STAT511 Final Exam KEY

Fall 2019, Sections 001/801

General Comment: Remember that we do NOT accept the null hypothesis! In other words, absence of evidence is not evidence of absence. While grading, I saw many written conclusions that (incorrectly) suggested we could conclude "equality" or "no assocation" (between proportions, means, etc) when p > 0.05. Instead, we can say something like "we do not have evidence of an association".

Exercise

For this data we consider treating the response as either continuous or binary (CACS_score or CACS_01). Because of the large number of zeroes, I would feel comfortable using CACS_01. But the trade off is some loss of information.

We also consider treating the predictor as either continuous or binary (METh or Group). Sometimes using a grouping variable makes the results easier to interpret. The trade off is that you would need to justify the cutoff used.

Q1 (6pts)

Group	n	PropCACS	meagAge	minMETh	medMETh	maxMETh
ATH	25	0.32	50.36	73	117	209
CON	18	0.11	49.61	8	26	44

Q2 (4 pts)

Q3 (2 pts)

The analyst might consider treating CACS as binary because the distribution of CACS_score is very skewed and most of the values (>75%) are zero.

Q4 (4 pts)

Of females, 5% are positive for CACS.

Of males, 39% are positive for CACS.

-2pts for 2.3%, 20.9%.

Q5 (6 pts)

Based on Fisher's Exact test (p = 0.011), we conclude that there is an association between CACS and Sex. A higher proportion of males are positive for CACS.

FET is preferred here due to small sample size.

Note: I know the R output for FET includes odds ratio and CI, but I would not report these.

-2pts for chi-square/Z-test/Proportions test (p = 0.022). All of these (equivalent) options generated a warning "Chi-squared approximation may be incorrect".

-3pts for t-test (p = 0.006)

Q6 (2 pts)

Q7 (6 pts)

Based on Wilcoxon rank-sum test (p = 0.064 or 0.070), we do not have evidence of an association between CACS score and Group.

CACS score is higher for athletes.

Wilcoxon test (equivalent to Kruskal-Wallis) is prefered here due to skew/non-normality.

-2pts for two-sample t-test or ANOVA (p = 0.201 or 0.137).

Q8 (6 pts)

OR = 1.027, 95% CI = (1.010, 1.051)

A one hour increase in METh is associated with a multiplicative increase of 1.027 (2.7%) in the odds of CACS.

Q9 (2 pts)

The Groups are defined based on METh. Hence METh and Group give "redundant" information.

Chocolate

Q10 (6 pts)

n = 83-97 per group.

- **-2 pts** for n = 6 7 per group (using SE instead of sd).
- -2 pts for n = 65-77 per group (corresponding to one-sided alternative).

Q11 (4 pts)

SE = 0.214 (based on TS = 2.947)

OK for SD = 0.855

-2 pts for SE = 0.242 or SD = 0.968 (based on TS = 2.602)

Note: Calculating sample size based on paired t-test would yield n=17! This considerably lower than required sample size based on two-sample t-test.

Guns

Q12 (4 pts)

Arizona has the lowest BradyScore (-8). California has the highest BradyScore (+75).

Histogram 0 0 0 40 60 80

Q13 (4 pts)

New Hampshire has the lowest Homicide Rate (1.1). Louissiana has the highest Homicide Rate (10.8).

Histogram

2 4 6 8 10

Boxplot

Q14A (4 pts)

Q14B (2 pts)

 $\begin{array}{l} {\rm slope} = \text{-}0.005 \\ {\rm p\text{-}value} = 0.659 \\ {\rm 95\%~CI} = \text{(-}0.029,\,0.0185) \end{array}$

Q14C (2 pts)

We do not have evidence of an association between Homicide Rate and Brady Score.

Q14D (2 pts)

 $\mathrm{R2} = 0.004$

-1 pt for adjusted R2 = -0.017.

Q15A (4 pts)

Louissiana has **more** homicides than we would have expected based on the model.

Fitted values Im(HomicideRate ~ BradyScore)

Q15B (4 pts)

Based on the Bonferroni adjusted p-value = 0.027, we have evidence that Louissiana is an outlier. Bonferroni adjustment is appropriate here because Louissiana was identified **after** looking at the data.

Q15C (4 pts)

 $\begin{aligned} & slope = -0.001 \\ & p\text{-value} = 0.899 \\ & 95\% \text{ CI} = (-0.022, \, 0.019) \\ & Still \text{ no evidence of association.} \end{aligned}$

Q16A (4 pts)

##		HomicideRate	PerUrban	Poverty	MedAge	PerDgr
##	${\tt HomicideRate}$	1.00	0.06	0.65	-0.09	-0.44
##	PerUrban	0.06	1.00	-0.30	-0.28	0.45
##	Poverty	0.65	-0.30	1.00	-0.06	-0.72
##	MedAge	-0.09	-0.28	-0.06	1.00	0.08
##	PerDgr	-0.44	0.45	-0.72	0.08	1.00

Q16B (2 pts)

Poverty has the strongest correlation with Homicide Rate.

Q17A (2 pts)

slope = 0.019p-value = 0.04895% CI = (+0.0002, 0.038)

Note: After accounting for Poverty, we find evidence of an association between Homicide Rate and Brady Score. But surprisingly, the association is positive?!?

Q17B (2 pts)

R2 = 0.466

-1 pt for adjusted R2 = 0.443.

Q18A (2 pts)

Q18B (4 pts)

term	df	sumsq	meansq	statistic	p.value
Region	3	70.8587	23.619567	9.125552	7.52e-05
Residuals	46	119.0613	2.588289	NA	NA

Q18C (6 pts)

Based on Tukey adjusted pairwise comparisons, we have evidence that the South has **higher** average homicide rate as compared to all other US Regions.

level1	level2	estimate	std.error	df	statistic	p.value
Midwest	Northeast	0.9833333	0.7094212	46	1.3861065	0.5143132
Midwest	South	-1.9812500	0.6143768	46	-3.2248126	0.0120124
Midwest	West	0.5653846	0.6440419	46	0.8778694	0.8162602
Northeast	South	-2.9645833	0.6703400	46	-4.4225068	0.0003357
Northeast	West	-0.4179487	0.6976294	46	-0.5990985	0.9318161
South	West	2.5466346	0.6007223	46	4.2392879	0.0006006

Appendix

```
#Retain (and do not edit) this code chunk!!!
library(knitr)
knitr::opts_chunk$set(echo = FALSE)
knitr::opts chunk$set(message = FALSE)
Exercise <- read.csv("C:/hess/STAT511_FA11/Exams-2019/Final/Exercise.csv")</pre>
str(Exercise)
library(tidyverse)
library(kableExtra)
library(broom)
#01
SumStats <- Exercise %>%
            group_by(Group) %>%
            summarize(
              n = n(),
              PropCACS = mean(CACS 01),
              meagAge = mean(Age),
              minMETh = min(METh),
              medMETh = median(METh),
              maxMETh = max(METh)
kable(SumStats, digits = 2)
#Q2
par(mfrow=c(1, 2))
hist(Exercise$CACS_score, main = "Histogram", xlab = "")
boxplot(Exercise$CACS_score, main = "Boxplot")
summary(Exercise$CACS_score)
#Q4-5
ExTable <- table(Exercise$Sex, Exercise$CACS_01)</pre>
prop.table(ExTable, 1)
chisq.test(ExTable)
fisher.test(ExTable)
t.test(CACS_01 ~ Sex, data = Exercise)
#Q6
par(mfrow=c(1,1))
boxplot(CACS_score ~ Group, data = Exercise)
aggregate(CACS_score ~ Group, FUN = median, data = Exercise)
aggregate(CACS_score ~ Group, FUN = mean, data = Exercise)
wilcox.test(CACS_score ~ Group, data = Exercise)
library(coin)
wilcox_test(CACS_score ~ Group, distribution = "exact", data = Exercise)
t.test(CACS_score ~ Group, data = Exercise)
t.test(CACS_score ~ Group, var.equal = TRUE, data = Exercise)
#Q8
ExModel <- glm(CACS_01 ~ METh, family = binomial, data = Exercise)</pre>
exp(coef(ExModel))
exp(confint(ExModel))
#Q10
#SD Milk
0.39*sqrt(16)
```

```
#SD Dark
0.36*sqrt(16)
power.t.test(delta = 0.63, sd = 1.56, power = 0.80,
             type = "two.sample")
power.t.test(delta = 0.63, sd = 1.44, power = 0.80,
             type = "two.sample")
power.t.test(delta = 0.63, sd = 0.39, power = 0.80,
             type = "two.sample")
power.t.test(delta = 0.63, sd = 0.36, power = 0.80,
             type = "two.sample")
power.t.test(delta = 0.63, sd = 1.56, power = 0.80,
             type = "two.sample", alternative = "one.sided")
power.t.test(delta = 0.63, sd = 1.44, power = 0.80,
             type = "two.sample", alternative = "one.sided")
#Q11
TS \leftarrow qt(0.995, df = 15)
SE <- 0.63/TS
#Not required, just for illustration
SD <- SE*sqrt(16)
power.t.test(delta = 0.63, sd = SD, power = 0.80,
             type = "one.sample")
GunData <- read.csv("C:/hess/STAT511_FA11/Exams-2019/Final/GunData.csv",row.names = 1)</pre>
str(GunData)
#Q12
par(mfrow=c(1,2))
hist(GunData$BradyScore, main = "Histogram", xlab = "")
boxplot(GunData$BradyScore, main = "Boxplot")
par(mfrow=c(1,2))
hist(GunData$HomicideRate, main = "Histogram", xlab = "")
boxplot(GunData$HomicideRate, main = "Boxplot")
par(mfrow=c(1,1))
GunModel1 <- lm(HomicideRate ~ BradyScore, data = GunData)</pre>
plot(HomicideRate ~ BradyScore, data = GunData); abline(GunModel1)
summary(GunModel1)
confint(GunModel1)
#Q15A
plot(GunModel1, which = 1)
#Q15B
library(car)
outlierTest(GunModel1)
#Q15C
GunModel2 <- update(GunModel1, subset = -18)</pre>
summary(GunModel2)
confint(GunModel2)
SmallData <- subset(GunData, select=HomicideRate:PerDgr)</pre>
round(cor(SmallData),2)
GunModel3 <- lm(HomicideRate ~ BradyScore + Poverty, data = GunData)</pre>
```

```
summary(GunModel3)
confint(GunModel3)
#Q18
boxplot(HomicideRate ~ Region, data = GunData)
GunModel4 <- lm(HomicideRate ~ Region, data = GunData)
kable(tidy(anova(GunModel4)))
library(emmeans)
emout <- emmeans(GunModel4, ~ Region)
kable(tidy(pairs(emout)))</pre>
```