epimutacions: a Bioconductor package to identify outliers in rare diseases DNA methylation data

Supplementary material

Leire Abarrategui Carlos Ruiz-Arenas Carles Hernandez-Ferrer Juan R. Gonzalez Patricia Ryser-Welch

2021-07-15

Contents

1	Inti	roduction	3						
	1.1	Background	3						
	1.2	Methodology	3						
	1.3	Input data	3						
2	Get	tting started	4						
3	Dat	tasets	5						
	3.1	Candidate regions	5						
	3.2	GenomicRatioSet	6						
	3.3	IDAT files and RGChannelSet	7						
4	Pre	eprocessing	7						
5	Epimutations								
	5.1	Epimutations detection	10						
	5.2	Unique parameters	10						
	5.3	Results description	12						
	5.4	Epimutations annotations	12						
	5.5	Epimutation visualization	13						
6	Method validation								
	6.1	Data collection	14						
	6.2	Validation	15						
	6.3	Results	22						
7	Ack	knowledgements	30						
\mathbf{R}	efere	ences	31						

1 Introduction

1.1 Background

According to the European Commission, rare diseases are pathologies with a prevalence of less than 1 person in 2,000 people (European-Commission 2020). Most of these conditions have an onset during childhood and a strong genetic etiology (López-Bastida et al. 2016). Consequently, rare disease diagnosis has relied on identifying genetic and genomic mutations that can cause the disease (Aref-Eshghi et al. 2019). Although these variants have provided a diagnosis for many patients and families, around 60% of the cases remained undiagnosed (Lionel et al. 2018). Aberrant methylation can be an underlying cause of undiagnosed patients, either as a primary event (a.k.a. epimutation) or as a functional consequence of chromatin dysregulation by genetic or environmental agents (a.k.a. episignature) (Aref-Eshghi et al. 2019). Epimutations are the cause of some rare diseases, such as Prader-Willi, Angelman or Beckwith-Wiedemann syndromes (Aref-Eshghi et al. 2019) and some human malformations (Serra-Juhé et al. 2015). Syndrome-specific episignatures are increasingly defined as biomarkers for a growing number of disorders (Aref-Eshghi et al. 2019; Garg et al. 2020). Therefore, tools to detect epimutations and episignatures should be made available to the rare disease community and included in standardized analysis workflows.

This manual describes the tools available in **epimutacions** package to identify epivariants using multiple outlier detection approaches. It also includes functions to plot and annotate the epimutations.

The name of the package is epimutacions (pronounced pi mu ta 'sj ons) which means epimutations in Catalan, a language from the northeast of Spain.

1.2 Methodology

The epimutacions package computes a genome-wide DNA methylation analysis to detect the epigenetic variants to be considered as biomarkers for samples with rare diseases (epimutations). It compares a case sample with suspected rare disease against a reference panel. The package focused on the detection of outliers in DNA methylation patterns associated with the diseases as proposed by (Aref-Eshghi et al. 2019).

The identification of relevant genomic methylation regions for a given sample having a rare disease will be driven by detecting differentially methylated CpG sites when comparing beta values of all control samples with the given proband. Firstly, bump-hunter (Jaffe et al. 2012) approach is used to identify the Differentially Methylated Regions (DMRs). Then, CpGs in the proband sample are tested in those DMRs in order to identify regions with CpGs being outliers when comparing with the reference panel. To this end, different anomaly detection statistical approaches are used. These include Multivariate Analysis of Variance (MANOVA) (Friedrich et al. 2017), Multivariate Linear Model (Martín 2020), isolation forest (Cortes and Cortes 2021) and robust mahalanobis distance (Maechler et al. 2021). However, quantile (Garg et al. 2020) and Beta methods do not use bump-hunter output. Quantile (Garg et al. 2020) checks for each CpG, if the proband's measurement is an outlier. Then, it calls an epimutation to those regions where 3 contiguous CpGs are outliers, and they are separated by less than 500 base pairs. Beta approach models the DNA methylation data using a beta distribution.

1.3 Input data

The package allows two different types of inputs:

- (1) Case samples IDAT files (raw microarray intensities) together with RGChannelSet class object as reference panel. The reference panel can be supplied by the user or can be selected through the example datasets available in the package.
- (2) GenomicRatioSet class object containing case and control samples.

The input data should contain information about β values of CpG sites, phenotype and feature data.

If you want to combine data from different studies, normalization is highly recommended. The preprocessing step removes the unwanted variation caused by the batch effect. In addition, it converts raw microarray intensities to GenomicRatioSet (epimutations() function input). Finally, the case and control samples are introduced separately in epimutations() function.

Figure 1: Allowed data formats, normalization and epimutations() function input

2 Getting started

The epimutacions package is available on GitHub and can be installed by executing the following command:

```
install_github("isglobal-brge/epimutacions")
```

The package is loaded in R as usual:

```
library(epimutacions)
```

The document has the following dependencies:

```
library(Knitr)
library(kableExtra)
```

3 **Datasets**

3.1 Candidate regions

Epimutations detection has two main steps: (1) definition of candidate regions and (2) evaluation of outlier significance. Although there are different algorithms to define epimutations regions, they share common features. In general, we define an epimutation as at least 3 contiguous CpGs with a maximum distance of 1kb between them (Aref-Eshghi et al. 2019; Garg et al. 2020).

In Illumina 450K array (Reproducibility 2012), probes are unequally distributed along the genome, limiting the number of regions that can fulfil the requirements to be considered an epimutation. So, we have computed a dataset containing the regions that are candidates to become an epimutation.

To define the candidate epimutations, we relied on the clustering from bumphunter (Jaffe et al. 2012). We defined a primary dataset with all the CpGs from the Illumina 450K array. Then, we run bumphunter and selected those regions with at least 3 CpGs. As a result, we found 40408 candidate epimutations which are available in candRegsGR dataset.

Besides, we converted the candidate region from hg19 to hg38 coordinates, using NCBI remap (Holmes et al. 2020). We selected regions that mapped to one region in hg38 with the same length. This yielded a total of 39944, the 98.85% of total hg19 regions. After converting to hg38, we can use these ranges to be annotated to ENCODE cREs (Hon and Carninci 2020). Overall, we mapped 30163 candidate regions to cREs, representing 74.65% of total candidate regions.

```
#Candidate regions dataset
##load data
data("candRegsGR")
##data class
class(candRegsGR)
```

[1] "GRanges" attr(,"package") [1] "GenomicRanges"

##dataset candRegsGR

GRanges object with 40408 ranges and 9 metadata columns:

	seqnames		ranges	strand	1	value	area
	<rle></rle>	<]	[Ranges>	<rle></rle>	<n1< td=""><td>meric></td><td><numeric></numeric></td></n1<>	meric>	<numeric></numeric>
chr6_32128101	chr6	32128101-3	32173532	*		1	381
chr6_33156164	chr6	33156164-3	33181870	*		1	291
chr6_32034322	chr6	32034322-3	32059605	*		1	239
chr6_31618987	chr6	31618987-3	31639143	*		1	234
chr6_33279563	chr6	33279563-3	33292029	*	1	1	233
chr9_140652685	chr9	140652685-14	10652743	*		1	3
chr9_140656200	chr9	140656200-14	10657381	*		1	3
chr9_140680393	chr9	140680393-14	10681206	*		1	3
chr9_140732731	chr9	140732731-14	10733980	*		1	3
chr9_141012312	chr9	141012312-14	1013537	*		1	3
	cluster	indexStart	indexEr	nd	L	cluste	erL
	<numeric></numeric>	<pre><integer></integer></pre>	<integer< td=""><td>:> <nume< td=""><td>eric></td><td><intege< td=""><td>er></td></intege<></td></nume<></td></integer<>	:> <nume< td=""><td>eric></td><td><intege< td=""><td>er></td></intege<></td></nume<>	eric>	<intege< td=""><td>er></td></intege<>	er>
chr6_32128101	133070	165174	16555	54	381	3	881

```
chr6 33156164
                   133204
                              167451
                                         167741
                                                       291
                                                                  291
 chr6 32034322
                              164512
                                                       239
                                                                  239
                   133058
                                         164750
 chr6 31618987
                   132987
                              162583
                                         162816
                                                       234
                                                                  234
 chr6_33279563
                   133221
                              168282
                                         168514
                                                       233
                                                                  233
                      . . .
                                  . . .
                                            . . .
                                                       . . .
                                                                  . . .
chr9 140652685
                   162642
                              247198
                                         247200
                                                         3
                                                                    3
chr9 140656200
                                                         3
                   162643
                              247201
                                         247203
                                                                    3
chr9_140680393
                   162649
                              247214
                                         247216
                                                         3
                                                                    3
chr9_140732731
                   162660
                              247252
                                         247254
                                                         3
                                                                    3
                                                         3
chr9_141012312
                   162683
                              247294
                                         247296
                                                                    3
                                    CRE
                                                       CRE_type
                           <character>
                                                    <character>
 chr6_32128101 EH38E2459822, EH38E24.. pELS, CTCF-bound; PLS; ...
 chr6_33156164 EH38E2460436, EH38E24.. PLS; pELS, CTCF-bound; ...
 chr6_32034322 EH38E2459711,EH38E24.. dELS;dELS;dELS;pELS,...
 chr6_31618987 EH38E2459340, EH38E24.. pELS, CTCF-bound; PLS,...
 chr6_33279563 EH38E2460551, EH38E24.. pELS, CTCF-bound; pELS..
chr9 140652685
chr9 140656200 EH38E2738315, EH38E27.. pELS, CTCF-bound; pELS..
chr9_140680393 EH38E2738332,EH38E27..
                                          dELS, CTCF-bound; dELS
chr9 140732731
chr9_141012312
```

seqinfo: 22 sequences from an unspecified genome; no seqlengths

3.2 GenomicRatioSet

The package includes a small GenomicRatioSet class dataset (methy) containing the DNA methylation profiles from a total of individuals, 3 cases and 48 controls. The DNA methylation profiles were generated using the Illumina 450k Human Methylation BeadChip (Reproducibility 2012). The data corresponds to GSE104812 cohort from Gene Expression Omnibus (GEO). It has been adapted for package usage.

```
data("methy")
methy
```

```
class: GenomicRatioSet
dim: 80731 51
metadata(0):
assays(3): Beta M CN
rownames(80731): cg00725145 cg16080333 ... cg07468397 cg08821909
rowData names(0):
colnames(51): GSM2808239 GSM2808240 ... GSM2562700 GSM2562701
colData names(4): sampleID age sex status
Annotation
   array: IlluminaHumanMethylation450k
   annotation: ilmn12.hg19
Preprocessing
   Method: NA
   minfi version: NA
   Manifest version: NA
```

table(methy\$status)

```
case control 3 48
```

3.3 IDAT files and RGChannelSet

Additionally, as a external data 4 case samples IDAT files from (GEO:GSE131350) are included.

```
baseDir <- system.file("extdata", package = "epimutacions")
list.files(baseDir)

[1] "GSM3770871_R04C01_Grn.idat" "GSM3770871_R04C01_Red.idat"
[3] "GSM3770882_R05C01_Grn.idat" "GSM3770882_R05C01_Red.idat"
[5] "GSM3770883_R08C01_Grn.idat" "GSM3770883_R08C01_Red.idat"
[7] "GSM3770899_R02C01_Grn.idat" "GSM3770899_R02C01_Red.idat"
[9] "SampleSheet.csv"</pre>
targets <- minfi::read.metharray.sheet(baseDir)
```

[1] "C:/Users/nla94/Documents/R/win-library/4.1/epimutacions/extdata/SampleSheet.csv"

The reference panel (RGChannelSet object) contains DNA methylation profiles of 22 whole cord blood samples from healthy children born via caesarian (GEO:GSE127824). This dataset is available in the ExperimentHub package.

4 Preprocessing

The normalization removes the unwanted variation caused by the batch effect when combining data from different sources. The preprocessing in epimutacions package is done by epi_preprocess() function. It contains 6 preprocessing methods corresponding to minfi package (Aryee et al. 2014), which can be selected by the user:

Table 1:	Preprocessing	methods of	description

Method	Function	Description			
raw	preprocessRaw	Converts the Red/Green channel for an Illumina methylatic array into methylation signal. This method does not normalize the data.			
illumina	preprocessIllumina	Implements preprocessing for Illumina methylation microarrays as used in Genome Studio.			
swan	preprocessSWAN	Subset-quantile Within Array Normalisation (SWAN). It allows Infinium I and II type probes on a single array to be normalized together.			
quantile	preprocessQuantile	Implements stratified quantile normalization preprocessing for Illumina methylation microarrays.			

Method	Function	Description
noob	preprocessNoob	Noob (normal-exponential out-of-band) is a background correction method with dye-bias normalization for Illumina Infinium methylation arrays.
funnorm	preprocessFunnorm	Functional normalization (FunNorm) is a between-array normalization method for the Illumina Infinium HumanMethylation450 platform.

Those methods have unique parameters (table 2) that can be defined through norm_parameters() function:

Table 2: Preprocessing methods unique parameters

Method	Parameters	Description					
illumina	bg.correct	Performs background correction					
	normalize	Performs controls normalization					
	reference	The reference array for control normalization					
quantile	fixOutliers	Low outlier Meth and Unmeth signals will be fixed					
	removeBadSamples	Remove bad samples					
	badSampleCutoff	The cutoff to label samples as 'bad'					
	quantileNormalize	Performs quantile normalization					
	stratified mergeMan	ifestorms quantile normalization within region strata					
	sex	Merged to the output the information in the associated manifest package					
		Sex of the samples					
noob	offset	Offset for the normexp background correct					
	dyeCorr	Performs dye normalization					
	dyeMethod	Dye bias correction to be done					
funnorm	nPCs	The number of principal components from the control probes					
	sex	Sex of the samples					
	bgCorr	Performs NOOB background correction before functional normalization					
	dyeCorr	Performs dye normalization					
	keepCN	Keeps copy number estimates					

The default settings for each method can be obtained by invoking the function norm_parameters() with no arguments:

norm_parameters()

\$illumina

\$illumina\$bg.correct

[1] TRUE

\$illumina\$normalize

[1] "controls" "no"

\$illumina\$reference

[1] 1

\$quantile

\$quantile\$fixOutliers

```
$quantile$removeBadSamples
[1] FALSE
$quantile$badSampleCutoff
[1] 10.5
$quantile$quantileNormalize
[1] TRUE
$quantile$stratified
[1] TRUE
$quantile$mergeManifest
[1] FALSE
$quantile$sex
NULL
$noob
$noob$offset
[1] 15
$noob$dyeCorr
[1] TRUE
$noob$dyeMethod
[1] "single"
                 "reference"
$funnorm
$funnorm$nPCs
[1] 2
$funnorm$sex
NULL
$funnorm$bgCorr
[1] TRUE
$funnorm$dyeCorr
[1] TRUE
$funnorm$keepCN
[1] FALSE
However, to modify the parameters related to a method you can do as the following example for illumina
approach:
parameters <- norm_parameters(illumina = list("bg.correct" = FALSE))</pre>
```

[1] TRUE

parameters\$illumina\$bg.correct

5 Epimutations

5.1 Epimutations detection

The epimutacions package includes 6 methods for epivariants identification: (1) Multivariate Analysis of variance (manova), (2) Multivariate Linear Model (mlm), (3) isolation forest (isoforest), (4) robust mahalanobis distance (mahdistmcd) (5) quantile and (6) beta.

In the mentioned first 4 methods, firstly, Differentially Methylated Regions (DMRs) are identified using bump-hunter method (Jaffe et al. 2012). Then, those DMRs are tested to identify regions with CpGs being outliers when comparing with the reference panel. However, quantile and beta do not identify outliers by filtering the DMRs. quantile utilized a sliding window approach to individually compare the methylation value in each proband against the reference panel. Beta used beta distribution to identify epivariants in the case sample.

To ilustrate multiple examples we are going to use methy dataset. Fristly, we are going to split the dataset in two subset: (1) cases (case_samples) and (2) controls (control_samples):

```
case_samples <- methy[,methy$status == "case"]
control_samples <- methy[,methy$status == "control"]</pre>
```

Then, we are going to identify epimutations in each case sample using one statistical approach at a time:

```
epi_mvo <- epimutations(case_samples, control_samples, method = "manova")
epi_ml <- epimutations(case_samples, control_samples, method = "mlm")
epi_iso <- epimutations(case_samples, control_samples, method = "isoforest")
epi_mcd <- epimutations(case_samples, control_samples, method = "mahdistmcd")
epi_qtl <- epimutations(case_samples, control_samples, method = "quantile")
epi_beta <- epimutations(case_samples, control_samples, method = "beta")</pre>
```

5.2 Unique parameters

The epi_parameters() function is useful to set the individual parameters for each approach. The arguments are described in table 3:

Table 3: epimutation function approaches unique parameters

Method	Parameter	Description
manova mlm	pvalue_cutoff	The threshold p-value to select which CpG regions are outliers
beta		
iso.forest	outlier_score_cutoff	The threshold to select which CpG regions are outliers
	ntrees	The number of binary trees to build for the model
mahdist.mcd	nsamp	The number of subsets used for initial estimates in the MCD
quantile	window_sz	The maximum distance between CpGs to be considered in the
	offset_mean/offset_abs	same DMR
	·	The upper and lower threshold to consider a CpG an outlier

Method	Parameter	Description
beta	<pre>pvalue_cutoff diff_threshold</pre>	The minimum p-value to consider a CpG an outlier The minimum methylation difference between the CpG and the mean methylation to consider a position an outlier

Invoking epi_parameters() with no arguments returns a list of the default settings for each method:

epi_parameters()

\$manova
\$manova\$pvalue_cutoff
[1] 0.05

\$mlm
\$mlm\$pvalue_cutoff
[1] 0.05

\$isoforest
\$isoforest\$outlier_score_cutoff
[1] 0.5

\$isoforest\$ntrees
[1] 100

\$mahdistmcd
\$mahdistmcd\$nsamp
[1] "deterministic"

\$barbosa
\$barbosa\$window_sz
[1] 10

\$barbosa\$offset_mean
[1] 0.15

\$barbosa\$offset_abs
[1] 0.1

\$beta
\$beta\$pvalue_cutoff
[1] 1e-06

\$beta\$diff_threshold
[1] 0.1

The set up of any parameter can be done as the following example of p-value cut-off for manova:

```
parameters <- epi_parameters(manova = list("pvalue_cutoff" = 0.01))
parameters$manova$pvalue_cutoff</pre>
```

[1] 0.01

5.3 Results description

The epimutations function returns a tibble containing all the epivariants identified in the given case sample. In case no epimutation is found, a row containing the case sample information and missing values for each argument is returned. Table 4 describes each argument in the result data frame:

Table 4: epimutation function output arguments description

Column name	Description
epi_id	Systematic name for each epimutation identified
sample	The name of the sample containing that epimutation
chromosome	The location of the epimutation
start end	
sz	The window's size of the event
cpg_n	The number of CpGs in the epimutation
cpg_n	The names of CpGs in the epimutation
outlier_score	For method manova it provides the approximation to F-test and the Pillai score, separated by
	For method mlm it provides the approximation to F-test and the R2 of the model, separated by
	For method isoforest it provides the magnitude of the outlier score.
	For method beta it provides the mean p-value of all GpGs in that DMR
	For methods quantile and mahdistmcd it is filled with NA.
pvalue	For methods manova and mlm it provides the p-value obtained from the model.
	For method quantile, isoforest, beta and mahdistmed it is filled with NA.
outlier_directi	onIndicates the direction of the outlier with "hypomethylation" and "hypermethylation."
	For manova, mlm, isoforest, and mahdistmcd
	it is computed from the values obtained from bumphunter.
	For beta is computed from the p value for each
	CpG using diff_threshold and pvalue_threshold arguments.
	For quantile it is computed from the location of the sample
	in the reference distribution (left vs. right outlier).
adj_pvalue	For methods manova and mlm it provides the adjusted p-value with
	Benjamini-Hochberg based on the total number of regions detected by Bumphunter.
	For method quantile, isoforest, mahdistmcd and beta it is filled with NA.
epi_region_id	Name of the epimutation region as defined in candRegsGR.
CRE	cREs (cis-Regulatory Elements) as defined by ENCODE overlapping the epimutation region.
CRE_type	Type of cREs (cis-Regulatory Elements) as defined by ENCODE.

5.4 Epimutations annotations

The epimutacions package also includes the annotate_epimutations() function dedicated to enriching the epimutations identified by the previously described methods:

```
rst_mvo <- annotate_epimutations(epi_mvo)
```

rst_mvo[1:2, c(1, 12:14)]

Table 5: epimutations annotation

	epi_id	adj_pvalue	epi_region_id	CRE
1	epi_manova_1	0.0000000	$chr19_12776725$	EH38E1939817,EH38E1939818,EH38E1939819
29	epi_manova_47	0.0116991	${\rm chr}7_73894573$	EH38E2563868,EH38E2563869

5.5 Epimutation visualization

The visualization approach locates the epimutations along the genome. The function plot_epimutations() plots the methylation values of the individual with the epimutation in red, the control samples in dashed black lines and population mean in blue (figure 2):

plot_epimutations(as.data.frame(epi_mvo[1,]), methy)

Figure 2: beta values of case sample againts control samples

Furthermore, it includes the gene annotations in the regions in which the epivariation is located. This can be achieved by using the argument gene_annot == TRUE (figure 3):

GSM2562699: chr19:12777736 - 12777903 DNA methylation level 0.75 0.50 0.25 0.00 Status control cq23954461 1978287526903692 GSM2562699 mean 12777800 12777850 12777900 12777750 Coordinates Chromosome 19 12.778 mb 12.7785 mb 2.7775 mb WDR8305 WDR83

Figure 3: beta values of case sample againts control samples including UCSC gene annotation

Also, it is possible to plot (figure 4) CpG islands and chromatin marks H3K4me3, H3K27me3 and H3K27ac by setting the argument regulation = TRUE:

- H3K4me3: commonly associated with the activation of transcription of nearby genes.
- H3K27me3: is used in epigenetics to look for inactive genes.
- H3K27ac: is associated with the higher activation of transcription and therefore defined as an active enhancer mark

plot_epimutations(as.data.frame(epi_mvo[1,]), methy, regulation = TRUE)

6 Method validation

We validate our method (epimutacions) reproducing the results in the study (Garg et al. 2020).

6.1 Data collection

The data were obtained from the study previously described (Garg et al. 2020). The datasets were downloaded from Gene Expression Omnibus (GEO). We accessed DNA methylation data from a total 1, 417

GSM2562699: chr19:12777736 - 12777903 DNA methylation level 0.75 0.50 0.25 0.00 Status control ca23954461 ca03143 GSM2562699 mean 12777850 12777750 12777800 12777900 Coordinates Chromosome 19 2.7775 mb WDR83OS WDR83

Figure 4: beta values of case sample againts control samples including CpG islands

individuals from GSE51032 and GSE111629 cohorts. The DNA methylation profiles were generated using the Illumina 450 k Human Methylation BeadChip.

The GSE51032 analysed primary cancers samples: 424 cancer free, 235 primary breast cancer, 166 primary colorectal cancer and 20 other primary cancers. The GSE111629 cohort 335 Parkinson's disease and 237 control samples.

6.2 Validation

We evaluated the performance of the method using True Positive Rate (TPR), False Positive Rate (FPR) and accuracy. We used the TPR to measure the proportion of detected epivariations by the epimutations approach present in the validated (table 6) by (Garg et al. 2020). FPR to calculate the identified epimutations outside the once found in (Garg et al. 2020), whether validated or not. The accuracy measures the closeness of the detected epimutation to the validated regions.

We select samples differently depending on the study group and measure to compute. Control samples were selected randomly using different sample size: 20, 30, 40, 50, 60, 70, 80, 90 and 100. However, case samples were selected considering validated epimutations (for TPR and accuracy) or excluding epivariations found (for FPR) (Garg et al. 2020).

The validated epimutations in table 6 were only present on 5 individuals: GSM1235784 from GSE51032 cohort and GSM3035933, GSM3035791, GSM3035807 and GSM3035685 from GSE111629. Therefore, they were established as case samples when computing TPR and accuracy. Nevertheless, we compute FPR excluding the samples containing at least one epimutation found by (Garg et al. 2020). For the remaining case samples, 4 were selected randomly in each execution.

We executed 100 times the same process for each control sample size. We defined for the analysis regions of ≈ 20 kb containing ≥ 3 GpGs.

Table 6: validated epimutations (Garg et al. 2020).

Chromosome	Start	End	Width	Strand	Samples
chr17	46018653	46019185	533	*	GSM1235784/GSM3035791
chr19	11199850	11200147	298	*	GSM3035685
chr5	10249760	10251253	1494	*	GSM3035933
chr5	67583971	67584381	411	*	GSM3035791/GSM3035807

Additionally, we have plotted the methylation values of the samples in the regions where the validated epimutations were found.

Figure 5: GSE51032 cohort samples in the region chr17:46018654-46019184

Figure 6: GSE111629 cohort samples in the region ${\rm chr}19:11199851\text{-}11200146$

Figure 7: GSE111629 cohort samples in the region ${\rm chr}5:67584194\text{-}67584380$

Figure 8: GSE111629 cohort samples in the region ${\rm chr}17:\!46018654\text{-}46019184$

Figure 9: GSE111629 cohort samples in the region ${\rm chr}5:67583972\text{-}67584380$

Figure 10: GSE111629 cohort samples in the region chr5:10249761-10251252

6.3 Results

We compared GSM1235784 case sample against randomly selected control samples from GSE51032. furthermore, GSM3035933, GSM3035791, GSM3035807 and GSM3035685 case samples were studied against controls from GSE111629 specifying a region of 20 kb and \geq 3 GpGs.

We obtained similar results in both cohorts. We observed that the methods manova, mahalanobis distance, multivariate linear models, quantile and beta identified the validated epimutations with a TPR of > 99% even if the control sample is small. However, the TPR in isolation forest increases together with the number

method	n	TPR	accuracy	FPR		method	n	TPR	accuracy	FPR
manova	20	98	99.6	0.00	31	manova	70	100	99.6	0
mlm	20	100	99.6	0.00	32	mlm	70	100	99.6	0
mahdistmcd	20	100	99.6	0.00	33	mahdistmcd	70	100	99.6	0
isoforest	20	28	99.6	0.00	34	isoforest	70	94	99.6	0
barbosa	20	100	94.4	0.25	35	barbosa	70	100	90.0	0
beta	20	99	89.0	0.25	36	beta	70	100	93.2	0
manova	30	100	99.6	0.00	37	manova	80	100	99.6	0
mlm	30	100	99.6	0.00	38	mlm	80	100	99.6	0
mahdistmcd	30	100	99.6	0.00	39	mahdistmcd	80	100	99.6	0
isoforest	30	63	99.6	0.00	40	isoforest	80	97	99.6	0
barbosa	30	100	94.4	0.00	41	barbosa	80	100	86.0	0
beta	30	100	95.4	0.00	42	beta	80	100	92.9	0
manova	40	100	99.6	0.00	43	manova	90	100	99.6	0
mlm	40	100	99.6	0.00	44	$_{ m mlm}$	90	100	99.6	0
mahdistmcd	40	100	99.6	0.00	45	mahdistmcd	90	100	99.6	0
isoforest	40	65	99.6	0.00	46	isoforest	90	98	99.6	0
barbosa	40	100	92.4	0.00	47	barbosa	90	100	81.3	0
beta	40	100	92.6	0.00	48	beta	90	100	92.9	0
manova	50	100	99.6	0.00	49	manova	100	100	99.6	0
mlm	50	100	99.6	0.00	50	mlm	100	100	99.6	0
mahdistmcd	50	100	99.6	0.00	51	mahdistmcd	100	100	99.6	0
isoforest	50	83	99.6	0.00	52	isoforest	100	99	99.6	0
barbosa	50	100	88.0	0.00	53	barbosa	100	100	81.3	0
beta	50	100	93.8	0.00	54	beta	100	100	90.3	0
manova	60	100	99.6	0.00						
mlm	60	100	99.6	0.00						
mahdistmcd	60	100	99.6	0.00						
isoforest	60	88	99.6	0.00						
barbosa	60	100	89.2	0.00						
beta	60	100	92.6	0.00						

of control samples obtaining a TPR \geq 75 with 50 control samples or more. Regarding the accuracy, all the statistical approaches detect the epivariants with > 80% of closeness to the validated epimutations.

We detected possible epivariations outside the epimutations found by (Garg et al. 2020) selecting random regions of 20 kb and \geq 3 GpGs for both, control and case samples. We compared individual methylation profiles of a single case sample against control samples. We observed that in both cohorts and for every approach the FPR value was minimum < 0.01%.

Figure 11: epimutations performance for GSE51032 cohort detecting the epivariation located in ${\rm chr}5:10249760-10251253$

method	n	TPR	accuracy	FPR		method	n	TPR	accuracy	FPR
barbosa	100	100.000	92.825	0.00	31	barbosa	60	100.000	92.825	0.00
beta	100	100.000	92.825	0.25	32	beta	60	100.000	92.825	0.00
isoforest	100	98.625	93.000	0.00	33	isoforest	60	78.750	93.500	0.00
mahdistmcd	100	100.000	92.825	0.00	34	mahdistmcd	60	100.000	92.825	0.00
manova	100	100.000	92.825	0.00	35	manova	60	100.000	92.825	0.00
mlm	100	100.000	92.825	0.00	36	mlm	60	100.000	92.825	0.00
barbosa	20	100.000	92.825	0.00	37	barbosa	70	100.000	92.825	0.25
beta	20	87.500	92.800	0.00	38	beta	70	100.000	92.825	0.00
isoforest	20	11.500	86.800	0.00	39	isoforest	70	90.125	93.575	0.00
mahdistmcd	20	100.000	92.825	0.00	40	mahdistmcd	70	100.000	92.825	0.00
manova	20	98.000	92.825	0.00	41	manova	70	100.000	92.825	0.00
mlm	20	100.000	92.850	0.00	42	mlm	70	100.000	92.825	0.00
barbosa	30	100.000	92.825	0.25	43	barbosa	80	100.000	92.825	0.00
beta	30	87.500	92.775	0.25	44	beta	80	100.000	92.825	0.00
isoforest	30	28.000	93.150	0.00	45	isoforest	80	96.375	93.075	0.00
mahdistmcd	30	100.000	92.825	0.00	46	mahdistmcd	80	100.000	92.825	0.00
manova	30	100.000	92.825	0.00	47	manova	80	100.000	92.825	0.00
mlm	30	100.000	92.825	0.00	48	mlm	80	100.000	92.825	0.00
barbosa	40	100.000	92.825	0.00	49	barbosa	90	100.000	92.825	0.00
beta	40	87.500	92.800	0.00	50	beta	90	100.000	92.825	0.25
isoforest	40	46.375	93.950	0.00	51	isoforest	90	97.125	93.000	0.00
mahdistmcd	40	100.000	92.825	0.00	52	mahdistmcd	90	100.000	92.825	0.00
manova	40	100.000	92.825	0.00	53	manova	90	100.000	92.825	0.00
mlm	40	100.000	92.825	0.00	54	mlm	90	100.000	92.825	0.00
barbosa	50	100.000	92.825	0.00		1				
beta	50	87.500	92.825	0.00						
isoforest	50	70.125	93.500	0.00						

mahdistmcd

manova

mlm

50

50

50

100.000

100.000

100.000

92.825

92.825

92.825

0.00

0.00

0.00

Figure 12: epimutations performance using GSE111629 cohort to detect the epivariation located in ${\rm chr}5:10249760-10251253$

Figure 13: epimutations performance using GSE111629 cohort to detect the epivariation located in ${\rm chr}5:67583971-67584381$

Figure 14: epimutations performance using GSE111629 cohort to detect the epivariation located in chr17:46018653-46019185

Figure 15: epimutations performance using GSE111629 cohort to detect the epivariation located in ${\rm chr}5:11199850-11200147$

7 Acknowledgements

We acknowledge the organizers of the European BioHackathon 2020 for their support.

All the team members of Project~#5 for the contribution to this package:

Name	Surname	ORCID	Affiliation	Team
Leire	Abarrategui	0000-0002-1175- 038X	Faculty of Medical Sciences, Newcastle University, Newcastle-Upon-Tyne, UK; Autonomous University of Barcelona (UAB), Barcelona, Spain	Development
Lordstrong	Akano	0000-0002-1404- 0295	College of Medicine, University of Ibadan	Development
James	Baye	0000-0002-0078- 3688	Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physics, University of Cambridge, Cambridge CB2 3DY, UK	Development
Alejandro	Caceres	-	ISGlobal, Barcelona Institute for Global Health, Dr Aiguader 88, 08003 Barcelona, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain	Development
Carles	Hernandez-Ferrer	0000-0002-8029- 7160	Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic, Regulation; Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain	Development
Pavlo	Hrab	0000-0002-0742- 8478	Department of Genetics and Biotechnology, Biology faculty, Ivan Franko National University of Lviv	Validation
Raquel	Manzano	0000-0002-5124- 8992	Cancer Research UK Cambridge Institute; University of Cambridge, Cambridge, United Kingdom	Reporting
Margherita	Mutarelli	0000-0002-2168- 5059	Institute of Applied Sciences and Intelligent Systems (ISASI-CNR)	Validation

Name	Surname	ORCID	Affiliation	Team
Carlos	Ruiz-Arenas	0000-0002-6014- 3498	Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain	Reporting

References

- Aref-Eshghi, Erfan, Eric G. Bend, Samantha Colaiacovo, Michelle Caudle, Rana Chakrabarti, Melanie Napier, Lauren Brick, et al. 2019. "Diagnostic Utility of Genome-Wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions." The American Journal of Human Genetics. https://doi.org/https://doi.org/10.1016/j.ajhg.2019.03.008.
- Aryee, Martin J, Andrew E Jaffe, Hector Corrada-Bravo, Christine Ladd-Acosta, Andrew P Feinberg, Kasper D Hansen, and Rafael A Irizarry. 2014. "Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays." Bioinformatics 30 (10): 1363–69.
- Cortes, David, and Maintainer David Cortes. 2021. "Package 'Isotree'."
- European-Commission. 2020. "EU Research on Rare Diseases." https://ec.europa.eu/info/research-and-innovation/research-area/health-research-and-innovation/rare-diseases_en.
- Friedrich, Sarah, Frank Konietschke, Markus Pauly, and Maintainer Sarah Friedrich. 2017. "Package 'MANOVA. RM'."
- Garg, Paras, Bharati Jadhav, Oscar L Rodriguez, Nihir Patel, Alejandro Martin-Trujillo, Miten Jain, Sofie Metsu, et al. 2020. "A Survey of Rare Epigenetic Variation in 23,116 Human Genomes Identifies Disease-Relevant Epivariations and CGG Expansions." The American Journal of Human Genetics 107 (4): 654–69.
- Holmes, J Bradley, Eric Moyer, Lon Phan, Donna Maglott, and Brandi Kattman. 2020. "SPDI: Data Model for Variants and Applications at NCBI." *Bioinformatics* 36 (6): 1902–7.
- Hon, Chung-Chau, and Piero Carninci. 2020. "Expanded ENCODE Delivers Invaluable Genomic Encyclopedia." Nature Publishing Group.
- Jaffe, Andrew E, Peter Murakami, Hwajin Lee, Jeffrey T Leek, M Daniele Fallin, Andrew P Feinberg, and Rafael A Irizarry. 2012. "Bump Hunting to Identify Differentially Methylated Regions in Epigenetic Epidemiology Studies." *International Journal of Epidemiology* 41 (1): 200–209.
- Lionel, Anath C, Gregory Costain, Nasim Monfared, Susan Walker, Miriam S Reuter, S Mohsen Hosseini, Bhooma Thiruvahindrapuram, et al. 2018. "Improved Diagnostic Yield Compared with Targeted Gene Sequencing Panels Suggests a Role for Whole-Genome Sequencing as a First-Tier Genetic Test." Genetics in Medicine 20 (4): 435–43.
- López-Bastida, Julio, Juan Oliva-Moreno, Renata Linertová, and Pedro Serrano-Aguilar. 2016. "Social/Economic Costs and Health-Related Quality of Life in Patients with Rare Diseases in Europe." Springer.
- Maechler, Martin, Peter Rousseeuw, Christophe Croux, Valentin Todorov, Andreas Ruckstuhl, Matias Salibian-Barrera, Tobias Verbeke, Manuel Koller, Eduardo LT Conceicao, and Maria Anna di Palma. 2021. "Package 'Robustbase'." *Basic Robust Statistics*.
- Martín, Diego Garrido. 2020. "A Multivariate Approach to Study the Genetic Determinants of Phenotypic Traits." PhD thesis, Universitat Pompeu Fabra.

Reproducibility, Unrivaled Assay. 2012. "Infinium HumanMethylation450 BeadChip."

Serra-Juhé, Clara, Ivon Cuscó, Aïda Homs, Raquel Flores, Núria Torán, and Luis A Pérez-Jurado. 2015. "DNA Methylation Abnormalities in Congenital Heart Disease." *Epigenetics* 10 (2): 167–77.