به نام خدا

طراحي الگوريتمها

آرش شفيعي

برنامەرىزى پويا

برنامەرىزى پويا

- برنامهریزی پویا ¹ روشی دیگر برای حل مسائل محاسباتی است که توسط آن همانند روش تقسیم و حل جواب یک مسئله از جواب زیر مسئلههای آن به دست می آید. (در اینجا واژه programming به معنی برنامهریزی و طراحی یک جدول برای پیش بینی آینده است و نه به معنی برنامه نویسی.)
 - در برنامهریزی پویا هر یک از زیر مسئله ها تنها یک بار حل می شوند. جواب یک زیرمسئله در یک جدول ذخیره می شود و از آن جواب برای حل زیر مسئله های دیگر با اندازه های بزرگتر استفاده می شود. در واقع در هر مرحله یک زیر مسئلهٔ بزرگتر با استفاده از جواب یک زیر مسئله کوچکتر حل می شود و این روند ادامه پیدا می کند تا اینکه مسئلهٔ اصلی با استفاده از بزرگترین زیرمسئلهٔ به دست آمده حل می شود.
 - برنامهریزی پویا در بسیاری از مسائل بهینه سازی 2 کاربرد دارد. چنین مسئلههایی معمولا چند جواب دارند که ما به دنبال جوابی میگردیم که مقدار بهینه (کوچکترین یا بزرگترین) داشته باشد.

¹ dynamic programming

² optimization problem

- برای مثال برای پیدا کردن عدد فیبوناچی n ام، باید عدد فیبوناچی n-1 ام و عدد فیبوناچی n-1 ام را محاسبه کنید.
- میتوانیم یک رابطه بازگشتی برای محاسبه عدد فیبوناچی بنویسیم و با استفاده از یک الگوریتم بازگشتی آن را حل کنیم. مشکل الگوریتم بازگشتی این است که برخی از زیرمسئلهها بیش از یک بار حل میشوند. برای مثال برای محاسبه عدد فیبوناچی پنجم عدد فیبوناچی چهارم و سوم محاسبه میشوند. اما هنگام محاسبه عدد فیبوناچی چهارم عدد سوم برای بار دوم باید محاسبه شود.

- یک روش برای حل این مشکل این است که به جای حل مسئله از بالا به پایین،یعنی با شروع از مسئله بزرگتر و محاسبه زیرمسئلههای کوچکتر، مسئله را از پایین به بالا حل کنیم، بدین معنی که ابتدا زیرمسئله را حل کنیم و نتایج را ذخیره کرده و از نتایج در مسئلههای بزرگتر استفاده کنیم.
- برای مثال در مسئله محاسبه عدد فیبوناچی n ام، ابتدا عدد فیبوناچی اول، سپس دوم، سوم، \dots را محاسبه کرده تا به عدد فیبوناچی n ام برسیم.
 - این روش حل مسئله از پایین به بالا با شروع به محاسبه زیرمسئلههای کوچکتر و استفاده از جواب زیرمسئلهها در مسئلههای بزرگتر برنامهریزی پویا نامیده می شود.

مسئلهٔ ضرب زنجیره ای ماتریسها 1 به صورت زیر است. میخواهیم دنباله (زنجیره) ای از n ماتریس $\langle A_1, A_2, \cdots, A_n \rangle$ را در هم ضرب کنیم. این ماتریسها الزاماً ماتریسهای مربعی نیستند و هدف این است که در این ضرب ماتریسی کمترین تعداد عملیات ضرب استفاده شود.

- ضرب ماتریسها شرکت پذیر 2 ، بدین معنی که پرانتز گذاری به هر نحوی انجام میشود، جواب ضرب ماتریسی تغییر نخواهد کرد.

¹ Matrix-chain multiplication problem

² associative

الگوریتم ضرب دو ماتریس $A(a_{ij})$ و $B(b_{ij})$ به صورت زیر است. نتیجه ضرب این دو ماتریس در ماتریس $C(c_{ij})$ خضره می شود.

Algorithm Matrix Multiplication

```
function RECTANGULAR-MATRIX-MULTIPLY(A, B, C, p, q, r)
```

- 1: for i = 1 to p do
- 2: for j = 1 to r do
- 3: for k = 1 to q do
- 4: c[i,j] = a[i,k] * b[k,j]

برای اینکه ضرب ماتریسی درست باشد لازم است ابعاد ماتریس A برابر با $p \times q$ و ابعاد ماتریس B برابر با $q \times r$ با $q \times r$ باشد و ابعاد ماتریس حاصلضرب C در اینصورت برابر با $p \times r$ خواهد بود. تعداد عملیات ضرب انجام شده برابر است با pqr.

- زنجیره ضرب ماتریسی $A_1 \cdot A_2 \cdot A_3$ را در نظر بگیرید. فرض کنید ماتریس A_1 با ابعاد 100 \times 10 ، ماتریس A_2 با ابعاد A_3 با ابعاد A_4 با بعاد A_3 با بعاد A_4 با بعاد A_3 با بعاد A_3 با بعاد A_4 با بعاد A_3 با بعاد انجام شود. بنابراین A_3 در حاصلضرب A_4 باید انجام شود. بنابراین نیز به انجام A_3 عملیات ضرب است.
- حال فرض کنید پرانتز گذاری به صورت $(A_1(A_2A_3))$ باشد. در اینصورت نیاز به انجام A_2A_3 عملیات ضرب برای ضرب A_2A_3 و نیاز به انجام A_2A_3 عملیات ضرب برای ضرب A_3 در حاصلضرب A_3 است، بنابراین در مجموع نیاز به انجام 75000 عملیات ضرب است. بنابراین با استفاده از پرانتز گذاری اول، عملیات ضرب A_3 برابر سریعتر انجام می شود.

- مسئله ضرب زنجیرهای ماتریسها را به صورت زیر بیان می کنیم : $\langle A_1, A_2, \cdots, A_n \rangle$ ماتریس $\langle A_1, A_2, \cdots, A_n \rangle$ را در نظر بگیرید، به طوری که به ازای $\langle A_1, A_2, \cdots, A_n \rangle$ ، ابعاد ماتریس $\langle A_1, A_2, \cdots, a_n \rangle$ خسرب $\langle a_1, a_2, \cdots, a_n \rangle$ خسربها در عملیات ضرب این زنجیرهٔ ماتریسی حداقل باشد. ابعاد ورودی مسئله به صورت ضرب این زنجیرهٔ ماتریسی حداقل باشد. ابعاد ورودی مسئله به صورت $\langle p_0, p_1, p_2, \cdots, p_n \rangle$ داده شده اند.
- در مسئله ضرب زنجیرهای ماتریسها نمیخواهیم حاصلضرب ماتریسها را به دست آوریم بلکه تنها میخواهیم ترتیب ضرب را به گونهای به دست آوریم که هزینه ضرب به حداقل برسد. معمولا زمانی که صرف پیدا کردن پرانتز گذاری بهینه میشود ارزش هزینه کردن دارد، چرا که ممکن است ضرب ماتریسها به صورت ترتیبی هزینهٔ گزافی به کاربر تحمیل کند.

- قبل از اینکه این مسئله را حل کنیم، بررسی میکنیم چند پرانتز گذاری متفاوت وجود دارد. در واقع یک الگوریتم ساده برای حل این مسئله این است که هزینهٔ همهٔ پرانتز گذاریها را با یکدیگر مقایسه کنیم ولی از آنجایی که تعداد پرانتز گذاریها بسیار زیاد است، بررسی همهٔ حالات مقدور نیست.
- فرض کنید تعداد کل حالات برای پرانتز گذاری n ماتریس برابر باشد با P(n). وقتی n=1 تنها یک ماتریس در زنجیره وجود دارد و بنابراین تنها یک حالت برای پرانتز گذاری وجود دارد. وقتی $n \ge 1$ باشد، درواقع عبارت می تواند به دو قسمت شکسته شود به طوری که هر قسمت به طور جداگانه پرانتز گذاری شود. تعداد کل حالتهای پرانتز گذاری برابر است با ضرب تعداد حالات پرانتز گذاری قسمت اول ضرب در تعداد حالتهای پرانتز گذاری قسمت دوم.

- این زنجیره می تواند به شکلهای متعددی به دو قسمت تقسیم شود که با احتساب همهٔ حالتها عبارت زیر را برای تعداد کل حالتهای پرانتز گذاری به دست می آوریم.

$$P(n) = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n \geqslant 2 \end{cases}$$

با حل این رابطهٔ بازگشتی به دست می آید $P(n) = \Omega(2^n)$. در واقع P(n) دنبالهٔ اعداد کاتالان P(n) در این رابطهٔ بازگشتی به دست می آید $P(n) = \Omega(2^n)$. در این را می سازد که رشد آن نمایی است و بنابراین به ازای P(n) همای بسیار بزرگ، بررسی کردن همهٔ حالتها در عمل غیرممکن است.

¹ catalan numbers

- حال از روش برنامهریزی پویا برای بهینهسازی پرانتز گذاری زنجیرهٔ ماتریسی استفاده میکنیم. یک الگوریتم به روش برنامهریزی پویا برای یک مسئلهٔ بهینهسازی از چهار مرحله تشکیل شده است:

۱- تشخیص ساختار جواب بهینه بر اساس جواب زیرمسئلهها

۲- تعریف کردن مقدار جواب بهینه به طور بازگشتی

۳- محاسبه کردن مقدار جواب بهینه

۴- ساختن جواب بهینه توسط اطلاعات محاسبه شده

- برای حل یک مسئلهٔ بهینه سازی توسط برنامه ریزی پویا باید مسئله دارای زیرساختار بهینه 1 باشد.
- یک مسئله دارای زیرساختار بهینه است اگر جواب بهینه برای یک مسئله، شامل جوابهای زیرمسئلهها باشد. به عبارت دیگر اگر جواب یک مسئلهٔ بهینهسازی را به دست آوریم، باید بتوانیم از جواب آن برای زیرمسئلهها نیز استفاده کنیم.
- برای مثال مسئله کوتاهترین مسیر در گراف دارای زیرساختار بهینه است. اگر کوتاهترین مسیر از x به y را به دست آوریم به طوری که مسیر از z عبور کند، کوتاهترین مسیر از z به z و همچنین کوتاهترین مسیر از z به y نیز در جواب مسئله به دست آمده است.
 - اما مسئله بلندترین مسیر دارای زیرساختار بهینه نیست. اگر بلندترین مسیر از x به y را به دست آوریم به طوری که مسیر از z عبور کند، نمی توانیم بگوییم بلندترین مسیر از z به y نیز در جواب مسئله است، زیرا ممکن است بلندترین مسیر از z به z از z عبور کند.

¹ optimal substructure

- (گام ۱) تشخیص ساختار جواب بهینه بر اساس جواب زیرمسئلهها:
- اولین مرحله در برنامه ریزی پویا تشخیص دادن ساختاری از مسئله است که در زیر مسئله ها نیز تکرار می شود. به عبارت دیگر اگر مسئله را برای یک زیر مسئله حل کنیم، باید بتوانیم با استفاده از اطلاعات زیر مسئله، مسئله را حل کنیم.
- i=j فرض کنید به ازای $i \geqslant j$ ماتریس $A_{i:j}$ از ضرب ماتریسهای $A_{i+1} \cdots A_j$ به دست بیاید. اگر $i \geqslant j$ ماتریس و مود دارد، اما اگر i < j باشد آنگاه برای پرانتز گذاری این عبارت می توانیم آن را به دو قسمت $A_{i:k}$ و $A_{i:k}$ تقسیم کنیم به طوری که $i \geqslant k < j$. با ضرب این دو ماتریس در یکدیگر، حاصل $A_{i:k}$ را به دست می آوریم. هزینهٔ پرانتز گذاری $A_{i:k}$ برابر است با هزینه پرانتز گذاری $A_{i:k}$ به علاوهٔ هزینهٔ ضرب دو قسمت در یکدیگر، هزینهٔ پرانتز گذاری $A_{i:k}$ به علاوهٔ هزینهٔ ضرب دو قسمت در یکدیگر،

- بنابراین باید مقدار k را پیدا کنیم به طوری که هزینهٔ پرانتز گذاری $A_{i:k}$ به علاوهٔ هزینهٔ پرانتزگذاری $A_{k+1:j}$ به علاوهٔ هزینهٔ ضرب $A_{i:k}$ در $A_{k+1:j}$ بهینه باشد. آنگاه پرانتز گذاری $A_{i:j}$ نیز بهینه خواهد بود.
- پس برای حل مسئله یافتن هزینهٔ پرانتزگذاری بهینه برای $A_{i:j}$ باید به ازای همهٔ k ها هزینهٔ پرانتزگذاری بهینه برای $A_{i:k}$ و $A_{k+1:j}$ را محاسبه و با هزینهٔ ضرب $A_{i:k}$ در $A_{k+1:j}$ جمع کنیم. آنگاه از این میان k را به گونهای انتخاب کنیم که هزینهٔ پرانتزگذاری بهینه باشد (تعداد ضربهای پرانتزگذاری $A_{i:j}$ کمترین مقدار ممکن باشد).

- مسئلهٔ ضرب زنجیرهای ماتریسها دارای زیرساختار بهینه است. به عبارت دیگر اگر یک پرانتزگذاری برای $A_{i:j}$ پیدا کنیم به طوری که به دو قسمت $A_{i:k}$ و $A_{k+1:j}$ تقسیم شود، پرانتزگذاری $A_{i:k}$ نیز بهینه است) .
- اثبات: فرض کنیم پرانتزگذاری $A_{i:j}$ بهینه باشد و پرانتزگذاری $A_{i:k}$ بهینه نباشد. در اینصورت میتوانیم یک پرانتزگذاری بهینه برای $A_{i:k}$ پیدا کنیم و آن را در $A_{i:j}$ استفاده کنیم و یک پرانتزگذاری با هزینه کمتر برای $A_{i:j}$ به دست آوریم که با فرض اولیه در تناقض است.

 $A_{i:k}$ به طور خلاصه، اگر پرانتزگذاری بهینه برای $A_{i:j}$ را پیدا کنیم، این پرانتزگذاری الزاما از دو پرانتزگذاری و $A_{k+1:j}$ نیز بهینه هستند. $A_{k+1:j}$

بدین دلیل میتوانیم از برنامه ریزی پویا استفاده کنیم، زیرا میتوانیم هزینههای پرانتزگذاریهای $A_{i:k}$ و $A_{k+1:j}$ را از قبل ذخیره کنیم، و از این هزینه ها برای محاسبهٔ پرانتزگذاری $A_{i:j}$ استفاده کنیم.

- (گام ۲) تعریف کردن مقدار جواب بهینه به طور بازگشتی:
- فرض کنید m[i,j] حداقل تعداد ضربهای مورد نیاز برای محاسبه $A_{i:j}$ باشد. حداقل تعداد ضربهای مورد نیاز برای کل n ماتریس یعنی $A_{1:n}$ برابراست با m[1,n].
 - میخواهیم یک عبارت بازگشتی برای مقدار m[i,j] محاسبه کنیم.
 - -m[i,j]=0 باشد، هزینهای وجود ندارد، بنابراین i=j
- اگر i < j باشد، از ساختار جواب بهینه برای زیر مسئلهها استفاده می کنیم. فرض کنید یک پرانتز گذاری بهینه حاصلضرب $A_{i:j}$ را به دو قسمت $A_{i:k}$ و $A_{k+1:j}$ تقسیم می کند به طوری که $A_{i:j}$ را به دو قسمت $A_{i:k}$ برای محاسبه $a_{i:k}$ به علاوه هزینه $a_{i:k}$ برای محاسبه $a_{i:k}$ به علاوه هزینه ضرب دو قسمت در یکدیگر. حاصلضرب $a_{i:k}$ به تعداد $a_{i:k}$ به عملیات $a_{i:k}$ به تعداد $a_{i:k}$ به علیات خرب نیاز دارد. بنابراین داریم :

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i$$

- در رابطه قبل فرض کردیم مقدار k را میدانیم، اما از آنجایی که مقدار k ناشناخته است باید همهٔ مقادیر k به ازای $k=i,i+1,\cdots,j-1$ را بهدست آوریم. بنابراین رابطهٔ بازگشتی را در حالت کلی به صورت زیر می نویسیم.

$$m[i,j] = \left\{ \begin{array}{ll} 0 & i = j & \text{if } i = j \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j : i \leqslant k < j\} & i < j \end{array} \right.$$

- (گام ۳) محاسبه کردن مقدار جواب بهینه:
- حال می توانیم برنامه ای بنویسیم که به صورت بازگشتی رابطهٔ بازگشتی به دست آمده را محاسبه کند تا حداقل مقدار m[1,n] را به دست آوریم. این الگوریتم بازگشتی برای محاسبه، زمانی از مرتبه نمایی نیاز دارد، پس از این الگوریتم نیز در عمل برای n های بسیار بزرگ نمی توانیم استفاده کنیم.
 - مشکل الگوریتم بازگشتی این است که برخی از زیر مسئلهها یعنی برخی از m[i,j] ها ممکن است چندبار محاسبه شوند. برای مثال برای دو پرانتزگذاری $(A_{p:q})(A_{q+1})$ و $(A_{p:q})(A_{p:q})$ دو بار باید هزینه پرانتزگذاری بهینه $A_{p:q}$ محاسبه شود.
 - . $\Theta(n^2)$ برابراست با $1\leqslant i\leqslant j\leqslant n$ برابراست با اما تعداد کل زیر مسئلهها به ازای

- به جای حل رابطه بازگشتی با استفاده از یک الگوریتم بازگشتی، آن را توسط جدولی حل میکنیم که مقادیر m[i,j] را از پایین به بالا محاسبه کند، بدین معنی که از m[1,1] شروع میکنیم و به ترتیب زیر مسئلههای بزرگتر را با استفاده از زیر مسئلههای کوچکتر حل میکنیم.
- به این روش حل مسئله روش برنامه ریزی پویا گفته می شود. در برنامه ریزی پویا مسئله به زیرمسأله ها شكسته شده، و حل مسئله با شروع از كوچكترین زیر مسئله ها آغاز می شود تا جواب مسئله اصلی با استفاده از زیر مسئله های كوچكتر محاسبه می شود.

- الگوریتم زیر، مسئلهٔ بهینهسازی ضرب ماتریسی را به روش برنامهریزی پویا حل می کند.

Algorithm Matrix Chain

```
function Matrix-Chain-Order(p, n)
1: let m[1:n, 1:n] and s[1:n-1, 2:n] be new tables
2: for i = 1 to n do ▷ chain length 1
3: m[i,i] = 0
4: for t = 2 to n do \triangleright t is the chain length
5: for i = 1 to n - t + 1 do \triangleright chain begins at Ai
6:
        j = i + t - 1 \triangleright chain ends at Aj
7: m[i,j] = \infty
8: for k = i to j - 1 do \triangleright try A[i:k] A[k+1:j]
           q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j]
9:
10:
   if q < m[i,j] then
              m[i,j] = q
                                  > remember this cost
11:
              s[i,j] = k
                                      > remember this index
12:
13: return m and s
```

- زمان مورد نیاز برای حل این مسئله $O(n^3)$ و حافظه مورد نیاز برای حل آن $\Theta(n^2)$ است، زیرا نیاز به نگهداری جدول برای محاسبه زیر مسئلهها میباشد.

- با استفاده از برنامهریزی پویا، زمان حل یک مسئله را از زمان نمایی به زمان چند جملهای درجه سوم کاهش

- (گام ۲) ساختن جواب بهینه توسط اطلاعات محاسبه شده:
- گرچه در گام قبل مقدار بهینه برای تعداد ضربها در یک زنجیرهٔ ماتریسی را محاسبه کردیم، اما روش پرانتزگذاری ماتریسها را به دست نیاوردیم.
- جدول s[1:n-1,2:n] که در الگوریتم قبل محاسبه کردیم اطلاعات مورد نیاز برای جواب بهینه را نگهداری می کند. هر عنصر s[i,j] مقدار k را ذخیره می کند، به طوری که $A_{i:j}$ به دو قسمت $A_{i:k}$ و $A_{k+1:j}$ برای ضرب بهینه تقسیم می شود.

- الگوریتم زیر پرانتز گذاری را برای مسئله ضرب زنجیرهٔ ماتریسها انجام میدهد.

Algorithm Print Optimal Parentheses

```
function PRINT-OPTIMAL-PARENS(s, i, j)

1: if i == j then

2:    print "A"i

3: else

4:    print "("

5:    Print-Optimal-Parens (s, i, s[i, j])

6:    Print-Optimal-Parens (s, s[i, j]+1, j)

7:    print ")"
```

- برای حل یک مسئله توسط روش برنامهریزی پویا، مسئله باید دو ویژگی داشته باشد.
- ویژگی اول این است که مسئله را باید بتوان با استفاده از جواب زیر مسئلههای آن به دست آورد. درواقع باید بتوان برای مسئله زیر مسئلههایی پیدا کرد که ساختار آنها شبیه مسئله اصلی است. به عبارت دیگر مسئله باید دارای زیرساختار بهینه باشد.
- ویژگی دوم این است که اگر بخواهیم مسئله را توسط الگوریتم بازگشتی حل کنیم باید زیر مسئلهها همپوشانی داشته باشند. بدین ترتیب جدول برنامهریزی پویا راه حلی برای جلوگیری از محاسبات تکراری در این همپوشانیها خواهد بود.

برخی مواقع زیست شناسان نیاز دارند دو یا چند ارگانیسم مختلف را با یکدیگر مقایسه کنند. برای این کار دیان این این این این این ارگانیسمها باید مقایسه شوند. یک رشتهٔ دیان ای شامل رشته ای از مولکولها به نام مولکولهای پایه است که میتوانند آدنین 1 ، سیتوزین 2 ، گرانین 3 ، یا تیمین 4 باشند. هریک از این مولکولهای پایه با یک حرف نشان داده میشوند، بنابراین یک رشته دیان ای، یک رشته بر روی الفبای $\{A, C, G, T\}$ است. برای مثال $\{A, C, G, T\}$ یک رشته دیان ای است.

یکی از دلایلی که نیاز داریم دو رشتهٔ دیانای را با یکدیگر مقایسه کنیم، برای این است که متوجه شویم دو
 ارگانیسم چقدر به یکدیگر شباهت دارند.

¹ adenine

² cytosine

³ granine

⁴ thymine

- روشهای مختلفی برای سنجش شباهت دو رشتهٔ دیانای وجود دارند.
- یک روش برای سنجش شباهت این است که زیر رشتههای مشترک بین دو رشته را پیدا کنیم. هرچقدر این زیر رشتههای مشترک طول بیشتری داشته باشند، دو رشته به یکدیگر شبیهترند.
- در این روش برای مقایسه دو رشته باید زیر رشته های مشترک محاسبه شوند و طولانی ترین آنها پیدا شود. به این مسئله، مسئلهٔ پیدا کردن طولانی ترین زیر رشته مشترک 1 گفته می شود.

¹ longest common subsequence

- یک زیر دنباله از یک دنباله، دنبالهای است که از حذف صفر یا بیشتر عنصر از دنباله اصلی به دست بیاید.

ا را زیر دنباله $Z = \langle z_1, z_2, \cdots, z_k \rangle$ ، دنباله $X = \langle x_1, x_2, \cdots, x_m \rangle$ را زیر دنباله $Z = \langle z_1, z_2, \cdots, z_k \rangle$ ، دنباله صعودی $Z = \langle i_1, i_2, \cdots, i_k \rangle$ از اندیسهای $Z = \langle i_1, i_2, \cdots, i_k \rangle$ داشته باشیم $Z = \langle i_1, i_2, \cdots, i_k \rangle$ داشته باشیم $Z = \langle i_1, i_2, \cdots, i_k \rangle$ داشته باشیم $Z = \langle i_1, i_2, \cdots, i_k \rangle$

برای مثال دنبالهٔ $X = \langle A,B,C,B,D,A,B \rangle$ یک زیردنباله از دنبالهٔ $Z = \langle B,C,D,B \rangle$ است با اندس های $X = \langle 2,3,5,7 \rangle$ اندس های $X = \langle 2,3,5,7 \rangle$

¹ subsequence

X و X است اگر X و X ، میگوییم دنبالهٔ X یک زیردنبالهٔ مشترک X و X است اگر X زیر دنباله ی از X و همچنین X باشد.

- دنبالهٔ $\langle B, C, A \rangle$ با طول ۳ طولانی ترین زیر دنبالهٔ مشترک X و Y نیست، چرا که دنبالهٔ $\langle B, C, B, A \rangle$ با طول ۴ وجود دارد که زیر دنبالهٔ مشترک X و X است. این زیردنباله، طولانی ترین زیر دنبالهٔ مشترک X و X است، چرا که زیردنبالهٔ مشترک بلندتری وجود ندارد.

¹ common subsequence

² longest common subsequence

میتوانیم مسئله طولانی ترین زیر دنبالهٔ مشترک را با استفاده از یک روش جستجوی کامل 1 به دست آوریم، بدین معنی که همهٔ زیر دنباله های مشترک دو رشته را به دست آوریم و مقایسه کنیم. از آنجایی که رشته X با طول m تعداد m 2 زیر دنباله دارد، بنابراین این روش برای رشته های طولانی غیر قابل استفاده است.

- میخواهیم این مسئله را به روش برنامهریزی پویا حل کنیم.

¹ exhaustive search (brute-force search)

طراحي الگوريتمها

- گام اول: مشخص كردن ساختار جواب مسئله بر اساس زيرمسئلهها
- برای تعریف مسئله طولانی ترین زیررشتهٔ مشترک با استفاده از زیر مسئلهها، ابتدا مفهوم پیشوند 1 یک دنباله را تعریف می کنیم.
- به ازای دنبالهٔ $X_i=\langle x_1,x_2,\cdots,x_n\rangle$ امین پیشوند $X_i=\langle x_1,x_2,\cdots,x_m\rangle$ به ازای دنبالهٔ i ، i = 0, 1, \cdots , m

برنامهریزی پویا ۸۰/۳۲

¹ prefix

- و (y_1,y_2,\cdots,y_n) دو دنباله باشند و $X=\langle x_1,x_2,\cdots,x_m
 angle$ دو دنباله باشند و $Z=\langle z_1,z_2,\cdots,z_k
 angle$
- . اگر $x_{m}=y_{n}$ آنگاه $x_{m}=y_{n}$ و Z_{k-1} طولانیترین زیر رشته مشترک X_{m-1} و X_{m-1} است.
 - ر کا ست. X_{m-1} و X_{m-1} و کا است. $Z_{k} \neq x_{m}$ و کا است. $Z_{k} \neq x_{m}$ و کا است.
 - است. $X_m
 eq y_n$ و $x_m
 eq y_n$ باشد، آنگاه Z طولانی ترین زیر رشته مشترک X و $X_m
 eq y_n$ است.

- اثبات : گزارههای ۱، ۲، ۳ در قضیه قبل را به ترتیب اثبات میکنیم.
- اگر $x_{
 m m}=y_{
 m n}$ باشد، الزاما باید داشته باشیم $z_{
 m k}=x_{
 m m}$ این گزاره را با برهان خلف ثابت می کنیم. فرض کنید $z_k
 eq x_m$ ، آنگاه می توانیم x_m که برابر با y_n است را به $z_k
 eq x_m$ ، آنگاه می توانیم $z_k
 eq x_m$ کنیم که طول آن k+1 است. از آنجایی که در صورت مسئله گفته شده Z طولانی ترین زیر رشته مشترک با طول k است، پس به تناقض میرسیم. پس فرض اولیه نادرست است و الزاما باید داشته باشیم و مسترک X_{m-1} و مسترک X_{m-1} نیز هست. حال باید ثابت کنیم Z_{k-1} طولانی ترین زیر رشته مشترک $z_k=x_m=y_n$ این گزاره را با برهان خلف ثابت میکنیم. فرض یک زیر رشته مشترک W برای X_{m-1} و جود دارد که طول آن از k-1 بیشتر است. در اینصورت با اضافه کردن $x_{
 m m}=y_{
 m n}$ به W زیر رشته ای ساخته می شود که طول آن از k بیشتر است. اما در اینجا به تناقض میرسیم چون فرض کردیم طول بلندترین زیر رشته مشترک k است.

(۲) اگر $x_k \neq x_m$ باشد، آنگاه Z یک زیر رشته مشترک برای X_{m-1} و X_m است. اگر یک زیر رشته مشترک دیگر به نام X با طول بیشتر از X_m برای X_{m-1} و X_m و جود داشت، آنگاه X_m میتوانست یک زیر رشته مشترک برای X_m و X_m نیز باشد که این متناقض است با فرض اینکه X_m بلندترین زیر رشته مشترک X_m و X_m باست.

- (۳) این اثبات شبیه و متقارن مورد (۲) است.

طولانى ترين زير رشته مشترك

- بنابراین توانستیم مسئله طولانی ترین زیر رشته مشترک را بر اساس زیر مسئله های بهینه آن تعریف کنیم.

- پس این مسئله دارای زیرساختار بهینه است.

 79 طراحي الگوريتمها برنامه يزى پويا

- گام دوم: تعریف کردن مقدار جواب به صورت بازگشتی
- فرض کنید c[i,j] طول بلندترین زیررشتهٔ مشترک X_i و باشد.
- این مسئله بهینهسازی را میتوانیم بر اساس زیر ساختارهای بهینه به صورت زیر تعریف کنیم.

$$c[i,j] = \left\{ \begin{array}{ll} 0 & j = 0 \text{ i } i = 0 \text{ } \\ c[i-1,j-1]+1 & x_i = y_j \text{ } i,j > 0 \text{ } \\ max\{c[i,j-1],c[i-1,j]\} & x_i \neq y_j \text{ } i,j > 0 \text{ } \end{array} \right.$$

- دقت کنید که اگر الگوریتم بازگشتی برای حل این مسئله استفاده شود زیر مسئلهها به طور تکراری محاسبه میشوند. پس میتوانیم در این جا از برنامهریزی پویا استفاده کنیم.

- گام سوم: محاسبه طول طولانی ترین زیر دنباله مشترک
- از آنجایی که برای دو دنباله $Y = \langle y_1, y_2, \cdots, y_n \rangle$ و $X = \langle x_1, x_2, \cdots, x_m \rangle$ مقادیر جدول c[0:m,0:n] باید محاسبه شوند و هر خانه از جدول در زمان ثابت $\Theta(1)$ محاسبه میشود، بنابراین زمان اجرای الگوریتم برنامه ریزی پویا برای این مسئله برابراست با $\Theta(mn)$. طول زیر رشته مشترک برابراست با مقدار محاسبه شده برای c[m,n].

- الگوریتم طولانی ترین زیررشته مشترک به صورت زیر نوشته شده است.

Algorithm Longest Common Subsequence Length

```
function LCS-LENGTH(X,Y, m, n)
```

1: let b[1:m, 1:n] and c[0:m, 0:n] be new tables

2: for i = 1 to m do

3: c[i,0] = 0

4: for j = 0 to n do

5: c[0,j] = 0

Algorithm Longest Common Subsequence Length

```
function LCS-LENGTH(X,Y, m, n)
6: for i = 1 to m do ▷ compute table entries in row-major order
      for j = 1 to n do
8:
        if X[i] == Y[i] then
           c[i, i] = c[i-1, j-1] + 1
9:
           b[i, j] = " 
10:
         else if c[i-1, j] \ge c[i, j-1] then
11:
            c[i, i] = c[i-1, i]
12:
         b[i, i] = "↑"
13:
   else
14:
            c[i, j] = c[i, j-1]
15:
           b[i, j] = "\leftarrow"
16:
17: return c and b
```

طولانى ترين زير رشته مشترك

- گام چهارم: ساختن بلندترین زیر دنبالهٔ مشترک
- با استفاده از جدول b که توسط الگوریتم قبل ساخته شده میتوانیم زیر دنبالهٔ مشترک X و Y را بسازیم، بدین ترتیب که با b[m,n] شروع میکنیم و جهت نشانهها را دنبال میکنیم. علامت $x_i = y_j$ در جدول $x_i = y_j$ میدهد که $x_i = y_j$ در طولانی ترین زیررشتهٔ مشترک است.

Algorithm Print Longest Common Subsequence

طولانى ترين زير رشته مشترك

برای مثال به ازای دو دنبالهٔ $X = \langle A, B, C, B, D, A, B \rangle$ و $X = \langle A, B, C, B, D, A, B \rangle$ جدول زیر به بدست می آید.

طولانى ترين زير رشته مشترك

- پس از طراحی یک الگوریتم معمولاً به دنبال روشهایی برای بهبود در زمان اجرا و میزان حافظه می گردیم.
- در الگوریتم طولانی ترین زیر دنبالهٔ مشترک به طور مثال می توانیم جدول b را حذف کنیم و اطلاعات لازم
 برای ساختن بلندترین زیر دنبالهٔ مشترک را از جدول c به دست آوریم.
- هریک از درایههای c[i,j] از طریق یکی از سه درایهٔ c[i,j-1] ، c[i-1,j] ، c[i,j] محاسبه شده است که در زمان ثابت میتوانیم بدون جدول b به دست آوریم درایه c[i,j] چگونه محاسبه شده است.
- بنابراین طولانی ترین زیردنبالهٔ مشترک را می توانیم همچنان در زمان $\Theta(m+n)$ بسازیم و جدول B را حذف کرده و از حافظهٔ مورد نیاز به میزان B بکاهیم.

درخت جستجوی دودویی بهینه

- فرض کنید میخواهیم برنامه ای طراحی کنیم که متون انگلیسی را به فارسی ترجمه کند. به ازای هر کلمهٔ انگلیسی در یک متن باید با استفاده از یک فرهنگ لغت، معادل فارسی آن را بیابیم. برای یک جستجوی بهینه میتوانیم یک درخت جستجوی دودویی با n رأس بسازیم که هر رأس آن یک کلمهٔ انگلیسی و معادل فارسی آن را شامل شود.

اگر از یک درخت جستجوی دودویی متوازن 1 استفاده کنیم، میتوانیم جستجوی هر کلمه را در یک درخت با $O(\lg n)$ کلمه در زمان $O(\lg n)$

¹ balanced binary search tree

درخت جستجوی دودویی بهینه

- اما کلمات مختلف تعداد تکرارهای مختلف دارند. برای مثال کلمات a یا the در انگلیسی بسیار پر تکرارند و بهتر است این کلمات در درخت جستجو به ریشه نزدیکتر باشند و برخی از اسامی خاص بسیار کم تکرارند و بهتر است که فاصلهٔ آنها از ریشه بیشتر باشد.

استفاده از درخت جستجوی دودویی بهینه 1 میتوان کلمات را به گونهای ذخیره و بازیابی کرد که کلمات با احتمال وقوع بیشتر نزدیکتر به ریشه قرار بگیرند.

¹ optimal binary search tree

- . $k_1 < k_2 < \dots < k_n$ با $K = \langle k_1, k_2, \dots, k_n \rangle$ دنبالهٔ $K = \langle k_1, k_2, \dots, k_n \rangle$ با $K = \langle k_1, k_2, \dots, k_n \rangle$
 - مىخواھىم يك درخت جستجوى دودويى بهينه حاوى اين كليدها بسازيم.
 - به ازای هر یک از کلیدهای k_i ، یک احتمال وقوع p_i نیز داده شده است.
- از آنجایی که برخی از کلیدها در درخت جستجو وجود ندارد (برای مثال کلماتی در کاربرد ترجمه در انگلیسی وجود دارند که معادل فارسی ندارند) ، تعداد n+1 کلید بیاستفاده $d_0, d_1, d_2, \cdots, d_n$ نیز داریم که نماینده این کلیدها هستند. در واقع d_0 نمایندهٔ همهٔ کلیدهایی است که از k_1 کوچکترند و d_n نمایندهٔ همهٔ کلیدهایی است که از $i=1,2,\cdots,n-1$ نمایندهٔ همهٔ کلیدهایی است که بین k_n بزرگترند و همچنین به ازای $i=1,2,\cdots,n-1$ ، کلید $i=1,2,\cdots,n-1$ مقادیری است که بین $i=1,2,\cdots$ هراز دارند. همچنین به ازای هر کلید $i=1,2,\cdots$ یک احتمال وقوع $i=1,2,\cdots$

- در شکل زیر دو درخت جستجوی دودویی بهینه را با تعداد ۵ کلید مشاهده میکنیم.

هر یک از کلیدهای بی رأس میانی است و هر یک از کلیدهای بی استفادهٔ d_i یک برگ در درخت حستجوی بهینه است.

از آنجایی که هر جستجو یا موفق است (که منجر به پیدا کردن یک کلید k_i میشود) و یا ناموفق (که منجر به رسیدن به کلید بی استفادهٔ d_i است)، بنابراین داریم :

$$\sum_{i=1}^{n} p_{i} + \sum_{i=0}^{n} q_{i} = 1$$

- با اطلاع داشتن از احتمال وقوع هر یک از کلیدها، میتوانیم هزینه جستجو در یک درخت جستجو را پیدا کنیم.
- فرض کنید هزینهٔ جستجوی یک کلید در درخت به ازای هر بار جستجو برابر با تعداد رئوس بررسی شده برای رسیدن به آن کلید باشد. بنابراین هزینهٔ جستجوی یک کلید در یک جستجو برابر خواهد بود با عمق 1 رأس مربوط به آن کلید به علاوهٔ یک. ریشه در عمق صفر قرار دارد، بنابراین هزینهٔ یافتن کلید مربوط به ریشه در یک جستجو برابر است با یک.
 - برای یافتن هزینهٔ جستجوی یک کلید در یک متن، باید هزینهٔ یک بار جستجو را در احتمال وقوع آن کلید ض ب کنید.
 - نهایتا برای یافتن هزینهٔ جستجوی یک درخت باید هزینهٔ جستجوی همهٔ کلیدها را با هم جمع کنیم.

طراحي الگوريتمها برنامهريزي پويا ۸۰/۵۰

¹ depth

- بنابراین هزینهٔ جستجو در درخت T برابر است با:

$$\begin{split} \text{E}[\text{search cost in T}] &= \sum_{i=1}^n (\text{depth}_T(k_i) + 1) \cdot p_i + \sum_{i=0}^n (\text{depth}_T(d_i) + 1) \cdot q_i \\ &= 1 + \sum_{i=1}^n \text{depth}_T(k_i) \cdot p_i + \sum_{i=0}^n \text{depth}_T(d_i) \cdot q_i \end{split}$$

- در اینجا depth_T تابعی است که عمق یک کلید را در درخت T نشان میدهد.

- در شکل زیر هزینهٔ جستجو برای دو درخت جستجو محاسبه شده است.

node	depth	probability	contribution	
k_1	1	0.15	0.30	
k_2	0	0.10	0.10	
k_3	2	0.05	0.15	
k_4	1	0.10	0.20	
k_5	2	0.20	0.60	
d_0	2	0.05	0.15	
d_1	2	0.10	0.30	
d_2	3	0.05	0.20	
d_3	3	0.05	0.20	
d_4	3	0.05	0.20	
d_5	3	0.10	0.40	
Total			2.80	

node	depth	probability	contribution
k_1	1	0.15	0.30
k_2	0	0.10	0.10
k_3	3	0.05	0.20
k_4	2	0.10	0.30
k_5	1	0.20	0.40
d_0	2	0.05	0.15
d_1	2	0.10	0.30
d_2	4	0.05	0.25
d_3	4	0.05	0.25
d_4	3	0.05	0.20
d_5	2	0.10	0.30
Total			2.75

- حال به ازای تعدادی کلید به همراه احتمال وقوع آنها، میخواهیم یک درخت جستجوی دودویی بیابیم که هزینهٔ جستجو در آن حداقل است.

- به این درخت، درخت جستجوی دودویی بهینه 1 گفته می شود.

¹ optimal binary search tree

- در شکل زیر دو درخت جستجوی دودویی نشان داده شدهاند. هزینهٔ جستجو در درخت سمت چپ 2.80 و در درخت سمت راست برابر با 2.75 است. درخت سمت راست یک درخت جستجوی بهینه است. در اینجا میتوانیم ببینیم درخت جستجوی دودویی بهینه، الزاماً درختی نیست که عمق آن کمتر باشد.

node	depth	probability	contribution	
k ₁	1	0.15	0.30	
k_2	0	0.10	0.10	
k_3	2	0.05	0.15	
k_4	1	0.10	0.20	
k5	2	0.20	0.60	
d_0	2	0.05	0.15	
d_1	2	0.10	0.30	
d_2	3	0.05	0.20	
d_3	3	0.05	0.20	
d_4	3	0.05	0.20	
d_5	3	0.10	0.40	
Total			2.80	

node	depth	probability	contribution	
k_1	1	0.15	0.30	
k_2	0	0.10	0.10	
k_3	3	0.05	0.20	
k_4	2	0.10	0.30	
k_5	1	0.20	0.40	
d_0	2	0.05	0.15	
d_1	2	0.10	0.30	
d_2	4	0.05	0.25	
d_3	4	0.05	0.25	
d_4	3	0.05	0.20	
d_5	2	0.10	0.30	
Total			2.75	

- همچنین درخت جستجوی دودویی بهینه الزاماً درختی نیست که همهٔ کلیدها با احتمال وقوع بیشتر در ریشهٔ آن باشند. برای مثال کلید k_2 بیشترین احتمال وقوع را دارد، اما ریشهٔ درخت جستجو k_2 است.

- همانند مسئله ضرب زنجیرهای ماتریسها، با استفاده از جستجوی کامل برای بررسی همهٔ درختهای جستجو نمی توانیم در زمان چندجملهای درخت جستجوی دودویی بهینه را به دست آوریم. تعداد همهٔ درختهای جستجوی دودویی از مرتبهٔ نمایی است، بنابراین بررسی همهٔ درختهای جستجو ممکن نیست.

- مىخواهيم اين مسئله را با استفاده از برنامهريزى پويا حل كنيم.

- گام اول: ساختار یک درخت جستجوی دودویی بهینه
- برای بررسی ساختار و مشخص کردن ویژگیهای یک درخت بهینه، ابتدا ساختار درخت و زیردرختهای آن را بررسی میکنیم. در واقع باید اثبات کنیم این مسئله دارای زیرساختار بهینه است، بدین معنی که جواب زیرمسئلهها را میتوان از جواب مسئله استخراج کرد.
- اگریک درخت جستجوی دودویی بهینه T داشته باشیم، زیر درخت T' نیز باید بهینه باشد. اگریک زیر درخت T' وجود داشت که هزینهٔ آن کمتر از T' بود، میتوانستیم T' را با T' جایگزین کنیم و یک درخت با هزینه کمتر به جای T بیابیم که با فرض بهینه بودن T در تناقض است.
 - حال میخواهیم مسئله را با استفاده از جواب زیر مسئلههای بهینهٔ آن حل کنیم.

- یک زیردرخت دلخواه را در نظر بگیرید. این زیردرخت شامل کلیدهای k_i,\cdots,k_j است که برگهای آن را کلیدهای $1\leqslant i\leqslant j\leqslant n$ تشکیل میدهند، به طوری که d_{i-1},\cdots,d_{j}
 - به ازای کلیدهای $k_r \leqslant r \leqslant j$ ، یکی از این کلیدها، برای مثال کلید k_r به طوری که $i \leqslant r \leqslant j$ ، ریشهٔ زیردرخت بهینه برای این کلیدهاست.
- زیردرخت سمت چپ ریشهٔ k_r شامل کلیدهای k_{r-1} , k_{r-1} و کلیدهای برگ d_{r-1} , d_{r-1} است و زیردرخت سمت راست شامل کلیدهای k_{r+1} , k_{r} و کلیدهای برگ d_{r} , d_{r} است.
- فرض کنید در یک زیردرخت با کلیدهای k_i ، کلید k_i ، کلید k_i ، کلیدهای کنیم. زیردرخت سمت چپ این زیردرخت یک برگ با کلید d_{i-1} است.
 - به طور مشابه، اگر k_j را به عنوان ریشه در نظر بگیریم زیر درخت سمت راست این زیر درخت شامل یک برگ با کلید d_j است.

- گام دوم: راه حل بازگشتی
- حال برای تعریف راه حل بهینه به صورت بازگشتی، زیر درختی شامل کلیدهای k_i,\cdots,k_j را در نظر بگیرید به طوری که $1\geqslant i-1$ و $1\geqslant i-1$ را خواهیم داشت. به طوری که $1\geqslant i$
- فرض کنید e[i,j] هزینهٔ جستجوی یک درخت جستجوی بهینه با کلیدهای k_i,\cdots,k_j باشد. هدف محاسبهٔ هزینه جستجو برای همهٔ کلیدهاست که برابر با مقدار e[1,n] میباشد.
- اگر j=i-1 باشد، آنگاه مسئله تنها شامل یک کلید d_{i-1} میشود. در اینصورت هزینهٔ جستجو برابراست با $e[i,i-1]=q_{i-1}$
- وقتی $i \leqslant j \leqslant i$ باشد، باید ریشهٔ k_r را از بین کلیدهای k_i, \cdots, k_j انتخاب کنیم و یک درخت جستجوی بهینه با کلیدهای k_r با کلیدهای k_i, \cdots, k_{r-1} به عنوان زیردرخت سمت چپ ریشهٔ k_r بسازیم. کلیدهای k_r به عنوان زیردرخت سمت راست ریشهٔ k_r بسازیم.

وقتی یک زیردرخت بهینه T' به عنوان زیردرخت یک رأس قرار میگیرد و درخت T را تشکیل میدهد، درواقع عمق هر یک از رأسهای T' در درخت T یک واحد افزوده میشود. در اینصورت هزینهٔ جستجو برای رئوس زیردرخت T' در درخت T به میزان مجموع احتمال رئوس T' افزایش مییابد.

برای مثال فرض کنید درخت T' با کلیدهای k_1, k_2, k_3 را تشکیل داده باشیم. هزینه جستجوی این درخت $E[T'] = \sum_{i=1}^{3} (\operatorname{depth}_{T'}(k_i) + 1) \cdot p_i$ ربدون در نظر گرفتن کلیدهای بی استفاده بی استفاده و با بی استفاده بی استفاده بی استفاده و بی استفاده بی استفاده و بی استفاده بی استفاده و بی استفاد و بی استفاده و بی استفاده و بی استفاده و بی استفاده و بی استفاد و بی استفاده و بی استفاد و بی اس

اگر زیردرخت T' در درخت T قرار بگیرد به طوری که ریشه درخت T کلید k_4 و T' زیردرخت سمت چپ در درخت T باشد، آنگاه خواهیم داشت:

$$\begin{split} E[T] &= p_4 + \Big(\sum_{i=1}^{3} (depth_T(k_i) + 1) \cdot p_i\Big) \\ &= p_4 + \Big(\sum_{i=1}^{3} (depth_{T'}(k_i) + 2) \cdot p_i\Big) \\ &= p_4 + E[T'] + \Big(\sum_{i=1}^{3} p_i\Big) \end{split}$$

برای یک زیردرخت با کلیدهای k_i, \dots, k_j مجموع احتمالها برابر است با :

$$w(i,j) = \sum_{l=i}^{j} p_l + \sum_{l=i-1}^{j} q_l$$

- بنابراین اگر k_r ریشهٔ یک زیردرخت بهینه با کلیدهای k_i, \cdots, k_j باشد، خواهیم داشت :

$$e[i,j] = p_r + (e[i,r-1] + w(i,r-1)) + (e[r+1,j] + w(r+1,j))$$

- از آنجایی که مجموع احتمال وقوع همهٔ رئوس در یک درخت برابر است با مجموع احتمالهای وقوع رئوس زیردرخت راست، بنابراین رابطه زیر برقرار است :

$$w(i, j) = w(i, r - 1) + p_r + w(r + 1, j)$$

- بنابراین میتوانیم رابطه بازگشتی برای محاسبه هزینهٔ جستجو در درخت بهینه را به صورت زیر بازنویسی کنیم:

$$e[i,j] = e[i,r-1] + e[r+1,j] + w(i,j)$$

- در اینجا فرض کردیم که میدانیم کدام رأس به عنوان رأس ریشهٔ kr انتخاب میشود.
- از آنجایی که هدف این است که ریشهای را انتخاب کنیم که مقدار هزینه جستجو را کاهش دهد، بنابراین رابطهٔ بازگشتی برای محاسبهٔ هزینه جستجو در درخت بهینه را به صورت زیر مینویسیم.

$$e[i,j] = \left\{ \begin{array}{ll} q_{i-1} & j = i-1 \text{ } \\ \min\{e[i,r-1] + e[r+1,j] + w(i,j) : i \leqslant r \leqslant j\} \end{array} \right.$$

بنابراین رابطهای برای جدول e[i,j] جهت استفاده در یک الگوریتم برنامهریزی پویا به صورت بازگشتی محاسبه کردیم.

درخت جستجوی دودویی بهینه

- جدول $e[{\mathfrak i},{\mathfrak j}]$ تنها میزان هزینه جستجوی بهینه را نگهداری میکند.
- به یک جدول دیگر نیاز داریم برای اینکه بتوانیم ساختار درخت را نیز نگهداری کنیم تا در نهایت بتوانیم درخت جستجو بهینه را بازسازی کنیم.
- این اطلاعات را در جدول [i,j] root[i,j] نگهداری می کنیم. درواقع مقدار [i,j] به ازای $1 \leqslant i \leqslant j \leqslant n$ برای کلید i کلیدهای $i \leqslant j \leqslant n$ کلیدهای $i \leqslant i \leqslant j \leqslant n$ کلیدهای نام برای می شود.

- گام سوم: محاسبهٔ هزینهٔ جستجو در یک درخت جستجوی دودویی بهینه
- حال با استفاده از روش برنامهریزی پویا میتوانیم مقادیر e[i,j] را به ترتیب از پایین به بالا محاسبه می کنیم. بنابراین کل جدول را به ازای e[1:n+1,0:n] مقداردهی می کنیم.
- d_n اندیس اول از 1 شروع شده و با n+1 خاتمه مییابد، زیرا برای داشتن یک زیردرخت شامل تنها کلید e[n+1,n] نیاز داریم e[n+1,n] را محاسبه کنیم. اندیس دوم باید از صفر شروع شود، زیرا برای داشتن یک زیردرخت تنها با کلید d_0 ، باید مقدار d_0 را محاسبه کنیم.
 - همهٔ مقادیر e[i,j] به ازای $i-1 \geqslant i$ باید محاسبه شوند. جدول e[i,j] ریشهٔ زیردرختها را با کلیدهای k_i,\cdots,k_j ذخیره میکند، به طوری که $i \leqslant j \leqslant n$.

- همچنین میتوانیم از یک جدول دیگر بهره بگیریم تا محاسبات را سریعتر انجام دهیم.
- به جای محاسبه w(i,j) برای هر یک از درایههای e[i,j] جدول w(i,j) برای هر یک از درایههای e[i,j] جدول $w[i,i-1]=q_{i-1}$ به حالت پایه، مقدار $v[i,i-1]=q_{i-1}$ به ازای $v[i,i-1]=q_{i-1}$
 - به ازای $i\geqslant i$ درایههای جدول w را به صورت زیر محاسبه میکنیم.

$$w[i,j] = w[i,j-1] + p_j + q_j$$

- بنابراین میتوانیم $\Theta(n^2)$ مقدار w[i,j] را هرکدام در زمان $\Theta(n^2)$ محاسبه کنیم.

- الگوریتم زیر مسئلهٔ درخت جستجوی دودویی بهینه را به روش برنامهریزی پویا حل میکند.

Algorithm Optimal-BST

```
function OPTIMAL-BST(p, q, n)
```

- 1: let e[1:n+1 , 0:n], w[1:n+1 , 0:n], and root[1:n+1 , 1:n] be new tables
- 2: for i = 1 to n + 1 do \triangleright base cases
- 3: e[i,i-1] = q[i-1]
- 4: w[i,i-1] = q[i-1]

Algorithm Optimal-BST

```
function OPTIMAL-BST(p, q, n)
5. for t = 1 to n do
6: for i = 1 to n - t + 1 do
7: i = i + t - 1
8: e[i,i] = \infty
9: w[i,j] = w[i,j-1] + p[j] + q[j]
10: for r = i to j do \triangleright try all possible roots r
11:
          t = e[i,r-1] + e[r+1,j] + w[i,j]
          if t < e[i,j] then ▷ new minimum?
12:
             e[i,j] = t
13:
            root[i,j] = r
14:
15: return e and root
```

درخت جستجوی دودویی بهینه

انجام می دهد و به یک جدول با اندازهٔ $\Theta(n^3)$ انجام می دهد و به یک جدول با اندازهٔ $\Theta(n^2)$ نیاز دارد.

- در شکل زیر، جدولهای w[i,j]، e[i,j] ، e[i,j] ، استفاده از الگوریتم برنامهریزی پویا برای جستجوی دودویی بهینه برای کلیدهای تعیین شده زیر، محاسبه شده اند.

i	0	1	2	3	4	5
$\overline{p_i}$		0.15	0.10	0.05	0.10 0.05	0.20
q_i	0.05	0.10	0.05	0.05	0.05	0.10

- یک دزد با یک کولهپشتی به یک فروشگاه دستبرد میزند. وزنی که کولهپشتی او میتواند تحمل کند W است. در این مغازه تعداد p_i کالا وجود دارد. هر کالای $item_i$ دارای وزن w_i و ارزش است. دزد میخواهد از میان این کالاها تعدادی را انتخاب کرده در کولهپشتی خود قرار دهد به طوری که مجموع وزن کالاهای انتخاب شده از ظرفیت کولهپشتی یعنی W بیشتر نباشد و مجموع ارزش کالاهای دزدیده شده حداکثر باشد.
- بنابراین دزد میخواهد از مجموعهٔ $S = \{\text{item}_1, \text{item}_2, \cdots, \text{item}_n\}$ یک زیر مجموعه A را انتخاب کند به طور $\sum_{\text{item}_i \in A} p_i$ باشد.
 - تعداد همهٔ حالتهای ممکن تعداد همهٔ زیر مجموعههای S است که برابر است با 2^n جایی که n تعداد کالاهاست.
- در این مسئله دزد یا میتواند یک کالا را بردارد یا بگذارد و امکان شکستن کالاها به دو قسمت وجود ندارد. به همین دلیل به آن مسئله کوله پشتی ۱- 1 گفته می شود. در مسئلهٔ کوله پشتی کسری 2 دزد می تواند یک کالا را به دو قسمت تقسیم کرده، یک قسمت را در کوله پشتی قرار دهد و قسمت دیگر را در مغازه بگذارد.

¹ 0–1 knapsack

² fractional knapsack

كولەپشتى ١−∘

- درگام اول باید اثبات کنیم این مسئله دارای زیر ساختار بهینه است یا به عبارت دیگر قانون بهینگی 1 برای آن صادق است.
- فرض كنيد A زير مجموعه بهينه از n كالا باشد. دو حالت وجود دارد : يا A شامل $item_n$ مىشود يا خير. اگر A كالاى $item_n$ را شامل نشود، A يک زير مجموعه بهينه براى n-1 كالا نيز هست.
- اگر A کالای $item_n$ را شامل شود، آنگاه مجموع ارزشهای کالاهای A برابر است با p_n به علاوه بیشترین ارزش ممکن که از n-1 کالا برای یک کولهپشتی با ظرفیت w_n به دست آمده است. این گزارهها را میتوانیم با برهان خلف اثبات کنیم.

¹ principle of optimality

- درگام دوم باید یک رابطه بازگشتی برای محاسبه جواب مسئله براساس جواب زیر مسئلهها بنویسیم.
- فرض کنید P[i][w] بیشترین ارزش به دست آمده از i کالای اول است وقتی که ظرفیت کولهیشتی w باشد.
 - میتوانیم یک رابطه بازگشتی به صورت زیر برای محاسبه P[i][w] بنویسیم.

$$P[i][w] = \left\{ \begin{array}{ll} \max(P[i-1][w], p_i + P[i-1][w-w_i]) & w_i \leqslant w \text{ in } w_i \leqslant w \text{ in } w_i > w_i < w_i > w_i > w_i < w$$

- در این مسئله به دنبال P[n][W] میگردیم.

- میتوانیم جدولی تشکیل دهیم که هر سطر i در آن نشان دهنده این باشد که فقط از i کالای اول استفاده کرده ایم و ستونهای آن همهٔ وزنهای ممکن از i تا i باشد.
 - مقادیر [w][p[i][0] و P[i][0][w] برابر با صفر هستند.
 - است. این جدول دارای mW خانه است پس محاسبه این جدول در زمان $\Theta(nW)$ امکانیذیر است.

کولەپشتى ١−٠

توجه کنید که هیچ رابطه ای بین n و W وجود ندارد و این الگوریتم میتواند از الگوریتمی که همه حالات را بررسی می کند بدتر باشد. برای مثال اگر m! = 1 باشد الگوریتم برنامه ریزی پویا از مرتبه m! است درحالی که بررسی همه حالات در زمان $\Theta(2^n)$ امکان پذیر است.

- بنابراین تنها در صورتی از برنامهریزی پویا استفاده میکنیم که $nW < 2^{\mathrm{n}}$ باشد.
- پیچیدگی زمانی $\Theta(nW)$ گرچه شبیه به پیچیدگی زمانی چندجملهای است، اما در واقع چندجملهای نیست و مقدار W میتواند یک تابع غیرچندجملهای از ورودی مسئله باشد. این پیچیدگی زمانی را پیچیدگی زمانی شبه چندجملهای 1 مینامیم.

¹ pseudo-polynomial time complexity

- جدول A با m سطر و n ستون را در نظر بگیرید به طوری که مقدار هرکدام از درایههای جدول یک عدد صحبح است.
- میخواهیم مهرهای را با شروع از درایه (1,1) حرکت داده، به درایهٔ (m,n) منتقل کنیم. فرض کنید درایهٔ (m,n) در شمال غرب و درایهٔ (m,n) در جنوب شرق جدول قرار دارد.
- وقتی مهره وارد درایهٔ (i,j) میشود، باید A[i,j] ثانیه در آن درایه صبر کند و پس از آن به حرکت ادامه دهد.
 - با فرض اینکه مهره تنها میتواند به سمت جنوب یا شرق یا مورب به جنوب شرق حرکت کند، میخواهیم کمترین زمان ممکن برای انتقال مهره از درایهٔ (1,1) به (m,n) را محاسبه کنیم.

- در گام اول بررسی میکنیم مسئله دارای زیر ساختار بهینه است یا اصل بهینگی در آن برقرار است.
- از سه درایهٔ (i,1) مهره را حرکت داده در کمترین زمان ممکن به درایهٔ (i,j) برسیم حتما از یکی از سه درایهٔ (i,j-1) یا (i,j-1) یا (i,j-1) عبور کرده ایم.
- در صورتی که از (i-1,j) عبور کرده باشیم الزاما برای حرکت از درایه (1,1) به (i-1,j) کمترین زمان ممکن را صرف کرده ایم. این گزاره را میتوانیم با برهان خلف اثبات کنیم.
 - به همین ترتیب ممکن است از درایههای (i,j-1) یا (i,j-1) عبور کرده باشیم که به طور مشابه میتوانیم اثبات کنیم الزاما در کمترین زمان ممکن به این درایهها رسیدهایم.

- در گام دوم رابطهای برای توصیف جواب مسئله براساس جواب زیر مسئلهها به صورت زیر مینویسیم.

$$T[i,j] = \begin{cases} \min(T[i-1,j], T[i,j-1], T[i-1,j-1]) + A[i,j] & j > 1, i > 1 \text{ of } I \\ T[i-1,1] + A[i,1] & j = 1, i > 1 \text{ of } I \\ T[1,j-1] + A[1,j] & i = 1, j > 1 \text{ of } I \\ A[1,1] & j = 1, i = 1 \text{ of } I \end{cases}$$

سریعترین مسیر در جدول

سپس جدول T را در زمان $\Theta(mn)$ تکمیل می کنیم و $\Theta(mn)$ جواب مسئله است.