Midterm Exam 2

7:00-8:50 PM, Thursday, April 8, 2021

Please do not start the exam until the starting time.

- You may not use any books, electronic devices, or notes other than **one** <u>handwritten</u> two-sided sheet of 8.5" x 11" paper.
- You should solve the problems on blank sheets of paper, take pictures of your solutions, and upload them to Gradescope before the end of the exam time.

GOOD LUCK!

- 1. (15 Pts.) Answer True or False to each of the following statements:
 - (a) By sampling a continuous-time signal $x_c(t) = \cos(17\pi t)$ with some sampling period T, it is possible to obtain a discrete time signal $x[n] = \cos(3\pi n/4)$. True/False
 - (b) If the Nyquist sampling rate for a continuous-time signal $x_c(t)$ is F_s , then the Nyquist sampling rate for $y_c(t) = x_c(2t)$ is $2F_s$.

 True/False
 - (c) If $\{x[n]\}_{n=0}^5$ is real-valued and $\{X[k]\}_{k=0}^5$ is its DFT, then X[0] is real-valued. **True/False**
 - (d) The value of $\int_3^\infty (t+1)\delta(t)dt$ is 0.

True/False

(e) Let $\{x[n]\}_{n=0}^7 = \{1, -1, 6, 7, 9, -6, -7, 9\}$. Consider the corresponding 8-point DFT $\{X[k]\}_{k=0}^7$. Then, X[0] = 0. True/False

Solution:

(a) True,

$$x[n] = x_c(nT) \implies T = \frac{3}{68}$$

- (b) **True**, Denoting max frequency in $x_c(t)$ as Ω_{max} , then the max frequency in $x_c(2t)$ will be $2\Omega_{max}$. Therefore, the Nyquist rate will be doubled for $y_c(t)$.
- (c) **True**, X[0] is real-valued since it is sum of real valued numbers.

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$X[0] = \sum_{n=0}^{7} x[n]$$

(d) **True**,

$$\int_{3}^{\infty} (t+1)\delta(t)dt = \int_{3}^{\infty} \delta(t)dt = 0$$

(e) False.

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$

$$X[0] = \sum_{n=0}^{7} x[n]$$

$$X[0] = 18$$

2. (10 Pts.) Let $X_d(\omega) = e^{-j4\omega} \sin(2\omega)$. Sketch the magnitude and phase of $X_d(\omega)$ (label your plots carefully).

Solution:

Figure 1: Magnitude and Phase of $X_d(\omega)$

3. (9 Pts.) The DTFT of $x[n] = 3\delta[n+1] - 3\delta[n-7]$ can be written as:

$$X_d(w) = Ae^{-jB\omega}\sin(C\omega)$$

Determine the (possibly complex) values of A, B, and C.

Solution:

$$X_d(\omega) = 3e^{j\omega} - 3e^{-j7\omega}$$

$$= 3e^{-j3\omega}(e^{j4\omega} - e^{-j4\omega})$$

$$= 3e^{-j3\omega}2j\sin(4\omega)$$

$$= 6je^{-j3\omega}\sin(4\omega)$$

Therefore A = 6j, B = 3 and C = 4.

4. (8 Pts.) Let $\{X[k]\}_{k=0}^7$ be the 8-point DFT of $x[n] = \{1, -2, 3, -4, 5, -6, 7, -8\}$. Determine the sequence $\{y[n]\}_{n=0}^7$ whose DFT is $Y[k] = e^{-j\left(\frac{6\pi}{8}k + \pi\right)}X[k], k = 0, 1, \dots, 7$.

Solution:

$$Y[k] = -e^{-j(\frac{2\pi}{8}k3)}X[k] \iff y[n] = -x[< n-3>_8]$$

Overall,

$$y[n] = \{6, -7, 8, -1, 2, -3, 4, -5\}$$

5. (8 Pts.) Let $\{X[k]\}_{k=0}^6 = \{-2, -4j, 3, 5, 3, 4j, -2j\}$ be the 7-point DFT of a signal $\{x[n]\}_{n=0}^6$. Is $\{x[n]\}_{n=0}^6$ real? Justify your answer.

Solution: It is not real. We can observe this by simply checking x[0], by the definition of inverse DFT:

$$x[0] = \frac{1}{N} \sum_{k=0}^{6} X[k] e^{j\frac{2\pi kn}{7}} \bigg|_{n=0} = \frac{1}{N} \sum_{k=0}^{6} X[k].$$

Then it is clear to see that x[0] is a complex value.

- 6. (9 Pts.) For each statement below, decide whether it best describes the CTFT, the DTFT or the DFT. You need not show your work and no partial credit will be given.
 - (a) Suppose that a signal x[n] satisfies $\sum_{n=-\infty}^{\infty} |x[n]| < \infty$ (i.e., it is absolutely summable). Then, this transform can be easily computed if the corresponding z-transform is known.
 - (b) This transform can be applied to recorded data of finite length using a computer.
 - (c) This transform is defined for infinitely many values of its frequency variable and it is typically **not** periodic as a function of its frequency variable.

Solution: (a) DTFT, since we just need to replace z in the z-transform by $e^{j\omega}$.

- (b) DFT, DFT is suitable for a finite-length sequence, and a computer works based on digital signals.
- (c) CTFT, by definition CTFT is a integral of the continuous signal on the range $[-\infty, \infty]$, which involves infinitely many values. Also, unlike DTFT, it is not always periodic.

7. (14 Pts.) The DTFT of the signal $x[n] = A_1 \frac{\sin(\omega_0 n)}{\omega_0 n} + A_2 \frac{\sin(2\omega_0 n)}{2\omega_0 n}$ is as shown below.

Determine the constants A_1 , A_2 , and ω_0 .

Solution: We can use the following DTFT pair for some W > 0:

$$\frac{\sin(Wn)}{\pi n} \quad \Longleftrightarrow \quad \begin{cases} 1, & |w| \leq W, \\ 0, & W \leq |w| \leq \pi. \end{cases}$$

Therefore, let $x[n] = x_1[n] + x_2[n]$ such that $x_1[n] := A_1 \frac{\sin(\omega_0 n)}{\omega_0 n}$ and $x_2[n] := A_2 \frac{\sin(2\omega_0 n)}{2\omega_0 n}$, then the DTFT of x[n] is

$$X_d(\omega) = X_{d,1}(\omega) + X_{d,2}(\omega)$$

where

$$X_{d,1}(\omega) = \begin{cases} \frac{A_1\pi}{w_0}, & |w| \leq w_0, \\ 0, & w_0 \leq |w| \leq \pi. \end{cases} \quad X_{d,2}(\omega) = \begin{cases} \frac{A_2\pi}{2w_0}, & |w| \leq 2w_0, \\ 0, & 2w_0 \leq |w| \leq \pi. \end{cases}$$

Then from the plot of $X_d(\omega)$ we observe that $w_0 = \frac{\pi}{3}$, also from the magnitude we have

$$\frac{A_1\pi}{w_0} + \frac{A_2\pi}{2w_0} = 2, \quad \frac{A_2\pi}{2w_0} = 1.$$

By solving these we obtain $A_2 = 2w_0/\pi = 2/3$ and $A_1 = w_0/\pi = 1/3$.

8. (15 Pts.) The continuous-time signal $x_c(t)$ has the real-valued Fourier transform shown below. The signal $x_c(t)$ is sampled with a sampling period of T to produce the discrete-time signal $x[n] = x_c(nT)$.

- (a) What is the Nyquist rate for the signal $x_c(t)$?
- (b) Sketch the DTFT $X_d(\omega)$ of x[n] for $-\pi < \omega < \pi$ for the sampling frequency $F_s = 1/T = 5$ kHz.
- (c) Is the signal x[n] real-valued? Justify your answer.

Solution: (a) The bandwidth of $x_c(t)$ is $\Omega_0 := 10000\pi$, then the Nyquist rate f is given as

$$\frac{\Omega_0}{f} = \pi \quad \rightarrow \quad f = 10000 \; \mathrm{Hz}$$

(b) Since $F_s < f$ is less than the Nyquist rate, there exists aliasing, where the digital frequency that corresponds to 10000π is $10000\pi/F_s = 2\pi$. In Figure 2, on left we show the $X_c\left(\frac{\Omega}{F_s}\right)$ and its neighboring copies $X_c\left(\frac{\Omega}{F_s} + 2\pi\right)$ and $X_c\left(\frac{\Omega}{F_s} - 2\pi\right)$. By summing these together, on right we plot $X_d(\omega)$.

Figure 2: Problem 8. The sketch of $X_d(\omega)$.

(c) Yes, because the CTFT $X_c(\Omega)$ is real and symmetric, then $x_c(t)$ is real-valued, so does x[n].

9. (12 Pts.)

Suppose the output of the D/A in the system above is found to be

$$y_c(t) = 2\cos(300\pi t)$$

when the sampling frequency is $F_s = 1/T = 400 \text{ Hz}$.

- (a) Determine x[n].
- (b) Assume $x_c(t)$ is bandlimited to 400 Hz. Determine the two different input signals $x_c(t) = x_1(t)$ and $x_c(t) = x_2(t)$ that could have produced the given output of the D/A.

Solution:

(a) Considering the relation between angular and normalized frequency $\omega = \Omega T$, the normalized frequency of x[n] corresponds to:

$$\omega_0 = \frac{300\pi}{400} = \frac{3\pi}{4} \text{ (rad/sample)}.$$

Additionally, considering the scaling factor $T = \frac{1}{400}$ of the ideal lowpass filter included in the D/A converter and the sequence being a cosine (sum of deltas), x[n] corresponds to:

$$x[n] = 2\cos\left(\frac{3\pi n}{4}\right).$$

(b) Using again the relation $\omega = \Omega T$, the angular frequency of $x_1(t)$ corresponds to:

$$\Omega_1 = \frac{3\pi}{4} \cdot 400 = 300\pi \text{ (rad/s)}$$
$$\Rightarrow x_1(t) = 2\cos(300\pi t)$$

which satisfies the band limit condition. A second frequency satisfying it generates aliasing. Let $x_2[n]$ be:

$$x_2[n] = 2\cos\left[\left(\frac{3\pi}{4} - 2\pi\right)n\right]$$
$$= 2\cos\left(\frac{-5\pi n}{4}\right)$$
$$= 2\cos\left(\frac{5\pi n}{4}\right).$$

Using the frequency relation:

$$\Omega_2 = \frac{5\pi}{4} \cdot 400 = 500\pi \text{ (rad/s)}$$

$$\Rightarrow x_2(t) = 2\cos(500\pi t).$$