## ShanghaiTech University

**EE 115B: Digital Circuits** 

Fall 2022

Lecture 9

Hengzhao Yang October 25, 2022

# Digital Fundamentals

**ELEVENTH EDITION** 



CHAPTER 5

Combinational Logic Analysis

## AND-OR logic for SOP expressions



(a) Logic diagram (ANSI standard distinctive shape symbols)

**FIGURE 5-1** An example of AND-OR logic.

## AND-OR-Invert (AOI) logic for POS expressions



FIGURE 5-3 An AND-OR-Invert circuit produces a POS output.

$$X = (\overline{A} + \overline{B})(\overline{C} + \overline{D}) = (\overline{AB})(\overline{CD}) = (\overline{\overline{AB}})(\overline{\overline{CD}}) = \overline{\overline{AB}} + \overline{\overline{CD}} = \overline{AB} + \overline{CD}$$

#### Implementing combinational logic: From a Boolean expression



**FIGURE 5-9** Logic circuit for X = AB + CDE.

#### Implementing combinational logic: From a truth table

| TABLE 5–3 |   |                  |        |                                              |
|-----------|---|------------------|--------|----------------------------------------------|
| Inputs    |   |                  | Output |                                              |
| A         | В | $\boldsymbol{C}$ | X      | Product Term                                 |
| 0         | 0 | 0                | 0      |                                              |
| 0         | 0 | 1                | 0      |                                              |
| 0         | 1 | 0                | 0      |                                              |
| 0         | 1 | 1                | 1      | $\overline{A}BC$                             |
| 1         | 0 | 0                | 1      | $\overline{A}BC$ $A\overline{B}\overline{C}$ |
| 1         | 0 | 1                | 0      |                                              |
| 1         | 1 | 0                | 0      |                                              |
| 1         | 1 | 1                | 0      |                                              |



**FIGURE 5-11** Logic circuit for  $X = \overline{ABC} + ABC$ .

# NAND-only and NOR-only circuits

- CMOS implementations
  - 2-input AND/OR gate (6 transistors)
  - 2-input NAND/NOR gate (4 transistors)
  - NOT gate (2 transistors)





# NAND-only and NOR-only circuits

NAND and NOR gates (two symbols)



(b)  $x_1 + x_2 = x_1 x_2$ 

#### FIGURE 5-18 Universal application of NAND gates.



(a) One NAND gate used as an inverter



(b) Two NAND gates used as an AND gate

#### **FIGURE 5-18** Universal application of NAND gates.



(c) Three NAND gates used as an OR gate



(d) Four NAND gates used as a NOR gate

#### **FIGURE 5-19** Universal application of NOR gates.



(a) One NOR gate used as an inverter



(b) Two NOR gates used as an OR gate

#### **FIGURE 5-19** Universal application of NOR gates.



(c) Three NOR gates used as an AND gate



(d) Four NOR gates used as a NAND gate

## NAND-only logic



输入端C'应为: C级联NAND

#### NOR-only logic



Boolean relationship for steps 3 and 4: AB+A'C+BC=AB+A'C

## Convert AND to NAND

- General rules
  - Logic function (circuit functionality) should
     NOT be changed after conversions
  - A bubble means an inverter (NOT)
  - Add bubbles in pairs
- Convert AND to NAND

$$\begin{array}{c} 2 & - y \\ AND \\ 4 = ab \end{array}$$

$$\begin{array}{c} x = \overline{ab} \\ X =$$

## Convert OR/NOT to NAND

## Convert OR to NAND



$$x_1 = \overline{a}$$
  $y = x_1 x_2 = \overline{ab}$   
 $x_2 = \overline{b}$   $= a+b$ 

## Convert NOT to NAND



$$x_1 = a$$
 $y = x_1 x_2 = \overline{aa}$ 
 $x_2 = a$ 
 $= \overline{a}$ 

## Convert AND to NOR

- General rules
  - Logic function (circuit functionality) should
     NOT be changed after conversions
  - A bubble means an inverter (NOT)
  - Add bubbles in pairs
- Convert AND to NOR

$$x_1 = \overline{a}$$
  $y = x_1 + x_2$   
 $x_2 = \overline{b}$   $= \overline{a} + \overline{b}$   
 $= ab$ 

## Convert OR/NOT to NOR

## Convert OR to NOR





$$x = \overline{a+b}$$
 $y = \overline{x}$ 
 $= \overline{a+b}$ 
 $= a+b$ 

## Convert NOT to NOR





$$x_1 = a_1 y = x_1 + x_2$$
 $x_2 = a_1 = a_1$ 

# Convert circuits with AND/OR/NOT to NAND-only or NOR-only circuits

- Convert AND/OR to NAND (NOR if NORonly) by adding bubbles
- If necessary, add bubbles to keep logic function unchanged
- Convert single bubbles to NAND/NOR

# NAND-only

# Example



(a) Circuit with AND and OR gates

## NAND-only

Convert AND/OR to NAND, add bubbles



(b) Inversions needed to convert to NANDs

# NAND-only

Convert single bubbles to NAND



(c) NAND-gate circuit

# **NOR-only**

# Example



(a) Circuit with AND and OR gates

# **NOR-only**

Convert AND/OR to NOR, add bubbles



(a) Inversions needed to convert to NORs

# NOR-only

Convert single bubbles to NOR

