Requirements Engineering

Daniel Siahaan Sept 2020

Content

- Introduction to Requirements Engineering
- Stakeholder Perpective
- Scenario
- Requirements Elicitation
- Requirements Analysis
- Requirements Specification
- SMART
- Requirements Verification and Validation
- Requirements Management (S2)

Introduction to Requirements Engineering

Daniel Siahaan Sept 2020

References

• Daniel Siahaan, "Analisa Kebutuhan dalam Rekayasa Perangat Lunak, " Penerbit Andi, 2012.

Supporting References

- R.H. Thayer dan M. Dorfman, *Software Requirements Engineering, Second Edition*, John Wiley & Sons, 1999.
- Ian K. Bray, An Introduction to Requirements Engineering, Addison Wesley, 2002.
- Karl E Wiegers, Software Requirements, Microsoft Press, 2nd Edition, 2003.
- Ian Sommerville and Pete Sawyer, Requirements Engineering: A Good Practice, Chichester England,: John Wiley & Sons, 1997.

Deliverable

Design

Deals

D roles

"The contract is very clear. You're free to go once the project's completed."

D techniques/best-practices

#

n

What is Requirements?

Requirements are a specification of what should be implemented.

(Sommerville and Sawyer, 1997)

A set of condition and capabilities required by user to solve a problem or finish a task, or need to be provided or present in a system in order to fulfill a contract, standard, specification, or other formal document. A documented representation of condictions and capabilities aforementioned

(IEEE Standard Glossaary of Software Engineering Technology, 1977)

A requirement is a singular documented need of what a particular product or service should be or do. (Wikipedia, August 2009)

- Necessary Attributes/Properties, Characteristics, Capabilities, Quality, and Constraints
- In order to have value and utility to a user

We are not Science

- Best Practices
- Techniques and methods based on experiences

What is Requirements Engineering?

- The process of establishing the services that the customer requires from a system and the constraints under which it operates and is developed (Ian Sommerville, Software Engineering, 5th Edition, 1995)
- Investigating and describing the problem domain and requirements and designing and documenting the characteristics for a solution system that will meet those requirements (Ian K. Bray, An Introduction to Requirements Engineering, 2002)

What is Requirements Engineering?

 Set of activities concerned with identifying and communicating the purpose of a softwareintensive system, and the contexts in which it will be used. (Steve Eastbrook, Dept. Computer Science, Toronto University)

What is Requirements Engineering?

- Investigating and identifying
- Communicating and Documenting

What requirements are not?

- Design and implementation Details
- Project planning information
- Testing information

Software Life Cycle

Activities in Requirements Specification

Why Re is important?

- Any software system has specification
- It's started from requirements
 - Davis (1993) Leffingwell (1997): 40 60% defects rooted back to requirements specification
 - Brooks (1987): most of the time over budget, late, contain defects, or not reliable
 - Jones (1991): single major cause is requirements deficiencies
 - Hofmann &Lehner (2001): deficiencies are distributed among domain of process, technology, and human resources.

Why RE is Important?

Source: Wiegers, 2003

Why Re is important?

- Lack of awareness
- There is a gap: customer developer
- Never ending requirements change.

Type of Requirements

Requirements may be **functional** or **nonfunctional**

- Functional requirements describe system services or functions
- Non-functional requirements is a constraint on the system or on the development process

Levels of Requirements

Business Requirements

- High-level objectives of organization
- Usually from funding sponsor or system owner
- Describe Why the organization needs to implement the system.
- Example:
 - University: Improve the efficiency during course registration.
 - Company: Reduce unnecessary cost, Monitor company in-time performance.

User Requirements

- User goals or tasks that must be able to perform with the product.
- Example:
 - FRS-Online: select courses, submit approval, view student background.
 - Online Ticketing: book a ticket, check schedule, reserve a seat.

Functional Requirements

- Software functionality
- Behavioral requirements
- Use the word "shall"
- Example:
 - FRS-Online: "The system shall view a confirmation to the student."
 - Online Ticketing: "The system shall provide a link to download an softcopy ticket."

System Requirements

- Top-level requirements for a system that contains multiple sub-system
- System comprise of: Hardware + Software + Brainware

Business Rules

- Include:
 - Corporate policies
 - Government regulations
 - Industry standards
 - Accounting practices
 - Computational algorithm
- Exist outside the system
- Function:
 - Restrict who and how can perform certain use cases
 - Dictate functionality that a system must have to comply with pertinent rules
- Use as quality attributes.
- Examples:
 - Bank System: "All credit card should use smart card."
 - SIAK: "A ID-card should follow KepMen No. 8o/2005."

Quality Attributes

- Include performance goals and descriptions
- Examples:
 - Usability: "The system is equipped with user manual."
 - Portability: "The system shall work in Microsoft-OSs and Unix-OS."
 - Integrity: "The system shall restrict access for unauthorized user."
 - Efficiency: "The system shall work with maximum 200VA/hour."
 - Robustness: "The system shall withstand 5.1 atmoshpere pressure."

Exercise

- Identify requirements of each level for the following system:
 - ATM Machine
 - Academic Information System of University X

Non-Functional Requirements

IEEE Standard 830 - 1993

- Performance
- Interface
- Operational
- Resource
- Verification
- Acceptance

- Documentation
- Security
- Portability
- Quality
- Reliability
- Maintainability
- Safety

Non-Functional Requirements

ISO 9126 2005

- Functionality
- Reliability
- Usability
- Efficiency
- Maintanability
- Portability

Functionality

- Functionality is a set of attributes that bear on the existence of a set of functions and their specified properties; the functions are those that satisfy stated or implied needs.
- Includes
 - Suitability
 - Accuracy
 - Interoperability
 - Compliance
 - Security

Reliability

- Reliability is a set of attributes that bear on the capability of software to maintain its level of performance under stated conditions for a stated period of time.
- Includes
 - Maturity
 - Fault Tolerance
 - Recoverability

Usability

- Usability is a set of attributes that bear on the effort needed for use, and on the individual assessment of such use, by a stated or implied set of users.
- Includes
 - Understandability
 - Learn-ability
 - Operability

Efficiency

- Efficiency is 'a set of attributes that bear on the relationship between the level of performance of the software and the amount of resources used, under stated conditions.
- Includes
 - Time-based Efficiency
 - Resource-based Efficiency

Maintainability

- Maintainability is a set of attributes that bear on the effort needed to make specified modifications.
- Includes
 - Analyzability
 - Changeability
 - Stability
 - Testability

Portability

- Portability is a set of attributes that bear on the ability of software to be transferred from one environment to another.
- Includes
 - Adaptability
 - Install-ability
 - Conformance
 - Replace-ability

Exercise

 Classify each identified requirements into those classes defined in ISO 9126 2005

Non-Functional Requirements

The specifically requested product qualities are expressed directly or indirectly in non-functional requirements

- External quality factors (factors observable by the stakeholders)
 - correctness
 - robustness
 - performance
- Internal quality factors (factors observable by the sw engineer)
 - readability
 - testability

Non-Functional Requirements

- Better software: accuracy, adaptability, completeness, comprehensibility, configurability, flexibility, maintainability, modularity, performance, portability, reliability, reusability, safety, security, testability, traceability, userfriendliness, usability, etc.
- Cheaper software: cost
- Faster production: timeliness, project stability, etc
- Happier customer: supportability, trainability, etc.

Project Management

Source: Forsberg, 1997

- Successful projects usually use 7 to 15% of project resources (Forsberg, 1997)
- On average, projects use 8% of total project resources, during the period of time averaging 20% (Boehm, 2000)

Time Allocation for each Activities

Guidelines for Better Requirements Management (Hofmann and Lehner, 2001)

- Conduct requirements specification related activities through out the lifecyle
 - Teams with the activities only carried out in the beginning of the project tend to have bad performance.
- Some part-timers support full-time member.
- Combine prototyping and model-based processes to help stakeholders grap the picture of the proposed solution.
- Frequent feedback from stakeholder is a must
- Use modern approach (OO or AO) combined with basic models (ERD, state transition diagram, or Petri-Net).
- Apply evolutionary approach for managing requirements changes, using mock-ups, prototype, peer reviews, walkthroughs, and scenario
 - The effective average number of iterations: 3 iterations