EEE910 - Otimização Multiobjetivo Trabalho Computacional

José Geraldo Fernandes Escola de Engenharia Universidade Federal de Minas Gerais Belo Horizonte, Brasil

Todo o código do trabalho foi desenvolvido em repositório Git.

I. FORMULAÇÃO

O problema de gerenciamento ótimo da política de manutenção pode ser modelado com uma saída inteira, como na Equação 1. As funções M,F modelam o custo de manutenção total e o esperado por falha. As soluções x_i definem o plano de manutenção, nenhuma, intermediária e detalhada, adotado por cada máquina i.

$$\min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}) = [M(\boldsymbol{x}), F(\boldsymbol{x})]^{T}$$

$$x_{i} \in \{1, 2, 3\}$$

$$M(\boldsymbol{x}) = \sum_{i}^{N} x_{i} - 1$$

$$F(\boldsymbol{x}) = \sum_{i}^{N} p(x_{i}) f_{i}$$

$$(1)$$

O custo esperado por falha depende do custo de cada máquina f_i e da probabilidade $p(x_i)$ que também é função da solução, como na Equação 2. Esse custo é inteiramente definido pelas constantes $t_0, \Delta t, \eta, \beta$, apenas a variável k depende da solução na forma da Equação 3.

$$p(x_i) = \frac{w(t_0 + k\Delta t) - w(t_0)}{1 - w(t_0)}$$

$$w(t) = 1 - \exp[-(\frac{t}{\eta})^{\beta}]$$

$$k(x_i) = \frac{-x_i + 5}{2}$$
(3)

II. ALGORITMO

Como as funções objetivo parecem monotônicas e contraditórias uma solução intuitiva consegue justificar uma heurística útil. Aplicar manutenção em equipamentos caros e antigos, maior probabilidade de falha.

Para isso, basta ordenar os itens em ordem de importância, custo esperado de falha total em caso de nenhuma manutenção, e decidir o tamanho dos subconjuntos para cada reparo. A Figura 1 mostra a silhueta dessa métrica de importância.

Uma primeira solução inicial, para simplificar o problema, é considerar apenas as políticas extremas $x_i \in \{1,3\}$. Os

Figura 1. Silhueta do custo esperado por falha total dado nenhuma manutenção.

subconjuntos são definidos por uma constante $\alpha \in [0,1]$ que representa o percentual de aplicação de um tipo de política.

Como as soluções são dependentes apenas de um número real, basta escolher um tamanho de passo δ e buscar em *grid* avaliando as funções objetivo.

Para buscar todas as soluções, que incluem manutenção intermediária, resta criar uma nova variável real γ com a mesma natureza.

Com essa heurística, o problema de otimização é definido como na Equação 4 mas com custo computacional quadrático.

$$\min_{\alpha,\gamma} \mathcal{L} = [M, F]^T$$

$$\alpha, \gamma \in [0, 1]$$

$$\alpha + \gamma \le 1$$
(4)

III. RESULTADOS E DISCUSSÕES

Aplicou-se os dois algoritmos, chama-se *naive* o método com uma variável e composto o completo. Avaliou-se o índice de qualidade hipervolume (HV) e o número de soluções encontradas antes e depois da filtragem de solução dominadas, n^* e n. O tamanho do passo para variação foi de $\delta=1E-2$. A Tabela I mostra os resultados obtidos.

Tabela I RESULTADOS DE DESEMPENHO COM A HEURÍSTICA.

Método	HV	n	n^*
naive	0.620407	100	100
composto	0.622683	208	5044

Nota-se pelo índice de qualidade que o desempenho alcançou a demanda mesmo com uma estratégia de solução simples e intuitiva. Note também o número de soluções geradas pelo método. Enquanto o *naive* não gera soluções dominadas, o composto parece bastante ineficiente.

Mediu-se a evolução dessa geração para diferentes tamanhos de passo. As Figuras 2 e 3 mostram os resultados para o métodos *naive* e composto. De fato, o número de soluções não dominadas não acompanha o crescimento quadrático do método composto.

Figura 2. Número de soluções geradas, em azul, e filtradas, em laranja, para a heurística *naive*.

Figura 3. Número de soluções geradas, em azul, e filtradas, em laranja, para a heurística composto.

Finalmente, as Figuras 4 e 5 mostram o pareto encontrado para as duas heurísticas, *naive* e composto. Apesar de mais

soluções, pouca diferença é notada no plot por naive.

Figura 4. Pareto encontrado para a heurística naive.

Figura 5. Pareto encontrado para a heurística composto.

IV. DECISÃO

Para tomada de decisão minimizou-se um funcional simples da soma ponderada. Como ambas funções objetivo são custos pareceu-se natural operar dessa forma.

O funcional U adotado é como na Equação 5. O parâmetro real $\tau>1$ é um fator de prioridade dado ao custo de manutenção por falha por um raciocínio contextual. Apesar da função F precificar a ocorrência de falha em várias dimensões, presumivelmente, alguns fatores comuns são dificilmente modelados. Um exemplo mais claro é acidentes de trabalho, é razoável admitir que está fenômeno está ligado com a falha de equipamentos e são polarizados em baixa probabilidade de ocorrência e alto custo. Enquanto isso, o custo de manutenção M é facilmente modelado, justificando, em conjunto, a prioridade.

$$U(\mathbf{x}) = M(\mathbf{x}) + \tau F(\mathbf{x}) \tag{5}$$

Escolheu-se, arbitrariamente, $\tau=1.25$ e encontrou-se a solução $(\alpha,\gamma)=(0.574,0)$.

O resultado nulo da variável γ foi uma surpresa e era consistente com diversas escolhas de τ , independente da arbitrariedade.

Para investigar esse fenômeno verificou-se a densidade das políticas nas soluções do pareto na heurística composto. As Figuras 6 e 7 mostram o histograma antes e após filtragem de solução dominadas.

Figura 6. Histograma das políticas em todas as soluções geradas.

Figura 7. Histograma das políticas apenas em soluções não dominadas.

De fato, mesmo a heurística encontrando soluções com adoção de manutenção intermediária sua concentração é muito baixa em soluções no pareto.

Apesar dessa característica colocar em dúvida a aplicação da heurística, se essa negligencia soluções com natureza determinada, pode ser, também, apenas uma característica do problema, facilmente moldado nas constantes. Um estudo informal indica a segunda hipótese.

Um último ponto relevante é que esse fenômeno explicita ainda mais que a heurística *naive* é suficiente, ou até preferível,

na solução do problema. Já que: tem o custo computacional mais baixo, linear; eficiência na geração de soluções; e, a política de manutenção intermediária ser pouco inteligente.