	L#	Hits	Search Text	DBs
1	L1	29365	(dependen\$3 conflict\$3) near10 (bit flag tag field)	USPAT; US-PGPUB
2	L3	4535	(dependen\$3 conflict\$3) near10 (bit flag tag field)	EPO; JPO; DERWENT; IBM TDB
3	L8	173	1 near99 (flush\$3 pipelin\$3)	USPAT; US-PGPUB
4	L9	78	(renam\$3 reorder\$3) and 8	USPAT; US-PGPUB
5	L10	14	3 near99 (flush\$3 pipelin\$3)	EPO; JPO; DERWENT; IBM_TDB
6	L15	148	(renam\$3 reorder\$3) near99 1	USPAT; US-PGPUB
7	L16	58	15 and (flush\$3 near10 pipelin\$3)	USPAT; US-PGPUB
8	L17	10	(renam\$3 reorder\$3) near99 3	EPO; JPO; DERWENT; IBM TDB

Jun. 12, 2001

F16.63

F16.64

	Docum ent ID	σ	Title	Current OR
1	US 20040 03990 3 A1		Multistandard video decoder and decompression system for processing encoded bit streams including a video formatter and methods relating thereto	712/300
2	US 20040 02500 0 A1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including start code detection and methods relating thereto	712/300
3	US 20040 01977 5 A1	×	Multistandard video decoder and decompression system for processing encoded bit streams including tokens and methods relating thereto	712/300
4	US 20030 22796 9 A1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including a reconfigurable processing stage and methods relating thereto	375/240 .1
5	US 20030 19607 8 Al	☒	Data pipeline system and data encoding method	712/300
6	US 20030 18254 4 A1	☒	Multistandard video decoder and decompression system for processing encoded bit streams including a decoder with token generator and methods relating thereto	712/300
7	US 20030 15665 2 A1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including a video formatter and methods relating thereto	375/240 .26
8	US 20030 14986 5 A1	⋈	Processor that eliminates mis-steering instruction fetch resulting from incorrect resolution of mis-speculated branch instructions	712/244
9	US 20030 14986 2 A1	⋈	Out-of-order processor that reduces mis-speculation using a replay scoreboard	712/217
10	US 20030 07911 7 A1	⊠	Multistandard video decoder and decompression method for processing encoded bit streams according to respective different standards	712/300
11	US 20030 01888 4 A1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including expanding run length codes and methods relating thereto	712/300
12	US 20020 15236 9 A1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including storing data and methods relating thereto	712/300
13	US 20020 08781 0 A1	⊠	System and method for high performance execution of locked memory instructions in a system with distributed memory and a restrictive memory model	711/145
14	US 20020 08330 4 A1	☒	Rename finish conflict detection and recovery	712/218
15	US 20020 06600 7 A1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including pipeline processing and methods relating thereto	712/300
16	US 66979 30 B2	⊠	Multistandard video decoder and decompression method for processing encoded bit streams according to respective different standards	712/2
17	US 66549 21 B1	⊠	Decoding data from multiple sources	714/746
18	US 66041 90 B1	Ø	Data address prediction structure and a method for operating the same	712/207

F16.55

	Docum ent ID	U	Title	Current OR
19	US 65359 72 B1	☒	Shared dependency checking for status flags	712/217
20	US 64991 23 B1	⊠	Method and apparatus for debugging an integrated circuit	714/724
21	US 64635 11 B2	☒	System and method for high performance execution of locked memory instructions in a system with distributed memory and a restrictive memory model	711/145
22	US 64461 89 B1	☒	Computer system including a novel address translation mechanism	711/207
23	US 64357 37 B1	☒	Data pipeline system and data encoding method	712/200
24	US 63935 50 B1	☒	Method and apparatus for pipeline streamlining where resources are immediate or certainly retired	712/214
25	US 63935 49 B1	×	Instruction alignment unit for routing variable byte-length instructions	712/204
26	US 63306 66 B1	⊠	Multistandard video decoder and decompression system for processing encoded bit streams including start codes and methods relating thereto	712/300
27	US 63306 65 B1		Video parser	712/300
28	US 62759 20 B1	⊠	Mesh connected computed	712/14
29	US 62634 22 B1	×	Pipeline processing machine with interactive stages operable in response to tokens and system and methods relating thereto	712/209
30	US 62601 89 B1	⊠	Compiler-controlled dynamic instruction dispatch in pipelined processors	717/151
31	US 62197 73 B1	☒	System and method of retiring misaligned write operands from a write buffer	711/201
32	US 62126 29 B1		Method and apparatus for executing string instructions	712/241
33	US 62126 28 B1	⊠	Mesh connected computer	712/226
34	US 61733 88 B1	⊠	Directly accessing local memories of array processors for improved real-time corner turning processing	712/22
35	US 61120 17 A	⊠	Pipeline processing machine having a plurality of reconfigurable processing stages interconnected by a two-wire interface bus	712/200
36	US 60790 09 A	⊠	Coding standard token in a system compromising a plurality of pipeline stages	712/209
37	US 60674 17 A	Ø	Picture start token	712/18
38	US 60471 12 A	Ø	Technique for initiating processing of a data stream of encoded video information	714/1
39	US 60383 80 A	☒	Data pipeline system and data encoding method	712/200
10	US 60351 26 A	⊠	Data pipeline system and data encoding method	712/29

F16.56

	Docum ent ID	υ	Title	Current
41	US 60187 76 A	×	System for microprogrammable state machine in video parser clearing and resetting processing stages responsive to flush token generating by token generator responsive to received data	710/7
42	US 60063 24 A	⊠	High performance superscalar alignment unit	712/20
43	US 59875 95 A	⊠	Method and apparatus for predicting when load instructions can be executed out-of order	712/21
44	US 59785 92 A	⊠	Video decompression and decoding system utilizing control and data tokens	712/1
45	US 59681 69 A	⊠	Superscalar microprocessor stack structure for judging validity of predicted subroutine return addresses	712/23
46	US 59565 19 A	⊠	Picture end token in a system comprising a plurality of pipeline stages	712/16
47	US 59078 60 A	×	System and method of retiring store data from a write buffer	711/117
48	US 58871 52 A	☒	Load/store unit with multiple oldest outstanding instruction pointers for completing store and load/store miss instructions	712/217
49	US 58813 01 A	☒	Inverse modeller	712/1
50	US 58484 33 A	☒	Way prediction unit and a method for operating the same	711/137
51	US 58420 33 A	☒	Padding apparatus for passing an arbitrary number of bits through a buffer in a pipeline system	712/1
52	US 58357 40 A	⊠	Data pipeline system and data encoding method	712/200
53	US 58322 97 A	☒	Superscalar microprocessor load/store unit employing a unified buffer and separate pointers for load and store operations	710/5
54	US 58322 49 A	⊠	High performance superscalar alignment unit	712/204
55	US 58225 74 A	☒	Functional unit with a pointer for mispredicted resolution, and a superscalar microprocessor employing the same	712/233
56	US 58225 58 A	Ø	Method and apparatus for predecoding variable byte-length instructions within a superscalar microprocessor	712/213
57	US 58190 59 A	☒	Predecode unit adapted for variable byte-length instruction set processors and method of operating the same	712/213
58	US 58190 57 A	☒	Superscalar microprocessor including an instruction alignment unit with limited dispatch to decode units	712/204
59	US 58130 33 A	☒	Superscalar microprocessor including a cache configured to detect dependencies between accesses to the cache and another cache	711/144
60	US 58092 70 A	☒	Inverse quantizer	712/200
51	US 58059 14 A	×	Data pipeline system and data encoding method	382/232
52	US 57874 74 A	⊠	Dependency checking structure for a pair of caches which are accessed from different pipeline stages of an instruction processing pipeline	711/138

F16.57

	Docum ent ID	υ	Title	Current OR
63	US 57846 31 A	☒	Huffman decoder	382/246
64	US 57817 53 A	⊠	Semi-autonomous RISC pipelines for overlapped execution of RISC-like instructions within the multiple superscalar execution units of a processor having distributed pipeline control for speculative and out-of-order execution of complex instructions	712/218
65	US 57686 10 A	×	Lookahead register value generator and a superscalar microprocessor employing same	712/23
66	US 57685 75 A	⊠	Semi-Autonomous RISC pipelines for overlapped execution of RISC-like instructions within the multiple superscalar execution units of a processor having distributed pipeline control for sepculative and out-of-order execution of complex instructions	712/228
67	US 57685 61 A	⊠	Tokens-based adaptive video processing arrangement	710/63
68	US 57649 46 A	⊠	Superscalar microprocessor employing a way prediction unit to predict the way of an instruction fetch address and to concurrently provide a branch prediction address corresponding to the fetch address	712/239
69	US 57403 98 A	⊠	Program order sequencing of data in a microprocessor with write buffer	711/117
70	US 57376 29 A	×	Dependency checking and forwarding of variable width operands	712/23
71	US 56154 02 A	⊠	Unified write buffer having information identifying whether the address belongs to a first write operand or a second write operand having an extra wide latch	712/38
72	US 56030 12 A	×	Start code detector	712/208
73	US 55903 52 A	×	Dependency checking and forwarding of variable width operands	712/23
74	US 55881 13 A	⊠	Register file backup queue	714/15
75	US 55840 09 A	⊠	System and method of retiring store data from a write buffer	711/117
76	US 55532 56 A	⊠	Apparatus for pipeline streamlining where resources are immediate or certainly retired	712/217
77	US 54715 98 A	Ø	Data dependency detection and handling in a microprocessor with write buffer	711/122
78	US 49657 24 A	X	Compiler system using reordering of microoperations to eliminate interlocked instructions for pipelined processing of assembler source program	717/160

F16.58

Z9086E	Þ
500956	3
133434	2
232012	ı
LOWER LAYER ADDRESS	LOGICAL EQUIPMENT

F16.61

	Docum			Current
	ent ID	Ū	Title	OR
<u> </u>	JP			
1	63307 535 A		PIPELINE CONTROL CIRCUIT	
2	JP 62175 831 A	⊠	CONTROL SYSTEM FOR PIPELINE WITH TAG	
3	JP 58222 361 A	☒	CONTROL SYSTEM OF PRIORITY DECISION FOR ACCESS REQUEST IN DATA PROCESSING SYSTEM	
4	EP 61201 2 A1	⊠	A pipeline computer with scoreboard.	
5	WO 93142 96 A1	Ø	EQUIPMENT FOR CLEARING ROCK AND OTHER SURFACES OF STONE AND OTHER MATERIAL BY MEANS OF WATER JETS UNDER HIGH PRESSURE	
6	EP 40548 9 A2	☒	Resource conflict detection method and apparatus included in a pipelined processing unit.	
7	US 20020 12159 7 A	⊠	Mass spectrometer system operation involves applying axial field and periodic flush pulse to processing section operated under suitable conditions	
8	US 20020 08330 4 A	⊠	Out-of-order processor operation method involves providing separate logic for detecting dependency conflict associated with instruction which is to be currently executed to set conflict flag	
9	US 62634 24 B	⊠	Multi-pipeline processor uses single port arithmetic logic unit in one pipeline to obtain carry bits of two port arithmetic unit in other pipeline which is processing arithmetically dependent pair of instructions	
10	US 62601 89 B	⊠	Instruction processing method for digital data processor, involves compiling identified pipeline dependencies in multiple instructions and field of code block to control hardware-based dependency checking	
11	US 55599 87 A	⊠	Updating Duplicate Tag cache status information in snooping bus protocol computer system - sends processor commands and addresses for modification of processor's Duplicate Tag status to address interface to system bus and updates status if no valid system bus commands and addresses are in interface pipeline	:
12	US 54715 98 A	⊠	Microprocessor with data dependency detection facility - has control logic comparing address fields in write buffer with read instructions to bypass write buffer data field to execution stage in pipelined core unit	
13	EP 40548 9 A	⊠	Resource conflict appts. included in pipelined processing unit - for detecting and resolving conflicts in use of register and indicator resources during different phases of instruction execution	
14	WO 87006 58 A	⊠	Priority resolution system for video display appts has priority logic units each effecting pipelines bit-wise comparison between input numbers	

	Docum ent ID	Ū	Title	Current OR
1	JP 20001 48486 A		COMPUTER SYSTEM	
2	WO 99081 85 A1	×	A DEPENDENCY TABLE FOR REDUCING DEPENDENCY CHECKING HARDWARE	
3	EP 67999 1 A1	☒	Data processor for variable width operands.	
4	US 64906 35 B	×	Queued command conflict detection method for disk drive controller, involves setting conflict flag based on overlap between two different address ranges to restrict command reordering	
5	US 62090 84 B	☒	Superscalar microprocessor has reorder buffer which assigns tags to respective source operand specifier in accordance with dependency information stored in dependency table	
6	WO 99081 85 A	⊠	Dependency checking apparatus for superscalar microprocessor	
7	EP 70976 9 A	⊠	Pipeline microprocessor capable of issuing and executing multiple instructions - performs source operand dependency analysis, register re=naming and provides rapid pipeline recovery for microprocessor issuing and executing multiple instructions out of order in single machine cycle	
8	US 53716 84 A	×	Floor plan layout for register re-naming circuit - arranges data dependency comparator blocks in row and columns, and positions tag assignment logic in layout regions in blocks	
9	EP 63625 6 B		Register re-naming system for use in super-scalar RISC computers - includes data check circuit determining data dependency, and tag assignment circuit generating operand location tags	
10	US 49657 24 A	\boxtimes	Source program compiling method - using recording of microoperations to eliminate interlocked instructions for pipelined processing	

THE SAME COMMUNICATION AND APPARATUS FOR WETHOD OF CONTROLLING A

BACKGROUND OF THE INVENTION

I. Field of the Invention

is performed, and a method therefor. apparatus such that groups are formed by a plurality of The present invention relates to a communication control

2. Description of the Related Art

nicated while being limited to only the one-to-one commuviously know the telephone number intended to be commuof holding communication with a base station and to prefor data transmission, the user is still needed to be capable 25 relatively freely hold communication in terms of the place a portable telephone results in a user being enabled to which has been known, can be performed. Although use of one communication with a person, the telephone number of intended to be communicated with. Therefore, only one-toset is installed, and then instructs the telephone number line, a user is needed to move to a place at which a telephone line. To perform the communication through the telephone example is data transference realized through a telephone by one-to-one communication. A most apparent typical 15 ing a communication function has mainly been performed Hitherto, data transference between computers each hav-

realize only one directional communication. to-multiple communication, broadcasting is able to basically Although broadcasting can be considered to realize one-

knowing the IP address of the computer intended to be at arbitrary places. However, the necessity of previously munication has enabled the communication to be performed wireless LAN capable of realizing wireless computer comcommunicated is needed to be known. In recent years, use. Moreover, the IP address of the terminal intended to be cannot freely be used because of limitation of the places for wire to one another. Thus, the foregoing communication only when the communication terminals are connected by However, the communication using TCP/IP can be realized by 32 bits and provided for each communication terminal. to be communicated, the IP address being address expressed which uses IP address for specifying the terminal intended nication is realized in Internet by a technology called TCP/IP used to realize communication among computers. Commu-Internet has been known to serve as a network exclusively

nication. Thus, same information cannot be transmitted of the other terminal is able to realize one-to-one commuintended to be communicated. However, IrDA conveniently ting and receiving portions of the communication terminal own communication terminal to face the infrared-ray emitcausing infrared-ray emitting and receiving portions of the and enabling data transmission to be performed simply by able. ItDA is a communication technique using infrared rays terminal intended to be communication with, ItDA is availout the necessity of previously knowing the address of the As a technique capable of holding communication withcommunicated cannot be eliminated.

disclosure in Japanese Patent Laid-Open No. 7-336370, each No. 7-336370 laid open on Dec. 22, 1995. According to the As a means capable of solving the foregoing problem, a

simultaneously to a plurality of persons.

terminals form a group in which communication terminals communication terminals. Then, instructed communication accordance with ID information transmitted from other enabled terminals existing adjacent to the own terminal in communication terminal recognizes communicationtion for identifying the own communication terminal. Each communication terminal spontaneously transmits informa-

necessity of previously knowing the address of other comcommunication can be performed at any place without the are not required and multiplicity-to-multiplicity (N-to-N) having a wireless communication function, fixed facilities portable information equipment and mutual communication 10 Laid-Open No. 7-336370 in a portable information device By employing the technique disclosed in Japanese Patent therein can be multicast-supplied with same information.

nique and the necessity of previously knowing the address of facilities as have been required for the conventional tech-No. 7-336370 eliminates the necessity of providing fixed The technique disclosed in Japanese Patent Laid-Open munication terminals.

in which a server for setting the identifier is provided, there terminal. Although a conventional method may be employed address of the own terminal, that is, the identifier of the own 7-33637 has not particularly limited a method of setting the The structure disclosed in Japanese Patent Laid-Open No. having the wireless communication function. tageous when combined with portable information devices is held. The foregoing technique is considered to be advanintends regardless of the place at which the communication nique is able to realize communication whenever a user the terminal intended to be communicated with. The tech-

deterioration in the communication efficiency. space encounters a problem of complicated handling and the time and the place. However, use of the large identifier overlap of the identifiers of adjacent terminals regardless of excessively large identifier space is required to prevent by each terminal are used may be employed. However, an identifier or a method in which random numbers generated not use a server, a method in which a user manually sets the only when the server exists. As a setting method which does arises a problem in that communication can be performed

terminals cannot be distinguished from one another. Thus, dentally coincide with one another, the communication If a plurality of communication terminal identifiers acci-

during transmission of data, data transmission band is limcation terminal ID information is continuously transmitted of electric power allowed to be provided. Since communia portable information device to arise because of limitation required to transmit data. This causes a critical problem for terminals, great electric power is required in addition to that minal ID information transmitted from other communication 50 communication terminal and receiving communication ternixed by always transmitting ID information of the own Since the communication-enabled terminals are recogcommunication terminals exist in actual. munication terminal is recognized though a plurality of

there arises a problem in that existence of only one com-

as compared with the terminal which recognizes the termiperformed on the initiative of the terminal to be recognized technique has been disclosed in Japanese Patent Laid-Open 65 terminal ID information. That is, the recognition process is elapsed for the terminal to transmit the communication required to be determined after a sufficiently long time has communication can be held with a specific terminal is spontaneously transmitted from each terminal, whether capable of eliminating the necessity of knowing the address 60 accordance with communication terminal ID information Since communication-enabled terminal is recognized in

	Docum ent ID	ט	Title	Current OR
1	US 20020 08330 4 A1		Rename finish conflict detection and recovery	712/218
2	US 20020 00745 0 A1	Ø	Line-oriented reorder buffer	712/23
3	US 20010 03743 4 A1	×	Store to load forwarding using a dependency link file	711/146
4	US 66622 80 B1	Ø	Store buffer which forwards data based on index and optional way match	711/156
5	US 66041 90 B1	⊠	Data address prediction structure and a method for operating the same	712/207
6	US 65499 90 B2	⊠	Store to load forwarding using a dependency link file	711/146
7	US 65464 53 B1	☒	Proprammable DRAM address mapping mechanism	711/5
8	US 65429 86 B1	Ø	Resolving dependencies among concurrently dispatched instructions in a superscalar microprocessor	712/217
9	US 65359 72 B1	⊠	Shared dependency checking for status flags	712/217
10	US 64938 19 B1	×	Merging narrow register for resolution of data dependencies when updating a portion of a register in a microprocessor	712/210
11	US 64738 37 B1	⊠	Snoop resynchronization mechanism to preserve read ordering	711/146
12	US 64738 32 B1	⊠	Load/store unit having pre-cache and post-cache queues for low latency load memory operations	711/118
13	US 64271 93 B1	⊠	Deadlock avoidance using exponential backoff	711/146
14	US 64153 60 B1		Minimizing self-modifying code checks for uncacheable memory types	711/139
15	US 63935 36 B1		Load/store unit employing last-in-buffer indication for rapid load-hit-store	711/159
16	US 63816 89 B2	⊠	Line-oriented reorder buffer configured to selectively store a memory operation result in one of the plurality of reorder buffer storage locations corresponding to the executed instruction	712/215
17	US 63398 22 B1	Ø	Using padded instructions in a block-oriented cache	712/213
18	US 62928 84 B1	☒	Reorder buffer employing last in line indication	712/216
19	US 62667 44 B1	☒	Store to load forwarding using a dependency link file	711/146
20	US 62498 62 B1	☒	Dependency table for reducing dependency checking hardware	712/218
21	US 62370 82 B1	☒	Reorder buffer configured to allocate storage for instruction results corresponding to predefined maximum number of concurrently receivable instructions independent of a number of instructions received	712/215

header to be enlarged. Thus, there arises a problem in that intended to be communicated increases, causing the overbeing clongated excessively if the number of devices However, the foregoing method involves the packet header beader of one packet when the packet is transmitted.

repeated unintentionally. encounters a problem in that the foregoing method is specific devices in the device group. Thus, the method method does not permit communication with a plurality of lem of the overhead can be solved. However, the foregoing devices intended to be communicated. Therefore, the probing a fixed header length regardless of the number of the be transmitted simultaneously, to be performed while requir-10 to the overall device group, to which same information can address. The above-mentioned method enables transmission one packet without negotiation is a method using broadcast Another method capable of transmitting information with the execution throughput is reduced.

the overhead is enlarged excessively. clongated excessively. Thus, there arises a problem in that addresses causes the length of the packet header to be arranged to form an address section, increase in the time has been required. In the case where all addresses are Thus, the procedure has been too complicated and a long receiving device is required to set the multicast address. transmitting device and the receiving device. Moreover, the information after the multicast address has been set to the perform negotiation with the destined device to transmit and receiving method requires the transmission device to As described above, the conventional packet transmitting

SUMMARY OF THE INVENTION

which each terminal can uniquely be identified. terminals to automatically set a terminal identifier with enabling each terminal in a certain group of communication rensmission function, it encounters a problem in that the 35 communication control apparatus and a method therefor A first object of the present invention is to provide a

munication terminals with small electric power. reliable communication among a plurality of adjacent com-A third object of the present invention is to perform cation terminals so as to prevent overlap of ID information. of the own terminals and the identifiers of other communi-Another method may be employed in which negotiation is 40 coincidence of a communication terminal identifier of each A second object of the present invention is to detect

cent communication terminals with small electric power. sbecine communication terminal among a plurality of adja-A fourth object of the present invention is to multicast a

communication-enabled terminal. with a requirement, quickly and more accurately, recognize A fifth object of the present invention is to, in accordance

To achieve the first object, a communication control flexible and efficient multicast address communication. A sixth object of the present invention is to realize more

from one or a plurality of other terminals with which baving information of another terminal transmitted receive means for receiving terminal ID information apparatus according to the present invention comprises:

set and enabled to be used to perform the communicaitems received from the receive means and previously minals obtained from all of terminal ID information identifiers except the terminal identifiers of other terown terminal identifier, one of a plurality of terminal own terminal identifier setting means for setting, to be an communication is being held; and

> satisfactory efficiency cannot be realized. satisfied, thus resulting in a problem to arise in that a minal which recognizes the other terminal cannot be nal. Therefore, appropriate adaptation required by the ter-

information communication devices A, B, C, . . . , X a s On the other hand, a conventional network consisting of 5

packets by the following method. receive information is arranged to transmit and receive shown in FIG. I which are enabled to mutually transmit and

address is the own address. the supplied packet and enabled to receive the packet if the section 3. Then, the receiving device checks the header of 20 packet is transmitted to the address provided for the header packet of this type is transmitted in a usual network, the 5 and another of which is transmitter address 6. When a includes two addresses, one of which is destination address section 4 and a header section 3. The header section 3 15 structure as shown in FIG. 2. The packet consists of a data mation is transmitted by means of a packet having the packet transmitted, is selected from all of the terminals and infora terminal, to which information is intended to be A case will now be considered in which X is a transmitter,

Some conventional methods to be employed when inforgiven as described above when the packet is transmitted. for example, device A, equipment address of the device A is If information is intended to be transmitted to one device,

will now be described. mation is intended to be transmitted to a plurality of devices

being taken to complete the transmission. realize transmission results in an excessively long time devices increases and repetition of the procedure required to number of packets to be transmitted increases if the destined the foregoing method has not the simultaneous information device, that is, one-to-one communication is repeated. Since case where information is intended to be transmitted to one is added as all of the destination addresses similarly to the A method may be employed in which equipment address $_{30}$

involves to actually transmit data. there arises a problem in that an excessively long loss time with a new device intended to be communicated. Therefore, negotiation is required to determine the multicast address must be changed whenever the destined device is changed, 60 address or the broadcast address. Since the multicast address packet for requiring the negotiation formed by adding each require setting by transmitting, to all destined devices, a above-mentioned method needs the transmission device to tancously transmitted to a fixed device group. However, 55 advantageous method when the same information is simulrequires only one packet to perform transmission, it is an provided as the multicast address. Since this method address corresponds to this. A 28-bit group number is mation transmission is enabled. For example, Class D of IP 50 tion of setting of the multicast address, simultaneous inforfrom all of the devices A, B and C, ack indicating complereturn ack. When the transmission device X has received, the receivers, and then the receiving devices respectively address determined by the transmission device X is set by 45 receiving devices to set the multicast address. The multicast ing devices are devices A, B and C. Device X requires the multicast address. An assumption is performed that receivperformed between the transmitter and the receiver to set

ment addresses of all transmission devices are added to the without negotiation, a method is available in which equip-As a transmission method requiring only one packet 65

_	Docum ent ID	U	Title	Current OR
22	US 62126 21 B1	☒	Method and system using tagged instructions to allow out-of-program-order instruction decoding	712/212
23	US 62090 84 B1	☒	Dependency table for reducing dependency checking hardware	712/233
24	US 61890 89 B1	⊠	Apparatus and method for retiring instructions in excess of the number of accessible write ports	712/218
25	US 61856 75 B1	☒	Basic block oriented trace cache utilizing a basic block sequence buffer to indicate program order of cached basic blocks	712/238
26	US 61346 51 A	☒	Reorder buffer employed in a microprocessor to store instruction results having a plurality of entries predetermined to correspond to a plurality of functional units	712/215
27	US 61087 69 A	☒	Dependency table for reducing dependency checking hardware	712/216
28	US 60322 51 A	☒	Computer system including a microprocessor having a reorder buffer employing last in buffer and last in line indications	712/216
29	US 60264 82 A	⊠	Recorder buffer and a method for allocating a fixed amount of storage for instruction results independent of a number of concurrently dispatched instructions	712/215
30	US 59833 42 A	☒	Superscalar microprocessor employing a future file for storing results into multiportion registers	712/218
31	US 59681 69 A	×	Superscalar microprocessor stack structure for judging validity of predicted subroutine return addresses	712/239
32	US 59616 34 A	⊠	Reorder buffer having a future file for storing speculative instruction execution results	712/218
33	US 59220 69 A	☒	Reorder buffer which forwards operands independent of storing destination specifiers therein	712/217
34	US 59207 10 A	×	Apparatus and method for modifying status bits in a reorder buffer with a large speculative state	712/216
35	US 59037 41 A	⊠	Method of allocating a fixed reorder buffer storage line for execution results regardless of a number of concurrently dispatched instructions	712/218
36	US 59037 40 A	☒	Apparatus and method for retiring instructions in excess of the number of accessible write ports	712/217
37	US 59013 02 A	☒	Superscalar microprocessor having symmetrical, fixed issue positions each configured to execute a particular subset of instructions	712/215
38	US 58871 52 A	☒	Load/store unit with multiple oldest outstanding instruction pointers for completing store and load/store miss instructions	712/217
39	US 58840 61 A	⊠	Apparatus to perform source operand dependency analysis perform register renaming and provide rapid pipeline recovery for a microprocessor capable of issuing and executing multiple instructions out-of-order in a single processor cycle	712/217
40	US 58782 44 A	⊠	Reorder buffer configured to allocate storage capable of storing results corresponding to a maximum number of concurrently receivable instructions regardless of a number of instructions received	712/218
41	US 58729 51 A	⊠	Reorder buffer having a future file for storing speculative instruction execution results	712/218
42	US 58705 80 A	⊠	Decoupled forwarding reorder buffer configured to allocate storage in chunks for instructions having unresolved dependencies	712/218

TH 969,645,6 BT

required to receive information can be reduced. and which are not required, the load for the upper device delete packets which are not destined to the own terminal tined devices in the header can be eliminated. Moreover, necessity of arranging the equipment addresses of the dession is performed to a plurality of devices is repeated. The the unicast communication to be performed when transmistion is transmitted to a plurality of devices and sets unicast -smolni ashw seathbe stabbootd stae seathbe at gainsqui transmitting and receiving apparatus to transmit it while receiving a packet transmitted from the foregoing packet calculation can be decreased and the time required to set ment address is as it is transmitted. Therefore, address terminal, the destination address in the form of the equipprevented. In a case where information is transmitted to one terminal ID information coincide with each other, own 10 required to be transmitted, enlargement of traffic can be negotiation can be saved efficiently. Since only one packet is and information is received. Therefore, labor and time of that information destined to the own terminal is determined required to memorize only the address of the own device so to a packet header to be transmitted. The receive side is performed and address of the destined terminal is imparted addresses of device groups with which transmission can be structure such that multiple address calculated from To achieve the sixth object, the present invention has a

the number of devices, with which communication is being realized without a limitation of the number of the device. If which multiple communication can be performed can be length, communication with a multiplicity of devices with Since the header of the destined terminal has a variable

A packet transmitting and receiving apparatus for achievheld is small, only a short beader is required.

one group. Information transmission means transmits same 65 ment address in accordance with the destined device number own terminal in accordance with existence confirmation 60 nation flag is provided for the beader of a destination packet There is provided a transmission and receipt method information addressed to the own device is acquired. information is addressed to the own device so that only equipment address of the own device to determine whether

to the receive packet, the destination address and the own

side uses all or a portion of the multicast address imparted

equipment address so as to be transmitted, and the receive

from the equipment addresses of all or a portion of devices, destination address is set to multicast address calculated

plied packet is destined to the own terminal, wherein the

discrimination section for discriminating whether the supaddress operating section to a header; and a receive address

imparting destination address generated by the destination

packet generating section for generating a packet formed by

field having the fixed length of the destination packet, a

section to determine destination address having the address

baving a fixed length; a destination address operating section own device and a destined device having an address field

tor memorizing logical equipment address and the like of an

ing the sixth object comprises an address memory section

the own device is determined in accordance with all or a discrimination ID flag, whether information is addressed to determines that the destination address is the logical equiplogical equipment address as it is. When the receive side nation address is enabled to be transmitted in the form of the to set the flag to indicate one destination so that the destiof destination is one, a destination device number discrimihaving an arrangement such that, in a case where the number

type information to communication terminals belonging to a among recognized communication-enabled terminals into mesus sets one or a plurality of communication terminals from the own terminal or another terminal. Group setting information and existence confirmation response transmitted nizes communication-enabled terminals existing around the Communication-enabled terminal recognizing means recogand own terminal ID information coincide with each other. in a case where received existence confirmation information response for indicating existence of a coincidence terminal transmission means transmits existence confirmation communication terminal. Existence confirmation response mation information transmitted from another tion information receive means receives existence confirnals existing around the own terminal. Existence confirmas- 50 which are the subject of communication, and the own information for recognizing communication-enabled termition transmission means transmits existence confirmation crimination information. Existence confirmation informamation memory means memorizes the own terminal disthe own communication terminal. Own terminal ID infor- 45 means sets own terminal ID information for discriminating structure such that own terminal ID information setting To achieve the fifth object, the present invention has a Address transmission means transmits address information. address. Address generating means generates new address. 40 using logical address information of the address memory transmission means transmits information to the selected information transmitted to the selected address. Information address information. Information receive means receives means selects one or a plurality of addresses from received address and attribute of the address. Address selection 35 receives address information indicating existence of certain structure such that address information receive means To achieve the fourth object, the present invention has a

set group.

that the packet is a receipt confirmation packet. mation of the received packet and information indicating 30 confirmation packet, it generates a packet having ID inforgenerating means has received a packet except the receipt mitted again. In a case where receipt confirmation packet received in a predetermined time, the same packet is transreceive receipt confirmation packets by a number to be 25 since a lower device for receiving information is able to packets. In a case where re-transmission means cannot of receipt confirmation packets with respect to transmitted packet received number counting means counts the number received with respect to transmitted packets. Confirmation sets the number of receipt confirmation packets to be 20 address when information is transmitted to one device. Thus, packet. Confirmation packet receipt number setting means imparted. Packet receive means receives broadcasted eion means proadcasts packet to which ID has been tion of a packet to a transmission packet. Packet transmisstructure such that ID imparting means imparts ID informs- 15 transmission can further be shortened. A lower device for To achieve the third object, the present invention has a

changes it, if necessary. whether own terminal ID information is changed and terminal ID information changing means determines nal. In a case where received existence information and own existence information from another communication termiown terminal. Existence information receive means receives information to transmit it as existence information of the is obtained from means for memorizing own terminal ID own communication terminal. Own terminal ID information means sets own terminal III information for determining the structure such that own terminal ID information setting To achieve the second object, the present invention has a

	Docum ent ID	ט	Title	Current OR
43	US 58705 79 A	⊠	Reorder buffer including a circuit for selecting a designated mask corresponding to an instruction that results in an exception	712/217
44	US 58599 98 A	⊠	Hierarchical microcode implementation of floating point instructions for a microprocessor	712/222
45	US 58484 33 A	Ø	Way prediction unit and a method for operating the same	711/137
46	US 58322 97 A	Ø	Superscalar microprocessor load/store unit employing a unified buffer and separate pointers for load and store operations	710/5
47	US 58288 73 A	⊠	Assembly queue for a floating point unit	712/222
48	US 58225 74 A	⊠	Functional unit with a pointer for mispredicted resolution, and a superscalar microprocessor employing the same	712/233
49	US 58225 58 A	☒	Method and apparatus for predecoding variable byte-length instructions within a superscalar microprocessor	712/213
50	US 58190 59 A	×	Predecode unit adapted for variable byte-length instruction set processors and method of operating the same	712/213
51	US 58130 33 A	×	Superscalar microprocessor including a cache configured to detect dependencies between accesses to the cache and another cache	711/144
52	US 58058 76 A	⊠	Method and system for reducing average branch resolution time and effective misprediction penalty in a processor	712/234
53	US 57874 74 A	⊠	Dependency checking structure for a pair of caches which are accessed from different pipeline stages of an instruction processing pipeline	711/138
54	US 57686 10 A	×	Lookahead register value generator and a superscalar microprocessor employing same	712/23
55	US 57685 55 A	×	Reorder buffer employing last in buffer and last in line bits	712/216
56	US 57650 16 A	⊠	Reorder buffer configured to store both speculative and committed register states	712/23
57	US 57649 46 A	×	Superscalar microprocessor employing a way prediction unit to predict the way of an instruction fetch address and to concurrently provide a branch prediction address corresponding to the fetch address	712/239
58	US 56257 89 A	⊠	Apparatus for source operand dependendency analyses register renaming and rapid pipeline recovery in a microprocessor that issues and executes multiple instructions out-of-order in a single cycle	712/217

accordance with the address field length, the multicast destined to the own device by the foregoing method in The receiving side is able to selectively receive the packet address is calculated by a method similar to the foregoing. can be held simultaneously is secured. Then, the multicast maximum number of devices with which communication which communication can be held, an address field for the the multicast address is insufficient for the devices with transference is performed. If the address field for describing and the own address so that efficient multicast information the multicast address of the beader of the received packet device is selectively received by only the calculation using information is received, the packet destined to the own

the above apparatuses may be stared in storage media. Programs for executing the above methods and operating address and the like described in the received packet.

appended claims. talities and combinations particularly pointed out in the may be realized and obtained by means of the instrumenof the invention. The objects and advantages of the invention opvious from the description, or may be learned by practice set forth in the description which follows, and in part will be Additional objects and advantages of the invention will be

the general description given above and the detailed descrippreferred embodiments of the invention and, together with and constitute a part of the specification, illustrate presently The accompanying drawings, which are incorporated in

BRIEF DESCRIPTION OF THE DRAWINGS

control apparatus according to Embodiment 1 of the present FIG. 3 is a block diagram showing a communication FIG. 2 is a conceptual view of a packet structure;

FIG. I is a conceptual view of a network;

explain the principles of the invention.

FIG. 5 shows a state of communication among terminal cation control apparatus according to the present invention; FIG. 4 is a diagram showing a network of the communi-

Embodiment 1 of the present invention; FIG. 6 shows terminal ID information according to

according to the present invention;

bicsent invention; FIG. 7 shows information memorized in another terminal

macunou? terminal identifier according to Embodiment 1 of the present FIG. 8 is a flow chart showing a process for setting an own

control apparatus according to Embodiment 4 of the present FIG. 9 is a block diagram showing a communication

FIG. 10 shows terminal ID information according to TUACUTOU!

nal memory section according to Embodiment 4 of the FIG. II shows information memorized in another termicalculate the multicast address is omitted. In a case where 55 embodiment 4 of the present invention;

FIG. 12 is a block diagram showing the communication present invention;

FIG. 13 is a block diagram showing the communication τυλευπου:

FIG. 14 is a block diagram showing the communication macunou? control apparatus according to Embodiment 6 of the present

mvention; control apparatus according to Embodiment 7 of the present

> addressed to the own device is acquired. and the transmitter address so that only information portion of the logical address, the own device logical address

generated by the foregoing apparatus indicates a plurality of device and multicast address when the destination address where the destination address has address indicating one 10 information is transmitted sets a multicast address in a case sion and receipt apparatus to impart the destination when the packet transmitted from the foregoing packet transmishaving an arrangement such that a low device for receiving apparatus and a packet transmission and receipt method There is provided a packet transmission and receipt

address is one. devices and sets unicast address when the destination

so that only information addressed to the own device is 35 equipment address of the own device imparted to the packet the multicast address, the destination address and the own accordance with all or a portion of the maximum number, whether information is addressed to the own device in with the maximum number, and the receive side determines 30 tion of the preferred embodiments given below, serve to determining section can be multicasted to transmit the same the simultaneously communication enabled device number which the maximum number of the devices determined by the address of the own device are set in an address field in destination devices and multicast address calculated from 25 method in which devices addresses of all or a portion of the determine the maximum number. There is provided a performed simultaneously with the detected devices to the number of devices with which communication can be enabled device number determining section for determining 20 the number of the devices; and simultaneous communication which wireless communication can be performed to detect means for discriminating another equipment address with apparatus comprising another equipment address detection There is provided a packet transmission and receipt 15

packet transmitted from the foregoing packet transmission transmitted. In a case where a lower device receives the a packet beader having a fixed length when information is multicast address and, if necessary, the transmitter address to 45 identifier memory section according to Embodiment 1 of the other devices and the own address, and then adds the calculates the multicast address from the addresses of the address and addresses of the other devices. The device X can be transmitted. Note that each device knows the own devices A, B and C among a group of devices to which data 40 as shown in FIG. 1. The device X intends to transmit data to The transmitter is assumed to be device X on a network The structure above is operated as follows:

In a case where information is transmitted to one device, the broadcast address. mission is performed, the address is transmitted by setting 50 and receipt apparatus and imparts the address when trans-

the calculations using the address of each device. When unificasi address is imparted which can be obtained by only devices with one packet and without negotiation because the 65 able to perform multiple communication to a plurality of the transmitter, if necessary. As a result, the transmitter is received packet header, the own address and the address of accordance with the multicast address imparted to the determine whether data is addressed to the own device in 60 control apparatus according to Embodiment 5 of the present The receiving side receives the transmitted packet to broadcast address when transmission is performed.

transmitted, the address in the low device is set to be the

address is imparted by the low device when information is

address of the destination device so that labor required to

the calculated multicast address is set to the equipment