Computational methods and heuristics for zero forcing

Boris Brimkov JMM 2021

Slippery Rock University
Mathematics and Statistics

Zero forcing

Blue vertex with exactly one white neighbor turns that neighbor blue

Related problems

- Power network monitoring
- Target set selection
- Zero forcing / minimum rank
- Quantum control
- Fast mixed network searching
- *k*-forcing
- Connected power domination
- Positive semidefinite zero forcing
- Probabilistic zero forcing

(Haynes et al. 2002)

(Kempe et al. 2003)

(AIM Group 2008)

(Burgarth et al. 2007)

(Yang 2013)

(Amos et al. 2015)

(Brimkov et al. 2018)

(Ekstrand et al. 2014)

(Kang & Yi 2012)

Related problems

- Power network monitoring
- Target set selection
- Zero forcing / minimum rank
- Quantum control
- Fast mixed network searching
- *k*-forcing
- Connected power domination
- Positive semidefinite zero forcing
- Probabilistic zero forcing

(Haynes et al. 2002)

(Kempe et al. 2003)

(AIM Group 2008)

(Burgarth et al. 2007)

(Yang 2013)

(Amos et al. 2015)

(Brimkov et al. 2018)

(Ekstrand et al. 2014)

(Kang & Yi 2012)

All of these problems are computationally difficult

Computational methods

- Guess-and-check / brute force (Everyone)
- Dynamic programming (Butler et al. 2014)
- Integer programming and branch-and-bound (Aazami 2010, Ackerman et al. 2010, Ben-Zwi et al. 2011, Mahaei and Hagh 2012, Chiang et al. 2013, Agra et al. 2019)
- Boolean Satisfiability (Brimkov et al. 2020)
- Heuristics (Agra et al. 2019, Brimkov et al. 2020)

```
Wavefront Algorithm

Data: Graph G = (V, E)
Result: Zero forcing number of G
\mathcal{C} \leftarrow \{(\emptyset, 0)\};
for R \in [n] do

for (S, r) \in \mathcal{C} do

for (S, r) \in \mathcal{C} do

S' \leftarrow cl(S \cup N[v]);
r' \leftarrow r + |\{v\} \setminus S| + \max\{|N(v) \setminus S| - 1, 0\};
if r' \leq R and (S', i) \notin \mathcal{C} for i \leq R then

\mathcal{C} \leftarrow \mathcal{C} \cup \{(S', r')\};
if S' = V then return T';
```

Wavefront Algorithm

```
Data: Graph G = (V, E)
```

Result: Zero forcing number of G

```
\mathcal{C} \leftarrow \{(\emptyset, 0)\};
```

```
for R \in [n] do
```

```
 \begin{array}{c|c} \text{for } (S,r) \in \mathcal{C} \text{ do} \\ \hline \text{for } v \in V \text{ do} \\ \hline S' \leftarrow cl(S \cup N[v]); \\ r' \leftarrow r + |\{v\} \backslash S| + \max\{|N(v) \backslash S| - 1, 0\}; \\ \text{if } r' \leq R \text{ and } (S',i) \notin \mathcal{C} \text{ for } i \leq R \text{ then} \\ \hline \mathcal{C} \leftarrow \mathcal{C} \cup \{(S',r')\}; \\ \text{if } S' = V \text{ then return } r'; \end{array}
```


Wavefront Algorithm

```
Data: Graph G = (V, E)
Result: Zero forcing number of G
```

 $\mathcal{C} \leftarrow \{(\emptyset, 0)\};$ for $R \in [n]$ do

```
 \begin{array}{c|c} \text{for } (S,r) \in \mathcal{C} \text{ do} \\ \hline \text{for } v \in V \text{ do} \\ \hline S' \leftarrow cl(S \cup N[v]); \\ r' \leftarrow r + |\{v\} \backslash S| + \max\{|N(v) \backslash S| - 1, 0\}; \\ \text{if } r' \leq R \text{ and } (S',i) \notin \mathcal{C} \text{ for } i \leq R \text{ then} \\ \hline C \leftarrow \mathcal{C} \cup \{(S',r')\}; \\ \hline \text{if } S' = V \text{ then return } r'; \\ \end{array}
```


Wavefront Algorithm

Data: Graph G = (V, E)

Result: Zero forcing number of G

$$\mathcal{C} \leftarrow \{(\emptyset, 0)\};$$
 for $R \in [n]$ do

$$\begin{array}{c|c} \text{for } (S,r) \in \mathcal{C} \text{ do} \\ \hline \text{for } v \in V \text{ do} \\ \hline S' \leftarrow cl(S \cup N[v]); \\ r' \leftarrow r + |\{v\} \backslash S| + \max\{|N(v) \backslash S| - 1, 0\}; \\ \text{if } r' \leq R \text{ and } (S',i) \notin \mathcal{C} \text{ for } i \leq R \text{ then} \\ \hline C \leftarrow \mathcal{C} \cup \{(S',r')\}; \\ \hline \text{if } S' = V \text{ then return } r'; \\ \end{array}$$

Wavefront Algorithm

IP formulations

Compact formulation

$$\begin{aligned} & \min & & \sum_{v \in V} s_v \\ & \text{s.t.:} & & s_v + \sum_{e \in \delta^-(v)} y_e = 1 & \forall v \in V \\ & & x_u - x_v + (T+1)y_e \leq T & \forall e = (u,v) \in E \\ & & x_w - x_v + (T+1)y_e \leq T & \forall e = (u,v) \in E, \forall w \in N(u) \backslash \{v\} \\ & & x \in \{0,\dots,T\}^n, s \in \{0,1\}^n, y \in \{0,1\}^m \end{aligned}$$

Noncompact formulation

$$\min \sum_{v \in V} s_v$$
s.t.:
$$\sum_{v \in B} s_v \ge 1 \qquad \forall B \in \mathcal{B}$$

$$s \in \{0, 1\}^n$$

IP formulations

Compact formulation

$$\begin{aligned} & \min & & \sum_{v \in V} s_v \\ & \text{s.t.:} & & s_v + \sum_{e \in \delta^-(v)} y_e = 1 & \forall v \in V \\ & & x_u - x_v + (T+1)y_e \leq T & \forall e = (u,v) \in E \\ & & x_w - x_v + (T+1)y_e \leq T & \forall e = (u,v) \in E, \forall w \in N(u) \backslash \{v\} \\ & & x \in \{0,\dots,T\}^n, s \in \{0,1\}^n, y \in \{0,1\}^m \end{aligned}$$

Noncompact formulation

$$\begin{aligned} & \min & & \sum_{v \in V} s_v & & \min & & \sum_{v \in V} x_v \\ & \text{s.t.:} & & \sum_{v \in B} s_v \geq 1 & \forall B \in \mathcal{B} & & \text{s.t.:} & & \sum_{v \in V} x_v \geq 1 \\ & & s \in \{0,1\}^n & & & x_w - x_v + \sum_{a \in N(w) \backslash \{v\}} x_a \geq 0 & \forall (v,w) \text{ with } v \in V, w \in N(v) \\ & & & x_v = 0 & \forall v \in cl(S) & x \in \{0,1\}^n \end{aligned}$$

Boolean SAT formulation

$$\min \quad \sum_{v \in V} (\deg(v)z_v + s_v)$$

s.t.:
$$\bigwedge_{B \in \mathcal{B}} \left(\bigvee_{v \in B} s_v \vee \bigvee_{v \in T(B)} z_v \right) \wedge \left(\bigvee_{v \in V} z_v \right) \wedge \left(\bigwedge_{\substack{v \in V \\ w \in cl(N[v])}} (\neg s_w \vee \neg z_v) \right)$$

Boolean SAT formulation

$$\min \quad \sum_{v \in V} (\deg(v)z_v + s_v)$$

s.t.:
$$\bigwedge_{B \in \mathcal{B}} \left(\bigvee_{v \in B} s_v \vee \bigvee_{v \in T(B)} z_v \right) \wedge \left(\bigvee_{v \in V} z_v \right) \wedge \left(\bigwedge_{\substack{v \in V \\ w \in cl(N[v])}} (\neg s_w \vee \neg z_v) \right)$$

To generate violated constraints:

$$\min \sum_{v \in V} x_v$$
s.t.:
$$\bigwedge_{\substack{v \in V \\ w \in N(v)}} \left(x_w \vee \neg x_v \vee \bigvee_{a \in N(w) \setminus \{v\}} \right) \wedge \left(\bigvee_{v \in V} x_v \right) \wedge \left(\bigwedge_{v \in cl(S)} \neg x_v \right)$$

Alternate constraint generation

```
Algorithm 1: Greedy algorithm for finding minimal violated forts
```

s return $B \leftarrow V \backslash C$

```
1 Input: Graph G = (V, E), set S \subset V corresponding to solution of RMP;

2 Output: Minimal fort B which violates S;

3 C \leftarrow cl(S);

4 for v \in V \setminus C do

5 if cl(C \cup \{v\}) \neq V then

6 C \leftarrow C \cup \{v\};

7 goto line 4;
```

Runtime comparisons

G	V	Z(G)	Wavefront	IP Models	Boolean
karate	34	13	329.10	$0.16({ m M})$	0.02
chesapeake	39	14	10.91	$35.43({ m M})$	1.94
dolphins	62	14	2405.56	246.24 (D)	108.59
lesmis	77	40	T	2708.95 (D)	3.74
polbooks	105	N/A	T	$\{14/27\}$ (D)	$\{18/27\}$
adjnoun	112	N/A	T	$\{9/30\}(\mathrm{M})$	$\{9/32\}$
football	115	N/A	T	$\{9/38\}(M)$	$\{0/40\}$
jazz	198	N/A	T	$\{27/96\}(\mathrm{M})$	$\{10/102\}$
${\it celegans neural}$	297	N/A	Т	$\{28/100\}(\mathrm{M})$	$\{15/89\}$
IEEE 14	14	4	0.01	0.01 (M)	0.001
IEEE 24	24	6	0.07	0.01 (M)	0.004
IEEE 30	30	7	0.82	0.03 (M)	0.010
IEEE 39	39	7	6.69	0.04 (M)	0.019
IEEE 57	57	9	18.76	$1.97({ m M})$	0.282
RTS 96	73	15	T	0.78 (M)	0.641
IEEE 118	118	26	T	734.96 (I)	10.367
IEEE 300	300	N/A	Т	{ 73/75 } (I)	$\{62/77\}$

Runtime comparisons

_	V	Z(G)	Wavefront	IP Models	Boolean
Cubic graphs	10	3	0.01	0.01 (M)	0.000
	20	5	0.02	$0.04 \; (M)$	0.009
	30	6	0.13	$0.42 \; (M)$	0.142
	40	8	1.95	6.10 (E)	2.624
	50	9	6.69	30.90 (E)	17.527
	60	11	156.83	1363.05 (E)	3138.832
	70	12	370.50	2852.27 (E)	{10.8/12.4}
	80	N/A	1615.85	5341.15 (E)	{10.8/13.8}
	90	N/A	3101.29	{9.4/13.6} (F)	$\{9.6/14.4\}$
	100	N/A	T	{ 9.6/15.4 } (F)	$\{9.6/15.8\}$
Avg-cubic	20	5.6	0.10	0.02 (M)	0.003
	40	10.0	796.89	$0.63 \; (M)$	0.063
	60	14.4	T	9.24 (I)	0.867
	80	19.4	T	15.45 (I)	7.150
	100	23.4	T	37.23 (I)	345.232
	120	30.5	T	109.13 (I)	382.478

Facets of zero forcing polytope

 If a polytope has a large number of facets, it is usually inherently difficult to solve with IP

Facets of zero forcing polytope

- If a polytope has a large number of facets, it is usually inherently difficult to solve with IP
- There can be $\Omega(1.3247^{n/3})$ facets defined by forts in pendant paths, join paths, and pendant cycles

- Single vertex largest closure: add a single white vertex to Z, so that the resulting closure is maximized
- Neighborhood largest closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the resulting closure is maximized
- Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the ratio of the resulting closure to the number of vertices added is maximized

Closure based heuristics

```
1 Input: Graph G = (V, E);
 2 Output: Zero forcing set Z of G;
 z \in \emptyset;
 4 C \leftarrow \emptyset;
 5 while C \neq V do
        C^* \leftarrow \emptyset:
      A \leftarrow \emptyset:
       for v \in V \setminus C do
            S \leftarrow C \cup A'(v,C);
 9
            if f(cl(S), v, C) > f(C^*, v, C) then
10
               A \leftarrow A'(v, C);
11
             C^* \leftarrow cl(S);
12
        C \leftarrow C^*:
13
        Z \leftarrow Z \cup A;
14
        for v \in Z do
15
            if cl(Z \setminus \{v\}) = V then
16
            17
18 return Z
```

Single vertex largest closure

$$A'(v,C) = \{v\}$$
$$f(S,v,C) = |S|$$

Neighborhood largest closure

$$A'(v,C) = (N[v] \cap (V \setminus C)) \setminus \{u\}$$
for some $u \in N(v) \cap (V \setminus C)$

$$f(S,v,C) = |S|$$

Neighborhood scaled closure

$$A'(v,C) = (N[v] \cap (V \setminus C)) \setminus \{u\}$$
for some $u \in N(v) \cap (V \setminus C)$

$$f(S,v,C) = (|cl(S)| - |C|) / |A'(v,C)|$$

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized 3/2 10/3 3/2

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized 3/2 10/3 3/2

Neighborhood scaled closure: add a single white vertex and all-but-one of its white neighbors to Z, so that the *ratio* of the resulting closure to the number of vertices added is maximized 3/2 10/3 3/2

Heuristic results

			Single Node		Neighborhood		Neighborhood		
			Largest Closure		Largest Closure		Scaled Closure		
G	V	Z(G)	Z_h	time	Z_h	time	Z_h	time	1
IEEE 14	14	4	4	0.000	5	0.000	5	0.000] 🗸
IEEE 24	24	6	7	0.001	6	0.000	6	0.000	/
IEEE 30	30	7	7	0.000	9	0.000	7	0.000	/
IEEE 39	39	7	9	0.003	8	0.001	8	0.001	/
IEEE 57	57	9	10	0.007	10	0.002	11	0.003	/
RTS 96	73	15	17	0.019	17	0.008	16	0.006	/
IEEE 118	118	26	27	0.048	32	0.017	28	0.029	/
karate	34	13	13	0.003	14	0.001	14	0.002] 🗸
chesapeake	39	14	15	0.007	15	0.002	15	0.002	1
dolphins	62	14	17	0.015	19	0.003	17	0.004	X
lesmis	77	40	41	0.040	41	0.008	41	0.026	/

Heuristic results

			Sing	gle Node	Neighborhood		Neighborhood		
			Largest Closure		Largest Closure		Scaled Closure		
G	V	Z(G)	Z_h	time	Z_h	time	Z_h	time	
	20	12.0	12.2	0.000	12.2	0.000	12.2	0.000	/
	30	15.4	16.2	0.002	16.8	0.000	16.0	0.000	/
	40	18.0	18.4	0.004	18.4	0.001	18.2	0.001	/
WS(10,.3)	50	21.8	22.0	0.009	24.0	0.002	23.6	0.002	/
	60	24.6	24.8	0.015	25.6	0.003	25.8	0.003	/
	70	27.4	28.8	0.025	28.4	0.005	28.4	0.004	
	80	31.2	32.6	0.036	33.8	0.008	33.2	0.007	X
	10	4.4	4.8	0.000	4.6	0.000	4.6	0.000	\
	20	6.2	6.2	0.000	6.4	0.000	6.4	0.000	/
	30	7.0	8.0	0.001	7.4	0.000	7.6	0.000	/
THO(F o)	40	9.4	10.2	0.002	10.6	0.000	9.6	0.000	/
WS(5,.3)	50	10.8	11.6	0.005	12.2	0.002	11.6	0.002	/
	60	11.6	13.6	0.008	14.0	0.002	13.2	0.002	X
	70	14.0	15.0	0.016	16.2	0.003	14.8	0.004	/
	80	14.8	16.8	0.015	18.2	0.005	17.2	0.006	X

Heuristic results

			Single Node		Neighborhood		Neighborhood		
			Largest Closure		Largest Closure		Scaled Closure		
G	V	Z(G)	Z_h	time	Z_h	time	Z_h	time	
Cubic	10	3.8	3.8	0.000	3.8	0.000	3.8	0.000	/
	20	5.2	5.4	0.000	5.2	0.000	5.2	0.000	1
	30	6.6	7.4	0.001	7.2	0.000	7.0	0.000	/
	40	8.8	9.8	0.003	9.6	0.001	9.2	0.001	/
	50	9.2	10.4	0.005	9.4	0.001	9.6	0.001	/
	60	11.4	12.4	0.008	12.0	0.003	11.8	0.003	1
	70	12.0	12.6	0.008	13.2	0.004	12.8	0.004	/

- Compared different methods for computing Z(G)
- Each has its pros and cons

- Compared different methods for computing Z(G)
- Each has its pros and cons
- Presented heuristics for Z(G)
 - Can speed up exact models
 - Very fast and usually pretty accurate
 - Can be adapted to other graph infection problems

- Compared different methods for computing Z(G)
- Each has its pros and cons
- Presented heuristics for Z(G)
 - Can speed up exact models
 - Very fast and usually pretty accurate
 - Can be adapted to other graph infection problems
- Future work: develop timestep-based SAT model, derive performance guarantees for heuristics

- Compared different methods for computing Z(G)
- Each has its pros and cons
- Presented heuristics for Z(G)
 - Can speed up exact models
 - Very fast and usually pretty accurate
 - Can be adapted to other graph infection problems
- Future work: develop timestep-based SAT model, derive performance guarantees for heuristics
- B. Brimkov, I. V. Hicks, D. J. Mikesell. Improved computational approaches and heuristics for zero forcing *INFORMS Journal on Computing* (2020).
- B. Brimkov, C.C. Fast, I.V. Hicks. Computational approaches for zero forcing and related problems. *European Journal of Operational Research* (2019).

- Compared different methods for computing Z(G)
- Each has its pros and cons
- Presented heuristics for Z(G)
 - Can speed up exact models
 - Very fast and usually pretty accurate
 - Can be adapted to other graph infection problems
- Future work: develop timestep-based SAT model, derive performance guarantees for heuristics
- B. Brimkov, I. V. Hicks, D. J. Mikesell. Improved computational approaches and heuristics for zero forcing *INFORMS Journal on Computing* (2020).
- B. Brimkov, C.C. Fast, I.V. Hicks. Computational approaches for zero forcing and related problems. *European Journal of Operational Research* (2019).

THANK YOU