

EINFÜHRUNG IN DIE TECHNISCHE INFORMATIK

TUTORIUM 11.11.2016

BESPRECHUNG

Blatt 3

WIEDERHOLUNG

Vorlesung & Für Blatt 4

WIEDERHOLUNG: KOPPELTERME

- ➤ Zwei Schaltfunktionen f(c,b,a) und g(c,b,a) gegeben. Verzicht auf maximale Blöcke um gemeinsame Blöcke zwischen f und g zu erhalten —> Koppelterme
- ➤ Ziel: Einsparung von Bauteilen im Schaltnetz

WIEDERHOLUNG: SCHALTZEICHEN

➤ Darstellung logischer Funktionen durch "reale" Gatter

WIEDERHOLUNG: SCHALTZEICHEN

➤ Wir verwenden die Schaltzeichen um Schaltpläne darzustellen

$$f(x_1, x_2) = x_1 x_2 \vee x_1 x_2$$

WIEDERHOLUNG: MULTIPLEXER

➤ Multiplexer: Auswahl-Schaltnetz das einen von mehreren Eingängen durchschaltet

➤ Interner Aufbau:

WIEDERHOLUNG: MULTIPLEXER

➤ Steuersignale: Geben binärcodiert den Eingang an, der weitergeleitet wird

WIEDERHOLUNG: DEMULTIPLEXER

- ➤ Demultiplexer: Verteilt ein Eingangssignal auf einen von mehren Ausgangssignale
- > Steuersignale: Geben binär codiert den Ausgang an

WIEDERHOLUNG: KOMPARATOR

- ➤ Komparator: Vergleicht zwei Binärzahlen
- ➤ n-Bit Komparator: Vergleicht zwei n-Bit große Zahlen —> In unserem Rechner 32/64-Bit Komparatoren
- ➤ Bsp.: 2-Bit Komparator

В		A		Y ₁	Y ₂	Y ₃	В		Α		Υ ₁	Y ₂	Y ₃
b_1	b_0	a_1	a_0	A = B	A < B	A > B	<i>b</i> ₁	b_0	a_1				A > B
0	0	0	0	1	0	0	1	0	0	0	0	1	0
0	0	0	1	0	0	1	1	0	0	1	0	1	0
0	0	1	0	0	0	1	1	0	1	0	1	0	0
0	0	1	1	0	0	1	1	0	1	1	0	0	1
0	1	0	0	0	1	0	1	1	0	0	0	1	0
0	1	0	1	1	0	0	1	1	0	1	0	1	0
0	1	1	0	0	0	1	1	1	1	0	0	1	0
0	1	1	1	0	0	1	1	1	1	1	1	0	0

WIEDERHOLUNG: HALBADDIERER & VOLLADDIERER

➤ Halbaddierer: Addiert zwei einstellige Binärzahlen und bildet Übertrag

➤ Volladdierer: Addieren von zwei mehrstelligen Binärzahlen, berücksichtigt auch Übertrag aus vorheriger Stelle

WIEDERHOLUNG

Hazards

ÜBUNGSAUFGABEN

➤ Prüfe ob die Funktion f Funktionshazard behaftet ist

$$f(c,b,a) = \overline{c} \vee \overline{b} \vee \overline{a}$$

➤ Ja ist sie, siehe KV Übergang (000 -> 110)

