UNIT ONE

ELEMENTS AND THE PERIODIC TABLE

Mention the four blocks of the periodic table.

- Metals
- Metalloids
- Non-metals and transition metals.

Which are the general trends in the periodic table?

- Atomic radii
 - Increase as you go down the group
 - > Does not change from left to right.
 - ➤ Increase in atomic radii increases the shielding effect of the effective nuclear charge.
 - > Shielding effect is also called screening effect.
 - This refers to the reduced attraction by nucleus for the outermost electrons.
 - > It is caused by electrons within the inner energy level.
- Ionisation energy
 - > Is the energy that is required in order to remove the outermost electron from an atom.
 - ➤ Is a measure of how difficult it is to remove an electron from at atom in gaseous state.
 - The higher the ionization energy the more difficult it is to remove an electron from the atom.
 - \checkmark Lithium has a radius of 0.15um and ionization energy of 520.
 - ✓ Sodium has a radius of 0.19 um and ionization energy of 496
 - ✓ Potassium has a radius of 0.23 and ionization energy of 479
 - Increase in atomic radius reduces ionization energy.
- Electron affinity

- > Is ability of an atom to attract electrons.
- ➤ Electron affinity decreases down the group and increase across the period i.e. left to right.
- ➤ Increase in atomic radius increases the distance for effective nuclear charge.
- > As you go from left to right across the period, the effective nuclear charge is increased hence increase electron affinity.

Electronegativity

- ➤ Is a tendency of an atom to attract electrons from another atom more than what the atom can attract.
- > This makes one atom positively charged while the other is negatively charged.
- > Electronegativity results in formation of polar molecules.

The periodic table

1H							⁴ ₂ He
$\frac{7}{3}$ Li	⁹ ₄ Be	¹¹ ₅ B	¹² ₆ C	$^{14}_{7}\mathrm{N}$	¹⁶ ₈ O	¹⁹ ₉ F	²⁰ Ne
²³ Na	²⁴ Mg	²⁷ ₁₃ Al	²⁸ Si	³¹ ₁₅ P	³² ₁₆ S	³⁶ Cl	⁴⁰ ₁₈ Ar
³⁹ ₁₉ K	⁴⁰ ₂₀ Ca						

Discuss the trends in the physical and chemical properties of the various families of elements.

- Group I elements
 - > Also called alkali metals.
 - > Are in the most reactive group of metals.
 - > Found in the extreme left hand side of the periodic table.

- ✓ Lithium (Li)
- ✓ Sodium (Na)
- ✓ Potassium (K)
- ➤ Have the following physical properties down the group.
 - ✓ Melting and boiling points decrease down the group.
 - ✓ Atoms become bigger due to increase in number of energy levels.
 - ✓ Density increase due to increase in mass.
 - ✓ Ionization energy decreases due to increase in atomic size which weakens force of attraction between the possible nucleus and outer most energy level electrons.
 - ✓ Electron affinity reduces as the atom becomes bigger.
 - ✓ Electronegativity decreases due to increase in atomic size.
- > Have the following chemical properties.
 - ✓ React with air or oxygen.
 - ✓ React with water.
 - ✓ React with chlorine
- > Uses of alkali metals include
 - ✓ Lithium
 - Used in production of lubricating grease
 - Used in deoxidizing copper and copper alloys.
 - Lithium -6 is a main source for the production of tritanium.
 - Used in batteries which contain more energy compared to other metals. (batteries used in cell phones and computers)

✓ Sodium

Used in preparation of tetraethyl lead which is used as

- antiknock reagent in petrol. (Tetraethyl lead is being phased out to reduce lead pollution problem).
- Used in extraction of titanium metal from titanium chloride.
- Sodium vapour is used in lamps for street lighting.
- Sodium chloride (NaCl) is used to add taste to food.
- Sodium carbonate is used in manufacturing of glass, detergents and for softening hard water.
- Sodium hydroxide and sodium chloride are used in manufacture of soap and detergents.

✓ Potassium

- Potassium chloride is used in making fertilizers (Is essential for plant growth).
- ❖ Potassium chromate is used in tanning leather, in manufacture of inks, gun powder and dyes.
- Potassium nitrate is used as food preservative.

• Group II elements

- > Also called alkaline earth metals.
- > Found at the left hand side of the periodic table just after Group I elements.
- > Examples include
 - ✓ Beryllium (Be)
 - ✓ Magnesium (Mg)
 - ✓ Calcium (Ca)
- ➤ Have the following physical properties down the group
 - ✓ Melting and boiling points decrease down the group.
 - ✓ Atoms become bigger due to increase in number of energy levels.
 - ✓ Density increase due to increase in mass.
 - ✓ Ionization energy decreases due to increase in atomic size

- which weakens force of attraction between the possible nucleus and outer most energy level electrons.
- ✓ Electron affinity reduces as the atom becomes bigger.
- ✓ Electronegativity decreases due to increase in atomic size.
- Have the following chemical properties
 - ✓ React with air or oxygen.
 - ✓ React with water.
 - ✓ React with chlorine
- > Alkaline-earth metals have the following uses
 - ✓ Beryllium
 - ❖ Used in transmission of X-rays.
 - Alloy of beryllium and copper is hard, strong with high resistance to wear hence used to make computer parts.
 - Alloy of beryllium are used as structural materials for high performance aircrafts, missiles, space crafts and satellites.
 - ❖ Beryllium oxide is used in nuclear industry.

✓ Magnesium

- Used in making alloys used for manufacturing aircraft, parts of car engine casing and for missile construction.
- Used as a reducing agent in the production of uranium and other metals from salts.
- Used in pharmaceutical industry to manufacture medicine such as
 - o Milk of magnesium (Magnesium hydroxide)
 - o Magnesium chloride.
 - o Epsom salt (magnesium sulphate.
- Magnesium oxide is used in brick-liners in furnaces.
- Used in computer for radio-frequency shielding.

✓ Calcium

- Used as reducing agent in the preparation of metals such as
 - o Thorium
 - o Uranium
 - o zirconium
- Calcium form calcium carbonate which is a component of cement.
- Calcium carbonate is used in antacid tablets.
- Group VII elements
 - > Also called halogens.
 - > The name was derive from two Greek names
 - ✓ 'hal' meaning salt.
 - √ 'gen' meaning produce.
 - ✓ Found at the right hand side before noble gases.
 - ➤ Have the following physical properties
 - ✓ Bright and darken down the group
 - ✓ Are gas, liquid through solids at room temperature
 - ✓ Are all diatomic.
 - ✓ Have low melting and boiling points.
 - ✓ Do not conduct electricity and heat.
 - ✓ Atomic radii increase down the group.
 - ✓ Ionic size increase down the group.
 - ➤ Have the following chemical properties
 - ✓ Are highly reactive.
 - ✓ React with metals to form metal halides.
 - ✓ React with other non-metals.

> Have the following uses

✓ Fluorine

- Used in manufacture of plastics.
- Hydrofluoric acid is used in air conditioning and refrigerators.
- Small amount in water prevents tooth decay (for making tooth paste)

✓ Chlorine

- Used in water treatment.
- For production of
 - o paper products
 - o dye stuffs
 - o textile
 - o petroleum
 - o medicine

✓ Bromine

- Used in making petrol engine anti-knock compounds.
- Used in the manufacture of
 - o Fumigants
 - o Flame proof agents
 - o Water purification compounds
 - o Dyes
 - o Medicine
 - o pesticides

√ iodine

- used in medicine such as
 - o disinfectant for external wounds is made from a solution of potassium iodide and iodine in alcohol.

- silver iodide is used in photography.
- Is added to stable salt to prevent goitre
- Used in testing for starch in biological science
 - o Turns reacted starch blue black in colour.

• Group VIII elements

- > Also called noble gases.
- Were initially called inert gases before the discovery of krypton and xenon.
- > Found in the right of the periodic table.
- > All shells are filled up.
- > They are non-reactive.
- > Are monoatomic
- > Are bright coloured gases
- > Have the following physical properties
 - ✓ Do not conduct heat and electricity.
- ➤ Have the following uses

✓ Helium

- Used in filling meteorological balloons
- Used as a cooling medium for nuclear reaction.
- ❖ A mixture of 80% helium and 20% oxygen is used as an artificial atmosphere for divers and others working under pressure.
- Used as a protective gas for semiconductor material.
- Used in pressuring rocket fuels to liquid.

✓ Neon

- Used in making neon advertising coloured signs.
- Used to make high-voltage indicators.
- ❖ Neon and helium are used in making gas lasers.

- ❖ Liquid neon is an economical refrigerant.
- ✓ Argon
 - Used in electrical light bulbs and fluorescent tubes.
 - Used as an inert gas shield for arc welding and cutting.

UNIT TWO

CHEMICAL BONDING

What is bonding?

- Is the union of two or more particles to form a new one or large particle than original.
- It is done because there is a force of attraction between those particles.

What a chemical bond?

- Is an attraction between two particles.
- Particles could be atoms or ions.

Mention the three types of bond.

- Ionic bond (electrovalent bond)
- Covalent bond
- Metallic bond

What is ionic bonding?

- Is the bonding that occurs between metals and non-metals.
- Metals lose electron(s) and become positively charged.
- Non-metals gain electron(s) and become negatively charged.

What is covalent bonding?

- Is the bonding between non-metals.
- All atoms share electrons.
- There is sharing of the electrons in the bonded atoms.
 - Hydrogen bonding
 - ✓ Where hydrogen is bonded to another atom.

What is metallic bonding?

- Is the bonding among metal particles.
- Metals have free electrons to move.
- The movement of electron cleats a positive charge from where it is coming from and negative charge it is going.
- These opposite charges form a force of attraction between particles.
- Hence, articles attract and bond.

UNIT THREE

ACIDS AND BASES

What are acids?

- Are proton donors.
- Are also define as substances with sour taste.
- These can found in
 - > Citrus fruits such as oranges, lemons, malambe
 - ✓ Citric acid
 - > Grapes, health salt, baking powder, bwemba
 - ✓ Tartaric acid
 - > Sour milk
 - ✓ Lactic acid
 - > Vinegar
 - ✓ Ethanoic acid
 - > In ants such as bee and nettle stings
 - ✓ Methanoic acid
 - > Coke, lemonade, other fizzy drinks
 - ✓ Carbonic acid
 - > Cheese
 - ✓ Butanoic acid
 - > Tea
 - ✓ Tannic acid
 - > Found as dilute acid in stomach
 - ✓ Hydrochloric acid
 - > Car batteries, fertilizers, detergent

- ✓ Sulphuric acid
- > Fertilizers and explosives
 - ✓ Nitric acid.

What are the uses of acid in everyday life?

- Organic acids
 - > Vinegar
 - ✓ has 6% acetic acid.
 - ✓ Used in food preparation and preservation.
 - > Citric acid
 - ✓ Used in preparation of efferves cent salts
 - ✓ Used for food preservation
 - > Tannic acid
 - ✓ For manufacturing of ink
 - ✓ In processing of leather
 - > Acetylsalicylic acid
 - ✓ Also known as aspirin
 - \checkmark Used to relief pain, fever
 - ✓ Reduces inflammation
 - > As corbic acid
 - ✓ Also known as vitamin C
 - ✓ Used as an antioxidant.
 - > Carbonic acid
 - ✓ Used to make carbonic drinks like soda
- Mineral acids
 - Sulphuric acid
 - ✓ Used in manufacture of fertilizers

- ❖ Ammonia sulphate
- ✓ Used in car batteries.
- > Bothe nitric and sulphuric acids
 - ✓ For manufacture of
 - Dyes
 - Paints
 - Drugs
 - Explosives
- > Hydrochloric acid
 - ✓ Used in cleaning steel (pickling.)
- > Phosphoric acid
 - ✓ Used to make
 - Detergents
 - Fertilizers
 - Soft drinks.

Mention some properties of acids.

- Has sourtaste.
- Turn red litmus paper blue.
- Contains hydrogen which may be displaced by some metals
- Liberates carbon dioxide from carbonate and hydrogen carbonates.
- Reacts with a base to give a salt and water only.

What are bases?

- Are proton accepter.
- Also defined as substances with bitter taste.

Mention examples of common bases.

• Sodium hydroxide

- Calcium hydroxide
- Magnesium hydroxide
- Ammonium hydroxide
- Potassium hydroxide

What are the common uses of bases in everyday life?

- Sodium hydroxide.
 - Manufacturing of soap.
 - Used in petroleum refining.
 - Manufacturing of medicine, paper and pulp.
 - Making rayon in the textile industry.
- Calcium hydroxide (also called slaked lime).
 - > Manufacturing of bleaching powder.
 - > Neutralise acid in water supply.
 - Mixed with sand and water to make mortar which is used in the construction of buildings'
 - Neutralise acidic soils in order to improve soil fertility.
 - > Used as an antidote for food poisoning.
 - Used preparation of fungicides.
- Ammonium hydroxide.
 - > To remove ink spots from clothes.
 - > To remove grease from window-panes.
 - > For water purification.
- Potassium hydroxide.
 - Used in manufacturing of alkaline batteries.
- Magnes ium hydroxide.
 - > Used in laxative (i.e. stimulation of bowel movement).
 - Used as antacid in treatment of heart burn.

What are the properties of bases?

- Is a substance with bitter taste.
- Turns blue litmus paper red.
- React with acids to produce salt and water.

What are acid/base indicators?

- Are all substances that can be used to show that the substance you have is an acid or base.
- Indicators turn acid colour or base colour when added to it.
- There are local or commercial indicators.
- Local indicators.
 - > Can be prepared from local materials such as plant extract.

How can you prepare local indicator?

- Materials can include
 - > Test tubes
 - > Leaves e.g. acacia and tomatoes
 - > Pestle and mortar
 - > Ethanol
 - > Hibiscus flower
 - > Water

Procedure

- > Crush some hibiscus flowers in a mortar using a pestle.
- > Add little amount of ethanol.
- > Grind the petals until you get enough extract of the flower used.
- > Filter the liquid into a clean beaker.
- > Add a few drops of indicator to the liquid to be tested
- > Record the colour change

Give examples of commercial indicators.

- Litmus paper.
 - ➤ Blue litmus paper turns red on presence of bases.
 - > Red litmus paper turns blue on presence of acids.
- Methyl-orange.
 - > Turns yellow on presence of bases.
 - > Turns pink on presence of acids.
- Phenolphthalein.
 - > Turns bases orange.
 - > No effect on acids.
- Screened methyl orange.
 - > Turns orange in presence of bases.
 - > Turns purple in presence of acids.

What are universal indicators?

- These are mixtures of dyes which gives a range of colours depending on strength of acid and base.
- Acids have colours ranges of
 - > Red strongest acid
 - > Orange medium acid
 - > Yellow weak acid
- Base have colours ranges of
 - > Violet strongest base.
 - Blue weak base
- Green colour is not acid is not base. (is neutral).

What is the pH scale?

- It is a scale of numbers that shows strength of an acid or a base.
- Numbers range from 1through 14.

- 1 is the strongest acid.
- 14 is the strongest base.
- 7 is neutral.

Define neutralisation.

- It is the act of making acid or base loose its acidity or basicity.
- It done by reacting base and acid.
- The product is water and salt.

What is the application of neutralisation in everyday life?

- Aluminium hydroxide, hydrogen carbonate, magnesium hydroxide is used to neutralise excess hydrochloric acid in the stomach.
- Calcium oxide (quick lime) or calcium hydroxide (slaked lime) is used to neutralise excess acids in acidic soils.
- Tooth paste for mouth cleaning has a base which neutralises the acid which causes teeth decay.

UNIT FOUR

HYDROCARBONS

What is organic chemistry?

- Is the study of carbon, oxides and carbonates.
- The ability of carbon to be bonded to other elements such as hydrogen and oxygen is called catenation..
- The products formed are organic compounds.
- Organic compounds have homologous series.
 - These are compounds with similar properties and behave in certain similar ways.
 - > They have certain general formula.
 - > Compounds differ from one another with a constant atom or group of atoms.
 - > Can be prepared using similar method.
 - > Show gradual change in physical properties.
 - > Have similar chemical properties.
- Examples of homologous series of organic chemistry include
 - Alkanes
 - Alkenes
 - Alkanols
 - Alkanoic acids
 - alkynes

What are hydrocarbons?

- Are all organic compounds which contain carbon and hydrogen only.
- Examples of hydrocarbons include
 - Alkanes

Alkenes

ALKANES

• Examples; petroleum, gas fuels.

FUNCTIONAL GROUP:

• Has no functional group.

GENERAL FORMULA:

• C_nH_{2+2n} (where n is number of carbons in the element)

COMMON NOMENCLATURE

Numbe	Formul	Prefi	Surfi	Name	Structure
r	a	x	x		
Of carbon s					
1	CH₄	Meth -	-ane	Methan e	'H H⁻'C H H
2	C ₂ H ₆	Eth-	-ane	Ethane	HHH HCCCH HH
3	C ₃ H ₈	Prop-	-ane	Propan e	HHHHH H-'C'C'CH HHHH
4	C ₄ H ₁₀	But-	-ane	Butane	HHHHHH HCCCCH HHHHH
5	C ₅ H ₁₂	Pent-	-ane	Pentan e	H H H H H H-'C'_C'_C'_C' C C H
6	C ₆ H ₁₄	Hex-	-ane	Hexane	H,H,H,H,H H-,C,C,-C,-C-C-H H H H H H H

7	C ₇ H ₁₆	Hept-	-ane	Heptan e	H H H H H H H H H H
8	C ₈ H ₁₈	Oct-	-ane	Octane	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9	C ₉ H ₂₀	Non-	-ane	Nonane	H H H H H H H H H H H H H H H H H H H
10	C ₁₀ H ₂₂	Dec-	-ane	Decane	H C C C C C C C C C C C C H H H H H H H
					H

TEST FOR ALKANES

Solubility test

> To 15 drops of water in a test tube, add at least 6 drops of the test liquid i.e. alkane.

• Result:

> Two layers are seen.

Deduction:

➤ Insoluble in water.

Conclusion:

> Can be a hydrocarbon.

• Bromine test:

> To 15 drops of bromine solution add 2 drops of the test liquid i.e. alkane.

• Results:

➤ No colour change observed.

Deduction:

Only single bond.

Conclusion

Alkane.

SOURCES OF ALKANES

• Fractional distillation of crude oil.

PHYSICAL PROPERTIES OF ALKANES

- Melting and boiling points increase down the group.
- Are gases, liquids through solids at room temperature.
- Are insoluble in water.
- Are soluble in organic solvents.
- Do not conduct electricity.
- Viscosity increases down the group.

CHEMICAL PROPERTIES OF ALKANES

- Are less reactive.
- Burn in air or oxygen.
- Under goes substitution reaction.

USES OF ALKANES

- Methane is used as a source for cooking and fuel in vehicles.
- Propane and butane are used in school laboratories and industries for heating purposes.
- Butane mixed with small proportions of propane are compressed in gas cylinders used in household lighting, water heating and cooking.
- Petrol is used in automobile.
- Alkanes with higher numbers of carbons are used as solvent in the manufacture industrial chemicals.
- Solid alkanes have others uses such as
 - > Bitumen

- > Vaseline Petroleum jelly.
- Candle burns to give light. (candle wax is hydrocarbon).

ALKENES

- Examples:
 - Plastics
- Functional group:
 - > C = C i.e carbon to carbon double bond.
- General formula
 - $ightharpoonup C_nH_{2n}$

COMMON NOMENCLATURE

Numbe	Formul	Prifix	Surfi	Name	Structure
r of carbon	a		x		
2	C ₂ H ₄	Eth-	-ene	Ethene	Н
3	C ₃ H ₆	Pro-	-ene	Propen e	Н Н Н , C = C - C - H Н Н
4	C ₄ H ₈	But-	-ene	Butene	H H H H C = C - C - C H H H H

5	C_5H_{10}	Pent-	-ene	Penten	н н н н
	-5 10			е	C = C - C - C - H H H H H
					н н н н
6	C_6H_{12}	Hex-	-ene	Hexen e	H H H H H H C = C - C - C - C - H H H H H H
					Н НННН
7	C ₇ H ₁₄	Hept-	-ene		Ң ,Н ,Н , Н , Н
				e	C = C - C - C - C - C - H
					н н н н н
8	C ₈ H ₁₆	Oct-	-ene	Octene	<u>н</u> н н н н н н
					C = C - C - C - C - C - C - H
					н н н н н
9	C ₉ H ₁₈	Non-	-ene	Nonen	ң н н н н н н н
				e	C = C - C - C - C - C - C - C - H
					н ннннн
10	$C_{10}H_{20}$	Dec-	-ene	Decen	н н н н н н н н н
				е	C = C - C - C - C - C - C - C
					н ннн н н н н

TEST FOR ALKENES

• Solubility test:

> To 15 drops of water in the test tube add at least 6 drops of test liquid. i.e alkene.

• Result:

> Two layers are seen.

• Deduction:

> Insoluble in water.

• Conclusion:

> Can be a hydrocarbon.

• Bromine test:

> To 15 drops of bromine solution add 2 drops of the test liquid.

• Results:

> Becomes clear or colourless.

• Deduction:

➤ Has double bond that has made it possible for the reaction.

• Conclusion:

> Alkene.

SOURCES OF ALKENES

- Dehydration of alcohol
 - > Dehydration is the process of removing water from a compound.
 - > When water has been removed from alcohol, the result is alkene

$$C_4H_9OH$$
 concentrated acid \rightarrow C_4H_8 +

- > The final product is alkene called butane.
- Cracking of hydrocarbons.
 - > This involves the breaking of long chain alkane molecule into a shorter one and an alkene molecule..
 - > This is done under a high temperature.

$$C_6H_{14} \xrightarrow{700 \text{ degrees Celsius}} C_4H_{10} + C_2H_4$$

PHYSICAL PROPERTIES OF ALKENES

• Boiling and melting points increases down the group.

- Density increases down the group.
- Are solid or liquid at room temperature.
- Are insoluble in water.
- Are soluble in organic solvents.

CHEMICAL PROPERTIES

- Can burn in air or oxygen.
- Under go addition reactions
 - > Addition of hydrogen
 - ✓ also called hydrogenation.
 - ✓ Ethane reacts with hydrogen in the presence of catalyst to form ethane.
 - > Hydration
 - ✓ When ethane is reacted with concentrated sulphuric acid it forms a compound called ethylhydrogesulphate.
 - ✓ When added to water and warmed, an alcohol is formed called ethanol.
 - Addition of halogens to ethane.
 - ✓ Also called halogenation
 - ✓ This produces halogenal-alkane.
 - ❖ Bromo-alkane
 - Chloro-alkane
 - ❖ Iodo-alkane
 - ✓ Halogen breaks the double bond of alkene.

USES OF ALKENES

- Ethane and propene are used in the manufacture of plastics.
- Ethane is used in artificial ripening of fruits

UNIT FIVE

AIR

What is air?

- Is the mixture of gases.
- Air contains the following
 - > 78% nitrogen.
 - > 21% oxygen.
 - > 0.03% carbon dioxide.

- ➤ About 1 noble gas
- > Variable smoke/dust particles
- > Variable polluting gases

How can you separate components of air?

• By using fractional distillation of liquid air.

Nitrogen at -196°C, Argon at -186°C, Oxygen at -

What are the uses of gases found in the air?

Nitrogen

- > Dilute the oxygen in the air
 - ✓ Weakens the process of burning and rusting in air.
- Leguminous plants have bacteria which converts air nitrogen into us eful compound rich in nitrogen.

Oxygen

- > Is active fraction of air.
- > Necessary for breathing.
- > Used for burning.
- Used in rusting and decay.
- > Without oxygen, there would be no life.

Carbon dioxide

- > Air contains only 0.03%
- > Exhaled air is about 3%
- Some comes from burning wood, coal, petrol, oil and other compounds.
- Used in plants for photosynthesis.

• Noble gases

- Examples include argon, neon, helium, krypton and xenon.
- > Do not react with any other substance
- > Argon is used in electric bulbs.
- > Helium is used in weather balloons.
- Neon is used in coloured advertisement signs.

QUANTITATIVE DETERMINATION OF THE FRACTION OF OXYGEN IN AIR

- Aim
 - > To determine the percentage of air used when a candle burns.
- Apparatus
 - > Trough
 - > Beehive shelf
 - > Candle
 - Gas jar
 - > 30cm ruler
 - > Sodium hydroxide solution

Procedure

- ➤ Invert an empty gas jar over the candle before lighting it.
- Measure the length of A in cm as shown in the figure below.
- > Remove the gas jar.
- Light the candle and immediately cover it with the empty gas jar.

- ➤ When the candle is lit, it burns for some time then goes off.
- The water level rises inside the gas jar and goes down in the trough.
- ➤ Amount of air in the gas jar was A.
- > Amount of air used during burning is A-B i.e. the rise in the level of

water.

➤ Percentage of air =
$$\frac{\text{(height A -height B)} \times 100}{\text{height A}} = \text{C}\%$$

- Oxygen can also be prepared in the laboratory by reacting manganese oxide and hydrogen peroxide.
 - > Hydrogen peroxide breaks into water and oxygen.
 - Manganese dioxide is used as a catalysts.
- Oxygen can also react with metals to produce rust under the presence of water
- Oxygen can also cause burning of metals and other substances.

PHYSICAL AND CHEMICAL PROPERTIES OF OXYGEN

- Physical properties include
 - Is colourless gas
 - > Has no smell
 - ➤ Is slightly soluble in water
 - > Is slightly denser than air
 - > Is neutral to litmus paper.
- Chemical properties include
 - > Is very reactive.
 - > Supports burning.

USES OF OXYGEN

- In welding and cutting of metals.
- Used as aid to breathing where the natural supply is insufficient.
- Used to remove impurities in the process of making steel.
- Liquid oxygen is used to burn fuel in some space rockets.
- A mixture of charcoal, petrol and liquid oxygen is used as an explosive.

ATMOSPHERIC POLLUTANTS AND NTHEIR SOURCES

- Atmospheric pollution is the introduction of substance to the environment which have harmful effects on the ability of the environment to support life.
- Can also be define as making environment dirty.
- Atmospheric pollution can be
 - > Poisonous gases
 - > Solid particles

POISONOUS GASES AND THEIR EFFECTS ON HEALTH AND ENVIRONMENT

- Sulphur dioxide (SO₂)
 - > From most fuels.
 - > Are toxic and cause respiratory diseases.
 - > Also form acidic rain.
- Nitrogen dioxide (NO₂)
 - ➤ When nitrogen in the air combines with oxygen.
 - > Toxic gas.
 - > Promotes respiratory diseases.
 - > Also forms acid rain
- Carbon dioxide (CO₂)
 - > Prevents warm air from escaping into the atmosphere.
 - > Causes greenhouse effects.
 - Greenhouse effects leads to global warming.
 - Causes the melting of polarice caps which can rise the level of the oceans.
 - > Hence lead to flooding.
- Carbon monoxide (CO)
 - > From the burning fuels.
 - > Poisonous gas.
 - > Can combine with haemoglobin in the red blood cells to form stable

compound called carboxyhaemoglobin.

- > Causes suffocation and death
- > Has no order or colour which makes it difficult to be recognised
- Un burnt hydrocarbons
 - > Can be carcinogenic.
- Chlorine
 - > From decayed insecticides and perfume sprays.
 - > Destroys ozone gas.
- Ozone (O₃)
 - > Generally light blue gas.
 - > Causes headaches among people.

SOLID PARTICLES

- Large particles dumped by people in the environment.
- These may in water or on land.
- Examples include
 - > Cement
 - > Flour
 - > Sugar
 - > Plastic bags
 - > Mining
 - Quarry

SOURCES OF POLLUTANTS

- Smoke from industries.
- Smoke from vehicles
- Charcoal burning
- Floods

EFFECT MADE TO REDUCE ATMOSPHERIC POLLUTION

- Improvement of combustion of fuels.
- Introduction of better processing of fuels to make them free from sulphur.
- Introducing more better filter systems in industries.
- Introducing of smokeless solid fuels or fuels like hydrogen.

UNIT SIX

SOIL

What is soil?

- Is a top material on the earth's crust that supports living.
- Soil is composed of

- Inorganic matter.Organic matter.Water.
- > Air.
- Inorganic matter
 - \gt 50% of the soil.
 - > Include rock particles from weathering, and minerals.
 - > These form soil particles such as
 - ✓ Sand
 - ✓ Silt
 - ✓ Clay
 - > Also form mineral elements such as
 - ✓ Iron
 - ✓ Aluminium
 - ✓ Copper
 - ✓ Silicates
- Organic matter
 - > 5% of the soil.
 - > From
 - ✓ animal wastes and human
 - ✓ decayed parts of plants and animals.
 - > Also called humus.
- Water (moisture)
 - \geq 25% of the soil.
 - > Is a solvent for minerals.
 - > Too much water causes water logged soil.

- Air
 - > 25% of the soil.
 - > Found in soil pores.
 - > Also called atmosphere or soil air.

CHEMICAL COMPOSITION OF SOIL.

- Cations exchangeable capacity
 - ➤ Is amount of exchangeable ions in 100g of soil.
 - > These include
 - ✓ Calcium
 - ✓ Potassium
 - ✓ Sodium
 - Fertile soil have very high amount of exchangeable capacity (CEC).
 - > Soil with very high exchangeable sodium is toxic to most crops.
- Soil salinity
 - Amount of salts in the soil per unit mass is called salinity.
 - > Saline soils have excess salts especially sodium chloride which can be toxic.
- Soil pH
 - Most important chemical property of the soil.
 - > Determines the soil fertility in terms of mineral nutrients.
 - > Can be acidity or alkalinity.
 - > The degree of acidity is determined by the concentration of the hydrogen in the soil.
 - > Strong acidic is 1 while weak acidic is 6.
 - > Strong alkaline is 14 and weak alkaline is 8
 - > 7 is not acidic nor alkaline. is neutral.

SOIL POLLUTION

- Can be polluted by
 - > Oxides of sulphur
 - ✓ Cause acidic rains.
 - ✓ Also cause leaching of mineral nutrients leading to decrease in fertility of the soil.

Aerosols

- > Are used to control pests and diseases in plants and animals.
- > Usually contain heavy metals such as
 - ✓ Copper
 - ✓ Mercury
- > These are absorbed by plants.
- > These plants are toxic when eaten by animals.
- > Can cause death.
- > They can also kill soil microorganism.
- Petroleum products
 - > oil spills kill soil microorganisms.
- Agro-chemicals
 - > Include chemicals such as
 - √ Fertilizers
 - ✓ Insecticides
 - ✓ Pesticides
 - ✓ Fungicides
- Solid wastes
 - > From households and industries.
 - > Some are biodegradable while other are non-biodegradable...
 - > Can cause injuries.
 - > Examples include

- ✓ Glass bottles
- ✓ Scrap metals.

PREVENTION OF SOIL POLLUTION

- Recycle all solid wastes
- Burn biodegradables wastes which can be burnt.
- Use organic farming to discourage excess use of chemical fertilizers.
- Encourage using biological control of pests and diseases.
- Pipeline transport of petrol and petroleum products to minimise the risk of spilling.