Helper Function: Follow()

- To understand Follow(), we need to add a rule to our original grammar where a non-terminal derives ϵ , e.g. rule 7: B $\rightarrow \epsilon$
- Now we can derive:

$$S' \xrightarrow{1} \rightarrow F S \xrightarrow{2} \rightarrow FAyB \xrightarrow{3} \rightarrow FabyB \xrightarrow{7} \rightarrow FabyA$$

- key point: ∃ can appear after the B but there is no derivation B ⇒* ∃
- i.e. using First() is not sufficient
 - the symbol ' \dashv ' came from rule 1: $S' \rightarrow \vdash S \dashv$
 - the symbol B came from rule 2: $S \rightarrow AyB$
 - and B derives ε with rule 7: B $\rightarrow \varepsilon$
- conclusion: I is in the follow set of B

1.
$$S' \rightarrow F S + I$$

2.
$$S \rightarrow AyB$$

3.
$$A \rightarrow ab$$

4.
$$A \rightarrow cd$$

5.
$$B \rightarrow z$$

6.
$$B \rightarrow wz$$

7.
$$B \rightarrow \varepsilon$$

Using Follow() to Construct the Predict Table

 The Predict Table for our new grammar has a new entry Predict(B, ∃) = 7 (the rest is the same)

1.
$$S' \rightarrow F S + I$$

2.
$$S \rightarrow AyB$$

3.
$$A \rightarrow ab$$

4.
$$A \rightarrow cd$$

5.
$$B \rightarrow z$$

6.
$$B \rightarrow wz$$

7.
$$B \rightarrow \varepsilon$$

	а	b	С	d	У	W	Z	±	T
S'								1	
S	2		2						
Α	3		4						
В						6	5		7

- We used rule 7 to take the step ⊢ abyB ⊢ ⇒ ⊢ aby ⊢
- So if B is on the stack and the next input symbol is '+' then expand with rule 7, i.e. have B derive the empty string.

Helper Function: Follow()

- The terminal symbol '∃' is in Follow(B) because there is a derivation from the start symbol S' ⇒* FabyB∃
- Informally: Follow(N) is the set of terminals c that can follow N in some derivation; that is, S ⇒* ··· Nc ···
- *Formally:* for any non-terminal N, Follow(N) = { c | S' \Rightarrow * α Nc β }
 - where α and β are (possibly empty) sequences of terminals and non-terminals
- But Follow(N) is only relevant if there is a derivation $N \Rightarrow^* \epsilon$ so we need to check if N can derive the empty string.
- We need yet another helper function Nullable(), sometimes called Empty()...

Helper Function: Nullable()

- *Informally*: Nullable(N) indicates that N can derive the empty string, i.e. $N \Rightarrow^* \varepsilon$
- More generally, ask if α can derive the empty string where α is in (terminals | non-terminals)* and each B_i below is a single terminal or non-terminal.
- Formally: Nullable(α) = true if $\alpha \Rightarrow * \epsilon$
 - False if α has a terminal in it (only non-terminals can derive ϵ)
 - True if there is a rule $\alpha \rightarrow \epsilon$
 - For any rule of the form $\alpha \to B_1B_2\cdots B_n$ Nullable(α) is true if each of Nullable(B_1), Nullable(B_2), ..., Nullable(B_n) is true.

LL(1) Parsing

```
Input: w
push S' (start symbol) on stack
for each a \in W
   while (top of stack is a non-terminal N ) { // 1st try expand
      if (Predict(N, \alpha) == (N \rightarrow \alpha))
         pop N
         push \alpha on stack (in reverse)
      else
                                                     // no rule found
         reject
                                                     // 2<sup>nd</sup> try match
   c = pop_stack()
   if (c \neq a)
                                                     // no match found
      reject
accept w
```

Example of LL(1) Parsing

LL(1) Parsing: Parse ⊢ cdy ⊣

	Derivation	Read	Input	Stack	Action
1	S'		⊦ cdy +	> S'	predict(S', ⊢) = 1
2	⊢ S ⊣		⊢ cdy ⊣	> F S -1	match
3	⊢ S ⊣	F	cdy 1	> \$ 1	predict(S, c) = 2
4	⊦ AyB ⊣	F	cdy 1	> A y B +	predict(A, c) = 4
5	⊦ cdyB ⊣	F	cdy 1	> c d y B +	match
6	⊦ cdyB ⊣	⊢ c	d y ⊣	> d y B +	match
7	⊦ cdyB ⊣	⊦ cd	y	> y B +	match
8	⊦ cdyB ⊣	⊦ cdy	4	> B +	predict(B, +) = 7
9	⊦ cdy ⊣	⊦ cdy	4	> -	match
10	⊦ cdy ⊣	⊢ cdy ⊣		>	ACCEPT

Again '>' indicates the top of the stack.

More about Follow()

Helper Function: Follow() is Complicated

- Need a different grammar to see this fact.
- In the grammar on the right $\exists \in Follow(S)$ since $S' \rightarrow \vdash S \dashv$.
- But ∃ ∈ Follow(B) even though there is
 no rule of the form S' → ··· B ∃ since we
 have S' ⇒ ⊢ S ∃ ⇒ ⊢ ABC ∃ ⇒ ⊢ AB ∃
- I.e. in the rule S → ABC, since Nullable(C) = true and ¬ ∈ Follow(S) therefore ¬ ∈ Follow(B).
- More generally if $N \to B_1B_2...B_iB_{i+1}...B_n$ and Nullable($B_{i+1}B_{i+2}...B_n$) then Follow(B_i) includes Follow(N) i.e. if the RHS of B_i is nullable, then what follows N can also follow B_i .

1.
$$S' \rightarrow FS +$$

2.
$$S \rightarrow ABC$$

3.
$$A \rightarrow aA$$

4.
$$A \rightarrow \varepsilon$$

5.
$$B \rightarrow bB$$

6.
$$B \rightarrow \varepsilon$$

7.
$$C \rightarrow cC$$

8.
$$C \rightarrow \varepsilon$$

More about Follow()

Helper Function: Follow() is Complicated

- Asking: Starting from the start symbol, does the terminal c ever occur immediately following B_i.
- Here c is a terminal; A, N are non-terminals; B_i is a single terminal or non-terminal; α , $\beta \in \text{(terminals } | \text{ non-terminals)}^*$
- Follow(B_i) = { c | S ⇒* $\alpha B_i c\beta$ } Initialize: Follow(N) = { } for all non-terminals N // the empty set for each rule of the form A → $B_1 B_2 ... B_{i-1} B_i B_{i+1} ... B_k$: for i = 1 to k: if (B_i is a non-terminal) // what can appear after B_i? Follow(B_i) = Follow(B_i) U First (B_{i+1}B_{i+2}...B_k) if (Nullable(B_{i+1}B_{i+2}...B_k)) // what can appear after A? Follow(B_i) = Follow(B_i) U Follow(A)

Constructing Predict(N, c)

- Key Task, asking if N is on the top of the stack and c is the next symbol in the input, which rule should be used to expand N?
- Here α, β ∈ (terminals | non-terminals)*
 c is a terminal, N is a non-terminal
- **Predict**(N, c) = { the rule N $\rightarrow \alpha \mid c \in First(\alpha)$ } \cup { the rule N $\rightarrow \beta \mid c \in Follow(N)$ and Nullable(β) = true }
- *In summary:* To fill out the Predict Table, i.e. calculate which rule to use for Predict(N, c), we need to consider
 - First(α) for all rules of the form $N \to \alpha$
 - Follow(N) for all rules of the form N $\rightarrow \beta$ whenever Nullable(β) is true.

First()

$$First(\alpha) = \{ a \mid \alpha \Rightarrow * a\beta \}$$

A:
$$a \in First(A) since A^3 \Rightarrow aA$$

B:
$$b \in First (B) since B \stackrel{5}{\Rightarrow} bB$$

S:
$$a \in First(S) since S^2 \Rightarrow AB^3 \Rightarrow aAB$$

$$b \in First (S) since S ^2 \Rightarrow AB ^4 \Rightarrow B ^5 \Rightarrow bB$$

1. $S' \rightarrow F S + F$

2.
$$S \rightarrow AB$$

3.
$$A \rightarrow aA$$

4.
$$A \rightarrow \varepsilon$$

5.
$$B \rightarrow bB$$

6.
$$B \rightarrow \varepsilon$$

Nullable()

Nullable(
$$\alpha$$
) = true if $\alpha \Rightarrow * \epsilon$

A: Nullable(A) = true since A
$$^4 \Rightarrow \varepsilon$$

B: Nullable(B) = true since B
$$^6 \Rightarrow \varepsilon$$

S: Nullable(S) = true since
$$S^2 \Rightarrow AB^4 \Rightarrow B^6 \Rightarrow \varepsilon$$

Follow()

```
Recall: Follow(B_i) = { c | S' \Rightarrow* \alpha B_i c \beta}

If Nullable(B_i) we need to consider Follow(B_i)

for rules N \rightarrow B<sub>1</sub>B<sub>2</sub>...B<sub>i-1</sub>B<sub>i</sub>B<sub>i+1</sub>...B<sub>n</sub>:

(i) Follow(B_i) includes First (B_{i+1}B_{i+2}...B_n)

1. S' \rightarrow F S \dashv
2. S \rightarrow AB
3. A \rightarrow aA
4. A \rightarrow \in
5. B \rightarrow bB
```

6. $B \rightarrow \varepsilon$

(ii) if (Nullable(B_{i+1}B_{i+2}...B_n)) Follow(B_i) includes Follow(N)

S: $\dashv \in Follow(S)$ since $S' \rightarrow \vdash S \dashv and \dashv \in First(\dashv)$ by (i)

B: \dashv ∈ Follow(B) since S \rightarrow AB and \dashv ∈ Follow(S) by (ii)

A: $\exists \in Follow(A) \text{ since } S \to AB, \text{ Nullable(B) and } \exists \in Follow(S) \text{ by (ii)}$ b $\in Follow(A) \text{ since } S \to AB \text{ and } b \in First(B) \text{ by (i)}$

The Predict Table

- Let $N \in \{S, A, B\}$ and let $c \in \{a, b, +, +\}$
- For the entries due to First(N), use rule N $\rightarrow \alpha$ where $c \in First(\alpha)$
- For the entries due to Follow(N) use rule N $\rightarrow \alpha$ where c \in Follow(N) and Nullable(α) = true

Grammar

1.
$$S' \rightarrow F S + I$$

- 2. $S \rightarrow AB$
- 3. $A \rightarrow aA$
- 4. $A \rightarrow \epsilon$
- 5. $B \rightarrow bB$
- 6. $B \rightarrow \varepsilon$

Predict Table

	а	b	1	4
S'			1	
S	2	2		2
Α	3	4		4
В		5		6

Computing Nullable

Nullable()

```
    for each non-terminal A: Nullable(A) = false // initialize
    repeat
    for each rule A → B<sub>1</sub>B<sub>2</sub>...B<sub>k</sub> // check rules
    if (k = 0) or (Nullable(B<sub>1</sub>) = ··· = Nullable(B<sub>k</sub>) = true)
    then Nullable(A) = true // k=0 means
    until nothing changes // empty string
```

R1
$$S' \rightarrow \vdash S \dashv$$

R2
$$S \rightarrow b S d$$

R3
$$S \rightarrow p S q$$

R4 S
$$\rightarrow$$
 C

R5
$$C \rightarrow c C$$

R6
$$C \rightarrow \epsilon$$

Iteration	0	1	2	3
S'	false	false	false	false
S	false	false	true	true
С	false	true	true	true

Computing First

First(A) for a Non-terminal A

```
for each non-terminal A: First(A) = { } // initialize
2.
     repeat
                                                         // check rules
       for each rule A \rightarrow B_1B_2 \cdots B_k
3.
         for i = 1 ... k
4.
           if (B<sub>i</sub> is a non-terminal) then
                                                         // B<sub>i</sub> is a non-terminal
5.
             First(A) = First(A) \cup First(B_i)
6.
             if (not Nullable(B<sub>i</sub>)) then break; // go to next rule
7.
           else
                                                         // B<sub>i</sub> is a terminal
8.
             First(A) = First(A) \cup \{B_i\};
9.
                                                         // go to next rule
10.
             break
11. until nothing changes
```

General Idea: keep processing $B_1B_2\cdots B_k$ until you encounter a terminal or a symbol that is not Nullable. Then go to the next rule.

Computing First

First* $(B_1B_2\cdots B_k)$ for a Concatenation of Symbols

```
// Before you considered each rule, now just consider B<sub>1</sub>B<sub>2</sub>···B<sub>k</sub>.
     answer = \{ \}
                                                     // initialize
                                                     // check B_1B_2\cdots B_k
2. for i = 1 ... k
                                                    // B<sub>i</sub> is a non-terminal
       if (B<sub>i</sub> is a non-terminal) then
3.
         answer = answer U First(B_i)
4.
         if (not Nullable(B<sub>i</sub>)) then break // return answer
5.
    else
                                                     // B<sub>i</sub> is a terminal
6.
         answer = answer U \{B_i\}
         break;
                                                     // return answer
8.
   return answer;
```

General Idea: keep processing $B_1B_2\cdots B_k$ until you encounter a terminal or a symbol that is not Nullable. Then go to the next rule.

Computing First

First(A) for a Non-terminal A

R1 S'
$$\rightarrow$$
 F S H
R2 S \rightarrow b S d
R3 S \rightarrow p S q
R4 S \rightarrow C
R5 C \rightarrow c C
R6 C \rightarrow ϵ

Iteration	0	1	2	3	
S' { }		{⊦}	{⊦}	{⊦}	
S {}		{b, p}	{b, c, p}	{b, c, p}	
С	{}	{c}	{c}	{c}	

- Iteration 0: set all to empty set (line 1)
- Iteration 1: With rules R1, R2, R3, and R5 set the values using lines 8-9 with i=1.
- Iteration 2: c becomes part of First(S) using line 4 and R4 namely First(S) = First(S) U First(C)
- Iteration 3: nothing changes so terminate

Computing Follow

Follow(A) for a Non-terminal A

```
for each non-terminal A except S': Follow(A) = { } // initialize
2.
     repeat
                                                             // check rules
        for each rule A \rightarrow B_1B_2\cdots B_k
3.
           for i = 1 ... k
4.
                                              // B<sub>i</sub> is a non-terminal
              if (B<sub>i</sub> is a non-terminal)
5.
                 Follow(B<sub>i</sub>) = Follow(B<sub>i</sub>) \cup First*(B<sub>i+1</sub>···B<sub>k</sub>) // case (i)
6.
                 if (Nullable(B_{i+1} \cdots B_k)) then
7.
                    Follow(B_i) = Follow(B_i) \cup Follow(A) // case (ii)
8.
     until nothing changes
9.
```

- No terminal can follow S', so no need to calculate its follow set.
- Have two cases for Follow(B_i): case (i) First*(B_{i+1}···B_k)
 case (ii) Nullable(B_{i+1}···B_k)

Computing Follow

Follow(A) for a Non-terminal A

R1 S'
$$\rightarrow$$
 F S H
R2 S \rightarrow b S d
R3 S \rightarrow p S q
R4 S \rightarrow C
R5 C \rightarrow c C

Iteration	0	1	2
S	{}	{+, d, q}	{⊣, d, q}
С	{}	{⊣, d, q}	{⊣, d, q}

- R6 C $\rightarrow \epsilon$
- Iteration 0: set all to empty set (line 1)
- Iteration 1: with R1, R2 and R3 set the values S (lines 3-6)
 with R4 Follow(C) = Follow(C) U Follow(S) (line 8)
- Iteration 3: nothing changes so terminate

The Predict Table

- Let $N \in \{S', S, C\}$ and let $c \in \{b, c, d, p, q, +, +\}$
- For the entries due to First(N), use rule N $\rightarrow \alpha$ where $c \in First(\alpha)$ (blue entries in table).
- For the entries due to Follow(N) use rule $N \to \alpha$ where $c \in Follow(N)$ and Nullable(α) = true (black entries in table).

Grammar

R1
$$S' \rightarrow FS + S$$

R2 S \rightarrow b S d

R3 S \rightarrow p S q

R4 S \rightarrow C

R5 $C \rightarrow c C$

R6 C $\rightarrow \epsilon$

Predict Table

	b	С	d	р	q	F	7
S'						1	
S	2	4	4	3	4		4
С		5	6		6		6

LL(1) Summary

- Goal: Determine which rule to use when N (a non-terminal) is on the stack and c (a terminal) is the next symbol in the input. I.e. what is Predict(N, c)?
- First(): Which terminals can begin a string derived from α ?
 - First(α) = { c | $\alpha \Rightarrow * c\beta$ } where c is a terminal and α , β , $\gamma \in$ (terminals | non-terminals)*.
- Nullable(): Can α derive the empty string?
 - Nullable(α) = true if $\alpha \Rightarrow * \epsilon$.
- Follow(): Which terminals that can follow N in some derivation?
 - Follow(N) = { c | S' \Rightarrow * α Nc γ }. I.e. for some rule S $\rightarrow \alpha$ N β
 - (i) $c \in First(\beta)$
 - (ii) Nullable(β) and $c \in Follow(S)$

LL(1) Summary + Example

Predict(N, c) = { the rule N
$$\rightarrow \alpha$$
 | c \in First(α) } \cup { the rule N $\rightarrow \beta$ | Nullable(β) and c \in Follow(N) }

Examples of First, Nullable and Follow

1.
$$S' \rightarrow F S + T$$

2.
$$S \rightarrow AB$$

3.
$$A \rightarrow aA$$

4.
$$A \rightarrow \epsilon$$

5.
$$B \rightarrow bB$$

6.
$$B \rightarrow \varepsilon$$

$$b \in First (B) since B \stackrel{5}{\Rightarrow} bB$$

Nullable(B) = true since B
$$^6 \Rightarrow \varepsilon$$

(i)
$$b \in Follow(A)$$
 since $S \rightarrow AB$ and $b \in First(B)$

(ii)
$$\dashv \in Follow(A)$$
 since $S \rightarrow AB$, Nullable(B) and $\dashv \in Follow(S)$
I.e. we have $S' \Rightarrow \vdash S \dashv \Rightarrow \vdash AB \dashv \Rightarrow \vdash A \dashv$

Check your work at http://smlweb.cpsc.ucalgary.ca/start.html