betsson group

Predicting future calls to the Customer Service

Business presentation

Business context

For efficiency purposes, Betsson is trying to predict which customers are going to call the Customer Service, based on their past behaviour.

For a given day, predict whether a customer will call the Customer Service in the following 14 days.

Data Insights

Solution

Model deployment

GIF

Data quality checks

Duplicates

No missing values (probably they've been filled with -1)

Removal of constant features

Statistical Analysis

Feature vs target

Contact Customer Service in the next 14 days?

Feature selection

There are almost 300 features in the provided dataset.

- Simple models are easier to interpret
- Shorter training times
- Enhanced generalization by reducing overfitting
- Easier to implement by software developers
- Variable redundancy
- Bad learning behaviour in high dimensional spaces

Model selection

- What data leakage is
- How to avoid data leakage
- How to identify data leakage
- Learn how to use machine learning pipelines
- Understand how machine pipeline works elsewhere

Note: This workshop is not for you if you are highly familiar with machine learning pipelines (*i.e.* column transformers & pipelines) and is confident about your ability to avoid data leakage.

Theory (slides)

Good to have

- Basic machine learning knowledge
- Plus: familiarity with scikit-learn

Practice (hands-on examples)

Expected:

Python (core functions & pandas)

Good to have

- Basic machine learning knowledge
- Basic familiarity with scikit-learn

Machine learning lifecycle
Framework, validation & feature engineering

Data Leakage

Definition and common mistakes

Scikit-learn pipelines (focus on pre-processing)

Transformers, estimators, ColumnTransfomers & Pipelines

Notebooks:

- 1.Pre-processing (manual & column transformers)
- 2.Scikit-learn and feature-engine pipelines
- 3.Imbalanced-learn pipelines
- 4.PyCaret AutoML pipelines
- 5.SparkML pipeline

Hands-on!
Walkthrough our code!

cmcouto-silva/Talks/tree/main/PyDataGlobal

Let's begin!

Machine learning lifecycle

Project Manager

Machine learning lifecycle

The test should know **nothing** about the training set!

We want a good generalist model!

Machine learning lifecycle

ML Pipeline

Feature engineering

Missing values

Models do not accept missing values.

Distribution

A better spread of values may benefit performance

Categorical variables

Models do not accept strings.

Cardinality: high number of labels Rare labels: infrequent categories

Outliers

This can lead to tremendous weight and bad generalization

Feature engineering

Numeric feature scaling

Z-score and min-max normalization.

Categorical feature encoding

One-hot, ordinal frequency or target encoding.

Feature selection

Dimensionality reduction, variable importances and regularization.

Feature transformation

Logarithmic, polynomial, binning.

Feature interaction

Product of two variables, custom combinations.

Handling data imbalance

Random under- and upper-sampling, SMOTE.

Note: depending on the data type (text data, time-series, images), distinct pre-processing should be applied.

When does it break?

When the training data includes information that allows the model to make predictions that it cannot make in a real-world scenario. It usually leads to overoptimistic results.

Analogy: It's like having the answers (or tips) to an exam in advance it doesn't truly test your knowledge!

Data leakage is a flaw in machine learning that leads to overoptimistic results

Data leakage can be a multi-million-dollar mistake in many data science applications 💸

Data leakage: common reasons

L1

Lack of clean separation of training and test dataset

- No test set
- Pre-processing on training and test set
- Feature selection on training and test set
- Duplicates in datasets

L2

Model uses features that are not legitimate

Handling unbalanced data

Resampling test data

L3

Test set is not drawn from the distribution of scientific interest

- Temporal leakage
- Nonindependence between training and test samples
- Sampling bias in test distribution

Patterns

Leakage and the reproducibility crisis in machinelearning-based science

Article

Paper	Muchlinski et al.	Colaresi and Mahmood	Wang	Kaufman et al.
Claim	Random Forests model drastically outperforms Logistic regression models	Random Forests models drastically outperform Logistic regression model	Adaboost and Gradient Boosted Trees (GBT) drastically outperform other models	Adaboost outperforms other models
Error	[L1.2] Pre-proc. on train-test (Incorrect imputation)	[L1.2] Pre-proc. on train-test (Incorrect reuse of an imputed dataset)	[L1.2] Pre-proc. on train-test. (Incorrect reuse of an imputed dataset) [L3.1] Temporal leakage (k-fold cross validation with temporal data)	[L2] Illegitimate features (Data leakage due to proxy variables) [L3.1] Temporal leakage (k-fold cross validation with temporal data)
Impact	Random Forests perform no better than Logistic Regression	Random Forests perform no better than Logistic Regression	Difference in AUC between Adaboost and Logistic Regression drops from 0.14 to 0.01	Adaboost no longer outperforms Logistic Regression. None of the models outperform a baseline model that predicts the outcome of the previous year
Discussion	Impact of the incorrect imputation is severe since 95% of the out-of-sample dataset is missing and is filled in using the incorrect imputation method	Re-use the dataset provided by Muchlinski et al., which uses an incorrect imputation method	Re-use the dataset provided by Muchlinski et al., which uses an incorrect imputation method	Use several proxy variables for the outcome as predictors (e.g., colwars, cowwars, sdwars, all proxies for civil war), leading to near perfect accuracy

Transformers and pipelines are specialized classes for machine learning frameworks that play a crucial role in the data preprocessing and model building process.

How does scikit-learn work?

- Transformer
- Estimators
- Pipelines & column transformers

Note: not only scikit-learn, many libraries, inspired by the scikit-learn framework, built a similar structure.

Scikit-learn transformer

transformer.fit(data)

- imputer = SimpleImputer(strategy='median')
 imputer.fit(X[target_columns])
 imputer.statistics_
 array([29. , 70.35])
- scaler = StandardScaler()
 scaler.fit(X[target_columns])
 print(scaler.mean_, scaler.scale_)

 [32.37114866 64.76169246] [24.55773742 30.08791085]

transformer.transform(data)

transformer.fit transform(data)

Column transformers

Input features					
	CLTV	Monthly Charges	Contract	Dependents	
CustomerID					
8695-WDYEA	4483	51.25	Month-to-month	No	
3373-YZZYM	3007	19.20	Month-to-month	Yes	
8748-HFWBO	5964	19.90	One year	Yes	
2200-DSAAL	5914	80.65	Two year	No	
0195-IESCP	3573	85.25	Month-to-month	No	

Transformed features (output)

	numCLTV	numMonthly Charges	catContract_Month-to-month	catContract_One year	catContract_Two year	catDependents_Yes
CustomerID						
8695-WDYEA	0.062885	-0.443960	1.0	0.0	0.0	0.0
3373-YZZYM	-1.183375	-1.507622	1.0	0.0	0.0	1.0
8748-HFWBO	1.313367	-1.484390	0.0	1.0	0.0	1.0
2200-DSAAL	1.271150	0.531755	0.0	0.0	1.0	0.0
0195-IESCP	-0.705473	0.684418	1.0	0.0	0.0	0.0

Scikit-learn pipelines

pipeline.fit(data, target)

pipeline.fit(data, target):

imputer.mean_
scaler.mean_, scaler.scale_
encoder.categories_, encoder.encoder_drop_idx_
classifier.estimators_

pipeline.predict(data)

Warning: Risk of data leak

Do not use scale unless you know what you are doing. A common mistake is to apply it to the entire data *before* splitting into training and test sets. This will bias the model evaluation because information would have leaked from the test set to the training set. In general, we recommend using StandardScaler within a Pipeline in order to prevent most risks of data leaking: pipe = make_pipeline(StandardScaler(), LogisticRegression()).

sklearn.preprocessing: Preprocessing and Normalization

The sklearn.preprocessing module includes scaling, centering, normalization, binarization methods.

User guide: See the Preprocessing data section for further details.

preprocessing.Binarizer(*[, threshold, copy])	Binarize data (set feature values to 0 or 1) according to a threshold.
<pre>preprocessing.FunctionTransformer([func,])</pre>	Constructs a transformer from an arbitrary callable.
<pre>preprocessing.KBinsDiscretizer([n_bins,])</pre>	Bin continuous data into intervals.
preprocessing.KernelCenterer()	Center an arbitrary kernel matrix K .
<pre>preprocessing.LabelBinarizer(*[, neg_label,])</pre>	Binarize labels in a one-vs-all fashion.
preprocessing.LabelEncoder()	Encode target labels with value between 0 and n_classes-1.
<pre>preprocessing.MultiLabelBinarizer(*[,])</pre>	Transform between iterable of iterables and a multilabel format.
preprocessing.MaxAbsScaler(*[, copy])	Scale each feature by its maximum absolute value.
<pre>preprocessing.MinMaxScaler([feature_range,])</pre>	Transform features by scaling each feature to a given range.
<pre>preprocessing.Normalizer([norm, copy])</pre>	Normalize samples individually to unit norm.
preprocessing.OneHotEncoder(*[, categories,])	Encode categorical features as a one-hot numeric array.
preprocessing.OrdinalEncoder(*[,])	Encode categorical features as an integer array.
<pre>preprocessing.PolynomialFeatures([degree,])</pre>	Generate polynomial and interaction features.
preprocessing.PowerTransformer([method,])	Apply a power transform featurewise to make data more Gaussian-like.
preprocessing.QuantileTransformer(*[,])	Transform features using quantiles information.
<pre>preprocessing.RobustScaler(*[,])</pre>	Scale features using statistics that are robust to outliers.
<pre>preprocessing.SplineTransformer([n_knots,])</pre>	Generate univariate B-spline bases for features.
preprocessing.StandardScaler(*[, copy,])	Standardize features by removing the mean and scaling to unit variance.
4	

preprocessing.add_dummy_feature(X[, value]) Augment dataset with an additional dummy feature. preprocessing.binarize(X, *[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix. Binarize labels in a one-vs-all fashion. preprocessing.label_binarize(y, *, classes) Scale each feature to the [-1, 1] range without breaking the sparsity. preprocessing.maxabs_scale(X, *[, axis, copy]) preprocessing.minmax_scale(X[, ...]) Transform features by scaling each feature to a given range. preprocessing.normalize(X[, norm, axis, ...]) Scale input vectors individually to unit norm (vector length). Transform features using quantiles information. preprocessing.quantile_transform(X, *[, ...]) Standardize a dataset along any axis. preprocessing.robust_scale(X, *[, axis, ...]) Standardize a dataset along any axis. preprocessing.scale(X, *[, axis, with_mean, ...]) preprocessing.power_transform(X[, method, ...]) Parametric, monotonic transformation to make data more Gaussian-like.

Use in pipeline

Do not use unless you know what you are doing!

Hands-on!

Section Break

Time to grab a coup of coffee

Feel free to contact me

Thank you!

