Tarea 1 (Solución)

Álgebra Superior 1, 2025-4

Profesor: Luis Jesús Trucio Cuevas. Ayudante: Hugo Víctor García Martínez.

Ej. 1 (1 pt) Demuestra las siguientes equivalencias lógicas.

i)
$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$$
.

iii)
$$\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)$$
.

ii)
$$\alpha \lor (\alpha \land \beta) \equiv \alpha$$
.

iv)
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
.

Demostración. Se probará cada inciso utilizando la definición de equivalencia lógica, esto es, coincidencia total en las tablas de verdad.

i)
$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$$
.

α	β	α	٨	(α	\ \	β)
1	1	_	1	_	1	1
1	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1	1	1	0
0	1	1		0	1	1
0	0	0	0	0	0	0

ii)
$$\alpha \vee (\alpha \wedge \beta) \equiv \alpha$$
.

α	β	α	٧	(α	٨	β)
1	1	1	1	1	1	1
1	0	1	1	1	0	0
0	1	0	0	0	0	1
0	0	0	0	1 1 0 0	0	0

iii)
$$\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)$$
.

α	β	γ	α	٧	(β	٨	γ)	(α	\ \	β)	٨	(α	٧	γ)
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	0	1	1	1	1	1	1	0
1	0	1	1	1	0	0	1	1	1	0	1	1	1	1
1	0	0	1	1	0	0	0	1	1	0	1	1	1	0
0	1	1	0	1	1	1	1	0	1	1	1	0	1	1
0	1	0	0	0	1	0	0	0	1	1	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

iv)
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
.

α	$\mid \beta \mid$	_	(α	٨	$\mid \beta \rangle \mid$	$\neg \alpha$	٧	$\neg \beta$
1	1	0	1	1	1	0	0	0
1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0
0	0	1	0	0	0	0 0 1 1	1	1

Finalizando la demostración de cada inciso.

Ej. 2 (1 pt) Escribe fórmulas lógicas (de primer orden) que, a tu criterio, capturen mejor cada una de las siguientes afirmaciones.

- i) Cada persona viva respira.
- iv) No existen estudiantes en Ciudad Universitaria que sean felices.
- ii) 2 es el único primo par.
- iii) Existe un hombre inmortal.
- v) Todos los peces del acuario de la facultad se aparean con otro pez.

Solución. (i) Tomando $\alpha(x)$: "x es persona", $\beta(x)$: "x está viva" y $\gamma(x)$: "x respira", se tiene que:

"Cada persona viva respira" \Leftrightarrow "Para todo x, si x es persona y x está viva, entonces x respira" $\Leftrightarrow \forall x \big((\alpha(x) \land \beta(x)) \to \gamma(x) \big)$

(ii) Considerando las propiedades $\alpha(x)$: "x es primio" y $\beta(x)$: "x es par", la traducción de este inciso queda de la siguiente forma:

2" es el único primo par." \Leftrightarrow 2" es primo y par y, para todo n, si n es primo y par, entonces n es 2" $\Leftrightarrow (\alpha(2) \land \beta(2)) \land \forall n((\alpha(n) \land \beta(n)) \rightarrow n = 2)$

(iii) Si $\alpha(x)$: "x es hombre" y $\gamma(x)$: "x es mortal", entonces:

"Existe un hombre inmortal" $\Leftrightarrow \exists x (\alpha(x) \land \neg \gamma(x))$

(iv) Tomemos $\alpha(x)$: "x es estudiante de Ciudad Universitaria" y $\beta(x)$: "x es feliz", así:

"No existen estudiantes en Ciudad Universitaria que sean felices" ⇔

 \Leftrightarrow "Es falso que existe cierto x tal que: x es estudiante de Ciudad Universitaria y x es feliz"

$$\Leftrightarrow \neg (\exists x (\alpha(x) \land \beta(x)))$$

(iv) Si $\alpha(x)$: "x es un pez del acuario de la facultad" y $\beta(x,y)$: "x y y se aparean", la traducción queda de la siguiente forma:

"Todos los peces del acuario de la facultad se aparean con otro pez" \Leftrightarrow

 \Leftrightarrow "Para cualquier x, si x es un pez del acuario de la facultad, entonces existe w tal que w es pez del acuario de la facultad, y, x se aparea con w"

$$\Leftrightarrow \forall x \Big(\alpha(x) \to \exists w \big(\alpha(w) \land \beta(x, w) \big) \Big)$$

Si se considera que cada pez del acuario de la facultad se aparea con un pez distinto, la traducción queda como:

$$\forall x \Big(\alpha(x) \to \exists w \Big(\alpha(w) \land \beta(x, w) \land x \neq w \Big) \Big)$$

y también es válida.

 \Diamond

Ej. 3 (1 pt) Escribe la negación de las siguientes proposiciones. Si el inciso está en español, escribe tu respuesta en español.

i)
$$\alpha \leftrightarrow \beta$$
.

iv)
$$\exists x (\alpha(x) \land (\beta(x) \land \gamma(x))).$$

vii) Si n es un número primo y es mayor que 4, n es impar.

ii)
$$\neg \alpha \rightarrow \gamma$$
.

ii)
$$\neg \alpha \rightarrow \gamma$$
. v) $\forall a(\alpha(a) \rightarrow \exists b(\beta(a,b)))$.

viii) Hay cierto elemento en A que es real, pero no entero.

iii)
$$\gamma \rightarrow (\delta \rightarrow \gamma)$$

iii)
$$\gamma \to (\delta \to \gamma)$$
. vi) $\exists b \forall x (\forall y (\alpha(y)) \leftrightarrow (Q(x,y) \land R(b)))$.

Solución. (i) Como $\alpha \leftrightarrow \beta \equiv (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$, entonces:

$$\neg(\alpha \land \beta) \equiv \neg((\alpha \to \beta) \land (\beta \to \alpha))$$
 Equivalencia de \leftrightarrow
$$\equiv \neg(\alpha \to \beta) \lor \neg(\beta \to \alpha)$$
 Ley de De Morgan
$$\equiv (\alpha \land \neg \beta) \lor (\beta \land \neg \alpha)$$
 Negación de \to

(ii) Utilizando la negación de la implicación:

$$\neg(\neg\alpha\rightarrow\gamma)\equiv\neg\alpha\wedge\neg\gamma$$
 Negación de \rightarrow

(iii) De nuevo, utilizando la negación de la implicación:

$$\neg(\gamma \to (\delta \to \gamma)) \equiv \gamma \land \neg(\delta \to \gamma) \qquad \qquad \text{Negación de} \to \\
\equiv \gamma \land (\delta \land \neg \gamma) \qquad \qquad \text{Negación de} \to \\
\equiv \gamma \land (\neg \gamma \land \delta) \qquad \qquad \text{Conmutatividad de} \land \\
\equiv (\gamma \land \neg \gamma) \land \delta \qquad \qquad \text{Asociatividad de} \land \\
\equiv \bot \land \delta \qquad \qquad \gamma \land \neg \gamma \text{ siempre es contradicción} \\
\equiv \bot \qquad \qquad \bot \land P \text{ siempre es contradicción}$$

(iv) La negación de $\exists x (\alpha(x) \land (\beta(x) \land \gamma(x)))$ es:

$$\neg \Big(\exists x \big(\alpha(x) \land \big(\beta(x) \land \gamma(x)\big)\big)\Big) \equiv \forall x \Big(\neg \big(\alpha(x) \land \big(\beta(x) \land \gamma(x)\big)\big)\Big) \qquad \text{Negación de } \exists$$

$$\equiv \forall x \Big(\neg \alpha(x) \lor \neg \big(\beta(x) \land \gamma(x)\big)\Big) \qquad \text{Ley de De Morgan}$$

$$\equiv \forall x \Big(\neg \alpha(x) \lor \big(\neg \beta(x) \lor \neg \gamma(x)\big)\Big) \qquad \text{Ley de De Morgan}$$

$$\equiv \forall x \Big(\alpha(x) \to \big(\neg \beta(x) \lor \neg \gamma(x)\big)\Big) \qquad \neg P \lor Q \equiv P \to Q$$

(v) La negación de $\forall a(\alpha(a) \rightarrow \exists b(\beta(a,b)))$ es:

$$\neg \Big(\forall a \big(\alpha(a) \to \exists b \big(\beta(a,b) \big) \Big) \Big) \equiv \exists a \Big(\neg \big(\alpha(a) \to \exists b \big(\beta(a,b) \big) \big) \Big)$$
 Negación de \forall
$$\equiv \exists a \Big(\neg \alpha(a) \land \neg \big(\exists b \big(\beta(a,b) \big) \big) \Big)$$
 Negación de \Rightarrow
$$\equiv \exists a \big(\neg \alpha(a) \land \forall b \big(\neg \beta(a,b) \big) \Big)$$
 Negación de \exists

(vi) La negación de $\exists b \forall x (\forall y (\alpha(y)) \leftrightarrow (Q(x,y) \land R(b)))$ es:

$$\neg \Big(\exists b \forall x \big(\forall y(\alpha(y)) \leftrightarrow \big(Q(x,y) \land R(b)\big)\big)\Big) \equiv$$

$$\equiv \forall b \Big(\neg \forall x \big(\forall y(\alpha(y)) \leftrightarrow \big(Q(x,y) \land R(b)\big)\big)\Big) \qquad \text{Negación de } \exists$$

$$\equiv \forall b \exists x \Big(\neg \Big(\forall y(\alpha(y)) \leftrightarrow \big(Q(x,y) \land R(b)\big)\Big)\Big) \lor \Big(\big(Q(x,y) \land R(b)\big) \land \neg \Big(\forall y(\alpha(y)\big)\Big)\Big)\Big)$$

$$\equiv \forall b \exists x \Big(\Big(\forall y(\alpha(y)) \land \neg \big(Q(x,y) \land R(b)\big)\Big) \lor \Big(\big(Q(x,y) \land R(b)\big) \land \neg \big(\forall y(\alpha(y)\big)\big)\Big)\Big)$$

$$\equiv \forall b \exists x \Big(\Big(\forall y(\alpha(y)) \land \big(\neg Q(x,y) \lor \neg R(b)\big)\Big) \lor \Big(\big(Q(x,y) \land R(b)\big) \land \neg \big(\forall y(\alpha(y)\big)\big)\Big)\Big)$$
Ley de De Morgan
$$\equiv \forall b \exists x \Big(\Big(\forall y(\alpha(y)) \land \big(\neg Q(x,y) \lor \neg R(b)\big)\Big) \lor \Big(\big(Q(x,y) \land R(b)\big) \land \exists y(\neg \alpha(y)\big)\Big)\Big)$$
Negación de \forall

(vii) "Si n es un número primo y es mayor que 4, n es impar" es una proposición de la forma " $(\alpha(n) \land \beta(n)) \rightarrow \gamma(n)$ "; donde $\alpha(x)$: "x es número primo", $\beta(x)$: "x > 4" y $\gamma(x)$: "x es impar". Dado que:

$$\neg ((\alpha(n) \land \beta(n)) \to \gamma(n)) \equiv (\alpha(n) \land \beta(n)) \land \neg \gamma(n)$$
 Negación de \to

la negación del enunciado original es: "n es un número primo, mayor que 4 y es par".

(v) "Hay cierto elemento en A que es real, pero no entero" es una proposición (o fórmula) de la forma " $\exists x (x \in A \land (\alpha(x) \land \neg \beta(x)))$ "; donde, $\alpha(x)$: "x es real" y $\beta(x)$: "x es entero". Dado que:

$$\neg \Big(\exists x \big(x \in A \land \big(\alpha(x) \land \neg \beta(x)\big)\big)\Big) \equiv \forall x \Big(\neg \big(x \in A \land \big(\alpha(x) \land \neg \beta(x)\big)\big)\Big) \qquad \text{Negación de } \exists$$

$$\equiv \forall x \Big(x \in A \rightarrow \neg \big(\alpha(x) \land \neg \beta(x)\big)\Big) \qquad \neg (\alpha \land \beta) \equiv \alpha \rightarrow \neg \beta$$

$$\equiv \forall x \Big(x \in A \rightarrow \big(\alpha(x) \rightarrow \beta(x)\big)\Big) \qquad \neg (\alpha \land \neg \beta) \equiv \alpha \rightarrow \beta$$

$$\equiv \forall x \Big(x \in A \land \alpha(x)\big) \rightarrow \beta(x)\Big) \qquad P \rightarrow (Q \rightarrow R) \equiv (P \land Q) \rightarrow R$$

la negación del enunciado original es: "Todo elemento de A que sea real, es entero". \Diamond

Ej. 4 (1 pt) Indica cuáles de las siguientes proposiciones son tautologías, cuáles son contradicciones, y, para las contingentes, da una equivalencia lógica que utilice únicamente los conectivos negación (¬) y disyunción (∨). No es necesario justificar.

i)
$$\neg(\gamma \land \gamma)$$
.

iv)
$$\alpha \vee (\alpha \wedge \beta)$$
.

vii)
$$\neg \delta \leftrightarrow \delta$$
.

ii)
$$\alpha \rightarrow \alpha$$
.

v)
$$\beta \rightarrow (\alpha \rightarrow \beta)$$

v)
$$\beta \to (\alpha \to \beta)$$
. viii) $(\gamma \to \eta) \to (\neg \eta \to \neg \gamma)$.

iii)
$$\alpha \wedge (\alpha \vee \beta)$$
.

vi)
$$(\neg \gamma \land (\neg \gamma \lor \beta)) \leftrightarrow \gamma$$
. ix) $\beta \land \alpha$.

ix)
$$\beta \wedge \alpha$$
.

Solución. Las proposiciones (ii), (v) y (viii) son tautologías; mientras que, (vi) y (vii) son contradicciones; además:

i)
$$\neg(\gamma \land \gamma) \equiv \neg \gamma$$
.

iii)
$$\alpha \wedge (\alpha \vee \beta) \equiv \alpha$$
.

iv)
$$\alpha \lor (\alpha \land \beta) \equiv \alpha$$
.

ix)
$$\beta \wedge \alpha \equiv \neg(\neg \alpha \vee \neg \beta)$$
.

son equivalencias lógicas para (iii), (iv) y (ix) que utilizan únicamente negación y disyunción. \Diamond

Ej. 5 (1 pt) Traduce las siguientes equivalencias lógicas a igualdades entre conjuntos. Demuestra las igualdades que propusiste.

i)
$$\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)$$
.

ii)
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
.

Solución. (i) Si A, B, C son conjuntos, esta equivalencia se traduce como:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Para probar tal igualdad, consideremos cualquier objeto matemático x, entonces:

$$x \in A \cup (B \cap C) \Leftrightarrow x \in A \vee x \in B \cap C$$
 Definición de \cup
$$\Leftrightarrow x \in A \vee (x \in B \land x \in C)$$
 Definición de \cap
$$\Leftrightarrow (x \in A \land x \in B) \lor (x \in A \lor C)$$

$$\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)$$

$$\Leftrightarrow (x \in A \cap B) \lor (x \in A \cap C)$$
 Definición de \cap
$$\Leftrightarrow x \in (A \cap B) \cup x \in (A \cap C)$$
 Definición de \cup

Por lo tanto, $\forall x (x \in A \cup (B \cap C) \leftrightarrow x \in (A \cap B) \cup x \in (A \cap C))$ es verdadera, probando que $A \cup (B \cap C) = (A \cap B) \cup x \in (A \cap C)$.

(ii) Si A, B y X son conjuntos, esta equivalencia se traduce a la igualdad:

$$X \setminus (X \cap B) = (X \setminus A) \cup (X \setminus B)$$

Y su demostración consiste en considerar cualquier objeto x y observar que:

$$x \in X \setminus (A \cap B) \Leftrightarrow x \in X \land \neg(x \in (A \cap B))$$
 Definición de \\
$$\Leftrightarrow x \in X \land \neg(x \in A \land x \in B)$$
 Definición de \\
$$\Leftrightarrow x \in X \land (\neg(x \in A) \lor \neg(x \in B))$$
 \\
$$\Leftrightarrow (x \in X \land \neg(x \in A)) \lor (x \in X \land \neg(x \in B))$$
 Distribución de \\
$$\Leftrightarrow x \in X \setminus A \lor x \in X \setminus B$$
 Definición de \\
$$\Leftrightarrow x \in (X \setminus A) \cup (X \setminus B)$$
 Definición de \\

Por lo tanto, $\forall x (x \in X \setminus (A \cap B) \leftrightarrow x \in (X \setminus A) \cup (X \setminus B))$ es verdadera, demostrando así la igualdad de conjuntos: $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Ej. 6 (1 pt) Sean A y X conjuntos de modo que $A \subseteq X$. Demuestra *un inciso* de cada una de las siguientes columnas (tres igualdades en total).

$$\begin{array}{lll} \text{i)} & A \cap \varnothing = \varnothing. & \text{iv)} & A \cap X = A. & \text{vii)} & A \cap (X \setminus A) = \varnothing. \\ \\ \text{ii)} & A \cup \varnothing = A. & \text{v)} & A \cup X = X. & \text{viii)} & A \cup (X \setminus A) = X. \\ \\ \text{iii)} & A \cup A = A. & \text{ix)} & X \setminus (X \setminus A) = A. \end{array}$$

Demostración. Probaremos (ii), (iv) y (ix). Para ser ilustrativos, en cada inciso utilizaremos un "método" distinto, pero en cada inciso se puede emplear el método que se desee.

(i) Para verificar que $A \cup \emptyset = A$, habrá de mostrarse que:

$$\forall x (x \in A \cup \emptyset \leftrightarrow x \in A) \equiv \forall x ((x \in A \lor x \in \emptyset) \leftrightarrow x \in A)$$

es verdadera.

Y efectivamente, sea x cualquier objeto. Por definición de vacío " $x \in \emptyset$ " es siempre falsa, por ello, los renglones primero y tercero de la siguiente tabla nunca ocurren:

$x \in A$	$x \in \emptyset$	$(x \in A \lor x \in \emptyset)$	\leftrightarrow	$x \in A$
1	1	1	1	1
1	0	1	1	1
0	1	1	0	0
0	0	0	1	0

Como en los demás renglones, " $(x \in A \lor x \in \emptyset) \leftrightarrow x \in A$ " es verdadera, se ha mostrado que " $\forall x ((x \in A \lor x \in \emptyset) \leftrightarrow x \in A)$ " es verdadera. Por lo tanto, " $\forall x (x \in A \cup \emptyset \leftrightarrow x \in A)$ " es verdadera; y así, se tiene que $A \cup \emptyset = A$.

(ii) Se demostrará por doble contención que:

$$A \cap X = A$$

- (⊆) Supongamos que $x \in A \cap X$, entonces por definición de intersección $x \in A$ y $x \in X$. Particularmente, $x \in A$. Así, " $x \in A \cap X \to x \in A$ " es verdadera. Como x fue cualquier objeto, entonces " $\forall x (x \in A \cap X \to x \in A)$ " es verdadera; es decir, $A \cap X \subseteq A$.
 - (\supseteq) Supongamos que $x \in A$. Dado que $A \subseteq X$ y
 - (iii) Sea x cualquier objeto, entonces:

$$x \in X \setminus (X \setminus A) \Leftrightarrow x \in X \land \neg(x \in X \setminus A)$$
 Definición de \\
$$\Leftrightarrow x \in X \land \neg(x \in X \land \neg(x \in A))$$
 Definición de \\
$$\Leftrightarrow x \in X \land (\neg(x \in X) \lor \neg \neg(x \in A))$$
 Ley de De Morgan \\
$$\Leftrightarrow x \in X \land (\neg(x \in X) \lor x \in A)$$
 Doble negación \\
$$\Leftrightarrow (x \in X \land \neg(x \in X)) \lor (x \in X \land x \in A)$$
 Distribución de \\
$$\Leftrightarrow x \in X \land x \in A$$
 Distribución de \\
$$\Leftrightarrow x \in X \land x \in A$$
 \\
$$\Leftrightarrow x \in X \land x \in A$$
 \\
$$\Leftrightarrow x \in X \land x \in A$$
 Definición de \\
$$\Leftrightarrow x \in X \land x \in A$$
 Definición de \\
$$\Leftrightarrow x \in X \land x \in A$$
 Definición de \\
$$\Leftrightarrow x \in X \land x \in A$$
 Definición de \\

Por lo tanto, $\forall x (x \in X \setminus (X \setminus A) \leftrightarrow x \in A)$ es verdadera, mostrando así que $X \setminus (X \setminus A) = A$. **Ej. 7 (1 pt)** Denotamos por $A \triangle B$ a la diferencia simétrica entre los conjuntos $A \lor B$. Demuestra que $A \cup B = (A \triangle B) \triangle (A \cap B)$.

Demostración. Utilizaremos la siguiente equivalencia vista (y probada) en clase:

$$x \in X \triangle Y \Leftrightarrow x \in X | x \in Y \tag{*}$$

 \boxtimes

donde | denota el "o exclusivo". Ademas utilizarmos el siguiente Lema:

Lema. $(\alpha|\beta)|(\alpha \wedge \beta) \equiv \alpha \vee \beta$.

Demostración. Basta verificar la tabla de verdad de ambas proposiciones.

α	β	(α		β)		(α	٨	β)	α	٧	β
1	1	1	0	1	1	1	1	1	1	1	1
1	0	1	1	0	1	1	0	0	1	1	0
0	1	1 0	1	1	1	0	0	1	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0

Lo cual finaliza la prueba del Lema.

De esta manera, para cualquier objeto x, se tiene:

$$x \in (A \triangle B) \triangle (A \cap B) \Leftrightarrow x \in A \triangle B | x \in A \cap B$$
 Por (*)
 $\Leftrightarrow (x \in A | x \in B) | x \in A \cap B$ Por (*)
 $\Leftrightarrow (x \in A | x \in B) | (x \in A \wedge x \in B)$ Definición de \cap
 $\Leftrightarrow x \in A \lor x \in B$ Lema
 $\Leftrightarrow x \in A \cup B$ Definición de \cup

Por lo tanto, " $\forall x (x \in (A \triangle B) \triangle (A \cap B) \leftrightarrow x \in A \cup B)$ " es verdadera, esto es, $(A \triangle B) \triangle (A \cap B) = A \cup B$.

Ej. 8 (1 pt) Sean A y B conjuntos. Demuestra que:

- i) $A \subseteq A \cap B$ si y sólo si $A \subseteq B$.
- ii) $A \cup B \subseteq B$ si y sólo si $A \subseteq B$.

Demostración. (i) Veamos que $A \subseteq A \cap B$ si y sólo si $A \subseteq B$. (\Rightarrow) Supongamos que $A \subseteq A \cap B$, veamos por definición que $A \subseteq B$. Sea $x \in A$ cualquier elementom, como $A \subseteq A \cap B$, entonces $x \in A$ y $x \in B$. Particularmente $x \in B$. Así, hemos mostrado que $x \in A \rightarrow x \in B$ es verdadera, y esto, para cualquier objeto x. Por lo tanto $A \subseteq B$.

(\Leftarrow) Supongamos que $A \subseteq B$, veamos por definición que $A \subseteq A \cap B$. Sea $x \in A$ cualquier elemento, como $A \subseteq B$, entonces $x \in B$. Por ello, $x \in A$ y $x \in B$ son verdaderas, así que $x \in A \land x \in B$ también es verdadera. Luego, hemos probado que $x \in A \rightarrow (x \in A \land x \in B)$ es verdadera, y esto, para todo objeto x. Por lo tanto $A \subseteq A \cap B$.

(ii) Este inciso se puede haver de forma similar al anterior, pero veamos otra manera. Sea $X := A \cup B$, entonces $A \subseteq X$ y $B \subseteq X$. Entonces:

$$A \subseteq B \Leftrightarrow X \setminus B \subseteq X \setminus A$$
 Probado en calse $\Leftrightarrow X \setminus B \subseteq (X \setminus B) \cap (X \setminus A)$ Inciso anterior $\Leftrightarrow X \setminus B \subseteq X \setminus (B \cup A)$ Probado en clase $\Leftrightarrow B \cup A \subseteq B$ Probado en clase $\Leftrightarrow A \cup B \subseteq B$ Probado en clase

Mostrando la equivalencia deseada.

Ej. 9 (1 pt) Sean A y B conjuntos. Prueba que $A \subseteq B$ si y sólo si $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

Demostración. (\Rightarrow) Supongamos que $A \subseteq B$, veamos por definición que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$. Sea $X \in \mathcal{P}(A)$ cualquier elemento, entonces $X \subseteq A$. Puesto que $A \subseteq B$, entonces $X \subseteq B$ y con ello $X \in \mathcal{P}(B)$. Se ha mostrado que " $\forall X(X \in \mathcal{P}(A) \to X \in \mathcal{P}(B))$ " es verdadera, es decir, que ocurre $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

(\Leftarrow) Supongamos que $\mathcal{P}(A) \subseteq \mathcal{P}(B)$, veamos que $A \subseteq B$. De la hipótesis y la definición del conjunto potencia, se tiene que:

$$\forall X(X \subseteq A \rightarrow X \subseteq B)$$

Y, dado que $A \subseteq A$, entonces de lo anterior se obtiene $A \subseteq B$.

Ej. 10 (1 pt) Muestra que, en general, *no se da* la igualdad $\mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Solución. Daremos un contrajemplo, es decir, encontraremos conjuntos A y B de modo que $\mathcal{P}(A \setminus B) = \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Consideremos $A = \{0, x\}$ y $B := \{x\}$ (con $0 \neq x$). Entonces $A \setminus B = \{0\}$. Notamos que:

i)
$$A \subseteq A$$
. iii) $A \nsubseteq B$. iii) $A \nsubseteq A \setminus B$.

Efectivamente, (i) es claro. (ii) ocurre pues $0 \in A$ pero $0 \notin B$ por lo que " $\forall x (x \in A \to x \in B)$ " es falsa. Y (iii) ocurre debido a que $x \in A$ pero $x \notin A \setminus B$ (esto último pues $x \in A \land x \notin B$ es falsa, ya que $x \in B$), así que " $\forall x (x \in A \to x \in A \setminus B)$ " es falsa.

Traduciendo, (i) dice que $A \in \mathcal{P}(A)$ y (ii) dice que $A \notin \mathcal{P}(B)$, por lo que $A \in \mathcal{P}(A) \setminus \mathcal{P}(B)$. Sin embargo, (iii) indica que $A \notin \mathcal{P}(A \setminus B)$. Así que $\mathcal{P}(A) \setminus \mathcal{P}(B)$ y $\mathcal{P}(A \setminus B)$ no tienen los mismos elementos, es decir, son conjuntos distintos.