Versuchsbericht P422 Rastertunnelmikroskopie

Gabriel Remiszewski und Christian Fischer ${\rm durchgef\"{u}hrt~am~2/3.11.2023}$

Inhaltsverzeichnis

1	Einleitung	1
2	Fazit	2

1. Einleitung

Mithilfe eines Rastertunnelmikroskops (RTM) lassen sich Oberflächen von elektrisch leitfähigen Materialien atomar auflösen. Dies ist besonders nützlich, wenn z.B. die Oberflächenstruktur eines Materials untersucht werden soll. Bei einem RTM wird sich der quantenmechanische Tunneleffekt zunutze gemacht, indem zwischen abrasternder Messspitze und der zu untersuchenden Oberfläche eine Spannung angelegt wird, sodass sich die Fermi-Niveaus der Messspitze und der zu untersuchenden Oberfläche gegeneinander verschieben, womit ein Tunnelstrom messbar wird. Dieser gemessene Tunnelstrom dient dann in zwei verschiedenen Betriebsmodi des RTMs zur Darstellung der Elektronenverteilung an der Oberfläche des zu untersuchenden Materials, womit Rückschlüsse auf dessen Oberflächenstruktur getroffen werden können.

In diesem Versuch soll die Funktionsweise und die technische Umsetzung eines RTMs verstanden werden. Außerdem soll der Umgang mit einem RTM erlernt werden, indem eine Gold-Probe und eine HOPG-Probe (hochgeordnetes pyrolytisches Graphit) mikroskopiert werden. Hier ist insbesondere das Ziel, die Oberfläche des HOPGs mit atomarer Auflösung abzubilden, um die Eichung der RTM-Piezos zu überprüfen.

2. Fazit