Nombre: Andrew Pold Jacobo Castillo CUI: 20192192

1. EJERCICIO Nro 1 (Puntos 5)

Sea la definición formal de una MT:

 $M = (\{q0,q1,q2,q3\},\{0,1\},\{0,1,X,\square\},\delta,q0,\square,\{q3\})$

δ : Tabla de transición:

Estado	0	1	X	
q0	-	(q0, X, R)	-	(q1, □, L)
q1	-	(q1, 1, L)	(q2, 1, R)	(q3, □, R)
q2	-	(q2, 1, R)	-	(q1, 1, L)
q3	-	-	-	-

a) Obtener el diagrama

b) Reconocer el lenguaje que acepta

El lenguaje que reconoce es:

$$L = \{1 \land n, n \ge 0\}$$

c) Proporcionar una palabra al azar que pertenezca al lenguaje y revisar el resultado de la cinta.

Input: 111 Output: 111111

Step 1:

Step 2:

Step 3:

Ultimo step:

d) Reconocer cual es la función que se aplica a la cadena.

Input : 111

Output: 111111

Como se puede visualizar en la salida, esta Maquina de Turing duplica una cadena de 1's ingresada. En nuestro ejemplo se ingreso una cadena de 1's de 3 caracteres y como salida obtuvimos una cadena de 1's de 6 caracteres

Otro ejemplo

Input: 11111

Output: 1111111111

2. EJERCICIO Nro 2 (Puntos 6)

Sea el diagrama de estados de una Maquina de Turing:

a) Obtener la definición formal

 $M = (\{q0,q1,q2,q3,q4,q5,q6,q7,q8\},\{0,1\},\{0,1,B\},\delta,q0,B,\{q8\})$

Estado	0	1	В
q0	(q0,0,R)	(q0,1,R)	(q1,B,L)
q1	(q1,0,L)	(q2,1,L)	(q4,B,R)
q2	(q1,1,L)	(q2,1,L)	(q3,1,L)
q3	-	-	(q4,B,R)
q4	(q4,0,R)	(q4,1,R)	(q5,B,L)
q5	(q6,1,L)	(q7,0,L)	-
q6	(q6,0,L)	(q6,1,L)	(q8,B,S)
q7	-	(q7,1,L)	-
q8	-	-	-

b) Reconocer el lenguaje que acepta

El lenguaje que reconoce es:

$$L = \{(1 \mid 0) \land n \mid n \ge 1\}$$

c) Proporcionar una palabra al azar que pertenezca al lenguaje y revisar el resultado de la cinta.

Input: 10101 Output: 101011

Step inicial:

Step final:

d) Reconocer cual es la función que se aplica a la cadena.

Input: 10101

Output: (10101+10101) + 1 = 101011

Mientras vamos siguiendo el recorrido de esta Maquina de Turing, nos vamos dando cuenta que se trata de la operación binaria de suma pues las transiciones estan relacionadas a los 4 casos existentes de este. Ademas, el mover la cabecera al extremo derecho nos da una señal de ello. Por ende, la funcion es una suma de la misma entrada mas +1; veamos:

a) Primero sumamos el mismo numero:

10101+ 10101 -----101010

b) Ahora le sumamos +1:

101010+ 1 ------101011

Con eso comprobamos la función de la Maquina de Turing