See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/26883311

Formation of Osmium- and Ruthenium-Cyclobutylidene Complexes by Ring Expansion of Alkylidenecyclopropanes

ARTICLE in JOURNAL OF THE AMERICAN CHEMICAL SOCIETY · OCTOBER 2009

Impact Factor: 12.11 · DOI: 10.1021/ja904893j · Source: PubMed

CITATIONS

20

READS

44

10 AUTHORS, INCLUDING:

Miguel A Esteruelas

University of Zaragoza

368 PUBLICATIONS 12,231 CITATIONS

SEE PROFILE

Sara Fuertes

University of Zaragoza

26 PUBLICATIONS 375 CITATIONS

SEE PROFILE

José Luis Mascareñas

University of Santiago de Compostela

189 PUBLICATIONS 3,122 CITATIONS

SEE PROFILE

Published on Web 10/09/2009

Formation of Osmium – and Ruthenium – Cyclobutylidene Complexes by Ring **Expansion of Alkylidenecyclopropanes**

Ruth Castro-Rodrigo,[†] Miguel A. Esteruelas,^{*,†} Sara Fuertes,[†] Ana M. López,^{*,†} Fernando López,[§] José L. Mascareñas,^{*,‡} Silvia Mozo,[†] Enrique Oñate,[†] Lucía Saya,[‡] and Lara Villarino[‡]

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain, Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain, and Instituto de Química Orgánica General-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain

Received June 15, 2009; E-mail: maester@unizar.es; amlopez@unizar.es; joseluis.mascarenas@usc.es

Alkylidenecyclopropanes are receiving much attention as useful building blocks in organic synthesis, due to the presence of an exocyclic C-C double bond and a strained three-membered carbocycle. Thus, a variety of metal-catalyzed processes involving this type of substrates have been developed,² including cycloaddition reactions.³ Several pathways have been proposed for these reactions. They include oxidative addition of the distal or proximal C-C bond of the three-membered ring and regioselective hydrometalation or carbometalation of the olefin moiety.⁴ Recently, Fürstner⁵ and Shi⁶ have also speculated on the hypothetical participation of alkylidene species in Pt- and Pd-catalyzed ring enlargement reactions. It is proposed that they should be formed via cyclopropylmethyl zwitterionic intermediates.^{5–7}

The transition metal complexes isolated from reactions involving alkylidenecyclopropanes are extremely scarce. They can be categorized in four groups: (i) η^2 -methylenecyclopropanes and 1-3 diene derivatives formed via ring-opening isomerization,8 (ii) alkylidenemetalacyclobutanes, 9 (iii) η^4 -trimethylenemethanes, 10 and (iv) metalacyclopentanes resulting from the oxidative coupling of the C-C double bond with that of a typical olefin. 11 We have discovered a novel group of products (Scheme 1). These cyclobutylidene derivatives are formed as a result from a new reaction pattern between a transition metal complex and an alkylidenecyclopropane (Figure 1).

Treatment at room temperature of the bis-acetone complex $[OsTp(\kappa^1-OCMe_2)_2(P^iPr_3)]BF_4$ (Tp = hydridotris(pyrazolyl)borate) with 1.3 equiv of (2-pyridyl)methylenecyclopropane in CH₂Cl₂ leads to the cyclobutylidene derivative 1, as a result of ring expansion of the organic substrate. Complex 1 is isolated as a green solid in 90% yield. Its X-ray structure proves the ring expansion process and supports the presence of an Os–C double bond (1.847(9)Å). 12 In the ¹³C{¹H} NMR spectrum in CD₂Cl₂, the OsC resonance appears at 298.0 ppm.

The [RuTp(PiPr₃)]⁺ metal fragment also stabilizes the pyridylcyclobutylidene ligand of 1, despite the differences previously observed between Os and Ru. 13 Thus, the bis-acetone complex $[RuTp(\kappa^1-OCMe_2)_2(P^iPr_3)]BF_4$ reacts with (2-pyridyl)methylenecyclopropane as its Os counterpart, to give 2 as a pale pink solid in 91% yield. The presence of the cyclobutylidene unit in this complex is supported by its ¹³C{¹H} NMR spectrum, which shows the RuC resonance at 359.6 ppm. In agreement with related Ru-compounds, 14 it appears shifted by \sim 60 ppm to lower field with regard to that of 1.

Scheme 1

This ring expansion is also extensible to the cyclopentadienyl (Cp) chemistry. Despite the differences in steric and electronic properties between Tp and Cp, 15 complex [OsCp(NCCH₃)₂(PiPr₃)]PF₆ reacts as

Figure 1. Energy profile for the ring expansion (ΔH , kcal·mol⁻¹).

[†] Universidad de Zaragoza-CSIC.

[§] Instituto de Química Orgánica General-CSIC.
‡ Universidade de Santiago de Compostela.

Scheme 2

its Tp analogue. Treatment of a CH2Cl2 solution of this compound with 1.5 equiv of (2-pyridyl)methylenecyclopropane affords the cyclobutylidene derivative 3 as a pale pink solid in 80% yield. Complex 3 has been characterized by X-ray diffraction analysis. In agreement with 1, the Os-C double bond distance is 1.886(5) Å. In the ${}^{13}C\{{}^{1}H\}$ NMR spectrum the OsC resonance is observed at 279.2 ppm.

The ring expansion has been analyzed by DFT(B3PW91/ Lanl2dz) calculations for both OsTp and OsCp precursors. Figure 1 shows the energy profiles. Starting from η^2 -methylenecyclopropane species stabilized by N-atom coordination, the oxidation of the metal center promotes sp² to sp³ rehybridizations of the nitrogen atom and the C(sp²)-atom of the three-membered ring to afford 1-osma-2-azacyclopent-3-ene intermediates. 16 Related complexes resulting from the bidentate coordination of $\alpha-\beta$ -unsaturated ketones and aldehydes to osmium and ruthenium have been reported. ¹⁷ Then the CH₂ group *cis*-disposed to pyridyl in the free substrate undergoes a concerted shift from position 5 to 4 of the five-membered ring. The ring expansion is accompained by the reduction of the metal center and the sp³ to sp² retrohybridization of the initially rehybridized atoms. The formation of the osmaazacyclopentene intermediate is the rate-determining step. The Cp ligand imposes less geometrical restrictions than Tp, favoring higher oxidation states. 15 Thus, the replacement of Tp by Cp produces a decrease of the activation barrier for the formation of the osmium(IV) intermediate. Olefin to alkylidene rearrangements by a 1,2-hydrogen shift are well documented. 18 In contrast to the CH₂ group, the hydrogen atom migrates via the metal center.

The presence of a chelation assistant containing a rehybridizable donor atom, which allows the oxidation of the metal center, appears to be necessary for the ring expansion. While ethyl 2-cyclopropylideneacetate containing ester instead of pyridyl also affords a cyclobutylidene ligand (Scheme 2), benzylidenecyclopropane and phenylmethylenecyclopropane do not undergo ring expansion. Treatment of $[OsTp(\kappa^1-OCMe_2)_2(P^1Pr_3)]BF_4$ with 1.0 equiv of ethyl 2-cyclopropylideneacetate in fluorobenzene leads to 5, via the η^2 -alkylidenecyclopropane intermediate 4. The latter is detected in solution when the reaction is carried out in CD₂Cl₂. Its most noticeable spectroscopic feature is the presence of a singlet at 61.0 ppm and a doublet (J_{C-P} = 6 Hz) at 31.1 ppm, in the ¹³C{¹H} NMR spectrum, corresponding to the coordinated atoms of the olefinic moiety. Complex 5 is isolated as a green solid in 67% yield. In agreement with 1 and 3, its ¹³C{¹H} NMR spectrum shows the OsC resonance at 260.2 ppm. The DFT analysis (see Supporting Information) reveals that the oxidationrehybridization and the carbon-migration steps have activation barriers higher than those of (2-pyridyl)methylenecyclopropane. As in the case of the latter, the activation energy of the first step is higher than that of the second one.

In conclusion, alkylidenecyclopropanes containing a chelation assistant at the terminal carbon atom of the olefinic moiety undergo ring expansion promoted by transition metal complexes, to afford cyclobutylidene derivatives. The process is a concerted 1,2migration of a CH₂ group of the three-membered ring from an olefinic carbon atom to the other one. It takes place, without direct participation of the metal, on a metallaheterocyclopentene intermediate which is generated from an η^2 -methylenecyclopropane species stabilized by coordination of the chelation assistant.

Acknowledgment. Financial support from the Spanish MICINN (Projects CTQ2008-00810, SAF2007-61015 and Consolider Ingenio 2010 (CSD2007-00006)), Diputación General de Aragón (E35), and Xunta de Galicia (GRC2006/132). L.S. and L.B. thank MICINN and Xunta de Galicia for their grants.

Supporting Information Available: Experimental details for the synthesis, characterization and crystallographic data for 1 and 3, and the computational studies. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Brandi, A.; Goti, A. Chem. Rev. 1998, 98, 589.
- (a) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. Chem. Rev. 2003, 103, 1213. (b) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107,
- (3) (a) Lautens, M.; Klute, W.; Tan, W. Chem. Rev. 1996, 96, 49. (b) Gulías, M.; Durán, J.; López, F.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2007, 129, 11026. (c) García-Fandiño, R.; Gulías, M.; Castedo, L.; Granja, J. R.; Mascareñas, J. L.; Cárdenas, D. J. Chem.—Eur. J. 2008, 14, 272.
 Nakamura, I.; Yamamoto, Y. Adv. Synth. Catal. 2002, 344, 111.
- Fürstner, A.; Aïssa, C. J. Am. Chem. Soc. 2006, 128, 6306.
- (6) Shi, M.; Liu, L.-P.; Tang, J. J. Am. Chem. Soc. 2006, 128, 7430.
 (7) Tian, G.-Q.; Yuan, Z.-L.; Zhu, Z.-B.; Shi, M. Chem. Commun. 2008, 2668.
 (8) (a) Green, M.; Howard, J. A. K.; Hughes, R. P.; Kellet, S. C.; Woodward, P. J. Chem. Soc., Dalton Trans. 1975, 2007. (b) Osakada, K.; Takimoto, H.; Yamamoto, T. Organometallics 1998, 17, 4532. (c) Osakada, K.; Takimoto, H.; Yamamoto, T. J. Chem. Soc., Dalton Trans. 1999, 853. (d) Nishihara, Y.; Yoda, C.; Osakada, K. Organometallics 2001, 20, 2124. (e)
 - Kozhushkov, S. I.; Foerstner, J.; Kakoschke, A.; Stellfeldt, D.; Yong, L.; Wartchow, R.; de Meijere, A.; Butenschön, H. Chem.—Eur. J. 2006, 12,
- (9) Binger, P.; Müller, P.; Podubrin, S.; Albus, S.; Krüger, C. J. Organomet. Chem. 2002, 656, 288.
- (10) (a) Noyori, R.; Nishimura, T.; Takaya, H. Chem. Commun. 1969, 89. (b) Pinhas, A. R.; Samuelson, A. G.; Risemberg, R.; Arnold, E. V.; Clardy, J.; Carpenter, B. K. *J. Am. Chem. Soc.* **1981**, *103*, 1668. (c) Allen, S. R.; Barnes, S. G.; Green, M.; Moran, G.; Trollope, L.; Murrall, N. W.; Welch, A. J.; Sharaiha, D. M. J. Chem. Soc., Dalton Trans. 1984, 1157. (d) Tantillo,
- D. J.; Carpenter, B. K.; Hoffmann, R. Organometallics 2001, 20, 4562.
 (11) Mashima, K.; Takaya, H. Organometallics 1985, 4, 1464.
 (12) See for example:(a) Bolaño, T.; Castarlenas, R.; Esteruelas, M. A.; Modrego, F. J.; Oñate, E. J. Am. Chem. Soc. 2005, 127, 11184. (b) Bolaño, T.; Castarlenas, R.; Esteruelas, M. A.; Oñate, E. J. Am. Chem. Soc. 2007, 129, 8850. (c) Castro-Rodrigo, R.; Esteruelas, M. A.; López, A. M.; Oñate, E. Organometallics 2008, 27, 3547.
- (13) (a) Caulton, K. G. J. Organomet. Chem. 2001, 617-618, 56. (b) Esteruelas, (a) Cadnioli, R. C. S. O'glamele. Chem. 2001, 97 576, 50. (b) Estetucias, M. A.; López, A. M.; Oliván, M. Coord. Chem. Rev. 2007, 251, 795. (c) Jia, G. Coord. Chem. Rev. 2007, 251, 2167.
 (14) (a) Alvarez, P.; Lastra, E.; Gimeno, J.; Bassetti, M.; Falvello, L. R. J. Am. Chem. Soc. 2003, 125, 2386. (b) Díez, J.; Gamasa, M. P.; Gimeno, J.; Lastra,
- E.; Villar, A. Organometallics **2005**, 24, 1410. (c) Díez, J.; Gamasa, M. P.: Gimeno, J.; Lastra, E.; Villar, A. J. Organomet. Chem. 2006, 691, 4092
- (15) See for example:(a) Bohanna, C.; Esteruelas, M. A.; Gómez, A. V.; López, A. M.; Martinez, M.-P. Organometallics 1997, 16, 4464. (b) Tellers, D. M.; Bergman, R. G. J. Am. Chem. Soc. 2000, 122, 954. (c) Tellers, D. M.; Bergman, R. G. Organometallics 2001, 20, 4819. (d) Bergman, R. G.; Cundari, T. R.; Gillespie, A. M.; Gunnoe, T. B.; Harman, W. D.; Klinckman, T. R.; Temple, M. D.; White, D. P. Organometallics 2003, 22, 2331. (e) Castro-Rodrigo, R.; Esteruelas, M. A.; López, A.M.; Oliván, M.; Oñate, E. Organometallics 2007, 26, 4498.
- (16) (a) We have not observed products arising from oxidative addition at the cyclopropyl ring, as has been proposed as the first step for Pd-catalyzed transformation of alkylidenecyclopropanes. See ref 3c. (b) 1-Metalla-2azacyclopent-3-ene complexes are known for group 4 metals. See for example: Thomas, D.; Baumann, W.; Spannenberg, A.; Kempe, R.; Rosenthal, U. *Organometallics* **1998**, *17*, 2096.
- (a) Jia, G.; Meek, D. W.; Gallucci, J. C. Organometallics 1990, 9, 2549. (b) Esteruelas, M. A.; García, M. P.; López, A. M.; Oro, L. A.; Ruiz, N.; Schlünken, C.; Valero, C.; Werner, H. *Inorg. Chem.* **1992**, *31*, 5580. (c) Kanaya, S.; Imai, Y.; Komine, N.; Hirano, M.; Komiya, S. Organometallics **2005**, *24*, 1059. (d) Esteruelas, M. A.; Hernández, Y. A.; López, A. M.; Oliván, M.; Oñate, E. *Organometallics* **2005**, *24*, 5989.
- (18) See for example:(a) Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2003, 125, 9604. (b) Ozerov, O. V.; Watson, L. A.; Pink, M.; Caulton, K. G. J. Am. Chem. Soc. 2004, 126, 6363. (c) Hirsekorn, K. F.; Veige, A. S.; Marshak, M. P.; Koldobskaya, Y.; Wolczanski, P. T.; Cundari, T. R.; Lobkovsky, E. B. *J. Am. Chem. Soc.* **2005**, *127*, 4809. (d) Kuznetsov, V. F.; Abdur-Rashid, K.; Lough, A. J.; Gusev, D. G. J. Am. Chem. Soc. 2006, 128, 14388.

JA904893J