基於時序性注意力模型預測透析低血壓事件 Predicting Intradialytic Hypotension via Time-Aware Attention Networks

組別: 生醫工程 (Group 6-9)

指導教授: 蔣榮先 教授

合作醫師:劉冠宏 醫師

專題生:吳宗翰

OUTLINE

- 1. Introduction 專題介紹
- 2. Dataset & Data Preprocess 資料集與資料前處理
- 3. Model & Training 模型與訓練
- 4. Result 成果
- 5. Website 網頁呈現
- 6. Conclusion 專題總結

合作醫師

劉冠宏 醫師 成大醫院腎臟內科主治醫師

經歷:

成大醫院腎臟內科主治醫師 成大醫院內科部住院醫師 成大醫院腎臟內科總醫師

指導教授

蔣榮先 教授

特聘教授 兼 成大醫院健康數據資源中心執行長

經歷:

國立成功大學醫學院附設醫院 \ 健康數據資源中心 \ 執行長 (2020 ~ now)

美國 \ 系統生物學研究院(ISB) \ 合聘教授 (2012 ~ now)

國立成功大學 \ 資訊工程學系 \ 教授 (1999 ~ now)

專長及研究領域:

生醫資訊探勘、人工智慧、智慧型計算、 雲端醫療照護、癌症與幹細胞研究、巨量 資料分析

台灣洗腎人口密度全球第一

台灣有超過12%民眾罹患慢性腎衰竭,更有高達9萬4千人需定期接受洗腎,且每年洗腎患者都在以8~9千人的驚人速度成長,洗腎盛行率高居全球第一。

洗腎與低血壓風險

透析低血壓(Intradialytic Hypotension,IDH)是透析患者最常見的併發症之一,不僅影響病人的生活品質,更容易引發心律不整、慢性或急性心血管與腦血管缺血。

低血壓的發生常讓病患<mark>中斷透析</mark>,導致尿毒素清除率和脫水量不足,長期下來惡化原有尿毒與心衰竭的症狀。

過去已有文獻指出透析低血壓會增加透析患者的死亡率

透析低血壓的處理方法

沖食鹽水

調低透析液溫度

減少脫水

調高透析鈣離子

使用升壓劑

溫度與血壓的關係

專案目標

以透析中低血壓為目標,並與成大醫院腎臟科醫師合作,希望透過 AI 模型的即時預測,提早發現低血壓事件的發生,降低洗腎病患在透析過程中的風險。

資料來源

成大醫院腎臟科

(去識別化)

(IRB: A-ER-110-327)

樣本數量

共 522845 筆

IDH 發生率約為10%

選取時間

2016~2021

Vital Sign

收縮壓

舒張壓

心跳

呼吸頻率

Patient Physiological Information

收縮壓

體重

舒張壓

性別

心跳

年齡

呼吸頻率

糖尿病

透析血液溫度

高血壓

血流速度

心血管疾病

預計透析水量

獲取溫度資料

切分資料集

病患切割

共有194位,分成:訓練集120位、驗證集40位和測試集34位。

資料平衡

一個病患最多取10筆資料(正負樣本筆數必須相同)

結果

訓練集	驗證集	測試集
888	328	210

低血壓事件的定義

- 1. 下個時間點的收縮壓<90 即為低血壓
- 2. 當前時間點的收縮壓>160 且下個時間點的收縮壓<100 視為低血壓

Flythe, J. E. (2015, March 26). Association of Mortality Risk with Various Definitions of Intradialytic Hypotension. JASN. https://jasn.asnjournals.org/content/26/3/724

Transformer

我們利用 Transformer Encoder 來獲得病人前一次透析的時序性特徵,其中包含:收縮壓、舒張壓、心跳和呼吸頻率這四個項目,目的是希望透過前一次的透析過程來幫助預測此次的結果

Time-Aware Transformer

完整模型

Hyperparameter & Optimizer

Learning Rate: 0.001

Epoch: 30

Batch Size: 8

Optimizer: Stochastic Gradient Decent

 \Rightarrow momentum: 0.9

Loss Function

Loss Function ⇒ Binary Cross-Entorpy With Logits

Active Function ⇒ Sigmoid

Result

4. Result

Improvement Process

Accuarcy	Precision	Recall	F1 Score	ROC_AUC	Note
0.711	0.839	0.693	0.759	0.774	1個病患最多20筆資料
0.620	0.621	0.615	0.618	0.620	只使用溫溼度
0.814	0.844	0.771	0.806	0.814	使用平均溫度
0.510	0.505	0.942	0.658	0.510	只使用前一次透析結果
0.786	0.875	0.667	0.757	0.786	將損失函數的權重調成1:2

4. Result

Ablation Study

A: 前一次透析結果+病患資料

B:前一次透析結果+病患資料+時序性溫度資料

C (our model): 前一次透析結果+病患資料+ 時序性溫度、濕度資料

4. Result

Case Study

Website

Patient Data

- 1. 在搜尋欄輸入病歷號後,按下 Search 即可得知此病人的資料是否已經存在。
- 2. 若沒有此病人的資料可以 透過 Add 去新增病患資料, 之後也可透過 Update去修改 資料。

History

- 1. 在搜尋欄輸入日期後,按下 Search 即可得到歷史紀錄中當天所有的透析情況
- 2. 以<mark>進度條</mark>的動畫來模擬實際應用時的動態預測
- 3.點選 result 按鍵可查看當日的預測結果(正確率)
- 4. 點選 Bed ID 按鍵可查看 該病床的所在位置

History

5. 點選 See more 可看到當次透析病患的收縮壓、舒張壓、呼吸頻率和心跳的變化圖

Upload

- 1. 點選樣本一和樣本二分別 可以得到一個正樣本的測資 和一個負樣本的測資
- 2. 將樣本檔案點選下載後再 上傳到網頁並點選 Upload , 即可開始預測
- 3.最終會有安全或危險兩種 輸出,即為模型預測出來的 結果

Conclusion

6. Conclusion

專題總覽

- 1. 透析低血壓是洗腎常見的併發症,有處理方法可避免發生
 - ⇒藉由 AI 模型提前預測
- 2. 透過統計數據發現溫度與血壓呈現負相關
 - →透過地址配對加入溫溼度
- 3. 找到最佳模型
 - ⇒ 實作 Ablation Study
- 4. 未來能應用在醫院
 - ⇒實作網頁

6. Conclusion

Limitation & future work

實際上在透析的過程中,大部分時間病人的血壓都會在正常狀態, 正樣本與負樣本的比例不會是1:1,因此我們的模型在實際應用上 還有進步的空間

Thanks for listening