16.6 Parametric surfaces and Their Areas.

Vector expression.

Need three fcts $x_1y_1z:D\rightarrow \mathbb{R}$ $\overrightarrow{r}(u_1v) = \langle x(u_1v), y(u_1v), z(u_1v) \rangle$ $\overrightarrow{r}(u) = \langle x(u), y(u), z(u) \rangle$

Parametric equations.

Given by x = x (u,v) y = y (u,v) z = z (u,v)

EXAMPLE 1 Identify and sketch the surface with vector equation

$$r(u,v) = 2\cos u \mathbf{i} + v \mathbf{j} + 2\sin u \mathbf{k}$$

$$x(u,v) = 2\cos u \mathbf{i} + v \mathbf{j} + 2\sin u \mathbf{k}$$

$$x(u,v) = 2\cos u \mathbf{i} + v \mathbf{j} + 2\sin u \mathbf{k}$$

50,

$$n^2 + z^2 = 2^2 \cos^2 u + z^2 \sin^2 u = 4$$

 $\Rightarrow n^2 + z^2 = 4 - 0$ circle.

Question: What happen to the surface if we restric one of the parameter?

Fix
$$u = 0$$
, then
$$P(v) = \{x(0,v), y(0,v), z(0,v)\}$$

Grid curves.

C: ? (NOIN) Lo param. of a

Cz: 2(u.vo) LA param. of a curve.

EXAMPLE 2 Use a computer algebra system to graph the surface

$$\mathbf{r}(u,v) = \langle (2 + \sin v) \cos u, (2 + \sin v) \sin u, u + \cos v \rangle$$

Which grid curves have u constant? Which have v constant?

Python:
$$x = (2+\sin v) \cos u$$
 $y = (2+\sin v) \sin u$
or $z = u + \cos v$
Software

Gird curves.

$$u=0$$
 -P $P(0,0) = \langle 2+0,0\rangle, 0, \cos v \rangle$
 $= \langle 2,0,0\rangle + \langle 5,0\rangle, 0, \cos v \rangle$
 $v=0$ -P $P(u,0) = \langle 2\cos u, 2\sin u, u \rangle$

see python's script.

EXAMPLE 3 Find a vector function that represents the plane that passes through the point P_0 with position vector \mathbf{r}_0 and that contains two nonparallel vectors \mathbf{a} and \mathbf{b} .

The points on the plane are obtained by morring along the direction of a and B

1st) More to Po. zna) Hore in the direction a &/or 8.

EXAMPLE 4 Find a parametric representation of the sphere

$$x^2 + y^2 + z^2 = a^2$$
 $a = 3$

Recall: z = p cososing y= psino oing

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid $z = x^2 + 2y^2$.

Simple sol.

Hure interesting approach.

$$u = \rho$$
 (radius)

$$u = \rho$$
 (radius) $\chi = \rho \cos\theta$ $\Delta = \rho^2 \cos^2\theta + Z\rho^2 \sin^2\theta$.
 $v = \theta$ (angle) $\chi = \rho \sin\theta$

$$\vec{r}(\rho,\theta) = \langle \rho \cos\theta, \frac{1}{\sqrt{z}} \sin\theta, \rho^z \rangle$$
 $0 \le \theta \le 2\pi$

EXAMPLE 7 Find a parametric representation for the surface $z = 2\sqrt{x^2 + y^2}$, that is, the top half of the cone $z^2 = 4x^2 + 4y^2$.

$$x^{2} + y^{2} - z^{2} = 1$$

$$x = p \cos \theta$$

top half of the cone
$$z^2 = 4x^2 + 4y^2$$
.
 $x = p\cos\theta$ $y = p\sin\theta$ $p \ge 0$ $0 \le 0 \le 2\pi$.

$$\Rightarrow z = z \sqrt{\rho^2} = 2\rho$$

$$r(\rho,\theta) = \langle \rho \cos \theta, \rho \sin \theta, 2\rho \rangle$$

Also,

Equations. of in one variable .4.5x&b

$$z = \frac{1}{2} \text{ (as } \theta)$$

$$y = \frac{1}{2} \text{ (as } \theta)$$

50, $\Rightarrow (x,0) = \langle x, f(x) \cos \theta, f(x) \rangle$ $\alpha \in x \in b \quad \emptyset \quad 0 \in \theta \in \mathbb{Z}\pi$

EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve $y = \sin x$, $0 \le x \le 2\pi$, about the x-axis. Use these equations to graph the surface of revolution.

Question: What are the equations of a surface obtained by rotating a function about another axis?

Adout y-axis.
$$2 = f(y)$$
 $z = f(y) sin \theta$
 $z = f(y) cos \theta$

About z-axis.
$$y=f(z)$$

$$y=f(z)$$

$$y=f(z)$$

$$y=f(z)$$

$$y=f(z)$$

$$y=f(z)$$

$$y=f(z)$$

Recall.

(parametrization of a plane).

(60,001) 5 a

C₁

C₂

y

So, Fy(u₀, N₀) 13

h=uo P(uoiv) represents a curre (1.50, Pv(uoiNo) is the tangent rector at Po of (1.

V=Vo ? (u, vo) represents a curre Cz. So, Puluo No) to the tangent vertor at Po of Cz.

Eq. tangent plane at Po: P(u,v) = Po + uPuluo,vo) + VP(uo,vo)

EXAMPLE 9 Find the tangent plane to the surface with parametric equations $x = u^2$, $y = v^2$, z = u + 2v at the point (1, 1, 3).

1) Derivatives.

$$P(u,v) = \langle u^2, v^2, u+2v \rangle$$

Say S is a surface P(u,v) = (x(u,v), y(n,v), z(u,v)). Let D be the domain of the surface

Closer look.

Sij ~ parallelogram ijogenerated by & & B = ? (u; + Du, vj) - ? (ui, vi) = ? (ui, vi+ Dv) - ? (ui, vi) → A (Sij) ≈ A(Tij)

But, 2 ~ Ph(uoivo) Du F = 7 (uv , vo) DY

SO, A(Ti) ~ A(Ti) But A(Ti) = | DuPuluo, VO) × DV Puluo, VO) | = Du DV | Puluo, VO) × Puluo, VO) |

A(S) & EA(S()) & E A(Ti) & EPUXIN DU DV. (b)

6 Definition If a smooth parametric surface *S* is given by the equation

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \qquad (u, v) \in I$$

92= /20 xxx/ 94 and S is covered just once as (u, v) ranges throughout the parameter domain D, then the **surface area** of S is

where
$$\mathbf{r}_{u} = \frac{\partial x}{\partial u}\mathbf{i} + \frac{\partial y}{\partial u}\mathbf{j} + \frac{\partial z}{\partial u}\mathbf{k}$$
 $\mathbf{r}_{v} = \frac{\partial x}{\partial v}\mathbf{i} + \frac{\partial y}{\partial v}\mathbf{j} + \frac{\partial z}{\partial v}\mathbf{k}$

41. The part of the plane x + 2y + 3z = 1 that lies inside the cylinder $x^2 + y^2 = 3$

(Find the area)

$$Z = \frac{1}{3} - \frac{x}{3} - \frac{2}{3}y$$

$$w.r.t. \quad x^{2+1}y^{2} \leq 3 = (\sqrt{3})^{2}$$

$$x = \rho \cos \theta \quad y = \rho \sin \theta$$

$$\Rightarrow \quad z = \frac{1}{3} - \frac{1}{3} \cos \theta - \frac{2}{3} \rho \sin \theta$$

$$with \quad 0 \leq \rho \leq \sqrt{3} \quad d \quad 0 \leq \theta \leq 2\pi$$

$$with \quad 0 \leq \rho \leq \sqrt{3} \quad d \quad 0 \leq \theta \leq 2\pi$$

$$P(\rho_{1}\Theta) = \langle \rho_{0}S\Theta, \rho_{S}in\Theta, \frac{1}{3} - \frac{\rho}{3} \cos\Theta - \frac{2}{3}\rho_{S}in\Theta \rangle.$$
2) Surface Area. $\rho_{0} \rightarrow \rho_{0}$ $ds = jarobion$

$$A(S) = \iint_{D} \left[Pux^{2}v^{2} \right] dA. \quad M = \rho \quad dv = \theta.$$

$$P_{\rho} = \langle \cos\Theta, \sin\Theta, -\frac{\cos\Theta}{3} - \frac{2}{3}\sin\Theta \rangle.$$

$$P_{\rho} = \langle -\rho_{S}in\Theta, \rho_{C}\cos\Theta, \frac{\rho}{3}\sin\Theta - \frac{2}{3}\rho_{C}\cos\Theta \rangle.$$

$$P_{\rho} \times P_{\rho} = \left[\frac{1}{(0S\Theta)} - \frac{1}{3}\sin\Theta - \frac{2}{3}\rho_{C}\cos\Theta \right].$$

$$P_{\rho} \times P_{\rho} = \left[\frac{1}{(0S\Theta)} - \frac{1}{3}\sin\Theta - \frac{2}{3}\rho_{C}\cos\Theta \right].$$

$$= \langle P/3, -2/3P, p \rangle$$

$$Z = g(x_1y)$$

$$Z = g(x_1y)$$

$$Z = (x_1y) = (x_1y), g(x_1y)$$

$$Z = (x_1y)$$

$$Z$$

$$\Rightarrow |\overrightarrow{r}_{x}(\overrightarrow{r}_{y})| = |\overrightarrow{q}_{x}^{z} + |\overrightarrow{q}_{y}^{z}| + |\overrightarrow{q}_{y}^{z}|$$

$$A(S) = \iint\limits_{D} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$$

EXAMPLE 11 Find the area of the part of the paraboloid $z = x^2 + y^2$ that lies under the plane z = 9.

2)
$$\frac{f \, \text{cnmod } a.}{z = \pi^2 + y^2 - 0}$$
 $z_z = 7\pi$ $z_y = 7y$
 $|z| + z_x^2 + z_y^2 = |z| + 4x^2 + 4y^2$

So,

$$A(s) = \iint_{0}^{1} \sqrt{1 + 4(x^{24}y^{2})} dA$$

$$= \int_{0}^{2\pi} \int_{0}^{3} \sqrt{1 + 4r^{2}} r dr d\theta$$

$$= \frac{\pi}{6} \left(37^{3/2} - 1\right)$$

$$\approx 17.32$$

$$x = r\cos\theta \quad 0 \le r \le 3$$

$$y = r\sin\theta \quad 0 \le \theta \le 2\pi$$

$$u = 1 + 4r^{2}$$

$$ch = 8r dr$$