EECE 5550: Mobile Robotics

Lecture 7: Basic robot kinematics and sensing

The Story So Far

Mathematical foundations ————

Computational tools

Actual robots (yay ⊚!) ———

Week	Topics (tentative)		
1	Coordinate transformations & geometry		
2	Lie groups & probability theory		
3	Computational tools: Linux, Git, Ros		
4	Sensing, kinematics & feature extraction		
5	Probabilistic robotics & Bayesian filtering		
6	Robotic mapping & localization		
7	Optimization & SLAM		
8	Planning algorithms and graph search		
9	Motion planning & obstacle avoidance		
10	Feedback, optimal, and model-predictive control		
11	Planning under uncertainty		
12	Robotic exploration		
13	Final presentations		

Recap: The Central Dogma of Robotics

Sense \rightarrow Think \rightarrow Act

- Sense: Process sensor data to construct a model of the world
- Think: Construct a plan to move from the current state to the goal state
- Act: Control actuators to execute plan

Today: Basic models of robot kinematics & sensing

Our platform: Turtlebot3 Burger

Plan of the day

- Basic kinematics of wheeled vehicles
- Mobile robot sensors
 - Wheel encoders
 - Laser scanners
 - Cameras

References

Autonomous Mobile Robots

Handbook of Robotics

- Secs. 3.2 and 4.1 of Autonomous Mobile Robots
- Chps. 17 & 22 of *Handbook* of *Robotics*

Kinematics of wheeled vehicles

LOTS of different possible designs for wheeled robots

Examples:

- Bicycle model
- Differential drive (2 or 3 wheels)
- Ackerman steering (car)

Main question: How does wheel geometry relate to robot motion (i.e. kinematics)?

Basic modeling assumptions for wheels

Main assumption: We assume that all wheels rotate without slipping

• Forward velocity v is determined by wheel radius r and angular velocity $\dot{\varphi}$:

$$v = r\dot{\varphi}$$

Lateral motion is prohibited: no side-slip!

Key observation: These conditions actually correspond to *constraints* on possible robot motion!

Wheel constraints on robot motion

In order for each wheel to roll without slipping, they must all have a common instantaneous center of curvature

Suppose we have a differential drive robot with:

- Wheels of radius r
- Wheel track of width w
- Pose (x,y,θ) with respect to the world frame O as shown in the diagram

Key question: What is the relation between the angular velocities $\dot{\varphi}_l$ and $\dot{\varphi}_r$ of the left and right wheels, and the velocity $v = (\dot{x}, \dot{y}, \dot{\theta})$ of the robot in the world frame O?

(Assume that positive values of $\dot{\varphi}_l$ and $\dot{\varphi}_r$ correspond to forward motion of the robot)

Let's consider the robot's body-centric coordinate system.

Recall that:

- Both wheels must have a common ICC
- There is no lateral motion $(\dot{y}_r = 0)$

 \Rightarrow The left and right wheels are following circular arcs of radii $R - \frac{w}{2}$ and $R + \frac{w}{2}$

⇒ The forward velocities of the left and right wheels satisfy:

$$v_l = \dot{\theta}_r \left(R - \frac{w}{2} \right)$$

$$v_r = \dot{\theta}_r \left(R + \frac{w}{2} \right)$$

Let's consider the robot's body-centric coordinate system.

The forward velocities of the left and right wheels satisfy:

$$v_l = \dot{\theta}_r \left(R - \frac{w}{2} \right)$$

$$v_r = \dot{\theta}_r \left(R + \frac{w}{2} \right)$$

Summing these equations yields:

$$2R\dot{\theta}_r = v_l + v_r$$

But from the diagram, $R\dot{\theta}_r = \dot{x}_r$ is the forward velocity of the robot!

Therefore:

$$\dot{x}_r = \frac{v_l + v_r}{2}$$

Let's consider the robot's body-centric coordinate system.

The forward velocities of the left and right wheels satisfy:

$$v_l = \dot{\theta}_r \left(R - \frac{w}{2} \right)$$

$$v_r = \dot{\theta}_r \left(R + \frac{w}{2} \right)$$

Similarly, subtracting v_l from v_r produces:

$$\dot{\theta}_r = \frac{v_r - v_l}{w}$$

Finally, recall the *no slip assumption* implies that the wheels' *translational* and *angular* velocities satisfy:

$$v_l = r\dot{\varphi}_l$$
 and $v_r = r\dot{\varphi}_r$

Let's consider the robot's body-centric coordinate system.

Combining these results, we have:

$$\begin{pmatrix} \dot{x}_r \\ \dot{y}_r \\ \dot{\theta}_r \end{pmatrix} = \begin{pmatrix} \frac{r}{2}(\dot{\varphi}_r + \dot{\varphi}_l) \\ 0 \\ \frac{r}{w}(\dot{\varphi}_r - \dot{\varphi}_l) \end{pmatrix}$$

But: These are in the robot's body-centric frame

Q: What about the world reference frame?

Let's consider the robot's body-centric coordinate system.

Combining these results, we have:

$$\begin{pmatrix} \dot{x}_r \\ \dot{y}_r \\ \dot{\theta}_r \end{pmatrix} = \begin{pmatrix} \frac{r}{2}(\dot{\varphi}_r + \dot{\varphi}_l) \\ 0 \\ \frac{r}{w}(\dot{\varphi}_r - \dot{\varphi}_l) \end{pmatrix}$$

Transforming these velocities into the world frame O:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} R(\theta) & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \dot{x}_r \\ \dot{y}_r \\ \dot{\theta}_r \end{pmatrix}$$

where:

$$R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Plan of the day

- Basic kinematics of wheeled vehicles
- Mobile robot sensors

A taxonomy of common robot sensors

- Tactile or "bumper" sensors
 - Detect physical contact with the environment
 - Can be used for simple proximity sensing, e.g. early Roomba
- Rotary (wheel) encoders
 - Measure position / velocity of rotating shafts
 - Useful for dead reckoning (w/ kinematic models)
- Laser scanners
 - Measures range and bearing to points in the environment
 - Captures high-accuracy geometry (although often only in a plane)
- Cameras
 - Provides dense field-of-view information about the environment's visual appearance (color, texture, etc.).
 - A very rich source of information for scene understanding
- Global position system (GPS)
 - Direct measurement of absolute position on Earth's surface
 - Requires clean line-of-sight to GPS satellites

Optical rotary encoders

Principle of operation: Measure the rotation of a shaft by "counting" pulses of light that pass through a thin grating

Typical resolution (for robotics) is ~2000 cycles per revolution

Used for measuring:

- Joint angles (for manipulators)
- Wheel speed / odometry
 ⇒Can be used for dead reckoning (w/kinematic models)

State	Ch A	Ch B
s_1	high	low
s_2	high	high
s_3	low	high
S_4	low	low

Laser scanners (LIDAR)

Principle of operation: Light detection and ranging. Measure range and bearing to points in the environment by measuring time-of-flight of a reflected laser beam

Typically these units will "sweep" a single laser through a planar section of the environment using a rotating mirror

Pro:

- Captures high-precision geometry at long range (cm-level accuracy at distances of tens to hundreds of meters)
- Active sensing: Less sensitive to environmental properties (e.g. texture)

Con:

- Standard LIDARs only scan a 2D-cross-section of the environment can't capture 3D information (e.g. variation w/ height)
- Active sensing: Requires power (can be an issue for resource-limited mobile platforms)

3D LIDAR

Some recently-developed lidars (e.g. Velodyne) can return 3-dimensiona, 360-degree field-of-view pointclouds

Main idea: Stack multiple (e.g. 64) lasers pitched at different elevations in a common housing, and rotate the entire unit

These are commonly used for autonomous vehicles

Example: 3D LIDAR on an autonomous vehicle

Cameras

Principle of operation: Focus ambient light rays onto a photosensitive surface (in robotics, a digital sensor)

NB: The location at which an incident beam is imaged depends upon its *direction of origin* – cameras are *orientation* sensors

Pro:

- Can capture extremely rich, dense visual information over a large field of view – very useful for scene classification, object recognition
- Passive sensing: Relatively low power (compared to lasers)

Con:

- Passive sensing: Efficacy depends upon external environmental factors (illumination, visual texturing)
- Cameras may not be as geometrically accurate as lasers, esp. at long ranges (more on this later)

Stereo cameras

Recall: Cameras are *bearing* sensors -- can't determine depth (position) of a point from a single image

Idea: Use *two* cameras! If *relative pose* of the cameras is know (calibrated) the position of a point seen in both images can be triangulated

- Provides information about geometry and visual appearance over a field of view
- But: This depends upon finding corresponding points in the two images
 ⇒Requires visual texture!

Example stereo depth map

Structured light sensors

Principle of operation: Same as stereo, but one camera is replaced with an *emitter* that projects a *known pattern*

Solves two main challenges in (passive) stereo:

- Visual texture: The camera makes its own
- Feature matching: The projected pattern is designed to make *feature matching* easy

Kinect dot pattern

Inertial measurement units

Principle of operation: Measures *linear acceleration* and/or *angular velocity* using a combination of accelerometers and gyroscopes

 Accelerometer: Measures deflection of a proof mass as the device accelerates

Gyroscopes:

- **Mechanical:** Track *absolute orientation* of the sensor using conservation of angular momentum
- Ring laser: Measure angular rate using Sagnac effect

Global positioning system

Principle of operation: Measure the arrival times of radio signals from a constellation of satellites.

- Time-of-flight for each signal x speed of light = range to each satellite
- Receiver's position can then be determined via multilateration

Pro: Enables direct measurement of *absolute position*

Con: Accuracy can be significantly affected by several external factors

- Constellation position (how many satellites are visible?)
- Atmospheric effects (affects EM propagation speed)
- Requires clear line-of-sight to satellites
 - · Only works outdoors
- Multipath effects are a significant problem

GPS multipath

Our platform: Turtlebot3 Burger

