

MATHAGO

Schularbeit

Binomialverteilung

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

Die Qualität von Rohmilch wird getestet. In einem bestimmten Betrieb beträgt die Wahrscheinlichkeit für ein positives Testergebnis einer Milchprobe 95 %.

Es werden 10 Milchproben zufällig ausgewählt.

1) Berechnen Sie die Wahrscheinlichkeit, dass mindestens 1 Milchprobe <u>kein</u> positives Testergebnis hat.

Aufgabe 2 (2 Punkte)

Die Wahrscheinlichkeit, dass jemand an einer bestimmten Verpflegungsstation vorbeiläuft, ohne etwas zu nehmen, beträgt 13,5 %. Es werden 200 Läufer/innen zufällig ausgewählt.

1) Berechnen Sie die Wahrscheinlichkeit, dass höchstens 20 dieser Läufer/innen an dieser Verpflegungsstation vorbeilaufen, ohne etwas zu nehmen.

Aufgabe 3 (2 Punkte)

Im Zuge einer Razzia wurden 40 Uhren eines amtsbekannten illegalen Straßenverkäufers beschlagnahmt.

Aus Erfahrung weiß man, dass nur 35 % der Uhren dieses Straßenverkäufers funktionieren.

1) Berechnen Sie den Erwartungswert für die Anzahl der beschlagnahmten Uhren, die <u>nicht</u> funktionieren.

Aufgabe 4 (2 Punkte)

Die Wahrscheinlichkeit, dass die Mittagstemperatur in einer anderen Stadt an einem Sommertag mindestens 30 °C beträgt, hat den konstanten Wert p.

Es werden 5 Sommertage zufällig ausgewählt.

1)	Erstellen Sie mithilfe von p eine Formel zu	r Berechnung	der	nachstehenden	Wahrschein-
	lichkeit.				

 $E\dots$ "die Mittagstemperatur an diesen 5 Sommertagen beträgt weniger als 30 °C"

P(E) =	
--------	--

Aufgabe 5 (2 Punkte)

In einer weiteren Spielrunde werden 10 Spiele gespielt. Bei jedem dieser Spiele gilt: Die Wahrscheinlichkeit, dass Philipp eine Werwolf-Karte zieht, beträgt $\frac{1}{5}$.

1) Beschreiben Sie ein Ereignis *E* im gegebenen Sachzusammenhang, dessen Wahrscheinlichkeit mit dem nachstehenden Ausdruck berechnet werden kann.

$$P(E) = \binom{10}{3} \cdot \left(\frac{1}{5}\right)^3 \cdot \left(\frac{4}{5}\right)^7$$

Aufgabe 6 (2 Punkte)

Der relative Anteil der österreichischen Bevölkerung mit der Blutgruppe "AB Rhesusfaktor negativ" (AB-) ist bekannt und wird mit *p* bezeichnet.

In einer Zufallsstichprobe von 100 Personen soll ermittelt werden, wie viele dieser zufällig ausgewählten Personen die genannte Blutgruppe haben.

Ordnen Sie den vier angeführten Ereignissen jeweils denjenigen Term (aus A bis F) zu, der die diesem Ereignis entsprechende Wahrscheinlichkeit angibt!

Genau eine Person hat die Blutgruppe AB	
Mindestens eine Person hat die Blutgruppe AB	
Höchstens eine Person hat die Blutgruppe AB	
Keine Person hat die Blutgruppe AB	

А	$1 - p^{100}$
В	$p \cdot (1-p)^{99}$
С	$1 - (1 - p)^{100}$
D	$(1-p)^{100}$
Е	$p \cdot (1-p)^{99} \cdot 100$
F	$(1-p)^{100} + p \cdot (1-p)^{99} \cdot 100$

Aufgabe 7 (6 Punkte)

- a) Es wird angenommen, dass die vermittelten Plätze unabhängig voneinander mit einer Wahrscheinlichkeit von 5 % nicht in Anspruch genommen werden. Alle 100 zur Verfügung stehenden Plätze werden vermittelt.
 - Berechnen Sie die Wahrscheinlichkeit, dass h\u00f6chstens 4 der vermittelten Pl\u00e4tze nicht in Anspruch genommen werden.
 - 2) Beschreiben Sie ein mögliches Ereignis E im gegebenen Sachzusammenhang, dessen Wahrscheinlichkeit folgendermaßen berechnet werden kann:
 (100) · 0,055 · 0,9595
- b) Es wird angenommen, dass die vermittelten Plätze unabhängig voneinander mit einer Wahrscheinlichkeit von 5 % nicht in Anspruch genommen werden. Es werden 102 Plätze vermittelt, obwohl nur 100 Plätze zur Verfügung stehen.
 - Berechnen Sie die Wahrscheinlichkeit, dass die Anzahl der Plätze unter diesen Voraussetzungen nicht ausreicht.

Aufgabe 8 (4 Punkte)

Erdmännchen sind Raubtiere, die im südlichen Afrika leben. Es wird angenommen: In freier Wildbahn beträgt die Wahrscheinlichkeit, dass ein Jungtier überlebt, unabhängig voneinander 25 %.

In einer Erdmännchen-Kolonie werden 20 Jungtiere geboren.

- Berechnen Sie die Wahrscheinlichkeit, dass mindestens 30 % davon überleben.

Ein Erdmännchen-Weibchen bringt 3 Jungtiere zur Welt.

 Ordnen Sie den beiden Wahrscheinlichkeiten jeweils das passende Ereignis aus A bis D zu. [2 zu 4]

$P(E) = 0.25^3$	
$P(E) = 1 - 0.25^3$	

А	E = "alle 3 Jungtiere überleben"	
В	E = "keines der Jungtiere überlebt"	
С	E = "mindestens 1 Jungtier überlebt"	
D	E = "mindestens 1 Jungtier überlebt nicht"	

Aufgabe 9 (2 Punkte)

Eine Ölgesellschaft führt Probebohrungen in Texas und in Alaska durch. Erfahrungsgemäß findet man bei einer Bohrung in Texas mit einer Wahrscheinlichkeit von 85 % und bei einer Bohrung in Alaska mit einer Wahrscheinlichkeit von 65 % Öl.

Berechnen Sie, wie viele Bohrungen in Alaska zumindest notwendig sind, um mit mindestens 99%iger Wahrscheinlichkeit Öl zu finden.