

Computational Imaging

Lecture 13: Computing Toolbox: Image Blurry

School of Data Science

The Chinese University of Hong Kong, Shenzhen

Q:Why are Our Images Blurry?

Lens Imperfections and Physical Limit

Ideal lens: A point maps to a point at a certain plane.

$$\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}$$

Lens Imperfections

- Ideal lens: A point maps to a point at a certain plane.
- Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

$$\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}$$

What is the effect of this on the images we capture?

Lens Imperfections

- Ideal lens: A point maps to a point at a certain plane.
- Real lens: A point maps to a circle that has non-zero minimum radius among all planes.

$$\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}$$

Shift-invariant blur.

Lens Imperfections

- What causes lens imperfections?
 - Aberrations.

(Important note: Oblique aberrations like coma and distortion <u>are not shift-invariant</u> blur and we do not consider them here!)

Diffraction

small aperture

large aperture Point spread function (PSF): The blur kernel of a lens.

"Diffraction-limited" PSF: No aberrations, only diffraction. Determined by aperture shape.

$$\frac{1}{S'} + \frac{1}{S} = \frac{1}{f}$$

Assume that we can use:

- Fraunhofer diffraction
 i.e., distance of sensor and aperture is large relative to wavelength.
- Incoherent illuminationi.e., the light we are measuring is not laser light.

Ignore various scale factors. Different functions are <u>not</u> drawn to scale.

The 1D case

GAMES204 Computational Imaging, Qilin Sun

aperture

As the aperture size increases...

The 2D case

optical transfer function

incoherent point spread function

... point spread function becomes smaller

aperture

As the aperture size increases...

The 2D case

optical transfer function

incoherent point spread function

... point spread function becomes smaller

Why do we prefer circular apertures?

function

aperture

autocorrelation

optical transfer

As the aperture size increases...

The 2D case

incoherent point spread function

▼ Fourier transform ... point spread function becomes smaller

Other shapes produce very anisotropic blur.

aperture

increases...

autocorrelation As the aperture size

incoherent point spread function

 Fourier transform ... point spread function becomes smaller

The 2D case

optical transfer function

Lens: An Optical Low-pass Filter

Point spread function (PSF): The blur kernel of a lens.

"Diffraction-limited" PSF: No aberrations, only diffraction. Determined by aperture shape.

Lens: An Optical Low-pass Filter

imperfect lens PSF

If we know b and c, can we recover x?

Camera Shake

Camera Shake: Motion PSF

Spatial spread

Motion PSF is a Function of:

- ➤ Motion path
- ➤ Motion speed

Camera Shake as A Filter

*

image from static camera

PSF from camera motion

image from shaky camera

X

*

C

If we know b and c, can we recover x?

Multiple Possible Solutions

香港中文大學(深圳)

The Chinese University of Hong Kong, Shenzhen

Blurry image

*

How do we detect this PSF?

Use Prior Information

Among all the possible pairs of images and blur kernels, select the ones where:

The image "looks like" a natural image.

The kernel "looks like" a motion PSF.

Shake Kernel Statistics

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

Gradients in natural images follow a characteristic "heavy-tail" distribution.

Can be approximated by $\|\nabla x\|^{0.8}$

sharp natural image

blurry natural image

Use Prior Information

Among all the possible pairs of images and blur kernels, select the ones where:

The image "looks like" a natural image.

Gradients in natural images follow a characteristic "heavy-tail" distribution.

The kernel "looks like" a motion PSF.

Shake **kernels** are very **sparse**, have continuous contours, and are always **positive**

How to use this information for blind deconvolution?

Three Sources of Information

b = observed image

c = blur kernel

x = sharp image

Regularized Blind Deconvolution

Solve regularized least-squares optimization

$$\min_{\mathbf{x}, \mathbf{c}} \|b - c * \mathbf{x}\|^2 + \|\nabla \mathbf{x}\|^{0.8} + \|c\|_1$$

What does each term in this summation correspond to?

Regularized Blind Deconvolution

Solve regularized least-squares optimization

Note: Solving such optimization problems is complicated (no longer *linear* least squares).

A Demonstration

input

This image looks worse than the original...

This doesn't look like a plausible shake kernel...

Solve regularized least-squares optimization

$$\min_{\mathbf{x},\mathbf{c}} \|b - c * \mathbf{x}\|^2 + \|\nabla \mathbf{x}\|^{0.8} + \|c\|_1$$

$$\operatorname{cost function}$$

Solve regularized least-squares optimization

Regularized Blind Deconvolution

Solve regularized least-squares optimization

GAMES204 Computational Imaging, Qilin Sun

A Demonstration

input maximum-only average

Image Artifacts & Estimated Kernels

Blur kernels

Image patterns

Note: blur kernels were inferred from large image patches, NOT the image patterns shown

Scene Motion

Scene Motion Blur

Depth Defocus

PSF Behavior of Different Depths

Qilin Sun et.al End-to-end Complex Lens Design with Differentiable Ray Tracing

Depth Defocus Examples

https://digital-photography-school.com/out-of-focus-photos/

Thank You!

School of Data Science

The Chinese University of Hong Kong, Shenzhen