### 神经网络之—BP网络

主讲: 刘丽珏









### 主要内容

- ▶引言
- ▶ 认识BP网络
  - ▶ BP网络结构
  - ▶ Sigmoid单元
  - ▶ 正向传播过程
  - ▶ 反向传播过程
- ▶ BP学习算法
  - ▶ 基本思想
  - ▶ 误差与损失函数
  - ▶ 梯度下降
  - ▶ 多分类问题
- ▶ BP网络实践
  - ▶ 手写数字识别——BP版

### 引言

- ▶ 单层感知器只能进行线性可分的运算
- ▶多层感知器可解决线性不可分问题

| 结构  | 决策面类型 | 异或问题 |
|-----|-------|------|
| 无隐层 | 单一超平面 |      |
| 单隐层 | 凸区域   |      |
| 双隐层 | 任意形状  |      |

#### 引言

- ▶ 双隐层感知器就足以解决任何复杂的分类问题
- ▶但是
  - ▶ 隐层的权值怎么训练
  - ▶ 隐层节点不存在期望输出
  - ▶ 感知器学习
    - $y_i l_i < 0$ ,  $W_{t+1} = W_t + \eta l_i X_i$ , 其中 $y_i$  是计算输出,  $l_i$  是期望输出
  - ▶ 无法通过感知器的学习规则来训练多层感知器

### 引言

- ▶ 1966年,Minisky和Papert在他们的《感知器》一书中指出
  - 理论上还不能证明将感知器模型扩展到多层网络是有意义的
- ▶直接导致ANN的研究陷入低谷
- ▶ 上世纪八十年代,对ANN的研究开始复兴
  - ▶ 1982年美国加州理工学院的物理学家John J.Hopfield博士的Hopfield网络
  - ▶ David E.Rumelhart以及James L.McCelland发表的《并行分布式处理》
    - ▶提出了BP网络



## 01 认识BP网络

(BP network overview)

### BP网络结构

- ▶多层前馈网络
- ▶单隐层网络



### BP网络结构

- ▶多隐层网络
  - ▶ 层与层之间为全互连结构



### BP网络结构

- ▶ BP网络的输入层和输出层节点个数确定
  - ▶ 输入个数根据特征的维度来定
  - ▶ 输出个数根据要进行分类的类别数来定
- ▶ 如何确定隐层节点的个数?
  - ▶ 经验公式

$$h = \sqrt{m+n} + a$$

其中h为隐层节点的个数,m为输入个数,n为输出个数,a为1~10之间的调节常数

### Sigmoid单元

- ▶ BP网络的神经元不再是线性阈值单元
- ▶激活函数
  - Sigmoid

$$f(x) = \frac{1}{1 + e^{-x}}$$



### Sigmoid单元



$$y_{in} = \sum_{i=1}^{n} w_i x_i = WX^T$$
  
 $y = f(y_{in}) = \frac{1}{1 + e^{-y_{in}}}$ 

### 正向传播过程

▶输入数据从输入层传播到输出层的过程为正向传播过程



### 反向传播过程

- ▶ 从输出节点开始,反向地向第一隐含层传播由总误差引 起的权值修正
  - ▶ 首先计算输出层单元的误差,并用该误差调整输出层的权值
  - ▶ 根据输出层的误差计算隐层单元的误差





# 02

### BP学习算法

(Back Propagation)

### 基本思想

- ▶ 多层感知器在如何获取隐层的权值的问题上遇到了瓶颈,无法直接得 到隐层的权值
- ▶ 能否先通过输出层得到输出结果和期望输出的<mark>误差</mark>,间接调整隐层的 权值
- ▶ BP学习过程
  - ▶ 正向传播时,输入样本从输入层经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入误差的反向传播阶段
  - ▶ 反向传播时,将输出以某种形式通过隐层向输入层逐层反传,并将<mark>误差</mark>分摊给 各层的所有单元, 获得各层单元的<mark>误差</mark>信号作为修正各单元权值的依据

### 误差与损失函数

▶ 误差定义

$$E(w) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

其中,D为训练样例集合; $t_d$ 为训练样例d的期望输出; $o_d$ 为训练样例d的实际输出

▶ 以误差作为损失函数的经验风险,在不考虑正则项的情况下,就以误差函数作为损失函数

### 误差与损失函数

- ▶ 学习目的
  - ▶ 最小化误差

$$\min E(w) = \frac{1}{2} \sum_{d \in D} (t_d - o_d)^2$$

- ▶ 学习方法
  - ▶梯度下降

$$\Delta w_{ij} = -\eta \frac{\partial E_d}{\partial w_{ij}}$$
 梯度

其中 $E_d$ 为训练样本d的误差, $w_{ij}$ 与单元j的第i个输入相关联的权值  $w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}$ 

- ▶ 求导的链式法则
  - ▶ 设x 是实数,f 和g 是从实数映射到实数的函数,y = g(x) 并且z = f(g(x)) = f(y),则

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

▶ 将该法则扩展到向量

若
$$x \in R^m$$
,即 $x = (x_1, x_2, ... x_m)$   
 $y \in R^n$ ,即 $y = (y_1, y_2, ... y_n)$   
 $g: R^m \to R^n, f: R^n \to R$   
如果 $y = g(x)$  并且 $z = f(y)$ ,那么  

$$\frac{\partial z}{\partial x_i} = \sum_{i=1}^n \frac{\partial z}{\partial y_i} \frac{\partial y_j}{\partial x_i}$$

▶ 计算梯度
$$\frac{\partial E_d}{\partial w_{ij}} = \frac{\partial E_d}{\partial net_j} \cdot \frac{\partial net_j}{\partial w_{ij}}$$

$$\frac{\partial}{\partial w_{ij}} = \frac{\partial}{\partial net_j} \cdot \frac{\partial}{\partial w_{ij}}$$

其中 $o_i = f(net_i)$ 

$$\frac{\partial w_{ij}}{\partial w_{ij}} = \frac{\partial w_{ij}}{\partial net_j} \cdot \frac{\partial w_{ij}}{\partial w_{ij}}$$
其中 $net_i = \sum_i w_{ii} x_{ii}$  为

$$\partial w_{ij} - \partial net_j \partial w_{ij}$$
  
其中 $net_j = \sum_i w_{ij} x_{ij}$ ,为 $j$ 单元的输入





 $\frac{\partial E_d}{\partial w_{ij}} = \frac{\partial E_d}{\partial net_i} \cdot x_{ij} = \frac{\partial E_d}{\partial o_i} \cdot \frac{\partial o_j}{\partial net_i} \cdot x_{ij}$ 

 $\frac{\partial f(net_j)}{\partial net_j} = \frac{\partial}{\partial net_j} \left( \frac{1}{1 + e^{-net_j}} \right) = o_j (1 - o_j)$ 



















- ▶ 计算 $\frac{\partial E_d}{\partial o_j}$ 
  - ▶ 情况1: j为输出单元

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$$

除了k=j外,其他 $\frac{\partial}{\partial o_i}(t_k-o_k)^2=0$ 

$$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$$

$$= \frac{1}{2} \times 2(t_j - o_j) \frac{\partial}{\partial o_j} (t_j - o_j)$$

$$= -(t_j - o_j)$$



▶情况1: *j*为输出单元时

$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \cdot \frac{\partial o_j}{\partial net_j} = -(t_j - o_j)o_j(1 - o_j)$$

$$\Leftrightarrow \frac{\partial E_d}{\partial net_j} = -\delta_j$$

$$\text{III: } \frac{\partial E_d}{\partial w_{ij}} = \frac{\partial E_d}{\partial net_j} \cdot x_{ij} = -\delta_j x_{ij}$$

$$\Delta w_{ij} = -\eta \frac{\partial E_d}{\partial w_{ij}} = \eta \delta_j x_{ij}$$



▶ 计算 $\frac{\partial E_d}{\partial o_i}$ 

▶ 情况2: *j*为隐层单元

$$\frac{\partial E_d}{\partial o_j} = \sum_{k} \frac{\partial E_d}{\partial net_k} \cdot \frac{\partial net_k}{\partial o_j} 
= \sum_{k} \frac{\partial E_d}{\partial net_k} \cdot \frac{\partial (w_{1k}o_1 + \dots + w_{jk}o_j + \dots)}{\partial o_j} 
= \sum_{k} \frac{\partial E_d}{\partial net_k} \cdot w_{jk}$$

$$\frac{\partial E_d}{\partial net_k} \cdot w_{jk}$$

$$\frac{\partial E_d}{\partial net_k} \cdot w_{jk}$$

$$\frac{\partial E_d}{\partial net_k} \cdot w_{jk}$$

#### 链式法则:

若
$$x \in R^m$$
,  $y \in R^n$ ,  $g: R^m \to R^n$ ,  $f: R^n \to R$   
若 $y = g(x)$ , 且 $z = f(y)$ , 则
$$\frac{\partial z}{\partial x_i} = \sum_{i=1}^n \frac{\partial z}{\partial y_i} \frac{\partial y_j}{\partial x_i}$$

▶ 情况2: j为隐层单元

同元2: 
$$J$$
列恩忌
中元
$$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \cdot \frac{\partial o_j}{\partial net_j} = \sum_k \frac{\partial E_d}{\partial net_k} w_{jk} o_j (1 - o_j)$$
前面定义了  $\frac{\partial E_d}{\partial net_j} = -\delta_j$ 

$$则 \frac{\partial E_d}{\partial net_j} = \sum_k -\delta_k w_{jk} o_j (1 - o_j)$$
 $k$ 为所有与j连接的下游神经元
$$\frac{\partial E_d}{\partial w_{ij}} = -\delta_j \cdot x_{ij} = \sum_k -\delta_k w_{jk} o_j (1 - o_j) x_{ij}$$

$$\Delta w_{ij} = -\eta \frac{\partial E_d}{\partial w_{ij}} = \eta \delta_j x_{ij}$$

▶ 总结一下, BP算法中权值的修正公式

$$\Delta w_{ij} = \eta \delta_j x_{ij}$$

▶ 情况1: *j*为输出单元时

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$

▶ 情况2: j为隐层单元

$$\delta_j = o_j (1 - o_j) \sum_k \delta_k w_{jk}$$

其中 $\eta$ 为学习常数, $t_j$ 是j单元的期望输出, $o_j$ 是j单元的计算输出, $\delta_j$ 是j单元的误差

### 例

▶ 首先计算输出层单元的误差,并用该误差调整输出层的权值

Current output:  $o_i = 0.2$ 

Correct output:  $t_i = 1.0$ 

Error 
$$\delta_j = o_j(1-o_j)(t_j-o_j)$$

$$0.2(1-0.2)(1-0.2)=0.128$$

Update weights into *j* 

$$\Delta w_{ij} = \eta \delta_j x_{ij}$$



### 例

▶ 接着根据输出层的误差计算隐层单元的误差



$$\delta_j = o_j(1 - o_j) \sum_k \delta_k w_{jk}$$

### 反向传播算法

- **▶** BP算法
  - 1 初始化权值及阈值为小的随机数
  - z 读入样本集 $x_0$ ,  $x_1...x_{n-1}$ 及期望输出 $t_0$ ,  $t_1$ ,  $t_{n-1}$
  - 3 对训练集中每一样本
    - 前向计算隐层、输出层各神经元的输出
    - ② 计算期望输出与网络输出的误差
    - ③ 反向计算修正网络权值和阈值
  - 4. 若满足精度要求或其他退出条件,则结束训练,否则转步 骤3继续

### BP网络应用例

- ▶奇偶校验网络
  - ▶ 用下图BP网络实现奇偶校验(当前参数为随机初始化的结果),该网络除阈值 输入外有两个输入,若输入数据中有奇数个1,网络输出0,否则输出1,训练 数据见表

| $x_1$ | $x_2$ | $x_3$ | t |
|-------|-------|-------|---|
| 1     | 0     | 1     | 0 |
| 0     | 0     | 1     | 1 |
| 0     | 1     | 1     | 0 |
| 1     | 1     | 1     | 1 |



### BP网络应用例

- ▶ 第一次训练
  - ▶训练数据

$$x_1=1, x_2=0, x_3=1, t=0, \eta=1$$

$$f_1 = s(1 \times 2 + 0 \times (-2) + 1 \times 0) = s(2) = 1/(1 + e^{-2}) = 0.881$$

$$f_2 = s(1 \times 1 + 0 \times 3 + 1 \times (-1)) = s(0) = 1/(1 + e^0) = 0.5$$

$$f=s(0.881\times 3+0.5\times (-2)+1\times (-1))=s(0.643)=0.655$$

$$\delta$$
=0.655 × (1-0.655) × (0-0.655)=-0.148   
 $\delta$ <sub>1</sub>=0.881 × (1-0.881) × (-0.148 × 3)=-0.047

$$\delta_2$$
=0.5 × (1-0.5) × (-0.148 × -2)=0.074

$$x_1$$
  $w_{11}=2$   $w_{13}=3$   $w_{12}=1$   $w_{23}=-2$   $w_{33}=-2$   $w_{33}=-1$   $w_{33}=-1$ 

$$w_{13}$$
=3+ 0.881×(-0.148)=2.870

$$w_{23}$$
=-2+ 0.5 × (-0.148)=-2.074

$$w_{33}$$
=-1+ 1×(-0.148)=-1.148

### BP网络应用例

- $x_1=1, x_2=0, x_3=1, t=0, \eta=1$
- $f_1$ =0.881,  $f_2$ =0.5, f=0.655

$$\delta$$
=-0.148,  $\delta_1$ =-0.047,  $\delta_2$ =0.074

$$x_1$$
  $w_{11}=2$   $w_{13}=3$   $w_{12}=1$   $w_{13}=3$   $w_{12}=1$   $w_{12}=1$   $w_{23}=-2$   $w_{23}=-2$   $w_{23}=-2$   $w_{23}=-1$   $w_{33}=-1$ 

$$w_{11}$$
=2+1 × (-0.047)=1.953  
 $w_{21}$ =-2+0 × (-0.047)=-2  
 $w_{31}$ =0+1 × (-0.047)=-0.047

$$w_{12}$$
=1+1 × 0.074=1.074  
 $w_{22}$ =3+0 × 0.074=3  
 $w_{32}$ =-1+1 × 0.074=-0.926

### 梯度下降的一些注意事项

- ▶数据归一化/标准化
  - ▶由于样本不同特征的取值范围不一样,可能导致迭代很慢,为了减少特征取值的影响,可以对特征数据归一化/标准化
  - ▶归一化

$$\chi = \frac{x - x_{min}}{x_{max} - x_{min}}$$

▶标准化

$$x = \frac{x-u}{\sigma}$$

ightharpoonup 其中u为均值,σ为均方差,x为特征

| 1 | 0.067732 | 3.176513 | 1 | 0        | 0        |
|---|----------|----------|---|----------|----------|
| 1 | 0.42781  | 3.816464 | 1 | 0.388016 | 0.465899 |
| 1 | 0.995731 | 4.550095 | 1 | 1        | 1        |

### 多分类问题

- ▶ 需要区分的类别超过两类时,输出节点的数量=需要区分的类别数
- ▶ 例: 鸢尾花数据集 (iris flower dataset)
  - ▶ 数据示例

| 萼片<br>长度 | 萼片<br>宽度 |       | 花瓣<br>宽度 | 类别                         |
|----------|----------|-------|----------|----------------------------|
| 5.3cm    | 3.7cm    | 1.5cm | 0.2cm    | Iris-setosa<br>(山鸢尾)       |
| 7cm      | 3.2cm    | 4.7cm | 1.4cm    | Iris-versicolor<br>(杂色鸢尾)  |
| 6.3cm    | 3.3cm    | 6cm   | 2.5cm    | Iris-virginica<br>(维吉尼亚鸢尾) |

### 多分类网络

- ▶ 输出层有多个神经元, 其个数等于类别数
- ▶ 输出值为一个向量 $(y_1, y_2, ..., y_n)$ ,其中n为类别数, $y_i$ 中只有一个为1,其余均为0,表示属于第i类



### 例

- ▶鸢尾花识别BP网络
  - ▶ 输入层
    - ▶ 4个输入
    - ▶ 分别对应萼片长度、萼片宽度、花瓣长度和花瓣宽度四个特征
  - ▶隐层
    - ▶1个隐层
    - ▶ 包含10个神经元
  - 输出层
    - ▶ 3个神经元
    - ▶ 对应3种类别的输出分别为(1,0,0), (0,1,0), (0,0,1)