3. PRAKTIKA:

Multzoak, aplikazioak, zatigarritasuna eta konbinatoria

1. Multzoak

Union[zerrenda1, zerrenda2, ...] zerrenda1, zerrenda2, ... adierazpenetan agertzen diren elementu desberdin guztiak agertuko dira.

Intersection[zerrenda1, zerrenda2, ...] zerrenda1, zerrenda2, ... adierazpenetan agertzen diren elementu komunak agertuko dira.

Complement[zerrenda1, zerrenda2] zerrenda2-n ez dauden zerrenda1-eko elementuak agertuko dira.

Subsets[zerrenda] zerrenda-ko azpimultzo posibleak agertuko dira.

Length[zerrenda] zerrenda-ko elementuen kopurua agertuko da.

2. Funtzioak

Parametrorik ez badago

Solve[sistema,{ezezagunak}] Sistemaren soluzioa lortuko du, existitzen bada.

NSolve[sistema, {ezezagunak}] Sistemaren soluzio hurbildua lortuko du, existitzen bada.

Parametroak badaude:

Reduce[sistema, {ezezagunak}] Sistemaren ebazpenerako parametroen arabera aukera guztiak aztertuko ditu.

If[baldintza, t, f] t erantzuna emango du baldintza egiaztatzen bada eta **f** emango du baldintza egiaztatzen ez bada.

3. Zatigarritasuna

GCD[n_1 , n_2 , ...] n_1 , n_2 , ... balioen z.k.h. kalkulatuko du.

LCM[$\mathbf{n_1}$, $\mathbf{n_2}$, ...] $\mathbf{n_1}$, $\mathbf{n_2}$, ... balioen m.k.t. kalkulatuko du

PrimeQ[adierazpena] True agertuko da adierazpena zenbaki lehena bada eta False konposatua bada.

CoprimeQ[n_1, n_2] True agertuko da n_1 eta n_2 elkar lehenak badira eta False aurkako kasuan.

NextPrime[n] n zenbakiaren hurbilen dagoen zenbaki lehena adieraziko du (n baino handiagoa).

FactorInteger[n] n zenbakiaren faktore lehenen zerrenda kalkulatu du, bakoitza bere berretzailearekin.

Divisors[n] n zenbakiaren zatitzaileen zerrenda kalkulatuko du.

4. Konbinatoria

Binomial[n, m] $\binom{n}{m}$ zenbaki binomikoa kalkulatuko du.