

· Revenue: py WL 41K=TC costs: rk+wL UL=TC-TK TT: Py - (rk 40L) L= H-5K · Given that the firm must produce y*, how do Suppose TC'>TC the maximize profits? -> minimize cost · Result: A profit maximizing firm must always be minimizing their costs · Total cost: WL+rK=TC · Solve for L:

If the firm is cost minimizing, then:

(1) TRS =
$$\frac{1}{5}$$
 = $\frac{1}{5}$ MPK = $\frac{1}{5}$

(2) $\frac{1}{5}$ ($\frac{1}{5}$, $\frac{1}{5}$) = $\frac{1}{5}$

(3) TRS = $\frac{1}{5}$ = $\frac{1}{5}$ MPK = $\frac{1}{5}$ MPK = $\frac{1}{5}$ ($\frac{1}{5}$, $\frac{1}{5}$) = $\frac{1}{5}$ MPK = $\frac{1}{5}$ ($\frac{1}{5}$, $\frac{1}{5}$) = $\frac{1}{5}$ MPL = $\frac{1}{5$

D:
$$\frac{3L}{2K} = \frac{4}{2}$$
 $6L = \frac{4}{2}K$
 $L = \frac{4}{3}K$
 $2K^{3}L^{2} = 10$
 $K^{3}(\frac{4}{3}K)^{2} = 10$
 $K^{3}K^{2} \cdot (\frac{1}{3})^{2} = 10$
 $K^{5} \cdot \frac{16}{4} = 10$
 $K = \frac{90}{16}$
 $K = \frac{40}{16}$
 $K = \frac{40}{16}$
 $K = \frac{40}{16}$

Goal: find a function that tells us Total cost given some quantity y $E \times A = 9$, C = 4, C = 7.

$$K^{2} = \frac{9}{4}y$$

$$K = \frac{3}{2}\sqrt{y}$$

$$K(y) = \frac{3}{2}\sqrt{y}$$
function:

Input: quantity produced

output: (ost-minimizing

bevel of K

$$L(y) = \frac{4}{9} \cdot \frac{3}{2}\sqrt{y}$$

$$= \frac{2}{3}\sqrt{y}$$

$$Total cost function:
$$C(y) = 0L(y) + cK(y)$$

$$= 9 \cdot \frac{3}{3}\sqrt{y} + 4 \cdot \frac{3}{2}\sqrt{y}$$$$

variable costs: $9.\frac{2}{3}$ Ty $C(y) = C_{v}(y) + F$ variable
cost
cost $C(y) = y^{2} + 1$ $C_{v}(y) = y^{2}$ F = 1

Average Total Cost:

<u>C(2)</u> = 4+ 5

Fixed costs: 4. K

ATC =
$$\underline{C(y)}$$
 \underline{y}
 \underline{dATC}
 \underline{dy} = 0 when \underline{MC}

ATC = $\underline{C(y)}\underline{y}^{-1}$
 \underline{dATC}
 $\underline{dC(y)}\underline{y}^{-1} + (-1\underline{y}^{-2})\underline{C(y)} \longrightarrow \underline{MC}\underline{y}^{-1} - \underline{y}^{-2}\underline{C(y)} = 0$
 \underline{MC}
 \underline{MC}
 \underline{MC}
 $\underline{C(y)}$
 \underline{MC}
 $\underline{C(y)}$
 \underline{MC}
 \underline{MC}
 $\underline{C(y)}$
 \underline{MC}
 $\underline{$