Ensemble

團隊合作,一把model一起上!

Framework of Ensemble

有Bagging & Boosting 場合不一樣

Get a set of classifiers

整合

- Aggregate the classifiers (properly)
 - 在打王時每個人都有該站的位置

Ensemble: Bagging

Bagging中model的訓練是沒有順序的,可以一次train一坨

Review: Bias v.s. Variance

把training data先分成很多份,在各自針對sub training data去train出一個model

Bagging

This approach would be helpful when your model is complex, easy to overfit.

當model很複雜,擔心他overfitting的 時候,為了減低variance才做bagging e.g. decision tree

decision tree非常容易overfitting, 因此可做bagging,結果即為

random forest

Decision Tree

Assume each object x is

represented by a 2-dim vector

or $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

The questions in training

number of branches, Branching criteria, termination criteria,

Can have more complex questions

decision tree example

Experiment: Function of Miku

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ MLDS_2015_2/theano/miku

(1st column: x, 2nd column: y, 3rd column: output (1 or 0))

Random Forest

train	f_1	f ₂	f ₃	f ₄
X^1	0	X	0	X
x^2	0	X	X	0
x^3	X	0	0	X
x^4	X	0	X	0

- Decision tree:
 - Easy to achieve 0% error rate on training data
 - If each training example has its own leaf
- Random forest: Bagging of decision tree
 - Resampling training data is not sufficient
 - Randomly restrict the features/questions used in each split random決定哪些feature不能用 特別的sample方法
- Out-of-bag validation for bagging不需要切validation也可以有validation的效果
 - Using RF = f_2+f_4 to test x^1
 - Using RF = f_2+f_3 to test x^2
 - Using RF = f_1+f_4 to test x^3
 - Using RF = f_1+f_3 to test x^4

Out-of-bag (OOB) error 取平均 Good error estimation of testing set

拿沒看過test data的model去test他的validation accuracy

Experiment: Function of Miku₁₀₀

用random forest並不會讓你更容易去fit data,只是讓結果比較平滑 (robust)

Random Forest

(100 trees)

Ensemble: Boosting

Improving Weak Classifiers

bagging是用在很強的model, Boosting是用在很弱的model, 當有些raw model但是無法讓他們fit data, 這時候可以採用boosting

Boosting

```
Training data: \{(x^1, \hat{y}^1), \dots, (x^n, \hat{y}^n), \dots, (x^N, \hat{y}^N)\} \hat{y} = \pm 1 \text{ (binary classification)}
```

- Guarantee: 神保證!!
 - If your ML algorithm can produce classifier with error rate smaller than 50% on training data
 - You can obtain 0% error rate classifier after boosting.
- Framework of boosting
 - Obtain the first classifier $f_1(x)$
 - Find another function $f_2(x)$ to help $f_1(x)$
 - However, if $f_2(x)$ is similar to $f_1(x)$, it will not help a lot. f2雖然是輔助f1,但是他們彼此需要是互補的
 - We want $f_2(x)$ to be complementary with $f_1(x)$ (How?)
 - Obtain the second classifier $f_2(x)$
 - Finally, combining all the classifiers
- The classifiers are learned sequentially.

How to obtain different classifiers?

- Training on different training data sets
- How to have different training data sets
 - Re-sampling your training data to form a new set
 - Re-weighting your training data to form a new set
 - In real implementation, you only have to change the cost/objective function

$$(x^{1}, \hat{y}^{1}, u^{1})$$
 $u^{1} = 1$ 0.4
 $(x^{2}, \hat{y}^{2}, u^{2})$ $u^{2} = 1$ 2.1
 $(x^{3}, \hat{y}^{3}, u^{3})$ $u^{3} = 1$ 0.7

 $L(f) = \sum_{n} l(f(x^n), \hat{y}^n)$

 $L(f) = \sum_{n} \frac{\mathbf{x} + \mathbf{k} \mathbf{x}}{u^n} l(f(x^n), \hat{y}^n)$

藉由改變weight來產生不同的data set

boosting的其中一種方法

Idea of Adaboost

training example #: n

找一組新的training data在f1上面是會壞掉的 step 2.

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

 ε_1 : the error rate of $f_1(x)$ on its training data

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1 \text{ normalization}} \qquad Z_1 = \sum_n u_1^n \quad \frac{假設錯誤率小於五十趴}{\varepsilon_1 < 0.5}$$

step 2.

Changing the example weights from u_1^n to u_2^n such that

$$\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5$$
 The performance of f_1 for new weights would be random.

Training $f_2(x)$ based on the new weights u_2^n

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

把答對的題目權重變小,把答錯的題目權重變大XD這樣就可以把f

拿新的data set去train出f2,訓練出error rate<0.5

- Idea: training $f_2(x)$ on the new training set that fails $f_1(x)$
- How to find a new training set that fails $f_1(x)$?

```
\begin{cases} \text{If } x^n \text{ misclassified by } f_1 \ (f_1(x^n) \neq \hat{y}^n) \\ u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \quad \text{increase} \end{cases} If x^n correctly classified by f_1 \ (f_1(x^n) = \hat{y}^n) u_2^n \leftarrow u_1^n \text{ divided by } d_1 \quad \text{decrease} \end{cases}
```

 f_2 will be learned based on example weights u_2^n

What is the value of d_1 ?

$$\begin{split} \varepsilon_1 &= \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n \\ &\frac{\sum_n u_2^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_2} = 0.5 \quad \frac{f_1(x^n) \neq \hat{y}^n}{f_1(x^n) = \hat{y}^n} \quad u_2^n \leftarrow u_1^n \text{ multiplying } d_1 \\ &= \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 \qquad = \sum_{f_1(x^n) \neq \hat{y}^n} u_2^n + \sum_{f_1(x^n) = \hat{y}^n} u_2^n \\ &= \sum_n u_2^n \qquad \qquad = \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1 \\ &\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1}{\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1}{\frac{\sum_{f_1(x^n)$$

epsilon <= 0.5

$$\varepsilon_1 = \frac{\sum_n u_1^n \delta(f_1(x^n) \neq \hat{y}^n)}{Z_1} \qquad Z_1 = \sum_n u_1^n$$

$$\frac{\sum_{n} u_{2}^{n} \delta(f_{1}(x^{n}) \neq \hat{y}^{n})}{Z_{2}} = 0.5 \quad \begin{cases} f_{1}(x^{n}) \neq \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ multiplying } d_{1} \\ f_{1}(x^{n}) = \hat{y}^{n} & u_{2}^{n} \leftarrow u_{1}^{n} \text{ divided by } d_{1} \end{cases}$$

$$\frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1 + \sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 2 \frac{\sum_{f_1(x^n) = \hat{y}^n} u_1^n / d_1}{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n d_1} = 1$$

$$\sum_{f_1(x^n)=\hat{y}^n} u_1^n/d_1 = \sum_{f_1(x^n)\neq \hat{y}^n} u_1^n d_1 \quad \frac{1}{d_1} \sum_{\underbrace{f_1(x^n)=\hat{y}^n}} u_1^n = d_1 \sum_{\underbrace{f_1(x^n)\neq \hat{y}^n}} u_1^n$$

$$\varepsilon_1 = \frac{\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n}{Z_1}$$
 答錯的總和
$$\sum_{f_1(x^n) \neq \hat{y}^n} u_1^n = Z_1 \varepsilon_1$$

$$Z_1(1-\varepsilon_1) \qquad Z_1 \varepsilon_1$$

$$Z_1(1-\varepsilon_1)/d_1 = Z_1 \varepsilon_1 d_1$$

$$d_1 = \sqrt{(1-\varepsilon_1)/\varepsilon_1} > 1$$
 結論

Algorithm for AdaBoost

Giving training data

$$\{(x^1, \hat{y}^1, u_1^1), \cdots, (x^n, \hat{y}^n, u_1^n), \cdots, (x^N, \hat{y}^N, u_1^N)\}$$

- $\hat{y} = \pm 1$ (Binary classification), $u_1^n = 1$ (equal weights)
- For t = 1, ..., T:
 - Training weak classifier $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - ε_t is the error rate of $f_t(x)$ with weights $\{u_t^1, \dots, u_t^N\}$
 - For n = 1, ..., N:

- If x^n is misclassified by $f_t(x)$: $\hat{y}^n \neq f_t(x^n)$ $u^n_{t+1} = u^n_t \times d_t = u^n_t \times \exp(\alpha_t)$ $d_t = \sqrt{(1 \varepsilon_t)/\varepsilon_t}$

分類正確
$$u_{t+1}^n = u_t^n/d_t = u_t^n \times \exp(-\alpha_t) \quad \alpha_t = \ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

$$u_{t+1}^n \leftarrow u_t^n \times exp(-y^n * ft(xn) | \alpha_t)$$

換成exponential是為了將式子表達簡略

Algorithm for AdaBoost

- We obtain a set of functions: $f_1(x), ..., f_t(x), ..., f_T(x)$
- How to aggregate them?
 - Uniform weight:

•
$$H(x) = sign(\sum_{t=1}^{T} f_t(x))$$

- Non-uniform weight:
 - $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

Smaller error ε_t , larger weight for final voting

因為每個classification有不同的好壞之分,因此需要在前面先呈上一個權重(alpha t)

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$
 $\varepsilon_t = 0.1$ $\varepsilon_t = 0.4$ $u_{t+1}^n = u_t^n \times exp(-\hat{y}^n f_t(x^n)\alpha_t)$ $\alpha_t = 1.10$ $\alpha_t = 0.20$

假設分佈在二維平面上,切一刀分類(超弱)

Toy Example T=3, weak classifier = decision stump

• t=1

Toy Example

T=3, weak classifier = decision stump

• t=2
$$\alpha_1 = 0.42$$

$$\varepsilon_2 = 0.21$$
$$d_2 = 1.94$$

$$\alpha_2 = 0.66$$

Toy Example

T=3, weak classifier = decision stump

• t=3
$$a_1 = 0.42$$
 $a_2 = 0.66$

$$f_{3}(x) = 0.78 + 0.33 - 0.78 + 0.33 - 0.33 + 0.33 - 0.3$$

$$\varepsilon_3 = 0.13$$
$$d_3 = 2.59$$
$$\alpha_3 = 0.95$$

Toy Example

全部加起來看正負

• Final Classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

當組合起來這三個decision stump時可以得到正確率100的結果

Warning of Math

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t f_t(x)\right) \quad \text{epsilon t: classifier ft Merror rate} \\ \alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

As we have more and more f_t (T increases), H(x) achieves smaller and smaller error rate on training data.

隨著iteration越高adaboost結果越好

Error Rate of Final Classifier

• Final classifier: $H(x) = sign(\sum_{t=1}^{T} \alpha_t f_t(x))$

•
$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

Training Data Error Rate

$$=\frac{1}{N}\sum_{n}\delta(H(x^{n})\neq\hat{y}^{n})$$

$$= \frac{1}{N} \sum_{n} \frac{\text{\texttt{MSISIR}}}{\delta(\hat{y}^n g(x^n) < 0)}$$

$$\leq \frac{1}{N} \sum_{n} \underline{exp(-\hat{y}^n g(x^n))}$$
upper bound

證明upper bound會越來越小 Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$

$$\alpha_t = ln\sqrt{(1-\varepsilon_t)/\varepsilon_t}$$

 Z_t : the summation of the weights of training data for training f_t

What is
$$Z_{T+1}=?$$
 $Z_{T+1}=\sum_{n}u_{T+1}^n$

第1個iteration

$$Z_{T+1} = \sum_{n} \prod_{t=1}^{T} exp(-\hat{y}^n f_t(x^n) \alpha_t)$$

 $Z_{T+1} = \sum_{n=1}^{\infty} \prod_{t=1}^{\infty} exp(-y^n)_t(x^n)\alpha_t$ 只要證明train data的weight之sum越 $= \sum_{n=1}^{\infty} exp\left(-\hat{y}^n \sum_{t=1}^{\infty} f_t(x^n)\alpha_t\right)$ 來越小即可得證 來越小即可得證

Training Data Error Rate

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^n g(x^n)) = \frac{1}{N} Z_{T+1}$$

$$g(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$$
$$\alpha_t = \ln \sqrt{(1 - \varepsilon_t)/\varepsilon_t}$$

$$Z_1 = N$$
 (equal weights)

$$Z_{t} = Z_{t-1}\varepsilon_{t}exp(\alpha_{t}) + Z_{t-1}(1 - \varepsilon_{t})exp(-\alpha_{t})$$

Misclassified portion in Z_{t-1}

Correctly classified portion in Z_{t-1}

$$= Z_{t-1}\varepsilon_t\sqrt{(1-\varepsilon_t)/\varepsilon_t} + Z_{t-1}(1-\varepsilon_t)\sqrt{\varepsilon_t/(1-\varepsilon_t)}$$

$$= Z_{t-1} \times 2\sqrt{\varepsilon_t(1-\varepsilon_t)}$$

$$Z_{T+1} = N \prod_{t=1}^{I} 2\sqrt{\varepsilon_t (1 - \varepsilon_t)}$$

Training Data Error Rate $\leq 2\sqrt{\epsilon_t(1-\epsilon_t)}$

Smaller and smaller

End of Warning

為什麼可以增加margin? Large Margin?

$$H(x) = sign\left(\sum_{t=1}^{T} \alpha_t f_t(x)\right)$$

$$g(x)$$

Training Data Error Rate =

$$=\frac{1}{N}\sum_{n}\delta(H(x^{n})\neq\hat{y}^{n})$$

$$\leq \frac{1}{N} \sum_{n} exp(-\hat{y}^{n} g(x^{n}))$$
adaboost

$$= \prod_{t=1}^{T} 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

Getting smaller and smaller as T increase

同時error可以在更小

To learn more ...

Introduction of Adaboost:

• Freund; Schapire (1999). "A Short Introduction to Boosting"

Multiclass/Regression

- Y. Freund, R. Schapire, "A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting", 1995.
- Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated predictions. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pages 80–91, 1998.

Gentle Boost

• Schapire, Robert; Singer, Yoram (1999). "Improved Boosting Algorithms Using Confidence-rated Predictions".

General Formulation of Boosting

- Initial function $g_0(x) = 0$
- For t = 1 to T:
 - Find a function $f_t(x)$ and α_t to improve $g_{t-1}(x)$
 - $g_{t-1}(x) = \sum_{i=1}^{t-1} \alpha_i f_i(x)$
 - $g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$
- Output: $H(x) = sign(g_T(x))$

What is the learning target of g(x)? 如何找到ft(x)

Minimize
$$L(g) = \sum_{n} l(\hat{y}^n, g(x^n)) = \sum_{n} \frac{\text{\#loss function}}{\exp(-\hat{y}^n g(x^n))}$$

Gradient Boosting

- Find g(x), minimize $L(g) = \sum_{n} exp(-\hat{y}^{n}g(x^{n}))$
 - If we already have $g(x) = g_{t-1}(x)$, how to update g(x)?

想像:改變g在某一個點的值對L的影響有多大

Gradient Descent:

把function G對目標函式微分

$$g_t(x) = g_{t-1}(x) - \eta \frac{\partial L(g)}{\partial g(x)} \bigg|_{g(x) = g_{t-1}(x)}$$
 Same direction
$$-\sum_n exp(-\hat{y}^n g_{t-1}(x^n))(-\hat{y}^n)$$
 Boosting ABE
$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$$

Gradient Boosting

Vector
$$f_t(x)$$
 $\sum_{n} exp(-\hat{y}^n g_t(x^n))(\hat{y}^n)$ Same direction

We want to find $f_t(x)$ maximizing

值越大代表方向越一致 $exp(-\hat{y}^n g_{t-1}(x^n))$ $\hat{y}^n f_t(x^n)$ example weight u_t^n n

判斷下確 Minimize Error

$$(\hat{y}^n) f_t(x^n)$$

Same sign

$$\begin{split} u^n_t &= exp \Big(-\hat{y}^n g_{t-1}(x^n) \Big) = exp \left(-\hat{y}^n \sum_{i=1}^{t-1} \alpha_i \, f_i(x^n) \right) \\ &= \prod_{i=1}^{t-1} exp \Big(-\hat{y}^n \alpha_i f_i(x^n) \Big) \quad \text{Exactly the weights we obtain in Adaboost} \end{split}$$

Gradient Boosting

先找出ft後固定住,窮舉所有alpha(learning rate)讓loss最小

• Find g(x), minimize $L(g) = \sum_{n} exp(-\hat{y}^{n}g(x^{n}))$

$$g_t(x) = g_{t-1}(x) + \alpha_t f_t(x)$$

 α_t is something like learning rate

Find α_t minimzing $L(g_{t+1})$

$$L(g) = \sum_{n} exp(-\hat{y}^{n}(g_{t-1}(x) + \alpha_{t}f_{t}(x)))$$

$$= \sum_{n} exp(-\hat{y}^{n}g_{t-1}(x))exp(-\hat{y}^{n}\alpha_{t}f_{t}(x))$$

$$= \sum_{n} exp(-\hat{y}^{n}g_{t-1}(x^{n}))exp(\alpha_{t})$$

$$+ \sum_{\hat{y}^{n}=f_{t}(x)} exp(-\hat{y}^{n}g_{t-1}(x^{n}))exp(-\alpha_{t})$$

Find α_t such that $\frac{\partial L(g)}{\partial \alpha_t} = 0$ $\alpha_t = \frac{\ln \sqrt{(1-\varepsilon_t)/\varepsilon_t}}{\ln \sqrt{\Delta_t}}$ Adaboost!

Cool Demo

 http://arogozhnikov.github.io/2016/07/05/gradient _boosting_playground.html

Ensemble: Stacking

Voting

