8장 어텐션

윤 예 준

INDEX

01 어텐션 구조

02 어텐션을 갖춘 seq2seq 구현

03 어텐션 평가

04 어텐션에 관한 남은 이야기

05 어텐션 응용

어텐션 구조

Seq2seq의 문제점

- 1. 하나의 고정된 벡터에 모든 정보를 압축하다보니 정보 손실이 발생한다.
- 2. RNN의 고질적인 문제인 기울기 손실 문제가 존재한다.

Encoder 개선

Decoder 개선 ①

얼라인먼트: 단어(혹은 문구)의 대응관계를 나타내는 정보

Decoder 개선 ①

Decoder 개선 ①

Decoder 개선 ②

Decoder 개선 ②

Decoder 개선 ③

02

어텐션을 갖춘 seq2seq 구현

Encoder 구현

Decoder 구현


```
1 class AttentionDecoder:
       def __init__(self, vocab_size, wordvec_size, hidden_size):
           V, D, H = vocab_size, wordvec_size, hidden_size
           rn = np.random.randn
           embed_W = (rn(V, D) / 100).astype('f')
           Istm_{Wx} = (rn(D, 4 * H) / np.sqrt(D)).astype('f')
           Istm_Wh = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
           Istm_b = np.zeros(4 * H).astype('f')
           affine_{W} = (rn(2*H, V) / np.sqrt(2*H)).astype('f')
           affine_b = np.zeros(V).astype('f')
           self.embed = TimeEmbedding(embed_W)
           self.lstm = TimeLSTM(lstm Wx. lstm Wh. lstm_b, stateful=True)
14
           self.attention = TimeAttention()
           layers = [self.embed, self.lstm, self.attention, self.affine]
18
19
           self.params. self.grads = []. []
           for layer in layers:
               self.params += layer.params
               self.grads += layer.grads
       def forward(self, xs, enc_hs):
25
           h = enc_hs[:.-1]
26
           self.lstm.set_state(h)
           out = self.embed.forward(xs)
29
30
           c = self.attention.forward(enc_hs, dec_hs)
           out = np.concatenate((c, dec_hs), axis=2)
           score = self.affine.forward(out)
34
           return score
```


seq2seq 구현

```
class AttentionSeq2seq(Seq2seq):
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        args = vocab size, wordvec size, hidden size
        self.encoder = AttentionEncoder(*args)
        self.decoder = AttentionDecoder(*args)
        self.softmax = TimeSoftmaxWithLoss()

self.params = self.encoder.params + self.decoder.params
        self.grads = self.encoder.grads + self.decoder.grads
```

03

어텐션 평가

날짜 형식 변환 문제

그림 8-26 다른 모델과의 비교: 'baseline'은 앞 장의 단순한 seq2seq, 'peeky'는 엿보기를 적용한 seq2seq(입력 문장 반전은 모든 모델에서 사용)

04

어텐션 시각화

어텐션 시각화

그림 8-27 학습된 모델을 사용하여 시계열 변환을 수행했을 때의 어텐션 가중치 시각화: 가로축은 입력 문장, 세로축은 출력 문장, 맵의 각 원소는 밝을수록 값이 크다(1.0에 가깝다).

05

어텐션에 관한 남은 이야기

양방향 RNN

Attention 계층 사용 방법

Seq2seq 심층화와 skip 연결

06

어텐션 응용

구글 신경망 기계 번역(GNMT) 트랜스포머 뉴럴 튜링 머신(NTM

구글 신경망 기계 번역(GNMT) 트랜스포머 뉴럴 튜링 머신(NTM

THE

감사합니다

END