Clever Compilers: x86_64 assembly arithmetic analysis

junyu33

Introduction

This is a brief overview about how $x86_64$ C compilers (e.g. gcc) optimize arithmetic calculations. I'll try to give analysis for simple code blocks for different operations like:

- addition
- subtraction
- multiplication
- division
- modulo

In this way we can have some kind of intuition about how smart the compilers are.

Assuptions

Before we start, let's have some assumptions. For example, the time consumption of clock cycles in different instructions of $x86_64^{[1]}$:

INST	ADD/SUB	MUL	IMUL	DIV	IDIV	SHR SHL SAR	ROR/ROL	
r,r/i	1	2	1/2[2]	36	57	1	1	
r,m	1	2	1/2					
m,r/i	2					3	4	

and we don't consider other optimizations in CPU, like pipelining and out-of-order execution.

- 1. https://www.agner.org/optimize/instruction_tables.pdf, using Skylake architecture. 🔁
- 2. If we have 3 opreands, like imul rcx, rsi, 10, the result is 1.

Addition

```
// gcc test.c -o test
#include <stdio.h>
int main() {
    int a = 1;
   int b = 2;
    int c = a + b;
    printf("%d", c);
    return 0;
00000000000001139 <main>:
    1139: 55
                                       rbp
                                push
    113a: 48 89 e5
                                       rbp,rsp
                                mov
    113d: 48 83 ec 10
                                sub
                                       rsp,0×10
                                       DWORD PTR [rbp-0×c],0×1
    1141: c7 45 f4 01 00 00 00
                               mov
    1148: c7 45 f8 02 00 00 00
                                       DWORD PTR [rbp-0×8],0×2
                               mov
    114f: 8b 55 f4
                                       edx, DWORD PTR [rbp-0×c]
                                mov
    1152: 8b 45 f8
                                       eax, DWORD PTR [rbp-0×8]
                                mov
    1155: 01 d0
                                add
                                       eax,edx
    1157: 89 45 fc
                                       DWORD PTR [rbp-0×4],eax
                                mov
    115a: 8b 45 fc
                                mov
                                       eax, DWORD PTR [rbp-0×4]
    115d: 89 c6
                                       esi,eax
                                mov
# other code about printf
```

What about O2 optimization?

```
// gcc test.c -o test -02
#include <stdio.h>
int main() {
   int a = 1;
   int b = 2;
   int c = a + b;
   printf("%d", c);
   return 0;
00000000000001040 <main>:
   1040: 48 83 ec 08 sub
                                 rsp,0×8
   1044: be 03 00 00 00
                                 esi,0×3
                                         # 1 + 2 = 3
                           mov
                                 rdi,[rip+0×fb4] # 2004 < IO stdin used+0×4>
   1049: 48 8d 3d b4 0f 00 00 lea
   1050: 31 c0
                                 eax,eax
                           xor
   1052: e8 d9 ff ff ff
                           call
                                 1030 <printf@plt>
   1057: 31 c0
                                 eax,eax
                           xor
   1059: 48 83 c4 08
                           add
                                 rsp,0×8
   105d: c3
                           ret
   105e: 66 90
                           xchg
                                 ax,ax
```

This techique is called constant folding.

Another example, let's try to encapsulate add into a function:

```
// gcc test.c -o test
#include <stdio.h>
int add(int a, int b) {return a + b;}
int main() {
    int c = add(1, 2);
    printf("%d", c);
    return 0;
00000000000001139 <add>:
    1139: 55
                                push
                                       rbp
    113a: 48 89 e5
                                mov
                                       rbp,rsp
   113d: 89 7d fc
                                       DWORD PTR [rbp-0×4],edi
                               mov
   1140: 89 75 f8
                                       DWORD PTR [rbp-0×8],esi
                               mov
                                       edx, DWORD PTR [rbp-0×4]
   1143: 8b 55 fc
                               mov
   1146: 8b 45 f8
                                       eax, DWORD PTR [rbp-0×8]
                                mov
                                       eax,edx
   1149: 01 d0
                                add
    114b: 5d
                                       rbp
                                pop
    114c: c3
                               ret
```

A very classical __cdecl routine.

Let's try O2 again, here is the result:

As you can see, compilers often use lea to optimize additions. Let's try to analyze the performance:

If we use classical ADD instruction, we need:

```
add rdi, rsi
mov eax, rdi
```

which costs 2 clock cycles, however:

```
lea eax,[rdi+rsi*1]
```

only costs 1 clock cycle, so LEA way is better.

This optimization is also very common in mutiplication.

Subtraction

We all know that subtracting a number is the same as adding its 2's complement. So it is almost the same:

As you can see, we don't have such instructions like lea eax, [rdi-rsi*1], because it is inherently not supported in x86 assembly. I believe this is the only difference.

Multiplication

```
// gcc test.c -o test -02
#include <stdio.h>
int mul0() {return 3 * 5;}
int mul1(int x) {return 7 * x;}
int mul2(int x) {return x * 8 + 5;}
int mul3(int x) {return x * 113 + 5;}
int mul4(int x) {return x * 1024 + 5;}
int mul5(int x, int y) {return x * y;}
int main() {
   int a = mul0(), b = mul1(3), c = mul2(3), d = mul3(3), e = mul4(3), f = mul5(3, 5);
   printf("%d %d %d %d %d %d\n", a, b, c, d, e, f);
   return 0;
}
```

And here is the disassembly (ignored some useless code):

```
eax,[rdi*8+0×0]
   1190: 8d 04 fd 00 00 00 00 lea
   1197: 29 f8
                               sub
                                     eax,edi
   1199: c3
                              ret
00000000000011a0 <mul2>:
   11a0: 8d 04 fd 05 00 00 00 lea
                                     eax, [rdi*8+0*5]
   11a7: c3
                               ret
00000000000011b0 <mul3>:
   11b0: 6b c7 71
                              imul
                                     eax,edi,0×71
   11b3: 83 c0 05
                               add
                                     eax,0×5
   11b6: c3
                              ret
00000000000011c0 <mul4>:
   11c0: c1 e7 0a
                                     edi,0×a
                               shl
                                     eax,[rdi+0×5]
   11c3: 8d 47 05
                              lea
   11c6: c3
                              ret
00000000000011d0 <mul5>:
   11d0: 89 f8
                                     eax,edi
                               mov
   11d2: 0f af c6
                               imul
                                     eax,esi
```

0000000000001190 <mul1>:

11d5: c3

ret

We can conclude some features below:

- constant folding still exists.
- the sequence of two multipliers doesn't matter.
- for small numbers (especially closes to the power of 2), LEA instruction is mostly used.
- If LEA is used and we don't need to subtract something, we can also **add** a constant in the same LEA instruction.
- If the number is large and closes to the power of 2, SHL instrcution will be used, otherwise uses IMUL finally.

Wait! But IMUL only costs 1 clock cycle if we use something like imul eax,edi,<arg>, compilers don't need to do such conversion!

In modern CPU architectures like Skylake , this is correct. But there are also older CPUs like Pentium , MUL/IMUL instruction can cost at most 9 clock cycles. However SHL/LEA always costs 1 clock cycle. So it is more "secure" for compilers to have such conversion in order to reach better efficiency.

Signed Division

From the previous content, we know signed division costs 57 clock cycles, so compilers will avoid using IDIV command, especially if the divisor is a constant. Here are 4 possible cases:

- divisor is the power of 2
- divisor is the power of 2, but negative
- divisor is not the power of 2
- divisor is not the power of 2, and negative

The unsigned division is similar, and I won't expand it again.

divisor is the power of 2

```
// gcc test.c -o test -02
#include <stdio.h>
int div32(int x) {
   return x / 32;
int main() {
   int a = 0 \times 12345678;
   int b = div32(a);
   printf("0x%x\n", b);
   return 0;
00000000000001160 <div32>:
                                        # set SF flag
   1160: 85 ff
                test edi,edi
   1162: 8d 47 1f
                          lea eax,[rdi+0×1f] # if it is negative, add 31
   1165: 0f 49 c7
                          cmovns eax,edi  # conditional move (if SF=0, then eax=edi)
                                eax,0×5 # eax >= 5
   1168: c1 f8 05
                          sar
   116b: c3
                          ret
```

If the dividend is positive and 0, obviously it is correct. Otherwise we have,

$$\frac{x}{2^n}=(x+(2^n-1))\gg n$$

divisor is the power of 2, but negative

```
// gcc test.c -o test -02
#include <stdio.h>
int div32(int x) {
   return x / -32;
int main() {
   int a = 0 \times 12345678;
   int b = div32(a);
   printf("0x%x\n", b);
   return 0;
00000000000001160 <div32>:
               test edi,edi
   1160: 85 ff
   1162: 8d 47 1f
                             lea eax,[rdi+0×1f]
   1165: 0f 49 c7
                             cmovns eax, edi
   1168: c1 f8 05
                                    eax,0×5
                             sar
   116b: f7 d8
                             neg
                                    eax
   116d: c3
                             ret
```

The only difference is negative the result.

divisor is not the power of 2

```
// gcc test.c -o test -02
#include <stdio.h>
int div32(int x) {
   return x / 53;
int main() {
   int a = 0 \times 12345678;
   int b = div32(a);
   printf("0x%x\n", b);
   return 0;
00000000000001160 <div32>:
                                                                # sign-extension
   1160: 48 63 c7 movsxd rax,edi
   1163: c1 ff 1f sar
                                                                # check the sign-bit
                                    edi,0×1f
   1166: 48 69 c0 ed 73 48 4d imul rax, rax, 0×4d4873ed
   116d: 48 c1 f8 24
                                                                # signed right-shift 36 bit
                             sar rax,0×24
   1171: 29 f8
                             sub
                                    eax,edi
                                                                # if negative, minus -1
   1173: c3
                             ret
```

So, what the HELL is 0×4d4873ed???

■ それは魔法の数字「マジックナンバー」です (It's a magic number)

Let's do a little calculation (assume c is the magic number):

$$rac{x}{53} = x imes c \gg 36$$

so we have:

$$\frac{2^{36}}{53} = c$$

After a little calculation, we know the answer:

```
Python 3.11.8 (main, Feb 12 2024, 14:50:05) [GCC 13.2.1 20230801] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> pow(2,36) / 53
1296593900.6792452
>>> hex(int(pow(2,36) / 53))
'0×4d4873ec'
>>> hex(round(pow(2,36) / 53))
'0×4d4873ed'
>>>
```

That's how the magic number originates.

Let's summarize a little, suppose the dividend is o, we have:

$$\frac{x}{a} = (x imes c \gg N) + x[31]$$

where x[31] is the sign-bit of x, and $o=\frac{2^N}{c}$.

The reason why adding x[31] is the same as the previous 2^n-1 : Rounding towards zero.

divisor is not the power of 2, and negative

```
// gcc test.c -o test -02
#include <stdio.h>
int div32(int x) {
   return x / -53;
int main() {
   int a = 0 \times 12345678;
   int b = div32(a);
   printf("0x%x\n", b);
   return 0;
00000000000001160 <div32>:
   1160: 48 63 d7 movsxd rdx,edi
                                  edi,0×1f
   1163: c1 ff 1f sar
   1166: 48 69 d2 ed 73 48 4d imul rdx,rdx,0×4d4873ed
   116d: 89 f8
                            mov eax, edi
   116f: 48 c1 fa 24
                                  rdx,0×24
                            sar
   1173: 29 d0
                            sub
                                  eax,edx
   1175: c3
                            ret
```

Just exchanged the minuend and subtrahend to omit NEG instruction.

Modulo

When the dividend is the power of 2:

```
// gcc test.c -o test -02
#include <stdio.h>
int mod32(int x) {
    return x % 32;
int main() {
    int a = 0 \times 12345678;
    int b = mod32(a);
    printf("0x%x\n", b);
    return 0;
0000000000001160 <mod32>:
    1160: 89 fa
                                       edx,edi
                                mov
    1162: c1 fa 1f
                                       edx,0×1f
                                sar
    1165: c1 ea 1b
                                       edx,0×1b
                                                                     # if edi is negative, edx will equal to 31
                                shr
    1168: 8d 04 17
                                       eax,[rdi+rdx*1]
                                                                     # add 31 or 0
                                lea
    116b: 83 e0 1f
                                and
                                       eax,0×1f
    116e: 29 d0
                                sub
                                       eax,edx
                                                                     # cancel the add operation
    1170: c3
                                ret
```

From the assembly above, we can have this formula:

$$x\%2^n = \left\{egin{array}{ll} x\&(2^n-1) & (x\geq 0) \ ((x+(2^n-1))\&(2^n-1))-(2^n-1) & (x<0) \end{array}
ight.$$

The proof will be left for exercise after this talk.

Another situation is that the dividend is not the power of 2:

```
// gcc test.c -o test -02
#include <stdio.h>
int mod32(int x) {
   return x % 53;
int main() {
   int a = 0 \times 12345678;
   int b = mod32(a);
   printf("0x%x\n", b);
   return 0;
00000000000001160 <mod32>:
   1160: 48 63 c7
                              movsxd rax,edi
   1163: 89 fa
                                     edx,edi
                              mov
   1165: 48 69 c0 ed 73 48 4d imul
                                     rax, rax, 0×4d4873ed
   116c: c1 fa 1f
                                     edx,0\times1f
                              sar
   116f: 48 c1 f8 24
                                     rax,0×24
                              sar
   1173: 29 d0
                              sub
                                     eax,edx
   1175: 6b d0 35
                                     edx, eax, 0 \times 35
                              imul
   1178: 89 f8
                                     eax,edi
                              mov
   117a: 29 d0
                              sub
                                     eax,edx
   117c: c3
                              ret
```

```
00000000000001160 <mod32>:
   1160: 48 63 c7
                                movsxd rax,edi
   1163: 89 fa
                                        edx,edi
                                mov
   1165: 48 69 c0 ed 73 48 4d imul
                                        rax, rax, 0×4d4873ed
   116c: c1 fa 1f
                                        edx,0×1f
                                sar
   116f: 48 c1 f8 24
                                        rax,0×24
                                sar
                                        eax,edx
   1173: 29 d0
                                sub
   1175: 6b d0 35
                                imul
                                        edx, eax, 0 \times 35
   1178: 89 f8
                                        eax,edi
                                mov
   117a: 29 d0
                                        eax,edx
                                sub
   117c: c3
                                ret
```

Guess what does it mean?

Answer:

$$a\%b = a - (a/b)*b$$

And please mention that, because the division is rounding towards zero, the definition is not the same as that in maths. For example:

-5%3 = -2 in this code, while 1 in maths.

Summary

In this talk, we have learned:

- constant folding
- LEA to substitude addition and multiplication
- SHL to substitude large number multiplication with the power of 2
- magic numbers
- use division or AND to substitute modulo

Hope all of listeners can have a rough understanding of the compilers' intelligence.

References

- https://www.agner.org/optimize/instruction_tables.pdf
- 《加密与解密》 (第四版)
- https://ja.wikipedia.org/wiki/マジックナンバー_(プログラム)
- https://tieba.baidu.com/p/3786445337