- 1. [10] Величины (X_n) независимы и равномерно распределены на отрезке [1;2].
 - а) [5] Найдите предел по вероятности

plim
$$\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n}$$
.

б) [5] Найдите предел по вероятности

plim
$$\frac{(X_1 - X_2)^2 + (X_2 - X_3)^2 + \dots + (X_{n-1} - X_n)^2}{3n + 2025}.$$

2. [10] Рассмотрим две последовательности нормально распределённых случайных величин,

$$X_n \sim \mathcal{N}((2n+1)/n; (4n^2+1)/n^2)$$
 in $Y_n \sim \mathcal{N}((2n+1)/n; (4n+1)/n^2)$.

- а) [2 + 2 + 2] К чему сходятся по распределению последовательности (X_n) , (Y_n) и (X_nY_n) ?
- б) [2 + 2] Если возможно, приведите пример, когда последовательность (X_n) сходится по вероятности и когда она не сходится по вероятности.

3. [10] Величины X_1 , X_2 , X_3 независимы и равномерно распределены на отрезке [1; 2]. Найдите характеристическую функцию случайной величины Y,

$$Y = egin{cases} X_1, \ ext{если} \ X_1 > 1.5 \ ext{и} \ X_2 > 1.5, \ X_1 + X_2 + X_3, \ ext{иначе}. \end{cases}$$

- 4. [10] Характеристическая функция величины X равна $\phi(t) = \exp(2\exp(-2it))/\exp(2)$.
 - а) [6] Какое распределение имеет величина X?
 - б) [4] Найдите $\mathbb{E}(X)$ и $\mathbb{V}\mathrm{ar}(X)$.

- 5. [10] Немного сигма-алгебр для настоящего самурая!
 - а) [2] Множество всех исходов равно $\Omega = \{a, b, c\}$. Случайная величина Y определена как Y(a) = -1, Y(b) = 1, Y(c) = 2. Найдите сигма-алгебру $\sigma(\cos Y)$.
 - б) [4] Верно ли, что $\sigma(X)\subseteq \sigma(X^2)$ для произвольной случайной величины X? Докажите или приведите контр-пример.
 - в) [4] Верно ли, что $\sigma(X^2)\subseteq\sigma(X)$ для произвольной случайной величины X? Докажите или приведите контр-пример.

Примечание: здесь $\sigma(R)$ — минимальная сигма-алгебра, порождённая величиной R, а не стандартное отклонение :)

6. [10] Каждый день в заезде участвую только две лошади: Юлиус и Фру-фру. Ставки на Фру-фру принимаются с коэффициентом 2, то есть при победе Фру-фру ставка будет возвращена в двойном размере. Ставки на Юлиуса принимаются с коэффициентом 4. Вероятность победы Фру-фру равна 2/3.

Игрок начинает со стартовой суммой $S_0=100$ и каждый день ставит все свои деньги в некоторой пропорции на Фру-фру и Юлиуса.

Определим долгосрочную процентную ставку r условием $\mathrm{plim}(S_n/S_0)^{1/n}=1+r$, где S_n — благосостояние игрока после n дней.

- а) [2] Какая стратегия максимизирует $\mathbb{E}(S_n)$?
- б) [5] Какая стратегия максимизирует долгосрочную процетную ставку?
- в) [3] Какая стратегия гарантирует безрисковый доход с \mathbb{V} ar $(S_n) = 0$?