Лабораторная работа 1.6 Определение модуля Юнга на основе исследования деформации растяжения

Жарков Андрей 496

16 мая 2016 г.

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для одноосного растяжения; по результатам измерений вычислить модуль Юнга.

В работе используются: прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка или линейка.

Теоретическое введение

Рассмотрим однородный стержень (проволоку), к основаниям которого приложены растягивающие силы (см. рис. 1). Возникающая при этом деформация стержня связана с появлением упругих сил, с которыми каждая часть стержня действует на другую, с которой она граничит. Сила, отнесенная к единице площади поперечного сечения стержня, называется напряжением. В рассматриваемом случае напряжение перпендикулярно к поперечному сечению стержня и называется натяжением

$$T = \frac{F}{S}$$

где S — площадь поперечного сечения стержня. Пусть l_0 — длина недеформированного стержня. После приложения силы F его длина получает приращение Δl и делается равной $l=l_0+\Delta l$. Отношение

$$\varepsilon = \frac{\Delta l}{l}$$

называется относительным удлинением стержня.

Опыт показывает, что для не слишком больших упругих деформаций натяжение пропорционально относительному удлинению

$$T = E \frac{\Delta l}{l} = E \varepsilon \tag{1}$$

где E — модуль Юнга — постоянная, зависящая только от материала стержня и его физического состояния. Формула (1) выражает закон Гука. Если ввести коэффициент упругости стержня

$$k = E \frac{S}{l_0} \tag{2}$$

то закон Гука можно записать в виде: $F = k \cdot \Delta l$.

Экспериментальная установка

рис. 2 Прибор Лермонтова

Для определения модуля Юнга используется прибор Лермантова, схема которого изображена на рис. 2. Верхний конец проволоки П, изготовленной из исследуемого материала, прикреплён к консоли К, а нижний — к цилиндру, которым оканчивается шарнирный кронштейн Ш. На этот же цилиндр опирается рычаг Р (на рисунке не обозначен), связанный с зеркальцем З. Таким образом, удлинение проволоки можно измерить по углу поворота зеркальца. Натяжение проволоки можно менять, перекладывая грузы с площадки М на площадку О и наоборот. Такая система позволяет исключить влияние деформации кронштейна К на точность измерений, так как нагрузка на нем все время остаётся постоянной.

При проведении эксперимента следует иметь в виду, что проволока П при отсутствии нагрузки всегда несколько изогнута, что не может не сказаться на результатах, особенно при небольших нагрузках. Проволока вначале не столько растягивается, сколько распрямляется.

Выполнение работы

Параметры установки:

 $d = 0.51 \; {\rm мм}$ - диаметр проволки

 $l=1.79\pm0.02$ м - длина нерастянутой проволки

 $r = 20 \; \text{мм}$ - длина рычага

h = 1.37 м - расстояние от шкалы до зеркала

Выясним, как зависит Δl от смещения по шкале Δn :

 $tgarphi=rac{\Delta l}{r},\,tg2arphi=rac{\Delta n}{h},$ т. к. arphi мал tg2arphipprox2tgarphi, откуда в итоге

$$\Delta l = rtg\varphi = \frac{r\Delta n}{2h}$$

Выясним максимальный допустимый для подвешивания груз $m=T_{lim}S*0.5/g\approx 3$ кг. Подвесив и сняв 2.5 кг, видим, что остаточное растяжение отсутствует.

m, g	l, sm	Δm, г	∆n, cм	F, H	∆l, mm
478	25,8				
913	30,3	435	4,5	4,26735	0,33
1409	37,3	931	11,5	9,13311	0,84
1859	43,3	1381	17,5	13,54761	1,28
2352	50,4	1874	24,6	18,38394	1,80
1859	43,3				
1409	37,5				
913	30,2				
478	25,9				

Результаты измерений

Построим график $\Delta l(F)$

Теперь можно найти жёсткость проволоки $k=\frac{1}{b}=(9.66\pm0.14)*10^3~\frac{\rm H}{\rm M},$ где b - найденный коэффициент наклона.

Из формулы (2) выразим модуль Юнга:

$$E = \frac{kl_0}{S} = \frac{4kl_0}{\pi d^2} = (186 \pm 9)\Gamma\Pi a$$

В пределах погрешности довольно близко к табличному модулю Юнга стали (200 ГПа). В погрешность наибольший вкалад вносит длина рычага зеркальца (измеренная с точностью 5%), а также (неучтённый) износ проволоки.