Simplified Jungle Chess (斗兽棋) AI Agents

Game Settings

Board

• 7 × 8 Grid

Pieces

• 8 pieces per side (Elephant, Lion, Tiger, Leopard, Wolf, Dog, Cat, Rat)

Simplified Rules

- Rank-based Predation: Higher rank eats lower rank
- Special Case: Rat ↔ Elephant
- No Traps / No Rivers / No Dens (optional expansion)

Game End Condition

- Capture all opponent's pieces;
- No captures within a set number of movess (stalemates)

State & Action Space

State Definition

- **Board State**: 7×8 grid with 56 positions
- Piece Information: Each position can contain:
 - Empty (None)
 - Piece with attributes: (player_id, strength, revealed)
- Turn Information: Current player (0 or 1)

State Space Complexity

- Each square has 33 possible states:
 - Empty: 1 state
 - Player 0 pieces: 8 strengths × 2 visibility states = 16 states
 - Player 1 pieces: 8 strengths × 2 visibility states = 16 states
 - \circ Total per square: 1 + 16 + 16 = 33 states
- Estimated State Space:
 - $\circ \binom{56}{16} imes 16! imes 2^{16} imes 2 pprox 10^{32}$

Agent Portfolio

- Random
- Greedy
- Minimax
- Tabular Q-Learning
- Deep Q-Network (DQN)

Minimax Evaluation Function

$$ext{Score}_{ ext{minimax}}(s) = \sum_{i=1}^4 ext{Component}_i(s)$$

1. Piece Count Difference Component

$$Component_1(s) = (|P_{self}| - |P_{opp}|)$$

- ullet $|P_{
 m self}|$ and $|P_{
 m opp}|$ represent the total number of pieces for the self and opponent, respectively.
- The weight coefficient is 100, reflecting the importance of piece count.

2. Piece Strength Sum Component

$$ext{Component}_2(s) = \left(\sum_{p \in P_{ ext{self}}^{ ext{revealed}}} ext{strength}(p) - \sum_{p \in P_{ ext{opp}}^{ ext{revealed}}} ext{strength}(p)
ight) imes 10$$

- ullet $P_{
 m self}^{
 m revealed}$ and $P_{
 m opp}^{
 m revealed}$ represent the set of revealed pieces for the self and opponent, respectively.
- $\operatorname{strength}(p) \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ denotes the strength of the piece.
- The weight coefficient is 10.

3. Information Value Component

$$ext{Component}_3(s) = 5 imes |P_{ ext{self}}^{ ext{unrevealed}}| - 10 imes |P_{ ext{opp}}^{ ext{unrevealed}}|$$

- ullet $P_{
 m self}^{
 m unrevealed}$ and $P_{
 m opp}^{
 m unrevealed}$ represent the set of unrevealed pieces for the self and opponent, respectively.
- Unrevealed pieces for self are considered potential resources (+5 points).
- Unrevealed pieces for the opponent are considered unknown threats (-10 points).

4. Threat Opportunity Component

$$ext{Component}_4(s) = \sum_{p_s \in P_{ ext{self}}^{ ext{revealed}}} \sum_{p_o \in P_{ ext{opp}}^{ ext{revealed}}} ext{TacticalValue}(p_s, p_o)$$

Where the tactical value function is defined as:

$$ext{TacticalValue}(p_s,p_o) = egin{cases} +20 & ext{if Adjacent}(p_s,p_o) \land ext{CanCapture}(p_s,p_o) \ -15 & ext{if Adjacent}(p_s,p_o) \land ext{CanCapture}(p_o,p_s) \ 0 & ext{otherwise} \end{cases}$$

Complete Minimax Evaluation Function

$$egin{aligned} H_{ ext{minimax}}(s) &= 1 imes (|P_{ ext{self}}| - |P_{ ext{opp}}|) \ &+ 10 imes \left(\sum_{p \in P_{ ext{self}}^{ ext{revealed}}} ext{strength}(p) - \sum_{p \in P_{ ext{opp}}^{ ext{revealed}}} ext{strength}(p)
ight) \ &+ 5 imes |P_{ ext{self}}^{ ext{unrevealed}}| - 10 imes |P_{ ext{opp}}^{ ext{unrevealed}}| \ &+ \sum_{p_s,p_o} ext{TacticalValue}(p_s,p_o) \end{aligned}$$

Greedy's Heuristic Function

$$\mathrm{Score}(s) = \sum_{i=1}^4 \mathrm{Component}_i(s)$$

Where each component is defined as follows:

1. Piece Value Component

$$\mathrm{Component}_1(s) = \sum_{p \in P_{\mathrm{self}}} V(p) - \lambda_1 \sum_{p \in P_{\mathrm{opp}}} V(p)$$

- ullet $P_{
 m self}$ and $P_{
 m opp}$ represent the sets of pieces for the self and opponent, respectively.
- V(p) is the value function for a piece:

$$V(p) = egin{cases} ext{piece_values}[ext{strength}(p)] & ext{if p. revealed} = ext{True} \ ext{if p. revealed} = ext{False} \end{cases}$$

- piece_values = $\{8:100,7:90,6:80,5:70,4:60,3:50,2:40,1:10\}$
- $\lambda_1 = 0.8$ (opponent piece weight coefficient)

2. Positional Reward Component

$$ext{Component}_2(s) = rac{\lambda_3}{10} \sum_{p \in P_{ ext{self}}^{ ext{revealed}}} \left[f_{ ext{advance}}(p) + f_{ ext{center}}(p)
ight]$$

Where:

Advance reward function:

$$f_{ ext{advance}}(p) = egin{cases} 5 imes ext{row}(p) & ext{if player_id} = 0 \ 5 imes (ROWS - 1 - ext{row}(p)) & ext{if player_id} = 1 \end{cases}$$

Central control reward function:

$$f_{ ext{center}}(p) = egin{cases} 5 & ext{if } ext{col}(p) \in \{\lfloor COLS/2
floor - 1, \lfloor COLS/2
floor \} \ 0 & ext{otherwise} \end{cases}$$

• $\lambda_3 = 15$ (positional weight coefficient)

3. Mobility Component

$$\operatorname{Component}_3(s) = \lambda_2 imes |A_{\operatorname{possible}}(s)|$$

- $A_{\text{possible}}(s)$ represents the set of all possible actions in the current state.
- $\lambda_2=2$ (mobility weight coefficient)

4. Safety Component

$$ext{Component}_4(s) = w_{ ext{safety}} \sum_{p_s \in P_{ ext{self}}^{ ext{revealed}}} \sum_{p_o \in P_{ ext{opp}}^{ ext{revealed}}} ext{ThreatValue}(p_s, p_o)$$

Where the threat value function is defined as:

$$ext{ThreatValue}(p_s,p_o) = egin{cases} -10 & ext{if Adjacent}(p_s,p_o) \land ext{CanCapture}(p_o,p_s) \ +15 & ext{if Adjacent}(p_s,p_o) \land ext{CanCapture}(p_s,p_o) \ 0 & ext{otherwise} \end{cases}$$

Capture condition function:

$$\operatorname{CanCapture}(p_1,p_2) = egin{cases} \operatorname{True} & \operatorname{if}\left(\operatorname{strength}(p_1) > \operatorname{strength}(p_2)\right) \land \neg(\operatorname{strength}(p_1) = 8 \land \operatorname{strength}(p_2) = 1) \\ \operatorname{True} & \operatorname{if}\left(\operatorname{strength}(p_1) = 1 \land \operatorname{strength}(p_2) = 8 \\ \operatorname{False} & \operatorname{otherwise} \end{cases}$$

 $ullet w_{
m safety} = 10$ (safety weight coefficient)

Complete Heuristic Function

$$H(s) = \sum_{p \in P_{ ext{self}}} V(p) - 0.8 \sum_{p \in P_{ ext{opp}}} V(p) \ + 1.5 \sum_{p \in P_{ ext{self}}^{ ext{revealed}}} [f_{ ext{advance}}(p) + f_{ ext{center}}(p)] \ + 2 imes |A_{ ext{possible}}(s)| \ + 10 \sum_{p_s, p_o} ext{ThreatValue}(p_s, p_o)$$

Q-Learning (Tabular)

1. Basic State Definition

The state tensor $\mathbf{S} \in \mathbb{R}^{7 \times 8 \times 4}$ is defined where each position (r,c) has a feature vector:

$$\mathbf{s}_{r,c} = egin{bmatrix} p_{r,c} \ rac{ ext{strength}_{r,c}}{8} \ \mathbb{I}_{ ext{revealed}}(r,c) \ \mathbb{I}_{ ext{occupied}}(r,c) \end{bmatrix} \in \mathbb{R}^4$$

$$p_{r,c} = \begin{cases} 0 & \text{if piece at } (r,c) \text{ belongs to player } 0 \\ 1 & \text{if piece at } (r,c) \text{ belongs to player } 1 \\ 0 & \text{if position } (r,c) \text{ is empty} \end{cases}$$

$$\frac{\text{strength}_{r,c}}{8} = \begin{cases} \frac{k}{8} & \text{if piece at } (r,c) \text{ has strength } k \in \{1,2,\ldots,8\} \\ 0 & \text{if position } (r,c) \text{ is empty} \end{cases}$$

$$\mathbb{I}_{\text{revealed}}(r,c) = \begin{cases} 1 & \text{if piece at } (r,c) \text{ is revealed} \\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{I}_{\text{occupied}}(r,c) = \begin{cases} 1 & \text{if position } (r,c) \text{ contains a piece} \\ 0 & \text{if position } (r,c) \text{ is empty} \end{cases}$$

Action Space

- Reveal Action: ("reveal", (row, col)) for unrevealed own pieces
- Move Action: ("move", (start_row, start_col), (end_row, end_col))

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + lpha \left[r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)
ight]$$

Hyperparameters

•
$$lpha=0.1$$
 $\gamma=0.95$ $arepsilon$ -greedy \downarrow $r_{t+1}= ext{reward}$ $\delta_t=r_{t+1}+\gamma\max_{a'}Q(s_{t+1},a')-Q(s_t,a_t)$ $Q_{ ext{new}}(s_t,a_t)=Q(s_t,a_t)+lpha\cdot\delta_t$

reward function

$$r_{t+1} = R_{\mathrm{action}}(s_t, a_t) + R_{\mathrm{terminal}}(s_{t+1})$$

1. Action Reward $R_{ m action}(s_t,a_t)$

$$R_{ ext{action}}(s_t, a_t) = egin{cases} w_{ ext{reveal}} imes V(ext{piece}) & ext{if } a_t = ext{reveal} \wedge ext{success} \ w_{ ext{capture}} imes V(ext{captured}) & ext{if } a_t = ext{move} \wedge ext{captured} ext{success} \ w_{ ext{be_captured}} imes V(ext{lost}) & ext{if } a_t = ext{move} \wedge ext{be_captured} \ w_{ ext{mutual}} & ext{if } a_t = ext{move} \wedge ext{mutual_destruction} \ w_{ ext{invalid}} & ext{if } a_t
otherwise \ \end{cases}$$

2. Weight Parameters

```
self.weights = {
    'win_game': 100.0,
    'lose_game': -100.0,
    'draw_game': 0.0,
    'capture_piece': 10.0,
    'be_captured': -8.0,
    'mutual_destruction': -0.5,
    'reveal_piece': 1.0,
    'survival_penalty': -0.1
}
```

3. Piece Value Function V(piece)

$$V(k) = egin{cases} 3.0 & ext{if } k = 1 ext{ (Rat)} \ 1.0 & ext{if } k = 2 \ 1.5 & ext{if } k = 3 \ 2.0 & ext{if } k = 4 \ 2.5 & ext{if } k = 5 \ 3.0 & ext{if } k = 6 \ 3.5 & ext{if } k = 7 \ 4.0 & ext{if } k = 8 ext{ (Elephant)} \end{cases}$$

4. Evaluate Position Reward $R_{Pos}(s_t,a_t)$

$$R_{Pos}(s_t, a_t) = rac{1}{n} \sum_i P(i) imes V(i) imes (\Delta(Opp) - \Delta(Threat))$$

Where the P(i) is the probability of the i-th unrevealed piece to be at the selected position.

$$P(i) = rac{1}{ ext{num of unrevealed pieces}}, Opp = \sum_{i} Opp(i), Threat = \sum_{i} Threat(i)$$

Where the $\Delta(Opp)$ and $\Delta(Threat)$ are the changes in the opponent's and your threat levels, respectively, after the action a_t is taken.

if nearest enemy of piece i can be captured by i:

$$Opp(i) = \frac{3}{1 + \operatorname{distance}(i, \operatorname{nearest\ enemy}(i))}, \quad Threat(i) = 0$$

if nearest enemy of piece i can captured i.

5. Terminal Reward $R_{\mathrm{terminal}}(s_{t+1})$

$$R_{ ext{terminal}}(s_{t+1}) = egin{cases} +100.0 & ext{if Win}(s_{t+1}, ext{current_player}) \ -100.0 & ext{if Lose}(s_{t+1}, ext{current_player}) \ 0.0 & ext{if Draw}(s_{t+1}) \lor \lnot ext{Terminal}(s_{t+1}) \end{cases}$$

6. Complete Reward Function

$$r_{t+1} = \begin{cases} -0.1 + 1.0 \times \text{Expectation}(\Delta(Opp) - \Delta(Threat)) + R_{terminal} & \text{if reveal} \\ -0.1 + 10.0 \times V(capture) + \Delta(Opp) - \Delta(Threat) + R_{terminal} & \text{if capture} \\ -0.1 - 8.0 \times V(lost) + \Delta(Opp) - \Delta(Threat) + R_{terminal} & \text{if lost} \\ -0.1 - 0.5 + \Delta(Opp) - \Delta(Threat) + R_{terminal} & \text{if mutual destruction} \\ -0.1 + \Delta(Opp) - \Delta(Threat) + R_{terminal} & \text{others} \end{cases}$$

Deep Q-Network

1. Model Architecture

1.1 Neural Network Structure

The DQN employs a 4-layer fully connected neural network architecture:

$$S: 7 \times 8 \times 6 = 336$$

- $h_1 = \operatorname{ReLU}(W_1 \cdot s + b_1)$
- $h_k = \text{Dropout}(\text{ReLU}(W_k \cdot h_{k-1} + b_k))$
- $Q(s,a) = W_4 \cdot h_3 + b_4$

1.2 State Space Representation

The state space uses a 6-channel representation, with dimensions $7 \times 8 \times 6 = 336$:

Channel	Meaning	Value Range
0	Player 0 piece position	{0, 1}
1	Player 1 piece position	{0, 1}
2	Piece strength (normalized)	[0, 1]
3	Piece revealed status	{0, 1}
4	Current player's pieces	{0, 1}
5	Opponent's pieces	{0, 1}

1.3 Action Space Encoding

Action space size: $|\mathcal{A}|=280$

- Reveal Action: $a_{reveal} \in [0, 55]$
 - \circ Encoding formula: index = r imes 8 + c
- ullet Move Action: $a_{move} \in [56, 279]$
 - \circ Encoding formula: $index = 56 + r_1 imes 32 + c_1 imes 4 + {
 m direction}$
 - \circ Direction mapping: $\{(-1,0):0,(1,0):1,(0,-1):2,(0,1):3\}$

2. Training Parameters

2.1 Core Hyperparameters

Parameter	Symbol	Default Value	Description
Learning Rate	α	10^{-4}	Adam optimizer learning rate
Discount Factor	γ	0.99	Future reward discount factor
Exploration Rate	ϵ	0.1	ϵ -greedy policy exploration probability
Exploration Decay	ϵ_{decay}	0.995	Per-episode exploration rate decay factor
Minimum Expl. Rate	ϵ_{min}	0.01	Lower bound for exploration rate
Batch Size	B	64	Experience replay batch size

2.2 Exploration Strategy

A decaying ϵ -greedy strategy is used:

$$\epsilon_t = \max(\epsilon_{min}, \epsilon_0 imes \epsilon_{decay}^t)$$

Action selection probability:

$$\pi(a|s) = egin{cases} rac{\epsilon}{|\mathcal{A}_{valid}|} + (1-\epsilon) & ext{if } a = rg \max_{a'} Q(s,a') \ rac{\epsilon}{|\mathcal{A}_{valid}|} & ext{otherwise} \end{cases}$$

3. Loss Function and Optimization

3.1 Q-Learning Target

Target Q-value calculation:

$$y_i = r_i + \gamma \max_{a'} Q_{target}(s_i', a')$$

3.2 Loss Function

Mean Squared Error (MSE) loss is used:

$$\mathcal{L}(heta) = rac{1}{B} \sum_{i=1}^B [Q(s_i, a_i; heta) - y_i]^2$$

3.3 Optimizer

Adam optimizer is used:

- ullet Learning rate: $lpha=10^{-4}$
- $\beta_1 = 0.9$, $\beta_2 = 0.999$
- $\epsilon = 10^{-8}$

4. Reward Function Design

4.1 Immediate Rewards

Action Type	Reward Value	Condition
Reveal Piece	+0.1	Successfully revealed own piece
Move Piece	+0.05	Normal move
Capture Piece	$+0.2 imes ext{strength}$	Successfully captured opponent's piece
Be Captured	-0.3	Own piece was captured
Invalid Action	-1.0	Executed an invalid action

4.2 Terminal Rewards

$$r_i = egin{cases} 0.1 + R_{ ext{terminal}} \ 0.05 + R_{ ext{terminal}} \ 0.2 imes k + R_{ ext{terminal}} \ -0.3 + R_{ ext{terminal}} \ -1.0 \ R_{ ext{terminal}} \end{cases}$$

 $r_i = egin{cases} 0.1 + R_{ ext{terminal}} & ext{if successfully revealing own piece} \ 0.05 + R_{ ext{terminal}} & ext{if making a normal move} \ 0.2 imes k + R_{ ext{terminal}} & ext{if successfully capturing opponent's piece of strength } k \ -0.3 + R_{ ext{terminal}} & ext{if own piece is captured} \ -1.0 & ext{if executing an invalid action} \ R_{ ext{terminal}} & ext{otherwise} \end{cases}$

5. Network Update Mechanism

5.1 Experience Replay

Randomly sample a batch of experiences from the experience buffer D:

$$\{(s_i, a_i, r_i, s_i', done_i)\}_{i=1}^B \sim \mathrm{Uniform}(D)$$

5.2 Target Network Update

The target network is updated every 100 episodes:

$$\theta_{target} \leftarrow \theta_{main}$$

5.3 Gradient Update

Backpropagation is used to update the main network parameters:

$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta)$$

Experimental Results

Agent	vs Random	vs Greedy
Random	50	25
Greedy	75	_
Minimax d=3	92	68
Q-Learning	78	52
DQN	85	61

Thank You!

Q & A Welcome 🎉