organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(*E*)-2-(4-*tert*-Butylphenyl)-2-cyano-1-(3-methyl-1-vinyl-1*H*-pyrazol-5-yl)vinyl 2,2-dimethylpropanoate

Guiqiu Yang, a* Yang Wang and Haibo Yub

^aShenyang University of Chemical Technology, Shenyang 110142, People's Republic of China, and ^bAgrochemicals Division, Shenyang Research Institute of Chemical Industry, Shenyang 110021, People's Republic of China Correspondence e-mail: yangguiqiu@gmail.com

Received 11 November 2011; accepted 2 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.048; wR factor = 0.148; data-to-parameter ratio = 15.3.

In the title compound, $C_{24}H_{29}N_3O_2$, the dihedral angle between the benzene and pyrazole rings is $80.55 (7)^{\circ}$. The molecule contains an acrylonitrile moiety and exists in an E conformation. Bioassay tests showed that the title compound exhibited higher acaricidal activity than its Z isomer.

Related literature

For background to acrylonitrile compounds, see: Boedec *et al.* (2008); Napolitano *et al.* (2001); Reggio *et al.* (1998). For further synthetic details, see: Kenzo *et al.* (2006); Yang *et al.* (2009).

Experimental

Crystal data

 $C_{24}H_{29}N_3O_2$ V = 4672.5 (11) Å³ Z = 8 Orthorhombic, Pbca Mo Kα radiation a = 12.0056 (16) Å $\mu = 0.07 \text{ mm}^{-1}$ D = 19.283 (3) Å D = 19.283 (4) D = 19.283 (3) Å D = 19.283 (4) D = 19.283 (5) Å D = 19.283 (6) D = 19.283 (7) Å D = 19.283 (8) Å D = 19.283 (9) Å D = 19.283 (11) Å D = 19.283 (12) Å D = 19.283 (13) Å D = 19.283 (13) Å D = 19.283 (13) Å D = 19.283 (14) Å D = 19.283 (15) Å D = 19.283 (15) Å D = 19.283 (17) Å D = 19.283 (18) Å D = 19.283 (19) Å

Data collection

Bruker SMART CCD diffractometer 22480 measured reflections 4118 independent reflections 4118 independent reflections 2871 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$ $R_{\rm int} = 0.033$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.048 & 269 \text{ parameters} \\ WR(F^2) = 0.148 & \text{H-atom parameters constrained} \\ S = 1.05 & \Delta\rho_{\text{max}} = 0.31 \text{ e Å}^{-3} \\ 4118 \text{ reflections} & \Delta\rho_{\text{min}} = -0.20 \text{ e Å}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6506).

References

Boedec, A., Sicard, H., Dessolin, J., Herbette, G., Ingoure, S., Raymond, C., Belmant, C. & Kraus, J. L. (2008). J. Med. Chem. 51, 1747–1754.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Kenzo, F., Yasuo, K., Norio, T., Hideaki, S., Masatoshi, O. & Koichi, N. (2006). US Patent 20060178523.

Napolitano, A., Bruno, I., Rovero, P., Lucas, R., Peris, M. P. & Riccio, R. (2001). Tetrahedron, 57, 6249–6255.

Reggio, P. H., Basu, S., Barnett, J., Castro, M. T., Hurst, D. P., Seltzman, H. H., Roche, M. J., Gilliam, A. F., Thomas, B. F. & Stevenson, L. A. (1998). *J. Med. Chem.* 41, 5177–5187.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, P., Shen, D. L., Tan, C. X., Weng, J. Q., Lu, Q., Wei, Y. C. & Kong, X. L. (2009). Zhe. Daxue Xuebao, 36, 183–185.

064

supplementary m	aterials	

Acta Cryst. (2012). E68, o64 [doi:10.1107/S1600536811052007]

(E)-2-(4-tert-Butylphenyl)-2-cyano-1-(3-methyl-1-vinyl-1H-pyrazol-5-yl)vinyl 2,2-dimethylpropanoate

G. Yang, Y. Wang and H. Yu

Comment

Acrylonitrile compounds display a broad range of biological, medical and pharmacological properties (Napolitano *et al.*, 2001, Boedec *et al.*, 2008). There is a double bond in the molecule of the acrylonitrile compounds, and both geometric isomers referred to as the E– and Z-isomer can be present. The bioactivities of them often differ from each other (Reggio *et al.*,1998). In the process of preparation of the title compound, its geometric isomer product was also afforded, which showed obviously different acaricidal activity with the title compound. The bioassay tests showed that the title compound exhibited higher acaricidal activity than its isomer.

In order to confirm the geometry configuration, we report the crystal structure of the title compound (I) in this paper. The molecular structure of (I) is shown in Fig. 1. The the benzene and pyrazole rings in each of the ligands are not coplanar, the dihedral angle formed by the least-squares planes of the benzene and pyrazole rings being equal to 80.55 (7)°. The C(9)—C(8)—C(10)—C(11), O(1)—C(7)—C(8)—C(9), C(5)—C(7)—C(8)—C(9) and C(20)—O(1)—C(7)—C(5) torsion angles are 38.7 (3), -168.00 (2), 5.8 (3) and 66.1 (2)°, respectively. The crystal packing of (I) shows in Fig. 2. No significant interactions, such as hydrogen bonds or pi-pi stacking, are observed in (I).

Experimental

The title compound was synthesized by 2-(4-(*tert*-butyl) phenyl)-3-(4-chloro-1-ethyl-3-methyl-1*H*-pyrazol-5-yl) -3-hydroxyacrylonitrile with pivaloyl chloride in THF (Kenzo *et al.*, 2006, Yang *et al.*, 2009). The crude products were purified by silica-gel column chromatography and then grown from heptane to afford colorless single crystals suitable for X-ray diffraction. To the mixture of 2-(4-(*tert*-butyl)phenyl)-3-(3-methyl-1-vinyl- 1*H*-pyrazol-5-yl)-3-hydroxyacrylonitrile (0.61 g, 2.0 mmol) and triethyl amine (0.24 g, 2.4 mmol) in THF (10 ml), pivaloyl chloride (0.29 g, 2.4 mmol) was added dropwise at roomtemperature and reacted for 1 h. After separation through silica gel column chromatography (fluent: ethyl acetate/petroleum ether=1/10), The title product compound was gained as a white solid (0.59 g, 75%).

Anal. Calcd for C₂₄H₂₉N₃O₂: C, 73.63; H, 7.47; N, 10.73. Found: C, 73.67; H, 7.50; N, 10.75. ¹H NMR(DMSO): 1.14 (s, 9H, CO (CH₃)₃), 1.33 (s, 9H, Ph-(CH₃)₃), 2.34 (s, 3H, CH₃), 4.92 (d, 1H, CH), 5.79 (d, 1H, CH), 6.56 (s, 1H, py), 7.07 (dd, 1H, CH), 7.45 (d, 2H, Ph), 7.48 (d, 2H, Ph).

Refinement

Although all H atoms were visible in difference maps, they were finally placed in geometrically calculated positions, with C—H distances in the range 0.93–0.96 Å, and included in the final refinement in the riding model approximation, with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$ and $U_{\rm iso}({\rm H}) = 1.5 U_{\rm eq}({\rm C})$.

Figures

Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids.

Fig. 2. Crystal packing of (I).

(E)-2-(4-tert-Butylphenyl)-2-cyano-1-(3-methyl-1-vinyl- 1H-pyrazol-5-yl)vinyl 2,2-dimethylpropanoate

Crystal data

 $D_{\rm x} = 1.113 \; {\rm Mg \; m}^{-3}$ $C_{24}H_{29}N_3O_2$

 $M_r = 391.50$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Orthorhombic, Pbca Cell parameters from 4156 reflections

a = 12.0056 (16) Å $\theta = 2.6 - 20.4^{\circ}$

b = 19.283 (3) Å $\mu = 0.07 \text{ mm}^{-1}$ T = 296 K

c = 20.183(3) Å

Block, colorless $V = 4672.5 (11) \text{ Å}^3$

Z = 8 $0.38 \times 0.36 \times 0.32~mm$ F(000) = 1680

Data collection

Bruker SMART CCD 4118 independent reflections diffractometer

Radiation source: fine-focus sealed tube 2871 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.033$ graphite

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ phi and ω scans

Absorption correction: multi-scan $h = -14 \rightarrow 12$ (SADABS; Bruker, 2001)

 $T_{\min} = 0.973$, $T_{\max} = 0.978$ $k = -22 \rightarrow 22$

22480 measured reflections $l = -21 \rightarrow 24$

Refinement

 $wR(F^2) = 0.148$

4118 reflections

269 parameters

Refinement on F^2 Secondary atom site location: difference Fourier map

Least-squares matrix: full

Hydrogen site location: inferred from neighbouring

sites

 $R[F^2 > 2\sigma(F^2)] = 0.048$ H-atom parameters constrained

 $w = 1/[\sigma^2(F_0^2) + (0.0633P)^2 + 1.5443P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$

 $\Delta \rho_{\text{max}} = 0.31 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.20 \text{ e Å}^{-3}$

Extinction correction: SHELXL97 (Sheldrick, 2008),

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct

methods

0 restraints

S = 1.05

Extinction coefficient: 0.0021 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
O1	1.01105 (11)	0.08044 (6)	0.73974 (7)	0.0513 (4)
O2	1.19100 (13)	0.05098 (8)	0.73607 (9)	0.0768 (5)
N1	0.97347 (15)	-0.00910 (9)	0.85788 (8)	0.0567 (5)
N2	1.00594 (16)	-0.05609 (9)	0.90444 (9)	0.0646 (5)
N3	0.8306 (2)	-0.13197 (10)	0.68953 (12)	0.0864 (7)
C1	0.8888(3)	0.07058 (15)	0.93404 (14)	0.0988 (10)
H1A	0.9211	0.0479	0.9699	0.119*
H1B	0.8437	0.1091	0.9410	0.119*
C2	0.9067(2)	0.04860 (12)	0.87455 (12)	0.0699 (7)
H2	0.8729	0.0726	0.8400	0.084*
C3	1.05513 (19)	-0.10678 (11)	0.87092 (11)	0.0593 (6)
C4	1.05432 (18)	-0.09274 (10)	0.80299 (11)	0.0576 (5)
H4	1.0837	-0.1202	0.7694	0.069*
C5	1.00186 (16)	-0.03077 (10)	0.79596 (10)	0.0500 (5)
C6	1.1022 (2)	-0.16827 (13)	0.90619 (13)	0.0807(8)
H6A	1.1816	-0.1636	0.9094	0.121*

Н6В	1.0844	-0.2097	0.8820	0.121*
H6C	1.0709	-0.1710	0.9499	0.121*
C7	0.97899 (16)	0.01082 (9)	0.73651 (9)	0.0485 (5)
C8	0.92256 (16)	-0.01145 (10)	0.68363 (10)	0.0494 (5)
C9	0.87266 (19)	-0.07898 (11)	0.68833 (11)	0.0494 (3)
C10	0.90092 (17)	0.07838 (11)	0.62182 (10)	0.0512 (5)
C10	0.79697 (18)	0.02586 (12)	0.59251 (11)	0.0512 (5)
H11	0.7419	-0.0023	0.6105	0.0010 (0)
C12	0.7419	0.06478 (12)	0.53681 (11)	0.074
H12	0.77404 (19)	0.0624	0.5182	0.0033 (0)
C13				
	0.85333 (19)	0.10742 (11)	0.50771 (10)	0.0580 (5)
C14	0.9582 (2)	0.10713 (13)	0.53610 (11)	0.0702 (7)
H14	1.0142	0.1338	0.5172	0.084*
C15	0.98194 (19)	0.06812 (13)	0.59201 (11)	0.0660 (6)
H15	1.0535	0.0689	0.6096	0.079*
C16	0.8234 (2)	0.15167 (13)	0.44748 (11)	0.0702 (7)
C17	0.7940 (3)	0.10424 (16)	0.38919 (13)	0.1009 (10)
H17A	0.8573	0.0761	0.3781	0.151*
H17B	0.7735	0.1320	0.3516	0.151*
H17C	0.7327	0.0749	0.4013	0.151*
C18	0.7231 (3)	0.19699 (17)	0.46499 (16)	0.1115 (11)
H18A	0.6607	0.1680	0.4758	0.167*
H18B	0.7045	0.2258	0.4278	0.167*
H18C	0.7411	0.2257	0.5024	0.167*
C19	0.9185 (3)	0.19962 (16)	0.42640 (15)	0.1063 (11)
H19A	0.9387	0.2291	0.4628	0.160*
H19B	0.8949	0.2276	0.3896	0.160*
H19C	0.9817	0.1723	0.4135	0.160*
C20	1.12292 (17)	0.09525 (10)	0.74372 (10)	0.0518 (5)
C21	1.14310 (17)	0.17108 (10)	0.75803 (11)	0.0556 (5)
C22	1.0765 (3)	0.21582 (14)	0.7115 (2)	0.1206 (13)
H22A	1.0931	0.2637	0.7197	0.181*
H22B	0.9984	0.2078	0.7186	0.181*
H22C	1.0953	0.2045	0.6666	0.181*
C23	1.2642 (2)	0.18635 (16)	0.7505 (2)	0.1382 (17)
H23A	1.2859	0.1792	0.7052	0.207*
H23B	1.3064	0.1560	0.7787	0.207*
H23C	1.2783	0.2337	0.7627	0.207*
C24	1.1051 (4)	0.18545 (16)	0.82782 (17)	0.1350 (16)
H24A	1.1466	0.1570	0.8581	0.202*
H24B	1.0272	0.1750	0.8317	0.202*
H24C	1.1173	0.2335	0.8381	0.202*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0501 (8)	0.0407 (7)	0.0630 (9)	-0.0020 (6)	-0.0045 (6)	0.0059 (6)
O2	0.0561 (9)	0.0525 (9)	0.1218 (14)	0.0054(8)	0.0108 (9)	-0.0098(9)

N1	0.0695 (12)	0.0507 (10)	0.0500 (10)	0.0061 (9)	-0.0031 (8)	0.0059(8)	
N2	0.0793 (13)	0.0600 (11)	0.0544 (10)	0.0039 (10)	-0.0052 (9)	0.0125 (9)	
N3	0.0908 (16)	0.0511 (12)	0.1174 (18)	-0.0115 (11)	-0.0258 (13)	0.0096 (12)	
C1	0.145 (3)	0.0825 (19)	0.0688 (18)	0.0329 (19)	0.0055 (17)	0.0000 (14)	
C2	0.0892 (18)	0.0611 (14)	0.0593 (14)	0.0129 (13)	0.0022 (12)	0.0055 (11)	
C3	0.0642 (14)	0.0517 (12)	0.0620 (13)	0.0014 (11)	-0.0064 (11)	0.0130 (10)	
C4	0.0654 (13)	0.0489 (12)	0.0587 (13)	0.0042 (10)	-0.0022 (10)	0.0059 (10)	
C5	0.0534 (12)	0.0448 (11)	0.0519 (11)	-0.0020(9)	-0.0034 (9)	0.0049 (9)	
C6	0.0979 (19)	0.0665 (15)	0.0776 (16)	0.0142 (14)	-0.0088 (14)	0.0238 (13)	
C7	0.0490 (11)	0.0411 (10)	0.0554 (12)	0.0007 (9)	0.0007 (9)	0.0054 (9)	
C8	0.0504 (11)	0.0442 (11)	0.0537 (12)	0.0005 (9)	-0.0020 (9)	0.0029 (9)	
C9	0.0648 (14)	0.0477 (13)	0.0676 (14)	0.0004 (11)	-0.0119 (11)	0.0053 (10)	
C10	0.0547 (12)	0.0468 (11)	0.0522 (11)	0.0009 (9)	-0.0039(9)	0.0014 (9)	
C11	0.0564 (13)	0.0635 (13)	0.0649 (13)	-0.0116 (11)	-0.0075 (10)	0.0085 (11)	
C12	0.0586 (14)	0.0743 (15)	0.0637 (14)	-0.0059 (12)	-0.0145 (11)	0.0092 (12)	
C13	0.0682 (14)	0.0568 (12)	0.0491 (12)	-0.0019 (11)	-0.0072 (10)	0.0013 (10)	
C14	0.0679 (15)	0.0834 (17)	0.0593 (14)	-0.0164 (13)	-0.0032 (11)	0.0163 (12)	
C15	0.0520 (13)	0.0869 (17)	0.0591 (13)	-0.0097 (12)	-0.0073 (10)	0.0130 (12)	
C16	0.0887 (18)	0.0700 (15)	0.0520 (13)	0.0016 (13)	-0.0084 (12)	0.0084 (11)	
C17	0.139 (3)	0.106(2)	0.0578 (15)	-0.004(2)	-0.0199 (16)	0.0021 (15)	
C18	0.133 (3)	0.107(2)	0.095(2)	0.043 (2)	-0.0074 (19)	0.0255 (18)	
C19	0.132 (3)	0.103 (2)	0.083 (2)	-0.021 (2)	-0.0145 (18)	0.0406 (17)	
C20	0.0504 (12)	0.0487 (11)	0.0562 (12)	-0.0004 (10)	0.0018 (9)	0.0025 (9)	
C21	0.0500 (12)	0.0434 (11)	0.0734 (14)	-0.0003 (9)	0.0010 (10)	-0.0006 (10)	
C22	0.124(3)	0.0591 (16)	0.179 (3)	-0.0163 (17)	-0.050(2)	0.0348 (19)	
C23	0.0617 (18)	0.0661 (17)	0.287 (5)	-0.0136 (14)	0.013 (2)	-0.039(3)	
C24	0.229 (5)	0.0684 (18)	0.107 (3)	-0.036 (2)	0.047 (3)	-0.0325 (18)	
		,	()	()			
Geometric para	umeters (Å, °)						
O1—C20		1.375 (2)	C13—	-C16	1.52	8 (3)	
O1—C7		1.398 (2)	C14—		1.38	` '	
O2—C20		1.192 (2)	C14—C13 C14—H14		0.9300		
N1—C5		1.361 (2)		C15—H15		0.9300	
N1—N2		1.362 (2)	C16—		1.529 (4)		
N1—C2		1.412 (3)	C16—		1.530 (4)		
N2—C3		1.327 (3)	C16—		1.531 (3)		
N3—C9		1.140 (3)		-H17A	0.96		
C1—C2		1.291 (3)	C17—		0.96		
C1—H1A		0.9300			0.96		
C1—H1B		0.9300	C17—H17C C18—H18A		0.9600		
C2—H2		0.9300	C18—H18B		0.9600		
C3—C4		1.398 (3)	C18—H18C		0.9600		
C3—C6		1.494 (3)		-H19A	0.9600		
C4—C5		1.358 (3)	C19—		0.96		
C4—H4		0.9300	C19—		0.96		
C5—C7		1.469 (3)	C20—		1.51		
С6—Н6А		0.9600	C21—		1.49		
C6—H6B		0.9600	C21—		1.50		
-						` /	

C6—H6C	0.9600	C21—C24	1.506 (4)
C7—C8	1.335 (3)	C22—H22A	0.9600
C8—C9	1.436 (3)	C22—H22B	0.9600
C8—C10	1.487 (3)	C22—H22C	0.9600
C10—C15	1.378 (3)	C23—H23A	0.9600
C10—C11	1.382 (3)	C23—H23B	0.9600
C11—C12	1.379 (3)	C23—H23C	0.9600
C11—H11	0.9300	C24—H24A	0.9600
C12—C13	1.388 (3)	C24—H24B	0.9600
C12—H12	0.9300	C24—H24C	0.9600
C13—C14	1.383 (3)		
C20—O1—C7	118.09 (15)	C13—C16—C18	108.7 (2)
C5—N1—N2	110.95 (17)	C13—C16—C19	112.5 (2)
C5—N1—C2	127.07 (18)	C18—C16—C19	107.9 (2)
N2—N1—C2	121.49 (18)	C13—C16—C17	109.4 (2)
C3—N2—N1	105.40 (17)	C18—C16—C17	109.7 (2)
C2—C1—H1A	120.0	C19—C16—C17	108.6 (2)
C2—C1—H1B	120.0	C16—C17—H17A	109.5
H1A—C1—H1B	120.0	C16—C17—H17B	109.5
C1—C2—N1	125.1 (2)	H17A—C17—H17B	109.5
C1—C2—H2	117.5	C16—C17—H17C	109.5
N1—C2—H2	117.5	H17A—C17—H17C	109.5
N2—C3—C4	110.75 (18)	H17B—C17—H17C	109.5
N2—C3—C6	120.7 (2)	C16—C18—H18A	109.5
C4—C3—C6	128.6 (2)	C16—C18—H18B	109.5
C5—C4—C3	106.02 (19)	H18A—C18—H18B	109.5
C5—C4—H4	127.0	C16—C18—H18C	109.5
C3—C4—H4	127.0	H18A—C18—H18C	109.5
C4—C5—N1	106.87 (17)	H18B—C18—H18C	109.5
C4—C5—C7	130.71 (19)	C16—C19—H19A	109.5
N1—C5—C7	122.39 (17)	C16—C19—H19B	109.5
C3—C6—H6A	109.5	H19A—C19—H19B	109.5
C3—C6—H6B	109.5	C16—C19—H19C	109.5
H6A—C6—H6B	109.5	H19A—C19—H19C	109.5
C3—C6—H6C	109.5	H19B—C19—H19C	109.5
H6A—C6—H6C	109.5	O2—C20—O1	120.89 (18)
H6B—C6—H6C	109.5	O2—C20—C21	127.47 (19)
C8—C7—O1	119.07 (17)	O1—C20—C21	111.64 (17)
C8—C7—C5	124.90 (18)	C23—C21—C22	110.0 (3)
O1—C7—C5	115.76 (16)	C23—C21—C24	110.8 (3)
C7—C8—C9	116.77 (18)	C22—C21—C24	108.5 (3)
C7—C8—C10	126.43 (18)	C23—C21—C20	109.14 (19)
C9—C8—C10	116.71 (17)	C22—C21—C20	110.5 (2)
N3—C9—C8	177.0 (2)	C24—C21—C20	107.96 (19)
C15—C10—C11	117.98 (19)	C21—C22—H22A	107.50 (15)
C15—C10—C11	122.03 (18)	C21—C22—H22B	109.5
C11—C10—C8	119.99 (18)	H22A—C22—H22B	109.5
C12—C11—C10	120.7 (2)	C21—C22—H22C	109.5
C12—C11—C10 C12—C11—H11	119.6	H22A—C22—H22C	109.5
C12 -C111111	117.0	1122/1—022—11220	107.5

C10—C11—H11	119.6	H22B—C22—H22C	109.5
C11—C12—C13	122.0 (2)	C21—C23—H23A	109.5
C11—C12—H12	119.0	C21—C23—H23B	109.5
C13—C12—H12	119.0	H23A—C23—H23B	109.5
C14—C13—C12	116.5 (2)	C21—C23—H23C	109.5
C14—C13—C16	123.1 (2)	H23A—C23—H23C	109.5
C12—C13—C16	120.4 (2)	H23B—C23—H23C	109.5
C13—C14—C15	121.8 (2)	C21—C24—H24A	109.5
C13—C14—H14	119.1	C21—C24—H24B	109.5
C15—C14—H14	119.1	H24A—C24—H24B	109.5
C10—C15—C14	120.9 (2)	C21—C24—H24C	109.5
C10—C15—H15	119.6	H24A—C24—H24C	109.5
C14—C15—H15	119.6	H24B—C24—H24C	109.5
C5—N1—N2—C3	0.3 (2)	C9—C8—C10—C15	-141.2 (2)
C2—N1—N2—C3	172.7 (2)	C7—C8—C10—C11	-137.6 (2)
C5—N1—C2—C1	-174.3 (3)	C9—C8—C10—C11	38.7 (3)
N2—N1—C2—C1	14.6 (4)	C15—C10—C11—C12	-2.9(3)
N1—N2—C3—C4	-0.1 (2)	C8—C10—C11—C12	177.1 (2)
N1—N2—C3—C6	179.9 (2)	C10—C11—C12—C13	0.3 (4)
N2—C3—C4—C5	-0.1 (3)	C11—C12—C13—C14	2.2 (4)
C6—C3—C4—C5	179.9 (2)	C11—C12—C13—C16	-177.8 (2)
C3—C4—C5—N1	0.3 (2)	C12—C13—C14—C15	-2.1(4)
C3—C4—C5—C7	178.3 (2)	C16—C13—C14—C15	177.9 (2)
N2—N1—C5—C4	-0.4(2)	C11—C10—C15—C14	3.0(3)
C2—N1—C5—C4	-172.3 (2)	C8—C10—C15—C14	-177.0 (2)
N2—N1—C5—C7	-178.57 (18)	C13—C14—C15—C10	-0.5(4)
C2—N1—C5—C7	9.5 (3)	C14—C13—C16—C18	-124.4 (3)
C20—O1—C7—C8	-119.5 (2)	C12—C13—C16—C18	55.6 (3)
C20—O1—C7—C5	66.1 (2)	C14—C13—C16—C19	-5.0(3)
C4—C5—C7—C8	57.1 (3)	C12—C13—C16—C19	175.0 (2)
N1—C5—C7—C8	-125.2 (2)	C14—C13—C16—C17	115.8 (3)
C4—C5—C7—O1	-128.9 (2)	C12—C13—C16—C17	-64.1 (3)
N1—C5—C7—O1	48.7 (3)	C7—O1—C20—O2	9.5 (3)
O1—C7—C8—C9	-168.00 (18)	C7—O1—C20—C21	-170.71 (16)
C5—C7—C8—C9	5.8 (3)	O2—C20—C21—C23	9.3 (4)
O1—C7—C8—C10	8.3 (3)	O1—C20—C21—C23	-170.5 (2)
C5—C7—C8—C10	-177.90 (19)	O2—C20—C21—C22	130.3 (3)
C7—C8—C9—N3	170 (5)	O1—C20—C21—C22	-49.5 (3)
C10—C8—C9—N3	-7(5)	O2—C20—C21—C24	-111.2 (3)
C7—C8—C10—C15	42.4 (3)	O1—C20—C21—C24	69.0 (3)

Fig. 1

Fig. 2

