Neural Architecture Search

Charles VIN, Mathis KOROGLU

Sorbonne Université

February 13, 2024

Overview

1. Neural architecture search

- 1.1 Search space
- 1.2 Search strategy
- 1.3 Performance estimation strategy
- 1.4 Evaluation

2. Contribution

- 2.1 DiffusionNAG
- 2.2 Our work: MOD-NAG

Overview of NAS

Figure: Overview of NAS.

A search strategy iteratively selects architectures (typically by using an architecture encoding method) from a predened search space ${\cal A}$.

The architectures are passed to a performance estimation strategy, which returns the performance estimate to the search strategy.

For one-shot methods, the search strategy and performance estimation strategy are inherently coupled.

Search space

Definition

The set of all architectures that the NAS algorithm is allowed to select.

- Size: from a few thousand to over 10²⁰.
- Reduction: adding domain knowledge.
- \rightarrow Introduce humain bias \rightarrow x reduce the chance of finding truly nover architecture.

Figure: Architecture directed acyclic graph (DAG) with operation on nodes

Type of Search Space

Search Spaces	Structure	Searchable hyperparameters
Macro search space	DAG	Operation types, DAG topology macro hyperparameters
Chain-structured search space	Chain	Operation types, macro hyperparameters
Cell-based search space	Duplicated cells	Operation type, cell topology
Hierarchical search space	Varied	Operation type, cell/DAG topology macro hyperparameters

Table: Type of Search Space

Search strategy

Definition

The optimization technique used to find a high-performing architecture in the search space.

- Black-box optimization techniques : RL, Bayesian optimization, evolutionary search.
- One-shot techniques: supernet-hypernet based methods.

Taxonomy and One shot methods

Figure: Taxonomy of one shot methods.

Figure: Supernetwork

Performance estimation strategy

Definition

Any method used to quickly predict the performance of neural architectures in order to avoid fully training the architecture.

- Full training & evaluation.
- Performance estimation strategy.

Evaluation: Benchmarks

Definition

A NAS benchmark is defined as a dataset with a fixed train-test split, a search space, and a fixed evaluation pipeline for training the architectures.

- Tabular benchmarks: precomputed evaluations for all possible architecture in the search space.
- → Allow to **simulate** hundreds of trials!
 - No more training.
 - Statistically significant comparisons (simulation with multiple seeds).
- Specialization: precomputed evaluation for NLP tasks, protein folding, astronomy imaging, for vision dataset (CIFAR-10(0), ImageNet, ...)
- Most popular NAS benchmarks
 - NAS-Bench-101/202
 - Surr-NAS-Bench-DARTS
 - TransNAS-Bench-101
 - NAS-Bench-Suite

Evalutation

Table 2: Comparison with Transferable NAS on NB201 Serach Space. We present the accuracy achieved on four unseen datasets. Additionally, we provide the number of neural architectures (Trained Archs) that are actually trained to achieve accuracy. The accuracies are reported with 95% confidence intervals over 3 runs.

Туре	Method	CIFAI Accuracy (%)	R-10 Trained Archs	CIFAR Accuracy (%)	-100 Trained Archs	Aircr Accuracy (%)	aft Trained Archs	Oxford-II Accuracy (%)	IT Pets Trained Archs
	ResNet (He et al., 2016) RS (Bergstra & Bengio, 2012) REA (Real et al., 2019) REINFORCE (Williams, 1992)	$\begin{array}{c} 93.97{\pm}0.00 \\ 93.70{\pm}0.36 \\ 93.92{\pm}0.30 \\ 93.85{\pm}0.37 \end{array}$	N/A > 500 > 500 > 500	$70.86 \scriptstyle{\pm 0.00} \\71.04 \scriptstyle{\pm 1.07} \\71.84 \scriptstyle{\pm 0.99} \\71.71 \scriptstyle{\pm 1.09}$	N/A > 500 > 500 > 500	47.01±1.16	N/A - - -	25.58±3.43	N/A - - -
One-shot NAS*	RSPS (Li & Talwalkar, 2019) SETN (Dong & Yang, 2019a) GDAS (Dong & Yang, 2019b) PC-DARTS (Xu et al., 2020) DrNAS (Chen et al., 2021)	84.07±3.61 87.64±0.00 93.61±0.09 93.66±0.17 94.36±0.00	N/A N/A N/A N/A N/A	52.31 ± 5.77 59.09 ± 0.24 70.70 ± 0.30 66.64 ± 2.34 73.51 ± 0.00	N/A N/A N/A N/A N/A	42.19±3.88 44.84±3.96 53.52±0.48 26.33±3.40 46.08±7.00	N/A N/A N/A N/A N/A	$\begin{array}{c} 22.91{\scriptstyle\pm1.65} \\ 25.17{\scriptstyle\pm1.68} \\ 24.02{\scriptstyle\pm2.75} \\ 25.31{\scriptstyle\pm1.38} \\ 26.73{\scriptstyle\pm2.61} \end{array}$	N/A N/A N/A N/A N/A
BO-based NAS	BOHB (Falkner et al., 2018) GP-UCB BANANAS (White et al., 2021a) NASBOWL (Ru et al., 2021) HEBO (Cowen-Rivers et al., 2022)	93.61±0.52 94.37±0.00 94.37±0.00 94.34±0.00 94.34±0.00	> 500 58 46 100 100	70.85 ± 1.28 73.14 ± 0.00 73.51 ± 0.00 73.51 ± 0.00 72.62 ± 0.20	> 500 100 88 87 100	41.72±0.00 41.72±0.00 53.73±0.83 49.32±6.10	40 40 40 40	40.60±1.10 40.15±1.59 41.29±1.10 40.55±1.15	11 17 17 18
Transferable NAS	TNAS (Shala et al., 2023) MetaD2A (Lee et al., 2021a) DiffusionNAG (Ours)	$\begin{array}{c} 94.37{\scriptstyle \pm 0.00} \\ 94.37{\scriptstyle \pm 0.00} \\ 94.37{\scriptstyle \pm 0.00} \end{array}$	29 100 5	73.51±0.00 73.34±0.04 73.51±0.00	59 100 5	59.15 ± 0.58 57.71 ± 0.20 59.63 ± 0.92	26 40 2	$\substack{40.00 \pm 0.00 \\ 39.04 \pm 0.20 \\ \textbf{41.32} \pm \textbf{0.84}}$	6 40 2

Figure: Result table example

Evalutation

 $\begin{tabular}{ll} \textbf{Table 8} \\ \textbf{Comparison of the evaluation results on CIFAR-10 and CIFAR-100.} \\ \end{tabular}$

Architecture	Test Err. (%)		Params	Search Cost	Search	
	C-10	C-100	(.M)	(GPU-days)	Method	
NASNet-A [8]	2.65	-	3.3	1800	RL	
AmoebaNet-A [20]	3.34	-	3.2	3150	Evolution	
PNAS [40]	3.41	-	3.2	225	SMBO	
RelativeNAS [41]	2.34	15.86	3.93	0.4	Evolution	
DARTS (first order) [10]	3	17.76	3.3	1.5	Gradient	
SNAS + mild constraint [42]	2.98	-	2.9	1.5	Gradient	
ProxylessNAS [29]	2.08		5.7	4	Gradient	
P-DARTS [†] (C-10) [18]	2.5	16.55	3.4	0.3	Gradient	
P-DARTS [†] (C-100) [18]	2.62	15.92	3.6	0.3	Gradient	
P-DARTS [†] (C-10-Large) [18]	2.25	15.27	10.5	0.3	Gradient	
P-DARTS [†] (C-100-Large) [18]	2.43	14.64	11	0.3	Gradient	
Ours† (C-10)	2.47 ± 0.03		2.04	1.3*	RL	
Ours [†] (C-100)	2.58 ± 0.05	-	3.43	1.3*	RL	
Ours [†] (C-10-Large)	-	15.3 ± 0.04	9.57	1.3*	RL	
Ours [†] (C-100-Large)	-	14.6 ± 0.03	10.5	1.3*	RL	

Figure: Result table example

Contribution: base

- Problem: Classical NAS need to train thousand of architecture.
- \rightarrow Switch from searching architecture to directly generate architecture using a graph diffusion model.
- \rightarrow diffusionNAG

Contribution: diffusionNAG

Contribution: diffusionNAG

Contribution: diffusionNAG

Limits

- Need to retrain f_{Φ} for every metrics
 - Accuracy
 - Inference time
 - Memory usage
 - Adversarial attack resistance
 - ...
- Only one metric is optimized: no compromise possible
- Linear combination of metrics: not ideal to find a good compromise

Contribution: MOD-NAG

Multi-Objective Diffusion Neural Architecture Search

- Train a multi-objective predictor using the same task aware dataset, but enhanced with metrics of interest
- Guide the diffusion with the multi-objective predictor:
 - Generate a bigger super-network with disableable blocks
 - ie: equal to an encoding of points near the pareto front (best possible compromise between metrics)
- Constraints encoding within the same score network
 - Layer compatibility in a block
 - Compatibility between blocks inputs and outputs

Figure: Example of disableable architecture

Contribution: MOD-NAG

- Train the obtained super-network after diffusion inference
- Disable the blocks depending on the metrics of interest

Contribution

- Train the obtained super-network after diffusion inference
- Disable the blocks depending on the metrics of interest

Contribution

- Train the obtained super-network after diffusion inference
- Disable the blocks depending on the metrics of interest

Advantages and limits of this approach

- Flexibility for the user: fix the metrics threshold only after performing the NAS
- Dynamic architecture depending on external parameters
- But :
 - Predictor needs to be retrained if a new metric is added
 - Diffusion inference more costly
 - No guarantees if the pareto optimality is well covered by the disableable blocks

Evaluation and results

Two evaluations

- Architecture search
- Generated architecture performances

Comparison with other methods

- Generation cheaper than previous full space search
- Multi-objective benchmarks for the obtained architectures

Results

Table: Comparison of the evaluation results on CIFAR-10 and CIFAR-100.

Architecture	Test Err. (%)	Params (.M)	Search Cost (GPU-days)	Search Method
NASNet-A [8]	2.65	3.3	1800	RL
AmoebaNet-A [20]	3.34	-	3150	Evolution
PNAS [40]	3.41	3.2	225	SMBO
RelativeNAS [41]	2.34	15.86	0.4	Evolution
DARTS (first order) [10]	3	3.3	1.5	Gradient
SNAS + mild constraint [42]	2.98	2.9	1.5	Gradient
ProxylessNAS [29]	2.08	5.7	4	Gradient
P-DARTS (C-10) [18]	2.5	16.55	0.3	Gradient
P-DARTS (C-100) [18]	2.62	15.92	0.3	Gradient
DiffusionNAG (C-10)	2.47 ± 0.03	2.04	1.3*	Diffusion
DiffusionNAG (C-100)	2.58 ± 0.05	3.43	1.3*	Diffusion
MOD-NAG (C-10)	2.78 ± 0.04	2.04	1.8*	Diffusion
MOD-NAG (C-100)	3.11 ± 0.07	3.43	1.8*	Diffusion

References

- An, Sohyun et al. "DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models". In: arXiv e-prints, arXiv:2305.16943 (May 2023), arXiv:2305.16943. DOI: 10.48550/arXiv.2305.16943. arXiv: 2305.16943 [cs.LG].
- Cai, Han, Ligeng Zhu, and Song Han. "ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware". In: CoRR abs/1812.00332 (2018). arXiv: 1812.00332. URL: http://arxiv.org/abs/1812.00332.
- Tan, Mingxing et al. "MnasNet: Platform-Aware Neural Architecture Search for Mobile". In: CoRR abs/1807.11626 (2018). arXiv: 1807.11626. URL: http://arxiv.org/abs/1807.11626.
- White, Colin et al. Neural Architecture Search: Insights from 1000 Papers. 2023. arXiv: 2301.08727 [cs.LG].

Thank you