Project Reconnect: A web-based application based on 384 SNPs to reconnect missing children with their parents in China

Luren Wang¹, Calvin Tjandra¹ and Jianyi Ren²

¹Department of Computer Science, 1214 Amsterdam Ave, New York, NY 10027, ²Department of Chemical Engineering, 500 W 120th St, New York, NY 10027.

Abstract

Motivation: Each year thousands of children in China were illegally taken from their parents or ended up as missing. In this study we selected a panel of 384 SNPs with high discrimination power over 14 ethnic groups in China which covers 96% Chinese population. We also established a database and web platform based on the selected SNPs that serves to reunion parents and children who are disconnected. The aim of this study is to keep pace with technology advancement and provide a SNP-based database, complementary to the classic STR system, to grant individuals a convenient access to their lost family members, interterritorially as well as internationally.

Availability: Project Reconnect is a free and publically available web tool which can be accessed at http://zhaohaizi.org.cn (waiting for Government administration approval)

Contact: lw2666@columbia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Kidnapping and child trafficking is a serious social issue in China. Each year it is estimated 20,000~70,000 Chinese children were kidnapped (Bureau of Democracy, 2009; Neumann, 2007), with 13,000 rescued by police department of China(Liu, 2015). The trafficked children are sold to adoption families, domestic or international, turned into child labor, prostitution, or forced to engage in begging, theft and robbery. In some of the worst cases, children are permanently injured, amputated and turned into professional panhandler (Jiang and Sanchez-Barricarte, 2013). The effect of losing a child a devastating on a family.

Single Nucleoside Polymorphism(SNP) is a common generic variation among people. SNP panels have been developed as highly effective identification tools that pertain comparable precision to the classic short tandem repeats(STR) approach among a variety of populations (Augustinus, et al., 2015; Boonyarit, et al., 2014; Hwa, et al., 2016; Kim, et al., 2010; Pakstis, et al., 2010; Wei, et al., 2014; Zeng, et al., 2012). Compared to the STR method for paternity establishment, SNP system has the advantages of a significant lower mutation rate(Amorim and Pereira, 2005; Huang, et al., 2002; Reich, et al., 2002). The rapid advancement (Kim and Misra, 2007) and decreasing costs of SNP genotyping techniques has lead to the availability of various commercial companies that provide individuals genotyping service at a highly competitive cost to STR system.

In this study we established a standard SNP panel for paternity testing in Chinese population and constructed an online database capable of storing and matching SNP genotypes. Given a small amount of initial capital investment, Project Reconnect could be brought live in a short amount of time with success

2 Methods

The project was developed in three different parts simultaneously. The first part was screen a panel of SNPs of high distinguishing resolution within Chinese population. The second part was the development of an efficient and thorough matching algorithm. The third part was the development of digital infrastructure in the form of a website and database for the project to be housed in.

2.1 SNP marker selection

SNP markers for paternity test in Chinese population were selected according to the following criteria: (1) SNPs were required to have minor allele frequency(MAF) between 0.35~0.45 in all of the 14 Chinese subpopulations, including Han, Dai, Daur, Hezhen, Lahu, Miaozu, Mongola, Naxi, Oroqen, She, Tu, Tujia, Xibo, Yizu . The MAF threshold was established based on two major considerations: high heterozygosities is necessary to obtain a high distinguishing power; however, SNPs with MAF approaching 0.5 are more prone to experiment errors (Itsik Pe'er, personal communication, April 25, 2016); (2) The SNPs are in Hardy-Weinberg equilibrium (HWE), to ensure within-locus independence of alleles; (3) The SNPs are in linkage equilibrium, to ensure between locus independence of the alleles; (4) SNPs are not associated to diseases, to avoid including sensitive information of users; (5) The SNPs selected were located outside the common copy number variance(CNV) regions of each

chromosome, to enhance performance of SNP genotyping experiment; (6) SNPs were reported by multiple mainstream genotyping service providers, to facilitate future users an easy data acquisition from various third party genotyping service providers.

SNPs were selected as the overlap of SNPs reported by 23andme, Ancestry, deCODEme, FamilyTree and Wegene. To screen candidate SNPs we used allele frequency data from Hapmap Phase III for CHB population (Gibbs, et al., 2003), 1000 Genomes Phase III for CHS (Consortium, 2015), HGDP-CEPH Human Genome Diversity Cell Line Panel for Dai, Daur, Hezhen ,Lahu, Miaozu, Mongola, Naxi, Oroqen, She, Tu, Tujia, Xibo, Yizu. SNPs frequencies were evaluated either by a R script or by SPSmart (Amigo, et al., 2008) and all chosen SNPs have a MAF between 0.35~0.45 for all 14 subpopulations. The SNPs associated to diseases according to DisGeNET v3.0 (Piñero, et al., 2015) were excluded. Chisquare tests were performed to determine Hardy-Weinberg equilibrium and alleles with $\chi^2 > 3.841$ were eliminated. SNPs locate in areas of CNV frequency > 1% according to DECIPHER Database (Firth, et al., 2009) were excluded. r² for Linkage equilibrium were calculated by LDlink (Machiela and Chanock, 2015). The mean, SD and maximum value of all within-chromosome pairwise r² for 384 SNPs are 0.0023, 0.0030, 0.017. A full list of the 384 SNPs can be found in supplementary table 1. Source code for the SNP screening can be found at https://github.com/Jianyi-Ren/ProjectReconnect.

2.2 Algorithm Development

The algorithm design for Project Reconnect was focused upon ways to quickly and efficiently compare large amounts of SNP sequences and finding matches among these sequences indicating DNA inheritance by descent. Initial development was focused upon modifying GERMLINE, an algorithm designed by Professor Pe'er at Columbia University. A modified GERMLINE with less features was under development in Python. However, research into the amount of SNP positions required to identify parent child relationships showed that the dynamic programming approach was not necessary for such short SNP sequences and this algorithm was abandoned in favor of a simpler matching algorithm. The final requirements for such an algorithm was rapid processing of a large number of short SNP sequences in order to find the number of matching SNP positions between one sample and the rest of the database.

2.3 Digital Infrastructure

We incorporated our core algorithm into a web framework for a working site. Our digital infrastructure is modeled after the traditional full stack model.

For our backend database, we used Postgresql. Postgresql is regarded as a mature and highly capable database and the most SQL compliant. For these reasons, we chose Postgresql over MySQL as Postgresql also contains JSON datatype which helps speedier prototyping without data migration. However, during development, we used SQLite as it was easier to work with, lighter, and most importantly, we can use version control.

Flask served as our web framework. There are several other frameworks we have considered including Django and Bottle. However, Flask was considered to be light enough for rapid development and still contain powerful features such as a good html templating language (Jinja2) and blueprints.

On the UI end, we used Bootstrap. It was easy to create very nice user interfaces using Bootstrap templates. Bootstrap contains ready-made UI elements such as buttons as well as an extremely useful grid-system. These allowed us to rapidly create a professional looking site.

Our web application followed the traditional MVC design pattern, where the user interacts with the views, which updates the models, and models subsequently updating the views. Our file structure reflects this design pattern. The views folder contains the url routing methods which serves html files that are stored in the templates folder. The models folder stores the user class represented via SQLALchemy which is an object relational mapper between the python user object and the underlying table in the Postgresql database. Finally, the controller folder contain methods which alter the user model. A typical MVC scenario goes as follows: the client creates an account via the html render from the view methods, the request is sent to controller methods which in turn alter the user model class that finally updates the underlying table in Postgresql. This update in turn gets reflected in the view method as the user gets redirected to his or her newly created account page. Source code can be accessed at Github Link: https://github.com/LurenWang/ProjectReconnect.

3 Discussions

3.1 P-value and False Positive

For each of the 384 rounds of genotype matching between two individuals, only in two scenarios will a mismatch occur: when one individual is homozygous reference allele while the other is homozygous non-reference allele. P-value, the chances that two random individuals will survive all matches of 384 SNP position is 8.06E-21, calculated using eqn.1, with p_i being the reference allele frequency among the population.

$$P = \prod_{1}^{384} (1 - 2 \times p_i^2 \times (1 - p_i)^2)$$
 (1)

Copy number variance accounts for 13% of human genome. In the worse case where both in parent and son 13% SNP failed to be probed, render a total 26% SNP genotyping failure or 284 successful calls, the combined probability of a random match between two individuals is still 2.69E-15; for a 7 billion world population, that corresponds to a 1.8e-5 False Positive.

3.2 Threshold establishment for a Positive Match

To give our platform some error tolerance capacity we loosen the criteria for a positive match from 100% to a lower value. From the minor allele frequency table, we can conclude that probability of a random successful match for a SNP position is equal or smaller than 0.897. We use 0.897, the upper bound probability to estimate the proper threshold for a positive match. A binomial distribution model with n = 384 and p = 0.897 was employed. Number of False Positive was plotted against the threshold of percentage of matched ones among the 384 SNPs.

Persentage Threshold for Positive Match

Fig. 1. Relation between percentage threshold and False Positive expectations for 100,000 samples . 98% was selected.

3.3 Other Kinship Scenarios

3.1.1 Siblings

We simulated the genotypes of 100,000 pairs of siblings and calculated their match percentage. The results can be viewed in Fig. 1 and table 2.

Match Percentage of Simulated Siblings

Fig. 1. match percentage of 100,000 simulated siblings

Table 2. Summary of match percentage of 100,000 simulated sibling pairs

Min.	1st Qu.	Mean	3rd Qu.	Max.
0.8464	0.9062	0.9146	0.9245	0.9740

3.2 Grandparents

We simulated the genotypes of 100,000 pairs of grandfather-grandson and calculated their match percentage. Results can be viewed in Fig. 2 and table 3.

Match Percentage of Simulated grandfather-grandson

Fig. 2. match percentage of 100,000 simulated grandfather-grandson pairs

Table 3. Summary of match percentage of 100,000 simulated grandfather-grandson pairs

Min.	1st Qu.	Mean	3rd Qu.	Max.
0.7708	00.8385	0.8505	0.8620	0.9193

Match percentage obtained from the simulated samples indicate currently Project Reconnect threshold (98%) only captures parental relationship. We consider this result to be acceptable considering the core goal of Project Reconnect is to identify parents of lost Children.

Acknowledgements

Project Reconnect was completed under the advisement and with crucial support from Professor Itsik Pe'er at Columbia University. The authors would also like to acknowledge their classmates in the spring 2016 section of Professor Pe'er's Computational Genomics class and teaching assistant Shuo Yang for their advice and encouragement throughout this process.

References

Amigo, J., Salas, A. and Phillips, C. SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access. BMC ... 2008.

Augustinus, D., Gahan, M.E. and McNevin, D. Development of a forensic identity SNP panel for Indonesia. International Journal of Legal Medicine 2015;129(4):681-691.

Boonyarit, H., et al. Development of a SNP set for human identification: A set with high powers of discrimination which yields high genetic information from naturally degraded DNA samples in the Thai population. Forensic Science International: Genetics 2014;11:166-173.

Bureau of Democracy, H.R.A.L. 2009 Human Rights Report: China (Includes Tibet, Hong Kong, And Macau). In.: United States Department of State 2009.

Consortium. A global reference for human genetic variation. Nature 2015.

Firth, H.V., et al. DECIPHER: database of chromosomal imbalance and phenotype in humans using ensembl resources. The American Journal of Human Genetics 2009;84(4):524-533.

Gibbs, R.A., et al. The international HapMap project. Nature 2003.

Huang, Q.Y., et al. Mutation patterns at dinucleotide microsatellite loci in humans. The American Journal of ... 2002.

Hwa, H.-L., et al. Genotyping of 75 SNPs using arrays for individual identification in five population groups. International Journal of Legal Medicine 2016;130(1):81-89.

Jiang, Q. and Sanchez-Barricarte, J.J. Child Trafficking in China. China Report 2013;49(3):317-335.

Kim, J.-J., et al. Development of SNP-based human identification system. International journal of legal medicine 2010;124(2):125-131.

Kim, S. and Misra, A. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 2007.

Liu, Z. 警方高压打拐人贩子被迫收手

. In, China Legal Daily. 2015. p. 1.

Machiela, M.J. and Chanock, S.J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015.

Neumann, J. China's stolen children. In.; 2007

Pakstis, A.J., et al. SNPs for a universal individual identification panel. Human genetics 2010;127(3):315-324.

Piñero, J., Queralt-Rosinach, N. and Bravo, À. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. ... 2015.

Reich, D.E., et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature ... 2002.

Wei, Y.-L., et al. Validation of 58 autosomal individual identification SNPs in three Chinese populations. Croatian Medical Journal 2014;55(1):10-13.

Zeng, Z., et al. Evaluation of 96 SNPs in 14 Populations for Worldwide Individual Identification*. Journal of Forensic Sciences 2012;57(4):1031-1035.

Supplementary Table 1. Full List of 384 SNPs for paternal testing in Project Reconnect

rs. Chromosome	rs.Chromosome				
rs4970357 1	rs12233824 4	rs2469364 8	rs519536 12	rs6500720 16	rs7260343 19
rs260513 1	rs10002315 4	rs1471593 8	rs12424642 12	rs3848386 16	rs6512121 19
32236395 1	rs4696803 4	rs12680074 8	rs4930768 12	rs17139223 16	rs11085743 19
s2993480 1	rs940136 4	rs649126 9	rs2159953 12	rs1811321 16	rs6135141 20
s2483256 1	rs6811287 4	rs7850218 9	rs10774398 12	rs1013614 16	rs723477 20
32493278 1	rs2672737 5	rs1412255 9	rs2072373 12	rs4786101 16	rs6085597 20
s4323679 1	rs11746538 5	rs12344160 9	rs2305340 12	rs2192347 16	rs6134424 20
37524800 1	rs6554595 5	rs1331817 9	rs9511255 13	rs2131226 16	rs615007 20
s11808641 1	rs12653484 5	rs10757469 9	rs6490551 13	rs17669927 16	rs214833 20
s349393 1	rs11133883 5	rs3858032 9	rs7328274 13	rs4627375 16	rs6037397 20
780606 1	rs10076206 5	rs10974261 9	rs9552472 13	rs3951818 17	rs6139011 20
874668 1	rs10866539 5	rs10814874 9	rs1547149 13	rs2277669 17	rs6084327 20
2898853 1	rs1106115 5	rs301430 9	rs912134 13	rs9818 17	rs4815621 20
5026665 1	rs7712012 5	rs7848468 9	rs455692 13	rs1984749 17	rs9636534 20
s1081454 1	rs11745728 5	rs295258 9	rs1579373 13	rs756819 17	rs2756271 20
3789553 1	rs13176914 5	rs1571221 9	rs943380 13	rs10491216 17	rs2102486 20
9434662 1	rs4866463 5	rs947403 10	rs4769245 13	rs8065080 17	rs805743 20
378930 1	rs11750441 5	rs2892336 10	rs2861537 13	rs12150491 17	rs6085352 20
4908611 1	rs261137 5	rs10903470 10	rs7317321 13	rs1050998 17	rs1342347 20
s389709 1	rs1376240 5	rs11250681 10	rs2793483 13	rs3764900 17	rs6054479 20
s4372938 2	rs4702249 5	rs12571115 10	rs7338915 13	rs9902174 17	rs6085681 20
s11686452 2	rs6596835 6	rs3763685 10	rs12434613 14	rs887525 17	rs2775537 21
s732609 2	rs10223528 6	rs7895038 10	rs4982401 14	rs17825449 17	rs2823035 21
s2241457 2	rs9378518 6	rs17159312 10	rs10149170 14	rs6502926 17	rs2823252 21
s12471985 2	rs10458234 6	rs10903959 10	rs7145515 14	rs1467138 17	rs2823795 21
s2551212 2	rs2745631 6	rs1359526 10	rs17182867 14	rs6502958 17	rs2824110 21
s10174217 2	rs9392312 6	rs1668538 10	rs3811313 14	rs2271314 17	rs2824242 21
s1729926 2	rs9405506 6	rs12762783 10	rs2331662 14	rs2135845 17	rs4536738 21
37583267 2	rs12664420 6	rs1468064 10	rs17256106 14	rs222852 17	rs2150385 21
s10197283 2	rs2296355 6	rs7916379 10	rs3825581 14	rs8066124 17	rs2824720 21
s13425182 2	rs1040521 6	rs9423376 10	rs7142207 14	rs3027302 17	rs2825092 21
s4371367 2	rs11242860 6	rs7917859 10	rs1033844 14	rs11654033 17	rs2825581 21
310172284 2	rs541051 6	rs7122936 11	rs8021991 14	rs4632172 17	rs2825731 21
s1377638 2	rs1016598 6	rs4881743 11	rs206225 14	rs12945811 17	rs12482714 21
s2882275 2	rs9378430 6	rs10769945 11	rs854351 14	rs7216753 17	rs1557330 21
s941009 2	rs4959340 6	rs2651836 11	rs2208432 14	rs880334 17	rs2032196 21
s751394 2	rs9504466 6	rs718579 11	rs17212261 14	rs8095469 18	rs1032002 21
s332478 3	rs4637765 7	rs234853 11	rs178222 14	rs690196 18	rs175139 22
	rs10264122 7	rs12421922 11	rs17111632 14	rs1009238 18	
s6779648 3	rs2734791 7	rs11028536 11	rs7170864 15	rs8089407 18	rs5992916 22
s17043656 3	rs6942930 7	rs1372804 11	rs487586 15	rs9955881 18	rs1557847 22
311129006 3	rs10260968 7	rs2278170 11	rs2316583 15	rs2282636 18	rs6518580 22
31948796 3	rs1982157 7	rs10768434 11	rs12595571 15	rs3786455 18	rs12167717 22
2616595 3	rs1550202 7	rs2472527 11	rs6576636 15	rs4798214 18	rs5759455 22
1391933 3	rs6952068 7	rs11037417 11	rs4514648 15	rs11877871 18	rs7289487 22
340813 3	rs17133257 7	rs317773 11	rs3097531 15	rs4321285 18	rs8141816 22
s1386948 3	rs6976105 7	rs16933888 11	rs16950979 15	rs292292 18	rs131654 22
9862229 3	rs10272726 7	rs997433 11	rs11637374 15	rs1940994 18	rs4821718 22
2584043 3	rs12055961 7	rs1506981 11	rs8039737 15	rs9959692 18	rs8137866 22
	rs6960751 7			rs7504372 18	rs4822154 22
12630241 3		rs523169 12	rs4780224 15		
2600116 3	rs2042545 7	rs722097 12	rs2140175 15	rs4897966 19	rs5751614 22
6799552 3	rs9655516 7	rs10849549 12	rs4779527 15	rs4807121 19	rs2330555 22
6828710 4	rs9314442 8	rs7311263 12	rs8028396 15	rs20567 19	rs9612921 22
642626 4	rs7463086 8	rs4765829 12	rs7177176 15	rs1548709 19	rs507715 22
10805007 4	rs1470777 8	rs9805049 12	rs1317242 15	rs2873409 19	
2980098 4	rs7826946 8	rs2283275 12	rs2017567 16	rs6510698 19	
4689915 4	rs6558441 8	rs2238044 12	rs2235505 16	rs12461372 19	
3821949 4	rs10866924 8	rs215992 12	rs2729577 16	rs4807437 19	
16836929 4	rs3779704 8	rs11062386 12	rs2745170 16	rs3859564 19	
32269920 4	rs11780530 8	rs10774085 12	rs3094472 16	rs243342 19	
34689005 4	rs1455633 8	rs12810695 12	rs9928269 16	rs2620854 19	
s2301795 4	rs9693133 8	rs503554 12	rs2191416 16	rs10403489 19	
s4626203 4	rs12546362 8	rs758637 12	rs2238419 16	rs461970 19	
3892041 4	rs7013027 8	rs10849017 12	rs7186481 16	rs2860172 19	
7694661 4	rs11774749 8	rs10774223 12	rs3747590 16	rs7257153 19	
	rs9314497 8	rs1468556 12	rs4786664 16	rs4804367 19	