1. :	[O≡ - (mod 11)
若	n=akakiaiao(+进制)
M	$\underset{\sim}{\not=} \alpha_{i} \cdot 10^{i} = \underset{\sim}{\not=} \alpha_{i} \cdot (-1)^{i} \pmod{1}$
因	此 n= O(mod 11) ⇔各位交替和能被11整除
	On 和 bi是完全剩余系
	$n \equiv O(mod 2)$ $\therefore \frac{n(n-1)}{2} \equiv \frac{n}{2} (mod n)$
	$\frac{n}{\sum_{i}(a_{i}+b_{i})} \equiv n \equiv O(m \circ d n)$
	但若 aitbi是完全剩余系,则应有 是(aitbi)三贵(mod n),矛盾
	C. Qi+bi 不是模n的完全剩余系
3. O	ite: a=1时 h ₁ P=h ₁ P,显然成立
	a=2Ht 8t 4h1. hzeZ
	(hithz)P = = = hiPthzk : 0 <k<p ad.="" c="FI" ki(p-k)!<="" p="" td="" =""></k<p>
	$\therefore (h_1 + h_2)^P = h_1^P + h_2^P \pmod{P}$
	若a=m时成立且meN+
	刚当 a=m+l 时,便n=h,++hm : 左=(n+hm+) = n + hm+ P(mod)
	· n P = h1+h2+···+hm · . a=m+1 时 市成立
	· 约束上,若P为素数,则对∀h,,hz,;ha.∈区,(h,++ha)P=h,P++haP(mo
②若	ihi=hz=···=ha= ,则 aP = a(mod p) : 携马小定理成立
3 `	i (a,m)=1 '、 耳=1 (afi)=耳=1 Yi(modn) (r,,row,是所有与n互质的剩余
	$\mathbb{F}_{\mathcal{F}} \left(\frac{\phi(n)}{n} \prod_{i=1}^{p(n)} r_i = \prod_{i=1}^{p(n)} \gamma_i (\text{mod } n) \right)$
	ソエで与n互族
	$a^{\phi(n)} = \lfloor (m \circ d n) \rfloor$
_	

	No.	No.	
	Date.	1	1
个. 当k=1时,显然 X. 通过 M. 阳完全剩余系			
当上2-1时若成立,则当上2时			
若使y= X1+M1X2+···+ M1M2···M22X2-1			
见 y 通过 mimzmai的完全剩余系,使M=	M1M2 M2-1		
·(m, mz Ma+, ma)=1 且Xa 通过Ma的完			
① 若k=2 且 X1+m1X2 = X1+m1X2' (mod m1m2)			
$\Rightarrow x_1 + m_1 x_2 \equiv x_1 + m_1 x_2 \pmod{m_1}$			
$\Rightarrow \chi_1 \equiv \chi_1' \pmod{m_1} \Rightarrow \chi_1 = \chi_1'$			
· X2=Xi' · X1+m1x2通过m1m2触	完全剩余系		
⑤若k>2,则含y=α1, M=M1, α2=α2			
My+MXa 通过 Mma Tap完全剩余	\$		
			9
5.			
-、(m-a1), (m-a2),(m-a2(m)也是加纳一个缩系			
$\frac{\partial(m)}{\partial \lambda} = \sum_{i=1}^{n} (m-\alpha i) \pmod{m}$			
$\frac{1}{2} \stackrel{\text{(im)}}{\geq} = m \varphi_{\text{(m)}} (\text{mod in})$			
$\frac{\sqrt{m}}{2}a_{\nu} \equiv m \frac{\sqrt{m}}{2} \pmod{m} \equiv 0 \pmod{m}$			
B. (1) `` p-v = -v(mod p) 且P是奇素数 又[P-1]! =- (mod p) ∴ ²·3²··(P-2)²=	しいはしいい	-1 Nº	- (mad p)
		=(-1) -	(moa p)
(2) 同理 2·4··(P-1)2=(-1)型(P-1)!=(-1)	2 (modp)		

No.
Date. / /
7. 若证 4xe Z, (七x5+5x3+元x) eZ
$\neq 3\chi^5 + 5\chi^3 + 7\chi \equiv 0 \pmod{b}$, $ig f(x) = 3\chi^5 + 5\chi^3 + 7\chi$
— ← f(x)=0(mod 15) 则解此同新新行
$\langle f(x) \equiv O(m \circ d3) \Rightarrow x \equiv 0, 1, 2 \pmod{3}$
由中国剩余定理 { X = b.(mod 5)
$\chi \equiv b_2 \pmod{3}$
<u> </u>
8. x = 75 (mod 321)
● 求 d=(111,321) 32 =2×111+99 > 111=1×99+12 > 99=8×12+3>12=4×3+6
②经化简,原式等价于 37x = 25(mod 107)
③主 37 (mod (07): 107=2×3]+33 = 37=1×33+4 =>33=8×4+1=4=1×4+0
··回行 1=33-8×4=33-8×(37-1×33)=9×33-8×37=9×(107-2×37)-8×37=9×107-26×3
$[.3]^{-1} = -26 = 8 (mod / 67)$
① ·原式等价于 X=25×81=99 (mod/o7)
:原法经的解为99,99+107.99+214
. x = 99, 206, 313 (mod 321)
,
REMEMBER · MEMORY

	No.
	Date. /
7 5 2×= (mads) (x=1/mads) (x=2/m.d4)
$\frac{9.52x=5(\text{mod}4)}{5x=2(\text{mod}7)} = \frac{5x=15(\text{mod}4)}{5x=2(\text{mod}7)} = \frac{5}{2}$	$\alpha = b \pmod{7}$
: (X=4k+3 => 4k+3=6 (mod 7) => 4k	
$\therefore \chi = 4 \times 6 + 3 = 27 \pmod{28}$	
$\therefore \chi = 2 \rceil (m_{\text{od}} 2)$	
N = -1 (mon 28)	
2	
· · ·	
·	