CSCI 430: Homework 5

John E. Buckley III

October 8, 2017

1 3.1-1

We need to prove the following inequations:

- 1. $c1(f(n)+g(n)) \ge 0$
- 2. $c1(f(n)+g(n)) \le max(f(n), g(n))$
- 3. $\max(f(n), g(n)) \le c2(f(n)+g(n))$

The **first** inequation holds since f(n) and g(n) are asymptotically non-negative functions which was stated in the problem.

The **second** inequation holds because $\max(f(n),g(n)) \ge f(n)$ and $\max(f(n),g(n)) \ge g(n)$. This gives us $\max(f(n),g(n)) \ge \frac{(f(n)+g(n))}{2}$

The **third** inequation holds because $\max(f(n),g(n)) \le f(n)+g(n)$. $c2 \ge 1$.

2 3.1-2

Proof: There exists $n_0 \in \mathbb{N}$ and there exists $c_1, c_2 \in \mathbb{R}$ s.t. for all $n \ge n_0$: $c_1 n^b \le (n+a)^b \le c_2 n^b$. n+a>n because a>0 and $n+a \le 2n$ for all $n \ge a$. The inequalities are preserved by raising both sides by the power of b: $(n+a)>n^b$ and $(n+a)^b \le 2^b n^b$. Thus, this equation holds when $n_0=a$, $c_1=1$, $c_2=2^b$

3 3.1-3

Big O notation is usually used to indicate an upper bound of a function but the way the problem is worded," is at least" which implies \geq , it actually gives us no information about the upper bound. The best running time could be anything slower than $O(n^2)$.

4 3.1-4

The first statement is true because:

$$2^{n+1} = 2 \times 2^n \le c2^n$$
 where $c \ge 2$.

The second statement is false because:

$$2^{2n} \le c \times 2^n$$

$$ln2 \times 2n \le lnc + ln2 \times n$$

$$2n < lnc+n$$

$$n \leq lnc$$

5 3.1-6

If $T(n) = \Theta(g(n))$ then: $0 \le c1g(n) \le T(n) \le c2g(n)$ for $n \ge n_0$

Since T(n) > 0 and $T(n) \le c2g(n)$: T(n) = O(g(n)) which is the upper bound or worst case running time.

Since $T(n) \ge c1g(n)$ and $c1g(n) \ge 0$: $T(n) = \Omega(g(n))$, which is the lower bound or best case running time.

$6 \quad 3.1-7$

From our notes, if we were to think calculus:

f(n) is o(g(n)):

$$\lim_{x \to \infty} \frac{f(n)}{g(n)} = 0$$

f(n) is $\omega(g(n))$:

$$\lim_{x \to \infty} \frac{f(n)}{g(n)} = \infty$$

Both of these cannot be simultaneously true, thus no f(n) exists.

7 3.2-1

From our notes, f(n) and g(n) are monotonically increasing iff $n \ge m \to f(n), g(n) \ge f(m), g(m)$.

Therefore: $f(n)+g(n) \ge f(m)+g(m)$: f(n)+g(n) is monotonically increasing

Therefore: $f(g(n)) \ge f(g(m))$: f(g(n)) is monotonically increasing

Therefore: $f(n) \times g(n) \ge f(m) \times g(m)$: $f(n) \times g(n)$ is monotonically increasing

8 3.2-2

Using the identities from our notes and some arithmetic:

$$a^{log_{b^c}} = a^{log_{a^b}} = a^{log_{a^b}}$$

$$= (a^{log_{a^c}})^{\frac{1}{log_{a^b}}}$$

$$= c^{frac_1log_{a^b}}$$

$$= c^{log_{b^a}}$$

9 3.2-3

Using Stirling's approximation:

$$\begin{split} \lg(\mathbf{n}!) &\approx \lg(\sqrt{2\pi n})(\frac{n}{e})^n) \\ &= \lg(\sqrt{2\pi n}) + \lg(\frac{n}{e})^n \\ &= \lg\sqrt{2\pi} + \lg\sqrt{n} + \mathrm{nlg}(\frac{n}{e}) \\ &= \lg\sqrt{2\pi} + \frac{1}{2}lgn + \mathrm{nlgn} - \mathrm{nlge} \\ &= \Theta(1) + \Theta(lgn) + \Theta(nlgn) - \Theta(n) \\ &= \Theta(nlgn) \end{split}$$

$$\mathbf{n}! = \mathbf{n} \times (\mathbf{n} - 1) \times (\mathbf{n} - 2) \times \dots < \mathbf{n} \times \mathbf{n} \times \mathbf{n} \dots \mathbf{n} \text{ number of times, for } \mathbf{n} \geq 2.$$

$$= \mathbf{o}(n^n)$$

$$\mathbf{n}! = \mathbf{n} \times (\mathbf{n} - 1) \times (\mathbf{n} - 2) \times \dots > 2 \times 2 \times 2 \dots \mathbf{n} \text{ number of times, for } \mathbf{n} \geq 4.$$

$$= \omega(2^n)$$

10 3.2-6

From our notes: we substitute ϕ and $\hat{\phi}^2$ and use some arithmetic.

$$\phi^{2} = \left(\frac{1+\sqrt{5}}{2}\right)^{2}$$

$$= \frac{1+2\sqrt{5}+5}{4}$$

$$= \frac{3+\sqrt{5}}{2}$$

$$= \frac{1+\sqrt{5}}{2} + 1$$

$$= \phi + 1$$

$$\hat{\phi}^{2} = \left(\frac{1-\sqrt{5}}{2}\right)^{2}$$

$$= \frac{1-2\sqrt{5}+5}{4}$$

$$= \frac{3-\sqrt{5}}{2}$$

$$= \frac{1-\sqrt{5}}{2} + 1$$

$$= \hat{\phi} + 1$$

11 3-2

	\boldsymbol{A}	\boldsymbol{B}	0	0	Ω	ω	Θ
<i>a</i> .	$\lg^k n$	n^{ϵ}	yes	yes	no	no	no
<i>b</i> .	n^k	c^n	yes	yes	no	no	no
<i>c</i> .	\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
d.	2^n	$2^{n/2}$	no	no	yes	yes	no
e.	$n^{\lg c}$	$c^{\lg n}$	yes	no	yes	no	yes
f.	$\lg(n!)$	$\lg(n^n)$	yes	no	yes	no	yes

- a Polynomial grows faster than logarithm.
- b Exponential grows faster than polynomial.
- c No relations among them in terms of growth.
- d Decreasing the base of an exponential function makes it grow slower.
- e Both functions are same (see 3.2-2).
- f Round the sum for O and Ω and Stirling's Approximation for Θ .

12 3-4

- a False: Let f(n)=n and $g(n)=n^2$. $n=O(n^2)$ but $n^2 \neq O(n)$.
- b False: Using the previous example: $n^2 + n \neq \Theta(min(n^2, n))$.
- c True:
- d False: Let f(n)=2n and g(n)=n. f(n)=O(g(n)) but $n^{2n}=4^n\neq O(2^n)$.

- e True: $0 \le f(n) \le cg(n)$ We need to prove that: $0 \le df(n) \le g(n)$ Which is straightforward with d = 1/c.
- f False: Let f(n)=4ⁿ. $4^n \neq \Theta(4(n/2)) = \Theta(2^n)$.
- g True: From our notes: $0 \le o(f(n)) \le f(n)$. Then $f(n) \le f(n) + o(f(n)) \le 2f(n)$. Thus, $f(n) + o(f(n)) = \Theta(f(n))$.