Covering Numbers

吉田 英樹

2024年11月18日

概要

本稿は、Covering Numbers について解説する.

1 Covering Numbers

We introduce the Covering Numbers[1].

Let \mathbb{E} be finite dimensional Banach Space. Let $\mathcal{N}(B_R, \eta)$ be the covering number. Let B_R be the closed ball of radius R centered at the origin.

$$B_R = \{ x \in \mathbb{E} | ||x|| \le R \} \tag{1}$$

Let S be a metric space. For $k \geq 1$ define

$$\varepsilon_k(S) = \inf\{\varepsilon > 0 \mid \exists \text{closed balls } D_1, \dots D_k \text{ with radius } \varepsilon \text{ covering } S\}$$
 (2)

Note that

$$\varepsilon_k(S \le \eta) \iff \log \mathcal{N}(S, \eta) \le k$$
 (3)

Also note that ε_k scales well in the sense that, for all R > 0, $\varepsilon_k(RS) = R\varepsilon_k(S)$.

Here $RS = \{Rx | x \in S\}.$

Also, for $k \geq 1$, define

$$\varphi_k(S) = \sup\{\delta > 0 \mid \exists x_1, \dots, x_{k+1} \in S \text{ s.t. for } i \neq j, d(x_i, x_j) > 2\delta\}. \tag{4}$$

補題 1.1. .

- For all $k \ge 1$, $\varphi_k(S) \le \varepsilon_k(S) \le 2\varphi_k(S)$.
- Let $N = \dim \mathbb{E}$. Let B_1 be the unit ball in \mathbb{E} . For all $k \geq 1$,

$$k^{-\frac{1}{N}} \le \varepsilon_k(B_1) \le 4(k+1)^{-\frac{1}{N}}$$
 (5)

証明..

- It is easy to prove.
- Note that $\varphi_k(B_1) \leq 1$ for all $k \in \mathbb{N}$. Let $\rho < \varphi_k(B_1)$. Then there exists x_1, \dots, x_{k+1} such that $d(x_i, x_j) > 2\rho$ for $1 \leq i \neq j \leq k+1$. Let $D_j = x_j + \rho B_1$, $j = 1, \dots, k+1$. Clearly, $D_i \cap D_j = \text{if } i \neq j$. In addition, for all $x \in D_j$,

$$||x|| \le ||x - x_j|| + ||x_j|| \tag{6}$$

$$\leq \rho + 1 \tag{7}$$

$$< 2.$$
 (8)

Therefore, $D_j \subset B_2$.

Using measure, we get

$$\sum_{i=1}^{k+1} \nu(D_j) \le \nu(B_2) \tag{9}$$

$$\implies \sum_{i=1}^{k+1} \rho^N \nu(B_1) \le 2^N \nu(B_1) \tag{10}$$

$$\implies (k+1)\rho^N \le 2^N \tag{11}$$

$$\implies \rho \le 2(k+1)^{-\frac{1}{N}}.\tag{12}$$

From here, it follows $\varepsilon_k(B_1) \leq 4(k+1)^{-\frac{1}{N}}$

For the other inequality consider any $\varepsilon > \varepsilon_k(B_1)$. Then there exist closed balls D_1, \dots, D_k of radius ε covering B_1 .

$$\nu(B_1) \leq \sum_{j=1}^k \nu(D_j) \tag{13}$$

$$= \sum_{j=1}^{k} \nu(\varepsilon B_1) \tag{14}$$

$$= k\varepsilon^N \nu(B_1) \tag{15}$$

Consequently, it implies $k^{-\frac{1}{N}} \leq \varepsilon$

定理 1.2. Let $N = dim \mathbb{E}$. Then $\log \mathcal{N}(B_R, \eta) \leq N \log \frac{4R}{\eta}$.

証明. Let $x \in \mathbb{R}$. We denote by [x] the largest integer smaller than or equal to x.

Let
$$k = \left\lceil \left(\frac{4R}{\eta}\right)^N - 1 \right\rceil$$
. Then $k + 1 \ge \left(\frac{4R}{\eta}\right)^N$.

$$4(k+1)^{-\frac{1}{N}} \le \frac{\eta}{R} \tag{16}$$

$$\implies \varepsilon_k(B_1) \le \frac{\eta}{R}$$

$$\iff \varepsilon_k(B_R) \le \eta$$
(17)
(18)

$$\iff \varepsilon_k(B_R) \le \eta$$
 (18)

$$\iff \mathcal{N}(B_R, \eta) \le k \le \left(\frac{4R}{\eta}\right)^N$$
 (19)

参考文献

[1] F. Cucker and S. Smale, "On the mathematical foundations of learning," Bulletin of the American Mathematical Society, vol. 39, pp. 1–49, 2001.