Université Assane Seck de Ziguinchor UFR Sciences et Technologies Département d'Informatique Licence 3 Informatique

Système d'Exploitation - Linux TP 4 - Processus, services et shell

Année universitaire : 2021-2022¹

Remarque : Ce travail est à faire en binôme et à rendre à la fin du TP. Durée : 2h.

Contents

1	Objectifs du TP		
	1.1	Objectif général	
	1.2	Objectifs spécifiques	
2	Ges	Gestion des processus	
	2.1	Affichage des processus	
	2.2	Envoi de signal	
		Gestion des tâches (jobs)	
3	Le s	e shell	
	3.1	Métacaractères et substitution de noms de fichiers	
	3.2	Redirections et tubes	

1 Objectifs du TP

1.1 Objectif général

A la fin de cette activité l'apprenant devra être capable de gérer les processus et d'exploiter adéquatement le shell.

1.2 Objectifs spécifiques

A la fin de cette activité l'apprenant devra être capable de :

- 1. gérer les processus et les taches (jobs): listing, envoie de signal, mise en arrière-plan/avant plan;
- 2. exploiter les fonctionnalités du shell : métacaractères, substitution de noms de fichiers, redirection et tubes;

2 Gestion des processus

Cette activité est à faire sur le serveur. Connectez vous à votre répertoire personnel distant.

 $^{^1\}mathrm{Resp.}$ CM/TD/TP : Gorgoumack SAMBE - bureau : J9 - mail: gsambe@univ-zig.sn

2.1 Affichage des processus

- 1. Exécutez les commandes suivantes, que font elles? :
 - (a) \$ ps
 (b) \$ ps -A
 (c) \$ ps -f
 (d) \$ top
 \$ ps -T
 \$ ps -T
 \$ ps -Tf
 \$ top -u root
- 2. Donnez et Exécutez la commande qui affiche vos processus triés sur la consommation CPU.
- 3. Donnez et Exécutez la commande qui affiche les processus de votre binôme.

2.2 Envoi de signal

Pour cette activité, lancez deux terminaux que nous nommerons t1 et t2 (lancer la commande tty pour connaître le fichier spécial qui identifie le terminal) :

Activité 1

- 1. Sur t1 : Lancez la commande ls -lR /;
- 2. Sur t2 : Donnez et exécutez une commande qui permet de retrouver le PID de la commande ls -lR /;
- 3. Sur t2 : Donnez et exécutez la commande qui envoie le signal 9 (SIGKILL) à ce processus;
- 4. Sur t1 : Quel est l'effet du signal 9?

Activité 2

- 1. Sur t1 : Lancer la commande ls -lR /;
- 2. Sur t2 : Donnez et exécutez une commande qui permet de retrouver le PID de la commande ls -lR /;
- 3. Sur t2 : Donnez et exécutez la commande qui envoie le signal 19 (SIGSTOP) à ce processus;
- 4. Sur t1 : Quel est l'effet du signal 19?
- 5. Sur t2 : Donnez et exécutez la commande qui envoie le signal 18 (SIGCONT) à ce processus;
- 6. Sur t1 : Quel est l'effet du signal 18?

Activité complémentaire

Refaire les activités 1 et 2 en envoyant les signaux par des raccourcis clavier. Vous préciserez les raccourcis utilisés pour chaque signal.

2.3 Gestion des tâches (jobs)

Cette activité est à faire en local sur vos ordinateurs².

- 1. Lancer la commande suivante sur le terminal : xeyes &;
- 2. Exécuter la commande jobs; Quel est son résultat?
- 3. Lancer la commande : xeyes -center blue;
- 4. Faites [Ctrl]+[z], Quel est son effet;

 $^{^2}$ xeyes est une application graphique

- 5. Exécuter la commande jobs; Quel est son résultat?
- 6. Vérifiez l'état des processus xeyes en les affichant et en bougeant la souris; Que constatez vous?
- 7. Exécuter la commande "bg 2". Quel est son effet?
- 8. Vérifiez l'état des processus xeyes en les affichant et en bougeant la souris; Que constatez vous?
- 9. Exécuter la commande "fg 1". Quel est son effet;
- 10. Arrêtez les deux processus. Vous préciserez comment vous avez fait?

3 Le shell

Cette activité est à faire sur le serveur. Connectez vous à votre répertoire personnel distant. Créez un répertoire TP4 dedans.

Métacaractères et substitution de noms de fichiers 3.1

Activité 1

Le répertoire /dev (devices) contient les fichiers spéciaux du système. Placez vous dans ce répertoire, Que font les commandes suivantes :

Placez vous dans le répertoire /etc qui contient les fichiers de configuration. Que font les commandes suivantes:

1.
$$$ cp systemd/*.conf \sim /TP4$$

2.
$$\$ \text{ cp -r cron}^* \sim /\text{TP4}$$

Activité 2

Redirections et tubes 3.2

Le répertoire /usr/include contient les fichiers d'entête standards en langage C (stdlib.h, ...). placez vous dans ce répertoire et exécutez les commandes suivantes, que font elles?

1.
$$ls - ld std*$$

3. echo std*
$$> \sim /\text{TP4/stdfiles}$$

11. echo nous avons 'echo std* |wc -w' fichiers std