Les limites

T^{le} Spécialité mathématiques Analyse - Cours

1 Limites finies d'une fonction en $+\infty$

Définition:

Soit f une fonction et l un réel. Dire que «f(x) tend vers l quand x tend vers $+\infty$ » signifie $\forall \varepsilon > 0, \ \exists A \in \mathbb{R}, \ \forall x > A: \ l - \varepsilon < f(x) < l + \varepsilon.$ On note $\lim_{x \to +\infty} f(x) = l$.

$Th\'{e}or\`{e}me^1$:

Pour toutes fonctions f et g et pour tous réel l et l':

Si $\lim_{x\to +\infty} f(x) = l$ et $\lim_{x\to +\infty} g(x) = l'$ et l < l' alors il existe un réel A tel que pour tout x > A, f(x) < g(x).

Remarque: Une conséquence de ce théorème est que la limite d'une fonction est unique si elle existe. En effet, si on applique ce théorème à une fonction f avec elle-même, on obtient f(x) < f(x) ce qui n'a pas de sens.

Théorème² de comparaison des limites :

Soient f et g deux fonctions et l et l' deux réel.

Si $\lim_{x\to +\infty} f(x) = l$ et $\lim_{x\to +\infty} g(x) = l'$ et il existe A réel tel que pour tout x>A : $f(x)\leq g(x)$ alors $l\leq l'$.

Remarque: Attention, même si f(x) < g(x), leur limites peuvent quand même être égales (ex: $g(x) = \frac{1}{x}$ et $f(x) = \frac{-1}{x}$ tendent toutes les deux vers 0.)

Théorème³ des gendarmes (admis):

Soient f, g et h trois fonctions et l un réel.

Si $\lim_{x\to +\infty} f(x) = l$ et $\lim_{x\to +\infty} h(x) = l$ et s'il existe A réel tel que pour tout $x>A, f(x)\leq g(x)\leq h(x)$ alors $\lim_{x \to +\infty} g(x) = l$.