IT1311 Decision Analysis Project Scheduling: PERT

Project Evaluation and Review Technique

Background

- We had been assuming that the project completion time for a task is fixed.
- But in the real-world, it's very rare for any task to be fixed in duration e.g.
 - Construction meets bad weather
 - IT team has change in team members
 - Logistics meets pandemic
- To model uncertainty in a task's duration, we can do some estimates

Project scheduling with uncertain activity times

- In the <u>three-time estimate approach</u>, the time to complete an activity is assumed to follow a Beta distribution.
- An activity's mean completion time is:

$$t = (a + 4m + b)/6$$

a =the <u>optimistic</u> completion time estimate

b =the <u>pessimistic</u> completion time estimate

m =the most likely completion time estimate

Project scheduling with uncertain activity times

• An activity's completion time variance is:

$$\sigma^2 = ((b-a)/6)^2$$

a = the optimistic completion time estimate

b = the pessimistic completion time estimate

 $m = \text{the } \underline{\text{most likely}}$ completion time estimate

- In the three-time estimate approach, the critical path is determined as if the mean times for the activities were fixed times.
- The <u>overall project completion time</u> is assumed to have a normal distribution with mean equal to the sum of the means along the critical path and variance equal to the sum of the variances along the critical path

An Example : The Daugherty Porta-Vac Project

The H.S. Daugherty Company is considering manufacturing a new product on cordless vacuum cleaner. The table below shows the activities involved in this project.

Activity	Description	Immediate Predecessor
Α	Develop product design	-
В	Plan market research	-
С	Prepare routing	А
D	Build prototype model	Α
E	Prepare marketing brochure	А
F	Prepare cost estimates	С
G	Do preliminary product testing	D
Н	Complete market survey	B,E
I	Prepare pricing and forecast report	Н
J	Prepare final report	F,G,I

The Daugherty Porta-Vac Project: Optimistic, Most Probable and Pessimistic Estimates

Note that these equations are based on the assumption that the activity time distribution can be described By **Beta Probability Distribution**.

	Optimistic	Most Probable	Pessimistic
Activity	(a)	(m)	(b)
Α	4	5	12
В	1	1.5	5
С	2	3	4
D	3	4	11
E	2	3	4
F	1.5	2	2.5
G	1.5	3	4.5
Н	2.5	3.5	7.5
I	1.5	2	2.5
J	1	2	3

Using
$$t = (a + 4m + b)/6$$

Activity A:
Mean completion time
= $(4+4(5) + 12)/6 = 6$

$$\sigma^2 = ((b-a)/6)^2$$
Variance = $((12-4)/6)^2$
= 1.78

Expected times and Variances for the Porta-Vac Project Activities

Activity	Expected Time (weeks)	Variance
Α	6	1.78
В	2	0.44
С	3	0.11
D	5	1.78
E	3	0.11
F	2	0.03
G	3	0.25
Н	4	0.69
I	2	0.03
J	2	0.11

Porta-Vac Project Network with Earliest Start and Earliest Finish Times

Porta-Vac Project Network with Latest Start and Latest Finish Times

Activity Schedule for Porta-Vac Project

Activity	Earliest Start (ES)	Latest Start (LS)	Earliest Finish (EF)	Latest Finish (LF)	Slack (LS – ES)	Critical?
А	0	0	6	6	0	yes
В	0	7	2	9	7	
С	6	10	9	13	4	
D	6	7	11	12	1	
E	6	6	9	9	0	yes
F	9	13	11	15	4	
G	11	12	14	15	1	
Н	9	9	13	13	0	yes
I	13	13	15	15	0	yes
J	15	15	17	17	0	yes

Porta-Vac Project – Answer these questions

1. What is the total time required to complete the project?

$$6 + 3 + 4 + 2 + 2 = 17$$
 weeks

2. What is the variance in the project completion time?

It is the sum of the variances of the critical activities (A, E, H, I, J) = 2.72

3. What is the probability of meeting the project Why do we ask completion within 20 weeks?

Assuming that the project distribution follows the normal distribution, with x=20 and μ =17, σ = sqrt(2.72) = 1.65

$$Z = (20 - 17) / 1.65 = 1.82$$

Using Z = 1.82, p=0.9656 => 97% will complete within 20 weeks

Recall: Standardisation formula is $Z = \frac{X - \mu}{\sigma}$

Finding Prob from Normal Distribution Table 0.03 0.000.01 0.02 Z 4 Area = Prob 1.5 0.9332 0.9345 0.9357 0.9370 0.9484 0.9463 0.9474 1.6 0.9452 = 96.56% 0.9564 0.9582 0.95540.9573 1.8 0.9641 0.9649 0.9656 0.9664 1.9 0.9719 0.9713 0.9726 4 0.9732 2.0 0.9772 0.97780.97830.9788**1** *7* = 1.82

Steps

- 1. Calculate Z using $\frac{X-\mu}{\sigma}$ e.g Z = 1.82
- 2. Locate the first two digits of Z in the vertical column of the normal distribution table.
- 3. Locate the last digit of Z in the horizontal row of the normal distribution table.
- 4. The probability of any value less than Z happening is the intersection e.g. $P(z \le Z) = 0.9656$

Finding Value from Normal Distribution Table

3
0.09
0.8621
0.8830
0.9015 1
0.9177
0.9319

2

Steps

- 1. Given condition e.g. at least 90%, locate suitable probability in the middle section of the normal distribution table.
- 2. Locate the first two digits of Z horizontally.
- 3. Locate the last digit of Z vertically.
- 4. Combine the digits to get e.g. Z = 1.29

Summary

- PERT (Program Evaluation and review Technique) and CPM (Critical Path Method) can be used to plan, schedule and control a wide variety of projects
- The project schedule developed using this approach depicts the activities to be carried out in projects and their precedence relationships
- From there, the critical path can also be identified to help project managers closely monitor the progress
- We will also learn how to estimate uncertainty activity times and how to use this info to provide a probability statement about the chances of completing the project within the specified time
- If need be, crashing using linear optimization model may be used to reduce the activity time in order to meet the project completion deadlines