Day1-枚举、DFS

by zld3794955

2018年2月5日

题目名称	及格	数排列	正确答案	队列
目录	pass	permutation	Accepted	alignment
可执行文件名	pass	permutation	Accepted	alignment
每个测试点时限	1s	1s	1s	1s
内存限制	256MB	256MB	256MB	256MB
测试点数量	10	10	10	10
每个测试点分值	10	10	10	10
是否有部分分	否	否	否	否
题目类型	传统型	传统型	传统型	传统型

注意: 预计是Win7下Cena评测。

评测机性能足够好且评测时开启了-O2优化 评测时栈空间设为16M,足以满足正常的函数递归需求。 支持bits/stdc++.h

文件输入输出,输入为文件名.in,输出为文件名.out 每个人目录下要建子文件夹

及格

【问题描述】

小A这学期上了一门课,这门课分数的评定标准如下:

课程分数=x*a%+y*b%+z*(100-a-b)%,其中x为平时作业成绩、y为期中考试成绩、z为期末考试成绩,x,y,z,a,b,100-a-b均是不大于100不小于0的整数,最终分数如果有小数部分则直接舍去。

现在小A知道了自己平时作业、期中考试的成绩以及比例系数a和b,他想知道为了达到及格(60分),自己期末至少要得到多少分,如果小A无论如何都无法及格,那么就输出"poor little A!"(不含引号)。

【输入格式】

第一行一个正整数T,表示数据组数。

接下来T行,每行四个非负整数x,y,a,b。

【输出格式】

输出T行,分别表示每组数据中,小A期末要得到多少分,或者"poor little A!"

【样例输入】

3

100 80 20 30

 $100\ 100\ 50\ 30$

100 0 0 50

【样例输出】

32

0

poor little A!

【数据规模】

对于100%的数据: $1 \le T \le 1000, 0 \le x, y, a, b \le 100, 0 \le a + b \le 100$ 。

数排列

【问题描述】

给定一个n个数的序列 a_i , 其中每项均为0或1。

你的任务是统计符合以下性质的1到n排列(排列中第i项记为 p_i)的个数:

【输入格式】

第一行一个正整数T,表示数据组数。

接下来T组数据,每组数据第一行一个正整数n表示序列长度,第二行n个用空格分隔的整数 a_i 。

【输出格式】

对于每组数据输出一行一个正整数表示答案。

【样例输入】

1

3

0 0 0

【样例输出】

1

【数据规模】

对于50%的数据, $n \le 10$ 。

对于100%的数据, $1 \le T \le 10, 1 \le n \le 15, 0 \le a_i \le 1$ 。

正确答案

【问题描述】

n个人参加一场有且仅有m道判断题的考试。

试卷的一份答案是指一个长度为m的字符串,其中每个字符均为Y或N,且第i个字符表示第i道题的答案。

现在已知每个人的试卷的答案,以及考试全对的人数 k_1 及全错的人数 k_2 ,试找到该场考试一个可能的正确答案,如果有多种可能,那么就输出字典序最小的那一个,如果不可能,那么输出-1。

【输入格式】

第一行一个正整数T,表示数据组数。

接下来T组数据,每组数据第一行有四个非负整数 n, m, k_1, k_2 ,接下来n行,每行一个长度为m的由Y或N构成的字符串,表示一个人的答案。

【输出格式】

对每组数据输出一行,表示所求正确答案,或者-1。

【样例输入】

3

2 2 2 0

YY

YY

 $2\ 2\ 0\ 0$

YY

NN

 $2\ 2\ 1\ 0$

YY

YY

【样例输出】

YY

NY

-1

【数据规模】

第1,2个测试点满足: $1 \le n, m \le 18$ 。

第3,4个测试点满足: k_1, k_2 恰有一个为0。

第5,6个测试点满足: $k_1 + k_2 > 0$ 。

第7,8个测试点满足: $k_1 = k_2 = 0$ 。

对于所有数据均有: $1 \le T \le 100, 1 \le n, m \le 50, 0 \le k_1, k_2, k_1 + k_2 \le n$

 n_{\circ}

队列

【问题描述】

现在有n名玩家围成一圈玩变种版三国杀国战,在这个游戏中一共有m个势力,编号从1到m,且每个势力都至少有一名玩家。

第i名玩家有一个自己的初始势力 a_i ,但为了游戏的公平性,一个势力的玩家数不能超过X = n/2下取整,当一个势力的玩家数x超过X时,则需要将这个势力的x - X名玩家变成野心家(野心家与其它野心家和正常势力都属于不同势力),为了题目方便,不妨假设可以任意选择,在上述过程后,每名玩家的势力就唯一确定,不会更改了。

当一名玩家死亡之后,其被移出游戏,左右两边的玩家变为相邻。

当一段连续区间内(可以只含有一名玩家)的玩家都具有相同的势力A > 0时,我们称该连续段为势力A的一个队列,你的任务就是对每个除野心家之外的势力A,计算出在A势力的所有玩家存活的情况下,至少要多少名不同势力的玩家死亡,才能使A势力的所有玩家形成一个队列,注意当势力A过大时,除了选择死亡的角色外,你还需要先合理地指定初始势力A的哪些玩家变成野心家来最小化这个值。

【输入格式】

第一行为一个正整数T,表示数据组数。

每组数据第一行有两个正整数n, m,分别表示玩家数和势力数。

接下来一行每行n个不超过m的正整数 a_i ,按顺时针从某一名玩家开始给出每名玩家的初始势力。

【输出格式】

对每组数据输出一行m个非负整数,第i个数表示势力i的答案。

【样例输入】

2

8 3

 $1\ 2\ 3\ 1\ 2\ 3\ 1\ 2$

8 3

 $1\ 1\ 2\ 1\ 1\ 2\ 1\ 3$

【样例输出】

3 3 2

1 2 0

【样例解释】

第二组数据中,指定第7位的玩家为野心家,可以得到第一种势力的最 优结果1 (第3位玩家死亡)。

【数据规模】

对于40%的数据, $1 \le T \le 10, n, m \le 300$ 。

对于另外30%的数据,不存在野心家。

第9页共10页

对于100%的数据: $1 \le T \le 100, 2 \le m \le n \le 50000$, 数据中n的和不超过 10^5 , 保证每个势力至少存在一名玩家。

数据规模较大,请使用stdio.h中的scanf和printf函数进行输入输出。