

FILTERING (F. PROCESSING) OIGHALINAGE PROCESSING)

Faculty of Information Technology
Ton Duc Thang University

August 2023

Image transformations

As with any function, we can apply operators to an image

We'll talk about a special kind of operator, convolution (linear filtering)

Question: Noise reduction

Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

What's the next best thing?

Image filtering

Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3
4	5	1
1	1	7

Local image data

Modified image data

Source: L. Zhang

Image filtering

Filtering:

Form a new image whose pixels are a combination original pixel values

Goals:

- -Extract useful information from the images
 - Features (edges, corners, blobs...)
- Modify or enhance image properties:
 - super-resolution; in-painting; de-noising

Fei-Fei Li Lecture 4- 10 6-Oct-16

De-noising

Super-resolution

In-painting

Fei-Fei Li

Lecture 4- 11

6-Oct-16

Linear filtering

- One simple version: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Source: L. Zhang

Correlation of Discrete Signals

Correlation is a measure of how similar signals are

Cross-correlation

■ Let F be the image, H be the kernel (of size $2k + 1 \times 2k + 1$), and G be the output image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 When the aperture is partially outside the image, the operation interpolates outlier pixel values according to the specified border mode (refers [1])

Cross-correlation (ct)

- How similar the kernel is to the image at any point [2]
 - Used for image alignment and simple image matching
 - Refers [3] [4] more about template matching and normalized cross-correlation.

(Cross) correlation – example

Cross Correlation Application: Vision system for TV remote control

- uses template matching

Figure from "Computer Vision for Interactive Computer Graphics," W.Freeman et al, IEEE Computer Graphics and Applications, 1998 copyright 1998, IEEE

Fei-Fei Li Lecture 4- 53 6-Oct-16

Ex. 1

■ Apply cross-correlation operation into the following image F:

	F			Н			G	
1	2	3	1/9	1/9	1/9	?	?	?
4	5	6	1/9	1/9	1/9	?	48/9	?
8	9	10	1/9	1/9	1/9	?	?	?

Ex. 2

Apply normalized cross-correlation operation to locate the best matching of H in the image F (zero padding for the border pixels):

	F					H					G					
1	1	1	1	1	1		3	3	2		47	?:	?	?	?	?
1	20	2	2	2	1		3	3	2		?	?	?	?	?	?
1	2	3	3	2	1		2	2	2		?	?	?	?	?	?
1	2	3	3	2	1			•		•	?	?	?	?	?	?
1	2	2	2	2	1						?	?	?	?	?	?
1	1	1	1	1	1						?	?	?	?	?	?

Convolution Operation

https://www.youtube.com/watch?app=desktop&v=_HATc2zAhcY

Convolution

Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

2D Convolution

- g(x,y) = h(x,y) * f(x,y)
 - f, g: input/output
 - h: mask/filter/kernel

- Flip the mask (horizontally and vertically) only once
- Slide the mask onto the image.
- Multiply the corresponding elements and then add them
- Repeat this procedure until all values of the image has been calculated.

1,	1,0	1,	0	0
0,×0	1,	1 _{×0}	1	0
0 _{×1}	0,×0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

Example

http://www.songho.ca/dsp/convolution/convolution2d_example.html

	1	2	1
1	0 2	0 3	0
4	-1 5	-2 6	-1
7	8	9	

1	2 1	1 2	3
0	0 4	<mark>0</mark> 5	6
-1	⁻² 7	-1 8	9

1 1	2 2	1 3
0 4	0 5	<mark>0</mark> 6
-1 7	-2 8	-1 9

1	1 2	2 3	1
4	<mark>0</mark> 5	<mark>0</mark> 6	0
7	-1 8	<mark>-2</mark> 9	-1

CONVOLUTION

Adapted from F. Durand

https://www.allaboutcircuits.com/uploads/articles/Fig2_2D_Conv.jpg

Convolution applications

- Blur image
- Remove noise
- Sharpening
- Smoothing
- Edge detection
- **-** ...

https://www.geeksforgeeks.org/python-opencv-filter2d-function/

Ex. 3

Apply convolution operation into the following image F:

	F			Н			G	
1	2	3	-1	0	1	?	?	?
4	5	6	-2	0	2	?	?	?
8	9	10	-1	0	1	?	?	?

Convolution vs. (Cross) Correlation

- A <u>convolution</u> is an integral that expresses the amount of overlap of one function as it is shifted over another function.
 - convolution is a filtering operation
- <u>Correlation</u> compares the *similarity* of *two* sets of data. Correlation computes a measure of similarity of two input signals as they are shifted by one another. The correlation result reaches a maximum at the time when the two signals match best.
 - correlation is a measure of relatedness of two signals

Fei-Fei Li Lecture 4- 52 6-Oct-16

Linear filters: examples

Source: D. Lowe

Linear filters: examples

Shifted left By 1 pixel

Source: D. Lowe

Blur (with a mean filter)

Linear filters: examples

Source: D. Lowe

Original

Mean filtering

0			0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

		0	10	20	30	30	30	20	10		
		0	20	40	60	60	60	40	20		
		0	30	60	90	90	90	60	30		
		0	30	50	80	80	90	60	30		
		0	30	50	80	80	90	60	30		
		0	20	30	50	50	60	40	20		
		10	20	30	30	30	30	20	10		
		10	10	10	0	0	0	0	0		
•	G										

Ex. 4

Apply the filtering (cross-correlation) into the following image F (zero padding at the borders):

F					H					_	G						
1	1	1	1	1	1		0	0	0			?	?	?	?	?	?
1	180	180	180	180	1		1	0	0		>	?	?	?	?	?	?
1	180	96	96	180	1		0	0	0			?	?	?	?	?	?
1	180	96	96	180	1					•		?	?	?	?	?	?
1	180	180	180	180	1							?	?	?	?	?	?
1	1	1	1	1	1							?	?	?	?	?	?

Ex. 5

Apply the filtering (cross-correlation) into the following image F (zero padding at the borders):

F					H					 G						
1	1	1	1	1	1		0	0	0		?	?	?	?	?	?
1	180	180	180	180	1		0	0	1		?	?	?	?	?	?
1	180	96	96	180	1		0	0	0		?	?	?	?	?	?
1	180	96	96	180	1						?	?	?	?	?	?
1	180	180	180	180	1						?		?	?	?	?
1	1	1	1	1	1						?		?	?	?	?

Linear filters: examples

Source: D. Lowe

Sharpening filter (accentuates edges)

Original

SHARPENING

before

after

Source: D. Lowe

Sharpening

B BAI HỌC TÓN ĐỰC THẮNG TÓN ĐỰC THANG UNIVERSITY

- emphasizes differences in adjacent pixel values
- accentuating the edges of the image
- add contrast to edges

Sharpen convolution

Input image:

Output image:

(assuming transparent border)

https://i.stack.imgur.com/XXBUN.png

Ex. 6

Apply the filtering (cross-correlation) into the following image F (zero padding at the borders):

			F				Н						3		
20	20	20	20	20	20	0	-1	0		?	?	?	?	?	?
20	120	120	120	120	20	-1	5	-1	\Rightarrow	?	?	?	?	?	?
20	120	20	20	120	20	0	-1	0		?	?	?	?	?	?
20	120	20	20	120	20					?	?	?	?	?	?
20	120	120	120	120	20					?	?	?	?	?	?
20	20	20	20	20	20					?	?	?	?	?	?

SMOOTHING WITH BOX FILTER REVISITED

Source: D. Forsyth

GAUSSIAN KERNEL

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

	1	2	1
1 16×	2	4	2
	1	2	1

https://theailearner.com/2019/05/0 6/gaussian-blurring/

Source: C. Rasmussen

Discrete approximation of the Gaussian kernels

	1	2	1
1/16	2	4	2
	1	2	1

 1
 4
 7
 4
 1

 4
 16
 26
 16
 4

 7
 26
 41
 26
 7

 4
 16
 26
 16
 4

 1
 4
 7
 4
 1

https://www.researchgate.net/figure/Discrete-approximation-of-the-Gaussian-kernels-3x3-5x5-7x7_fig2_325768087

1/1003

1/273

Gaussian blur

- Use a weighted mean: the values near the center pixel will have a higher weight
 - probably get a less blurred image but a natural blurred image because it handles the edge values very well

https://theailearner.com/tag/gaussian-filter/

Gaussian kernel - properties

- Gaussian kernel is linearly separable: can break any 2-d filter into two 1-d filters
 - Applying multiple successive Gaussian kernels is equivalent to applying a single, larger Gaussian blur

$$\frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \end{pmatrix}$$

Gaussian kernel weights(1-D) can be obtained quickly using the Pascal's Triangle

https://theailearner.com/tag/gaussian-filter/

Gaussian blur – code


```
import cv2
   img = cv2.imread('D:/downloads/opencv_logo.PNG')
   # Creates a 1-D Gaussian kernel
   a = cv2.getGaussianKernel(5,1)
6
   # Apply the above Gaussian kernel. Here, I
   # have used the same kernel for both X and Y
   b = cv2.sepFilter2D(imq, -1, a, a)
10
   # Display the Image
12 cv2.imshow('a',b)
13 cv2.waitKey(0)
```


Sharpening revisited

Source: S. Lazebnik

Let's add it back:

$$F + \alpha(F - H * F)$$

image blurred image

Sharpen filter

Convolution in the real world

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Rank filters

- Rank filters assign the k-th value of the gray levels from the window consisting of M pixels sorted in ascending order [code]
 - The special cases k = 1, k = M (MIN and MAX filter) : erosion and dilation
 - k = (M + 1)/2 : median filter
- Generalisation of flat dilation/erosion: in lieu of min or max value in window, use the k-th ranked value
- Increases robustness against noise
 - Best-known example: median filter for noise reduction
- Concept useful for both gray-level and binary images
- All rank filters are commutative with thresholding

Rank filters - benefits

- image quality enhancement, e.g., image smoothing, sharpening
- image pre-processing, e.g., noise reduction, contrast enhancement
- feature extraction, e.g., border detection, isolated point detection
- image post-processing, e.g., small object removal, object grouping, contour smoothing

Median filter

Gray-level median filter

$$g[x,y] = median[W\{f[x,y]\}] := median(f,W)$$

Binary images: majority filter

$$g[x,y] = MAJ[W\{f[x,y]\}] := majority(f,W)$$

Self-duality

$$median(f,W) = -\left[median(-f,W)\right]$$

$$majority(f,W) = NOT\left[majority(NOT[f],W)\right]$$

Median filter

https://www.researchgate.net/figure/Graphic-Depiction-of-Rank-Order-Filter-Operation_fig6_268373873

Majority filter: example

Binary image with 5% 'Salt&Pepper' noise

3x3 majority filter

20% 'Salt&Pepper' noise

3x3 majority filter

Median filter: example

Original image

5% 'Salt&Pepper' noise

3x3 median filtering

7x7 median filtering

Example: non-uniform lighting compensation

Original image 1632x1216 pixels

Dilation (local max) 61x61 structuring element

Rank filter
10st brightest pixel
61x61 structuring element

References

- 1. https://docs.opencv.org/4.x/d4/d86/group_imgproc_filter.html
- 2. https://www.youtube.com/watch?app=desktop&v=kGHz-cEyjiE
- 3. https://docs.opencv.org/4.x/d4/dc6/tutorial_py_template_matching.html
- 4. https://www.youtube.com/watch?app=desktop&v=kGHz-cEyjiE
- 5. https://vincmazet.github.io/bip/filtering/convolution.html