Field Examination in Econometrics May 2013 PART A

- 1. Suppose Y = XB + e satisfies the Gauss-Markov assumptions, e is normal, and every element of X has an absolute value less than 5. Consider the following estimator: For any sample size n > 20, discard all but the last 20 observations, and let \hat{B} be the ordinary least squares estimate of B using just these last 20 observations. Answer each of the following questions, and explain why your answer is correct:
 - a. Is \widehat{B} unbiased?
 - b. Is \widehat{B} most efficient among linear estimators?
 - c. Is \widehat{B} consistent?
 - d. Is B asymptotically normal?
- e. Suppose that instead of the last 20 observations, we now used the last n/3 observations to estimate \widehat{B} . Which of your answers above would change and which would stay the same?
- 2. Suppose we have n iid observations of X_i, Z_i . The variable X_i equals one with probability p and equals zero with probability 1-p. The variable Z_i equals one with probability 2p and equals zero with probability 1-2p. Assume that X_i and Z_i are not independent of each other, and we don't know how they are related. Describe the best estimator for p you can think of (best meaning consistent and smallest asymptotic variance).
- 3. Let X_i for i = 1, ..., n be iid random variables with $E(X_i) = 3$ and finite variance σ^2 . Let \overline{X} equal the sample average of $X_1, ..., X_n$. Let Z_i for i = 1, ..., n be a sequence of random variables having $plim(n^{1/2}Z_n) = 2$. Let $Y_n = n\overline{X}Z_n$ and let $W_n = (Y_n 6)^2$.
 - a. What is the asymptotic distribution of Y_n ? Prove your answer.
 - b. What is the asymptotic distribution of W_n ? Prove your answer.
- 4. Let (X_i, Y_i) be an iid random sample i = 1, ..., n. Assume X_i and Y_i are normal with $E(X_i) = E(Y_i) = \mu_i$ (note that the mean μ_i is different for each observation i), $Cov(X_i, Y_i) = 0$, and $var(X_i) = var(Y_i) = \sigma^2$. Note that this problem is nonstandard, because the parameters are $\mu_1, ..., \mu_n, \sigma^2$, so the number of parameters is n+1, which increases with the sample size.
 - a. What is the maximum likelihood estimate $\hat{\mu}_i$ for each μ_i from i = 1, ..., n?
 - b. Is each $\widehat{\mu}_i$ unbiased?
 - c. Is each $\widehat{\mu}_i$ consistent?
- d. What is the maximum likelihood estimate $\hat{\sigma}^2$ for σ^2 (hint, you'll need to substitute $\hat{\mu}_i$ into the score function)?
 - e. What does $plim(\widehat{\sigma}^2)$ equal?
 - f. Using your answer to part e., construct a consistent estimator for σ^2 .