## **Roberta: A Robustly Optimized BERT Pretraining Approach**

Yinhan Liu\* Myle Ott\* Naman Goyal\* Jingfei Du\* Mandar Joshi†
Danqi Chen Omer Levy Mike Lewis Luke Zettlemoyer Veselin Stoyanov

† Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA {mandar90,lsz}@cs.washington.edu

§ Facebook AI

{yinhanliu, myleott, naman, jingfeidu,
 danqi, omerlevy, mikelewis, lsz, ves}@fb.com

## **Abstract**

Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes, and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results highlight the importance of previously overlooked design choices, and raise questions about the source of recently reported improvements. We release our models and code.1

## 1 Introduction

Self-training methods such as ELMo (Peters et al., 2018), GPT (Radford et al., 2018), BERT (Devlin et al., 2019), XLM (Lample and Conneau, 2019), and XLNet (Yang et al., 2019) have brought significant performance gains, but it can be challenging to determine which aspects of the methods contribute the most. Training is computationally expensive, limiting the amount of tuning that can be done, and is often done with private training data of varying sizes, limiting our ability to measure the effects of the modeling advances.

We present a replication study of BERT pretraining (Devlin et al., 2019), which includes a careful evaluation of the effects of hyperparmeter tuning and training set size. We find that BERT was significantly undertrained and propose an improved recipe for training BERT models, which we call RoBERTa, that can match or exceed the performance of all of the post-BERT methods. Our modifications are simple, they include: (1) training the model longer, with bigger batches, over more data; (2) removing the next sentence prediction objective; (3) training on longer sequences; and (4) dynamically changing the masking pattern applied to the training data. We also collect a large new dataset (CC-NEWS) of comparable size to other privately used datasets, to better control for training set size effects.

When controlling for training data, our improved training procedure improves upon the published BERT results on both GLUE and SQuAD. When trained for longer over additional data, our model achieves a score of 88.5 on the public GLUE leaderboard, matching the 88.4 reported by Yang et al. (2019). Our model establishes a new state-of-the-art on 4/9 of the GLUE tasks: MNLI, QNLI, RTE and STS-B. We also match state-of-the-art results on SQuAD and RACE. Overall, we re-establish that BERT's masked language model training objective is competitive with other recently proposed training objectives such as perturbed autoregressive language modeling (Yang et al., 2019).<sup>2</sup>

In summary, the contributions of this paper are: (1) We present a set of important BERT design choices and training strategies and introduce

<sup>\*</sup>Equal contribution.

<sup>&</sup>lt;sup>1</sup>Our models and code are available at: https://github.com/pytorch/fairseq

<sup>&</sup>lt;sup>2</sup>It is possible that these other methods could also improve with more tuning. We leave this exploration to future work.