Stochasticity

EES 4760/5760 Agent-Based & Individual-Based Computational Modeling Jonathan Gilligan

Class #19: Tuesday Mar. 21 2017

Stochasticity:

Why do we use random numbers?

- To "inject ignorance" into a model:
 - We want to represent some kind of variability but
 - We do not want all the details of what causes the variability

```
ask patches [set profit 1000 + (random 1000)]
ask turtles [ if random-float 1.0 < mortality-prob [die] ]
```

Common uses of stochasticity

Initialization

```
set fish-length random-normal 50 length-std-dev
```

In submodels

```
ifelse random-float 1.0 < q
[ uphill elevation ]
[ move-to one-of neighbors ]</pre>
```

Guidance for Stochasticity

- Do use stochasticity to initialize model differently on different runs
 - Makes sure that effects you see are not artifacts of a specific initialization
- Do use stochasticity to simplify representation of very complex processes
 - If wild dogs live an average of 5 years:
 - instead of a detailed submodel that determines exactly when each dog will die,
 - let dogs die at random with a 20% probability of dying each tick.
- Don't use too much stochasticity
 - If you put too many different sources of randomness into your models every run may be *so different* you can't discover any general properties.

What is a Distribution?

What is a Distribution?

• In simulation programming, an algorithm that produces (pseudo)random numbers that fit a particular statistical distribution.

```
let x1 random-normal 1.0 0.25
let x2 random-gamma 2.0 4.0
```


Distributions in NetLogo

- Continuous (real-number)
 - Uniform: random-float upper-limit
 - Normal: random-normal *mean sd* (beware of outliers)
 - Also: random-gamma, random-exponential
- Discrete (integer):
 - Uniform: random upper-limit
 - Oto upper-limit 1
 - Poisson: random-poisson mean
 - o mean = average value
 - Bernoulli (true or false): random-float 1.0 < p
 - true with probability p
 - See random-bernoulli reporter on p. 200 of the textbook.

Controlling randomness

- random-seed *number*
 - As long as *number* is the same, you get the same sequence of random numbers

```
to setup
clear-all
random-seed 32149
...
end
```

Controlling randomness

with-local-randomness [commands]
 Runs without changing sequence of random numbers in other parts of the model

```
to move
with-local-randomness
[
random-seed 63592
...
]
end
```

How can we see a distribution?

Histograms

```
to plot-histogram-normal
   clear-all
   set-plot-pen-mode 1 ; bar mode
   set-plot-pen-interval 0.1
   set-plot-x-range -1 3
   let x (list)
   ; fill x with 5000 random numbers from a normal distribution
   repeat 5000 [ set x fput (random-normal 1.0 0.25) x]
   histogram x
end
```


Uniform distributions

- Integer: random n gives an integer i: 0 ≤ i < n
 - From 0 to (*n* − 1)
- Continuous: random-float z gives a number x: 0 ≤ x < z
 - Should we worry that x < z?

```
to test
  let num_draws 10000
  let max-rand 0
  repeat num_draws
  [
    let x random-float 1000
    if x > max-rand [ set max-rand x ]
  ]
  show max-rand
```

```
observer> test
observer: 999.9869678378017
```

Poisson distribution

- For countable things that happen at a small rate.
 - On every turn a random number of agents turn red,
 with an average of 5% of agents

```
ask n-of (random-poisson (0.05 * count turtles)) turtles [set color red]
```

or

```
let n random-poisson (0.05 * count turtles)
ask n-of n turtles [set color red]
```

Normal distribution

For measurable things with an average value

```
set weight random-normal 150 20 ; weight in pounds set height random-normal 70 2 ; height in inches
```

Stochastic Business Investors

Stochastic Business Investors

Model:

https://ees4760.jonathangilligan.org/models/class_19/business_investor_class_19.nlogo

Original model:

Investors move to neighbor with highest expected utility (including own patch) Average over 10,000 runs:

Alternative	Frequency
Higher profit, lower risk	83.3%
Higher profit, higher risk	5.4%
Lower profit, lower risk	4.9%
Lower profit, higher risk	0%
Don't move	92.7%

- Mean wealth = \$128,400
- Total wealth = \$12,000,000

Stochastic Model Original model:

Alternative	Frequency
Higher profit, lower risk	83.3%
Higher profit, higher risk	5.4%
Lower profit, lower risk	4.9%
Lower profit, higher risk	0%
Don't move	92.7%

Stochastic model

- If there are neighbors with higher profit and lower risk:
 - 83.3% probability of moving to one of them
- Otherwise, if there are neighbors with higher profit and higher risk:
 - 5.4% probability of moving to one of them
- etc.

Compare models:

Original model:

Alternative	Frequency
Higher profit, lower risk	83.3%
Higher profit, higher risk	5.4%
Lower profit, lower risk	4.9%
Lower profit, higher risk	0%
Don't move	92.7%

- Mean wealth = \$128,400
- Total wealth = \$12,000,000

Stochastic model:

???