29. Seja A um alfabeto.

(b) Mostre que, para quaisquer $r, r_1, r_2, s, s_1, s_2 \in ER(A)$, se tem:

viii. se $r_1 \leq s^*$ e $r_2 \leq s^*$, então $r_1 r_2 \leq s^*$.

(c) Verifique se, para quaisquer $r, s \in ER(A)$, $(r^+s)^* = (r^*s^*)^*$.

b) viii) for hipston 1, <5* c 12 <5*

u sya, r, r_2 < 5*.5*. (1)

Logo 5*5* = 5*, e de (1) vem enter que 1, 12 < 5*.

C) Queremn saben se (+5) = (+5)*.

De 29b IV) Temos que $(\Gamma^+S)^* \leq (\Gamma^*S^*)^*$. Falta apenas estudas a designal da de $(\Gamma^*S^*)^* \leq (\Gamma^+S)^*$ para Saber se é valida.

 $inter L(S) \subseteq L(r^*s^*)^*$.

 $\int (\Gamma^{\dagger}S)^{\dagger} = \left(\int (\Gamma^{\dagger}) \cdot \int (S)\right)^{\dagger} = \left(\bigcup_{n \in \mathbb{N}} f(r)^{n} \cdot \int (S)\right)^{\top} = \{E\} \cup \int (r) \cdot f(S) \cup \dots$

Vamo tenta unstruir un untre-exemplo en que E& I(r).

(pris hasse caso $f(s) \in f(r^{+}s)^{*}$)

Syan $A = \{a,b\}$, r = a e 5 = b $E \neq J(r) = \{a\}$ e $J(s) = \{b\}$

Verte exemple, be $f(r^{+}s)^{+} = f(a^{+}b)^{+} = \{\epsilon, b, b^{2}, ..., ab, a^{2}b,\}$ e $b \not\in f(r^{+}s)^{+} = f(a^{+}b)^{+} = \{\epsilon, ab, a^{2}b, abab, a^{2}ba^{3}b,\}$

 $tnta L(a+b)^{*} \neq L(a+b)^{*}$

Logo (rts) = (rts) todé válde pare tode a emplesad agularres.

30. Seja A um alfabeto e sejam $r, s \in ER(A)$. Mostre que:

30. Seja A um alfabeto e sejam $r,s\in ER(A)$. Mostre que:

$$c) = \int_{(d)}^{(r,r)^*} \frac{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}$$

$$= \int_{(d)}^{(d)} \int_{(r^*s)^*}^{(r^*s)^*r} \frac{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}$$

$$= \int_{(r^*s)^*}^{(d)} \int_{(r^*s)^*r}^{(r^*s)^*r} \frac{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}$$

$$= \int_{(r^*s)^*}^{(d)} \int_{(r^*s)^*r}^{(r^*s)^*r} \frac{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}{e^{-(r^*s)^*r} e^{-r^*(sr^*)^*s}}$$

$$= \int_{(r^*s)^*}^{(r^*s)^*r} \int_{(r^*s)^*r}^{(r^*s)^*r} \frac{e^{-r^*(sr^*)^*s}}{e^{-r^*(sr^*)^*s}} \frac{e^{-r^*(sr^*)^*s}}{e^{-r^*(sr^*)^*s}}$$

$$= \int_{(r^*s)^*}^{(r^*s)^*r} \int_{(r^*s)^*r}^{(r^*s)^*r} \frac{e^{-r^*(sr^*)^*s}}{e^{-r^*(sr^*)^*s}} \frac{e^{-r^*($$

d)
$$r \leq r^{4}$$
 por 29bi) $5 \leq 5^{4}$

hogo
$$\Gamma+5 \leq \Gamma^{*}+S^{*}$$
 por $24b \, V$).
 $Enhs (\Gamma+S)^{*} \leq (\Gamma^{*}+S^{*})^{(1)}$ por $24b \, iii$).

Norament por 29 b iii)
$$\begin{cases} r^* \leq (\Gamma + S)^* \\ S^* \leq (\Gamma + S)^* \end{cases}$$

This por 296 vii) rx+5x < (r+5)x e, annoquentemente, (rx+5x) = (r+5x)x

Dor 296 vii).

Por 30
$$((r+s)^{*})^{*} = (r+s)^{*}$$
. Liga $(r^{*}+s^{*})^{*} \leq (r+s)^{*}$.

De (1) e (2) and $(r^{*}+s^{*})^{*} = (r+s)^{*}$

$$Logo (r*s)^{+}r^{+} \leq (r^{+}+s^{+})^{+}$$

$$r \leq r^{*} = \varepsilon r^{*} \leq (r^{*} \leq)^{*} r^{*}$$

$$S = \varepsilon \cdot s \leq r^{*} \leq (r^{*} \leq)^{*} r^{*}$$

$$\forall tha \qquad (r+s) \leq (r^{*} \leq)^{*} r^{*}$$

Daqui rimite qui $U_{N_{0}}U_$

Enta ((r*s) = (r*s) r*.

Finalment obkim-& (r+s) < (r*s) x r*.

31. Seja $A=\{a,b,c\}.$ Verifique se são válidas as seguintes igualdades entre expressões regulares:

(a) $a(b^* + a^*b) = a(b^* + a^+b)$

(b) $((ab)^*a)^* = (ab+a)^+ab + \varepsilon$,

(c) $(ac(abc)^* + b)^* = ((a(cab)^*c)^* + b^*)^*$.

31b)
$$r = ab$$
 $((ab)^{\dagger}a)^{\dagger} = (r^{\dagger}s)^{\dagger}$

$$(rs^{*})^{*} = \varepsilon + r(r+s)^{*}$$

 $(r^{*}s)^{*} = \varepsilon + (r+s)^{*}s$

Entr $((ab)^{\dagger}a)^{\dagger} = \varepsilon + (ab+a)^{\dagger}a$ Agora predendi-x compara as enpressed $\varepsilon + (ab+a)^{\dagger}a \varepsilon (ab+a)^{\dagger}ab+\varepsilon$ $a \in \int (\varepsilon + (ab+a)^{\dagger}a)$ pague $a = \varepsilon \cdot a$ $a \notin \int (\varepsilon + (ab+a)^{\dagger}ab)$ pague ab no e'sufinde a

Deparigualdade da alínea b) é falsa.

- (a) $r = (a+b+c)^*acc(a+b+c)^*cca(a+b+c)^* + (a+b+c)^*cca(a+b+c)^*acc(a+b+c)^*$.
- (b) $r = (a+b+c)^*acc(a+b+c)^*cca(a+b+c)^* + (a+b+c)^*acca(a+b+c)^* + (a+b+c)^*cca(a+b+c)^* + (a+b+c)^*ccac(a+b+c)^*.$
- $(c) \ \ r = acc(a+b+c)^*cca + (a+b+c)^*accca(a+b+c)^* + (a+b+c)^*acca(a+b+c)^* + (a+b+c)^* +$ $cca(a + b + c)^*acc + (a + b + c)^*ccacc(a + b + c)^*$.
- $\text{(d) } r = (a+b+c)^*acc(a+b+c)^*cca(a+b+c)^* + (a+b+c)^*acca(a+b+c)^* + (a+b+c)^* + (a+b+$

38. Seja (t_1,t_2,t_3) uma solução do seguinte sistema de equações lineares à direita sobre expressões regulares:

$$\begin{cases} X_1 = bX_2 \\ X_2 = aX_3 \\ X_3 = aX_1 + bX_2 + b \end{cases}$$
 b é prefixo das palaveas de $\mathcal{L}(t_1)$

De entre as quatro opções abaixo, diga qual é uma afirmação verdadeira:

(a) Existem várias soluções e na solução mínima o resultado para t_1 é $t_1=\varepsilon$.

- (b) Um expressão possível para t_1 é $t_1 = ba(aba + ba)^*b$.
- (c) A solução do sistema é única e $t_1 = ba(a+b)^+bab + bab$.
- (d) A solução do sistema é única e $t_2 = ((ab)^+ a)^* (ba)^+ b$. bab $\in \mathcal{L}(t_2)$

$$\mathcal{E}_{A} = \frac{1}{4} \frac{1}{4}$$

$$\mathcal{E}$$

Ex en amo ci falha -> ba à bab el (ba (a+b) + bab + bab) ba a babél (ba (aba + ba) t b) propre no e possivel uma palavea dente linguyan tra um fator a am n>,3.

39. Considere a equação linear à esquerda sobre expressões regulares X=Xr+s em que $r, s \in \mathcal{R}eq(A)$. Verifique sr^* é solução da equação.