

Further Mechanics

A-level overview

<u>isaacphysics.org</u> <u>https://isaacphysics.org/pages/remote_learning</u>

Circular Motion

Measuring angles

Distance travelled

$$=\frac{\theta}{360^{\circ}}\times 2\pi r$$

Measuring angles

Distance travelled

$$s = r\theta$$

Speed

$$v = \frac{s}{t} = \frac{r\theta}{t} = r\frac{\theta}{t} = r\omega$$

Angular velocity ω (rad s⁻¹)

$$\omega = \frac{2\pi}{T} = 2\pi f$$

Angle practice

1. Convert 3° into radians:

- 2. Calculate the angular velocity if
 - a) time period T=4.5s
 - b) frequency *f*=50Hz
 - c) speed $\nu = 15 \text{ms}^{-1}$ and radius r = 12 m
- 3. How far will an object travel in 4.0s on a 2m radius circle if
 - a) $\omega = 3.5 \text{ rad s}^{-1}$
 - b) f = 1.45 Hz
 - c) T = 60 s

Centripetal acceleration

An object travelling on a circular path

- o is continually changing direction,
- therefore is changing velocity (or momentum)
- o therefore is accelerating, so
- o a resultant force must be acting on it.

The acceleration is towards the centre of the circle

centripetal acceleration: $a = \frac{v^2}{r} = \omega^2 r = v\omega$

in terms of time period:

resultant force needed:

Centripetal practice

1. Calculate the force needed to make a 1200kg car go round a 9.5m radius roundabout at 13ms⁻¹.

2. Calculate the acceleration of a 300g mass whirled round in a horizontal circle of 2.5m radius once every 1.25s.

3. Calculate the speed of the rim of a space station of radius 40m if it is to simulate Earth's gravity (*a*= 9.8 ms⁻²)

Orbits

$$F = \frac{GMm}{r^2}$$
 $G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$

$$F = ma$$

$$F = ma$$
 using $a = \frac{v^2}{r}$:

$$F = ma$$

$$F = ma$$
 using $a = r\omega^2 = \frac{4\pi^2 r}{T^2}$:

Banked turns

Vertically:

Horizontally:

 $N\cos\alpha = mg$

 $N \sin \alpha = ma = \frac{mv}{r}$

Vertical circles

Hump-back bridge

$$mg - N = \frac{mv^2}{r}$$

car flies off when...

Loop-the-loop at top of loop

at base of loop

Advanced circle practice

1. A car leaves the ground as it goes over a hump back bridge at 17ms⁻¹. What is the radius of the bridge?

2. What angle of bank would an aeroplane need if flying at 70ms⁻¹ if the pilot wished to turn through 180° in 60s?

3. Calculate the normal reaction on a 75kg rider on a rollercoaster as it goes through the lowest point at a radius of 8.5m at a speed of 16ms⁻¹

Oscillations

Simple harmonic motion

Where there is a force

proportional to displacement from equilibrium, and

directed towards equilibrium point
$$F = -kx$$
, $a = -\omega^2 x$, $\omega^2 = \frac{k}{m}$

Solution
$$x = A\cos(\omega t)$$
 $\omega = \frac{2\pi}{T} = 2\pi f$

$$v = -A\omega \sin(\omega t)$$
 $v_{max} = A\omega$ $v^2 = \omega^2(A^2 - x^2)$

$$a = -A\omega^2 \cos(\omega t)$$
 $a_{max} = A\omega^2$ $a = -\omega^2 x$

For pendulum of length L, mass m, angle θ to vertical:

$$F \approx -mg \sin \theta = -mg \frac{x}{L}$$
 $a = \frac{F}{m} = -\frac{g}{L}x$ $\omega^2 = \frac{g}{L}$

SHM formula practice

The 600g mass on a 1.50m pendulum is moved 5.0cm to the side then released at *t*=0

1. Calculate the angular frequency ω .

2. Calculate the maximum speed of the bob.

3. Calculate the acceleration when *t*=0.32s.

4. Calculate the speed when *x*=2.5cm

SHM graphs

When plotted against displacement

- velocity graph makes ellipse
- acceleration graph straight with negative gradient

Time graphs

Here, ω =1.5 rad s⁻¹.

$$A=x_{\text{max}}=10$$
, $v_{\text{max}}=15$, $a_{\text{max}}=22.5$

vpeaks ¼ cycle before x

a peaks ¼ cycle before ν

SHM graph practice

Sketch and label the velocity-time graph for this oscillation.

SHM graph practice

Sketch and label the velocity-time graph for this oscillation.

SHM energy

Kinetic energy
$$K = \frac{1}{2}mv^2 = \frac{1}{2}mA^2\omega^2\sin^2(\omega t)$$

Potential energy
$$P = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega t)$$

and as $\omega^2 = \frac{k}{m}$ it follows that $k = m\omega^2$ and so

Total energy

$$E = K + P = \frac{1}{2}kA^{2}\{\sin^{2}(\omega t) + \cos^{2}(\omega t)\} = \frac{1}{2}kA^{2}$$

Energy practice

1. Calculate the total energy in a 3.0cm amplitude oscillation of a spring with constant 200Nm⁻¹.

2. Calculate the potential energy of the oscillation in q1 2.64s after it was released if its mass is 500kg.

3. Calculate the kinetic energy of the oscillation in q1 when x = 1.5cm.

Energy graphs

Energy curves have twice the frequency of displacement or velocity.

Potential peaks when x = A and v = 0

Kinetic peaks when x = 0 and $v = v_{max}$

Energy makes parabolae when plotted against x

Damping

Resonance

The build up of large amplitude oscillations when a system is forced at its natural frequency.

Natural frequency is frequency of oscillations after system is displaced from equilibrium and released.

Links

A Level Topic Revision

https://isaacphysics.org/pages/
a_level_topic_index#a_level_revision

Consolidation Programme

https://isaacphysics.org/pages/ summer_programmes_2021