FORMAS MODULARES Y SERIES \mathcal{L}

NOTAS PARA EVALUACIÓN

CARLOS EDUARDO MARTÍNEZ AGUILAR

0.1. Eigenformas de Hecke y series \mathcal{L}

Demostraremos que el espacio de formas modulares es generado por formas modulares cuyos coeficientes de Fourier son cuasi multiplicativos y que dichas formas modulares tienen asociados una serie de Dirichlet (serie \mathcal{L}) la cual es posible expresar como producto de Euler y además cumplen una ecuacion funcional similar a la función zeta de Riemann que les permite ser continuadas analítiamente.

Denotaremos por \mathbb{H}^2 al semiplano superior en \mathbb{C} , es decir $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \Im(z) > 0\}$ donde $\Im(z)$ denota la parte imaginaria de z. El subgrupo de isometías hiperbólicas con coeficientes enteros conocido como grupo modular lo denotaremos por

$$\Gamma = PSL(2, \mathbb{Z}) = SL(2, \mathbb{Z}) / \{ \pm Id \}.$$

Entenderemos por función modular a una función holomorfa $f: \mathbb{H}^2 \to \mathbb{C}$ que sea Γ -invariante y definimos una forma modular de peso k como una función $f: \mathbb{H}^2 \to \mathbb{C}$ tal que

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z). \tag{1}$$

Así denoratemos por $M_k(\Gamma)$ al espacio vectorial de dichas formas modulares de peso k y por $M_*(\Gamma)$ al anillo de todas las formas modulares, diremos que $f \in M_k(\Gamma)$ es una forma cuspidal si |f(it)| es de orden sub exponencial $O(e^{-t})$ para $t \in \mathbb{R}^+$, entonces denotaremos por $S_k(\Gamma)$ al espacio de formas cuspidales de peso k sobre Γ . Ahora como sabemos $z \mapsto z+1 \in \Gamma$, entonces 1 para $f \in M_k(\Gamma)$ sabemos que f tiene una expresión en series de Fourier

$$f(z) = \sum_{n=0}^{\infty} a_n q^n \text{ donde } q = e^{2\pi z}.$$
 (2)

Por lo tanto es sencillo definir fromas modulares en términos de sus series de Fourier, por ejemplo definimos a función discmiminante Δ como

$$\Delta(z) := q \prod_{n=1}^{\infty} (1 - q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n.$$
 (3)

Donde $\tau(n)$ es la función tau de Ramanujan, los primeros valores de esta serie son

$$\Delta(z) = q - 24q^2 + 252q^3 - 1472q^4 + 4830q^5 - 6048q^6 + \dots$$

0.1.1. Teoría y operadores de Hecke

Definición 0.1 Para cada entero $m \ge 1$ definimos al operador linear de Hecke $T_m: M_k(\Gamma) \to M_k(\Gamma)$ como:

$$T_m(f)[z] := m^{k-1} \sum_{\gamma \in \mathcal{M}_m/\Gamma} \left(\frac{\Im(\gamma(z))}{\Im(z)} \right)^k f(\gamma(z)). \tag{4}$$

Donde \mathcal{M}_m es el conjunto de matrices de determinante m y Γ actúa sobre \mathcal{M}_m por medio de multiplicación a la izquierda.

Observamos que T_m esta bien definida y es una suma finita, lo que significa $T_m(f)$ es holomorfa y modular de peso k, esto es debido a que una matriz de determinante m siempre tiene un representante bajo la acción de Γ de la forma

$$\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \quad \text{donde } ad = m, \ 0 \le b < d.$$

Esto es debido a que si

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_m \text{ es decir } AD - CB = m,$$

entonces definimos c = C/(A, c) y d = -D/(a, c), donde (x, y) es el máximo común divisor entre x e y. Así c y d son primos relativos y por lo tanto existen a y b enteros tales que ad - bc = 1 y entonces sucede que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \text{ con } cA + dC = 0.$$

Por lo tanto el producto de las matrices es de la forma

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix},$$

entonces necesareamente se tiene que cumplir que $\alpha\delta=m$, además un cálculo sencillo muestra que $0 \leq \beta < \delta$. Esto demuestra que la suma asociada a T_m es finita y por lo tanto $T_m(f)$ esta bien definida y es holomorfa y claramente modular de peso k. No solo esto, si no que podemos escibir $T_m(f)$ como

$$T_m(f)[z] = m^{k-1} \sum_{ad=m \ a,d>0} \frac{1}{d^k} \sum_{b \ \text{mod } d} f\left(\frac{az+b}{d}\right),$$
 (5)

notamos que claramente T_m es lineal, entonces de esta expresión podemos escribir a $T_m(f)$ en términos de su serie de Fourier como

$$T_m(f) = \sum_{d|m} \left(\frac{m}{d}\right)^{k-1} \sum_{d|n, n \in \mathbb{N}} a_n q^{\frac{mn}{d^2}} = \sum_{n=0}^{\infty} \left(\sum_{r|(m,n), r>0} r^{k-1} a_{\frac{mn}{r^2}}\right) q^n.$$
 (6)

Una consecuencia de esto es que de esta expresión es claro que los operadores $\{T_m\}_{m\in\mathbb{N}}$ conmutan, así sabemos que si son diagonalizables, entonces son mutuamente diagonalizables con la misma base (cosa que veremos a continuación). Observamos que si definimos

$$\sigma_k(m) = \sum_{d|m} d^k$$
, donde $m \in \mathbb{N}$, (7)

entonces notamos que los primeros términos en la serie de Fourier de $T_m(f)$ son $\sigma_{k-1}(m) a_0 + a_m q$, así si f es una forma cuspidal, entonces $a_0 = 0$ y por lo tanto $T_m(f)$ también es una forma cuspidal. Por lo que $T_m: S_k(\Gamma) \to S_k(\Gamma)$, en particular en el caso de k = 12, $S_{12}(\Gamma)$ es de dimensión 1, por lo que para $\Delta \in S_{12}(\Gamma)$ tenemos que $T_m(\Delta) = \lambda \Delta$ para toda $m \in \mathbb{N}$, es decir que Δ es un vector propio de T_m para toda m, además el primer coefficiente de $T_m(\Delta)$ es $\tau(m)$ y el primer coefficiente de Δ es 1, lo que quiere decir que

$$T_m(\Delta) = \tau(m)\Delta.$$

Por lo tanto los valores de la función τ son son valores propios de T_m para toda m, así por las definiciónes de T_m y el hecho de que conmutan, obtenemos

$$\tau(m)\,\tau(n) = \sum_{r|(n,m)} r^{11}\tau\Big(\frac{mn}{r^2}\Big).$$

Similarmente si $f \in M_k(\Gamma)$ es una forma modular cuspidal que es vector propio simulteneamente de T_m para toda $m \in \mathbb{N}$, diremos que f es una eigenforma de Hecke, entonces el mismo argumento muestra que $a_m = \lambda_m a_1$ donde λ_m es el valor propio de T_m , entonces si normalizamos $a_1 = 1$ tenemos que

$$T_m(f) = a_m f,$$

y por lo tanto $\{a_n\}$ tiene la propiedad cuasimultiplicativa

$$a_m a_n = \sum_{r|(n,m)} r^{k-1} a_{mn/r^2},$$

la cual es multiplicativa cuando n y m son primos relativos; $a_n a_m = a_{nm}$ si (n,m)=1. Para demostrar que las eigenformas de Hecke generan al espacio de formas modulares introducimos el producto interno de Petersson.

Definición 0.2 Definimos el producto interno de Petersson como la funcioón bilineal $\langle \cdot, \cdot \rangle_k : M_k(\Gamma) \times S_k(\Gamma) \to \mathbb{C}$ dada por

$$\langle f, g \rangle_k = \int_{\mathcal{T}} f(z) \overline{g(z)} \Im(z)^{k-2} dx \, dy,$$
 (8)

donde \mathcal{F} es la región fundamental de Γ , es decir

$$\mathcal{F} = \left\{ z \in \mathbb{H}^2 \,\middle|\, \frac{-1}{2} \le \Re(z) \le \frac{1}{2}, \ |z| > 1 \right\},$$

 $\Re(z)$ denota la parte real de z.

Es claro de la definición que si reemplazamos $M_k(\Gamma)$ por $S_k(\Gamma)$ en la primera entrada $\langle \cdot, \cdot \rangle_k$ es un producto interno. Además se puede demostrar que para toda $m \in \mathbb{N}$ se cumple que

$$\langle T_m(f), g \rangle_k = \langle f, T_m(g) \rangle_k \ \forall f, g \in S_k(\Gamma).$$

Así el teorema espectral y el hecho de que los operadores de Hecke conmutan nos asegura que existe una base de eigenformas de Hecke para $S_k(\Gamma)$ para toda k, lo cual demuestra que las eigenformas de Hecke junto con la función modular constante 1 generan al espacio de formas modulares $M_*(\Gamma)$.

Definición 0.3 (Series \mathcal{L} de Hecke) Dada una eigenforma de Hecke f de peso k con serie de Fourier

$$f(z) = \sum_{n=1}^{\infty} a_n \, q^n,$$

definimos la serie \mathcal{L} de Hecke asociada a f como

$$\mathcal{L}(f,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$
 (9)

Observamos que la propiedad cuasimultiplicativa de los coeficientes $\{a_n\}n \in \mathbb{N}$ aplicada a las potencias de primos $n = p^r$ implica que

$$a_{p^{m+1}} = a_{p^m} a_p - p^{m-1} a_{p^{m-1}},$$

aplicando inducción a esto podemos deducir que

$$a_{p^{m+1}} = \sum_{r=0}^{\lceil \frac{m+1}{2} \rceil} (-1)^r \binom{m+1-r}{r} p^{r(k-1)} a_p^{m-2r}, \tag{10}$$

esto nos permite encontrar un producto de Euler para $\mathcal{L}(f,s)$. Primero como los coeficientes son multiplicativos en primos relativos, por el teorema fundamental de la artimética tenemos que

$$\mathcal{L}(f,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_{\text{p primo}} \Big(\sum_{m=0}^{\infty} \frac{a_{p^m}}{p^{ms}}\Big).$$

Ahora demostramos que (10) implica que la suma $1 + a_p/p + a_p^2/p^2 + \dots$ es igual a $(1 - a_p p^{-s} + p^{k-1-2s})^{-1}$, esto es debido a que

$$\sum_{m=0}^{\infty} a_{p^m} z^m = \frac{1}{1 - a_p + p^{k-1} z^2}.$$

Para demostrar esto desarrollamos en serie geométrica a $(1-a_p+p^{k-1}z^2)^{-1}$

$$\begin{split} &\frac{1}{1-a_p+p^{k-1}z^2} = \sum_{m=0}^{\infty} (a_p+p^{k+1}z^2)^m \\ &= \sum_{m=0}^{\infty} \sum_{l=0}^{m} (-1)^l \binom{m}{l} a_p^{m-l}z^{m-l} \, p^{l(k+1)}z^{2l} \\ &= \sum_{m=0}^{\infty} \Big(\sum_{l=0}^{\lceil \frac{m}{2} \rceil} (-1)^l \binom{m+1-l}{l} a_p^{m-2l} p^{l(k+1)} \Big) z^m \\ &= \sum_{m=0}^{\infty} a_{p^m} z^m. \end{split}$$

Por lo tanto toda serie $\mathcal L$ asociada a una eigeinforma de Hecke f de peso k tiene un producto de Euler

$$\mathcal{L}(f,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = \prod_{\text{p primo}} \frac{1}{1 - a_p \, p^{-s} + p^{k-1-2s}}.$$
 (11)

Con esto y el principio de reflexión de Schwarz podemos continuar analíticamente $\mathcal{L}(f,s)$ a $\mathbb C$ salvo polos, proseguimos a derivar la ecuación funcional para $\mathcal{L}(f,s)$, para esto seguimos el mismo prosedimiento que Riemann. Sea $\Gamma(z)$ la función gamma

$$\Gamma(z) = \int_0^\infty t^{s-1} e^{-t} dt,$$

reemplazamos t con λt donde $\lambda \in \mathbb{R}^+$ para obtener $\Gamma(z) = \lambda^s \int_{\mathbb{R}^+} t^{s-1} e^{-\lambda t} dt$, por lo tanto

$$\lambda^{-s} = \frac{\int_0^\infty t^{s-1} e^{-\lambda t}}{\Gamma(z)}.$$

Aplicamos esto a $\lambda = 2\pi n$ para toda $n \in \mathbb{Z}^+$ y sumamos para obtener

$$(2\pi)^{-s}\Gamma(z)\mathcal{L}(f,s) = \sum_{n=1}^{\infty} a_n \int_0^{\infty} t^{s-1} e^{-2\pi nt} dt = \int_0^{\infty} t^{s-1} f(it) dt, \qquad (12)$$

como f es una forma cuspidal y $f(-1/z) = z^k f(z)$, la integral converge y por lo tanto $\mathcal{L}(f,s)$ se puede extender analíticamente, además obtenemos la ecuación funcional

$$\mathcal{L}(f,k-s) = (-1)^{\frac{k}{2}} \mathcal{L}(f,s) \tag{13}$$

Bibliografía

- [1] Zagier, D., Elliptic Modular Forms and Their Applications, a part of The 1-2-3 Modular Forms Lectures at Summer School in Nordfjordeid, Norway, Springer-Verlag, 2008.
- [2] OGG, A., Modular Forms and Dirichlet Series, Mathematics lecture note series, Benjamin, 1969.