Exercice d'application

Soit la vis différentielle ci-contre, équipée d'un premier filetage en taille M6×0,75 et d'un deuxième en taille M4.

Calculer le déplacement de l'écrou (pièce verte) pour chaque tour de vis.

Lorsque la vis fait 1 tour (sens horaire):

- --> Elle se déplace vers la droite par rapport au bâti de la longueur du pas, c'est-à-dire 0,75 mm.
- --> L'écrou se déplace vers la gauche par rapport à la vis, de la longueur du pas, c'est-à-dire 0,7 mm (filetage métrique à pas normal).
- --> L'écrou se déplace par rapport au bâti, vers la droite, de la distance : 0.75 0.7 = 0.05 mm.

Résistance de la vis (2/2)

Zone omprimée

Exercices d'application

- La cuve ci-contre, fermée par 8 vis M6, est soumise à des cycles de pression 0-60 bars.
 - 1. Quelle classe de qualité doit-on choisir pour garantir $\sigma < R_e$ à la limite du décollement ?
 - 2. Cette conception est-elle être pertinente?

- 1. Force de pression: $F_p = p.S = 6 \cdot \pi \cdot 185^2 / A = 161.3 \text{ kN}$ Force par Vis: $F_{\text{Vis}} = F_{\text{V}} / 8 = 20160 \text{ N}$ --> $\sigma_{\text{Vis}} = F_{\text{Vis}} / A_s = 20160 / 20.1 = 1003 \text{ MPa}$ --> Classe de qualité: 12.9 ($R_e = 1080 \text{ MPa} > \sigma_{\text{Vis}}$)
- 2. Facteur de sécurité $S_V = R_e / \sigma_{Vis} = 1.08$ --> Marge très faible σ_{Vis} cyclique --> risque de rupture fragile --> Réduire la classe de qualité & mettre + de Vis
 - --> Supprime le risque de rupture catastrophique

