Omnidirectional Camera | definition

 An omnidirectional camera is camera characterized by a very large field of view (ultimately, a spherical field of view)

>180° FOV

Catadioptric cameras (e.g. cameras and mirror systems)

Catadioptric

Polydioptric cameras (e.g. multiple overlapping cameras)

Image courtesy of T. Pajdla

Polydioptric

1

Omnidirectional Camera | catadioptric camera

- Vertical field of view larger than 100 degrees
- Horizontal field of view 360 degrees

Omnidirectional Camera | catadioptric camera

Mirror + perspective camera

Omnidirectional Camera | central catadioptric camera

- Central catadioprtic camera
 - Mirror is surface of revolution of a conic

single effective viewpoint

Omnidirectional C central catadioptric camera

- Why is a central camera preferable?
 - We can unwrap parts or all omnidirectional image into a perspective one
 - We can transform image points into spherical vectors
 - We can apply standard algorithms valid for perspective geometry

Omnidirectional Camera | projection model

What are the intrinsic parameters?

- Center of distortion
- Intrinsic parameters of the perspective camera
- Relative orientation and position between camera & mirror (for catadioptric cameras)
- Distortion model
 - Mathematical model of the mirror
 - Distortion of the fisheye lens
- All these parameters define the intrinsic parameters of an omnidirectional camera

Omnidirectional Camera | distortion model

• We can model the distortion through an n^{th} -order polynomial

$$f(u,v) = a_0 + a_1 \rho + ... + a_N \rho^N$$

• n = 4 describes accurately most catadioptric and fisheye cameras

Camera Calibration

- Goal: to determine the intrinsic parameters of the camera model
- The standard method consists of measuring the 3D positions of n control
 points on a calibration object and the 2D coordinates of their image projections
 - $n \ge 6$ non-coplanar control points on a three-dimensional calibration target
 - $n \ge 4$ non-collinear control points on a planar pattern

Unified Spherical Representation

Unified Spherical Representation

Unified Spherical Representation

 Points from a perspective or central omnidirectional cameras can always be represented on the unit sphere (always possible when the camera is calibrated)