Advanced Machine Learning

Boosting

Boosting, AdaBoost, Gradient Boosting

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Boosting

 In boosting we make a strong learner by using a weighted sum of weak learners

$$C_n(\boldsymbol{x}) = \sum_{i=1}^n \alpha_i \hat{h}_i(\boldsymbol{x})$$

- ullet Weak learners, $\hat{h}_i(oldsymbol{x})$, are learning machine that do a little better than chance
- ullet The trick is to choose the weights, α_i
- Because the weak learners do little better than chance we (miraculously) don't overfit!that much!

Outline

- 1. Boosting
- 2. AdaBoost
- 3. Gradient Boosting

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Shallow Trees

- One of the most effective type of weak learner are very shallow trees
- Sometimes we just use one variable (the stump) although usually we would use slightly deeper trees
- There are different algorithms for choosing the weights
 - ⋆ adaboost
 → a classic algorithm for binary classification
 - * gradient boosting—used for regression, trains a weak learner on the residual errors

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Outline

- 1. Boosting
- 2. AdaBoost
- 3. Gradient Boosting

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

AdaBoost

- AdaBoost is a classic solution to this problem
- It assigns an "loss function"

 This punishes examples where there is an errors more than correct classifications

Boosting a Binary Classifier

- Suppose we have a binary classification task with data $\mathcal{D}=\{(\boldsymbol{x}^{\mu},y^{\mu})|\mu=1,2,...,m\} \text{ with } y^{\mu}\in\{-1,1\} \mathbb{I}$
- ullet Our i^{th} weak learner provides a prediction $\hat{h}_i(oldsymbol{x}^\mu) \in \{-1,1\}$
- We ask, can we find a linear combination

$$C_n(\mathbf{x}) = \alpha_1 \hat{h}_1(\mathbf{x}) + \alpha_2 \hat{h}_2(\mathbf{x}) + \dots + \alpha_n \hat{h}_n(\mathbf{x})$$

- So that $\operatorname{sgn} \bigl(C_n({\boldsymbol x}) \bigr)$ is a strong learner?
- Note we want $y^{\mu}C_n(\boldsymbol{x}^{\mu})>0$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Iterative Learning

• We build up a strong learner iteratively (greedily)

$$C_n(\boldsymbol{x}) = C_{n-1}(\boldsymbol{x}) + \alpha_n \hat{h}_n(\boldsymbol{x})$$

 \bullet Defining $w_1^\mu=1$ and $w_n^\mu=\mathrm{e}^{-y^\mu C_{n-1}({m x}^\mu)}$ then

$$\begin{split} L_n(\alpha_n) &= \sum_{\mu=1}^m \mathrm{e}^{-y^\mu C_n(\boldsymbol{x}^\mu)} \mathbf{I} = \sum_{\mu=1}^m \mathrm{e}^{-y^\mu (C_{n-1}(\boldsymbol{x}^\mu) + \alpha_n \hat{h}_n(\boldsymbol{x}^\mu))} \mathbf{I} \\ &= \sum_{\mu=1}^m w_n^\mu \mathrm{e}^{-\alpha_n y^\mu \hat{h}_n(\boldsymbol{x}^\mu)} \mathbf{I} = \mathbf{P}^{\alpha_n} \sum_{\mu: y^\mu \neq \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu \mathbf{P}^{\alpha_n} \mathbf{I} + \mathbf{P}^{\alpha_n} \sum_{\mu: y^\mu = \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu \mathbf{P}^{-\alpha_n} \mathbf{I} \\ &= \mathrm{e}^{-\alpha_n} \sum_{\mu=1}^m w_n^\mu + (\mathrm{e}^{\alpha_n} - \mathrm{e}^{-\alpha_n}) \sum_{\mu: y^\mu \neq \hat{h}_n(\boldsymbol{x}^\mu)} w_n^\mu \mathbf{I} \end{split}$$

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Choosing a Weak Classifier

• To minimise the loss

$$L_n(\alpha_n) = e^{-\alpha_n} \sum_{\mu=1}^m w_n^{\mu} + (e^{\alpha_n} - e^{-\alpha_n}) \sum_{\mu: y^{\mu} \neq \hat{h}_n(\boldsymbol{x}^{\mu})} w_n^{\mu}$$

• We choose the weak learner with the lowest value of

$$\sum_{\mu:y^{\mu}\neq\hat{h}_{n}(\boldsymbol{x}^{\mu})}w_{n}^{\mu}=\sum_{\mu:y^{\mu}\neq\hat{h}_{n}(\boldsymbol{x}^{\mu})}\mathrm{e}^{-y^{\mu}C_{n-1}(\boldsymbol{x}^{\mu})}\mathbf{C}_{\mathrm{Correct}}$$

• That is, it misclassifies only where the other learners classify well

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Algorithm

- 1. Start with a set of weak learners \mathcal{W}
- 2. Associate a weight, w_n^{μ} , with every data point $(\boldsymbol{x}^{\mu}, y^{\mu}), \ \mu = 1, 2, ..., m$
- 3. Initially $w_1^\mu=1$ (large weight, w_n^μ , means (x^μ,y^μ) is poorly classified)
- 4. Choose the weak learning, $\hat{h}_n(x)\in\mathcal{W}$, that minimises $\sum\limits_{\mu:y^\mu\neq\hat{h}_n(x^\mu)}w_n^\mu$
- 5. Update predictor $C_n(\boldsymbol{x}) = C_{n-1}(\boldsymbol{x}) + \alpha_n \hat{h}_n(\boldsymbol{x})$ where $\alpha_n = \frac{1}{2} \log \left(\frac{\sum\limits_{\boldsymbol{\mu}: \boldsymbol{y}^{\mu} = \hat{h}_n(\boldsymbol{x}^{\mu})}{w_n^{\mu}} \frac{w_n^{\mu}}{w_n^{\mu}} \right)$
- 6. Update $w^\mu_{n+1}=w^\mu_n\mathrm{e}^{-y^\mu\alpha_n\hat{h}_n({\pmb x}^\mu)}$
- 7. Go to 4

Adam Prügel-Bennett

Choosing Weights

ullet We now choose the weight α_n to minimise the loss $L_n(\alpha_n)$

$$\frac{\partial L_n(\alpha_n)}{\partial \alpha_n} = \mathbf{e}^{\alpha_n} \sum_{\mu: y^{\mu} \neq \hat{h}_n(\mathbf{x}^{\mu})} w_n^{\mu} - \mathbf{e}^{-\alpha_n} \sum_{\mu: y^{\mu} = \hat{h}_n(\mathbf{x}^{\mu})} w_n^{\mu} = \mathbf{0} \mathbf{I}$$

That is

$$\mathrm{e}^{2\alpha_n} = \frac{\sum\limits_{\mu:y^\mu = \hat{h}_n(\mathbf{x}^\mu)} w_n^\mu}{\sum\limits_{\mu:y^\mu \neq \hat{h}_n(\mathbf{x}^\mu)}} \quad \text{or} \quad \alpha_n = \frac{1}{2}\mathrm{log} \left(\frac{\sum\limits_{\mu:y^\mu = \hat{h}_n(\mathbf{x}^\mu)} w_n^\mu}{\sum\limits_{\mu:y^\mu \neq \hat{h}_n(\mathbf{x}^\mu)} w_n^\mu} \right)$$

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Performance

- Adaboost works well with weak learners, usually out-performing bagging
- It doesn't work well with strong learners (tends to over-fit)
- It is limited to binary classification (there are generalisation, but they are difficult to get to work)
- It has fallen from fashion
- In contrast gradient boosting used for regression is very popular

Outline

- 1. Boosting
- 2. AdaBoost
- 3. Gradient Boosting

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Fitting a Sin Wave

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

Gradient Boosting

• In gradient boosting we again build a strong learner as a linear combination of weak learners

$$C_n(\boldsymbol{x}) = C_{n-1}(\boldsymbol{x}) + \hat{h}_n(\boldsymbol{x})$$

- Gradient boosting used on regression (again using decision trees)
- At each step $\hat{h}_n(x)$ is trained to predict the residual error, $\Delta_{n-1} = y C_{n-1}(x)$, (i.e. the target minus the current prediction)
- (This difference looks a bit like a gradient hence the rather confusing name)

Adam Prügel-Bennett

COMP6208 Advanced Machine Learning

Adam Prügel-Bennett

OMP6208 Advanced Machine Learning

16

Keep On Going

• We can keep on going

• But we will over-fit eventually

Adam Prügel-Bennett COMP6208 Advanced Machine Learning

XGBoost

- XGBoost is an implementation of gradient boosting that won the Higg's Boson challenge and regularly wins Kaggle competitions
- XGBoost stands for eXtreme Gradient Boosting
- It was much faster than most gradient boosting algorithms and scales to billions of training data points—although GBM is often better!
- It uses a cleverly chosen regularisation term to favour simple trees
- Finds a clever way to approximately minimise error plus regulariser very fast
- Rather a bodge of optimisation hacks

Early Stopping

• Like many algorithms we often get better results by early stopping

 Use cross-validation against a validation set to decide when to stop!

Adam Prügel-Bennett COMP6208 Advanced Machine Learning 18

Conclusion

- Ensemble methods have proved themselves to be very powerful
- Tend to work best with very simple models (true of random forest and boosting)

 —seems to reduce over-fitting
- XGBoost or GBM are currently the best methods for tabular data (particular for large training sets)—probably
- For images, signal and speech deep learning can give very significant advantage
- Probabilistic models can be better if you have a good model

Adam Prügel-Bennett COMP6208 Advanced Machine Learning 20