Exercise sheet 2

Manifolds, MTH406

Applications of the inverse function theorem

- 1. Consider a smooth map $f: M \to N$ where M and N are of the same dimension n. Assume that $d_p(f): T_p(M) \to T_{f(p)}(N)$ is invertible. Prove that there exists a chart $\phi: U \to \mathbb{R}^n$ centered at p and a chart $\psi: V \to \mathbb{R}^n$ centered at f(p) so that $\psi \circ f \circ \phi^{-1} = Id$.
- 2. Consider a map $F: \mathbb{R}^n \to \mathbb{R}^k$, which is smooth and its Jacobian is of rank k at 0.
 - (a) Prove that there exists a map $\theta : \mathbb{R}^n \to \mathbb{R}^n$ so that the first k columns of $Jac_0(F \circ \theta^{-1})$ are linearly independent (A permutation would do!).
 - (b) Let f_i be the coordinates of $F \circ \theta^{-1}$, i.e. $F(\theta^{-1}((x_1, x_2, \dots, x_n))) = (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_k(x_1, x_2, \dots, x_n))$ Consider the map $F : \mathbb{R}^n \to \mathbb{R}^k \times \mathbb{R}^{n-k}$ defined by $G(x_1, x_2, \dots, x_n) = (f_1(x_1, \dots, x_n), f_2(x_1, \dots, x_n), \dots, f_k(x_1, \dots, x_n), x_{k+1}, \dots, x_n)$. Prove that G is a local diffeomorphism.
 - (c) Let $\pi(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_k)$. Observe that $F \circ \theta^{-1} = \pi \circ G$. Define $\phi := G \circ \theta$. Prove that $F \circ \phi^{-1} = \pi$.
- 3. Use the previous exercise to prove the local submersion theorem.
- 4. Use the submersion theorem to prove that the inverse image (under a smooth map between manifolds) of a regular value is always a manfold.
- 5. Consider a map $F: \mathbb{R}^k \to \mathbb{R}^n$, which is smooth and its Jacobian is of rank k at 0.
 - (a) Prove that there exists a map $\theta : \mathbb{R}^n \to \mathbb{R}^n$ so that the first k rows of $Jac_0(\theta \circ F)$ are linearly independent (A permutation would do!).
 - (b) Let f_i be the coordinates of $\theta \circ F$, i.e. $\theta(F(x_1,\ldots,x_k) = (f_1(x_1,\ldots,x_k),f_2(x_1,\ldots,x_k),\ldots,f_n(x_1,\ldots,x_k))$ Consider the map $F: \mathbb{R}^k \times \mathbb{R}^{n-k} \to \mathbb{R}^n$ defined by $G(x_1,\ldots,x_n) = (f_1(x_1,\ldots,x_k),f_2(x_1,\ldots,x_k),\ldots,f_n(x_1,\ldots,x_k))+(0,\ldots,0,x_{k+1},\ldots,x_n)$. Prove that G is a local diffeomorphism when restricted to some neighbourhood U of 0.
 - (c) Let $i(x_1, x_2, \dots, x_k) = (x_1, x_2, \dots, x_k, 0, \dots, 0)$. Observe that $\theta \circ F = G \circ i$. Define $\psi := G^{-1} \circ \theta$. Prove that $\psi \circ F = i$.
- 6. Use the previous exercise to prove the local immersion theorem.

7.	Use the immersion theorem to prove that that image of an injective immersion which is a homeomorphism onto its image is always a submanifold.