Name:	•••••						
Roll No.	:		• • • • • • • •	•••••			
Invigila	tor's S	ignature ;		•••••			
		•	/SEM	I-5/CS-503/2009-10			
		2009					
	DESI	GN & ANALYSIS ()F A				
Time A	llotted	: 3 Hours	Full Marks: 70				
	Th	ue figures in the margin i	ndica	te full marks.			
Candi	dates	are require I to give their as far as pr					
		as jai as pi	uence	w.			
		GROUP -	A				
	٠,	(Multiple Choice Ty	pe Qu	uestions)			
1. Cl	noose	the correct alternatives	for th	ne following :			
				$10\times1=10$			
i)	n sort is						
	a)	$O(\log n)$	b)	$O(n^2)$			
	c)	$O(n \log n)$	d)	$O(n^2 \log n)$.			
ii) $o(g(n))$ is [Read as small oh of $g(n)$ is]							
	a)	Asymptotically loose	b)	Asymptotically tight			
	c) .	same as big oh	d)	none of these.			
iii) Kr	uskal algorithm is a					
	a)	Divide & conquer algorithm					
	b)	Branch and bound algorithm					
	c)	Greedy algorithm					
	d)	Dynamic programmir	ıg.				
55901				[Turn over			

CS/B.Tech(CSE)/SEM-5/CS-503/2009-10

	iv)	Travelling	salesman	problem	belongs	to
--	-----	------------	----------	---------	---------	----

a) P class

- b) NP class
- c) NP-Hard
- d) NP-complete class.

v) Time complexity of insertion sort is

a) Linear

b) Quadratic

c) Cubic

d) Exponential.

vi) Which one of the following functions is asymptotically smallest?

- a) 2^n
- b) $n^{\log n}$
- c) $n^{\sqrt{n}}$
- d) $(100)^{(\log n)^{1/3} + (\log \log n)^{2/3}}$

vii) Which one of the following statements is correct?

- a) If $A \leq_p B$ and $B \in P$ then $A \in P$
- b) If $A \leq_{\mathcal{P}} B$ and $A \notin P$ then $B \notin P$
- c) If $A \leq_{p} B$ and $B \leq_{p} C$ then $A \leq_{p} C$
- d) all of these.

viii) Consider the following statements:

- I) NP hard problem is a subset of NP complete problem.
- II) An algorithm to multiply two matrices has complexity $O(n^3)$.

Which of the following alternatives is true.

- a) I-True, II-False
- b) Both true
- c) Both False
- d) I-False, II-True.

ix) Optimal substructure property is exploited by

- a) Dynamic progamming b)
 - Greedy method
- c) Both (a) & (b)
- d) None of these.

55901

CS/B.Tech(CSE)/SEM-5/CS-503/2009-10

- x) Which of the following approaches is adopted in Divide & Conquer algorithms?
 - a) Top-down
- b) Bottom-up
- c) Both (a) & (b)
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- a) Derive the complexity of merge sort.
 - b) What is the difference between a 0-1 Knapsack problem and a fractional Knapsack problem? 4+1
- Write an algorithm for eight queens problem.
- 4. State master's theorem and find the time complexity for the following recurrence:

 2 + 3

$$T(n) = 2T(n^{1/2}) + \log n$$

- 5. a) What are the basic characteristics of dynamic programming?
 - b) Write an algorithm for matrix-chain multiplication. 2 + 3
- Apply backtracking technique to solve the 3-colouring problem for the following graph.

55901

3

[Turn over

CS/B.Tech(CSE)/SEM-5/CS-503/2009-10

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Define the classes P and NP.
 - b) Discuss what you mean by polynomial reductions.
 - c) Discuss diagrammatically the relations among *P* class, *NP* class, *NP* hard and *NP* complete.
 - d) Describe Clique Decision Problem (CDP).
 - e) Prove the CDP is NP complete. 2+2+2+2+7
- 8. a) State the general Knapsack problem. Write a greedy algorithm for this problem and derive its time complexity.
 - b) Given the weight vector (2, 3, 5, 7, 1, 4, 1) and the profit vector (10, 5, 15, 7, 6, 18, 3) and a Knapsack of capacity 15, find at least three feasible solutions including optimal one for the knapsack problem of seven objects.
- 9. Write the algorithm of Quick sort. Find the best case, worst case and average case time complexities of this algorithm.

5 + 10

- 10. a) Explain how do you attempt to solve 15-puzzle problem using branch and bound strategy. Draw a portion of the state space generated by it.
 - b) Write an algorithm for finding the minimum spanning tree of a graph. Discuss its time complexity. 8 + 7
- 11. a) What do you mean by non-deterministic algorithms?
 - b) How are graphs represented in computer?
 - c) Write short notes on any three of the following:
 - i) Recursion tree
 - ii) Approximation schemes
 - iii) Turing machines
 - iv) FFT algorithm.

 $3 + 3 + (3 \times 3)$

55901