IBM Data Science Capstone Project

Operating a rickshaw in Stockholm

Contents

r	ntroduction	2
	Background	
	Problem	
	Data	
	Methodology	
	Results	
	Discussion	
	Conclusion	

Introduction

Background

In Stockholm, Sweden's capital, you find cobblestone streets and ochre-colored buildings. The greater area contains about 50 bridges stretching over about 14 islands which are connected also by ferries and sightseeing boats shuttle passengers. To this mode of transport, it shall be evaluated to add transport by rickshaw.

Problem

More and more traffic congestions exist in Stockholm due to the number of cars using the limited resource streets.

Figure 1 Potential rickshaw model for Stockholm

A potential solution for that is me operating a rickshaw to transport people in between Stockholm's hotspots. This project shall evaluate data available from foursquare.com to figure out where to best position my rickshaw.

Data

For this project the foursquare API will be used to fetch, analyze and use the available data.

reas	sons.count reasons.items	referralld	venue.categories	venue.id	venue.location.address	venue.location.cc	venue.location.city	venue.location.country	venue.location.crossStreet	venue.location.labeledLatLngs	venue.location.lat	venue.location.lng venue
0	(('summary' This spot is popular', 'type'	e-0- 4b06fe89f964a520fef422e3-0	[['id': '4bf58dd8d48988d114951735', 'name': 'B	4b06fe89f964a520fef422e3	Västerlånggatan 48	SE	Stockholm	Sverige	Gamla Stan	[[label: 'display', 'laf': 59.32404679408319	59.324047	18.070682
1	[('summary' This spot is popular', 'type'	e-0- 514c0868e4b07a3d6af2fca3-1	[['ld': '4bf58dd8d48988d11e941735', 'name': 'C	514c0868e4b07a3d6af2fca3	Lilla Nygatan 16	SE	Stockholm	Sverige	NaN	[[label: 'display', Taf': 59.32334238889204	59.323342	18.069431
2	((summary) This spot is popular, 'type'	e-0- 549447fb498ed7d33f190dc2-2	[['id': '4bf58dd8d48988d16c941735', 'name': 'B	549447fb498ed7d33f190dc2	Stora Nygatan 20	SE	Stockholm	Sverige	Yxsmedsgränd	[[label: 'display', Taf': 59.32468522374461	59.324685	18.068513
3	[('summary': 'This spot is popular', 'type':	e-0- 534d0a34498ef782062ac89c- 3	[("id": "4bf58dd8d48988d1c6941735", "name": "S	534d0a34498ef782062ac89c	Österlånggatan 1	SE	Stockholm	Sverige	NaN .	[(label': 'display', 'laf': 59.32594, 'lng':	59.325940	18.073710

Figure 2: Foursquare data

We try to utilize the following fields.

Field	Explanation	Usage
id	A unique string identifier	To be evaluated
	for this location	
	(foursquare calls venue)	
name	Name of the location	To be evaluated
location	An object containing	To be evaluated
	coordinates of the location	
categories	An array containing	To be evaluated
	descriptive information	
	about the location	
reason	An array containing a	To be evaluated
	summary of the place	

To evaluate and identify potential rickshaw locations, we re-classify and plot the foursquare data onto maps views to visualize the results.

Figure 3: Preview of location analysis

Methodology

To identify a good place for positioning a rickshaw, the surroundings in Stockholm shall be analyzed. First the data set was more deeply analyzed to understand if we could figure out popular places using the summary information provided.

Figure 4: Summary fields

As this did not turn out the expected useful result to identify specific popular locations, the categories information was further explored.

Figure 5: Exploring category information

This kind of categorization does not lead to allow a proper location based analysis as the categories are to precise, therefore the data set was harmonized into 4 categories.

```
9]: categories
Bar 18
Recreation 36
Restaurant 29
Shop 15
Name: name, dtype: int64

print('There are {} uniques categories.'.format(len(normalized_neighborhood['categories'].unique())))
There are 4 uniques categories.
```

Figure 6: Harmonizing categories

Results

Based on the re-categorization the locations, the average latitude/longitude method is used to finding a midpoint in between the categories.

This method finds a simple average latitude and longitude for the locations in 'Your Places'. This is equivalent to finding a midpoint on a flat rectangular projection map. When the distance between locations is less than 250 miles (400 km), this method gives a close approximation to the true geographic midpoint in Method A. ⁱ

The color coding used is yellow for restaurants, blue for bars, green for shops and red for recreational places.

Figure 7: Starting point per category

Figure 8: Midpoints per category

Discussion

Based on this preliminary analysis we can confirm that the best place to position a rickshaw in Stockholm is Gamla Stan. It is the centre of most restaurant, bars, shops and recreational places in Stockholm. This is purely based on location data of foursquare venue information which was categorized.

Certain locations will have different opening hours / hours in which these are frequented by people which this analysis did not include. This could be the next step of the project, including i.e. opening hours assuming that also people will frequent these spots.

For example one could argue that shops will have more population frequenting these places between 10:00hrs to 20:00hrs where as bars and restaurants a frequented between the hours of 11:00hrs and 01:00hrs.

Conclusion

As the centres of the locations are quite close to each other, for regular operating hours of my rickshaw, Gamla Stan is the place to be.

i http://www.geomidpoint.com/calculation.html