BDTM: Big Data Tools for Managers 2nd Internal Question Paper [Set-B]

Q1. Demonstrate UPDATE & DELETE statements in MySQL.

Table: **EMPLOYEE**

ID	NAME	CITY	STATE	COUNTRY
1	AAA	PUNE	MAH	INDIA
2	BBB	MUMBAI		
3	CCC	TUMKUR	KAR	
4	DDD	BANGALORE		
5	EEE	GANDHINAGAR		

A. Update STATE as KAR for city BANGALORE

UPDATE EMPLOYEE SET STATE=`KAR` WHERE CITY = `BANGALORE`;

B. Update value <u>INDIA</u> for Country for all the records, after updating Country should contains 'INDIA' values for entire table.

UPDATE EMPLOYEE SET COUNTRY='INDIA';

- C. DELETE the records where NAME is AAA

 DELETE FROM EMPLOYEE WHERE NAME = `AAA`;
- D. DELETE the records where STATE is KAR

 DELETE FROM EMPLOYEE WHERE STATE = 'KAR';
- E. Display all available records in EMPLOYEE table SELECT * FROM EMPLOYEE;

[10]

Table: Orders

OrderID	CustomerID	OrderDate
10308	2	2022-08-15
10309	1	2022-08-26
10310	2	2022-09-01

Table: Customers

CustomerID	CustomerName	Country
1	John Todd	Germany
2	Dominic Dom	Mexico
3	Paul S	Mexico

A. Perform Inner Join with Orders & Customer Table

SELECT Orders.*, Customers.* FROM Orders
INNER JOIN Customers
ON Orders.CustomerID = Customers.CustomerID;

B. Create a MySQL View for right join with Orders & Customer Table

CREATE VIEW my_view AS
SELECT Orders.*, Customers.* FROM Orders
RIGHT JOIN Customers
ON Orders.CustomerID = Customers.CustomerID;

- C. Use a View which created in Q2[B] to display data for right join queries SELECT * FROM my_view;
- D. Delete a MySQL View which created in Q2[B]DROP VIEW my_view;

Tables: CUSTOMERS_1, CUSTOMERS_2

A. Display all the records and exclude duplicate records from CUSTOMER_1 and CUSTOMER_2 using MySQL SET operators.

```
SELECT * FROM CUSTOMER_1
UNION
SELECT * FROM CUSTOMER_2;
```

B. Display common records from CUSTOMER_1 and CUSTOMER_2 tables.

```
SELECT * FROM CUSTOMER_1
INTERSECT
SELECT * FROM CUSTOMER_2;
```

Q4. [A] Perform basic operations on R Vector

[5]

- Create R vector for given elements (U, O, I, E, A) my_vector <- c('U', 'O', 'I', 'E', 'A')
- Display the vector elements print(my_vector)
- 3. Display the length of R vector

```
print(my_vector)
or
length(my_vector)
```

4. Sort vector elements in ascending order

```
sort(my_vector)
```

1. Create Matrix with given elements

```
my_matrix < -matrix(c(8, 4, 3, -5, 6, -2, 7, 9, -8), nrow = 3, byrow = TRUE)
```

Display Matrix elements in R print(my matrix)

Q5. Read Vehicle Park dataset and write R code for following statements.

[10]

About Dataset

- Vehicle Park data contains the no of vehicles are present on road or market in India from Year 2000 to 2022
- Columns:
 - YEAR: Vehicle Sales Year
 - VEHICLE_TYPE: Type of vehicle sold to the market (Truck, Bus, Four & Two-wheeler, Others)
 - BRAND: Vehicle brand & Manufacturer
 - VEHICLE_COUNT: No of vehicle sold in market for a year
 - AGE_GROUP: Age group of the vehicle
 - AGE: Vehicle age represent how old vehicle
 - RTO_REGISTRATION_YEAR: Year of vehicle registration

Write R Code for following statements:

A. Read (VEHICLE_PARK.csv) CSV file vehicle_park <- read.csv("VEHICLE_PARK.csv")

B. Display top 20 and bottom 55 records using head and tail command

```
head(vehicle_park,20) tail(vehicle_park, 55)
```

C. Display quick summary of all the columns.

```
summary(vehicle_park)
```

D. Display all the vehicles whose AGE is 5 years old

```
vehicle_park[vehicle_park$AGE_GROUP == '5-6', ]
```

E. Display BRAND single columns from Vehicle Park data.

```
vehicle_park$BRAND
```