3. Consider a software system that models a horse barn. Classes that represent horses implement the following interface.

```
public interface Horse
  /** @return the horse's name */
  String getName();
  /** @return the horse's weight */
  int getWeight();
  // There may be methods that are not shown.
```

A horse barn consists of N numbered spaces. Each space can hold at most one horse. The spaces are indexed starting from 0; the index of the last space is N-1. No two horses in the barn have the same name.

The declaration of the HorseBarn class is shown below. You will write two unrelated methods of the HorseBarn class.

```
public class HorseBarn
   /** The spaces in the barn. Each array element holds a reference to the horse
        that is currently occupying the space. A null value indicates an empty space.
   private Horse[] spaces;
   /** Returns the index of the space that contains the horse with the specified name.
        Precondition: No two horses in the barn have the same name.
        @param name the name of the horse to find
        @return the index of the space containing the horse with the specified name;
                   -1 if no horse with the specified name is in the barn.
    * /
   public int findHorseSpace(String name)
       /* to be implemented in part (a) */
   /** Consolidates the barn by moving horses so that the horses are in adjacent spaces,
        starting at index 0, with no empty space between any two horses.
        Postcondition: The order of the horses is the same as before the consolidation.
   public void consolidate()
       /* to be implemented in part (b) */ }
   // There may be instance variables, constructors, and methods that are not shown.
```

Part (a) begins on page 14.

}

(a) Write the HorseBarn method findHorseSpace. This method returns the index of the space in which the horse with the specified name is located. If there is no horse with the specified name in the barn, the method returns -1.

For example, assume a HorseBarn object called sweetHome has horses in the following spaces.

0	1	2	3	4	5	6
"Trigger"	null	"Silver"	"Lady"	null	"Patches"	"Duke"
1340		1210	1575		1350	1410

The following table shows the results of several calls to the findHorseSpace method.

Method Call	Value Returned	Reason
<pre>sweetHome.findHorseSpace("Trigger")</pre>	0	A horse named Trigger is in space 0.
<pre>sweetHome.findHorseSpace("Silver")</pre>	2	A horse named Silver is in space 2.
<pre>sweetHome.findHorseSpace("Coco")</pre>	-1	A horse named Coco is not in the barn.

Information repeated from the beginning of the question

public interface Horse
String getName()
int getWeight()

public class HorseBarn

private Horse[] spaces
public int findHorseSpace(String name)
public void consolidate()

WRITE YOUR SOLUTION ON THE NEXT PAGE.

Complete method findHorseSpace below.

Part (b) begins on page 16.

(b) Write the HorseBarn method consolidate. This method consolidates the barn by moving horses so that the horses are in adjacent spaces, starting at index 0, with no empty spaces between any two horses. After the barn is consolidated, the horses are in the same order as they were before the consolidation.

For example, assume a barn has horses in the following spaces.

0	1	2	3	4	5	6
"Trigger"	null	"Silver"	null	null	"Patches"	"Duke"
1340		1210			1350	1410

The following table shows the arrangement of the horses after consolidate is called.

0	1	2	3	4	5	6
"Trigger"	"Silver"	"Patches"	"Duke"	null	null	null
1340	1210	1350	1410			

```
Information repeated from the beginning of the question

public interface Horse
String getName()
int getWeight()

public class HorseBarn

private Horse[] spaces
public int findHorseSpace(String name)
public void consolidate()
```

WRITE YOUR SOLUTION ON THE NEXT PAGE.

 $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\ \$ $\ \$ $\ \$ $\ \$ $\$ $\ \$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$ $\$ $\$ $\$ $\ \$ $\$

Complete method consolidate below.

- /** Consolidates the barn by moving horses so that the horses are in adjacent spaces,
 - * starting at index 0, with no empty space between any two horses.
 - * **Postcondition**: The order of the horses is the same as before the consolidation.

public void consolidate()

AP® COMPUTER SCIENCE A 2012 SCORING GUIDELINES

Question 3: Horse Barn

Part (a) findHorseSpace 4 points	Part (a)	findHorseSpace	4 points	
----------------------------------	----------	----------------	----------	--

Intent: Return index of space containing horse with specified name

- +1 Accesses all entries in spaces (no bounds errors)
- +1 Checks for null reference in array and avoids dereferencing it (in context of loop)
- +1 Checks for name equality between array element and parameter (must use String equality check)
- +1 Returns correct index, if present; -1 point if not

Part (b) consolidate 5 points

Intent: Repopulate spaces such that the order of all non-null entries is preserved and all null entries are found contiguously at the largest indices

- +1 Accesses all entries in spaces (no bounds errors)
- +1 Identifies and provides different treatment of null and non-null elements in array
- +1 Assigns element in array to a smaller index (must have identified source as non-null or destination as null)
- On exit: The number, integrity, and order of all identified non-null elements in spaces is preserved, and the number of null elements is preserved
- +1 On exit: All non-null elements in spaces are in contiguous locations, beginning at index 0 (no destruction of data)

Question-Specific Penalties

- -1 (z) Attempts to return a value from consolidate
- -2 (v) Consistently uses incorrect array name instead of spaces

AP® COMPUTER SCIENCE A 2012 CANONICAL SOLUTIONS

Question 3: Horse Barn

```
Part (a):
public int findHorseSpace(String name) {
   for (int i = 0; i < this.spaces.length; i++) {</pre>
      if (this.spaces[i]!=null && name.equals(this.spaces[i].getName())) {
         return i;
   }
   return -1;
Part (b):
public void consolidate() {
   for (int i = 0; i < this.spaces.length-1; i++) {</pre>
      if (this.spaces[i] == null) {
         for (int j = i+1; j < this.spaces.length; <math>j++) {
             if (this.spaces[j] != null) {
                this.spaces[i] = this.spaces[j];
                this.spaces[j] = null;
                j = this.spaces.length;
         }
      }
   }
}
Part (b): Alternative solution (auxiliary with array)
public void consolidate() {
   Horse[] newSpaces = new Horse[this.spaces.length];
   int nextSpot = 0;
   for (Horse nextHorse : this.spaces) {
      if (nextHorse != null) {
         newSpaces[nextSpot] = nextHorse;
         nextSpot++;
   this.spaces = newSpaces;
}
Part (b): Alternative solution (auxiliary with ArrayList)
public void consolidate() {
   List<Horse> horseList = new ArrayList<Horse>();
   for (Horse h : this.spaces) {
      if (h != null) horseList.add(h);
   for (int i = 0; i < this.spaces.length; i++) {</pre>
      this.spaces[i] = null;
   for (int i = 0; i < horseList.size(); i++) {</pre>
      this.spaces[i] = horseList.get(i);
}
```

These canonical solutions serve an expository role, depicting general approaches to solution. Each reflects only one instance from the infinite set of valid solutions. The solutions are presented in a coding style chosen to enhance readability and facilitate understanding.