CH1 \ Time Complexity

時間複雜度

考題重點(目錄)

- \ Asymptotic Notation
 - 1.定義&特性
- 二、比較(2個、排序)
 - 1. 定義法
 - 2. lim 法
 - 3. log 法
- 三、計算

1. $Hn = \Theta(\lg n)$

 $//\lg n = \log_2 n$

2. $\log(n!) = \Theta(n \log n)$

3. $(\log_a n)^b = o(n^k), k>0$

//little-o

Asymptotic Notation

一、目的

當 Input size 變大時,執行時間以何種趨勢成長

- ∴ Asymptotic Notation
 - 1. f(n) = O(g(n)): f(n)的 Order $\leq g(n)$ 的 Order 存在 $c, n_0 > 0$,使得當 $n \geq n_0$ (當 Input size 夠大時)時, $f(n) \leq cg(n)$

2. $f(n)=\Omega(g(n)): f(n)$ 的 order $\geq g(n)$ 的 order \setminus 或稱:g(n)為 f(n)的 Asymptotic Lower Bound

存在 $c, n_0 > 0$,使得當 $n \ge n_0$ (當 input size 夠大時)時, $f(n) \ge cg(n)$

3. $f(n)=\Theta(g(n))$: f(n)的 Order = g(n)的 Order $^{^{\land}}$ 或稱 g(n)為 f(n)的 Asymptotic Tight Bound

存在 c_1 , c_2 , $n_0 > 0$,使得當 $n \ge n_0$ (當 Input size 夠大時)時, $c_1 g(n) \le f(n) \le c_2 g(n)$ (前一不等式表 Ω 、後一不等式表 O)

4. f(n)=o(g(n)): f(n)的 order < g(n)的 order

(def:可用lim 法)

例(94 成大): True/False

- 1. n=o(2n)
- 2. $n=o(n^2)$
- 1. False
- 2. True

比較: $n=O(2n) \Rightarrow True$; $n=O(n^2) \Rightarrow True$

5. $f(n)=\omega(g(n))$: f(n)的 order > g(n)的 order

(def:可用 lim 法)

例: True/False

- 1. $2n = \omega(n)$
- 2. $n^2 = \omega(n)$
- 1. False
- 2. True

三、若固定 g(n),則可將所有函數做以下分類:例: $g(n)=n^3$

例(99 政大): 寫出 2 個在 O(n³)中, 但不在 o(n³)的函數

 $n^3 \cdot 2n^3$

例(100 交大):

NCTU= $\Theta(n)$

 $CS=\Omega(n)$

- 1. NCTU 總是比 CS 快
- 2. 當 n≥100000..0 時,NCTU 比 CS 快
- 3. 兩者執行時間相同
- 4. 稱 CS 的時間複雜度為 Θ(n)
- 5. 以上皆非
- 1. False
- 2. False
- 3. False
- 4. False
- 5. True

四、特性

(Note:函數相加後的 order,決定於大者 => 多項式函數的 order 為最高次項)

例(98 交大):

p(n)= $\sum a_i n^i$ 是 d 次多項式,填 True/False 在以下表格:

		0	0	Ω	ω	Θ
p(n)	n ^k , k>d					
p(n)	n ^k , k <d< td=""><td></td><td></td><td></td><td></td><td></td></d<>					
p(n)	n ^k , k=d					

p(n)的 order 為 n^d

			0	0	Ω	ω	Θ
	p(n)	n^k , $k>d$	0	0			
ĺ	p(n)	n^k , $k < d$			0	0	
	p(n)	n^k , $k=d$	0		0		0

例(98 交大): 寫出最適答案: O(n²)+Θ(n²)

此為一常見的誤用: $O(n^2) + \Theta(n^2) = \Theta(n^2)$ 自 $O(n^2)$ 取一函數 f(n):自 $\Theta(n^2)$ 取一函數 g(n);f(n)+g(n)的 order 為何? $n(\wedge) + n^2(\wedge) = \Theta(n^2)$

例(100 中央): prove or disprove

2. $f(n)+g(n) = \Theta(\max\{f(n), g(n)\})$

True,用定義證:存在 c_1 =1 c_2 =1 n_0 =10 使得當 n≥10 時,滿足以下: c_1 [f(n) + g(n)] ≤ $\Theta(max\{f(n), g(n)\})$ ≤ c_2 [f(n) + g(n)]

- 2. f(n)=O(g(n))且 f(n)=O(g(n)) \Leftrightarrow f(n)=O(g(n)) //是一種常見求 Tight Bound 的方式例(95 台大): Σ $i^5=O(n^a)$, a=?
- 1. \not $i^5 = O(n^6)$ by 1,2
- 3. $\Rightarrow \sum i^5 = \Theta(n^6)$

比較

一、定義法:適用時機:型簡單、分多

例 (96 成大): True/False(10%) $n^2 + n \lg n + n/2 = O(n^8)$

True, 存在 c=10, n₀= 100, 使得當 n≥ 時, $n^2 + n \lg n + n/2 \le 10 O(n^8)$

例(91 交大): 證明以下為錯誤 $n^2 / \log n = \Theta(n^2)$

例(100 中央): prove or disprove

1. $f(n)=\Theta(g(n))$,則 h(f(n))=O(h(g(n))),其中 h()為遞增函數

False,

f(n)=2n, g(n)=n => f(n)=O(g(n)) $h(n)=2^n$ $h(f(n)) = 2^n != 2^{2n}=O(h(g(n)))$

- 二、lim 法:適用時機:型複雜,尚知如何微分,證 o,ω 時可當 def
- 1. $\lim f(n)/g(n) = 0 \Leftrightarrow f(*n) = o(g(n))$
- 2. $\lim f(n)/g(n) = 無限大 \Leftrightarrow f(*n)=w(g(n))$
- 3. $\lim_{n \to \infty} f(n)/g(n) = L \Leftrightarrow f(*n) = \Theta(g(n))$

(Note:通常搭配羅必達使用)

 $\lim f(n)/g(n) = \lim f'(n)/g'(n)$

例 : $f(n) = \log_3 4n$, 問 f(n) = 何種(g(n)) ?

 $\lim \log_3 4n/\log_4 3n = \lim (1/\log 3 * 1/n)/(1/\log 4 * 1/n) = \ln 4/\ln 3 > 0$ $\Rightarrow f(n) = \Theta(g(n))$

(Note: log n 的底只要是常數,其 order 均相同) Ex: lg n, ln n, log n, log₁₀₀ n 例(96 成大): True/False n^b = o(aⁿ), 其中 a>1, b 為任意實數

True

 $\lim_{n \to \infty} n^b / a^n = \lim_{n \to \infty} b n^{b-1} / a^n (\ln a) = \lim_{n \to \infty} b (b-1) n^{b-2} / a^n (\ln a)^2 = 0$

例(98 台大電機): True/False 對任何正數 a, b 而言: n^b = o(aⁿ)

False

反例: b=2, a=1

 $\Xi \setminus \log$ 法: 適用時機:分少的計算題(定理層次) 指數函數, n! (和 $\log(n!) = \Theta(n \lg n 搭配)$)

 $\log(f(n)) = o/\omega(\log(g(n)))$,則 $f(n) = o/\omega(g(n))$ Note : 若為 Θ 則不能使用

 $[n] : f(n)=1.1^{0.01n}, g(n)=n^{100}$

 $log(f(n)) = log(1.1^{0.01n}) = 0.01n(log 1.1) = cn$ $log(g(n)) = log(n^{100}) = 100(log n) = c log n$ 因為 log(f(n)) = o(log(g(n)))所以 f(n) = o(g(n)) $\Rightarrow f(n)$ $\not\mapsto$ order 較大

例(98 交大): 證(log n)!不是 Polynomial-Bounded

若 f(n) 是 Polynomial-Bounded ,則 $f(n) = O(n^k)$ for some k log $f(n) = O(\log n^k) = O(\log n)$ \Rightarrow 若為 Polynomial-Pounded ,則 order 小於 $\log n$ log($(\log n)!$) = $\Theta(\log n \log(\log n))$
其 order 大於 $\log n$,即 $\log((\log n)!) = \omega(\log n)$ 因此不是 Polynomial-Bounded

計算複雜度

一、如何求 Tight Bound(Θ)

[法一]: 求出 Closed Form,最高次項即為其 Tight Bound

例 : $T(n) = 1+2+...+n = n(n-1)/2 = n2/2 + n/2 = \Theta(n2)$

[法二]: 求 Upper Bound + 求 Lower Bound, 兩者一樣即為 Tight Bound 例: T(n) = Σ i⁵ = Θ(n^a), 求 a=?

證 $T(n) = O(n^6)$ 、證 $T(n) = \Omega(n^6) => T(n) = \Theta(n^6)$

\equiv Harmonic Series : Hn = 1 + 1/2 + 1/3 + ... + 1/n = $\Theta(\log n)$

- 1. 證: $Hn = O(\log n) \Leftrightarrow$ 證: 存在 $c, n_0 > 0$,使得當 $n \ge n_0$ 時, $Hn \le c \lg n$ $Hn 1 = 1/2 + 1/3 + ... + 1/n \le 積分 1/x dx = <math>\ln x \mid (n \ 1) = \ln n \ln 1 = \ln n$ => $Hn \le (\ln n) + 1 \le 2(\ln n)$ (當 $c = 2, n \ge 3$ 成立) => $Hn = O(\log n)$
- 2. 證: $Hn = \Omega(\log n) \Leftrightarrow$ 證:存在 $c, n_0 > 0$,使得當 $n \ge n_0$ 時, $Hn \ge c \lg n$ $Hn = 1 + 1/2 + ... + 1/n \ge 積分 1/x|(n 1) = ln n => Hn = <math>\Omega(\ln n)$

Note: $T(n) = 1^a + 1/2^a + 1/3^a + ... + 1/n^a = \Theta(1)$, if a = 2, 3, ... // %

$\equiv \log(n!) = \Theta(n \lg n)$

- 1. $\overrightarrow{BE}: log(n!) = O(n \lg n)$ $log(n!) = log(1*2*...*n) = log1 + log2 + ... + log n \le log n + log n + ... + log n = n log n => log(n!) = O(n \lg n)$
- 2. $\overrightarrow{BE}: log(n!) = \Omega(n \lg n)$ $log(n!) = log(1*2*...*n) = log1 + log2 + ... + log n \ge log n/2 + log (n/2+1) + ... + log n \ge log n/2 + log n/2 + ... + log n/2 = n/2 log n/2 => log(n!) = <math>\Omega(n \lg n)$

例(96 台大): $T(n)=\sum k^2(\log k)^3 = \Theta(n^d(\log n)^e)$, 求 d, e=?

 $1^2(\log 1)^3 + 2^2(\log 2)^3 + \dots + n^2(\log n)^3 \leq n * n^2(\log n)^3 => \Theta\left(n^3(\log n)^3\right)$

 $\square \setminus (\log_a n)^b = o(n^k)$

例 : $(\log n)^{100} = o(n^{0.0001})$

例(96 輔大): (log n)3= O(n1/16)

 $\lim (\log n)^3 / n^{1/16} = \lim (1/\ln 10)^{3*} (\ln n)^{2*} 1/n / 1/16 n^{15/16} = \lim a (\ln n) 2/n^{1/16}$ $= \lim a^* b^* ... / n^{1/16} = 0 \Rightarrow (\log n)^3 = o(n^{1/16}) = O(n^{1/16})$

例: 問 n^{1+e} 和 n²/log n 誰的 order 較大, 其中 0<e<1

 $n^{1+e} = n^{2-c}$, 0 < c < 1,因為 $\log n = o(n^c)$,因此 $n^{1+e} = o(n^2/\log n)$