Answers to Exercise 1

1	- What properties should a nonce satisfy (at the generation time)?
	a) freshness
	b) known to all participants
	c) secret
	d) easy to compute
2	- Which of the following can be used to make replay attacks in authentication protocols harder?
	a) Nonce
	b) Monotonically increasing sequence number
	c) Time stamp
	d) Random number used no more than once
3	- Which notation are we using for symmetric encryption?
	a) $\{M\}_{\mathrm{inv}K}$
	b) $\{M\}_K$
	c) $\{ M \}_K$
	d) none of the mentioned
4	On which assumption is the security of the Diffie-Hellmann Key Exchange based?
	a) Computing discrete logarithms
	b) Computing prime factorization
	c) Computing cubic roots
	d) Exponentiation

Answers to Exercise 2

- 1. Anonymity: An attacker can easily tell who has voted from the first message.
- 2. Confidentiality: Confidentiality should be provided as long as the server private key $inv(K_S)$ remains secure.
- 3. Authentication: It is reasonable for S to assume that the answer Ans_Q came from A, since only A should have been able to read and return the correct N_S . However, A cannot be sure that she is answering the right question. Nothing authenticates S to A, so the intruder can pose as S and make A think she has voted when in fact her answers never got to the real server.
- 4. *Multiple Votes:* There is no obvious way for a malicious user to vote more than once on the same question without compromising the private keys of someone else.
- 5. Availability: Availability generally cannot be guaranteed in this setting. If the intruder is able to block all messages, then he can easily mount a Denial of Service (DoS) attack.
- 6. Integrity: Integrity often follows from authentication, so the situation is similar: S is assured that Ans_Q has not been tampered with, but A cannot say anything about what she receives from S.

Answers to Exercise 3

One attack works and can, e.g., be carried out as follows:

E picks a very large number Seq (e.g., $Seq=2^{32}-3$). This minimizes the risk that Seq was already used in a previous communication between A and B.

1. $E \to B: A, Seq$ 2. $B \to E: \{|Seq + 1, A|\}_{sk(A,B)}$ a. $E \to A: B, Seq + 1$ b. $A \to E: \{|Seq + 2, B|\}_{sk(A,B)}$ 3. $E \to B: \{|Seq + 2, B|\}_{sk(A,B)}$

Now, B believes to talk to A while in fact she talks to E. Note that E has not learned the symmetric $sk_{A,B}$ key shared between A and B. Thus, the attacker cannot complete the second protocol run, as she cannot create the message required in the last step of this run:

3'.
$$E \rightarrow A: \{|Seq + 3, A|\}_{sk(A,B)}$$

This type of attack can be prevented by making the messages in step 2 and step 3 syntactically different, e.g., by changing the second step to:

2-
$$B \rightarrow A: \{|Seq + 1, A, B|\}_{sk(A,B)}$$

Note that we, alternatively, also could have added A to the third message – as long as we only change one message and not both.