MA2001 LINEAR ALGEBRA

Review

National University of Singapore Department of Mathematics

Chapter 1: Linear Systems and Gaussian Elimination	2
Linear Systems and Their Solutions	
Elementary Row Operations	
Row-Echelon Forms	
Gaussian Elimination	
Homogeneous Linear Systems	
Chapter 2: Matrices	ç
Introduction to Matrices	10
Matrix Operations	11
Inverses of Square Matrices	13
Elementary Matrices	
Determinants	18
Chapter 3: Vector Spaces	21
Euclidean n-Spaces	22
Linear Combinations and Linear Spans	23
Subspaces	25
Linear Independency	26
Bases	
Dimensions	29
Transition Matrices	
Chapter 4: Vector Spaces Associated with Matrices	33
Row Spaces and Column Spaces	34
Ranks	
Nullspaces and Nullities	39
Chapter 5: Orthogonality	40
The Dot Product	41
Orthogonal and Orthonormal Bases	42
Best Approximations	46

Orthogonal Matrices	48
Chapter 6: Diagonalization	49
Eigenvalues and Eigenvectors	50
Diagonalization	51
Orthogonal Diagonalization	53
Chapter 7: Linear Transformations	54
Linear Transformations from \mathbb{R}^n to \mathbb{R}^m	55
Ranges and Kernels	57

Linear Systems and Their Solutions

• A linear system of m equations and n variables:

$$\circ \begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots & \vdots & \vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$

A solution to the linear system is

$$\circ \ x_1 = s_1, x_2 = s_2, \dots, x_n = s_n$$

which satisfies every equation in the system.

- In practice, we shall always find a general solution:
 - o all expression that gives all the solutions.
- A linear system can have
 - no solution (the system is inconsistent);
 - o exactly one solution; or
 - o infinitely many solutions.

3 / 57

Elementary Row Operations

A linear system can be viewed as an augmented matrix

$$\circ \quad \left(\begin{array}{ccc|c} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{array}\right).$$

- The three elementary row operations:
 - \circ cR_i : multiply the *i*th row by a nonzero constant c.
 - \circ $R_i \leftrightarrow R_j$: interchange the *i*th row and the *j*th row.
 - \circ $R_i + cR_j$: add c times the jth row to the ith row.
- If one (augmented) matrix can be obtained from another by a series of elementary row operations,
 - they are said to be row equivalent, and
 - o the corresponding linear systems have the same solution set.

Row-Echelon Forms

- A matrix is of the row-echelon form if
 - Zero rows are place below the nonzero rows; and
 - o For any two nonzero rows,
 - the leading entry (first nonzero entry) of the higher row is on the left that of the lower row.
- In a matrix of row-echelon form,
 - the leading entry of a nonzero row is a pivot point,
 - o a column containing a pivot point is a pivot column.
- A matrix in row-echelon form is also in reduced row-echelon form if in addition,
 - Every leading entry of a nonzero row is 1;
 - \circ In each pivot column, except the pivot point, all other entries are 0.

5 / 57

Row-Echelon Forms

- Given a linear system. Suppose its augmented matrix is in (reduced) row-echelon form.
 - 1. Set the variables corresponding to non-pivot columns as arbitrary parameters.
 - 2. Solve the variables corresponding to pivot columns in terms of these arbitrary parameters backwards.
- Criterion to check number of solutions:
 - o Last column is pivot
 - \Rightarrow No solution.
 - o Only the last column is non-pivot
 - \Rightarrow Exactly one solution.
 - Last column and some other columns are non-pivot
 - \Rightarrow Infinitely many solutions.

Gaussian Elimination

- Gaussian Elimination:
 - Use elementary row operations to get a row-echelon form of a given matrix.
- Gauss-Jordan Elimination:
 - Use elementary row operations to get the reduced row-echelon form of a given matrix.
- · Remarks.
 - o To check consistency: Use Gaussian elimination.
 - o To solve the system: Use Gauss-Jordan elimination.
 - o Discuss case by case if parameters are involved.
 - Using cR_i : we must ensure that $c \neq 0$.
 - Using $\frac{1}{c}R_i$ or $R_i + \frac{1}{c}R_j$: we must have $c \neq 0$.

7 / 57

Homogeneous Linear Systems

• A linear system is called homogeneous if it is of the form

$$\begin{array}{l}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\
 \vdots & \vdots & \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0.
\end{array}$$

- Augmented matrix: $(A \mid 0)$.
- Properties. Consider a homogeneous linear system.
 - o It has the trivial solution; so it is consistent.
 - o If there are more variables than equations, then the system has infinitely many solutions.
 - \circ The solution set is a vector space (nullspace of A).

Introduction to Matrices

• An $m \times n$ matrix is an array of numbers:

$$\circ \quad \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \quad (i,j)\text{-entry is } a_{ij}.$$

- Special Matrices: Let $A = (a_{ij})_{m \times n}$.
 - Row matrix (vector): m = 1.
 - Column matrix (vector): n = 1.
 - Square matrix: m = n.
 - Upper triangular matrix: m = n and $a_{ij} = 0$ for i > j.
 - Diagonal matrix: m = n and $a_{ij} = 0$ for $i \neq j$.
 - Symmetric matrix: m = n and $a_{ij} = a_{ji}$.
 - Scalar matrix: cI_n ; Identity matrix: I_n .
 - o Zero matrix: $\mathbf{0}_{m \times n}$.

10 / 57

Matrix Operations

- Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$.
 - $\circ c\mathbf{A} = (ca_{ij})_{m \times n}, \quad \mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})_{m \times n}.$
 - $\circ \quad \boldsymbol{A}^{\mathrm{T}} = (a_{ji})_{n \times m}.$
- Let $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{n \times p}$.
 - $\circ \quad \text{Then } \boldsymbol{AB} \text{ is the } m \times p \text{ matrix whose } (i,j)\text{-entry is}$
 - $a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$.

In other words,

- 1. Take the *i*th row of A: $a_{i1}, a_{i2}, \ldots, a_{in}$.
- 2. Take the *j*th column of \boldsymbol{B} : $b_{1j}, b_{2j}, \dots, b_{nj}$.
- 3. Multiply componentwise $a_{i1}b_{1j}, a_{i2}b_{2j}, \ldots, a_{in}b_{nj}$.
- 4. Add the products $a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$.
- If $m{A}$ is a square matrix, $m{A}^m = \overbrace{m{A}m{A}\cdotsm{A}}^m, m \in \mathbb{Z}^+.$

Matrix Operations

• Remarks: In general,

$$\circ \quad AB \neq BA, \quad (AB)^2 \neq A^2B^2.$$

$$\circ\quad AB=0 \Rightarrow ``A=0 ext{ or } B=0".$$

$$\circ \quad A^2 = 0 \Rightarrow A = 0, \quad A^2 = I \Rightarrow A = \pm I.$$

$$\bullet \quad \text{Consider} \left\{ \begin{array}{l} a_{11}x_1 + \ a_{12}x_2 + \cdots + \ a_{1n}x_n = b_1 \\ a_{21}x_1 + \ a_{22}x_2 + \cdots + \ a_{2n}x_n = b_2 \\ \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{array} \right.$$

$$\circ \quad \boldsymbol{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \, \boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \, \boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

 \circ Then the system is Ax = b.

The system is consistent $\Leftrightarrow b$ lies in the column space of A.

12 / 57

Inverses of Square Matrices

- Let A be a square matrix. It is invertible if
 - \circ there exists square matrix B s.t. AB = BA = I.

A is singular if it is not invertible.

- Suppose that *A* is invertible.
 - $\circ \quad ({\pmb{A}} \mid {\pmb{I}}) \xrightarrow{\mathsf{Gauss-Jordan \, elimination}} ({\pmb{I}} \mid {\pmb{A}}^{-1}).$
- **Properties.** Let *A* be invertible.

$$\circ \quad Ax = b \Rightarrow x = A^{-1}b.$$

$$\circ \quad AB_1 = AB_2 \Rightarrow B_1 = B_2.$$

$$\circ \quad \boldsymbol{C}_1\boldsymbol{A} = \boldsymbol{C}_2\boldsymbol{A} \Rightarrow \boldsymbol{C}_1 = \boldsymbol{C}_2.$$

$$\circ \quad m{A}m{B} = m{I} \Rightarrow m{B} = m{A}^{-1}.$$

$$AB = I \Rightarrow B = A$$

$$A^{-m} = (A^{-1})^m = A^{-1}A^{-1} \cdots A^{-1}, m \in \mathbb{Z}^+.$$

Inverses of Square Matrices

- Theorem for Invertible Matrices. Let A be a square matrix of order n. The following statements are equivalent:
 - \circ A is invertible.
 - $\circ \quad Ax=0$ has only the trivial solution x=0.
 - $\circ \quad Ax = b$ has exactly one solution $x = A^{-1}b$.
 - \circ The reduced row-echelon form of \boldsymbol{A} is \boldsymbol{I}_n .
 - \circ A is the product of elementary matrices.
 - $\circ \det(\mathbf{A}) \neq 0.$
 - \circ 0 is not an eigenvalue of A.
 - \circ rank(\boldsymbol{A}) = n.
 - \circ nullity(\mathbf{A}) = 0.
 - The rows of A form a basis for \mathbb{R}^n .
 - \circ The columns of A form a basis for \mathbb{R}^n .

14 / 57

Elementary Matrices

- An **elementary matrix** is obtained from *I* by applying a single elementary row (or column) operation.
 - \circ $\boldsymbol{I} \xrightarrow{cR_i} \boldsymbol{E}$:
 - ullet Replace the ith diagonal entry by c.
 - \circ $I \xrightarrow{R_i \leftrightarrow R_j} E$:
 - Replace the ith and jth diagonal entries by 0, and Replace the (i,j)- and (j,i)-entries by 1.
 - \circ $I \xrightarrow{R_i + cR_j} E$:
 - Replace the (i, j)-entry by c.
- Theorem on the determinant of elementary matrices.
 - $\circ \det(\mathbf{E}) = c \text{ if } \mathbf{I} \xrightarrow{cR_i} \mathbf{E}.$
 - $\circ \det(\mathbf{E}) = -1 \text{ if } \mathbf{I} \xrightarrow{R_i \leftrightarrow R_j} \mathbf{E}.$
 - $\circ \det(\mathbf{E}) = 1 \text{ if } \mathbf{I} \xrightarrow{R_i + cR_j} \mathbf{E}.$

Elementary Matrices

- Theorem. Let \boldsymbol{A} be an $m \times n$ matrix.
 - $\circ \quad \boldsymbol{I}_{m} \xrightarrow{cR_{i}} \boldsymbol{E} \Rightarrow \boldsymbol{A} \xrightarrow{cR_{i}} \boldsymbol{E}\boldsymbol{A};$
 - $\det(\mathbf{E}\mathbf{A}) = c \det(\mathbf{A}).$
 - $\circ \quad \boldsymbol{I_m} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{E} \Rightarrow \boldsymbol{A} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{E} \boldsymbol{A}.$
 - $\det(\mathbf{E}\mathbf{A}) = -\det(\mathbf{A})$.
 - $\circ \quad I_m \xrightarrow{R_i + cR_j} E \Rightarrow A \xrightarrow{R_i + cR_j} EA.$
 - $\det(\mathbf{E}\mathbf{A}) = \det(\mathbf{A})$.
- ullet Theorem. $m{A}$ and $m{B}$ are row equivalent \Leftrightarrow there exist elementary matrices $m{E}_1,\dots,m{E}_k$ such that
 - $\circ \quad \boldsymbol{E}_{k}\boldsymbol{E}_{k-1}\cdots\boldsymbol{E}_{2}\boldsymbol{E}_{1}\boldsymbol{A}=\boldsymbol{B}.$
- Theorem. If $(A \mid b)$ is row equivalent to $(C \mid d)$, then
 - $\circ \quad Ax = b ext{ and } Cx = d ext{ have the same solutions.}$

16 / 57

Elementary Matrices

- Theorem. Let A be an $m \times n$ matrix.
 - $\circ \quad I_n \xrightarrow{kC_i} E \Rightarrow A \xrightarrow{kC_i} AE;$
 - $\det(\mathbf{A}\mathbf{E}) = k \det(\mathbf{A}).$
 - $\circ \quad I_n \xrightarrow{C_i \leftrightarrow C_j} E \Rightarrow A \xrightarrow{C_i \leftrightarrow C_j} AE.$
 - $\det(\mathbf{A}\mathbf{E}) = -\det(\mathbf{A}).$
 - $\circ \quad I_n \stackrel{C_i + kC_j}{\longrightarrow} E \Rightarrow A \stackrel{C_i + kC_j}{\longrightarrow} AE.$
 - $\bullet \quad \det(\boldsymbol{A}\boldsymbol{E}) = \det(\boldsymbol{A}).$
- Find Inverse of Invertible Matrix:
 - $\circ \quad (m{A} \mid m{I}) \xrightarrow{\mathsf{Gauss-Jordan \, elimination}} (m{I} \mid m{A}^{-1}).$

 \boldsymbol{A} is singular if its RREF is not \boldsymbol{I} .

Determinants

- Let $\mathbf{A} = (a_{ij})_{n \times n}$ be a square matrix.
 - \circ If n = 1, $\det(\mathbf{A}) = a_{11}$.
 - \circ If n = 2, $\det(\mathbf{A}) = a_{11}a_{22} a_{12}a_{21}$.
 - \circ For $n \geq 2$, expansion along the *i*th row:
 - $\det(\mathbf{A}) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$.
 - Expansion along the *j*th column:
 - $\det(\mathbf{A}) = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$.

$$A_{ij} = (-1)^{i+j} \det(\mathbf{M}_{ij})$$
 is the (i, j) -cofactor of \mathbf{A} .

- M_{ij} is the submatrix of A by deleting its ith row and jth column.
- Cofactor expansion is applicable if $n \geq 4$ and if most of the entries along a row (or a column) are zero.

18 / 57

Determinants

- ullet Theorem. Let A and B be square matrices.
 - $\circ \quad \mathbf{A} \xrightarrow{cR_i} \mathbf{B} \Rightarrow \det(\mathbf{B}) = c \det(\mathbf{A}).$
 - $\circ \quad \boldsymbol{A} \xrightarrow{R_i \leftrightarrow R_j} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = -\det(\boldsymbol{A}).$
 - $\circ \quad \boldsymbol{A} \xrightarrow{R_i + cR_j} \boldsymbol{B} \Rightarrow \det(\boldsymbol{B}) = \det(\boldsymbol{A}).$
- Theorem. $\det(\mathbf{I}_n) = 1$.
 - If \mathbf{A} is singular, then $\det(\mathbf{A}) = 0$.
 - \circ If $oldsymbol{A}$ is an upper (or lower) triangular matrix,
 - $\det(A)$ is the product of the diagonal entries.
 - $\circ \det(\mathbf{A}) = \det(\mathbf{A}^{\mathrm{T}}), \det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}).$
 - $\circ \det(\mathbf{A}^{-1}) = 1/\det(\mathbf{A})$, if \mathbf{A} is invertible.

Determinants

• Let A be a square matrix of order n. The adjoint matrix

$$\circ \quad \mathbf{adj}(\mathbf{A}) = (A_{ji})_{n \times n}.$$

Then $A[\mathbf{adj}(A)] = \det(A)I$.

- $\circ \quad \text{If \pmb{A} is invertible, $\pmb{A}^{-1} = \frac{1}{\det(\pmb{A})} \operatorname{adj}(\pmb{A})$.}$
- Cramer's Rule. Let A be an invertible matrix.
 - $\circ \quad oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ has a unique solution $oldsymbol{x} =$
 - $x_j = \frac{\det(\boldsymbol{A}_j)}{\det(\boldsymbol{A})}$,

 A_j is obtained by replacing the jth column of A by b.

20 / 57

Chapter 3: Vector Spaces

21 / 57

Euclidean n-Spaces

- \mathbb{R}^n is the **Euclidean** n-space:
 - Every element in \mathbb{R}^n is called an n-vector:
 - $\mathbf{v} = (a_1, a_2, \dots, a_n).$
 - $\circ \quad c(a_1,\ldots,a_n)=(ca_1,\ldots,ca_n);$
 - \circ $(a_1,\ldots,a_n)+(b_1,\ldots,b_n)=(a_1+b_1,\ldots,a_n+b_n).$
- Implicit and explicit forms of lines and planes.
 - \circ Lines in \mathbb{R}^3 :
 - $\{(a_0+at,b_0+bt,c_0+ct)\mid t\in\mathbb{R}\}$. Intersection of two planes. Which
 - \circ Planes in \mathbb{R}^3 :
 - $\{(x, y, z) \mid ax + by + cz = d\}$. inplicit
 - $\{(s,t,\alpha s+\beta t+\gamma)\mid s,t\in\mathbb{R}\}$ explicit

Linear Combinations and Linear Spans

- Let v_1, v_2, \ldots, v_k be vectors in \mathbb{R}^n .
 - \circ $c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_k \boldsymbol{v}_k$ is a linear combination.
 - $\circ \operatorname{span}\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ is the set of all linear combinations.
 - $\{c_1\boldsymbol{v}_1 + \cdots + c_k\boldsymbol{v}_k \mid c_1, \dots, c_k \in \mathbb{R}\}.$
- Criterion to check if $v \in \operatorname{span}\{v_1, \ldots, v_k\}$:
 - Consistency of $c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{v}$.
 - \circ Consider the linear system $(m{v}_1 \ \cdots \ m{v}_k \ | m{v})$.
- Criterion to check if $\mathrm{span}\{oldsymbol{v}_1,\ldots,oldsymbol{v}_k\}=\mathbb{R}^n$:
 - \circ A row-echelon form of $(oldsymbol{v}_1 \ \cdots \ oldsymbol{v}_k)$ has no zero row.
 - \circ $(v_1 \cdots v_k)$ is of rank n (full rank).
 - \circ If k < n, then $\mathrm{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\} \neq \mathbb{R}^n$.

23 / 57

Linear Combinations and Linear Spans

- · Criterion to check if
 - $\circ \operatorname{span}\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k\} \subseteq \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r\}.$

Check consistency of $(v_1 \cdots v_r | u_1 | \cdots | u_k)$.

- Properties.
 - Let S_1 and S_2 be finite subsets of \mathbb{R}^n .
 - $S_1 \subseteq S_2 \Rightarrow \operatorname{span}(S_1) \subseteq \operatorname{span}(S_2)$.
 - Let $V = \operatorname{span}(S)$, where S is a finite subset of \mathbb{R}^n .
 - $0 \in V$.
 - " $c \in \mathbb{R}$ and $\mathbf{v} \in V$ " $\Rightarrow c\mathbf{v} \in V$.
 - " $u \in V$ and $v \in V$ " $\Rightarrow u + v \in V$.
 - \circ If $oldsymbol{v}_k$ is a linear combination of $oldsymbol{v}_1,\ldots,oldsymbol{v}_{k-1}$,
 - $\operatorname{span}\{v_1,\ldots,v_{k-1},v_k\}=\operatorname{span}\{v_1,\ldots,v_{k-1}\}.$

Subspaces

- A subspace of \mathbb{R}^n is $V = \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\},\, \boldsymbol{v}_i \in \mathbb{R}^n$.
- Criterion to check if a subset $V \subseteq \mathbb{R}^n$ is a subspace.
 - \circ If you guess "yes", try to find v_1, \ldots, v_k such that
 - $V = \operatorname{span}\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}.$
 - o If you guess "no", try to find counterexamples:
 - $\mathbf{0} \notin V$; or
 - $c \in \mathbb{R}$ and $\boldsymbol{v} \in V$, but $c\boldsymbol{v} \notin V$; or
 - $u \in V$ and $v \in V$, but $u + v \in V$.
- Examples. $\{0\}$ and \mathbb{R}^n .
 - o Lines passing through the origin.
 - o Planes containing the origin.
 - \circ The solution set (solution space) of Ax=0.

25 / 57

Linear Independency

- ullet $oldsymbol{v}_1,\ldots,oldsymbol{v}_k\in\mathbb{R}^n$ are said to be linearly independent if
 - $\circ c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = \mathbf{0} \Rightarrow c_1 = \dots = c_k = 0.$

Otherwise, they are linearly dependent.

- ullet Criterion to check if $oldsymbol{v}_1,\dots,oldsymbol{v}_k\in\mathbb{R}^n$ are linearly independent.
 - \circ Solve $(m{v}_1 \ \cdots \ m{v}_k \mid m{0}).$
 - There is only the trivial solution ⇒ linearly independent.
 - There is a non-trivial solution \Rightarrow linearly dependent.
 - \circ In particular, if k > n, they are linearly dependent.
- Properties.
 - \circ If $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly dependent,
 - then one of them is a linear combination of others.
 - \circ If $v_1,\ldots,v_k\in\mathbb{R}^n$ are linearly independent, and $v_{k+1}\in\mathbb{R}^n$ is not in $\mathrm{span}\{v_1,\ldots,v_k\}$,
 - ullet then $oldsymbol{v}_1,\ldots,oldsymbol{v}_k,oldsymbol{v}_{k+1}$ are linearly independent.

Bases

- A vector space V is a subspace of \mathbb{R}^n .
 - \circ A finite subset S of \mathbb{R}^n is a basis for V if
 - $\operatorname{span}(S) = V$ and S is linearly independent.
- Theorem. Let $S = \{v_1, \dots, v_k\}$ be a basis for V.
 - Every $v \in V$ can be uniquely expressed as a linear combination of vectors in S:
 - $\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_k \boldsymbol{v}_k$, where $c_i \in \mathbb{R}$.
- Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}$ be a basis for V.
 - \circ For each $v \in V$, write
 - $\boldsymbol{v} = c_1 \boldsymbol{v}_1 + \cdots + c_k \boldsymbol{v}_k$, where $c_i \in \mathbb{R}$.

Then $(v)_S = (c_1, \ldots, c_k) \in \mathbb{R}^k$ is called the **coordinate vector** of v relative to S.

27 / 57

Bases

- ullet Properties. Let S be a basis for a vector space V.
 - $\circ \quad \boldsymbol{u} = \boldsymbol{v} \Leftrightarrow (\boldsymbol{u})_S = (\boldsymbol{v})_S.$
 - $\circ (c_1 \boldsymbol{v}_1 + \dots + c_k \boldsymbol{v}_k)_S = c_1 (\boldsymbol{v}_1)_S + \dots + c_k (\boldsymbol{v}_k)_S.$
- Theorem. Let $S = \{v_1, \dots, v_k\}$ be a basis for V.
 - \circ u_1, \ldots, u_r are linearly independent in V
 - $\Leftrightarrow (\boldsymbol{u}_1)_S, \dots, (\boldsymbol{u}_r)_S$ are linearly independent in \mathbb{R}^k .
 - $\circ \operatorname{span}\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r\} = V$

$$\Leftrightarrow \operatorname{span}\{(\boldsymbol{u}_1)_S,\ldots,(\boldsymbol{u}_r)_S\} = \mathbb{R}^k.$$

 $\circ \{u_1,\ldots,u_r\}$ is a basis for V

$$\Leftrightarrow \{(oldsymbol{u}_1)_S, \dots, (oldsymbol{u}_r)_S\}$$
 is a basis for \mathbb{R}^k .

Dimensions

- ullet Theorem. Let V be a vector space. Then every basis for V is of the same size.
 - This number is the **dimension** of V, $\dim(V)$.
- Examples.
 - $\circ \dim(\{\mathbf{0}\}) = 0; \dim(\mathbb{R}^n) = n.$
 - \circ Dimension of the solution space Ax = 0:
 - No. of non-pivot colns in a row-echelon form of A.
- Properties. Let V be a vector space of $\dim(V) = n$.
 - \circ Let $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\in V$.
 - If k > n, then v_1, \ldots, v_k are linearly dependent.
 - If k < n, then $\operatorname{span}\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\} \neq V$.

29 / 57

Dimensions

- Properties.
 - \circ If U is a subspace of V, then $\dim(U) \leq \dim(V)$.
 - \circ If U is a subspace of V, then
 - $U = V \Leftrightarrow \dim(U) = \dim(V)$.
 - $U \subsetneq V \Leftrightarrow \dim(U) < \dim(V)$.
- Criterion to check if a subset $S \subseteq V$ is a basis for V.
 - \circ A subset $S\subseteq V$ is a basis for a vector space V if any two of the following three statements are true:
 - $\operatorname{span}(S) = V$;
 - ullet S is linearly independent;
 - $|S| = \dim(V)$.

Transition Matrices

- Let $S = \{v_1, \dots, v_k\}$ be a basis for a vector space V.
 - \circ Let $v \in V$ and write $v = c_1 v_1 + \cdots + c_k v_k$.

The **coordinate vector** of \boldsymbol{v} relative to S:

$$\circ$$
 $(\boldsymbol{v})_S = (c_1, \ldots, c_k), \quad [\boldsymbol{v}]_S = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix}.$

- Find coordinate vector:
 - \circ Solve $c_1 \boldsymbol{v}_1 + \cdots + c_k \boldsymbol{v}_k = \boldsymbol{v}$.
 - \circ Let $oldsymbol{A} = ig(oldsymbol{v}_1 \ \cdots \ oldsymbol{v}_kig)$. Then $oldsymbol{A}[oldsymbol{v}]_S = oldsymbol{v}$.
 - Solve $(m{v}_1 \ \cdots \ m{v}_k \ | \ m{v} \).$

31 / 57

Transition Matrices

- ullet Let V be a vector space having bases
 - $\circ \quad S = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_k \} \text{ and } T = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}.$

The **transition matrix** \boldsymbol{P} from S to T is an $k \times k$ matrix

- \circ such that $P[v]_S = [v]_T$ for all $v \in V$.
- $oldsymbol{P} = ig([oldsymbol{u}_1]_T \quad \cdots \quad [oldsymbol{u}_k]_T ig).$ It is obtained by solving
- $\circ \quad (m{v}_1 \quad \cdots \quad m{v}_k \mid m{u}_1 \mid \cdots \mid m{u}_k \).$
- **Properties.** Let S, T, R be bases for a vector space V.
 - \circ If \boldsymbol{P} is the transition matrix from S to T,
 - then ${\bf P}^{-1}$ is the transition matrix from T to S.
 - \circ **Q** is also the transition matrix from T to R,
 - then $\boldsymbol{Q}\boldsymbol{P}$ is the transition matrix from S to R.

Row Spaces and Column Spaces

• Let \boldsymbol{A} be an $m \times n$ matrix.

$$\circ$$
 View $oldsymbol{A}=egin{pmatrix} oldsymbol{r}_1\ dots\ oldsymbol{r}_m \end{pmatrix}$, where $oldsymbol{r}_i\in\mathbb{R}^n$.

 $\operatorname{span}\{\boldsymbol{r}_1,\ldots,\boldsymbol{r}_m\}\subseteq\mathbb{R}^n$ is the row space of \boldsymbol{A} .

- Properties.
 - \circ If A and B are row equivalent, then they have the same row space. (In other words, the row space is preserved by elementary row operations.)
 - \circ Let R be a row-echelon form of A.
 - Then the nonzero rows of R form a basis for the row space of A (and of R).

34 / 57

Row Spaces and Column Spaces

- Let \boldsymbol{A} be an $m \times n$ matrix.
 - \circ View $oldsymbol{A} = ig(oldsymbol{c}_1 \ \cdots \ oldsymbol{c}_nig)$, where $oldsymbol{c}_j \in \mathbb{R}^m$.

 $\operatorname{span}\{\boldsymbol{c}_1,\ldots,\boldsymbol{c}_n\}\subseteq\mathbb{R}^m$ is the column space of \boldsymbol{A} .

- Properties.
 - \circ Suppose $m{A} = m{ig(a_1 \ \cdots \ a_nig)}$ and $m{B} = m{ig(b_1 \ \cdots \ b_nig)}$ are row equivalent.
 - If $a_k = c_1 a_{j_1} + \cdots + c_r a_{j_r}$,
 - then $\boldsymbol{b}_k = c_1 \boldsymbol{b}_{j_1} + \cdots + c_r \boldsymbol{b}_{j_r}$.
 - If a_{j_1},\ldots,a_{j_r} are linearly independent,
 - \circ then $oldsymbol{b}_{j_1},\ldots,oldsymbol{b}_{j_r}$ are linearly independent.
 - If $\{oldsymbol{a}_{j_1},\dots,oldsymbol{a}_{j_r}\}$ is a basis for the coln space of A,
 - \circ then $\{oldsymbol{b}_{j_1},\ldots,oldsymbol{b}_{j_r}\}$ is a basis for that of $oldsymbol{B}.$

Row Spaces and Column Spaces

- Find a basis for $V = \operatorname{span}\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$.
- Method 1. View each $m{v}_i$ as a row vector and let $m{A} = egin{pmatrix} m{v}_1 \\ \vdots \\ m{v}_k \end{pmatrix}$
 - \circ Find a row-echelon form R of A.
 - \circ The nonzero rows of \boldsymbol{R} is a basis for V.
- Method 2. View $oldsymbol{v}_i$ as column vectors, set $oldsymbol{B} = oldsymbol{(v_1 \ \cdots \ v_k)}.$
 - \circ Find a row-echelon form R' of B.
 - o The columns of ${m B}$ which are corresponding to the pivot columns of ${m R}'$ then form a basis for V.

Using the 2nd method, we can find a basis for V by selecting vectors from v_1, \ldots, v_k .

36 / 57

Row Spaces and Column Spaces

- Extend a linearly independent set to a basis for \mathbb{R}^n .
 - Suppose v_1, \ldots, v_k are linearly independent in \mathbb{R}^n .
 - i) View each $oldsymbol{v}_i$ as a row vector.

ii) Let
$$oldsymbol{A} = egin{pmatrix} oldsymbol{v}_1 \ dots \ oldsymbol{v}_k \end{pmatrix}$$

- iii) Find a row-echelon form $oldsymbol{R}$ of $oldsymbol{A}$.
- iv) Find the non-pivot columns of $R: j_1, \ldots, j_{n-k}$.
- v) $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_k,oldsymbol{e}_{j_1},\ldots,oldsymbol{e}_{j_{n-k}}\}$ is a basis for $\mathbb{R}^n.$
- ullet Theorem. Ax=b is consistent
 - $\Leftrightarrow b$ lies in the column space of A.

Ranks

- **Theorem.** Let A be a matrix. Then its row space and its column space have the same dimension, rank(A).
- Let R be a row-echelon form of A.
 - $\circ \operatorname{rank}(\boldsymbol{A}) = \operatorname{number} \operatorname{of} \operatorname{nonzero} \operatorname{rows} \operatorname{of} \boldsymbol{R}.$
 - $\circ \operatorname{rank}(\boldsymbol{A}) = \operatorname{number} \operatorname{of} \operatorname{pivot} \operatorname{columns} \operatorname{of} \boldsymbol{R}.$
- Properties.
 - $\circ \quad \operatorname{rank}(\boldsymbol{A}) = 0 \Leftrightarrow \boldsymbol{A} = \boldsymbol{0}.$
 - $\circ \quad \text{rank}(\boldsymbol{A}) = \text{rank}(\boldsymbol{A}^{\text{T}}).$
 - If A is $m \times n$, then $rank(A) \leq m$, $rank(A) \leq n$.
 - $\circ \operatorname{rank}(AB) \leq \operatorname{rank}(A), \operatorname{rank}(AB) \leq \operatorname{rank}(B).$
 - $\circ \quad Ax = b$ is consistent
 - $\Leftrightarrow \operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A} \mid \boldsymbol{b}).$

38 / 57

Nullspaces and Nullities

- Let \boldsymbol{A} be an $m \times n$ matrix.
 - \circ The solution space to Ax=0 is the **nullspace** of A.
 - The dimension of the nullspace is $\operatorname{nullity}(A)$.
- Dimension Theorem for Matrices. For $m \times n$ matrix A,
 - \circ rank(\boldsymbol{A}) + nullity(\boldsymbol{A}) = n.
- Theorem. Suppose Ax = b has a solution x_0 .
 - \circ Every solution to Ax=b is of the form
 - $\bullet \quad \boldsymbol{x} = \boldsymbol{x}_0 + \boldsymbol{v},$

where $v\in \mathsf{nullspace}$ of A, i.e., Av=0.

The Dot Product

- Let $\boldsymbol{u}=(u_1,\ldots,u_n)$ and $\boldsymbol{v}=(v_1,\ldots,v_n)$ be in \mathbb{R}^n .
 - \circ Dot product: $\boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + \cdots + u_n v_n$.

 - \circ Distance: $d(\boldsymbol{u}, \boldsymbol{v}) = \|\boldsymbol{u} \boldsymbol{v}\|.$
 - $\circ \quad \text{Angle:} \quad \cos\theta = \frac{\boldsymbol{u}\cdot\boldsymbol{v}}{\|\boldsymbol{u}\|\,\|\boldsymbol{v}\|},\, \boldsymbol{u} \neq \boldsymbol{0}, \boldsymbol{v} \neq \boldsymbol{0}.$
- Properties. Let $u, v, w \in \mathbb{R}^n$ and $c \in \mathbb{R}$.
 - $\circ \quad \boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \boldsymbol{u}.$
 - $\circ \quad (\boldsymbol{u} + \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{u} \cdot \boldsymbol{w} + \boldsymbol{v} \cdot \boldsymbol{w}.$
 - $\circ (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v}).$
 - $\circ \|c\mathbf{v}\| = |c| \|\mathbf{v}\|.$
 - $|v| \ge 0$ and $|v| = 0 \Leftrightarrow v = 0$.
 - $|u \cdot v| \le ||u|| \, ||v||.$

41 / 57

Orthogonal and Orthonormal Bases

- Definitions.
 - $\circ \quad u \in \mathbb{R}^n$ and $v \in \mathbb{R}^n$ are orthogonal if $u \cdot v = 0$.
 - $\circ \quad S = \{ oldsymbol{v}_1, \dots, oldsymbol{v}_k \} \subseteq \mathbb{R}^n$ is orthogonal if
 - $\mathbf{v}_i \cdot \mathbf{v}_j = 0$ for all $i \neq j$.
 - $\circ \quad S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \} \subseteq \mathbb{R}^n \text{ is orthonormal if }$
 - $\mathbf{v}_i \cdot \mathbf{v}_i = 0$ for $i \neq j$ and $||\mathbf{v}_i|| = 1$ for all i.
- Theorem.
 - $\circ\quad \text{If }S\subseteq\mathbb{R}^n \text{ is an orthogonal set of nonzero vectors, }$
 - then S is linearly independent.
 - \circ If $S \subseteq \mathbb{R}^n$ is an orthonormal set of vectors,
 - then *S* is linearly independent.

Orthogonal and Orthonormal Bases

- ullet Definitions. Let S be a basis for a vector space V.
 - \circ S is an **orthogonal basis** for V if S is orthogonal.
 - \circ S is an **orthonormal basis** for V if S is orthonormal.
- ullet Theorem. Let V be a vector space.
 - \circ Let $S = \{v_1, \dots, v_k\}$ be an orthogonal basis for V.
 - $\boldsymbol{v} \in V \Rightarrow (\boldsymbol{v})_S = \frac{\boldsymbol{v} \cdot \boldsymbol{v}_1}{\|\boldsymbol{v}_1\|^2} \boldsymbol{v}_1 + \dots + \frac{\boldsymbol{v} \cdot \boldsymbol{v}_k}{\|\boldsymbol{v}_k\|^2} \boldsymbol{v}_k.$
 - \circ Let $S = \{v_1, \dots, v_k\}$ be an orthonormal basis for V.
 - $\mathbf{v} \in V \Rightarrow (\mathbf{v})_S = (\mathbf{v} \cdot \mathbf{v}_1)\mathbf{v}_1 + \cdots + (\mathbf{v} \cdot \mathbf{v}_k)\mathbf{v}_k$.
- Theorem. Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}$ be a basis for $V \subseteq \mathbb{R}^n$.
 - \circ \boldsymbol{v} is orthogonal to V (i.e., $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ for all $\boldsymbol{w} \in V$)
 - $\Leftrightarrow oldsymbol{v}$ is orthogonal to $oldsymbol{v}_1,\cdots,oldsymbol{v}_k.$

43 / 57

Orthogonal and Orthonormal Bases

- **Definition.** Let V be a subspace of \mathbb{R}^n .
 - \circ For every $oldsymbol{v} \in \mathbb{R}^n$, there exists a unique $oldsymbol{p} \in V$
 - such that v p is orthogonal to V.

Then p is the **projection** of v onto V.

- Theorem. Let V be a subspace of \mathbb{R}^n and $v \in \mathbb{R}^n$.
 - \circ Let $S = \{v_1, \dots, v_k\}$ be an orthogonal basis for V.
 - Projection of \boldsymbol{v} on V:

$$\circ \quad \frac{oldsymbol{v} \cdot oldsymbol{v}_1}{\|oldsymbol{v}_1\|^2} oldsymbol{v}_1 + \cdots + \frac{oldsymbol{v} \cdot oldsymbol{v}_k}{\|oldsymbol{v}_k\|^2} oldsymbol{v}_k.$$

Let $S = \{v_1, \dots, v_k\}$ be an orthonormal basis for V.

- Projection of ${m v}$ on V:
 - $\circ \quad (\boldsymbol{v} \cdot \boldsymbol{v}_1) \boldsymbol{v}_1 + \cdots + (\boldsymbol{v} \cdot \boldsymbol{v}_k) \boldsymbol{v}_k.$

Orthogonal and Orthonormal Bases

• Gram-Schmidt Process. Let $\{u_1,\ldots,u_k\}$ be a basis for a vector space V.

 $\circ \quad \text{Then } \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \} \text{ is an orthogonal basis for } V.$

Let
$$m{w}_1 = m{v}_1 / \| m{v}_1 \|, \dots, m{w}_k = m{v}_k / \| m{v}_k \|.$$

 \circ Then $\{ \boldsymbol{w}_1, \dots, \boldsymbol{w}_k \}$ is an orthonormal basis for V.

45 / 57

Best Approximations

- Theorem. Let V be a subspace of \mathbb{R}^n and $v \in \mathbb{R}^n$.
 - \circ Let p be the projection of v onto V.
 - $d(\boldsymbol{v}, \boldsymbol{p}) \leq d(\boldsymbol{v}, \boldsymbol{w})$ for all $\boldsymbol{w} \in V$.

Hence, p is the **best approximation** of v in V.

- **Properties**. Let V be a subspace of \mathbb{R}^n and $v \in \mathbb{R}^n$.
 - \circ Let \boldsymbol{p} be the projection of \boldsymbol{v} onto V.
 - v p is orthogonal to V.
 - $\|v-p\|$ is the shortest distance from v to V.
- A linear system Ax = b is not necessarily consistent.
 - \circ The least squares solution to Ax=b is v
 - such that $\|Av b\|$ is minimized.

Best Approximations

- ullet Theorem. The least squares solutions to Ax=b are precisely all the solutions to
 - $\circ \quad A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$, which is always consistent.
- ullet Note. Let v be a least squares solution to Ax=b.
 - $\circ \| Av b \|$ is minimized.
 - $\circ \ Av$ is the projection of b onto the column space of A.
 - $\circ \ \|Av-b\|$ is the shortest distance from b to the column space of A.
- Find projection onto a vector space.
 - \circ Suppose $V = \mathrm{span}\{oldsymbol{v}_1,\ldots,oldsymbol{v}_k\} \subseteq \mathbb{R}^n$ and $oldsymbol{b} \in \mathbb{R}^n$.
 - i) Let $oldsymbol{A} = ig(oldsymbol{v}_1 \quad \cdots \quad oldsymbol{v}_kig).$
 - ii) Solve $oldsymbol{A}^{\mathrm{T}} oldsymbol{A} oldsymbol{x} = oldsymbol{A}^{\mathrm{T}} oldsymbol{b}.$
 - iii) Suppose v is any solution. Then Av is the projection of b onto V.

47 / 57

Orthogonal Matrices

- Let $S = \{ m{v}_1, \dots, m{v}_k \} \subseteq \mathbb{R}^n$ and $m{A} = m{v}_1 \quad \cdots \quad m{v}_k$.
 - \circ S is orthogonal $\Leftrightarrow {m A}^{
 m T}{m A}$ is diagonal.
 - \circ S is orthonormal $\Leftrightarrow \mathbf{A}^{\mathrm{T}}\mathbf{A} = \mathbf{I}_{k}$.
- ullet Definition. A square matrix A is orthogonal if
 - $\circ \quad m{A}^{\mathrm{T}}m{A} = m{I}_n$, or equivalently, $m{A}^{-1} = m{A}^{\mathrm{T}}$.
- **Theorem.** Let **A** be a square matrix of order n.
 - \circ A is an orthogonal matrix
 - \Leftrightarrow the rows of $oldsymbol{A}$ form an orthonormal basis for \mathbb{R}^n
 - \Leftrightarrow the columns of A form an orthonormal basis for \mathbb{R}^n .
- \bullet **Theorem.** Let S be an orthonormal basis for V.
 - \circ Let T be another basis for V and P be the transition matrix from S to T. Then
 - T is orthonormal $\Leftrightarrow P$ is orthogonal.

Eigenvalues and Eigenvectors

- **Definition.** Let A be a square matrix of order n.
 - \circ Suppose $Av = \lambda v$ for some $\lambda \in \mathbb{R}$ and $0 \neq v \in \mathbb{R}^n$.
 - Then λ is an eigenvalue of A, and λ is an eigenvector of A associated to λ .
 - Characteristic polynomial: $\det(\lambda \boldsymbol{I} \boldsymbol{A})$.
 - Characteristic equation: $det(\lambda I A) = 0$.
- **Properties.** Let A be a square matrix of order n.
 - λ is an eigenvalue of $\mathbf{A} \Leftrightarrow \det(\lambda \mathbf{I} \mathbf{A}) = 0$.
 - \circ If A is upper (or lower) triangular,
 - the diagonal entries are the eigenvalues of $oldsymbol{A}$.
 - The set of all eigenvectors associated to eigenvalue λ :
 - Nonzero vectors in the nullspace of $\lambda {m I} {m A}$.

The nullspace of $\lambda I - A$ is the eigenspace E_{λ} .

50 / 57

Diagonalization

- **Definition.** Let A be a square matrix. Suppose there exists an invertible matrix P and a diagonal matrix D s.t.
 - $\circ P^{-1}AP = D.$

Then A is called diagonalizable.

- $\circ \quad {m A}^m = {m P} {m D}^m {m P}^{-1}$ for any positive integer m.
- **Properties.** Let A be a square matrix of order n.

$$\circ$$
 Let $m{P} = egin{pmatrix} m{v}_1 & \cdots & m{v}_n \end{pmatrix}$ and $m{D} = egin{pmatrix} \lambda_1 & \cdots & 0 \ dots & \ddots & dots \ 0 & \cdots & \lambda_n \end{pmatrix}$.

Then $oldsymbol{P}^{-1}oldsymbol{A}oldsymbol{P}=oldsymbol{D}$ if and only if

- ullet $oldsymbol{A}oldsymbol{v}_1=\lambdaoldsymbol{v}_1,\ldots,oldsymbol{A}oldsymbol{v}_n=\lambda_noldsymbol{v}_n$, and
- \circ v_1, \ldots, v_n form a basis for \mathbb{R}^n .

Diagonalization

- **Theorem.** Let $\lambda_1, \ldots, \lambda_k$ be distinct eigenvalues of A.
 - Let v_i be an eigenvector of A associated to λ_i .
 - Then v_1, \ldots, v_k are linearly independent.
- Algorithm. Let A be a square matrix.
 - 1. Solve $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = 0$ to find distinct eigenvalues:
 - $\circ \lambda_1, \ldots, \lambda_k.$
 - 2. For each λ_i , find a basis S_{λ_i} for the eigenspace E_{λ_i} .
 - 3. Let $S = S_{\lambda_1} \cup \cdots \cup S_{\lambda_k}$.
 - \circ If |S| < n, then \boldsymbol{A} is not diagonalizable.
 - \circ If |S| = n, then \boldsymbol{A} is diagonalizable.
- Theorem. If A has order n, and A has n distinct eigenvalues, then A is diagonalizable.

52 / 57

Orthogonal Diagonalization

- **Definition.** Let A be a square matrix of order n.
 - \circ A is **orthogonally diagonalizable** if there exists an orthogonal matrix P and a diagonal matrix D s.t.
 - $P^{\mathrm{T}}AP = D$.
- Theorem. Let A is a square matrix.
 - \circ **A** is orthogonally diagonalizable \Leftrightarrow **A** is symmetric.
- Algorithm. Let A be a symmetric matrix.
 - 1. Set $\det(\lambda \boldsymbol{I} \boldsymbol{A}) = 0$ to find distinct eigenvalues λ_i .
 - 2. For each λ_i , find a basis S_{λ_i} for the eigenspace E_{λ_i} .
 - 3. Use Gram-Schmidt process to find an orthonormal basis T_{λ_i} for E_{λ_i} .
 - 4. Let $T = T_{\lambda_1} \cup \cdots \cup T_{\lambda_k} = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \}.$
 - 5. $m{P} = m{v}_1 \quad \cdots \quad m{v}_n m{)}$ is orthogonal, & diagonalizes $m{A}$.

Chapter 7: Linear Transformations

54 / 57

Linear Transformations from \mathbb{R}^n to \mathbb{R}^m

• A linear transformation is a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$:

$$\circ T\left(\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}\right) = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}.$$

- ullet Properties. Let T be a linear transformation.
 - $\circ T(0) = 0.$
 - $\circ T(c_1\boldsymbol{v}_1 + \cdots + c_k\boldsymbol{v}_k) = c_1T(\boldsymbol{v}_1) + \cdots + c_kT(\boldsymbol{v}_k).$
- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - \circ Let $\mathbf{A} = ig(T(\mathbf{e}_1) \ \cdots \ T(\mathbf{e}_n) ig).$
 - Then $T(\boldsymbol{x}) = \boldsymbol{A}\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^n$.

 \boldsymbol{A} is called the **standard matrix** for T.

55 / 57

Linear Transformations from \mathbb{R}^n to \mathbb{R}^m

- Algorithm. Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and $\{ {m v}_1, \dots, {m v}_n \}$ a basis for T.
 - 1. Let $oldsymbol{P}=egin{pmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_n \end{pmatrix}$.
 - 2. Let $\boldsymbol{B} = (T(\boldsymbol{v}_1) \cdots T(\boldsymbol{v}_n))$.
 - 3. The standard matrix for T is \mathbf{BP}^{-1} .
- Theorem. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ and $S: \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations.
 - \circ Let \boldsymbol{A} be the standard matrix for T, and \boldsymbol{B} the standard matrix for S.
 - \circ Then $\boldsymbol{B}\boldsymbol{A}$ is the standard matrix for $S\circ T$.

Ranges and Kernels

- Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T.
 - \circ The range of T is
 - $R(T) = \{T(\boldsymbol{v}) \mid \boldsymbol{v} \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$.
 - R(T) = column space of A.
 - $\operatorname{rank}(T) = \dim R(T) = \operatorname{rank}(A)$.
 - \circ The **kernel** of T is
 - $\operatorname{Ker}(T) = \{ \boldsymbol{v} \in \mathbb{R}^n \mid T(\boldsymbol{v}) = \boldsymbol{0} \} \subseteq \mathbb{R}^n.$
 - Ker(T) = nullspace of A.
 - $\operatorname{nullity}(T) = \dim \operatorname{Ker}(T) = \operatorname{nullity}(\boldsymbol{A}).$
- Dimension Theorem for Linear Transformation.
 - \circ Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.
 - rank(T) + nullity(T) = n.