Statistika pro informatiku

Souhrn látky

únor 2014

${\bf Obsah}$

1	Zák	klady statistiky a pravděpodobnosti
	1.1	Rozlišení pojmů
	1.2	Pravděpodobnost jevu a jeho doplňku
	1.3	Sjednocení jevů
	1.4	Podmíněná pravděpodobnost
	1.5	Nezávislost jevů (průnik)
	1.6	Bayessova věta
2	Roz	zdělení pravděpodobnosti
	2.1	Diskrétní rozdělení
		2.1.1 Bernoulliho rozdělení
		2.1.2 Binomické rozdělení
		2.1.3 Geometrické rozdělení
		2.1.4 Poissonovo rozdělení
	2.2	Spojité rozdělení
		2.2.1 Rovnoměrné rozdělení
		2.2.2 Exponenciální rozdělení
		2.2.3 Normální (gaussovo) rozdělení

1 Základy statistiky a pravděpodobnosti

1.1 Rozlišení pojmů

Statistika TODO

Pravděpodobnost TODO

1.2 Pravděpodobnost jevu a jeho doplňku

$$P(A) = \frac{size(A)}{size(\Omega)}$$

Obrázek 1: Vennův diagram základní pravděpodobnosti jevu

$$P\left(A^{C}\right) = 1 - P\left(A\right)$$

Obrázek 2: Vennův diagram doplňku jevu

1.3 Sjednocení jevů

Pro disjunktní jevy platí

$$P(A \cup B) = P(A) + P(B).$$

Obrázek 3: Disjunktní jevy

Pro jevy platní

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Oblast průniku by byla započítána dvakrát, proto je potřeba ji odečíst.

Obrázek 4: Jevy

1.4 Podmíněná pravděpodobnost

$$P(A|B) = \frac{P(A \cap B)}{P(B)}, P(B) \neq 0$$

"Pravděpodobnost jevu Aza podmínky, že jsme vBa že jevBnastal."

Obrázek 5: Podmíněná pravděpodobnost

1.5 Nezávislost jevů (průnik)

Pro **nezávislé** jevy platí

$$P(A \cap B) = P(A) * P(B).$$

Jinak platí

$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \cap B) = P(B|A)P(A)$$

1.6 Bayessova věta

$$P\left(\vec{\sigma}|\bullet\right) = P\left(\bullet|\vec{\sigma}\right) * P\left(\vec{\sigma}\right) = P\left(\vec{\sigma}\right) * P\left(\bullet|\vec{\sigma}\right) = 0,7*0,2 = \underline{0,14}$$

Obrázek 6: Bayessova věta pomocí stromu

2 Rozdělení pravděpodobnosti

2.1 Diskrétní rozdělení

2.1.1 Bernoulliho rozdělení

TODO

2.1.2 Binomické rozdělení

TODO

2.1.3 Geometrické rozdělení

$$T \sim geom(p)$$

 $P(T > n) = (1-p)^n$
 $P(T = k) = (1-p)^{k-1} * p$
 $P(T \le n) = 1 - (1-p)^n$

2.1.4 Poissonovo rozdělení

TODO

2.2 Spojité rozdělení

2.2.1 Rovnoměrné rozdělení

TODO

2.2.2 Exponenciální rozdělení

$$\begin{array}{rcl} X & \sim & \exp{(\lambda)} \\ f\left(x\right) & = & \lambda e^{-\lambda x}, \, x \geq 0 \\ P\left(X \leq x\right) & = & 1 - e^{-\lambda x} \end{array}$$

REFERENCE

$$EX = \frac{1}{\lambda}$$
$$varX = \frac{1}{\lambda^2}$$

$$P\left(\vec{\sigma}|\bullet\right) = P\left(\bullet|\vec{\sigma}\right) * P\left(\vec{\sigma}\right) = P\left(\vec{\sigma}\right) * P\left(\bullet|\vec{\sigma}\right) = 0, 7 * 0, 2 = \underline{0, 14}$$

Obrázek 7: Graf distribuční funkce exponenciálního rozdělení[1]

2.2.3 Normální (gaussovo) rozdělení

TODO

Reference

[1] The Free Encyclopedia Wikipedia. Exponential distribution. 2014.