Щоб представити алгоритм побудови для будь-якого скінченного автомата еквівалентного йому автомата з мінімальною кількістю станів, введемо *такі обмеження на вид скінченного автомата*, які не порушують загальності викладень:

- припускаємо, що автомат, який підлягає мінімізації, є детермінованим;
- припускаємо, що у вихідному скінченному автоматі немає станів, що недосяжні з початкового стану.

Мінімізація скінченного автомата На множині станів автомата $M = \langle Q, \Sigma, \Delta, I, F \rangle$ задамо сімейство віднощень еквівалентності:

1) побудуємо відношення 0-еквівалентності ≅⁰ так:

$$q_1 \cong^0 q_2,$$

обидва стани одночасно належать F або Q\F, тобто обидва стани одночасно є заключним або одночасно незаключними;

2) побудуємо відношення k-еквівалентності \cong^k :

при $k \ge 1$ приймемо $q_1 \cong^k q_2$ тоді і тільки тоді, коли

- $-q_1 \cong^{k-1} q_2$, тобто стани $q_1, q_2 \in (k-1)$ -еквівалентні;
- для будь-якого вхідного символу а стани, в які можна потрапити по дузі з міткою a зі стану q_1 та зі стану q_2 , також (k-1)-еквівалентні. Позначимо множину станів, в які можна потрапити з q_1 по дузі з міткою a через $\delta(q_1, a)$, а множину станів, в які можна потрапити з q_2 по дузі з міткою a через $\delta(q_2, a)$.

На цьому рисунку $q_1, q_2 \in (k-1)$ -еквівалентні, тобто вони належать одному і тому самому класу (k-1) -еквівалентності С. Ці стани стануть k -еквівалентними, якщо для будь-якого вхідного символу a стани $\delta(q_1, a)$ та $\delta(q_2, a)$ також $\epsilon(k-1)$ -еквівалентними, тобто належать до того самого класу еквівалентності С.

Можна сказати, що (k-1)-еквівалентні стани будуть також і k-еквівалентними, якщо перехід з них по будь-якому вхідному символу "зберігає"

(k-1)-еквівалентність станів.

Якщо ж знайдеться хоча б один вхідний символ a такий, що стани $\delta(q_1,a)$ та $\delta(q_2,a)$, отримані переходом з q_1,q_2 хоча б по одній дузі з певною міткою опиняться в різних класах (k-1)-еквівалентності то стани q_1, q_2 вже. НЕ БУДУТЬ k-еквівалентними дуться по різних класах k-еквівалентності, оскільки перехід з них по деякому символу порушує (k-1)-еквівалентність. $\delta(q_1,a)$ 910 \circ $\delta(q_2,a)$ 920

Отже, кожен клас k-еквівалентності або розбивається на кілька попарно непересічних класів (k+1)-еквівалентності, або не зміниться, якщо всі його стани залишаться (k+1)-еквівалентними. Це означає, що кількість множин станів у класі k-еквівалентності з ростом k може збільшуватись або залишатися незмінною.

Мінімізація скінченного автомата полягає в послідовному подрібненні ("розбитті") множини станів Q автомата M на класи еквівалентності доти, поки не отримаємо розбиття, яке вже не можна подрібнити (очевидно, що таке розбиття завжди існує через скінченність множини станів). Більш строго: зазначені вище відношення еквівалентності будуються до такого найменшого k, що відношення \cong^{k-1} збігається з відношенням \cong^k . Це відношення і визначає найдрібніше розбиття множини станів. Позначимо його просто \equiv .

Тоді мінімальний скінченний автомат $M' = \langle Q', \Sigma, \Delta', I', F' \rangle$, що еквівалентний початковому автомату M, визначається так:

- до множини станів Q' вводять тільки по одному стану з кожного класу еквівалентності позначимо такий узагальнений для класу еквівалентності n стан через $[q_n]$.
- вхідним станом (єдиним) стане узагальнений стан $[q_0]$, який позначає клас, куди входять початкові стани автомата $M: I' = \{ [q_0] \}$.
- заключним станом (єдиним) стане узагальнений заключний стан [f], що представляє клас еквівалентності, куди входять заключні стани автомата $M: F' = \{[f]\}$.
- множина переходів $\Delta' = \{\langle [q_n], a, [\delta([q_n], a] \rangle \}$, тобто в множину переходів входять тільки переходи між класами еквівалентності з класу еквівалентності з узагальненим станом $[q_n]$ по дузі з міткою а в узагальнений стан класу еквівалентності, куди потрапили всі стани $q \in Q$ автомата M, в які можна потрапити по дузі з міткою a з станів, що входять у клас $[q_n]$.

Важливе уточнення

- Для перетворювачів (трансдукторів) мінімізацію кінцевих станів не виконуємо.
- Більшість реалізацій(імплементацій)
 перетворювачів(трансдукторів), зокрема автоматів Мілі
 та Мура(машини Мілі та Мура), усі стани вважають
 кінцевим.