Ejercicios propuestos

1. Complete la tabla siguiente sabiendo que (G,\star) , es un grupo de elemento neutro e, siendo $G=\{e,a,b\}$. ¿Cuántas soluciones existen?

*	e	a	b
e_{\perp}			
\overline{a}			
\overline{b}			

- 2. Sean H_1 y H_2 subgrupos de un grupo (G, \star) . Demuestre que $H_1 \cap H_2$ es un subgrupo de (G, \star) .
- 3. Sea (G, \star) un grupo conmutativo y H un subgrupo de G. Consideramos la congruencia módulo H, \mathcal{R}_H , y el conjunto cociente G/H.
 - i) Demuestre que si $a, a', b, b' \in G$ son tales que $a\mathcal{R}_H a'$ y $b\mathcal{R}_H b'$ entonces $a\star b~\mathcal{R}_H~a'\star b'$.
 - ii) Se define en G/H la operación, que denotaremos también por \star , mediante

$$[a]\star[b]=[a\star b]$$

para todo $[a],[b]\in G/H.$ Demuestre que $(G/H,\star)$ es un grupo.

- 4. Sea (G,\star) un grupo conmutativo y sea $\mathcal R$ una relación de equivalencia sobre G que cumple si $a,a',b,b'\in G$ son tales que $a\,\mathcal R\,a'$ y $b\,\mathcal R\,b'$ entonces $a\star b\,\mathcal R\,a'\star b'$. Sea $H=\{h\in G\mid h\,\mathcal R\,e\}$, siendo e el elemento neutro de (G,\star) . Demuestre que H es un subgrupo de (G,\star) y que la relación $\mathcal R$ es precisamente la relación de congruencia módulo H.
- 5. Sean (G, +) un grupo y $f: G \longrightarrow G$ la aplicación definida mediante f(a) = 2a para todo $a \in G$. Demuestre que f es un homomorfismo si y sólo si (G, +) es un grupo commutativo.
- 6. Se define en \mathbb{R}^2 la operación \star por

$$(a,b) \star (a',b') = (aa',ab'+b)$$

Sea $G = \{(a, b) \in \mathbb{R}^2 \mid a \neq 0\}.$

- a) ¿Es (\mathbb{R}^2, \star) un grupo?
- b) Demuestre que (G, \star) es un grupo y determine el elemento neutro y el elemento simétrico de (a, b). ¿Es conmutativo?

c) Dados los siguientes subconjuntos de G determine si son o no son subgrupos de (G, \star) .

$$H = \{(a, b) \in \mathbb{R}^2 \mid a > 0\}$$

$$F = \{(a, b) \in \mathbb{R}^2 \mid a = 1\}$$

$$K = \{(a, b) \in G \mid a, b \in \mathbb{Q}\}$$

$$J = \{(a, b) \in G \mid a, b \in \mathbb{Z}\}$$

- d) Si $(a,b) \in G$ se define $f_{ab} \colon \mathbb{R} \longrightarrow \mathbb{R}$ por $f_{ab}(x) = ax + b$ para todo $x \in \mathbb{R}$. Sean \mathcal{G} el subconjunto de $\mathcal{F}(\mathbb{R},\mathbb{R})$ definido por $\mathcal{G} = \{f_{ab} \mid (a,b) \in G\}$ y la operación \circ , la composición de aplicaciones. Demuestre que (\mathcal{G}, \circ) es un grupo isomorfo a (G, \star) .
- 7. Sea $(A, +, \cdot)$ un anillo unitario. Demuestre que el conjunto \mathcal{U} de todos los elementos de A que son inversibles forman un grupo multiplicativo.
- 8. Sean H_1 y H_2 subanillos de un anillo $(A, +, \cdot)$. Demuestre que $H_1 \cap H_2$ es un subanillo de $(A, +, \cdot)$.
- 9. Sea $(A, +, \cdot)$ un anillo conmutativo e I un ideal de A. Asociada al subgrupo (I, +) consideramos la congruencia módulo I, esto es,

$$a \mathcal{R}_I b$$
 si y sólo si $a - b \in I$

para todo $a, b \in A$.

- i) Demuestre que si $a, a', b, b' \in A$ son tales que $a \mathcal{R}_I a'$ y $b \mathcal{R}_I b'$ entonces $ab \mathcal{R}_I a'b'$.
- ii) Si definimos las operaciones + y \cdot en A/I, como en el ejercicio 3, mediante

$$[a] + [b] = [a+b]$$
 y $[a][b] = [ab]$

para todo $[a], [b] \in A/I$. Demuestre que $(A/I, +, \cdot)$ es un anillo.

- 10. Sea $(A,+,\cdot)$ un anillo conmutativo y sea $\mathcal R$ una relación de equivalencia sobre A que cumple si $a,a',b,b'\in A$ son tales que $a\,\mathcal R\,a'$ y $b\,\mathcal R\,b'$ entonces $a+b\,\mathcal R\,a'+b'$ y $ab\,\mathcal R\,a'b'$. Sea $I=\{h\in A\mid h\,\mathcal R\,0\}$. Demuestre que I es un ideal del anillo $(A,+,\cdot)$ y que la relación $\mathcal R$ es precisamente la relación de congruencia módulo I del ejercicio 9.
- 11. En el conjunto cociente de los enteros módulo n, $\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots, n-1\}$ siendo $n \in \mathbb{N}, n \geq 2$, se consideran las operaciones + y · definidas mediante

$$[a] + [b] = [a + b]$$
 y $[a] \cdot [b] = [a \cdot b]$

Véanse los ejemplos 3.10, 4.17, y 4.31 y el ejercicio 9. Del ejercicio 9 se deduce que $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es un anillo, que además es conmutativo y unitario. Se trata de ver que $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ es un cuerpo si y sólo si n es un número primo.

- i) Demuestre que si n no es un número primo, entonces existen divisores de cero en $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ y en consecuencia, $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ no es un cuerpo.
- ii) Recíprocamente, demuestre que si $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$ no es un cuerpo y $[a] \in \mathbb{Z}/n\mathbb{Z}$ no es inversible, entonces [a] es un divisor de cero en $\mathbb{Z}/n\mathbb{Z}$. Deduzca que n no es un número primo.
- 12. Sea $(A, +, \cdot)$ un anillo conmutativo unitario íntegro. Demuestre que si el conjunto A tiene un número finito de elementos, entonces $(A, +, \cdot)$ es un cuerpo.
- 13. Se definen sobre \mathbb{R}^2 las operaciones

$$(a,b) + (a',b') = (a+a',b+b')$$
 y $(a,b) \star (a',b') = (aa',ab'+ba')$

para todo $(a,b), (a',b') \in \mathbb{R}^2$. Demuestre que $(\mathbb{R}^2,+,\star)$ es un anillo conmutativo unitario no íntegro.

- 14. Sea $(A, +, \cdot)$ un anillo conmutativo y sean I y J dos ideales de A. Estudie si los siguientes subconjuntos de A son ideales de A.
 - i) La intersección $I \cap J$ y la unión $I \cup J$.
 - ii) La suma I + J y el producto IJ definidos por:

$$I + J = \{a + b \mid a \in I \text{ y } b \in J\}$$

$$IJ = \{a_1b_1 + a_2b_2 + \dots + a_nb_n \mid a_i \in I, b_i \in J, i = 1, 2\dots, n \text{ y } n \in \mathbb{N}^*\}$$

15. Demuestre que en un anillo totalmente ordenado A se verifica para todo $a,b\in A$:

$$||a| - |b|| \leq |a - b|$$

16. Demuestre que en un anillo totalmente ordenado A se verifica para todo $a,b\in A$:

$$2 \max(a, b) = a + b + |a - b|$$
 y $2 \min(a, b) = a + b - |a - b|$

- 17. Demuestre que si $a \neq 0$ es un elemento de un cuerpo ordenado \mathbb{K} , entonces $|a^{-1}| = |a|^{-1}$.
- 18. Demuestre que cualesquiera que sean los elementos a y b de un cuerpo ordenado $(\mathbb{K}, +\cdot, \preceq)$ se cumple $|ab| \preceq a^2 + b^2$.

Sugerencia: Téngase en cuenta que $(a+b)^2 \succeq 0$ y $(a-b)^2 \succeq 0$.

19. Usando la fórmula del binomio de Newton, demuestre que:

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n} = 2^n$$

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} + \dots + (-1)^{n-1} \binom{n}{n-1} + (-1)^n \binom{n}{n} = 0$$

- 20. Sea f una aplicación creciente de (U, \preceq) en (V, \leqslant) . Sea A un subconjunto no vacío de $U, \emptyset \neq A \subset U$, y sea A' = f(A). Estudie si son ciertas las siguientes afirmaciones:
 - a) Si m es una cota superior de A entonces m' = f(m) es una cota superior de A'.
 - b) Si m es el máximo de A entonces m'=f(m) es el máximo de A'.
 - c) Si m es el supremo de A entonces m' = f(m) es el supremo de A'.