Majeure Machine Learning

Deep learning Optimisation

Contenu

- Stochastic / Mini-batch Gradient Descent
- Régularisation
- Dropout
- Early stopping
- Learning rate decay / adaptatif
- Pre-training (Transfer Learning / Semi-Supervised)

Ce que vous devrez savoir faire

- Comprendre les différentes techniques de régularisation pour les réseaux de neurones
- Comprendre les différentes variantes liées à la descente de gradient
- Comprendre les différentes techniques utilisées pour réduire l'Overfitting en Deep Learning
- Comprendre le principe et l'avantage du Transfer Learning

Initialisation des poids

Initialisation des poids & biais

- Pour les biais :
 - Initialisation à 0
- Pour les poids :
 - Impossible de tout initialiser à 0 ou à la même valeur
 - Tous les neurones auraient le même comportement
 - Besoin de casser la symétrie
 - <u>Une solution :</u>

$$W_{i,j}^{(k)}$$
généré à partir de $U[-b,b]$ où $\,b=rac{\sqrt{6}}{\sqrt{H_k+H_{k-1}}}\,$

- Autre solution (Xavier):

$$W_{i,j}^{(k)}$$
généré à partir de $\mathcal{N}(0,Var(W))$ où $\ Var(W)=rac{2}{H_{k-1}+H_k}$

- **k** => couche
- H_k => nombre de neurones dans la couche k

Fonctions pour minimiser la fonction de coût

Descente de Gradient - Variations

Motivation: Converger vers un meilleur optimum local

Descente de Gradient - Vocabulaire

<u>Epoch</u>: Cycle complet où la totalité du jeu de données est passé dans la phase de "forward" et la "backward"

Mini-batch size: Nombre d'exemples utilisés pour un batch

<u>Itération</u>: Le nombre de batch nécessaires pour compléter un epoch

Ex : pour un jeu d'entraînement de 2016 exemples, une taille de batch de 32, il faudra 63 itérations pour effectuer un epoch, et plusieurs epoch pour converger.

Descente de Gradient - Variations

	Stochastic	Batch	Mini-Batch
Calcul de l'erreur	Pour chaque exemple	Pour tous les exemples	Pour chaque mini-batch
Mise à jour du modèle	Pour chaque exemple	Après évaluation de l'ensemble des données	Pour chaque mini-batch
Vitesse de convergence	rapide	lente	intermédiaire
Utilisation	Robuste	Efficace	Robuste et efficace

Learning rate decay

Rappel sur le learning rate :

$$\theta_1 = \theta_1 - \alpha \frac{\partial J(\theta)}{\partial \theta_1}$$
 => 0 < α < 1, le pas d'avancement

Exponential learning rate decay:

Motivation : Converge plus rapidement et trouve un meilleur local optimum

Adam - Adaptive Moment Estimation

ADAM = SGD + Momentum + RMSProp

Momentum:

- Accumule les gradients des étapes précédent

<u>Intuition</u>: permet de bénéficier de la "pente"

RMSProp (Adaptative learning rate):

- Calcule un learning rate différent pour chaque paramètre

<u>Intuition</u>: Les learnings rates s'adaptent en fonction de la pente de la courbe (historique du gradient)

<u>Point d'attention</u>: Les learnings rates (alpha) s'adaptent ici à chaque itération.

Réduction de la capacité

La Régularisation

=> Objectif : Réduire la capacité pour prévenir l'Overfitting

Régression linéaire :

$$J(heta) = rac{1}{N} \sum_{n=1}^N (\hat{y}(x_n, heta) - y(x_n))^2 + \lambda \sum_j heta_j^2$$

Avec $\lambda > 0$, la "force" de régularisation

Réseau de neurones :

$$J(w) = rac{1}{2N} \sum_{n=1}^N (\hat{y}(x_n,w) - y(x_n))^2 + rac{\lambda}{2N} \sum_w w^2$$

Dropout

=> Objectifs : Réduire la capacité pour prévenir l'Overfitting + augmenter la robustesse du réseau

Procédé:

Eteindre* aléatoirement une partie des neurones des couches cachées durant l'apprentissage

Intuition => Les neurones sont obligés d'apprendre des concepts plus généraux

* on fixe l'output à 0

Early Stopping

=> Objectif : Arrêter l'entraînement au début de l'overfitting

Train: 80%

Validation: 10%

Test: 10%

Algorithme:

Calculer l'erreur sur le jeu de validation tous les n epochs => Si l'erreur n'a pas diminué depuis *m* epochs, arrêter l'entraînement

Problèmes des réseaux de neurones

Gradient Vanishing

<u>Énoncé</u>: Au fur à mesure que l'on rajoute des couches cachés, les gradients des couches les plus à gauches deviennent de plus en plus petit (et ont du mal à apprendre)

<u>Conséquence</u>: L'apprentissage est long et les premières couches apprennent mal

<u>Solution</u>: ne pas utiliser la Sigmoid ou la Tanh comme fonction d'activation mais privilégier la ReLu

Gradient Exploding

<u>Énoncé</u>: Les valeurs des gradients et donc des poids des premières couches peuvent être très grandes et peuvent tendre vers l'infini

<u>Conséquence</u>: Les valeurs des poids et des gradients peuvent être égales à NaN

<u>Solution</u>: utiliser le Gradient Clipping

Gradient clipping

Motivation: Eviter le gradient exploding

Principe : définir un intervalle (min,max) tel que la valeur des gadients ne pourra jamais être en dehors de cet intervalle

Pre-training

Transfer Learning

Motivation : Les relations apprises dans un cas peuvent être utilisées dans un autre

Transfer Learning

- On réutilise les couches basses d'un réseau déjà entraîné sur un gros jeu de données
- On peut ensuite entraîner les nouvelles couches hautes
- On peut également mettre à jour (fine-tuning) les poids des couches basses

=> Objectif : Entraîner plus rapidement, avec moins de données, et de manière plus efficace

Semi-Supervised pre-training

Motivation : Utiliser tout le jeu de données pour apprendre les couches cachées

Fin du chapitre 5.2