Kaichun Mo

Mailing Address 10307 NE 126TH PL Kirkland, WA 98034 **Email:** kmo@nvidia.com **Tel:** (+1) 650-521-6801

Homepage: https://kaichun-mo.github.io

RESEARCH INTERESTS

3D Computer Vision, Graphics, Robotics, and 3D Deep Learning, with particular interests in object-centric 3D deep learning, and structured visual representation learning for 3D data.

EMPLOYMENT

NVIDIA Research, USA

Aug 2022 – Now

Research Scientist

- Manager: Prof. Dieter Fox;Lab: Seattle Robotics Lab.
- **EDUCATION**

Stanford University, USA

Sept 2016 – June 2022

Ph.D., Computer Science

- Advisor: Prof. Leonidas Guibas;
- Lab: Stanford Geometry Lab and Stanford Artificial Intelligence Lab;
- **Disseration:** Learning Compositional and Actionable Visual Representations for 3D Shapes.

Shanghai Jiao Tong University, China

Sept 2012 - July 2016

B.S.E., Computer Science, ACM Honored Class, Zhiyuan College

- ACM Honored Class is a highly selective class (top 33 students) in SJTU.
- GPA: 3.96/4.30 (91.87/100) Rank: **1/33**.

PUBLICATIONS

Zoey Chen, Aaron Walsman, Marius Memmel, **Kaichun Mo**, Alex Fang, Karthikeya Vemuri, Alan Wu, Dieter Fox and Abhishek Gupta, *URDFormer: Constructing Interactive Realistic Scenes from Real Images via Simulation and Generative Modeling*, RSS 2024

Razvan Pasca, Alexey Gavryushin, Muhammad Hamza, Yen-Ling Kuo, **Kaichun Mo**, Luc Van Gool, Otmar Hilliges and Xi Wang, Summarize the Past to Predict the Future: Natural Language Descriptions of Context Boost Multimodal Object Interaction Anticipation, CVPR 2024.

Yichen Li, **Kaichun Mo**, Yueqi Duan, He Wang, Jiequan Zhang, Lin Shao, Wojciech Matusik and Leonidas J. Guibas, *Category-Level Multi-Part Multi-Joint 3D Shape Assembly*, CVPR 2024.

Jia-Mu Sun, Jie Yang, **Kaichun Mo**, Yu-Kun Lai, Leonidas J. Guibas and Lin Gao , *HAISOR: Human-Aware Indoor Scene Optimization via Deep Reinforcement Learning* , ACM Transactions on Graphics (SIG-GRAPH 2024).

Chuanruo Ning, Ruihai Wu, Haoran Lu, **Kaichun Mo** and Hao Dong, *Where2Explore: Few-shot Affordance Learning for Unseen Novel Categories of Articulated Objects*, NeurIPS 2023.

Yi Li, Muru Zhang, Markus Grotz, **Kaichun Mo** and Dieter Fox, STOW: Discrete-Frame Segmentation and Tracking of Unseen Objects for Warehouse Picking Robots, CoRL 2023.

Boxiao Pan, Bokui Shen*, Davis Rempe*, Despoina Paschalidou, **Kaichun Mo**, Yanchao Yang and Leonidas J. Guibas, *COPILOT: Human Collision Prediction and Localization from Multi-view Egocentric Videos*, ICCV 2023

Yijia Weng, **Kaichun Mo**, Ruoxi Shi, Yanchao Yang and Leonidas J. Guibas, *Toward Learning Geometric Eigen-Lengths Crucial for Fitting Tasks*, ICML 2023.

Xiaomeng Xu*, Yanchao Yang*, **Kaichun Mo**, Boxiao Pan, Li Yi and Leonidas J. Guibas, *JacobiNeRF: NeRF Shaping with Mutual Information Gradients*, CVPR 2023.

Yan Zhao*, Ruihai Wu*, Zhehuan Chen, Yourong Zhang, Qingnan Fan, **Kaichun Mo** and Hao Dong, DualAfford: Learning Collaborative Visual Affordance for Dual-gripper Object Manipulation, ICLR 2023.

Lin Gao, Jia-Mu Sun, **Kaichun Mo**, Yu-Kun Lai, Leonidas J. Guibas and Jie Yang, *SceneHGN: Hierarchical Graph Networks for 3D Indoor Scene Generation with Fine-Grained Geometry*, TPAMI 2023.

Jeonghyun Kim, **Kaichun Mo**, Minhyuk Sung* and Woontack Woo*, SegStruct: The Interplay between Part Segmentation and Structure Inference for 3D Shape Parsing, WACV 2023.

Kaichun Mo*, Yian Wang*, Ruihai Wu*, Jiaqi Ke, Qingnan Fan, Leonidas J. Guibas and Hao Dong, AdaAfford: Learning to Adapt Manipulation Affordance for 3D Articulated Objects via Few-shot Interactions, ECCV 2022.

Yang Zheng, Yanchao Yang, **Kaichun Mo**, Jiaman Li, Tao Yu, Yebin Liu, Karen Liu and Leonidas J. Guibas, GIMO: Gaze-Informed Human Motion Prediction in Context, ECCV 2022.

Yining Hong, **Kaichun Mo**, Li Yi, Leonidas J. Guibas, Antonio Torralba, Joshua Tenenbaum and Chuang Gan, Fixing Malfunctional Objects With Learned Physical Simulation and Functional Prediction, CVPR 2022.

Kaichun Mo*, Jie Yang*, Yu-Kun Lai, Leonidas J. Guibas and Lin Gao, DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape Generation, ACM Transactions on Graphics (presented at SIGGRAPH 2022).

Kaichun Mo*, Qi Li*, Yanchao Yang, Hang Zhao and Leonidas J. Guibas, IFR-Explore: Learning Interobject Functional Relationships in 3D Indoor Scenes, ICLR 2022.

Kaichun Mo*, Ruihai Wu*, Yan Zhao*, Zizheng Guo, Yian Wang, Tianhao Wu, Qingnan Fan, Xuelin Chen, Leonidas J. Guibas and Hao Dong, VAT-Mart: Learning Visual Action Trajectory Proposals for Manipulating 3D ARTiculated Objects, ICLR 2022.

Chuanyu Pan*, Yanchao Yang*, **Kaichun Mo**, Yueqi Duan and Leonidas J. Guibas, *Object Pursuit: Building a Space of Objects via Discriminative Weight Generation*, ICLR 2022.

Kaichun Mo, Yuzhe Qin, Fanbo Xiang, Hao Su and Leonidas J. Guibas, O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning, CoRL 2021.

Shuo Cheng, Kaichun Mo and Lin Shao, Learning to Regrasp by Learning to Place, CoRL 2021.

Kaichun Mo, Leonidas J. Guibas, Mustafa Mukadam, Abhinav Gupta and Shubham Tulsiani, *Where2Act: From Pixels to Actions for Articulated 3D Objects*, ICCV 2021.

Jialei Huang*, Guanqi Zhan*, Qingnan Fan, **Kaichun Mo**, Lin Shao, Baoquan Chen, Leonidas J. Guibas and Hao Dong, *Generative 3D Part Assembly via Dynamic Graph Learning*, NeurIPS 2020.

He Wang*, Zetian Jiang*, Li Yi, **Kaichun Mo**, Hao Su and Leonidas J. Guibas, *Rethinking Sampling in 3D Point Cloud Generative Adversarial Networks*, CVPR 2021 Workshop "Learning to generate 3D Shapes and Scenes".

Kaichun Mo*, Yichen Li*, Lin Shao, Minhyuk Sung and Leonidas J. Guibas, *Learning 3D Part Assembly from a Single Image*, ECCV 2020.

Kaichun Mo, He Wang, Xinchen Yan and Leonidas J. Guibas, *PT2PC: Learning to Generate 3D Point Cloud Shapes from Part Tree Conditions*, ECCV 2020.

Kaichun Mo*, Paul Guerrero*, Li Yi, Hao Su, Peter Wonka, Niloy Mitra and Leonidas J. Guibas, *StructEdit: Learning Structural Shape Variations*, CVPR 2020.

Fanbo Xiang, Yuzhe Qin, **Kaichun Mo**, Yikuan Xia, Hao Zhu, Fanchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel Chang, Leonidas Guibas and Hao Su, *SAPIEN: A SimulAted Part-based Interactive Environment*, CVPR 2020 (Oral).

Tiange Luo, **Kaichun Mo**, Zhiao Huang, Jiarui Xu, Siyu Hu, Liwei Wang, Hao Su, *Learning to Group: A Bottom-Up Framework for 3D Part Discovery in Unseen Categories*, ICLR 2020.

Kaichun Mo*, Paul Guerrero*, Li Yi, Hao Su, Peter Wonka, Niloy Mitra and Leonidas J. Guibas, *StructureNet: Hierarchical Graph Networks for 3D Shape Generation*, ACM Transactions on Graphics (SIG-GRAPH Asia 2019).

Kaichun Mo, Shilin Zhu, Angel X.Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas and Hao Su, PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding, CVPR 2019. (featured in: IEEE Spectrum, The Robot Report, etc.)

Charles R. Qi, Hao Su, **Kaichun Mo**, and Leonidas J. Guibas, *PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation*, CVPR 2017 (Oral).

Yujun Li, **Kaichun Mo** and Haishan Ye, Accelerating Random Kaczmarz Algorithm Based on Clustering Information, AAAI 2016.

MANUSCRIPTS

Mingxin Yu*, Lin Shao*, Zhehuan Chen, Tianhao Wu, Qingnan Fan, **Kaichun Mo** and Hao Dong, RoboAssembly: Learning Generalizable Furniture Assembly Policy in a Novel Multi-robot Contact-rich Simulation Environment, arXiv:2112.10143 [cs.RO].

Songfang Han, Jiayuan Gu, **Kaichun Mo**, Li Yi, Siyu Hu, Xuejin Chen and Hao Su, *Compositionally Generalizable 3D Structure Prediction*, arXiv:2012.02493 [cs.CV].

Kaichun Mo, Haoxiang Li, Zhe Lin and Joon-Young Lee, *The AdobeIndoorNav Dataset: Towards Deep Reinforcement Learning based Real-world Indoor Robot Visual Navigation*, arXiv:1802.08824 [cs.RO].

Luo Luo, **Kaichun Mo**, Zhihua Zhang, *Blockwise Matrix Completion for Image Colorization*, technical report, 2015.

OTHER RESEARCH EXPERIENCES

Research Intern

June 2020 – Sep 2020
Facebook AI Research, Facebook Inc., USA

• Mentors: Shubham Tulsiani, Mustafa Mukadam and Prof. Abhinav Gupta.

• Object-centric segmentation, affordance and actionable information for robotic manipulation.

Visiting Graduate July 2019 – Sep 2019

Su Lab, University of California, San Diego (UCSD), USA

- Advisor: Prof. Hao Su;
- 3D weakly-supervised learning for shape part and structure discovery;
- Object-centric physical simulation for 3D robotic vision, control and planning.

Research Intern June 2018 – Sep 2018

Machine Intelligence group, Autodesk Research, Autodesk Inc., USA

- Mentor: Mike Haley;
- Unsupervised shape structure induction from a collection of 3D shapes.

Research Intern June 2017 – Sep 2017

Imagination Lab, Adobe Research, Adobe System Inc., USA

- Mentors: Haoxiang Li, Joon-Young Lee, Zhe Lin and Ersin Yumer;
- Autonomous robot indoor navigation using Reinforcement Learning.

Rotation Student April 2017 – June 2017

Computer Graphics Lab, Stanford University, USA

- Advisor: Prof. Doug James;
 - Sound synthesis using 3D CAD ShapeNet models.

Rotation Student Jan 2017 – April, 2017

Computational Vision and Geometry Lab, Stanford University, USA

- Advisor: Prof. Silvio Savarese;
- Multi-agent collaboration and theory of mind using Reinforcement Learning.

Exchange Research Scholar

July 2015 - Dec 2015

Graphics and Vision Lab, Cornell University, USA

- Advisor: Prof. Kavita Bala;
- Algorithmic propagation of material properties from 2D images to 3D ShapeNet models.

Research Assistant June 2014 – June 2016

Brain-like Computing and Machine Intelligence Lab, Shanghai Jiao Tong University, China

- Advisor: Prof. Zhihua Zhang;
- Accelerating random kaczmarz algorithm via clustering;
- Improving Block-RPCA algorithm performance on image impainting.

TEACHING EXPERIENCE

- Guest Lecturer, Spring 2022, Machine Learning for 3D Data (CS 492A), KAIST.
- Teaching Assistant, Winter 2022, Neural Generative Models for 3D Geometry (CS 348n), Stanford University
- Guest Lecturer, Spring 2021, Geometric and Topological Data Analysis (CS 233), Stanford University
- Guest Lecturer, Winter 2021, Machine Learning Meets Geometry (CSE 291-I00), UCSD
- Teaching Assistant, Spring 2020, Geometric and Topological Data Analysis (CS 233), Stanford University
- Guest Lecturer, Spring 2018, Geometric and Topological Data Analysis (CS 233), Stanford University
- Teaching Assistant, Fall 2014, Introduction To Computer Science (CS 120), Shanghai Jiao Tong University

PROFESSIONAL SERVICES

- Associate Editor: TVCG;
- Conference Area Chair: NeurIPS Datasets and Benchmarks Track 2022, 2023, 2024;
- Technical Program Committee: SIGGRAPH Asia 2024;
- International Program Committee: Eurographics 2024, 2025;
- Senior Program Committee Member: AAAI 2023, 2024, 2025;
- Conference Reviewer: ICML 2021, 2022, 2023; ICLR 2021, 2022, 2023, 2024; NeurIPS 2020, 2021, 2022, 2023; NeurIPS Datasets and Benchmarks Track 2021; CVPR 2020, 2021 (outstanding reviewer), 2022, 2023, 2024; ICCV 2019, 2021, 2023; ECCV 2020, 2022, 2024; CoRL 2022, 2024; RSS 2021, 2023; ICRA 2020; IROS 2021, 2024; Siggraph 2021, 2022, 2023, 2024; Siggraph Asia 2020, 2021, 2022, 2023; AAAI 2020, 2021, 2022; ACCV 2020; 3DV 2017, 2018, 2019, 2020, 2021, 2022; Pacific Graphics 2020; WACV 2020, 2021, 2022; MVA 2019;
- Workshop Reviewer: SEAI (Simulation Technology for Embodied AI) 2021; CICV (Compositionality in Computer Vision) 2020, 3DRW (3D Reconstruction in the Wild) 2018, 2019; VLEASE (Visual Learning and Embodied Agents in Simulation Environments) 2018;
- Journal Reviewer: Robotics and Automation Letters (RA-L); Transactions on Pattern Analysis and Machine Intelligence (TPAMI); IEEE Transactions on Visualization and Computer Graphics (TVCG); IEEE Transactions on Image Processing (TIP); IEEE Transactions on Multimedia; IEEE Transactions on Robotics (TRO); ACM Transactions on Graphics (TOG); Computational Visual Media (CVM); Signal Processing: Image Communication; Computers & Graphics; Information Fusion; International Journal of Advanced Robotic Systems.

INVITED TALKS

- May 2022, Learning Compositional and Actionable Visual Representations for 3D Shapes, MIT Vision and Graphics Seminar.
- May 2022, Compositional and Structural Learning on 3D Shapes, Meta AI.
- Mar 2022, Learning Compositional, Structural, and Actionable Visual Representations for 3D Shapes, Google Research.
- Mar 2022, Learning Actionable and Compositional Visual Representations for 3D Shapes, Univ. of Washington.
- Feb 2022, Learning Actionable and Compositional Visual Representations for 3D Shapes, at Seattle Robotics Lab, NVIDIA.
- Dec 2021, Self-supervised Affordance Learning for Manipulating Articulated 3D Objects, at 4th Robot Learning Workshop, NeurIPS 2021.
- Dec 2021, Learning 3D Shape Structure and Semantics, at CompVision Seminar, UC Berkeley.
- Nov 2021, Learning 3D Shape Structure and Semantics, at Machine Learning and Friends Lunch, UMass Amherst.
- Aug 2021, Learning 3D Shape Visual Actionable Information for Robotic Manipulation, at SVL Reading Group, Stanford.
- June 2021, Learning 3D Shape Structure and Semantics, at CogAI Reading Group, Stanford.
- April 2021, Learning 3D Shape Actionable Information from Simulated Interaction, at SFU VCR (visual computing and robotics) seminar.
- March 2021, Learning 3D Shape Actionable Information from Simulated Interaction, at Autodesk Research.
- Feb 2021, Where 2Act: From Pixels to Actions for Articulated 3D Objects, for the MatchLab at Imperial College London.
- Feb 2021, Where 2Act: From Pixels to Actions for Articulated 3D Objects, for the PRIOR team at AI2.
- June 2020, Part-level and Structural 3D Shape Understanding, at Intelligent Graphics Laboratory (IGL).
- June 2020, Part-level and Structural Understanding for 3D shape Perception, Synthesis and Editing, GAMES: Graphics And Mixed Environment Seminar.
- April 2019, PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding, at Stanford GCafe Seminar.

MEDIA COVERAGE

- IEEE Spectrum: Massive 3D dataset helps robots understand what things are;
- The Robot Report: Intel, OSU, Stanford, and UC San Diego work on reinforcement learning, PartNet could help household robots;
- Robotics Business Review: Researchers Launch 26K+ Object Dataset to Help Robots Learn Shapes;
- TechCrunch: Intel is doing the hard work necessary to make sure robots can operate your microwave;
- Intel AI Blog: Introducing PartNet: the first large-scale dataset with fine-grained, hierarchical, instance-level part annotations.

HONORS AND AWARDS

- School of Engineering Fellowship, Stanford, 2016-2017
- Meritorious Winner, 2015 Mathematical Contest In Modeling, 2015 (top 10% of all participants)
- National Scholarship, 2015 (highest honor for undergraduates in China, awarded to top 1% students)
- National Scholarship, 2014 (highest honor for undergraduates in China, awarded to top 1% students)
- KoGuan Scholarship, 2013 (awarded to top 12 students in Zhiyuan College)
- The First Prize, National High School Mathematics Contest, China, 2011
- The First Prize, National Olympiad in Informatics in Provinces, China, 2010