topologia 17.04

April 17, 2020

Z 4

a)

f ciagła \Leftrightarrow Dla każdego A: $f[\overline{A}] \subseteq \overline{f[A]}$.

 (\Rightarrow)

Niech f domknieta. Wiemy, że $f[A] \subseteq f[\overline{A}]$ oraz $\overline{f[A]}$ zawiera sie w każdym domknietym zbiorze zawierajacym f[A]. Z domknietości f, $f[\overline{A}]$ domkniete, wiec $\overline{f[A]} \subseteq f[\overline{A}]$. Skoro $f[\overline{A}] \subseteq \overline{f[A]}$, to $f[\overline{A}] = \overline{f[A]}$.

 (\Leftarrow)

Dla każdego $A{:}~f[\overline{A}]=\overline{f[A]}\Rightarrow$ Dla każdego Ddomknietego $f[D]=\overline{f[D]}$ domkniete.

b)

 (\Rightarrow)

Niech f otwarta. Wiemy, że $f[\operatorname{Int}(A)] \subseteq f[A]$ oraz w $\operatorname{Int}(f[A])$ zawiera sie każdy otwarty zbiór zawarty w f[A]. Z otwartości f, $f[\operatorname{Int}(A)]$ otwarte, wiec $f[\operatorname{Int}(A)] \subseteq \operatorname{Int}(f[A])$.

(⇔)

Załóżmy, że dla każdego A: $f[\operatorname{Int}(A)] \subseteq \operatorname{Int}(f[A])$ oraz f ciagła. Weźmy U otwarty. Wtedy $f[U] \subseteq \operatorname{Int}(f[U])$. Skoro $\operatorname{Int}(f[U]) \subseteq f[U]$. Stad $f[U] = \operatorname{Int}(f[U])$, wiec f[U] otwarty.