ProbLimI: Problem Set VI

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set V. The chosen problems are 1,2, and 3.

Question 1.

1. Let X_k be i.i.d. random variables and let $S_n = \sum_{k=1}^n X_k$. Show that if S_n/n converges a.s. as $n \to \infty$, then X_1 is necessarily integrable.

Solution.

We first prove the following lemma: if $Y \ge 0$ and p > 0, then $\mathbb{E}(Y^p) = \int_0^\infty py^{p-1} P(Y > y) dy$.

By Tonelli,

$$\int_0^\infty py^{p-1} \mathbb{P}(Y > y) dy = \int_0^\infty \int_{\Omega} py^{p-1} 1_{\{Y > y\}} dP dy =$$

We first prove the following lemma: if $\{X_n\}$ are i.i.d. with $\mathbb{E}|X_1| = \infty$, then $\mathbb{P}(\frac{S_n}{n} \text{ converges}) = 0$. From 2.2.

$$\mathbb{E}|X_1| = \int_0^\infty \mathbb{P}(|X_1| > x) dx \le \sum_{n=0}^\infty \mathbb{P}(|X_1| > n).$$

As $\mathbb{E}|X_1| = \infty$, $\sum_{n=0}^{\infty} \mathbb{P}(|X_1| > n) = \infty$, and by Borel Cantelli II,

$$\mathbb{P}(|X_n| \ge n \text{ i.o.}) = 1.$$

Now, it suffices to show that

$$\left\{ \frac{S_n}{n} \text{ converges} \right\} \subset \left\{ |X_n \ge n \text{ i.o.} \right\}.$$

Suppose for sake of contradiction that $\mathbb{E}|X_1| = \infty$. Then, by the lemma,

$$\mathbb{P}(\frac{S_n}{n} \text{ converges}) = 0$$

which is a contradiction. Hence, $\mathbb{E}|X_1| < \infty$, i.e. X_1 is integrable.

Question 2.

Solution.

- 2. Let $S_n = \sum_{k=1}^n X_k$ for i.i.d. r.v.'s X_k .
 - (a) Prove that if $\frac{d}{dt}\Phi_{X_1}(0)=a+ib\in\mathbb{C}$ then a=0 and $S_n/n\stackrel{p}{\to}b$ as $n\to\infty.$
 - (b) Prove that $S_n/n \stackrel{p}{\to} b \in \mathbb{R}$ implies that $\Phi_{X_1}(x_k)^{\lfloor t/x_k \rfloor} \to \exp(ibt)$ as $x_k \downarrow 0$ and $\Phi_{X_1}(x_k)^{\lfloor t/x_k \rfloor} \to \exp(-ibt)$ as $x_k \uparrow 0$ for all t > 0. Deduce that $\frac{d}{dt}\Phi_{X_1}(0) = ib$, and conclude that $S_n/n \stackrel{p}{\to} b \in \mathbb{R}$ if and only if $\Phi_{X_1}(t)$ is differentiable at t = 0.
 - (c) Give an example of a random variable X with $\Phi_X(t)$ differentiable at t=0 yet $\mathbb{E}|X|=\infty$.

Question 2.

- 3. Let $(X_{n,k})_{n\geq 1; 1\leq k\leq n}$ be mutually independent r.v.'s with $\mathbb{E}X_{n,k}=0$ and $\mathbb{E}X_{n,k}^2=\sigma_{n,k}^2$ such that $S_n:=\sum_{k=1}^n X_{n,k}$ satisfies $\mathrm{Var}(S_n)\to 1$ as $n\to\infty$.
 - (i) Show that $\Phi_{S_n}(t)=\prod_{k=1}^n(1+a_{n,k}(t))$ for every $t\in\mathbb{R},$ where $a_{n,k}(t)=\Phi_{X_{n,k}}(t)-1,$ and further, $|a_{n,k}(t)|\leq 2t^2\sigma_{n,k}^2.$
 - (ii) With $g_n(\varepsilon)$ the function from Lindeberg's CLT, show that, for every $t \in \mathbb{R}$,

$$\sum_{k=1}^n \left| a_{n,k}(t) + \frac{1}{2}t^2\sigma_{n,k}^2 \right| \le t^2 g_n(\varepsilon) + \frac{1}{6}|t|^3 \varepsilon \operatorname{Var}(S_n).$$

(iii) Prove that if $g_n(\varepsilon) \to 0$ as $n \to \infty$ then $\sum_{k=1}^n a_{n,k}(t) \to -t^2/2$ and $\sum_{k=1}^n |a_{n,k}(t)|^2 \to 0$ as $n \to \infty$ for every $t \in \mathbb{R}$, and deduce in that case that $S_n \Rightarrow \mathcal{N}(0,1)$.

Solution.

Question 4.

4. Define $f_n(x) = e^{ix} - \sum_{k=0}^n (ix)^k / k!$ for $x \in \mathbb{R}$ and $n \ge 0$.

- (a) Show that $|f_n(x)| \le \min \{2|x|^n/n!, |x|^{n+1}/(n+1)!\}$ for all x and n.
- (b) Use this to show that if $\mathbb{E}|X|^n < \infty$ then

$$\left| \Phi_X(t) - \sum_{k=0}^n (it)^k \mathbb{E}[X^k]/k! \right| \leq |t|^n \mathbb{E}\left[\min\left\{ 2|X|^n/n! \; , \; |t||X|^{n+1}/(n+1)! \right\} \right] \; .$$

Explain the implication this has for a CLT for i.i.d. r.v.'s X_k with $\mathbb{E}|X_k|^n < \infty$.

Solution.

Let $x \in \mathbb{R}$. By integration by parts,

$$\int_0^x (x-s)^n e^{is} ds = \frac{x^{n+1}}{n+1} + \frac{i}{n+1} \int_0^x (x-s)^{n+1} e^{is} ds \tag{1}$$

for each $n \ge 0$. If n = 0, then

$$x+i\int_0^x (x-s)e^{is}ds = \int_0^x e^{is}ds = \frac{e^{ix}-1}{i}$$

and hence

$$e^{ix} = 1 + ix + i^2 \int_0^x (x - s)e^{is} ds.$$

Suppose for some n > 0

$$e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} = \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds$$
 (2)

Then, combined with (),

$$e^{ix} - \sum_{k=0}^{n+1} \frac{(ix)^k}{k!} = \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds - \frac{(ix)^{n+1}}{(n+1)!}$$
$$= \frac{i^{n+1}}{n!} \left(\int_0^x (x-s)^n e^{is} ds - \frac{x^{n+1}}{(n+1)!} \right)$$
$$= \frac{i^{n+2}}{(n+1)!} \int_0^x (x-s)^{n+1} e^{is} ds.$$

Hence, by induction, () holds for all $n \ge 0$. If $x \ge 0$, then

$$\left|\frac{i^{n+1}}{n!}\int_0^x (x-s)^n e^{is}ds\right| \leq \frac{1}{n!}\int_0^x \left|(x-s)^n|ds = \frac{1}{n!}\int_0^x (x-s)^n ds = \frac{1}{(n+1)!}|x|^{n+1}.$$

If x < 0, then

$$\left| \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds \right| = \left| \frac{i^{n+1}}{n!} \int_x^0 (x-s)^n e^{is} ds \right| \le \frac{1}{n!} \int_x^0 |(x-s)^n e^{is} | ds$$

$$\le \frac{1}{n!} \int_x^0 (s-x)^n ds = \frac{1}{(n+1)!} (-x)^{n+1} = \frac{1}{(n+1)!} |x|^{n+1}.$$

Therefore,

$$|f_n(x)| \le \frac{1}{(n+1)!} |x|^{n+1}$$

for any $n \ge 0$. Now, again by integration by parts,

$$\frac{i}{n} \int_0^x (x-s)^n e^{is} ds = -\frac{x^n}{n} + \int_0^x (x-s)^{n-1} e^{is} ds$$

and hence

$$\frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds = \frac{i^n}{(n-1)!} \int_0^x (x-s)^{n-1} (e^{is}-1) ds$$

for any $n \ge 1$. If $x \ge 0$, then

$$\left| \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds \right| = \left| \frac{i^n}{(n-1)!} \int_0^x (x-s)^{n-1} (e^{is} - 1) ds \right|$$

$$\leq \frac{1}{(n-1)!} \int_0^x |(x-s)^{n-1}| |e^{is} - 1| ds$$

$$\leq \frac{2}{(n-1)!} \int_0^x (x-s)^{n-1} ds = \frac{2}{n!} |x|^n.$$

If x < 0, then

$$\left| \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds \right| = \left| \frac{i^n}{(n-1)!} \int_0^x (x-s)^{n-1} (e^{is} - 1) ds \right|$$

$$\leq \frac{1}{(n-1)!} \int_0^x |(x-s)^{n-1}| |e^{is} - 1| ds$$

$$\leq \frac{2}{(n-1)!} \int_0^x (x-s)^{n-1} ds = \frac{2}{n!} |x|^n.$$