Department of Computer Science and Engineering (Data Science)

Subject: Artificial Intelligence (DJS22DSC502)

AY: 2024-25

Experiment 9

DHRUV SHAH 60009220132 D1-1

(Planning)

Aim: Implement a plan using AO*.

Theory:

The Depth-first search and Breadth-first search given earlier for OR trees or graphs can be easily adopted by AND-OR graph. The main difference lies in the way termination conditions are determined since all goals following an AND node must be realized; whereas a single goal node following an OR node will do. So for this purpose, we are using AO* algorithm. Like A* algorithm here we will use two arrays and one heuristic function.

OPEN: It contains the nodes that have been traversed but yet not been marked solvable or unsolvable.

CLOSE: It contains the nodes that have already been processed.

AO* Search Algorithm

Step 1: Place the starting node into OPEN.

Step 2: Compute the most promising solution tree say T0.

Step 3: Select a node n that is both on OPEN and a member of TO. Remove it from OPEN and place it in

CLOSE

Step 4: If n is the terminal goal node then leveled n as solved and leveled all the ancestors of n as solved.

If the starting node is marked as solved then success and exit.

Step 5: If n is not a solvable node, then mark n as unsolvable. If starting node is marked as unsolvable,

then return failure and exit.

1

Department of Computer Science and Engineering (Data Science)

Step 6: Expand n. Find all its successors and find their h (n) value, push them into OPEN.

Step 7: Return to Step 2.

Step 8: Exit.

Lab Assignment to do:

Consider the use case of a plan to travel from Mumbai to Goa to attend a wedding at Taj Aguada. The plan needs to be decided based on the cost. You can either travel by train or bus or flight and stay in a hotel near or far to the wedding venue. The three options of the venues are Westin, Kennel Worth and Maria Rica hotels. You can choose between a two days package for stay and meal together or separately. Other option for your travel and stay will be a vanity van. There you need to decide if you want to cook or eat outside.

Implement AO* to find the most suitable plan in terms of cost.

```
def table():
    travel_cost = {
        "bus": 2000,
        "train": 1000,
        "flight": 12000
    stay_cost = {
        "westin": 15000,
        "kennel worth": 10000,
        "maria rica": 12000
    meal_cost = {
        "with food": 2500,
        "without food": 4500
    vanity_van = {
        "cost": 29000,
        "distance": 1000,
        "meal_options": {
            "cooked": 2000,
            "eat outside": 4500
    }
    distance_costs = {
        "westin": 2000,
        "kennel worth": 3000,
        "maria rica": 7000
    return {
        "Travel Costs": travel_cost,
        "Stay Costs": stay_cost,
        "Meal Costs": meal_cost,
"Vanity Van": vanity_van,
        "Distance Costs": distance costs
print(table())
🚌 {'Travel Costs': {'bus': 2000, 'train': 1000, 'flight': 12000}, 'Stay Costs': {'westin': 15000, 'kennel worth': 10000, 'maria rica'
def ao_star():
    table_data = table()
    # Extracting table data
    travel_costs = table_data["Travel Costs"]
    stay_costs = table_data["Stay Costs"]
    meal_costs = table_data["Meal Costs"]
    vanity_van = table_data["Vanity Van"]
    distance_costs = table_data["Distance Costs"]
    paths = []
    # Generate all possible paths with travel, stay, and meal combinations
    for travel, travel_cost in travel_costs.items():
        for stay, stay_cost in stay_costs.items():
            for meal_option, meal_cost in meal_costs.items():
                total_cost = travel_cost + stay_cost + distance_costs[stay] + meal_cost
                paths.append((travel, stay, meal_option, total_cost))
    # Add paths for Vanity Van options
    for meal_option, meal_cost in vanity_van["meal_options"].items():
        total_cost = vanity_van["cost"] + vanity_van["distance"] + meal_cost
        paths.append(("Vanity Van", "Vanity Van", meal_option, total_cost))
    # Display table of options
    print(f"{'Travel Option':<15} {'Stay Option':<15} {'Meal Option':<15} {'Total Cost':<10}")
    print("=" * 55)
    for travel, stay, meal_option, total_cost in paths:
        print(f"{travel:<15} {stay:<15} {meal_option:<15} {total_cost:<10}")</pre>
    # Find the path with the minimum cost
    best_path = min(paths, key=lambda x: x[3])
    min_cost = best_path[3]
    return min cost, best path
```

print(ao_star())

<u></u>	Travel Option	Stay Option		
	bus	westin	with food	
	bus		without food	
	bus	kennel worth	with food	17500
	bus	kennel worth	without food	19500
	bus	maria rica	with food	23500
	bus	maria rica	without food	25500
	train	westin	with food	20500
	train	westin	without food	22500
	train	kennel worth	with food	16500
	train	kennel worth	without food	18500
	train	maria rica	with food	22500
	train	maria rica	without food	24500
	flight	westin	with food	31500
	flight	westin	without food	33500
	flight	kennel worth	with food	27500
	flight	kennel worth	without food	29500
	flight	maria rica	with food	33500
	flight	maria rica	without food	35500
	0	Vanity Van		
	,	Vanity Van		
	,	', 'kennel worth		

Start coding or generate with AI.