Broj e i primena u finansijama

Nikola Jovanović Nikolina Milenković Kristina Milenković Anastasija Divjak

Univerzitet u Beogradu, Matematički fakultet

Beograd, Decembar 2022.

Rezime

- Otkriven 1618., nije mu pridavan veliki značaj
- Znatno kasnije švajcarski naučnik Leonard Ojler
- e = 2,71828..., osnova prirodnog logaritma
- Prvobitni problem vezan za broj e finansije

Uvod

Istorija broja e

- Prvo pojavljivanje 1618. god (logaritamske tablice)
- 17. vek Danijel Bernuli, ispitivanje u okviru bankarstva
- ullet Pedesetak godina kasnije broj e napokon izračunat

O Leonardu Ojleru

- Rodjen u Bazelu 15. aprila 1707. godine
- Najveći doprinos u matematičkoj notaciji
- Pokušaj formulisanja teorije muzike zasnovane na matematici

Osobine broja $\it e$

- · iracionalan;
- realan;
- transcedentan;
- koristiti se u različitim granama matematike;
- predstavlja prirodan rast;

n	0	1	2	3	4	5	6	100
$\left(1+\frac{1}{n}\right)^n$	-	2	2,25	2,3704	2,4414	2,4883	2,5216	2,7048

Osobine broja e

• predstavlja graničnu vrednost limesa: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$ $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^{\frac{3n}{3}} = \left(\lim_{n\to\infty} \left(1+\frac{1}{3n}\right)^3 n\right)^{\frac{1}{3}} = e^{\frac{1}{3}}$

predstavlja sumu beskonačnog niza:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$$

zbir prvih šest članova ovog niza iznosiće:

$$1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}=2,718055556$$

Ojlerov identitet

- Ojlerov identitet je naziv za formulu: $e^{i\phi} = \cos\phi + \sin\phi$;
- Važi za $\phi \in \mathbb{C}$;
- Za $\phi = \pi \implies e^{i\pi} = -1 \implies e^{i\pi} + 1 = 0$;
- Fundamentalni brojevi $i, \pi, e, 1$, i 0;

Ojlerova kružnica

- Drugi naziv za Ojlrovu kružnicu je kružnica devet tačaka;
- Može se konstruisati za svaki trougao;
- Sadrži: podnožja visina trougla, podnožja težišnih duži trougla i sredine rastojanja ortocentra trougla od svakog temena;

O Bernuliju

- Sticao je znanja iz matematike i prirodnih nauka, takodje je bio i predavač
- Bio je prijatelj Leonarda Ojlera
- Bavio se raznim matematičkim problemima

Primena u finansijama i zaključak

Pretpostavimo da u banku ulažemo sumu novca x:

- 100 posto kamata dobijamo 2*x sumu novca
- Sledi sledeća formula $(1+\frac{1}{2})^2*x$, za godinu dana bi bilo $(1+\frac{1}{365})^{365}*x$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \tag{1}$$

