Functional Analysis Alvise Sembenico

Homework 1

1 Exercise 1

1.1

Let's define x_0 as the limit of the net

$$\sum_{a \in A} a \to x_0. \tag{1}$$

Since it converges, it means that here exist a set $F_0 \subset A$ such that for all $F > F_0$ the following holds

$$\|\sum_{a \in F} a - x_0\| < \epsilon \tag{2}$$

for any $\epsilon > 0$. Since ϵ is arbitrary, we can choose $F'_0 > F_0$ such that for all $F > F'_0$

$$\|\sum_{a\in F} a - x_0\| < \frac{\epsilon}{|\alpha|}.$$
 (3)

Then, by properties of the norm we obtain

$$\|\alpha\| \sum_{a \in F} a - x_0 \| < \frac{\epsilon}{|\alpha|} \alpha = \epsilon$$

$$\|\alpha \sum_{a \in F} a - \alpha x_0 \| < \epsilon$$

$$\|\sum_{a \in F} \alpha a - \alpha x_0 \| < \epsilon.$$

Where in the last step we used the fact that F is finite. This proves that $\alpha \sum_{a \in A} a$ converges to $\alpha x_0 = \alpha \sum_{a \in A} a$.

1.2

The hypothesis that $\sum_{a \in A} a$ and $\sum_{b \in B} b$ implies that there exists an F_0^a and F_0^b such that for every $F^a > F_0^a$ and $F^b > F_0^b$ the following holds

$$\|\sum_{a \in F^a} a - \sum_{a \in A} a\| < \frac{\epsilon}{2} \qquad \|\sum_{b \in F^b} b - \sum_{b \in B} b\| < \frac{\epsilon}{2}.$$
 (4)

Functional Analysis Alvise Sembenico

Denote $F_0 = F_0^a \cup F_0^b$, it follows that for every $F > F_0$

$$\begin{split} \|\sum_{x \in F} x - \sum_{a \in A} a - \sum_{b \in B} b\| &= \|\sum_{x \in F \cap A} + \sum_{x \in F \cap B} x - \sum_{a \in A} a - \sum_{b \in B} b\| \\ &\leq \|\sum_{x \in F \cap A} x - \sum_{a \in A} a\| + \|\sum_{x \in F \cap B} x - \sum_{b \in B} b\| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Because ϵ was arbitrary, we conclude that $\sum_{x \in A \cup B} \to \sum_{a \in A} a + \sum_{b \in B} b$.

1.3

Let's star by proving that any converging net of positive numbers has at most a countable number of non zero elements.

Say that the net converges to M, i.e. $\sum_{a \in A} a = M < \infty$ where for every $a \in A, a > 0$. Consider now the sets $S_n = \{a \in A | a > \frac{1}{n}\}$, then

$$M \ge \sum_{a \in S_n} a \ge \sum_{a \in S_n} \frac{1}{n} = \frac{N}{n}.$$

As $M < \infty$ so is N which is the cardinality of the set S_n . It follows that

$$\#\{a \in A | a > 0\} = \#S = \# \bigcup_{n=\mathbb{N}}^{\infty} S_n \tag{5}$$

We conclude that A has at most countable number of non zero elements as countable union of finite sets.