Econometrics 710 Final Exam, Spring 2010

$$y_i = \mathbf{x}_i'\boldsymbol{\beta} + e_i$$

$$\mathbf{x}_i = \mathbf{\Pi}'\mathbf{z}_i + \mathbf{u}_i$$

$$E(\mathbf{z}_i e_i) = 0$$

$$E(\mathbf{z}_i \mathbf{u}_i') = 0$$

The dimensions are: \mathbf{x}_i , \mathbf{u}_i , and $\boldsymbol{\beta}$ are $k \times 1$, \mathbf{z}_i is $\ell \times 1$ where $\ell \geq k > 1$, $\boldsymbol{\Pi}$ is $\ell \times k$ and y_i and e_i are 1×1 .

The difficulty in the problem is that $(y_i, \mathbf{x}_i, \mathbf{z}_i)$ are not jointly observed. Instead, we have two independent samples from the marginal distributions of (y, \mathbf{z}) and (\mathbf{x}, \mathbf{z}) :

- Sample 1: iid observations of (y_i, \mathbf{z}_i) , i = 1, ..., n4
- Sample 2: iid observations of $(\mathbf{x}_j, \mathbf{z}_j), j = 1, ..., J$

You can imagine that you have two independent samples from the same joint distribution, but in the first sample \mathbf{x}_i is missing, and in the second sample y_j is missing.

- 1. Write out the reduced form equations:
 - (a) Write the reduced form equation for y_i as a function of \mathbf{z}_i , $\boldsymbol{\beta}$, and $\boldsymbol{\Pi}$.
 - (b) Explicitly write the error in this reduced form as a function of the errors e_i and u_i and parameters.
 - (c) Write the population parameter β as a function of population moments of $(y_i, \mathbf{x}_i, \mathbf{z}_i, \mathbf{\Pi})$
 - (d) Write the population parameter Π as a function of population moments of $(y_i, \mathbf{x}_i, \mathbf{z}_i)$
 - (e) What is the condition for identification of β ?
- 2. Define $\mathbf{Q} = E(\mathbf{z}_i \mathbf{z}_i')$.
 - (a) Write out estimators $\widetilde{\boldsymbol{Q}}$ and $\widehat{\boldsymbol{Q}}$ for \boldsymbol{Q} using Sample 1 and Sample 2
 - (b) Find the probability limit of $\hat{\mathbf{Q}}$ as $n \to \infty$
 - (c) Find the probability limit of $\hat{\mathbf{Q}}$ as $J \to \infty$
 - (d) Are the probabiltiy limits in (b) and (c) the same?
 - (e) Which estimator is more efficient?
- 3. Suppose you know Π . Find an estimator $\widetilde{\beta}$ for β .

Hint: Use the reduced form equation for y_i

- (a) Write out this estimator.
- (b) Which sample is used?
- (c) Show that $\beta \to_p \beta$. Which sample size (n or J) goes to infinity for this convergence?
- 4. Find an estimator $\widehat{\mathbf{\Pi}}$ for $\mathbf{\Pi}$
 - (a) Write out the estimator.
 - (b) Which sample is used?
 - (c) Show that $\widehat{\Pi} \to_p \Pi$. Which sample size (n or J) goes to infinity for this convergence?
- 5. Put your answers to 2 and 3 together to find an estimator $\widehat{\beta}$ for β when Π is unknown.
 - (a) Write down the estimator.
 - (b) Show that $\widehat{\beta} \to_p \beta$. What assumptions on n and J are required?