Trigonometry

Today I Can

1. Use trigonometry and inverse trigonometry to find unknown angle measures and side lengths in right triangles.

• sine of
$$\angle A = \sin A = \frac{\text{length of leg opposite } \angle A}{\text{length of hypotenuse}} = \frac{a}{c}$$

• **cosine** of
$$\angle A = \cos A = \frac{\text{length of leg adjacent to } \angle A}{\text{length of hypotenuse}} = \frac{b}{c}$$

• tangent of
$$\angle A = \tan A = \frac{\text{length of leg opposite } \angle A}{\text{length of leg adjacent to } \angle A} = \frac{a}{b}$$

$$S_H^O C_H^A T_A^O$$

Example 1. Given the figure below, find the sine, cosine, and tangent for the indicated angle.

(a)
$$\angle T$$
 (b) $\angle G$

Finding Missing Side Lengths

To find missing side lengths in triangles using trigonometry, you can use

- the definition of trig ratios (SOH-CAH-TOA)
- your calculator
- proportions

Example 2. Find the value of w to the nearest tenth in each.

(a)

(b)

(c)

Finding Missing Angle Measures

To find the measures of the angles, use **inverse** trig ratios:

$$\sin^{-1}$$
, \cos^{-1} , \tan^{-1}

Example 3. Find the measure of the indicated angle to the nearest degree.

