Bab 6

Pemulusan Eksponensial: Klasifikasi Pegels

Pegels menciptakan pemulusan eksponensial dengan cara memisahkan antara aspek musiman dan aspek tren yang dapat dilihat pada tabel di bawah ini.

Dari kesembilan model pemulusan eksponensial tersebut dapat diringkas dengan rumus:

$$S_t = \alpha P + (1 - \alpha)Q$$

dimana P dan Q berubah-ubah menurut aspek musiman dan tren dari data yaitu sebagai berikut:

	No Seasonal Effect (1)	Additive Seasonal Effect (2)	Multiplicative Seasonal Effect (3)
No Trend Effect	$P = X_t$	$P = X_t - C_{t-L}$	$P = X_t/D_{t-L}$
(A)	$Q = X_{t-1}$	$Q = S_{t-1}$	$Q = S_{t-1}$
Additive Trend	$P = X_t$	$P = X_t - C_{t-L}$	$P = X_t/D_{t-L}$
Effect (B)	$Q = X_{t-1} + A_{t-1}$	$Q = S_{t-1} + A_{t-1}$	$Q = S_{t-1} + A_{t-1}$
Multiplicative	$P = X_t$	$P = X_t - C_{t-L}$	$P = X_t/D_{t-L}$
Trend Effect (C)	$Q = (X_{t-1})(B_{t-1})$	$Q = (S_{t-1})(B_{t-1})$	$Q = (S_{t-1})(B_{t-1})$

dengan:

• $X_t = \text{Data deret waktu}$

• S_t = Data yang dihaluskan

• $A_t = \beta(S_t - S_{t-1}) + (1 - \beta)A_{t-1}$ (Trend Aditif)

• $B_t = \gamma(S_t/S_{t-1}) + (1 - \gamma)B_{t-1}$ (Trend Multiplikatif)

• $C_t = \delta(X_t - S_t) + (1 - \delta)C_{t-L}$ (Musiman Aditif)

• $D_t = \theta(X_t/S_t) + (1 - \theta)D_{t-L}$ (Musiman Multiplikatif)

 α , β , γ , δ , θ semuanya dibatasi terletak antara 0 dan 1

Untuk menghitung menggunakan rumus tersebut, diperlukan inisialisasi yang dirumuskan dengan:

• $A_L = \frac{1}{L^2}(Jumlah \ musiman \ kedua - Jumlah \ musiman \ pertama)$

• $B_1 = (X_2 - X_1)$

• $C_t = (X_t - S_L), t = 1, ..., L$

• $D_t = \left(\frac{X_t}{S_L}\right), t = 1, \dots, L$

 $\bullet \quad S_L = \frac{X_1 + X_2 + \dots + X_L}{L}$

Pengecualian inisialisasi tipe A1, B1, dan C1

 $\bullet \quad S_1 = X_1$

• $A_1 = B_1 = X_2 - X_1$

Rumus untuk membuat prediksi m periode ke muka (F_{t+m}) dengan menggunakan klasifikasi Pegels ditunjukkan pada tabel di bawah ini.

	No Seasonal	Additive Seasonal	Multiplicative
	Effect	Effect	Seasonal Effect
	(1)	(2)	(3)
No Trend Effect (A)	S_t	St + Ct - L + m	StDt- L + m
Additive Trend Effect (B)	$S_t + mA_t$	St + mAt + Ct - L + m	$(S_t + mA_t)D_{t-L+m}$
Multiplicative Trend Effect (C)	$S_t B_t^m$	$S_t B_t^m + C_{t-L+m}$	$S_tB_t{}^mD_{t-L+m}$

Additive Tren Effect vs Multiplicative Tren Effect

^{*}Kecenderungan = Tren

Additive Seasonal Effect vs Multiplicative Seasonal Effect

Perhatikan perbedaan ukurannya (Garis Merah).

Manakah yang aditif dan manakah yang multiplikatif?

Langkah Excel

1. Buat plot awal data

Dari plot tersebut, kita bisa mengetahui bahwa data memiliki trend aditif dan musiman multiplikatif tiap 4 bulanan (B3 dengan L=4).

2. Hitung initial St (yaitu S_L)

$$S_4 = \frac{x_1 + x_2 + x_3 + x_4}{4}$$

1	periode	data	St	Dt	At	P	Q	Ft+m	e^2	alpha	0.2
2	1	363								betha	0.2
3	2	386								teta	0.2
4	3	433								MSE	
5	4	342	=AVER	AGE(B2:B5)							
6	5	384	AVER	AGE(number	1; [numbe	r2];)					
7	6	410									
8	7	500									
9	8	388									
10	9	474									

3. Hitung initial Dt dengan $D_t = (X_t/S_L)$

A	Α	В	С	D	E
1	periode	data	St	Dt	At
2	1	363		=B2/\$C\$5	
3	2	386		1.013123	
4	3	433		1.136483	
5	4	342	381	0.897638	
6	5	384			

4. Hitung initial At dengan $A_L = \frac{1}{L^2} * (Jumlah musiman kedua - Jumlah musiman pertama)$

1	A	В	С	D	E	F	G	Н	
1	periode	data	St	Dt	At	Р	Q	Ft+m	e
2	1	363		0.952756					
3	2	386		1.013123					
4	3	433		1.136483					
5	4	342	381	0.897638	=(1/4^2)	*(SUM(B6	:B9)-SUM(I	B2:B5))	
6	5	384				G d			
7	6	410							
8	7	500							
9	8	388							
10	9	474	d						

5. Hitung nilai P dan Q dengan $Pt = X_t/(D_{t-L})$ dan $Qt = S_{t-1} + A_{t-1}$

A	Α	В	С	D	E	F	
1	periode	data	St	Dt	At	P	
2	1	363		0.952756			
3	2	386		1.013123			
4	3	433		1.136483			
5	4	342	381	0.897638	9.875		
6	5	384				=B6/D2	
A	Α	В	С	D	E	F	G
1	periode	data	St	Dt	At	P	Q
2	1	363	3	0.952756	5		
3	2	386	5	1.013123	3		
4	3	433	3	1.136483	3		
5	4	342	38:	0.897638	9.87	5	
6	5	384		Section 19		403.0413	-C5+F5

6. Hitung St dengan $S_t = \alpha P + (1 - \alpha)Q$

A	A	В	С	D	E	F	G	Н	1	J	K
1	periode	data	St	Dt	At	Р	Q	Ft+m	e^2	alpha	0.2
2	1	363		0.952756						betha	0.2
3	2	386		1.013123						teta	0.2
4	3	433		1.136483						MSE	
5	4	342	381	0.897638	9.875						
6	5	384	=\$K\$1*F6-	+(1-\$K\$1)*	G6	403.0413	390.875	Ī			

7. Hitung Dt dengan $D_t = \theta \left(\frac{X_t}{S_t} \right) + (1 - \theta) D_{t-L}$

	Α	В	С	D	E	F	G	Н	1	J	K
1	periode	data	St	Dt	At	P	Q	Ft+m	e^2	alpha	0.2
2	1	363		0.952756						betha	0.2
3	2	386		1.013123						teta	0.2
4	3	433		1.136483						MSE	
5	4	342	381	0.897638	9.875						
6	5	384	393.3083	=\$K\$3 *(B 6	/C6)+(1-\$k	(\$3)* D2	390.875				

8. Hitung At dengan $A_t = \beta(St - St - 1) + (1 - \beta)At - 1$

A	A	B	C	D	E	, F	G	3H			K
1	periode	data	St	Dt	At	P	Q	Ft+m	e^2	alpha	0.2
2	1	363		0.952756						betha	0.2
3	2	386		1.013123						teta	0.2
4	3	433		1.136483						MSE	
5	4	342	381	0.897638	9.875	I					
6	5	384	393.3083	0.957471	=\$K\$2*(C	5-C5)+(1-	\$K\$2)*E5				

9. Drag St, Dt, At, P, dan Q sampai data terbawah

-4	Α	В	C	D	E	F	G
1	periode	data	St	Dt	At	P	Q
2	1	363		0.952756			
3	2	386		1.013123			
4	3	433		1.136483			
5	4	342	381	0.897638	9.875		
6	5	384	393.3083	0.957471	10.36165	403.0413	390.875
7	6	410	403.8738	1.013532	10.40242	404.6891	403.6699
8	7	500	419.4117	1.147616	11.42953	439.9538	414.2762
9	8	388	431.1221	0.898106	11.4857	432.2456	430.8412
10	9	474	453.097	0.975204	13.58355	495.0539	442.6078
11	10	514	474.7719	1.027351	15.20181	507.1372	466.6806
12	11	583	493.5809	1.154325	15.92326	508.0098	489.9737
13	12	475	513.3816	0.903532	16.69873	528.891	509.5042
14	13	545	535.8357	0.983584	17.84982	558.8575	530.0803
15	14	583	556.4442	1.031426	18.40155	567.4789	553.6856
16	15	682	578.0409	1.15943	19.04058	590.8214	574.8458
17	16	558	601.1804	0.90846	19.86037	617.5763	597.0815
18	17	629	624.7323	0.988233	20.59867	639.4983	621.0408
19	18	708	653.5505	1.041803	22.24257	686.4286	645.331
20	19	774	674.1484	1.157167	21.91363	667.5696	675.7931
21	20	500	607 4001	n eagann	20 10126	652 7527	696 062

10. Hitung F_{t+m} dengan $F_{t+m}=(S_t+mA_t)D_{t-L+m}$ di sini kita coba cari 1 tahun ke depan sehingga menggunakan m=1

Karena m = 1, maka kita mulai dengan data periode ke-5+1

1 periode data St Dt At P Q 2 1 363 0.952756 3 3 2 386 1.013123 3 4 3 433 1.136483	Ft+m e^2
3 2 386 1.013123	
4 3 433 1.136483	
5 4 342 381 0.897638 9.875	
6 5 384 393.3083 0.957471 10.36165 403.0413 390	875
7 6 410 403.8738 1.013532 10.40242 404.6891 403.6	699 =(C6+E6)*D3

11. Drag sampai data paling bawah ditambah satu observasi

1	periode	data	St	Dt	At	P	Q	Ft+m
19	18	708	653.5505	1.041803	22.24257	686.4286	645.331	665.6109
20	19	774	674.1484	1.157167	21.91363	667.5696	675.7931	783.5345
21	20	593	687.4001	0.899302	20.18126	652.7527	696.062	632.3448
22	21	628	693.1606	0.971785	17.29711	635.4776	707.5814	699.2554
23	22	726	707.7399	1.038603	16.75355	696.8687	710.4577	740.1571
24	23	855	727.3695	1.160827	17.32875	738.8736	724.4935	838.3598
25	24	662	742.9838	0.897642	16.98586	736.1261	744.6983	669.709
26								738.5275

12. Hitung error dengan $e^2 = (X_t - F_{t+m})^2$

A	A	В	С	D	E	F	G	H		
1	periode	data	St	Dt	At	P	Q	Ft+m	e^2	alpha
2	1	363		0.952756						beth
3	2	386		1.013123						teta
4	3	433		1.136483						MSE
5	4	342	381	0.897638	9.875					
6	5	384	393.3083	0.957471	10.36165	403.0413	390.875			
7	6	410	403.8738	1.013532	10.40242	404.6891	403.6699	408.9674	=(B7-H7)^	2

Jangan lupa *drag* sampai data terbawah (bukan data terbawah tambah satu).

13. Hitung MSE dengan menghitung rata-rata dari seluruh error yang ada

G	Н	1	J	K	L	M	N
Q	Ft+m	e^2	alpha	0.2			
			betha	0.2			
			teta	0.2			
			MSE	=AVERAGE(17:125)			
				AVERAGE(number1; [number2];)			.)
390.875			and the second				
403.6699	408.9674	1.066216	f i				
414.2762	470.8178	851.6002					

14. Selesai! Diperoleh MSE sebesar 886.29