Randomised Algorithms Winter term 2022/2023, Exercise Sheet No. 7

Authors:

Ben Ayad, Mohamed Ayoub Kamzon, Noureddine

December 4, 2022

Exercise 1.

(a) We have for $t \ge 1$: $X_{t+1} = \begin{cases} X_t + [X_t/2] & \text{with probability } 18/37 \\ X_t - [X_t/2] & \text{Otherwise} \end{cases}$

Technically speaking, we can never reach the state 0, as the player gets stuck when $X_t = 1$. We'll define $Y_t = X_t - 1$. We have: $Y_{t+1} = \begin{cases} Y_t + \left[\frac{Y_t + 1}{2}\right] & \text{with probability } 18/37 \\ Y_t - \left[\frac{Y_t + 1}{2}\right] & \text{Otherwise} \end{cases}$

Which yields, for $s \ge 1$:

$$\begin{split} \mathbb{E}[Y_t - Y_{t+1}|Y_t = s] &= s - \mathbb{E}[Y_{t+1}|Y_t = s] \\ &= s - (\frac{18}{37}(s + [\frac{s+1}{2}]) + \frac{19}{37}(s - [\frac{s+1}{2}])) \\ &= \frac{1}{37}[\frac{s+1}{2}] \end{split}$$

Hence, $\forall s \geq 1 : \mathbb{E}[Y_t - Y_{t+1}|Y_t = 1] = \frac{1}{37} \leq \mathbb{E}[X_t - X_{t+1}|X_t = s]$. Using the Additive Drift Theorem, we get:

$$\mathbb{E}[T|Y_0] < 37Y_0 \implies \mathbb{E}[T|X_0] < 37(X_0 - 1)$$

(b) We have, using the Multiplicative Drift Theorem with tail bounds, $\forall r \geq 0$:

$$\mathbb{P}[T > [\frac{r + \ln(x_0)}{\delta}] | X_0 = x_0] \le e^{-r}$$

For $r = 2000\delta - \ln(x_0)$, we get $[\frac{r + \ln(x_0)}{\delta}] = 2000$, and hence:

$$\mathbb{P}[T > 2000|X_0 = 10^6] \le e^{-(2000\frac{1}{37} + \ln(10^6))} \le e^{-40}$$

Exercise 2.

- (a) The worst case is to have all pairs $\{a_i, a_j\}$ s.t: i < j not ordered, in this case $I(S_0) = \binom{n}{2} = \frac{n(n-1)}{2}$. We can achieve so, by taking a strictly ordered list, and inverse the order.
- (b) We let $S_t = [a_1, \ldots, a_n]$ and $S_{t+1} = [b_1, \ldots, b_n]$. We have, $b_i = a_j$ and $b_j = a_i$. And let $I(S_t)$ be the set of pairs in the wrong ordering (similary for $I(S_{t+1})$). We need to prove that:

$$I(S_{t+1}) \subsetneq I(S_t)$$

For the strictness, obsiously, $\{a_i, a_j\} \in I(S_t)$ but $\{a_i, a_j\} = \{b_j, b_i\} \notin I(S_{t+1})$ (by definition of S_{t+1}), now we need to prove the inclusion:

Let $\{b_k, b_l\} \in I(S_{t+1})$ s.t: k < l: we have of course $b_l < b_k$. We distinguish 5 cases (and we ommit the trivial/extreme cases where k=1 or l=n):

If $k \neq i$ and $l \neq j$: Then $(b_k, b_l) = (a_k, a_l)$ and hence, $\{a_k, a_l\} \in I(S_t)$.

If k = i and j < l (Case-A): We have: $a_l = b_l < b_k = b_i = a_j \implies \{a_l, a_j\} \in I(S_t) \implies \{b_l, b_i\} \in I(S_t)$

If k = i and i < l < j (Case-B):

We have: $a_l = b_l$ (as $l \neq i$ and $l \neq j$)

& $b_l < b_k$ (as $\{b_l, b_k\} \in I(S_{t+1})$)

& $b_k = b_i$ (We are in the case where k = i)

& $b_i < b_j$ (By contsruction of S_{t+1})

& $b_j = a_i$ (By construction of S_{t+1})

And hence: $a_l < a_i$, but i < l, which yields, $\{a_l, a_i\} \in I(S_t)$ (we have $a_i = a_k$, so this case is complete).

If k < i and j = l: similar logic to Case-A. If i < k < l and j = l: similar logic to Case-B.

And hence, $I(S_{t+1}) \subset I(S_t)$, we already proved that the inclusion is strict, given rise:

$$INV(S_{t+1}) < INV(S_t) \implies INV(S_{t+1}) \le INV(S_t) - 1 \implies 1 \le INV(S_t) - INV(S_{t+1})$$

(c)

Exercise 3.

Let X_i be the RV associated with step i of the algorithm and defined as follows:

$$X_i = \begin{cases} 1 & \text{if at step } i, \text{ we picked } j \text{ such as } B[j] = \text{null (in one try)} \\ 0 & \text{otherwise.} \end{cases}$$

$$We \text{ have } \mathbb{P}[X_i = 1] = \frac{n - i + 1}{r}$$

Now let Y_i be the number of tries we need at each step i, to find a null element in B. Abviously, the running time T could be expressed as follows: $T = \sum_{i=1}^{n} Y_i$, which yields, $\mathbb{E}[T] = \sum_{i=1}^{n} \mathbb{E}[Y_i]$

 Y_i is a geometric RV, with parameter $p = \mathbb{P}[X_i = 1]$, hence, $\mathbb{E}[Y_i] = \frac{n}{n-i+1}$, which yields:

$$\mathbb{E}[T] = \sum_{i=1}^{n} \frac{n}{n-i+1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n})$$
$$= nH_n$$
$$= \Theta(n\log(n))$$

Exercise 4.

The case where n = 1, is trivial, we will start our induction from n = 2.

Let's say $A = [a_1, a_2]$, we have two permutations in total, $A_1 = A$ and $A_2 = [a_2, a_1]$. In this case, the main loop of the algorithm has two runs, but the second run (and generally when i = n) doesn't not change the outcome of the list. Hence, the list is only changed in the first step (i = 1). Which yields two possibilities with equal probability, we either pick j = 2 (the algorithm swipes the two elements, and outputs, A_2), or we pick j = 1, and nothing changes to the list, and the algorithm outputs A_1 . Hence, both A_1 and A_2 have equal probability 1/2 of being chosen by the algorithm. This proves the correctness in the case of n = 2.

Now, we suppose that the algorithm is correct for some $n \geq 2$, and prove that the algorithm is correct for an input of size n + 1:

Let T be a list of size n + 1, and let $L = [L_1, L']$ be a random permutation of T, where L_1 is the first element of L, and L', is random permutation of $T/\{L_1\}$. We need to prove that FastRandomPermutation(T), has a probability of $\frac{1}{(n+1)!}$ of outputing L.

For the first step, the algorithm picks at uniformly random an element of T, and swipes it with the first elemenet of T (T_1), Hence, we have get a probability of $\frac{1}{n+1}$ of actually picking L_1 . For the rest, we are left with a list of size n, $T/\{L_1\}$, and since L' is a valid permutation of $T/\{L_1\}$, we get by induction, that the probability of picking L' in the steps $i \in \{2, ..., n+1\}$ is $\frac{1}{n!}$.

By the the multiplication theorem of probability, we conclude that the probability of outputing L by the algorithm is $\frac{1}{n+1}\frac{1}{n!}=\frac{1}{(n+1)!}$. This completes our proof by induction.