

Algebraic Approach to School Geometry

G V V Sharma*

		Contents			
1	Baudhayana Theorem				
	1.1	The Right Angled Triangle .	1		
	1.2	Sum of Angles	2		
	1.3	Proof of Baudhayana Theorem	3		
2	Area of a Triangle				
	2.1	From a Rectangle	4		
	2.2	Sine and Cosine formula	5		
	2.3	Hero's formula	6		
3	Circumcentre				
	3.1	Locating the Circumcentre .	7		
	3.2	Finding the Circumradius	8		
	3.3	Drawing the Circumcircle	8		
4	Incentre				
-	4.1	Locating the Incentre	9		
	4.2	Drawing the Incircle	10		
	4.3	Congruent Triangles	10		
5	Medians of a Triangle				
	5.1	Basic Proportionality Theorem	10 10		
	5.2	Similar Triangles	11		
	5.3	Centroid	11		
6	Area of a Circle				
Ü	6.1	Area of a Circle	12 12		
7	Quadrilaterals				
•	7.1	Properties	15 15		
8	Miscellaneous Properties				
U	8.1	Median and Area	17 17		
	8.2	Triangle Inequalities	17		
	8.3	Circles	18		
	8.4	Properties	18		
	0. 1	110pointos	10		

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

9	Exercises		
	9.1	Triangle Exercises	20
	9.2	Triangle Constructions	24
	9.3	Quadrilateral Exercises	24
	9.4	Quadrilateral Constructions .	27
	9.5	Circle Exercises	28
	9.6	Miscellaneous Exercises	30

Abstract—This book introduces school geometry through a combination of trigonometry and algebra. The content and exercises are based on NCERT textbooks from Class 6-12.

1 BAUDHAYANA THEOREM

1.1 The Right Angled Triangle

1. A right angled triangle looks like Fig. 1.1.1. with angles $\angle A$, $\angle B$ and $\angle C$ and sides a, b and c.

Fig. 1.1.1: Right Angled Triangle

The unique feature of this triangle is $\angle B$ which is defined to be 90°.

2. For simplicity, let the greek letter $\theta = \angle C$. We have the following definitions.

$$\sin \theta = \frac{c}{b} \qquad \cos \theta = \frac{a}{b}$$

$$\tan \theta = \frac{c}{q} \qquad \cot \theta = \frac{1}{\tan \theta}$$

$$\csc \theta = \frac{1}{\sin \theta} \qquad \sec \theta = \frac{1}{\cos \theta}$$
(1.1.2.1)

3. Draw Fig. 1.1.1 for a = 4, c = 3.

Solution: The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} 0 \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$
(1.1.3.1)

The python code for Fig. 1.1.1 is

codes/triangle/tri right angle.py

and the equivalent latex-tikz code is

figs/triangle/tri right angle.tex

4. Draw Fig. 1.1.4 for a = 4, c = 3.

Solution: The vertices of $\triangle ABC$ are

$$\mathbf{A} = \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} a \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$
(1.1.4.1)

The python code for Fig. 1.1.4 is

codes/triangle/tri_polar.py

and the equivalent latex-tikz code is

figs/triangle/tri_polar.tex

Fig. 1.1.4: Right Angled Triangle

5. The vertex **A** can also be expressed in *polar* coordinate form as

$$\mathbf{A} = \begin{pmatrix} b\cos\theta\\b\sin\theta \end{pmatrix} \tag{1.1.5.1}$$

1.2 Sum of Angles

1. In Fig. 1.2.1, the sum of all the angles on the top or bottom side of the straight line XY is 180° .

Fig. 1.2.1: Sum of angles of a triangle

- 2. In Fig. 1.2.1, the straight line making an angle of 90° to the side AB is said to be parallel to the side BC. Note there is an angle at A that is equal to θ . This is one property of parallel lines. Thus, $\angle YAZ = 90^{\circ}$.
- 3. Show that $\angle VAZ = 90^{\circ} \theta$

Solution: Considering the line *XAZ*,

$$\theta + 90^{\circ} + \angle VAZ = 180^{\circ}$$
 (1.2.3.1)

$$\Rightarrow \angle VAZ = 90^{\circ} - \theta \tag{1.2.3.2}$$

4. Show that $\angle BAC = 90^{\circ} - \theta$.

Solution: Consider the line VAB and and use the approach in the previous problem. Note that this implies that $\angle VAZ = \angle BAC$. Such angles are known as vertically opposite angles.

- 5. Sum of the angles of a triangle is equal to 180°.
- 6. Draw Fig. 1.2.1 for a = 4, c = 3.

Solution: Problem 1.1.3 is used to draw $\triangle ABC$. The remaining points are obtained as

$$\mathbf{Y} = \mathbf{A} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \tag{1.2.6.1}$$

$$\mathbf{X} = \mathbf{A} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix} \tag{1.2.6.2}$$

$$\mathbf{T} = \mathbf{A} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \end{pmatrix} \tag{1.2.6.3}$$

and

$$\frac{VC}{AC} = k + 1 \tag{1.2.6.4}$$

$$\implies \mathbf{A} = \frac{k\mathbf{C} + \mathbf{V}}{k+1} \tag{1.2.6.5}$$

$$\implies \mathbf{V} = \frac{(k+1)\mathbf{A} - k\mathbf{C}}{k} \tag{1.2.6.6}$$

for k = 0.2. (1.2.6.5) is known as the *section* formula. The python code for Fig. 1.2.1 is

and the equivalent latex-tikz code is

1.3 Proof of Baudhayana Theorem

Use Fig. 1.3.1 for all problems in this section.

1. Show that

$$\cos \theta = \sin (90^\circ - \theta) \tag{1.3.1.1}$$

Fig. 1.3.1: Baudhayana Theorem

Solution: From Problem 1.2.4 and (1.1.2.1)

$$\cos \angle BAC = \cos \alpha = \cos (90^{\circ} - \theta) = \frac{c}{b}$$
$$= \sin \angle ABC = \sin \theta \quad (1.3.1.2)$$

2. Show that

$$b = a\cos\theta + c\sin\theta \tag{1.3.2.1}$$

Solution: We observe that

$$BD = a\cos\theta \tag{1.3.2.2}$$

$$AD = c\cos\alpha = c\sin\theta \quad \text{(From} \quad (1.3.1.2))$$
(1.3.2.3)

Thus,

$$BD + AD = b = a\cos\theta + c\sin\theta \qquad (1.3.2.4)$$

3. From (1.3.2.1), show that

$$\sin^2 \theta + \cos^2 \theta = 1 \tag{1.3.3.1}$$

Solution: Dividing both sides of (1.3.2.1) by b.

$$1 = -\frac{a}{b}\cos\theta + \frac{c}{b}\sin\theta \tag{1.3.3.2}$$

$$\Rightarrow$$
 sin² θ + cos² θ = 1 (from (1.1.2.1))
(1.3.3.3)

4. Using (1.3.2.1), show that

$$c^2 = a^2 + b^2 \tag{1.3.4.1}$$

(1.3.4.1) is known as the Baudhayana theorem. It is also known as the Pythagoras theorem.

Solution: From (1.3.2.1),

$$c = a\frac{a}{c} + b\frac{b}{c}$$
 (from (1.1.2.1))
(1.3.4.2)

$$\Rightarrow c^2 = a^2 + b^2 \tag{1.3.4.3}$$

5. Draw Fig. 1.3.1 for a = 4, c = 3.

Solution: Problem 1.1.3 is used to draw $\triangle ABC$. Using Problem 1.1.5,

$$\mathbf{D} = BD \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = a \sin \theta \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} \quad (1.3.5.1)$$

Using (1.3.5.1), the python code for Fig. 1.3.1 is

codes/triangle/tri baudh.py

and the equivalent latex-tikz code is

figs/triangle/tri baudh.tex

6. Using (1.3.4.1), for a = 4, c = 3,

$$b = \sqrt{a^2 + c^2} = \sqrt{4^2 + 3^2} = 5 \qquad (1.3.6.1)$$

7. For point $\mathbf{D} = \begin{pmatrix} d_1 \\ d_2 \end{pmatrix}$, its *norm* is defined as

$$OD = d_1^2 + d_2^2 = ||\mathbf{D}|| \stackrel{\triangle}{=} \sqrt{\mathbf{D}^T \mathbf{D}},$$
 (1.3.7.1)

where

$$\mathbf{D}^T \stackrel{\triangle}{=} \begin{pmatrix} d_1 & d_2 \end{pmatrix}, \qquad (1.3.7.2)$$

$$\mathbf{D}^{T}\mathbf{D} \stackrel{\triangle}{=} (d_{1} \quad d_{2}) \begin{pmatrix} d_{1} \\ d_{2} \end{pmatrix} = d_{1}^{2} + d_{2}^{2} \qquad (1.3.7.3)$$

(1.3.7.2) is the definition of *transpose*. **D** is defined to be a *column vector* and \mathbf{D}^T is the corresponding *row vector* representing the same point.

8. Also, it is easy to verify that

$$AC \stackrel{\triangle}{=} ||\mathbf{A} - \mathbf{C}|| = \left\| \begin{pmatrix} 4 \\ -3 \end{pmatrix} \right\| = \sqrt{3^2 + 4^2} = 5$$
(1.3.8.1)

This is known as the distance formula.

- 9. Prove the distance formula in (1.3.8.1) using Baudhayana theorem.
- 10. Show that

$$(\mathbf{A} - \mathbf{B})^T (\mathbf{B} - \mathbf{C}) = 0 (1.3.10.1)$$

Solution: From the Baudhayana theorem,

$$a^{2} + c^{2} = b^{2} \quad (1.3.10.2)$$

$$\implies ||\mathbf{B} - \mathbf{A}||^{2} + ||\mathbf{C} - \mathbf{A}||^{2} = ||\mathbf{B} - \mathbf{C}||^{2}$$
(1.3.10.3)

which, from (1.3.7.2) can be expressed as

$$(\mathbf{B} - \mathbf{A})^{T} (\mathbf{B} - \mathbf{A}) + (\mathbf{C} - \mathbf{B})^{T} (\mathbf{C} - \mathbf{B})$$
$$= (\mathbf{A} - \mathbf{C})^{T} (\mathbf{A} - \mathbf{C}) \quad (1.3.10.4)$$

Expanding

$$(\mathbf{B} - \mathbf{A})^{T} (\mathbf{B} - \mathbf{A})$$

$$= \mathbf{B}^{T} \mathbf{B} - \mathbf{B}^{T} \mathbf{A} - \mathbf{A}^{T} \mathbf{B} + \mathbf{A}^{T} \mathbf{A} \quad (1.3.10.5)$$

 \therefore $\mathbf{A}^T \mathbf{B} = \mathbf{B}^T \mathbf{A}$, the above equation can be expressed as

$$\|\mathbf{B} - \mathbf{A}\|^2 = \|\mathbf{A}\|^2 + \|\mathbf{B}\|^2 - 2\mathbf{A}^T\mathbf{B}$$
 (1.3.10.6)

Thus, (1.3.10.3) can be expressed using the above equation as

$$||\mathbf{A}||^{2} + ||\mathbf{B}||^{2} - 2\mathbf{A}^{T}\mathbf{B}$$

$$+ ||\mathbf{B}||^{2} + ||\mathbf{C}||^{2} - 2\mathbf{B}^{T}\mathbf{C}$$

$$= ||\mathbf{A}||^{2} + ||\mathbf{C}||^{2} - 2\mathbf{A}^{T}\mathbf{C} \quad (1.3.10.7)$$

which can be simplified to obtain

$$2 \|\mathbf{B}\|^{2} - 2\mathbf{B}^{T}\mathbf{C}$$

$$-2\mathbf{A}^{T}\mathbf{B} + 2\mathbf{A}^{T}\mathbf{C} = 0$$
or,
$$\mathbf{B}^{T}(\mathbf{B} - \mathbf{C}) - \mathbf{A}^{T}(\mathbf{B} - \mathbf{C}) = 0$$

$$\Longrightarrow (\mathbf{B}^{T} - \mathbf{A}^{T})(\mathbf{B} - \mathbf{C}) = 0 \quad (1.3.10.8)$$

yielding (1.3.10.1).

2 Area of a Triangle

- 2.1 From a Rectangle
 - 1. The area of the rectangle ACBD shown in Fig. 2.1.1 is defined as ac. Note that all the angles in the rectangle are 90°

Fig. 2.1.1: Area of a Right Triangle

2. Draw Fig. 2.1.1 for a = 4, c = 3. Solution: Letting

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \tag{2.1.2.1}$$

the python code for Fig. 2.1.1 is

and the equivalent latex-tikz code is

- 3. The area of the two triangles constituting the rectangle is the same.
- 4. The area of the rectangle is the sum of the areas of the two triangles inside.
- 5. Show that the area of $\triangle ABC$ is $\frac{ac}{2}$

Fig. 2.1.5: Area of a Triangle

Solution: From(2.1.4),

$$ar(ABCD) = ar(ACB) + ar(ADB)$$
 (2.1.5.1)

Also from (2.1.3),

$$ar(ACB) = ar(ADB) \tag{2.1.5.2}$$

From (2.1.5.1) and (2.1.5.2),

$$2ar(ACB) = ar(ABCD) = ac \text{ (from } (2.1.1))$$

(2.1.5.3)

$$\Rightarrow ar(ACB) = \frac{ac}{2} \tag{2.1.5.4}$$

- 6. In Fig. 2.1.5, $AD \perp BC$. AD is defined as the *altitude*.
- 7. Show that the area of $\triangle ABC$ in Fig. 2.1.5 is $\frac{1}{2}ah$

Solution: In Fig. 2.1.5,

$$ar(\Delta ADC) = \frac{1}{2}hy \tag{2.1.7.1}$$

$$ar(\Delta ADB) = \frac{1}{2}hx \qquad (2.1.7.2)$$

Thus,

$$ar(\Delta ABC) = ar(\Delta ADC) + ar(\Delta ADB)$$

$$= \frac{1}{2}hy + \frac{1}{2}hx = \frac{1}{2}h(x+y)$$

$$= \frac{1}{2}ah$$
(2.1.7.4)

8. Draw Fig. 2.1.5 with a = 6, b = 5 and c = 4. **Solution:** Let the vertices of $\triangle ABC$ and **D** be

$$\mathbf{A} = \begin{pmatrix} p \\ q \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} p \\ 0 \end{pmatrix} (2.1.8.1)$$

Then

$$AB = ||\mathbf{A} - \mathbf{B}||^2 = ||\mathbf{A}||^2 = c^2 \quad :: \mathbf{B} = \mathbf{0}$$
(2.1.8.2)

$$BC = \|\mathbf{C} - \mathbf{B}\|^2 = \|\mathbf{C}\|^2 = a^2$$
 (2.1.8.3)

$$AC = ||\mathbf{A} - \mathbf{C}||^2 = b^2 \tag{2.1.8.4}$$

From (2.1.8.4),

$$b^{2} = \|\mathbf{A} - \mathbf{C}\|^{2} = \|\mathbf{A} - \mathbf{C}\|^{T} \|\mathbf{A} - \mathbf{C}\| \quad (2.1.8.5)$$

$$= \mathbf{A}^{T} \mathbf{A} + \mathbf{C}^{T} \mathbf{C} - \mathbf{A}^{T} \mathbf{C} - \mathbf{C}^{T} \mathbf{A} \quad (2.1.8.6)$$

$$= \|\mathbf{A}\|^{2} + \|\mathbf{C}\|^{2} - 2\mathbf{A}^{T} \mathbf{C} \quad \left(:: \mathbf{A}^{T} \mathbf{C} = \mathbf{C}^{T} \mathbf{A} \right)$$

$$(2.1.8.7)$$

$$= a^2 + c^2 - 2ap (2.1.8.8)$$

yielding

$$p = \frac{a^2 + c^2 - b^2}{2a} \tag{2.1.8.9}$$

From (2.1.8.2),

$$\|\mathbf{A}\|^2 = c^2 = p^2 + q^2$$
 (2.1.8.10)

$$\implies q = \pm \sqrt{c^2 - p^2}$$
 (2.1.8.11)

The python code for Fig. 2.1.5 is

and the equivalent latex-tikz code is

- (2.1.7.1) 2.2 Sine and Cosine formula
 - 1. Show that the area of $\triangle ABC$ in Fig. 2.1.5 is $\frac{1}{2}ab\sin C$.

Solution: We have

$$ar(\Delta ABC) = \frac{1}{2}ah = \frac{1}{2}ab\sin C \quad (\because \quad h = b\sin C).$$
(2.2.1.1)

2. Show that

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{2.2.2.1}$$

Solution: Fig. 2.1.5 can be suitably modified to obtain

$$ar(\Delta ABC) = \frac{1}{2}ab\sin C = \frac{1}{s}bc\sin A = \frac{1}{2}ca\sin B$$
(2.2.2.2)

Dividing the above by abc, we obtain

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \tag{2.2.2.3}$$

This is known as the sine formula.

3. In Fig. 2.2.3, show that

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} \tag{2.2.3.1}$$

Fig. 2.2.3: The cosine formula

Solution: From Fig. 2.2.3,

$$a = x + y = b \cos C + c \cos B.$$
 (2.2.3.2)

Similarly,

$$b = c\cos A + a\cos C \tag{2.2.3.3}$$

$$c = b\cos A + a\cos B \tag{2.2.3.4}$$

The above equations can be expressed in matrix form as

$$\begin{pmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{pmatrix} \begin{pmatrix} \cos A \\ \cos B \\ \cos C \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (2.2.3.5)

Using the properties of determinants,

$$\cos A = \frac{\begin{vmatrix} a & c & b \\ b & 0 & a \\ c & a & 0 \end{vmatrix}}{\begin{vmatrix} 0 & c & b \\ c & 0 & a \\ b & a & 0 \end{vmatrix}} = \frac{ab^2 + ac^2 - a^3}{abc + abc} \quad (2.2.3.6)$$
$$= \frac{b^2 + c^2 - a^2}{2abc} \quad (2.2.3.7)$$

2.3 Hero's formula

1. Find Hero's formula for the area of a triangle. **Solution:** From (2.2.1), the area of $\triangle ABC$ is

$$\frac{1}{2}ab \sin C = \frac{1}{2}ab\sqrt{1-\cos^2 C} \quad \text{(from (1.3.3.1))} \quad (2.3.1.1)$$

$$= \frac{1}{2}ab\sqrt{1-\left(\frac{a^2+b^2-c^2}{2ab}\right)^2} \quad \text{(from (2.2.3.1))}$$

$$= \frac{1}{4}\sqrt{(2ab)^2 - (a^2+b^2-c^2)} \quad (2.3.1.3)$$

$$= \frac{1}{4}\sqrt{(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)}$$

$$= \frac{1}{4}\sqrt{\{(a+b)^2-c^2\}\left\{c^2-(a-b)^2\right\}} \quad (2.3.1.4)$$

$$= \frac{1}{4}\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}$$

Substituting

$$s = \frac{a+b+c}{2} \tag{2.3.1.7}$$

in (2.3.1.6), the area of $\triangle ABC$ is

$$\sqrt{s(s-a)(s-b)(s-c)}$$
 (2.3.1.8)

This is known as Hero's formula.

2. Find the area of $\triangle ABC$ in Fig. 2.1.1.

Solution: The desired are is computed using (2.3.1.8) by the following the python code.

3. Show that the sum of two sides of a triangle is always greater than the third side.

Solution: In (2.3.1.8), all terms under the square roots should be positive. Hence,

$$s-a > 0$$

 $s-b > 0$ (2.3.3.1)
 $s-c > 0$

resulting in

$$b+c>a$$

$$c+a>b$$

$$a+b>c$$
(2.3.3.2)

3 CIRCUMCENTRE

3.1 Locating the Circumcentre

1. Find a point **O** that is equidistant from the vertices of $\triangle ABC$ for a = 5, b = 6, c = 4. **Solution:** Let **O** be the desired point. Then,

$$\|\mathbf{A} - \mathbf{O}\| = \|\mathbf{B} - \mathbf{O}\| = \|\mathbf{C} - \mathbf{O}\| = R \quad (3.1.1.1)$$

From (3.1.1.1),

$$\|\mathbf{A} - \mathbf{O}\|^2 - \|\mathbf{B} - \mathbf{O}\|^2 = 0$$
 (3.1.1.2)

$$\Rightarrow (\mathbf{A} - \mathbf{O})^T (\mathbf{A} - \mathbf{O})$$
$$- (\mathbf{B} - \mathbf{O})^T (\mathbf{B} - \mathbf{O}) = 0 \quad (3.1.1.3)$$

which can be simplified as

$$(\mathbf{A} - \mathbf{B})^T \mathbf{O} = \frac{\|\mathbf{A}\|^2 - \|\mathbf{B}\|^2}{2}$$
 (3.1.1.4)

Similarly,

$$(\mathbf{B} - \mathbf{C})^T \mathbf{O} = \frac{\|\mathbf{B}\|^2 - \|\mathbf{C}\|^2}{2}$$
 (3.1.1.5)

(3.1.1.4) and (3.1.1.4), can be combined to form the matrix equation

$$\mathbf{N}^T \mathbf{O} = \mathbf{c} \tag{3.1.1.6}$$

$$\implies \mathbf{O} = \mathbf{N}^{-T} \mathbf{c} \tag{3.1.1.7}$$

where

$$\mathbf{N} = (\mathbf{A} - \mathbf{B} \quad \mathbf{B} - \mathbf{C}) \tag{3.1.1.8}$$

$$\mathbf{c} = \frac{1}{2} \begin{pmatrix} ||\mathbf{A}||^2 - ||\mathbf{B}||^2 \\ ||\mathbf{B}||^2 - ||\mathbf{C}||^2 \end{pmatrix}$$
(3.1.1.9)

O can be computed using the python code below

codes/circle/tri ccentre.py

and the equivalent latex-tikz code to draw Fig. 3.1.1 is

2. In $\triangle OBC$, OB = OC = R. Such a triangle is known as an isoceles triangle.

Fig. 3.1.1: Circumcentre O of $\triangle ABC$

3. Show that $\angle OBC = \angle OCB$. In an isoceles triangle, opposite sides and corresponding opposite angles are equal.

Solution: Using the sine formula in (2.2.2.3),

$$\frac{\sin \angle OBC}{R} = \frac{\sin \angle OCB}{R} \tag{3.1.3.1}$$

$$\implies \sin \angle OBC = \sin \angle OCB$$
 (3.1.3.2)

4. Show that $\angle BOC = 2\angle A$.

Solution: In Fig. 3.1.1,

$$A = \theta_2 + \theta_3$$
 (3.1.4.1)
 $B = \theta_1 + \theta_2$ (3.1.4.2)

$$B = \theta_1 + \theta_2 \tag{3.1.4.2}$$

$$C = \theta_3 + \theta_1 \tag{3.1.4.3}$$

$$\implies 2(\theta_1 + \theta_2 + \theta_3) = A + B + C = 180^{\circ}$$
(3.1.4.4)

$$\implies \theta_1 + \theta_2 + \theta_3 = 90^\circ \tag{3.1.4.5}$$

From (3.1.4.1) and (3.1.4.5),

$$A = 90^{\circ} - \theta_1 \tag{3.1.4.6}$$

Also, in $\triangle OBC$, all angles add up to 180°. Hence,

$$\angle BOC + 2\theta_1 = 180^{\circ} \tag{3.1.4.7}$$

$$\implies \angle BOC = 180^{\circ} - 2\theta_1 = 2(90^{\circ} - \theta_1) = 2\angle A$$
(3.1.4.8)

upon substituting from (3.1.4.6).

5. Let **D** be the mid point of BC. Show that $OD \perp$ BC.

Solution: From (3.1.1.5),

$$(\mathbf{B} - \mathbf{C})^T \mathbf{O} = \frac{\|\mathbf{B}\|^2 - \|\mathbf{C}\|^2}{2} \qquad (3.1.5.1)$$

$$\implies (\mathbf{B} - \mathbf{C})^T \mathbf{O} = \frac{1}{2} (\mathbf{B} - \mathbf{C})^T (\mathbf{B} + \mathbf{C}) \qquad (3.1.5.2)$$

$$\implies (\mathbf{B} - \mathbf{C})^T \left(\mathbf{O} - \frac{\mathbf{B} + \mathbf{C}}{2} \right) = 0 \quad (3.1.5.3)$$

or,
$$(\mathbf{B} - \mathbf{C})^T (\mathbf{O} - \mathbf{D}) = 0$$
 (3.1.5.4)

: $\mathbf{D} = \frac{\mathbf{B}+\mathbf{C}}{2}$ is the mid point of *BC*. From (1.3.10.1) we then conclude that $OD \perp BC$.

6. Perpendicular bisectors of a triangle meet at the circumcentre.

3.2 Finding the Circumradius

1. Show that

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R.$$
 (3.2.1.1)

Solution: In $\triangle OBC$, using the cosine formula,

$$\cos 2A = \frac{R^2 + R^2 - a^2}{2R^2} = 1 - \frac{a^2}{2R^2} \quad (3.2.1.2)$$

Using the sine formula,

$$\frac{\sin 2A}{a} = \frac{\sin \theta_1}{R} = \frac{\sin (90^\circ - A)}{R}$$
(3.2.1.3)

$$\implies \sin 2A = \frac{a\cos A}{R} \tag{3.2.1.4}$$

from (3.1.4.6) and (1.3.1.1). Using (1.3.3.1),

$$\cos^2 2A + \sin^2 2A = 1$$
 (3.2.1.5)

$$\implies \left(1 - \frac{a^2}{2R^2}\right)^2 + \left(\frac{a\cos A}{R}\right)^2 = 1 \quad (3.2.1.6)$$

upon substituting from (3.2.1.2) and (3.2.1.4). Letting

$$x = \left(\frac{a}{R}\right)^2,\tag{3.2.1.7}$$

in the previous equation yields

$$\left(1 - \frac{x}{2}\right)^2 + x\cos^2 A = 1 \qquad (3.2.1.8)$$

$$\implies 1 - \frac{x^2}{4} - x + x \cos^2 A = 1 \qquad (3.2.1.9)$$

$$\implies x(1-\cos^2 A) - \frac{x^2}{4} = 0$$
 (3.2.1.10)

From (1.3.3.1), the above equation can be expressed as

$$x\sin^2 A - \frac{x^2}{4} = 0 ag{3.2.1.11}$$

$$\implies x\left(\sin^2 A - \frac{x}{4}\right) = 0 \tag{3.2.1.12}$$

or,
$$\frac{x}{4} - \sin^2 A = 0$$
 (3.2.1.13)

 $\therefore x \neq 0$. Thus, substituting from (3.2.1.7),

$$x = \left(\frac{a}{R}\right)^2 = 4\sin^2 A$$
 (3.2.1.14)

$$\implies \frac{a}{R} = 2\sin A, \qquad (3.2.1.15)$$

or,
$$\frac{a}{\sin A} = 2R$$
 (3.2.1.16)

2. Show that

$$\cos 2A = 1 - 2\sin^2 A = 2\cos^2 A - 1 \quad (3.2.2.1)$$

$$=\cos^2 A - \sin^2 A$$
 and (3.2.2.2)

$$\sin 2A = 2\sin A\cos A \tag{3.2.2.3}$$

3. Find *R*.

Solution: From (2.2.1.1),

$$ar(\triangle ABC) = \frac{1}{2}bc\sin A = \frac{abc}{4R} \quad (3.2.3.1)$$

$$\implies R = \frac{abc}{4s\sqrt{(s-a)(s-b)(s-c)}} \quad (3.2.3.2)$$

upon substituting from (3.2.1.1) and using Hero's formula.

4. Find the circumradius of $\triangle ABC$ for a = 5, b = 6, c = 4.

Solution: The following pyton code calculates the circumradius

codes/circle/tri_cradius.py

3.3 Drawing the Circumcircle

1. In Fig. 3.1.1, points **A**, **B**, **C** are at a distance *R* from **O**. Trace all such points. The locus of such points is defined as a *circle*.

Solution: This is done by the following python code

codes/circle/tri ccircle.py

and the equivalent latex-tikz code to draw Fig. 3.3.1 is

figs/triangle/tri ccircle.tex

Fig. 3.3.1: Circumcircle of $\triangle ABC$

- 2. Line segements joining any two points on the circle are defined to be chords. The sides of $\triangle ABC$ are chords of the circle in (3.3.1)
- 3. From (3.1.5), it is established that the line segment joining the centre of a circle to the mid point of a chord bisects the chord.
- 4. From (3.1.4), it is clear that the angle subtended by a chord at the centre of the circle is twice the angle subtended at any point on the circle.

4 Incentre

4.1 Locating the Incentre

1. Find a point **O** that is equidistant from the sides of $\triangle ABC$ for a = 5, b = 6, c = 4. Here, distance means the perpendicular distanace. Solution: Let I be the desired point and D, E, F are on BC, CA, AB such that $ID \perp BC, IE \perp$ CA, $IF \perp AB$ and ID = IE = IF = r, then, applying (1.3.4.1) in $\triangle s$ *IDB* and *IEB*,

$$IB^2 = ID^2 + BD^2 = r^2 + BD^2$$

 $IB^2 = IF^2 + BF^2 = r^2 + BF^2$ (4.1.1.1)

From the above, it is obvious that BD = BF. Similarly, AE = AF, CD = CF. Denoting these lengths as x, y and z, as shown in Fig. 4.1.1,

$$x + y = ay + z = bx + z = c$$
 (4.1.1.2)

which can be expressed as the matrix equation

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 (4.1.1.3)

Section formula can be used to compute

$$\mathbf{D} = \frac{x\mathbf{C} + y\mathbf{B}}{x + y} \tag{4.1.1.4}$$

$$\mathbf{E} = \frac{y\mathbf{A} + z\mathbf{C}}{y + z} \tag{4.1.1.5}$$

$$\mathbf{E} = \frac{y\mathbf{A} + z\mathbf{C}}{y + z}$$

$$\mathbf{F} = \frac{z\mathbf{B} + x\mathbf{A}}{z + x}$$
(4.1.1.5)

Note that **I** is the circumcentre of $\triangle DEF$. Thus, (3.1.1.7) can be used to compute **I**. This is done by the python code below

codes/circle/tri icentre.py

and the equivalent latex-tikz code to draw Fig. 4.1.1 is

figs/circle/tri icentre.tex

Fig. 4.1.1: Incentre I of $\triangle ABC$

2. r is known as the *inradius* of $\triangle ABC$. Find r for the given values of a, b, c.

Solution: From Fig. 4.1.1

using Hero's formula. The following python code computes the *inradius*

4.2 Drawing the Incircle

1. In Fig. 4.1.1, points $\mathbf{D}, \mathbf{E}, \mathbf{F}$ are at a distance r from \mathbf{I} . The circle with centre \mathbf{I} through these points is known as the *incircle*. Draw the incircle of $\triangle ABC$.

Solution: This is done by the following python code

and the equivalent latex-tikz code to draw Fig. 4.2.1 is

Fig. 4.2.1: Circumcircle of $\triangle ABC$

2. Sides *AB*, *BC* and *CA* touch the circle at exactly one point. Such lines are known as *tangents* to the circle.

- 3. Tangents to the circle are perpendicular to the radius at the point of contact.
- 4. From (4.1.1.1), it is obvious that tangents to the circle from a given point are equal.

4.3 Congruent Triangles

1. RHS: For two right angled triangles, if the hypotenuse and one of the sides are equal, show that the triangles are congruent.

Solution: In \triangle s *IDB* and *IFB* in Fig. 4.1.1, *ID* \perp *BC*, *IF* \perp *AB*, *IB* is a common side and *ID* = *IF*, i.e. both triangles are right angled, have the same hypotenuse and one equal leg. This information was sufficient to show that BD = BF. Similarly, it can be shown that all angles of both triangles are equal. Such triangles are known as *congruent* triangles and denoted by $\triangle IDB \cong \triangle IEB$.

- 2. Show that *IA*, *IB*, *IC* bisect the angles *A*, *B* and *C* respectively.
- 3. Angle bisectors of $\triangle ABC$ meet at the incentre **I**.
- 4. To show that two triangles are congruent, it is sufficient to show that some corresponding angles and sides are equal. Sine and cosine formulae are sufficient to show that two triangles are congruent.
- 5. SSS: Show that if the corresponding sides of three triangles are equal, the triangles are congruent.
- 6. ASA: Show that if two angles and any one side are equal in corresponding triangles, the triangles are congruent.
- 7. SAS: Show that if two sides and the angle between them are equal in corresponding triangles, the triangles are congruent.

5 Medians of a Triangle

5.1 Basic Proportionality Theorem

- 1. The line AD in Fig. 5.1.1 that divides the side *a* in two equal halfs is known as the median.
- 2. Draw Fig. 5.1.1 with a = 5, b = 6 and c = 4. **Solution:** Using (1.2.6.5), since **D** divides BC in the ratio 1 : 1.

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} \tag{5.1.2.1}$$

The latex-tikz code is

figs/triangle/tri_median_def.tex

Fig. 5.1.1: Median of a Triangle

3. In Fig. 5.1.3, *BE* and *CF* are the medians. show that $EF = \frac{a}{2}$.

Fig. 5.1.3: Similar Triangles

Solution: Using the cosine formula for $\triangle AEF$,

$$EF^{2} = \left(\frac{b}{2}\right)^{2} + \left(\frac{c}{2}\right)^{2} - 2\left(\frac{b}{2}\right)\left(\frac{c}{2}\right)\cos A \tag{5.1.3.1}$$

$$=\frac{b^2+c^2-2bc\cos A}{4}$$
 (5.1.3.2)

$$=\frac{a^2}{4} \tag{5.1.3.3}$$

$$\Rightarrow EF = \frac{a}{2} \tag{5.1.3.4}$$

4. The ratio of sides of triangles AEF and ABC is the same. Such triangles are known as similar triangles.

5. Show that similar triangles have the same angles.

Solution: Use cosine formula and the proof is trivial.

6. Show that in Fig. 5.1.3, $EF\parallel BC$.

Solution: Since $\triangle AEF \sim \triangle ABC$, $\angle AEF = \angle ACB$. Hence the line EF || BC

7. The line joining the mid points of two sides of a triangle is parallel to the third side. This is known as the *basic proportionality theorem*.

5.2 Similar Triangles

Use the sine and cosine formulae to show that triangles are similar if

- 1. AAA: all angles are equal
- 2. SAS: two corresponding sides are in the same ratio and the common angle is equal.
- 3. SSS: all sides have the same ratio.

5.3 Centroid

1. In Fig. 5.3.1, BE and CF are the medians. Show that $\triangle GEF \sim \triangle GBC$.

Fig. 5.3.1: Similar Triangles

Solution: $:: EF \parallel BC$, alternate interior angles are equal. Hence, corresponding angles of both triangles are equal and the triangles are similar.

2. Show that

$$\frac{GB}{GE} = \frac{GC}{GF} = 2 (5.3.2.1)$$

Solution: : $\triangle GEF \sim \triangle GBC$ and $\frac{EF}{BC} = 2$, (5.3.2.1) follows.

3. In Fig. 5.3.3, AG is extended to meet *BC* at *D*. Show that

$$\frac{GA}{GD} = 2 \tag{5.3.3.1}$$

Fig. 5.3.3: Similar Triangles

Solution: From Theorem 5.1.7, $EF\parallel BC$. Hence,

$$\triangle APE \sim \triangle ADC \quad (AAA)$$

$$(5.3.3.2)$$

$$\implies AP = PD = \frac{AD}{2} \quad (5.3.3.3)$$

$$\implies AG - GP = GP + GD \quad (5.3.3.4)$$
or, $GP = \frac{AG - GD}{2}$

$$(5.3.3.5)$$

Similarly,

$$\triangle PGE \sim \triangle BGD \quad (AAA) \quad (5.3.3.6)$$

$$\Longrightarrow \frac{GP}{GD} = \frac{GE}{GB} = \frac{1}{2} \quad (5.3.3.7)$$
or, $GP = \frac{GD}{2} \quad (5.3.3.8)$

using (5.3.2.1). From and,

$$GP = \frac{AG - GD}{2} = \frac{GD}{2} \implies \frac{AG}{GD} = 2$$
 (5.3.3.9)

4. Show that the medians of a triangle meet at a point.

Solution: In Fig. 5.3.3, BE and CF are medi-

ans that meet at G. Hence, from (??),

$$G = \frac{2B + E}{3}$$
 (5.3.4.1)

If the median AD meets BE in G_1 , from Theorem (??),

$$\mathbf{G}_1 = \frac{2\mathbf{B} + \mathbf{E}}{3} \tag{5.3.4.2}$$

From (5.3.4.1) and (5.3.4.2), $\mathbf{G} = \mathbf{G}_1$. Thus, the medians meet at \mathbf{G} .

5. The centroid divides the median in the ratio 2:1.

6 Area of a Circle

6.1 Area of a Circle

1. Using Fig. 6.1.1, show that

$$\sin \theta_1 = \sin (\theta_1 + \theta_2) \cos \theta_2 - \cos (\theta_1 + \theta_2) \sin \theta_2$$
(6.1.1.1)

Fig. 6.1.1: $\sin 2\theta = 2 \sin \theta \cos \theta$

Solution: The following equations can be obtained from the figure using the forumula for

the area of a triangle

$$ar(\Delta ABC) = \frac{1}{2}ac\sin(\theta_1 + \theta_2)$$
 (6.1.1.2)
= $ar(\Delta BDC) + ar(\Delta ADB)$ (6.1.1.3)
= $\frac{1}{2}cl\sin\theta_1 + \frac{1}{2}al\sin\theta_2$ (6.1.1.4)
= $\frac{1}{2}ac\sin\theta_1 \sec\theta_2 + \frac{1}{2}a^2\tan\theta_2$ (6.1.1.5)

(:: $l = a \sec \theta_2$). From the above,

$$\Rightarrow \sin(\theta_1 + \theta_2) = \sin\theta_1 \sec\theta_2 + \frac{a}{c} \tan\theta_2$$
(6.1.1.6)

$$\Rightarrow \sin(\theta_1 + \theta_2) = \sin\theta_1 \sec\theta_2 + \cos(\theta_1 + \theta_2) \tan\theta_2$$
(6.1.1.7)

Multiplying both sides by $\cos \theta_2$,

$$\Rightarrow \sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + \cos(\theta_1 + \theta_2)\sin\theta_2$$
(6.1.1.8)

resulting in

$$\Rightarrow \sin \theta_1 = \sin (\theta_1 + \theta_2) \cos \theta_2 - \cos (\theta_1 + \theta_2) \sin \theta_2$$
(6.1.1.9)

2. Prove the following identities

$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta.$$
(6.1.2.1)

b)

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta.$$
(6.1.2.2)

Solution: In (6.1.1.1), let

$$\theta_1 + \theta_2 = \alpha$$

$$\theta_2 = \beta$$
(6.1.2.3)

This gives (6.1.2.1). In (6.1.2.1), replace α by $90^{\circ} - \alpha$. This results in

$$\sin (90^{\circ} - \alpha - \beta)$$

$$= \sin (90^{\circ} - \alpha) \cos \beta - \cos (90^{\circ} - \alpha) \sin \beta$$

$$\Rightarrow \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
(6.1.2.4)

3. Using (6.1.1.1) and (6.1.2.2), show that

$$\sin(\theta_1 + \theta_2) = \sin\theta_1 \cos\theta_2 + \cos\theta_1 \sin\theta_2$$
(6.1.3.1)

$$\cos(\theta_1 - \theta_2) = \cos\theta_1 \cos\theta_2 \sin\theta_1 \sin\theta_2$$
(6.1.3.2)

Solution: From (6.1.1.1),

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + \cos(\theta_1 + \theta_2)\sin\theta_2$$
(6.1.3.3)

Using (6.1.2.2) in the above,

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + (\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2)\sin\theta_2 \quad (6.1.3.4)$$

which can be expressed as

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \sin\theta_1 + \cos\theta_1\cos\theta_2\sin\theta_2$$
$$-\sin\theta_1\sin^2\theta_2 \quad (6.1.3.5)$$

Since

$$\sin^2 \theta_2 = 1 - \cos^2 \theta_2, \tag{6.1.3.6}$$

we obtain

$$\sin(\theta_1 + \theta_2)\cos\theta_2 = \cos\theta_1\cos\theta_2\sin\theta_2 + \sin\theta_1\cos^2\theta_2 \quad (6.1.3.7)$$

resulting in

$$\sin(\theta_1 + \theta_2) = \cos\theta_1 \sin\theta_2 + \sin\theta_1 \cos\theta_2$$
(6.1.3.8)

after factoring out $\cos \theta_2$. Using a similar approach, (6.1.3.2) can also be proved.

4. Show that

$$\sin 2\theta = 2\sin\theta\cos\theta \qquad (6.1.4.1)$$

5. Show that

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta \qquad (6.1.5.1)$$

$$= 1 - \sin^2 \theta \tag{6.1.5.2}$$

$$= 2\cos^2\theta - 1 \tag{6.1.5.3}$$

- 6. The ratio of the perimeter of a circle to its diameter is π .
- 7. *Radian* is a another unit of the angle defined by

$$\pi \text{ radians} = 180^{\circ}$$
 (6.1.7.1)

8. In Fig. 6.1.8, 6 congruent triangles are arranged

in a circular fashion. Such a figure is known as a regular hexagon. In general, *n* number of traingles can be arranged to form a regular polygon.

Fig. 6.1.8: Polygon Definition

- 9. The angle formed by each of the congruent triangles at the centre of a regular polygon of n sides is $\frac{2\pi}{n} = \frac{2\pi}{n}$ rad.
- 10. The triangle that forms a polygon of *n* sides is given in Fig. 6.1.10. Show that

$$BC = 2r\sin\frac{\pi}{n} \tag{6.1.10.1}$$

Fig. 6.1.10: Triangle that forms a polygon

Solution: Using cosine formula,

$$BC^{2} = 2r^{2} - 2r^{2} \cos \frac{2\pi}{n}$$
 (6.1.10.2)

$$\implies BC^{2} = 2r^{2} \left(1 - \cos \frac{2\pi}{n} \right) = 4r^{2} \sin^{2} \frac{\pi}{n}$$
 (6.1.10.3)

upon substituting from (6.1.5.2). Taking the square root results in (6.1.10.1)

11. Show that the perimeter of a regular polygon is given by

$$2rn\sin\frac{\pi}{n}\tag{6.1.11.1}$$

12. Show that the area of a regular polygon is given by

$$\frac{n}{2}r^2\sin\frac{2\pi}{n}$$
 (6.1.12.1)

Solution: From Fig. 6.1.10

$$ar(polygon) = n \times ar(\Delta ABC)$$
$$= \frac{n}{2}r^{2}\sin\frac{2\pi}{n}$$
(6.1.12.2)

13. Using Fig. 6.1.13, show that

$$\frac{n}{2}r^2 \sin \frac{2\pi}{n} < \text{ area of circle } < nr^2 \tan \frac{\pi}{n}$$
(6.1.13.1)

The portion of the circle visible in Fig. 6.1.13 is defined to be a sector of the circle.

Solution: Note that the circle is squeezed between the inner and outer regular polygons. As we can see from Fig. 6.1.13, the area of the circle should be in between the areas of the inner and outer polygons. Since

$$ar(\Delta OAB) = \frac{1}{2}r^{2}\sin\frac{2\pi}{n}$$
 (6.1.13.2)

$$ar(\Delta OPQ) = 2 \times \frac{1}{2} \times r\tan\frac{2\pi/n}{2} \times r$$
 (6.1.13.3)

$$= r^{2}\tan\frac{\pi}{n},$$
 (6.1.13.4)

we obtain (6.1.13.1).

14. Show that

$$\cos^2 \frac{\pi}{n} < \frac{\text{area of circle}}{nr^2 \tan \frac{\pi}{n}} < 1 \qquad (6.1.14.1)$$

Fig. 6.1.13: Circle Area in between Area of Two Polygons

Solution: From (6.1.13.1) and (6.1.4.1),

$$\frac{n}{2}r^2 \sin \frac{2\pi}{n} < \text{ area of circle } < nr^2 \tan \frac{\pi}{n}$$
(6.1.14.2)

$$\Rightarrow nr^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} < \text{ area of circle } < nr^2 \tan \frac{\pi}{n}$$
(6.1.14.2)
$$(6.1.14.2)$$

which yields (6.1.14.1) upon making use of the fact that

$$\frac{\sin \theta}{\cos \theta} = \tan \theta \tag{6.1.14.4}$$

15. Show that

$$\cos 0^{\circ} = 1$$
 (6.1.15.1)

Solution: Follows from the fact that $\cos 0^{\circ} = \sin (90^{\circ} - 0^{\circ}) = \sin (90^{\circ}) = 1$ using (1.3.1.2).

16. Show that

$$\sin 0^{\circ} = 0$$
 (6.1.16.1)

17. Show that for large values of n

$$\cos^2 \frac{\pi}{n} = 1 \tag{6.1.17.1}$$

Solution: As $n \to \infty$, $\frac{\pi}{n} \to 0$. From (6.1.15.1), this yields (6.1.17.1).

18. (6.1.17.1) is a *limit* and expressed as

$$\lim_{n \to \infty} \cos^2 \frac{\pi}{n} = 1 \tag{6.1.18.1}$$

19. Show that

area of circle =
$$r^2 \lim_{n \to \infty} n \tan \frac{\pi}{n}$$
 (6.1.19.1)

Solution: From (6.1.14.1) and (6.1.18.1),

$$\lim_{n \to \infty} \cos^2 \frac{\pi}{n} < \lim_{n \to \infty} \frac{\text{area of circle}}{nr^2 \tan \frac{\pi}{n}} < 1$$
(6.1.19.2)

$$1 = \lim_{n \to \infty} \frac{\text{area of circle}}{nr^2 \tan \frac{\pi}{n}} < 1$$
(6.1.19.3)

resulting in (6.1.19.1).

20. Show that

$$\pi = \lim_{n \to \infty} n \tan \frac{\pi}{n} \tag{6.1.20.1}$$

Solution: From (6.1.6) and (6.1.11.1), the perimeter of the circle is

$$\lim_{n \to \infty} 2rn \sin \frac{\pi}{n} = 2\pi r \implies \lim_{n \to \infty} n \sin \frac{\pi}{n} = \pi$$
(6.1.20.2)

Also, from Fig. (6.1.13), using the fact that the inner and outer polygons converge into a circle for large n,

$$\lim_{n \to \infty} nCD - nAB = 0$$

$$(6.1.20.3)$$

$$\implies \lim_{n \to \infty} 2rn \tan \frac{\pi}{n} - 2rn \sin \frac{\pi}{n} = 0$$

$$(6.1.20.4)$$

from which, we obtain (6.1.20.1) by substituting from (6.1.20.2).

21. Show that the area of a circle is πr^2 .

Solution: Use (6.1.20.1) in (6.1.19.1).

22. Show that

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \lim_{\theta \to 0} \frac{\tan \theta}{\theta} = 1 \tag{6.1.22.1}$$

23. Show that the area of a sector with angle θ in radians is $\frac{1}{2}r^2\theta$.

7 QUADRILATERALS

7.1 Properties

1. A parallelogram is a quadrilateral whose opposite sides are parallel. A parallelogram is shown

in Fig. (7.1.1).

Fig. 7.1.1: Parallelogram

2. Opposite sides of a parallelogram are equal. **Solution:** $\therefore AD \parallel BC, AB \parallel C$, alternate angles are equal. Hence, in $\triangle s$ *ADB* and *DBC*

$$\angle ADB = \angle DBC \qquad (7.1.2.1)$$

$$\angle ABD = \angle BDC \tag{7.1.2.2}$$

- 3. Show that its diagonals bisect each other. **Solution:**
- 4. Draw the parallelogram ABCD with BC = 6, CD = 4.5 and BD = 7.5.

Solution: The Let

$$\mathbf{B} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \mathbf{C} = \begin{pmatrix} a \\ 0 \end{pmatrix} \tag{7.1.4.1}$$

Diagonals of a parallelogram bisect each other. Opposite sides of a parallelogram are equal and parallel

5. Draw the rhombus BEST with BE = 4.5 and ET = 6.

Solution: Diagonals of a rhombus bisect each other at right angles.

- 6. Sum of the angles of a quadrilateral is 360°. **Solution:** Draw the diagonal and use the fact that sum of the angles of a triangle is 180°.
- 7. A diagonal of a parallelogram divides it into

two congruent triangles.

Solution: The alternate angles for the parallel sides are equal. The diagonal is common. Use ASA congruence.

- 8. In a parallelogram,
 - a) opposite sides are equal
 - b) opposite angles are equal
 - c) diagonals bisect each other

Solution: Since the diagonal divides the parallelogram into two congruent triangles, all the above results follow.

- 9. A quadrilateral is a parallelogram, if
 - a) opposite sides are equal or
 - b) opposite angles are equal or
 - c) diagonals bisect each other or
 - d) a pair of opposite sides is equal and parallel **Solution:** All the above lead to a quadrilateral that has two parallel sides, by showing that the alternate angles are equal.
- 10. A rectangle is a parallelogram with one angle that is 90°. Show that all angles of the rectangle are 90°.

Solution: Draw a diagonal. Since the diagonal divides the rectangle into two congruent triangles, the angle opposite to the right angle is also 90° . Using congruence, it can be shown that the other two angles are equal. Now use the fact that the sum of the angles of a quadrilateral is 360° .

11. Diagonals of a rectangle bisect each other and are equal and vice-versa.

Solution: Use Baudhayana's theorem for equality of diagonals.

12. Diagonals of a rhombus bisect each other at right angles and vice-versa.

Solution: The median of an isoceles triangle is also its perpendicular bisector.

13. Diagonals of a square bisect each other at right angles and are equal, and vice-versa.

Solution: A square has the properties of a rectangle as well as a rhombus.

- 14. The quadrilateral formed by joining the midpoints of the sides of a quadrilateral, in order, is a parallelogram.
- 15. Two parallel lines I and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
- 16. Show that the bisectors of angles of a parallel-

ogram form a rectangle.

- 17. A quadrilateral is a parallelogram if a pair of opposite sides is equal and parallel.
- 18. Parallelograms on the same base (or equal bases) and between the same parallels are equal in area.
- 19. Area of a parallelogram is the product of its base and the corresponding altitude.
- 20. Parallelograms on the same base (or equal bases) and having equal areas lie between the same parallels.
- 21. If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.
- 22. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
- 23. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- 24. Show that the diagonals of a square are equal and bisect each other at right angles.
- 25. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

8 Miscellaneous Properties

8.1 Median and Area

1. Show that the median AD in Fig. 5.1.1 divides $\triangle ABC$ into triangles ADB and ADC that have equal area.

Solution: We have

$$ar(\triangle ADB) = \frac{1}{2} \frac{a}{2} c \sin B = \frac{1}{4} ac \sin B$$
(8.1.1.1)

$$ar(\triangle ADC) = \frac{1}{2}\frac{a}{2}b\sin C = \frac{1}{4}ab\sin C$$
(8.1.1.2)

Using the sine formula, $b \sin C = c \sin B$,

$$ar(\triangle ADB) = ar(\triangle ADC)$$
 (8.1.1.3)

2. *BE* and *CF* are the medians in Fig. 8.1.2. Show that

$$ar(\triangle BFC) = ar(\triangle BEC)$$
 (8.1.2.1)

Solution: Since *BE* and *CF* are the medians,

$$ar(\triangle BFC) = \frac{1}{2}ar(\triangle ABC)$$
 (8.1.2.2)

$$ar(\triangle BEC) = \frac{1}{2}ar(\triangle ABC)$$
 (8.1.2.3)

From the above, we infer that

$$ar(\triangle BFC) = ar(\triangle BEC)$$
 (8.1.2.4)

Fig. 8.1.2: *O* is the Intersection of Two Medians

8.2 Triangle Inequalities

1. Show that if

$$\theta_1 < \theta_2, \quad \sin \theta_1 < \sin \theta_2. \tag{8.2.1.1}$$

Solution: Using Baudhayana's theorem in $\triangle ABC$ and $\triangle DBC$

$$l^2 = x^2 + a^2 (8.2.1.2)$$

$$c^2 = b^2 + a^2 (8.2.1.3)$$

$$\implies c > l :: b > x.$$
 (8.2.1.4)

Also.

$$a = c\sin\theta_1 = l\sin\theta_2 \tag{8.2.1.5}$$

$$\implies \frac{\sin \theta_1}{\sin \theta_2} = \frac{l}{c} < 1 \quad \text{from (8.2.1.4)}$$
(8.2.1.6)

or, $\sin \theta_1 < \sin \theta_2$ (8.2.1.7)

2. Show that if

$$\theta_1 < \theta_2, \cos \theta_1 > \cos \theta_2. \tag{8.2.2.1}$$

- 3. Show that in any $\triangle ABC$, $\angle A > \angle B \implies a > b$. **Solution:** Use (2.2.2.3) and (8.2.1.7)
- 4. Show that the sum of any two sides of a triangle is greater than the third side.

Fig. 8.2.1: $\theta_1 < \theta_2 \implies \sin \theta_1 < \sin \theta_2$.

Solution: In Hero's formula in (??), all the factors inside the square root should be positive. Thus,

$$(s-a) > 0, (s-b) > 0 (s-c) > 0$$
 (8.2.4.1)

(8.2.4.2)

$$(s-a) > 0 \implies \frac{a+b+c}{2} - a > 0 \quad (8.2.4.3)$$

or, $b+c > a \quad (8.2.4.4)$

Similarly, it can be shown that a+b > c, c+a > b.

8.3 Circles

8.4 Properties

- Fig. 8.4.1 represents a circle, which passes through the vertices AB, C of ΔABC in Fig. (??) The points in the circle are at a distance R from the centre O. R is known as the radius. The line joining any two points on a circle is known as a chord. Thus, the sides of ΔABC are chords.
- 2. The diameter of a circle is the chord that divides the circle into two equal parts. In Fig. 8.4.3, *AB* is the diameter and passes through the centre *O*

Fig. 8.4.1: Circle Definitions

3. In Fig. 8.4.3, show that $\angle APB = 90^{\circ}$.

Fig. 8.4.3: Diameter of a circle.

4. In Fig. 8.4.4, show that

$$\angle ABD = \angle ACD$$

$$\angle CAB = \angle CDB$$
(8.4.4.1)

Solution: Use Problem ??.

5. In Fig. 8.4.4, show that the triangles *PAB* and

Fig. 8.4.4: PA.PB = PC.PD

Fig. 8.4.7: Incircle and Tangent

PBD are similar

Solution: Trivial using previous problem

6. In Fig. 8.4.4, show that

$$PA.PB = PC.PD \tag{8.4.6.1}$$

Solution: Since triangles *PAC* and *PBD* are similar,

$$\frac{PA}{PD} = \frac{PC}{PB} \tag{8.4.6.2}$$

$$\Rightarrow PA.PB = PC.PD$$
 (8.4.6.3)

- 7. Fig. 8.4.7 touches the sides of $\triangle ABC$ (??) and is known as the *incircle*. The sides of the \triangle are known as the *tangents* of the circle.
- 8. Tangents to a circle from any point outside the circle are equal.

Solution: See Fig. 8.4.7 and use (??).

9. Show that

$$\sin 90^{\circ} = 1$$
 (8.4.9.1)

Solution: From Prolem 2.1.5 and Problem 2.2.1, the area of the right angled $\triangle ABC$ in Fig. ?? is

$$\frac{1}{2}ab = \frac{1}{2}ab\sin 90^{\circ} \tag{8.4.9.2}$$

resulting in (8.4.9.1).

10. Show that

$$\cos 90^{\circ} = 0$$
 (8.4.10.1)

Solution: Follows from the fact that $\sin 90^{\circ} = 1$ and (1.3.3.1).

11. The line PX in Fig. 8.4.11 touches the circle at exactly one point P. Show that $OP \perp PX$. **Solution:** Without loss of generality, let $0 \le \theta \le 90^{\circ}$. Using the cosine formula in $\triangle OPP_n$,

$$(r+d_n)^2 > r^2,$$
 (8.4.11.1)

Fig. 8.4.11: Tangent to a Circle.

$$(r+d_n)^2 = r^2 + x_n^2 - 2rx_n \cos \theta > r^2$$

$$(8.4.11.2)$$

$$\implies 0 < \cos \theta < \frac{x_n}{2r},$$
(8.4.11.3)

where x_n can be made as small as we choose. Thus,

$$\cos \theta = 0 \implies \theta = 90^{\circ}$$
 (8.4.11.4)

from (8.4.10.1).

12. In Fig. 8.4.12 show that

$$\angle PCA = \angle PBC$$
 (8.4.12.1)

O is the centre of the circle and PC is the tangent.

Fig. 8.4.12: $PA.PB = PC^2$.

Solution: Obvious from the figure once we observe that $\triangle OAC$ is isosceles.

13. In Fig. 8.4.12, show that the triangles *PAC* and *PBC* are similar.

Solution: From the previous problem, it is obvious that corresponding angles of both triangles are equal. Hence they are similar.

14. Show that $PA.PB = PC^2$

Solution: Since $\triangle PAC \sim \triangle PBC$, their sides are in the same ratio. Hence,

$$\frac{PA}{PC} = \frac{PC}{PB}$$

$$\Rightarrow PA.PB = PC^{2}$$
(8.4.14.1)
$$(8.4.14.2)$$

15. Given that $PA.PB = PC^2$, show that PC is a tangent to the circle.

16. In Fig. 8.4.16, show that

$$PA.PB = PC.PD$$
 (8.4.16.1)

Fig. 8.4.16: $PA.PB = PC^2$.

Solution: Draw a tangent and use the previous problem.

9 Exercises

9.1 Triangle Exercises

- 1. Each angle of an equilateral triangle is of 60°.
- 2. Triangles on the same base (or equal bases) and between the same parallels are equal in area.
- 3. Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.
- 4. In $\triangle ABC$, D, E and F are respectively the midpoints of sides AB, BC and CA. Show that $\triangle ABC$ is divided into four congruent triangles by joining D, E and F.
- 5. The line-segment joining the mid-points of any two sides of a triangle is parallel to the third side and is half of it.
- 6. A line through the mid-point of a side of a triangle parallel to another side bisects the third side.
- 7. ABC is a triangle right angled at *C*. A line through the mid-point *M* of hypotenuse *AB* and parallel to *BC* intersects *AC* at *D*. Show that (i) *D* is the mid-point of *AC* (ii) *MD* ⊥ *AC* (iii) *CM* = *MA* = ½*AB*
- 8. Sides opposite to equal angles of a triangle are equal.
- 9. Each angle of an equilateral triangle is of 60°.
- 10. Using cosine formula in an equilateral \triangle , show that $\cos 60^{\circ} = \frac{1}{2}$.

- 11. Using (1.3.3.1), show that $\sin 60^\circ = \frac{\sqrt{3}}{2}$.
- 12. Find $\sin 30^{\circ}$ and $\sin 30^{\circ}$ using (1.3.1.2).
- 13. Triangles on the same base (or equal bases) and between the same parallels are equal in area.
- 14. Triangles on the same base (or equal bases) and having equal areas lie between the same parallels.
- 15. In $\triangle ABC$, the bisector AD of $\angle A$ is perpendicular to side BC. Show that AB = AC and $\triangle ABC$ is isosceles.
- 16. E and F are respectively the mid-points of equal sides AB and AC of $\triangle ABC$. Show that BF = CE.
- 17. In an isosceles $\triangle ABC$ with AB = AC, D and E are points on BC such that BE = CD. Show that AD = AE.
- 18. AB is a line-segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B. Show that the line PQ is the perpendicular bisector of AB.
- 19. *P* is a point equidistant from two lines *l* and *m* intersecting at point *A*. Show that the line *AP* bisects the angle between them.
- 20. *D* is a point on side *BC* of $\triangle ABC$ such that AD = AC. Show that AB > AD
- 21. *AB* is a line segment and line *l* is its perpendicular bisector. If a point *P* lies on *l*, show that *P* is equidistant from *A* and *B*.
- 22. Line-segment *AB* is parallel to another line-segment *CD*. *O* is the mid-point of *AD*. Show that
 - a) $\triangle AOB \cong \triangle DOC$
 - b) O is also the mid-point of BC.
- 23. In quadrilateral ACBD, AC = AD and AB bisects $\angle A$. Show that $\triangle ABC \cong \triangle ABD$. What can you say about BC and BD?
- 24. ABCD is a quadrilateral in which AD = BC and $\angle DAB = \angle CBA$. Prove that
 - a) $\triangle ABD \cong \triangle BAC$
 - b) BD = AC
 - c) $\angle ABD = \angle BAC$.
- 25. l and m are two parallel lines intersected by another pair of parallel lines p and q to form the quadrilateral ABCD. Show that $\triangle ABC \cong \triangle CDA$.
- 26. Line l is the bisector of $\angle A$ and B is any point on l. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:

- a) $\triangle APB \cong \triangle AQB$
- b) BP = BQ or B is equidistant from the arms of $\angle A$.
- 27. ABCE is a quadrilateral and D is a point on BC such that, AC = AE, AB = AD and $\angle BAD = \angle EAC$. Show that BC = DE.
- 28. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:
 - a) $\triangle AMC \cong \triangle BMD$
 - b) $\angle DBC$ is a right angle.
 - c) $\triangle DBC \cong \triangle ACB$
 - d) $CM = \frac{1}{2}AB$
- 29. In an isosceles $\triangle ABC$, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that :
 - a) OB = OC
 - b) AO bisects $\angle A$
- 30. In $\triangle ABC$, AD is the perpendicular bisector of BC. Show that $\triangle ABC$ is an isosceles triangle in which AB = AC.
- 31. *ABC* is an isosceles triangle in which altitudes *BE* and *CF* are drawn to equal sides *AC* and *AB* respectively . Show that these altitudes are equal.
- 32. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that
 - a) $\triangle ABE \cong \triangle ACF$
 - b) AB = AC, i.e., ABC is an isosceles triangle.
- 33. ABC and DBC are two isosceles triangles on the same base BC. Show that $\angle ABD = \angle ACD$.
- 34. $\triangle ABC$ and $\triangle DBC$ are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC. If AD is extended to intersect BC at P, show that
 - a) $\triangle ABD \cong \triangle ACD$
 - b) $\triangle ABP \cong \triangle ACP$
 - c) AP bisects $\angle A$ as well as $\angle D$.
 - d) AP is the perpendicular bisector of BC.
- 35. AD is an altitude of an isosceles $\triangle ABC$ in which AB = AC. Show that
 - a) AD bisects BC
 - b) AD bisects $\angle A$.
- 36. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of $\triangle PQR$. Show that:
 - a) $\triangle ABM \cong \triangle PQN$

- b) $\triangle ABC \cong \triangle PQR$
- 37. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
- 38. ABC is an isosceles triangle with AB = AC. Draw $AP \perp BC$ to show that $\angle B = \angle C$.
- 39. $\triangle ABC$ is an isosceles triangle in which AB =AC. Side BA is produced to D such that AD =AB. Show that $\angle BCD$ is a right angle.
- 40. ABC is a right angled triangle in which $\angle A =$ 90° and AB = AC. Find $\angle B$ and $\angle C$.
- 41. Show that in a right angled triangle, the hypotenuse is the longest side.
- 42. Sides AB and AC of $\triangle ABC$ are extended to points P and Q respectively. Also, $\angle PBC <$ $\angle QCB$. Show that AC > AB.
- 43. Line segments AD and BC intersect at O and form $\triangle OAB$ and $\triangle ODC$. $\angle B < \angle A$ and $\angle C <$ $\angle D$. Show that AD < BC.
- 44. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that $\angle A > \angle C$ and $\angle B > \angle D$.
- 45. In $\triangle PQR$, PR > PQ and PS bisects $\angle QPR$. Prove that $\angle PSR > \angle PSQ$.
- 46. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
- 47. ABCD is a trapezium with $AB \parallel DC$. E and F are points on non-parallel sides AD and BC respectively such that EF is parallel to AB.
- Show that $\frac{AE}{ED} = \frac{BF}{FC}$. 48. ST is a line joining two points on PQ and PRin $\triangle PQR$. If $\frac{PS}{SQ} = \frac{PT}{TR}$ and $\angle PST = \angle PRQ$, prove that PQR° is an isosceles triangle.
- 49. If $LM \parallel CB$ and $LN \parallel CD$, prove that $\frac{AM}{AB} = \frac{AN}{AD}$. 50. D is a point on AB and E, F are points on BC
- such that $DE \parallel AC$ and $DF \parallel AE$. Prove that $\frac{BF}{FE} = \frac{BE}{EC}$
- 51. O is a point in the interior of $\triangle PQR$. D is a point on OP. If $DE \parallel OQ$ and $DF \parallel OR$. Show that $EF \parallel QR$.
- 52. O is a point in the interior of $\triangle PQR$. A, BandC are points on OP, OQ and OR respectively such that $AB \parallel PQ$ and $AC \parallel PR$. Show that $BC \parallel$ QR.
- 53. ABCD is a trapezium in which $AB \parallel DC$ and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$
- 54. The diagonals of a quadrilateral ABCD in-

- tersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.
- 55. $PQ \parallel RS$ and PS intersects QR at O. Show that $\triangle OPQ \sim \triangle ORS$.
- 56. CM and RN are respectively the medians of $\triangle ABC$ and $\triangle PQR$. If $\triangle ABC \sim \triangle PQR$, prove
 - a) $\triangle AMC \sim \triangle PNR$

 - b) $\frac{CM}{RN} = \frac{AB}{PQ}$ c) $\triangle CMB \sim \triangle RNQ$
- 57. Diagonals AC and BD of a trapezium ABCD with $AB \parallel DC$ intersect each other at the point O. Using a similarity criterion for two triangles, show that $\frac{OA}{OC} = \frac{OB}{OD}$
- 58. In $\triangle PQR$, QP is extended to T and S is a point on QR such that $\frac{QR}{QS} = \frac{QT}{PR}$. If $\angle PRQ = \angle PQS$, show that that $\triangle PQS \sim \triangle TQR$.
- 59. S and T are points on sides PR and QRof $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPQ \sim \triangle RTS$.
- 60. In $\triangle ABC$, D and E are points on the sides AB and AC respectively. If $\triangle ABE \cong \triangle ACD$, show that $\triangle ADE \sim \triangle ABC$.
- 61. Altitudes AD and CE of $\triangle ABC$ intersect each other at the point P. Show that:
 - a) $\triangle AEP \sim \triangle CDP$
 - b) $\triangle ABD \sim \triangle CBE$
 - c) $\triangle AEP \sim \triangle ADB$
 - d) $\triangle PDC \sim \triangle BEC$
- 62. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at *F*. Show that $\triangle ABE \sim \triangle CFB$.
- 63. ABC and AMP are two right triangles, right angled at B and M respectively. M lies on AC and AB is extended to meet P. Prove that:
 - a) $\triangle ABC \sim \triangle AMP$
 - b) $\frac{CA}{PA} = \frac{BC}{MP}$
- 64. CD and GH are respectively the bisectors of $\angle ACB$ and $\angle EGF$ such that D and H lie on sides AB and FE of $\triangle ABC$ and $\triangle EFG$ respectively. If $\triangle ABC \sim \triangle FEG$, show that:
- 65. $\frac{CD}{GH} = \frac{AC}{FG}$
- 66. $\triangle DCB \sim \triangle HGE$
- 67. $\triangle DCA \sim \triangle HGF$
- 68. E is a point on side CB produced of an isosceles $\triangle ABC$ with AB = AC. If $AD \perp BC$ and $EF \perp AC$, prove that $\triangle ABD \sim \triangle ECF$.
- 69. Sides AB and BC and median AD of a $\triangle ABC$ are respectively proportional to sides PQ and

- QR and median PM of $\triangle PQR$. Show that $\triangle ABC \sim \triangle PQR$.
- 70. *D* is a point on the side *BC* of a $\triangle ABC$ such that $\angle ADC = \angle BAC$. Show that $CA^2 = CB.CD$.
- 71. Sides AB and AC and median AD of a $\triangle ABC$ are respectively proportional to sides PQ and PR and median PM of another $\triangle PQR$. Show that $\triangle ABC \sim \triangle PQR$.
- 72. If AD and PM are medians of $\triangle sABC$ and PQR, respectively where $\triangle ABC \sim \triangle PQR$, prove that $\frac{AB}{PQ} = \frac{AD}{PM}$
- 73. The line segment XY is parallel to side AC of $\triangle ABC$ and it divides the triangle into two parts of equal areas. Find the ratio $\frac{AX}{AB}$
- 74. Diagonals of a trapezium ABCD with $AB \parallel DC$ intersect each other at the point O. If AB = 2CD, find the ratio of the areas of $\triangle sAOB$ and COD.
- 75. ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that $\frac{ar(ABC)}{ar(DBC)} = \frac{AO}{DO}.$
- 76. If the areas of two similar triangles are equal, prove that they are congruent.
- 77. D, E and F are respectively the mid-points of sides AB, BC and CA of $\triangle ABC$. Find the ratio of the areas of $\triangle DEF$ and $\triangle ABC$.
- 78. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.
- 79. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
- 80. *ABC* and *BDE* are two equilateral triangles such that *D* is the mid-point of *BC*. Find the ratio of the areas of triangles *ABC* and *BDE*.
- 81. The sides of two similar triangles are in the ratio 4: 9. Find the ratio the area of these triangles are in the ratio
- 82. In $\triangle ABC$, $\angle ACB = 90^{\circ}$ and $CD \perp AB$. Prove that $\frac{BC^2}{AC^2} = \frac{BD}{AD}$.
- 83. In $\triangle ABC$, if $AD \perp BC$, prove that $AB^2 + CD^2 = BD^2 + AC^2$.
- 84. BL and CM are medians of a $\triangle ABC$ right angled at A. Prove that $4(BL^2 + CM^2) = 5BC2$
- 85. *O* is any point inside a rectangle *ABCD*. Prove that $OB^2 + OD^2 = OA^2 + OC^2$.
- 86. PQR is a triangle right angled at P and M is

- a point on QR such that $PM \perp QR$. Show that $PM^2 = QM.MR$.
- 87. ABD is a triangle right angled at A and $AC \perp BD$. Show that
 - a) $AB^2 = BC.BD$
 - b) $AC^2 = BC.DC$
 - c) $AD^2 = BD.CD$
- 88. ABC is an isosceles triangle right angled at C. Prove that $AB^2 = 2AC2$.
- 89. ABC is an isosceles triangle with AC = BC. If $AB^2 = 2AC2$, prove that ABC is a right triangle.
- 90. *ABC* is an equilateral triangle of side 2*a*. Find each of its altitudes.
- 91. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.
- 92. *O* is a point in the interior of a $\triangle ABC$, $OD \perp BC$, $OE \perp AC$ and $OF \perp AB$. Show that
 - a) $OA^2 + OB^2 + BD^2 OD2 OE2 OF2 = AF^2 + BD^2 + CE^2$.
 - b) $AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2$.
- 93. *D* and *E* are points on the sides *CA* and *CB* respectively of a $\triangle ABC$ right angled at *C*. Prove that $AE^2 + BD^2 = AB^2 + DE^2$.
- 94. The perpendicular from A on side BC of a $\triangle ABC$ intersects BC at D such that DB = 3CD. Prove that $2AB^2 = 2AC^2 + BC^2$.
- 95. In an equilateral $\triangle ABC$, D is a point on side BC such that $BD = \frac{1}{3}BC$. Prove that $9AD^2 = 7AB2$.
- 96. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
- 97. *PS* is the bisector of $\angle QPR$ of $\triangle PQR$. Prove that $\frac{QS}{SR} = \frac{PQ}{PR}$
- 98. D is a point on hypotenuse AC of $\triangle ABC$, such that $BD \perp AC$, $DM \perp BC$ and $DN \perp AB$. Prove that :
 - a) $DM2 = DN \cdot MC$
 - b) $DN2 = DM \cdot AN$
- 99. ABC is a triangle in which $\angle ABC > 90^{\circ}$ and $AD \perp CB$ produced. Prove that $AC^2 = AB^2 + BC^2 + 2BC.BD$.
- 100. ABC is a triangle in which $\angle ABC < 90^{\circ}$ and $AD \perp BC$. Prove that $AC^2 = AB2 + BC2 2BC.BD$.
- 101. AD is a median of a $\triangle ABC$ and $AM \perp BC$. Prove that :

- a) $AC2 = AD2 + BC.DM + \left(\frac{BC}{2}\right)^2$ b) $AB2 = AD2 BC.DM + \left(\frac{BC}{2}\right)^2$ c) $AC^2 + AB^2 = 2AD2 + \frac{1}{2}BC^2$

- 102. Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.
- 103. D is a point on side BC of $\triangle ABC$ such that $\frac{BD}{CD}\frac{AB}{AC}$. Prove that AD is the bisector of $\angle BAC$.

9.2 Triangle Constructions

- 1. In $\triangle ABC$, $a = 8, \angle B = 45^{\circ}$ and c b = 3.5. Sketch $\triangle ABC$.
- 2. In $\triangle ABC$, a = 6, $\angle B = 60^{\circ}$ and b-c = 2. Sketch $\triangle ABC$.
- 3. Draw $\triangle ABC$, given that a+b+c=11, $\angle B=30^{\circ}$ and $\angle C = 90^{\circ}$.
- 4. Construct $\triangle xyz$ where xy = 4.5, yz = 5 and zx = 6.
- 5. Draw an equilateral triangle of side 5.5.
- 6. Draw $\triangle PQR$ with PQ = 4, QR = 3.5 and PR =4. What type of triangle is this?
- 7. Construct $\triangle ABC$ such that AB = 2.5, BC = 6and AC = 6.5. Find $\angle B$.
- 8. Construct $\triangle PQR$, given that PQ = 3, QR = 5.5and $\angle PQR = 60^{\circ}$.
- 9. Construct $\triangle DEF$ such that DE = 5, DF = 3and $\angle D = 90^{\circ}$.
- 10. Construct an isosceles triangle in which the lengths of the equal sides is 6.5 and the angle between them is 110°.
- 11. Construct $\triangle ABC$ with BC = 7.5, AC = 5 and $\angle C = 60^{\circ}$.
- 12. Construct $\triangle XYZ$ if XY = 6, $\angle X = 30^{\circ}$ and $\angle Y =$ 100°.
- 13. If AC = 7, $\angle A = 60^{\circ}$ and $\angle B = 50^{\circ}$, can you draw the triangle?
- 14. Construct $\triangle ABC$ given that $\angle A = 60^{\circ}$, $\angle B = 30^{\circ}$ and AB = 5.8.
- 15. Construct $\triangle PQR$ if $PQ = 5, \angle Q = 105^{\circ}$ and $\angle R = 40^{\circ}$.
- 16. Can you construct $\triangle DEF$ such that EF =7.2, $\angle E = 110^{\circ}$ and $\angle F = 180^{\circ}$?
- 17. Construct $\triangle LMN$ right angled at M such that LN = 5 and MN = 3.
- 18. Construct $\triangle PQR$ right angled at Q such that QR = 8 and PR = 10.
- 19. Construct right angled \triangle whose hypotenuse is 6 and one of the legs is 4.

- 20. Construct an isosceles right angled $\triangle ABC$ right angled at C such AC = 6.
- 21. Construct the triangles in Table 9.2.21.

S.NoTriangle		Given Measurements			
1	∆ABC	$\angle A = 85^{\circ}$	$\angle B = 115$	$^{\circ}$ AB = 5	
2	△PQR	$\angle Q = 30^{\circ}$	$\angle R = 60^{\circ}$	QR = 4.7	
3	∆ABC	$\angle A = 70^{\circ}$	$\angle B = 50^{\circ}$	AC = 3	
4	△LMN	$\angle L = 60^{\circ}$	$\angle N = 120^{\circ}$	LM = 5	
5	∆ABC	BC = 2	AB = 4	AC = 2	
6	△PQR	PQ = 2.5	QR = 4	PR = 3.5	
7	$\triangle XYZ$	XY = 3	YZ = 4	XZ = 5	
8	△DEF	DE = 4.5	EF = 5.5	DF = 4	

TABLE 9.2.21

9.3 Quadrilateral Exercises

- 1. Sum of the angles of a quadrilateral is 360°. Solution: Draw the diagonal and use the fact that sum of the angles of a triangle is 180°.
- 2. A diagonal of a parallelogram divides it into two congruent triangles.

Solution: The alternate angles for the parallel sides are equal. The diagonal is common. Use ASA congruence.

- 3. In a parallelogram,
 - a) opposite sides are equal
 - b) opposite angles are equal
 - c) diagonals bisect each other

Solution: Since the diagonal divides the parallelogram into two congruent triangles, all the above results follow.

- 4. A quadrilateral is a parallelogram, if
 - a) opposite sides are equal or
 - b) opposite angles are equal or
 - c) diagonals bisect each other or
 - d) a pair of opposite sides is equal and parallel

Solution: All the above lead to a quadrilateral that has two parallel sides, by showing that the alternate angles are equal.

5. A rectangle is a parallelogram with one angle that is 90°. Show that all angles of the rectangle

Solution: Draw a diagonal. Since the diagonal divides the rectangle into two congruent triangles, the angle opposite to the right angle is also 90°. Using congruence, it can be shown

that the other two angles are equal. Now use the fact that the sum of the angles of a quadrilateral is 360°.

6. Diagonals of a rectangle bisect each other and are equal and vice-versa.

Solution: Use Baudhayana's theorem for equality of diagonals.

7. Diagonals of a rhombus bisect each other at right angles and vice-versa.

Solution: The median of an isoceles triangle is also its perpendicular bisector.

8. Diagonals of a square bisect each other at right angles and are equal, and vice-versa.

Solution: A square has the properties of a rectangle as well as a rhombus.

9. The quadrilateral formed by joining the midpoints of the sides of a quadrilateral, in order, is a parallelogram.

Solution: Draw one diagonal and use Problem (??). Repeat for the other diagonal to show that the sides are parallel.

- 10. Two parallel lines I and m are intersected by a transversal p. Show that the quadrilateral formed by the bisectors of interior angles is a rectangle.
- 11. Show that the bisectors of angles of a parallelogram form a rectangle.
- 12. A quadrilateral is a parallelogram if a pair of opposite sides is equal and parallel.
- 13. *ABCD* is a parallelogram in which *P* and *Q* are mid-points of opposite sides *AB* and *CD*. If *AQ* intersects *DP* at *S* and *BQ* intersects *CP* at *R*, show that:
 - a) APCQ is a parallelogram.
 - b) DPBQ is a parallelogram.
 - c) *PS QR* is a parallelogram.
- 14. l, m and n are three parallel lines intersected by transversals p and q such that l, m and n cut off equal intercepts AB and BC on p. Show that l, m and n cut off equal intercepts DE and EF on q also.
- 15. Parallelograms on the same base (or equal bases) and between the same parallels are equal in area.
- 16. Area of a parallelogram is the product of its base and the corresponding altitude.
- 17. Parallelograms on the same base (or equal bases) and having equal areas lie between the same parallels.

- 18. If a parallelogram and a triangle are on the same base and between the same parallels, then area of the triangle is half the area of the parallelogram.
- 19. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ. show that
 - a) $\triangle APD \cong \triangle CQB$
 - b) AP = CQ
 - c) $\triangle AQB \cong \triangle CPD$
 - d) AQ = CP
 - e) APCQ is a parallelogram
- 20. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD. Show that
 - a) $\triangle APB \cong \triangle CQD$
 - b) AP = CQ
- 21. In $\triangle ABC$ and $\triangle DEF, AB = DE, AB \parallel DE, BC = EF$ and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F respectively. Show that
 - a) quadrilateral ABED is a parallelogram
 - b) quadrilateral BEFC is a parallelogram
 - c) $AD \parallel CF$ and AD = CF
 - d) quadrilateral ACFD is a parallelogram
 - e) AC = DF
 - f) $\triangle ABC \cong \triangle DEF$.
- 22. ABCD is a trapezium in which $AB \parallel CD$ and AD = BC. Show that
 - a) $\angle A = \angle B$
 - b) $\angle C = \angle D$
 - c) $\triangle ABC \cong \triangle BAD$
 - d) diagonal AC = diagonal BD
- 23. *ABCD* is a quadrilateral in which *P*, *Q*, *R* and *S* are mid-points of the sides *AB*, *BC*, *CD* and *DA AC* is a diagonal. Show that
 - a) $SR \parallel AC$ and $SR = \frac{1}{2}AC$
 - b) PQ = SR
 - c) *PQRS* is a parallelogram.
- 24. *ABCD* is a rhombus and *P*, *Q*, *R* and *S* are the mid-points of the sides *AB*, *BC*, *CD* and *DA* respectively. Show that the quadrilateral *PQRS* is a rectangle.
- 25. *ABCD* is a rectangle and *P*, *Q*, *R* and *S* are mid-points of the sides *AB*, *BC*, *CD* and *DA* respectively. Show that the quadrilateral *PQRS* is a rhombus.
- 26. ABCD is a trapezium in which $AB \parallel DC, BD$

- is a diagonal and E is the mid-point of AD. A line is drawn through $E \parallel AB$ intersecting BC at F. Show that F is the mid-point of BC.
- 27. In a parallelogram *ABCD*, *E* and *F* are the mid-points of sides *AB* and *CD* respectively . Show that the line segments *AF* and *EC* trisect the diagonal *BD*.
- 28. Show that the line segments joining the midpoints of the opposite sides of a quadrilateral bisect each other.
- 29. *ABCD* is a parallelogram in which *P* and *Q* are mid-points of opposite sides *AB* and *CD*. If *AQ* intersects *DP* at *S* and *BQ* intersects *CP* at *R*, show that:
 - a) APCQ is a parallelogram.
 - b) *DPBQ* is a parallelogram.
 - c) PS QR is a parallelogram.
- 30. *l*, *m* and *n* are three parallel lines intersected by transversals *p* and *q* such that *l*, *m* and *n* cut off equal intercepts *AB* and *BC* on *p*. Show that *l*, *m* and *n* cut off equal intercepts *DE* and *EF* on *q* also.
- 31. Diagonal AC of a parallelogram ABCD bisects $\angle A$. show that
 - a) it bisects $\angle C$ also,
 - b) ABCD is a rhombus.
- 32. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.
- 33. ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that
 - a) ABCD is a square
 - b) diagonal BD bisects $\angle B$ as well as $\angle D$.
- 34. If *E*, *F*, *G* and *H* are respectively the mid-points of the sides of a parallelogram *ABCD*, show that

$$ar(EFGH) = \frac{1}{2}ar(ABCD)$$
. (9.3.34.1)

- 35. P and Q are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that ar(APB) = ar(BQC).
- 36. P is a point in the interior of a parallelogram *ABCD*. Show that
 - a) $ar(APB) + ar(PCD) = \frac{1}{2}ar(ABCD)$
 - b) ar(APD) + ar(PBC) = ar(APB) + ar(PCD)
- 37. *PQRS* and *ABRS* are parallelograms and *X* is any point on side *BR*. show that
 - a) ar(PQRS) = ar(ABRS)

- b) $ar(AXS) = \frac{1}{2}ar(PQRS)$
- 38. A farmer was having a field in the form of a parallelogram *PQRS*. She took any point *A* on *RS* and joined it to points *P* and *Q*. In how many parts the fields is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it?
- 39. ABCD is a quadrilateral and $BE \parallel AC$ and also BE meets DC produced at E. Show that area of $\triangle ADE$ is equal to the area of the quadrilateral ABCD.
- 40. *E* is any point on median *AD* of a $\triangle ABC$. Show that ar(ABE) = ar(ACE).
- 41. In a $\triangle ABC$, E is the mid-point of median AD. Show that $ar(BED) = \frac{1}{4}ar(ABC)$.
- 42. Show that the diagonals of a parallelogram divide it into four triangles of equal area.
- 43. ABC and ABD are two triangles on the same base AB. If line- segment CD is bisected by AB at O, show that ar(ABC) = ar(ABD).
- 44. D, E and F are respectively the mid-points of the sides BC, CA and AB of a △ABC. show thata) BDEF is a parallelogram.
 - b) $ar(BDEF) = \frac{1}{2}ar(ABC)$
- 45. Diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that
 - a) ar(DOC) = ar(AOB)
 - b) ar(DCB) = ar(ACB)
 - c) $ar(DEF) = \frac{1}{4}ar(ABC)$
- 46. D and E are points on sides AB and AC respectively of $\triangle ABC$ such that ar(DBC) = ar(EBC). Prove that $DE \parallel BC$.
- 47. XY is a line parallel to side BC of a $\triangle ABC$. If $BE \parallel AC$ and $CF \parallel AB$ meet XY at E and F respectively, show that ar(ABE) = ar(ACF).
- 48. The side AB of a parallelogram ABCD is produced to any point P. A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed. Show that ar(ABCD) = ar(PBQR).
- 49. Diagonals AC and BD of a trapezium ABCD with $AB \parallel DC$ intersect each other at O. Prove that ar(AOD) = ar(BOC).
- 50. *ABCDE* is a pentagon. A line through *B* parallel to *AC* meets *DC* produced at *F*. Show that
 - a) ar(ACB) = ar(ACF)

- b) ar(AEDF) = ar(ABCDE).
- 51. A villager Itwaari has a plot of land of the shape of a quadrilateral. The Gram Panchayat of the village decided to take over some portion of his plot from one of the corners to construct a Health Centre. Itwaari agrees to the above proposal with the condition that he should be given equal amount of land in lieu of his land adjoining his plot so as to form a triangular plot. Explain how this proposal will be implemented.
- 52. ABCD is a trapezium with $AB \parallel DC$. A line parallel to AC intersects AB at X and BC at Y. Prove that ar(ADX) = ar(ACY).
- 53. $AP \parallel BQ \parallel CR$. Prove that ar(AQC) = ar(PBR).
- 54. Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar(AOD) = ar(BOC). Prove that ABCD is a trapezium.
- 55. $AB \parallel DC \parallel RP$. ar(DRC) = ar(DPC) and ar(BDP) = ar(ARC). Show that both the quadrilaterals ABCD and DCPR are trapeziums.
- 56. Parallelogram *ABCD* and rectangle *ABEF* are on the same base *AB* and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
- 57. In $\triangle ABC$, D and E are two points on BC such that BD = DE = EC. Show that ar(ABD) = ar(ADE) = ar(AEC).
- 58. ABCD, DCFE and ABFE are parallelograms. Show that ar(ADE) = ar(BCF).
- 59. ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersect DC at P, show that ar(BPC) = ar(DPQ). ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at P, show that
 - a) $ar(BDE) = \frac{1}{4}ar(ABC)$
 - b) $ar(BDE) = \frac{7}{2}ar(BAE)$
 - c) ar(ABC) = 2ar(BEC)
 - d) ar(BFE) = ar(AFD)
 - e) ar(BFE) = 2ar(FED)
 - f) $ar(FED) = \frac{1}{8}ar(AFC)$
- 60. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that $ar(APB) \times ar(CPD) = ar(APD) \times ar(BPC)$.
- 61. P and Q are respectively the mid-points of sides AB and BC of a $\triangle ABC$ and R is the mid-

- point of AP, show that
- a) $ar(PRQ) = \frac{1}{2}ar(ARC)$
- b) ar(PBQ) = ar(ARC)
- c) $ar(RQC) = \frac{3}{8}ar(ABC)$
- 62. ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment $AX \perp DE$ meets BC at Y. Show that
 - a) $\triangle MBC \cong \triangle ABD$
 - b) ar(BYXD) = ar(ABMN)
 - c) ar(CYXE) = 2ar(FCB)
 - d) ar(BYXD) = 2ar(MBC)
 - e) $\triangle FCB \cong \triangle ACE$
 - f) ar(CYXE) = ar(ACFG)
 - g) ar(BCED) = ar(ABMN) + ar(ACFG)
- 63. *L* is a point on the diagonal *AC* of quadrilateral *ABCD*. If LM —— CB and LN —— CD, prove that $\frac{AM}{AB} = \frac{AN}{AD}$

9.4 Quadrilateral Constructions

- 1. Construct a quadrilateral ABCD such that AB = 5, $\angle A = 50^{\circ}$, AC = 4, BD = 5 and AD = 6.
- 2. Construct PQRS where PQ = 4, QR = 6, RS = 5, PS = 5.5 and PR = 7.
- 3. Draw JUMP with JU = 3.5, UM = 4, MP = 5, <math>PJ = 4.5 and PU = 6.5
- 4. Construct a quadrilateral ABCD such that BC = 4.5, AC = 5.5, CD = 5, BD = 7 and AD = 5.5.
- 5. Can you construct a quadrilateral PQRS with PQ = 3, RS = 3, PS = 7.5, PR = 8 and SQ = 4?
- 6. Construct LIFT such that LI = 4, IF = 3, TL = 2.5, LF = 4.5, IT = 4.
- 7. Draw GOLD such that OL = 7.5, GL = 6, GD = 6, LD = 5, OD = 10.
- 8. DRAW rhombus BEND such that BN = 5.6, DE = 6.5.
- 9. construct a quadrilateral MIST where MI = 3.5, IS = 6.5, $\angle M = 75^{\circ}$, $\angle I = 105^{\circ}$ and $\angle S = 120^{\circ}$.
- 10. Can you construct the above quadrilateral MIST if $\angle M = 100^{\circ}$ instead of 75°.
- 11. Can you construct the quadrilateral PLAN if PL = 6, LA = 9.5, $\angle P = 75^{\circ}$, $\angle L = 150^{\circ}$ and $\angle A = 140^{\circ}$?
- 12. Construct *MORE* where MO = 6, OR = 4.5, $\angle M = 60^{\circ}$, $\angle O = 105^{\circ}$, $\angle R = 105^{\circ}$.

- 13. Construct *PLAN* where *PL* = 4, *LA* = 6.5, $\angle P = 90^{\circ}$, $\angle A = 110^{\circ}$ and $\angle N = 85^{\circ}$.
- 14. Construct parallelogram HEAR where HE = 5, EA = 6, $\angle R = 85^{\circ}$.
- 15. Draw rectangle OKAY with OK = 7 and KA = 5.
- 16. Construct ABCD, where AB = 4, BC = 5, Cd = 6.5, $\angle B = 105^{\circ}$ and $\angle C = 80^{\circ}$.
- 17. Construct *DEAR* with DE = 4, EA = 5, AR = 4.5, $\angle E = 60^{\circ}$ and $\angle A = 90^{\circ}$.
- 18. Construct TRUE with TR = 3.5, RU = 3, $UE = 4 \angle R = 75^{\circ}$ and $\angle U = 120^{\circ}$.
- 19. Draw a square of side 4.5.
- 20. Can you construct a rhombus ABCD with AC = 6 and BD = 7?
- 21. Draw a square READ with RE = 5.1.
- 22. Draw a rhombus who diagonals are 5.2 and 6.4.
- 23. Draw a rectangle with adjacent sides 5 and 4.
- 24. Draw a parallelogram OKAY with OK = 5.5 and KA = 4.2.

9.5 Circle Exercises

- 1. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
- 2. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centres) are equal, the chords are equal.
- 3. The perpendicular from the centre of a circle to a chord bisects the chord.
- 4. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- 5. There is one and only one circle passing through three non-collinear points.
- 6. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
- 7. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.
- 8. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.
- 9. Congruent arcs of a circle subtend equal angles at the centre.

- 10. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- 11. Angles in the same segment of a circle are equal.
- 12. Angle in a semicircle is a right angle.
- 13. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
- 14. The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
- 15. If sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.
- 16. AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and BD when extended intersect at a point E. Prove that $\angle AEB = 60^{\circ}$.
- 17. ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle DBC = 55^{\circ}$ and $\angle BAC = 45^{\circ}$, find $\angle BCD$
- 18. Two circles intersect at two points *AandB*. *AD* and *AC* are diameters to the two circles. Prove that *B* lies on the line segment *DC*.
- 19. Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.
- 20. Equal chords of a circle (or of congruent circles) subtend equal angles at the centre.
- 21. If the angles subtended by two chords of a circle (or of congruent circles) at the centre (corresponding centres) are equal, the chords are equal.
- 22. The perpendicular from the centre of a circle to a chord bisects the chord.
- 23. The line drawn through the centre of a circle to bisect a chord is perpendicular to the chord.
- 24. There is one and only one circle passing through three non-collinear points.
- 25. Equal chords of a circle (or of congruent circles) are equidistant from the centre (or corresponding centres).
- 26. Chords equidistant from the centre (or corresponding centres) of a circle (or of congruent circles) are equal.
- 27. If two arcs of a circle are congruent, then their corresponding chords are equal and conversely if two chords of a circle are equal, then their corresponding arcs (minor, major) are congruent.

- 28. Congruent arcs of a circle subtend equal angles at the centre.
- 29. The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.
- 30. Angles in the same segment of a circle are equal.
- 31. Angle in a semicircle is a right angle.
- 32. If a line segment joining two points subtends equal angles at two other points lying on the same side of the line containing the line segment, the four points lie on a circle.
- 33. The sum of either pair of opposite angles of a cyclic quadrilateral is 180°.
- 34. If sum of a pair of opposite angles of a quadrilateral is 180°, the quadrilateral is cyclic.
- 35. AB is a diameter of the circle, CD is a chord equal to the radius of the circle. AC and BD when extended intersect at a point E. Prove that $\angle AEB = 60^{\circ}$.
- 36. Two circles intersect at two points *A* and *B*. *AD* and *AC* are diameters to the two circles. Prove that *B* lies on the line segment *DC*.
- 37. Prove that the quadrilateral formed (if possible) by the internal angle bisectors of any quadrilateral is cyclic.
- 38. If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
- 39. If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
- 40. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD.
- 41. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.
- 42. If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.
- 43. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
- 44. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. Prove that $\angle ACP = \angle QCD$.

- 45. If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.
- 46. ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle CAD = \angle CBD$.
- 47. Prove that a cyclic parallelogram is a rectangle.
- 48. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
- 49. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle ABC$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
- 50. Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
- 51. ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
- 52. AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is a rectangle.
- 53. Bisectors of angles A, B and C of a $\triangle ABC$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the $\triangle DEF$ are $90^{\circ} \frac{A}{2}$, $90^{\circ} \frac{B}{2}$ and $90^{\circ} \frac{C}{2}$.
- 54. Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.
- 55. In any $\triangle ABC$, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the $\triangle ABC$.
- 56. The lengths of tangents drawn from an external point to a circle are equal.
- 57. Prove that in two concentric circles, the chord of the larger circle, which touches the smaller circle, is bisected at the point of contact.
- 58. Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTO = 2\angle OPO$.
- 59. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.
- 60. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

- 61. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC.
- 62. XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that $\angle AOB = 90^{\circ}$
- 63. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.
- 64. Prove that the parallelogram circumscribing a circle is a rhombus.
- 65. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
- 66. Find the area of a sector of angle p (in degrees) of a circle with radius R.
- 67. Two chords *AB* and *CD* intersect each other at the point *P*. Prove that :
 - a) $\triangle APC \sim \triangle DPB$
 - b) AP.PB = CP.DP
- 68. Two chords *AB* and *CD* of a circle intersect each other at the point *P* (when produced) outside the circle. Prove that
 - a) $\triangle PAC \sim \triangle PDB$
 - b) PA.PB = PC.PD
- 69. A rectangular park is to be designed whose breadth is 3 m less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the rectangular park and of altitude 12 m. Find its length and breadth.
- 70. The area of a rectangular plot is $528 m^2$. The length of the plot (in metres) is one more than twice its breadth. We need to find the length and breadth of the plot.
- 71. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.
- 72. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.
- 73. Is it possible to design a rectangular mango grove whose length is twice its breadth, and the area is $800 \text{ } m^2$? If so, find its length and breadth.

74. Is it possible to design a rectangular park of perimeter 80 m and area 400 m^2 If so, find its length and breadth.

9.6 Miscellaneous Exercises

- 1. ABCD is a cyclic quadrilateral in which AC and BD are its diagonals. If $\angle DBC = 55^{\circ}$ and $\angle BAC = 45^{\circ}$, find $\angle BCD$
- 2. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.
- 3. A,B and C are three points on a circle with centre O such that $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc ABC, find $\angle ADC$.
- 4. $\angle PQR = 100^{\circ}$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$.
- 5. A, B, C, D are points on a circle such that $\angle ABC = 69^{\circ}, \angle ACB = 31^{\circ}, \text{ find } \angle BDC.$
- 6. A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle BEC = 130^{\circ}$ and $\angle ECD = 20^{\circ}$. Find $\angle BAC$.
- 7. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^{\circ}$, $\angle BAC$ is 30° , find $\angle BCD$. Further, if AB = BC, find $\angle ECD$.
- 8. Two chords *AB* and *CD* of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between *AB* and *CD* is 6 cm, find the radius of the circle.
- 9. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
- 10. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Find the length of PQ.
- 11. *PQ* is a chord of length 8 cm of a circle of radius 5 cm. The tangents at *P* and *Q* intersect at a point *T*. Find the length *TP*.
- 12. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. Find the radius of the circle is
- 13. If TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then find $\angle PTQ$

- 14. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80 $^{\circ}$, then find $\angle POA$
- 15. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.
- 16. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
- 17. A $\triangle ABC$ is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively. Find the sides AB and AC.
- 18. The cost of fencing a circular field at the rate of ₹24 per metre is ₹5280. The field is to be ploughed at the rate of ₹0.50 per m^2 . Find the cost of ploughing the field.
- 19. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.
- 20. The radii of two circles are 8 cm and 6 cm respectively. Find the radius of the circle having area equal to the sum of the areas of the two circles.
- 21. A circular archery target is marked with its five scoring regions from the centre outwards as Gold, Red, Blue, Black and White. The diameter of the region representing Gold score is 21 cm and each of the other bands is 10.5 cm wide. Find the area of each of the five scoring regions.
- 22. The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour?
- 23. Find the area of the sector of a circle with radius 4 cm and of angle 30 $^{\circ}$. Also, find the area of the corresponding major sector.
- 24. Find the area of the segment AYB, if radius of the circle is 21 cm and $\angle AOB = 120^{\circ}$.
- 25. Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60 $^{\circ}$.
- 26. Find the area of a quadrant of a circle whose circumference is 22 cm. 3. The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 5 minutes.
- 27. A chord of a circle of radius 10 cm subtends a right angle at the centre. Find the area of the

- corresponding:
- a) minor segment
- b) major sector.
- 28. In a circle of radius 21 cm, an arc subtends an angle of 60 $^{\circ}$ at the centre. Find:
 - a) the length of the arc
 - b) area of the sector formed by the arc
 - c) area of the segment formed by the corresponding chord
- 29. A chord of a circle of radius 15 cm subtends an angle of 60 ° at the centre. Find the areas of the corresponding minor and major segments of the circle.
- 30. A chord of a circle of radius 12 cm subtends an angle of 120 ° at the centre. Find the area of the corresponding segment of the circle.
- 31. A horse is tied to a peg at one corner of a square shaped grass field of side 15 m by means of a 5 m long rope. Find
 - a) the area of that part of the field in which the horse can graze.
 - b) the increase in the grazing area if the rope were 10 m long instead of 5 m.
- 32. A brooch is made with silver wire in the form of a circle with diameter 35 mm. The wire is also used in making 5 diameters which divide the circle into 10 equal sectors. Find:
 - a) the total length of the silver wire required.
 - b) the area of each sector of the brooch
- 33. An umbrella has 8 ribs which are equally spaced. Assuming umbrella to be a flat circle of radius 45 cm, find the area between the two consecutive ribs of the umbrella.
- 34. A car has two wipers which do not overlap. Each wiper has a blade of length 25 cm sweeping through an angle of 115 °. Find the total area cleaned at each sweep of the blades.
- 35. To warn ships for underwater rocks, a light-house spreads a red coloured light over a sector of angle 80 $^{\circ}$ to a distance of 16.5 km. Find the area of the sea over which the ships are warned.
- 36. A round table cover has six equal designs. If the radius of the cover is 28 cm, find the cost of making the designs at the rate of $\mathbf{0.35}$ per cm^2 .
- 37. Two circular flower beds are located on opposite sides of a square lawn *ABCD* of side 56

- m. If the centre Of each circular flower bed is the point of intersection O of the diagonals of the square lawn, find the sum of the areas of the lawn and the flower beds.
- 38. Four circles are inscribed inside a square *ABCD* of side 14 cm such that each one touches exernally two adjacent sides of the square and two other circles. Find the region between the circles and the square.
- 39. *ABCD* is a square of side 10 cm and semicircles are drawn with each side of the square as diameter. Find the area enclosed by the circular arcs.
- 40. P is a point on the semi-circle formed with diameter QR. Find the area between the semi-circle and $\triangle PQR$ if PQ = 24 cm, PR = 7 cm and O is the centre Of the circle.
- 41. AC and BD are two arcs on concentric circles with radii 14 cm and 7 cm respectively, such that $\angle AOC = 40^{\circ}$. Find the area of the region ABDC.
- 42. Find the area between a square *ABCD* of side 14cm and the semi circles *APD* and *BPC*.
- 43. Find the area of the region enclosed by a circular arc of radius 6 cm drawn with vertex *O* of an equilateral triangle OAB of side 12 cm as centre.
- 44. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut. Find the area of the remaining portion of the square.
- 45. In a circular table cover of radius 32 cm, a design is formed leaving an equilateral $\triangle ABC$ in the middle. Find the area of the design.
- 46. *ABCD* is a square of side 14 cm. With centres A, B, C and D, four circles are drawn such that each circle touches externally two of the remaining three circles. Find the area within the square that lies outside the circles.
- 47. The left and right ends of a racing track are semicircular. The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If the track is 10 m wide, find:
 - a) the distance around the track along its inner edge
 - b) the area of the track.
- 48. AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD

- is the diameter of a smaller circle inside. If *OA* = 7 cm, find the area of the smaller circle.
- 49. The area of an equilateral $\triangle ABC$ is 17320.5 cm^2 . With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle. Find the area of region within the triangle but outside the circles.
- 50. On a square handkerchief, nine circular designs are inscribed touching each other, each of radius 7 cm. Find the area of the remaining portion of the handkerchief.
- 51. *OACB* is a quadrant of a circle with centre *O* and radius 3.5 cm. *D* is a point on *OA*. If OD = 2 cm, find the area of the
 - a) quadrant *OACB*,
 - b) the region between the quadrant and $\triangle OBD$.
- 52. A square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area between the square and the quadrant.
- 53. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O. If $\angle AOB = 30^{\circ}$, find the area of the region ABCD.
- 54. ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with *BC* as diameter. Find the area of the crescent formed.
- 55. Find the area common between the two quadrants of circles of radius 8 cm each if the centres of the circles lie on opposite sides of a square.
- 56. Find the area of the sector of a circle with radius 4 cm and of angle 30°. Also, find the area of the corresponding major sector.
- 57. A pole has to be erected at a point on the boundary of a circular park of diameter 13 metres in such a way that the differences of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 metres. Is it possible to do so? If yes, at what distances from the two gates should the pole be erected?
- 58. Draw a triangle whose sides are 8cm and 11cm and the perimeter is 32 cm and find its area.
- 59. A triangular park *ABC* has sides 120m, 80m and 50m. A gardener Dhania has to put a fence all around it and also plant grass inside. Draw this park. How much area does she need to plant? Find the cost of fencing it with barbed wire at the rate of ₹20 per metre leaving a space

- 3m wide for a gate on one side.
- 60. The sides of a triangular plot are in the ratio of 3:5:7 and its perimeter is 300 m. Draw the plot and find its area.
- 61. A tower stands vertically on the ground. From a point on the ground, which is 15m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.
- 62. An electrician has to repair an electric fault pole of height 5m. She needs to reach a point 1.3m below the top of the pole to undertake the repair work. What should be the length of the ladder that she should use which, when inclined at an angle of 60° to the horizontal, would enable her to reach the required position? Also, how far from the foot of the pole should she place the foot of the ladder?
- 63. An observer 1.5m tall is 28.5m away from a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?
- 64. From a point **P** on the ground the angle of elevation of the top of a 10m tall building is 30°. A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from **P** is 45°. Find the length of the flagstaff and the distance of the building from the point **P**.
- 65. The shadow of a tower standing on a level ground is found to be 40m longer when the Sun's altitude is 30° than when it is 60°. Find the height of the tower.
- 66. The angles of depression of the top and the bottom of an 8m tall building from the top of a multi-storeyed building are 30° and 45° respectively. Find the height of the multi-storeyed building and the distance between the two buildings.
- 67. A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side 'a'. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm, what will be the area of the signal board?
- 68. The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m. The advertisements yield an earning of ₹5000 per m^2 per year. A company hired one o its walls for 3 months. How much rent did it pay?

- 69. There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN". If the sides of the wall are 15 m, 11 m and 6 m, find the area painted in colour.
- 70. Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.
- 71. Sides of a triangle are in the ratio of 12:17: 25 and its perimeter is 540cm. Find its area.
- 72. An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.
- 73. A girl walks 4km west, then she walks 3km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.
- 74. A circus artist is climbing a 20m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30°.
- 75. A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle of 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8m. Find the height of the tree.
- 76. A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5m, and is inclined at an angle of 30° to the ground, whereas for elder children she wants to have a steep slide at a height of 3m, and inclined at an angle of 60° to the ground. What should be the length of the slide in each case?
- 77. The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower, is 30°. Find the height of the tower.
- 78. A kite is flying at a height of 60m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
- 79. A 1.5m tall boy is standing at some distance from a 30m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards

- the building. Find the distance he walked towards the building.
- 80. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.
- 81. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.
- 82. The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building.
- 83. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.
- 84. A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joing this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.
- 85. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
- 86. As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.
- 87. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance

- travelled by the balloon during the interval.
- 88. A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car at an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.
- 89. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.
- 90. E and F are points on the sides PQ and PR respectively of a $\triangle PQR$. For each of the following cases, state whether $EF \parallel QR$
 - a) PE = 3.9cm, EQ = 3cm, PF = 3.6cm and FR = 2.4cm
 - b) PE = 4cm, QE = 4.5cm, PF = 8cm and RF = 9cm
 - c) PQ = 1.28cm, PR = 2.56cm, PE = 0.18cmand PF = 0.36cm
- 91. A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
- 92. $\triangle ODC \sim \triangle OBA$, $\angle BOC = 125^{\circ}$ and $\angle CDO = 70^{\circ}$. Find $\angle DOC$, $\angle DCO$ and $\angle OAB$.
- 93. Nazima is fly fishing in a stream. The tip of her fishing rod is 1.8 m above the surface of the water and the fly at the end of the string rests on the water 3.6 m away and 2.4 m from a point directly under the tip of the rod. Assuming that her string (from the tip of her rod to the fly) is taut, how much string does she have out? If she pulls in the string at the rate of 5 cm per second, what will be the horizontal distance of the fly from her after 12 seconds?
- 94. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
- 95. Let $\triangle ABC \sim \triangle DEF$ and their areas be, respectively, 64 cm^2 and 121 cm^2 . If EF = 15.4cm, find BC.
- 96. A ladder is placed against a wall such that its foot is at a distance of 2.5 m from the wall and its top reaches a window 6 m above the

- ground. Find the length of the ladder.
- 97. Sides of triangles are given below. Determine a right triangle, write the length of its hypotenuse.
 - a) 7 cm, 24 cm, 25 cm
 - b) 3 cm, 8 cm, 6 cm
 - c) 50 cm, 80 cm, 100 cm
 - d) 13 cm, 12 cm, 5 cm
- 98. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
- 99. A guy wire attached to a vertical pole of height 18 m is 24 m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut?
- 100. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same time, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. How far apart will be the two planes after $1\frac{1}{2}$ hours?
- 101. Two poles of heights 6 m and 11 m stand on a plane ground. If the distance between the feet of the poles is 12 m, find the distance between their tops.
- 102. In $\triangle ABC$, $AB = 6\sqrt{3}cm$, AC = 12cm and BC = 12cm6*cm*. Find the angle *B*.
- 103. A park, in the shape of a quadrilateral ABCD, has $\angle C = 90^{\circ}, AB = 9m, BC = 12m, CD = 5m$ and AD = 8m. How much area does it occupy? 2. Find the area of a quadrilateral ABCD in which AB = 3cm, BC = 4cm, CD = 4cm, DA =5cm and AC = 5cm.
- 104. A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.
- 105. A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?
- 106. A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The nonparallel sides are 14 m and 13 m. Find the area of the field.
- 107. ABCD is a parallelogram, $AE \perp DC$ and $CF \perp$

- AD. If AB = 16cm, AE = 8 cm and CF = 10cm, find AD.
- which of them are right triangles. In case of 108. Kamla has a triangular field with sides 240 m, 200 m, 360 m, where she grew wheat. In another triangular field with sides 240 m, 320 m, 400 m adjacent to the previous field, she wanted to grow potatoes and onions. She divided the field in two parts by joining the mid-point of the longest side to the opposite vertex and grew patatoes in one part and onions in the other part. Draw the figure for this problem. How much area (in hectares) has been used for wheat, potatoes and onions? (1 hectare $= 10000 m^2$).
 - 109. Students of a school staged a rally for cleanliness campaign. They walked through the lanes in two groups. One group walked through the lanes AB, BC and CA; while the other through AC, CD and DA. Then they cleaned the area enclosed within their lanes. If AB = 9 m, BC = 40 m, CD = 15 m, DA = 28 m and $\angle B = 90^{\circ}$, which group cleaned more area and by how much? Draw the corresponding figure. Find the total area cleaned by the students (neglecting the width of the lanes).
 - 110. Sanya has a piece of land which is in the shape of a rhombus. She wants her one daughter and one son to work on the land and produce different crops. She divided the land in two equal parts. If the perimeter of the land is 400 m and one of the diagonals is 160 m, how much area each of them will get for their crops? Draw the rhombus.
 - 111. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6m each, what is the distance between Reshma and Mandip?
 - 112. A circular park of radius 20m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.