CSE 5334 : Data Mining Homework 1 (100 points)

SUBMISSION DEADLINE: 03/31/2023, 11:59 PM

REQUIREMENTS: Homework must be handwritten and converted to pdf format for submission. We will NOT accept typed submissions.

1. Vector Space Model (25 Points)

Suppose you want to know which of Shakespeare's novels are the most similar based on the occurrence of certain characters (Anthony, Brutus, Caesar etc). Table 1 shows the count matrix (the number of occurrence of a certain term/character in a document/novel).

Table 1

	Anthony & Cleopetra	Julias Caesar	The Tempest	Hamlet
Anthony	157	73	50	100
Brutus	4	157	10	2
Caesar	232	2	227	100
Calpurnia	2	10	0	5
Cleopetra	5	0	10	6

Table 2 represents the document frequency of each term/character in your collection. Assume the total number of novels in your collection is 1000.

Table 2

Term	Document Frequency		
Anthony	500		
Brutus	50		
Caesar	600		
Calpurnia	50		
Cleopetra	20		

Find out which novel is most similar to Anthony & Cleopetra. Use log weighted TF(term frequency), log weighted IDF(Inverse Document Frequency) and cosine similarity as the similarity measure.

2. Decision Tree (25 Points)

Suppose, you are a robot in a lumber yard, and must learn to discriminate Oak wood from Pine wood. You choose to learn a Decision Tree classifier. You are given the following examples:

ID	Density	Grain	Hardness	Class
1	Heavy	Small	Hard	Oak
2	Heavy	Large	Hard	Oak
3	Heavy	Small	Hard	Oak
4	Light	Large	Soft	Oak
5	Light	Large	Hard	Pine
6	Heavy	Small	Soft	Pine
7	Heavy	Large	Soft	Pine
8	Heavy	Small	Soft	Pine

- a) Which attribute would information gain choose as the root of the tree? Show calculations. (10 points)
- b) Draw the decision tree that would be constructed by recursively applying information gain to select roots of sub-trees. Show calculations. (10 points)
- c) Classify the following two new examples as Oak or Pine using your decision tree above. (5 points)

[Density=Light, Grain=Small, Hardness=Hard]?

[Density=Light, Grain=Small, Hardness=Soft]?

3. Naive Bayes (25 points)

Given the weather dataset where the attributes (Outlook, Temperature, Humidity, Windy) shows the weather condition on a particular day and whether or not Golf was played on that day.

Instance	Outlook	Temperature	Humidity	Windy	Play Golf
1	Rainy	Hot	High	FALSE	No
2	Rainy	Hot	High	TRUE	No
3	Overcast	Hot	High	FALSE	Yes
4	Sunny	Mild	High	FALSE	Yes
5	Sunny	Cool	Normal	FALSE	Yes
6	Sunny	Cool	Normal	TRUE	No
7	Overcast	Cool	Normal	TRUE	Yes
8	Rainy	Mild	High	FALSE	No
9	Rainy	Cool	Normal	FALSE	Yes
10	Sunny	Mild	Normal	FALSE	Yes
11	Rainy	Mild	Normal	TRUE	Yes
12	Overcast	Mild	High	TRUE	Yes
13	Overcast	Hot	Normal	FALSE	Yes
14	Sunny	Mild	High	TRUE	No

Using the weather dataset table, classify the following test instance using Naive Bayes Classifier:

Instance	Outlook	Temperature	Humidity	Windy	Play Golf
Test#1	Rainy	Cool	High	TRUE	?

4. Support Vector Machine Classifier (25 Points)

Consider 8 training samples. The positive class has 4 points: (2,5),(2,2),(5,2) and (4,4). The negative class has 4 points: (-2,-2),(-4,0),(-4,-4) and (-8,-4).

- a. What are the coefficients of the support vectors? (7 points)
- b. Based on the coefficients of the support vectors, compute the maximum margin and then give the weights of the corresponding linear model. **(12 points)**
- c. Determine the class that (-1,-1) belongs to. Show your calculation to explain. (6 points)