Part D: Instrumental Variables

D3: Shift-Share and Other Formula Instruments

Kirill Borusyak

ARE 213 Applied Econometrics

UC Berkeley, Fall 2024

Constructed ("Formula") instruments

• So far we have considered IVs that can be viewed as-good-as-randomly assigned

• But many IVs (and RHS variables in OLS) are:

constructed from multiple sources of variation using a formula/algorithm

▶ with some as-good-as-random sources of variation, while others are not

D3 Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Readings: Borusyak, Hull (Ecma 2023), Borusyak, Hull, Jaravel (ReStud 2022; Econometrics Journal 2024 review)
See also Borusyak, Hull, Jaravel (2024) "A Practical Guide to Shift-Share Instruments"

Example: Miguel and Kremer (2004)

- Spillover effects of randomized deworming in Kenya
 - $Y_i =$ educational achievement of student $i \in \mathcal{I}$
 - ▶ D_i = the number of i's neighbors (students who go to school within a certain distance from i) within \mathcal{I} who have been dewormed
- Implicitly constructed from two sources of variation:
 - Who neighbors whom: $w_{ik} = \mathbf{1} [k \text{ is a neighbor of } i]$
 - Who randomly got dewormed: $g_k = 1$ [k was dewormed]
 - We can express as a "formula": $D_i = \sum_{k=1}^{N} w_{ik} g_k$
- In this RCT, is it correct to estimate $Y_i = \tau D_i + \varepsilon_i$ by OLS?
- What can we do to avoid OVB?

3

Variation 1: Nonlinear spillovers

- Now suppose D_i = dummy of having at least one dewormed neighbor
 - lacktriangle Can we represent it as a formula in terms of the same w_{ik} and g_k ? $D_i = \max_k w_{ik} g_k$
- Suppose girls were dewormed with prob. 50%, while boys with prob. 25%
- What could cause OVB here?
- What should we control for?

Variation 2: Imperfect takeup

• Suppose again D_i = number of dewormed friends

ightharpoonup But only offer g_k was randomized, while some kids didn't take up

• Can we represent D_i as a formula in terms of w_{ik} and new g_k ?

• What would you do?

Answer key: Miguel and Kremer

- In this RCT, is it correct to estimate $Y_i = \tau D_i + \varepsilon_i$ by OLS?
 - No! Randomizing deworming ⇒ randomizing the number of dewormed neighbors
 - \blacktriangleright Kids in denser areas will systematically have more dewormed neighbors (higher D_i)
 - ▶ They may also have systematically different ε_i , leaving to OVB
- How to fix this? Control for the total number of neighbors
 - ▶ With that control, randomization of g_k implies as-good-as-random D_i
- Alternatively, instrument D_i with D_i Total # of neighbors $_i \times \mathsf{Prob}$ of deworming

Answer key: Nonlinear spillovers

- We can represent the treatment as an explicit formula, $D_i = \max_k w_{ik} g_k$
 - ▶ But it is not necessary: any algorithm $f_i(w, g)$ is already a "formula"
- Two reasons for OVB:
 - lacktriangle More neighbors \Rightarrow higher probability of having a dewormed neighbor
 - More girls among neighbors ⇒ same
- Sufficient to control for the probability of having a dewormed neighbor
 - Computed analytically as a function of neighbors of each sex
 - Or just by simulating the randomization protocol many times

Answer key: Incomplete takeup

- D_i is no longer fully determined by $\{w_{ik}\}$ and $\{g_k\}$
 - ▶ But we can construct an IV for D_i that is a formula: the number of neighbors invited for deworming

 Reduced-form & first-stage are not causal yet: would compare kids with more vs. fewer neighbors

Controlling for the total number of neighbors does the job

Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Non-random exposure to exogenous shocks

- Borusyak and Hull (2023) setup: $Y_i = \tau D_i + \varepsilon_i$, constant linear effects
 - Extensions to heterogeneous effects, other controls, multiple treatments, panel data
- Consider a candidate instrument $Z_i = f_i(g; w)$, where $g = (g_1, \dots, g_K)$ are shocks, w collects predetermined variables, f_i are known formulas
 - ▶ Nests reduced-form regressions when $D_i = Z_i$
- Assumption 1: Shock exogeneity, $g \perp \varepsilon \mid w \pmod{g \perp (\varepsilon, w)}$
 - **Exclusion:** shocks g don't causally affect Y_i other than through D_i
 - lacktriangleright Independence: g is assigned independently of potential outcomes, conditionally on w
- Assumption 2: DGP for g (conditional distribution $G(g \mid w)$) is known, e.g. the randomization protocol or uniform across some permutations of g

Formal results

• The **expected instrument** $\mu_i = \mathbb{E}\left[f_i(g; w) \mid w\right] \equiv \int f_i(g; w) dG(g \mid w)$ is the sole confounder generating OVB under these assumptions:

$$\mathbb{E}\left[\frac{1}{N}\sum\nolimits_{i}Z_{i}\varepsilon_{i}\right]\neq0\text{ in general }\qquad\text{but }=\mathbb{E}\left[\frac{1}{N}\sum\nolimits_{i}\mu_{i}\varepsilon_{i}\right]$$

• The **recentered instrument** $\tilde{Z}_i = Z_i - \mu_i$ is a valid instrument for D_i :

$$\mathbb{E}\left[\frac{1}{N}\sum_{i}\tilde{Z}_{i}\varepsilon_{i}\right]=0.$$

- Instrumenting D_i with Z_i and controlling for μ_i also identifies β
- Consistency: with many shocks and weak dependence of Z_i across i
- Robustness to heterogeneous effects: identify a convex average of $\partial Y_i/\partial D_i$ under non-causal first-stage monotonicity

Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Application: Effects of railway upgrades

BH study the employment effects of the Chinese high-speed railway system

• Observe 83 lines open by 2016 (also 66 planned but not yet opened lines)

First task: Specifying D_i

- A dummy of (at least one) line passing through city ?
 - Wouldn't capture the effects on neighboring cities
- Distance to the nearest line, computed from line locations and location of city ?
- BH choose a version suggested by models of economic geography:
 - Railways reduce travel time to big cities and thus increase regional "market access"

$$\Delta Y_i = au \Delta \log MA_i + arepsilon_i$$
 where $MA_{it} = \sum_{k=1}^N {\sf TravelTime}({\sf loc}_i, {\sf loc}_k, {\it g}_t)^{-1} {\sf Pop}_k, \qquad t=0,1$

- $ightharpoonup g_t$ is transportation network
- loc_k is region's location on the map
- ightharpoonup Pop_k is time-invariant regional population [what if it changes endogenously?]
- $ightharpoonup arepsilon_i$ is effects of unobserved local shocks (e.g. productivity)

Realized 2016 network and MA growth

OVB problem & recentering solution

- Lines are not randomly placed: e.g. tend to connect big cities
 - ▶ And even if they were randomly placed, MA would still grow more near big cities!
 - lacktriangle Big cities and cities nearby can be on different trends from rest of country \Longrightarrow OVB
- To recenter, need to view the HSR network as realization of some random process (a natural experiment)
 - ▶ BH assume exogenous *timing* of lines: it's random which lines get built first, within groups of lines of similar length
 - Conditioning on the set of planned lines, don't need to think about other lines that could have been
- Draw 1,000 simulated HSR networks by permuting opening statuses of lines randomly within groups
 - Recompute MA growth of each city; take the average across simulations

Actual vs. counterfactual MA growth

Example counterfactual 2016 network

Expected and recentered MA growth

- Treated/control group: regions with MA growth higher/lower than expected
 - ▶ Valid comparison if realized and counterfactual networks are equally likely

Testing the specification of counterfactuals

	$\frac{\text{Unadjusted}}{(1)}$	Recentered		
		(2)	(3)	(4)
Distance to Beijing	-0.291	0.069		0.088
	(0.062)	(0.039)		(0.045)
Latitude/100	-3.324	-0.342		-0.182
	(0.646)	(0.276)		(0.319)
Longitude/100	1.321	0.485		0.440
	(0.458)	(0.237)		(0.240)
Expected Market Access Growth	` /		0.026	0.054
			(0.056)	(0.069)
Constant	0.536	0.018	0.018	0.018
	(0.029)	(0.018)	(0.021)	(0.018)
Joint RI p-value		0.443	0.711	0.492
R^2	0.824	0.083	0.010	0.086
Prefectures	275	275	275	275

Recentered instrument should be uncorrelated with predetermined observables

Employment effects of HSR

	TABLE I				
EMPLOYMENT EFFECTS OF MARKET ACCESS GROWTH: UNADJUSTED AND RECENTERED ESTIMATES.					
	Unadjusted OLS (1)	Recentered IV (2)	Controlled OLS (3)		
Panel A: No Controls					
Market Access Growth	0.232 (0.075)	0.084 (0.097)	0.072 (0.093)		
Expected Market Access Growth		[-0.245, 0.337]	$ \begin{bmatrix} -0.169, 0.337 \\ 0.317 \\ (0.096) \end{bmatrix} $		

- Column 2 instruments realized MA with recentered MA
- Column 3 is OLS controlling for expected MA

Inference

- Complication: recentered MA is correlated across all regions
 - A long line affects many regions across the country
- Approach 1: restrict dependence of ε_i and thus $\tilde{Z}_i \varepsilon_i$
 - Spatially-clustered SE [used in any spatial contexts, not only recentered IVs]
- ullet Approach 2: leverage randomness of shocks, allowing unrestricted dependence of $arepsilon_i$
 - Randomization inference [for any recentered IV with constant causal effects, not only spatial]
 - (Later: Asymptotic solution when Z_i takes the shift-share form)

Spatially-clustered standard errors

Conley spatially-clustered standard errors are based on

$$\widehat{Var}\left(\sum_{i} \tilde{Z}_{i} \varepsilon_{i}\right) = \sum_{i,j: \ d(i,j) < d_{max}} \kappa\left(\frac{d(i,j)}{d_{max}}\right) \cdot \tilde{Z}_{i} \hat{\varepsilon}_{i} \hat{\varepsilon}_{j} \tilde{Z}'_{j}$$

- ightharpoonup d(i,j) is geographic distance
- lacksquare d_{max} is the distance cutoff such that $\operatorname{Cov}\left[ilde{Z}_{i}arepsilon_{i}, ilde{Z}_{j}arepsilon_{j}
 ight]=0$ if $d(i,j)>d_{max}$
- $\blacktriangleright \kappa(\cdot)$ is a kernel function:
 - ★ Uniform kernel: $\kappa(x) = \mathbf{1}[|x| \le 1]$
 - ★ Bartlett kernel: $\kappa(x) = \max\{1 |x|, 0\}$

Spatially-clustered standard errors

Notes:

- ullet The structure of spatial correlation within $d_{ij} < d_{max}$ is not restricted
 - ▶ E.g. doesn't have to be constant even if uniform kernel is used
- ullet d_{max} should be small enough, such that $d_{ij}>d_{max}$ for most region pairs
 - Similar to having many clusters with non-spatially clustered SE
 - ▶ If spatial correlation is too wide-ranging, see Conley and Kelly (forth.) for other inference methods

Randomization inference leveraging shock randomness

• To test the **sharp null** $\tau = b$ (assuming constant effects), compute statistic

$$T(g) = \frac{1}{N} \sum_{i} (Y_i - bD_i) \left(f_i(g; w) - \mu_i(w) \right)$$

• For many simulated counterfactual shock vectors $g^{(s)}$, compute

$$T(g^{(s)}) = \frac{1}{N} \sum_{i} (Y_i - bD_i) (f_i(g^{(s)}; w) - \mu_i(w))$$

- Check that T(g) is not in the tails of the distribution of $T(g^{(s)})$
 - ▶ If $\tau = b$ holds, no reason for ε_i to correlate with more $f_i(g, w)$ than $f_i(g^{(s)}, w)$
 - ▶ But if $\tau \neq b$, $T(g^{(s)})$ are centered around 0 while T(g) is not
- \bullet Tests and confidence intervals (by test inversion) are valid in finite samples, with no assumptions on ε
- This statistic is natural but any statistic T(g; Y bD, w) would work, too

Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Example: Simulated instruments

- Currie and Gruber (1996a,b) study the effects of Medicaid eligibility on health
 - ▶ OLS is surely biased because richer households are less likely to be eligible
- Assume variation in eligibility policy across states is exogenous
 - But policy is a complicated object: set of eligibility rules
 - Construct a scalar measure of policy generosity as IV
 - "Simulated instrument": % of population nationally that would be eligible under policy of i's state

Simulated instruments

- What do you think of the simulated instrument: Exogeneity? Relevance?
- How can we recast household i's Medicaid eligibility D_i as a formula treatment?
- What is a household's expected eligibility? How can we control for it?
- What is the benefit of this approach over simulated IV?
- What if D_i = Medicaid takeup, rather than eligibility?

Application to Obamacare

- Borusyak and Hull (2021) estimate crowding-out effects of Medicaid takeup (D_i) on private health insurance (Y_i)
- Leverage eligibility expansions to 146% of the federal poverty line under the Affordable Care Act
 - ▶ 11 of 13 states with Democratic governor, 8 of 30 states with Republican governor
 - ▶ View expansion decisions as random across states with same-party governors, but not household demographics or pre-2014 policy
- Compare two IVs:
 - Simulated IV: expansion dummy (controlling for governor's party)
 - ► Recentered IV: predict eligibility from expansion decisions & non-random demographics, and recenter
- By not fearing non-random exposure, recentered IV has much better first-stage
 - ► ~2x smaller standard errors

More examples

- Number of days of extreme heat measured from the local crop composition, their temperature thresholds, and local weather (Hsiao, Moscona, Sastry 2024, Zappala 2024)
- Radio signal strength, predicted from country's topography and location of transmitters (Olken 2009, Yanagizawa-Drott 2014)
- IVs from partially-randomized assignment mechanisms, e.g. for charter schools (Abdulkadiroglu et al. 2017, 2019, Narita and Yata 2023)
- Linear [and nonlinear] shift-share instruments...

Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Shift-share IV

General structure of shift-share IV (SSIV):

$$Z_i = \sum_{k=1}^K S_{ik} g_k$$

- g_1, \ldots, g_K are a set of common **shifts** not specific to i
- ▶ S_{ik} are exposure "shares" (weights), often with $\sum_k S_{ik} = 1$ for all i

Example 0: Linear spillovers

- Cai, De Janvry, and Sadoulet (2015): spillover effects of randomized information about an insurance product
 - $ightharpoonup Y_i = person i$ takes up the insurance product
 - ▶ D_i = the fraction of i's friends who were given the information
 - Use OLS: $Z_i = D_i$
- Not usually understood as a shift-share design, but it is:

$$Z_i = \sum_{k=1}^{N} \frac{1 [i \text{ and } k \text{ are friends}]}{\# \text{ of } i \text{ s friends}} \cdot \text{Treated}_k$$

Example 1: Labor supply

- Consider the (inverse) regional labor supply equation: $\Delta w_i = \tau \Delta L_i + \varepsilon_i$
 - $\Delta w_i = \text{log-change in region } i$'s average wage over some period
 - $ightharpoonup \Delta L_i = \text{log-change in } i$'s employment
 - ightharpoonup $\varepsilon_i = \text{labor supply shocks (e.g. migration, UI benefits)}$
- Need a regional labor demand shock as IV
- Regional labor demand combines demand for different industries k:
 - $ightharpoonup \Delta L_i \approx \sum_k S_{ik} \Delta L_{ik}$
 - $\Delta L_{ik} = \text{log-change of } k\text{-specific employment in } i$
 - S_{ik} = initial share of k in i's employment
- Consider $Z_i = \sum_k S_{ik} g_k$, replacing ΔL_{ik} with national industry shifts g_k
 - ▶ E.g. g_k = randomized subsidy
 - ▶ Bartik (1991): g_k = observed growth rate of industry employment

Example 2: Enclave instrument for migration

 Consider the (inverse) elasticity of substitution between native and immigrant workers

$$\qquad \qquad \Delta \log \frac{\mathsf{Immigrant \ wage}_i}{\mathsf{Native \ wage}_i} = \tau \Delta \log \frac{\mathsf{Immigrant \ employment}_i}{\mathsf{Native \ employment}_i} + \varepsilon_i$$

- ε_i = change in relative labor demand in region i
- Need a relative labor supply shock as IV
 - New immigrants from country k tend to go where there are historic enclaves of k's immigrants
- ullet $Z_i = \text{migration intensity prediction from historic enclaves & some "push shocks"$
 - $g_k = \text{dummy of war in } k \text{ (Llull 2017) or observed national migration rate from } k \text{ (Card 2009)}$
 - S_{ik} = initial share of origin k in i's population

The SSIV exogeneity challenge

- How should we think about SSIV exogeneity, $\mathbb{E}\left[Z_{i}\varepsilon_{i}\right]=0$?
 - ▶ Which properties of the shifts and/or shares can make Z_i exogenous?
 - Do we need exogeneity of both shifts and shares, or just one?
 - ▶ What is exogeneity of shifts, which don't vary across ?
 - What is exogeneity of shares, which are measured in a pre-period?
- Two narratives + sets of sufficient conditions (plausible in different applications):
 - "Many exogenous shifts" (Borusyak, Hull, Jaravel, 2022; BHJ): leveraging a shift-level natural experiment, translated to the observation level
 - "Exogenous shares" (Goldsmith-Pinkham, Sorkin, Swift, 2020; GPSS): pooling diff-in-diffs based on heterogeneous exposure shares

Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Identification from many exogenous shifts

- Suppose the shifts are as-good-as-random: $\mathbb{E}\left[g_k \mid \text{all errors and all shares}\right] = \alpha$
- Then the expected instrument is $\mu_i = \mathbb{E}\left[\sum_k S_{ik} g_k \mid S_i, \dots, S_{iK}\right] = \alpha \sum_k S_{ik}$
 - ▶ If the shares add up to one, $\mu_i = const \Longrightarrow$ no corrections are needed
 - ▶ Note: No need to run 1,000 simulations, or to know the joint CDF of shifts
- Intuition: A weighted average of as-good-as-random shifts is as-good-as-random
 - ▶ If industries with high vs. low g_k are comparable, regions specializing in those industries are comparable
 - ★ True whatever the initial shares are: we don't require $Cov[S_{ik}, \varepsilon_i] = 0$
 - ► The SSIV allows to translate random variation across *k* into random variation across *i* (under appropriate exclusion)

Consistency

- Proposition: $\frac{1}{N}\sum_{i}Z_{i}\varepsilon_{i}\to 0$ if
 - 1. Weaker notion of shift exogeneity: g_k are uncorrelated with $\bar{\varepsilon}_k = \sum_i S_{ik} \varepsilon_i / \sum_i S_{ik}$
 - 2. The effective number of shifts is large: $N_{eff} = 1/\sum_k s_k^2 \to \infty$ for $s_k = \frac{1}{N}\sum_i S_{ik}$
 - 3. Shares add up to one for each observation
- Holds because $\frac{1}{N}\sum_{i}Z_{i}\varepsilon_{i}=\frac{1}{N}\sum_{i,k}S_{ik}g_{k}\varepsilon_{i}=\sum_{k}s_{k}g_{k}\bar{\varepsilon}_{k}$, by changing the order of summation

"Incomplete shares" case

- What if $\sum_{k} S_{ik} \neq 1$, so Z_i is a weighted sum, not weighted average?
 - ▶ Then randomization of subsidies does not make Z_i as-good-as-random
- \bullet E.g. subsidies are only in manufacturing industries k
 - Regions with more manufacturing will mechanically get higher Z_i , potentially creating bias
- ullet But recall that the expected instrument is $\mu_i = \alpha \cdot \sum_k S_{ik}$
 - ▶ Thus, controlling for $\sum_k S_{ik}$ avoids OVB

Shift-level controls

- What if shifts are as-good-as-random only after controlling for some q_k ?
 - ▶ In an industry-level regression you'd control for q_k . But what about a SSIV regression?
- Expected instrument is $\mu_i = \sum_k S_{ik} (\alpha_0 + \alpha_1 q_k)$
 - ▶ To avoid OVB, it's sufficient to control for $\sum_k S_{ik}$ and $\sum_k S_{ik}q_k$
- E.g. industry subsidies are random only controlling the dummy of hi-tech industries
 - Control for the total local share of hi-tech industries
 - ► Then you leverage variation between regions with similar composition of hi- and low-tech industries but different exposure to subsidies within each group

Shift-level ("exposure-robust") standard errors

- Unusual clustering problem: observations with similar shares are exposed to the same shocks, both g_k and unobserved ν_k
 - Conventional clustering of SE (e.g. by state) wouldn't capture that
 - Adao, Kolesar, Morales (2019) generate placebo shifts g_k^* and find a significant reduced-form in ~50% simulations
- If each region was exposed to just one industry, we'd cluster by industry
 - But how to do it in a "fuzzy" case?
- Adao et al. derive a formula that leverages mutual independence of g_k , regardless of clustering of ε_i

Shift-level ("exposure-robust") standard errors

- BHJ propose a convenient solution:
 - SSIV estimate is exactly equal to the estimate from a *special* shift-level regression with g_k as the IV

$$\bar{Y}_{k}^{\perp} = \tau \bar{D}_{k}^{\perp} + \gamma' q_{k} + \bar{\varepsilon}_{k},$$

weighted by $s_k = \frac{1}{N} \sum_i S_{ik}$, where $\bar{V}_k^{\perp} = \sum_i S_{ik} V_i^{\perp} / \sum_i S_{ik}$ and V_i^{\perp} is residual from the regression of V_i on included *i*-level controls

- ▶ In Stata and R, package *ssaggregate* helps run this special IV regression
- ► Then use robust or clustered SE in the way you'd do it for any other regression leveraging these shifts

Application: "China shock" (Autor, Dorn, Hanson 2013)

- ADH study the effects of import competition on local labor market outcomes
- Region i = commuting zone (N = 722)
- Industry k = SIC4 manufacturing industry (K = 397)
- Two periods t: 1991–2000 and 2000–2007
- \bullet Y_{it} = local change in manufacturing employment rate
- D_{it} = local growth of exposure to Chinese imports:

$$D_{it} = \sum_{\substack{\text{manuf. ind. } k}} \text{Initial emp share}_{ikt} \cdot \frac{\Delta \text{US imports from China}_{kt}}{\text{Initial employment}_{kt}}$$

 Control for period FE and some initial regional characteristics, including total manufacturing share of employment

ADH's shift-share approach

- OLS can be biased: imports grow in industries and regions where US productivity growth is slow
- Idea: use industry productivity growth in China as shifts
 - Construct a proxy: import growth from China in other countries (e.g. Europe)
 - Requires (1) China productivity to be exogenous and (2) productivity growth in the US and Europe to be uncorrelated
- SSIV: $Z_{it} = \sum_{k} S_{ikt} g_{kt}$ where
 - ▶ $S_{ikt} = 10$ -year lagged share of k in total employment of i; $\sum_k S_{ikt} =$ lagged total share of manufacturing in employment
 - $g_{kt} = \text{growth of Chinese imports in eight non-US countries in $1,000/US worker}$
- The shifts are the IV in the industry-level analysis in Acemoglu et al. (2016)

BHJ revisit ADH

Step 1: Picking controls

- ullet Hypothesize that shifts g_{kt} are as-good-as-random controlling for period FEs q_t
- Regional regression should thus control for

$$\sum_k S_{ikt} q_t = \left(\sum_k S_{ikt}
ight) imes q_t$$

- i.e. lagged total share of manufacturing interacted with period dummies
- Also consider the industry controls from Acemoglu et al., e.g. initial skill intensity of the industry

BHJ revisit ADH

Step 2: Balance tests to falsify conditional as-good-as-random shift assignment:

- Shifts are uncorrelated with industry observables, controlling for period FE
- ullet SSIV is uncorrelated with regional observables, controlling for period FE imes lagged total manuf. share

Balance variable	Coef.		SE	
Panel A: Industry-level balance				
Production workers' share of employment, 1991	-0.011		(0.012)	
Ratio of capital to value-added, 1991	-0.007		(0.019)	
Log real wage (2007 USD), 1991	-0.005		(0.022)	
Computer investment as share of total, 1990	0.750		(0.465)	
High-tech equipment as share of total investment, 1990	0.532		(0.296)	
No. of industry-periods		794		
Panel B: Regional balance				
Start-of-period % of college-educated population	0.915		(1.196)	
Start-of-period % of foreign-born population	(2.920		(0.952)	
Start-of-period % of employment among women	-0.159		(0.521)	
Start-of-period % of employment in routine occupations	-0.302		(0.272)	
Start-of-period average offshorability index of occupations	0.087		(0.075)	
Manufacturing employment growth, 1970s	0.543		(0.227)	
Manufacturing employment growth, 1980s	0.055		(0.187)	
No. of region-periods		1,444		

BHJ revisit ADH

Step 3: Obtain the estimates, including the necessary controls and with SE from the equivalent industry-by-year level IV regression

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Coefficient	$ \begin{array}{c} -0.596 \\ (0.114) \end{array} $)-0.489 (0.100)	-0.267 (0.099))-0.314 (0.107)	-0.310 (0.134)	-0.290 (0.129)	-0.432 (0.205)
Regional controls							
Autor et al. (2013) controls	✓	✓	✓		✓	✓	✓
Start-of-period mfg. share	✓						
Lagged mfg. share		✓	✓	✓	✓	✓	✓
Period-specific lagged mfg. share				✓	✓	✓	✓
Lagged 10-sector shares					✓		✓
Local Acemoglu et al. (2016) controls						✓	
Lagged industry shares							✓
SSIV first stage <i>F</i> -stat.	185.6	166.7	123.6	272.4	64.6	63.3	27.6
No. of region-periods	1,444	1,444	1,444	1,444	1,444	1,444	1,444
No. of industry-periods	796	794	794	794	794	794	794

• Controls are important: China shock g_{kt} is larger in the 2000s (post WTO entry) when overall manuf. decline is stronger for other reasons

Outline

- Formula instruments and recentering
 - Example: parametric spillover effects
 - General setting
 - Application: Chinese high-speed railways
 - Other examples
- Shift-share instruments
 - SSIV as leveraging a shift-level natural experiment
 - SSIV as combining diff-in-diffs

Motivating example: Mariel Boatlift

- Consider the substitution elasticity between demand for migrant and native labor
 - $D_i = \Delta$ relative immigrant/native employment, $Y_i = \Delta$ relative wage
- Many Cubans arrive in the US in 1980 for exogenous reasons
 - ⇒ Local arrival rate of Cubans is relevant
 - ▶ But violates exogeneity if they settle in areas with growing demand for their labor
- Consider instrumenting local immigration rate with the initial share of Cubans
 - ▶ Relevance: new Cubans tend to go to places with a lot of Cubans
 - ▶ Exogeneity: parallel outcome trends in places with high vs. low initial Cuban share
 - ★ Violated if factors that attracted Cubans in the past are correlated with today's trends
- This is a simple shift-share IV: $Z_i = S_{i,\text{Cubans}} \cdot 1 + \sum_{k \neq \text{Cubans}} S_{ik} \cdot 0$
 - Justified by parallel trends in outcomes, not a natural experiment in shifts

Exogenous shares approach: Pooling diff-in-diffs

- This logic generalizes to having multiple shocked countries
 - Goldsmith-Pinkham, Sorkin, Swift (GPSS, 2020) develop this view
- Assume **exogenous shares**: $Cov[\varepsilon_i, S_{ik}] = 0$ for every k
 - ▶ With *Y_i* measured in differences, this is *K* parallel trends assumptions
 - Strong assumption even though shares are measured in the pre-period
 - ▶ Wrong interpretation of exogeneity: "shares are not affected by ε_i " (they can't be)
 - ▶ Correct: "all unobservables are uncorrelated with everything about local shares"
 - Rules out any unobserved ν_k shocks that affect regions based on S_{ik}
- Then we have K valid IVs: S_{i1}, \ldots, S_{iK}
 - ▶ SSIV $Z_i = \sum_k S_{ik} g_k$ is one reasonable way to combine them
 - ▶ 2SLS (for small K) and LIML are other reasonable ways
 - Or just use your favorite share (e.g. of Cubans)

Rotemberg weights

- If you insist on using SSIV (and not LIML), GPSS recommend computing the importance of each share: **Rotemberg weights** $\hat{\alpha}_k$
 - $\hat{\tau} = \sum_k \hat{\alpha}_k \hat{\tau}_k$ for $\hat{\tau}_k$ that uses S_{ik} as IV one at a time
 - $\hat{\alpha}_k$ are higher for k with more extreme shifts and larger first stages
 - $\hat{\alpha}_k$ add up to one but need not be positive
- Then scrutinize validity of the share IVs with highest Rotemberg weights

Summary of two approaches to shift-share IV

Two sets of narratives & sufficient conditions for SSIV validity

Pick one ex ante, then validate ex post

- Many exogenous shifts is appropriate when you could imagine using your shifts as IV in a shift-level analysis
- Exogenous shares is appropriate when you would be OK using any other combination of shares as the IV

More shift-share IV examples from the "Practical guide"

Study Uni	Unit (i)	Outcome (y_i)	Treatment (x_i)	Level of shift	Instrument (z_i)	
	ome (r)			variation (k)	Share (s_{ik})	Shift (g_k)
Hummels et al. (2014)	Worker	Wage	Imports of intermediate goods by employer	Product-by- country	$\frac{\mathrm{Imports}_{ik}/}{\mathrm{Imports}_i}$	Imports from k to other countries
Nunn and Qian (2014)	Country- by-year	Conflict	Quantity of food aid (wheat) from the US	Year	Fraction of years with non-zero food aid	US wheat production in previous year
Cai et al. (2015)	Individual	Takeup of insurance	% of friends selected for an information session*	Individual	Dummy(k is friend of i)/ # of friends i has	Dummy of information session
Jaravel (2019)	Product category	Inflation and innovation	Δ Quantity demanded	Socio-demographic group	Sales of i to group $k/$ Total sales of i	Population change
Greenstone et al. (2020)	Region	Δ Employment	Δ Credit	Bank	Credit market share of k	Estimated credit supply shock
Aghion et al. (2022)	Firm	Δ Firm employment	Δ Firm stock of automation technologies	Technology-by- country	$\frac{\mathrm{Imports}_{ik}/}{\mathrm{Imports}_i}$	Δ imports from k to other countries
Xu (2022)	Region	Δ Exports	Exposure to banking crisis*	Bank	Credit market share of k	Bankruptcy during banking crisis
Franklin et al. (2023)	Local labor market	Wage	Shift-share exposure to the intervention*	Residential neighborhood	$\begin{array}{c} \operatorname{Commuters}_{ik}/\\ \operatorname{Employment}_i \end{array}$	Dummy of public works intervention
Mohnen (2024)	Region	Δ Young labor market outcome	Retirement rate	Age group (within 45+)	Population _{ik} / Population $45+_i$	National retirement rate at age k

Conclusion: Formula and shift-share IV

The goal is for you to have an instinct to:

- Identify settings with formula and shift-share treatments/instruments
- Ask which determinants are as-good-as-random and which are non-random
- Understand what it means to call your shocks as-good-as-random, by thinking of counterfactuals shocks
- Recognize that OVB is possible even with as-good-as-random shocks
- Know how to fix OVB, via "recentering" (or simpler controls with shift-shares)