Algorithm Analysis: Part-2

Calculate Running Times of the following algorithms....

5 return count

Running time =
$$c_1 + c_2(n+1) + c_3n + c_4n + c_5$$

- Running time on an input of n items
- ightharpoonup T(n), running time as a function of input size, n
- ightharpoonup T(n) = an + b, a linear function of n

Search-Multiple(A, B)

- 1. count = 0
- 2. for i = 1 to B. length
- 3. key = B[i]
- 4. for j = 1 to A. length
- 5. if A[i] == key
- 6. count = count + 1
- 7. return count

Calculate Running Times of the following algorithms...

Running Time = ?

Search-Multiple(A, B)	cost	Times
1. count = 0	c1	1
2. for i = 1 to B. length	c2	m+1
3. key = B[i]	c3	n
4. for j = 1 to A. length	c4	m(n+1)
5. if A[i] == key	c5	mn
6. count = count + 1	c6	mn
7. return count	c7	1
Note: A.length = n, B.length = m		

Cost and Times

- To analyse an algorithm, sum up the cost of each and every line of the pseudocode
- To compute the cost of one line, we will take the time taken to execute that line (i.e the cost incurred to execute that line) multiplied by how many times that line is executed
- Usually we write the running time as a function of n, represented as T(n), where n is the input size of the problem

Analysis of algorithm

- The time taken by an algorithm grows with the input size
- Running time of an algorithm is described as a function of its input
- We will formalize "input size" and "running time"
- Input size
 - Depends on the problem being studied
 - eg: for sorting problem, it is the number of elements
 - eg: for multiplying two numbers, it is the total number of bits

Pseudocode of Linear Search

LINEAR SEARCH(A, key)

- 1. found = 0
- 2. for i = 1 to A.length
- 3. if A[i] = key
- 4. found = 1
- 5. return i
- 6. if found = 0
- 7. return 0

What is the running time of Linear Search?

- Consider the different cases of the input
 - Best case
 - Worst case

Best Case of Linear Search

- Best Case input of Linear Search: The element to be searched is in the first position of the list
 - Eq: A = 1, 4, 2, 7, 10, 5 & key = 1
- . How do we analyse the linear search in the best case?
- Step 1: Cost : c₁ Times : 1
- Step 2: Cost : c₂ Times : 1
- Step 3: Cost : c₃ Times : 1
- Step 4: Cost : C₄ Times : 1
- Step 5: Cost : c₅ Times : 1
- $T(n) = c_1 + c_2 + c_3 + c_4 + c_5$

- 1. found = 0
- 2. for i = 1 to A.length
- 3. if A[i] = key
- 4. found = 1 5. return i
- 6. if found = 0
- 7. return 0

Worst Case of Linear Search

- One of the Worst Case input of Linear Search: The element to be searched is in the last position of the list
 - Eg: A = 1, 4, 2, 7, 10, 5 & key = 5
- How do we analyse the linear search in the worst case successful search?
- Step 1: Cost : c₁ Times : 1
- Step 2: Cost : c₂ Times : n
- Step 3: Cost : c₃, Times : n
- . Step 4: Cost: C₄ Times: 1
- Step 5: Cost : c₅ Times : 1
- . $T(n) = c_1 + n * c_2 + n * c_3 + c_4 + c_5$

- LINEAR SEARCH(A,key)
- 1. found = 0
- 2. for i = 1 to A.length
- 3. if A[i] = key 4. found = 1
- 5. return i
- 6. if found = 0
 - 7. return 0

Analysis of Worst Case of Linear Search- Unsuccessful search One of the Worst Case input of Linear Search: The unsuccessful search

- analysis ie. the element is not present Eq: A = 1, 4, 2, 7, 10, 5 & key = 0
- Step 1- Cost : c₁ Times : 1
- Step 2- Cost : c₂ Times : n+1
- Step 3- Cost : c₃ Times : n
- Step 4- Cost : c₄ Times : 0
- Step 6- Cost : c₆ Times : 1 Step 7- Cost : c₇ Times : 1
- Step 5- Cost :c₅ Times : 0

 $T(n) = c_1 + (n+1)^* c_2 + n^* c_3 + c_6 + c_7$

- - - LINEAR SEARCH(A,key)

6. if found = 0

return 0

- 1. found = 0
- 2. for i = 1 to A.length if A[i] = key 3.
- found = 14.
- 5. return i

Running time of Linear Search algorithm

- Considering the different cases of the input
 - O Best case running time: $T(n) = c_1 + c_2 + c_3 + c_4 + c_5$
 - Worst case running time:
 - Successful Search: $T(n) = c_1 + n * c_2 + n * c_3 + c_4 + c_5$
 - Unsuccessful Search: $T(n) = c_1 + (n+1)^* c_2 + n^* c_3 + c_6 + c_7$

Insertion Sort - Analysis

Analysis of algorithms

- We know: Analysing the algorithms means predicting the resources the algorithm uses
- We focus on the resource : computational time
- The time taken by the insertion sort depends on what?
 - input size
- Does the time taken depend on anything else?
 - how sorted is the input already

Run-time Analysis

 Time taken by Insertion Sort (IS) algorithm depends on the input size

Sorting a million numbers takes longer than sorting ten numbers

 IS take different amounts of time to sort two input sequences of the same size

Depends on how nearly sorted they already are

Run-time Analysis

 Time taken by the algorithm grows with the size of the input,

```
Eg: n = 10, Running time = 1 unit
n = 10000, Running time = 1000 units
```

Running time as a function of the size of its input

Input Size

Sorting and Searching

Number of elements in the input

 GCD of two numbers / Number is a prime number or not ?

Total number of bits needed to represent the input in binary notation

Graph problems

Number of vertices and edges

Running time

- Number of primitive operations or steps executed
- Steps machine independent
- Assumption (RAM model)
 - 1. Constant amount of time is required to execute each line of pseudocode
 - 2. Each execution of ith line takes time c_i, where c_i is a constant

INSERTION-SORT(A)

- 1. **for** j = 2 to A.length

 - 2. key = A[i];
- 3. // Insert A[j] into the sorted sequence A[1...j-1]

 - i = j-1
 - while i > 0 and A[i] > key 5.
 - 6.
 - 8.
 - 7.
 - A[i+1] = key
- **do** A[i+1] = A[i] i = i - 1
- C_6

 C_1

 C_{2}

 C_3

 C_4

 C_5