

Emotion Recognition using EEG and ECG Data with LSTM and CNN

A detailed explanation of the DREAMER Dataset

Presented by:
FAYROUZ AHMED
YOUSEF GOMAA
MOHAMED ASHRAF
SEIF DIAA

© CONTENTS:

- ☐ INTRODUCTION
 - ☐ DATASET ACQUISTION
 - ☐ DATASET DESCRIPTION
- ☐ DATA PREPROCESSING
 - ☐ FEATURE SELECTION
 - ☐ FEATURE EXTRACTION
- ☐ MODEL ARCHITECTURE
- ☐ MODEL TRAINING AND EVALUATION
- ☐ RESULTS
- ☐ CONCLUSION
- ☐ FAQ

INTRODUCTION:

- Emotion recognition is the process of identifying human emotions.
- Physiological signals such as EEG (Electroencephalography) and ECG (Electrocardiography) provide objective measures of emotional states.
- ✓ These signals are less prone to conscious control, providing more reliable data.

EMOTIV EPOC Wireless Headset & SHIMMER ECG Device

SHIMMER ECG Device Usage

INTRODUCTION:

The DREAMER dataset (.mat) includes EEG and ECG recordings from 23 participants each exposed to 18 stimuli.

Aud	io-visual stimuli		
Number of videos	18		
Video content	Audio-Video		
Video duration	65 - 393 s (M=199 s)		
Exper	iment information		
Number of participants	25 (23)		
Number of males	14 (14)		
Number of females	11 (9)		
Age of participants	22 - 33 (M=26.6, SD=2.7)		
Rating scales	Arousal, Valence, Dominance		
Rating values	1 - 5		
Recorded signals	14-channel 128Hz EEG 256Hz ECG		

			🔏 Variables - DREA	IMER.Data(1, 22)
Field 📤	Value	7	+3 DREAMER	X DREAMER.EEG_
	1x23 cell		DREAMER.Data{	1, 22}
EEG_SamplingRate	128			Land Control of the C
ECG_SamplingRate	256		Field 📤	Value
	1x14 cell		ch Age	'28'
noOfSubjects	23		Gender	'male'
noOfVideoSequen	18		E EEG	1x1 struct
	'While every care has been taken to ensure the accuracy of the data included in the DREAMER dataset, the authors and the Universi'	\Rightarrow	⊞ ECG	1x1 struct
	'University of the West of Scotland'		ScoreValence	18x1 double
Version	'1.0.2'		₩ ScoreArousal	18x1 double
Acknowledgement	'The authors would like to thank Thomas Cuntz and Sebastian Palke for the data collection under their BSc (Hons) project.'		ScoreDominance	······

The 14 Electrodes: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8 and AF4.

EEG AND ECG SIGNALS:

- ✓ EEG measures brain activity through electrodes placed on the scalp.
- ✓ ECG measures heart activity, providing information about heart rate and rhythm.

Anxiety Happiness Vigor Relief Confidence

Arousal

EMOTION LABELS

- ✓ DREAMER captures emotional responses to audio-visual stimuli, labeled as Arousal, Valence, Dominance.
- ✓ Arousal: Measures the intensity of the emotion (calm to excited).
- ✓ Valence: Measures the positivity or negativity of the emotion.
- ✓ Dominance: Measures the feeling of control in the emotion.

DATA PREPROCESSING & EXTRACTION

```
if name == ' main ':
   total=0
   path=u'DREAMER.mat'
   data=sio.loadmat(path)
   print("ECG signals are being feature extracted...")
   ECG={}
   for k in range(0,23):
       for j in range(0,18):
           basl l=data['DREAMER'][0,0]['Data'][0,k]['ECG'][0,0]['baseline'][0,0][j,0][:,0]
           stim l=data['DREAMER'][0,0]['Data'][0,k]['ECG'][0,0]['stimuli'][0,0][j,0][:,0]
           basl r=data['DREAMER'][0,0]['Data'][0,k]['ECG'][0,0]['baseline'][0,0][j,0][:,1]
           stim_r=data['DREAMER'][0,0]['Data'][0,k]['ECG'][0,0]['stimuli'][0,0][j,0][:,1]
           ecg_signals_b_l,info_b_l=nk.ecg_process(basl_l,sampling_rate=256)
           ecg signals s l,info s l=nk.ecg process(stim l,sampling rate=256)
           ecg signals b r,info b r=nk.ecg process(basl r,sampling rate=256)
           ecg signals s r,info s r=nk.ecg process(stim r,sampling rate=256)
           # processed ecg b l = nk.ecg intervalrelated(ecg signals b l)
           # processed ecg s l = nk.ecg intervalrelated(ecg signals s l)
           # processed ecg b r = nk.ecg intervalrelated(ecg signals b r)
           processed ecg l=nk.ecg intervalrelated(ecg signals s l)/nk.ecg intervalrelated(ecg signals b l)
           processed_ecg_r=nk.ecg_intervalrelated(ecg_signals_s_r)/nk.ecg_intervalrelated(ecg_signals_b_r)
           processed ecg=(processed ecg l+processed ecg r)/2
           if not len(ECG):
               ECG=processed ecg
               ECG=pd.concat([ECG,processed ecg],ignore index=True)
           total+=1
           print("\rprogress: %d%%" %(total/(23*18)*100),end="")
   # col=ECG.columns.values
   # ECG.drop(col, axis=1, inplace=True)
```

```
def preprocessing(input,feature):
   overall=signal.firwin(9,[0.0625,0.46875],window='hamming')
   theta=signal.firwin(9,[0.0625,0.125],window='hamming')
    alpha=signal.firwin(9,[0.125,0.203125],window='hamming')
   beta=signal.firwin(9,[0.203125,0.46875],window='hamming')
    filtedData=signal.filtfilt(overall,1,input)
   filtedtheta=signal.filtfilt(theta,1,filtedData)
   filtedalpha=signal.filtfilt(alpha,1,filtedData)
   filtedbeta=signal.filtfilt(beta,1,filtedData)
    ftheta,psdtheta=signal.welch(filtedtheta,nperseg=256)
   falpha,psdalpha=signal.welch(filtedalpha,nperseg=256)
    fbeta,psdbeta=signal.welch(filtedbeta,nperseg=256)
   feature.append(max(psdtheta))
    feature.append(max(psdalpha))
    feature.append(max(psdbeta))
   return feature
if name == ' main ':
   total=0
    path=u'DREAMER.mat'
   data=sio.loadmat(path)
   print("EEG signals are being feature extracted...")
   EEG tmp=np.zeros((23,18,42))
   for k in range(0,23):
       for j in range(0,18):
           for i in range(0,14):
               B,S=[],[]
               basl=data['DREAMER'][0,0]['Data'][0,k]['EEG'][0,0]['baseline'][0,0][j,0][:,i]
               stim=data['DREAMER'][0,0]['Data'][0,k]['EEG'][0,0]['stimuli'][0,0][j,0][:,i]
               B=preprocessing(basl,B)
               S=preprocessing(stim,S)
               Extrod=np.divide(S,B)
               total+=1
               EEG_tmp[k,j,3*i]=Extrod[0]
               EEG tmp[k,j,3*i+1]=Extrod[1]
```

MODEL ARCHITECTURE:

MODEL ARCHITECTURE:

$$I(x,y) * F(x,y) = \sum_{0}^{M} \sum_{0}^{N} I(n1,n2) \cdot F(x-n1,y-n2)$$

$$ReLU(x) = max(0, x)$$
 $softmax(z_i) = \frac{e^{z_j}}{\sum_j e^{z_j}}$

MODEL TRAINING AND EVALUATION:

```
models = [
   # NN
   MLPClassifier(activation='logistic', hidden_layer_sizes=(100,3), random_state=7),
   # SVM
   svm.SVC(C=1,random state=7),
   tree.DecisionTreeClassifier(criterion='entropy',max_depth=8,min_samples_leaf=2,min_samples_split=5,random_state=7),
   GBDT(learning rate=0.1,max depth=9,min samples leaf=60,min samples split=10,n estimators=31,random state=7),
   # ada
   ada(LogisticRegression(penalty='12',C=0.55,max_iter=1000),learning_rate=0.3,n_estimators=4,random_state=7),
   # LR
   LogisticRegression(penalty='12',C=0.55,max iter=1000)
features = {'Valence':feature V, 'Arousal':feature A, 'Dominance':feature D}
for model in models:
   print("Model:", model.__class__.__name__)
   for feature, data in features.items():
       X train, X test, Y train, Y test = train test split(feature X, data, test size=0.3, random state=7)
       model.fit(X_train, Y_train)
       prediction = model.predict(X_test)
       accuracy = metrics.accuracy score(Y test, prediction)
       f1 = metrics.f1 score(Y test, prediction, average='weighted')
       print(feature, "Accuracy:", accuracy, '\n', feature, "F1:", f1, '\n')
   print("-----")
```

[Running] python -u "e:\GitHub\EmotionDetection-Project Model: MLPClassifier Valence Accuracy: 0.568 Valence F1: 0.516776769509982 Arousal Accuracy: 0.576 Arousal F1: 0.566522972354748 Dominance Accuracy: 0.608 Dominance F1: 0.6043271520593403 Model: SVC Valence Accuracy: 0.568 Valence F1: 0.41151020408163264 Arousal Accuracy: 0.496 Arousal F1: 0.3288983957219251 Dominance Accuracy: 0.472 Dominance F1: 0.302695652173913 Model: DecisionTreeClassifier Valence Accuracy: 0.576 Valence F1: 0.5620612286829669 Arousal Accuracy: 0.576 Arousal F1: 0.5729958132045089 Dominance Accuracy: 0.584 Dominance F1: 0.5843196721311475

MODEL TRAINING AND EVALUATION:

Model: GradientBoostingClassifier

Valence Accuracy: 0.512

Valence F1: 0.43528082461247936

Arousal Accuracy: 0.608

Arousal F1: 0.5865523886530557

Dominance Accuracy: 0.568

Dominance F1: 0.5671700819672131

Model: AdaBoostClassifier Valence Accuracy: 0.568

Valence F1: 0.4253254786450663

Arousal Accuracy: 0.56

Arousal F1: 0.4745142857142857

Dominance Accuracy: 0.6

Dominance F1: 0.5753490870032223

Model: LogisticRegression Valence Accuracy: 0.544

Valence F1: 0.4555595791534133

Arousal Accuracy: 0.576

Arousal F1: 0.5560891029500301

Dominance Accuracy: 0.584

Dominance F1: 0.5832008196721311

MODEL TRAINING AND EVALUATION:

Model	Modality	Accuracy			F1 Score		
Wiodei	Wiodanity	Valence	Arousal	Dominance	Valence	Arousal	Dominance
CNN	EEG	0.6249	0.6217	0.6184	0.5184	0.5767	0.6166
	ECG	0.6237	0.6237	0.6157	0.5305	0.5798	0.6145
	Fusion (EEG & ECG)	0.6184	0.6232	0.6184	0.5213	0.5750	0.6171
	Random	0.5000	0.5000	0.5000	0.4878	0.4878	0.4895
	Class ratio	0.5440	0.5467	0.5403	0.5000	0.5000	0.5000
LSTM	EEG	0.6123	0.5834	0.6678	0.5423	0.5912	0.6144
	ECG	0.5637	0.6235	0.5957	0.5504	0.5792	0.6065
	Fusion (EEG & ECG)	0.5764	0.6412	0.5783	0.5217	0.5550	0.6171
	Random	0.5000	0.5000	0.5000	0.4878	0.4878	0.4895
	Class ratio	0.5440	0.5467	0.5403	0.5000	0.5000	0.5000

Table 1: Table showing Accuracy and F1 Score for different models and modalities

RESULTS: GROUPED DATASET (LSTM) VERSION 4

In total, there are around 11 million data points, which belong to 414 chunks when grouped by participants & videos (414 == 23*18)

✓ Overfitting due to small dataset(?)

RESULTS: ORIGINAL DATASET (CNN) VERSION 10

Layer (type)	Output Shape	Param #
conv2d_12 (Conv2D)	(None, 50430, 12, 32)	320
batch_normalization_11 (BatchNormalization)	(None, 50430, 12, 32)	128
max_pooling2d_11 (MaxPooling2D)	(None, 25215, 6, 32)	0
conv2d_13 (Conv2D)	(None, 25213, 4, 64)	18,496
batch_normalization_12 (BatchNormalization)	(None, 25213, 4, 64)	256
max_pooling2d_12 (MaxPooling2D)	(None, 12606, 2, 64)	0
flatten_3 (Flatten)	(None, 1613568)	0
dense_6 (Dense)	(None, 16)	25,817,104
dropout_3 (Dropout)	(None, 16)	0
dense_7 (Dense)	(None, 5)	85

- √ 11 million data points.
 - ✓ Insufficient resources (RAM/GPU)
 - ✓ Gigabytes of 2darrays (images)

RESULTS: ORIGINAL DATASET (TORCHEEG + PYTORCH TSCEPTION) VERSION 11

TABLE 2 Structure of the Proposed TSception

Model structure	230 17	Layers	Input	Output
Block1	3 branches (in parallel)	Conv2d, LK-ReLU, AP((1,8)) Kernel=15@(1, 64)	(-1, 1, 28, 512)	(-1, 15, 28, 56)
		Conv2d, LK-ReLU, AP((1,8)) Kernel=15@(1, 32)	(-1, 1, 28, 512)	(-1, 15, 28, 60)
		Conv2d, LK-ReLU, AP((1,8)) Kernel=15@(1, 16)	(-1, 1, 28, 512)	(-1, 15, 28, 62)
	-	Concatenate, BN		(-1, 15, 28, 178)
Block2	2 branches (in parallel)	Conv2d, LK-ReLU, AP((1,2)) Kernel=15@(28, 1)	(-1, 15, 28, 178)	(-1, 15, 1, 89)
	,	Conv2d, LK-ReLU, AP((1,2)) Kernel=15@(14, 1), Stride=(14, 1)	(-1, 15, 28, 178)	(-1, 15, 2, 89)
		Concatenate, BN		(-1, 15, 3, 89)
Block3		Conv2d, LK-ReLU, AP((1,4)), BN, GAP Kernel=15@(3, 1)	(-1, 15, 3, 89)	(-1, 15, 1)
		Flatten	(-1, 15, 1)	(-1, 15,)
Fully		Linear(32), ReLU	(-1, 15,)	(-1, 32,)
connected		dropout(0.5)	(-1, 32,)	(-1, 32,)
layers		Linear(2)	(-1, 32,)	(-1, 2,)
10		softmax	(-1, 2,)	(-1, 2,)

LK-ReLU is the Leaky-ReLU activation function. AP is the average pooling operation. BN stands for batch normalization. GAP is the global average pooling. '-1' in the tensor size stands for the number of samples within one mini-batch. The strides of CNNs are (1, 1) if not specified, and the one for pooling layers is the same as the pooling step.

CPU

CPU

RAM

305.00%

6.2_{GIB}

Max 29GiB

Testing DataLoader 0: 100%

[2024-08-08 07:24:07] INFO (torcheeg/MainThread)
[Test] test_loss: 0.481 test_accuracy: 0.772

Test metric	DataLoader 0
test_accuracy	0.7716803550720215
test_loss	0.4811123013496399

Fold 4 test accuracy: 0.7717

CONCLUSION:

- ✓ Implemented dataset's supervised machine learning classification models.
- ✓ Emotion recognition is most suitable using deep learning techniques especially using TSCEPTION. (0.77%~0.78%)
- ✓ Upgraded upon original dataset's accuracy measures other evaluation metrics such as F1-score.

FAQ:

- ✓ Why did you use DREAMER dataset for emotion recognition?
 - ✓ SEED dataset comprises EEG recordings from 15 participants who each viewed 15 film clips, focusing on three emotional states: positive, neutral, and negative.
 - ✓ DEAP, which includes EEG and peripheral physiological signals from 32 participants who watched 40 music videos. (VAD Scale)
 - ✓ While DREAMER dataset contains both EEG and ECG data from 23 participants exposed to 18 film clips. (VAD Scale)

FAQ:

- ✓ Why did you use LSTM and CNN?
 - ✓ Both types are designed to process complex data.
 - ✓ LSTMs are particularly effective for learning from and making predictions based on time-series data, capturing long-term dependencies and non-linear features in sequential data.
 - ✓ While CNNs are proficient in detecting spatial patterns and features, making them useful for processing the multidimensional nature of physiological signals.

