Singular value decomposition

Vladislav Iliushin

November 7, 2014

1 Approximation

1.1 Total least squares approximation

Figure 1: Total least squares approximation

1.2 Perpendicular squares sum

$$d(\mathbf{p}, \mathbf{q}) = \sqrt[2]{(p_1 - q_1)^2 + (p_2 - q_2)^2}$$

For given points and considering that square area is equal to $d(p,q)^2$ we get

$$\sum d(\mathbf{p}, \mathbf{q})^2 = \sum_{i=1}^n d(p_i, q_i)^2 = 24.2419$$

Matlab code:

$$error = norm(A_approx-A).^2;$$

1.3 Different representations

$$\mathbf{x} = \{v_{2,1}, v_{2,2}\}$$

Matlab code:

$$x \, = \, V \, (\, 2 \, \, , : \,) \, ;$$

$$\alpha = v_{2,1} \cdot \bar{x} + v_{2,2} \cdot \bar{y}$$

Matlab code:

$$11=V(2,1);$$

 $12=V(2,2);$

$$alpha=l1*xMean(1)+l2*xMean(2);$$

$$\mathbf{y_0} = A_{approximation}(0,0)$$

Matlab code:

$$A = \begin{bmatrix} 0 & 0 & ;A \end{bmatrix};$$
... approximation code ...
$$y0 = A_approx(1,:);$$

$$\mathbf{s} = \{v_{1,1}, v_{1,2}\}$$

Matlab code:

$$s = V(1,:);$$

2 Motion capture sequence compression

2.1 Squares sum minimization

"R" rank	Optimal value
1	$4.6166 \cdot 10^8$
2	$1.6925 \cdot 10^8$
5	$1.0453 \cdot 10^7$
10	$1.1982 \cdot 10^6$
15	$2.5626 \cdot 10^5$

2.2 Linear combination of span vector

Figure 2: Total least squares approximation

Figure 3: Total least squares approximation

Figure 4: Total least squares approximation

Figure 5: Total least squares approximation

2.3 Minimization of approximation data dimension

2.4 Approximation optimal error