ELS – (Fuso de avanço eletrônico) – da McMax Projeto disponível emhttp://meccanicaedintorni.morpel.it

MANUAL DO USUÁRIOv1.8x (abril de 2023)

Descrição e funções do menu:

- 1. Configurações E Configuração de parâmetros
- 2. AvançoEFunções de alimentação para torneamento
- 3. Enfiamento Efunções de encadeamento
- **4. Livre circulação E**permite a movimentação do carrinho por meio do joystick
- 5. Velocidade do fusoEexibe velocidade de rotação instantânea do fuso
- **6. Posição angular E**exibe a posição angular do fuso

1 - CONFIGURAÇÕES

- para)**passos enc. Mandrino**: define o número de passos do encoder para cada rotação do fuso. Deve-se sempre lembrar que os passos nominais do encoder são multiplicados por 4 no código, portanto, um encoder com 250 passos deve ser configurado com 1000. É sempre aconselhável acoplar o encoder ao fuso com uma correia síncrona na proporção de 1:1 para evitar a perda da fase de sincronização no rosqueamento.
- b)**Degraus do parafuso de passo**: define o número de passos que o motor de passo executa para realizar uma rotação do fuso de avanço. Este valor dependerá da configuração do motor de passo e de quaisquer reduções mecânicas na transmissão do fuso de avanço/passo. Por exemplo, para um motor configurado com 400 passos e uma relação de redução de 1:2, ele precisará ser configurado com 800 passos.
- c)**Passo do parafuso mãe**: indica o passo do fuso em milímetros com precisão de 3 casas decimais. No caso de fusos em polegadas, o passo ainda deve ser convertido para milímetros.
- e)**Atraso de aceleração**: indica o atraso no ciclo de aceleração do motor de passo. O número representa o atraso real em microssegundos entre uma velocidade e a próxima que é alterada no ciclo de aceleração.
- E)**Atraso de desaceleração**: indica o atraso no ciclo de desaceleração do motor de passo. O número representa o atraso real em microssegundos entre uma velocidade e a próxima que é alterada no ciclo de desaceleração.
- e)**Rotação padrão**: indica o sentido de rotação do motor de passo que aciona o parafuso, fazendo com que o carro avance na direção do fuso. A convenção horário/anti-horário é usada como exemplo. No caso de um parafuso de avanço à direita, sua rotação no sentido horário é o que fará o carro avançar na direção do fuso. Observe que este é, na verdade, o sentido de avanço do motor: se este for fixado diretamente no parafuso com uma junta, deve-se considerar que o motor girará na direção oposta à do parafuso.
- g)**Avanço de carruagem x**: indica o avanço, expresso em centésimos/revolução, que uma única rotação da barra de avanço exerce sobre o carro. Esta opção possui 4 relações configuráveis diferentes para tornos equipados com barra de avanço e caixa Norton Meccanica que altera a relação de avanço. Caso não possua barra, os avanços serão realizados com o parafuso, portanto, aqui será necessário indicar o passo do parafuso expresso em centésimos. Neste último caso, bastará configurar apenas um valor, omitindo os outros 3.
- h)**Avanço transversal x:**como acima, mas para avanço cruzado. Se o torno tiver apenas um parafuso, esta opção não deve ser considerada.
- o)**Deslocamento da rosca:**Este é o deslocamento expresso em passos/parafuso que será inserido na rotina de rosca sob medida. Na prática, o carro retrocederá tantos passos quantos forem necessários.

- definido antes de iniciar a rosca. A utilidade deste parâmetro é compensar qualquer folga no parafuso/porca.
- j)**NORTON:**indica qual proporção da caixa NORTON está definida. Esta opção está relacionada às configurações de avanço de carro e transversal. O ajuste varia de 1 a 4 e considerará o avanço indicado pelas opções nos pontos 7 e 8.
- k)**Velocidade máxima do stepper:**indica a velocidade máxima permitida para o motor de passo expressa em rotações por minuto
- o)Redefinir valores:redefine a EEPROM para suas configurações padrão.Quando você inicia o software pela primeira vez, a EEPROM contém valores aleatórios e, portanto,

 EXECUTE ESTE COMANDO

TABELA DE CONFIGURAÇÕES PADRÃO

PARÂMETRO	VALOR	UNIDADE'
etapas enc. fuso	1000	degraus do fuso
parafuso de passo	400	passos da vida
passo do parafuso mãe	3.175	milímetros
atraso de aceleração	800	μseg
atraso de desaceleração	800	μseg
rotação padrão	horário	n/D
avanço de vagão 1	50	centavos/rev
avanço transversal 1	7	centavos/rev
avanço do vagão 2	30	centavos/rev
avanço transversal 2	5	centavos/rev
avanço do vagão 3	20	centavos/rev
avanço transversal 3	3	centavos/rev
vagão avançado 4	10	centavos/rev
avanço transversal 4	2	centavos/rev
Deslocamento de rosca	400	passos da vida
NORTON	1	posição
stepper de velocidade máxima	500	rpm

2 - AVANÇO

- para)**longo/trans.**: define a velocidade de avanço no carro longitudinal ou transversal (somente para tornos equipados com avanço de barra e transversal). A posição exibida e a velocidade de avanço definida dependerão dos valores definidos nos parâmetros da relação Norton e da posição do próprio Norton.
- b)**valor do progresso**: define o valor da taxa de avanço desejada em centésimos/ revolução (FUNÇÃO NÃO OPERACIONAL NO FIRMWARE VER 1.2)
- c)**avanço dir.**: define a direção desejada para o avanço (FUNÇÃO NÃO IMPLEMENTADA NO FIRMWARE 1.2)
- e)avanço restrito: Executa a função de avanço livre, que permite definir um limite de avanço à direita e à esquerda, bem como definir e alterar a velocidade de avanço (em mm por minuto) em tempo real. A função exibe a posição atual do carro, calculada com base nos parâmetros Norton atualmente definidos, levando em consideração se o avanço está definido no carro longitudinal ou transversal. Os limites de posição devem ser definidos com o avanço parado, enquanto o valor de avanço (em mm/min ou cents/rot) deve ser alterado durante a operação.
- E)**Avanço livre**:executa a função de avanço livre que exibe a posição atual do carro calculada com base nos parâmetros NORTON definidos atualmente, levando em consideração se o avanço está definido no carro

longitudinal ou transversal. O valor de avanço (em mm/min ou cent/rot) deve ser alterado durante a operação ou com o avanço parado. As rotações por minuto (RPM) são atualizadas somente com o avanço parado; portanto, não é recomendado alterar a velocidade de rotação do fuso durante a passagem.

e)**Modo avançado**: selecione o modo de exibição do progresso entre mm/min ou centésimos/rev.

CONTROLES:

com a alimentação desligada("START" é exibido no canto inferior esquerdo)

Os joysticks direito e esquerdo movem o cursor para o valor a ser alterado. Pressionar o botão "RESET" redefine a posição atual. Pressionar o botão "SEL" faz com que o cursor apareça ampliado e o valor pode ser alterado movendo o joystick para cima e para baixo. Pressionar o botão "RESET" redefine o valor imediatamente. Pressionar o botão "SEL" armazena o valor recém-definido e o cursor retorna para a posição pequena.

Movendo o cursor totalmente para a direita, é exibida a velocidade de rotação instantânea do fuso e, a partir desta posição, pressionando a tecla "SEL" inicia-se o avanço.

com progresso em andamento ("STOP" é exibido no canto inferior esquerdo)

O joystick para cima e para baixo aumenta e diminui o valor de avanço. O joystick para a direita e para a esquerda altera a direção de avanço, mantendo o valor definido inalterado.

Pressionar o botão "SEL" interrompe o progresso.

Pressionar simultaneamente os botões "SEL" + "RESET" combinado com o movimento do Joystick em uma direção (direita ou esquerda) move o carro nessa direção na velocidade máxima possível (**Speed Max Stepper**) até que a posição limite definida seja atingida.

Pressionar a tecla "ESC" a qualquer momento sairá da função de avanço, redefinindo todos os limites definidos até o momento. A posição atual do carro será mantida.

g)**Defina 'NORTON':**define a posição do relatório da caixa Norton. O valor está entre 1 e 4 e carrega os valores de progresso definidos no **pontos geh**no menu de configurações

3 - ROSQUEAMENTO

para)**definir passo mm**: define o passo da rosca em mm, com resolução de 0,05 mm b)**definir passo TPI**: define o passo da rosca em TPI (fio por polegada), até um máximo de 52 TPI.

c)**Definir etapa MOD**: define o passo da rosca como um módulo para gerar parafusos semfim para acoplamento com engrenagens métricas ou para construir fresas para engrenagens métricas. O módulo (MOD) é equivalente ao passo do dente da engrenagem a ser engatada (ou criada) em comparação com pi. Por exemplo, definindo MOD como 1,00, o passo do parafuso a ser construído será igual a Pi (3,1415 mm).

NOTAS SOBRE A DEFINIÇÃO DO TOM:O passo será calculado com base no último passo definido. Quando um passo é definido em "TPI" ou "MOD", qualquer passo definido anteriormente em milímetros será substituído e vice-versa. O sistema rosqueará o parafuso com o último passo definido, seja em mm, TPI ou Módulo.

e)desenvolvimento: define a direção do desenvolvimento do thread: direita ou esquerda

- E)**linha sob medida**: Esta função permite definir o comprimento da rosca a ser feita em milímetros, com resolução de 0,1 mm. O passo e o desenvolvimento serão obtidos a partir dos valores definidos anteriormente.
 - **1**–posicione o carrinho movendo o joystick e pressione "SEL" quando terminar. **2**–Defina o comprimento movendo o joystick para cima e para baixo e pressione "SEL" quando a altura desejada for atingida.
 - **3**–Pressione "SEL" novamente para iniciar o rosqueamento. O carro se moverá instantaneamente na direção oposta à da execução da rosca (para a direita no caso de rosqueamento à direita, para a esquerda no caso de rosqueamento à esquerda). O movimento serve para compensar qualquer folga que possa estar presente nos acoplamentos mecânicos. O valor do movimento é definido como**ponto i**no menu de configurações:**deslocamento de rosca**Este valor deve ser definido em passos do motor de passo.
 - **ATENÇÃO**: O deslocamento definido moverá o carro na direção oposta à rosca. No caso de roscas à direita, tome cuidado para que a ferramenta não colida com o cabeçote móvel; no caso de roscas à esquerda, tome cuidado para que ela não colida com o fuso ou com a própria peça.
 - **4**–a rosca começará a seguir o passo e parará no comprimento definido **5**–uma vez finalizada a passagem, sem parar o fuso, mova a ferramenta para trás e então pressione a combinação de teclas "SEL" + "RESET" para retornar o carro à posição inicial.
 - **6**–Avance o carro para a próxima passada e pressione "SEL" para executá-la. O fuso será sincronizado para garantir que a linha seja puxada exatamente na mesma posição.
 - **7**–Ao final da thread pressione "ESC" para sair da função.
- e)**restrição mecânica**: restringe o fuso ao fuso com os valores de passo e desenvolvimento já definidos. Esta função cria uma restrição pseudomecânica entre o fuso e o fuso, exatamente como ocorre em um torno de engrenagens tradicional. O fuso acompanhará o movimento do fuso, mantendo o passo e a direção. Definir o desenvolvimento para "esquerda" faz com que o carro se mova na direção oposta para a execução de roscas à esquerda.

4 - LIVRE CIRCULAÇÃO

Esta função permite que você mova o carrinho livremente usando o joystick. A velocidade do movimento será proporcional ao movimento do joystick até que a velocidade máxima seja atingida (**Speed Max Stepper**) definido para**ponto k**do menu de configurações. A posição exibida é a do carro levando em consideração os valores definidos para o avanço para o**pontos geh**do menu de configurações e considerando a posição definida da caixa NORTON em**ponto j**no menu de configurações.

Pressionar o botão "RESET" reinicia a posição. Pressionar o botão "ESC" encerra a função.

5 - VELOCIDADE DO FUSO

exibe a velocidade atual do fuso em revoluções por minuto.

6 - POSIÇÃO DE CANTO

Exibe a posição angular do fuso em graus (0-360) com uma resolução de 0,36°. A função é operacional até uma velocidade de rotação máxima de aproximadamente 200 rpm (considerando um encoder de 250x4 passos/revolução). É aconselhável girar o fuso em

evitando solavancos e mudanças bruscas de direção. Sair da função mantém a última posição angular exibida, mas NÃO ATUALIZA. Ao sair da função, para que a posição real do fuso seja mantida corretamente, o fuso NÃO deve ser girado.

Pressionar o botão "RESET" reinicia a posição. Pressionar o botão "ESC" encerra a função.