Informe Matemática Discreta I Two Divisors Problema:1366D

Abel Molina Sánchez Grupo 2-11 Ciencias de la Computación Universidad de La Habana

26 de diciembre de 2020

1. Problema

D.Two Divisors

You are given n integers a_1, a_2, \ldots, a_n .

For each a_i find its two divisors d1 > 1 and d2 > 1 such that gcd(d1 + d2, ai) = 1 (where gcd(a, b) is the greatest common divisor of a and b) or say that there is no such pair.

Input:

The first line contains single integer $n(1 \le n \le 5 * 10^5)$ — the size of the array a. The second line contains n integers a_1, a_2, \ldots, a_n $(2 \le a_i \le 10^7)$ — the array a.

Output:

To speed up the output, print two lines with n integers in each line.

The i-th integers in the first and second lines should be corresponding divisors d1 > 1 and d2 > 1 such that gcd(d1+d2,ai) = 1 or -1 and -1 if there is no such pair. If there are multiple answers, print any of them.

2. Interpretación e Idea

El problema plantea el hecho de encontrar para cada número a_i si posee al menos dos divisores d1, d2 que cumplen que $mcd(d1 + d2, a_i) = 1$.

La primera idea de solución y a modo de fuerza bruta sería determinar todos los divisores de a_i y luego determinar dos a dos si cumplen que $mcd(d_i + d_j, a_i) = 1$ utilizando el algoritmo de Euclides para el cálculo del mcd.

Luego en busca de mejorar la eficiencia de la solución vamos a analizar la descomposición en factores primos de a_i , para determinar que para cuando $a_i = p_i^{\alpha_i}$ con p_i primo, no existirán tales divisores; y en caso contrario vamos a demostrar que escogiendo un $d1 = p_j$, p_j factor primo de a_i , y $d_2 = a_i/p_j^{\alpha_j}$, tendremos que d1 y d2 son divisores que cumplen el criterio.

Luego a la hora de la implementación apoyandonos en el algoritmo de la criba de Eratosthenes vamos a predeterminar para cada valor posible de la entrada su menor factor primo. Luego una vez tenido este, lo tomamos como d1 y de la forma descrita anteriormente obtenemos d2.

3. Demostración

Teorema1: Sea $n = \prod_{i=1}^k p_i^{\alpha_i}$ la descomposición en factores primos de $n \in N_+$, si k = 1, no existen dos divisores d1, d2 de n que cumplen que mcd(d1 + d2, n) = 1.

Demostración: Como k=1, $n=p_1^{\alpha_1}$, luego tendremos que todo dividsor q de n es divisible por p_1 , porque, sea un q', q'|n, si q' es primo $q'=p_1$, luego no puede ser primo, entonces, q' compuesto y sea, q" el divisor no trivial más pequeño de q', tenemos que q" es primo, y q" |n entonces q" = p_1 . Luego sean dos divisores cualesquiera de n, d1 y d2, $d1=p_1*d1'$, $d2=p_1*d2'$, luego, $d1+d2=p_1(d1'+d2')$ y por tanto $p_1|d1+d2$. Con lo cual queda demostrado.

Teorema2: Sea $p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ la descomposición en factores primos de $n \in N_+$, si k > 1, existen dos divisores d1, d2 de n que cumplen que mcd(d1 + d2, n) = 1.

Demostración: Sea $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}, k > 1,$

$$n = \prod_{i=1}^{k} p_i^{\alpha_i},$$

sea p_i arbitrario, uno de los factores primos de n, tenemos:

$$n = p_j^{\alpha_j} * \prod_{i \neq j}^k p_i^{\alpha_i}$$
son $a_i = \prod_{i \neq j}^k p_i^{\alpha_i}$

sea
$$q_j = \prod_{i \neq j}^k p_i^{\alpha_i}$$

$$n = p_j^{\alpha_j} * q_j$$

 $n = p_j^{\alpha_j} * \prod_{i \neq j}^k p_i^{\alpha_i}$ $\text{sea } q_j = \prod_{i \neq j}^k p_i^{\alpha_i}$ $n = p_j^{\alpha_j} * q_j$ $\text{Sea ahora } p = p_i, i \in [1, ..., k] \text{ arbitrario, uno de los factores primos de } n. \text{ tenemos que } p_j \nmid q_j,$ $\text{The parameter is the property of the parameter is the property of the parameter is the parameter in the parameter is the parameter is the parameter is the pa$ porque sabemos que si $p_j|q_j \Rightarrow p_j|p_i$ para un $i \neq j \in [1,..,k]$, lo cual sería una contradicción con el hecho de que los p_i son primos.

a su vez, $q_j \nmid p_j$, porque entonces $q_j = p_j$, no puede ser 1 porque k > 1, y por tanto los $p_i \in q_j$ dividen a p_j , lo cual es una contradicción con que p_j es primo.

Por tanto tenemos que p divide a uno entre p_j y q_j , si $p|p_j$, $p=p_j$ y $p_j\nmid q_j$; y si $p\nmid p_j$, $p=p_i\neq p_j$, por tanto $p|q_i$. Sin pérdida de generalidad digamos que $p|q_i$.

Luego tenemos:

$$q_j \equiv 0(p)$$

$$p_j \equiv r(p), r \neq 0$$

$$p_j + q_j \equiv r + 0(p)$$

$$p_j + q_j \equiv r(p), r \neq 0$$

Luego
$$p \nmid p_j + q_j$$
 [1]

Luego tenemos que ningún p_i divide a $p_i + q_i$.

Luego supongamos que $mcd(p_i + q_i, n) = d > 1$.

$$d|n \ y \ d|p_j + q_j,$$

Si d es primo es una contradicción con [1], por tanto analicemos para cuando d es compuesto. sea ahora p' el menor divisor no trivial de d, sabemos que p' es primo.

p'|d, luego p'|n y $p'|p_i+q_i$, pero entonces p' es un factor primo de n, con lo cual se contradice [1]. Luego, hemos encontrado dos divisores, $d1 = p_i$ y $d2 = q_i$ de n que cumplen que mcd(d1 + d2, n) = 1, y a su vez hemos determinado una forma de hallarlos teniendo en cuenta la elección arbitraria de p_i .

4. Algoritmo y complejidad temporal

```
solve(n,a):
                                                    |sieve_e(N):
    N = 10**7+1
                                                         p = 2
    min_prime = [0]*N
                                                         while p*p \le N:
                                                             if min_prime[p]:
    sieve_e(N)
    d1,d2 = [-1]*n,[-1]*n
                                                                  continue
    for i in [0, ..., n-1]:
                                                             for i = p*p; i < N; i+=p:
        p = min_prime[ai]
                                                                  if not min_prime[i]:
                                                                      min_prime[i] = p
        if ai is prime:
            continue
                                                             p++
        while p | ai:
            ai = ai/p
        if ai > 1
            d1[i],d2[i] = p,ai
     return d1,d2
```

Veamos que la criba nos coloca en min-prime[i] el valor del menor factor primo de i o 0 si i es primo. En un principio todos los números en el rango hasta N se marcan como primos, ahora tenemos que, los divisores de un número compuesto c son $\leq c$. En particular sus factores primos. A su vez tenemos que cualquir número compuesto n tiene al menos un factor primo $\leq \sqrt{n}$. Para demostrarlo supongamos lo contrario, esto es, tengamos el número n con factorización en primos $n = p_1 p_2 ... p_r$.

```
Supongamos que p_i > \sqrt{n} \ \forall i=1,..,r. Entonces tendríamos que : p_1*p_2....*p_r > (\sqrt{n})^r = n^{r/2} \geq n si r \geq 2 y tenemos que n es compuesto con lo cual r \geq 2 y llegamos a una contradicción.
```

Luego se tiene que se alcanzan los primos $\leq N$ en el ciclo hasta \sqrt{N} y para cada n < N sabemos que $\sqrt{n} < \sqrt{N}$. Veamos entonces que para cada valor compuesto se actualiza este valor, y esto ocurre en el ciclo interno. Para eso necesitamos ver que luego de determinar los múltiplos de los primos $2, 3, ..., P_k$, tenemos que los números compuestos que quedan sin analizar tienen factores solamente mayores que P_k , de lo contrario habrían sido analizados como múltiplos de un $p_i \leq P_k$. A su vez se tiene que el menor de estos compuestos es $(P_{k+1})^2$, ya que todos los múltiplos de P_{k+1} fueron analizados con los múltiplos de los $p_i \leq P_k$. A su vez quedarán en 0 los primos en el rango P_k , P_{k+1} ya que no tienen divisores no triviales por lo cual no serán múltiplo de ningún p_i . Para finalizar es claro que hasta \sqrt{N} se alcanzan todos los compuestos ya que a lo sumo $P_k = \sqrt{N}$ y se tendría que $(P_k)^2 = N$. Con lo cual luego de finalizado se habrán analizado todos los números compuestos en el rango hasta N y los primos quedarán en 0.

Luego se elige d1 = min - prime[i] para cada a_i y garantizamos en el último ciclo while que se tenga $d2 = ai/p^{\alpha}$ que será solución si $a_i \neq p^{\alpha}$ por lo demostrado en los teoremas 1 y 2.

Para el análisis temporal de la solución tenemos que el algoritmo de la criba de Eratosthenes es $O(NloglogN)^1$, donde tenemos que N es el límite superior de la entrada del algoritmo que será $a_i \leq 10^7$. Luego, tenemos que obtener d1 = p se hace en O(1). En el segundo ciclo para la búsqueda de d2 tenemos el peor caso cuando a_i es de la forma p_i^k y tenemos que se realiza la mayor

 $^{^1{\}rm Time\text{-}complexity\text{-}of\text{-}Sieve\text{-}Eratosthenes\text{-}GeeksforGeeks.pdf}$ en la bibliografía, tomado del sitio www.geeksforgeeks.org

cantidad de iteraciones cuando es de la forma 2^k . Luego tenemos que determinar la solución para los n a_i es O(nlogN). Luego las inicializaciones son O(N) y O(n) al igual que devolver la solución que será O(n). Luego tenemos que complejidad temporal de la solución será O(nloglogN + nlogN).

5. Tester

Se incluye un generador.py para generar casos de forma aleatoria y de forma manual. Para analizar en los casos en la carpeta ./tests se debe encontrar el archivo casoX.in y el archivo casoX.out, este último debe contener la respuesta dada por el algoritmo a la entrada en el .in.

Para analizar la correctitud de las soluciones se incluye el script checker.py que analiza cada caso de prueba que se encuentra en ./tests.

Para determinar la correctitud de la solución, en primer lugar se leen las listas de entrada a, y las listas de solución d1 y d2 del algoritmo.

Por cada caso se itera por las listas, si se tiene que los divisores para a_i son distintos de -1, se comprueba, empleando el método gdc(a,b) de la librería math de python si el $mcd(d1+d2,a_i) \neq 1$ y que $d1|a_i$ y $d2|a_i$. En caso de que la solución dada por el algoritmo sea que no existen d1 y d2 para a_i , entonces se utiliza la solución de fuerza bruta para determinar que esto es correcto. Para ello se tiene el método brute-force que crea una lista para almacenar los divisores no triviales de a_i en cada caso. Para esto, se itera desde div = 2 mientras $div \leq \sqrt{a_i}$ y si $div|a_i$ se agrega a lista de divisores, y si $div \neq \sqrt{a_i}$, se agrega $div2 = a_i/div$ a la lista. Luego se comprueba que el $mcd(div_i + div_i, a_i) \neq 1$ para cualquier par de divisores (div_i, div_i) .

Se incluyen algunos casos de pruebas, como por ejemplo el caso4 donde se analiza el algoritmo para todos los números en el rango $[1, 5*10^5]^2$

²Probablemente al momento de recibir el informe haya 2 o 3 casos solamente pues los casos grandes generan ficheros de mucho peso para el envío por correo. La idea inicial fue analizar todos los rangos de 500000 naturales desde 1 hasta 10⁷ y se cubrirían todas las posibles entradas del problema.