INTRODUCTION TO POWER ELECTRONICS

30.03.2021

Dr. Garima Joshi

What is Power?

- Electric Power= Voltage X Current
- Units are Watts

What is Energy?

- Energy = Power X Time
- Units are Watt-Hours or kWhr

Power Electronics – Where is it Used?

- Electrical power is used to support the activity of Loads
 - Electric Motors
 - Speakers
 - Microcontrollers
 - FPGAs
 - DSPs
 - Sensors
 - Displays
 - Analog Circuitry

From where do we get Power?

- Power Loss = I^2R
- Thus, HV Transmission lines are used for distribution
- Step-up for distribution and Step-down to be used at safer levels

Power Distribution at Micro-Level

"Point of Load" Conversion

What is Power Electronics?

- Power electronics circuits convert electric power from one form to another using electronic devices.
- Power electronics circuits function by using semiconductor devices as switches, thereby controlling or modifying a voltage or current.

Applications

- High-power conversion equipment such as dc power transmission to everyday appliances, such as cordless screwdrivers, power supplies for computers, cell phone chargers, and hybrid automobiles.
- Power electronics includes applications in which circuits process milliwatts or megawatts.

POWER ELECTRONICS BASIC CONCEPTS

Lecture 2

6.04.2020

Power Converters

- ac-dc
- dc-dc
- dc-ac
- ac-ac

A source and load interfaced by a power electronics converter.

POWER ELECTRONICS CONCEPTS

Problem: 9V to 3V Converter

A simple voltage divider

A switched Circuit

Average value is computed from the equation

$$\operatorname{avg}(v_x) = V_x = \frac{1}{T} \int_0^T v_x(t) \, dt = \frac{1}{T} \int_0^{T/3} 9 \, dt + \frac{1}{T} \int_{T/3}^T 0 \, dt = 3 \, \text{V}$$

ELECTRONIC SWITCHES

- Diode
- BJT
- MOSFET
- SCR
- Thyristor
- IGBJT

POWER FACTOR

Lecture 3

08.04.021

Outline

- The main topics to be addressed in this lesson are the following:
 - Review of diode operation.
 - Power diode packages.
 - Internal structure of PN and Schottky power diodes.
 - Static characteristic of power diodes.
 - Dynamic characteristic of power diodes.
 - Losses in power diodes.

•Reverse bias and moderate forward bias are properly described by the following equation (by Shockley):

 $i = I_S \cdot (e^{v_{ext}/V_T} - 1)$, where $V_T = kT/q$ and I_S is the reverse-bias saturation current (a very small value).

- When the diode has been heavily forward biased (high forward current), the voltage drop is proportional to the current (it behaves as a resistor).
- When the reverse voltage applied to a diode reaches the critical value V_{BR} , then the weak reverse current starts increasing a lot. The power dissipation usually becomes destructive for the device.

Static model for a diode (asymptotic):

• Equivalent circuit:

Ideal diode:

• Low-power diode.

Packages for diodes (I)

• Axial leaded through-hole packages (low power).

• Packages to be used with heat sinks.

Packages for diodes (III)

• Packages to be used with heat sinks (higher power levels).

E 35

• Assembly of 2 diodes (I).

TO-247
Common cathode
(Dual center tap Diodes)

TOP-3 (Insulated) Doubler (2 diodes in series)

• 2 diodes in the same package, but without electrical connection between them.

• Manufacturers frequently offer a given diode in different packages.

Package

MAJOR PRODUCT CHARACTERISTICS

I _{F(AV)}	2 x 10 A	
V _{RRM}	300 V	
Tj (max)	175 °C	
V _F (max)	1 V	
trr (max)	35 ns	

Packages for diodes (VIII)

• Assembly of 4 diodes (low-power bridge rectifiers).

Dimensions in mm.

DF - M

Dimensions in mm.

4.1 ± 0.5	T		4.1 ± 0.8
30 ± 1			
<u> </u>		Ø 0.8 ± 0.05	

Sufflix	L ± 0.5
"A"	4
"B"	3

Packages for diodes (X)

 Assembly of 4 diodes (high-power bridge rectifiers).

Packages for diodes (XI)

Assembly of 6 diodes
 (Three-phase bridge rectifiers)

• Example of a company portfolio regarding single-phase bridge rectifiers.

Basic internal structure of a PN power diode.

• Problems due to the nonuniformity of the electric field.

- Breakdown electric field intensity can be reached in these regions.
- Regions with local high electric-field should be avoided when the device is designed.

• Use of guard rings to get a more uniform electric field.

• The depletion layers of the guard ring merge with the growing depletion layer of the P⁺N⁻ region, which prevents the radius of curvature from getting too small. Thus there are not places where the electric field reaches very high local values.

• Case where the metallurgical junction extends to the silicon surface (I).

• Case where the metallurgical junction extends to the silicon surface (II).

- The use of beveling minimizes the electric field intensity.
- Coating the surface with appropriate materials such as silicon dioxide helps control the electric field at the surface.

Information given by the manufacturers

- Static characteristic:
 - Maximum peak reverse voltage.
 - Maximum forward current.
 - Forward voltage drop.
 - Reverse current.
- Dynamic characteristics:
 - Switching times in PN diodes.
 - Junction capacitance in Schottky diodes.

Forward voltage drop, V_F (II).

• The higher the value of the maximum peak reverse voltage V_{RRM} , the higher the forward voltage drop V_F at $I_{F(RMS)}$.

Ly , 511 <i>F</i>	STIA506D/F/B		
I _{F(AV)}	5A		
V _{RRM}	600V		
t _{rr} (typ)	20ns		

V_F (max)

1.5V

STTH4R02	
I _{F(AV)}	4 A
V_{RRM}	200 V
T _{j (max)}	175° C
V _F (typ)	0.76 V
t _{rr} (typ)	16 ns

Dynamic characteristic of power diodes (I).

• In the case of PN diodes, manufacturers give information about switching times, reverse recovery current and forward recovery voltage (slides 108-111, Lesson 1).

t_s = storage time.

 t_f = fall time.

 $t_{rr} = t_s + t_f = reverse recovery.$

 t_d = delay time.

 t_r = rise time.

 $t_{fr} = t_d + t_r = forward recovery time.$