.	F1.
(Depth)	Decision Tree					
10.0	0.713 ± 0.071	0.705 ± 0.074	0.717 ± 0.104	0.712 ± 0.116	0.721 ± 0.050	0.707 ± 0.066
20.0	0.686 ± 0.058	0.680 ± 0.080	0.696 ± 0.039	0.690 ± 0.054	0.698 ± 0.035	0.689 ± 0.044
	LDA					
	0.717 ± 0.056	0.710 ± 0.066	0.730 ± 0.062	0.719 ± 0.070	0.727 ± 0.052	0.722 ± 0.059
	Two-Stage LDA					
	0.757 ± 0.038	0.745 ± 0.034	0.761 ± 0.029	0.748 ± 0.037	0.772 ± 0.055	0.765 ± 0.058
(m, λ)	AWDA					
50, 1.0	0.764 ± 0.043	0.750 ± 0.048	0.766 ± 0.039	0.751 ± 0.035	0.766 ± 0.027	0.753 ± 0.030
50, 10.0	0.763 ± 0.044	0.749 ± 0.048	0.763 ± 0.039	0.747 ± 0.036	0.765 ± 0.028	0.751 ± 0.032
50, 100.0	0.764 ± 0.044	0.749 ± 0.046	0.763 ± 0.044	0.748 ± 0.041	0.765 ± 0.027	0.751 ± 0.032
100, 1.0	0.762 ± 0.041	0.748 ± 0.045	0.766 ± 0.038	0.752 ± 0.034	0.766 ± 0.032	0.753 ± 0.035
100, 10.0	0.764 ± 0.044	0.750 ± 0.047	0.764 ± 0.042	0.749 ± 0.039	0.765 ± 0.027	0.751 ± 0.032
100, 100.0	0.764 ± 0.045	0.749 ± 0.047	0.764 ± 0.042	0.749 ± 0.039	0.766 ± 0.027	0.751 ± 0.032
150, 1.0	0.765 ± 0.043	0.750 ± 0.047	0.765 ± 0.038	0.750 ± 0.033	0.767 ± 0.026	0.752 ± 0.031
150, 10.0	0.765 ± 0.044	0.750 ± 0.048	0.763 ± 0.040	0.748 ± 0.037	0.766 ± 0.027	0.752 ± 0.032
150, 100.0	0.763 ± 0.045	0.749 ± 0.048	0.763 ± 0.043	0.747 ± 0.038	0.765 ± 0.028	0.751 ± 0.033
200, 1.0	0.764 ± 0.042	0.750 ± 0.046	0.764 ± 0.039	0.749 ± 0.034	0.766 ± 0.031	0.752 ± 0.034
200, 10.0	0.764 ± 0.044	0.750 ± 0.045	0.764 ± 0.040	0.749 ± 0.038	0.766 ± 0.028	0.752 ± 0.032
200, 100.0	0.764 ± 0.044	$\frac{0.749}{0.048}$	0.763 ± 0.042	0.748 ± 0.038	0.765 ± 0.027	0.751 ± 0.032
	SVM-Linear					
	0.748 ± 0.051	0.739 ± 0.066	0.759 ± 0.044	0.748 ± 0.047	0.751 ± 0.024	0.744 ± 0.037
(Band Width)	SVM-Kernal (Gaussian)					
0.1	0.569 ± 0.211	0.484 ± 0.363	0.578 ± 0.227	0.490 ± 0.319	0.541 ± 0.004	0.471 ± 0.233
1.0	0.657 ± 0.084	0.716 ± 0.078	0.670 ± 0.121	0.643 ± 0.154	0.662 ± 0.110	0.652 ± 0.100
nstance Number)	AdaBoost					
100.0	0.716 ± 0.069	0.674 ± 0.093	0.731 ±0.064	0.681 ± 0.095	0.743 ± 0.050	0.696 ± 0.075
200.0	0.728 ± 0.057	0.678 ± 0.089	0.733 ± 0.069	0.681 ± 0.100	0.737 ± 0.056	0.686 ± 0.085