

GENERATE KNOCK-OUT MOUSE FROM MUTANT CELL LINE

Figure 1

Homologous Recombination: G418 Resistance, Targeting Vector Flanked by "A" and "E"

Ä

Random Integration: G418 Resistance, Targeting Vector Flanked by "X" and "Y"

m

DISTINGUISH EVENTS BY SCREENING MOLECULARLY (PCR & SOUTHERN)

Figure 2

Figure 3

Figure 4

Figure 5

C3406:

GTTAACTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGC TCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC TTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGT GGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTCTCCAATGATGAGCACTTTTAAAG TTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTT GAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACAC TGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTG ATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAA $\tt CTCGGCCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAG$ ATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGT ${\tt CCCAAAAACAGGAAGATTGTATAAGCAAATATTTAAATTGTAAACGTTAATATTTTTGTTAAAATTCGCGTTAAATTTTTGTTAAAATCAG$ $\tt CTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGCCCGAGATAGGGTTGAGTGTTCCAGTTT$ GGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCA AAAGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAAGGAGCGGGCGCTAGGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAAC GCTTCAGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACA GGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTAC AGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGC ACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATG AATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACA ${\tt TTATCGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGGTCATTAGTTCATAGCCCATATATGGAGTTCCGCGTTACATTACCATACCATATATGGAGTTCCGCGTTACATACCATACCATATATGGAGTTCCGCGTTACATACATAC$ ATAGGGACTTTCCATTGACGTCAATGGGAGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATATGCCAAGTAC GAGGGCGGGGCGGGGGGGGGGGGGGGGGGCGCCAATCAGAGCGGCGCGCTCCGAAAGTTTCCTTTTATGGCGAGGCGGCG GAGCCGCAGCCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTGGCGGAGCCGAAATCTGGGAG $\tt CTTCTGGCGTGTGACCGGCGGCTCTAGAGCCTCTGCTAACCATGTTCATGCCTTCTTTTTTCCTACAGCTCCTGGGCAACGTGCTGG$ TTGTTGTGCTGTCTCATCATTTTGGCAAAGAATTCACCTGCCAGACCATGCCAAAAAAGAAGAAGAGACATGAAACCAGTAACGTTA AAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCG TTGCCACCTCCAGTCTGGCCCTGCACGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTG GTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAA GGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGG GACGATACCGAAGACAGCTCATGTTATATCCCGCCGTCAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCG $\tt CTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCCA$ ATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGAA GTTGGAATTTTTTGTGTCTCTCACTCGGAAGGACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTG GCAACATATGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATATGAAACAGCCCCCTGCTGTCCATTCCT TTACATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCCCAGTCATAGCTGTCCCTCTTCTCTTATGAAGATCCCTCGACCT GCAGCCCAGCCCAAGCTCGGGGCCAGGTCGGCCGAGCGATCGCGAGAATTCGGCTTAAGTGAGTCGTATTACGGACTGGCCGTCGTTTT ACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAG AGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTCGCTTGGTAATAAAGCCCGCTTCGGCGGGCT TTTTTTT

ന്	Gene Target (Domains A-E)	A	æ		to		Q		ш	
ပ်	Targeting Vector: PGK-neo	B D D D D D D D D D D D D D D D D D D D	GCACGCTTCAAAAGCG	PGK-neo	TGFFCFFF	GTCARCTCCGG	ресттен	FGCAGCCAATATC	GGA	
Ö.	Targeting Vector: PGK- <i>lacO-neo</i>	B PGK-lacO-neo * lacO #1 * Hind III, IacO #2 ***********************************	# Hin	PGK-lacO-neo * Hind III *	CGRCTGCCGCGCT	laco #2	D Cacaat TCCGGC	GCCTTCGACCTC	Met	
ய	Targeting Vector: PGK <i>-lacO-n</i> eo + NLS <i>-lacl</i>	B		PGK-lacO-neo	AATTCACCTGCCA	Met _t (NLS)	р	Met _l (lacl)	D NLS-faci	

Figure 6 B-E

Homologous Recombination: G418 Resistance

Ä

Figure 7

Oligo #	Sequence (5' to 3')
10164	CGGAATTCACCTGCCAGACCATGCCAAAAAAGAAGAGAAAGGTCATGAAACCAGTAACGTTATACG
10165	CGGAATTCTCACTGCCCGCTTTCCAGTCG
10218	${\tt GCATTCTCGCAAGCTTCAAAAGCGCACGTCTGCCGCGCTATTGTGAGCGCTCACAATTCCGGGCCTTTCGACCTG}$
9959	TCATCAATTTCTGCAGAC
10219	TGCGCTTTTGAAGCTTGCGAGAATGCCGGGATTGTGAGCGCTCACAATAGGACCTTCGCGCCCGCC
4201	CAGGAAACAGCTATGAC

Figure 9

Figure 11

Figure 12

FIGURE 13

GCGGCCGCGAGTCGACGAGGCCGGCCGATTAATTAAGGCTCgacattgattattgactag ttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttccgcgt tacataacttacggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgac gtcaataatgacgtATgttcccatagtaacgccaatagggactttccattgacgtcaatg ggaggagtatttacggtaaactgcccacttggcagtacatcaagtgtatcatatgccaag tacgcccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtacAT GACCTTACGGGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCAT gcggcggcagccaatcagagcggcgcgctccgaaagtttccttttatggcgaggcggcgg cggcggcgcctataaaAAGCGAAGCGCGCGGGGGGGGGGGGGGTCGCTTGCCTTCG CTCCCACAGGTGAGCGGGCGGGACGGCCCTTCTCCCCGGGCTGTAATTAGCGCTTGGTT TAATGACGGCTCGTTTCTTTTCTGTGGCTGCGTGAAAGCCTTAAAGGGCTCCGGGAGGGC CTGCGAGGGGAACAAAGGCTGCGTGCGGGGTGTGTGCGTGGGGGGGTGAGCAGGGGGTGT GGGCGCGGCGGCTGTAACCCCCCCTGCACCCCCCTCCCGAGTTGCTGAGCACG GCCCGCTTCGGGTGCGGGGCTCCGTGCGGGGCGTGGCGGGGCTCGCCGTGCCGGGCG CGGGGGAGGGCGCGGCGCCCGGAGCGCCGGCGGCGTGTCGAGGCGCGGCGAGCCGCAG CCATTGCCTTTTATGGTAATCGTGCGAGAGGGCGCAGGGACTTCCTTTGTCCCAAATCTG GCGGAGCCGAAATCTGGGAGGCGCCGCCCCCCCCTCTAGCGGGCGCGGGCGAAGCGGT GCGGCGCCGCAGGAAGGAAATGGGCGGGGGGGGCCTTCGTGCGTCGCCGCCGCCGCCGTC CCCTTCTCCATCTCCAGCCTCGGGGCTGCCGCAGGGGGGACGCTGCCTTCGGGGGGGACG GGGCAGGGCGGGTTCGGCTTCTGGCGTGTGACCGGCGGCtctaGAGCCTCTGCTAACCA TGTTCATGCCTTCTTCTTTTCCTACAGctcctgggcaacgtgctggttgttgtgctgtc tcatcattttggcaaagaattcGCCACCatggtgagcaagggcgaggagctgttcaccgg ggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtc cggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccac cggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctacggcgtgcagtg cttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccga aggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgc cgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgactt caaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgt ctatatcatggccgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaa catcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcga cggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaaga ccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcac tctcggcatggacgagctgtacaagtaaGAATTCACTCCTCAGGTGCAGGCTGCCTATCA GAAGGTGGTGGCTGGCCAATGCCCTGGCTCACAAATACCACTGAGATCTTTTTCC CTCTGCCAAAAATTATGGGGACATCATGAAGCCCCTTGAGCATCTGACTTCTGGCTAATA AAGGAAATTTATTTTCATTGCAATAGTGTGTTGGAATTTTTTTGTGTCTCTCACTCGGAAG GACATATGGGAGGGCAAATCATTTAAAACATCAGAATGAGTATTTGGTTTAGAGTTTTGGC AACATATGCCATATGCTGGCTGCCATGAACAAAGGTGGCTATAAAGAGGTCATCAGTATA TGAAACAGCCCCTGCTGTCCATTCCTTATTCCATAGAAAAGCCTTGACTTGAGGTTAGA ATGTTTTACTAGCCAGATTTTTCCTCCTCTCCTGACTACTCCCAGTCATAGCTGTCCCTC TTCTCTTATGAAGATCcctcgacctgcagcccaagctCGGGGCCAGGTCGGCCGAGCGAT CGCGAGAATTCGGCTTAAGTGAGTCGTATTACGGACTGGCCGTCGTTTTACAACGTCGTG ACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCA GCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGA

CTACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCT AAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT ATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTG CGGCATTTTGCCTCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTG AAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCC TTGAGAGTTTTCGCCCCGAAGAACGTTCTCCAATGATGAGCACTTTTAAAGTTCTGCTAT GTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACT ATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCA TGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACT TACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTTGCACAACATGGGGG AGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCG CAGGACCACTTCTGCGCTCGGCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAG CCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCC GTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGA TCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCAT ATATACTTTAGATTGATTTACCCCGGTTGATAATCAGAAAAGCCCCCAAAAACAGGAAGAT TGTATAAGCAAATATTTAAATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAAATTT TTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATC AAAAGAATAGCCCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATT AAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACT ACGTGAACCATCACCCAAATCAAGTTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCG GAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCGAACGTGGCGAGAAAG GAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTG CGCGTAACCACCACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTAAAAGGATCTA GGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCA TCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAA TACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCC TCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAAC GGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCT ACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCC GGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTG GTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATG CTCGTCAGGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCT AGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGGAATTGTGAGCGGATAACAAT TTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTACGTAATACGACTCACTAG