УДК 51.71

РАЗРАБОТКА АЛГОРИТМА ГЕНЕРАЦИИ УСЛОВНО-РЕАЛЬНЫХ ДАННЫХ ДЛЯ АДАПТАЦИИ МОДЕЛЕЙ МАШИННОГО ОБУЧЕНИЯ К МАЛОМУ НАБОРУ НАТУРНЫХ ДАННЫХ

Мусаев А.И. (СПбГЭТУ «ЛЭТИ»)

Научный руководитель – ассистент кафедры МО ЭВМ, Мандрикова Б.С. (СПбГЭТУ «ЛЭТИ»)

Введение. Современные исследования космической погоды и солнечной активности, ввиду их негативного воздействия на наземную и космическую технику и технологии, требуют наличия представительных выборок данных геофизических параметров, что соблюдается далеко не всегда [1]. Доступ к натурным данным может быть ограничен из-за высокой стоимости и трудности сбора [2]. Кроме того, такие данные часто содержат шумы и пропуски, что снижает их количество и качество для исследований [3]. В связи с этим, генерация условно-реальных данных становится важным инструментом для моделирования и прогнозирования влияния солнечной активности на земные и космические технологии. Основной задачей данной работы является создание алгоритма генерации условно-реальных временных рядов. Существуют решения, которые позволяют создавать синтетические данные временных рядов, однако, они не способны генерировать большой объем данных или являются недостаточно гибкими для генерации на основе имеющихся данных.

Основная часть. Для адаптации моделей машинного обучения, в частности нейронных сетей, с учетом ограниченности количества натурных данных, и как следствие невозможности перекрытия пространства признаков, разработан алгоритм генерации условно-реальных данных.

На основе обзора существующих методов сформулированы ключевые требования к разрабатываемому алгоритму генерации условно-реальных данных:

- Поддержка генерации длинных временных рядов (свыше 10 000 измерений);
- Возможность задания характеристик сгенерированных данных на основе существующих временных рядов;
- Сохранение исходного тренда и возможность добавления аномалий в этот тренд; На основе обзора и анализа существующих аналогов предлагается следующий алгоритм:
 - 1) Создание базового временного ряда: формирование исходного ряда на основе медианных значений натурных данных за периоды, соответствующие регулярным (спокойным) вариациям.
 - 2) Выделение тренда: применение методов анализа временных для выделения основной тенденции. В работе на данном этапе предлагается применение кратномасштабного вейвлет-анализа путём последовательного исключения колебаний с меньшими периодами из исходного ряда.
 - 3) Генерация аномалий: моделирование локальных особенностей и их аддитивное добавление в тренд. Локальные особенности должны быть подобны природным аномалиям. На данном этапе формируются форма (например, треугольный импульс), амплитуда, длительность и параметры (например, коэффициент асимметрии) локальных особенностей в зависимости от существующих аномалий.
 - 4) Генерация шумов: применение различных типов шумов для имитации реальных условий измерений. На данном этапе задается тип шума (например, белый) и отношение сигнал/шум.

В качестве объекта исследования выбраны данные нейтронных мониторов наземных станций [4], отражающие интенсивность космических лучей. Однако, разработанный алгоритм универсален и не привязан к конкретному типу данных, поэтому может быть использован специалистами из других областей знаний. Массивы данных, сгенерированных на основе предложенного алгоритма, могут быть использованы как при адаптации моделей

машинного обучения, в метаобучении, так и для детального исследования и оценки чувствительности построенных моделей.

Выводы. Проведенный обзор существующих методов генерации условно-реальных данных показал, что на данный момент универсальных методов не существует, а проблема отсутствия представительных выборок данных геофизических параметров является актуальной. В работе предложен новый алгоритм генерации условно-реальных данных, позволяющий адаптировать модели машинного обучения, в частности нейронные сети (для задачи метаобучения), так и для детального исследования и оценки чувствительности построенных моделей. В дальнейшем планируется создание программы в среде программирования MatLab на основе разработанного алгоритма.

Список использованных источников:

- 1. Кузнецов В. Д. Космическая погода и риски космической деятельности // Космическая техника и технологии. 2014; 3(6).
- 2. Бухарицин А.П. Состояние и перспективы развития рынка услуг по сбору и обработке спутниковых данных дистанционного зондирования земли // Международный журнал прикладных и фундаментальных исследований. -2021. -№ 3. C. 85-91;
- 3. Балабин Юрий Васильевич, Вашенюк Эдуард Владимирович, Гвоздевский Борис Борисович Шал и множественность на нейтронных мониторах // Вестник Кольского научного центра РАН. 2010. №2.
 - 4. База данных сети нейтронных мониторов. Источник: <www.nmdb.eu>.

Автор	Мусаев А.И.
Научный руководитель	Мандрикова Б.С.