18.031 Laplace Transform Table

Properties and Rules

Function Transform $F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st} dt$ (Definition) f(t)a f(t) + b g(t)a F(s) + b G(s)(Linearity) $e^{at}f(t)$ F(s-a)(s-shift) $sF(s) - f(0^{-})$ f'(t) $s^2F(s) - sf(0^-) - f'(0^-)$ f''(t) $s^n F(s) - s^{n-1} f(0^-) - \cdots - f^{(n-1)}(0^-)$ $f^{(n)}(t)$ -F'(s)tf(t) $t^{n}f(t)$ u(t-a)f(t-a) $e^{-as}F(s)$ $e^{-as}\mathcal{L}(f(t+a))$ (t-translation or t-shift) (t-translation) $(f * g)(t) = \int_{0^{-}}^{t^{+}} f(t - \tau) g(\tau) d\tau$ F(s) G(s) $\int_{0^{-}}^{t^{+}} f(\tau) \, d\tau$ (integration rule)

Interesting, but not included in this course.

$$\frac{f(t)}{t} \qquad \qquad \int_{s}^{\infty} F(\sigma) \, d\sigma$$

Function Table

<u>Function</u>	Transform	Region of convergence
1	1/s	Re(s) > 0
e^{at}	1/(s-a)	Re(s) > Re(a)
t	$1/s^2$	Re(s) > 0
t^n	$n!/s^{n+1}$	Re(s) > 0
$\cos(\omega t)$	$s/(s^2+\omega^2)$	Re(s) > 0
$\sin(\omega t)$	$\omega/(s^2+\omega^2)$	Re(s) > 0
$e^{at}\cos(\omega t)$	$(s-a)/((s-a)^2+\omega^2)$	Re(s) > Re(a)
$e^{at}\sin(\omega t)$	$\omega/((s-a)^2+\omega^2)$	Re(s) > Re(a)
$\delta(t)$	1	all s
$\delta(t-a)$	e^{-as}	all s
$\cosh(kt) = \frac{e^{kt} + e^{-kt}}{2}$	$s/(s^2 - k^2)$	Re(s) > k
$\sinh(kt) = \frac{e^{kt} - e^{-kt}}{2}$	$k/(s^2 - k^2)$	Re(s) > k
$\frac{1}{2\omega^3}(\sin(\omega t) - \omega t \cos(\omega t))$	$\frac{1}{(s^2 + \omega^2)^2}$	Re(s) > 0
$\frac{t}{2\omega}\sin(\omega t)$	$\frac{s}{(s^2 + \omega^2)^2}$	Re(s) > 0
$\frac{1}{2\omega}(\sin(\omega t) + \omega t \cos(\omega t))$	$\frac{s^2}{(s^2 + \omega^2)^2}$	Re(s) > 0
u(t-a)	e^{-as}/s	Re(s) > 0
$t^n e^{at}$	$n!/(s-a)^{n+1}$	Re(s) > Re(a)
Interesting, but not included in this course.		
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$	$\operatorname{Re}(s) > 0$
·	•	T ()
t^a	$\frac{\Gamma(a+1)}{s^{a+1}}$	Re(s) > 0