📏 FONCTIONS POLYNÔMIALES DU TROISIÈME DEGRÉ

ACTIVITÉ 1 📐

On considère la fonction $f: x \mapsto x^3$. Cette fonction est appelée **fonction cube** et on a tracé sa courbe représentative ci-contre. L'objectif de cette activité est d'introduire certaines propriétés de celle-ci.

- **a.** 0
- **b.** 1
- **c.** 2
- **d.** 3

- **a.** $\sqrt[3]{0}$
- **b.** $\sqrt[3]{1}$
- c. $\sqrt[3]{8}$
- **d.** $\sqrt[3]{27}$

- **4.** En utilisant les question **2.** et **3.**, déterminer les racines cubiques suivantes.
 - **a.** $\sqrt[3]{-1}$
 - **b.** $\sqrt[3]{-8}$
 - c. $\sqrt[3]{-27}$

Pour modifier les propriétés physiques de leurs pièces métalliques les artisans chaudronniers ont recours à des traitements thermiques tels que le revenu. Ce traitement, consistant à un ensemble d'opérations de chauffage et de refroidissement, permet de modifier la résilience d'un métal, c'est à dire sa capacité à résister à un choc sans subir une rupture brutale.

On considère des températures comprises entre 100 °C et 750 °C. Dans la suite, la température T est exprimée en centaines de degrés Celsius et varie donc de 1 à 7,5. La résilience K(T) d'une barre d'acier, après avoir subi un revenu à une température T, est donnée par la relation

$$K(T) = -T^3 + 12T^2 - 36T + 36$$

La résilience s'exprime en J/cm². Dans cette activité, on cherche à savoir comment évolue la résilience de la barre d'acier selon la température du revenu.

- 1. a. Calculer la résilience pour une température de 200 °C, puis pour une température de 600 °C.
 - **b.** Formuler une hypothèse sur l'évolution de la résilience de la barre d'acier en fonction de la température du revenu.
- **2.** a. Calculer K'(T), l'expression de la dérivée de K en fonction de T.
 - **b.** À l'aide la calculatrice, résoudre l'équation $-3x^2 + 24x 36 = 0$.
 - c. Compléter le tableau de variations suivant.

Valeur de T	1	2	6	7,5
Signe de $K'(T)$				
Variations de K'				

d. Est-ce que cela valide ou non l'hypothèse formulée à la question 1. b.?

D'après mathsciences.ac-versailles.fr

ACTIVITÉ 3

Soit la fonction f définie sur \mathbb{R} par $x^3 - 7x + 6$.

- **1.** Vérifier que 1, 2 et -3 sont racines de la fonction f.
- 2. En vous inspirant de la méthode utilisée pour les fonctions du second degré, factoriser $x^3 7x + 6$.
- **3.** Dresser le tableau de signes de f sur [-5;5].

1. À l'aide de la calculatrice, tracer la courbe représentative de la fonction du troisième degré $f: x \mapsto 0,5x^3-3x^2+5,5x-3$ dans le repère ci-dessous.

- **2.** a. Résoudre graphiquement l'équation $0,5x^3 3x^2 + 5,5x 3 = 0$.
 - **b.** En déduire l'expression de la forme factorisée de f en fonction de $x \in \mathbb{R}$.