Q5: Let A be the set of all polynomials p(x) on [a,b] such that p'(a)=0. We claim that A is a function algebra which vanishes nowhere and separates points. First note that this is indeed a function algebra, since it is closed under addition and scaling by the properties of differentiation. Similarly, by the product rule it is closed under multiplication. We now claim that A vanishes nowhere. Let $p \in [a,b]$. We will construct an $f \in A$ which does not vanish at p. Let $p \in [a,b]$. Define $f(x) = (x-a)^2 + c$ with constant c chosen so that $c \neq -(p-a)^2$. We see that f'(a) = 0 and f does not vanish at p, hence this function algebra is nowhere vanishing. We will now show that A separates points. Let $p_1, p_2 \in [a,b]$ be distinct points. We define $f(x) = (x-a)^2 - (p_1-a)^2$. We see that f belongs to A and $f(p_1) = 0 \neq f(p_2)$. We have that A is a function algebra, which vanishes nowhere and separates points. Therefore, by the Stone-Weierstrass Theorem for each $\frac{\varepsilon}{2} > 0$ there exists some q(x) where q'(a) = 0 and $|q(x) - f(x)| < \frac{\varepsilon}{2}$. Let $\varepsilon_0 = q(a) - f(a)$. Now let $p(x) = q(x) - \varepsilon_0$. We have that p'(a) = 0, p(a) = f(a) and $p(a) - f(a) < \varepsilon$.