CS 181 - Artificial Intelligence

Kewei Tu Fall 2023

- ▶ Instructor: Kewei Tu (屠可伟)
 - ► Email: tukw@shanghaitech.edu.cn
 - Office: SIST 1A-304B
- ▶ TA: 吴昊一、乔文汇、赵奕达、吉鹏宇
 - Office hours: TBA

- Classes
 - ▶ Wed/Fri 10:15-11:55am @教学中心303
 - ▶ 16 weeks
 - Language: English
 - ▶ CS181@spring semester is taught in Chinese

- Main textbook
 - ▶ [AIMA] Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig, 4th edition, 2020.
 - ▶ [中译版] 人工智能:现代方法(第4版),2022

Additional reference books will also be used

- Blackboard
 - Announcements, homework assignments, slides, etc.
- Piazza
 - Discussion and QA
 - http://piazza.com/shanghaitech.edu.cn/fall2022/cs181
- AutoLab
 - Programming assignments
- GradeScope
 - Exam grading

- Grading
 - ▶ 6 homework assignments (10%)
 - ▶ 6 programming assignments (25%)
 - Project (15%): 2nd half of the semester
 - Midterm exam (25%): in late Nov.
 - Final exam (25%): in week 17-18

- Plagiarism
 - All assignments must be done individually
 - You may not look at solutions from any other source
 - You may not share solutions with any other students
 - Plagiarism detection software will be used on all the programming assignments
 - Way of collaboration
 - You may discuss together or help another student debug code; however, you cannot dictate or give the exact solution

- Plagiarism punishment
 - When one student copies from another student, both students are responsible
 - Zero point on the assignment or exam in question
 - Repeated violation will result in an F grade for this course as well as further discipline at the school/university level

A brief overview of Al

Definition

Artificial Intelligence

Machines (Computers)

Rationality:
Ability to maximize goal achievement given available information

Artificial Intelligence

- Al vs. Human Intelligence
 - Brains (human minds) are good at rational thinking, but not perfect
 - "Brains are to intelligence as wings are to flight"

- Lots of early speculation & research
 - Turing: "Computing Machinery and Intelligence" (1950)

I.—COMPUTING MACHINERY AND INTELLIGENCE

By A. M. TURING

1. The Imitation Game.

I PROPOSE to consider the question, 'Can machines think?' This should begin with definitions of the meaning of the terms 'machine' and 'think'. The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous. If the meaning of the words 'machine' and 'think' are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, 'Can machines think?' is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed

Alan Turing

- Birth (1956)
 - Dartmouth workshop

Dartmouth Conference: The Founding Fathers of AI

John McCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

And several other people...

- Great expectations (1950s-1960s)
 - A variety of methodology
 - ▶ e.g., symbolism, connectionism
- Al winter (1970s)
 - Downfall of perceptron
 - Lighthill report
- ▶ Boom (1980s)
 - Revival of neural networks
- More scientific methods (1990s-2000s)
 - Statistical approaches

Very rough timeline

- The past ten years
 - Rise of big data and big models (deep learning)
 - Al becomes one of the hottest areas in CS
 - Great interest from industry and public
 - Many real-world applications

Number of Al Publications in the World, 2010-21

GLOBAL CORPORATE INVESTMENT in AI by INVESTMENT ACTIVITY, 2013-21

MENTIONS of AI in U.S. CONGRESSIONAL RECORD by LEGISLATIVE SESSION, 2001-20

Source: Bloomberg Government, 2020 | Chart: 2021 Al Index Report

- The past year
 - ChatGPT and the rise of large language (+X) models
 - Huge impact in academia, industry and general public

SIGN UP

A NEW ERA

The Age of AI has begun

Artificial intelligence is as revolutionary as mobile phones and the Internet.

By Bill Gates | March 21, 2023 • 14 minute read

Knowledge Representation and Reasoning

Machine Learning

Natural Language Processing

Computer Vision

Multi-Agent System

Multi-Agent System

Integration

Robotics

Natural Language

Processing

Modality-Specific

Computer

Vision

Speech

Recognition

Foundation

Machine Learning Knowledge

Representation in Al

& Reasoning

Uncertainty

- Spam email filter
- Speech recognition
- Modern Chinese IME
- Machine translation

中文 日文 英文 偵測語言 ▼

we likely won't hear additional details from

Facebook until much closer to the event.

Google

U 4) == -

翻譯

- Financial trading
- Game AI
- Customer service chatbot
- Self-driving

Graphic design

Midjourney: A pair of young Chinese lovers, wearing jackets and jeans, sitting on the roof, the background is Beijing in the 1990s, and the opposite building can be seen

E-commerce

Live-stream video generation

https://www.technologyreview.com/2023/09/19/1079832/chinese-ecommerce-deepfakes-livestream-influencers-ai/

- Al for science and technology
 - Protein structure prediction
 - Drug design
 - Fusion plasma control
 - Chip circuit design
 - Algorithms for matrix manipulation
 - Github copilot

nature

olore content < About the journal < Publish with us <

Subscribe

nature > news > article

NEWS | 30 November 2020

'It will change everything': DeepMind's AI makes gigantic leap in solving protein structures

Google's deep-learning program for determining the 3D shapes of proteins stands to transform biology, say scientists.

Ewen Callaway

Strong AI vs. Weak AI

- Weak AI (Applied AI)
 - Al that accomplishes specific tasks

Strong AI vs. Weak AI

- Strong AI (General AI)
 - human-like intelligence Al that could successfully perform any intellectual task that a human can

Strong AI vs. Weak AI

- Q1: What is the woman in the middle doing?
 - Action recognition, a CV problem
- Q2: What is the woman on the left going to do?
 - Reasoning about context and intention (beyond current CV)
- Q3: This photo was taken in Europe in 2015. What was going on?
 - Knowing background knowledge by reading news, ...

Central problems of (strong) Al

- Knowledge Representation (KR)
 - Knowledge: facts, beliefs, concepts, skills, ... that are accumulated over time

Central problems of (strong) Al

- Inference
 - How to utilize knowledge to derive new information based on existing information

Central problems of (strong) Al

- Learning
 - How to accumulate knowledge from experience and education

Three types of approaches

Symbolism

$$\begin{array}{cccc} + & - & \times & \div \\ \neg & \lor & \bot & \cong \\ \in & \cap & \subseteq & \Sigma \\ \partial & \nabla & \wedge & \Pi \end{array}$$

Connectionism

Statistical Approaches

Symbolism

- Representing knowledge with symbols and their compositions (expressions)
- Inference and learning is done by manipulating symbols (e.g., logic)

$$\forall x \forall y, Human(x) \land Place(y) \land At(x,y) \land Rain(y)$$

$$\rightarrow \exists z, Umbrella(z) \land Use(x,z)$$

Symbolism

- History
 - Dominant during 1950s 1980s
 - Fell out of favor in 1980s 1990s
 - Integration with statistical approaches (2000s)
 - Integration with neural approaches (2010s)

Connectionism

- Representing knowledge with interconnected networks of simple units
 - Neural networks
- Inference
 - Follow the computation specified by the network from input to output
- Learning
 - optimization of connection weights

Connectionism

- History of connectionism: rose and fell for several times
 - 1940s: pioneer work, e.g., McCulloch-Pitts model
 - 1958: invention of perceptron (Rosenblatt)
 - 1969: "Perceptron" published (Minsky & Papert)
 - Publicized key issues of perceptron (e.g., XOR)
 - 1970s: Al winter
 - 1980s: revival of connectionism
 - Hopfield net, BP algorithm
 - Rumelhart & McClelland (1986): Parallel Distributed Processing
 - 1990s-2000s: overtaken in popularity by other methods
 - 2010s: rise of deep learning
 - Since ~2012: dominates CV
 - Since ~2015: dominates NLP

Connectionism

Statistical Approaches

- Representing knowledge with probabilistic models
- Inference and learning is done by probabilistic inference

Statistical Approaches

- History
 - Become popular since 1990s
 - Dominant during 2000s
 - Overshadowed by deep learning in 2010s

Three types of approaches

Propositional

✓ Expressive, interpretable, rigorous

X Hard to learn, rigid

- √ Good performance, flexible
- X Black-box, data-hungry, hard to incorporate knowledge or perform complex reasoning

Connectionism

HMM

Symbolism

- ✓ Interpretable, rigorous, learnable
- X Less expressive/flexible

payesian networks

> Statistical Approaches

Trends

Trends

Course Overview

- Search
- Constraint satisfaction problems
- Game
- Propositional logic
- First-order predicate logic
- Probabilistic graphical models
- Probabilistic temporal models
- Probabilistic logics
- Markov decision processes
- Reinforcement learning
- Machine learning
- Introduction to natural language processing
- Introduction to computer vision