ANALISI 1 - LEZIONE 61

Note Title

14/12/2024

Formula di Taylor con resto di Lagrange

$$\varphi(x) = P_m(x) + O(x^m)$$
 per $x \to 0$

Brutalmente: posso approssimane (sotto certe ipotesi) f(x) o f(x) o f(x).

con un polinsmio. L'errore che commetto è un opicado.

Informazione utile nei Dimiti.

Taylor-Lagrange fornisce un'informazione più quantitativa sul resto

$$f(x) = P_m(x) + \frac{f^{(m+1)}(c)}{(m+1)!} \times M^{-1}$$

dove c è un p. to misterioso compreso tra o e x

Brutalmente: il resto alla Lagrange è sostausialmente il termine successivo dello svituppo di Taylor, sobo che la derivata (m+1) - esima usu è calcolata in x =0, une in un p.to misterioso c

Teorema Sia 2 > 0 e sia $4 : (-2,2) \rightarrow \mathbb{R}$ Suppositions du 4 = 2 sia derivabile fino all'ordine 4 = 2 strettamente,

Allora per ogni 4 = 2 existe 4 = 2 compress tra 4 = 2 existe than 4 = 2 tale due.

$$f(x) = P_{m}(x) + \frac{(m+1)!}{f_{(m+1)}(c)} \times_{m+1}$$

Pm(x) è il polinounio di Taylor di gradon

Oss. Vale Da sterra cora cou centro xo qualunque
$$f(x_0+R) = P_m(R) + \frac{f^{(m+1)}(c)}{(m+1)!} \frac{g^{(m+1)}}{c}$$
dose $c \ge uu p + 0$ unisterioso, due dipende da a , compreso tra $a \ge x + R$.

Oss. Cosa diventa Da formula mel caxo $a = 0$?
$$f(x) = f(0) + f'(c) \times$$
cioù
$$f(x) - f(0) = f'(c)(x - 0)$$
du $a \ge 1$ teorema di lagrange applicato in $[0, x]$.

Essurpio 1 Voglio calculou sin $(\frac{1}{10})$
Dra che sin $a = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots$

$$Sin (\frac{1}{10}) \sim \frac{1}{10} - \frac{1}{6} \cdot \frac{1}{1000} = \frac{6000}{6000} \cdot \text{che errore commetto?}$$

Douanda: se approssimo sin $(\frac{1}{10})$ can $\frac{599}{6000}$, che errore commetto?

Oso Taylor-lagrange con $f(x) = \sin x = m = 4$. Ottengo
$$sin (\frac{1}{10}) = \frac{599}{6000} + \frac{f^{(5)}(c)}{120} \cdot \frac{1}{10^5}$$
quindi $a \ge 0$ errore che commetto $a \ge 0$.

Quindi $a \ge 0$ errore che commetto $a \ge 0$.

Quindi $a \ge 0$ errore $a \ge 0$ dell'ordine chi $a \ge 0$.

Riprova
$$\frac{599}{6000} = 0,0398333333$$

Stu $(\frac{1}{10}) = 0,0998334$

Oss. Taylor Lagrange fornisce una stima esplicita dell'errore.

Esempio 2 Se voglio calcolare cos (½) e uso i primi 4 fermini di Taylor, cosa posso dire dell'enone?

$$\cos x = 1 - \frac{1}{2} x^2 + \frac{1}{24} x^4 - \frac{1}{420} x^6 + \dots$$

$$\cos(\frac{1}{2}) \sim 1 - \frac{1}{2} \cdot \frac{1}{4} + \frac{1}{24} \cdot \frac{1}{16} - \frac{1}{720} \cdot \frac{1}{6k} = \text{Si } \text{ pa il courbo}$$

Per stimare l'errore uso TL con m=7

$$\cos\left(\frac{1}{2}\right) = P_{\mp}\left(\frac{1}{2}\right) + \frac{e^{(8)}(c)}{8!}$$

ununero di sopra

$$|enone| = \frac{|f^{(8)}(c)|}{8!256} \le \frac{1}{10^{7}}$$

Escuepio 3 Dianstrare che
$$e^{\times} \ge 1 + \times + \frac{\times^2}{2} + \frac{\times^3}{6}$$
 per ogni $\times \in \mathbb{R}$

Uso TL cou f(x) = e = 3. Othergo

$$e^{\times} = P_3(x) + \frac{e^{(4)}(c)}{24} \times = P_3(x) + \frac{e^c}{24} \times = P_3(x)$$

Escupio 3 bis Risolveu & disequarious

$$e^{\times} \ge 1 + x + \frac{x^2}{2}$$

Da TL cou $n = 2$ sappiano che

 $e^{\times} = 1 + x + \frac{x^2}{2} + \frac{e^{e}}{6} \times^3 \ge 1 + x + \frac{x^2}{2}$
 $e^{\times} = 1 + x + \frac{x^2}{2} + \frac{e^{e}}{6} \times^3 \ge 1 + x + \frac{x^2}{2}$

Vale se $\times \ge 0$

(è il contravio per $\times \le 0$)

Conclusione: Da disug, vale per $\times \ge 0$.

Escupio 4 collegado

$$\lim_{z \to 0} \frac{\arctan(\cos z) - \arctan(\cos lx)}{\sinh^2(\sqrt{x}) \cdot \tan^2(\sqrt{x})}$$

L'angonneuro di autan unu tendu a 0 , quindi unon si purò unore Do sviluppo standard di autan.

Alternativa pri rappida

P(coex) - P(coex) = P(c) (coex - coex)

Alternativa pri rappida

P(coex) - P(coex) = P(c) (coex - coex)

Francione = $e^{(x)}$

Escupto tra coex e coex

Francione = $e^{(x)}$
 $e^{(x)}$
 $e^{(x)}$
 $e^{(x)}$

Escupto tra coex e coex

 $e^{(x)}$
 e