## Package "GePhCort"

Sept . 2013

Title: GePhCort - A genotype-phenotype correlation tool based on phylogenetic analysis.

Version: 1.0

Author: Dr. Farhat Habib, Amol Kolte

Maintainer: Amol Kolte <amolkolte1989@gmail.com>

**Description :** A purely Unix-based bioinformatics tool to locate phenotype associated genotypic markers (SNPs) by taking into account the phylogenetic relationship among the species. GePhCort has been built using R and python.

## Dependencies:

| python $2.7 \pmod{3.0}$ | R (>=2.14.0)     |
|-------------------------|------------------|
| ete (2.1 alpha)         | ape ( $<=2.8$ )  |
| python-tk               | igraph           |
| numpy $(1.6.1)$         | matrix (1.0)     |
| scipy $(0.9)$           | quadprog $(1.5)$ |
| rpy $(2.25)$            | phangorn $(1.5)$ |
|                         |                  |

Package Compilation: GePhCort do not require package compilation. It mainly uses 2 standalone scripts (resurrect.R and reanimate.py):

- resurrect.R (Performs ancestral sequence reconstruction)
- reanimate.py (Performs phenotype reconstruction and permutation test)

Keep all the scripts under single location, make sure all the dependancies are satisfied

## Running GePhCort

**Step 1.** Perform ancestral sequence reconstruction

 $resurrect.R \ \langle sequence\_file \rangle \ \langle newick\_tree\_file \rangle \ \langle fasta/phylip \rangle \ \langle resurrect\_output\_file \rangle$ 

**Step 2.** Perform ancestral phenotype reconstruction and correlation

 $reanimate.py -s \ \langle sequence\_file \rangle -t \ \langle newick\_tree\_file \rangle -f \ \langle fasta/phylip \rangle -i \ \langle Num\_iterations\_for\_permutation\_test \rangle -f \ \langle fasta/phylip \rangle -$ 

-p  $\langle phenotype\_file \rangle$  -o  $\langle output\_file \rangle$  -r  $\langle resurrect\_output\_file \rangle$ 

Files and formats: GePhCort obligatorily requires three user input text files. The proper formats are discussed below:

- i) Sequence file Nucleotide sequences (SNPs) can be submitted in the standard fasta or phylip format.
- ii) Phylogeny/Tree file In the standard *newick* format (with branch lengths) as shown in the adjacent figure.



Figure 1: Newick file format

iii) Phenotype file – This is a simple tab-separated text file in a customized format. The first column in two-column file format represents 'name of the species' and other represents the 'continuous phenotypic value' (as shown in Figure 3).



Figure 2: Two-column phenotype file format

**Result Interpretation:** GePhCort generates a tab-separated text file once the operation is successfully completed. The file consists of five entities, which are explained below.

- 1. **SNP** serial **ID** Every row in the result file represents a genotypic marker *i.e.* an SNP. They are alloted serial numbers (starting from Zero) as per their position in the original sequence file. Thus, the  $n^{th}$  SNP serial ID in the result represents the  $(n+1)^{th}$  SNP in the original file.
- 2. **p-value** Lower the p-value, higher is the significance of association between a given SNP and the phenotype. This is the raw p-value.
- 3.  $\mathbf{p.adjusted\_FDR}$  Corrected p-value after FDR correction.
- 4. **p.adjusted\_Bonferroni** Corrected p-value after Bonferroni correction.