Intern_Roster

March 4, 2019

1 Intern Roster

1.1 Introduction

We have 11 interns. Let each intern be i.

We have 13 rotations. Let each rotation be j. There are also three annual leave rotations. These shall be j values 14, 15, 16. Therefore the total is 16.

We have 54 weeks for the whole period of the roster. Let each week be *k*.

j	Rotation Label	Duration	Maximum Interns per week
1	CPD-G	8	2
2	CPD-V	4	1
3	AP	4	1
4	MIC	4	1
5	MCH	2	1
6	CPCa	3	1
7	CPM	3	no limit
8	CPK	2	no limit
9	IP	4	2
10	DISP	3	no limit
11	CPC	5	no limit
12	QUM	1	1
13	Н	1	1
14	A/L_1	1	11
15	$A/L_2.1$	1	6
16	A/L_2.2	1	5

1.2 Decision Variables

$$x^{i}_{jk}$$
 C_{ij}
 $y^{i}_{j,k+\alpha}$ where $\alpha \in \mathbb{Z}$

1.3 Objective Function

$$\max \sum_{i} \sum_{j} \sum_{k} C_{ij} x_{jk}^{i}$$

1.4 Constraints

Intern Rotation Completion Constraint

Let $x_{jk}^i = 1$ if person i is doing rotation j for week k.

$$\sum_{k} x_{jk}^{i} \ge 1 \quad \forall i, \quad \forall j$$

$$\begin{array}{l} x_{1,1}^1 + x_{1,2}^1 + \cdots + x_{1,54}^1 \geq 1 \\ x_{1,1}^2 + x_{1,2}^2 + \cdots + x_{1,54}^2 \geq 1 \\ \vdots \\ x_{1,1}^{11} + x_{1,2}^{11} + \cdots + x_{1,54}^{11} \geq 1 \\ \vdots \\ \vdots \\ x_{16,1}^{11} + x_{16,2}^{11} + \cdots + x_{16,54}^{11} \geq 1 \\ Intern \ Rotation \ Capacity \ Constraint \end{array}$$

$$\sum_{i} x_{1,k}^{i} \leq 2 \quad \forall k$$

$$\sum_{i} x_{2,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{3,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{4,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{5,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{6,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{7,k}^{i} \geq 0 \quad \forall k$$

$$\sum_{i} x_{9,k}^{i} \geq 0 \quad \forall k$$

$$\sum_{i} x_{10,k}^{i} \geq 0 \quad \forall k$$

$$\sum_{i} x_{11,k}^{i} \geq 0 \quad \forall k$$

$$\sum_{i} x_{12,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{13,k}^{i} \leq 1 \quad \forall k$$

$$\sum_{i} x_{14,k}^{i} = 11 \quad \forall k$$

$$\sum_{i=1}^{6} x_{15,k}^{i} = 6 \quad \forall k$$

$$\sum_{i=7}^{11} x_{16,k}^{i} = 5 \quad \forall k$$

Intern Rotation Duration Constraint

$$\sum_{\alpha=0}^{7} y_{1,k+\alpha}^{i} = 8 \text{ if } x_{1,k}^{i} = 1$$

$$\sum_{\alpha=0}^{3} y_{2,k+\alpha}^{i} = 4 \text{ if } x_{2,k}^{i} = 1$$

$$\sum_{\alpha=0}^{3} y_{3,k+\alpha}^{i} = 4 \text{ if } x_{3,k}^{i} = 1$$

$$\sum_{\alpha=0}^{3} y_{4,k+\alpha}^{i} = 4 \text{ if } x_{4,k}^{i} = 1$$

$$\sum_{\alpha=0}^{1} y_{5,k+\alpha}^{i} = 2 \text{ if } x_{5,k}^{i} = 1$$

$$\sum_{\alpha=0}^{2} y_{6,k+\alpha}^{i} = 3 \text{ if } x_{6,k}^{i} = 1$$

$$\sum_{\alpha=0}^{2} y_{7,k+\alpha}^{i} = 3 \text{ if } x_{7,k}^{i} = 1$$

$$\sum_{\alpha=0}^{3} y_{9,k+\alpha}^{i} = 4 \text{ if } x_{9,k}^{i} = 1$$

$$\sum_{\alpha=0}^{2} y_{10,k+\alpha}^{i} = 4 \text{ if } x_{10,k}^{i} = 1$$

$$\sum_{\alpha=0}^{4} y_{11,k+\alpha}^{i} = 3 \text{ if } x_{11,k}^{i} = 1$$

$$y_{12,k}^{i} = 1 \text{ if } x_{12,k}^{i} = 1$$

$$y_{13,k}^{i} = 1 \text{ if } x_{13,k}^{i} = 1$$

$$y_{14,k}^i = 1$$
 if $x_{14,k}^i = 1$

$$y_{15,k}^i = 1$$
 if $x_{15,k}^i = 1$

$$y_{16,k}^i = 1$$
 if $x_{16,k}^i = 1$

Intern Leave Constraint

$$\sum_{i} x_{14,k}^{i} = 11z_{k} \quad \text{if} \quad \sum_{k} z_{k} = 1$$

$$\sum_{i} x_{15,k}^{i} = 6z_k \quad \text{if} \quad \sum_{k} z_k = 1$$

$$\sum_{i} x_{16,k}^{i} = 5z_{k} \quad \text{if} \quad \sum_{k} z_{k} = 1$$