ISOMETRIAS DE \mathbb{R}^n

1. Transformaes

Seja Ω um conjunto. Uma aplicao $f:\Omega\to\Omega$ chama-se uma transformao de Ω . A transformao f dita injetiva se f(v)=f(w) implica v=w para todo $v,w\in\Omega$; f chama-se sobrejetiva se para todo $w\in\Omega$ existe $v\in\Omega$ tal que f(v)=w. A transformao f chama-se bijetiva ou invertvel se ela injetiva e sobrejetiva. Se f uma transformao invertvel, ento existe a sua inversa $f^{-1}:\Omega\to\Omega$ definida pela regra que f(v)=w se e somente se $f^{-1}(w)=v$ para todo $v,w\in\Omega$.

As transformaes de Ω podem ser compostas. Se $f, g: \Omega \to \Omega$ ento $f \circ g: \Omega \to \Omega$ definida como $(f \circ g)(v) = f(g(v))$ para todo $v \in \Omega$. A composio de transformaes associativa no sentido que $(f \circ g) \circ h = f \circ (g \circ h)$ para todo $f, g, h: \Omega \to \Omega$.

Ns vamos estudar principalmente as transformaes do plano \mathbb{R}^2 e o espao \mathbb{R}^3 .

Exemplo 1. Todo conjunto Ω tem a transformao identidade id $\Omega: \Omega \to \Omega$, $v \mapsto v$ para todo $v \in \Omega$. Se $f: \Omega \to \Omega$ uma transformao invertvel, ento $f \circ f^{-1} = f^{-1} \circ f = \operatorname{id}_{\Omega}$.

Exemplo 2. Seja $\Omega = \mathbb{R}^n$ com $n \geq 1$. Uma transformao $T : \mathbb{R}^n \to \mathbb{R}^n$ dita linear se

$$T(\alpha v + \beta w) = \alpha T(v) + \beta T(w)$$

para todo $v,w\in\mathbb{R}^n$ e $\alpha,\beta\in\mathbb{R}$. Transformaes lineares so estudadas em lgebra linear. Uma transforma
o linear $T:\mathbb{R}^n\to\mathbb{R}^n$ invertvel se e somente se

$$\ker T = \{ v \in \mathbb{R}^n \mid T(v) = 0 \} = \{ 0 \}.$$

Exemplo 3. Seja $t \in \mathbb{R}^n$ e considere a transformao $T_t : \mathbb{R}^n \to \mathbb{R}^n$ definido como

$$T_t(v) = v + t.$$

A transforma
o T_t chamado a translao de \mathbb{R}^n pelo vetor t. Note que se $t \neq 0$, ento T_t no linear, pois $T_t(0) = t \neq 0$. A transforma
o T_t invertvel e $T_t^{-1} = T_{-t}$.

2. Grupos

Seja G um conjunto no vazio com uma operao que pode ser denotada por \cdot (ou por +, ou simplesmente por concatenao). Isso quer dizer que com cada par de elementos $a,b \in G$ associamos um elemento $a \cdot b \in G$. O conjunto G considerado com a operao \cdot dito grupo se as seguintes propriedades esto vlidas para todo $a,b,c \in G$.

- (1) A operao · associativa; ou seja $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- (2) Existe identidade $1 \in G$ tal que $1 \cdot a = a \cdot 1 = a$.
- (3) Todo elemento $a \in G$ possui inverso a^{-1} que satisfaz $a \cdot a^{-1} = a^{-1}a = 1$.

Um grupo G dito abeliano ou comutativo se ab = ba para todo $a, b \in G$.

Exemplo 4. O conjunto \mathbb{Z} dos inteiros um grupo abeliano com a operao de adio. A mesma coisa vale para \mathbb{Q} , \mathbb{R} , \mathbb{C} . Se V um espao vetorial, ento V um grupo abeliano com a operao de adio.

Ns vamos considerar dois tipos de grupos, nomeadamente grupos de transformaes e grupos de matrizes.

Exemplo 5. Seja $n \geq 1$, e seja G um conjunto no vazio de matrizes invertveis $n \times n$ tal que G fechado para multiplicao e se $X \in G$, ento $X^{-1} \in G$. Ento G um grupo com a multiplicao matricial. Um tal grupo G chamado um grupo de matrizes ou grupo matricial. Os primeiros exemplos de grupos matriciails so

$$GL_n = \{X \text{ matriz } n \times n \mid X \text{ invertvel}\}$$

 $SL_n = \{X \in GL_n \mid \det X = 1\}.$

Os conjuntos GL_n e SL_n so grupos. bvio que $SL_n \subseteq GL_n$ e neste caso dizemos que SL_n um subgrupo de GL_n e escrevemos que $SL_n \le GL_n$.

Exemplo 6. Seja G um conjunto de transformaes invertveis de um conjunto Ω tal que G fechado para a composio e $T^{-1} \in G$ sempre quando $T \in G$. Neste caso G um grupo. Tal grupo chama-se um grupo de transformaes. Por exemplo seja $\Omega = V$ um espao vetorial de dimenso finita e considere

$$\operatorname{Sym}(V) = \{ f : V \to V \mid f \text{ injetiva} \}$$

$$\operatorname{GL}(V) = \{ T : V \to V \mid T \text{ linear e invertvel} \}$$

$$\operatorname{SL}(V) = \{ T \in \operatorname{GL}(V) \mid \det T = 1 \}.$$

O conjunto $\mathcal{T}(V) = \{T_t \mid t \in V\}$ de um espao vetorial V um grupo pois $T_{t_1} \circ T_{t_2} = T_{t_1+t_2}$ e $T_t^{-1} = T_{-t}$ (ou seja este conjunto fechado para a composio e para os inversos). Como

$$T_{t_1} \circ T_{t_2} = T_{t_1+t_2} = T_{t_2+t_1} = T_{t_2} \circ T_{t_1},$$

temos que $\mathcal{T}(V)$ um grupo abeliano.

Lema 7. Seja $t \in V$ e $X \in GL(V)$. Ento $XT_tX^{-1} = T_{X(t)}$.

Demonstração. Seja $v \in V$ e computemos que

$$XT_tX^{-1}(v) = XT_t(X^{-1}(v)) = X(X^{-1}(v) + t) = v + X(t) = T_{X(t)}(v).$$

Teorema 8. Assuma que G um subgrupo de transformaes de GL(V) e seja \mathcal{T} o grupo de translaes. Ento o produto $\mathcal{T}G = \{T_tX \mid t \in V, X \in G\}$ um subgrupo de Sym(V).

Demonstração. Seja Y o conjunto de produtos no enunciado do teorema. Precisamos provar que Y fechado para a composio e para tomar inversos. Sejam $T_{t_1}X_1$ e $T_{t_2}X_2$. Ento temos que

$$(T_{t_1}X_1)(T_{t_2}X_2) = T_{t_1}X_1T_{t_2}(X_1^{-1}X_1)X_2 = T_{t_1}(X_1T_{t_2}X_1^{-1})X_1X_2 = (T_{t_1}T_{X_1(t_2)})(X_1X_2) \in Y.$$

Alm disso, temos que

$$(T_tX)^{-1} = X^{-1}T_t^{-1} = X^{-1}T_{-t} = X^{-1}T_{-t}XX^{-1} = T_{X^{-1}(-t)}X^{-1} \in Y.$$

3. Isometrias de \mathbb{R}^n

Considere o espao \mathbb{R}^n . Lembre que o produto escalar (ou produto interno) de dois vetores $v = (\alpha_1, \dots, \alpha_n)$ e $w = (\beta_1, \dots, \beta_n)$ definido como

$$v \cdot w = \alpha_1 \beta_1 + \dots + \alpha_n \beta_n.$$

O produto escalar pode ser escrita usando multiplicao matricial como

$$v \cdot w = vw^t$$
.

Usando o produto escalar, podemos definir a norma ||v|| de um vetor $v \in \mathbb{R}^n$ como

$$||v|| = \sqrt{v \cdot v}.$$

A districia entre dois vetores $v, w \in \mathbb{R}^n$ pode ser definida como

$$d(v, w) = ||v - w||.$$

Alm disso, o cosseno do ngulo ϑ entre $v \in w$ definido como

$$\cos \vartheta = \frac{v \cdot w}{\|v\| \|w\|}$$

Dois vetores $v, w \in \mathbb{R}^n$ so ortogonais se e somente se $v \cdot w = 0$.

Da definio da norma fica clara que a norma est determinada pelo produto escalar. De acrodo do lema seguinte, a norma determina o produto escalar.

Teorema 9 (Identidade de polarizao). Sejam $v, w \in \mathbb{R}^n$, ento

$$v \cdot w = \frac{1}{2} (\|v + w\| - \|v\| - \|w\|).$$

Demonstração. Exerccio.

Uma transforma
o $T: \mathbb{R}^n \to \mathbb{R}^n$ que preserva dist
ncia (ou seja d(T(v), T(w)) = d(v, w) para todo $v, w \in \mathbb{R}^n$) chama-se isometria de \mathbb{R}^n . Se T uma isometria e T(v) = T(w), ento

$$0 = d(T(v), T(w)) = d(v, w);$$

ou seja v=w. Isso implica que uma isometria necessriamente injetiva. Vamos ver que isometrias so tambm sobrejetivas, mas neste momenta esta afirmao no to fcil de provar. Por outro lado, se $T: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria *linear*, ento ela injetiva e precisa ser sobrejetiva. Logo, as isometrias lineares so invertveis.

Exemplo 10. A translao $T_t: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria para todo $t \in \mathbb{R}^n$. De fato, temos para $v, w \in \mathbb{R}^n$ que

$$d(v+t, w+t) = ||v+t-(w+t)|| = ||v-w|| = d(v, w).$$

4. O GRUPO ORTOGONAL

Teorema 11. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformao linear. As seguintes so equivalentes para T.

- (1) T preserva o produto escalar; ou seja $T(v) \cdot T(w) = v \cdot w$ para todo $v, w \in \mathbb{R}^n$.
- (2) T preserva a norma; ou seja ||T(v)|| = ||v|| para todo $v \in \mathbb{R}^n$;
- (3) T preserva a districta d(T(v), T(w)) = d(v, w) para todo $v, w \in \mathbb{R}^n$.

Demonstração. O fato que (1) implica (2) e que (2) implica (3) segue das definies da norma e da distncia. O fato que (3) implica (1) segue dos fatos que ||v|| = d(v,0), T(0) = 0 (T sendo linear) e da identidade de polarizao.

Uma transforma
o linear $T: \mathbb{R}^n \to \mathbb{R}^n$ chama se ortogonal se T satisfaz uma (e ento todas) das propriedades no teorema anterior. Por definio, as transforma
es ortogonais so exatamente as isometrias lineares do espa
o \mathbb{R}^n . Lembre que uma matriz X dita ortogonal se $X^tX = I$.

Teorema 12. As seguintes afirmaes so verdadeiras.

- (1) As transformaes ortogonais formam um subgrupo de GL(V).
- (2) Uma transforma $T: \mathbb{R}^n \to \mathbb{R}^n$ ortogonal se e somente se sua matriz na base cannica ortogonal.
- (3) O determinante de uma transforma ortogonal ± 1 .

Demonstração. (1) Pode mostrar com uma conta direta que a composio de duas transformaes ortogonais ortogonal e o inverso de uma transformae ortogonal tambm ortogonal.

(2) Se $T: \mathbb{R}^n \to \mathbb{R}^n$ uma isometria linear, ento T preserva a norma de vetores e o ngulo entre vetores. Como os vetores e_1, \ldots, e_n na base cannica formam um sistema ortonormal, os vetores $T(e_1), \ldots, T(e_n)$ tambm formam um sistema ortonormal. Isso quer dizer que $[T]_B^B$ uma matriz ortogonal.

Āssuma agora que $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformao linear tal que a sua matriz X na base cannica ortogonal. Sejam $v, w \in \mathbb{R}^n$. Ento

$$v \cdot w = vw^t = vX^tXw^t = (Xv^t)^t(Xw^t) = (Xv) \cdot (Xw) = T(v) \cdot T(w).$$

Ou seja, T preserva produto escalar e T uma isometria.

(3) Seja $T:\mathbb{R}^n\to\mathbb{R}^n$ uma isometria. Temos que det $T=\det X$ onde X a matriz de T na base cannica. Como X uma matriz ortogonal, temos que

$$1 = \det I = \det(X^t X) = \det(X^t) \det X = (\det X)^2$$

e segue que $\det T = \det X = \pm 1$.

O grupo das transformaes ortogonais de \mathbb{R}^n denotado por O_n . O subgrupo das transformaes ortogonais com determinante 1 denotado por SO_n . Os grupos O_n e SO_n so chamados grupo ortogonal e grupo especial ortogonal. Os elementos de SO_n so chamadas de rotaes enquanto os demais elementos de O_n so chamadas de reflexes.