ВикипедиЯ

Капилляр

Материал из Википедии — свободной энциклопедии

Капилля́р (от <u>лат. capillaris</u> — волосяной) является самым тонким <u>сосудом</u> в организме человека и других животных. Средний диаметр капилляра составляет 5—10 <u>мкм</u>. Соединяя <u>артерии</u> и <u>вены</u>, он участвует в обмене веществ между <u>кровью</u> и тканями.

Содержание

Строение

Функции

Виды

Непрерывные капилляры Фенестрированные капилляры

Синусоидные капилляры (синусоиды)

Примечания

Литература

Строение

Стенки капилляров состоят из одного слоя клеток эндотелия. Толщина этого слоя настолько мала, что позволяет проходить обмену веществ между тканевой жидкостью и плазмой крови через стенки капилляров. Продукты, образующиеся в результате жизнедеятельности организма (такие как диоксид углерода и мочевина), также могут проходить через стенки капилляров для транспортировки их к месту выведения из организма. На проницаемость капиллярной стенки оказывают влияние цитокины. Стенки капилляров высоко проницаемы для всех растворенных в плазме крови низкомолекулярных веществ. Чтобы преодолеть огромное сопротивление выбросу воды и солей во внеклеточный матрикс через проницаемые стенки капилляров, в артериальных сосудах за счёт их вазомоций накапливается энергия крови, давлением которой с каждым сердечным происходит гидравлический удар, вышибающий «пробку» деформированных эритроцитов в посткапилляры и воды во внеклеточный матрикс. Именно эта картина описана в книге «Механика кровообращения»[1]: «ускорение крови в начале фазы изгнания происходит очень быстро: картина такая, как если бы по столбу крови нанесли удар молотком» это и есть пульсовый удар, ощущаемый в сосудах всего тела.

Общая площадь поперечных сечений капилляров человека — 50 м^2 , это в 25 раз больше поверхности тела, всего их насчитывается 100 - 160 млрд капилляров. Суммарная длина капилляров среднестатистического взрослого человека составляет приблизительно $100 000 \text{ км}^{\boxed{2}}$.

Функции

В функции капилляра входит перенос питательных веществ, сигнальных веществ (гормонов) и других соединений. В некоторых случаях крупные молекулы могут быть слишком велики для диффузии через эндотелий, и для их переноса используются механизмы эндоцитоза и экзоцитоза.

В механизме <u>иммунного ответа</u> клетки эндотелия выставляют молекулы-рецепторы на своей поверхности, задерживая иммунные клетки и помогая их последующему переходу во внесосудистое пространство к очагу инфекции или иного повреждения.

Объём фильтрации через общую обменную поверхность капилляров организма составляет около 60 л/мин или примерно 85 000 л/сут. При этом давление в начале артериальной части капилляра 37,5 мм рт. ст. — эффективное давление составляет около (37,5-28) = 9,5 мм рт. ст. — давление в конце венозной части капилляра, направленное наружу капилляра, 20 мм рт. ст. — эффективное реабсорбционное давление около (20-28) = -8 мм рт. ст.

Виды

Существует три вида капилляров:

Непрерывные капилляры

Межклеточные соединения в этом виде капилляров очень плотные, что позволяет диффундировать только малым молекулам и ионам.

Фенестрированные капилляры

В их стенке встречаются просветы для проникновения крупных молекул. Фенестрированные капилляры встречаются в кишечнике, эндокринных железах и других внутренних органах (почки), где происходит интенсивный транспорт веществ между кровью и окружающими тканями.

Синусоидные капилляры (синусоиды)

В стенке этих капилляров содержатся щели (синусы), величина которых достаточна для выхода вне просвета капилляра эритроцитов и крупных молекул белка. Синусоидные капилляры есть в печени, лимфоидной ткани, эндокринных и кроветворных органах, таких, как костный мозг и селезёнка. Синусоиды в печеночных дольках содержат клетки Купфера, способные захватывать и уничтожать инородные тела.

Примечания

- 1. Каро К., Педли Т., Шротер Р., Сид У. Механика кровообращения. М.: Мир, 1981.
- 2. Вампиризм во благо | Журнал | Вокруг Света (http://www.vokrugsveta.ru/vs/article/1119/)

Литература

■ Волосные сосуды // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

Синусоидный капилляр (sinusoid) в печени крысы. Его ширина — около 5 мкм, а диаметр отверстий в его стенке -приблизительно 100 нм. Между гепатоцитом (hepatocyte) и синусоидом расположено перисинусоидальное пространство, или «пространство Диссе»(англ. Disse's space)

Источник — https://ru.wikipedia.org/w/index.php?title=Капилляр&oldid=112458914

Эта страница в последний раз была отредактирована 18 февраля 2021 в 09:03.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.