

A SERIES OF MATHEMATICAL TEXTS

EDITED BY

EARLE RAYMOND HEDRICK

THE CALCULUS

By ELLERY WILLIAMS DAVIS and WILLIAM CHARLES BRENKE.

PLANE AND SOLID ANALYTIC GEOMETRY

By Alexander Ziwet and Locis Allen Hopkins.

PLANE AND SPHERICAL TRIGONOMETRY WITH COMPLETE TABLES

By Alfred Monroe Kenyon and Louis Ingold.

PLANE AND SPHERICAL TRIGONOMETRY WITH BRIEF TABLES

By Alfred Monroe Kenyon and Louis Ingold.

THE MACMILLAN TABLES

Prepared under the direction of Earle Raymond Hedrick.

PLANE GEOMETRY

By WALTER BURTON FORD and CHARLES AMMERMAN.

PLANE AND SOLID GEOMETRY

By WALTER BURTON FORD and CHARLES AMMERMAN.

SOLID GEOMETRY

By WALTLE BURTON FORD and CHARLES AMMERMAN.

TRIGONOMETRY

BY

ALFRED MONROE KENYON

PROFESSOR OF MATHEMATICS, PURDUE UNIVERSITY

AND

LOUIS INGOLD

ASSISTANT PROFESSOR OF MATHEMATICS, THE UNIVERSITY OF MISSOURI

New York
THE MACMILLAN COMPANY
1919

All rights reserved

Сорукіснт, 1913,

BY THE MACMILLAN COMPANY.

Set up and electrotyped. Published May, 1913

Norwood Bress J. S. Cushing Co. — Berwick & Smith Co. Norwood, Mass., U.S.A.

PREFACE

In Trigonometry, as elsewhere, a motive for the study of each topic is necessary to secure the effective attention of the student.

The knowledge required for the actual solution of triangles—the one motive common to all texts on Trigonometry—is only a fraction of the traditional course, even when the refinements necessary for logarithmic solution are included. Thus, the addition formulas, as such, the solution of trigonometric equations, and all reference to angles larger than 180°, are unnecessary for any process of solution of plane triangles.

In order to share with the student the teacher's knowledge that these other topics are of real importance, other practical problems of an elementary nature are used to introduce them. Thus, composition and resolution of forces is made an introduction to the study of large angles, and is used to illustrate the meaning of the addition formulas. Large angles are also used in problems on rotation and angular speed. Radian measure is shown to be useful in problems on rotation and on measuration.

Topics for which no wide application exists that is within the student's present grasp—such as De Moivre's theorem and infinite series are one of the book contains a minimum on the organization is intende diate us in a form

The solu such, it is in until the distinction i

that follow

PREFACE

tion of triangles and those other processes that deal with speed and accuracy. The arrangement is such that the student makes steady progress in his ability to perform operations and to solve problems that actually occur in practice. The geometric methods of solution of triangles occupies the first five pages; the principles of trigonometric solution of right triangles are completed in the next ten pages; accurate solution of right triangles, the principles of solution of oblique triangles, the detailed logarithmic methods, follow in uninterrupted succession. Thus the student may stop at almost any point with a complete grasp of definite processes whose value is clear to him, to which all that he has studied has contributed.

The number of exercises is very large, and the traditional monetony is broken by illustrations from a variety of topics. Here, as well as in the text, the attempt is often made to lead the student to think for himself by giving suggestions rather than completed solutions or demonstrations.

The text proper is short; what is there gained in space is used to make the tables very complete and usable. Attention is called particularly to the complete and handily arranged table of squares, square roots, cubes, etc.; by its use the Pythagorean theorem and the Cosine Law become practicable for actual computation. The use of the slide rule and of four-place tables is encouraged for problems that do not demand extreme accuracy.

Only a few fundamental definitions and relations in Trigonometry need be memorized; these are here emphasized. The great body of principle and presses depends upon the englandamentals; these are here emphasized. The great body of principle and presses depends upon the englandamental properties and presses depends upon the englandamental presse

CONTENTS

					PAGES
CHAPTER I INTRODUCTION		•	•	•	1-6
§ 1. Purpose					1
§ 2. Solution of Triangles					1
§ 3. Preliminary Estimate. Check .					2
Exercises I. Graphical Solution of Triangle	es				3
§ 4. Squared Paper. Rectangular Coördin	ates				4
Exercises II. Squared Paper			•	•	5
CHAPTER II RIGHT TRIANGLES U	SE	OF ?	ГАВІ	ES	7–24
PART I FUNDAMENTAL DEFINITIONS	AND	Pri	NCIPL	ES	7–17
§ 5. Tables					7
§ 6. Definition of the Ratios					7
§ 7. Application					10
Exercises III. The Trigonometric Ratios					11
§ 8. Functions of 0° and 90°					11
§ 9. Construction of Small Tables .					12
Exercises IV. Solution of Right Triangles					14
§ 10. The Pythagorean Relations					16
Exercises V. The Pythagorean Relations.	Ide	ntitie	s.		17
PART II ACCURACY OF SOLUTIONS	Арі	PLICA	TIONS		18-24
§ 11.	. •				18
§ 12. § 13. Exercia The Question Greater Accuracy 8 14. Pa motions of gables are Tables	`.				18
§ 13.					19
Exercis The Question Greater 1. Exercis The Question Greater 1. \$ 14. P _A inctions of Tables Large Tables 15. And see of the Life Tangles.	•	÷ •			20
§ 14. PA metions of Tables Large Tab	les	.1			20
§ 15. Ar se of the Triangles.	•				21
Exercis The Question 45°, 60° § 14. P _A inctions of Tables § 15. Ar se of the Life Triangles. Exercises VI. Right Triangles § 16. The optications Projections § 17. Pro aplications Projections Exercises VI. Pojections	•				21
§ 16. Therojections Projections	•				22
					23
§ 17. Pro aplications of Projections Exercises VII. Polections Use of Logarithms lucts with Negative Factors Right Triangles.		eov ^E X	ercise	8.	2 3
Wise of Logarive Factor Misco	Han	00.			
lucts Will Triangles.					

CHAPTER III, SOLUTION OF OBLIQUE TRIANGLES	25-47
PART I FUNCTIONS OF OBTUSE ANGLES	25-26
§ 18. Obtuse Angles	25
Exercises IX. Functions of Obtuse Angles	26
	27-33
§ 19. General Method for Oblique Triangles	27
§ 20. Case I. Given two Angles and a Side	27
§ 21. Case II. Given two Sides and the Included Angle .	28
§ 22. Case III. Given the Three Sides	
§ 23. Case IV. Given two Sides and an Angle Opposite One	
Exercises X. Solution of Triangles	29
§ 24. The Law of Sines	
§ 25. The Law of Cosines	
Exercises XI. Sine Law. Cosine Law	33
PART III SPECIAL LOGARITHMIC METHODS .	34-42
§ 26. The Law of Tangents	34
§ 27. The Tangents of the Half-Angles	35
§ 28. Second Proof of the Law of Tangents	36
Exercises XII. Logarithmic Solution of Case II	37
§ 29. Logarithmic Solution of Case III	
§ 30. Second Method for Finding r	38
Exercises XIII. Logarithmic Solution of Case III	40
§ 31. Logarithmic Solution of Case IV. The Ambiguous Case	40
Exercises XIV. Logarithmic Solution of Case IV	41
Part IV Applications Problems	42-47
§ 32. Areas of Triangles	42
§ 33. Composition and Resolution of Forces and Velocities .	
Exercises XV. Areas. Forces. Velocities	
Exercises XV. Areas. Forces. Velocities Exercises XVI. Misc. Forces. Velocities Exercises XVI. Misc. Forces. Velocities Ulaneous	4 5
CHAPTER IV I NE SECONDE SECONDE	48-59
PART I GENER AND WATER	48-55
§ 34. Directed Lines and DEFINITIONS	48
§ 35. Geometric Addition Segments PRINCIPLES	49
§ 34. Directed Lines and Segments. Principlet § 35. Geometric Addition of Line Segments § 36. Subtraction of Line Segments Exercises XVI Line Segments § 37. (Rotation Director)	49
Exercises XVI Line Segments K.	
§ 37. (Rotation Directed Segments	51
§ 38 Geometri ddition and Angues	52
§ 34. Directed Lines and Segments. § 35. Geometric Addition of Line Segments. § 36. Subtraction of Line Segments. Exercises XV. Line Segments § 37. (Rotation Directed Angres.) § 38. Geometric Addition and Subtraction.	

	I	PAGES
§ 39. Placing Angles on Rectangular Axes		52
Exercises XVIII. Directed Angles		53
§ 40. Congruent Angles		54
§ 41. Properties of Congruent Angles		54
Exercises XIX. Congruent Angles		55
PART II ANGULAR SPEED RADIAN MEASURE		56–5 9
§ 42. Measurement of Angles		56
§ 43. Radian Measure of Angles		56
§ 44. Use of Radian Measure		56
§ 44. Use of Radian Measure		57
§ 46. Notation		57
§ 47. Relations between Angular Units	,	58
Exercises XX. Angular Speed. Radian Measure .		59
	•	
CHAPTER V FUNCTIONS OF ANY ANGLE		60-77
PART I DEFINITIONS READING OF TABLES		60-67
§ 48. Resolution of Forces. Projections		60
§ 49. General Definitions. Functions of any Angle .		60
§ 50. Algebraic Signs of the Trigonometric Functions .		62
Exercises XXI. Functions of the General Angle		63
§ 51. Reading of Tables. Sine and Cosine of $-\theta$ and $90^{\circ}+$	θ	64
§ 52. Sine and Cosine of $180^{\circ} \pm \theta$ and $270^{\circ} \pm \theta$.		65
§ 53. Extension to Other Functions		66
Exercises XXII. Reading of the Tables		67
Part II Graphs of Trigonometric Functions	•	68-71
	•	
§ 54. Plotting of Values	٠	68
§ 55. Graphs in Radian Measure	•	69
§ 56. Mechanical Construction for $\sin x$	•	39
Exercises XXIII. Graphs of the Trigonometric Functions	•	70
PART III APPLICATIONS OF LARGE ANGLES		72-77
	•	
§ 57. Composition and Resolution of Forces	•	72
§ 58. The Projection Theorem	•	72
§ 59. Application to Forces and Velocities	•	73
Exercises XXIV. Composition and Resolution of Vectors		74
§ 60. Uniform Circular Motion		75
§ 61. Period. Amplitude		75
§ 62. Vibration. Simple Harmonic Motion	•	75
Evereign VVV Circular Metion Vibration		76

CHAPTER VI THE ADDITION FORMULAS		78-89
§ 63. Reduction of $A \cos \alpha \pm B \sin \alpha$. Formulas		. 78
§ 64. Illustrative Examples		79
§ 65. Independent Proof of Addition Formulas .		80
§ 66. Extension to Angles of Any Size		81
Exercises XXVI. Addition Formulas		82
§ 67. Functions of the Difference of Two Angles § 68. Double Angles		83
§ 68. Double Angles		83
§ 69. Tangent of a Sum or of a Difference.		83
§ 70. Applications Exercises XXVII. Secondary Formulas. Applications		84
Exercises \XVII. Secondary Formulas. Applicati	ions .	85
§ 71. Functions of Half-Angles		86 .
Exercises XXVIII. Half-Angle Formulas		86
§ 72. Factor Formulas		88
Exercises XXIX. Factoring		88
CHATTERY THE INDICATOR TO THE INDICATOR		
CHAPTER VII TRIGONOMETRIC EQUAT		
INVERSE FUNCTIONS		90–107
Part I IDENTITIES AND EQUATIONS		90-99
§ 73. Identities in One Variable		90
§ 74 Elementary Identities		90
§ 75. Identities in Two Variables		91
§ 76. Illustrative Example		91
Exercises XXX. Trigonometric Identities		91
g 11. Conditional Educations		92
§ 78. Hustrative Examples		93
		93
§ 79. General Principles § 80. Use of the Graph		95
Exercises XXXI. Simple Trigonometric Equations		96
§ 8). Reduction of Equations to Standard Form		96
Exercises XXXII. Reduction of Trigonometric Equ	ations	97
§ 82. Special Methods of Solution		98
§ 83. Graphical Methods		99
Exercises XXXIII. Special Methods of Solution		99
PART II INVERSE FUNCTIONS. TRANSCENDENTAL EQU	ATIONS	s 100–107
§ 84. Inverse Functions		100
§ 85. Graphical Representation of Inverse Functions	•	100
§ 80. Principal Values		104
Exercises XXXIV. Inverse Functions Graphs		105
s o Iranscendental Equations .		
Exercises XXXV. Transcendental Fountions		107

CHAPTER VIII SPHERICAL TRIGONOMETRY		PAGES 108-132
PART I SUMMARY OF GEOMETRIC THEOREMS		108-112
§ 88. Purpose		108
§ 89. Some Useful Propositions of Solid Geometry		108
PART II FUNDAMENTAL PRINCIPLES OF SOLUTION	r .	113-120
§ 90. Fundamental Laws. Law of Cosines. Law of	Sines	113
§ 91. Solution of Spherical Triangles		115
§ 92. Temporary Ambiguity		117
§ 93. The Ambiguous Cases		117
§ 94. Résumé of Cases		119
Exercises XXXVI. Spherical Triangles		119
PART III SPECIAL METHODS FOR RIGHT TRIANGLE	s .	120-124
§ 95. Right Spherical Triangles		120
§ 96. Napier's Rules		121
§ 97. Ambiguity		123
§ 98. Quadrantal and Isosceles Spherical Triangles		123
Exercises XXXVII. Right Spherical Triangles.		124
PART IV SPECIAL LOGARITHMIC METHODS .		125-132
.§ 99. Tangents of the Half-Angles		125
§ 100. The Law of Tangents (Napier's Analogies)		126
9 101 () 1 () ((m)) 1 1 x ()		128
Exercises XXXVIII. Solution by Logarithmic Meth	ods .	130
§ 102. Areas of Spherical Triangles		131
Exercises XXXIX. Areas of Spherical Triangles .		132

LOGARITHMIC AND TRIGONOMETRIC TABLES

[See Contents, p. xviii.]

TRIGONOMETRY

CHAPTER I

INTRODUCTION

- 1. Purpose. The original purpose of Trigonometry was the measurement of distances and angles by *indirect* methods in those cases in which *direct* measurements are impossible or inconvenient; for example, in the determination of the heights of buildings, the widths of rivers, the horizontal width of a hill, and so on. Many other applications have been found, some of which are mentioned in this book.
- 2. Solution of Triangles. To accomplish the purpose first mentioned, it is easy to see that the propositions regarding

triangles which are proved in elementary geometry can be used. Thus the theorem that two triangles are congruent* if two angles and the included side of one of them are equal respectively to the corresponding parts of the other, is frequently used in such problems as that which follows.

Example 1. In order to measure the width of a river, for example, it is sufficient to measure the distance AB between two

Fig. 1

points on the bank and the angles BAP and ABP made by AB with the lines joining A and B, respectively, to any point on the other bank. All of these measurements can be made from one bank of the river. Knowing AB and the angles ABP and BAP the triangle PAB can be drawn to scale by the methods of elementary geometry; then the perpendicular PR from P to AB can be drawn and measured, whence the width PR of the stream can be determined by actual measurement in the figure.

^{*}Two figures are said to be congruent, if by superposition they can be made to coincide in all their parts.

or

or

We shall use the following propositions from geometry:

All of the parts of a triangle ABC are determined if any one of the following combinations is known:

Either (1) two sides and the included angle;

- (2) two angles and the included side;
- or (3) three sides;
 - (4) any two sides, if one angle is a right angle;
- or (5) two sides and an angle opposite one of them; but two triangles may be possible in this case. See § 31, p. 41.

When a sufficient number of parts are given, the rest can be found by drawing the triangle as in elementary geometry, and actually measuring the unknown parts, as in Example 1.

To draw the figure, and to make accurate measurements, a ruler marked to scale, a compass, and a protractor are necessary.

The process of finding the unknown parts of a triangle from any such set of given parts is called solving the triangle.

3. Preliminary Estimate: Check. In every exercise, the student should first make a preliminary estimate of the size of the unknown parts, and he should bear in mind this crude solution as a guide during his work.

After the unknown parts have been found, the student should use all means within his power to check each answer, since even the most experienced persons are liable to errors in reading instruments and in making arithmetical computations.

In figures drawn to scale use these facts as checks:

- (a) the sum of the angles of a triangle should be 180°.
- (b) the sum of any two sides should be greater than the third side.
- (c) the larger of two sides should be opposite the larger of the two opposite angles.
- (d) the lengths should correspond to the appearance of the figure; thus, if one side appears to be longer than another in the figure, their measures should be unequal in the same sense.
- (e) the angles should correspond to the appearance of the figure; thus, a right angle is easy to judge by the eye.

^{*} The case in which two angles and any side are known is easily reduced to this case, since the sum of all the angles is 180°.

These checks should reveal any gross error; but the student should not expect this method of solution (or any other method of computation or measurement) to give precise an swers in the sense of having no error whatever. The purpose should be to obtain reasonably accurate results and to detect errors that are unreasonably large.

EXERCISES I. - GRAPHICAL SOLUTION OF TRIANGLES

- 1. Solve the following triangles by construction and measurement, and check the answers whenever possible.
 - (a) Two angles are 47° and 53° , the included side is 5.7.
- (b) Two angles are 43° and 53°, the side opposite the first is 5.7.
 - (c) Two sides are 4.3 and 5.3, the included angle is 57°.
 - (d) The three sides of a triangle are 4.3, 5.3, 6.3.
- 2. From which of the following sets of given parts is it possible to construct a triangle? In which cases is it impossible? Do any of the sets determine more than one triangle?
 - (a) Two angles are 41° and 59°, the side opposite the latter is 5.1.
 - (b) Two sides are 1.3 and 5.6, the angle opposite the first is 66°.
 - (c) Two angles are 30° and 41° , the included side is 7.
 - (d) Two sides are 7 and 1.1, the included angle is 17°.
 - (e) The three sides are 1.1, 2.3, 3.5.
 - (f) Two sides are 6 and 7, the angle opposite the first is 51°.
- 3. To determine the width AB of a hill a point C is taken from which the points A and B on opposite sides of the hill are visible. If AC = 200 ft., BC = 223 ft., and angle $ACB = 62^{\circ}$, find the width AB.
- 4. Find the angles which a diagonal of your study table makes with the edges.
- 5. The steps of a stairway have a tread of 10 in. and a rise of 7 in.; at what angle is the stairway inclined to the floor?
- 6. To determine without an instrument for measuring angles, the distance between two objects A, B, which are separated by an obstruction, select a point C from which both objects are visible. At C place a smooth board upon a steady support, and mark the precise position of C by sticking a pin in the board. By sighting across this pin locate two other pins, one between A and C, the other between B and C. Draw the lines connecting each of these pins with C. The angle between them is the angle ACB. Finally measure the distances AC and BC. Lay off along the lines CA and CB, on the board, lengths proportional to the actual distances, and thus find AB. (Plane Table Surveying.)

7. A heavy piece of machinery contains a bar AB with an arm AC branching from it. In order to be able to give a mechanic directions for making repairs, the owner measures off on the bar the distance AB = 10in, and on the arm the distance AC = 10 in.; he then measures BC = 8Make a drawing and find the angle between the arm and the bar.

4. Squared Paper. Rectangular Coördinates. It is often an advantage to draw the figure on paper ruled into squares,

2 rods = one small space

called squared paper, or cross-section paper. The location of points is particularly easy on such paper, so that a map, for example, is readily made by using it. By suitably placing the figure, required lengths can frequently be read off at once.

Thus, in Ex. 1, p. 1, to determine the width of the river, if it is found that AB = 98 rods, $\angle A=51^{\circ}$, $\angle B=63^{\circ}$, the length

AB may be laid off on one of the horizontal lines to some convenient scale, and the angles at A and B drawn by means of a protractor. this figure, the width PR is seen immediately to be about 75 rods.

If any two perpendicular rulings Ox and Oy of the squared paper (see Fig. 3) are selected, the position of any point P in the plane is determined by means of the distances from these two lines to the point P. The paper can be so placed that these distances are horizontal and vertical. respectively; we usually suppose the paper in this position.

Thus, in Fig. 3, the horizontal distance from Oy to the point A is 1.4 units and the vertical distance from Ox to A is 1.5 units. $_{\circ}$ To avoid confusion between points at the same distance from Ox° but on opposite sides of Oy, it is customary to call distances measured to the right of Oy positive, distances measured to the left negative; thus B, Fig. 3, is said to be -1.2 units from O_{x} . Similarly, distances measured downwards are called negative; for example, C in Fig. 3 is said to be - .8 units from Ox.

The two distances to any point P from Ox and Oy are called the rectangular coördinates of P, and are frequently denoted by the letters x and y, respectively. The horizontal distance x is called the abscissa of P; the vertical distance y is called the ordinate of P. In giving these distances it is generally understood that the first one mentioned is x, the last y. Thus A, Fig. 3, is briefly denoted by the numbers (1.4, 1.5); B is denoted by (-1.2, 1.7); C by (-1.4, -.8); D by (2.4, -1). The lines Ox, Oy are called the axes of coördinates, or simply the axes. Ox is called the x-axis, Oy the y-axis. The point O is called the origin.

The four portions into which the plane is divided by the axes are called the first, second, third, and fourth quadrants, as in Fig. 3.

To *locate* a point is to describe its position in the plane in terms of its distances from the coördinate axes; e.g. (-5, 2) is a point 5 units to the left of the y-axis and 2 units above the x-axis. To plot a point is to mark it in proper position with respect to a pair of axes.

EXERCISES II. - SQUARED PAPER

1. Locate and plot each of the following points with respect to some pair of axes:

(a)
$$(1, 2)$$
, (b) $(2, -3)$, (c) $(4, -7)$, (d) $(-5, 2)$, (e) $(-7, -7)$, (f) $(7, 5)$, (g) $(5, 12)$, (h) $(8, -3)$, (i) $(-5, -5)$, (j) $(6, -2)$.

- 2. Show that the line joining (5, -4) and (-5, 4) is bisected by the origin.
 - 3. On what line do all the points (1, 0), (2, 0), (-3, 0), (1.5, 0) lie? On what line do all the points (0, 0), (0, 1), (0, 2), (0, 5), (0, -2) lie? Make a general statement about such points.

4. Find the distance from the origin to each of the points in Ex. 1, by using the folded edge of another piece of squared paper.

Compute each of the same distances by regarding each of them as the length of the hypotenuse of a right triangle, the lengths of whose sides can be read directly from the figure. Each of these methods can be used as a check on the other.

- 5. Find the lengths of the sides of a triangle whose vertices are (0, 0), (2, 3), (1, 5), by each of the methods of Ex. 4.
- 6. From the origin as one vertex construct a triangle two of whose sides are 7 and 13 units long, respectively, with an included angle of 40°. Measure, by each of the methods of Ex. 4, the length of the unknown cide, and measure the angles with a protractor.
- 7. If a and b are any two numbers positive or negative, but not both zero, show that the line joining (a, b) and (-a, b) is bisected by the y-axis; the line joining (a, b) and (-a, -b) is bisected by the origin.
- 8. What is the locus of all points in the plane which have the same abscissa? The same ordinate?
- 9. Two objects A, B in a rectangular field are separated by a thicket, or other obstruction. To determine the distance between them, the lines AC=40 rods. BC=30 rods, are measured parallel to the sides of the field. Find the distance AB, and check the answer, as in Ex. 4.
- 10. The positions of various objects on a rectangular farm are given by their coördinates in rods, referred to two sides of the farm as axes, as follows: house (10, 4), barn (6, 4), gate of pasture (60, 20). A railroad is constructed through the farm, passing between the house and barn, and a crossing is built at the point (3, 12). Draw a map showing the positions of the various objects. Determine how much farther it is from the house to the barn by way of the crossing than along the straight line connecting them. How much farther is it from the barn to the pasture gate by way of the crossing than along a straight line? Check each answer.
- 11. A certain city park is bounded by a main street, two cross streets perpendicular to it, and a stream. The distances, in feet, to the stream measured perpendicularly from the main street at 100 ft. intervals are found to be 680, 650, 525, 450, 450, 460, 540.

Draw a map of the park and determine approximately its area by counting the squares inclosed by the figure.

12. To determine the height of a tree OA standing in a level field the distance OB = 100 ft. from the base O of the tree to a point B in the field, and the angle $OBA = 37^\circ$, are measured. Find approximately the height by placing the figure on squared paper, after making a preliminary estimate.

CHAPTER II

RIGHT TRIANGLES USE OF TABLES

PART I. FUNDAMENTAL DEFINITIONS AND PRINCIPLES

5. Tables. A method for solving right triangles that is more systematic and more accurate than the method of construction and measurement, consists essentially in making a table of the lengths of the sides and the magnitudes of the corresponding angles of all such triangles. Still the previous methods remain permanently of the utmost importance as a check.

It will be shown later that all oblique triangles can be cut up into right triangles in such a way that the same tables can be used in all cases for solving oblique triangles.

Since any triangle can be enlarged (or reduced) in size by drawing it on a larger (or smaller) scale, only the ratios of the sides are really important.

For example, it is known by geometry that if one angle of a right triangle is 30°, the side opposite this angle is one half the hypotenuse. Hence if the hypotenuse is given, that side, and hence also the other one, can be determined. If in Fig. 4, AB=22.5, and $\angle A=30^\circ$, then the side BC=(1/2)(22.5)=11.25.

If, for an acute angle of every right triangle, the ratio of the opposite side to the hypotenuse were known to us, then we could solve every right triangle in the same manner.

Tables giving these and other ratios have been constructed.

22.5

Fig. 4

6. Definitions of the Ratios. As indicated in § 5, the ratio of two sides of a triangle does not depend upon the size of the

triangle, but only upon the angles. Thus in the right triangles MPN, MP'N', MP''N'' of Fig. 5, in which PN, P'N', P''N''

are perpendicular to MN, the ratios NP/MP, N'P'/MP', N''P''/MP'' are all equal. Moreover, if P'''N''' is drawn perpendicular to MP, each of the ratios just mentioned is equal to N'''P'''/MP'''. (Why?) These ratios, then, depend only on the angle α at M. It is convenient to

place the angle on a pair of axes so that the vertex falls at the origin O, one side lies along the x-axis, to the right, and

the other side falls in the first quadrant. On this side take any point P at random, except O, and drop the perpendicular PM to the x-axis (see Fig. 6). Let OP = r; then by geometry

$$r = \sqrt{x^2 + y^2}, *$$

where x and y are the coördinates of the point P. The various ratios of pairs of the three quantities x, y, r are the same y

Fig. 6

the three quantities x, y, r are the same for all points P taken in the side OP of the angle a. These are:

- (1) $\frac{y}{r}$, called the sine of the angle α , written $\sin \alpha$.
- (2) $\frac{x}{r}$, called the cosine of the angle α , written $\cos \alpha$.
- (3) $\frac{y}{\bar{x}}$, called the tangent of the angle α , written tan α .

The reciprocals t of these ratios are also often used:

- (4) r/y is called the cosecant of the angle α , written $\csc \alpha$.
- (5) r/x is called the secant of the angle α , written sec α .
- (6) x/y is called the cotangent of the angle α , written ctn α .

These six ratios are collectively called trigonometric ratios or also trigonometric functions of the angle.

^{*} The radical sign is used to denote the positive square root.

[†] The reciprocal of a number is unity divided by the number. The reciprocal of a common fraction is the result of inverting it; thus the reciprocal of y/r is r/y. Every number has a reciprocal except 0_w which has not.

Other expressions derived from these are also frequently used; for example, many engineers use the following combinations:

- (7) versed sine of $\alpha = 1 \cos \alpha$, written vers α ;
- (8) coversed sine of $\alpha = 1 \sin \alpha$, written covers α ;
- (9) external secant $c^f \alpha = \sec \alpha 1$, written exsec α .

In the right triangle OPM, Fig. 6, y is the side opposite the angle α , x is the side adjacent to α , and r is the hypotenuse. From the definitions (1)-(3), we see that in any right triangle:

- (10) The sine of either acute angle = $\frac{\text{side opposite}}{\text{hypotenuse}}$;
- (11) The cosine of either acute angle = $\frac{\text{side adjacent}}{\text{hypotenuse}}$;
- (12) The tangent of either acute angle = $\frac{\text{side opposite}}{\text{side adjacent}}$;

and, after clearing of fractions, we find:

- (13) The side opposite = hypotenuse \times sine = side adjacent \times tangen:
- (14) The side adjacent = hypotenuse \times cosine = side opposite \times cotangent;
- (15) Hypotenuse = $\frac{\text{side opposite}}{\text{sine}} = \frac{\text{side adjacent}}{\text{cosine}}$.

The student should so thoroughly learn these statements that he can apply them instantly and confidently to any right triangle that he sees, whatever its position in the plane.

The trigonometric functions are connected by many simple relations. Thus:

(16)
$$\tan \alpha = \sin \alpha / \cos \alpha$$
, since $y/x = (y/r)/(x/r)$.

Similarly, the student can easily show that

(17)
$$\operatorname{ctn} \alpha = \cos \alpha / \sin \alpha = 1 / \tan \alpha,$$

(18)
$$\sec \alpha = 1/\cos \alpha,$$

(19)
$$\csc \alpha = 1/\sin \alpha.$$

Other relations will be given later.

7. Applications. The values of these ratios have been computed for all acute angles, and recorded in convenient tables. These tables, together with the formulas just given, enable us to solve all cases of right triangles. The methods are illustrated in the following examples.

Example 1. One angle of a right triangle is 38° and the hypotenuse is 12 ft. Find the lengths of each of the other sides.

Draw a figure, mark the given parts, and indicate the parts to be found by suitable letters, say x and y. The sides x and y are then respectively the side adjacent and the side opposite. To find x, note that the hypotenuse is given; hence by (14), § 6,

$$x = 12 \cdot \cos 38^{\circ} = 12 \cdot (.788) = 9.456$$
;
and similarly by (13), $y = 12 \cdot \sin 38^{\circ} = 12 \cdot (.616) = 7.392$;

the values $\cos 38^\circ = .788$ and $\sin 38^\circ = .616$ being found in the table printed in § 9, p. 15, where a method for computing such values is explained.

As a check, the Pythagorean theorem may be used, particularly if a table of squares is available. Thus, denoting the hypotenuse by h, we should have

$$h = \sqrt{(9.456)^2 + (7.392)^2} = 12.002.$$

This agrees reasonably well with the given value h=12. Another check that is more practical is given by measurement from a good figure.

Example 2. One side of a right triangle is 17 and the angle opposite this side is 27° ; what is the length of the hypotenuse? of the other side?

Denote the hypotenuse by u and the unknown side by v. Noting that the side *opposite* the given angle is given, find the *side adjacent*, v, by (14), § 6. To find the hypotenuse, use (15), § 6:

$$v = 17 \cdot \text{ctn } 27^{\circ} = 17(1.963) = 33.37.$$

 $u = 17/\sin 27^{\circ} = 17/.454 = 37.44.$

Check these answers by drawing an accurate figure.

Example 3. The hypotenuse of a right triangle is 41 and one side is 12.7; find the opposite angle.

Denote the opposite angle by α , then by (10), $\sin \alpha = 12.7/41 = .309$. From the table (p. 15), we

see that 309 is the sine of 18°; hence $\alpha = 18^{\circ}$. Let the student determine the remaining side and angle, and check all answers.

EXERCISES III. - TRIGONOMETRIC RATIOS

- 1. On cross-section paper construct angles whose sines are, (a) 1/5; (b) 2/5; (c) 3/5; (d) 4/5. [Hint. First draw a circle of radius 5.]
- 2. Is there an acute angle whose sine is any given positive number? Prove that your answer is correct.
- 3. Construct angles whose tangents are (a) 3/10; (b) 1/2; (c) 2/3; (d) 1; (e) 10/3; (f) 2: (g) 7.5.
 - 4. Is there an angle whose tangent is any given positive number?
 - 5. How large, in degrees, is an acute angle whose tangent is 1?
- 6. How does the angle whose tangent is 2 compare with the angle whose tangent is 1? Check your answer by drawing an accurate figure.
 - 7. One side of a right triangle is 21; the adjacent angle is 42° ; determine the remaining side and the hypotenuse. Check.
 - 8. One side of a right triangle is 21 and the opposite angle is 42°; determine the remaining side and hypotenuse. Check.
- 9. The hypotenuse of a right triangle is 28; one angle is 32°. Determine the two perpendicular sides. Check.
- 10. What is the angle of inclination of a roof "hich has half pitch? 1/3 pitch?

[Note. The pitch of a roof is equal to the height of the comb above the eaves divided by the total distance between the eaves.]

8. Functions of o° and 90°. If an angle of 0° (or 90°) be placed on coördinate axes and the construction of p. 8 be made, the point P_0 (or P_{90}) will lie on the x (or y) axis, and we shall have x = r, y = 0 (or x = 0, y = r).

The functions sine, cosine, tangent, and secant of 0° are defined by the same ratios as are the corresponding functions of acute angles: $\sin 0^{\circ} = y/r = 0$, $\cos 0^{\circ} = x/r = 1$, $\tan 0^{\circ} = y/x = 0$, sec $0^{\circ} = r/x = 1$. The definitions of cotangent and cosecant given for acute angles cannot be applied to 0° , because y = 0 and the divisions x/y and r/y are impossible.

The sine, cosine, cotangent, and cosecant of 90° are defined by the same ratios as are the corresponding functions of acute angles; $\sin 90^\circ = y/r = 1$, $\cos 90^\circ = x/r = 0$, $\cot 90^\circ = x/y = 0$, $\csc 90^\circ = r/y = 1$. The definitions of tangent and secant given for acute angles cannot be applied to 90°, because x = 0 and

the divisions y/x and r/x are impossible. We say that 0° has no cotangent or cosecant, and 90° has no tangent or secant.

9. Construction of Small Tables. Approximate values of the trigonometric functions of a given acute angle may be found by

measurement as follows: On a sheet of squared paper draw Ox and Oy along two of the perpendicular rulings, and in the first quadrant construct a quarter circle, radius = 10, center at O. Draw AT perpendicular to Ox and tangent to this circle. Given

^{*} It is often said that the tangent of 90°, for example, is *infinite*; this expression does not give any value to the tangent at 90°, but merely describes the fact that the tangent becomes and remains larger than any number we may name as the angle approaches 90°. Similar statements hold for the others.

α	5°	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°
sin α			_					-	-								
cosα		-					-										
tan α	-				_												
ctn α	_								_		Ī.						

If all of this table is filled out correctly, it will be found that every number in it occurs twice; once for an angle less than 45° and once for an angle greater than 45°. This is due to the fact that the sine of any angle is the cosine of its complement; and the tangent of any angle is the cotangent of its complement.

These relations will now be proved for any acute angle α . Let $\beta = 90^{\circ} - \alpha$; then α and β are the acute angles of a right triangle. Denote the sides opposite α and β by α and

β 90°-α Q A Frg. 11

b, respectively; and the hypotenuse by c. Then by § 6, p. 8, $\sin \alpha = \text{side opp./hyp.} = a/c$; $\tan \alpha = \text{side opp./side adj.} = a/b$; $\cos \beta = \text{side adj./hyp.} = a/c$; $\cot \beta = \text{side adj./side opp.} = a/b$;

whence, remembering that $\beta = 90^{\circ} - \alpha$,

(1)
$$\sin \alpha = \cos \beta = \cos (90^{\circ} - \alpha),$$

(2)
$$\tan \alpha = \cot \beta = \cot (90^{\circ} - \alpha).$$

In the same way it can be shown that

(3)
$$\sec \alpha = \csc (90^{\circ} - \alpha).$$

On the opposite page a table of values of the functions is given, for every degree from 0° to 90°, using the preceding facts. The values can be roughly verified by Fig. 10.

EXERCISES IV. - SOLUTION OF RIGHT TRIANGLES

In the solution of triangles, use the following procedure:

- (a) Draw a diagram approximately to scale, indicating the given parts.

 Mark the unknown parts by suitable letters, and estimate their values.
- (b) If one of the given parts is an acute angle, consider the relation of the known parts to the one which it is desired to find, and apply the proper one of formulas $(10) \cdots (15)$, § 6.
- (c) If two sides are given, and one of the acute angles is desired, think of the definition of that function of the angle which employs the two given sides.
 - (d) Check each result.
- 1. In the following triangles h denotes the hypotenuse; the angle A is opposite the side a and the angle B is opposite the side b. Use the table to compute the unknown parts from the given parts. Check.

(a)
$$A = 61^{\circ}$$
, $b = 41$. (d) $A = 32^{\circ}$, $a = 330$.

(b)
$$a = 421, b = 401.$$
 (e) $a = 313, h = 720.$

(c)
$$a = 62$$
, $h = 125$. (f) $B = 49^\circ$, $h = 24$.

2. Determine the height of a tower MN, if the horizontal distance ME to it is 450 ft. and the angle $^{\text{E}}$ of elevation MEN is 27° . Check.

- 3. A vertical pole 35 ft. high casts a horizontal shadow 45 ft. long. Determine the angle of elevation of the sun above the horizon. Check.
- 4. An object known to be 100 ft. in height stands on the bank of a river; from the opposite bank of the river the angle of elevation of the top of the object is found to be 24°; find the width of the river. Check.
- 5. The radius of a circle is 7 ft. What angle will a chord of the circle 11 ft. long subtend at the center? Check.
- 6. From the top of a cliff 92 ft, in height the angle of depression of a boat at sea is observed to be 20°. How far out is the boat? Check.
- 7. To find the distance between two objects A and B, where B is in a swamp, the distance AC=350 ft, is measured at right angles to the line joining them. At C an observer holds an ordinary rake with the end of the handle at his eye and with the center of the rake directed toward A. There appear then to be 6 teeth of the rake between A and B. If the teeth are one inch apart and the handle of the rake is five feet long, determine the distance between A and B.

TRIGONOMETRIC FUNCTIONS TO THREE PLACES OF DECIMALS

α	sin α	covers α	sec α	tan a	ctn α	csc α	vers &	cos α	
0°	.000	1.000	1.000	.000			.000	1.000	90°
1°	.017	.983	1.7.0	.017	57.290	57.299	.000	1.000	890
20	.035	.965	1.001	.035	28.636	28.654	.001	.999	880
30	.052	.948	1.001	.052	19.081	19.107	.001	.999	870
4°	.070	.930	1.002	.070	14.301	14.336	.002	.998	86°
50	.087	.913	1.004	.087	11.430	11.474	.004	.996	85°
6°	.105	.895	1.006	,105	9.514	9.567	.005	.995	840
70	.122	.878	1.008	.123	8.144	8.206	.007	.993	830
80									820
80	.139	.861	1.010	.141	7.115	7.185	.010	.990	
90	.156	.844	1.012	.158	6.314	6.392	.012	.988	81°
10°	.174	.826	1.015	.176	5.671	5.759	.015	.985	80°
110	.191	.809	1.019	.194	5.145	5.241	.018	.982	79°
120	.208		1.019	.213	4.705	0.241	.010		780
		.792				4.810	.022	.978	
13°	.225	.775	1.026	.231	4.331	4.445	.026	.974	770
14°	.242	.758	1.031	.249	4.011	4.134	.030	.970	76°
15°	.259	.741	1.035	.268	3.732	3.864	.034	.966	75°
16°	.276	.724	1.040	.287	3.487	3.628	.039	.961	740
170					0.407				740
	.292	.708	1.046	.306	3.271	3.420	.044	.956	73°
18°	.309	.691	1.051	.325	3.078	3,236	.049	.951	720
19°	.326	.674	1.058	.344	2.904	3.072	.054	.946	716
20°	.342	.658	1.064	.364	2.747	2.924	.060	.940	700
210	.358	.642	1.071	.384	2.605	2.790	.066	.934	690
220		.042						.934	
220	.375	.625	1.079	.404	2.475	2.669	.073	.927	68°
23°	.391	.609	1.086	.424	2.356	2.559	.079	.921	67°
24°	.407	.593	1.095	.445	2.246	2.459	.086	.914	66°
25°	.423	.577	1.103	.466	2.145	2.366	.094	.906	65°
26°	.438	.562	1.113	.488	2.050	2.281			640
270	.454						.101	.899	
280		.546	1.122	.510	1.963	2.203	.109	.891	63°
280	.469	.531	1.133	.532	1.881	2.130	.117	.883	62°
29°	.485	.515	1.143	.554	1.804	2.063	.125	.875	61°
30°	.500	.500	1.155	.577	1.732	2.000	.134	.866	60°
310	.515	.485	1.167	.601	1.664	1.942	.143		59°
320	.530	.470						.857	
330			1.179	.625	1.600	1.887	.152	.848	58°
	.545	.455	1.192	.649	1.540	1.836	.161	.839	57°
34°	.559	.441	1.206	.675	1.483	1.788	.171	.829	56°
350	.574	.426	1.221	.700	1.428	1.743	.181	.819	55°
36°	.588	.412	1.236	.727	1.376	1.701			54°
370	.602	.398	1.250	.754			.191	.809	
			1.202		1.327	1.662	.201	.799	53°
380	.616	.384	1.269	.781	1.280	1.624	.212	.788	52°
39°	.629	.371	1.287	.810	1.235	1.589	.223	.777	51°
40°	.643	.357	1.305	.839	1.192	1.556	.234	.766	50°
410	.656	.344	1.325	.869	1.150	1.524			49°
420	.669	.331	1.346	.900			.245	.755	
430				.900	1.111	1.494	.257	.743	48°
	.682	.318	1.367	.933	1.072	1.466	.269	.731	470
440	.695	.305	1.390	.966	1.036	1.440	.281	.719	46°
45°	.707	.293	1.414	1.000	1.000	1.414	.293	.707	45°
	cos α	vers α	csc α	ctn α	tan a	sec a	covers α	sin α	α

Values of vers $a = 1 - \cos a$ and of covers $a = 1 - \sin a$ are included for completeness.

10. Pythagorean Relations.

The following equation between the abscissa x, the ordinate y, and the radius r is true for every point in the plane:

$$(1) x^2 + y^2 = r^2.$$

Dividing by r^2 , we obtain

$$x^2/r^2 + y^2/r^2 = 1$$
;

but by § 6, at least when α is acute, $x/r = \cos \alpha$, $y/r = \sin \alpha$; hence

(2).
$$\sin^2\alpha + \cos^2\alpha = 1;$$

 $^{\mathrm{Fig.}\ 12}$ i.e. the sum of the squares of the sine and cosine of any acute angle is equal to unity. †

Dividing (1) by x^2 , and then by y^2 , we obtain respectively:

$$(3) 1 + \tan^2 \alpha = \sec^2 \alpha,$$

$$(4) 1 + \operatorname{ctn}^2 \alpha = \operatorname{csc}^2 \alpha.$$

These formulas and those of § 6 are often useful in simplifying expressions or in verifying equations. Other interesting relations are given in exercises that follow.

Example 1. To show that $\sin^4 \alpha - \cos^4 \alpha = \sin^2 \alpha - \cos^2 \alpha$.

The expression on the left is the difference of two squares and can therefore be factored; hence we have $\sin^4 \alpha - \cos^4 \alpha = (\sin^2 \alpha + \cos^2 \alpha)$ ($\sin^2 \alpha - \cos^2 \alpha$) which is equal to $\sin^2 \alpha - \cos^2 \alpha$, since $\sin^2 \alpha + \cos^2 \alpha = 1$.

The formulas may also be used to compute the value of one of the trigonometric functions from that of another.

Example 2. Given $\tan \theta = 5/12$, to find $\cos \theta$.

Analytic Method. By (2), $1 + \tan^2 \theta = \sec^2 \theta$; hence, $\sec^2 \theta = 1 + 25/144$ = 169/144, or $\sec \theta = 13/12$. Hence, $\cos \theta = 12/13$, since $\cos \theta = 1/\sec \theta$. Geometric Method. The following method is much more practical, and is easily applied to any example of this sort.

Draw a right triangle whose base is 12 and whose altitude is 5. The hypotenuse is easily found to be 13. It follows that

$$\cos \theta = \text{side adjacent/hypotenuse} = 12/13.$$

^{*} Formulas (2), (3), and (4) are called the Pythagorean relations because they are obtained from this equation, which is the Pythagorean theorem of plane geometry.

[†] This statement, as well as (3) and (4) below, will later be found to hold for all angles, for the general definitions of sine and cosine.

11, § 10]

EXERCISES V. - PYTHAGOREAN RELATIONS IDENTITIES

- 1. In exercises (a) (i) determine the values of the remaining functions of the acute angle θ by each of the methods of Example 2, p. 16.
 - (a) $\sin \theta = 3/5$.
- (b) $\sin \theta = 1/3$.
- (c) $\cos \theta = 1/3$.

- (d) $\sin \theta = 5/13$.
- (e) $\tan \theta = \sqrt{3}$.
- (f) $\tan \theta = 3/4$.

- (g) $\tan \theta = 1/m$.
- (h) $\sin \theta = b/c$.
- (i) $\sec \theta = 2$.

Prove the following relations for any acute angle θ :

- 2. $(\sin \theta + \cos \theta)^2 = 1 + 2\sin \theta \cos \theta$.
- 3. $\cos \theta \tan \theta = \sin \theta$.
- 4. $\tan \theta + \cot \theta = \sec \theta \csc \theta$.
- 5. $\sin \theta \sec \theta = \tan \theta$.
- 6. $(\sec \theta \tan \theta)(\sec \theta + \tan \theta) = 1$.
- 7. $(\sin^3 \theta + \cos^3 \theta) = (\sin \theta + \cos \theta) (1 \sin \theta \cos \theta)$.
- 8. $\cos^2 \theta \sin^2 \theta = 1 2 \sin^2 \theta = 2 \cos^2 \theta 1$.
- 9. $\sec^2 \theta \csc^2 \theta = \tan^2 \theta + \cot^2 \theta + 2$.
- 10. If a and b are the sides of a right triangle, c the hypotenuse, and A the angle opposite a, show that the area of the triangle is equal to either of the expressions $(ac\cos A)/2$, $(bc\sin A)/2$.
- 11. Two straight pieces of railroad track MA and NB are to be connected by a circular track AKB with a radius of 500 ft. and center O, tangent to MA and NB. The straight portions of the track produced intersect at a point V at an angle of 100° . (a) How far back from V, should the track period to turn V.

N

- from V should the track begin to turn? (b) How far from V along the bisector OV of the angle AVB is the center O? (c) Find the shortest distance from V to the curved portion.
- 12. If, in a figure similar to that of Ex. 11, $\angle AVO$ is any angle, and $\angle VOA$ is denoted by α , and OA = r, show that (a) $AV = r \tan \alpha$; (b) $KV = r \csc \alpha$; (c) $AB = 2 r \sin \alpha$.

- 13. The side b of the triangle in Ex. 10 is extended beyond A to a point D, making AD = c, so that ABD is isosceles. Show that
 - (a) $\angle ADB = A/2$; (b) $BD = 2c \cos(A/2)$.
 - (c) From the right triangles DCB and ACB,

show that

 $c\sin A = a = 2 c\cos (A/2) \sin (A/2);$

hence

 $\sin A = 2\sin (A/2)\cos (A/2);$

(d) Likewise, show that $c \cos A = b = 2 c \cos^2(A/2) - c$; hence $\cos A = 2 \cos^2(A/2) - 1 = \cos^2(A/2) - \sin^2(A/2)$.

PART II. ACCURACY OF SOLUTIONS - APPLICATIONS

11. The Question of Greater Accuracy. The degree of accuracy of the results obtained by using the values of the trigonometric functions to three places of decimals, while sufficient for many ordinary applications, is not satisfactory for some purposes; for example, in extended surveys, in astronomy, and in any work for which the data must be determined by using instruments of precision.*

More accurate values have been calculated. The values for angles at intervals of 1' are given to five decimal places in the Tables (Table II). Still more accurate values are available in separately printed tables.

12. Functions of 30°, 45°, 60°. To determine the functions of the angle 45° construct an isosceles right triangle having each of its equal sides m units in length. Each of the equal angles is 45°. The hypotenuse is $m\sqrt{2}$; hence $\sin 45^\circ = m/(m\sqrt{2}) = 1/\sqrt{2} = \sqrt{2}/2 = .7071^+$. Compute the values of the other functions of 45° in a similar manner.

To determine the functions of 30° and 60° , draw an equilateral triangle of side m and drop a perpendicular from one vertex to the opposite side. The acute angles of each of the right triangles thus formed are 30° and 60° . Find the hypotenuse and the sides of one of these right triangles in terms of m, and compute the values of each of the functions for each of these angles.

The values in the following table should be memorized:

	0°	80°	· 45°	60°	90°	$\sqrt{2} = 1.414$
sin	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	$\sqrt{3} = 1.732$
cos	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	$1/\sqrt{2} = \sqrt{2}/2$
tan	0	√3/3	1	$\sqrt{3}$		$1/\sqrt{3} = \sqrt{3}/3$

^{*} Thus it is obviously unwise to use values to more than three decimal places in reducing any large measurements on the earth's surface unless a standard steel tape and other standard surveying instruments are available.

13. Use of the Large Tables. Five-place tables are used in precisely the same manner as the small table of p. 15.

Example 1. One angle of a right triangle is $42^{\circ} 20'$ and the hypotenuse is 28 ft. 6 in. long. Find the remaining sides and the other angle. Draw a diagram to illustrate the problem, indicating the given parts. Denote the unknown parts by the letters a and b, as in Fig. 13.

To find b, note that it is the *side adjacent* to the given angle, and that the hypotenuse is given. Hence, by (14), § 6.

$$b = 28.5 \cos 42^{\circ} 20' = 28.5 \times .73924 = 21.07.$$

• Note that a is opposite the given angle; hence by (13), § 6,

$$a = 28.5 \sin 42^{\circ} 20' = 28.5 \times .67344 = 19.19;$$

the sine and the cosine of 42° 20' being found in a table.

To find β , note that it is the complement of $42^{\circ} 20'$; hence $\beta = 47^{\circ} 40'$.

Example 2. The perpendicular sides of a right triangle are 22 ft. 6 in. and 54 ft., respectively. Find the hypotenuse and the angles. Draw a diagram, indicating the given parts and lettering the parts to be found, as in Fig. 14. To find α , note that the given parts a.e the sides opposite and adjacent to i.; hence by the definition of tangent, we may write

$$\tan \alpha = 22.5 \div 54 = .41667$$
.

From the tables $\tan 22^{\circ} 37' = .41660$;

hence $\alpha = 22^{\circ} 37' + \text{ and } \beta = 67^{\circ} 23' -$.

Another method is the following: By the Pythagorean theorem of plane geometry, using a table of squares and square roots or by direct calculation,

$$h^2 = \overline{54}^2 + \overline{22.5}^2 = 3422.25.$$

Fig. 14 Hence h=58.5. But this method is arduous without a table of squares. See Table VI.

Having found $\alpha=22^{\circ}\,37'$ we might find h as follows. By (15), § 6, $h=54/(\cos22^{\circ}\,37')=54/.92310=58.498$. This method is no shorter than the one used above, and is open to the objection that any error made in computing α vitiates the resulting value found for h. In general, compute each unknown part from the given parts; i.e. do not use computed parts as data if it can be avoided.

As in these Examples, observe the procedure suggested on p. 14, Exercises IV, in solving any triangle.

EXERCISES VI. - RIGHT TRIANGLES LARGE TABLES

- 1. Solve the following right triangles. The hypotenuse is denoted by h, other sides by other small letters, and any angle by the capital letter corresponding to the small letter that denotes the side opposite it.
- (a) $A = 61^{\circ} 17'$, b = 1.4, (d) $M = 49^{\circ} 49'$, h = 24.6. (g) p = 18.2, q = 50.
- (b) $A = 32^{\circ} 31'$, a = 33. (e) b = 4.848, h = 10. (h) u=11.65, h=25.
- (f) $U = 63^{\circ} 2', u = 40.$ (i) m = 34.2, h = 100. (c) a = 62.12, h = 254.
- 2. The base of an isosceles triangle is 324 ft., the angle at the vertex is 64° 40'. Find the equal sides and the altitude.
- 3. A chord of a circle is 21.5 ft., the angle which it subtends at the center is 41°. Find the radius of the circle.
- 4. To determine the width BA of a river, a line BC 100 rods long is laid off at right angles to a line from B to some object A on the opposite bank visible from B. The angle BCA is found to be 43° 35'. Find AB.
- 5. The shadow of a tower 200 ft, high is 252.5 ft, long. What is the angle of elevation of the sun?
- 6. Two ships in a vertical plane with a lighthouse are observed from its top, which is 200 ft. above sea level. The angles of depression of the two ships are 15° 17' and 11°22'. Find the distance between the ships.
- 14. Projections. The projection of a line segment AB upon a line l is defined to be the portion MN of the line l between perpendiculars drawn to it from A and B, respectively. The

length of this projection is easily found if the length of AB and the angle α which the line AB makes with l are known. For, draw a parallel to I through A, meeting BN at C. Then ACB is a right triangle and the angle at A is α ; hence by (14), § 6,

$MN = AB \cos \alpha$,

or, the projection of a segment upon a given line is equal to the product of the length of the segment and the cosine of the angle the segment makes with the given line.

The projections of a segment upon the coördinate axes are frequently used. If the segment makes an angle α with the horizontal, the projections on the x and y axes are, respectively,

(1) Proj. $AB = AB \cos \alpha$, Proj. $AB = AB \sin \alpha$, Fig. 16 where $\text{Proj}_x AB$ and $\text{Proj}_y AB$ denote the projections of AB on the x-axis and the y-axis, respectively.

15. Applications of Projections. In mechanics and related subjects, forces and velocities are represented graphically by line segments. A ferce, say of 10 lb., is represented by a segment 10 units in length in the direction of the force. A velocity of 20 ft. per sec. is represented by a segment 20 units in length in the direction of motion.

The projection upon a given line l, of a segment representing a force, represents the effective force in the direction l; this is called the *component* of the given force in the direction l.

Example 1. A weight of 50 lb. is placed upon a smooth plane inclined at an angle of 27° with the horizontal. What force acting directly up the incline will be required to keep the weight at rest?

Draw to some convenient scale a segment 50 units in length directly downward to represent the force exerted by the weight. Project this segment upon a line inclined at an angle of 27° with the horizontal. The length of this projection is 50 sin $27^{\circ} = 2^{\circ}$? nearly. This represents the component of the force down the plane. Therefore, a force of 22.7 lb, actin

Fig. 17

down the plane. Therefore, a force of 22.7 lb. acting up the plane will be required to keep the weight at rest.

EXERCISES VII. - PROJECTIONS

- 1. Find the horizontal and vertical projections of the segments:
- (a) length 42, making an angle of 37° with the horizontal.
- (b) length 5.5, making an angle of 50° with the vertical.
- 2. A straight railroad crosses two north and south roadways a mile apart. The length of track between the roadways is 1½ mi. A train travels this distance in 2 min. Find the components of the velocity of the train parallel to the roadways and perpendicular to them. Find the angle between the track and either roadway.
- 3. The eastward velocity of a certain train is 24 mi. per hour. The northward velocity is 32 mi. per hour. Find its actual velocity along the track and the angle the track makes with the east and west direction.
- 4. A car is drawn by means of a cable. If a force of 5000 lb, exerted along the track is required to pull the car, what force will be required when the cable makes an angle of 15° with the track?
- 5. Find the horizontal and vertical components of a force represented by a segment 30 units long at an angle of 40° with the horizontal.

16. The Use of Logarithms. Logarithms may be used to shorten computations involving multiplications, divisions, raising to powers or extracting roots, but not involving additions or subtractions. In much of the numerical work which follows, the use of logarithms is very advantageous in saving time and labor. but the student should bear in mind that logarithms are not necessary. They are merely convenient, and they belong no more to trigonometry than to arithmetic. One of the questions which a computer has to decide is whether or not it will be advantageous to use logarithms in a given problem.

Tables usually contain (1) tables of logarithms; (2) tables of the trigonometric functions; (3) tables of logarithms of the trigonometric functions. The notation log tan 61° means the logarithm of the tangent of 61°; i.e. the tangent of 61° is a number, 1.804⁺, and the logarithm of this number 1.804⁺ is .25625.

A formula which has been arranged so as to involve only products and quotients of powers and roots of quantities either known or easily computed is said to be adapted to logarithmic computation.

Thus the formula $h=\sqrt{a^2+b^2}$, which gives the hypotenuse h of a right triangle in terms of the sides a and b, is not adapted to logarithmic computation. On the other hand, the formula $b=\sqrt{h^2-a^2}=\sqrt{(h+a)(h-a)}$ which gives one side in terms of the hypotenuse and the other side is adapted to logarithmic computation because (h+a) and (h-a) are easily obtained from h and a. Thus, if the hypotenuse is 17.34 and one side is 12.27, the other side is

Again, such an expression as $12.5 \sin 42^{\circ} 37'$, which might occur in solving a triangle, would be computed as follows:

17. Products with Negative Factors. To find by use of logarithms the product of several factors some of which are negative, the product of the same factors, all taken positively, is first obtained, and the sign is then determined in the usual way by counting the number of negative signs.

Thus, to obtain the product of the four factors -115, 23.41, -.6422, and -.1123, we write x = (115)(23.41)(.6422)(.1123); then

$$\begin{array}{c} \log 115 = 2.06070 & \text{(n)} \\ \log 23.41 = 1.36940 & \text{(n)} \\ \log .6422 = 9.80767 - 10 & \text{(n)} \\ \log .1123 = 9.05038 - 10 & \text{(n)} \\ \log x = 2.28815 & \text{hence} \end{array}$$

Here the fact that the first factor and the last two are negative is indicated by writing an (n) in parenthesis to the right of the corresponding logarithms. The product of the given factors all taken positively is 194.15; since the number of negative factors is odd the product is really — 194.15.

For other processes, see the Explanation of the Tables.

EXERCISES VIII. - RIGHT TRIANGLES - MUSCELLANEOUS

- 1. Solve by means of logarithms the following right triangles, where h denotes the hypotenuse, other small letters the sides, and the corresponding capital letters the angles opposite those sides.
 - (a) $A = 63^{\circ}$; h = 28.54.
 (b) a = 735.1; h = 846.2.

 (c) $P = 65^{\circ} 25'.2$; p = 69.25.
 (d) r = 9.328; s = 6.302.

 (e) $A = 28^{\circ} 25'$; h = 29.36.
 (f) a = 59.68; h = 69.27.

 (g) $U = 28^{\circ} 40'.4$; v = 20.71.
 (h) $G = 36^{\circ} 21'$; h = 41.376.
- 2. A tree stands on the opposite side of a small lake from an observer. At the edge of the lake the angle of elevation of the top of the tree is found to be 30°58′. The observer then measures 100 ft. directly away from the tree and finds the angle of elevation to be 18°26′. Find the height of the tree and the width of the lake.
- 3. From a point 250 ft. from the base of a tower and on a level with the base the angle of elevation of the top is 62° 32'. Find the height.
- 4. To determine the height of a tower, its shadow is measured and found to be 97.4 ft. long. A ten-foot pole is then held in vertical position and its shadow is found to be 5.5 ft. Find the height of the tower and the angle of elevation of the sun.
- 5. Find the length of a ladder required to reach the top of a building 50 ft. high from a point 20 ft. in front of the building. What angle would the ladder in this position make with the ground?

- 6. The width of the gable of a house is 34 ft.; the height of the house above the eaves is 15 ft. Find the length of the rafters and the angle of inclination of the roof. Find the pitch of the roof. (Ex. 10, p. 11.)
- 7. A kite string is 250 ft. long and makes an angle of 40° with the level ground. Find approximately the height of the kite above the ground, neglecting the sag in the string.
- 8. One bank of a river is a bluff rising 75 ft. vertically above the water. The angle of elevation of the top of the bluff from the water's edge on the opposite bank is 20° 27'; find the width of the river.
- 9. A taut rope 100 ft. long is attached to the top of a building. The free end reaches the ground 24 ft. 7 in. away from the base of the building. Find the height of the building and the angle which the rope makes with the ground.
- 10. Find the angles which the diagonal of a rectangle 12 ft. wide and 17 ft. long makes with the sides.
- 11. A chord of a circle is 100 ft. long and subtends an angle of 40° 42′ at the center. Find the radius of the circle.
- 12. A hill rises 8 ft. vertically in a horizontal distance of 40 ft. Find the angle of inclination of the hill with the horizontal. What is the difference in elevation of two points that are 500 ft. apart measured up the hill?
- 13. Find the length of a side of an equilateral triangle circumscribed about a circle of radius 15 inches.
- 14. Devise a formula for solving an isosceles triangle when the base and the base angles are given; when the base and one of the equal sides

are given; when one of the equal sides and one of the base angles are given.

- 15. The base of an isosceles triangle is 245.5 and each of the base angles is 68° 22′. Find the equal sides and the altitude.
- 16. The altitude of an isosceles triangle is 32.2 and each of the base angles is 32°42′. Find the sides of the triangle.
- Fig. For Ex. 17 17. In the accompanying figure show that $\angle BCD = \theta/2$; that $DB = r(1 \cos \theta) = r \operatorname{vers} \theta$; and that $CB = 2 r \sin (\theta/2)$.
 - 18. From the same figure show that $\sin \theta = 2 \sin (\theta/2) \cos (\theta/2)$.
 - [Hint. Find the area of $\triangle ABC$, using first AB, then BC, as base.]
 - 19. Show that $\tan (\theta/2) = (1 \cos \theta) / \sin \theta$.

CHAPTER III

SOLUTION OF OBLIQUE TRIANGLES

PART I. FUNCTIONS OF OBTUSE ANGLES

18. Obtuse Angles. The solution of oblique triangles involves obtuse * as well as acute angles. Let an obtuse angle α be placed on the coördinate axes with the vertex at the origin and one

side along the x-axis to the right; then the other side will fall in the second quadrant. The ratios $\sin \alpha$, $\cos \alpha$, etc., are defined in terms of x, y, and $r = \sqrt{x^2 + y^2}$ precisely as for acute angles. (See § 6.) It should be noticed, however, that since x is negative while y and r are positive, every ratio which involves x is negative for an obtuse angle;

Fig. 19

thus $x/r = \cos \alpha$, $y/x = \tan \alpha$, and their reciprocals, see α and ctn α , are all negative for obtuse angles.

We have seen how it is possible to find the ratios of angles greater than 45° from a table extending no farther than 45°, by means of the relations $\sin (90^{\circ} - a) = \cos a$, etc., which were proved on p. 13. By means of similar relations it is possible

to find the values of the ratios for obtuse angles from the same table.

Let α be placed on coördinate axes as described above, and let the supplement of α be denoted by β (which is an acute angle). Lay off β from Ox so that the other side of

 β falls in the first quadrant. From a point P in the side of α (in second quadrant) and a point P' in the side of β (in first quadrant) at the same distance r from the origin, draw the

^{*} An obtuse angle is an angle which is greater than 90° and less than 180°.

perpendiculars PM, P'M', as in Fig. 20. The value of x for the point P will be negative since P is in the second quadrant. Let its coordinates be (-a, b); then, since the triangles OPM, OP'M' are symmetric, the coördinates of P' are (a, b). in § 6, we have

$$\sin \alpha = \frac{b}{r} = \sin \beta,$$
 $\cos \alpha = -\frac{a}{r} = -\cos \beta,$

or, since $\beta = 180^{\circ} - \alpha$,

(1)
$$\sin \alpha = \sin (180^{\circ} - \alpha);$$

(2)
$$\cos \alpha = -\cos (180^{\circ} - \alpha).$$

In a similar manner it can be shown that

(3)
$$\tan \alpha = -\tan (180^{\circ} - \alpha).$$

It follows that if α is an obtuse angle we find its sine by looking for the sine of its supplement, which is an acute angle, and similarly for the other functions, always having regard for the proper sign. The relations just found, together with those of § 9, enable us to find the values of the functions for any angle which can occur in a triangle, from a table which gives them from 0° to 45°.

EXERCISES IX .- FUNCTIONS OF OBTUSE ANGLES

1. From the accompanying figure prove the following relations:

- (a) $\sin (90^{\circ} + \alpha) = \cos \alpha$;
- (b) $\cos (90^{\circ} + \alpha) = -\sin \alpha$;
- (c) $\tan (90^{\circ} + \alpha) = \cot \alpha$.

2. Construct obtuse angles whose functions have the following values:

- (a) $\sin \theta = 1/3$:
- (b) $\tan \theta = -3/4$;
- (c) $\cos \theta = -3/5$; (d) $\sin \theta = 1/2$; (e) $\sin \theta = \sqrt{2}/2$; (f) $\sin \theta = \sqrt{3}/2$
- (f) $\sin \theta = \sqrt{3/2}$.
- 3. Find the values of the remaining functions of the angles of Ex. 2.

4. Express the following as functions of an angle less than 45°, and look up their values in a table.

- $(a) \sin 121^{\circ}$:
- (b) cos 101°;
- (c) $\tan 168^{\circ}$;

- $(d) \sin 99^{\circ}$;
- (e) ctn 178°;
- $(f) \cos 154^{\circ};$

- $(g) \cos 133^{\circ} 11';$
- (h) $\tan 144^{\circ}38'$:
- (i) $\sin 92^{\circ} 3'$.

PART II. FUNDAMENTAL PRINCIPLES OF SOLUTION

- 19. General Method for Oblique Triangles. In the solution of oblique triangles the following cases arise:
 - Case I. Given two angles and a side.
 - Given two sides and the included angle. Case II.
 - Case III Given the three sides.
 - Case TV. Given two sides and an angle opposite one of them.

A general method for solving oblique triangles in all of these cases consists in dividing the triangle into two right triangles by a perpendicular from a vertex to the opposite side; these right triangles are then solved by the methods of the previous chapter. In all cases except the three side case the perpendicular can be drawn in such a manner that one of the resulting right triangles contains two of the given parts.

This method applied in the various cases leads to formulas for the solution if letters are employed for the sides and angles.

20. Case I: Given Two Angles and a Side. In this case it is immaterial which side is given, since the third angle can be found immediately from the fact that the sum of the three angles is 180°. Drop the perpendicular from either extremity of the given side.

Example 1. An oblique triangle has one angle equal to 43°, another equal to 67°, and the side opposite the unknown angle equal to 51. termine the remaining parts.

It is immediately seen that the third angle is $180^{\circ} - (43^{\circ} + 67^{\circ}) = 70^{\circ}$. To solve this triangle draw the figure approximately to scale and drop the perpendicular CD = p from one extremity C of the known side to AB, the side opposite C. Denote the unknown side CB by a. In the right triangle ACD, the hypotenuse and one angle are known; hence by (13), § 6, $p = 51 \sin 67^{\circ} = 46.95$. An angle and the side op-

posite, in the right triangle BCD, are now known; hence by (15), $\S 6$, $a = p/\sin 70^\circ = 46.95/.9397 = 49.96.$

The side AB may be found in the same manner. Check as in § 3, p. 2.

21. Case II: Given Two Sides and the Included Angle. The triangle can be divided into two right triangles, one of which contains two of the known parts, by a perpendicular drawn from either extremity of the unknown side to the side opposite.

Example 1. Two sides of a triangle are 26.5 and 32.8; the included angle is 52° 18'. Find the remaining parts.

In the figure let AB=32.8, AC=26.5, and the angle at $A=52^\circ$ 18'. Drop a perpendicular p from B to the opposite side. Denote the un-

known side by a and the segments of AC by x and y as in Fig. 22; then p, x, y, a, can be computed in the following order:

$$p = 32.8 \sin 52^{\circ} 18' = (32.8)(.79122) = 25.952.$$

 $x = 32.8 \cos 52^{\circ} 18' = (32.8)(.61153) = 20.058.$
 $y = 26.5 - 20.058 = 6.442.$
 $a^2 = p^2 + y^2 = \overline{25.952^2} + \overline{6.442^2} = 715 \text{ nearly.}$
 $a = \sqrt{715} = 26.74.$

The student may determine the angles at B and C.

22. Case III: Given the Three Sides. In this case it is not possible to divide the triangle into two right triangles in such a way that one of them contains two of the given parts; however, if a perpendicular is dropped to the longest side from the vertex of the angle opposite, the segments into which this side is divided by the perpendicular are easily computed, as in the example below. There is one and only one solution, provided no side is greater than the sum of the other two.

Example 1. The sides of a triangle are a = 36.4, c = 50.8, and b = 72.5. Determine the angles.

Draw a figure and drop a perpendicular from B upon AC. Denote the segments of the base by x and y as in Fig. 23; then

$$p^{2} = \overline{50.8}^{2} - x^{2} = 36.4^{2} - y^{2};$$
 hence
$$x^{2} - y^{2} = \overline{50.8}^{2} - 36.4^{2} = 1255.68;$$
 that is, $(x - y)(x + y) = 1255.68$. Since
$$x + y = b = 72.5,$$
 we have
$$x - y = 1255.68 + 72.5$$

$$= 17.32;$$
 whence, adding,
$$x = 44.91,$$
 and, subtracting,
$$y = 27.59.$$

Since we now know x and y, the angles at A and C are easily found. The student may complete the solution. See also § 25.

23. Case IV: Given Two Sides and the Angle Opposite One of The triangle is easily solved by the general method. dropping the perpendicular from the vertex of the angle included by the given sides.

Example 1. One angle of a triangle is 37° 20'; one side adjacent is 25.8 and the side opposite is 20.8. Solve the triangle.

First construct the given angle A and on one side of A lay off AB =With B as center and radius = 20.8 describe an arc of a circle meeting the opposite side in two points C and C'. Either of the triangles ABC, ABC' satisfies the given conditions; the case is on this account called the ambiguous case.

The student should note that the triangle BCC' is isosceles and that the interior angle of ABC at C is equal to the exterior angle of ABC'

at C': hence the interior angles C and C' are supplementary. To solve ABC draw the perpendicular BD = p from B; then determine p from the right triangle ABD.

$$p = 25.8 \sin 37^{\circ} 20' = 15.6464.$$

Next determine C from the right triangle BDC;

$$\sin C = \frac{p}{a} = \frac{15.6464}{20.8} = .75223$$
;

Fig. 24

hence C is the acute angle whose sine is .75223; i.e. $C = 48^{\circ} 47'.05$. The student can complete the solution as follows:

$$AC = AD + DC$$
; $B = 180^{\circ} - (A + C)$.

Also for triangle ABC',

$$C' = 180^{\circ} - C$$
; $B' = 180^{\circ} - (A + C')$; $AC' = AD - CD$.

EXERCISES X. - SOLUTION OF TRIANGLES

Find the remaining parts of the following triangles by suitably dividing each into two right triangles. Capital letters represent angles; small letters the sides opposite them.

- 1. (a) $A = 17^{\circ} 17'$, $B = 37^{\circ} 37'$, c = 174;
 - (b) $A = 24^{\circ} 14'$, $C = 43^{\circ} 13'$, c = 240;
 - (c) $L = 28^{\circ}$, $M = 51^{\circ}$, l = 6.3.
- 2. (a) a = 41, b = 51, $C = 62^{\circ}$; 3. (a) a = 7, b = 12, c = 15;
 - (c) u = 22, v = 12, $W = 42^{\circ}$. (b) b = 3.5, c = 2.6, $A = 33^{\circ}$; (b) l=10, m=14, n=20;
 - (c) u=3, v=4, w=5.
- 4. (a) a = 50.8, b = 35.9, $A = 64^{\circ}$ (c) b = 23.4, q = 19.8, $B = 109^{\circ}$; (b) g = 6.22, k = 7.48, $G = 26^{\circ}$ (d) a = 213, b = 278, $B = 100^{\circ}$.
- 5. To determine the distance from a point A to an inaccessible object B, a base line AC = 300 ft. and the angles $BAC = 40^{\circ}$, $BCA = 50^{\circ}$ are measured. Find the distance AB.

6. To determine the distance between two trees A, B on opposite sides of a hill, a point C is chosen from which both trees are visible; the distances AC=.400 ft., BC=361 ft., and the angle $ACB=55^{\circ}$ are then measured. What is the distance between the trees?

7. The sides of a triangular field are 43 rods, 48 rods, and 57 rods, respectively; determine the angles between the sides.

- 8. A 50 ft. chord of a circle subtends an angle of 100° at the center. A triangle is to be inscribed in the larger segment having one of its sides 40 ft. long. How long is the other side? Is there only one solution?
- 9. A triangle having one of its sides 60 ft. long is to be inscribed in the segment of Ex. 8. Determine the remaining side. How many solutions are there in this case?
- **24**. The Law of Sines. In Example 1, § 20, it may be observed that it was not really necessary to calculate p numerically in order to find a, for we might have written

$$a = \frac{p}{\sin 70^{\circ}} = \frac{51 \sin 67^{\circ}}{\sin 70^{\circ}}$$

from which a could have been found by the use of logarithms in one calculation.

A formula which can be used for all examples of this case can be obtained in a similar manner. Let us denote the sides opposite

A, B, C, by a, b, c, respectively. The adjoining figures represent two cases: in one the triangle has all its angles

acute; in the other, one angle, B, is obtuse. In either figure by (13), § 6,

$$p = b \sin A$$
.

Moreover, in the first figure $p = a \cdot \sin B$. In the second figure, denote the angle DBC by B'; then B' is the supplement of B; hence by (1), 8.18 sin B' s

§ 18, $\sin B = \sin B'$. But by (13), § 6, $p = a \sin B' : a \sin B$; hence, in any case, $p = a \sin B$. It follows that $b \sin A = a \sin B$,

or, dividing first by the product $\sin A \sin B$, and second by $a \sin A$,

(1)
$$\frac{a}{\sin A} = \frac{b}{\sin B}$$
, or $\frac{b}{a} = \frac{\sin B}{\sin A}$.

If the perpendicular is drawn from one of the other vertices, say from B, the above procedure leads to the equation

$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
, or $\frac{c}{a} = \frac{\sin C}{\sin A}$.

Combining this with formula (1) we have

(2)
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$

This result, known as the law of sines, may be stated as follows:

In any triangle any two sides are proportional to the sines of the angles opposite them.

By using this law any example under Case I can be solved as in the following example. There is always one and only one solution if the sum of the given angles is less than 180°.

Example 1. Given one side of a triangle a=2.903 and two of the angles $B=79^{\circ}$ 40', $C=33^{\circ}$ 15'; find the remaining parts.

We first obtain the angle A opposite the given side a and then apply the law of sines.

$$A = 180^{\circ} - (B + C) = 180^{\circ} - (79^{\circ} 40' + 33^{\circ} 15') = 67^{\circ} 5'.$$

By the law of sines

$$\frac{b}{2.903} = \frac{\sin 79^{\circ} \ 40'}{\sin 67^{\circ} \ 5'}, \qquad \text{or} \qquad b = \frac{2.903 \ \sin 79^{\circ} \ 40'}{\sin 67^{\circ} \ 5'}.$$

The computation by logarithms follows:

$$\begin{array}{lll} a = 2.903 & \log a = 0.46285 \\ B = 79^{\circ} \ 40' & \log \sin B = 9.99290 - 10 \\ A = 67^{\circ} \ 5' & \operatorname{colog} \sin A = \underbrace{0.03571}_{0.049146} \\ b = 3.1007 \end{array}$$

The side c is found similarly from the equation

Thus:
$$\frac{c}{2.903} = \frac{\sin 33^{\circ} 15'}{\sin 67^{\circ} 5'}.$$

Check by the facts mentioned in § 3, p. 2.

^{*} The fact that a proportion x/a = b/c gives x = ab/c should be memorized by some device. Then $\log x = \log a + \log b + \operatorname{colog} c$.

25. The Law of Cosines. In Case II also, it is possible to eliminate the auxiliary parts and express the unknown side directly in terms of the given parts. Denote, as before, the sides and angles by a, b, c, A, B, C; and let b, c, and A be the given parts. Drop a perpendicular p from B to the opposite side, and denote the segments of the opposite side by x and y.

By (13), § 6, we have, in Fig. 26, $p = c \sin A$, $x = c \cos A$, $y = b - x = b - c \cos A$, $a^2 = y^2 + p^2 = (b - c \cos A)^2 + c^2 \sin^2 A$ $= b^2 - 2bc \cos A + c^2(\sin^2 A + \cos^2 A) = b^2 - 2bc \cos A + c^2$; or, (1) $a^2 = b^2 + c^2 - 2bc \cos A$ $\begin{bmatrix} a^2 = b^2 + c^2 - 2bc \cos A \end{bmatrix}$ Fig. 26
Fig. 27

If the side a to be found is opposite an obtuse angle A, y = b + x; but by (2) § 18, $x = c \cos(180^{\circ} - A) = -c \cos A$; hence $y = b - c \cos A$ and $p = c \sin(180^{\circ} - A) = c \sin A$, exactly as in the case considered above.

This result, called the law of cosines, may be stated as follows:

In any triangle, the square of any side is equal to the sum of the squares of the other two sides minus twice their product into the cosine of their included angle.

Example 1. Two sides of a triangle are 2.1 and 3.5 and the included angle is 53° 8′. Determine the remaining parts. Draw the figure, and de-

note the unknown side by a; then, using the table of

squares, $a^{2} = \overline{2.1^{2}} + \overline{3.5^{2}} - 2(2.1)(3.5) \cos 53^{\circ} 8'$ = 4.41 + 12.25 - (14.70)(.59995) = 4.41 + 12.25 - 8.82 = 7.84Hence $a = \sqrt{7.84} = 2.8$

Conplete the solution as in § 24; and check as in § 3, p. 2.

Case III (§ 22) also may be treated by the law of cosines, for, if a, b, c are known, $\cos A$ can be found from (1).

EXERCISES XI. - SINE LAW - COSINE LAW

1. Solve the following triangles by using the law of cosines:

(a)
$$a = 22$$
, $b = 12$, $C = 42^{\circ}$. (e) a

(e)
$$a = 2.2$$
, $b = 4.2$, $c = 5.5$.

(b)
$$a = 14$$
, $c = 16$, $B = 52^{\circ}$.

(f)
$$l = 13$$
, $m = 16$, $n = 20$.
(g) $u = 41$, $v = 51$, $W = 61^{\circ}$.

(c)
$$l = 28$$
, $m = 36$, $N = 125^{\circ}$.

(b)
$$b = 3.5$$
, $c = 2.6$, $A = 33^{\circ}$.

b = 24, c = 28. (d) a = 21, 2. To determine the width AC of a lake, the distances AB = 400 ft.,

BC = 351 ft., and the angle $ABC = 50^{\circ}$, are measured. Find the width. 3. Obtain the remaining parts of the following

(a)
$$A = 51^{\circ} 47'$$
, $B = 66^{\circ} 20'$, $c = 337.6$.

(b)
$$A = 48^{\circ} 10'$$
, $B = 54^{\circ} 10'$, $c = 38.7$.

(c)
$$B = 38^{\circ} 12'$$
, $C = 61^{\circ} 10'$, $a = 70.12$.

(d)
$$U = 46^{\circ} 36'$$
, $V = 124^{\circ} 18'$, $w = 1001$.

(e)
$$B = 21^{\circ} 16'$$
, $C = 113^{\circ} 34'$, $d = 20.93$.

(f)
$$a = 39.75$$
, $B = 62^{\circ} 42'$, $M = 52^{\circ} 22'$.

4. The side of a hill is inclined at an angle of 22° 37' to the horizon. A flagstaff at the top of the hill subtends an angle of 13° 17' from a point at the foot of the hill, and an angle of 18° 2' from a point 100 ft. directly up the hill. Find the height of the flagstaff.

5. To determine the elevation of an inaccessible object C above the point D, a base line BD = 250 ft., and the angles $ADC = 51^{\circ} 16'$, DBA =

 $37^{\circ} 24'$, and $ADB = 124^{\circ} 41'$ are measured, where A is vertically beneath the object C in a horizontal plane with B and D. How high is C above the point A?

[Note. Such angular measurements are obtained in practice by means of a transit; in this exercise the

point A need not be visible, since the leveling device enables one to measure the angles mentioned without actually sighting on A.

6. To find the distance from a station A to an inaccessible point B, a base line AC = 500 ft., and the angles $ACB = 68^{\circ} 18'$ $CAB = 58^{\circ} 28'$ are measured. Find the distance AB.

7. To find the height of an inaccessible object AB, a base line CD =250 ft. is measured directly toward the object: also the angles of elevation $ADB = 48^{\circ} 20'$ and $ACB = 38^{\circ} 40'$. Find the height AB.

[Hint. First find DB by solving the triangle CDB; then find the height by solving the right triangle DAB.

PART III. SPECIAL LOGARITHMIC METHODS

26. The Law of Tangents. In § 25, we used the Law of Cosines for the solution of triangles in Case II; but logarithms could not be used advantageously, and the computations without logarithms are tedious. We shall now obtain a formula for Case II that is adapted to logarithmic computation.

In this case, since one angle is given, the sum of the other two can easily be found. The law of tangents is a formula for obtaining the difference of the unknown angles. When the sum and the difference are known, the angles themselves can be found immediately by addition and subtraction.

Let ABC be any triangle having two sides a and b unequal, say a > b; the included angle C may be acute, right, or obtuse.

With a radius b, the shorter of the given sides, and center C, the vertex of the included angle, describe a circle through A which cuts the side CB in a point D between B and C and also at a second point E beyond C. Draw EA, and at B erect a perpendicular which meets EA produced at F. On DF as a diameter construct a circle; this circle will pass through A and B, for FAD is a right angle since it is the supplement of DAE which is inscribed in a semicircle, and FBD is a right angle by construction. This construction is possible for any triangle in which a > b.

The angle BFE = (A+B)/2, since it is the complement of CEA = C/2, and $(A+B+C)/2 = 90^{\circ}$. The angle DFA is equal to B, since both angles intercept the same arc AD; hence, BFD = BFE - DFA = (A-B)/2.

In the right triangles DBF and EBF, by (13), § 6, $a-b=BF\tan \left[(A-B)/2 \right]$, and $a+b=BF\tan \left[(A+B)/2 \right]$. Therefore,

(1)
$$\frac{a-b}{a+b} = \frac{\tan\left[(A-B)/2\right]}{\tan\left[(A+B)/2\right]}$$

This formula is still true, but is trivial, if a = b, since in that case both sides are zero; if a < b the result would obviously be

$$\frac{b-a}{b+a} = \frac{\tan \left[(B-A)/2 \right]}{\tan \left[(B+A)/2 \right]}.$$

This completes the proof of the law of tangents:

In any plane triangle the difference of any two sides is to their sum as the tangent of one half the difference of the angles opposite is to the tangent of one half their sum.

Since (A + B)/2 is the complement of C/2 the formula may be written

(2)
$$\tan \frac{1}{2}(A-B) = \frac{a-b}{a+b} \cot \frac{C}{2},$$

a form which is adapted to logarithmic computation, and which enables us to find (A-B)/2 directly from the two given sides a and b and their included angle C.

27. The Tangents of the Half-angles. In this article we shall obtain certain useful formulas for the tangents of the half-angles of a triangle. Let us draw the bisectors of the angles of the triangle ABC and denote their point of intersection by I. By geometry, this point is known to be the center of the inscribed circle. Denote the radius of this circle by r. Draw the radii ID, IE, IF, perpendicular to the sides. By geometry

the tangents to the inscribed circle from any vertex of the triangle are equal. Let us use the notation

Fig. 30

$$l = AE = AF;$$

 $m = BF = BD;$
 $n = CD = CE;$
 $2 s = a + b + c.$

2s = a + b + c. Then we have 2s = 2l + 2m + 2n, or s = l + m + n, and since a = m + n, b = n + l, c = l + m.

we obtain s-a=l, s-b=m, s-c=n.

We have then from the right triangles AFI, BDI, and CEI:

(1)
$$\tan \frac{A}{2} = \frac{r}{s-a}$$
, $\tan \frac{B}{2} = \frac{r}{s-b}$, $\tan \frac{C}{2} = \frac{r}{s-c}$.

Eliminating r from the last two by division, we have

(2)
$$\frac{\tan(B/2)}{\tan(C/2)} = \frac{s-c}{s-b} = \frac{a+b-c}{a-b+c}$$

28. Second Proof of the Law of Tangents. The formula (2) of \$ 27 enables us to give another proof of the law of tangents.

In the triangle ABC, suppose A > B. From B draw BA', making $\angle ABA'$ equal to A, and meeting AC produced in A'; then $\angle CBA' = B' = A - B$, and $\angle BCA' = C' = 180^{\circ} - C$.

In the triangle BCA' denote the side opposite C' by c', and the side opposite B by b'. Since the triangle ABA' is isosceles, A'A = c', and there-

fore b' = c' - b. If we apply (2), § 27, to the triangle BCA', we find $\frac{\tan(B'/2)}{\tan(C'/2)} = \frac{a' + b' - c'}{a' - b' + c'}$

or,
$$\frac{\tan(C/2)}{\tan[90^{\circ} - C/2]} = \frac{a + c' - b - c'}{a - c' + b + c'} = \frac{a - b}{a + b'}$$

and this reduces to the law of tangents:

$$\tan\frac{1}{2}(A-B) = \frac{a-b}{a+b} \cot\frac{C}{2}.$$

Let us now apply the law of tangents to the solution of an example in Case II. There is always one and only one solution in this case if the given angle is less than 180°.

Example 1. Two sides of a triangle are 22.531 and 34.645; the included angle is 43° 31'. Determine the remaining parts.

Let a = 34.645, b = 22.531, $C = 43^{\circ} 31'$, and denote the unknown parts by A, B, c. The sum A + B of the unknown angles is $180^{\circ} - C = 180^{\circ} - 43^{\circ} 31' = 136^{\circ} 29'$. The difference A - B is obtained as follows:

$$C/2 = 21^{\circ} \ 45.'5 \; ; \; a-b = 12.114 \; ; \; a+b = 57.176.$$

$$\log(a-b) = 1.08328 \qquad \text{whence} \quad (A-B)/2 = 27^{\circ} \ 57'.6$$

$$\log \cot(C/2) = 0.39888 \qquad \text{as above,} \quad (A+B)/2 = 68^{\circ} \ 14'.5$$

$$\operatorname{colog}(a+b) = \underbrace{8.24279 - 10}_{9.72495 - 10} \qquad \operatorname{adding,} \qquad A = 96^{\circ} \ 12'.1$$

$$\log \tan\left[(A-B)/2\right] = \underbrace{9.72495 - 10}_{9.72495 - 10} \qquad \operatorname{subtracting,} \qquad B = 40^{\circ} \ 16'.9$$
 Check by using the law of sines.

EXERCISES XII. - LOGARITHMIC SOLUTION OF CASE II

1. Solve each of the following triangles, using logarithms:

- 2. To determine the distance between two objects A and B separated by a hill, the distances AC = 300 ft., BC = 277 ft., and the angle $ACB = 65^{\circ}$ 47', are measured. From these measurements find the distance AB.
- 3. Two objects, A, B, are separated by an impassable swamp. A station C is selected from which distances in a straight line can be measured to each of the objects. These distances are found to be CA = 341 ft. 7 in., CB = 237 ft. 5 in., and the angle ACB is found to be 53° 11′. Find the distance AB.
- 4. Two objects, A, B, are separated by a building. To determine the direction of the line joining them, a point C is taken from which both A and B are visible and the distances AC = 200 ft., BC = 137 ft. 9 in., and the angle $ACB = 52^{\circ}$ 25' are measured. Determine the angle which AB makes with AC. Also the distance AB.

EXERCISES XIII. - LOGARITHMIC SOLUTION OF CASE III

- 1. Solve each of the following triangles, using logarithms:
- (a) a = 22.2, b = 31.82, c = 40.64. (f) p = 38.2, b = 45.36, d = 26.54.
- (b) a = 27.53, b = 18.93, c = 30.14. (g) m = .126, n = .3226, c = .253. (c) a = 523.8, b = 566.2, c = 938.4. (h) a = .0506, b = .1234, c = .0936.
- (c) u = 525.8, v = 500.2, v = 500.4. (h) u = .0000, v = .1204, v = .000. (d) t = 3.171, m = 5.331, n = 5.101. (i) u = 167, v = 321, w = 231.
- (a) t = 3.171, m = 5.351, t = 5.101. (b) t = 101, t = 321, t = 201. (e) t = 40.04, t = 50.56, t = 70.12. (j) t = 196.1, t = 264.1, t = 135.4.
- 2. To determine without an instrument for measuring angles the angle ACB between two lines meeting at C, the distances CA = 500 ft. and CB = 700 ft. are measured; AB is then found to be 633 ft. Find $\angle ACB$.
- 3. Three objects, A, B, C, are situated on the edge of a lake. It is desired to determine the angles between the lines joining them. The distances AB, BC, and CA are found to be 321 ft., 472 ft., and 511 ft., by a process similar to that of Ex. 2, p. 33. Find the angles.
- 31. Logarithmic Solution of Case IV. The Ambiguous Case. Since in this case a side and its opposite angle are known, the triangle can be solved by the sine law.

Example 1. Two sides of a triangle are c = .35211 and a = .30135, and the angle opposite a is $A = 33^{\circ}$ 17'. Determine the remaining parts.

Denote the unknown side by b and the unknown angles by B and C. By the law of sines $\sin C/\sin A = c/a$. Since the angle C is determined by its sine, there may be two angles less than 180° (see § 23 and (1), § 18) which satisfy this equation and the conditions of the problem. The work may be arranged as follows:

$$\begin{array}{c} c = .35211 \\ A = 33^{\circ} \ 17' \\ a = .30135 \\ \\ C_1 = 39^{\circ} \ 53' \\ B_1 = 106^{\circ} \ 50' \\ \frac{b_1}{a} = \frac{\sin B_1}{\sin A} \\ \\ \log a = 9.47907 - 10 \\ \log \sin A = 9.08098 - 10 \\ \log \sin A = 0.26060 \\ \log b_1 = 9.72065 \\ b_1 = .52559 \\ \end{array} \quad \begin{array}{c} \log c = 9.54668 - 10 \\ \log \sin A = 9.73940 - 10 \\ \log \sin A = 9.80701 - 10 \\ \log \sin B_2 = \frac{\sin B_1}{\sin A} \\ \\ \log a = 9.47907 - 10 \\ \log \sin B_2 = 9.06046 - 10 \\ \log \sin B_2 = 9.06046 - 10 \\ \log b_2 = 8.80013 - 10 \\ b_2 = .063114 \\ \end{array}$$

Check by the law of cosines or by the law of tangents.

The number of solutions of a problem belonging to Case IV can be determined by an easy calculation without actually solving the triangle. If

the given angle A is acute, the perpendicular $p=c\sin A$ is first computed, where c is the given side adjacent to the given angle. • If the given

side a opposite A is less than this perpendicular, it is clear from Fig. 34 that there can be no solution. If a is just equal to p, it is easily seen from Fig. 35 that there is just one solution. If a is greater than p

and less than c, there are two solutions, as in Fig. 24, p. 29. If a is greater than c, there is only one solution, as shown in Fig. 36; for if a is put in

the position BC', the angle A fails to lie within the triangle, and the conditions of the problem are not satisfied.

If the angle $A \ge 90^{\circ}$, there is no solution if a is equal to or less than c, because A must then be the larger angle

of the triangle, and by geometry the greater side lies opposite the greater angle. If a is greater than c, there is just one solution, as in Fig. 37. These results are tabulated below.

T	4	_	90°

$a < c \sin A$	no solution		
$c \sin A < a < c$	two solutions		
$a = c \sin A$ or $a \ge c$	one solution		

II. $A \ge 90^{\circ}$

$a \leq c$	no solution		
a > c	one solution		

EXERCISES XIV. -- LOGARITHMIC SOLUTION OF CASE IV

- 1. Solve each of the following triangles, using logarithms; if two solutions exist, obtain both of them.
- (a) a = 17.16, b = 14.15, $B = 42^{\circ}$. (d) l = 281, m = 152, $L = 103^{\circ}$.
- (b) a = 54, b = 48.6, $A = 31^{\circ} 14'$. (e) b = 13.12, c = 7.22, $B = 39^{\circ} 54'$.
- (c) u = 971, v = 1191, $U = 51^{\circ} 15'$. (f) p = 48, q = 36.1, $Q = 45^{\circ} 50'$.
- 2. In a certain town the streets intersect at an angle of 82° 14′. It is desired to know the distance between two objects, A and B, which lie on a line parallel to one set of streets and which are separated by a large building. A line AC = 200 ft. is measured along a side line parallel to the other set of streets, and CB = 222 ft. is then measured. Determine AB.

3. The pilot of a ship S sees a lighthouse H on the shore; by measuring the angle of elevation of the top of the lighthouse, and knowing its height, he determines that it is 8950 ft. from his ship. At the ship ar angle of 2° 40' is subtended by a line connecting the lighthouse with a light L on the shore known to be 575 ft. from the lighthouse. Find the angle SLH and thus determine exactly the position of the ship with reference to the shore. Practically how may he tell which of the two possible solutions is actually correct?

PART IV. APPLICATIONS PROBLEMS

32. Areas of Triangles. In elementary geometry it is shown that the area 4 of a triangle * is one-half the product of any side and the

altitude from the opposite vertex to that side, i.e. $A = p \cdot c/2$. By applying this result we obtain formulas for the following cases:

(1) Given two sides b, c, and their included angle A.

If the perpendicular is drawn as in Fig. 38, we have

$$p=b\sin A,$$

and
$$A = (1/2)pc = (1/2)bc \sin A$$
,

i.e. the area of a triangle is equal to one half the product of any two sides and the sine of their included angle.

(2) Given two angles A, C, and their included side b.

Solve the triangle by Case I to find B and one side, say $c = b \sin C / \sin B$; then, $A = \frac{bc \sin A}{2} = \frac{b^2 \sin C \sin A}{2 \sin B}.$

(3) Given the three sides.

Divide the triangle into three triangles AIC, CIB, BIA by lines from the vertices to the center of the inscribed circle, using b, a, c, respectively, as the bases of these triangles. The altitude of each is equal to r; hence

$$A = \frac{ar}{2} + \frac{br}{2} + \frac{cr}{2} = \frac{(a+b+c)r}{2} = rs,$$

or, substituting for r its value, § 29,

$$A = s\sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$
$$= \sqrt{s(s-a)(s-b)(s-c)}.$$

^{*} The area is denoted by the boldface type A in distinction from the angle A.

33. Composition and Resolution of Forces and Velocities. We saw in § 15 that forces and velocities may be represented graphically by straight line segments. The length of such a segment represents the magnitude of the force or velocity, and its direction the direction of the force or velocity.

To find the effect of two simultaneous velocities, let us suppose that a body moves along a straight track with a velocity of 4 units per second and that each point of the track moves with a velocity of 3 units per second along a line making an angle of 60° with the track. What is the position of the body at the end of 1 second? To answer this question draw a segment 4 units long to represent the magnitude and direction of

the velocity of the body along the track, and from the ends of this segment draw segments AC, BD, each 3 units in length and making an angle of 60° with AB to represent the magnitude and direction of the velocity of the ends of

the track. The track will then take the position CD at the end of 1 second. But since the body moves along the track at the rate of 4 units per second, it will reach the point D at the end of 1 second. That is, it will reach the same point as if it had moved along the diagonal AD with a speed represented by the length of the diagonal. The velocity represented by AD is called the resultant of the velocities represented by AB and AC. AB and AC are called components. The length of AD can be computed by solving the triangle ABD, of which we know two sides and the included angle.

The resultant of any two velocities may be found by drawing from a common point A, segments AB, AC to represent the given velocities in magnitude and direction and then completing the parallelogram ABCD. The diagonal AD represents the resultant. This fact is often called the **parallelogram law**.

The resultant of two forces is found by a similar construction. This diagram is known as the parallelogram of forces. We proceed to show how to find the resultant from the components, and to solve other problems. Example 1. The angle between the directions of two forces of 19 lb. and 26 lb, is 54°. Find the magnitude and direction of their resultant.

The forces may be represented by segments 19 units long and 26 units long, respectively, and making an angle of 54° with each other. If the parallelogram is completed which has these segments for two of its inter-

secting sides, the diagonal extending from their intersection to the opposite corner will represent the resultant both in magnitude and in direction. This diagonal is a side of a triangle having two sides equal to 19 and 26, respectively, with an included angle of 126° (the supplement of 54°).

Hence we can find the diagonal and the angle which it makes with either side, that is, the magnitude and direction of the resultant.

Example 2. Two forces of 51 lb. and 73 lb. have a resultant of 80 lb. Find the angle between them.

In this case, in the parallelogram of forces, the diagonal and two intersecting sides are known; the angle opposite the diagonal is determined by Case III. The required angle is the supplement of this one.

EXERCISES XV. - AREAS FORCES VELOCITIES

- 1. Complete the solution of Examples 1 and 2 above.
- 2. Three forces of 13 lb., 22 lb., and 28 lb., respectively, are in equilibrium. Determine the angles which they make with one another.

[Hint. If the forces are in equilibrium, the resultant of any two of them must equal the third in magnitude but must be opposite to it in direction; hence regard one of the forces as the resultant of the other two and find the angle between these as in Example 2 above.]

- 3. Find the resultant of two forces of 30 lb. and 40 lb. acting at an angle of 60° with each other.
- 4. A ball rolls along the diagonal of the floor of a car from the back to the front with a speed of 30 ft. per second. The car is moving forward with a speed of 40 ft per second. Find the actual speed of the ball if the car is 7 ft. wide and 30 ft. long.

- 5. Two forces are acting on a block resting on the ground as shown in the figure. What horizontal force do they exert?
- 6. A point is kept at rest by forces of 6, 8, 11 lb. Find the angle between each pair.

- 7. A boat is rowed across a river at the rate of 3.5 mi. per hour; the river flows at the rate of 4.8 mi. per hour. Find the speed of the boat and the direction of its motion.
- 8. A ship is sailing 10 mi. per hour and a sailor climbs the mast 200 ft. high in 30 sec. Find his speed relative to the earth, and the direction of his motion.
- 9. A train is going 15 mi. per hour northward; a man crosses the car eastward 2 ft. per second. Find his speed relative to the ground, and his direction.
- 10. A ball rolling along the floor 10 ft. per second is struck so that its speed is increased 2 ft. per sec., and the direction of motion is changed 45°. What speed and direction of motion is due to the stroke alone?
- 11. A river flows 4 mi. per hour, and a motor boat goes 9 mi. per hour. In what direction must the boat be pointed to go straight across the river, and what will be its speed?
 - 12. Determine the areas of the following triangles:
 - (a) a = 829, b = 592, $C = 62^\circ$. (b) a = 713, b = 987, c = 1255.
 - (c) $B = 25^{\circ}$, $C = 68^{\circ}$, b = 392. (d) a = 231, a = 195, $A = 47^{\circ}$.
 - (e) $u = 8, v = 5, W = 60^{\circ}$. (f) $a = 72.3, A = 52^{\circ}35', M = 63^{\circ}17'$.
 - (g) l = .582, m = .601, n = .427. (h) b = 21.5, c = 30.456, $D = 41^{\circ} 22'$.
- 13. Find the area of a triangular field having one of its sides 15 rods in length, and the two adjacent angles, respectively, 70° and 69° 40'.

EXERCISES XVI. - MISCELLANEOUS EXERCISES

1. Solve the following triangles:

```
(a) a = 10.34,
                        B = 5^{\circ} 7'.6
                                             C = 19^{\circ} 49'.
                                             C = 68^{\circ} 14'.
(b) a = 36.423,
                         b = 14.578.
(c) l = 14.236.
                        m = 13.761,
                                             N = 45^{\circ} 11'.
(d) a = 734.34.
                        B = 108^{\circ} 6'.
                                             C = 61^{\circ} 7'.
(e) u = 32.19,
                        v = 69.182,
                                             U = 69^{\circ} 17'.
(f) a = .75632,
                        b = .62751.
                                             C = 84^{\circ} 48'.
(q) c = 454.72,
                        J = 11^{\circ} 11'.
                                             C = 57^{\circ} 37'.
(h) a = 474.17,
                        b = 1008.8.
                                             c = 940.25.
(i) a = 100.37,
                        c = 95.376
                                            B = 100^{\circ} 58'.
(j) d = 391.68,
                        D = 25^{\circ} 36'
                                            B = 68^{\circ} 13'.
(k) a = 622.02,
                        b = 293.22
                                            A = 100^{\circ}.
(1) u = 375.64,
                        v = 438.79
                                            w = 133.94.
                                            A = 44^{\circ} 58'.
(m) a = .010231,
                        c = .0047233,
(n) a=476.53,
                        P = 40^{\circ} 17'
                                            A = 39^{\circ} 14'.
                        a = 88.234
(o) b = 94.961,
                                            C = 12^{\circ}.
(p) b = .43124,
                      a = .53467
                                            A = 99^{\circ} 59'.
(q) l = .021467,
                        m = .019407
                                           n = .034354.
```

- 2. A balloon is observed from the ground and from an upper window of a building 60 ft. directly above. The angles of elevation are found to be 10° 42' and 9° 58'. Find the distance from each point to the balloon.
- 3. The angles of elevation of an inaccessible mountain peak from two stations on a neighboring hill are 10° 14′ and 9° 51′. The stations are in a vertical plane with the mountain peak, they are 100 ft. apart, and a line joining them makes an angle of 27° 17′ with the

they are 100 ft. apart, and a line joining them makes an angle of 27° 17′ with the horizontal. Determine the height of the mountain and the distance of the peak from each station.

- 4. The diagonals of a parallelogram are 22 ft. and 31 ft., and the angle between them is 51° 12′. Determine the sides of the parallelogram.
- 5. To determine the distance between two objects A and B that have a barrier between them, a distance AC=200 ft. is measured to a point C from which both objects are visible. The distance BC=321 ft. and the angle $ACB=68^{\circ}$ 41'. Find the distance AB.
- 6. The sides of a triangular field are 82.7 rods, 91.4 rods, and 104.3 rods. Determine the area of the field, and the angles between the sides.
- 7. To find the distance between two objects A and B situated on opposite sides of a lake, the distance AC = 250 ft. and the angles CAB = 1100 ft.

 $44^{\circ}~13',~A\,CB=51^{\circ}~9',$ are measured. Find the distance AB.

An object B is wholly inaccessible and is invisible from a certain point A. To find the distance AB, two points C and D from which B can be seen are selected on a line through A. If CD = 243 ft., CA = 102 ft., \(\angle DCB = 68^{\circ} 56', \angle CDB = 48^{\circ} 22', \) find AB.

- 9. It is desired to know the height of an object AB. A line CD=250 ft. in a horizontal plane with the base A of the object, is measured, also the angle of elevation $ACB=13^{\circ}$ 22', and the angles $DCA=35^{\circ}$ 37' and $CDA=64^{\circ}$ 28'. Determine the height AB.
 - 10. Devise a method for finding the distance between two objects when there is only one accessible point from which both

11. A tall building stands at the foot of a hill. From a point on the

which A and B, respectively, are visible.

side of the hill the angle of depression of the base of the building is observed to be 14° 36', and the angle of elevation of the top is 21° 43'. A level line from the instrument meets the building 19 ft. 7 inches above the base. Find the height of the building.

- 12. A balloon is observed, at the moment it passes over a level road, from two points in the road an eighth of a mile apart. The angles of elevation from the two points are 33° 17′ and 42° 6′. Find the distances of the balloon from the two observers.
- 13. In surveying, it is sometimes desired to extend such a line as AB in the figure beyond an obstacle. Show that this could be done by means of a broken line ABECD. What measurements would be necessary to determine the distance BC and the angle ECD?
- 14. How far to the side of a target 1300 ft.

 away should a gunner aim from a ship going

 15 mi. per hour, if the speed of the bullet is 2000 ft. per second and he fires at the instant he is directly opposite?
- 15. From a railway train going 50 mi. per hour a bullet is fired 1000 ft. per second at an angle of 75° 28'.3 with the track ahead. Find its speed and direction.
- 16. A man in a railway car going 45 mi, per hour observes the raindrops falling at an angle of 10° with the horizontal. Assuming that the raindrops are actually falling vertically, find their speed.
- 17. The resultant of two forces is 10 lb.; one of the forces is 8 lb. and makes an angle of 36° with the resultant. Find the magnitude of the other force.
- 18. A horse pulls a canal boat by a rope which makes an angle of 25°35′ with the tow path. What size of engine would propel the boat at the same speed? (Assume that the horse is doing one "horse power.")
- 19. A man climbs a hill inclined (on the average) 32° with the horizontal. His pocket barometer shows that at the end of $2\frac{1}{2}$ hours he has increased his elevation 2750 ft. Find his average speed up the slope.
 - 20. Find the areas of triangles which have the following given parts:
 - (a) a = 116.082, $C = 118^{\circ} 15' 41''$. b = 100. (b) b = 100. $A = 76^{\circ} 38' 13''$ $C = 40^{\circ} 5'$. (c) u = 31.325. $V = 13^{\circ} 57' 2''$ $U = 53^{\circ} 11' 18''$. (d) a = 408, b = 41. c = 401. (e) a = .9, b = 1.2c = 1.5.b = 138.24(f) a = 63.89, c = 121.15.
- 21. Find the area of a triangular piece of ground having two angles, respectively, 73° 10′ and 90° 50′, and the side opposite the latter 150•6 rods.

CHAPTER IV

DIRECTED LINE SEGMENTS AND ANGLES

PART I. GENERAL DEFINITIONS AND PRINCIPLES

34. Directed Lines and Segments. Vectors. Such expressions as north and south, right and left, up and down, call attention to the necessity of distinguishing between the two directions of a straight line in order to express our ideas with precision. It is often convenient to select one direction on a straight line as the positive direction; the other is then called the negative direction. Thus, if two forces act along the same line,

but in opposite directions, it is convenient to call one positive and the other negative. A line on which a choice of directions has been made is called a directed line.* In drawings, the positive directions has been made in called a directed line.*

tion of a directed line is indicated by an arrow head. A portion of a line between two of its points, A, B, is called a segment. We distinguish between the two possible directions of a segment as follows: The notation AB means the segment whose initial point is A and whose terminal point is B, while BA means the segment whose initial point is B and whose terminal point is A.

A force is indicated graphically by such a directed line segment, whose direction indicates the direction of the force, and whose length indicates the intensity or amount of the force. Velocities are represented in the same manner. See p. 43.

A segment is said to be *positive* if its direction coincides with the positive direction of the line on which it lies; otherwise it

^{*} The assignment of a positive direction on one line does not determine the positive direction on any other line, but it is often convenient in the case of parallel lines to choose the same direction on each as the positive direction. In what follows this choice will be understood unless the contrary is specified.

is a negative segment. In Fig. 43, AB, FG, etc., are positive segments; DA and FE are negative. Two segments are said

to have the same sense if they lie on the same line or on parallel lines, and if both are positive or both are negative. Two segments are said to be of opposite sense if they lie on the same line or on parallel

lines, and if one is positive and the other is negative. Two segments having the same length and the same sense are equal; if they have the same length and are of opposite sense, each is the negative of the other. Thus, in Fig. 43, $\dot{A}B = EF$, while AC = -GE and CB = -FG.

The numerical measure of a directed segment is the number of units in its length with the sign + or -, according as the segment is positive or negative.

With the agreements of this article, a directed segment may be

substituted for any parallel segment of the same magnitude. Such a movable directed segment is often called a vector.

35. Geometric Addition of Line Segments. Given two line segments AB and CD, of the same or opposite sense; to add the second to the first, place the initial point of the second on the terminal point of the first; then the segment from the initial point of the first to the terminal point of

the second is their sum. Thus, lay off A'B' = AB and B'D' = CD; then A'D' = AB + CD (Fig. 44). This sum in the case of forces or velocities is a special case of the resultant, defined on p. 43, when the forces (or velocities) lie on the same lines.

36. Subtraction of Line Segments. Given two segments AB and CD of the same or opposite sense, to subtract the second from the first, add the negative of the second

to the first;* in other words, place the terminal point of the subtrahend on the terminal point of the minuend; then the segment from the initial point of the minuend to the initial point of the subtrahend is the required difference.

EXERCISES XVII. - ADDITION AND SUBTRACTION OF SEGMENTS

- 1. By laying them off on a directed line with some convenient unit, add the segments whose numerical measures are 3 and 4; 2 and -4; -4 and 5; -2 and -3.
- 2. Find the sum, or resultant, of two forces that act in the same line whose intensities (measured in pounds) are -5 and +10, respectively. Draw a figure to represent the solution.
- 3. If three forces of intensities +7, -15, +2 (lb.), respectively, act on a body in the same line, find the resultant force. Draw a figure.
- 4. If a man walks with a speed of 4 mi, per hour toward the rear of a train going 35 mi, per hour, find his actual speed. Draw a figure,
- 5. A m m's gains and losses (indicated by -) in business in successive months are \$250, -\$118, \$35, \$712, -\$15. Find the total gain, and the average gain per month. Draw a figure.
- 6. The gains and losses in the population of a city in successive years are 3500, -1100, -2300, +600, +2800. Find the total gain, and the average gain per year.
 - 7. Verify that AB + CD = CD + AB by laying off segments.
 - 8. Verify that (AB + BC) + DE = AB + (BC + DE).
 - 9. Add BA to AB. What is the result?

[Note. A segment whose end points coincide is called a zero segment, or simply, zero.]

- 10. Verify that if A, B, C, are any three points on a line, then no matter what the order of the points, or which is the positive direction of the line, always AB + BC = AC (six cases).
- 11. Lay off the segments AB = 8, CD = 10, BC = 6, DE = 5, and perform geometrically the following operations, checking each by the corresponding numerical equation.
 - (a) AB + BC DE.
- (c) CA DB + DE + BC.
- (b) AD BE AB.
- (d) AB CE + DC + BD.
- 12. By n times a segment, or $n \cdot AB$, we mean the segment

$$^{(1)}$$
 $^{(2)}$ $^{(3)}$ $^{(n)}$ $^{(n)}$ $^{AB} + ^{AB} + ^{AB} + ^{AB} + \cdots + ^{AB}$

where n is a positive integer. If AB = 4, construct $3 \cdot AB$.

^{*} FCr it is required to find a segment which can be substituted for x in the equation x + CD = AB, and AB + DC is the unique solution of this equation

- 13. Construct 5 times a segment whose numerical measure is -3/5.
- **14.** If $AB = n \cdot CD$, we say that $CD = AB \div n$. By the well-known method of plane geometry we can find points $P_1, P_2, P_3, \dots, P_{n-1}$, such that $AP_1 = P_1P_2 = P_2P_3 = \dots = P_{n-1}B = AB/n$, where n is any positive integer. Draw a segment at random and divide it into fifths.
- 37. Rotation. Directed Angles. In describing rotation, it is convenient to regard angles as positive or negative in the follow-

ing manner: an angle is thought of as generated by the rotation of one of its sides about the vertex as center; its first position is called the *initial side*, the final position is called the *terminal side*. An angle generated by a rotation opposite to the motion of the hands of a clock (counterclockwise), is said to be positive; an angle generated by a clockwise rotation, is said to be negative.*

F10. 35

Thus, in Fig. 46, α , β , δ , are positive angles; γ is negative.

Logically, the familiar units of angle used in elementary geometry and thus far in this book may be defined as follows: if the terminal side of the angle rotates in the positive direction until it coincides (for the first time), (a) with the perpendicular to the initial line at the vertex, the angle is a right angle; (b) with the prolongation of the initial side through the vertex, the angle is a straight angle; (c) with the initial line itself, the angle is a revolution (or a perigon). A degree (°) is defined in terms of any one of these by the equation $360^\circ = 1 \text{ rev.} = 2 \text{ str.} \angle 5 = 4 \text{ rt.} \angle 5$; it is divided into minutes (') and seconds (''), so that $1^\circ = 60' = 3600''$. An acute angle is a positive angle less than a right angle. An obtuse angle is greater than a right angle and less than a straight angle.

Angles may be of any magnitude, positive or negative. Thus, in Fig. 46, for example, β is greater than a straight angle; and δ is greater than 360°, or a complete revolution. In rotating parts of machinery, such angles have a very vivid meaning. Thus, a wheel which rotates 370° per second has a very different speed from that of a wheel which rotates 10° per second.

^{*} Either of these directions may of course be chosen as the positive direction of rotation, the other is then the negative direction. The choice here made is the customary one for angles; but in many kinds of machinery, the other sense of rotation is considered positive, as in the case of a clock.

Fig. 47

38. Geometric Addition and Subtraction of Directed Angles. To add two angles, place the initial side of the second in the terminal side of the first and make their vertices

coincide, then the angle from the initial side of the first to the

terminal side of the second is their sum. To subtract an angle α from an angle β , place the terminal side of α on the terminal side of β ; the angle from the initial side of β to the initial side of α is their difference $(\beta - \alpha)$. Compare these

Compare these with the rules for adding and sub-

tracting segments (§§ 35, 36). In Fig. 47 a positive angle β is added to a positive angle α . In Fig. 48 a negative angle α . In Fig. 49 a positive angle α . In Fig. 49 a positive angle α is subtracted from a positive angle β .

39. Placing Angles on Rectangular Axes. To place any given angle on a pair of rectangular axes in the plane of the angle,

put the vertex at the origin and the initial side on the x-axis extending to the right; the terminal side will then fall in one of the four quadrants (or, if the angle is a multiple of a right angle, on one of the axes). If the terminal side falls in the first quadrant, the angle is said to be an angle in the first quadrant, etc. In Fig. 50, α is a positive angle

Fig. 50

in the first quadrant, β is a negative angle in the fourth quadrant, δ is a positive angle in the fourth quadrant.

EXERCISES XVIII. - DIRECTED ANGLES

- 1. What angle will the minute hand of a clock generate in 2 hr. 24 min. 10 sec.?
- 2. A flywheel is running steadily at the rate of 450 revolutions per min. What angle does one of its spokes generate in 2 sec.? In 1.2 sec.?
- 3. By means of a ruler and, a protractor, construct the following angles and their sums; check by adding their numerical measures.
 - (a) -75° and 125° . (b) 66° and -30° . (c) 45° and 30° , and 70° .
 - (d) -60° and -36° . (e) 485° and 55°. (f) -750° and 30°.
 - **4.** With some two of the angles just given verify $\alpha + \beta = \beta + \alpha$.
 - 5. (a) Construct $27^{\circ} + 85^{\circ} + (-45^{\circ}) + 135^{\circ}$.
- (b) Construct $-150^{\circ} + 96^{\circ} + 24^{\circ} + (-80^{\circ})$.
- 6. If a wheel is rotating 120° per sec., how many revolutions does it make per minute? how many per hour? How many degrees does it turn through per minute?
- 7. Express an angular speed of 2.5 revolutions per second in degrees per second; in revolutions per minute; in degrees per minute.
- 8. A flywheel rotates at the rate of 40 revolutions per minute. Through what angle does one of its spokes turn in a second?
- 9. Reduce an angular speed of 3.4 revolutions per second to degrees per second; to degrees per minute; to revolutions per minute.
- 10. Find the angular speed of the rotation of the earth on its axis (a) in revolutions per minute; (b) in degrees per second.
- 11. Construct a right triangle whose sides are 3 and 4; construct an angle which is 3 times the smaller angle of this triangle.
- 12. Construct a right triangle with hypotenuse = 12 and one side = 6; construct an angle equal to one fourth of the larger acute angle of this triangle.
- 13. Construct an angle 3.5 times the smallest angle of the triangle in Ex. 12.
- 14. Every acute angle is a positive angle in the first quadrant; construct and place on the axes a positive angle in the first quadrant that is not acute.
- 15. Every obtuse angle is a positive angle in the second quadrant; construct and place on the axes a positive angle in the second quadrant that is not obtuse.
- 16. Construct the following angles and place them on the axes: $(a) 150^{\circ}$; $(b) 285^{\circ}$; $(c) 480^{\circ}$; $(d) 570^{\circ}$; $(e) 225^{\circ}$; $(f) 450^{\circ}$.
- 17. In what quadrant is each of the following angles: 459°, 682°, 725°, -100° , -1090° , \pm 85°, \pm 95°, \pm 175°, \pm 185°, \pm 265°, \pm 275°, \pm 355°?

- **40.** Congruent Angles. If the difference of two angles, α and β , is n times 360° (where n is one of the numbers 0, 1, 2, 3, ... etc.), they are said to be congruent angles and we write $\alpha \cong \beta$; read: α is congruent to β . Thus $15^{\circ} \cong 375^{\circ}$, $-172^{\circ} \cong 188^{\circ}$, etc. If two angles γ and δ are not congruent, they are said to be incongruent, and we write $\gamma \not\cong \delta$, $\delta \not\cong \gamma$. Thus, $45^{\circ} \not\cong 400^{\circ}$. To prove that two angles are congruent it is necessary and sufficient to show that their difference is either 0 or a multiple of 360° ; that is, if $\alpha \cong \beta$, $\alpha \beta = \pm n \cdot 360^{\circ}$; and conversely.
- 41. Properties of Congruent Angles. If two congruent angles are placed on the same pair of axes, their terminal sides will coincide. For example, any two of the angles 50°, 410°, -310° are congruent; when placed on the same axes their terminal sides all coincide. If two incongruent angles be placed on the same axes, their terminal sides will not coincide.* This is the geometric equivalent of § 40.
- (1) Every angle obtained by putting n=0, 1, 2, 3, etc. in the formula $a \pm n 360^{\circ}$ is congruent to a; conversely every angle congruent to a is found in this set. (Use § 40.)
- (2) If α is any angle whatever, there is one and only one angle between 0° and 360° (0° included, 360° excluded) which is congruent to α . For if α is an angle of any size, the addition to α and subtraction from α of successive multiples of 360° (360°, 720°, 1080°, etc.) will give all angles congruent to α , and obviously one and only one of these lies between 0° and 360°.
- (3) If $\alpha \cong \gamma$ and if $\beta \cong \gamma$, then $\alpha \cong \beta$. That is, if each of two angles is congruent to a third angle they are congruent to each other. Proof: $\alpha \gamma = \pm m \cdot 360^{\circ}$, and $\gamma \beta = \pm n \cdot 360^{\circ}$; whence, adding: $\alpha \beta = (\pm m \pm n) 360^{\circ}$, that is, $\alpha \cong \beta$.

[•] The word congruent is thus equivalent to the word superposable as used in geometry; but we must remember that two angles are superposable if and only if it is possible to make them coincide vertex with vertex, initial side with initial side, terminal side with terminal side. That such angles are not identical is evident in such practical instances as rotating machinery; the motion of a flywheel, 30° per second, differs essentially from that of a wheel turning 410° (or from that of one turning -310° per second). See § 37, p. 51.

(4) If the same angle be added to (or subtracted from) each of two congruent angles, the results will be congruent angles.

Given $\alpha \cong \beta$, to prove: (a) $\alpha + \gamma \cong \beta + \gamma$, (b) $\alpha - \gamma \cong \beta - \gamma$.

- (a) $(\alpha + \gamma) (\beta + \gamma) = \alpha \beta = \pm n \cdot 360^{\circ}$; hence $\alpha + \gamma \cong \beta + \gamma$
- (b) $(\alpha \gamma) (\beta \gamma) = \alpha \beta = \pm n \cdot 360^{\circ}$; hence $\alpha \gamma \cong \beta \gamma$.
 - (5) The negatives of congruent angles are congruent.

Given $\alpha \cong \beta$, to prove that $(-\alpha) \cong (-\beta)$.

Proof:
$$(-\beta) - (-\alpha) = \alpha - \beta = \pm n \cdot 360^{\circ}$$
; hence $(-\beta) \cong (-\alpha)$.

By (4) the transposition of a term from one side of a congruence to the other with change of sign is permissible; e.g. from $45^{\circ} - 350^{\circ} \cong 55^{\circ}$ follows $45^{\circ} \cong 55^{\circ} + 350^{\circ}$; from $\alpha + 150^{\circ} \cong \beta + 180^{\circ}$ follows $\alpha - \beta \cong 30^{\circ}$.

By (5) it is permissible to change the signs of all terms of a congruence; e.g. from $2x - 18^{\circ} \cong 3x - 63^{\circ}$ follows $-x \cong -45^{\circ}$ and $x \cong 45^{\circ}$.

It is not ordinarily permissible to multiply or divide both sides of a congruence by any number (except to multiply by an integer); e.g. from $30^{\circ} \cong 390^{\circ}$ it does not follow that $10^{\circ} \cong 130^{\circ}$.

EXERCISES XIX. - CONGRUENT ANGLES

- 1. Draw figures on polar coördinate paper to illustrate (4), § 41, when (a) $\alpha = 30^{\circ}$, $\beta = 390^{\circ}$, $\gamma = 20^{\circ}$; (b) $\alpha = 90^{\circ}$, $\beta = -270^{\circ}$, $\gamma = 45^{\circ}$; (c) $\alpha = 72^{\circ}$, $\beta = 432^{\circ}$, $\gamma = 72^{\circ}$.
- 2. Taking $\alpha = 60^{\circ}$, $\beta = -300^{\circ}$, $\gamma = -50^{\circ}$, $\delta = 310^{\circ}$, draw a figure showing that (α) $\alpha \cong \beta$; (b) $\gamma \cong \delta$; (c) $\alpha \gamma \cong \beta \delta$.
- 3. Find the angle between 0° and 360° which is congruent to each of the following: (a) -42° 13'; (b) -842° ; (c) 364° 23'; (d) 360°; (e) -90° ; (f) 420° ; (g) 2700°.
 - 4. Solve for x the congruence $27^{\circ} x \approx 360^{\circ} + 2x$.

Ans.
$$x = 9^{\circ} \pm n \cdot 120^{\circ}$$
.

- 5. Find 3 values for x which satisfy the congruence $3x-70^{\circ} \approx 150^{\circ}-x$.

 Ans. $x=-35^{\circ}$, 55° , 145° .
- 6. Find the smallest positive value of x which satisfies the congruence : $x+200^{\circ} \cong 40^{\circ}-3 \, x$. Ans. $x=50^{\circ}$.
- 7. Prove that the sum of the interior angles of a convex polygon is congruent to 0° or 180° according as the number of sides is even or odd.
- 8. Compare a rotational speed of $30^{\rm o}$ per sec. with a speed of $390^{\rm o}$ per sec.
- 9. Reduce an angular speed of 390° per second to revolutions per second; to revolutions per minute.
- 10. If $\alpha \cong \beta$ and $\gamma \cong \delta$, prove that $\alpha + \gamma \cong \beta + \delta$, and $\alpha \gamma \cong \beta \delta$. Compare (4), § 41.

PART II. ANGULAR SPEED - RADIAN MEASURE

42. Measurement of Angles. An angle may be named and used before it is expressed in any system of measurement. Thus, we may refer to an angle A of a right triangle whose perpendicular sides are 16 in., and 24 in., respectively; and we can compute $\tan A = 24/16 = 1.5$, etc., without measuring A in terms of any unit angle. General theorems like the law of sines remain true in any system of measurement.

The measure of an angle — say 36° — consists of two distinct ideas: the *unit angle* (in this example, one degree) and the *abstract number* (here 36) which expresses the numerical measure of the angle in terms of the chosen unit. The elementary units are defined in § 37. For many purposes it is convenient to use another unit angle called the *radian*.

43. Radian Measure of Angles.* A radian is a positive angle such that when its vertex is placed at the center of a circle, the intercepted arc is equal in length to the radius.

This unit is thus a little less than one of the angles of an equilateral triangle; in fact it follows from the geometry of

the circle, since the length of a semicircumference is πr , that

(1) π radians = 180°, where π = 3.14159, whence 1 radian = 57° 17′ 44″.806, or 57°.3 approximately. Inversely 1° = .01745 radians.

It is easy to change from degrees to radians and *vice versa* by means of relation (1), which numbered. Conversion tables for this purpose

should be remembered. Conversion tables for this purpose are printed in Table IV.

44. Use of Radian Measure. It is shown in geometry that two angles at the center of a circle are to each other as their intercepted arcs; therefore if an angle at the center is measured in radians and if the radius and the intercepted arc are measured in terms of the same linear unit, their numerical measures satisfy the simple relation:

 $arc = angle \times radius.$

1 RADIAN

Fig. 51

^{*} Sometimes also called circular measure.

In other words, the number of linear units in the arc is equal to the product of the number of radians in the angle by the number of linear units in the radius.

Example 1. Find the difference in latitude of two places on the same meridian 200 mi. apart, taking the radius of the earth as 4000 mi.

Angle = arc/radius = 1/20 in radians = 2° 51' 53", approximately.

45. Angular Speed. In a rotating body a point P, which is at a distance r from the axis of rotation, moves through a distance $2\pi r$ during each revolution or through a distance r while the body turns through an angle of one radian. Therefore if v is the linear (actual) speed of P (in linear units per time unit, e.g. feet per second), and if ω is the angular speed of the rotating body (in radians per time unit, e.g. radians per second), then their numerical measures satisfy the relation

$$v = r \cdot \omega$$
;

hence the angular speed of a rotating body is numerically equal to the actual speed of a point one unit from the axis of rotation.

Engineers usually express the angular speed of the rotating parts of machinery in revolutions per minute (R. P. M.) or revolutions per second (R. P. S.). These are easily reduced to radians per minute (or per second) by remembering that one revolution equals 2π radians.

Example 1. A flywheel of radius 2 ft. rotates at an angular speed of 2.5 R. P. S. Find the linear speed of a point on the rim.

In radians per second, $\omega=2.5\times 2~\pi=5~\pi$, and for a point 2 ft. from the axis of rotation $v=2\times 5~\pi=31.416$ ft. per second.

Example 2. Find the angular speed of a 34-in. wheel on an automobile going 20 mi. per hour.

Every time the wheel turns through a radian the car goes forward 17 in. (the length of the radius), and 20 mi. per hour = 352 in. per sec.; therefore the wheel turns through 352/17 = 20.7... radians per second.

46. Notation. In measuring angles in radian measure we shall adopt the practice universal in advanced work and write only the numerical measure of the angle in terms of the unit one radian. Thus in the expression tan x, the letter x will denote a number (the numerical measure of an angle), rather than the angle itself.

When necessary, to call attention to the fact that radian measure is intended, the symbol ('') is appended to the numerical measure, thus:

$$1^{(r)} = 1 \text{ radian} = 57^{\circ} \ 17' \ 44''.8,$$

 $2^{(r)} = 2 \text{ radians} = 114^{\circ} \ 35' \ 29''.6,$
 $\pi^{(r)} = \pi \text{ radians} = 180^{\circ} = 2 \text{ rt. } \text{\angle},$
 $(\pi/2)^{(r)} = \pi/2 \text{ radians} = 90^{\circ} = 1 \text{ rt. } \text{\angle},$

and so forth.

As it happens that the acute angles whose trigonometric functions are most easily recalled without consulting tables are simple fractional parts of a straight angle, the number π often appears as a factor of the numerical measure of angles. In this system, for example, $\sin (\pi/2) = 1$, $\cos (\pi/3) = 1/2$, $\tan (\pi/4) = 1$, etc.

The use of pure numbers, such as 2 or π in place of an angle, is precisely similar to the use of 10 for 10 ft. or 10 inches in expressing lengths. The student should supply the *unit of measurement* (radians, or feet or inches), and should not confuse the number π (= 3.14159 ...) with the angle whose measure is π radians, as he should not confuse the number 10 with the distance 10 feet.

47. Relations between Angular Units. The units of angle mentioned thus far are degree, minute, second, right angle, straight angle, revolution (or perigon), radian. The relations between these units is given in the following table:

	0	,	"	Кт. ∠	Rev.	RADIANS
1° =	1	60	3600	1/90	1/360	π/180
1' =	1/60	1	60	1/5400	1/21600	$\pi/10800$
1'' =	1/3600	1/60	1	1/324000	1/1296000	$\pi/648000$
1 rt. ∠ ==	90	5400	324000	1	1/4	$\pi/2$
1 str. ∠ =	180	10800	648000	2	1/2	π
1 rev. =	360	21600	1296000	4	1	2 π
1 radian =	$180/\pi$	$10800/\pi$	$648000/\pi$	$2/\pi$	$1/(2\pi)$	1

Another unit frequently used in France and occasionally elsewhere is the grade, which is 1/100 of a right angle.

EXERCISES XX. - ANGULAR SPEED - RADIAN MEASURE

- 1. Express the following angles in degrees, minutes, and seconds:
 - (a) $\pi^{(r)}/4$; (b) $\pi^{(r)}/6$; (c) $2\pi^{(r)}/3$; (d) $3^{(r)}$.
- 2. Express the following angles in radians:
 - (a) 25° ; (b) 30° ; (c) 35° ; (d) $28^{\circ}39'$; (e) $114^{\circ}35'$.
- 3. How far short of one revolution is $6^{(r)}$?
- 4. To gain ability to judge the size of angles in circular measure, express approximately (to within 1°) angles whose sizes are $1^{(r)}$, $4^{(r)}$, $5^{(r)}$, $8^{(r)}$. Draw an angle which is about your impression of an angle of $2^{(r)}$, and measure it with a protractor: do not revise your figures.
- 5. If a vehicle moves at the rate of 15 ft. per sec., through what angle does one of its wheels, 3 ft. in diameter, revolve in one second?
- 6. If the linear speed of a vehicle is 30 mi. per hour, what is the angular speed of one of its wheels which is 4 ft. in diameter?
- 7. A wheel 5 ft. in diameter is connected by a belt 40 ft. in length with a wheel 4 ft. in diameter. If the large wheel makes 30 revolutions per minute, how often does the seam of the belt pass this wheel? What is the angular speed of the smaller wheel?
- 8. Find the angular distance on the earth between two points whose distance from each other, on the arc of a great circle, is 800 miles. [Take the radius of the earth to be 4000 miles.]
- 9. Find the distance in miles between two points on the earth's surface whose angular distance is 1° ; between two points whose angular distance is 0.25 radians.
- 10. Find the length of the subtended arc of an angle of 3.46 radians at the center of a circle of radius 5.
- 11. Find the length of the subtended arc of an angle of 55° at the center of a circle of radius 3. (Compare the work of Exs. 10 and 11.)
- 12. Find the angle at the center which subtends an arc of 3 ft. on a circle of radius 4 ft. Express the angle in radians and in degrees, and compare the work done in the two cases.
 - 13. Reduce to radian measure by means of the Tables:
 - (a) $23^{\circ} 40'$; (b) $68^{\circ} 45' 20''$; (c) $138^{\circ} 35' 15''$.
 - 14. Reduce to degree measure by means of the Tables:
 - (a) $3.46^{(r)}$; (b) $.256^{(r)}$; (c) $.0127^{(r)}$; (d) $8.24^{(r)}$.
- 15. Reduce the following angular speeds to degrees per second; to revolutions per second; to revolutions per minute:
 - (a) $4.5^{(r)}$ per sec.; (b) $2.48^{(r)}$ per sec.; (c) $10.54^{(r)}$ per sec.

CHAPTER V

FUNCTIONS OF ANY ANGLE

PART I. DEFINITIONS. READING OF TABLES

48. Resolution of Forces. Projections. In § 33, p. 43, we saw how to find the components of a force, or a velocity, on any line, as the projection of the force on that line; and we saw that the components of a force F on each of two perper-

Fig. 52

dicular axes, even when the angle α is obtuse, are

(1)
$$F_x = \operatorname{Proj}_x F = F \cos \alpha$$
,
 $F_y = \operatorname{Proj}_y F = F \sin \alpha$.

If several forces occur in the same problem, some of

them may make an angle α greater than 180° with the positive direction Ox. It is convenient to define $\cos \alpha$ and $\sin \alpha$ for angles greater than 180° so that the equations (1) remain true.

If we do so, the projection on the two axes of any directed line r joining the origin O to a point P are, respectively,

(2)
$$x = \operatorname{Proj}_x r = r \cos \alpha, \quad y = \operatorname{Proj}_y r = r \sin \alpha,$$

where α is the angle between the positive direction Ox and the positive direction OP, and may be an angle of any size, positive or negative.

Hence the desired definitions are:

(3)
$$\cos \alpha = \frac{x}{r}, \quad \sin \alpha = \frac{y}{r}.$$

These definitions are consistent with those already given, §§ 6, 18, for the sine and the cosine; i.e. in case $0^{\circ} \le \alpha \le 180^{\circ}$, they determine the same values as the earlier definitions.

49. General Definitions. Trigonometric Functions of any Angle. The definitions of $\sin \alpha$ and $\cos \alpha$ given in § 48 have, of course, no necessary dependence upon forces. Each is a number which depends only on the magnitude and sign of the angle. A purely

geometric definition of these and of the other trigonometric functions of any angle α , consistent with the definitions of §§ 6, 18, and with the fundamental relations between them, such as $\tan \alpha = \sin \alpha/\cos \alpha$, $\sin^2 \alpha + \cos^2 \alpha = 1$, the reciprocal relations, etc., may be made as follows:

Place the given angle on a pair of rectangular axes, and select any point P whose coördinates are (x, y) on the terminal side at a distance r > 0 from the origin. Then

Fig. 53

(1)
$$\sin \alpha = \frac{y}{r} = \frac{\text{ordinate}}{\text{radius}},$$

(2)
$$\cos \alpha = \frac{x}{r} = \frac{\text{abseissa}}{\text{radius}},$$

(3)
$$\tan \alpha = \frac{y}{x} = \frac{\text{ordinate}}{\text{abscissa}}, \text{ provided } x \neq 0;$$

(4)
$$\operatorname{ctn} \alpha = \frac{x}{y} = \frac{\operatorname{abscissa}}{\operatorname{ordinate}}, \quad \operatorname{provided} y \neq 0;$$

(5)
$$\sec \alpha = \frac{r}{x} = \frac{\text{radius}}{\text{abscissa}}, \quad \text{provided } r \neq 0;$$

(6)
$$\csc \alpha = \frac{r}{y} = \frac{\text{radius}}{\text{ordinate}}, \quad \text{provided } y \neq 0.$$

Three additional functions sometimes used are:

- (7) The versed sine of α : vers $\alpha = 1 \cos \alpha$.
- (8) The coversed sine of α : covers $\alpha = 1 \sin \alpha$.
- (9) The external secant of α : exsec $\alpha = \sec \alpha 1$.

By these definitions every angle has a sine and a cosine, because in the ratios y/r and x/r the denominator r is never zero. There is no secant or tangent \dagger for 90°, or for 270°, or for any

^{*} The exceptions noted are based on the general principle that a fractional expression does not represent a number if its denominator is zero.

[†] To say that 90° has no tangent does not mean that the tangent of 90° is zero. When we say that an article has no value we mean that it has a value and that value is zero. Not so here. Since the general definition of tangent does not apply to 90°, we could, if we found it convenient, define tan 90°, but we do not; we leave it undefined. Often it is said tan 90° = ∞ , but this does not mean that 90° has a tangent; it means that as an angle α increases from 0° to 90°, tan α increases without limit, and that before α reaches 90°.

angle whose terminal side coincides with either the positive or negative end of the y-axis, because the denominator x in the ratios r/x, y/x, is zero. Similarly, there is no cosecant or cotangent for 0° or for 180° , or for any angle whose terminal side coincides with the positive or negative end of the x-axis. There exists a tangent, cotangent, secant, and cosecant for every angle except those just mentioned.

The values of the same trigonometric function of two congruent angles (§ 40) are equal; that is, if α is congruent to β , then $\sin \alpha = \sin \beta$, $\cos \alpha = \cos \beta$, $\tan \alpha = \tan \beta$; and likewise for all the other trigonometric functions. In other words, any angle obtained by adding to a given angle, or subtracting from it, a multiple of 360°, has the same functions as the given angle.

For example: $\sin (-295^{\circ}) = \sin 65^{\circ}$, $\cos (-315^{\circ}) = \cos 45^{\circ}$, $\tan 1476^{\circ} = \tan 36^{\circ}$, $\sin (\theta - 180^{\circ}) = \sin (180^{\circ} + \theta)$, $\cos (x - 90^{\circ}) = \cos (270^{\circ} + x)$, $\tan (360^{\circ} - y) = \tan (-y)$.

50. Algebraic Signs of Trigonometric Functions. The sine of any angle in the first or second quadrant is positive, because the ordinate of any point above the x-axis is positive; the sine of any angle in the third or fourth quadrant is negative, because the ordinate of any point below the x-axis is negative.

The cosine of any angle in the first or fourth quadrant is positive, because the abscissa of any point to the right of the y-axis is positive; similarly, the cosine of any angle in the second or third quadrant is negative.

Similarly, the signs of $\tan \alpha$, $\cot \alpha$, see α , $\csc \alpha$, etc., may be determined directly from a figure; they are as follows:

QUADRANT	sin α	cos a	tan α	etn a	sec α	csc a
lst	+	+	+	+	+	+
2d	+	_	-	_		+
3d		_	+	+	_	_
4th		+			+	_

Note. (1) $\tan \alpha$ is positive (negative) when $\sin \alpha$ and $\cos \alpha$ have like (unlike) signs; (2) reciprocals have the same sign.

EXERCISES XXI. - FUNCTIONS OF THE GENERAL ANGLE

- 1. By placing the angles on the axes, show from the definitions that
 - (a) $\sin 225^{\circ} = -\sqrt{2}/2$, $\cos 225^{\circ} = -\sqrt{2}/2$.
- (b) $\sin 150^{\circ} = 1/2$, $\cos 150^{\circ} = -\sqrt{3}/2$.
- (c) $\sin 330^\circ = -1/2$, $\cos 330^\circ = \sqrt{3}/2$.
- (d) $\sin(-315^\circ) = \sqrt{2}/2$, $\cos(-315^\circ) = \sqrt{2}/2$.
- (e) $\sin(-1020^\circ) = \sqrt{3}/2$, $\cos(-1020^\circ) = 1/2$.
- (f) $\sin 180^\circ = 0$, $\sin (n \cdot 180^\circ) = 0$; for $n = \pm 1, \pm 2, \pm 3, \cdots$.
- (g) $\cos 90^{\circ} = 0$, $\cos [(2n-1) 90^{\circ}] = 0$; for $n = \pm 1, \pm 2, \pm 3, \cdots$
- 2. Which of the following are positive and which negative? $\sin 72^\circ$, $\sin 352^\circ$, $\sin 850^\circ$, $\tan 128^\circ$, $\sec 260^\circ$, $\sin (-20^\circ)$, $\cos (-380^\circ)$, $\sin (-260^\circ)$, $\cos 160^\circ$, $\cot 280^\circ$, $\cos 33^\circ$, $\cos 91^\circ$, $\cos (-40^\circ)$, $\tan (-140^\circ)$, $\cos (-400^\circ)$.
 - * 3. Prove for any angle α that $\sin^2 \alpha + \cos^2 \alpha = 1$. [Use $\alpha^2 + \alpha^2 = r^2$.] Prove each of the other Pythagorean relations for any angle α :
 - $1 + \tan^2 \alpha = \sec^2 \alpha$, if $\cos \alpha \neq 0$; $1 + \cot^2 \alpha = \csc^2 \alpha$, if $\sin \alpha \neq 0$.
- 4. Prove that $\cot \alpha$, $\sec \alpha$, $\csc \alpha$, are the reciprocals of $\tan \alpha$, $\cos \alpha$, $\sin \alpha$, respectively, for all values of α for which both are defined.
- 5. (a) Prove that the sine of any angle in the first or second quadrant is between 0 and 1. (b) Prove that the cosine of any angle in the 1st or 4th quadrant is between 0 and 1.
- 6. Prove that if an angle is not an odd multiple of a right angle its sine is between -1 and +1; and conversely. For what angles is $\sin \alpha = +1$; $\sin \alpha = -1$; $\cos \alpha = +1$?
 - 7. Show that $\tan \alpha = \sin \alpha/\cos \alpha$ for all values of α , if $\cos \alpha \neq 0$.
 - 8. Show that $\tan \alpha$ and $\cot \alpha$ may have any values whatever.
 - 9. Show that vers α and covers α are always positive or zero.
- 10. If an angle α starts at 0° and gradually increases to 360°, show that the behavior of sin α and cos α will be as indicated in this table:

α	0°	0° < α < 90°	90°	90°<α<180°	180°	180°<α<270°	270°	270°<α<860°	360°
sin α	0	increases to	1	decreases to	0	decreases to	-1	increases to	0
cos α	1	decreases to	0	decreases to	-1	increases to	0	increases to	1

. 11. By placing the angles indicated on rectangular axes determine the numbers to fill-the blanks in the following table:

α	80°	45°	60°	120°	135°	150°	210°	225°	240°	800°	815°	880°
$\sin \alpha$												
cos α											•	,

- 12. Assuming that the sun passes directly overhead, trace the change in the length of the shadow of an object from dawn to sunset. Which trigonometric function do you think of in this problem?
- 13. Assuming the results of Exs. 10 and 11, derive from them the variation of the tangent from 0° to 360° and its values at each of the angles mentioned in Ex. 11. Do the same for $\cot \alpha$, $\sec \alpha$, $\csc \alpha$.
- Reading of Tables. Sine and Cosine of $-\theta$ and $90^{\circ} + \theta$. 51. In order to find the sine (or any other trigonometric function) of an angle we consult the tables. In the tables the values of the sine, for example, are printed only up to 45°. To find the sine of an acute angle greater than 45° we make use of the retation $\sin \alpha = \cos (90^{\circ} - \alpha)$. The tables are arranged to facilitate this by having the angles above 45° printed at the bottom of the page, and the column headings changed from sine to cosine, etc. (See Tables, p. 22.)

If we wish to find the sine of an angle greater than 90°, we must find a way to express the sine in terms of some function of an acute angle less than 45°. In Chapter III this has been done for obtuse angles. The purpose of what follows is to make a similar reduction for any angle, positive or negative.

The following four relations are true for every angle θ (positive, negative, zero):

(1)
$$\sin(-\theta) = -\sin\theta$$
.

(3)
$$\sin (90^\circ + \theta) = \cos \theta$$
,

Proof: (a) When $\theta = 0^{\circ}$ the formulas

(2)
$$\cos(-\theta) = \cos\theta$$
,

(4)
$$\cos (90^\circ + \theta) = -\sin \theta$$
.

R(-b,3) are easily verified.

(b) When $0^{\circ} < \theta < 90^{\circ}$, place the angles θ , $-\theta$, and $90^{\circ} + \theta$ on the same coördinate axes, with the origin as cen-(a,b) ter and a convenient radius r > 0, and describe a circle cutting the terminal sides

of θ , $-\theta$, $90^{\circ} + \theta$, in P, Q, R. Let the coördinates of P be (a, b); then those of Q are (a, -b), and those of R are (-b, a), since the right triangles OAP, OAQ, RBOare congruent. Then, by § 49, $\sin \theta = b/r$, $\cos \theta = a/r$; $\sin \left(-\theta \right) = -b/r, \cos \left(-\theta \right) = a/r; \text{ and } \sin \left(90^{\circ} + \theta \right) = a/r,$

 $\cos (90^{\circ} + \theta) = -b/r$ Therefore $\sin (-\theta) = -\sin \theta$, $\cos (-\theta) = \cos \theta$, $\sin (90^{\circ} + \theta) = \cos \theta$, $\cos (90^{\circ} + \theta) = -\sin \theta$.

- (c) When $\theta = 90^{\circ}$, 180°, 270°, verify by direct substitution.
- (d) When $90^{\circ} < \theta < 180^{\circ}$, or $180^{\circ} < \theta < 270^{\circ}$, or $270^{\circ} < \theta < 360^{\circ}$, the formulas are proved by a figure drawn as in (b).

The formulas (1)-(4) are thus proved for all values of θ between 0° and 360° (0° included).

Finally, if α is any angle whatever, there is one angle β between 0° and 360° (0° included) such that $\beta \cong \alpha$. (See § 41.) We have just seen that formulas (1)-(4) hold for β ; but since $\alpha \cong \beta$, we have also $-\alpha \cong -\beta$, $90^{\circ} + \alpha \cong 90^{\circ} + \beta$. (See § 41.)

It follows that (1)–(4) hold for α , since any trigonometric function has the same value for any two congruent angles.

52. Reading of Tables. Sine and Cosine of $180^{\circ} \pm \theta$ and $270^{\circ} \pm \theta$. The relations tabulated below are true for every angle θ .

	- 0	90° – θ	90° + 0	180° − θ	180° + 0	270° – 0	270° + θ
sin	– sin 0	$\cos \theta$	cos θ	$\sin \theta$	$-\sin\theta$	$-\cos\theta$	$-\cos\theta$
cos	cos θ	$\sin \theta$	– sin θ	$-\cos\theta$	$-\cos\theta$	$-\sin\theta$	$\sin \theta$

Proof: The four relations in black-face type have been proved above; to prove the others, we proceed as follows:

- (1) Let $\alpha = -\theta$, then $90^{\circ} \theta = 90^{\circ} + \alpha$, and $\sin(90^{\circ} \theta) = \sin(90^{\circ} + \alpha) = \cos \alpha = \cos(-\theta) = \cos \theta$.
 - (2) $\cos(90^{\circ} \theta) = \cos(90^{\circ} + \alpha) = -\sin\alpha = -\sin(-\theta) = \sin\theta$.
- (3) Let $\alpha = 90^{\circ} \theta$, then $180^{\circ} \theta = 90^{\circ} + \alpha$, whence $\sin (180^{\circ} \theta) = \sin (90^{\circ} + \alpha) = \cos \alpha = \cos (90^{\circ} \theta) = \sin \theta$; and $\cos (180^{\circ} \theta) = \cos (90^{\circ} + \alpha) = -\sin \alpha = -\sin (90^{\circ} \theta) = -\cos \theta$.
- (4) Let $\alpha = 90^{\circ} + \theta$ and make use of the formulas for $90^{\circ} + \alpha$ to obtain formulas for $180^{\circ} + \theta$.
- (5) Let $\alpha = 180^{\circ} \theta$ and make use of the formulas for $90^{\circ} + \alpha$ to obtain formulas for $270^{\circ} \theta$.
- (6) Let $\alpha = 180^{\circ} + \theta$ and make use of the formulas for $90^{\circ} + \alpha$ to obtain formulas for $270^{\circ} + \theta$.

5 3 .	Extension to Other F	unctions.	The relations	tabulated be-
low ar	e true for every angle	θ , except as	s $noted$:	

	− 0	90° – 0	90° + 0	180° – 0	180° + 0	270° – 0 •	270° + 0
sın	– sin θ	cos θ	cos θ	sin 0	– sin θ	- cos e	– cos θ
cos	cos e	sin 0	– sin θ	— cos 0	- cos e	- sin e	sin 0
tan *	$-\tan\theta$	$\operatorname{ctn} \theta$	$-\operatorname{ctn}\theta$	$-\tan\theta$	$\tan \theta$	$\operatorname{ctn} \theta$	— ctn θ
ctn†	$-\operatorname{ctr}\theta$	$\tan \theta$	$-\tan\theta$	$-\cot\theta$	$\operatorname{ctn} \theta$	tan θ	$-\tan\theta$
sec*	sec θ	csc θ	$-\csc\theta$	$-\sec\theta$	$-\sec\theta$	csc θ	csc ∂
csc †	- csc θ	$\sec \theta$	$\sec \theta$	$\csc \theta$	$-\csc\theta$	$-\sec\theta$	$-\sec\theta$

Proof: The relations in black-face type have been proved above; to make the others depend on these, use the relation $\tan \alpha = \sin \alpha + \cos \alpha$ and the fact that the last three functions are the reciprocals of the first three in reverse order.

The whole body of relations in this table, which have now been proved for all angles θ , except as noted below, \ddagger may be remembered by the two following "rules of thumb."

- 1. Determine the sign by the quadrant in which the angle would lie if θ were acute; the result holds whether θ is acute or not.
- 2. In case of $90^{\circ} \pm \theta$ or $270^{\circ} \pm \theta$ change the name of the function to the cofunction; in case of $-\theta$ or $180^{\circ} \pm \theta$ do not change the name of the function.

Example 1.
$$\sin(175^\circ) = \sin(180^\circ - 5^\circ) = + (\text{rule 1})\sin(\text{rule 2})5^\circ$$
.
Example 2. $\cos 175^\circ = \cos(90^\circ + 85^\circ) = -(\text{rule 1})\sin(\text{rule 2})85^\circ = -\sin 85^\circ$.
Example 3. $\tan 300^\circ = \tan(270^\circ + 30^\circ) = -(\text{rule 1})\cot(\text{rule 2})30^\circ = -\sqrt{3}$.
Example 4. $\tan 300^\circ = \tan(180^\circ + 120^\circ) = +(\text{rule 1})\tan(\text{rule 2})120^\circ = -\sqrt{3}$.

^{*}When θ = an odd multiple of $\pm 90^{\circ}$ it has no tangent or secant.

[†] When $\theta =$ an even multiple of $\pm 90^{\circ}$ it has no cotangent or cosecant.

[!] The tabulated relations are all true if θ is not a multiple of 90°; they fail only in the cases mentioned in the preceding footnotes. See §§ 8, 49.

EXERCISES XXII. - READING OF TABLES - REDUCTION TO FUNCTIONS OF ACUTE ANGLES

- 1. Express the following as functions of acute angles not greater than 45°. Make use of congruent angles whenever advantageous:
 - (a) $\sin 150^{\circ} 21'$.
- (b) cos 125° 15'.
- (c) tan 283° 45'.
- (d) $ctn(-36^{\circ} 16')$. (e) $sec 460^{\circ}$.
- $(f) \csc(-210^{\circ} 20').$ (i) $\tan(-546^{\circ}28')$.
- (g) $\sin(-943^{\circ}24')$. (h) $\cos 551^{\circ}23'$.
- 2. Show directly from a figure that
- (a) $\sin(118^{\circ} 26') = \sin 61^{\circ} 34' = \cos 28^{\circ} 26'$.
- (b) $\cos(118^{\circ} 26') = -\cos 61^{\circ} 34' = -\sin 28^{\circ} 26'$.
- (c) $\tan(118^{\circ} 26') = -\tan 61^{\circ} 34' = -\cot 28^{\circ} 26'$.
- (d) $\sin 312^{\circ} 18' = -\sin 47^{\circ} 42' = -\cos 42^{\circ} 18'$.
- 3. Make a tabular form of 5 columns and 16 rows, and at the head of the columns, beginning with the 2d, enter the words sine, cosine, tangent, cotangent. In the first column, beginning with the 2d line, enter the following angles: $172^{\circ}\ 26'$, $-153^{\circ}\ 18'$, $253^{\circ}\ 12'$, $-208^{\circ}\ 25'$, $285^{\circ}\ 32'$, $-312^{\circ} 18'$, $389^{\circ} 15'$, $-416^{\circ} 27'$, $462^{\circ} 50'$, $-502^{\circ} 11'$, $552^{\circ} 37'$, $-618^{\circ} 42'$, $650^{\circ} 14'$, $-700^{\circ} 24'$, $1000^{\circ} 10'$. Use a table of trigonometric functions.
- 4. Reduce the following to functions of acute angles as in Ex. 2:
- (a) $\sin 164^{\circ} 22'$. (b) $\cos 348^{\circ} 12'$. (c) $\tan 264^{\circ} 46'$. (d) $\cot 128^{\circ} 14'$. (e) $\sec 222^{\circ} 45'$. (f) $\csc 305^{\circ} 42'$. (g) $\sin 142^{\circ} 25'$. (h) $\cos 275^{\circ} 23'$.
 - 5. From the tables find the values of the following logarithms:
 - (a) log(- cos 161° 11').
- (b) $\log \sin 161^{\circ} 11'$.
- (d) $\log(-\cos 252^{\circ} 48')$.

Note that the numbers in parentheses in (a), (c), and (d) are positive; if the minus sign were absent, each of them would be negative. Negative numbers have no real logarithms.]

- 6. Compute the values of the following expressions by logarithms:
- (a) $2.35 \sin 148^{\circ} 23'$. (b) $24.8 \cos 160^{\circ} 40'$. (c) $16.2 \cos 320^{\circ} 45'$
- 7. Find the components on the axes of a force of magnitude 5.74 (lb.) which makes an angle of 215° 20' with the positive end of the x-axis.
- 8. A force is indicated by stating its magnitude (in pounds) and its direction (i.e. the angle it makes with the positive end of the x-axis). Find the components on the axes of the forces indicated below:
 - (a) (4.17, 128°). [This means magnitude 4.17, angle 128°.]
 - (b) (24.8, 250° 10′).

- (c) $(5.72, 310^{\circ} 35')$. (e) $(40.5, -23^{\circ} 40')$.
- (d) (51.4, 141° 25').
- 9. Find the magnitude and the direction of a force whose components on two perpendicular axes are $F_x = 25.46$, $F_y = 38.72$.
- 10. Find the magnitude and the direction of a force whose components are $F_x = -12.8$, $F_y = 6.45$.

PART II. GRAPHS OF TRIGONOMETRIC FUNCTIONS

54. Plotting of Values. A table of a few values, such as those of Exs. 10 and 11, p. 63, furnishes enough data to construct a fair graph of the functions sine and cosine. The table on p. 15 also may be used; it contains more than is really needed except for exceedingly accurate drawing. For example if x denotes the angle and y denotes its sine, we have to plot the curve represented by the equation $y = \sin x$.

On a sheet of cross section paper draw a pair of rectangular axes Ox and Oy. Before plotting any points it is necessary

Fig. 55

to decide how many spaces shall represent a unit length and how many degrees shall be represented by the unit length, in order to get all the desired points on the paper.

In Fig. 55, one unit on the horizontal scale is chosen to represent 60°, which is convenient to the size of the paper; but any other unit might as well have been chosen.

We then plot the points corresponding to the angles indicated, and draw through them a smooth curve, keeping in mind the general behavior of the sine as given in the first of the tables of Ex. 10, p. 63.

In plotting curves it is of advantage in many ways to make the horizontal and vertical scale units the same, and this should be done if not too inconvenient.

^{*} If we were to take the two scale units the same in plotting the curve $y = \sin x$ where the unit angle is the degree, one arch of the curve would be 180 units nong and only one unit high.

55. Graphs in Radian Measure. A very convenient unit angle for many such graphs is the radian (§ 43). We shall agree to use the radian as a unit in trigonometric graphs, unless something is said to the contrary. The graph of $y = \sin x$,

Fig. 56

drawn on this scale, is shown in Fig. 56; it resembles Fig. 55 very closely, since 1 radian = $57^{\circ}.3$ is very close to 60° , which was used in § 54.

The use of the radian as the unit angle both in such graphs and in all other connections, is universal in the Calculus and in other advanced mathematical topics.

56. Mechanical Construction for sin x. Instead of computing values of y for certain values of x as in the preceding table and plotting these for points on the curve $y = \sin x$, we can shorten the work materially by the following graphical method. Construct a pair of rectangular axes and choose a scale unit; for the sake of fixing our ideas let us suppose that this unit is one inch. At C, a convenient point on the x-axis as center, construct a unit circle. Choose some number for x, and lay off ACB = x radians (above the x-axis if x > 0, below if x < 0). On the x-axis lay off $OD = \operatorname{arc} AB = x$ in. (to the right if x > x0, to the left if x < 0). Then the abscissa of D, and therefore of every point on the vertical line through D, is x; it is obvious from the construction that the ordinate of B, and therefore of every point on the horizontal line through B, is $\sin x$. Therefore the coördinates of the point P where these lines intersect are $(x, \sin x)$, and P is a point on the curve $y = \sin x$.

This method may be used to plot the curve $y = \sin x$ as fol-

lows. Suppose it is desired to plot the curve from $x=-\pi/2$ to $x=\pi/2$. Choose a scale unit and lay off on the x-axis OE=1 unit, $OH=(\pi/3)$ units = 22/21 of OE, approximately. Divide OH into a convenient number of parts (say 4), and then mark the points $-\pi/2$, $-5\pi/12$, $-\pi/3$, $-\pi/4$, $-\pi/6$, $-\pi/12$, $\pi/12$, $\pi/6$, $\pi/4$, $\pi/3$, $5\pi/12$, $\pi/2$, on the x-axis. At C, a convenient point on the x-axis, construct a circle with radius

Fig. 57

= OE. With a protractor (or by bisection of arcs in this case) lay off arcs AB_1 , AB_2 , etc. which subtend angles $\pi/12$ radians, $\pi/6$ radians, etc. at the center C; also, AB_1 , AB_2 , etc., subtending angles $-\pi/12$ radians, $-\pi/6$ radians, etc. Intersections of corresponding horizontal and vertical lines give points on the curve. Proceed similarly for any value of x.

EXERCISES XXIII. - GRAPHS OF THE TRIGONOMETRIC FUNCTIONS

- 1. From the values of $\cos x$ in Exs. 10 and 11, p. 63, plot the graph of the equation $y = \cos x$, choosing the units as in § 54.
- 2. Draw the curve $y = \cos x$ by a mechanical construction similar to that of § 56, with the scale used in §§ 55-56.
 - 3. Plot the graphs of each of the equations

(a) $y = \tan x$, (b) $y = \cot x$,

on the scale of § 54, or on the scale of § 55.

[Note. The scale of § 55 (radian measure) is preferable. See Table V.]

- 4. Trace the variations of $\cos x$ as x increases from 0 to 2π radians, from the curve of Ex. 2.
- 5. Trace the variation of $\tan x$ as x varies from 0 to 2π , from the curve of Ex. 3 (a). Trace the variation of $\cot x$.
 - 6. Plot the graphs, preferably on the radian scale, of the equations: $(a) \ y = \sec x. \quad (b) \ y = \csc x.$
- 7. Show that the graph of $y = \sin x + \cos x$ can be constructed by mechanically adding the ordinates of the two curves $y = \sin x$ and $y = \cos x$.
- 8. By analogy to Ex. 7 show how to draw mechanically each of the following curves:
 - (a) $y = \sin x \cos x$.

- (d) $y = -\cos x$.
- $(b) y = 2 \sin x + 3 \cos x.$
- (e) $y = \operatorname{vers} x = 1 \cos x$.
- (c) $y = \tan x 2 \sin x$.
- (f) $y = \operatorname{exsec} x = \operatorname{sec} x 1$.
- 9. Show that the graph of $y = x + \sin x$ can be constructed mechanically. (Use radian measure.)
- 10. Show how to construct the graph of $y = \sin 2x$ mechanically by shortening the horizontal lengths in the graph of $y = \sin x$ in the ratio 1:2.
- 11. By analogy to Exs. 7, 9, 10, draw mechanically each of the following curves from graphs previously drawn:
 - $(a) y = \cos 3 x.$

- (c) $y = x \cos x$.
- (b) $y = \sin x 3\cos 2x$.
- (d) $y = \tan x + \sin 2x$.
- 12. Show that the graph of $y = \sec x$ can be drawn mechanically from that of $y = \cos x$ by means of the relation $\sec x = 1/\cos x$.
- 13. By analogy to Ex. 12 show how to draw, from the graphs of $\sin x$ and $\cos x$, the graphs of each of the following curves:
 - (a) $y = \csc x$.
- (b) $y = \tan x$.
- (c) $y = \operatorname{ctn} x$.
- (d) y = vers x.
- 14. Plot each of the curves (a) $y = \sin(x/2)$, (b) $y = \cos(x/2)$.
- 15. Show that the graph of $y = \sin(x \pi/6)$ can be drawn by moving the graph of $y = \sin x$ to the right by an amount $\pi/6$.
 - 16. By analogy to Ex. 15 draw mechanically the following curves:
 - (a) $y = \cos(x \pi/6)$.

(c) $y = 2 \tan(x - \pi/4)$.

(b) $y = \sin(x + \pi/3)$.

- (d) $y = 2 \sin(4x \pi/3)$.
- 17. Show how to draw mechanically the graphs of each of the following curves:
 - (a) $y = \sin^2 x$. (b) $y = \cos^2 x$. (c) $y = \tan^2 x$.
- 18. If a point M moves in a circular path of unit radius with a constant angular speed 1 radian per second, show that the angle $\theta = t$ (radians); hence show that the coördinates (x, y) of M are: $x = \cos t$, $y = \sin t$.

PART III. APPLICATIONS OF LARGE ANGLES

57. Composition and Resolution of Forces. As in §48, the components on the axes of any force of magnitude F which

makes an angle α with the positive end of the x-axis, are

(1)
$$F_x = F \cos \alpha,$$
$$F_y = F \sin \alpha.$$

Given two forces, F', F'' which make angles α' , α'' , respectively, with the positive end of the x-axis,

we may find the components of each of them on each of the axes. The sum of the two x-components is $F'_x + F''_x = F' \cos \alpha' + F'' \cos \alpha''$, and is equal to the x-component of the resultant R of F' and F'', as is evident from a figure, since

Proj. $OC = ON = OM + MN = \operatorname{Proj}_x F' + \operatorname{Proj}_x F''$. Hence the r-component R_x of R is:

(2) $R_x = F' \, \cos \, \alpha' + F'' \, \cos \, \alpha'',$ and in like manner the y-component R_y of R is

(3)
$$R_y = F' \sin \alpha' + F'' \sin \alpha''.$$

These results hold, by (1), when F' and F'' lie in any positions. From (2) and (3) the magnitude R of the resultant and the angle θ which it makes with the positive x-axis are given by

(4)
$$R = \sqrt{R_x^2 + R_y^2}, \quad \tan \theta = R_y \div R_x;$$

where, in case of ambiguity, the quadrant in which θ lies is determined by the signs of R_x and R_y in an obvious manner.

58. The Projection Theorem. We can now generalize the preceding results and prove the following important theorem:

The sum of the projections on any straight line l, of a broken line whose segments are taken in order so that the terminal point of each segment is the initial point of the next, is equal to the projection on l of a line segment joining the initial point of the first segment of the broken line to the terminal point of the last segment.

Proof. (1) The theorem is true when the broken line consists of two segments, for using the notation of § 14, in any

figure, $\operatorname{Proj}_{l} AB = A'B'$, $\operatorname{Proj}_{l} BC = B'C'$, $\operatorname{Proj}_{l} AC = A'C'$ and A'B + B'C' = A'C', whatever the order of points A'B'C'.

(2) If the theorem is true for n-1 segments it is also true for n segments. Let A_1A_n be the straight line joining the initial point of the first segment with the terminal point of the (n-1)th segment. Then by hypothesis:

$$\begin{aligned} &\operatorname{Proj}_{l} A_{1} A_{2} + \operatorname{Proj}_{l} A_{2} A_{3} + \cdots + \operatorname{Proj}_{l} A_{n-1} A_{n} = \operatorname{Proj}_{l} A_{1} A_{n}. \\ &\operatorname{Now by } (1), \ \operatorname{Proj}_{l} A_{1} A_{n} + \operatorname{Proj}_{l} A_{n} A_{n+1} = \operatorname{Proj}_{l} A_{1} A_{n+1}; \\ &\operatorname{hence,} \end{aligned}$$

 $\operatorname{Proj}_{l} A_{1} A_{2} + \cdots + \operatorname{Proj}_{l} A_{n-1} A_{n} + \operatorname{Proj}_{l} A_{n} A_{n+1} = \operatorname{Proj}_{l} A_{1} A_{n+1}.$

(3) The theorem is true for 2 segments; hence it is true for 3 segments, consequently for 4 segments, etc., for any number.

59. Application to Forces and Velocities. The results of § 58 apply

to forces and velocities, since the resultant of any number of forces (or velocities) is found by forming a broken line whose sides are equal and parallel to the given forces (or velocities), the initial point of each force (or velocity) being placed at the terminal point of the preceding one. The resultant is represented by the directed line segment connecting the initial point of the first to the terminal point of the last.

The result of § 58, applied to forces, exactly as in § 57, gives the components of the resultant R on the two axes, in terms of given forces F', F'', F''', etc., which make angles α' , α'' , α''' , etc., with the positive end of the x-axis, as follows:

(1)
$$R_z = F'_z + F''_z + F'''_z + \cdots = F' \cos \alpha' + F'' \cos \alpha'' + \cdots,$$

(2)
$$R_y = F'_y + F''_y + F'''_y + \cdots = F' \sin \alpha' + F'' \sin \alpha'' + \cdots$$

The magnitude R of the resultant and the angle θ which it makes with the positive x-axis are given by

(3)
$$R = \sqrt{R_x^2 + R_y^2}, \quad \tan \theta = R_y \div R_x.$$

The signs of R_x and R_y determine the quadrant in which θ lies.

EXERCISES XXIV. - COMPOSITION AND RESOLUTION OF VECTORS

- 1. Find the components R_x and R_y of the resultant of two forces $(F'=12, \alpha'=30^\circ)$ and $(F''=20, \alpha''=60^\circ)$.
 - 2. Find the magnitude R and the direction θ of the resultant of Ex. 1.
- 3. Find the resultant (R, θ) of three forces (100, 350°), (150, 490°), (200, 720°), where (F, α) indicates a force of magnitude F and direction α .
- 4. Find the resultant (R, θ) of three velocities (25, 20°), (10, 210°), (18, 325°), where (v, α) indicates a velocity of magnitude v and direction α .
- 5. If a force of intensity F makes an angle α with any line in space, show that the component of F along that line is $F\cos\alpha$. Draw a figure.
- 6. A force is often indicated by stating its two components, in the order (F_x, F_y) , in parentheses, separated by a comma. Find the magnitude and the direction of each of the following forces:
 - (a) (5, -10). (b) (-42.5, 25.64). (c) (-6, -8).
 - (d) (-48.6, -72.9). (e) (50.8, -32.9). (f) (-42.2, -54.6).
- 7. Show that, in general, the magnitude F and the direction α of a force whose components on the axes are F_x and F_y are given by

$$F = \sqrt{F_x^2 + F_y^2},$$
 $\tan \alpha = F_y \div F_x,$

while the quadrant in which F lies is given by the algebraic signs of $\sin \alpha = F_y + F$ and $\cos \alpha = F_z + F$.

- 8. If a force of intensity 12 makes angles whose cosines are 2/3, 1/3, and 2/3 with three mutually perpendicular lines Ox, Oy, and Oz, respectively, show that the components on these three lines are 8, 4, 8, respectively.
- 9. If the cosines of the angles which a force F makes with three mutually perpendicular lines are $\cos \alpha$, $\cos \beta$, and $\cos \gamma$, respectively, show that the components of F on those lines are $F\cos \alpha$, $F\cos \beta$, $F\cos \gamma$, respectively.
- 10. If the components of a force on three mutually perpendicular lines in space are 2, 3, and 6, respectively, show that the intensity of their resultant is represented by the diagonal of the rectangular parallelopiped determined by the components, and compute its value.
- 11. Show that the cosine of the angle made by the force of Ex. 10 with the first of the three mutually perpendicular lines is 2/7. Find the cosines of the angles which the force makes with each of the other two perpendicular lines.
- 12. If a force has components A, B, and C on three mutually perpendicular lines Ox, Oy, Oz, show that the intensity of the force is $R = \sqrt{A^2 + B^2 + C^2}$. Show that the cosines of the angles which the force makes with Ox, Oy, and Oz are A/R, B/R, and C/R, respectively.

60. Uniform Circular Motion. The importance of the functions of large angles and of negative angles is well 'illustrated by the simple problem of uniform rotation. Let M be a point of a rotating body, at a distance a = OM (in feet) from the axis of rotation. We have seen (§ 45) that it is convenient to measure the angle θ , between the initial position OA and the position OM, in radians. Then the arc s which subtends θ is (1) $s = a\theta$, (θ in radians, a and s in feet);

and θ is proportional to the time t (in seconds) after M was at A:
(2) $\theta = kt$, whence s = akt, (k a constant),

where the constant k is the angle formed in one second, *i.e.* the angular speed is k radians per second.

The values of the coördinates, x and y, of M, are

(3)
$$x = a \cos \theta, \quad y = a \sin \theta;$$

or,

(4)
$$x = a \cos kt$$
, $y = a \sin kt$.

It is evident that in any circular Fig. 62 motion, the value of θ will exceed π as soon as t exceeds π/k ; hence large angles occur very naturally in (3) and (4).

В

0

If the rotation is clockwise, it is counted (§ 37) as negative; and all values of θ and the number k are negative. Then the angles in (3) and (4) are negative.

61. Period. Amplitude. The total time T for one revolution is called the period of the rotation. Since the angular speed is k radians per second, and since one revolution is 2π radians, $T=2\pi/k$, in seconds.

If t is increased by the amount T, the angle θ is increased by one revolution or 2π radians. Hence, by (3), x and y are not changed since both the sine and the cosine have the same values for any two congruent angles.

The quantity a, the radius of the circular path, is called the amplitude.

62. Vibration. Simple Harmonic Motion. A point on a vibrating stretched cord moves back and forth in a manner similar

to the motion of the projection of M, § 60, on the x-axis. It is assumed in Physics that any point of such a steadily vibrating body actually moves precisely as this projection:

$$(1) x = a \cos kt.$$

The motion of the projection of M on the y-axis is precisely similar to the preceding; it is

$$(2) y = a \sin kt.$$

The kind of motion described by (1) or by (2) is called simple harmonic motion (S. H. M.). As in § 61, the quantity a is called the amplitude, and $T=2\pi/k$ is called the period of the S. H. M. The moving point returns to its original position every $2\pi/k$ seconds, as in § 61; i.e. $T=2\pi/k$ is the time of one complete vibration.

EXERCISES XXV. - CIRCULAR MOTION VIBRATION

- 1. Show that the coördinates (x, y) of the point M of § 60, for a uniform rotation of angular speed 1, are $x = a \cos t$, $y = a \sin t$. See Ex. 18, p. 71.
 - 2. Show that the period of the rotation of Ex. 1 is 2π .
- 3. Find the values of x and y in Ex. 1 with a = 10, when $t = 1, 2, \pi/2, 3, \pi, 4, 2\pi, 7$. Plot these pairs of values of x and y, and show that the points lie on the circular path.
- 4. A recording instrument often used in Physical laboratories consists of a cylinder which is covered with a paper painted with lampblack. A fine needle is attached to a vibrating body, such as a tuning fork, and this needle is allowed to touch the lampblacked surface while the cylinder is slowly rotated.

If the apparatus is adjusted so that the needle would trace an element of the cylinder if the cylinder were at rest, show that the curve actually traced on the moving cylinder resembles the curve $y = \sin x$.

- 5. If the cylinder of Ex. 4 rotates so that a point on its surface travels a distance of k units per second, show that the curve traced on the blackened paper is precisely the curve $y=a\sin kt$, where $2\pi/k$ is the period of the tuning fork, if the amplitude of the vibration remains constant.
- 6. If a tuning fork makes 256 complete vibrations per second, show that its period is T=1/256.
- 7. Show that the motion of a point on the tuning fork of Ex. 6 is described by the equation $y = a \sin kt$ where $k = 2\pi/T = 512\pi$, i.e. by the equation $y = a \sin 512\pi t$.

- 8. Plot the curve which represents the equation $y = a \sin 512 \pi t$ for the value a = 1/100 (ft.) = 1 large unit on the y-axis.
- 9. If two vibrations in the same line take place simultaneously, the displacement of a point in the vibrating body is the sum of the displacements due to the two vibrations taken separately.

Show that the equation $y = a \sin kt + b \cos kt$ represents such a compound vibration.

- 10. Plot the curve which represents each of the following compound vibrations:
 - (a) $y = 2\cos 3t + 3\sin 3t$; (b) $y = \sin 2t \cos 3t$;
 - (c) $y = \cos 5 t 2 \sin 2 t$;
- (d) $y = 2 \sin 3 t + 5 \cos 2 t$.
- 11. The pitch of a screw is the distance it moves parallel to its axis when the head makes one complete turn; i.e. the distance between two turns of the screw thread.

Find the distance the screw moves when the head turns through an angle of 230°, if the pitch is 1/20 in.

[Note. Instruments of precision for measuring distances accurately are made on this principle, and are called micrometers.]

- 12. Find the pitch of a screw that moves through a distance 1/8 in. in turning through an angle of 1200°.
- 13. A spiral stairway has a railing similar to the thread of a screw. If the pitch is 10 ft., find the angular width of steps that rise 7 in. How large must the inner radius of the base be made to make the net width of the inner tread 5 in.?
- 14. If the base of a spiral similar to a screw thread has its center on the origin of a pair of rectangular axes Ox and Oy, and passes through a point of Ox at a distance a from O, and if the vertical distance from this base is denoted by h, show that

$$x = a \cos \theta$$
, $y = a \sin \theta$, $h = p\theta/360$,

where p is the pitch and θ is the angle, in degrees, through which the point (x, y) turns.

15. If the point of Ex. 14 moves with uniform speed, so that $\theta = kt$. where k is a constant, show that

$$x = a \cos kt$$
, $y = a \sin kt$, $h = pkt/360$.

CHAPTER VI

THE ADDITION FORMULAS

63. Reduction of $A \cos \alpha \pm B \sin \alpha$. — Formulas. Such expressions as $A \cos \alpha \pm B \sin \alpha$ arise in various connections: thus a combination of two vibrations gives this kind of a form.

Another very different connection in which such expressions arise is in resolution of forces. If a force of magnitude A makes an angle a with the positive x-axis, while another force B makes an angle of $a + 90^{\circ}$ with the x-axis, the x-component

Fig. 63

 R_{τ} of their resultant R is

(1) $R_z = A \cos \alpha + B \cos (\alpha + 90^\circ)$ = $A \cos \alpha - B \sin \alpha$;

and the y-component R_y of R is (2) $R_y = A \sin \alpha + B \sin (\alpha + 90^\circ)$ $= A \sin \alpha + B \cos \alpha$.

In both these cases, it is possible, and advantageous, to ex-

press the sum of the two terms as the product of a single number times the cosine (or the sine) of a single angle. In the case of forces this is obvious; for in Fig. 63 we have, by § 48,

(3)
$$R_z = R \cos(\alpha + \theta), \qquad R_y = R \sin(\alpha + \theta),$$

where θ is the angle between A and R. Inserting these values in (1) and (2), we find:

(4)
$$R \cos (\alpha + \theta) = A \cos \alpha - B \sin \alpha$$
;

(5)
$$R \sin (\alpha + \theta) = A \sin \alpha + B \cos \alpha$$
.

Moreover, from the figure, $A = R \cos \theta$, $B = R \sin \theta$.

Substituting these values in (4) and (5) and dividing through by R, we find:

(6)
$$\cos (\alpha + \theta) = \cos \alpha \cos \theta - \sin \alpha \sin \theta.$$

(7)
$$\sin (\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta$$
.

and hence

and

The formulas (6) and (7) are often called the addition formulas.*

To reduce $A \cos \alpha - B \sin \alpha$ to the form $R \cos (\alpha + \theta)$, R and θ are found from the relations $R = \sqrt{A^2 + B^2}$, $\tan \theta = B/A$. Likewise $A \sin \alpha + B \cos \alpha$ reduces to $R \sin (\alpha + \theta)$ by (5).

64. Illustrative Examples.

Example 1. To reduce $2\cos\alpha - 3\sin\alpha$ to the form $R\cos(\alpha + \theta)$, we may use that part of Fig. 63 which shows A(=2), B(=3), and R. That is, we place lines of length 2 and 3, respectively, at right angles: then R is the diagonal of the rectangle they determine, and θ is the angle between A (= 2) and R:

R =
$$\sqrt{A^2 + B^2} = \sqrt{2^2 + 3^2} = \sqrt{13}$$
;
 $\tan \theta = B/A = 3/2 = 1.5$;
 $\theta = 50^\circ 18'.6$,
 $2 \cos \alpha - 3 \sin \alpha = \sqrt{13} \cos (\alpha + 56^\circ 18'.6)$.

Example 2. Reduce the combination of two simple harmonic motions $3\sin t + 4\cos t$ to the form $R\sin(t+\theta)$. To find R and θ , draw a figure as in Ex. 1, with A=3 and B=4; then R=5, and $\tan \theta = 4/3$ or $\theta =$

 $53^{\circ} 7'.8$. Hence, $3 \sin t + 4 \cos t = 5 \sin (t + 53^{\circ} 7'.8)$. The latter form in itself represents a simple harmonic motion, for if a

point P moves on a circular path of radius 5 with constant angular speed unity (i.e. 1 radian per second), and if the time t is calculated (in sec.) from the time P was at A, where $\angle XOA = \theta = 53^{\circ} 7'.8$, we have

 $\alpha = t$ and $x = 5 \cos(\alpha + \theta)$, $y = 5 \sin(\alpha + \theta)$. Hence the motion of the projection of P on the y-axis is given by $y = 5 \sin(t + \theta), \quad \theta = 53^{\circ} 7'.8$ It follows that the sum of two simple harmonic motions $3 \sin t$ and $4 \cos t$ is a new simple harmonic

This fact is easily generalized to the case $A \sin kt + B \cos kt$: motion.

$$y = A \sin kt + B \cos kt = R \sin (kt + \theta),$$

where $R = \sqrt{A^2 + B^2}$, and $\tan \theta = B/A$.

The angle θ is called the phase angle; in the cases considered in § 62, this angle was either 0 or $\pi/2$. To find the time when the moving point P was on the positive x-axis, we set y = 0; i.e. $\sin(kt + \theta) = 0$; this gives $t = -\theta/k$. This time $t = -\theta/k$ is called the phase.

^{*} A consideration of one or two special cases shows that the sine of the sum of two angles is not equal to the sum of their sines: $\sin (\alpha + \beta) \neq \sin \alpha + \sin \beta$: $e.g. \sin 90^{\circ} \neq \sin 60^{\circ} + \sin 30^{\circ}, \sin 180^{\circ} \neq \sin 120^{\circ} + \sin 60^{\circ}, \sin 60^{\circ} \neq 2 \sin 30^{\circ}.$ Similarly, show, by a trial, that $\cos (\alpha + \beta) \neq \cos \alpha + \cos \beta$.

65. Independent Proof of Addition Formulas. The formulas (6) and (7) of § 63 may be proved without reference to forces.

Let α and β be any two acute angles; place their sum on coördinate axes. Let P be any point on the terminal side of $\alpha + \beta$ at a distance r > 0 from the origin. Draw PQ perpendicular to the terminal side of α . In Fig. 66, $\alpha + \beta$ is acute; in Fig. 67, $\alpha + \beta$ is obtuse.

. In Fig. 66, the length of OP is r, and the line OP makes an angle $\alpha + \beta$ with the x-axis, while the angle between OP and the y-axis is $90^{\circ} - (\alpha + \beta)$. In Fig. OP makes an angle $(\alpha + \beta)$ with

the x-axis and an angle of $(\alpha + \beta) - 90^{\circ}$ with the y-axis. length of OQ is $r \cos \beta$ and the line OQ makes an angle α with the x-axis while the angle between OQ and the y-axis is $90^{\circ} - \alpha$. length of QP is $r \sin \beta$, and the line QP makes an angle $90^{\circ} + \alpha$ with the x-axis and an angle α with the y-axis. In either figure

(1)
$$\operatorname{Proj}_{y} OP = \operatorname{Proj}_{y} OQ + \operatorname{Proj}_{y} QP.$$

(2)
$$\operatorname{Proj}_{x} OP = \operatorname{Proj}_{x} OQ + \operatorname{Proj}_{x} QP,$$

Since $Q = r \cos \beta$, $QP = r \sin \beta$, (1) becomes, by § 48,

(3)
$$r \sin (\alpha + \beta) = OQ \sin \alpha + QP \cos \alpha = (r \cos \beta) \sin \alpha + (r \sin \beta) \cos \alpha;$$

and similarly, (2) becomes

(4)
$$r\cos(\alpha + \beta) = OQ\cos\alpha + QP(-\sin\alpha) = (r\cos\beta)\cos\alpha - (r\sin\beta)\sin\alpha.$$

Dividing equations (3) and (4) through by r, we have, as in § 63:

I.
$$\sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
,
II. $\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$.

66. Extension to Argles of Any Size. The formulas (I) and (II), § 65, have been proved to hold when α and β are any acute angles whatever; the student may show by direct substitution that they hold when either α or β , or both, are zero.

These formulas still hold when α and β are any angles whatever (zero, positive, or negative, of any magnitude). For any particular case, they may be proved by projection as in § 65. A general proof by mathematical induction follows.

Lemma. If there are any two angles for which formulas I and II hold, then they will hold also for the angles obtained by increasing one or both of these angles by 90°.

Proof of the lemma: Let $\alpha = a$, $\beta = b$, be two angles for which I and II hold. We have to show:

- (1) $\sin (a + 90^{\circ} + b) = \sin (a + 90^{\circ}) \cos b + \cos (a + 90^{\circ}) \sin b$.
- (2) $\sin(a+b+90^\circ) = \sin a \cos(b+90^\circ) + \cos a \sin(b+90^\circ)$.
- (3) $\sin (a + 90^{\circ} + b + 90^{\circ}) = \sin (a + 90^{\circ}) \cos (b + 90^{\circ})$
- $+\cos{(a+90^{\circ})}\sin{(b+90^{\circ})}.$ (1') $\cos{(a+90^{\circ}+b)} = \cos{(a+90^{\circ})}\cos{b} \sin{(a+90^{\circ})}\sin{b}.$
- (2') $\cos(a+b+90^\circ) = \cos a \cos(b+90^\circ) \sin a \sin(b+90^\circ)$.
- (3') $\cos (a + 90^{\circ} + b + 90^{\circ}) = \cos (a + 90^{\circ}) \cos (b + 90^{\circ}) \sin (a + 90^{\circ}) \sin (b + 90^{\circ}).$

These may all be verified by means of the relations of § 53, which have been proved to hold for all values of θ . Thus, to prove (1):

```
\sin (a + 90^\circ + b) = \sin (90^\circ + a + b) = \cos (a + b)

= \cos a \cos b - \sin a \sin b.

\sin (a + 90^\circ) \cos b + \cos (a + 90^\circ) \sin b = \cos a \cos b - \sin a \sin b.

Similarly we may prove 2, 3, 1', 2', 3'; this establishes the lemma.
```

We know that the formulas I and II hold for $0^{\circ} \le \alpha < 90^{\circ}$, $0^{\circ} \le \beta < 90^{\circ}$; apply the lemma and we know that they hold for $0^{\circ} \le \alpha < 180^{\circ}$, $0^{\circ} \le \beta < 180^{\circ}$. Apply the lemma to this result and we know that they hold for $0^{\circ} \le \alpha < 270^{\circ}$, $0^{\circ} \le \beta < 270^{\circ}$, apply the lemma to this result and we know that they hold for $0^{\circ} \le \alpha < 270^{\circ}$, $0^{\circ} \le \beta < 360^{\circ}$, $0^{\circ} \le \beta < 360^{\circ}$. That is, we have now proved that the two formulas I and II hold for all angles between 0° and 360° (0° included).

Next let c and d be any two angles whatever, zero, positive, or negative; then by § 41 there is an angle $\alpha \cong c$, and an angle $\beta \cong d$, where α and β are both between 0° and 360° (0° included). Then $c+d\cong \alpha+\beta$. Hence, since I and II hold for α and β , and since the value of any trigonometric function is the same for any two congruent angles, it follows that I and II hold for c and d.

EXERCISES XXVI. - ADDITION FORMULAS

- 1. Given $\sin \alpha = 3/5$, $\sin \beta = 5/13$; find $\sin (\alpha + \beta)$.
- (a) When α and β are both acute; (b) when α and β are both obtuse.
- 2. Find $\sin (45^{\circ} + x)$, $\cos (45^{\circ} + x)$, $\sin (30^{\circ} + x)$, $\cos (30^{\circ} + x)$ in terms of $\sin x$ and $\cos x$.
- 3. Given that x and y are both obtuse angles and that $\sin x = 1/2$, $\sin y = 1/3$; find $\sin (x + y)$ and $\cos (x + y)$.
- 4. Use the addition formulas to express $\sin (90^{\circ} + \alpha)$ and $\cos (90^{\circ} + \alpha)$ in terms of $\sin \alpha$ and $\cos \alpha$.
 - 5. Prove that $\sin (60^{\circ} + x) \cos (30^{\circ} + x) = \sin x$.
- 6. Express $\sin (\alpha + \beta + \theta)$ in terms of sines and cosines of α , β , and θ .

[Hint. Let $\phi = \alpha + \beta$ and obtain $\sin (\phi + \theta)$; then replace ϕ by its value, $\alpha + \beta$.]

- 7. Express $\cos(\alpha + \beta + \theta)$ in terms of sines and cosines of α , β , and θ .
- 8. Reduce the combination of two simple harmonic motions $5 \cos t 12 \sin t$ to the form $r \cos (t + \theta)$.
 - 9. Reduce $3 \sin t + 4 \cos t$ to the form $r \sin (t + \theta)$.
- 10. Reduce each of the following to the product of a number and the sine or the cosine of a single angle:
 - (a) $\sin x 2 \cos x$.

(e) $\sqrt{3}\cos x - \sin x$.

(b) $3\cos y - 4\sin y$.

 $(f) \sin y + .5 \cos y$.

(c) $5\cos\theta + 12\sin\theta$.

(g) $.7\cos\theta - \sin\theta$.

(d) $3\sin t - 3\cos t$.

- (h) $.55667 \sin c + .5 \cos c$.
- 11. Given two forces of intensities 2 and 3 that make angles of 30° and 120° , respectively, with the positive x-axis; find the horizontal and the vertical components of their resultant without finding the resultant itself; find the same quantities by using the resultant.
- 12. Given the two simple harmonic motions $x = 2 \cos t$ and $x = 5 \sin t$, find a single S. H. M. which represents their sum. Find its amplitude; its phase-angle; its phase.
- 13. Express the S. H. M. $x = 6 \sin (t + 60^{\circ})$ as the sum of two S. H. M.'s whose phase-angle is 0° or 90° .
- 14. Given .56 $\sin c + .5 \cos c = -$.34, find an angle θ , and a number r, such that .56 $\sin c + .5 \cos c = r \sin (c + \theta)$, by means of § 63. Then, from $r \sin (c + \theta) = -$.34, find $\sin (c + \theta)$, and therefore (from the Tables) find $c + \theta$. Hence find c.

67. Functions of the Difference of two Angles. If ϕ and ψ are any two angles whatever, zero, positive, or negative, then formulas I, II, § 65 hold for $\alpha = \phi$, $\beta = -\psi$; hence.

$$\sin(\phi - \psi) = \sin \phi \cos(-\psi) + \cos \phi \sin(-\psi)$$

$$= \sin \phi \cos \psi - \cos \phi \sin \psi.$$
Likewise, $\cos(\phi - \psi) = \cos \phi \cos(-\psi) - \sin \phi \sin(-\psi)$

 $= \cos \phi \cos \psi + \sin \phi \sin \psi.$ Since ϕ and ψ are any angles whatever, we have proved that

III.
$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta,$$

IV.
$$\cos{(\alpha - \beta)} = \cos{\alpha} \cos{\beta} + \sin{\alpha} \sin{\beta}$$
,

hold for any two angles whatever.

68. Double Angles. Since formulas I and II, § 65, are true for all angles, they hold when $\alpha = a$, any angle whatever, and $\beta = a$, the same angle; hence,

$$\sin (a + a) = \sin a \cos a + \cos a \sin a,$$

 $\cos (a + a) = \cos a \cos a - \sin a \sin a.$

and

Therefore the following formulas hold for any angle whatever:

V. $\sin 2 \alpha = 2 \sin \alpha \cos \alpha$;

VI. $\cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha$;

or, since $\sin^2 \alpha + \cos^2 \alpha = 1$,

VI a. $\cos 2 \alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1$.

69. Tangent of a Sum or of a Difference. Since formulas I and II hold for all values of α and β , the formula

$$\frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{\sin\alpha\cos\beta + \cos\alpha\sin\beta}{\cos\alpha\cos\beta - \sin\alpha\sin\beta}$$

holds good for all values of α and β except those which make $\cos(\alpha + \beta) = 0$, i.e. except when $\alpha + \beta \cong 90^{\circ}$, or 270°. For example, it does not hold for $\alpha = 47^{\circ}$, $\beta = 43^{\circ}$.

Dividing both numerator and denominator by $\cos \alpha \cos \beta$, we obtain the formula

VII.
$$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta},$$

which holds for all angles α and β such that α , β , and $\alpha + \beta$ have tangents.

Similarly from formulas III and IV, we obtain

VIII.
$$\tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta},$$

which holds for all angles α and β such that α , β , and $\alpha - \beta$ have tangents.

From formulas V and VI, we find

IX.
$$\tan 2 \alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha},$$

which holds for every angle α such that α and 2α have tangents. The same formula may be obtained directly from VII by putting α in place of β .

70. Applications. The formulas of this chapter are frequently used for reducing expressions whose values are to be calculated, to a form in which logarithms may be used conveniently.

Example. Suppose the height of an object CD is to be determined and that it is not convenient to measure a base line bearing directly

toward the base C. The following method is then sometimes employed. The angle of elevation α is measured from some convenient point A; a line AB=d is then measured at right angles to the line AC; finally the angle of elevation, β , is observed from B. The height h can then be determined by solving a succession of triangles. With the aid of the formulas of this chapter it is frequently possible in such cases to reduce the

calculation to a single logarithmic computation. In the case just mentioned we have

$$\begin{split} BC &= h \, \operatorname{ctn} \, \beta, & AC &= h \, \operatorname{ctn} \, \alpha, \\ d^2 &= \overline{BC^2} - \overline{AC^2} = h^2 (\operatorname{ctn}^2 \beta - \operatorname{ctn}^2 \alpha) \\ &= h^2 (\operatorname{ctn} \beta - \operatorname{ctn} \alpha) (\operatorname{ctn} \beta + \operatorname{ctn} \alpha) \\ &= h^2 \frac{(\sin \alpha \cos \beta - \cos \alpha \sin \beta) (\sin \alpha \cos \beta + \cos \alpha \sin \beta)}{\sin^2 \alpha \sin^2 \beta}; \end{split}$$

hence, using formulas I and III, we have

$$h = \frac{d \sin \alpha \sin \beta}{\sqrt{\sin(\alpha - \beta)\sin(\alpha + \beta)}}.$$

Let the student show, by opening a book and studying the dihedral angle formed by two leaves, that $\alpha > \beta$.

EXERCISES XXVII. - SECONDARY FORMULAS - APPLICATIONS

- 1. Find sin 15°, $\cos 15^\circ$, $\tan 15^\circ$ from the known values of $\sin 30^\circ$, $\cos 30^\circ$, $\tan 30^\circ$, and $\sin 45^\circ$, $\cos 45^\circ$, $\tan 45^\circ$. [Hint. $15^\circ = 45^\circ 30^\circ$.]
- 2. Find tan 75°, tan 105°, $\sin 165^\circ$, $\cos 255^\circ$. [Hint. $75^\circ = 45^\circ + 30^\circ$, etc.]
- 3. Given $\sin 36^{\circ} 52' = .6$; find the sine, cosine, and tangent of 66° 52; find $\sin 73^{\circ} 44'$.
- 4. Given $\tan 26^{\circ} 34' = .5$; find sine, cosine, tangent of $71^{\circ} 34'$; find $\tan 53^{\circ} 8'$.
- 5. Given $\sin \alpha = 5/13$ and $90^{\circ} < \alpha < 180^{\circ}$; $\cos \beta = 8/17$ and $0^{\circ} < \beta < 90^{\circ}$; find $\sin(\alpha \beta)$, $\cos(\alpha \beta)$, $\tan(\alpha + \beta)$, $\sin 2\alpha$, $\cos 2\beta$.
- 6. Given $\tan \alpha = 15/8$ and $0^{\circ} < \alpha < 90^{\circ}$; $\cos \beta = 4/5$ and $270^{\circ} < \beta < 360^{\circ}$; find $\sin(\alpha \beta)$, $\cos(\beta \alpha)$, $\tan 2\alpha$, $\cos 2\beta$.
- 7. Given $\sin \alpha = 1/3$ and $0^{\circ} < \alpha < 180^{\circ}$; find $\sin (135^{\circ} \alpha)$ and $\tan 2 \alpha$.
- 8. The angular elevation of an object from an upper window is observed to be α . The angular elevation from a point on the ground h feet directly beneath the window is β . Show that the height of the object is h sin β cos α ÷ sin $(\beta \alpha)$.
- 9. To determine the difference in elevation of two stations, a flagstaff of known height h is held at the upper of the two stations and the angles of elevation of its top and bottom are observed to be α and β , respectively. Show that the difference in elevation of the two stations is

$$h \tan \beta \div (\tan \alpha - \tan \beta);$$

reduce this expression to a form convenient for logarithmic computation.

- 10. A tree leans directly toward two points of observation distant α and b, respectively, from its foot. The angles of elevation of the top of the tree from these two points are α and β . Show that the perpendicular height of the tree is $(b-a) \div (\operatorname{ctn} \beta \operatorname{ctn} \alpha)$; reduce this expression to a form suitable for logarithmic computation.
- 11. Prove that $\sin 3\alpha = \sin \alpha (3-4\sin^2\alpha) = \sin \alpha (4\cos^2\alpha 1)$, and state for what values of α it holds. Use formulas I and II.
- 12. Prove that $\cos 3 \alpha = \cos \alpha (4 \cos^2 \alpha 3) = \cos \alpha (1 4 \sin^2 \alpha)$, and state for what values of α it holds. Use formulas I and II.
- 13. Prove that $\tan 3 \alpha = (3 \tan \alpha \tan^3 \alpha) \div (1 3 \tan^2 \alpha)$; show that it holds for all values of α such that α and 3α have tangents.
- 14. Prove that $\sin (45^{\circ} + \alpha) \sin (45^{\circ} \alpha) = (1/2) \cos 2 \alpha$ for all values of α .
- 15. Prove that $\sin (\alpha + \beta) \sin (\alpha \beta) = \sin^2 \alpha \sin^2 \beta$ for all values of α and β .
 - 16. Prove that $\cos (\alpha + \beta) \cos \beta + \sin (\alpha + \beta) \sin \beta = \cos \alpha$.

71. Functions of Half-angles. The formulas

 $\cos^2 \alpha + \sin^2 \alpha = 1$ and $\cos^2 \alpha - \sin^2 \alpha = \cos 2 \alpha$ are true for all values of α . If we subtract one of these from the other, and if we also add them, we obtain the formulas:

(1)
$$2\sin^2\alpha = 1 - \cos 2\alpha$$
, (2) $2\cos^2\alpha = 1 + \cos 2\alpha$.

These formulas are true for all values of α ; for $\alpha = \alpha'/2$ they become $2\sin^2(\alpha'/2) = 1 - \cos\alpha'$ and $2\cos^2(\alpha'/2) = 1 + \cos\alpha'$, or since these are true for all values of α' , we may write

(3)
$$\sin (\alpha/2) = \pm \sqrt{\frac{1-\cos \alpha}{2}}$$
, (4) $\cos (\alpha/2) = \pm \sqrt{\frac{1+\cos \alpha}{2}}$;

which hold good for all values of α . The same formulas may be obtained from VI α by solving for $\sin{(\alpha'/2)}$, or for $\cos{(\alpha'/2)}$, after putting $\alpha'/2$ for α .

From (3) and (4) we get by division

(5)
$$\tan \alpha/2 = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha},$$

which hold for all values of α except when a denominator vanishes. The ambiguity of sign of the radical is determined in a given case by the fact that $\tan (\alpha/2)$ is positive or negative according as $\alpha/2$ is or is not in the 1st or 2d quadrant.

The relations between an angle and its half are frequently useful in problems that relate to a chord of a circle and the angle which it subtends at the center; this occurs, for example, in laying out railroad curves where it is convenient to make measurements along chords of the curve. This is illustrated in some of the exercises below. The relations are also useful in simplifying trigonometric expressions and in adapting formulas to logarithmic computation.

EXERCISES XXVIII. - HALF-ANGLE FORMULAS

- 1. Find the sine, the cosine, and the tangent of $22^{\circ} 30'$ from the known values of $\sin 45^{\circ}$, $\cos 45^{\circ}$, $\tan 45^{\circ}$.
 - 2. Find the sine, cosine, and tangent of 15°.
- 3. Given that $\sin \alpha = 4/5$, and that α is an acute angle; find $\sin(\alpha/2)$ and $\tan(\alpha/2)$.
 - 4. Given $\tan 26^{\circ} 34^{\circ} = 1/2$; find $\tan 13^{\circ} 17^{\prime}$.
 - 5. Given $\tan 36^{\circ} 52' = 3/4$; find sine, $\cosh \theta$, and tangent of $18^{\circ} 26'$

- 6. If r denotes the radius of the circle in the accompanying figure, c a chord, and θ the angle which c subtends at the center; show that $\sin(\theta/2) = c/(2r)$.
- 7. In the figure, draw the line BD tangent to the circle, and AD perpendicular to BD from the opposite end of the chord BA. Show that $(a) \angle ABD = \theta/2$; $(b) BD = AB \cos(\theta/2) = 2 r \sin(\theta/2) \cos(\theta/2) = r \sin \theta$.
- 8. Prove that $\tan (45^{\circ} + \alpha/2) = \sec \alpha + \tan \alpha$, if $\tan \alpha = x$
 - 9. Prove that $\tan(45^{\circ} + \alpha/2) \tan(45^{\circ} \alpha/2) = \tan 45^{\circ}$ if $\tan \alpha$ exists.
 - 10. Prove that $\tan(\alpha/2) + 2\sin^2(\alpha/2) \cot \alpha = \sin \alpha$, if $\sin \alpha \neq 0$.
 - 11. Prove that $\tan(\alpha/2) + \cot(\alpha/2) = 2 \csc \alpha$, if $\sin \alpha \neq 0$.
 - 12. Prove that $[\sin (\alpha/2) + \cos (\alpha/2)]^2 = 1 + \sin \alpha$ for all values of α .

13. Prove that

 $[\sin(\alpha/2) - \cos(\alpha/2)]^2 = 1 - \sin \alpha$ for all values of α .

14. In the figure, COA is a diameter of a circle of radius r; $AOP = \alpha$ is any acute angle; $OCP = \alpha/2$, by geometry; and PB is perpendicular to OA. Show that

$$OB = r \cos \alpha$$
, $BP = r \sin \alpha$, $BA = r \text{ vers } \alpha$, $CB = r(1 + \cos \alpha)$, $CP = \sqrt{PB^2 + CB^2} = r\sqrt{2(1 + \cos \alpha)}$.

15. From Ex. 14, show that the functions of $\alpha/2$ can be read directly from the figure in the form :

$$\sin(\alpha/2) = \frac{r \sin \alpha}{r \sqrt{2(1 + \cos \alpha)}} = \sqrt{\frac{1 - \cos \alpha}{2}};$$

$$\cos(\alpha/2) = \frac{1 + \cos \alpha}{\sqrt{2(1 + \cos \alpha)}} = \sqrt{\frac{1 + \cos \alpha}{2}};$$

$$\tan(\alpha/2) = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{\sqrt{1 - \cos^2 \alpha}}{1 + \cos \alpha} = \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{1 - \cos \alpha}{\sin \alpha}$$

16. If a numerical value of any function of α is given, all the other functions of α and of $\alpha/2$ can be found geometrically from Ex. 14. Thus, if $\sin \alpha = 4/5$ is given, lay off OP = 5, BP = 4; then $OB = \sqrt{5^2 - 4^2} = 3$. Hence, CB = 8, BA = 2; and $CP = \sqrt{\overline{CB^2} + \overline{BP^2}} = \sqrt{8^2 + 4^2} = \sqrt{80}$. It follows that

$$\sin \alpha = 4/5$$
, $\cos \alpha = 3/5$, $\tan \alpha = 4/3$,
 $\sin (\alpha/2) = 4/\sqrt{80} = 1/\sqrt{5} = \sqrt{5}/5$,
 $\cos (\alpha/2) = 8/\sqrt{80} = 2/\sqrt{5} = 2\sqrt{5}/5$,
 $\tan (\alpha/2) = 4/8 = 1/2$.

- 17. Find the remaining functions of α and those of $\alpha/2$ by means of Ex. 16. if $\cos \alpha = 5/13$; if $\tan \alpha = 1/3$.
- 18. The remaining functions of $(\alpha/2)$ and those of α can be found when any function of $\alpha/2$ is given from the figure of Ex. 14, by dropping a perpendicular from O to CP. Do this if $\tan(\alpha/2) = 3/4$.
 - 19. Show that the results of Exs. 14-15 hold also if α is obtuse.
- .20. Since, in the figure of Ex. 14, by geometry $\overline{BP}^2 = CB \cdot BA$, show that $(1 + \cos \alpha)$ vers $\alpha = \sin^2 \alpha$.
- 21. Derive trigonometric formulas from the geometric identities (Ex. 14): $CB \cdot BA = \overline{BP}^2. \quad CA \cdot BA = \overline{AP}^2. \quad CA \cdot CB = \overline{CP}^2.$
- 72. Factor Formulas. In adapting trigonometric formulas to logarithmic computation it is often desirable to express the sum (or difference) of two sines (or cosines) as the product of other functions.

Example 1. Reduce $\sin 35^\circ + \sin 15^\circ$ to the form $2 \sin 25^\circ \cos 10^\circ$. To do this, set $x+y=35^\circ$, $x-y=15^\circ$, and solve for x and y: $x=25^\circ$, $y=10^\circ$.

Then $\sin (x+y) = \sin x \cos y + \cos x \sin y,$ $\sin (x-y) = \sin x \cos y - \cos x \sin y;$ whence, adding, $\sin (x+y) + \sin (x-y) = 2 \sin x \cos y;$ substituting $x=25^\circ$, $y=10^\circ$, we get $\sin 35^\circ + \sin 15^\circ = 2 \sin 25^\circ \cos 10^\circ$. This method is general.

Example 2. Reduce $\sin s - \sin (s - c)$ to a product, where s = (a + b + c)/2. Let x + y = s, x - y = s - c; then x = (a + b)/2, y = c/2, and $\sin (x + y) = \sin x \cos y + \cos x \sin y$, $\sin (x - y) = \sin x \cos y - \cos x \sin y$; subtracting $\sin (x + y) - \sin (x - y) = 2\cos x \sin y$, whence $\sin s - \sin (s - c) = 2\cos [(a + b)/2]\sin (c/2)$.

EXERCISES XXIX. - FACTORING

1. Reduce each of the following forms to products:

- (a) $\sin 70^{\circ} \sin 10^{\circ}$.
 (b) $\sin 70^{\circ} + \sin 50^{\circ}$.

 (c) $\sin 13^{\circ} + \sin 41^{\circ}$.
 (d) $\sin 34^{\circ} \sin 19^{\circ}$.

 (e) $\cos 26^{\circ} \cos 35^{\circ}$.
 (f) $\sin 43^{\circ} + \sin 28^{\circ}$.

 (g) $\cos 20^{\circ} + \cos 10^{\circ}$.
 (h) $\cos 51^{\circ} \sin 11^{\circ}$.

 (i) $\frac{\sin 15^{\circ} + \cos 45^{\circ}}{\cos 45^{\circ} \sin 15^{\circ}}$.
 (j) $\frac{\sin 28^{\circ} + \sin 12^{\circ}}{\cos 28^{\circ} + \cos 12^{\circ}}$.

- 2. Prove that $\cos(x+y) + \cos(x-y) = 2\cos x \cos y$.
- 3. Prove that $\cos(x+y) \cos(x-y) = -2\sin x \sin y$.
- 4. Prove that

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

by substituting A = x + y B = x - y in Ex. 2.

5. Prove by means of Ex. 3 that

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}.$$

6. By the method of Example 1, § 72, show that

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}.$$

7. By the method of Example 2, § 72, show that

$$\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}.$$

- 8. Prove $\frac{\sin x + \sin y}{\sin x \sin y} = \tan \{(x+y)/2\} \cot \{(x-y)/2\}$.
- 9. Prove $\frac{\cos x + \cos y}{\cos x \cos y} = -\cot \{(x+y)/2\} \cot \{(x-y)/2\}.$
- 10. Prove $\frac{\sin \theta + \sin 2 \theta}{\cos \theta \cos 2 \theta} = \cot (\theta/2)$.
- 11. Prove $\frac{\sin(2^{2}x-3y)+\sin 3y}{\cos(2x-3y)+\cos 3y}=\tan x.$
- 12. $\sin(45^{\circ} + x) + \sin(45^{\circ} x) = \sqrt{2}\cos x$.
- 13. $\sin 3 x + \sin 5 x = 2 \sin 4 x \cos x$.
- **14**. If a + b + c = 2s, show that

(a)
$$\cos(b-c) - \cos a = 2\sin(s-b)\sin(s-c)$$
;

(b) $\cos a - \cos (b + c) = 2 \sin s \sin (s - a)$;

(c)
$$\frac{\sin s - \sin (s - c)}{\sin s + \sin (s - c)} = \frac{\tan (c/2)}{\tan \{(a + b)/2\}}$$

15. The so-called "method of offsets" for laying out a circular track is illustrated in the adjoining figure. The track OAB is tangent at O to OB', and the distances OA', A'B', A'A, CB, are easily shown to be as marked in the figure, where $\alpha/2 = \angle AOA'$ is half the angle at the center subtended by a 100 ft. chord.

In practice, the line OA'B' is run, and A' and B' marked. Show that B'B, the distance actually to be laid off from B', is

$$B'B = A'A + CB = 200 \sin \alpha \cos (\alpha/2).$$

CHAPTER VII

TRIGONOMETRIC EQUATIONS INVERSE FUNCTIONS

PART I. IDENTITIES AND EQUATIONS

73. Identities in One Variable. The equation,

$$x^2 - 1 = (x - 1)(x + 1)$$

is satisfied when any number whatever is substituted for x; we say it is satisfied by all values of x. The equation

$$(x^2-1)/(x-1) = x+1$$

is satisfied by all values of x except x=1. The student may verify both of these statements for x=-2, -1, 1/2, 3/2, 2, etc. Similarly, the equation (1+x)(1-1/x)=(x-1)(1+1/x) is satisfied by every value of x except x=0. The equation $\sin^2 x + \cos^2 x = 1$ is satisfied by every value of x; and the equation $\tan x \cos x = \sin x$ is satisfied by every value of x except x=an odd multiple of $\pm 90^\circ$. These are examples of identities: Two expressions involving an unknown letter are said to be identically equal, or simply, identical, if they have the same value for every value of the unknown for which both are defined.* An equation whose sides are identically equal is called an identity.

74. Elementary Identities. An identity is to be regarded as a declaration to be proved: thus

$$\cos 2x \equiv (\cos x + \sin x)(\cos x - \sin x)$$

declares that for every angle x the cosine of twice that angle is equal to the product of the sum and difference of its cosine and its sine; this was proved in § 68. Among other identities

^{*} The trigonometric functions $\sin x$ and $\cos x$ are defined for every value of x; $\tan x$ and $\sec x$, however, are not defined for x =any odd multiple of 90°, while $\cot x$ and $\csc x$ are not defined when x =any even multiple of 90°. See p. 61. It is assumed that values of the unknown exist for which both sides are dx hard. A similar definition holds for identities in several variables.

that have been established are the Pythagorean relations, § 10, p. 16, the reciprocal relations, etc., § 6, p. 9.

75. Identities in Two Variables. In Chapter VI we found:

$$\sin (x + y) = \sin x \cos y + \cos x \sin y,$$

$$\cos (x + y) = \cos x \cos y - \sin x \sin y,$$

for all values of x and y. These are identities in two variables.

76. Illustrative Example. The truth of an identity is usually established by reducing both sides, either to the same expression, or to two expressions which are known to be identical.

Example 1. Prove that $1 - \sin \theta = \cos^2 \theta / (1 + \sin \theta)$ is an identity.

The right-hand side is not defined when $1 + \sin \theta = 0$. The left-hand side has a value for every value of θ . We are to show, then, that the two sides of the equation have the same value for every value of θ except those that make $1 + \sin \theta = 0$; i.e. except when $\theta \cong 270^{\circ}$. To prove this we reduce the right-hand side to the left-hand side. Replace $\cos^2 \theta$ by $1 - \sin^2 \theta$, then $\cos^2 \theta / (1 + \sin \theta) = (1 - \sin^2 \theta) / (1 + \sin \theta)$. Dividing the numerator by the denominator we obtain $1 - \sin \theta$, which is the left-hand side of the given equation. This division is permissible if $1 + \sin \theta \neq 0$.

EXERCISES XXX. - TRIGONOMETRIC IDENTITIES

Prove the truth of the following identities and state in each case the exceptional values of the variables, if any, for which one or both of the two sides are undefined.

- 1. $\cos^4 x \sin^4 x + 1 = 2\cos^2 x$.
- 2. $\cos^3 x + \sin^3 x = (\sin x + \cos x)(1 \sin x \cos x)$.
- 3. $\tan (45^{\circ} + x) \tan (45^{\circ} x) = 2 \tan 2x$.
- 4. $\sin 2x + \sin 2y = 2\sin (x + y)\cos (x y)$.
- 5. $\tan x + \cot x = \sec x \csc x$.
- 6. $\sin 2x \sin 2y = 2\cos(x+y)\sin(x-y)$.
- 7. $(\sin x \cos x)(\cos x \sin x) = \sin 2x 1$.
- 8. $2\cos x \sin y = \sin (x + y) \sin (x y)$.
- 9. $2 \sin x \cos y = \sin (x + y) + \sin (x y)$.
- 10. $(\sec x \tan x)(1 + \sin x) = \cos x$.
- 11. $\sin^2 x \sec^2 x = \sec^2 x 1$.
- 12. $(\sqrt{1+\sin x} \sqrt{1-\sin x})^2 = 4\sin^2(x/2)$.
- 13. $(\sqrt{1+\sin x} + \sqrt{1-\sin x})^2 = 4\cos^2(x/2)$.
- 14. $2\cos x \cos y = \cos(x-y) + \cos(x+y)$.
- 15. $2 \sin x \sin y = \cos (x y) \cos (x + y)$.

- 16. $\sin 3x = \sin x(3-4\sin^2 x) = \sin x(2\cos x-1)(2\cos x+1)$.
- 17. $\cos 3x = \cos x (4\cos^2 x 3) = \cos x (1 2\sin x) (1 + 2\sin x)$.
- 18. $1 + \sin x \cos 2x = \tan x(\cos x + \sin 2x)$.
- 19. $(1 + \cos 2x) \tan x = \sin 2x$.
- 20. $[\sin(x/2) \cos(x/2)]^2 = 1 \sin x = 2\cos^2(45^\circ + x/2)$.
- 21. $[\sin(x/2) + \cos(x/2)]^2 = 1 + \sin x = 2\cos^2(45^\circ x/2)$.
- 22. $\sec (45^{\circ} x/2) \sec (45^{\circ} + x/2) = 2 \sec x$.

Prove that the following expressions are reciprocals:

- 23. $\sec x + \tan x$ and $\sec x \tan x$.
- 24. $1 \sin x$ and $\sec^2 x + \sec x \tan x$.
- 25. $1 + \cos x$ and $\csc^2 x \csc x \cot x$.

[Note. Two numbers are reciprocals if and only if their product is +1; in Ex. 23 we must prove that $(\sec x + \tan x)(\sec x - \tan x) = 1$. Just as in any other identity, values of x for which either side is meaningless are excluded. Values of x that make either of the given expressions vanish must be excluded; thus, in Ex. 24, $1 - \sin x = 0$ when $x \cong 90^{\circ}$; and in Ex. 25, $1 + \cos x = 0$ when $x \cong 270^{\circ}$.]

77. Conditional Equations. In the exercises of the preceding list it was frequently necessary to determine the values of x which would make a certain expression vanish. Thus in Exs. 24-25, the equations $1 - \sin x = 0$, $1 + \cos x = 0$, etc., were considered. These are not identities, since it is clear that there are values of x in each case for which the left-hand side is defined and for which that side is different from zero.

An equation in x which is not satisfied by all values of x for which each side is defined is called a **conditional equation**, or, when no ambiguity can arise, simply an equation.

Examples of conditional equations that are quite familiar are:

(a)
$$x^2 - 5x + 6 = 0$$
,

which is satisfied by two and only two values of x: x=2 and x=3;

(b)
$$8x^3 - 12x^2 + 6x = 1$$
,

which is satisfied by one and only one value of x: x = 1/2;

(c) $4\cos^4x + \sin^22x = 2$, which is satisfied by $x = 45^\circ$, 135° , 225° 315° , and all angles congruent to any one of these. This last equation, therefore, has an infinite number * of solutions, but nevertheless it is not an identity, since there exist values of x for which the two sides have two definite values that are different.

^{*} There are an infinite number of things in a class of things, if, when you lave counted out as many as you please, still others remain.

The purpose of what follows is to show how to find all * the solutions of certain simple forms of equations containing trigonometric functions of an unknown angle.

Any equation that is not an identity is to be regarded, not as a declaration to be proved, but rather as a question to be investigated and answered. Thus the equation,

$$8x^3 - 12x^2 + 6x = 1$$

implies the question, "Are there any values of x which make $8x^3-12x^2+6x$ equal to 1?" and the direction, "If so, find all of them." This is the meaning of the direction, "Solve the equation." This point of view is very important.

78. Illustrative Examples. The simplest trigonometric equations are of the form

$$\sin x = 1/2;$$
 $\cos x = -4/5;$ $\tan x = 5.3;$ $\cot x = -2;$ $\sec x = \sqrt{2};$ $\csc x = -4/3.$

The method of solving such equations is illustrated in the examples that follow:

Example 1. Solve the equation $\sin x = 1/2$.

We know that $x=30^\circ$ is a solution, and that any angle congruent to 30° must be a solution: $x=30^\circ$, 390° , -330° , etc. All these angles are included in the statement $x \cong 30^\circ$; but there are still other solutions, since we know that the sine of an angle is also the sine of its supplement; the supplement of 30° , or 150° , must therefore be a solution, and hence all angles x such that $x \cong 150^\circ$ are solutions. We shall show presently that there are no others.

Example 2. Solve the equation $\cos x = -4/5$.

The value $x=143^\circ$ 8' (approximately) is a solution, as may be verified by a table of cosines; hence other solutions are $x\cong 143^\circ$ 8'. Are there still others?

Example 3. Solve the equation $\tan x = 1/3$.

From the tables an approximate solution is found to be $x=18^{\circ}$ 26'. Hence other solutions are $x \cong 18^{\circ}$ 26'. Are there still others?

79. General Principles. A general method of solving such equations depends upon the following theorems:

^{*} We shall consider only real values of x, since in elementary work the trigonometric functions are not defined for imaginary values of the angle.

THEOREM I. The equation $\sin x = s$, where -1 < s < 1, is satisfied by exactly two angles between 0° and 360° .* Every angle congruent to either

β B C S A A X FIG. 699

of these is a solution, and conversely, every solution of the equation is congruent to one or the other of these angles.

The following construction will indicate the method of solution of such an equation for any particular value of s.

Draw a pair of coördinate axes and a unit circle whose center is at the origin. On the y-axis lay off OB = s (above O if s > 0, below if s < 0); draw through B a line parallel to the

x-axis. This line cuts the circle in two and only two points, C and D Draw the radii OC and OD. Then the positive angles

$$\alpha = AOC, \quad \beta = AOD$$

are two angles (and the only two angles between 0° and 360°) such that $\sin \alpha = \sin \beta = s$.

Every angle congruent to either of these has the same sine. Therefore every such angle is a solution of the given equation.

Conversely, if any angle γ is a solution, when placed upon the axes, its terminal side must fall either upon OC or OD, since no other radius meets the circle at height s. Hence γ must be congruent to α or to β .

THEOREM II. The equation $\cos x = c$, where -1 < c < 1, has exactly two solutions between 0° and 360° . Every angle congruent to either of these two is a solution, and conversely, every solution is congruent to one or the other of them.

To see this, draw a unit circle as for theorem I and lay off on the x-axis, OB = c (to the right if c > 0, to the left if c < 0); through B draw a line parallel to the y-axis; this line meets the circle in two and only two points, C and D. The positive angles $\alpha = AOC$, $\beta = AOD$ are two angles (and the only angles between 0° and 360°), which satisfy the equation $\cos x = c$. The student will easily

see, as in theorem I, that all angles congruent to either of these are solutions, and that every solution is congruent to α or to β .

THEOREM III. The equation tan x = t, where t is any real number, has exactly two solutions between 0° and 360° . Every angle congruent to either of these two is a solution, and conversely every solution is congruent to one or the other of these two angles.

^{*} In this chapter, by "between 0° and 360°" we shall mean 0° included and 360° excluded; i.e. "x between 0° and 360°" means 0° $\leq x < 360$ °.

To see this, draw a unit circle as in the previous theorems and draw tne tangent TAT; on this tangent lay off AB = t (upward if t > 0, downward if t < 0); through B draw a diameter; this diameter meets the circle in two and only two points C and D. The positive angles

$$\alpha = AOC, \quad \beta = AOD$$

are the only solutions of the equation $\tan x = t$ between 0° and 360° . The student may complete the demonstration as in the previous theorems.

Fig. 71

Theorem IV. The equation $ctn \ x = 0$ is equivalent* to $cos \ x = 0$. The equations $ctn \ x = c$, $sec \ x = c$, $csc \ x = c$, where $c \ne 0$, are equivalent, respectively, to $tan \ x = \frac{1}{c}$, $cos \ x = \frac{1}{c}$, $sin \ x = \frac{1}{c}$. The proof, which is almost obvious, is left to the student.

80. Use of the Graph. A second method for solving the equation $\sin x = s$ is as follows:

Plot the graph of sin x, on the y-axis lay off OA = s (above if s > 0, below if s < 0), and draw through O a line parallel to the x-axis. If -1 < s < 1, this line will cut the curve in points P_1 , Q_1 , P_2 , Q_3 , etc., and the projections of these points on the

x-axis determine the angles α_1 , β_1 , α_2 , β_2 , etc., which are solutions of the equation $\sin x = s$. It is obvious that $\alpha_1 \cong \alpha_2$, $\beta_1 \cong \beta_2$, etc. This method has an advantage over that shown on p. 94, in that it shows graphically more than the two solutions which lie between 0° and 360°; the former method has, however, the advantage that it requires very much less time to make the construction accurately.

This method can clearly be applied to any of the trigonometric functions.

*Two equations are equivalent when every solution of either is a solution of the other also.

EXERCISES XXXI. - SIMPLE TRIGONOMETRIC EQUATIONS

- 1. Solve the following equations by constructing a figure for each.
- (a) $\sin x = \frac{2}{5}$. (b) $\sin x = -\frac{1}{2}$. (c) $\sin x = -\frac{8}{5}$.
- (d) $\sin x = .866$. (e) $\sin x = .48$. (f) $\cos x = -1/2$.
- (g) $\cos x = .63$. (h) $\cos x = \sqrt{3}/2$. (i) $\sin x = 0$.
- (j) $\cos x = 0$. (k) $\sin x = 1$. (l) $\cos x = 1$.

[Note. The equations (k) and (l) are not included under theorems I and II, but the student can readily solve them by a similar method.]

2. $2\sin^2 x + \sin x = 1$.

[Hint. Solve this quadratic for $\sin x$ and apply theorem I.]

- 3. (a) $2\sin^2 x 5\sin x + 2 = 0$. (b) $4\cos^2 \theta + 8\cos \theta = 5$.
- 4. (a) $\tan x = 1$. (b) $\tan x = -1/2$. (c) $\tan x = 2$.
 - (d) $\tan x = -2.6$. (e) $\tan x = 5.3$. (f) $\tan x = 0$.
- 5. (a) $\tan^2 x = 3$. (b) $\tan^2 \theta = 6\frac{1}{4}$ (c) $\tan^2 \theta = 6 4\sqrt{2}$.
- 6. (a) $\tan^2 \theta 4 \tan \theta + 1 = 0$. (b) $3 \tan^2 x 4\sqrt{3} \tan x + 3 = 0$. 7. (a) $\cot x = 1/2$. (b) $\cot x = .73$. (c) $\cot x = -1.31$.
- 7. (a) $\cot x = 1/2$. (b) $\cot x = .73$. (c) $\cot x = -1.31$. (d) $\cot x = 0$. (e) $2 \cot^2 x 3 \cot x + 1 = 0$.
- 8. (a) $\sec x = 2$. (b) $\sec x = 3.1$. (c) $\sec x = 10.57$.
- 9. (a) $\csc x = 5.3$. (b) $\csc x = 15$. (c) $\csc x = 7.4$.
- 10. (a) $\sec^2 x 3 \sec x + 2 = 0$, (b) $\sec^2 x = \sqrt{2} \sec x$.
- 11. (a) $2 \csc^2 x 5 \csc x + 2 = 0$. (b) $2 \csc^2 x = \sqrt{8} \csc x$.
- 81. Reduction of Equations to Standard Form. If a trigonometric equation contains more than one of the trigonometric functions, all but one can usually be eliminated; the resulting equation may then be solved algebraically for the function which remains, as in Ex. 2, above; the solutions may then be found by the methods of § 79.

Example 1. Solve the equation $\cos^2 t - \sin^2 t = \sin t$. In this equation $\cos^2 t$ may be replaced by its equal $1 - \sin^2 t$; the equation then becomes a quadratic in $\sin t$, viz.: $2\sin^2 t + \sin t - 1 = 0$. This equation is equivalent to the given one; i.e. every solution of either is a solution of the other. The solutions may now be found by factoring:

$$(2\sin t - 1)(\sin t + 1) = 0.$$

Hence we have either $\sin t + 1 = 0$, whence $\sin t = -1$, and $t \ge 270^{\circ}$; or else, $2 \sin t - 1 = 0$, whence $\sin t = 1/2$, and $t \ge 30^{\circ}$ or $t \ge 150^{\circ}$. There are no other solutions.

The process of solving equations consists chiefly in replacing one equation by another (or by a set of others) which is equiv-

alent, and which is more easily solved; in carrying out the necessary transformations, use may be made of any identities previously proved.* Certain operations (for example, squaring both sides of an equation) yield a new equation which, though not equivalent to the original, has all the solutions of the original equation, and perhaps other solutions. If such a transformation is employed, every solution of the transformed equation must be tested by substitution in the given equation.

Example 2. Solve the equation $\cos x - \sqrt{3} \sin x + 1 = 0$. Substituting $\sqrt{1-\cos^2 x}$ for $\sin x$, transposing the radical, squaring both sides, and collecting terms, we obtain $4\cos^2 x + 2\cos x - 2 = 0$. The solutions of this equation are all included in the set $x \cong 60^{\circ}$, $x \cong 180^{\circ}$, $x \cong 300^{\circ}$. By substitution in the given equation we see that it is not satisfied by any of the values $x \cong 300^{\circ}$; hence these are not solutions of the given equation. Similarly, it is found that all the values $x \approx 60^{\circ}$ and $x \approx 180^{\circ}$, do satisfy the given equation and these are therefore the values required.

EXERCISES XXXII. - SOLUTION OF TRIGONOMETRIC EQUATIONS

Solve completely the following equations:

1.	2	sın²	\boldsymbol{x}	_	c	os	x	=	ı.	
_		•								

2.
$$\cos^2 x = \sin^2 x$$
.

3.
$$\cos 2 x + 5 \sin x = 3$$
.

4.
$$\cos 2x - \sin x = 1/2$$
.

5.
$$5 \sin x + 2 \cos^2 x = 5$$
.

6.
$$\sec^2 x + \tan x = 3$$
.

7.
$$4 \sec^2 x + \tan x = 7$$
.
8. $\tan x + \cot x = 2$.

$$9. \sin x + 3 = \csc x.$$

10
$$\sin 2x \cos x - \sin x$$

$$10. \sin 2 x \cos x = \sin x.$$

11.
$$\cos^2 x + 5 \sin x = 1$$
.

12.
$$2 \sin^2 x + \sin^2 2 x = 2$$
.

13.
$$5 \tan^2 x - 2 \tan x = 1$$
.

14.
$$\tan^2 x - 6 \tan x + 4 = 0$$
.

15.
$$2 \sec^2 \theta + (\tan \theta)/3 = 6$$
.
16. $4 \sec^2 \theta - 3 = 7 \tan^2 \theta$.

17.
$$\tan x + 3 \cot x = 4$$
.

18.
$$\cot \theta - 2 \tan \theta = 1$$
.

19.
$$\tan x + \tan (x + 45^{\circ}) = 2$$
.

20.
$$\tan x + \tan (x - 60^\circ) = 4$$
.

- (1) The following changes in an equation lead to an equivalent equation:
- (a) transposition of terms,
- (b) multiplication (or division) of all the terms by the same constant $\neq 0$. [Changing the signs of all the terms is the same as multiplying by -1.]
- (c) substituting for one expression, another identically equal to it.
- (2) If an equation is of the form A = 0 (i.e. has all of its terms on the lefthand side), and if A can be factored into $B \times C$ so that the equation can be written BC = 0, then the equation A = 0 is equivalent to the pair B = 0, C = 0.

^{*} Attention is called to the fact that we need for this process only the following rules of algebra:

In (1) (c), and (2) make sure that the expressions used are defined through out the range of values of the unknown in which we are interested.

82. Special Methods of Solution. An equation of the form $a \sin x + b \cos x = c$, may be solved by the following device:

Construct a right triangle whose sides are a and b and compute the hypotenuse $h = \sqrt{a^2 + b^2}$, as in § 64, p. 79. Divide the given equation through by h and replace a/h and b/h by the appropriate function of one of the acute angles,

 α or β , of the triangle. Then solve the equation as in § 79.

Example 1. Solve the equation $3 \sin x - 4 \cos x = 2$.

Here the hypotenuse of the auxiliary triangle is 5 and the equation reduces to $(3/5)\sin x - (4/5)\cos x = 2/5$, or $\sin \alpha \sin x - \cos \alpha \cos x = 2/5$, whence $\cos (\alpha + x) = -2/5$, where $\alpha \cong 36^{\circ} 52'$. By theorem II, the complete solution of this equation is $x + \alpha \cong 113^{\circ} 35'$ or $x + \alpha \cong 246^{\circ} 25'$; i.e. $x \cong 76^{\circ} 43'$ or $x \cong 209^{\circ} 33'$. If we had employed the angle $\beta = 53^{\circ} 08'$ instead of α , we should have obtained $\sin x \cos \beta - \cos x \sin \beta = 2/5$. Show that this equation leads to the values of x found above.

Many equations can be solved by the following principles:

- (1) If $\sin \alpha = \sin \beta$, then $\alpha \cong \beta$, or $\alpha \cong 180^{\circ} \beta$; and conversely.
- (2) If $\cos \alpha = \cos \beta$, then $\alpha \cong \beta$, or $\alpha \cong -\beta$; and conversely.
- (3) If $\tan \alpha = \tan \beta$, then $\alpha \cong \beta$, or $\alpha \cong 180^{\circ} + \beta$; and conversely, provided either α or β has a tangent.

Example 2. Solve the equation $\sin 5 \theta = \sin 2 \theta$.

By (1) either $5\theta \cong 2\theta$; *i.e.* $3\theta = \pm n \cdot 360^{\circ}$, and hence $\theta = \pm n \cdot 120^{\circ}$; or, $5\theta \cong 180^{\circ} - 2\theta$; *i.e.* $7\theta = 180^{\circ} \pm n \cdot 360^{\circ}$ and $\theta = (1 \pm 2n) 180^{\circ}/7$.

Example 3. Solve the equation $\cos (5 \theta/6) = \cos (\theta/3)$.

By (2) either $5 \theta/6 \cong \theta/3$, whence $\theta = \pm 2 n \cdot 360^{\circ}$; or $5 \theta/6 \cong -\theta/3$, whence $\theta = \pm (6/7)n \cdot 360^{\circ} = \pm n \cdot (308^{\circ} 34' 17'' 1/7)$.

Example 4. Solve the equation $\tan 7x = \tan 3x$.

By (3) either $7x \ge 3x$, whence $4x = n \cdot 360^{\circ}$, that is, $x = n \cdot 90^{\circ}$; or $7x \ge 3x + 180^{\circ}$, whence $4x = 180^{\circ} + n \cdot 360^{\circ} = (2n+1)180^{\circ}$, that is, $x = (2n+1)45^{\circ}$. All these results may therefore be written $x = n \cdot 45^{\circ}$. Of these values, those which make x an odd multiple of 90° must of course be excluded; and the only solutions are $x = n \cdot 45^{\circ}$, provided n is any integer except twice an odd number.

Example 5. Solve the equation $\csc 2x = \csc 5x$.

Any solution of the equation $\sin 2x = \sin 5x$, except those that make $\sin 2x = \sin 5x = 0$ are solutions of the given equation. Hence $x = \pm n \cdot 120^{\circ}$ are solutions, except when n is a multiple of 3; and $x = \pm (2m \pm 1)180^{\circ}/7$ are solutions, except when 2m + 1 is a multiple of 7. See Example 1.

83. Graphical Methods. Any equation may be solved graphically by plotting the graphs of the two sides on the same pair of axes; then the points of intersection of the two curves, when projected on the x-axis, will determine the solutions.

Example 1. Solve graphically the equation $\sin x = \sin 2x$.

Fig. 74

The graphical solution is shown in Fig. 74. The solutions between 0° and 360° are $\alpha_1 = 0^{\circ}$, $\alpha_2 = 60^{\circ}$, $\alpha_3 = 180^{\circ}$, $\alpha_4 = 300^{\circ}$.

EXERCISES XXXIII. — SPECIAL METHODS — TRIGONOMETRIC EQUATIONS

Solve each of the following equations.

- 1. $2\sin^2 x + 3\cos x = 0$.
- 2. $\sin^2 x + \cos x = 1$.
- 3. $\sin 2 x = 2 \sin x$.
- **4.** $2\cos 2x 3\sin x\cos x = 0$.
- 5. $8\cos x 5\sin 2x = 4\cos^3 x$.
- 6. $\sin^2 x \cos x \sin 2 x + \cos x = 0$.
- 7. $\sqrt{3}\cos x + \sin x = \sqrt{2}$.
- 8. $\sqrt{3} \sin x \cos x = \sqrt{2}$.
- 9. $5\cos x 2\sin x = 2$.
- **10**. $6\cos\theta + 8\sin\theta = 9$.
- 11. $5(1-\sin x)=2\cos x$.
- 12. $\sin(60^{\circ} + x) = \sin x$.
- 13. $\sec^2 x 4 \sin^2 x = 0$.
- 14 $4 \sec^2 x = 9 \tan^2 x$.
- 15. $\cot x + \csc^2 x = 3$.
- 16. $\tan^8 x = 3 \tan x$.
- 17. $\csc 3 x = \csc 2 x$.

- 18. $\sec 4 x = \sec 5 x$.
- 19. $\tan 3 x = 3 \tan x$.
- 20. $\cos 3 \theta = \cos \theta$.
- **21.** $\sin x = \tan x \tan 2x$.
- 22. $\cot x = 2 \tan x + 3$.
- 23. $3\tan(x-15^\circ) = \tan(x+15^\circ)$.
- **24.** $\sin (28^{\circ} 15' + x) = 1.11755 \sin x$
- 25. $\cos(18^{\circ}30' x) = .342 \sin x$.
- **26.** $\sin mx + \sin nx = 0$.
- 27. $\cos mx + \sin nx = 0$.
- 28. $\csc \theta = 1 + \cot \theta$.

PART II. INVERSE FUNCTIONS—TRANSCENDENTAL EQUATIONS

84. Inverse Functions. We have seen that the equation

- $\sin x = y \quad .$
- can be solved for x, if y is any number whatever between -1 and +1, and that there are an infinite number of solutions. Any one of these solutions is denoted by
- $(2) x = \arcsin y.$

Throughout this Chapter we shall suppose all angles measured in radians. Then (2) means that x is the number of radians in an angle (or $arc \dagger$) whose sine is y; it is read "arc sine y" or "an angle whose sine is y."

The expressions $y = \sin x$, $x = \arcsin y$, are two aspects of one relation, just as are the two statements "A is the uncle of B" and "B is the nephew of A"; either one implies the other; both mean the same thing.

Likewise arccos y denotes an angle whose cosine is y; arctan y denotes an angle whose tangent is y; etc.

Whenever two quantities y and x are related in this dual manner, each is called the inverse of the other; thus, if $y = \sin x$, $\sin x$ is the inverse of $\arcsin y$; and conversely, $\arcsin y$ is the inverse of $\sin x$. Similarly, if $y = \cos x$, $\cos x$ and $\arccos y$ are inverse to each other. An analogous notation is usual for $\tan x$, and, indeed, for any function whatever.

85. Graphical Representation of Inverse Functions. Since the equations

(1) $y = \sin x \text{ and } x = \arcsin y$

are equivalent, the same pairs of values of x and y which satisfy one of them satisfy the other. Hence either of these two equivalent equations is represented graphically by the curve drawn in §§ 55-56, p. 69.

If we wish to study the arcsine function for its own sake,

^{*} The notation $\sin^{-1} y$ also is used very frequently to denote $\arcsin y$; it is necessary to notice carefully that $\sin^{-1} y$ does not mean $(\sin y)^{-1}$.

[†] If the unit angle is a radian, and the unit length be taken for the radius of a circle, the numerical measure of an angle at the center is equal to the numerical measure of the length of the intercepted arc. See § 44, p. 56.

Fig. 75

it is convenient and customary to think of it as plotted in the

ordinary manner, with the equation written in the form:

(2)
$$y = \arcsin x$$
, [i.e. $x = \sin y$]

which differs from the preceding form only in the interchange of the letters x and y. It follows that the equation (2) is represented by the curve formed by interchanging the two axes * in Fig. 75. This curve is shown in Fig. 76. It may also be plotted by points from the equation $x = \sin y$, precisely as in §§ 55–56.

It is usual to say that the curve of Fig. 75 represents the *sine* function, and that that of Fig. 76 represents the *arcsine* function.

^{*} This interchange of the x and y axes on any curve is equivalent to leaving the axes fixed in space and rotating the curve through 180° about a line through the origin that makes an angle of 45° with the x-axis.

Fig. 76

Fig. 77

Likewise, either of the equations,

(3) $y = \cos x$, [i.e. $x = \arccos y$] is represented by a graph of the form shown in Fig. 77, but if x and y are interchanged, the equations become

(4) $y = \arccos x$, [i.e. $x = \cos y$] and the graph appears as in Fig. 78, which is identical with Fig. 77, except for interchange of x and y. It is usual to say that Fig. 78 represents the arccosine function.

The similar figure for

(5)
$$y = \tan x$$
, [i.e. $x = \arctan y$] and that for

(6)
$$y = \arctan x$$
, [i.e. $x = \tan y$] are shown in Figs. 79 and 80, respectively.

The curve of Fig. 80 is usually thought of as representing the arctangent function.

,

Fig. 79

86. Principal Values. We have seen (§ 79, p. 94), and it is also immediately evident from Fig. 76, that there is one and only one angle α between $-\pi/2$ and $+\pi/2$ * whose sine is x, if x lies between -1 and +1. We shall distinguish this one value from all other angles whose sine is x by capitalizing the initial letter A in the symbol arcsin; thus arcsin x has many values, but Arcsin x has one and only one value α , if x is any given number between -1 and +1. We shall call this special value α (= Arcsin x) the principal value of arcsin x.

Thus, if x=1/2, Arcsin $x=\pi/6$; if x=-1/2, Arcsin $x=-\pi/6$; etc. In Fig. 76, if x is represented by OK, a vertical line through K meets the curve in one and only one point P between $y=-\pi/2$ and $y=+\pi/2$.

Another value of $\arcsin x$ is $(OB, \text{ Fig. 76}) \pi - \text{Arcsin } x$, which is obtained by subtracting the principal value from π , since $\sin(\pi - u) = \sin u = x$. It follows that all values of $\arcsin x$ are congruent either to $\arcsin x$ or to $\pi - \text{Arcsin } x$; that is, all values of $\arcsin x$ are contained in one or the other of the forms

(1) Arcsin $x \pm 2 n\pi$, or $(\pi - Arcsin x) \pm 2 n\pi$, where n is a positive integer or zero.†

For example, if x=1/2, Arcsin $x=\pi/6$; but another value of arcsin x is $\pi-\pi/6=5\pi/6$ (OB, Fig. 76). All other values are given by the forms $\pi/6\pm 2\,n\pi$ or $5\,\pi/6\pm 2\,n\pi$. Thus, $\pi/6+2\,\pi=13\,\pi/6$ (OC, Fig. 76) and $5\,\pi/6-2\,\pi=-7\,\pi/6$ are other values of arcsin x.

Similarly, $\arccos x$ has one and only one value α between \ddagger 0 and π (see II, § 79, and OA, Fig. 78) if x lies between -1 and +1. This value will be denoted by $\operatorname{Arccos} x$ and will be called the *principal value* of $\operatorname{arccos} x$.

Another value of $\arccos x$ is $-\arccos x$ (OB, Fig. 78) since $\cos (-\alpha) = \cos \alpha = x$. All values of $\arccos x$ are contained in one or the other of the forms:

^{*} That is, $\pi/2$ radians, or a right angle. Here and throughout this Chapter, radian measure is to be understood.

[†] Or, in one formula, arcsin $x = Arcsin[(-1)^n x] + n\pi$, $n = 0, \pm 1, \pm 2$, etc.

[!] Notice that values of y between $-\pi/2$ and $\pi/2$ would not be enough to include all values of $\cos y$.

(2) Arccos $x \pm 2 n\pi$, or - Arccos $x \pm 2 n\pi$, where n is a positive integer or zero.

For example, $\arccos(1/2) = \pi/3$; another value of $\arccos(1/2)$ is $-\pi/3$; all others are given by $\pi/3 \pm 2 n\pi$ or $-\pi/3 \pm 2 n\pi$. Thus, $-\pi/3 + 2 \pi = 5 \pi/3$ (see OC, Fig. 78) is another value of arccos (1/2).

Finally, arctan x has one and only one value α (= Arctan x) between $-\pi/2$ and $+\pi/2$; and it will be called the *principal value* of arctan x. Another value of arctan x is $\pi + \operatorname{Arctan} x$, since $\tan (\pi + \alpha) = \tan \alpha = x$. All values of arctan x are contained in one or the other of the forms: Arctan $x \pm 2n\pi$, or $(\pi + \operatorname{Arctan} x) \pm 2n\pi$, which are together equivalent to

(3) A retan
$$x \pm n\pi$$
,

where n is a positive integer or zero.

Thus, Arctan $\sqrt{3} = \pi/3$; but other values of arctan $\sqrt{3}$ are $\pi + \pi/3 = 4 \pi/3$ and $\pi/3 - \pi = -2 \pi/3$.

The principal values of the other inverse trigonometric functions are denoted by Arcetn x, Arcsec x, Arcesc x, etc., and are given in the following table:

y ==	Arcsin æ	Arccos æ	Arctan æ		
Range of x $-1 \le x \le +1$		$-1 \leq x \leq +1$	All values		
Range of y	$-\pi/2$ to $\pi/2$	0 to π	$-\pi/2$ to $\pi/2$		
x positive	1st Quad.	1st Quad.	1st Quad.		
x negative 4th Quad		2d Quad.	4th Quad.		
<i>y</i> =	Arcetn æ	Arrser æ	Arcese æ		
Range of x	All values	$x \ge 1 \text{ or } x \le -1$	$x \ge 1 \text{ or } x \le -1$		
Range of y	0 to π	0 to π	$-\pi/2$ to $\pi/2$		
x positive	1st Quad.	1st Quad.	1st Quad.		
x negative	2d Quad.	2d Quad.	4th Quad.		

^{*} Or, in one formula, $\arccos x = \arccos[(-1)^n x] + n\pi$, $n = 0, \pm 1, \pm 2$, etc

EXERCISES XXXIV. -- INVERSE FUNCTIONS. GRAPHS

1. Plot the curve $y = \cos x$ from x = 0 to $x = \pi$ by a construction

similar to that of § 56, for $y=\sin x$, except in this case lay off the equal arcs from the highest point on the unit circle.

2. Plot the curve $y = \tan x$ for the range $-\pi/2 < x < \pi/2$, making use of the construction shown in the annexed figure: CA is one scale unit; ACB is the angle x radians; the ordinate of point B is $\tan x$.

3. On the graph of each of the following curves, mark in heavier ink the portion which corresponds to the principal value (see table above).

(a) $y = \operatorname{arccen} x$; (b) $y = \operatorname{arcsec} x$; (c) $y = \operatorname{arccsc} x$.

4. Prove each of the following relations:

(a) Arcsin(-3/4) = -Arcsin(3/4).

This can be seen from the graph of Arcsin x; proved as follows:

Let $\alpha = \operatorname{Arcsin}(-3/4)$, then $\sin \alpha = -3/4$; let $\beta = \operatorname{Arcsin} 3/4$, then $\sin \beta = 3/4$, where both α and β lie between $-\pi/2$ and $+\pi/2$. Now $\sin (-\beta) = -\sin \beta = -3/4$. Hence $\sin \alpha = \sin (-\beta)$; whence $\alpha = -\beta$, i.e. $\operatorname{Arcsin}(-3/4) = -\operatorname{Arcsin}(3/4)$.

- (b) Arcsin (-x) = Arcsin x for -1 < x < 1.
- (c) $Arccos(-2/5) = \pi Arccos(2/5)$.
- (d) Arccos $(-x) = \pi \operatorname{Arccos} x$ for $-1 \le x \le 1$.
- (e) Arcsin $2/3 + \Lambda rccos 2/3 = \pi/2$.
- (f) Arcsin $x + Arccos x = \pi/2$ for $-1 \le x \le 1$.
- (g) Arctan (1/2) + Arcctn $(1/2) = \pi/2$.
- (h) Arctan $x + \operatorname{Arcctn} x = \pi/2$ for all values of x.
- (i) Arcsin $x = \pm$ Arccos $\sqrt{1-x^2}$, according as x > 0 or x < 0.

5. Show that Arctan $x + Arctan y = Arctan \left(\frac{x+y}{1-xy}\right)$, provided x and y are both between -1 and +1.

- 6. Arctan $x = Arcsin x / \sqrt{1 + x^2}$ for all values of x.
- 7. Arctan 1/2 + Arctan $1/3 = \pi/4$.
- 8. Arctan 1/4 + Arctan 1/13 = Arctan 1/3.
- 9. Arctan $1/2 + Arctan 1/5 + Arctan 1/8 = \pi/4$.
- 10. Arctan $x + A \operatorname{rectn}(x + 1) = \operatorname{Arctan}(x^2 + x + 1)$ for all x.
- 11. Arccos $1/\sqrt{2}$ Arcsin $1/\sqrt{5}$ = Arctan 1/3.
- 12. Find the numerical values of the following:
- (a) cos (Arcsin 8/17). (b) tan (Arcsin 5/13).
- (c) $\tan (A \cot 4/3 A \cot 1/7)$.

87. Transcendental Equations. In §§ 77-83 equations occur which involve only trigonometric functions of the unknown. In equations which involve also algebraic or other functions, the unknown angle is generally measured in radians. graphical method is usually the best. All such equations are called Transcendental Equations.

Example 1. Solve the equation $x = \cos x$. To solve this equation we must find a number x, such that the cosine of x radians is equal to the number x. Draw the graphs of the equations y = x and $y = \cos x$; the solution of the equation is the value of x at the point of intersection of the two graphs. There is clearly only one such point, and at that point x = .74, approximately: a still more accurate value is x = .73908.

EXERCISES XXXV. - TRANSCENDENTAL EQUATIONS

Solve the following equations:

- 1. $x-1 = \sin x$.
 - 4. $1/x = \cos x$.
- 7. $2^x = \sin x$.

- 2. $x + 1 = \tan x$.
- 5. $\log x = \cos x$.
- 8. $10^x = \cos x$.

- 3. $1/x = \sin x$.
- 6. $\log x = \sin x$. 9. $(2.7)^x = \sin x + \cos x$.

[Hint. Use logarithms to plot the curves $y = 2^x$, etc.]

CHAPTER VIII

SPHERICAL TRIGONOMETRY

PART I. SUMMARY OF GEOMETRIC THEOREMS

- **88.** Purpose. Spherical Trigonometry has for its primary purpose the determination of certain parts of a spherical triangle when other parts are known. This is accomplished by the use of the formulas of plane trigonometry and certain elementary propositions of solid geometry. Several useful propositions are collected here without proof for convenience in reference.
- 89. Some Useful Propositions of Solid Geometry. (1) A sphere is the locus of points equidistant from a fixed point O called its center. The constant distance is called the radius, and will be denoted in all that follows by R.
- (2) If a sphere is cut by any plane, the intersection is a circle. If the plane passes through the center O, the radius r of the circle is equal to R, and the circle is called a great circle. Otherwise we have r < R, and the circle is called a small circle.
- (3) A line perpendicular to a plane is perpendicular to every line of the plane through the foot of the perpendicular.

[We shall use also several other theorems regarding lines and planes that are practically self-evident.]

(4) A line through the center O perpendicular to the plane of a given circle cuts the sphere in two points P and P', which are called the **poles** of that circle. The line PP' is called the **axis** of that circle.

For example, the north and south poles of the earth are the poles of the equator.

(5) Through any two points A and B of a sphere there is at least one great circle, determined by the plane AOB; there is only one such great circle through A and B unless AOB is a straight line.

(6) The shortest distance between the points A and B is the straight line which joins them, but this line does not lie on the sphere. The shortest line on the sphere joining A and B is the arc of a great circle; hence we make the definition:

The distance between two points on a sphere is the length of the arc (not greater than a semicircle) of a great circle which joins them. The unit distance on a sphere is the length of the arc of a great circle which subtends a unit angle at the center. When angles are measured in degrees, the unit distance is also called a degree. Hence the arc of a great circle and the angle which it subtends at the center have the same numerical measure.

- (7) The distance from the pole of any circle to a point on that circle is constant; for a great circle it is 90°, or one quadrant.
- (8) The angle between two planes is the angle between two lines AP and AQ in those planes perpendicular to their line of intersection at the same point A.
- (9) The angle between two great circles on a sphere is the angle between their planes; hence it is equal to the angle between their tangents at the point of intersection, for the tangents are perpendicular to the diameter in which the planes intersect.
- (10) If two great circles meet at P and P', and if AB be another great circle whose pole is P, cutting the two given circles at A and B, respectively, then AOP = BOP =

90° and angle AOB measures the angle between the two planes; hence the angle between two great circles PA and PB is measured by the intercepted arc AB of a great circle whose pole is P.

- (11) Any two great circles bisect each other at their points of intersection.
- (12) The portion of a sphere bounded by two great semicircles is called a lune.

The two angles of a lune are equal to each other; each of them is equal to the angle between the two great semicircles that bound the lune.

(13) The portion of a sphere bounded by arcs of three great circles is called a spherical triangle. The sides a, b, c, are the

Fig. 83

lengths of the arcs; the angles A, B, C, are the angles between the great circles of which the sides are arcs.

(14) Any three distinct great circles that do not pass through a common point on the sphere divide the surface of the sphere into eight spherical triangles; none of these has an angle or a side greater than 180°. Hence we

consider only such triangles.

- (15) The two triangles into which a lune AA' is divided by an arc BC of any third great circle are called **co-lunar**. The two angles at C are supplementary; those at B are supplementary; those at A and A' are
- equal. Similarly $AC + CA' = 180^{\circ}$, and $AB + BA' = 180^{\circ}$.
- (16) Two spherical triangles are congruent (sometimes called equal) if they can be superposed; i.e. when the sides and angles of one are equal to those of the other and are arranged in the same order. If the parts of two triangles are equal, but are arranged in reverse order, the triangles are called symmetric.

Fig. 84

- (17) A spherical triangle is determined when a sufficient number of parts are given so that one triangle on a sphere has these parts, and any other triangle on the same sphere that has the given parts is either congruent or symmetric to it. Thus a triangle is determined by (a) two sides and included angle; (b) two angles and included side; (c) three sides; (d) three angles; (e) (ambiguously) two sides and angle opposite one of them; (f) (ambiguously) two angles and the side opposite one of them.
- (18) A right-angled spherical triangle is determined when any two parts besides the right angle, are given, as in (17).

- (19) In any spherical triangle ABC: .
- (a) The sum of the sides is less than 360° (or 2π radians).
- (b) The sum of any two sides is greater than the third side. Hence any side is greater than the difference of the other two.
 - (c) Equal sides lie opposite equal angles; and conversely.
- (d) The greater of two unequal sides lies opposite the greater angle; and conversely.
- (e) The sum of the angles lies between 180° and 540° (or between π and 3 π radians). The excess over 180° is called the spherical excess $E = \angle A + \angle B + \angle C 180$ ° (or $\angle A + \angle B + \angle C \pi$ radians). Hence E < 360°.

(One or two or all the angles may be right or obtuse; if all are right angles, the triangle is called *tri-rectangular*.)

- (f) If the sum of any two angles, A and B, is 180°, the sum of the two sides opposite them, a and b, is 180°.*
- (g) If the sum of two angles, A and B, is less (greater) than 180°, the sum of the two sides opposite them, α and b, is less (greater) than 180°.†
- (h) Of the three pairs of sides and their opposite angles a and A, b and B, c and C, at least two pairs are either both acute, or both obtuse, or both right angles.‡
 - (20) Areas. The area A § of the entire sphere is $4 \pi R^2$.
- (a) The area A of the entire sphere is four times the area of any great circle.
- (b) The area A_l of a lune is proportional to its angle α : $A_l = (\alpha/360)(4 \pi R^2) = \pi R^2 \alpha/90$ if α is in degrees; or $A_l = 2 R^2 \alpha$ if α is in radians.
- * For, the co-lunar triangle (see (15)) formed by extending a and b is congruent (16) to ABC.
- † For, in the figure suggested in the preceding footnote, starting with $A+B=a+b=180^\circ$, if we let $\angle C$ and the point B remain fixed, but move A so as to increase b, the area of ABC increases. Hence A+B increases. [See (20)(d).] It follows that $A+B>180^\circ$ if $a+b>180^\circ$; and conversely.
- ‡ For, suppose $a > 90^{\circ}$ and $A < 90^{\circ}$; and suppose b and B are also in opposite quadrants. Then $b > 90^{\circ}$ and $B < 90^{\circ}$, by (d); but this violates (g). Other cases of the theorem can be proved similarly.
- § The black-faced type A is used to denote areas, to distinguish emphatically from the angle A of the triangle ABC.

- (c) The area of a tri-rectangular triangle is one eighth the area of the sphere, or $\pi R^2/2$.
- (d) The area A_t of a triangle is proportional to its spherical excess E; by (c), since the excess for a tri-rectangular triangle is 90° or $\pi/2$ radians, $A_t = \pi R^2 E/180^\circ$, if E is in degrees; or $A_t = R^2 E$, if E is in radians.*
 - (21) The volume of a sphere is $4 \pi R^3/3$.
- (22) In any triangle ABC, mark the pole of c which lies on the same side of c as does C, and call it C'; and let A' be the corresponding pole of a, and B' the corresponding pole of b. Then A'B'C' is called the **polar triangle** to ABC. Conversely, ABC is itself polar to A'B'C'.
- (23) The sides of any spherical triangle are the *supplements* of the opposite *angles* of the polar triangle:

$$A + a' = 180^{\circ},$$

 $a + A' = 180^{\circ},$
 $B + b' = 180^{\circ},$
 $b + B' = 180^{\circ},$
 $C + c' = 180^{\circ},$
 $c + C' = 180^{\circ}.$

Thus, if the parts of a triangle are known, those of the polar triangle can be found, and conversely.

(24) Any theorem that is true for all spherical triangles can be changed into a new theorem by applying

it first to the polar triangle; thus from "The sum of the angles of a spherical triangle is greater than 180°" follows "The sum of the sides of a spherical triangle is less than 360°."

(25) It may be easier to replace a given triangle by its polar triangle before the missing parts are found: thus, if a triangle has one side equal to 90° , the polar triangle is right-angled. If the principles of polar triangles be remembered, there are really only three cases: viz., (a), (c), (e), of (17).

^{*} The formulas in 20 (b) and 20 (d) are simplest in radian measure.

PART II. FUNDAMENTAL PRINCIPLES OF SOLUTION

- 90. Fundamental Laws. If a sufficient number of parts of a spherical triangle are given, the others can be found. We proceed to find methods for doing this.
- I. The Law of Cosines. Let ABC be a spherical triangle on a sphere whose center is O, in which at least two sides

(b and c, say) are each less than 90°. The third side and the angles may have any magnitudes from 0° to 180°.

At P, a point of OA, pass a plane perpendicular to OA cutting OC in Q and OB in R. Then, by the law of cosines in the plane triangles $= \angle A$ and $\angle COB = a$.

cosines in the plane triangles OQR and PQR, since $\angle QPR$

(1)
$$\overline{QR^2} = \overline{OQ}^2 + \overline{OR}^2 - 2 \overline{OQ} \cdot \overline{OR} \cos \alpha,$$
$$\overline{QR^2} = \overline{PQ}^2 + \overline{PR}^2 - 2 \overline{PQ} \cdot \overline{PR} \cos A.$$

Equate these two values of QR^2 , and notice that we also have

$$O\overline{Q}^2 - \overline{PQ}^2 = O\overline{P}^2 = O\overline{R}^2 - \overline{PR}^2$$
, since $OPQ = OPR = 90^\circ$; then
$$(2) \qquad 2\overline{OP}^2 - 2\overline{OQ} \cdot O\overline{R} \cos a = -2\overline{PQ} \cdot \overline{PR} \cos A.$$

Transposing, and dividing by $2 \overline{OQ} \cdot \overline{OR}$, we have

(3)
$$\cos a = \frac{OP}{OQ} \cdot \frac{OP}{OR} + \frac{PQ}{OQ} \cdot \frac{PR}{OR} \cdot \cos A,$$
or, since
$$OP/OQ = \cos b, \ PQ/OQ = \sin b,$$

$$OP/OR = \cos c, \ PR/OR = \sin c,$$

I. $\cos a = \cos b \cos c + \sin b \sin c \cos A$.

The cosine of any side of a spherical triangle is equal to the product of the cosines of the other two sides plus the product of the sines of those two sides into the cosine of their included angle. Compare this with the law of cosines for plane triangles, § 25.

This result, called the law of cosines, is true in general for any side of any spherical triangle.*

II. The Law of Sines. Let ABC be a spherical triangle in which at least two sides b and c and the angles opposite are each less than 90°. From P, a point of OA, drop PQ perpendicular to the plane BOC, and through PQ pass a plane PQR perpendicular to OC and a plane PQS perpendicular to OB; then OR is perpendicular to PR and to QR, and OS is perpendicular to PS and OS.

C S B B

Fig. 87

In the right triangles ORP and OSP,

(1) $PR = OP \sin b$ and $PS = OP \sin c$.

and PQS.

In the right triangles PQR

(2)
$$PQ = PR \sin C = PS \sin B.$$

Substituting these values from (1) in (2), we find:

 $OP\sin b\sin C = OP\sin c\sin B$,

Logically, it remains to consider the following cases; it is shown below that each of them either reduces to this first case, or can be verified directly.

^{* (1)} The formula [I] has been proved when $b < 90^{\circ}$, $c < 90^{\circ}$.

⁽²⁾ Suppose $b < 90^{\circ}, c = 90^{\circ}$.

⁽a) If $A < 90^{\circ}$, produce side b to D, making $AD = 90^{\circ}$, and draw the arc BD. Apply [I] to the right triangle BCD, in which the sides $BD (= \angle A)$ and $CD (= 90^{\circ} - b)$ are each less than 90° [Case (1)].

⁽b) If $A=90^{\circ}$, then $\alpha=90^{\circ}$, and the formula may be verified by substitution.

⁽c) If $A > 90^{\circ}$, produce sides a and c to E to form a lune; the formula applies to the triangle ACE since $CA < 90^{\circ}$, $AE = 90^{\circ}$; and the included angle is less than 90° [Case (2a)].

⁽³⁾ Suppose $b = 90^{\circ}$, $c = 90^{\circ}$. Verify by substitution.

⁽⁴⁾ Suppose $b < 90^{\circ}$, $c > 90^{\circ}$. Produce sides a and c to D to form a lune. Apply the formula to side CD of the triangle ACD in which AC and AD are each less than 90 $^{\circ}$ [Case (1)].

⁽⁵⁾ Suppose $b=90^\circ$, $c>90^\circ$. Produce sides b and c to D to form a lune. Apply the formula to the triangle BCD in which $BD<90^\circ$, $CD=90^\circ$ [Case (2)].

⁽⁶⁾ Suppose $b > 90^{\circ}$, $c > 90^{\circ}$. Produce sides b and c to D to form a lune. Apply the formula to the triangle BCD in which BD and CD are each less than 90° [Case (1)].

whence

$\sin b/\sin c = \sin B/\sin C.$

This result, called the law of sines, is true in general for any two sides and the angles opposite them in any spherical triangle; * it may also be written symmetrically as follows:

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}$$

The sines of any two sides of any spherical triangle are to each other as the sines of the angles opposite them. Compare this result with the law of sines for plane triangles, § 24.

91. Solution of Spherical Triangles. The law of cosines, the law of sines, and the properties of polar triangles are sufficient to solve all cases of spherical triangles.†

Example 1. Two sides of a spherical triangle are $a = 116^{\circ}$ and $b = 102^{\circ}$ and their included angle C is 129° . Solve the triangle.

To find the third side, use the law of cosines

 $\cos c = \cos a \cos b + \sin a \sin b \cos C$

$$= (-.43837)(-.20791) + (.89879)(.97815)(-.62932) = -.46212$$
 Therefore, $c = 117^{\circ} 31'.4$

† The expression "Solve a triangle" tacitly assumes that a sufficient number of parts of an actual spherical triangle are given. In spherical trigonometry, as in plane, a proposed problem may violate this assumption and there will be no solution. Thus, there is no plane triangle whose sides are 14, 24, and 40. Likewise, there is no spherical triangle of which the sides are 14°, 24°, and 40°; nor one in which one angle is 72°, the side opposite it is 97°, and a second side is 84° (§ 92). Such impossible problems give rise to contradiction; thus, the sine of some angle may be found to be greater than 1, which is absurd. Any triangle which can be constructed can be solved.

^{*} The general proof may be made as in the footnote on page 114; but it may be deduced from the law of cosines, which has been proved in all cases, as follows:

 $[\]cos a = \cos b \cos c + \sin b \sin c \cos A.$

 $^{^{\}circ}$ cos $A = (\cos a - \cos b \cos c)/(\sin b \sin c)$.

 $[\]sin^2 A = 1 - \cos^2 A = [\sin^2 b \sin^2 c - (\cos a - \cos b \cos c)^2]/(\sin^2 b \sin^2 c).$

 $[\]sin^2 b \, \sin^2 c \, \sin^2 A \quad = (1 - \cos^2 b) \, (1 - \cos^2 c) - (\cos a - \cos b \, \cos c)^2.$

To find A use the law of sines, $\sin A/\sin C = \sin a/\sin c$,

$$\begin{array}{l} \log \sin C = 9.89050 - 10 \\ \log \sin a = 9.95366 - 10 \\ \text{colog sin } c = \underline{0.05211} \\ \log \sin A = 9.89627 - 10 \end{array}$$

Hence, $A = 51^{\circ} 57'.3$ or else $A = 128^{\circ} 2'.7$. In order to find which of these is correct, we may use the cosine law

$$\cos a = \cos b \cos c + \sin b \sin c \cos A$$
.

and substitute crudely the approximate values:

 $\cos a = -.4$, $\cos b = -.2$, $\cos c = -.5$, $\sin b = .98$, $\sin c = .9$, which can be quickly found from the table of p. 15, or from Table C; this gives *

$$-.4 = (-.2)(-.5) + (.98)(.9)\cos A$$
, or .88 cos $A = -.5$.

Without any further calculation whatever, we see that $\cos A$ is certainly negative; hence A lies in the second quadrant and the correct one of the above values is $A = 128^{\circ} 2'.7$

In a similar manner, show that $B = 121^{\circ} 0'.8$

Example 2. Given two angles and their included side:

$$A = 64^{\circ}$$
, $B = 78^{\circ}$, $c = 51^{\circ}$.

To solve this triangle, first compute the corresponding parts of the polar triangle [see (23), p. 112]; they are

$$a' = 116^{\circ}$$
, $b' = 102^{\circ}$, $C' = 129^{\circ}$.

This is, in fact, the triangle solved in Example 1; hence

$$c' = 117^{\circ} 31'.4, A' = 128^{\circ} 2'.7, B' = 121^{\circ} 0'.8.$$

Hence, the required parts of the original triangle are:

$$C = 62^{\circ} 29'.6$$
, $a = 51^{\circ} 57'.3$, $b = 58^{\circ} 59'.2$.

Example 3. Given three sides: $a=116^\circ$, $b=102^\circ$, $c=117^\circ$ 31'.4. Find one angle, say A, by the cosine law:

$$\cos A = \frac{\cos a - \cos b \cos c}{\sin b \sin c} = \frac{(-.43837) - (-.20791)(-.46212)}{(.97815)(.88682)} = -.61613,$$

whence $A=128^{\circ} 2'.7$. The remainder of the work may be done precisely as in Example 1; or B and C may be found as A was found.

If the three angles are given, solve the polar triangle. There will be one and only one solution if the sum of the given angles is between 180° and 540° ; otherwise, no solution.

* It is better to use the cosine law, as here, only to determine in which quadrant A lies, since the sine law is adapted to logarithmic computation. The same fact may be derived from 19(c) and 19(g), p. 111; for, since b < a, it follows that B < A, by 19(c); and since $a + b > 180^{\circ}$, $A + B > 180^{\circ}$ by 19 (g); hence $A > 90^{\circ}$. It is usually a saving of time to use the cosine law, however, since that process is always successful:

92. Temporary Ambiguity. In Example 1, above, we found it convenient to use the cosine law to determine the quadrant in which A lies. A similar temporary ambiguity arises whenever an angle (or side) is found by means of its sine; it does not occur when it is found by its cosine or its tangent because the cosine and tangent are positive when the angle is in the first quadrant and negative when it is in the second quadrant. For this reason careful attention must be given to the signs of the various factors entering into the calculation of an unknown angle or side. In the case of an angle, such an ambiguity can be determined by means of the cosine law, as in Example 1 above, when the three sides are known. Inspection of that formula, or at most a rough mental or slide rule calculation will be sufficient to determine the sign of the cosine. Other cases also may be decided by the cosine law, but it is often easier to apply (19), p. 111.

Another rule which is often useful is the following: A side (angle) which differs more from 90° than another side (angle) is in the same quadrant as its opposite angle (side).*

93. The Ambiguous Cases. If two sides and an angle opposite one of them are given, the third side can be found by applying the law of cosines to the side opposite the given angle. This will determine one value, two values, or no value for the third side between 0° and 180°; and accordingly, there will be one triangle, two triangles, or no triangle satisfying the given data. The other two angles can then be found by the law of sines and the temporary ambiguity determined as in § 92.

Example 1. One angle of a spherical triangle is 130° , the side opposite is 70° , and a second side is 120° . Solve the triangle.

To find c, apply the law of cosines in the form:

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$,

^{*} These differences are taken without regard to sign. Suppose a differs more from 90° than does b or c; then $\cos a$ is (numerically) greater than $\cos b \cos c$. But, by the cosine law, $\cos a - \cos b \cos c = \sin b \sin c \cos A$, whence $\cos a$ and $\cos A$ must have like signs. The angles follow the same rule as the sides, since $\sin A > \sin B > \sin C$ if $\sin a > \sin b > \sin c$.

or
$$.34202 = (-.5)\cos c + (.86603)\sin c \ (-.64279),$$
 whence
$$.55667\sin c + .5\cos c = -.34202$$

The left-hand side of this equation can be reduced, by the method of § 82, to the form

$$h (\sin c \cos \theta + \cos c \sin \theta) = -34202,$$

$$h=.74826$$
 and $heta=41^{\circ}\,55'.9$ Hence

$$\begin{aligned} \sin{(c+\theta)} &= \sin{c}\cos{\theta} + \cos{c}\sin{\theta} = -.4571 \\ c &+ \theta = 207^{\circ}12', & \text{or} & c + \theta = 382^{\circ}48'; \\ c &= 165^{\circ}16'.1, & \text{or} & c = 290^{\circ}52'; \end{aligned}$$

the value $c=200^{\circ}$ 52' is impossible, by (14), § 89; hence only one solution exists in this example. By the law of sines determine $B \neq 45^{\circ}$ 54'.5, $B=134^{\circ}$ 5'.5 since it must be in the same quadrant as b. Similarly $C=168^{\circ}$ 2'.2.

Example 2. Given $c = 40^{\circ} 16'$, $C = 52^{\circ} 30'$, $a = 47^{\circ} 44'$.

To find b apply the law of cosines to side c.

$$\cos c = \cos a \cos b + \sin a \sin b \cos C.$$

.76304 = .67258 $\cos b + .74002 \sin b (.60876)$
.45047 $\sin b + .67258 \cos b = .76304$

Placing

and

$$h(\sin b \cos \theta + \cos b \sin \theta) = .76304,$$

we find h=.80950 and $\theta=56^{\circ}$ 11'.6; hence $\sin(b+\theta)=.94260$,

whence $b + \theta = 70^{\circ} 29'.6$ or $b + \theta = 109^{\circ} 30'.4$, and $b_1 = 14^{\circ} 18'$ $b_2 = 53^{\circ} 18'.8$.

$$b_1 = 14^{\circ} 18'$$
 $b_2 = 53^{\circ} 18'.8.$ (Two solutions.)

By the law of sines find $A_1=65^{\circ}\,16'.5,\,B_1=79^{\circ}\,52'.8,\,A_2=114^{\circ}\,43'.5,\,B_2=17^{\circ}\,37'.3.$

Example 3. Given $b = 40^{\circ}$, $B = 50^{\circ}$, $c = 60^{\circ}$.

By the cosine law, $.55567 \sin a + .5 \cos a = .76604$; hence,

$$\sin(a + \theta) = 1.2^+$$
, which is impossible. (No solution.)

Example 4. Given $a = 97^{\circ}$, $A = 72^{\circ}$, $b = 84^{\circ}$.

By the cosine law, $.30723 \sin c + .10453 \cos c = -.12187$;

hence $\sin(c + \theta) = -.37539$, $\theta = 18^{\circ} 47'.4$,

$$c + \theta = 202^{\circ} 2'.9 \text{ or } c + \theta = 337^{\circ} 57'.1,$$

but this gives no value for c between 0° and 180° . (No solution.)

If two angles and the side opposite one of them are given, solve the polar triangle. There will be the same number of solutions of the given triangle as of the polar triangle. 94. Résumé of Cases. To summarize, the cases are:

Case I. Given two sides and the included angle; Use the cosine law to find the third side; then use the sine law to find the other angles, determining the correct quadrant by (19), p. 111, or by means of the cosine law. See § 92.

Case I_P. (Polar of Case I.) Given two angles and the included side. Solve the polar triangle.

Case II. Given three sides. Find one angle by the cosine law; then proceed as in Case I.

Case II_p. (Polar of Case II.) Given three angles.* Solve the polar triangle.

Case III. (Ambiguous Case.) Given two sides and an angle opposite one of them: Determine the third side by the cosine law, as in Example 1, p. 117, deciding the ambiguity as in Examples 1-4, § 93. Then proceed as in Case I.

Case III_p. (Polar of Case III.) Given two angles and a side opposite one of them.† Solve the polar triangle.

The student should note that we cannot construct a spherical triangle nor compute the lengths of its sides in ordinary linear units unless the radius of the sphere is given.

EXERCISES XXXVI. - SPHERICAL TRIANGLES

1. Solve each of the following triangles:

- (a) $a = 100^{\circ}$, $b = 65^{\circ}$, $A = 96^{\circ}$. (f) $A = 110^{\circ}$, $B = 58^{\circ}$, $c = 55^{\circ}$.
- (b) $a = 100^{\circ}$, $b = 70^{\circ}$, $A = 80^{\circ}$. (g) $a = 75^{\circ}$, $b = 54^{\circ}$, $c = 36^{\circ}$.
- (c) $A = 75^{\circ}$, $B = 85^{\circ}$, $b = 94^{\circ}$. (h) $a = 31^{\circ}$, $b = 23^{\circ}$, $c = 19^{\circ}$.
- (d) $a = 104^{\circ}$, $b = 64^{\circ}$, $C = 99^{\circ}$. (i) $A = 110^{\circ}$, $B = 58^{\circ}$, $C = 75^{\circ}$.
- (e) $A = 140^{\circ}$, $B = 99^{\circ}$, $c = 60^{\circ}$. (j) $A = 100^{\circ}$, $B = 80^{\circ}$, $C = 75^{\circ}$.
- 2. Find the distance, in degrees, from St. Petersburg (lat. 60° N., lon. 30° E.) to Hopedale (lat. 55° 30′ N., lon. 60° W.) and the angle which the arc joining the two places makes with the meridian through each.

[Hint. Use the north pole for the third vertex of a triangle.]

^{*} This case does not arise in plane triangles, since a plane triangle is not determined by its three angles.

[†] The corresponding case in the plane is not ambiguous because the sum of the angles of a plane triangle is precisely 180°.

- 3. Reduce the distance computed in Ex. 2 to miles, assuming that the radius R of the earth is 3956 mi.
- 4. Find the distance, in degrees, from San Francisco (lat. 37° 48′ N., lon. 122° 28′ W.) to Manila (lat. 14° 35′.5 N., 120° 58′.1 E.). Express the same distance in miles.
- 5. By means of the cosine law and the *polar* triangle, show that, for any triangle,

 $\cos A = -\cos B \cos C + \sin B \sin C \cos a$. [Polar Cosine Law.]

PART III. SPECIAL METHODS FOR RIGHT TRIANGLES

95. Right Spherical Triangles. The methods of § 94 will solve all cases, including right triangles; but on account of their frequent occurrence and the simplicity of the formulas in case one angle is 90°, a separate treatment seems desirable.

A right spherical triangle can be solved when any two of its parts (in addition to the right angle) are given; in fact, if two parts are given, the other three parts can be computed in suc-

cession from the given data. All possible cases are provided for in ten formulas which, for a reason to be explained presently, are collected into two groups.

Let ABC be a spherical triangle, right-angled at C; we shall call a and b its sides, c its hypotenuse, A and B its angles. The ten formulas are:

GROUP I GROUP II 1. $\sin a = \sin c \sin A$. 2. $\sin b = \sin c \sin B$. 3. $\cos c = \cos a \cos b$. 4. $\cos A = \cos b \sin A$. 5. $\cos B = \cos b \sin A$. 6. $\sin a = \tan b \cot B$. 7. $\sin b = \tan a \cot A$. 8. $\cos c = \cot A \cot B$. 9. $\cos A = \cot c \tan b$. 10. $\cos B = \cot c \tan a$.

To prove 1, 2, use law of sines; to prove 3, use law of cosines; to prove 4, 5, apply the law of cosines to the polar triangle, remembering that $c' = 90^{\circ}$. To prove 6, substitute in 1 the values of $\sin b$ and $\sin A$ from 2 and 5; similarly prove 7, 8, 9, 10, by substituting in 2, 3, 4, 5.

96. Napier's Rules. The preceding formulas are simple, are adapted to the use of logarithms, and are easy to apply; but there are so many of them that they become a burden to the memory. To avoid this difficulty an ingenious device was given by Napier. a Scotch mathematician (1550–1617) who invented logarithms and made important contributions to trigonometry. He states two rules which enable one to write down the particular formula needed in any given computation without attempting to remember the whole set of formulas.

These two rules of Napier employ what are called "the five circular parts" of a right spherical triangle. These are as indicated in the diagram, Fig. 90, the two sides, the complement of the hypotenuse, and the complements of the two angles. The right angle is not counted and is not indicated on the diagram.

If five objects are placed on a closed contour, e.g. five persons sitting at a round table, each has two neighbors which are adjacent, one on the right, the other on the left; and the two remaining are nonadjacent or opposite. So on the diagram of the five circular parts of a right spherical triangle, if we select any one, there are two others which are adjacent and the remaining two are opposite; moreover, if any three are selected, one of these may always be chosen and called the middle part so that the other two are either both adjacent or both opposite. Napier's rules refer to these circular parts and are as follows:

Rule 1. The sine of the middle part is equal to the product of the cosines of the opposite parts.

Rule 2. The sine of the middle part is equal to the product of the tangents of the adjacent parts.

These rules may be remembered by the alliteration of the first vowel in the words cosine and opposite, tangent and adjacent. When applied in succession to the five circular parts, rule 1 gives the formulas of group I; and rule 2, those of group II.

To apply these rules to the solution of a right spherical triangle, use the diagram of the five circular parts; mark the given parts and the part to be found; of these three choose the middle part (which may or may not be the unknown) and note

whether the other two are opposite or adjacent; then apply the appropriate rule to write down the formula, remembering

that any function of the complement of an angle is the corresponding cofunction of the angle itself; e.g. $\sin \cos c = \cos c$, $\tan \cos B = \cot B$, $\cos \cos A = \sin A$, etc.

Example 1. The hypotenuse c of a right spherical triangle is 124° 50' and the angle A is 37° 25'. Solve the triangle.

To find a, mark $\cos A$, $\cos c$, and a; a is the middle part and the others are opposite; then as you say to yourself, "The sine of a is equal to the product of the cosines of $\cos A$ and $\cos c$;" write $^{\times}C_{\circ}A$ $\sin a = \sin c \sin A$.

Before beginning a computation by logarithms, attention must first be paid to the signs of the factors. They are here both positive, so we proceed to compute:

$$\log \sin 124^{\circ} 50' = 9.91425 - 10$$

$$\log \sin 37^{\circ} 25' = 9.78362 - 10$$

$$\log \sin \alpha = 9.69787 - 10$$

Since side α is in the same quadrant as its opposite angle, $\alpha = 29^{\circ}$ 55%. To find b, mark co A, co c, and b; co A is the middle part, the others

of $\tan \cos c$ and $\tan b$;" write $\cos A = \cot c \tan b$, whence $\tan b = \cos A \tan c$. $\cos A$ is positive, $\tan c$ is negative; therefore, $\tan b$ is negative and b is in the second quadrant.

are adjacent. Say, "Sin co A is equal to the product

To make all the factors positive we change the signs of the negative factors and write the formula

$$\tan (180^{\circ} - b) = \cos A \tan (180^{\circ} - c),$$

and compute as follows:

$$\log \cos 37^{\circ} 25' = 9.89995 - 10$$

$$\log \tan 55^{\circ} 10' = \underline{0.15746}$$

$$\log \tan (180^{\circ} - b) = 0.05741$$

$$180^{\circ} - b = 48^{\circ} 46'.6, \quad b = 131^{\circ} 13'.4$$

To find B, mark co A, co c, and co B; co c is the middle part, the others are adjacent:

 $\cos c = \cot A \cot B$, whence $\cot B = \cos c \tan A$.

Signs of the factors indicate that B is in the 2d quadrant; changing signs of negative factors, the formula becomes

$$ctn (180^{\circ} - B) = \cos (180^{\circ} - c) \tan A
log cos 55^{\circ} 10' = 9.75678 - 10
log tan 37^{\circ} 25' = 9.88367 - 10
log ctn (180^{\circ} - B) = 9.64045 - 10$$

$$x_{\text{Coo}}$$

- 97. Ambiguity. When an unknown part of a right spherical triangle is to be determined by its sine, the following statements are useful to determine whether the angle is in the first or second quadrant.
- 1. An angle and the opposite side are always in the same quadrant, by (4), § 95, since $\sin B$ is surely positive.
- 2. When the two sides are in the same quadrant, the hypotenuse is in the first quadrant; when the two sides are in different quadrants, the hypotenuse is in the second quadrant; and conversely. This follows from (3), § 95.
- 3. The Ambiguous Case. In case there are given one of the angles of a right spherical triangle and the side opposite, there are, always, two solutions which are colunar, except that if the given side is also 90°, the triangle is birectangular and the two solutions coincide. These facts are obvious geometrically, since the lune whose angle is the given angle is divided by the given side into two colunar triangles, either of which is a solution.

In no other case, when two parts besides the right angle are given, is there more than one solution.

98. Quadrantal and Isosceles Spherical Triangles. A quadrantal spherical triangle is one that has one side equal to a quadrant or 90°. Such triangles are readily solved by means of their polar triangles, which are right angled.

An isosceles spherical triangle may be divided into two symmetric right triangles by an arc perpendicular to the base through the vertex of the angle included between the equal sides.

EXERCISES XXXVII. - RIGHT SPHERICAL TRIANGLES

1. Solve the following right spherical triangles:

No.	Hypotenuse	First Side	SECOND SIDE	Angle Opposite First Side	Angle Opposite Second Side
(a)		48°	72°		
(b)		108°			38°
(c)	78°			46°	
(d)				32°	66°
(e)		70°	108°		
(f)	101° 16′.3	115° 42′.6			
(g)		160°		150°	
(h)		155° 46′.7			80° 10′.5
(i)				60° 47′.4	57° 16′.3
(j)		116°	16°		
(k)	110° 46′.3			80° 10′.5	,

- 2. Solve the following spherical triangles:
- (a) One side is 90° , and the angles adjacent are 72° 15' and 104° 26'.
- (b) The three sides are 125° 40′, 90°, 115° 10′,
- (c) Two sides are 54° 20′ and 90°, and the included angle is 57° 55′.
- (d) Two sides are each $80^{\circ}28'$, and the angles opposite are each $33^{\circ}20'$.
- 3. Quito is on the equator in longitude 78° 50′ W.; New York is in lat. 40° 43′, lon. 74° W. Find the distance between them and the angle that the arc connecting the two places makes with the meridian at each.
- 4. The arc of the great circle connecting St. Petersburg and Hopedale (lat. 55°30′ N., lon. 60° W.) is 44°28′ long and makes an angle of 45°33′ with the meridian through Hopedale. Find the distance from St. Petersburg to St. Nicholas (lat. 34°30′ S., lon. 60° W.) and the angle between the two arcs at St. Petersburg.
- 5. Prove that in any quadrantal spherical triangle, if c denotes the quadrantal side, i.e. if $c = 90^{\circ}$, then:
 - (a) $\cos C + \cos A \cos B = \cos c$.
 - (b) $\cos C + \cot a \cot b = \cos c$.
 - (c) $\sin a \cos B = \cos b$, $\sin b \cos A = \cos a$.
- 6. Prove that in any right spherical triangle, if C denotes the right angle, then:

 $\sin a = \cos c \tan b \tan A$.

PART IV. SPECIAL LOGARITHMIC METHODS

99. Tangents of the Half-angles. When adapted to logarithmic computation, the law of cosines of spherical trigonometry yields two sets of formulas which are useful in the solution of triangles and are analogous to those of plane trigonometry given in §§ 26–27, pp. 34–36.

Let ABC be a spherical triangle; a small circle can be inscribed in it as follows: draw arcs of great circles bisecting its

angles; these bisectors meet in some point P. This is the pole of the inscribed circle; for, from P draw arcs of great circles PL, PM, PN, perpendicular respectively to the sides BC=a, CA=b, AB=c. The right triangles PMA, PNA are symmetric, having the hypotenuse and an angle of the one equal respectively to the hypotenuse and an angle of the other; therefore PM=PN, and simi-

Fig. 94

larly each of these is equal to PL. Let r=PL=PM=PN, the polar distance of the inscribed circle. Also from the same symmetric triangles, AM=AN, BN=BL, and CL=CM; hence if we set 2s=a+b+c, AN+BL+CL=s, whence AN=s-(BL+CL)=s-a, and similarly, BL=s-b and CM=s-c.

In the right triangle ANP, we have, by (6) § 95, or by Napier's Rule 2,

$$\sin AN = \tan PN \cdot \cot PAN$$
,
 $\sin (s-a) = \tan r \cot (A/2)$,

and therefore

(1)
$$\tan (A/2) = \tan r / \sin (s-a).$$

Similarly from triangles BLP and CMP,

(2)
$$\tan (B/2) = \tan r/\sin (s-b).$$

(3)
$$\tan (C/2) = \tan r / \sin (s-c).$$

Compare these with (1) § 27, p. 36.

Eliminate $\tan r$ from (1) and (2) by division:

(4)
$$\frac{\tan(A/2)}{\tan(B/2)} = \frac{\sin(s-b)}{\sin(s-a)}.$$

Produce the sides AB and AC to form a lune, and apply (4) to the column triangle A'B'C'':

$$\frac{\tan{(A'/2)}}{\tan{(B'/2)}} = \frac{\sin{(s'-b')}}{\sin{(s'-a')}},$$
or, since $s' = 180^{\circ} - (s-a)$, $s'-b' = s-c$,
$$s'-a' = 180^{\circ} - s$$
,
$$(5) \qquad \frac{\tan{(A/2)}}{\cot{(B/2)}} = \frac{\sin{(s-c)}}{\sin{s}}.$$
Fig. 95 Multiplying (4) and (5), we find
$$\tan^2{(A/2)} = \frac{\sin{(s-b)}\sin{(s-c)}}{\sin{s}\sin{(s-a)}}$$

$$= \frac{\sin{(s-a)}\sin{(s-b)}\sin{(s-c)}}{\sin^2{(s-a)}\sin{s}};$$

whence

(6)
$$\tan (A/2) = \frac{1}{\sin (s-a)} \sqrt{\frac{\sin (s-a) \sin (s-b) \sin (s-c)}{\sin s}}$$
.

Comparing (1) and (6), we find

(7)
$$\tan r = \sqrt{\frac{\sin(s-a)\sin(s-b)\sin(s-c)}{\sin s}}.$$

Compare this result with that of § 29, p. 39.

Formulas (1), (2), (3), and (7) hold for all spherical triangles which have no side or angle greater than 180°.*

100. The Law of Tangents, or Napier's Analogies. Let ABC be a spherical triangle; suppose A > B. Then at B, the smaller of the two angles, lay off angle ABA' = A. Apply formula (4) of § 99 to angles B' and C' of the triangle A'B'C'.

$$\frac{\tan (B'/2)}{\tan (C'/2)} = \frac{\sin (s' - c')}{\sin (s' - b')},$$

B' = A - B, $C' = 180^{\circ} - C$, s' = (a + b' + c')/2; but since triangle A'AB is isosceles, c' = b + b'; hence s' = (a + b)/2 + b',

^{*} All these formulas can be deduced from the law of cosines by an algebraic process without reference to any particular figure. See, for example, Chauvenet's Treatise on Spherical Trigonometry,

$$s' - b' = (a + b)/2$$
, $s' - c' = (a - b)/2$. Therefore

$$\frac{\tan[(A-B)/2]}{\cot(C/2)} = \frac{\sin[(a-b)/2]}{\sin[(a+b)/2]},$$

or

(1)
$$\tan \frac{A-B}{2} = \frac{\sin[(a-b)/2]}{\sin[(a+b)/2]} \cot \frac{C}{2}$$
.

If A < B, the result is obviously

$$\tan \frac{B-A}{2} = \frac{\sin \left[(b-a)/2 \right]}{\sin \left[(b+a)/2 \right]} \operatorname{ctn} \frac{C}{2},$$

which comes to the same thing as (1).

If A = B, then a = b and (1) is satisfied. Therefore, the formula holds for all cases, since (4) of § 99 does.

Produce the sides AB and BC to form a lune, and apply formula (1) to the triangle A'B'C', column to ABC.

$$\tan \frac{A'-B'}{2} = \frac{\sin[(a'-b')/2]}{\sin[(a'+b')/2]} \operatorname{ctn} \frac{C'}{2}.$$

Substitute $180^{\circ} - A$ for A', B for B', and so on:

$$\cot \frac{A+B}{2} = \frac{\cos \left[(a+b)/2 \right]}{\cos \left[(a-b)/2 \right]} \tan \frac{C}{2},$$

Fig. 97

(2)
$$\tan \frac{A+B}{2} = \frac{\cos \left[(a-b)/2 \right]}{\cos \left[(a+b)/2 \right]} \operatorname{ctn} \frac{C}{2}.$$

If we divide (1) by (2) we obtain a formula

$$\frac{\tan\left[(A-B)/2\right]}{\tan\left[(A+B)/2\right]} = \frac{\tan\left[(a-b)/2\right]}{\tan\left[(a+b)/2\right]},$$

which is analogous to the law of tangents for plane triangles.

Formulas (1) and (2) are called **Napier's Analogies**. They furnish another proof of (19) (f) and (g), p. 111.

101. Solutions of Triangles by Logarithms. When two sides and the included angle are given (Case I of § 94), the other two angles can be found by Napier's Analogies, (1) and (2) of § 100, and then the third side can be found by the law of sines.

Example 1. Assuming the radius of the earth to be 3956 miles, find the shortest distance from Seattle (lat. 47° 36′ N., lon. 122° 20′ W.) to Manila

(lat. 14° 35'.5 N., lon. 120° 58'.1 E.), and the direction of the course at each place.

and (s+m)/2 at one reading:

Take the north pole for the third vertex; then
$$m = 42^{\circ} 24'$$
, $s = 75^{\circ} 24'.5$; $N = 116^{\circ} 41'.9$

To find the angles at M and S, we write, since

$$\tan \frac{S - M}{2} = \frac{\sin \left[(s - m)/2 \right]}{\sin \left[(s + m)/2 \right]} \cot \frac{N}{2}, \qquad [(1), \S 100]$$

$$\tan\frac{S+M}{2} = \frac{\cos\left[(s-m)/2\right]}{\cos\left[(s+m)/2\right]} \cot\frac{N}{2}, \qquad \left[(2), \, \S\, 100\right]$$

 $(s-m)/2 = 16^{\circ} 30'.2$ $(s+m)/2 = 58^{\circ} 54'.2$ $N/2 = 58^{\circ} 20'.9$ Arrange the computation so as to look up both sine and cosine of (s-m)/2

 $\begin{array}{c} \log \sin 16^{\circ} \ 30'.2 = 9.45343 - 10 \\ \log \cot 58^{\circ} \ 20'.9 = 9.78990 - 10 \\ \operatorname{colog} \sin 58^{\circ} \ 54'.2 = 0.06737 \\ \log \tan \left[(S-M)/2 \right] = 9.31070 - 10 \\ (S-M)/2 = 11^{\circ} \ 33'.5 \\ \log \cos 16^{\circ} \ 30'.2 = 9.98173 - 10 \\ \log \cot 58^{\circ} \ 20'.9 = 9.78990 - 10 \\ \operatorname{colog} \cos 58^{\circ} \ 54'.2 = 0.28694 \\ \log \tan \left[(S+M)/2 \right] = 0.05857 \end{array}$

 $(S+M)/2 = 48^{\circ} 51'.1$ By addition and subtraction, $S = 60^{\circ} 24'.6$

 $M = 37^{\circ} 17'.6$

The course leaves Seattle going N. 60° 24'.6 W. and arrives at Manila going S. 37° 17'.6 W. To find n, use $\sin n/\sin s = \sin N/\sin S$:

 $\log \sin 75^{\circ} 24'.5 = 9.98576 - 10$ $\log \sin 116^{\circ} 41'.9 = 9.95104 - 10$ $\operatorname{colog} \sin 60^{\circ} 24'.6 = 0.06069$ $\log \sin n = 9.99749 - 10$

Hence either $n = 83^{\circ} 51'$ or $n = 96^{\circ} 9'$.

By the law of cosines, $\cos n = (.74)(.25) - (.67)(.97)(.45)$ approximately; hence $\cos n$ is negative; therefore $n = 96^{\circ}$ 9'.

Hence the length of the course in miles (to the nearest mile) is $n\pi R/180 = 96.15 \times 3.1416 \times 3956/180 = 6639$. (Compute by logarithms.)

Case II. When the three sides are given (Case II of § 94), the angles can be found by the half-angle formulas of § 99.

Illustrative Example. The face angles of a trihedral angle are 50° 12'.1, 116° 44'.8, 129° 11'.7; find the dihedral angles.

CASE III. When two sides and the angle opposite one of them are given (Case III of § 94), first find the angle opposite the other given side by the law of sines, and determine the number of solutions (see § 93). Use one of Napier's Analogies to find the third angle, and the law of sines to find the third side.

Example 1. One angle of a spherical triangle is $103^{\circ} 40'$, the side opposite is $56^{\circ} 40'$, and another side is $30^{\circ} 50'$. Solve the triangle.

Let $C = 103^{\circ} 40'$, $c = 50^{\circ} 40'$, $b = 30^{\circ} 50'$; to find B, use law of sines:

$$\begin{array}{c} \sin\,B/\sin\,C = \sin\,b/\sin\,c\\ \log\,\sin\,103^\circ\,40^\prime = 9.98753 - 10\\ \log\,\sin\,30^\circ\,50^\prime = 9.70973 - 10\\ \mathrm{colog\,sin}\,56^\circ\,40^\prime = 0.07806\\ \log\,\sin\,B = 9.77532 - 10 \end{array}$$

Therefore, since by § 92, b and B must be in the same quadrant, we have $B=36^{\circ}$ 35'.5, and there is only one solution.

To find \boldsymbol{A} use one of Napier's Analogies, say (1) of § 100:

$$\cot \frac{A}{2} = \frac{\sin \left[(c+b)/2 \right]}{\sin \left[(c-b)/2 \right]} \tan \frac{C-B}{2}$$

$$(c+b)/2 = 43^{\circ} 45', (c-b)/2 = 12^{\circ} 55', (C-B)/2 = 33^{\circ} 32.'2$$

$$\log \sin 43^{\circ} 45' = 9.83980 - 10$$

$$\log \tan 33^{\circ} 32'.2 = 9.82139 - 10$$

$$\operatorname{colog} \sin 12^{\circ} 55' = \underline{0.65066}$$

$$\log \cot (A/2) = \underline{0.31185}$$

$$A/2 = 25^{\circ} 59'.9$$

$$A = 51^{\circ} 59'.9$$

Finally, from $\sin a/\sin c = \sin A/\sin C$, we find

 $\log \sin a = 9.83093 - 10$; hence,

since a and A must be in the same quadrant, $a = 42^{\circ} 39'.1$.

EXERCISES XXXVIII.—SOLUTION BY LOGARITHMIC METHODS Solve the following spherical triangles:

No.	a	ь	e	A	В	c
1	30° 20′	46° 30′		36° 40′		
2		147° 6′	ļ		110° 10′	100°
3	130°				66°	
4	115° 10′	125° 20′	70° 30′			
5	70°	80°	170°			
6	109° 20′		82°	107° 40′		
7		•		56° 32′	69° 7′	78° 58′
8	93° 20′		56° 30′		74° 40′	
9			74° 20′	67° 30′	45° 50′	
10		40° 35′		51° 58′		83° 541
11	28° 48′	98° 10′	80° 12′	1		
12			127°	ļ	132°	140°
13	75°	120°				145°
14	62° 20′	54° 10′	97° 50′			
15	1	100°	65°	96°		
16		40° 40′		31° 40′		122° 20′
17			42°	51° 58′	83° 54′	
18	40°	118° 20′		29° 40′		
19	130°		1		55° 25′	44° 58′
20	78°				55° 25′	44° 58′
21		99° 40′	64° 20′		95° 40′	
22		43° 18′	19° 24′	74° 22′		
23	47° 15′		42° 45′			56° 30′

24. Find one of the dihedral angles of a regular tetrahedron.

[Hint. Each face of a regular tetrahedron is an equilateral triangle.]

^{25.} Find one of the dihedral angles of a regular dodecahedron.

^{26.} The dihedrals of a trihedral angle are 60° 53', 60° 53', 66° 50'. Find the face angles.

^{27.} Two face angles of a trihedral angle are $96^{\circ} 24'$ and $68^{\circ} 27'$; the dihedral between these faces is $84^{\circ} 46'$. Find the other face angle.

^{28.} Find the shortest distance from Sandy Hook (lat. 40° N., lon. 74° W.) to Gibraltar (lat. 36° 6′.4 N., lon. 5° 20′.9 E.) and the direction of the course of each place.

^{29.} Find the distance from San Francisco (lat. $37^{\circ}48'$ N., lon. $122^{\circ}28'$ W.) to Hong Kong (lat. $22^{\circ}17'$ N., lon. $114^{\circ}10'$ E.) and the direction of the course at each place.

102. Area of Spherical Triangles. A spherical degree is 1/720 of the surface of the sphere. Thus, the area of a lune whose angle is 1° is two spherical degrees. The area of a birectangular triangle whose third angle is 1° is one spherical degree.

The spherical excess, E, of a triangle is the excess of the sum of its angles over two right angles. (See (19) and (20), § 89.) It is proved in geometry that the area of the entire surface of a sphere is $4 \pi r^2$, and that the number of spherical degrees in the area A_t of a triangle is equal to its spherical excess. Therefore if E denotes the spherical excess of a triangle and R the radius of the sphere, then the area A_t of the triangle is

$$A_t = \pi R^2 E / 180,$$

if E denotes the number of degrees in the spherical excess; or (2) $A_t = R^2 E$,

if *E* denotes the number of *radians* in the spherical excess. (See (20), § 89.) We can therefore compute the area of a spherical triangle as soon as we know its angles.

Example. Find the area of a triangle whose angles are 94° 30', 116° 25', 72° 20', on a sphere of radius 50 ft.

$$E = 103^{\circ}.25 \; ; \; \mathbf{A}_{t} = \frac{3.1416 \times \overline{50}^{\circ} \times 103.25}{180} \cdot \\ \log 3.1416 = 0.49715 \\ 2 \log 50 = 3.39794 \\ \log 103.25 = 2.01389 \\ \operatorname{colog} 180 = \frac{7.74473 - 10}{100} \\ \log \mathbf{A}_{t} = 3.65371 \quad \mathbf{A}_{t} = 4505.2.$$

If a triangle is given by means of other parts than the angles, the angles may be computed by the preceding methods and the spherical excess E can be found as above. Special formulas are sometimes given for direct computation of E without first finding the angles.*

* Thus, if two sides and the included angle are given, say a, b, and C, then

$$\tan \frac{1}{2}E = \frac{\tan \frac{1}{2}a \tan \frac{1}{2}b \sin C}{1 + \tan \frac{1}{2}a \tan \frac{1}{2}b \cos C}.$$

If the three sides are given,

 $\tan \frac{1}{2}E = \sqrt{\tan \frac{1}{2} s \tan \frac{1}{2} (s-a) \tan \frac{1}{2} (s-b) \tan \frac{1}{2} (s-c)}$.

For proof of these formulas, consult, e.g., Chauvenet, Treatise on Spherical Trigonometry.

EXERCISES XXXIX. - AREAS OF SPHERICAL TRIANGLES

1. Find the areas of the following spherical triangles:

No.	a	ь	c	A	В	C	R: RADIUS OF SPHERE
(a)				64° 48′	40° 24′	120° 46′	1000 ft.
(b)				86° 30′	54° 46′	63° 12′	750 m.
(c)	43° 30′	72° 24′	87° 50′				100 m.
(d)		73° 58′	38° 45′	46° 33′			20 mi.
(e)			120° 10′	65° 13′	49° 27′		36 yd.
(f)	18° 12′ ·		9004		74° 45′		40 rd.
(<i>g</i>)			90°	110° 48′	135° 35′		200 ft.
(h)	108° 14	75° 29′	56° 37′				600 ft.
<i>(i)</i>	132° 14′.2		97° 13′.1		81° 58′.9		2.3 mi.
(j)	88° 12′		59° 4′		132° 18′		30 mi.

- 2. Find the area of a trirectangular triangle on the earth's surface. (Radius = 3956 mi.)
- 3. Find the area on the earth's surface of a birectangular triangle whose third angle is 21°.
- 4. Find the third angle of a birectangular triangle on the earth's surface whose area is 10,000 sq. mi.
- 5. Find the area of a triangle whose vertices are San Francisco (lat. 37° 48' N., lon. 122° 28' W.), Seattle (lat. 47° 36' N., lon. 122° 20' W.), and Manila (lat. 14° 35'.5 N., lon. 120° 58'.1 E.).
- 6. If a survey of a triangle is made on the earth's surface, a map drawn from it on plane paper will not check precisely. If the area surveyed is less than one thousand square miles, show that the discrepancy in the sum of the angles of any triangle in it is less than 14".
- 7. Show that in general the discrepancy, in seconds, on a plane map of the earth of any triangle whose area in square miles is A_t is less than $.01315 \times A_t$ (seconds).
- 8. If the angles must check on a map to within one second in any triangle, how large an area can be safely surveyed on the assumption that the earth is a plane?

LOGARITHMIC AND TRIGONOMETRIC TABLES

THE MACMILLAN COMPANV NEW YORK · BOSTON · CHICAGO · DALLAS ATLANTA · SAN FRANCISCO

MACMILLAN & CO., Limited London · Bombay · Calcutta Melbourne

THE MACMILLAN CO. OF CANADA, LTD. TORONTO

LOGARITHMIC AND TRIGONOMETRIC TABLES

PREPARED UNDER THE DIRECTION OF KARLE RAYMOND HEDRICK

TO ACCOMPANY THE

ELEMENTS OF PLANE TRIGONOMETRY

BY

ALFRED MONROE KENYON

AND

LOUIS INGOLD

New York
THE MACMILLAN COMPANY
1919

All rights reserved

COPYRIGHT, 1918, BY THE MACMILLAN COMPANY.

Set up and electrotyped. Published May, 1913

Norwood Bress J. S. Cushing Co. — Berwick & Smith Co. Norwood, Mass., U.S.A.

EXPLANATION OF THE TABLES:

TABLE I. FIVE-PLACE COMMON LOGARITHMS OF NUMBERS FROM 1 TO 10 000

1. Powers of 10. Consider the following table of values of powers of 10:

Column A		Column B	COLUMN A		COLUMN B
101	=	10	100	=	1.
102	=	100	10-1	=	.1
108	=	1000	10-2	=	.01
104	=	10000	10-8	=	.001
105	=	100000	10-4	=	.0001
106	=	1000000	10-5	=	.00001
107	=	10000000	10-6	=	.000001
108	=	100000000	10-7	=	.0000001
109	=	100000000	10-8	=	.00000001
1010	=	1000000000	10-9	=	.000000001

This table may be used for multiplying or dividing powers of 10, by means of the rules $10^a \cdot 10^b = 10^{a+b}$, $10^a \div 10^b = 10^{a-b}$. Thus, to multiply 1000 by 100,000, add the exponent of 10 in column A opposite 1000 to the exponent of 10 opposite 100,000: 3+5=8; and look for the number in column B opposite 10^8 , *i.e.* 100,000,000. Similarly $1,000,000 \times .0001 = 100$, since 6+(-4)=2.

To divide 1,000,000 by 100, from the exponent of 10 opposite 1,000,000 subtract the exponent of 10 opposite 100; 6-2=4; and look for the number opposite 10^4 , i.e. 10,000. Similarly .001+1,000,000=.000000001, since -3-6=-9. To find the 4th power of 100, multiply the exponent of 10 opposite 100 by $4:4\times2=8$, and look for the number opposite 10^8 , i.e. 100,000,000. Likewise $(.001)^8=.000000001$, since $3\times(-3)=-9$. To find the cube root of 1,000,000,000, divide the exponent of 10 opposite 1,000,000,000, by 3,9+3=3, and look for the number opposite 10^3 .

^{*} This Explanation, written to accompany the five-place tables, may be used also for the four-place tables by omitting the last figure in each example in a manner obvious to the teacher.

- 2. Common Logarithms. The exponent of 10 in any row of column A is called the common logarithm * of the number opposite in column B; thus $\log 10 = 1$, $\log 100 = 2$, $\log 1000 = 3$, etc.; $\log 1 = 0$, $\log .1 = -1$; $\log .01 = -2$, $\log .001 = -3$, etc. In general, if $10^i = n$, l is called the common logarithm of n, and is denoted by $\log n$.
- 3. Fundamental Principles. Logarithms are useful in reducing the labor of performing a series of operations of multiplication, division, raising to powers, extracting roots, as above; they have no necessary connection with trigonometry, since all the operations could be performed without them; but they are a great labor-saving device in arithmetical computations. They do not apply to addition and subtraction.

The principles of their application are stated as follows:

- I. The logarithm of a product is equal to the sum of the logarithms of the factors: $\log ab = \log a + \log b$. This follows from the fact that if $10^i = a$ and $10^L = b$, $10^{i+L} = a \cdot b$. In brief: to multiply, add logarithms.
- II. The logarithm of a fraction is equal to the difference obtained by subtracting the logarithm of the denominator from the logarithm of the numerator: $\log (a/b) = \log a \log b$. For, if $10^i = a$ and $10^L = b$, then $10^{1-L} = a \div b$. In brief: to divide, subtract logarithms.
- III. The logarithm of a power is equal to the logarithm of the base multiplied by the exponent of the power: $\log a^b = b \log a$. This follows from the fact that if $10^l = a$, then $10^{lb} = a^b$.
- IV. The logarithm of a root of a number is found by dividing the logarithm of the number by the index of the root: $\log \sqrt[b]{a} = (\log a)/b$. This follows from the fact that if $10^i = a$, then $10^{i/b} = a^{1/b} = \sqrt[b]{a}$.

Corollary of II. The logarithm of the reciprocal of a number is the negative of the logarithm of the number: $\log (1/a) = -\log a$, since $\log 1 = 0$.

4. Characteristic and Mantissa. It is shown in algebra that every real positive number has a real common logarithm, and that if a and b are any two real positive numbers such that a < b, then $\log a < \log b$. Neither zero nor any negative number has a real logarithm.

An inspection of the following table, which is a restatement of a part

	а	1	10	100	1000	10000	100000	1000000	10000000
-	log a	0	1	2	3	4	5	6	7

^{*} Common logarithms are exponents of the base 10; other systems of logarithms have bases different from 10; Napierian logarithms (see Table VII, p. 112) have a base denoted by e, an irrational number whose value is approximately 2.71828. When it is necessary to call attention to the base, the expression $\log_{10} n$ will mean common logarithm of n; $\log_{10} n$ will mean the Napierian logarithm, etc.; but in this book $\log_{10} n$ denotes $\log_{10} n$ unless otherwise explicitly stated.

of the table of § 1, p. v, shows that

the logarithm of every number between 1 and 10 is a proper fraction, the logarithm of every number between 10 and 100 is 1 + a fraction,

the logarithm of every number between 100 and 1000 is 2 + a fraction; and so on. It is evident that the logarithm of every number (not an exact power of 10) consists of a whole number + a fraction (usually written as a decimal). The whole number is called the characteristic; the decimal is called the mantissa. The characteristic of the logarithm of any number greater than 1 may be determined as follows:

RULE I. The characteristic of any number greater than 1 is one less than the number of digits before the decimal point.

The following table, which is taken from § 1, p. v, shows that

a	.0000001	.000001	.00001	.0001	.001	.01	.1	1
$\log a$	- 7	-6	- 5	-4	- 3	- 2	- 1	0

the logarithm of every number between .1 and 1 is -1 + a fraction, the logarithm of every number between .01 and .1 is -2 + a fraction, the logarithm of every number between .001 and .01 is -3 + a fraction; and so on.

Thus the characteristic of every number between 0 and 1 is a negative whole number; there is a great practical advantage, however, in computing, to write these characteristics as follows: $-1=9-10,\ -2=8-10,\ -3=7-10$, etc. E.g. the logarithm of .562 is -1+.74974, but this should be written 9.74974-10; and similarly for all numbers less than 1.

Rule II. The characteristic of a number less than 1 is found by subtracting from 9 the number of ciphers between the decimal point and the first significant digit, and writing -10 after the result.

Thus, the characteristic of $\log 845$ is 2 by Rule I; the characteristic of $\log 84.5$ is 1 by (I); of $\log 8.45$ is 0 by (I); of $\log .845$ is 9 - 10 by (II); of $\log .0845$ is 8 - 10 by (II).

An important consequence of what precedes is the following:

To move the decimal point in a given number one place to the right is equivalent to adding one unit to its logarithm, because this is equivalent to multiplying the given number by 10. Likewise, to move the decimal point one place to the left is equivalent to subtracting one unit from the logarithm. Hence, moving the decimal point any number of places to the right or left does not change the mantissa but only the characteristic.*

Thus, 5345, 5.345, 534.5, .05345, 534500 all have the same mantissa.

^{*}Another rule for finding the characteristic, based on this property, is often useful: if the decimal point were just after the first significant figure, the characteristic would be zero; start at this point and count the digits passed over to the left or right to the actual decimal point; the number obtained is the characteristic, except for sign; the sign is negative if the movement was to the left, positive if the movement was to the right.

5. Use of the Table. To use logarithms in computation we need a table arranged so as to enable us to find, with as little effort and time as possible, the logarithms of given numbers and, vice versa, to find numbers when their logarithms are known. Since the characteristics may be found by means of Rules I and II, p. vii, only mantissas are given. This is done in Table I. Most of the numbers in this table are irrational, and must be represented in the decimal system by approximations. A five-place table is one which gives the values correct to five places of decimals.

PROBLEM 1. To find the logarithm of a given number. First, determine the characteristic, then look in the table for the mantissa.

To find the mantissa in the table when the given number (neglecting the decimal point) consists of four, or less, digits (exclusive of ciphers at the beginning or end), look in the column marked N for the first three digits and select the column headed by the fourth digit: the mantissa will be found at the intersection of this row and this column. Thus to find the logarithm of 72050, observe first (Rule I) that the characteristic is 4. To find the mantissa, fix attention on the digits 7205; find 720 in column N, and opposite it in column 5 is the desired mantissa, .85763; hence $\log 72050 = 4.85763$. The mantissa of .007826 is found opposite 782 in column 6 and is .89354; hence $\log .007826 = 7.89354 - 10$.

6. Interpolation. If there are more than four significant figures in the given number, its mantissa is not printed in the table; but it can be found approximately by assuming that the mantissa varies as the number varies in the small interval not tabulated; while this assumption is not strictly correct, it is sufficiently accurate for use with this table.

Thus, to find the logarithm of 72054 we observe that $\log 72050 = 4.85763$ and that $\log 72060 = 4.85769$. Hence a change of 10 in the number causes a change of .00006 in the mantissa; we assume therefore that a change of 4 in the number will cause, approximately, a change of $.4 \times .00006 = .00002$ (dropping the sixth place) in the mantissa; and we write $\log 72054 = 4.85763 + .00002 = 4.85765$.

The difference between two successive values printed in the table is called a tabular difference (.00006, above). The proportional part of this difference to be added to one of the tabular values is called the correction (.000002, above), and is found by multiplying the tabular difference by the appropriate fraction (.4, above). These proportional parts are usually written without the zeros, and are printed at the right-hand side of each page, to be used when mental multiplications seem uncertain.

Example 1. Find the logarithm of .0012647. Opposite 126 in column 4 find .10175; the tabular difference is 34 (zeros dropped); .7 × 34 is given in the margin as 24; this correction added gives .10199 as the mantissa of .0012647; hence log .0012647 = 7.10199 - 10.

Example 2. Find the logarithm of 1.85643. Opposite 185 in column 6 find .26858; tabular difference 23; $.43 \times 23$ is given in the margin as 10; this correction added gives .26868 as the mantissa of 1.85643; hence log 1.85643 = 0.26863.

7. Reverse Reading of the Table. PROBLEM 2. To find the number when its logarithm is known. First, fixing attention on the mantissa only, find from the table the number having this mantissa, then place the decimal point by means of the two following rules:*

Rule III. If the characteristic of the logarithm is positive (in which case the mantissa is not followed by -10), begin at the left, count digits one more than the characteristic, and place the decimal point to the right of the last digit counted.

Rule IV. If the characteristic is negative (in which case the mantissa will be preceded by a number n and followed by $-10\dagger$), prefix 9-n ciphers, and place the decimal point to the left of these ciphers.

Example 1. Given $\log x = 1.22737$, to find x.

Since the mantissa is 22737, we look for 22 in the first column and to the right and below for 737, which we find in column 8 opposite 163. The number is therefore 1688. Since the characteristic is +1, we begin at the left, count 2 places, and place the point; hence $\omega = 16.88$.

Example 2. Given $\log x = 2.24912$, to find x.

This mantissa is not found in the table; in such cases we interpolate as follows: select the mantissa in the table next less than the given mantissa, and write down the corresponding number; here, 1774; the tabular difference is 25; the actual difference (found by subtracting the mantissa of 1774 from the given mantissa) is 17; hence the proportionality factor is 17/25 = .68 or .7 (to the nearest tenth). Since moving the decimal point does not affect the mantissa, it follows that the digits in the required number are 17747 (to five places). The characteristic 2 directs to count 3 places from the left; hence $\alpha = 177.47$.

Rule. In general, when the given mantissa is not found in the table, write down four digits of the number corresponding to the mantissa in the table next less than the given mantissa, determine a fifth figure by dividing the actual difference by the tabular difference, and locate the decimal point by means of the characteristic.

8. Illustrations of the Use of Logarithms in Computation.

```
Example 1. To find 832.43 \times 302.43 \times 16.725 \times .000178, \log 832.43 = 2.92084 \log 302.43 = 2.48062 \log 16.725 = 1.22387 \log .000178 = \underline{6.25042 - 10} (add) \log x = 2.87475 whence x = 749.47.

Example 2. To find 461.29 \div 21.4. \log 461.29 = 2.66397 \log 21.4 = \underline{1.83041} (subtract) \log x = 1.83356 whence x = 21.556.
```

^{*} Another convenient form of these rules is as follows: if the characteristic were zero, the decimal point would fail just after the first significant figure; move the decimal point one place to the right for each positive unit in the characteristic, one place to the left for each negative unit in the characteristic.

[†] In rare cases - 20, - 80, etc.

Illustration of Cologarithms

Example 8. To find $\frac{48.25 \times 182.76 \times .1745}{1415.8}$.

We might add the logarithms of the factors in the numerator and from this sum subtract the logarithm of the denominator; but we can shorten the operation by adding the negative of the logarithm of the denominator instead of subtracting the logarithm itself. The negative of the logarithm of a number (when written in convenient form for computation) is called the cologarithm of the number. We may find the negative of any number by subtracting it from zero, and it is convenient in logarithmic computation to write zero in the form 10.00000 – 10. Thus the negative of 2.17 is 7.83 – 10; the negative of 1.1432 – 10 is 8.8568. Remembering that the cologarithm of a number is its negative we have the following rule:

To find the cologarithm of a number begin at the left of its logarithm (including the characteristic) and subtract each digit from 9, except the last,* which subtract from 10; if the logarithm has not - 10 after the mantissa, write - 10 after the result; if the logarithm has - 10 after the mantissa, do not write - 10 after the result.

By this rule the cologarithm of a number can be read directly out of the table without taking the trouble to write down the logarithm. Attention must be given not to forget the characteristic. The use of the cologarithm is governed by the principle:

Adding the cologarithm is equivalent to subtracting the logarithm.

Returning to the computation of the given problem we should write:

$$\begin{array}{c} \log 48.25 = 1.68350 \\ \log 132.76 = 2.12307 \\ \log .1745 = 9.24180 - 10 \\ \operatorname{colog} 1415.8 = 6.84915 - 10 \\ \log \omega = 9.89752 - 10 \end{array} \quad (\operatorname{add})$$

Example 4. Find the 5th power of 7.26842

log 7.26842 = 0.86144

5 (multiply)

log
$$\alpha = 4.80720$$
 whence $\alpha = 20286$.

Example 5. Find the 4th root of .007564

$$\log .007564 = 7.87875 - 10.$$

(It is convenient to have, after the division by 4, -10 after the mantissa; hence before the division we add 30.00000 - 30.)

$$\log .007564 = 37.87875 - 40 \quad \text{(divide by 4),} \\ \log x = 9.46969 - 10 \quad \text{whence } x = .2949$$
Example 6. Find the value of
$$\sqrt[8]{\frac{(34.55)(-856.7)(-48.5)}{(98.75)(-186.3)}}.$$

We have no logarithms of negative numbers, but an inspection of this problem shows that the result will be negative and numerically the same as though all the factors were positive; hence we proceed as follows:

```
\begin{array}{c} \log 34.55 = 1.59845 \\ \log 856.7 = 2.93283 \\ \log 43.5 = 1.69349 \\ \operatorname{colog} 98.75 = 8.00546 - 10 \\ \operatorname{colog} 186.3 = \frac{7.72979}{1.4502} - 10 \\ \log (-\infty) = 0.61501 & \text{whence } x = -4.121 \end{array}
```

^{*} If the logarithm ends in one or more ciphers, the last significant digit is to be under stood here.

9. The Slide Rule. A slide rule consists of two pieces of the shape of a ruler, one of which slides in grooves in the other; each is marked

Fig. 1

(Fig. 1) in divisions (scale A and scale B) whose distances from one end are proportional to the logarithms of the numbers marked on them.

It follows that the sum of two logarithms can be obtained by simply

Fig. 2

sliding one rule along the other; thus if (see Fig. 2) the point marked 1 on scale B is set opposite the point marked 2.5 on scale A, the point on scale B marked 2 will be opposite the point on scale A marked 5, since $\log 2.5 + \log 2 = \log 5$. Likewise, opposite 3 (scale B) read 7.5 (scale A); opposite 2.5 (B) read 6.25 (A), i.e. $2.5 \times 2.5 = 6.25$.

Other multiplications can be performed in an analogous manner. Divisions can be performed by reversing the operation. Thus, if 4.5 (B) be set on 11.25 (A), then 1 (B) will be opposite 2.5 (A), as in Fig. 2.

Scales C and D are made just twice as large as scales A and B. It follows that the numbers marked on C and D are the square roots of the numbers marked opposite them on scales A and B.

For a description of more elaborate slide rules, and full directions for use, see the catalogues of instrument makers.

The student should use a slide rule in checking results; practice may be had by checking many of the results of the following list of exercises.

10. Graphical Representation of Interpolation. In the process of interpolation, values are inserted as if the logarithm varied directly as the

Fig. 3

number, between the two nearest values given in the table. ically, this means that the interpolation is made as if the curve $y = \log x$ consisted of a straight line segment.

If the values of x and $y = \log x$ are plotted in the usual manner. the curve obtained is that shown in Fig. 3. The values of x and ygiven in the table fall so close to each other on this figure that the interpolating line cannot be shown. But if the portion of the figure near x=2, y=.30103 be enlarged in the ratio 1 to 10000 on the x-axis

and 1 to 1000 on the y-axis, the resulting figure is as shown in Fig. 4. The point A shows x = 2.001, y = .30125; the point B shows x = 2.002, y = .30146; if we draw the straight line ANB, it is clear that the straight line differs from the true curve AMB, but the difference is very slight.

Fig. 4

Thus, the value of y given by interpolation for x = 2.0015 is shown at N; it is y = .301355. The true value of $\log 2.0015$, found from a higher place table is really .3013556; but either of these results would be written .30136, so that the error made in using the straight line ANB in place of the curve AMB does not affect the fifth place of decimals.

EXERCISES

1. Find the values of each of the following products by logarithms; check each computation by a multiplication of round numbers.

(a) 8.1416×205.6

(b) 64.82×2780.5 .

(c) $82.16 \times (-44.52)$.

(d) $281.6 \times .0024$.

(e) $(-.008714) \times (1206.5)$.

 $(f).968752 \times .0010746.$

- 2. Substitute + for x in each of the parts of Ex. 1, and then find the indicated quetient in each case by logarithms.
- 3. Find the value of each of the following expressions by logarithms; check each computation.

(a) $\frac{3.1416 \times 2109.4}{}$ 732.56×23.5

(b) $725 \times (-8.472)$

(c) (3.1416)2,

(e) (1.728)5.

6805.4 × .0126

(d) $\sqrt{3.1416}$.

(f) (2.469)3/2.

(a) $(-27.845)^3$.

(h) (.000165)1/7.

(i) $(3.1416)(2.34)^8 \div (.006)^{1/3}$.

- 4. Find the area of a circle whose radius is 47.5 ft.
- 5. Find the area of a rectangle whose base is 231.75 and whose height is 514.25,
- 6. Find the area and the volume of a sphere whose radius is 4.6152.
- 7. Given 1 cm. = .3987 in., reduce 4752.6 cm. to inches.
- 8. Reduce 675 sq. cm. to square inches.
- 9. Given 365.242 mean solar days = 366.242 sidereal days, express 1 mean solar day in terms of sidereal days; express 1 sidereal day in terms of mean solar days.
- 10. The amount a of a principal p at compound interest of rate r for n years is given by the formula: $a = p(1+r)^n$. Find a if p = 12,758, r = .06, and n = 5.
 - 11. Evaluate each of the following expressions:

(a) $\sqrt{8}$. $\sqrt[3]{5}$. $\sqrt[5]{7}$. (b) $5^{2/8} \div (12.7)^{3/2}$.

(e) $\frac{5.62 \times (4.8)1.5}{(.684)^{2.8}}$ (d) $\frac{\sqrt[8]{10000}}{(49.52)4.6}$

TT FIVE-PLACE TABLE OF THE ACTUAL VALUES OF THE TRIGONOMETRIC FUNCTIONS OF ANGLES

11. Direct Readings. This table gives the sines, cosines, tangents, and cotangents of the angles from 0° to 45°; and by a simple device, indicated by the printing, the values of these functions for angles from 45° to 90° may be read directly from the same table. For angles less than 45° read down the page, the degrees being found at the top and the minutes on the left; for angles greater than 45° read up the page, the degrees being found at the bottom and the minutes on the right.

To find a function of an angle (such as 15° 27'.6, for example) which does not reduce to an integral number of minutes, we employ the process of interpolation. To illustrate, let us find tan 15° 27'.6. In the table we find $\tan 15^{\circ} 27' = .27638$ and $\tan 15^{\circ} 28' = .27670$; we know that tan 15° 27'.6 lies between these two numbers. The process of interpolation depends on the assumption that between 15° 27' and 15° 28' the tangent of the angle varies directly as the angle; while this assumption is not strictly true, it gives an approximation sufficiently accurate for a five-place table. Thus we should assume that tan 15° 27'.5 is halfway between .27638 and .27670. We may state the problem as follows: An increase of 1' in the angle increases the tangent .00032; assuming that the tangent

varies as the angle, an increase of 0'.6 in the angle will increase the tangent by $.6 \times .00032 = .00019$ (retaining only five places); hence

```
\tan 15^{\circ} 27'.6 = .27638 + .00019 = .27657.
```

The difference between two successive values in the table is called, as in Table I, the tabular difference (.00032 above). The proportional part of the tabular difference which is used is called the correction (.00019) above), and is found by multiplying the tabular difference by the appropriate fraction of the smallest unit given in the table.

```
Example 1. Find sin 63° 52'.8.
```

We find

 $\sin 63^{\circ} 52' = .89777$;

tabular difference = .00013 (subtracted mentally from the table), correction = $.8 \times .00013 = .00010$ (to be added).

Hence

sin 63° 52′.8 = .89787.

Example 2. Find tan 37° 45'.4.

tan 87° 45' = .77428;

dropping useless zeros. Hence

tabular difference = 47; $.4 \times 47 = 19$ (to be added). $\tan 87^{\circ} 45'.4 = .77447.$

Example 3. Find cos 65° 24'.8.

 $\cos 65^{\circ} 24' = .41628$:

tabular difference = 26: $.8 \times 26 = 21$

(to be subtracted because the cosine decreases as the angle increases). $\cos 65^{\circ} 24^{\prime}.8 = .41607.$

Hence

· Example 4. Find ctn 82° 18'.5.

 $ctn 32^{\circ} 18'.5 = 1.5813.$

ctn 32° 18' = 1.5818;

tabular difference = 10; $.5 \times 10 = 5$ (to be subtracted).

Hence

To find a trigonometric function of an angle by interpolation: select the angle in the table which is next smaller than the given angle, and read its sine (cosine or tangent or cotangent as the case may be) and the tabular difference. Compute the correction as the proper proportional part of the tabular difference. In case of sines or tangents add the correction; in case of cosines or cotangents, subtract it.

12. Reverse Readings. Interpolation is also used in finding the angle when one of its functions is given.

Example 1. Given $\sin \alpha = .32845$, to find α .

Looking in the table we find the sine which is next less than the given sine to be .82832, and this belongs to 19° 10'. Subtract the value of the sine selected from the given sine to obtain the actual difference = .00013; note that the tabular difference = .00027. The actual difference divided by the tabular difference gives the correction = 13/27 = .5 as the decimal of a minute (to be added). Hence $\infty = 19^{\circ} 10'.5$.

Example 2. Given $\cos x = .28432$, to find x.

The cosine in the table next less than this is .28429 and belongs to 73° 29'; the tabular difference is 28; the actual difference is 8; correction = 3/28 = .1 (to be subtracted). Hence $w = 78^{\circ} 28'.9$.

Example 3. Given $\tan x = 2.8573$, to find x.

The tangent in the table next less than this is 2.8556 and belongs to 70° 42'; the tabular difference is 26; the actual difference is 17; correction 17/26 - .7 (to be added). Hence ~ - 700 AGE 7

RULE. To find an angle when one of its trigonometric functions is given: select from the table the same named function which is next less than the given function, noting the corresponding angle and the tabular difference; compute the actual difference (between the selected value of the function and the given value) and divide it by the tabular difference; this gives the correction which is to be added if the given function is sine or tangent, and to be subtracted if the given function is cosine or cotangent.

III. FIVE-PLACE COMMON LOGARITHMS OF THE TRIGONOMETRIC FUNCTIONS

13. Use of the Table. If it is required to find the numerical value of $z = 27.85 \times \sin 51^{\circ} 27'$, we may apply logarithms as follows:

$$\log 27.85 = 1.44483.$$

$$\log \sin 51^{\circ} 27' = 9.89824 - 10 \text{ (add)}.$$

$$\log x = \overline{1.33807} \qquad x = 21.78$$

The only new idea here is the method of finding $\log \sin 51^{\circ} 27'$, which means the logarithm of the sine of $51^{\circ} 27'$. The most obvious way is to find in Table I, $\sin 51^{\circ} 27' = .78206$, and then to find in Table II, $\log .78206 = 9.89324 - 10$, but this involves consulting two tables. To avoid the necessity of doing this, Table III gives the logarithms of the sines, cosines, tangents, and cotangents. The arrangement and the principles of interpolation are similar to those given on p. viii for Table I. The student should note carefully that Table III does not give the sines, cosines, etc., of angles, but rather their logarithms; also that the sines and cosines of all acute angles, the tangents of all acute angles less than 45° and the cotangents of all acute angles greater than 45° are proper fractions, and their logarithms end with -10, which is not printed in the table, but which should be written down whenever such a logarithm is used.

Example 1. Find log sin 68° 25'.4.

On the page having 68° at the bottom, and in the row having 25' on the right find log $\sin 68^{\circ} 25' = 9.96843 - 10$; the tabular difference is 5; $.4 \times 5$ is given in the margin as 2; this is the correction to be added, giving log $\sin 68^{\circ} 25'.4 = 9.96845 - 10$.

(In case of sine and tangent add the correction.)

Example 2. Find log cos 48° 39'.4.

 $\log \cos 48^{\circ} 39' = 9.81998 - 10$, tabular difference 15.

 $.4 \times 15 = 6$ (subtract) therefore $\log \cos 43^{\circ} 39' . 4 = 9.81992 - 10.$

(In case of cosine and cotangent, subtract the correction.)

Example 8. Given log tan x = 0.77668, to find x,

'The logarithmic tangent in Table III next less than the given one is 0.77689 and belongs to $80^{\circ}80'$; the actual difference is 24; the tabular difference is 78; hence the correction is 24/78 = .3 (add); hence $\alpha = 80^{\circ}80'.3$.

Example 4. Given $\log \cos x = 9.72581 - 10$, to find x.

The logarithmic cosine next less than the given one is 9.72562 - 10 and belongs to $57^{\circ}58'$; the actual difference is 19; the tabular difference is 20; hence the correction is 19/20 - 1.0 (to the nearest tenth); (subtract); hence $\omega = 57^{\circ}52'.0$.

In finding $\log \cot \alpha$ for any angle α , note that $\log \cot \alpha = -\log \tan \alpha$, since $\cot \alpha = 1/\tan \alpha$. Hence the tabular differences for $\log \cot \alpha$ are precisely the same as those for $\log \tan \alpha$ throughout the table, but taken in reversed order. Likewise, $\log \sec \alpha = -\log \cos \alpha$, $\log \csc \alpha = -\log \sin \alpha$; hence $\log \sec \alpha$ and $\log \csc \alpha$ are omitted.

For angles near 0° or near 90°, the interpolations are not very accurate if the differences are large. A special process, called *logarithmic interpolation*, is given on p. 45, for angles below 3° or above 87°.

IV-V. RADIAN MEASURE

14. Computations in Radian Measure. The reduction of degrees to radians is facilitated by Table IV — Conversion of Degrees to Radians.

The values of $\sin x$, $\cos x$, $\tan x$, are stated for every angle x from 0.00 radians to 1.60 radians at intervals of .01 radian in Table V — Trigonometric Functions in Radian Measure.

The reduction of radians to degrees can be performed directly by Table V; or, for greater accuracy, by the supplementary Table Va.

VI. POWERS—ROOTS—RECIPROCALS

15. Arrangement. This table is arranged so that the square, cube, square root, cube root, or reciprocal can be read directly to five decimal places for any number n of three significant figures. To attain this, not only n^2 , n^3 , \sqrt{n} , $\sqrt[3]{n}$, n, but also $\sqrt{10 n}$, $\sqrt[3]{100 n}$ are printed on every page. All values have been carefully recomputed and checked.

Thus to find $\sqrt{1.17}$, read in \sqrt{n} column the result: 1.05167. To find $\sqrt{11.7}$, read in the same line, in $\sqrt{10n}$ column the result: 3.42058. To find $\sqrt{117}$, read 10 times the entry in \sqrt{n} column, since $\sqrt{117} = 10\sqrt{1.17}$.

Similarly, $\sqrt[3]{1.17} = 1.05873$ from $\sqrt[3]{n}$ column; $\sqrt[8]{11.7} = 2.27019$ from the same line in $\sqrt[3]{10n}$ column; $\sqrt[3]{117} = 4.89097$ from the same line in $\sqrt[3]{100n}$ column.

The effect of a change in the decimal point in n^2 , n^3 , and 1/n is only to shift the decimal point in the result, without altering the digits printed.

16. Uses. One principal use of this table in Trigonometry is to make the *Pythagorean Theorem* and the *Law of Cosines* practicable as formulas for actual computation, in an obvious manner.

For mensuration formulas, etc., all the entries are very convenient.

VII. NAPIERIAN OR NATURAL LOGARITHMS

17. The Base e. — Natural Logarithms. The number $e=2.7182818\cdots$ is called the natural base of logarithms. The logarithms of numbers to this base are given in Table VII at intervals of .01 from 0.01 to 10.09, and at unit intervals from 10 to 409. The fundamental relation $\log_e n = \log_e 10 \times \log_{10} n$ enables us to transfer from the base 10 to the base e, or conversely; where $\log_e 10 = 2.30258509$.

A-B-C. FOUR-PLACE TABLES

- 18. Four-place Tables. These are duplicates of the preceding five-place tables, reduced to four places, and with larger intervals between the tabulations. The value of such four-place tables consists in the greater speed with which they can be used, in case the degree of accuracy they afford is sufficient for the purpose in hand.
- A. Logarithms of Numbers. The only special feature of this table is that the proportional parts are printed for every tenth in every row; hence the logarithm of any number of four significant figures can be read directly, by a mental addition of the proportional part corresponding to the last figure. There may be an error of 1 in the last place in the result.
- B. Antilogarithms. Attention is called to the table of antilogarithms, in which the numbers corresponding to given logarithms are tabulated. This table, together with the accompanying four-place logarithm table, will be found to facilitate approximate calculations to a marked degree, especially when great accuracy is not necessary. Thus these tables are convenient in checking results found otherwise. The proportional parts are stated in the right-hand margin for each row separately; hence the antilogarithm of a number of four significant figures can be read almost immediately, the addition of the proper correction being performed mentally. This arrangement, with the corresponding one in Table A, makes the tables effectively four-place each way.
- C. Values and Logarithms of Trigonometric Functions. In this table, the values of $\sin \alpha$, $\cos \alpha$, $\tan \alpha$, $\cot \alpha$, and their common logarithms, are stated for each 10 minute interval in α . The characteristics of the logarithms are omitted, since they can be supplied readily from the value, as in the case of Table A.
- 19. Sources and Checks used. In arranging all of these tables, several extant tables have been used as sources; and the proofs have been read against the standard seven-place tables of Vega, and at least one other table, or against at least two independent sources when the figures are not given by Vega. In all cases, the stereotyped plates have been proofread five times, by three different persons.

In case of apparent doubt, especially in the last place of decimals, the values have been recomputed, either by series or by the condensed fifteen-place tables of Hoüel.

While errors may occur, it is believed that they must be purely typographical; in most cases such an error is revealed by the unreasonable differences it creates.

CONTENTS

Expl	ANATION	of the Tabi	LES .	•		•	•	•	. •		Pages V–xvii
		.]	FIV E -PI	ACE	TAB	LES					
TABLE	ī.	Common Log	ARITHMS	of N	UMBER	8					1-19
TABLE	Ia.	IMPORTANT C	ONSTANTS	з.							20
TABLE	i II	ACTUAL VAL	UES OF T	не Т	RIGONO	MET	ric F	'UNC	rions		21-44
TABLE	ıII.	Common Loga	RITHMS	F THE	Trice	NOM	ETRIC	Fu:	NCTIO	N8	45-90
TABLE	IV.	REDUCTION O	f Degre	ES TO	Radi	ANS					91
TABLE		TRIGONOMETE					MEA	SUR	Е		92-03
TABLE		REDUCTION O									ε3
TABLE											94-111
		Napierian o						•		•	112-114
	,				~		•	•	•	•	
	יים מ דומ מ	EF TABLES	עומת	OTD A	TTV	m∩.	דיי	ът	T 40	DO.	
	Du	EE IADLES	- I MIN	ULFA	TITI	10	FUU	n i	TWO	EO	
TABLE	A. C	ommon Logar	RITHMS	•	•						116-117
TABLE	в В. А	NTILOGARITHI	. 18								118-119
TABLE	3 C. V	ALUES AND L	OGARITH:	MS OF	Trigo	NOM	ETRIC	Fu:	NCTIO	NS	120-124
			Gree	ek Alp	habet						
LETTER	s Names	Letters	Names	-	LETTER	s Na	MES		LET	TERS	NAMES
Αα	Alpha	Ηη	Eta		Nν	Nu			T.		Tau
Вβ	Beta	θ θ	Theta		Ξξ	Xi			Ϋ́	,	Upsilon
Γγ	Gamma	a I .	Iota		00	Om	icron	l	Φ	φ	Phi
Δδ	Delta	Kκ	Kappa		$\Pi \pi$	Pi			X	χ	Chi
Εe	Epsilon	Λ λ	Lambda		Pρ	$\mathbf{R}\mathbf{h}$	0		Ψ	ψ	Psi
Zζ	Zeta	Mμ	Mu		Σσς	Sig	ma		Ω	ω	Omega

LOGARITHMIC AND TRIGONOMETRIC TABLES

TABLE I

COMMON LOGARITHMS OF NUMBERS

FROM

1 TO 10 000

TO

FIVE DECIMAL PLACES

1-100

N	Log	N	Log	N	Log	N	Log	N	Log
0		20	1.30 103	40	1.60 206	60	1.77 815	80	1.90 309
$\frac{1}{2}$	0.00 000	21	1.32 222	41	1.61 278	61	1.78 533	81	1.90 849
	0.30 103	22	1.34 242	42	1.62 325	62	1.79 239	82	1.91 381
	0.47 712	23	1.36 173	43	1.63 347	63	1.79 934	83	1.91 908
4	0.60 206	24	1.38 021	44	1.64 345	64	1.80 618	84	1.92 428
5	0.69 897	25	1.39 794	45	1.65 321	65	1.81 291	85	1.92 942
6	0.77 815	26	1.41 497	46	1.66 276	66	1.81 954	86	1.93 450
7	0.84 510	27	1.43 136	47.	1.67 210	67	1.82 607	87	1.93 952
8	0.90 309	28	1.44 716	48	1.68 124	68	1.83 251	88	1.94 448
9	0.95 424	29	1.46 240	49	1.69 020	69	1.83 885	89	1.94 939
10	1.00 000	30	1.47 712	50	1.69 897	70	1.84 510	90	1.95 424
11	1.04 139	31	1.49 136	51	1.70 757	71	1.85 126	91	1.95 904
12	1.07 918	32	1.50 515	52	1.71 600	72	1.85 733	92	1.96 379
13	1.11 394	33	1.51 851	53	1.72 428	73	1.86 332	93	1.96 848
14	1.14 613	34	1.53 148	54	1.73 239	74	1.86 923	94	1.97 313
15	1.17 609	35	1.54 407	55	1.74 036	75	1.87 506	95	1.97 772
16	1.20 412	36	1.55 630	56	1.74 819	76	1.88 081	96	1.98 227
17	1.23 045	37	1.56 820	57	1.75 587	77	1.88 649	97	1.98 677
18	1.25 527	38	1.57 978	58	1.76 343	78	1.89 209	98	1.99 123
19	1.27 875	39	1.59 106	59	1.77 085	79	1.89 763	99	1.99 564
N	Log	N	Log	N	Log	N	Log	N	Log

N.	0	1	2	3	4	5	6	7	8	9		Pro	p. Pts	
100	00 000	043	087	130	173	217	260	303	346	389				
01 02	432 860	475 903	518 945	561 988	*030	647 *072	689 *115	732 *157	775 *199	817 *242	1	4.4	4.3	4.2
03	01 284	326	368	410	452	494	536	578	620	662	2	8.8	8.6	8.4
04	703	745 · 160	787 202	828 243	870 284	912 325	953 366	995 407	*036 449	*078 490	3 4	13.2 17.6	12.9 17.2	12.6 16.8
05 06	02 119 531	572	612	653	694	735	776	816	857	898	5	22.0 26.4	$21.5 \\ 25.8$	$\frac{21.0}{25.2}$
07	938	979	*019	*060	*100	*141	*181	*222	*262	*302	7	30.8	30.1	29.4
08	03 342 743	383 782	423 822	463 862	503 902	543 941	583 981	623 *021	663 *060	703 *100	8 9	35.2 39.6	34.4 38.7	33.6 37.8
110	04 139	179	218	258	297	336	376	415	454	493				
11	532	571	610	650	689	727	766	805	844	883		41	40	39
12 13	922 05 308	961 346	999 385	*038 423	*077 461	*115 500•	*154 538	*192 576	*231 ' 614	*269 652	1 2	4.1 8.2	4.0 8.0	3.9 7.8
14	690	729	767	805	843	881	918	956	994	*032	3 4	12.3 16.4	12.0 16.0	11.7 15.6
15 16	06 070 446	108 483	145 521	183 558	221 595	258 633	296 670	333 707	371 744	408 781	5	20.5	20.0	19.5
17	819	856	893	930	967	*004	*041	*078	*115	*151	6 7	24.6 28.7	24.0 28.0	$23.4 \\ 27.3$
18 19	07 188 555	225 591	262 628	298 664	335 700	372 737	408 773	445 809	482 846	518 882	8	32.8 36.9	32.0 36.0	31.2 35.1
120	918	954	990	*027	*063	*099	*135	*171	*207	*243	-		,	
21	08 279	314	350	386	422	458	493	529	565	600		38	37	86
22 23	636 991	672 *026	707 *061	743 *096	778 *132	*167	*202	884 *237	920 *272	955 *307	1 2	3.8 7.6	3.7 7.4	3.6 7.2
24	09 342	377	412	447	482	517	552	587	621	656	3	11.4 15.2	11.1 14.8	10.8 14.4
25 26	691 10 037	$\frac{726}{072}$	760 106	795 140	830 175	864 209	899 243	934 278	968 312	*003 346	5	19.0	18.5	18.0
27	380	415	449	483	517	551	585	619	653	687	6	22.8 26.6	22.2 25.9	$21.6 \\ 25.2$
28 29	721 11 059	755 093	789 126	823 160	857 193	890 227	924 261	958 294	992 327	*025 361	8	30.4 34.2	29.6 33.3	$\frac{28.8}{32.4}$
130	394	428	461	494	528	561	594	628	661	694	ľ	, 01.2	, 0010	02.1
31	727	760	793	826	860	893	926	959	992	*024		35	34	33
32	12 057 385	090 418	123 450	156 483	189 516	222 548	254 581	287 613	320 646	352 678	1 2	3.5 7.0	3.4 6.8	3.3 6.6
34	710	743	775	808	840	872	905	937	969	*001	3	10.5	10.2	9.9
35 36	13 033 354	066 386	098 418	130 450	162 481	194 513	226 545	258 577	290 609	322 640	4 5	14.0 17.5	13.6 17.0	13.2 16.5
37	672	704	735	767	799	830	862	893	925	956	6	21.0 24.5	20.4 23.8	19.8 23 1
38 39	988 14 301	*019 333	*051 364	*082 395	*114 426	*145 457	*176 489	*208 520	*239 551	*270 582	8	28.0 31.5	27.2 30.6	26.4 29.7
140	613	644	675	706	737	768	799	829	860	891	9	1 21.0	30.0	25.1
41	922	953	983	*014	*045	*076	*106	*137	*168	*198		32	31	30
42 43	15 229 534	259 564	290 594	320 625	351 655	381 685	412 715	442 746	473 776	503 806	1 2	3.2 6.4	3.1 6.2	3.0 6.0
44	836	866	897	927	957	987	*017	*047	*077	*107	3	9.6	9.3	9.0
45 46	16 137 435	167 465	197 495	227 524	256 554	286 584	316 613	346 643	376 673	406 702	5	12.8 16.0	12.4 15.5	12.0 15.0
47	732	761	791	820	850	879	909	938	967	997	67	19.2 22.4	18.6 21.7	18.0 21.0
48 49	17 026 319	056 348	085 377	114 406	143 435	173 464	202 493	231 522	260° 551	289 580	8 9	25.6 28.8	24.8 27.9	24.0
150	609	638	667	696	725	754	782	811	840	869	ľ	20.0	41.0	24.0
N.	0	1	2	3	4	5	6	7	8	9	 -	Pro	p. Pts	

N.	0	1	2	3	4	5	6	7	8	9	Π	Pro	p. Pts	·, · · ·)
150	17 609	638	667	696	725	754	782	811	840	869	Γ			
51 52 53	898 18 184 469	926 213 498	955 241 526	984 270 554	*013 298 583	*041 327 611	*070 355 639	*099 384 667	*127 412 696	*156 441 724				
54 55 56	752 19 033 312	780 061 340	808 089 368	837 117 306	865 145 424	893 173 451	921 201 479	949 229 507	977 257 535	*005 285 562				
57 58 59	590 866 20 140	618 893 167	645 921 194	673 948 222	700 976 249	728 *003 276	756 *030 303	783 *058 330	811 *085 358	838 *112 385				
160	412	439	466	493	520	548	575	602	629	656				
61 62 63	683 952 21 219	710 978 245	737 *005 272	763 *032 299	790 *059 325	817 *085 352	844 *112 378	871 *139 405	898 *165 431	925 *192 458	1 2 3	29 2.9 5.8	28 2.8 5.6	27 2.7 5.4
64 65 66	484 748 22 011	511 775 037	537 801 063	564 827 089	590 854 115	880 141	643 906 167	932 194	696 958 220	722 985 246	4 5 6	8.7 11.6 14.5 17.4	8.4 11.2 14.0 16.8	8.1 10.8 13.5 16.2
67 68 69	272 531 789	298 557 814	324 583 840	350 608 866	376 634 891	401 660 917	427 686 943	453 712 968	479 737 994	505 763 *019	8 9	20.3 23.2 26.1	19.6 22.4 25.2	18.9 21.6 24.3
170	23 045	070	096	121	147	172	198	223	249	274				
71 72 73	300 553 805	325 578 830	350 603 855	376 629 880	401 654 905	426 679 930	452 704 955	477 729 980	502 754 *005	528 779 *030	1 2	26 2.6 5.2	25 2.5 5.0	24 2.4 4.8
74 75 76	24 055 304 551	080 329 576	105 353 601	130 378 625	155 403 650	180 428 674	204 452 699	229 477 724	254 502 748	279 527 773	3 4 5 6	7.8 10.4 13.0 15.6	7.5 10.0 12.5 15.0	7.2 9.6 12.0 14.4
77 78 79	797 25 042 285	822 066 310	846 091 334	871 115 358	895 139 382	920 164 406	944 188 431	969 212 455	993 237 479	*018 261 503	7 8 9	18.2 20.8 23.4	17.5 20.0	16.8 19.2
180	527	551	575	600	624	648	672	696	720	744				
81 82 83	768 26 007 245	792 031 269	816 055 293	840 079 316	864 102 340	888 126 364	912 150 387	935 174 411	959 198 435	983 221 458	1 2	23 2.3 4.6	22 2.2 4.4	21 2.1 4.2
84 85 86	482 717 951	505 741 975	529 764 998	553 788 *021	576 811 *045	600 834 *068	623 858 *091	647 881 *114	905 *138	694 928 *161	3 4 5 6	6.9 9.2 11.5 13.8	6.6 8.8 11.0 13.2	6.3 8.4 10.5 12.6
87 88 89	27 184 416 646	207 439 669	231 462 692	254 485 715	277 508 738	300 531 761	323 554 784	346 577 807	370 600 830	393 623 852	7 8 9	16.1 18.4 20.7	15.4 17.6 19.8	14.7 16.8 18.9
190	875	898	921	944	967	989	*012	*035	*058	*081				
91 92 93	28 103 330 556	126 353 578	149 375 601	171 398 623	194 421 646	217 443 668	240 466 691	262 488 713	285 511 735	307 533 758				
94 95 96	780 29 003 226	803 026 248	825 048 270	847 070 292	870 092 314	892 115 336	914 137 358	937 159 380	959 181 403	981 203 425				
97 98 99	447 667 885	469 688 907	491 710 929	513 732 951	535 754 973	557 776 994	579 798 *016	601 820 *038	623 842 *060	645 863 *081				
200	30 103	125	146	168	190	211	233	255	276	298				
N.	0	1	2	8	4	5	6	7	8	9		Prop	Pts.	

N.	0	1	2	3	4	5	6	7	8	9		Prop.	Pts.	
200	30 103	125	146	168	190	211	233	255	276	298				
01 02 03	320 535 750	341 557 771	363 578 792	384 600 814	406 621 835	428 643 856	449 664 878	471 685 899	492 707 920	514 728 942				
04 05 06	963 31 175 387	984 197 408	*006 218 429	*027 239 450	*048 260 471	*069 281 492	*091 302 513	*112 323 534	*133 345 555	*154 366 576				
07 08 09	597 806 32 015	618 827 035	639 848 056	660 869 077	681 890 098	702 911 118	723 931 139	744 952 160	765 973 181	785 994 201				
210	222	243	263	284	305	325	346	366	387	408	1 2	2 2	1	20
11 12 13	428 634 838	449 654 858	469 675 879	490 695 899	510 715 919	531 736 940	552 756 960	572 777 980	593 797 *001	613 818 *021	1 2 2 4	2.2 2 1.4 4	2.1 1.2 5.3	2.0 4.0 6.0
14 15 16	33 041 244 445	062 264 465	082 284 486	102 304 506	122 325 526	143 345 546	163 365 566	183 385 586	203 405 606	224 425 626	4 8 5 11 6 13	3.8 8 .0 10 3.2 12	3.4 3.5 2.6	8.0 10.0 12.0
17 18 19	646 846 34 044	666 866 064	686 885 084	706 905 104	726 925 124	746 945 143	766 965 163	786 985 183	806 *005 203	826 *025 223	8 17	7.6 10	1.7 3.8 3.9	14.0 16.0 18.0
220	242	262	282	301	321	341	361	380	400	420				
21 22 23	439 635 830	459 655 850	479 674 869	498 694 889	518 713 908	537 733 928	557 753 947	577 772 967	596 792 986	616 811 *005				
24 25 26	$\begin{array}{c} 35025 \\ 218 \\ 411 \end{array}$	044 238 430	064 257 449	083 276 468	102 295 488	122 315 507	141 334 526	160 353 545	180 372 564	199 392 583				
27 28 29	603 793 984	622 813 *003	641 832 *021	660 851 *040	679 870 *059	698 889 *078	717 908 *097	736 927 *116	755 946 *135	774 965 *154				
230	36 173	192	211	229	248	267	286	305	324	342	٠.	۸.,		
31 32 33	361 549 736	380 568 754	399 586 773	418 605 791	436 624 810	455 642 829	474 661 847	493 680 866	511 698 884	530 717 903	$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$.9 1	.8 .6	1.7 3.4
34 35 36	$\begin{array}{c} 922 \\ 37107 \\ 291 \end{array}$	940 125 310	959 144 328	977 162 346	996 181 365	*014 199 383	*033 218 401	*051 236 420	*070 254 438	*088 273 457	4 7 5 9 6 11	.6 7 0.5 9 .4 10	.2 .0 .8	5.1 6.8 8.5 10.2
37 38 39	475 658 840	493 676 858	511 694 876	530 712 894	548 731 912	566 749 931	585 767 949	603 785 967	621 803 985	639 822 *003	8 15		.6 .4 .2	11.9 13.6 15.3
240	38 021	039	057	075	093	112	130	148	166	184				
41 42 43	202 382 561	220 399 578	238 417 596	256 435 614	274 453 632	292 471 650	310 489 668	328 507 686	346 525 703	364 543 721				
44 45 46	739 917 39 094	757 934 111	775 952 129	792 970 146	810 987 164	828 *005 182	846 *023 199	863 *041 217	881 *058 235	899 *076 252				
47 48 49	270 445 620	287 463 637	305 480 655	322 498 672	340 515 690	358 533 707	375 550 724	393 568 742	410 585 759	428 602 777				
250	794	811	829	846	863	881	898	915	933	950				
N.	0	1	2	3	4	5	6	7	8	9		Prop. 1	Pts.	

N.	0	1	2	3	4	5	6	7	8	9	Π	Pre	p. Pt	8.
250	39 794	811	829	846	863	881	898	915	933	950				
51	967	985	*002	*019	*037	*054	*071	*088	*106	*123				
52 53	40 140 312	157 329	175 346	192 364	209 381	226 398	243 415	261 432	278 449	295 466				
54 55 56	483 654 824	500 671 841	518 688 858	535 705 875	552 722 892	569 739 909	586 756 926	603 773 943	620 790 960	637 807 976				
57 58 59	993 41 162 330	*010 179 347	*027 196 363	*044 212 380	*061 229 397	*078 246 414	*095 263 430	*111 280 447	*128 296 464	*145 313 481				
260	497	514	531	547	564	581	597	614	631	647				
61 62 63	664 830 996	681 847 *012	697 863 *029	714 880 *045	731 896 *062	747 913 *078	764 929 *095	780 946 *111	797 963 *127	814 979 *144	1 2	1.8 3.6	1.7 1.7 3.4	3.2
64 65 66	42 160 325 488	177 341 504	193 357 521	210 374 537	226 390 553	243 406 570	259 423 586	275 439 602	292 455 619	308 472 635	3 4 5 6	5.4 7.2 9.0 10.8	5.1 6.8 8.5 10.2	4.8 6.4 8.0 9.6
67 68 69	651 813 975	667 830 991	684 846 *008	700 862 *024	716 878 *040	732 894 *056	749 911 *072	765 927 *088	781 943 *104	797 959 *120	8	$12.6 \\ 14.4 \\ 16.2$	11.9 13.6 15.3	12.8
270	43 136	152	169	185	201	217	233	249	265	281				
71 72 73	297 457 616	313 473 632	329 489 648	345 505 664	361 521 680	377 537 696	393 553 712	409 569 727	425 584 743	441 600 759				
74 75 76	775 933 44 091	791 949 107	807 965 122	823 981 138	838 996 154	854 *012 170	870 *028 185	886 *044 201	902 *059 217	917 *075 232				
77 78 79	248 404 560	264 420 576	279 436 592	295 451 607	311 467 623	326 483 638	342 498 654	358 514 669	373 529 685	389 545 700				
280	716	731	747	762	778	793	809	824	840	855				
81 82 83	871 45 025 179	886 040 194	902 056 209	917 071 225	932 086 240	948 102 255	963 117 271	979 133 286	994 148 301	*010 163 317	1 2		.5	. 4 1.4 2.8
84 85 86	332 484 637	$ \begin{array}{r} 347 \\ 500 \\ 652 \end{array} $	362 515 667	378 530 682	393 545 697	408 561 712	423 576 728	439 591 743	454 606 758	469 621 773	3 4 5	6 7	.5 4 .0 8 .5 7	1.2 5.6 7.0 3.4
87 88 89	788 939 46 090	803 954 105	818 969 120	834 984 135	849 *000 150	864 *015 165	879 *030 180	894 *045 195	909 *060 210	924 *075 225	89	10 12	.5 1 .0 11	0.8 1.2 1.6
290	240	255	270	285	300	315	330	345	359	374				
91 92 93	389 538 687	404 553 702	419 568 716	434 583 731	449 598 746	464 613 761	479 627 776	494 642 790	509 657 805	523 672 820				
94 95 96	835 982 47 129	850 997 144	864 *012 159	879 *026 173	894 *041 188	909 *056 202	923 *070 217	938 *085 232	953 *100 246	967 *114 261				
97 98 99	276 422 567	290 436 582	305 451 596	319 465 611	334 480 625	349 494 640	363 509 654	378 524 669	392 538 683	407 553 698				
300	712	727	741	756	770	784	799	813	828	842				
N.	0	1	2	8	4	5	6	7	8	9		Prop	. Pts.	

N.	0	1	2	3	4	5	6	7	8	9	1	Prop. 1	Pts.
300	47 712	727	741	756	770	784	799	813	828	842			
01 02 03	857 48 001 144	871 015 159	885 029 173	900 044 187	914 058 202	929 073 216	943 087 230	958 101 244	972 116 259	986 130 273			
04 05 06	287 430 572	302 444 586	316 458 601	330 473 615	344 487 629	359 501 643	373 515 657	387 530 671	401 544 686	416 558 700			
07 08 09	714 855 996	728 869 *010	742 883 *024	756 897 *038	770 911 *052	785 926 *066	799 940 *080	813 954 *094	827 968 *108	841 982 *122			
310	49 136	150	164	178	192	206	220	234	248	262		15	14
11 12 13	276 415 554	290 429 568	304 443 582	318 457 596	332 471 610	346 485 624	360 499 638	374 513 651	388 527 665	402 541 679	1 2 3	1.5 3.0 4.5	1.4 2.8 4.2
14 15 16	693 831 969	707 845 982	721 859 996	734 872 *010	748 886 *024	762 900 *037	776 914 *051	790 927 *065	803 941 *079	817 955 *092	4 5 6 7	6.0 7.5 9.0	5.6 7.0 8.4
17 18 19	50 106 243 379	120 256 393	133 270 406	147 284 420	161 297 433	174 311 447	188 325 461	202 338 474	215 352 488	229 365 501	7 8 9	10.5 12.0 13.5	$9.8 \\ 11.2 \\ 12.6$
320	515	52 9	542	556	569	583	596	610	623	637			
21 22 23	651 786 920	664 799 934	678 813 947	691 826 961	705 840 974	718 853 987	732 866 *001	745 880 *014	759 893 *028	772 907 *041			
24 25 26	$\begin{array}{c} 51055 \\ 188 \\ 322 \end{array}$	068 202 335	081 215 348	095 228 362	108 242 375	121 255 388	135 268 402	148 282 415	162 295 428	175 308 441			
27 28 29	455 587 720	468 601 733	481 614 746	495 627 759	508 640 772	521 654 786	534 667 799	548 680 812	561 693 825	574 706 838			
330	851	865	878	891	904	917	930	943	957	970			. 10
31 32 33	$ \begin{array}{r} 983 \\ 52114 \\ 244 \end{array} $	996 127 257	*009 140 270	*022 153 284	*035 166 297	*048 179 310	*061 192 323	*075 205 336	*088 218 349	*101 231 362	1 2 3	1.3 2.6	1.2 2.4
34 35 36	375 504 634	388 517 647	401 530 660	414 543 673	427 556 686	440 569 699	453 582 711	466 595 724	479 608 737	492 621 750	4 5 6	3.9 5.2 6.5 7.8	3.6 4.8 6.0 7.2
37 38 39	763 892 53 020	776 905 033	789 917 046	802 930 058	815 943 071	827 956 084	840 969 097	853 982 110	866 994 122	879 *007 135	7 8 9	9.1 10.4 11.7	8.4 9.6 10.8
340	148	161	173	186	199	212	224	237	250	263			
41 42 43	275 403 529	288 415 542	301 428 555	314 441 567	326 453 580	339 466 593	352 479 605	364 491 618	377 504 631	390 517 643			
44 45 46	656 782 908	668 794 920	681 807 933	694 820 945	706 832 958	719 845 970	732 857 983	744 870 995	757 882 *008	769 895 *020			
47 48 49	54 033 158 283	045 170 295	058 183 307	070 195 320	083 208 332	095 220 345	108 233 357	120 245 370	133 258 382	145 270 394			
350	407	419	432	444	456	469	481	494	506	518			
N.	0	1	2	3	4	5	6	7	8	9		Prop.	Pts.

N.	0	1	2	8	4	5	6	7	8	9	Prop. Pts.
350	54 407	419	432	444	456	469	481	494	506	518	
51	531	543	555	568	580	593	605	617	630	642	
52	654	667	679	691	704	716	728	741	753	765	
53	777	790	802	814	827	839	851	864	876	888	
54	900	913	925	937	949	962	974	986	998	*011	•
55	55 023	035	047	060	072	084	096	108	121	133	
56	145	157	169	182	194	206	218	230	242	255	
57	267	279	291	303	315	328	340	352	364	376	
58	388	400	413	425	437	449	461	473	485	497	
59	509	522	534	546	558	570	582	594	606	618	
360	630	642	654	666	678	691	703	715	727	739	
61	751	763	775	787	799	811	823	835	847	859	13 12
62	871	883	895	907	919	931	943	955	967	979	1 1.3 1.2
63	991	*003	*015	*027	*038	*050	*062	*074	*086	*098	2 2.6 2.4
64	56 110	122	134	146	158	170	182	194	205	217	$ \begin{vmatrix} 3 & 3.9 & 3.6 \\ 4 & 5.2 & 4.8 \\ 5 & 6.5 & 6.0 \\ 6 & 7.8 & 7.2 \end{vmatrix} $
65	229	241	253	265	277	289	301	312	324	336	
66	348	360	372	384	396	407	419	431	443	455	
67	467	478	490	502	514	526	538	549	561	573	7 9.1 8.4
68	585	597	608	620	632	644	656	667	679	691	8 10.4 9.6
69	703	714	726	738	750	761	773	785	797	808	9 11.7 10.8
370	820	832	844	855	867	879	891	902	914	926	
71	937	949	961	972	984	996	*008	*019	*031	*043	
72	57 054	066	078	089	101	113	124	136	148	159	
73	171	183	194	206	217	229	241	252	264	276	
74	287	299	310	322	334	345	357	368	380	392	
75	403	415	426	438	449	461	473	484	496	507	
76	519	530	542	553	565	576	588	600	611	623	
77	634	646	657	669	680	692	703	715	726	738	
78	749	761	772	784	795	807	818	830	841	852	
79	864	875	887	898	910	921	933	944	955	967	
380	978	990	*001	*013	*024	*035	*047	*058	*070	*081	
81	58 092	104	115	127	138	149	161	172	184	195	$\begin{array}{c cccc} & 11 & 10 \\ 1 & 1.1 & 1.0 \\ 2 & 2.2 & 2.0 \end{array}$
82	206	218	229	240	252	263	274	286	297	309	
83	320	331	343	354	365	377	388	399	410	422	
84 85 86	433 546 659	444 557 670	456 569 681	467 580 692	478 591 704	490 602 715	501 614 726	512 625 737	524 636 749	535 647 760	3 3.3 3.0 4 4.4 4.0 5 5.5 5.0 6 6.6 6.0
87	771	782	794	805	816	827	838	850	861	872	7 7.7 7.0
88	883	894	906	917	928	939	950	961	973	984	8 8.8 8.0
89	995	*006	*017	*028	*040	*051	*062	*073	*084	*095	9 9.9 9.0
390	59 106	118	129	140	151	162	173	184	195	207	
91	218	229	240	251	262	273	284	295	306	318	
92	329	340	351	362	373	384	395	406	417	428	
93	4 39	450	461	472	483	491	506	517	528	539	
94	550	561	572	583	594	605	616	627	638	649	
95	660	671	682	693	704	715	726	737	748	759	
96	770	780	791	802	813	824	835	846	857	868	
97	879	890	901	912	923	934	945	956	966	977	
98	988	999	*010	*021	*032	*043	*054	*065	*076	*086	
99	60 097	108	119	130	141	152	163	173	184	195	
400	206	217	228	239	249	260	271	282	293	304	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	7	8	9		Pro	p. Pt	8.
400	60 206	217	228	239	249	260	271	282	293	304				
01 02 03	314 423 531	325 433 541	336 444 552	347 455 563	358 466 574	369 477 584	379 487 595	390 498 606	401 509 617	412 520 627				
04 05 06	638 746 853	649 756 863	660 767 874	670 778 885	681 788 895	692 799 906	703 810 917	713 821 927	724 831 938	735 842 949				
07 08 09	959 61 066 172	970 077 183	981 087 194	991 098 204	*002 109 215	*013 119 225	*023 130 236	*034 140 247	*045 151 257	*055 162 268				
410	278	289	300	310	321	331	342	352	363	374				
11 12 13	384 490 595	395 500 606	405 511 616	$\frac{416}{521} \\ 627$	426 532 637	437 542 648	448 553 658	458 563 669	469 574 679	479 584 690				
14 15 16	700 805 909	711 815 920	721 826 930	731 836 941	742 847 951	752 857 962	763 868 972	773 878 982	784 888 993	794 899 *003				
17 18 19	62 014 118 221	024 128 232	034 138 242	$\begin{array}{c} 045 \\ 149 \\ 252 \end{array}$	$055 \\ 159 \\ 263$	066 170 273	076 180 284	086 190 294	097 201 304	107 211 315				
420	325	335	346	356	366	377	387	397	408	418				
21 22 23	428 531 634	439 542 644	449 552 655	459 562 665	469 572 675	480 583 685	490 593 696	500 603 706	511 613 716	521 624 726	1 2	1.1 2.2	1.0 2.0	9 0.9 1.8
24 25 26	737 839 941	747 849 951	757 859 961	767 870 972	778 880 982	788 890 992	798 900 *002	808 910 *012	818 921 *022	829 931 *033	2 3 4 5	3.3 4.4 5.5	3.0 4.0 5.0	2.7 3.6 4.5
27 28 29	63 043 144 246	053 155 256	063 165 266	073 175 276	083 185 286	094 195 296	104 205 306	114 215 317	124 225 327	134 236 337	6 7 8 9	6.6 7.7 8.8 9.9	6.0 7.0 8.0 9.0	5.4 6.3 7.2 8.1
430	347	357	367	377	387	397	407	417	428	438				
31 32 33	448 548 649	458 558 659	468 568 669	478 579 679	488 589 689	498 599 699	508 609 709	518 619 719	528 629 729	538 639 739				
34 35 36	749 849 949	759 859 959	769 869 969	779 879 979	789 889 988	799 899 998	809 909 *008	819 919 *018	829 929 *028	839 939 *058				
37 38 39	64 048 147 246	058 157 256	068 167 266	078 177 276	088 187 286	098 197 296	108 207 306	118 217 316	128 227 326	137 237 335				
440	345	355	365	375	385	395	404	414	424	434				
41 42 43	444 542 640	454 552 650	464 562 660	473 572 670	483 582 680	493 591 689	503 601 699	513 611 709	523 621 719	532 631 729				
44 45 46	738 836 933	748 846 943	758 856 953	768 865 963	777 875 972	787 885 982	797 895 992	807 904 *002	816 914 *011	826 924 *021				
47 48 49	65 031 128 225	040 137 234	050 147 244	$060 \\ 157 \\ 254$	070 167 263	079 176 273	089 186 283	099 196 292	108 205 302	118 215 312				
450	321	331	341	350	360	369	379	389	398	408				
N.	0	1	2	8	4	5	6	7	8	9		Prop	. Pts	

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
450	65 321	331	341	350	360	369	379	389	398	408	
51 52	418 514	427 523	437 533	447 543	456 552	466 562	475 571	485 581	495 591	504 600	
53	610 706	619 715	629 725	639 734	648 744	658 753	667	677	686	696	
54 55	801	811	820	830	839	849	763 858	772 868	782 877	792 887	
56	896 992	906 *001	916 *011	925 *020	935 *030	944 *039	954 *049	963 *058	973 *068	982	
58 59	66 087 181	096 191	106 200	115 210	124 219	134 229	143 238	153 247	162 257	172 266	
460	276	285	295	304	314	323	332	342	351	361	
$\frac{61}{62}$	370 464	380 474	389 483	398 492	408 502	417 511	427 521	436 530	445 539	455 549	
63	558	567	577	586	596	605	614	624	633	642	
64 65 66	652 745 839	661 755 848	671 764 857	680 773 867	689 783 876	699 792 885	708 801 894	717 811 904	727 820 913	736 829 922	
67 68	$932 \\ 67\ 025$	941 034	950 043	960 052	969 062	978 071	987 080	997 089	*006 099	*015 108	,
69	117	127	136	145	154	164	173	182	191	201	
470	210	219	228	237	247	256	265	274	284	293	10 9 8
71 72 73	302 394 486	311 403 495	321 413 504	330 422 514	339 431 523	348 440 532	357 449 541	367 459 550	376 468 560	385 477 569	1 1.0 0.9 0.8
74	578	587	596	605	614	624	633	642	651	660	2 2.0 1.8 1.6 3 3.0 2.7 2.4 4 4.0 3.6 3.2
75 76	669 761	679 770	688 779	697 788	706 797	715 806	724 815	733 825	742 834	752 843	5 5.0 4.5 4.0 6 6.0 5.4 4.8
77 78	852 943	861 952	870 961	879 970	888 979	897 988	906 997	916 *006	925 *015	934 *024	7 7.0 6.3 5.6 8 8.0 7.2 6.4
79	68 034	043	052	061	070	079	088	097	106	115	9 9.0 8.1 7.2
480	124	133	142	151	160	169	178	187	196	205	
81 82	215 305	224 314	233 323	$\frac{242}{332}$	$\frac{251}{341}$	260 350	269 359	278 368	287 377	296 386	
83	395	404	413	422	431	440	449	458	467	476	
84 85	485 574	494 583	502 592	511 601	520 610	529 619	538 628	547 637	556 646	565 655	
86	664	673	681	690	699	708	717	726	735	744	
87	753	762	771	780	789	797	806	815	824	833	
88 89	842 931	851 940	860 949	869 958	878 966	886 975	895 984	904 993	913 *002	922 *011	
490	69 020	028	037	046	055	064	073	082	090	099	
91 92	108 197	117 205	126 214	135 223	144 232	152 241	161 249	$\frac{170}{258}$	179 267	188 276	
93	285	294	302	311	320	329	338	346	355	364	
94 95	373	381 469	390 478	309	408 496	417 504	425 513	434 522	443 531	452 539	
96	461 548	557	566	487 574	583	592	601	609	618	627	
97	636	644	653	662	671	679	688	697	705	714	
98 99	723 810	732 819	740 827	749 836	758 845	767 854	775 862	784 871	793 880	801 888	
500	897	906	914	923	932	940	949	958	966	975	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

Ŋ.	0	1	2	3	4	5	6	7	8	9		Pro	p. Pt	в.
500	69 897	906	914	923	932	940	949	958	966	975				
01 02 03	984 70 070 157	992 079 165	*001 088 174	*010 096 183	*018 105 191	*027 114 200	*036 122 209	*044 131 217	*053 140 226	*062 148 234				
04 05 06	243 329 415	252 338 424	260 346 432	269 355 441	278 364 449	286 372 458	295 381 467	303 389 475	312 398 484	321 406 492				
07 08 09	501 586 672	509 595 680	518 603 689	526 612 697	535 621 706	544 629 714	552 638 723	561 646 731	569 655 740	578 663 749				
510	757	766	774	783	791	800	808	817	825	834				
11 12 13	842 927 71 012	851 935 020	859 944 029	868 952 037	876 961 046	885 969 054	893 978 063	902 986 071	910 995 079	919 *003 088				
14 15 16	096 181 265	105 189 273	113 198 282	122 206 290	130 214 299	139 223 • 307	147 231 315	155 240 324	164 248 332	172 257 341				
17 18 19	349 433 517	357 441 525	366 450 533	374 458 542	383 466 550	391 475 559	399 483 567	408 492 575	416 500 584	425 508 592				
520	600	609	617	625	634	642	650	659	667	675				
21 22 23	684 767 850	692 775 858	700 784 867	709 792 875	717 800 883	725 809 892	734 817 900	742 825 908	750 834 917	759 842 925	1 2 3	9 0.9 1.8	0.8 1.6	7 0.7 1.4
24 25 26	933 72 016 099	941 024 107	950 032 115	958 041 123	966 049 132	975 057 140	983 066 148	991 074 156	999 082 165	*008 090 173	3 4 5 6	2.7 3.6 4.5 5.4	2.4 3.2 4.0 4.8	2.1 2.8 3.5 4.2
27 28 29	181 263 346	189 272 354	198 280 362	206 288 370	214 296 378	222 304 387	230 313 395	239 321 403	247 329 411	255 337 419	7 8 9	6.3 7.2 8.1	5.6 6.4 7.2	4.9 5.6
530	428	436	444	452	460	469	477	485	493	501				
31 32 33	509 591 673	518 599 681	526 607 689	534 616 697	542 624 705	550 532 713	558 640 722	567 648 730	575 656 738	583 665 746				
34 35 36	754 835 916	762 843 925	770 852 933	779 860 941	787 868 949	795 876 957	803 884 965	811 892 973	819 900 981	827 908 989				
37 38 39	997 73 078 159	*006 086 167	*014 094 175	*022 102 183	*030 111 191	*038 119 199	*046 127 207	*054 135 215	*062 143 223	*070 151 231				
540	239	247	255	263	272	280	288	296	304	312				
41 42 43	320 400 480	328 408 488	336 416 496	344 424 504	352 432 512	360 440 520	368 448 528	376 456 536	384 464 544	392 472 552				
44 45 46	560 640 719	568 648 727	576 656 735	584 664 743	592 672 751	600 679 759	608 687 767	616 695 775	624 703 783	632 711 791				
47 48 49	799 878 957	807 886 965	815 894 973	823 902 981	830 910 989	838 918 997	846 926 *005	854 933 *013	862 941 *020	870 949 *028				
550	74 036	044	052	060	068	076	084	092	099	107				
N.	0	1	2	3	4	5	6	7	8/	9		Pro	p. Pt	в.

Ň.	0	1	2	3	4	5	6	7	8	9	F	rop. P	ts.
550	74 036	044	052	060	068	076	084	092	099	107			
51 52 53	115 194 273	123 202 280	131 210 288	139 218 296	147 225 304	155 233 312	162 241 320	170 249 327	178 257 335	186 265 343			
54 55 56	351 429 507	359 437 515	367 445 523	374 453 531	382 461 539	390 468 547	398 476 554	406 484 562	414 492 570	421 500 578			
57 58 59	586 663 741	593 671 749	601 679 757	609 687 764	617 695 772	624 702 780	632 710 788	640 718 796	648 726 803	656 733 811			
560	819	827	834	842	850	858	865	873	881	889			
61 62 63	896 974 75 051	904 981 059	912 989 066	920 997 074	927 *005 082	935 *012 089	943 *020 097	950 *028 105	958 *035 113	966 *043 120			
64 65 66	128 205 282	136 213 289	143 220 297	151 228 305	159 236 312	166 243 320	174 251 328	182 259 335	189 266 343	197 274 351			
67 68 69	358 435 511	366 442 519	374 450 526	381 458 534	389 465 542	397 473 549	404 481 557	412 488 565	420 496 572	427 504 580			
570	587	595	603	610	618	626	633	641	648	656			
71 72 73	664 740 815	671 747 823	679 755 831	686 762 838	694 770 846	702 778 853	709 785 861	717 793 868	724 800 876	732 808 884	1 2	0.8 1.6	7 0.7 1.4
74 75 76	891 967 76 0 1 2	899 974 050	906 982 057	914 989 065	921 997 072	929 *005 080	937 *012 087	944 *020 095	952 *027 103	959 *035 110	3 4 5 6	2.4 3.2 4.0 4.8	2.1 2.8 3.5 4.2
77 78 79	118 193 268	$\begin{array}{c} 125 \\ 200 \\ 275 \end{array}$	133 208 283	140 215 290	148 223 298	155 230 305	163 238 313	170 245 320	178 253 328	185 260 335	7 8 9	5.6 6.4 7.2	4.9 5.6 6.3
580	343	350	358	365	373	380	388	395	403	410			
81 82 83	418 492 567	425 500 574	507 582	440 515 589	448 522 597	455 530 604	462 537 612	470 545 619	477 552 626	485 559 634			
84 85 86	641 716 790	649 723 797	656 730 805	664 738 812	671 745 819	678 753 827	686 760 834	693 768 842	701 775 849	708 782 856			
87 88 89	864 938 77 012	871 945 019	879 953 026	886 960 034	893 967 041	901 975 048	908 982 056	916 989 063	923 997 070	930 *004 078			
590	085	093	100	107	115	122	129	137	144	151			
91 92 93	159 232 305	166 240 313	173 247 320	181 254 327	188 262 335	195 269 342	203 276 349	210 283 357	217 291 364	225 298 371			
94 95 96	379 452 525	386 459 532	393 466 539	401 474 546	408 481 554	415 488 561	422 495 568	430 503 576	437 510 583	444 517 590			
97 98 99	597 670 743	605 677 750	612 685 757	619 692 764	627 699 772	634 706 779	641 714 786	648 721 793	656 728 801	663 735 808			
600	815	822	830	837	844	851	859	866	873	880			
N.	0	1	2	3	4	5	6	7	8	9	P	rop. P	8.

N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.
600	77 815	822	830	837	844	851	859	866	873	880	
01 02 03	887 960 78 032	895 967 039	902 974 046	909 981 053	916 988 061	924 996 068	931 *003 075	938 *010 082	945 *017 089	952 *025 097	
04 05 06	104 176 247	111 183 254	118 190 262	125 197 269	132 204 276	140 211 283	147 219 290	154 226 297	161 233 305	168 240 312	
07 08 09	319 390 462	326 398 469	333 405 476	340 412 483	347 419 490	355 426 497	362 433 504	369 440 512	376 447 519	383 455 526	
610	533	540	547	554	561	569	576	583	590	597	
11 12 13	604 675 746	611 682 753	618 689 760	625 696 767	633 704 774	640 711 781	647 718 789	654 725 796	661 732 803	668 739 810	
14 15 16	817 888 958	824 895 965	831 902 972	838 909 979	916 986	852 923 993	859 930 *000	866 937 *007	873 9 14 *014	880 951 *021	
17 18 19	79 029 099 169	036 106 176	043 113 183	050 120 190	057 127 197	064 134 204	071 141 211	078 148 218	085 155 225	092 162 232	
620	239	246	253	260	267	274	281	288	295	302	
21 22 23	309 379 449	316 386 4 56	323 393 463	330 400 470	337 407 477	344 414 484	351 421 491	358 428 498	365 435 505	372 442 511	8 7 6 1 0.8 0.7 0.6 2 1.6 1.4 1.2 3 2.4 2.1 1.8
24 25 26	518 588 657	525 595 664	532 602 671	539 609 678	546 616 685	553 623 692	560 630 699	567 637 706	574 644 713	581 650 720	3 2.4 2.1 1.8 4 3.2 2.8 2.4 5 4.0 3.5 3.0 6 4.8 4.2 3.6 7 5.6 4.9 4.2
27 28 29	727 796 865	734 803 872	741 810 879	748 817 886	754 824 893	761 831 900	768 837 906	775 844 913	782 851 920	789 858 927	$ \begin{vmatrix} 7 & 5.6 & 4.9 & 4.2 \\ 8 & 6.4 & 5.6 & 4.8 \\ 0 & 7.2 & 6.3 & 5.4 \end{vmatrix} $
630	934	941	948	955	962	969	975	982	989	996	
31 32 33	80 003 072 140	010 079 147	017 085 154	024 092 161	030 099 168	037 106 175	044 113 182	051 120 188	058 127 195	065 134 202	
34 35 36	209 277 346	$216 \\ 284 \\ 353$	223 291 359	229 298 366	236 305 373	243 312 380	250 318 387	257 325 393	264 332 400	271 339 407	
37 38 39	414 482 550	421 489 557	428 496 564	434 502 570	441 509 577	448 516 584	455 523 591	462 530 598	468 536 604	475 543 611	
640	618	625	632	638	645	652	659	665	672	679	
41 42 43	686 754 821	693 760 828	699 767 835	706 774 841	713 781 848	720 787 855	726 794 862	733 801 868	740 808 875	747 814 882	
44 45 46	889 956 81 023	895 963 030	902 969 037	909 976 043	916 983 050	922 990 057	929 996 064	936 *003 070	943 *010 077	949 *017 084	
47 48 49	090 158 224	097 164 231	104 171 238	111 178 245	117 184 251	124 191 258	131 198 265	137 204 271	144 211 278	151 218 285	
650	291	298	305	311	318	325	331	338	345	351	
N.	0	1	2	3	4	5	6	7	8	9	Prop. Pts.

N.	0	1	2	3	4	5	6	17	8	9	1	Prop. I	ts.
		-	-		 					-	-	- 10p. 1	
650	81 291	298	305	311	318	325	331	338	345	351			
51 52	358 425	365 431	371 438	378	385 451	391 458	398 465	405 471	411	418	1		
53	491	498	505	511	518	525	531	538	544	551	l		
54	558	564	571	578	584	591	598	604	611	617	1		
55	624	631	637	644	651	657	664	671	677	684			
56	690	697	704	710	717	723	730	737	743	750			
57 58	757 823	763 829	770 836	776 842	783 849	790 856	796 862	803 869	809 875	816 882			
59	889	895	902	908	915	921	928	935	941	948			
660	954	961	968	974	981	987	994	*000	*007	*014			
61	82 020	027	033	040	046	053	060	066	073	079	l		
62	086	092	099	105	112	119	125	132	138	145			
63	151	158	164	171	178	184	191	197	204	210			
64 65	217 282	223 289	230 295	236 302	243 308	249 315	256 321	263 328	269 334	276 341			
66	347	354	360	367	373	380	387	393	400	406			
67	413	419	426	432	439	445	452	458	465	471			
68	478	484	491	497	504	510	517	523	530	536			
69	607	549	556	662	569	575	582	588	595	601			
670		614	620	627	633	640	646	653	659	666		7	6
71 72	672 737	679 743	685 750	692 756	698 763	705 769	711 776	718 782	724 789	730 795	1	0.7	0.6
73	802	808	814	821	827	834	840	847	853	860	2	1.4	1.2
74	866	872	879	885	892	898	905	911	918	924	3 4	$\frac{2.1}{2.8}$	$\frac{1.8}{2.4}$
75 76	930 995	937 *001	943 *008	950 *014	956 *020	963 *027	969 *033	975 *040	982 *046	988 *052	5	3.5	3.0
77	83 059	065	072	078	085	091	097	104	110	117	6	4.2	$\frac{3.6}{4.2}$
78	123	129	136	142	149	155	161	168	174	181	8	5.6	4.8
79	187	193	200	206	213	219	225	232	238	245	9	6.3	5.4
680	251	257	264	270	276	283	289	296	302	308			
81 82	315 378	321 385	327 391	334 398	340 404	347 410	353 417	359 423	366 429	372 436			
83	412	448	455	461	467	474	480	487	493	499			
84	506	512	518	525	531	537	544	550	556	563			
85	569	575	582	588	594	601	607	613	620	626			
86	632	639	645	651	658	664	670	677	683	689			
87 88	696 759	702 765	708 771	715 778	721 784	727 790	734 797	740 803	746 809	753 816			
89	822	828	835	841	847	853	860	866	872	879			
690	885	891	897	904	910	916	923	929	935	942			
91	948	954	960	967	973	979	985	992	998	*004			
92 93	84 011 073	017 080	023 086	029 092	036 098	042 105	048 111	055 117	061 123	067 130			
94	136	142	148	155	161	167	173	180	186	192			
95	198	205	211	217	223	230	236	242	248	255			
96	261	267	273	280	286	292	298	305	311	317			
97	323	330	336	342	348	354	361	367	373	379			
98 99	386 448	392 454	398 460	404 466	410 473	417 479	423 485	429 491	435 497	442 504			
700	510	516	522	528	535	541	547	553	559	566			
N.	0	1	2	3	4	5	6	7	8	9	P	rop. Pt	8.

N.	0	1	2	8	4	5	6	7	8	9	l	Pro	p. Pt	g.
700	84 510	516	522	528	535	541	547	553	559	566				
01	572	578	584	590	597	603	609	615	621	628				
02 03	634 696	640 702	646 708	652 714	658 720	665 726	671 733	677 739	683 745	689 751				
04	757	763	.770	776	782	788	794	800	807	813				
05	819 880	825	831 893	837	844	850	856	862	868	874				
06 07	942	887 948	954	899 960	905 967	911	917	924 985	930	936 997				
08	85 003	009	016	022	028	034	040	046	052	058				
09	065	071	077	083	089	095	101	107	114	120				
710	126	132	138	144	150	156	163	169	175	181				
11 12	187 248	193 254	199 260	205 266	$\frac{211}{272}$	217 278	224 285	230 291	236 297	242 303				
13	309	315	321	327	333	339	345	352	358	364				
14	370	376	382	388	394	400	406	412	418	425				
15 16	431 491	437 497	443 503	449 509	455 516	461 522	467 528	473 534	479 540	485 546				
17	552	558	564	570	576	582	588	594	600	606				
18	612	618	625	631	637	643	649	655	661	667				
19 720	673	679	685	691	697	703	709	715	721	727				
	733	739	745	751	757	763	769	775	781	788		1 7	. 6	5
21 22	794 854	800 860	806 866	812 872	818 878	824 884	830 890	836 896	842 902	848 908	1	0.7	0.6	0.5
23	914	920	926	932	938	944	950	956	962	968	3	1.4	1.2	1.0
24 25	974 86 034	980 040	986 046	992 052	998 058	*004 064	*010	*016	*022 082	*028 088	4	$\begin{vmatrix} 2.1 \\ 2.8 \end{vmatrix}$	1.8 2.4	$\frac{1.5}{2.0}$
26	094	100	106	112	118	124	070 130	076 136	141	147	5	3.5	3.0 3.6	2.5
27	153	159	165	171	177	183	189	195	201	207	6 7	4.9	4.2	3.0 3.5
28 29	213 273	219 279	225 285	231 291	237 297	243 303	249 308	255 314	261 320	$\frac{267}{326}$	8	5.6 6.3	4.8 5.4	4.0
780	332	338	344	350	356	362	368	374	380	386		, 0.0	, 0.1	, 110
31	392	398	404	410	415	421	427	433	439	445				
32	451	457	463	469	475	481	487	493	499	504				
33	510	516	522	528	534	540	546	552	558	564				
34 35	570 629	576 635	581 641	587 646	593 652	599 658	605 664	611 670	617 676	623 682				
36	688	694	700	705	711	717	723	729	735	741				
37 38	747 806	753 812	759 817	764 823	770	776 835	782	788	794 853	800 859				
39	864	870	876	882	829 888	894	841 900	847 906	911	917				
740	923	929	935	941	947	953	958	964	970	976				
41	982	988	994	999	*005	*011	*017	*023	*029	*085				
42 43	87 040 099	046 105	052 111	058 116	064 122	070 128	075 134	081 140	087 146	093 151				
44	157	163	169	175	181	186	192	198	204	210				
45	216	221	227	233	239	245	251	256	262	268				
46	274	280	286	291	297	303	309	315	320	326				
47 48	332 390	338 396	344 402	349 408	355 413	361 419	367 425	373 431	379 437	384 442				
49	448	454	460	466	471	477	483	489	495	500				
750	506	512	518	523	529	535	541	547	552	558				
N.	0	1	2	8	4	5	6	7	8	9	١.	Pro	p. Pte	3.

N.	0	1	2	3	4	. 5	6	7	8	9]:	Prop. I	ts.
750	87 506	512	518	523	529	535	541	547	552	558			
51 52 53	564 622 679	570 628 685	576 633 691	581 639 697	587 645 703	593 651 708	599 656 714	604 662 720	610 668 726	616 674 731			
54 55 56	737 795 852	743 800 858	749 806 864	754 812 869	760 818 875	766 823 881	772 829 887	777 835 892	783 841 898	789 846 904			
57 58 59	910 967 88 024	915 973 030	921 978 036	927 984 041	933 990 047	938 996 053	944 *001 058	950 *007 064	955 *013 070	961 *018 076			
760	081	087	.093	098	104	110	116	121	127	133			
61 62 63	138 195 252	144 201 258	150 207 264	156 213 270	161 218 275	167 224 281	173 230 287	178 235 292	184 241 298	190 247 304			
64 65 66	309 366 423	315 372 429	321 377 434	326 383 440	332 389 446	338 395 451	343 400 457	349 406 463	355 412 468	360 417 474			
67 68 69	480 536 593	485 542 598	491 547 604	497 553 610	502 559 615	508 564 621	513 570 627	519 576 632	525 581 638	530 587 643			
770	649	655	660	6 66	672	677	683	689	694	700			
71 72 73	705 762 818	711 767 824	717 773 829	722 779 835	728 784 840	734 790 846	739 795 852	745 801 857	750 807 863	756 812 868	$rac{1}{2}$	0.6 1.2	5 0.5 1.0
74 75 76	874 930 986	880 936 992	885 941 997	891 947 *003	897 953 *009	902 958 *014	908 964 *020	913 969 *025	919 975 *031	925 981 *037	3 4 5 6	1.8 2.4 3.0 3.6	1.5 2.0 2.5 3.0
77 78 79	89 042 098 154	048 104 159	053 109 165	059 115 170	064 120 176	070 126 182	076 131 187	081 137 193	087 143 198	092 148 204	7 8 9	4.2 4.8 5.4	3.5 4.0 4.5
780	209	215	221	226	232	237	243	248	254	260			
81 82 83	265 321 376	271 326 382	276 332 387	282 337 393	287 343 398	293 348 404	298 354 409	304 360 415	310 365 421	315 371 426			
84 85 86	432 487 542	437 492 548	443 498 553	448 504 559	454 509 564	459 515 570	465 520 575	470 526 581	476 531 586	481 537 592			
87 88 89	597 653 708	603 658 713	609 664 719	614 669 724	620 675 730	625 680 735	631 686 741	636 691 746	642 697 752	647 702 757			
790	763	768	774	779	785	790	796	801	807	812			1
91 92 93	818 873 927	823 878 933	829 883 938	834 889 944	840 894 949	845 900 955	851 905 960	856 911 966	862 916 971	867 922 977			
94 95 96	982 90 037 091	988 042 097	993 048 102	998 053 108	*004 059 113	*009 064 119	*015 069 124	*020 075 129	*026 080 135	*031 086 140			
97 98 99	146 200 255	151 206 260	157 211 266	162 217 271	168 222 276	173 227 282	179 233 287	184 238 293	189 244 298	195 249 304			
800	309	314	320	325	331	336	342	347	352	358			
N.	0	1	2	8	4	5	6	7	8	9	P	rop. Pt	a.

[]	N.	0	1	2	8	4	5	6	7	8	9		Prop.	Pts.
8	00	90 309	314	320	325	331	336	342	347	352	358			
	01 02 03	363 417 472	369 423 477	374 428 482	380 434 488	385 439 493	390 445 499	396 450 504	401 455 509	407 461 515	412 466 520			
10	04 05 06	526 580 634	531 ° 585 639	536 590 644	542 596 650	547 601 655	553 607 660	558 612 666	563 617 671	569 623 677	574 628 682			
0	7 18 19	687 741 795	693 747 800	698 752 806	703 757 811	709 763 816	714 768 822	720 773 827	725 779 832	730 784 838	736 789 843			
81	0	849	854	859	865	870	875	881	886	891	897			
1 1	- 1	902 956 91 009	907 961 014	913 966 020	918 972 025	924 977 030	929 982 • 036	934 988 041	940 993 046	945 998 052	950 *004 057			
1 1 1	5 6	962 116 169	068 121 174	073 126 180	078 132 185	084 137 190	089 142 196	094 148 201	100 153 206	105 158 212	110 164 217			
1 1	8	222 275 328	228 281 334	233 286 339	238 291 344	243 297 350	249 302 355	254 307 360	259 312 365	265 318 371	270 323 376			
82	- -	381	387	392	397	403	408	413	418	424	429			1
$\frac{2}{2}$	2	434 487 540	440 492 545	445 498 551	450 503 556	455 508 561	461 514 566	466 519 572	471 524 577	477 529 582	482 535 587	1 2 3	0.6 1.2	5 0.5 1.0
$\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$	5	593 645 698	598 651 703	603 ป56 709	609 661 714	614 666 719	619 672 724	624 677 730	630 682 735	635 687 740	640 693 745	3 4 5 6	1.8 2.4 3.0 3.6	1.5 2.0 2.5 3.0
$\frac{2}{2}$	8	751 803 855	756 808 861	761 814 866	766 819 871	772 824 876	777 829 882	782 834 887	787 840 892	793 845 897	798 850 903	7 8 9	4.2 4.8 5.4	3.5 4.0 4.5
83	0	908	913	918	924	929	934	939	944	950	955			
3 3 3	2 9	960 92 012 065	965 018 070	971 023 075	976 028 080	981 033 085	986 038 091	991 044 096	997 049 101	*002 054 106	*007 059 111			
3 3 3	5	117 169 221	122 174 226	127 179 231	132 184 236	137 189 241	143 195 247	148 200 252	153 205 257	158 210 262	163 215 267			
3 3 ——	8	273 324 376	278 330 381	283 335 387	288 340 392	293 345 397	298 350 402	304 355 407	309 361 412	314 366 418	319 371 423			
84	-	428	433	438	443	449	454	459	464	469	474			
4 4 4	2	480 531 583	485 536 588	490 542 593	495 547 598	500 552 603	505 557 609	511 562 614	516 567 619	521 572 624	526 578 629			
4 4 4	5	634 686 737	639 691 742	645 696 747	650 701 752	655 706 758	660 711 763	665 716 768	670 722 773	675 727 778	681 732 783			
4 4 4	8	788 840 891	793 845 896	799 850 901	804 855 906	809 860 911	814 865 916	819 870 921	824 875 927	829 881 932	834 886 937			
85		942	947	952	957	962	967	973	978	983	988			
N.	1	0	1	2	8	4	5	6	7	8	9	I	rop. P	ts.

N.	0	1	2	3	4	5	6	7	8	9	Π	Pro	p. Pt:	<u>.</u> B.
850	92 942	947	952	957	962	967	973	978	983	988	\vdash			
51 52 53	993 93 044 095	998 049 100	*003 054 105	*008 059 110	*013 064 115	*018 069 120	*024 075 125	*029 080 131	*034 085 136	*039 090 141				
54 55 56	146 197 24 7	151 202 252	156 207 258	161 212 243	166 217 268	171 222 273	176 227 278	181 232 283	186 237 288	192 242 293	ŀ			
57 58 59	298 349 399	303 354 404	308 359 409	313 364 414	318 369 420	323 374 425	328 379 430	334 384 435	339 389 440	344 394 445				
860	450	455	460	465	470	475	480	485	490	495				
61 62 63	500 551 601	505 556 606	510 561 611	515 566 616	520 571 621	526 576 626	531 581 631	536 586 636	541 591 641	546 596 646				
64 65 66	651 702 752	656 707 757	661 712 762	666 717 767	671 722 772	676 727 777	682 732 782	687 737 787	692 742 792	697 747 797				
67 68 69	802 852 902	807 857 907	812 862 912	817 867 917	822 872 922	827 877 927	832 882 932	837 887 937	842 892 942	847 897 947				
870	952	957	962	967	972	977	982	987	992	997				
71 72 73	94 002 052 101	007 057 106	012 062 111	017 067 116	022 072 121	027 077 126	032 082 131	037 086 136	042 091 141	047 096 146	1 2	0.6 1.2	0.5 1.0	0.4 0.8
74 75 76	151 201 250	156 206 255	161 211 260	166 216 265	171 221 270	176 226 275	181 231 280	186 236 285	191 240 290	196 245 295	3 4 5 6	1.8 2.4 3.0 3.6	1.5 2.0 2.5 3.0	1.2 1.6 2.0 2.4
77 78 79	300 349 399	305 354 404	310 359 409	315 364 414	320 369 419	325 374 424	330 379 429	335 384 433	340 389 438	345 394 443	7 8 9	4.2 4.8 5.4	3.5 4.0 4.5	2.8 3.2 3.6
880	448	453	458	463	468	473	478	483	488	493				
81 82 83	498 547 596	503 552 601	507 557 606	512 562 611	517 567 616	522 571 621	527 576 626	532 581 630	537 586 635	542 591 640				
84 85 86	645 694 743	650 699 748	655 704 753	660 709 758	665 714 763	670 719 768	675 724 773	680 729 778	685 734 783	689 738 787				
87 88 89	792 841 890	797 846 895	802 851 900	807 856 905	812 861 910	817 866 915	822 871 919	827 876 924	832 880 929	836 885 934				
890	939	944	949	954	959	963	968	973	978	983				
91 92 93	988 95 036 085	993 041 090	998 046 095	*002 051 100	*007 056 105	*012 061 109	*017 066 114	*022 071 119	*027 075 124	*032 080 129				
94 95 96	134 182 231	139 187 236	143 192 240	148 197 245	153 202 250	158 207 255	163 211 260	168 216 265	173 221 270	177 226 274				
97 98 99	279 328 376	284 332 381	289 337 386	294 342 390	299 347 395	303 352 400	308 357 405	313 361 410	318 366 415	323 371 419				
900	424	429	434	439	444	448	453	458	463	468				
N.	0	1	2	8	4	5	6	7	8	9		Prop	. Pts	

N.	0	1	2	3	4	5	6	7	8	9	1	Prop. P	ts.
900	95 424	429	434	439	441	448	453	458	463	468			
01 02 03	472 521 569	477 525 574	482 530 578	487 535 583	492 540 588	497 545 593	501 550 598	506 554 602	511 559 607	516 564 612			
04 05 06	617 665 713	622 670 718	626 674 722	631 679 727	636 684 732	641 689 737	646 694 742	650 698 746	655 703 751	660 708 756		¢*	
07 08 09	761 809 856	766 813 861	770 818 866	775 823 871	780 828 875	785 832 880	789 837 885	794 842 890	799 847 895	804 852 899			
910	904	909	914	918	923	928	933	938	942	947			
11 12 13	952 999 96 047	957 *004 052	961 *009 057	966 *014 061	971 *019 0664	976 *023 071	980 *028 076	985 *033 080	990 *038 085	995 *042 090			
14 15 16	095 142 190	099 147 194	104 152 199	109 156 204	114 161 209	118 166 213	123 171 218	128 175 223	133 180 227	137 185 232			
17 18 19	237 284 332	242 289 336	246 294 341	251 298 346	256 303 350	261 308 355	265 313 360	270 317 365	275 322 369	280 327 374			
920	379	384	388	393	398	402	407	412	417	421			
21 22 23	426 473 520	431 478 525	435 483 530	440 487 534	445 492 539	450 497 544	454 501 548	459 506 553	464 511 558	468 515 562	1 2	0.5 1.0	4 0.4 0.8
24 25 26	567 614 661	572 619 666	577 624 670	581 628 675	586 633 680	591 638 685	595 642 689	600 647 694	605 652 699	609 656 703	3 4 5 6	1.5 2.0 2.5 3.0	1.2 1.6 2.0 2.4
27 28 29	708 755 802	713 759 806	717 764 811	722 769 816	727 774 820	731 778 825	736 783 830	741 788 834	745 792 839	750 797 844	7 8 9	3.5 4.0 4.5	2.8 3.2 3.6
930	848	853	858	862	867	872	876	881	886	890			
31 32 33	895 942 988	900 946 993	904 951 997	909 956 *002	914 960 *007	918 965 *011	923 970 *016	928 974 *021	932 979 *025	937 984 *030			
34 35 36	$97035\\081\\128$	039 086 132	044 090 137	049 095 142	053 100 146	058 104 151	063 109 155	067 114 160	072 118 165	077 123 169			
37 38 39	174 220 267	179 225 271	183 230 276	188 234 280	192 239 285	197 243 290	202. 248 294	206 253 299	211 257 304	216 262 308			
940	313	317	322	327	331	336	340	345	350	354			
41 42 43	359 405 451	364 410 456	368 414 460	373 419 465	377 424 470	382 428 474	387 433 479	391 437 483	396 442 488	400 447 493			
44 45 46	497 543 589	502 548 594	506 552 598	511 557 603	516 562 607	520 566 612	525 571 617	529 575 621	534 580 626	539 585 630			
47 48 49	635 681 727	640 685 731	644 690 736	649 695 740	653 699 745	658 704 749	663 708 754	667 713 759	672 717 763	676 722 768			-
950	772	777	782	786	791	795	800	804	809	813			
N.	0	1	2	3	4	5	6	7	8	9		Prop. P	ts.

ſ	N.	0	1	2	8	4	5	6	7	8	9	Prop. Pts.
ľ	950	97 772	777	782	786	791	795	800	804	809	813	
ľ	51	818	823	827	832	836	841	845	850	855	859	
ı	52 53	864 909	868 914	873 918	877 923	882 928	886 932	891 937	896 941	900 946	905	
	54	955	959	964	968	973	978	982	987	991	996*	
•	55 56	98 000 046	005 050	009 055	014	019 064	023	028 073	032	037 082	041 087	
	57	091	096	100	105	109	114	118	123	127	132	
	58 59	137 182	141 186	146 191	150 195	155 200	159 204	164 209	168	173	177	
	960	227	232	236	241	245	250	254	214	218	268	,
٠.	61	272	277	281	286	290	295	299	304	308	313	
	62	318	322	327	331	336	340	345	349	354	358	
	63	363 408	367 412	372 417	376 421	381 426	385 430	390 435	394 439	399 444	403	
	64 65	453	457	462	466	471	475	480	484	489	448 493	
	66	498	502	507	511	516	520	525	529	534	538	
	67 68	543 588	547 592	552 597	556 601	561 605	565 610	570 614	574 619	579 623	583 628	
	69	632	637	641	646	650	655	659	664	668	673	1
:	970	677	682	686	691	695	700	704	709	713	717	
	71 72	722 767	726 771	731 776	735 780	740 784	744 789	749 793	753 798	758 802	762 807	5 4 1 0.5 0.4
	73	811	816	820	825	829	834	838	843	847	851	2 1.0 0.8
	74	856 900	860 905	865	869	874	878	883	887	892	896	4 2.0 1.6
	75 76	945	949	909 954	914 958	918 963	923 967	927 972	932 976	936 981	941 985	5 2.5 2.0 6 3.0 2.4
	77	989	994	998	*003	*007	*012	*016	*021	*025	*029	7 3.5 2.8
١	78 79	99 034 078	038 083	043 087	047 092	052 096	056 100	061 105	065 109	069 114	074 118	8 4.0 3.2 9 4.5 3.6
ï	980	123	127	131	136	140	145	149	154	158	162	
ï	81	167	171	176	180	185	189	193	198	202	207	
	82 83	211 255	216 260	220 264	224 269	229 273	233 277	238 282	242 286	247 291	251 295	
	84	300	304	308	313	317	322	326	330	335	339	
	85 86	344 388	348 392	352 396	357 401	361 405	366 410	370 414	374 419	379 423	383 427	
	87	432	436	441	445	449	454	458	463	467	471	
	88 89	476 520	480 524	484 528	489 533	493 537	498 542	502 546	506 550	511 555	515 559	
•	990	564	568	572	577	581	585	590	594	599	603	
-	91	607	612	616	621	625	629	634	638	642	647	
	92 93	651 695	656 699	660 704	664 708	669 712	673 717	677 721	682 726	686 730	691 734	
	94	739	743	747	752	756	760	765	769	774	778	
	95	782	787	791	795	800	804	808	813	817	822	
	96 97	826 870	830 874	835 878	839 883	843 887	848 891	852 896	856 900	861 904	865 909	
	98	913	917	922	926	930	935	939	944	948	952	
-	99	957	961	965	970	974	978	983	987	991	996	
-	1000	00 000	004	009	013	L17	022	026	030	035	039	
_	_N.	וטו	1	2	8	4	5	6	7	8	9	Prop. Pts.

TABLE Ia. LOGARITHMS OF IMPORTANT CONSTANTS

N = Number	VALUE OF N	Log ₁₀ N
π	3.14159265	0.49714987
$1 \div \pi$	0.31830989	9.50285013
π^2	9.86960440	0.99429975
$\sqrt{\pi}$	1.77245385	0.24857494
e = Napierian Base	2.71828183	0.43429448
$M = \log_{10} e$	0.43429448	9.63778431
$1 \div M = \log_e 10$	2.30258509	0.36221569
$180 \div \pi = \text{degrees in 1 radian}$	57.2957795	1.75812262
$\pi \div 180 = \text{radians in } 1^{\circ}$	0.01745329	8.24187738
$\pi \div 10800 = \text{radians in } 1'$	0.0002908882	6.4637261
$\pi \div 648000 = \text{radians in } 1^{\prime\prime}$	0.000004848136811095	4.68557487
sin 1"	0.000004848136811076	4.68557487
tan 1"	0.000004848136811152	4.68557487
centimeters in 1 ft.	30.480	1.4840158
feet in 1 cm.	0.032808	8.5159842
inches in 1 m.	39.37	1.5951654
pounds in 1 kg.	2.20462	0.3433340
kilograms in 1 lb.	0.453593	9.6566660
g	32.16 ft./sec./sec.	1.5073
	= 981 cm./sec./sec.	2.9916690
weight of 1 cu. ft. of water	62.425 lb. (max. density)	1.7953+
weight of 1 cu. ft. of air	0.0807 lb. (at 32° F.)	8.907
cu. in. in 1 (U.S.) gallon	231.	2.3636120
ft. lb. per sec. in 1 H. P.	550.	2.7403627
kg. m. per sec. in 1 H. P.	76.0404	1.8810445
watts in 1 H. P.	745.957	2.8727135

COMMON LOGARITHMS OF THE FIRST HUNDRED PRIME NUMBERS

N	Logarithm	N	Log	N	Log	N	Log	N	Log
1	0000000000	71	8512583	173	2380461	281	4487063	409	6117233
2	3010299957	73	8633229	179	2528530	283	4517864	419	6222140
3	4771212547	79	8976271	181	2576786	293	4668676	421	6242821
5	6989700043	83	9190781	191	2810334	307	4871384	431	6344773
7	8450980400	89	9493900	193	2855573	311	4927604	433	6364879
11	0413926852	97	9867717	197	2944662	313	4955443	439	6424645
13	1139433523	101	0043214	199	2988531	317	5010593	443	6464037
17	2304489214	103	0128372	211	3242825	331	5198280	449	6522463
19	2787536010	107	0293838	223	3483049	337	5276299	457	6599162
23	3617278360	109	0374265	227	3560259	347	5403295	461	6637009
29	4623979979	113	0530784	229	3598355	349	5428254	463	6655810
31	4913616938	127	1038037	233	3673559	353	5477747	467	6693169
37	5682017241	131	1172713	239	3783979	359	5550944	479	6803355
41	6127838567	137	1367206	241	3820170	367	5646661	487	6875290
43	6334684556	139	1430148	251	3996737	373	5717088	491	6910815
47	6720918579	149	1731863	257	4099331	379	5786392	499	6981005
53	7242758696	151	1789769	263	4199557	383	5831988	503	7015680
59	7708520116	157	1958997	269	4297523	389	5899496	509	7067178
61	7853298350	163	2121876	271	4329693	397	5987905	521	7168377

TABLE II

ACTUAL VALUES

OF THE

TRIGONOMETRIC FUNCTIONS

FROM

0° TO 90° AT INTERVALS OF ONE MINUTE

TO

FIVE DECIMAL PLACES

	,	Sin	Tan	Ctn	Сов	
	0	.00000	.00000		1.0000	60
1	1	029	029	3437.7	000	59
1	2	058	058	1718.9	000	58
	3	087	087	1145.9	000	57
	4	116	116	859.44	000	56
	5	.00145	.00145	687.55	1.0000	55
1	6	175	175° 204	572.96	000	54 53
	7 8	204 233	233	491.11 429.72	000	52
	9	262	262	381.97	000	51
11	- 1	.00291	.00291	343.77	1.0000	50
		320	320	312.52	.99999	49
1		349	349	286.48	999	48
1		378.	378	264 44	999	47
1	4	407	407	245.55	999	46
11	5	.00436	.00436	229.18	.99999	45
119		465	465	214.86	999	44
1'		495	495	202.22	999	43
13		524	524	190.98	999	42
19	- 1	553	553	180.93	998	41
20		.00582	.00582	171.89	.99998	40
2 2		611 640	611 640	163.70 156.26	998 998	39 38
2	3	669	669	149.47	998	37
24		698	698	143.24	998	36
25	5	.00727	.00727	137.51	.99997	35
20	3	756	756	132.22	997	34
27		785	785	$127.32 \\ 122.77$	997	33
28		814	815	122.77	997	32
29		844	844	118.54	996	31
30		.00873	.00873	114.59	.99996	30
32		902 931	902 931	110.89	996	29
33		960	960	107.43 104.17	996 995	28 27
34		.00989	.00989	101.11	995	26
35		.01018	.01018	98.218	.99995	25
36		047	047	95.489	995	24
37		076	076	92.908	994	23
38		105	105	90.463	994	22
39	- 1	134	135	88.144	994	21
40		.01164	.01164	85.940	.99993	20
4:		193	193	83.844	993	19
4:		$\frac{222}{251}$. 222	81.847 79.943	993 992	18 17
44		280	280	78.126	992	16
4	- 1	.01309	.01309	76.390	.99991	15
46		338	338	74.729	991	14
47	7	367	367	73.139	991	13
48		396	396	71.615	990	12
49		425	425	70.153	990	11
50		.01454	.01455	68.750	.99989	10
51		483 513	484	67.402	989	9
53		542	513 542	66.105 64.858	989 988	8
54		571	571	63.657	988	6
58	- 1	.01600	.01600	62.499	.99987	5
56		629	629	61.383	987	4
5		658	658	60.306	986	3
58		687	687	59.266	986	2
55		716	716	58.261	985	1
, 80	4	.01745	°.01746	57.290	.99985	0
-	1	Cos	Ctm	Tan	Sin	′

net	ric F	ınctio	ns — 1	٥	[I
1	Sin	Tan	Ctn	Cos	
0	.01745	.01746	57.290	.99985	60
1 2	774 803	775 804	56.351 55.442	984 984	59 58
3	832	833	54.561	983	57
4	862	862	53.709	983	56
5 6	.01891	.01891	52.882 52.081	.99982 982	55
7	949	949	51.303	• 981	53
8 9	.01978	.01978	50.549 49.816	980 980	52 51
10	.02036	.02036	49.104	.99979	50
11 12	065	066	48.412 47.740	979	49
12 13	094	095 124	47.740	978	48 47
14	123 152	153	47.085 46.449	977 977	46
15	.02181	.02182	45.829	.99976	45
16	211	211	45.226	976	44
17 18	240 269	240 269	44.639 44.066	975 974	43
19	298	298	43.508	974	41
20	.02327	.02328	42.964	.99973	40
21 22	356 385	357 386	42.433 41.916	972 972	39 38
23	414	415	41.411	971	37
24	443	444	40.917	970	36
25 26	.02472 501	.02473 502	40.436 39.965	.99969 969	35 34
27	530	531	39.506	968	33
28 29	560	560	39.057	967	32 31
30	.02618	.02619	38.618 38.188	.99966	30
31	647	648	37.769	965	29
32	676 705	677 706	37.358 36.956	964 963	28 27
34	734	735	36.563	963	26
35	.02763	.02764	36.178	.99962	25
36	792 821	793 822	35.801 35.431	961 960	24 23
38	850	851	35.070	959	22
39	879	881	34.715	959	21
40 41	.02908 938	.02910 939	34.368 34.027	.99958 957	20
42	967	968	33.694	956	18
43	.02996	.02997	33.366	. 955	17
44 45	.03025	.03026	33.045 32.730	954 .99953	16 15
46	083	084	32.421	952	14
47 48	112	114	32.118	952	13
49	141 170	143 172	31.821 31.528	951 950	12 11
50	.03199	.03201	31.242	.99949	10
51	228	230	30.960	948	9
52 53	257 286	259 288	30.683 30.412	947 946	8 7
54	316	317	30.145	945	6
55	.03345	.03346	29.882	.99944	5
56 57	374 403	376 405	29.624 29.371	943 942	4
58	432	434	29.122	941	2
59 60	461 .03490	.03492	28.877 28.636	940	0
80					-
لــــا	Cos	Ctn	Tan	Sin	

'	Sin	Tan	Ctn	Cos			'	Sin	Tan	Ctn	Cos	
0	.03490	.03492	28.636	.99939	60		0	.05234	.05241	19.081	.99863	60
1	519	521	.393	938	.59		1	263	270	18.976	861	59.
2	548	550	28.166	937	58		2	292	299	.871	860	58
3	577	579	27.937	936	57 56		3	321	328	.768	858	57
4	606	609	.712	935			4	350	357	.666	857	56
5	.03635	.03638 667	27.490 .271	.99934 933	55 54		5 6	.05379 408	.05387	18.564	.99855 854	55 54
6 7	664 693	696	27.057	932	53	1	7	437	416 445	.366	852	53
8	723	725	26.845	931	52		8	466	474	.268	851	52
9	752	754	.637	930	51		9	495	503	,171	849	51
10	.03781	.03783	26.432	.99929	50		10	.05524	.05533	18.075	.99847	50
11	810	812	.230	927	49		īĭ	553	562	17.980	846	49
12	839	842	26.031	926	48		12	582	591	.886	844	48
13	868	871	25.835	925	47		13	611	620	.793	842	47
14	897	900	.642	924	46		14	640	649	.702	841	46
15	.0 3926	.03929	25.452	.99923	45		15	.05669	.05678	17.611	.99839	45
16	955	958	.264	922	44		16	698	708	.521	838	44
17	.03984	.03987	$25.080 \\ 24.898$	921 919	43		17	727	737 766	.431	836 834	43 42
18	.04013 042	.04016	.719	918	41		18 19	756 785	795	.256	833	41
19		046	24.542		40		20	.05814	.05824	17.169	.99831	40
20	.04071 100	.04075 104	.368	.99917 916	39		21	.05814	854	17.169	829	39
22	129	133	.196	915	38		22	873	883	16.999	827	38
23	159	162	24.026	913	37	1	23	902	912	.915	826	37
24	188	191	23.859	912	36		24	931	941	.832	824	36
25	.04217	.04220	23.695	.99911	35		25	.05960	.05970	16.750	.99822	35
26	246	250	.532	910	34		26	.05989	.05999	.668	821	34
27	275	279	.372	909	33		27	.06018	.06029	.587	819	33
28	304	308	.214	907	32		28	047	058	.507	817	32
29	333	337	23.058	906	31		29	076	087	.428	815	31
30	.04362	.04366	22.904	.99905	30		30	.06105	.06116	16.350	.99813	30 29
$\begin{vmatrix} 31 \\ 32 \end{vmatrix}$	391 420	395 424	.752	904 902	29 28		31 32	134 163	145 175	.272	812 810	28
33	449	424	.454	901	27		33	192	204	.119	808	27
34	478	483	.308	900	26		34	221	233	16.043	806	26
35	.04507	.04512	22.164	.99898	25		35	.06250	.06262	15.969	.99804	25
36	536	541	22.022	897	24		36	279	291	.895	803	24
37	565	570	21.881	896	23		37	308	321	.821	801	23
38	594	599	.743	894	22		38	337	350	.748	799	22
39	623	628	.606	893	21		39	366	379	.676	797	21
40	.04653	.04658	21.470	.99892	20		40	.06395	.06408	15.605	.99795	20
41	682	687	.337	890	19		41	424	438 467	.534 .464	793 792	19 18
42	711 740	716 745	205 21.075	889 888	18 17		42 43	453 482	496	.394	790	17
44	769	774	20.946	886	16		44	511	525	.325	788	16
45	.04798	.04803	20.819	.99885	15		45	.06540	.06554	15.257	.99786	15
46	827	833	.693	883	14		46	569	584	.189	784	14
47	856	862	.569	882	13		47	598	613	.122	782	13
48	885	891	.446	881	12		48	627	642	15.056	780	12
49	914	920	.325	879	11		49	656	671	14.990	778	11
50	.04943	.04949	20.206	.99878	10		50	.06685	.06700	14.924	.99776	10
51	.04972	.04978	20.087	876	9		51	714	730 759	.860 .795	774 772	8
52	.05001 030	.05007	19.970 .855	875 873	8 7		52 53	743 773	788	.732	770	7
53 54	059	066	.855	872	6		54	802	817	.669	768	6
55	.05088	.05095	19.627	.99870	5		55	.06831	.06847	14.606	.99766	5
56	117	124	.516	869	4		56	860	876	.544	764	4
57	146	153	.405	867	3		57	889	905	.482	762	3
58	175	182	.296	866	2		58	918	934	.421	760	2
59	205	212	.188	864	1		59	947	963	.361	758	1
60	.05234	.05241	19.081	.99863	0		60	.06976	.06993	14,301	.99756	-0
	Сов	Ctn.	Tan	Sin	1	ا با		COS	Ctm	Tan	Sin	

	Sin	Tan	Ctn	Cos		ı
0	.06976	.06993	14.301	.99756	60	
1	.07005	.07022	.241	754	59	
2 3	034	051	.182	752	58	
4	063 092	080 110	.124	750 748	57 56	
5				.99746	55	
	.07121 150	.07139 168	14.008 13.951	744	54	
6 7	179	197	.894	742	53	
8	208	227	.838	740	52	
9	237	256	.782	738	51	
10	.07266	.07285	13.727	.99736	50	
11	295	314	.672	734	49	
12	324	344	.617	731 729	48	
13 14	353 382	373 402	.563 .510	727	47 46	
15	.07411	.07431	13.457	.99725	45	
16	440	461	.404	.99723 723	44	ŀ
17	469	490	.352	721	43	
18	498	519	.300	719	42	
19	527	548	.248	716	41	
20	.07556	.07578	13.197	.99714	40	
21	585	607	.146	712	39	
22	614	636	.096	710	38	
23 24	643 672	665 695	13.046 12.996	708 705	37 36	ı
25	.07701	.07724	12.947	.99703	35	ı
26	730	753	.898	701	34	
27	759	782	.850	699	33	l
28	788	812	.801	696	32	ı
29	817	841	.754	694	31	ı
80	.07846	.07870	12.706	.99692	30	l
31	875	899	.659	689	29	
32 33	904 933	929 958	.612 .566	687 685	28	ı
34	962	.07987	.520	683	27 26	ı
35	.07991	.08017	12.474	.99680	25	١
36	.08020	046	.429	678	24	ı
37	049	075	.384	676	23	١
38	078	104	.339	673	22	l
39	107	134	.295	671	21	l
40	.08136	.08163	12.251	.99668	20	١
41	165	192	.207	666	19	ı
42 43	194 223	221 251	.163 .120	664 661	18 17	ı
44	252	280	.077	659	16	1
45	.08281	.08309	12.035	.99657	15	1
46	310	339	11.992	654	14	١
47	339	368	.950	652	13	l
48	368	397	.909	649	12	١
49	397	427	.867	647	11	l
50 51	.08426 455	.08456 485	11.826 .785	.99644 642	10	١
52	484	514	.745	639	8	١
53	513	544	.705	637	7	۱
54	542	573	.664	635	6	۱
55	.08571	.08602	11.625	.99632	5	١
56	600	632	.585	630	4	l
57	629	661	.546	627 625	3 2	١
T	_	690	.507 - 468	622	1	۱
i'	nia	Tan	TEN	~10	مَا	١

eti	ic ru	nction	[I		
,	Sin	Tan	Ctn	Cos	
0	.08716	.08749	11.430	.99619	60
1	745	778	.392	617	59
3	774	807	.354	614	58
4	803 831	837 866	.316 .279	612 609	57 56
5	.08860 889	.08895 925	11.242 .205	.99607 604	55 54
7	918	954	.168	^602	53
8	947	.08983	.132	599	52
9	.08976	.09013	.095	596	51
10	.09005	.09042	11.059	.99594	50
11	034	071	11.024	591	49
12 13	063	101	10.988	588	48
13	092	130	.953	586	47
14	121	159	.918	583	46
15	.09150	.09189	10.883	.99580	45
16 17	179 208	$\frac{218}{247}$.848 .814	578 575	44 43
18	237	277	.780	572	42
19	266	306	.746	570	41
20	.09295	.09335	10.712	.99567	40
21	324	365	.678	564	39
22	353	394	.645	562	38
23	382	423	.612	559	37
24	411	453	.579	556	36
25	.09440	.09482	10.546	.99553	35
26	469	511	.514	551	34
$\begin{array}{c} 27 \\ 28 \end{array}$	498 527	541 570	.481 .449	548 545	33 32
29	556	600	.417	542	31
80	.09585	.09629	10.385	.99540	30
31	614	658	.354	537	29
32	642	688	.322	534	28
33	671	717	.291	531	27
34	700	746	.260	528	26
85	.09729	.09776	10.229	.99526	25
36 37	758 787	805 834	.199	523 520	24 23
38	816	864	.138	517	$\frac{23}{22}$
39	845	893	.108	514	21
40	.09874	.09923	10.078	.99511	20
41	903	952	.048	508	19
42	932	.09981	10.019	506	18
43	961	.10011	9.9893	503	17
44	.09990	040	.9601	500	16
45	.10019	.10069	9.9310	.99497	15
46 47	048 077	099 128	.9021 .8734	494 491	14 13
48	106	158	.8448	488	12
49	135	187	.8164	485	11
50	.10164	.10216	9.7882	.99482	10
51	192	246	.7601	479	9
52	221	275	.7322	476	8
53	250	305	.7044	473	7 6
54	279	334	.6768	470	
55	.10308	.10363	9.6493 .6220	.99467 464	. 5
56 57	337 366	393 422	.5949	461	3
58	395	452	.5679	458	2
59	424	481	.5411	455	1
				.99452	0

1	′	Sin	Tan	Ctn	Cos	
	0	.10453	.10510	9.5144	.99452	60
1	1	482	540	.4878	449	59
1	2	511	569	.4614	446	58
-	3	540	599 628	.4352 .4090	443	57
-	5	.10597	.10657	9.3831	.99437	56 55
1	6		687	.3572	434	54
1		626 655	716	.3315	431	53
I	7 8	684	746	.3060	428	52
١	9	713	775	.2806	424	51
1	10	.10742	.10805	9.2553	.99421	50
1	11	771	834	.2302	418	49
1	12 13	800 829	863 893	.2052	415 412	48
1	14	858	922	.1555	409	46
1	15	.10887	.10952	9.1309	.99406	45
١	16	916	.10981	.1065	402	41
١	17	945	.11011	.0821	399	43
١	18	.10973	040	.0579 .0338	396	42
١	19	.11002	070		393	41
I	20	.11031	.11099	9.0098	.99390	40
1	21 22	060 089	128 158	8.9860 .9623	386 383	39 38
1	23	118	187	.9387	380	37
1	24	147	217	.9152	377	36
١	25	.11176	.11246	8.8919	.99374	35
1	26	205	276	.8686	370	34
1	27	234	305	.8455	367	33
1	28	263	335	.8225	364	32
1	29	291	364	.7996	360	31
1	30 31	.11320 349	.11394 423	8.7769	.99357 354	30
1	32	378	423 452	.7542 .7317	351	29 28
1	33	407	482	.7093	347	27
I	34	436	511	.6870	344	26
١	35	.11465	.11541	8.6648	.99341	25
ı	36	494	570	.6427	337	24
١	37	523 552	600 629	.6208	334 331	23
ı	38 39	580	659	.5989 .5772	327	22 21
١	40	.11609	.11688	8.5555	.99324	20
١	41	638	718	.5340	320	19
ı	42	667	747	.5126	317	18
1	43	696	777	.4913	314	17
١	44	725	806	.4701	310	16
١	45	.11754	.11836	8.4490	.99307	15
1	46 47	783 812	865 895	.4280 .4071	303 300	14 13
١	48	840	924	.3863	297	12
1	49	869	954	.3656	293	11
I	50	.11898	.11983	8.3450	.99290	10
1	51	927	.12013	.3245	286	9
ı	52 53	956 .11985	042	.3041	283	8 7
ı	54	.12014	072 101	.2636	279 276	6
I	55	.12013	.12131	8.2434	.99272	5
1	56	071	160	.2234	269	
l	57	100	190	.2035	265	3
١	58	129	219	.1837	262	2
١	59	158	249	.1640	258	1
ŀ	60	.12187	.12278	8.1443	.99255	0
L	1	Cos	Ctan.	Tan	Sin	<u>'</u>

1	Sin	Tan	Ctn	Cos	
0	.12187	.12278	8.1443	.99255	60
1	216	308	.1248	251	59
3	245 274	338 367	.1054	248 244	58 57
4	302	397	.0667	240	56
5	.12331	.12426	8.0476	.99237	55
6	360	456	.0285	233	54
7 8	389	485	8.0095	230	53
- 8 9	418 447	515 544	7.9906	226 222	52 51
10	.12476	.12574	7.9530	.99219	50
11	504	603	.9344	215	49
12	533	633	.9158	211	48
13	562	662	.8973	208	47
14	591	692	.8789	204	46
15 16	.12620 649	.12722 751	7.8606 .8424	.99200	45 44
17	678	781	.8243	193	43
18	706	810	.8062	189	42
19	735	840	.7882	186	41
20	.12764	.12869	7.7704	.99182	40
$\frac{21}{22}$	793 822	899 929	.7525 .7348	178 175	39 38
23	851	958	.7171	171	37
24	880	.12988	.6996	167	36
25	.12908	.13017	7.6821	.99163	35
26	937	047	.6647	160	34
$\begin{array}{c} 27 \\ 28 \end{array}$.12995	076 106	.6473 .6301	156 152	33 32
29	.13024	136	.6129	148	31
30	.13053	.13165	7.5958	.99144	30
31	081	195	.5787	141	29
32	110	224 254	.5618	137	28
33 34	139 168	284	.5281	133 129	27 26
35	.13197	.13313	7.5113	.99125	25
36	226	343	.4947	122	24
37	254	372	.4781	118	23
38 39	283 312	402 432	.4615 .4451	114 110	$\frac{22}{21}$
40	.13341	.13461	7.4287	.99106	20
41	370	491	.4124	102	19
42	399	521	.3962	098	18
43	427	550	.3800 .3639	094	17
44	456	580 .13609	7.3479	.99087	16 15
45 46	.13485	639	.3319	083	14
47	543	669	.3160	079	13
48	572	698	.3002	075	12
49	600	728	.2844	071	11
50	.13629 658	.13758 787	7.2687 .2531	.99067 063	10
51 52	687	817	.2375	059	8
53	716	846	.2220	055	7
54	744	876	.2066	051	6
55	.13773	.13906	7.1912	.99047	5
56 57	802 831	935 965	.1759 .1607	043	4 3
58	860	.13995	.1455	035	2
59	889	.14024	.1304	031	1
60	.13917	.14054	7.1154	.99027	0
	Cos	Ctn	Tan	Sin	1

1	Sin	Tan	Ctn	Cos	
0	.13917	.14054	7.1154	.99027	60
1 2	946 .13975	084 113	.0855	023 019	59 58
3	.14004	143	.0706	015	57
5	.14061	173	.0558 7.0410	.99006	56 55
6	090	.14202 232	.0264	.99002	54
8	119 148	262 291	7.0117 6.9972	.98998 994	53 52
9	177	321	.9827	990	51
10	.14205	.14351	6.9682	.98986	50
11 12	234 263	381 410	.9538 .9395	982 978	49 48
13	292	440	.9252	973	47
14 15	320 .14349	470 .14499	.9110 6.8969	969 .98965	46
16	378	529	.8828	961	45 44
17	407	559	.8687	957	43
18 19	436 464	588 618	.8548	953 948	42 41
20	.14493	.14648	6.8269	.98944	40
21 22	522 551	678 707	.8131 .7994	940 936	39 38
23	580	737	.7856	931	37
24	608	767	.7720	927	36
25 26	.14637 666	.14796 826	6.7584 .7448	.98923	35 34
27	695	856	.7313	914	33
28 29	$723 \\ 752$	886 915	.7179 .7045	910 906	32 31
80	.14781	.14945	6.6912	.98902	30
31	810	.14975	.6779	897	29
32 33	838 867	.15005 034	.6646 .6514	893 889	28 27
34	896	064	.6383	884	26
35 36	.14925 954	.15094 124	6.6252 $.6122$.98880 876	25 24
37	.14982	153	.5992	871	23
38 39	.15011	183 213	.5863 .5734	867 863	22 21
40	.15069	.15243	6.5606	.98858	20
41	097	272	.5478	854	19
42 43	126 155	$\frac{302}{332}$.5350 .5223	849 845	18 17
44	184	362	.5097	841	16
45 46	.15212 241	.15391 421	6.4971 .4846	.98836 832	15 14
47	270	451	.4721	827	13
48 49	299 327	481 511	.4596 .4472	823 818	12 11
50	.15356	.15540	6.4348	.98814	10
51 52	385	570	.4225	809	9
53	414 442	600 630	.4103 .3980	805 800	8
54	471	660	.3859	796	6
55	.15500 529	.15689 719	6.3737	.98791 787	5 4
57	557	749	.3496	782	3
58 59	586 615	779 809	.3376 .3257	778 773	2
60	.15643	.15838	6.3138	.98769	ō
	Cos	Ctm	Tan	Sin	1

<u> </u>	Sin	Tan	Ctn	Cos	
0	.15643	.15838	6.3138	.98769	60
1	672	868	.3019	764	59
2 3	701 730	898 928	.2901	760 755	58 57
4	758	958	.2666	751	56
5	.15787	.15988	6.2549	.98746	55
6	816	.16017	.2432	0 741	54
7	845	047	.2316	737	53
8	873 902	077 107	.2200	732 728	52 51
10	.15931	.16137	6.1970	.98723	50
11	959	167	.1856	718	49
12	.15988	196	.1742	714	48
13 14	.16017 046	226 256	.1628 .1515	709 704	47 46
15	.16074	.16286	6.1402	.98700	45
16	103	316	.1290	695	44
17	132	346	.1178	690	43
18	160	376	.1066	686	42
19	189	405	.0955	681	41
20	.16218	.16435	6.0844	.98676	40
21 22	246 275	465 495	.0734	671 667	39 38
23	304	525	.0514	662	37
24	333	555	.0405	657	36
25	.16361	.16585	6.0296	.98652	35
26	390	615	.0188	648	34
27	419	645	6.0080	643	33
28 29	447 476	674 704	5.9972 .9865	638 633	32 31
30	.16505	.16734	5.9758	.98629	30
31	533	764	.9651	624	29
32	562	794	.9545	619	28
33 34	591 620	824 854	.9439 .9333	614 609	27 26
35	.16648	.16884	5.9228	.98604	25
36	677	914	.9124	600	24
37	706	944	.9019	595	23
38	734	.16974	.8915	590	22
39	763	.17004	.8811	585	21
40 41	.16792 820	.17033 063	5.8708 .8605	.98580 575	20
42	819	093	.8502	570	18
43	878	123	.8400	565	17
44	906	153	.8298	561	16
45	.16935	.17183	5.8197	.98556	15
46 47	.16992	213 243	.8095 .7994	551 546	14 13
48	.17021	273	.7894	541	12
49	050	303	.7794	536	11
50	.17078	.17333	5.7694	.98531	10
51 52	107 136	363 393	.7594 .7495	526 521	8
53	164	423	7396	516	7
54	193	453	.7297	511	6
55	.17222	.17483	5.7199	.98506	5
56	250	513	.7101	501	4
57 58	279 308	543 573	.7004 .6906	496 491	3 2
59	336	603	.6809	486	í
60	,17365	.17633	5.6713	.98481	0
	Cos	Ctn	Tan	Sin	

1	Sin	Tan	Ctn	Cos	
0	.17365	.17633	5.6713	.98481	60
1	393	663	.6617	476	59
$\frac{2}{3}$	422	693	.6521	471	58
3	451	723 753	.6425	466	57
4	479	1		461	
5	.17508	.17783	5.6234	.98455 450	55 54
6 7	537 565	843	.6045	445	53
8	594	873	.5951	440	52
9	623	903	.5857	435	51
10	.17651	.17933	5.5764	.98430	50
11	680	963	.5671	425	49
12	708	.17993	.5578	420	48
13	737 766	.18023	.5485 .5393	414 409	47 46
14		.18083	5.5301	1	1
15	.17794 823	113	.5209	.98404	45
17	852	143	.5118	394	43
18	880	173	.5026	389	42
19	909	203	.4936	- 383	41
20	.17937	.18233	5.4845	.98378	40
21	966	263	.4755	373	39
22	.17995	293	.4665	368	38
23 24	.18023	323 353	.4575 .4486	362 357	37 36
			5.4397		
25 26	.18081 109	.18384	.4308	.98352 347	35 34
27	138	444	.4219	341	33
28	166	474	.4131	336	32
29	195	504	.4043	331	31
30	.18224	.18534	5.3955	.98325	30
31	252	564	3868	320	29
32	281	594	.3781	315	28
34	309 338	624 654	.3694 .3607	310 304	27 26
35	.18367	.18684	5.3521	.98299	25
36	395	714	.3435	294	24
37	424	745	.3349	288	23
38	452	775	.3263	283	22
39	481	805	.3178	277	21
40	.18509	.18835	5.3093	.98272	20
41	538	865	.3008	267	19
42 43	567 595	895 925	.2924	261 256	18 17
44	624	955	.2755	250	16
45	.18652	.18986	5.2672	.98245	15
46	681	.19016	.2588	240	14
47	710	046	.2505	234	13
48	738	076	.2422	229	12
49	767	106	.2339	223	11
50	.18795 824	.19136	5.2257	$.98218 \\ 212$	10
51 52	824 852	166 197	.2174	207	8
53	881	227	.2011	201	7
54	910	257	.1929	196	6
55	.18938	.19287	5.1848	.98190	- 5
56	967	317	.1767	185	4
57	.18995	347	.1686	179	3
59	.19024 052	378 408	.1606 .1526	174 168	2
60	.19081	.19438	5.1446	.98163	ô
-	Cos	Ctan.	Tan	Sin	Ť
	. 005	O ULL	TOTI	DIII.	

1	Sin	Tan	Ctm	Cos	
0	.19081	.19438	5.1446	.98163	60
$\frac{1}{2}$	109 138	468 498	.1366 .1286	157 152	59 58
3	167	529	.1207	146	57
4	195	559	.1128	140	56
5	.19224	.19589	5.1049	.98135	55
6 7	252 281	619 649	.0970	129 124	54 53
8	309	680	.0814	118	52
9	338	710	.0736	112	51
10	.19366 395	.19740 770	5.0658	.98107	50
12	423	801	.0504	096	49 48
13	452	831	.0427	090	47
14	481	861	.0350	084	46
15 16	.19509 538	.19891 921	5.0273	.98079	45 44
17	566	952	.0121	067	43
18	595	.19982	5.0045	061	42
19	623	.20012	4.9969	056	41
20 21	.19652 680	.20042 073	4.9894 .9819	.98050 044	40 39
22	709	103	.9744	039	38
23	737	133	.9669	033	37
24	766	164	.9594	027	36
25 26	.19794 823	.20194 224	4.9520	.98021 016	35 34
27	851	254	.9372	010	33
28	880	285	.9298	.98004	32
29	2008	315	.9225	.97998	31
30	.19937 965	.20345	4.9152	.97992 987	30 29
32	.19994	406	.9006	981	28
33	.20022	436	.8933	975	27
34 35	.20079	466 .20497	.8860 4.8788	.97963	26 25
36	108	527	.8716	958	24
37	136	557	.8644	952	23
38 39	165 193	588 618	.8573 .8501	946 940	22 21
40	.20222	.20648	4.8430	.97934	20
41	250	679	.8359	928	19
42	279	709	.8288	922	18
43	307 336	739 770	.8218 .8147	916 910	17 16
45	.20364	.20800	4.8077	.97905	15
46	393	830	.8007	899	14
47	421	861	.7937	893	13
48 49	450 478	891 921	.7867 .7798	887 881	12 11
50	.20507	.20952	4.7729	.97875	10
51	535	.20982	.7659	869	9
52 53	563 592	.21013	.7591 .7522	863 857	8 7
54	620	073	.7453	851	6
55	20649	.21104	4.7385	.97845	5
56	677	134	.7317	839	3
57 58	706 734	164 195	.7249	833 827	2
59	763	225	.7114	821	ĩ
60	.20791	.21256	4.7046	197,815	0
	Cos	Cta	Tan	Sin	'

4 3

345

1	Sin	Tan	Ctn	Cos]	1	Sin	Tan	Ctn	Cos	Ī
0	.20791	.21256	4.7046	.97815	60	7	0	.22495	.23087	4.3315		1
1	820	286	.6979	809	59	1	1	523	117	.3257	430	
3	848	316 347	.6912	803 797	58	I	3	552 580	148 179	.3200	424 417	1
4	905	377	.6779	791	56	l	4	608	209	.3086	411	ı
5	.20933	.21408	4.6712	.97784	55	1	5	.22637	.23240	4.3029		1
6	962	438	.6646	778	54	l	6	665	271	.2972	398	1
8	.20990	469 499	.6580	772 766	53 52	1	8	693 722	301 332	.2916	391	ı
9	047	529	.6448	760	51	l	9	750	363	.2803	378	١
10	.21076	.21560	4.6382	.97754	50	l	10	.22778	.23393	4.2747	.97371	l
11	104	590	.6317	748	49	İ	11	807	424	.2691	365	١
12	132 161	621 651	.6252 .6187	742 735	48 47	l	12 13	835 863	455 485	.2635	358 351	ı
14	189	682	.6122	729	46	1	14	892	516	.2524	345	l
15	.21218	.21712	4.6057	.97723	45	ı	15	.22920	.23547	4.2468	.97338	I
16	246	743	.5993	717	44	1	16	948	578	.2413	331	١
17	275 303	773	.5928	711	43	l	17	.22977	608	.2358	325	ı
18 19	331	804 834	.5864	705 698	42 41	1	18 19	.23005	639 670	.2303	318 311	ı
20	.21360	.21864	4.5736	.97692	40	1	20	.23062	.23700	4.2193	.97304	١
21	388	895	.5673	686	39		21	090	731	.2139	298	١
22 23	417	925	.5609	680	38		22	118	762	.2084	291	١
24	445 474	956 .21986	.5546 .5483	673 667	37 36	}	23 24	146 175	793 823	.2030	284 278	١
25	.21502	.22017	4.5420	.97661	85	1	25	.23203	.23854	4.1922	.97271	l
26	530	047	.5357	655	34		26	231	885	.1868	264	ı
27	559	078	.5294	648	33		27	260	916	.1814	257	ŀ
28 29	587 616	108 139	.5232 .5169	642 636	32 31		28 29	288 316	.23977	.1760 .1706	251 244	l
30	.21644	.22169	4.5107	.97630	30		30	.23345	.24008	4.1653	.97237	١
31	672	200	.5045	623	29	1	31	373	039	.1600	230	
32	701	231	.4983	617	28		32	401	069	.1547	223	l
33 34	729 758	261 292	.4922 .4860	611 604	27 26		33	429 458	100 131	.1493	217 210	1
35	.21786	.22322	4.4799	.97598	25		35	.23486	.24162	4.1388	.97203	1
36	814	353	.4737	592	24		36	514	193	.1335	196	ľ
37	843	383	.4676	585	23		37	542	223	.1282	189	
38 39	871 899	414 414	.4615 .4555	579	22 21		38 39	571	254	.1230	182	l
40	.21928	.22475	4.4494	.97566	20		40	.23627	.24316	.1178 4.1126	.97169	١
41	956	505	.4434	560	19		41	656	347	.1074	162	ľ
42	.21985	536	.4373	553	18	1	42	684	377	.1022	155	l
43 44	.22013	567	.4313	547	17		43	712	408	.0970	148	l
45	.22070	597 .22628	.4253 4.4194	.97534	16 15		44	740	.24470	.0918	.97134	ŀ
46	098	658	.4134	528	14		46	.23769 797	501	4.0867	127	ŀ
47	126	689	.4075	521	13		47	825	532	.0764	120	l
48 49	155 183	719 750	.4015	515	12		48	853	562	.0713	113	l
50	.22212	.22781	.3956 4.3897	.97502	11 10		49 50	882	593	.0662	106	
51	240	811	.3838	496	10		51	.23910 938	.24624 655	4.0611 .0560	.97100	١.
52	268	842	.3779	489	8		52	966	686	.0509	086	
53 54	297 325	872 903	.3721 .3662	483 476	7 6		53 54	.23995	717	.0459	079	
55	.22353	.22934	4.3604	.97470	5		55	.24023 .24051	.24778	.0408 4.0358	.97065	
56	382	964	.3546	463	4		56	079	809	.0308	058	
57	410	.22995	.3488	457	3		57	108	840	.0257	051	
58 59	438 467	.23026 056	.3430	450	2		58	136	871	.0207	044	
60	22495	.23087	.3372 4.3315	07427	1		59 60	164	902	.0158	037	
				.97437	÷		00	.24192	.24933	4.0108	.97030	-
	Cos	Ctn	Tan	Sin	'	i	1	Cos	Ctan	Tan	Sin	

Γ7	Sin	Tan	Ctn	Cos	,
-	-	-			-
0	.24192 220	.24933 964	4.0108	.97030 023	60 59
1 2	249	.24995	4.0009	015	58
3	277	.25026	3.9959	008	57
4	305 .24333	.25087	.9910	.97001	56
5	362	118	3.9861 .9812	.96994 987	55 54
7	390	149	.9763	980	53
8	418	180	.9714	973	52
9	446	211	.9665	966	51
10	.24474 503	.25242 273	3.9617 .9568	.96959 952	50 49
12	531	304	.9520	945	48
13	559	335	.9471	937	47
14	587	366	.9423	930	46
15 16	.24615 644	.25397 428	3.9375 .9327	916	45
17	672	459	.9279	909	43
18	700	490	.9232	902	42
19	728	521	.9184	894	41
20 21	.24756 784	.25552 583	3.9136 .9089	.96887 880	40
22	813	614	.9042	873	39 38
23	841	645	.8995	866	37
24	869	676	.8947	858	36
25	.24897	.25707	3.8900	.96851	85
26 27	925 954	738 769	.8854 .8807	844 837	34 33
28	.24982	800	.8760	829	32
29	.25010	831	.8714	822	31
30	.25038	.25862	3.8667	.96815	30
31	066 094	893 924	.8621 .8575	807 800	29 28
33	122	955	.8528	793	27
34	151	.25986	.8482	786	26
35	.25179	.26017	3.8436	.96778	25
36 37	207 235	048 079	.8391 .8345	771 764	24 23
38	263	110	.8299	756	22
39	291	141	.8254	749	21
40	.25320	.26172	3.8208	.96742	20
41	348 376	203 235	.8163 .8118	734 727	19 18
43	404	266	.8073	719	17
44	432	297	.8028	712	16
45	.25460	.26328	3.7983	.96705	15
46 47	488 516	359 390	.7938 .7893	697 690	14 13
48	545	421	.7848	682	12
49	573	452	.7804	675	11
50	.25601	.26483	3.7760	.96667	10
51 52	629 657	515 546	.7715	660 653	9
53	685	577	.7671 .7627	645	7
54	713	608	.7583	638	6
55	.25741	.26639	3.7539	.96630	5
56 57	769 798	670 701	.7495 .7451	623 615	3
58	826	733	.7408	608	2
59	854	764	.7364	600	1
60	.25882	.26795	3.7321	.96593	0
	Cos	Ctn	Tan	Sin	1

16 17 18 19 20 21 22 22 24 25 27 28 29 30 31 32 33 34 44 44 44 44 44 44 44 44 44 44 44	.25882 910 938 966 .25994 .26022 050 079 107 135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500 528	26795 826 857 888 920 26951 26982 27013 044 076 27107 138 169 201 232 27263 294 326 357 357 357 451 482	3.7321 .7277 .7234 .7191 .7148 3.7105 .7062 .7019 .6976 .6933 3.6891 .6806 .6764 .6722 3.6680 .6536 .6554 .6554 .6512 3.6470 .6429	.96598 578 570 562 .96555 547 540 532 .96517 509 502 494 486 .96479 471 466 448	59 58 57 56 55 54 53 52 51 50 49 48 47 46 43 44 43 42
23 3 4 5 6 7 8 9 10 111 12 13 14 15 16 17 18 19 20 12 22 24 25 27 28 29 30 33 23 33 34 44 42 43 44 44 44 44 44 44 44 44 44 44 44 44	938 966 .25994 .26022 050 079 107 135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	857 888 920 .26951 .26982 .27013 044 076 .27107 138 169 201 232 .27263 .27263 .357 388 .27419 451 482	.7234 .7191 .7148 3.7105 .7062 .7019 .6976 .6933 3.6891 .6848 .6806 .6764 .6722 3.6680 .6536 .6554 .6512 3.6470 .6429	578 570 562 .96555 547 540 532 .96517 509 502 494 486 .96479 471 466 448	58 57 56 55 54 53 52 51 50 48 47 46 45 44 43
4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 22 22 24 25 27 28 29 30 33 33 34 42 42 44 44 45 64 47 84 9 50 51 52	966 .25994 .26022 050 079 107 135 .26163 191 247 275 .26303 331 359 387 415 .26443 471 500	888 920 .26951 .26982 .27013 .044 .076 .27107 .138 .169 .201 .27263 .27263 .27263 .294 .326 .326 .326 .327 .388 .27419 .451 .482	.7191 .7148 3.7105 .7062 .7019 .6976 .6933 3.6891 .6848 .6806 .6722 3.6680 .6638 .6594 .6512 3.6470 .6429	570 562 .96555 547 540 532 524 .96517 509 502 494 486 .96479 471 463 456 448	57 56 55 54 53 52 51 50 49 48 47 46 45 44 43
4 5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 22 22 24 25 27 28 29 30 33 33 34 42 42 44 44 45 64 47 84 9 50 51 52	.25994 .26022 050 079 107 135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	920 .26951 .26952 .27013 044 076 .27107 138 169 201 232 .27263 .294 326 357 388 .27419 451 481	3.7148 3.7105 .7062 .7019 .6976 .6933 3.6891 .6848 .6806 .6764 .6722 3.6680 .6534 .6554 .6512 3.6470 .6429	562 96555 547 540 532 524 .96517 509 502 494 486 .96479 471 466 448	56 55 54 53 52 51 50 49 48 47 46 45 44 43
5 6 7 8 9 10 112 13 14 15 16 17 18 19 20 122 23 24 25 26 33 33 34 40 41 42 34 44 45 51 25 25 26 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	.26022 050 079 107 135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	.26951 .26982 .27013 .044 .076 .27107 .138 .169 .201 .232 .27263 .294 .357 .388 .27419 .451 .482	3.7105 .7062 .7019 .6976 .6933 3.6891 .6848 .6806 .6764 .6722 3.6680 .6638 .6554 .6552 3.6470 .6429	.96555 547 540 532 524 .96517 509 502 494 486 .96479 471 463 456 448	55 54 53 52 51 50 49 48 47 46 45 44 43
6 7 8 9 10 11 12 13 14 15 6 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 40 42 34 44 44 45 55 55 25 25 25 25 25 25 25 25 25 25 25	050 079 107 135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	.26982 27013 044 076 .27107 138 169 201 232 .27263 294 326 357 388 .27419 451 482	.7062 .7019 .6976 .6933 3.6891 .6848 .6806 .6764 .6722 3.6680 .6638 .6596 .6554 .6551 3.6470	547 540 532 524 .96517 509 502 494 486 .96479 471 463 456 448	54 53 52 51 50 49 48 47 46 45 44 43
8 9 11 12 13 14 15 16 17 18 19 20 122 23 24 25 26 27 28 29 30 31 32 33 34 40 44 42 44 44 45 51 25 25 26 26 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29	107 135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	044 076 .27107 138 169 201 232 .27263 294 326 357 388 .27419 451 482	.6976 .6933 3.6891 .6848 .6806 .6764 .6722 3.6680 .6638 .6596 .6554 .6512 3.6470	532 524 .96517 509 502 494 486 .96479 471 463 456 448	52 51 50 49 48 47 46 45 44
9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 26 27 28 29 30 13 2 24 25 26 27 28 29 30 40 41 42 44 45 50 51 25 25 25 25 25 25 26 27 28 29 20 27 28 20 27	135 .26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	076 .27107 138 169 201 232 .27263 294 326 357 388 .27419 451 482	.6933 3.6891 .6848 .6806 .6764 .6722 3.6680 .6638 .6596 .6554 .6512 3.6470	524 .96517 509 502 494 486 .96479 471 463 456 448	51 50 49 48 47 46 45 44 43
10 11 11 12 13 14 16 17 18 19 20 22 22 22 22 22 22 22 22 23 23 24 44 44 44 44 44 44 44 44 44 44 44 44	.26163 191 219 247 275 .26303 331 359 387 415 .26443 471 500	.27107 138 169 201 232 .27263 294 326 357 388 .27419 451 482	3.6891 .6848 .6806 .6764 .6722 3.6680 .6638 .6596 .6554 .6512 3.6470 .6429	.96517 509 502 494 486 .96479 471 463 456 448	50 49 48 47 46 45 44 43
11 12 13 14 15 16 17 18 19 20 21 22 22 24 25 25 27 28 29 33 33 34 44 44 44 44 44 44 44 44 44 44	191 219 247 275 .26303 331 359 387 415 .26443 471 500	138 169 201 232 .27263 294 326 357 388 .27419 451 482	.6848 .6806 .6764 .6722 3.6680 .6638 .6596 .6554 .6512 3.6470 .6429	509 502 494 486 .96479 471 463 456 448	49 48 47 46 45 44 43
12 13 14 15 16 17 18 19 20 21 22 22 24 25 27 28 29 30 31 32 33 34 44 44 44 45 55 55 55 55 55 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57	219 247 275 .26303 331 359 387 415 .26443 471 500	169 201 232 .27263 294 326 357 388 .27419 451 482	.6806 .6764 .6722 3.6680 .6638 .6596 .6554 .6512 3.6470 .6429	502 494 486 .96479 471 463 456 448	48 47 46 45 44 43
14 15 16 17 18 19 20 21 22 23 24 25 26 29 20 31 22 23 24 42 24 44 44 45 51 25 26 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	275 .26303 331 359 387 415 .26443 471 500	232 .27263 294 326 357 388 .27419 451 482	3.6680 .6638 .6596 .6554 .6512 3.6470 .6429	486 .96479 471 463 456 448	46 45 44 43
15 16 17 18 19 20 21 22 24 25 26 27 28 30 31 32 33 34 41 42 44 44 45 50 51 52 52 52 54 54 54 54 54 54 54 54 54 54 54 54 54	.26303 331 359 387 415 .26443 471 500	.27263 294 326 357 388 .27419 451 482	3.6680 .6638 .6596 .6554 .6512 3.6470 .6429	.96479 471 463 456 448	45 44 43
16 17 18 19 20 22 22 22 22 24 25 26 27 28 29 30 33 33 34 44 44 44 44 44 44 44 44 44 44	331 359 387 415 .26443 471 500	294 326 357 388 .27419 451 482	.6638 .6596 .6554 .6512 3.6470 .6429	471 463 456 448	44 43
17 18 20 21 22 22 24 25 26 27 28 29 31 32 33 34 40 44 44 44 44 44 44 44 44 44 44 44 44	359 387 415 .26443 471 500	326 357 388 .27419 451 482	.6596 .6554 .6512 3.6470 .6429	463 456 448	43
18 19 20 21 22 24 25 26 27 28 30 33 33 34 40 44 44 44 44 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	387 415 .26443 471 500	357 388 .27419 451 482	.6554 .6512 3.6470 .6429	456 448	
20 21 22 22 24 25 27 28 29 30 33 33 34 44 44 44 44 44 44 44 45 50 50 50 50 50 50 50 50 50 50 50 50 50	.26443 471 500	.27419 451 482	3.6470 .6429		
21 22 24 25 26 27 28 30 31 32 33 34 40 44 44 44 44 46 47 48 49 50 50 50 50 50 50 50 50 50 50 50 50 50	471 500	451 482	.6429	00440	41
22 23 24 25 26 29 30 31 23 33 4 45 50 51 52 55 25 26 5	500	482		.96440	40
23 24 25 27 28 29 30 31 32 33 34 40 41 42 43 44 45 55 55 55 55 55 55 55 56 56 56 56 56 56				433	39
24 25 26 27 28 30 31 32 33 34 45 55 51 52		1 010	.6387	425 417	38 37
25 26 27 28 29 30 31 32 33 33 34 40 41 42 43 44 45 50 50 50 50 50 50 50 50 50 50 50 50 50	556	545	.6305	410	36
27 28 30 31 32 33 34 35 36 37 38 39 40 44 42 44 45 55 55 55 55 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	.26584	.27576	3.6264	.96402	85
28 29 30 31 32 33 34 40 41 42 44 44 45 55 55 55 57	612	607	.6222	394	34
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 50 50 50 50 50 50 50 50 50 50 50 50 50	640	638	.6181	386	33
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	668 696	670 701	.6140 .6100	379 371	32 31
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	.26724	.27732	3.6059	.96363	80
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	752	764	.6018	355	29
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 50	780	795	.5978	347	28
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	808	826	.5937	340	27
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	836	858	.5897	.96324	26
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	.26864 892	.27889 921	3.5856 .5816	316	25 24
38 39 40 41 42 43 44 45 46 47 48 49 50	920	952	.5776	308	23
40 41 42 43 44 45 46 47 48 49 50 51	948	.27983	.5776 .5736	301	22
41 42 43 44 45 46 47 48 49 50	.26976	.28015	.5696	293	21
42 43 44 45 46 47 48 49 50 51	.27004	.28046	3.5656	.96285	20
43 44 45 46 47 48 49 50 51 52	032 060	077 109	.5616 .5576	277 269	19 18
44 45 46 47 48 49 50 51 52	088	140	.5536	261	17
46 47 48 49 50 51	116	172	.5497	253	16
47 48 49 50 51 52	27144	.28203	3.5457	.96246	15
48 49 50 51 52	172 200	234 266	.5418	238 230	14 13
49 50 51 52	200	200 297	.5339	222	12
51 52		329	.5300	214	îĩ
52	256	.28360	3.5261	.96206	10
52	256 27284	391	.5222	198	9
	256 27284 312	423 454	.5183 .5144	190 182	8
54	256 27284 312 340	486	.5105	174	7
	256 27284 312		3.5067	.96166	5
56	256 27284 312 340 368 396	.28517	.5028	158	4 3
57	256 27284 312 340 368 396 27424 452	.28517 549		150	3
58 59	256 .27284 312 340 368 396 27424 452 480	549 580	.4989	142	2
	256 27284 312 340 368 396 27424 452 480 508	549 580 612	.4989 .4951	130	ō
<u></u>	256 .27284 312 340 368 396 27424 452 480	549 580	.4989	.96126	

	Sin	Tan	Ctn	Сов]	<u></u>	Sin	Tan	Ctn	Cos	1_
0	.27564	.28675	3.4874	.96126	60	l	0	.29237	.30573	3.2709	.95630	60
1	592	706	.4836	118	59	l	1	265	605	.2675	622	59
2	620	738	.4798	110	58	1	2	293	637	.2641	613	58
3 4	648 676	769 801	.4760	102 094	57 56	1	3 4	321 348	669 700	2607	605 596	57
			į.		55		5			.2573		56
5	.27704 731	.28832 864	3.4684 .4646	.96086 078	54		6	.29376 404	.30732	3.2539 .2506	.95588 579	55 54
7	759	895	.4608	070	53		7	432	796	.2506	571	53
8	787	927	.4570	062	52		8	460	828	.2438	562	52
) ğ	815	958	4533	054	51		9	487	860	.2405	554	51
10	.27843	.28990	3.4495	.96046	50		10	.29515	.30891	3.2371	.95545	50
11	871	.29021	.4458	037	49		11	543	923	.2338	536	49
12	899	053	.4420	029	48		12	571	955	.2305	528	48
13	927	084	.4383	021	47		13	599	.30987	.2272	519	47
14	955	116	.4346	013	46		14	626	.31019	.2238	511	46
15	.27983	.29147	3.4308	.96005	45		15	.29654	.31051	3.2205	.95502	45
16	.28011	179	.4271	.95997	44		16	682	083	.2172	493	44
17 18	039 067	210 242	.4234 .4197	989 981	43 42		17	710	115	.2139	485	43
19	095	274	.4160	972	42		18 19	737 765	147 178	.2106 .2073	476 467	42 41
20	.28123	.29305	3.4124	.95964	40		20	.29793	.31210	3.2041	.95459	40
21	150	337	.4087	956	39		21	.29193 821	242	.2008	450	39
22	178	368	4050	948	38		22	849	274	1975	441	38
23	206	400	.4014	940	37		23	876	306	.1943	433	37
24	234	432	.3977	931	36		24	904	338	.1910	424	36
25	.28262	.29463	3.3941	.95923	35		25	.29932	.31370	3.1878	.95415	35
26	290	495	.3904	915	34		26	960	402	.1845	407	34
27	318	526	.3868	907	33		27	.29987	434	.1813	398	33
28 29	346 374	558 590	.3832	898	32		28	.30015	466	.1780	389	32
30			.3796	890	31		29	043	498	.1748	380	31
31	.28402	.29621 653	3.3759 .3723	.95882 874	30 29		30 31	.30071	.31530 562	3.1716	.95372 363	30 29
32	457	685	.3687	865	28		32	126	594	.1684 .1652	354	28
33	485	716	3652	857	27		33	154	626	.1620	345	27
34	513	748	.3616	849	26		34	182	658	1588	337	26
35	.28541	.29780	3,3580	.95841	25		35	.30209	.31690	3.1556	.95328	25
36	569	811	.3544	832	24		36	237	722	.1524	319	24
37	597	843	.3509	824	23		37	265	754	.1492	310	23
38	625	875	.3473	816	22		38	292	786	.1460	301	22
39	652	906	.3438	807	21		39	320	818	.1429	293	21
40	.28680	.29938	3.3402	.95799	20		40	.30348	.31850	3.1397	.95284	20
41 42	736	.30001	.3332	791 782	19 18		41 42	376 403	882 914	.1366 .1334	275 266	19 18
43	764	033	.3297	774	17		43	431	946	.1303	257	17
44	792	065	.3261	766	16		41	459	.31978	.1271	248	16
45	.28820	.30097	3.3226	.95757	15		45	.30486	.32010	3.1240	.95240	15
46	847	128	.3191	749	14		46	514	042	.1209	231	14
47	875	160	.3156	740	13		47	542	074	.1178	222	13
48	903	192	.3122	732	12		48	570	-106	.1146	213	12
49	931	224	.3087	724	11		49	597	139	.1115	204	11
50	.28959	.30255	3.3052	.95715	10		50	.30625	.32171	3.1084	.95195	10
51 52	.28987	287 319	.3017	707	9	1	51 52	653	203 235	.1053	186	9
53	042	351	.2983	698 690	8		53	680 708	235 267	.1022	177 168	8
54	070	382	.2914	681	6		54	736	299	.0961	159	6
55	.29098	.30414	3.2879	.95673	5		55	.30763	.32331	3.0930	.95150	5
56	126	446	.2845	664	4		56	791	363	.0899	142	4 (
57	154	478	.2811	656	3		57	819	396	.0868	133	3
58	182	509	.2777	647	2		58	846	428	.0838	124	2
59	209	541	.2743	639	1		59	874	460	,0807	115	1
60	.29237	.30573	3.2709	.95630	0		60	.30902	.32492	3.0777	.95106	0
	Cos	Ctn	Tan	Sin	,	`		Cos	Ctm.	Tan	Sin	'

1	Sin	Tan	Ctn	Cos	L
0	.30902	.32492	3.0777	.95106	60
1	929 957	524 556	.0746	097	59
3	.30985	588	.0686	088 079	58 57
4	.31012	621	.0655	070	56
5	.31040	.32653	3.0625	.95061	55
6	068	685 717	.0595	052 043	54 53
8	123	749	.0535	033	52
9	151	782	.0505	024	51
10	.31178	.32814	3.0475	.95015	50
11 12	206 233	846 878	.0445	.95006 .94997	49 48
13	261	911	.0385	988	47
14	289	943	.0356	979	46
15 16	.31316	.32975	3.0326	.94970 961	45
17	372	040	.0267	952	43
18	399	072	.0237	943	42
19	427	104	.0208	933	41
20 21	.31454 482	.33136 169	3.0178	.94924 915	40 3 9
22 23	510	201	.0120	906	38
	537	233	.0090	897	37
24 25	.31593	.33298	3.0032	888	36
26	620	330	3.0003	.94878 869	35 34
27	648	363	2.9974	860	33
28 29	675 703	395 427	.9945 .9916	851 842	32 31
30	.31730	.33460	2.9887	.94832	30
31	758	492	- 9858	823	29
32	786	524	.9829	814	28
33 34	813 841	557 589	.9800 .9772	805 795	27 26
35	.31868	.33621	2.9743	.94786	25
36	896	654	.9714	777	24
37	923 951	686 718	.9686 .9657	768 758	23 22
39	.31979	751	.9629	749	21
40	.32006	.33783	2.9600	.94740	20
41	034	816	.9572	730	19
42	061 089	848 881	.9544	721 712	18 17
44	116	913	.9487	702	16
45	.32144	.33945	2.9459	.94693	15
46	171 199	.33978	.9431	684	14 13
48	227	.34010	.9403 .9375	674 665	12
49	254	075	.9347	656	11
50	.32282	.34108	2.9319	.94646	10
51 52	309	140 173	.9291	637 627	9 8
53	364	205	.9235	618	7
54	392	238	.9208	609	6
55 56	.32419	34270	2.9180 .9152	.94599 590	5
57	474	335	.9192	580	-3
58	502	368	:9097	571	2
59 60	529	400	.9070	561	1 0
00	.32557	.34433	2.9042	.94552	-
	Cos	Ctn	Tan	Sin	′ (

′	Sin	Tan	Ctn	Cos	
0	.32557	.34433	2.9042	.94552	60
1	584	465	.9015	542	59
3	612	498	.8987	533	58
4	639 667	530	.8960	523	57
		563	.8933	514	56
5	.32694 722	.34596	3.8905	.94504	55
7	749	628 661	.8878	495	54 53
8	777	693	.8824	485 476	52
9	804	726	.8797	466	51
10	.32832	.34758	2.8770	.94457	50
11	859	791	.8743	447	49
12	887	824	.8716	438	48
13	914	856	.8689	428	47
14	942	889	.8662	418	46
15	.32969	.34922	2.8636	.94409	45
16	.32997	954	.8609	399	44
17	.33024	.34987	.8582	390	43
18 19	051 079	.35020	.8556	380	42
		052	.8529	370	41
20	.33106 134	.35085	2.8502	.94361	40
21 22	161	118 150	.8476	351 342	39 38
23	189	183	.8423	332	37
24	216	216	.8397	322	36
25	.33244	.35248	2.8370	.94313	35
26	271	281	.8344	303	34
27	298	314	.8318	293	33
28	326	346	.8291	284	32
29	353	379	.8265	274	31
30	.33381	.35412	2.8239	.94264	30
31	408	445	.8213	254	29
32	436	477	.8187	245	28
33 34	463 490	510 543	.8161 .8135	235 225	27 26
					25
35	.33518 545	.35576 608	2.8109 .8083	.94215 206	24
37	573	641	.8057	196	23
38	600	674	.8032	186	22
39	627	707	.8006	176	21
40	.33655	.35740	2.7980	.94167	20
41	682	772	.7955	157	19
42	710	805	.7929	147	18
43	737	838	.7903	137	17
44	764	871	.7878	127	16
45	.33792 819	.35904	2.7852 $.7827$.94118 108	15
46 47	819 846	937 .35969	.7801	098	13
48	874	.36002	.7776	088	12
49	901	035	.7751	078	11
50	.33929	.36068	2.7725	.94068	10
51	956	101	.7700	058	9
52	.33983	134	.7675	049	8
53	.34011	167	.7650	039	7
54	038	199	.7625	029	6 [
55	.34065	.36232	2.7600	.94019	5
56	093	265	.7575	.94009	4
57	120	298 331	.7550 .7525	.93999 989	3 2
59	147 175	364	.7525	989	1
60	.34202	.36397	2.7475	.93969	ō
					,
ı	Cos	Cta	Tan	Sin	′ 1

1	Sin	Tan	Ctn	Cos]	1	Sin	Tan	Ctm	Cos	Τ
0	.34202	.36397	2.7475	.93969	60	1	0	.35837	.38386	2.6051	.93358	60
1	229	430	.7450	959	59	l	1	864	420		348	
2	257			949	58	l	3		453 487	.6006	337	
3	284 311			929	56	l	4		520	.5961	316	
5	.34339	1	2.7351	.93919	55	1	5	.35973	.38553	2.5938	.93306	
6	366		.7326	909	54	1	6	.36000	587	.5916	295	
7	393		.7302	899 889	53	l	8	027	620 654	.5893	285	
8 9	421 448	661 694	.7277	879	51		9	081	687	.5848	274 264	
10	.34475	1	2.7228	.93869	50		10	.36108	.38721	2.5826	.93253	
ii	503	760	.7204	859	49		11	135	754	.5804	248	
12	530	793	.7179	849	48		12	162	787	.5782	232	
13	557	826	.7155	839	47		13	190	821	.5759	222	
14	584	859	.7130	829	46		14	217	854	.5737	211	46
15 16	.34612 639	.36892 925	2.7106 .7082	.93819 809	45 44		15 16	.36244 271	.38888 921	2.5715 .5693	.93201 190	45 44
17	666	958	.7058	799	43		17	298	955	.5671	180	43
18	694	.36991	.7034	789	42		18	325	.38988	.5649	169	42
19	721	.37024	.7009	779	41		19	352	.39022	.5627	159	41
20	.347.18	.37057	2.6985	.93769	40		20	.36379	.39055	2.5605	.93148	40
$\frac{21}{22}$	775 803	090 123	.6961	759 748	39 38		21 22	406 434	089 122	.5583	137 127	39
23	830	157	.6913	738	37		23	461	156	.5539	116	37
24	857	190	.6889	728	36		24	488	190	.5517	106	36
25	.34884	.37223	2.6865	.93718	35	- 1	25	.36515	.39223	2.5495	.93095	35
26	912	256	.6841	708	34	- 1	26	542	257	.5473	084	34
27	939 966	289	.6818	698	33 32	- 1	27	569	290	.5452	074	33 32
28 29	.34993	322 355	.6794 .6770	688 677	31	- 1	28 29	596 623	324 357	.5430	063 052	31
30	.35021	.37388	2.6746	.93667	30	- 1	30	.36650	.39391	2.5386	.93042	30
31	048	422	.6723	657	29	- 1	31	677	425	.5365	031	29
32	075	455	.6699	647	28	- 1	32	704	458	.5343	020	28
33	102 130	488 521	.6675 .6652	637 626	27 26	1	33 34	731 758	492 526	.5322	.93010	27 26
35	.35157	.37554	2.6628	.93616	25	- 1	35	.36785	.39559	2.5279	.92988	25
36	184	588	.6605	606	24	1	36	812	593	.5257	978	24
37	211	621	.6581	596	23	ı	37	839	626	.5236	967	23
38 39	239 266	654 687	.6558 .6534	585 575	$\frac{22}{21}$	- 1	38 39	867 894	660 694	.5214 .5193	956 945	22 21
40	.35293	.37720	2.6511	.93565	20	- 1	40	.36921	.39727	2.5172	.92935	20
41	320	754	.6488	555	19	- 1	41	948	761	.5150	924	19
42	347	787	.6464	544	18	1	42	.36975	795	.5129	913	18
43	375 402	820	.6441	534 524	17	1	43	.37002	829	.5108	902	17
44	.35429	853 .37887	.6418	.93514	16 15	ı	44 45	029 .37056	.39896	.5086 2.5065	.92881	16 15
46	456	920	$2.6395 \\ .6371$	503	14	- 1	46	083	930	.5044	870	14
47	484	953	.6348	493	13	1	47	110	963	.5023	859	13
48	511	.37986	.6325	483	12	ı	48	137	.39997	.5002	849	12
49 50	538	.38020	.6302	472	11	1	49	164	.40031	.4981	838	11
51	.35565 592	.38053 086	2.6279 .6256	.93462 452	10	1	50 51	.37191 218	.40065 098	2.4960 .4939	.92827 816	9
52	619	120	.6233	441	8		52	245	132	4918	805	8
53	647	153	.6210	431	7	ı	53	272	166	.4897	794	7
54	674	186	.6187	420	6	1	54	299	200	.4876	784	6
55 56	.35701 728	.38220 253	2.6165 .6142	.93410 400	5		55	.37326 353	.40234	2.4855 .4834	.92773 762	5
57	755	286	.6119	389	3	1	57	380	301	.4813	751	3
58	782	320	.6096	379	2	1	58	407	335	.4792	740	2
59	810	353	.6074	368	1	1	59	434	369	.4772	729	1
60	.35837	.38386	2 6051	.93358	0	1.	60	.37461	.40403	2.4751	.92718	0
	Cos	Ctn	Tan	Sin	'	1		Cos	Ctan	Tan	Sin	1

	1	Sin	Tan	Ctn	Cos		1	1	Si
	0	.37461	.40403	2.4751	.92718	60	1	0	.390
	1	488	436	.4730	707	59	1	1	1
	2 3	515 542	470 504	.4709	697 686	58 57	1	3	1
	4	569	538	4668	675	56	1	1 4	li
	5	.37595	.40572	2.4648	.92664	55	1	5	.392
	6 7	622	606	.4627	653	54		6	2
	7	649	640	.4606	642	53	1	7	2
	8 9	676 703	674 707	.4586 .4566	631 620	52 51	1	8 9	3
	10	.37730	.40741	2.4545	.92609	50	l	10	.393
	111	757	775	.4525	598	49	1	lii	
	12	784	809	.4504	587	48	1	12	3
	13	811 838	843 877	.4484	576	47	l	13	4
	14		.40911	2.4443	565	46 45	1	14	304
	15 16	.37865 892	945	.4423	.92554 543	44	1	15	.394
	17	919	.40979	.4403	532	43	1	17	5
	18	946	.41013	.4383	521	42	l	18	5
	19	973	047	.4362	510	41	l	19	5
	20 21	.37999	.41081 115	2.4342 .4322	.92499 488	40	1	20	.396
	22	053	149	4302	477	38	1	22	6
	23	080	183	.4282	466	37	ļ	23	6
	24	107	217	.4262	455	36		24	7
	25	.38134	.41251	2.4242	.92444	35		25	.397
	26 27	161 188	285 319	.4222 .4202	432 421	34 33		26 27	7
ĺ	28	215	353	.4182	410	32		28	8
	29	241	387	.4162	399	31		2 9	8
	30	.38268	.41421	2.4142	.92388	30		30	.398
	$\frac{31}{32}$	295 322	455 490	$.4122 \\ .4102$	377 366	29 28		31 32	9
I	33	349	524	.4083	355	27		33	9
İ	34	376	558	.4063	343	26		34	.399
1	35	.38403	.41592	2.4043	.92332	25		35	.4000
ı	36 37	430 456	626 660	.4023	321 310	24 23		36	00
ı	38	483	694	.4004	299	$\frac{23}{22}$		38	o o
	39	510	728	.3964	287	21		39	1
1	40	.38537	.41763	2.3945	.92276	20		40	.4014
1	41	564	797	.3925	265	19		41	10
١	42 43	591 617	831 865	.3906 .3886	254 243	18 17		42	2
1	44	644	899	3867	231	16		44	24
1	45	.38671	.41933	2.3847	.92220	15		45	.4027
I	46	698	.41968	.3828	209	14		46	30
١	47 48	725 752	.42002	.3808	198 186	13 12		47 48	32 38
1	49	778	036 070	.3789 .3770	175	11		49	38
1	50	.38805	.42105	2.3750	.92164	10		50	.4040
1	51	832	139	.3731	152	9		51	43
	52	859	173	.3712	141	8		52	46
	53 54	886 912	$\frac{207}{242}$.3693	130 119	7 6		53 54	48 51
ı	55	.38939	.42276	2.3654	.92107	5		55	.4054
1	56	966	310	.3635	096	4 3		56	56
	57	.38993	345	.3616	085	3		57	59 62
١	58 59	.39020 046	379 413	.3597 .3578	073 062	2 1		58 59	64
	60	.39073	.42447	2.3559	.92050	ō		60	.4067
		Cos	Ctn	Tan	Sin	7			Cos
•	, ,	000	A 440						

0 .39073	1	Sin	Tan	Ctm	Cos	1
1 100 482 .8839 039 59 2 127 516 .3520 028 68 3 153 551 .3501 016 57 4 180 585 .3483 .92006 56 5 .39207 .42619 2.3464 .982 54 6 234 664 .3445 .982 54 7 260 688 .3426 .971 53 8 287 722 .3407 .959 54 10 .39341 .42791 2.3369 .91936 50 11 367 826 .3351 .902 47 12 394 860 .3332 .914 48 12 394 860 .3332 .914 48 12 39474 .42963 2.3276 .91879 45 15 .39471 .42983 .23276 .91879	0	.39073	49447			80
3 153 551 3801 016 57 4 180 585 .3483 .92005 56 5 .33207 .42619 2.3464 .91994 55 6 234 664 .3445 982 54 7 260 688 .3426 971 59 52 9 314 .757 .3388 .9426 971 50 52 9 314 .42791 2.3369 .91936 51 12 398 991936 49 12 3369 .91876 49 12 3369 .91879 49 12 49 3313 902 47 14 448 929 .3294 891 46 15 .33474 .42963 .3257 .91879 46 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 16 57 34 13	Ιī					
4 180 685 .3483 .92006 66 5 .39207 .42619 .23464 .91994 55 6 6234 6644 .3445 982 54 7 260 688 .3426 971 .53 8 287 722 .3467 959 52 9 314 757 .3388 948 51 10 .39341 .42791 2.3369 .91936 50 11 367 826 .3331 902 47 14 448 929 .3294 891 46 15 .39474 .429963 .23276 .91879 45 16 501 .42998 .3257 868 44 17 528 .43032 .3220 845 42 20 .39608 .43136 2.3183 .91824 40 21 635 170 .3164 810 <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2					
5 .39207 .42619 2.3464 .91994 55 6 234 654 .3445 982 54 7 260 688 .3426 971 58 8 287 722 .3407 959 52 9 314 .757 .3388 948 51 10 .39341 .42791 2.3369 .91936 50 11 367 826 .3351 925 49 12 394 860 .3332 914 48 12 394 8313 902 47 14 448 929 .3294 891 46 15 .39474 42963 2.3276 .91879 45 16 501 .42963 2.3276 .91879 45 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42						
66 234 654 3445 982 B4 7 260 688 3426 971 53 8 287 722 3407 959 52 9 314 757 3388 948 51 10 .39341 .42791 23369 .91936 50 11 367 826 .3313 902 47 12 394 860 .3313 902 47 14 448 929 .3294 891 46 15 .39474 .42963 2.3276 .91879 45 16 501 .42998 .3257 868 44 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43136 2.3183 .91822 40 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-					
7 260 688 3426 971 53 8 287 722 3407 959 52 9 314 757 3388 948 51 10 .39341 .42791 2.3369 .91936 50 11 367 826 .3332 994 48 13 421 894 .3313 902 47 14 448 929 .3294 891 46 15 .39474 .42963 2.3276 .91879 45 16 501 .42998 .3257 868 43 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 20 .39608 .43126 2.3183 .91829 40 21 635 170 .3164 810 39 22 661 205 .3943 3127 7						
9 314 757 ,3388 948 51 10 ,39341 ,42791 ,23369 ,91936 50 11 367 826 ,3331 992 47 12 394 860 ,3332 914 48 13 421 894 ,3313 992 47 14 448 929 ,3294 891 46 15 ,39474 ,42963 ,23276 ,91879 45 16 551 ,42963 ,23276 ,91879 45 17 528 ,43032 ,3238 856 43 18 555 067 ,3220 845 42 20 ,38608 ,43106 ,23183 ,91822 40 21 635 170 ,3164 810 39 22 661 205 ,3146 779 38 23 ,3941 ,43308 2,3090 ,91764 </td <td>7</td> <td>260</td> <td>688</td> <td>.3426</td> <td>971</td> <td>53</td>	7	260	688	.3426	971	53
10 .39341 .42791 2.3369 .91936 50 11 367 826 .3351 925 48 13 421 894 .3313 902 47 14 448 929 .3294 891 46 15 .39474 .42963 2.3276 .91879 45 16 501 .42998 .3257 868 44 17 528 .43032 2.3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43126 2.3183 .91822 40 21 635 170 .3164 810 39 22 661 205 .3146 799 38 23 688 239 .3127 787 77 787 37 25 .39741 .43308						
11 367 826 .3351 925 49 12 394 860 .3332 914 48 13 421 894 .3313 902 47 15 .39474 .42963 .23276 .91879 45 16 501 .42998 .3257 868 44 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43126 2.3183 .91822 40 21 661 205 .3146 799 38 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 .755 36 25 .39741 .43338 2.3090 .91764						
12						
14 448 929 .3294 891 46 15 .39474 42963 .32576 .91879 45 16 5501 .42998 .3257 868 44 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43136 2.3183 .91822 40 21 635 170 .3146 799 38 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 775 36 26 768 343 .3072 752 34 27 795 378 .3053 741 33 30 .39875 .43481 2.998 9706 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
15 .39474 .42963 2.3276 .91879 45 16 501 .42998 .3257 .868 44 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43136 2.3183 .91822 40 21 665 170 .3164 799 38 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 .775 36 25 .39741 .43308 .3072 752 34 27 795 378 .3053 741 33 28 224 412 .3035 729 34 30 .39875 .34381 2.2998 .91706						
16 501 .42998 .3257 868 44 17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43136 .3183 .91822 40 21 635 170 .3164 810 39 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 .775 36 26 768 343 .3072 752 34 27 795 578 .3053 741 33 28 822 412 .3036 729 32 29 848 447 .3017 718 31 30 .39875 .43481 .2998 .9176 30			1			
17 528 .43032 .3238 856 43 18 555 067 .3220 845 42 19 581 101 .3201 833 41 20 .39608 .43136 2.3183 .91822 40 21 635 170 .3146 799 38 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 .755 36 26 768 343 .3072 752 34 27 795 578 .3053 741 35 28 822 412 .3035 729 32 29 848 447 .3017 718 31 30 .39875 .43481 2.998 .91706 30 31 992 516 .2980 .694 29						
18 555 067 3220 845 42 19 581 101 3201 833 41 20 39608 43136 2.3183 .91822 40 21 635 170 .3164 810 39 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 775 36 25 .39741 .43308 2.3090 .91764 35 27 795 378 .3053 741 33 28 822 412 .3035 729 34 30 .39875 .34381 2.2998 .91706 30 31 992 550 .2962 683 28 33 955 585 .2942 660 29 34 .39982 620 .2925 600 26<						
20 .39608 .43136 2.3183 .91822 40 21 635 170 .3164 810 39 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 775 56 25 .39741 .43308 2.3090 .91764 35 26 768 343 .3072 752 34 27 795 378 3053 729 32 28 822 412 .3036 729 32 29 848 447 .3017 718 31 30 .39875 .43481 2.2998 .91706 30 31 902 516 .2980 683 28 32 928 550 .2962 663 28 34 .39982 620 .2925 600	18				845	42
21 635 170 3164 810 39 22 661 205 .3146 799 38 22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 775 36 25 .39741 .43308 2.3090 .91764 35 27 795 378 .3053 741 33 28 822 412 .3035 729 32 29 848 447 .3017 718 31 30 .39875 .43481 2.2998 .91706 30 31 992 550 .2962 683 28 33 955 585 .2942 663 28 34 .39982 620 .2925 660 26 35 .40008 .43654 2.2907 .91648		1			1	1
22 661 205 .3146 799 38 23 688 239 .3127 787 37 24 715 274 .3109 .91764 35 25 .39741 .43308 2.3090 .91764 35 26 768 343 .3072 752 34 27 795 378 .3053 741 33 28 822 412 .3035 729 32 29 848 447 .3017 718 31 30 .39875 .43481 2.2998 .91706 30 31 902 516 .2980 694 20 32 928 550 .2962 683 28 33 955 585 .2944 671 27 34 .39982 620 .2925 600 26 35 .4008 .43654 2.2907 .91648 <						
23 688 239 3.127 787 37 24 715 274 .3109 775 36 25 .39741 .43308 2.3090 .91764 35 26 .768 343 .3072 741 33 27 .795 378 .3053 741 33 28 822 412 .3036 729 32 29 848 447 .3017 718 31 30 .39875 .43481 2.2980 694 29 31 902 516 .2980 684 29 32 928 550 .2925 660 26 34 .39982 620 .2925 660 26 35 .4008 .43654 2.2907 .91648 25 36 .035 68 .2883 633 24 37 .062 724 .2871 .625 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
24 715 274 .3109 775 36 25 .39741 .43308 2.3090 .91764 35 26 768 343 .3072 752 34 27 795 378 .3053 741 33 28 822 412 .3035 729 32 29 848 447 .3017 718 31 30 .39875 .43481 2.2998 .91706 30 31 902 516 .2980 694 29 32 928 550 .2962 683 28 33 955 585 .2944 671 27 34 .39982 620 .2925 660 26 35 .40008 .43654 2.2907 .91648 25 36 035 689 .2889 636 24 37 062 724 .2871 .91590						
26 768 343 3972 752 34 27 795 378 3053 741 33 28 822 412 3036 729 32 29 848 447 3017 718 31 30 .39875 .43481 2.2998 .91706 30 31 902 516 .2980 694 29 32 928 550 .2962 6683 28 33 955 585 .2944 671 27 34 .39982 620 .2925 660 26 35 .40008 .43654 2.2907 .91648 25 36 035 636 2.2835 613 22 37 062 724 .2871 625 23 38 088 758 .2835 613 22 40 .40141 .43828 2.2817 .91590 2						
27 795 378 3053 741 33 28 822 412 3035 729 32 29 848 447 3017 718 31 30 .39875 .43481 2.2998 .91706 30 31 902 516 .2980 .694 29 32 928 550 .2962 683 28 33 955 585 .2944 671 27 34 .39982 620 .2925 660 26 35 .40008 .43654 2.2907 .91648 25 36 035 689 .2889 636 24 37 062 724 .2871 .625 23 38 088 758 .2853 601 21 40 .40141 .43828 .22817 .91590 20 41 168 862 .2799 578 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
29 822 412 3035 729 32 29 8-8 447 3017 718 31 30 39875 43481 2.2980 694 29 31 992 516 .2980 694 29 32 928 550 .2962 683 28 34 .39982 620 .2925 660 26 35 .40008 .43654 .2889 636 24 37 062 724 .2871 625 23 38 088 758 .2889 636 24 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2781 566 18 43 221 932 .2763 555 16 45 .40275 .44001 .2.2727 .91531 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
29 848 447 .3017 718 31 30 .39875 .43481 .2998 .91706 30 31 .992 516 .2980 684 28 32 .928 550 .2962 683 28 34 .39982 620 .2925 600 26 35 .40008 .43654 2.2907 .91648 25 36 035 689 .2889 636 24 38 088 758 .2835 613 22 39 115 793 .2885 601 21 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2781 565 18 43 221 932 .2763 555 17 44 248 .43966 .2745 453					729	
31 902 516 2.980 694 29 32 928 550 2.962 683 28 34 .39982 620 .2925 660 26 35 .40008 .43654 2.2907 .91648 25 36 .035 689 2.889 636 24 37 .062 .724 .2871 625 23 38 .088 .758 .2853 613 22 39 .115 .793 .2835 601 21 40 .40141 .43828 2.2817 .91590 20 41 .168 .862 .2799 .578 19 42 .195 .897 .2781 .566 18 43 .221 .932 .2763 .555 17 44 .248 .43966 .2745 .543 16 45 .40275 .44001 .2.2727 .						
33 998 550 2962 683 28 34 39955 585 2944 671 27 34 39982 620 2925 600 26 35 40008 43654 2.2907 .91648 25 36 035 689 .2889 636 24 37 062 724 .2871 625 23 38 088 758 .2885 601 21 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2781 566 18 43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .40275 .44001 .2.2727 .91531 15 46 301 036 .2709 519 <td< td=""><td>30</td><td>.39875</td><td>.43481</td><td></td><td>.91706</td><td></td></td<>	30	.39875	.43481		.91706	
33 .955 .585 .2944 671 27 34 .3982 620 .2925 660 26 54 .40008 .43654 2.2907 .91648 25 36 035 689 .2889 636 24 37 062 724 .2871 625 23 38 088 758 .2853 601 22 39 115 793 .2835 601 21 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2763 555 17 43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .40275 .44001 2.2727 .91531 15 45 .40275 .44001 2.2727 .91531 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
34 .39982 620 .2925 660 26 35 .40008 .43654 .2899 .91648 25 36 .035 .689 .2889 636 24 37 .062 .724 .2871 625 23 38 .088 .758 .2885 601 21 40 .40141 .43828 2.2817 .91590 20 41 .168 .862 .2799 .578 19 42 .195 .897 .2781 .566 18 43 .221 .932 .2763 .555 17 44 .248 .43966 .2745 .555 17 44 .248 .43966 .27727 .91531 15 45 .0275 .44001 .2.2727 .91531 15 44 .3381 .140 .2.2657 .496 12 49 .381 .140 .2.2655<						
35 .40008 .43654 2.2907 .91648 25 36 035 689 .2889 636 24 37 062 724 .2871 .625 23 38 088 758 .2885 613 22 39 115 793 .2835 601 21 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2781 566 18 43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .40275 .44001 2.2727 .91531 15 46 301 036 .2709 .519 14 47 328 071 .2691 508 13 49 381 140 .2655 484 <						
37 062 724 .2871 625 23 38 088 758 .2853 613 22 39 115 793 .2835 601 21 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2781 566 18 43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .40275 .44001 2.2727 .91531 15 46 301 .036 .2709 519 14 47 328 071 .2613 496 12 49 381 140 .2655 484 11 50 .40408 .44172 2.2637 .9472 10 51 434 210 .2620 461 <td< td=""><td>35</td><td></td><td>.43654</td><td></td><td>.91648</td><td>25</td></td<>	35		.43654		.91648	25
38 088 758 .2853 613 22 39 115 793 .2835 601 21 40 .40141 .43828 2.2817 .91590 20 41 168 862 .2799 578 19 42 195 897 .2781 566 18 43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .40275 .44001 2.2727 .91531 15 46 301 .2691 508 13 48 335 105 .2673 496 12 49 381 140 .2653 496 12 49 381 140 .2653 496 12 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9						
39 115 793 .2835 601 21 40 .40141 .43828 2.2817 .91590 20 41 .168 .897 .2781 .566 18 42 .195 .897 .2781 .566 18 43 .221 .932 .2763 .555 17 44 .248 .43966 .2745 .543 16 45 .40275 .44001 .2.2727 .91531 15 46 .301 .036 .2709 .519 14 47 .232 .071 .2691 508 13 48 .355 .105 .2673 .496 12 49 .381 .140 .2655 .484 11 50 .40408 .44175 .2657 .91472 10 51 .434 .210 .2620 .461 9 52 .461 .244 .2602						
40 .40141 .43828 2.2817 .91500 20 41 168 862 .2799 578 19 42 195 897 .2781 566 18 43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .00275 .44001 2.2727 .91531 15 46 301 036 .2709 519 14 47 328 071 .2601 508 13 48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .9472 19 51 434 210 .2620 461 9 52 461 224 .2602 449 8 53 488 279 .2594 437 7<						
41 168 862 2.799 578 19 42 195 897 2.781 566 18 43 221 932 2.763 555 17 44 248 43966 2.745 543 16 45 .40275 .44001 2.2727 .91531 15 46 301 036 2.709 519 14 47 328 071 .2691 508 13 48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9 52 461 244 .2602 461 9 53 488 279 .2584 437 7 54 514 314 .2566 425 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>20</td>						20
43 221 932 .2763 555 17 44 248 .43966 .2745 543 16 45 .40275 .44001 2.2727 .91531 15 46 301 036 .2709 519 14 47 328 071 .2691 508 13 48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 449 8 52 461 224 .2602 449 8 53 488 279 .2584 437 7 54 .514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 334 .2531 390 3 </td <td>41</td> <td>168</td> <td>862</td> <td>.2799</td> <td>578</td> <td></td>	41	168	862	.2799	578	
44 248 .43966 .2745 543 16 45 .40275 .44001 2.2727 .91531 15 46 301 .302 .2709 519 14 47 328 071 .2691 508 13 48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9 52 461 244 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 384 .2531 390 3 58 621 453 .2496 378 2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
45 .40275 .44001 2.2727 .91531 15 46 301 036 .2709 519 14 47 328 071 .2691 508 13 48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 40408 .44175 .2,2637 .91472 10 51 434 210 .2620 461 9 52 461 244 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 334 .2531 390 3 58 621 453 .2496 378 2 59 647 448 .2478 366 1						
46 301 036 .2709 519 14 47 328 071 .2691 508 13 48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9 52 461 224 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 334 .2531 390 3 58 621 453 .2496 378 2 59 647 488 .2478 366 1 60 .40674 .44523 .22466 .91355 0						
48 355 105 .2673 496 12 49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9 52 461 244 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 334 .2531 390 3 58 621 453 .2496 378 2 59 647 448 .2478 366 1 60 .40674 .44523 2.2466 .91355 0	46	301	036	.2709	519	14
49 381 140 .2655 484 11 50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9 52 461 244 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 384 .2513 390 3 58 621 453 .2496 378 2 59 647 488 .2478 366 1 60 .40674 .44523 2.2469 ,91355 0						
50 .40408 .44175 2.2637 .91472 10 51 434 210 .2620 461 9 52 461 244 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 384 .2513 390 3 58 621 453 .2496 378 2 59 647 488 .2478 366 1 60 .40674 .44523 2.2466 .91385 0						
51 434 210 .2620 461 9 52 461 244 .2602 449 8 53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 .40541 .44349 2.2549 .91414 5 56 567 334 .2531 390 3 58 621 453 .2496 378 2 59 647 448 .2478 366 1 60 .40674 .44523 2.2466 .91385 0			1			
53 488 279 .2584 437 7 54 514 314 .2566 425 6 55 40541 .44349 2.2549 .91414 5 56 567 384 .2531 402 4 57 594 418 .2513 390 3 58 621 453 .2496 378 2 59 647 488 .2478 366 1 60 .40674 .44523 2.2469 .91385 0	51	434	210	.2620	461	9
54 514 314 .2566 425 6 55 .40541 .44349 .25249 .91414 5 56 567 384 .2531 402 4 57 594 418 .2513 390 3 58 621 453 .2496 378 2 59 647 448 .2478 366 1 60 .40674 .44523 2.2469 .91385 0	52					8
55 .40541 .44349 2.2549 .91414 5 56 .567 .384 .2531 .402 4 57 .594 .418 .2513 .390 3 58 .621 .453 .2496 .378 2 59 .647 .488 .2478 .366 1 60 .40674 .44523 .2.2469 .91355 0						6
56 567 384 .2531 402 4 57 594 418 .2513 390 3 58 621 453 .2496 378 2 59 647 488 .2478 366 1 60 .40674 .44523 2.2469 .91355 0				- 1		
57 594 418 .2513 390 3 58 621 453 .2496 378 2 59 647 488 .2478 366 1 60 .40674 .44523 2.2469 .91355 0						4
59 647 488 .2478 366 1 60 .40674 .44523 2.2460 ,91355 0	57	594		.2513	390	3
60 .40674 .44523 2.2460 ,91355 0						2
00 110011 112010 112101			1	/		
	90					

1	Sin	Tan	Ctn	Cos	Ŀ
0	.40674	.44523	2.2460	.91355	60
1	700 727	558 593	.2443	343 331	59 58
3	753	627	.2420	319	57
4	780	662	.2390	307	56
5	.40806	.44697	2.2373	.91295	55
6	833	732	.2355	283	54
7	860 886	767 802	.2338	272	53
8 9	913	837	.2320	260 248	52 51
10	.40939	.44872	2.2286	.91236	50
11	966	907	.2268	224	49
12	.40992	942	.2251	212	48
13 14	.41019 045	.44977 .45012	.2234	200 188	47
15	.41072	.45047	2.2199	.91176	45
16	098	082	.2182	164	44
17	125	117	.2165	152	43
18	151	152	.2148	140	42
19 20	178	187	.2130	128	41
20	.41204 231	.45222 257	2.2113 .2096	.91116 104	40
22	257	292	.2079	092	38
23	284	327	.2062	080	37
24	310	362	.2045	068	36
25 26	.41337 363	.45397 432	2.2028 .2011	.91056 044	35 34
27	390	467	.1994	032	33
28	416	502	.1977	020	32
29	443	538	.1960	.91008	31
30 31	.41469	.45573	2.1943	.90996	30
32	496 522	608 643	.1926 .1909	984 972	29 28
33	549	678	1892	960	27
34	575	713	.1876	948	26
85	.41602	.45748	2.1 859	.90936	25
36	628 655	784 819	.1842 .1825	924	24 23
38	681	854	.1828	911 899	23
39	707	889	.1792	887	21
40	.41734	.45924	2.1775	.90875	20
41 42	760 787	960	.1758	863	19
42	813	.45995 .46030	.1742 .1725	851 839	18 17
44	810	065	1708	826	16
45	.41866	.46101	2.1692	.90814	15
46	892	136	.1675	802	14
47 48	919 945	171 206	.1659 .1642	790 778	13 12
49	972	242	.1625	766	ii
50	.41998	.46277	2.1609	.90753	10
51	.42024	312	.1592	741	9
52 53	051 077	348 383	.1576 .1560	729 717	8 7
54	104	418	.1543	704	6
55	.42130	.46454	2.1527	.90692	5
56	156	489	.1510	680	4
57	183 209	525 560	.1494	668 655	3 2
59	235	595	.1461	643	ĩ
60	.42262	.46631	2.1445	.90631	0
	Cos	Ctn	Tan	Sin	,
					'

'	Sin	Tan	Ctn	Cos	
0	.42262	.46631	2.1445	.90631	60
1	288	666	.1429	618	59
2 3	315 341	702 737	.1413	606 594	58 57
4	367	772	.1380	582	56
5	.42394	.46808	2.1364	.90569	55
6	420	843	.1348	557	54
7	446	879	.1332	545	53
8	473	914	.1315	532	52
9	499	950	.1299	520	51
10 11	.42525 552	.46985 .47021	2.1283 .1267	.90507 495	50 49
12	578	056	.1251	483	48
12 13	604	092	.1235	470	47
14	631	128	.1219	458	46
15	.42657	.47163	2.1203	.90446	45
16	683	199	.1187	433	44
17 18	709 736	234 270	.1171	421 408	43 42
19	762	305	.1139	396	41
20	42788	.47341	2.1123	.90383	40
21	815	377	.1107	371	39
22	841	412	.1092	358	38
23	867	448	.1076	346	37
24	894	483	.1060	334	36
25 26	.42920 946	.47519 555	2.1044 .1028	.90321	35 34
27	972	590	.1028	296	33
28	.42999	626	.0997	284	32
29	.43025	662	.0981	271	31
30	.43051	.47698	2.0965	.90259	30
31	077	733	.0950	246	29
32 33	104 130	769 805	.0934	233 221	$\frac{28}{27}$
34	156	840	.0903	208	26
35	.43182	.47876	2.0887	.90196	25
36	209	912	.0872	183	24
37	235	948	.0856	171	23
38 39	261 287	.47984	.0840	158 146	$\frac{22}{21}$
40	.43313	.48019	2.0809	.90133	20
41	340	091	.0794	120	19
42	366	127	.0778	108	18
43	392	163	.0763	095	17
44	418	198	.0748	082	16
45	.43445	.48234	2.0732	.90070	15 14
46 47	471 497	270 306	.0717 .0701	057 045	13
48	523	342	.0686	032	12
49	549	378	.0671	019	11
50	.43575	.48414	2.0655	.90007	10
51	602	450	.0640	.89994	9
52 53	628 654	486 521	.0625	981 968	8 7
54	680	557	.0594	956	6
55	.43706	.48593	2.0579	.89943	5
56	733	629	.0564	930	4
57	759	665 -	.0549	918	3
58 59	785 811	701 737	.0533	905 892	2
80	43837	.48773	2 0503	89879	ō
90					
	Cos	Ctn	Tan	Sin	

0	1	Sin	Tan	Ctn	Cos]	7	Sin	Tan	Ctn	Cos
1	0	.43837	.48773	2.0503	.89879	60		0	.45399	.50953	1-9626	.89101
3							1			.50989		
4 942 917 0.443 828 56 4 503 0.99 5.570 0.48 5 4.3984 .49893 .0413 803 54 6 543 1.356 .9942 0.921 7 .4420 .49923 .0383 .777 52 8 60 246 2914 .8989 9 072 .098 .0383 .764 51 9 632 2233 .950 981 10 .44093 .4934 .2033 .8972 50 10 .45683 .5136 .946 .948 8986 11 .24 .70 .0338 .7397 40 11 .684 356 .9472 .935 12 .151 .242 .0308 .713 .47 13 .736 .490 .444 .920 .444 .920 .445 .934 .934 .935 15 .44229 .49315 .2023							1	2		.51026		074
5 4.3968 4.8953 2.0428 .80816 55 5 4.529 .51136 1.9556 .89035 6 4.3934 4.9889 .0413 803 54 6 554 173 .9042 9021 7 4.4402 4.9026 .0388 777 52 8 606 246 .9514 .88955 9 072 098 .0388 764 51 9 632 283 .9500 99 10 .44098 .49134 2.0338 7373 49 11 684 .9131 1,9486 .88968 12 151 .4938 .9132 72 48 12 .710 .303 .9444 .928 12 151 .4939 .949315 2.0293 .700 46 14 .702 .407 .938 .942 15 .4929 .94931 .0263 674 41 16 .8133 .540							1					
6 4.3394 4.3989 .0413 803 54 6 554 173 .9542 602 7 7.4460 49026 .0388 779 53 7 5580 209 .9528 .89036 10 4.4098 .49134 2.0333 .8775 50 10 .46535 .51319 1,9486 .8895 11 1.24 1.70 .0338 739 49 11 643 356 .9472 955 13 1.77 242 .0308 713 47 13 736 440 .9444 928 14 203 278 .0293 700 46 14 762 4477 .9430 .9444 928 16 255 351 .0263 670 46 14 762 4477 .9430 .9444 928 17 281 387 .0248 465 43 17 8393 577 <							1	1 ~		1	.9570	
T							1					
S							1					
To Color						1						
10							1					
11		1	1		1	1	l		1	1	1	1
12	111						1					
13							1					
14	13	177	242	.0308	713	47	1					
16	14	203	278	.0293	700	46	1	14	762	467	.9430	
17	15				.89687	45	1	15	.45787	.51503	1.9416	.88902
18							1	16				
10												
20 .44359 .49405 2.0204 .89023 40 20 .45917 .51688 1.9347 .88835 21 385 532 .0189 610 30 21 942 724 .9333 822 22 411 568 .0174 597 38 22 968 701 .9319 808 23 437 604 .0100 584 37 23 .45994 798 .9306 795 24 466 640 .0145 571 36 24 .46020 835 .9292 782 25 44490 .49677 2.0130 .8958 35 225 .46040 .835 .9292 782 28 508 786 .0086 519 32 28 123 .161 .927 .726 755 30 .4620 .49858 2.0075 .89493 30 30 .46175 .52057 1.												
21	1	1			1		l		1	3	1	1
22							1					
23							l					
24 464 640 .0145 571 36 24 .46020 835 .9292 782 25 .44490 .49677 2.0130 .89558 35 25 .46046 .51872 1.9278 .8758 26 516 713 .0115 545 34 26 6072 909 .9205 755 27 542 749 .0101 532 33 27 097 946 .9251 741 28 508 788 .0086 519 32 28 123 .51983 .9237 715 30 .44620 .49858 2.0057 .89493 30 30 .46175 .52027 .9210 .88701 31 646 8944 .0042 480 29 31 201 .994 .994 .994 .994 .27 33 252 168 .9109 661 34 724 .5004 1.9944							l					
25 .44490 .496777 2.0130 .89558 35 25 .46046 .51872 1.9278 .88768 26 516 713 .01015 545 34 26 072 909 .9265 755 27 742 749 .0101 532 33 27 097 946 .9251 741 29 594 822 .0072 506 31 29 149 .52020 .9223 712 30 .4620 .49868 2.0057 .89493 30 30 .46175 .52057 1.9210 .88701 31 646 894 .0042 480 29 31 201 .094 .9196 668 32 672 931 .0028 467 28 32 226 131 .9166 688 32 672 931 .0028 467 28 .427 .33 .226 131 .9166 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>							1					
26 516 713 0.0115 545 34 26 072 909 .9205 755 27 542 749 .0101 532 33 27 907 946 .9251 741 28 508 786 .0086 519 32 28 123 .51983 .9237 728 30 .44620 .49858 2.0057 .89493 30 30 .46175 .52057 1.9210 .88701 31 646 894 .0042 480 29 31 201 .094 .9196 688 32 672 931 .0028 467 28 32 226 131 .913 .9166 661 34 724 .50004 1.9999 441 26 34 278 205 .9155 647 25 .44750 .50040 1.9984 .89428 25 35 .46604 .52242 1.9122	25	.44490	.49677	2.0130	.89558	35		25	ł	l .	1	
27		516		.0115			l					
29			749					27	097		.9251	741
80 .44620 .49858 2.0057 .89493 80 30 .46175 .52057 1.9210 .88701 31 646 894 .0042 480 29 31 201 094 .9196 688 32 672 931 .0028 467 28 32 226 131 .9169 661 34 724 .50004 1.9999 441 26 34 273 205 .9169 661 35 .44750 .50040 1.9984 .89428 25 35 .46304 .52242 1.9142 .88634 36 776 076 .9970 415 24 36 330 .279 .9128 620 37 802 113 .9995 402 23 37 355 316 .9115 607 38 828 149 .9941 389 22 38 381 353 .9101 593							1					
31 646 894 .0042 480 29 31 201 094 .9196 688 32 672 931 .0028 467 28 32 226 131 .9196 668 33 698 .49967 2.0013 454 27 33 252 168 .9169 661 34 724 .50004 1.9999 441 26 34 278 205 .9155 647 35 .44750 .50040 1.9984 .89428 25 35 .46604 .52242 1.9142 .88634 36 776 076 .9955 402 23 37 355 316 .9115 607 38 828 149 .9941 389 22 38 331 .9353 .9010 .9088 580 40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 <td></td> <td>ł .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td>		ł .							1		1	
32 672 931 ,0028 467 28 32 226 131 .9183 674 33 698 .4967 2.0013 454 27 33 252 168 .9169 661 34 724 .50004 1.9999 441 26 34 278 205 .9155 647 35 .44750 .50040 1.9984 .89428 25 35 .46304 .52242 1.9142 .88634 36 776 076 .9970 415 24 36 330 279 .9128 620 37 802 113 .9955 402 23 37 355 316 .9115 607 38 828 149 .9941 389 22 38 381 353 .9101 593 40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .88566							1					
33 698 49067 2.0013 454 27 33 252 168 .0160 661 34 724 .50004 1.9999 441 26 34 278 205 .9155 647 85 .44750 .50040 1.9884 .89428 25 35 .46304 .52242 1.9142 .88634 36 776 076 .9970 415 24 36 330 .2224 1.912 .8063 37 802 113 .99955 402 23 37 355 316 .9115 607 38 828 149 .9941 .89926 376 21 39 407 390 .9088 580 40 .44880 .50222 1.9912 .89363 337 18 42 484 501 .9047 539 41 4966 258 .9897 350 19 41 458 464												
34 724 50004 1.9999 441 26 34 278 205 .9155 647 35 .44750 .50040 1.9984 .89428 25 35 .46604 .52242 1,9142 .88634 36 776 076 .9970 415 24 36 330 279 .9128 620 37 802 113 .9955 402 23 37 355 316 .9115 607 38 828 149 .9941 389 22 38 381 353 .9101 593 40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .88566 41 906 258 .9897 350 19 41 458 464 .901 533 42 932 295 .9883 324 17 43 510 538 .9034 526							1					
36 776 076 0.9970 415 24 36 330 279 .0128 620 37 802 113 .9955 402 23 37 355 316 .9115 607 38 828 149 .9941 389 22 38 381 353 39101 593 39 851 185 .9926 376 21 39 407 390 .9088 580 40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .88566 41 906 258 .9897 350 19 41 458 464 .9061 .553 42 932 295 .9883 337 18 42 484 501 .9047 539 43 953 331 .9868 324 17 43 510 538 .9034 526										205		
36 776 076 0.9970 415 24 36 330 279 .9128 620 37 802 113 .9955 402 23 37 355 316 .9115 607 38 828 149 .9941 389 22 38 381 353 39101 593 39 840 .4880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .88566 41 906 258 .9897 350 19 41 458 464 .9061 .553 42 932 295 .9883 337 18 42 484 501 .9047 539 43 958 331 .9868 324 17 43 510 538 .9034 526 45 .45010 .50404 .1,9840 .89298 15 45 .46501 .5053 9020 <t< td=""><td>35</td><td>.44750</td><td>.50040</td><td>1.9984</td><td>.89428</td><td>25</td><td></td><td>35</td><td>.46304</td><td>.52242</td><td>1.9142</td><td>.88634</td></t<>	35	.44750	.50040	1.9984	.89428	25		35	.46304	.52242	1.9142	.88634
38 828 149 .9941 389 22 38 381 353 .9101 593 40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .88566 41 .906 .258 .9897 .350 19 41 .458 .464 .9061 .553 42 .932 .295 .9883 .337 18 42 .484 .501 .9047 .539 42 .932 .295 .9883 .337 18 42 .484 .501 .9047 .539 42 .932 .295 .9883 .324 17 .43 .510 .538 .9034 .526 44 .44984 .368 .9854 .311 16 .44 .536 .575 .9020 .512 45 .45010 .50404 1.9840 .88298 15 .45 .46561 .52613 1.9007<		776	076		415	24	l	36	330	279		620
30 851 185 .9926 376 21 39 407 390 .9088 580 40 .44880 .50222 1.9912 .89363 20 40 .46433 .52427 1.9074 .88566 41 906 258 .9897 350 19 41 438 464 .9061 .553 42 .932 .295 .9883 .337 18 42 484 501 .9047 .539 43 .908 .331 .9868 .324 17 43 510 538 .9034 .526 44 .44984 303 .9898 324 17 43 510 538 .9020 512 45 .45010 .50404 .19840 .88298 15 45 .46561 .52613 1.9007 .88499 47 .062 477 .9811 272 13 47 613 .8977 .458							1					
40 .44880 .50222 1.9912 .89363 20 40 .46333 .52427 1.9074 .88566 41 906 258 .9897 350 19 41 458 464 .9061 553 42 932 .985 .9883 324 17 43 510 538 .9034 526 44 .44984 .368 .9854 311 16 44 .360 .575 .9020 512 45 .45010 .50404 .1,9840 .89298 15 45 .466561 .52613 1,9007 .88493 47 .062 .477 .9811 .272 13 .47 613 687 .890 .8933 485 49 .114 .550 .9782 .245 .1 .49 .664 .761 .8953 .445 50 .45140 .5087 .1 .9768 .89232 10 .50 .46690 .5							1					
41 906 258 .9897 350 19 41 458 464 .9061 553 42 932 295 .9883 337 18 42 484 501 .9047 539 43 958 331 .9868 324 17 43 510 538 9934 526 44 .44984 368 .9854 311 16 44 536 575 .9020 512 45 .45010 .50404 1.9840 .88298 15 45 .46661 .52613 1.9007 .88499 46 036 441 .9825 285 14 46 537 650 .8993 485 47 062 477 .9811 272 13 47 613 687 .8980 472 48 088 514 .9797 259 12 48 639 724 .9967 458							l					
42 932 295 .9883 337 18 42 484 501 .5047 539 43 958 331 ,9868 324 17 43 510 538 .9034 526 44 .44984 368 .9854 311 16 44 536 575 .9920 512 45 .45010 .50404 .19840 .89298 15 45 .46561 .52613 1,9007 .88499 46 036 441 .9825 285 14 46 587 650 .8993 485 47 062 477 .9811 272 13 47 613 687 .8980 472 48 088 514 .9797 259 12 48 639 724 .8967 458 49 114 550 .9782 245 11 49 664 761 .8953 445												
43 958 331 .9868 324 17 43 510 538 .9034 526 44 .44984 368 .9854 311 16 44 536 575 .9020 512 45 .45010 .50404 .19840 .89298 15 45 .46561 .52613 1.9007 .88499 46 036 441 .9825 .285 14 46 587 650 .8993 485 47 062 477 .9811 272 13 47 613 687 .8993 485 48 088 514 .9797 259 12 48 639 724 .3967 458 49 114 .550 .9782 245 11 49 664 761 .9953 445 50 .45140 .50587 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431												
44 .44984 .368 .9854 311 16 44 536 575 .9020 512 45 .45010 .50404 1.9840 .89298 15 45 .466611 .52613 1.9007 .88499 46 036 441 .9825 285 14 46 537 650 .8993 485 47 062 477 .9811 272 13 47 613 687 .8980 472 48 088 514 .9797 259 12 48 639 724 .8967 458 49 114 50 .9782 245 11 49 604 761 .8953 445 50 .45140 .50587 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431 51 1166 623 .9754 219 9 51 716 836 .8927 417												
447 O36 441 .9825 285 14 46 587 650 .8993 485 47 O62 477 .9811 272 13 47 613 687 .8980 472 48 088 514 .9797 259 12 48 639 724 .3967 458 49 114 550 .9782 245 11 49 664 761 .9953 445 50 .45140 .50587 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431 51 166 623 .9754 219 9 51 716 836 .8927 417 52 192 660 .9740 206 8 52 742 873 .9913 404 53 218 696 .9725 193 7 53 767 910 8900 390 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
447 O36 441 .9825 285 14 46 587 650 .8993 485 47 O62 477 .9811 272 13 47 613 687 .8980 472 48 088 514 .9797 259 12 48 639 724 .3967 458 49 114 550 .9782 245 11 49 664 761 .9953 445 50 .45140 .50587 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431 51 166 623 .9754 219 9 51 716 836 .8927 417 52 192 660 .9740 206 8 52 742 873 .9913 404 53 218 696 .9725 193 7 53 767 910 8900 390 <t< td=""><td>45</td><td>1</td><td>.50404</td><td></td><td></td><td></td><td></td><td></td><td>.46561</td><td></td><td>1.9007</td><td>.88499</td></t<>	45	1	.50404						.46561		1.9007	.88499
449 088 514 .9797 259 12 48 639 724 .8967 458 49 114 550 .9782 245 11 49 664 761 .8953 445 50 .45140 .5087 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431 51 166 623 .9740 206 8 52 742 873 .8913 404 53 218 696 .9725 193 7 53 767 910 .8900 390 54 243 733 .9711 180 6 54 793 947 .8873 .88363 55 .45269 .50769 1.9697 .89167 5 55 .46819 .52985 1.8873 .88363 56 295 806 .9683 153 4 56 844 .53022 .8860 349 <	46	036	441	.9825	285	14		46	587	650	.8993	485
49 114 550 .9782 245 11 49 664 761 .8953 445 50 .45140 .50587 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431 51 106 623 .9754 219 9 51 716 836 .8927 417 52 192 660 .9740 206 8 52 742 873 .8913 404 53 218 696 .9725 193 7 53 767 910 .8900 390 54 243 733 .9711 180 6 54 793 947 .8887 377 55 .45269 .50769 1.9697 .89167 5 55 .46819 .52985 1.8873 .88363 56 295 806 .9683 153 4 56 844 .53022 .8860 349												
50 4.5140 .50587 1.9768 .89232 10 50 .46690 .52798 1.8940 .88431 51 1166 623 .9754 219 9 51 716 836 .8927 417 52 192 660 .9740 206 8 52 742 873 3913 404 53 218 696 .9725 193 7 53 767 910 .8900 390 54 243 733 .9711 180 6 54 793 947 .8873 .88363 56 295 .50769 1.9697 .89167 5 55 .46819 .52985 1.8873 .88363 57 321 843 .9669 140 3 57 870 59 .8847 .879 336 58 347 879 .9654 127 2 58 896 .9680 140 3												
51 166 623 .9754 219 9 51 716 836 .8927 417 52 192 660 .9740 206 8 52 742 873 .8913 404 53 218 696 .9725 193 7 53 767 910 .8900 390 54 243 733 .9711 180 6 54 793 947 .8837 877 55 .45269 .50769 1.9697 .89167 5 .55 .46819 .52985 1.8873 .88363 56 295 806 .9683 153 4 56 844 .53022 .8860 349 57 321 843 .9669 140 3 57 870 059 .8847 336 58 347 879 .9654 127 2 58 896 096 .8834 322 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
53 218 696 .9725 193 7 53 767 910 .8900 390 54 243 733 .9711 180 6 54 793 947 .8867 377 55 45269 .50769 1.9697 .89167 5 55 46819 .52985 1.8873 .88363 56 295 806 .9683 153 4 56 844 .53022 .8860 349 57 321 843 .9669 140 3 57 870 059 .8847 336 58 347 879 .9654 127 2 58 896 096 .8834 322 59 373 916 .9640 114 1 59 921 134 .8820 308 60 .45399 .50953 1.9626 .89101 0 60 .46947 .53171 1.8807 .88295 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>749</td> <td></td> <td></td> <td></td>									749			
54 243 733 .9711 180 6 54 793 947 .8887 377 55 .45269 .50769 1.9697 .89167 5 55 .46819 .52985 1.8873 .88363 56 295 806 .9683 153 4 56 844 .53022 .8860 349 57 321 843 .9669 140 3 57 870 059 .8847 336 58 347 879 .9654 127 2 58 896 096 .8834 322 59 373 916 .9640 114 1 59 921 134 8820 308 60 .45399 .50953 1.9626 .89101 0 60 .46947 .53171 1.8807 .88295												
56 295 806 .9683 153 4 56 844 .53022 .8860 349 57 321 843 .9669 140 3 57 870 059 .8847 336 58 347 879 .9654 127 2 58 896 096 .8834 322 59 373 916 .9640 114 1 59 921 134 .8820 308 60 .45399 .50953 1.9626 .89101 0 60 .46947 .53171 1.8807 .88295												
56 295 806 .9683 153 4 56 844 .53022 .8860 349 57 321 843 .9669 140 3 57 870 059 .8847 336 58 347 879 .9654 127 2 58 896 096 .8834 322 59 373 916 .9640 114 1 59 921 134 .8820 308 60 .45399 .50953 1.9626 .89101 0 60 .46947 .53171 1.8807 .88295	55	.45269	.50769	1.9697	.89167	5		55	.46819	.52985	1.8873	.88363
58 347 879 .9654 127 2 58 896 096 .8834 322 59 373 916 .9640 114 1 59 921 134 .8820 308 60 .45399 .50953 1.9626 .89101 0 60 .46947 .53171 1.8807 .88295	56	295	806	.9683	153	4			844	.53022	.8860	
59 373 916 .9640 114 1 59 921 134 .8820 308 60 .45399 .50953 1.9626 .89101 0 60 .46947 .53171 1.8807 .88295						3						336
60 .45399 .50953 1.9 626 .89101 0 60 .46947 .53171 1.8807 88295												
			1								_	
	-00							60				

[Sin	Tan	Ctn	Сов	
0		.53171	1.8807	.88295	60
1 2 3	973 .46999	208 246	.8794 .8781	281 267	59 58
3	.47024	283	.8768	254	57
1 4	050	320	.8755	240	56
5		.53358	1.8741	.88226	55
6		395	`.8728	213	54
8	127 153	432 470	.8715 .8702	199 185	53 52
' §	178	507	.8689	172	51
10		.53545	1.8676	.88158	50
11	229	582	.8663	144	49
12 13	255 281	620 657	.8650 .8637	130 117	48 47
. 14	306	694	.8624	103	46
15	.47332	.53732	1.8611	.88089	45
16	358	769	.8598	075	44
17 18	383 409	807 844	.8585 .8572	062 048	43 42
19	434	882	.8559	034	41
20	.47460	.53920	1.8546	.88020	40
21	486	957	.8533	.88006	39
22 23	511 537	.53995 .54032	.8520 .8507	.87993 979	38 37
24	562	070	.8495	965	36
25	.47588	.54107	1.8482	.87951	35
26	614	145	.8469	937	34
: 27 28	639 665	183 220	.8456 .8443	923 909	33 32
29	690	258	.8430	896	31
. 30	.47716	.54296	1.8418	.87882	30
31	741	333	.8405	868	29
32	767 793	371 409	.8392 .8379	854 840	28 27
1 34	818	446	.8367	826	26
35	.47844	.54484	1.8354	.87812	25
36	869	522	.8341	798	24
37	895 920	560 597	.8329 .8316	784 770	$\frac{23}{22}$
39	946	635	.8303	756	21
40	.47971	.54673	1.8291	.87743	20
41	.47997	711	.8278	729	19
42 43	.48022	748 786	.8265 .8253	715 701	18 17
1 44	073	824	.8240	687	16
45	.48099	.54862	1.8228	.87673	15
46	124	900	.8215	659	14
: 47 48	150 175	938 .54975	.8202 .8190	645 631	13 12
49	201	.55013	.8177	617	11
50	.48226	.55051	1.8165	.87603	10
51	252	089	.8152	589	9
52 53	303	127 165	.8140 .8127	575 561	8
54	328	203	.8115	546	6
55	.48354	.55241	1.8103	.87532	5
56 57	379 405	279 317	.8090 .8078	518 504	3
58	430	355	.8065	490	2
59		393	.8053	476	1
60		.55431	1.8040	.87462	0
	Cos	Ctm	Tan	Sin	1

<u></u>	Sin	Tan	Ctm	Cos	
0	.48481	.55431	1.8040	.87462	60
1 2	506 532	469 507	.8028	448 434	59 58
3	557	545	.8003	420	57
4	583	583	.7991	406	56
6	.48608 634	.55621 659	1.7979 .7966	.87391	55 54
7	659	697	.7954	377 363	53
8	684	736	.7942	349	52
9 10	.48735	.55812	.7930 1.7917	335	51 50
11	761	850	.7905	.87321 306	49
12	786	888	.7893	292	48
13 14	811 837	.55964	.7881	$\frac{278}{264}$	47 46
15	.48862	.56003	1.7856	.87250	45
16	888	041	.7844	235	44
17 18	913 938	079 117	.7832 .7820	221 207	43 42
19	964	156	.7808	193	41
20	.48989	.56194	1.7796	.87178	40
21 22	.49014 040	232 270	.7783 .7771	164 150	39 38
23	065	309	.7759	136	37
24	090	347	.7747	121	36
25 26	.49116 141	.56385 424	1.7735 .7723	.87107 093	35 34
27	166	462	.7711	079	33
28	192	501	.7699	064	32
29 30	.49242	.56577	.7687 1.7675	.87036	31 30
31	268	616	.7663	021	29
32 33	293 318	654	.7651	.87007	28
34	344	693 731	.7639 .7627	.86993 978	27 26
35	.49369	.56769	1.7615	.86964	25
36 37	394 419	808 846	.7603	949 935	24
38	445	885	.7591 .7579	921	23 22
39	470	923	.7567	906	21
40	. 4 9495 521	.56962	1.7556	.86892	20
41 42	521 546	.57000 039	.7544 .7532	878 863	19 18
43	571	078	.7520	849	17
44	596 .49622	.57155	.7508 1.7496	.86820	16 15
46	647	193	.7485	805	14
47	672	232	.7473	791	13
48 49	697 723	271 309	.7461 .7449	777 762	12 11
50	.49748	.57348	1.7437	.86748	10
51 52	773	386	.7426	733	9
53	798 824	425 464	.7414	719 704	8 7
54	849	503	.7391	690	6
55	.49874 899	.57541 580	1.7379 .7367	.86675 661	5
57	924	619	.7355	646	3
58	950	657	.7344	632	2
59 60	.49975	.57735	.7332 1.7321	617 .86603	0
	Cos	Ctn	Tan	Sin	-
	CUB	COL	Tam	em [' 1

1	Sin	Tan	Ctn	Cos			1	Sin	Tan	Ctn	Cos	
0	.50000	.57735	1.7321	.86603	60		0	.51504	.60086	1.6643	.85717	60
1	025	774	.7309	588	59		1	529	126	.6632	702	59
2 3	050 076	813 851	.7297 .7286	573 559	58 57		3	554 579	165 205	.6621 .6610	687 672	58 57
4	101	890	.7274	544	56		4	604	245	.6599	657	56
5	.50126	.57929	1.7262	.86530	55		5	.51628	.60284	1.6588	.85642	55
6	151	.57968	.7251	515	54		6	653	324	.6577	627	54
7	≱ 76	.58007	.7239	501	53		7	678	364	.6566	612	53
8	201	046	.7223	486	52		8	703	403	.6555	597	52
9	227	085	.7216	471	51	١.	9	728	443	.6545	582	51
10 11	.50252 277	.58124 162	1.7205 .7193	.86457 442	50		0	.51753 778	.60483 522	1.6534 .6523	.85567 551	50
12	302	201	.7182	427	48		2	803	562	.6512	536	48
13	327	240	.7170	413	47		3	828	602	.6501	521	47
14	352	279	.7159	398	46	1	4	852	642	.6490	506	46
15	.50377	.58318	1.7147	.86384	45		5	.51877	.60681	1.6479	.85491	45
16 17	403 428	357 396	.7136 .7124	369 354	44 43		6	902 927	721 761	.6469	476	44
18	453	435	.7113	340	43		7	927	801	.6458	461 446	42
19	478	474	.7102	325	41		9	.51977	841	.6436	431	41
20	.50503	.58513	1.7090	.86310	40		0	.52002	.60881	1.6426	.85416	40
21	528	552	.7079	295	39	2	31	026	921	.6415	401	39
22 23	553	591 631	.7067	281	38		22	051	.60960	.6404	385	38
23	578 603	670	.7056 .7045	266 251	37 36		3	076 101	.61000 040	.6393	370 355	37 36
25	.50628	.58709	1.7033	.86237	35		5	.52126	.61080	1.6372	.85340	35
26	654	748	.7022	222	34		26	151	120	.6361	325	34
27	679	787	.7011	207	33		27	175	160	.6351	310	33
28	704	826	.6999	192	32		28	200	200	.6340	294	32
29	729	865	6988	178	31	1 -	29	225	240	.6329	279	31
30 31	.50754 779	.58905	1.6977	.86163	30		0	.52250	.61280 320	1.6319 .6308	.85264 249	30 29
32	804	944 .58983	.6965	148 133	29 28		$\frac{1}{2}$	$\frac{275}{299}$	360	.6297	234	28
33	829	.59022	.6943	119	27		3	324	400	.6287	218	27
34	854	061	.6932	104	26	3	34	349	440	.6276	203	26
35	.50879	.59101	1.6920	.86089	25		5	.52374	.61480	1.6265	.85188	25
36 37	904 929	140	.6909	074	$\frac{24}{23}$		$\frac{6}{}$	399 423	520	.6255 .6244	173 157	24 23
38	929 954	179 218	.6898 .6887	059 045	22		8	448	$\frac{561}{601}$.6234	142	22
39	.50979	258	.6875	030	21		9	473	641	.6223	127	21
40	.51004	.59297	1.6864	.86015	20	4	0	.52498	.61681	1.6212	.85112	20
41	029	336	.6853	.86000	19	4	1	522	721	.6202	096	19
42	054	376	.6842	.85985	18		2	547	761 801	.6191 .6181	081 066	18 17
44	079 104	415 454	.6831 .6820	970 956	17 16		3	572 597	842	.6170	051	16
45	.51129	.59494	1.6808	.85941	15	4		.52621	.61882	1.6160	.85035	15
46	154	533	.6797	926	14		6	646	922	.6149	020	14
47	179	573	.6786	911	13	4	7	671	.61962	.6139	.85005	13
48	204	612	.6775	896	12		8	696	.62003	.6128	.84989	12
4 9 50	229	651	∡6764 1.6752	881	11	4		720	.62083	.6118 1.6107	974	11 10
51	$.51254 \\ 279$.59691 730	1.6753 .6742	.85866 851	10 9	5 5		.52745 770	124	.6097	943	9
52	304	770	.6731	836	8	5		794	164	.6087	928	8
53	329	809	.6720	821	7	5	3	819	204	.6076	913	7
54	354	849	.6709	806	6	5	- 1	844	245	.6066	897	6
55	.51379	.59888	1.6698	.85792	5	5		.52869	.62285	1.6055	.84882	5
56 57	404 429	928 .59967	.6687 .6676	$\begin{array}{c} 777 \\ 762 \end{array}$	4 3	5		893 918	325 366	.6034	866 851	3
58	454	.60007	.6665	747	2	5		943	406	.6024	836	2
59	479	046	.6654	732	1		9	967	446	.6014	820	1
60	.51504	.60086	1.6643	.85717	0	6	0	.52992	.62487	1.6003	.84805	0
	Cos	Ctn	Tan	Sin	1		-	Cos	Ctn	Tan	Sin	1

			- C4	0		ſ	, 1	q:_	Ton	Otra	Con	
<u> </u>	Sin	Tan	Ctn	Cos	-			Sin	Tan	Ctn .	C08	
0	.52992 .53017	.62487 527	1.6003 .5993	.84805 789	60 59		0	.54464 488	.64941 .64982	1.5399 .5389	.83867 851	60 1
2	.55017	568	.5983	774	58		2	513	65024	.5379	835	58
3	066	608	.5972	759	57	1	3	537	065	.5369	819	57.
4	091	649	.5962	743	56		4	561	106	.5359	804	56
5	.53115	.62689	1.5952	.84728	55		5	.54586	.65148	1.5350	.83788	55
6	140	730	.5941	712	54	1	6	610	189	.5340	772	54 53
' 7	164 189	770 811	.5931	697 681	53 52		8	635 659	$\frac{231}{272}$.5330	*756 740	52 t
8	214	852	.5911	666	51		9	683	314	.5311	724	51
10	.53238	.62892	1.5900	.84650	50	- 1	10	.54708	.65355	1.5301	.83708	50
11	263	933	.5890	635	49		11	732	397	.5291	692	49
12	288	.62973	.5880	619	48		12	756	438	.5282	676	48
13	312	.63014	.5869	604 588	47 46		13 14	781 805	480 521	.5272 .5262	660 645	47 46
14	337	055	.5859								.83629	45
15 16	.53361	.63095 136	1.5849 .5839	.84573 557	45		15 16	.54829 854	.65563 604	1.5253	613	44
17	411	177	.5829	542	43	٠	17	878	646	.5233	597	43
18	435	217	.5818	526	42		18	902	688	.5224	581	42
19	460	258	.5808	511	41		19	927	729	.5214	565	41
20	.53484	.63299	1.5798	.81495	40	1	20	.54951	.65771	1.5204	.83549	40
21	509	340	.5788	480	39		21	975	813 854	.5195	533 517	39 38
22 23	534 558	380 421	.5778 .5768	46 1 448	38 37	1	22 23	.54999 .55024	896	.5185 .5175	501	37
24	583	462	.5757	433	36		24	048	938	.5166	485	36
25	.53607	.63503	1.5747	.81417	35		25	.55072	.65980	1.5156	.83469	35
26	632	511	.5737	402	34		26	097	.66021	.5147	453	34
27	656	584	.5727	386	33		27	121	063	.5137	437	33
28	681	625	.5717	370	32		28	145	105 147	.5127	421 405	32 31
29	705	666	.5707	355	31	1	29	169	.66189	.5118	.83389	30
30 31	.53730 754	.63707 748	1.5697 .5687	.84339 324	30 29		30 31	.55194 218	230	1.5108 .5099	373	29
32	779	789	.5677	308	28		32	$\frac{210}{242}$	272	.5089	356	28
33	804	830	.5667	292	27		33	266	314	.5080	340	27
34	828	871	.5657	277	26		31	291	356	.5070	324	26
85	.53853	.63912	1.5647	.84261	25		35	.55315	.66398	1.5061	.83308	25
36	877	953	.5637	245 230	24 23		36 37	339 363	440 482	.5051	292 276	24 23
37 38	902 926	.63994	.5627	230	23		38	388	524	.5032	260	22
39	951	076	.5607	198	21		39	412	566	.5023	244	21
40	.53975	.64117	1.5597	.84182	20		40	.55436	.66608	1.5013	.83228	20
41	.54000	158	.5587	167	19		41	460	650	.5004	212	19
42	024	199	.5577	151	18		42	484	692	.4994	195	18
43	049	240	.5567	135	17		43	509	73 4 776	.4985	179 163	17 16
44	073	281	.5557	120	16		41	533	.66818		.83147	15
45 46	.54097 122	.64322 363	1.5547	.84104 088	15		45 46	.55557 581	860	1.4966 .4957	131	14
47	146	404	.5527	072	13		47	605	902	.4947	115	13
48	171	446	.5517	057	12		48	630	944	.4938	098	12
49	195	487	.5507	041	11		49	651	.66986	.4928	082	11
50	.54220	.64528	1.5497	.84025	10	-	50	.55678	.67028	1.4919	.83066	10
51	244	569	.5487	.84009	9		51 52	702 726	071 113	.4910	050 034	9 8
52 53	269 293	610 652	.5477	.83994 978	8 7		53	750	155	.4891	017	8 7
54	317	693	.5458	962	6		54	775	197	.4882	.83001	6
. 55	.54342	.64734	1.5448	.83946	5		55	.55799	.67239	1.4872	.82985	5
56	366	775	.5438	930	4		56	823	282	.4863	969	4
57	391	817	.5428	915	3	1	57	847	324	.4854	953 936	3
58	415 440	858 899	.5418 .5408	899 883	2		58 59	871 895	366 409	.4814 .4835	936	2
60	.54464	.64941	1.5399	.83867	ō	1 1	60	.55919	.67451	1.4826	.82904	ō
00	Cos	Ctn.	Tan	Sin	1			Cos	Ctn	Tan	Sin	-
L	COR	OM	Tan	DITT		1	1	OUB	1 Amr	Terr	-	

1	Sin	Tan	Ctn	Cos] [,	Sin	Tan	Ctn	Cos	1
0		.67451	1.4826	.82904	60	1 1	0	.57358	.70021	1.4281	.81915	80
1	943	493	.4816	887	59	1 1	1	381	064	.4273		59
1 -2		536	4807	871	58	1 1	3	405	107	.4264		58
] 3		578	.4798	855	57	1 1	3	429	151	.4255		57.
4	.56016	620	.4788	839	56	1 1	4	453	194	.4246	1	56
5	.56040	.67663	1.4779	.82822	55	1 1	5	.57477	.70238	1,4237	.81832	55
6 7	064	705 748	.4770 .4761	806 790	54	1 1	6	501	281	.4229		54
8	112	790	.4751	773	53 52	1 1	7 8	524 548	325 368	.4220 .4211	798 782	53 52
9	136	832	4742	757	51	1 1	9	572	412	.4202	765	51
10	.56160	.67875	1.4733	.82741	50	1	10	.57596	.70455	1.4193	4	50
111	184	917	.4724	724	49	1 1	11	619	499	.4185	731	49
12	208	.67960	.4715	708	48	1 1	12	643	542	4176	714	48
13	232	.68002	.4705	692	47	1 1	13	667	586	.4167	698	47
14	256	045	.4696	675	46	1 1	14	691	629	.4158	681	46
15	.56280	.68088	1.4687	.82659	45	1	15	.57715	.70673	1.4150	.81664	45
16	305	130	.4678	643	41	1	16	738	717	.4141	647	44
17	329	173	.4669	626	43	1 1	17	762	760	.4132	631	43
18 19	353 377	215 258	.4659 .4650	610	42	1 1	18	786	804	.4124	614	42
	1	1	1	593	41	1	19	810	848	.4115	597	41
20 21	.56401 425	.68301 343	1.4641	.82577 561	40		20 21	.57833	.70891	1.4106	.81580	40 39
22	449	386	.4623	514	38		22	857 881	935 .70979	.4097	563 546	38
23	473	429	4614	528	37		23	904	.71023	.4080	530	37
24	497	471	.4605	511	36	1	24	928	066	4071	513	36
25	.56521	.68514	1.4596	.82495	35		25	.57952	.71110	1.4063	.81496	35
26	545	557	.4586	478	34		26	976	154	.4054	479	34
27	569	600	.4577	462	33		27	.57999	198	.4045	462	33
28 29	593	642	4568	446	32	1	28	.58023	242	.4037	445	32
30	617	685	.4559	429	31		29	047	285	.4028	428	31
31	.56641	.68728	1.4550	.82413 396	30 29		30 31	.58070 094	.71329 373	1.4019	.81412 395	30 29
32	689	814	.4532	380	28		32	118	417	.4011	378	28
33	713	857	.4523	363	27	1	33	141	461	.3994	361	27
34	736	900	.4514	347	26		34	165	505	.3985	344	26
35	.56760	.68942	1.4505	.82330	25	- 1	35	.58189	.71549	1.3976	.81327	25
36	784	.68985	.4493	314	24		36	212	593	.3968	310	24
37	808	.69028	.4487	297	23 22	- 1	37	236	637	.3959	293	23
39	832 856	071	.4478 .4469	281 264	21	- 1	38	260 283	681 725	.3951	276 259	22 21
40	.56880	.69157	1.4460	.82248	20	- 1.	40	.58307	.71769	1.3934	.81242	20
41	904	200	.4451	231	19		41	330	813	.3925	225	19
42	928	243	.4442	214	18		42	354	857	.3916	208	18
43	952	286	.4433	198	17		43	378	901	.3908	191	17
44	.56976	329	.4424	181	16		44	401	946	.3899	174	16
45	.57000	.69372	1.4415	.82165	15		45	.58425	.71990	1.3891	.81157	15
46 47	024	416	.4406	148	14 13		46	449 472	.72034	.3882 .3874	140 123	14 13
48	047 071	45∂ 502	.4397 .4388	132 115	12		47 48	496	$\begin{array}{c} 078 \\ 122 \end{array}$.3865	106	12
49	095	545	4379	098	ii		49	519	167	.3857	089	ii
50	.57119	.69588	1.4370	.82082	10		50	.58543	.72211	1.3848	.81072	10
.51	143	631	.4361	065	9		51	567	255	.3840	055	9
52	167	675	.4352	048	8		52	590	299	.3831	038	8
53	191	718	.4341	032	7		53	614	344	.3823	021	7
54	215	761	.4335	.82015	6		54	637	388	.3814	.81004	6
55	.57238 262	.69804 847	1.4326 .4317	.81999 982	5		55 56	.58661 684	.72432 477	1.3806 .3798	.80987 970	5
57	286	891	.4308	965	3		57	708	521	.3789	953	3
58	310	934	.4299	949	2	- 1	58	731	565	.3781	936	2
59	334	.69977	.4290	932	1		59	755	610	.3772	919	1
60	.57358	.70021	1.4281	.81915	0	1	60	.58779	.72654	1.3764	.80902	0
	Cos	Ctan	Tan	Sin	'	1	1	Cos	Ctan	Tan	Sin	'

′]	Sin	Tan	Ctn	Cos			′	Sin	Tan	Ctn	Cos	
0	.58779	.72654	1.3764	.80902	60		0	.60182	.75355	1.3270	.79864	60
1	802	699	.3755	885	59		1	205	401	.3262	846	59
2	826	743	.3747	867	58		2	228	447	.3254	829	58
3	849	788	.3739	850	57		3	251	492	.3246	811	57
4	873	832	.3730	833	56		4	274	538	.3238	793	56
5	.58896	.72877	1.3722	.80816	55		5	.60298	.75584	1.3230	.79776	55
6	920	921	.3713	799	54		6	321 344	629	.3222	758 741	54
7 8	943	.72966 .73010	.3705 .3697	782 765	53 52		7 8	367	675 721	.3214	723	53 52
9	.58990	055	.3688	748	51		9	390	767	.3198	706	51
10	.59014	.73100	1.3680	.80730	50		10	.60414	.75812	1.3190	.79688	50
iil	037	144	.3672	713	49		11	437	858	.3182	671	49
12	061	189	.3663	696	48	1	12	460	904	.3175	653	48
13	-084	234	.3655	679	47		13	483	950	.3167	635	47
14	108	278	.3647	662	46		14	506	.75996	.3159	618	46
15	.59131	.73323	1.3638	.80644	45	1	15	.60529	.76042	1.3151	.79600	45
16	154	368	.3630	627	44		16	553	088	.3143	583	44
17	178	413	.3622	610	43		17	576	134	.3135	565	43
18	201	457	.3613	593	42		18	599	180	.3127	547	42
19	225	502	.3605	576	41		19	622	226	.3119	530	41
20	.59248	.73547	1.3597	.80558	40		20	.60645	.76272	1.3111	.79512	40
$\frac{21}{22}$	272 295	592 637	.3588 .3580	541 524	39 38		21 22	668 691	318 364	.3103 .3095	494 477	39 38
23	318	681	.3572	507	37		23	714	410	.3087	459	37
24	342	726	3564	489	36		24	738	456	.3079	441	36
25	.59365	.73771	1.3555	.80472	35		25	.60761	.76502	1.3072	.79424	35
26	389	816	.3547	455	34		26	784	548	.3064	406	34
27	412	861	.3539	438	33		27	807	594	.3056	388	33
28	436	906	.3531	420	32		28	830	640	.3048	371	32
29	459	951	.3522	403	31		29	853	686	.3040	353	31
30	.59482	.73996	1.3514	.80386	80		30	.60876	.76733	1.3032	.79335	30
31	506	.74041	.3506	368	29		31	899	779	.3024	318	29
32	529	086	.3498	351	28		32	922	825	.3017	300 282	28 27
33	552 576	131 176	.3490 .3481	334 316	27 26		33 34	945 968	871 918	.3009	264	26
								.60991		1.2993	.79247	25
35 36	.59599 622	$.74221 \\ 267$	1.3473 .3465	.80299 282	25 24		35 36	.61015	.76964 .77010	.2985	229	24
37	646	312	.3457	261	23		37	038	057	.2977	211	23
38	669	357	.3149	247	22		38	061	103	.2970	193	22
39	693	402	.3440	230	21		39	081	149	.2962	176	21
40	.59716	.74447	1.3432	.80212	20		40	.61107	.77196	1.2954	.79158	20
41	739	492	.3424	195	19		41	130	242	.2946	140	19
42	763	538	.3416	178	18		42	153	289	.2938	122	18
43	786	583	.3408	160	17		43	176	335	.2931	105 087	17
44	809	628	.3400	143	16		44	199	382			16
45	.59832	.74674	1.3392	.80125	15		45	.61222	.77428	1.2915	.79069 051	15 14
46 47	856 879	719 764	.3384	108 091	14 13		46 47	245 268	475 521	.2907	033	13
48	902	810	.3367	073	12		48	200	568	.2892	.79016	12
49	926	855	.3359	056	ii		49	314	615	.2884	.78993	iī
50	.59949	.74900	1.3351	.80038	10		50	.61337	.77661	1.2876	.78980	10
51	972	946	.3343	021	9		51	360	708	.2869	962	9
52	.59995	.74991	.3335	.80003	8		52	383	754	.2861	944	8
53	.60019	.75037	.3327	.79986	7		53	406	801	.2853	926	7
54	042	082	.3319	968	6		54	429	848	.2846	908	6
55	.60065	.75128	1.3311	.79951	5		55	.61451	.77895	1.2838	.78891	5
56	089	173	.3303	934	4		56 57	474 497	.77988	.2830	873 855	3
57 58	112 135	219 264	.3295	916 899	3 2		58	520	.78035	.2815	837	2
59	158	310	.3278	881	ĺî	·	59	543	082	.2807	819	ī
60	.60182	.75355	1.3270	.79864	o.		60	.61566	.78129	1.2799	.78801	0
		.,,	2		1	3		1.0.00				

1	Sin	Tan	Ctm	Сов]	1	Sin	Tan	Ctn	Cos	
0	.61566	.78129	1.2799	.78801	60		0	.62932	.80978	1.2349	.77715	60
1	589	175	.2792	783	59	1	1	955	.81027	.2342	696	59
3	612 635	222 269	.2784	765 747	58 57	l	3	.62977	075	.2334	678	58
4	658	316	.2769	729	56	1	4	.63000 022	123 171	.2327	660 641	57
5	.61681	.78363	1.2761	.78711	55	1	5	.63045	.81220	1/2312	.77623	55
6	704	410	.2753	694	54	l	6	068	268	2305	605	54
7	726	457	.2746	676	53	1	7	090	316	.2298	586	53
8	749	504	.2738	658	52	1	8	113	364	.2290	568	52
9	772	551	.2731	640	51	1	9	135	413	.2283	550	51
10	.61795	.78598	1.2723	.78622	50	1	10	.63158	.81461	1.2276	.77531	50
11 12	818 841	645 692	.2715 .2708	604 586	49 48	l	11 12	180 203	510 558	.2268	513 494	49
13	864	739	.2700	568	47		13	225	606	.2254	476	47
14	887	786	.2693	550	46	l	14	248	655	.2247	458	46
15	.61909	.78834	1.2685	.78532	45	l	15	.63271	.81703	1.2239	.77439	45
16	932	881	.2677	514	44		16	293	752	.2232	421	44
17	.61978	928 .78975	.2670	496	43 42		17	316 338	800	.2225	402	43
18 19	.62001	.79022	.2655	478	41	1	18	361	849 898	.2216	384 366	41
20	.62024	.79070	1.2647	.78442	40	1	20	.63383	.81946	1,2203	.77347	40
21	046	117	.2640	424	39	1	21	406	.81995	.2196	329	39
22	069	164	.2632	405	38	l	22	428	.82044	.2189	310	38
23	092	212	.2624	387	37		23	451	092	.2181	292	37
24	115	259	.2617	369	36	į .	24	473	141	.2174	273	36
25 26	.62138 160	.79306 354	1.2609 .2602	.78351 333	35 34	1	25 26	.63496 518	.82190 238	1.2167	.77255 236	35 34
27	183	401	.2594	315	33	l	27	540	287	.2153	218	33
28	206	449	.2587	297	32	1	28	563	336	.2145	199	32
29	229	496	.2579	279	31	1	29	585	385	.2138	181	31
30	.62251	.79544	1.2572	.78261	30		30	.63608	.82434	1.2131	.77162	80
31	274	591	.2564	243	29		31	630	483	.2124	144	29
32	297 320	639 686	.2557	225 206	28 27		32	653 675	531 580	.2117	125 107	28 27
34	342	734	.2542	188	26		34	698	629	.2102	088	26
35	.62365	.79781	1.2534	.78170	25		35	.63720	.82678	1.2095	.77070	25
36	388	829	.2527	152	24		36	742	727	.2088	051	24
37	411	877	.2519	134	23		37	765	776	.2081	033	23
38	433 456	924 .79972	.2512 $.2504$	116 098	22 21		38 39	787 810	825 874	.2074	.77014 .76996	22 21
40	.62479	.80020	1.2497	.78079	20		40	.63832	.82923	1.2059	.76977	20
41	502	067	.2489	061	19		41	854	.82972	.2052	959	19
42	524	115	.2482	043	18		42	877	.83022	.2045	940	18
43	547	163	.2475	025	17		43	899	071	.2038	921	17
44	570	211	.2467	.78007	16		44	922	120	.2031	903	16
45 46	.62592 615	.80258 306	1.2460 .2452	.77988 970	15 14		45 46	.63944 966	.83169 218	1.2024 .2017	.76884 866	15
47	638	354	.2432	952	13		47	.63989	268	.2017	847	13
48	660	402	.2437	934	12		48	.64011	317	.2002	828	12
49	683	450	.2430	916	11		49	033	366	.1995	810	11
50	.62706	.80498	1.2423	.77897	10		50	.64056	.83415	1.1988	.76791	10
51 52	728 751	546 594	.2415	879 861	8		51 52	078 100	465 514	.1981	772 754	8
53	774	642	.2408	861 843	7		53	123	564	.1974	735	7
54	796	690	.2393	824	6		54	145	613	.1960	717	6
55	.62819	.80738	1.2386	.77806	5		55	.64167	.83662	1.1953	.76698	5
56	842	786	.2378	788	4		56	190	712	.1946	679	4
57 58	864	834	.2371	769	3 2		57	212	761	.1939	661 642	3 2
59	887 909	882 930	.2364 .2356	751 733	1		58 59	234 256	811 860	.1932 .1925	623	1
60	.62932	.80978	1.2349	.77715	ô		60	.64279	.83910	1.1918	.76604	ô
	Сов	Ctm	Tan	Sin	7		-	Cos	Ctm	Tan	Sin	7

1	Sin	Tan	Ctn	Cos	
0	.64279	.83910	1.1918	.76604	60
1	301	.83960	.1910	586	59
2 3	323	.84009	.1903	567	58
4	346 368	059 108	.1896 .1889	548 530	57 56
5	.64390	.84158	1.1882	.76511	55
6	412	208	.1875	492	54
7	435	258	.1868	473	53
8	457	307	.1861	455	52
9	479	357	.1854	436	51
10	.64501	84407	1.1847	.76417	50
11	524	457	.1840	398	49
12 13	546 568	507	.1833 .1826	380	48
14	590	556 606	.1819	361 342	47 46
15	.64612	.84656	1.1812	.76323	45
16	635	706	.1806	304	44
17	657	756	.1799	286	43
18	679	806	.1792	267	42
19	701	856	.1785	248	41
20	.64723	.84906	1.1778	.76229	40
21	746	.84956	.1771	210	39
$\frac{22}{23}$	768 790	.85006	.1764	192	38
24	812	057 107	.1757 .1750	173 154	37 36
25	.64834	.85157	1.1743	.76135	35
26	856	207	.1736	116	34
27	878	257	.1729	097	33
28	901	308	.1722	078	32
29	923	358	.1715	059	31
30	.64945	.85408	1.1708	.76041	30
31 32	.64989	458 509	.1702	70002	29
33	.65011	559	.1695	.76003 .75984	28 27
34	033	609	.1681	965	26
35	.65055	.85660	1.1674	.75946	25
36	077	710	.1667	927	24
37	100	761	.1660	908	23
38	122	811	.1653	889	22
39	144	862	.1647	870	21
40 41	.65166 188	.85912 .85963	1.1640	.75851	20
42	210	.86014	.1633 .1626	832 813	19 18
43	232	064	.1619	794	17
44	254	115	.1612	775	16
45	.65276	.86166	1.1606	.75756	15
46	298	216	.1599	738	14
47	320	267	.1592	719	13
48 49	342 364	318 368	.1585	700 680	12 11
50	.65386	.86419	1.1571	.75661	10
51	408	470	.1565	642	10
52	430	521	.1558	623	8
53	452	572	.1551	604	7
54	474	623	.1544	585	6
55	.65496	.86674	1.1538	.75566	5
56	518	725	.1531	547	4
57 58	540 562	776 827	.1524 .1517	528 509	. 3 2
59	584.	878	.1510	490	1
60	.65606	.86929	1.1504	.75471	ô

,	Sin	Tan	Ctn	Сов	
0	.65606	.86929	1.1504	.75471	60
$\frac{1}{2}$	628 650	.86980 .87031	.1497	452 433	59
3	672	082	.1490 .1483	414	58 57
4	694	133	.1477	395	56
5	.65716	.87184	1.1470	.75375	55
6	738	236	.1463	, 356	54
7 8	759 781	287 338	.1456 .1450	337 318	53 52
9	803	389	.1443	299	51
10	.65825	.87441	1.1436	.75280	50
11	847 869	492 543	.1430 .1423	261	49
12 13	891	595	.1425	241 222	48 47
14	.913	646	.1410	203	46
15	.65935	.87698	1.1403	.75184	45
16	956	749	.1396	. 165	44
17 18	.65978	801 852	.1389 .1383	146 126	43 42
19	022	904	.1376	107	41
20	.66044	.87955	1.1369	.75088	40
21 22	066 088	.88007 059	.1363	069 050	39 38
23	109	110	.1349	030	37
24	131	162	.1343	.75011	36
25	.66153	.88214	1.1336	.74992	35
$\frac{26}{27}$	175 197	265 317	.1329 .1323	973 953	34 33
28	218	369	.1316	934	32
29	240	421	.1310	915	31
30	.66262	.88473	1.1303	.74896	30
31 32	284 306	524 576	.1296 .1290	876 857	29 28
33	327	628	.1283	838	27
34	349	680	.1276	818	26
35 36	.66371	.88732 784	1.1270 .1263	.74799	25
37	393 414	836	.1257	780 760	24 23
38	436	888	.1250	741	2 2
39	458	940	.1243	722	21
40 41	.66480 501	.88992 .89045	1.1237 .1230	.74703 683	20 19
42	523	097	.1224	664	18
43	545	149	.1217	644	17
41	566	201 .89253	.1211	625	16
45 46	.66588 610	306	1.1204	.74606 586	15 14
47	632	358	.1191	567	13
48	653	410	.1184	548	12
49 50	.66697	.89515	.1178	.74509	11 10
51	718	567	.1165	489	9
52	740	620	.1158	470	8
53 54	762 783	672 725	.1152 .1145	451 431	$\frac{7}{6}$
55	.66805	.89777	1.1139	.74412	5
56	827	830	.1132	392	4
57	848	883	.1126	373	3
59	870 891	935 .89988	.1119	353 334	2
60	.66913	90040	1.1106	.74314	ō
שט					

ш	*	S 1	atuos	OI I		HUE	HOU	HO E	meuo.	us 4		40
1	Sin	Tan	Ctn	Cos		1	1	Sin	Tan	Ctn	Cos	
0	.66913	.90040	1.1106	.74314	60	1	0	.68200	.93252	1.0724	.73135	60
1	935	093	.1100	295	59	l	1	_ 221	306	.0717	116	59
2	956	146	.1093	276	58	1	2	242	360	.0711	096	58
3 4	.66999	199 251	.1087	256 237	57 56	1	3 4	264 285	415 469	.0705	076	57
5	.67021	.90304	1.1074	.74217	55	l	5	.68306	1	.0699	056	56
6	043	357	.1067	198	54		6	327	.93524 578	1.9692 • .0686	.73036 .73016	55 54
7	064	410	.1061	178	53		7	349	633	.0680	.72996	53
8	086	463	.1054	159	52		8	370	688	.0674	976	52
9	107	516	.1018	139	51		9	391	742	.0668	957	51
10	.67129	.90569	1.1041	.74120	50		10	.68412	.93797	1.0661	.72937	50
11	151	621	.1035	100	49	ì	11	434	852	.0655	917	49
12	172	674	.1028	080	48	1	12	455	906	.0649	897	48
13	194	727	.1022	061 041	47		13	476	.93961	.0643	877	47
14	215	781	.1016	ł .	46	l	14	497	.94016	.0637	857	46
15	.67237	.90834 887	1.1009	.74022 .74002	45	1	15 16	.68518 539	.94071 125	1.0630 .0624	.72837	45
16 17	258 280	940	.1003	.73983	43		17	561	180	.0618	817 797	44 43
18	301	.90993	.0990	963	42	l	18	582	235	.0612	777	42
19	323	.91046	.0983	944	41	1	19	603	290	.0606	757	41
20	.67344	.91099	1.0977	.73924	40	l	20	.68624	.94345	1.0599	.72737	40
21	366	153	.0971	904	39		21	645	400	.0593	717	39
22	387	206	.0964	885	38	1	22	666	455	.0587	697	38
23	409	259	.0958	865	37		23	688	510	.0581	677	37
24	430	313	.0951	846	36	1	24	709	565	.0575	657	36
25	.67452	.91366	1.0945	.73826	35		25	.68730	.94620	1.0569	.72637	35
26 27	473 495	419 473	.0939	806 787	34 33	1	26 27	751 772	676 731	.0562	617 597	34 33
28	516	526	.0932	767	32		28	793	786	.0556	577	32
29	538	580	.0919	747	31	'	29	814	841	.0514	557	31
30	.67559	.91633	1.0913	.73728	30		30	.68835	.94896	1.0538	.72537	30
31	580	687	0907	708	29		31	857	.94952	.0532	517	29
32	602	740	.0900	688	28		32	878	.95007	.0526	497	28
33	623	794	.0894	669	27		33	899	062	.0519	477	27
34	645	847	.0888	649	26		34	920	118	.0513	457	26
35	.67666	.91901	1.0881	.73629	25		35	.68941	.95173	1.0507	.72437	25
36 37	688 709	.91955 .92008	.0875	610 590	24 23		36 37	.68983	$\frac{229}{284}$.0501 .0495	417 397	24 23
38	730	062	.0862	570	22		38	.69004	340	.0489	377	22
39	752	116	.0856	551	21		39	025	395	.0483	357	21
40	.67773	.92170	1.0850	.73531	20		40	.69046	.95451	1.0477	.72337	20
41	795	224	.0843	511	19		41	067	506	.0470	317	19
42	816	277	.0837	491	18		42	088	562	.0464	297	18
43	837	331	.0831	472	17		43	109	618	.0458	277	17
44	859	385	.0824	452	16		44	130	673	.0452	257	16
45	.67880	.92439	1.0818	.73432	15		45	.69151	.95729 785	1.0446	.72236	15
46	901 923	493 547	.0812	413 393	14 13		46 47	172 193	841	.0440 .0434	216 196	13
48	944	601	.0799	373	13 12		48	214	897	.0428	176	12
49	965	655	.0793	353	11		49	235	.95952	.0422	156	ii
50	.67987	.92709	1.0786	.73333	10		50	.69256	.96008	1.0416	.72136	10
51	.68008	763	.0780	314	9		51	277	064	.0410	116	9
52	029	817	.0774	294	8	1	52	298	120	.0404	095	8
53	051	872	.0768	274	7		53	319	176 232	.0398	075	7
54	072	926	.0761	254	6		54	340		.0392	055	6
55	.68093 115	.92980 .93034	1.0755 .0749	.73234 215	5		55 56	.69361 382	.96288 344	.0385	.72035 .72015	5
56 57	136	088	.0742	195	3		57	403	400	.0373	.71995	3
58	157	143	.0736	175	2		58	424	457	.0367	974	2
59	179	197	.0730	155	1		59	445	513	.0361	954	1
60	.68200	.93252	1.0724	.73135	0		60	.69466	.96569	1.0355	.71934	0
	Cos	Ctan	Tan	Sin	7			Cos	Ctz	Tan	Sin	7
٠,		I			- 1		,	.,				-4

Sin	Tan	Ctn	Cos	
.69466	.96569	1.0355	.71934	60
487	625	.0349	914	59
508	681	.0343	894	58
				57
				56
				55
				54
				53 52
				51
				50
				49
717		.0283	691	48
737	302	.0277	671	47
758	359	.0271		46
.69779	.97416	1.0265		45
				44
				43
				42 41
				40
				39
			488	38
946	870	.0218	468	37
966	927	.0212	447	36
.69987	.97984	1.0206	.71427	35
.70008	.98041	.0200	407	34
		.0194		33
				32 31
		ł		30
				29
				28
	441	.0158	264	27
174	499	.0152	243	26
.70195	.98556	1.0147	.71223	25
215	613	.0141	203	24
				23
				22 21
				20
				19
				18
360	.99016	.0099	059	17
381	073	.0094	039	16
.70401	.99131	1.0088	.71019	15
422	189	.0082	.70998	14
				13
				12 11
		1	1	10
525				10
546	536	.0047	875	8
567	594	.0041	855	7
	652		1	6
.70608	.99710	1.0029	.70813	5
				4
			759	3 2
			#31	ī
				ō
Cos	Ctn	Tan	Sin	, ·
	.69466 .6947 .508 .529 .549 .69570 .501 .612 .633 .654 .69675 .6967 .717 .758 .69779 .802 .6983 .904 .925 .946 .9966 .6987 .7008 .029 .049 .070 .70091 .112 .153 .153 .174 .70195 .216 .227 .70298 .319 .339 .349 .359 .349 .70401 .422 .443 .463 .484 .70505 .546 .546 .547 .70608 .649 .70608 .649 .70608 .649 .70608 .649 .70608 .649 .70608 .649 .70608 .649 .70711	.69466	.69466	.69466

TABLE III

COMMON LOGARITHMS

OF THE

TRIGONOMETRIC FUNCTIONS

FROM

0° TO 90° AT INTERVALS OF ONE MINUTE

TO

FIVE DECIMAL PLACES

Note: To find $\log \sin \alpha$ and $\log \tan \alpha$ more precisely than by ordinary interpolation, for small values of α , if α is not a tabulated angle.

Let t be the first tabulated angle below α . Express both α and t in the same unit (minutes, or seconds, or any other convenient unit). Then

$$\log \sin \alpha - \log \sin t = \log \alpha - \log t,$$

approximately, at least to five decimal places if $\alpha < 3^{\circ}$ and $\alpha - t < 1'$.

Now $\log \alpha$ and $\log t$ can be found from Table I, and $\log \sin t$ is tabulated in Table III; hence $\log \sin \alpha$ can be found. Thus to find $\log \sin 1^{\circ}12'.4$, write $1^{\circ}12'.4 = 72'.4$, and arrange the computation as follows:

$$\begin{array}{c} \log 72.4 = 1.85974 & \text{(Table I)} \\ \log 72.0 = \underline{1.85733} & \text{(Table I)} \\ \text{(subtract)} & 0.00241 & \text{(Table III)} \\ \log \sin 1^{\circ} 12' = \log \sin 72' = 8.32103 - 10 & \text{(Table III)} \\ \log \sin 1^{\circ} 12'.4 = \log \sin 72'.4 = 8.32344 - 10 & \text{(Required)} \end{array}$$

Likewise $\log \tan \alpha - \log \tan t = \log \alpha - \log t$, approximately, at least to five decimal places if $\alpha < 3^{\circ}$ and $\alpha - t < 1'$. The method of calculation is exactly as above.

The cosines and cotangents of angles near 90° can be found by first reducing them to sines and tangents of angles near 0°. Above 3° ordinary interpolation

·	L Sin	d	L Tan	c d	L Ctn	L Cos	1	I
0						0.00 000	60	
1	6.46 373		6.46 373	30103	3.53 627	0.00 000	59	
2	6.76 476	30103 17609	6.76 476	17609	3.23 524	0.00 000	58	
3	6.94 085	12494	6.94 085	12494	3.05 915	0.00 000	57	•
4	7.06 579	9691	7.06 579	9691	2.93 421	0.00 000	56	1
5	7.16 270	7918	7.16 270	7918	2.83 730	0.00 000	55	
6	7.24 188	6694	7.24 188	6694	2.75 812	0.00 000	54	ns of . 45. The great
8	7.30 882 7.36 682	5800	7.30882 7.36682	5800	2.69 118 2.63 318	0.00 000	53 52	.s. 0 45. 45. T.L. T.L. T.E.
9	7.41 797	5115	7.41 797	5115	2.58 203	0.00 000	51	B . 50
10	7.46 373	4576	7.46 373	4576	2.53 627	0.00 000	50	3° (or logarithms interpolation, p. 4 usually better. T sufficient when grapolation is used.
11	7.50 512	4139	7.50 512	4139	2.49 488	0.00 000	49	1 3° (or logarithment interpolation, Fusually better. sufficient when rpolation is used
12	7.54 291	3779 3476	7.54 291	3779 3476	2.45 709	0.00 000	48	Mark Single
13	7.57 767	3218	7.57 767	3219	2.42233	0.00 000	47	l go ta d
14	7.60 985	2997	7.60 986	2996	2.39014	0.00 000	46	3° (or 1 interpol usually sufficient
15	7.63 982	2802	7.63 982	2803	2.36 018	0.00 000	45	
16	7.66 784	2633	7.66 785	2653	2.33 215	0.00 000	44	la fic
17 18	7.69 417 7.71 900	2483	7.69 418	2482	2.30 582	9.99 999	43	3° into
19	7.74 248	2348	7.71 900 7.74 248	2348	$2.28100 \\ 2.25752$	9.99 999	42 41	nan on is ie s
20	7.76 475	2227	7.76 476	2228	2.23 524	9.99 999	40	or tangents of angles less than 3° (or less greater than 87°), see Note on interpolences are large, that method is usually 1° and 2° in this table are sufficient if the ordinary method of interpolation
21	7.78 594	2119	7.78 595	2119	2.23 524 2.21 405	9.99 999	39	i. a d te t
22	7.80 615	2021	7.80 615	2020	2.19 385	9.99 999	38	를 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다
23	7.82 545	1930 1848	7.82 546	1931 1848	2.17 454	9.99 999	37	angles less th 37°), see Note that method this table ar
24	7.84 393	1773	7.84 394	1773	2.15 606	9.99 999	36	S B G C C C C C C C C C C C C C C C C C C
25	7.86 166	1704	7.86 167	1704	2.13 833	9.99 999	35	angles (7°), s that this meth
26	7.87 870	1639	7.87 871	1639	2.12 129	9.99 999	34	his his
27 28	7.89 509	1579	7.89 510	1579	2.10 490	9.99 999	33	37 an 1
28	7.91 088 7.92 612	1524	7.91 089 7.92 613	1524	2.08 911 2.07 387	9.99 999	32 31	of in See,
30	7.94 084	1472	7.94 086	1473	2.01 301	9.99 998	30	tangents of reater than ses are large and 2° in the ordinar.
31	7.95 508	1424	7.95 510	1424	2.04 490	9.99 998	29	ths that lar lar 2° ding
32	7.96 887	1379	7.96 889	1379	2.03 111	9.99 998	28	
33	7 98 223	1336 1297	7.98225	1336 1297	2.01775	9.99 998	27	anger eater s are and he or
34	7.99 520	1259	7.99522	1259	2.00 478	9.99 998	26	th a
35	8.00 779	1223	8.00 781	1223	1.99 219	9.99 998	25	r tg gr nce 1° if t
36	8.02 002	1190	8.02 004	1190	1.97 996	9.99 998	24	or or se garage
37 38	8.03 192 8.04 350	1158	8.03 194 8.04 353	1159	1.96 806 1.95 647	9.99 997 9.99 997	23 22	ines cangles liffere liffere l for even
39	8.05 478	1128	8.05 481	1128	1.94 519	9.99 997	21	a 3 ± 5
40	8.06 578	1100	8.06 581	1100	1.93 419	9.99 997	20	sines angladiffer differ ed fo
41	8.07 650	1072	8.07 653	1072	1.92 347	9.99 997	19	of s of lar lar ttate
42	8.08 696	1046	8.08 700	1047 1022	1.91 300	9.99 997	18	bs the structure of the
43	8.09718	999	8.09 722	998	1.90 278	9.99 997	17	and so the
44	8.10 717	976	8.10 720	976	1.89 280	9.99 996	16	ta ta
45	8.11 693	954	8.11 696	955	1.88 304	9.99 996	15	For logarithms of sines or tangents of angles less than cosines or cotangents of angles greater than 87°), see Note on When the tabular differences are large, that method is proportional parts stated for 1° and 2° in this table are saccuracy is not required, even if the ordinary method of interpretations.
46	8.12 647 8.13 581	934	8.12 651	934	1.87 349	9.99 996	14	E & &
47	8.13 581	914	8.13 585 8.14 500	915	1.86 415 1.85 500	9.99 996 9.99 996	13 12	S la
49	8.15 391	896	8.15 395	895	1.84 605	9.99 996	ii	Ti on or
50	8.16 268	877	8.16 273	878	1.83 727	9.99 995	10	For cosines or Whe proportion
51	8.17 128	860 843	8.17 133	.860 843	1.82 867	9.99 995	9	Fa S S E
52	8.17 971	843	8.17 976	843 828	1.82 024	9.99 995	8	si. op
53	8.18 798	812	8.18 804	812	1.81 196	9 99 995	7	8 td 8
54	8.19610	797	8.19 616	797	1.80 384	9.99 995	6	
55	8,20 407	782	8.20 413	782	1.79 587	9.99 994	5	
56	8.21 189	769	8.21 195	769	1.78 805	9.99 994 9.99 994	3	
58	8.21 958 8.22 713	755	8.21 964 8.22 720	756	1.78 036 1.77 280	9.99 994	9	
59	8.23 456	743	8.23 462	742	1.76 538	9.09 994	2	
60	8.24 186	730	8.24 192	730	1.75 808	9.99 993	ō	
1	L Cos	d	L Ctn	o d	L Tan	L Sin	-	
Ĺ.	LUUB	ı Q	. LUUL	, ca	TO THI	n om	· 1	1

			(= =				_	_					
<u>'</u>	L Sin	d	L Tan	cd	L Ctn	L Cos	<u> </u>	_		Pro	p M	s.	,
0	8.24 186	717	8.24 192	718	1.75 808	9.99 993	60	1	=00		***	680	670
1	8.24 903 8.25 609	700	8.24 910 8.25 616	706	1.75 090 1.74 384	9.99 993	59 58	١.	720		690 138	136	134
$\frac{2}{3}$	8.26 304	695	8.26 312	698	1.73 688	9.99 993	57	3	216	142 213	207	204	201
4	8.26 988	684	8.26 996	684	1.73 004	9.99 992	56	4	288 360	284	276 345	272 340	268 335
1	8.27 661	673	8.27 669	673	1.72 331	9.99 992	55	234567	432	426 497	414	408 476	402
6	8.28 324	663	8.28 332	663	1.71 668	9.99 992	54	8	1 504	497 •568	414 483	476	469 536
7	8.28 977	653	8.28.986	654	1.71 014	9.99 992	53	9	576 648	639	552 621	544 612	603
8	8.29 621	644	8.29 62:	643	1.70 371	9.99 992	52						
9	8.30 255	634	8.30 263	634	1.69 737	9.99 991	51	۱	660	650	640	680	620
10	8.30 879	624	8.30 888	625	1.69 112	9.99 991	50	2	132 198	130	128 192	126 189	124 186
111	8.31 495	616	8.31 505	617	1.68 495	9.99 991	49	4	204	195 260 325	256 320	189 252	248 310
12	8.32 103	608 599	8.32 112	607 599	1.67 888	9 99 990	48	6	330 396	390	384	315 378	372 434
13	8.32 702	590	8.32 711	591	1.67 289	9.99 990	47	3 4 5 6 7 8	462 528	455 520	448 512	441 504	434 496
14	8.33 292	583	8.33 302	584	1.66 698	9.99 990	46	9	594	585	576	567	558
15	8.33 875	575	8.33 886	575	1.66 114	9.99 990	45		•				
16	8.34 450	568	8.34 461	568	1.65 539	9 99 989	44	_	610	600	590	580	579
17	8.35 018	560	8.35 029	561	1.64 971	9.99 989	43	3	122 183	120 180 240	118 177	116 174 232 290	114 171 228
18	8.35 578	553	8.35 590	553	1.64 410	9.99 989	42	4	244	240	236	232	228
19	8.36 131	547	8.36 143	546	1.63 857	9.99 989	41	5	305 366	300	295 354	290 348	285 342
20	8.36 678	539	8.36 689	540	1.63 311	9.99 988	40	67	366 427	360 420 480	354 413 472	348 406	200
$\frac{21}{22}$	8.37 217 8.37 750	533	8.37 229 8.37 762	533	$1.62771 \\ 1.62238$	9.99 988 9.99 988	39	8	488 549	480 540	531	464 522	456 513
23	8.38 276	526	8.38 289	527	1.62 236	9.99 987	37	1	•				
24	8.38 796	520	8.38 809	520	1.61 191	9.99 987	36		560	220	540	230	520
25	8.39 310	514	8.39 323	514	1.60 677	9.99 987	35	2	112 168	110	108	106	104 156
26	8.39 818	508	8.39 832	509	1.60 168	9.99 986	34	4	224	165 220 275	108 162 216 270 324 378 432	159 212	208
27	8.40 320	502	8.40 334	502	1.59 666	9.99 986	33	5	280	330	270 324	265 318	$\frac{260}{312}$
28	8.40 816	496	8.40 830	496	1.59 170	9.99 986	32	Ž	336 392	385	378	371	364
29	8.41 307	491 485	8.41 321	491 486	1.58679	9.99 985	31	23456789	448 504	440 495	486	318 371 424 477	416 468
30	8.41 792	480	8.41 807	480	1.58 193	9.99 985	30	ľ	, 002				
31	8.42 272	474	8.42 287	475	1.57 713	9.99 985	29		510	500	490	480	470
32	8.42 746	470	8.42762	470	1.57238	9.99 984	28	3 4	102	100 150	98 147	96 144	94
33	8.43 216	464	8.43 232	464	1.56 768	9.99 984	27	4	153 204	200	196	192	141 188
34	8.43 680	459	8.43 696	460	1.56 304	9.99 984	26	5	255 306	250 300	245 294	240 288	235 282
35	8.44 139	455	8.44 156	455	1.55 844	9.99 983	25	7	357	350 400	343 392	336	329 376
36	8.44 594	450	8.44 611	450	1.55 389	9.99 983	24 23	7 8 9	357 408 459	450	392 441	336 384 432	423
37	8.45 044	445	8.45 061 8.45 507	446	1.54 939 1.54 493	9.99 983	23	٦	100	100			
39	8.45 489 8.45 930	441	8.45 948	441	1.54 052	9.99 982	21		460	450	440	430	420
40		436		437	1.53 615	9.99 982	20	2	192	90	188	86	84
41	8.46 366 8.46 799	433	8.46 385 8.46 817	432	1.53 183	9.99 982	19	3 4	138 184	135 180	132 176	129 172	126 168
42	8.47 226	427	8.47 245	428	1.52 755	9.99 981	18	5	230 276 322	225 270	220 264	215 258	210 252
43	8.47 650	424	8.47 669	424 420	1.52 331	9.99 981	17	6	322	315	308	301 344	294 336
44	8.48 069	419 416	8.48 089	416	1.51 911	9.99 980	16	8	368 414	360 405	$\frac{352}{396}$	344 387	336 378
45	8.48 485		8.48 505	412	1.51 495	9.99 980	15		,	_00			
46	8.48 896	411	8.48 917	408	1.51 083	9.99 979	14		410	400	395	390	385
47	8.49 304	404	8.49 325	404	1.50 675	9.99 979	13	2	123	80 120	79.0	78 117	77.0
48	8.49 708	400	8.49729	401	1.50 271	9.99 979	12	2 3 4 5	164	160	58.0	156	115.5 154.0 192.5
49	8.50 108	396	8.50 130	397	1.49 870	9.99 978	11	6	200	160 1 200 1 240 2	118.5 158.0 197.5 237.0 276.5	924	221.0 1
50	8.50 504	393	8.50 527	393	1.49 473	9.99 978	10	7	246 287 328 369	280 2 320 3	76.5 16.0	273 312 351	269.5 308.0
51	8.50 897	390	8.50 920	390	1.49 080	9.99 977	9	8	378		316.0 355.5	351	308.0 346.5
52	8.51 287	386	8.51 310	386	1.48 690 1.48 304	9.99 977 9.99 977	7		500	300 (1
53	8.51 673 8.52 055	382	8.51 696 8.52 079	383	1.47 921	9.99 976	6		380	375	370	365	860
- 1		379		380	1.47 541	9.99 976	5	2	76	75.0 112.5	74 111	73.0 109.5	72 108
55 56	8.52 434 8.52 810	376	8.52 459 8.52 835	376	1.47 165	9.99 975	4	3 4 5	114 152	150.0	148	146.0	144 180
57	8.53 183	373	8.53 208	373	1.46 792	9.99 975	3	5	100	187.5 225.0 262.5	185 222	182.5	180 216
58	8.53 552	369	8.53 578	370 367	1.46 422	9.99 974	2	6 7 8	266	262.5	259 296	146.0 182.5 219.0 255.5 292.0	252
59	8.53 919	367 363	8.53 945	363	1.46 055	9.99 974	1	8	228 266 304 342	300.0 337.5	296 332	292.0 328.5	252 288 324
. 60	8.54 282	400	8.54 308	300	1.45 692	9.99 974	0	-	025	301.0			
-		-		cd	L Tan	L Sin	—	_		Prop	. Pt	i.	
1 1	L Cos	d	TIOM	CIL	TITAL	T OIT							-

1	L Sin	d	L Tan	cd	L Ctn	L Cos	Ī	Prop. Pts.				
0	8.54 282		8.54 308		1.45 692	9.99 974	60					
1	8.54 642	360	8.54 669	361 358	1.45 331	9.99 973	59	ĺ				
2	8.54 999	357 355	8.55 027	355	1.44 973	9.99 973	58	į				
3	8.55 354	351	8.55 382	352	1.44 618 1.44 266	9.99 972 9.99 972	57 56					
4	8.55 705	349	8.55 734	349	,							
5	8.56 054	346	8.56 083	346	1.43 917 1.43 571	9.99 971 9.99 971	55 54	860 355 350 345				
6	8.56 400 8.56 743	343	8.56 429 8.56 773	344	1.43 227	9.99 970	53	2 72 71.0 70 69.0				
8	8.57 084	341	8.57 114	341	1.42 886	9.99 970	52	1 3 1 108 106 5 105 103 5				
9	8.57 421	337	8.57 452	338	1.42 548	9.99 969	51	5 180 177 5 175 179 5				
10	8.57 757	336	8.57 788	336	1.42 212	9.99 969	50	17 1 252 248 5 245 241 5				
11	8.58 089	332	8.58 121	333	1.41 879	9.99 968	49	7 252 248.5 245 241.5 8 288 284.0 280 276.0 9 324 319.5 315 310.5				
12	8,58 419	330 328	8.58 451	330 328	1.41 549	9.99 968	48	9 324 319.5 315 310.5				
13	8.58 747	325	8.58 779	326	1.41 221	9.99 967	47					
14	8.59 072	323	8.59 105	323	1.40 895	9.99 967	46	340 335 330 325				
15	8.59 395	320	8.59 428	321	1.40 572	9.99 967	45	2 68 67.0 66 65.0				
16	8.59 715	318	8.59749	319	1.40 251 1.39 932	9.99 966 9.99 966	44 43	3 102 100.5 99 97.5 4 136 134.0 132 130.0				
17 18	8.60 033 8.60 349	316	8.60 068 8.60 384	316	1.39 616	9.99 965	42	5 170 167.5 165 162.5				
19	8.60 662	313	8.60 698	314	1.39 302	9.99 964	41	7 238 234.5 231 227.5				
20	8.60 973	311	8.61 009	311	1.38 991	9.99 964	40	8 272 268.0 264 260.0 9 306 301.5 297 292,5				
21	8.61 282	309	8.61 319	310	1.38 681	9.99 963	39					
22	8.61 589	307	8.61 626	307	1.38 374	9.99 963	38					
23	8.61 894	305 302	8.61 931	305 303	1.38 069	9.99 962	37	320 315 310 805				
24	8.62 196	301	8.62 234	301	1.37 766	9.99 962	36	2 64 63.0 62 61.0 3 96 94.5 93 91.5 4 128 126.0 124 122.0				
25	8.62 497	298	8.62 535	299	1.37 465	9.99 961	35	4 128 126.0 124 122.0				
26	8.62 795	296	8.62 834	297	1.37 166	9.99 961	34 33	5 160 157.5 155 152.5 6 192 189.0 186 183.0 7 224 220.5 217 213.5				
27 28	8.63 091 8.63 385	294	8.63 131 8.63 426	295	1.36 869 1.36 574	9.99 960 9.99 960	32	6 192 189.0 186 183.0 7 224 220.5 217 213.5 8 256 252.0 248 244.0				
29	8.63 678	293	8.63 718	292	1.36 282	9.99 959	31	6 192 189.0 186 183.0 7 224 220.5 217 213.5 8 256 252.0 248 244.0 9 288 283.5 279 274.5				
80	8,63 968	290	8.64 009	291	1.35 991	9.99 959	30	Λ				
31	8.64 256	288	8.64 298	289	1.35 702	9.99 958	29					
32	8.64 543	287	8.64 585	287	1.35 415	9.99 958	28	2 60 59 0 58 57.0				
33	8.64 827	284 283	8.64 870	285 284	1.35 130	9.99957	27	3 90 88.5 87 85.5				
34	8.65 110	281	8.65 154	281	1.34 846	9.99 956	26	4 120 118.0 116 114.0 5 150 147.5 145 142.5				
85	8.65 391	279	8.65 435	280	1.34 565	9.99 956	25	6 180 177.0 174 171.0 7 210 206.5 203 199.5				
36	8.65 670	277	8.65 715	278	1.34 285	9.99 955	24 23	8 240 236.0 232 228.0				
37	8.65 947 8.66 223	276	8.65 993 8.66 269	276	1.34 007 1.33 731	9.99 955 9.99 954	22	9 270 265.5 261 256.5				
39	8.66 497	274	8.66 543	274	1.33 457	9.99 954	21					
40	8.66 769	272	8.66 816	273	1.33 184	9.99 953	20	280 275 270 265				
41	8.67 039	270	8.67 087	271	1.32 913	9.99 952	19	2 56 55.0 54 53.0				
42	8.67 308	269	8.67 356	269	1.32 644	9.99952	18	2 56 55.0 54 53.0 3 84 82.5 81 79.5 4 112 110.0 108 106.0				
43	8.67 575	267 266	8.67 624	268 266	1.32376	9.99 951	17	1 5 140 137.5 135 132.5				
44	8.67 841	263	8.67 890	264	1.32 110	9.99951	16	6 168 165.0 162 159.0				
45	8.68 104	263	8.68 154	263	1.31 846	9.99 950	15	7 196 192.5 189 185.5 8 224 220.0 216 212.0 9 252 247.5 243 238.5				
46	8.68 367	260	8.68 417	261	1.31 583	9.99 949	14 13	9 1 202 241.5 245 238.5				
47	8.68 627 8.68 886	259	8.68 678 8.68 938	260	1.31 322 1.31 062	9.99 949 9.99 948	12					
49	8.69 144	258	8.69 196	258	1.30 804	9.99 948	11	260 255 250 245				
50	8.69 400	256	8.69 453	257	1.30 547	9.99 947	10	2 52 51.0 50 49.0 3 78 76.5 75 73.5				
51	8.69 654	254	8.69 708	255	1.30 292	9.99 946	9	3 78 76.5 75 73.5 4 104 102.0 100 98.0				
52	8.69 907	253	8.69 962	254 252	1.30 038	9.99 946	8	5 130 127.5 125 122.5				
53	8.70 159	252 250	8.70 214	252	1.29 786	9.99 945	7	4 104 102.0 100 98.0 5 130 127.5 125 122.5 6 156 153.0 150 147.0 7 182 178.5 175 171.5 8 208 204.0 200 196.0 9 234 229.5 225 220.5				
54	8.70 409	249	8.70 465	249	1.29 535	9.99 944	6	8 208 204.0 200 196.0 9 234 229.5 225 220.5				
55	8.70 658	247	8.70714	248	1.29 286	9.99 944	5					
56	8.70 905	246	8.70 962	246	1.29 038	9.99 943 £.99 942	3					
58	8.71 151 8.71 395	244	8.71 208 8.71 453	245	1.28 792 1.28 547	9.99,042	2					
59	8.71 638	243	8.71 697	244	1.28 303	9.99 941	ī					
60	8.71 880	242	8.71 940	243	1.28 060	9.99 940	ō					
•	L Cos	d	L Ctn	c d	L Tan	L Sin	7	Prop. Pts.				

1117			05411411	444,5	01 1115	OHOIMO	110	_	:	-		
1	L Sin	d	L Tan	c d	L Ctn	L Cos		L	1	Prop.	Pts.	
0	8.71 880	240	8.71 940	241	1.28 060	9.99 940	60	1	241	239	237	235
1	8.72 120	239	8.72 181	239	1.27 819	9.99 940	59	2		47 8	47.4	47.0
2	8.72 359	238	8.72 120	239	1.27 580	9.99 939	58	3	48.2 72.3 96.4	47.8 71.7	71.1	70.5
3 4	8.72 597 8.72 834	237	8.72 659 8.72 896	237	1.27 341 1.27 104	9.99 938 9.99 938	57 56	5	120.5	95.6 119.5	94.8	94.0 117.5
		235		236	1			6	144 6	1/2/	1499	141.0
5	8.73 069 8.73 303	234	8.73 132 8.73 366	234	1.26 868 1.26 634	9.99 937 9.99 936	55	8	168.7 192.9 216.9	167.3 191.2 215.1	$165.9 \\ 189.6$	$164.5 \\ 188.0$
6	2 73 535	232	8.73 600	234	1.26 400	9.99 936	54 53	8	216.9	215.1	213.3	211.5
8	8.73 535 8.73 767	232	8.73 832	232	1.26 168	9.99 935	52	1	•			
9	8.73 997	230	8.74 653	231	1.25 937	9.99 934	51	2	284	232 46.4	229	227
10	8.74 226	229	8.74 292	229	1.25 708	9.99 934	50	3	46.8 70.2	69.6	45.8 68.7	45.4 68.1
11	8.74 454	228	8.74 521	229	1.25 479	9.99 933	49	4 5	93.6 117.0	$92.8 \\ 116.0$	91.6 114.5	90.8
12	8.74 680	226 226	8.74 748	227 226	1.25 252	9.99 932	48	67		139.2	137.4	113.5 136.2
13	8.74 906	224	8.74 974	225	1.25 026	9.99 932	47	8 9	163.8 187.2 210.6	$162.4 \\ 185.6$	137.4 160.3 183.2	158.9 181.6
14	8.75 130	223	8.75 199	224	1.24 801	9,99 931	46	9	210.6	208.8	206.1	204.3
15	8.75 353	222	8.75 423	222	1.24 577	9.99 930	45	1				
16	8.75 575	220	8.75 645	222	1.24 355	9.99 929	44	2.	226 45.2	224	222	220
17 18	8.75 795 8.76 015	220	8.75 867 8.76 087	220	1.24 133 1.23 913	9.99 929 9.99 928	43 42	3	45.2 67.8	44.8 67.2	44.4 66.6 88.8	44.0 66.0 88.0
19	8.76 234	219	8.76 306	219	1.23 694	9.99 926	41	5	90.4 113.0	89.6 112.0	88.8	88.0
20	8.76 451	217	8.76 525	219	1.23 475	9.99 926	40	67	113.0 135.6 158.2 180.8 203.4	134.4	111.0 133.2	110.0 132.0
21	8.76 667	216	8.76 742	217	1.23 258	9.99 926	39	181	180.8	$156.8 \\ 179.2$	155.4 177.6 199.8	154.0 176.0
22	8.76 883	216	8.76 958	216	1.23 042	9.99 925	38	9	203.4	201.6	199.8	176.0 198.0
23	8.77 097	214	8.77 173	215 214	1.22 827	9.99 924	37	1	219	217	215	213
24	8.77 310	213 212	8.77 387	214	1.22 613	9.99 923	36	21		43.4	43.0	42.6
25	8.77 522		8.77 600	211	1.22 400	9.99 923	35	131	43.8 65.7 87.6	65.1	64.5	63.9 85.2
26	8.77 733	211 210	8.77 811	211	1.22 189	9.99 922	34	4 5 6 7 8	109.5	86.8 108.5	86.0 107.5	85.2 106.5
27	8.77 943	209	8.78 022	210	1.21 978	9.99 921	33	6	131.4	108.5 130.2	190 N	197 8
28 29	8.78 152 8.78 360	208	8.78 232 8.78 441	209	1.21 768 1.21 559	9.99 920 9.99 920	32 31	8	109.5 131.4 153.3 175.2	151.9 173.6	150.5 172.0 193.5	170.4 191.7
30	8.78 568	208	8.78 649	208	1.21 351	9.99 919	30	9	197.1	195.3	193.5	191.7
31	8.78 774	206	8.78 855	206	1.21 145	9.99 918	29	1	211	208	206	203
32	8.78 979	205	8.79 061	206	1.20 939	9.99 917	28	2	42.2	41.6	41.2	40 6
33	8.79 183	204	8.79 266	205 204	1.20 734	9.99 917	27	3 4	63.3 84.4	62.4 83.2	61.8	60.0
34	8.79 386	203	8.79 470	203	1.20 530	9.99 916	26	5	105.5	104 0	82.4 103.0 123.6 144.2	81.2 101.5
85	8.79 588	201	8.79 673	202	1.20 327	9.99 915	25	7 8	126.6 147.7	124.8 145.6	123.6	121.8 142.1 162.4 182.7
36	8.79 789	201	8.79 875	201	1.20 125	9.99 914	24	8	168.8 189.9	$166.4 \\ 187.2$	164.8 185.4	162.4
37	8.79 990 8.80 189	199	8.80 076 8.80 277	201	$1.19924 \\ 1.19723$	9.99 913 9.99 913	23 22	١٠,	100.0	101.2	100.4	104.1
39	8.80 388	199	8.80 476	199	1.19 524	9.99 912	21	1	201	199	197	195
40	8.80 585	197	8.80 674	198	1.19 326	9.99 911	20	3	40.2 60.3	39.8 59.7	39.4 59.1	39.0
41	8.80 782	197	8.80 872	198	1.19 128	9.99 910	19	141	80.4 100.5	79 A	78.8	58.5 78.0 97.5
42	8.80 978	196	8.81 068	196	1.18 932	9.99 909	18	5	100.5 120 8	99.5 119.4	$98.5 \\ 118.2$	97.5 117.0
43	8.81 173	195 194	8.81 264	196 195	1.18 736	9.99 909	17	171	120.6 140.7	139.3	137.9	136.5
44	8.81 367	193	8.81 459	194	1.18 541	9.99 908	16	8	160.8 180.9	$159.2 \\ 179.1$	157.6 177.3	156.0 175.5
45	8.81 560	192	8.81 653	193	1.18 347	9.99 907	15	ľ				
46	8.81 752	192	8.81 846	192	1.18 154	9.99 906	14	١	193	192	190	188
47 48	8.81 944 8.82 134	190	8.82 038 8.82 230	192	1.17 962 1.17 770	9.99 905 9.99 904	13 12	3	38.6 57.9 77.2	38.4 57.6	38.0 57.0	37.6 56.4
49	8.82 324	190	8.82 420	190	1.17 580	9.99 904	11	5	77.2	76.8	76.0	56.4 75.2
50	8.82 513	189	8.82 610	190	1.17 390	9.99 903	10	67	96.5 115.8	96.0 115.2 134.4	$95.0 \\ 114.0$	$94.0 \\ 112.8$
51	8.82 701	188	8.82 799	189	1.17 201	9.99 902	9	8	135 1	$134.4 \\ 153.6$	$133.0 \\ 152.0$	131.6
52	8.82 888	187	8.82 987	188	1.17 013	9.99 901	8	9	154.4 173.7	172.8	171.0	150.4 169.2
53	8.83 075	187 186	8.83 175	188	1.16 825	9.99 900	7		104	104	100	401
54	8.83 261	185	8.83 361	186	1.16 639	9.99 899	6	21	186 37.2	184 36 8	182 36.4	181 36.2
55	8.83 446	184	8.83 547	185	1.16 453	9.99 898	5	3	55.8	36.8 55.2	54.6	54.3 72.4
56	8.83 630	183	8.83 732	184	1.16 268	9.99898	4	4 5	74.4 93.0	73.6 92.0	54.6 72.8 91.0	90.5
57 58	8.83 813 8.83 996	183	8.83 916 8.84 100	184	1.16 084 1.15 900	9.99 897 9.99 896	3 2	6	111.6	110.4 128.8 147.2	109.2	108.6 126.7
59	8.84 177	181	8.84 282	182	1.15 718	9 99 895	1	8	111.6 130.2 148.8 167.4	147.2	109.2 127.4 145.6 163.8	144.8
60	8 84 358	181	8.84 461	182	1.15 536	9.99 894	ō	9	167.4	165.6	163.8	162.9
				0.4			-	-	- B		Dta	
1	L Cos	d	L Ctn	c d.	L Tan	L Sin	' 1	1	r	rop.	IVB.	

86° Logarithms of Trigonometric Functions

1	L Sin	d	L Tan	c d	L Ctn	L Cos		Prop. Pts.
0	8.84 358		8.84 464	100	1.15 536	9.99 894	60	
1	8.84 539	181	8.84 646	182	1.15 354	9.99 893	59	182 181 180 179
2	8.84 718	179	8.84 826	180	1.15 174	9.99 892	58	2 36.4 36.2 36.0 35.8 3 54.6 54.3 54.0 53.7 4 72.8 72.4 72.0 71.6
3	8.84 897	179	8.85 006	180	1.14 994	9.99891	57	2 36.4 36.2 36.0 35.8 3 54.6 54.3 54.0 53.7 4 72.8 72.4 72.0 71.6
4	8.85 075	178	8.85185	179	1.14 815	9.99 891	56	
5	8.85 252	177	8.85 363	178	1.14 637	9.99 890	55	6 109.2 108.6 108.0 107.4 7 127.4 126.7 126.0 125.3
6	8.85 429	177	8.85 540	177	1.14 460	9.99 889	54	6 109.2 108.6 108.0 107.4 7 127.4 126.7 126.0 125.3 8 145.6 144.8 144.0 143 2 9 163.8 162.9 162.0 161.1
7	8.85 605	176	8.85 717	177	1.14 283	9.99 888	53	8 145.6 144.8 144.0 143.2 9 163.8 162.9 162.0 161.1
8	8 85 780	175	8.85 893	176	1.14 107	9.99 887	52	
9	8.85 955	175	8.86 069	176	1.13 931	9.99 886	51	110 111 110 110
10	8.86 128	173	8.86 243	174	1.13 757	9.99 885	50	
11	8.86 301	173	8.86 417	174	1.13 583	9.99 884	49	3 53.4 53.1 52.8 52.5 4 71.2 70.8 70.4 70.0
12	8.86 474	173	8.86 591	174	1.13 409	9.99 883	48	15 89.0 88.5 88.0 87.5
13	8.86 645	171	8.86 763	172	1.13 237	9.99 882	47	6 106.8 106.2 105.6 105.0 7 124.6 123.9 123.2 122.5 8 142.4 141.6 140.8 140.0
14	8.86 816	171	8.86 935	172	1.13 065	9.99 881	46	8 142.4 141.6 140.8 140.0
1		171		171				9 160.2 159.3 158.4 157.5
15	8.86 987	169	8.87 106	171	1.12 894	9.99 880	45	174 173 172 171
16	8.87 156	169	8.87 277	170	1.12 723	9.99 879	44	
17	8.87 325	169	8.87 447	169	1.12 553	9.99 879	43	3 52.2 51.9 51.6 51.3
18	8.87 494	167	8.87 616	169	1.12 384	9.99 878	42	14 69.6 69.2 68.8 68.4
19	8.87 661	168	8.87 785	168	1.12 215	9.99 877	41	5 87.0 86.5 86.0 85.5 6 104.4 103.8 103.2 102.6
20	8 87 829	166	8.87 953	167	1.12 047	9.99876	40	6 104.4 103.8 103.2 102.6 7 121.8 121.1 120.4 119.7 8 139 2 138.4 137.6 136.8
21	8.87 995	166	8.88 120	167	1.11 880	9.99 875	39	8 139 2 138.4 137.6 136.8 9 156.6 155.7 154.8 153.9
22	8.88 161	165	8.88 287	166	1.11713	9.99874	38	D 100.0 100.1 104.5 100.5
23	8.88 326	164	8.88 453	165	1.11 547	9.99873	37	170 169 168 167
24	8.88 490	164	8.88618	165	1.11 382	9.99872	36	21 340 338 336 334
25	8.88 654		8.88 783		1.11 217	9.99871	35	131 51.0 50.7 50.4 50.1
26	8.88 817	163	8.88 948	165	1.11 052	9.99870	34	4 68.0 67.6 67.2 66.8 5 85.0 84.5 84.0 83.5
27	8.88 980	163	8.89 111	163	1.10 889	9.99 869	33	16 102.0 101.4 100.8 100.2
28	8.89 142	162	8.89 274	163	1.10 726	9.99 868	32	7 119.0 118.3 117.6 116.9 8 136 0 135.2 134.4 133.6
29	8.89 304	162	8.89 437	163	1.10 563	9.99 867	31	7 119.0 118.3 117.6 116.9 8 136 0 135.2 134.4 133.6 9 153.0 152.1 151.2 150.3
30	8.89 464	160	8.89 598	161	1.10 402	9.99 866	30	
31	8.89 625	161	8.89 760	162	1.10 240	9.99 865	29	166 165 164 163
32	8.89 784	159	8.89 920	160	1.10 080	9.99 864	28	2 33.2 33.0 32.8 32.6 3 49.8 49.5 49.2 48.9 4 66.4 66.0 65.6 65.2
33	8.89 943	159	8.90 080	160	1.09 920	9.99 863	27	3 49.8 49.5 49.2 48.9 4 66.4 66.0 65.6 65.2
34	8.90 102	159	8.90 240	160	1.09 760	9.99 862	26	
35	8.90 260	158	8.90 399	159	1.09 601	9.99 861	25	6 99 6 99.0 98.4 97.8 7 116.2 115.5 114.8 114.1
36	8.90 417	157	8.90 557	158	1.09 443	9.99 860	24	[8] 132.8 132.0 131.2 130.4
37	8.90 574	157	8.90715	158	1.09 285	9.99 859	23	9 149.4 148.5 147.6 146.7
38	8.90 730	156	8.90 872	157	1.09 128	9.99 858	22	
39	8.90 885	155	8.91 029	157	1.08 971	9.99 857	21	162 161 160 159
40	8.91 040	155		156	1.08 815	9.99 856	20	2 32.4 32.2 32.0 31.8 3 48.6 48.3 48.0 47.7 4 64.8 64.4 64.0 63.6
41	8.91 195	155	8.91 185 8.91 340	155	1.08 660	9.99 855	19	3 48.6 48.3 48.0 47.7 4 64.8 64.4 64.0 63.6 5 81.0 80.5 80.0 79.5
42	8.91 349	154	8 91 495	155	1.08 505	9.99 854	18	5 81.0 80.5 80.0 79.5 6 97.2 96.6 96.0 95.4
43	8.91 502	153	8.91 650	155	1.08 303	9.99 853	17	7 113.4 112.7 112.0 111.3
44	8.91 655	153	8.91 803	153	1.08 197	9.99 852	16	8 129.6 128.8 128.0 127.2 9 145.8 144.9 144.0 143.1
1 1	1	152		154			15	9 140.5 144.8 144.0 145.1
15	8.91 807	152	8.91 957	153	1.08 043	9.99851		
46	8.91 959	151	8.92 110	152	1.07 890 1.07 738	9.99 850 9.99 848	14 13	158 157 156 155
47 48	8.92 110	151	8.92 262	152	1.07 586	9.99 847	12	31.6 31.4 31.2 31.0 3 47.4 47.1 46.8 46.5 4 63.2 62.8 62.4 62.0
	8.92 261 8.92 411	150	8.92 414 8.92 565	151	1.07 435	9.99 846	11	3 47.4 47.1 46.8 46.5 4 63.2 62.8 62.4 62.0 5 79.0 78.5 78.0 77.5 6 94.8 94.2 93.6 93.0
49		150		151				5 79.0 78.5 78.0 77.5
50	8.92 561	149	8.92 716	150	1.07 284	9.99 845	10	7 110.6 109.9 109.2 108.5
51	8.92 710	149	8.92 866	150	1.07 134	9.99 844	9	8 126.4 125.6 124.8 124.0 9 142.2 141.3 140.4 139.5
52	8.92 859	148	8.93 016	149	1.06 984	9.99 843	8	0 1 122.2 121.0 120.2 139.3
53	8.93 007	147	8.93 165	148	1.06 835	9.99 842 9.99 841	6	154 153 152 181
54	8.93 154	147	8.93 313	149	1.06 687			21 30.8 30.6 30.4 30.2
55	8.93 301	147	8.93 462	147	1.06 538	9.99 840	5	3 46.2 45.9 45.6 45.3
56	8.93 448	146	8.93 609	147	1.06 391	9.99 839	4	4 61.6 61.2 60.8 60.4 5 77.0 76.5 76.0 75.5
57	8.93 594	146	8.93 756	147	1.06 244	9.99 838	3	5 77.0 76.5 76.0 75.5 6 92.4 91.8 91.2 90.6 7 107.8 107.1 106.4 105.7
58	8.93 740	145	8.93 903	146	1.06 097	9.99 837	2	5 77.0 76.5 76.0 75.5 6 92.4 91.8 91.2 90.6 7 107.8 107.1 106.4 105.7 8 123.2 122.4 121.6 120.8
59	8.93 885	145	8.94 049	146	1.05 951	9.99 836		8 123.2 122.4 121.6 120.8 9 138.6 137.7 136.8 135.9
60	8.94 030		8.94 195		1.05 805	9.99 834	0	
•	L Cos	d	L Ctn	cd	L Tan	L Sin	'	Prop. Pts.

,	L Sin	d	L Tan	c d	L Ctn	L Cos		Prop. Pts.
0	8.94 030	144	8.94 195	145	1.05 805	9.99 834	60	150 140 140 140
1	8.94 174	144	8.94 340	145	1.05 660	9.99 833	59	150 149 148 147 2 30.0 29.8 29.6 29.4
2	8.94 317	144	8.94 485	145	1.05 515	9.99832	58	2 30.0 29.8 29.6 29.4 3 45.0 44.7 44.4 44.1 4 60.0 59.6 59.2 58.8
3	8.94 461	142	8.94 630	143	1.05 370	9.99831	57	4 60.0 59.6 59.2 58.8
4	8.94 603	143	8.94 773	144	1.05 227	9.99 830	56	5 75.0 74.5 74.0 73.5 6 90.0 89.4 88.8 88.2
5	8.94 746		8.94 917	143	1.05 083	9.99 829	55	7 105.0 104.3 103.6 102.9
6	8.94.887	141	8.95 060	142	1.04 940	9.99 828	54	8 120.0 119.2 118.4 117.6 9 185.0 134.1 133.2 132.3
7	8.95 029	141	8.95 202	142	1.04 798	9.99 827	53	1
8	8.95 170	140	8.95 .44	142	1.04 656	9.99 825	52	146 145 144 143
9	8.95 310	140	8.95 486	141	1.04 514	9.99 824	51	2 29.2 29.0 28.8 28.6 3 43.8 43.5 43.2 42.9
10	8.95 450	139	8.95 627	140	1.04 373	9.99 823	50	3 43.8 43.5 43.2 42.9 4 58.4 58.0 57.6 57.2 5 73.0 72.5 72.0 71.5
11	8.95 589	139	8.95 767	141	1.04 233 1.04 092	9.99 822	49	4 58.4 58.0 57.6 57.2 5 73.0 72.5 72.0 71.5
12 13	8.95 728 8.95 867	139	8.95 908 8.96 047	139	1.03 953	9.99 821	48	6 87.6 87.0 86.4 85.8 7 102.2 101.5 100.8 100.1
14	8.96 005	138	8.96 187	140	1.03 813	9.99 819	46	8 116.8 116.0 115.2 114.4
1 1		138		138			1	9 131.4 130.5 129.6 128.7
15 16	8.96 143 8.96 280	137	8.96 325 8.96 464	139	1.03 675 1.03 536	9.99 817 9.99 816	45 44	142 141 140 139
17	8.96 417	137	8.96 602	138	1.03 398	9.99 815	43	21 284 282 280 278
18	8.96 553	136	8.96 739	137	1.03 261	9.99 814	42	2 28 4 28.2 28.0 27.8 3 42.6 42.3 42.0 41.7 4 56.8 56.4 56.0 55.6
19	8.96 689	136	8.96 877	138	1.03 123	9.99 813	41	151 710 705 700 805
20	8.96 825	136	8.97 013	136	1.02 987	9.99 812	40	6 85.2 84.6 84.0 83.4
21	8.96 960	135	8.97 150	137	1.02 850	9.99 810	39	7 99.4 98.7 98.0 97.3 8 113 6 112.8 112.0 111.2
22	8.97 095	135	8.97 285	135	1.02 715	9.99 809	38	9 127.8 126.9 126.0 125.1
23	8.97 229	134	8.97 421	136	1.02 579	9.99 808	37	199 197 194 194
24	8.97 363	134	8.97 556	135	1.02 444	9.99 807	36	138 187 186 135 2 27.6 27.4 27.2 27.0
25	8.97 496	133	8.97 691	135	1.02 309	9.99 806	35	3 41.4 41.1 40.8 40.5
26	8.97 629	133	8.97 825	134	1.02 175	9.99 804	34	4 55.2 54.8 54.4 54.0 5 69.0 68.5 68.0 67.5
27	8.97 762	133	8.97 959	134	1.02 041	9.99 803	33	161 82.8 82.2 816 810
28	8.97 894	132	8.98 092	133 133	1.01 908	9.99 802	32	7 96.6 95.9 95.2 94.5 8 110 4 109.8 108.8 108.0
29	8.98 026	132 131	8.98 225	133	1.01 775	9.99 801	31	8 110 4 109.8 108.8 108.0 9 124.2 123.3 122.4 121.5
30	8.98 157		8.98 358	132	1.01 642	9.99 800	30	
31	8.98 288	131 131	8.98 490	132	1.01 510	9.99 798	29	134 133 132 131
32	8.98 419	130	8.98622	131	1.01 378	9 99 797	28	2 26.8 26.6 26.4 26.2 3 40.2 39.9 39.6 39.3 4 53.6 53.2 52.8 52.4
33	8.98 549	130	8.98 753	131	1.01 247	9.99 796	27	4 53.6 53.2 52.8 52.4 5 67.0 66.5 66.0 65.5
34	8.98 679	129	8.98 884	131	1.01 116	9.99795	26	10 67.0 66.5 66.0 65.5
35	8.98 808	129	8.99 015	130	1.00 985	9.99793	25	17 03 8 03 1 09 4 01 7
36	8.98 937	129	8.99 145	130	1.00 855	9.99 792	24 23	8 107.2 106.4 105.6 104.8 9 120.6 119.7 118.8 117.9
37 38	8.99 066	128	8.99 275 8.99 405	130	1.00 725 1.00 595	9.99 791 9.99 790	23	1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
39	8.99 194 8.99 322	128	8.99 534	129	1.00 466	9.99 788	21	130 129 128 127
		128		128	1.00 338		20	2 26.0 25.8 25.6 25.4 3 39.0 38.7 38.4 38.1
40 41	8.99 450 8.99 577	127	8.99 662 8.99 791	129	1.00 358	9.99 787 9.99 786	19	14 590 518 519 509
42	8.99 704	127	8.99 919	128	1.00 081	9.99 785	18	10 00 04.0 04.0 03.0 1
43	8.99 830	126	9.00 046	127	0.99 954	9.99 783	17	17 91.0 90.3 89.6 88.9
44	8.99 956	126	9.00 174	128	0.99 826	9.99782	16	7 91.0 90.3 89.0 88.9 8 104.0 103.2 102.4 101.6 9 117.0 116.1 115.2 114.3
45	9.00 082	126	9.00 301	127	0.99 699	9.99 781	15	0 1 117.0 110.1 113.2 114.3
46	9.00 207	125	9.00 427	126	0.99 573	9.99 780	14	126 125 124 123
47	9.00 332	125	9.00 553	126	0.99 447	9.99778	13	
48	9.00 456	124	9.00 679	126	0.99 321	9.99777	12	13 378 375 372 389
49	9.00 581	125 123	9.00 805	126 125	0.99 195	9.99776	11	4 50.4 50.0 49.6 49.2 5 63.0 62.5 62.0 61.5
50	9.00 704		9.00 930		0.99 070	9.99775	10	6 75.6 75.0 74.4 73.8 7 88.2 87.5 86.8 86.1 8 100.8 100.0 99.2 98.4
51	9.00 828	124	9.01 055	125 124	0.98 945	9.99773	9 8	8 100.8 100.0 99.2 98.4 1
52	9.00 951	123 123	9.01 179	124	0.98 821	9.99 772	8	9 113.4 112.5 111.6 110.7
53	9.01 074	123	9.01 303	124	0.98 697	9.99771	7	122 121 120
54	9.01 196	122	9.01 427	123	0.98 573	9.99769	6	2 24.4 24.2 24.0
55	9.01 318	122	9.01 550	123	0.98 450	9.99 768	5	3 36.6 36.3 36.0
56	9.01 440	121	9.01 673	123	0.98 327	9.99 767	4	4 48.8 48.4 48.0 5 61.0 60.5 60.0
57	9.01 561	121	9.01 796	122	0.98 204	9.99765	3 2	5 61.0 60.5 60.0 6 73.2 72.6 72.0 7 85.4 84.7 84.0
58 59	9.01 682	121	9.01 918 9.02 040	122	0.98 082 0.97 960	9.99 764 9.99 763	1	8 97.6 96.6 96.0
	9.01 803	120		122	0.97 838		ō	9 109.8 108.9 108.0
60	9.01 923 L Cos	d	9.02 162 L Ctn	cd	L Tan	9.99 761 L Sin	+	Prop. Pts
, ,		-	,				, ,	

_	L Sin	d	L Tan	c d	L Ctn	L Cos	T	Prop. Pts.
		-	9.02 162		0.97 838	9.99 761		
1	9.02 043	120	9.02 283		0.97 717			
2		100	9.04 101	121	0.97 596			
4		1110		120	0.97 475 0.97 355			
5		1 1 1 1 1 1 1 1 1 1 1	9.02 766	121	0.97 234			E .
6			9.02 885	119	0.97 115			1 744 740 173 178
1 7		118	9.03 005	120	0.96 995			3 3 36.3 36.0 35.7 35.4
8	9.02 874	117	9.03 124	119	0.96 876		. 5	0 4 4 484 480 476 470
9	1	117	9.03 242	119	0.96 758	1	1	4 O 72.6 72.0 71.4 70.8
10		117	9.03 361	118	0.96 639			18 96.8 96.0 95.2 94.4
111		116	9.03 479 9.03 597	118	0.96 521 0.96 403	9.99 747 9.99 745		9 9 108.9 108.0 107.1 106.2
13		116	9.03 714	117	0.96 286	9.99 744		- I
14		116	9.03 832	118	0.96 168	9.99 742		
15		116	9.03 948	116	0.96 052	9.99 741		5 3 35.1 34.8 34.5 34.2
16	9.03 805	115	9.04 065	117	0.95 935	9.99740		. 14 40.8 40.4 40.0 45.6
17	9.03 920	115	9.04 181	116	0.95 819	9.99 738		1 5 58.5 58.0 57.5 57.0 3 6 70.2 69.6 69.0 68.4 2 7 81.9 81.2 80.5 79.8 9 8 93.6 92.8 92.0 91.2
18	9.04 034	115	9.04 297	116	0.95 703	9.99 737	42	7 81.9 81.2 80.5 79.8 8 93.6 92.8 92.0 91.2
1 .	9.04 149	1113	9.04 413	115	0.95 587	9.99 736	41	
20	9.04 262	114	9.04 528 9.04 643	115	0.95 472 0.95 357	9.99734	40	
22	9.04 490	114	9.04 758	115	0.95 242	9.99 731	38	2 22.6 22.4 22.2 22.0
23	9.04 60	113	9.04 873	115	0.95 127	9.99 730	37	
24	9.04 715	112	9.04 987	114	0.95013	9.99728	36	5 56.5 56.0 55.5 55.0
25	9.04 828	112	9.05 101	114	0.94899	9.99727	35	6 67.8 67.2 66.6 66.0 7 79.1 78.4 77.7 77.0
26	9.04 940	112	9.05 214	113 114	0.94 786	9.99726	34	10 90.4 59.0 55.5 55.0
27 28	9.05 052 9.05 164	112	9.05 328	113	0.94 672 0.94 559	9.99 724	33	9 101.7 100.8 99.9 99.0
29	9.05 275	111	9.05 441 9.05 553	112	0.94 447	9.99 723 9.99 721	32	109 108 107 106
30	9.05 386	111	9.05 666	113	0.94 334	9.99 720	30	
31	9.05 497	111	9.05 778	112	0.94 222	9.99718	29	2 21.8 21.6 21.4 21.2 3 32.7 32.4 32.1 31.8 4 43.6 43.2 42.8 42.4
32	9.05 607	110 110	9.05 890	112 112	0.94 110	9.99717	28	5 54.5 54.0 53.5 53.0 6 65.4 64.8 64.2 63.6 7 76.3 75.6 74.9 74.2
33	9.05 717	110	9.06 002	111	0.93 998	9.99 716	27	7 76.3 75.6 74.9 74.2 8 87.2 864 85.6 84.8
35	9.05 827	110	9.06 113	111	0.93 887	9.99714	26	32.7 32.4 32.1 31.8 4 43.6 43.2 42.8 42.4 5 54.5 54.5 54.0 53.5 53.0 6 65.4 64.8 64.2 63.6 7 76.3 75.6 74.9 74.2 8 87.2 86.4 85.0 84.8 9 98.1 97.2 96.3 95.4
36	9.05 937 9.06 046	109	9.06 224 9.06 335	111	0.93 776 0.93 665	9.99713	25 24	
37	9.06 155	109	9.06 445	110	0.93 555	9.99710	23	
38	9.06 264	109 108	9.06 556	111	0.93444	9.99708	22	
39	9.06 372	109	9.06 666	110 109	0.93 334	9.99 707	21	
40	9.06 481	108	9.06 775	110	0.93 225	9.99705	20	From the ton:
$\frac{41}{42}$	9.06 589 9.06 696	107	9.06 885	109	0.93 115	9.99 704	19	From the top:
43	9.06 804	108	9.06 994 9.07 103	109	0.93 006 0.92 897	9.99702 9.99701	18 17	For 6°+ or 186°+,
44	9.06 911	107	9.07 211	108	0.92 789	9.99 699	16	read as printed; for
45	9.07 018	107 106	9.07 320	109	0.92 680	9.99698	15	96°+ or 276°+, read
46	9.07 124	106	9.07 428	108	0.92 572	9.99696	14	co-function.
47	9.07 231	106	9.07.536	107	0.92 464	9.99 695 9.99 693	13	
49	9.07 337 9.07 442	105	9.07 643 9.07 751	108	0.92 357 0.92 249	9.99 692	12 11	From the bottom:
50	9.07 548	106	9.07 858	107	0.92 142	9.99 690	10	For 83°+ or 263°+.
51	9.07 653	105	9.07 964	106	0.92 036	9.99 689	19	1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
52	9.07 758	105	9.08 071	107	0.91 929	9.99 687	8	read as printed; for
53	9.07 863	105	9.08 177	106	0.91 823	9.99 686	7	173°+ or 353°+, read
54 55	9.07 968	104	9.08 283	106	0.91 717	9.99 684	6	co-function.
56	9.08 072 9.08 176	104	9.08 389 9.08 495	106	0.91 611 0.91 505	9.99 683 9.99 681	5 4	
57	9.08 280	104	9.08 600	105	0.91 400	9.99680	3	l l
58	9.08 383	103	9.08 705	105 105	0.91 295	9.99 678	2	l l
59	9.08 486	103	9.08 810	103	0.91 190	9.99677	1]
60	9.08 589		9.08 914		0.91 086	9.99 675	0	
•	L Cos	d	L Ctn	c d	L Tan	L Sin	1	Prop. Pts.

[L Sin	d	L Tan	cd	L Ctm	L Cos	T	Prop. Pts.					
0		100	9.08 914		0.91 086	9.99 675	60	1					
1		103	9.09 019	105	0.90 981	9.99 674		1					
2		103	9.09 123	104	0.90 877	9.99672	58	1	- -	04		102	
3		102	9.09 227	104	0.90 773	9.99 670	57	2 21		8.0	20.6	20.4	
4	1	102	9.09 330	104	0.90 670	9.99 669	56	3 31		1.2	30.9	30.6	
5	9.09 101	101	9.09 434	103	0.90 566	9.99667	55	4 42		1.6	41.2	40.8	
6	9.09 202	102	9.09 537	103	0.90 163	9.99666	54			2.0	51.5	51.0	
7	9.09.304	101	9.09 640	102	0.90 360	9.99664	53	6 63		2.4 2.8	61.8	61.2	
8	9.09 405	101	9.09 742	103	0.90 258	9.99 663	52	7 73 8 84		3.2	72.1 82.4	71.4 81.6	
9	9.09 506	100	9.09 845	102	0.90 155	9.99 661	51				92.7		
10		101	9.09 947	102	0.90 053	9.99659	50	10,02	.0 1 0	,,,,	<i></i>	02.0	
11	9.09 707	100	9.10 049	101	0.89 951	9.99658	49	1				1	
12	9.09 807	100	9.10 150	102	0.89 850	9.99 656	48	10	1 8	99	98	97	
14	9.10 006	99	9.10 252 9.10 353	101	0.89748	9.99 655 9.99 653	47	2 20	2 1	9.8	19.6	19.4	
15	9.10 106	100	1	101	1		1	3 30		9.7	29.4	29.1	
16	9.10 106	99	9.10 454 9.10 555	101	0.89 546	9.99651	45	4 40		9.6	39.2	38.8	
17	9.10 304	99	9.10 556	101	0.89 344	9.99 650 9.99 648	44 43	5 50		9.5	49.0	48.5	
18	9.10 402	98	9.10 756	100	0.89 244	9.99 647	42	6 60		9.4	58.8	58.2	
19	9.10 501	99	9.10 856	100	0.89 144	9.99 645	41	7 70		9.3	68.6	67.9	
20	9.10 599	98	9.10 956	100	0.89 044	9.99 643	40	8 80		9.2	78.4	77.6	
21	9.10 697	98	9.11 056	100	0.88 944	9.99642	39	9 90	.9 8	9.1	88.2	87.3	
22	9.10 795	98	9.11 155	99	0.88 845	9.99 640	38	1					
23	9.10 893	98	9.11 254	99	0.88746	9.99 638	37	1 9	6 9	95	94	93	
24	9.10 990	97	9.11 353	99	0.88 647	9.99 637	36	2 19	0 1	9.0	18.8	18.6	
25	9.11 087	97	9.11 452	4	0.88 548	9.99 635	35	3 28	8 2	3.5	28.2	27.9	
26	9.11 184	97 97	9.11 551	99	0.88 449	9.99 633	34	4 38	.4 3	3.0	37.6	37.2	
27	9.11 281	96	9.11 649	98	0.88 351	9.99 632	33	5 48		7.5	47.0	46.5	
28	9.11 377	97	9.11 747	98	0.88 253	9.99630	32	6 57		7.0	56.4	55.8	
29	9.11 474	96	9.11 845	98	0.88 155	9.99 629	31	7 67.		3.5	65.8	65.1	
30	9.11 570	96	9.11 943	97	0.88 057	9.99627	30	8 76.		0.6	75.2	74.4	
31	9.11 666	95	9.12 040	98	0.87 960	9.99625	29	9 86.	4 85	5.5	84.6	83.7	
32	9.11 761 9.11 857	96	9.12 138	97	0.87 862	9.99624	28 27	l				- 1	
34	9.11 857 9.11 952	95	$9.12\ 235$ $9.12\ 332$	97	0.87 765 0.87 668	9.99622 9.99620	26	,	92	1 0	1 9	0	
35	9.12 047	95		96	0.87 572	9.99 618	25			1			
36	9.12 047	95	9.12 428 9.12 525	97	0.87 572	9.99618	24	2 3	$\frac{18.4}{27.6}$	18 27			
37	9.12 236	94	9.12 525	96	0.87 379	9.99615	23	4	36.8	36			
38	9.12 331	95	9.12 717	96	0.87 283	9.99613	22	5	46.0	45			
39	9.12 425	94	9.12 813	96	0.87 187	9.99612	21	6	55.2	54			
40	9.12 519	94	9.12 909	96	0.87 091	9.99610	20	7	64.4	63	.7 63	.0	
41	9.12 612	93	9.13 004	95	0.86 996	9.99608	19	8	73.6	72			
42	9.12706	94	9.13099	95 95	0.86 901	9.99 607	18	9	82.8	81	.9 81	.0	
43	9.12799	93 93	9.13194	95 95	0.86 806	9.99605	17					ı	
44	9.12 892	93	9.13289	95	0.86 711	9.99 603	16					- 1	
45	9.12 985	93	9.13384	94	0.86 616	9.99601	15	Fre	m th	e tr	n:	- 1	
46	9.13 078	93	9.13 478	95	0.86 522	9.99 600	14				-		
47	9.13 171	92	9.13 573	94	0.86 427	9.99 598	13 12	For	70+	. 01	r 187	′°+,	
48 49	9.13 263 9.13 355	92	9.13 667 9.13 761	94	0.86 333 0.86 239	9.99 596 9.99 595	11	read	as n	rin	ted:	for	
50		92		93			10	970+					
51	9.13 447 9.13 539	92	9.13 854 9.13 948	94	0.86 146 0.86 052	9.99 593 9.99 591		co-fur			, .		
52	9.13 630	91	9.13 948 9.14 041	93	0.85 959	9.99 589	9	Jo-rui		••		1	
53	9.13 722	92	9.14 134	93	0.85 866	9.99 588	7	Fre	m +h	a he	ttom .	.	
54	9.13 813	91	9.14 227	93	0.85 773	9.99 586	6	1.70	**** ***	6 00	iccont.	٠ ا	
55	9.13 904	91	9.14 320	93	0.85 680	9.99 584	5	For	820	+ 0	r 262	0+,	
56	9.13 994	90	9.14 412	92	0.85 588	9.99 582	4	read	as n	rin	ted:	for	
57	9.14 085	91	9.14 504	92	0.85 496	9.99 581	3						
58	9.14 175	90	9.14 597	93 91	0.85 403	9.99579	2	112 T OF 852 T, read					
59	9.14 266	91	9.14 688	92	0.85 312	9.99 577	1	co-run	CUOI	1.		1	
60	9.14 356	,	9.14 780	02	0.85 220	9.99 575	0						
	L Cos	đ	L Ctn	c d	L Tan	L Sin	'		Proj	o. P	ts.		

<u></u>	L Sin	d	L Tan	c d	L Ctn	L Cos		Prop. Pts.
0	9.14 356	-	9.14 780	00	0.85 220	9.99 575	60	
1	9.14 445	89	9.14 872	92	0.85 128	9.99 574	59	1 00 1 01 1 00 1 00
2	9.14 535	90	9.14 963	91	0.85 037	9.99 572	58	92 91 90 89
3	9.14 624	89	9.15 054	91	0.84 946	9.99 570	57	2 18.4 18.2 18.0 17.8
1 4	9.14 714	90	9.15 145	91	0.84 855	9.99 568	56	3 27.6 27.3 27.0 26.7
5	9.14 803	89	9.15 236	91	0.84 764	9.99 566	55	4 36.8 36.4 36.0 35.6
6	9.14 891	88	9.15 327	91	0.84 673	9.99 565	54	5 46.0 45.5 45.0 44.5
7	9.14 980	89	9.15 417	90	0.84 583	9.99 563	53	6 55.2 54.6 54.0 53.4
8	9.15 069	89	9.15 508	91	0.84 492	9.99 561	52	7 64.4 63.7 63.0 62.3
9	9.15 157	88	9.15598	90	0.84 402	9.99 559	51	8 73.6 72.8 72.0 71.2
10	9.15 245	88	9.15 688	90	0.84 312	9.99 557	50	9 82.8 81.9 81.0 80.1
111	9.15 333	88	9.15 777	89	0.84 223	9.99 556	49	
12	9.15 421	88	9.15 867	90	0.84 133	9.99 554	48	1 00 1 07 1 00
13	9.15 508	87	9.15 956	89	0.84 044	9.99 552	47	88 87 86
14	9.15 596	88	9.16 046	90	0.83 954	9.99 550	46	2 17.6 17.4 17.2
15	9.15 683	87	9.16 135	89	0.83 865	9.99 548	45	3 26.4 26.1 25.8
16	9.15 770	87	9.16 224	89		9.99 546	44	4 35.2 34.8 34.4
17	9.15 770	87	9.16 224 9.16 312	88	$0.83776 \\ 0.83688$	9.99 545	43	5 44.0 43.5 43.0
18	9.15 944	87	9.16 401	89	0.83 599	9.99 543	42	6 52.8 52.2 51.6
19	9.16 030	86.	9.16 489	88	0.83 511	9.99 541	41	7 61.6 60.9 60.2
1 1	I	86		88		1		8 70.4 69.6 68.8
20	9.16 116	87	9.16 577	88	0.83 423	9.99 539	40	9 79.2 78.3 77.4
21	9.16 203	86	9.16 665	88	0.83 335	9.99 537	39	
22 23	9.16 289 9.16 374	85	9.16 753 9.16 841	88	0.83 247 0.83 159	9.99 535	38 37	1 85 84 83
23		86		87		9.99 533		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	9.16 460	85	9.16 928	88	0.83072	9.99 532	36	2 17.0 16.8 15.6
25	9.16 515	86	9.17 016	87	0.82984	9.99 530	35	3 25.5 25.2 24.9
26	9.16 631	85	9.17 103	87	0.82 897	9.99 528	34	4 34.0 33.6 33.2
27	9.16 716	85	9.17 190	87	0.82 810	9.99 526	33	5 42.5 42.0 41.5
28	9.16 801	85	9.17 277	86	0.82 723	9.99 524	32	6 51.0 50.4 49.8
29	9.16 886	84	9.17 363	87	0.82637	9.99 522	31	7 59.5 58.8 58.1
80	9.16 970	85	9.17 450	86	0.82550	9.99 520	30	8 68.0 67.2 66.4 9 76.5 75.6 74.7
31	9.17 055	84	9.17536	86	0.82464	9.99 518	29	9 10.0 115.0 114.1
32	9.17 139	84	9.17 622	86	0.82 378	9.99 517	28	
33	9.17 223	84	9.17 708	86	0.82 292	9.99 515	27	1 82 81 80
34	9.17 307	84	9.17 794	86	0.82206	9.99 513	26	2 16.4 16.2 16.0
35	9.17 391	83	9.17 880	85	0.82120	9.99 511	25	3 24.6 24.3 24.0
36	9.17 474	84	9.17 965	86	0.82035	9.99 509	24	4 32.8 32.4 32.0
37	9.17 558	83	9.18051	85	0.81 949	9.99 507	23	5 41.0 40.5 40.0
38	9.17 641	83	9.18 136	85	0.81 864	9.99 505	22	6 49.2 48.6 48.0
39	9.17 724	83	$9.18\ 221$	85	0.81 779	9.99 503	21	7 57.4 56.7 56.0
40	9.17 807	83	9.18 306	85	0.81694	9.99 501	20	8 65.6 64.8 64.0
41	9.17 890	83	9.18 391	84	0.81 609	9.99 499	19	9 73.8 72.9 72.0
42	9.17 973	82	9.18 475	85	0.81 525	9.99497	18	- 1 1 1
43	9.18 055	82	9.18 560	84	0.81 440	9.99495	17	
44	9.18 137	83	9.18 644	84	0.81356	9.99494	16	
45	9.18 220	82	9.18 728	84	0.81 272	9.99492	15	From the ton .
46	9.18 302	81	9.18 812	84	0.81 188	9.99490	14	From the top:
47	9.18 383	82	9.18 896	83	0.81 104	9.99488	13	For 8°+ or 188°+, read
48	9.18 465	82	9.18 979	84	0.81 021	9.99 486	12	as printed; for 98°+ or
49	9.18 547	81	9.19 063	83	0.80 937	9.99484	11	
50	9.18 628	81	9.19 146	83	0.80854	9.99482	10	278°+, read co-function.
51	9.18 709	81	9.19229	83	0.80771	9.99480	- 9	
52	9.18 790	81	9.19 312	83	0.80688	9.99478	8	TT 15 - 2 - 1
53	9.18 871	81	9.19 395	83	0.80 605	9.99 476	7	From the bottom:
54	9.18 952	81	9.19 478	83	0.80522	9.99 474	6	For 81°+ or 261°+.
55	9.19 033	80	9.19 561	82	0.80 439	9.99472	5	
56	9.19 113		9.19643		0.80 357	9.99470	4	read as printed; for
57	9.19 193	80	9.19725	82 82	0.80 275	9.99468	3	171°+ or 351°+, read
58	9.19 273	80	9.19 807	82	0.80 193	9.99 466	2	co-function.
59	9.19 353	80	9.19 889	82	0.80 111	9.99 464	1	
60	9.19 433	ا ت	9.19 971	200	0.80 029	9.99462	0	
-	L Cos	d		c d		L Sin		· Prop. Pts.
4	77 (08)	u I	T AMT	· · · ·	TITATE	T OTH		riop. Fes.

1	L Sin	d	L Tan	cd	L Ctn	L Cos	T .	1	Prop.	Pts.	
0	9.19 433	80	9.19 971	82	0.80 029	9.99 462	60	,			
1	9.19 513	79	9.20 053	81	0.79 947	9.99 460	59				
3	9.19 592 9.19 672	80	9.20 134 9.20 216	82	0.79 866 0.79 784	9.99458 9.99456	58				
4	9.19751	79	9.20 297	81	0.79 703	9.99 454	57 56				
5	9.19 830	79	9.20 378	81	0.79 622	9.99 452	55				
6	9.19 909	79	9.20 459	81	0.79 541	9.99 450	54	8	2 + 81	80	79
7	9.19.988	79	9.20 540	81	0.79460	9.99 448	53	2 10	4 16.2	16.0	15.8
8	9.20 007	78	9.20 621	81 80	0.79 379	9.99 446	52	3 24		24.0	23.7
9	9.20 145	78	9.20 701	81	0.79 299	9.99444	51	4 32		32.0	31.6
10	9.20 223 9.20 302	79	9.20 782 9.20 862	80	0.79 218	9.99442	50	5 41 6 49		40.0	39.5 47.4
11 12	9.20 302	78	9.20 942	80	0.79 138 0.79 058	9.99 438	49 48	7 57		56.0	55.3
13	9.20 458	78	9.21 022	80	0.78 978	9.99 436	47	8 65	6 64.8	64.0	63.2
14	9.20 535	77 78	9.21 102	80	0.78 898	9.99 434	46	9 73	.8 72.9	72.0	71.1
15	9.20 613	78	9.21 182	80	0.78 818	9.99 432	45	1			
16	9.20 691	77	9.21 261	79 80	0.78 739	9.99 429	44			. 20	we
17	9.20 768	77	9.21 341	79	0.78 659	9.99 427	43	7	1	76	75
18 19	9.20 845 9.20 922	77	9.21 420 9.21 499	79	0.78 580 0.78 501	9.99425	42	2 15		15.2	15.0
20	9.20 922	77	9.21 578	79	0.78 422	9.99 421	40	3 23 4 31		$ 22.8 \\ 30.4 $	22.5 30.0
21	9.21 076	77	9.21 657	79	0.78 343	9.99 419	39	5 39		38.0	37.5
22	9.21 153	77	9.21 736	79	0.78 264	9.99 417	38	6 46	8 46.2	45.6	45.0
23	9.21 229	76 77	9.21 814	78	0.78 186	9.99 415	37	7 54		53.2	52.5
24	9.21 306	76	9.21 893	79 78	0.78107	9.99413	36	8 62		60.8	60.0
25	9.21 382	76	9.21 971	78	0.78 029	9.99 411	85	9 70	.2 69.3	68.4	01.0
26 27	9.21 458 9.21 534	76	9.22049 9.22127	78	0.77 951 0.77 873	9.99409	34 33				
28	9.21 610	76	9.22 205	78	0.77 795	9.99 404	32	17	4 73	72	71
29	9.21 685	75	9.22 283	78	0.77 717	9.99 402	31	2 14	- 1	14.4	14.2
80	9.21 761	76	9.22 361	78	0.77 639	9.99 400	30	3 22		21.6	21.3
31	9.21 836	75 76	9.22 438	77 78	0.77 562	9.99 398	29	4 29		28.8	28.4
32	9.21 912	75	9.22 516	77	0.77 484	9.99 396	28	5 37		36.0	35.5
33	9.21 987 9.22 062	75	9.22 593 9.22 670	77	0.77 407 0.77 330	9.99 394 9.99 392	27 26	6 44 7 51		43.2 50.4	42.6
35	9.22 137	75	9.22 747	77	0.77 253	9.99 390	25	8 59		57.6	49.7 56.8
36	9.22 211	74	9.22 824	77	0.77 176	9.99 388	24	9 66		64.8	
37	9.22 286	75	9.22 901	77	0.77 099	9.99 385	23		•		
38	9.22 361	75 74	9.22977	76 77	0.77 023	9.99 383	22				
39	9.22 435	74	9.23 054	76	0.76 946	9.99 381	21				
40	9.22 509	74	9.23 130	76	0.76 870	9.99 379	20				
41 42	9.22 583 9.22 657	74	9.23 206 9.23 283	77	0.76 794 0.76 717	9.99 377 9.99 375	19 18				- 1
43	9.22 731	74	9.23 359	76	0.76 641	9.99 372	17	Fro	m the t	op :	- 1
44	9.22 805	74	9.23 435	76	0.76 565	9.99 370	16	Tro-	9 °+, or 1	890±	roed
45	9.22 878	73 74	9.23 510	75	0.76 490	9.99 368	15		nted; f		
46	9.22952	74	9.23586	76 75	0.76 414	9.99 366	14		read o		
47	9.23 025	73	9.23 661	78	0.76 339	9.99 364	13	#15-4	, reau c	:0-1U11(MOH.
48 49	9.23 098 9.23 171	73	9.23 737 9.23 812	75	0.76 263 0.76 188	9.99 362 9.99 359	12 11	_			- 1
50	9.23 244	73	9.23 887	75	0.76 113	9.99 357	10	F'ro:	m the b	ottom	:
51	9.23 317	73	9.23 962	75	0.76 038	9.99 355	9	For	80°+	or 20	60°+.
52	9.23 390	73 72	9.24 037	75 75	0.75 963	9.99 353	8	read		nted;	for
53	9.23 462	73	9.24 112	74	0.75 888	9.99 351	7	170°+		50°+.	
54	9.23 535	72	9.24 186	75	0.75 814	9.99 348	6	co-fun		',	
55	9.23 607 9.23 679	72	9.24 261 9.24 335	74	0.75 739 0.75 665	9.99 346 9.99 344	5 4		~~1~44.		1
56 57	9.23 752	73	9.24 410	75	0.75 590	9.99 342	3				
58	9.23 823	71	9.24 484	74	0.75 516	9.99 340	2				
59	9.23 895	72	9.24558	74	0.75 442	9.99 337	1				- 1
60	9.23 967		9.24 632		0.75 368	9.99 335	0				
	L Cos	d	L Ctn	c d	L Tan	L Sin	1		Prop.	Pts.	

·	L Sin	d	L Tan	cd	L Ctn	L Cos	d			P	rop. P	ts.
0	9.23 967	70	9.24 632	١	0.75 368	9.99 335		60				
1	9.24 039	72	9.24 706	74	0.75 294	9.99 333	2	59	1			
2	9.24 110	71	9.24 779	1	0.75 221	9.99 331	2	58	1	74	73	72
3	9.24 181	71	9.24 855	74	0.75 147	9.99 328	3	57	2	14 8	14.6	14.4
4	9.24 253	72	9.24 926	73	0.75 074	9.99 326	2	56	3	22.2	21.9	
5	9.24 324	71	9.25 000	74	0.75 000	9.99 324	2	55	4	29.6	29.2	
6	9.24 395	71	9.25 073	73	0.74 927	9.99 322	2	54	5	37.0	36.5	36.0
1 7	9.24 466	71	0.25 146	73	0.74 854	9.99 319	3	53	6	44.4	43.8	
18	9.24 536	70	9.25 219	73	0.74 781	9.99 317	2	52	7	51.8	5f.1	50.4
9	9.24 607	71	9.25 292	73	0.74 708	9.99 315	2	51	8	59.2	58.4	57.6
10	9.24 677	70	9.25 365	73	0.74 635	9.99 313	2	50	9	66.6	65.7	64.8
11	9.24 748	71	9.25 437	72	0.74 563	9.99 310	3	49				
12	9.24 818	70	9.25 510	73	0.74 490	9.99 308	2	48		71	70	69
13	9.24 888	70	9.25 582	72	0.74 418	9.99 306	2	47	- 1		1	[
14	9.24 958	70	9.25 655	73	0.74 345	9.99 304	2	46	2	14.2	14.0	13.8
15	9.25 028	70	9.25 727	72	0.74 273	9.99 301	3	45	3	21.3	21.0	20.7
16	9.25 098	70	9.25 799	72	0.74 201	9.99 299	2	44	4	28.4	28.0	27.6
17	9.25 168	70	9 25 871	72	0.74 129	9.99 297	2	43	5	35.5	35.0	34.5
18	9.25 237	69	9.25 943	72	0.74 057	9.99 294	3	42	6	42.6	42.0	41.4
19	9.25 307	70	9.26 015	72	0.73 985	9.99 292	2	41	7 8	49.7	49.0	48.3
20	9.25 376	69	9.26 086	71	0.73 914	9.99 290	2	40	9	56.8 63.9	56.0 63.0	55.2 62.1
21	9.25 445	69	9.26 158	72	0.73 842	9.99 288	2	39	9	00.0	00.0	02.1
22	9.25 514	69	9.26 229	71	0.73 771	9.99 285	3	38				
23	9.25 583	69	9.26 301	72	0.73 699	9.99 283	2	37	- 1	68	67	66
24	9.25 652	69	6.26 372	71	0.73 628	9.99 281	2	36	2	13.6	13.4	13.2
25	9.25 721	69	9.26 443	71	0.73 557	9.99 278	3	35	3	20.4	20.1	19.8
26	9.25 790	69	9.26 514	71	0.73 486	9.99 276	2	34	4	27.2	26.8	26.4
27	9.25 858	68	9.26 585	71	0.73 415	9.99 274	2	33	5	34.0	33.5	33.0
28	9.25927	69	9.26 655	70	0.73 345	9.99 271	3	32	6	40.8	40.2	39.6
29	9.25 995	68 68	9.26 726	71 71	0.73 274	9.99 269	2 2	31	7	47.6	46.9	46.2
30	9.26 063		9.26 797		0.73 203	9.99 267		30	8	54.4	53 6	52.8
31	9.26 131	68 68	9.26 867	70 70	0.73 133	9.99 264	3	29	9	61.2	60.3	59.4
32	9.26 199	68	9.26 937	71	0.73 063	9.99 262	2 2	28				1
33	9.26 267	68	9.27 008	70	0.72992	9.99 260	3	27		1.0	65 6	3
34	9.26 335	68	9.27 078	70	0.72 922	9.99 257	2	26		2 1	3.0 0	e l
85	9.26 403	67	9.27 148	70	0.72 852	9.99 255	3	25			9.5 0	
36	9.26 470	68	9.27 218	70	0.72 782	9.99 252	2	24			6.0 1	
37	9.26 538	67	9.27 288	69	0.72 712	9.99 250	2	23			2.5 1	
38	9.26 605	67	9.27 357	70	0.72 643	9.99 248	3	22			9.0 1	
39	9.26 672	67	9.27 427	69	0.72 573	9.99 245	2	21		7 4	5.5 2	.1
40	9.26 739	67	9.27 496	70	0.72 504	9.99 243	2	20		8 5	2.0 2	
41	9.26 806	67	9.27 566	69	0.72 434	9.19 241	3	19		9 5	$8.5 \mid 2$.7
42 43	9.26 873 9 26 940	67	9.27 635 9.27 704	69	0.72 365 0.72 296	9.99 238 9.99 236	2	18 17				- 1
44	9.27 007	67	9.27 773	69	0.72 227	9.99 233	3	16				1
45		66	1	69			2	15	-			
46	9.27 073 9.27 140	67	9.27 842 9.27 911	69	0.72 158 0.72 089	9.99 231 9.99 229	2	14	F	rom t	he top	:
47	9.27 206	66	9.27 980	69	0.72 020	9.99 226	3	13	10	or 10	o+ or 1	ano+
48	9.27 273	67	9.28 049	69	0.71 951	9.99 224	2	101				/
49	9.27 339	66	9.28 117	68	0.71 883	9.99 221	3	ii			printed	
50	9.27 405	66	9.28 186	69	0.71 814	9.99 219	2	10			280°+	, read
51	9.27 471	66	9.28 254	68	0.71 746	9.99 217	2	9	co-f	uncti	on.	- 1
52	9.27 537	66	9.28 323	69	0.71 677	9.99 214	3	8				-
53	9.27 602	65	9.28 391	68	0.71 609	9.99 212	2	7	F	rom t	he boti	om:
54	9.27 668	66	9.28 459	68	0.71 541	9.99 209	3	6				1
55	9.27 734	66	9.28 527	68	0.71 473	9.99 207	2	5	F	or 79 °	°+ or 2	59°+,
56	9.27 799	65	9.28 595	68	0.71 405	9.99 204	3	4	reac	l as	printed	l; for
57	9.27 864	65	9.28 662	67	0.71 338	9.99 202	2 2	3			349°+	
58	9.27 930	66 65	9.28 730	68 68	0.71 270	9.99 200	3	2		uncti		,
59	9.27 995	65	9.28 798	67	0.71 202	9.99 197	2	- 1	CO-1	unctl	·	1
60	9.28 0661	00	9.28 865	٠.	0.71 135	9.99 195	-	0				1
	L Cos	d	L Ctn	c d	L Tan	L Sin	d	7		Pro	p. Pts	

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d	Π		Pr	op. I	ts.
0	9.28 060	65	9.28 865	68	0.71 135	9.99 195	1	60				
1	9.28 125	65	9.28 933	67	0.71 067	9.99192	3 2	59	Ι,	00	1 61	
2	9.28 190	64	9.29 000	67	0.71 000	9.99 190	3	58	1 1	68	6	
3	9.28 254	65	9.29 067	67	0.70 933	9.99 187	2	57	2	13.6	13.	
4	9.28 319	65	9.29 134	67	0.70 866	9.99 185	3	56	3	$\frac{20.4}{27.2}$	20.	
5	9.28 384	64	9.29 201	67	0.70 799	9.99 182	2	55	4		26.	
6	9.28448	64	9.29 268	67	0.70 732	9.99 180	3	54	5 • 6	$34.0 \\ 40.8$	33.	
8	9.28 512 9.28 577	65	9.29 335 9.29 402	67	0.70 665 0.70 598	9 99 177	2	53	7	47.6	46.	
9	9.28 641	64	9.29 468	66	0.70 532	9.99 175 9.99 172	3	52 51	8	54.4	53.	
10	9.28 705	64	9.29 535	67			2		9	61.2		
11	9.28 769	64	9.29 601	66	0.70 465 0.70 399	9.99 170 9.99 167	3	50	i - '			,
12	9.28 833	64	9.29 668	67	0.70 333	9.99 165	2	49 48	Ι.	0.5		
13	9.28 896	63	9.29 734	66	0.70 266	9.99 162	3	47		65	64	
14	9.28 960	64	9.29 800	66	0.70 200	9.99 160	2	46	2	13.0	12.8	3 12.6
15	9.29 024	64	9.29 866	66	0.70 134	9.99 157	3	45	3	19.5	19.5	2 18.9
16	9.29 087	63	9.29 932	66	0.70 068	9.99 155	2	44	5	26.0	25.6	3 25.2
17	9.29 150	63	9.29 998	66	0.70 002	9.99 152	3	43	6	32.5 39.0	32.0	
18	9.29 214	64	9.30064	66	0.69 936	9.99 150	2	42		45.5	38.4	
19	9.29277	63 63	9.30 130	66 65	0.69870	9.99 147	3 2	41		52.0	51.5	
20	9.29 340		9.30 195		0.69 805	9.99 145		40		58.5	57.6	
21	9.29 403	63 63	9.30 261	66 65	0.69 739	9.99142	3	39	,			,
22	9.29 466	63	9.30 326	65	0.69 674	9.99 140	2 3	38	١.	00		1
23	9.29 529	62	9.30 391	66	0.69 609	9.99 137	2	37		62	61	1 1
24	9.29 591	63	9.30 457	65	0.69 543	9.99135	3	36	2	12.4	12.5	
25	9.29654	62	9.30522	65	0.69 478	9.99132	2	35	3	18.6	18.	
26	9.29716	63	9.30 587	65	0.69 413	9.99 130	3	34		24.8	24.4	
27 28	9.29 779	62	9.30 652	65	0.69 348	9.99 127	3	33	6	31.0	30.4	
29	9.29 841 9.29 903	62	9.30717 9.30782	65	$0.69283 \\ 0.69218$	9.99 124 9.99 122	2	32 31		37.2 43.4	36.6	
	9.29 966	63		64			3			49.6	48.8	
30 31	9.29 900 9.30 028	62	9.30 846 9.30 911	65	0.69 154 0.69 089	9.99 119 9.99 117	2	30 29		55.8	54.9	
32	9.30 020	62	9.30 975	64	0.69 025	9.99 114	3	28	•			,
33	9.30 151	61	9.31 040	65	0.68 960	9.99 112	2	27			E0 1	.
34	9.30 213	62	9.31 104	64	0.68 896	9.99 109	3	26		1	59	3
85	9.30 275	62	9.31 168	64	0.68 832	9.99 106	3	25			1.8	0.6
36	9.30 336	61	9.31 233	65	0.68 767	9.99 104	2	24			7.7	0.9
37	9.30 398	62	9.31 297	64	0.68 703	9.99 101	3	23			23.6 29.5	1.2
38	9.30 459	61 62	9.31 361	64 64	0.68 639	9.99 099	2	22			35.4	1.5 1.8
39	9.30 521	61	9.31 425	64	0.68 575	9.99 096	3	21			1.3	2.1
40	9.30 582	61	9.31 489	63	0.68 511	9.99 093	2	20			7.2	2.4
41	9.30 643	61	9.31 552	64	0.68 448	9.99 091	3	19			3.1	2.7
42	9.30 704	61	9.31 616	63	0.68 384	9.99 088	2	18		•	•	1
43	9.30 765 9.30 826	61	9.31 679 9.31 743	64	0.68 321 0.68 257	9.99 086 9.99 083	3	17 16				
45		61		63	i	9.99 080	3	15	-			l
46	9.30 887 9.30 947	60	9.31 806 9.31 870	64	0.68 194 0.68 130	9.99 080	2	14	Fi	rom t	he to	p:
47	9.31 008	61	9.31 933	63	0.68 067	9.99 075	3	13	Fe	r 11	0+ o+	191°+,
48	9.31 068	60	9.31 996	63	0.68 004	9.99 072	3	12				
49	9.31 129	61	9.32 059	63	0.67 941	9.99 070	2	11				ed; for
50	9.31 189	60	9.32 122	63	0.67 878	9.99 067	3	10				+, read
51	9.31 250	61	9.32 185	63	0.67 815	9.99061	3	9 8	co-fu	ıncti	on.	j
52	9.31 310	60 60	9.32 248	63 63	0.67 752	9.99 062	2 3					1
53	9.31 370	60	9.32 311	62	0.67 689	9.99 059	3	7	F_{i}	rom t	he bo	ttom:
54	9.31 430	60	9.32 373	63	0.67 627	9.99 056	2	6	107 -	WA	о	05001
55	9.31 490	59	9.32 436	62	0.67 564	9.99 054	3	5				258°+,
56	9.31 549	60	9.32 498	63	0 67 502	9.99 051	3	4	read	as	print	ed; for
57	9.31 609	60	9.32 561	62	0.67 439	9.99 048	2	3 2	168	or or	848	+, read
58 59	9.31 669 9.31 728	59	9.32 623 9.32 685	62	0.67 377 0.67 315	9.99 046 9.99 043	3	1		ıncti		- 1
		60		62			.3	ó			•	- 1
60	9.31 788		9.32 747		0.67 253	9.99 040		<u>.</u>				
	L Cos	a	L Ctn	cd	L Tan	L Sin	d			Pro	p. P	8.

1	L Sin	đ	L Tan	c d	L Ctn	L Cos	d			P	ro	Prop. Pts.			
0	9.31 788		9.32 747		0.67 253	9.99 040		60	l						
1	9.31 847	59 60	9.32 810	63 62	0.67 190	9.99 038	2	59		6	9	62	61		
2	9.31 907	59	9.32 872	61	0.67 128	9.99 035	3	58		1 -	-		1		
3	9.31 966	59	9.32 933	62	0.67 067	9.99 032	2	57	3	12		12.4	12.2		
4	9.32 025	59	9.32 995	62	0.67 005	9.99 030	3	56	4	18		18.6	18.3		
5	9.32 084	59	9.33 057	62	0.66 943	9.99 027	3	55	5	25 31		$\frac{24.8}{31.0}$	24.4 30.5		
6	9.32 143	59	0.33 119	61	0.66 881	9.99 024	2	54	6	37	9	37.2	36.6		
7	9.32 202	59	9.33 180	62	0.66 820	9.99 022	3	53	7	44		43.4	42.7		
8	9.32 261 9.32 319	58	9.33 242 9.33 303	61	0.66 758 0.66 697	9.99 019 9.99 016	3	52 51	8	50		49.6	48.8		
1 - 1		59		62			3		9	56	7	55.8	54.9		
10	9.32 378 9.32 437	59	9.33 365 9.33 426	61	0.66 635 0.66 574	9.99 013	2	50	1				.		
11 12	9.32 437	58	9.33 487	61	0.66 513	9.99 011 9.99 008	3	49 48	Ι,	60		59	58		
13	9.32 553	58	9.33 548	61	0.66 452	9.99 005	3	47			1		1 1		
14	9.32 612	59	9.33 609	61	0.66 391	9.99 002	3	46	2	12.		11.8	11.6		
15	9.32 670	58	9.33 670	61	0.66 330	9.99 000	2	45	3	18.		17.7	17.4		
16	9.32 728	58	9.33 731	61	0.66 269	9.98 997	3	44	4 5	24. 30.		$23.6 \\ 29.5$	23.2 29.0		
17	9.32 786	58	9.33 792	61	0.66 208	9.98 994	3	43	6	36.		35.4	34.8		
18	9.32 844	58	9.33 853	61	0,66 147	9.98 991	3	42	7	42.		41.3	40.6		
19	9.32 902	58	9.33 913	60	0.66 087	9,98 989	2	41	8	48.		47.2	46.4		
20	9.32 960	58	9.33 974	61	0.66026	9.98 986	3	40	9	54.			52.2		
21	9.33 018	58 57	9.34 034	60	0.65966	9.98 983	3	39					. }		
22	9.33 075	58	9.34 095	61 60	0.65 905	9.98 980	2	38		- 1	5	m	56		
23	9.33 133	57	9.34 155	60	0.65 845	9.98 978	3	37		_ [
24	9.33 190	58	9.34 215	61	0.65 785	9.98 975	3	36		2	11		1.2		
25	9.33 248	57	9.34 276	60	0.65724	9.98972	3	35		3	$\frac{17}{22}$		5.8		
26	9.33 305	57	9.34 336	60	0.65 664	9.98 969	2	34		5	28		2.4 8.0		
27 28	9.33 362 9.33 420	58	9.34 396 9.34 456	60	0.65 604 0.65 544	9.98 967 9.98 964	3	33 32		6	34	2 3	3.6		
28	9.33 477	57	9.34 516	GO	0.65 484	9.98 961	3	31		7	39		0.2		
30		57	9.34 576	60	0.65 424	9.98 958	3	30		8	45		4.8		
31	9.33 534 9.33 591	57	9.34 635	59	0.65 365	9.98 955	3	29		9	51	$.3 \mid 50$	0.4		
32	9.33 647	56	9.34 695	60	0.65 305	9.98 953	2	28					1		
33	9.33 704	57	9.34 755	60	0.65 245	9.98 950	3	27		1	5	5 3	. 1		
34	9.33 761	57	9.34 814	59	0.65 186	9.98 947	3	26		.					
35	9.33 818	57	9.34 874	60	0.65 126	9.98 944	3	25		2 3	11 16				
36	9.33 874	56 57	9,34 933	59 59	0.65 067	9.98 941	3	24		4	22				
37	9.33 931	56	9.34 992	59	0.65 008	9.98 938	2	23		5	$\tilde{27}$				
38	9.33 987	56	9.35 051	60	0.64 949	9.98 936	3	22		6	33				
39	9.34 043	57	9.35 111	59	0.64 889	9.98 933	3	21		7	38				
40	9.34 100	56	9.35 170	59	0.64 830	9.98 930	3	20		8	44				
41 42	9.34 156 9.34 212	56	9.35 229 9.35 288	59	0.64 771 0.64 712	9.98 927 9.98 924	3	19 18	٠,	9	4 9	$.5 \mid 2$. 1		
43	9.34 268	56	9.35 347	59	0.64 653	9.98 924	3	17					1		
44	9.34 324	56	9.35 405	58	0.64 595	9.98 919	2	16					1		
45	9.34 380	56	9.35 464	59	0.64 536	9.98 916	3	15	1	ron	r t7	re top	: . !		
46	9.34 436	56	9.35 523	59	0.64 477	9.98 913	3	14				_	ì		
47	9.34 491	55	9.35 581	58	0.64 419	9.98 910	3	13					l92°+,		
48	9 34 547	56 55	9.35 640	59 58	0.64 360	9.98 907	3	12	rea	d a	вр	rinte	d; for		
49	9.34 602	56	9.35 698	59	0.64302	9.98 904	3	11	102	Po+	or	282°+	, read		
50	9.34 658	55	9.35 757	58	0.64243	9.98 901	3	10		func					
51	9.34 713	56	9.35 815	58	0.64 185	9.98 898	2	9			_		ĺ		
52	9.34 769	55	9.35 873	58	0.64 127	9.98 896	3	8	7	?ron	n. #1	re bot	tom:		
53 54	9.34 824 9.34 879	55	9.35 931 9.35 989	58	0.64 069 0.64 011	9.98 893 9.98 890	3	6							
55		55		58	0.63 953	9.98 887	3	5	F	or	77	or	257°,		
56	9.34 934 9.34 989	55	9.36 047 9.36 105	58	0.63 895	9.98 884	3	4	rea	d a	вр	rinted	i; for		
57	9.35 014	55	9.36 163	58	0.63 837	9.98 881	3	3	167	70 (or	347°	read		
58	9.35 099	55	9.36 221	58	0.63 779	9.98 878	3	2		func					
59	9,35 154	55	9.36 279	58	0.63 721	9.98 875	3	1	ا ا		. viu		i		
60	9,35 209	55	9.36 336	57	0.63 664	9.98 872	٥	0					1		
-	L Cos	d	L Ctn	c d	L Tan	L Sin	d	1		P	roj	. Pts			

,	L Sin	d	L Tan	c d	L Ctn	L Cos	d	ī	ī	Pro	Prop. Pts.				
0	9.35 209	i	9.36 336	-	0.63 664	9.98 872	1-	60			w				
1	9.35 263	54 55	9.36 394	58 58	0.63 606	9.98 869	3	59	١.	= 0					
2	9.35 318	55	9.36 452	57	0.63 548	9.98 867	3	58		58	57	56			
3 4	9.35 373 9.35 427	54	9,36 566	57	0.63 491 0.63 434	9.98 864 9.98 861	3	57	2 3	11.6	11.4	11.2			
5	9.35 481	54	9.36 624	58	0.63 376	9.98 858	3	56		$\frac{17.4}{23.2}$	17.1 22.8	16.8 22.4			
6	9.35 536	55	9.36 681	57	0.63 319	9.98 855	3	55 54	5	29.0	28.5	28.0			
7	9.35•590	54	9.36 738	57	0.63 262	9.98 852	3	53	6	34.8	34.2	33.6			
8	9.35 644	54 54	9.36 705	57 57	0.63 205	9.98 849	3	52		40.6	39.9	39.2			
9	9.35 698	54	9.36 852	57	0.63 148	9.98 846	3	51		$\frac{46.4}{52.2}$	45.6 51.3	44.8 50.4			
10	9.35 752	54	9.36 909	57	0.63.091	9.98 843	3	50	3 1	02.2	01.0	1 50.4			
11 12	9.35 806 9.35 860	54	9.36 966 9.37 023	57	0.63 034 0.62 977	9.98 840 9.98 837	3	49 48	١.						
13	9.35 914	54	9.37 080	57	0.62 920	9.98 834	3	47		55	54	53			
14	9.35 968	54	9.37 137	57	0.62 863	9.98 831	3	46		11.0	10.8	10.6			
15	9.36 022	54	9.37 193	56	0.62 807	9.98 828	3	45	3 4	$\begin{array}{c} 16.5 \\ 22.0 \end{array}$	16.2 21.6	15.9 21.2			
16	9.36 075	53 54	9.37 250	57	0.62750	9.98 825	3	44	5	27.5	27.0	26.5			
17	9.36 129 9.36 182	53	9.37 306	57	0.62 694	9.98 822	3	43	6	33.0	32.4	31.8			
18 19	9.36 236	54	9.37 363 9.37 419	56	0.62637 0.62581	9.98 819 9.98 816	3	42		38.5	37.8	37.1			
20	9.36 289	53	9.37 476	57	0.62 524	9.98 813	3	40		44.0 49.5	43.2 48.6	42.4 47.7			
21	9.36 342	53	9.37 532	56	0.62 468	9.98 810	3	39	9 [40.0	40.0	1 41.1			
22	9.36 395	53 54	9.37 588	56 56	0.62412	9.98 807	3	38							
23	9.36 449	53	9.37 644	56	0.62356	9.98 804	3	37		1		51			
24	9.36 502	53	9.37 700	56	0.62 300	9.98 801	3	36				0.2			
25 26	9.36 555 9.36 608	53	9.37 756 9.37 812	56	$0.62244 \\ 0.62188$	9.98 798 9.98 795	3	35				5.3 0.4			
27	9.36 660	52	9.37 868	56	0.62138 0.62132	9.98 792	3	34				5.5			
28	9.36 713	53	9.37 924	56	0.62 076	9.98 789	3	32				0.6			
29	9.36 766	53 53	9.37 980	56 55	0.62020	9.98 786	3	31				5.7			
30	9.36 819	52	9.38035	56	0.61 965	9.98 783	3	30				$0.8 \\ 5.9$			
$\begin{vmatrix} 31 \\ 32 \end{vmatrix}$	9.36 871	53	9.38 091	56	0.61 909	9.98 780	3	29 28	1	0 120	,0 30	J.8			
33	9.36 924 9.36 976	52	9.38147 9.38202	55	0.61 853 0.61 798	9.98 777	3	27							
34	9.37 028	52	9.38 257	55	0.61 743	9.98 771	3	26		- 1	4 8				
35	9.37 081	53	9.38 313	56	0.61 687	9.98 768	3	25			.8 0.				
36	9.37 133	52 52	9.38 368	55 55	0.61 632	9.98 765	3	24			.2 0. .6 1.				
37	9.37 185	52	9.38 423	56	0.61 577	9.98 762	3	23			0 1.				
38 39	9.37 237 9.37 289	52	9.38 479 9 38 534	55	0.61521 0.61466	9.98 759 9.98 756	3	22 21		6 2	.4 1.				
40	9.37 341	52	9.38 589	55	0.61 411	9.98 753	3	20			.8 2.				
41	9.37 393	52	9.38 644	55	0.61 356	9.98 750	3	19			$\begin{array}{c c} .2 & 2. \\ .6 & 2. \end{array}$				
42	9.37 445	52	9:38 699	55	0.61 301	9.98 746	4	18		9 10	.6 2.	'			
43	9.37 497	52 52	9.38 754	55 54	0.61 246	9.98743	3	17							
44	9.37 549	51	9.38 808	55	0.61 192	9.98 740	3	16							
45 46	9.37 600 9.37 652	52	9.38 863	55	0.61 137	9.98 737	3	15	F_{i}	om t	he top):			
47	9.37 703	51	9.38 918 9.38 972	54	0.61 082 0.61 028	9.98 734 9.98 731	3	14 13	E'o	r 199	+ 0 1	ເ 93 °+.			
48	9.37 755	52	9.39 027	55	0.60 973	9.98 728	3	12				l; for			
49	9.37 806	51 52	9.39 082	55 54	0.60 918	9.98 725	3	11				read			
50	9.37 858	51	9.39136	54	0.60 864	9.98722	3	10				, read			
51	9.37 909	51	9.39 190	55	0.60 810	9.98 719	4	9	CO-10	metic	111.	1			
52	9.37 960 9.38 011	51	9.39 245 9.39 299	54	0.60 755 0.60 701	9.98 715 9.98 712	3	8	127	om 4	10 L.				
54	9.38 062	51	9.39 353	54	0.60 647	9.98 709	3	6	E T	om t	he boi	wom:			
55	9.38 113	51	9.39 407	54	0.60 593	9.98 706	3	5	Fo	r 76	° or	256°,			
56	9.38 164	51 51	9.39 461	54 54	0.60 539	9.98 703	3	4	read	as p	rinted	; for			
57	9.38 215	51	9.39 515	54	0.60 485	9.98 700	3	3				, read			
58	9.38 266 9.38 317	51	9.39 569 9.39 623	54	0.60 431 0.60 377	9.98 697 9.98 694	3	2		inctio					
60	9.38 368	51	9.39 677	54	0.60 323		4	0			•	1			
-00						9.98 690	-	<u> </u>		70	. 74				
1 1	L Cos	d	L Ctn	ed	L Tan	L Sin	d	. 1		Pro	p. Pts	. •			

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d		Ι	1	rop	. Pt	g.
0	9.38 368		9.39 677		0.60 323	9.98 690		60					
l j	9.38 418	50	9.39 731	54	0.60 269	9.98 687	3	59	1				
2	9.38 469	51	9.39 785	54	0.60215	9.98 684	3	58	1	54	t	53	52
3	9.38 519	50	9.39 838	53	0.60 162	9.98 681	3	57	2	10.	8 1	10.6	10.4
4	9.38 570	51	9.39 892	54	0.60 108	9.98 678	3	56	3	16.	2 1	5.9	15.6
5	9.38 620	50	9.39 945	53	0.60 055	9.98 675	3	55	4	21.		21.2	20.8
6	9.38 670	50	9.39 999	54	0.60 001	9.98 671	4	54	5	27.		26.5	26.0
7	9.38 721	51	9.40 052	53	0.59 948	9.98 668	3	53	6	32.	4 3	31.8	31.2
8	9.38 771	50	9.40 106	54	0.59894	9.98 665	3	52	7	37.		37.1	36.4
9	9.38 821	50	9.40 159	53	0.59841	9.98 662	3	51	8	43.		2.4	41.6
10	9.38 871	50	9.40 212	53	0.59 788	9.98 659	3	50	9	48.	6 4	7.7	46.8
11	9.38 921	50	9.40 266	54	0.59734	9.98 656	3	49					
12	9.38 971	50	9.40 319	53	0.59681	9.98 652	4	48	۱ ۱	51	1.	50	49
13	9.39 021	50	9.40 372	53	0.59 628	9.98 649	3	47			1		
14	9.39 071	50	9.40 425	53	0.59575	9.98 646	3	46	2	10.	2 1	0.0	9.8
15	9.39 121	50	9.40 478	53	0.59522	9.98 643	3	45	3	15.		5.0	14.7
16	9.39 170	,49	9.40 531	53	0.59 469	9.98 640	3	44	4 5	20.4 25.4		0.0 5.0	19.6 24.5
17	9.39 220	50	9.40 584	53	0.59 416	9.98 636	4	43	6	30.		0.0	29.4
18	9.39 270	50	9.40 636	52	0.59364	9.98 633	3	42	7	35.		5.0	34.3
19	9.39 319	49	9.40 689	53	0.59311	9.98 630	3	41	8	40.		0.0	39.2
20	9.39 369	50	9.40 742	53	0.59 258	9.98 627	3	40	9	45.		5.0	44.1
21	9.39 418	49	9.40 795	53	0.59 205	9.98 623	4	39	" '	10.	- 1 -	1	
22	9.39 467	49	9.40 847	52	0.59 153	9.98 620	3	38					_
1 23	9.39 517	50	9.40 900	53	0.59 100	9.98 617	3	37		1	48	4	7
24	9.39 566	49	9.40 952	52	0.59 048	9.98 614	3	36		2	9.6	9	.4
25	9.39615	49	9.41 005	53	0.58 995	9.98 610	4	35	İ	3	14.4	14	
26	9.39 664	49	9.41 057	52	0.58 943	9.98 607	3	34		4	19.2	18	.8
27	9.39713	49	9.41 109	52	0.58 891	9.98 604	3	33		5	24.0	23	.5
28	9.39762	49	9.41 161	52	0.58 839	9.98 601	3	32		6	28.8	28	
29	9.39 811	49	9.41 214	53	0.58786	9.98 597	4	31		7	33.6	32	
30	9.39 860	49	9.41 266	52	0.58 734	9.98 594	3	30		8	38.4	37	
31	9.39 909	49	9.41 318	52	0.58 682	9.98 591	3	29		9	43.2	42	.3
32	9.39 958	49	9.41 370	52	0.58 630	9.98 588	3	28					- 1
33	9.40 006	48	9.41 422	52 52	0.58 578	9.98 584	4	27			4	1 3	1
34	9.40 055	49 48	9 41 474	52	0.58526	9.98 581	3	2 6				1	1
35	9.40 103		9.41 526		0.58 474	9.98 578		25		2	0.8	0.0	
36	9.40 152	49	9.41 578	52	0.58422	9.98 574	4	24		3 4	1.2 1.6	0.1	
37	9.40 200	48	9.41 629	51 52	0.58 371	9.98 571	3	23		5	2.0	1.	
38	9.40 249	49 48	9.41 681	52	0.58 319	9.98 568	3	22		6	2.4		
39	9.40 297	49	9.41 733	51	0.58267	9.98 565	4	21		7	2.8	2.	
40	9.40 346		9.41 784	52	0.58216	9.98 561	3	20		8	3.2	2.	
41	9.40 394	48 48	9.41 836	51	0.58164	9.98 558	3	19		ğ	3.6	2.	
42	9.40 442	48	9.41 887	52	0.58 113	9.98 555	4	18		,			- 1
43	9.40 490	48	9.41 939	51	0.58 061	9.98 551	3	17					- 1
44	9.40 538	48	9.41 990	51	0.58 010	9.98 548	3	16					- 1
45	9.40 586	48	9.42 041	52	0.57 959	9.98 545	4	15	F	rom	the	top.	: 1
46	9.40 634	48	9.42 093	51	0.57 907	9.98 541	3	14				-	1
47	9.40 682	48	9.42 144	51	0.57 856	9.98 538	3	13					94°+,
48	9.40 730	48	9.42 195	51	0.57 805	9.98 535	4	12	rea	d as	pri pri	nted	; for
49	9.40 778	47	9.42 246	51	0.57 754	9.98 531	3	11	104	e+ c	r 28	4°+	, read
50	9.40 825	48	9.42 297	51	0.57 703	9.98 528	3	10			tion.		
51	9.40 873	48	9.42 348	51	0.57 652	9.98 525	4	9	50-			•	i
52	9.40 921	47	9.42 399	51	0.57 601	9.98 521	3	8		7	. 41	2	
54	9.40 968 9.41 016	48	9.42 450 9.42 501	51	0.57 550 0.57 499	9.98 518 9.98 515	3	6	F	rom	ine	bott	om:
		47		51			4		TH	or 7	50+	or 2	55°+.
55	9.41 063	48	9.42 552	51	0.57 448	9.98 511	3	5					
56	9.41 111	47	9.42 603	50	0.57 397	9.98 508	3	4 3					; for
57 58	9.41 158 9.41 205	47	9.42 653 9.42 704	51	0.57 347 0.57 296	9.98 505 9.98 501	4	2	168)°+ (or 34	15°+	, read
59	9.41 205	47	9.42 755	51	0.57 245	9.98 498,	3	1	co-	func	tion.		1
60		48		50	, ,		4	Ô					- 1
-00	9.41 360 L Cos	d	9.42 805 L Ctn	c d	0.57 195 L Tan	9.98 494 L Sin	ď	-,		P	rop	Pts	
لسما	11 008	, u	H VIII	cul	T TOTE	TI CITI	u			- 2	· op.	T 40	

			205411			15011011							
•	L Sin	d	L Tan	c d	L Ctn	L Cos	d	1		I	rop.	Pta	
0	9.41 300		9.42 805		0.57 195	9.98 494	3	60					
1	9.41 347	47	9.42 856	51 50	0.57 144	9.98 491	3	59	l	51		50 ·	49
2	9.41 394	47	9.42 906	51	0.57 094	9.98 488	4	58	2			0.0	9.8
3	9.41 441 9.41 488	47	9.42 957 9.43 007	50	0.57 043 0.56 993	9.98 484 9.98 481	3	57 56	3	10.	2 10	5.0	14.7
	1	47	l .	50	0.56 943	9.98 477	4	55	4	15. 20.	4 9	0.0	19.6
5	9.41 535 9.41 582	47	9.43 057 9.43 108	51	0.56 892	9.98 474	3	54	5	25.		5.0	24.5
7	9.41 628	46	9.43 158	50	0.56 842	9.98 471	3	53	6	30.		0.0	29.4
8	9.41 675	47	9.43 208	50	0.56 792	9.98 467	4	52	7	35.		5.0	34.3
9	9.41 722	47 46	9.43 258	50	0.56742	9.98 464	3 4	51	8	40.		0.0	39.2
10	9.41 768	47	9.43 308	50	0.56692	9.98 460	3	50	9	45.	9 40	5.0	44.1
11	9.41 815	46	9.43 358	50	0.56 642	9.98 457	4	49					
12	9.41 861	47	9.43 408	50	0.56 592	9.98 453	3	48		48	4	7	46
13	9.41 908 9.41 954	46	9.43 458 9.43 508	50	0.56 542 0.56 492	9.98 450 9.98 447	3	47 46	2	9.	6 9	1.4	9.2
15	9.42 001	47	ì	50	0.56 442	9.98 413	4	45	3	14		1.1	13.8
16	9.42 047	46	9.43 558 9.43 607	49	0.56 393	9.98 440	3	44	4	19.		8.8	184
17	9.42 093	46	9.43 657	50	0 56 343	9.98 436	4	43	5	24. 28.		3.5	23 0 27.6
18	9.42 140	47	9.43 707	50	0.56293	9.98 433	3 4	42	7	33.	6 32	2.9	32 2
19	9.42 186	46 46	9.43 756	49 50	0.56244	9.98 429	3	41	8	38.		6	36.8
20	9.42 232	46	9.43 806	49	0.56 194	9.98.426	4	40	9	43.	$2 \mid 42$	2.3	41.4
21	9 42 278	46	9.43 855	50	0.56 145	9.98 422	3	39					
22 23	9.42 324 9.42 370	46	9.43 905 9.43 954	49	0.56 095 0.56 046	9.98 419	4	38 37		1	45	1 4	4
24	9.42 416	46	9.44 004	50	0.55 996	9 98 412	3	36	1	2	9.0	1	3.8
25	9.42 461	45	9.44 053	49	0.55 947	9.98 409	3	35	1	3	13.5		3.2
26	9.42 507	46	9.44 102	49	0.55 898	9.98 405	4	34	1	4	18.0		7.6
27	9.42 553	46	9.44 151	49	0.55 849	9.98 402	3	33	1	5	22.5		2.0
28	9.42 599	46	9.44 201	50 49	0.55 799	9.98 398	4 3	32		6	27.0		3.4
29	9.42 644	45	9.44 250	49	0.55 750	9.98 395	4	31	l	7	31.5		0.8
30	9.42 690	45	9.44 299	49	0.55 701	9.98 391	3	30		8 9	36.0 40.5		5.2 9.6
31	9.42 735	46	9.44 348	49	0.55 652	9.98 388	4	29 28		0 1	10.0	1 00	
32 33	9.42 781 9.42 826	45	9.44 397 9.44 446	49	0.55 603 0.55 554	9.98 384 9.98 381	3	28	1				
34	9.42 872	46	9.44 495	49	0.55 505	9.98 377	4	26	1		4	3	
35	9.42 917	45	9.44 514	49	0.55 456	9.98 373	4	25	1	2	0.8	0.	
36	9.42 962	45	9.44 592	48	0.55 408	9.98 370	3	24	1	3	1.2	0.	
37	9.43 008	46	9.44 641	49	0.55 359	9.98 366	4	23		4 5	1.6	1.	
38	9.43 053	45 45	9.44 690	49 48	0.55 310	9.98 363	4	22	1	6	2.4	1.	
39	9.43 098	45	9.44 738	49	0.55 262	9.98 359	3	21		7	2.8	2.	1
40	9.43 143	45	9.44 787	49	0.55 213	9.98 356	4	20		8	3.2	2.	
41	9.43 188	45	9.44 836	48	0.55 164	9.98 352 9.98 349	3	19 18		9	3.6	2.	·
43	9.43 233 9.43 278	45	9.44 884 9.44 933	49	0.55 116 0.55 067	9.98 345	4	17					1
44	9.43 323	45	9.44 981	48	0.55 019	9.98 342	3	16					1
45	9.43 367	44	9.45 029	48	0.54 971	9.98 338	4	15	,	Fron	the.	ton	. 1
46	9.43 412	45	9.45 078	49	0.54 922	9.98 334	3	14				_	1
47	9.43 457	45 45	9.45 126	48	0.54 874	9.98 331	4	13					95°+,
48	9.43 502	44	9.45 174	48	0.54 826	9.98 327	3	12					; for
49	9.43 546	45	9.45 222	49	0.54 778	9.98 324	4	11	10	50+ (or 28	5°+	, read
50	9.43 591	44	9.45 271	48	0.54 729 0.54 681	9.98 320 9.98 317	3	10			tion.		- 1
51 52	9.43 635 9.43 680	45	9.45 319 9.45 367	48	0.54 633	9.98 313	4	9]
53	9.43 724	44	9.45 415	48	0.54 585	9.98 309	4	7	1	rom	the .	bott	om:
54	9.43 769	45	9.45 463	48	0.54 537	9.98 306	3 4	6					- 1
55	9.43 813	44	9.45 511	48	0.54 489	9.98 302	3	5					54°+,
56	9.43 857	44	9.45 559	48	0.54 441	9.98 299	4	4					; for
57	9,43 901	45	9.45 606	48	0.54 394	9.98 295	4	3	16	1°+ (or 84	40+	, read
58 59	9.43 946	44	9.45 654 9.45 702	48	0.54 346 0.54 298	9.98 291 9.98 288	3	2	co-	func	tion.		-
60	9.43 990	44	9.45 750	48	0.54 250	9.98 284	4	0					- 1
60	9 44 034 L Cos	<u>d</u>	I. Ctn	c d	L Tan	L Sin	d	-			ron	Pta	'

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			P	rop.	Pts	
0	9.44 034	4.	9.45 750	47	0.54 250	9.98 284		60	٠.				
1	9.44 078	44	9.45 797	48	0.54 203	9.98 281	3	59	1	48	, ,	47	46
2	9.44 122	44	9.45 845	47	0.54 155	9.98 277	4	58			1	- 1	
3	9.44 166	44	9.45 892	48	0.54 108	9.98 273	3	57	2	9.		9.4	9.2
4	9.44 210	43	9.45 940	47	0.54 060	9.98 270	4	56	3	14.		14.1	13.8
5	9.44 253		9.45 987	1	0.54 013	9.98 266	1	55	4	19.		18.8	18.4
6	9.44 297	44	9.46 035	48	0.53 965	9.98 262	4	54	5	24.		23.5	23.0
7	9.44 341	44	9.46 082	47	0.53 918	9.98 259	3	53	6	28.		28.2	27.6
8	9.44 385	44	9.46 130	48	0.53 870	9.98 255	4	52	7	33.		32.9	32.2
9	9.44 428	43	9.46 177	47	0.53 823	9.98 251	4	51	8	38.		37.6	36.8
10	9.44 472	44	9.46 224	47	0.53 776	9.98 248	3	50	9	43.	2 4	42.3	41.4
11	9.44 516	44	9.46 271	47	0.53 729	9.98 244	4.	49	1				
12	9.44 559	43	9.46 319	48	0.53 681	9.98 240	4	48	1	45		44	43
13	9.44 602	43	9.46 366	47	0.53 634	9.98 237	3	47	1 _		- 1		
14	9.44 646	44	9.46 413	47	0.53 587	9.98 233	4	46	2	9.		8.8	8.6
15	9.44 689	43	9.46 460	47	0.53 540	9.98 229	4	45	3	13.		13.2	12.9
16	9.44 733	44	9.46 507	47	0.53 493	9.98 226	3	44	4	18.		17.6	17.2
17	9.44 776	43	9,46 554	47	0.53 446	9.98 222	4	43	5	22.		22.0	21.5
18	9.44 819	43	9.46 601	47	0.53 399	9.98 218	4	42	6	27.		26.4	25.8
19	9.44 862	43	9.46 648	47	0.53 352	9.98 215	3	41	8	31.		30.8	30.1
20	9.44 905	43		46	0.53 306	9.98 211	4	40	9	36.		35.2	34.4
	9.44 908	43	9.46 694	47	0.53 259	9.98 211	4	39	9	40.	9 1 0	39.6	38.7
21 22	9.44 992	44	9.46 788	47	0.53 259	9.98 204	.3	38	1				
23	9.44 992	43	9.46 788	47	0.53 165	9.98 204	4	37	l	1	42	4	1
24	9.45 077	42	9.46 881	46	0.53 119	9.98 196	4	36	1	2	8.4	1	3.2
		43	1	47			4		1	3	12.6		2.3
25	9.45 120	43	9.46 928	47	0.53 072	9.98 192	3	35		4	16.8		5.4
26	9.45 163	43	9.46 975	46	0.53 025	9.98 189	4	34 33	[5	21.0).5
27	9.45 206 9.45 249	43	9.47 021 9.47 068	47	0.52 979 0.52 932	9.98 185 9.98 181	4	32	1	6	25.2		.6
28 29	9.45 249	43	9.47 114	46	0.52 886	9.98 177	4	31		7	29.4		
		42	1	46			3	1		8	33.6		.8
80	9.45 334	43	9.47 160	47	0.52 840	9.98 174	4	30		9	37.8		. <u>š</u>
31	9.45 377	42	9.47 207	46	0.52 793	9.98 170	4	29		٠,		, , ,	
32	9.45 419	43	9.47 253	46	0.52 747	9.98 166	4	28					
33	9.45 462	42	9.47 299	47	0.52 701	9.98 162	3	27	1		4	3	
34	9.45 504	43	9.47 346	46	0.52 654	9.98 159	4	26		2	0.8	3 0.	6
35	9.45 547	42	9.47 392	46	0.52 608	9.98 155	4	25		3	1.2		
36	9.45 589	43	9.47 438	46	0.52 562	9.98 151	4	24	1	4	1.6		
37	9.45 632	42	9.47 484	46	0.52 516	9.98 147	3	23	l	5	2.0		5
38	9.45 674	42	9.47 530	46	0.52 470	9.98 144	4	22	1	6	2.4	1.	8
39	9.45 716	42	9.47 576	46	0.52 424	9.98 140	4	21	l	7	2.8		
40	9.45 758	43	9.47 622	46	0.52 378	9.98 136	4	20		8	3.2		
41	9.45 801	42	9.47 668	46	0.52 332	9.98 132	3	19	1	9	3.6	3 2.	7
42	9.45 813	42	9.47 714	46	0.52 286	9.98 129	4	18					1
43	9.45 885	42	9.47 760	46	0.52 240	9.98 125	4	17	l				
44	9.45 927	42	9.47 806	46	0.52 194	9.98 121	4	16	١.	ra			ı
45	9.45 969	42	9.47 852	45	0.52 148	9.98 117	4	15	4	rom	i the	e top	:
46	9.46 011	42	9.47 897	46	0.52 103	9.98 113	3	14	τ.	707 1	دەھ	1	96°+.
47	9.46 053	42	9.47 943	46	0.52 057	9.98 110	4	13	•		-		
48	9.46 095	41	9.47 989	46	0.52 011	9.98 106	4	12					; for
49	9.46 136	42	9.48 035	45	0.51 965	9.98 102	4	11	10	8°+ 0	or 2	86°+	, read
50	9.46 178	42	9.48 080	46	0.51 920	9.98 098	4	10	co-	func	tion	١.	1
51	9.46 220	42	9.48 126	45	0.51 874	9.98 094	4	9					
52	9.46 262	41	9.48 171	46	0.51 829	9.98 090	3	8	1	7	+7.	e bott	
53	9.46 303	42	9.48 217	45	0.51 783	9.98 087	4	7	1	ron		0000	om
54	9.46 345	41	9.48 262	45	0.51 738	9.98 083	4	6	1	or 7	30+	or 2	580+,
55	9.46 386	42	9.48 307	46	0.51 693	9.98 079	4	5	1				
56	9.46 428	41	9.48 353	45	0.51 647	9.98 075	4	4					; for
57	9.46 469	42	9.48 398	45	0.51 602	9.98 071	4	3	1				, read
58	9.46 511	41	9.48 443	46	0.51 557	9.98 067	4	2	co-	func	tion	١.	
59	9.46 552	42	9.48 489	45	0.51 511	9.98 063	3	1					1
60	9.46 594		9.48 534	1	0.51 466	9.98 060	-	0					
-	L Cos	d	L Ctn	c d	L Tan	L Sin	d	7		P	TOD	Pts	
1	. 2000		. At Cart		I M TOTA	I WY MITTY .	, u	<u> </u>	·		. JP.		•

,	L Sin	d	L Tan	c d	L Ctn	L Cos	d		П	P	rop. I	ets.	
0	9.46,594	1.	9.48 534		0.51 466	9.98 060	1	60					
li	9.46 635	41	9.48 579	45	0.51 421	9.98 056	4	59	Ι.				40
2	9.46 676	41	9.48 624	45	0.51 376	9.98 052	4	58	1	45	4	1	48
3	9.46 717	41	9.48 669	45	0.51 331	9.98 048	4	57	2	9.0			8.6
4	9.46 758	42	9.48 714	45	0.51 286	9.98 044	4	56	3	13.5			12.9
5	9.46 800	41	9.48 759	45	0.51 241	9.98 040	4	55	4	18.0	17.		17.2
6	9.46 841	41	9.48 804	45	0.51 196	9.98 036	4	54	5	22.5	22		21.5
7	9.46 882	41	9.48 849	45	0.51 151	9.98 032	3	53	6	•27.0			25.8
8	9.46 923	41	9.48 894	45	0.51 106	9.98 029	4	52	8	31.5 36.0			30.1 34.4
9	9.46 964	41		45	0.51 061	9.98 025	4	51	9	40.5			38.7
10	9.47 005	40	9.48 984	45	0.51 016	9.98 021	4	50	"	1 20.0	1 00	.0 1	00.1
111	9.47 045	41	9.49 029 9.49 073	44	0.50 971 0.50 927	9.98 017	4	49	1				
12 13	9.47 086 9.47 127	41	9.49 118	45	0.50 882	9.98 013	4	48		42	4	1	40
14	9.47 168	41	9.49 163	45	0.50 837	9.98 005	4	47	2	8.4	8	2	8.0
		41	9.49 207	44	1		4		3	12.6	12.	3	12.0
15	9.47 209 9.47 249	40	9.49 252	45	0.50 793 0.50 748	9.98 001	4	45	4	16.8	16.	4	16.0
16 17	9.47 290	41	9.49 296	44	0.50 704	9.97 993	4	44 43	5	21.0			$20\ 0$
18	9.47 330	40	9.49 341	45	0.50 659	9.97 989	4	42	6	25 2			24.0
19	9.47 371	41	9.49 385	44	0.50 615	9.97 986	3	41	7	29.4			28.0
20	9.47 411	40	9.49 430	45	0.50 570	9.97 982	4	40	8	33.6			32.0
21	9.47 452	41	9.49 474	44	0.50 526	9.97 982	4	39	9	37.8	36.	9	36.0
22	9.47 492	40	9.49 519	45	0.50 481	9.97 974	4	38	1				
23	9.47 533	41	9.49 563	44	0.50 437	9.97 970	4	37	1	- 1	89	5	
24	9.47 573	40	9.49 607	44	0.50 393	9.97 966	4	36	1	2	7.8	1.0	
25	9.47 613	40	9.49652	45	0.50 348	9.97 962	4	35	1	3	11.7	1.8	
26	9.47 654	41	9.49 696	44	0.50 304	9.97 958	4	34		4	15.6	2.0	
27	9.47 694	40	9.49 740	44	0.50 260	9.97 954	4	33		5	19.5	2.	
28	9.47 734	40	9.49 784	44	0.50 216	9.97 950	4	32		6	23.4	3.0	
29	9.47 774	40	9.49 828	44	0.50 172	9.97 946	4	31		7	27.3	3,1	5
80	9.47 814	40	9.49 872	44	0.50 128	9.97 942	4	30	1	8	31.2	4.0)
31	9.47 854	40	9.49 916	44	0.50 084	9.97 938	4	29	1	9	35.1	4.0	5
32	9.47 894	40	9:49 960	44	0.50 040	9.97 934	4	28	1				
33	9.47 934	40	9.50 004	44	0.49 996	9.97 930	4	27	l		4	8	
34	9.47 974	40	9.50 048	44	0.49 952	9.97 926	4	26	1		- 1	_	
85	9.48 014	40	9.50 092	i	0.49 908	9.97 922	1	25	1	2 3	0.8 1.2	0.6	
36	9.48 054	40	, 9.50 136	44	0.49 864	9.97 918	4	24	l	4	1.6	0.9 1.2	
37	9.48 094	39	9.50 180	43	0.49 820	9.97 914	4	23	l	5	2.0	1.5	
38	9.48 133	40	9 50 223	44	0.49 777	9.97 910	4	22	į.	6	2.4	1.8	
39	9.48 173	40	9.50 267	44	0.49 733	9.97 906	4	21		7	2.8	2.1	
40	9.48 213	39	9.50 311	44	0.49689	9.97 902	4	20	1	8	3.2	2.4	
41	9.48 252	40	9.50 355	43	0.49645	9.97 898	4	19		9	3.6	2.7	
42	9.48 292	40	9.50 398	44	0.49602	9.97 894	4	18	l	'	•	ĺ	
43 44	9.48 332 9.48 371	39	9.50 442	43	0.49 558	9.97 890	4	17	l				
		40	9.50 485	44	0.49 515	9.97 886	4	16	l				
45	9.48 411	39	9.50 529	43	0.49 471	9.97 882	4	15	I	rom	the t	top :	
46 47	9.48 450 9.48 490	40	9.50 572	44	0.49 428 0.49 384	9.97 878 9.97 874	4	14	307		¥0.1 -	. 10	₩Q.L
48	9.48 529	39	9.50 616 9.50 659	43	0.49 341	9.97 870	4	13 12			7°+ o		
49	9 48 568	39	9.50 703	44	0.49 297	9.97 866	4	11			print		
50	9.48 607	39	9.50 746	43	0.49 254	9.97 861	5	10	107	'0+ o	r 287	۰+,	reau
51	9.48 647	40	9.50 789	43	0.49 204	9.97 857	4	9	co-i	unct	ion.		
52	9.48 686	39	9.50 833	44	0.49 167	9.97 853	4	8					- 1
53	9.48 725	39	9.50 876	43	0.49 124	9.97 849	4	7	T	mon.	the b		l
54	9.48 764	39	9.50 919	43	0.49 081	9.97 845	4	6	F	1 UIII	1160 0	,O110	m :
55	9.48 803	39	9.50 962	43	0.49 038	9.97 841	4	5	F	or 75	2°+ 01	25	20+.
56	9.48 842	39	9.51 005	43	0.48 995	9.97 837	4	4		_	print		
57	9.48 881	39	9.51 048	43	0.48 952	9.97 833	4	3					
58	9.48 920	39	9.51 092	44	0.48 908	9.97 829	4	2			342	т,	read
59	9.48 959	39	9.51 135	43	0.48 865	9.97.825	4	ĩ	co-f	unet	юŋ.		
60	9.48 998	39	9.51 178	43	0.48 822	9.97 821	4	ō					. 1
	L Cos	d	L Ctn	cd	L Tan	L Sin	đ	7	٠.	Pr	op. P	ta.	

<u>'</u>	L Sin	d	L Tan	c d	L Ctn	L Cos	d			Pro	p. Pts	
0	9.48 998	39	9.51 178	43	0.48 822	9.97 821	4	60				
1	9.49 037	39	9.51 221	43	0.48 779	9.97 817	5	59	i			
2 3	9.49 076	39	9.51 264 9.51 306	42	0.48 736 0.48 694	9.97 812 9.97 808	4	58 57	ł			
4	9.49 115 9.49 153	38	9.51 349	43	0.48 651	9.97 804	4	56	1			
5	9.49 192	39	9.51 392	43	0.48 608	9.97 800	4	55	,	48	42	41
6	9.49 231	5 39	9.51 435	43	0.48 565	9.97 796	4	54	2	8.6	8.4	8.2
7	9.49 269	38	9.51 478	43	0.48 522	9.97 792	4	53	3	12.9	42.6	12.3
8	9.49 308	39	9.51 520	42	0.48 480	9.97 788	4	52	4	17.2	16.8	16.4
9	9.49 347	39 38	9.51 563	43	0.48 437	9.97 784	4	51	5	21.5	21.0	20.5
10	9.49 385		9.51 606	43	0.48 394	9.97 779	5	50	6	25.8	25.2	24.6
11	9.49 424	39 38	9.51 648	42 43	$0.48\ 352$	9.97 775	4	49	7	30.1	29.4	28.7
12	9.49 462	38	9.51 691	43	0.48 309	9.97 771	4	48	8	34.4	33.6	32.8
13	9:49 500	39	9.51 734	42	0.48 266	9.97 767	4	47	9	38.7	37.8	36.9
14	9.49 539	38	9.51 776	43	0.48224	9.97 763	4	46	1			
15	9.49 577	38	9.51 819	42	0.48 181	9.97 759	5	45				
16 17	9.49 615 9.49 654	39	9.51 861 9.51 903	42	0.48 139 0.48 097	9.97 754 9.97 750	4	44 43		39	38	37
18	9,49 692	38	9.51 946	43	0.48 054	9.97 746	4	42	2	7.8	7.6	7.4
19	9.49 730	38	9.51 988	42	0.48 012	9.97 742	4	41	3	11.7	11.4	11.1
20	9.49 768	38	9.52 031	43	0.47 969	9.97 738	4	40	4	15.6	15.2	14.8
21	9.49 806	38	9.52 073	42	0.47 927	9.97 734	4	39	5	19.5 23.4	$\frac{19.0}{22.8}$	$\frac{18.5}{22.2}$
22	9.49 844	38	$9.52\ 115$	42 42	0.47 885	9.97 729	5	38	7	27.3	26.6	25.9
23	9.49882	38 38	9.52 157	43	0.47 843	9.97 725	4	37	8	31.2	30.4	29.6
24	9.49 920	38	9.52200	42	0.47 800	9.97 721	4	36	9	35.1	34.2	33.3
25	9.49958	38	9.52 242	42	0.47 758	9.97 717	4	35				
26 27	9 49 996	38	9.52 284	42	0.47 716	9.97 713	5	34				
28	9.50 034 9.50 072	38	9.52 326 9.52 368	42	0.47 674 0.47 632	9.97 708 9.97 704	4	33 32		36	5	4
29	9.50 110	38	9.52 410	42	0.47 590	9.97 700	4	31	2	7.2	1.0	0.8
80	9.50 148	38	9.52 452	42	0.47 548	9.97 696	4	30	3	10.8	1.5	1.2
31	9.50 185	37	9.52 494	42	0.47 506	9.97 691	5	29	4	14.4	2.0	1.6
32	9.50 223	38	9.52 536	42	0.47 464	9.97 687	4	28	5	18.0	2.5	2.0
33	9 50 261	38 37	9.52 578	42 42	0.47 422	9.97 683	4	27	6	21.6	3.0	2.4
34	9.50 298	38	9.52 620	41	0.47 380	9.97 679	5	26	7 8	25.2 28.8	3.5	2.8 3.2
85	9.50 336	38	9 52 661	42	0.47 339	9.97 674	4	25	9	32.4	4.5	3.6
36 37	9.50 374	37	9.52 703	42	0.47 297	9.97 670	4	24	ľ	, 02.1	1 1.0	0.0
38	9.50 411 9.50 449	38	9.52 745	42	0.47 255 0.47 213	9.97 666 9.97 662	4	23 22				
39	9.50 486	37	9.52 829	42	0.47 171	9.97 657	5	21				
40	9.50 523	37	9.52 870	41	0.47 130	9.97 653	4	20				
41	9.50 561	38	9.52 912	42	0.47 088	9.97 649	4	19				
42	9.50 598	37	9.52 953	41	0.47 047	9.97 645	4	18	F	rom ti	le top	:
43	9.50635	37 38	9.52995	42	0.47 005	9.97 640	5 4	17			•	
44	9.50 673	37	9.53 037	41	0.46 963	9.97 636	4	16			+ or 1	
45	9.50 710	37	9.53 078	42	0.46922	9.97 632	4	15			rinted	
46	9.50 747	37	9.53 120	41	0.46 880	9.97 628	5	14	108	o+ or	288°+	, read
47 48	9.50 784	37	9.53 161	41	0.46 839	9.97 623	4	13 12	co-f	unctic	n.	
49	9.50 821 9.50 858	37	9.53 202 9.53 244	42	0.46 798 0.46 756	9.97 619 9.97 615	4	11				
50	9.50 896	38	9.53 244	41	0.46 715	9.97 610	5	10	F	rom ti	re bott	om:
51	9.50 933	37	9.53 327	42	0.46 673	9.97 606	4	9				1
52	9.50 970	37	9.53 368	41	0.46 632	9.97 602	4	8			+ or 2	
53	9.51 007	37	9.53 409	41	0.46 591	9.97 597	5	7			rinted	
54	9.51 043	37	9.53 450	42	0.46 550	9.97 593	4	6	161	o+ or	341°+	, read
55	9.51 080	37	9.53 492	41	0.46 508	9.97 589	5	5	co-f	unctio	n.	
56	9.51 117	37	9.53 533	41	0.46 467	9.97 584	4	4				
57 58	9.51 154	37	9.53 574	41	0.46 426 0.46 385	9.97 580	4	3				
59	9.51 1:11 9.51 227	36	9.53 615 9.53 656	41	0.46 383	9.97 576 9.97 571	5	2				- 1
30	9.51 264	37	9.53 697	41	0.46 303	9.97 567	4	0				
100		-						,		D	- D4-	
	L Cos	d	L Ctn	c d	L Tan	L Sin	d			Pro	p. Pts	ــــــا

_						-500			Tunotons V					
1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			Pro	p. Pts	٠		
0	9.51 264	37	9.53 697	41	0.46 303	9.97 567	4	60						
1	9.51 301 9.51 338	37	9.53 138	41	0.46 262	9.97 563	5	59	1					
3	9.51 374	36	9.53 779 9.53 820	41	0.46 221 0.46 180	9.97 558 9.97 554	4	58 57						
4	9.51 411	37	9.53 861	41	0.46 139	9.97 550	4	56	1					
5	9.51 447	36	9.53 902	41	0.46 098	9.97 545	5	55	1	41	40	39		
6	9.51 484	37	9.53 943	41	0.46 057	9.97 541	4	54				1		
7	9.51 484 9.51 520	36	9.53 984	41	0.46 016	9.97 536	5	53	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	$\frac{8.2}{12.3}$	$\frac{8.0}{12.0}$	7.8 11.7		
8	9.51 557	37	9.54 025	41	0.45 975	9.97 532	4	52	4	16.4	16.0	15.6		
9	9.51 593	36	9.54 065	40	0.45 935	9.97 528	4	51	5	20.5	20.0	19.5		
10	9.51 629	36	9.54 106	41	0.45 894	9.97 523	5	50	6	24.6	24.0	23.4		
11	9.51 666	36	9.54 147	41	0.45 853	9.97 519	4	49	7	28.7	28.0	27.3		
12	9.51 702	36	9.54 187	41	0.45 813	9.97 515	5	48	8	32.8	32.0	31.2		
13	9.51 738	36	9.54 228	41	0.45 772	9.97 510	4	47	9	36.9	36.0	35.1		
14	9.51 774	37	9.54 269	40	0.45 731	9.97 506	5	46	1					
15	9.51 811	36	9.54 309	41	0.45 691	9.97 501	4	45						
16 17	9.51 847 9.51 883	36	9.54 350	40	0.45 650 0.45 610	9.97 497	5	44 43	1	37	36	35		
18	9.51 919	36	9.54 431	41	0.45 569	9.97 488	4	42	2	7.4	7.2	7.0		
19	9.51 955	36	9.54 471	40	0.45 529	9.97 484	4	41	3	11.1	10.8	10.5		
20	9.51 991	35	9.54 512	41	0.45 488	9.97 479	5	40	4	14.8	14.4	14.0		
21	9.52 027	36	9.54 552	40	0.45 448	9.97 475	4	39	5	18.5	18.0	17.5		
22	9.52 063	36	9.54 593	41	0.45 407	9.97 470	5	38	6 7	$\frac{22.2}{25.9}$	$\begin{array}{c} 21.6 \\ 25.2 \end{array}$	$\frac{21.0}{24.5}$		
23	9.52 099	36 36	9.54 633	40	0.45 367	9.97 466	4	37	8	29.6	28.8	28.0		
24	9.52 135	36	9.54 673	40	0.45 327	9.97 461	5 4	36	9	33.3	32.4	31.5		
25	9.52 171	36	9.54 714	40	0.45 286	9.97 457	4	35	l ' '					
26	9.52 207	35	9.54 754	40	0.45 246	9.97 453	5	34	1					
27 28	9.52 242	36	9.54 794	41	0.45 206	9.97 448	4	33	Į.	34	1 5	4		
29	$9.52\ 278$ $9.52\ 314$	36	9.54 835 9.54 875	40	0.45 165 0.45 125	9.97 444 9.97 439	5	32	2	1	1			
30	9.52 350	36	l	40	0.45 125	9.97 435	4	30	3	6.8	1.0	0.8 1.2		
31	9.52 385	35	9.54 915 9.54 955	40	0.45 045	9.97 430	5	29	4	13.6	2.0	1.6		
32	9.52 421	36	9.54 995	40	0.45 005	9.97 426	4	28	5	17.0	2.5	2.0		
33	9.52 456	35	9.55 035	40	0.44 965	9.97 421	5	27	6	20.4	3.0	2.4		
34	9.52492	36 35	9.55 075	40	0.44 925	9.97 417	5	26	7	23.8	3.5	2.8		
35	9.52 527	36.	9.55 115	40	0.44 885	9.97 412	4	25	8 9	27.2 30.6	4.0	3.2		
36	9.52 563	35	9.55 155	40	0.44 845	9.97 408	5	24	3	1 50.0	4.5	3.6		
37	9.52 598	36	9.55 195	40	0.44 805	9.97 403	4	23						
38 39	9.52 634 9.52 669	35	9.55 235	40	0.44 765	9.97 399	5	22 21						
40		36	9.55 275	40	0.44 725	9.97 394	4							
41	9.52 705 9.52 740	35	9.55 315	40	0.44 685 0.44 645	9.97 390 9.97 385	5	20 19						
42	9.52 775	35	9.55 355 9.55 395	40	0.44 605	9.97 381	4	18	F	rom tl	ie top .			
43	9.52 811	36	9.55 434	39	0.44 566	9.97 376	5	17	1		-			
44	9.52 846	35	9.55 474	40	0.44 526	9.97 372	4	16	F	o r 19°	+ or 1	99°+,		
45	9.52 881	35	9.55 514	40	0.44 486	9.97 367	5	15	read	l as p	rinted	; for		
46	9.52 916	35	9.55 554	40	0.44 446	9.97 363	5	14	109	o+ or	289°+	read		
47	9.52 951	35 35	9.55 593	39 40	0.44 407	9.97 358	5	13		anctio				
48	9.52 986	35	9.55 633	40	0.44 367	9.97 353	4	12				į		
49	9.53 021	35	9.55 673	39	0.44 327	9.97 349	5	11	77	rom. #h	ie bott	om.		
50	9.53 056	36	9.55 712	40	0.44 288	9.97 344 9.97 340	4	10						
51 52	9.53 092 9.53 126	34	9.55 752 9.55 791	39	0.44 248 0.44 209	9.97 335	5	98	F	or 70°	+ or 2	50°+,		
53	9.53 161	35	9.55 831	40	0.44 169	9.97 331	4	7	read	as p	rinted	; for		
54	9.53 196	35	9.55 870	39	0.44 130	9.97 326	5	6			840°+			
55	9.53 231	35	9.55 910	40	0.44 090	9.97 322	4	5		inctio				
56	9.53 266	35	9.55 949	39	0.44 051	9.97 317	5	4						
57	9.53 301	35 35	9.55 989	40 39	0.44 011	9.97 312	5	3						
58	9.53 336	34	9.56 028	39	0.43 972	9.97 308	5	2						
59	9.53 370	35	9.56 067	40	0.43 933	9.97 303	4	1						
60	9.53 405		9.56 107		0.43 893	9.97 299	_	<u>,</u>						
	L Cos	d	L Ctm	c d	L Tan	L Sin	d	′ ′		Prop). Pts.	•		

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			Pro	p. Pts	
0	9.53 405		9.56 107		0.43 893	9.97 299	_	60				4
1	9.53 440	35	9.56 146	39 39	0.43 854	9.97 294	5	59				
2	9.53475	35 34	9.56 185	39	0.43 815	9.97 289	5	58				
3	9.53 509	35	9.56 224	40	0.43 776	9.97 285	5	57				
4	9.53 544	34	9.56 264	39	0.43 736	9.97 280	4	56				
5	9.53 578		9.56 303	, ,	0.43 697	9.97 276		55		40	39	38
6	9.53 613	35	9.56 342	39	0.43658	9.97 271	5	54	2	8.0	7.8	7.6
7	9.53 647	34	9.56 381	39	0.43619	9.97 266	5	53	3	12.0	11.7	11.4
8	9.53 682	35	9.56 420	39 39	0.43580	9.97 262	4	52	4	16.0	15.6	15.2
9	9.53 716	34 35	9.56 459	39	0.43 541	9.97 257	5	51	5	20.0	19.5	19.0
10	9.53 751		9.56 498		0.43502	9.97 252		50	6	24.0	23.4	22.8
11	9.53 785	34	9.56 537	39	0.43463	9.97 218	4	49	7	28.0	27.3	26.6
12	9.53 819	34	9.56 576	39 39	0.43424	9.97 243	5	48	8	-32.0	31.2	30.4
13	9.53 854	35	9.56 615	39	0.43385	9.97 238	5	47	9	36.0	35.1	34.2
14	9.53 888	34	9.56 654	39	0.43 346	9.97 234	5	46	l			
15	9.53 922		9.56 693		0.43 307	9.97 229		45				
16	9.53 957	35	9.56 732	39	0.43268	9.97 224	5	44	1	37	35	34
17	9.53 991	34	9.56 771	39 39	0.43229	9.97 220	4	43				
18	9.54 025	34	9.56 810	39	0.43190	9.97 215	5	42	3	$7.4 \\ 11.1$	7.0 10.5	6.8
19	9.54 059	34	9.56 849	38	0.43151	9.97 210	4	41	4	14.8	14.0	$\frac{10.2}{13.6}$
20	9 54 093		9.56 887		0.43 113	9.97 206	į.	40	5	18.5	17.5	17.0
21	9.54 127	34	9.56 926	39	0.43 074	9.97 201	5	39	6	22.2	21.0	20.4
22	9.51 161	34	9.56 965	39 39	0.43 035	9.97 196	5	38	7	25.9	24.5	23.8
23	9.51 195		9.57 004		0.42996	9.97 192	4	37	8	29.6	28.0	27.2
24	9.54 229	34	9.57 042	38	0.42958	9.97 187	5 5	36	9	33.3	31.5	30.6
25	9.54 263		9.57 081		0.42 919	9.97 182	1	35	,			
26	9.54 297	34	9.57 120	39	0.42880	9.97 178	4	34				
27	9.54 331	34 34	9.57 158	38	0.42 842	9.97 173	5	33		33	5	4
28	9.54365	34	9.57 197	38	0.42 803	9.97 168	5	32				
29	9.54 399	34	9.57 235	39	0.42 765	9.97 163	4	31	2	6.6	1.0	0.8
30	9.54 433	33	9.57 274	38	0.42 726	9.97 159	5	30	3	9.9	1.5	1.2
31	9.54 466	34	9.57 312	39	0.42688	9.97 154	5	29	4	13.2	2.0	1.6
32	9.54500	34	9.57 351	38	0.42649	9.97 149	4	28	5	16.5	2.5	2.0
33	9.54 534	33	9.57 389	39	0.42611	9.97 145	5	27	6	19.8 23.1	3.0	2.4 2.8
34	9.54 567	34	9.57 428	38	0.42572	9.97 140	5	26	8	26.4	4.0	3.2
35	9.54 601	34	9.57 466	38	0.42 534	9.97 135	5	25	9	29.7	4.5	3.6
36	9.54635	33	9.57 504	39	0.42 496	9.97 130	4	24	١	,	1 1.0	, 0.0
37	9.54 668	34	9.57 543	38	0.42 457	9.97 126	5	23				
38	9.54 702	33	9.57 581	38	0.42 419	9.97 121	5	22				
39	9.54 735	34	9.57 619	39	0.42 381	9.97 116	5	21				
40	9.54 769	33	9.57 658	38	0.42 342	9.97 111	4	20				
41	9.54 802	34	9.57 696	38	0.42 304	9.97 107	5	19	7	Prom +	he top	
42	9.54 836	33	9 57 734	38	0.42 266	9.97 102	5	18	۱ '	· · · · · · ·	cop	•
43	9.54 869	34	9.57 772	38	0.42 228	9.97 097	5	17	F	or 20	+ or 2	800°+.
44	9.54 903	33	9.57 810	39	0.42 190	9.97 092	5	16			printed	,
45	9.54 936	33	9.57 849	38	0.42 151	9.97 087	4	15			290°+	
46	9.54 969	34	9.57 887	38	0.42 113	9.97 083	5	14				, read
48	9.55 003	33	9.57 925	38	0.42 075	9.97 078	5	13 12	co-	funçti	on.	
49	9.55 036 9.55 069	33	9.57 963 9.58 001	38	0.42 037	9.97 068	5	11				
		33		38	1	1	5		1	From t	he bot	tom:
50	9.55 102	34	9.58 039	38	0.41 961	9.97 063	4	10	١.			14001
51	9.55 136 9.55 169	33	9.58 077 9.58 115	38	0.41 923 0.41 885	9.97 059 9.97 054	5	8			°+ or 2	
53	9.55 202	33	9.58 115	38	0.41 865	9.97 034	5	7	rea	d as p	printed	l; for
54	9.55 235	33	9.58 191	38	0.41 809	9.97 044	5	6	159	9°+ or	339°+	, read
55	9.55 268	33	9.58 229	38	0.41 771	9.97 039	5	5		function		
56	9.55 301	33	9.58 267	38	0.41 771	9.97 035	4	4				
57	9.55 334	33	9.58 304	37	0.41 696	9.97 030	5	3	1			
58	9.55 367	33	9.58 342	38	0.41 658	9.97 035	5	2	1			
59	9.55 400	33	9.58 380	38	0.41 620	9.97 020	5	lī	l			
60	9.55 433	33	9.58 418	38	0.41 582	9.97 015	5	0	l			
-		d	L Cta	c d	L Tan	L Sin	d	1		Pro	p. Pts	

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d	1	1	Pro	p. Pta	
	9.55 433	<u> </u>	9.58 418	- u	0.41 582	9.97 015	<u> </u>	60			2	-
0	9.55 466	33	9.58 455	37	0.41 545	9.97 010	5	59				
1 2	9.55 499	33	9.58 493	38	0.41 507	9.97 005	5	58				
3	9.55 532	33	9.58 531	38	0.41 469	9.97 001	4	57	Í			
4	9.55 564	32	9.58 569	38	0.41 431	9.96 996	5	56	1			
5	9.55 597		9.58 606	37	0.41 394	9.96 991	•	55	1	38	37	36
6	9.55-630	33	9.58 644	38	0.41 356	9.96 986	5	54	20	7.6	7.4	7.2
7	9.55 663	33	9.58 681	37	0.41 319	9.96 981	5	53	3	11.4	11.1	10.8
8	9.55 695	33	9.58 719	38	0.41 281	9.96 976	5	52	4	15.2	14.8	14.4
9	9.55 728	33	9.58 757	37	0.41 243	9.96 971	5	51	5	19.0	18.5	18.0
10	9.55 761	32	9.58 794	38	0.41 206	9.96 966	4	50	6	22.8	22.2	21.6
11	9.55 793	33	9.58 832	37	0.41 168	9.96 962	5	49	7	26.6	25.9	25.2
12	9.55 826	32	9.58 869	38	0.41 131	9.96 957	5	48	8	30.4 34.2	29.6 33.3	28.8 32.4
13	9.55 858 9.55 891	33	9.58 907	37	0.41 093 0.41 056	9.96 952 9.96 947	5	47 46	87 (04.4	20.0	32.4
14	•	32	ž .	37	ı	ł .	5					
15	9.55 923	33	9.58 981	38	0.41 019	9.96 942	5	45				
16 17	9.55 956	32	9,59 019 9,59 056	37	0.40 981	9.96 937 9.96 932	5	44 43		33	32	31
18	9.56 021	33	9 59 094	38	0.40 906	9.96 927	5	42	2	6.6	64	6.2
19	9.56 053	32	9.59 131	37	0.40 869	9.96 922	5	41	3	9.9	9.6	9.3
20	9.56 085	32	9.59 168	37	0.40 832	9.96 917	5	40	4	13.2	12.8	12.4
21	9.56 118	33	9.59 205	37	0.40 795	9.96 912	5	39	5	16.5 19.8	$16.0 \\ 19.2$	15.5
22	9.56 150	32	9.59 243	38	0.40 757	9.96 907	5	38	7	23.1	$\frac{19.2}{22.4}$	18.6 21.7
23	9.56 182	32	9.59 280	37	0.40 720	9.96 903	4	37	8	26.4	25.6	24.8
24	9.56 215	33 32	9.59 317	37	0.40 683	9.96 898	5	36		29.7	28.8	27.9
25	9.56 247	1	9.59 354	37	0.40 646	9.96 893	5	35	- 1	,	-,	
26	9.56 279	32 32	9.59 391	37	0.40 609	9.96 888	5	34				
27	9.56 311	32	9.59429	38	0.40 571	9.96 883	5	33	1		1 5	4
28	9.56 343	32	9.59 466	37	0.40 534	9.96 878	5	32		6	5	
29	9.56 375	33	9.59 503	37	0.40 497	9.96 873	5	31	2	1.2	1.0	0.8
80	9.56 408	32	9.59 540	37	0.40 460	9.96 868	5	30	3 4	1.8	1.5 2.0	1.2 1.6
31	9.56 440	32	9.59 577	37	0.40 423	9.96 863	5	29	5	3.0	2.5	2.0
32	9.56 472	32	9.59 614	37	0.40 386	9.96 858	5	28 27	6	3.6	3.0	2.4
33 34	9.56 504 9.56 536	32	9.59 651 9.59 688	37	0.40 349	9.96 853	5	26	7	4.2	3.5	2.8
1		32		37	1	ı	5	25	8	4.8	4.0	3.2
35	9.56 568	31	9.59 725 9.59 762	37	0.40 275 0.40 238	9.96 843 9.96 838	5	24	9	5.4	4.5	3.6
37	9.56 599 9.56 631	32	9.59 799	37	0.40 201	9.96 833	5	23				
38	9.56 663	32	9.59 835	36	0.40 165	9.96 828	.5	22				
39	9.56 695	32	9.59 872	37	0.40 128	9.96 823	5	$\overline{21}$				
40	9.56 727	32	9.59 909	37	0.40 091	9.96 818	5	20				
41	9.56 759	32	9.59 946	37	0.40 054	9.96 813	5	19				
42	9.56 790	81	9.59 983	37	0.40 017	9.96 808	5	18	F	rom t	he top	:
43	9.56 822	32 32	9.60 019	36 37	0.39 981	9.96 803	5	17	Tr.	r 210	+ or 2	010+
44	9.56 854	32	9.60 056	37	0.39 944	9.96 798	5	16				
45	9.56 886	31	9.60 093	37	0.39 907	9.96 793	5	15				; for
46	9.56 917	32	9.60 130	36	0.39 870	9.96 788	5	14			291°+	, read
47	9.56 949	31	9.60 166	37	0.39 834	9.96 783	5	13	co-fu	unctio	n.	
48	9.56 980	32	9.60 203	37	0.39797	9.96 778 9.96 772	6	12 11				
49	9.57 012	32	9.60 240	36	0.39 760		5	10	F_{i}	rom t	he bot	tom:
50	9.57 044	-31	9.60 276	37	0.39724	9.96 767 9.96 762	5	9	_			400:
51 52	9.57 075 9.57 107	32	9.60 313 9.60 349	36	0.39 687 0.39 651	9.96 757	5	8			+ or 2	
53	9.57 138	31	9.60 349	37	0.39 614	9.96 752	5	7			rinted	
54	9.57 169	31	9.60 422	36	0.39 578	9.96 747	5	6	158	+ or	838°+	, read
55	9.57 201	32	9.60 459	37	0.39 541	9.96 742	5	5		inctio		
56	9.57 232	31	9.60 459	36	0.39 505	9.96 737	5	4	50 10			
57	9.57 264	32	9.60 532	37	0.39 468	9.96 732	5	3				
58	9.57 295	31	9.60 568	36	0.39 432	9.96 727	5	2				
59	9.57 326	31	9.60 605	37	0.39 395	9.96 722	5	1				
60	9.57 358	32	9.60 641	36	0.39 359	9.96 717	٥	0				
	L Cos	d	L Ctn	cd		L Sin	d	,		Pro	p. Pts	•

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			Pro	p. Pte	1.
0	9.57 358	31	9.60 641	36	0.39 359	9.96 717	6	60				
1	9.57 389	31	9.60 677	37	0.39 323	9.96 711	5	59				
3	9.57 420	31	9.60 714 9.60 750	36	0.39 286 0.39 250	9.96 706 9.96 701	5	58 57				
4	9.57 451 9.57 482	31	9.60 786	36	0.39 214	9.96 696	5	56				
5	9.57 514	32	9.60 823	37	0.39 177	9.96 691	5	55	,	37	36	35
6	9.57 545	31	9.60 859	36	0.39 141	9.96 686	5	54	2	7.4	7.2	7.0
7	9.57 576	31	9.60 895	36	0.39 105	9.96 681	5	53	3	11.1	10.8	10.5
8	9.57 607	31	9.60 931	36	0.39 069	9.96 676	5	52	4	14.8	14.4	14.0
9	9.57 638	31 31	9.60 967	36 37	0.39 033	9.96 670	6 5	51	5	18.5	18.0	17.5
10	9.57 669	31	9.61 004	36	0.38996	9.96 665	5	50	6	22.2	21.6	21.0
11	9.57 700	31	9.61 040	36	0.38 960	9.96 660	5	49	7	25.9	25.2	24.5
12 13	9.57 731	31	9.61 076	36	0.38 924	9.96 655	5	48	8 9	29.6 33.3	$\frac{28.8}{32.4}$	28.0 31.5
14	9.57 762 9.57 793	31	9.61 112 9.61 148	36	0.38 888 0.38 852	9,96 650 9,96 645	5	47 46	" 1	00.0	OZIT	01.0
15	9,57 824	31	9.61 184	36	0.88 816	9.96 640	5	45				
16	9.57 855	31	9.61 220	36	0.38 780	9.96 634	6	44	١,	32	31	30
17	9.57 885	30	9.61 256	36	0.33 744	9.96 629	5	43				
18	9.57 916	31 31	9.61 292	36 36	0.38 708	9.96 624	5	42	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	6.4 9.6	$\frac{6.2}{9.3}$	6.0 9.0
19	9.57 947	31	9.61 328	36	0.38672	9.96 619	5	41	4	12.8	12.4	12.0
20	9.57 978	30	9.61 364	36	0.38 636	9.96 614	6	40	5	16.0	15.5	15.0
21	9.58 008	31	9.61 400	36	0.38 600	9.96 608	5	39	6	19.2	18.6	18.0
22 23	9.58 039	31	9.61 436	36	0.38564 0.38528	9.96 603 9.96 598	5	38	7	22.4	21.7	21.0
24	9.58 070 9.58 101	31	9.61 472 9.61 508	36	0.38 492	9.96 593	5	36	8	25.6	24.8	24.0
25	9.58 131	30	9.61 544	36	0.38 456	9.96 588	5	35	9	28.8	27.9	27.0
26	9.58 162	31	9.61 579	35	0.38 421	9.96 582	6	34				
27	9.58 192	30	9.61 615	36	0.38 385	9.96 577	5	33				
28	9.58 223	31	9.61 651	36	0.38 349	9.96 572	5	32		29	6	5
29	9.58 253	30 31	9.61 687	36 35	0.38 313	9.96 567	5	31	2	5.8	1.2	1.0
30	9.58 284	30	9.61 722	36	0.38 278	9.96 562	6	30	3	8.7	1.8	1.5
31	9.58 314	31	9.61 758	36	0.38 242	9.96 556	5	29	4 5	11.6 14.5	3.0	2.0 2.5
32	9.58 345 9.58 375	30	9.61 794 9.61 830	36	0.38 206 0.38 170	9.96 551 9.96 546	5	28 27	ő	17.4	3.6	3.0
34	9.58 406	31	9.61 865	35	0.38 135	9.96 541	5	26	7	20.3	4.2	3.5
35	9.58 436	30	9.61 901	36	0.38 099	9.96 535	6	25	8	23.2	4.8	4.0
36	9.58 467	31	9.61 936	35	0.38 064	9.96 530	5	24	9	26.1	5.4	4.5
37	9.58 497	30 30	9.61 972	36 36	0.38028	9.96 525	5	23				
38	9.58 527	30	9.62008	35	0.37992	9.96 520	6	22				
39	9.58 557	31	9.62 043	36	0.37 957	9.96 514	5	21				
40	9.58 588	30	9.62 079	35	0.37 921	9.96 509	5	20				
41 42	9.58 618 9.58 648	30	9.62 114 9.62 150	36	0.37 886 0.37 850	9.96 504 9.96 498	6	19 18	F	rom t	he top	.
43	9.58 678	30	9.62 185	35	0.37 815	9.96 493	5	17			-	
44	9.58 709	31	9.62 221	36	0.37 779	9.96 488	5	16			'+ or 2	/
45	9.58 739	30	9.62 256	35	0.37 744	9.96 483	6	15			rinte	
46	9.58 769	30	9.62292	36 35	0.37 708	9.96 477	5	14	112	o+ or	292°+	, read
47	9.58 799	30	9.62 327	35	0.37 673	9.96 472	5	13	co-f	unctio	n.	
48	9.58 829	30	9.62 362	36	0.37 638	9.96 467	в	12				- 1
50	9.58 859	30	9.62 398	35	0.37 602	9.96 461 9.96 456	5	11 10	F	rom t	he bot	om:
51	9.58 889 9.58 919	30	9.62 433 9.62 468	35	0.37 567 0.37 532	9.96 456	5	9				
52	9 58 949	30	9.62 504	36	0.37 496	9.96 445	6	8			+ or 2	
53	9.58 979	30	9.62 539	35	0.37 461	9.96 440	5	7			printed	
54	9.59 009	30	9.62 574	35 35	0.37426	9.96 435	6	6			337°+	, read
55	9 59 039	30	9.62 609	36	0.37 391	9.96 429	5	5	co-f	unetic	n.	
56	9.59 069	29	9.62 645	35	0.37 355	9.96 424	5	4				
57 58	9.59 098	30	9.62 680	35	0.37 320	9.96 419 9.96 413	6	3 2				
59	9.59 128 9.59 156	30	9.62 715 9.62 750	35	0.37 285 0.37 250	9.96 408	5	1				
60	9.59 188	30	9.62 785	35	0.37 215	9.96 403	5	Ô				
7							_	-		D	- 10t-	
	L Cos	d	L Ctn	o d	L Tan	L Sin	d	' '		Pro	p. Pts	•

٠	,	L Sin	d	L Tan	c d	L Ctn	L Cos	d	1	Γ	P	rop.	Pts.	ŧ
	0	9.59 188	30	9.62 785	35	0.37 215	9.96 403	6	60				-1	
	1	9.59 218	29	9.62 820	35	0.37 180	9.96 397	5	59	l				
1	2 3	9.59 247 9.59 277	30	9.62 855 9.62 890	35	0.37 145 0.37 110	9.96 392 9.96 387	5	58	l				
	4	9.59 307	30	9.62 926	36	0.37 074	9.96 381	6	57 56					
	5	9.59 336	29	9.62 961	35	0.37 039	9.96 376	5	55		86	1 8	5	84
	6	9.59 366	30	9.62 996	35	0.37 004	9.96 370	6	54	2	7.2	•	.0	6.8
1	7	9.59 396	30	9.63 033	35	0.36 969	9.96 365	5	53	3	10.8		.5	10.2
	8	9.59 425	29 30	9.63 066	35 35	0.36 934	9.96 360	5	52	4	14.4			13.6
	9	9.59 455	29	9.63 101	34	0.36 899	9.96 354	6 5	51	5	18.0) 17	.5	17.0
	10	9.59 484	30	9.63 135	35	0.36 865	9.96 349	6	50	6	21.6		.0	20.4
1	11 12	9.59 514	29	9.63 170	35	0.36 830	9.96 343	5	49	7 8	25.2 28.8		.5	23.8
	13	9.59 543	30	9.63 205 9.63 240	35	0.36 795 0.36 760	9.96 338	5	48	9	32.4		.5	$\begin{array}{c} 27.2 \\ 30.6 \end{array}$
1	14	9.59 602	29	9.63 275	35	0.36 725	9.96 327	6	46	"		. , 01	.0. 1	00.0
	15	9.59 632	30	9.63 310	35	0.36 690	9.96 322	5	45	ĺ				
1	16	9.59 661	29	9.63 345	35	0.36 655	9.96 316	6	44		30	2	a 1	28
	17	9.59 690	29 30	9.63 379	34	0.36 621	9.96 311	5	43	۱			- 1	
	18	9.59 720	29	9.63 414	35	0.36 586	9.96 305	6 5	42	3	6.0 9.0		.8	5.6 8.4
1	19	9.59 749	29	9.63 449	35	0.36 551	9.96 300	6	41	4	12.0		.6	11.2
	20 21	9.59 778	30	9.63 484	35	0.36 516	9.96 294	5	40	5	15.0		.5	14.0
1	$\frac{21}{22}$	9.59 808 9.59 837	29	9.63 519 9.63 553	34	0.36 481 0.36 447	9.96 289 9.96 284	5	39 38	6	18.0		.4	16.8
1	23	9.59 866	29	9.63 588	35	0.36 412	9.96 278	6	37	7	21.0		.3	19.6
	24	9.59 895	29	9.63 623	35	0.36 377	9.96 273	5	36	8	24.0		.2	$\frac{22.4}{25.2}$
-	25	9.59 924	29	9.63 657	34	0.36 343	9.96 267	6	35	٦	1 21.0	1 20		20.2
-	26	9.59 954	30 29	9.63 692	35	0.36 308	9.96 262	5	34					
-	27	9.59 983	29	9.63 726	34 35	0.36 274	9.96 256	6 5	33		;		5	
١	$\frac{28}{29}$	9.60 012	29	9.63 761	35	0.36 239	9.96 251	6	32			6	1	
-		9.60 041	29	9.63 796	34	0.36 204	9.96 245	5	31		2	1.2	1.0	
١	30 31	9.60 070 9.60 099	29	9.63 830 9.63 865	35	0.36 170 0.36 135	9.96 240 9.96 234	6	30		3 4	$\frac{1.8}{2.4}$	1.8 2.0	
١	32	9.60 128	29	9.63 899	34	0.36 101	9.96 229	5	29	1	5	3.0	2.5	í
	33	9.60 157	29	9.63 934	35	0.36 066	9.96 223	6	27	1	6	3.6	3.0	
1	34	9.60 186	29 29	9.63 968	34 35	0.36 032	9.96 218	5	26	l	7	4.2	3.5	
- 1	35	9.60 215	29	9.64 003	34	0.35 997	9.96 212	5	25		8 9	4.8 5.4	4.0	
-	36	9.60 244	29	9.64 037	35	0.35 963	9.96 207	6	24		9	5.4	4.0	•
1	37 38	9.60 273 9.60 302	29	9.64 072	34	0.35 928	9.96 201	5	23					
- 1	39	9.60 331	29	9.64 106 9.64 140	34	0.35 894 0.35 860	9.96 196 9.96 190	6	22 21					
1	40	9.60 359	28	9.64 175	35	0.35 825	9.96 185	5	20					
1	41	9.60 388	29	9.64 209	34	0.35 791	9.96 179	6	19					
١	42	9.60 417	29	9.64 243	34	0.35 757	9.96 174	5	18	1	rom	the t	op:	
1	43	9.60 446	29 28	9.64278	35 34	0.35722	9.96 168	6	17	10	O	о от .	- 04	100 T
1	44	9.60 474	29	9.64 312	34	0.35 688	9.96 162	5	16					03°+,
1	45	9.60 503	29	9.64 346	35	0.35 654	9.96 157	6	15					; for
1	46 47	9.60 532 9.60 561	29	9.64 381 9.64 415	34	0.35 619 0.35 585	9.96 151 9.96 146	5	14 13				5°+,	read
1	48	9.60 589	28	9.64 449	34	0.35 551	9.96 140	6	12	co-1	funct	ion.		
١	49	9.60 618	29	9.64 483	34	0.35 517	9.96 135	5	11	_	_			
١	50	9.60 646	28	9.64 517	34	0.35 483	9.96 129	6	10	F	rom	the l	otto	m:
	51	9.60 675	29 29	9.64552	35 34	0.35 448	9.96 123	6 5	9	18	or R	6°+ ^	r 24	16 °+.
-	52	9.60 704	28	9.64 586	34	0.35 414	9.96 118	6	8					; for
	53 54	9.60 732 9.60 761	29	9.64 620 9.64 654	34	0.35 380 0.35 346	9.96 112 9.96 107	5	6					read
1	55	9.60 789	28	9.64 688	34	0.35 312	9.96 101	6	5		funct		٠,	read .
-	56	9.60 789	29	9.64 688	34	0.35 312	9.96 101	6	4	CO~)	unct	un.		
١	57	9.60 846	28	9.64 756	34	0.35 244	9.96 090	5	3					
	58	9.60 875	29	9.64 790	34	0.35 210	9.96 084	6	2					
-	59	9.60 903	28 28	9.64 824	34	0.35 176	9.96 079	5 6	1					
	60	9.60 931	-	9.64 858	U.	0.35 142	9.96 073	_	0					
		L Cos	d	L Ctn	c d	L Tan	L Sin	đ	1		Pr	op. 1	ts.	

	L Sin	đ	L Tan	c d	L Ctn	L Cos	d			I	Prop.	Pts.
0	9.60 931	29	9.64 858	34	0.35 142	9.96 073	6	60				
1	9.6) 960	28	9.64 892	34	0.35 108	9.96 067	5	59				
2	9.60 988	28	9.64 926	34	0.35 074	9.96 062	в	58				
3	9.61 016	29	9.64 960	34	0.35 040	9.96 056	6	57				
4	9.61 045	28	9.64 994	34	0.35 006	9.96 050	5	56				
5	9.61 073	28	9.65 028	34	0.34 972	9.96 045	6	55		3	1	3 29
6	9.61 101	28	9.65 062	34	0.34 938	9.96 039	5	54	2			5.6 5.8
7	9.61 129	29	9.65 096	34	0.34 904	9.96 034	6	53	3	10		9.9 8.7
8	9.61 158 9.61 186	28	9.65 130 9.65 164	34	0.34 870 0.34 836	9.96 028 9.96 022	6	52 51	4	13		3.2 11.6
1 1		28		33			5		5	17		3.5 14.5
10	9.61 214 9.61 242	28	9.65 197 9.65 231	34	0.34 803 0.34 769	9.96 017 9.96 011	6	50	6	20 23		9.8 17.4 3.1 20.3
11 12	9.61 270	28	9.65 265	34	0.34 735	9.96 005	6	49 48	8	27		3.4 23.2
13	9.61 298	28	9.65 299	34	0.34 701	9.96 000	5	47	ğ	30		0.7 26.1
14	9.61 326	28	9.65 333	34	0.34 667	9.95 994	. 6	46			,	
15	9.61 354	28	9.65 366	33	0.34 634	9.95 988	6	45				
16	9.61 382	28	9.65 400	34	0.34 600	9.95 982	6	44		,	28	27
17	9.61 411	29	9.65 434	34	0.34 566	9.95 977	5	43		_		
18	9.61 438	27 28	9.65 467	33	0.34 533	9.95 971	6	42		2	5.6	5.4
19	9.61 466	28	9.65 501	34 34	0.34 499	9.95 965	6	41	1	3	8.4	8.1
20	9.61 494	28	9.65 535		0.34 465	9.95 960	5	40		4 5	$\frac{11.2}{14.0}$	10.8 13.5
21	9.61 522	28	9.65 568	33 34	0.34 432	9.95 954	6	39		6	16.8	16.2
22	9.61 550	28	9.65 602	34	0.34 398	9.95 948	6	38		7	19.6	18.9
23	9.61 578	28	9.65 636	33	0.34 364	9.95 942	5	37		8	22.4	21.6
24	9.61 606	28	9.65 669	34	0.34 331	9.95 937	6	36		9	25.2	24.3
25	9.61 634	28	9.65 703	33	0.34 297	9.95 931	6	35				
26	9.61 662	27	9.65 736	34	0.34 264	9.95 925	5	34				
27	9.61 689 9.61 717	28	9.65 770 9.65 803	33	0.34 230 0.34 197	9.95 920 9.95 914	6	33 32			1 6	5
28 29	9.61 745	28	9.65 837	34	0.34 163	9.95 908	6	31		2	1.2	1.0
	9.61 773	28		33			6			3	1.8	1.5
30	9.61 800	27	9.65 870 9.65 904	34	0.34 130 0.34 096	9.95 902 9.95 897	5	30 29		4	2.4	2.0
32	9.61 828	28	9.65 937	33	0.34 063	9.95 891	6	28		5	3.0	2.5
33	9.61 856	28	9.65 971	34	0.34 029	9.95 885	6	27		6	3.6	3.0
34	9.61 883	27	9.66 004	33	0.33 996	9.95 879	6	26		7	4.2	3.5
85	9.61 911	28	9.66 038	34	0.33 962	9.95 873	в	25		8	4.8	4.0
36	9.61 939	28	9.66 071	33	0.33 929	9.95 868	5	24		9	5.4	4.5
37	9.61 966	27 28	9.66 104	33 34	0.33 896	9.95 862	6	23				
38	9.61 994	27	9.66 138	33	0.33 862	9.95 856	6	22				1
39	9.62 021	28	9.66 171	33	0.33 829	9.95 850	6	21				
40	9.62.049	27	9.66 204	34	0.33 796	9.95 844	5	20			N-	
41	9.62 076	28	9.66 238	33	0.33 762	9.95 839	6	19		Vra	n the	ton •
43	9.62 104	27	9.66 271	38	0.33 729	9.95 833	6	18	1			wp.
43	9.62 131 9.62 159	28	9.66 304 9.66 337	33	0.33 696 0.33 663	9.95 827 9.95 821	6	17 16]	For	24°+	or 204 °+,
	9.62 186	27	1	34	1	ž.	6	15	rea	id a	s pri	ited; for
45 46	9.62 186 9.62 214	28	9.66 371 9.66 404	33	0.33 629 0.33 596	9.95 815 9.95 810	5	10				4°+, read
47	9.62 241	27	9.66 437	33	0.33 563	9.95 804	6	13			ction.	_ · , . · au
48	9.62 268	27	9.66 470	33	0.33 530	9.95 798	6	12	٠٠٠.	-run	COLUII.	
49	9.62 296	28	9.66 503	33	0.33 497	9.95 792	6	iī	١.	77	42	T. 44
50	9.62 323	27	9.66 537	34	0.33 463	9.95 786	6	10	-	rro	m tne	bottom :
51	9.62 350	27	9.66 570	33	0.33 430	9.95 780	6	9	١ ١	For	650+	or 245°+.
52	9.62 377	27 28	9.66 603	33	0.33 397	9.95 775	5	8				ated; for
53	9.62 405	28	9.66 636	33	0.33 364	9.95 769	6	7				5°+, read
54	9.62 432	27	9.66 669	33	0.33 331	9.95 763	6	6				, reau
55	9.62 459	27	9.66 702	33	0.33 298	9.95 757	6	5	co-	ıun	ction.	
56	9.62 486	27	9.66 735	33	0.33 265	9.95 751	6	4	l			
57	9.62 513	28	9.66 768	33	0.33 232	9.95 745 9.95 739	6	3	l			
58	9.62 541	27	9.66 801	33	0.33 199		6	2	l			
59	9.62 568	27	9.66 834	33	0.33 166	9.95 733	5	1	l			
60	9.62 595	-	9.66 867		0.33 133	9.95 728	-	0	 			
L	L Cos	d	L Ctn	o d	L Tan	L Sin	d	11	<u> </u>	1	Prop.	Pts.

[L Sin	d	L.Tan	cd	L Otn	L Cos	d	T	1 :	Prop.	Pts.
0	9.62 595	27	9.66 367	00	0.33 133	9.95 728		60	1		
, 1		27	9.66 900	33	0.33 100	9.95 722	6	59	ł		
2	9.62 649	B7	9.66 933	33	0.33 067	9.95 716	6	58	i		
3		27	9.66 966 9.66 999	33	0.33 034	9.95 710	6	57	4		
4	1	27	1	33	0.33 001	9.95 704	6	56	រ ន៍		
5	9.62 730	27	9.67 032 9.67 065	33	0.32 968	9.95 698	6	55	1 1 -	- -	32 27
6 7	9.62 9 57 9.62 784	27	9.67 093	33	0.32 935 0.32 902	9.95 692 9.95 686	6	54	2 6		6.4 5.4
8	9.62 811	27	9.67 131	33	0.32 869	9.95 680	6	53			9.6 8.1
9	9.62 838	27	9.67 163	32	0.32 837	9.95 674	6	51	4 13 5 16		2.8 10.8
10	9.62 865	27	9.67 196	33	0.32 804	9.95 668	6	50	5 16 6 19		6.0 13.5 9.2 16.2
111	9.62 892	27	9.67 229	33	0.32 771	9.95 663	5	49	6 19 7 23		2.4 18.9
12	9.62 918	26	9.67 262	33	0.32 738	9.95 657	6	48	8 26		5.6 21.6
13	9.62 945	27	9.67 295	33	0.32 705	9.95 651	6	47	9 29		3.8 24.3
14	9.62 972	27	9.67 327	32	0.32 673	9.95 645	6	46	1		•
15	9.62 999	27	9.67 360	ł	0.32 640	9.95 639		45	l		
16	9.63 026	26	9.67 393	33	0.32 607	9.95 633	6	44	ł	26	1 7
17	9.63 052	27	9.67 426	32	0.32 574	9.95 627	6	43	2	5.2	1 -
18	9.63 079	27	9.67 458	33	0.32 542	9.95 621	6	42	3	7.8	
19	9.63 106	27	9.67 491	33	0.32 509	9.95 615	6	41	4	10.4	
20	9.63 133	26	9.67 524	32	0.32 476	9.95 609	6	40	5	13.0	
21 22	9.63 159	27	9.67 556	33	0.32 444	9.95 603	6	39	6	15.6	4.2
23	9.63 186	27	9.67 589 9.67 622	33	0.32 411 0.32 378	9.95 597 9.95 591	6	38	7	18.2	4.9
24	9.63 239	26	9.67 654	32	0.32 346	9.95 585	6	36	8	20.8	
25	9.63 266	27	9.67 687	33	0.32 313	9.95 579	6	35	9	23.4	6.3
26	9.63 292	26	9.67 719	32	0.32 281	9.95 573	6	34			
27	9.63 319	27	9.67 752	33	0.32 248	9.95 567	6	33		_	_
28	9.63 345	26	9.67 785	33	0.32 215	9.95 561	6	32		6	5
29	9.63 372	27	9.67 817	32 33	0.32183	9.95 555	.8	31	2	1.2	1.0
30	9.63 398	27	9.67 850	32	0.32 150	9.95 549	6	30	3	1.8	1.5
31	9.63 425	26	9.67 882	33	0.32118	9.95 543	6	29	4	2.4	2.0
32	9.63 451	27	9.67 915	32	0.32085	9.95 537	6	28	5	3.0	2.5
33	9.63 478	26	9.67 947	33	0.32 053	9.95 531	6	27	6 7	3.6 4.2	3.0 3.5
34	9.63 504	27	9.67 980	32	0.32 020	9.95 525	6	26	8	4.8	4.0
85 36	9.63 531	26	9.68 012	32	0.31 988	9.95 519	6	25	ğ	5.4	4.5
37	9.63 557 9.63 583	26	9.68 044 9.68 077	33	0.31 956 0.31 923	9.95 513 9.95 507	6	24 23			
38	9.63 610	27	9.68 109	32	0.31 891	9.95 500	7	22			
39	9.63 636	26	9.68 142	33	0.31 858	9.95 494	6	21			
40	9.63 662	26	9.68 174	32	0.31 826	9.95 488	6	20			
41	9.63 689	27	9.68 206	32	0.31 794	9.95 482	6	19	77	. 42	4
42	9.63715	26	9.68 239	33	0.31 761	9.95 476	6	18	rron	the	гор:
43	9.63 741	26 23	9.68 271	32 32	0.31 729	9.95 470	6	17	For 2	5°+ 4	r 205°+.
44	9.63 767	27	9.68 303	33	0.31 697	9.95 464	6	16			ted; for
45	9.63 794	26	9.68 336	32	0.31 664	9.95 458	6	15			o+, read
46	9.63 820	26	9.68 368	32	0.31 632	9.95 452	6	14			, read
47	9.63 846	26	9.68 400	32	0.31 600	9.95 446	6	13	co-func	tion.	
48	9.63 872 9.63 898	26	9.68 432 9.68 465	33	0.31 568 0.31 535	9.95 440 9.95 434	6	12 11			
50		26		32		9.95 427	7	10	From	the	bottom:
51	9.63 924 9.63 950	26	9.68 497 9.68 529	32	0.31 503 0.31 471	9.95 421	8	19	Tron 0	40L -	- 04404
52	9.63 976	26	9.68 561	32	0.31 439	9.95 415	6	8			r 244 °+,
53	9.64 002	26	9.68 593	32	0.31 407	9.95 409	6	7			ed; for
54	9.64 028	26 26	9.68 626	33	0.31 374	9.95 403	6	6			o+, read
55	9.64 054	26	9.68 658	32	0.31 342	9.95 397	6	5	co-func	ion.	
56	9.64 080	26	9.68 690	32	0.31 310	9.95 391	7	4 3			- 1
57	9.64 106	26	9.68 722	32	0.31 278	9.95 384	6	3			j
58	9.64 132	26	9.68 754	32	0.31 246	9.95 378 9.95 372	6	2			1
59	9.64 158	26	9.68 786	32	0.31 214		6	ō			
60	9.64 184	ㅡ.	9.68 818		0.31 182	9.95 366	-	-			
لـــا	L Cos	d	L Ctn	c d	L Tan	L Sin	d	' 1	P	op, P	48.

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			P	rop.	Pts.	
0	9.64 184		9.68 818	32	0.31 182	9.95 366	в	60					
1	9.64 210	26 26	9.68 850	32	0.31 150	9.95 360	6	59		٠			
2	9.64 236	26	9.68 882	32	0.31 118	9.95 354 9.95 348	6	58 57					
3	9.64 262	26	9.68 914	32	0.31 086 0.31 054	9.95 341	7	56					
4	9.64 288	25	9.68 946	32		9.95 335	6	55	1	32	3	1	26
5	9.64 313	26	9.68 978 5.69 010	82	0.31 022 0.30 990	9.95 329	6	54	2	6	- 1	2	5.2
6 7	9.64 339 9.64 365	26	9.69 042	32	0.30 958	9.95 323	6	53	3	9.		.3	7.8
8	9.64 391	26	9.69 074	32	0.30 926	9.95 317	6	52	4	12.			10.4
9	9.64 417	26	9.69 106	32	0.30 894	9.95 310	7 6	51	5	16.			13.0
10	9.64 442	25	9.69 138	32	0.30 862	9.95 304	6	50	6	19.			15.6
11	9.64 468	26	9.69 170	32 32	0.30 830	9.95298	6	49	7	22. 25.			18.2 20.8
12	9.64.494	26 25	9.69202	32	0.30 798	9.95 292	6	48	8	28.			23.4
13	9.64 519	26	9.69 234	32	0.30 766	9.95 286 9.95 279	7	47 46	0 1	20.	0,2.		20.1
14	9.64 545	26	9.69 266	32	0.30 734		6	45					1
15	9.64 571	25	9.69 298	31	$0.30702\ 0.30671$	9.95 273 9.95 267	6	44			25	- 24	
16 17	9.64 596 9.64 622	26	9.69 329 9.69 361	32	0.30 639	9.95 261	6	43					
18	9.64 647	25	9.69 393	32	0.30 607	9.95 254	7	42		2	5.0	4. 7.	
19	9.64 673	26	9.69 425	32	0.30 575	9.95 248	6	41		3 4	7.5 10.0	9.	
20	9.64 698	25	9.69 457	32	0.30 543	9.95 242	. 6	40		5	12.5	12.	
21	9.64 724	26	9.69 488	31	0.30 512	9.95236	6	39		6	15.0	14.	
22	9.64 749	25	9.69520	32 32	0.30480	9.95229	6	38		7	17.5	16.	
23	9.64 775	26 25	9.69552	32	0.30 448	9.95 223	6	37		8	20.0	19.	
24	9.64 800	26	9.69 584	31	0.30 416	9.95 217	6	36		9	22.5	21.	6
25	9.64 826	25	9.69615	32	0.30 385	9.95 211	7	85					
26	9.64 851	26	9.69 647	32	0.30 353 0.30 321	9.95 204 9.95 198	6	34					- 1
27 28	9.64 877 9.64 902	25	9.69 679 9.69 710	31	0.30 221	9.95 192	6	32			7	6	
29	9.64 927	25	9.69742	32	0.30 258	9.95 185	7	31		$\frac{2}{3}$	1.4	1.5	
30	9.64 953	26	9.69 774	32	0.30 226	9.95 179	6	30			2.1	1.8	
31	9.64 978	25	9.69 805	31	0.30 195	9.95 173	6	29		4 5	2.8 3.5	3.6	
32	9.65 003	25	9.69 837	32	0.30163	9.95 167	7	28		6	4.2	3.6	
33	9.65 029	26 25	9.69 868	32	0.30 132	9.95 160	6	27		7	4.9	4.	
34	9.65 054	25	9.69 900	32	0.30 100	9.95 154	6	26		8	5.6	4.8	
35	9.65 079	25	9.69 932	31	0.30 068	9.95 148	7	25 24		9	6.3	5.4	4
36	9.65 104	26	9.69 963	32	0.30 037 0.30 005	9.95 141 9.95 135	6	23					
37	9.65 130 9.65 155	25	9.69 995 9.70 026	31	0.29 974	9.95 129	6	22					
39	9.65 180	25	9.70 058	32	0.29 942	9.95 122	7	21					
40	9.65 205	25	9.70 089	31	0.29 911	9.95 116	-	20					
41	9.65 230	25	9.70 121	32	0.29879	9.95 110	6 7	19	7	7	. +1.	tom .	
42	9.65 255	25	9.70 152	31	0.29848	9.95 103	6	18	_ P	ron	n the i	op.	
43	9.65 281	26 25	9.70 184	31	0.29 816	9.95 097	7	17	F	or 2	26°+ c	r 20	06°+,
44	9.65 306	25	9.70 215	32	0.29 785	9.95 090	6	16			s prir		
45	9.65 331	25	9.70 247	31	0.29 753	9.95 084 9.95 078	6	15 14			or 29		
46	9.65 356	25	9.70 278	31	0.29 722 0.29 691	9.95 078	7	13			tion.	- ,	
47 48	9.65 381	25	9.70 309 9.70 341	32	0.29 659	9.95 065	6	12	-00-1	uul	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
49	9.65 431	25	9.70 372	31	0.29 628	9.95 059	6 7	11	r	7ron	n the	hott	om ·
50	9.65 456	25	9.70 404	32	0.29 596	9.95 052	6	10					
51	9.65 481	25	9.70 435	31	0.29 565	9.95 046	7	9	F	or (6 3 °+ 6	or 2	43°+,
52	9.65 506	25 25	9.70 466	31	0.29 534	9.95 039	6	8	rea	d a	s pri	ated	; for
53	9.65 531	25	9.70 498	31	0.29 502	9.95 033	6	6			or 33		
54	9.65 556	24	9.70 529	31	0.29 471	9.95 027	7	5			ction.		
55	9.65 580	25	9.70 560	32	0.29 440	9.95 020 9.95 014	6	4	1				
56	9.65 605	25	9.70 592	31	0.29 408 0.29 377	9.95 007	7	3	١				
57 58	9.65 630 9.65 655	25	9.70 623 9.70 654	31	0.29 346	9.95 001	16	2	l				
59	9.65 680	25	9.70 685	31	0.29 315	9.94 995	6	1	1				
60	9.65 705	25	9.70 717	32	0.29 283	9.94 988	1'	0	1				
50	L Cos	d	L Ctn	c d	L Tan	L Sin	d	1		1	rop.	Pts.	

		,	LUSAI II										
1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			P	op.	Pts	
0	9.65 705	24	9.70 717	31	0.29 283	9.94 988	6	60					
1 2	9.65 729 9.65 754	25	9.70 748 9.70 779	31	0.29 252 0.29 221	9.94 982 9.94 975	7	59 58	1				
3	9.65 779	25	9.70 810	31	0 29 190	9.94 969	6	57	i				
1 4	9.65 804	25	9.70 841	31	0.29 159	9.94 962	7	56					
5	9.65 828	24	9.70 873	32	0.29 127	9.94 956	6	55		342	8	31	80
6	9.65 \$53	25	9.70 904	31	0.29 096	9.94 949	7	54	2	6.4		3.2	6.0
7	9.65 878	25 24	9.70 935	31 31	0.29065	9.94 943	6	53	3	9.0		9.3	9.0
8	9.65 902	25	9.70 966	31	0.29 034	9.94 936	6	52	4	12.8	3 1:	2.4	12.0
9	9.65 927	25	9.70 997	31	0.29 003	9.94 930	7	51	5	16.0		5.5	15.0
10	9.65 952 9.65 976	24	9.71 028 9.71 059	31	0.28972 0.28941	9.94 923 9.94 917	6	50	6	19.2 22.4		3.6 1.7	$18.0 \\ 21.0$
12	9.66 001	25	9.71 090	31	0.28 910	9.94 911	6	48	8	25.6		1.8	24.0
13	9.66 025	24	9.71 121	31	0.28879	9.94 904	7	47	9	28.8		7.9	27.0
14	9.66 050	25 25	9.71 153	32	0.28847	9.94 898	6	46	İ				
15	9.66 075	24	9.71 184	31	0.28 816	9.94 891	6	45					
16	9.66 099	25	9.71 215	31	0.28785	9.94 885	7	44		25	1 5	4	23
17 18	9.66 124	24	9.71 246	31	0.28 754	9 94 878	7	43	2	5.0) .	1.8	4.6
19	9.66 148 9.66 173	25	9.71 277 9.71 308	31	$0.28723 \\ 0.28692$	9.94 871 9.94 865	6	42	3	7.5	. '	7.2	6.9
20	9.66 197	24	9.71 339	31	0.28 661	9.94 858	7	40	4	10.0) !	9.6	9.2
21	9.66 221	24	9.71 370	31	0.28 630	9.94 852	6	39	5	12.5		2.0	11.5
22	9.66 246	25	9.71 401	31	0.28599	9.94 845	7	38	6	15.0 17.8		1.4 3.8	13.8 16.1
23	9.66 270	24 25	9.71 431	30	0.28569	9.94 839	6 7	37	8	20.0).2	18.4
24	9.66 295	24	9.71 462	31	0.28538	9.94 832	6	36	9	22.5	2		20.7
25	9.66 319	24	9.71 493	31	0.28 507	9.94 826	7	35		-			
26 27	9.66 343	25	9.71 524	31	0.28 476 0.28 445	9.94 819	6	34 33	1				
28	9.66 368 9.66 392	24	9.71 555 9.71 586	31	0.28 414	9.94 813	7	32	1	1	7	1 6	}
29	9.66 416	24	9.71 617	31	0.28 383	9.94 799	7	31		2	1.4	1.	2
30	9.66 441	25	9.71 648	31	0.28 352	9.94 793	6	30		3	2.1	1.	
31	9.66 465	24	9.71 679	31	0.28321	9.94 786	7 6	29		4	2.8	2.	
32	9.66 489	24	9.71 709	30	0.28291	9.94 780	7	28	l	5	3.5	3.	
33	9.66 513	24	9.71 740	31	0.28 260	9.94 773	6	27	1	6	$\frac{4.2}{4.9}$	3.	
	9.66 537	25	9.71 771	31	0.28 229	9.94 767	7	26	1	8	5.6	4.	
35 36	9.66 562 9.66 586	24	9.71 802 9.71 833	31	0.28 198 0.28 167	9.94 760 9.94 753	7	25 24		9	6.3	5.	
37	9.66 610	24	9.71 863	30	0.28 137	9.94 747	6	23					
38	9.66 634	24	9.71 894	31	0.28 106	9.94 740	7	22					
39	9.66 658	24 24	9.71 925	31 30	0.28075	9.94 734	6	21					
40	9.66 682	24	9.71 955	31	0.28045	9.94 727	7	20					
41	9.66 706	25	9.71 986	31	0.28 014	9.94 720	8	19	,	rom	the	ton	
42 43	9.66 731	24	9.72 017	31	0.27 983	9.94 714 9.94 707	7	18 17	-	10116	1160	юp	•
44	9.66 755 9.66 779	24	9.72 048 9.72 078	30	$\begin{array}{c} 0.27\ 952 \\ 0.27\ 922 \end{array}$	9.94 700	7	16	F	or 2'	70+	or 2	07°+,
45	9.66 803	24	9.72 109	31	0.27 891	9.94 694	6	15	rea	d as	pri	ited	; for
46	9.66 827	24	9.72 140	31	0.27 860	9.94 687	7	14	117	7°+ o	r 29	70+	, read
47	9.66 851	24 24	9.72 170	30	0.27830	9.94 680	7 6	13		funct			
48	9.66 875	24	9.72 201	31 30	0.27 799	9.94 674	7	12					
49	9.66 899	23	9.72 231	31	0.27 769	9.94 667	7	11	7	rom	the	bott	om:
50	9.66 922	24	9.72 262	31	0.27 738	9.94 660	в	10					
51 52	9.66 946 9.66 970	24	9.72 293 9.72 323	30	0.27 707 0.27 677	9.94 654 9.94 647	7	9 8					42 °+,
53	9.66 994	24	9.72 354	31	0.27 646	9.94 640	7	7					l; for
54	9.67 018	24 24	9.72 384	30	0.27 616	9.94 634	6	6	152	3 0+ 0	r 83	2°+	, read
55	9.67 042		9.72 415	31	0.27585	9.94 627	7	5	co-	funct	ion.		
56	9.67 066	24 24	9.72 445	30	0.27555	9.94 620	6	4					
57	9.67 090	23	9.72 476	30	0.27 524	9.94 614	7	3					
58 59	9.67 113 9.67 137	24	9.72 506 9.72 537	31	0.27 494 0.27 463	9.94 607 9.94 600	7	2					
60		24	9.72 567	30	0.27 433	9.94 593	7	ô					į
100	9 67 161						-			Pr	op.	D+a	
1	L Cos	d	L Ctn	c d	L Tan	L Sin	d	' '		PT	υþ.	L 18.	

9 9.67 374 22 9.72 841 30 0.27 159 9.94 533 7 50 5 15.5 1 19.67 1421 23 9.72 972 30 0.27 108 9.94 513 7 50 6 18.6 1 12.7	
1	6.0 5.8 9.0 8.7 12.0 11.6 5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 1.0 26.1 3 22 1.6 4.4
2 9.67 232 24 9.72 689 31 0.27 341 9.94 567 7 567 5 9.67 280 24 9.72 689 31 0.27 341 9.94 567 7 567 5 9.67 280 24 9.72 689 31 0.27 280 9.94 567 7 567 6 9.67 303 24 9.72 780 30 0.27 250 9.94 553 7 54 2 6.2 7 9.67 350 24 9.72 780 30 0.27 250 9.94 553 7 54 2 6.2 8 9.67 350 24 9.72 841 31 0.27 189 9.94 556 7 53 3 9.3 8 9.67 350 24 9.72 841 31 0.27 189 9.94 553 7 51 5 15.5 10 9.67 398 24 9.72 841 30 0.27 159 9.94 533 7 51 5 15.5 11 9.67 421 23 9.72 903 31 0.27 089 9.94 533 7 51 5 15.5 12 9.67 468 23 9.72 963 31 0.27 088 9.94 513 7 49 7 42 13 9.67 468 23 9.72 963 31 0.27 088 9.94 513 7 47 9 14 9.67 542 23 9.73 084 30 0.27 070 9.94 490 7 46 48 8 24.8 24.8 19 9.67 609 23 9.73 084 30 0.26 961 9.94 472 7 42 2 4.8 4 19 9.67 609 23 9.73 084 30 0.26 886 9.94 457 7 41 4.8 4 19 9.67 609 23 9.73 084 30 0.26 886 9.94 488 7 40 40 40 20 9.67 633 24 9.73 326 30 0.26 765 9.94 458 7 40 40 40 21 9.67 660 24 9.73 326 30 0.26 765 9.94 458 7 40 40 40 22 9.67 630 24 9.73 326 30 0.26 765 9.94 458 7 40 40 40 22 9.67 630 24 9.73 326 30 0.26 765 9.94 458 7 40 40 40 23 9.67 700 24 9.73 326 30 0.26 765 9.94 451 7 34 40 40 40 24 9.67 800 24 9.73 326 30 0.26 765 9.94 451 7 34 40 40 40 40 25 9.67 770 24 9.73 326 30 0.26 765 9.94 451 7 34 40 40 40 40 40 40 40	6.0 5.8 9.0 8.7 12.0 11.6 5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 1.0 26.1 3 22 1.6 4.4
4 9.67 236 24 9.72 689 30 0.27 311 9.94 567 7 56 56 5 9.67 280 24 9.72 689 30 0.27 280 9.94 560 7 55 31 6 9.67 327 24 9.72 780 30 0.27 280 9.94 560 7 55 31 9.94 567 7 55 4 2 6 2 6 6 6 53 3 9.3 9.9 30 0.27 128 9.94 550 7 54 6 53 3 9.3 8 9.67 350 23 9.72 872 30 0.27 128 9.94 513 7 54 6 52 4 12.4 12.4 10 9.67 382 23 9.72 872 30 0.27 128 9.94 519 7 40 7 41 12.1 12.7 21 12.7 21 9.67 606 8.94 513 7 41 42 22 12.7 21	6.0 5.8 9.0 8.7 12.0 11.6 5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 1.0 26.1 3 22 1.6 4.4
5 9.67 280 24 6 9.67 303 24 9.72 780 31 0.27 280 9.94 560 7 55 42 2 6.2 31 2 6.2 31 2 6.2 32 9.72 780 30 0.27 250 9.94 553 7 54 2 6 2 3 3 9.3 3 9.3 3 0.27 250 9.94 553 7 54 2 6 2 2 3 3 9.3 3 9.3 3 0.27 159 9.94 553 7 54 2 6 5 2 4 12.4 3 9.3 3 0.27 159 9.94 533 7 51 5 5 5 5 15.5 3 9.3 3 9.3 3 0.27 159 9.94 533 7 50 6 5 2 4 12.4 1 9.67 308 3 9.72 872 30 0.27 159 9.94 533 7 50 6 6 18.6 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 5 15.5 6 18.6 17.2 1 12.4 12.4 1 12.4 12	6.0 5.8 9.0 8.7 12.0 11.6 5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 1.0 26.1 3 22 1.6 4.4
6 9.67 303 22 9.72 770 30 0.27 220 9.94 553 7 54 2 6.2 2 7 9.67 350 3 9.72 810 31 0.27 129 9.94 553 7 54 53 3 9.3 8.3 10 0.27 128 9.94 540 6 53 3 9.3 9.3 10 0.27 128 9.94 540 6 52 4 12.4 12.4 12.4 12.4 12.4 12.4 12.4 1	6.0 5.8 9.0 8.7 12.0 11.6 5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 1.0 26.1 3 22 1.6 4.4
Part	9.0 8.7 2.0 11.6 5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 2.0 26.1 3 22 3 4.4
8 9.67 350 23 9.72 811 31 0.27 189 9.94 540 6 52 4 12.4 12.4 10 9.67 374 24 9.72 841 30 0.27 159 9.94 530 7 50 6 18.6 1 15 10 9.67 388 24 9.72 892 30 0.27 128 9.94 533 7 50 6 18.6 1 15.7 2 9.73 902 30 0.27 128 9.94 539 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 49 7 447 9 227.9 23 14 9.67 492 24 9.72 993 30 0.27 007 9.94 499 7 46 47 47 9 27.9 46 15 9.67 562 24 9.73 024 30 0.26 977 9.94 495 7 44 7 44 7 44 9 7	11.6 5.0 14.5 8.0 17.4 1.0 20.3 20.0 26.1 22 26.1
9 9.67 374 24 9.72 841 30 0.27 159 9.94 533 7 51 5 15.5 5 15.5 19.07 129 19.07 421 23 9.72 892 30 0.27 108 9.94 519 7 60 6 18.6 19.07 129 13 9.67 468 23 9.72 963 30 0.27 037 9.94 519 7 47 7 47 47 47 47 47	5.0 14.5 8.0 17.4 1.0 20.3 1.0 23.2 26.1 3 22 .6 4.4
10 9.67 398 22 9.72 872 30 0.27 108 9.94 526 7 49 21.7 21.7 21.7 21.7 21.7 22	8.0 17.4 1.0 20.3 4.0 23.2 7.0 26.1 3 22 6 4.4
11 9.67 421 23 9.72 902 30 0.27 068 9.94 519 7 49 7 21.7 2 2 2 9.72 903 31 0.27 068 9.94 519 7 46 48 47 9 27.9 21 3 9.67 408 24 9.72 993 30 0.27 067 9.94 409 7 46 47 7 46 48 47 9 27.9 21 48 47 9 27.9 21 48 48 48 24.	1.0 20.3 1.0 23.2 7.0 26.1 3 22 1.6 4.4
12 8.07 488 23 9.72 9.83 31 0.27	3 22 .6 4.4
13 9.67 492 24 9.72 993 30 0.27 007 9.94 492 7 47 47 51 1.5 15 9.67 515 24 9.73 023 30 0.26 977 9.94 492 7 45 45 16 9.67 562 24 9.73 023 30 0.26 916 9.94 485 6 44 24 24 24 24 24 24	3 22 .6 4.4
14 9.67 515 52 53 9.73 9.94 9.95 74 75 75 75 75 75 75 7	.6 4.4
15 9.67 5159 24 9.73 023 31 0.26 946 9.94 482 7 44 24 24 9.73 054 20 9.94 492 7 45 42 2 4.8 4 24 9.73 054 20 9.94 472 7 42 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 2 4.8 4 9.94 472 7 42 2 4.8 4 9.94 472 7 42 2 4.8 4 9.94 472 7 40 4 9.6 5 9.94 485 7 40 4 9.6 5 9.6 63 9.73 144 30 0.26 825 9.94 485 7 40 4 9.6 5 12 9.6 6 5 12 9.6 12 9.6 12 9.73 326 30 0.26 765 9.94 483 7	.6 4.4
10 10 10 10 10 10 10 10	.6 4.4
11	
10	
20	
21 9.67 656 23 9.73 205 30 0.26 795 9.94 451 7 39 6 14.4 12.2 12.9 67 686 24 9.73 205 30 0.26 765 9.94 4451 6 38 7 16.8 16.8 16 38 7 16.8 16.8 16 38 7 16.8 16.8 16 38 7 16.8 16.8 16 38 7 16.8 16.8 16.8 16.2 38 7 16.8 16.8 16.8 16.2 38 7 16.8 19.2 2.0 2.0 2.0 2.0 2.0 2.0 7.0 2	.2 8.8
22 9.67 680 24 9.73 235 30 0.26 765 9.94 445 7 38 7 16.8 16.2 12.2 9.67 703 23 9.73 295 30 0.26 705 9.94 441 7 36 9 21.6 26 9.67 750 24 9.73 295 30 0.26 674 9.94 424 7 34 7 36 9 21.6 26 9.67 773 23 9.73 386 30 0.26 674 9.94 424 7 34 7 37 36 9 21.6 20 28 9.67 780 24 9.73 386 30 0.26 614 9.94 410 6 32 7 31 22 1.4 32 9.67 860 24 9.73 446 30 0.26 554 9.94 397 7 31 2 1.4 3 2.6 74 9.94 397 7 31 2 1.4 3 3 2.1 3 3 2.1 3 3 2.1 3 3 2.1 3 3 2.1 3 3 3 2.1 3 3 <td< td=""><td></td></td<>	
23 9.67 703 23 9.73 266 30 0.26 735 9.94 438 7 36 8 19.2 16 20 24 9.67 726 23 9.73 295 31 0.26 705 9.94 431 7 36 9 21.6 20 25 9.67 750 23 9.73 326 30 0.26 614 9.94 417 7 34 27 28 9.67 820 23 9.73 366 30 0.26 614 9.94 417 7 34 28 28 9.67 820 24 9.73 416 30 0.26 614 9.94 417 7 34 28 28 9.67 820 24 9.73 416 30 0.26 634 9.94 307 7 31 22 1.4 32 3 9.67 860 24 9.73 476 30 0.26 524 9.94 397 7 31 22 1.4 32 3 9.67 820 24 9.73 507 30 0.26 403 9.94 307 7 30 30 3 2.1 31 9.67 830 23 9.73 507 30 0.26 403 9.94 306 7 28 5 3.5 33 9.67 820 23 9.73 507 30 0.26 403 9.94 360 7 27 6 4.2 34 9.67 959 23 9.73 507 30 0.26 403 9.94 360 7 27 6 4.2 34 9.67 959 23 9.73 507 30 0.26 403 9.94 360 7 27 6 4.2 34 9.67 850 24 9.73 657 30 0.26 403 9.94 360 7 27 6 6 4.2 36 9.67 820 24 9.73 657 30 0.26 403 9.94 362 7 26 8 5.3 50 9.67 820 23 9.73 567 30 0.26 403 9.94 362 7 26 8 5.3 50 9.67 820 23 9.73 567 30 0.26 403 9.94 362 7 26 8 5.3 50 9.68 006 24 9.73 657 30 0.26 403 9.94 362 7 26 8 5.3 50 9.68 006 24 9.73 657 30 0.26 403 9.94 362 7 26 8 5.3 50 9.68 006 24 9.73 657 30 0.26 403 9.94 362 7 26 8 5.3 50 9.68 006 24 9.73 657 30 0.26 203 9.94 321 7 27 6 6 4.2 27 9.68 006 24 9.73 657 30 0.26 203 9.94 322 7 26 8 5.3 50 9.68 006 24 9.73 657 30 0.26 203 9.94 322 7 22 9 6.3 32 9.68 005 22 3 9.73 687 30 0.26 203 9.94 322 7 22 9 6.3 32 9.68 005 22 3 9.73 687 30 0.26 203 9.94 322 7 22 9 6.3 32 9.68 005 22 3 9.73 687 30 0.26 203 9.94 321 7 10 9.68 121 23 9.73 807 30 0.26 103 9.94 307 7 16 7 10 9.68 121 23 9.73 807 30 0.26 103 9.94 307 7 16 7 10 9.68 121 23 9.73 807 30 0.26 103 9.94 307 7 16 7 10 9.68 121 24 9.68 180 23 9.73 807 30 0.26 103 9.94 307 7 16 7 16 7 16 7 16 7 16 7 16 7 16 7	
24 9.67 726 23 9.73 286 30 0.26 674 9.94 424 7 35 9 21.6 20 9.67 773 23 9.73 356 30 0.26 614 9.94 417 7 34 9.94 417 7 34 9.94 9.94 9.94 9.94 9.94 9.94 9.94 9	
25 9.67 770 23 9.73 326 30 0.26 674 9.94 417 7 34 7 27 35 7 27 9.67 776 28 9.67 870 24 9.73 356 30 0.26 614 9.94 417 7 34 7 34 9.68 167 29 9.67 866 24 9.73 467 30 0.26 554 9.94 397 7 31 2 1.4 9.58 167 820 24 9.73 507 30 0.26 554 9.94 397 7 31 2 1.4 9.73 507 30 0.26 554 9.94 397 7 31 2 1.4 9.73 507 30 0.26 554 9.94 397 7 31 2 1.4 9.73 507 30 0.26 564 9.94 397 7 2 3 1 2 1.4 9.73 507 30 0.26 403 9.94 383 7 2 9 4 2 2.3 9.73 507 30 0.26 403 9.94 383 7 2 8 5 3.5 3.5 32 9.67 936 2 3 9.73 507 30 0.26 403 9.94 362 7 2 6 4.2 9.68 30 9.68 005 24 9.73 657 30 0.26 373 9.94 307 2 7 26 4.2 9.68 105 23 9.73 657 30 0.26 373 9.94 307 2 7 26 3 5.6 9.68 005 24 9.73 657 30 0.26 373 9.94 307 2 26 3 5.6 9.68 005 24 9.73 657 30 0.26 373 9.94 305 6 24 9.73 657 30 0.26 373 9.94 307 2 26 3 5.6 9.68 005 24 9.73 657 30 0.26 373 9.94 305 6 24 9.73 657 30 0.26 373 9.94 305 7 2 2 3 9.73 657 30 0.26 373 9.94 305 7 2 2 3 9.73 657 30 0.26 373 9.94 305 7 2 2 3 9.73 657 30 0.26 373 9.94 305 7 2 2 3 9.73 657 30 0.26 373 9.94 305 7 2 2 3 9.73 657 30 0.26 373 9.94 305 7 2 2 3 9.73 657 30 0.26 373 9.94 305 7 2 3 9.94 305 7 2 3 9.73 657 30 0.26 373 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.94 305 7 2 3 9.73 657 30 0.26 373 9.94 305 7 2 3 9.94 305 7 3 9.94 30	
26 9.67 773 23 9.73 386 30 0.26 614 9.94 410 7 333 72 9.67 876 820 24 9.73 416 30 0.26 584 9.94 404 6 32 7 32 9.67 843 23 9.73 446 30 0.26 584 9.94 404 6 32 7 32 9.67 866 24 9.73 476 30 0.26 524 9.94 390 7 31 2 1.4 8 32 9.67 866 24 9.73 507 31 0.26 493 9.94 883 7 29 4 2.8 32 9.67 913 23 9.73 507 30 0.26 493 9.94 883 7 29 4 2.8 32 9.67 913 23 9.73 507 30 0.26 493 9.94 883 7 29 4 2.8 32 9.67 913 23 9.73 507 30 0.26 493 9.94 883 7 29 4 2.8 8 5 3.5 3 9.67 936 23 9.73 507 30 0.26 493 9.94 882 7 26 7 4.9 8 8 5 6 8 5 6 8 5 6 8 8 5 6 8 8 5 6 8 8 5 6 8 8 5 6 8 8 5 6 8 8 5 6 8 8 5 6 8 8 5 6 8 8 8 8	
24 9.67 820 24 9.73 466 30 0.26 584 9.94 404 6 32 7 29 9.67 843 23 9.73 446 30 0.26 584 9.94 397 7 31 2 1.4 30 9.67 860 23 9.73 476 31 0.26 524 9.94 397 7 31 2 1.4 31 9.67 800 24 9.73 507 31 0.26 493 9.94 383 7 29 4 2.8 32 9.67 936 23 9.73 507 30 0.26 493 9.94 376 7 28 5 3.6 34 9.67 959 23 9.73 507 30 0.26 493 9.94 376 7 28 5 3.6 35 9.67 959 23 9.73 507 30 0.26 493 9.94 376 7 28 5 3.6 36 9.68 906 24 9.73 657 30 0.26 493 9.94 362 7 26 7 4.9 36 9.68 908 23 9.73 507 30 0.26 493 9.94 362 7 26 8 5.6 37 9.68 029 23 9.73 507 30 0.26 493 9.94 362 7 26 8 5.6 37 9.68 029 23 9.73 507 30 0.26 313 9.94 355 6 24 9.3 38 9.68 052 23 9.73 687 30 0.26 313 9.94 322 7 23 39 9.68 052 23 9.73 777 30 0.26 233 9.94 328 7 21 40 9.68 080 24 9.73 857 30 0.26 133 9.94 307 7 18 41 9.68 121 23 9.73 857 30 0.26 133 9.94 307 7 18 42 9.68 167 23 9.73 857 30 0.26 133 9.94 307 7 18 43 9.68 167 23 9.73 857 30 0.26 133 9.94 307 7 18 44 9.68 180 23 9.73 857 30 0.26 133 9.94 307 7 18 45 9.68 164 23 9.73 857 30 0.26 133 9.94 307 7 18 45 9.68 167 23 9.73 857 30 0.26 133 9.94 203 7 16 45 9.68 164 23 9.73 857 30 0.26 133 9.94 203 7 16 45 9.68 164 23 9.73 857 30 0.26 133 9.94 203 7 16 45 9.68 164 23 9.73 857 30 0.26 133 9.94 203 7 16 45 9.68 167 23 9.73 857 30 0.26 133 9.94 203 7 16 45 9.68 213 24 9.73 857 30 0.26 103 9.94 203 7 16 45 9.68 213 24 9.73 857 30 0.26 103 9.94 203 7 16 45 9.68 213 24 9.73 957 30 0.26 073 9.94 286 7 15 46 9.68 180 24 9.73 857 30 0.26 103 9.94 2	
22 9.67 843 23 9.73 476 30 0.26 554 9.94 397 7 31 2 1.4 30 9.67 866 24 9.73 567 31 0.26 403 9.94 380 7 29 4 2.8 31 9.67 980 24 9.73 567 30 0.26 563 9.94 380 7 29 4 2.8 32 9.67 913 23 9.73 567 30 0.26 403 9.94 362 7 26 4.2 33 9.67 959 23 9.73 567 30 0.26 403 9.94 362 7 26 4.2 35 9.67 982 24 9.73 567 30 0.26 403 9.94 362 7 26 4.2 35 9.68 062 24 9.73 657 30 0.26 373 9.94 362 7 26 8 5.6 36 9.68 062 24 9.73 657 30 0.26 373 9.94 355 6 24 37 9.68 029 23 9.73 687 30 0.26 373 9.94 355 6 24 38 9.68 052 23 9.73 687 30 0.26 373 9.94 355 7 25 38 9.68 052 24 9.73 687 30 0.26 313 9.94 342 7 23 38 9.68 052 23 9.73 777 30 0.26 233 9.94 355 7 21 40 9.68 089 23 9.73 777 30 0.26 233 9.94 355 7 21 40 9.68 098 23 9.73 777 30 0.26 233 9.94 355 7 21 40 9.68 121 23 9.73 867 30 0.26 163 9.94 307 7 18 41 9.68 121 23 9.73 867 30 0.26 163 9.94 307 7 18 42 9.68 167 23 9.73 867 30 0.26 163 9.94 307 7 18 43 9.68 167 23 9.73 867 30 0.26 163 9.94 307 7 18 45 9.68 213 24 9.73 927 30 0.26 103 9.94 296 7 15 read as prir	6
30	1.2
31 9.67 890 23 9.73 507 30 0.26 493 9.94 383 7 29 4 2.8 39.96 7913 39.67 959 23 9.73 507 30 0.26 403 9.94 369 7 27 6 4.2 38 5.67 959 23 9.73 567 30 0.26 403 9.94 362 7 26 8 5.6 8 5.6 9.67 982 23 9.73 667 30 0.26 403 9.94 362 7 26 8 5.6 9.67 982 23 9.73 667 30 0.26 313 9.94 382 7 26 8 5.6 9.6 90.6 91 9.73 657 30 0.26 313 9.94 349 7 24 9.68 98 23 9.73 67 30 0.26 313 9.94 342 7 23 38 9.68 052 23 9.73 67 30 0.26 313 9.94 342 7 23 39 9.68 052 23 9.73 717 30 0.26 233 9.94 325 7 22 39 9.68 052 23 9.73 717 30 0.26 223 9.94 325 7 21 40 9.68 080 41 9.68 121 23 9.73 877 30 0.26 123 9.94 314 7 19 7 19 7 19 19 19 19 19 19 19 19 19 19 19 19 19	1.8
32 9.67 913 23 9.73 567 30 0.26 463 9.94 376 7 28 5 3.5 33 9.67 959 23 9.73 567 30 0.26 403 9.94 362 7 26 4.2 35 9.67 959 23 9.73 567 30 0.26 403 9.94 362 7 26 7 4.9 36 9.68 906 24 9.73 657 30 0.26 373 9.94 355 6 25 8 5.6 37 9.68 029 23 9.73 687 30 0.26 313 9.94 312 7 23 38 9.68 062 23 9.73 687 30 0.26 283 9.94 335 7 22 38 9.68 908 23 9.73 777 30 0.26 283 9.94 335 7 21 40 9.68 908 23 9.73 777 30 0.26 283 9.94 325 7 21 40 9.68 908 23 9.73 877 30 0.26 193 9.94 311 7 7 41 9.68 121 23 9.73 887 30 0.26 133 9.94 307 7 18 42 9.68 167 23 9.73 887 30 0.26 133 9.94 307 7 18 43 9.68 167 23 9.73 867 30 0.26 133 9.94 307 7 18 44 9.68 190 23 9.73 887 30 0.26 133 9.94 203 7 16 45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 46 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 47 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 48 9.68 167 25 25 25 25 25 25 25 49 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 49 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 49 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 49 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 40 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 40 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 40 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 40 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 40 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 40 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15	2.4
33 9.67 956 23 9.73 567 30 0.26 433 9.94 369 7 27 6 4.2 34 9.67 959 23 9.73 567 30 0.26 403 9.94 369 7 26 7 4.9 35 9.67 982 24 9.73 657 30 0.26 373 9.94 365 7 25 8 5.6 36 9.68 006 24 9.73 657 30 0.26 313 9.94 349 7 25 37 9.68 009 23 9.73 657 30 0.26 313 9.94 349 7 23 38 9.68 005 23 9.73 747 30 0.26 233 9.94 325 7 22 39 9.68 075 23 9.73 747 30 0.26 253 9.94 325 7 21 40 9.68 081 23 9.73 877 30 0.26 253 9.94 325 7 21 41 9.68 121 23 9.73 877 30 0.26 253 9.94 321 7 19 42 9.68 144 23 9.73 877 30 0.26 133 9.94 307 7 18 43 9.68 167 23 9.73 887 30 0.26 163 9.94 307 7 18 44 9.68 190 23 9.73 887 30 0.26 103 9.94 293 7 17 45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 46 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 47 180	3.0
34 9.68 9.67 982 23 9.73 627 30 0.26 373 9.94 802 7 25 8 5.6 36 9.68 006 24 9.73 657 30 0.26 373 9.94 349 6 24 9.73 657 30 0.26 313 9.94 349 6 24 25 9 6.3 37 9.68 029 3 9.73 657 30 0.26 313 9.94 342 7 23 39 9.68 075 23 9.73 747 30 0.26 223 9.94 325 7 21 40 9.68 088 3 9.73 877 30 0.26 223 9.94 314 7 20 41 9.68 121 23 9.73 887 30 0.26 133 9.94 307 7 18 42 9.68 167 23 9.73 887 30 0.26 163 9.94 307 7 18 43 9.68 167 3 9.73 887 30 0.26 103 9.94 293 7 17 44 9.68 180 23 9.73 877 30 0.26 103 9.94 293 7 16 44 9.68 180 23 9.73 887 30 0.26 103 9.94 293 7 16 45 <t< td=""><td>3.6</td></t<>	3.6
35 9.68 006 24 9.73 627 30 0.26 373 9.94 355 6 25 9 6.3 36 9.68 006 23 9.73 657 30 0.26 313 9.94 342 7 23 37 9.68 029 23 9.73 717 30 0.26 233 9.94 342 7 22 38 9.68 075 23 9.73 717 30 0.26 223 9.94 328 7 21 40 9.68 08 23 9.73 777 30 0.26 223 9.94 328 7 21 40 9.68 121 23 9.73 837 30 0.26 193 9.94 301 7 16 42 9.68 144 23 9.73 867 30 0.26 133 9.94 307 7 18 43 9.68 167 23 9.73 867 30 0.26 133 9.94 293 7 16 44 9.68 190 23 9.73 867 30 0.26 103 9.94 293 7 16 44 9.68 190 23 9.73 877 30 0.26 103 9.94 293 7 16 44 9.68 190 23 9.73 877 30 0.26 103 9.94 293 7 16	4.2
36	4.8 5.4
30 30 30 30 30 30 30 30	. 0.1
39 9.68 075 23 9.73 747 30 0.26 223 9.94 328 7 21 44 9.68 191 23 9.73 807 30 0.26 223 9.94 321 7 19 4 19.68 121 23 9.73 807 30 0.26 123 9.94 301 7 19 4 19.68 121 23 9.73 807 30 0.26 103 9.94 307 7 18 4 19.68 161 23 9.73 867 30 0.26 163 9.94 307 7 18 4 19.68 180 23 9.73 867 30 0.26 103 9.94 203 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
40 9.68 098 23 9.73 777 30 0.26 223 9.94 321 7 20 4 9.68 121 23 9.73 807 30 0.26 193 9.94 301 7 18 From the 3 43 9.68 167 23 9.73 867 30 0.26 163 9.94 307 7 18 4 9.68 160 23 9.73 867 30 0.26 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 7 16 163 9.94 307 9.94 307 7 16 163 9.94 307	
41 9.68 121 23 9.73 807 30 0.26 193 9.94 314 7 19 From the state of the state o	
42 9.68 144 23 9.73 837 30 0.26 163 9.94 307 7 18 From the 4 9.68 167 23 9.73 867 30 0.26 103 9.94 300 7 16 4 9.68 190 23 9.73 897 30 0.26 103 9.94 293 7 16 4 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 read as prir	
43 9.68 167 23 9.73 867 30 0.26 133 9.94 300 7 16 For 28°+ 6 44 9.68 190 23 9.73 897 30 0.26 103 9.94 293 7 16 read as print 45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 11894 9.90	op:
44 9.68 190 23 9.73 897 30 0.26 103 9.94 293 7 15 read as prir 45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 11894 - 200	r 208°+
45 9.68 213 24 9.73 927 30 0.26 073 9.94 286 7 15 1000 at 5 pm	
	, , read
47 9.08 200 23 9.73 987 30 0.20 013 9.94 273 7 13 co-function.	
1 40 1 0 68 206 1 22 1 0 74 047 1 30 1 0 96 062 1 0 04 950 1 7 1 11 1	
80 0 00 200 23 0 74 077 30 0 25 002 0 04 050 7 10 From the	ottoni:
KI Q 68 351 23 Q 74 107 30 Q 95 803 Q 04 245 7 Q From \$2104.	r 241°+
52 9.68 374 23 9.74 137 30 0.25 863 9.94 238 7 8 read as prin	
53 9.68 397 23 9.74 166 29 0.25 834 9.94 231 7 7 1550	
04 9.06 420 23 9.74 190 30 0.23 604 9.94 224 7 6	· · , read
55 9.68 443 92 9.74 226 90 0.25 774 9.94 217 7 5 co-function.	
06 9.68 466 9 9.74 206 9 0.25 744 9.94 210 7 4	
88 9 68 819 23 9 74 816 30 0 98 684 9 94 106 7 9	
1 50 0 69 594 22 0 74 345 29 0 95 655 0 01 190 7 1	
60 9.68 557 23 9.74 375 30 0.25 625 9.94 182 7 0	
L Cos d L Ctn cd L Tan L Sin d / Prop.	

1	L Sin	d	L Tan	cd	-	L Cos	d			Prop. Pte				
0			9 74 37		0.25 625	9.94 182		60						
1 2		000		-	U.22 090		1 m	1 00						
1 3			9.74 46		0.25 565 0.25 535		1 -							
1 4		23	0 74 404	29	0.25 506									
5		23	0 74 594	. 30	0.25476		7	55	1					
le		23	0 74 854	30	0.25 446		7	54						
1 7		22	0 74 583	29	0.25 417	9.94 133	7	53						
1 8	9.68 739	23	9.74 613	1 30	0.25387	9.94 126	7	52		1 30	29	23		
1 8	9.68 762	23		30	0.25 357	9.94 119	7	51	1	1	i			
10		23	9.74 673	29	0.25 327	9.94 112	1 7	50	3	6.0 9.0	5.8 8.7	6.9		
11	9.68 807	22	9.74 702	30	0.25 298	9.94 105	1 7	49	4	12.0	11.6	9.2		
12	9.68 829	23	9.74 732	30	0.25 268	9.94 098	8	48	1 5	15.0	14.5	11.5		
13 14	9.68 852 9.68 875	23	9.74 762 9.74 791	29	0.25 238	9.94 090 9.94 083	7	47	6	180	17.4	13.8		
15	9.68 897	22	9.74 821	30	1	1	7		7	21.0	20.3	16.1		
16	9.68 920	23	9.74 851	30	0.25 179	9.94 076	7	45	8	24.0	23.2	18.4		
17	9.68 942	22	9.74 880	29	0.25 120	9.94 062	7	43	9	27.0	26.1	20.7		
18	9.68 965	23	9.74 910	30	0.25 090	9.94 055	7	42	i					
19	9.68 987	22 23	9.74 939	30	0.25 061	9.94 048	7	41	1					
20	9.69 010	22	9.74 969	29	0.25 031	9.94 041	7	40	1					
21	9.69 032	23	9.74 998	30	0.25002	9.94 034	7	39	1	22	8	1 7		
22	9.69 055	22	9.75 028	30	0.24 972	9.94 027	7	38	2	4.4	1.6	1.4		
23	9.69 077	23	9.75 058	29	0.24 942	9.94 020	8	37	3	6.6	2.4	2.1		
24	9.69 100	22	9.75 087	30	0.24 913	9.94 012	7	36	4	8.8	3.2	2.8		
25	9.69 122	22	9.75 117	29	0.24 883	9.94 005	7	35	5	11.0	4.0	3.5		
26 27	9.69 144 9.69 167	23	9.75 146 9.75 176	30	0.24 854 0 24 824	9.93 998 9.93 991	7	34 33	6	13.2	4.8	4.2		
28	9.69 189	22	9.75 205	29	0.24 795	9.93 984	7	32	7	15.4	5.6	4.9		
29	9.69 212	23	9.75 235	30	0.24 765	9.93 977	7:	31	8 9	17.6 19.8	6.4	5.6		
80	9.69 234	22	9.75 264	29	0.24 736	9.93 970	7	30	١	1 18.0	1.2	6.3		
31	9.69 256	22 23	9.75 294	30 29	0.24 706	9.93 963	7	29	l					
32	9.69 279	23	9.75 323	30	0.24 677	9.93 955	8	28						
33	9.69 301	22	9.75 353	29	0.24 647	9.93 948	7	27						
34	9.69 323	22	9.75 382	29	0.24 618	9.93 941	7	26						
85	9.69 345	23	9.75 411	30	0.24 589	9.93 934	7	25						
36 37	9.69 368 9.69 390	22	9.75 441 9.75 470	29	0.24 559 0.24 530	9.93 927 9.93 920	7	24 23						
38	9.69 412	22	9.75 500	30	0.24 500	9.93 912	8	22	F	rom th	e ton			
39	9.69 434	22	9.75 529	29	0.24 471	9.93 905	7	21			_			
40	9.69 456	22	9.75 558	29	0.24 442	9.93 898	7	20	F	o r 29° -	+ or 2 (09°+,∶		
41	9.69 479	23	9.75 588	30	0.24 412	9.93 891	7	19	read	l as pr	inted;	for		
42	9.69 501	22 22	9.75 617	30	0.24 383	9.93 884	7 8	18	119	°+ or 2	990+,	read		
43	9.69 523	22	9.75647	29	0.24 353	9.93 876	7	17	co-f	unction	١.			
44	9.69 545	22	9.75 676	29	0.24 324	9.93 869	7	16						
45	9.69 567	22	9.75 705	30	0.24.295	9.93 862	7	15	7:7					
46	9.69 589	22	9.75 735	29	0.24 265	9.93 855 9.93 847	8	14 13	F	rom th	e vott	om:		
48	9.69 611 9.69 633	22	9.75 764 9.75 793	29	0.24 236 0.24 207	9.93 840	7	12	F	or 60°4	or 24	LO°+.		
49	9.69 655	22	9.75 822	29	0.24 178	9.93 833	7	ii		as pr				
50	9.69 677	22	9.75 852	30	0.24 148	9.93 826	7	10		o+ or 8				
51	9.69 699	22	9.75 881	29	0.24 119	9.93 819	7 8	9		unction		-cau		
52	9.69721	22 22	9.75 910	29	0.24 090	9.93 811	7	8	-U-11	unterot.				
53	9.69 743	22	9.75 939	30	0.24 061	9.93 804	7 1	7						
54	9.69 765	22	9.75 969	29	0.24 031	9.93 797	8	6				1		
55	9.69 787	22	9.75 998	29	0.24 002	9.93 789	7	5						
56 57	9.69 809	22	9.76 027	29	0.23 973 0.23 944	9.93 782 9.93 775	7	3						
58	9.69 831 9.69 853	22	9.76 056 9.76 086	30	0.23 914	9.93 768	7	2						
		22	9.76 115	29	0.23 885	9.93 760	8	īl				1		
59	9.69 875	1			V.40 000 1	3.30 IUU I								
	9.69 875 9.69 897	22	9.76 144	29	0.23 856	9.93 753	7	ō						

.′	L Sin	d	L Tan	c d	L Ctn	L Cos	d				Prop	. Pt	в.
0	9.69 897	22	9.76 144	29	0.23 856	9.93 753	7	60					
1	9.69 919	22	9.76 173	29	0.23 827	9.93 746	8	59					
2	9.69 941	22	9.76 202	29	0.23 798	9.93 738	7	58					
3	9.69 963 9.69 984	21	9.76 231 9.76 261	30	$0.23769 \ 0.23739$	9.93 731 9.93 724	7	57 56					
		22		29		1	7			1 3	٠.	29	28
5	9.70 006	22	9.76 290	29	0.23710	9.93 717	8	55		(- 1		1
6	9.70 028	22	9.76 319	29	0.23 681	9.93 709	7	54	2		.0	5 .8	5.6
7	9.70 050	22	9.76 348	29	$0.23652 \\ 0.23623$	9.93 702 9.93 695	7	53 52	3		.0	8.7	8.4
8	9.70 072 9.70 093	21	9.76 377 9.76 406	29	0.23523 0.23594	9.93 687	8	51	4	12		11.6	11.2
		22		29		1	7		5	15		14.5	14.0
10	9.70 115	22	9.76 435	29	0.23 565	9.93 680	7	50	6	18 21		$\frac{17.4}{20.3}$	16.8 19.6
$\frac{11}{12}$	9.70 137	22	9.76 464	29	$9.23536 \\ 0.23507$	9.93 673 9.93 665	8	49	8	24		23.2	22.4
13	9.70 159 9.70 180	21	9.76 493 9.76 522	29	0.23 478	9.93 658	7	47	9	27		26.1	25.2
14	9.70 202	22	9.76 551	29	0.23 449	9.93 650	8	46		21	.0 1	20.1	1 20.2
		22		29			7	1					
15	9.70 224	21	9.76 580	29	0.23 420	9.93 643	7	45					
16	9.70 245	22	9.76 609	30	0.23 391	9.93 636	8	44			22	; ;	21
17 18	9.70 267	21	9.76 639	29	0.23 361 0.23 332	9.93 628	7	43 42		2	4.4	4	4.2
19	9.70 288	22	9.76 668	29	0.23 303	9.93 621 9.93 614	7	41		3	6.		6.3
	9.70 310	22	9.76 697	28			8			4	8.		8.4
20	9.70 332	21	9.76 725	29	0.23 275	9.93 606	7	40		5	11.0		0.5
21	9 70 353	22	9.76 754	29	0.23 246	9.93 599	8	39		6	13.		2.6
$\frac{22}{23}$	9.70 375	21	9.76 783	29	0.23 217	9.93 591	7	38		7	15.		4.7
$\frac{20}{24}$	9.70 396	22	9.76 812	29	$0.23188 \\ 0.23159$	9.93 584	7	37 36		8	17.		6.8
	9.70 418	21	9.76 841	29		9.93 577	8			9	19.	8 18	8.9
25	9.70 439	22	9.76 870	29	0.23 130	9.93 569	7	35					
26	9.70 461	21	9.76 899	29	0.23 101	9.93 562	8	34					
$\frac{27}{28}$	9.70 482	22	9.76 928	29	$0.23072 \\ 0.23043$	9.93 554 9.93 547	7	33 32			1 8	1 !	7
20	9.70 504	21	9.76 957 9.76 986	29	0.23 043	9.93 539	8	31		0	1.	- 1	.4
	9.70 525	22		29			7			$\frac{2}{3}$	2.		.4 .1
30	9.70 547	21	9.77 015	29	0.22 985	9.93 532	7	80		4	3.		.8
$\frac{31}{32}$	9.70 568	22	9.77 044	29	0.22 956	9,93 525	8	29		5	4.		.5
33	9.70 590	21	9.77 073 9.77 101	28	$0.22927 \\ 0.22899$	9.93 517 9.93 510	7	28 27		6	4.		.2
34	9.70 611 9.70 633	22	9.77 101	29	0.22 870	9.93 502	8	26		7	5.		.9
		21		29			7			8	6.		.6
35	9.70 654	21	9.77 159	29	0.22 841	9.93 495	8	25		9	7.		.3
36 37	9.70 675	22	9.77 188 9.77 217	29	$0.22812 \\ 0.22783$	9.93 487 9.93 480	7	24 23			•	•	
38	9.70 697 9.70 718	21	9.77 246	29	0.22 754	9.93 472	8	22					
39	9.70 739	21	9.77 274	28	0.22 726	9.93 465	7	21					
		22		29		1	8						
40 41	9.70 761	21	9.77 303 9.77 332	29	$0.22697 \\ 0.22668$	9.93 457 9.93 450	7	20					
42	9.70 782 9.70 803	21	9.77 361	29	0.22 639	9.93 442	8	18	I	ron	n th	e top	:
43	9.70 824	21	9.77 390	29	0.22 610	9.93 435	7	17	_		•••	٠.	
44	9.70 846	22	9.77 418	28	0.22 582	9.93 427	8	16	F	or :	30∘-	or 2	310°+,
45	9.70 867	21	9.77 447	29	0.22 553	9.93 420	7	15	rea	da	s pi	inte	d; for
46	9.70 888	21	9.77 476	29	0.22533 0.22524	9.93 412	8	14	120) 0+	or 3	00°+	, read
47	9.70 909	21	9.77 505	29	0.22 495	9.93 405	7	13			ction		,
48	9.70 931	22	9.77 533	28	0.22 467	9.93 397	8	12	CO	ш	CULOI		
49	9.70 952	21	9.77 562	29	0.22 438	9.93 390	7	11					
50	9.70 973	21	9.77 591	29	0.22 409	9.93 382	8	10	r	roi	n th	e oot	tom:
51	9.70 913	21	9.77 619	28	0.22 381	9.93 375	7	9	10	or !	5 0 0-+		239°+,
52	9.71 015	21	9.77 648	29	0.22 352	9.93 367	8	8					
53	9.71 036	21	9 77 677	29	0.22 323	9.93 360	7	7					l; for
51	9.71 058	22	9.77 706	29	0.22 294	9.93 352	8	6	148	+0	or 3	29°+	, read
55	9.71 079	21	9.77 734	28	0.22 266	9.93 344	8	5	co-	fune	ction	1.	
56	9.71 100	21	9.77 763	29	0.22 237	9.93 337	7	4					
57	9.71 121	21	9.77 791	28	0.22 209	9.93 329	8	3					
58	9.71 142	21	9.77 820	29	0.22 180	9.93 329 9.93 322	7	2					
59	9.71 163	21	9.77 849	29	0.22 151	9.93 314	8	ī					
60	9.71 184	21	9.77 877	28	0.22 123	9.93 307	7	ō					
	D. 1 2 704	1	1 2011 011	1 1	U 140	0100 001	1						

_	L Sin	d	L Tan	cd	L Ctn	L Cos	d	T	Prop. Pts.
0	9 71 184	21	9.77 877	29	0.22 123	9.93 307	1-	60	
1	9.71 205	21	9.77 906	29	0.22 094	9.93 299	8	59	1
2	9.71 226	21	9.77 935	28	0.22 065	9.93 291	7	58	
3	9.71 247 9.71 268	21	9.77 963 9.77 992	29	0.22 037	9.93 284	8	57	
	1	21	1	28		1	7	1	
5	9.71 289 9.71 310	21	9.78 020	29	0.21 980	9.93 269	8	55	l
6	9.71 631	21	9.78 049	28	0.21 951 0.21 923	9.93 261 9.93 253	8	54	}
8	9.71 352	21	9.78 105	29	0.21 894	9.93 246	7	52	
9	9.71 373	21	9.78 135	29	0.21 865	9.93 238	8	51	29 28 21
10	9.71 393	20	9.78 163	28	0.21 837	9.93 230	8	50	2 5.8 5.6 4.2
ii	9.71 414	21	9.78 192	29	0.21 808	9.93 223	7	49	3 8.7 8.4 6.3
12	9.71 435	21	9.78 220	28	0.21 780	9.93 215	8	48	4 11.6 11.2 8.4
13	9.71 456	21 21	9.78 249	29 28	0.21 751	9.93 207	8	47	5 14.5 14.0 10.5
14	9.71 477	21	9.78 277	29	0.21 723	9.93 200	8	46	6 17.4 16.8 12.6 7 20.3 19.6 14.7
15	9 71 498	21	9.78 306	28	0.21 694	9.93 192	1	45	8 23.2 22.4 16.8
16	9.71 519	20	9.78 334	20	0.21666	9.93 184	8 7	44	9 26.1 25.2 18.9
17	9.71 539	21	9.78 363	28	0.21 637	9.93 177	8	43	
18 19	9.71 560 9.71 581	21	9.78 391	28	0.21 609	9.93 169	8	42	
		21	9.78 419	29	0.21 581	9.93 161	7	41	
20 21	9.71602 9.71622	20	9.78 448 9.78 476	28	0.21 552 0.21 524	9.93 154 9.93 146	8	40 39	
22	9.71 643	21	9.78 505	29	0.21 524 0.21 495	9.93 138	8	38	20 8 7
23	9.71 664	21	9.78 533	28	0.21 467	9.93 131	7	37	2 4.0 1.6 1.4
24	9.71 685	21	9.78 562	29	0.21 438	9.93 123	8	36	3 6.0 2.4 2.1
25	9.71 705	20	9.78 590	28	0.21 410	9.93 115	8	35	4 8.0 3.2 2.8
26	9.71 726	21 21	9.78 618	28	0.21382	9.93 108	7	34	5 10.0 4.0 3.5 6 12.0 4.8 4.2
27	9.71 747	20	9.78 647	29 28	0.21 353	9.93 100	8	33	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
28	9.71 767	21	9.78 675	29	0.21 325	9.93 092	8	32	8 16.0 6.4 5.6
29	9.71 788	21	9.78 704	28	0.21 296	9.93 084	7	31	9 18.0 7.2 6.3
30	9.71 809	20	9.78 732	28	0.21 268	9.93 077	8	30	
31 32	9.71 829	21	9.78 760	29	0.21 240	9.93 069	8	29 28	
33	9.71 850 9.71 870	20	9.78 789 9.78 817	28	0.21 211 0.21 183	9.93 061 9.93 053	8	27	
34	9.71 891	21	9.78 845	28	0.21 155	9.93 046	7	26	
35	9.71 911	20	9.78 874	29	0.21 126	9.93 038	8	25	
36	9.71 932	21	9.78 902	28	0.21 698	9.93 030	8	24	
37	9.71 952	20	9.78 930	28	0.21070	9.93 022	8	23	
38	9.71 973	21 21	9.78 959	29	0.21 041	9.93 014	8	22	From the top:
39	9.71 994	20	9.78 987	28	0.21 013	9.93 007	8	21	77 010. 0100.
40	9.72 014	20	9.79 015	28	0.20985	9.92 999	8	20	For 31°+ or 211°+,
41	9.72 034	21	9.79 043	29	0.20 957	9.92 991	8	19	read as printed; for
42	9.72 055 9.72 075	20	9.79 072 9.79 100	28	0 20 928 0.20 900	9.92 983 9.92 976	7	18 17	121°+ or 801°+, read
44	9.72 075	21	9.79 100	28	0.20 872	9.92 976	8	16	co-function.
45	9.72 116	20	9.79 156	28	0.20 844	9,92 960	8	15	
46	9.72 137	21	9.79 185	29	0.20 815	9.92 952	8	14	From the bottom:
47	9.72 157	20	9.79 213	28	0.20 787	9.92 914	8	13	
48	9.72 177	20	9.79 241	28	0.20 759	9.92 936	8	12	For 58°+ or 238°+',
49	9.72 198	21 20	9.79 269	28 28	0.20 731	9.92 929	7	11	read as printed; for
50	9.72 218	20	9.79 297	29	0.20703	9.92921	8	10	148°+ or 328°+, read
51	9.72 238	21	9.79 326	28	0.20 674	9.92 913	8	9	co-function.
52	9.72 259	20	9.79 354	28	0.20 646	9.92 905	8	8	
53 54	9.72 279 9.72 299	20	9.79 382 9.79 410	28	0.20 618 0.20 590	9.92 897 9.92 889	8	6	
55		21		28	0.20 562	9.92 881	8	5	
56	9.72 320 9.72 340	20	9.79 438 9.79 466	28	0.20 562	9.92 874	7	4	
57	9.72 360	20	9.79 495	29	0.20 505	9.92 866	8	3	
58	9.72 381	21	9.79 523	28	0.20 477	9.92 858	8	2	
59	9.72 401	20	9.79 551	28	0.20 449	9.92 850	8	1	
60	9.72 421	20	9.79 579	28	0.20 421	9.92 842	•	0	
	L Cos	d	L Ctn	cd	L Tan	L Sin	ď	1	Prop. Pts.

1	L Sin	d	L Tan	cd	L Ctn	L Cos	d			Pro	p. Pts	
,0	9.72 421	-00	9.79 579	28	0.20 421	9.92 842	8	60				
1 1	9.72441	20 20	9.79 607	28	0.20 393	9.92 834	8	59				
2	9.72 461	21	9.79 635	28	0.20 365	9.92 826	8	58				
3	9.72 482	20	9.79 663 9.79 691	28	0.20 337 0.20 309	9.92 818 9.92 810	8	57	ŀ			
4	9.72 502	20		28			7	56		29	00	, ow
5	9.72 522	20	9.79 719	28	0.20 281	9.92 803	В	55			28	27
6	9.72 542	20	9.79 747	29	0.20 253 0.20 224	9.92 795	8	54	2	5.8	5.6	5.4
7	9.72 562 9.72 582	20	9.79 776 9.79 804	28	0.20 224	9.92 787 9.92 779	8	53 52	3	8.7	5.4	8.1
8	9.72 602	20	9.79 832	28	0.20 168	9.92 771	8	51	4 5	11.6 14.5	$\frac{11.2}{14.0}$	10.8 13.5
1 1	9.72 622	20	9.79 860	28	0.20 140	9.92 763	8	50	6	17.4	16.8	16.2
10	9.72 643	21	9.79 888	28	0.20 112	9.92 755	8	49	7	20.3	19.6	18.9
12	9.72 663	20	9.79 916	28	0.20 084	9.92 747	8	48	8	23.2	22.4	21.6
13	9,72 683	20	9.79 944	28	0.20 056	9.92 739	8	47	9	26.1		24.3
14	9.72 703	20 20	9.79 972	28	0.20 028	9.92 731	8	46	ľ			•
15	9.72723		9.80 000	28	0.20 000	9.92 723	.8	45	ŀ			
16	9.72 743	20	9.80 028	28	0.19 972	9.92715	8	44	1	21	20	19
17	9.72 763	20	9.80 056	28 28	0.19 944	9.92 707	8	43	2	4.2	4.0	3.8
18	9.72 783	20	9.80 084	28	0.19916	9.92 699	8	42	3	6.3	6.0	5.7
19	9.72 803	20	9.80 112	28	0.19888	9.92 691	8	41	4	8.4	8.0	7.6
20	9.72 823	20	9.80 140	28	0.19 860	9.92 683	8	40	5	10.5	10.0	9.5
21	9.72 843	20	9.80 168	27	0.19 832	9.92 675	8	39	6	12.6	12.0	11.4
22	9.72 863	20	9.80 195	28	0.19 805	9.92 667	8	38	7	14.7	14.0	13.3
23 24	9.72 883 9.72 902	19	9.80 223 9.80 251	28	0.19 777 0.19 749	9.92 659 9.92 651	8	37 36	8	16.8	16.0	15.2
		20		28			8		9	18.9	18.0	17.1
25	9.72922 9.72942	20	9.80 279 9.80 307	28	0.19 721 0.19 693	9.92 643 9.92 635	8	35				
26 27	9.72 962	20	9.80 335	28	0.19665	9.92 627	8	34 33				
28	9.72 982	20	9.80 363	28	0.19 637	9.92 619	8	32		9	8	7
29	9.73 002	20	9.80 391	28	0.19 609	9.92 611	8	31	2	1.8	1.6	1.4
80	9.73 022	20	9.80 419	28	0.19 581	9.92 603	8	30	3		2.4	2.1
31	9.73 041	19	9.80 447	28	0.19 553	9.92 595	8	29	4		3.2	2.8
32	9.73 061	20	9.80 474	27 28	0.19 526	9.92 587	8	28	5		4.0	3.5
33	9.73 081	20	9.80 502	28	0.19498	9.92 579	8	27	6		4.8	4.2 4.9
34	9.73 101	20	9.80 530	28	0.19470	9.92 571	8	26	8		5.6 6.4	5.6
85	9.73 121	19	9.80 558	28	0.19442	9.92 563	8	25	9		7.2	6.3
36	9.73 140	20	9.80 586	28	0.19 414	9.92 555	9	24	, ,			
37	9.73 160 9.73 180	20	9.80 614 9.80 642	28	$0.19386 \\ 0.19358$	9.92 546 9.92 538	8	23 22				
39	9.73 200	20	9.80 669	27	0.19 331	9.92 530	8	21				
40	9.73 219	19	9.80 697	28	0.19 303	9.92 522	8	20				
41	9.73 239	20	9.80 725	28	0.19 275	9.92 514	8	19				
42	9.73 259	20	9.80 753	28	0.19 247	9.92 506	8	18	F	rom t	re top	:
43	9.73 278	19 20	9.80 781	28	0.19 219	9.92 498	8	17	R	or 32°	+ or 1	2120+
44	9.73 298	20	9.80 808	27 28	0.19 192	9.92490	8	16				i; for
45	9.73 318	19	9.80 836	28	0.19 164	9.92 482	9	15				read
46	9.73 337	20	9.80 864	28	0.19 136	9.92 473	8	14				, read
47	9.73 357	20	9.80 892	27	0.19 108	9.92 465	8	13	CO-1	lunctio	ш.	
48	9.73 377	19	9.80 919	28	0.19 081 0.19 053	9.92 457	8	12				
49	9.73 396	20	9.80 947	28		9.92 449	8	11	F	rom t	he bot	tom:
50 51	9.73 416 9.73 435	19	9.80 975 9.81 003	28	0.19 025 0.18 997	9.92 441 9.92 433	8	10	107	on 570	+ 0 = 6	2370+.
52	9.73 455	20	9.81 003	27	0.18 997	9.92 435	8	8				
53	9.73 474	19	9.81 058	28	0.18 942	9.92 416	9	7				i; for
54	9.73 494	20	9.81 086	28	0.18 914	9.92 408	8	6			-	, read
55	9.73 513	19	9.81 113	27	0.18 887	9.92 400	8	5	CO-1	lunctic	n	
56	9.73 533	20	9.81 141	28	0.18 859	9.92 392	8	4				•
57	9.73 552	19	9.81 169	28	0.18 831	9.92 384	8	3	1			
58	9.73 572	19	9.81 196	27 28	0.18 804	9.92 376	8	2	l			
59	9.73 591	20	9.81 224	28	0.18 776	9.92 367	8	1	l			
60	9.73 611		9.81 252		0.18 748	9.92 359	_	0				
	L Cos	d	L Ctn	e d	L Tan	L Sin	d	1 '	1	Pro	p. Pts	١.

ııı	90		Troger	CHIAL	19 01 11	120HATT	LOU	110	r unchons	
1	L Sin	d	L Tan	o d	L Ctn	L Cos	d		Prop. Pts.	
0	9.73611	19	9.81 252	27	0.18748	9.92 359	8	60		
1	9.73 630	20	9.81 279	28	0.18 721	9.92 351	8	59	1	
2	9.73 650	19	9.81 307	28	0.18 693	9.92 343	8	58		
3	9.73 669 9.73 689	20	9.81 335 9.81 362	27	0.18 665	9.92 335	9	57		
4	1	19	1	28	0.18 638	9.92 326	8	56	1 28 1 27 1	20
5	9.73 708	19	9.81 390	28	0.18 610	9.92 318	8	55	1 1 1 1	
6	9.73 727 9.73 747	20	9.81 418 9.81 445	27	0.18 582 0.18 555	9.92 310 9.92 302	8	54	2 5.6 5.4	4.0
8	9.73 766	19	9.81 473	28	0.18 527	9.92 293	9	53	3 8.4 8.1 4 11.2 10.8	6.0
9	9.73 785	19	9.81 500	27	0.18 500	9.92 285	8	51	4 • 11.2 10.8 5 14.0 13.5	8.0 10.0
10	9.73 805	20	9.81 528	28	0.18 472	9.92 277	8	50	6 16 8 16.2	12.0
11	9.73 824	19	9.81 556	28	0.18 414	9.92 269	8	49	7 19.6 18.9	14.0
12	9.73 843	19	9.81 583	27	0.18 417	9.92 260	9	48	8 22.4 21.6	16.0
13	9.73 863	20	9.81 611	28	0.18 389	9.92 252	8	47	9 25.2 24.3	18.0
14	9.73 882	19 19	9.81 638	27	0.18 362	9.92 244	8	46		
15	9.73 901		9.81 666	28	0.18 334	9.92 235	9	45		
16	9.73 921	20 19	9.81 693	27	0.18 307	9.92 227	8	44	1 19 1 14	3
17	9.73 940	19	9.81 721	28 27	0.18 279	9.92 219	8	43	2 3.8 3	
18	9.73 959	19	9.81748	28	0.18 252	9.92 211	9	42	3 5.7 5	
19	9.73 978	19	9.81 776	27	0.18 224	9.92 202	8	41	4 7.6 7	
20	9.73 997	20	9.81 803	28	0.18 197	9.92 194	8	40	5 9.5 9	
21	9.74 017	19	9.81 831	27	0.18 169	9.92 186	9	39	6 11.4 10	
22 23	9.74 036 9.74 055	19	9.81 858 9.81 886	28	0.18 142	9.92 177	8	38	7 13.3 12	6
24	9.74 074	19	9.81 913	27	0.18 114 0.18 087	9.92 169 9.92 161	8	37 36	8 15.2 14	
25	9.74 093	19	9.81 941	28			9		9 17.1 16	.2
26	9.74 113	20	9.81 968	27	0.18 059 0.18 032	9.92 152 9.92 144	8	35 34		
27	9.74 132	19	9.81 996	28	0.18 004	9.92 136	8	33		
28	9.74 151	19	9.82 023	27	0.17 977	9.92 127	9	32	9 8	
29	9.74 170	19	9.82 051	28	0.17 949	9.92 119	8	31	2 1.8 1.	6
30	9.74 189	19	9.82 078	27	0.17 922	9.92 111	8	80	3 2.7 2.	
31	9.74 208	19	9.82 106	28	0.17 894	9.92 102	9	29	4 3.6 3.	
32	9.74 227	19 19	9.82 133	27	0.17 867	9.92 094	8	28	5 4.5 4.	
33	9.74 246	19	9.82 161	28	0.17 839	9.92 086	9	27	6 5.4 4.	
34 .	9.74 265	19	9.82 188	27	0.17 812	9.92 077	8	26	7 6.3 5.0 8 7.2 6.0	
85	9.74 284	19	9.82 215	28	0.17 785	9.92 069	9	25	9 8.1 7.	
36	9.74 303	19	9.82 243	27	0.17 757	9.92 060	8	24	0,012, 1	•
37 38	9.74 322 9.74 341	19	9.82 270 9.82 298	28	0.17 730 0.17 702	9.92 052	8	23 22		
39	9.74 360	19	9.82 325	27	0.17 675	9.92 044 9.92 035	9	21		
40	9.74 379	19	9.82 352	27	0.17 648	9.92 027	8	20		
41	9.74 398	19	9.82 380	28	0.17 620	9.92 021	9	19		
42	9.74 417	19	9.82 407	27	0.17 593	9.92 010	8	18	From the top	
43	9.74 436	19	9.82 435	28	0.17 565	9.92 002	8	17	-	
44	9.74 455	19 19	9.82 462	27	0.17 538	9.91 993	9	16	For 83°+ or 2	l8°+,
45	9.74 474		9.82 489		0.17 511	9.91 985		15	read as printed;	for
46	9.74 493	19 19	9.82 517	28 27	0 17 483	9.91 976	9	14	123°+ or 303°+,	
47	9.74 512	19	9.82 544	27	0.17 456	9.91 968	9	13	co-function.	
48	9.74 531	18	9.82 571	28	0.17 429	9.91 959	8	12	55 2440010111	
49	9.74 549	19	9.82 599	27	0.17 401	9.91 951	9	11	From the bott	.m. l
50	9.74 568	19	9.82 626	27	0.17 374	9.91 942	8	10	Troin the bott	om.
51 52	9.74 587 9.74 606	19	9.82 653 9.82 681	28	0.17 347 0.17 319	9.91 934 9.91 925	9	8	For 56°+ or 28	8°+,
53	9.74 625	19	9.82 708	27	6.17 292	9.91 925	8	7	read as printed;	for
54	9.74 644	19	9.82 735	27	0.17 265	9.91 908	9	6	146°+ or 326°+,	
55	9.74 662	18	9.82 762	27	0.17 238	9.91 900	8	5	co-function.	-024
56	9.74 681	19	9.82 790	28	0.17 210	9.91 891	9	4	co-iunction.	
57	9.74 700	19	9.82 817	27	0.17 183	9.91 883	8	3		
58	9.74 719	19	9.82 844	27	0.17 156	9.91 874	9		V	
59	9.74 737	18 19	9.82 871	27	0.17 129	9.91 866	8	2		- 1
60	9.74 756	10	9.82 899	40	0.17 101	9.91,857		0		
	L Cos	d	L Ctn	cd	L Tan	L Sin	d	1	Prop. Pts.	

56° - Logarithms of Trigonometric Functions

			108011			150110111			Prop. Pts.				
/	L Sin	d	L Tan	c d	L Ctn	L Cos	d			1	Prop	. Pt	3.
0	9.74 756	19	9.82 899	27	0.17 101	9.91 857	8	60					
1 2	9.74 775	19	9.82 926 9.82 953	27	0.17 074 0.17 047	9.91 849 9.91 840	9	59 58					
3	9.74 794 9.74 812	18	9.82 980	27	0.17 020	9.91 832	8	57	l				
4	9.74 831	19	9.83 008	28	0.16 992	9.91 823	9	56					
5	9.74 850	19	9.83 035	27	0.16 965	9.91 815	8	55	1	2	8 1	27!	26
6	9.74 868	18	9.83 062	27	0.16 938	9.91 806	9	54	2		.6	5.4	5.2
7	9.74 887	419	9.83 089	27	0.16 911	9.91 798	8	53	3		.6	8.1	7.8
8	9.74 906	19	9.83 117	28	0.16 883	9.91 789	9	52	4	11		10.8	10.4
9	9.74 924	18 19	9.83 144	27	0.16 856	9.91 781	8	51	5	14		13.5	13.0
10	9.74 943	18	9.83 171	27	0.16 829	9.91 772	9	50	6	16		16.2	15.6
111	9.74 961	19	9.83 198	27	0.16 802	9.91 763	8	49	7	19.		18.9	18.2
12	9.74 980	19	9.83 225	27	0.16 775	9.91 755	9	48	8	22		21.6	20.8
13	9.74 999	18	9.83 252	28	0.16 748	9.91 746	8	47	9	25.	.2	24.3	23.4
14	9.75 017	19	9.83 280	27	0.16720	9.91 738	9	46	1				
15	9.75 036	18	9.83 307	27	0.16 693	9.91 729	9	45	1				_
16 17	9.75 054 9.75 073	19	9.83 334 9.83 361	27	0.16 666 0.16 639	9.91 720 9.91 712	8	44	l	- 1	19		.8
18	9.75 091	18	9.83 388	27	0.16 612	9.91 703	9	42	l	2	3.		3.6
19	9.75 110	19	9.83 415	27	0.16 585	9.91 695	8	41	l	3	5.		5.4
20	9.75 128	18	9.83 442	27	0.16 558	9.91 686	9	40		4	7.		7.2
21	9.75 147	19	9.83 470	28	0.16 530	9.91 677	9	39	1	5	9.4 11.4		9.0).8
22	9.75 165	18 19	9.83 497	27 27	0.16 503	9.91 669	8	38	1	7	13.		2.6
23	9.75 184	18	9.83 524	27	0.16 476	9.91 660	9	37	1	8	15.		1.4
24	9.75 202	19	9.83 551	27	0.16449	9.91 651	8	36		9	17.		3.2
25	9.75221	18	9.83 578	27	0.16422	9.91 643	9	35		•			
26	9.75 239	19	9.83 605	27	0.16 395	9.91 634	9	34					
27 28	9.75 258 9.75 276	18	9.83 632 9.83 659	27	0.16 368 0.16 341	9.91 625 9.91 617	8	33 32			9	1 8	3
29	9.75 294	18	9.83 686	27	0.16 314	9.91 608	9	31		2	1.8	3 1.	R
30	9.75 313	19	9.83 713	27	0.16 287	9.91 599	9	80		3	2.		
31	9.75 331	18	9.83 740	27	0.16 260	9.91 591	8	29		4	3.6		
32	9.75 350	19	9.83 768	28	0.16232	9.91 582	9	28		5	4.		
33	9.75 368	18 18	9.83 795	27 27	0.16205	9.91 573	9	27		6	5.4		
34	9.75 386	19	9.83 822	27	0.16 178	9.91 565	9	2 6		7	6.3		
85	9.75 405	18	9.83 849	27	0.16 151	9.91 556	9	25		9	8.	7	
36	9.75 423	18	9.83 876	27	0.16 124	9.91 547	9	24		٠	, 0		-
37 38	9.75 441 9.75 459	18	9.83 903	27	0.16 097 0.16 070	9.91 538 9.91 530	8	23 22					
39	9.75 478	19	9.83 957	27	0.16 043	9.91 521	9	21					
40	9.75 496	18	9.83 984	27	0.16 016	9.91 512	9	20					
41	9.75 514	18	9.84 011	27	0.15 989	9.91 504	8	19	_				
42	9.75 533	19	9.84 038	27	0.15 962	9.91 495	9	18	F'	ron	n th	e top	:
43	9.75 551	18 18	9.84 065	27	0.15 935	9.91 486	9	17	E	or S	40+	or 9	140+.
44	9.75 569	18	9.84 092	27	0.15 908	9.91 477	8	16					l; for
45	9.75 587	18	9.84 119	27	0.15 881	9.91 469	9	15					, read
46	9.75 605	19	9.84 146	27	0.15 854	9.91 460	9	14					, read
47	9.75 624	18	9.84 173	27	0.15 827	9.91 451 9.91 442	9	13 12	co-f	unc	tion	l.	
48	9.75 642 9.75 660	18	9.84 200 9.84 227	27	0.15 800 0.15 773	9.91 433	9	11	-				
50	9.75 678	18	9.84 254	27	0.15 746	9.91 425	8	10	F	ron	n th	e bott	om:
51	9.75 696	₋ 18	9.84 280	26	0.15 720	9.91 416	9	9	F	or F	550+	or 9	35°+,
52	9.75 714	18	9.84 307	27	0.15 693	9.91 407	9	8					l; for
53	9.75 733	19 18	9.84 334	27 27	0.15666	9.91 398	9	7					, read
54	9.75 751	18	9.84 361	27	0.15 639	9.91 389	8	6					, Itau
55	9.75 769	18	9.84 388	27	0.15 612	9.91 381	9	5	co-f	unc	cion	ι.	
56	9.75 787	18	9.84 415	27	0.15 585	9.91 372	9	4					
57 58	9.75 805 9.75 823	18	9.84 442 9.84 469	27	0.15 558 0.15 531	9.91 363 9.91 354	9	3 2					
59	9.75 841	18	9.84 496	27	0.15 551	9.91 345	9	1					
60	9.75 859	18	9.84 523	27	0.15'477	9.91 386	9	Ô					
	L Cos	ď	L Ctn	c d	L Tan	L Sin	d	-		P	ror	Pts	
	TOOR	Q	TOTAL	cul	T Tan	Trom	u			F	TOD.	. T ng	•

55° - Logarithms of Trigonometric Functions

1	L Sin	d	L Tan	cd	L Ctn	L Cos	d	T	Ī	Pı	:0D.	Pts.	
0	9.75 859		9.84 523	-	0.15 477	9.91 336		60	1				-,
1	9.75 877	18	9.84 550	27 26	0.15 450	9.91 328	8	59					
2	9.75 895	18	9.84 576	27	0.15 424	9.91 319	9	58	l				
3	9.75 913	18	9.34 603	27	0.15 397	9.91 310	9	57	1				
4	9.75 931	18	9.84 630	27	0.15 370	9.91 301	9	56	١,	3	7 1	26	18
5	9.75 949 9.75 967	18	9.84 657	27	0.15 343	9.91 292	9	55	_		- 1		1
6 7	9.75 985	18	9.84 711	27	0.15 316 0.15 289	9.91 283 9.91 274	9	54 53	$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$		4	5.2	3.6
8	9.76 003	18	9.84 723	27	0.15 262	9.91 266	8	52	4	8 10		7.8 10.4	7.2
9	9.76 021	18	9.84 764	26	0.15 236	9.91 257	9	51	5	13		13.0	9.0
10	9.76 039	18	9.84 791	27	0.15 209	9.91 248	9	50	6	16		15.6	10.8
11	9.76 057	18	9.84 818	27	0.15 182	9.91 239	9	49	7	18.		18.2	12.6
12	9.76 075	18	9.84 845	27	0.15 155	9.91 230	9	48	8 9	21.		20.8	14.4
13 14	9.76 093 9.76 111	18	9.84 872	27	0.15 128	9.91 221	9	47	9 1	24.	.3	23.4	16.2
15	9.76 129	18	9.84 899	26	0.15 101	9.91 212	9	46					
16	9.76 129	17	9.84 925 9.84 952	27	0.15 075 0.15 048	9.91 203 9.91 194	9	45 44	1		4.5		^
17	9.76 164	18	9.84 979	27	0.15 021	9.91 185	9	43	l		17	J	.0
18	9.76 182	18	9.85 006	27	0.14 994	9.91 176	9	42	1	2	3.		.0
19	9.76 200	18 18	9.85 033	27 26	0.14967	9.91 167	9	41	1	3 4	5. 6.		.0
20	9.76 218		9.85 059	27	0.14 941	9.91 158	1	40		5	8.		.0
21	9.76 236	18 17	9.85 086	27	0.14 914	9.91 149	9	39	l	6	10.		.ŏ
22 23	9.76 253 9.76 271	18	9.85 113	27	0.14 887	9.91 141	9	38		7	11.	9 7	.0
23	9.76 289	18	9.85 140 9.85 166	26	0.14 860 0.14 834	9.91 132 9.91 123	9	37 36	1	8	13.		.0
25	9.76 307	18	9.85 193	27	0.14 807	9.91 114	9	35	l	9	15.	$3 \mid 9$.0
26	9.76 324	17	9.85 220	27	0.14 780	9.91 105	9	34	1				
27	9.76 342	18	9.85 247	27	0.14 753	9.91 096	9	33	1				
28	9.76 360	18 18	9.85 273	26 27	0.14 727	9.91 087	9	32	1		9	1 8	\$
29	9.76 378	17	9.85 300	27	0.14 700	9.91 078	9	31	1	2	1.8		
30	9.76 395	18	9.85 327	27	0.14 673	9.91 069	9	30	l	3 4	3.6		
31 32	9.76 413 9.76 431	18	9.85 354	26	0.14 646	9.91 060	9	29	l	5	4.5		
33	9.76 448	17	9.85 380 9.85 407	27	0.14 620 0.14 593	9.91 051 9.91 042	9	28 27	1	6	5.4		
34	9.76 466	18	9.85 434	27	0.14 566	9.91 033	9	26		7	6.3	5.	
35	9.76 484	18	9.85 460	26	0.14 540	9.91 023	10	25		8	7.2		
36	9.76 501	17	9.85 487	27	0.14 513	9.91 014	9	24	l	9	8.1	. 7.	z
37	9.76 519	18 18	9.85 514	27 26	0.14 486	9.91 005	9	23					
38	9.76 537	17	9.85 540	27	0.14 460	9.90 996	9	22	Ì				
39	9.76 554	18	9.85 567	27	0.14 433	9.90 987	9	21					
40 41	9.76 572	18	9.85 594	26	0.14 406	9.90 978	9	20					
42	9.76 590 9.76 607	17	9.85 620 9.85 647	27	0.14 380 0.14 353	9.90 969 9.90 960	9	19 18	10		. 42		.
43	9.76 625	18	9.85 674	27	0.14 326	9.90 951	9	17				e top	
44	9.76 642	17	9.85 700	26	0.14 300	9.90 942	9	16					15°+,
45	9.76 660	18	9.85 727	27	0.14 273	9,90 933	9	15					; for
46	9.76 677	17 18	9.85 754	27 26	0.14 246	9.90 924	9	14	125	٥+ ر	r 8 ()5°+	, read
47	9.76 695	17	9.85 780	27	0.14 220	9.90 915	9	13	co-f	unc	tion	١.	
48 49	9.76 712 9.76 730	18	9.85 807	27	0.14 193 0.14 166	9.90 906 9.90 896	10	12 11					- 1
50	9.76 747	17	9.85 834 9.85 860	26	0.14 140	9.90 887	9	10	F	ron	the	bot :	tom:
51	9.76 765	18	9.85 887	27	0.14 140	9.90 878	9	9					34 °+.
52	9.76 782	17	9.85 913	26	0.14 087	9.90 869	9	8					
53	9.76 800	18	9.85 940	27 27	0.14 060	9.90 860	9	7					; for
54	9.76 817	17 18	9.85 967	26	0.14 033	9.90 851	9	6					, read
55	9.76 835	17	9.85 993	27	0.14 007	9.90 842	10	5	co-f	unc	tion	•	1
56	9.76 852	18	9.86 020	26	0.13 980	9.90 832	9	4					
57 58	9.76 870 9.76 887	17	9.86 046 9.86 073	27	0.13 954 0.13 927	9.90 823 9.90 814	9	3 2					l
	J. 10 001	17		27			9	4					1
			9.86 100		0.13 900	9.90 805		11					- 1
59 60	9.76 904 9.76 922	18	9.86 100 9.86 126	26	0.13 900 0.13 874	9.90 805 9.90 796	9	1 0					

1	L Sin	d	L Tan	cd	L Ctn	L Cos	d	Τ	Τ	P	rop	. Pt	8.
0	9.76 922		9.86 126	27	0.13 874	9.90 796	9	60					
1	9.76 939	17 18	9.86 153	26	0.13 847	9.90 787	10	59	1				
2	9.76 957	17	9.86 179	27	0.13 821	9.90 777	9	58	1				
3	9.76 974 9.76 991	17	9.86 206	26	0.13 794 0.13 768	9.90 768 9.90 759	9	57 56					
		18	1	27	ì		9	55	1	. 9	7	26	1 18
5	9.77 009 9.77 026	17	9.86 259 9.86 285	26	0.13 741 0.13 715	9.90 750 9.90 741	9	54		1	1		
6	9.77 043	17	\$.86 312	27	0.13 688	9.90 731	10	53	3		.4	5.2 4.8	
8	9.77 061	18	9.86 338	26	0.13 662	9.90 722	9	52	4	10		10.4	
ğ	9.77 078	17	9.86 365	27	0.13 635	9.90 713	9	51	5	13		13.0	
10	9.77 095	17	9.86 392	27	0.13 608	9.90 704	9	50	6	16		15.6	
11	9.77 112	17 18	9.86 418	26 27	0.13 582	9.90 694	10	49	7	18		18.2	
12	9.77 130	17	9.86 445	26	0.13 555	9.90 685	9	48	8	21		20.8	
13	9.77 147	17	9.86 471	27	0.13 529	9.90 676	9	47	9	24	.3)	2 3.4	16.2
14	9.77 164	17	9.86 498	26	0.13 502	9.90 667	.10	46	1				
15	9.77 181 9.77 199	18	9.86 524	27	0.13 476	9.90 657	9	45	1				
16 17	9.77 216	17	9.86 551 9.86 577	26	0.13 449 0.13 423	9.90 648	9	44 43	1	- 1	17	7	16
18	9.77 233	17	9.86 603	26	0.13 397	9.90 630	9	42	1	2	3.		3.2
19	9.77 250	17	9.86 630	27	0.13 370	9.90 620	10	41	l	3	5.		4.8
20	9.77 268	18	9.86 656	26	0.13 344	9.90 611	9	40	1	5	6.		6.4
21	9.77 285	17	9.86 683	27	0.13 317	9.90 602	9	39	1	6	8. 10.		8.0 9.6
22	9.77 302	17 17	9.86 709	26 27	0.13 291	9.90 592	10	38		7	11.		1.2
23	9.77 319	17	9.86 736	26	0.13 264	9.90 583	9	37		8	13.		2.8
24	9.77 336	17	9.86 762	27	0.13 238	9.90 574	9	36		9	15.		4.4
25	9.77 353	17	9.86 789	26	0.13 211	9.90 565	10	35					
26	9.77 370 9.77 387	17	9.86 815 9.86 842	27	$0.13\ 185$ $0.13\ 158$	9.90 555 9.90 546	9	34					
27 28	9.77 405	18	9.86 868	26	0.13 132	9.90 537	9	32	1	1	10	1 1	•
29	9.77 422	17	9.86 894	26	0.13 106	9.90 527	10	31		2	2.0	1	.8
80	9.77 439	17	9.86 921	27	0.13 079	9.90 518	9	80	l	3	3.0		.7
31	9.77 456	17	9.86 947	26	0.13 053	9.90 509	9	29		4	4.0		.6
32	9.77 473	17	9.86 974	27	0.13026	9.90 499	10	28		5	5.0		.5
33	9.77 490	17 17	9.87 000	26 27	0.13 000	9.90 490	9 10	27		6	6.0		.4
34	9.77 507	17	9.87 027	26	0.12973	9.90 480	9	26		7 8	7.0 8.0		.3
35	9.77 524	17	9.87 053	26	0.12 947	9.90 471	9	25		9	9.0		
36	9.77 541	17	9.87 079	27	0.12 921	9.90 462	10	24		٠,	0.0	, , 0	.
37 38	9.77 558 9.77 575	17	9.87 106 9.87 132	26	$0.12894 \\ 0.12868$	9.90 452 9.90 443	9	23 22					
39	9.77 592	17	9.87 158	26	0.12 842	9.90 434	9	21					i
40	9.77 609	17	9.87 185	27	0.12 815	9.90 424	10	20					i
41	9.77 626	17	9.87 211	26	0.12 789	9.90 415	9	19	v	'	n #ħ	e top	. 1
42	9.77 643	17 17	9.87 238	27 26	0.12 762	9.90 405	10	18	1	, 011	,.	e top	'
43	9.77 660	17	9.87 264	26	0.12 736	9.90 396	10	17	F	or 8	6°+	or 2	16°+,
44	9.77 677	17	9.87 290	27	0.12710	9.90 386	9	16	read	i as	pr	inted	i; for
45	9.77 694	17	9.87 317	26	0.12 683	9.90 377	9	15					, read
46 47	9.77 711 9.77 728	17	9.87 343 9.87 369	26	$\begin{array}{c} 0.12657 \\ 0.12631 \end{array}$	9.90 368 9.90 358	10	14 13	co-f				
48	9.77 744	16	9.87 396	27	0.12 604	9.90 349	9	12	J., 1				·
49	9.77 761	17	9.87 422	26	0.12 578	9.90 339	10	ii					1
50	9.77 778	47	9.87 448	26	0.12 552	9.90 330	9	10	F	ron	ı th	e bot	tom:
51	9.77 795	17	9.87 475	27	0.12 525	9.90 320	10	9	Tr.		9 04	0	33°+.
52	9.77 812	17 17	9.87 501	26 26	0.12 499	9.90 311	10	8					′ 1
53	9.77 829	17	9.87 527	27	0.12 473	9.90 301	9	7					; for
54	9.77 846	16	9.87 554	26	0.12 446	9.90 292	10	6					, read
55	9.77 862	17	9.87 580	26	0.12 420	9.90 282	9	5	co-f	unc	tion	1.	
56 57	9.77 879 9.77 896	17	9.87 606 9.87 633	27	0.12 394 0.12 367	9.90 273 9.90 263	10	3					1
58	9.77 913	17	9.87 659	26	0.12 341	9.90 254	9	2					
59	9.77 930	17	9.87 685	26	0.12 315	9.90 244	10	ĩ					1
60	9.77 946 ^C	16	9.87 711	26	0.12 289	9.90 235	9	0					ļ
	L Cos	d	L Ctn	c d	L Tan	L Sin	ď	-		Pz	00.	Pts	
				- 14			~_'				- 2.		٠

	L Sin	d	L Tan	e d	L Ctn	L Cos	d			Pro	p. Pte	١.
0	9.77 946		9.87 711	1	0.12 289	9.90 235		60	1			
li		17	9.87 738	27	0.12 262	9.90 225	10	59	1			
2		17	9.87 764	26	0.12 236	9.90 216	9	58	1	•		
3	9.77 997	17	9.87 790	26	0.12 210	9.90 206	10	57	1			
4	9.78 013	16	9.87 817	27 26	0.12 183	9.90 197	9	56	1			
5	9.78 030	1	9.87 843		0.12 157	9.90 187	10	55	ı			
6		17	9.87 869	26	0.12 131	9.90 178	9	54	1			
7		16	9.87 805	26	0.12 105	9.90 168	10	53	1			
8		17	9.87 922	27 26	0.12 078	9.90 159	9	52	1			
9		16	9.87 948	26	0.12 052	9.90 149	10	51	1	~		
10		17	9.87 974	26	0.12 026	9.90 139	9	50		27	26	17
11	9.78 130	17	9.88 000	27	0.12 000	9.90 130	10	49	2	5.4	5.2	3.4
12		16	9.88 027	26	0.11 973	9.90 120	9	48	3	8.1	7.8	5.1
13	9.78 163	17	9.88 053	26	0.11 947	9.90 111	10	47	4	10.8	10.4	6.8
14	9.78 180	17	9.88 079	26	0.11 921	9.90 101	10	46	6	$13.5 \\ 16.2$	13.0	8.5 10.2
15	9.78 197	16	9.88 105	26	0.11 895	9.90 091	9	45	7	18.9	15.6 18.2	11.9
16 17	9.78 213 9.78 230	17	9.88 131 9.88 158	27	0.11 869	9.90 082	10	44	8	21.6	20.8	13.6
18	9.78 246	16	9.88 184	26	0.11 842 0.11 816	9.90 072 9.90 063	9	43	9	24.3	23.4	15.3
19	9.78 263	17	9.88 210	26	0.11 790	9.90 053	10	42	Ι.,			,
20	9.78 280	17	9.88 236	26	1	9.90 043	10		l			
21	9.78 296	16	9.88 262	26	0.11 764 0.11 738	9.90 034	9	40	i i			
22	9.78 313	17	9.88 289	27	0.11 711	9.90 024	10	38	1			
23	9.78 329	16	9.88 315	26	0.11 685	9.90 014	10	37	١ -	16	10	9
24	9.78 346	17	9.88 341	26	0.11 659	9.90 005	9	36	1 2	3.2	2.0	1.8
25	9.78 362	16	9.88 367	26	0.11 633	9.89 995	10	35	3	4.8	3.0	2.7
26	9.78 379	17	9.88 393	26	0.11 607	9.89 985	10	34	4	6.4	4.0	3.6
27	9.78 395	16	9.88 420	27	0.11 580	9.89 976	9	33	5	8.0	5.0	4.5
28	9.78 412	17	9.88 446	26	0.11 554	9.89 966	10	32	6	9.6	6.0	5.4
29	9.78 428	16 17	9.88 472	26 26	0.11 528	9.89 956	10	31	7	11.2	7.0	6.3
80	9.78 445		9.88 498	1	0.11 502	9.89 947	9	30	8	12.8	8.0	7.2
31	9.78 461	16 17	9.88 524	26 26	0.11 476	9.89 937	10	29	9	14.4	9.0	8.1
32	9.78 478	16	9.88 550	27	0.11 450	9.89 927	10	28	ı			
33	9.78 494	16	9.88 577	26	0.11 423	9.89 918	9 10	27	l			
34	9.78 510	17	9.88 603	26	0.11 397	9.89 908	10	26				
35	9.78 527	16	9.88 629	26	0.11 371	9.89 898	10	25				
36	9.78 543	17	9.88 655	26	0.11 345	9.89 888	9	24	-			
37	9.78 560 9.78 576	16	9.88 681	26	0.11 319	9.89 879	10	23	F	rom ti	ie top.	•
39	9.78 592	16	9.88 707 9.88 733	26	0.11 293 0.11 267	9.89 869 9.89 859	10	22 21	TF.	or 37° -	t or 21	70+
	1 1	17		26			10					•
40 41	9.78 609 9.78 625	16	9.88 759 9.88 786	27	0.11 241	9.89 849	9	20		l as p		
42	9.78 642	17	9.88 812	26	0.11 214 0.11 188	9.89 840 9.89 830	10	19		°+ or 8		read
43	9.78 658	16	9.88 838	26	0.11 162	9.89 820	10	18 17	co-f	unctio	n.	1
44	9.78 674	16	9.88 864	26	0.11 136	9.89 810	10	16				1
45	9.78 691	17	9.88 890	26	0.11 110	9.89 801	9	15	F	rom th	e bott	om :
46	9.78 707	16	9.88 916	26	0.11 084	9.89 791	10	14	707	- KOO	L ~~ 00	
47	9.78 723	16	9.88 942	26	0.11 058	9.89 781	10	13		o r 52° .		
48	9.78 739	16 17	9.88 968	26 26	0.11 032	9.89 771	10 10	12		as pr		
49	9.78 756	16	9.88 994	26	0.11 906	9.89 761	9	11	142	°+or 3	22°+,	read
50	9.78 772	16	9.89 020	26	0.10 980	9.89752	10	10	co-f	unction	n.	- 1
51	9.78 788	17	9.89046	27	0.10 954	9.89742	10	9				I
52	9.78 805	16	9.89 073	26	0.10 927	9.89732	10	8				1
53	9.78 821	16	9.89 099	26	0.10 901	9.89722	10	7				ı
54	9.78 837	16	9.89 125	26	0.10 875	9.89712	10	6				- 1
55	9.78 853	16	9.89 151	26	0.10 849	9.89 702	9	5				J
56	9.78 869	17	9.89 177	26	0.10 823	9.89 693	10	4				- 1
57 58	9.78 886 9.78 902	16	9.89 203	26	0.10 797 0.10 771	9.89 683 9.89 673	10	3				1
59	9.78 902	16	9.89 229 9.89 255	26	0.10745	9.89 663	10	2				ı
60	9.78 934	16	9.89 281	26	0.10719	9.89 653	10	ō				1
=	L Cos	a	L Ctn	c d	L Tan	L Sin	d	-	·	Prop	. Pts.	

,	L Sin	d	L Tan	c d	L Ctn	L Cos	d			P	r o p.	Pts.	
0	9.78 934	10	9.89 281	00	0.10719	9.89 653	10	60	ł				
1	9.78 950	16	9.89 307	26 26	0.10 693	9.89 643	10	59					
2	9.78 967	17	9.89 333		0.10 667	9.89 633	9	58					
3	9.78 983	16	9.89 359	26 26	0.10641	9.89 624	10	57					
4	9.78 999	16 16	9.89 385	26	0.10615	9.89614	10	56				. . .	
5	9.79 015		9.89 411		0.10 589	9.89 604		55		26	5 2	5	17
6	9.79 031	16	.9.89 437	26	0.10563	9.89 594	10 10	54	2	5.	2 4	5.0	3.4
7	9.79 047	16 16	9.89 463	26 26	0.10 537	9.89 584	10	53	3	7.	8 '	7.5	5.1
8	9.79 063	16	9.89 489	26	0.10 511	9.89574	10	52	4	10.		0.0	6.8
9	9.79 079	16	9.89515	26	0.10485	9.89 564	10	51	5	13.		2.5	8.5
10	9.79 095	16	9.89541	26	0.10 459	9.89 554	10	50	6	15.		5.0	10.2
11	9.79 111	17	9.89 567	26	0.10 433	9.89 544	10	49	7	18.		7.5	11.9
12	9779 128	16	9.89593	26	0.10407	9.89 534	10	48	8	20.		0.0	13.6
13	9.79 144	16	9.89619	26	0.10 381	9.89 524	.10	47	9 1	23.	4 2	2.5	15 .3
14	9.79 160	16	9.89 645	26	0.10 355	9.89 514	10	46					
15	9.79 176	16	9.89671	26	0.10 329	9.89 504	9	45					
16	9.79 192	16	9.89697	26	0.10 303	9.89495	10	44		1€	3 1	.5	11
17	9.79 208	16	9.89 723	26	0.10 277	9.89 485	10	43	2	3.	2 2	3.0	2.2
18	9.79 224	16	9.89749	26	0.10 251	9.89 475	10	42	3	4.		1.5	3.3
19	9.79 240	16	9.89 775	26	0.10 225	9.89 465	10	41	4	6.		5.0	4.4
20	9.79 256	16	9.89 801	26	0.10 199	9.89 455	10	40	5	8.		7.5	5.5
21	9.79 272	16	9.89 827	26	0.10 173	9.89 445	10	39	6	9.	6 9	9.0	6.6
22 23	9.79 288	16	9.89 853	26	0.10 147	9.89 435	10	38	7	11.		0.5	7.7
	9.79 304	15	9.89 879	26	0.10 121	9.89 425	10	37	8	12.		2.0	8.8
24	9.79 319	16	9.89 905	26	0.10 095	9.89 415	10	36	9	14.	4 1;	3.5	9.9
25	9.79 335	16	9.89 931	26	0.10 069	9.89 405	10	35					
26 27	9.79 351	. 16	9.89 957	26	0.10 043	9.89 395	10	34					
	9.79 367	16	9.89 983	26	0.10 017	9.89 385	10	33			10	9	
28 29	9.79 383	16	9.90 009	26	0.09 991 0.09 965	9.89 375 9.89 364	11	32 31		2	2.0	1.8	,
	9.79 399	16		26			10			3	3.0	2.7	
80	9.79 415	16	9.90 061	25	0.09 939	9.89 354	10	80		4	4.0	3.6	
31 32	9.79 431	16	9.90 086 9.90 112	26	0.09 914 0.09 888	9.89 344 9.89 334	10	29 28		5	5.0	4.5	
33	9.79 447 9.79 463	16	9.90 138	26	0.09 862	9.89 324	10	27		6	6.0	5.4	
34	9.79 478	15	9.90 164	26	0.09 836	9.89 314	10	26		7	7.0	6.8	3
35	9.79494	16	9.90 190	26	0.09 810	9.89 304	10	25		8	8.0	7.2	
36	9.79 494	16	9.90 190	26	0.09 784	9.89 294	10	24		9	9.0	8.1	
37	9.79 526	16	9.90 242	26	0.09758	9.89 284	10	23					
38	9.79 542	16	9.90 268	26	0.09732	9.89 274	10	22					i
39	9.79 558	16	9.90 294	26	0.09 706	9.89 264	10	21					
40	9.79 573	15	9.90 320	26	0.09680	9.89 254	10	20					
41	9.79 589	16	9.90 346	26	0.09 654	9.89 244	10	19					
42	9.79 605	16	9.90 371	25	0.09 629	9.89 233	11	18	J	ron	r the	top.	
43	9.79 621	16	9.90 397	26	0.09 603	9.89 223	10	17				_	
44	9.79 636	15	9.90 423	26	0.09577	9.89 213	10	16	F	or 3	8 °+ c	r 21	8°+,
45	9.79 652	16	9.90 449	26	0.09 551	9.89 203	10	15	rea	d as	prin	ted	; for
46	9.79 668	16	9.90 475	26	0.09 525	9.89 193	10	14			r 30		
47	9.79 684	16	9.90 501	26	0.09499	9.89 183	10	13			tion.	- ,	
48	9.79 699	15 -26	9.90 527	26 26	0.09473	9.89 173	10 11	12	00-1	anc	om.		- 1
49	9.79715	16	9.90 553	25	0.09 447	9.89 162	10	11	_				1
50	9.79 731		9.90 578	26	0.09 422	9 89 152	10	10	ŀ	ron	ı the	oott	om:
51	9.79746	15 16	9.90 604	26	0.09 396	9.89 142	10	9	707	or F	1°+ c	. 00	1104
52	9.79762	16	9.90 630	26	0.09 370	9.89 132	10	8					٠,١
53	9.79 778	15	9.90 656	26	0.09 344	9.89 122	10	7			prin		
54	9.79 793	16	9.90 682	26	0.09 318	9.89 112	11	6			or 32 :	۱°+,	read
55	9.79 809	16	9.90 708	26	0.09 292	9.89 101	10	5	co-	func	tion.		
56	9.79 825	15	9.90 734	25	0.09 266	9.89 091	10	4					
57	9.79 840	16	9.90 759	26	0.09 241	9.89 081	10	3					1
58	9.79 856	16	9.90 785	26	0.09 215	9.89 071	11	2					
59	9.79 872	15	9.90 811	26	0.09 189	9.89 060	10	1					
60	9.79 887		9.90 837		0.09 163	9.89 050		0					
c	L Cos	d	L Ctn	c d	L Tan	L Sin	d	1		P	юр.	Pts.	

1			11051111		15 UI II	15011011						
1	L Sin	d	L Tan	c d	L Ctn	L Cos	đ			Pro	p. Pts	. •
0	9.79 887	16	9.90 837	26	0.09 163	9.89 050	10	60				
1	9.79 903	15	9 90 863	26	0.09 137	9.89 040	10	59	1			
2	9.79 918	16	9.90 889 9.90 914	25	0.09 111	9.89 030	10	58	1			
3	9.79 934 9.79 950	16	9.90 940	26	0.09 086	9.89 020 9.89 009	11	57 56	l			
_	1	15		26			10					
6	9.79 9 65 9.79 981	16	9.90 966	26	0.09 034 0.09 008	9.88 999 9.88 989	10	55 54	1			
7	9.79 996	15	0.91 018	26	0.08 982	9.88 978	11	53				
1 8	9.80 012	16	9.91 043	25	0.08 957	9.88 968	10	52	l			
9	9.80 027	15	9.91 069	26	0.08 931	9.88 958	10	51				
10	9.80 043	16	9.91 095	26	0.08 905	9.88 948	10	50		26	25	16
11	9.80 058	15 16	9.91 121	26 26	0.08879	9.88 937	11	49	2	5.2	5.0	3.2
12	9.80 074	15	9.91 147	25	0.08853	9.88 927	10 10	48	3	7.8	7.5	4.8
13	9.80 089	16	9.91 172	26	0.08 828	9.88 917	11	47	4	10.4	10.0	6.4
14	9.80 105	15	9.91 198	26	0.08 802	9.88 906	10	46	5	13.0	12.5	8.0
15	9.80 120	16	9.91 224	26	0.08 776	9.88 896	10	45	6 7	$15.6 \\ 18.2$	15.0 17.5	$\frac{9.6}{11.2}$
16	9.80 136 9.80 151	15	9.91 250 9.91 276	26	$0.08750 \\ 0.08724$	9.88 886 9.88 875	11	44 43	8	20.8	20.0	12.8
17	9.80 166	15	9.91 301	25	0.08 699	9.88 865	10	42	9		22.5	14.4
19	9.80 182	16	9.91 327	26	0.08673	9.88 855	10	41	١.			'
20	9.80 197	15	9.91 353	26	0.08 647	9.88 844	11	40				
21	9.80 213	16	9.91 379	26	0.08 621	9.88 834	10	39	1			
22	9.80 228	15	9.91 404	25 26	0.08596	9.88 824	10	38		1 15	1 11	10
23	9.80 244	16 15	9.91 430	26	0.08570	9.88 813	11 10	37	_	15	11	1
24	9.80 259	15	9.91 456	26	0.08 544	9.88 803	10	36	2	3.0	2.2	2.0
25	9.80274	16	9.91 482	25	0.08 518	9.88 793	11	85	3 4	4.5	3.3	3.0
26	9.80 290	15	9.91 507	26	0.08 493	9.88 782	10	34	5	6.0 7.5	5.5	4.0 5.0
27	9.80 305 9.80 320	15	9.91 533	26	0.08467 0.08441	9.88 772	ii	33	6	9.0	6.6	6.0
28 29	9.80 336	16	9.91 559 9.91 585	26	0.08 415	9.88 761 9.88 751	10	32 31	ř	10.5	7.7	7.0
30	9.80 351	15	9.91 610	25	0.08 390	9.88 741	10	30	8	12.0	8.8	8.0
31	9.80 366	15	9.91 636	26	0.08 364	9.88 730	11	29	9	13.5	9.9	9.0
32	9.80 382	16	9.91 662	26	0.08 338	9.88 720	10	28				- 1
33	9.80 397	15	9.91 688	26	0.08 312	9.88 709	11	27				
34	9.80 412	15 16	9.91 713	25 26	0.08287	9.88 699	10	26				- 1
85	9.80 428	1	9.91 739	, ,	0.08261	9.88 688	11	25				- 1
36	9.80 443	15 15	9.91 765	26 26	0.08235	9.88 678	10	24				- 1
37	9.80 458	15	9.91 791	25	0.08 209	9.88 668	10 11	23	F	rom t	he top	: [
38	9.80 473	16	9.91 816	26	0.08 184	9.88 657	10	22	127	~ 200	+ or 2	100+
39	9.80 489	15	9.91 842	26	0.08 158	9.88 647	11	21				
40	9.80 504	15	9.91 868	25	0.08 132	9.88 636	10	20			rinted	
41 42	9.80 519 9.80 534	15	9.91 893 9.91 919	26	0.08 107 0.08 081	9.88 626 9.88 615	11	19 18			809°+,	read
43	9.80 550	16	9.91 945	26	0.08 055	9.88 605	10	17	co-i	unctio	n.	
44	9.80 565	15	9.91 971	26	0.08 029	9.88 594	11	16				j
45	9.80 580	15	9.91 996	25	0.08 004	9.88 584	10	15	F	rom t	he bott	om:
46	9.80 595	15	9.92 022	26	0.07 978	9.88 573	11	14		F 00		
47	9.80 610	15	9.92 048	26	0.07952	9.88 563	10	13			+ or 2	' 1
48	9.80625	15 16	9.92 073	25 26	0.07 927	9.88 552	11 10	12			rinted	
49	9.80 641	15	9.92 099	26	0.07 901	9.88 542	11	11	140	o+ or	320°+,	read
50	9.80 656	15	9.92 125	25	0.07 875	9.88 531	10	10	co-f	unctic	n.	ł
51	9.80 671	15	9.92 150	26	0.07 850	9.88 521	11	9				1
52	9.80 686	15	9.92 176	26	0.07 824 0.07 798	9.88 510 9.88 499	11	8				j
53	9.80 701 9.80 716	15	9.92 202 9.92 227	25	0.07 773	9.88 489	10	6				1
		15		26	0.07 747	9.88 478	11	5				- 1
55	9.80 731 9.80 746	15	9.92 253 9.92 279	26	0.07 721	9.88 468	10	4				l
57	9.80 762	16	9.92 304	25	0.07 696	9.88 457	11	3				1
58	9.80 777	15	9.92 330	26	0.07 670	9.88 447	10	2				1
59	9.80 792	15	9.92 356	26 25	0.07 644	9.88 436	11 11	1				
60	9.80 807	15	9.92 381	20	0.07 619	9.88 425	**	0				
1										***********		

5	L Sin	d	L Tan	c d	L Ctn	L Cos	d			Prop	. Pts	
0	9.80 807		9.92 381	00	0.07 619	9.88 425		60				
1 1	9.80 822	15	9.92 407	26	0.07 593	9.88 415	10	59				
1 2	9.80 837	15	9.92 433	26	0.07 567	9.88 404	11	58				
1 8	9.80 852	15 15	9.92 458	25	0.07 542	9.88 394	10	57				- 1
4	9.80 867		9.92 484	26 26	0.07 516	9.88 383	11	56	1			
1 8	9.80 882	15	9.92 510		0.07 490	9.88 372	11	55	l			- 1
Ιĕ	9.80 897	15	9.92 535	25	0.07 465	9.88 362	10	54	l			- 1
1 7	9.80 912	15	9.92 561	26	0.07 439	9.88 351	11	53	ŀ			[
. 8	9.80 927	15 15	9.92 587	26 25	0.07 413	9.88 340	11 10	52	1			- 1
9	9.80 942	15	9.92 612	26	0.07 388	9.88 330	11	51	١,			1
10	9.80 957		9.92 638		0.07 362	9.88 319	1	50	1	26	25	15
11	9.80 972	15	9.92 663	25	0.07 337	9.88 308	11 10	49	2	5.2	5.0	3.0
12	9.80 987	15	9.92 689	26 26	0.07 311	9.88 298	11	48	3	7.8	7.5	4.5
13	9.81 002	, 15 15	9.92715	25	0.07285	9.88 287	11	47	4	10.4	10.0	6.0
14	9.81 017	15	9.92 740	26	0.07 260	9.88 276	10	46	5	13.0	12.5	7.5
15	9.81 032	15	9.92 766	26	0.07 234	9.88 266	11	45	6	15.6	15.0	9.0
16	9.81 047	14	9.92792	25	0.07 208	9.88 255	11	44	7	18.2	17.5	10.5
17	9.81 061	15	9.92 817	26	0.07 183	9.88 244	10	43	8 9	20.8 23.4	$\frac{20.0}{22.5}$	12.0 13.5
18	9.81 076	15	9.92 843	25	0.07 157	9.88 234	11	42	9 1	20.4	22.0	10.0
19	9,81 091	15	9.92 868	26	0.07 132	9.88 223	11	41				- 1
20	9.81 106	15	9.92 894	26	0.07 106	9.88 212	11	40				- 1
21	9.81 121	15	9.92 920	25	0.07 080	9.88 201	10	39		1 14		10
22	9.81 136	15	9.92 945	26	0.07 055 0.07 029	9.88 191	11	38	_	14	11	10
23 24	9.81 151 9.81 166	15	9.92 971 9.92 996	25	0.07 029	9.88 180 9.88 169	11	37	2	2.8	2.2	2.0
1		14		26			11	36	3	4.2	3.3	3.0
25	9.81 180	15	9.93 022	26	0.06 978	9.88 158	10	85	4	5.6	4.4	4.0
26	9.81 195	15	9.93 048	25	0.06 952 0.06 927	9.88 148	11	34	5 6	7.0	5.5	5.0
28	9.81 210 9.81 225	15	9.93 073 9.93 099	26	0.06 921	9.88 137 9.88 126	11	33 32	7	9.8	6.6	6.0 7.0
29	9.81 240	15	9.93 124	25	0.06 876	9.88 115	11	31	8	11.2	8.8	8.0
30	9.81 254	14	9.93 150	26	0.06 850	9.88 105	10	30	ğ	12.6	9.9	9.0
31	9.81 269	15	9.93 175	25	0.06 825	9.88 094	11			,	, ,	
32	9.81 284	15	9.93 201	26	0.06 799	9.88 083	11	29 28				- 1
33	9.81 299	15	9.93 227	26	0.06 773	9.88 072	11	27				1
34	9.81 314	15	9.93 252	25	0.06748	9.88 061	11	26				1
85	9.81 328	14	9.93 278	26	0.06722	9.88 051	10	25				- 1
36	9.81 343	15	9.93 303	25	0.06 697	9.88 040	11	24				- 1
37	9.81 358	15	9.93 329	26	0.06 671	9.88 029	11	23	7	rom ti		. 1
38	9.81 372	14	9.93354	25	0.06 646	9.88 018	11	22		rone u	ie top	. 1
39	9.81 387	15	9.93 380	26 26	0.06 620	9.88 007	11	21	F	or 40 °-	or 22	20∘+. [
40	9.81 402	15	9.93 406		0.06 594	9.87 996		20		l as p		٠,
41	9.81 417	15	9.93 431	25	0.06 569	9.87 985	11	19		o+ or 8		
42	9.81 431	14	9.93 457	26 25	0.06 543	9.87 975	10 11	18				, Leau
43	9.81 446	15	9.93 482	26	0.06 518	9.87 964	11	17	co-I	unctio	ц.	1
44	9.81 461	14	9.93 508	25	0.06 492	9.87 953	11	16	_			. 1
45	9.81 475	15	9.93 533	26	0.06 467	9.87 942	11	15	F	rom th	ie bott	om:
46	9.81 490	15	9.93 559	25	0.06 441	9.87 931	11	14	10.7	o r 49 °-	0	+000
47	9.81 505	14	9.93 584	26	0.06 416	9.87 920	11	13				
48	9.81 519	15	9.93 610	26	0.06 390	9.87 909	11	12		l as pi		
49	9.81 534	15	9.93 636	25	0.06 364	9.87 898	11	11	139	°+ or 8	190+,	, read
50	9.81 549	14	9.93 661	26	0.06 339	9.87 887	10	10	co-f	unctio	n.	1
51 52	9.81 563 9.81 578	15	9.93 687 9.93 712	25	0.06 313 0.06 288	9.87 877 9.87 866	11	9				ı
53	9.81 592	14	9.93 712 9.93 738	26	0.06 288	9.87 855	11	8				1
54	9.81 607	15	9.93 763	25	0.06 237	9.87 844	11	6				i
55	9.81 622	15	9.93 789	26	0.06.211	9.87 833	11	5				1
56	9.81 636	14	9.93 814	25	0.06 211	9.87 822	11	4				1
57	9.81 651	15	9.93 840	26	0.06 160	9.87 811	11	3				1
58	9.81 665	14	9.93 865	25	0.06 135	9.87 800	11					- 1
59	9.81 680	15	9.93 891	26	0.06 109	9.87 789	11	2 1				1
60		14	9.93 916	25	0.06 084	9.87 778	11	0				ł
1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,			-100 004	-10. 1.0			1			

31.5			105011			0						
1	L Sin	d	L Tan	c d	L Ctn	L Cos	<u>d</u>			Pro	p. Pts.	•
0	9.81 694	15	9.93 916	26	0.06 084	9.87 778	11	60				
1	9.81 709	14	9.93 942	25	0.06 058	9.87 767	11	59				1
2	9.81 723	15	9.93 967	26	0.06 033	9.87 756 9.87 745	11	58 57				
3	9.81 738	14	9.93 993 9.94 018	25	0.06 007 0.05 982	9.87 734	11	56				1
4	9.81 752	15		26			11					1
5	9.81767	14	9.94 044 9.94 069	25	0.05 956 0.05 931	9.87 723 9.87 712	11	55 54	4			
6	9.81 781	15	9.94 095	26	0.05 905	9.87 701	11	53				
8	9.81 796 9.81 810	14	9.94 120	25	0.05 880	9.87 690	11	52				
9	9.81 825	15	9.94 146	26	0.05 854	9.87 679	11	51				
10	9.81 839	14	9.94 171	25	0.05 829	9.87 668	11	50	1	26	25	15
11	9.81 854	15	9.94 197	26	0.05 803	9.87 657	11	49	2	5.2	5.0	3.0
13	9.81 868	14	9.94 222	25	0.05 778	9.87 646	11	48	3	7.8	7.5	4.5
13	9.81 882	14	9.94 248	26	0.05 752	9.87 635	11	47	4	10.4	10.0	6.0
14	9.81 897	15	9.94 273	25	0.05 727	9.87 624	11	46	5	13.0	12.5	7.5
15	9.81 911	14	9.94 299	26	0.05 701	9.87 613	11	45	6	15.6	15.0	9.0
16	9.81 926	15	9.94 324	25	0.05 676	9.87 601	12	44	7	18.2	17.5	10.5
17	9.81 940	14	9.94 350	26	0.05 650	9.87 590	11 11	43	8	$20.8 \\ 23.4$	$\frac{20.0}{22.5}$	12.0 13.5
18	9.81 955	15 14	9.94 375	25 26	0.05 625	9.87 579	11	42	9	40.4	22.0	10.0
19	9.81 969	14	9.94 401	25	0.05 599	9.87 568	11	41	l			
20	9.81 983	15	9.94 426	26	0.05574	9.87 557	11	40				
21	9.81 998	14	9.94 452	25	0.05 548	9.87 546	11	39	į .	1 14	12	11
22	9.82 012	14	9.94 477	26	0.05 523	9.87 535	11	38	١.	14	1	1
23	9.82 026	15	9.94 503	25	0.05 497	9.87 524	11	37	2	2.8	2.4	2.2
24	9.82 041	14	9.94 528	26	0.05 472	9.87 513	12	36	3	4.2	3.6	3.3
25	9.82 055	14	9.94 554	25	0.05 446	9.87 501	11	35	5	7.0	4.8 6.0	4.4 5.5
26	9.82 069	15	9.94 579	25	0.05 421 0.05 396	9.87 490 9.87 479	11	34	6	8.4	7.2	6.6
27	9.82 084	14	9.94 604 9.94 630	26	0.05 370	9.87 468	11	32	7	9.8	8.4	7.7
28 29	9.82 098 9.82 112	14	9.94 655	25	0.05 345	9.87 457	11	31	8	11.2	9.6	8.8
		14 .		26		9.87 446	11	80	9	12.6	10.8	9.9
80	9.82 126	15	9.94 681 9.94 706	25	0.05 319 0.05 294	9.87 434	12	29	Ī			•
31 32	9.82 141 9.82 155	14	9.94 732	26	0.05 268	9.87 423	11	28				
33	9.82 169	14	9.94 757	25	0.05 243	9.87 412	11	27				
34	9.82 184	15	9.94 783	26	0.05 217	9.87 401	11	26				
85	9.82 198	14	9.94 808	25	0.05 192	9.87 300	11	25				
36	9.82 212	14	9.94 834	26	0.05 166	9.87 378	12	24				
37	9.82 226	14	9.94 859	25	0.05 141	9.87 367	11	23	,	From t	he top	
38	9.82 240	14	9.94 884	25	0.05 116	9.87 356	11	22			•	
39	9.82 255	15	9.94 910	26	0.05 090	9.87 345	11 11	21	I	or 41°	+ or 2	21°+,
40	9.82 269	14	9.94 935	25	0.05 065	9.87 334		20			rinted	
41	9.82 283	14	9.94 961	26	0.05 039	9.87 322	12	19			311°+,	
42	9.82 297	14	,9.94 986	25	0.05 014	9.87 311	11 11	18		functi		
43	9.82 311	14 15	9.95 012	26 25	0.04 988	9.87 300	12	17	60-	THUCK	OTF.	l
44	9.82 326	14	9.95 037	25	0.04 963	-9.87 288	11	16	١,			
45	9.82 340		9.95 062	26	0.04 938	9.87 277	11	15	4	rom t	he bott	om:
46	9.82 354	14 14	9.95 088	25	0.04 912	9.87 266	11	14	1	For 48	+ or 2	280+
47	9.82 368	14	9.95 113	26	0.04 887	9.87 255 9.87 243	12	13			rinted	,
48	9.82 382	14	9.95 139	25	0.04 861 0.04 836	9.87 243	11	12 11				
49	9.82 396	14	9.95 164	26			11	1			318°+,	read
50	9.82 410	14	9.95 190	25	0.04 810	9.87 221	12	10	co-	functi	on.	- 1
51	9.82 424	15	9.95 215	25	0.04 785 0.04 760	9.87 209 9.87 198	11	9 8				
52 53	9.82 439 9.82 453	14	9.95 240 9.95 266	26	0.04 734	9.87 187	11	1 7	1			
54	9.82 467	14	9.95 200	25	0.04 709	9.87 175	12	6	l			
		14	9.95 317	26	0.04 683	9.87 164	11	5	1			
55	9.82 481 9.82 495	14	9.95 317	25	0.04 658	9.87 153	11	4	1			
57	9.82 509	14	9.95 368	26	0.04 632	9.87 141	12	3				
58	9.82 523	14	9.95 393	25	0.04 607	9.87 130	11	2				
59	9.82 537	14	9.95 418	25	0.04 582	9.87 119	11	1	1			
80	9.82 551	14	9.95 444	26	0.04 556	9.87 107	12	0	1			1
00	9.04 UUL		0.00 XXX		0.01.000	2101 201	-	-			<u> </u>	

4	L Sin	d	L Tan	c d	L Ctn	L Cos	d	<u> </u>	Π	Pro	p. Pts	
0	9.82 551	14	9.95 444	25	0.04 556	9.87 107	11	60	I^{-}			
1	9.82 565	14	9.95 469	26	0.04 531	9.87 096	11	59				
2	9.82 579	14	9.95 495	25	0.04 505	9.87 085	12	58				
3	9,82 593	14	9.95 520	25	0.04 480	9.87 073	11	57				
4	9.82 607	14	9.95 545	26	0.04 455	9.87 062	12	56				,
5	9.82 621	14	9.95 571	25	0.04 429	9.87 050	11	55				
6 7	9.82 635	14	9.95 596	26	0.04 404	9.87 039	11	54				
8	9.82 649 9.82 663	14	9.95 622 9.95 647	25	0.04 378 0.04 353	9.87 028 9.87 016	12	53	1			
9	9.82 677	14	9.95 672	25	0.04 328	9.87 005	11	51				
10	9.82 691	14	9.95 698	26	0.04 302	9.86 993	12	50		26	25	14
11	9.82 705	14	9.95 723	25	0.04 277	9.86 982	11	49	2	5.2	5.0	2.8
12	9.82 719	14	9.95 748	25	0.04 252	9.86 970	12	48	3	7.8	7.5	4.2
13	9.82 733	14	9.95 774	26	0.04 226	9.86 959	11	47	4	10.4	10.0	5.6
14	9.82 747	14	9.95 799	25	0.04 201	9.86 947	12	46	5	13.0	12.5	7.0
15	9.82 761	14	9.95 825	26	0.04 175	9.86 936	11	45	6	15.6	15.0	8.4
16	9.82 775	14	9.95 850	25	0.04 150	9.86 924	12	44	7	18.2	17.5	9.8
17	9.82 788	13 14	9.95 875	25 26	$0.04\ 125$	9.86 913	11	43	8	20.8	20.0	11.2
18	9.82 802	14	9.95 901	25	0.04 099	9.86 902	12	42	9	23.4	22.5	12.6
19	9.82 816	14	9.95 926	26	0.04 074	9.86 890	11	41	l			
20	9.82 830	14	9.95 952	25	0.04 048	9.86 879	12	40	1			
21	9.82 814	14	9.95 977	25	0.04 023	9.86 867	12	39	1			
22 23	9.82 858	14	9.96 002	26	$0.03998 \\ 0.03972$	9.86 855	11	38	1	13	12	11
24	$9.82872 \\ 9.82885$	13	9.96 028 9.96 053	25	0.03 912	9.86 844 9.86 832	12	37 36	2	2.6	2.4	2.2
25		14		25		9.86 821	11		3	3.9	3.6	3.3
26	9.82 899 9.82 913	14	9.96 078 9.96 104	26	0.03 922 0.03 896	9.86 809	12	35 34	4	5.2	4.8	4.4
27	9.82 927	14	9.96 129	25	0.03 871	9.86 798	11	33	5	6.5	6.0	5.5
28	9.82 941	14	9.96 155	26	0.03 845	9.86 786	12	32	6	7.8	7.2	6.6
29	9.82955	14 13	9.96 180	25 25	0.03820	9.86 775	11 12	31	8	9.1 10.4	8.4 9.6	7.7 8.8
30	9.82 968		9.96 205		0.03795	9.86 763		30	9	11.7	10.8	9.9
31 32	9.82 982	14 14	9.96 231	26 25	0.03 769	9.86 752	11 12	29	"		10.0	0.0
32	9.82 996	14	9.96 256	25	0.03744	9.86740	12	28	l			
33	9.83 010	13	9.96 281	26	0.03719	9.86 728	11	27				
34	9.83 023	14	9.96 307	25	0.03 693	9.86 717	12	26				
35 36	9.83 037	14	9.96 332	25	0 03 668	9.86 705	11	25				
37	9.83 051 9.83 065	14	9.96 357 9.96 383	26	0.03 643 0.03 617	9.86 694 9.86 682	12	24 23	,	From t	he top	.
38	9.83 078	13	9.96 408	25	0.03 592	9.86 670	12	22	1	101166	ne top	
39	9.83 092	14	9.96 433	25	0.03 567	9.86 659	11	21	F	or 42 °	+ or 2	22°+,
40	9.83 106	14	9.96 459	26	0.03 541	9.86 647	12	20	rea	d as p	rinted	; for
41	9.83 120	14	9.96 484	25	0.03 516	9.86 635	12	19			312°+,	
42	9.83 133	13 14	9.96 510	26 25	0.03490	9.86 624	11 12	18		function		
43	9.83 147	14	9.96 535	25	0.03 465	9.86 612	12	17	00-			
44	9.83 161	13	9.96 560	26	0.03440	9.86 600	11	16	7	Tran +	he bott	am .
45	9.83 174	14	9.96 586	25	0.03 414	9.86 589	12	15				
46	9.83 188	14	9.96 611	25	0.03 389 0.03 364	9.86 577 9.86 565	12	14 13	F	or 47°	+ or 22	2 7 °+,
48	9.83 202 9.83 215	12	9.96 636 9.96 662	26	0.03 338	9.86 554	11	13 12	rea	d as p	rinted	; for
49	9.83 229	14	9.96 687	25	0.03 313	9.86 542	12	11			317°+,	
50	9.83 242	13	9.96 712	25	0.03 288	9.86 530	12	10		function	•	
51	9.83 256	14	9.96 738	26	0.03 262	9.86 518	12	9	-			1
52	9.83 270	14	9.96 763	25	0.03 237	9.86 507	11 12	8				- 1
53	9.83 283	13 14	9.96 788	25 26	0.03 212	9.86 495	12	7				l
54	9.83 297	13	9.96 814	25	0.03 186	9.86 483	11	6				1
55	9.83 310	14	9.96 839	25	0.03 161	9.86 472	12	5				- 1
56	9.83 324	14	9.96 864	26	0.93 136	9.86 460	12	4				ł
57 58	9.83 338 9.83 351	(13	9.96 890 9.96 915	25	0.03 110 0.03 085	9.86 448 9.86 436	12	3 2				l
59	9.83 365	1.4	9.96 940	25	0.03 060	9.86 425	11	î				i
60	9.83 378	13	9.96 966	26	0.03 034	9.86 413	12	ō				
100	00.00 OIO		0.00 000		0.00.004	J.00 410						

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d	<u> </u>		Pro	p. Pts	
0	9.83 378		9.96 966		0.03 034	9.86 413		60	1			>
1	9.83 392	14	9.96 991	25	0.03 009	9.86 401	12	59				
2	9.83 405	13	9.97 016	25	0.02 984	9.86 389	12	58				
3	9.83 419	14	9.97 042	26	0.02 958	9.86 377	12	57	1			
4	9.83 432	13 14	9.97 067	25 25	0.02 933	9.86 366	11 12	56				
5	9.83 446		9.97 092		0.02 908	9.86 354	1 1	55	l			
6	9.83459	13	9.97 118	26	0.02 882	9.86 342	12	54				
7	9.83 473	14 13	9.97 143	25 25	0.02 857	9.86 330	12 12	5 3				
8	9.83 486	14	9.97 168	25	0.02 832	9.86 318	12	52	1			
9	9.83 500	13	9.97 193	26	0.02 807	9.86 306	11	51	Ι.			
10	9.83 513	14	9.97 219	25	0.02 781	9.86 295	12	50		26	25	14
11	9.83527	13	9.97244	25	0.02756	9.86 283	12	49	2	5.2	5.0	2.8
12	9.83 540	14	9.97 269	26	0.02 731	9.86 271	12	48	3	7.8	7.5	4.2
13	9.83 554	13	9.97 295	25	0.02 705	9.86 259	12	47	4	10.4	10.0	5.6
14	9.83 567	14	9.97 320	25	0.02 680	9.86 247	12	46	5	13.0	12.5	7.0
15	9.83 581	13	9.97 345	26	0.02 655	9.86 235	12	45	6	15.6	15.0	8.4
16	9.83 594	14	9.97 371	25	0.02 629	9.86 223	12	44	8	18.2 20.8	17.5 20.0	$9.8 \\ 11.2$
17 18	9.83 608 9.83 621	13	9.97 396 9.97 421	25	0.02 604	9.86 211 9.86 200	11	43 42	9	23.4	22.5	12.6
19	9.83 634	13	9.97 447	26	0.02 553	9.86 188	12	41	"	20.1	22.0	12.0
20	9.83 648	14		25		1	12		1			
21	9.83 661	13	9.97 472 9.97 497	25	0.02 528 0.02 503	9.86 176 9.86 164	12	40				
22	9.83 674	13	9.97 523	26	0.02 477	9.86 152	12	39 38				
23	9.83 688	14	9.97 548	25	0.02 452	9.86 140	12	37		13	12	11
24	9.83 701	13	9.97 573	25	0.02 427	9.86 128	12	36	2	2.6	2.4	2.2
25	9.83 715	14	9.97 598	25	0.02 402	9.86 116	12	35	3	3.9	3.6	3.3
26	9.83 728	13	9.97 624	26	0.02 376	9.86 104	12	34	4	5.2	4.8	4.4
27	9.83741	13	9.97 649	25	0.02 351	9.86 092	12	33	5	6.5	6.0	5.5
28	9.83 755	14	9.97 674	25	0.02 326	9.86 080	12	32	8	7.8	7.2	6.6
29	9.83 768	13	9.97 700	26	0.02 300	9.86 068	12	31	7	9.1	8.4	7.7
30	9.83 781	13	9.97 725	25	0 02 275	9.86 056	12	30	8	10.4	9.6	8.8
31	9.83 795	14	9.97 750	25	0.02 250	9.86 044	12	29	9	11.7	10.8	9.9
32	9.83 808	13	9.97 776	26	0.02224	9.86 032	12	28				
33	9.83 821	13 13	9.97 801	25	0.02199	9.86 020	12 12	27	i			
34	9.83 834	14	9.97 826	25 25	$0.02\ 174$	9.86 008	12	26				
85	9.83 848	13	9.97 851	26	0.02 149	9.85 996	12	25				
36	9.83 861	13	9.97 877	25	0.02123	9.85 984	12	24	_			
37	9.83 874	13	9.97902	25	0.02098	9.85 972	12	23	l I	rom t	he top	:
38	9.83 887	14	9.97 927	26	0.02 073	9.85 960	12	22	10	A 90	+ or 22	9001
39	9.83 901	13	9.97 953	25	0.02 047	9.85 948	12	21				•
40	9.83 914	13	9.97 978	25	0.02 022	9.85 936	12	20			rinted	
41	9.83 927	13	9.98 003	26	0.01 997	9.85 924	12	19			818°+,	read
42 43	9.83 940	14	9.98 029	25	0.01 971 0.01 946	9.85 912 9.85 900	12	18 17	co-	functio	n.	
44	9.83 954 9.83 967	13	9.98 054 9.98 079	25	0.01 946	9.85 888	12	16				
		13		25			12	15	JA	rom ti	he bott	om:
45	9.83 980 9.83 993	13	9.98 104 9.98 130	26	0.01 896 0.01 870	-9.85 876 9.85 864	12	10				
47	9.84 006	13	9.98 155	25	0.01 845	9.85 851	13	13	F	or 46°	+ or 2 2	36°+,
48	9.84 020	14	9.98 180	25	0.01 820	9.85 839	12	12	rea	d as p	rinted	; for
49	9.84 033	13	9.98 206	26	0.01 794	8.85 827	12	11			316°+,	
50	9.84 046	13	9.98 231	25	0.01 769	9.85 815	12	10		unctio		
51	9.84 059	13	9.98 256	25	0.01 744	9.85 803	12	9	J-0-1	шсио		
52	9.84 072	13	9.98 281	25	0.01719	9.85 791	12	8				
53	9.84 085	13 13	9.98307	26 25	0.01 693	9.85 779	12 13	7				
54	9.84 098	14	9.98 332	25	0.01 668	9.85 766	12	6				
55	9.84 112		9.98 357		0.01 643	9.85 754	12	5				
56	9.84 125	13	9.98 383	26 25	0.01 617	9.85 742	12	4				1
57	9.84 138	13	9.98 408	25	0.01592	9.85 730	12	3				
58	9.84 151	13	9.98 433	25	0.01 567	9.85 718	12	2				
59	9.84 164	13	9.98 458	26	0.01 542	9.85 706	13	1				
60	9.84 177		9.98 484		0.01 516	9.85 693		0				
-	L Cos	d	L Ctn	c d	L Tan	L Sin	d	1		Prop	Pts.	

1	L Sin	d	L Tan	c d	L Ctn	L Cos	d			Pro	p. Pt	s.
60	9.84 177	10	9.98 484	25	0.01 516	9.85 693	12	60				
1	9.84 190	13 13	9.98 509	25	0.01 491	9.85 681	12	59				
2	9.84 203	13	9.98 534	26	0.01 466	9.85 669	12	58				
3	9.84 216	13	9.98 560	25	0.01 440	9.85 657	12	57				
4	9.84 229	13	9.98 585	25	0.01 415	9.85 645	13	56				
5	9.84 242		9.98 610	25	0.01 390	9.85632	12	55				
6	9.84 255	13 14	9.98 635	26	0.01 365	9.85 620	12	54			,	
7	9.84 269	13	9.98 661	25	0.01 339	9.85 608	12	53				
8	9.84 282	13	9.98 686	25	0.01 314	9.85 596	13	52				
9	9.84 295	13	9.98711	26	0.01 289	9.85 583	12	51	1	26	1 25	14
10	9.84 308	13	9.98 737	25	0.01263	9.85 571	12	50	. 1		1	
11	9.84 321	13	9.98 762	25	0.01 238	9.85 559	12	49	2	5.2	5.0	
12	9.84 334	13	9.98 787	25	0.01 213 0.01 188	9.85 547	13	48	3	7.8	7.5	
13	9.84 347 9.84 360	13	9.98 812 9.98 838	26	0.01 162	9.85 534 9.85 522	.12	47	5	$10.4 \\ 13.0$	10.0	
14		13		25		1	12	46	6	15.6	15.0	
15	9.84 373	12	9.98 863	25	0.01 137	9.85 510	13	45	7	18.2	17.	
16	9.84 385 9.84 398	13	9.98 888 9.98 913	25	0.01 112 0.01 087	9.85 497 9.85 485	12	44	8	20.8	20.0	
17	9.84 411	13	9.98 939	26	0.01 061	9.85 473	12	43 42	9	23.4		
18 19	9.84 424	13	9.98 964	25	0.01 036	9.85 460	13	41			•	
20	9.84 437	13	9.98 989	25	0.01 030	9.85 448	12	40				
21	9.84 450	13	9.99 015	26	0.00 985	9.85 436	12	39				
22	9.84 463	13	9.99 040	25	0.00 960	9.85 423	13	38		1 1	3	12
23	9.84 476	13	9.99 065	25	0.00 935	9.85 411	12	37	١.		2.6	
24	9.84 489	13	9.99 090	25	0.00 910	9.85 399	12	36			3.9	2.4 3.6
25	9.84 502	13	9.99 116	26	0.00 884	9.85 386	13	35			5.2	4.8
26	9.84 515	13	9.99 141	25	0.00 859	9.85 374	12	34			3.5	6.0
27	9.84 528	13	9.99 166	25	0.00 834	9.85 361	13	33			7.8	7.2
28	9.84 540	12	9.99 191	25	0.00 809	9.85 349	12	32			9.1	8.4
29	9.84 553	13	9.99 217	26	0.00 783	9.85 337	12	31			0.4	9.6
80	9.84 566	13	9.99 242	25	0.00758	9.85 324	13	30		9 1	1.7	10.8
31	9.84 579	13	9.99 267	25	0.00 733	9.85 312	12	29				
32	9.84 592	13	9.99 293	26	0.00 707	9.85 299	13	28				
33	9.84 605	13 13	9.99 318	25 25	0.00 682	9.85 287	12 13	27				
34	9.84 618	12	9.99 343	25	0.00 657	9.85 274	12	26				
35	9.84 630	13	9.99 368	26	0.00 632	9.85 262	12	25				
36	9.84 643	13	9.99 394	25	0.00 606	9.85 250	13	24				
37	9.84 656	13	9.99419	25	0.00 581	9.85 237	12	23	F	rom	the to	: מו
38	9.84 669	13	9.99 444	25	0.00 556	9.85 225	13	22				-
39	9.84 682	12	9.99 469	26	0.00 531	9.85 212	12	21	F	or 44	°+ or	224°+,
40	9.84 694	13	9.99 495	25	0.00 505	9.85 200	13	20	reac	i as	printe	ed; for
41	9.84 707	13	9.99 520	25	0.00 480	9.85 187	12	19	134	0+ 01	814°	+, read
42	9.84 720 9.84 733	13	9.99 545	25	0.00 455	9.85 175	13	18		unct		•
43 44	9.84 745	12	9.99 570 9.99 596	26	0.00 430 0.00 404	9.85 162 9.85 150	12	17 16	30.1			
		13		25			13		T	rom	the h	ottom:
45 46	9.84 758 9.84 771	18	9.99621 9.99646	25	0.00 379 0.00 354	9.85 137 9.85 125	12	15 14				
47	9.84 784	13	9.99 672	26	0.00 334	9.85 112	13	13	F	or 45	°+ or	225°+,
48	9.84 796	12	9.99 697	25	0.00 303	9.85 100	12	12	•			ed; for
49	9.84 809	$\frac{13}{13}$	9.99 722	25	0.00 278	9.85 087	13	11				+, read
50	9.84 822		9.99 747	25	0.00 253	9.85 074	13	10				, 1000
51	9.84 835	13	9.99 773	26	0.00 227	9.85 062	12	-9	CO-1	unct	wu.	
52	9.84 847	12	9.29 798	25	0.00 202	9.85 049	13	8	l			
53	9.84 860	13 13	9.99 823	25 25	0.00 177	9.85 037	12 13	7	l			
54	9.84 873	12	9.99 848	26	0.00 152	9.85 024	12	6	1			
55	9.84 885	13	9.99874	25	0.00 126	9.85 012	1	5	1			
56	9.84 898	13	9.99 899	25	0.00 101	9.84 999	13	4	l			
57	9.84 911	12	9.99 924	25	0.00 076	9.84 986	12	3	l			
58	9.84 923	10	9.99 949	26	0.00 051	9.84 974	13	2	ı			
59	9.84 936,	13	9.99 975	25	0.00 025	9.84 961	12	1	1			
60	9.84 949		0.00 000		0.00 000	9 84 949		0				
	L Cos	d	L Ctn	e d	L Tan	L Sin	d	1		Pro	p. P	ts.

æ Badfans	Sin æ	Cos æ	Tan æ	Equivalent of x
.00	.00000	1 .0000	.00000	0° 00′.0
.01	.01000	.99995	.01000	0° 34′.4
.02	.02000	.99980	.02000	1° 08′.8
.03	.03000	.99955	.03001	1° 43′.1
.04	.03999	.99920	$.04002 \\ .05004 \\ .06007$	2° 17′.5
.05	.04998	.9987 5		2° 51′.9
.06	.05996	.99820		3° 26′.3
.07	.06994	.99755	.07011	4° 00′.6
.08	.07991	.99680	.08017	4° 35′.0
.09	.08988	.99595	.09024	5° 094.4
.10	.09983	.99500	.10033	5° 43′.8
.11	.10978	.99396	.11045	6° 18′.2
.12	.11971	.99281	.12058	6° 52′.5
.13	.12963	.99156	.13074	7° 26′.9
14	.13954	.99022	.14092	8° 01′.3
.15	.14944	.98877	.15114	8° 35′.7
.16	.15932	.98723	.16138	9° 10′.0
.17	.16918	.98558	.17166	9° 44′.4
.18	.17903	.98384	.18197	10° 18′.8
.19	.18886	.98200	.19232	10° 53′.2
.20	.19867	.98007	.20271	11° 27′.5
.21	.20846	.97803	.21314	12° 01′.9
.22	.21823	.97590	.22362	12° 36′.3
.23	.22798	.97367	.23414	13° 10′.7
.24	.23770	.97134	.24472	13° 45′.1
.25	.24740	.96891	.25534	14° 19′.4
.26	.25708	.96639	.26602	14° 53′.8
.27	.26673	.96377	.27676	15° 28′.2
.28	.27636	.96106	.28755	16° 02′.6
.29	.28595	.95824	.29841	16° 36′.9
.80	.29552	.95534	.30934	17° 11′.3
.31	.30506	.95233	.32033	17° 45′.7
.32	.31457	.94924	.33139	18° 20′.1
.33	.32404	.94604	.34252	18° 54′.5
.34	.33349	.94275	.35374	19° 28′.8
.35	.34290	.93937	.36503	20° 03′.2
.36	.35227	.93590	.37640	20° 37′.6
.37	.36162	.93233	.38786	21° 12′.0
.38	.37092	£2866	.39941	21° 46′.3
.39	.38019	.92491	.41106	22° 20′.7
.40	.38942	.92106	.42279	22° 55′.1
.41	.39861	.91712	.43463	23° 29′.5
.42	.40776	.91309	.44657	24° 03′.9
.43	.41687	.90897	.45862	24° 38′.2
.44	.42594	.90475	.47078	25° 12′.6
.45	.43497	.90045	.48305	25° 47′.0
.46	.44395	.89605	.49545	26° 21′.4
.47	.45289	.89157	.50795	26° 55′.7
.48	.46178	.88699	.52061	27° 30′.1
.49	.47063	.88233	.53339	28° 04′.5

x Radians	id Sin æ		Tan æ	Equivalent of x
.50	.47943	.87758	.54630	28° 38′.9
.51	.48818	.87274	.55936	29° 13′.3
.52	.49688	.86782	.57256	29° 47′.6
.53	.50553	.86281	.58592	30° 22′.0
.54	.51414	.85771	.59943	30° 56′.4
.55	.52269	.85252	.61311	31° 30′.8
.56	.53119	.84726	.62695	32° 05′.1
.57	.53963	.84190	.64097	32° 39′.5
.58	.54802	.83646	.65517	33° 13′.9
.59	.55636	83094	.66956	33° 48′.3
.60	.56464	.82534	.68414	34° 22′.6
.61	.57287	.81965	.69892	34° 57′.0
.62	.58104	.81388	.71391	35° 31′.4
.63	.58914	.80803	.72911	36° 05′.8
.64	.59720	.80210	.74454	36° 40′.2
.65	.60519	.79608	.76020	37° 14′.5
.66	.61312	.78999	.77610	37° 48′.9
.67	.62099	.78382	.79225	38° 23′.3
.68	.62879	.77757	.80866	38° 57′.7
.69	.63654	.77125	.82533	39° 32′.0
.70	.64422	.76484	.84229	40° 06′.4
.71	.65183	.75836	.85953	40° 40′.8
.72	.65938	.75181	.87707	41° 15′.2
.73	.66687	.74517	.89492	41° 49′.6
.74	.67429	.73847	.91309	42° 23′.9
.75	.68164	.73169	.93160	42° 58′.3
.76	.68892	.72484	.95055	43° 32′.7
.77	.69614	.71791	.96967	44° 07′.1
.78	.70328	.71091	.98926	44° 41′.4
.79	.71035	.70385	1.0092	45° 15′.8
.80	.71736	.69671	1.0296	45° 50′.2
.81	.72429	.68950	1.0505	46° 24′.6
.82	.73115	.68222	1.0717	46° 59′.0
.83	.73793	.67488	1.0934	47° 33′.3
.84	.74464	.66746	1.1156	48° 07′.7
.85	.75128	.65998	1.1383	48° 42′.1
.86	.75784	.65244	1.1616	49° 16′.5
.87	.76433	.64483	1.1853	49° 50′.8
.88	.77074	.63715	1.2097	50° 25′.2
.89	.77707	.62941	1.2346	50° 59′.6
.90	.78333	.62161	1.2602	51° 34′.0
.91	.78950	.61375	1.2864	52° 08′.3
.92	.79560	.60582	1.3133	52° 42′.7
.93	.80162	.59783	1.3409	53° 17′.1
.94	.80756	.58979	1.3692	53° 51′.5
.95	.81342	.58168	1.3984	54° 25′.9
.96	.81919	.57352	1.4284	55° 00′.2
.97	.82489	.56530	1.4592	55° 34′.6
.98	.83050	.55702	1.4910	56° 09′.0
.99	.83603	.54869	1.5237	56° 43′.4

	-
77	ዏ
¥	ı

					_					
æ Radians	Sin æ	Cos æ	Tan æ	Equivalent of α		æ Radians	Sin æ	Cos æ	Tan æ	Equivalent of x
1.00	.84147	.54030	1.5574	57° 17′.7		1.80	.96356	.26750	3.6021	74° 29′.1
1.01 1.02 1.03	.84683 .85211 .8 97 30	.53186 .52337 .51482	$\begin{array}{c} 1.5922 \\ 1.6281 \\ 1.6652 \end{array}$	57° 52′.1 58° 26′.5 59° 00′.9		1.31 1.32 1.33	.96618 .96872 .97115	.25785 .24818 .23848	3,7470 3,9033 4,0723	75° 03′.4 75° 37′.8 76° 12′.2
1.04 1.05 1.06	.86240 .86742 .87236	.50622 .49757 .48887	1.7036 1.7433 1.7844	59° 35′.3 60° 09′.6 60° 44′.0		1.34 1.35 1.36	.97348 .97572 .97786	.22875 .21901 .20924	4.2556 4.4552 4.6734	76° 46′.6 77° 21′.0 77° 55′.3
1.07 1.08 1.09	.87720 .88196 .88663	.48012 .47133 .46249	1.8270 1.8712 1.9171	61° 18′.4 61° 52′.8 62° 27′.1		1.37 1.38 1.39	.97991 .98185 .98370	.19945 .18964 .17981	4.9131 5.1774 5.4707	78° 29′.7 79° 04′.1 79° 38′.5
1.10	.89121	.45360	1.9648	63° 01′.5		1.40	.98545	.16997	5.7979	80° 12′.8
1.11 1.12 1.13	.89570 .90010 .90441	.44466 .43568 .42666	2.0143 2.0660 2.1198	63° 35′.9 64° 10′.3 64° 44′.7		1.41 1.42 1.43	.98710 .98865 .99010	.16010 .15023 .14033	6.1654 6.5811 7.0555	80° 47′.2 81° 21′.6 81° 56′.0
1.14 1.15 1.16	.90863 .91276 .91680	.41759 .40849 .39934	$\begin{array}{c} 2.1759 \\ 2.2345 \\ 2.2958 \end{array}$	65° 19′.0 65° 53′.4 66° 27′.8		1.44 1.45 1.46	.99146 .99271 .99387	.13042 .12050 .11057	7.6018 8.2381 8.9886	82° 30′.4 83° 04′.7 83° 39′.1
1.17 1.18 1.19	.92075 .92461 .92837	.39015 .38092 .37166	$2.3600 \\ 2.4273 \\ 2.4979$	67° 02′.2 67° 36′.5 68° 10′.9		1.47 1.48. 1.49	.99492 .99588 .99674	.10063 .09067 .08071	9.8874 10.983 12.350	84° 13′.5 84° 47′.9 85° 22′.2
1.20	.93204	.36236	2.5722	68° 45′.3		1.50	.99749	.07074	14.101	85° 56′.6
1.21 1.22 1.23	.93562 .93910 .94249	.35302 .34365 .33424	2.6503 2.7328 2.8198	69° 19′.7 69° 54′.1 70° 28′.4		1.51 1.52 1.53	.99815 .99871 .99917	.06076 .05077 .04079	16.428 19.670 24.498	86° 31′.0 87° 05′.4 87° 39′.8
1.24 1.25 1.26	.94578 .94898 .95209	.32480 .31532 .30582	2.9119 3.0096 3.1133	71° 02′.8 71° 37′.2 72° 11′.6		1.54 1.55 1.56	.99953 .99978 .99994	.03079 .02079 .01080	32.461 48.078 92.621	88° 14′.1 88° 48′.5 89° 22′.9
1.27 1.28 1.29	.95510 .95802 .96084	.29628 .28672 .27712	3.2236 3.3413 3.4672	72° 45′.9 73° 20′.3 73° 54′.7		1.57 1.58 1.59	1.0000 .99996 .99982	.00080 00920 01920	1255.8 -108.65 -52.067	89° 57′.3 90° 31′.6 91° 06′.0
1.30	.96356	.26750	3.6021	74° 29′.1	1	1.60	.99957	02920	-34.233	91° 40′.4

TABLE Va-RADIANS TO DEGREES

RADIANS	Тептив	HUNDREDTHS	THOUSANDTHS	Ten-thousandths
1 57°17'44". 2 114°35'29". 3 171°53'14". 4 229°10'59". 5 286°28'44". 6 343°46'28". 7 401° 4'13". 8 458°21'58". 9 515°39'43".	6 11°27'33''.0 4 17°11'19''.4 2 22°55'05''.9 0 28°38'52''.4 34°22'38''.9 6 40° 6'25''.4 4 45°50'11''.8	0°34′22′′.6 1° 8′45′′.3 1°43′07′′.9 2°17′30′′.6 2°51′53′′.2 3°26′15′′.9 4° 0′38′′.5 4°35′01′′.2 5° 9′23′′.8	0° 3′26″.3 0° 6′52″.5 0°10′18″.8 0°13′45″.1 0°17′11″.3 0°20′37″.9 0°27′30″.1 0°30′56″.4	0° 0′20″.6 0° 0′41″.3 0° 1′01″.9 0° 1′22″.5 0° 1′43″.1 0° 2′03″.8 0° 2′24″.4 0° 3′05″.6

94 Table VI — Powers — Roots — Reciprocals [vi

n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	∜10 n	$\sqrt[8]{100}n$	1/n
1.00	1.0000	1.00000	3.16228	1.00000	1.00000	2.15443	4.64159	1.00000
*1.01	1.0201	1.00499	3.17805	1.03030	1.00332	2.16159	4.65701	.990099
1.02	1.0404	1.00995	3.19374	1.06121	1.00662	2.16870	4.67233	.980392
1.03	1.0609	1.01489	3.20936	1.09273	1.00990	2.17577	4.68755	.970874
1.04 1.05 1.06	1.0816 1.1025 1.1236	1.01980 1.02470 1.02956	3.22490 3.24037 3.25576	1.12486 1.15762 1.19102	1.01316 1.01640 1.01961	2.18279 2.18976 2.19669	4.70267 4.71769	.961538 .952381
1.07 1.08	1.1449 1.1664 1.1881	f.03441 1.03923	3.27109 3.28634 3.30151	1.22504 1.25971 1.29503	1.02281 1.02599 1.02914	2.20358 2.21042	4.73262 4.74746 4.76220	.943396 .934579 .925926
1.10	1.2100	1.04403	3.31662	1.33100	1.03228	2.21722	4.77686	.917431
1.11	1.2321	1.05357	3.33167	1.36763	1.03540	2.23070	4.80590	.900901
1.12	1.2544	1.05830	3.34664	1.40493	1.03850	2.23738	4.82028	.892857
1.13	1.2769	1.06301	3.36155	1.44290	1.04158	2.24402	4.83459	.884956
1.14	1,2996	1.06771	3.37639	1.48154	1.04464	2.25062	4.84881	.877193
1.15	1,3225	1.07238	3.39116	1.52088	1.04769	2.25718	4.86294	.869565
1.16	1,3456	1.07703	3.40588	1.56090	1.05072	2.26370	4.87700	.862069
1.17	1.3689	1.08167	3.42053	1.60161	1.05373	2.27019	4.89097	.854701
1.18	1.3924	1.08628	3.43511	1.64303	1.05672	2.27664	4.90487	.847458
1.19	1.4161	1.09087	3.44964	1.68516	1.05970	2.28305	4.91868	.840336
1.20	1.4400	1.09545	3.46410	1.72800	1.06266	2.28943	4.93242	.833333
1.21	1.4641	1.10000	3.47851	1.77156	1.06560	2.29577	4.94609	.826446
1.22	1.4884	1.10454	3.49285	1.81585	1.06853	2.30208	4.95968	.819672
1.23	1.5129	1.10905	3.50714	1.86087	1.07144	2.30835	4.97319	.813008
1.24	1.5376	1.11355	3.52136	1.90662	1.07434	2.31459	4.98663	.806452
1.25	1.5625	1.11803	3.53553	1.95312	1.07722	2.32079	5.00000	.800000
1.26	1.5876	1.12250	3.54965	2.00038	1.08008	2.32697	5.01330	.7936 5 1
1.27	1.6129	1.12694	3.56371	2.04838	1.08293	2.33311	5.02653	.787402
1.28	1.6384	1.13137	3.57771	2.09715	1.08577	2.33921	5.03968	.781250
1.29	1.6641	1.13578	3.59166	2.14669	1.08859	2.34529	5.05277	.775194
1.30	1.6900	1.14018	3.60555	2.19700	1.09139	2.35133	5.06580	.769231
1.31	1.7161	1.14455	3.61939	2.24809	1.09418	2.35735	5.07875	.763359
1.32	1.7424	1.14891	3.63318	2.29997	1.09696	2.36333	5.09164	.757576
1.33	1.7689	1.15326	3.64692	2.35264	1.09972	2.36928	5.10447	.751880
1.34	1.7956	1.15758	3.66060	2.40610	1.10247	2.37521	5.11723	.746269
1.35	1.8225	1.16190	3.67423	2.46038	1.10521	2.38110	5.12993	.740741
1.36	1.8496	1.16619	3.68782	2.51546	1.10793	2.38697	5.14256	.735294
1.37	1.8769	1.17047	3.70135	2.57135	1.11064	2.39280	5.15514	.729927
1.38	1.9044	1.17473	3.71484	2.62807	1.11334	2.39861	5.16765	.724638
1.39	1.9321	1.17898	3.72827	2.68562	1.11602	2.40439	5.18010	.719424
1.40	1.9600	1.18322	3.74166	2.74400	1.11869	2.41014	5.19249	.714286
1.41	1.9881	1.18743	3.75500	2.80322	1.12135	2.41587	5.20483	.709220
1.42	2.0164	1.19164	3.76829	2.86329	1.12399	2.42156	5.21710	.704225
1.43	2.044 C	1.19583	3.78153	2.92421	1.12662	2.42724	5.22932	.699301
1.44	2.0736	1.20000	3.79473	2.98598	1.12924	2.43288	5.24148	.694444
1.45	2.1025	1.20416	3.80789	3.04862	1.13185	2.43850	5.25359	.689655
1.46	2.1316	1.20830	3.82099	3.11214	1.13445	2.44409	5.26564	.684932
1.47	2.1609	1.21244	3.83406	3.17652	1.13703	2.44966	5.27763	.680 2 72
1.48	2.1904	1.21655	3.84708	3.24179	1.13960	2.45520	5.28957	.675676
1.49	2.2201	1.22066	3.86005	3.30795	1.14216	2.46072	5.30146	.671141
1.50	2.2500	1.22474	3.87298	3.37500	1,14471	2.46621	5.31329	.666667
n	m³	\sqrt{n}	$\sqrt{10n}$	n^3	√n	∛10n	∛100 n	1/n

n	n ²	\sqrt{n}	$\sqrt{10n}$	ng	∛n	√10n	√100 n	1/n
1.50	2.2500	1.22474	3.87298	3.37500	1.14471	2.46621	5.31329	.668667
1.51	2.2801	1.22882	3.88587	3.44295	1.14725	2.47168	5.32507	.662252
1.52 1.53	2.3104 2.3409	1.23288 1.23693	3.89872 3.91152	3.51181 3.58158	1.14978 1.15230	2.47712 2.48255	5.33680 5.34848	.657895 .653595
1.54	2.3716	1.24097	3.92428	3.65226			1	
1.55	2.4025	1.24499	3.93700	3.72388	1.15480 1.15729	2.48794 2.49332	5.36011 5.37169	.649351 .645161
1.56	2.4336	1.24900	3.94968	3.79642	1.15978	2.49867	5.38321	.641026
1.57	2.4649	1.25300	3.96232	3.86989	1.16225	2.50399		.636943
1.58 1.59	2.4964 2.5281	1.25698 1.26095	3.97492 3.98748	3.94431 4.01968	1.16471 1.16717	2.50930 2.51458	5.40612 5.41750	.632911 .628931
1.60	2.5600	1.26491	4.00000	4.09600	1.16961	2.51984	5.42884	.625000
1.61	2.5921	1.26886	4.01248	4.17328	1.17204	2.52508	5.44012	.621118
1.62	2.6244	1.27279	4.02492	4.25153	1.17446	2.53030	5.45136	.617284
1.63	2.6569	1.27671	4.03733	4.33075	1.17687	2.53549	5.46256	.613497
1.64	2.6896	1.28062	4.04969	4.41094	1.17927	2.54067	5.47370	.609756
1.65 1.66	2.7225 2.7556	1.28452 1.28841	4.06202 4.07431	4.49212 4.57430	1.18167 1.18405	2.54582 2.55095	5.48481 5.49586	.606061 .602410
1.67	2.7889	1.29228	4.08656	4.65746	1.18642	2.55607	5.50688	.598802
1.68	2.8224	1.29615	4.09878	4.74163	1.18878	2.56116	5.51785	.595238
1.69	2.8561	1.30000	4.11096	4.82681	1.19114	2.56623	5.52877	.591716
1.70	2.8900	1.30384	4.12311	4.91300	1.19348	2.57128	5.53966	.588235
1.71	2.9241	1.30767	4.13521	5.00021	1.19582	2.57631	5.55050	.584795
1.72 1.73	2.9584 2.9929	1.31149 1.31529	4.14729 4.15933	5.08845 5.17772	1.19815 1.20046	2.58133 2.58632	5.56130 5.57205	.581395
1.74	3.0276	1.31909	4.17133	5.26802	1.20277	2.59129	5.58277	.574713
1.75	3.0625	1.32288	4.18330	5.35938	1.20507	2.59625	5.59344	.571429
1.76	3.0976	1.32665	4.19524	5.45178	1.20736	2.60118	5.60408	.568182
1.77 1.78	3.1329	1.33041	4.20714	5.54523	1.20964	2.60610	5.61467	.564972
1.79	3.1684 3.2041	1.33417 1.33791	4.21900 4.23084	5.63975 5.73534	1.21192 1.21418	2.61100 2.61588	5.62523 5.63574	.561798 .558659
1.80	3.2400	1.34164	4.24264	5.83200	1.21644	2.62074	5.64622	.555556
1.81	3.2761	1.34536	4.25441	5.92974	1.21869	2.62559	5.65665	.552486
1.82 1.83	3.3124 3.3489	1.34907	4.26615	6.02857	1.22093	2.63041	5.66705	.549451
		1.35277	4.27785	6.12849	1.22316	2.63522	5.67741	.546448
1.84 1.85	3.3856 3.4225	1.35647 1.36015	4.28952 4.30116	6.22950 6.33162	1.22539 1.22760	2.64001 2.64479	5.68773 5.69802	.543478 .540541
1.86	3.4596	1.36382	4.31277	6.43486	1.22981	2.64954	5.70827	.537634
1.87	3.4969	1.36748	4.32435	6.53920	1.23201	2.65428	5.71848	.534759
1.88 1.89	3.5344 3.5721	1.37113 1.37477	4.33590 4.34741	6.64467 6.75127	1.23420 1.23639	$2.65901 \\ 2.66371$	5.72865 5.73879	.531915 .529101
1.90	3.6100	1.37840	4.35890	6.85900	1.23856	2.66840	5.74890	.526316
1.91	3.6481	1.38203	4.37035	6.96787	1.24073	2.67307	5.75897	.523560
1.92	3.6864	1.38564	4.38178	7.07789	1.24289	2.67773	5.76900	.520833
1.93	3.7249	1.38924	4.39318	7.18906	1.24505	2.68237	5.77900	.518135
1.94	3.7636	1.39284	4.40454	7.30138	1.24719	2.68700	5.78896	.515464
1.95 1.96	3.8025 3.8416	1.39642 1.40000	4.41588 4.42719	7.41488 7.52954	1.24933 1.25146	2.69161 2.69620	5.79889 5.80879	.512821 .510204
1.97	3.8809	1.40357	4.43847	7.64537	1.25359	2.70078	5.81865	.507614
1.98 1.99	3.9204 3.9601	1.40712 1.41067	4.44972 4.46094	7.76239 7.88060	1.25571 1.25782	2.70534 2.70989	5,82848 5,83827	.505051
2.00	4.0000	1.41421	4.47214	8.00000	1.25992	2.71442	5.84804	.500000
	n ²	\sqrt{n}	$\sqrt{10n}$	n8	$\sqrt[3]{n}$	₹10 n	$\sqrt[3]{100 n}$	1/n
n	76-	vn	VIUN	70"	vn	V 107ℓ	v 100 n	1/76

n	n^2	\sqrt{n}	$\sqrt{10n}$	n ³	$\sqrt[3]{n}$	₹10 n	√100 m	1/n
2.00	4.0000	1.41421	4 47214	8.00000	1.25992	2.71442	5.84804	.500000
2.01	4.0401	1.41774	4 48330	8.12060	1.26202	2.71893	5.85777	497512
2.02	4.0804	1.42127	4.49144	8.24241	1.26411	2.72344	5.86746	495050
2.03	4.1209	1.42478	4.50555	8.36543	1.26619	2.72792	5.87713	.492611
2.04	4.161.6	1.42829	4.51664	8.48966	1.26827	2.73239	5.88677	.490196
2.05	4.2025	1.43178	4.52769	8.61512 8.74182	1.27033 1.27240	2.73685 2.74129	5.89637	487805
2.06	4.2436	,1.43527	4.53872		1		5.90594	.485437
2.07	4.2849	1.43875	4.54973	8.86974	1.27445	2.74572	5.91548	483092
$\frac{2.08}{2.09}$	4.3264 4.3681	1.44222 1.44568	4.56070 4.57165	8.99891 9.12933	1.27650 1.27854	2.75014 2.75454	5.92499 5.93447	.480769 .478469
				\ <u></u>	-[
2:10	4.4100	1.44914	4 58258	9 26100	1.28058	2.75892	5.94392	.476190
2.11	4.4521	1.45258	4.59347	9.39393	1.28261	2.76330	5.95334	.473934
$\frac{2.12}{2.13}$	4.4944 4.5369	1.45602 1.45945	4.60435 4.61519	9.52813 9.66360	1.28463 1.28665	2.76766 2.77200	5.96273	.471698
	1	1		1	1	i	1	.469434
$2.14 \\ 2.15$	4.5796 4.6225	1.46287 1.46629	4.62601 4.63681	9.80034 9.93838	1.28866 1.29066	2.77633 2.78065	5.98142	.467290
2.16	4.6656	1.46969	4.64758	10.0777	1.29266	2.78495	5.99073 6.00000	.465116 .462963
		1 .			i	1		
$\frac{2.17}{2.18}$	4.7089 4.7524	1.47309 1.47648	4.65833 4.66905	10.2183 10.3602	1.29465 1.29664	$2.78924 \ 2.79352$	6.00925 6.01846	.460829 .458716
2.19	4.7961	1.47986	4.67974	10.5035	1.29862	2.79779	6.02765	.456621
2.20	4.8400	1.48324	4.69042	10.6480	1.30059	2.80204	6.03681	.454545
2.21	4.8841	1.48661	4.70106	10.7939	1.30256	2.80628	6.04594	.452489
2.22	4.9284	1.48997	4.71169	10.1333	1.30452	2.81050	6.05505	450450
2.23	4.9729	1.49332	4.72229	11.0896	1.30648	2.81472	6.06413	.448430
2.24	5.0176	1.49666	4.73286	11.2394	1.30843	2.81892	6.07318	.446429
2.25	5.0625	1.50000	4.74342	11.3906	1.31037	2.82311	6.08220	.444444
2.26	5.1076	1.50333	4.75395	11.5432	1.31231	2.82728	6.09120	.442478
2.27	5.1529	1.50665	4.76445	11.6971	1.31424	2.83145	6.10017	.440529
$\frac{2.28}{2.29}$	5.1984	1.50997	4.77493	11.8524	1.31617	2.83560	6.10911	.438596
2.30	5.2441	1.51327 1.51658	4.78539 4.79583	12.0090 12.1670	1.31809	2.83974 2.84387	6.11803	.436681
$\frac{2.31}{2.32}$	5.3361 5.3824	1.51987 1.52315	4.80625 4.81664	12.3264 12.4872	1.32192 1.32382	2.84798 2.85209	6.13579 6.14463	.432900 .431034
2.33	5.4289	1.52643	4.82701	12.6493	1.32572	2.85618	6.15345	.429185
2.34	5.4756	1.52971	4.83735	12.8129	1.32761	2.86026	6.16224	.427350
2.35	5.5225	1.53297	4.84768	12.9779	1.32950	2.86433	6.17101	.425532
2.36	5.5696	1.53623	4.85798	13.1443	1.33139	2.86838	6.17975	.423729
2.37	5.6169	1.53948	4.86826	13.3121	1.33326	2.87243	6.18846	.421941
2.38	5.6644	1.54272	4.87852	13.4813	1.33514	2.87646	6.19715	.420168
2.39	5.7121	1.54596	4.88876	13.6519	1.33700	2.88049	6.20582	.418410
2.40	5.7600	1.54919	4.89898	13.8240	1.33887	2.88450	6.21447	.416667
2.41	5.8081	1.55242	4.90918	13.9975	1.34072	2.88850	6.22308	.414938
$\frac{2.42}{2.43}$	5.8564 5.9049	1.55563	4.91935	14.1725	1.34257	2.89249	6.23168	.413223
		1.55885	4.92950	14.3489	1.34442	2.89647	6.24025	.411523
2.44	5.9536	1.56205	4.93964	14.5268	1.34626	2.90044	6.24880	409836
2.45 2.46	6.0025 6.0516	1.56525 1.56844	4.94975 4.95984	14.7061 14.8869	1.34810 1.34993	2.90439 2.90834	6.25732 6.26583	.408163
2.47	6.1009		4.96991	15.0692	1.35176	2.91227	6.27431	.404858
2.48	6.1009	1.57162 1.57480	4.96991	15.0692	1.35358	2.91227	6.28276	.403226
2.49	6.2001	1.57797	4.98999	15.4382	1.35540	2.92011	6.29119	.401606
2.50	6.2500	1.58114	5.00000	15.6250	y .35721	2.92402	6.29961	.400000
n	282	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	∜10n	∛100 n	1/n

70	n ²	\sqrt{n}	$\sqrt{10n}$	n ⁸	$\sqrt[3]{n}$	√10 n	√100 n	1/n.
2.50	6.2500	1.58114	5.00000	15.6250	1.35721	2.92402	6.29961	.400000
2.51	6.3001	1.58430	5.00999	15.8133	1.35902	2.92791	6.30799	.398406
$\begin{array}{c c} 2.52 \\ 2.53 \end{array}$	6.3504	1.58745 1.59060	5.01996 5.02991	16.0030 16.1943	1.36082	2.93179	6.31636 6.32470	.396825 .395257
2.54	1	1.59374	5.03984	1	1.36262	2.93567	6.33303	
2.55	6.4516 6.5025	1.59687	5.04975	16.3871 16.5814	1.36441 1.36620	2.93953 2.94338	6.34133	.393701 .392157
2.56	6.5536	1.60000	5.05964	16.7772	1.36798	2.94723	6.34960	.390625
2.57	6.6049	1.60312	5.06952	16.9746	1.36976	2.95106	6.35786	.389105
2.58 2.59	6.6564	1.60624	5.07937 5.08920	17.1735 17.3740	1.37153 1.37330	2.95488 2.95869	6.36610 6.37431	.387597 .386100
2.60	6.7600	1.61245	5.09902	17.5760	1.37507	2.96250	6.38250	.384615
2.61	6.8121	1.61555	5.10882	17,7796	1.37683	2.96629	6.39068	.383142
2.62	6.8644	1.61864	5.11859	17.9847	1.37859	2.97007	6.39883	.381679
2.63	6.9169	1.62173	5.12835	18.1914	1.38034	2.97385	6.40696	.380228
2.64	6.9696	1.62481	5.13809	18.3997	1.38208	2.97761	6.41507	.378788 .377358
2.65 2.66	7.0225 7.0756	1.62788 1.63095	5.14782 5.15752	18.6096 18.8211	1.38383 1.38557	2.98137 2.98511	6.42316 6.43123	.375940
2.67	7.1289	1.63401	5.16720	19.0342	1.38730	2.98885	6.43928	.374532
2.68	7.1824	1.63707	5.17687	19.2488	1.38903	2.99257	6.44731	.373134
2.69	7.2361	1.64012	5.18652	19.4651	1.39076	2.99629	6.45531	.371747
2.70	7.2900	1.64317	5.19615	19.6830	1.39248	3.00000	6.46330	.370370
$\frac{2.71}{2.72}$	7.3441 7.3984	1.64621 1.64924	5.20577 5.21536	19.9025 20.1236	1.39419 1.39591	3.00370 3.00739	$6.47127 \\ 6.47922$.369004
2.73	7.4529	1.65227	5.22494	20.1250	1.39761	3.00107	6.48715	366300
2.74	7.5076	1.65529	5.23450	20.5708	1.39932	3.01474	6.49507	.364964
2.75	7.5625	1.65831	5.24404	20.7969	1.40102	3.01841	6.50296	.363636
2.76	7.6176	1.66132	5.25357	21.0246	1.40272	3.02206	6.51083	.362319
$\frac{2.77}{2.78}$	7.6729 7.7284	1.66433 1.66733	5.26308 5.27257	21.2539 21.4850	1.40441 1.40610	3.02570 3.02934	6.51868 6.52652	.361011 .359712
2.79	7.7841	1.67033	5.28205	21.7176	1.40778	3.03297	6.53434	.358423
2.80	7.8400	1.67332	5.29150	21.9520	1.40946	3.03659	6.54213	.357143
2.81	7.8961	1.67631	5.30094	22.1880	1.41114	3.04020	6.54991	.355872
$\frac{2.82}{2.83}$	7.9524 8.0089	1.67929 1.68226	5.31037 5.31977	$22.4258 \\ 22.6652$	1.41281 1.41448	3.04380 3.04740	6.55767 6.56541	.354610 .353357
2.84	8.0656	1.68523	5.32917	22,9063	1.41614	3.05098	6.57314	.352113
2.85	8.1225	1.68819	5.33854	23.1491	1.41780	3.05456	6.58084	.350877
2.86	8.1796	1.69115	5.34790	23.3937	1.41946	3.05813	6.58853	.349650
2.87	8.2369	1.69411	5.35724	23.6399	1.42111	3.06169 3.06524	6.59620 6.60385	.348432 .347222
2.88 2.89	8.2944 8.3521	1.69706 1.70000	5.36656 5.37587	$23.8879 \\ 24.1376$	1.42276 1.42440	3.06878	6.61149	.346021
2.90	8.4100	1.70294	5.38516	24.3890	1.42604	3.07232	6.61911	.344828
2.91	.8.4681	1.70587	5.39444	24.6422	1.42768	3.07584	6.62671	.343643
2.92	8.5264 8.5849	1.70880	5.40370 5.41295	24.8971 25.1538	1.42931 1.43094	3.07936 3.08287	6.63429 6.64185	.342466 .341297
2.93		1.71172				3.08638	6.64940	.340136
$\frac{2.94}{2.95}$	8.6436 8.7025	1.71464 1.71756	5.42218 5.43139	25.4122 25.6724	1.43257 1.43419	3.08987	6.65693	.338983
2.96	8.7616	1.72047	5.44059	25.9343	1.43581	3.09336	6.66444	.337838
2.97	8.8209	1.72337	5.44977	26.1981	1.43743	3.09684	6.67194	.336700
2.98 2.99	8.8804 8.9401	1.72627 1.72916	5.45894 5.46809	26.4636 26.7309	1.43904 1.44065	3.10031 3.10378	6.67942 6.68688	.335570 .334448
3.00	9.0000	1.73205	5.47723	27.0000	1.44225	3,10723	6.69433	.333333
$\frac{n}{n}$	n^2	\sqrt{n}	$\sqrt{10n}$	n^3	√n	∛10 n	∛100 n	1/10

	. n	n^2	\sqrt{n}	$\sqrt{10n}$	n^3	$\sqrt[3]{n}$	³ √10 n	∛100 n	1/n
١	8.00	9.0000	1.73205	5.47723	27.0000	1.44225	3.10723	6.69433	.333333
	3.01	9.0601	1.73494	5.48635	27.2709	1.44385	3.11068	6.70176	.332226
	3.02	9.1204	1.73781	5.49545	27.5436	1.44545	3.11412	6.70917	.331126
	3.03	9.1809	1.74069	5.50454	27.8181	1.44704	3.11756	6.71657	.330033
	3.04	9.2416	1.74356	5.51362	28.0945	1.44863	3.12098	6.72395°	.328947
	3.05	9.3025	1.74642	5.52268	28.3726	1.45022	3.12440	6.73132	.327869
	3.06	9.3636	1.74929	5.53173	28.6526	1.45180	3.12781	6.73866	.326797
	3.07	9.4249	1.75214	5.54076	28.9344	1.45338	3.13121	6.74600	.325733
	3.08	9.4864	1.75499	5.54977	29.2181	1.45496	3.13461	6.75331	.324675
	3.09	9.5481	1.75784	5.55878	29.5036	1.45653	3.13800	6.76061	.323625
	3.10	9.6100	1.76068	5.56776	29.7910	1.45810	3.14138	6.76790	.322581
	3.11	9.6721	1.76352	5.57674	30.0802	1.45967	3.14475	6.77517	.321543
	3.12	9.7344	1.76635	5.58570	30.3713	1.46123	3.14812	6.78242	.320513
	3.13	9.7969	1.76918	5.59464	30.6643	1.46279	3.15148	6.78966	.319489
	3.14 3.15 3.16	9.8596 9.9225 9.9856	$\begin{array}{c} 1.77200 \\ 1.77482 \\ 1.77764 \end{array}$	5.60357 5.61249 5.62139	30.9591 31.2559 31.5545	1.46434 1.46590 1.46745	3.15483 3.15818 3.16152	6.79688 6.80409 6.81128	.318471 .317460 .316456
	3.17	10.0489	1.78045	5.63028	31.8550	1.46899	3.16485	6.81846	.315457
	3.18	10.1124	1.78326	5.63915	32.1574	1.47054	3.16817	6.82562	.314465
	3.19	10.1761	1.78606	5.64801	32.4618	1.47208	3.17149	6.83277	.313480
	3.20	10.2400	1.78885	5.65685	32.7680	1.47361	3.17480	6.83990	.312500
	3.21	10.3041	1.79165	5.66569	33.0762	1.47515	3.17811	6.84702	.311526
	3.22	10.3684	1.79444	5.67450	33.3862	1.47668	3.18140	6.85412	.310559
	3.23	10.4329	1.79722	5.68331	33.6983	1.47820	3.18469	6.86121	.309598
	3.24	10.4976	1.80000	5.69210	34.0122	1.47973	3.18798	6.86829	.308642
	3.25	10.5625	1.80278	5.70088	34.3281	1.48125	3.19125	6.87534	.307692
	3.26	10.6276	1.80555	5.70964	34.6460	1.48277	3.19452	6.88239	.306748
	3.27	10.6929	1.80831	5.71839	34.9658	1.48428	3.19778	6.88942	.305810
	3.28	10.7584	1.81108	5.72713	35.2876	1.48579	3.20104	6.89643	.304878
	3.29	10.8241	1.81384	5.73585	35.6113	1.48730	3.20429	6.90344	.303951
	8.30	10.8900	1.81659	5.74456	35.9370	1.48881	3.20753	6.91042	.303030
	3.31	10.9561	1.81934	5.75326	36.2647	1.49031	3.21077	6.91740	.302115
	3.32	11.0224	1.82209	5.76194	36.5944	1.49181	3.21400	6.92436	.301205
	3.33	11.0889	1.82483	5.77062	36.9260	1.49330	3.21722	6.93130	.300300
	3.34	11.1556	1.82757	5.77927	37.2597	1.49480	3.22044	6.93823	.299401
	3.35	11.2225	1.83030	5.78792	37.5954	1.49629	3.22365	6.94515	.298507
	3.36	11.2896	1.83303	5.79655	37.9331	1.49777	3.22686	6.95205	.297619
	3.37	11.3569	1.83576	5.80517	38.2728	1.49926	3.23006	6.95894	.296736
	3.38	11.4244	1.83848	5.81378	38.6145	1.50074	3.23325	6.96582	.295858
	3.39	11.4921	1.84120	5.82237	38.9582	1.50222	3.23643	6.97268	.294985
	3.40	11.5600	1.84391	5.83095	39.3040	1.50369	3.23961	6.97953	.294118
	3.41	11.6281	1.84662	5.83952	39.6518	1.50517	3.24278	6.98637	.293255
	3.42	11.6964	1.84932	5.84808	40.0017	1.50664	3.24595	6.99319	.292398
	3.43	11.7649	1.85203	5.85662	40.3536	1.50810	3.24911	7.00000	.291545
	3.44	11.8336	1.85472	5.86515	40.7076	1.50957	3.25227	7.00680	.290698
	3.45	11.9025	1.85742	5.87367	41.0636	1.51103	3.25542	7.01358	.289855
	3.46	11.9716	1.86011	5.88218	41.4217	1.51249	3.25856	7.02035	.289017
	3.47	12.0409	1.86279	5.89067	41.7819	1.51394	3.26169	7.02711	.288184
	3.48	12.1104	1.86548	5.89915	42.1442	A.51540	3.26482	7.03385	.287356
	3.49	12.1801	1.86815	5.90762	42.5085	1.51685	3.26795	7.04058	.286533
	8.50	12.2500	1.87083	5.91608	42.8750	1.51829	3.27107	7.04730	.285714
	'n	n^2	\sqrt{n}	$\sqrt{10n}$	328	∛n	₹10 n	∛100 n	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n ²	$\sqrt[3]{n}$	∜10 n	∛100 m	1/n
8.50	12.2500	1.87083	5.91608	42.8750	1.51829	3.27107	7.04730	.285714
3.51	12.3201	1.87350	5.92453	43.2436	1.51974	3.27418	7.05400	.284900
3.52	12.3904	1.87617	5.93296	43.6142	1.52118	3.27729	7.06070	.284091
3.53	12.4609	1.87883	5.94138	43.9870	1.52262	3.28039	7.06738	.283286
3.54	12.5316	1.88149	5.94979	44.3619	1.52406	3.28348	7.07404	.282486
3.55	12.6025	1.88414	5.95819	44.7389	1.52549	3.28657	7.08070	.281690
3.56	12.6736	1.88680	5.96657	45.1180	1.52692	3.28965	7.08734	.280899
3.57	12.7449	1.88944	5.97495	45.4993	1.52835	3.29273	7.09397	.280112
3.58 3.59	12.8164	1.89209	5.98331	45.8827	1.52978	3.29580	7.10059	.279330
	12.8881	1.89473	5.99166	46.2683	1.53120	3.29887	7.10719	.278552
3.60	12.9600	1.89737	6.00000	46.6560	1.53262	3.30193	7.11379	.277778
3.61	13.0321	1.90000	6.00833	47.0459	1.53404	3.30498	7.12037	.277008
3.62	13.1044	1.90263	6.01664	47.4379	1.53545	3.30803	7.12694	.276243
3.63	13.1769	1.90526	6.02495	47.8321	1.53686	3.31107	7.13349	.275482
3.64	13.2496	1.90788	6.03324	48.2285		3.31411	7.14004	.274725
3.65	13.3225	1.91050	6.04152	48.6271	1.53968	3.31714	7.14657	.273973
3.66	13.3956	1.91311	6.04979	49.0279	1.54109	3.32017	7.15309	.273224
3.67	13.4689	1.91572	6.05805	49.4309	1.54249	3.32319	7.15960	.272480
3.68	13.5424	1.91833	6.06630	49.8360	1.54389	3.32621	7.16610	.271739
3.69	13.6161	1.92094	6.07454	50.2434	1.54529	3.32922	7.17258	.271003
3.70	13.6900	1.92354	6.08276	50.6530	1.54668	3.33222	7.17905	.270270
3.71	13.7641	1.92614	6.09098	51.0648	1.54807	3.33522	7.18552	.269542
3.72	13.8384	1.92873	6.09918	51.4788	1.54946	3.33822	7.19197	268817
3.73	13.9129	1.93132	6.10737	51.8951	1.55085	3.34120	7.19840	268097
3.74	13.9876	1.93391	6.11555	52.3136	1.55223	3.34419	7.20483	.267380
3.75	14.0625	1.93649	6.12372	52.7344	1.55362	3.34716	7.21125	.266667
3.76	14.1376	1.93907	6.13188	53.1574	1.55500	3.35014	7.21765	.265957
3.77	14.2129	1.94165	6.14003	53.5826	1.55637	3.35310	7.22405	.265252
3.78 3.79	14.2884 14.3641	1.94422 1.94679	6.14817	54.0102 54.4399	1.55775	3.35607	7.23043 7.23680	.264550
			6.15630		1.55912	3.35902		.263852
3.80	14.4400	1.94936	6.16441	54.8720	1.56049	3.36198	7.24316	.263158
3.81	14.5161	1.95192	6.17252	55.3063	1.56186	3.36492	7.24950	.262467
3.82 3.83	14.5924 14.6689	1.95448 1.95704	6.18061 6.18870	55.7430 56.1819	1.56322 1.56459	3.36786 3.37080	7.25584 7.26217	.261780 .261097
3.84 3.85	14.7456	1.95959	6.19677	56.6231	1.56595	3.37373	7.26848	.260417
3.86	14.8225 14.8996	1.96214 1.96469	6.20484 6.21289	57.0666 57.5125	1.56731 1.56866	3.37666 3.37958	7.27479 7.28108	.259740
					1			
3.87 3.88	14.9769 15.0544	1.96723 1.96977	6.22093 6.22896	57.9606 58.4111	1.57001 1.57137	3.38249 3.38540	7.28736 7.29363	.258398
3.89	15.1321	1.90911	6.23699	58.8639	1.57271	3.38831	7.29989	.257069
8.90	15.2100					3.39121	7.30614	.256410
		1.97484	6.24500	59.3190	1.57406			
3.91 3.92	15.2881 15.3664	1.97737	6.25300	59.7765	1.57541	3.39411 3.39700	7.31238 7.31861	.255754
3.93	15.3664 15.4449	1.97990 1.98242	6.26099 6.26897	60.2363 60.6985	1.57675 1.57809	3.39988	7.32483	.254453
							- 1	
3.94	15.5236	1.98494	6.27694	61.1630	1.57942	3.40277 3.40564	7.33104 7.33723	.253807
3.95 3.96	15.6025 15.6816	1.98746 1.98997	6.28490 6.29285	61.6299 62.0991	1.58076 1.58209	3.40851	7.34342	.252525
1								
3.97 3.98	15.7609 15.8404	1.99249 1.99499	6.30079 6.30872	62.5708 63.0448	1.58342 1.58475	3.41138 3.41424	7.34960 7.35576	.251889 .251256
3.99	15.9201	1.99499	6.31664	63.5212	1.58608	3.41710	7.36192	.250627
4.00	16.0000	2.00000	6.32456	64.0000	1.58740	3.41995	7.36806	.250000
Z.00								
n	n2	\sqrt{n}	$\sqrt{10n}$	n^8	₹n	√10 n	$\sqrt{100} n$	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n
4.00	16.0000	2.00000	6.32456	64.0000	1.58740	3.41905	7.36806	.250000
4.01	16.0801	2.00250	6.33246	64.4812	1.58872	3.42280	7.37420	.249377
4.02	16.1604	2.00499	6.34035	64.9648	1.59004	3.42564	7.38032	.248756
4.03	16.2409	2.00749	6.34823	65.4508	1.59136	3.42848	7.38644	.248139
4.04 4.05	16.3256 16.4025	2.00998 2.01246	6.35610 6.36396	65.9393 66.4301	1.59267 1.59399	3.43131 3.43414	7.39254 7.39864	.247525 .246914
4.06	16.4836	2.01494	6.37181	66.9234	1.59530	3.43697	7.404720	.246305
4.07	16.5649	2.01742	6.37966	67.4191	1.59661	3.43979	7.41080	.245700
4.08	16.6464	2.01990	6.38749	67.9173	1.59791	3.44260	7.41686	.245098
4.09	16.7281	2.02237	6.39531	68.4179	1.59922	3.44541	7.42291	.244499
4.10	16.8100	2.02485	6.40312	68.9210	1.60052	3.44822	7.42896	.243902
4.11	16.8921	2.02731	6.41093	69.4265	1.60182	3.45102	7.43499	.243309
4.12 4.13	16.9744 17.0569	2.02978 2.03224	6.41872 6.42651	69.9345 70.4450	1.60312 1.60441	3.45382 3.45661	7.44102 7.44703	.242718 .242131
4.14	17.1396	2.03470	6.43428	70.9579	1.60571	3.45939	7.45304	.241546
4.14	17.2225	2.03715	6.44205	71.4734	1.60700	3.46218	7.45904	.241046
4.16	17.3056	2.03961	6.44981	71.9913	1.60829	3.46496	7.46502	.240385
4.17	17.3889	2.04206	6.45755	72.5117	1.60958	3.46773	7.47100	.239808
4.18 4.19	17.4724 17.5561	2.04450 2.04695	6.46529 6.47302	73.0346 73.5601	1.61086 1.61215	3.47050 3.47327	7.47697 7.48292	.239234
4.20					1.61343		7.48887	.238095
	17.6400	2.04939	6.48074	74.0880		3.47603		
4.21 4.22	17.7241 17.8084	2.05183 2.05426	6.48845 6.49615	74.6185 75.1514	1.61471 1.61599	3.47878 3.48154	7.49481 7.50074	.237530 .236967
4.23	17.8929	2.05670	6.50384	75.6870	1.61726	3.48428	7.50666	236407
4.24	17.9776	2.05913	6.51153	76.2250	1.61853	3.48703	7.51257	.235849
4.25	18.0625	2.06155	6.51920	76.7656	1.61981	3.48977	7.51847	.235294
4.26	18.1476	2.06398	6.52687	77.3088	1.62108	3.49250	7.52437	.234742
4.27 4.28	18.2329 18.3184	2.06640 2.06882	6.53452 6.54217	77.8545 78.4028	1.62234 1.62361	3.49523 3.49796	7.53025 7.53612	.234192
4.29	18.4041	2.07123	6.54981	78.9536	1.62487	3.50068	7.54199	.233100
4.30	18.4900	2.07364	6.55744	79.5070	1.62613	3.50340	7.54784	.232558
4.31	18.5761	2.07605	6 56506	80.0630	1.62739	3.50611	7.55369	.232019
4.32	18.6624	2.07846	6.57267	80.6216	1.62865	3.50882	7.55953	.231481
4.33	18.7489	2.08087	6.58027	81.1827	1.62991	3.51153	7.56535	.230947
4.34 4.35	18.8356 18.9225	2.08327 2.08567	6.58787 6.59545	81.7465 82.3129	1.63116 1.63241	3.51423 3.51692	7.57117 7.57698	.230415 .229885
4.36	19.0096	2.08806	6.60303	82.8819	1.63366	3.51962	7.58279	.229358
4.37	19.0969	2.09045	6.61060	83.4535	1.63491	3.52231	7.58858	.228833
4.38	19.1844	2.09284	6.61816	84.0277	1.63619	3.52499	7.59436	.228311
4.39	19.2721	2.09523	6.62571	84.6045	1.63740	3.52767	7.60014	.227790
4.40	19.3600	2.09762	6.63325	85.1840	1.63864	3.53035	7.60590	.227273
4.41 4.42	19.4481 19.5364_	2.10000 2.10238	6.64078 6.64831	85.7661 86.3509	1.63988	3.53302 3.53569	7.61166 7.61741	.226757
4.43	19.6249	2.10238	6.65582	86.9383	1.64236	3.53835	7.62315	.225734
4.44	19.7136	2.10713	6.66333	87.5284	1.64359	3.54101	7.62888	.225225
4.45	19.8025	2.10950	6.67083	88.1211	1.64483	3.54367	7.63461	.224719
4.46	19.8916	2.11187	6.67832	88.7165	1.64606	3.54632	7.64032	.224215
4.47	19.9809 20.0704	2.11424 2.11660	6.68581	89.3146	1.64729	3.54897 3.55162	7.64603	.223714
4.48	20.0704	2.11896	6.69328 6.70075	89.9154 90.5188	1.64851	3.55426	7.65172 7.65741	.223214 .222717
4.50	20.2500	2.12132	6.70820	91.1250	1.65096	3.55689	7.66309	.222222
n	ny	\sqrt{n}	$\sqrt{10n}$	n ⁸	∛n	∜10 n	∛100 n	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n^{8}	$\sqrt[3]{n}$	₹/10 n	∛100 n	1/2
4.50	20.2500	2.12132	6.70820	91.1250	1.65096	3.55689	7.66309	.222222
4.51	20.3401	2.12368	6.71565	91.7339	1.65219	3.55953	7.66877	.221729
4.52	20.4304	2.12603	6.72309	92.3454	1.65341	3.56215	7.67443	.221239
4.53	20.5209	2.12838	6.73053	92.9597	1.65462	3,56478	7.68009	.220751
4.54	•20.6116	2.13073	6.73795	93.5767	1.65584	3.56740	7.68573	.220264
4.55 4.56	20.7025 20.7936	2.13307 2.13542	6.74537 6.75278	94.1964	1.65706 1.65827	3.5700 2 3.57263	7.69137 7.69700	.219780
							1	
4.57 4.58	20.8849 20.9764	2.13776 2.14009	6.76018 6.76757	95.4440 96.0719	1.65948 1.66069	3.57524 3.57785	7.70262 7.70824	.218818 .218341
4.59	21.0681	2.14243	6.77495	96.7026	1.66190	3.58045	7.71384	.217865
4.60	21.1600	2.14476	6.78233	97.3360	1.66310	3.58305	7.71944	.217391
4.61	21.2521	2.14709	6.78970	97.9722	1.66431	3.58564	7.72503	.216920
4.62	21.3444	2.14942	6.79706	98.6111	1.66551	3.58823	7.73061	.216450
4.63	21.4369	2.15174	6.80441	99.2528	1.66671	3.59082	7.73619	.215983
4.64	21.5296	2.15407	6.81175	99.8973	1.66791	3.59340	7.74175	.215517
4.65 4.66	21.6225 21.7156	2.15639- 2.15870	6.81909 6.82642	100.545 101.195	1.66911 1.67030	3.59598 3.59856	7.74731 7.75286	.215054 .214592
4.67	21.8089	2.16102	6.83374	101.848			7.75840	.214133
4.68	21.9024	2.16102	6.84105	102.503	1.67150 1.67269	3.60113 3.60370	7.76394	.214135
4.69	21.9961	2.16564	6.84836	103.162	1.67388	3.60626	7.76946	.213220
4.70	22.0900	2.16795	6.85565	103.823	1.67507	3.60883	7.77498	.212766
4.71	22.1841	2.17025	6.86294	104.487	1.67626	3.61138	7.78049	.212314
4.72 4.73	$22.2784 \ 22.3729$	$2.17256 \\ 2.17486$	6.87023 6.87750	105.154 105.824	1.67744	3.61394 3.61649	7.78599 7.79149	.211864 .211416
	1				1.67863			
4.74 4.75	22.4676 22.5625	2.17715 2.17945	6.88477 6.89202	106.496 107.172	1.67981 1.68099	3.61903 3.62158	7.79697 7.80245	.210970 .210526
4.76	22.6576	2.18174	6.89928	107.850	1.68217	3.62412	7.80793	.210020
4.77	22,7529	2.18403	6.90652	108,531	1,68334	3.62665	7.81339	.209644
4.78	22.8484	2.18632	6.91375	109.215	1.68452	3.62919	7.81885	.209205
4.79	22.9441	2.18861	6.92098	109.902	1.68569	3.63172	7.82429	.208768
4.80	23.0400	2.19089	6.92820	110.592	1.68687	3.63424	7.82974	.208333
4.81	23.1361	2.19317	6.93542	111.285	1.68804	3.63676	7.83517	.207900
4.82 4.83	23.2324 23.3289	2.19545 2.19773	$6.94262 \\ 6.94982$	111.980 112.679	1.68920 1.69037	3.63928 3.64180	7.84059 7.84601	.207469 .207039
4.84	23.4256	2.20000	6.95701	113.380		1	7.85142	.206612
4.85	23.5225	$\frac{2.20000}{2.20227}$	6.96419	114.084	$1.69154 \\ 1.69270$	3.64431 3.64682	7.85683	.20612
4.86	23.6196	2.20454	6.97137	114.791	1.69386	3.64932	7.86222	.205761
4.87	23.7169	2.20681	6.97854	115.501	1.69503	3.65182	7.86761	.205339
4.88	23.8144	2.20907	6.98570	116.214	1.69619	3.65432	7.87299	.204918
4.89	23.9121	2.21133	6.99285	116.930	1.69734	3.65681	7.87837	.204499
4.90	24.0100	2.21359	7.00000	117.649	1.69850	3.65931	7.88374	.204082
4.91 4.92	24.1081 24.2064	$2.21585 \\ 2.21811$	7.00714 7.01427	118.371 119.095	1.69965 1.70081	3.66179 3.66428	7.88909 7.89445	.203666 .203252
4.93	24.2004	2.22036	7.02140	119.823	1.70196	3.66676	7.89979	.202840
4.94	24.4036	2.22261	7.02851	120,554	1.70311	3.66924	7.90513	.202429
4.95	24.5025	2.22486	7.03562	121.287	1.70426	3.67171	7.91046	.202020
4.96	24.6016	2.22711	7.04273	122.024	1.70540	3.67418	7.91578	.201613
4.97	24.7009	2.22935	7.04982	122.763	1.70655	3.67665	7.92110	.201207
4.98 4.99	24.8004 24.9001	2.23159 2.23383	7.05691 7.06399	123.506 124.251	1.70769 1.70884	3.67911 3.68157	7.92641 7.93171	.200803
5.00	25.0000	2.23583	7.07107	124.251	1.70998	3.68403	7.93701	.200000
n	n^2	\sqrt{n}	$\sqrt{10}n$	n^8	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	∜100 n	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	∛10 n	∛100 n	1/n
5.00	25.0000	2.23607	7.07107	125.000	1.70998	3.68403	7.93701	.200000
5.01	25.1001	2.23830	7.07814	125.752	1.71112	3 68649	7.94229	.199601
5.02 5.03	25.2004 25.3009	2.24054 2.24277	7.08520 7.09225	126.506 127.264	1.71225 1.71339	3.68894 3.69138	7.94757 7.95285	.199203 .198807
1	25.4016	2.24499	7.09930	128.024	1.71452	3.69383	7.95811	
5.04 5.05	25.5025	2.24499	7.10634	128.788	1.71566	3.69627	7.96337	.198413
5.06	25.6036	2.24944	7.11337	129.554	1.71679	3.69871	7.96863	.197628
5.07	25.7049	2.25167	7.12039	130.324	1.71792	3.70114	7.97387	.197239
5.08 5.09	25.8064 25.9081	2.25389 2.25610	7.12741 7.13442	131.097 131.872	1.71905 1.72017	3.70357 3.70600	7.97911 7.98434	.196850 .196464
5.10	26.0100	2.25832	7.14143	132.651	1.72130	3.70843	7.98957	.196078
5.11	26.1121	2.26053	7.14843	133.433	1.72242	3.71085	7.99479	.195695
5.12	26.2144	2.25274	7.15542	134.218	1.72355	3.71327	8.00000	.195312
5.13	26.3169	2.26495	7.16240	135.006	1.72467	3.71569	8.00520	.194932
5.14 5.15	26.4196 26.5225	2.26716 2.26936	7.16938 7.17635	135.797 136.591	1.72579 1.72691	3.71810 3.72051	8.01040 8.01559	.194553 .194175
5.16	26.6256	2.27156	7.18331	137.388	1.72802	3.72292	8.02078	.193798
5.17	26.7289	2.27376	7.19027	138.188	1.72914	3.72532	8.02596	.193424
5.18 5.19	26.8324 26.9361	$2.27596 \ 2.27816$	7.19722 7.20417	138.992 139.798	1.73025 1.73137	$372772 \\ 3.73012$	8.03113 8.03629	.193050 .192678
5.20	27.0400	2.28035	7.21110	140.608	1.73248	3.73251	8.04145	.192308
5.21	27.1441	2.28254	7.21803	141.421	1.73359	3.73490	8.04660	.191939
5.22	27.2484	2.28473	7.22496	142.237	1.73470	3.73729	8.05175	.191571
5.23	27.3529	2.28692	7.23187	143.056	1.73580	3.73968	8.05689	.191205
5.24 5.25	27.4576 27.5625	2.28910 2.29129	7.23878 7.24569	143.878 144.703	1.73691 1.73801	3.74206 3.74443	8.06202 8.06714	.190840
5.26	27.6676	2.29347	7.25259	145.532	1.73912	3.74681	8.07226	.190114
5.27	27.7729	2.29565	7.25948	146.363	1.74022	3.74918	8.07737	189753
5.28 5.29	27.8784 27.9841	2.29783 2.30000	7.26636 7.27324	147.198 148.036	1.74132 1.74242	3.75155 3.75392	8.08248 8.08758	.189394 .189036
5.30	28.0900	2.30217	7.28011	148.877	1.74351	3.75629	8.09267	.188679
5.31	28.1961	2.30434	7.28697	149.721	1.74461	3.75865	8.09776	.188324
5.32 5.33	28.3024 28.4089	2.30651 2.30868	7.29383 7.30068	150.569 151.419	1.74570 1.74680	3.76101 3.76336	8.10284 8.10791	.187970 .187617
5.34	28.5156	2.31084	7.30753	152.273	1.74789	3.76571	8.11298	.187266
5.35	28.6225	2.31301	7.31437	153.130	1.74898	3.76806	8.11296	.186916
5.36	28.7296	2.31517	7.32120	153.991	1.75007	3.77041	8.12310	.186567
5.37	28.8369	2.31733	7.32803	154.854	1.75116	3.77275	8.12814	.186220
5.38 5.39	28.9444 29.0521	2.31948 2.32164	7.33485 7.34166	155.721 156.591	1.75224 1.75333	3.77509 3.7 7743	8.13319 8.13822	.185874
5.40	29.1600	2.32379	7.34847	157.464	1.75441	3.77976	8.14325	.185185
5.41	29.2681	2.32594	7.35527	158.340	1.75549	3.78209	8.14828	.184843
5.42	29.3764	2.32809	7.36206	159.220	1.75657	3.78442	8.15329	.184502
5.43	29.4849	2.33024	7.36885	160.103	1.75765	3.78675	8.15831	.184162
5.44 5.45	29.5936 29.7025	2.33238 2.33452	7.37564 7.38241	160.989 161.879	1.75873	3.78907 3.79139	8.16331 8.16831	.183824 .183486
5.46	29.8116	2.33666	7.38918	162.771	1.76088	3.79371	8.17330	.183150
5.47	29.9209	2.33880	7.39594	163.667	1.76196	3.79603	8.17829	.182815
5.48	30.0304 30.1401	2.34094 2.34307	7.40270	164.567 165.469	1.76303 1.76410	3.79834 3.80065	8.18327 8.18824	.182482 .182149
5.50	30.2500	2.34521	7.41620	166.375	1.76517	3.80295	8.19321	.181818
n	n2	√n	$\sqrt{10n}$	20.5	₹/n	₹10n	∜100 n	1/n

·-J		LUN	019-1		- moorb	LUCARS		100
n	n^2	\sqrt{n}	$\sqrt{10n}$	n ⁸	√n	∜10 n	∛100 n	1/2
5.50	30.2500	2.34521	7.41620	166.375	1.76517	3.80295	8.19321	.181818
5.51	30.3601	2 34734	7.42294	167.284	1.76624	3.80526	8.19818	.181488
5.52	30.4704	2.34947	7.42967	168.197	1.76731	3.80756	8.20313	.181159
5.53	30.5809	2.35160	7.43640	169.112	1.76838	3.80985	8.20808	.180832
5.54	•30.6916	2.35372	7.44312	170.031	1.76944	3.81215	8.21303	.180505
5.55	30.8025	2.35584	7.44983	170.954	1.77051	3.81441	8.21797	.180180
5.56	30.9136	2.35797	7.45654	171.880	1.77157	3.81673	8.22290	.179856
5.57	31.0249	2.36008	7.46324	172.809	1.77263	3.81902	8.22783	.179533
5.58	31.1364	2.36220	7.46994	173.741	1.77369	3.82130	8.23275	.179211
5.59	31.2481	2.36432	7.47663	174.677	1.77475	3.82358	8.23766	.178891
5.60	31.3600	2.36643	7.48331	175.616	1.77581	3.82586	8.24257	.178571
5.61	31.4721	2.36854	7.48999	176.558	1.77686	3.82814	8.24747	.178253
5.62	31.5844	2.37065	7.49667	177.504	1.77792	3.83041	8.25237	.177936
5.63	31.6969	2.37276	7.50333	178.454	1.77897	3.83268	8.25726	.177620
5.64	31.8096	2.37487	7.50999	179.406	1.78003	3.83495	8.26215	.177305
5.65	31.9225	2.37697	7.51665	180.362	1.78108	3.83722	8.26703	.176991
5.66	32.0356	2.37908	7.52330	181.321	1.78213	3.83948	8.27190	.176678
5.67	32.1489	2.38118	7.52994	182.284	1.78318	3.84174	8.27677	.176367
5.68	32.2624	2.38328	7.53658	183.250	1.78422	3.84399	8.28164	.176056
5.69	32.3761	2.38537	7.54321	184.220	1.78527	3.84625	8.28649	.175747
5.70	32.4900	2.38747	7.54983	185.193	1.78632	3.84850	8.29134	.175439
5.71	32.6041	2.38956	7.55645	186.169	1.78736	3.85075	8.29619	.175131
5.72	32.7184	2.39165	7.56307	187.149	1.78840	3.85300	8.30103	.174825
5.73	32.8329	2.39374	7.56968	188.133	1.78944	3.85524	8.30587	.174520
5.74	32.9476	2.39583	7.57628	189.119	1.79048	3.85748	8.31069	.174216
5.75	33.0625	2.39792	7.58288	190.109	1.79152	3.85972	8.31552	.173913
5.76	33.1776	2.40000	7.58947	191.103	1.79256	3.86196	8.32034	.173611
5.77	33.2929	2.40208	7.59605	192.100	1.79360	3.86419	8.32515	.173310
5.78	33.4084	2.40416	7.60263	193.101	1.79463	3.86642	8.32995	.173010
5.79	33.5241	2.40624	7.60920	194.105	1.79567	3.86865	8.33476	.172712
5.80	33.6400	2.40832	7.61577	195.112	1.79670	3.87088	8.33955	.172414
5.81	33.7561	2.41039	7.62234	196.123	1.79773	3.87310	8.34434	.172117
5.82	33.8724	2.41247	7.62889	197.137	1.79876	3.87532	8.34913	.171821
5.83	33.9889	2.41454	7.63544	198.155	1.79979	3.87754	8.35390	.171527
5.84	34.1056	2.41661	7.64199	199.177	1.80082	3.87975	8.35868	.171233
5.85	34.2225	2.41868	7.64853	200.202	1.80185	3.88197	8.36345	.170940
5.86	34.3396	2.42074	7.65506	201.230	1.80288	3.88418	8.36821	.170649
5.87	34.4569	2.42281	7.66159	202.262	1.80390	3:88639	8.37297	.170358
5.88	34.5744	2.42487	7.66812	203.297	1.80492	3.88859	8.37772	.170068
5.89	34.6921	2.42693	7.67463	204.336	1.80595	3.89080	8.38247	.169779
5.90	34.8100	2.42899	7.68115	205.379	1.80697	3.89300	8.38721	.169492
5.91	34.9281	2.43105	7.68765	206.425	1.80799	3.89519	8.39194	.169205
5.92	35.0464	2.43311	7.69415	207.475	1.80901	3.89739	8.39667	.168919
5.93	35.1649	2.43516	7.70065	208.528	1.81003	3.89958	8.40140	.168634
5.94	35.2836	2.43721	7.70714	209.585	1.81104	3.90177	8.40612	.168350
5.95	35.4025	2.43926	7.71362	210.645	1.81206	3.90396	8 41083	.168067
5.96	35.5216	2.44131	7.72010	211.709	1.81307	3.90615	8.41554	.167785
5.97	35.6409	2.44336	7.72658	212.776	1.81409	3.90833	8.42025	.167504
5.98	35.7604	2.44540	7.73305	213.847	1.81510	3.91051	8.42494	.167224
5.99	35.8801	2.44745	7.73951	214,922	1.81611	3.91269	8.42964	.166945
6.00	36.0000	2.44949	7.74597	216.000	1.81712	3.91487	8.43433	.166667
n	n^2	\sqrt{n}	$\sqrt{10n}$	228	∛n	$\sqrt[3]{10n}$	√100 n	1/n

n	n^2	\sqrt{n}	$\sqrt{10 n}$	n^8	$\sqrt[3]{n}$	³ √10 n	∛100 n	1/n
6.00	36.0000	2.44949	7.74597	216.000	1.81712	3.91487	8.43433	.166667
6.01	36.1201	2.45153	7.75242	217.082	1.81813	3.91704	8.43901	.166389
6.02	36.2404	2.45357	7.75887	218.167 219.256	1.81914	3.91921 3.92138	8.44369 8.44836	.166113
6.03	36.3609	2.45561	7.76531		1.82014			.165837
6.04 6.05	36.4816 36.6025	2.45764 2.45967	7.77174 7.77817	220.349 221.445	1.82115 1.82215	3.92355 3.92571	8.45303 8.45769	.165563 .165289
6.06	36.7236	2.46171	7.78460	222.545	1.82316	3.92787	8.46235	.165017
6.07	36,8449	2.46374	7.79102	223.649	1.82416	3.93003	8.46700	.164745
6.08	36.9664	2.46577	7.79744	224.756	1.82516	3.93219	8.47165	.164474
6.09	37.0881	2.46779	7.80385	225.867	1.82616	3.93434	8.47629	.164204
6.10	37.2100	2.46982	7.81025	226.981	1.82716	3.93650	8.48093	.163934
6.11	37.3321	2.47184	7.81665	228.099	1.82816	3.93865	8.48556	.163666
6.12 6.13	37.4544 37.5769	$2.47386 \\ 2.47588$	7.82304 7.82943	229.221 230.346	1.82915 1.83015	3.94079 3.94294	8.49018 8.49481	.163399 .163132
6.14	37.6996	2.47790	7.83582	231.476	1.83115	3.94508	8.49942	.162866
6.15	37.8225	2.47190	7.84219	232.608	1.83214	3.94722	8.50403	.162602
6.16	37.9456	2.48193	7.84857	233.745	1.83313	3.94936	8.50864	.162338
6.17	38.0689	2.48395	7.85493	234.885	1.83412	3.95150	8.51324	.162075
6.18 6.19	38.1924 38.3161	2.48596 2.48797	7.86130 7.86766	236.029 237.177	1.83511 1.83610	3.95363 3.95576	8.51784 8.52243	.161812 .161551
6.20	38,4400	2.48998	7.87401	238.328	1.83709	3.95789	8.52702	.161290
$6.21 \\ 6.22$	38.5641 38.6884	2.49199 2.49399	7.88036 7.88670	239.483 240.642	1.83808 1.83906	3.96002 3.96214	8.53160 8.53618	.161031 .160772
6.23	38.8129	2.49600	7.89303	241.804	1.84005	3.96427	8.54075	.160514
6.24	38.9376	2.49800	7.89937	242.971	1.84103	3.96638	8.54532	.160256
6.25	39.0625	2.50000	7.90569	244.141	1.84202	3.96850	8.54988	.160000
6.26	39.1876	2.50200	7.91202	245.314	1.84300	3.97062	8.55444	.159744
6.27 6.28	39.3129 39.4384	2.50400 2.50599	7.91833 7.92465	246.492 247.673	1.84398 1.84496	3.97273 3.97484	8.55899 8.56354	.159490 .159236
6.29	39.5641	2.50799	7.93095	248.858	1.84594	3.97695	8.56808	.158983
6.30	39.6900	2.50998	7.93725	250.047	1.84691	3.97906	8.57262	.158730
6.31	39.8161	2.51197	7.94355	251.240	1.84789	3.98116	8.57715	.158479
6.32	39.9424	2.51396	7.94984	252.436	1.84887	3.98326	8.58168	.158228
6.33	40.0689	2.51595	7.95613	253.636	1.84984	3.98536	8.58620	.157978
6.34 6.35	40.1956 40.3225	2.51794 2.51992	7.96241 7.96869	254.840 256.048	1.85082 1.85179	3.98746 3.98956	8.59072	.157729 .157480
6.36	40.3223	2.51392 2.52190	7.97496	257.259	1.85276	3.99165	8.59524 8.59975	.157233
6.37	40.5769	2.52389	7.98123	258.475	1.85373	3.99374	8.60425	.156986
6.38	40.7044	2.52587	7.98749	259.694	1.85470	3.99583	8.60875	.156740
6.39	40.8321	2.52784	7.99375	260.917	1.85567	3.99792	8.61325	.156495
6.40	40.9600	2.52982	8.00000	262.144	1.85664	4.00000	8.61774	.156250
6.41	41.0881	2.53180 2.53377	8.00625	263.375	1.85760	4.00208	8.62222	.156006
6.42 6.43	41.2164 41.3449	2.53574	8.01249 8.01873	264.609 265.848	1.85857 1.85953	4.00416 4.00624	8.62671 8.63118	.155763 .155521
6.44	41.4736	2.53772	8.02496	267.090	1.86050	4.00832	8.63566	.155280
6.45	41.6025	2.53969	8.03119	268.336	1.86146	4.01039	8.64012	.155039
6.46	41.7316	2.54165	8.03741	269.586	1.86242	4.01246	8.64459	.154799
6.47	41.8609	2.54362	8.04363	270.840	1.86338	4.01453	8.64904	.154560
6.48 6.49	41.9904 42.1201	2.54558 2.54755	8.04984 8.05605	272.098 273.359	1.86434 1.86530	4.01660 4.01866	8.65350 8.65795	.154321 .154083
8.50	42.2500	2.54951	8.06226	274.625	1.86626	4.02073	8.66239	.153846
n	n ²	\sqrt{n}	$\sqrt{10n}$	n8	$\sqrt[3]{n}$	³ √10 n	∛100 n	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n ⁸	$\sqrt[3]{n}$	∛10 n	√100 r	1/n
6.50	42.2500	2.54951	8.06226	274.625	1.86626	4.02073	8.66239	.153846
6.51	42.3801	2.55147	8.06846	275.894	1.86721	4.02279	8.66683	.153610
6.52	42.5104	2.55343	8.07465	277.168	1.86817	4.02485	8.67127	.153374
6.53	42.6409	2.55539	8.08084	278.445	1.86912	4.02690	8.67570	.153139
6.54	42.7716	2.55734	8.08703	279.726	1.87008	4.02896	8.68012	.152905
6.55	42.9025	2.55930	8.09321	281.011	1.87103	4.03101	8.68455	.152672
6.56	43.0336	2.56125	8.09938	282.300	1.87198	4.03306	8.68896	.152439
6.57	43.1649	2.56320	8.10555	283.593	1.87293	4.03511	8.69338	.152207
6.58	43.2964	2.56515	8.11172	284.890	1.87388	4.03715	8.69778	.151976
6.59	43.4281	2.56710	8.11788	286.191	1.87483	4.03920	8.70219	.151745
6.60	43.5600	2.56905	8.12404	287-496	1.87578	4.04124	8.70659	.151515
6.61	43.6921	2.57099	8.13019	288.805	1.87672	4.04328	8.71098	.151286
6.62	43.8244	2.57294	8.13634	290.118	1.87767	4.04532	8.71537	.151057
6.63	43.9569	2.57488	8.14248	291.434	1.87862	4.04735	8.71976	.150830
6.64	44.0896	2.57682	8.14862	292.755	1.87956	4.04939	8.72414	.150602
6.65	44.2225	2.57876	8.15475	294.080	1.88050	4.05142	8.72852	.150376
6.66	44.3556	2.58070	8.16088	295.408	1.88144	4.05345	8.73289	.150150
6.67	44.4889	2.58263	8.16701	296.741	1.88239	4.05548	8.73726	.149925
6.68	44.6224	2.58457	8.17313	298.078	1.88333	4.05750	8.74162	.149701
6.69	44.7561	2.58650	8.17924	299.418	1.88427	4.05953	8.74598	.149477
6.70	44.8900	2.58844	8.18535	300.763	1.88520	4.06155	8.75034	.149254
6.71	45.0241	2.59037	8.19146	302.112	1.88614	4.06357	8.75469	.149031
6.72	45.1584	2.59230	8.19756	303.464	1.88708	4.06559	8.75904	.148810
6.73	45.2929	2.59422	8.20366	304.821	1.88801	4.06760	8.76338	.148588
6.74	45.4276	2.59615	8.20975	306.182	1.88895	4.06961	8.76772	.148368
$\begin{array}{c} 6.75 \\ 6.76 \end{array}$	45.5625 45.6976	2.59808 2.60000	8.21584 8.22192	307.547	1.88988	4.07163	8.77205	-148148
				308.916	1.89081	4.07364	8.77638	.147929
6.77	45.8329	2.60192	8.22800	310.289	1.89175	4.07564	8.78071	.147710
6.78 6.79	45.9684 46.1041	2.60384 2.60576	8.23408 8.24015	311.666 313.047	1.89268 1.89361	4.07765 4.07965	8.78503 8.78935	.147493 .147275
6.80	46.2400	2.60768	8.24621	314.432	1.89454	4.08166	8.79366	.147059
6.81	46.3761	2.60960	8.25227	315.821	1.89546	4.08365	8.79797	.146843
6.82 6.83	46.5124 46.6489	2.61151 2.61343	8.25833 8.26438	317.215	1.89639	4.08565	8.80227	.146628 .146413
				318.612	1.89732	4.08765	8.80657	
6.84 6.85	46.7856	2.61534	8.27043 8.27647	320.014	1.89824	4.08964	8.81087	.146199
6.86	46.9225 47.0596	$2.61725 \\ 2.61916$	8.28251	321.419 322.829	1.89917 1.90009	4.09163 4.09362	8.81516 8.81945	.145985 .145773
								1
6.87 6.88	47.1969 47.3344	2.62107	8.28855	324.243	1.90102	4.09561	8.82373	.145560
6.89	47.4721	2.62298 2.62488	8.29458 8.30060	325.661 327.083	1.90194 1.90286	4.09760 4.09958	8.82801 8.83228	.145349 .145138
6.90	47.6100	2.62679	8.30662	328.509	1.90378	4.10157	8 83656	.144928
6.91	47.7481	2.62869	8.31264	329.939	1.90470	4.10355	8.84082	.144718
$\frac{6.92}{6.93}$	47.8864 48.0249	2.63059 2.63249	8.31865 8.32466	331.374 332.813	1.90562 1.90653	4.10552 4.10750	8.84509 8.84934	.144509
1								
6.94	48.1636	2.63439	8.33067	334.255	1.90745	4.10948	8.85360	.144092
6.95 6.96	48.3025 48.4416	2.63629 2.63818	8.33667 8.34266	335.702 337.154	1.90837 1.90928	4.11145 4.11342	8.85785 8.86210	.143678
	1						1	1
6.97 6.98	48.5809 48.7204	2.64008	8.34865 8.35464	338,609	1.91019	4.11539	8.86634 8.87058	.143472
6.98	48.7204	2.64197 2.64386	8.36062	340.068 341.532	1.91111 1.91202	4.11736 4.11932	8.87481	.143200
7.00	49.0000	2.64575	8.36660	343,000	1.91293	4.12129	8.87904	.142857
1.00								
n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	$\sqrt[3]{10 n}$	∜100 n	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	∛10 n	$\sqrt[3]{100 n}$	1/n
7.00	49.0000	2.64575	8.36660	343.000	1.91293	4.12129	8.87904	.142857
7.01	49.1401	2.64764	8.37257	844.472	1.91384	4.12325	8.88327	.142653
7.02 7:03	49.2804 49.4209	2.64953 2.65141	8.37854 8.38451	345.948 347.429	1.91475 1.91566	4.12521 4.12716	8.88749 8.89171	.142450 .142248
	49,5616	2.65330	8.39047	348.914	1.91657	4.12912	8.89592	.142045
7.04 7.05	49.7025	2.65518	8.39643	350.403	1.91747	4.13107	8.90013	.141844
7.06	49.8436	2.65707	8.40238	351.896	1.91838	4.13303	8.90434	c .141643
7.07	49.9849	2.65895	8.40833	353.393	1.91929	4.13498	8.90854	.141443
7.08 7.09	50.1264 50.2681	2.66083 2.66271	8.41427 8.42021	354.895 356.401	1.92019 1.92109	4.13693 4.13887	8.91274 8.91693	.141243
7.10	50.4100	2.66458	8.42615	357.911	1.92200	4.14082	8.92112	.140845
7.11	50.5521	2.66646	8.43208	359.425	1.92290	4.14276	8.92531	.140647
7.12	50.6944	2.66833	8.43801	360.944	1.92380	4.14470	8.92949	.140449
7.13	50.8369	2.67021	8.44393	362.467	1.92470	4.14664	8.93367	.140252
7.14	50.9796	2.67208	8.44985	363.994	1.92560	4.14858	8.93784	.140056 ,139860
7.15 7.16	51.1225 51.2656	2.67395 2.67582	8.45577 8.46168	365.526 367.062	1.92650 1.92740	4.15052 4.15245	8.94201 8.94618	.139860
7.17	51.4089	2.67769	8.46759	368.602	1.92829	4.15438	8.95034	.139470
7.18	51.5524	2.67955	8.47349	370.146	1.92919	4.15631	8.95450	.139276
7.19	51.6961	2.68142	8.47939	371.695	1.93008	4.15824	8.95866	.139082
7.20	51.8400	2.68328	8.48528	373.248	1.93098	4.16017	8.96281	.138889
7.21 7.22	51.9841 52.1284	2.68514 2.68701	8.49117 8.49706	374.805 376.367	1.93187 1.93277	4.16209 4.16402	8.96696 8.97110	.138696 .138504
7.23	52.2729	2.68887	8.50294	377.933	1.93366	4.16594	8.97524	.138313
7.24	52.4176	2.69072	8.50882	379.503	1.93455	4.16786	8.97938	.138122
7.25 7.26	52.5625	2.69258	8.51469	381.078	1.93544	4.16978	8.98351	.137931
	52.7076	2.69444	8.52056	382.657	1.93633	4.17169	8.98764	.137741
7.27 7.28	52.8529 52.9984	2.69629 2.69815	8.52643 8.53229	384.241 385.828	1.93722 1.93810	4.17361 4.17552	8.99176 8.99588	.137552 .137363
7.29	53.1441	2.70000	8.53815	387.420	1.93899	4.17743	9.00000	.137174
7.30	53.2900	2.70185	8.54400	389.017	1.93988	4.17934	9.00411	.136986
7.31	53.4361	2.70370	8.54985	390.618	1.94076	4.18125	9.00822	.136799
7.32 7.33	53.5824 53.7289	2.70555 2.70740	8.55570 8.56154	392.223 393.833	1.94165 1.94253	4.18315	9.01233 9.01643	.136612 .136426
7.34	53.8756	2.70924	8.56738	395.447	1.94341	4.18696	9.02053	.136240
7.35	54.0225	2.71109	8.57321	397.065	1.94430	4.18886	9.02462	.136054
7.36	54.1696	2.71293	8.57904	398.688	1.94518	4.19076	9.02871	.135870
7.37 7.38	54.3169 54.4644	2.71477 2.71662	8.58487 8.59069	400.316 401.947	1.94606 1.94694	4.19266 4.19455	9.03280 9.03689	.135685 .135501
7.39	54.6121	2.71846	8.59651	403.583	1.94782	4.19644	9.04097	.135318
7.40	54.7600	2.72029	8.60233	405.224	1.94870	4.19834	9.04504	.135135
7.41	54.9081	2.72213	8.60814	406.869	1.94957	4.20023	9.04911	.134953
7.42 7.43	55.0564 55.2049	2.72397 2.72580	8.61394 8.61974	408.518 410.172	1.95045 1.95132	4.20212 4.20400	9.05318 9.05725	.134771
7.44	55.3536	2.72764	8.62554	411.831	1.95220	4.20589	9.06131	.134409
7.45	55.5025	2.72947	8.63134	413.494	1.95307	4.20569	9.06537	.134228
7.46	55.6516	2.73130	8.63713	415.161	1.95395	4.20965	9.06942	.134048
7.47	55.8009	2.73313	8.64292	416.833	1.95482	4.21153	9.07347	.133869
7.48 7.49	55.9504 56.1001	2.73496 2.73679	8.64870 8.65448	418.509 420.190	1.95569 1.95656	4.21341 4.21529	9.07752 9.08156	.133690
7.50	56.2500	2.73861	8.66025	421.875	1.98743	4.21716	9.08560	.133333
n	nº '	\sqrt{n}	$\sqrt{10n}$	n³	₹n	∛10 n	∛100 n	1/n

					TOOTP			
n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	₹10 n	∛100 n	1/n
7.50	56.2500	2.73861	8.66025	421.875	1.95743	4.21716	9.08560	.133333
7.51	56.4001	2.74044	8.66603	423.565	1.95830	4.21904	9.08964	.133156
7.52	56.5504	2.74226	8.67179	425.259	1.95917	4 22091	9,09367	.132979
7.53	56.7009	2.74408	8.67756	426.958	1.96004	4.22278	9.09770	.132802
7.54	56.8516	2.74591	8.68332	428.661	1.96091	4.22465	9.10173	.132626
7.55	57.0025 57.1536	2.74773 2.74955	8.68907 8.69483	430.369 432.081	1.96177	4.22651 4.22838	9.10575 9.10977	.132450
	1				1.96264		1	
7.57 7.58	57.3049 57.4564	2.75136 2.75318	8.70057 8.70632	433.798 435.520	1.96350	4.23024	9.11378 9.11779	.132100
7.59	57.6081	2.75500	8.71206	437.245	1.96437 1.96523	4.23396	9.12180	.131752
7.60	57.7600	2.75681	8.71780	438.976	1.96610	4.23582	9.12581	.131579
7.61	57.9121	2.75862	8.72353	440.711	1.96696	4.23768	9.12981	.131406
7.62	58.0644	2.76043	8.72926	442.451	1.96782	4.23954	9.13380	.131234
7.63	58.2169	2.76225	8.73499	444.195	1.96868	4.24139	9.13780	.131062
7.64	58.3696	2.76405	8.74071	445.944	1.96954	4.24324	9.14179	.130890
7.65 7.66	58.5225 58.6756	2.76586 2.76767	8.74643 8.75214	447.697 449.455	1.97040	4.24509	9.14577	.130719
					1.97126	4.24694	9.14976	
7.67 7.68	58.8289 58.9824	2.76948 2.77128	8.75785 8.76356	451.218 452.985	1.97211 1.97297	4.24879	9.15374 9.15771	.130378
7.69	59.1361	2.77308	8.76926	454.757	1.97383	4.25248	9.16169	.130039
7.70	59.2900	2.77489	8.77496	456.533	1.97468	4.25432	9.16566	.129870
7.71	59.4441	2.77669	8.78066	458.314	1.97554	4.25616	9.16962	.129702
7.72	59.5984	2.77849	8.78635	460.100	1.97639	4.25800	9.17359	.129534
7.73	59.7529	2.78029	8.79204	461.890	1.97724	4.25984	9.17754	.129366
7.74	59.9076	2.78209	8.79773	463.685	1.97809	4.26167	9.18150	.129199
7.75 7.76	60.0625 60.2176	2.78388 2.78568	8.80341 8.80909	465.484 467.289	1.97895 1.97980	4.26351 4.26534	9.18545 9.18940	.129032 .128866
7.77	60,3729	2.78747	8.81476	469.097	1.98065	4.26717	9.19335	.128700
7.78	60.5284	2.78927	8.82043	470.911	1.98150	4.26900	9.19330	.128535
7.79	60.6841	2.79106	8.82610	472.729	1.98234	4.27083	9.20123	.128370
7.80	60.8400	2.79285	8.83176	474.552	1.98319	4.27266	9.20516	.128205
7.81	60.9961	2.79464	8.83742	476.380	1.98404	4.27448	9.20910	.128041
7.82 7.83	61.1524 61.3089	2.79643 2.79821	8.84308 8.84873	478.212 480.049	1.98489 1.98573	4.27631 4.27813	9.21302 9.21695	.127877 .127714
						1		
7.84 7.85	61.4656 61.6225	2.80000 2.80179	8.85438 8.86002	481.890 483.737	1.98658 1.98742	4.27995 4.28177	9.22087 9.22479	.127551 .127389
7.86	61.7796	2.80357	8.86366	485.588	1.98826	4.28359	9.22871	.127226
7.87	61.9369	2.80535	8.87130	487.443	1.98911	4.28540	9.23262	.127065
7.88	62.0944	2.80713	8.87694	489.304	1.98995	4.28722	9.23653	.126904
7.89	62.2521	2.80891	8.88257	491.169	1.99079	4.28903	9.24043	.126743
7.90	62.4100	2.81069	8.88819	493.039	1.99163	4.29084	9.24434	.126582
$7.91 \\ 7.92$	62.5681 62.7264	2.81247 2.81425	8.89382 8.89944	494.914 496.793	1.99247 1.99331	4.29265 4.29446	9.24823 9.25213	.126422
7.93	62.8849	2.81603	8.90505	498.677	1.99415	4.29627	9.25602	.126103
7.94	63.0436	2.81780	8.91067	500.566	1.99499	4.29807	9.25991	.125945
7.95 7.96	63.2025 63.3616	2.81957	8.91628 8.92188	502.460 504.358	1.99582 1.99666	4.29987 4.30168	9.26380 9.26768	.125786
		2.82135						
7.97 7.98	63.5209 63.6804	2.82312 2.82489	8.92749 8.93308	506.262 508,170	1.99750 1.99833	4.30348 4.30528	9.27156 9.27544	.125471
7.99	63.8401	2.82666	8.93868	510.082	1.99917	4.30707	9.27931	.125156
8.00	64.0000	2.82843	8.94427	512.000	2.00000	4.30887	9.28318	.125000
n	n ²	\sqrt{n}	$\sqrt{10n}$	n^s	$\sqrt[n]{n}$	$\sqrt[3]{10 n}$	$\sqrt[3]{100 n}$	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n^8	$\sqrt[3]{n}$	³ √10 n	$\sqrt[3]{100 n}$	1/n
8.00	64.0000	2.82843	8.94427	512.000	2.00000	4.30887	9.28318	.125000
8.01	64.1601	2.83019	8.94986	513.922	2.00083	4.31066	9.28704	.124844
8.02	64.3204	2.83196	8.95545	515.850	2.00167	4.31246	9.29091	.124688
8.03	64.4809	2.83373	8.96103	517.782	2.00250	4.31425	9.29477	.124533
8.04	64.6416	2.83549	8.96660	519.718	2.00333	4.31604	9.29862	.124378
8.05	64.8025	2.83725	8.97218	521.660	2.00416 2.00499	4.31783	9.30248 9.30633	.124224
8.06	64.9636	2.83901	8.97775	523.607		4.31961		
8.07	65.1249	2.84077	8.98332	525.558	2.00582	4.32140	9.31018	.123916
8.08 8 09	65.2864 65.4481	2.84253 2.84429	8.98888 8.99444	527.514 529.475	2.00664 2.00747	4.32318 4.32497	9.31402 9.31786	.123762
8.10	65.6100	2.84605	9.00000	531.441	2.00830	4.32675	9.32170	.123457
8.11 8.12	65.7721 65.9344	2.84781 2.84956	9.00555 9.01110 •	533.412 535.387	2.00912 2.00995	4.32853	9.32553 9.32936	.123305
8.13	66.0969	2.85132	9.01665	537.368	2.01078	4.33208	9.33319	.123001
8.14	66,2596	2.85307	9.02219	539.353	2.01160	4.33386	9.33702	.122850
8.15	66.4225	2.85482	9.02774	541.343	2.01242	4.33563	9.34084	.122699
8.16	66.5856	2.85657	9.03327	543.338	2.01325	4.33741	9.34466	.122549
8.17	66.7489	2.85832	9.03881	545.339	2.01407	4.33918	9.34847	.122399
8.18	66.9124	2.86007	9.04434	547.343	2.01489	4.34095	9.35229	.122249
8.19	67.0761	2.86182	9.04986	549.353	2.01571	4.34271	9.35610	.122100
8.20	67.2400	2.86356	9.05539	551.368	2.01653	4.34448	9.35990	.121951
8.21	67.4041	2.86531	9.06091	553.388	2.01735	4.34625	9.36370	.121803
8.22 8.23	67.5684	2.86705 2.86880	9.06642 9.07193	555,412 557,442	2.01817 2.01899	4.34801 4.34977	9.36751 9.37130	.121655 .121507
8.24 8.25	67.8976 68.0625	$2.87054 \\ 2.87228$	9.07744 9.08295	559.476 561.516	2.01980 2.02062	4.35153 4.35329	9.37510 9.37889	.121359 .121212
8.26	68.2276	2.87402	9.08295	563.560	2.02002	4.35505	9.38268	.121212
8.27	68.3929	2.87576	9.09395	565.609	2.02225	4.35681	9.38646	.120919
8.28	68.5584	2.87750	9.09945	567.664	2.02307	4.35856	9.39024	.120773
8.29	68.7241	2.87924	9.10494	569.723	2.02388	4.36032	9.39402	.120627
8.30	68.8900	2.88097	9.11043	571.787	2.02469	4.36207	9.39780	.120482
8.31	69.0561	2.88271	9.11592	573.856	2.02551	4.36382	9.40157	.120337
8.32	69.2224	2.88144	9.12140	575.930	2.02632	4.36557	9.40534	.120192
8.33	69.3889	2.88617	9.12688	578.010	2.02713	4.36732	9.40911	.120048
8.34	69.5556	2.88791	9.13236	580.094	2.02794	4.36907	9.41287	.119904
8.35 8.36	69.7225 69.8896	$2.88964 \\ 2.89137$	9.13783 9.14330	582.183 584.277	2.02875 2.02956	4.37081 4.37256	9.41663 9.42039	.119760
8.37	70.0569	2.89310	l		2.03037	4.37430	9.42414	.119474
8.38	70.2244	2.89482	9.14877 9.15423	586.376 588.480	2.03037	4.37604	9.42789	.119332
8.39	70.3921	2.89655	9.15969	590.590	2.03199	4.37778	9.43164	.119190
8.40	70.5600	2.89828	9.16515	592.704	2.03279	4.37952	9.43539	.119048
8.41	70.7281	2.90000	9.17061	594.823	2.03360	4.38126	9.43913	.118906
8.42	70.8964	2.90172	9.17606	596.948	2.03440	4.38299	9.44287	.118765
8.43	71.0649	2.90345	9.18150	599.077	2.03521	4.38473	9.44661	.118624
8.44	71.2336	2.90517	9.18695	601.212	2.03601	4.38646	9.45034	.118483
8.45 8.46	71.4025 71.5716	2.90689 2.90861	9.19239 9.19783	603.351 605.496	2.03682 2.03762	4.38819 4.38992	9.45407 9.45780	.118343 .118203
8.47 8.48	71.7409	2.91033 2.91204	9.20326 9.20869	607.645 609.800	2.03842 2.03923	4.39165 4.39338	9.46152 9.46525	.118064 .117925
8.49	72.0801	2.91376	9.21412	611.960	2.03923	4.39510	9.46897	.117786
8.50	72.2506	2.91548	9.21954	614.125	2.04083	4.39683	9.47268	.117647
- 40	222	\sqrt{n}	$\sqrt{10n}$		$\sqrt[n]{n}$	∛10 n	-	1/22
n,	76-	V 76	\ v to w	W	\ \n	V IUN	V 100 71	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n8	$\sqrt[3]{n}$	∛10 n	∜100 n	1/n
8.50	72.2500	2.91548	9.21954	614.125	2.04083	4.39683	9.47268	.117647
8.51 •	72.4201	2.91719	9.22497	616.295	2.04163	4.39855	9.47640	.117509
8.52 8.53	72.5904	2.91890 2.92062	9.23038	618.470 620.650	2.04243	4.40028	9.48011	.117871
1	72.7609				2.04323	4.40200	9.48381	.117233
8. 54 8.55	72.9316 73.1025	2.92233 2.92404	9.24121 9.24662	622.836 625.026	2.04402 2.04482	4.40372	9.48752 9.49122	.117096 .116959
8.56	73.2736	2.92575	9.25203	627.222	2.04562	4.40715	9.49492	.116822
8.57	73.4449	2.92746	9.25743	629,423	2.04641	4.40887	9,49861	.116686
8.58	73.6164	2.92916	9.26283	631.629	2.04721	4.41058	9.50231	.116550
8.59	73.7881	2.93087	9.26823	633.840	2.04801	4.41229	9.50600	.116414
8.60	73.9600	2.93258	9.27362	636.056	2.04880	4.41400	9.50969	.116279
8.61	74.1321	2.93428	9.27901	638.277	2.04959	4.41571	9.51337	.116144
8.62 8.63	74.3044 74.4769	2.93598 2.93769	9.28440 9.28978	640.504 642.736	2.05039 2.05118	4.41742	9.51705 9.52073	.116009 .115875
		1	!	í		1		!
8.64 8.65	74.6496 74.8225	2,93939 2,94109	9.29516 9.30054	644.973 647.215	2.05197 2.05276	4.42084 4.42254	9.52441 9.52808	.115741
8.66	74.9956	2.94279	9.30591	649.462	2.05355	4.42425	9.53175	.115473
8.67	75.1689	2.94449	9.31128	651.714	2.05434	4.42595	9.53542	.115340
8.68	75.3424	2 94618	9.31665	653,972	2.05513	4.42765	9.53908	.115207
8.69	75.5161	2.94788	9.32202	656.235	2.05592	4.42935	9.54274	.115075
8.70	75.6900	2.94958	9.32738	658.503	2.05671	4.43105	9.54640	.114943
$8.71 \\ 8.72$	75.8641	2.95127	9.33274 9.33809	660.776	2.05750	4.43274	9.55006	.114811
8.73	76.0384 76.2129	2.95296 2.95466	9.33809	663.055 665.339	2.05828 2.05907	4.43444 4.43613	9.55371 9.55736	.114679 .114548
8.74	76.3876	2.95635	9.34880	667.628	2.05986	4.43783	9.56101	.114416
8.75	76.5625	2.95804	9.35414	669.922	2.06064	4.43952	9.56466	.114286
8.76	76.7376	2.95973	9.35949	672.221	2.06143	4.44121	9.56830	.114155
8.77	76.9129	2:96142	9.36483	674.526	2.06221	4.44290	9.57194	.114025
8.78 8.79	77.0884 77.2641	2.96311 2.96479	9.37017 9.37550	676.836 679.151	2.06299 2.06378	4.44459 4.44627	9.57557 9.57921	.113895
8.80			9.38083					.113766
	77.4400	2.96648		681.472	2.06456	4.44796	9.58284	.113636
8.81 8.82	77.6161 77.7924	2.96816 2.96985	9.38616 9.39149	683.798 686.129	2.06534 2.06612	4.44964 4.45133	9.58647 9.59009	.113507 .113379
8.83	77.9689	2.97153	9.39681	688.465	2.06690	4.45301	9.59372	.113250
8.84	78.1456	2.97321	9.40213	690.807	2.06768	4.45469	9.59734	.113122
8.85	78.3225	2.97489	9.40744	693.154	2.06846	4.45637	9.60095	.112994
8.86	78.4996	2.97658	9.41276	695.506	2.06924	4.45805	9.60457	.112867
8.87	78.6769	2.97825	9.41807	697.864	2.07002	4.45972	9.60818	.112740
8.88 8.89	78.8544 79.0321	2.97993 2.98161	9.42338 9.42868	700.227 702.595	$2.07080 \\ 2.07157$	4.46140 4.46307	9.61179 9.61540	.112613 .112486
8.90	79.2100	2.98329	9.43398	704.969	2.07235	4.46475	9.61900	.112360
8.91	79.3881	2.98496	9,43928	707.348	2.07313	4.46642	9,62260	.112233
8.92	79.5664	2.98664	9.44458	709.732	2.07390	4.46809	9.62620	.112108
8.93	79.7449	2.98831	9.44987	712.122	2.07468	4.46976	9.62980	.111982
8.94	79.9236	2.98998	9.45516	714.517	2.07545	4.47142	9.63339	.111857
8.95 8.96	80.1025 80.2816	2.99166 2.99333	9.46044 9.46573	716.917 719.323	2.07622 2.07700	4.47309 4.47476	9.63698 9.64057	.111732
i			1				1	1
8.97 8.98	80.4609 80.6404	2.99500 2.99666	9.47101 9.47629	721.734 724.151	2.07777 2.07854	4.47642 4.47808	9.64415 9.64774	.111483
8.99	80.8201	2.99833	9.48156	726.573	2.07931	4.47974	9.65132	.111235
9.00	81.0000	3.00000	9.48683	729.000	2.08008	4.48140	9.65489	.111111
n	n^2	\sqrt{n}	$\sqrt{10n}$	n^3	$\sqrt[3]{n}$	⁸ √10 n	$\sqrt[3]{100 n}$	1/n

n	n^2	\sqrt{n}	$\sqrt{10n}$	n ⁸	₹/n	∛10 n	$\sqrt[3]{100 n}$	1/n
9.00	81.0000	3.00000	9.48683	729.000	2.08008	4.48140	9.65489	.111111
9.01	81.1801	3.00167	9.49210	731,433	2.08085	4.48306	9.65847	.⊈10988
9.02	81.3604	3.00333	9.49737	733.871	2.08162	4.48472	9:66204	.110865
9.03	81.5409	3.00500	9.50263	736.314	2.08239	4.48638	9.66561	.110742
9.04	81.7216	3.00666	9.50789	738.763	2.08316	4.48803	9.66918	.110619
9.05	81.9025	3.00832	9.51315	741.218	2.08393	4.48969	9.67274	.110497
9.06	82.0836	3.00998	9.51840	743.677	2.08470	4.49134	9.67630	.110375
9.07	82.2649	3.01164	9.52365	746.143	2.08546	4.49299	9.67986	.110254
9.08	82.4464	3.01330	9.52890	748.613	2.08623	4.49464	9.68342	.110132
9.09	82.6281	3.01496	9.53415	751.089	2.08699	4.49629	9.68697	.110011
9.10	82.8100	3.01662	9.53939	753.571	2.08776	4.49794	9.69052	.109890
9.11	82.9921	3.01828	9.54463	756.058	2.08852	4.49959	9.69407	.109769
9.12	83.1744	3.01993	9.54987	758.551	2.08929	4.50123	9.69762	.109649
9.13	83.3569	3.02159	9,55510	761.048	2.09005	4.50288	9.70116	.109529
9.14	83.5396	3.02324	9.56033	763.552	2.09081	4.50452	9.70470	.109409
9.15	83.7225	3.02490	9.56556	766.061	2.09158	4.50616	9.70824	.109290
9.16	83.9056	3.02655	9.57079	768.575	2.09234	4.50781	9.71177	.109170
9.17	84.0889	3.02820	9.57601	771.095	2.09310	4.50945	9.71531	.109051
9.18	84.2724	3.02985	9.58123	773.621	2.09386	4.51108	9.71884	.108932
9.19	84.4561	3.03150	9.58645	776.152	2.09462	4.51272	9.72236	.108814
9.20	84.6400	3.03315	9.59166	778.688	2.09538	4.51436	9.72589	.108696
9.21	84.8241	3.03480	9.59687	781.230	2.09614	4.51599	9.72941	.108578
9.22	85.0084	3.03645	9.60208	783.777	2.09690	4.51763	9.73293	.108460
9.23	85.1929	3.03809	9.60729	786.330	2.09765	4.51926	9.73645	.108342
9.24	85.3776	3.03974	9.61249	788.889	2.09841	4.52089	9.73996	.108225
9.25	85.5625	3.04138	9.61769	791.453	2.09917	4.52252	9.74348	.108108
9.26	85.7476	3.04302	9.62289	794.023	2.09992	4.52415	9.74699	.107991
9.27	85.9329	3.04467	9.62808	796.598	2.10068	4.52578	9.75049	.107875
9.28	86.1184	3.04631	9.63328	799.179	2.10144	4.52740	9.75400	.107759
9.29	86.3041	3.04795	9.63846	801.765	2.10219	4.52903	9.75750	.107643
9.30	86.4900	3.04959	9.64365	804.357	2.10294	4.53065	9.76100	.107527
9.31	86.6761	3.05123	9.64883	806.954	2.10370	4.53228	9.76450	.107411
9.32	86.8624	3.05287	9.65401	809.558	2.10445	4.53390	9.76799	.107296
9.33	87.0489	3.05450	9.65919	812.166	2.10520	4.53552	9.77148	.107181
9.34	87.2356	3.05614	9.66437	814.781	2.10595	4.53714	9.77497	.107066
9.35 9.36	87.4225 87.6096	3.05778 3.05941	9.66954	817.400	2.10671	4.53876	9.77846	.106952
			9.67471	820.026	2.10746	4.51038	9.78195	.106838
9.37	87.7969	3.06105	9.67988	822.657	2.10821	4.54199	9.78543	.106724
9.38 9.39	87.9844 88.1721	3.06268 3.06431	9.68504 9.69020	825.294 827.936	$2.10896 \\ 2.10971$	4.54361 4.54522	9.78891 9.79239	.106610 .106496
9.40	88.3600	3.06594	9.69536	830.584	2.11045	4.54684	9.79586	.106383
9.41	88.5481	3.06757	9.70052	833.238	2.11120	4.54845	9.79933	.106270
9.42 9.43	88.7364 88.9249	3.06920 3.07083	9.70567 9.71082	835.897 838.562	2.11195 2.11270	4.55006 4.55167	9.80280	.106157 .106045
							9.80627	
9.44 9.45	89.1136 89.3025	3.07246	9.71597	841.232	2.11344	4.55328	9.80974	.105932
9.46	89.4916	3.07409 3.07571	9.72111 9.72625	843.909 846.591	2.11419 2.11494	4.55488 4.55649	9.81320 9.81666	.105820 .105708
9.47	89.6809	3.07734	9.73139	849.278	2.11568	4.55809	9.82012	.105597
9.48	89.8704	3.07896	9.73653	851.971	2.11642	4.55970	9.82357	.105397
9.49	90,0601	3.08058	9.74166	851.670	2.11717	4.56130	9.82703	.105374
9.50	90.2500	3.08221	9.74679	857.375	2.11791	4.56290	9.83048	.105263
92	93.4	Vn.	$\sqrt{10n}$	n ³	₹'n		∛100 n	
74	76-	V 76	ATOM	n°	Vn.	√10n	A TAN W	1/n

n	n2	\sqrt{n}	$\sqrt{10n}$	n ⁸	$\sqrt[3]{n}$	³ √10 n	∜100 n	1/n
9.50	90.2500	3.08221	9.74679	857.375	2.11791	4.56290	9.83048	.105263
9.51	90,4401	3.08383	9.75192	860.085	2.11865	4.56450	9.83392	.105152
9.52	90.6304	3.08545	9.75705	862.801	2.11940	4.56610	9.83737	.105042
9.53	90.8209	3.08707	9.76217	865.523	2.12014	4.56770	9.84081	.104932
9.54	91.0116	3.08869	9.76729	868.251	2.12088	4.56930	9.84425	.104822
9.55	91.2025	3.09031	9.77241	870.984 873.723	2.12162 2.12236	4.57089	9.84769 9.85113	.104712
9.56	94.3936	3.09192	9.77753			4.57249	1	
9.57	91.5849	3.09354	9.78264	876.467 879.218	2.12310	4.57408	9.85456 9.85799	.104493
9.58 9.59	91.7764 91.9681	3.09 51 6 3.09 677	9.78775 9.79285	881.974	2.12384 2.12458	4.57567 4.57727	9.86142	.104384
9.60	.92.1600	3.09839	9.79796	884.736	2.12532	4.57886	9.86485	.104167
9.61	92.3521	3.10000	9.80306	887.504	2.12605	4.58045	9.86827	.104058
9.62	92.5321	3.10161	9.80816	890.277	2.12679	4.58204	9.87169	.103950
9.63	92.7369	3.10322	9.81326	893.056	2.12753	4.58362	9.87511	.103842
9.64	92.9296	3.10483	9.81835	895.841	2.12826	4.58521	9.87853	.103734
9.65	93.1225	3.10644	9.82344	898.632	2.12900	4.58679	9.88195	.103627
9.66	93.3156	3.10805	9.82853	901.429	2.12974	4.58838	9.88536	.103520
9.67	93.5089	3.10966	9.83362	904.231	2.13047	4.58996	9.88877	.103413
9.68 9.69	93.7024 93.8961	3.11127 3.11288	9.83870 9.84378	907.039	2.13120 2.13194	4.59154	9.89217 9.89558	.103306
9.70	94.0900	3.11266	9.84886	912.673	2.13194	4.59470	9.89898	.103199
9.71 9.72	94.2841 94.4784	3.11609 3.11769	9.85393 9.85901	915.499 918.330	2.13340 2.13414	4.59628 4.59786	9.90238 9.90578	.102987
9.73	94.6729	3.11929	9.86408	921.167	2.13487	4.59943	9.90918	.102775
9.74	94.8676	3.12090	9.86914	924.010	2.13560	4.60101	9.91257	.102669
9.75	95.0625	3.12250	9.87421	926.859	2.13633	4.60258	9.91596	.102564
9.76	95.2576	3.12410	9.87927	929.714	2.13706	4.60416	9.91935	.102459
9.77	95.4529	3.12570	9.88433	932.575	2.13779	4.60573	9 92274	.102354
9.78	95.6484	3.12730	9.88939	935.441	2.13852	4.60730	9.92612	.102249
9.79	95.8441	3.12890	9.89444	938.314	2.13925	4.60887	9.92950	.102145
9.80	96.0400	3.13050	9.89949	941.192	2.13997	4.61044	9.93288	.102041
9.81	96.2361	3.13209	9.90454	944.076	2.14070	4.61200	9.93626	.101937
9.82 9.83	96.4324 96.6289	3.13369 3.13528	9.90959 9.91464	946.966 949.862	2.14143 2.14216	4.61357 4.61514	9.93964 9.94301	.101833 .101729
9.84 9.85	96.8256 97.0225	3.13688 3.13847	9.91968 9.92472	952.764 955.672	2.14288 2.14361	4.61670 4.61826	9.94638 9.94975	.101626 .101523
9.86	97.2196	3.14006	9.92975	958.585	2.14433	4.61983	9.95311	.101323
9.87	97.4169	3.14166	9.93479	961.505	2.14506	4.62139	9.95648	.101317
9.88	97.6144	3.14325	9.93982	964.430	2.14578	4.62295	9.95984	.101215
9.89	97.8121	3.14484	9.94485	967.362	2.14651	4.62451	9.96320	.101112
9.90	98.0100	3.14643	9.94987	970.299	2.14723	4.62607	9.96655	.101010
9.91	98.2081	3.14802	9.95490	973.242	2.14795	4.62762	9.96991	.100908
9.92 9.93	98.4064 98.6049	3.14960 3.15119	9.95992 9.96494	976.191 979.147	2.14867 2.14940	4.62918 4.63073	9.97326 9.97661	.100806
9.94	98.8036	3.15278	9.96995	982.108	2.15012	4.63229	9.97996	.100/03
9.94	99.0025	3.15278	9.90995	985.075	2.15012	4.63384	9.98331	.100503
9.96	99.2016	3.15595	9.97998	988.048	2.15156	4.63539	9.98665	.100402
9.97	99.4009	3.15753	9.98499	991.027	2.15228	4.63694	9.98999	.100301
9.98	99.6004	3.15911	9.98999	994.012	2.15300	4.63849	9.99333	.100200
9.99	99.8001	3.16070	9.99500	997.003	2.15372	4.64004	9.99667	.100100
10.00	100.000	3.16228	10.0000	1000.00	2.15443	4.64159	10.0000	.100000
n	n ²	\sqrt{n}	$\sqrt{10n}$	n^8	√n	$\sqrt[3]{10n}$	√100 n	1/n

N	0	1	2	3	1 4	5	6	7	8	9
0.0	-	5.395	6 088	6,493	6.781	7.004	7.187	7.341	7.474	7,592
0.1	2 7.697	7.793	7.880	7.960	8.034	8.103	8.167	8.228	8.285	
0.2	8.391	8.439	8.486	8.530	8.573	8 614	8.653	8.691	8.727	8.339 8.762
0.3	₿ 8.796	8.829	8.861	8.891	8.921	8.950	8.978	9.006	9.032	9.058
0.4	₹ 9.084	9.108	9.132	9.156	9.179	9.201	9.223	9.245	9.266	9.287
0.5 0.6	5 9.307 5 9.489	9.327 9.506	9.346 9.522	9.365 9.538	9.384 9.554	9.402 9.569	9.420	9.438	9.455	9.472
	£ 000						9.584	9.600	9.614	9.629
0.7	9.643 9.777 E 9.895	9.658	$9.671 \\ 9.802$	9 685 9.814	9.699 9.826	9.712 9.837	$9.726 \\ 9.849$	9.739 9.861	$9.752 \\ 9.872$	9.764 9.883
0.9	₽ 9.895	9.906	9.917	9.927	9.938	9.949	9.959	9.970	9.980	9.990
1.0	0.00000	0995	1980	2956	3922	4879	5827	6766	7696	8618
1.1	9531	*0436	*1333	*2222	*3103	*3976	*4842	*5700	*6551	*7395
1.2 1.3	0.1 8232	9062	9885	*0701	*1511	*2314	*3111	*3902	*4686	*5464
	0.2 6236	7003	7763	8518	9267	*0010	*0748	*1481	*2208	*2930
1.4 1.5	0.3 3647 0.4 0547	4359 1211	5066 1871	5767 2527	6464 3178	7156 3825	7844 4469	8526 5108	9204 5742	9878 6373
1.6	7000	7623	8243	8858	9470	*0078	*0682	*1282	*1879	*2473
1.7	0.5 3063	3649	4232	4812	5389	5962	6531	7098	7661	8222
1.8 1.9	8779 0.6 4185	9333	9884	*0432	*0977	*1519	*2058	*2594	*3127	*3658
2.0	9315	9813	*0310	5752 *0804	6269 *1295	6783 *1784	7294 *2271	7803 *2755	*3237	8813 *3716
2.1	0.7 4194	4669	5142	5612	6081	6547	7011	7473	7932	8390
2.2	8846	9299	9751	*0200	*0648	*1093	*1536	*1978	*2418	*2855
2.3	0.8 3291	3725	4157	4587	5015	5442	5866	6289	6710	7129
2.4 2.5	7547 0.9 1629	7963 2028	$8377 \\ 2426$	$8789 \\ 2822$	9200 3216	9609 3609	*0016 4001	*0422 4391	*0826 4779	*1228 . 5166
2.6	5551	5935	6317	6698	7078	7456	7833	8208	8582	8954
2.7	9325	9695	*0063	*0430	*0796	*1160	*1523	*1885	*2245	*2604
28	1.0 2962	3318	3674	4028	4380	4732	5082	5431	57 79	6126
2.9	6471	6815	7158	7500	7841	8181	8519	8856	9192	9527
3.0	9861	*0194	*0526	*0856	*1186	*1514	*1841	*2168	*2493	*2817
3.1	1.1 3140 6315	3462 6627	3783 6938	$\frac{4103}{7248}$	4422 7557	4740 7865	5057 8173	5373 8479	5688 8784	9089
3.3	9392	9695	9996	*0297	*0597	*0896	*1194	*1491	*1788	*2083
3.4	1.2 2378	2671	2964	3256	3547	3837	4127	4415	4703	4990
3.5 3.6	5276 8093	5562 8371	5846 8647	6130 8923	6413 9198	6695 9473	6976 97 4 6	7257 *0019	7536 *0291	7815 *0563
3.7										
3.7	1.3 0833 3500	1103 3763	$\frac{1372}{4025}$	1641 4286	1909 4547	$2176 \\ 4807$	2442 5067	2708 5325	$2972 \\ 5584$	3237 5841
3.9	6098	6354	6609	6864	7118	7372	7624	7877	8128	8379
4.0	8629	8879	9128	9377	9624	9872	*0118	*0364	*0610	*0854
4.1	1.4 1099	1342	1585	1828	2070	2311	2552	2792	3031	3270
4.2 4.3	3508 5862	3746 6094	3984 6326	4220 6557	4456 6787	4692 7018	4927 7247	5161 7476	5395 7705	5629 7933
4.4	,	8387	8614	8840	9065	9290	9515	9739	9962	*0185
4.4	8160 1.5 0408	0630	0851	1072	1293	9290 1513	9515 1732	1951	2170	2388
4.6	2606	2823	3039	3256	3471	3687	3902	4116	4330	4543
4.7	4756	4969	5181	5393	5604	5814	6025	6235	6444	6653
4.8	6862 8924	7070 9127	7277 9331	7485 9534	7691 9737	7898 9939	8104 *0141	8309 *0342	8515 *0543	8719 *0744
5.0	1.6 0944	1144	1343	1542	1741	1939	2137	2334	2531	2728
N	0	1	2	3	4	1939	6	7	8	9
		-	~	-	-			•		

N	0	1	2	S	4	5	6	7	18	ð
5.0	 1.6 0944 	1144	1343	1542	1741	1939	2137	2334	2531	2728
5.1	2924	3120	3315	3511	3705		4094	4287		4673
5.2 5.3	4866 6771	5058 6959	5250 7147	5441 7335	5632 7523		6013 7896	6203 8083		6582 8 45 5
5.4	8640	8825	9010	9194	9378	9562	9745	9928	*0111	*0293
5.5	1 7 0475	0.156	0838	1019	1199	1380	1560	1740	1919	2098
5.6	2277	2455	?633	2811	2988	3166	3342	• 3519	3695	3871
5.7	4047	4222 5958	4397 6130	$\frac{4572}{6302}$	4746	4920	5094	5267	· 5440	5613
5.8 5.9	5786 7495	7665	7834	8002	6473 8171	6644 8339	$6815 \\ 8507$	6985 8675	7156 8842	7326 9009
6.0	9176	9342	9509	9675	9840	*0006	*0171	*0336	*0500	*0665
6.1	1.8 0829	0993	1156	1319	1482	1645	1808	1970	2132	~2294
6.2	2455	2616	2777	2938	3098	3258	3418	3578	3737	3896
6.3	4055	4214	4372	4530	4688	4845	5003	5160	5317	5473
6.4	5630	5786	5942	6097	6253	6408	6563	6718	6872	7026
6.5	7180	7334	7487	7641	7794	7947	8099	8251	8403	8555
6.6	8707	8858	9010	9160	9311	9462	9612	9762	9912	*0061
6.7	1.90211	0360	0509	0658	0806	0954	1102	1250	1398	1545
6.8	1692 3152	1839 3297	$\frac{1986}{3442}$	$\frac{2132}{3586}$	2279	2425	2571	2716	2862	3007
7.0	4591	4734	4876	5019	3730 5161	3874 5303	4018 5445	4162 5586	4305 5727	4448 5869
$\begin{array}{c c} 7.1 \\ 7.2 \end{array}$	6009 7408	6150 7547	6291 7685	6431 7824	6571 7962	6711 8100	6851 8238	6991 8376	7130. 8513	7269 8650
7.3	8787	8924	9061	9198	9334	9470	9606	9742	9877	*0013
7.4	2.0 0148	0283	0418	0553	0687	0821	0956	1089	1223	1357
7.5	1490	1624	1757	1890	2022		2287	2419	2551	2683
7.6	2815	2946	3078	3 209	3340	3471	3601	3732	3862	3992
7.7	4122	4252	4381	4511	4640	4769	4898	5027	5156	5284
7.8	5412	5540	5668	5796	5924	6051	6179	6306	6433	6560
7.9	6686	6813	6939	7065	7191	7317	7443	7568	7694	7819
8.0	7944	8069	8194	8318	8443	8567	8691	8815	8939	9063
8.1	9186	9310	9433	9576	9679	9802	9924	*0047	*0169	*0291
8.2 8.3	2.1 0413 1626	0535 1746	0657 1866	0779 1986	0900 2106	$\frac{1021}{2226}$	$\frac{1142}{2346}$	1263 2465	1384 2585	$\frac{1505}{2704}$
- 1		2942	3061							
8.4 8.5	2823 4007	4124	4242	3180 4359	3298 4476	3417 4593	3535 4710	3653 4827	3771 4943	3889 5060
8.6	5176	5292	5409	5524	5640	5756	5871	5987	6102	6217
8.7	6332	6447	6562	6677	6791	6905	7020	7134	7248	7361
8.8	7475	7589	7702	7816	7929	8042	8155	8267	8380	8493
8.9	8605	8717	8830	8942	9054	9165	9277	9389	9500	9611
9.0	9722	9834	9944	*0055	*0166	*0276	*0387	*0497	*0607	*0717
9.1	2.2 0827	0937	1047	1157	1266	1375	1485	1594	1703	1812
9.2	1920	2029 3109	2138 3216	2246 3324	2354 3431	2462 3538	2570 3645	2378 3751	2786 3858	2894 3965
9.3	3001							-		
9.4	4071	4177	4284	4390	4496	4601	4707	4813	4918 5968	5024
9.5 9.6	5129 6176	5234 6280	5339 6384	5444 6488	5549 6592	5654 6696	5759 6799	5863 6903	7006	6072 7109
1	1									
9.7 9.8	7213 8238	7316 8340	7419 8442	7521 8544	7624 8646	7727 8747	7829 8849	7932 8950	8034 9051	8136 9152
9.8	9253	9354	9455	9556	9657	9757	9858	9958		*0158
10.0	2.3 0259	0358	0458	0558	0658	0757	0857	0956	1055	1154
N	0	1	2	8	4	. 2	6	7	8.	9

10	2.30259	25	3.21888	40	3.68888	55	4.00733	70	4.24850	85	4.44265
14	2.39790	26	3.25810	41	3.71357	56	4.02535	71	4.26268	86	4.45435
12	2.48491	27	3.29584	42	3.73767	57	4.04305	72	4.27667	87	4.46591
13	2.56495	28	3.33220	43	3.76120	58	4.06044	73	4.29046	88	4.47734
14	2.63906	29	3.36730	44	3.78419	59	4.07754	74	4.30107	89	4.48864
15	2.70805	80	3.40120	45	3.80666	60	4.09434	75	4.31749	90	4.49981
16	2.77259	31	3.43399	46	3.82864	61	4.11087	76	4.33073	91	4.51086
17	2.83321	32	3!46574	47	3.85015	62	4.12713	77	4.34381	92	4.52179
18	2.89037	33	3.49651	48	3.87120	63	4.14313	78	4.35671	93	4.53260
19	2.94444	34	3.5263C	49	3.89182	64	4.15888	79	4.36945	94	4.54329
20	2.99573	35	3.55535	50	3.91202	65	4.17439	80	4.38203	95	4.55388
21	3.04452	36	3.58352	51	3.93183	66	4.18965	81	4.39445	96	4.56435
22	2.09104	37	3.61092	52	3.95124	67	4.20469	82	4.40672	97	4.57471
23	3.13549	38	3.63759	53	•3.97029	68	4.21951	83	4.41884	98	4.58497
24	3.17805	39	3.66356	54	3.98898	69	4.23411	84	4.43082	99	4.59512

NAPIERIAN OR NATURAL LOGARITHMS-100 TO 409

N	0	1	2	3	4	5	6	7	8	9
10	4.6 0517	1512	2497	3473	4439	5396	6344	7283	8213	9135
11	4.7 0048	0953	1850	2739	3620	4493	5359	6217	7068	7912
12	8749	9579	*0402	*1218	*2028	*2831	*3628	*4419	*5203	*5981
13	4.8 6753	7520	8280	9035	9784	*0527	*1265	*1998	*2725	*3447
14	4.94164	4876	5583	6284	6981	7673	8361	9043	9721	*0395
15	5.0 1064	1728	2388	3044	3695	4343	4986	5625	6260	6890
16	7517	8140	8760	9375	9987	*0595	*1199	*1799	*2396	*2990
17	5.1 3580	4166	4749	5329	5906	6479	7048	7615	8178	8739
18	9296	9850	*0401	*0949	*1494	*2036	*2575	*3111	*3644	*4175
19	5.2 4702	5227	5750	6269	6786	7300	7811	8320	8827	9330
20	9832	*0330	*0827	*1321	*1812	*2301	*2788	*3272	*3754	*4233
21	5.34711	5186	5659	6129	6598	7064	7528	7990	8450	8907
22	9363	9816	*0268	*0717	*1165	*1610	*2053	*2495	*2935	*3372
23	5.4 3808	4242	4674	5104	5532	5959	6383	6806	7227	7646
24	8064	8480	8894	9306	9717	*0126	*0533	*0939	*1343	*1745
25	5.5 2146	2545	2943	3339	3733	4126	4518	4908	5296	5683
26	6068	6452	6834	7215	7595	7973	8350	8725	9099	9471
27	9842	*0212	*0580	*0947	*1313	*1677	*2040	*2402	*2762	*3121
28	5.6 3479	3835	4191	4545	4897	5249	5599	5948	6296	6643
29	6988	7332	7675	8017	8358	8698	9036	9373	9709	*0014
30	5.7 0378	0711	1043	1373	1703	2031	2359	2685	3010	3334
31	3657	3979	4300	4620	4939	5257	5574	5890	6205	6519
32	6832	7144	7455	7765	8074	8383	8690	8996	9301	9606
33	9909	*0212	*0513	*0814	*1114	*1413	*1711	*2008	*2 305	*2600
34	5.8 2895	3188	3481	3773	4064	4354	4644	4932	5220	5507
35	5793	6079	6363	6647	6930	7212	7493	7774	8053	8332
36	8610	8888	9164	9440	9715	9990	*0263	*0536	*0808	*1080
37	5.9 1350	1620	1889	2158	2426	2693	2959	3225	3489	3754
38	4017	4280	4542	4803	5064	5324	5584	5842	6101	6358
39	6615	6871	7126	7381	7635	7889	8141	8394	8645	8896
40	9146	9396	9645	9894	*0141	*0389	*0635	*0881	*1127	*1372
N	0	1	2	8	4.	5	6	7	8	9

Above 409, use the formula $\log_e 10 n = \log_e n + \log_e 10 = \log_e n + 2.30258509$.

[Characteristics of Logarithms omitted — determine by the usual rule from the value]

	1			7		7		7			·
PARTANE	DEGREES	Sı	NE	TAR	GENT	COTA	MENT	Co	SINE	1	i
KADIANS	DEGREES	Value	Log10	Value	Log	Value	Log1		Logi	ol'	1.
				l						-	<u> </u>
.1571	9°00'	.1564	.1943	.1584	.1997	6.3138	.8003	.9877	.9946	81000	1.4137
.1600	10	.1593	.2022	.1614		6.1970	.7922	.9872	.9944	50	1.4108
.1629	20	.1622	.2100	.1644	.2158	6.0844	.7842	.9868	.9942	40	1.4079
.1658	30	.1650	.2176	.1673	.2236	5.9758	.7764		.9940	30	1.4050
.1687	40	.1679	.2251	.1703	.2313	5.8708	.7687	.9858	.9938	20	1.4021
.1716	• 50	.1708	.2324	.1733	.2389	5.7694	.7611	.9853	.9936	10	1.3992
1	1					1			•		•
.1745	10° 00′	.1736	.2597	.1763	.2463	5.6713	.7537	.9848	.9934	80° 00	1.3963
.1774	10	.1765	.2468	.1793	.2536	5.5764	.7464	.9843	.9931	50	1.3934
.1804	20	.1794	.2538	.1823	.2609	5.4845	.7391	.9838	.9929	40	1.3904
.1833	30	.1822	.2606	.1853	.2680	5.3955	.7320	.9833	.9927	30	1.3875
.1862	40	.1851	.2674	.1883	.2750	5.3093	.7250	.9827	.9924	20	1.3846
.1891	50	.1880	.2740	.1914	.2819	5.2257	.7181	.9822	.9922	10	1.3817
.1920	11° 00'	.1908	.2806	.1944	.2887	5.1446	.7113	.9816	.9919	79° 00'	1.3788
.1949	10	.1937	.2870	.1974	.2953	5.0658	.7047	.9811	.9917	50	1.3759
.1978	20	.1965	.2934	.2004	.3020	4.9894	.6980	.9805	.9914	40	1.3730
.2007	30	.1994	.2997	.2035	.3085	4.9152	.6915	.9799	.9912	30	1.3701
.2036	40	2022	.3058	.2065	.3149	4.8430	.6851	.9793	.9909	20	1.3672
.2065	50	.2051	.3119	.2095	.3212	4.7729	.6788	.9787	.9907	10	1.3643
1								1			
.2094	12° 00′	.2079	.3179	.2126	.3275	4.7046	.6725	.9781	.9904	78° 00'	1.3614
.2123	10	.2108	.3238	.2156	3336	4.6382	.6664	.9775	.9901	50	1.3584
.2153	20	.2136	.3296	.2186	.3397	4.5736	.6603	.9769	.9899	40	1.3555
.2182	30	.2164	.3353	.2217	.3458	4.5107	.6542	.9763	.9896	30	1.3526
.2211	40	.2193	.3410	.2247	.3517	4.4494	.6483	.9757	.9893	20	1.3497
.2240	50	.2221	.3466	.2278	.3576	4.3897	.6424	.9750	.9890	10	1.3468
.2269	13° 00'	.2250	.3521	.2309	.3634	4.3315	.6366	.9744	.9887	770 00	1.3439
.2298	10	.2278	.3575	.2339	.3691	4.2747	.6309	.9737	.9884	50	1.3410
.2327	20	.2306	3629	.2370	.3748	4.2193	.6252	.9730	.9881	40	1.3381
.2356	30	.2334	.3682	.2401	.3804	4.1653	.6196		.9878	30	1.3352
.2385	40	.2363	.3734	.2432	.3859	4.1126	.6141	.9717	.9875	20	1.3323
.2414	50	.2391	.3786	.2462	.3914	4.0611	.6086	.9710	.9872	10	1.3294
						1		i .		1	1
.2443	14° 00′	.2419	.3837	.2493	.3968	4.0108	.6032	.9703	.9869	76° 00′	1.3265
.2473	10	.2447	.3887	.2524	.4021	3.9617	.5 979	.9696	.9866	50	1.3235
.2502	20	.2476	.3937	.2555	.4074	3.9136	.5926	.9689	.9863	40	1.3206
.2531	30	.2504	.3986	.2586	.4127	3.8667	.5873	.9681	.9859	30	1.3177
.2560	40	.2532	.4035	.2617	.4178	3.8208	.5822	.9674	.985 6	20	1.3148
.2589	50	.2560	.4083	.2648	.4230	3.7760	.5770	.9667	.9853	10	1.3119
.2618	15° 00'	.2588	.4130	.2679	.4281	3.7321	.5719	.9659	.9849	75000	1.3090
.2647	10		.4177	.2711	.4331	3.6891	.5669	.9652	.9846	50	1.3061
.2676	20		.4223	.2742	.4381	3.6470	.5619	.9644	.9843	40	1.3032
.2705	30	.2672	.4269	.2773	.4430	3.6059	.5570	.9636	.9839	30	1.3003
.2734	40		.4314	.2805	.4479	3.5656	.5521	.9628	.9836	20	1.2974
.2763	50	.2728	.4359	.2836	4527	3.5261	.5473		.9832	10	1.2945
.2793	16° 00'	.2756	.4403	.2867	.4575	3.4874	.5425	.9613	.9828	74° 00′	1.2915
.2822	10		.4447	.2899	.4622	3.4495	.5378		.9825	50	1.2886
.2851	20		.4491	.2931	.4669	3.4124	.5331		.9821	40	1.2857
.2880	30		.4533	.2962	.4716	3.3759	.5284	.9588	.9817	30	1.2828
.2909	40		.4576	.2994	.4762	3.3402	.5238	.9580	.9814	20	1.2799
.2938	50	.2896	.4618	.3026	.4808	3.3052	.5192	.9572	.9810	10	1.2770
.2967	17° 00'	.2924	.4659	.3057	.4853	3.2709	.5147	.9563	.9866	73° 00'	1.2741
.2996	10	.2952	.4700	.3089	.4898		.5102		.9802	50	1.2712
.3025	20		.4741	.3121	.4943		.5057		.9798	40	1.2683
.3054	30		.4781	.3153	4987		.5013		.9794	30	1.2654
.3083	40		.4821	.3185	.5031		.4969		.9790	20	1.2625
.3113	50		.4861	.3217	.5075		4925		.9786	10	1.2595
1							1				
.3142	18° 00'	.3090	.4900	.3249	.5118	3.0777	.4882	.9511	.9782	72° 00′	1.2566
ı	1	Value	Log ₁₀	Value	Log10	Value	Log10	Value	Log10	DEGREES	RADIANS
- 1	1	Cost	NE	COTAN	GENT	TANG	ENT	SIN	E .		
<u> </u>					<u>'</u>						

Four Place Trigonometric Functions

[Characteristics of Logarithms omitted — determine by the usual rule from the value]

RADIANS	DEGREES	Sr. Value	NE Log ₁₀	TAN Value	GENT Log ₁₀		GENT Log ₁₀	Cos Value	Log ₁₀		
.3142	18°00′	.3090	.4900	.3249	.5118	3.0777		.9511	.9782	72° 00'	1.2566
.3171	10	.3118	.4939	.3281	.5161	3.0475	.4839	.9502	.9778	50	1.2537
3200	20	.3145	.4977	.3314	.5203	3.0178	.4797	.9492	.9774		1.2508
.3229	30·	.3173	.5015	.3346	.5245	2.9887	.4755	.9483	.9770	30	1.2479
.3258	40		.5052		.5287	2.9600	.4713	.9474	.9765	20	1.2450
.3287	50		.5090		.5329	2.9319	.4671	.9465	.9761		1.2421
.3316	19°00'	.3256	.5126	.3443	.5370	2.9042	.4630	.9455	.9757	710 00	1.2392
.3345	10	.3283	.5163	.3476	.5411	2.8770	.4589	.9446	.9752	50	1.2363
.3374	20	.3311	.5199	.3508	.5451	2.8502	.4549	.9436	.9748	40	1.2334
.3403	30	,3338	.5235	.3541	.5491	2.8239	.4509	.9426	.9743		1.2305
.3432	40	.3365	.5270	.3574	.5531	2.7980	.4469	.9417	.9739	20	1.2275
.3462	50	.3393	.5306	.3607	.5571	2.7725	.4429	.9407	.9734		1.2246
.3491	20° 00′	.3420	.5341	.3640	.5611	2.7475	.4389	.9397	.9730	70° 00'	1.2217
.3520	· 10	.3448	.5375	.3673	.5650	2.7228	.4350	.9387	.9725		1.2188
.3549	20	.3475	.5409	.3706	.5689	2.6985	.4311	.9377	.9721		1.2159
.3578	30	.3502	.5443	.3739	.5727	2.6746	.4273	.9367	.9716		1.2130
.3607	40	.3529	.5477	.3772	.5766	2.6511	.4234	.9356	.9711	20	1.2101
.3636	50	.3557	.5510	.3805	.5804	2.6279	.4196	.9346	.9706		1.2072
.3665	21° 00′	.3584	.5543	.3839	.5842	2.6051	.4158	.9336	,9702	69° 00′	1.2043
.3694	10	.3611	.5576	.3872	.5879	2.5826	.4121	.9325	.9697 .9692	50	1.2014
.3723	20	.3638	.5609	.3906	.5917	2.5605	.4083			40	1.1985
.3752	30	.3665	.5641	.3939	.5954	2.5386	.4046	.9304	.9687	30	1.1956
.3782	40	.3692	.5673	.3973	.5991	2.5172	.4009	.9293	.9682	20	1.1926
.3811	50	.3719	.5704	.4006	.6028	2.4960	.3972	.9283	.9677		1.1897
.3840	22° 00′	.3746	.5736	.4040	.6064	2.4751	.3936	.9272	.9672	68° 00′	1.1868
.3869	10	.3773	.5767	.4074	.6100	2.4545	.3900	.9261	.9667	50	1.1839
.3898	20	.3800	.5798	.4108	.6136	2.4342	.3864	.9250	.9661		1.1810
.3927 .3956	30 40	.3827	.5828 .5859	.4142	.6172 .6208	2.4142 2.3945	.3828 .3792	.9239	.9656	30 20	$1.1781 \\ 1.1752$
.3985	50	.3881	.5889	.4176 $.4210$.6243	2.3750	.3757	.9216	.9651 .9646	10	1.1723
.4014	28° 00′	.3907	.5919	.4245	.6279	2.3559	.3721	.9205	.9640		1.1694
4043	10		.5948	.4279	.6314	2.3369	.3686		.9635	50	1.1665
.4072	20	.3961	.5978	.4314	.6348	2.3183	3652		.9629		1.1636
.4102	30	.3987	.6007	.4348	.6383	2.2998	.3617	.9171	.9624	30	1.1606
.4131	40	.4014		.4383	.6417	2.2817	.3583	.9159	.9618	20	1.1577
.4160	50	.4041			.6452	2.2637	.3548		.9613		1.1548
.4189	24°00'	.4067	.6093	.4452	.6486	2.2460	.3514	.9135	.9607	66° 00'	1.1519
.4218	10	.4094	.6121	.4487	.6520	2.2286	.3480	.9124	.9602 .9596	50	1.1490
.4247	20	.4120	.6149	.4522	.6553	2.2113	.3447	.9112	.9596	40	1.1461
.4276	30	.4147	.6177	.4557	.6587	2.1943	.3413	.9100	.9590	30	1.1432
.4305	40	.4173	.6205	.4592	.6620	2.1775	.3380		.9584		1.1403
.4334	50	.4200	.6232	.4628	.6654	2.1609	.3346	.9075	.9579	l .	1.1374
.4363	25° 00′	.4226	.6259	.4663	.6687	2.1445	.3313	.9063	.9573		1.1345
.4392	10	.4253	.6286		.6720	2.1283	.3280	.9051	.9567		1.1316
.4422	20	.4279	.6313	.4734	.6752	2.1123	.3248	.9038	.9561	40	-1.1286
.4451 .4480	30 40	.4305 .4331	.6340 .6366	.4770 .4806	.6785	2.0965 2.0809	.3215 .3183	.9026	.9555		1.1257 1.1228
.4480	50	.4358	.6392	.4841	.6817 .6850	2.0809	.3183		.9549 .9543		1.1228
.4538	26° 00'	4384							.9537	1	1.1170
.4567	10	.4410	.6418	.4877 .4913	.6882 .6914	2.0503 2.0353	.3118 .3086	.8988 .8975	.9530		1.1141
4596	20	.4436	.6470	4950	.6946	2.0204	.3054	.8962	.9524	40	1.1112
.4625	30	.4462	.6495	4986	.6977	2.0057	.3023	.8949	.9518	30	1.1083
.4654	40	.4488	.6521	.5022	.7009	1.9912	.2991	.8936	.9512	20	1.1054
.4683	50	.4514	.6546		.7040	1.9768	.2960	.8923	.9505	10	1.1025
.4712	27° 00′	.4540			.7072	1.9626	.2928	.8910		68° 00′	1.0996
	٠ ٣	Value Cos	Log ₁₀	Value COTAL	Log ₁₀	Value TANG	Log ₁₀	Value Sn	Log ₁₀	Degrees	RADIANS

Four Place Trigonometric Functions

[Characteristics of Logarithms omitted —determine by the usual rule from the value]

								, ·			
RADIANS	DEGREES	Sr Value	Log ₁₀		GENT Log ₁₀	Cota: Value	Log ₁₀	Cor Value	Log ₁₀		
.4712	27° 00′	.4540	.6570	.5095	.7072	1.9626	.2928	.8910	.9499	68° 00	1.0996
.4741	10	4566	.6595	.5132	.7103	1.9486	2897	.8897	.9492	50	1.0966
.4771	20	.4592	.6620	.5169	.7134	1.9347	.2866		9486	40	1.0937
.4800	30	.4617	.6644	.5206	.7165	1.9210	.2835	.8870	.9479	30	1.0908
.4829	40	.4643	.6668	.5243	.7196	1.9074	.2804	.8857	.9473	20	1.0879
4858	50		.6602	.5280	.7226	1.8940	.2774	.8843	.9466	10	1.0850
.4887				E917	.7257	1.8807	.2743	.8829	.9459	62° 00′	1.0821
.4887	28° 00′ 10	.4695 .4720	.6716 .6740	.5317 .5354	.7287	1.8676	.2713	.8816	.9453	50	1.0792
.4945	20	.4746	.6763	.5392	7317	1.8546	.2683	.8802	.9446	40	1.0763
.4974	30	.4772	.6787	.5430	.7348	1.8418	.2652	.8788	.9439	30	1.0734
.5003	40	.4797	.6810	.5467	.7378	1.8291	.2622	.8774	.9432	20	1.0705
.5032	50	4823	.6833	.5505	.7408	1.8165	.2592	.8760	.9425	10	1.0676
											1
.5061 .5091	29° 00′	.4848	.6856 .6878	.5543	.7438	1.8040	.2562	.8746	.9418 .9411	61° 00′	1.0647
.5120	10 20	.4874		.5581	.7467	1.7917	.2533	.8732		50	
.5149	30	.4899 .4924	.6901 .6923	.5619 .5658	.7497 .7526	1.7796 1.7675	.2503 .2474	.8718	.9404	40 30	1.0588
.5149	40	.4924		.5696	.7556	1.7556	.2414	.8689	.9397	20	1.0530
.5207	50		.6968	.5735	.7585	1.7437	.2415	.8675	.9383	10	1.0501
		•						1			ı
.5236	30° 00′	.5000	.6990	.5774	.7614	1.7321	.2386	.8660	.9375	60° 00'	1.0472
.5265	10	.5025	.7012	.5812	.7644	1.7205	.2356	.8646	.9368	50	1.0443
.5294	20	.5050	.7033	.5851	.7673	1.7090	.2327	.8631	.9361	40	1.0414
.5323	30		.7055	.5890	.7701	1.6977	.2299	.8616	.9353	30	1.0385
.5352 .5381	40 50	.5100 .5125	.7076 .7097	.5930	.7730 .7759	1.6864	.2270 $.2241$.8601	.9346	20	1.0356
								.8587	.9338	10	1.0327
.5411	31000	.5150	.7118	.6009	.7788	1.6643	.2212	.8572	.9331		1.0297
.5440	10	.5175	.7139	.6048	.7816	1.6534	.2184		.9323	50	1.0268
.5469	20	.5200	.7160		.7845	1.6426	.2155	.8542	.9315	40	1.0239
.5498	30	.5225	.7181	.6128	.7873	1.6319	.2127	.8526	.9308	30	1.0210
.5527	40	.5260	.7201	.6168	.7902	1.6212	.2098	.8511	.9300	20	1.0181
.5556	50	.5275	.7222	.6208	.7930	1.6107	.2070	.8496	.9292	10	1.0152
.5585	82° 00'	.5299	.7242	.6249	.7958	1.6003	.2042	.8480	.9284	58° 00'	1.0123
.5614	10	.5324	.7262	.6289	.7986	1.5900	.2014	.8465	.9276	50	1.0094
.5643	20	.5348	.7282	.6330	.8014	1.5798	.1986	.8450	.9268	40	1.0065
.5672	30	.5373	.7302	.6371	.8042	1.5697	.1958	.8434	.9260	30	1.0036
.5701	40		.7322	.6412	.8070	1.5597	.1930	.8418	.9252	20	1.0007
.5730	50	.5422	.7342	.6453	.8097	1.5497	.1903	.8403	.9244	10	.9977
.5760	33°00'	.5446	.7361	.6494	.8125	1.5399	.1875	.8387	.9236	57000	.9948
.5789	10	.5471	.7380	.6536	.8153	1.5301	.1847	.8371	.9228	50	.9919
.5818	20	.5495	.7400	.6577	.8180	1.5204	.1820	.8355	.9219	40	.9890
.5847	30	.5519	.7419	.6619	.8208	1.5108	.1792	.8339	.9211	30	.9861
.5876	40		.7438	.6661	.8235	1.5013	.1765	.8323	.9203	20	.9832
.5905	50	.5568	.7457	.6703	.8263	1.4919	.1737	.8307	.9194	10	.9803
.5934	34° 00'	.5592	.7476	.6745	.8290	1.4826	.1710	.8290	.9186	56° 00'	.9774
.5963	10	.5616	7494	.6787	.8317	1.4733	.1683	.8274	.9177	50	.9745
.5992	20	.5640	.7513	.6830	.8344	1.4641	.1656	.8258	.9169	40	.9716
.6021	30		.7531	.6873	.8371		.1629	.8241	.9160	30	.9687
.6050	40	.5688	.7550	.6916	.8398	1.4460	.1602	.8225	.91	20	.9657
.6080	50	.5712	.7568	.6959	.8425	1.4370	.1575	.8208	.91-2	10	.9628
.6109	35° 00'	.5736	.7586	.7002	.8452	1.4281	.1548	.8192	.9134	55° 00'	.9599
.6138	10	.5760	.7604	.7046	.8479	1.4193	.1521	.8175	.9125	50	.9570
.6167	20	.5783	.7622	.7089	.8506	1.4106	.1494	.8158	.9116	40	.9541
.6196	30	.5807	.7640	.7133	.8533		.1467	.8141	.9107	3ŏ	.9512
.6225	40	.5831	.7657	.7177	.8559	1.3934	.1441	.8124	.9098	20	.9483
.6254	50	.5854	.7675	.7221	.8586		.1414	.8107	.9089	10	.9454
.6283	36° 00′	.5878	.7692	.7265	.8613	1.3764	.1387	.8090	.9080	54° 00′	.9425
		Value Cos	Log ₁₀	Value COTAN	Log ₁₀	Value TANG	Log ₁₀	Value Sn	Log ₁₀	SEGREES.	RADIANS

Four Place Trigonometric Functions

[Characteristics of Logarithms omitted — determine by the usual rule from the value]

and gas	Degrees	S11 Value	Log ₁₀	Tane Value	Log ₁₀	Cota: Value	GENT Log ₁₀	Cos Value	INE Log ₁₀		ı
.6283	86° 00'	.5878	.7692	.7265	.8613	1.3764	.1387	.8090	.9080	54° 00'	.942
.6312	10	.5901		7310	.8639	1.3680	1361	.8073		50	.939
.6341	201		7727	7355		1.3597	.1334	.8056		40	.936
.6370	30	EGH 8	7744	.7400	8600	1.3514	1308	.0000	0050	30	.933
6400	40	.5948 .5972	7761	.7445	9719	1.3432	.1282	.8039 $.8021$	0040	20	.930
.6429	50	5003	7770	.7490	9745	1.3351	1955	9004	0022	10	.9279
.0429		.5993						.8004			
.6458	87° 00′	.6018	.7795	.7536	.8771	1.3270	.1229	.7986	.9023	53° 00'	
.6487	10	.6041 .6065 .6088	.7811	.7581	.8797	1.3190	.1203	.7969	.9014	50	.922
.6516	20	.6065	.7828	.7627	.8824	1.3111	.1176	.7951	.9004	40	.9192
.6545	30	.6088	.7844	.7627 .7673	.8850	$\substack{1.3111 \\ 1.3032}$.1150	.7934	.8995	30	.916
.6574	40	.6111	.7861	.7720	.8876	1.2954	.1124	.7916		20	.913
.6603	50	.6134	.7877	.7766		1.2876		.7898	8975	10	.910
											1
.6632	38° 00'	.6157 .6180	.7893	.7813	.8928	1.2799	.1072	.7880	.8965	52° 00′	
.6661	10	.6180	.7910	7860	.8954	1.2723	.1046	.7862		50	.904
.6690	20	.6202	.7926	.7907		1.2647	.1020	.7844	.8945	40	.901
.6720	30	.6225	.7941	.7954	.9006		.0994	.7826	.8935	30	.898
.6749	40	.6248		.8002	.9032		.0968	.7808	.8925	20	.895
.6778	50	.6271	.7973	.8050	.9058	1.2423	.0942	.7790	.8915	10	.893
.6807	39° 00'	.6293	7080	.8098	0084	1.2349	.0916	7771	2005	51° 00′	.890
.6836	10	.6316		.8146		1.2276	.0890	7752	.8895	50	.887
.6865				.8195		1.2203		.7735		40	.884
	20	.6338	0020	10199	0100	1.2131	.0839	7710	0001	30	.881
.6894	30	.6361	.8035	.8243		1.2131		.7716	.8874	30	
.6923	40	.6383		.8292	.9187	1.2059	.0813	.7698		20	.878
.6952	50	.6406	·8066	.8342	.9212	1.1983			.8853		.875
.6981	40° 00'	.6428	.8081	.8391	.9238	1.1918	$\begin{array}{c} .0762 \\ .0736 \end{array}$.7660	.8843	50° 00′	.872
.7010	10	.6450	.8096	.8441	9264	1.1847	.0736	.7642	8832	50	.869
.7039	20	.6472		.8441 .8491	9289	1.1778	.0711	.7623	8821	40	.866
.7069	30	.6494		.8541	9315	1.1708	.0685	.7604	8810	30	.863
.7098	40	.6517		.8591			.0659	.7585	8800	20	.861
7127	50	.6539		.8642	9366		.0634	.7566		10	.858
							- 1				1
.7156	41°00'	.6561	.8169	.8693	.9392	1.1504	.0608	.7547	.8778	49° 00′	.855
.7185	10	.6583	.8184	.8744			.0583	.7528	.8767	50	.852
.7214	20	.6604		.8796		1.1369		.7509	.8756	40	.849
.7243	30	.6626		.8847	.9468	1.1303	.0532	.7490	.8745	30	.846
.7272	40	.6648	.8227	.8899		1.1237	.0506	.7470		20	.843
.7301	50	.6670	.8241	.8952	.9519	1.1171	.0481	.7451	.8722	10	.840
.7330	42°00'	.6691	8935	.9004	9544	1.1106	.0456	7431	8711	48° 00'	.837
.7359	10	.6713		.9057	9570	1.1041	.0430	.7412	8690	50	.834
.7389	20	.6734		.9110			.0405	.7392		40	.831
.7418	30	.6756	8907	.9163		1.0913	.0379	.7373		30	.829
		.6777	9311	.9217		1.0850	.0354	.7353	REEK	20	.826
.7447 .7476	40 50	.6799	8204	.9271	0671	1.0786	.0329	.7333	SEES	10	.823
							,				
.7505	43° 00'	.6820	.8338	.9325	.9697	1.0724	.0303	.7314	.8641	47° 00′	.820
.7534	10	$.6841 \\ .6362$.8351	.9380	.9722	1.0661	.0278	.7294	.8629	50	.817
.7563	20	.6362	.8365	.9435	.9747	1.0599	.0253	.7274	.8618	40	.814
.7592	30	.0384	.8378	.9490	.97721		.0228	.7254	.8606]	30	.811
.7621	40	.6905 .6926	.8391	.9545	.9798		.0202	.7234	.8594	20	.808
.7650	50	.6026	.8405	.9601	.9823	1.0416	.0177	.7214	.8582	10	.805
.7679	44° 00'	.6947		.9657	9848	1.0355	0152	.7193	.8569	46° 00'	.802
.7709	10	.6967	8131	.9713	9874	1.0295	.0126	.7173	8557	50	.799
.7738	20	.6988		.9770	0800	1.0235	.0101	.7153	8515	40	.797
.7767	30	7009		.9827	QQ94	1.0176	.0076	.7133		30	.794
				.9884		1.0117	.0051	.7112		20	.791
.7796 .7825	40 50	.7030 .7050	0100	.9942		1.0058	.0025	.7092		10	.788
					1						
.7854	45° 00′	.7071	.8495	1.0000	.0000	1.0000	.0000	.7071	.8495	45° 00′	.785
	£	Value Cos	Log ₁₀	Value Cotan	Log ₁₀	Value . TANG	Log ₁₀	Value Six	Log ₁₀	DEGREES	RADIA

THE CALCULUS

BY

ELLERY WILLIAMS DAVIS

PROFESSOR OF MATHEMATICS, THE UNIVERSITY OF NEBRASKA

Assisted by William Charles Brenke, Associate Professor of Mathematics, the University of Nebraska

'Edited by EARLE, RAYMOND HEDRICK

Cloth, semi-flexible, xxi + 383 pp. + Tables (63), 12mo. \$2.10

This book presents as many and as varied applications of the Calculus as it is possible to do without venturing into technical fields whose subject matter is itself unknown and incomprehensible to the student, and without abandoning an orderly presentation of fundamental principles.

The same general tendency has led to the treatment of topics with a view toward bringing out their essential usefulness. Rigorous forms of demonstration are not insisted upon, especially where the precisely rigorous proofs would be beyond the present grasp of the student. Rather the stress is laid upon the student's certain comprehension of that which is done, and his conviction that the results obtained are both reasonable and useful. At the same time, an effort has been made to avoid those grosser errors and actual misstatements of fact which have often offended the teacher in texts otherwise attractive and teachable.

Purely destructive criticism and abandonment of coherent arrangement are just as dangerous as ultra-conservatism. This book attempts to preserve the essential features of the Calculus, to give the student a thorough training in mathematical reasoning, to create in him a sure mathematical imagination, and to meet fairly the reasonable demand for enlivening and enriching the subject through applications at the expense of purely formal work that contains no essential principle.

THE MACMILLAN COMPANY