

Chapter - 6

Thermodynamics

NCERT Back Exercises:

Ques 6.1: Choose the correct Answer. A thermodynamic state function is a quantity

- (i) Used to determine heat changes
- (ii) Whose value is independent of path
- (iii) Used to determine pressure volume work
- (iv) Whose value depends on temperature only.

Ans 6.1: A thermodynamic state function is a quantity whose value is independent of a path. Functions like p, V, T etc. depend only on the state of a system and not on the path. Hence, alternative (ii) is correct.

Ques 6.2: For the process to occur under adiabatic conditions, the correct condition is:

- (i) $\Delta T = 0$
- (ii) $\Delta \mathbf{p} = \mathbf{0}$
- (iii) q = 0
- (iv) w = 0

Ans 6.2: A system is said to be under adiabatic conditions if there is no exchange of heat between the system and its surroundings. Hence, under adiabatic conditions, q = 0. Therefore, alternative (iii) is correct.

Ques 6.3: The enthalpies of all elements in their standard states are:

- (i) Unity
- (ii) Zero
- (iii) < 0
- (iv) Different for each element

Ans 6.3: The enthalpy of all elements in their standard state is zero. Therefore, alternative (ii) is correct.

Ques 6.4: ΔU^{θ} of combustion of methane is – X kJ mol⁻¹. The value of ΔH^{θ} is

- (i) $=\Delta U^{\theta}$
- (ii) $> \Delta U^{\theta}$
- (iii) $<\Delta U^{\theta}$
- (iv) = 0

Ans 6.4: Since $\Delta H^{\theta} = \Delta U^{\theta} + \Delta ngRT$ and $\Delta U^{\theta} = -X kJ mol^{-1}$, $\Delta H^{\theta} = (-X) + \Delta ngRT$. $\Rightarrow \Delta H^{\theta} < \Delta U^{\theta}$ Therefore, alternative (iii) is correct.

Ques 6.5: The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are, -890.3 kJ mol $^{-1}$ -393.5 kJ mol $^{-1}$, and -285.8 kJ mol $^{-1}$ respectively. Enthalpy of formation of $CH_{4(g)}$ will be

(i)
$$-74.8 \text{ kJ mol}^{-1}$$

(ii)
$$-52.27 \text{ kJ mol}^{-1}$$

(iii)
$$+74.8 \text{ kJ mol}^{-1}$$

(iv)
$$+52.26 \text{ kJ mol}^{-1}$$
.

Ans 6.5: According to the Question,

(i)
$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}$$

 $\Delta H = -890.3 \ kJ \ mol^{-1}$

(ii)
$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

 $\Delta H = -393.5 \text{ kI mol}^{-1}$

(iii)
$$2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(g)}$$

 $\Delta H = -285.8 \text{ kI mol}^{-1}$

Thus, the desired equation is the one that represents the formation of $CH_{4(g)}$ *i. e.*,

$$C_{(s)} + 2H_{2(g)} \rightarrow CH_{4(g)}$$

$$\Delta_f H_{CH_4} = \Delta_e H_e + 2\Delta_e H_{H_2} - \Delta_e H_{CO_2}$$

=
$$[-393.5 + 2(-285.8) - (-890.3)] kJ mol^{-3}$$

$$= -74.8 \, kJ \, mol^{-1}$$

Enthalpy of formation of $CH_{4(g)} = -74.8 \text{ kJ mol}^{-1}$

Hence, alternative (i) is correct.

Ques 6.6: A reaction, $A+B\to C+D+q$ is found to have a positive entropy change. The reaction will be

- (i) Possible at high temperature
- (ii) Possible only at low temperature
- (iii) Not possible at any temperature
- (iv) Possible at any temperature

Ans 6.6: For a reaction to be spontaneous, ΔG should be negative.

$$\Delta G = \Delta H - T \Delta S$$

According to the Question, for the given reaction,

 $\Delta S = positive$

 ΔH = negative (since heat is evolved)

 $\Rightarrow \Delta G = \text{negative}$

Therefore, the reaction is spontaneous at any temperature.

Hence, alternative (iv) is correct.

Ques 6.7: In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

Ans 6.7: According to the first law of thermodynamics,

$$\Delta U = q + W \tag{i}$$

Where,

 ΔU = change in internal energy for a process

q = Heat

 $\hat{W} = Work$ Given,

q = +701 J (Since heat is absorbed)

W = -394 J (Since work is done by the system)

Substituting the values in expression (i), we get

$$\Delta U = 701 J + (-394 J)$$

$$\Delta U = 307 J$$

Hence, the change in internal energy for the given process is 307 J.

Ques 6.8: The reaction of cyanamide, $NH_2CN_{(g)}$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be -742.7 kJ mol $^{-1}$ at 298 K. Calculate enthalpy change for the reaction at 298 K.

$$NH_2CN_{(g)} + \frac{3}{2}O_{2(g)} \rightarrow N_{2(g)} + CO_{2(g)} + H_2O_{(g)}$$

Ans 6.8 : Enthalpy change for a reaction (ΔH) is given by the expression, $\Delta H = \Delta U + \Delta n g R T$

Where.

 ΔU = change in internal energy

 Δn_q = change in number of moles For the given reaction,

$$\Delta n_a = \sum ng \text{ (products)} - \sum n_a \text{ (reactants)}$$

$$= (2-2.5)$$
 moles

$$\Delta n_g = -0.5 \text{ moles}$$

And,

$$\Delta U = -742.7 \text{ kJ mol}^{-1}$$

$$T = 298 \text{ K}$$

$$R = 8.314 \times 10^{-3} \text{ kJ mol}^{-1} \text{ K}^{-1}$$

Substituting the values in the expression of ΔH :

$$\Delta H = (-742.7 \text{ kJ mol}^{-1}) + (-0.5 \text{ mol})(298 \text{ K})(8.314 \times 10^{-3} \text{ kJ mol}^{-1} \text{ K}^{-1})$$

$$= -742.7 - 1.2$$

$$\Delta H = -743.9 \text{ kJ mol}^{-1}$$

Ques 6.9: Calculate the number of kJ of heat necessary to raise the temperature of 60.0 g of aluminium from 35° C to 55° C. Molar heat capacity of Al is 24 J mol⁻¹ K⁻¹.

Ans 6.9: From the expression of heat (q),

$$q = m \cdot c \cdot \Delta T$$

Where,

c = molar heat capacity

m = mass of substance

 ΔT = change in temperature

Substituting the values in the expression of q:

$$q = \left(\frac{60}{27} \ mol\right) (24 \ J \ mol^{-1} \ K^{-1}) (20 \ K)$$

$$q = 1066.7 J$$

$$q = 1.07 \, kJ$$

Ques 6.10: Calculate the enthalpy change on freezing of 1.0 mol of water at 10.0° C to ice at -10.0° C.

- (i) $\Delta_{fus}H = 6.03 \text{ kJ mol}^{-1} \text{ at } 0^{\circ}\text{C}.$
- (ii) $Cp[H_2O(l)] = 75.3 \text{ J mol}^{-1} \text{ K}^{-1}$
- (iii) $Cp[H_2O(s)] = 36.8 \text{ J mol}^{-1} \text{ K}^{-1}$

Ans 6.10: Total enthalpy change involved in the transformation is the sum of the following changes:

- (i) Energy change involved in the transformation of 1 mol of water at 10° C to 1 mol of water at 0° C.
- (ii) Energy change involved in the transformation of 1 mol of water at 0° to 1 mol of ice at 0° C.
- (iii) Energy change involved in the transformation of 1 mol of ice at 0°C to 1 mol of ice at 10°C.

$$Total \ \Delta H = C_P[H_2OCl]\Delta T + \Delta H_{freezing} + C_p[H_2O_{(s)}]\Delta T$$

$$= (75.3\,J\,\,mol^{-1}\,K^{-1}\,)(0\,-\,10)K + (-\,6.03\times10^3\,J\,\,mol^{-1}\,) + (36.8\,J\,\,mol^{-1}\,K^{-1})(-\,10\,-\,0)K$$

$$= -753 J \ mol^{-1} - 6030 J \ mol^{-1} - 368 J \ mol^{-1}$$

$$= -7151 J \ mol^{-1}$$

$$= -7.151 \, kJ \, mol^{-1}$$

Hence, the enthalpy change involved in the transformation is –7.151 kJ mol⁻¹.

Ques 6.11: Enthalpy of combustion of carbon to CO_2 is -393.5 kJ mol⁻¹. Calculate the heat released upon formation of 35.2 g of CO_2 from carbon and dioxygen gas.

Ans 6.11: Formation of CO2 from carbon and dioxygen gas can be represented as:

$$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$$

$$\Delta_f H = -393.5 \, kJ \, mol^{-1}$$

Heat released on formation of 44 g $CO_2 = -393.5 \ kJ \ mol^{-1}$

Heat released on formation of 35.2 g CO₂ = $\frac{-393.5 \, kJ \, mol^{-1}}{44 \, g} \times 35.2 \, g$ = $-314.8 \, kJ \, mol^{-1}$

Ques 6.12: Enthalpies of formation of CO(g), CO2(g), N2O(g) and N2O4(g) are -110 kJ mol $^{-1}$, -393 kJ mol $^{-1}$, 81 kJ mol $^{-1}$ and 9.7 kJ mol $^{-1}$ respectively. Find the value of ΔrH for the reaction:

 $N2O4(g) + 3CO(g) \longrightarrow N2O(g) + 3CO2(g)$

Ans 6.12: ΔrH for a reaction is defined as the difference between ΔfH value of products and ΔfH value of reactants.

$$\Delta_r H = \sum \Delta_f H(products) - \sum \Delta_f H(reactants)$$

For the given reaction,

$$N_2 O_{4(g)} + 3CO_{(g)} \rightarrow N_2 O_{(g)} + 3CO_{2(g)}$$

$$\Delta_r H = \left[\left\{ \Delta_f H(N_2 O) + 3 \Delta_f H(C O_2) \right\} - \left\{ \Delta_f H(N_2 O_4) + 3 \Delta_f H(C O) \right\} \right]$$

Substituting the values of $\Delta_f H$ for NO₂, CO₂, $N_2 O_4$, and CO from the Question, we get:

$$\Delta_r H = \left[\{ 81 \ kJ \ mol^{-1} + 3(-393) \ kJ \ mol^{-1} \} \ - \{ 9.7 \ kJ \ mol^{-1} + 3(-110) \ kJ \ mol^{-1} \} \right]$$

$$\Delta_r H = -777.7 \ kJ \ mol^{-1}$$

Hence, the value of $\Delta_r H$ for the reaction is =-777.7 kJ mol^{-1}

Ques 6.13: Given, $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$; $\Delta_r H^{\theta} = -92.4 \ kJ \ mol^{-1}$ What is the standard enthalpy of formation of NH₃ gas?

Ans 6.13: Standard enthalpy of formation of a compound is the change in enthalpy that takes place during the formation of 1 mole of a substance in its standard form from its constituent elements in their standard state.

Re-writing the given equation for 1 mole of $NH_{3(q)}$,

$$\frac{1}{2}N_{2(g)} + \frac{3}{2}H_{2(g)} \to NH_{3(g)}$$

Standard enthalpy of formation of NH

$$= \frac{1}{2} \Delta_r H^{\theta}$$

$$= \frac{1}{2} (-92.4 \text{ kJ mol}^{-1})$$

$$= -46.2 \ kJ \ mol^{-1}$$

Ques 6.14: Calculate the standard enthalpy of formation of CH₃OH_(I) from the following data:

(i)
$$CH_3OH_{(I)} + \frac{3}{2}O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(g)}; \Delta_rH^{\theta} = -726 \text{ kJ mol}^{-1}$$

(ii)
$$C_{(g)} + O_{2(g)} \rightarrow CO_{2(g)}; \Delta_c H^{\theta} = -393 \text{ kJ mol}^{-1}$$

(iii)
$$H_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow H_2O_{(I)}; \Delta_f H^{\theta} = -286 \text{ kJ mol}^{-1}$$

Ans 6.14: The reaction that takes place during the formation of $CH_3OH_{(I)}$ can be written as:

$$C_{(s)} + 2H_2O_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CH_3OH_{(I)}$$

The reaction (1) can be obtained from the given reactions by following the algebraic calculations as:

Equation (ii) $+2 \times$ equation (iii) - equation (i)

$$\Delta_f H^\theta[CH_3OH_{(I)}] = \Delta_c H^\theta + 2\Delta_f H^\theta[H_2O_{(I)}] - \Delta_r H^\theta$$

$$= (-393 \ kJ \ mol^{-1}) + 2(-286 \ kJ \ mol^{-1}) - (-726 \ kJ \ mol^{-1})$$

$$= (-393 \text{ kJ mol}^{-1}) + 2(-286 \text{ kJ mol}^{-1}) - (-726 \text{ kJ mol}^{-1})$$

$$= (-393 - 572 + 726) \ kJ \ mol^{-1}$$

$$\Delta_f H^{\theta} \left[CH_3 OH_{(I)} \right] = -239 \; kJmol^{-1}$$

Ques 6.15: Calculate the enthalpy change for the process $CCl_{4(g)} \to C_{(g)} + 4Cl_{(g)}$ and calculate bond enthalpy of C–Cl in $CCl_{4(g)}$.

- (i) $\Delta_{vap}H^{\theta}(CCl_{4(q)}) = 30.5 \ kJ \ mol^{-1}$.
- (ii) $\Delta_f H^{\theta}(CCl_{4(g)}) = -135.5 \ J \ mol^{-1}$.
- (iii) $\Delta_a H^{\theta}$ (C) = 715.0 kJ mol⁻¹, where $\Delta_a H^{\theta}$ is enthalpy of atomisation
- (iv) $\Delta_a H^{\theta}$ (Cl₂) = 242 kJ mol⁻¹

Ans 6.15: The chemical equations implying to the given values of enthalpies are:

- (i) $CCl_{4(l)} \rightarrow CCl_{4(g)}$ $\Delta_{vap}H^{\theta} = 30.5 \text{ kJ mol}^{-1}$
- (ii) $C_{(s)} \rightarrow C_{(g)}$ $\Delta_a H^\theta = 715.0 \text{ kJ mol}^{-1}$
- (iii) $Cl_{2(g)} \rightarrow 2Cl_{(g)}$ $\Delta_a H^\theta = 242 \text{ kJ mol}^{-1}$
- (iv) $C_{(g)} + 4Cl_{(g)} \rightarrow CCl_{4(g)} \quad \Delta_f H^{\theta} = -135.5 \text{ kJ mol}^{-1}$

Enthalpy change for the given process $CCl_{4(g)} \rightarrow C_{(g)} + 4Cl_{(g)}$, can be calculated using the following algebraic calculations as:

Equation (ii) $+2 \times$ Equation (iii) - Equation (i) - Equation (iv)

$$\Delta H = \Delta_a H^{\theta} (C) + 2\Delta_a H^{\theta} (Cl_2) - \Delta_{vap} H^{\theta} - \Delta_f H^{\theta}$$

$$= (715.0 \ kJ \ mol^{-1}) + 2(242 \ kJ \ mol^{-1}) - (30.5 \ kJ \ mol^{-1}) - (-135.5 \ kJ \ mol^{-1})$$

$$\Delta H = 1304 \; kJ \; mol^{-1}$$

Bond enthalpy of C–Cl bond in $\mathcal{CCl}_{4(g)}$

$$=\frac{1304}{4} \, kJ \, mol^{-1}$$

$$=326\;kJ\;mol^{-1}$$

Ques 6.16: For an isolated system, $\Delta U = 0$, what will be ΔS ?

Ans 6.16 : ΔS will be positive i.e., greater than zero Since $\Delta U = 0$, ΔS will be positive and the reaction will be spontaneous.

Ques 6.17: For the reaction at 298 K,

$$2A + B \rightarrow C$$

 $\Delta H = 400 \ kJ \ mol^{-1} \ and \ \Delta S = 0.2 \ kJ \ K^{-1} mol^{-1}$

At what temperature will the reaction become spontaneous considering ΔH and ΔS to be constant over the temperature range?

Ans 6.17: From the expression,

$$\Delta G = \Delta H - T \Delta S$$

Assuming the reaction at equilibrium, ΔT for the reaction would be:

$$T = (\Delta H - \Delta G) \frac{1}{\Delta S}$$

$$=\frac{\Delta H}{\Delta S}$$

$$=\frac{400 \, kJ \, mol^{-1}}{0.2 \, kJ \, K^{-1} mol^{-1}}$$

 $(\Delta G = 0 \text{ at equilibrium})$

T = 2000 K

For the reaction to be spontaneous, ΔG must be negative. Hence, for the given reaction to be spontaneous, T should be greater than 2000 K.

Ques 6.18: For the reaction, $2Cl_{(g)} \rightarrow Cl_{2(g)}$, what are the signs of ΔH and ΔS ?

Ans 6.18: ΔH and ΔS are negative.

The given reaction represents the formation of chlorine molecule from chlorine atoms. Here, bond formation is taking place. Therefore, energy is being released. Hence, ΔH is negative.

Also, two moles of atoms have more randomness than one mole of a molecule. Since spontaneity is decreased, ΔS is negative for the given reaction.

 $\Delta U^{\theta} = -10.5 \text{ kJ} \text{ and } \Delta S^{\theta} = -44.1 \text{ JK}^{-1}.$

Calculate ΔG^{θ} for the reaction, and predict whether the reaction may occur spontaneously.

Ans 6.19: For the given reaction,

$$2 A_{(g)} + B_{(g)} \rightarrow 2D_{(g)}$$

$$\Delta n_a = 2 - (3) = -1 \text{ mole}$$

Substituting the value of ΔU^{θ} in the expression of ΔH :

$$\Delta H^{\theta} = \Delta U^{\theta} + \Delta n_g RT$$

=
$$(-10.5 \text{ kJ}) + (-1)(8.314 \times 10^{-3} \text{ kJ K}^{-1} \text{ mol}^{-1})(298 \text{ K})$$

$$=$$
 $-$ 10.5 kJ $-$ 2.48 kJ

$$\Delta H^{\theta} = -12.98 \ kJ$$

Substituting the values of ΔH^{θ} and ΔS^{θ} in the expression of ΔG^{θ} :

$$\Delta G^{\theta} = \Delta H^{\theta} - T \Delta S^{\theta}$$

$$= -\ 10.5\ kJ - (298\ K)\ (-\ 44.1\ J\ K^{-1}\)$$

$$= -12.98 \ kJ + 13.14 \ kJ$$

$$\Delta G^{\theta} = + \ 0.16 \ kJ$$

Since ΔG^{θ} for the reaction is positive, the reaction will not occur spontaneously.

Ques 6.20: The equilibrium constant for a reaction is 10. What will be the value of ΔG^{θ} ? R = 8.314 JK⁻¹ mol⁻¹, T = 300 K.

Ans 6.20:

From the expression,

$$\Delta G^{\theta} = -2.303 RT \log K_{eq}$$

 ΔG^{θ} for the reaction,

$$= (2.303)(8.314\,JK^{-1}\,mol^{-1})(300\,K)\,log10$$

$$= -5744.14 \, Jmol^{-1}$$

 $= -5.744 \text{ kJ } mol^{-1}$

Ques 6.21: Comment on the thermodynamic stability of $NO_{(g)}$, given

$$\frac{1}{2}N_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{(g)}$$
; $\Delta_r H^{\theta} = 90 \text{ kJ mol}^{-1}$

$$NO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{2(g)}; \ \Delta_r H^{\theta} = -74 \ kJ \ mol^{-1}$$

Ans 6.21 : The positive value of ΔrH indicates that heat is absorbed during the formation of NO_(g). This means that NO_(g) has higher energy than the reactants (N₂ and O₂). Hence, NO_(g) is unstable.

The negative value of ΔrH indicates that heat is evolved during the formation of $NO_{2(g)}$ from NO(g) and O2(g). The product, NO2(g) is stabilized with minimum energy. Hence, unstable $NO_{(g)}$ changes to unstable $NO_{2(g)}$.

Ques 6.22: Calculate the entropy change in surroundings when 1.00 mol of $H_2O_{(I)}$ is formed under standard conditions. $\Delta_f H^\theta = -286 \text{ kJ } mol^{-1}$.

Ans 6.22: It is given that 286 kJ mol^{-1} of heat is evolved on the formation of 1 mol of H₂O_(I). Thus, an equal amount of heat will be absorbed by the surroundings. Q_{surr} = +286 kJ mol^{-1} Entropy change (ΔS_{surr}) for the surroundings = $\frac{q_{surr}}{7}$

$$= \frac{286 \text{ kJ } mol^{-1}}{298 \text{ K}}$$

$$\Delta S_{surr} = 959.73 \, J \, mol^{-1} \, K^{-1}$$