1+ tan2 = 1 ; 1+ Lota = 1 C/w: VT=1+ tan'x= 1+ Sin2x = Lorear+Sin2x Bautrand: Cho tanx=m hoàc cotox=m. Tinb f(x) By Tain 1+ tan2x = 1 es cosac = 1+tan2x $\cos^2 \alpha = \frac{1}{1+m^2}$ Câu 69. Cho tan $\alpha = -2\sqrt{2}$. Tính $A = \sin \alpha$ và $B = \cos \alpha$. (A) $A = \frac{2\sqrt{2}}{3}$ và $B = -\frac{1}{3}$. (B) $A = \frac{2\sqrt{2}}{3}$ và $B = \frac{1}{\sqrt{3}}$. $\bigcirc A = \frac{\sqrt{2}}{3} \text{ và } B = \frac{1}{3}.$ Bai trane che tava = m. Tink S= f(Sux, lose)

Câu 72. Cho
$$\tan \alpha = 3$$
. Tính $Q = \frac{\sin \alpha + 3\cos \alpha}{4\sin \alpha - 5\cos \alpha}$

$$Q = \frac{6}{7}$$

$$Q = -\frac{9}{7}$$

$$Q = \frac{\frac{8m\alpha}{\cos x} + \frac{3}{5}}{4 \frac{\cos x}{\cos x}} = \frac{1}{4 \frac{\cos x}{\cos x}} = \frac{6}{4 \frac{\cos x}{\cos x}}$$

Câu 73. Cho tan $\alpha = \sqrt{2}$. Tính giá trị của biểu thức $P = \frac{\sin \alpha + \cos^3 \alpha}{\sin \alpha + 2\cos \alpha}$

$$A) P = \frac{4 + 5\sqrt{2}}{6}.$$

$$(B) P = \frac{\sqrt{2}}{8}.$$

$$P = \frac{-4 + 5\sqrt{2}}{6}.$$

Câu 74. Biết $\tan \alpha = -2$. Tính giá trị của biểu thức $B = \frac{5\cos \alpha + \sin \alpha}{\cos \alpha - 3\sin \alpha}$.

$$\bigcirc A \frac{3}{7}.$$

$$\frac{\text{B}}{\text{-}\frac{7}{3}}$$

$$\frac{2}{9}$$
.

$$\bigcirc -\frac{2}{9}$$

$$\frac{14}{5}$$
.

$$\bigcirc B \frac{6}{5}$$
.

$$\frac{\text{C}}{-\frac{14}{5}}$$

①
$$-\frac{6}{5}$$
.

Mối liên hệ giữa các góc

Phu chéo

32 Sin bū

§2: TÍCH VÔ HƯỚNG

Góc giữa hai vectơ

Câu 1. Cho tam giác đều ABC. Tính góc giữa hai véc-tơ \overrightarrow{AB} và \overrightarrow{BC} .

$$(\overrightarrow{AB}, \overrightarrow{BC})$$

$$(\overrightarrow{AB}, \overrightarrow{BC}) = 60^{\circ}.$$
 $(\overrightarrow{AB}, \overrightarrow{BC}) = 120^{\circ}.$ $(\overrightarrow{AB}, \overrightarrow{BC}) = 30^{\circ}.$

Câu 2. Cho tam giác đều ABC có trọng tâm G. Tính $(\overrightarrow{AB}, \overrightarrow{GA})$.

$$(\overrightarrow{AB}, \overrightarrow{GA}) = 30^{\circ}.$$

$$(\overrightarrow{AB}, \overrightarrow{GA}) = 60^{\circ}$$

$$(\overrightarrow{AB}, \overrightarrow{GA}) = 30^{\circ}$$
. $(\overrightarrow{B})(\overrightarrow{AB}, \overrightarrow{GA}) = 60^{\circ}$. $(\overrightarrow{AB}, \overrightarrow{GA}) = 150^{\circ}$. $(\overrightarrow{D})(\overrightarrow{AB}, \overrightarrow{GA}) = 120^{\circ}$.

Tích vô hướng

Tính tích vô hướng bằng định nghĩa

(2, b)

Câu 17. Cho tam giác ABC vuông cân có AB = AC = a. Tính tích vô hướng $\overrightarrow{AB}.\overrightarrow{AC}$

$$\overrightarrow{A}$$
 \overrightarrow{AB} . $\overrightarrow{AC} = 0$.

$$\overrightarrow{B}$$
 \overrightarrow{AB} . $\overrightarrow{AC} = a$.

$$\overrightarrow{AB}.\overrightarrow{AC} = a^2.$$
 $\overrightarrow{D}\overrightarrow{AB}.\overrightarrow{AC} = \frac{a}{2}.$

Câu 20. Cho tam giác ABC vuông cân có AB = AC = a. Tính tích vô hướng $\overrightarrow{AB}.\overrightarrow{CB}$.

$$\overrightarrow{A}\overrightarrow{AB}.\overrightarrow{CB} = a.$$

$$\overrightarrow{B} \overrightarrow{AB}.\overrightarrow{CB} = 0.$$

$$\overrightarrow{C} \overrightarrow{AB}.\overrightarrow{CB} = \frac{a}{2}.$$

$$\overrightarrow{D} \overrightarrow{AB}.\overrightarrow{CB} = a^2.$$

$$= a \cdot a\sqrt{2} + 50 = a^2\sqrt{2} \cdot \frac{\sqrt{2}}{2} = a^2$$

Tính tích vô hướng bằng công thức

Biểu thức tọa độ của tích vô hướng

(+)
$$\left(\overline{a}'\right) = \left(\chi_1^2 + \chi_2^2\right)$$

(a)
$$(a, b') = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}'|} = \frac{x_1 x_1 + y_1 y_2}{\sqrt{x_1^2 + y_2^2} \sqrt{x_1^2}}$$

$$\Rightarrow A(x_A:y_A), B(x_B:y_B)$$

$$\Rightarrow AB = (x_B - x_A: y_B - y_A)$$

$$\Rightarrow AB = |AB| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Trong mặt phẳng tọa độ Oxy cho ba điểm A(1;2), B(-1;1). Độ dài đoạn thẳng AB.

A.
$$-\frac{\sqrt{5}}{5}$$
.

B. $-\sqrt{5}$.

AB = $|\overrightarrow{AB}| = \sqrt{4+1} = \sqrt{5}$.

D. 5.

Trong mặt phẳng tọa độ Oxy cho ba điểm M(1;2), N(5;-1). Độ dài đoạn thẳng MN.

A.
$$-\frac{\sqrt{5}}{5}$$
. $MN = (4; -3)$
B. $-\sqrt{5}$. $\rightarrow MN = |MM| = \sqrt{16 + 9} = \sqrt{25} = 5$
C. $\sqrt{5}$. $\rightarrow D$. 5.

Trong mặt phẳng tọa độ Oxy cho ba điểm P(2;1), Q(-1;5). Độ dài đoạn thẳng PQ.

A.
$$-\frac{\sqrt{5}}{5}$$
. $\overrightarrow{PQ} = (-3; 4)$

B. $-\sqrt{5}$. $\overrightarrow{PQ} = (\overrightarrow{PQ}) = (\cancel{9} + 16) = (\cancel{25} = 5)$

C. $\sqrt{5}$. $\rightarrow (0)$

Trong mặt phẳng tọa độ Oxy cho ba điểm E(1;3), F(2;-5). Độ dài đoạn thẳng EF.

A.
$$\sqrt{65}$$
.
B. $-\sqrt{5}$.
C. $\sqrt{5}$.
D. 5.
 $EF = (1: -8)$
 $EF = (65 \Rightarrow \triangle)$

$$\frac{1000 \text{ finite lates } 10^{-1} \text{ ming lates } 10^$$

Cho các vector $\vec{a} = (1; -2)$, $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36XA. 45°. C = (-2; -6). Khi đó góc giữa chúng là : 4 + 36B. 60°.

C. 30°.

D. 135°. C = (1; -2), $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. $\vec{b} = (-2; -6)$. Khi đó góc giữa chúng là : 4 + 36 $\vec{b} = (-2; -6)$. $\vec{b} =$

Góc giữa hai vécto $\vec{u} = (3, -4)$ và $\vec{v} = (-8, -6)$ là

- $A. 30^{\circ}$.
- B. 60°.
- C. 90°.
- D. 45°.

