实验报告

第一部分 第三周

一、万用表练习

(1)**实验内容** 取三个不同色环的电阻,读取电阻标称值、允许偏差,用万用表测量其阻值并记录,计算电阻偏差。

步骤

- 1、 读出色环电阻的标称阻值和允许偏差;
- 2、 用万用表的电阻档测量电阻,左手将表棒和电阻的一端捏住, 右手握住另一表棒的绝缘层,将金属部分搭在电阻引线上。

实验数据

标称阻值	允许偏差	测量值	偏差值
100kΩ	±1%	99.83kΩ	0.17%
100Ω	±1%	98.77Ω	1.77%
47kΩ	±1%	47kΩ	0

分析

100kΩ和 47kΩ这两个相对较大的电阻测量偏差值较小,在允许范围内;测量 100Ω的电阻时适用量程较大,存在较大误差。

(2) **实验内容** 取三个不同电容值的电容,读取电容的标称值,用万用表测量其电容并记录,计算电容偏差。

步骤

1、 选取电容读出标称值;

2、 用万用表的电容档测量,将电容长引脚插入万用表电容正接口, 短引脚插入负接口,读出电容值。

实验数据

标称值	测量值	偏差值
2.2μF	2.366µF	7.5%
10μF	12.84µF	28%
100μF	111μF	11%

分析

电容的测量值和标称值之间的偏差较电阻明显更大, 电容由于其充放电的特殊性, 测量数值不稳定, 很难测出标准的电容值。

(3) **实验内容** 取一个二极管,用万用表判断其极性,测量它的正向导通压降,并记录。

步骤

- 1、 取一个二极管, 将万用表调到二极管/蜂鸣档, 按下 SELECT 键, 屏幕右边缘出现二极管的符号;
- 2、 用表棒测二极管,若无示数则交换红黑表棒,得到二极管的正向导通压降。

实验数据

测得二极管正向导通压降约为 0.5822V

(4) 实验内容 取一个三极管, 用万用表确定它的集电极、基级和发

射极, 画出三极管外观图并标注管脚。

步骤

- 1、 取一个三极管, 万用表选择二极管/蜂鸣档, 并按下 SELECT 键;
- 2、 红表笔固定一极,如果黑表笔搭在另外两管脚都导通,则该三极管是 NPN 型,红表笔所搭的是基极 (b 极);
- 3、 反之,如果黑表笔固定一极,红表笔搭在另外两管脚都导通,则该三极管是 PNP型,黑表笔所搭的是基极 (b 极);
- 4、 万用表选择 hFE 档, 找准万用表右上角的三极管插口(型号和b 极), 将三极管插入, 如果显示数字较小,则 e、c 两级选反, 如果数字较大,则正确找出了三极管的三极。

实验数据

测得 hFE 数值为 322

分析

hFE 值表示三极管电流放大倍数约 322 倍。

二、电源与万用表使用练习

(1) **实验内容** 设定电源 CH1、CH2 电压分别为 5V、12V,电流均为 1A。用万用表直流电压档测量实际输出电压并记录,计算电压偏差。

步骤

- 1、 设定电源两通道分别为 5V、12V, 电流为 1A;
- 2、 万用表调到直流电压档, 连好万用表, 输出设定的电源。

实验数据

设定值	测量值	偏差值
5V	5.062V	1.24%
12V	12.12V	1%

(2) **实验内容** 设定电源电压分别为正负 5V, 正负 12V, 用万用表直流电压档测量并记录。

步骤

- 2、 连接万用表,测出电压;
- 3、 将电源串联,设定电压为正负 12V, CH1 的正极为 + 12V, CH2 的负极为-12V;
- 4、 连接万用表,测出电压。

实验数据

设定值	测量值	偏差值
±5V	10.162V	1.62%
±12V	24.67V	2.79%

(3) **实验内容** 设定电源 CH1 电压为 1V, 限定电流为 0.5A, 用万用表的"2A 直流电流"档测量短路限制电流并记录,计算设置偏差。

步骤

- 1、 设定电源,将万用表的红表笔插到左边 2/20A 输入孔,练好电路;
- 2、 输出电源,测得电流值。

实验数据

设定值	测量值	偏差值
0.49A	0.4915A	-0.3%

三、信号源与示波器使用练习

(1) **实验内容** 示波器探头接校准信号源,观察记录波形;使用光标法读取信号的幅度和周期(或频率)信息,并作相应记录。

步骤

- 1、 将示波器探头勾在校准信号源, 用螺丝刀调整匹配网络, 校准 方波信号;
- 2、 按下 Cursor 键,用软键盘和 VARIABLE 旋钮调整光标,读出显示屏上显示的信号的幅度(Y1Y2)和频率(X1X2)。

实验数据

信号幅度 102mV,频率 1kHZ

(2) **实验内容** 调节信号源,使信号源输出幅度为 0.2Vp-p,频率分别为 10KHz, 100KHz, 1MHz, 10MHz 的正弦波信号。用示波器 CH1测量信号源的输出,记录设定的电压量程和扫描时间;记录测量得到的波形的幅度和时间(或频率)参数。

步骤

- 1、 设定信号源 CH1 为输出幅度为 0.2Vpp, 频率为 10KHz 的正弦波;
- 2、 选择触发通道为"CH1", 触发模式为"自动", 调节触发电平 "LEVEL"使得波形能稳定显示;
- 3、 调节相应的量程旋钮"VOLTS/DIV"和扫描周期旋钮"TIME/DIV" 使得波形显示大小合适。记录设定的电压量程和扫描时间;
- 4、 按测量键"Measure", 记录测量得到的波形的幅度和时间(或频率)参数;
- 5、 调整信号源频率为 100KHz、1MHz, 重复 2-4 步;
- 6、 设定信号源频率为 10MHz, 将探头上的推钮推到"x10"档, 并调整示波器的设定电源为"x10", 重复 2-4 步。

实验数据

设定频率	设定的电压量程	设定的扫描时间	测量到的幅度	测量到的频率
10KHz	50mV	25us	200mV	10KHz
100KHz	50mV	2.5us	200mV	100.1KHz
1MHz	50mV	250ns	200mV	999.5KHz
10MHz	100mV	50ns	250mV	10.04MHz

分析

频率较低时,测得的幅度和频率都比较精确;但频率变高时,需要调整探头上的衰减网络.同时测得的信号幅度出现了较大误差。

(3) **实验内容** 在实验步骤(2)的基础上,改变信号波形:分别为方波、三角波,测量波形的幅度和时间参数并记录。

步骤

1、将(2)中的正弦波改为三角波和方波,重复上述 2-5 步(三角波和方波无法设定 10MHz)。

实验数据

波形	设定频率	测量到的幅度	测量到的频率
三角波	10KHz	200mV	10KHz
三角波	100KHz	200mV	100KHz
三角波	1MHz	200mV	1MHz
方波	10KHz	200mV	10KHz
方波	100KHz	200mV	100KHz
方波	1MHz	200mV	1MHz

(4) **实验内容** 信号源输出信号频率保持 200KHz 不变,改变信号的幅度,在 0.5Vp-p 与 2Vp-p 之间变化,步进 0.5Vp-p 用示波器观察信号的变化,采用光标法分别测量幅度值并做相应的记录,分别计算测量偏差。

步骤

- 1、 设定信号源为频率为 200KHz, 幅度为 0.5Vpp 的正弦波;
- 2、 调节相应的量程旋钮"VOLTS/DIV"和扫描周期旋钮"TIME/DIV" 使得波形显示大小合适;
- 3、 按下 Cursor 键,用软键盘和 VARIABLE 旋钮调整光标,读出显示屏上显示的信号的幅度(Y1Y2)和频率(X1X2)并记录;
- 4、 将信号源幅度设定为 1Vpp、1.5Vpp、2Vpp, 重复 2-3 步。

实验数据

设定幅度	测量幅度	偏差值
0.5Vpp	488mV	2.4%
1Vpp	976mV	2.4%
1.5Vpp	1.48V	1.33%
2Vpp	1.94V	3%

分析

设定的幅度在 0.2Vpp 时,测出的幅度值基本没有偏差,但是设定在 0.5Vpp 及以上时就出现了一定的偏差,该偏差值与设定的幅度大小 没有明显的联系。

第二部分 第五周

一、呼吸灯调试

实验内容 调试呼吸灯,测出集成电路两输出脚的波形特征

步骤

- 1、 设置电源 12V, 电流 0.5A, 输出电源;
- 2、 用螺丝刀调节电位器, 使呼吸灯节奏最快;
- 3、 用已经校准的示波器测量集成电路 1 脚的波形(出现稳定波形时按下 STOP 键再用光标法进行测量);
- 4、 用同样的方法测量 7 脚的波形;
- 5、 调整电位器,观察波形变化。

实验数据

测量脚	波形	幅度	周期
1 脚	三角波	2.83V	1.30s
7 脚	方波	4.40V	1.30s

调节电位器使呼吸灯频率变慢时,输出脚输出的波形幅度变大,频率变慢(周期变大)。

分析

7 脚输出的方波作为 2 脚的输入,控制 1、2、3 脚这个运放通道的周期; 1 脚输入三角波,控制 LED 灯渐变产生呼吸效果。

二、幸运转盘调试

实验内容 调试幸运转盘,测量输出脚和三极管发射极的波形和相应数据

步骤

- 1、 电源设定为 5V, 0.5A, 输出电源;
- 2、 按住幸运转盘的启动键,测量集成电路 U1 的 3 脚波形 (出现稳定波形时按下 STOP 键再用光标法进行测量);
- 3、 放大3脚波形,测量负脉冲宽度;
- 4、 测量 U2 的管脚(以1 脚为例)波形, 并放大测量正脉冲宽度;
- 5、 测量三极管发射极电压(先用光标标记 0V, 再按住启动键, 此时电压升高, 压降约为 4.3V; 松开启动键, 电压逐渐下降, 在转盘灯停下的那一瞬间按下 STOP 键, 测量此时的压降)。

实验数据

测量脚	幅度	周期	正(负)脉冲宽度	占空比
U1 3 脚	4.40V	9.6ms	48.8us	
U2 1 脚	1.94V	97ms	9.70ms	10%

发射极电压约 3.2V

分析

按下启动键 555 芯片产生震荡电路,输出震荡信号使 10 个 LED 灯交替闪烁;松开启动键后,电容器放电,震荡信号频率减慢,最后只有一个 LED 灯亮。

共10个灯,所以占空比理论上为10%。

三、贴片流水灯调试

实验内容 调试贴片流水灯 555 芯片的输出信号波形、上升(下降)时间,4017 的输出信号波形等

步骤

- 1、 设置电源 3V, 输出电源;
- 2、 测量 555 芯片 3 脚的输出信号;
- 3、 保持触发的小三角在正中间, 放大波形, 触发模式为边沿触发, 斜率设置为上升沿, 按 STOP 键固定, 选取上升部分的 10%~90% 作为上升时间;
- 4、 将斜率设置为下降沿,按相同步骤测出下降时间;
- 5、 测量 4017 环形计数器输出脚的波形周期和脉冲宽度;
- 6、 测量 Q1 集电极信号的周期。

实验数据

555 芯片 3 脚

幅度	2.31V
频率	70ms
上升时间	92.00ns
下降时间	114.0ns

4017 芯片输出脚

周期	700ms
脉冲宽度	70ms
占空比	10% (理论值 10%)

Q1 集电极周期 700ms

分析

实验原理与幸运转盘相似,也是共10个灯,所以占空比理论值为10%。

第三部分 实验总结

这段时间学习了基础元器件、直插件焊接、常用仪器仪表的使用、贴片器件的焊接、实验电路的调试,我认识了各种元器件,学会常见的仪器仪表的简单操作,实践了直插件和贴片器件的焊接,也对焊接的器件原理有了一定的了解。

我认为课程内容比较合理,课程设置循序渐进,上课理论与实践结合,学习效果良好。