1. A SOKASÁG EGY ISMÉRV SZERINTI VIZSGÁLATA

(1) Egy bank betétállományairól az alábbiakat tudjuk:

Összeg (ezer Ft)	betétek száma
0-250	5458
250-1000	1296
1000-5000	425
5000-10000	21

(2) A magyarországi atlétikai klubok létszámairól az alábbiakat tudjuk:

Klubok létszámai (fő)	klubok száma
-50	13
50-70	31
70-90	51
90-110	7
110-	3

(3) Egy falu gazdáinak vetésterületéről az alábbiakat tudjuk:

Vetésterület (ha)	fő
-999	24
1000-1999	42
2000-2999	15
3000-3999	13
4000-4999	5
5000-5999	2
6000-6999	2

(4) A világ nyelveiről az alábbiakat tudjuk:

a nyelvet beszélők száma (millió fő)	nyelvek száma (db)
-10	102
11-20	15
21-50	15
51-100	8
101-500	9
501-	1

(5) Egy iskola évvégi matematika jegyeiről az alábbiakat tudjuk:

érdemjegy	tanulók száma (fő)
2	252
3	154
4	110
5	40

169, 177, 170, 190, 186, 188, 176, 164, 176, 170. Számítsuk ki a móduszt, a mediánt és a kvartiliseket, továbbá készítsünk dobozábrát! Számítsuk ki a számtani átlagot, a szórásnégyzetet, a szórást. Továbbá számítsuk ki a ter-

(6) Egy osztály tanulóinak magasságai az alábbiak cm-ben: 180, 176, 159, 164,

- jedelmet, az interkvartilis terjedelmet! Értelmezzük a kapott eredményeket!
- (7) Egy osztály tanulóinak tömegei az alábbiak kg-ban: 45, 102, 49, 98, 52, 65,
 - 70, 100, 87, 73, 100, 47, 49, 101, 55, 65, 71, 75. Számítsuk ki a móduszt,
 - a mediánt és a kvartiliseket, továbbá készítsünk dobozábrát! Számítsuk ki a számtani átlagot, a szórásnégyzetet, a szórást. Továbbá számítsuk ki a ter-
- jedelmet, az interkvartilis terjedelmet! Értelmezzük a kapott eredményeket! tilis terjedelmet! Értelmezzük a kapott eredményeket!
 - (8) Egy cég alkalmazottainak fizetése az alábbiak ezer Ft-ban: 64, 98, 78, 92, 78, 92, 82, 92, 84, 91, 87, 89. Számítsuk ki a móduszt, a mediánt és a kvartiliseket, továbbá készítsünk dobozábrát! Számítsuk ki a számtani átlagot, a szórásnégyzetet, a szórást. Továbbá számítsuk ki a terjedelmet, az interkvar-

14. Számítsuk ki a móduszt, a mediánt és a kvartiliseket, továbbá készítsünk dobozábrát! Számítsuk ki a számtani átlagot, a szórásnégyzetet, a szórást. Továbbá számítsuk ki a terjedelmet, az interkvartilis terjedelmet! Értelmezzük a kapott eredményeket!

(9) Egy angol szakkör résztvevőinek életkorai az alábbiak: 16, 17, 15, 17, 14, 18,

2. Alakmutatók

(1) 20 azonos tevékenységet végző cég augusztusi árbevétele (millió Ft-ban) az alábbiak voltak: 107, 85, 92, 64, 82, 72, 58, 87, 81, 109, 69, 40, 54, 59, 73, 79, 89, 99, 96, 105. Vizsgáljuk meg a bevételek eloszlásának alakját a tanult mutatószámokkal! Értelmezzük a kapott eredményeket!

$$\left(\sum_{i=1}^{20} Y_i = 1600, \sum_{i=1}^{20} Y_i^2 = 134808\right)$$

3. Rész- és összetett viszonyszámok

(1) 1999-ben a magyar népesség háziorvosokkal való ellátottságára vonatkozó adatok az alábbiak voltak:

település	19 éves és idősebb népesség	egy háziorvosra jutó 19 éves
jellege	számának megoszlása (%)	és idősebb lakosok száma
Budapest	18,9	1474
Többi város	45,1	1608
Községek	36,0	1418

Határozzuk meg az 1 háziorvosra jutó 19 éves és idősebb lakosok számát! Határozzuk meg a 100000, 19 éves és idősebb lakosra jutó háziorvosok számát!

- (2) Egy belgyógyászati, sebészeti és ideggyógyászati szakrendelést folytató rendelőintézetben az egy betegre jutó idő a belgyógyászaton 17 perc, a sebészeten 10 perc, az ideggyógyászaton pedig 19 perc. Az összes gyógyászati idő a három terület között rendre 51%, 30%, 19% arányban oszlik meg. Számítsa ki rendelőintézeti szinten az egy betegre jutó átlagos időt!
- (3) Budapesten 2000-ben két gazdasági ágazatban oktatás és pénzügyi tevékenység a foglalkoztatottak néhány jellemző adata:

	oktatás		pénz	zügy
foglalkozás	kifizetett összbér	havi bruttó	foglalkoztatottak	havi bruttó
	megoszlása (%)	átlagkereset (Ft)	megoszlása (%)	átlagkereset (Ft)
fizikai	9,5	51971	1,7	104367
szellemi	90,5	99766	98,3	205973

Határozzuk meg, hogy mennyivel nagyobb a havi bruttó átlagkereset a pénzügyi szektorban, mint az oktatási szektorban!

(4) 2001-ben az 1000 lakosra jutó televízió-előfizetések száma Budapesten 209, míg vidéken 272 volt. A 2001. február 1-jei népszámlálás adatai szerint a népesség 17,4%-a budapesti volt. Számítsa ki országos szinten az 1000 lakosra jutó

televízió-előfizetések számát!

4. Standardizálás

(1) Egy szerelőüzemben dolgozókról egy 2001. márciusi felmérés alapján az alábbiakat tudjuk:

állomány	1998		1999)
	átlagbér (Ft/fő)	létszám (fő)	átlagbér (Ft/fő)	létszám (fő)
szakmunkás	43300	110	43700	117
betanított munkás	38050	40	39900	57
segédmunkás	32400	51	32800	146
összesen	39490	201	38050	320

Elemezze standardizálással a szerelőüzemben dolgozók átlagfizetésének alakulását és az arra ható tényezőket!

(2) Az egyik egyetem két büféjében 2002 májusában 20 napon át figyelték az ott vásárlók reggelizési szokásait. A megfigyelés néhány eredménye:

vásárlók	I. büfé		II.	büfé
	vásárlók száma	átlagos vásárlás	vásárlók száma	átlagos vásárlás
	(fő)	$(\mathrm{Ft/f}\Ho)$	(fő)	$(\mathrm{Ft/f} \Hota)$
hallgató	1400	260	1500	215
oktató	300	280	800	235
egyéb	300	310	700	280

Hasonlítsuk össze számszerűen és szövegesen a két büfében reggelizők átlagos költekezését és a különbségre ható tényezőket!

(3) A gázzal ellátott háztartások száma 1990 és 2001 között dinamikusan nőtt Magyarországon, különösen vidéken. Szintén növekedett az egy háztartásra jutó havi gázfogyasztás köbméterben:

terület	Gázzal ellátott		Egy háztartásra jutó	
	háztartások száma		havi fogyasztás $(m^3/\text{háztart})$	
	1990 2001		1990	2001
Budapest	636	731	79,8	84,0
vidék	994	2167	108,5	117,2
összesen	1630	2898	97,3	108,8

Elemezze a standardizálás segítségével az egy háztartásra jutó havi gázfogyasztás alakulását és az arra ható tényezőket!

(4) Egy budai zöldséges standon háromféle minőségű burgonyát árulnak. 2002. januári és áprilisi adatai a következőek:

típus	eladott mennyiség (kg)		Egységa	ár (Ft/kg)
	január	április	január	április
gyönyörű	200	200	160	200
szerényebb	100	80	140	160
fagyott	100	20	120	125
összesen	400	300		

Elemezze a burgonya átalgárának változását, és mutassa ki az azt kialakító tényezők számszerű hatását!

(5) Egy állami gazdaság két üzemegységében termel szőlőt. A termelési adatokat a következő táblázat tartalmazza:

szőlőfajta	termőterület (ha)		Termésátlagok különbsége
			(III.) (kg/ha)
	I. üzem	II. üzem	
csemegeszőlő	250	360	1700
borszőlő	250	240	1200
összesen	500	600	1360

Elemezze standardizálással az üzemegységek szőlő termésátlagának különbözőségét!

(6) Egy kereskedelmi vállalat két osztályára vonatkozóan ismert az egy eladóra jutó forgalom és a forgalmom megoszlása:

osztály	a dolgozók megoszlása	egy eladóra jutó forgalom		
	2002-ben (%)	(ezer Ft)		
		2000	2002	
konfekció	58,0	3382	4529	
rövidáru	42,0	3151	4295	
összesen	100,0	3209		

Elemezze az egy eladóra jutó forgalom változását és az arra ható tényezőket!

(7) Egy állami gazdaság gabonatermelési adatairól az alábbiakat tudjuk:

gabona fajta	a termés mennyiségének	a termésátlag (t/ha)
	%-os megoszlása 2007-ben	változása (2005=100%)
búza	50	150
árpa	30	120
rozs	20	135
összesen	100	140

Elemezze standardizálással az átlagos termésátlag (t/ha) változását és az arra ható tényezőket!

5. Indexszámítás

(1) Egy iskolában az alma és a narancs fogyasztását vizsgálták 1990 és 1993-ban. A fogyasztott mennyiségről és az aktuális árakról az alábbi adatokat tudjuk:

gyümölcs	1 főre	jutó fogyasztott	egys	égár
	m	ennyiség (kg)	(Ft_{i})	/kg)
	1990	1993	1990	1993
alma	30,8	31,5	23,7	40,7
narancs	5,4	6,8	73	83,1

Jellemezze a gyümölcsök fogyasztásában bekövetkezett mennyiségi-, ár- és értékváltozásokat és magyarázza meg azokat!

(2) Kovács Béla egy multinacionális piackutató cég kérésére 1994-ben, majd 1995-ben ugyanabban a negyedévben írta a budapesti tömegközlekedési kiadásait:

közlekedési eszköz	1994		1995	
eszkoz	ár (Ft/utazás)	utazások száma	ár (Ft/utazás)	utazások száma
villamos	110	124	130	159
busz	150	111	200	87
HÉV	140	17	140	52

Számítsa ki az összes érték-, ár- és volumenindexet és mutassa be a különbségek okát!

(3) Egy boltban háromféle cigarettát árusítanak. A cigaretták összes forgalma folyóáron 2000-ről 2001-re 20%-kal emelkedett. A cigarettákra vonatkozóan a következő adatokat ismerjük:

fajta	a forgalom értékének		árak alakulása (%)
	me	goszlása (%)	
	2000	2001	2001/2000
Sopiane	60	50	105
Milde Sorte	20	30	107
Helikon	20	20	115

Számítsa ki az árindexet bázis- és tárgyidőszaki súlyozással is! Állapítsa meg a forgalom Fisher-féle volumenindexét!

(4) Egy vállalat három termékére vonatkozó adatok:

termék	termelési é	volumenváltozás	
	folyóáron	bázisévi áron	bázisév=100%
A	500	600	110
В	600	500	115
С	900	800	100
Összesen	2000	1900	

Határozza meg a termelés értékindexét! Számítsa ki a mindkét súlyozású árés volumenindexeket!

(5) Egy vállalat három termékforgalmazásával foglalkozik. A forgalomról az alábbi adatokat ismerjük:

termék	a forgalom értékének	a forgalom értékének	az árak
	megoszlása a tárgyévben	változása	változása
	(ezer Ft)	(bázisév=100%)	$(bázisév{=}100\%)$
A	4500	140	136
В	2000	130	140
С	3500	146	120
Összesen	10000		

Számítsa ki a Laspeyres és a Paasche-féle indexeket és a Fisher-féle indexeket!

(6) Egy söröző forgalmáról 2005-beli és 2006-beli adatok alapján az az alábbiakat tudjuk:

fajta	árbevétel 2006-ban	eladási ár változása	volumenváltozás
	(millió Ft)	(bázisév=100%)	(bázisév=100%)
világos	80	108	110
barna	60	102	90
alkoholmentes	60	120	80

Számítsa ki a Laspeyres és a Paasche-féle indexeket és a Fisher-féle indexeket!

(7) Egy áruházban a teljes bevétel a bázsiévről a tárgyévre 5%-kal csökkent. Az áruház eladásairól még az alábbiakat tudjuk:

osztály	árbevétel bázisévben	volumenváltozás
	(millió Ft)	(bázisév=100%)
élelmiszer	40	+10%
ruházat	80	-10%
vegyes iparcikk	80	-20%

Számítsa ki a Laspeyres és a Paasche-féle indexeket és a Fisher-féle indexeket!

6. Asszociáció

(1) A 2000-ben kiadott ifjúsági és gyermekirodalmi művek száma a szerző állampolgársága alapján:

	0-6 éves	6-14 éves	14 éves felett	összesen
magyar	182	73	16	271
külföldi	173	92	10	275
összesen	355	165	26	546

Vizsgálja meg, hogy van-e összefüggés a szerzők állampolgársága és az ajánlott életkor között!

(2) Egy kereskedelmi cég munkavállalóinak megoszlása a nem ismérv és a betöltött munkakör alapján:

	felsővezető	középvezető	beosztott	összesen
nő	4	20	176	200
férfi	6	30	264	300
összesen	10	50	440	500

Vizsgálja meg, hogy van-e összefüggés a dolgozók beosztása és nemük között!

(3) Az egyik intézményből az elmúlt évben 200 ember mondott fel vagy bocsátottak el. Az adatok nem és felmondási ok szerint:

	nyugdíjba	jobb munkahelyet	alkalmatlannak	összesen
	menetel	talált	tartották	
férfi	60	70	10	140
nő	40	10	10	60
összesen	100	80	20	200

Vizsgálja meg, hogy van-e összefüggés a nem és a felmondási okok között!

7. Vegyes kapcsolat

(1) Egy összeszerelőműhelyben 4 betanított munkás és 6 szakmunkás dolgozik. A betanított munkás óránként 2, 3, 3, 4 darabot, míg a szakmunkások óránként 7, 7, 8, 8, 8, 10 darabot szerelnek össze. Állapítsuk meg, hogy milyen összefüggés van a munkások képesítése és a hatékonyságuk között!

(2) Egy állásinterjún a pályázókkal egy 100 pontos tesztet írattak. Az elért eredmények nem szerint csoportosítva:

 $\underline{\text{f\'erfiak:}}\ 85,\ 66,\ 50,\ 78,\ 51,\ 72,\ 76,\ 64,\ 65,\ 95,\ 42,\ 58,\ 92,\ 81,\ 69,\ 89,\ 74,\ 72,\ 59$

 $\underline{\text{n\"ok:}}\ 84,\ 58,\ 80,\ 82,\ 80,\ 97,\ 59,\ 91,\ 76,\ 80,\ 96,\ 85,\ 77$

Vizsgáljuk meg, hogy mennyiben befolyásolja a nem az elért eredményt!

(3) A 2000-ben épített lakásokról az alábbiakat tudjuk:

elhelyezkedés	épített lakások	átlagos alapterület	alapterület
	száma	(m^2)	szórása (m^2)
Budapest	3000	106	35
többi város	10000	98	30
községek	9000	100	20
összesen	22000		

Vizsgáljuk meg, hogy van-e összefüggés van a lakások elhelyezkedése és alapterületük között!

8. Lineáris korreláció

(1) Egy munkacsoportban öt ember kezdőfizetése és jelenlegi fizetése:

	kezdő fizetés (ezer Ft)	jelenlegi fizetés (ezer Ft)
1.	60	70
2.	65	90
3.	90	110
4.	150	170
5.	100	110

Vizsgálja meg a kezdő fizetés és a jelenlegi fizetés közötti korrelációs kapcsolatot!

(2) Egy rovarpopulációt vizsgáltak az alapján, hogy hány nap után hány egyed marad életben:

megfigyelés sorszáma	eltelt napok száma	élő egyedek száma
1.	18	55
2.	19	46
3.	32	24
4.	39	11

Vizsgálja meg az ismérvek közötti korrelációs kapcsolatot!

(3) Egy szigorlaton az egyik bizottságnál az alábbi eredmények születtek:

hallgató	statisztika	matematika
sorszáma	pontszám	pontszám
1.	27	25
2.	18	6
3.	29	9
4.	43	33
5.	32	20
6.	38	25
7.	18	26
8.	25	18
9.	43	28
10.	20	20
11.	31	18
12.	22	8
13.	17	35
14.	35	28
15.	37	31

Vizsgálja meg a két tárgy eredményei közötti korrelációs kapcsolat szorosságát!

9. Rangkorreláció

(1) Hét embernél felmérték, hogy mennyit költenek egy nyári hónapban sörre és fagylaltra. A kapott eredményeket az alábbi táblázat tartalmazza:

sorszám	sörre költött	fagylaltra költött
	pénz (Ft)	pénz (Ft)
1.	6500	1000
2.	6000	1200
3.	4000	2000
4.	3000	1800
5.	4500	1800
6.	5000	1400
7.	5500	1600

Vizsgálja meg a sörre és a fagylaltra költött pénz közötti rangkorrelációs kapcsolatot!

(2) Egy ötfős csoport tanulói angol és német nyelvet tanulnak. A tanáraik rangsorolták őket:

tanuló	angol nyelv	német nyelv
Anna	1	2
Béla	3	1
Cecília	2	4
Dénes	4	3
Elemér	5	5
Ferenc	6	6

Vizsgálja meg a két tanár által megadott rangsor közötti kapcsolatot!

(3) Egy lóversenyen 10 ló indult. A verseny előtti bukmékerirodai sorrend és a végeredmény látható a következő táblázatban:

ló sorszáma	verseny előtti esélyek	végeredmény
1.	2	1
2.	1	2
3.	3	3
4.	7	4
5.	5	5
6.	8	6
7.	4	7
8.	6	8
9.	9	9
10.	10	10

Határozza meg és értelmezze a két rangsor közötti kapcsolat szorosságát!

10. Statisztikai táblázatok használata

(1) Legyen $\xi \sim \mathcal{N}(0,1)$ valószínűségi változó. Számolja ki az alábbi valószínűségeket:

- a) $P(\xi < 0, 47)$
- b) $P(\xi < 2,06)$
- c) $P(\xi < -2, 2)$
- d) $P(\xi < -1, 83)$
- e) $P(\xi > 1, 24)$
- f) $P(\xi > -3, 25)$
- g) $P(1,21 < \xi < 1,87)$
- h) $P(2, 17 < \xi < 2, 19)$

- (2) Legyen $\xi \sim \mathcal{N}(0,1)$ valószínűségi változó. Oldja meg az alábbi egyenleteket:
 - a) $P(\xi < x) = 0,975$
 - b) $P(\xi < x) = 0.8$
 - c) $P(\xi < x) = 0,22$
- (3) Legyen $\eta \sim \mathcal{N}(10,25)$ valószínűségi változó. Számolja ki az alábbi valószínűségeket, illetve oldja meg az egyenleteket:
 - a) $P(\eta < 8)$
 - c) $P(6 < \eta < 13)$

b) $P(\eta > 15)$

- d) $P(\eta < x) = 0,75$
- e) $P(\eta < x) = 0.991$
- f) $P(\eta < x) = 0.31$
 - $x_j = 0, 0$

- (4) Oldja meg az alábbi egyenleteket:
- a) $\mathsf{P}(\xi < x) = 0, 9$, ha $\xi \sim t(7)$ valószínűségi változó
 - b) $P(\xi < x) = 0,99$, ha $\xi \sim t(13)$ valószínűségi változó c) $P(\xi < x) = 0,05$, ha $\xi \sim t(9)$ valószínűségi változó
- (5) Oldja meg az alábbi egyenleteket:
 - a) $P(\xi < x) = 0, 9$, ha $\xi \sim \chi^2(7)$ valószínűségi változó
 - b) $P(\xi < x) = 0.99$, ha $\xi \sim \chi^2(13)$ valószínűségi változó
 - c) $P(\xi < x) = 0.05$, ha $\xi \sim \chi^2(9)$ valószínűségi változó

11. Pontbecslés - momentumok módszere

- (1) 100 embert kérdeztek meg a fizetésükről, és azt kapták, hogy átlagfizetésük 150000 Ft, fizetésük szórása pedig 30000 Ft. Legyen a fizetések eloszlása:
 - a) exponenciális eloszlású valószínűségi változó
 - b) egyenletes eloszlású valószínűségi változó
 - c) normális eloszlású valószínűségi változó

Számolja ki mindhárom esetben, hogy:

Mekkora a hányada azoknak, akik 160000 Ft felett keresnek? Mennyit keres a felső 10%?

12. Intervallumbecslés a várható értékre

(1) Azonnal oldódó kávékivonatot automata tölti az üvegekbe. A gép pontosságának megállapítására 16-elemű FAE mintát vettek és a töltött tömegek (g) az alábbiak voltak:

$$55, 54, 54, 56, 57, 56, 55, 57, 54, 56, 55, 54, 57, 54, 56, 50$$

Adjunk 95%-os megbízhatósággal intervallumbecslést a várható átlagos töltőtömegre, ha

- a) a gép által töltött tömeg normális eloszlású valószínűségi változó és ismert, hogy a szórás 1,5 g.
 - b) a gép által töltött tömeg normális eloszlású valószínűségi változó.
 - c) a gép által töltött tömeg szórása 1,5 g.

(2) Egy konzervgyárban az adagoló automatának 500 g tömegű anyagot kell dobozokba töltenie. A töltött tömeget normális eloszlású valószínűségi változónak tekintjük és ismert, hogy a szórás 8g. 9-elemű FAE mintát vettünk és a tömegek (g):

483, 502, 498, 496, 502, 494, 491, 505, 486

a) Adjunk intervallumbecslést a várható töltött tömegre $98,\!8\%$ -os megbízhatósággal!

b) Mekkora mintát kell vennünk, hogy ugyanilyen megbízhatósággal, de fele ilyen hosszú intervallumot állítsunk elő?

(3) Egy gép 1000 g-os konzerveket tölt. A töltőtömeg ellenőrzésére 9-elemű véletlen FAE mintát vettek és a töltőtömeg normális eloszlásúnak feltételezett. A minta értékei (g):

992, 1001, 995, 1000, 998, 1004, 999, 1002, 1000

Adjunk intervallumbecslést 98,8%-os megbízhatósággal a várható töltött tömegre!

(4) Egy gép azonos nagyságú 20 mm átmérőjű alkatrészeket gyárt. Az átmérőre vett 10-elemű minta (mm):

18, 21, 22, 21, 20, 17, 22, 23, 19, 21

A szórás a korábbi vizsgálatok alapján 3 mm.

a) Adjunk intervallumbecslést a várható értékre 99%-os megbízhatósággal!

b) Mekkora mintát kell venni, hogy harmad ilyen hosszú intervallumot kapjunk?

(5) Villanyégők vizsgálatánál egy adott tételből 15 darabnak mérték meg az égési időtartamát, mely közelítőleg normális eloszlású volt. A mintaátlagra 1200

Adjunk 99%-os megbízhatóságú konfidenciaintervallumot az égők várható élet-

óra, a korrigált tapasztalati szórásra 186 óra adódott.

tartamára!

13. Intervallumbecslés a szórásra (szórásnégyzetre)

(1) Egy ingatlaniroda 10 napi ügyfeleinek száma a következő volt:

218, 212, 214, 215, 217, 214, 213, 210, 221, 214

Feltéve, hogy az ügyfelek eloszlása normális eloszlást követ, adjunk 95%-os konfidenciaintervallumot a szórásra!

Feltéve, hogy az átmérő normális eloszlást követ, készítsünk 90%-os megbízhatósággal

19, 18, 21, 22, 21, 20, 17, 22, 23, 19, 21, 22

(2) Egy gép azonos nagyságú 20 mm átmérőjű alkatrészeket gyárt. Az átmérőre

vett 12-elemű minta (mm):

intervallumbecslést az átmérő szórására!

eloszlást követ!

14. Intervallumbecslés a sokasági arányra

(1) Egy szállítmányból véletlenszerűen kiválasztottunk 100 darabot és 5 darab selejtet találtunk. Adjunk 90%-os megbízhatóságú konfidenciaintervallumot a selejt termékek arányára!

(2) Egy állatpopulációban a mutáns egyedek hányada ismeretlen. Egy 2500 állatból álló mintában 1525 egyed volt nem mutáns. Adjunk 99%-os biztonsági szinten

konfidenciaintervallumot a mutáns egyedek hányadára!

(3) A népszavazási kezdeményezéseket 100000 aláírás alapján tekintik érvényesnek.

Egy alkalommal 140000 aláírást gyűjtöttek össze. A hitelességet mintavételes

technikával ellenőrzik. 3000-elemű FAE-minta alapján a hiteles aláírások

aránya 70% volt. Adjunk 99%-os megbízhatóságú intervallumbecslést az érvé-

nyes aláírások arányára! Ez alapján érvényesnek tekinthető-e a kezdeményezés?

(1) Azt vizsgálták, hogy egy adott kezelés növeli-e a testsúlyt. Kiválasztottak 12 kísérleti állatot, amelyeken alkalmazták a kezelést, további 10-en pedig nem alkalmazták. Az állatok súlyai (kg-ban):

<u>kezeltek:</u> 53, 59, 63, 67, 60, 57, 73, 65, 58, 68, 62, 71

nem kezeltek: 61, 52, 47, 51, 58, 64, 60, 55, 49, 53

Adjunk 99%-os megbízhatósági szintű konfidenciaintervallumot arra, hogy mennyivel nehezebbek a kezelt állatok a nem kezeltekhez képest, ha

- a) feltételezzük, hogy a kezeltek, illetve a nem kezeltek körében a testsúly normális eloszlású valószínűségi változó 35, illetve 25 szórásnégyzettel.
- b) feltételezzük, hogy a két csoportban a testsúly azonos (ismeretlen) szórásnégyzetű normális eloszlású valószínűségi változó.

(2) Egy óriásvállalatnál 1990-ben 100 embert, 2000-ben 130 embert kérdeztek meg, hogy mennyi a fizetésük. Tudjuk, hogy a fizetések normális eloszlásúak. 1990-ben a mintából számított átlagfizetés 120 ezer Ft volt, míg 2000-ben 140 ezer Ft. Adjunk 95%-os megbízhatósággal konfidenciaintervallumot a vállalat

átlagfizetésének növekedésére, ha

- a) a KSH adatati alapján tudjuk, hogy 1990-ben a fizetések szórása 20 ezer Ft volt, 2000-ben pedig 25 ezer Ft.
- b) a mintából számolva a fizetések szórása 1990-ben 23 ezer Ft, míg 2000-ben 27 ezer Ft volt.

(3) A pincérek láthatatlan jövedelmének becslése céljából 10 pincért választottak ki. A pincérek bevallott borravalója és - a vendégkör véleménye alapján - tényleges borravalójuk találhatóak az alábbi táblázatban:

sorszám	bevallott borravaló	tényleges borravaló		
	$(\mathrm{Ft/h\acute{o}})$	$(\mathrm{Ft/h\acute{o}})$		
1.	4000	9000		
2.	2000	5300		
3.	3500	6000		
4.	5000	9800		
5.	1800	4300		
6.	6000	10100		
7.	2800	5900		
8.	1500	4200		
9.	3900	9400		
10.	4400	10500		

Feltételezve, hogy a tényleges és a bevallott borravaló is normális eloszlást követ, becsülje meg 95%-os biztonsággal, hogy átlagosan mekkora borravalót nem vallanak be a pincérek!

	\sim	//	, ,	,	,	, ,
16.	CSEBISEV-EGYI	ENLOTLE	NSEG ES	CENTRALIS	HATARELOS	ZLAS TETEL

(1) Egy újságárusnál az 1 óra alatt eladott újságok száma Poisson-eloszlású valószínűségi változó $\lambda=64$ paraméterrel. A Csebisev-egyenlőtlenség segítségével adjunk alsó becslést arra a valószínűségre, hogy 48-nál többet, de 80-nál kevesebb újságot ad el egy óra alatt!

(2) Egy 50 db-os gyufásdobozban nem mindig pontosan 50 db gyufaszál van. A dobozban levő gyufák számának eloszlása a következő:

gyufák száma (k)	47	48	49	50	51	52	53
eloszlás ($P(\xi = k)$)	0,05	0,1	0,15	0,4	0,15	0,1	0,05

A Csebisev-egyenlőtlenség segítségével adjunk alsó becslést arra a valószínűségre, hogy 48-nál többet, de 52-nél kevesebb gyufa van a dobozban!

végére?

egymástól. Mekkora a valószínűsége, hogy Béla veszteségesen jön ki a játék