Algèbre linéaire avancée II printemps 2021

Série 7

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soit V un espace vectoriel sur \mathbb{R} de dimension finie, muni d'une forme bilinéaire symétrique $\langle \cdot, \cdot \rangle$. Soit $B = \{b_1, \dots, b_n\}$ une base orthogonale et $U = \operatorname{span}\{b_i : i = 1, \dots, n, \langle b_i, b_i \rangle > 0\}$. Montrer que $\langle \cdot, \cdot \rangle$ restreint à U est un produit scalaire du sous-espace U.

Exercice 2. Soit $\langle \cdot, \cdot \rangle$ le produit scalaire standard dans \mathbb{R}^n . Trouver une factorisation $A = A^*R$ du corollaire 3.19 de la matrice

$$A_1 = egin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix} \in \mathbb{R}^{4 imes 3}, \hspace{1cm} A_2 = egin{pmatrix} 1 & 0 & \cdots & 0 \ 1 & 1 & \ddots & dots \ 0 & 1 & \ddots & 0 \ dots & \ddots & \ddots & 1 \ 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathbb{R}^{(n+1) imes n}.$$

Exercice 3. Soient les vecteurs

$$u = egin{pmatrix} 2 \ 2 \ 2 \ 2 \ \end{pmatrix}, \quad v_1 = egin{pmatrix} 0 \ 1 \ 0 \ 1 \ \end{pmatrix}, \quad v_2 = egin{pmatrix} -1 \ 1 \ 0 \ 0 \ \end{pmatrix}, \quad v_3 = egin{pmatrix} -1 \ 0 \ 1 \ 0 \ \end{pmatrix}.$$

Quelle est la distance entre u et $V = \text{span}\{v_1, v_2, v_3\}$? La distance entre u et V est $dist(u, V) = \min_{v \in V} ||u - v||$, où la norme $||\cdot||$ est par raport au produit scalaire ordinaire.

Exercice 4. Soient $A = \begin{pmatrix} 1 & -2 \\ 1 & 4 \\ 1 & -2 \end{pmatrix}$ et $b = \begin{pmatrix} 12 \\ -13 \\ 10 \end{pmatrix}$. Alors, la solution des moindres

carrés $x=\left(egin{array}{c} x_1 \ x_2 \end{array}
ight)$ du problème $\min_{x\in\mathbb{R}^2}\|Ax-b\|^2$ satisfait

$$egin{array}{ccccc} igoplus a) & x_2 = 3. & igoplus b) & x_2 = -3 \ igoplus c) & x_2 = 4. & igoplus d) & x_2 = -4 \ \end{array}$$

- **Exercice 5.** 1. Soit $n \geq 2$. Trouver une forme bilinéaire symétrique de \mathbb{R}^n telle qu'il existe des vecteurs $u, v \in \mathbb{R}^n$ avec $\langle u, u \rangle < 0$ et $\langle v, v \rangle > 0$.
 - 2. Soit V un espace vectoriel sur $\mathbb R$ muni d'une forme bilinéaire symétrique. Montrer que s'il existe des vecteurs $u,v\in V$ tels que $\langle u,u\rangle<0$ et $\langle v,v\rangle>0$, il existe un vecteur $w\neq 0$ tel que $\langle w,w\rangle=0$.

Exercice 6. Montrer le Lemme 4.2 : Soit $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne et soit λ une valeur propre de A avec le vecteur propre x correspondant. Montrer que λ est réel.

Exercice 7. Soit $A \in \mathbb{C}^{n \times n}$ une matrice hermitienne et inversible. Montrer que si toutes les valeurs propres de A sont positives, alors toutes les valeurs propres de A^{-1} sont aussi positives.

Exercice 8. (*)

- 1. Soit V un espace vectoriel de dimension finie sur \mathbb{R} , et $\langle \cdot, \cdot \rangle$ un produit scalaire. Montrer que $V = W \oplus W^{\perp}$ est satisfait pour tout sous-espace $W \subseteq V$. Conclure que $\dim V = \dim W + \dim W^{\perp}$.
- 2. Soit V un espace vectoriel de dimension n sur \mathbb{R} , et soient $f,g\in V^*\setminus\{0\}$ linéairement indépendants. Montrer que

$$\dim(\ker f \cap \ker g) = n - 2.$$

Rappel: Si V est un espace vectoriel sur un corps K, son espace dual V^* est l'ensemble des applications linéaires $\phi:V\longrightarrow K$, muni de l'addition et de la multiplication scalaire usuelles.