Indian Institute of Technology Kharagpur Department of Electrical Engineering

Subject No.: EE60020	Subject: Mac	hine Learning for	Signal Processing
Date of Assignment: 15 April	l 2024	Semeste	er: Spring 2023-24
Assignment Number: 4 Solut	ion Duration	: 1 hour 50 mins	Full points: 308
Name:		Roll No:	

1. You are provided with a convolutional neural network defined as follows

$$\begin{array}{l} \mathtt{net_E(\cdot)} \mapsto (1: \mathrm{Conv2D}) \mathtt{16c5w1s0p} \to (2: \mathrm{MaxPool2D}) \mathtt{2w2s} \\ & \to (3: \mathrm{Conv2D}) \mathtt{64c3w1s1p} \to (4: \mathrm{MaxPool2D}) \mathtt{2w2s} \end{array} \tag{1}$$

$$\begin{array}{l} \mathtt{net_D}(\cdot) \mapsto (1: \mathrm{Conv2D}) \mathtt{16c3w1s1p} \to (2: \mathrm{MaxUnPool2D}) \mathtt{2w2s} \\ & \to (3: \mathrm{Conv2D}) \mathtt{3c5w1s2p} \to (4: \mathrm{MaxUnPool2D}) \mathtt{2w2s} \end{array} \tag{2} \\ \end{array}$$

$$net_{c}(\cdot) \mapsto (1 : FC)160 \to (2 : FC)84 \to (3 : FC)10$$
 (3)

such that it operates as follows when provided with an input $\mathbf{x} \in \mathbb{R}^{3 \times 32 \times 32}$

$$\mathbf{z} = \mathtt{net}_{\mathtt{E}}(\mathbf{x}) \tag{4}$$

$$\hat{\mathbf{x}} = \mathtt{net}_{\mathtt{D}}(\mathbf{z}) \tag{5}$$

$$\hat{\mathbf{y}} = \mathtt{net}_{\mathtt{C}}(\mathbf{z}) \tag{6}$$

(a) (16 points) Find the following associated with feedforward operation in $\mathtt{net}_{\mathtt{E}}(\cdot)$

	$a \text{ in input } \in \mathbb{R}^a$	$b \text{ in output } \in \mathbb{R}^b$	c in weight $\in \mathbb{R}^c$	$d \text{ in bias } \in \mathbb{R}^d$
$\mathtt{net}_\mathtt{E}:1$	$3 \times 32 \times 32$	$16 \times 28 \times 28$	$16 \times 3 \times 5 \times 5$	16×1
$\mathtt{net}_{\mathtt{E}}:2$	$16 \times 28 \times 28$	$16 \times 14 \times 14$	-	-
$\mathtt{net}_{\mathtt{E}}:3$	$16 \times 14 \times 14$	$64 \times 14 \times 14$	$64 \times 16 \times 3 \times 3$	64×1
$\mathtt{net}_{\mathtt{E}}:4$	$64 \times 14 \times 14$	$64 \times 7 \times 7$	-	-

(b) (16 points) Find the following associated with feedforward operation in $\mathtt{net}_D(\cdot)$

	$a \text{ in input } \in \mathbb{R}^a$	$b \text{ in output } \in \mathbb{R}^b$	$c \text{ in weight } \in \mathbb{R}^c$	$d \text{ in bias } \in \mathbb{R}^d$
net _D :1	$64 \times 7 \times 7$	$16 \times 7 \times 7$	$16 \times 64 \times 3 \times 3$	16×1
net _D : 2	$16 \times 7 \times 7$	$16 \times 14 \times 14$	-	-
net _D :3	$16 \times 14 \times 14$	$3 \times 14 \times 14$	$3 \times 16 \times 5 \times 5$	3×1
net _D : 4	$3 \times 14 \times 14$	$3 \times 28 \times 28$	-	-

(c) (12 points) Find the following associated with feedforward operation in $\mathtt{net}_{\mathtt{C}}(\cdot)$

	$a \text{ in input } \in \mathbb{R}^a$	$b \text{ in output } \in \mathbb{R}^b$	$c \text{ in weight } \in \mathbb{R}^c$	d in bias $\in \mathbb{R}^d$
$\mathtt{net}_\mathtt{C}:1$	$3,136\times1$	160×1	$160 \times 3, 136$	160×1
$\mathtt{net}_\mathtt{C}:2$	160×1	84 × 1	84 × 160	84 × 1
net _c :3	84 × 1	10 × 1	10×84	10 × 1

(d) (16 points) Find the number of unitary arithmetic operations associated with feed-forward operation in $\mathtt{net_E}(\cdot)$

	#add	#mul	#logic	Total
$\mathtt{net}_\mathtt{E}:1$	940, 800	940, 800	0	1,881,600
$\mathtt{net_E}:2$	0	0	9,408	9,408
net _E :3	1,806,336	1,806,336	0	3, 612, 672
$\mathtt{net}_{\mathtt{E}}:4$	0	0	9,408	9,408

(e) (16 points) Find the number of unitary arithmetic operations associated with feed-forward operation in $\mathtt{net}_{\mathtt{D}}(\cdot)$

	#add	#mul	#logic	Total
$\mathtt{net}_\mathtt{D}:1$	451, 584	451, 584	0	903, 186
$\mathtt{net_D}:2$	0	0	0	0
net _D :3	235,200	235, 200	0	470, 400
net _D : 4	0	0	0	0

(f) (12 points) Find the number of unitary arithmeic operations associated with feed-forward operation in $\mathtt{net}_{\mathtt{c}}(\cdot)$

	#add	#mul	#logic	Total
$\mathtt{net}_\mathtt{C}:1$	501,760	501,760	0	1,003,520
$\mathtt{net}_\mathtt{C}:2$	13, 440	13, 440	0	26,880
net _C :3	840	840	0	1,680

- 2. Consider that the neural networks in Q. 1 are trained with Mean Squared Error (MSE) as the loss function. Let $J_1(\hat{\mathbf{x}}, \tilde{\mathbf{x}})$ and $J_2(\hat{\mathbf{y}}, \mathbf{y})$ be evaluated with $\tilde{\mathbf{x}} \in \mathbb{R}^{3 \times 28 \times 28}$ and $\mathbf{y} \in \mathbb{R}^{10}$ representing the true states of the variables in the loss function. Let ∇_1 denote the derivative of $J_1(\cdot)$ with respect to the output of a given layer, and δ_1 denote the derivative of $J_1(\cdot)$ with respect to the input to that layer, such that for any layer represented mathematically as $\mathbf{Q} = \mathbf{RS} + \mathbf{T}$, where \mathbf{Q} is the output of the neural layer we have $\nabla = \frac{\partial J(\cdot)}{\partial \mathbf{Q}}$, \mathbf{S} is the input to the neural layer we have $\delta = \frac{\partial J(\cdot)}{\partial \mathbf{S}}$, \mathbf{R} denotes the weights and \mathbf{T} denotes the biases in the layer respectively. We have $\frac{\partial J(\cdot)}{\partial \mathbf{R}} = \mathbf{\nabla} \mathbf{S}^{\top}$, $\frac{\partial J(\cdot)}{\partial \mathbf{T}} = \mathbf{\nabla}$, $\delta = \frac{\partial J(\cdot)}{\partial \mathbf{S}} = \mathbf{R}^{\top} \mathbf{\nabla}$. Similarly, $\mathbf{\nabla}_2$ and δ_2 correspond to these set of operations associated with $J_2(\cdot)$.
 - (a) (16 points) Find the following associated with error backpropagation operation in $\mathtt{net_E}(\cdot)$ when \mathbf{w} and \mathbf{b} represent the weights and biases in a layer respectively.

	$a \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^a$	$b \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^b$	$c \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^c$	$d \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^d$
$\mathtt{net_E}:1$	$16 \times 3 \times 5 \times 5$	16×1	$16 \times 3 \times 5 \times 5$	16×1
$\mathtt{net_E}:2$	-	-	-	-
net _E :3	$64 \times 16 \times 3 \times 3$	64×1	$64 \times 16 \times 3 \times 3$	64×1
$\mathtt{net_E}:4$	-	-	-	-

(b) (16 points) Find the following associated with error backpropagation operation in $\mathtt{net}_D(\cdot)$ when **w** and **b** represent the weights and biases in a layer respectively.

	$a \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^a$	$b \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^b$	$c \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^c$	$d \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^d$
$\mathtt{net}_\mathtt{D}:1$	$16 \times 64 \times 3 \times 3$	16×1	-	-
$\mathtt{net_D}: 2$	-	-	-	-
net _D :3	$3 \times 16 \times 5 \times 5$	3×1	-	-
$\mathtt{net}_\mathtt{D}:4$	-	-	-	-

(c) (12 points) Find the following associated with error backpropagation operation in $\mathtt{net}_{\mathtt{c}}(\cdot)$ when \mathbf{w} and \mathbf{b} represent the weights and biases in a layer respectively.

	$a \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^a$	$b \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^b$	$c \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^c$	$d \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^d$
$\mathtt{net}_\mathtt{C}:1$	-	-	$160 \times 3, 136$	160×1
$\mathtt{net}_\mathtt{C}:2$	-	-	84×160	84 × 1
net _c :3	-	-	10 × 84	10 × 1

(d) (64 points) Find the number of unitary arithmeic operations associated with error backpropagation operation in $\mathtt{net_E}(\cdot)$

		#add	#mul	#logic	Total
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	939,600	940,800	0	1,880,400
1	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	12,528	16	0	12, 544
$net_{\mathtt{E}}:1$	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	939,600	940,800	0	1,880,400
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	12,528	16	0	12, 544
	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
$\mathtt{net_E}: 2$	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	1,797,120	1,806,336	0	3,603,456
mo+ . 2	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	12,480	64	0	12, 544
$net_{E}:3$	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	1,797,120	1,806,336	0	3,603,456
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	12,480	64	0	12, 544
$\mathtt{net_E}:4$	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	0	0	0	0

(e) (64 points) Find the number of unitary arithmeic operations associated with error backpropagation operation in $\mathtt{net}_D(\cdot)$

		#add	#mul	#logic	Total
		# add	#11141	#10g1C	10041
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	435,456	451,584	0	887, 040
no+ . 1	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	768	16	0	784
$\mathtt{net}_\mathtt{D}:1$	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
$\mathtt{net}_\mathtt{D}:2$	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	23,400	235,200	0	469,200
no+ · 2	$rac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	585	3	0	588
$\mathtt{net}_\mathtt{D}:3$	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
$\mathtt{net_D}:4$	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	0	0	0	0

(f) (48 points) Find the number of unitary arithmeic operations associated with error backpropagation operation in $\mathtt{net}_\mathtt{c}(\cdot)$

		#add	#mul	#logic	Total
net _c :1	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	501,760	501,760	0	1,003,520
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	160	160	0	320
$\mathtt{net}_\mathtt{C}:2$	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$rac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	13,440	13,440	0	26,880
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	13,440	13,440	0	26,880
$\mathtt{net}_\mathtt{C}:3$	$rac{\partial J_1(\cdot)}{\partial \mathbf{w}}$	0	0	0	0
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$	0	0	0	0
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$	840	840	0	1,680
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$	840	840	0	1,680

——— End of questions. ———