Regression

Used Porsche 911 prices

Introduction

Central Question:

How predictable are used Porsche listing prices?

Approach:

Accuracy over interpretability

Source of data:

Scraped from autotrader.co.uk

Get directions

Methodology

Web-scraping: Selenium and Beautiful Soup

Data storage: Python Pickle

EDA and data-readying: Python Pandas

Regression: Statsmodels and sklearn

Visualizations: matplotlib and Seaborn

Data

Of 1742 Porsche 911's on autotrader.co.uk, 1560 cars with 'full' data:

- Mileage
- Engine size
- Number of doors
- Number of cylinders
- Top speed
- o-6omph in seconds

- Engine power in bhp
- Years old
- Gearbox (e.g. 'Manual')
- Fuel type (e.g. 'Petrol')
- Body type (e.g. 'Coupe')

Data – continued

Target is listing price:

• Most expensive car: £495,990

• Least expensive: £8,950

• Mean price: £79,177

Some feature value ranges:

• Engine power: 204 bhp – 690 bhp

• Top speed: 118mph – 211mph

• Year registered: 1973 – 2021

• Mileage: 10 miles - 286,000 miles

Results

- Of 27 models, best predictor is:
 - OLS model
 - 45 features all but 8 auto-generated
 - Power transformation of target (Box-Cox)
- Mean Absolute Error on test data of just under £8000

Conclusion

• Of all the models the better predictors are the more complex ones

• The best predictor is not that great

Future work

- There is a data gap, for example:
 - Condition of car
 - Type of seller
 - Number of owners
 - Quality of documentation related to car
 - Special edition information
- Regularization techniques may yield prediction improvements
- However maybe inherently unpredictable

APPENDIX

Regressions performed:

Name of X df	Type of regres	No. features	Polynomial and Interaction	VIFs >5	Features Transformed	Target Transformed	Cross-validated	r-squ validation	MAE validation	r-sq train	MAE train	r-sq test	MAE test
X_non_test	OLS	8	no	yes	no	no	yes	0.665	17705.84				
X_non_test_2	OLS	6	no	yes	no	no	yes	0.674	18342.57				
X_non_test_3	OLS	4	no	no	no	no	yes	0.649	18847.14				
X_non_test_4	OLS	5	no	no	no	no	yes	0.677	17824.94				
X_non_test_5	OLS	4	no	no	no	no	yes	0.680	17836.38				
X_non_test_6	OLS	5	no	yes	no	no	yes	0.688	17159.58				
poly_non_test_5_df	OLS	15	yes - degree 2	yes	no	no	yes	0.817	12092.47				
poly_non_test_6_df	OLS	21	yes - degree 2	yes	no	no	yes	0.796	12119.95				
poly_3_df	OLS	35	yes - degree 3	yes	no	no	yes	0.803	11073.62				
poly_non_test_6_df	OLS	21	yes - degree 2	yes	no	log	no	0.904	12349.53				
poly_non_test_5_df	OLS	15	yes - degree 2	yes	no	log	no	0.755	12349.50				
poly_non_test	OLS	45	yes - degree 2	yes	no	box-cox	yes	0.875	8748.95	0.887	8258.01	0.853	7813.63
poly_non_test_5_df	OLS	15	yes - degree 2	yes	no	box-cox	yes	0.829	11515.84				
poly_non_test_6_df	OLS	21	yes - degree 2	yes	no	box-cox	yes	0.811	11545.78				
X_non_test_5	OLS	4	no	no	no	box-cox	yes	0.755	13536.04				
X_non_test	OLS	8	no	yes	no	box-cox	yes	0.618	13931.11				
X_non_test	OLS	8	no	yes	no	900 quantiles	yes	0.689	14265.40				
X_non_test_5	OLS	4	no	no	no	900 quantiles	yes	0.725	14020.86				
poly_non_test_5_df	OLS	15	yes - degree 2	yes	no	900 quantiles	yes	0.815	11434.73				
poly_non_test_6_df	OLS	21	yes - degree 2	yes	no	900 quantiles	yes	0.728	11694.08				
poly_non_test	OLS	45	yes - degree 2	yes	no	900 quantiles	yes	0.867	9445.24	0.881	8703.11	0.854	8543.75
poly_non_test_6_df	LassoCV	21	yes - degree 2	yes	standard scaler	no	yes	0.788	12786.83				
	RidgeCV	21	yes - degree 2	yes	standard scaler	no	yes	0.801	12546.25				
poly_non_test_6_df	ElasticNetCV	21	yes - degree 2	yes	standard scaler	no	yes	0.775	13098.56				
poly_non_test_6_df	ElasticNetCV	21	yes - degree 2	yes	standard scaler	900 quantiles	yes	0.742	11793.69				
poly_non_test	ElasticNetCV	45	yes - degree 2	yes	standard scaler	900 quantiles	yes	0.750	12104.47				
poly_non_test	ElasticNetCV	45	yes - degree 2	yes	standard scaler	box-cox	yes	0.753	11600.61				

Visualizations relating to most accurate predictive model:

Box-Cox transformation of target variable:

Plot of predicted price versus residual on held out data:

Normal Q-Q plot of residuals for predictions on held out data:

