АЛГЕБРА

КЛАСС

EAZOBЫЙ УРОВЕНЬ

ТЕТРАДЬ-ТРЕНАЖЁР

АЛГЕБРА 8 КЛАСС БАЗОВЫЙ УРОВЕНЬ ТЕТРАДЬ-ТРЕНАЖЁР

2-е издание, электронное

Москва Издательство «Интеллект-Центр» 2024 УДК 373.167.1:51+51(075.3) ББК 22.1я721 С40

Научный редактор:

 $E.\,B.\,Лукьянова$ — кандидат педагогических наук, доцент кафедры математического анализа МПГУ, учитель высшей категории

Сиротина, Т. В.

С40 Алгебра. 8 класс. Базовый уровень. Тетрадь-тренажёр / Т. В. Сиротина. — 2-е изд., эл. — 1 файл pdf: 104 с. — Москва: Издательство «Интеллект-Центр», 2024. — Систем. требования: Adobe Reader XI либо Adobe Digital Editions 4.5; экран 10". — Текст: электронный.

ISBN 978-5-907750-12-8

Тетрадь-тренажёр — это уникальное пособие, помогающее формировать необходимые навыки для выполнения различных видов заданий по алгебре, своевременно выявлять и устранять пробелы в знаниях. Все задания удобно систематизированы в виде таблиц, а выполнять их решение можно непосредственно в тетради-тренажёре. Материалы ориентированы на учебник «Математика. Алгебра. 8 класс. Базовый уровень» под редакцией С. А. Теляковского; также возможно их применение с другими учебниками по алгебре для 8-го класса.

Пособие адресовано учителям математики, репетиторам, учащимся и их родителям.

УДК 373.167.1:51+51(075.3) ББК 22.1я721

Электронное издание на основе печатного издания: Алгебра. 8 класс. Базовый уровень. Тетрадь-тренажёр / Т. В. Сиротина. — Москва: Издательство «Интеллект-Центр», 2023.-104 с. — ISBN 978-5-907651-48-7. — Текст: непосредственный.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации.

содержание

ПРЕДИСЛОВИЕ	4
СПРАВОЧНЫЕ МАТЕРИАЛЫ	5
РАЦИОНАЛЬНЫЕ ДРОБИ И ИХ СВОЙСТВА	
Рациональные выражения	6
Основное свойство дроби. Сокращение дробей	
СУММА И РАЗНОСТЬ ДРОБЕЙ	
Сложение и вычитание дробей с одинаковыми знаменателями	12
Сложение и вычитание дробей с разными знаменателями	
ПРОИЗВЕДЕНИЕ И ЧАСТНОЕ ДРОБЕЙ	
Умножение дробей. Возведение дроби в степень	17
Преобразование рациональных выражений	
Функция $y = k/x$ и её график	
Представление дроби в виде суммы дробей	24
АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ	
Действительные числа	25
Квадратные корни. Арифметический квадратный корень	30
Уравнение $x^2 = a$	34
Функция $y = \sqrt{x}$ и её график	35
СВОЙСТВА АРИФМЕТИЧЕСКОГО КВАДРАТНОГО КОРНЯ	
Квадратный корень из произведения и дроби	37
Квадратный корень из степени	38
ПРИМЕНЕНИЕ СВОЙСТВ АРИФМЕТИЧЕСКОГО КВАДРАТНОГО КОРНЯ	
Вынесение множителя из-под знака корня. Внесение множителя по знак корня	40
Преобразование выражений, содержащих квадратные корни	42
КВАДРАТНОЕ УРАВНЕНИЕ И ЕГО КОРНИ	
Неполные квадратные уравнения	48
Формула корней квадратного уравнения	
Теорема Виета	54
КВАДРАТНЫЙ ТРЁХЧЛЕН	
Квадратный трёхчлен и его корни	
Разложение квадратного трёхчлена на множители	58
ДРОБНЫЕ РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ	
Решение дробных рациональных уравнений	59
УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ И ИХ СИСТЕМЫ	
Уравнение с двумя переменными и его график	
Графический способ решения систем уравнений	65
ЧИСЛОВЫЕ НЕРАВЕНСТВА И ИХ СВОЙСТВА	
Числовые неравенства	
Свойства числовых неравенств	
Сложение и умножение числовых неравенств	72
НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ И ИХ СИСТЕМЫ	
Числовые промежутки	
Решение неравенств с одной переменной	
Решение систем неравенств с одной переменной	86
ФУНКЦИЯ И ЕЁ ГРАФИК	00
Функция. Область определения и множество значений функции	
Свойства функции	89
СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ И ЕЁ СВОЙСТВА	0.0
Определение степени с целым отрицательным показателем	
Свойства степени с целым показателем	94
СТАНДАРТНЫЙ ВИД ЧИСЛА	05
Понятие стандартного вида числаОТВЕТЫ	
U1DE1D1	97

ПРЕДИСЛОВИЕ

Эта тетрадь-тренажёр продолжает серию пособий, предназначенных помочь учащимся средней школы освоить школьную программу по математике. 8-й класс — второй год изучения алгебры. Своевременное усвоение новых тем, отсутствие пробелов в знаниях и получение новых умений — это залог успешной учёбы как в 8-м классе, так и в последующих. Часто ребята не успевают на уроке отработать те или иные действия с числами и переменными, и поэтому им необходимо решить больше похожих примеров, чтобы овладеть новыми знаниями. Это уникальное пособие предлагает подборку большого количества заданий для усвоения материала, то есть будет настоящим помощником учащимся 8—11-х классов.

В тетради-тренажёре собраны примеры из личной практики автора, систематизированные в таблицы. Перед каждой из них сформулировано задание, которое предлагается выполнить учащемуся, а примеры расположены по принципу от простого к сложному. Чтобы достичь наилучшего результата, важно выполнять их последовательно. Буквы А, Б, В, Г, Д, Е и Ж в некоторых номерах означают разноуровневые задания, объединенные общим вопросом, но каждое из них целесообразно проработать отдельно. Решения можно выполнять непосредственно в пособии. К заданиям приведены необходимые теоретические сведения «Важно знать» или «Указания» к решению. В тексте они отмечены знаком

Образцы выполнения некоторых примеров выделены затемнённым фоном. В конце пособия к наиболее сложным заданиям даны ответы.

Тетрадь-тренажёр поможет:

УЧАЩИМСЯ 8-х классов успешно усвоить новые темы, закрепить навыки, а также своевременно устранить пробелы в знаниях.

УЧАЩИМСЯ 9–11-х классов повторить нужные темы по алгебре для успешной учебы и подготовки к экзаменам, уверенно сдать ОГЭ и ЕГЭ.

РОДИТЕЛЯМ оказать поддержку детям в закреплении школьного материала.

УЧИТЕЛЯМ проверить степень усвоения материала, выявить пробелы в знаниях и организовать индивидуальную работу с учащимися.

РЕПЕТИТОРАМ сформировать у школьников прочные навыки в выполнении различных видов заданий, основательно отработать с ними сложные моменты в отдельных темах, а также устранить пробелы в знаниях с максимальной эффективностью.

СПРАВОЧНЫЕ МАТЕРИАЛЫ

ТАБЛИЦА КВАДРАТОВ НАТУРАЛЬНЫХ ЧИСЕЛ ОТ 10 ДО 99

						Единиц	ы				
	-	0	1	2	3	4	5	6	7	8	9
	1	100	121	144	169	196	225	256	289	324	361
	2	400	441	484	529	576	625	676	729	784	841
II.	3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
Десятки	4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
Й	5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
	6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
	7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
	8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
	9	8100	8281	8464	8649	8836	9025	9216	9409	9604	9801

ФОРМУЛЫ СОКРАЩЕННОГО УМНОЖЕНИЯ

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$
 $(a-b)(a+b) = a^2 - b^2$

СВОЙСТВА СТЕПЕНЕЙ

$$a^{1} = a$$

$$a^{0} = 1$$

$$a^{n} \cdot a^{m} = a^{n+m}$$

$$a^{n} : a^{m} = a^{n-m}$$

$$(a^{n})^{m} = a^{nm}$$

$$(ab)^{n} = a^{n}b^{n}$$

$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

РАЦИОНАЛЬНЫЕ ДРОБИ И ИХ СВОЙСТВА

РАЦИОНАЛЬНЫЕ ВЫРАЖЕНИЯ

Задание 1. Определите, какие из данных выражений являются целыми, а какие – дробными.

Важно знать: дробное выражение – это выражение, которое содержит деление на выражение с переменной.

	выражение с переменной.	
1)	$x^2 + 6$	21) 1 1
	Ответ: целое выражение.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
2)	x	22) x 2
′	$\frac{x}{2}$	$\frac{\pi}{6}-x^2$
3)	$\frac{2}{2x+3}$	23) r r
5)	$\frac{2x+6}{5}$	$\frac{x}{3} + \frac{x}{2}$
4)	7-4x	
4)		$1\frac{1}{3} + a$
-		3
5)	$9x^2 + \frac{1}{7}x + 8$	$\binom{25}{-+}\binom{1}{-+}:2$
	7	$25) \left(\frac{1}{x} + \frac{1}{y}\right) : 2$
6)	$36 - \frac{1}{}$	$(a+3)^2 - 8a^3 + \frac{1}{2}$
	$\boldsymbol{\mathcal{X}}$	
7)	$a^5 + b^5$	27) 1. 16
		$\frac{1+\frac{1}{x+3}}{1+\frac{1}{x+3}}$
8)	(x+y)(x-y)	28) 1,
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9)	$6m^2 + n$	29) $t^2 + r^2 - 2tr^3$
	$\frac{n^3}{n^3}$	7 7 11 201
10)		30) $3n^7:q$
10)	$\frac{x+1}{x}$	30) $3n$: q
11)	y	01) 8 8
11)	$\frac{n}{2}$	31) $\frac{m^8 + n^8}{}$
		3
12)	$\frac{1}{5}x^2$	$32) 18x - \frac{2x+3}{5} - \frac{1}{x}$
		\mathbf{o} \mathbf{x}
13)	$13x - \frac{8}{11}$	33) 2ab:12
14)	$\underline{\qquad x+y}$	34) $\frac{a}{5} \cdot \frac{1}{a} - \frac{2}{7}a^2$
	$\frac{x+y}{x^2-xy+y^2}$	5 a 7
15)	x^7	$\frac{35)}{4}a^2 - \frac{1}{4}b + \frac{1}{4}$
	7	$\frac{1}{4}u - \frac{1}{4}v + \frac{1}{4}$
16)	1 3.5	$36) 1 a^2$
	$\frac{1}{3}a^3b^5c$	$\frac{1}{a} \cdot \frac{a^2}{5}$
17)		$\begin{pmatrix} a & 5 \\ 37 \end{pmatrix} \begin{pmatrix} 1 \\ a + b \end{pmatrix}$
11)	$\frac{y}{1}$	$\frac{37)}{x}(a+b)$
10)	$\frac{y}{1,2}$ $x^3 - 6xy^2$	
19)	$\frac{x^3-6xy^2}{2}$	$\frac{1}{2}(a+b)$
10	5	
19)	$\frac{1-a}{a}$	$ 39 \frac{24}{2} - \frac{2}{3}$
	$\frac{1-a}{a^2}$ $\frac{(b-1)^2}{a^2}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
20)	$(b-1)^2$	$ 40\rangle x^2:y^2$
	b+1	

Задание 2. Найдите допустимые значения переменной в дроби.

Важно знать: допустимые значения переменной— это значения переменной, при которых выражение имеет смысл.

Щ	montopola dolpaskenae asheem eshotesi.	
1)	$\frac{5}{x-1}, \qquad x-1 \neq 0,$ $x \neq 1.$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
2)	Ответ: x — любое число, кроме числа 1. $\frac{3}{a-11}$	14) $\frac{2a}{(a-5)(a+3)}$
3)	$\frac{-7}{b+3}$	15) $\frac{3b-1}{b(2b+4)}$
4)	$\frac{2}{a-5}$	16) $\frac{3-x}{x^2-4}$
5)	$\frac{9x}{x+10}$	$\frac{6}{x^2+4}$
6)	$\frac{6+y}{5}$	18) $\frac{1}{(x^2-9)(x^2+25)}$
7)	$\frac{1}{2x}$	$\frac{3b}{a(a^2+1)}$
8)	$\frac{-3}{5x-10}$	$\frac{x(x-2)}{3x-9}$
9)	$\frac{a+b}{a-7}$	$\frac{21)}{2a^2-2}$
10)	$\frac{1}{x(x-1)}$	22) $\frac{2x-3}{x^3}$
	$\frac{-2-a}{a-2}$	$\frac{a+1}{a(a-2)(a-3)}$
12)	$\frac{11y+1}{y(2-y)}$	$\frac{y^2 + 2y + 3}{y^2 (y - 1)}$

Задание 3. Найдите допустимые значения переменной в выражении:

1)	$\frac{x-1}{3}$	$\frac{11)}{x+6} - \frac{1}{x} - \frac{2}{x-1}$
2)	$x^2 + 6x + 8$	$\frac{2x^3 - 3x^2 + 5}{4}$
3)	$\frac{1}{x} + \frac{1}{x-1}$ $\begin{cases} x \neq 0, & \begin{cases} x \neq 0, \\ x-1 \neq 0; \end{cases} & \begin{cases} x \neq 1. \end{cases}$ Ответ: x — любое число, кроме чисел 0 и 1 .	$\frac{13)}{-\frac{36}{x-7}} + \frac{1}{x}$
4)	$\frac{1}{x} - \frac{1}{x+1}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
5)		$\frac{8}{-x^2}$
6)	$\frac{3}{x} + \frac{x}{3}$	$\frac{40}{3x^2 - 3}$
7)	$\frac{x}{-x-5} - \frac{x}{7}$	$\frac{1}{\frac{x}{x}+2}$
8)	$\frac{16}{x^2+3} + \frac{1}{5}$	$\frac{1}{x}:\frac{1}{x-1}$
9)	$\frac{8x+3}{x(x^2+7)}$	$\frac{x}{x-5} \cdot \frac{x+2}{3}$
10)	$\frac{4}{x(x-2)(x^2+2)}$	20) $x(x-1)(x+3)$

ОСНОВНОЕ СВОЙСТВО ДРОБИ. СОКРАЩЕНИЕ ДРОБЕЙ

Задание 4. Сократите дробь:

\mathbf{A}					
1)	$\frac{2}{8}$ =	21)	$\frac{2a}{4}$ =	41)	$\frac{2(x-3)}{(x-3)}$
	8		$\overline{4}$		5(x-3)
2)	3 =	22)	$\frac{2a}{3a}$ =	42)	$\frac{-7(b+2)}{(b+2)}$
	18			1	$\Omega(I_{r} + \Omega)$
3)	$\frac{11}{44} =$	23)	$\frac{3x}{9x}$ =	43)	$\frac{3(x-2)}{3(x-2)} =$
	44		$\frac{1}{9x}$		9(x-2)
4)	40 =	24)	$\frac{7b}{\cdots} =$	44)	$\frac{10(a-4)}{5(a-4)} =$
	100		15b		
5)	$\frac{6}{100}$ =	25)	$\frac{16x}{}$ =	45)	4b(b-1)
	42		12x		$\frac{4b(b\!-\!1)}{8(b\!-\!1)}\!=\!$
6)	12	26)	6 <i>a</i>		
	$\frac{12}{36} =$		$\frac{6a}{3ab} =$,	$\frac{11x^2(x-2)}{3(x-2)} =$
7)		27)	$\frac{5xy}{}$ =	47)	$\frac{x^3(5-x)}{x^3(5-x)} =$
	$\frac{28}{70} =$		$\frac{3 y}{10 y} =$		$\frac{x(5-x)}{2(5-x)} =$
8)	15 =	28)	21b	48)	$\frac{-(3-a)}{6(2+a)}$
	$\frac{10}{30}$ =	20)	$\frac{210}{14bc}$ =	10)	$\frac{6(2+a)}{(a-3)(2+a)} =$
9)		20)	$\frac{100ac}{c}$ =	49)	$\frac{(a - b)(2 + a)}{b^2(b - 5)}$
3)	$\frac{11}{121}$ =	23)	$\frac{100ac}{25abc} =$	13)	$\frac{b^2(b\!-\!5)}{(b\!-\!3)(b\!-\!5)}\!=\!$
10)		20)		50)	$\frac{(\upsilon-3)(\upsilon-3)}{2n(n-4)}$
10)	$\frac{14}{42} =$	30)	$\frac{2x}{x^2}$ =	30)	$\frac{3p(p-4)}{(p+1)(p-4)} =$
11)		91)	<i>x</i>		
11)	$\frac{12}{48} =$	31)	$\frac{4y^2}{8y} =$	51)	$\frac{10(y-7)}{(x-7)(x-2)}$
			8 <i>y</i>	F 0)	$\frac{(y-7)(y+3)}{(y-7)(y+3)}$
12)	$\frac{16}{32} =$	32)	$\frac{3a^3}{15a} =$	52)	$rac{20b(1-b)}{30b^2(1-b)} =$
		00)	15a	50)	· /
13)	$\frac{15}{45} =$	33)	$\frac{28c^4}{14c^5} =$	53)	$\frac{21x(x+y)}{22x(x+y)}$ =
		0.4	$\frac{14c^3}{10c^3}$	- 1	$\frac{150(x+y)}{28y(x+y)} =$
14)	$\frac{24}{72}$ =	34)	$\frac{-10ab}{200}$ =	54)	$\frac{15ab(a\!+\!5)}{45a^2(a\!+\!5)}\!=\!$
	72	·			
15)	$\frac{25}{195}$ =	35)	$\frac{-9xy}{14xy^2} =$	55)	$\frac{3b\left(a^3+1\right)}{2a\left(a^3+1\right)} =$
	125		$14xy^2$		$2a(a^3+1)$
16)	<u>12</u> =	36)	$-8a^2b^2$	56)	$(a+b)^2$
	${240}$ =		$\frac{-8a^2b^2}{-40ab} =$		$\frac{2a(a^{3}+1)}{5(a+b)^{2}} = \frac{(a+3)^{2}}{5(a+b)} = \frac{(a+3)^{2}}{a(a+3)} = \frac{2(x-6)}{(x-6)^{2}} = \frac{y(x+2)}{(x+2)^{2}} = \frac{(x-y)^{2}}{(x-y)(x+y)} = \frac{(x-y)^{2}}{(x-y)^{2}} = \frac{(x-y)^{2}}{(x-$
17)	$\frac{15}{100} =$	37)	a^2b^3	57)	$(a+3)^2$
	$\overline{60}$ =		$\frac{a^2b^3}{3a^3b^3} =$		$\frac{a(a+3)}{a(a+3)} =$
18)	17		8 <i>ab</i>	58)	2(x-6)
	$\frac{17}{51}$ =		$\frac{8ab}{16abc} =$	_	$\frac{1}{(x-6)^2} =$
			-2ab	59)	y(x+2)
	$\frac{16}{48} =$		$\frac{-2ab}{-4a^2b^2} =$		$\frac{1}{(x+2)^2}$
	25 =		$\frac{30x^2y^3}{}=$	60)	$(x-u)^2$
	$\frac{20}{200}$ =		$\frac{30x \ y}{15xy} =$		$\frac{(x-y)}{(x-y)(x+y)} =$
	- -		1019		(x-y)(x+y)

Б

1)	•)		$\frac{2-a}{2-a} =$	21)	$\frac{x-2}{2-x}$ =
2)	$\frac{3}{3}$ =	12)	$\frac{2+a}{2+a} =$	22)	$\frac{x-2}{2-x} = \frac{a-5}{5-a} = \frac{a-5}{5-a}$
3)	$\frac{3}{-8}$ =	13)	$\frac{3-x}{3-x}$ =	23)	$\frac{\frac{a}{5-a}}{\frac{b-1}{-1+b}} =$ $\frac{3-2x}{\frac{a}{5-a}}$
4)	$\frac{-8}{8} = \frac{-5}{-5} = \frac{-5}{-5}$		$\frac{3-x}{3-x} = \frac{-7+b}{-7+b} = \frac{1}{2}$	24)	$\frac{-1+b}{3-2x}$
5)	$\frac{-5}{a} =$	15)	$\frac{-7+b}{-1-x} =$	25)	$\frac{3-2x}{2x-3} = \frac{-4y+b}{2x-3} = -4y$
6)	a	16)	-1-x		$\frac{b-4y}{b-4y} = \frac{2+x}{2} = $
7)	$\frac{-b}{b} = \frac{-x}{-x} = \frac{-x}{-x}$		-6-a		-2-x
	$\frac{-x}{-x} =$		$\frac{5x-y}{5x-y} =$	21)	$\frac{a+3}{-a-3} =$
8)	_9a		$\frac{-2a+b}{-2a+b} =$	28)	$\frac{a+3}{-a-3} =$ $\frac{-b+7}{b-7} =$
9)	$\frac{-2a}{-3b^2} =$	19)	-5+x	29)	$\frac{-x-y}{x+y} =$
10)	$\frac{3b^2}{-3b^2} = \frac{-a^2b}{a^2b} = \frac{a^2b}{a^2b} = \frac{a^2b}{a^$	20)	$\frac{y-4}{-4+y} =$	30)	$\frac{-y+11}{-11+y} =$

В

1)	$\frac{-(x+y)}{(x+y)} =$	9)	$\frac{2(a-b)}{3(b-a)} =$	17)	$\frac{-2(a-b)}{\left(a-b\right)^2} =$
2)	$rac{-2ig(a+big)}{ig(a+big)}=$	10)	$\frac{5(x-y)}{a(y-x)} =$	18)	$\frac{\left(x-3\right)}{\left(3-x\right)^2} =$
3)	$\frac{\left(x+3\right)}{-5\left(x+3\right)} =$	11)	$\frac{x(y+3)}{2(-y-3)} =$		$\frac{\left(b\!-\!1\right)^2}{\left(1\!-\!b\right)\!\left(1\!+\!b\right)}\!=\!$
4)	$\frac{2(b+1)}{-(b+1)} =$		$\frac{5\bigl(-2+a\bigr)}{3\bigl(a-2\bigr)}=$	20)	$\frac{(a+3)(a-3)}{(3-a)^2} =$
5)	$\frac{-(x-3)}{12(x-3)} =$	13)	$\frac{\left(y-1\right)}{3\left(-1+y\right)} =$	21)	$\frac{(y-2)(y+2)}{(2+y)^2} =$
6)	$\frac{(a+5)(a+5)}{(5+a)(5-a)} =$	14)	$\frac{a(a-1)}{-(1-a)} =$	22)	$\frac{-(a-2)}{(2-a)(a+2)} =$
7)	$\frac{13+x}{(x+13)\cdot b} =$	15)	$\frac{(y-1)(y-1)}{(1-y)(1+y)} =$	23)	$\frac{(x-1)(x+1)}{(1-x)(-x-1)} =$
8)	$\frac{-(y-1)}{-(-1+y)} =$	16)	$\frac{(y+1)(y-1)}{(-y-1)} =$	24)	$\frac{-(x-1)(1-x)}{(x-1)^2} =$

Задание 5. Допишите выражение так, чтобы получилось верное равенство:

 \mathbf{A}

1)	$\frac{3}{7} = \frac{\dots}{42}$	$\frac{a}{3} = \frac{\dots}{15}$	$\frac{3}{a} = \frac{\dots}{5a}$	$\frac{1}{x^2} = \frac{\dots}{2x^2}$
2)	$\frac{11}{9} = \frac{\dots}{99}$	$\frac{6)}{9} = \frac{x}{27}$	$\frac{10)}{x} = \frac{4}{3x}$	$\frac{14)}{y^2} = \frac{\dots}{15y^2}$
3)	$\frac{2}{15} = \frac{\dots}{60}$	$\frac{2y}{3} = \frac{\dots}{39}$	$\frac{11)}{y} = \frac{\dots}{16y}$	$\frac{15)}{a^3} = \frac{\dots}{4a^3}$
4)	$\frac{7}{12} = \frac{\dots}{48}$	$\frac{3y}{8} = \frac{\dots}{32}$	$\frac{12)}{b} = \frac{\cdots}{4b}$	$\frac{16)}{x^4} = \frac{\dots}{5x^4}$

Б

$\frac{a}{b} = \frac{\dots}{2b}$	$\frac{a}{b} = \frac{\dots}{b^2}$	$\frac{a}{b} = \frac{\dots}{b^3}$	$\frac{a}{b} = \frac{\dots}{10b^3}$
$\frac{x}{y} = \frac{\dots}{3y}$	$\frac{x}{y} = \frac{\dots}{7y}$	$\frac{x}{y} = \frac{\dots}{y^2}$	$\frac{x}{y} = \frac{\dots}{4y^3}$
$\frac{2}{x} = \frac{\dots}{8xy}$	$\frac{2}{x} = \frac{\dots}{x^2 y}$	$\frac{2}{x} = \frac{\dots}{2xy^2}$	$\frac{2}{x} = \frac{\dots}{3x^2y^2}$
$\frac{7b}{a} = \frac{\dots}{3a}$	$\frac{7b}{a} = \frac{\dots}{2a^2}$	$\frac{7b}{a} = \frac{\dots}{ab}$	$\frac{7b}{a} = \frac{\dots}{3a^2b^2}$
$\frac{a^2}{2x} = \frac{\dots}{4x}$	$\frac{a^2}{2x} = \frac{\dots}{2x^2}$	$\frac{a^2}{2x} = \frac{\dots}{8xa^2}$	$\frac{a^2}{2x} = \frac{\dots}{6x^2a}$
$\frac{3x}{5b} = \frac{\dots}{15b}$	$\frac{3x}{5b} = \frac{\dots}{5b^2a}$	$\frac{3x}{5b} = \frac{\dots}{20b^3}$	$\frac{3x}{5b} = \frac{\dots}{5abx}$
$\frac{2a}{b^2} = \frac{\dots}{5b^2}$	$\frac{2a}{b^2} = \frac{\dots}{3b^3}$	$\frac{2a}{b^2} = \frac{\dots}{ab^2}$	$\frac{2a}{b^2} = \frac{\dots}{b^2 y}$
$\frac{1}{3ab} = \frac{\dots}{18ab}$	$\frac{1}{3ab} = \frac{\dots}{18a^2b}$	$\frac{1}{3ab} = \frac{\dots}{18a^2b^2}$	$\frac{1}{3ab} = \frac{\dots}{18ab^3}$
$\frac{3}{x^2y^2} = \frac{\dots}{6x^2y^2}$	$\frac{3}{x^2y^2} = \frac{\dots}{6x^3y^2}$	$\frac{3}{x^2y^2} = \frac{\dots}{6x^3y^3}$	$\frac{3}{x^2y^2} = \frac{\dots}{ax^2y^2}$
	$\frac{x}{y} = \frac{\dots}{3y}$ $\frac{2}{x} = \frac{\dots}{8xy}$ $\frac{7b}{a} = \frac{\dots}{3a}$ $\frac{a^2}{2x} = \frac{\dots}{4x}$ $\frac{3x}{5b} = \frac{\dots}{15b}$ $\frac{2a}{b^2} = \frac{\dots}{5b^2}$ $\frac{1}{3ab} = \frac{\dots}{18ab}$	$\frac{x}{y} = \frac{\dots}{3y}$ $\frac{x}{y} = \frac{\dots}{7y}$ $\frac{2}{x} = \frac{\dots}{8xy}$ $\frac{2}{x} = \frac{\dots}{x^2y}$ $\frac{7b}{a} = \frac{\dots}{3a}$ $\frac{a^2}{2x} = \frac{\dots}{4x}$ $\frac{a^2}{2x} = \frac{\dots}{2x^2}$ $\frac{3x}{5b} = \frac{\dots}{15b}$ $\frac{3x}{5b} = \frac{\dots}{5b^2a}$ $\frac{2a}{b^2} = \frac{\dots}{5b^2}$ $\frac{2a}{b^2} = \frac{\dots}{3b^3}$ $\frac{1}{3ab} = \frac{\dots}{18a^2b}$ $\frac{1}{3ab} = \frac{\dots}{18a^2b}$	$\frac{x}{y} = \frac{\dots}{3y} \qquad \qquad \frac{x}{y} = \frac{\dots}{7y} \qquad \qquad \frac{x}{y} = \frac{\dots}{y^2}$ $\frac{2}{x} = \frac{\dots}{8xy} \qquad \qquad \frac{2}{x} = \frac{\dots}{x^2y} \qquad \qquad \frac{2}{x} = \frac{\dots}{2xy^2}$ $\frac{7b}{a} = \frac{\dots}{3a} \qquad \qquad \frac{7b}{a} = \frac{\dots}{ab}$ $\frac{a^2}{2x} = \frac{\dots}{4x} \qquad \qquad \frac{a^2}{2x} = \frac{\dots}{2x^2} \qquad \qquad \frac{a^2}{2x} = \frac{\dots}{8xa^2}$ $\frac{3x}{5b} = \frac{\dots}{15b} \qquad \qquad \frac{3x}{5b} = \frac{\dots}{5b^2a} \qquad \qquad \frac{3x}{5b} = \frac{\dots}{20b^3}$ $\frac{2a}{b^2} = \frac{\dots}{5b^2} \qquad \qquad \frac{2a}{b^2} = \frac{\dots}{ab^2}$ $\frac{1}{3ab} = \frac{\dots}{18ab} \qquad \qquad \frac{1}{3ab} = \frac{\dots}{18a^2b^2}$

СУММА И РАЗНОСТЬ ДРОБЕЙ

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ДРОБЕЙ С ОДИНАКОВЫМИ ЗНАМЕНАТЕЛЯМИ

Задание 6. Выполните действие:

 \mathbf{A}

$$\frac{1}{7} + \frac{3}{7} =$$

 $6) \quad \frac{x}{5} - \frac{2}{5} =$

$$\frac{11)}{x} \frac{3a}{x} - \frac{4}{x} =$$

$$\frac{11}{15} - \frac{7}{15} =$$

 $7) \quad \frac{a}{3} + \frac{b}{3} =$

$$\frac{12)}{y^3} + \frac{x}{y^3} =$$

3)
$$\frac{3}{7} + \frac{a}{7} = \frac{3+a}{7}$$

8) $\frac{2a}{11} - \frac{b}{11} =$

$$\frac{13)}{a^2} \frac{5b}{a^2} - \frac{3b}{a^2} =$$

4)
$$\frac{2}{9} + \frac{x}{9} =$$

 $\frac{y^2}{8} - \frac{1}{8} =$

$$\frac{14)}{2y} - \frac{a}{2y} =$$

$$5) \qquad \frac{1}{10} + \frac{2x}{10} =$$

 $\frac{10)}{\frac{6}{x} + \frac{2}{x}} =$

$$\frac{15)}{b^2} + \frac{a}{b^2} =$$

Б

1)
$$\frac{x+2}{3} + \frac{x}{3} =$$

9) $\frac{x^2-y^2}{a} + \frac{2x^2}{a} =$

$$\frac{x+2}{3} - \frac{x}{3} =$$

 $\frac{10)}{a} \frac{x^2 - y^2}{a} - \frac{2x^2}{a} =$

3)
$$\frac{2a-3}{4} + \frac{a}{4} =$$

 $\frac{11}{a^2} \frac{2a+3b-5}{a^2} + \frac{5b}{a^2} =$

$$\frac{2a-3}{4} - \frac{a}{4} =$$

 $\frac{12)}{a^2} \frac{2a+3b-5}{a^2} - \frac{5b}{a^2} =$

5)
$$\frac{5b-a}{2} + \frac{a}{2} =$$

 $\frac{13)}{3a} + \frac{3x^2}{3a} =$

$$6) \quad \frac{5b-a}{2} - \frac{a}{2} =$$

 $\frac{14)}{3a} \frac{8-x^2+2x}{3a} - \frac{3x^2}{3a} =$

$$7) \quad \frac{3-2x}{a} + \frac{x}{a} =$$

 $\frac{15)}{4ab} + \frac{7b}{4ab} =$

R

$\frac{5}{7} - \frac{2+x}{7} = \frac{5 - (2+x)}{7} = \frac{3-x}{7}$	$\frac{2}{3a} - \frac{3b+4}{3a} =$
$\frac{2}{3} - \frac{1-x}{3} =$	$\frac{10)}{3y} - \frac{2x+5}{3y} =$
$\frac{x}{2} - \frac{2x+3}{2} =$	$\frac{11)}{a^2} \cdot \frac{a-7}{a^2} - \frac{15+2a}{a^2} =$
$\frac{a}{5} - \frac{9-a}{5} =$	$\frac{12)}{2y} - \frac{3x - 6}{2y} =$
$\frac{b}{y^2} - \frac{b-a}{y^2} =$	$\frac{13)}{a} \frac{5x-2y}{a} - \frac{3x+y}{a} =$
$\frac{a}{2x} - \frac{a+b}{2x} =$	$\frac{14)}{3b} \frac{12a + 5b}{3b} - \frac{2a - b}{3b} =$
$\frac{m}{6x} - \frac{m+a}{6x} =$	$\frac{15)}{xy} \frac{14m-n}{xy} - \frac{2n-3m}{xy} =$
$\frac{2a}{11b} - \frac{a+2}{11b} =$	$\frac{3a^3 + x}{4a} - \frac{5x - 2a^3}{4a} =$
	$\frac{2a}{a^2} - \frac{a+2}{a} =$

Γ

1)	$\frac{2}{x-3} + \frac{a}{3-x} = \frac{2}{x-3} - \frac{a}{x-3} = \frac{2-a}{x-3}$	6)	$\frac{a+5}{b-4} + \frac{a}{4-b} =$
2)	$\frac{1}{a-2} + \frac{b}{2-a} =$	7)	$\frac{x^2+2}{y-5} + \frac{2}{5-y} =$
3)	$\frac{m}{b-y} - \frac{8}{y-b} =$	8)	$\frac{3a}{2b-5} - \frac{4a}{5-2b} =$
4)			$\frac{2}{a-1} - \frac{4}{-a+1} =$
5)	$\frac{3y}{x-a} + \frac{2y}{a-x} =$	10)	$\frac{b}{x-3} + \frac{a}{-x+3} =$

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ

Задание 7. Найдите наименьшее общее кратное выражений:

 \mathbf{A}

4.	2 2	11) 0	04) 0
1)	2 и 3	11) 2х и ху	$21) x^2 u x$
		Ответ: $2xy$.	
2)	5 и 7	12) 7а и 3	22) _{а и а³}
3)	12 и 9	13) ху и 7у	23) y ² _M y ³
			у и у
4)	15 и 45	14) 6а и 5b	24) ab и b ²
5)	20 и 30	15) 12х и 4у	25) xy^2 M x^2
		,	
6)	2х и 3х	16) 8b и 24ab	26) _{а²b и аb²}
		, 60 ii 2 iii	7 a o n ao
7)	5а и 7а	17) 9ах и 12а	27) _{2х² и 3х}
8)	6b и 8b	18) 2х и 3ху	28) 8a ³ и 4a ⁵
		,	ow if iw
9)	12у и 16у	19) ав и ах	29) 5 <i>ху</i> ² и 10 <i>х</i> ²
	_y 10y	, 33 11 411	у олу и 10 <i>х</i> -
10)	5р и 3р	20) хи 5уг	30) _{9a² и 3a³b}
		y og w	у эи и эи о

Б

1)	$\left(a+b\right)$ и $\left(a+b\right)^2$	6) $5(a-b)$ и $11(a-b)$
2)	$(x+3)^3$ и $(x+3)$	7) $2(x+3)$ и $2(x-3)$
3)	(y-5) и $(y-5)$ $(y+5)$	8) $10(a-1)$ и $10(a+1)$
4)	(4-x)(4+x)u(4+x)	9) $(b+1)^2$ и $(b+1)(b-1)$
5)	2(x+y) и $3(x+y)$	10) $(x+2)(x-2)$ $\bowtie (x-2)^2$

Задание 8. Выполните действие:

	A		Б
1)	$\frac{1}{2} + \frac{x}{3} =$	$\frac{a}{4} + \frac{b}{8} =$	
2)	$\frac{2}{5} + \frac{a}{2} =$	$\frac{n}{10} - \frac{m}{5} =$	
3)	$\frac{y}{7} - \frac{x}{3} =$	$\frac{6}{25} + \frac{a}{100} =$	
4)	$\frac{2}{a} + \frac{1}{3} =$	$\frac{1}{2a} + \frac{1}{2b} =$	
5)	$\frac{2}{a} + \frac{1}{3} =$ $\frac{x}{y} + \frac{2}{3} =$	$\frac{1}{6x} - \frac{1}{6y} =$	
6)	$\frac{5}{a} + \frac{1}{b} =$	$\frac{3}{5c} - \frac{2}{15c} =$	
7)	$\frac{5}{a} + \frac{1}{b} =$ $\frac{c}{7} - \frac{2}{a} =$	$\frac{x}{3a} + \frac{3x}{6a} =$	
8)	8 <i>a</i> _	$\frac{a}{28m} - \frac{a}{7m} =$	
9)	$\frac{\overline{b} - \overline{c}}{x} - \frac{y}{3} =$	$\frac{b}{10x} + \frac{a}{15x} =$	
10)	$\frac{3x}{a} + \frac{2y}{b} =$	$\frac{5x}{12a} - \frac{2y}{9a} =$	

		12a 9a
	В	Γ
1)	$\frac{2}{5a} + \frac{1}{6b} =$	$\begin{array}{c c} 1) & \frac{5}{x} + \frac{2}{x^2} = \end{array}$
2)	$\frac{1}{7c} - \frac{1}{5d} =$	$\frac{8}{a^3} - \frac{3}{a} =$
3)	$\frac{5}{8x} + \frac{1}{12y} =$	$\frac{5}{x^3} + \frac{a}{x^2} =$
4)	$\frac{11}{12k} - \frac{5}{18c} =$	3) $\frac{5}{x^3} + \frac{a}{x^2} =$ 4) $\frac{1}{b^5} + \frac{c}{b^3} =$
5)	$\frac{a}{6x} + \frac{4}{9xy} =$ $\frac{3}{300} - \frac{x}{4x} =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6)	20bc $15c$	$\frac{x}{8c^2} - \frac{5}{12c} =$
7)	$\frac{3}{ab} + \frac{2}{ac} =$	$\frac{9}{10b^2} - \frac{8}{2b^3} =$
8)	$\frac{1}{m_1} - \frac{1}{m_2} =$	7) $\frac{9}{10b^2} - \frac{8}{2b^3} =$ 8) $\frac{a}{16n^2} + \frac{b}{24n^3} =$
9)	$\frac{2}{ab} - \frac{2}{cx} = \frac{5}{abx} + \frac{z}{acy} = \frac{5}{abx} + \frac{5}{a$	$\frac{y}{12c^4} + \frac{x}{18c^6} =$
10)	$\frac{5}{abx} + \frac{z}{acy} =$	$\begin{vmatrix} 9 & \frac{y}{12c^4} + \frac{x}{18c^6} = \\ 10) & \frac{5}{ab^7} - \frac{3}{cb^5} = \end{vmatrix}$

	Д		E
1)	$1 + \frac{x}{3} =$	1)	$\frac{1}{\left(a+b\right)^2} + \frac{1}{a+b} =$
	$\frac{y}{5} + a =$		$\frac{1}{a-b} + \frac{1}{\left(a-b\right)^2} =$
3)	$2-\frac{x}{y}=$	3)	$\frac{1}{x-y} - \frac{1}{\left(x-y\right)^2} =$
4)	$\frac{1}{x} - 7 =$	4)	$\frac{3}{\left(n-m\right)^2} + \frac{1}{n-m} =$
	$-1+\frac{a}{2}=$	5)	$\frac{2}{x+y} - \frac{a}{\left(x+y\right)^2} =$
6)	$-a + \frac{1}{x} =$	6)	$\frac{5}{2a+b} - \frac{x}{\left(2a+b\right)^2} =$
	$2a + \frac{1}{5} =$	7)	$rac{1}{ig(m\!-\!2nig)^2}\!-\!rac{1}{ig(m\!-\!2nig)^3}\!=\!$
8)	$-3c - \frac{x}{2} =$	8)	$\frac{3}{2(x+y)} + \frac{b}{(x+y)^2} =$
9)	$a^2 + \frac{1}{a} =$	9)	$\frac{x}{\left(a-b\right)^2} + \frac{2}{5\left(a-b\right)} =$
10)	$\frac{2y}{x^2} - x =$	10)	$\frac{b}{(x-y)^3} + \frac{10}{3(x-y)^2} =$

	Ж
1)	$\frac{3}{x+y} + \frac{2}{x} = \frac{3x+2(x+y)}{x(x+y)} = \frac{3x+2x+2y}{x(x+y)} = \frac{5x+2y}{x^2+xy}$
2)	$\frac{a}{a+1} + \frac{1}{a-1} =$
3)	$\frac{4}{x-3} - \frac{1}{x+3} =$
4)	$\frac{c-1}{c+2} - \frac{c-2}{c+1} =$
5)	$\frac{x+b}{3x} - \frac{x}{x+b} =$
6)	$\frac{a-b}{a+b} + \frac{a+b}{a-b} =$
7)	$\frac{3ab-a^2}{(a-b)(a+b)} + \frac{2a}{a-b} =$
8)	$\frac{2y}{y-x} - \frac{3x}{y+x} =$

ПРОИЗВЕДЕНИЕ И ЧАСТНОЕ ДРОБЕЙ

УМНОЖЕНИЕ ДРОБЕЙ. ВОЗВЕДЕНИЕ ДРОБИ В СТЕПЕНЬ

Задание 9. Выполните действие:

	пис от выполните дейсты				
1)	$\frac{6}{25} \cdot \frac{5}{12} =$	11)	$\frac{3}{a} \cdot \frac{2a}{15} =$	21)	$\frac{1}{a-b} \cdot \frac{1}{a+b} =$
2)	$\frac{15}{22} \cdot \frac{11}{20} =$	12)	$\frac{9c}{8} \cdot \frac{56}{3c} =$	22)	$\frac{1}{2(c-3)} \cdot \frac{1}{(c-3)} =$
3)	$\frac{7}{4} \cdot \frac{12}{35} =$	13)	$\frac{1}{13b} \cdot \frac{26}{3} =$	23)	$\frac{3+c}{4} \cdot \frac{9}{2(3+c)} =$
4)	$\frac{18}{5} \cdot \frac{40}{9} =$	14)	$\frac{4k}{9} \cdot \frac{27}{20} =$	24)	$\frac{5(x+y)}{63} \cdot \frac{7}{3(x+y)} =$
5)	$\frac{2}{15} \cdot \frac{3}{8} =$	15)			$\frac{\left(b-2\right)^2}{a} \cdot \frac{8}{\left(b-2\right)} =$
6)	$\frac{6}{11} \cdot \frac{15}{8} \cdot \frac{22}{5} =$	16)	$\frac{3x}{2} \cdot \frac{6}{x^2} =$	26)	$\frac{4c^3}{(x-y)} \cdot \frac{(x-y)^2}{40c} =$
7)	$\frac{3}{10} \cdot \frac{35}{36} \cdot \frac{24}{7} =$	17)			$\frac{3b}{a} \cdot 2 =$
8)	$\frac{20}{3} \cdot \frac{9}{28} \cdot \frac{14}{75} =$	18)	$\frac{32a^3}{9} \cdot \frac{18}{12a^2} =$	28)	$\frac{5x}{4} \cdot 8 =$
9)	$\frac{30}{19} \cdot \frac{13}{100} \cdot \frac{20}{39} =$	19)	$\frac{10}{x^3} \cdot \frac{6x}{25} \cdot \frac{x}{9} =$	29)	$\frac{12a^2}{5} \cdot 15a =$
10)	$\frac{16}{5} \cdot \frac{15}{14} \cdot \frac{63}{24} =$	20)	$\frac{3}{a} \cdot \frac{a^2}{12} \cdot \frac{8}{a^3} =$	30)	$\frac{9}{16m} \cdot 48m^2 =$

Задание 10. Определите, является ли тождеством данное равенство:

1)	x-2=-(2-x) x-2=-2+x, верно Ответ: да.	9) $10-d=-(10-d)$
2)	6-x=x-6 Ответ: нет; например, при $x=0$ получается $5=-5$, что неверно.	10) -b-c = -c-b
3)	3+a=a+3	11) $25-x^2=-(x^2-25)$
4)	y-7=-(y+7)	12) $(b+2)^2 = (2+b)^2$
5)	$1+b=-\left(-1-b\right)$	13) $(x-y)^2 = (y-x)^2$
6)	16-a = -(-16+a)	14) $(a-3)^2 = -(3-a)^2$
7)	k-y=-y+k	15) $(m-2)^2 = (2-m)^2$
8)	$4+p=-\big(4-p\big)$	$16) b^2 + 4 = 4 + b^2$

Задание 11. Каждому выражению из первой строки поставьте в соответствие тождественно равное ему выражение из второй строки:

1)	A	Б	В	Г	д
	$(x-3)^2$	-(x-3)	-(x + 3)	x + 3	$x^2 + 6x + 9$

1	2	3	4	5	6
3-x	-x - 3	$(3-x)^2$	$-(x-3)^2$	3+x	$(3+x)^2$

Ответ:	A	Б	В	Γ	Д

2)	A	Б	В	Γ	Д
	x-2	$(x-2)^2$	-(x + 2)	-x+2+2x	$4+4x+x^2$

1	2	3	4	5	6
-x-2	$(2+x)^2$	$(2-x)^2$	$x^2 - 4$	x + 2	-(2-x)

Ответ: А Б В Г Д

3)	A	Б	В	Γ	Д
	$(x-p)^2$	x-p	-(x+p)	$(x + p)^2$	$-x^2-2xp-p^2$

1	2	3	4	5	6
$x^2 + 2xp + p^2$	-(p-x)	-(p+x)	$x^2 + p^2$	$-(x+p)^2$	$(p - x)^2$

Ответ: А Б В Г Д

4)	A	Б	В	Γ	Д
	$(x-1)^2$	-(x-1)	-(x+1)	$-(1-x^2)$	$x^2 + 2x + 1$

1	2	3	4	5	6
$(1+x)^2$	1-x	$1 + x^2$	$x^2 - 1$	$(1-x)^2$	-x - 1

Ответ: А Б В Г Д

5)	A	Б	В	Γ	Д
	$(a + b)^2$	-(a-b)	-(a+b)	a^2-b^2	(a-b)(a-b)

1	2	3	4	5	6
(a-b)(a+b)	-a-b	$b^2 + a^2$	$(b-a)^2$	b-a	$\left a^2 + 2ab + b^2 ight $

Ответ: А Б В Г Д

ПРЕОБРАЗОВАНИЕ РАЦИОНАЛЬНЫХ ВЫРАЖЕНИЙ

Задание 12. Выполните действие:

Оиди	ние 12. Выполните деиствие.	
1)	$\frac{1}{x} + \frac{1}{y} =$	$\frac{1}{m-1} + \frac{m}{1-m} =$
2)	$\frac{1}{a} - \frac{1}{b} =$	$\frac{17)}{a+3} : \frac{2a}{a+3} =$
3)	$\frac{x}{y^2} \cdot \frac{xy}{3} =$	$\frac{(a+3)^2}{2x^2} \cdot \frac{x}{(a+3)} =$
4)	$\frac{x}{2y} + \frac{y}{x} =$	$\frac{n^2}{9a} + \frac{n^2}{3a} =$
5)	$\frac{a+5}{3a} \cdot \frac{a^2}{a+5} =$	$\frac{a+3}{a-7} \cdot \frac{7-a}{a+3} =$
6)	$\frac{25}{x}:\frac{10}{x^2}=$	$\frac{3x^2}{5y}: \frac{9x}{25y} =$
7)	$\frac{x}{x+3} + \frac{3}{x+3} =$	$\frac{4(3a+1)}{a^2} - \frac{12}{a} =$
8)	$\frac{2x}{3y}:\frac{x^2}{y^2}=$	$\frac{23)}{a-6} + \frac{a+5}{6-a} =$
9)	$\frac{a}{b-1} \cdot \frac{b-1}{2} =$	$1-\frac{a}{x}=$
10)	$\frac{3x}{a-2} \cdot \frac{\left(2-a\right)}{9} =$	$1 - \frac{1}{1+a} =$
11)	$\frac{a}{2} + \frac{a-5}{3} =$	$x + \frac{x}{3} =$
12)	$\frac{3}{x(x+5)} \cdot \frac{2(x+5)}{x} =$	$\frac{27)}{x} \cdot 3 =$
13)	$\frac{2}{a-2} + \frac{2}{a} =$	$28) ax \cdot \frac{ax - 1}{x} =$
14)	$\frac{6y+1}{2x}:\frac{1}{x}=$	$(a-1) + \frac{a}{2} =$
15)	$\frac{b+2}{b^2-9} - \frac{b}{9-b^2} =$	$\frac{x+2}{(x-2)^2} \cdot \frac{5(x-2)}{(x+2)} =$

ФУНКЦИЯ $y = \frac{k}{x}$ И ЕЁ ГРАФИК

Задание 13. Впишите такое число, чтобы получились координаты точки, принадлежащей графику функции:

$y = \frac{1}{x}$	$y = -\frac{1}{x}$	$y = \frac{2}{x}$	$y = \frac{1}{ x }$
1) (2;)	16) (3;)	31) (1;)	46) (5;)
2) (1;)	17) (-7;)	32) (-1;)	47) (1;)
3) (5;)	18) (-2;)	33) (4;)	48) (-5;)
4) (-1;)	19) $\left(\frac{1}{3};\dots\right)$	34) (-10;)	49) (-9;)
$5) \left(\frac{1}{2}; \dots\right)$	$20)$ $\left(\frac{2}{5};\dots\right)$	35) $\left(\frac{1}{4};\ldots\right)$	50) $\left(\frac{1}{7};\dots\right)$
$6) \left(\frac{1}{7}; \dots\right)$	$21) \left(-\frac{1}{4}; \dots\right)$	$36) \left(\frac{1}{5}; \dots \right)$	51) $\left(-\frac{1}{6};\ldots\right)$
7) (-10;)	$22)\left(-rac{1}{5};\ldots ight)$	37) (-8;)	52) (-100;)
8) $\left(\ldots;\frac{1}{2}\right)$	23) (4;)	38) $\left(\ldots;\frac{1}{4}\right)$	53) $\left(\ldots;\frac{1}{6}\right)$
9) $\left(; -\frac{1}{4} \right)$	24) (1;)	39) $\left(; -\frac{1}{2} \right)$	$54) \left(\dots; \frac{1}{10} \right)$
10) (; 5)	25) (; -8)	40) (; 1)	55) (; 1)
11) (; -10)	26) (; 1)	41) (; -1)	56) (; 4)
12) $\left(\ldots;\frac{2}{3}\right)$	27) $\left(; -\frac{1}{25} \right)$	42) $\left(\ldots;\frac{2}{7}\right)$	57) $\left(\ldots;\frac{2}{9}\right)$
13) (; 9)	28) (; -6)	43) (; 4)	58) (; 8)
14) $\left(; -\frac{1}{12} \right)$	29) (; 2,5)	44) (;-2)	$59) \left(; \frac{1}{2} \right)$
15) (; 1)	30) (; -5)	45) (; 10)	60) (; 5)

Задание 14. Заполните таблицу значений x и y и постройте график функции:

l			2
4)	y	=	_
			\boldsymbol{x}

x	-2	-1	-0,5	0,5	1	2
y	-0,5	-1	-2			

x	-4	-2	-1	1	
y	-0,5	-1	-2		

2)
$$y = -\frac{3}{x}$$

5)	11	_	_	1
9)	9	_		r

\boldsymbol{x}	-3	-2	-1		
y		1,5			

x	-2	-1	-0,5		
y					

3)
$$y = \frac{-2}{x}$$

<i>6</i>)	,, <u> </u>	. 1
O)	<i>y</i> –	$\overline{2x}$

x	-2	-1	-0,5		
y					

x		1	0,5	0,25
y		0,5	1	2

Задание 15. Используя графики функций, построенные в одной системе координат, решите уравнение:

🦻 Указание: найдите абсциссы точек пересечения графиков.

ПРЕДСТАВЛЕНИЕ ДРОБИ В ВИДЕ СУММЫ ДРОБЕЙ

Задание 16. Представьте дробь в виде суммы дробей:

1	писто. Представыте дроов в виде суммы	LI.	
1)	$\frac{a+b}{3} = \frac{a}{3} + \frac{b}{3}$		$\frac{8a+3b}{4} = \frac{8a}{4} + \frac{3b}{4} = 2a + \frac{3b}{4}$
2)	$\frac{x+4}{5}$ =	17)	$\frac{5x-2y}{10} =$
3)	$\frac{6+x}{y}$ =	18)	$\frac{3a+2}{a}$ =
4)	$\frac{3a+b}{2}$ =	19)	$\frac{5b+6a}{b} =$
5)	$\frac{3x+5y}{a} =$	20)	$\frac{3x-7}{x}$ =
6)	$\frac{2b-a}{7} =$	21)	$\frac{4x^2+3}{x} =$
7)	$\frac{x-3y}{10} =$	22)	$\frac{5a^2+3b}{a} =$
8)	$\frac{-a+5}{4}$ =	23)	$\frac{7x^2 + 8y}{x^2} =$
9)	$\frac{x+3}{2a} =$	24)	$\frac{a+3+b}{a+3} =$
10)	$\frac{a+b+1}{a+b} = \frac{a+b}{a+b} + \frac{1}{a+b} = 1 + \frac{1}{a+b}$	25)	$\frac{x-5-y}{x-5} =$
11)	$\frac{2a+y-3}{2a+y} =$	26)	$\frac{3a+1+2b}{3a+1} =$
12)	$\frac{6a+3b+7}{5} =$		$\frac{6x+2y-3}{2y-3} =$
13)	$\frac{5x+3y-6}{7b} =$		$\frac{x+1-y}{1-y} =$
	$\frac{3a-9b-7}{4} =$	29)	$\frac{3x+3y-1}{x+y} =$
15)	$\frac{10b-8a-1}{3x^2} =$	30)	$\frac{10+5x+1}{2+x} =$

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Задание 17. Определите, верно ли утверждение. Если утверждение неверно, объясните, почему.

🤰 Важно знать:

1)	$2 \in N$ Ответ: да.	$16) \frac{1}{2} \notin N$
2)	$3 \in N$	17) −6 ∈ <i>Z</i>
3)	$0 \in N$ Ответ: нет; $0 \notin N$.	18) $0,3 \notin Z$
4)	$0 \in Z$	19) $0 \in Q$
5)	$2 \notin Z$	20) $31,2 \in Q$
6)	$-3 \in N$	21) $-0.3 \notin Z$
7)	1,3 otin N	$\frac{22)}{5} \in Q$
8)	$-21 \notin Z$	23) -1 ∉ <i>Q</i>
9)	12 ∉ N	$\frac{24)}{2} \in N$
10)	1000 ∈ <i>N</i>	$(-3)^2 \in N$
11)	$3,3 \in N$	26) $-5^2 \in N$
12)	-6,5 otin Z	$1\frac{5}{13} \in Q$
13)	81 ∈ <i>N</i>	$10\frac{1}{8} \notin Z$
14)	$-63 \in Z$	$\left(-\frac{1}{2}\right)^2 \in Z$
15)	0,0001 ∉ <i>N</i>	$30) \left(\frac{5}{2}\right)^2 \in N$

Задание 18. Можно ли представить число в виде конечной десятичной дроби? Запишите его, если это возможно.

Важно знать: несократимую обыкновенную дробь можно представить в виде конечной десятичной только в том случае, если знаменатель этой обыкновенной дроби не имеет никаких простых делителей, кроме 2 или 5.

1)	Ответ: да, 0,15.	$\frac{16)}{12} =$
2)	$\frac{2}{5}$ =	$\frac{17)}{30} = \frac{1}{6} = \frac{1}{2 \cdot 3}$ Ответ: нет.
3)	$\frac{1}{2}$ =	$\frac{18)}{125} =$
4)	$\frac{2}{3}$ =	$\frac{120}{19)} \frac{3}{6} =$
5)	$\frac{1}{15}$ =	$\frac{20)}{26} =$
6)	$\frac{7}{25}$ =	$1\frac{1}{2} =$
7)	$\frac{1}{4}$ =	$3\frac{1}{4} =$
8)		$4\frac{3}{4} =$
9)	$\frac{1}{125} =$	$24) 2\frac{1}{3} =$
10)	$\frac{7}{20} =$	$1\frac{3}{60} =$
11)	$\frac{11}{50} =$	$\frac{5}{2} =$
	$\frac{5}{6}$ =	$\frac{5}{4} =$
13)	21	$\frac{1}{16} =$
14)	$\frac{1}{2}$	$\frac{5}{8} =$
15)	$\frac{3}{4} =$	$\frac{30}{40} = \frac{3}{40} = \frac{3}{40}$

Задание 19.

	Запишите бесконечную десятичную	Запишите число в виде фрагмента
	дробь в виде периодической и укажите ее период	бесконечной десятичной дроби, повторив период трижды
1)	0,333 = 0,(3)	11) 1,(52)=1,525252
	период дроби: 3	
2)	0,777 =	12) 0,(27) =
	период дроби:	
3)	1,4141 =	$13) \ \ 3,0(16) =$
	период дроби:	
4)	1,265265 =	14) 2,(6) =
	период дроби:	
5)	0,3737 =	15) 2,6 =
	период дроби:	
6)	5,555 =	16) 5,36(41) =
	период дроби:	
7)	6,0444 =	17) 4,082(3) =
	период дроби:	
8)	1,52323 =	18) 0,(126) =
	период дроби:	
9)	10,00222 =	19) 8 =
	период дроби:	
10)	4,21888 =	20) 12,(5) =
	период дроби:	

Задание 20. Для каждого числа укажите:

	первую цифру после запятой	вторую цифру после запятой	десятую цифру после запятой	приближённое значение с точностью до 0,1	приближённое значение с точностью до 0,01
1) 0,(4)					. , , , , ,
2) 1,(16)					
3) 5,2(7)					
4) 21,3					
5) 15					

Задание 21. На координатной прямой точками A, B, C и D отмечены некоторые числа. Определите, какой точкой обозначено каждое из этих чисел. Найдите длину отрезка AD:

1)	$egin{array}{cccccccccccccccccccccccccccccccccccc$	D	—	A	B	C	D	AD =
	-1; 2; 0; -1,5							

2)	A B	Ç	D		\boldsymbol{A}	В	C	D	AD =
	2; 0; -2,088; 1,	1							

3)	A B	C D		\boldsymbol{A}	В	\boldsymbol{C}	D	AD =
	-0,7; 0,6; 1;	-1,3						

4)	A B C	$\stackrel{D}{\longrightarrow}$	\boldsymbol{A}	В	C	D	AD =
	-3,5; -3,29; 3,1; -0,	09					

Указание: сравните данные числа и расположите их в порядке возрастания. Чтобы найти длину отрезка AD, из координаты точки D вычтите координату точки A.

Задание 22. Какому из данных промежутков принадлежит число?

						,
		A	В	C	D	
1)	$\frac{3}{7} \approx 0,42 \dots,$ $0,4 < 0,42 \dots < 0,5$	[0,3; 0,4]	[0,4; 0,5]	[0,5; 0,6]	[0,6; 0,7]	Ответ: В
2)	$\frac{5}{7}$	[0,4; 0,5]	[0,5; 0,6]	[0,6; 0,7]	[0,7; 0,8]	
3)	$\frac{5}{22}$	[0,1; 0,2]	[0,2; 0,3]	[0,3; 0,4]	[0,4; 0,5]	
4)	$\frac{6}{11}$	[0,3; 0,4]	[0,4; 0,5]	[0,5; 0,6]	[0,6; 0,7]	
5)	47 60	[0,6; 0,7]	[0,7; 0,8]	[0,8; 0,9]	[0,9; 1]	
6)	$\frac{7}{12}$	[0,4; 0,5]	[0,5; 0,6]	[0,6; 0,7]	[0,7; 0,8]	

Указание: разделите числитель на знаменатель и определите, какому из данных отрезков принадлежит число.

Задание 23.

$oldsymbol{R}$ — множество действительных чисел

Q рациональные числа (бесконечные периодические десятичные дроби)

I иррациональные числа (бесконечные непериодические десятичные дроби)

	Какие целые числа расположены между числами?	Найдите какие-нибудь два числа, расположенные между числами
1)	$-0,2$ и $2,2$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6) $\frac{2}{3}$ и $\frac{5}{7}$
2)	6,32 и 9,001	7) 0и0,1
3)	−5,1 и −3,41	8) 1,3 и 1,(3)
4)	0,009 и 1,3	$\frac{1}{2}$ и 0,52
5)	Оиπ	10) 3,1 и π

Задание 24. На координатной прямой отмечена точка A, которая соответствует одному из указанных чисел. Какому из четырех чисел соответствует точка A?

1)	10 A 20	$\frac{50}{2}$; 11; $\frac{90}{9}$; 18,003.	
			Ответ:
2)	$\begin{array}{c c} \hline 0 & A & 10 \\ \hline \end{array}$	$-2,2;$ $\frac{42}{3};$ $\frac{17}{2};$ $3,0(1).$	
			Ответ:
3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{8}{9}$; 4,1; -2; $\frac{19}{3}$.	
			Ответ:
4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0,01; \frac{3}{2}; \pi; 5,(1).$	
			Ответ:
5)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\pi; 6.8; \frac{9}{2}; 0.4).$	
			Ответ:

Указание: сравните данные числа и расположите их на координатной прямой.

КВАДРАТНЫЕ КОРНИ. АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ

Задание 25. Вычислите.

Важно знать: арифметическим квадратным корнем из числа а называется неотрицательное число, квадрат которого равен а.

$$\sqrt{a} = b$$
, $ec\pi u \ 1) \ b \ge 0$; 2) $b^2 = a$.

A

1) $\sqrt{25} =$	11) $\sqrt{2500} =$	$21) \sqrt{\frac{1}{25}} =$	31) $\sqrt{0,25} =$
$2) \sqrt{36} =$	12) $\sqrt{3600} =$	$\sqrt{\frac{1}{36}} =$	32) $\sqrt{0,0036} =$
$\sqrt{3}$ $\sqrt{49}$ =	13) $\sqrt{4900} =$	$\sqrt{\frac{1}{49}} =$	33) $\sqrt{0,49} =$
$\sqrt{81} =$	14) $\sqrt{810000} =$	$\sqrt{\frac{4}{81}} =$	$34)$ $\sqrt{0,0081} =$
$5) \sqrt{16} =$	15) $\sqrt{1600} =$	$\sqrt{\frac{16}{81}} =$	35) $\sqrt{0,16} =$
$6) \sqrt{9} =$	16) $\sqrt{90000} =$	$\sqrt{\frac{9}{16}} =$	$36) \sqrt{0,0009} =$
$\sqrt{1} = \sqrt{1}$	17) $\sqrt{100} =$	$\sqrt{\frac{1}{10000}} =$	$37) \sqrt{0,01} =$
$8) \sqrt{400} =$	18) $\sqrt{4} =$	$\sqrt{\frac{9}{400}} =$	38) $\sqrt{0,04} =$
9) $\sqrt{64}$ =	19) $\sqrt{640000} =$	$\sqrt{\frac{49}{64}} =$	$39) \sqrt{0,0064} =$
10) $\sqrt{625} =$	$20)$ $\sqrt{62500} =$	$\sqrt{\frac{81}{625}} =$	$40)$ $\sqrt{6,25} =$

Б

D				
1)	$\sqrt{121}$ =	$7) \sqrt{1,69} =$	$\sqrt{\frac{49}{100}} =$	$\sqrt{\frac{27}{300}} =$
2)	$\sqrt{256} =$	8) $\sqrt{0,0289} =$	$14)$ $\sqrt{\frac{9}{196}} =$	$\frac{20}{\sqrt{\frac{18}{50}}} =$
3)	$\sqrt{169} =$	9) $\sqrt{25600} =$	15) $\sqrt{\frac{121}{144}}$	$\sqrt{\frac{12}{27}} =$
4)	$\sqrt{144} =$	10) $\sqrt{6,25} =$	$16)$ $\sqrt{\frac{1}{225}} =$	$22)$ $\sqrt{1\frac{7}{9}} =$
5)	$\sqrt{196} =$	11) $\sqrt{1,21} =$	$\sqrt{\frac{100}{169}} =$	$\sqrt{2\frac{7}{81}} =$
6)	$\sqrt{289} =$	12) $\sqrt{19600} =$	$18) \sqrt{\frac{9}{625}} =$	$\sqrt{3\frac{1}{16}} =$

Указание: для нахождения значения квадратного корня воспользуйтесь таблицей квадратов (см. Справочные материалы).

Задание 26. Имеет ли смысл данное выражение?

 $oldsymbol{9}$ Важно знать: при a < 0 выражение \sqrt{a} не имеет смысла.

1)	$\sqrt{25}$ $25\!\geq\!0$, верно.	6)	$-\sqrt{16}$	$11) \sqrt{\frac{-1}{25}}$	16) $\sqrt{-9 \cdot 100}$
2)	Ответ: да. $\sqrt{-36}$ $-36 \ge 0$, неверно.	7)	$-\sqrt{-4}$	12) $\sqrt{-\frac{1}{100}}$	17) $\sqrt{-36 \cdot (-4)}$
3)	Ответ: нет. √-9	8)	$\sqrt{-(-5)}$	13) $\sqrt{(-3)^2}$	18) $\sqrt{-(-3)^2}$
4)	$\sqrt{3}$	9)	$\sqrt{\frac{-3}{10}}$	14) $\sqrt{(-7)^2}$	19) $-\sqrt{-9^2}$
5)	$\sqrt{100}$	10)	$\sqrt{\frac{-4}{-9}}$	15) $\sqrt{(-7)^3}$	20) $\sqrt{-49}$

Задание 27. Найдите значение выражения.

Важно знать: npu $a \ge 0$ $(\sqrt{a})^2 = a$.

A

1)	$\sqrt{25} + \sqrt{4} =$	6) $\sqrt{169} - \sqrt{9} =$	11) $\sqrt{2500} + \sqrt{25} =$	$16) \sqrt{\frac{49}{81}} + \sqrt{49} =$
2)	$\sqrt{36} + \sqrt{9} =$	$7) \sqrt{400} - \sqrt{144} =$	12) $\sqrt{0,01} + \sqrt{16} =$	$17) \sqrt{\frac{1}{25}} + \sqrt{1} =$
3)	$\sqrt{16} + \sqrt{100} =$	$8) \sqrt{64} + \sqrt{81} =$	$13) \sqrt{1} + \sqrt{0} =$	18) $\sqrt{16} - \sqrt{0,04} =$
4)	$\sqrt{121} + \sqrt{49} =$	9) $\sqrt{225} - \sqrt{49} =$	$14) \sqrt{0,04} + \sqrt{36} =$	19) $\sqrt{100} - \sqrt{144} =$
5)	$\sqrt{625} - \sqrt{25} =$	10) $\sqrt{4} + \sqrt{100} =$	$15) \sqrt{\frac{1}{4}} + \sqrt{4} =$	20) $\sqrt{0} - \sqrt{\frac{1}{36}} =$

$21) 3 \cdot \sqrt{4} =$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$31) 2 \cdot \sqrt{\frac{1}{4}} =$	$4 \cdot \sqrt{\frac{9}{64}} =$
22) $5 \cdot \sqrt{100} =$	$27) \ \ 10 \cdot \sqrt{0,36} =$	$7 \cdot \sqrt{\frac{1}{49}} =$	$-10 \cdot \sqrt{\frac{1}{100}} =$
23) $11.\sqrt{4} =$	$28) -4 \cdot \sqrt{225} =$	$\frac{1}{3} \cdot \sqrt{900} =$	38) $-31 \cdot \sqrt{0} =$
$24) 8 \cdot \sqrt{25} =$	$29) -2 \cdot \sqrt{900} =$	$\frac{1}{15} \cdot \sqrt{225} =$	$39) 2 \cdot \sqrt{\frac{169}{4}} =$
25) $0,2 \cdot \sqrt{16} =$	30) $-0.3 \cdot \sqrt{4} =$	$\frac{35)}{5} \cdot \sqrt{625} =$	$-0.5 \cdot \sqrt{\frac{64}{81}} =$

Б

1)	$\left(\sqrt{3}\right)^2 =$	6)	$\sqrt{8} \cdot \sqrt{8} =$	11)	$2\cdot\left(\sqrt{3}\right)^2=$	16)	$\left(\sqrt{7}\right)^2 - 3 =$
2)	$\left(\sqrt{5}\right)^2 =$	7)	$\sqrt{11} \cdot \sqrt{11} =$	12)	$5\cdot\left(\sqrt{2}\right)^2=$	17)	$25 - \left(\sqrt{25}\right)^2 =$
3)	$\left(\sqrt{2}\right)^2 =$	8)	$\sqrt{\frac{1}{7}} \cdot \sqrt{\frac{1}{7}} =$	13)	$3\cdot\left(\sqrt{4}\right)^2=$	18)	$9 + \left(\sqrt{11}\right)^2 =$
4)	$\left(\sqrt{3,5}\right)^2 =$	9)	$\sqrt{10} \cdot \sqrt{10} =$	14)	$11 \cdot \left(\sqrt{5}\right)^2 =$	19)	$\left(\sqrt{3}\right)^2 \cdot \left(\sqrt{2}\right)^2 =$
5)	$\left(\sqrt{\frac{2}{5}}\right)^2 =$	10)	$\sqrt{6} \cdot \sqrt{6} =$	15)	$1.5 \cdot \left(\sqrt{10}\right)^2 =$	20)	$\left(\sqrt{12}\right)^2:3=$

Задание 28. Решите уравнение:

1)	$\sqrt{x} = 2$ $x = 2^{2},$ $x = 4.$ Otbet: 4.	$6) \sqrt{x} = 0$	11) $\sqrt{x}=0,2$	$16) \sqrt{x} = \frac{1}{4}$
2)	$\sqrt{x} = 5$	7) $\sqrt{x}=1$	$12) \sqrt{x} = 1,1$	$\sqrt{x} = -\frac{1}{3}$
3)	$\sqrt{x} = 3$	$8) \sqrt{x} = -3$	$13) \sqrt{x} = 0.9$	$\sqrt{x} = \frac{2}{5}$
4)	$\sqrt{x} = 10$	9) $\sqrt{x} = 20$	$14) \sqrt{x} = 0.7$	$\sqrt{x} = -\frac{4}{9}$
5)	$\sqrt{x} = 13$	$10) \sqrt{x} = -4$	$15) \sqrt{x} = -0.1$	$20) \sqrt{x} = \frac{11}{12}$

Задание 29. Какие значения может принимать переменная, чтобы выражение имело смысл?

1)	\sqrt{x}	$6) \sqrt{-x}$	11) $\sqrt{x}-3$	$16) \sqrt{-x^2}$
	$x \ge 0$.	$-x \ge 0,$ $x \le 0.$		
	Otbet: $x \ge 0$.	OTBET: $x \le 0$.		
2)	$\sqrt{2x}$	7) $\sqrt{-5x}$	12) $9+\sqrt{x}$	$\frac{\sqrt{x}-5}{2}$
3)	$\sqrt{x^2}$	8) $\sqrt{-3\cdot(-x)}$	13) $-2\cdot\sqrt{x}$	$\begin{array}{ccc} 18) & \underline{12} \\ & \sqrt{x} \end{array}$
4)	$\sqrt{\frac{1}{x}}$	9) $\sqrt{-(-x)}$	14) $\left(\sqrt{-x}\right)^2$	$\frac{19)}{\sqrt{-x}}$
5)	$\sqrt{\frac{x}{3}}$	10) $\sqrt{-\frac{x}{4}}$	15) $\sqrt{-x^3}$	$\frac{1}{\sqrt{x}-3}$

УРАВНЕНИЕ $x^2 = a$

Задание 30.

Важно знать: в зависимости от а при решении уравнения $x^2 = a$ возможны три случая:

		Имеет ли уравнение корни?	Количество корней	Корни
1)	$x^2 = 25$	25≥0, да	25>0, два корня	$x_1 = \sqrt{25}$, $x_2 = -\sqrt{25}$ $x_1 = 5$, $x_2 = -5$. Ответ: -5 ; 5.
2)	$x^2 = 4$,
3)	$x^2 = 0$			
4)	$x^2 = 36$			
5)	$x^2 = -16$			
6)	$x^2 = 0.64$			
7)	$x^2 = -100$			
	$x^2 = \frac{1}{81}$			
9)	$x^2 = -\frac{4}{9}$			
10)	$x^2 = 0,0001$			
11)	$x^2 = 3$			
12)	$x^2 = -25$			
13)	$x^2 = 5$			
14)	$x^2 = 3,6$			
15)	$x^2 = 144$			

ФУНКЦИЯ $y = \sqrt{x}$ И ЕЁ ГРАФИК

Задание 31. Впишите такое число, чтобы получились координаты точки, принадлежащей графику функции:

$y = \sqrt{x}$	$y = -\sqrt{x}$	$y = \sqrt{-x}$	$y = -\sqrt{-x}$
1) (4;)	16) (36;)	31) (-1;)	46) (-49;)
2) (1;)	17) (10;)	32) (-4;)	47) (-0,25;)
3) (0;)	18) (64;)	33) (-16;)	48) (-64;)
4) (25;)	19) (0,04;)	34) (0;)	49) (-4;)
$(\frac{1}{16};\dots)$	$20)$ $\left(\frac{9}{49};\ldots\right)$	$35)$ $\left(-\frac{1}{9};\ldots\right)$	$(-\frac{16}{25};\dots)$
6) (0,09;)	$^{21)}\left(\overline{_{400}};\ldots ight)$	36) (-3;)	$51) \left(-\frac{1}{100}; \dots\right)$
7) (2;)	22) (0,16;)	37) (-7;)	52) (-8;)
8) (; 4)	23) (0;)	38) (; 1)	53) (0;)
9) (; 0,2)	24) (1;)	39) (; 4)	54) (-1;)
10) (; 7)	25) (; -4)	$40) \; (; \sqrt{2})$	55) (; -1)
11) (; 10)	26) (; -2)	41) (; 0)	56) (; -3)
12) $(; \sqrt{5})$	27) (; – 0,3)	$42)$ $\left(\ldots;\frac{1}{2}\right)$	57) (; -0,1)
$13) \left(\dots; \frac{1}{9} \right)$	28) (; -50)	$(\ldots;\frac{1}{5})$	58) (; -10)
14) (; 0)	29) $(; -\sqrt{3})$	$44) \; (; \sqrt{11})$	59) $(; -\sqrt{2})$
15) (; 1)	$30) \left(\dots; -\frac{7}{12} \right)$	45) (; 5)	$60) \left(\dots; -\frac{3}{5} \right)$

Задание 32. Используя графики функций, построенные в одной системе координат, решите уравнение:

1)
$$\sqrt{x} = x$$

 $4) \sqrt{x} = 2 - x$

Ответ:

Ответ:

2)
$$\sqrt{x} = 1$$

5) $\sqrt{x} = -3x$

Ответ:

Ответ:

3)
$$\sqrt{x} = -x - 1$$

Ответ:

Ответ:

СВОЙСТВА АРИФМЕТИЧЕСКОГО КВАДРАТНОГО КОРНЯ

КВАДРАТНЫЙ КОРЕНЬ ИЗ ПРОИЗВЕДЕНИЯ И ДРОБИ

Задание 33. Представьте подкоренное выражение в виде произведения или частного квадратов чисел и найдите значение квадратного корня.

ullet Важно знать: — если $a \geq 0$ и $b \geq 0$, то $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$;

$$-$$
если \geq и $b>0$, то $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.

			•
1)	$\sqrt{40 \cdot 10} = \sqrt{4 \cdot 10 \cdot 10} =$ $= \sqrt{2^2 \cdot 10^2} = 2 \cdot 10 = 20$	16)	$\sqrt{1,6\cdot0,9} = \sqrt{\frac{16}{10}\cdot\frac{9}{10}} = \sqrt{\frac{4^2\cdot3^2}{10^2}} = \frac{4\cdot3}{10} = 1,2$
2)	$\sqrt{90\cdot 40} =$	17)	$\sqrt{160 \cdot 2,5} =$
3)	$\sqrt{250 \cdot 160} =$	18)	$\sqrt{0,4\cdot 90} =$
4)	$\sqrt{810 \cdot 90} =$	19)	$\sqrt{0,064\cdot 40} =$
5)	$\sqrt{10 \cdot 360} =$	20)	$\sqrt{250 \cdot 0,144} =$
6)	$\sqrt{12\cdot3}$ =	21)	$\sqrt{0,9\!\cdot\!0,4} =$
7)	$\sqrt{18\cdot 2} =$	22)	$\sqrt{1,6\cdot 3,6} =$
8)	$\sqrt{50 \cdot 2} =$	23)	$\sqrt{0,004\cdot 4,9} =$
9)	$\sqrt{28\cdot7} =$	24)	$\sqrt{12,1\cdot 8,1} =$
10)	$\sqrt{5\cdot 45} =$	25)	$\sqrt{0,064\cdot 0,025} =$
11)	$\sqrt{7\cdot 63} =$	26)	$\sqrt{0,002\cdot 1,8} =$
12)	$\sqrt{50\cdot8} =$	27)	$\sqrt{7,2\cdot0,008} =$
13)	$\sqrt{18 \cdot 200} =$	28)	$\sqrt{80\cdot0,0005} =$
14)	$\sqrt{98\cdot8} =$	29)	$\sqrt{7,5\cdot30} =$
15)	$\sqrt{32\cdot200} =$	30)	$\sqrt{4,8\!\cdot\!0,3}=$

КВАДРАТНЫЙ КОРЕНЬ ИЗ СТЕПЕНИ

Задание 34. Вычислите.

 \triangleright Важно знать: при любом значении x верно равенство $\sqrt{x^2} = |x|$.

 \mathbf{A}

1)	$\sqrt{6^2} = \left 6 \right = 6$	$17) 2\sqrt{3^2} =$
2)	$\sqrt{\left(-4\right)^2} = \left -4\right = 4$	$18) 5\sqrt{(-7)^2} =$
3)	$\sqrt{11^2} =$	$19)$ $-3\sqrt{(-2)^2} =$
4)	$\sqrt{0,7^2}$ =	20) $-\sqrt{(-0,5)^2} =$
5)	$\sqrt{\left(-0,51\right)^2} =$	$21)$ $-10\sqrt{21^2} =$
6)	$\sqrt{1,3^2}$ =	$22) \sqrt{\left(-3,1\right)^2} + \sqrt{1,9^2} =$
7)	$\sqrt{\left(-29\right)^2} =$	$23) -\sqrt{\left(-15\right)^2} - \sqrt{6^2} =$
8)	$\sqrt{(-600)^2} =$	$24) \sqrt{30^2} \cdot \sqrt{\left(-0,2\right)^2} =$
9)	$\sqrt{41^2} =$	$25) -\sqrt{(-7)^2} \cdot \sqrt{(-1)^2} =$
10)	$\sqrt{\left(-3,78\right)^2} =$	$3\sqrt{\left(-5\right)^2} - 0,2\sqrt{10^2} =$
11)	$\sqrt{1,5^2}$ =	$27) \sqrt{(-5)^2} - 5 =$
12)	$\sqrt{(-0,01)^2} =$	$28) 10 - 3\sqrt{\left(-3\right)^2} =$
13)	$\sqrt{44^2} =$	$29) 0.01\sqrt{\left(-50\right)^2} \cdot 2 =$
14)	$\sqrt{5^2}$ =	$30) - \left(\sqrt{3}\right)^2 + \sqrt{\left(-3\right)^2} =$
15)	$\sqrt{\left(-14\right)^2} =$	31) $\sqrt{(-7)^2} \cdot (\sqrt{4})^2 =$
16)	$\sqrt{(-23)^2} =$	32) $-(\sqrt{6})^2 \cdot \sqrt{(-5)^2} =$

Б

D		
1)	при $a > 0$ $\sqrt{a^2} = a = a$	11) при $c > 0$ $2\sqrt{c^2} =$
2)	при $x < 0$ $\sqrt{x^2} = x = -x$	12) при $m \le 0$ $5\sqrt{m^2} =$
3)	при $b \ge 0$ $\sqrt{b^2} =$	13) при $y < 0$ $-3\sqrt{y^2} =$
4)	при $y \le 0$ $\sqrt{y^2} =$	14) при $b > 0$ $-0.4\sqrt{b^2} =$
5)	при $a < 0$ $\sqrt{a^2} =$	15) при $x \le 0$ $-\sqrt{25x^2} =$
6)	$_{\mathrm{при}} p \ge 0 \sqrt{p^2} =$	16) при $a < 0$ $\sqrt{4a^2} =$
7)	при $x > 0$ $\sqrt{x^2} =$	17) при $y < 0$ $\sqrt{16y^2} =$
8)	при $k < 0$ $\sqrt{k^2} =$	18) при $p \le 0$ 0,3 $\sqrt{100 p^2} =$
9)	при $y \le 0$ $\sqrt{y^2} =$	19) при $x < 0$ $-5\sqrt{0.04x^2}$
10)	при $n \ge 0$ $\sqrt{n^2} =$	$^{20)}$ при $c \ge 0$ $\frac{1}{3}\sqrt{36c^2} =$

В

	` 	$\sqrt{(-2)^8} =$
	$\sqrt{3^4}$ =	8) $\sqrt{15^4} =$
3)		9) $\sqrt{(-7)^4} =$
		10) $\sqrt{(-5)^6} =$
5)	$\sqrt{\left(-4\right)^4}=$	11) $\sqrt{3^4 \cdot 8^2} =$
6)	$\sqrt{12^4} =$	12) $\sqrt{(-2)^6 \cdot 11^2} =$

ПРИМЕНЕНИЕ СВОЙСТВ АРИФМЕТИЧЕСКОГО КВАДРАТНОГО КОРНЯ

ВЫНЕСЕНИЕ МНОЖИТЕЛЯ ИЗ-ПОД ЗНАКА КОРНЯ. ВНЕСЕНИЕ МНОЖИТЕЛЯ ПОД ЗНАК КОРНЯ

Задание 35.

Вынесите множитель из-под знака корня	Внесите множитель под знак корня
1) $\sqrt{12} = \sqrt{4 \cdot 3} = \sqrt{4} \cdot \sqrt{3} = 2\sqrt{3}$	16) $2\sqrt{7} = \sqrt{4} \cdot \sqrt{7} = \sqrt{4 \cdot 7} = \sqrt{28}$
$\sqrt{20} =$	17) $5\sqrt{8} =$
$3) \sqrt{45} =$	18) $3\sqrt{11} =$
$4) \sqrt{27} =$	19) $6\sqrt{2} =$
$5) \sqrt{50} =$	20) $10\sqrt{6} =$
6) $\sqrt{72} =$	21) $8\sqrt{2} =$
$7) \sqrt{98} =$	22) $5\sqrt{3} =$
8) $\sqrt{1000} =$	$\frac{1}{3}\sqrt{90} =$
9) $\sqrt{48} =$	$\frac{24}{3}\sqrt{18} =$
10) $\sqrt{75} =$	25) $0,2\sqrt{10} =$
11) $\sqrt{40} =$	26) $-3\sqrt{5} = -\sqrt{9} \cdot \sqrt{5} = -\sqrt{9 \cdot 5} = -\sqrt{45}$
12) $\sqrt{300} =$	$27) -2\sqrt{3} =$
13) $\sqrt{700} =$	28) $-5\sqrt{5} =$
14) $\sqrt{108} =$	29) $-7\sqrt{2} =$
15) $\sqrt{242} =$	30) $-\frac{1}{4}\sqrt{32} =$

Задание 36. Сравните значения выражений:

	1	
1)	$2\sqrt{2} > \sqrt{7}$, $2\sqrt{2} = \sqrt{8}$, $\sqrt{8} > \sqrt{7}$.	11) $2\sqrt{3} \dots 3\sqrt{2}$
2)	$3\sqrt{6} \dots \sqrt{60}$	12) $5\sqrt{2} \dots 3\sqrt{5}$
3)	$2\sqrt{5}\ldots\sqrt{21}$	13) $-2\sqrt{5}3\sqrt{2}$
4)	$3\sqrt{4}\ldots 6$	$14) 5\sqrt{3} \dots 6\sqrt{2}$
5)	$\sqrt{40}\dots2\sqrt{11}$	15) $3\sqrt{10}7\sqrt{2}$
6)	$4\sqrt{2}\ldots\sqrt{30}$	16) $-10\sqrt{5}5\sqrt{10}$
7)	$4\sqrt{5}\ldots\sqrt{80}$	$17) -2\sqrt{8} \dots -4\sqrt{2}$
8)	$2\sqrt{7}\dots 5$	18) $-2\sqrt{1,1}3\sqrt{1,5}$
9)	$6\sqrt{3}\ldots 10$	19) $10\sqrt{20}20\sqrt{10}$
10)	$3\sqrt{3}\ldots\sqrt{10}$	20) $-0.2\sqrt{5}0.5\sqrt{2}$

Задание 37.

ougumo o			
Расположите числа в порядке возрастания	Расположите числа в порядке убывания		
1) $3\sqrt{5}$, $2\sqrt{7}$, $4\sqrt{2}$	6) $\sqrt{60}$, 8, $3\sqrt{7}$		
$2) 5\sqrt{2} \ , \ 2\sqrt{11} \ , \ \sqrt{51}$	$7) -2\sqrt{3}, -3, -\sqrt{11}$		
$3) -6, -2\sqrt{10}, -\sqrt{39}$	8) $2\sqrt{15}$, 10, $3\sqrt{10}$		
$4)$ $-2\sqrt{6}$, $-3\sqrt{3}$, -5	9) $-2\sqrt{10}$, -1 , $-10\sqrt{6}$		
$5)$ 10, $6\sqrt{3}$, $7\sqrt{2}$	10) $\sqrt{17}$, $3\sqrt{2}$, $2\sqrt{5}$		

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ, СОДЕРЖАЩИХ КВАДРАТНЫЕ КОРНИ

Задание 38. Упростите выражение.

 \mathbf{A}

1)	$3\sqrt{2} + 5\sqrt{2} = 8\sqrt{2}$	17) $\sqrt{3} + \sqrt{300} = \sqrt{3} + \sqrt{100 \cdot 3} = \sqrt{3} + 10\sqrt{3} = 11\sqrt{3}$
2)	$4\sqrt{5} + 2\sqrt{5} =$	18) $\sqrt{2} + \sqrt{8} =$
3)	$3\sqrt{10} + 7\sqrt{10} =$	19) $\sqrt{5} + \sqrt{20} =$
4)	$6\sqrt{3} - 2\sqrt{3} =$	$20)$ $\sqrt{10} - \sqrt{90} =$
5)	$8\sqrt{11} - 5\sqrt{11} =$	21) $\sqrt{2} + \sqrt{72} =$
6)	$5\sqrt{a} + 2\sqrt{a} =$	22) $\sqrt{2} + \sqrt{98} =$
7)	$2\sqrt{7} + \sqrt{7} =$	23) $\sqrt{2} + \sqrt{200} =$
8)	$12\sqrt{2} - \sqrt{2} =$	$24) \sqrt{11} - \sqrt{44} =$
9)	$-3\sqrt{8} + 2\sqrt{8} =$	$25) -\sqrt{a} + \sqrt{4a} =$
10)	$-7\sqrt{b}-2\sqrt{b}=$	$26) -\sqrt{x} + \sqrt{25x} =$
11)	$5\sqrt{13} - 6\sqrt{13} =$	$27) \sqrt{y} - \sqrt{64y} =$
12)	$21\sqrt{7} - 30\sqrt{7} =$	28) $-\sqrt{b} - \sqrt{121b} =$
13)	$5\sqrt{3} - 10\sqrt{3} =$	$29) -\sqrt{c} + \sqrt{100c} =$
14)	$\sqrt{2}-4\sqrt{2}=$	$30) \sqrt{4a} - \sqrt{9a} =$
15)	$\sqrt{a} + \sqrt{a} =$	31) $\sqrt{225x} + \sqrt{144x} =$
16)	$-\sqrt{x}-\sqrt{x}=$	$32) \sqrt{400y} + \sqrt{4y} =$

Б

Ь		
1)	$\sqrt{12} + \sqrt{27} = 2\sqrt{3} + 3\sqrt{3} = 5\sqrt{3}$	11) $\sqrt{8} + \sqrt{2} + \sqrt{32} =$
2)	$\sqrt{8} + \sqrt{50} =$	12) $\sqrt{48} + \sqrt{3} - \sqrt{27} =$
3)	$\sqrt{18} + \sqrt{200} =$	13) $\sqrt{20} + \sqrt{500} + \sqrt{5} =$
4)	$\sqrt{300} - \sqrt{75} =$	14) $\sqrt{24} - \sqrt{6} - \sqrt{54} =$
5)	$\sqrt{45} + \sqrt{500} =$	$15) \sqrt{160} + \sqrt{10} - \sqrt{90} =$
6)	$\sqrt{48} - \sqrt{300} =$	$16) \sqrt{200} + \sqrt{98} + \sqrt{2} =$
7)	$\sqrt{80} + \sqrt{20} =$	$17) \sqrt{3} - \sqrt{300} + \sqrt{108} =$
8)	$\sqrt{98} + \sqrt{72} =$	$18) -\sqrt{12} + \sqrt{3} - \sqrt{75} =$
9)	$-\sqrt{32} + \sqrt{50} =$	19) $\sqrt{2} + \sqrt{242} + \sqrt{162} =$
10)	$\sqrt{90} - \sqrt{40} =$	$20) \sqrt{6} + \sqrt{150} - \sqrt{600} =$

B
$$\begin{array}{ll}
1) & 2\sqrt{18} + 3\sqrt{8} + 0, 4\sqrt{200} = \\
2) & -5\sqrt{27} + 2\sqrt{12} - 4\sqrt{48} = \\
3) & 2\sqrt{600} - \sqrt{24} - 3\sqrt{54} = \\
4) & -0, 5\sqrt{40} + \sqrt{90} + \sqrt{250} = \\
5) & 0, 5\sqrt{20} - 0, 3\sqrt{45} - 0, 1\sqrt{500} = \\
6) & -\sqrt{18} + 2\sqrt{72} - \sqrt{98} = \\
7) & \sqrt{63} - 4\sqrt{28} + \sqrt{700} =
\end{array}$$

Задание 39. Выполните действия, используя формулы сокращенного умножения:

1)
$$(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) =$$

2)
$$(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y}) =$$

3)
$$\left(\sqrt{8}-\sqrt{3}\right)\left(\sqrt{8}+\sqrt{3}\right)=$$

$$(\sqrt{2} - \sqrt{7})(\sqrt{2} + \sqrt{7}) =$$

5)
$$(\sqrt{3}-1)(\sqrt{3}+1)=$$

6)
$$(2-\sqrt{6})(2+\sqrt{6})=$$

7)
$$(\sqrt{5}-2)(\sqrt{5}+2)=$$

8)
$$(\sqrt{10}+3)(\sqrt{10}-3)=$$

9)
$$(\sqrt{m} - \sqrt{y})(\sqrt{y} + \sqrt{m}) =$$

$$10) \quad \left(\sqrt{3} + \sqrt{2}\right)\left(\sqrt{2} - \sqrt{3}\right) =$$

11)
$$\left(\sqrt{x} + \sqrt{y}\right)^2 =$$

12)
$$\left(\sqrt{a}-\sqrt{b}\right)^2=$$

13)
$$(\sqrt{2}+1)^2 =$$

14)
$$(4+\sqrt{5})^2 =$$

15)
$$(\sqrt{7}-6)^2 =$$

$$16) \quad \left(\sqrt{3} - \sqrt{2}\right)^2 =$$

17)
$$\left(\sqrt{5} + \sqrt{11}\right)^2 =$$

18)
$$(\sqrt{10} + \sqrt{7})^2 =$$

19)
$$(\sqrt{6} - \sqrt{13})(\sqrt{6} + \sqrt{13}) =$$

20)
$$(\sqrt{6} - \sqrt{13})^2 =$$

Указание: см. Формулы сокращенного умножения в Справочных материалах.

Задание 40. Разложите на множители:

1)	$a^2 - 5 = \left(a - \sqrt{5}\right)\left(a + \sqrt{5}\right)$	$21) 5 + \sqrt{5} =$
2)	$x^2 - 3 =$	$22) 2+\sqrt{2}=$
3)	$y^2 - 7 =$	23) $\sqrt{7} - 7 =$
4)	$11-b^2 =$	24) $\sqrt{a} + a =$
5)	$13-x^2 =$	$25) x - \sqrt{x} =$
6)	$a^2 - 1 =$	26) $3+2\sqrt{3}=$
7)	$1-b^2 =$	$27) 6-13\sqrt{6} =$
8)	$x^2 - 2 =$	28) $2-9\sqrt{2} =$
9)	$4b^2 - 5 =$	29) $5\sqrt{3}+3=$
10)	$9a^2 - 13 =$	30) $11\sqrt{7} - 7 =$
11)	$64y^2 - 11 =$	31) $\sqrt{3x} + \sqrt{x} = \sqrt{3} \cdot \sqrt{x} + \sqrt{x} = \sqrt{x} \cdot (\sqrt{3} + 1)$
12)	$2-25c^2 =$	$32) \sqrt{2y} + \sqrt{y} =$
13)	$10-36p^2 =$	$33) \sqrt{x} - \sqrt{5x} =$
14)	$81y^2 - 1 =$	$34)$ $\sqrt{2a} + \sqrt{3a} =$
15)	$121x^2 - 2 =$	$35) \sqrt{5b} + \sqrt{7b} =$
16)	$7-16p^2 =$	36) $\sqrt{13p} - \sqrt{11p} =$
17)	$3-49c^2 =$	$37) \sqrt{15} - \sqrt{5} =$
18)	$a^2 - 3b^2 =$	38) $\sqrt{7} + \sqrt{21} =$
19)	$x^2 - 2y^2 =$	39) $\sqrt{10} + \sqrt{14} =$
20)	$10a^2 - b^2 =$	40) $\sqrt{30} - \sqrt{70} =$

Задание 41. Избавьтесь от иррациональности в знаменателе дроби:

 \mathbf{A}

1)	$\frac{x}{\sqrt{2}} =$	6)	$\frac{3}{2\sqrt{x}} =$
2)	$\frac{a}{\sqrt{5}} =$	7)	$\frac{y}{3\sqrt{5}} =$
3)	$\frac{7}{\sqrt{3}}$ =	8)	$\frac{4}{3\sqrt{7}} =$
4)	$\frac{8}{\sqrt{11}} =$	9)	$\frac{11}{2\sqrt{3}} =$
5)	$\frac{5}{\sqrt{a}} =$	10)	$\frac{7}{a\sqrt{6}} =$

Б

1)	$\frac{1}{\sqrt{5a}}$ =	$\frac{6}{\sqrt{x+y}} =$
2)	$\frac{7}{\sqrt{xy}} =$	$\frac{1}{\sqrt{a-b}} =$
3)	$\frac{3}{\sqrt{11a}} =$	$\frac{4}{\sqrt{3+a}} =$
4)	$\frac{1}{\sqrt{3b}} =$	9) $\frac{1}{\sqrt{x-4}} =$
5)	$\frac{5}{2\sqrt{3x}} =$	$\frac{10)}{\sqrt{a-x}} =$

В

1)	$\frac{1}{\sqrt{2}+3} =$	$\frac{1}{\sqrt{3}+\sqrt{2}}=$
2)	$\frac{2}{5-\sqrt{3}} =$	$\frac{1}{\sqrt{5}-\sqrt{3}} =$
3)	$\frac{4}{\sqrt{a}+1} =$	$8) \frac{10}{\sqrt{7} + \sqrt{6}} =$
4)	$\frac{x}{4-\sqrt{3}} =$	$\frac{4}{\sqrt{11}-\sqrt{7}} =$
5)	$\frac{3}{2+\sqrt{5}} =$	$\frac{10)}{\sqrt{3}+\sqrt{6}} =$

КВАДРАТНОЕ УРАВНЕНИЕ И ЕГО КОРНИ

Задание 42. Определите, являются ли уравнения квадратными. Если да, укажите коэффициенты этого уравнения.

Важно знать: уравнение вида $ax^2 + bx + c = 0$, где $a \neq 0$, называется **квадратным**. Числа a,b,c- коэффициенты квадратного уравнения.

) Числа а, b, c – коэффициенты квадраг	пного уравнения.
1)	$2x^2 + 3x - 1 = 0$	$17) \ \ 3x^2 + x^3 + 1 = 0$
	Ответ: да; $a = 2$, $b = 3$, $c = -1$.	
2)	$\frac{1}{4}x^2 - 2x + 5 = 0$	18) $x-4=0$
3)	$4x - 2x^2 + 3 = 0$	19) $-2x^2 + x + 5 = 0$
4)	$\frac{1}{8}x + 4 = 0$	$3x^2 + x - \frac{5}{4} = 0$
5)	$x^2 = 0$	$2x^2 - \frac{1}{2}x + 1 = 0$
6)	$x^2 + x - 1 = 0$	22) $-x^2 = 0$
7)	$x - x^2 = 0$	$23) \ 5-x^2=0$
8)	$2x^3 + 5x - 1 = 0$	$24) 163x^2 - 1 = 0$
9)	$\frac{5}{x^2} = 0$	$\frac{231}{1081} + \frac{1}{83} x^2 = 0$
10)	$x^2 + 6x + 9 = 0$	$26) x-x^3=0$
		$\frac{x^2}{x+3} = 0$
	$9x^2 + \frac{1}{x} + 3 = 0$	$3x^2 + 12x + 3 = 0$
	$\frac{x^2}{4} + x + 2 = 0$	$29) -2x^2 + 3 = 0$
14)	$3x^2 = 0$	$30) a^2 + 2a + 1 = 0$
15)	$5x^4 + x = 0$	$31) 2y^2 - 3y - 5 = 0$
16)	$x - x^2 + 1 = 0$	$32) 3p + p^2 - 1 = 0$

НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ

Задание 43. Заполните таблицу.

Важно знать: квадратное уравнение $ax^2 + bx + c = 0$ называется: — приведенным, если коэффициент при x^2 равен 1; — неполным, если коэффициенты b или c равны b.

		уравн	нение
		полное	приве- денное
1)	$2x^2 + 3x + 1 = 0$	да	нет
	a = 2, b = 3, c = 1		
2)	$5x^2 + 7x + 2 = 0$		
	$a = \dots, b = \dots, c = \dots$		
3)	$x^2 + 2x - 1 = 0$		
	$a = \dots, b = \dots, c = \dots$		
4)	$-0.3x^2 - 2x = 0$		
	$a=\ldots, b=\ldots, c=\ldots$		
5)	$3x^2 - 3 = 0$		
	$a = \dots, b = \dots, c = \dots$		
6)	$7x^2 + x - 3 = 0$		
	$a=\ldots, b=\ldots, c=\ldots$		
7)	$-x^2-3x+2=0$		
	$a=\ldots, b=\ldots, c=\ldots$		
8)	$-2x^2 + x - 4 = 0$		
	$a = \dots, b = \dots, c = \dots$		
9)	$x^2 - 5x = 0$		
	$a = \dots, b = \dots, c = \dots$		
10)	$x^2 = 0$		
	$a=\ldots, b=\ldots, c=\ldots$		

		уравн	нение
		полное	приве- денное
11)	$-\frac{1}{2}x^2 - \frac{3}{2}x + \frac{1}{7} = 0$		
	$a = \dots, b = \dots, c = \dots$		
12)	$x^2 + \sqrt{2}x - 1 = 0$		
	$a = \dots, b = \dots, c = \dots$		
13)	$x - \sqrt{3}x^2 + 4 = 0$		
	$a = \dots, b = \dots, c = \dots$		
14)	$\frac{x^2}{3} = 0$		
	$a = \dots, b = \dots, c = \dots$		
15)	$\frac{x^2}{2} - 5 = 0$		
	$a = \dots, b = \dots, c = \dots$		
16)	$6x + x^2 + 1 = 0$		
	$a = \dots, b = \dots, c = \dots$		
17)	$1-4x^2=0$		
	$a = \dots, b = \dots, c = \dots$		
18)	$x^2 - 1 + 2x = 0$		
	$a = \dots, b = \dots, c = \dots$		
19)	$x - \sqrt{3}x^2 = 0$		
	$a = \dots, b = \dots, c = \dots$		
20)	$\frac{\sqrt{3}}{2}x^2 - \frac{\sqrt{2}}{2} = 0$		
	$a = \ldots, b = \ldots, c = \ldots$		

Задание 44. Решите неполные квадратные уравнения:

Оид	ание 44. Решите неполные	льа	дратные уравнения.	
1)	$x^2 - 9 = 0$,	7)	$2x^2 - 5x = 0$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	(x-3)(x+3)=0		x(2x-5)=0	
	x-3=0 или $x+3=0$, x=3 $x=-3$		x = 0 или $2x - 5 = 0$,	
			x = 2,5	
	Ответ: -3; 3.		Ответ: 0; 2,5.	
2)	$y^2-25=0$	8)	$3x^2 + x = 0$	$\begin{vmatrix} 14 \\ x^2 + 4 = 0 \end{vmatrix}$
3)	$b^2 - 1 = 0$	9)	, 1	15) $5x^2 = 0$
	0 1-0		$x^2 - \frac{1}{2}x = 0$	<i>6x</i> – 0
		4.00		
4)	$4x^2-1=0$	10)	$x^2 - 0.7x = 0$	$\begin{vmatrix} 16 \\ x^2 - \sqrt{2}x = 0 \end{vmatrix}$
5)	$3x^2 - 12 = 0$	11)	$6x^2 - x = 0$	$17) \ \ 2x^2 - 1 = 0$
6)	22 2 2	19)	2 2 2 2	18) 2 2 5
	$63x^2 - 7 = 0$	12)	$0,2x^2-2x=0$	$18) \ \ 2x - 3x^2 = 0$
_				

Указание: разложите левую часть уравнений на множители.

ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ

Задание 45. Определите дискриминант и количество корней квадратного уравнения.

 $D=b^2-4ac$ — дискриминант квадратного уравнения $ax^2+bx+c=0$, где $a \neq 0$.

Если D>0, то квадратное уравнение имеет два корня.

 $E c \pi u D = 0$, то квадратное уравнение имеет один корень.

Eсли D < 0 , то квадратное уравнение не имеет корней.

		дискриминант	знак дискриминанта	число корней
1)	$2x^2 + x - 3 = 0$	$D = 1^2 - 4 \cdot 2 \cdot (-3) = 1 + 24 = 25$	D > 0	2
	a = 2, b = 1, c = -3			
2)	$x^2 + 5x + 6 = 0$			
3)	$x^2 + 6x + 9 = 0$			
4)	$4x^2 + 7x - 2 = 0$			
5)	$-7x^2 - 4x + 3 = 0$			
6)	$x^2 - 2x + 2 = 0$			
7)	$5x^2 - 6x + 1 = 0$			
8)	$-16x^2 - 6x + 1 = 0$			
9)	$5x^2 - 4x + 1 = 0$			
10)	$3x^2 + 5x - 2 = 0$			
11)	$-3x^2 + x - 1 = 0$			
12)	-x +6x -8 = 0			
13)	$5x^2 + 4x - 1 = 0$			
14)	$x^2 + 4x + 4 = 0$			
15)	$-7x^2 - 6x + 1 = 0$			

 $oldsymbol{\circ}$ Важно знать: формула корней квадратного уравнения $ax^2+bx+c=0$, где a
eq 0

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
.

 \mathbf{A}

$$1) \quad x^2 + 5x - 14 = 0$$

6)
$$-x^2-3x+4=0$$

2)
$$12x^2 + 7x + 1 = 0$$

$$7) \quad 2x^2 - 2x + 5 = 0$$

3)
$$6x^2-x-1=0$$

8)
$$x^2 + 7x - 8 = 0$$

4)
$$4x^2 + 4x + 1 = 0$$

9)
$$6x^2 + 7x + 2 = 0$$

5)
$$9x^2 - 8x - 1 = 0$$

10)
$$-6x^2 - x + 5 = 0$$

$11) 3x^2 - 7x + 4 = 0$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
7 3x -7x + 4 = 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$12) 3x^2 - x + 15 = 0$	$18) 2x^2 + 3x - 2 = 0$
$13) 8x^2 - 6x + 1 = 0$	$19) \ \ 2x^2 + 5x + 2 = 0$
$ \delta x - 0x + 1 = 0 $	
$14) 4x^2 - 3x - 1 = 0$	$20) 5x^2 + 2x + 1 = 0$
$15) -5x^2 - x + 4 = 0$	$21) x^2 - x - 12 = 0$
$-5x^{2}-x+4=0$	x^{-1} x^{-1} x^{-1} x^{-1} x^{-1}
$16) 9x^2 + 6x + 1 = 0$	$\begin{vmatrix} 22 \\ -x^2 - 6x + 7 = 0 \end{vmatrix}$

$x^2 - x + \frac{1}{4} = 0$	1)	$x^2 - x + \frac{1}{4} = 0$
-----------------------------	----	-----------------------------

7)
$$3x^2 - 8x = 3$$

$$2) \quad 4x^2 + x - 0, 5 = 0$$

8)
$$3x^2 + 2 = 5x$$

$$3) \quad -\frac{1}{5} x^2 + x - 10 = 0$$

9)
$$21x^2 - 4x = 1$$

$$\frac{4)}{4} \quad \frac{9}{4} x^2 + 3x + 1 = 0$$

10)
$$8x^2 - 2 = 6x$$

$$\begin{vmatrix} 5 \\ 3,5x^2 - 1,5x - \frac{1}{8} = 0 \end{vmatrix}$$

11)
$$2x^2 = 5x - 2$$

$$6) \quad 0.6x^2 + x - 0.4 = 0$$

12)
$$3x+1=4x^2$$

ТЕОРЕМА ВИЕТА

Задание 47. Заполните таблицу.

§ Важно знать: $x^2 + px + q = 0$ — приведенное квадратное уравнение.

 $Ecnu\ D>0\ u\ x_1,\ x_2$ — корни уравнения, то $egin{cases} x_1+x_2=-p, \\ x_1\cdot x_2=q. \end{cases}$

		знак дискриминанта	$x_1 + x_2$	$x_1 \cdot x_2$
1)	$x^2 + 3x + 1 = 0$	$D = (-3)^2 - 4 \cdot 1 \cdot 1 = 5$ $D > 0$	-3	1
2)	$x^2-2x-5=0$			
3)	$x^2+4x-3=0$			
4)	$x^2-4x+3=0$			
5)	x +3x-3=0			
6)	$x^2 + x - 1 = 0$			
7)	$x^2 - 2x = 0$			
8)	$x^2 - 7 = 0$			
9)	$x^2 + 5x + 8 = 0$			
10)	$x^2 + 6x + 9 = 0$			
11)	$x^2 - 12x + 36 = 0$			
12)	$x^2 + 3x + 9 = 0$			
13)	$x^2-x-2=0$			
14)	$x^2 - 4x + 4 = 0$			
15)	$10x + x^2 - 25 = 0$			
16)	$x+3+x^2=0$			
17)	$x^2 + 1 + 2x = 0$			
18)	$x^2 + 2 - x = 0$			
19)	$3x + x^2 = 0$			
20)	$1+x^2=0$			

Задание 48. Найдите подбором корни квадратного уравнения:

1)
$$x^2 - 5x + 6 = 0$$

$$D = 5^2 - 4 \cdot 1 \cdot 6 = 1, D > 0.$$

$$\begin{cases} x_1 + x_2 = 5, \\ x_1 \cdot x_2 = 6. \end{cases} \qquad x_1 = 2, \ x_2 = 3.$$

$$x_1 = 2$$
, $x_2 = 3$.

 $x^2 + x - 90 = 0$

Ответ: 2; 3.

2)
$$x^2 - 7x + 10 = 0$$

9)
$$x^2 - x - 6 = 0$$

3)
$$x^2 - 9x + 14 = 0$$

10)
$$x^2 + x - 6 = 0$$

4)
$$x^2 - 8x + 15 = 0$$

11)
$$x^2 + 6x + 8 = 0$$

5)
$$x^2-13x+12=0$$

12)
$$x^2 - x - 12 = 0$$

$$6) \quad x^2 - 11x + 24 = 0$$

13)
$$x^2 + x - 12 = 0$$

7)
$$x^2 - 19x + 90 = 0$$

14)
$$x^2 + 5x + 6 = 0$$

$15) x^2 + 8x + 7 = 0$	$22) x^2 - 8x + 7 = 0$
$16) x^2 + 8x - 48 = 0$	$23) x^2 - 11x + 28 = 0$
$17) x^2 + 13x + 42 = 0$	$24) x^2 + 13x + 36 = 0$
$18) x^2 - x - 42 = 0$	$25) x^2 - 9x - 36 = 0$
$19) x^2 - 8x - 9 = 0$	$26) x^2 + 2x - 24 = 0$
$20) x^2 - 4x + 4 = 0$	$27) x^2 + 6x + 9 = 0$
$21) x^2 + 10x + 25 = 0$	$28) x^2 - 2x + 1 = 0$

КВАДРАТНЫЙ ТРЁХЧЛЕН

КВАДРАТНЫЙ ТРЁХЧЛЕН И ЕГО КОРНИ

Задание 49. Выделите квадрат двучлена:

 \mathbf{A}

1) $x^2-2x+2=x^2-2x+1-1+2=(x^2-2x+1)+1=(x-1)^2+1$

2) $x^2 + 2x - 4 =$

3) $x^2 - 4x + 1 =$

4) $x^2 + 10x - 3 =$

5) $x^2 - 8x + 5 =$

6) $x^2 + 6x =$

7) $x^2 - 14x - 50 =$

8) $x^2 + 8x =$

9) $x^2 + 12x + 30 =$

10) $x^2 - 20x + 70 =$

Б

1) $3x^2 + 6x + 5 = 3(x^2 + 2x) + 5 = 3((x^2 + 2x + 1) - 1) + 5 = 3(x + 1)^2 - 3 + 5 = 3(x + 1)^2 + 2$

2) $2x^2 + 4x + 3 =$

3) $5x^2 - 10x + 7 =$

4) $4x^2 - 8x + 9 =$

5) $2x^2 - 8x - 1 =$

6) $7x^2 - 14x + 8 =$

7) $-3x^2 - 12x + 8 =$

8) $-6x^2 + 12x + 5 =$

9) $-2x^2-4x+1=$

10) $-3x^2+6x-4=$

РАЗЛОЖЕНИЕ КВАДРАТНОГО ТРЁХЧЛЕНА НА МНОЖИТЕЛИ

Задание 50. Разложите квадратный трёхчлен на множители, используя данные таблицы.

Важно знать: если x_1 , x_2 — корни квадратного трёхчлена ax^2+bx+c , то $ax^2+bx+c=a(x-x_1)(x-x_2)$.

			()()
	x_1	x_2	$a(x-x_1)(x-x_2)$
1) $x^2 - 5x + 6$	2	3	(x-2)(x-3)
2) $x^2 - 7x + 10$	2	5	
3) $x^2 - 3x + 2$	1	2	
4) $x^2 - 8x + 15$	5	3	
5) $x^2 + 5x + 6$	-2	-3	(x+2)(x+3)
6) $x^2 + 6x + 8$	-4	-2	
7) $x^2 + x - 6$	-3	2	
8) $x - 3x - 10$	5	-2	
9) $x^2-4x-21$	7	-3	
10) $x^2 + 5x - 14$	-7	2	
11) $x^2 + 2x - 63$	6	-9	
12) $2x^2 - 5x + 2$	$\frac{1}{2}$	2	$2\left(x-\frac{1}{2}\right)(x-2) = (2x-1)(x-2)$
13) $2x^2 - 7x + 3$	$\frac{1}{2}$	3	
14) $3x^2 - 16x + 5$	5	$\frac{1}{3}$	
15) $10x^2 + 9x - 1$	$\frac{1}{10}$	-1	
16) $6x^2 - 5x + 1$	$\frac{1}{2}$	$\frac{1}{3}$	$6\left(x-\frac{1}{2}\right)\left(x-\frac{1}{3}\right) = (2x-1)(3x-1)$
17) $15x^2 - 2x - 1$	$\frac{1}{3}$	$-\frac{1}{5}$	
18) $12x^2 + 11x + 2$	$-\frac{2}{3}$	$-\frac{1}{4}$	
19) $10x^2 - 7x - 3$	-0,3	1	
$20) \ \ 2x^2 + 7x + 6$	-2	-1,5	

ДРОБНЫЕ РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

РЕШЕНИЕ ДРОБНЫХ РАЦИОНАЛЬНЫХ УРАВНЕНИЙ

Задание 51. Для данной алгебраической дроби определите, при каких значениях переменной x:

		числитель равен нулю	знаменатель равен нулю	алгебраическая дробь равна нулю
1)	$\frac{x}{x-1}$	0	1	0
2)	$\frac{x+2}{x-3}$			
3)	$\frac{x-5}{x}$			
4)	$\frac{x^2}{x-7}$			
5)	$\frac{x(x-1)}{x-8}$			
6)	$\frac{(x-5)(x+2)}{x-4}$			
7)	$\frac{x^2(x-3)}{x(x+1)}$			
8)	$\frac{x^2-9}{x-3}$			
9)	$\frac{x+5}{x^2-25}$			
10)	$\frac{x^2+4}{x^2-4}$			
11)	$\frac{9}{x(x-9)}$			
12)	$\frac{x+3}{\left(x+3\right)^2}$			
13)	$\frac{x^2+1}{\left(x+1\right)^2}$			
14)	$\frac{(x+6)(x+2)}{x^2(x-2)}$			
15)	$\frac{(x+6)(x+2)}{x^2(x-2)}$ $\frac{(x-3)^2}{x^2-9}$			

Указание: алгебраическая дробь равна нулю, если её числитель равен нулю, а знаменатель не равен нулю.

Задание 52. Решите уравнение:

Задание 52. Решите уравн	ение:	
1) $\frac{x+2}{7} = 0$, x+2=0, x=-2. Other: -2.	$ \frac{x(x-5)}{3-x} = 0 $ Дробь имеет смысл при $3-x \neq 0$. $ \frac{x(x-5)}{3-x} = 0 \mid \cdot (3-x), $ $ x(x-5) = 0, $ $ x = 0 \text{ или } x = 5. $ При $x = 0 \text{ и } x = 5$ $ 3-x \neq 0. $ Ответ: 0; 5.	$\frac{x(x-3)}{x^2-9} = 0$ Дробь имеет смысл при $x^2-9 \neq 0$. $\frac{x(x-3)}{x^2-9} = 0 \mid \cdot (x^2-9),$ $x(x-3) = 0,$ $x = 0$ или $x = 3$. При $x = 0$ $x^2-9 \neq 0$, при $x = 3$ $x^2-9 = 0$. Ответ: 0 .
$\frac{8x-4}{3}=0$	$\frac{x(7-x)}{x-2}=0$	$\frac{(x-2)(x+2)}{x^2+4} = 0$
$\frac{6x-2}{5}=0$	$\frac{x(-x-1)}{2x-1}=0$	$\frac{x(x-4)^2}{x^2} = 0$
$\frac{4)}{2x} = 0$	$\frac{-x(x+11)}{5x+10}=0$	$\frac{x^2 - 2x + 1}{x^2 - 1} = 0$
$\frac{10x-4}{3x}=0$	$\frac{(x-7)(x-1)}{x(x-4)} = 0$	$\frac{x(x-3)(x+3)}{x^2+9} = 0$

УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ И ИХ СИСТЕМЫ

УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ И ЕГО ГРАФИК

Задание 53. Определите, являются ли пары значений переменных x и y решением уравнения. Найдите для этого уравнения ещё одно решение, объясните свой выбор:

1)	xy = 12	(3; -4)	(2; 6)	(1,5; 20)	(-3;-4)
		$3 \cdot (-4) = 12$,	$2 \cdot 6 = 12$,	$1,5\cdot 20 = 12$,	$(-3)\cdot(-4)=12$,
		неверно.	верно.	неверно.	верно.
		Ответ: нет.	Ответ: да.	Ответ: нет.	
2)	$y-x^2=5$	(1; 6)	(-5; -20)	$(\sqrt{2};7)$	(;)
3)	x + xy = 0	(0; 0)	(1; -2)	(0; -2,5)	(;)
	J				
4)		(5.5)	(9, 4)	(0. 5)	(,)
4)	$x^2 + y^2 = 25$	(5; 5)	(-3; 4)	(0; -5)	(;)
5)	$x^2 - 2y = 4$	$(\sqrt{2};-1)$	(-4; 6)	(3; 3)	(;)
6)	x(x-y)=0	(1; -1)	(0; 8)	$(\sqrt{5};\sqrt{5})$	(;)
	$u(u \ g)$			((() () ()	
7)		(1. 0)	(1, 4)	(0. 1)	(,)
7)	0y-x=1	(1; -2)	(-1; 4)	(0; 1)	(;)
8)	$x^2 + 0y = 2$	(2; 2)	(0; 1)	$(-\sqrt{2}\;;-3)$	(;)

Указание: подставьте пару чисел в уравнение вместо переменных x и y и проверьте, является ли получившееся числовое выражение верным.

Задание 54. Постройте график уравнения:

$$1) \, 5x + 2y - 2 = 0$$

y = -2.5x + 1 прямая

x	0	2
y	1	-4

5) y = 3

$$2) \ 3x - 2y + 4 = 0$$

6) x = -2

3)
$$0x + y = -2$$

7) 2x = 4

4) x + 0y = 3

8) x-5=0

9) (x-1)(y-2)=0

13) |x| = 4

10) (x+4)(y-3)=0

14) |x| = 1

11) (x-1)(x+3)=0

15) |y| = 2

12) (y+4)(y-1)=0

16) |y| = 5

$$17) x^2 - y = 0$$

$$y = x^2$$
 парабола

x	-2	-1	0	1	2
y	4	1	0	1	4

21)
$$xy-1=0$$

18)
$$x^2 + y = 0$$

22)
$$xy-2=0$$

19)
$$y + x^3 = 0$$

$$23) y - \sqrt{x} = 0$$

20)
$$y-|x|=0$$

24)
$$-y + \sqrt{x} = 0$$

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Задание 55. Изобразите схематически графики уравнений и выясните, имеет ли система уравнений решения, и, если имеет, то сколько:

	уравнений р	ешения, и, если име
		схема
1)	$\begin{cases} y = x+3 \\ y = -2x-1 \end{cases}$ Ответ: имеет одно решение.	y = x + 3 $y = x + 3$ $y = -2x - 1$
2)	$\begin{cases} y = 2x - 3 \\ y = 2x \end{cases}$	
3)	$\begin{cases} y = -x \\ -y = x \end{cases}$	
4)	$\begin{cases} y = x \\ y = 3 \end{cases}$	
5)	$\begin{cases} y = -x + 3 \\ y = -x - 2 \end{cases}$	
6)	$\begin{cases} y = -3x \\ x = 1 \end{cases}$	

		схема
7)	$\begin{cases} y = 2x \\ y = 0 \end{cases}$	
8)	$\begin{cases} y = 2 \\ x = 1 \end{cases}$	
9)	$ \begin{cases} y = 3 \\ x = 2 \end{cases} $	
10)	$\begin{cases} (x-1)(x-3) = 0 \\ y = -2 \end{cases}$	
11)	$\begin{cases} y = x \\ (y-3)(y+1) = 0 \end{cases}$	
12)	$\begin{cases} (x+1)(y-1) = 0 \\ y = -x \end{cases}$	0 **

	схема		схема
$\begin{cases} y = x^2 \\ y = 1 \end{cases}$ Ответ: имеет два решения.	$y = 1$ $y = x^{2}$ 0 x	$\begin{cases} xy = 1 \\ y = x \end{cases}$	
$\begin{cases} y = x^2 \\ y = -1 \end{cases}$		$\begin{cases} xy = 2 \\ y = -x \end{cases}$	
$\begin{cases} y = x^2 \\ y = x \end{cases}$		$\begin{cases} xy = -1 \\ y = x \end{cases}$	
$\begin{cases} y = x^2 \\ y = \sqrt{x} \end{cases}$		$\begin{cases} xy = 1 \\ y = \sqrt{x} \end{cases}$	
$\begin{cases} y = x^2 \\ y = -x^2 \end{cases}$		$\begin{cases} y = \sqrt{x} \\ (x+3)(y+1) = 0 \end{cases}$	
$\begin{cases} y = x^2 \\ y = x^3 \end{cases}$		$\begin{cases} (x+1)(y-1) = 0 \\ y = x^2 \end{cases}$	

Указание: схематично постройте графики каждого из уравнений системы и найдите количество точек пересечения этих графиков.

Важно знать: решить графически систему уравнений – значит, найти координаты точек пересечения графиков этих уравнений.

4)
$$\begin{cases} y = \sqrt{x} \\ y = 2x - 6 \end{cases}$$
 Other:

2)
$$\begin{cases} y = \sqrt{x} \\ y = x^2 \end{cases}$$
 Other:

$$\begin{cases} y = -\frac{3}{x} \\ y = \sqrt{x} \end{cases}$$
 Other:

$$\begin{cases} y = -\sqrt{x} \\ y = -2 \end{cases}$$
 Other:

6)
$$\begin{cases} y = \frac{8}{x} & \text{Other:} \\ y = x^2 & \end{cases}$$

7) $\begin{cases} y = \sqrt{x} \\ y = -x \end{cases}$ Other:

10) $\begin{cases} y = -\frac{4}{x} & \text{Ответ:} \\ y = -0.25x & \end{cases}$

8) $\begin{cases} y = -\sqrt{x} \\ y = -x \end{cases}$ Other:

11) $\begin{cases} y = \sqrt{x} \\ y = \frac{1}{2}x \end{cases}$ Other:

9) $\begin{cases} y = x^2 \\ y = |x| \end{cases}$ Other:

12) $\begin{cases} y = -\frac{1}{x} \\ y = -|x| \end{cases}$ Other:

ЧИСЛОВЫЕ НЕРАВЕНСТВА И ИХ СВОЙСТВА

ЧИСЛОВЫЕ НЕРАВЕНСТВА

Задание 57. Заполните пропуск, используя данное условие.

Важно знать: число а больше числа b, если разность (a-b) – положительное число; число а меньше числа b, если разность (a-b) – отрицательное число.

1) $a-b=5$	a > b
2) $a-b=0,4$	ab
3) $a-b=-2$	ab
4) $a-b=-6,11$	ab
5) a-b=0	ab
6) $a-b=0.015$	ab

7) $a-b=-0.0001$	ab
8) $a-b =$	a = b
9) $a-b = 210$	ab
10) $a-b=3$	ab
11) $a-b =$	a = b
12) $a-b=-5$	ab

СВОЙСТВА ЧИСЛОВЫХ НЕРАВЕНСТВ

Задание 58. Можно ли, используя данные таблицы, сравнить выражения?

Важно знать:

Tеорема 1. Eсли a > b, то b < a; если a < b, то b > a.

Teopema 2. Ecлu a < b u b < c, mo a < c.

Теорема 3. Если a < b и c - любое число, то a + c < b + c.

Tеорема 4. Eсли a < b и c — положительное число, то ac < bc.

 $Ecлu\ a < b\ u\ c$ — отрицательное число, то ac > bc.

Следствие. Если a и b – положительное числа u a < b , то $\frac{1}{a} > \frac{1}{b}$.

	<i>a</i> <	< <i>b</i>	a > b	a = b
1)	a < b + 1	Ответ: да.	11) $a+3b$	21) a+5b+5
2)	a-1b+1		12) $a-5b+5$	22) a-1b-1
3)	a + 1 b	Ответ: нет.	13) $a-4b-4$	23) a+3b+4
4)	a+3b+3		$a+\frac{1}{2}b+\frac{1}{2}$	24) a+cb+c
5)	a-7b-7		15) $a-9b-8$	25) 2a2b
6)	a2b		16) 10 <i>a</i> 9 <i>b</i>	26) -ab
7)	$a\frac{1}{10}b$		17) 0,1 <i>ab</i>	$\begin{array}{c c} 27) & \frac{1}{a} \dots \frac{1}{b} \end{array}$
8)	3a2b		18) -6 <i>a</i> 6 <i>b</i>	$\begin{array}{c} 28) & -\frac{1}{a}\frac{1}{b} \end{array}$
9)	-2a2b		$\frac{19)}{a} \cdot \cdot \cdot \frac{1}{b}$	$\frac{a}{2}\frac{b}{3}$
10)	$\underline{\underline{a}}\underline{\underline{b}}$		20) ab	30) $a b$
	33			<u></u>

Задание 59. Оцените значение выражения, используя данные таблицы.

1) 2 < x < 3			
x+5 $2 < x < 3$ $2+5 < x+5 < 3+5$ $7 < x+5 < 8$	$4x \ 2 < x < 3 \ 2 \cdot 4 < x \cdot 4 < 3 \cdot 4 \ 8 < x \cdot 4 < 12$	$ \begin{array}{c} -x \\ 2 < x < 3 \\ 2 \cdot (-1) > -x > 3 \cdot (-1) \\ -2 > -x > -3 \\ -3 < -x < -2 \end{array} $	
2) $4 < x < 5$			
x+3	2x	-x	
3) 8 < x < 10			
x-2	5x	-2x	
4) 1 < <i>x</i> < 3			
x-3	4x	$\frac{1}{x}$	
5) -2 < x < 0			
x+2	-x	8 <i>x</i>	

6) $0 < x < 5$				
x-5	$\frac{1}{5}x$	-x		
7) 2 < x < 4				
x-3	$\frac{x}{2}$	$\frac{1}{x}$		
8) 5 < x < 7				
2 <i>x</i> +1	-3x	$-\frac{1}{x}$		
9) $10 < x < 20$				
5 <i>x</i> – 8	-2x	$-\frac{1}{x}$		
10) $\sqrt{2} < x < \sqrt{3}$				
x+1	-x	$\frac{1}{x}$		

СЛОЖЕНИЕ И УМНОЖЕНИЕ ЧИСЛОВЫХ НЕРАВЕНСТВ

Задание 60.

🤰 Важно знать:

Tеорема 5. Eсли a < b и c < d, то a + c < b + d.

Tеорема 6. Eсли a < b и c < d , $r \partial e$ a , b , c , d — положительные числа , то ac < bd .

Следствие. Если числа a и b положительные u a < b , то $a^n < b^n$, $r \partial e$ n — натуральное число.

А. Сложите почленно неравенства.	Б. Перемножьте почленно неравенства
1) $5 < 7 \text{ m} \ 3 < 4$ $5 < 7$ $\frac{3 < 4}{8 < 11}$	1) $2>1$ и $5>3$, $1<2$ 1<2 $3<5$ $3<10$
2) 1<8 и 6<10	2) 3<4 и 5<10
3) 0 < 3 и 6 < 7	3) 7>2 и 4>3
4) -3<1 и 2<4	4) 5<6 и 2<8
5) -5<0 и -7<2	5) 9<11 и 6<11
6) 5>3 и 8>1	6) 1,5 < 2 и 4 < 5,5
7) 0>-4 и 3>-2	7) $1 < 3$ и $5 < 7$
8) 1 < 4 m 5 > 0	8) $0.5 < 3 \text{ m} \frac{1}{8} < \frac{1}{3}$
9) -3,5<1 и -2,5<4	9) $0.5 < 1$ и $2 > 0.25$
10) 5,2 < 5,7 и $0,3 > 0$	10) $\sqrt{2} < \sqrt{5}$ и $\sqrt{3} < \sqrt{7}$

Задание 61. Оцените значение выражения, используя данные таблицы:

1) $2 < x < 3 \text{ m } 5 < y < 6$				
x + y $2 < x < 3$ $5 < y < 6$ $7 < x + y < 9$		xy $2 < x < 3$ $5 < y < 6$ $10 < xy < 18$	$ \frac{x}{y} = \frac{2 < x < 3}{\frac{1}{6} < \frac{1}{y} < \frac{1}{5}} $ $ \frac{1}{3} < \frac{x}{y} < \frac{3}{5} $	
2) $4 < a < 5$ и $6 < b < 8$				
a+b	a-b	ab	$\frac{a}{b}$	
3) $2 < x < 7$ и $8 < y < 10$				
x + y	x-y	xy	$\frac{x}{y}$	
4) 10 < a < 15 и 3 < b < 4	Į			
<i>a</i> + <i>b</i>	a-b	ab	$\frac{a}{b}$	
5) $6 < x < 9$ и $2 < y < 3$				
x+y	x-y	xy	$\frac{x}{y}$	

 $oldsymbol{y}$ Указание: чтобы оценить разность (x-y), представьте её в виде суммы (x+(-y)), чтобы оценить частное $\dfrac{x}{y}$, представьте его в виде произведения $\left(x\cdot \dfrac{1}{y}\right)$.

2a+b	2a-b	2(~+b)	2ab	
24 10	$\Delta a - b$	2(a+b)	240	
7) $4 < a < 5$ и $2 < b$	0<3			
3a+b	3a-b	3(a+b)	ab	
8) 5< a < 10 и 2 <	(b < 5		1	
2a+2b	2a-2b	2(a+b)	ab	
9) 10 < a < 15 и 3	< h < 4			
$\frac{2a+2b}{a+2b}$	2a-2b	2(a+b)	ab	
2u + 2v	2a-2o	2(a+b)		
10) 1	-1 -1			
10) 1 < a < 5 и 3				
a+2b	2a-b	2(a+b)	2ab	

НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ И ИХ СИСТЕМЫ

числовые промежутки

Задание 62. Заполните таблицу, используя данные:

неравенство, задающее числовой промежуток		жение громежутка тной прямой	обозначение числового промежутка	название числового промежутка
1) $3 \le x \le 5$	3	5	[3; 5]	отрезок от 3 до 5
2) $2 \le x \le 10$		→		
3) $1 \le x \le 7$		→		
4) 8 < x < 20		20	(8;20)	интервал от 8 до 20
5) $3 < x \le 8$		→		
$6) \ x \ge 5$		→		
7) $x \le -2$		→		
8) <i>x</i> < 4		→		
9) $x > 9$		*		
10) $x > -6$		*		
11) $x \ge 0$		*		
12) $-1 < x < 0$		*		
13) $4 \le x < 6$		*		
14) x < 3				
15) $x \le 1,6$		*		

неравенство, задающее числовой промежуток	изображение числового промежутка на координатной прямой	обозначение числового промежутка	название числового промежутка
16)	2 9		
17)			
18)	10		
19)	-3 0 0 →		
20)	'////// ₀ → -8		
21)	1,5 2		
22)	0		
23)	-9 -1		
24)	10		
25)			
26)	<u>''</u> ///////////////////////////////////		
27)	-0,3		
28)			
29)	2,5		
30)	<u>'</u> ///////////₀→		

неравенство, задающее числовой промежуток	изображение числового промежутка на координатной прямой	обозначение числового промежутка	название числового промежутка
31)		[2;7]	
32)		(1;4]	
33)		(3;14)	
34)		$(-\infty;0)$	
35)		$(5;+\infty)$	
36)		[3;+∞)	
37)	→	[4;10)	
38)	→	$\left[-12;+\infty ight)$	
39)		(-∞;-1)	
40)		(2;3)	
41)	→	(-∞;0]	
42)	→	[5; 8)	
43)		(6;+∞)	
44)		$\left(-\sqrt{2};\sqrt{2} ight)$	
45)		[-40;3)	

Задание 63. Используя координатную прямую, найдите:

	<u> </u>	оординатную прямую, наидите.	
		пересечение промежутков	объединение промежутков
1)	[5;10] и [7;12]	5 7 10 12 Ответ:	5 7 10 12 Ответ:
		$[5;10] \cap [7;12] = [7;10]$.	$[5;10] \cup [7;12] = [5;12]$.
2)	[2;10] и [0;6]		
3)	(5;15] и [8;20)		
4)	[1;3] и (0;5)		
5)	[-5;5] и (0;1]		
6)	[0;4] и (-3;0]		
7)	[0;6] и [10;12]		
8)	$\left(-\infty;-2\right]$ и $\left[-2;5\right)$		
9)	(8;11) и (10;14)		
10)	(20;+∞) и (-∞;20]		

Задание 64. Изобразите на координатной прямой множество чисел, удовлетворяющих неравенству, и обозначьте его:

Задание 65. Изобразите на координатной прямой множество чисел, удовлетворяющих двойному неравенству, и обозначьте его:

Ответ: [2;10].

2)
$$3 \le x \le 5$$

Ответ:

3)
$$1 \le x < 7$$

4) -1 < x < 0

Ответ:

5)
$$4 \le x < 6$$

Ответ:

6)
$$-9 \le x \le -2$$

Ответ:

7)
$$4,5 \le x < 6,5$$

Ответ:

8)
$$0 < x < 1,2$$

Ответ:

9)
$$3 < x \le 8,4$$

10) $-3,1 < x \le 0$

Ответ:

$$11) -1\frac{3}{7} < x < 1\frac{3}{7}$$

Ответ:

12)
$$0 < x \le 5,02$$

13)
$$-\frac{1}{3} < x \le 2\frac{1}{3}$$

Ответ:

14)
$$0,1 \le x < 0,7$$

Ответ:

15)
$$-1,08 < x < -0,1$$

Ответ:

16)
$$0 \le x < \sqrt{2}$$

Ответ:

17)
$$-3 < x \le \sqrt{2}$$

Ответ:

18)
$$\sqrt{2} \le x \le \sqrt{5}$$

Ответ:

Задание 66. С помощью координатной прямой определите, какие целые числа принадлежат промежутку:

РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Задание 67. Решите неравенство.

 \mathbf{A}

1) $x-6 < 0$	10) $7-x>0$
x < 6	
7/////////////////////////////////////	
6	
Otbet: $(-\infty;6)$.	
$2) -x-1 \le 0$	$ 11 3+x \ge 0$
3) $x+9 \ge 0$	12) $x-2,5 \ge 0$
4) $3-x < 0$	13) 9,4+x>0
5) $8+x<0$	14) $-1,9-x \le 0$
C) 4 1 11 0	
6) $-4+x>0$	15) $x - \frac{3}{4} \le 0$
	4
7) $5-x>0$	16) $x+8,1>0$
8) $-5-x \le 0$	17) \[\sqrt{9} > 0 \]
0, 0 x = 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
9) $-6 + x \le 0$	18) $\sqrt{7} + x < 0$

Б

Б	
1) 3 <i>x</i> < 6	10) -4 <i>x</i> < 8
2) $2x \ge 14$	11) $-9x > 90$
3) 8x < 8	$12) -3x \ge 9$
4) $5x > -10$	13) $-4x \le 24$
5) $6x \le -24$	$14) -2x \ge 4$
6) $3x \ge -15$	$15) -7x \ge 0$
7) $9x > 0$	16) $-3x \ge -21$
8) $4x \le 12$	17) $-5x > -25$
9) $7x \ge 14$	18) $-6x \le -18$

В

B	
1) $0,2x < 4$	$10) -0.02x \ge -2.2$
2) $1,5x \ge 6$	11) $-7x \le -0.35$
3) 0,6 <i>x</i> < 1,8	12) $-0.3x < 2.7$
4) $0.5x > -2.5$	13) $-1,2x \le 48$
5) $6x \le -4.2$	14) $-1,3x > 26$
6) $3x \ge -4.5$	15) $-8x > -0.64$
$7) \frac{1}{2} x > 8$	16) $-x \ge 6.3$
$8) \frac{1}{3} x \le 2$	17) $-\frac{1}{5}$ $x < 2,4$
$9) \frac{2}{3} x \ge 16$	$18) -\frac{1}{6} x \le \frac{2}{15}$

Γ	
1) $5x-15<0$	$10) -3,6+0,6x \le 0$
2) $6+2x>0$	11) $0,4x-6<0$
3) $7x-42>0$	$12) \frac{1}{2} + 2x \ge 0$
4) $-5-10x \le 0$	13) $5x-2,05 \ge 0$
5) $5x + 9 \ge 0$	14) $1-0.5x>0$
6) $-4x-1 \le 0$	15) $1,8-0,6x>0$
7) $3-4x < 0$	$16) -1, 7 - 3, 4x \le 0$
8) $3x - 0, 3 \le 0$	$17) \ 3x - 6\sqrt{2} \ge 0$
9) 11x+1,1>0	18) $10\sqrt{7} + 2x < 0$

РЕШЕНИЕ СИСТЕМ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Задание 68. Решите систему неравенств:

1)	$\int x > 3$
	$\int x < 7$

 $\begin{cases}
 x \ge 0 \\
 x \le 8
\end{cases}$

Ответ: (3; 7)

$$\begin{cases} x \ge -5 \\ x < 0 \end{cases}$$

8)
$$\begin{cases} x > 1 \\ x < 6 \end{cases}$$

3)
$$\begin{cases} x < 4 \\ x < 1 \end{cases}$$

$$\begin{cases}
 x \ge 12 \\
 x > 0
\end{cases}$$

$$\begin{cases} x > 8 \\ x \le 9 \end{cases}$$

$$\begin{cases}
 x > 6 \\
 x < 5
\end{cases}$$

$$\begin{cases}
 x \le 19 \\
 x < 11
\end{cases}$$

$$\begin{array}{c}
11) \quad \begin{cases}
x > 5 \\
x \ge -1
\end{array}$$

$$\begin{cases}
 x > 5 \\
 x \le 6
\end{cases}$$

$$\begin{cases}
 x \le -3 \\
 x \le -7
\end{cases}$$

	1
$ \begin{cases} x > 1, 2 \\ x > -1 \end{cases} $	$\begin{cases} x \ge 0, 2 \\ x < \frac{1}{2} \end{cases}$
$ \begin{array}{c} 14) & \begin{cases} x < 3, 1 \\ x \le 1, 6 \end{array} $	$ \begin{cases} x < 0,01 \\ x < 0 \end{cases} $
$ \begin{array}{ c c } \hline 15) & \begin{cases} x > 9 \\ x < 10, 2 \end{cases} \end{array} $	$\begin{cases} x \ge 1 + \sqrt{2} \\ x > 1 \end{cases}$
$ \begin{array}{ c c c } \hline 16) & \begin{cases} x < 0 \\ x > -2,5 \end{cases} \end{array} $	$ \begin{cases} x > 1 - \sqrt{3} \\ x \ge 0 \end{cases} $
$ \begin{array}{ c c c } \hline 17) & \begin{cases} x > 0 \\ x < -3 \end{cases} \end{array} $	$\begin{cases} x \le \frac{1}{9} \\ x < 0, 1 \end{cases}$
$ \begin{array}{c c} \hline 18) & \begin{cases} x > 3 \\ x < 4.5 \end{cases} \end{array} $	
	$\begin{cases} x > \frac{2}{3} \\ x < \frac{5}{9} \end{cases}$
$\begin{cases} x \ge 3 \\ x \le 3 \end{cases}$	$\begin{cases} x > 5\frac{1}{3} \\ x \ge 5, 2 \end{cases}$

ФУНКЦИЯ И ЕЁ ГРАФИК

ФУНКЦИЯ. ОБЛАСТЬ ОПРЕДЕЛЕНИЯ И МНОЖЕСТВО ЗНАЧЕНИЙ ФУНКЦИИ

Задание 69. Функция y = f(x) задана формулой. Заполните таблицу.

Важно знать: если зависимость переменной у от переменной x является функцией, то коротко это записывают y = f(x);

- f(x) значение функции, соответствующее значению аргумента, равному x;
- D(f) обозначение области определения функции;
- E(f) обозначение множества значений функции.

	$D\left(f\right)$	E(f)	f(0)	f(-1)	f(10)
1) $y = 2x + 1$	R	R	1	-1	21
2) $y = -x + 6$					
3) $y = x^2$					
$y = -x^2$					
$5) y = \frac{2}{x}$					
$y = -\frac{6}{x}$					
7) $y = \sqrt{x}$					
8) $y = x^3 - 3$					
9) $y = x $					
$10) \ \ y = \frac{2}{x^2 + 3}$					
$11) y = \frac{x+1}{2}$					
12) $y = -\sqrt{x}$					

СВОЙСТВА ФУНКЦИИ

Задание 70. Используя график функции y = f(x), перечислите её свойства.

		1)	2)
		1 -4 -3 -2 -1 0 1 2 3 4 x -2 1 -4 -3 -2 -1 0 1 2 3 4 x	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Область определения	функции $D(f)$		
Множество значений	функции Е(f)		
Нули функции $f(x)$ =	= 0		
Промежутки знакопостоянства	f(x) < 0 $f(x) > 0$		
	f(x) > 0		
Промежутки – убыв	ания функции		
– возрас	тания функции		
Точка разрыва			
_		3)	4)
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-4 -3 -2 -1 0 1 2 3 4 x

Область определения функции D(f)Множество значений функции E(f)Нули функции f(x) = 0Промежутки знакопостоянства f(x) < 0Промежутки — убывания функции — возрастания функции - возрастания функции

Задание 71. С помощью графика функции y = f(x) перечислите её свойства.

A		1) $y = x - 2$ $y \uparrow \downarrow $	$2) y = -x + 3$ $y + 4$ $-4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ x$ -1 -2 -3 -4
Область определения фу	нкции $D(f)$		
Множество значений фу	нкции $E(f)$		
y = 0			
Промежутки знакопостоянства	y < 0		
y > 0			
Промежутки — убывания функции			
– возрастания функции			

Б		3) $y = \frac{1}{x}$	4) $y = -\frac{1}{x}$
Область определения фу	нкции $D(f)$		
Множество значений фу	нкции $E(f)$		
Нули функции			
y = 0			
Промежутки знакопостоянства	<i>y</i> < 0		
y > 0			
Промежутки – убывания функции			
– возрастания функции			

Γ		7) $y = x $ $y = x$	8) $y = -x^2$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Область определения функции $D(f)$			
Множество значений фу	нкции $E(f)$		
Нули функции $y=0$			
Промежутки знакопостоянства	y < 0		
y > 0			
Промежутки — убывания функции			
– возрастания функции			

СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ И ЕЁ СВОЙСТВА

ОПРЕДЕЛЕНИЕ СТЕПЕНИ С ЦЕЛЫМ ОТРИЦАТЕЛЬНЫМ ПОКАЗАТЕЛЕМ Задание 72.

Bажно знать: $a^n=rac{1}{a^{-n}}$, где a
eq 0 u n — целое отрицательное число.

Замените степень с целым отрицательным	Замените дробь степенью с целым
показателем дробью	отрицательным показателем
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \begin{array}{cc} 21 \end{array} \right rac{1}{5^2} =$
$ 2^3$	5^2
2) 5 ⁻⁷ =	
, •	$\left \frac{22}{3^7} \right =$
3) 9 ⁻⁸ =	23) 1 _
3) 9°=	$\frac{23}{2^5} =$
$4) 7^{-5} =$	$\frac{24}{1} = \frac{1}{1}$
	$\frac{10^{6}}{10^{6}}$
$3^{-1} =$	25) 1 _
	$\frac{1}{4^9} =$
$6) 10^{-4} =$	$\begin{vmatrix} 25 & \frac{1}{4^9} = \\ 26 & \frac{1}{7^2} = \end{vmatrix}$
0) 10 =	$\frac{1}{7^2} =$
7) 40-3	
$7) 12^{-3} =$	' =
	104
$8) 6^{-1} =$	28) 1 =
	$\frac{11}{11}$
9) 10 ⁻¹ =	
10 =	$\frac{1}{8} =$
10) $a^{-6} =$	30) 1
a =	
	$\frac{1}{x^3}$
$11) x^{-3} =$	$ 31) \frac{1}{1} =$
	$\frac{1}{a^8} =$
12) $b^{-2} =$	32) 1
, -	$\frac{1}{y^2} =$
10) -1	00) 1
13) $y^{-1} =$	$33) \frac{1}{-} =$
	b
14) $m^{-5} =$	$\frac{34}{100} = \frac{1}{100} = \frac{1}{100}$
	$\frac{1}{n^{10}} =$
15) $k^{-1} =$	35) 1 _
-	$\frac{1}{k} = \frac{1}{k}$
$16) \ 10^{-3} =$	36) 1 _
10) 10 =	$\left \frac{30}{10} \right \frac{1}{10} =$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$(xy)^{-2} =$	$ 37) \frac{1}{}=$
	5
$(ab)^{-5} =$	38) _1 _
(40) -	$\frac{1}{\left(xy\right)^{2}} =$
10) 2	20) 1
19) $(x+y)^{-3} =$	$ 39\rangle \frac{1}{(1-x)^2} =$
	$(x-y)^2$
$(20) (m - n)^{-2}$	$ \begin{vmatrix} 39 & \frac{1}{(x-y)^2} \\ 40 & \frac{1}{x} = \end{vmatrix} $
$20) \ (m-n)^{-2} =$	$\frac{1}{\left(a+b\right)^{2}}=$
	(u + v)

Задание 73. Представьте число в виде степени с одним из натуральных оснований:

		2	3	5	10
1)	125	_	_	125 = 5 ³	_
2)	4				
3)	1000				
4)	$\frac{1}{4}$	$\frac{1}{4} = \frac{1}{2^2} = 2^{-2}$	_	_	_
5)	27				
6)	$\frac{1}{25}$				
7)	$\frac{1}{10}$				
8)	9				
9)	81				
10)	$\frac{1}{125}$				
11)	100				
12)	8				
13)	3				
14)					
15)	$\frac{1}{1000}$				
16)	$\frac{1}{2}$				
17)	10				
18)	$\frac{1}{9}$				
19)	$\frac{1}{100}$				
20)	1				

СВОЙСТВА СТЕПЕНИ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ

Задание 74. Найдите значение выражения.

Важно знать: для каждых а≠0, b≠0 и любых целых т и п

$$a^m \cdot a^n = a^{m+n}$$

$$(ab)^n = a^n b^n$$

$$a^m:a^n=a^{m-n}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$\left(a^{m}\right)^{n}=a^{mn}$$

1)
$$2^{-3} \cdot 2^5 =$$

$$16) \ \left(3^{-3}\right)^{-1} =$$

2)
$$5^{-3} \cdot 5^6 =$$

17)
$$\left(5^{-1}\right)^{-2} =$$

3)
$$3^7 \cdot 3^{-3} =$$

$$18) \ \left(2^{-3}\right)^{-2} =$$

4)
$$7^{-9} \cdot 7^{11} =$$

19)
$$(-2)^4 =$$

5)
$$3^{-1} \cdot 3^4 =$$

$$(-5)^3 =$$

6)
$$10^{-7} \cdot 10^5 =$$

$$(-6)^{-1} =$$

7)
$$4^{-3} \cdot 4^{-5} \cdot 4^{10} =$$

22)
$$2^{-5}:2^{-2}=$$

8)
$$6^{-8} \cdot 6^{-1} \cdot 6^7 =$$

$$23)$$
 $5^2:5^{-1}=$

9)
$$10^2 : 10^5 =$$

24)
$$3^{-2}:3^{-5}=$$

10)
$$5^2 : 5^4 =$$

$$25)$$
 $10^4:10^{-2} =$

11)
$$2^2 : 2^7 =$$

$$26) \left(\frac{1}{5}\right)^{-4} : \left(\frac{1}{5}\right)^{-6} =$$

12)
$$8^3:8^4=$$

$$27) \ \left(\frac{1}{3}\right)^{-1} : \left(\frac{1}{3}\right)^{3} =$$

13)
$$11^{10} : 11^{12} =$$

$$28) \left(\frac{1}{2}\right)^{-4} : \left(\frac{1}{2}\right) =$$

14)
$$5:5^2 =$$

$$\left| \frac{1}{10} \right|^{-5} : \left(\frac{1}{10} \right)^{-7} =$$

15)
$$7 : 7^3 =$$

$$\frac{1}{2} \left(\frac{1}{2} \right)^{-3} \cdot \left(\frac{1}{2} \right)^{4} : \left(\frac{1}{2} \right)^{0} =$$

СТАНДАРТНЫЙ ВИД ЧИСЛА

ПОНЯТИЕ СТАНДАРТНОГО ВИДА ЧИСЛА

Задание 75. Запишите число в стандартном виде и укажите порядок числа.

 $oldsymbol{\mathfrak{g}}$ Важно знать: стандартный вид числа — это его запись в виде $a\cdot 10^n$, где $1\leq a< 10$ и n — целое число. Число n называют порядком числа a.

	число	стандартный вид числа	порядок числа
1)	80	$80 = 8 \cdot 10^{1}$	1
2)	200		
3)	1200		
4)	560		
5)	45000		
6)	7300000		
7)	20300		
8)	5423000		
9)	83		
10)	12,8		
11)	621,3		
12)	1520000,8		
13)	384,32		
14)	51,602		
15)	1432,09		
16)	20,3		
17)	456		
18)	0,24		
	0,000014		
20)	0,0000007		
	0,00523		
	0,001487		
	0,87		
24)	4500000		
25)	65		

Задание 76. Каждому числу из первой строки поставьте в соответствие его запись в стандартном виде из второй строки:

\mathbf{A}]	Б	-	в Г д				
12300	123	8000	0,	0,123		23	12,3	
1		2		3	4		5	6
1,23.10-1	1,23	B· 10 ⁴	1,23	3· 10⁵	1,23· 10³		1,23.10	-3 1,23· 1
Ответ:	A	Б	В	Γ	Д			
)								
\mathbf{A}]	Б	-	В	Γ		Д	
0,00045	45	000	450	4500000		5	45	
1		2		3	4		5	6
$4,5 \cdot 10^{6}$	4,5	101	4,5: 10-4		4,5.10	0^{-1}	4,5. 105	4,5.10
Ответ:	A	Б	В	Γ	Д			
)		<u> </u>						
A	Б	,	В		Γ		Д	
86	86	0	0,08	86	0,00008	6	860000	
1	2		3		4		5	6
8,6: 10-1	8,6	10^{-2}	8,6.1	10^{-5}	8,6.10	5	8,6: 101	8,6.102
Ответ:	A	Б	В	Γ	Д			
)								_
A	Б		В		Γ		Д	
2000000	0,0	02	2		0,00002	2	200	
1	2		3		4		5	6
2· 10 ⁻⁵	2.1	0 1	2.10		2· 10 ⁶		2· 10 ²	2· 10°

Ответ:	A	Б	В	Γ	Д

ОТВЕТЫ

РАЦИОНАЛЬНЫЕ ДРОБИ И ИХ СВОЙСТВА

РАЦИОНАЛЬНЫЕ ВЫРАЖЕНИЯ

- Задание 2. 1) x любое число, кроме числа 1. 2) x любое число, кроме числа 11. 3) x любое число, кроме числа -3. 4) x любое число, кроме числа 5. 5) x любое число, кроме числа -10. 6) x любое число. 7) x любое число, кроме числа 0. 8) x любое число, кроме числа 2. 9) x любое число, кроме числа 7. 10) x любое число, кроме чисел 0 и 1. 11) x любое число, кроме число 0 и 1.
- Задание 3. 1) x любое число. 2) x любое число. 3) x любое число, кроме чисел 0 и 1. 4) x любое число, кроме чисел —1 и 2. 6) x любое число, кроме число —1 и 2. 6) x любое число, кроме число —2. 8) x любое число —3. 8) x любое число —4 исло —5. 8) x любое число —5 исло —5 исло

СУММА И РАЗНОСТЬ ДРОБЕЙ

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ДРОБЕЙ С ОДИНАКОВЫМИ ЗНАМЕНАТЕЛЯМИ

Задание 6.

B. 1)
$$\frac{3-x}{7}$$
. 2) $\frac{1+x}{3}$. 3) $\frac{-x-3}{2}$. 4) $\frac{2a-9}{5}$. 5) $\frac{a}{y^2}$. 6) $\frac{-b}{2x}$. 7) $\frac{-a}{6x}$. 8) $\frac{a-2}{11b}$. 9) $\frac{-3b-2}{2a}$. 10) $\frac{-x-3}{3y}$. 11) $\frac{-a-22}{a^2}$. 12) $\frac{-2x+7}{2y}$. 13) $\frac{2x-3y}{a}$. 14) $\frac{10a+6b}{3b}$. 15) $\frac{17m-3n}{xy}$. 16) $\frac{5a^3-4x}{4a}$. Γ . 1) $\frac{2-a}{x-3}$. 2) $\frac{1-b}{a-2}$. 3) $\frac{m+8}{b-y}$. 4) $\frac{7x}{a-b}$. 5) $\frac{y}{x-a}$. 6) $\frac{5}{b-4}$. 7) $\frac{x^2}{y-5}$. 8) $\frac{7a}{2b-5}$. 9) $\frac{6}{a-1}$. 10) $\frac{b-a}{x-3}$.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ

Задание 7

B. 1)
$$(a+b)^2$$
. **2)** $(x+3)^2$. **3)** y^2-25 . **4)** $16-x^2$. **5)** $6(x+y)$. **6)** $55(a-b)$. **7)** $2(x^2-9)$. **8)** $10(a^2-1)$. **9)** $(b+1)^2(b-1)$. **10)** $(x-2)^2(x+2)$.

Задание 8.

A. 1)
$$\frac{3+2x}{6}$$
. 2) $\frac{4+5a}{10}$. 3) $\frac{3y-7x}{21}$. 4) $\frac{6+a}{3a}$. 5) $\frac{3x+2y}{3y}$. 6) $\frac{5b+a}{ab}$. 7) $\frac{ac-14}{7a}$. 8) $\frac{8c-ab}{bc}$. 9) $\frac{3ab-xy}{3x}$. 10) $\frac{3bx+2ay}{ab}$.

5. 1)
$$\frac{2a+b}{8}$$
. 2) $\frac{n-2m}{10}$. 3) $\frac{24+a}{100}$. 4) $\frac{b+a}{2ab}$. 5) $\frac{y-x}{6xy}$. 6) $\frac{7}{15c}$. 7) $\frac{7x}{6a}$. 8) $\frac{-3a}{28m}$. 9) $\frac{6b+2a}{30x}$. 10) $\frac{15x-8y}{36a}$.

B. 1)
$$\frac{12b+5a}{30ab}$$
. 2) $\frac{5d-7c}{35cd}$. 3) $\frac{15y+2x}{24xy}$. 4) $\frac{33c-10k}{36ck}$. 5) $\frac{3ay+8}{18xy}$. 6) $\frac{9-4bx}{60bc}$. 7) $\frac{3c+2b}{abc}$. 8) $\frac{z-y}{xyz}$. 9) $\frac{2cx-2ab}{abcx}$. 10) $\frac{5cy+bxz}{abcxy}$.

$$\Gamma. \ 1) \ \frac{5x+2}{x^2}. \ 2) \ \frac{8-3a^2}{a^3}. \ 3) \ \frac{5+ax}{x^3}. \ 4) \ \frac{1+b^2c}{b^5}. \ 5) \ \frac{4a+15}{3a^2}. \ 6) \ \frac{3x-10c}{24c^2}. \ 7) \ \frac{9b-40}{10b^3}. \ 8) \ \frac{3an+2b}{48n^3}.$$

9)
$$\frac{3c^2y+2x}{36c^6}$$
. 10) $\frac{5c-3ab^2}{ab^7c}$

Д. 1)
$$\frac{3+x}{3}$$
. 2) $\frac{y+5a}{5}$. 3) $\frac{2y-x}{y}$. 4) $\frac{1-7x}{x}$. 5) $\frac{-2+a}{2}$. 6) $\frac{-ax+1}{x}$. 7) $\frac{10a+1}{5}$. 8) $\frac{-6c-x}{2}$. 9) $\frac{a^3+1}{a}$.

10)
$$\frac{2y-x^3}{x^2}$$
.

E. 1)
$$\frac{1+a+b}{(a+b)^2}$$
. 2) $\frac{a-b+1}{(a-b)^2}$. 3) $\frac{x-y-1}{(x-y)^2}$. 4) $\frac{3+n-m}{(n-m)^2}$. 5) $\frac{2x+2y-a}{(x+y)^2}$. 6) $\frac{10a+5b-x}{(2a+b)^2}$. 7) $\frac{m-2n-1}{(m-2n)^3}$.

8)
$$\frac{34+3y+2b}{2(x+y)^2}$$
. 9) $\frac{5x+2a-2b}{5(a-b)^2}$. 10) $\frac{3b+10x-10y}{3(x-y)^3}$

$$\text{ W. 1) } \frac{5x+2y}{x^2+xy} \cdot \text{ 2) } \frac{a^2+1}{a^2-1} \cdot \text{ 3) } \frac{3x+15}{x^2-9} \cdot \text{ 4) } \frac{3}{c^2+3c+2} \cdot \text{ 5) } \frac{-2x^2+2bx+b^2}{3x^2+3bx} \cdot \text{ 6) } \frac{2a^2+2b^2}{a^2-b^2} \cdot \text{ 7) } \frac{5ab+a^2}{a^2-b^2} \cdot \text{ 7) }$$

8)
$$\frac{2y^2 - xy + 3x^2}{y^2 - x^2}$$
.

ПРОИЗВЕДЕНИЕ И ЧАСТНОЕ ДРОБЕЙ

УМНОЖЕНИЕ ДРОБЕЙ. ВОЗВЕДЕНИЕ ДРОБИ В СТЕПЕНЬ

Задание 10. 1) да. 2) нет. 3) да. 4) нет. 5) да. 6) да. 7) да. 8) нет. 9) нет. 10) да. 11) да. 12) да. 13) да. 14) нет. 15) нет. 16) нет.

Задание 11. 1) 31256. 2) 63152. 3) 62315. 4) 52641. 5) 65214.

ПРЕОБРАЗОВАНИЕ РАЦИОНАЛЬНЫХ ВЫРАЖЕНИЙ

Задание 12. 1)
$$\frac{y+x}{xy}$$
. 2) $\frac{b-a}{ab}$. 3) $\frac{x^2}{3y}$. 4) $\frac{x^2+2y^2}{2xy}$. 5) $\frac{a}{3}$. 6) $\frac{5x}{2}$. 7) 1. 8) $\frac{2y}{3x}$. 9) $\frac{a}{2}$. 10) $\frac{-x}{3}$. 11) $\frac{5a-10}{6}$. 12) $\frac{6}{x^2}$. 13) $\frac{4a-4}{a^2-2a}$. 14) $\frac{6y+1}{2}$. 15) $\frac{2b+2}{b^2-9}$. 16) -1. 17) $\frac{a}{2}$ 3. 18) $\frac{a+3}{2x}$. 19) $\frac{3n^2}{9a}$. 20) 1. 21) $\frac{5x}{3}$. 22) $\frac{4}{a^2}$. 23) $\frac{a-5}{a-6}$. 24) $\frac{x-a}{x}$ 25) $\frac{a}{1+a}$. 26) $\frac{4x}{3}$. 27) $\frac{3x-12}{x}$. 28) a^2x-a . 29) $\frac{3a-2}{2}$. 30) $\frac{5}{x-2}$.

 Φ УНКЦИЯ $y = \frac{k}{x}$ И ЕЁ ГРАФИК

Задание 15. 1) -1; 1. 2) -1. 3) -3; 3. 4) -1. 5) -2. 6) $\overset{\mathcal{X}}{-1}$; 2.

АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ

ДЕЙСТВИТЕЛЬНЫЕ ЧИСЛА

Задание 22. 1) В. 2) D. 3) В. 4) С. 5) В. 6) В.

Задание 24. 1) 18,003. 2) 3,0(1). 3) 4,1. 4) $\frac{3}{2}$. 5) π .

КВАДРАТНЫЕ КОРНИ. АРИФМЕТИЧЕСКИЙ КВАДРАТНЫЙ КОРЕНЬ

Задание 25.

A. 1) 5. 2) 6. 3) 7. 4) 9. 5) 4. 6) 3. 7) 1. 8) 20. 9) 8. 10) 25. 11) 50. 12) 60. 13) 70. 14) 90. 15) 40. 16) 300.

17) 10. 18) 2. 19) 800. 20) 250. 21)
$$\frac{1}{5}$$
. 22) $\frac{1}{6}$. 23) $\frac{1}{7}$. 24) $\frac{2}{9}$. 25) $\frac{4}{9}$. 26) $\frac{3}{4}$. 27) $\frac{1}{100}$. 28) $\frac{3}{20}$.

29)
$$\frac{7}{8}$$
. 30) $\frac{9}{25}$. 31) 0,5. 32) 0,06. 33) 0,7. 34) 0,09. 35) 0,4. 36) 0,03. 37) 0,1. 38) 0,2. 39) 0,08.

40) 2,5.

5. 1) 11. 2) 16. 3) 13. 4) 12. 5) 14. 6) 17. 7) 1,3. 8) 0,17. 9) 160. 10) 2,5. 11) 1,1. 12) 140. 13)
$$\frac{7}{10}$$
. 14) $\frac{3}{14}$. 15) $\frac{11}{12}$. 16) $\frac{1}{15}$. 17) $\frac{10}{13}$. 18) $\frac{3}{25}$. 19) $\frac{3}{10}$. 20) $\frac{3}{5}$. 21) $\frac{2}{3}$. 22) $1\frac{1}{3}$. 23) $1\frac{4}{9}$. 24) $1\frac{3}{4}$.

Задание 28. 1) 4. 2) 25. 3) 9. 4) 100. 5) 169. 6) 0. 7) 1. 8) корней нет. 9) 400. 10) корней нет. 11) 0,04.

12) 1,21. 13) 0,81. 14) 0,49. 15) корней нет. 16)
$$\frac{1}{16}$$
. 17) корней нет. 18) $\frac{4}{25}$. 19) корней нет. 20) $\frac{121}{144}$.

Задание 29. 1) $x \ge 0$. 2) $x \ge 0$. 3) x — любое число. 4) x > 05. 5) $x \ge 0$. 6) $x \le 0$. 7) $x \le 0$. 8) $x \ge 0$. 9) $x \ge 0$. 10) $x \le 0$. 11) $x \ge 0$. 12) $x \ge 0$. 13) $x \ge 0$. 14) $x \le 0$. 15) $x \le 0$. 16) x = 0. 17) $x \ge 0$. 18) x > 0. 19) x < 0. 20) $x \ge 0$, $x \ne 0$.

ФУНКЦИЯ $y = \sqrt{x}$ И ЕЁ ГРАФИК

Задание 32. 1) 0; 1. 2) 1. 3) корней нет. 4) 1. 5) 0. 6) 4.

ПРИМЕНЕНИЕ СВОЙСТВ АРИФМЕТИЧЕСКОГО КВАДРАТНОГО КОРНЯ ВЫНЕСЕНИЕ МНОЖИТЕЛЯ ИЗ-ПОД ЗНАКА КОРНЯ. ВНЕСЕНИЕ МНОЖИТЕЛЯ ПОД ЗНАК КОРНЯ

Задание 35. 1)
$$2\sqrt{3}$$
 . 2) $2\sqrt{5}$. 3) $3\sqrt{5}$. 4) $3\sqrt{3}$. 5) $5\sqrt{2}$. 6) $6\sqrt{2}$. 7) $7\sqrt{2}$. 8) $10\sqrt{10}$. 9) $4\sqrt{3}$. 10) $5\sqrt{3}$. 11) $2\sqrt{10}$. 12) $10\sqrt{3}$. 13) $10\sqrt{7}$. 14) $6\sqrt{3}$. 15) $11\sqrt{2}$. 16) $\sqrt{28}$. 17) $\sqrt{200}$. 18) $\sqrt{99}$. 19) $\sqrt{72}$. 20) $\sqrt{600}$. 21) $\sqrt{32}$. 22) $\sqrt{75}$. 23) $\sqrt{10}$. 24) $\sqrt{8}$. 25) $\sqrt{0,4}$. 26) $-\sqrt{45}$.

Задание 37. 1)
$$2\sqrt{7}; 4\sqrt{2}; 3\sqrt{5}$$
 . 2) $2\sqrt{11}; 5\sqrt{2}; \sqrt{51}$. 3) $-2\sqrt{10}; -\sqrt{39}; -6$. 4) $-3\sqrt{3}; -5; -2\sqrt{6}$. 5) $7\sqrt{2}; 10; 6\sqrt{3}$. 6) $8; 3\sqrt{7}; \sqrt{60}$. 7) $-2\sqrt{3}; -\sqrt{11}; -3$. 8) $10; 3\sqrt{10}; 2\sqrt{15}$. 9) $-1; -2\sqrt{10}; -10\sqrt{6}$. 10) $2\sqrt{5}; 3\sqrt{2}; \sqrt{17}$.

 $(27) - \sqrt{12} \cdot (28) - \sqrt{125} \cdot (29) - \sqrt{98} \cdot (30) - \sqrt{2}$

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ, СОДЕРЖАЩИХ КВАДРАТНЫЕ КОРНИ Залание 41.

A. 1)
$$\frac{x\sqrt{2}}{2}$$
. 2) $\frac{a\sqrt{5}}{5}$. 3) $\frac{7\sqrt{3}}{3}$. 4) $\frac{8\sqrt{11}}{11}$. 5) $\frac{5\sqrt{a}}{a}$. 6) $\frac{3\sqrt{x}}{2x}$. 7) $\frac{y\sqrt{5}}{15}$. 8) $\frac{4\sqrt{7}}{21}$. 9) $\frac{11\sqrt{3}}{6}$. 10) $\frac{7\sqrt{6}}{6a}$.
B. 1) $\frac{\sqrt{5a}}{5a}$. 2) $\frac{7\sqrt{xy}}{xy}$. 3) $\frac{3\sqrt{11a}}{11a}$. 4) $\frac{\sqrt{3b}}{3b}$. 5) $\frac{5\sqrt{3x}}{6x}$. 6) $\frac{6\sqrt{x+y}}{x+y}$. 7) $\frac{\sqrt{a-b}}{a-b}$. 8) $\frac{4\sqrt{3}+a}{3+a}$. 9) $\frac{\sqrt{x-4}}{x-4}$. 10) $\frac{b\sqrt{a-x}}{a-x}$.

B. 1)
$$\frac{3-\sqrt{2}}{7}$$
. 2) $\frac{5+\sqrt{3}}{11}$. 3) $\frac{4\sqrt{a}-4}{a-1}$. 4) $\frac{4x+x\sqrt{3}}{13}$. 5) $3\sqrt{5}-6$. 6) $\sqrt{3}-\sqrt{2}$. 7) $\frac{\sqrt{5}+\sqrt{3}}{2}$. 8) $10\sqrt{7}-10\sqrt{6}$. 9) $\sqrt{11}+\sqrt{7}$. 10) $\sqrt{6}-\sqrt{3}$.

КВАДРАТНОЕ УРАВНЕНИЕ И ЕГО КОРНИ

НЕПОЛНЫЕ КВАДРАТНЫЕ УРАВНЕНИЯ

Задание 44. 1)
$$-3$$
; 3. 2) -5 ; 5. 3) -1 ; 1. 4) -0.5 ; 0.5 ; 0.5 . 5) -2 ; 2. 6) $-\frac{1}{3}$; $\frac{1}{3}$. 7) 0; 2.5. 8) $-\frac{1}{3}$; 0. 9) 0; $\frac{1}{2}$. 10) 0; 0,7. 11) 0; $\frac{1}{6}$. 12) 0; 10. 13) $-\sqrt{5}$; $\sqrt{5}$. 14) корней нет. 15) 0. 16) 0; $\sqrt{2}$. 17) $-\frac{\sqrt{2}}{2}$; $\frac{\sqrt{2}}{2}$. 18) 0; $\frac{2}{3}$.

ФОРМУЛА КОРНЕЙ КВАДРАТНОГО УРАВНЕНИЯ

Задание 46.

А. 1)
$$-7$$
; 2. 2) $-\frac{1}{4}$; $-\frac{1}{3}$. 3) $-\frac{1}{3}$; $\frac{1}{2}$. 4) $-\frac{1}{2}$. 5) $-\frac{1}{9}$; 1. 6) -4 ; 1. 7) корней нет. 8) -8 ; 1. 9) $-\frac{2}{3}$; $-\frac{1}{2}$. 10) -1 ; $\frac{5}{6}$ 11) 1; $1\frac{1}{3}$. 12) корней нет. 13) $\frac{1}{4}$; $\frac{1}{2}$. 14) $-\frac{1}{4}$; 1. 15) -1 ; $\frac{4}{5}$. 16) $-\frac{1}{3}$. 17) 1; 4. 18) -2 ; $\frac{1}{2}$. 19) -2 ; $-\frac{1}{2}$. 20) корней нет. 21) -3 ; 4. 22) -7 ; 1.

Б. 1)
$$\frac{1}{2}$$
. 2) $-\frac{1}{2}$; $\frac{1}{4}$. 3) корней нет. 4) $-\frac{2}{3}$. 5) $-\frac{1}{14}$; $\frac{1}{2}$. 6) -2 ; $\frac{1}{3}$. 7) $-\frac{1}{3}$; 3. 8) $\frac{2}{3}$; 1. 9) $-\frac{1}{7}$; $\frac{1}{3}$. 10) $-\frac{1}{4}$; 1. 11) $\frac{1}{2}$; 2. 12) $-\frac{1}{4}$; 1.

ТЕОРЕМА ВИЕТА

Задание 48. 1) 2; 3. 2) 2; 5. 3) 2; 7. 4) 3; 5. 5) 1; 12. 6) 3; 8. 7) 9; 10. 8) -10; 9. 9) -2; 3. 10) -3; 2. 11) -4; -2. 12) -3; 4. 13) -4; 3. 14) -3; -2. 15) -1; -7. 16) -12; 4. 17) -7; -6. 18) -6; 7. 19) -1; 9. 20) 2. 21) -5. 22) 1; 7. 23) 4; 7. 24) -9; -4. 25) -3; 12. 26) -6; 4. 27) -3. 28) 1.

КВАДРАТНЫЙ ТРЁХЧЛЕН

КВАДРАТНЫЙ ТРЁХЧЛЕН И ЕГО КОРНИ

Задание 49.

A. 1)
$$(x-1)^2 + 1$$
. **2)** $(x+1)^2 - 5$. **3)** $(x-2)^2 - 3$. **4)** $(x+5)^2 - 28$. **5)** $(x-4)^2 - 11$. **6)** $(x+3)^2 - 9$. **7)** $(x-7)^2 - 99$. **8)** $(x+4)^2 - 16$. **9)** $(x+6)^2 - 6$. **10)** $(x-10)^2 - 30$.

6. 1)
$$3(x+1)^2 + 2$$
. 2) $2(x+1)^2 + 1$. 3) $5(x-1)^2 + 2$. 4) $4(x-1)^2 + 5$. 5) $2(x-2)^2 - 9$. 6) $7(x-1)^2 + 1$. 7) $-3(x+2)^2 + 20$. 8) $-6(x-1)^2 + 11$. 9) $-2(x+1)^2 + 3$. 10) $-3(x-1)^2 - 1$.

РАЗЛОЖЕНИЕ КВАДРАТНОГО ТРЁХЧЛЕНА НА МНОЖИТЕЛИ

Задание 50. 1)
$$(x-2)(x-3)$$
. 2) $(x-2)(x-5)$. 3) $(x-1)(x-2)$. 4) $(x-5)(x-3)$. 5) $(x+2)(x+3)$.

6)
$$(x+4)(x+2)$$
. 7) $(x+3)(x-2)$. 8) $(x-5)(x+2)$. 9) $(x-7)(x+3)$. 10) $(x+7)(x-2)$.

11)
$$(x-6)(x+9)$$
. 12) $(2x-1)(x-2)$. 13) $(2x-1)(x-3)$. 14) $(x-5)(3x-1)$.

15)
$$(10x-1)(x+1)$$
. **16)** $(2x-1)(3x-1)$. **17)** $(3x-1)(5x+1)$. **18)** $(3x+2)(4x+1)$.

19)
$$(10x+3)(x-1)$$
. 20) $(x+2)(2x+3)$.

ДРОБНЫЕ РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ

РЕШЕНИЕ ДРОБНЫХ РАЦИОНАЛЬНЫХ УРАВНЕНИЙ

Задание 52. 1) -2. 2) $\frac{1}{2}.$ 3) $\frac{1}{3}.$ 4) -9. 5) 0,4. 6) 0; 5. 7) 0; 7. 8) -1; 0. 9) -11; 0. 10) 1; 7. 11) 0. 12) -2; 2. 13) 4. 14) корней нет. 15) -3; 0; 3.

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Задание 56. 1) (-1;-2); (2;1). 2) (0;0); (1;1). 3) (4;-2). 4) (4;2). 5) решений нет. 6) (2;4). 7) (0;0). 8) (0;0); (1;-1). 9) (-1;1); (0;0); (1;1). 10) (-4;1); (4;-1). 11) (0;0); (4;2). 12) (-1;-1).

НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ И ИХ СИСТЕМЫ

ЧИСЛОВЫЕ ПРОМЕЖУТКИ

Задание 66. 1) 2; 3; 4; 5. 2) 0; 1; 2; 3. 3) 2; 3; 4; 5; 6. 4) 4; 5. 5)
$$-4$$
; -3 ; -2 ; -1 ; 0. 6) -2 ; -1 ; 0; 1; 2. 7) 4; 5; 6; 7; 8; 9; 10. 8) -7 ; -6 ; -5 ; -4 ; -3 ; -2 . 9) -4 ; -3 ; -2 . 10) -1 ; 0; 1; 2; 3; 4. 11) 3. 12) 1; 2; 3. 13) -3 ; -2 ; -1 ; 0. 14) 16; 17; 18; 19. 15) -1 ; 0. 16) 6; 7; 8; 9; 10. 17) -4 ; -3 ; -2 ; -1 ; 0; 1; 2; 3. 18) -1 ; 0; 1. 19) -2 ; -1 ; 0. 20) 0; 1; 2; 3.

РЕШЕНИЕ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Задание 67. 1)
$$(-\infty;3)$$
. 2) $(-3;+\infty)$. 3) $(6;+\infty)$. 4) $\left[-\frac{1}{2};+\infty\right]$. 5) $\left[-1,8;+\infty\right]$. 6) $\left[-0,25;+\infty\right]$. 7) $(0,75;+\infty)$. 8) $(-\infty;0,1]$. 9) $(-0,1;+\infty)$. 10) $(-\infty;6]$. 11) $(-\infty;15)$. 12) $\left[-\frac{1}{4};+\infty\right]$. 13) $\left[0,41;+\infty\right]$. 14) $\left(-\infty,2\right]$. 15) $\left(-\infty;3\right]$. 16) $\left[-0,5;+\infty\right]$. 17) $\left[2\sqrt{2};+\infty\right]$. 18) $\left(-\infty;-5\sqrt{7}\right]$.

РЕШЕНИЕ СИСТЕМ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Задание 68. 1)
$$(3;7)$$
. 2) $[-5;0)$. 3) $(-\infty;1)$. 4) $(8;9]$. 5) $(-\infty;11)$. 6) $(5;6]$. 7) $[0;8]$. 8) $(1;6)$. 9) $[12;+\infty)(-0,1;+\infty)$. 10) решений нет. 11) $(5;+\infty)$. 12) $(-\infty;-7)$. 13) $(1,2;+\infty)$.

$$\mathbf{14)} \left(-\infty; \mathbf{1}, 6 \right]. \ \mathbf{15)} \left(9; \mathbf{10}, 2 \right). \ \mathbf{16)} \left(-2, 5; 0 \right). \ \mathbf{17)} \, \mathrm{решений} \, \mathrm{нет.} \ \mathbf{18)} \left(3; 4, 5 \right). \ \mathbf{19)} \ \mathbf{3} \, . \ \mathbf{20)} \left[\ 0, 2; \frac{1}{2} \right].$$

21)
$$\left(-\infty;0\right)$$
. **22)** $\left[1+\sqrt{2};+\infty\right)$. **23)** $\left[0;+\infty\right)$. **24)** $\left(-\infty;0,1\right)$. **25)** решений нет. **26)** $\left(5\frac{1}{3};+\infty\right)$.

СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ И ЕЁ СВОЙСТВА ОПРЕДЕЛЕНИЕ СТЕПЕНИ С ЦЕЛЫМ ОТРИЦАТЕЛЬНЫМ ПОКАЗАТЕЛЕМ

Задание 73. 1) 5^3 . 2) 2^2 . 3) 10^3 . 4) 2^{-2} . 5) 3^3 . 6) 5^{-2} . 7) 10^{-1} . 8) 3^2 . 9) 3^4 . 10) 5^{-3} . 11) 10^2 . 12) 2^3 . 13) 3^1 . 14) 3^{-3} . 15) 10^{-3} . 16) 2^{-1} . 17) 10^1 . 18) 3^{-2} . 19) 10^{-2} . 20) 2^0 или 3^0 или 5^0 или 10^0 .

СТАНДАРТНЫЙ ВИД ЧИСЛА

ПОНЯТИЕ СТАНДАРТНОГО ВИДА ЧИСЛА

Задание 76. 1) 23156. 2) 36142. 3) 56234. 4) 43615.

Минимальные системные требования определяются соответствующими требованиями программ Adobe Reader версии не ниже 11-й либо Adobe Digital Editions версии не ниже 4.5 для платформ Windows, Mac OS, Android и iOS; экран 10"

Учебное электронное издание

Сиротина Т. В.

АЛГЕБРА 8 КЛАСС

Базовый уровень Тетрадь-тренажёр

Генеральный директор $M. \, B. \, Mun\partial m \kappa$ Редактор $J. \, \Pi. \, Jokmuohos$ Художественный редактор $E. \, IO. \, Bopoбьёва$ Компьютерная верстка и макет $E. \, B. \, Jynenko$

Подписано к использованию 22.09.23 Формат 19,0×28,0 см Гарнитура SchoolBook

OOO «Издательство «Интеллект-Центр»
125445, г. Москва, ул. Смольная, д. 24А, этаж 6, ком. 24
Телефон: (495) 660-34-53
Сайт: http://www.intellectcentre.ru

Электронное издание данной книги подготовлено Агентством электронных изданий «Интермедиатор» Caŭt: http://www.intermediator.ru

Телефон: (495) 587-74-81 Эл. почта: info@intermediator.ru

Издательство «Интеллект-Центр»

- Учебные материалы для подготовки к ЕГЭ, ОГЭ и Всероссийским Проверочным Работам
- Практикумы и дидактические материалы
- Сборники тестовых заданий
- Материалы для развития интеллектуальных способностей
- Учебные пособия, реализующие современные технологии в обучении и контроле знаний учащихся
- Покупайте наши пособия в электронном формате в интернет-магазине «Электронный универс» e-Univers.ru

 Предлагаем вашему вниманию дистанционные круглогодичные курсы повышения квалификации для педагогов.

Подробная информация – на сайте Издательства

Издательство «Интеллект-Центр»
тел./факс: + 7 (495) 660-34-53
Ждём Ваших писем: 125445, г. Москва, ул. Смольная, д. 24А,
этаж 6, ком. 24
сайт: www.intellectcentre.ru | e-mail: intellect@izentr.ru