基于开源软硬件搭建校园未来农场

郑祥 浙江省温州市第四中学 谢作如 浙江省温州科技高级中学

摘要:作者基于"物联网实践与探索"和"农业生产劳动"的教学需求,用"开源软硬件"和"物联网"技术设计了校园未来农场。该农场在设计方案时采用的是SloT、Domoticz和掌控板,搭建成本和技术门槛很低,具有较高的教学应用和推广价值,适合于中小学信息科技教育、科创教育和劳动教育等相关场景。

关键词: 开源软硬件, 校园农场, 物联网

中图分类号: G434 文献标识码: A 论文编号: 1674-2117 (2024) 05-0069-04

● 引言

随着教育的不断革新,STEAM教育理念逐渐深入中小学课堂。《义务教育信息科技课程标准(2022年版)》的"物联网实践与探索"模块和《义务教育劳动课程标准(2022年版)》的"农业生产劳动"任务群在课堂教学实施过程中对中小学校的教学场地、软硬件设施等教学资源提出较高的要求。校园未来农场的设计与搭建,强调"开源软硬件""物联网技术"在"农业生产种植"场景中的综合应用,正是信息科技课程"物联网实践与探索"模块与劳动课程"农业生产劳动"任务群有机结合的教学场景。

● 校园未来农场的功能设计

笔者结合信息科技课程及劳动课程学科的新课程标准的具体 内容模块及课程资源的开发需求, 提出除了寻找一块合适的种植场地外,校园未来农场应重点关注农场种植方面的数据实时监测、自动化(或手动)控制与反馈等功能的设计,以此满足信息科技课程和劳动课程多方面、跨学科的综合性教学应用需求。

1.数据实时监测

光线强度、土壤湿度、温度等种 植环境数据的变化能直接影响作物 的生长情况,通过开源硬件丰富的传 感器,校园未来农场能够实时地获 取并显示种植环境的实时数据。

2.自动化浇灌

校园未来农场的自动化浇灌 功能是基于种植环境数据的实施 监测功能实现的,既保证了作物的 正常生长,又避免了水资源的浪费。 通过对种植环境数据的分析和判 断条件的设置,开源自动化控制平 台借助物联网平台向智能终端发送 相应的执行指令,从而实现自动化 精准浇灌。

3. 手动精准浇灌

在劳动课程、信息科技课程及 实验教学中,比对实验是一种常用的 实验方法,它是通过控制变量的变 化来观察其对实验结果的影响。校 园未来农场的手动精准浇灌,在其数 据实时监测功能的配合下,能够为比 对实验教学提供精准的变量控制, 有效地简化实验操作步骤,为实验比 对观察、实验结论提供数据支撑。

● 校园未来农场的搭建

校园未来农场的搭建主要分为三个阶段——基础设施建设阶段、智能硬件搭建阶段、物联软件部署阶段,这三个阶段也是一个非智慧的普通农场逐步改造升级的过程。

1.基础设施建设阶段

在校园中寻找一块适合农业种植的土地作为农场,要求是"农场土壤具备一定的保水保肥能力;农场光照充足,附近无建筑物或高大植被遮挡"。

2.智能硬件搭建阶段

农场种植环境的监测,主要包括土壤湿度、光照强度、温度等环境数值的监测,而农场种植作物的浇灌、光线强度等方面的环境控制则需要开源硬件中的进水电磁阀、步进电机等执行模块(如表1)。在农场附近搭好水管,布置好强电带防水功能的插座,设置好网络环境(建议采用无线网络),就可以搭建智能硬件了。

3.物联软件部署阶段

校园未来农场的功能实现主要依托于三大核心部分:开源硬件、开源物联网平台和开源软件自动化控制系统。它们共同协作,确保农场环境数据的实时监测与精准控制。

开源物联网平台SIoT是一个 专为教育领域设计的开源MQTT 服务器软件。它采用GO语言编写, 具有跨平台、数据导出功能和Web API支持等特性,操作简单,一键启 动就能用,非常适合作为校园未来 农场的物联网平台。

Domoticz是一个轻量级的家庭自动化控制系统,支持多种设备和MQTT协议。它具有安装简便、架构灵活、兼容性强的特点,安装包仅需13.8MB的存储空间,安装后仅

校园未来农场智能硬件

类别	名称型号	功能
智能终端	行空板	获取传感器数值,并实现数据传输;根据条件或指令控制执行模块
传感器	模拟防水土壤湿度传感器	采集种植环境土壤湿度数值
	环境光传感器 (0-200klx)	采集种植环境光照强度数值
	DS18B20 数字温度传感器	采集种植环境温度数值
执行模块	12V 常闭进水电磁阀	控制进水管进水的阀门
	简易继电器模块	进水电磁阀的电源通断控制模块
	步进电机	控制遮阳布的打开与收起

表2

表1

添加硬件MQTT服务

属性	属性含义	属性设置
名称	硬件名称	MQTT
类型	硬件类型	MQTT Client Gateway with LAN interface
远程地址	SIoT 物联网平台地址	如 192.168.101.56
用户名	SIoT 物联网平台用户名	SIoT
密码	SIoT 物联网平台密码	dfrobot
Topic In Prefix	输入信号的主题前缀	siot/in
Topic Out Prefix	输出信号的主题前缀	siot/out

占用空间42.5MB。借助Domoticz, 校园未来农场可实现对各类传感 器和设备的监控与控制。

以下是校园未来农场搭建中 物联软件部署的关键步骤。

步骤1: 搭建SIoT物联网平台。(SIoT下载地址: https://siot.readthedocs.io/zh-cn/latest/2.setup/01_download.html)

步骤2: 搭建Domoticz自动 化控制系统。(Domoticz下载地址: https://domoticz.cn/wiki/ Windows)

步骤3:在Domoticz中添加硬

件MQTT服务。在"设置"菜单中添加硬件MQTT服务——填写相应的MQTT服务信息,属性设置如表2所示。

步骤4:在Domoticz中添加MQTT虚拟传感器。在硬件添加面板中,添加一个名为"MQTT虚拟传感器"的硬件设备,并选择"Dummy (Does nothing, use for virtual switches only)"作为其类型。在创建虚拟传感器后,根据需要添加土壤湿度传感器和进水电磁阀等相应类型的传感器(如下页图1)。

步骤5:智能终端传感器数据

采集与发布。开源硬件智能终端借助传感器采集数据,并通过SIoT物联网平台的"siot/in"主题将数据发送至Domoticz系统,如图2所示。

Domoticz系统中硬件设备接收消息的格式为"{"idx":1,"nvalue":17}",其中idx代表Domoticz平台上的设备编号,nvalue为传感器数值。以土壤湿度为例,智能终端在采集土壤湿度数据后,发布信息的核心代码,如图3所示。

步骤6:智能终端执行模块控制。通过点击"灯泡"形状的按钮,发送进水电磁阀的"打开/关闭"指令。SIoT服务器的"siot/out"主题接收相应的进水电子阀状态信息,如图4所示。

Domoticz系统向SIoT平台发出的控制指令信号格式如图5所示。通过解析和判断消息中键"nvalue"的值,实现对进水电磁阀的开关控制,值"1"表示"开",值"0"表示"关"。核心代码如下页图6所示。

● 校园未来农场的教学应用

1.信息科技课程实验活动

通过开源硬件和物联网技术, 校园未来农场中的种植环境数据 采集、传输、存储、呈现以及自动化 精准浇灌,可以作为信息科技课程 中有关"物联网实践与探索"方面 的内容的实验活动开展,如2023年 浙教版《信息科技》八年级下册第 三单元。

2. 劳动课程实践活动 在校园未来农场中, 教师可以

图1 Domoticz系统设备列表

图2 校园未来农场的数据实时监测原理

```
Board().begin() #初始化,不输入端口号则进行自动识别
adc0 = Pin(Pin.A0, Pin.ANALOG) #引脚初始化为电平输出 模拟输入方法
SERVER = "192.168.101.56"
                                  #MQTT服务器IP
CLIENT_ID = ""
                              #在SIoT上, CLIENT_ID可以留空
IOT_pubTopic = 'siot/in'
                            # "topic" 为 "项目名称/设备名称"
IOT_UserName = 'siot'
                             #用户名
IOT_PassWord = 'dfrobot'
                             #密码
siot.init(CLIENT_ID, SERVER, user=IOT_UserName, password=IOT_PassWord)
siot.connect()
trsd ={"idx":1, "nvalue":0}
while True:
   trsd["nvalue"]=adc0.read analog()
 siot.publish(IOT_pubTopic, json.dumps(trsd))
   time.sleep(1)
                       #隔1秒发送一次
```

图3 核心代码

图4 校园未来农场的自动化精准浇灌和手动浇灌原理

图5 SloT平台收到的控制指令

根据当地的种植条件为实践活动提供1~2种优良种植苗和种植工具,以便学生开展系列化种植、浇灌、收成等体验实践活动。学生可以通过校

园未来农场的数据实时监测功能关 注种植作物的生长情况,并且可以手 动设置条件实现根据种植环境数 据进行自动化精准浇灌,从而体验

```
Board().begin()
pin1 = Pin(Pin.D13, Pin.OUT)
pin2 = Pin(Pin.D14, Pin.OUT)
pin3 = Pin(Pin.D15, Pin.OUT)
SERVER = "192.168.101.56"
                                        #MQTT服务器IP
CLIENT_ID = ""
                                  #在SIoT上, CLIENT_ID可以留空
IOT_pubTopic = 'siot/out'
                                 # "topic" 为 "项目名称/设备名称"
IOT_UserName = 'siot'
                                 #用户名
IOT_PassWord = 'dfrobot'
                                 #密码
dcfxx={}
def sub_cb(client, userdata, msg):#定义收到消息时的提示信息
    print("\nTopic:" + str(msg.topic) + " Message:" + str(msg.payload))
    pyObj = json.loads(msg.payload.decode())
    dcfxx["idx"]=pyObj.get("idx")
   dcfxx["nvalue"]=pyObj.get("nvalue")
if dcfxx["idx"]==4:
       if dcfxx["nvalue"]==1:
           pin1.write_digital(1)
           pin1.write_digital(0)
   elif dcfxx["idx"]==5:
       if dcfxx["nvalue"]==1:
           pin2.write_digital(1)
           pin2.write_digital(0)
   elif dcfxx["idx"]==6:
       if dcfxx["nvalue"]==1:
           pin3.write_digital(1)
       else:
           pin3.write_digital(0)
siot.init(CLIENT_ID, SERVER, user=IOT_UserName, password=IOT_PassWord)
siot.connect()
siot.subscribe(IOT_pubTopic, sub_cb)
siot.loop()
```

图6 核心代码

先进农业种植技术和理念。

3.科学课程实验活动

校园未来农场可以实现环境 变量的精准控制,为科学课程的关 于"探究环境因素对种子萌发的影 响"实验活动提供实时有效的数据 监测和环境变量控制。

结论

校园未来农场符合中小学阶段基于开源硬件的Python语言学习需求,展现了在劳动教育、信息科技等多学科交叉项目化学习中的巨大潜力,同时,也为中小学科学课程的实验教学提供了强有力的支持。

参考文献:

[1]白春霖,郭浩.依托智慧农场开展幼儿劳动教育的实践探索[J].早期教育,2023(39):45-47.

[2]谢作如,夏青,郑祥.SFarm开源智慧农场:一个真实的物联网技术实践场[J].中国信息技术教育,2021(15):8—11. ${\cal C}$

基金项目:①国家自然科学基金科技活动专项项目"基于产教融合理念的智能种养农工交叉科普平台开发与推广"(项目编号:52242705),②湖南省首届基础教育教学改革研究项目"面向家校社协同育人'智能种植'跨学科学习课程开发与实施研究"(项目编号:Y20230099),③长沙市教育科学"十四五"规划课题"基于家校社联动的中学劳动实践活动实施路径研究"(项目编号:CJKZH202210),④上海市"科技创新行动计划"农业科技领域项目"模块化高能效智能垂直农场关键系统研发集成及产业化推广"(项目编号:23N21900200)。

72 中国信息技术教育