

KAUNO TECHNOLOGIJOS UNIVERSITETAS

Informatikos fakultetas

Kompiuterių katedra

Laboratorinis Nr. 2

Atliko:

IFF-1/8 grupės stud.

Matas Palujanskas

Priėmė:

dėst. Rolandas Girčys

Turinys

1. UŽDUOTIES VARIANTAS	3
Užduoties lygtis	3
Trigerio rūšis	3
2. Projektavimas	
2.1 Teisingumo lentelė	4
2.2 Statinis JK trigeris	4
2.3 Dviejų pakopų JK trigeris	5
2.4 Dinaminis JK trigeris	5
2.5 Trigerių testavimas	6
2.6 Trigerių "ModelSim" simuliacijos	7
3. Išvados	8

1. UŽDUOTIES VARIANTAS

Užduoties lygtis

Paskirto varianto (175) lygtis:

$$(\overline{x_1} \cup x_1((x_2 \cup \overline{x_3}) \oplus \overline{x_4}))Q_t \cup x_1((x_2 \cdot x_3) \cup x_4)\overline{Q_t}$$

Trigerio rūšis

Prie Q nėra vien tik C signalas, todėl D trigeris netinka šiai lygčiai. Lygtyje yra Q inversija, todėl tai yra JK trigeris. Įvertinus, jog lygtis apibūdina JK trigerį, buvo nustatyti įvesties signalai:

$$\bullet$$
 C = x_1

$$\bullet \quad \overline{K} = (x_2 + x_3) \oplus \overline{x_4}$$

$$\bullet \quad J = (x_2 \cdot x_3) + x_4$$

2. Projektavimas

2.1 Teisingumo lentelė

Signalas C priskiriamas x1 reikšmei, todėl J ir K funkcionalumas nustatomas naudojant x2, x3 ir x4 reikšmes. Taip pat naudojama "rst" (Reset) įvestis, kuria signalas nustatomas į pradinę būseną. Pirmame paveiksle vaizduojama funkcijos teisingumo lentelė.

x2	х3	х4	J	K	f-cija
0	0	0	FALSE	TRUE	reset
0	0	1	TRUE	FALSE	write
0	1	0	FALSE	FALSE	save
0	1	1	TRUE	TRUE	flip
1	0	0	FALSE	TRUE	reset
1	0	1	TRUE	FALSE	write
1	1	0	TRUE	TRUE	flip
1	1	1	TRUE	FALSE	write

pav. 1

2.2 Statinis JK trigeris

Schema pateikta 2 paveiksle:

pav. 2

2.3 Dviejų pakopų JK trigeris

Schema pateikta 3 paveiksle:

pav. 3

2.4 Dinaminis JK trigeris

Schema pateikta 4 paveiksle:

pav. 4

2.5 Trigerių testavimas

```
force -freeze sim:/lab2/ENBL 1 0
force -freeze sim:/lab2/rst 0 0
force -freeze sim:/lab2/x1 1 0, 0 {50 ps} -r 100
force -freeze sim:/lab2/x2 0 0
force -freeze sim:/lab2/x3 1 0
force -freeze sim:/lab2/x4 0 0
run 10
force -freeze sim:/lab2/rst 1 0
run 90
run 25
force -freeze sim:/lab2/x2 1 0
force -freeze sim:/lab2/x3 1 0
force -freeze sim:/lab2/x4 1 0
run 100
force -freeze sim:/lab2/x4 0 0
force -freeze sim:/lab2/x2 0 0
run 100
force -freeze sim:/lab2/x3 0 0
run 100
force -freeze sim:/lab2/x3 1 0
run 100
```

2.6 Trigerių "ModelSim" simuliacijos

Kai C (clock) buvo neaktyvus, pakilus J signalui (įrašymas), įsirašė duomenys į statinį ir JK_Master trigerius. Pakilus C signalui duomenys įsirašė ir į JK_Slave trigerį, šią informaciją jis nusikopijavo iš JK_Master trigerio ir įsirašė į save. Nusileidus C signalui informacija įsirašė į dinaminį trigerį. Vos atsiradus aukštam K signalui (ištrynimas) statinis ir JK_Master prarado reikšmes. Iš JK_Master į JK_Slave informacija buvo nukopijuota tik kai atsirado aukštas C signalas. Kuomet C signalas nusileido įsirašė duomenys ir į dinaminį trigerį. Iš viso to galima pastebėti, jog yra tarsi vėlinimas tarp skirtingų trigerių.

pav. 5

3. Išvados

- Laboratorinio darbo metu susipažinau su įvairių tipų trigeriais ir jų savybėmis;
- Įgyvendinau 3 tipų trigerių: statinio, dviejų pakopų ir dinaminio schemas, naudodamasis "Lattice Diamond" programine įranga;
- Įvertinau trigerių funkcionavimą sukurdamas simuliaciją "ModelSim" programa.