

Information Competing Process for Learning Diversified Representations

Jie Hu¹², Rongrong Ji^{123*}, Shengchuan Zhang¹, Xiaoshuai Sun¹,

Qixiang Ye⁴, Chia-Wen Lin⁵, and Qi Tian⁶

¹Media Analytics and Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University. ²National Institute for Data Science in Health and Medicine, Xiamen University. ³Peng Cheng Laboratory. ⁴University of Chinese Academy of Sciences. ⁵National Tsing Hua University. ⁶Noah's Ark Lab, Huawei.

Introduction

- * Representation Learning aims to make the learned representations more effective on extracting useful information from input for downstream tasks.
- ❖ Diversified Representations are learned with different information constraints which encourage representation parts to extract various and useful information from inputs, which results in powerful features to represent the inputs.
- ❖ Information Competing Process (ICP) for learning diversified representations.

Method

Unify Supervised and Self-Supervised Objectives. Let t denote the downstream target (label/input itself), the objective linking the representation r of input x and the target t can be defined as:

❖ Separate and Diversify the Representations. To explicitly diversify the information, we directly separate the representation r into two parts [z, y]with different constraints:

$$max [I(r,t) + \alpha I(y,x) - \beta I(z,x)]$$

Method

❖ Competition of Representation Parts. To prevent any one of the representation parts from dominating the downstream task, we let z and y to accomplish the downstream task t solely. For ensuring the representations catch diversified information through different constraints, we prevent z and y from knowing what each other learned for the downstream task. The objective is:

$$\max \left[\underbrace{I(r,t) + \alpha I(y,x) - \beta I(z.x)}_{\text{Synergy}} + \underbrace{\text{Max}}_{\text{Min}} + \underbrace{I(z,t) + I(y,t) - \gamma I(z.y)}_{\text{Competition}} \right]$$

• Optimization. Please kindly refer to our paper.

Experiments

Supervised Setting - Classification Task.

Table 1: Classification error rates (%) on CIFAR-10 test set.

	VGG16 [34]	GoogLeNet [35]	ResNet20 [12]	DenseNet40 [16]
Baseline	6.67	4.92	7.63	5.83
VIB [1]	$6.81^{\uparrow 0.14}$	$5.09^{\uparrow 0.17}$	$6.95^{\downarrow 0.68}$	$5.72^{\downarrow 0.11}$
DIM* [14]	$6.54^{\downarrow 0.13}$	$4.65^{\downarrow 0.27}$	$7.61^{\downarrow 0.02}$	$6.15^{\uparrow 0.32}$
$VIB_{\times 2}$	$6.86^{\uparrow 0.19}$	$4.88^{\downarrow 0.04}$	$6.85^{\downarrow 0.78}$	$6.36^{\uparrow 0.53}$
$DIM*_{\times 2}$	$7.24^{\uparrow 0.57}$	$4.95^{\uparrow 0.03}$	$7.46^{\downarrow 0.17}$	$5.60^{\downarrow 0.23}$
ICP-ALL	$6.97^{\uparrow 0.30}$	$4.76^{\downarrow 0.16}$	$6.47^{\downarrow 1.16}$	$6.13^{\uparrow 0.30}$
ICP-com	$6.59^{\downarrow 0.08}$	$4.67^{\downarrow 0.25}$	$7.33^{\downarrow 0.30}$	$5.63^{\downarrow 0.20}$
ICP	$6.10^{\downarrow 0.57}$	4.26 ^{↓0.66}	$6.01^{\downarrow 1.62}$	4.99 ^{↓0.84}

Experiments

Table 2: Classification error rates (%) on CIFAR-100 test set.

	VGG16 [34]	GoogLeNet [35]	ResNet20 [12]	DenseNet40 [16]
Baseline	26.41	20.68	31.91	27.55
VIB [1]	$26.56^{\uparrow 0.15}$	$20.93^{\uparrow 0.25}$	$30.84^{\downarrow 1.07}$	26.37↓1.18
DIM* [14]	$26.74^{\uparrow 0.33}$	$20.94^{\uparrow 0.26}$	$32.62^{\uparrow 0.71}$	$27.51^{\downarrow 0.04}$
$VIB_{\times 2}$	$26.08^{\downarrow 0.33}$	$22.09^{\uparrow 1.41}$	$29.74^{\downarrow 2.17}$	$29.33^{\uparrow 1.78}$
$DIM*_{\times 2}$	$25.72^{\downarrow 0.69}$	$21.74^{\uparrow 1.06}$	$30.16^{\downarrow 1.75}$	$27.15^{\downarrow 0.40}$
ICP-ALL	$26.73^{\uparrow 0.32}$	$20.90^{\uparrow 0.22}$	$28.35^{\downarrow 3.56}$	$27.51^{\downarrow 0.04}$
ICP-com	$26.37^{\downarrow 0.04}$	$20.81^{\uparrow 0.13}$	$32.76^{\uparrow 0.85}$	$26.85^{\downarrow 0.70}$
ICP	24.54 ^{↓1.87}	$18.55^{\downarrow 2.13}$	28.13 ^{↓3.78}	24.52 ^{↓3.03}

❖ Self-supervised Setting - Disentanglement Task.

Table 3: MIG score of disentanglement.

	dSprites [24]	3D Faces [27]
β-VAE [13]	0.22	0.54
β-TCVAE [7]	0.38	0.62
ICP-ALL	0.33	0.26
ICP-com	0.20	0.57
ICP	0.48	0.73

