Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao January 20, 2023

What we have seen last lecture

- Hasse diagram
- Division network of positive integers
- Prime numbers
- Prime factorization
 - uniqueness
 - existence need to show:

$$\forall$$
 prime number $p, p^{e_p} \mid n \implies \prod_{p \text{ is prime}} p^{e_p} \mid n$

Today's topics

- Prime factorization
- Translation between $(\mathbb{Z}_+,\cdot,1,|)$ and $(\mathbb{N},+,0,\leqslant)$

Prime factorization

Prime factorization

Theorem 5.1 (Fundamental Theorem of Arithmetic)

Let **n** be any positive integer.

1. (existence) n admits a prime factorization, i.e. there exist natural numbers e_p for each prime p such that

$$n = \prod_{p \text{ is prime}} p^{e_p}$$

2. (uniqueness) Suppose n admits another prime factorization, say

$$n = \prod_{p \text{ is prime}} p^{f_p}.$$

Then, for every prime p, we have $e_p = f_p$.

Continue proof of existence

Last time, we have constructed e_p for each prime number p so that $p^{e_p} \mid n$ and have seen that what remains to show is

$$\prod_{p \text{ is prime}} p^{e_p} \mid \mathbf{n}.$$

Continue proof of existence

Last time, we have constructed e_p for each prime number p so that $p^{e_p} \mid n$ and have seen that what remains to show is

$$\prod_{p \text{ is prime}} p^{\mathbf{e}_p} \mid \mathbf{n}.$$

For this, we need a lemma:

Lemma 5.2

Let a, b, n be integers. If $a \mid n, b \mid n$, and gcd(a, b) = 1, then $ab \mid n$.

Proof. Since $a \mid n, b \mid n$, by the defining property of least common multiple, $lcm(a, b) \mid n$. Since gcd(a, b) = 1, we have lcm(a, b) = ab.

$$L(m(a,b) = \frac{ab}{g(d(a,b))}$$

Coprime

Definition 5.3

Two integers a, b are called **coprime** if gcd(a, b) = 1.

Example 5.4

Two distinct primes p, q are coprime.

Proof. Indeed, since the divisors of p are 1, p, while the divisors of q are 1, q, the only common divisor of p, q is 1.

Coprime

Lemma 5.5

Let $a, b, \ b$ be integers. If a, b are coprime and a, c are coprime, then a, bc are coprime.

Proof. Suppose gcd(a, bc) = g. Let p be the smallest divisor of g other than 1. Then p has to be a prime number, otherwise it will have another divisor d > 1, which is also a divisor of g by the transitivity, but this contradicts to the minimality of p. Now, since $p \mid bc$, by the fundamental property of prime, we have either $p \mid b$ or $p \mid c$. But we also have $p \mid a$. Hence, p is a common divisor of either a, b or a, c, which contradicts to gcd(a, b) = 1 and gcd(a, c) = 1. \Box

Back to proof of existence

We need to show

Apply 5.5 to
$$a = P_i$$
 (iii)
$$b = c = P_i$$

$$p = p \mid n$$

Let p_1, \dots, p_s be all the prime divisors of n. By example 5.4, any two of p_1, \dots, p_s are coprime to each other. Apply lemma 5.5 to them, we see that any two of $p_1^{e_{p_1}}, \dots, p_s^{e_{p_s}}$ are coprime to each other.

By lemma 5.2, $p_1^{e_{p_1}}p_2^{e_{p_2}}\mid n$ and by lemma 5.5, $p_1^{e_{p_1}}p_2^{e_{p_2}}$ is coprime to $p_3^{e_{p_3}}$. Repeat this, we see that $p_1^{e_{p_1}}\cdots p_s^{e_{p_s}}\mid n$.

The unique prime factorization provides a family of functions

$$(v_p) \mathbb{Z}_+ \longrightarrow \mathbb{N},$$

where p is a prime number, mapping each positive integer n to the exponent e_p of p in its prime factorization.

These functions provide a translator between the following two worlds:

- positive integers, equipped with multiplication and ordered by the divisibility |,
- 2. natural numbers, equipped with additions and ordered by the natural order \leq .

Theorem 5.6

Let a, b be two positive integers.

- 1. a = 1 if and only if for all prime p, $v_p(a) = 0$. neutral to neutral.
- 2. a = b if and only if for all prime p, $v_p(a) = v_p(b)$. Your bijectivity
- 3. For all prime p, $v_p(ab) = v_p(a) + v_p(b)$. mult. to addition
- 4. a | b if and only if for all prime p, $v_p(a) \leq v_p(b)$. divisibility to not order
- 5. For all prime p, $v_p(\gcd(a, b)) = \min\{v_p(a), v_p(b)\}$. gcd to min
- 6. For all prime p, $v_p(\text{lcm}(a, b)) = \max\{v_p(a), v_p(b)\}$. Lem to max

The proof i

Proof.

- 1. Follows by the prime factorization of 1.

$$V_{\mathbf{p}}(b) = V_{\mathbf{p}}(a) + V_{\mathbf{p}}(c) \geqslant V_{\mathbf{p}}(a).$$

(\rightleftharpoons) Conversely, suppose for all prime p, $v_p(a) \le v_p(b)$, say $v_p(b) = v_p(a) + e_p$. Note that there are only finitely many positive e_p , otherwise there will be infinitely many prime

The proof ii

divisors of b, which is impossible. Let $c = \prod_{p} p^{e_p}$, then $v_p(c) = e_p$. By 3, for all prime p,

$$V_p(b) = V_p(a) + e_p = V_p(a) + V_p(c) = V_p(ac).$$

By 2, b = ac. Namely, $a \mid b$.

- 5. Let $g = \gcd(a, b)$. The first defining property says that $g \mid a$ and $g \mid b$. By 4, for all prime p, $v_p(g) \leq v_p(a)$ and $v_p(g) \leq v_p(b)$. Now, suppose e is any natural number smaller than both $v_p(a)$ and $v_p(b)$. By 4, $p^e \mid a$ and $p^e \mid b$. By the second defining property of $\gcd, p^e \mid g$. By 4, $e \leq v_p(g)$. Now, $v_p(g) = \min\{v_p(a), v_p(b)\}$ follows from the defining property of min.
- 6. Similar to 5.

Moreover, the family of functions $v_p : \mathbb{Z}_+ \to \mathbb{N}$ ($p \in \mathbb{P}$) decomposes the Hasse diagram of divisibility of positive integers into individual dimensions: the value of $v_p(n)$ can be viewed as the coordinate of n on the p-axis.

This can be analogous to the decomposition of the usual Euclidean space into (three) individual dimensions via the x, y, z-axises.

After Class Work

Homomorphism of ordered monoids i

The purpose of what follows is to explain the meaning of the last slide of the lecture.

Terminology

An *ordered monoid* is a monoid (M, *, e) equipped with a partial order \leq such that for all $a, b, c \in M$, we have

$$a \le b \implies c * a \le c * b \text{ and } a * c \le b * c.$$

Example 5.7

We have seen two ordered monoid: $(\mathbb{Z}_+, \cdot, 1, |)$ and $(\mathbb{N}, +, 0, \leq)$. Besides them, $(\mathbb{Z}, +, 0, \leq)$ is also an ordered monoid.

Homomorphism of ordered monoids ii

Terminology

You may have heard the notion **homomorphism**, that is a structure-preserving map between two algebraic structures of the same type (e.g. monoids, groups, \mathbb{Z} -modules, ordered sets, etc.). For example, a homomorphism between ordered monoids $f: (M, *, e, \leq) \to (N, *, e, \leq)$ is a map from M to N such that:

- 1. (preserving the operation) $\forall a, b \in M : f(a * b) = f(a) * f(b)$;
- 2. (preserving the neutral) f(e) = e;
- 3. (preserving the order) $\forall a, b \in M : a \leq b \implies f(a) \leq f(b)$.

If a homomorphism $f: M \to N$ has two-side inverses (i.e. there are homomorphisms $g, h: N \to M$ such that $g \circ f = \mathrm{id}_M$ and $g \circ h = \mathrm{id}_N$), then it is called an **isomorphism**.

Homomorphism of ordered monoids iii

Exercise 5.1

Show that for each prime p, the function v_p gives a homomorphism between ordered monoids

$$V_p: (\mathbb{Z}_+, \cdot, 1, |) \longrightarrow (\mathbb{N}, +, 0, \leq)$$

Moreover, show that it is surjective but not injective. Hence, none of v_p is an isomorphism.

However, we can combine all the homomorphisms v_p . To do this, we need to first organize the (infinitely many) copies of $(\mathbb{N}, +, 0, \leq)$ into a single ordered monoid. The underlying set is

 $\mathbb{N}_{\mathbb{P}} := \{(e_p)_{p \in \mathbb{P}} \mid e_p \in \mathbb{N} \text{ and only finitely many of } e_p \text{ are nonzero} \}.$

Homomorphism of ordered monoids iv

The operation is the componentwise addition:

$$(e_p)_{p\in\mathbb{P}}+(f_p)_{p\in\mathbb{P}}:=(e_p+f_p)_{p\in\mathbb{P}},$$

the neutral is the zero sequence $(0)_{p\in\mathbb{P}}$, and the order is the componentwise order

$$(e_p)_{p\in\mathbb{P}}\leqslant (f_p)_{p\in\mathbb{P}}$$
 defined as: $\forall p\in\mathbb{P},e_p\leqslant f_p$

Exercise 5.2 (†)

Show that the above is an ordered monoid and the map

$$\mathbf{v} \colon \mathbb{Z}_+ \to \mathbb{N}_{\mathbb{P}} \colon n \mapsto (\mathbf{v}_p(n))_{p \in \mathbb{P}}$$

is an isomorphism of ordered monoid. (Hint: use the unique prime factorization and 5.6.)

Prime factorization i

The followings are complements for Problem 4 of HW 2.

Terminology

A **unit** in an abelian monoid (M, *, e) is an invertible element.

Example 5.8

- The only unit in $(\mathbb{Z}_+, \cdot, 1)$ is 1.
- The only unit in $(\mathbb{N}, +, 0)$ is 0.
- In $(\mathbb{Z}, \cdot, 1)$, there are two units: 1 and -1.
- In $(\mathbb{Z}, +, 0)$, every element is a unit.

Prime factorization ii

Terminology

Let a, b be two elements in an abelian monoid (M, *, e). We say a divides b, a is a divisor of b, or b is divided by a, if there is an element $c \in M$ such that b = a * c. We will use $a \mid b$ to denote this. (Warn: distinguish this with the divisibility of integers, which is an example of the above notion.)

Exercise 5.3

Show that in $(\mathbb{N}, +, 0)$, we have $a \mid b$ if and only if $a \leq b$.

Exercise 5.4 (†)

Show that, if the monoid (M, *, e) has only one unit, then $\cdot | \cdot$ is a partial order on it.

Prime factorization iii

Terminology

An element p in an abelian monoid (M, *, e) is a **prime** if

- p is not the neutral e,
- p is not a unit, and
- whenever p = a * b with $a, b \in M$, we necessarily have one of a, b being a unit.

Example 5.9

- Prime elements in $(\mathbb{Z}_+, \cdot, 1)$ are prime numbers.
- Prime elements in $(\mathbb{Z}, \cdot, 1)$ are prime numbers and their negations.
- The only prime elements in $(\mathbb{N}, +, 0)$ is 1.

Prime factorization iv

Terminology

Let a, b be two elements in an abelian monoid (M, *, e). We say a, b are **associated**, denoted by $a \sim b$, if both $a \mid b$ and $b \mid a$.

Exercise 5.5 (†)

Show that, "being associated" is an equivalent relation. Namely,

- (*reflexivity*) for all $a \in M$, $a \sim a$;
- (symmetry) for all $a, b \in M$, if $a \sim b$, then $b \sim a$;
- (transitivity) for all $a, b, c \in M$, if $a \sim b$ and $b \sim c$, then $a \sim c$.