Data Mining: Data Reduction

Laura Brown

Some slides adapted from: G. Piatetsky-Shapiro; Han, Kamber, & Pei; P. Smyth; C. Volinsky; Tan, Steinbach, & Kumar; J. Taylor; G. Dong;

Major Tasks in Data Preprocessing

- Data Cleaning
 - Check data quality
 - Missing data, smoothing data, remove outliers, resolve inconsistencies
 - Sampling
- Data Integration
 - Integration of multiple databases, data files
- Data Reduction
 - Dimensionality reduction, feature subset selection
 - Numerosity reduction
 - Data compression
- Data Transformation and Discretization
 - Normalization and aggregation
 - Discretization and Binarization

Data Reduction Strategies

- Data reduction: Obtain a reduced representation of the data set that is smaller in volume that produces the same (or almost the same) analytical results
- Why perform data reduction?
 - modern databases / data warehouses may have terabytes+ of data
 - complex analysis may be too expensive or too time consuming
- Strategies:
 - Dimensionality reduction: wavelet transforms, principal component analysis (PCA), feature subset selection, feature creation
 - Numerosity reduction: regression and log-linear models, histograms, clustering, sampling, data cube aggregation
 - Data compression:

Dimensionality Reduction

Curse of Dimensionality

- when dimensionality increases, data becomes increasingly sparse in the space that it occupies
- definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful

Purpose:

- avoid curse of dimensionality
- reduce time and space requirements for data mining
- help eliminate irrelevant features or reduce noise
- allow easier visualization

Why use Dimensionality Reduction?

- Scope of initial data too large
 - Storage, retrieval, analysis
- Reduced set of inputs may be
 - Cheaper, safer, etc.
- May allow for better understanding of domain
 - Visualization, reveal new information
- May improve computational and accuracy of analysis

Types of Dimensionality Reduction Methods

Example Methods

	How lower-dimensional space is built?				
What machine learning/data mining method is	Extract, Unsupervised Ex. PCA	Select, Unsupervised Ex. EM Clustering			
considered?	Extract, Supervised Ex. LDA	Select, Supervised Ex. Many Feature selection			

- PCA Principal Components Analysis
- LDA Fisher's Linear Discriminant Analysis
- EM Clustering Expectation Maximization Clustering

Feature Selection Problem

- Select the "best" minimum subset of input variables
 - Identify variables correlated with or predictive to the output value

 For classification problems, select the smallest subset of variables that maximizes classification performance

Feature Selection Problem

- Given a data set of labeled examples of n independent samples of a random vector of p variables, and a learner A to construct a model given the samples
- The variable selection problem to identify the subset of variables in which the learner maximizes a performance function.
- The performance function combines:
 - Predictive abilities of model
 - Penalty for model complexity

Feature Subset Selection Challenges

Redundant features

- duplicate much or all of the information contained in one or more other attributes
- Ex. purchase price of a product and amount of sales tax paid

Irrelevant features

- contain no information that is useful to the task at hand
- Ex. student ID # for the task of predicting studentGPA

Feature Subset Selection Challenges

- With p features there are 2^p possible feature combinations to consider
 - heuristic methods are often employed
- Methods:
 - Brute-force
 - Try all possible feature subsets as inputs to data mining techniques
 - Heuristic
 - Many different methods available

Feature Selection Problem

- Is this problem solved?
 - NO!
- Do methods have guarantees of correctness?
- Do algorithms scale to large data sets?

- Wide variety of approaches
 - Wrappers incorporate learners into method
 - Embedded variable selection is part of learner
 - Filter no learner involved

Wrappers for Feature Selection

- Search forward, backward, inter-leaved, ...
- Objective function accuracy, AUC, F statistic, ...
- Learner Neural Network, SVM, Decision Tree, ...

Wrappers for Feature Selection

- Consider a problem with M variables,
 {A,B,C,D} and a classifier model, L
- Goal: predict the class labels given the smallest possible subset of {A,B,C,D}, while achieving maximal performance (accuracy)
- Searching all possible subsets considers the power set of the input variables size is 2^{M}
- Search can not be done exhaustively, heuristic search through space of subsets is performed

• Consider a problem with M = 4 variables

Wrappers Methods

Search procedures:

- Forward search start with the empty set, add features one at a time
- Backward search start with the full set of features, remove one at a time
- Greedy search only allow search to continue when improvements are being made
- Other types:
 - Inter-leaved switch between forward and backward
 - Genetic Algorithms
 - Simulated Annealing

Embedded Methods

- Embedded Variable Selection
 - The selection of variables is part of the process in creating the learner.
- Example: Decision Trees C4.5
 - Most decision trees do not include a junction for every variable
 - Those variables in the tree can be thought of as important

Filters for Feature Selection

- Filter Methods do not rely on learner and searching the space of all subsets
- Types of Filters:
 - Variable Ranking Approaches
 - Markov Blanket Approaches

Filters – Variable Ranking

• Idea:

- Give each variable a score according to its ability to predict the output variable (for classification the label)
- Rank the scores
- Select the best scores via some policy
- Different methods built by
 - Scoring function: Statistical, Information Theory
 - Selection policy

Filters – Variable Ranking Score

- Univariate Scoring Criterion
 - χ^2 , G^2 scoring
 - Pearson's r
 - Fisher's Criterion
 - Information Gain
 - Odds Ratio
 - Signal-to-Noise Ratio

Filters – Variable Ranking Selection Policies

- Filter Policies to Select Variables
 - Select top k of M variables
 - Can be hard number (top 100, 50, etc.) or percentage (top 10%, 25%, 50%, etc.)
 - Select all variables above some threshold
 - For scores based on statistical measure and p-values can use standard thresholding values (0.1, 0.05, 0.01, etc.)
 - Threshold can be set to some percentage of best score
 - Select variables based on cross-validation performance, adding in variables one at a time in the order of their scores

Filters – Multivariate Ranking

- Algorithms that rank subsets of variables
 - Run into similar problems as wrappers, the number of subsets grows quickly
- Historical Approaches
 - Relief
 - FOCUS

Filters – SVM-based scores

- Use the weight vector to rank the variables
- Recall the SVM formulation
 - Find a weight vector, w, and b that minimizes the QP opt. problem
 - The classifier is: $f(x) = \text{sign}(w \cdot X + b)$

- The weight vector w contains an entry for each variable
- The magnitude of the weight corresponds to importance of variable to classification problem

Understanding the weight vector

Algorithm

- Train an SVM model on all variables, to get weight vector w
- Rank variables by magnitude of corresponding weight
- Use ranking of variables to select the smallest subset of variables with best classification performance

Consider 8 variables: X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8

The SVM **w** is (-0.2, 0.4, 0.8, -0.5, 0.1, 0.25, -0.3, 0.7)

The ranking is: X_3 , X_8 , X_4 , X_2 , X_7 , X_6 , X_1 , X_5

Subset of Variables							Classification Performance	
X_3	X ₈	X_4	X_2	X ₇	X ₆	X ₁	X ₅	0.870
X_3	X ₈	X_4	X_2	X ₇	X_6	X_1		0.870
X_3	X ₈	X_4	X_2	X ₇	X ₆			0.869
X_3	X ₈	X_4	X_2	X ₇				0.821
X_3	X ₈	X_4	X_2					0.786
X_3	X ₈	X_4						0.756
X_3	X ₈							0.732
X_3								0.672

30

Consider 8 variables: X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 , X_8

The SVM **w** is (-0.2, 0.4, 0.8, -0.5, 0.1, 0.25, -0.3, 0.7)

The ranking is: X_3 , X_8 , X_4 , X_2 , X_7 , X_6 , X_1 , X_5

9	Subset of Variables								Classification Performance
>	X ₃	X ₈	X_4	X_2	X ₇	X ₆	X_1	X ₅	0.870
>	X_3	X ₈	X_4	X_2	X ₇	X_6	X_1		0.870
>	X ₃	X ₈	X_4	X_2	X ₇	X ₆			0.869
>	X ₃	X ₈	X ₄	X ₂	X ₇				0.821
>	X ₃	X ₈	X_4	X_2					0.786
>	X ₃	X ₈	X_4						0.756
>	X ₃	X ₈							0.732
>	X ₃								0.672

31

- The magnitude of \mathbf{w} for a given variable estimates the effect of removing that variable on the objective function.
- For the simple algorithm, may be removing many variables without re-estimating the weight vector

SVM-RFE algorithm

- SVM Recursive Feature Elimination
 - Initialize V to all input variables
 - Repeat
 - Train SVM on variable V, look at weight vector
 - Estimate classification performance of this model
 - Remove from V the variable (subset of variables) with the smallest magnitude in the weight vector
 - Until no variables in V
 - Select smallest subset with best classification performance

SVM-RFE Example

- Consider a prediction problem for classification of tumor type by gene expression data with 10,000 genes
- RFE re-estimates ranking of variables several times

Filters – Markov Blanket-based

- What is the Markov Blanket?
 - The Markov Blanket of a variable X_i , MB(X_i), is the set of variables such that all other variables are conditionally independent of X_i given the MB(X_i)

- How does this work as a variable selection method?
 - Identifying the Markov Blanket of the target/class variable is a solution the variable selection problem

Markov Blanket-based Methods

- Many methods to identify the MB
 - HITON, MMMB, IAMB, PCMB, GS, ...
- Benefits:
 - Theoretical guarantees on soundness
- Limitations
 - Known distributions where methods fail,
 - No Univariate, Large Multivariate problems, example XOR or parity relationships

Next Time ...

- Feature Creation / Extraction methods
 - PCA