CH-232-A

Answers to ICS 2020 Problem Sheet #7

Blen Daniel Assefa

bassefa@jacobs-university.de

$$\varphi(A,B,C,D,E) = m_0 + m_2 + m_4 + m_6 + m_9 + m_{10} + m_{13} + m_{14} + m_{15} + m_{16} + m_{17} + m_{21} + m_{26} + m_{28} + m_{30} + m_{31}$$
a)

Classification and sorting minterms:

Minterm	Pattern	Used
m_0	00000	
m_2	00010	
m_4	00100	
m_{16}	10000	
m_6	00110	
m_9	01001	
m_{10}	01010	
m_{17}	10001	
m_{13}	01101	
m_{14}	01110	
m_{21}	10101	
m_{26}	11010	
m_{28}	11100	
m_{15}	01111	
m_{30}	11110	
m_{31}	11111	

Combination Steps

Minterm	Pattern	Used	Minterm	Pattern	Used	Minterm	Pattern	Used
m_0	00000	✓	$m_{0,2}$	000-0	✓	$m_{0,2,4,6}$	000	
m_2	00010	✓	$m_{0,4}$	00-00	✓	$m_{2,6,10,14}$	010	
m_4	00100	✓	$m_{0,16}$	-0000		$m_{10,14,26,30}$	-1-10	
m_{16}	10000	✓	$m_{2,6}$	00-10	✓	$m_{14,15,30,31}$	-111-	
m_6	00110	✓	$m_{2,10}$	0-010	✓			
m_9	01001	✓	$m_{4,6}$	001-0	✓			
m_{10}	01010	✓	$m_{16,17}$	1000-				
m_{17}	10001	✓	$m_{6,14}$	0-110	✓			
m_{13}	01101	✓	$m_{9,13}$	01-01				
m_{14}	01110	✓	$m_{10,14}$	01-10	✓			
m_{21}	10101	✓	$m_{10,26}$	-1010	✓			
m_{26}	11010	✓	$m_{17,21}$	10-01				

m_{28}	11100	✓	$m_{13,15}$	011-1			
m_{15}	01111	✓	$m_{14,15}$	0111-	✓		
m_{30}	11110	✓	$m_{14,30}$	-1110	✓		
m_{31}	11111	✓	$m_{26,30}$	11-10	✓		
			$m_{26,30}$	111-0			
			$m_{15,31}$	-1111	✓		
			$m_{30,31}$	1111-	✓		

This gives us 10 prime implicants:

$$m_{0,16} = -0000 = \neg B \wedge \neg C \wedge \neg D \wedge \neg E$$

$$m_{16,17} = 1000 -= A \land \neg B \land \neg C \land \neg D$$

$$m_{9.13} = 01 - 01 = \neg A \wedge B \wedge \neg D \wedge E$$

$$m_{17,21} = 10 - 01 = A \wedge \neg B \wedge \neg D \wedge E$$

$$m_{13.15} = 011 - 1 = \neg A \wedge B \wedge C \wedge E$$

$$m_{28.30} = 111 - 0 = A \wedge B \wedge C \wedge \neg E$$

$$m_{0.2.4.6} = 00 - -0 = \neg A \land \neg B \land \neg E$$

$$m_{2,6,10,14} = 0 - -10 = \neg A \land D \land \neg E$$

$$m_{10,14,26.30} = -1 - 10 = B \wedge D \wedge \neg E$$

$$m_{14,15,30,31} = -111 - = B \wedge C \wedge D$$

b)

	m_0	m_2	m_4	m_6	m 9	m_{10}	m ₁₃	m ₁₄	m ₁₅	m ₁₆	m ₁₇	m_{21}	m_{26}	m ₂₈	m_{30}	m ₃₁
$m_{0,16}$	✓									✓						
$m_{16,17}$										✓	✓					
m _{9,13}					✓		✓									
m _{17,21}											✓	✓				
$m_{13,15}$							✓		✓							
$m_{28,30}$														✓	✓	
$m_{0,2,4,6}$	✓	✓	✓	✓												
$m_{2,6,10,14}$		✓		✓		✓		✓								
$m_{10,14,26,30}$						✓		✓					✓		✓	
$m_{14,15,30,31}$								✓	✓						✓	✓
Used	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

Columns that only have a single marked cell indicate essential prime implicants.

	Such that, t	the columns are	with respe	ct to the	essential	prime im	plicants are:
--	--------------	-----------------	------------	-----------	-----------	----------	---------------

 $m_4:m_{0,2,4,6}$

 $m_9:m_{9,13}$

 $m_{21}:m_{17,21} \\$

 $m_{26}:m_{10,14,26,30}$

 $m_{28}:m_{28,30}$

 $m_{31}:m_{14,15,30,31}$

To include 16:

 $m_{16,17}$

c) The resulting minimal expression is:

$$\varphi(A,B,C,D,E) = (\neg A \land \neg B \land \neg E) \lor (\neg A \land B \land \neg D \land E) \lor (A \land \neg B \land \neg D \land E) \lor B \land D \land \neg E \lor (A \land B \land C \land \neg E) \lor (B \land C \land D)$$
$$\lor (A \land \neg B \land \neg C \land \neg D)$$