임베디드컴퓨팅

Embedded Computing (0009488)

Digital Input

2022년 2학기

정보기술대학 정보통신공학과 김 영 필

ypkim@inu.ac.kr

Input Devices

- Input devices include sensors, microphones, cameras, keyboards, mice, and many more.
- Depending on the electronics, you need to consider whether to connect to an analog input or a digital input.
- The functions used can be different.

입력 방법	아날로그 입력	디지털 입력
사용하는 전자 부품	 볼륨 가변저항 광센서 온도 센서 적외선 거리 센서 가속도 센서 	 스위치 진동/기울기 센서 기울기 센서 자기장 센서 인체 감지 센서 적외선 리모컨 수신 모듈
사용하는 함수	analogRead	pinMode와 digitalRead

신호	아두이노 우노의 입력 포트(관련 함수)
아날로그 입력	A0~A5(analogRead 함수 사용)
디지털 입력	① D0~D13(pinMode와 digitalRead 함수 사용) (A0~A5는 각각 D14~D19로도 사용 가능) ② 시리얼 통신(UART, I2C, SPI)

고급 센서 중에는 이 표와 다른 제품도 있다.

표 Source: 길벗, "모두의 아두이노"

E.g. Input devices for Arduino

그림 Source: 길벗, "모두의 아두이노"

+ Touch sensor, fine dust sensor, passive infrared sensor (PIR), magnetic switch, etc. ..

Analog Input

- To read data values by connecting analog electronic components to the Arduino, you must use analogRead().
 - devices connected to analog pins

Uno	5 Volts	A0 to A5	10 bits
Mini, Nano	5 Volts	A0 to A7	10 bits
Mega, Mega2560, MegaADK	5 Volts	A0 to A14	10 bits
Micro	5 Volts	A0 to A11*	10 bits
Leonardo	5 Volts	A0 to A11*	10 bits
Zero	3.3 Volts	A0 to A5	12 bits**
Due	3.3 Volts	A0 to A11	12 bits**
MKR Family boards	3.3 Volts	A0 to A6	12 bits**

- The return value of **analogRead()** is an integer value 0 to 1023
 - the value read by the electronic component
 - limited to the resolution of the analog to digital converter (0-1023 for 10 bits or 0-4095 for 12 bits). Data type: int.

Ref. -

https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

함수 이름	설명		
analogRead(핀 번호);	아날로그 입력 값을 읽는다.		
	반환 값: 0~1023		
	0은 0V를 의미하고, 1023은 5V를 의미한다.		

그림 Source: 길벗, "모두의 아두이노"

Let's try Analog input

```
int val = 0;
void setup() {
 Serial.begin(9600);
void loop() {
 Serial.print("Analog 3 input = ");
 Serial.println(val);
 Serial.print("Analog 0 input = ");
 Serial.println(val);
 delay(1000);
```

What happens?

Connect A0 with GND, then read A0.

What happens?

What we read?

- AnalogRead() map input voltages between 0 and the operating voltage(5V or 3.3V) into integer values
- On an Arduino Uno, this yields a resolution between readings of: 5 volts / 1024 units
 - 0.0049 volts (4.9 mV) per unit.
- E.g. read value 290
 - 1.421 V
- E.g. read value 0
 - 0 V

Analog input values need interpretation

- Returning an integer value of 0 to 1023 means that the analog value can be read by dividing it into 1024 divisions.
- To convert this value to a value with units (distance in centimeters, temperature in °C, humidity in %, etc.), you need to use the **conversion formula (calculation formula)** of each electronic component.
- For calculations, you need to write a program using graphs or equations in the electronic component manual.

Let's make voltage monitor by analog input

```
int analogPin = A3;
                                                                              Connect POWER
int val = 0;
                                                                            pins (5V or 3.3V) to
void setup() {
                                                                                   A3 or A0.
 Serial.begin(9600);
                                                                                What can you
void loop() {
                                                                                   observe?
      analogRead(A3);
 Serial.print("Analog 3 input = ");
 Serial.println(val);
 Serial.println("V");
                                                                                Calculation is
                                                                            required as sensing
 Serial.print("Analog 0 input = ");
                                                                                      data.
 Serial.println(val);
 Serial.println("V");
 delay(1000);
```


Digital Input

- For digital input, two functions: pinMode() and digitalRead() are used
- digitalRead produces 0 (LOW) or 1 (HIGH)

함수 이름	설명
pinMode(핀 번호, 모드);*	핀 동작을 입력이나 출력으로 설정한다.
	• 핀 번호 : 설정할 핀 번호
	• 모드: 입력(INPUT 또는 INPUT_PULLUP)
digitalRead(핀 번호);	디지털 입력 값을 읽는다.
	• 반환 값: On 상태(HIGH) 또는 Off 상태(LOW)
	• 핀 번호 : D0~D13 또는 A0(D14)~A5(D19) 사용 가능

* 모드가 INPUT일 때는 생략할 수 있다.

그림 Source: 길벗, "모두의 아두이노"

pinMode(), again

- The pinMode function is used to set digital input/output.
- Syntax
 - pinMode(pin, mode)
 - mode
 - can be OUTPUT, INPUT, or INPUT_PULLUP

- For INPUT mode, the pinMode function can be omitted.
- Then, INPUT_PULLUP?

Resistor

- Resistors are electronic components that control the flow of current
 - Carbon Film Resistors are commonly used.
- The unit of resistance is ohm (Ω) .
 - When a current flows through both terminals of a resistor, the larger the resistance, the less current flows, and the smaller the resistance, the more current flows.
 - Also, unlike a diode, **a resistor has**

How to distinguish resistor?

- Refer the Resistor color code
 - E.g. 4 Band: RED RED BROWN GOLD = ?

Standard EIA Color Code Table 4 Band: ±2%, ±5%, and ±10%

When to need precise resistor

Color	1st Band (1st figure)	2nd Band (2nd figure)	3rd Band (multiplier)	4th Band (tolerance)
Black	0	0	10º	
Brown	1	1	10 ¹	
Red	2	2	10 ²	±2%
Orange	3	3	10 ³	
Yellow	4	4	10 ⁴	
Green	5	5	10⁵	
Blue	6	6	10 ⁶	
Violet	7	7	10 ⁷	
Gray	8	8	108	
White	9	9	109	
Gold			10-1	±5%
Silver			10-2	±10%

Color	1st Band (1st figure)	2nd Band (2nd figure)	3rd Band (3rd figure)	4th Band (multiplier)	5th Band (tolerance)
Black	0	0	0	10°	
Brown	1	1	1	10 ¹	±1%
Red	2	2	2	10 ²	
Orange	3	3	3	10 ³	
Yellow	4	4	4	10 ⁴	
Green	5	5	5	10 ⁵	±.5%
Blue	6	6	6	10 ⁶	±.25%
Violet	7	7	7	10 ⁷	±.1%
Gray	8	8	8	10 ⁸	
White	9	9	9	10 ⁹	
Gold				10 ⁻¹	

Chart Provided By XICON

Figure Ref. - https://www.parts-express.com/resistor-color-code-diagram

Switch with digital circuit

- A switch is a representative digital input device controlling electric current flow.
- Closed switch → ON
- Open switch → OFF
- Whenever a closed switch gets open (off), indeterminate voltage (floating state) can be generated.
- The digital circuit may be overloaded or damaged by the indeterminate voltage
- So, we need to stabilize the floating state.

Let's make floating state

```
int pinNo = 8;
void setup() {
 Serial.begin(9600);
 pinMode(pinNo, INPUT);
void loop() {
 val =
 Serial.print("val = ");
 Serial.println(val);
```

Wiring setup (x3)

Arduino --- BreadBrd 5V --- (+) GND --- (-) D8 --- g15

Run this sketch!

What happens? (val)

Need to stabilize?

Let's make pulldown/pullup resistors

```
int pinNo = 8;
void setup() {
 Serial.begin(9600);
 pinMode(pinNo, INPUT);
void loop() {
 val =
            digitalRead(pinNo);
 Serial.print("val = ");
 Serial.println(val);
```

Resistor setup 1

BreadBrd --- BreadBrd i15 --- (-)

Resistor setup 2

BreadBrd --- BreadBrd i15 --- (+)

Open:

Open:

pulldown to 0

> pullup to 1

Run this sketch!

What happens? (val)

Need to stabilize?

Let's open/close a (virtual) switch

```
int pinNo = 8;
void setup() {
 Serial.begin(9600);
 pinMode(pinNo, INPUT);
void loop() {
 val =
          digitalRead(pinNo);
 Serial.print("val = ");
 Serial.println(val);
```

Resistor setup 1

BreadBrd --- BreadBrd i15 --- (-)

Close:

0 -> 1

Wiring setup 1

BreadBrd --- BreadBrd f15 --- (+)

Resistor setup 2

BreadBrd --- BreadBrd i15 --- (+)

Wiring setup 2

BreadBrd --- BreadBrd f15 --- (-)

Close:

1 -> 0

Run this sketch!

What happens? (val)

Why Pullup/down resistor?

Stabilizing floating state to HIGH

- Pullup resistor ensures a well-defined voltage (i.e. VCC, or logical high) across the remainder of the circuit when the switch is open.

Stabilizing floating state to LOW

- Conversely, for a switch that connects to VCC, a ensures a well-defined ground voltage (i.e. logical low) when the switch is open.

Pull-down Resistors	Pull-up Resistors
Less commonly used	More commonly used
Keeps the input "Low"	Keeps the input "High"
Connect between an I/O pin and ground, with an open switch connected between I/O and +Supply.	Connect between I/O pin and +supply voltage, with an open switch connected between I/O and ground.

Fig. ref - https://www.circuithas

Pulldown vs. Pullup resistor

- Pulldown resistor
 - The resistor connected to ground (GND)
 - Resistor close to relatively low voltage (0V in Arduino)
- Pullup resistor
 - The resistor connected to the power supply (5V or 3.3V)
 - Resistor close to relatively high voltage (5V in Arduino)
- Pulldown and pullup resistor ensure a known state for a signal
 - HIGH (5V) or LOW (0V)
- The Arduino board has a **built-in** pull-up registor
 - Use the built-in pull-up resistor by setting a digital input pin by pinMode() with INPUT_PULLUP
 - Useful more resistance is required (or multiple buttons, etc).
 - Arduino Uno has $20K\Omega$ pullup resistors.

Let's try Digital input

```
int dPin1 = 8;
int val = 0;
void setup() {
 Serial.begin(9600);
 pinMode(dPin1, INPUT);
void loop() {
 val =
 Serial.print("Digital read:");
 Serial.println(val);
```

Open Serial monitor.

What happens?

Connect D8 with GND, then read D8.

What happens?

Let's try Pullup resistor

```
int dPin1 = 8, dPin2 = 7;
int val = 0;
void setup() {
 Serial.begin(9600);
 pinMode(dPin1, INPUT);
 pinMode(dPin2,
void loop() {
 val =
 Serial.print(dPin1);
 Serial.print(" pin Digital read:");
 Serial.println(val);
 val
 Serial.print(dPin2);
 Serial.print(" pin Digital read:");
 Serial.println(val);
```

Disconnect D7, D8 with GND, then read D7, D8.

What happens?

Let's try Digital I/O with counter

```
int dPin1 = 7, dPin2 = 8;
int val = 0;
unsigned long cnt;
void setup() {
 Serial.begin(9600);
 pinMode(dPin1, OUTPUT);
 pinMode(dPin2, INPUT);
 cnt = 0;
void loop() {
 val = digitalRead(dPin2);
 Serial.print(cnt);
 Serial.print(")Digital read:");
 Serial.println(val);
  cnt++;
  if(cnt % 5 == 0) digitalWrite(dPin1, HIGH);
  else digitalWrite(dPin1, LOW);
 delay(1000);
```


Assignment: Button simulator

Requirements

- Based on the example of digital I/O counter, write a sketch program as follows.
 - LED blinking every 5 seconds
 - Connect LED (+) with Arduino built-in pullup resistor
 - Connect LED (-) to GND
 - Connect LED (+) with D8
 - Read D8 every 1 second, and display "LED ON" if it is 1; or display "LED OFF" via serial monitor
- Write block-type comments in the top of your source code, which includes "your student no., your name, writing date, what you feel about this assignment, etc."

Results

- (a source code file) sketch source code ("sketchfilename.ino")
- (a Arduino board capture file) a photo capture showing how you setup your circuit (max. 1GB file).

