

Open Source Use Cases

Rebecca Simmonds

rsimmond@redhat.com

Rui Vieira

rui@redhat.com

The first instance of open source sharing wasn't related to software at all! [1]

What is Open Source?

The Power of Open

- 1. Collaboration
- 2. Feature selection
- 3. Application direction
- 4. Community

Successful
Open Source
Projects

Containers

App/Services

Supporting files/Runtime

Linux

Kubernetes

Container orchestration in a clustered environment

Apache License 2.0

Contributions from Google, Red Hat, Microsoft, IBM, Intel, Rackspace and many more...

Kubernetes cont.

Orchestration Usage at Initial Container Rollout

Source: Datadog

Openshift

Kubernetes Enterprise Distribution

- Container security
- Application delivery and lifecycle
- Validated integrations
- Autoscaling

Driver Process

Executors

Monolithic Architecture

User Interface

Business Logic

Data Access Layer

Database

Microservices Architecture

Linux

Linux

- Successful open source project
- Linux kernel
- Operating system
- Red hat Linux/ Fedora
- GPL2

radanalytics

radanalytics

https://radanalytics.io/

Build intelligent applications for the cloud

Learning resource

radanalytics

Intelligent applications to collect and learn from data to provide improved functionality with longevity and popularity.

Oshinko

Your Application

Apache Spark

radanalytics.io

OpenShift

Source to image

Oshinko Deployment

Open Source Community

What is Community?

Setting up a Community

- Do you want a large community?
- Selective community, small but focused?
- How will the project be structured? will you support growth yourself?

Decide this *before* making an open source a project

Example Communities

- Linux and Apache Spark
 - One person's hobby
 - Grew quickly with interest
- Linux containers
 - Google and Red Hat backed
 - o Large community world wide

Open Source and Innovation

2009

Matei Zaharia class project at UC Berkeley (Mesos)

2009

Matei Zaharia class project at UC Berkeley (Mesos)

2019

Most active Apache Big Data project *
+1000 contributors
Expanded to included Structured Streaming, Machine Learning, ...
International conferences

Normally research projects get abandoned after a paper is

published.

There are many components. And if you look back, you can always revise history.

What was different?

Especially if you had success.

First of all, we had a fantastic group of students.

Matei, the creator of Spark and others who did Mesos. And then another great group of different students

who contributed and built different modules on top of Spark, and made what Spark it is today, which is really a

platform. So, that's one: the students.

The other one was a great collaboration with the industry. We are seeing first hand what the problems are,

challenges, so you're pretty anchored in reality.

Lifecycle

Use Cases

Project **jiminy**

A cloud-ready, scalable recommendation engine.

- **cloud -ready** deployable on Kubernetes/OpenShift
- scalable distributed computations supported by Apache Spark
- **recommendation engine** based on Alternating Least Squares (ALS), a well-known algorithm, winner of the Netflix prize

User Story

As a **developer**, I want a system can be easily deployed from source in a cloud environment. The system should also be easy to tailor or extended to my specific needs.

User Story

As a **business**, I want a system which helps maximising revenue by providing users with meaningful new product recommendations.

User Story

As a **data scientist**, I want a system which is flexible enough to let me focus on the recommendation algorithms. I'm also interested in reproducibility.

Architecture

Architecture

Architecture

Data scientist Spark Web predictor worker server model modeller store Data store OpenShift

Open Source Technologies

Data store

PostgreSQL

model store

MongoDB Infinispan modeller

Python

predictor

Python

Web server

Spring Boot Swagger JVM

Engagement

- Learning resources
 - Workshops, conferences
- Technology showcases
- Basis for customised solutions

Demo

Why radanalytics?

OpenDataHub

OpenDataHub

A reference architecture for an Al and Machine Learning as a service platform for OpenShift built using open source tools

End-to-End

End-to-end Security & Compliance

Personas

Data Engineers

Data Scientists

Mass Open Cloud (MOC)

- To create an inexpensive and efficient at-scale production cloud utility suitable for sharing and analysing massive data sets and supporting a broad set of applications.
- 2. To create and deploy the OCX model, enabling a healthy marketplace for industry to participate at all levels in the cloud and profit from doing so.
- 3. To create a testbed for research in and prototyping of cloud technology, empowering a broad community of researchers, open source developers and companies to develop new cloud computing technologies.

Mass Open Cloud (MOC)

Project's core partners:

- Academic (Boston University, Harvard University, Northeastern University, MIT)
- Government (Massachusetts Technology Collaborative, United States Air Force)
- Non-profit (MGHPCC)
- Industry (Cisco, Intel, NetApp, Red Hat, Two Sigma)

Challenges of Open Source

- Contribution guidelines
- Peer review
- Strategy / Focus
- Support / Documentation

Conclusions

Lessons learnt

- Open needs to be planned
- Communities need to be nourished to succeed

BUT

- You can have a hobby project
- Experiment and find your ideal spot

Conclusions

- Open is quicker and easier
- Collaboration and remote working made easier
- Relevant and customer driven application features

How you can get involved

https://radanalytics.io/
https://opendatahub.io/

Contact us:

rsimmond@redhat.com rui@redhat.com

