

컴퓨터고학과 이병래교수

학습목

- 2 지식표현 방법의 종류
- 3 전문가 시스템

1. 지식이란 무엇인가?

1. 지식이란 무엇인가?

- ┛ 데이터, 정보, 지식
 - · 지능적 문제풀이는 궁극적으로 그 문제와 관련된 지식들을 어떻게 저장하고 이용할 것인가에 달려 있음
 - ⇒ 지식공학(knowledge engineering)
 - · 특정한 문제 분야의 지식을 쉽게 접근할 수 있는 형태로 컴퓨터 내에 체계적으로 축적하여 사용
 - → 지식기반시스템(knowledge-based systems)

1. 지식이란 무엇인가?

☑ 지식기반 시스템의 구성

☑ 지식과 내부 지식표현 사이의 사상

- ☑ 지식표현 방법이 갖추어야 할 요건
 - ① **표현방법의 적합성**: 문제영역에서 필요로 하는 모든 지식을 정확하게 표현할 수 있어야 함
 - → 표현하고자하는 지식의 실세계의 의미를 최대한 수용
 - ② 추론의 적합성: 표현된 지식을 이용하여 추론을 할 수 있는 메커니즘이 존재해야함
 - ③ 추론의 효율성: 추론과정이 효율적으로 진행될 수 있어야함
 - → 추론에 유용한 부가정보를 지식의 표현구조에 적절히 포함시킬 수 있는 능력
 - **④ 지식획득능력**: 새로운 지식을 쉽게 습득할 수 있어야함

☑ 지식의 형태

절차적 지식

선언적 지식

신경망

- 어떠한 경우에 무엇을 어떻게 할 것인가에 대한 지식
- 프로그래밍 언어로 작성된 명령어의 집합
 - → 지식 사용에 대한 제어 정보는 지식 자체에 내포되어 있음
- 추론의 적합성 면이나 지식 획득의 효율성 면에서 낮은 평가

☑ 지식의 형태

절차적 지식

선언적 지식

신경망

• 상호 독립적, 단편적인 지식들을 나열한 형태의 지식

➡ 정적인지식

- 추론기관이라는 프로그램이 별도로 존재하며, 이 프로그램에 의해지식이 추론에 사용됨
- 개별적으로 지식을 편집, 획득, 검색하는 것이 절차적 지식에 비해용이함

☑ 지식의 형태

선언적 지식 절차적 지식 신경망 뉴런의 출력이 다른 뉴런으로 전달되는 연결의 가중치의 형태로 분산되어 저장 ➡ 개별지식이잘드러나지않음 입력 출력

- 형식논리학(formal logic)
 - 기호와 논리연산자를 이용하여 논리적 연역 체계를 표현
 - ▶ 기호: 명제, 객체, 관계 등을 표현
 - 논리연산자

명제		VAV	$V \cup V$	V	$V \setminus V$	$V \rightarrow V$
X	Y	$X \wedge Y$	AVY	~X	$X \to Y$	$\Lambda \leftrightarrow \Upsilon$
T	T	T	T	F	T	T
T	F	F	T	F	F	F
F	T	F	T	T	T	F
F	F	F	F	T	T	T

- 명제논리를 이용한 지식 표현
 - 명제를 기호로 표현
 - 명제: 참 또는 거짓을 명백히 판단할 수 있는 문장

'이것은 유리이다.' **⇒** *GLASS*

- 논리연산자를 이용하여 복합명제 표현
 - Λ(AND), V(OR), ~(NOT), →(조건명제), ↔(동치) 등

'유리는 잘 깨진다.' \implies $GLASS \rightarrow FRAGILE$

- ☑ 술어논리를 이용한 지식 표현
 - 명제를 술어와 객체로 분리하여 표현

'고양이는 포유류이다.' ⇒ Mammal(CAT) '철수는 사람이다.' *▶ Man*(철수)

• 변수를 사용할 수 있음

'모든 사람은 생각한다.' $\Rightarrow \forall x \{ Man(x) \rightarrow Think(x) \}$

- ☑ 추론
 - 연역법칙

$$\left. egin{array}{c} X \\ X
ightarrow Y \end{array}
ight\}$$
 결론: Y

- ┛ 규칙(rule)이란?
 - 주어진 상황을 위한 권고·지시·전략을 나타내는 정형화된 표현방법
 - · 'IF @ THEN 'b' 형태의 표현
 - @: 가정, 전제조건, LHS
 - ७ : 결론, 실행할 동작, RHS
 - •지식베이스: 현재의 상황을 나타내는 사실들과 이에 대해 적용할 규칙들로 구성됨
 - 추론기관: 현재 상태에 의해 만족되는 규칙을 선택하여 실행함

☑ 추론의 종류

연역법(deduction) 유도법(abduction) 귀납법(induction)

'IF A THEN B'라는 규칙과 'A'라는 사실로부터 'B'를 결론으로 제시하는 추론 방법

```
IF Mother(x) THEN Woman(x)
                              Woman(Marie)
             Mother(Marie)
```

연역에 의한 추론은 항상 옳음

☑ 추론의 종류

연역법(deduction) 유도법(abduction) 귀납법(induction)

'IF A THEN B'라는 규칙과 'B'라는 사실로부터 'A'를 결론으로 제시하는 추론 방법

```
IF Mother(x) THEN Woman(x)
                              Mother(Marie)
             Woman(Marie)
```

추론 결과가 항상 옳지는 않음

유사추론

☑ 추론의 종류

연역법(deduction) 유도법(abduction)

귀납법(induction)

관측된 사실로부터 새로운 법칙을 만들어 내는 것

IF Sparrow(x) THEN CanFly(x)

IF Dove(x)THEN CanFly(x)

IF Eagle(x)THEN CanFly(x)

IF Bird(x)THEN CanFly(x)

학습과 관련된 추론 방법

☑ 추론 방향

전방향 추론

후방향 추론

- 주어진 사실들로부터 만족되는 규칙을 규칙의 조건부와 정합에 의해 선택
- 선택된 규칙의 결론부의 내용을 실행하거나 사실에 추가

```
IF Mother(x) THEN Woman(x)
Mother(Marie)
Woman(Marie)
```

☑ 추론 방향

전방향 추론

후방향 추론

- 목표로 하는 결론이 현재 상태 또는 알려진 사실들로부터
 유도해 낼 수 있는 가를 알아내고자 함
- 결론부로부터 가정부 방향으로 진행하는 추론
 - Woman(Marie)
 IF Mother(x) THEN Woman(x)
 Mother(Marie)
 Woman(Marie)는 참

- 시맨틱 네트(Semantic Net)
 - 개념 사이의 관계를 표현하는 지식 표현 방법
 - ▶ 노드와 아크를 이용하여 방향성 그래프로 표현

- 시맨틱 네트(Semantic Net)
 - 대표적인 아크 속성의 예

속성	의미	Ф
ako	상위 개념의 하위 클래스 (a kind of)	대학생 학생
isa	어떤 클래스의 하나의 사례 (is a)	IZ철수 isa 대학생
has-part	어떤 객체의 부속품	자동차 <u>has-part</u> 엔진

┛ 시맨틱 네트를 이용한 지식표현 예

- 시맨틱 네트와 특성상속(property inheritance)
 - · 상위 클래스의 속성과 값을 하위 클래스 또는 사례가 이어받도록 하는 추론 형태
 - · 상위 개념의 지식을 하위 개념이 공유하는 중앙집중적 방법의 지식 표현
 - 특성 상속이 이루어지는 아크: *isa* 아크 및 *ako* 아크
 - · 상위 개념은 일반적인 속성을, 하위 개념은 일반적 속성값과 다르거나 고유한 속성을 연결

■ 시맨틱 네트와 특성상속(property inheritance)

- 시맨틱 네트와 특성상속(property inheritance)
 - 특성상속을 이용한 중앙집중식 지식 공유의 장점
 - 1 지식을 구성하기 쉬움
 - 표현된 지식에 잘못이 있을 경우 이를 쉽게 수정할 수 있음
 - ③ 시간이 흐름에 따라 최신의 지식을 유지하기가 쉬움
 - 4 지식의 분배가 자동적으로 이루어짐

■ 프레임(Frame)

■ 프레임(Frame)

- 프레임(Frame)
 - 표현 대상 개념의 속성을 나타내는 슬롯들의 집합
 - 관련된 프레임들이 상위 개념, 하위 개념, 사례(instance)로 분류되어 연결
 - ⇒ 클래스, 부 클래스, 사례 프레임
 - 슬롯의 값에 기본값을 지정할 수 있음
 - 특성상속을 이용하여 중앙집중 지식 공유
 - 부가 프로시저를 통해 절차적 지식을 함께 표현

■ 프레임의 예

Frame 인간		
ako	포유류	
*이동	직립보행	
*지능	(기본값 = 100)	

Frame 성인남자		
ako	인간	
*연령		
*키	(기본값 = 170)	
*체중	(기본값 = 65)	
*결혼여부		
*배우자		

Frame 홍길동		
instance	성인남자	
연령	35	
키	175	
체중	70	
결혼여부	기혼	
배우자	이영숙	

- 프레임과 부가 프로시저
 - 슬롯의 사용과 관련하여 수행해야할 동작을 지시하는 프로시저
 - ⇒ 절차적 지식을 함께 표현할 수 있음
 - 부가 프로시저의 종류
 - 필요(if-needed) 프로시저
 - 판독(if-read) 프로시저
 - 기록(if-written) 프로시저
 - 제거(if-removed) 프로시저

- 프레임과 부가 프로시저
 - 예: if-needed 프로시저의 활용

Frame 성인남자		
ako	인간	
*연령		
*키	(기본값 = 170)	
*체중	(기본값 = 65) 🗸	
*결혼여부		
*배우자		

```
if-needed:
if 연령 > 35 then
체중 ← 키 - 100;
else
체중 ← 키 - 110;
end-if
```

- 프레임과 부가 프로시저
 - ·예: if-written 프로시저의 활용

Frame 성인남자		
ako	인간	
*연령		
*키	(기본값 = 170)	
*체중	(기본값 = 65)	
*결혼여부		
*배우자		

if-written:

if 결혼여부=기혼 then 배우자이름을 질문하여배우자 슬롯에 넣음; 해당되는배우자 프레임에게 배우자 슬롯에 이 프레임의 이름을 넣으라는 메시지를 보냄; end-if

4. 신경회로망에서의 지식 표현

- 인공 신경회로망(artificial neural network)
 - 신경 구조를 모델링하여 지능적 처리에 응용하고자 하는 시도

신경세포는 다수의 다른 신경세포와 신경연접을 통해 연결

4. 신경회로망에서의 지식 표현

- 인공 신경회로망(artificial neural network)
 - 신경 구조를 모델링하여 지능적 처리에 응용하고자 하는 시도

→ 신경연접의 연결가중치 벡터 형태로 지식을 분산 저장함

1. 전문가 시스템 개요

- 전문가 시스템(expert system)이란?
 - 주어진 문제 분야에서 인간 전문가의 문제해결 지식, 전략 등을 시뮬레이션함으로써 문제풀이, 의사결정을 지원하는 지식기반 시스템

현장전문가

문제 분야에서 사용하는 규칙, 전략 등을 제공

전문가의 지식을 지식베이스화하여 전문가 시스템을 만듦

2. 전문가 시스템의 구조

3. 전문가 시스템의 개발

■ 현장전문가와 지식공학자의 역할

정리하기

- ▼ 지식기반 시스템의 핵심 구성요소는 지식베이스와 추론기관이다.
- ▼ 지식표현방법은 지식의 실세계의 의미를 최대한 수용할 수 있어야 하고, 적절한 추론 메커니즘이 존재해야 하며, 추론과정이 효율적으로 진행될 수 있어야 한다. 또한 새로운 지식을 쉽게 습득할 수 있는 표현방법이 좋다.
- ☑ 절차적 지식은 어떠한 경우에 무엇을 어떻게 할 것인가에 대한 지식으로, 지식 사용에 대한 제어 정보는 지식 자체에 내포된다.
- 선언적 지식은 상호 독립적, 단편적인 지식들을 나열해 놓은 형태로서, 추론은 별도의 추론기관에 의해 이루어진다.

정리하기

- ▶ 논리를 이용한 지식표현방법은 명제기호와 논리연산자를 이용한 명제논리나 객체와 술어를 이용하는 술어논리를 이용하며, 기본적인 추론 메커니즘은 연역법칙이다.
- ☑ 규칙을 이용한 지식표현에서는 주어진 상황을 위한 권고·지시·전략을 'IF 조건 THEN 결론' 형태의 규칙으로 표현한다.
- ✓ 시맨틱 네트는 객체, 개념, 사건 등을 표현하는 노드와 노드들 사이의 관계를 표현하는 아크를 이용하여 지식을 표현한다.
- 프레임은 객체나 클래스를 표현하는 속성들을 나타내는 슬롯들의 집합으로 지식을 표현한다. 부가 프로시저를 이용하여 절차적 지식을 함께 표현할 수 있다.

정리하기

- ✓ 시맨틱 네트나 프레임은 특성상속을 이용하여 상위 개념의 지식을 하위 개념이 공유하는 중앙집중적 방법의 지식 표현을 할 수 있다.
- 인공 신경회로망에서는 신경연접의 연결가중치 벡터 형태로 지식을 분산 저장한다.
- ▼ 전문가 시스템은 초기 인공지능에서 지식기반 시스템의 가능성을 보여준 사례로서, 주어진 문제 분야에서 인간 전문가의 문제해결 지식, 전략 등을 시뮬레이션하도록 설계한다.

지원에 하는 보리에의한 지식표현