#### **Contents**

Boolean Algebra



#### **Section outline**

- 🚺 Boolean Algebra
  - SOP from sets
  - Boolean expressions
  - Functional completeness
  - Distinct Boolean functions
  - Boolean expression manipulation
  - Exclusive OR
  - Series-parallel switching

#### circuits

- Shannon decomposition
- Functional completeness
- Classification of Some Boolean functions
- Defining  $\neg$  using  $f_1, f_2$  and  $f_3$
- Defining T and F using  $f_1, f_2, f_3$  and  $f_5$
- Defining g(p, q) with an odd number of Ts



## Sum of products from sets

### Regions

- $\bigcirc$   $A \cap B \cap C$
- $\triangle$   $A \cap B \cap \overline{C}$
- $\bullet$   $\overline{A} \cap B \cap C$
- 711B110
- $\overline{A} \cap \overline{B} \cap C$



#### Selections

- **1, 2:**  $A \cap B$ 
  - $(A \cap B \cap \underline{C}) \cup$
  - $(A \cap B \cap \overline{C})$  $abc + ab\overline{c} = ab$
- 1, 2, 3, 5: A

$$(A \cap B \cap C) \cup$$

$$(A \cap B \cap \overline{C}) \cup$$

$$(A \cap \overline{B} \cap C) \cup$$

$$(A \cap \overline{B} \cap \overline{C})$$

$$abc + ab\overline{c} + a\overline{b}c + a\overline{b}\overline{c} = ab + a\overline{b} = a$$

- a I have an item from A
- a I don't have an item from A

 $a\overline{b} + c$  I have an item from A but not from B or an item from C



### **Boolean lattice (BL) for 2 variables**



- A literal is a variable (a) or its complement (a)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

- Such an expression is well formed or syntactically correct
- A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a minterm – atoms in the BL
- A FP  $P_1$  is contained or included in  $P_2$  if  $P_2$  has all the literals of  $P_1$ ; then  $P_2 \Rightarrow P_1$  ( $P_2$  implies  $P_1$ )
- A sum of products (SOP) expression is FP or a sum of two or more FPs  $P_1, \ldots, P_n$  and  $\forall i, j, P_i \not\Rightarrow P_j$
- DeMorgan's laws, distributivity, commutativity, idempotence, involution may be used to transform a Boolean expression to SOP

### **Functional completeness**

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

| X | У | $\overline{X}$ | $x \cdot y$ | x + y |
|---|---|----------------|-------------|-------|
| 0 | 0 | 1              | 0           | 0     |
| 0 | 1 | 1              | 0           | 1     |
| 1 | 0 | 0              | 0           | 1     |
| 1 | 1 | 0              | 1           | 1     |

NAND 
$$\overline{x \cdot y}$$
  
NOR  $\overline{x + y}$   
XOR,AND  $x \oplus y, x \cdot y$   
MUX  $s \cdot x + \overline{s} \cdot y$ 

**MUX**  $s \cdot x + \overline{s} \cdot v$ 

RAM Random access memory Minority Minority value among given inputs



### **Boolean expressions**



- $\bullet \ E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = \frac{\overline{(\overline{(xy)}z)}((\overline{x}+z)(\overline{y}+\overline{z}))}{(\overline{(x+z)}(\overline{y}+\overline{z}))}$
- $E = x\overline{(\overline{y}z)}$

- A SOP expression where each FP is a minterm is said to be in disjunctive normal form (DNF)
- The DNF of any SOP is unique (why?)cannonical SOP
- An element x in a BL is maxterm if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, product of sums (POS) may be defined
- A Boolean expression which is a product of maxterms is said to be in conjunctive normal form (CNF)
- The CNF of any POS is unique (why? – cannonical POS



## Alternate argument for minterm expansion

Acceptance for complements:  $\overline{x} = 1$  iff x = 0Acceptance for products: xy = 1 iff x = 1 and y = 1Acceptance for sums: u + v = 1 iff u = 1 or v = 1

Minterm expansion: sum of distinct minterms

#### Acceptance for minterm expansion:

- An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
- If  $m_i$  and  $m_j$  are two distinct minterms on variables  $x_1, \ldots, x_k$
- Let  $m_i$  and  $m_j$  differ on  $x_p$
- Let  $x_p$  occur as literal  $x_{pi}$  in  $m_i$  and  $x_{pj}$  in  $m_j$
- Then  $x_{pi} = \overline{x_{pj}}$ , so if  $m_i$  accepts then  $m_j$  doesn't accept and vice versa
- This ensures that the minterm expansion is unique



#### **Number of Boolean functions**

#### By lattice:

- A Boolean lattice for a Boolean function of k variables has  $n = 2^k$  atoms as minterms
- A Boolean lattice with n atoms has 2<sup>n</sup> elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are  $2^n = 2^{2^k}$  distinct Boolean functions

#### By minterm expansion:

- A Boolean function on k variables has n = 2<sup>k</sup> possible minterms
- A minterm expansion results in a unique acceptance
- The minterms may be chosen in  $\sum\limits_{k=0}^{k=n} \binom{n}{k} = 2^n = 2^{2^k}$  ways
- Each choice denotes a distinct Boolean function



## **Boolean expression manipulation**

- $xy + \overline{x}z + yz = xy + \overline{x}z$
- $(x+y)(\overline{x}+z)(y+z) = (x+y)(\overline{x}+z)$
- $T = (x + y)\overline{[\overline{x}(\overline{y} + \overline{z})]} + \overline{x} \overline{y} + \overline{x} \overline{z}$
- $xy + \overline{x} \ \overline{y} + yz = xy + \overline{x} \ \overline{y} + \overline{x}z$



#### **Exclusive OR**

- $a \oplus b = b \oplus a$
- $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
- $a(b \oplus c) = (ab) \oplus (ac)$

• if 
$$a \oplus b = c$$
 then 
$$\begin{cases} a \oplus c = b \\ b \oplus c = a \\ a \oplus b \oplus c = 0 \end{cases}$$



## Series-parallel switching circuits

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed:  $\overline{x}$ ) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR
- $T = x\overline{y} + (\overline{x} + y)z$
- $T = x\overline{y} + \overline{x}z + \overline{y}z + yz = x\overline{y} + \overline{x}z + z = x\overline{y} + z$
- CMOS NAND, NOR



### **Shannon decomposition**

- $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$
- $f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$
- Multiplexer realisation by Shannon decomposition or Shannon expansion
- Repeated application to obtain CNF or DNF of a given Boolean function



### **Functional completeness**

- Treated in Emil Post's functional completeness theorem
- Expressed in terms of five classes of Boolean functions

**7: T-preserving** 
$$f(T, T, ..., T) = T$$
  
**F: F-preserving**  $f(F, F, ..., F) = F$   
**L: counting**  $f(z_1, z_2, ..., x_p, ..., z_n) \neq f(z'_1, z'_2, ..., y_p, ..., z'_n)$  if  $x_p \neq y_p$  and  $z_i = z'_i$  if position- $i$  isn't dummy position- $i$  is dummy if  $f(z_1, ..., z_i, ..., z_n) = f(z_1, ..., \neg z_i, ..., z_n)$  i.e.  $f$  is invariant to changes in a dummy position

**M: monotonic** let  $X = \langle x_1, x_2, ..., x_p \rangle$  and  $Y = \langle v_1, v_2, ..., v_p \rangle$ .

*M*: monotonic let 
$$X = \langle x_1, x_2, \dots, x_n \rangle$$
 and  $Y = \langle y_1, y_2, \dots, y_n \rangle$ , then  $X \leq Y \Rightarrow f(X) \leq f(Y)$ , where  $X \leq Y \equiv \forall i x_i \leq y_i$ , and  $F \leq T$ 

S: self-dual 
$$f(x_1, x_2, ..., x_n) = \neg f(\neg x_1, \neg x_2, ..., \neg x_n)$$

if for each of the five defined classes, there is a member of  $\mathbb F$ which does not belong to that class



### **Classification of Some Boolean functions**

| X      | y                | T      | F           | ¬2          | $\wedge$         | V           | $\rightarrow$ | $\oplus$ | $\leftrightarrow$ | <b>↑</b> | $\downarrow$ | [x, | <i>s</i> , <i>y</i> ] | ∉                                                  |
|--------|------------------|--------|-------------|-------------|------------------|-------------|---------------|----------|-------------------|----------|--------------|-----|-----------------------|----------------------------------------------------|
| 0      | 0                | 1      | 0           | 1           | 0                | 0           | 1             | 0        | 1                 | 1        | 1            | 0   | 0                     |                                                    |
| 0      | 1                | 1      | 0           | 0           | 0                | 1           | 1             | 1        | 0                 | 1        | 0            | 0   | 1                     |                                                    |
| 1      | 0                | 1      | 0           | 1           | 0                | 1           | 0             | 1        | 0                 | 1        | 0            | 1   | 0                     |                                                    |
| 1      | 1                | 1      | 0           | 0           | 1                | 1           | 1             | 0        | 1                 | 0        | 0            | 1   | 1                     |                                                    |
|        |                  |        |             |             |                  |             |               |          |                   |          |              |     |                       |                                                    |
| ٦      | Γ                | 1      | Х           | Х           | 1                | 1           | 1             | X        | 1                 | Х        | X            |     | ✓                     | <i>f</i> <sub>1</sub>                              |
|        | Γ<br>=           | ✓<br>X | X           | X           | ✓<br>✓           | ✓<br>✓      | ×             | X        | X                 | X        | X            |     | √<br>√                | f <sub>1</sub>                                     |
| F<br>L | Γ<br>=           | X      | X<br>✓      | X<br>X      | ✓<br>✓<br>X      | ✓<br>✓<br>× | X             | •        | ✓<br>×<br>✓       | •        | •            |     | √<br>√<br>X           | f <sub>1</sub><br>f <sub>2</sub><br>f <sub>3</sub> |
| F<br>L | Г<br>=<br>-<br>И | · .    | X<br>✓<br>✓ | X<br>X<br>V | ✓<br>✓<br>X<br>✓ | _           | •             | 1        |                   | Х        | X            |     | ✓<br>✓<br>X<br>X      | -                                                  |

- $\bullet$  By FCT,  $\mathbb{F}_1=\{\uparrow\}$  and  $\mathbb{F}_2=\{\downarrow\}$  are both functionally complete
- $\mathbb{F}_3 = \{[x, s, y], T, F\}$  is also functionally complete (why?)
- What are some other functionally complete sets of functions?
- All rows of a counting (L class) function have the same parity (disregarding the dummy columns)



# **Defining** $\neg$ **using** $f_1, f_2$ **and** $f_3$

- Let  $f_i^{\star}(p) = f_i(x_1, x_2, \dots, x_n)|_{x_1 = x_2 = \dots = x_n = p}$ ,  $i \in \{1, 2, 3\}$
- Since  $f_1$  is not T-preserving,  $f_1(T) = F$ , similarly  $f_2(F) = T$  as  $f_2$  is not F-preserving, leading to the following incomplete truth table

• If  $f_1^{\star}(F) = T$  or  $f_2^{\star}(T) = F$ ,  $\neg$  is immediately realised, if not, we have the following truth table realising F and T (but not  $\neg$ )

$$\begin{array}{c|cccc}
p & f_1^*(p) & f_2^*(p) \\
\hline
T & F & T \\
F & F & T
\end{array}$$

• Since  $f_3$  is non-monotonic, it will have two rows

| <i>X</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | <br>$x_k$ | <br><i>x</i> <sub>n</sub> | $f_3$ |            |
|-----------------------|-----------------------|-----------|---------------------------|-------|------------|
| Z                     | Z                     | <br>F     | <br>Z                     | T     | leading to |
| Z                     | Z                     | <br>Τ     | <br>Z                     | F     |            |

| р | $f_3'(p)$ |
|---|-----------|
| F | T         |
| T | F         |



where  $z = f_1^*(_{-}) = F$  or  $z = f_2^*(_{-}) = T$ 

## Defining T and F using $f_1, f_2, f_3$ and $f_5$

 Since f<sub>5</sub> isn't self complementing its truth table should have two rows

- Note that  $\neg z_i = f_3'(z_i)$ , the output  $(f_5')$  is constant, either T or F
- The other constant truth value may be obtained as  $f_3'(f_5')$
- Thus, both T and F may be generated using  $f_1$ ,  $f_2$ ,  $f_3$  and  $f_5$



# Defining g(p, q) with an odd number of Ts

- $f_4$  is not counting, so its TT will have (at least) two inputs  $\langle x_1, \ldots, x_n \rangle$  and  $\langle y_1, \ldots, y_n \rangle$  st
  - $f_4(u_1,\ldots,u_i,\ldots,u_n)=f_4(u_1,\ldots,\neg u_i,\ldots,u_n)$  as  $f_4$  is not counting •  $f_4(v_1,\ldots,v_i,\ldots,v_n)\neq f_4(v_1,\ldots,\neg v_i,\ldots,v_n)$  position-i isn't dummy
- Parity of Ts in the pairs of rows will be different, these rows will be used to define g(p,q)
- The four rows and also the column reduction scheme  $(i \neq j)$ ,  $z_1$ ,  $z_2$  are either T or F

| The load towe and also the column reduction constitle $(\ell \neq j)$ , $z_1, z_2$ are stated $\ell$ or $\ell$ |            |            |           |             |             |             |               |                |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------|------------|------------|-----------|-------------|-------------|-------------|---------------|----------------|--|--|--|--|
| <i>x</i> <sub>1</sub>                                                                                          | $x_i$      | Xn         | $u_{j} =$ | $  u_j   =$ | $u_{j} = F$ | $u_{j} = T$ | $  x_i = q  $ | g(p.q)         |  |  |  |  |
|                                                                                                                |            |            | $v_j = T$ | $v_j = F$   | $v_j = T$   | $v_j = T$   |               |                |  |  |  |  |
| <i>u</i> <sub>1</sub>                                                                                          | $U_i$      | Un         | T         | F           | $\neg p$    | р           | q             | Z <sub>1</sub> |  |  |  |  |
| $u_1 \dots$                                                                                                    | $\neg u_i$ | Un         | T         | F           | $\neg p$    | p           | $  \neg q  $  | Z <sub>1</sub> |  |  |  |  |
| <i>v</i> <sub>1</sub>                                                                                          | $V_i$      | <i>V</i> n | T         | F           | p           | $\neg p$    | q             | $z_2$          |  |  |  |  |
| <i>v</i> <sub>1</sub>                                                                                          | $\neg V_i$ | <b>V</b> n | <i>T</i>  | F           | p           | $  \neg p$  | ¬q            | $\neg z_2$     |  |  |  |  |

All TTs with odd number of Ts can now be generated

| g                     | $\begin{vmatrix} c_1^p \end{vmatrix}$ | p | q | $g_1$ | $g_2$        | <i>g</i> <sub>3</sub> | $g_4$    | $\begin{vmatrix} c_2^p \end{vmatrix}$ | p | q | <i>g</i> <sub>5</sub> | <i>g</i> <sub>6</sub> | <b>g</b> 7 | <i>g</i> <sub>8</sub> |
|-----------------------|---------------------------------------|---|---|-------|--------------|-----------------------|----------|---------------------------------------|---|---|-----------------------|-----------------------|------------|-----------------------|
| Z <sub>1</sub>        | р                                     | T | T | T     | Т            | F                     | F        | $\neg p$                              | T | T | T                     | F                     | Τ          | F                     |
| <i>z</i> <sub>1</sub> | p                                     | T | F | T     | Τ            | F                     | F        | $ \neg p $                            | T | F | F                     | Τ                     | F          | Τ                     |
| $Z_2$                 | $\neg p$                              | F | T | T     | F            | Τ                     | F        | $  \dot{p}  $                         | F | T | T                     | Τ                     | F          | F                     |
| $\neg z_2$            | $\neg p$                              | F | F | F     | Τ            | F                     | T        | p                                     | F | F | T                     | Τ                     | F          | F                     |
| Matching with         |                                       |   |   |       | $\leftarrow$ | $\leftarrow$          | <b>+</b> |                                       |   |   | $\rightarrow$         | <b>↑</b>              | Λ          | $\rightarrow$         |

Each g<sub>i</sub> with T, F and complementation, as required, is FC