Геометрия и топология.

Лектор — Евгений Анатольевич Фоминых Создатель конспекта — Глеб Минаев *

Литература:

- Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., "Элементарная топология", М.:МЦНМО, 2012.
- Коснёвски Чес, "Начальный курс алгебраической топологии", М.:Мир, 1983.
- Ю.Г. Борисович, Н.М. Близняков, Я.А. Израилевич, Т.Н. Фоменко, "Введение в топологию", М.:Наука. Физматлит, 1995.
- James Munkres, Topology.

1 Метрическое пространство

Определение 1. Функция $d: X \times X \to \mathbb{R}_+$ называется *метрикой* (или *расстоянием*) в множестве X, если:

- $d(x,y) = 0 \Leftrightarrow x = y$;
- d(x, y) = d(y, x);
- $d(x,z) \leq d(x,y) + d(y,z)$ ("неравенство треугольника").

Пара (X, d), где d — метрика в X, называется метрическим пространством.

Определение 2. Пусть (X,d) — метрическое пространство. Сужение функции d на $Y \times Y$ является метрикой в Y. Метрическое пространство $(Y,d|_{Y\times Y})$ называется nodnpocmpancmsom пространства (X,d).

Теорема 1. Декартово произведение метрических пространств (X, d_X) и (Y, d_Y) — метрическое пространство $(X \times Y, d_{X \times Y})$, где

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)) = \sqrt{d_X(x_1,x_2)^2 + d(y_1,y_2)^2}$$

Определение 3. Пусть (X, d) — метрическое пространство, $a \in X$, $r \in \mathbb{R}$, r > 0. Тогда:

- $B_r(a) := \{x \in X \mid d(a,x) < r\} (открытый)$ шар пространства (X,d) с центром в точке а и радиусом r;
- $\overline{B}_r(a) := \{x \in X \mid d(a,x) \leqslant r\}$ замкнутой шар пространства (X,d) с центром в точке a и радиусом r;

^{*}Оригинал конспекта опубликован расположен GitHub

• $S_r(a) := \{x \in X \mid d(a,x) = r\}$ — сфера пространства (X,d) с центром в точке a и радиусом r.

Определение 4. Пусть (X, d) — метрическое пространство, $A \subseteq X$. Множество A называется *открытым* в метрическом пространстве, если

$$\forall a \in A \ \exists r > 0 : B_r(a) \subseteq A$$

Теорема 2.

- 1. Объединение любого семейства открытых множеств открыто.
- 2. Пересечение конечного семейства открытых множеств открыто.

Доказательство.

- 1. Пусть дано семейство открытых множеств Σ . Пусть также $I = \bigcup \Sigma$. Для любого $x \in I$ верно, что существует $J \in \Sigma$, что $x \in J$, а значит есть r > 0, что $B_r(x) \subseteq J \subseteq I$, т.е. x внутренняя точка I. Таким образом I открыто.
- 2. Пусть $I = \bigcap_{i=1}^n I_i$. Тогда для любого $x \in I$ верно, что существуют $r_1, \ldots, r_n > 0$, что $B_{r_i}(x) \subseteq I_n$, значит $B_{\min r_i} \subseteq I$, значит x— внутренняя точка I. Таким образом I открыто.

Определение 5. Пусть X — некоторое множество. Рассмотрим набор Ω его подмножеств, для которого:

- 1. $\emptyset, X \in \Omega$;
- 2. объединение любого семейства множеств из Ω лежит в Ω ;
- 3. пересечение любого конечного семейства множеств, принадлежащих Ω , также принадлежит Ω .

В таком случае:

- Ω топологическая структура или просто топология в множестве X;
- множество X с выделенной топологической структурой Ω (т.е.пара (X,Ω)) называется топологическим пространством;
- элементы множества Ω называются *открытыми множествами* пространства (X,Ω) .

Определение 6. Множество $F \subseteq X$ замкнуто в пространстве (X, Σ) , если его дополнение $X \setminus F$ открыто (т.е. если $X \setminus F \in \Sigma$).

Замечание. Свойства:

- \varnothing и X замкнуты.
- Объединение конечного набора замкнутых множеств замкнуто.
- Пересечение любого набора замкнутых множеств замкнуто.