HIGH-YIELD PRINCIPLES IN

Pharmacology

"Cure sometimes, treat often, and comfort always."

-Hippocrates

"One pill makes you larger, and one pill makes you small."

—Jefferson Airplane, White Rabbit

"For the chemistry that works on one patient may not work for the next, because even medicine has its own conditions."

—Suzy Kassem

"I wondher why ye can always read a doctor's bill an' ye niver can read his purscription."

—Finley Peter Dunne

"Love is the drug I'm thinking of."

—The Bryan Ferry Orchestra

Preparation for pharmacology questions is not as straightforward as in years past. One major recent change is that the USMLE Step 1 has moved away from testing pharmacotherapeutics. That means you will generally not be required to identify medications indicated for a specific condition. You still need to know mechanisms and important adverse effects of key drugs and their major variants. Obscure derivatives are low-yield. Learn their classic and distinguishing toxicities as well as major drug-drug interactions.

Reviewing associated biochemistry, physiology, and microbiology concepts can be useful while studying pharmacology. The exam has a strong emphasis on ANS, CNS, antimicrobial, and cardiovascular agents as well as on NSAIDs, which are covered throughout the text. Specific drug dosages or trade names are generally not testable. The exam may use graphs to test various pharmacology content, so make sure you are comfortable interpreting them.

- ▶ Pharmacokinetics and Pharmacodynamics 228
- ▶ Autonomic Drugs 234
- ► Toxicities and Adverse Effects
- 246

► Miscellaneous 252

227

▶ PHARMACOLOGY—PHARMACOKINETICS AND PHARMACODYNAMICS

Enzyme kinetics

Michaelis-Menten kinetics

 $K_{\rm m}$ is the substrate concentration needed for an enzyme to reach a rate of 1/2 $V_{\rm max}$ and is inversely related to the affinity of the enzyme for its substrate.

 $\ensuremath{V_{\text{max}}}\xspace$ is directly proportional to the enzyme concentration.

Most enzymatic reactions follow a hyperbolic curve (ie, Michaelis-Menten kinetics); however, enzymatic reactions that exhibit a sigmoidal curve usually indicate positive cooperativity in substrate binding (eg, aspartate transcarbamoylase).

[S] = concentration of substrate; V = velocity.

Effects of enzyme inhibition

Lineweaver-Burk plot

The closer to 0 on the Y-axis, the higher the V_{max} .

The closer to 0 on the X-axis, the higher the K_m . The higher the K_m , the lower the affinity.

Reversible competitive inhibitors cross each other, whereas noncompetitive inhibitors do not.

Kompetitive inhibitors increase K_m.

Effects of enzyme inhibition

	Competitive inhibitors, reversible	Competitive inhibitors, irreversible	Noncompetitive inhibitors
Resemble substrate	Yes	Yes	No
Overcome by † [S]	Yes	No	No
Bind active site	Yes	Yes	No
Effect on V _{max}	Unchanged	ţ	Ţ
Effect on K _m	1	Unchanged	Unchanged
Pharmacodynamics	↓ potency	↓ efficacy	↓ efficacy

FAS1_2025_05-Pharmacology.indd 228 12/19/24 3:14 PM

Pharmacokinetics

Bioavailability (F)

Fraction of administered drug reaching systemic circulation. For an IV dose, F = 100%.

Orally: F typically < 100% due to incomplete absorption and first-pass metabolism. Can be calculated from the area under the curve in a plot of plasma concentration over time.

Volume of distribution (V_d)

Theoretical value that relates drug amount to plasma concentration. Liver and kidney disease increase V_d (\downarrow protein binding, $\uparrow V_d$). Drugs may be distributed in more than one compartment. Hemodialysis is most effective for drugs with a low V_d .

$$V_d = \frac{amount\ of\ drug\ in\ the\ body}{plasma\ drug\ concentration}$$

V _d	COMPARTMENT	DRUG TYPES
Low	Intravascular	Large/charged molecules; plasma protein bound
Medium	ECF	Small hydrophilic molecules
High	All tissues including fat	Small lipophilic molecules, especially if bound to tissue protein

Clearance (CL)

The volume of plasma cleared of drug per unit time. Clearance may be impaired with defects in cardiac, hepatic, or renal function.

$$CL = \frac{\text{rate of elimination of drug}}{\text{plasma drug concentration}} = V_d \times K_e \text{ (elimination constant)}$$

Half-life (t_{1/2})

The time required to eliminate 1/2 of the drug from the body.

Steady state is a dynamic equilibrium in which drug concentration stays constant (ie, rate of drug elimination = rate of drug administration).

In first-order kinetics, a drug infused at a constant rate takes 4–5 half-lives to reach steady state. It takes 3.3 half-lives to reach 90% of the steady-state level.

$$t_{1/2} = \frac{0.7 \times V_d}{CL} \text{ in first-order elimination}$$

# of half-lives	1	2	3	4
% remaining	50%	25%	12.5%	6.25%

Dosage calculations

$$Loading \ dose = \frac{C_p \times V_d}{F}$$

$$Maintenance \; dose = \frac{C_p \times CL \times \tau}{F}$$

C_p = target plasma concentration

 τ = dosage interval (time between doses); does not apply for continuous infusions

In renal or liver disease, maintenance dose \(\frac{1}{4}\) and loading dose is usually unchanged.

Time to steady state depends primarily on $t_{1/2}$ and is independent of dose and dosing frequency.

FAS1_2025_05-Pharmacology.indd 229

Drug metabolism

Drugs can be metabolized by either or both phase I and phase II reactions. These reactions serve to bioactivate or deactivate substances, and do not have to take place sequentially (eg, phase I can follow phase II, or take place as a single reaction).

Geriatric patients lose phase I first. Patients who are slow acetylators have † adverse effects from certain drugs because of ‡ rate of metabolism (eg, isoniazid).

Elimination of drugs

Zero-order elimination

Rate of elimination is constant regardless of C_p (ie, constant **amount** of drug eliminated per unit time). $C_p \downarrow$ linearly with time. Examples of drugs—Phenytoin, Ethanol, and Aspirin (at high or toxic concentrations).

Capacity-limited elimination.

A **PEA** is round, shaped like the "0" in **zero**-order.

First-order elimination

Rate of first-order elimination is directly proportional to the drug concentration (ie, constant fraction of drug eliminated per unit time). $C_p \downarrow$ exponentially with time. Applies to most drugs.

Flow-dependent elimination.

FAS1_2025_05-Pharmacology.indd 230 12/19/24 3:14 PM

Urine pH and drug elimination	Ionized species are trapped in urine and cleared quickly. Neutral forms can be reabsorbed.		
Weak acids	Examples: phenobarbital, methotrexate, aspirin (salicylates). Treat overdose with sodium bicarbonate to alkalinize urine.		
	$\begin{array}{ccc} RCOOH & \rightleftharpoons & RCOO^- + H^+ \\ \text{(lipid soluble)} & & \text{(trapped)} \end{array}$		
Weak bases	Examples: tricyclic antidepressants (TCAs), amphetamines. Trapped in acidic environments. For severe alkalosis, treat with ammonium chloride to acidify urine. $RNH_3^+ \iff RNH_2 + H^+ \\ \text{(trapped)} \qquad \text{(lipid soluble)}$		
	TCA toxicity is initially treated with sodium bicarbonate to overcome the sodium channel-blocking activity of TCAs. This treats cardiac toxicity, but does not accelerate drug elimination.		
pKa	pH at which drugs (weak acid or base) are 50% ionized and 50% nonionized. The pKa represents the strength of the weak acid or base. 100 Weak acid Weak base PKa = more acidic PKa = more basic		

FAS1_2025_05-Pharmacology.indd 231 12/19/24 3:14 PM

Efficacy vs potency

Efficacy

Maximal effect a drug can produce (intrinsic activity). Represented by the y-value (E_{max}). † y-value = † E_{max} = † efficacy. Unrelated to potency (ie, efficacious drugs can have high or low potency). Partial agonists have less efficacy than full agonists.

Potency

Amount of drug needed for a given effect. Represented by the x-value (EC₅₀). Left shifting = \downarrow EC₅₀ = \uparrow potency = \downarrow drug needed. Unrelated to efficacy (ie, potent drugs can have high or low efficacy).

Receptor binding

AGONIST WITH	POTENCY	EFFICACY	REMARKS	EXAMPLE
♠ Competitive antagonist	1	No change	Can be overcome by † agonist concentration	Diazepam (agonist) + flumazenil (competitive antagonist) on GABA _A receptor.
(B) Noncompetitive antagonist	No change	ţ	Cannot be overcome by † agonist concentration	Norepinephrine (agonist) + phenoxybenzamine (noncompetitive antagonist) on α-receptors.
Partial agonist (alone)	Independent	ţ	Acts at same site as full agonist	Morphine (full agonist) vs buprenorphine (partial agonist) at opioid μ -receptors.
Inverse agonist (alone)	Independent	Independent	Binds to a constitutively active receptor, thereby reducing its activity; has the opposite effect of an agonist	H ₁ antihistamines (eg, diphenhydramine)

Therapeutic index

Measurement of drug safety.

 $\frac{TD_{50}}{ED_{50}} = \frac{\text{median toxic dose}}{\text{median effective dose}}$

Therapeutic window—range of drug concentrations that can safely and effectively treat disease.

TITE: Therapeutic Index = TD₅₀ / ED₅₀. Safer drugs have higher TI values. Drugs with lower TI values frequently require monitoring (eg, warfarin, theophylline, digoxin, antiepileptic drugs, lithium; Warning! These drugs are lethal!).

 LD_{50} (lethal median dose) often replaces TD_{50} in animal studies.

FAS1_2025_05-Pharmacology.indd 233 12/19/24 3:14 PM

Drug effect modifications

TERM	DEFINITION	EXAMPLE	
Additive	Effect of substances A and B together is equal to the sum of their individual effects	Aspirin and acetaminophen $"2 + 2 = 4"$	
Permissive	Presence of substance A is required for the full effects of substance B	Cortisol on catecholamine responsiveness	
Synergistic	Effect of substances A and B together is greater than the sum of their individual effects	Clopidogrel with aspirin "2 + 2 > 4"	
Potentiation	Similar to synergism, but drug B (with no therapeutic action alone) enhances the therapeutic action of drug A	Carbidopa only blocks enzyme to prevent peripheral conversion of levodopa "2 + 0 > 2"	
Antagonistic	Effect of substances A and B together is less than the sum of their individual effects	Morphine with naloxone " $2 + 2 < 4$ "	
Tachyphylactic	Acute decrease in response to a drug after initial/repeated administration	Repeat use of intranasal decongestant (eg, oxymetazoline) → ↓ therapeutic response (with rebound congestion)	

▶ PHARMACOLOGY — AUTONOMIC DRUGS

Autonomic receptors

Pelvic splanchnic nerves and CNs III, VII, IX and X are part of the parasympathetic nervous system. Adrenal medulla is directly innervated by preganglionic sympathetic fibers.

Sweat glands are part of the sympathetic pathway but are innervated by cholinergic fibers (sympathetic nervous system results in a "chold" sweat).

FAS1_2025_05-Pharmacology.indd 234 12/19/24 3:14 PM

Acetylcholine receptors

Nicotinic ACh receptors are ligand-gated channels allowing efflux of K^+ and influx of Na^+ and in some cases Ca^{2+} . Two subtypes: N_N (found in autonomic ganglia, adrenal medulla) and N_M (found in neuromuscular junction of skeletal muscle).

Muscarinic ACh receptors are G-protein–coupled receptors that usually act through 2nd messengers. 5 subtypes: M₁₋₅ found in heart, smooth muscle, brain, exocrine glands, and on sweat glands (cholinergic sympathetic).

Pain transmission

Nociceptive pain

Pain signals transmitted to the CNS in response to mechanical, thermal, or chemical stimuli. Transient receptor potential vanilloid ligand receptors cause Ca^{2+} influx–induced Na^{+} channel activation. Signals transmitted by $A\delta$ fibers (sharp, acute pain) or C fibers (dull, throbbing, chronic pain).

Processes involved in pain transmission:

- Transduction—blocked by local anesthetics, α₂-agonists, gabapentinoids, NSAIDs, acetaminophen, glucocorticoids
- Transmission—blocked by local anesthetics, α₂-agonists, opioids
- Modulation—blocked by TCAs, SSRIs, SNRIs, gabapentinoids
- Perception—blocked by α₂-agonists, opioids, TCAs, SSRIs, SNRIs

Neuropathic pain

Caused by neuronal dysfunction of the CNS or PNS. Transmitted via upregulation and persistent activation of voltage-gated Na⁺ channels. Example: diabetic peripheral neuropathy.

FAS1_2025_05-Pharmacology.indd 235 12/19/24 3:14 PM

Micturition control

Micturition center in pons regulates involuntary bladder function via coordination of sympathetic and parasympathetic nervous systems.

- ⊕ sympathetic → ↑ urinary retention.
- ⊕ parasympathetic → ↑ urine voiding. Some autonomic drugs act on smooth muscle receptors to treat bladder dysfunction.
- Baby one more time.

DRUGS	MECHANISM	APPLICATIONS	
Muscarinic agonists(eg, bethanechol)	 ⊕ M₃ receptor → contraction of detrusor smooth muscle → ↑ bladder emptying 	Urinary retention	
Muscarinic antagonists (eg, oxybutynin)	\bigcirc M ₃ receptor \rightarrow relaxation of detrusor smooth muscle \rightarrow \downarrow detrusor overactivity	Urgency incontinence	
2 Sympathomimetics (eg, mirabegron)	\oplus β_3 receptor \rightarrow relaxation of detrusor smooth muscle \rightarrow \uparrow bladder capacity	Urgency incontinence	
3 α ₁ -antagonists (eg, tamsulosin)	⊕ α₁-receptor → relaxation of smooth muscle (bladder neck, prostate) → ↓ urinary obstruction	ВРН	

Tissue distribution of adrenergic receptors

RECEPTOR	TISSUE	EFFECT(S)
α_1	Vascular smooth muscle	Vasoconstriction
	Visceral smooth muscle	Smooth muscle contraction
\mathfrak{A}_2	Pancreas	Inhibition of insulin secretion
	Presynaptic terminals	Inhibition of neurotransmitter release
	Salivary glands	Inhibition of salivary secretion
β ₁	Heart	† heart rate, contractility
	Kidney	† renin secretion
3 ₂	Bronchioles	Bronchodilation
	Cardiac muscle	† heart rate, contractility
	Liver	Glycogenolysis, glucose release
	Arterial smooth muscle	Vasodilation
	Pancreas	Stimulation of insulin secretion
β ₃	Adipose	† lipolysis

FAS1_2025_05-Pharmacology.indd 236 12/19/24 3:14 PM

G-protein-linked second messengers

RECEPTOR	G-PROTEIN CLASS	MAJOR FUNCTIONS
Adrene	rgic	
α_1	q	† vascular smooth muscle contraction, † pupillary dilator muscle contraction (mydriasis), † intestinal and bladder sphincter muscle contraction
α_2	i	↓ sympathetic (adrenergic) outflow, ↓ insulin release, ↓ lipolysis, ↑ platelet aggregation, ↓ aqueous humor production
β_1	S	↑ heart rate, ↑ contractility (one heart), ↑ renin release, ↑ lipolysis
β_2	S	Vasodilation, bronchodilation (two lungs), ↑ lipolysis, ↑ insulin release, ↑ glycogenolysis, ↓ uterine tone (tocolysis), ↑ aqueous humor production, ↑ cellular K ⁺ uptake
β_3	S	↑ lipolysis, ↑ thermogenesis in skeletal muscle, ↑ bladder relaxation
Choline	ergic	
M_1	q	Mediates higher cognitive functions, stimulates enteric nervous system, † exocrine gland secretions
M ₂	i	↓ heart rate, AV node conduction velocity, and atrial contractility
M ₃	q	† exocrine gland secretions, gut peristalsis, bladder contraction, bronchoconstriction, vasodilation, † pupillary sphincter muscle contraction (miosis), ciliary muscle contraction (accommodation)
Dopam	ine	
D_1	S	Relaxes renal vascular smooth muscle, activates direct pathway of striatum
D_2	i	Modulates transmitter release, especially in brain, inhibits indirect pathway of striatum
Histami	ne	
H ₁	q	† bronchoconstriction, airway mucus production, † vascular permeability/vasodilation, pruritus
H ₂	S	↑ gastric acid secretion
Vasopre	essin	
V_1	q	↑ vascular smooth muscle contraction
V ₂	S	\uparrow H ₂ O permeability and reabsorption via upregulating aquaporin-2 in collecting twobules (tubules) of kidney, \uparrow release of vWF

FAS1_2025_05-Pharmacology.indd 237 12/19/24 3:14 PM

Autonomic drugs

Release of norepinephrine from a sympathetic nerve ending is modulated by NE itself, acting on presynaptic α_2 -autoreceptors \rightarrow negative feedback.

Amphetamines use the NE transporter (NET) to enter the presynaptic terminal, where they utilize the vesicular monoamine transporter (VMAT) to enter neurosecretory vesicles. This displaces NE from the vesicles. Once NE reaches a concentration threshold within the presynaptic terminal, the action of NET is reversed, and NE is expelled into the synaptic cleft, contributing to the characteristics and effects of † NE observed in patients taking amphetamines.

DOPAMINERGIC Tyrosine L-DOPA Dopamine Dopamine Dopamine Amphetamine, Methylphenidate, Cocaine Dopamine receptor Dopamine receptor

SEROTONERGIC

FAS1_2025_05-Pharmacology.indd 238 12/19/24 3:14 PM

DRUG DRUG	ACTION	APPLICATIONS
Direct agonists		
Bethanechol	Activates bladder smooth muscle; resistant to AChE. Acts on muscarinic receptors; no nicotinic activity. "Bethany, call me to activate your bladder ."	Urinary retention.
Carbachol	Carbon copy of acetylcholine (but resistant to AChE).	Constricts pupil. Used for intraoperative miosis induction.
Methacholine	Stimulates muscarinic receptors in airway when inhaled.	Challenge test for diagnosis of asthma.
Pilocarpine	Contracts ciliary muscle of eye (open-angle glaucoma), pupillary sphincter (closed-angle glaucoma); resistant to AChE, can cross bloodbrain barrier. "You cry, drool, and sweat on your 'pilow."	Potent stimulator of sweat, tears, and saliva Open-angle and closed-angle glaucoma, xerostomia (Sjögren syndrome).
Indirect agonists (anti-	cholinesterases)	
Donepezil, rivastigmine, galantamine	† ACh.	lst line for Alzheimer disease (Don a Riva forgot the gala).
Neostigmine	† ACh. Neo = no blood-brain barrier penetration due to positive charge.	Postoperative and neurogenic ileus and urinary retention, myasthenia gravis, reversal of neuromuscular junction blockade (postoperative).
Pyridostigmine	† ACh; † muscle strength. Does not penetrate CNS. Pyridostigmine gets rid of myasthenia gravis.	Myasthenia gravis (long acting). Used with glycopyrrolate or hyoscyamine to control pyridostigmine adverse effects.
Physostigmine	† ACh. Phreely (freely) crosses blood-brain barrier as not charged → CNS.	Antidote for anticholinergic toxicity; phy sostigmine " phy xes" atropine overdose.
Anticholinesterase poisoning	Often due to organophosphates (eg, fenthion, parat Organophosphates commonly used as insecticide	· · · · · · · · · · · · · · · · · · ·
Muscarinic effects	Diarrhea, Urination, Miosis, Bronchospasm, Bradycardia, Emesis, Lacrimation, Sweating, Salivation.	DUMBBELSS. Reversed by atropine, a competitive inhibitor. Atropine can cross BBB to relieve CNS symptoms.
Nicotinic effects	Neuromuscular blockade (mechanism similar to succinylcholine).	Reversed by pralidoxime, regenerates AChE via dephosphorylation if given early. Must be coadministered with atropine to prevent transient worsening of symptoms. Pralidoxime does not readily cross BBB.
CNS effects	Respiratory depression, lethargy, seizures, coma.	· · · · · · · · · · · · · · · · · · ·

FAS1_2025_05-Pharmacology.indd 239 12/19/24 3:14 PM

PHARMACOLOGY ► PHARMACOLOGY—AUTONOMIC DRUGS

Muscarinic antagonists

DRUGS	ORGAN SYSTEMS	APPLICATIONS	
Atropine, Eye homatropine, tropicamide		Produce mydriasis and cycloplegia	
Benztropine, trihexyphenidyl	CNS	Parkinson disease ("park my Benz") Acute dystonia	
Glycopyrrolate	GI, respiratory	Parenteral: preoperative use to reduce airway secretions Oral: reduces drooling, peptic ulcer	
Hyoscyamine, dicyclomine	GI	Antispasmodics for irritable bowel syndrome	
lpratropium, tiotropium	Respiratory	COPD, asthma Duration: tiotropium > ipratropium	
Solifenacin, Oxybutynin, Flavoxate, Tolterodine	Genitourinary	Reduce bladder spasms and urge urinary incontinence (overactive bladder) Make bladder SOFT	
Scopolamine CNS		Motion sickness	
Atropine ORGAN SYSTEM	Muscarinic antagonist. Used to treat bradycardia	and for ophthalmic applications.	
Eye	† pupil dilation, cycloplegia	Blocks muscarinic effects (DUMBBELSS)	
Airway	Bronchodilation, ↓ secretions	of anticholinesterases, but not the nicotinic	
Heart	↑ heart rate	effects	
Stomach	↓ acid secretion		
Stomach Gut	↓ acid secretion ↓ motility		

FAS1_2025_05-Pharmacology.indd 240 12/19/24 3:14 PM

Sympathomimetics

DRUG	SITE	HEMODYNAMIC CHANGES	APPLICATIONS
Direct sympathomimeti	cs		
Albuterol, salmeterol, terbutaline	$\beta_2 > \beta_1$	† HR (little effect)	Albuterol for acute asthma/COPD. Salmeterol for serial (long-term) asthma/COPD. Terbutaline for acute bronchospasm in asthma and tocolysis.
Dobutamine	$\beta_1>\beta_2,\alpha$	-/↓ BP, † HR, † CO	Cardiac stress testing, acute decompensated heart failure (HF) with cardiogenic shock (inotrope)
Dopamine	$D_1 = D_2 > \beta > \alpha$	† BP (high dose), † HR, † CO	Unstable bradycardia, shock; inotropic and chronotropic effects at lower doses via β effects; vasoconstriction at high doses via α effects.
Epinephrine	$\beta > \alpha$	† BP (high dose), † HR, † CO	Anaphylaxis, asthma, shock, open-angle glaucoma; α effects predominate at high doses. Stronger effect at β_2 -receptor than norepinephrine.
Fenoldopam	D_1	↓ BP (vasodilation), ↑ HR,↑ CO	Postoperative hypertension, hypertensive crisis. Vasodilator (coronary, peripheral, renal, and splanchnic). Promotes natriuresis. Can cause hypotension, tachycardia, flushing, headache.
Isoproterenol	$\beta_1 = \beta_2$	♣ BP (vasodilation), ↑ HR,↑ CO	Electrophysiologic evaluation of tachyarrhythmias. Can worsen ischemia. Has negligible α effect.
Midodrine	$lpha_{ m l}$	↑ BP (vasoconstriction), ↓ HR, -/↓ CO	Autonomic insufficiency and postural hypotension. May exacerbate supine hypertension.
Mirabegron	β_3		Urinary urgency or incontinence or overactive bladder. Think "mira <mark>b3</mark> gron."
Norepinephrine	$\alpha_1>\alpha_2>\beta_1$	† BP, -/↓ HR (may have minor reflexive change in response to † BP due to α _l agonism outweighing direct β _l chronotropic effect), -/† CO	Hypotension, septic shock.
Phenylephrine	$\alpha_1 > \alpha_2$	↑ BP (vasoconstriction), ↓ HR, -/↓ CO	Hypotension (vasoconstrictor), ocular procedures (mydriatic), rhinitis (decongestant), ischemic priapism.
Indirect sympathomime	tics		
Amphetamine	Indirect general agonist, reuptake inhibitor, also releases stored catecholamines.		Narcolepsy, obesity, ADHD.
Cocaine	Indirect general agonist, reuptake inhibitor. Causes vasoconstriction and local anesthesia. Caution when giving β-blockers if cocaine intoxication is suspected (unopposed α ₁ activation → ↑↑↑ BP, coronary vasospasm).		Causes mydriasis in eyes with intact sympathetic innervation → used to confirm Horner syndrome.
Ephedrine	Indirect general a catecholamines.	gonist, releases stored	Nasal decongestion (pseudoephedrine), urinary incontinence, hypotension.

FAS1_2025_05-Pharmacology.indd 241 12/19/24 3:14 PM

Physiologic effects of sympathomimetics

NE \uparrow systolic and diastolic pressures as a result of α_l -mediated vasoconstriction $\rightarrow \uparrow$ mean arterial pressure \rightarrow reflex bradycardia. However, isoproterenol (rarely used) has little α effect but causes β_2 -mediated vasodilation, resulting in \downarrow mean arterial pressure and \uparrow heart rate through β_1 and reflex activity.

Phenylephrine response is suppressed but not reversed because it is a "pure" α -agonist (lacks β -agonist properties).

FAS1_2025_05-Pharmacology.indd 242 12/19/24 3:14 PM

PHARMACOLOGY ► PHARMACOLOGY—AUTONOMIC DRUGS

Sympatholytics (α_2 -agonists)

DRUG	APPLICATIONS	ADVERSE EFFECTS	
Clonidine, guanfacine	Hypertensive urgency (limited situations), ADHD, Tourette syndrome, symptom control in opioid withdrawal	CNS depression, bradycardia, hypotension, respiratory depression, miosis, rebound hypertension with abrupt cessation	
α -methyldopa	Hypertension in pregnancy	Direct Coombs ⊕ hemolysis, drug-induced lupus, hyperprolactinemia	
Tizanidine	Relief of spasticity	Hypotension, weakness, xerostomia	
x-blockers			
DRUG	APPLICATIONS	ADVERSE EFFECTS	
Nonselective			
Phenoxybenzamine	Irreversible. Pheochromocytoma (used preoperatively) to prevent catecholamine (hypertensive) crisis.	L	
Phentolamine	Reversible. Given to patients on MAO inhibitors who eat tyramine-containing foods and for severe cocaine-induced hypertension (2nd line). Also used to treat norepinephrine extravasation.		
α_1 selective (-osin endin	g)		
Prazosin, terazosin, doxazosin, tamsulosin	Urinary symptoms of BPH; P TSD (pr azosin); hypertension (except tamsulosin).	lst-dose orthostatic hypotension, dizziness, headache.	
α_2 selective			
Mirtazapine	Depression.	Sedation, † serum cholesterol, † appetite.	

FAS1_2025_05-Pharmacology.indd 243 12/19/24 3:14 PM

SECTION II PHARMACOLOGY → PHARMACOLOGY—AUTONOMIC DRUGS

β-blockers	Atenolol, betaxolol, bisoprolol, carvedilol, esmolo propranolol, timolol.	l, labetalol, metoprolol, nadolol, nebivolol,
APPLICATION	ACTIONS	NOTES/EXAMPLES
Angina pectoris	↓ heart rate and contractility → ↓ O ₂ consumption	
Glaucoma	↓ production of aqueous humor	Timolol
Heart failure	Blockade of neurohormonal stress → prevention of deleterious cardiac remodeling → ↓ mortality	Bisoprolol, carvedilol, metoprolol (β-blockers curb mortality)
Hypertension	↓ cardiac output, ↓ renin secretion (due to β ₁ -receptor blockade on JG cells)	
Hyperthyroidism/ thyroid storm	Symptom control (↓ heart rate, ↓ tremor)	Propranolol
Hypertrophic cardiomyopathy	↓ heart rate → ↑ filling time, relieving obstruction	
Migraine	↓ nitric oxide production	Effective for prevention
Myocardial infarction	↓ O ₂ demand (short-term), ↓ mortality (long-term)	
Supraventricular tachycardia (eg, atrial fibrillation)	↓ AV conduction velocity (class II antiarrhythmic)	Metoprolol, esmolol
Variceal bleeding	↓ hepatic venous pressure gradient and portal hypertension (prophylactic use)	Nadolol, propranolol, carvedilol for no portal circulation
ADVERSE EFFECTS	Erectile dysfunction, cardiovascular (bradycardia, AV block, HF), CNS (seizures, sleep alterations), dyslipidemia (metoprolol), masked hypoglycemia, asthma/COPD exacerbations	Use of β-blockers for acute cocaine-associated chest pain remains controversial due to unsubstantiated concern for unopposed α-adrenergic stimulation
SELECTIVITY	β_1 -selective antagonists ($\beta_1 > \beta_2$)—atenolol, betaxolol, bisoprolol, esmolol, metoprolol	Selective antagonists mostly go from A to M (β_1 with 1st half of alphabet)
	Nonselective antagonists $(\beta_1 = \beta_2)$ — n adolol, p ropranolol, timolol	NonZelective antagonists mostly go from N to Z $(\beta_2 \text{ with 2nd half of alphabet})$
	Nonselective α- and β-antagonists—carved <mark>ilol</mark> , labet <mark>alol</mark>	Nonselective α - and β -antagonists have modified suffixes (instead of "-olol")
	Nebivolol combines cardiac-selective β ₁ -adrenergic blockade with stimulation of β ₃ -receptors (activate NO synthase in the vasculature and ↓ SVR)	NebivOlol increases NO

12/19/24 3:14 PM FAS1_2025_05-Pharmacology.indd 244

Phosphodiesterase inhibitors

Phosphodiesterase (PDE) inhibitors inhibit PDE, which catalyzes the hydrolysis of cAMP and/or cGMP, and thereby increase cAMP and/or cGMP. These inhibitors have varying specificity for PDE isoforms and thus have different clinical uses.

TYPE OF INHIBITOR	MECHANISM OF ACTION	CLINICAL USES	ADVERSE EFFECTS
Nonspecific PDE inhibitor Theophylline	↓ cAMP hydrolysis → ↑ cAMP → bronchial smooth muscle relaxation → bronchodilation	COPD/asthma (rarely used)	Cardiotoxicity (eg, tachycardia, arrhythmia), neurotoxicity (eg, seizures, headache), abdominal pain
PDE-5 inhibitors Sildenafil, vardenafil, tadalafil, avanafil	 I hydrolysis of cGMP → ↑ cGMP → ↑ smooth muscle relaxation by enhancing NO activity → pulmonary vasodilation and ↑ blood flow in corpus cavernosum fills the penis 	Erectile dysfunction Pulmonary hypertension Benign prostatic hyperplasia (tadalafil only)	Facial flushing, headache, dyspepsia, hypotension in patients taking nitrates; "hot and sweaty," then headache, heartburn, hypotension Sildenafil only: cyanopia (bluetinted vision) via inhibition of PDE-6 (six) in retina
PDE-4 inhibitor Roflumilast	† cAMP in neutrophils, granulocytes, and bronchial epithelium	Severe COPD	Abdominal pain, weight loss, depression, anxiety, insomnia
PDE-3 inhibitor Milrinone	In cardiomyocytes: † cAMP → † Ca ²⁺ influx → † ionotropy and chronotropy In vascular smooth muscle: † cAMP → MLCK inhibition → vasodilation → ↓ preload and afterload	Acute decompensated HF with cardiogenic shock (inotrope)	Tachycardia, ventricular arrhythmias, hypotension
"Platelet inhibitors" Cilostazol ^a Dipyridamole ^b	In platelets: ↑ cAMP → inhibition of platelet aggregation	Intermittent claudication Stroke or TIA prevention (with aspirin) Cardiac stress testing (dipyridamole only, due to coronary vasodilation) Prevention of coronary stent restenosis	Nausea, headache, facial flushing, hypotension, abdominal pain

^aCilostazol is a PDE-3 inhibitor, but due to its indications is categorized as a platelet inhibitor together with dipyridamole. ^bDipyridamole is a nonspecific PDE inhibitor, leading to inhibition of platelet aggregation. It also prevents adenosine reuptake by platelets → ↑ extracellular adenosine → ↑ vasodilation.

FAS1_2025_05-Pharmacology.indd 245 12/19/24 3:14 PM

▶ PHARMACOLOGY—TOXICITIES AND ADVERSE EFFECTS

Ingested seafood toxins

Toxin actions include histamine release, total block of Na⁺ channels, or opening of Na⁺ channels to cause depolarization.

TOXIN	SOURCE	ACTION	SYMPTOMS	TREATMENT
Histamine (scombroid poisoning)	Spoiled dark-meat fish such as tuna, mahi-mahi, mackerel, and bonito	Bacterial histidine decarboxylase converts histidine to histamine Frequently misdiagnosed as fish allergy	Mimics anaphylaxis: oral burning sensation, facial flushing, erythema, urticaria, itching; may progress to bronchospasm, angioedema, hypotension	Antihistamines Albuterol +/– epinephrine
Tetrodotoxin	Pufferfish	Binds fast voltage-gated Na ⁺ channels in nerve tissue, preventing depolarization	Nausea, diarrhea, paresthesias, weakness, dizziness, loss of reflexes	Supportive
Ciguatoxin	Reef fish such as barracuda, snapper, and moray eel	Opens Na ⁺ channels, causing depolarization	Nausea, vomiting, diarrhea; perioral numbness; reversal of hot and cold sensations; bradycardia, heart block, hypotension	Supportive

Age-related changes in pharmacokinetics

Aging alters the passage of drugs through the body and standard doses can result in † plasma concentrations. Older patients often require reduced doses to prevent toxicity.

- Absorption—mostly unaffected.
- Distribution—↓ total body water (↓ V_d of hydrophilic drugs → ↑ concentration), ↑ total body fat
 (↑ V_d of lipophilic drugs → ↑ half-life).
- Metabolism—↓ hepatic mass and blood flow → ↓ first-pass metabolism, ↓ hepatic clearance.
 Phase I of drug metabolism is decreased; phase II is relatively preserved.
- Excretion—↓ renal mass and blood flow (↓ GFR) → ↓ renal clearance.

FAS1_2025_05-Pharmacology.indd 246 12/19/24 3:14 PM

Specific toxicity treatments

TOXIN	TREATMENT
Acetaminophen	N-acetylcysteine (replenishes glutathione)
AChE inhibitors, organophosphates	Atropine > pralidoxime
Antimuscarinic, anticholinergic agents	Physostigmine (crosses BBB), control hyperthermia
Arsenic	Dimercaprol, succimer
Benzodiazepines	Flumazenil
β -blockers	Atropine, glucagon, saline
Carbon monoxide	100% O ₂ , hyperbaric O ₂
Copper	"Penny"cillamine (penicillamine), trientine (3 copper pennies)
Cyanide	Hydroxocobalamin, nitrites + sodium thiosulfate
Dabigatran	Idarucizumab
Digoxin	Digoxin-specific antibody fragments
Direct factor Xa inhibitors (eg, api xa ban)	Ande <mark>xa</mark> net alfa
Heparin	Protamine sulfate
Iron (Fe)	De <mark>fe</mark> roxamine, de <mark>fe</mark> rasirox, de <mark>fe</mark> riprone
Lead	Penicillamine, calcium disodium EDTA, Dimercaprol, Succimer, (correct lead poisoning in PEDS patients)
Mercury	Di <mark>mer</mark> caprol, succi <mark>mer</mark>
Methanol, ethylene glycol (antifreeze)	Fomepizole > ethanol, dialysis
Methemoglobin	Methylene blue, vitamin C (reducing agent)
Methotrexate	Leucovorin
Opioids	Naloxone
Salicylates	NaHCO3 (alkalinizes urine), dialysis
TCAs	NaHCO3 (stabilizes cardiac cell membrane)
Warfarin	Vitamin K (delayed effect), PCC (prothrombin complex concentrate)/FFP (immediate effect)

Drug reactions—cardiovascular

DRUG REACTION	CAUSAL AGENTS	
Coronary vasospasm	Cocaine, Amphetamines, Sumatriptan, Ergot alkaloids (CASE)	
Cutaneous <mark>flush</mark> ing	Vancomycin, Adenosine, Niacin, Ca ²⁺ channel blockers, Echinocandins, Nitrates (flushed from VANCEN [dancing]) Vancomycin infusion reaction (formerly called red man syndrome)—histamine release → widespread	
	pruritic erythema. Infusion rate-dependent. Manage with slower infusion rate, diphenhydramine.	
Dilated cardiomyopathy	Alcohol, anthracycline (eg, doxorubicin, daunorubicin; prevent with dexrazoxane), trastuzumab	
Peripheral edema	Dihydropyridine Ca ²⁺ channel blockers (eg, amlodipine)	
Torsades de pointes	Associated with agents that prolong QT interval: Methadone, antiArrhythmics (class IA, III), antiBiotics (eg, macrolides, fluoroquinolones), antiC"ychotics (eg, ziprasidone), antiDepressants (eg, TCAs), antiEmetics (eg, ondansetron), antiFungals (eg, fluconazole) (Memorize your ABCDEF	

FAS1_2025_05-Pharmacology.indd 247 12/19/24 3:14 PM

Drug reactions—endocrine/reproductive

DRUG REACTION	CAUSAL AGENTS	NOTES
Adrenocortical insufficiency	HPA suppression secondary to chronic exogenous glucocorticoid use	Abrupt withdrawal of exogenous glucocorticoids leads to adrenal crisis
Diabetes insipidus	Lithium, demeclocycline	
Gynecomastia	Ketoconazole, cimetidine, spironolactone, GnRH analogs/antagonists, androgen receptor inhibitors, 5α-reductase inhibitors	
Hot flashes	SERMs (eg, tamoxifen, clomiphene, raloxifene)	
Hyperglycemia	Tacrolimus, protease inhibitors, niacin, HCTZ, glucocorticoids	The people need High glucose
Hyperprolactinemia	Typical antipsychotics (eg, haloperidol), atypical antipsychotics (eg, risperidone), metoclopramide, methyldopa, verapamil	Presents with hypogonadism (eg, infertility, amenorrhea, erectile dysfunction) and galactorrhea
Hyperthyroidism	Amiodarone, iodine, lithium	
Hypothyroidism	<mark>Am</mark> iodarone, <mark>l</mark> ithium	I <mark>am l</mark> ethargic
SIADH	Carbamazepine, Cyclophosphamide, SSRIs	Can't Concentrate Serum Sodium

DRUG REACTION	CAUSAL AGENTS	NOTES
Acute cholestatic hepatitis, jaundice	Macrolides (eg, erythromycin)	
Constipation	Antimuscarinics (eg, atropine), antipsychotics, opioids, non-dihydropyridine CCBs, ranolazine, amiodarone, aluminum hydroxide, loperamide, 5HT3 receptor antagonist (ondansetron), vincristine	
Diarrhea	Acamprosate, antidiabetic agents (acarbose, metformin, pramlintide), colchicine, cholinesterase inhibitors, lipid-lowering agents (eg, ezetimibe, orlistat), macrolides (eg, erythromycin), SSRIs, chemotherapy (eg, irinotecan)	
Focal to massive hepatic necrosis	Amanita phalloides (death cap mushroom), valproate, acetaminophen	
Hepatitis	Rifampin, isoniazid, pyrazinamide, statins, fibrates	
Pancreatitis	Diuretics (eg, furosemide, HCTZ), glucocorticoids, alcohol, valproate, azathioprine	Drugs generate a violent abdominal distress
Medication-induced esophagitis	Potassium chloride, NSAIDs, bisphosphonates, ferrous sulfate, tetracyclines Pills Not beneficial for food tube	Usually occurs at anatomic sites of esophageal narrowing (eg, near level of aortic arch); caustic effect minimized with upright posture and adequate water ingestion
Pseudomembranous colitis	Ampicillin, cephalosporins, clindamycin, fluoroquinolones, PPIs	Antibiotics predispose to superinfection by resistant <i>C difficile</i>

12/19/24 3:14 PM FAS1_2025_05-Pharmacology.indd 248

Drug reactions—hematologic

CAUSAL AGENTS	NOTES
Dapsone, clozapine, carbamazepine, propylthiouracil, methimazole, ganciclovir, colchicine	Drugs can cause pretty major granulocytes collapse
Carbamazepine, methimazole, NSAIDs, benzene, chloramphenicol, propylthiouracil	Can't make New blood cells properly
Penicillin, cephalosporins, methyldopa	Pooh classically munches on honey Coombs
Phenytoin, carbamazepine, minocycline, sulfa drugs, allopurinol, vancomycin	T cell-mediated hypersensitivity reaction. Also known as drug-induced hypersensitivity syndrome (DIHS) DRESSes partially cover my skin and viscera
Sulfonamides, dapsone, primaquine, aspirin, nitrofurantoin	
Hydrox yur ea, P henytoin, M ethotrexate, S ulfa drugs	You're having a mega blast with PMS
Heparin, quinidine, ganciclovir, vancomycin, linezolid	
Combined oral contraceptives, hormone replacement therapy, SERMs Testosterone supplements, epoetin alfa	Estrogen-mediated † blood viscosity and platelet accumulation
	Dapsone, clozapine, carbamazepine, propylthiouracil, methimazole, ganciclovir, colchicine Carbamazepine, methimazole, NSAIDs, benzene, chloramphenicol, propylthiouracil Penicillin, cephalosporins, methyldopa Phenytoin, carbamazepine, minocycline, sulfa drugs, allopurinol, vancomycin Sulfonamides, dapsone, primaquine, aspirin, nitrofurantoin Hydroxyurea, Phenytoin, Methotrexate, Sulfa drugs Heparin, quinidine, ganciclovir, vancomycin, linezolid Combined oral contraceptives, hormone replacement therapy, SERMs

${\bf Drug\ reactions-musculoskel et al/skin/connective\ tissue}$

DRUG REACTION	CAUSAL AGENTS	NOTES
Drug-induced lupus	Hydralazine, procainamide, quinidine	
Fat redistribution	Protease inhibitors, glucocorticoids	Fat protects glutes
Gingival hyperplasia	Cyclosporine, Ca ²⁺ channel blockers, phenytoin	Can Cause puffy gums
Hyperuricemia (gout)	Pyrazinamide, thiazides, furosemide, niacin, cyclosporine	Painful tophi and feet need care
Malignant hyperthermia	Inhaled anesthetics (eg, isoflurane)	Individuals with ryanodine receptor mutation; antidote is dantrolene
Myopathy	Statins, fibrates, niacin, colchicine, daptomycin, hydroxychloroquine, interferon-α, penicillamine, glucocorticoids	
Osteoporosis	Glucocorticoids, depot medroxyprogesterone acetate, GnRH agonists, aromatase inhibitors, anticonvulsants, heparin, PPIs	
Photosensitivity	Sulfonamides, amiodarone, tetracyclines, fluoroquinolones	Sat for photo
Rash (<mark>Stevens-Johnson</mark> syndrome)	Anti-epileptic drugs (especially lamotrigine), allopurinol, sulfa drugs, penicillin	Steven Johnson has epileptic allergy to sulfa drugs and penicillin
Teeth discoloration	Tet racyclines	Teeth racyclines
Tendon/cartilage damage	Fluoroquinolones	

FAS1_2025_05-Pharmacology.indd 249 12/19/24 3:14 PM

250 **SEC**1

SECTION II PHARMACOLOGY → PHARMACOLOGY—TOXICITIES AND ADVERSE EFFECTS

Drug	reactions-	–neurolo	gic

DRUG REACTION	CAUSAL AGENTS	NOTES
Cinchonism	Quinidine, quinine	Can present with tinnitus, hearing/vision loss psychosis, and cognitive impairment
Parkinson-like syndrome	Antipsychotics, metoclopramide	Cogwheel rigidity of arm
Peripheral neuropathy	Platinum agents (eg, cisplatin), isoniazid, vincristine, paclitaxel, phenytoin	Cis, it's very painful peripherally
Idiopathic intracranial hypertension	Corticosteroids, danazol, vitamin A, growth hormones, tetracyclines	Crime and debt Always grow head tension
Seizures	Isoniazid, bupropion, imipenem/cilastatin, tramadol	With seizures, I bit my tongue
Tardive dyskinesia	Antipsychotics, metoclopramide	
Visual disturbances	Topiramate (blurred vision/diplopia, haloes), hydroxychloroquine (↓ visual acuity, visual field defects), digoxin (yellow-tinged vision), isoniazid (optic neuritis), ivabradine (luminous phenomena), PDE-5 inhibitors (blue-tinged vision), ethambutol (color vision changes)	These horrible drugs iirritate Precious eyes
Orug reactions—renal/g		
DRUG REACTION	CAUSAL AGENTS	NOTES
Fanconi syndrome	Cisplatin, ifosfamide, expired tetracyclines, tenofovir	
Hemorrhagic cystitis	Cyclophosphamide, ifosfamide	Prevent by coadministering with mesna
Interstitial nephritis	Diuretics (Pee), NSAIDs (Pain-free), Penicillins and cephalosporins, PPIs, rifamPin, sulfa drugs	Remember the 5 P's
Nephrotoxicity	Cisplatin, aminoglycosides, amphotericin, vancomycin	
Drug reactions—respira	tory	
DRUG REACTION	CAUSAL AGENTS	NOTES
Dry cough	ACE inhibitors	
Pulmonary fibrosis	Methotrexate, nitrofurantoin, carmustine, bleomycin, busulfan, amiodarone	My nose cannot breathe bad air
Drug reactions—multio	rgan	
DRUG REACTION	CAUSAL AGENTS	NOTES
Antimuscarinic	Atropine, TCAs, H ₁ -blockers, antipsychotics	
Disulfiram-like reaction	lst-generation sulfonylureas, procarbazine, certain cephalosporins, griseofulvin, metronidazole	Sorry pals, can't go mingle

FAS1_2025_05-Pharmacology.indd 250 12/19/24 3:14 PM

PHARMACOLOGY → PHARMACOLOGY—TOXICITIES AND ADVERSE EFFECTS

Drugs affecting pupil size

† pupil size (mydriasis)

Anticholinergics (eg, atropine, TCAs, tropicamide, scopolamine, antihistamines)
Indirect sympathomimetics (eg, amphetamines, cocaine, LSD), meperidine
Direct sympathomimetics

↓ pupil size (miosis)

Sympatholytics (eg, α_2 -agonists) Opioids (except meperidine) Parasympathomimetics (eg, pilocarpine), organophosphates

Radial muscle contraction $(\alpha_1 \text{ receptor mediated})$

Ŗ

Sphincter muscle contraction (M₃ receptor mediated)

Ŗ

Cytochrome P-450 interactions (selected)

Inducers (+)	Substrates	Inhibitors (–)
St. John's wort	The ophylline	Sodium valproate
Phenytoin	OCPs	Isoniazid
Phenobarbital	Anti-epileptics	Cimetidine
Modafinil	War farin	Ketoconazole
Nevirapine		F luconazole
Rifampin		Acute alcohol overuse
Griseofulvin		Chloramphenicol
Carbamazepine		Erythromycin/clarithromycin
Chronic alcohol overuse		Sulfonamides
		Ciprofloxacin
		Omeprazole
		Am iodarone
		Ritonavir
		Grapefruit juice
St. John's funny funny (phenphen) mom never refuses greasy carbs and chronic alcohol	The OCPs are anti-war	SICK FACES come when I am really drinking grapefruit juice

Sulfa drugs

Sulfonamide antibiotics, Sulfasalazine,
Probenecid, Furosemide, Acetazolamide,
Celecoxib, Thiazides, Sulfonylureas.
Patients with sulfa allergies may develop
fever, urinary tract infection, StevensJohnson syndrome, hemolytic anemia,
thrombocytopenia, agranulocytosis, acute
interstitial nephritis, and urticaria (hives), and
photosensitivity.

Scary Sulfa Pharm FACTS

FAS1_2025_05-Pharmacology.indd 251 12/19/24 3:14 PM

SECTION II PHARMACOLOGY ► PHARMACOLOGY—MISCELLANEOUS

PHARM	ACOLOGY—	-MISCELLAN	IEOUS

Drug names		
ENDING	CATEGORY	EXAMPLE
Antimicrobial		-
-asvir	NS5A inhibitor	Ledipasvir
-bendazole	Antiparasitic/antihelminthic	Mebendazole
-buvir	NS5B inhibitor	Sofosbuvir
-cillin	Transpeptidase inhibitor	Ampicillin
-conazole	Ergosterol synthesis inhibitor	Ketoconazole
-cycline	Protein synthesis inhibitor	Tetracycline
-floxacin	Fluoroquinolone	Ciprofloxacin
-mivir	Neuraminidase inhibitor	Oseltamivir
-navir	Protease inhibitor	Ritonavir
-ovir	Viral DNA polymerase inhibitor	Acyclovir
-previr	NS3/4A inhibitor	Grazoprevir
-tegravir	Integrase inhibitor	Dolutegravir
-thromycin	Macrolide	Azithromycin
Antineoplastic		
-case	Recombinant uricase	Rasburicase
-mustine	Nitrosourea	Carmustine
-platin	Platinum compound	Cisplatin
-poside	Topoisomerase II inhibitor	Etoposide
-rubicin	Anthracycline	Doxorubicin
-taxel	Taxane	Paclitaxel
-tecan	Topoisomerase I inhibitor	Irinotecan
CNS		
-flurane	Inhaled anesthetic	Sevoflurane
-apine, -idone	Atypical antipsychotic	Quetiapine, risperidone
-azine	Typical antipsychotic	Thioridazine
-barbital	Barbiturate	Phenobarbital
-benazine	VMAT inhibitor	Tetrabenazine
-caine	Local anesthetic	Lidocaine
-capone	COMT inhibitor	Entacapone
-curium, -curonium	Nondepolarizing neuromuscular blocker	Atracurium, pancuronium
-giline	MAO-B inhibitor	Selegiline
-ipramine, -triptyline	TCA	Imipramine, amitriptyline
-triptan	5-HT _{IB/ID} agonist	Sumatriptan
-zepam, -zolam	Benzodiazepine	Diazepam, alprazolam

12/19/24 3:14 PM FAS1_2025_05-Pharmacology.indd 252

Drug names (continued)

ENDING	CATEGORY	EXAMPLE
Autonomic		
-chol	Cholinergic agonist	Bethanechol
-olol	β-blocker	Propranolol
-stigmine	AChE inhibitor	Neostigmine
-terol	eta_2 -agonist	Albuterol
-zosin	$lpha_{l}$ -blocker	Prazosin
Cardiovascular		
-afil	PDE-5 inhibitor	Sildenafil
-dipine	Dihydropyridine Ca ²⁺ channel blocker	Amlodipine
-parin	Low-molecular-weight heparin	Enoxaparin
-plase	Thrombolytic	Alteplase
-pril	ACE inhibitor	Captopril
-sartan	Angiotensin-II receptor blocker	Losartan
-xaban	Direct factor Xa inhibitor	Apixaban
Metabolic		
-gliflozin	SGLT-2 inhibitor	Dapagliflozin
-glinide	Meglitinide	Repaglinide
-gliptin	DPP-4 inhibitor	Sitagliptin
-glitazone	PPAR-γ activator	Pioglitazone
-glutide	GLP-1 analog	Liraglutide
-statin	HMG-CoA reductase inhibitor	Atorvastatin
Other		
-caftor	CFTR modulator	Lumacaftor
-dronate	Bisphosphonate	Alendronate
-lukast	CysLT1 receptor blocker	Montelukast
-lutamide	Androgen receptor inhibitor	Flutamide
-pitant	NK ₁ blocker	Aprepitant
-prazole	Proton pump inhibitor	Omeprazole
-prost	Prostaglandin analog	Latanoprost
-sentan	Endothelin receptor antagonist	Bosentan
-setron	5-HT3 blocker	Ondansetron
-steride	5α-reductase inhibitor	Finasteride
-tadine	H _l -antagonist	Loratadine
-tidine	H ₂ -antagonist	Cimetidine
-trozole	Aromatase inhibitor	Anastrozole
-vaptan	ADH antagonist	Tolvaptan

FAS1_2025_05-Pharmacology.indd 253 12/19/24 3:14 PM

PHARMACOLOGY ► PHARMACOLOGY—MISCELLANEOUS

Biologic agents

ENDING	CATEGORY	EXAMPLE	
Monoclonal antibodies (-mab)—target overexpressed cell surface receptors			
-ximab	Chimeric human-mouse monoclonal antibody	Rituximab	
- <mark>zu</mark> mab	Humanized monoclonal antibody	Bevacizumab	
-umab	Human monoclonal antibody	Denosumab	
Small molecule inhibitors (-ib)—target intracellular molecules			
-ciclib	Cyclin-dependent kinase inhibitor	Palbociclib	
-coxib	COX-2 inhibitor	Celecoxib	
-parib	Poly(ADP-ribose) polymerase inhibitor	Olaparib	
-rafenib	BRAF inhibitor	Vemurafenib	
-tinib	Tyrosine kinase inhibitor	Imatinib	
-zomib	Proteasome inhibitor	Bortezomib	
Interleukin receptor modulators (-kin)—agonists and antagonists of interleukin receptors			
-leukin	Inter <mark>leu</mark> kin-2 agonist/analog	Aldesleukin	
-kin <mark>ra</mark>	Interleukin receptor antagonist	Anakinra	

FAS1_2025_05-Pharmacology.indd 254 12/19/24 3:14 PM