- **6.** ¿Es posible deducir el teorema de Green en el plano partiendo del teorema de Gauss?
- **7.** (a) Demostrar que $\mathbf{F} = 6xy(\cos z)\mathbf{i} + 3x^2(\cos z)\mathbf{j} 3x^2y(\sin z)\mathbf{k}$ es conservativo (véase la Sección 8.3).
 - (b) Hallar f tal que $\mathbf{F} = \nabla f$.
 - (c) Calcular la integral de **F** a lo largo de la curva $x = \cos^3 \theta$, $y = \sin^3 \theta$, z = 0, $0 < \theta < \pi/2$.
- **8.** Sea $\mathbf{r}(x, y, z) = (x, y, z), r = ||\mathbf{r}||$. Demostrar que $\nabla^2(\log r) = 1/r^2 \text{ y } \nabla^2(r^n) = n(n+1)r^{n-2}$.
- **9.** La velocidad de un fluido queda descrita por $\mathbf{F} = 6xz\mathbf{i} + x^2y\mathbf{j} + yz\mathbf{k}$. Calcular la tasa con la que el fluido sale del cubo unidad.
- **10.** Sea $\mathbf{F} = x^2 \mathbf{i} + (x^2 y 2xy) \mathbf{j} x^2 z \mathbf{k}$. ¿Existe un \mathbf{G} tal que $\mathbf{F} = \nabla \times \mathbf{G}$?
- **11.** Sea **a** un vector constante y $\mathbf{F} = \mathbf{a} \times \mathbf{r}$ [como es habitual, $\mathbf{r}(x, y, z) = (x, y, z)$]. ¿Es **F** conservativo? En caso afirmativo, hallar un potencial.
- **12.** Demostrar que los campos \mathbf{F} de los apartados (a) y (b) son conservativos y determinar una función f tal que $\mathbf{F} = f$.
 - (a) $\mathbf{F} = (y^2 e^{xy^2})\mathbf{i} + (2y e^{xy^2})\mathbf{j}$.
 - (b) $\mathbf{F} = (\operatorname{sen} y)\mathbf{i} + (x \cos y)\mathbf{i} + (e^z)\mathbf{k}$.
- **13.** (a) Sea $f(x, y, z) = 3xye^{z^2}$. Calcular ∇f .
 - (b) Sea $\mathbf{c}(t) = (3\cos^3 t, \sin^2 t, e^t), \ 0 \le t \le \pi.$ Calcular

$$\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s}.$$

- (c) Verificar directamente el teorema de Stokes para campos vectoriales gradiente $\mathbf{F} = \nabla f$.
- **14.** Utilizando el teorema de Green, o cualquier otro, calcular $\int_C x^3 dy y^3 dx$, donde C es la circunferencia unidad $(x^2 + y^2 = 1)$.
- **15.** Calcular la integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, donde $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + 3\mathbf{k}$ y donde S es la superficie de la esfera unidad $x^2 + y^2 + z^2 = 1$.
- **16.** (a) Enunciar el teorema de Stokes para superficies en \mathbb{R}^3 .

- (b) Sea \mathbf{F} un campo vectorial en \mathbb{R}^3 que satisface $\nabla \times \mathbf{F} = \mathbf{0}$. Utilizar el teorema de Stokes para demostrar que $\int_C \mathbf{F} \cdot d\mathbf{s} = 0$ donde C es una curva cerrada.
- **17.** Utilizar el teorema de Green para hallar el área de un lazo de la curva $x = a \sin \theta \cos \theta, y = a \sin^2 \theta$, para a > 0 y $0 \le \theta \le \pi$.
- **18.** Calcular $\int_C yz \ dx + xz \ dy + xy \ dz$, donde C es la curva de intersección del cilindro $x^2 + y^2 = 1$ y la superficie $z = y^2$.
- **19.** Calcular $\int_C (x+y) dx + (2x-z) dy + (y+z) dz$, donde C es el perímetro del triángulo que conecta los puntos (2,0,0), (0,3,0) y (0,0,6), en este orden.
- **20.** ¿Cuáles de los siguientes son campos conservativos en \mathbb{R}^3 ? Para aquellos que lo sean, hallar una función f tal que $\mathbf{F} = \nabla f$.
 - (a) $\mathbf{F}(x, y, z) = 3x^2y\mathbf{i} + x^3\mathbf{j} + 5\mathbf{k}$.
 - (b) $\mathbf{F}(x, y, z) = (x + z)\mathbf{i} (y + z)\mathbf{j} + (x y)\mathbf{k}$.
 - (c) $\mathbf{F}(x, y, z) = 2xy^3\mathbf{i} + x^2z^3\mathbf{i} + 3x^2yz^2\mathbf{k}$.
- **21.** Considérense los dos campos vectoriales siguientes en \mathbb{R}^3 :
 - (i) $\mathbf{F}(x, y, z) = y^2 \mathbf{i} z^2 \mathbf{j} + x^2 \mathbf{k}$.
 - (II) $\mathbf{G}(x, y, z) = (x^3 3xy^2)\mathbf{i} + (y^3 3x^2y)\mathbf{i} + z\mathbf{k}$.
 - (a) ¿Cuál de estos campos es conservativo en \mathbb{R}^3 (si es que alguno lo es)? (Es decir, ¿cuál es un campo gradiente?) Razonar la respuesta.
 - (b) Hallar un potencial para los campos que sean conservativos.
 - (c) Sea α la trayectoria que va desde (0,0,0) hasta (1,1,1) siguiendo las aristas del cubo $0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1$ yendo desde (0,0,0) a (0,0,1), luego a (0,1,1) y después a (1,1,1). Sea β la trayectoria directa desde (0,0,0) hasta (1,1,1) siguiendo la diagonal del cubo. Hallar los valores de las integrales de línea

$$\int_{\alpha} \mathbf{F} \cdot d\mathbf{s}, \qquad \int_{\alpha} \mathbf{G} \cdot d\mathbf{s},$$

$$\int_{\beta} \mathbf{F} \cdot d\mathbf{s}, \qquad \int_{\beta} \mathbf{G} \cdot d\mathbf{s}.$$

22. Considérese el campo vectorial *constante* $\mathbf{F}(x, y, z) = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ en \mathbb{R}^3 .