

Types of Probability Distribution: -Finite number of outcomes -> Discrete distributions (Heads or tails) I vis loc oo 6 (Die) is so die · In Finitely many outcomes => Continous distribution Télus 6 Cião Mio Notation: Variable Tilda Type Characteristics

$$Z \sim N(0,1)$$
 $Y \sim N(M, \sigma^2)$ $\Rightarrow Z = \frac{Y-M}{\sigma}$ Standarization $Y \sim N(M, \sigma^2)$ $\Rightarrow Z = \frac{Y-M}{\sigma}$ Standard Stand

*	Chi-Squared Distribution -
	$\chi^2(K) \Rightarrow Y_N \chi^2(3)$
*	Application:
-	OFew events in veal Life
	@ Statistical analysis - > Hypothesis testing
	4 computing confidence intervals
	3 Goodness of Fit
	$Y \sim t(K) \Rightarrow Y^2 \sim \chi^2(K)$
	X~X2(K) => NX ~ t(K)
-	
	Asymmetric
-	A table of Known values: N,T
	E(x)=K
	Var(x)=2K

*	Conditional Probability: - A Jamille B inges Wiss
	$P(B/A) = \frac{P(A \cap B)}{P(A)}$
	$S=\{1,2,3,4,5,6\}, A=\{1,3,5\}, B=\{1,2\}$ $P(AAB)=\frac{1}{6}, P(A)=\frac{1}{2}$ $P(B A)=\frac{1}{6} \times 2=\frac{1}{3}$
	P(ANB) = P(A).P(B/A)
	Tree Diagram:- W=4, Y=3, G=1 Y g W con disol diso First 3/7 W Second Oraw 3/7 Y B Y 2/7 G 1/7 Y 3/7
	$P(w_{1st}) = P(Y_{1st}) \cdot P(w_{nd}/y_{1st}) + P(w_{1st}) \cdot P(y_{nd}/y_{1st})$ $= \frac{3}{8} \times \frac{4}{7} + \frac{1}{2} \times \frac{3}{7}$ $= \frac{3}{7}$

Independent Events: P(B/A) = P(B)P(ADB) = P(A). P(B) P(E, NE, NE, N = N = P(E,) . P(E,) . P(E,). P(En) Law of Total Probability: P(B) = P(BnE,)+P(BnE,)+-,P(BnE,) BNES BNE3 BNE4 = P(B/E,)P(E,)+P(B/E2)P(E2)+ E4 + P(B/Ex).P(Ex) B=(BNE,) U(BNE2)U(BNE3)U(BNE4)

Bayes' Theorem:-

P(A/B) = P(B/A) * P(A)
P(B)

 $P(B/A) = \frac{P(A/B) * P(B)}{P(A)}$

P(A;/B) = P(A;). P(E/A;)
P(E)

P(Aj), P(E/Aj).

P(A). P(E/A) +P(A2). P(E/A2) +---+P(An)-P(E/A)