1. Let $f(x,y) = 2x^3 - 3y$. Determine the line integral $\int_C f(x,y) \, ds$ where C is the curve $y = x^2 + 4$ in the second quadrant from (-2,8) to (0,4).

2. Let $f(x,y,z) = z + e^{xy}$. Determine the line integral $\int_C f(x,y,z) \, ds$ where C is the line segment from (1,8,2) to (3,4,3).

3. Let $\mathbf{F}(x,y,z) = \langle z, -y, x \rangle$. Determine the line integral $\int_{\mathcal{C}} \mathbf{F}(x,y,z) \cdot d\mathbf{r}$ where \mathcal{C} is the twisted cubic $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ from (1,1,1) to (2,4,8).

Answers:

- 1. The curve C is a scalar path. Parameterizing the curve gives $\mathbf{r}(t) = \langle t, t^2 + 4 \rangle$ where $-2 \le t \le 0$. Then $\mathbf{r}'(t) = \langle 1, 2t \rangle$, so $|\mathbf{r}'(t)| = \sqrt{1 + 4t^2}$. Restricting f to C yields the function $f(C) = f(\mathbf{r}(t)) = 2t^3 3(t^2 + 4) = 2t^3 3t^2 12$. Then the line integral is $\int_C f \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt = \int_{-2}^0 (2t^3 3t^2 12) \sqrt{1 + 4t^2} \, dt = -108.06$.
- 2. The curve C is a scalar path. Parameterizing the curve gives $\mathbf{r}(t) = \langle 1, 8, 2 \rangle + \langle 2, -4, 1 \rangle t = \langle 1 + 2t, 8 4t, 2 + t \rangle$ where $0 \le t \le 1$. Then $\mathbf{r}'(t) = \langle 2, -4, 1 \rangle$, so $|\mathbf{r}'(t)| = \sqrt{2^2 + (-4)^2 + 1^2} = \sqrt{21}$. Restricting f to C yields the function $f(C) = f(\mathbf{r}(t)) = (2+t) + e^{(1+2t)(8-4t)} = 2+t + e^{-8t^2+12t+8}$. Then the line integral is $\int_C f \, ds = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, dt = \int_0^1 (2+t+e^{-8t^2+12t+8}) \sqrt{21} \, dt = 647,298.98$.
- 3. The curve C is a vector path. Parameterizing the curve gives $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ where $1 \le t \le 2$. Then $\mathbf{r}'(t) = \langle 1, 2t, 3t^2 \rangle$. Restricting \mathbf{F} to C yields the function $\mathbf{F}(C) = \mathbf{F}(\mathbf{r}(t)) = \langle t^3, -t^2, t \rangle$. Then $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \langle t^3, -t^2, t \rangle \cdot \langle 1, 2t, 3t^2 \rangle = t^3 2t^3 + 3t^3 = 2t^3$. Finally, the line integral is $\int_C f \, ds = \int_C \mathbf{F}(\mathbf{r}(t)) \cdot d\mathbf{r} = \int_1^2 (2t^3) \, dt = \frac{15}{2} = 7.5$.