Tutorial Task

Name – Swati Rai

Reg No - 20BCE0996

Date - 13th Jan 2023

Task 1

```
# Task 1
    In [ ]: #SWATI_20BCE0996
    In [1]: def gender_features(word):
    return {'last_letter': word[-1]}
    In [2]: gender_features('Swati')
    Out[2]: {'last_letter': 'i'}
    In [3]: from nltk.corpus import names
    In [6]: labled_names = ([(name, 'male') for name in names.words('male.txt')] + [(name, 'female') for name in names.words('female.txt')])
    In [7]: import random
    In [9]: random.shuffle(labled_names)
                                              labled_names

('Maren', 'female'),
('Porter', 'male'),
('Wilmette', 'female'),
('Wilmette', 'female'),
('Tedra', 'female'),
('Tidor', 'male'),
('Bethena', 'female'),
('Smitty', 'male'),
('Randee', 'female'),
('Hiralal', 'male'),
('Harlal', 'male'),
('Katti', 'female'),
('Addie', 'female'),
('Addie', 'female'),
('Addie', 'female'),
('Hasty', 'male'),
('Hasty', 'male'),
('Hasty', 'male'),
('Hichelina', 'female'),
('Hichelina', 'female'),
('Helene', 'female'),
In [10]: labled_names
In [11]: featuresets = [(gender_features(n), gender) for (n,gender) in labled_names]
In [12]: featuresets
                                         [({'last_letter': 'e'},
   ({'last_letter': 'y'},
   ({'last_letter': 'e'},
                                                                                                                                                           'female'),
                                                                                                                                                       'male'),
'female'),
                                               ({ last_letter: e },
({ 'last_letter': 'n'},
({ 'last_letter': 'a'},
({ 'last_letter': 'n'},
({ 'last_letter': 'l'},
({ 'last_letter': 'h'},
({ 'last_letter': 'd'},
({ '
                                                                                                                                                          'male'),
'female'),
                                                                                                                                                        'male'),
'female'),
                                                                                                                                                         'male'),
                                               {{ last_letter': 'a'},
({ 'last_letter': 'a'},
({ 'last_letter': 'h'},
({ 'last_letter': 'd'},
({ 'last_letter': 'a'},
({ 'last_letter': 'l'},
                                                                                                                                                          'female'),
                                                                                                                                                        'male'),
'male'),
'female'),
                                                                                                                                                          'male'),
'male'),
'female'),
                                                ({'last_letter': 'n'},
({'last_letter': 'a'},
                                                                                                                                                        'female'),
'female'),
'female'),
                                                          'last_letter': 's'},
'last_letter': 'n'},
                                                ({ 'last_letter': 's'},
({ 'last_letter': 'a'},
({ 'last_letter': 'a'},
In [36]: train_set, test_set = featuresets[500:], featuresets[:500]
```

Task 2

```
# Task 2
In [37]: import nltk
In [41]: classifier = nltk.NaiveBayesClassifier.train(train_set)
In [47]: classifier.classify(gender_features('Swati'))
Out[47]: 'female'

In []: print(nltk.classify.accuracy(classifier, test_set))
In [44]: import nltk
    from nltk.tokenize import TweetTokenizer
        text = 'The party was sooo fun :D #superfun'
        twtkn = TweetTokenizer()
        twtkn.tokenize(text)
Out[44]: ['The', 'party', 'was', 'sooo', 'fun', ':D', '#superfun']
In []:
```

Task 3

Explore COCA

Demonstrate the following features

3.1 Find the frequency count of a word

Word searched: Machine

Frequency:

3.2 Chart – word – frequency; section; sub-section;

3.3 Collocate – Display three collocations on the left and right each of the word Set to 3 collocations

