CS24 Elementary Computer Organization Floating Point and Karnaugh Map Problems

1. Give the float (32 bit) representation of the following values. Your final answer should be in hexadecimal.

a) 14.125

Divide Whole Num by 2	Result	Remainder?
14/2	7.0	0
7/2	3.5	1
3/2	1.5	1
1/2	0.5	1

Whole Number Binary Representation: 1110

Multiply Decimal by 2	Result	Whole number?
0.125×2	0.25	0
0.25×2	0.5	0
0.5×2	1.0	1

Decimal Binary Representation: 001

Fixed Point Notation:

1110.001

=

 1.11000×2^3

Exponent = 127 + 3 = 130 = 10000010

Mantissa = 110001

Sign = 0 (Positive Decimal)

Fit the following values into the following format:

Sign (1 bit)	Exponent (8 bits)	Mantissa (23 bits)
0 10000010		1000001000000000000000000

In Hexadecimal:

0X41620000

b) -7.53125

Divide Whole Num by 2	Result	Remainder?
7/2	3.5	1
3/2	1.5	1
1/2	0.5	0

Whole Number Binary Representation: 111

Multiply Decimal by 2	Result	Whole number?
0.53125×2	1.0625	1
0.0625×2	0.125	0
0.125×2	0.25	0
0.25×2	0.5	0
0.5×2	1.0	1

Decimal Binary Representation: 10001

Fixed Point Notation:

111.10001

=

 1.1110001×2^2

Exponent = 127 + 2 = 129 = 10000001

 $\mathbf{Mantissa} = 1110001$

Sign = 1 (Negative Decimal)

Fit the following values into the following format:

Sign (1 bit)	Exponent (8 bits)	Mantissa (23 bits)
1	10000001	11100010000000000000000000

-7.53125 = 110000001111000100000000000000000

In Hexadecimal:

=

0XC0F10000

c) 8675.309

Divide Whole Num by 2	Result	Remainder?
8675/2	4337.5	1
4337/2	2168.5	1
2168/2	1084.0	0
1084/2	542.0	0
542/2	271.0	0
271/2	135.5	1
135/2	67.5	1
67/2	33.5	1
33/2	16.5	1
16/2	8.0	0
8/2	4.0	0
4/2	2.0	0
2/2	1.0	0
1/2	0.5	1

Whole Number Binary Representation: 1000111100011

Multiply Decimal by 2	Result	Whole number?
0.309×2	0.618	0
0.618×2	1.236	1
0.236×2	0.472	0
0.472×2	0.944	0
0.944×2	1.888	1
0.888×2	1.776	1
0.776×2	1.552	1
0.552×2	1.104	1
0.104×2	0.208	0
0.208×2	0.416	0
0.416×2	0.832	0
0.832×2	1.664	1
0.664×2	1.328	1
0.328×2	0.656	0
0.656×2	1.312	1
0.312×2	0.624	0

Decimal Binary Representation:

010011110001101

Fixed Point Notation:

10000111100011.0100111100

=

 $1.0000111110001101001111100 \times 2^{13}$

Exponent = 127 + 13 = 140 = 10001100

Mantissa = 00001111000110100111100

Sign = 0 (Positive Decimal)

Fit the following values into the following format:

Sign (1 bit)	Exponent (8 bits)	Mantissa (23 bits)	
0 10001100		00001111000110100111100	

8675.309 = 01000110000001111000110100111100

In Hexadecimal:

=

0X46078D3C

2. Give the decimal representation of the following 32bit float values.

Exponent =
$$011111110 - 127 = 126 - 127 = -1$$

Mantissa = 00001
Sign = 0 (Positive Decimal)

Use the following formula to convert to decimal representation:

$$(-1)^{sign} \times (1 + mantissa) \times 2^{exponent}$$

$$= (-1)^{0} \times (1 + .00001) \times 2^{-1}$$

$$= (-1)^{0} \times (1.03125) \times 2^{-1}$$

$$= [0.515625]$$

Exponent =
$$10000101 - 127 = 133 - 127 = 6$$

Mantissa = 101111
Sign = 0 (Positive Decimal)

Use the following formula to convert to decimal representation:

$$(-1)^{sign} \times (1 + mantissa) \times 2^{exponent}$$

$$= (-1)^{0} \times (1 + .101111) \times 2^{6}$$

$$= (-1)^{0} \times (1.7343) \times 2^{6}$$

$$= [110.99]$$

Exponent = 10000101 - 127 = 133 - 127 = 6 **Mantissa** = 111101001**Sign** = 1 (Negative Decimal)

Use the following formula to convert to decimal representation:

$$(-1)^{sign} \times (1 + mantissa) \times 2^{exponent}$$

$$= (-1)^{1} \times (1 + .111101001) \times 2^{6}$$

$$= (-1)^{1} \times (1.953125) \times 2^{6}$$

$$= [-125.0]$$

3. Give the equation (In Sum-Of-Products form) for this truth table, then use a Karnaugh map to simplify. Show your table and final equation

a)

A	В	\mathbf{C}	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Sum-Of-Products form based upon the truth table:

$$f(A, B, C) = \overline{A}BC + A\overline{B}C + ABC$$

Karnaugh Map based upon the truth table:

	(\mathbb{C}
AB	0	1
00	0	0
01	0	1
11	0	1
10	0	1

Boolean expression based upon the Karnaugh Map:

$$f(A, B, C) = BC + AC$$

4. Give the equation (In Sum-Of-Products form) for this truth table, then use a Karnaugh map to simplify. Show your table and final equation

a)

\mathbf{A}	В	\mathbf{C}	D	X
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Sum-Of-Products form based upon the truth table:

$$f(A,B,C) = \\ \overline{ABC}D + \overline{AB}CD + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + A\overline{B}C\overline{D} + A\overline{B}C\overline{D} + AB\overline{C}D + ABC\overline{D}$$

Karnaugh Map based upon the truth table:

	$\overline{\mathrm{CD}}$			
AB	00	01	11	10
00	0	1	1	0
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

Boolean expression based upon the Karnaugh Map:

$$f(A,B,C) = \overline{C}D + \overline{AB}D + BC\overline{D} + AC\overline{D}$$