

FCC PART 15.231

TEST REPORT

For

Micron Electronics LLC.

1001 Yamato Road, Suite 400, Boca Raton, Florida 33431 United States

FCC ID: ZKQ-MHV

Report Type:		Product Type:		
Original Report		Tracker		
Test Engineer:	Matt Yao	New Yor		
	RSHA190517003			
-				
Report Date:	e: 2019-07-03 Oscar Ye Oscar Ye			
Reviewed By:	RF Leader	020		
Prepared By:		34268		

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLE	5
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.203 - ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	
ANTENNA CONNECTED CONSTRUCTION	10
FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS	11
APPLICABLE STANDARD	
EUT SETUP	11
EMI TEST RECEIVER SETUP.	
Test Procedure	
CORRECTED FACTOR & OVER LIMIT CALCULATION	12
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205, §15.209, §15.231 (E) - RADIATED EMISSIONS	
APPLICABLE STANDARD	15
EUT Setup	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARYTEST DATA	
FCC §15.231(C) - 20DB EMISSION BANDWIDTH TESTING	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.231(E) - DEACTIVATION TESTING	
APPLICABLE STANDARD	
EUT SETUPTFST DATA	25
LEST DATA	/5

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	Micron Electronics LLC.	
Tested Model	MH 1000V	
Product Type	Tracker	
Dimension	78.7mm(L)*44.6mm(W)*21.8mm(H)	
Power Supply DC 3.8V from Battery		

Report No.: RSHA190517003-00C

Adapter information:

Model: JŤ-H050100 Input: AC 100-240V, 50/60Hz

Output: DC 5V, 1A

Objective

This test report is prepared on behalf of Micron Electronics LLC. All the test measurements were performed according to the measurement procedure described in ANSI C63.10 - 2013.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.207, 15.209, 15.35(c) and 15.231 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JAB and Part 15.247 DTS submittal with FCC ID: ZKQ-MHV.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10 - 2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Kunshan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

FCC Part 15.231 Page 3 of 28

^{*}All measurement and test data in this report was gathered from production sample serial number: 20190517003. (Assigned by the BACL. The EUT supplied by the applicant was received on 2019-05-17)

Measurement Uncertainty

	Item	Uncertainty	
AC Power Lines Conducted Emissions		3.19 dB	
RF conducte	ed test with spectrum	0.9dB	
	30MHz~1GHz	6.11dB	
Radiated emission	1GHz~6GHz	4.45dB	
	6GHz ~18GHz	5.23dB	
Оссир	ied Bandwidth	0.5kHz	
Temperature		1.0℃	
]	Humidity	6%	

Report No.: RSHA190517003-00C

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01) and the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.231 Page 4 of 28

SYSTEM TEST CONFIGURATION

Justification

Channel List:

Channel	Frequency (MHz)
1	433.92

Report No.: RSHA190517003-00C

EUT Exercise Software

RF test software: Secure CRT

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	Socket	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
Power cable	1.0	Charging Base	Adapter

FCC Part 15.231 Page 5 of 28

Block Diagram of Test Setup

For Conducted Emissions:

FCC Part 15.231 Page 6 of 28

For Radiated Emissions (Below 1GHz):

For Radiated Emissions (Above 1GHz):

FCC Part 15.231 Page 7 of 28

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
§15.203	Antenna Requirement	Compliant	
§15.207(a)	Conducted Emissions	Compliant	
§15.205, §15.209, §15.231(e)	Radiated Emissions	Compliant	
§15.231 (c)	§15.231 (c) 20dB Emission Bandwidth		
§15.231 (e)	§15.231 (e) Deactivation		

Report No.: RSHA190517003-00C

FCC Part 15.231 Page 8 of 28

TEST EQUIPMENT LIST

Manufacturer Description		Model	Serial Number	Calibration Date	Calibration Due Date			
Radiated Emission Test(Chamber 1#)								
Rohde & Schwarz	EMI Test Receiver	ESCI	100195	2018-11-30	2019-11-29			
Rohde & Schwarz	Signal Analyzer	FSV40	101116	2018-07-23	2019-07-22			
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25			
Sonoma Instrunent	Pre-amplifier	310N	171205	2018-08-14	2019-08-13			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-8	008	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-9	009	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-10	010	2018-08-15	2019-08-14			
	Radiated E	mission Test(Cha	mber 2#)					
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2018-08-27	2019-08-26			
ETS-LINDGREN	Horn Antenna	3115	9207-3900	2017-07-15	2020-07-14			
A.H.Systems, inc	Amplifier	2641-1	491	2019-02-20	2020-02-19			
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/			
MICRO-COAX	Coaxial Cable	Cable-6	006	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-11	011	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-12	012	2018-08-15	2019-08-14			
MICRO-COAX	Coaxial Cable	Cable-13	013	2018-08-15	2019-08-14			
	Cond	lucted Emission T	est					
ROHDE&SCHWARZ EMI Test receiver		ESR	1316.3003K03- 102454-Qd	2019-06-25	2020-06-24			
Audix	Test Software	e3	V9					
Rohde & Schwarz	LISN	ENV216	3560655016	2018-11-30	2019-11-29			
Narda	Attenuator/6dB	10690812-2	26850-6	2019-01-10	2020-01-09			
MICRO-COAX	Coaxial Cable	Cable-15	015	2018-08-15	2019-08-14			

Report No.: RSHA190517003-00C

FCC Part 15.231 Page 9 of 28

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No.: RSHA190517003-00C

Antenna Connected Construction

The EUT has an FPC antenna for 433.92MHz which was permanently attached and the antenna gain is 0.50 dBi; fulfill the requirement of this section. Please refer to EUT photos.

Result: Compliant.

FCC Part 15.231 Page 10 of 28

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

FCC Part 15.231 Page 11 of 28

Test Procedure

ANSI C63.10-2013 clause 6.2

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Over Limit Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSHA190517003-00C

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	20.2 ℃		
Relative Humidity:	51 %		
ATM Pressure:	101.3 kPa		

The testing was performed by Matt Yao on 2019-06-29.

Test Result: Compliant.

EUT operation mode: Transmitting

FCC Part 15.231 Page 12 of 28

AC 120V/60 Hz, Line

	Read Freq Level Facto		Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.163	15.30	19.83	35.13	55.30	-20.17	Average
2	0.163	29.00	19.83	48.83	65.30	-16.47	QP
3	0.197	11.50	19.82	31.32	53.76	-22.44	Average
4	0.197	24.80	19.82	44.62	63.76	-19.14	QP
5	0.449	9.50	19.75	29.25	46.89	-17.64	Average
6	0.449	17.60	19.75	37.35	56.89	-19.54	QP
7	0.611	14.30	19.75	34.05	46.00	-11.95	Average
8	0.611	25.50	19.75	45.25	56.00	-10.75	QP
9	0.909	7.60	19.74	27.34	46.00	-18.66	Average
10	0.909	16.50	19.74	36.24	56.00	-19.76	QP
11	1.654	3.90	19.84	23.74	46.00	-22.26	Average
12	1.654	12.70	19.84	32.54	56.00	-23.46	QP

FCC Part 15.231 Page 13 of 28

AC 120V/60 Hz, Neutral

	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	
1	0.161	14.50	19.83	34.33	55.43	-21.10	Average
2	0.161	26.90	19.83	46.73	65.43	-18.70	QP
3	0.440	9.60	19.75	29.35	47.07	-17.72	Average
4	0.440	18.90	19.75	38.65	57.07	-18.42	QP
5	0.573	16.80	19.75	36.55	46.00	-9.45	Average
6	0.573	29.40	19.75	49.15	56.00	-6.85	QP
7	1.117	9.01	19.81	28.82	46.00	-17.18	Average
8	1.117	22.91	19.81	42.72	56.00	-13.28	QP
9	1.829	6.99	19.84	26.83	46.00	-19.17	Average
10	1.829	16.99	19.84	36.83	56.00	-19.17	QP
11	2.594	4.19	19.48	23.67	46.00	-22.33	Average
12	2.594	14.09	19.48	33.57	56.00	-22.43	QP

Note:

FCC Part 15.231 Page 14 of 28

¹⁾ Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

²⁾ Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC §15.205, §15.209, §15.231 (e) - RADIATED EMISSIONS

Applicable Standard

FCC §15.205, §15.209,§15.231 (e)

According to §15.231 (e), the field strength of emissions from intentional radiators operated under this section shall not exceed the following

Report No.: RSHA190517003-00C

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 *	50 to 150 *
174-260	1,500	150
260-470	1,500 to 5,000 *	150 to 500*
Above 470	5,000	500

^{*}Linear interpolations.

The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

EUT Setup

Below 1GHz:

FCC Part 15.231 Page 15 of 28

Above 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10 - 2013. The specification used was the FCC 15 § 15.209, 15.205 and 15.231.

EMI Test Receiver Setup

The system was investigated from 30 MHz to 5 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000MHz	100 kHz	300 kHz	/	QP
1000MHz -5000MHz	1MHz	3MHz	/	PK

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude ($dB\mu V/m$) = Meter Reading ($dB\mu V$) + Antenna Factor (dB/m) + Cable Loss (dB) - Amplifier Gain (dB)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin (dB) = Limit (dB μ V/m) – Corrected Amplitude (dB μ V/m)

FCC Part 15.231 Page 16 of 28

Test Results Summary

According to the data in the following table, the EUT complied with the FCC §15.205, §15.209, §15.231 (e).

Report No.: RSHA190517003-00C

Test Data

Environmental Conditions

Temperature:	24.5℃	
Relative Humidity:	51%	
ATM Pressure:	101.2kPa	

The testing was performed by Matt Yao on 2019-06-24.

Test mode: Transmitting

FCC Part 15.231 Page 17 of 28

30MHz-1GHz (Pre-scan in the X,Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded.)

T.	Corrected	Rx Antenna		T b.l.	Corrected	T,	
Frequency (MHz)	Amplitude MaxPeak (dBµV /m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
35.94125	37.99	100	V	156	-8.0	52.86	14.87
129.78875	39.52	100	V	217	-11.6	43.50	3.98
240.00500	37.53	150	Н	152	-12.1	46.00	8.47
408.05750	38.31	100	Н	159	-8.0	46.00	7.69
433.92000	78.26	100	Н	86	-7.7	92.86	14.60
867.84000	56.90	150	V	280	-0.6	72.86	15.96

Field Strength of Average Emission

Frequency	Peak Measurement@3m	ement@3m Height Polar Corrected Amnitude		FCC Part 15.231(e)/205/209			
(MHz)	(dBμV/m)	(cm)	(H/V)	Factor (dB)	(dBµV/m)	Limit (dBµV/m)	Margin (dB)
433.92000	78.26	100	Н	-6.15	72.11	72.86	0.75
867.84000	56.90	150	V	-6.15	50.75	52.86	2.11

FCC Part 15.231 Page 18 of 28

1GHz-5 GHz (Pre-scan in the X,Y and Z axes of orientation, the worst case **X-axis of orientation** was recorded.)

Б	Corrected	Rx Antenna		T(.)	Corrected	T,	
Frequency (MHz)	Amplitude MaxPeak (dBµV /m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	Limit (dBµV/m)	Margin (dB)
1301.76000	31.22	100	V	343	-11	74.00	42.78
1735.68000	33.23	150	Н	0	-9.1	74.00	40.77
2169.60000	33.85	200	Н	171	-7.7	74.00	40.15
2603.52000	35.12	100	Н	4	-6.3	74.00	38.88
3037.44000	37.65	100	V	0	-4.2	74.00	36.35
3471.36000	38.05	200	Н	86	-3.5	74.00	35.95
3905.28000	40.10	250	V	10	-1.9	74.00	33.90
4339.20000	41.30	150	Н	256	-1.1	74.00	32.70

FCC Part 15.231 Page 19 of 28

Frequency	Peak	Height	Polar	Duty Cycle Corrected	Corrected	FCC Part 15.231(e)/205/209	
(MHz)	Measurement@3m (dBμV/m)	(cm)	(H/V)	Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1301.76000	31.22	100	V	-6.15	25.07	54.00	22.78
1735.68000	33.23	150	Н	-6.15	27.08	54.00	20.77
2169.60000	33.85	200	Н	-6.15	27.70	54.00	20.15
2603.52000	35.12	100	Н	-6.15	28.97	54.00	18.88
3037.44000	37.65	100	V	-6.15	31.50	54.00	16.35
3471.36000	38.05	200	Н	-6.15	31.90	54.00	15.95
3905.28000	40.1	250	V	-6.15	33.95	54.00	13.90
4339.20000	41.3	150	Н	-6.15	35.15	54.00	12.70

Note 1:

Corrected Factor (dB/m) = Antenna factor (RX) (dB/m) + Cable Loss (dB) - Amplifier Factor (dB) Margin (dB) = Limit (dB μ V/m) - Corrected Amplitude (dB μ V /m)

Note 2:

Calculate average value based on duty cycle corrected factor:

 $T_p=100$ ms

 T_{on} = Burst*N = 49.275ms

Duty Cycle Corrected Factor = $20*log(T_{on}/T_p) = 20*log(49.275ms/100ms) = -6.15dB$

Average value = Peak value + Duty Cycle Corrected Factor

FCC Part 15.231 Page 20 of 28

Duty Cycle

Date: 24.JUN.2019 06:20:17

Duty Cycle

Date: 24.JUN.2019 06:31:28

FCC Part 15.231 Page 21 of 28

Burst (Ton=49.275ms, N=1)

Date: 24.JUN.2019 06:44:14

FCC Part 15.231 Page 22 of 28

FCC §15.231(c) - 20dB EMISSION BANDWIDTH TESTING

Applicable Standard

Per 15.231(c), The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Report No.: RSHA190517003-00C

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	24.3 ℃	
Relative Humidity:	51 %	
ATM Pressure:	101.2kPa	

The testing was performed by Matt Yao on 2019-06-24.

Test Mode: Transmitting

FCC Part 15.231 Page 23 of 28

Channel Frequency	20dB Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
433.92	25.62	1084.8	Pass

Note: Limit = 0.25% * Center Frequency = 0.25% * 433.92 MHz = 1084.8 kHz

20 dB Emission Bandwidth

Date: 24.JUN.2019 06:11:57

FCC Part 15.231 Page 24 of 28

Applicable Standard

Per 15.231(e), devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

Report No.: RSHA190517003-00C

EUT Setup

The deactivation test was performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10- 2013. The specification used was the FCC 15.231(e) limits.

Test Data

Environmental Conditions

Temperature:	24.3 ℃	
Relative Humidity:	53 %	
ATM Pressure:	101.2 kPa	

The testing was performed by Matt Yao on 2019-06-24.

Test mode: Transmitting

FCC Part 15.231 Page 25 of 28

Deactivation

Report No.: RSHA190517003-00C

duration <i>time</i> (s)	Limit (s)	Result
0.0496	< 1	Pass

Silent period

Silent period (s)	Limit (s)	Result
14.6377	>10	Pass

Note: The silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

The duration time is 0.0496s, 0.0496*30 = 1.488s.

FCC Part 15.231 Page 26 of 28

Transmission period

Date: 24.JUN.2019 06:20:17

Silent period

Date: 24.JUN.2019 06:31:28

FCC Part 15.231 Page 27 of 28

Duration time

Date: 24.JUN.2019 06:39:52

***** END OF REPORT *****

FCC Part 15.231 Page 28 of 28