Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video

Shashanka Venkataramanan, Mamshad Nayeem Rizve, João Carreira, Yuki M. Asano, Yannis Avrithis ICLR[2024]

Zakaria Akil & Adnane El Bouhali

Deep Learning for Computer Vision

31/01/2025

Contents

- Introduction
- Paper Contributions
 - Walking Tours Dataset
 - Novel SSL Method : DoRA
- Seriments & Results
- 4 Conclusion

Introduction

Self Supervised learning (SSL)

SSL is used to pretrain encoders to learn meaningful representations of unlabeled data. Those learned representations can be subsequently used as input to various downstream tasks.

Figure: SSL principle and some methods

Problem statement

Problem statement

Self-supervised learning (SSL) has scaled to billions of images, but are we using the data efficiently?

Problem statement

Problem statement

Self-supervised learning (SSL) has scaled to billions of images, but are we using the data efficiently?

⇒ Not really ...

Problem statement

Current SSL methods rely on large datasets like **ImageNet**.

Some disadvantages:

- Inefficient use of data
- High computational cost
- Domain mismatch
- Poor generalization

Paper Contributions

Walking Tours (WT) Dataset

WT: 10 continuous videos from cities such as Amsterdam, Bangkok, and Venice.

- High resolution
- $1 \sim 3h \times 10$
- Egocentric
- No special effects or transformations
- Natural transitions and no cuts

Figure: Some WT frames

Walking Tours (WT) Dataset

Dataset	Domain	Ego	Pre	Bal	Annot	Avg. Dur (sec)	Dur (hr)	#Videos	Frame resolution
Diverse Pretraining									
Kinetics-400 [?] WebVid-2M [?] HowTo100M [?]	Actions Open Instructions	X X	\ \ \ \ \	У Х Х	Class Weak Weak	10.2 18 4	851 13k 135k	400 _ _	340 × 255 320 × 240 –
Egocentric									
Epic-Kitchens [?] Ego-4D [?] Meccano [?] Assembly-101 [?]	Cooking Daily Industry Assembly	111	X X X	X X X	Loc. Loc. Loc. Loc.	510 1446 1247 426	100 120 849 167	37 931 20 362	1920 × 1080 1920 × 1080 1920 × 1080 1920 × 1080
ImageNet-aligned									
R2V2 [?] VideoNet [?]	ImageNet ImageNet	X X	/	1	Class Class	- 10	- 3055	- -	467 × 280
Walking Tours (ours)	Urban	1	√	Х	None	5880	23	10	3840 × 2160

Table: Walking Tours existing video datasets. Ego: egocentric; Pre: used for pretraining; Bal: class balance control; Annot: annotation type. Weak: associated data per clip (text or other modality); Class: class label per frame or clip; Loc: localization per frame (bounding box, segmentation, mask 3D pose). Avg. Dur: average duration per video; Dur: total duration.

DoRA

DoRA (**D**iscover and **RA**ck objects): A self-supervised pretraining method designed for continuous videos.

Figure: DoRA Architecture

Figure: High level architecture

Figure: High level architecture

Figure: High level architecture

Figure: High level architecture

Figure: High level architecture

DoRA - SK refinement

- ullet T_t' : Cross attention maps with Sinkhorn-Knopp refinement
- T_t : without SK refinement

Figure: Reshaped and resampled cross-attention maps in code color (R, G and B)

Experiments & Results

Effect of Pretraining video dataset

Effect of the Number of Tracked Objects

Segmentation and Object Detection Performance

Video Object Segmentation and Object Tracking Performance

Image Classification and Object Discovery Performance

Conclusion

Conclusion

- New Dataset: 10 long, high-resolution, uncut walking tour videos.
- Strong Representations: Matches ImageNet-level performance on downstream tasks.
- DORA (New SSL Method): Adapts DINO for video with multi-object tracking.
- Efficient Learning: Achieves results without large-scale video datasets.
- Emergent Attention: Transformer learns to track objects through occlusions.
- Impact: Advances self-supervised learning from video for real-world applications.

References

[1] [Reviewed Paper] Shashanka Venkataramanan, Mamshad Nayeem Rizve, João Carreira, Yuki M. Asano, Yannis Avrithis (2024), "Is ImageNet worth 1 video? Learning strong image encoders from 1 long unlabelled video", https://arxiv.org/abs/2310.08584

Thank you!

Appendix

Contrastive Learning and Contrastive Loss

Contrastive Learning:

- Goal: Learn representations by contrasting positive pairs (similar samples) against negative pairs (dissimilar samples).
- Contrastive Loss (e.g., SimCLR):

$$\mathcal{L}_{\text{contrastive}} = -\log \frac{\exp(\text{sim}(z_i, z_j) / \tau)}{\sum_{k=1}^{N} \mathbb{1}_{[k \neq i]} \exp(\text{sim}(z_i, z_k) / \tau)}$$

where z_i, z_j are embeddings of positive pairs, sim is a similarity function (e.g., cosine similarity), and τ is a temperature parameter.

Self-Distillation and Distillation Loss

Self-Distillation:

- Goal: A student model learns from a teacher model (often an exponential moving average of the student).
- Distillation Loss (e.g., DINO):

$$\mathcal{L}_{\mathsf{distill}} = -\sum_{i} P_{\mathsf{teacher}}(z_i) \log P_{\mathsf{student}}(z_i)$$

where P_{teacher} and P_{student} are the output distributions of the teacher and student models, respectively.

DoRA (Discover and TRack Objects):

• Step 1: Patch Embedding:

$$Z_t = g_{\theta}(X_t) \in \mathbb{R}^{(n+1) \times d}$$

where X_t is the input frame, g_θ is the transformer encoder, and Z_t contains patch embeddings and a [CLS] token.

• Step 2: Multi-Head Attention:

$$A^i = \operatorname{softmax}\left(\frac{Q^i(K^i)^\top}{\sqrt{d}}\right)$$

where Q^i, K^i are query and key embeddings for head i, and A^i is the attention matrix.

• Step 3: Object Prototypes:

$$P = A^{\mathcal{I}} \tilde{Q} \in \mathbb{R}^{k \times d}$$

where $A^{\mathcal{I}}$ is a subset of attention heads, and P represents k object prototypes.

• Step 4: Sinkhorn-Knopp (SK) for Object-Patch Correspondence:

$$M^* = \mathsf{SK}\left(\exp\left(\frac{P\tilde{Z}^\top}{\epsilon}\right)\right)$$

where M^{\ast} is the optimal transport plan, and SK ensures distinct object correspondences.

• Step 5: Refined Object Prototypes:

$$P' = M^* \tilde{Z} \in \mathbb{R}^{k \times d}$$

where P^{\prime} are refined object prototypes after SK.

• Step 6: Refined Cross-Attention:

$$T_t' = \operatorname{softmax}\left(\frac{P'\tilde{K}_t^{\top}}{\sqrt{d}}\right)$$

where T'_t tracks objects across frames using refined prototypes.

• Step 7: Multi-Object Masking:

$$X^{o_i} = X \odot T^i$$

where X^{o_i} is the masked frame for object i, and \odot is the Hadamard product. \circ

• Step 8: Distillation Loss:

$$\mathcal{L}_t^0 = \sum_{u,v \in V} \mathbb{1}_{u!=v} \sum_{i=1}^k f_{\theta'}(X_t^u)^{\texttt{[CLS]}} \log(f_{\theta}(X_t^{v,o_i})^{\texttt{[CLS]}})$$

where $f_{\theta'}$ and f_{θ} are the teacher and student models, respectively.