

Agenda Clase II

09:30 hs - Enlace de conexión	Consultas ejercicios clase 1						
10:00 hs - Conceptos	Comunicación UART. Ejemplos transmisión y recepción. Ejemplo de conexión WiFi. Ciclos FOR y WHILE.						
10:40 hs - Programación embebida	Salida digital PWM con funciones de librería. Ejemplo integrador. Sonda de T° DS18B20.						
11:15 hs - Break	Receso 15 minutos.						
11:30 hs - Cloud	Plataformas IoT. Servidor Blynk. Generación de interfaz en Blynk. Vínculo con programa en ESP8266.						
12:45 hs - Ejercitación	Espacio de consultas. Próximos pasos.						

Conceptos anteriores - Ejercicios CLASE 1

- Salidas Digitales → PWM
- Entradas Digitales
- Entradas Analógicas

¿Alguna duda?

Clase II - Módulo A

Más conceptos y Programación Embebida

- UNIVERSAL
- ASÍNCRONA
- RECEPCIÓN
- TRANSMISIÓN

UART

PARÁMETROS

- Baudrate
- Bits de DATOS
- Bits de STOP
- Bits de paridad

DISPOSITIVOS

- Sólo 2

ASCII

Decimal	Hexadecimal	Binary	Octal	Char	Decimal	Hexadecimal	Binary	Octal	Char		Hexadecimal	Binary	0ctal	. Cha
)	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	
l	1	1	1	[START OF HEADING]	49	31	110001	61	1	97	61	1100001	141	a
2	2	10	2	[START OF TEXT]	50	32	110010	62	2	98	62	1100010	142	b
3	3	11	3	[END OF TEXT]	51	33	110011	63	3	99	63	1100011	143	C
1	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100	144	d
5	5	101	5	[ENQUIRY]	53	35	110101	65	5	101	65	1100101	145	e
5	6	110	6	[ACKNOWLEDGE]	54	36	110110	66	6	102	66	1100110	146	f
7	7	111	7	[BELL]	55	37	110111	67	7	103	67	1100111	147	g
3	8	1000	10	[BACKSPACE]	56	38	111000	70	8	104	68	1101000	150	h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001	71	9	105	69	1101001	151	i
10	A	1010	12	[LINE FEED]	58	3A	111010	72	:	106	6A	1101010	152	i
11	В	1011	13	[VERTICAL TAB]	59	3B	111011	73	;	107	6B	1101011	153	k
12	C	1100	14	[FORM FEED]	60	3C	111100	74	<	108	6C	1101100	154	1
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101		=	109	6D	1101101		m
14	E	1110	16	[SHIFT OUT]	62	3E	111110		>	110	6E	1101110		n
15	F	1111	17	[SHIFT IN]	63	3F	111111		?	111	6F	1101111		0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000		@	112	70	1110000		p
17	11	10001	21	[DEVICE CONTROL 1]	65	41	1000001		A	113	71	1110001		q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010		В	114	72	1110010		r
9	13	10011	23	[DEVICE CONTROL 3]	67	43	1000011		C	115	73	1110011		s
0	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t
1	15		25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
2	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000101		F	118	76	1110110		v
3	17	10111		[END OF TRANS. BLOCK]	71	47	1000111		G	119	77	1110111		w
4	18	11000	30	[CANCEL]	72	48	1001000		Н	120	78	1111000		×
5	19		31	[END OF MEDIUM]	73	49	1001000		1	121	79	1111000		
	1A		32		74	4A			i	122	7A			У
6				(SUBSTITUTE)	75		1001010					1111010		Z
7	1B		33	[ESCAPE]		4B	1001011		K	123	7B	1111011		{
8	10	11100	34	[FILE SEPARATOR]	76	4C	1001100		L	124	7C	1111100		Į
9	1D		35	[GROUP SEPARATOR]	77	4D	1001101		M	125	7D	1111101		}
30	1E		36	[RECORD SEPARATOR]	78	4E	1001110		N	126	7E	1111110		~
31	1F	11111		[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	1111111	1//	[DE
32	20	100000		[SPACE]	80	50	1010000		P	1				
33	21	100001		1	81	51	1010001		Q	1				
4	22	100010			82	52	1010010		R	1				
5	23	100011		#	83	53	1010011		S	1				
6	24	100100		\$	84	54	1010100		T	1				
7	25	100101		%	85	55	1010101		U	1				
8	26	100110	46	&	86	56	1010110	126	V	1				
9	27	100111			87	57	1010111	127	W	1				
0	28	101000	50	(88	58	1011000	130	X	1				
1	29	101001	51)	89	59	1011001	131	Y	1				
12	2A	101010	52	*	90	5A	1011010	132	Z	1				
13	2B	101011	53	+	91	5B	1011011	133	I	1				
14	2C	101100		,	92	5C	1011100		1					
15	2D	101101			93	5D	1011101		1					
16	2E	101110			94	5E	1011110		^					
47	2F	101111		1	95	5F	1011111			1				

Ejemplo Transmisión

```
void setup() {
 delay(400); //<-- buena práctica
  Serial.begin(115200); // Inicializa la comunicación serial a 115200 baudios
  Serial.println("\n"); // Envia un salto de línea (\n)
  Serial.println("Hola Equipo IoT !!");
char letra = 'a';
void loop() {
  Serial.println(letra++); // Envia letra y la incrementa en 1 en cada iteración
 delay(1000);
                           // Espera 1 segundo antes de enviar el siguiente mensaje
```


Ejemplo Transmisión

```
E1_A_UART_TX.ino
       void setup() {
         delay(400); //<-- buena práctica
         Serial.begin(115200); // Inicializa la comunicación serial
         Serial.println("\n"); // Envia un salto de línea (\n)
    5 6 7
         Serial.println("Hola Equipo IoT !!");
       char letra = 'a';
       void loop() {
  10
         Serial.println(letra++); // Envia letra y la incrementa en
  11
         delay(1000); // Espera 1 segundo antes de envia
  12
Salida Monitor Serie X
                                                             Mensaje (Intro para mandar el mensaje de 'NodeMCU 0.9 (ESP-12 Moc Nueva línea
                                                      ▼ 115200 baud
Hola Equipo IoT !!
```


Ejemplo Transmisión, ciclo FOR

```
void setup() {
 delay(400); //<-- buena práctica
 Serial.begin(115200); // Inicializa la comunicación serial
 Serial.println("\nHola Equipo IoT !!");
void loop() {
 for(int i=0; i<=100; i++){
    Serial.println(i);
    delay(50);
 delay(2000);
 for(int i=100; i>=0; i--){
    Serial.println(i);
    delay(50);
 delay(2000);
```


Ejemplo Transmisión, ciclo WHILE

```
#define SW1 D0
#define SW2 D3
void setup() {
  delay(400); //<-- buena práctica
  Serial.begin(115200); // Inicializa la comunicación serial a 115200 baudios
  Serial.println("\nHola Equipo IoT !!");
                                      Termite 3.4 (by CompuPhase)
                                                                                      X
int i = 0;
void loop() {
                                       COM3 115200 bps, 8N1, no handshake
                                                                Settings
                                                                       Clear
                                                                              About
                                                                                     Close
  while(digitalRead(SW1)==LOW){
    Serial.println(i++);
    delay(50);
  while(digitalRead(SW2)==LOW){
    Serial.println(i--);
    delay(50);
                                                                                      4
```


Ejemplo Recepción

```
E1 B UART TX RX.ino
       void setup() {
         delay(400);
         Serial.begin(115200); // Inicializa la comunicación serial a 115200 baudios
         Serial.println("\n"); // Envia un salto de línea (\n)
         Serial.println("Hola Equipo EducaTR3BOL!!");
         Serial.println("Prueba de RECEPCION de comandos");
   6
         pinMode(LED BUILTIN,OUTPUT);
   7
   8
   9
       void loop() {
  10
         if(Serial.available() > 0 )
  11
  12
             char letra = Serial.read()
  13
             Serial.print("Recibo: ");
  14
  15
             Serial.println(letra);
             if(letra=='A') digitalWrite(LED_BUILTIN,LOW);
  16
             else if(letra=='B') digitalWrite(LED BUILTIN,HIGH);
  17
  18
  19
```


Ejemplo conexión WiFi

```
#include <ESP8266WiFi.h>
const char* ssid = "TR3BOL"; //Red WiFi
const char* password = "12345678"; //Contraseña Red WiFi
void setup() {
  delay(400);
  Serial.begin(115200);
 Serial.println("\n");
 WiFi.begin(ssid, password);
 delay(10);
  Serial.print("Intentando conectar a red ");
  Serial.println(ssid);
  while (WiFi.status() != WL_CONNECTED) { //Mientras no esté conectado
    Serial.print(".");
    delay(500);
  Serial.println("");
  Serial.println("WiFi CONECTADO!!! :)");
  Serial.print("IP address: ");
  Serial.println(WiFi.localIP());
void loop() {
  delay(2000);
  Serial.println("\nLISTO PARA SUBIR A LA NUBE!!");
```


PWM con funciones de librería

```
#define LED 1 D4
#define LED_2 D8
void setup() {
  pinMode(LED_1,OUTPUT);
  pinMode(LED 2,OUTPUT);
void loop() {
  analogWrite(LED_1,75);
  analogWrite(LED_2,75);
  delay(2000);
  analogWrite(LED_1,125);
  analogWrite(LED_2,125);
  delay(2000);
  analogWrite(LED_1,255);
  analogWrite(LED_2,255);
  delay(2000);
```


Ejemplo Integrador

```
#define analogPIN
                                                 void loop() {
#define LED 1
                   D4
                                                   // ---- Analógico ---- //
#define LED 2
                   D8
                                                   analog = analogRead(analogPIN);
#define PULSADOR 1
                                                   Serial.println(analog);
#define PULSADOR 2
                                                   // ----- PWM ----- //
                                                   if(analog<20) analog = 0;</pre>
void setup() {
                                                   PWM = 255*analog/1024.0;
 delay(400);
                                                   analogWrite(LED 1, PWM);
 pinMode(LED 1,OUTPUT);
                                                   analogWrite(LED 2, PWM);
 pinMode(LED 2,OUTPUT);
                                                    // ----- inputs ----- //
 Serial.begin(115200);
                                                   if(digitalRead(PULSADOR 1)==LOW) Serial.println("SW1!!");
 Serial.println("\nPrueba Analog, PWM e Input");
                                                   if(digitalRead(PULSADOR 2)==LOW)
                                                                                     Serial.println("SW2!!");
                                                   delay(250);
int analog = 0;
int PWM = 0;
```


SONDA T° DS18B20

Rango de temperatura: -55 a 125°C

SONDA T° DS18B20

```
#include <OneWire.h>
#include <DallasTemperature.h>
#define ONE WIRE BUS D6 // Pin donde está conectado el sensor DS18B20
OneWire oneWire(ONE WIRE BUS); // Inicializa instancia de clase OneWire para comunicarse con el sensor
DallasTemperature sensors(&oneWire); // Ídem con DallasTemperature para interactuar con el sensor
void setup() {
 delay(400);
 Serial.begin(115200);
 Serial.println("Iniciando DS18B20...");
 sensors.begin(); // Inicializa la comunicación con los sensores DS18B20
void loop() {
  sensors.requestTemperatures(); // Solicita lectura de Tº a todos los sensores conectados
 float temperatureCelsius = sensors.getTempCByIndex(0); // Lee To del primer sensor encontrado
 if (temperatureCelsius == -127.00){ // Verifica si la lectura fue exitosa
   Serial.println("Error al leer la temperatura.");
 else {
   Serial.print("DS18B20 OK\t\tTemp = ");
   Serial.print(temperatureCelsius);
   Serial.println(" C");
 delay(2000); // Espera 2 segundos antes de la próxima lectura
```


SONDA T° DS18B20

```
#include "miSondaTemperatura.h"
void setup() {
 delay(400);
 Serial.begin(115200);
  configuraSondaTemperatura();
void loop() {
  float temperatura = leeSondaTemperatura(); {
  Serial.print("Temperatura = ");
  Serial.print(temperatura);
  Serial.println(" C");
  delay(2000);
```

```
miSondaTemperatura.h
#include <OneWire.h>
#include <DallasTemperature.h>
#define ONE WIRE BUS D6 // Pin donde está conectado el se
OneWire oneWire(ONE WIRE BUS); // Inicializa instancia de
DallasTemperature sensors(&oneWire); // Ídem con DallasTemperature
void configuraSondaTemperatura()
  Serial.println("Iniciando DS18B20...");
  sensors.begin(); // Inicializa la comunicación con los
float leeSondaTemperatura()
  sensors.requestTemperatures(); // Solicita lectura de
  float temperatureCelsius = sensors.getTempCByIndex(0);
  if (temperatureCelsius == -127.00){ // Verifica si la :
    Serial.println("Error al leer la temperatura.");
  return temperatureCelsius;
```