Método de Levenberg-Marquardt

Problemas de mínimos quadrados têm como objetivo encontrar o melhor ajuste para um conjunto de dados de tal modo que a soma dos quadrados das distâncias (tomadas na vertical) entre o modelo (curva ajustada) e cada um dos pontos dados seja a menor possível. Essas diferenças entre a curva ajustada e cada um dos dados são denominadas resíduos.

Em linguagem matemática podemos escrever o problema de mínimos quadrados da seguinte forma:

Considere $x = [x_1, x_2, x_3, ..., x_n]$.

Dada uma função vetorial $f: \mathbf{R}^n \to \mathbf{R}^m$ com $m \ge n$, queremos minimizar ||f(x)||, ou equivalente, para encontrar $x^* = m$ nimo local para F(x),

onde

$$F(x) = \frac{1}{2} \sum_{i=1}^{m} (f_i(x))^2 = \frac{1}{2} ||f(x)||^2 = \frac{1}{2} f(x)^T f(x).$$

Um bom motivo para se minimizar a soma dos quadrados dos resíduos ao invés de se minimizar a soma dos resíduos é o fato de que a função módulo não é diderenciável na origem e serão usadas derivadas para resolver os problemas de mínimos quadrados não-lineares.

Como exemplo dessa classe de problemas considere dados a coleção de pontos $(t_1, y_1), \dots, (t_{m-1}, y_{m-1}), (t_m, y_m)$ obtidos em função de algum experimento e o modelo $M(x,t) = x_3 e^{x_1 t} + x_4 e^{x_2 t}$ a ser ajustado. Esse exemplo foi retirado da referência [2].

Assume-se que existe um x^+ tal que $y_i = M(x^+, t_i) + \varepsilon_i$, onde $\{\varepsilon_i\}$ são erros de medida. Sendo assim, para qualquer escolha de x pode-se encontrar os valores dos resíduos da seguinte forma:

$$f_i(x) = y_i - M(x, t_i) = y_i - x_3 e^{x_i t_i} - x_4 e^{x_2 t_i}$$
, com $i = 1, \dots, m$.

Pode-se perceber que o modelo depende dos parâmetros $x = [x_1, x_2, x_3, x_4]^T$. O objetivo do problema seria, então, encontrar $x^* = [x_1^*, x_2^*, x_3^*, x_4^*]^T$ onde $x_1^*, x_2^*, x_3^*, x_4^*$ são os valores que minimizam a soma dos quadrados dos resíduos, o que significa encontrar a melhor curva que se ajusta aos pontos fornecidos. A figura abaixo mostra exatamente os pontos fornecidos e a curva obtida no ponto x^* , isto é, $M(x^*, t)$.

Existem diversas maneiras de se resolver problemas de mínimos quadrados não-lineares. Nesse trabalho foi implementado o método de Levenberg-Marquardt, que consiste em um aperfeiçoamento do método de Gauss-Newton que, por sua vez, é uma variante do método de Newton.

Assim como os métodos de Newton e Gauss-Newton, o método de Levenberg-Marquardt é iterativo. Isto significa que, dado um ponto inicial x_0 , o método produz uma série de vetores x_1 , x_2 , ..., que espera-se que vá convergir para x^* , um mínimo local para a função de entrada a ser ajustada.

O método de Newton se baseia no fato de que se x^* é um ponto crítico da função F, então $F'(x^*)=0$. Expandindo-se F em uma série de Taylor obtém-se:

$$F(x+h) = F(x) + F'(x)h + O(\|h\|^2)$$

$$\approx F(x) + F'(x)h \text{ , para valores pequenos de } \|h\|.$$

Desta forma, pode-se escrever:

$$F'(x+h) = F'(x) + F''(x)h.$$

Sabendo-se que $F'(x^*) = 0$ e F'(x+h) = F'(x) + F''(x)h, pode-se encontrar o valor de h_n , isto é, a direção de busca no método de Newton, resolvendo-se o seguinte sistema de equações:

$$Hh_n = -F'(x)$$

onde
$$H = F''(x) = H(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(x) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(x) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(x) & \frac{\partial^2 f}{\partial x_2^2}(x) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(x) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(x) & \frac{\partial^2 f}{\partial x_n \partial x_2}(x) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(x) \end{bmatrix}$$
 é conhecida como

a matriz Hessiana.

Calculado a direção do passo $h_{_{\!n}}$ a próxima iteração do método de Newton é dada por:

$$x \leftarrow x + h_n$$
.

No entanto, a avaliação da matriz Hessiana pode ser extremamente complexa para alguns problemas. Para contornar esse problema, foram propostos métodos que utilizam aproximações para essa matriz, denotados Quasi- Newton, dentre os quais se encontram o método de Gauss-Newton e Levenberg-Marquardt.

O método de Gauss-Newton se baseia na aproximação para os valores das componentes de f em uma vizinhança de x. Da expansão em série de Taylor pode-se perceber que:

$$f(x+h) \approx l(h) \equiv f(x) + J(x)h$$
,

onde $J \in \mathbf{R}^{m \times n}$ é a matriz Jacobiana, isto é, a matriz que contém as derivadas parciais de primeira ordem de cada componente da função vetorial f.

$$(J(x)) = \begin{pmatrix} \frac{\delta f_1}{\delta x_1} & \frac{\delta f_1}{\delta x_2} & \cdots & \frac{\delta f_1}{\delta x_n} \\ \frac{\delta f_2}{\delta x_1} & \frac{\delta f_2}{\delta x_2} & \cdots & \frac{\delta f_2}{\delta x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\delta f_m}{\delta x_1} & \frac{\delta f_m}{\delta x_2} & \cdots & \frac{\delta f_m}{\delta x_n} \end{pmatrix}_{m \times n}$$

Substituindo-se $f(x+h) \approx l(h) \equiv f(x) + J(x)h$ em $F(x) = \frac{1}{2} f(x)^T f(x)$ obtemos:

$$F(x+h) \approx L(h) \equiv \frac{1}{2}l(h)^T l(h)$$
$$= \frac{1}{2}f^T f + h^T J^T f + \frac{1}{2}h^T J^T J h$$
$$= F(x) + h^T J^T f + \frac{1}{2}h^T J^T J h$$

onde
$$f = f(x)$$
 e $J = J(x)$.

É fácil perceber que o gradiente e a matriz Hessiana de L são dados respectivamente por:

$$L'(h) = J^T f + J^T J h$$
 e $L''(h) = J^T J$.

Portanto, a direção do passo calculada por meio do método de Gauss-Newton é dada pela seguinte equação:

$$(J^T J)h_{gn} = -J^T f.$$

Encontrado o valor de $h_{{\mbox{\scriptsize gn}}}$ tem-se que a próxima iteração do método de Gauss-Newton é dada por:

$$x \leftarrow x + h_{on}$$
.

Apesar do método de Gauss-Newton resolver de maneira mais fácil a matriz Hessiana, pode-se perceber que, da mesma forma que acontecia no método de Newton, não é garantido que exista a inversa dessa matriz, necessária para o cálculo de $h_{\rm en}$.

O método de Levenberg-Marquardt, para contornar essa situação, propõe somar uma parcela μI à matriz Hessiana, aproximada pelo método de Gauss-Newton, onde μ é um escalar denominado parâmetro de damping e I é a matriz identidade.

Com essa modificação, a direção do passo do método de Levenberg-Marquardt pode ser calculada da seguinte maneira:

$$(J^T J + \mu I)h_{lm} = -g$$
, onde $g = J^T f$ e $\mu \ge 0$.

O parâmetro de damping μ promove diferentes comportamentos do método, ou seja:

- 1. Para todo $\mu > 0$ a matriz de coeficientes $(J^T J + \mu I)$ é positiva definida (veja a demonstração no apêndice A), o que implica que h_{lm} é uma direção de descida.
- 2. Para valores grandes de μ tem-se:

 $h_{lm}=-\frac{1}{\mu}g=-\frac{1}{\mu}F'(x)\,, \ \, {\rm que}\ \, {\rm \acute{e}}\ \, {\rm um}\ \, {\rm pequeno}\ \, {\rm passo}\ \, {\rm na}\ \, {\rm dire} {\rm \~{e}}{\rm \~{a}}{\rm o}\ \, {\rm m\'{a}}{\rm xima}\ \, {\rm de}$ descida (ver apêndice B).

3. Se μ é muito pequeno temos que $h_{lm} \approx h_{gn}$, o que é bom nos estágios finais da iteração quando x está próximo de x^* , pois, quando isso ocorre, o método de Levenberg-Marquardt consegue convergência quadrática.

Podemos perceber que o parâmetro μ influência tanto na direção quanto no tamanho do passo, permitindo assim que o método de Levenberg-Marquardt não necessite de uma busca linear para descobrir o tamanho ótimo do passo a ser dado em cada iteração.

O valor inicial de μ pode ser relacionado ao tamanho dos elementos da matriz Hessiana aproximada que é calculada no método de Levenberg-Marquardt, isto é, ao tamanho dos elementos de $A_0 = J(x_0)^T J(x_0)$.

$$\mu_0 = \tau \max_{i} \{a_{ii}^{(0)}\},\,$$

onde τ é escolhido pelo usuário. Para determinados problemas em que o valor de x_0 é uma boa aproximação para x^* pode-se adotar $\tau = 10^{-6}$. Caso contrário, recomenda-se $\tau = 10^{-3}$ ou até mesmo $\tau = 1$.

O valor de μ pode ser modificado durante as iterações e isso é feito em função de um outro parâmetro ρ , denominado de gain ratio, ou seja:

$$\rho = \frac{F(x) - F(x + h_{lm})}{L(0) - L(h_{lm})},$$

onde $L(0) - L(h_{lm})$ é o ganho obtido através do modelo linear.

$$\begin{split} L(0) - L(h_{lm}) &= -h_{lm}^T J^T f - \frac{1}{2} h_{lm}^T J^T J h_{lm} \\ &= -\frac{1}{2} h_{lm}^T (2g + (J^T J + \mu I - \mu I) h_{lm}) \\ &= \frac{1}{2} h_{lm}^T (\mu h_{lm} - g) \,. \end{split}$$

Pode-se garantir que como $h_{lm}^{\ T}h_{lm}$ e $-h_{lm}^{\ T}g$ são positivos, então $L(0)-L(h_{lm})$ também é positivo.

Se o valor de ρ for grande, isso indica que $L(h_{lm})$ é uma boa aproximação para $F(x+h_{lm})$ e pode-se diminuir o valor de μ de modo que o próximo passo do Levenberg-Marquardt esteja próximo do passo de Gauss-Newton. Se ρ for pequeno isso significa que $L(h_{lm})$ é uma aproximação ruim e precisamos aumentar μ para buscar a direção máxima de descida e reduzir o tamanho do passo.

O valor de μ á alterado de acordo com a seguinte regra:

se
$$\rho > 0$$
, $\nu = 2$. caso contrário, $\mu = \mu \nu$ e $\nu = 2\nu$. onde ν é inicializado com valor igual a 2.

Os critérios de convergência ou critérios de parada mais usuais são:

- 1. Norma do gradiente menor do que um determinado valor pré-determinado, isto é, $\|g\|_{\infty} \le \varepsilon_1$, onde ε_1 é um número positivo pequeno escolhido pelo usuário de modo a refletir que $F'(x^*) = g(x^*) = 0$.
- 2. Variação no valor de x muito pequena, isto é, $||x_{new} x|| \le \varepsilon_2(||x|| + \varepsilon_2)$.
- 3. Número máximo de iterações determinado pelo usuário. Isto é importante para evitar que o algoritmo entre em loop infinito: $k \ge k_{máx}$, onde k é o número de iterações.

O pseudo-código do algoritmo de levenberg-marquardt pode ser visto na figura abaixo.

Método de Levenberg-Marquardt

```
k = 0; \quad v = 2; \quad x = x_0;
A = J(x)^{T} J(x); \quad g = J(x)^{T} f(x);
found = (\|g\|_{\infty}) \le \varepsilon_1; \quad \mu = \tau. \max\{a_{ii}\};
while (not found) and (k < kmax)
     k=k+1; Solve (A + \mu I)h_{lm} = -g;
     if ||h_{lm}|| \le \varepsilon_2(||x|| + \varepsilon_2)
           found = true
     else
     {
           x_{new} = x + h_{lm}
           \rho = (F(x) - F(x_{new})) / (L(0) - L(h_{lm}))
           if \rho > 0
           {
                 \mathbf{x} = \mathbf{x}_{\text{new}}
                 A = J(x)^T J(x); \quad g = J(x)^T f(x);
                 found = (\|g\|_{\infty}) \le \varepsilon_1;
                  \mu = \mu \max\{\frac{1}{3}, 1 - (2\rho - 1)^3\}; \quad \nu = 2;
           }
           else
                  \mu = \mu \nu; \quad \nu = 2\nu;
     }
}
```

Os cálculos da matriz Jacobiana, necessária para se encontrar uma aproximação da matriz Hessiana, e do gradiente foram feitos pelo método de diferenças finitas, que pode ser descrito da seguinte forma:

Considere $x = [x_1, ..., x_n]^T$ e faça para i = 1, ..., m e j = 1, ..., n:

$$\frac{\delta f_i}{\delta x_i} \approx \frac{f_i(x + he_i) - f_i(x)}{h},$$

onde h é o tamanho do passo e,
$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}_{n, x, 1}$$
, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}_{n, x, 1}$, sucessivamente.

A norma infinita representada por $\|M\|_{_{\infty}}$ e utilizada no pseudo-código acima, é dada por:

 $\|M\|_{\infty} = \max_{i} \sum_{j=1}^{n} |m_{ij}|$, isto é, escolhe-se a linha que possui a maior soma dos valores absolutos de seus elementos. O resultado disso é, portanto, um escalar.

Como pode ser percebido no pseudo-código a estrutura do método segue o mesmo esquema do método de descida (descent method) onde, em cada iteração, encontra-se uma direção de descida e dá-se um passo nessa direção em que o valor de F é reduzido (veja o pseudo-código do método de descida no apêndice C). Tanto a direção quanto o tamanho do passo no método de Levenberg-Marquardt são influenciados pelo parâmetro de damping μ , como já havia sido comentado anteriormente, dispensando assim o uso da busca linear para o cálculo do tamanho do passo, como ocorre no método de descida.

O método de Levenberg-Marquardt satisfaz a condição de descida em cada passo da iteração, a qual é dada por $F(x_{k+1}) < F(x_k)$.

Os critérios de parada e a alteração do valor do parâmetro de damping do método implementado já foram discutidos no item anterior.

O protótipo da função que implementa o método de levenberg-marquardt é dado por:

```
LMQ_MinimizarLevMarq(void (*pf)(int,int,double*,double*), void (*pfj)(Matriz*, double*, int, int), int numMaxIteracoes, double * x_inicial, int tam_x, int num_ptsAmostrados, double tam_passo, double e1, double e2, double t);
```

pf – ponteiro para uma função f.

pfj – ponteiro para a função que fornece a jacobiana. Se pfj = NULL, então a jacobiana é calculada usando diferenças finitas.

numMaxIteracoes - limite máximo de iterações utilizadas.

x_inicial – chute inicial para x. Em x_inicial também é retornado o valor final de x encontrado pelo algoritmo de Levenberg-Marquardt.

tam x - dimensão de x.

num_ptsAmostrados - número de pontos amostrados.

tam_passo – tamanho do passo. Esse parâmetro é necessário para o cálculo das derivadas parciais.

e1 – valor de tolerância para F'(x*).

e2 - Penalização para quando a variação no valor de x é muito pequena.

 $t - usa-se \ t = 10^{(-6)} se \ x0 \ é \ uma boa aproximação para <math>x^*$, caso contrário usa-se $t = 10^{(-3)}$ ou t = 1.

Apêndices

A. Matriz positiva definida

Uma matriz A é positiva definida quando se $x^T A x > 0$ para todo $x \in \mathbf{R}^n, x \neq 0$, e positiva semidefinda se $x^T A x \geq 0$ para todo $x \in \mathbf{R}^n, x \neq 0$.

Sendo $J \in \mathbf{R}^{m \times n}$ faça $A = J^T J$. Temos que $A^T = J^T (J^T)^T = A$, logo a matriz A é simétrica. Além disso, para qualquer $x \neq 0 \in \mathbf{R}^n$ tome y = Jx. Desta forma, $x^T A x = x^T J^T J x = y^T y \geq 0$. Com isso provamos que A é positiva semidedinida e conseqüentemente todos os seus autovalores são maiores ou iguais a zero. Dessa forma podemos escrever $(A + \mu I)v_j = (\lambda_j + \mu)v_j$, $j = 1, \dots, n$ e λ_j são os autovalores de A. Isso implica que os autovalores de $(A + \mu I)$ são positivos e essa matriz é garantidamente positiva definida para todo $\mu > 0$. Além disso, como A é simétrica temos que $(A + \mu I)$ também é simétrica.

B. Direção máxima de descida

Expandindo F em uma série de Taylor obtemos:

$$F(x+\alpha h) = F(x) + \alpha h^T F'(x) + O(\|h\|^2)$$

$$\approx F(x) + \alpha h^T F'(x) \quad , \quad \text{para valores pequenos e positivos de}$$
 α (tamanho do passo).

Dizemos que h é uma direção de descida para F se $h^T F'(x) < 0$. O ganho relativo no valor da função satisfaz:

$$\lim_{\alpha \to 0} \frac{F(x) - F(x + \alpha h)}{\alpha \|h\|} = -\frac{1}{\|h\|} h^T F'(x) = -\|F'(x)\| \cos \theta.$$

Podemos perceber que o ganho máximo acontece quando $\theta=\pi$, o que implica em $h_{sd}=-F'(x)$, onde h_{sd} é a direção máxima de descida.

C. Métodos de descida

```
k = 0; \quad x = x_0;
while (not found) and (K < K<sub>max</sub>)
\begin{cases}
h_d = search\_direction(x) \\
\text{if (hd não existe )} \\
\text{found = true} \\
\text{else} \\
\\
\alpha = step\_length(x, h_d) \\
x = x + \alpha h_d; \quad k = k + 1;
\end{cases}
\end{cases}
```

onde h_d é a direção de descida e α é o tamanho do passo. O tamanho do passo no método da descida é encontrado fazendo-se uma busca linear e a direção de descida utilizando método de Newton ou da máxima descida.

Referências Bibliográficas

[1] ZHANG, Zhengyou. A Flexible New Technique for Camera Calibration [online]. MicrosoftResearch, December 2, 1998. Last updated on Aug. 10, 2002. Available from World Wide Web: http://research.microsoft.com/~zhang/calib/.

- [2] K. Madsen, H.B. Nielsen, O. Tingleff. Methods for non-linear least squares problems [online]. Technical University of Denmark, April 2004, 2nd Edition. Available from World Wide Web: http://www2.imm.dtu.dk>.
- [3] Mokhtar S. Bazaraa, Hanif D. Sherali, C. M. Shetty. Nonlinear Programming Theory and Algorithms. Second Edition. John Wiley & Sons, Inc. ISBN 0-471-55793-5.
- [4] Sérgio Luciano Ávila, Charles Borges de Lima e Walter Pereira Carpes Junior. Otimização Conceitos Básicos, Ferramentas e Aplicações. GRUCAD Departamento de Engenharia Elétrica UFSC. Available from World Wide Web: http://www.grucad.ufsc.br/avila/>.
- [5] Luiz M. G. Golçalves. Visão Computacional Calibração de Câmeras. UFRN. Available from World Wide Web: http://www.dca.ufrn.br/~lmarcos/courses/visao/ notes/index.html>.
- [6] Iaci Malta, Sinésio Pesco, Hélio Lopes. Cálculo a uma variável: Derivada e Integral volume 2. Primeira Edição. Editora PUC-rio. ISBN 85-15-02442-4.
- [7] Humberto José Bortolossi. Cálculo diferencial a várias variáveis: uma introdução à teoria de otimização. Primeira Edição. Editora PUC-rio. ISBN 85-15-02442-X.
- [8] William E. Boyce, Richard C. DiPrima. Equações Diferenciais Elementares e Problemas de Valores de Contorno. Sétima Edição. LTC Livros Técnicos e Científicos Editora S.A.
- [9] Hugo Iver V. Gonçalves, Rodrigo C.M. Coimbra, Marcelo Ladeira e Hércules Antônio do Prado. Ferramenta de Regressão Não-linear Múltipla com Redes Neurais Artificiais [online]. Available from World Wide Web: < http://www.sbc.org.br/>.
- [10] Marcos Craizer, Geovan Tavares. Cálculo Integral a Várias Variáveis. Primeira Edição. Editora PUC-rio. ISBN 85-15-02441-1.
- [11] Charles C. Dyer and Peter S. S. Ip. An Elementary Introduction to Scientific Computing [online]. Division of Physical Sciences , University of Toronto at Scarborough. Revised January 3, 2000. Available from World Wide Web: http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_P/book.html>.