I. Proof Example 1: An Existance Proof

Theorem: There exists a pair of consecutive integers such that one of these integers is a perfect square and the other a perfect cube.

A. Logical Statement:

There exists integers N and N+1 such that either:

$$N=I^2$$
 and $N+1=K^3$ or
$$N=I^3$$
 and $N+1=K^2$

where I and K are integers

- B. This is an existance proof, i.e., one needs only(?) to conjure up a value of N for which the theorem holds to create a proof.
- C. Starting with 1 and testing one quickly encounters $8 = 2^3$ and $9 = 3^2$.

D. Therefore:
$$N = 8 = 2^3$$
 and $N + 1 = 9 = 3^2$

II. Proof Example 2: An Investigation and Proof of Observation

A. Definitions:

- 1. The *quadratic mean* of two real numbers X and Y is given by $\sqrt{\frac{X^2+Y^2}{2}}$
- 2. The arithmetic mean of two real numbers X and Y is given by $\frac{X+Y}{2}$
- B. Investigate and formulate a conjecture regarding the relative sizes of the quadratic mean and the arithmetic mean.

III. Investigation #1 (easy):

A.
$$\sqrt{\frac{X^2 + Y^2}{2}} \ge \frac{X + Y}{2}$$
 for $X \le 0.0$, $Y \le 0.0$

B. Proof: For
$$X \le 0.0$$
, $X + Y = -|X| + Y < Y$

and
$$\frac{X^2+Y^2}{2} \ge \frac{X^2-2|X|\times Y+Y^2}{4} = \left(\frac{-|X|+Y}{2}\right)^2$$

For
$$Y \le 0.0$$
, $X + Y = X + -|Y| < X$

so
$$\frac{X^2+Y^2}{2} \ge \frac{X^2-2X\times|Y|+Y^2}{4} = \left(\frac{X+-|Y|}{2}\right)^2$$

Therefore:
$$\sqrt{\frac{X^2+Y^2}{2}} \ge \sqrt{\left(\frac{X+Y}{2}\right)^2} = \frac{X+Y}{2}$$

Note: For
$$X = 0$$
 we have: $\sqrt{\frac{X^2 + Y^2}{2}} = \sqrt{\frac{Y^2}{2}} = \frac{Y}{\sqrt{2}} > \frac{Y}{2} = \frac{X + Y}{2}$

and for
$$Y = 0$$
 we have: $\sqrt{\frac{X^2 + Y^2}{2}} = \sqrt{\frac{X^2}{2}} = \frac{X}{\sqrt{2}} > \frac{X}{2} = \frac{X + Y}{2}$

IV. Investigation #2:

- A. Investigation:
 - a. Java code:

package quadmean;

public class QuadMean

public static void main(String[] args)

double X = 0.0;

double Y = 0.0;

int Lim = 10;

final double One = 1.0;

final double Two = 2.0;

System.out.println(" X Y Quadratic Mean Mean");

```
//
      X, Y \le 1.0
    for(int i = Lim; i > 0; i--)
       X = One / (double) i;
       for(int j = Lim; j > 0; j--)
          Y = One / (double) j;
          double quadMean = Math.sqrt((X*X + Y*Y)/Two);
          double arithMean = (X + Y)/Two;
          if (arithMean > quadMean)
            System.out.println("Exception: arithMean = " + arithMean +
                 "and quardMean = " + quadMean);
          System.out.printf("%10.4f %10.4f %10.4f %15.4f\n", X, Y,
                     quadMean, arithMean);
         }
       }
     X, Y >= 0.0
//
    for(int i = 0; i < Lim; i++)
       X = (double) i;
       for(int j = 0; j < Lim; j++)
          Y = (double) i;
          double quadMean = Math.sqrt((X*X + Y*Y)/Two);
          double arithMean = (X + Y)/Two;
          if (arithMean > quadMean)
            System.out.println("Exception: arithMean = " + arithMean +
                 "and quardMean = " + quadMean);
          System.out.printf("%10.2f %10.2f %10.2f %15.2f\n", X, Y,
                     quadMean, arithMean);
       }
    }
```

4.	Output
----	--------

X	Y Qu	adratic Me	an Mean
0.1000	0.1000	0.1000	0.1000
0.1000	0.1111	0.1057	0.1056
0.1111	0.1667	0.1416	0.1389
0.1429	0.1111	0.1280	0.1270
0.1667	0.1667	0.1667	0.1667
0.2500	0.1111	0.1934	0.1806
0.2500	0.2500	0.2500	0.2500
0.3333	0.1250	0.2517	0.2292
0.3333	0.5000	0.4249	0.4167
0.3333	1.0000	0.7454	0.6667
0.5000	0.1000	0.3606	0.3000
1.0000	1.0000	1.0000	1.0000
0.00	0.00	0.00	0.00
1.00	8.00	5.70	4.50
2.00	9.00	6.52	5.50
4.00	5.00	4.53	4.50
6.00	6.00	6.00	6.00
7.00	7.00	7.00	7.00
9.00	0.00	6.36	4.50
9.00	8.00	8.51	8.50
9.00 Done	9.00	9.00	9.00

B. Conjecture 2:

The quadratic mean of X and Y, or $\sqrt{\frac{X^2+Y^2}{2}}$, is greater than or equal to the arithmetic mean of X and Y, or $\frac{X+Y}{2}$.

C. Proof:

$$\left(\sqrt{\frac{X^2+Y^2}{2}}\right)^2 = \frac{X^2+Y^2}{2}$$

$$\left(\frac{X+Y}{2}\right)^2 = \frac{X^2 + 2 \times X \times Y + Y^2}{4} = \frac{1}{2} \times \left(\frac{X^2 + Y^2}{2}\right) + \frac{X \times Y}{2}$$

If:
$$X = Y$$
 $X \times Y = X^2 = Y^2$

If:
$$X > Y$$
 $X \times Y < X^2$

If:
$$X < Y$$
 $X \times Y < Y^2$

Therefore:
$$\frac{X \times Y}{2} \leq \frac{Z^2}{2}$$
 where $Z = max(X, Y)$

Therefore:
$$\frac{X \times Y}{2} \le \frac{X^2 + Y^2}{2}$$

Therefore:
$$\left(\frac{X+Y}{2}\right)^2 = \frac{1}{2} \times \left(\frac{X^2+Y^2}{2}\right) + \frac{X\times Y}{2} \le \frac{X^2+Y^2}{2}$$

Therefore:
$$\left(\frac{X+Y}{2}\right)^2 \le \frac{X^2+Y^2}{2} \le \left(\sqrt{\frac{X^2+Y^2}{2}}\right)^2$$

Therefore:
$$\frac{X+Y}{2} \le \sqrt{\frac{X^2+Y^2}{2}}$$

Therefore The quadratic mean of X and Y, or $\sqrt{\frac{X^2+Y^2}{2}}$, is greater than or equal to the arithmetic mean of X and Y, or $\frac{X+Y}{2}$.

V. Investigation #3: By Guess and by Golly

A. Problem: Prove or disprove that if you have an 8 gallon jug of water and two empty jugs with capacities of 5 gallons and 3 gallons, respectively, that you can accumulate 4 gallons of water in one of the jugs by successively pouring water from one jug into another jug.

B. Solution 1:

8 gal	5 gal	3 gal	Action
0	5	3	Empty 8 gal jug into other two
3	5	0	Empty 3 gal jug into the 8 gal jug
3	2	3	Fill 3 gal jug from 5 gal jug
6	2	0	Empty 3 gal jug into 8 gal jug
6	0	2	Empty 5 gal jug into 3 gal jug
1	5	2	Empty 8 gal jug into 5 gal jug
0	5	2	Empty 8 gal jug
2	5	0	Empty 3 gal jug into 8 gal jug
2	2	3	Empty 5 gal jug into 3 gal jug
4	0	3	Empty 5 gal jug into 8 gal jug

C. Solution 2:

8 gal	5 gal	3 gal	Action
3	5	0	Fill 5 gal jug from 8 gal jug
3	2	3	Fill 3 gal jug from 5 gal jug
6	2	0	Empty 3 gal jug into 8 gal jug
6	2	0	Empty 3 gal jug into 8 gal jug
6	0	2	Empty 5 gal jug into 3 gal jug
1	5	2	Fill 5 gal jug from 8 gal jug
0	4	3	Empty 5 gal jug into 3 gal jug