НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

Факультет прикладної математики Кафедра прикладної математики

Дипломна робота

на здобуття ступеня бакалавра

на тему: «Математична модель формування дози внутрішнього опромінення внаслідок аварії на ЧАЕС на основі нейронних мереж»

Виконав: студент групи КМ-31 Чернявський А.С.

Керівник: старший викладач Любашенко Н.Д.

Вступ

• Вживання продуктів харчування місцевого виробництва на радіоактивно забруднених територіях неминуче призводить до змін стану здоров'я.

Des Horse

Вступ. Машинний інтелект

Напрямки та технології, що розвиваються завдяки методам машинного навчання:

- Робототехніка;
- Складні задачі з рисунками та текстом;
- Прогнозування та кластеризація;
- Автопілот для засобів пересування;
- Розпізнавання образів;
- Пошук нових лікарських засобів.

Вступ. Необхідність знаходження моделі

• Складність планування протирадіаційних дій без знання причини формування дози внутрішнього опромінення;

• Зменшення затрат часу та коштів на збір даних про населення;

• Потреба інституту моделювати гіпотетичні ситуації.

Постановка задачі. Етапи виконання

- Провести порівняльний аналіз існуючих методів аналізу даних;
- Вибрати та адаптувати обраний метод для вирішення задачі створення математичної моделі формування дози внутрішнього опромінення;
- Розробити програмне забезпечення на базі обраного математичного методу;
- Провести тестування програмної реалізації на контрольних прикладах.

Постановка задачі. Критерії до системи

- Моделювання залежності дози внутрішнього опромінення від множини факторів;
- Розроблювана система повинна мати мінімальну похибку;
- Перетворення вхідних даних у сумісний з нейронною мережею формат;
- Адаптація шляхом регулювання основних параметрів моделі;
- Зберігання вагів синапсів після навчання, для забезпечення можливості використання системи без попереднього навчання;
- Спроможність навчатися на нових вибірках даних.

Огляд існуючих математичних методів

- Дерева ухвалення рішень;
- Метод опорних векторів;
- Штучні нейронні мережі;
- Метод випадкових лісів;
- Методи регресійного аналізу:
- Лінійна регресія;
- Поліноміальна регресія;
- Регресія з радіальним базисом;
- Регресія з сигмоїдальним базисом.

Порівняння існуючих методів

Існуючі програмні рішення

 Waikato Environment for Knowledge Analysis (Weka)

IBM SPSS Statistics

Математичне забезпечення

Математичне забезпечення. Значення параметрів

- Розмір вхідного шару: 10 нейронів;
- Розмір прихованого шару: 12 нейронів;
- Розмір вихідного шару: 1 нейрон;
- Коефіцієнт відсіву: 0.5;
- Кількість навчальних епох: 16;
- Кількість даних у пакеті: 8;
- Перехресна перевірка: розбиття на 10 частин;
- Функція активації: гіперболічний тангенс;
- Формули для обрахунку похибок: MAE, MSE.

Програмне забезпечення. Вхідні дані

• Файл з даними: текстовий, формат CSV:

	Α	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q
1	DOS_CS_	BIRTH_Y	PROFESS	Year_ME	Month_N	/ Populatio	Forest are	Specific f	Education	Cs-137 sc	Contami	n Soil type	Soil type	Soil type	Distance	Distance t	to forest.
2	0.182	1999	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
3	0.264	1999	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
4	0.147	1990	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
5	0.133	1989	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
6	0.149	1998	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
7	0.146	1996	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
8	0.114	1994	6	2005	11	109	53	0.13748	1	83		4 1	. 4	35	40	0.52	
9	0.134	1995	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
10	0.113	1994	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
11	0.307	1993	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
12	0.145	1992	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
13	0.19	1993	6	2005	11	109	53	0.13748	1	83		4 1	4	35	40	0.52	
14	0.226	1969	3	2005	11	109	53	0.13748	2	83		4 1	. 4	35	40	0.52	
15	0.25	1967	4	2005	11	109	53	0.13748	3	83		4 1	4	35	40	0.52	
16	0.153	1962	3	2005	11	109	53	0.13748	2	83	-	4 1	. 4	35	40	0.52	
17	0.134	1972	3	2005	11	109	53	0.13748	3	83		4 1	. 4	35	40	0.52	
18	0	2006	6	2013	10	526	7	0.00376	1	235		2 4	4	4	23.73	5.2	
19	0	2007	6	2013	10	526	7	0.00376	1	235		2 4	4	4	23.73	5.2	
20	0	2007	6	2013	10	526	7	0.00376	1	235		2 4	4	4	23.73	5.2	
21	0	2006	6	2013	10	526	7	0.00376	1	235		2 4	4	4	23.73	5.2	

Програмне забезпечення. Вихідні дані

• Графіки похибок обрахованих за формулами MSE та MAE:

Випробовування програмного забезпечення

• Графік спрогнозованих для набору зі 100 даних:

Випробовування програмного забезпечення

• Графік спрогнозованих для набору з 200 даних:

Випробовування програмного забезпечення

• Графік розподілу абсолютної похибки:

Висновки

- •Було розглянуто існуючі математичні методи та програмні рішення, проведено їх порівняльний аналіз.
- •Відповідно до обраних критеріїв було реалізовано програмне забезпечення для створення математичної моделі формування дози внутрішнього опромінення.
- •Було проведено випробовування розробленого програмного засобу на наборах даних, порівняно їх з вже існуючими реалізаціями методів.

Дякую за увагу!