

Caro Babbo Natale

per il prossimo anno vorrei passare tutti gli esami

SENZA frequentare e studiare!

Ps: ATTENTO a NON invertire il secondo o il terzo verbo all'infinito

con il primo, come è successo finora!!!

18. Lezione Corso di Logica 2020/2021

11 dicembre 2020

Maria Emilia Maietti

email: maietti@math.unipd.it

SIMULAZIONE appello

venerdi' 18 dicembre 2020 (teorie)

+

giovedi' 7 gennaio 2021 (classificazione)

10.30-12.30

CORREZIONE SIMULAZIONE

venerdi' 8 gennaio giovedi' 14 gennaio

ore 10.30-12.30

Dalla Logica predicativa alla scienza...

Come si formalizza al computer

una teoria scientifica?

Nozione di teoria predicativa

Teoria predicativa =

calcolo logico per LC=

+

assiomi (extralogici)

Ax.1, Ax.2,... Ax.k

+

regola di composizione

$$\frac{\vdash \mathtt{fr}}{\Gamma, \Gamma' \vdash \nabla} \ \mathsf{comp}$$

sequente derivabile in una teoria $\mathcal T$

Un sequente $\Gamma \vdash \Delta$ si dice derivabile nella teoria proposizionale $\mathcal T$

se esiste un albero avente:

- 1. $\Gamma \vdash \Delta$ come radice;
- 2. ogni foglia è istanza di un assioma di ${\mathcal T}$

(= o di un assioma logico di $LC_{=}$ o di un assioma extralogico specifico di \mathcal{T});

3. l'albero è costruito applicando istanze delle regole del calcolo di $\mathcal T$

(= delle regole di LC= + regole di composizione)

def. di teorema in una teoria ${\mathcal T}$

Una formula fr è detta teorema di una teoria \mathcal{T}

se il sequente \vdash **fr** è *derivabile in* \mathcal{T}

(con l'uso degli assiomi e delle regole di composizione!!)

Tutte le tautologie PREDICATIVE classiche pr

sono teoremi (tautologici!) di OGNI teoria scientifica!!!

NON contraddittorietà del calcolo LC₌

Teorema di **NON contraddizione** del calcolo **LC**₌:

il calcolo logico LC_ NON è contraddittorio

ovvero nel calcolo LC₌ NON si può derivare ⊢ ⊥

(si possono applicare solo scambi a vuoto! senza arrivare ad assiomi)

(inoltre permette di derivare soltanto tautologie classiche!!)

come usare la regola comp: I modo DERIVAZIONE con assiomi

in una teoria \mathcal{T}

data una derivazione π ottenuta con due assiomi di $\mathcal T$

$$\frac{\pi}{\mathsf{Ax}.i_1, \mathsf{Ax}.i_2} \vdash \mathsf{fr}$$

si può comporre questa derivazione con CIASCUN assioma

fino a trovare una derivazione di \vdash **fr** nella teoria \mathcal{T} in tal modo

 \Rightarrow **fr** diventa **teorema della teoria** \mathcal{T} .

come usare la regola comp: Il modo con TEOREMI GIÀ NOTI

in una TEORIA la CONOSCENZA si ACCUMULA con la regola comp:

Data una derivazione π_1

$$\frac{\pi_1}{\vdash \mathsf{T_1}}$$

allora si può usare il teorema già noto T_1 come premessa per derivare un'altra formula T_2

$$\frac{\pi_2}{\mathsf{T_1} \vdash \mathsf{T_2}}$$

e poi componendo le derivazioni π_1 e π_2 con comp

in tal modo

$$\begin{array}{c|c} \frac{\pi_1}{\vdash T_1} & \frac{\pi_2}{T_1 \vdash T_2} \\ \hline \vdash T_2 & \end{array} \text{comp}$$

si trova che T_2 è pure un teorema di \mathcal{T}

ovvero

in una teoria si possono derivare nuovi teoremi componendo con derivazioni di teoremi già noti (in libreria!)

Attenzione alle teorie contraddittorie

in una teoria con assiomi contraddittori, come ad esempio:

Sia T_{contra} la teoria con assiomi:

$$Ax.1$$
 è \vdash fr $Ax.2$ è \vdash \lnot fr

possiamo derivare il sequente ⊢⊥ in due modi!!

I modo: derivazione del falso in T_{contra}

direttamente con gli assiomi

$$\begin{array}{c} \text{Ax.}_{\text{id}} \\ \text{Ax.}_{2} \\ \begin{array}{c} \vdash \text{fr}, \bot \\ \hline \text{fr}, \neg \text{fr} \vdash \bot \\ \hline \\ \vdash \text{fr} \\ \hline \\ \hline \\ \vdash \bot \end{array} \begin{array}{c} \text{comp} \\ \\ \hline \end{array}$$

Il modo: derivazione del falso in T_{contra}

con teorema intermedio + derivazione solo logica

Nelle teorie contraddittorie OGNI enunciato è vero!!

In una teoria \mathcal{T} in cui si deriva il falso $\vdash \bot$

OGNI formula predicativa **pr** risulta **vera**

in quanto si deriva in tal modo

esempio di teoria informatica: teoria di Hoare

si aggiungono all'aritmetica classica di Peano PA le regole seguenti per derivare correttezza parziale dei programmi

$$\frac{\left(\!\!\left\langle\phi\right\rangle\!\!\right) C_1\left(\eta\right) - \left(\eta\right)\!\!\right) C_2\left(\psi\right)}{\left(\!\!\left\langle\phi\right\rangle\!\!\right) C_1; C_2\left(\psi\right)} \text{ Composition}$$

$$\frac{}{\left(\!\!\left|\psi[E/x]\right|\!\!\right)x=E\left(\!\!\left|\psi\right|\!\!\right)} \operatorname{Assignment}$$

$$\frac{\left(\phi \wedge B\right)C_1\left(\psi\right) \qquad \left(\phi \wedge \neg B\right)C_2\left(\psi\right)}{\left(\phi\right) \text{ if } B\left\{C_1\right\} \text{ else }\left\{C_2\right\}\left(\psi\right)} \text{ If-statement}$$

$$\frac{ \left(\psi \wedge B \right) C \left(\psi \right) }{ \left(\psi \right) \text{ while } B \left\{ C \right\} \left(\psi \wedge \neg B \right) } \text{ Partial-while }$$

$$\begin{array}{c|c} \hline \\ \vdash_{\operatorname{AR}} \phi' \to \phi \\ \hline \\ \begin{pmatrix} \phi \end{pmatrix} C \begin{pmatrix} \psi \end{pmatrix} \\ \hline \\ \begin{pmatrix} \phi' \end{pmatrix} C \begin{pmatrix} \psi' \end{pmatrix} \\ \hline \\ \end{array} \begin{array}{c} \vdash_{\operatorname{AR}} \psi \to \psi' \\ \hline \\ \end{array} \begin{array}{c} \mathsf{Implied} \\ \hline \end{array}$$

Figure 4.1. Proof rules for partial correctness of Hoare triples.

IMPARERETE A DERIVARE FORMALMENTE QUESTE PARTI LOGICHE NEL CORSO

esempio di derivazione di correttezza

$$\frac{\left(y\cdot(z+1)=(z+1)!\right)z=z+1\left(y\cdot z=z!\right)}{\left(y=z!\wedge z\neq x\right)z=z+1\left(y\cdot z=z!\right)}i \qquad \left(y\cdot z=z!\right)y=y*z\left(y=z!\right)}{\left(y=z!\wedge z\neq x\right)z=z+1\left(y\cdot z=z!\right)}i \qquad \left(y\cdot z=z!\right)y=y*z\left(y=z!\right)c$$

$$\frac{\left(1=1\right)y=1\left(y=1\right)}{\left(\top\right)y=1\left(y=1\right)}i \qquad \left(y=1\wedge z=0\right)z=0\left(y=1\wedge z=0\right)i \qquad \left(y=z!\wedge z\neq x\right)z=z+1; \ y=y*z\left(y=z!\right)i \qquad \left(y=z!\right)while \ (z:=x)\left(z=z+1; \ y=y*z\right)\left(y=z!\right)i \qquad \left(y=z!\right)while \ (z:=x)\left(z=z+1; \ y=y*z\right)\left(y=z!\right)i \qquad \left(y=z!\right)while \ (z:=x)\left(z=z+1; \ y=y*z\right)\left(y=z!\right)i \qquad \left(y=z!\right)i \qquad \left(y=z!$$

testo di riferimento

applicazione della logica predicativa

si può scrivere un programma
che certifica la correttezza di un altro programma
all'interno della teoria di Hoare
chiamata in letteratura "logica di Hoare"
perchè è pensata come un calcolo che estende LC=

l' Aritmetica di Peano PA come teoria della logica classica predicativa

$$PA \equiv LC_{=} + Ax 1. + ... + Ax 7. + comp$$

etica $\mathcal{L}_{\mathbf{PA}}$

Linguaggio predicativo dell' aritmetica

si aggiungono solo simboli per nuovi termini (e nessun nuovo predicato!):

costanti

0 ≡ "il numero zero"

funzioni tra termini:

```
s(x) \equiv "il successore x+1 di x" x+y \equiv "la somma di x \operatorname{con} y" x \cdot y \equiv "la moltiplicazione di x \operatorname{con} y" ove x, y, z variano su numeri naturali
```

$$Ax1. \vdash \forall \mathbf{x} \ \mathbf{s}(\mathbf{x}) \neq \mathbf{0}$$

"ogni numero successore è diverso da zero"

$$Ax2. \vdash \forall \mathbf{x} \ \forall \mathbf{y} \ (\mathbf{s}(\mathbf{x}) = \mathbf{s}(\mathbf{y}) \to \mathbf{x} = \mathbf{y})$$

"la funzione successore è iniettiva"

$$Ax3. \vdash \forall \mathbf{x} \ \mathbf{x+0} = \mathbf{x}$$

"lo zero è elemento neutro della somma"

$$Ax4. \vdash \forall \mathbf{x} \ \forall \mathbf{y} \ \mathbf{x+s}(\mathbf{y}) = \mathbf{s}(\mathbf{x+y})$$

"definizione di somma"

$$Ax5. \vdash \forall \mathbf{x} \ \mathbf{x} \cdot \mathbf{0} = \mathbf{0}$$

"zero è annullatore del prodotto"

$$Ax6. \vdash \forall \mathbf{x} \ \forall \mathbf{y} \ \mathbf{x} \cdot \mathbf{s}(\mathbf{y}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x}$$

"definizione di prodotto"

$$Ax7. \vdash \mathbf{A}(\mathbf{0}) \& \forall \mathbf{x} (\mathbf{A}(\mathbf{x}) \to \mathbf{A}(\mathbf{s}(\mathbf{x}))) \to \forall \mathbf{x} \mathbf{A}(\mathbf{x})$$

"principio di induzione"

Modello standard per aritmetica PA

 $D \equiv Nat$ insieme dei numeri naturali

$$0^{\mathcal{D}} \equiv 0$$

$$s(x)^{\mathcal{D}}(-): \mathcal{D} \longrightarrow \mathcal{D}$$

$$s(x)^{\mathcal{D}}(n) \equiv n+1$$

$$x+y^{\mathcal{D}}(-,-): \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{D}$$
$$x+y^{\mathcal{D}}(n,m) \equiv n+m$$

$$x \cdot y^{\mathcal{D}}(-,-) : \mathcal{D} \times \mathcal{D} \longrightarrow \mathcal{D}$$

$$x \cdot y^{\mathcal{D}}(n,m) \equiv n \cdot m$$

Esempio di derivazione in PA

in **PA** si deriva

$$-1+0=1$$

ove
$$n \equiv \underbrace{s(s \dots (0)))}_{\text{n-volte}}$$
 derivandolo così

ax-id
$$Ax.3, 1+0=1\vdash 1+0=1$$

$$\vdash Ax.3$$

$$\forall x x+0=x\vdash 1+0=1$$

$$\vdash 1+0=1$$

$$comp_{sx}$$

Esempio di derivazione in PA

in **PA** si deriva

$$-5+1=6$$

ad esempio come segue:

$$\begin{array}{c} \text{ax-id} \\ & 5+0=5, 5+1=s(5+0) \; \vdash \; s(5+0)=s(5+0) \\ \hline & 5+1=s(5+0), 5+0=5 \; \vdash \; s(5+0)=s(5) \\ \hline & 5+1=s(5+0), \mathsf{Ax}\; 3., 5+0=5 \; \vdash \; s(5+0)=s(5) \\ \hline & 5+1=s(5+0), \forall x \; (x+0=x) \; \vdash \; s(5+0)=s(5) \\ \hline & 5+1=s(5+0) \; \vdash \; 5+1=6 \\ \hline & \mathsf{Ax}\; 4., \forall y .., \quad 5+1=s(5+0) \; \vdash \; 5+1=6 \\ \hline & \mathsf{Ax}\; 4., \forall y \; (5+s(y)=s(5+y)) \; \vdash \; 5+1=6 \\ \hline & \forall x \; \forall y \; (x+s(y)=s(x+y)) \; \vdash \; 5+1=6 \\ \hline & \vdash \; 5+1=6 \\ \hline \end{array}$$

ove si ricorda che $6 \equiv s(5)$ e nell'ultimo passaggio sopra si è sostituito s(5) con s(5+0).

Test di logica predicativa

Dall'affermazione

Ip (In ogni giorno) d'estate c'è qualcuno che è infelice

si dica quali delle seguenti affermazioni si possono dedurre

- A Se nessuno è felice allora non è estate.
- B (Ogni giorno) qualcuno è infelice.
- C (In ogni giorno) non estivo, tutti sono infelici.
- D Se tutti sono felici allora non è estate.
- E (In ogni giorno) non estivo qualcuno è felice.

$$F(x)$$
= "x è felice"

$$E$$
="è estate"

e derivando l'affermazione corretta nella teoria predicativa

$$T_{Ip} = LC_{=} + Ip$$

(suggerimento si classifichi ciascun sequente $\mathbf{Ip} \vdash$ affermazione X).

Formalizzazione

Ip (In ogni giorno) d'estate c'è qualcuno che è infelice

$$\mathbf{E}
ightarrow \exists \mathbf{x} \
eg \mathbf{F}(\mathbf{x})$$

A Se nessuno è felice allora non è estate.

$$\neg \exists \mathbf{x} \ \mathbf{F}(\mathbf{x}) \rightarrow \neg \mathbf{E}$$

B (Ogni giorno) qualcuno è infelice.

$$\exists \mathbf{x} \neg \mathbf{F}(\mathbf{x})$$

C (In ogni giorno) non estivo, tutti sono infelici.

$$\neg \mathbf{E} \to \forall \mathbf{x} \ \neg \mathbf{F}(\mathbf{x})$$

D Se tutti sono felici allora non è estate.

$$\forall \mathbf{x} \; \mathbf{F}(\mathbf{x}) \rightarrow \neg \mathbf{E}$$

E (In ogni giorno) non estivo qualcuno è felice.

$$\neg \mathbf{E} \to \exists \mathbf{x} \ \mathbf{F}(\mathbf{x})$$

Come procedere?

Un' affermazione Aff.X è deducibile da lp

se e solo se

Ip ⊢ **Aff**.**X** è derivabile in LC=

ovvero $\vdash \mathbf{Aff}.\mathbf{X}$ è derivabile in $\mathbf{T_{Ip}} = \mathbf{LC}_{=} + \mathbf{Ip}$

$$T_{Ip} = LC_{=} + Ip$$

Un affermazione Aff. X NON è deducibile da IP

se e solo se

 $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{X}$ il sequente NON è tautologia in LC=

ovvero ha un contromodello

che per forza rende ${f vera}\ {f Ip}$ e falsa l'affermazione Aff.X

 $T_{Ip} = LC_{=} + Ip$ ovvero $\vdash Aff.X$ **NON** è derivabile in

proviamo a derivare $Ip \vdash Aff.A$

$$\frac{\mathbf{E} \vdash \mathbf{F}(\mathbf{w}), \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{w})}{\mathbf{E} \vdash \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{w})} \exists -D}$$

$$\frac{\mathbf{E} \vdash \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{w})}{\vdash \neg \mathbf{E}, \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{w})} \neg -D} \text{sc}_{sx}$$

$$\frac{\vdash \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{F}(\mathbf{w}), \neg \mathbf{E}}{\neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \neg \mathbf{F}(\mathbf{w}), \neg \mathbf{E}} \neg -S}$$

$$\frac{\neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \neg \mathbf{F}(\mathbf{w}) \vdash \neg \mathbf{E}}{\neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \neg \mathbf{E}} \exists -S}$$

$$\frac{\neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E} \rightarrow \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \neg \mathbf{E}}{\neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \neg \mathbf{E}} \rightarrow -D}$$

$$\frac{\neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E} \rightarrow \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \neg \mathbf{E}}{\mathbf{Ip}, \neg \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \neg \mathbf{E}} \rightarrow -D}$$

ove $\exists -S$ è corretta perchè w non compare libera nel sequente radice e **NON** si riesce a derivare la foglia del ramo di dx ...

quindi costruiamo un **contromodello** rendendo \mathbf{E} falsa e $\mathbf{F}(\mathbf{w})$ sempre falsa!!

contromodello di $Ip \vdash Aff.A$

la foglia che NON si riesce a derivare

$$\mathbf{E} \vdash \mathbf{F}(\mathbf{w}) , \exists \mathbf{x} \mathbf{F}(\mathbf{x}) , \mathbf{F}(\mathbf{w})$$

suggerisce il seguente contromodello con un solo elemento (perchè c'è solo w come variabile!)

quindi in tal modello

$$\begin{array}{l} (\;\exists \mathbf{x}\,\mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}} = \mathbf{0} & (\;\neg\mathbf{E})^{\mathbf{D_{contra}}} = \mathbf{0} \\ \text{ma anche } (\;\neg\mathbf{F}(\mathbf{w})\,)^{\mathbf{D_{contra}}}(\mathtt{Minni}) = \mathbf{1} \text{ e dunque } (\;\exists x\,\neg F(x)\,)^{\mathbf{D_{contra}}} = \mathbf{1} \\ \text{e dunque} \\ (\mathbf{Aff}.\mathbf{A})^{\mathbf{D_{contra}}} = (\neg\exists \mathbf{x}\,\mathbf{F}(\mathbf{x}))^{\mathbf{D_{contra}}} \,\rightarrow\, (\;\neg\mathbf{E})^{\mathbf{D_{contra}}} = \mathbf{1} \,\rightarrow\, \mathbf{0} = \mathbf{0} \\ \text{mentre } \mathbf{Ip^{\mathbf{D_{contra}}}} = \mathbf{E^{\mathbf{D_{contra}}}} \,\rightarrow\, (\;\exists \mathbf{x}\,\neg\mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}} = \mathbf{1} \,\rightarrow\, \mathbf{1} = \mathbf{1} \\ \text{dunque } (\;\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{A}\,)^{\mathbf{D_{contra}}} = \mathbf{1} \,\rightarrow\, \mathbf{0} = \mathbf{0} \end{array}$$

Aff. A NON è deducibile

l'affermazione $\mathbf{Aff}.\mathbf{A}$ NON è deducibile da \mathbf{Ip}

perchè $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{A}$ NON è tautologia

avendo trovato un contromodello

(e si vede che in realtà è una **opinione**....provarlo per esercizio!)

proviamo a derivare $Ip \vdash Aff.B$

$$\frac{\mathbf{F}(\mathbf{x}) \vdash \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}), \mathbf{E}}{\vdash \neg \mathbf{F}(\mathbf{x}), \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}), \mathbf{E}} \exists -D$$

$$\frac{\vdash \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}), \mathbf{E}}{\vdash \mathbf{E}, \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x})} \operatorname{sc}_{dx} \qquad \text{ax-id}$$

$$\frac{\exists x \neg F(x) \vdash \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x})}{\vdash \mathbf{E}, \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x})} \rightarrow -S$$

ove NON si riesce a derivare la foglia del ramo di sx ...

quindi costruiamo un **contromodello** rendendo $\mathbf{F}(\mathbf{x})$ sempre vera e invece \mathbf{E} falsa !!

contromodello di $Ip \vdash Aff.B$

la foglia che **NON** si riesce a derivare

$$\mathbf{F}(\mathbf{x}) \vdash \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}), \mathbf{E}$$

suggerisce il seguente contromodello con un solo elemento (perchè c'è solo ${f x}$ come variabile!)

 $\mathbf{D_{contra}}$ = $\{$ Minni $\}$

$$\mathbf{E^{D_{contra}}} = \mathbf{0} \quad \mathbf{F(x)^{D_{contra}(Minni)}} = \mathbf{1}$$

quindi in tal modello

$$(\neg \mathbf{F}(\mathbf{x}))^{\mathbf{D_{contra}}}(\mathtt{Minni}) = \mathbf{0}$$

e $(\exists x\, \neg F(x)\,)^{D_{contra}}=\mathbf{0}$ perchè ci sono solo falsari nel dominio essendoci solo \mathtt{Minni}

e dunque

$$\begin{array}{l} (\mathbf{Aff.B})^{\mathbf{D_{contra}}} \,=\, (\exists \mathbf{x}\, \neg \mathbf{F}(\mathbf{x}))^{\mathbf{D_{contra}}} \,=\, \mathbf{0} \\ \text{mentre } \mathbf{Ip^{\mathbf{D_{contra}}}} \,=\, \mathbf{E^{\mathbf{D_{contra}}}} \,\rightarrow\, (\,\exists \mathbf{x}\, \neg \mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}} \,=\, \mathbf{0} \,\rightarrow \mathbf{0} \,=\, \mathbf{1} \\ \text{dunque}\, (\,\mathbf{Ip} \vdash \mathbf{Aff.B}\,)^{\mathbf{D_{contra}}} \,=\, \mathbf{1} \,\rightarrow\, \mathbf{0} \,=\, \mathbf{0} \end{array}$$

Aff. B NON è deducibile

l'affermazione $\mathbf{Aff}.\mathbf{B}$ NON è deducibile da \mathbf{Ip}

perchè $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{B}$ NON è tautologia

avendo trovato un contromodello

(e si vede che in realtà è una **opinione**....provarlo per esercizio!)

proviamo a derivare $Ip \vdash Aff.C$

$$\frac{\mathbf{F}(\mathbf{w}) \vdash \mathbf{E}, \mathbf{E} \qquad \mathbf{F}(\mathbf{w}), \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \mathbf{E}}{\frac{\mathbf{F}(\mathbf{w}), \mathbf{F} \rightarrow \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \mathbf{E}}{\mathbf{F}(\mathbf{w}), \mathbf{Ip}, \neg \mathbf{E} \vdash} \neg -D} \rightarrow -S$$

$$\frac{\mathbf{F}(\mathbf{w}), \mathbf{Ip}, \neg \mathbf{E} \vdash}{\frac{\mathbf{Ip}, \neg \mathbf{E}, \mathbf{F}(\mathbf{w}) \vdash}{\mathbf{Ip}, \neg \mathbf{E} \vdash \neg \mathbf{F}(\mathbf{w})} \neg -D}$$

$$\frac{\mathbf{Ip}, \neg \mathbf{E} \vdash \neg \mathbf{F}(\mathbf{w})}{\mathbf{Ip}, \neg \mathbf{E} \vdash \forall \mathbf{x} \neg \mathbf{F}(\mathbf{x})} \forall -D$$

$$\frac{\mathbf{Ip}, \neg \mathbf{E} \vdash \forall \mathbf{x} \neg \mathbf{F}(\mathbf{x})}{\mathbf{Ip}, \neg \mathbf{E} \vdash \neg \mathbf{F}(\mathbf{x})} \rightarrow -D$$

ove $\forall -D$ è corretta perchè w non compare libera nel sequente radice

e NON si riesce a derivare la foglia del ramo di sx perchè NON ci sono più regole da applicare

quindi costruiamo un **contromodello** rendendo $\mathbf{F}(\mathbf{w})$ sempre vera e invece \mathbf{E} falsa !!

contromodello di $Ip \vdash Aff.C$

la foglia che **NON** si riesce a derivare

$$\mathbf{F}(\mathbf{w}) \vdash \mathbf{E}, \mathbf{E}$$

suggerisce il seguente contromodello con un solo elemento (perchè c'è solo w come variabile!)

dunque ($\mathbf{Ip} \vdash \mathbf{Aff.C}$) $^{\mathbf{D_{contra}}} = \mathbf{1} \rightarrow \mathbf{0} = \mathbf{0}$

quindi in tal modello

$$(\neg \mathbf{E})^{\mathbf{D_{contra}}} = \mathbf{1} \qquad (\neg \mathbf{F}(\mathbf{w}))^{\mathbf{D_{contra}}} (\mathtt{Minni}) = \mathbf{0} \text{ e quindi } (\forall x \neg F(x))^{D_{contra}} = \mathbf{0}$$
 ma anche $(\exists x \neg F(x))^{D_{contra}} = \mathbf{0}$ perchè ci sono solo falsari nel dominio e dunque
$$(\mathbf{Aff.C})^{\mathbf{D_{contra}}} = (\neg \mathbf{E})^{\mathbf{D_{contra}}} \rightarrow (\forall \mathbf{x} \neg \mathbf{F}(\mathbf{x}))^{\mathbf{D_{contra}}} = \mathbf{1} \rightarrow \mathbf{0} = \mathbf{0}$$
 mentre $\mathbf{Ip^{D_{contra}}} = \mathbf{E^{D_{contra}}} \rightarrow (\exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}))^{\mathbf{D_{contra}}} = \mathbf{0} \rightarrow \mathbf{0} = \mathbf{1}$

Aff. C NON è deducibile

l'affermazione $\mathbf{Aff}.\mathbf{C}$ NON è deducibile da \mathbf{Ip}

perchè $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{C}$ NON è tautologia

avendo trovato un contromodello

(e si vede che in realtà è una **opinione**....provarlo per esercizio!)

proviamo a derivare $Ip \vdash Aff.D$

Chiamiamo π questa derivazione in LC₌ (con uso regole veloci):

ax-id
$$\frac{\mathbf{E}, \neg \mathbf{F}(\mathbf{w}), \mathbf{F}(\mathbf{w}) \vdash}{\mathbf{E}, \neg \mathbf{F}(\mathbf{w}), \forall \mathbf{x} \mathbf{F}(\mathbf{x}) \vdash} \forall -S_{v} \\
\frac{\mathbf{E}, \neg \mathbf{F}(\mathbf{w}), \forall \mathbf{x} \mathbf{F}(\mathbf{x}) \vdash}{\forall \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E}, \neg \mathbf{F}(\mathbf{w}) \vdash} \exists -S \\
\frac{\forall \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E} \vdash \mathbf{E}}{\forall \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E} \vdash} \Rightarrow -S \\
\frac{\mathbf{\nabla} \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E} \mathbf{E} \rightarrow \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash}{\mathbf{I} \mathbf{p}, \forall \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E} \vdash} \neg -D \\
\frac{\mathbf{I} \mathbf{p}, \forall \mathbf{x} \mathbf{F}(\mathbf{x}) \vdash \neg \mathbf{E}}{\mathbf{I} \mathbf{p} \vdash \forall \mathbf{x} \mathbf{F}(\mathbf{x}) \rightarrow \neg \mathbf{E}} \rightarrow -D$$

ove $\exists -S$ è corretta perchè \mathbf{w} non compare libera nel sequente radice

l' Aff. D è deducibile

l'affermazione $\mathbf{Aff}.\mathbf{D}$ è deducibile da \mathbf{Ip} perchè $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{D}$ è tautologia avendo trovato una *derivazione*, che chiamiamo π con cui concludiamo una derivazione di $\mathbf{Aff}.\mathbf{D}$ in $\mathbf{T_{Ip}} = \mathbf{LC} = + \mathbf{Ip}$

$$egin{array}{c} \mathbf{ax} & \frac{\pi}{\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{D}} \\ \vdash \mathbf{Ip} & \\ \hline & \vdash \mathbf{Aff}.\mathbf{D} \end{array}$$
 comp

proviamo a derivare $Ip \vdash Aff.E$

$$\frac{\vdash \mathbf{F}(\mathbf{x}), \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E}, \mathbf{E}}{\vdash \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E}, \mathbf{E}} \exists -D \qquad \text{ax-id}$$

$$\exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \mathbf{E}, \exists \mathbf{x} \mathbf{F}(\mathbf{x})$$

$$\frac{\vdash \mathbf{E}, \mathbf{E}, \exists \mathbf{x} \mathbf{F}(\mathbf{x})}{\mathbf{E} \rightarrow \exists \mathbf{x} \neg \mathbf{F}(\mathbf{x}) \vdash \mathbf{E}, \exists \mathbf{x} \mathbf{F}(\mathbf{x})} \rightarrow -S$$

$$\frac{\mathbf{Ip}, \neg \mathbf{E} \vdash \exists \mathbf{x} \mathbf{F}(\mathbf{x})}{\mathbf{Ip} \vdash \neg \mathbf{E} \rightarrow \exists \mathbf{x} \mathbf{F}(\mathbf{x})} \rightarrow -D$$
sc_{sx}

ove **NON** si riesce a derivare la foglia del ramo di sx ...

quindi costruiamo un **contromodello** rendendo $\mathbf{F}(\mathbf{x})$ sempre falsa e \mathbf{E} pure falsa !!

contromodello di $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{E}$

la foglia che NON si riesce a derivare

$$\vdash \mathbf{F}(\mathbf{x}), \exists \mathbf{x} \mathbf{F}(\mathbf{x}), \mathbf{E}, \mathbf{E}$$

suggerisce il seguente contromodello con un solo elemento (perchè c'è solo w come variabile!)

quindi in tal modello

$$\begin{array}{l} (\;\exists \mathbf{x}\,\mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}} = \mathbf{0} & (\;\neg\mathbf{E})^{\mathbf{D_{contra}}} = \mathbf{1} \\ \text{ ma anche } (\;\neg\mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}}(\mathtt{Minni}) = \mathbf{1} \text{ e dunque } (\;\exists \mathbf{x}\,\neg\mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}} = \mathbf{1} \\ \text{ e dunque} \\ (\mathbf{Aff}.\mathbf{E})^{\mathbf{D_{contra}}} = (\;\neg\mathbf{E})^{\mathbf{D_{contra}}} \,\rightarrow\, (\;\exists \mathbf{x}\,\mathbf{F}(\mathbf{x}))^{\mathbf{D_{contra}}} = \mathbf{1} \,\rightarrow\, \mathbf{0} = \mathbf{0} \\ \text{mentre } \mathbf{Ip^{\mathbf{D_{contra}}}} = \mathbf{E^{\mathbf{D_{contra}}}} \,\rightarrow\, (\;\exists \mathbf{x}\,\neg\mathbf{F}(\mathbf{x})\,)^{\mathbf{D_{contra}}} = \mathbf{0} \,\rightarrow\, \mathbf{1} = \mathbf{1} \\ \text{dunque } (\;\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{E}\,)^{\mathbf{D_{contra}}} = \mathbf{1} \,\rightarrow\, \mathbf{0} = \mathbf{0} \end{array}$$

Aff. E NON è deducibile

l'affermazione $\mathbf{Aff}.\mathbf{E}$ NON è deducibile da \mathbf{Ip}

perchè $\mathbf{Ip} \vdash \mathbf{Aff}.\mathbf{E}$ NON è tautologia

avendo trovato un contromodello

(e si vede che in realtà è una **opinione**....provarlo per esercizio!)

Conclusione

Nel test di logica

Aff. D è l'unica affermazione deducibile da Ip
in quanto Ip ⊢ Aff.D è tautologia in LC=
mentre le altre affermazioni NON lo sono
perchè per ciascuna affermazione Aff. X
esiste un contromodello
in cui Aff. X è falsa mentre Ip è vera!!

