

1/38

Compiladores

Linguagens Regulares, Expressões Regulares e Gramáticas Regulares

> Artur Pereira <artur@ua.pt>, Miguel Oliveira e Silva <mos@ua.pt

> > DETI, Universidade de Aveiro

Ano letivo de 2021-2022

Sumário

- Análise lexical revisitada
- 2 Linguagens regulares
- 3 Expressões regulares
- 4 Gramáticas regulares
- 5 Equivalência entre expressões regulares e gramáticas regulares

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Papel da análise lexical

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Papel da análise lexical

- Converte a sequência de caracteres numa sequência de tokens
- Um token é um tuplo <token-name, attribute-value>
 - token-name é um símbolo (abstrato) representando um tipo de entrada
 - attribute-value representa o valor corrente desse símbolo
- Exemplo:

$$pos = pos + vel * 5;$$

é convertido em

- Tipicamente, alguns símbolos são descartados pelo analisador lexical
- O conjunto dos tokens corresponde a uma linguagem regular
 - os tokens são descritos usando expressões regulares e/ou gramáticas regulares
 - são reconhecidos usando autómatos finitos

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da sequinte forma:

- **1** O conjunto vazio, \emptyset , é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.

Note que:

- em $a \in A$, a é uma letra do alfabeto
- em $\{a\}$, a é uma palavra com apenas uma letra
- Numa analogia Java, o primeiro é um 'a' e o segundo um "a"

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da sequinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são LR, então a sua reunião $(L_1 \cup L_2)$ é uma LR.

Exemplo:

- Seja $L_1 = \{ab, c\}$, uma LR sobre o alfabeto $A = \{a, b, c\}$
- e $L_2 = \{bb, c\}$, outra LR sobre o mesmo alfabeto A
- então, $L_3 = L_1 \cup L_2 = \{ab, bb, c\}$ é uma LR sobre o mesmo alfabeto A

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são LR, então a sua reunião $(L_1 \cup L_2)$ é uma LR.
- 4 Se L_1 e L_2 são LR, então a sua concatenação $(L_1 \cdot L_2)$ é uma LR.

Exemplo:

- Seja $L_1 = \{ab, c\}$, uma LR sobre o alfabeto $A = \{a, b, c\}$
- e $L_2 = \{bb, c\}$, outra LR sobre o mesmo alfabeto A
- então, $L_3=L_1\cdot L_2=\{{\tt abbb},{\tt abc},{\tt cbb},{\tt cc}\}$ é uma LR sobre o mesmo alfabeto A

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da sequinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são LR, então a sua reunião $(L_1 \cup L_2)$ é uma LR.
- 4 Se L_1 e L_2 são LR, então a sua concatenação $(L_1 \cdot L_2)$ é uma LR.
- **5** Se L_1 é uma LR, então o seu fecho de Kleene $(L_1)^*$ é uma LR.

Exemplo:

- Seja $L_1 = \{ab, c\}$, uma LR sobre o alfabeto $A = \{a, b, c\}$
- então, $L_2={L_1}^*=\{\varepsilon, ab, c, abab, abc, cab, cc, \cdots\}$ é uma LR sobre o mesmo alfabeto

A classe das **linguagens regulares** sobre o alfabeto A define-se indutivamente da sequinte forma:

- O conjunto vazio, ∅, é uma linguagem regular (LR).
- 2 Qualquer que seja o $a \in A$, o conjunto $\{a\}$ é uma LR.
- 3 Se L_1 e L_2 são LR, então a sua reunião $(L_1 \cup L_2)$ é uma LR.
- 4 Se L_1 e L_2 são LR, então a sua concatenação $(L_1 \cdot L_2)$ é uma LR.
- **5** Se L_1 é uma LR, então o seu fecho de Kleene $(L_1)^*$ é uma LR.
- 6 Nada mais é LR.

Note que

• $\{\varepsilon\}$ é uma LR, uma vez que $\{\varepsilon\} = \emptyset^*$.

Definição de linguagem regular exemplo #1

 $\mathcal Q$ Mostre que a linguagem L, constituída pelo conjunto dos números binários começados em 1 e terminados em 0 é uma LR sobre o alfabeto $A=\{0,1\}$

 \mathcal{R}

- pela regra 2 (elementos primitivos), {0} e {1} são LR
- pela regra 3 (união), $\{0,1\} = \{0\} \cup \{1\}$ é uma LR
- pela regra 5 (fecho), $\{0,1\}^*$ é uma LR
- pela regra 4 (concatenação), $\{1\} \cdot \{0,1\}^*$ é uma LR
- pela regra 4, ({1} · {0, 1}*) · {0} é uma LR
- logo, $L = \{1\} \cdot \{0, 1\}^* \cdot \{0\}$ é uma LR

Expressões regulares Definição

O conjunto das **expressões regulares** sobre o alfabeto A define-se indutivamente da seguinte forma:

- ∅ é uma expressão regular (ER) que representa a LR {}.
- **2** Qualquer que seja o $a \in A$, a é uma ER que representa a LR $\{a\}$.
- 3 Se e_1 e e_2 são ER representando respetivamente as LR L_1 e L_2 , então $(e_1|e_2)$ é uma ER representando a LR $L_1 \cup L_2$.
- 4 Se e_1 e e_2 são ER representando respetivamente as LR L_1 e L_2 , então (e_1e_2) é uma ER representando a LR $L_1.L_2$.
- **5** Se e_1 é uma ER representando a LR L_1 , então $(e_1)^*$ é uma ER representando a LR $(L_1)^*$.
- 6 Nada mais é expressão regular.

• É habitual representar-se por ε a ER \emptyset^* . Representa a linguagem $\{\varepsilon\}$.

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Expressões regulares

Precedência dos operadores regulares

- Na escrita de expressões regulares assume-se a seguinte precedência dos operadores:
 - fecho (*)
 - concatenação
 - escolha (|).
- O uso destas precedências permite a queda de alguns parêntesis e consequentemente uma notação simplificada.

Exemplo: a expressão regular

$$e_1|e_2 e_3*$$

recorre a esta precedência para representar a expressão regular

$$(e_1)|(e_2((e_3)*))$$

Expressões regulares Exemplos

Q Determine uma ER que represente o conjunto dos números binários começados em 1 e terminados em 0.

```
\mathcal{R} 1(0|1)*0
```

- $\mathcal Q$ Determine uma ER que represente as sequências definidas sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ que satisfazem o requisito de qualquer \mathtt{b} ter um \mathtt{a} imediatamente à sua esquerda e um \mathtt{c} imediatamente à sua direita.
- ${\cal R}$ O a pode aparecer sozinho; o c também; o b, se aparecer, tem de ter um a à sua esquerda e um c à sua direita. Ou seja, pode considerar-se que as palavras da linguagem são sequências de 0 ou mais a, c ou abc.

$$(a|abc|c)*$$

 $\ensuremath{\mathcal{Q}}$ Determine uma ER que represente as sequências binárias com um número par de zeros.

$$\mathcal{R}$$
 $(1*01*01*)*|1* = 1*(01*01*)*$

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Expressões regulares Propriedades da operação de escolha

- A operação de escolha goza das propriedades:
 - comutativa: $e_1 | e_2 = e_2 | e_1$
 - associativa: $e_1 \mid (e_2 \mid e_3) = (e_1 \mid e_2) \mid e_3 = e_1 \mid e_2 \mid e_3$
 - idempotência: $e_1 \mid e_1 = e_1$
 - existência de elemento neutro: $e_1 \mid () = () \mid e_1 = e_1$

Exemplo:

- comutativa: a | ab = ab | a
- associativa: a | (b | ca) = (a | b) | ca = a | b | ca
- idempotência: ab | ab = ab
- não há interesse prático em fazer uma união com o conjunto vazio
- assim, em algumas ferramentas (por exemplo o ANTLR), () representa a palavra vazia, não o conjunto vazio

Expressões regulares

Propriedades da operação de concatenação

- A operação de concatenação goza das propriedades:
 - associativa: $e_1(e_2e_3) = (e_1e_2)e_3 = e_1e_2e_3$
 - existência de elemento neutro: $e_1 \varepsilon = \varepsilon e_1 = e_1$
 - existência de elemento absorvente: $e_1() = ()e_1 = ()$
 - não goza da propriedade comutativa

- Exemplo: seja $e_1=a$, $e_2=bc$, e $e_3=c$
 - associativa: a(bcc) = (abc)c = abcc

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Expressões regulares Propriedades distributivas

- A combinação das operações de concatenação e escolha gozam das propriedades:
 - distributiva à esquerda da concatenação em relação à escolha:

$$e_1(e_2 \mid e_3) = e_1e_2 \mid e_1e_3$$

distributiva à direita da concatenação em relação à escolha:

$$(e_1 \mid e_2)e_3 = e_1e_3 \mid e_2e_3$$

- Exemplo:
 - distributiva à esquerda da concatenação em relação à escolha:

$$ab(a|cc) = aba|abcc$$

distributiva à direita da concatenação em relação à escolha:

$$(ab | a) cc = abcc | acc$$

Expressões regulares

Propriedades da operação de fecho de Kleene

- A operação de fecho goza das propriedades:
 - $(e^*)^* = e^*$
 - $(e_1^* \mid e_2^*)^* = (e_1 \mid e_2)^*$
 - $(e_1 \mid e_2^*)^* = (e_1 \mid e_2)^*$
 - $(e_1^* \mid e_2)^* = (e_1 \mid e_2)^*$
- Mas atenção:
 - $(e_1 \mid e_2)^* \neq e_1^* \mid e_2^*$
 - $(e_1 e_2)^* \neq e_1^* e_2^*$
- Exemplo:
 - $b(a^*)^* = ba^*$
 - $(a^* | b^*)^* = (a | b)^*$
 - $(a | b^*)^* = (a | b)^*$
 - $(a^* | b)^* = (a | b)^*$

- $(a|b)^* \neq a^*|b^*$
- $(ab)^* \neq a^*b^*$

Expressões regulares Exemplos

 $\mathcal Q$ Sobre o alfabeto $A=\{0,1\}$ construa uma expressão regular que represente a linguagem

$$L = \{ \omega \in A^* : \#(0, \omega) = 2 \}$$

$$R$$
 1*01*01*

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt a,\mathtt b,\cdots,\mathtt z\}$ construa uma expressão regular que represente a linguagem

$$L = \{ \omega \in A^* : \#(\mathbf{a}, \omega) = 3 \}$$

$$\mathcal{R}$$
 (b|c|···|z)*a(b|c|···|z)*a(b|c|···|z)*

 Na última resposta, onde estão as reticências (...) deveriam estar todas as letras entre de y. Parece claro que faz falta uma forma de simplificar este tipo de expressões

Expressões regulares Extensões notacionais comuns

uma ou mais ocorrências:

$$e^+ = e.e^*$$

uma ou nenhuma ocorrência:

$$e? = (e|\varepsilon)$$

um símbolo do sub-alfabeto dado:

$$[a_1 a_2 a_3 \cdots a_n] = (a_1 | a_2 | a_3 | \cdots | a_n)$$

um símbolo do sub-alfabeto dado:

$$[a_1 - a_n] = (a_1 \mid \cdots \mid a_n)$$

um símbolo do alfabeto fora do conjunto dado:

$$[a_1 a_2 a_3 \cdots a_n], \quad [a_1 - a_n]$$

Em ANTLR:

- x..y é equivalente a [x-y]
- ~ [abc] é equivalente a [^abc]

Expressões regulares Outras extensões notacionais

n ocorrências de:

$$e\{n\} = \underbrace{e.e.\cdots.e}_{n}$$

• de n_1 a n_2 ocorrências:

$$e\{n_1, n_2\} = \underbrace{e.e.\cdots.e}_{n_1, n_2}$$

n ou mais ocorrências:

$$e\{n,\} = \underbrace{e.e.\cdots.e}_{n}$$

- representa um símbolo qualquer
- representa palavra vazia no início de linha
- \$ representa palavra vazia no fim de linha
- \< representa palavra vazia no início de palavra
- \> representa palavra vazia no fim de palavra

19/38

Fm ANTI R:

Pode ser feito através de predicados semânticos

Expressões regulares

Exemplos de extensões notacionais

 $\mathcal Q$ Sobre o alfabeto $A=\{0,1\}$ construa uma expressão regular que reconheça a linguagem

$$L = \{ \omega \in A^* : \#(0, \omega) = 2 \}$$

$$\mathcal{R} \ 1^*01^*01^* = (1^*0)(1^*0)1^* = (1^*0)\{2\}1^*$$

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt a,\mathtt b,\cdots,\mathtt z\}$ construa uma expressão regular que reconheça a linguagem

$$L = \{ \omega \in A^* : \#(\mathbf{a}, \omega) = 3 \}$$

$$\mathcal{R} \ (b|c|\cdots|z)^* a(b|c|\cdots|z)^* a(b|c|\cdots|z)^* a(b|c|\cdots|z)^* \\ = ([b-z]^* a) ([b-z]^* a) ([b-z]^* a) [b-z]^* \\ = ([b-z]^* a) \{3\} [b-z]^*$$

Gramáticas regulares Introdução

Exemplo de gramática regular

$$\begin{array}{c} S \to \mathbf{a} \ X \\ X \to \mathbf{a} \ X \\ \mid \ \mathbf{b} \ X \\ \mid \ \varepsilon \end{array}$$

Exemplo de gramática não regular

$$\begin{array}{c} S \rightarrow \mathbf{a} \ S \ \mathbf{a} \\ \mid \ \mathbf{b} \ S \ \mathbf{b} \\ \mid \ \mathbf{a} \end{array}$$

- Letras minúsculas representam símbolos terminais e letras maísculas representam símbolos não terminais (o contrário do ANTLR)
- Nas gramáticas regulares os símbolos não terminais apenas podem aparecer no fim

Gramáticas regulares Definição

Uma gramática regular é um quádruplo G=(T,N,P,S), onde

- T é um conjunto finito n\u00e3o vazio de s\u00eambolos terminais;
- N, sendo $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos não terminais;
- P é um conjunto de produções (ou regras de rescrita), cada uma da forma $\alpha \to \beta$, onde
 - $\alpha \in N$
 - $\beta \in T^* \cup T^*N$
- $S \in N$ é o símbolo inicial.

- A linguagem gerada por uma gramática regular é regular
 - Logo, é possível converter-se uma gramática regular numa expressão regular que represente a mesma linguagem e vice-versa

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Gramáticas regulares

Operações sobre gramáticas regulares

- As gramáticas regulares são fechadas sob as operações de
 - reunião
 - concatenação
 - fecho
 - intersecção
 - complementação
- As operações de intersecção e complementação serão abordadas mais adiante através de autómatos finitos

Reunião de gramáticas regulares Exemplo

Q Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática regular que represente a linguagem

$$L=L_1\cup L_2$$
 sabendo que
$$L_1=\{\omega\mathtt{a}\,:\,\omega\in T^*\}\qquad L_2=\{\mathtt{a}\omega\,:\,\omega\in T^*\}$$

 \mathcal{R}

• Comece-se por obter as gramáticas regulares que representam L_1 e L_2 .

Reunião de gramáticas regulares Exemplo

Q Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1 \cup L_2$$

sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \} \qquad L_2 = \{ \mathbf{a} \omega : \omega \in T^* \}$$

 \mathcal{R}

• E acrescentam-se as transições $S \to S_1$ e $S \to S_2$ que permitem escolher as palavras de L_1 e de L_2 , sendo S o novo símbolo inicial.

Reunião de gramáticas regulares Algoritmo

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas regulares quaisquer, com $N_1\cap N_2=\emptyset$. A gramática G=(T,N,P,S) onde

é regular e gera a linguagem $L = L(G_1) \cup L(G_2)$.

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

[•] Para i=1,2, a nova produção $S \to S_i$ permite que G gere a linguagem $L(G_i)$

Concatenação de gramáticas regulares Exemplo

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática regular que represente a linguagem

$$L=L_1\cdot L_2$$
 sabendo que
$$L_1=\{\omega \mathtt{a} \,:\, \omega \in T^*\} \qquad L_2=\{\mathtt{a}\omega \,:\, \omega \in T^*\}$$

 \mathcal{R}

• Comece-se por obter as gramáticas regulares que representam L_1 e L_2 .

Concatenação de gramáticas regulares Exemplo

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1 \cdot L_2$$
 sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \}$$
 $L_2 = \{ \mathbf{a} \omega : \omega \in T^* \}$

 \mathcal{R}

• A seguir substitui-se $S_1 \to a$ por $S_1 \to a$ S_2 , de modo a impor que a segunda parte das palavras têm de pertencer a L_2

Concatenação de gramáticas regulares Algoritmo

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas regulares quaisquer, com $N_1\cap N_2=\emptyset$. A gramática G=(T,N,P,S) onde

$$T = T_1 \cup T_2$$

$$N = N_1 \cup N_2$$

$$P = \{A \to \omega S_2 : (A \to \omega) \in P_1 \land \omega \in {T_1}^*\}$$

$$\cup \{A \to \omega : (A \to \omega) \in P_1 \land \omega \in {T_1}^*N_1\}$$

$$\cup P_2$$

$$S = S_1$$

é regular e gera a linguagem $L = L(G_1) \cdot L(G_2)$.

- As produções da primeira gramática do tipo $\beta \in T^*$ ganham o símbolo inicial da segunda gramática no fim
- As produções da primeira gramática do tipo $\beta \in T^*N$ mantêm-se inalteradas
- As produções da segunda gramática mantêm-se inalteradas

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Fecho de gramáticas regulares Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática regular que represente a linguagem

$$L={L_1}^*$$
 sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \}$$

 \mathcal{R}

$$S_1 o a \ S_1$$

 $\mid \ b \ S_1$
 $\mid \ c \ S_1$
 $\mid \ a$

Começa-se pela obtenção da gramática regular que representa L₁.

Fecho de gramáticas regulares Exemplo

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática regular que represente a linguagem

$$L = L_1^*$$

sabendo que

$$L_1 = \{ \omega \mathbf{a} : \omega \in T^* \}$$

 \mathcal{R}

- Acrescentando-se a transição $S \to S_1$ e substituindo-se $S_1 \to a$ por $S_1 \to a$ S, permite-se iterações sobre S_1
- Acrescentando-se $S \to \varepsilon$, permite-se 0 ou mais iterações

Fecho de gramáticas regulares Algoritmo

 ${\cal D}~$ Seja $G_1=(T_1,N_1,P_1,S_1)$ uma gramática regular qualquer. A gramática G=(T,N,P,S) onde

$$\begin{array}{lll} T & = & T_1 \\ N & = & N_1 \, \cup \, \{S\} \quad \mathsf{com} \quad S \not \in N_1 \\ P & = & \{S \rightarrow \varepsilon, S \rightarrow S_1\} \\ & & \cup \, \{A \rightarrow \omega S \, : \, (A \rightarrow \omega) \in P_1 \, \wedge \, \omega \in {T_1}^*\} \\ & & \cup \, \{A \rightarrow \omega \, : \, (A \rightarrow \omega) \in P_1 \, \wedge \, \omega \in {T_1}^*N_1\} \end{array}$$

é regular e gera a linguagem $L = (L(G_1))^*$.

- As novas produções $S \to \varepsilon$ e $S \to S_1$ garantem que $(L(G_1))^n \subseteq L(G)$, para qualquer $n \ge 0$
- As produções que só têm terminais ganham o novo símbolo inicial no fim
- As produções que terminam num não terminal mantêm-se inalteradas

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Conversão de uma ER em uma GR exemplo

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

Coloque-se de forma arbórea

Conversão de uma ER em uma GR exemplo

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

Após converter as folhas (elementos primitivos) em GR

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Conversão de uma ER em uma GR exemplo

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar a escolha (reunião) de baixo

 $\mathcal Q$ Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Simplificando

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar o fecho

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar a concatenação da esquerda

 $\mathcal Q$ Construa uma GR equivalente à ER $e = a|a(a|b|c)^*a$.

 \mathcal{R}

Após aplicar a concatenação da direita

Maio de 2022

 $\mathcal Q$ Construa uma GR equivalente à ER $e=a|a(a|b|c)^*a$.

 \mathcal{R}

e simplificando

$$S
ightarrow$$
 a \mid a S_8 $S_8
ightarrow$ a $S_8 \mid$ b $S_8 \mid$ c $S_8 \mid$ a

Finalmente após aplicar escolha (reunião) de cima

Conversão de uma ER em uma GR Abordagem

- Dada uma expressão regular qualquer ela é:
 - ou um elemento primitivo;
 - ou uma expressão do tipo e^* , sendo e uma expressão regular qualquer;
 - ou uma expressão do tipo $e_1.e_2$, sendo e_1 e e_2 duas expressões regulares quaisquer;
 - ou uma expressão do tipo $e_1|e_2$, sendo e_1 e e_2 duas expressões regulares quaisquer;
- Identificando-se as GR equivalentes às ER primitivas, tem-se o problema resolvido, visto que se sabe como fazer a reunião, a concatenação e o fecho de GR.

expressão regular	gramática regular
ε	$S \to \varepsilon$
a	S o a

Conversão de uma ER em uma GR Algoritmo de conversão

- Se a ER é do tipo primitivo, a GR correspondente pode ser obtido da tabela anterior.
- 2 Se é do tipo e^* , aplica-se este mesmo algoritmo na obtenção de uma GR equivalente à expressão regular e e, de seguida, aplica-se o fecho de GR.
- 3 Se é do tipo $e_1.e_2$, aplica-se este mesmo algoritmo na obtenção de GR para as expressões e_1 e e_2 e, de seguida, aplica-se a concatenação de GR.
- 4 Finalmente, se é do tipo $e_1|e_2$, aplica-se este mesmo algoritmo na obtenção de GR para as expressões e_1 e e_2 e, de seguida, aplica-se a reunião de GR.

 Na realidade, o algoritmo corresponde a um processo de decomposição arbórea a partir da raiz seguido de um processo de construção arbórea a partir das folhas.

Q Obtenha uma ER equivalente à gramática regular seguinte

$$S \rightarrow \mathsf{a}\ S \ | \ \mathsf{c}\ S \ | \ \mathsf{aba}\ X \\ X \rightarrow \mathsf{a}\ X \ | \ \mathsf{c}\ X \ | \ \varepsilon$$

 $\ensuremath{\mathcal{R}}$ Abordagem admitindo expressões regulares nas produções das gramáticas

$$\begin{array}{l} E \to \varepsilon \ S \\ S \to \mathbf{a} \ S \ | \ \mathbf{c} \ S \ | \ (\mathbf{aba}) \ X \\ X \to \mathbf{a} \ X \ | \ \mathbf{c} \ X \ | \ \varepsilon \ \varepsilon \end{array}$$

$$\begin{array}{l} E \rightarrow \varepsilon \ S \\ S \rightarrow (\mathbf{a} | \mathbf{c}) \ S \ | \ (\mathbf{aba}) \ X \\ X \rightarrow (\mathbf{a} | \mathbf{c}) \ X \ | \ \varepsilon \ \varepsilon \end{array}$$

$$E \to \varepsilon \; (a|c)^* \; (aba) \; (a|c)^* \; \varepsilon$$

- acrescentou-se um novo símbolo inicial de forma a garantir que não aparece do lado direito
- transformou-se $S \to a \ S \ e \ S \to c \ S$ em $S \to (a|c) \ S$
- fez-se algo similar com o X
- transformaram-se as produções $E \to \varepsilon S, S \to (a|c) S e S \to aba X$ em $E \to (a|c)^*aba X$
- Note que o (a|c) passou a (a|c)*
- repetiu-se com o X, obtendo-se a ER desejada: (a|c)*aba(a|c)*

Q Obtenha uma ER equivalente à gramática regular seguinte

$$S \rightarrow \mathsf{a}\ S \ |\ \mathsf{c}\ S \ |\ \mathsf{aba}\ X \\ X \rightarrow \mathsf{a}\ X \ |\ \mathsf{c}\ X \ |\ \varepsilon$$

 ${\mathcal R}\,$ Abordagem transformando a gramática num conjunto e triplos

$$\{(E,\varepsilon,S),\\ (S,\mathsf{a},S),(S,\mathsf{c},S),(S,\mathsf{aba},X),\\ (X,\mathsf{a},X),(X,\mathsf{c},X),(X,\varepsilon,\varepsilon)\}$$

$$\{ (E, \varepsilon, S), (S, (\mathbf{a} | \mathbf{c}), S), (S, \mathbf{aba}, X), \\ (X, (\mathbf{a} | \mathbf{c}), X), (X, \varepsilon, \varepsilon) \}$$

$$\{(E,(\mathbf{a}|\mathbf{c})^*\mathbf{aba},X),\ (X,(\mathbf{a}|\mathbf{c}),X),(X,\varepsilon,\varepsilon)\}$$

$$\{(E,(a|c)^*aba(a|c)^*,\varepsilon)\}$$

- converte-se a gramática num conjunto de triplos, acrescentando um inicial
- transformou-se (S, a, S), (S, c, S) em (S, (a|c), S)
- fez-se algo similar com o X
- transformou-se o triplo de triplos $(E, \varepsilon, S), (S, (\mathbf{a}|\mathbf{c}), S), (S, \mathbf{a}\mathbf{b}\mathbf{a}, X)$ em $(E, (\mathbf{a}|\mathbf{c})^*\mathbf{a}\mathbf{b}\mathbf{a}, X)$
- Note que o (a|c) passou a (a|c)*
- repetiu-se com o X, obtendo-se a ER desejada: (a|c)*aba(a|c)*

Conversão de uma GR em uma ER Algoritmo

- Uma expressão regular e que represente a mesma linguagem que a gramática regular G pode ser obtida por um processo de transformações de equivalência.
- Primeiro, converte-se a gramática G=(T,N,P,S) no conjunto de triplos seguinte:

$$\mathcal{E} = \{(E, \varepsilon, S)\}$$

$$\cup \{(A, \omega, B) : (A \to \omega B) \in P \land B \in N\}$$

$$\cup \{(A, \omega, \varepsilon) : (A \to \omega) \in P \land \omega \in T^*\}$$

 $\operatorname{com} E \not \in N$.

- A seguir, removem-se, por transformações de equivalência, um a um, todos os símbolos de N, até se obter um único triplo da forma (E, e, ε) .
- O valor de e é a expressão regular pretendida.

Conversão de uma GR em uma ER

Algoritmo de remoção dos símbolos de N

- **1** Substituir todos os triplos da forma (A, α_i, A) , com $A \in N$, por um único (A, ω_2, A) , onde $\omega_2 = \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_m$
- 2 Substituir todos os triplos da forma (A, β_i, B) , com $A, B \in N$, por um único (A, ω_1, B) , onde $\omega_1 = \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$
- 3 Substituir cada triplo de triplos da forma $(A, \omega_1, B), (B, \omega_2, B), (B, \omega_3, C),$ com $A, B, C \in N$, pelo triplo $(A, \omega_1 \omega_2^* \omega_3, C)$
- 4 Repetir os passos anteriores enquanto houver símbolos intermédios

• Note que, se não existir qualquer triplo do tipo (A, α_i, A) , ω_2 representa o conjunto vazio e consequentemente ${\omega_2}^* = \varepsilon$

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

1/83

Compiladores

Autómatos finitos

Artur Pereira <artur@ua.pt>, Miguel Oliveira e Silva <mos@ua.pt

DETI, Universidade de Aveiro

Ano letivo de 2021-2022

Sumário

- 1 Autómato finito determinista (AFD)
- 2 Redução de autómato finito determinista
- 3 Autómato finito não determinista (AFND)
- 4 Equivalência entre AFD e AFND
- 6 Operações sobre autómatos finitos (AF)
- 6 Equivalência entre ER e AF
- 7 Equivalência entre GR e AF

Autómato finito

Um autómato finito é um mecanismo reconhecedor das palavras de uma linguagem regular

- A unidade de controlo é baseada na noção de estado e na de transição entre estados
 - número finito de estados
- A fita de entrada é só de leitura, com acesso sequencial
- A saída indica se a palavra é ou não aceite (reconhecida)
- Os autómatos finitos podem ser deterministas, não deterministas ou generalizados

Autómato finito determinista

Um autómato finito determinista é um autómato finito

onde

- as transições estão associadas a símbolos individuais do alfabeto;
- de cada estado sai uma e uma só transição por cada símbolo do alfabeto;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- os caminhos que começam no estado inicial e terminam num estado de aceitação representam as palavras aceites (reconhecidas) pelo autómato.

Autómato finito determinista: exemplo (1)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

 \mathcal{R} Todas as palavras terminadas em 11.

 ${\mathcal E}$ Obtenha uma expressão regular que represente a mesma linguagem.

Autómato finito determinista: exemplo (2)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

- ${\cal R}\,$ Todas as palavras com apenas 1 ou 2 zeros.
- ${\mathcal E}\,$ Obtenha uma expressão regular que represente a mesma linguagem.

Autómato finito determinista: exemplo (3)

Q Que palavras binárias são reconhecidas pelo autómato seguinte?

 ${\cal R}\,$ as sequências binárias com um número par de zeros.

Definição de autómato finito determinista

- \mathcal{D} Um autómato finito determinista (AFD) é um quíntuplo $M=(A,Q,g_0,\delta,F)$, em que:
 - A é o alfabeto de entrada:
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta: Q \times A \to Q$ é uma função que determina a transição entre estados; e
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.

- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- $F = \{B, C\}$
- Como representar δ ?

Definição de autómato finito determinista

- \mathcal{D} Um autómato finito determinista (AFD) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito n\u00e3o vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta: Q \times A \rightarrow Q$ é uma função que determina a transição entre estados; e
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.
- \mathcal{Q} Como representar a função δ ?
 - Matriz de |Q| linhas por |A| colunas. As células contêm elementos de Q.
 - Conjunto de pares $((q,a),q) \in (Q \times A) \times Q$
 - ou equivalentemente conjunto de triplos $(q, a, q) \in Q \times A \times Q$

Autómato finito determinista: exemplo (4)

Represente textualmente o AFD seguinte.

$$\mathcal{R}$$
 $M = (A, Q, q_0, \delta, F) \text{ com}$

- $A = \{0, 1\}$
- $Q = \{A, B, C, D\}$
- $q_0 = A$
- $F = \{B, C\}$

- $\delta = \{$ (A, 0, B), (A, 1, A),
 - (B, 0, C), (B, 1, B),(C, 0, D), (C, 1, C),

 - (D, 0, D), (D, 1, D)

•	δ	=	

	0	1
A	B	A
B	C	B
C	D	C
Γ	D	ת

Autómato finito determinista: exemplo (5)

Q Represente textualmente o AFD seguinte.

$$\mathcal{R}$$

$$M=(A,Q,q_0,\delta,F)$$
 com

- $A = \{0, 1\}$
- $Q = \{A, B, C\}$
- $q_0 = A$
- $F = \{C\}$

- $\delta = \{ (A, 0, A), (A, 1, B), \}$
 - (B, 0, A), (B, 1, C),
 - (C, 0, A), (C, 1, C),

δ	=	_	
		Ī.	\overline{A}

	0	1
A	A	B
В	A	C
C	A	C

Linguagem reconhecida por um AFD (1)

- Diz-se que um AFD $M = (A, Q, q_0, \delta, F)$, aceita uma palavra $u \in A^*$ se u se puder escrever na forma $u = u_1 u_2 \cdots u_n$ e existir uma sequência de estados s_0, s_1, \dots, s_n , que satisfaça as seguintes condições:
 - 1 $s_0 = q_0$;
 - 2 qualquer que seja o $i=1,\cdots,n, \quad s_i=\delta(s_{i-1},u_i);$
 - $s_n \in F$.

Caso contrário diz-se que *M* rejeita a sequência de entrada.

- A palavra $\omega_1 = 0101$ faz o caminho $A \xrightarrow{0} A \xrightarrow{1} B \xrightarrow{0} A \xrightarrow{1} B$
 - como B não é de aceitação, ω_1 não pertence à linguagem
- A palavra $\omega_2 = 0.011$ faz o caminho $A \xrightarrow{0} A \xrightarrow{0} A \xrightarrow{1} B \xrightarrow{1} C$
 - como C é de aceitação, ω_2 pertence à linguagem

Linguagem reconhecida por um AFD (2)

- Seja $\delta^*: Q \times A^* \to Q$ a extensão de δ definida indutivamente por
 - $\bullet \delta^*(q,\varepsilon) = q$
 - $2 \delta^*(q,av) = \delta^*(\delta(q,a),v), \quad \text{com} \quad a \in A \wedge v \in A^*$
- M aceita u se $\delta^*(q_0, u) \in F$.
- $L(M) = \{u \in A^* : M \text{ aceita } u\} = \{u \in A^* : \delta^*(q_0, u) \in F\}$
- $\delta^*(A, 0101) = \delta^*(\delta(A, 0), 101) = \delta^*(A, 101)$ = $\delta^*(\delta(A, 1), 01) = \delta^*(B, 01)$ = $\delta^*(\delta(B, 0), 1) = \delta^*(A, 1) = \delta^*(B, \varepsilon) = B$
- $\delta^*(A,0011) = \delta^*(\delta(A,0),011) = \delta^*(A,011)$ = $\delta^*(\delta(A,0),11) = \delta^*(A,11)$ = $\delta^*(\delta(A,1),1) = \delta^*(B,1) = \delta^*(C,\varepsilon) = C$

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Autómato finito determinista: exemplo (6)

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$ considere a linguagem

$$L = \{\omega \in A^* \, : \, (\omega_i = \mathbf{b}) \, \Rightarrow \, ((\omega_{i-1} = \mathbf{a}) \, \wedge \, (\omega_{i+1} = \mathbf{c}))\}$$

Projecte um autómato que reconheça L.

 \mathcal{R}

Autómato finito determinista: exemplo (7)

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ considere a linguagem

$$L = \{ \omega \in A^* : (\omega_i = \mathbf{a}) \Rightarrow (\omega_{i+2} \neq \mathbf{b}) \}$$

Projecte um autómato que reconheça L.

 \mathcal{R}

Autómato finito determinista: exemplo (8)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$ considere a linguagem

$$L = \{ \omega \in A^* : (\omega_i = \mathbf{a}) \Rightarrow (\omega_{i+2} = \mathbf{b}) \}$$

Projecte um autómato que reconheça ${\cal L}.$

 \mathcal{R}

???

Redução de autómato finito determinista (1)

 $\mathcal Q$ Considere o autómato seguinte (o do exemplo 6) e compare os estados A e D. Que pode concluir ?

São equivalentes. Por conseguinte, podem ser fundidos

Redução de autómato finito determinista (2)

• O que resulta em

- Este, pode provar-se, não tem estados redundantes.
- Está no estado reduzido

Algoritmo de Redução de AFD (1)

 Primeiro, dividem-se os estados em dois conjuntos, um contendo os estados de aceitação e outro os de não-aceitação.

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

0

Algoritmo de Redução de AFD (2)

• Em C_1 , as transições em 0 são todas internas, mas as em 1 podem ser internas ou provocar uma ida para C_2 . Logo, não representa uma classe de equivalência e tem de ser dividido.

Algoritmo de Redução de AFD (3)

• Dividindo C_1 em $C_{1,1} = \{A, B, C, F\}$ e $C_{1,2} = \{D, E\}$ obtem-se

• Pode verificar-se que $C_{1,1}$, $C_{1,2}$ e C_2 são classes de equivalência, pelo que se chegou à versão reduzida do autómato.

Algoritmo de Redução de AFD (4)

Autómato reduzido

Nos apontamentos encontra uma versão não gráfica do algoritmo.

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Autómato finito não determinista

Um autómato finito não determinista é um autómato finito

onde

- as transições estão associadas a símbolos individuais do alfabeto ou à palavra vazia (ε);
- de cada estado saem **zero ou mais** transições por cada símbolo do **alfabeto ou** ε ;
- há um estado inicial;
- há 0 ou mais estados de aceitação, que determinam as palavras aceites;
- os caminhos que começam no estado inicial e terminam num estado de aceitação representam as palavras aceites (reconhecidas) pelo autómato.
- As transições múltiplas ou com ε permitem alternativas de reconhecimento.
- As transições ausentes representam quedas num estado de morte (estado não representado).

AFND: caminhos alternativos

Analise o processo de reconhecimento da palavra abab?

- Há 3 caminhos alternativos

 - $2 A \xrightarrow{a} A \xrightarrow{b} A \xrightarrow{a} A \xrightarrow{b} A$
- Como há um caminho que conduz a um estado de aceitação a palavra é reconhecida pelo autómato

AFND: caminhos alternativos

• Analise o processo de reconhecimento da palavra abab?

• Que se podem representar de forma arbórea

AFND: exemplo

Q Que palavras são reconhecidas pelo autómato seguinte?

 ${\cal R}$ Todas as palavras que terminarem em ab ou ac

$$L=\{\omega \mathtt{a} x \,:\, \omega \in A^* \,\wedge\, x \in \{\mathtt{b},\mathtt{c}\}\}.$$

• Percebe-se uma grande analogia entre este autómato e a expressão regular $(a|b|c)^*a(b|c)$

AFND com transições- ε

Considere o AFND seguinte que contém uma transição-ε.

A palavra 101 é reconhecida pelo autómato através do caminho

$$A \stackrel{1}{\longrightarrow} B \stackrel{0}{\longrightarrow} C \stackrel{1}{\longrightarrow} D$$

A palavra 11 é reconhecida pelo autómato através do caminho

$$A \overset{1}{\longrightarrow} B \overset{\varepsilon}{\longrightarrow} C \overset{1}{\longrightarrow} D$$
 porque $11 = 1\varepsilon 1$

Este autómato reconhece todas as palavras terminadas em 11 ou 101

$$L = \{\omega_1 \omega_2 : \omega_1 \in A^* \land \omega_2 \in \{11, 101\}\}.$$

AFND: definição

- ${\cal D}$ Um autómato finito não determinista (AFND) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada;
 - Q é um conjunto finito não vazio de estados;
 - $q_0 \in Q$ é o estado inicial;
 - $\delta\subseteq (Q\times A_{\varepsilon}\times Q)$ é a relação de transição entre estados, com $A_{\varepsilon}=A\cup\{\varepsilon\};$
 - $F \subseteq Q$ é o conjunto dos estados de aceitação.

- Apenas a definição de δ difere em relação aos AFD.
- Se se representar δ na forma de uma tabela, as células são preenchidas com elementos de $\wp(Q)$, ou seja, sub-conjuntos de Q.

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

AFND: Exemplo (2)

Q Represente textualmente o AFND

 \mathcal{R}

- $A = \{0, 1\}$
- $\bullet \ \ Q = \{A,B,C,D\}$
- $q_0 = A$
- $F = \{D\}$
- $\delta = \{(A,0,A), (A,1,A), (A,1,B), (B,\varepsilon,C), (B,0,C), (C,1,D)\}$

• O par (A,1,A),(A,1,B) faz com que δ não seja uma função

ACP (DETI/UA)

AFND: linguagem reconhecida

- Diz-se que um AFND $M=(A,Q,q_0,\delta,F)$, **aceita** uma palavra $u\in A^*$ se u se puder escrever na forma $u=u_1u_2\cdots u_n$, com $u_i\in A_\varepsilon$, e existir uma sequência de estados s_0,s_1,\cdots,s_n , que satisfaça as seguintes condições:
 - $\mathbf{1}$ $s_0 = q_0$;
 - 2 qualquer que seja o $i=1,\cdots,n, (s_{i-1},u_i,s_i)\in \delta;$
 - $s_n \in F$.
- Caso contrário diz-se que M rejeita a entrada.
- Note que n pode ser maior que |u|, porque alguns dos u_i podem ser ε .
- Usar-se-á a notação $q_i \xrightarrow{u} q_j$ para indicar que a palavra u permite ir do estado q_i ao estado q_j .
- Usando esta notação tem-se $L(M) = \{u : q_0 \stackrel{u}{\longrightarrow} q_f \land q_f \in F\}.$

Equivalência entre AFD e AFND

- A classe das linguagens cobertas por um AFD é a mesma que a classe das linguagens cobertas por um AFND
- Isto significa que:
 - Se M é um AFD, então $\exists_{M' \in AFND} : L(M') = L(M)$.
 - Se M é um AFND, então $\exists_{M' \in AFD} : L(M') = L(M)$.
- Como determinar um AFND equivalente a um AFD dado ?
- Pelas definições de AFD e AFND, um AFD é um AFND. Porquê?
 - Q, q_0 e F têm a mesma definição.
 - Nos AFD $\delta: Q \times A \rightarrow Q$.
 - Nos AFND $\delta \subset Q \times A_{\varepsilon} \times Q$
 - Mas, se $\delta:Q\times A\to Q$ então $\delta\subseteq Q\times A\times Q\subset Q\times A_{\varepsilon}\times Q$
 - Logo, um AFD é um AFND

Equivalente AFD de um AFND (1)

- Como determinar um AFD equivalente a um AFND dado ?
- No AFND

a árvore de reconhecimento da palavra 1011 sugere que a evolução se faz de sub-conjunto em sub-conjunto de estados

Equivalente AFD de um AFND (2)

- Dado um AFND $M=(A,Q,q_0,\delta,F)$, considere o AFD $M'=(A,Q',q_0',\delta',F')$ onde:
 - $Q' = \wp(Q)$
 - $q_0' = \varepsilon$ -closure (q_0)
 - $F' = \{ f' \in \wp(Q) : f' \cap F \neq \emptyset \}$
 - $$\begin{split} \bullet \ \ \delta' &= \wp(Q) \times A \to \wp(Q), \\ & \operatorname{com} \delta'(q',a) = \bigcup_{q \in q'} \{ s \ : \ s \in \varepsilon\text{-closure}(s') \ \land \ (q,a,s') \in \delta \} \end{split}$$
- M e M' reconhecem a mesma linguagem.

- ε -closure(q) é o conjunto de estados constituído por q mais todos os direta ou indiretamente alcançáveis a partir de q apenas por transições- ε
- Note que:
 - O estado inicial (q'₀) pode conter 1 ou mais elementos de Q
 - Cada elemento do conjunto de chegada ($f' \in F'$) por conter elementos de F e Q-F

Q Determinar um AFD equivalente ao AFND seguinte?

$$\longrightarrow \begin{pmatrix} 0,1 \\ A \end{pmatrix} \xrightarrow{1} \begin{pmatrix} B \end{pmatrix} \xrightarrow{0,\varepsilon} \begin{pmatrix} C \end{pmatrix} \xrightarrow{1} \begin{pmatrix} D \end{pmatrix}$$

 \mathcal{R}

 $\begin{array}{l} \bullet \;\; Q' = \{X_0, X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, x_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}, \\ \text{com} \end{array}$

- $q_0' = \varepsilon$ -closure $(A) = \{A\} = X_1$
- $F' = \{X_8, X_9, X_{10}, X_{11}, X_{12}, X_{13}, X_{14}, X_{15}\}$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• $\delta' =$

estado	0	1	estado	0	1
$X_0 = \{\}$	X_0	X_0	$X_1 = \{A\}$	X_1	X_7
$X_2 = \{B\}$	X_4	X_0	$X_3 = \{A, B\}$	X_5	X_7
$X_4 = \{C\}$	X_0	X_8	$X_5 = \{A, C\}$	X_1	X_{15}
$X_6 = \{B, C\}$	X_4	X_8	$X_7 = \{A, B, C\}$	X_5	X_{15}
$X_8 = \{D\}$	X_0	X_0	$X_9 = \{A, D\}$	X_1	X_7
$X_{10} = \{B, D\}$	X_4	X_0	$X_{11} = \{A, B, D\}$	X_5	X_7
$X_{12} = \{C, D\}$	X_0	X_8	$X_{13} = \{A, C, D\}$	X_1	X_{15}
$X_{14} = \{B, C, D\}$	X_4	X_8	$X_{15} = \{A, B, C, D\}$	X_5	X_{15}

Serão todos estes estados necessários?

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

Consegue-se o mesmo resultado através de um processo construtivo.

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

• Comece-se com o estado inicial $(X_1 = \{A\})$

Q Determinar um AFD equivalente ao AFND seguinte ?

 $X_1 = \{A\}$

 \mathcal{R}

$$0 \longrightarrow X_1$$

•
$$\delta'(X_1,0) = \varepsilon$$
-closure $(A) = \{A\}$

Q Determinar um AFD equivalente ao AFND seguinte?

 \mathcal{R}

• $\delta'(X_1,1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) = \{A\} \cup \{B,C\} = \{A,B,C\}$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

•
$$\delta'(X_7,0) = \varepsilon$$
-closure $(A) \cup \varepsilon$ -closure $(C) = \{A\} \cup \{C\} = \{A,C\}$

Q Determinar um AFD equivalente ao AFND seguinte?

 \mathcal{R}

$$X_1 = \{A\}$$

 $X_7 = \{A, B, C\}$
 $X_5 = \{A, C\}$
 $X_{15} = \{A, B, C, D\}$

- $\delta'(X_7,1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) \cup \varepsilon$ -closure $(D) = \{A\} \cup \{B,C\} \cup \{D\} = \{A,B,C,D\}$
- É de aceitação porque $\{A,B,C,D\}\cap\{D\}
 eq\emptyset$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

 $X_7 = \{A, B, C\}$
 $X_5 = \{A, C\}$
 $X_{15} = \{A, B, C, D\}$

- $\delta'(X_5,0) = \varepsilon$ -closure $(A) = \{A\}$
- $\delta'(X_5,1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) \cup \varepsilon$ -closure $(D) = \{A\} \cup \{B,C\} \cup \{D\} = \{A,B,C,D\}$

Q Determinar um AFD equivalente ao AFND seguinte ?

 \mathcal{R}

$$X_1 = \{A\}$$

 $X_7 = \{A, B, C\}$
 $X_5 = \{A, C\}$
 $X_{15} = \{A, B, C, D\}$

- $\delta'(X_{15},0) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(C) = \{A\} \cup \{C\} = \{A,C\}$
- $\delta'(X_{15},1) = \varepsilon$ -closure $(A) \cup \varepsilon$ -closure $(B) \cup \varepsilon$ -closure $(D) = \{A\} \cup \{B,C\} \cup \{D\} = \{A,B,C,D\}$

Operações sobre AFD e AFND

- Os automátos finitos (AF) são fechados sobre as operações de:
 - Reunião
 - Concatenação
 - Fecho
 - Intersecção
 - Complementação

Reunião de AF

Como criar um AF que represente a reunião destes dois AF?

Reunião de AF

- acrescenta-se um novo estado que passa a ser o inicial
- e acrescentam-se transições- ε deste novo estado para os estados iniciais originais

Reunião de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$\begin{split} Q &= Q_1 \cup Q_2 \cup \{q_0\}, \quad \text{com } q_0 \not\in Q_1 \wedge q_0 \not\in Q_2 \\ F &= F_1 \cup F_2 \\ \delta &= \delta_1 \cup \delta_2 \cup \{(q_0, \varepsilon, q_1), (q_0, \varepsilon, q_2)\} \end{split}$$

implementa a reunião de M_1 e M_2 , ou seja, $L(M) = L(M_1) \cup L(M_2)$.

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \} \qquad L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

• Como criar um AF que represente a reunião de L_1 e L_2 ?

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \, | \, \omega \in A^*\} \qquad \qquad L_2 = \{\mathrm{a}\omega \, | \, \omega \in A^*\}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

- Constroi-se um AF para a linguagem L₁
- Constroi-se um AF para a linguagem L_2

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a}\omega \mid \omega \in A^* \}$

Determine um AF que reconheça $L = L_1 \cup L_2$.

 \mathcal{R}

- Acrescenta-se um novo estado (S_0) , que passa a ser o inicial
- E acrescentam-se transições- ε de S_0 (novo estado inicial) para S_1 e S_2 (os estados iniciais originais)

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \, | \, \omega \in A^*\} \qquad \qquad L_2 = \{a\omega \, | \, \omega \in A^*\}$$

Determine um AF que reconheça $L = L_1 \cup L_2$.

$$\begin{split} \mathcal{R} \\ M_1 &= (A,Q_1,q_1,\delta_1,F_1) \text{ com} \\ Q_1 &= \{S_1,X_1\}, \quad q_1 = S_1, \quad F_1 = \{X_1\} \\ \delta_1 &= \{(S_1,\mathbf{a},S_1),(S_1,\mathbf{b},S_1),(S_1,\mathbf{c},S_1),(S_1,\mathbf{a},X_1) \\ M_2 &= (A,Q_2,q_2,\delta_2,F_2) \text{ com} \\ Q_2 &= \{S_2,X_2\}, \quad q_2 = S_2, \quad F_2 = \{X_2\} \\ \delta_2 &= \{(S_2,\mathbf{a},X_2),(X_2,\mathbf{a},X_2),(X_2,\mathbf{b},X_2),(X_2,\mathbf{c},X_2) \\ M &= M_1 \cup M_2 = (A,Q,q_0,\delta,F) \text{ com} \\ Q &= \{S_0,S_1,X_1,S_2,X_2\}, \quad q_0 = S_0, \quad F = \{X_1,X_2\}, \\ \delta &= \{(S_0,\varepsilon,S_1),(S_0,\varepsilon,S_2),(S_1,\mathbf{a},S_1),(S_1,\mathbf{b},S_1),(S_1,\mathbf{c},S_1),\\ (S_1,\mathbf{a},X_1),(S_2,\mathbf{a},X_2),(X_2,\mathbf{a},X_2),(X_2,\mathbf{b},X_2),(X_2,\mathbf{c},X_2) \} \end{split}$$

Alternativamente, pode ser escrito de forma textual

Concatenação de AF

• Como criar um AF que represente a concatenação destes dois AF?

Concatenação de AF

- O estado inicial passa a ser o estado inicial do AF da esquerda
- Os estados de aceitação são apenas os estados de aceitação do AF da direita
- acrescentam-se transições-ε dos (antigos) estados de aceitação do AF da esquerda para o estado inicial do AF da direita

45/83

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Concatenação de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$Q = Q_1 \cup Q_2$$

$$q_0 = q_1$$

$$F = F_2$$

$$\delta = \delta_1 \cup \delta_2 \cup (F_1 \times \{\varepsilon\} \times \{q_2\})$$

implementa a concatenação de M_1 e M_2 , ou seja, $L(M) = L(M_1) \cdot L(M_2)$.

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a}\omega \mid \omega \in A^* \}$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

Como criar um AF que represente a concatenação de L₁ com L₂?

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ \mathrm{a}\omega \,|\, \omega \in A^* \}$$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

Constroi-se AF para as linguagens L₁ e L₂

Concatenação de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \,|\, \omega \in A^*\} \qquad \qquad L_2 = \{\mathrm{a}\omega \,|\, \omega \in A^*\}$$

Determine um AF que reconheça $L = L_1 \cdot L_2$.

 \mathcal{R}

- X₁ deixa de ser de aceitação; S₂ deixa de ser de entrada
- acrescenta-se uma transição- ε de X_1 para S_2

ACP (DETI/UA)

Fecho de AF

• Como criar um AF que represente o fecho deste AF?

Fecho de AF

- acrescenta-se um novo estado que passa a ser o inicial
- o novo estado inicial é de aceitação
- acrescentam-se transições- ε dos estados de aceitação do AF para o estado inicial original

Fecho de AF

- acrescenta-se um novo estado que passa a ser o inicial
- o novo estado inicial é de aceitação
- ou acrescentam-se transições- ε dos estados de aceitação do AF para o novo estado inicial (caso em que antigos estados de aceitação podem deixar de o ser)
- Note que em geral não se pode fundir o novo estado inicial com o antigo

Fecho de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ um autómato (AFD ou AFND) qualquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$\begin{aligned} Q &= Q_1 \cup \{q_0\} \\ F &= \{q_0\} \\ \delta &= \delta_1 \cup (F_1 \times \{\varepsilon\} \times \{q_0\}) \cup \{(q_0, \varepsilon, q_1)\} \end{aligned}$$

implementa o fecho de M_1 , ou seja, $L(M) = L(M_1)^*$.

• Em alternativa poder-se-á considerar que $F = F_1 \cup \{q_0\}$ e que de F_1 as novas transições- ε se dirigem a q_1

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Fecho de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

• Como criar um AF que represente o fecho de L_1 ?

Fecho de AF: exemplo

 $\mathcal Q$ Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

$$\xrightarrow{\mathsf{a}} \underbrace{\left(X_1\right)}_{\mathsf{a},\mathsf{b},\mathsf{c}}$$

Constroi-se um AF para L₁

Fecho de AF: exemplo

Q Sobre o alfabeto $A = \{a, b, c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine o AFND que reconhece a linguagem L_1^* .

 \mathcal{R}

- acrescenta-se um novo estado (S_0) , que passa a ser o inicial e é de aceitação
- liga-se este estado ao S_1 (inicial anterior) por uma transição- ε
- liga-se o estado X_1 (aceitação anterior) ao S_0 (novo inicial)
- X₁ deixa (pode deixar) de ser de aceitação

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

• Como criar um AF que represente a intersecção de L_1 e L_2 ?

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \,|\, \omega \in A^*\}$$

$$L_2 = \{a\omega \,|\, \omega \in A^*\}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

• Constroi-se AF para as linguagens L_1 e L_2

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a}\omega \mid \omega \in A^* \}$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- Definem-se os estados que resultam do produto cartesiano $\{S_1, X_1\} \times \{S_2, X_2\}$
- Mas, alguns podem não ser alcançáveis

 \mathcal{R}

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ \mathrm{a}\omega \,|\, \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

• Pelo que comecemos apenas pelo S_1S_2 , que corresponde ao estado inicial

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens sequintes:

$$L_1 = \{ \omega \,|\, \omega \in A^* \} \qquad \qquad L_2 = \{ a\omega \,|\, \omega \in A^* \}$$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- de $S_1 \stackrel{a}{\longrightarrow} S_1$ e $S_2 \stackrel{a}{\longrightarrow} X_2$ aparece $S_1 S_2 \stackrel{a}{\longrightarrow} S_1 X_2$
- de $S_1 \stackrel{a}{\longrightarrow} X_1$ e $S_2 \stackrel{a}{\longrightarrow} X_2$ aparece $S_1S_2 \stackrel{a}{\longrightarrow} X_1X_2$

 \mathcal{Q} Sobre o alfabeto $A = \{a, b, c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \mathbf{a} \mid \omega \in A^* \}$$
 $L_2 = \{ \mathbf{a} \omega \mid \omega \in A^* \}$

$$L_2 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L = L_1 \cap L_2$.

 \mathcal{R}

- de $S_1 \xrightarrow{x} S_1$ e $X_2 \xrightarrow{x} X_2$ aparece $S_1 X_2 \xrightarrow{x} S_1 X_2$, para $x \in \{a, b, c\}$
- de $S_1 \stackrel{a}{\longrightarrow} X_1$ e $X_2 \stackrel{a}{\longrightarrow} X_2$ aparece $S_1 X_2 \stackrel{a}{\longrightarrow} X_1 X_2$

Intersecção de AF: definição

 ${\cal D}$ Seja $M_1=(A,Q_1,q_1,\delta_1,F_1)$ e $M_2=(A,Q_2,q_2,\delta_2,F_2)$ dois autómatos (AFD ou AFND) quaisquer. O AFND $M=(A,Q,q_0,\delta,F)$, onde

$$\begin{aligned} Q &= Q_1 \times Q_2 \\ q_0 &= (q_1, q_2) \\ F &= F_1 \times F_2 \\ \delta &\subseteq (Q_1 \times Q_2) \times A_{\varepsilon} \times (Q_1 \times Q_2) \end{aligned}$$

sendo δ definido de modo que

 $((q_i,q_j),a,(q_i',q_j'))\in \delta$ se e só se $(q_i,a,q_i')\in \delta_1$ e $(q_j,a,q_j')\in \delta_2$, implementa intersecção de M_1 e M_2 , ie., $L(M)=L(M_1)\cap L(M_2)$.

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Complementação de AF

Q Sobre o alfabeto $A = \{a,b,c\}$, seja

$$L_1 = \{ a\omega \mid \omega \in A^* \}$$

Determine um AF que reconheça a linguagem $\overline{L_1}$.

 \mathcal{R}

- Para se obter o complementar de um autómato finito determinista (em sentido estrito, ie. com todos os estados representados) basta complementar o conjunto de aceitação
- Para o caso de um autómato finito não determinista é preciso calcular o determinista equivalente e complementá-lo.

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \, | \, \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L=\overline{L_1}.$

 \mathcal{R}

Como criar um AF que represente a intersecção de L₁ e L₂?

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \, | \, \omega \in A^*\}$$

Determine um AFD ou AFND que reconheça $L=\overline{L_1}.$

 \mathcal{R}

Considere-se um AFND para a linguagem L₁

 $\mathcal Q$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{\omega \, | \, \omega \in A^*\}$$

Determine um AFD ou AFND que reconheça $L=\overline{L_1}.$

 \mathcal{R}

Obtenha-se um determinista equivalente

ACP (DETI/UA)

 $\mathcal Q\,$ Sobre o alfabeto $A=\{\mathtt{a},\mathtt{b},\mathtt{c}\},$ sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1 = \{ \omega \, | \, \omega \in A^* \}$$

Determine um AFD ou AFND que reconheça $L=\overline{L_1}.$

 \mathcal{R}

Complemente-se os estados de aceitação

Operações sobre AF: exercício

 $\mathcal Q$ Sobre o alfabeto $A = \{a,b,c\}$, sejam L_1 e L_2 as duas linguagens seguintes:

$$L_1=\{v\omega\ |\ v\in\{\mathtt{a},\mathtt{b}\}\ \land\ \omega\in A^*\} \qquad \text{(palavras começadas por a ou b)}$$

$$L_2=\{\omega\in A^*\ |\ \#(\mathtt{a},\omega)\ \bmod\ 2=0\} \qquad \text{(palavras com um número par de a)}$$

Determine AF que reconheça a linguagem

- L₁
- *L*₂
- $L_3 = L_1 \cup L_2$
- $\bullet \ L_4 = L_1 \cdot L_2$
- $L_6 = L_1 \cap L_2$
- $L_7 = \overline{L_2}$
- $L_8 = \overline{(L_4 \cup L_3)^*}$

Equivalência entre ER e AF

- A classe das linguagens cobertas por expressões regulares (ER) é a mesma que a classe das linguagens cobertas por autómatos finitos (AF)
- Logo:
 - Se e é uma ER, então $\exists_{M \in AF} : L(M) = L(e)$
 - Se M é um AF, então $\exists_{e \in ER} : L(e) = L(M)$
- Isto introduz duas operações:
 - Como converter uma ER num AF equivalente
 - Como converter um AF numa ER equivalente

Conversão de uma ER num AF Abordagem

- Já se viu anteriormente que uma expressão regular qualquer é:
 - ou um elemento primitivo;
 - ou uma expressão do tipo $e_1|e_2$, sendo e_1 e e_2 duas expressões regulares quaisquer
 - ou uma expressão do tipo e_1e_2 , sendo e_1 e e_2 duas expressões regulares quaisquer
 - ou uma expressão do tipo e^* , sendo e uma expressão regular qualquer
- Já se viu anteriormente como realizar a reunião, a concatenação e o fecho de autómatos finitos
- Então, se se identificar autómatos finitos equivalentes às expressões regulares primitivas, tem-se o problema da conversão de uma expressão regular para um autómato finito resolvido

Conversão de uma ER num AF

Autómatos dos elementos primitivos

expressão regular	autómato finito
Ø	\rightarrow
ε	→
a	$\longrightarrow \bigcirc \longrightarrow \bigcirc$

• Na realidade, o autómato referente a ε pode ser obtido aplicando o fecho ao autómato de \emptyset

Conversão de uma ER num AF Algoritmo de conversão

- Se a expressão regular é do tipo primitivo, o autómato correspondente pode ser obtido da tabela anterior
- Se é do tipo e*, aplica-se este mesmo algoritmo na obtenção de um autómato equivalente à expressão regular e e, de seguida, aplica-se o fecho de autómatos
- Se é do tipo e_1e_2 , aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e_1 e e_2 e, de seguida, aplica-se a concatenação de autómatos
- Finalmente, se é do tipo $e_1|e_2$, aplica-se este mesmo algoritmo na obtenção de autómatos para as expressões e_1 e e_2 e, de seguida, aplica-se a reunião de autómatos

 Na realidade, o algoritmo corresponde a um processo de decomposição arbórea a partir da raiz seguido de um processo de construção arbórea a partir das folhas

 $\mathcal Q\,$ Construa um autómato equivalente à expressão regular $e=a|a(a|b|c)^*a$

 \mathcal{R}

Decomposição

 $\mathcal Q\,$ Construa um autómato equivalente à expressão regular $e=a|a(a|b|c)^*a$

 \mathcal{R}

Decomposição

4 Simplificando

6 Simplificando

 ${\it o}$ Concatenação (já com simplificação) para obter $a(a|b|c)^*a$

f 8 Finalmente obtenção de $a|a(a|b|c)^*a$

9 Simplificando

Autómato finito generalizado (AFG) Definição

- \mathcal{D} Um autómato finito generalizado (AFG) é um quíntuplo $M=(A,Q,q_0,\delta,F)$, em que:
 - A é o alfabeto de entrada
 - Q é um conjunto finito n\u00e3o vazio de estados
 - $q_0 \in Q$ é o estado inicial
 - $\delta\subseteq (Q\times E\times Q)$ é a relação de transição entre estados, sendo E o conjunto das expressões regulares definidas sobre A
 - $F \subseteq Q$ é o conjunto dos estados de aceitação

- A diferença em relação ao AFD e AFND está na definição da relação δ . Neste caso as etiquetas são *expressões regulares*
- Com base nesta definição os AFD e os AFND são autómatos finitos generalizados

Autómato finito generalizado (AFG) Exemplo

• O AFG seguinte representa o conjunto das palavras, definidas sobre o alfabeto $A=\{a,b,c\}$, que contêm a sub-palavra aba

• Note que a etiqueta das transições $A \to A$ e $B \to B$ é a |b|c (uma expressão regular) e não a,b,c (que representa 3 transições, uma em a, uma em b e uma em c)

Autómato finito generalizado (AFG) Exemplo

• O AFG seguinte representa as constantes reais em C

• Note que se usou '.' e não ., porque o último é uma expressão regular que representa qualquer letra do alfabeto

ACP (DETI/UA) Comp 2021/2022 Maio de 2022

Conversão de um AFG numa ER Abordagem

D UM AFG com a forma

designa-se por autómato finito generalizado reduzido

- Note que:
 - O estado A não é de aceitação e não tem transições a chegar
 - ullet O estado B é de aceitação e não tem transições a sair
- Se se reduzir um AFG à forma anterior, e é uma expressão regular equivalente ao autómato
- O processo de conversão resume-se assim à conversão de AFG à forma reduzida

Conversão de um AFG numa ER Algoritmo de conversão

- transformação de um AFG noutro cujo estado inicial não tenha transições a chegar
 - Se necessário, acrescenta-se um novo estado inicial com uma transição em ε para o antigo
- 2 transformação de um AFG noutro com um único estado de aceitação, sem transições de saída
 - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser
- 3 Eliminação dos estados intermédios
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência

Conversão de um AFG numa ER

Ilustração com um exemplo

- 1 transformação de um AFG noutro cujo estado inicial **não tenha** transições a chegar
 - Se necessário, acrescenta-se um novo estado inicial com uma transição em ε para o antigo

antes

depois

Conversão de um AFG numa ER Ilustração com um exemplo

- 2 transformação de um AFG noutro com um único estado de aceitação e sem transicões de saída
 - Se necessário, acrescenta-se um novo estado, que passa a ser o único de aceitação, que recebe transições em ε dos anteriores estados de aceitação, que deixam de o ser

antes

depois

Conversão de um AFG numa ER Ilustração com um exemplo

- 3 Eliminação dos restantes estados
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência
 - · Comece-se pelo estado A

antes

depois da eliminação de ${\cal A}$

Conversão de um AFG numa ER

Ilustração com um exemplo

- 3 Eliminação dos restantes estados
 - Os estados são eliminados um a um, em processos de transformação que mantêm a equivalência
 - · Remova-se agora o estado B

depois da eliminação de ${\cal A}$

depois da eliminação de A, seguido da eliminação de B

• Sendo $(a|b|c)^*aba(a|b|c)^*$ a expressão regular pretendida

Conversão de um AFG numa ER Algoritmo de eliminação de um estado

Caso em que o estado a eliminar (B) não tem transições de si para si

- Pode acontecer que haja $A_i = C_j$
- Para ir de A_i para C_j através de B, para $i=1,2,\cdots,n$ e $j=1,2,\cdots,m$, é preciso uma palavra que encaixe na expressão regular $(e_{a,i})(e_{b,j})$
- Então, se se retirar B, é preciso acrescentar uma transição de A_i para C_j que contemple essas palavras, ou seja, com a etiqueta $(e_{a,i})(e_{b,j})$
- Esta transição fica em paralelo com uma que já exista

Conversão de um AFG numa ER Algoritmo de eliminação de um estado

• Caso em que o estado a eliminar (B) tem transições de si para si

- Pode acontecer que haja $A_i = C_j$
- Para ir de A_i para C_j através de B, para $i=1,2,\cdots,n$ e $j=1,2,\cdots,m$, é preciso uma palavra que encaixe na expressão regular $(e_{a,i})(e_c)^*(e_{b,j})$
- Então, se se retirar B, é preciso acrescentar uma transição de A_i para C_j que contemple essas palavras, ou seja com etiqueta $(e_{a,i})(e_c)^*(e_{b,j})$
- Esta transição fica em paralelo com uma que já exista

Conversão de um AFG numa ER Exercício

Q Obtenha uma ER equivalente ao AF seguinte

- ${\mathcal R}\,$ Aplique-se passo a passo o algoritmo de conversão
- Porque o estado inicial possui uma transição a entrar, deve substituir-se o estado inicial, de acordo com o passo 1 do algoritmo

Exemplo de conversão de um AFG numa ER Exercício

 Porque o estado de aceitação possui uma transição a sair, deve-se aplicar o passo 2 do algorimo de conversão

 Elimine-se o estado A. Para isso é preciso ver os segmentos de caminhos que passam por A.

Note que B aparece à esquerda e à direita

Exemplo de conversão de um AFG numa ER Exercício

 Porque o estado de aceitação possui uma transição a sair, deve-se aplicar o passo 2 do algorimo de conversão

Eliminando o estado A obtém-se

• Finalmente, eliminando o estado B obtém-se a ER 0*1(0|10*1)*

Equivalência entre GR e AF

- A classe das linguagens cobertas por gramáticas regulares (ER) é a mesma que a classe das linguagens cobertas por autómatos finitos (AF)
- Logo:
 - Se G é uma ER, então $\exists_{M \in AF} : L(M) = L(G)$
 - Se M é um AF, então $\exists_{G \in ER} : L(G) = L(M)$
- Isto introduz duas operações:
 - Como converter um AF numa GR equivalente
 - · Como converter uma GR num AF equivalente

Conversão de um AF numa GR

Procedimento de conversão

 \mathcal{A} Seja $M=(A,Q,q_0,\delta,F)$ um autómato finito qualquer. A GR G=(T,N,P,S), onde

$$\begin{split} T &= A \\ N &= Q \\ S &= q_0 \\ P &= \{p \rightarrow a\, q \,:\, p, q \in Q \, \wedge \, a \in T \, \wedge \, (p, a, q) \in \delta\} \\ &\quad \cup \, \{p \rightarrow \varepsilon \,:\, p \in F\} \end{split}$$

representa a mesma linguagem que M, isto é, L(G) = L(M).

Conversão de um AF numa GR Exemplo

Q Determine uma GR equivalente ao AF

$$\mathcal{R}$$

$$A \rightarrow 0 \ C \mid 1 \ B$$

$$B \rightarrow 0 \ D \mid 1 \ A \mid \varepsilon$$

$$C \rightarrow 0 \ A \mid 1 \ D \mid \varepsilon$$

$$D \rightarrow 0 \ B \mid 1 \ C$$

Conversão de uma GR num AFG Procedimento de conversão

 \mathcal{A} Seja G=(T,N,P,S) uma gramática regular qualquer. O AF $M=(A,Q,q_0,\delta,F)$, onde

$$\begin{split} A &= T \\ Q &= N \cup \{q_f\}, \quad \text{com } q_f \not\in N \\ q_0 &= S \\ F &= \{q_f\} \\ \delta &= \{(q_i, e, q_j) \,:\, q_i, q_j \in N \, \wedge \, e \in T^* \, \wedge \, q_i \rightarrow e \, q_j \in P\} \\ &\quad \cup \{(q, e, q_f) \,:\, q \in N \, \wedge \, e \in T^* \, \wedge \, q \rightarrow e \in P\} \end{split}$$

representa a mesma linguagem que G, isto é, L(M) = L(G).

Q Determine um AFG equivalente à GR

$$S \rightarrow \mathsf{a} \ S \mid \mathsf{b} \ S \mid \mathsf{c} \ S \mid \mathsf{aba} \ X$$

$$X \rightarrow \mathsf{a} \ X \mid \mathsf{b} \ X \mid \mathsf{c} \ X \mid \varepsilon$$

 \mathcal{R}

Sendo $M=(A,Q,q_0,\delta,F)$ o AFG equivalente, tem-se

$$\begin{split} A &= \{ \mathbf{a}, \mathbf{b}, \mathbf{c} \} \\ Q &= \{ S, X, q_f \} \\ q_0 &= S \\ \delta &= \{ (S, \mathbf{a}, S), (S, \mathbf{b}, S), (S, \mathbf{c}, S), (S, \mathbf{aba}, X), \\ &\quad (X, \mathbf{a}, X), (X, \mathbf{b}, X), (X, \mathbf{c}, X), (X, \varepsilon, q_f) \} \\ F &= \{ q_f \} \end{split}$$

