Handing out: 9.6.2023 Prof. H. Jelger Risselada

Submission: 16.6.2023 8 pm

Exercise 1: Linearly congruent random number generators

10 Points

Generate pseudo-random number by implementing a linearly congruent generator

$$r_{n+1} = (ar_n + c) \bmod m \tag{1}$$

yourself.

1. Write a program which determines the first N entries (N < m) of the integer sequence r_n as a function of the four parameters r_0 (seed), a, c und m (use 64-bit integers).

Divide r_{n+1} by m to get a floating point generator for random number in [0,1].

- 2. For the four sets of parameters
 - (a) $r_0 = 1234$, a = 20, c = 120, m = 6075,
 - (b) $r_0 = 1234$, a = 137, c = 187, m = 256,
 - (c) $r_0 = 123456789$, a = 65539, c = 0, $m = 2^{31} = 2147483648$ (RANDU Generator von IBM),
 - (d) $r_0 = 1234$, $a = 7^5 = 16807$, c = 0, $m = 2^{31} 1$ (ran1() aus Numerical Recipes, 2. Ausgabe, bzw. Matlab bis Version 4)

investigate your floating point generator for equal partition by generating a histogramm (consisting of $N = 10^5$ total values). Split the interval [0, 1[into 10 bins of length 0.1.

3. Now, test the four floating point generators for correlations by respectively plotting N/2 pairs $\{(r_n, r_{n-1}), (r_{n-2}, r_{n-3}), \dots\}$ of two immediately consecutively generated values in the square $[0, 1]^2$. Use $N = 10^5$ values and note that only N < m makes sense.

Exercise 2: Arbitrary distributions

10 Points

A random number generator producing uniformly distributed numbers in the interval [0,1[can also be used to generate numbers from an arbitrary distribution. Use of your linear congruential generator implemented in the previous exercise and parameter set 4 in the following tasks.

- a) Implement the Box-Muller algorithm to sample a Gaussian distribution.
- b) An alternative approach to generate a Gaussian distribution is based on the central limit theorem. Sum N uniformly distributed random numbers from the interval [0,1[. How can you get a distribution with 0 mean and standard deviation 1 from this sum? Derive a criterion on N from the condition on the standard deviation. Explain disadvantages of this method with respect to correctness and efficiency.
- c) Implement the von Neumann rejection sampling to generate the distribution

$$p_1 = \frac{\sin(x)}{2}$$

over the interval $[0, \pi[$.

d) Apply the inversion method to draw random numbers from the distribution

$$p_2(x) = 3x^2$$

for
$$x \in [0, 1[$$
.

Plot histograms of 10^5 random numbers for each subtask to verify the distributions and compare to the analytical distributions.