PENINGKATAN KONTRAS MENGGUNAKAN METODE CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION PADA CITRA UNDERWATER

Dina Indriana¹,DR. Pulung Nurtantio Andono,S.T,M.Kom²

¹Fakultas Ilmu Komputer²Universitas Dian Nuswantoro Jl. Nakula 1 No. 5-11, Jawa Tengah 50131 Telp: (024) 3517261 E-mail: dina.indri@ymail.com¹, maspapu@gmail.com²

Abstrak

Ekosistem bawah laut telah menjadi pusat perhatian internasional sejak efeknya membawa perubahan evolusi pada terumbu karang. Wilayah-wilayah pelestarian terumbu karang banyak yang dijadikan destinasi wisata. Sebagian wisatawan tidak segan-segan mengabadikan ekosistem bawah laut (underwater). Namun, hasil pengambilan citra underwater kualitasnya rendah. Hal ini diakibatkan karena rendahnya kontras di dalam air. Semakin dalam proses pengambilan citra, semakin sedikit warna yang didapat karena cahaya matahari sulit menembus kedalaman air. Oleh karena itu, dibutuhkan penelitian dengan metode yang mampu meningkatkan kontras citra tetapi tidak berlebihan. Metode yang digunakan pada penelitian ini adalah metode CLAHE (Contrast Limited Adaptive Histogram Equalization). Metode CLAHE beroperasi pada tile, kontras yang terdapat pada tiap-tiap tile akan diperbaiki, sehingga histogram yang dihasilkan dari area tersebut cocok dengan histogram yang ditentukan. Tile yang saling bersebelahan dihubungkan menggunakan interpolasi bilinear. Sebelum menerapkan metode, citra underwater akan diconvert menjadi beberapa format image (JPG, BMP, PNG, TIFF). Hasil penerapan metode CLAHE terbaik akan ditentukan dari citra yang memiliki nilai MSE terendah dan PSNR tertinggi.

Kata Kunci: Contrast Enhancement, CLAHE, Underwater Image

Abstract

Underwater ecosystems have become an international attention since its effect bring the evolution of coral reef. Many of coral reef conservation areas serve as tourist destinations. Most tourist did not hesitate to capture the underwater ecosystems' moments. However, the results of underwater image capture quality is low. This is caused due to the low contrast in the water. Increasingly in the image-capturing process, the less color is obtained because the sunlight is difficult to penetrate the depth of water. Therefore, research is needed using method that is able to increase the contrast but not excessive. The method which is used in this research is CLAHE (Contrast Limited Adaptive Histogram Equalization). CLAHE operates on a tile, contrast contained in each tile will be repaired, so that the resulting histogram of the area matches with the specified histogram. Adjacent tile connected using bilinear interpolation. Before applying the method, underwater images will be converted into multiple image formats (JPG, PNG, BMP, TIFF). The best result of CLAHE method applied will be determined from the image that has lowest MSE value and highest PSNR value.

Keywords: Contrast Enhancement, CLAHE, Underwater Image

1. PENDAHULUAN

Penurunan kualitas citra *underwater* disebabkan oleh berbagai faktor, salah satunya disebabkan oleh penyerapan dan hamburan sinar matahari saat sampai

dasar laut. Ini menjadi hambatan jika ingin mendapatkan citra *underwater* dengan kualitas yang tinggi. Hal ini dikarenakan beberapa *pixel* menjadi lebih cerah daripada *pixel* yang lain

(shimmering). Dan juga penurunan warna cahaya pada panjang gelombang yang lebih panjang (hijau dan merah), sebagian besar disaring kedalaman 4 meter [1]. Semakin sedikit warna yang didapat karena cahaya matahari yang bisa menembus air laut semakin sedikit. Sehingga diperlukan perbaikan kontras proses citra menggunakan **CLAHE** (Contrast Limited **Adaptive** Histogram Equalization). Proses tersebut bertujuan untuk mendapatkan citra dengan lebih baik kontras yang tanpa mengurangi kualitas dari citra itu sendiri. [2].Metode CLAHE ini dapat meningkatkan kualitas sebuah citra yang memiliki kontras yang rendah yang kemudian akan terjadi perubahan intensitas warna. Metode CLAHE ini akan membatasi level kontras dari citra itu sendiri untuk menghindari terjadinya peningkatan kontras secara berlebihan [3]. Metode CLAHE beroperasi pada area kecil pada citra yang biasa disebut tile. Kontras yang terdapat pada tiaptiap tile diperbaiki sehingga histogram yang dihasilkan dari area tersebut cocok dengan bentuk histogram vang ditentukan. Tile yang saling bersebelahan dihubungkan dengan interpolasi menggunakan biliniear. Cara ini dilakukan agar hasil penggabungan tile-tile tadi terlihat halus.

Dalam penelitian ini. kinerja metode CLAHE akan diujikan pada citra underwater dalam 4 format citra yang berbeda, diantaranya JPG, PNG, BMP, dan TIFF. Pada penelitian berjudul Perbaikan Kualitas yang Kontras Citra Menggunakan Metode Contrast Limited Adaptive Histogram Equalization pada Citra Underwater ini, akan dicari nilai MSE dan PSNR tertinggi untuk menemukan format citra dan metode CLAHE manakah yang paling baik.

2. METODE PENELITIAN

Metode penelitian peningkatan kontras menggunakan CLAHE sebagai berikut:

Gambar 1. Metode Penelitian

2.1 Objek Penelitian

4 citra *underwater* dengan format yang berbeda (JPG, PNG, BMP, TIF) sebagai objek penelitian diuji menggunakan metode CLAHE dengan tiga distribusi yang berbeda, yaitu *rayleigh, uniform, exponential*, untuk mengetahui nilai MSE dan PSNR. Seluruh objek dibuat dengan ukuran 512x288 pixel.

Gambar 2.Citra yang digunakan

2.2 Instrumen Penelitian

Tahap ini diawali dengan mencari kebutuhan yang nantinya dipergunakan untuk penelitian antara lain:

2.2.1 Bahan Penelitian

Adapun kebutuhan bahan yang digunakan untuk penelitian peningkatan kontras menggunakan CLAHE adalah 4 citra *underwater* dengan format JPG, PNG, BMP dan TIF.

2.2.2 Peralatan Penelitian

Penelitian yang dilakukan membutuhkan peralatan sebagai pendukung penelitian. Dibutuhkan dukungan *software* dan *hardware* demi kelancaran penelitian yang dilakukan.

a. Kebutuhan *software* (perangkat lunak)

Kebutuhan perangkat lunak yang dibutuhkan untuk penelitian antara lain:

- 1. Windows 7
- 2. Adobe Photoshop CS5
- 3. MATLAB R2012a
- 4. Microsoft Word 2013
- b. Kebutuhan *hardware* (perangkat keras)

Kebutuhan perangkat lunak yang dibutuhkan untuk penelitian antara lain:

- Laptop Vaio dengan Processor Intel Core I3
- 2. Layar 14"
- 3. Ram 2000Mb
- 4. Harddisk 500 GB
- 5. Printer Canon IP2770

2.3 Teori Dasar

2.3.1 Image Enhancement

Peningkatan kualitas citra (Image Enhancement) merupakan sebuah citra proses pembentukan baru menggunakan berbagai teknik dan metode sesuai kebutuhan agar sebelumnya. Contoh beberapa cara yang biasa diterapkan diantaranya fungsi transformasi, operasi matematis, pemfilteran dan peningkatan kontras [4]

2.3.2 Histogram

Frekuensi kemunculan nilai gradasi warna yang ditunjukan pada grafik disebut *histogram*[4]

2.3.3 CLAHE

Gambar3. Diagram alur proses CLAHE

CLAHE (Contrast Limited Adaptive Histogram Equalization) merupakan salah satu metode peningkatan kontras citra. CLAHE merupakan versi perbaikan dari metode sebelumnya, AHE (Adaptive Histogram Equalization) [5].

CLAHE mampu mengurangi masalah noise pada AHE dengan membatasi peningkatan kontras, terutama pada daerah homogen. CLAHE meningkatkan kontras citra dengan cara mengubah nilai intensitas pada citra. Keuntungan menggunakan metode ini selain karena mudah digunakan, perhitungannyapun sederhana dan juga output dihasilkan baik [6] . Metode CLAHE didefinisikan sebagai berikut:

$$\beta = \frac{M}{N} \left(1 + \frac{\alpha}{100} \left((S_{\text{max}} - 1) \right) \right)^{(1)}$$

Pada penelitian ini, akan digunakan 3 distribusi dari CLAHE, yaitu *rayleigh*, *uniform* dan *exponential*.

2.3.4 MSE dan PSNR

MSE (mean squared error) merupakan alat pengukur keberhasil kinerja perbaikan pada citra, sedangkan PSNR (peak signal to noise ratio) merupakan parameter yang membandingkan kualitas citra asli dengan kualitas citra yang telah diolah. Semakin rendah nilai MSE, semakin bagus kualitas citra tersebut. Namun sebaliknya dengan PSNR, semakin tinggi nilai PSNR maka semakin bagus kualitas citra tersebut.

2.4 Citra *Underwater*

Objek yang terdapat citra pada underwater tidak terlihat jelas disebabkan oleh berbagai macam factor, yaituefek penyerapan cahaya, pantulan cahaya, pembelokan cahaya, hamburan cahaya, kelenturan cahaya dan kepadatan cahaya dalam air yang mencapai 800 kali lebih padat dari udara. Citra *underwater* juga bisa terlihat seperti kabur warnanya karena kondisi penglihatan yang kurang. Maka dari itu diperlukan perbaikan citra vang meliputi peningkatan kontras agar citra underwater berkualitas [7].

3. HASIL DAN PEMBAHASAN

4 buah citra dengan format JPG, PNG, BMP dan TIF yang telah disamakan ukuranya menjadi 512x288 *pixel* diuji dengan 3 distribusi metode CLAHE, yaitu *rayleigh*, *uniform dan exponential*. Salah satu hasil pengujian bisa dilihat pada gambar 3.

Gambar 4. *Sample* perbandingan citra BMP (atas) dengan hasil uji menggunakan metode CLAHE *Rayleigh* (bawah)

Terlihat kenaikan kontras pada gambar hasil uji. Banyak point-point yang awalnya terlihat samar, setelah diterapkan metode CLAHE menjadi sangat ielas. Namun. untuk membandingkan hasil dari metode yang berbeda, sulit dibedakan secara kasat mata. Perbedaan hasil antar metode bisa dilihat dari hasil h*istogram* seperti pada gambar 4.

Pada gambar tersebut, perbedaan histogram masing-masing metode terlihat dengan jelas melalui grafik tersebut.

Gambar 5. *Sample* perbandingan histogram hasil uji citra BMP

Histogram uniform dan exponential mememiliki penyebaran warna yang hampir rata. Namun penyebaran warna yang rata tidak menjamin hasil yang maksimal. Oleh karena itu, MSE dan PSNR akan dihitung.

Format Citra	CLAHE	MSE			
		RED	GREEN	BLUE	RGB
JPG	Rayleigh	1.6556	1.7468	1.5717	1.6581
	Uniform	2.0480	2.2484	2.0389	2.1118
	Exponential	2.2100	2.4515	2.2112	2.2909
PNG	Rayleigh	1.6530	1.7442	1.5692	1.6554
	Uniform	2.0459	2.2461	2.0367	2.2096
	Exponential	2.2075	2.4452	2.2090	2.2885
ВМР	Rayleigh	0.6573	0.6931	0.6233	0.6579
	Uniform	0.8107	0.8903	0.8062	0.8357
	Exponential	0.8742	0.9702	0.8738	0.9061
TIFF	Rayleigh	1.6530	1.7442	1.5692	1.6534
	Uniform	2.0459	2.2461	2.0367	2.1096
	Exponential	2.2075	2.4492	2.2040	2.2885

Tabel 1. Hasil perhitungan MSE

Tabel 1 menampilkan hasil perhitungan MSE pada 4 format citra dengan 3 distribusi CLAHE. Untuk nilai MSE, hasil terbaik kualitasnya yang memiliki nilai terendah. Berdasarkan tabel, format citra BMP dengan menggunakan metode *Rayleigh* memiliki nilai MSE yang paling rendah sebesar 0,6573. Kemudian hasil perhitungan PSNR, ditampilkan pada tabel 2.

Format Citra	CLAHE	PSNR	
	Rayleigh	45.9348	
JPG	Uniform	44.8844	
	Exponential	44.5308	
	Rayleigh	45.9417	
PNG	Uniform	44.8889	
	Exponential	44.5354	
	Rayleigh	49.9493	
ВМР	Uniform	48.9102	
	Exponential	48.5592	
	Rayleigh	45.9417	
TIFF	Uniform	44.8889	
	Exponential	44.5352	

Tabel 2. Hasil perhitungan PSNR

Berbalik dengan MSE yang semakin rendah nilainya semakin bagus kualitas citranya. Untuk PSNR, citra yang memiliki nilai tertinggilah yang merupakan citra dengan kualitas terbaik. Berdasarkan tabel 2, citra yang memiliki nilai PSNR tertinggi adalah citra berformat BMP dengan metode CLAHE *Rayleigh* sebesar 49,9493 Db.

4. KESIMPULAN

Berdasarkan penelitian dari peningkatan kontras menggunakan metode contrast limited adaptive histogram equalization pada citra underwater ditarik kesimpulan dari keseluruhan data pada tabel hasil, perhitungan MSE dan PSNR telah terbukti bahwa format file yang paling baik dalam menggunakan metode CLAHE adalah format citra BMP dengan metode CLAHE Rayleigh. Karena hasil penerapan metode pada format image tersebut memiliki nilai MSE yang terendah dan nilai PSNR tertingi dengan nilai MSE sebesar 0,6573 dan nilai PSNR sebesar 49,9593 dB.

5. SARAN

Saran untuk penelitian selanjutnya:

- 1. Gunakan format citra yang lebih banyak yang mungkin akan ditemukan hasil peningkatan kontras yang lebih baik.
- 2. saat pengambilan citra *underwater*, lebih baik pada siang hari agar cahaya matahari yang masuk dapat menembus air sehingga warna yang didapat lebih banyak dan hasil peningkatan kontras bisa lebih baik.
- 3. Gunakan metode SIFT *key points detection* dan *outlier removal* jika digunakan untuk rekonstruksi 3dimensi.

DAFTAR PUSTAKA

- [1] Andono, Pulung Nurtantio.; Pramunendar, Supriyanto, Ricardus Anggi.; Catur.; Shidik, Guruh Fajar.; Purnama. Ι Ketut Eddy.;& Mochamad Hariadi, "Enhancement of 3D Surface Reconstruction of Underwater Coral Reef Bae on SIFT Image Matching Using Contrast Limited Adaptive Histogram Equalization and Outlier Removal," 2013.
- [2] Rahayu, Dictosendo Noor Pambudi.; Isnanto, R Rizal.;& Hidayatno, Achmad "Aplikasi Pendiagnosi Gangguan Ginjal Melalui Citra Iris Mata Menggunakan Metode Berdasar Segmentasi Deteki Tepi," vol. 2, p. 284, 2013.
- [3] Radhityanti, Fenny D.; Yuniarti,
 Anny.;& Soelaiman, Rully
 "AplikasiPerbaikanKontraspada
 Citra Radiografi Gigi
 MenggunakanKombinasiMetode
 Histogram Equalization dan Fast
 Gray Level Grouping,"
 JurnalTeknikPomits, 2013.
- [4] Sutoyo, T., Mulyanto, Edy, dkk."TeoriPengolahan Citra Digital".Yogyakarta: Penerbit Andi.Udinus Semarang, 2009.

- [5] Rai, Rajesh Kumar.; Gour, Puran.; Singh, Balvant "
 Underwater Image Segmentation using CLAHE Enhancement and Thresholding, "International Journal of Emerging Technology and Advanced Engineering", 2012.
- [6] Pujiono.; Purnama, I Ketut Eddy.; Andono, Pulung Nurtantio.; & Hariadi, Mochamad "Color Enhancement of Underwater Coral Reef Image using Contrast Limited Adaptive Histogram Equalization with (CLAHE) Rayleigh Distribution," 2013.