【元素周期律】【考点精华】8元素 核素 同位素题型(基础)

元素、核素、同位素

- 1. 元素
- (1) 概念: 具有相同质子数(核电荷数)的一类原子的总称。
- (2) 决定元素种类的是质子数。

- 2. 微粒符号周围数字代表的信息:
- 3. 构成原子的微粒间的两个关系
 - (1) 质量数(A)=<u>质子数</u>(Z)+<u>中子数</u>(N)
 - (2) 质子数=核外电子数=核电荷数=原子序数
- 4. 核素
- (1) 概念: 具有一定数目质子和一定数目中子的一种原子。
- (2) 决定原子(核素)种类的是质子数和中子数。
- 5. 同位素
- (1)概念:<u>质子数</u>相同而<u>中子数</u>不同的同一<u>元素</u>的不同原子互称为同位素(即同一<u>元素</u>的不同<u>核素</u>互称为同位素)。"同位"是指核素的<u>质子数</u>相同,在元素周期表中占有<u>相同</u>的位置。
- (2)例: 氢元素的三种核素互为同位素

	łΗ	łН	³Н
名称	氕	氘(重氢)	氚(超重氢)
符号	Н	D	T
质子数	1	1	1
中子数	0	1	2

6. 元素、核素、同位素的相互关系

具有相同<u>核电荷数</u>的同一类原子的总 称,同种元素可有多种不同的核素

具有一定数目的<u>质子</u>和一定数目的 <u>中子</u>的一种原子

<u>质子数</u>相同,<u>中子数</u>不同的同一元 素的不同核素的互称

题型1:核素与同位素的基本概念

1.	(2021 北京卷)下列有关放射性核素氚	(^3_1H)	的表述不正确的是()
A.	¾H原子核外电子数为 1	В.	³H原子核内中子数为3	

- B. ¾H原子核内中子数为 3
- C. 3H2与H2化学性质基本相同 D. 3H2O 具有放射性
- 2. 2023年8月24日下午日本当局开始将福岛核废水排海,引起全世界强烈谴责,核废水中不仅含有放射 性氚,还含有更大伤害性的其他放射性物质:碘-131、铯-134和铯-137、碳-14、钴-60和锶-90等。 下列叙述正确的是(
- A. ¹³¹I和 ¹²⁷I的核外电子数之差为 4
- B. 碳-14 和氮-14 互为同位素
- C. ${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{1}e属于化学变化$

等物质的量的氘(2H)与氚(3H)的核内中子数之比为 1:2

- 3. 116 号元素为 Lv, Lv 原子的核外最外层电子数是 6, 下列说法错误的是(
- A. Lv 是第七周期第VI A 族元素
- B. Lv 的同位素原子具有不同的电子数
- C. Lv 在同族元素中非金属性最弱 D. 中子数为 177 的 Lv 核素符号是 $^{293}_{116}$ Lv
- 4. 地壳中铀的平均含量约为 2.5%, 在铀元素中, 用作核燃料的 235U 只占 0.724%, 通过铀浓缩可提高铀元素 中²³⁵U的含量。下列关于铀元素的说法正确的是(
- A.235U与238U互为同位素
- B. 可利用²³⁵U与²³⁸U化学性质的不同将二者分离
- C.铀在核发电过程中发生化学变化
- D.铀是锕系元素,属于主族元素

题型 2: 根据核反应方程式推断核素

- 1. (2022·山东卷) ¹³₈0、 ¹⁵₈0的半衰期很短,自然界中不能稳定存在。
- 人工合成反应如下: ${}^{16}_{8}\text{O} + {}^{3}_{2}\text{He} \rightarrow {}^{13}_{8}\text{O} + {}^{3}_{b}\text{He} \rightarrow {}^{15}_{8}\text{O} + {}^{m}_{n}\text{Y}$ 。下列说法正确的是(
- A. X的中子数为2
- B. X、Y 互为同位素
- C. 130、150可用作示踪原子研究化学反应历程
- D. 自然界不存在¹³0₂、¹⁵0₂分子是因其化学键不稳定

- 2. 我国科学家成功合成出新核素 Lr-251,熔合反应为 ${}^{50}_{24}$ Ti + ${}^{1}_{0}$ n + ${}^{a}_{81}$ Tl \rightarrow ${}^{251}_{b}$ Lr + ${}^{4}_{2}$ He。下列叙述正确的是()
- A. Lr-251 和 Lr-253 的物理性质完全相同
- B. 上述熔合反应为氧化还原反应
- C. 上述熔合反应中 a = 203、b = 103
- D. Lr-251 核内中子数和质子数之差为 47
- 3. (2021·河北卷)用中子轰击 $_Z^N$ X原子产生 $_Z$ 粒子(即氦核 $_Z^4$ He)的核反应为: $_Z^N$ X + $_0^1$ n \to_p^7 Y + $_Z^4$ He。已知元素 Y 在化合物中呈+1 价。下列说法正确的是()
- A. H₃XO₃可用于中和溅在皮肤上的 NaOH 溶液
- B. Y 单质在空气中燃烧的产物是 Y₂O₂
- C. X 和氢元素形成离子化合物
- D. 6Y 和 7Y 互为同素异形体