$\begin{array}{c} \hbox{Ice Puck Sliding Lab} \\ \hbox{AP Physics} - \hbox{C} \end{array}$

Michael Brodskiy

September 21, 2020

Date Performed: September 2020

<u>Partners</u>: Andrew Wang

Yiying Zhang Salih Saygi

<u>Instructor</u>: Mrs. Morse

1 Gathered Data

1.	Time [s]	Distance [cm]
	0	0
	.1	5
	.2	13
	.3	26
	.4	44
	.5	66
	.6	93
	.7	124
	.8	159

- 2. Mass = 420[g]
- 3. Angle = 28°

2 Graphs

Figure 1: Non-linearized Data

Figure 2: Linearized Data, $d=246.7t^2+2.978$

3 Mathematical Analysis

The equation yielded by the linearized graph is: $d=246.7t^2+2.978$ or d=246.7s+2.978, where variables substitution $(s=t^2)$ is used to keep the function linear.

Thus, the slope is $246.7 \left[\frac{\rm cm}{\rm s^2}\right],$ as this value represents the acceleration of the ice puck.