Classificação com Modelos de Linguagem Escola de Verão 2025

Índice

- 1. Introdução
- 2. Modelos base vs instruction fine-tunes
- 3. Supervised Fine-tuning
- 4. Reinforcement Learning from Human Feedback (DPO, SIMPO, etc)
- 5. Preparação de dados: turnos e o formato ShareGPT
- 6. Treinando LLMs com Unsloth

Introdução

Por que treinar LLMs?

- Customização para domínios específicos
 - Modelos podem ser adaptados para entender jargões e contextos específicos de uma área
 - Exemplo: um modelo especializado em textos médicos terá melhor desempenho em diagnósticos
- Melhoria de desempenho em tarefas especializadas
 - Fine-tuning permite otimizar o modelo para tarefas específicas
 - Exemplo: um modelo pode ser ajustado para ser especialmente bom em análise de sentimentos
- Controle sobre o comportamento do modelo
 - Permite definir o "tom de voz" e estilo de resposta do modelo
 - Importante para alinhar o modelo com políticas corporativas e requisitos éticos
- Redução de custos operacionais
 - Modelos menores e especializados podem ser mais eficientes que modelos grandes genéricos
 - Menor consumo de recursos computacionais no deploy

Desafios e Oportunidades

- Requisitos computacionais significativos
 - Necessidade de GPUs potentes para treinamento
 - Técnicas de otimização podem reduzir estes requisitos
- Necessidade de dados de qualidade
 - Dados ruins podem resultar em modelos com vieses ou comportamentos indesejados
 - A qualidade dos dados impacta diretamente a qualidade do modelo final
- Importância do formato correto dos dados
 - Dados mal formatados podem prejudicar o treinamento
 - Consistência no formato é crucial para bons resultados
- · Novas técnicas tornando o processo mais acessível
 - Métodos como LoRA reduzem necessidade de recursos
 - ∘ Ferramentas como Unsloth democratizam o processo

Modelos Base

- Treinados em grandes corpus de texto
 - Aprendem padrões gerais da linguagem através de grandes volumes de texto
 - Base de conhecimento ampla, mas sem foco específico
- Capacidade de geração de texto mais genérica
 - Bons em tarefas criativas e geração livre
 - Podem produzir conteúdo inesperado ou fora do contexto
- Menos controle sobre o comportamento
 - Podem não seguir instruções de forma consistente
 - ∘ Respostas podem variar muito em estilo e formato
- Exemplos: LLaMA 2, Mistral, MPT
 - Modelos que servem como fundação para fine-tuning
 - ∘ Geralmente disponíveis em diferentes tamanhos

Modelos Instruction-tuned

- Adaptados para seguir instruções
 - Treinados especificamente para entender e executar comandos
 - Melhor compreensão do que o usuário deseja
- Comportamento mais controlado e previsível
 - Respostas mais consistentes e focadas
 - Menor probabilidade de gerar conteúdo inadequado
- Melhor alinhamento com intenções humanas
 - Capacidade de entender nuances em instruções
 - Melhor interpretação do contexto conversacional
- Exemplos: Alpaca, Vicuna, OpenOrca
 - Modelos que já passaram por processo de fine-tuning
 - Prontos para uso em aplicações práticas

Supervised Fine-tuning

Fundamentos

- Treinamento com pares de pergunta-resposta
 - Cada exemplo contém uma entrada e a resposta desejada
 - 0 modelo aprende a mapear entradas para saídas específicas
- Otimização direta da likelihood
 - O modelo é treinado para maximizar a probabilidade das respostas corretas
 - Processo similar ao treinamento original, mas com dados específicos
- Necessidade de dados de alta qualidade
 - Dados devem representar bem o comportamento desejado
 - Qualidade dos exemplos impacta diretamente o resultado
- Processo relativamente direto
 - Metodologia bem estabelecida e compreendida
 - Frameworks maduros disponíveis

Parameter-Efficient Fine-Tuning (PEFT)

0 que é PEFT?

- Técnicas para reduzir custos de fine-tuning
 - Treina apenas uma pequena fração dos parâmetros
 - Mantém qualidade comparável ao full fine-tuning
- Benefícios principais
 - ∘ Redução dramática de memória necessária
 - Treinamento mais rápido e eficiente
 - Facilita experimentação e iteração
- Aplicações práticas
 - ∘ Permite fine-tuning em hardware mais modesto
 - ∘ Viabiliza adaptação de modelos muito grandes
 - Reduz custos operacionais significativamente

LoRA (Low-Rank Adaptation)

Fundamentos do LoRA

- Decomposição de matriz de baixo posto
 - Substitui matrizes densas por produtos de matrizes menores
 - Reduz significativamente número de parâmetros treináveis
- Funcionamento básico
 - Congela pesos originais do modelo
 - Adiciona matrizes de baixo posto paralelas
 - Treina apenas as matrizes adicionadas

■ Vantagens e Características

- Eficiência computacional
 - ∘ Redução de 10000x+ em parâmetros treináveis
 - Mantém qualidade próxima ao full fine-tuning
- Flexibilidade
 - Rank configurável (trade-off qualidade vs eficiência)
 - Múltiplos adaptadores podem ser combinados
 - Fácil reversão para modelo original

QLoRA (Quantized LoRA)

Características Principais

- Quantização do modelo base
 - Reduz precisão dos pesos para 4 ou 8 bits
 - Mantém gradientes em precisão completa
- Inovações técnicas
 - Quantização de paginação
 - Dequantização durante forward pass
 - Otimização de memória

Benefícios

- Uso extremamente eficiente de memória
 - ∘ Permite fine-tuning em GPUs com menos VRAM
 - Suporte a modelos maiores em hardware modesto
- Preservação de qualidade
 - Resultados próximos ao LoRA tradicional
 - Mínima perda de performance

RsLoRA (Rank-Stabilized LoRA)

Conceito e Inovações

- Estabilização de ranking
 - Melhora estabilidade durante treinamento
 - Reduz problemas de convergência
- Modificações técnicas
 - Normalização adaptativa
 - ∘ Controle dinâmico de gradientes
 - Melhor inicialização de pesos

Vantagens Específicas

- Maior estabilidade
 - Treinamento mais robusto
 - Menos sensível a hiperparâmetros
- Melhor convergência
 - Resultados mais consistentes
 - Menor necessidade de múltiplas tentativas

DoRA (Weight-Decomposed Low-Rank Adaptation)

Funcionamento

- Decomposição de pesos
 - Separa magnitude e direção dos pesos
 - Aplica LoRA para adaptação direcional
- Processo de adaptação
 - ∘ Fine-tuna componentes de magnitude e direção
 - Usa LoRA para atualizações direcionais eficientes
 - Permite merge com pesos originais após treinamento

Benefícios e Características

- Maior capacidade de aprendizado
 - Padrões de aprendizado mais próximos do full fine-tuning
 - Ajustes direcionais substanciais com mudanças mínimas de magnitude
- Vantagens práticas
 - ∘ Compatible com LoRA e variantes
 - Sem overhead adicional após merge
 - ∘ Performance superior ao LoRA em várias tarefas

Características Principais

- LoRA
 - Base para outros métodos
 - Equilíbrio entre simplicidade e eficácia
 - Amplamente testado e suportado
- QLoRA
 - Máxima eficiência de memória
 - Ideal para hardware limitado
 - Pequeno trade-off de performance
- RsLoRA
 - ∘ Foco em estabilidade
 - Menor sensibilidade a configurações
 - Bom para produção
- DoRA
 - Decomposição sofisticada
 - Melhor qualidade de adaptação
 - Sem custos adicionais de inferência

Escolhendo o Método

- Considerar recursos disponíveis
 - Hardware e memória
 - ∘ Tempo de treinamento
 - Necessidades de qualidade
- Avaliar complexidade de implementação
 - Suporte de frameworks
 - Necessidade de expertise técnica
 - ∘ Maturidade da solução

Considerações Práticas

- Seleção cuidadosa de learning rate
 - ∘ Taxa muito alta pode desestabilizar o conhecimento existente
 - Taxa muito baixa pode tornar o treinamento ineficiente
- Importância do tamanho do batch
 - Batches maiores proporcionam treinamento mais estável
 - Limitado pela memória disponível na GPU
- Estratégias de regularização
 - Previne overfitting aos dados de fine-tuning
 - Mantém conhecimentos úteis do pré-treinamento
- Monitoramento de métricas chave
 Acompanhamento de loss, perplexity e métricas específicas
 - Acompaniamento de toss, perprexity e metricas especifi
 - Importante para detectar problemas no treinamento

Reinforcement Learning from Human Feedback

Métodos Modernos

- Direct Preference Optimization (DPO)
 - o Otimiza diretamente a partir de comparações de preferência
 - Elimina necessidade de reward modeling explícito
- Simplified Policy Optimization (SIMPO)
 - Versão mais eficiente do processo DPO
 - Reduz complexidade computacional mantendo eficácia
- · Vantagens sobre RLHF tradicional
 - Processo mais simples e direto
 - Menor necessidade de recursos computacionais
- Menor complexidade computacional
 - Treinamento mais rápido e eficiente
 - Mais acessível para equipes com recursos limitados

Direct Preference Optimization (DPO)

Fundamentos do DPO

- Alternativa mais simples ao RLHF tradicional
 - Elimina necessidade de reward modeling
 - ∘ Transforma problema de RL em classificação
 - Mais estável e fácil de implementar
- Motivação
 - RLHF é complexo e instável
 - Necessidade de método mais direto
 - Manter qualidade com menos complexidade

■ Vantagens Principais

- Simplicidade computacional
 - Não requer sampling durante fine-tuning
 - Menor necessidade de ajuste de hiperparâmetros
 - Processo de treinamento mais rápido
- Resultados superiores
 - ∘ Melhor controle sobre comportamento do modelo
 - Qualidade comparable ou superior ao RLHF
 - Maior estabilidade no treinamento

Teoria Básica

- Reformulação matemática
 - Transforma preferências em problema de classificação
 - Deriva política ótima em forma fechada
 - Simplifica processo de otimização
- Processo de treinamento
 - ∘ Usa pares de respostas (preferida vs não preferida)
 - ∘ Otimiza diretamente diferença de log-probabilidades
 - Mantém proximidade com modelo original

Implementação

- Componentes principais
 - Modelo de linguagem base
 - Dataset de preferências
 - Função de loss simplificada
- Fluxo de treinamento
 - Forward pass com ambas respostas
 - Cálculo de probabilidades relativas
 - Otimização direta da preferência

Estrutura do Dataset

Formato básico:

```
{
   "prompt": "Explique o que é gravidade",
   "chosen": "A gravidade é uma força fundamental que atrai todos os objetos com massa...",
   "rejected": "A gravidade é tipo quando as coisas caem no chão..."
}
```

- Componentes necessários
 - Prompt: contexto ou pergunta inicial
 - Chosen: resposta preferida pelos avaliadores
 - Rejected: resposta menos preferida

■ Boas Práticas

- Qualidade das preferências
 - Avaliações consistentes e bem definidas
 - Critérios claros de preferência
 - Diversidade de exemplos
- Considerações importantes
 - Balanceamento de tópicos
 - Consistência nas avaliações
 - Documentação de critérios

Kahneman-Tversky Optimization (KTO)

Fundamentos do KTO

- Baseado em Prospect Theory
 - Teoria sobre tomada de decisão humana
 - Considera vieses cognitivos naturais
 - Incorpora aversão a perdas
- Diferencial principal
 - Não requer dados de preferência
 - Usa apenas sinais binários (bom/ruim)
 - Mais próximo do comportamento humano real

Vantagens sobre outros métodos

- Coleta de dados simplificada
 - ∘ Dados mais fáceis de obter
 - Menor custo de anotação
 - Processo de avaliação mais rápido
- Eficiência e escalabilidade
 - Performance comparable ao DPO
 - ∘ Funciona bem de 1B a 30B parâmetros
 - Menor complexidade de implementação

Prospect Theory na Prática

- Conceitos fundamentais
 - Pessoas avaliam ganhos e perdas relativamente
 - Aversão a perdas é mais forte que atração por ganhos
 - Decisões são baseadas em utilidade percebida
- Aplicação em LLMs
 - Modelagem explícita de utilidade humana
 - Incorporação de vieses cognitivos
 - Otimização direta de utilidade percebida

Função de Utilidade

- Características principais
 - Assimetria entre ganhos e perdas
 - Não-linearidade na percepção de valor
 - Ponderação baseada em referências
- Implementação
 - Transformação de probabilidades
 - Incorporação de aversão a perdas
 - Calibração com comportamento humano real

Estrutura do Dataset

Formato básico:

```
{
    "prompt": "Explique o conceito de inflação",
    "completion": "Inflação é o aumento generalizado dos preços...",
    "label": true # ou false para respostas inadequadas
}
```

- Simplicidade dos dados
 - Apenas três campos necessários
 - ∘ Label binário (true/false)
 - Sem necessidade de comparações

Exemplos Práticos

```
# Exemplo 1: Resposta Adequada
{
    "prompt": "Como economizar energia?",
        "completion": "Para economizar energia, você pode: 1) Desligar aparelhos não utilizados, 2) Usar
lâmpadas LED, 3) Aproveitar a luz natural, 4) Manter aparelhos em bom estado.",
        "label": true
}

# Exemplo 2: Resposta Inadequada
{
    "prompt": "Como economizar energia?",
        "completion": "Sei lá, só deixa tudo ligado que não faz diferença.",
        "label": false
}
```

Simple Preference Optimization (SimPO)

■ Visão Geral

- Simplificação do DPO
 - Remove necessidade de modelo de referência
 - ∘ Processo mais direto e eficiente
 - Mantém ou supera performance do DPO
- Inovações principais
 - $^{\circ}$ Log likelihood normalizado por comprimento
 - Margem de recompensa no objetivo de ranking
 - ∘ Função objetivo mais simples e estável

Vantagens Principais

- Eficiência computacional
 - Menor overhead computacional
 - Menos parâmetros para ajustar
 - Treinamento mais rápido
- Simplicidade de implementação
 - ∘ Código mais limpo e direto
 - Menos componentes móveis
 - Menor complexidade de debug

Aspectos Técnicos do SimPO

Componentes Chave

- Normalização por comprimento
 - Ajusta likelihood baseado no tamanho da resposta
 - ∘ Reduz viés para respostas mais curtas/longas
 - Melhor comparação entre respostas diferentes
- Margem de recompensa
 - Define diferença mínima desejada entre chosen/rejected
 - Melhora estabilidade do treinamento
 - Promove separação mais clara entre respostas

■ Diferenças Técnicas

- Modelo de referência
 - SimPO: Não necessita
 - DPO: Usa modelo de referência
- Normalização
 - SimPO: Normaliza por comprimento
 - DPO: Usa log probs brutos
- Margem de recompensa
 - SimPO: Incorpora margem explícita
 - DPO: Não usa margem

■ Vantagens Comparativas

- SimP0
 - Implementação mais simples
 - Menor overhead computacional
 - Menos hiperparâmetros
- DP0
 - Mais estabelecido
 - ∘ Maior base de pesquisa
 - Mais ferramentas disponíveis

■ Formato dos Dados

- Estrutura de turnos (conversacional)
 - Organização clara de quem fala o quê
 - Facilita o treinamento para diálogos naturais
- Formato ShareGPT
 - Padrão estabelecido pela comunidade
 - ∘ Facilita compartilhamento e reuso de dados
- Consistência na formatação
 - Todos os exemplos seguem o mesmo padrão
 - Reduz erros durante o treinamento
- Validação de qualidade
 - Verificação de formato e conteúdo
 - Garante dados adequados para treinamento

Boas Práticas

- Limpeza e normalização
 - Remoção de ruídos e inconsistências
 - Padronização de formato e estilo
- Verificação de duplicatas
 - Evita viés por repetição excessiva
 - ∘ Otimiza uso de recursos de treinamento
- Balanceamento de tópicos
 - Evita viés para certos tipos de conteúdo
 - Garante cobertura adequada de diferentes áreas
- Validação de qualidade dos diálogos
 - ∘ Verificação de coerência e naturalidade
 - ∘ Remoção de exemplos problemáticos

0 que são Prompt Templates?

- Definição básica
 - Estruturas predefinidas para formatar inputs
 - Padrões consistentes de comunicação
 - Guias para interação modelo-usuário
- Componentes típicos
 - Instruções do sistema
 - Delimitadores de contexto
 - Marcadores de papel/função
 - Formatação específica do modelo

Exemplos Práticos

```
# Template Alpaca
{
    "system": "Below is an instruction that describes a task. Write a response that appropriately
completes the request.",
    "prompt": "### Instruction:\n{instruction}\n\n### Response:"
}

# Template Llama 2
{
    "system": "You are a helpful, respectful and honest assistant.",
    "prompt": "<s>[INST] {instruction} [/INST]"
}

# Template Vicuna
{
    "system": "A chat between a curious user and an artificial intelligence assistant.",
    "prompt": "USER: {instruction}\nASSISTANT:"
}
```

Importância dos Templates

Benefícios Principais

- Consistência
 - Formato padronizado de inputs
 - Comportamento previsível do modelo
 - ∘ Facilita fine-tuning e avaliação
- Controle comportamental
 - ∘ Define tom e estilo das respostas
 - Estabelece restrições e limitações
 - ∘ Guia o modelo para outputs desejados

Considerações Práticas

- Escolha do template
 - Adequação ao modelo base
 - Compatibilidade com caso de uso
 - Facilidade de processamento
- Customização
 - Adaptação para necessidades específicas
 - Balanceamento entre rigidez e flexibilidade
 - Manutenção da consistência

Turnos em Datasets Conversacionais

Fundamentos

- 0 que são turnos?
 - Unidades de diálogo alternadas
 - Sequência de interações modelo-usuário
 - Estrutura natural de conversação
- Importância
 - Mantém contexto conversacional
 - ∘ Permite aprendizado de dinâmica dialógica
 - Crucial para comportamento natural

Por que Turnos Importam?

- Contexto sequencial
 - Modelo aprende a manter coerência
 - Entende referências anteriores
 - Desenvolve "memória" conversacional
- Dinâmica natural
 - Simula conversas reais
 - Permite respostas contextualizadas
 - Melhora qualidade da interação

Anatomia de uma Conversa

Elementos Importantes

- Sequência lógica
 - Progressão natural do diálogo
 - Conexão entre turnos
 - Manutenção de contexto
- Papéis claros
 - Sistema (instruções gerais)
 - Usuário (queries/instruções)
 - Assistente (respostas)

Origem e Contexto

- História
 - Desenvolvido pela comunidade ShareGPT
 - Adotado amplamente para fine-tuning
 - Padrão de facto para dados conversacionais
- Propósito
 - Padronização de formato
 - Facilitar compartilhamento de dados
 - Simplificar processo de treino

Estrutura Básica

Vantagens do Unsloth

- Otimização de memória
 - Uso eficiente de recursos disponíveis
 - Permite treinar modelos maiores com menos hardware
- Aceleração do treinamento
 - Otimizações específicas para LLMs
 - Redução significativa no tempo de treinamento
- Suporte a diferentes arquiteturas
 - Compatível com diversos modelos populares
 - Flexibilidade na escolha do modelo base
- Facilidade de uso
 - ∘ API intuitiva e bem documentada
 - Menor curva de aprendizado

Implementação Prática

- Configuração do ambiente
 - Setup simplificado do ambiente de desenvolvimento
 - Instalação e configuração otimizadas
- Preparação do modelo
 - Carregamento e configuração inicial
 - Definição de parâmetros de treinamento
- Ajuste de hiperparâmetros
 - Otimização para caso de uso específico
 - Balanceamento entre velocidade e qualidade
- Monitoramento e avaliação
 - Acompanhamento em tempo real do treinamento
 - Métricas relevantes para avaliação
- Exportação e deploy
 - Salvamento eficiente do modelo treinado
 - ∘ Preparação para uso em produção