Example Sheet 1 (of 4)

1. Consider minimising the following objective involving response $Y \in \mathbb{R}^n$ and design matrix $X \in \mathbb{R}^{n \times p}$ over $(\mu, \beta) \in \mathbb{R} \times \mathbb{R}^p$:

$$||Y - \mu \mathbf{1} - X\beta||_2^2 + J(\beta).$$

Here $J: \mathbb{R}^p \to \mathbb{R}$ is an arbitrary penalty function. Suppose $\bar{X}_k = 0$ for $k = 1, \dots, p$. Assuming that a minimiser $(\hat{\mu}, \hat{\beta})$ exists, show that $\hat{\mu} = \bar{Y}$. Now take $J(\beta) = \lambda \|\beta\|_2^2$ so we have the ridge regression objective. Show that

$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T Y.$$

From here onwards, whenever we refer to ridge regression, we will assume X has had its columns mean-centred.

Solution: Differentiating w.r.t. μ , we have that the minimising μ , $\hat{\mu}$ is defined by the following equation

$$\mathbf{1}^T (Y - \hat{\mu} \mathbf{1} - X\beta) = \mathbf{1}^T (Y - \hat{\mu} \mathbf{1}) = 0,$$

giving $\hat{\mu} = \bar{Y}$. Thus the minimising β in fact minimises

$$||Y - \bar{Y}\mathbf{1} - X\beta||_2^2 + J(\beta).$$

Letting $\tilde{Y} = Y - \bar{Y}\mathbf{1}$ and specialising to the ridge objective, our optimisation problem is to minimise

$$\|\tilde{Y} - X\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

over $\beta \in \mathbb{R}^p$. Differentiating w.r.t. β we see the minimiser $\hat{\beta}$ satisfies

$$X^{T}(\tilde{Y} - X\hat{\beta}) = \lambda \hat{\beta}$$

so

$$X^T \tilde{Y} = (X^T X + \lambda I) \hat{\beta}$$
$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T \tilde{Y}.$$

Finally note that $X^TY = X^T\tilde{Y}$.

2. Consider performing ridge regression when $Y = X\beta^0 + \varepsilon$, where $X \in \mathbb{R}^{n \times p}$ has full column rank, and $\text{Var}(\varepsilon) = \sigma^2 I$. Let the SVD of X be UDV^T and write $U^T X \beta^0 = \gamma$. Show that

$$\frac{1}{n}\mathbb{E}\|X\beta^0 - X\hat{\beta}_{\lambda}^R\|_2^2 = \frac{1}{n}\sum_{j=1}^p \left(\frac{\lambda}{\lambda + D_{jj}^2}\right)^2 \gamma_j^2 + \frac{\sigma^2}{n}\sum_{j=1}^p \frac{D_{jj}^4}{(\lambda + D_{jj}^2)^2}.$$

Now suppose the size of the signal is n, so $||X\beta^0||_2^2 = n$. For what γ is the mean squared prediction error above minimised? For what γ is it maximised?

Solution: From lectures, we know that

$$X\hat{\beta}_{\lambda}^{R} = UD^{2}(D^{2} + \lambda I)^{-1}U^{T}(X\beta^{0} + \varepsilon) = UD^{2}(D^{2} + \lambda I)^{-1}(\gamma + U^{T}\varepsilon).$$

Also, $X\beta^0 = UU^T X\beta^0 = U\gamma$. Thus $\mathbb{E}||X\beta^0 - X\hat{\beta}_{\lambda}^R||_2^2$ equals

$$\mathbb{E}\|U\{I - D^2(D^2 + \lambda I)^{-1}\}\gamma + UD^2(D^2 + \lambda I)^{-1}U^T\varepsilon\|_2^2 = \sum_{j=1}^p \left(\frac{\lambda}{\lambda + D_{jj}^2}\right)^2 \gamma_j^2 + \mathbb{E}\|UD^2(D^2 + \lambda I)^{-1}U^T\varepsilon\|_2^2.$$

Applying the 'trace trick' to the second term gives

$$\begin{split} \mathbb{E}\|UD^{2}(D^{2} + \lambda I)^{-1}U^{T}\varepsilon\|_{2}^{2} &= \operatorname{tr}\mathbb{E}\{UD^{2}(D^{2} + \lambda I)^{-1}U^{T}\varepsilon\varepsilon^{T}UD^{2}(D^{2} + \lambda I)^{-1}U^{T}\}\\ &= \sigma^{2}\operatorname{tr}\{UD^{4}(D^{2} + \lambda I)^{-2}U^{T}\}\\ &= \sigma^{2}\operatorname{tr}\{U^{T}UD^{4}(D^{2} + \lambda I)^{-2}\}\\ &= \sigma^{2}\sum_{i=1}^{p}\frac{D_{jj}^{4}}{(\lambda + D_{jj}^{2})^{2}}. \end{split}$$

For the last part, note that $\|\gamma\|_2^2 = \|X\beta^0\|_2^2$ as $X\beta^0 = U\gamma$ and only the first term in the expression for MSPE depends on γ . As

$$\left(\frac{\lambda}{\lambda + D_{jj}^2}\right)^2$$

is increasing in j, the MSPE is minimised when $\gamma_1^2 = n$ (and all other entries are zero), so all the signal is in the direction of the first principal component. It is maximised when $\gamma_p^2 = n$ (and all other entries are zero).

3. Show that the ridge regression estimates can be obtained by ordinary least squares regression on an augmented data set with $\sqrt{\lambda}I$ added to the bottom of X (where I here is $p \times p$), and p zeroes added to the end of the response Y.

Solution: The least squares objective is

$$||Y - X\beta||_2^2 + ||0 - \sqrt{\lambda}I\beta||_2^2 = ||Y - X\beta||_2^2 + \lambda ||\beta||_2^2$$

- 4. In the following, assume that forming AB where $A \in \mathbb{R}^{a \times b}$, $B \in \mathbb{R}^{b \times c}$ requires O(abc) computational operations, and that if $M \in \mathbb{R}^{d \times d}$ is invertible, then forming M^{-1} requires $O(d^3)$ operations.
 - (a) Suppose we wish to apply ridge regression to data $(Y,X) \in \mathbb{R}^n \times \mathbb{R}^{n \times p}$ with $n \gg p$. A complication is that the data is split into m separate datasets of size $n/m \in \mathbb{N}$,

$$Y = \begin{pmatrix} Y^{(1)} \\ \vdots \\ Y^{(m)} \end{pmatrix} \qquad X = \begin{pmatrix} X^{(1)} \\ \vdots \\ X^{(m)} \end{pmatrix},$$

with each dataset located on a different server. Moving large amounts of data between servers is expensive. Explain how one can produce ridge estimates $\hat{\beta}_{\lambda}$ by communicating only $O(p^2)$ numbers from each server to some central server. What is the total order of the computation time required at each server, and at the central server for your approach?

Solution: On server j we compute $\hat{\Sigma}^{(j)} := X^{(j)^T} X^{(j)} \in \mathbb{R}^{p \times p}$ and $\hat{\rho}^{(j)} := X^{(j)^T} Y \in \mathbb{R}^p$. These are sent to the central server, which computes

$$\hat{\Sigma} := X^T X = \sum_{j=1}^m \hat{\Sigma}^{(j)} \qquad \hat{\rho} := X^T Y = \sum_{j=1}^m \hat{\rho}^{(j)}.$$

The ridge regression estimates can then be calculated as $\hat{\beta}_{\lambda} = (\hat{\Sigma} + \lambda I)^{-1}\hat{\rho}$. Thus the computation at each server is $O(p^2n/m)$, whilst the cost at the central server is $O(p^2m+p^3)$: p^2m for adding the $\hat{\Sigma}^{(j)}$ and p^3 for inverting $\hat{\Sigma} + \lambda I$.

(b) Now suppose instead that $p \gg n$ and it is instead the variables that are split across m servers, so each server has only a subset of $p/m \in \mathbb{N}$ variables for each observation, and some central server stores Y. Explain how one can obtain the fitted values $X\hat{\beta}_{\lambda}$ communicating only $O(n^2)$ numbers from each server to the central server. What is the total order of the computation time required at each server, and at the central server for your approach?

Solution: Let the data on server j be $X^{(j)} \in \mathbb{R}^{n \times p/m}$. Form $K^{(j)} = X^{(j)} X^{(j)}^T$ at each server, and send this $n \times n$ matrix to the central server. At the central server, form $K = \sum_{j=1}^m K^{(j)}$ and compute $K(K + \lambda I)^{-1}Y$. The computation at each server is $O(n^2p/m)$ and the cost at the central server is $O(n^3 + n^2m)$.

5. Prove Proposition 4 in our notes. Hint: For part (ii) it may help to consider the eigendecompositions of positive semi-definite matrices $K^{(1)}$ and $K^{(2)}$ derived from kernels k_1 and k_2 in the form $K^{(1)} = PDP^T = \sum_{i=1}^n P_i P_i^T D_{ii}$ for example.

Solution: For (i), given observations x_1, \ldots, x_n , consider the derived kernel matrices $K_1, K_2, \ldots \in \mathbb{R}^{n \times n}$ (here we go against the convention of the course and do not mean the first column of K by K_1). We have

$$a^{T}(\alpha_{1}K_{1} + \alpha_{2}K_{2})a = \alpha_{1}a^{T}K_{1}a + \alpha_{2}a^{T}K_{2}a \ge 0.$$

Also

$$a^{T}(\lim_{m\to\infty}K_{m})a=\lim_{m\to\infty}a^{T}K_{m}a\geq0.$$

Turning to (ii), write $K_1 = \sum_{i=1}^n P_i P_i^T D_{ii}$, $K_2 = \sum_{i=1}^n Q_i Q_i^T \Lambda_{ii}$. Note D_{ii} , $\Lambda_{mm} \geq 0$ as K_1 and K_2 are positive semi-definite. Thus the entrywise or Hadamard product $K_1 \circ K_2$ has jkth entry

$$\sum_{i,m} P_{ji} P_{ki} D_{ii} Q_{jm} Q_{km} \Lambda_{mm} = \sum_{i,m} (P_i \circ Q_m)_j D_{ii} \Lambda_{mm} (P_i \circ Q_m)_k.$$

This is the jkth entry of

$$\sum_{i,m} (P_i \circ Q_m) D_{ii} \Lambda_{mm} (P_i \circ Q_m)^T$$

which is a linear combination of positive semi-definite matrices with non-negative coefficients $D_{ii}\Lambda_{mm} \geq 0$.

6. Let $\mathcal{X} = \{x \in \mathbb{R}^d : ||x||_2 < 1\}$. Show that $k(x, x') = (1 - x^T x')^{-\alpha}$ defined on $\mathcal{X} \times \mathcal{X}$, where $\alpha > 0$, is a kernel.

Solution: Note that $|x^Tx'| \leq ||x||_2 ||x'||_2 < 1$ by Cauchy–Schwarz so, Taylor's theorem tells us that

$$k(x, x') = 1 + \alpha x^T x' + \frac{1}{2!} \alpha (\alpha + 1) (x^T x')^2 + \cdots$$

The ratio test shows that the series converges whenever $|x^Tx'| < 1$. This is an infinite sum of products of kernels, and so is a kernel by Proposition 4 in our notes.

7. Suppose we have a matrix of predictors $X \in \mathbb{R}^{n \times p}$ where $p \gg n$. Explain how to obtain the fitted values of the following ridge regression using the kernel trick:

Minimise over
$$\beta \in \mathbb{R}^p$$
, $\theta \in \mathbb{R}^{p(p-1)/2}$, $\gamma \in \mathbb{R}^p$,

$$\sum_{i=1}^{n} \left(Y_i - \sum_{k=1}^{p} X_{ik} \beta_k - \sum_{k=1}^{p} \sum_{j=1}^{k-1} X_{ik} X_{ij} \theta_{jk} - \sum_{k=1}^{p} X_{ik}^2 \gamma_k \right)^2 + \lambda_1 \|\beta\|_2^2 + \lambda_2 \|\theta\|_2^2 + \lambda_3 \|\gamma\|_2^2.$$

Note we have indexed θ with two numbers for convenience.

Solution: Form matrices $K^{(1)}, K^{(2)}, K^{(3)} \in \mathbb{R}^{n \times n}$:

$$\begin{split} K^{(1)} &= XX^T \\ K^{(2)}_{ij} &= (x_i^T x_j)^2 \\ K^{(3)}_{ij} &= \sum_{k=1}^p X_{ik}^2 X_{jk}^2. \end{split}$$

Finally calculate $K = \lambda_1^{-1}K^{(1)} + (2\lambda_2)^{-1}K^{(2)} + \{\lambda_3^{-1} - (2\lambda_2)^{-1}\}K^{(3)}$. We may then see that the fitted values are

$$K(K+I)^{-1}Y$$
.

Note that computation of K requires $O(n^2p)$ operations.

8. Let $\hat{\alpha}$ be a minimiser of $\|Y - K\alpha\|_2^2 + \lambda \alpha^T K\alpha$ over α , with K being a kernel matrix as usual (i.e. symmetric positive semi-definite). Show that $K\hat{\alpha} = K(K + \lambda)^{-1}Y$.

Solution: Differentiating, we obtain

$$K(Y - K\hat{\alpha}) = \lambda K\hat{\alpha}$$

so

$$KY = (K + \lambda I)K\hat{\alpha}$$
$$(K + \lambda I)^{-1}KY = K\hat{\alpha}.$$

Finally note that $K(K + \lambda I) = (K + \lambda I)K$, so $(K + \lambda I)^{-1}K = K(K + \lambda I)^{-1}$.

9. Consider minimising

$$c(Y, X, f(x_1) + \mu, \dots, f(x_n) + \mu) + J(||f||_{\mathcal{H}}^2)$$

over $f \in \mathcal{H}$ and $\mu \in \mathbb{R}$ where \mathcal{H} is an RKHS. Here c is an arbitrary loss function and J is strictly increasing. Let k be the reproducing kernel of \mathcal{H} . Show that any minimiser $\hat{g}(\cdot) = \hat{f}(\cdot) + \hat{\mu}$ may be written as

$$\hat{g}(\cdot) = \hat{\mu} + \sum_{i=1}^{n} \hat{\alpha}_i k(\cdot, x_i)$$

where $\hat{\alpha}_i \in \mathbb{R}$ for $i = 1, \dots, n$.

Solution: Write $\hat{g} = \hat{f} + \hat{\mu}$. Note we may decompose $\hat{f} = u + v$ where $u \in V := \text{span}\{k(\cdot, x_1), \dots, k(\cdot, x_n)\}$ and $v \in V^{\perp}$. Then

$$\hat{f}(x_i) = \langle k(\cdot, x_i), u + v \rangle = \langle k(\cdot, x_i), u \rangle = u(x_i)$$

Meanwhile, by Pythagoras' theorem we have

$$J(\|\hat{f}\|_{\mathcal{H}}^2) = J(\|u\|_{\mathcal{H}}^2 + \|v\|_{\mathcal{H}}^2) \ge J(\|u\|_{\mathcal{H}}^2)$$

with equality iff. v = 0. Thus by optimality of \hat{g} , v = 0.

10. This question proves a result needed for Theorem 7 in our notes. Let \mathcal{H} be a RKHS of functions on \mathcal{X} with reproducing kernel k and suppose $f^0 \in \mathcal{H}$. Let $x_1, \ldots, x_n \in \mathcal{X}$ and let K be the kernel matrix $K_{ij} = k(x_i, x_j)$. Show that

$$\left(f^0(x_1), \dots, f^0(x_n)\right)^T = K\alpha,$$

for some $\alpha \in \mathbb{R}^n$ and moreover that $||f^0||_{\mathcal{H}}^2 \ge \alpha^T K \alpha$. **Solution:** Let $V = \operatorname{span}\{k(\cdot, x_1), \dots, k(\cdot, x_n)\}$ and write $f^0 = u + v$ where $u \in V$ and $v \in V^{\perp}$.

$$f^{0}(x_{i}) = \langle f^{0}, k(\cdot, x_{i}) \rangle = \langle u, k(\cdot, x_{i}) \rangle.$$

Write $u = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$. Then

$$f^{0}(x_{i}) = \sum_{j=1}^{n} \alpha_{j} \langle k(\cdot, x_{j}), k(\cdot, x_{i}) \rangle = \sum_{j=1}^{n} \alpha_{j} k(x_{j}, x_{i}) = K_{i}^{T} \alpha,$$

where K_i is the *i*th column (or row) of K. Thus $K\alpha = (f^0(x_1), \ldots, f^0(x_n))^T$. By Pythagoras' theorem

$$||f^0||_{\mathcal{H}}^2 = ||u||_{\mathcal{H}}^2 + ||v||_{\mathcal{H}}^2 \ge ||u||_{\mathcal{H}}^2 = \alpha^T K \alpha.$$

11. Show from first principles that the Sobolev kernel is indeed a (positive definite) kernel.

Solution: Let $x_1, \ldots, x_n \in [0, 1]$ and assume without loss of generality that $x_1 \geq x_2 \geq \cdots \geq x_n$. Let $\delta_j = x_j - x_{j+1} \ge 0$ for $j = 1, \dots, n-1$ and set $\delta_n = x_n$. Also let $J^{(j)}$ be the matrix with $J_{ik}^{(j)} = 1$ for all $i, k \leq j$ and all other entries equal to zero. Then if i < j,

$$\min(x_i, x_j) = x_j = \sum_{k=j}^n \delta_k = \left(\sum_k \delta_k J^{(k)}\right)_{ij}.$$

Thus $K = \sum_k \delta_k J^{(k)}$. Each $J^{(k)}$ is positive semi-definite as $a^T J^{(k)} a = (\sum_{j=1}^k a_j)^2 \ge 0$, whence Kis also.

12. Let \mathcal{H} be an RKHS with reproducing kernel k. Show that if $h_x \in \mathcal{H}$ has the property that $\langle h_x, f \rangle = f(x)$ for all $f \in \mathcal{H}$, then $h_x(\cdot) = k(\cdot, x)$.

Solution: We know that $\langle k(\cdot, x), f \rangle = f(x)$ for all $f \in \mathcal{H}$. Thus

$$h_x(x') = \langle k(\cdot, x'), h_x \rangle = \langle h_x, k(\cdot, x') \rangle = k(x, x') = k(x', x)$$

for all $x' \in \mathcal{X}$.

13. Prove that if k is a reproducing kernel for RKHS's \mathcal{H}_1 and \mathcal{H}_2 , then $\mathcal{H}_1 = \mathcal{H}_2$, so the RKHS is uniquely determined by k. Hint: First argue that it is enough to show the result for $\mathcal{H}_1 \subseteq \mathcal{H}_2$. Next consider decomposing each $f \in \mathcal{H}_2$ as f = u + v with $u \in \mathcal{H}_1$ and $v \in \mathcal{H}_1^{\perp}$ and argue that v = 0

Solution: First note that $\mathcal{H}_0 := \mathcal{H}_1 \cap \mathcal{H}_2$ is an RKHS with reproducing kernel k. It is enough to show that $\mathcal{H}_0 = \mathcal{H}_1$. Take $f \in \mathcal{H}_1$. As \mathcal{H}_0 is a closed subspace of \mathcal{H}_1 , we may decompose f = u + v where $u \in \mathcal{H}_0$ and $v \in \mathcal{H}_0^{\perp}$. But

$$f(x) = \langle k(\cdot, x), f \rangle = \langle k(\cdot, x), u \rangle = u(x)$$

as $\langle k(\cdot, x), v \rangle = 0$ owing to $k(\cdot, x) \in \mathcal{H}_0$. Thus $f \in \mathcal{H}_0$, so $\mathcal{H}_1 = \mathcal{H}_0$.