Module 21: More Multiple Comparisons

Example

Signal + Noise

α =0.10, No correction

FWER control at 10%

Occurrence of false positive

Percentage of active voxels that are false positives

Uncorrected Thresholds

- Most published PET and fMRI studies use arbitrary uncorrected thresholds (e.g., p<0.001).
 - A likely reason is that with available sample sizes, corrected thresholds are so stringent that power is extremely low.
- Using uncorrected thresholds is problematic when interpreting conclusions from individual studies, as many activated regions may be false positives.
- Null findings are hard to disseminate, hence it is difficult to refute false positives established in the literature.

Extent Threshold

- Sometimes an arbitrary extent threshold is used when reporting results.
- Here a voxel is only deemed truly active if it belongs to a cluster of k contiguous active voxels (e.g., p<0.001, 10 contingent voxels).
- Unfortunately, this does not necessarily correct the problem because imaging data are spatially smooth and therefore false positives may appear in clusters.

Example

 Activation maps with spatially correlated noise thresholded at three different significance levels. Due to the smoothness, the false-positive activation are contiguous regions of multiple voxels.

Note: All images smoothed with FWHM=12mm

Example

Similar activation maps using null data.

Note: All images smoothed with FWHM=12mm

End of Module

