HARNESSING CONVOLUTIONAL NEURAL NETWORKS FOR ENHANCED DETECTION OF POTATO PLANT DISEASES

Submitted by:

Name	CWID
Jay Damani	A20539619
Minal Kyada	A20544029
Saurin Patel	A20539366

Under the guidance of: Prof Binghui Wang

AGENDA

- 1) Introduction
- 2) Problem Statement
- 3) Methodology
- 4) Project Design
- 5) Convolutional Neural Network (CNN)
- 6) PPDDNN model
- 7) Results and Outputs
- 8) Comparative Analysis
- 9) References

INTRODUCTION

- Farmers face economic losses due to potato plant diseases.
- Diseases like Early Blight (fungal) and Late Blight (microorganism) are difficult to distinguish manually.
- Our solution: A machine learning model to detect diseases instantly and accurately.

PROBLEM STATEMENT

- Early and accurate detection can prevent crop losses.
- Misdiagnosis leads to incorrect treatments, escalating costs.
- Current methods are labor-intensive and time-consuming.
- Our system offers an automated, user-friendly alternative.

Methodology

- 1. Input: Image of the potato plant.
- 2. Image preprocessing: Resizing, normalization, and segmentation.
- 3. CNN-based model: Trained to classify leaves into three categories:
 - 1. Healthy
 - 2. Early Blight
 - 3. Late Blight
- 4. Deployment: Accessible on web and mobile platforms.

PROJECT DESIGN

- Input Image of Potato Plant: Farmers or users upload an image of the potato plant's leaf.
- Data Pre-processing:
 - O **Resizing**: All images are resized to 256x256 pixels for uniformity.
 - O **Normalization**: Pixel values are scaled between 0 and 1 to facilitate faster and stable model training.
 - O **Data Augmentation**: Techniques like random flips and rotations are applied to artificially increase dataset diversity.
- Model Architecture:
 - O Convolutional Layers: Extract features from input images
 - O Max-Pooling Layers: Down-sample features for computational efficiency.
 - O Fully Connected Layer: Consolidates features for classification.
 - SoftMax Activation: Outputs probabilities for each category.
- Model Training:
 - O Adam Optimizer: Used for efficient gradient descent.
 - O **50 Epochs**: Model trained iteratively for higher accuracy.
 - Dataset Split: 70% training, 20% validation, 10% testing.
- Evaluation and Inference:
 - O Evaluates model performance using accuracy and loss metrics.
 - O Predicts disease category with confidence scores for test images.

CONVOLUTIONAL NEURAL NETWORK

- A convolutional neural network (CNN or ConvNet), is a network architecture for deep learning which learns directly from data, eliminating the need for manual feature extraction.
- CNNs are particularly useful for finding patterns in images to recognize objects, faces, and scenes.
- They can also be quite effective for classifying non-image data such as audio, time series, and signal data.
- Applications that call for object recognition and computer vision such as self-driving vehicles and face-recognition applications rely heavily on CNNs.

Potato Plant Disease Detection neural network (PPDDNN) model

- The Potato Plant Disease Detection neural network (PPDDNN) model is used to classify the plants into three categories namely healthy, early-light affected and late-blight affected.
- This model was created entirely from scratch so that the study would solely focus on photographs of plant diseases.
- The model will likely classify certain attributes that are present in the subject image (Background information) into a different class after learning them during training.
- Thus, we trained our model from scratch by feeding it only the respected images in a segmented way, allowing it to focus solely on the plants and its forms of ailments.

Accuracy and loss chart

Output

Actual: Potato Late blight, Predicted: Potato Late blight. Confidence: 99.98%

Actual: Potato__Late_blight, Predicted: Potato__Late_blight. Confidence: 94.67%

Actual: Potato___Early_blight, Predicted: Potato___Early_blight. Confidence: 99.88%

Actual: Potato__Late_blight, Predicted: Potato__Late_blight. Confidence: 99.87%

Actual: Potato__Late_blight, Predicted: Potato__Late_blight. Confidence: 100.0%

Actual: Potato__Early_blight, Predicted: Potato__Early_blight. Confidence: 100.0%

Actual: Potato__Late_blight, Predicted: Potato__Late_blight. Confidence: 99.71%

Actual: Potato Late_blight, Predicted: Potato Late_blight. Confidence: 100.0%

Actual: Potato Late_blight, Predicted: Potato Late_blight. Confidence: 99.79%

COMPARITIVE ANALYSIS

Types of Neural Networks	Artificial Neural Networks (ANN)	Convolutional Neural Networks (CNN)	Recurrent Neural Networks (RNN)
Type of Data	Tabular Data Text Data	Image Data	Sequence Data
Parameter Sharing	×	✓	~
Fixed Length input	~	~	
Recurrent Connections	×	×	~
Vanishing and Exploding Gradient	~	~	~
Spatial Relationship	×	~	×
Performance	ANN is less powerful than RNN, CNN	CNN is more powerful than ANN, RNN	When compared to CNN, RNN has fewer feature compatibility.
Application	Facial recognition and Computer vision.	Facial recognition, text digitalization and Natural language processing	Text-to-speech conversations.

References

- F. Marzougui, M. Elleuch, and M. Kherallah, "A deep CNN approach for plant disease detection."
- M. Bhagat, D. Kumar, R. Mahmood, B. Pati, and M. Kumar, "Bell pepper leaf disease classification using CNN."
- P. V. Raja, K. Sangeetha, B. A. Ninisa, M. Samiksha, and S. S. Sanjutha, "Convolutional Neural Networks based Classification and Detection of Plant Disease."
- H. Ajra, M. K. Nahar, L. Sarkar, and M. S. Islam, "Disease Detection of Plant Leaf using Image Processing and CNN with Preventive Measures."
- J. V. Tembhurne, S. M. Gajbhiye, V. R. Gannarpuwar, H. R. Khandait, P. R. Goydani, and T. Diwan, "Plant disease detection using deep learning based Mobile application."
- J. Kolli, D. M. Vamsi, and V. M. Manikandan, "Plant Disease Detection using Convolutional Neural Network."

THANK YOU