Signed Italian Domination in Bipartite Graphs

Varre Harsha Vardhan, 2018MT60796 Ramneek Singh Gambhir, 2018MT60788 Snehil Grandhi, 2018MT60795

1 Problem Statement

Dominating Set: Let G=(V,E) be a simple graph. A set of vertices $S\subset V$ is called a dominating set if every $v\in V\setminus S$ is adjacent to some $u\in S$.

Closed neighbourhood: The set of all vertices adjacent to v, including v. It is denoted by N[v] Italian Assignment: An assignment, $f:V\to \{-1,1,2\}$ on the set of vertices is called an italian assignment.

The signed Italian Domination problem: We wish to find an Italian assignment on V so that the following holds: $\sum_{u \in N[v]} f(u) \geq 1, \ \forall v \in V \quad (\star) \ \text{and the weight of the assignment } W(f) = \sum_{v \in V} f(v) \ \text{is}$ minimum over all such assignments. It is denoted by $\gamma_{sI}(G)$. (\star) is called the domination condition. Note that an Italian assignment that satisfies (\star) is always possible, viz assigning $f(v) = 1 \ \forall v \in V$. Also, note that under an Italian assignment the set $S = \{v : f(v) = 0 \text{ or } 1\}$ is a dominating set.

2 Literature review

Previously, [1] showed that the signed Italian domination problem is NP Complete for Bipartite graphs. They also derived a lower bound, $\gamma_{sI}(T) \geq \frac{-n+4}{2}$ for any tree T of order ≥ 2 . [2] derived the exact results for cycles, paths and complete Bipartite graphs.

3 Our Approaches

We show how to solve the Signed Italian domination problem in trees using dynamic programming.

3.1 Solution for Binary Trees

A binary tree is a rooted tree, where each node has at-most two children. The children(if they exist) are referred to as the left child and the right child.

To solve the problem on a binary tree T we define a dynamic programming: $DP(node, node_{val}, parent_{val})$, where $v \in V$, $node_{val} \in \{-1,1,2\}$ and $parent_{val} \in \{-1,1,2\}$. The value of the DP is equal to the minimum weight of an Italian assignment satisfying the domination condition on the sub-tree rooted at node with $f(node) = node_{val}$. For writing the domination condition at node we also include it's parent node with $f(parent[node]) = parent_{val}$. However we don't care about the domination condition on the parent node; we only need it to be satisfied on the sub-tree. Thus by definition, $\gamma_{sI}(T) = \min_{val \in \{-1,1,2\}} DP(T_{root}, val, 0)$. Now we show how to calculate DP(v, x, px) recursively. Let C_v be the set of children of v. Since we are working on a binary-tree, $C_v = \phi$ or $\{left_child\}$ or $\{right_child\}$ or $\{left_child\}$. Thus $|C_v| \le 2$. Let \mathbf{X}_v be the set of all possible mappings, $f: C_v \to \{-1,1,2\}$. We have $|\mathbf{X}_v| = 3^{|C_v|} \le 9$. Now we can calculate DP recursively as,

$$DP(v,x,px) = x + \min_{\substack{f \in X_v: \\ \sum\limits_{u \in C_v} f(u) \ +x + px \geq 1}} \quad \sum_{u \in C_v} DP(u,f(u),x)$$

Essentially, we are calculating the optimal minimum value for DP(v,x,px) by brute-forcing over $|X_V|$. Note that, Number of DP states =9|T| and since size of $|X_v| \le 9$, all the DP states and hence $\gamma_{sI}(T)$ can be calculated in $\mathbf{O}(|\mathbf{T}|)$ time and space complexity using memoization. For a k-ary tree, T since $|X_v| \le 3^k$, this algorithm can be used to find $\gamma_{sI}(T)$ in $\mathbf{O}(3^k|T|)$ time complexity. In the next section, we present how to solve the problem in general trees by showing how to calculate DP(v,x,px) using another dynamic-programming instead of brute-forcing over X_v .

3.2 Solution for General Trees

Let T=(V,E) be a rooted tree. We will define $DP(node, node_{val}, parent_{val})$ as before. The crux of the problem is, earlier we were calculating DP(v,x,px) by looking over all possible assignments to C_v , which is exponential in general, however for the binary-tree case it is bounded by a small constant. Can we do better than this brute-force approach? It turns out, that our problem is similar to the weighted knapsack problem[3]. We show how to calculate DP(v,x,px) efficiently using another DP. If $|C_v|=0$ we can assign the value to the DP trivially. Otherwise let $|C_v|=k>0$ and we index the children of v so that $C_v=\{c_1,c_2,\cdots,c_k\}$. For a fixed v, define $DP_{knap}(n,sum)$ for $n\in\{1,2,\cdots,k\}$ and $sum\in\mathbb{Z}$. It's value is equal the minimum of $\sum\limits_{i=1}^n DP(c_i,f(c_i),x)$ over all possible assignments $f:\{c_1,c_2,\cdots,c_n\}\to\{-1,1,2\}$, satisfying, $\sum\limits_{i=1}^n f(c_i)\geq sum$. Thus by definition $DP(v,x,px)=DP_{knap}(k,1-x-px)$.

We can calculate these DP_{knap} states in a knapsack fashion as follows:

$$DP_{knap}(n,sum) = \min_{val \in \{-1,1,2\}} (DP_{knap}(n-1,s-val) + DP(c_n,val,x)), \text{ for } n>1$$

For n=1, we arrive at the base case and we can assign the values to the $\mathrm{DP}_{\mathrm{knap}}$ trivially as follows:

$$DP_{knap}(1,sum) = \begin{cases} \min \left\{ DP(c_1,-1,x), DP(c_1,1,x), DP(c_1,2,x) \right\} & ; sum \leq -1 \\ \min \left\{ DP(c_1,1,x), DP(c_1,2,x) \right\} & ; 0 \leq sum \leq 1 \\ DP(c_1,2,x) & ; sum = 2 \\ \infty & ; sum > 2 \end{cases}$$

Note that $-k \leq \sum\limits_{i=1}^k f(c_i) \leq 2k$. Hence we will need to calculate DP_{knap} only for $-k \leq sum \leq 2k$. Thus total states for $DP_{knap}(n,sum) = 3k^2$ and each state can be calculated in constant time(minimum over 3 values), thus we can compute DP(v,x,px) using DP_{knap} in $\mathbf{O}(\mathbf{k^2})$ time and space complexity. To recall, $DP(v,x,px) = DP_{knap}(|C_v|,1-x-px)$ and we have 9|T| DP states and each can be calculated in $\mathbf{O}(|C_v|^2)$ time and space. Thus overall time and space complexity is $\sum_{v \in V} O(|C_v|^2) = O((\sum_{v \in V} |C_v|)^2) = \mathbf{O}(|\mathbf{T}|^2)$.

4 References

- [1] Karamzadeh, A. Maimani, Hamid Zaeembashi, A.. (2020). Further results on the signed Italian domination. Journal of Applied Mathematics and Computing. 1-12. 10.1007/s12190-020-01465-x.
- [2] http://www.math.md/files/csjm/v27-n2/v27-n2-(pp204-229).pdf
- [3] https://cses.fi/problemset/task/1158