Cours SNT

Thème : Ordinateur et Informatique omment représenter un texte dans un

Comment représenter un texte dans un ordinateur ?

IN-C3

1. Objectifs

- Comprendre le principe de l'encodage
- Représenter une chaine de caractères dans le système binaire

2. Contextualisation

A Faire 1 : J'ai un message pour vous, savez-vous le décoder?

1001001 1010100 0100111 1010011 0100000 1000011 1001111 1001111 1001100 0100000 0100001

Enseignant : M. BODDAERT

Cours SNT

Thème : Ordinateur et Informatique Comment représenter un texte dans un ordinateur ?

IN-C3

3. Représentation d'un texte dans un ordinateur

Nous avons vu dans une précédente activité comment est représenté un nombre entier dans un ordinateur. Abordons l'encodage des caractères dans un ordinateur.

3.1. Définition La Encodage :																
3.2.	L'er	ncoda	ge A	SC	:11				•••••					•••••		
Les ca					ır 7 bits, un <i>s</i>	eptup	olet de l	bits,	app	elé .				••••••	•	
	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	Octal	Char	
	0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000		*	
	1	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001		a	
	2	2	10 11	2	[START OF TEXT] [END OF TEXT]	50 51	32 33	110010 110011	62 63	2	98	62 63	1100010 1100011		b c	
	4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100011		d	
	5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101		e	
	6	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110		f	
	7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111		9	
	8	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000		h	
	9 10	9 A	1001 1010	11 12	[HORIZONTAL TAB] [LINE FEED]	57 58	39 3A	111001 111010	71 72	9	105 106	69 6A	1101001		1	
	11	B	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101010		j k	
	12	č	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100		î	
	13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101	75	=	109	6D	1101101		m	
	14	E	1110	16	[SHIFT OUT]	62	3E	1111110	76	>	110	6E	1101110		n	
	15 16	F 10	1111 10000	17 20	[SHIFT IN] [DATA LINK ESCAPE]	63 64	3F 40	1111111	77	? @	111	6F 70	1101111		o p	
	17	11	10000	21	IDEVICE CONTROL 11	65	41	10000001		A	113	71	1110000		q	
	18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010		В	114	72	1110010		r	
	19	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011		C	115	73	1110011	163	s	
	20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t	
	21 22	15 16	10101 10110	25 26	[NEGATIVE ACKNOWLEDGE]	69 70	45 46	1000101		E F	117 118	75 76	1110101		u v	
	22	16	10111	26	[SYNCHRONOUS IDLE] [ENG OF TRANS. BLOCK]	70	46	1000110		G	118	76 77	1110110		w	
	24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		x	
	25	19	11001	31	[END OF MEDIUM]	73	49	1001001		ï	121	79	1111001		у	
	26	1A	11010	32	(SUBSTITUTE)	74	4A	1001010		J.	122	7A	1111010		z	
	27	1B	11011	33	(ESCAPE)	75	4B	1001011		K	123	7B	1111011		{	
	28 29	1C 1D	11100 11101	34 35	[FILE SEPARATOR] [GROUP SEPARATOR]	76 77	4C 4D	1001100		L M	124 125	7C 7D	1111100		3	
	30	1E	111101	36	[RECORD SEPARATOR]	78	4E	1001101		N	126	7E	11111110		~	
	31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111		ö	127	7F	1111111		[DEL]	
	32	20	100000		[SPACE]	80	50	1010000		P					_	
	33	21	100001	41	1	81	51	1010001	121	Q	I					

Source : Wikipédia

22 23

24 25

29

2B 2C

2D 2E

Enseignant: M. BODDAERT

100010 42 100011 43

100100 44 100101 45

100110 46 100111 47 101000 50 101001 51

101011 53 101100 54

101101 55 101110 56

101111 57

34 35

36 37

38 39

40

41

43 44

45 46

47

52 53

54 55 56 57 58 59 5A 5D 5D 5E

84 85

86 87

1010010 122 1010011 123

1010100 124 1010101 125

1010110 126 1010111 127

1011000 130

1011001 131 1011010 132

1011011 133 1011100 134

1011101 135 1011110 136

1011111 137

Cours SNT

Thème : Ordinateur et Informatique Comment représenter un texte dans un ordinateur ?

IN-C3

Exemples:

 Le point de code 1000000 correspond au caractère @
 Le caractère + est encodé par le point de code 0101011en ASCII
Principe:
•
Á Faire 2 : Quel est le point de code en ASCII du caractère #?A?8?
🗹 À Faire 3 : Quels sont les mots suivants, encodés en ASCII ?
$mot_1 = 100111111001011 = \dots$
$mot_2 = 1010011100111010100 = \dots$
$mot_3 = 0111011010110101001 = \dots$
À Faire 4 : Quelle est la représentation en binaire de votre prénom avec la première lettre en Aajuscule (sans les accents) ? Combien de bits sont nécessaires pour coder votre prénom ?
À Faire 5 : Quelle différence observez-vous entre les points de code d'une même lettre en najuscule et minuscule (Exemple : A et a) ? En déduire, une méthode pour déterminer si une lettre est en majuscule ou minuscule en connaissant le point de code en binaire d'une lettre.
Remarque: L'encodage ASCII ne permet pas de représenter certains caractères (lettres accentuées, symbole monétaire). D'autres normes d'encodage comme l'ISO 8859-1 ou UTF-8 pallient à cette problématique. Ce sujet est hors programme de la SNT mais il est possible de visionner cette vidéo https://youtu.be/YvOK7WvwKeY de la chaine Youtube NOVELCLASS.
4. Synthèse
🗹 À Faire 6 : Compléter le texte à trous suivant
L' est la transcription d'une donnée dans un format particulier.
Un même octet correspond à des données différentes selon l'encodage utilisé.
En ASCII, les caractères sont encodés sur bits.
Pour obtenir le caractère encodé en ASCII, il faut