Chapter 3 Functions, Sequences, and Relations 函数、序列、和关系

Lu Han

hl@bupt.edu.cn

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

We sometimes denote a function f from X to Y as $f: X \to Y$.

- An ordered pair (有序对) of elements, writeen (a, b).
- If X and Y are sets, we let $X \times Y$ denote the set of all ordered pairs (x, y) where $x \in X$ and $y \in Y$. We call $X \times Y$ the Cartesian product (笛卡尔积) of X and Y.

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

We sometimes denote a function f from X to Y as $f: X \rightarrow Y$.

- The set X is called the **domain** (定义域) of f.
- The set Y is called the **codomain** (陪域) of f.
- The set $\{y \mid (x, y) \in f\}$ is called the range (值域) of f.

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

We sometimes denote a function f from X to Y as $f: X \rightarrow Y$.

- The set X is called the **domain (**定义域) of f.
- The set Y is called the **codomain** (陪域) of f.
- The set $\{y \mid (x, y) \in f\}$ is called the range (值域) of f.

a subset of the codomain Y

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

For each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$. This unique value y is denoted f(x). In other words, f(x) = y is another way to write $(x, y) \in f$.

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

We sometimes denote a function f from X to Y as $f: X \to Y$.

Example 3.1.3 The set $f = \{(1, a), (2, b), (3, a)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Example 3.1.4 The set $f = \{(1, a), (2, a), (3, b)\}$ is a function from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c\}$?

Example 3.1.5 The set $f = \{(1, a), (2, b), (3, c), (1, b)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Arrow Diagram 箭头图

Example 3.1.3 The set $f = \{(1, a), (2, b), (3, a)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Yes.

Example 3.1.4 The set $f = \{(1, a), (2, a), (3, b)\}$ is a function from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c\}$?

No.

Example 3.1.5 The set $f = \{(1, a), (2, b), (3, c), (1, b)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

No.

Arrow Diagram 箭头图

Example 3.1.3 The set $f = \{(1, a), (2, b), (3, a)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Yes.

Example 3.1.4 The set $f = \{(1, a), (2, a), (3, b)\}$ is not a function from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c\}$?

No.

Example 3.1.5 The set $f = \{(1, a), (2, b), (3, c), (1, b)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

No.

Arrow Diagram 箭头图

A function: There is exactly one arrow from each element in *X*.

Example 3.1.3 The set $f = \{(1, a), (2, b), (3, a)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Yes.

Example 3.1.4 The set $f = \{(1, a), (2, a), (3, b)\}$ is not a function from $X = \{1, 2, 3, 4\}$ to $Y = \{a, b, c\}$?

No.

Example 3.1.5 The set $f = \{(1, a), (2, b), (3, c), (1, b)\}$ is a function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

No.

domain

range

$$f(x)=e^x$$

$$f(x) = \log(x)$$

$$f(x) = \sin x$$

$$f(x) = \sqrt{x}$$

$$f(x)=e^x$$

$$f(x) = \log(x)$$

$$f(x) = \sin x$$

$$f(x) = \sqrt{x}$$

Definition 3.1.1 Let X and Y be sets. A function f from X to Y is a subset of the Cartesian product $X \times Y$ having the property that for each $x \in X$, there is exactly one $y \in Y$ with $(x, y) \in f$.

A set may contain any kind of element.

Examples:

{1, 2, Jason} {1, 5, {3.5, 17}, Jason }

$$f(S) = |S|$$

$$f(string) = length(string)$$

$$f(student) = student's ID$$

$$f(p) = \text{is-prime}(p)$$

Definition 3.1.21 A function f from X to Y is said to be **one-to-one** (or injective) (单射的) if for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Example 3.1.23 The set $f = \{(1, b), (3, a), (2, c)\}$ is a one-to-one function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$?

Example 3.1.24 The set $f = \{(1, a), (2, b), (3, a)\}$ is a one-to-one function from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Definition 3.1.21 A function f from X to Y is said to be **one-to-one** (or injective) (单射的) if for all $x_1, x_2 \in X$, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

Example 3.1.27 Prove that the function f(n) = 2n + 1 from the set of positive integers to the set of positive integers is one-to-one.

Definition 3.1.21 A function f from X to Y is said to be **one-to-one (or injective)** (单射的) if **for all** $x_1, x_2 \in X$, **if** $f(x_1) = f(x_2)$ **then** $x_1 = x_2$.

Example 3.1.28 Prove that the function $f(n) = 2^n - n^2$ from the set of positive integers to the set of integers is not one-to-one.

Example 3.1.30 The set
$$f = \{(1, a), (2, c), (3, b)\}$$
 is onto Y from $X = \{1, 2, 3\}$ to $Y = \{a, b, c\}$?

Example 3.1.31 The set
$$f = \{(1, b), (3, a), (2, c)\}$$
 is onto Y from $X = \{1, 2, 3\}$ to $Y = \{a, b, c, d\}$?

Definition 3.1.29 A function f from X to Y is said to be **onto** Y (**or surjective**) (满射的) if **for every** $y \in Y$, **there exists** $x \in X$ **such that** f(x) = y.

Example 3.1.33 Prove that the function $f(x) = \frac{1}{x^2}$ from the set X of nonzero real numbers to the set Y of positive real numbers is onto Y.

Definition 3.1.29 A function f from X to Y is said to be **onto** Y (**or surjective**) (满射的) if **for every** $y \in Y$, **there exists** $x \in X$ **such that** f(x) = y.

Example 3.1.34 Prove that the function f(n) = 2n - 1 from the set X of positive integers to the set Y of positive integers is not onto Y.

A function f from X to Y is not onto Y if for some $y \in Y$, for every $x \in X$, $f(x) \neq y$.

Definition 3.1.35 A function that is **both one-to-one and onto** is called a **bijection (**双射**)**.

Definition 3.1.35 A function that is **both one-to-one and onto** is called a **bijection (**双射**)**.

Definition 3.1.35 A function that is **both one-to-one and onto** is called a **bijection (**双射**)**.

Exercise

Function	Domain	Codomain	Injective?	Surjective?	Bijective?
$f(x) = \sin(x)$	R	R			
$f(x) = 2^x$	R	R ⁺			
$f(x) = x^2$	R	R ^{nonneg}			
Reverse String	Bit Strings of length <i>n</i>	Bit Strings of length <i>n</i>			

Inverse Function (反函数)

Suppose that f is one-to-one, onto function from X to Y. It can be shown that $\{(y, x) \mid (x, y) \in f\}$ is a one-to-one, onto function from Y to X. This new function, denote f^{-1} , is called f inverse (\mathfrak{W}).

Inverse Function (反函数)

Suppose that f is one-to-one, onto function from X to Y. It can be shown that $\{(y, x) \mid (x, y) \in f\}$ is a one-to-one, onto function from Y to X. This new function, denote f^{-1} , is called f inverse (\mathfrak{W}).

Example 3.1.38 For function $f = \{(1, a), (2, c), (3, b)\}$, we have

$$f^{-1} = ?$$

Definition 3.1.41 Let g be a function X to Y and let f be a function from Y to Z. The **composition of f with g (f 与 g 的复合函数), denoted f \circ g, is the function**

$$(f \circ g)(x) = f(g(x))$$

from X to Z.

Example 3.1.42 Given $X = \{1, 2, 3\}$, $Y = \{a, b, c\}$, $Z = \{x, y, z\}$. The function $g = \{(1, a), (2, a), (3, c)\}$ from X to Y. The function $f = \{(a, y), (b, x), (c, z)\}$ from Y to Z.

The composition function from *X* to *Z* is $f \circ g = ?$

Definition 3.1.41 Let g be a function X to Y and let f be a function from Y to Z. The **composition of f with g (f 与 g 的复合函数), denoted f \circ g, is the function**

$$(f \circ g)(x) = f(g(x))$$

from X to Z.

Given $X = \{1, 2, 3\}, Y = \{a, b, c\}, Z = \{x, y, z\},$ The function $g = \{(1, a), (2, a), (3, c)\}$ from X to Y. The function $f = \{(a, y), (b, x), (c, z)\}$ from Y to Z. The composition function from X to Z is $f \circ g = \{(1, y), (2, y), (3, z)\}$.

Example 3.1.43 Draw the arrow diagram of the function $f \circ g$.

Definition 3.1.41 Let g be a function X to Y and let f be a function from Y to Z. The **composition of f with g (f 与 g 的复合函数), denoted f \circ g, is the function**

$$(f \circ g)(x) = f(g(x))$$

from X to Z.

Given $X = \{1, 2, 3\}, Y = \{a, b, c\}, Z = \{x, y, z\},$

The function $g = \{(1, a), (2, a), (3, c)\}$ from X to Y.

The function $f = \{(a, y), (b, x), (c, z)\}$ from Y to Z.

The composition function from X to Z is $f \circ g = \{(1, y), (2, y), (3, z)\}.$

Example 3.1.43 Draw the arrow diagram of the function $f \circ g$.

Definition 3.1.41 Let g be a function X to Y and let f be a function from Y to Z. The **composition of f with g (f 与 g 的复合函数), denoted f \circ g, is the function**

$$(f \circ g)(x) = f(g(x))$$

from X to Z.

Example 3.1.44 If
$$f(x) = \log_3 x$$
 and $g(x) = x^4$, then $(f \circ g)(x) = ?$ and $(g \circ f)(x) = ?$

Exercise: $g \circ f$

$f\colon X\to Y$	$g: Y \to Z$	Injective?	Surjective?	Bijective?
f is injective	g is injective			
f is surjective	g is surjective			
f is injective	g is surjective			
f is surjective	g is injective			
f is bijective	g is bijective			

If more pigeons

than pigeonholes,

then some hole must have at least two pigeons!

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

then some hole must have at least two pigeons!

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then ...

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X, x_1 \neq x_2$.

A function from a larger set to a smaller set cannot be injective.

(There must be at least two elements in the domain that have the same image in the codomain.)

Pigeonhole Principle (First Form)

If n pigeons fly into k pigeonholes and k < n, some pigeonhole contains at least two pigeons.

Pigeonhole Principle (Second Form)

If f is a function from a finite set X to a finite set Y and |X| > |Y|, then $f(x_1) = f(x_2)$ for some $x_1, x_2 \in X, x_1 \neq x_2$.

Example

In a group of 366 people, there must be two people having the same birthday.

Definition 3.1.11 If x is an integer and y is a positive integer, we define $x \mod y$ to be the remainder when x is divided by y.

Example 3.1.12 We have $6 \mod 2 = 0$, $199673 \mod 2 = 1$.

Example 3.1.14 What day of the week will it be 365 days from Wednesday?

Definition 3.1.17 The floor of x, denote $\lfloor x \rfloor$, is the greatest integer less than or equal to x. The ceiling of x, denote $\lfloor x \rfloor$, is the least integer greater than or equal to x.

Definition 3.1.17 The floor of x, denote $\lfloor x \rfloor$, is the greatest integer less than or equal to x. The ceiling of x, denote $\lfloor x \rfloor$, is the least integer greater than or equal to x.

Figure 3.1.7 The graphs of the floor (left graph) and ceiling (right graph) functions.