LA DÉRIVATION E01

EXERCICE N°1 Taux de variation / taux d'accroissement

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

- 1) Calculer les images par f de 2; 3; -5 et -4.
- 2) Calculer le taux d'accroissement entre les réels 2 et 3.
- 3) Calculer le taux d'accroissement entre les réels -5 et -4.

EXERCICE N°2 Coefficient directeur

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2;12)$$
; $B(3;21)$; $C(-5;5)$ et $D(-4;0)$

- 1) Vérifier que ces quatre points appartiennent à la courbe C_f .
- 2) Calculer le coefficient directeur de la droite (AB).
- 3) Calculer le coefficient directeur de la droite (CD).

EXERCICE N°3 Nombre dérivé par le calcul

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$. Soit $h \in \mathbb{R}$.

1) Simplifier l'expression
$$\frac{f(2+h)-f(2)}{(2+h)-2}$$
.

(Si h = 3-2 = 1 quelle question des exercices $n^{\circ}l$ et $n^{\circ}2$ retrouve-t-on?)

- 2) Déterminer le nombre dérivé de f en 2.
- 3) Simplifier l'expression $\frac{f(-5+h)-f(-5)}{(-5+h)-(-5)}$

(Si h = -4-(5) = 1 quelle question des exercices n°1 et n°2 retrouve-t-on?)

- 4) Calculer f'(-5).
- 5) Déterminer le nombre dérivé de f en 2.

EXERCICE N°4 Nombre dérivé par lecture graphique.

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2; 12)$$
 et $C(-5; 5)$.

Les droites T_1 et T_2 sont les tangentes à la courbe C_f respectivement en A et C .

- 2) Déterminer par lecture graphique f'(-5).
- 3) Déterminer par lecture graphique, l'équation réduite de T_2 .

EXERCICE N°5 Équation de la tangente

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$.

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2;12)$$
 et $C(-5;5)$.

- 1) Déterminer l'équation réduite de la tangente à la courbe C_f au point A.
- 2) Déterminer l'équation réduite de la tangente à la courbe C_f au point C. (hé oui C_f et C c'est pas la même chose! On reste attentif!)

LA DÉRIVATION E01

EXERCICE N°1 Taux de variation / taux d'accroissement

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

- 1) Calculer les images par f de 2; 3; -5 et -4.
- 2) Calculer le taux d'accroissement entre les réels 2 et 3.
- 3) Calculer le taux d'accroissement entre les réels -5 et -4.

EXERCICE N°2 Coefficient directeur

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2;12)$$
; $B(3;21)$; $C(-5;5)$ et $D(-4;0)$

- 1) Vérifier que ces quatre points appartiennent à la courbe C_f .
- 2) Calculer le coefficient directeur de la droite (AB).
- 3) Calculer le coefficient directeur de la droite (CD).

EXERCICE N°3 Nombre dérivé par le calcul

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$. Soit $h \in \mathbb{R}$.

1) Simplifier l'expression
$$\frac{f(2+h)-f(2)}{(2+h)-2}$$
.

(Si h = 3-2 = 1 quelle question des exercices $n^{\circ}l$ et $n^{\circ}2$ retrouve-t-on?)

- 2) Déterminer le nombre dérivé de f en 2.
- 3) Simplifier l'expression $\frac{f(-5+h)-f(-5)}{(-5+h)-(-5)}$

(Si h = -4-(5) = 1 quelle question des exercices n°1 et n°2 retrouve-t-on?)

- 4) Calculer f'(-5).
- 5) Déterminer le nombre dérivé de f en 2.

EXERCICE N°4 Nombre dérivé par lecture graphique.

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2; 12)$$
 et $C(-5; 5)$.

Les droites T_1 et T_2 sont les tangentes à la courbe C_f respectivement en A et C .

- 2) Déterminer par lecture graphique f'(-5).
- 3) Déterminer par lecture graphique, l'équation réduite de T_2 .

EXERCICE N°5 Équation de la tangente

On considère la fonction f définie pour tout réels x par : $f(x) = x^2 + 4x$.

On note C_f sa courbe représentative et on donne les points suivants :

$$A(2;12)$$
 et $C(-5;5)$.

- 1) Déterminer l'équation réduite de la tangente à la courbe $\,C_f\,$ au point $\,A\,$.
- 2) Déterminer l'équation réduite de la tangente à la courbe C_f au point C. (hé oui C_f et C c'est pas la même chose! On reste attentif!)