

An end-to-end Spark based data stack in the hybrid cloud

Farhan Abrol Product Lead, Pure Storage

fabrol92@gmail.com @F_Abrol www.linkedin.com/in/fabrol

#HWCSAIS12

Outline

- Environment overview & problems
- Solutions Hint : Spark
- More Spark More Problems
- Hybrid Cloud
 - Options & Performance comparison
 - Should you do it?
 - Basics of datacenter

Pure1

- Fleet dashboard for IoT devices
 - Storage arrays
 - VM's
- Real-time log/metric streaming
- 16 TB logs/metrics ingested daily
- Intelligence
 - Proactive scanning for issues
 - Predictive alerting
 - Machine learned forecasting

Logs are king

Problems

- Speed of running historical greps
 - Bottlenecked on single machine throughput
- Resource wastage for ETL machines
- Code/maintenance for new ETL jobs
 - Becoming a monolith
- ML training time
 - As data grows, taking 8-12 hours

all the things!

- Faster*
- Better resource utilization
- Uniform language and tooling
- Streaming / batch jobs
- One infra to maintain

Automated ETL Workflow with AWS DATA Pipeline

Grep -> Distributed grep on Spark

Done!

#HWCSAIS12

Problem - AWS Cost trend

#HWCSAIS12

AWS Storage Costs

Hybrid Cloud

Hybrid Cloud - Pricing

Log analysis pipeline - Smoke test

Aside Storage Protocols

Storage system

Generic

Optimized

Flashblade

AWS Only

Hybrid with EC2

Hybrid with Local Compute

144 node spark clusterWorkload - Distributed grep

~3x-10x better throughput

Hybrid with EC2

Performance

- Link latency
- Cloud networking stack

Costs

Good for

- Read heavy workloads
- Latency insensitive workloads
- Low Bandwidth workloads

Hybrid with Local Compute

Performance

Costs

Good for

- Read heavy workloads
- Latency sensitive workloads
- High bandwidth workloads

144 node spark clusterWorkload - Distributed grep

~3x-10x better throughput

Datacenter setup

Software

Compute servers

32 vCPUs ~\$10-20k

Networking switch

~\$10k

Storage

Varies

Conclusion

- Best use cases: Workloads with higher read, lower write requirements
- When write portion of read/write ratio increases, be cognizant of cumulative AWS transfer costs
- High performance cloud services can be expensive, on-prem can alleviate this cost
- Unique capabilities of on-prem storage & compute:
 - Instant snapshots
 - All kind of workloads on one platform
 - Resilience

#HWCSAIS12

#HWCSAIS12

23