Aufgabe 4

- a) Sei n := |V|, und v_i alle paarweise unterschiedlichen Knoten in V für $i \in 1...n$. Sei $A = (a_{i,j})^{n \times n}$ die Adjazenzmatrix von G. Dann ist $L_{HP} = \{bin(v_{\pi(1)})\#...\#bin(v_{\pi(n)})|\forall i \in 1...(n-1): a_{i,i+1} = 1 \land \pi \in S_n\}$.
- b) Seien hier $M\subseteq\mathbb{N}$ eine Zahlenmenge, n:=|M| und m_i die Elemente von M für $i\in 1...n$. Dann ist:

 $L_{P3} = \{bin(m_{\pi(1)}) \# ... \#bin(m_{\pi(a)}) \# \#bin(m_{\pi(a+1)}) \# ... \#bin(m_{\pi(b)}) \# \#bin(m_{\pi(b+1)}) \# ... \#bin(m_{\pi(n)}) \}$ $\mid (a, b \in \mathbb{N} \land 0 \le a \le b \le n) \land (\pi \in S_n) \land (\sum_{i=1}^a m_{\pi(i)} = \sum_{i=a+1}^b m_{\pi(i)} = \sum_{i=b+1}^n m_{\pi(i)}) \}$

Aufgabe 5

Die Turingmaschine M gibt akzeptiert nur die Wörter der Sprache: $L = 0(0+1)^*1 + 1(0+1)^*0$

Funktionsweise

- Wurde ϵ als Eingabe übergeben, so wird dieses Wort sofort rejected (= $(\bar{q}, 0, N)$).
- Abhängig von dem zuerst gelesenen Zeichen versetzt sich die Turingmaschine in zwei unterschiedliche, aber ähnliche Zweige:
 - Wird 0 zuerst gelesen, durchläuft die Turingmaschine die komplette Eingabe.
 Bei dem ersten B angekommen, geht diese wieder 1 Schritt nach links und nimmt dann nur Wörter an, die auf 1 enden.
 - Wird 1 zuerst gelesen, durchläuft die Turingmaschine die komplette Eingabe.
 Bei dem ersten B angekommen, geht diese wieder 1 Schritt nach links und nimmt dann nur Wörter an, die auf 0 enden.

Aufgabe 6

Turingmaschine $M = (\{q_0, q_1, \bar{q}\}, \{0, 1\}, \{0, 1, B\}, B, q_0, \bar{q}, \delta)$ mit Verhalten:

Konfigurationsreihenfolge für Eingabe ϵ :

$$q_0 \vdash 1q_1 \vdash q_011 \vdash q_1B11 \vdash q_0B111 \vdash 1q_1111 \vdash 1\bar{q}111$$