原始惑星系円盤の化学組成: 最近のALMAの観測の成果

相川祐理(筑波大学計算科学研究センター)

目次

円盤での大型有機分子の検出

円盤分子層での重元素減損

原始星コア

Compact emission (r < 1") of warm COMs at the core center ... hot corino

分子種	励起温度	存在度 (n(i)/n _H)
CH ₃ OH ^e	179 ± 62	$(2.5 \pm 0.9) \times 10^{-7}$
¹³ CH ₃ OH	164 ± 43	$(9.6 \pm 2.5) \times 10^{-9}$
$HCOOCH_3$	200 ± 61	$(1.3 \pm 0.4) \times 10^{-8}$
CH ₃ CN	289 ± 63	$(2.0 \pm 0.4) \times 10^{-9}$
CH ₃ OCH ₃	154 ± 62	$(8.2 \pm 3.3) \times 10^{-9}$
C ₂ H ₅ OH	325 ± 140	$(1.0 \pm 0.4) \times 10^{-8}$
HCOCH ₂ OH	179 ^f	1.6×10^{-9}
	100 ^f	5.0×10^{-10}
C_2H_5CN	179 ^f	2.4×10^{-10}
	100 ^f	1.4×10^{-10}
HC_3N	179 ^f	1.4×10^{-10}
	100 ^f	1.4×10^{-10}
$H_2^{13}CO$	179 ^f	1.3×10^{-9}
	100 ^f	4.3×10^{-10}
NH ₂ CHO	179 ^f	2.3×10^{-9}
	100 ^f	8.7×10^{-10}
CH ₂ CO	179 ^f	1.4×10^{-9}
	100 ^f	5.2×10^{-10}

(Taquet et al. 2015)

糖(グリコールアルデヒド)検出

n(ギ酸メチル)/n_H~8×10⁻⁸ n(グリコールアルデヒド)/n_H~6×10⁻⁹

Jorgensen et al. (2012)

星形成領域の化学: 気相+固相

反応速度式: $\frac{dn(i)}{dt} = \sum_{i} \alpha_{ij}(T, F_{\text{UV}})n(j) + \sum_{i,k} \beta_{ijk}(T, F_{\text{UV}})n(j)n(k)$

ダスト表面への分子凍結 水素付加 e.g. CO → CH₃OH

T < 20K

水素付加 grain/ice surface 熱拡散による ダスト表面反応 20K < T< 100K

昇華分子同士の気相反応 T >100K

分子種	昇華温度[K]
H_2CO	39–52
CO_2	50-68
CH ₃ OCH ₃	59-80
C_2H_6	83-110
CH_3O	96-130
CH_3OH	100-140
NH_3	100-140
H_2O	110-150
HCOOCH ₃	120-160

Furuya & YA (2014) @ n_H

@ n_H=10⁶-10¹²cm⁻³

CH₃CN@MWC480

Öberg, Guzmán, Furuya, Qi, Chunhua, Aikawa, Andrews, Loomis, Wilner (2015)

CH₃CN@MWC480

	HCN	HC3N	CH3CN	ref
Comet	1	0.1	0.1	Mumma&Charnley 11
MWC480	1	0.4	0.05	This work@30AU
	1	5	0.2	This work@100AU
IRAS16293	1	0.01	0.08	vanDishoeck+95
		1	10-14	Taquet+15

●MWC480でのHCN/HC₃N/CH₃CN比はcometに近い

[注] 観測で見えるのはガスのみ!

●CH₃CNの存在量は気相反応だけでは説明できない

- ●乱流による鉛直方向のmixing
- ●mixingモデルではiceにはより多くのCH₃CN

CH3OH@TW Hya

中心面: 光脱離 vs ダストへの吸着

$$n_{\text{CH}_3\text{OH}}^{\text{g}} = 10^{-4} \left(\frac{n_{\text{CH}_3\text{OH}}^{\text{s}} / n_{\text{ice}}}{0.1} \right) \left(\frac{F_{\text{CRUV}}}{10^4 \text{ cm}^2 \text{ s}^{-1}} \right) \times \left(\frac{Y}{10^{-3}} \right) \left(\frac{v_{\text{th}}}{10^4 \text{ cm s}^{-1}} \right)^{-1}.$$
Furuya & YA(2014)

上空: 光脱離 vs 光解離

目次

円盤での大型有機分子の検出

円盤分子層での重元素減損

- 最も近傍のT Tauri型星 (~56pc)
- ほぼ face on
- 非常に多くの観測
 - $CO \& N_2H^+$ (Qi et al. 2013)
 - CH₃OH (Walsh et al. 2016)
 - HD (Bergin et al. 2013)
 - H_2O (Hogerheijde et al. 2011)

- 最も近傍のT Tauri型星 (~56pc)
- ほぼ face on
- 非常に多くの観測
 - $CO \& N_2H^+$ (Qi et al. 2013)
 - CH₃OH (Walsh et al. 2016)
 - HD (Bergin et al. 2013)
 - H_2O (Hogerheijde et al. 2011)

$$M_{\text{dust}} = (2-6) \times 10^{-4} M_{\text{sun}}$$

 $M_{\text{gas}} \gtrsim 0.05 M_{\text{sun}}$

→
$$n(CO)/n_H << 10^{-4}$$

- ほぼ face on
- 非常に多くの観測

 - HD (Bergin et al. 2013)
 - H_2O (Hogerheijde et al. 2011)

Nomura et al. (2016)

Using the obtained CO column density and dust surface density (Figures 4(d) and 2(b)), we derive the CO gas-to-dust surface density ratio (Figure 4(e)). If we convert it to the H₂ 最も近傍のT Tauri型星 (~5 (surface density, assuming an abundance ratio of CO to H₂ of 6×10^{-5} (Qi et al. 2011), the estimated H₂ gas mass is orders of magnitude lower than that predicted from the observations of the HD line emission by the Herschel Space Observatory (Bergin et al. 2013). The resulting H₂ gas-to-dust surface CO & N₂H⁺ (Qi et al. 20 density ratio (~0.1–1) is about two orders of magnitude lower than the typical interstellar value of ~ 100 , which suggests CH₃OH (Walsh et al. 201 strong CO depletion throughout the disk down to ~10 au.

- 最も近傍のT Tauri型星 (~56pc)
- ほぼ face on
- 非常に多くの観測
 - CO & N_2H^+ (Qi et al. 2013)
 - CH₃OH (Walsh et al. 2016)
 - HD (Bergin et al. 2013)
 - H_2O (Hogerheijde et al. 2011) \mathcal{E}

 H_2O vapor もモデルでの予想より 桁で少ない

- 最も近傍のT Tauri型星 (~56pc)
- ほぼ face on
- 非常に多くの観測
 - CO & N_2H^+ (Qi et al. 2013)
 - CH₃OH (Walsh et al. 2016)
 - HD (Bergin et al. 2013)
 - H_2O (Hogerheijde et al. 2011)

CO, H₂O減損のメカニズム

- 氷をまとった大きなダストが沈殿 (Hogerheijde et al. 2011)
- 中心面の大きなダストに分子が吸着 (Kama et al.)
- ほかの分子に変換 (Aikawa et al. 1997; Furuya&YA2014; Bergin2013)

まとめ

円盤での大型有機分子の検出

- CH3CN
- CH3OH
- 気相観測でしか同定できない
 - → 脱離効率、気相での破壊などを加味して氷組成を知る

円盤分子層での重元素減損

- HD ... 円盤ガス質量の推定
- 気相のH2O, CO は星間での典型的な存在度よりも桁で少ない
 - → 氷マントルをまとった大きなダストの沈殿 and/or ほかの分子への変換