Fundamentals of Information & Network Security ECE 471/571

Lecture #7: Cryptanalysis (continued)
Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

Attack models

Ciphertext-only attack: Eve only observes the ciphertext y

Known-plaintext attack: Eve knows some plaintext x and its corresponding ciphertext y

Chosen-plaintext attack: Eve has temporary access to an encryption box.

It can feed any chosen plaintext x and obtain the ciphertext y

Chosen-ciphertext attack: Eve has temporary access to a decryption box.

It can feed any chosen ciphertext y and obtain the plaintext x

Example:

Perform each type of attack on a shift cipher. Comment on the complexity of performing each attack

Plaintext x: shift ciphertext y: vkliw

Question: for brute-force attack, on average, how many keys must be tried to achieve success?

Cryptanalysis of the Affine Cipher

Ciphertext only attack

Example:

FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPRKDLYEV LRHHR

Known plaintext attack

Cryptanalysis of the Affine Cipher

Plaintext:

algorithms are quite general definitions of arithmetic processes

Cryptanalysis of the Hill Cipher

- Difficult to break with ciphertext-only attack
- Known-plaintext attack
 - Given some (plaintext, ciphertext) pairs, create a matrix equation Y = XK and solve for K by inverting matrix X.
 - Example: m = 2 and the plaintext is friday yielding a ciphertext PQCFKU.

Cryptanalysis of the Vignere Cipher

- Known plaintext attack
- Chosen plaintext attack
- Chosen ciphertext attack
- Ciphertext only attack
 - Why hard?

Frequency Distributions of Different Ciphers

Figure 3.6 Relative Frequency of Occurrence of Letters

Cryptanalysis of Vignere Cipher

Observation: consists of multiple monoalphabetic ciphers

- Method
 - 1. Determine the key length.
 - Index of coincidence, Kasiski test
 - 2. Break the ciphertext into sub-pieces encrypted with the same key letter.
 - 3. Solve each piece as a monoalphabetic cipher.

Finding Key Vector Length

Index of coincidence

- Probability that two randomly chosen elements of a string are identical.
- If we have the correct key vector length m, IC is about 0.065. Random ciphertext: 0.038.

$$I_c(\underline{\mathbf{x}}) = \sum_{i=0}^{25} \frac{\binom{f_i}{2}}{\binom{n}{2}}$$

Kasiski Test

- Distance of pairs of identical segments of ciphertext of length at least three.
- Compute the gcd of those distances, and the most common gcd is the key length

Finding Key Vector Length

Example

CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBWRVXUOAKXAO SXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAKLXFPSKAUTEMNDCMGTSX MXBTUIADNGMGPSRELXNJELXVRVPRTULHDNQWTWDTYGBPHXTFALJHA SVBFXNGLLCHRZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBIPEEWEVKAKO EWADREMXMTBHHCHRTKDNVRZCHRCLQOHPWQAIIWXNRMGWOIIFKEE

- CHR cipher appears at 1, 166, 236, 276, 286 start locations. So the distances from 1st occurence to other four occurences are 165, 235, 275, 285 respectively.
- According to the Kasiski Test the gcd of these distances being 5, is the most likely length of the key vector.

Finding the Key

For each cipher piece, check the "shifted IC" (for all 0<g<26):

$$M_g = \sum_{i=0}^{25} \frac{p_i f_{i+g}}{n'} \approx \sum_{i=1}^{25} p_i^2 = 0.065$$

j				M_g					
	.035	.031	.036	.037	.035	.039	.028	.028	.048
1	.061	.039	.032	.040	.038	.038	.045	.036	.030
	.042	.043	.036	.033	.049	.043	.042	.036	
	.069	.044	.032	.035	.044	.034	.036	.033	.029
2	.031	.042	.045	.040	.045	.046	.042	.037	.032
	.034	.037	.032	.034	.043	.032	.026	.047	
	.048	.029	.042	.043	.044	.034	.038	.035	.032
3	.049	.035	.031	.035	.066	.035	.038	.036	.045
	.027	.035	.034	.034	.036	.035	.046	.040	
	.045	.032	.033	.038	.060	.034	.034	.034	.050
4	.033	.033	.043	.040	.033	.029	.036	.040	.044
	.037	.050	.034	.034	.039	.044	.038	.035	
	.034	.031	.035	.044	.047	.037	.043	.038	.042
5	.037	.033	.032	.036	.037	.036	.045	.032	.029
	.044	.072	.037	.027	.031	.048	.036	.037	

K = (9, 0, 13, 4, 19) or, JANET.

Table 1.
$$Q_j = \sum_{i=0}^{25} \frac{p_i f_{i+g}}{n'}$$
.

Cryptanalysis of Columnar Transposition

- Brute force
- Diagram analysis
 - Moving comparisons

This is a message to show how a columnar transposition works.

Ciphertext: tssohoaniwhaasolrstoimghw utpirseeoamrookistwcnasns

How to Determine the Cipher Type?

Frequency analysis

Index of coincidence

• ...

Reading

- Textbook Appendix F (measures of security and secrecy)
 - Can be found online