

Lecture 10

Syntax Analysis

Awanish Pandey

Department of Computer Science and Engineering Indian Institute of Technology Roorkee

February 11, 2025

• Example of Shift-Reduce parsing

- Example of Shift-Reduce parsing
- Issuses in bottom-up parsing

- Example of Shift-Reduce parsing
- Issuses in bottom-up parsing
- Handle

- Example of Shift-Reduce parsing
- Issuses in bottom-up parsing
- Handle
- Conflicts

- Example of Shift-Reduce parsing
- Issuses in bottom-up parsing
- Handle
- Conflicts
- Configuration of LR parser

• Goal is to know the valid reductions at any given point

- Goal is to know the valid reductions at any given point
- \bullet Summarize all possible stack prefixes α as a parser state

- Goal is to know the valid reductions at any given point
- ullet Summarize all possible stack prefixes lpha as a parser state
- \bullet Parser state is defined by a DFA state that reads in the stack α

- Goal is to know the valid reductions at any given point
- ullet Summarize all possible stack prefixes lpha as a parser state
- ullet Parser state is defined by a DFA state that reads in the stack lpha
- Accept states of DFA are unique reductions

• Augment the grammar

- Augment the grammar
 - ▶ G is a grammar with start symbol S

- Augment the grammar
 - ▶ G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S

- Augment the grammar
 - G is a grammar with start symbol S
 - lacktriangleright The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - ▶ When the parser reduces by this rule it will stop with accept

- Augment the grammar
 - ▶ G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - When the parser reduces by this rule it will stop with accept
- Viable prefixes

- Augment the grammar
 - G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - ▶ When the parser reduces by this rule it will stop with accept
- Viable prefixes
 - $ightharpoonup \alpha$ is a viable prefix of the grammar if

- Augment the grammar
 - G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - When the parser reduces by this rule it will stop with accept
- Viable prefixes
 - $ightharpoonup \alpha$ is a viable prefix of the grammar if
 - ***** There is a w such that αw is a right sentential form.

- Augment the grammar
 - ▶ G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - When the parser reduces by this rule it will stop with accept
- Viable prefixes
 - $ightharpoonup \alpha$ is a viable prefix of the grammar if
 - ***** There is a w such that αw is a right sentential form.
 - $\star \alpha.w$ is a configuration of the shift reduce parser

- Augment the grammar
 - G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - ▶ When the parser reduces by this rule it will stop with accept
- Viable prefixes
 - $ightharpoonup \alpha$ is a viable prefix of the grammar if
 - ***** There is a w such that αw is a right sentential form.
 - \star $\alpha.w$ is a configuration of the shift reduce parser
 - ▶ As long as the parser has viable prefixes on the stack no parser error has been seen

- Augment the grammar
 - G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - When the parser reduces by this rule it will stop with accept
- Viable prefixes
 - $ightharpoonup \alpha$ is a viable prefix of the grammar if
 - ***** There is a w such that αw is a right sentential form.
 - \star $\alpha.w$ is a configuration of the shift reduce parser
 - As long as the parser has viable prefixes on the stack no parser error has been seen
 - ▶ The set of viable prefixes is a regular language

- Augment the grammar
 - G is a grammar with start symbol S
 - ightharpoonup The augmented grammar G' for G has a new start symbol S' and an additional production S' o S
 - When the parser reduces by this rule it will stop with accept
- Viable prefixes
 - $ightharpoonup \alpha$ is a viable prefix of the grammar if
 - ***** There is a w such that αw is a right sentential form.
 - \star $\alpha.w$ is a configuration of the shift reduce parser
 - As long as the parser has viable prefixes on the stack no parser error has been seen
 - ► The set of viable prefixes is a regular language
 - Construct an automaton that accepts viable prefixes

• An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A \rightarrow XYZ gives four LR(0) items $A \rightarrow .XYZ$

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items

$$A \rightarrow .XYZ$$

$$A \rightarrow X.YZ$$

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items
 - $A \rightarrow .XYZ$
 - $A \rightarrow X.YZ$
 - $A \rightarrow XY.Z$

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items
 - $A \rightarrow .XYZ$
 - $A \rightarrow X.YZ$
 - $A \rightarrow XY.Z$
 - $A \rightarrow XYZ$.

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items

$$A \rightarrow .XYZ$$

$$A \rightarrow X.YZ$$

$$A \rightarrow XY.Z$$

$$A \rightarrow XYZ$$
.

 An item indicates how much of a production has been seen at a point in the process of parsing

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items
 - $A \rightarrow .XYZ$
 - $A \rightarrow X.YZ$
 - $A \rightarrow XY.Z$
 - $A \rightarrow XYZ$.
- An item indicates how much of a production has been seen at a point in the process of parsing
 - Symbols on the left of "." are already on the stacks

- An LR(0) item of a grammar G is a production of G with a special symbol "." at some position of the right side
- Production A→XYZ gives four LR(0) items
 - $A \rightarrow .XYZ$
 - $A \rightarrow X.YZ$
 - $A \rightarrow XY.Z$
 - $A \rightarrow XYZ$
- An item indicates how much of a production has been seen at a point in the process of parsing
 - Symbols on the left of "." are already on the stacks
 - Symbols on the right of "." are expected in the input

Start State

Start State

ullet Start state of DFA is an empty stack corresponding to S' o .S item

Start State

- ullet Start state of DFA is an empty stack corresponding to S' o .S item
 - ▶ This means no input has been seen

- ullet Start state of DFA is an empty stack corresponding to S' o .S item
 - ▶ This means no input has been seen
 - ▶ The parser expects to see a string derived from S

- ullet Start state of DFA is an empty stack corresponding to S' o .S item
 - ► This means no input has been seen
 - The parser expects to see a string derived from S
- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after "."

- ullet Start state of DFA is an empty stack corresponding to S' o .S item
 - ▶ This means no input has been seen
 - The parser expects to see a string derived from S
- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after "."
 - Set of possible productions to be reduced next

- ullet Start state of DFA is an empty stack corresponding to S' o .S item
 - ▶ This means no input has been seen
 - The parser expects to see a string derived from S
- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after "."
 - Set of possible productions to be reduced next
 - Added items have "." located at the beginning

- ullet Start state of DFA is an empty stack corresponding to S' o .S item
 - ▶ This means no input has been seen
 - The parser expects to see a string derived from S
- Closure of a state adds items for all productions whose LHS occurs in an item in the state, just after "."
 - Set of possible productions to be reduced next
 - Added items have "." located at the beginning
 - ▶ No symbol of these items is on the stack as yet

• If I is a set of items for a grammar G then closure(I) is a set constructed as follows:

- If I is a set of items for a grammar G then closure(I) is a set constructed as follows:
 - Every item in I is in closure (I)

- If I is a set of items for a grammar G then closure(I) is a set constructed as follows:
 - ► Every item in I is in closure (I)
 - ▶ If $A \to \alpha.B\beta$ is in closure(I) and $B \to \gamma$ is a production then $B \to .\gamma$ is in closure(I)

- If I is a set of items for a grammar G then closure(I) is a set constructed as follows:
 - ► Every item in I is in closure (I)
 - ▶ If $A \to \alpha.B\beta$ is in closure(I) and $B \to \gamma$ is a production then $B \to .\gamma$ is in closure(I)
- Intuitively $A \to \alpha.B\beta$ indicates that we might see a string derivable from $B\beta$ as input

- If I is a set of items for a grammar G then closure(I) is a set constructed as follows:
 - Every item in I is in closure (I)
 - ▶ If $A \to \alpha.B\beta$ is in closure(I) and $B \to \gamma$ is a production then $B \to .\gamma$ is in closure(I)
- ullet Intuitively A o lpha.Beta indicates that we might see a string derivable from Beta as input
- ullet If input $B o\gamma$ is a production then we might see a string derivable from γ at this point

• Consider the grammar

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• Consider the grammar

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

• If I is $E' \rightarrow .E$ then closure(I) is

• Consider the grammar

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• If I is $E' \to .E$ then closure(I) is $E' \to .E$

• Consider the grammar

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

• If I is $E' \rightarrow .E$ then closure(I) is $E' \rightarrow .E$ $E \rightarrow .E + T$

• Consider the grammar

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• If I is $E' \to .E$ then closure(I) is $E' \to .E$ $E \to .E + T$

 $E \rightarrow .T$

• Consider the grammar

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• If I is $E' \rightarrow .E$ then closure(I) is $E' \rightarrow .E$ $E \rightarrow .E + T$

$$T \rightarrow .T * F$$

• Consider the grammar

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

• If I is $E' \rightarrow .E$ then closure(I) is

$$E' \to .E$$

$$E \rightarrow .E + T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

Consider the grammar

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• If I is $E' \rightarrow .E$ then closure(I) is

$$E' \rightarrow .E$$

$$E \rightarrow .E + T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .id$$

Consider the grammar

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

ullet If I is E' o .E then closure(I) is

$$E' \rightarrow .E$$

$$E \rightarrow .E + T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .id$$

$$F \rightarrow .(E)$$

$$E' \rightarrow E$$

$$E \rightarrow E + T|T$$

$$T \rightarrow T * F|F$$

$$F \rightarrow (E)|id$$

• Grammar:

$$E' \to E$$

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

• I_0 : $closure(E' \rightarrow .E)$

$$E' \rightarrow E$$

$$E \rightarrow E + T | T$$

$$T \rightarrow T * F | F$$

$$F \rightarrow (E) | id$$
• $I_0 : closure(E' \rightarrow .E)$

$$E \rightarrow .E$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

• Grammar:

$$E' \rightarrow E$$

$$E \rightarrow E + T | T$$

$$T \rightarrow T * F | F$$

$$F \rightarrow (E) | id$$
• $I_0 : closure(E' \rightarrow .E)$

$$E \rightarrow .E$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

• $I_1 : goto(I_0, E)$

• Grammar:

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

• I_0 : $closure(E' \rightarrow .E)$

$$E \rightarrow .E + T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

•
$$I_1$$
: $goto(I_0, E)$
 $E \rightarrow E$.
 $F \rightarrow F_1 + T$

• Grammar:

$$E' \rightarrow E$$

$$E \rightarrow E + T|T$$

$$T \rightarrow T * F|F$$

$$F \rightarrow (E)|id$$
• $I_0 : closure(E' \rightarrow .E)$

$$E \rightarrow .E$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

- $l_1 : goto(l_0, E)$ $E \rightarrow E$. $E \rightarrow E + T$
- I_2 : $goto(I_0, T)$

 $F \rightarrow .id$

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$
• $I_0 : closure(E' \rightarrow .E)$
 $E \rightarrow .E$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $F \rightarrow .id$

- $I_1 : goto(I_0, E)$ $E \rightarrow E$. $F \rightarrow F_1 + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T \cdot *F$

$$E' \rightarrow E$$

$$E \rightarrow E + T|T$$

$$T \rightarrow T * F|F$$

$$F \rightarrow (E)|id$$
• $I_0 : closure(E' \rightarrow .E)$

$$E \rightarrow .E$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

- $I_1 : goto(I_0, E)$ $E \rightarrow E$. $F \rightarrow F_1 + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T \cdot *F$
- I_3 : $goto(I_0, F)$

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$
• $I_0 : closure(E' \rightarrow .E)$
 $E \rightarrow .E$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $F \rightarrow .id$

- $l_1 : goto(l_0, E)$ $E \rightarrow E$. $F \rightarrow F_1 + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T \cdot *F$
- I_3 : $goto(I_0, F)$ $T \to F$.

• Grammar:

$$E' \rightarrow E$$
 $E \rightarrow E + T|T$
 $T \rightarrow T * F|F$
 $F \rightarrow (E)|id$
 $I_0: closure(E' \rightarrow F)$

• I_0 : $closure(E' \rightarrow .E)$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T * F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

- I_1 : $goto(I_0, E)$
 - $E \rightarrow E$.

$$E \rightarrow E. + T$$

- I_2 : $goto(I_0, T)$
 - $F \rightarrow T$.
 - $T \rightarrow T. * F$
- I_3 : $goto(I_0, F)$
 - $T \rightarrow F$

• Grammar:

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$
• $I_0 : closure(E' \rightarrow .E)$
 $E \rightarrow .E$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $E \rightarrow id$

- $I_1 : goto(I_0, E)$ $E \rightarrow E$. $E \rightarrow E + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T \cdot *F$
- I_3 : $goto(I_0, F)$ $T \to F$.

• I_4 : $goto(I_0, ())$ $F \rightarrow (.E)$ $E \rightarrow .E + T$ $E \rightarrow .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$
• $I_0 : closure(E' \rightarrow .E)$
 $E \rightarrow .E$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $E \rightarrow id$

- $I_1 : goto(I_0, E)$ $E \rightarrow E$. $E \rightarrow E + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T. * F$
- I_3 : $goto(I_0, F)$ $T \to F$.

- I_4 : $goto(I_0, ())$ $F \rightarrow (.E)$ $E \rightarrow .E + T$ $E \rightarrow .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_5 : $goto(I_0, id)$

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$
• $I_0 : closure(E' \rightarrow .E)$
 $E \rightarrow .E$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $E \rightarrow id$

- $I_1 : goto(I_0, E)$ $E \rightarrow E$. $E \rightarrow E + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T \cdot *F$
- I_3 : $goto(I_0, F)$ $T \to F$.

- I_4 : $goto(I_0, ())$ $F \rightarrow (.E)$ $E \rightarrow .E + T$ $E \rightarrow .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_5 : $goto(I_0, id)$ $F \rightarrow id$.

$$E' \rightarrow E$$

 $E \rightarrow E + T | T$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$
• $I_0 : closure(E' \rightarrow .E)$
 $E \rightarrow .E$
 $E \rightarrow .E + T$
 $E \rightarrow .T$
 $T \rightarrow .T * F$
 $T \rightarrow .F$
 $F \rightarrow .(E)$
 $E \rightarrow id$

- $I_1 : goto(I_0, E)$ $E \rightarrow E$. $E \rightarrow E + T$
- I_2 : $goto(I_0, T)$ $E \rightarrow T$. $T \rightarrow T \cdot *F$
- I_3 : $goto(I_0, F)$ $T \to F$.

- I_4 : $goto(I_0, ())$ $F \rightarrow (.E)$ $E \rightarrow .E + T$ $E \rightarrow .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_5 : $goto(I_0, id)$ $F \rightarrow id$.

• I_6 : $goto(I_1, +)$

• $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$

• $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$ • $I_7: goto(I_2, *)$

• $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$ • $I_7: goto(I_2, *)$

> $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$

(i) 1/3 iT HOUSEREE

- $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_7 : $goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_7 : $goto(I_2, *)$ $T \rightarrow T * F$ $F \rightarrow .(E)$
 - $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ $\mathsf{F} o (\mathsf{E}.)$ $E \rightarrow E. + T$

- $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

• $goto(I_4, T)$ is I_2

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow F$
 - $F \rightarrow .(E)$
 - $F \rightarrow .id$
- I_7 : $goto(I_2, *)$ $T \rightarrow T * F$

 - $F \rightarrow .(E)$
 - $F \rightarrow id$
- I_8 : $goto(I_4, E)$ $\mathsf{F} \to (\mathsf{E}.)$
 - $E \rightarrow E. + T$

- $goto(I_4, T)$ is I_2
- $goto(I_4, F)$ is I_3

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow F$ $F \rightarrow .(E)$
- I_7 : $goto(I_2, *)$
 - $T \rightarrow T * F$
 - $F \rightarrow .(E)$

 $F \rightarrow .id$

- $F \rightarrow id$
- I_8 : $goto(I_4, E)$ $\mathsf{F} \to (\mathsf{E}.)$

$$E \rightarrow E. + T$$

175 IT ROCKELL

- $goto(I_4, T)$ is I_2
- $goto(I_4, F)$ is I_3
- $goto(I_4, ()is I_4)$

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$
 - $F \rightarrow .(E)$
 - $F \rightarrow .id$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * F$
 - $F \rightarrow .(E)$
 - $F \rightarrow id$
- I_8 : $goto(I_4, E)$ $\mathsf{F} \to (\mathsf{E}.)$
 - $E \rightarrow E. + T$
 - 175 IT ROCKELL

- $goto(I_4, T)$ is I_2
- $goto(I_4, F)$ is I_3
- $goto(I_4, ()is I_4)$
- $goto(I_4, id)$ is I_5

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow F$ $F \rightarrow .(E)$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * F$

 $F \rightarrow .id$

- $F \rightarrow .(E)$
- $F \rightarrow id$
- I_8 : $goto(I_4, E)$ $\mathsf{F} \to (\mathsf{E}.)$
 - $E \rightarrow E. + T$

- $goto(I_4, T)$ is I_2
- $goto(I_4, F)$ is I_3
- $goto(I_4, ()is I_4)$
- $goto(I_4, id)$ is I_5
- \bullet I_9 : $goto(I_6, T)$

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow F$ $F \rightarrow .(E)$ $F \rightarrow id$
- I_7 : $goto(I_2, *)$ $T \rightarrow T * F$ $F \rightarrow .(E)$ $F \rightarrow id$
- I_8 : $goto(I_4, E)$ $\mathsf{F} \to (\mathsf{E}.)$

$$F \rightarrow (E.)$$

 $E \rightarrow E. + T$

- $goto(I_4, T)$ is I_2 • $goto(I_4, F)$ is I_3
- $goto(I_4, ()is I_4)$
- $goto(I_4, id)$ is I_5
- \bullet I_9 : $goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T * F$

- $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄, () is I₄
- $goto(I_4, id)$ is I_5
- $I_9: goto(I_6, T)$ $E \rightarrow E + T.$ $T \rightarrow T. * F$
- $goto(I_6, F)$ is I_3

• $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$

 $F \rightarrow id$

- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ F \rightarrow (E.)

$$E \rightarrow E. + T$$

 $E \rightarrow E. +$

- $goto(I_4, T)$ is I_2
- $goto(I_4, F)$ is I_3
- goto(I₄, () is I₄
- $goto(I_4, id)$ is I_5
- I_9 : $goto(I_6, T)$ $E \rightarrow E + T$.
 - $T \rightarrow T. * F$
- $goto(I_6, F)$ is I_3
- $goto(I_6, ()is I_4)$

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$

 $F \rightarrow .id$

- F
 ightarrow .id
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄, () is I₄
- $goto(I_4, id)$ is I_5
- I_9 : $goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T * F$
- $goto(I_6, F)$ is I_3
- $goto(I_6, ()is I_4)$
- $goto(I_6, id)$ is I_5

- $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄,()is I₄
- $goto(I_4, id)$ is I_5
- I_9 : $goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T_* * F$
- $goto(I_6, F)$ is I_3
- goto(I_6 ,() is I_4
- $goto(I_6, id)$ is I_5

• I_{10} : $goto(I_7, F)$ $T \rightarrow T * F$.

- $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$

 $F \rightarrow id$

• I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄, () is I₄
- $goto(I_4, id)$ is I_5
- $I_9: goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T * F$
- $goto(I_6, F)$ is I_3
- $goto(I_6, ()is I_4)$
- $goto(I_6, id)$ is I_5

- I_{10} : $goto(I_7, F)$ $T \rightarrow T * F$.
- goto(I₇, ()is I₄
 goto(I₇, id)is I₅

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$
 - $F \rightarrow .(E)$
 - extstyle F
 ightarrow .id
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄, () is I₄
- $goto(I_4, id)$ is I_5
- I_9 : $goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T. * F$
- $goto(I_6, F)$ is I_3
- $goto(I_6, ()is I_4)$
- $goto(I_6, id)$ is I_5

- I_{10} : $goto(I_7, F)$ $T \rightarrow T * F$.
- goto(I₇, ()is I₄
 goto(I₇, id)is I₅
- $I_11 : goto(I8,))$ $F \to (E).$

- $I_6: goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$
 - $F \rightarrow .(E)$
 - F
 ightarrow .id
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$ $F \rightarrow .(E)$ $F \rightarrow .id$
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄, () is I₄
- $goto(I_4, id)$ is I_5
- I_9 : $goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T. * F$
- $goto(I_6, F)$ is I_3
- $goto(I_6, ()is I_4)$
- $goto(I_6, id)$ is I_5

- I_{10} : $goto(I_7, F)$ $T \rightarrow T * F$.
- goto(I₇, ()is I₄
 goto(I₇, id)is I₅
- $I_11 : goto(I8,))$ $F \to (E).$
- $goto(I_8, +)$ is I_6

- I_6 : $goto(I_1, +)$ $E \rightarrow E + .T$ $T \rightarrow .T * F$ $T \rightarrow .F$ $F \rightarrow .(E)$
- $I_7 : goto(I_2, *)$ $T \rightarrow T * .F$

 $F \rightarrow id$

- $F \rightarrow .(E)$
- F
 ightarrow .id
- I_8 : $goto(I_4, E)$ $F \rightarrow (E.)$ $E \rightarrow E. + T$

- $goto(I_4, T)is$ I_2
- $goto(I_4, F)$ is I_3
- goto(I₄,()is I₄
- $goto(I_4, id)$ is I_5
- I_9 : $goto(I_6, T)$ $E \rightarrow E + T$. $T \rightarrow T \cdot * F$
- $goto(I_6, F)$ is I_3
- $goto(I_6, ()is I_4)$
- $goto(I_6, id)$ is I_5

- I_{10} : $goto(I_7, F)$ $T \rightarrow T * F$.
- goto(I₇, ()is I₄
 goto(I₇, id)is I₅
- $I_11 : goto(I8,))$ $F \to (E).$
- $goto(I_8, +)is$ I_6
- goto(l₉,*)is l₇

