Lista de Exercícios 09

1. Prove que, se x é um inteiro impar, então x^3 é impar.

Prova: Suponha n ímpar, isto é, n=2k+1 para algum $k \in \mathbb{Z}$. Temos:

$$x^{3} = (2k+1)^{3} = 8k^{3} + 12k^{2} + 6k + 1 = 2(4k^{3} + 6k^{2} + 3k) + 1$$

Então $x^3 = 2k' + 1$, onde k' é o inteiro $4k^3 + 6k^2 + 3k$. Portanto, x^3 é impar.

2. Suponha $x, y \in \mathbb{Z}$. Prove que se x e y são impares, então xy é impar.

Prova: Suponha x e y impares, isto é, x = 2k + 1 e y = 2k' + 1, para $k, k' \in \mathbb{Z}$. Temos:

$$xy = (2k+1)(2k'+1) = 4kk' + 2k + 2k' + 1 = 2(2kk' + k + k') + 1$$

Então xy = 2k'' + 1, onde k'' é o inteiro 2kk' + k + k'. Portanto, xy é impar.

3. Prove que, se n é impar, então 3n + 9 é par.

Prova: Suponha n impar, isto é, n=2k+1 para algum $k\in\mathbb{Z}$. Temos

$$3n + 9 = 3(3k + 1) + 9 = 6k + 12 = 2(3k + 4)$$

Então, 3n + 9 = 2k', onde k' = 3k + 4. Portanto, 3n + 9 é par.

4. Prove que, se a soma de dois inteiros é par, então sua diferença também é par.

Prova: Sejam $n, m \in \mathbb{Z}$ e suponha n+m par, isto é, n+m=2k para algum $k \in \mathbb{Z}$. Temos

$$n - m = (n + m) - 2m = 2k - 2m = 2(k - m)$$

Então n-m=2k', onde k' é o inteiro k-m e, portanto, n-m é par. Note que m-n=-(n-m) e, portanto, m-n é também par.

5. Suponha $a,b\in\mathbb{Z}$. Prove que, se a|b então $a^2|b^2$.

Prova: Suponha a|b, isto é b=k.a para algum $k \in \mathbb{Z}$. Temos que $b^2=(k.a)^2=k^2.a^2$, ou seja, $b^2=ma^2$, onde m é o inteiro k^2 , e, portanto, $a^2|b^2$.

6. Prove que, se n e m são quadrados perfeitos, então $(n\,m)$ é um quadrado perfeito.

Prova: Sejam $n, m \in \mathbb{Z}$ e suponha que n e m são ambos quadrados perfeitos, isto é $n = p^2$ e $m = q^2$, onde $p, q \in \mathbb{Z}$. Temos

$$n m = p^2 q^2 = (p q)^2$$

Então $n\,m=k^2$, onde $k=p\,q$ e, portanto, $n\,m$ é um quadrado perfeito.

7. Prove que, se a e b são números racionais, então (a + b) é um número racional.

Prova: Sejam a e b racionais, isto é, a=n/m e b=p/q, onde $n,m,p,q\in\mathbb{Z}$ e $m,q\neq 0$. Temos que

$$a+b = \frac{n}{m} + \frac{p}{q} = \frac{nq + pm}{mq}$$

Então a+b=r/s, onde $r=nq+pm\in\mathbb{Z}$ e $s=mq\in\mathbb{Z}$, já que o produto e a soma de números inteiros é um número inteiro; além disso $s\neq 0$, pois $m\neq 0$ e $q\neq 0$. Portanto, (a+b) é racional.

8. Sejam $a, b, c \in \mathbb{Z}$. Prove que se a|b e a|c então a|(b+c).

Prova: Sejam $a, b, c \in \mathbb{Z}$ e suponha a|b e a|c. Temos que

$$\frac{b+c}{a} = \frac{b}{a} + \frac{c}{a}$$

Como a|b e a|c, temos que (b/a) e (c/a) são ambos inteiros e, então, (b/a)+(c/a) é um inteiro. Portanto, a|(b+c).

9. Suponha $x, y \in \mathbb{R}$. Prove que se $x^2 + 5y = y^2 + 5x$, então x = y ou x + y = 5.

Prova: Suponha $x^2 + 5y = y^2 + 5x$, ou seja, $x^2 - y^2 = 5(x - y)$. Sabemos que $x^2 - y^2 = (x + y)(x - y)$. Então, (x + y)(x - y) = 5(x - y). Portanto, temos que x - y = 0, isto é, x = y, ou x + y = 5.

10. Prove que, se $n \in \mathbb{Z}$, então $5n^2 + 3n + 7$ é impar.

Prova: Considere os seguintes possíveis casos:

- (a) n é par: Então n^2 é par e, portanto, $5n^2$ é par. Além disso, 3n é par. Então, $5n^2 + 3n + 7$ é a soma de dois pares e um ímpar, que é ímpar.
- (b) n é impar: Então n^2 é impar e, portanto, $5n^2$ é impar, pois é o produto de dois impares. Do mesmo modo, 3n é impar. Então, $5n^2 + 3n + 7$ é a soma de três impares, que é ímpar.
- 11. Prove que, para todo $n \in \mathbb{N}$, $n^2 = 2\binom{n}{2} + \binom{n}{1}$

Prova: Considere os seguintes possíveis casos:

- (a) n = 0: Temos que $\binom{0}{2} = \binom{0}{1} = 0$. Portanto $0^2 = 2\binom{0}{2} + \binom{0}{1}$.
- (b) n = 1: Temos que $\binom{1}{2} = 0$ e $\binom{1}{1} = 1$. Portanto, $1^2 = 2\binom{1}{2} + \binom{1}{1}$.
- (c) n > 0: Temos que

$$2\binom{n}{2} + \binom{n}{1} = 2\frac{n!}{2!(n-2)!} + \frac{n!}{(n-1)!}$$

$$= n(n-1) + n$$

$$= n^{2}$$

12. Seja $n \in \mathbb{Z}$. Prove que se n^2 é par então n é par.

Prova: (Contrapositivo). Suponha que n é impar, isto é, n=2k+1, para algum $k\in\mathbb{Z}$. Temos

$$n^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 2(2k^{2} + 2k) + 1$$

2

Então $n^2 = 2k' + 1$, onde k' é o inteiro igual e $2k^2 + 2k$. Portanto, n^2 é impar.

13. Sejam $a, b \in \mathbb{Z}$. Prove que se $a^2(b^2 - 2b)$ é impar, então a e b são ambos impares.

Prova: (Contrapositivo). Suponha que a é par ou b é par. Se a é par, temos que a^2 é par e, portanto $a^2(b^2-2b)$ é par. Por outro lado, se b é par, temos que b^2 é par e, então (b^2-2b) é par, pois é a diferença entre dois números pares. Então, $a^2(b^2-2b)$ é par. Portanto, se $a^2(b^2?2b)$ é impar, então a e b são ambos impares.

14. Suponha $x \in \mathbb{R}$. Prove que se $x^2 + 5x < 0$ então x < 0.

Prova: (Contrapositivo). Sabemos que $x^2 \ge 0$. Supondo $x \ge 0$, temos que $5x \ge 0$ e, portanto $x^2 + 5x > 0$. Portanto, se $x^2 + 5x < 0$ então x < 0.

15. Prove que se r é um número irracional, então \sqrt{r} é irracional. **Prova**: (Contrapositivo). Suponha que \sqrt{r} é racional, isto é, $\sqrt{r}=n/m$, onde $n,m\in\mathbb{Z}$ e $m\neq 0$. Temos que

$$n = (\sqrt{n})^2 = (\frac{n}{m})^2 = \frac{n^2}{m^2}$$

Então n=p/q, onde $p=n^2\in mathbbZ$ e $q=m^2\in\mathbb{Z}$ e $q\neq 0$, já que $m\neq 0$. Ou seja, n é racional. Portanto, se n é irracional, então \sqrt{n} é irracional.

16. Prove que, se o produto de dois números inteiros (xy) não é divisível por n, então x não é divisível por n e y não é divisível por n.

Prova: (Contrapositivo). Suponha que x é divisível por n ou que y é divisível por n. Considere os seguintes possíveis casos:

- (a) x é divisível por n, isto é, x = kn, onde $k \in \mathbb{Z}$. Então xy = (kn)y = (ky)n. Ou seja, xy = k'n onde k' é o inteiro (ky). Portanto, (xy) é divisível por n.
- (b) y é divisível por n, isto é, y = kn, onde $k \in \mathbb{Z}$. Então xy = x(kn) = (kx)n. Ou seja, xy = k'n onde k' é o inteiro (kx). Portanto, (xy) é divisível por n.
- 17. Sejam a e b inteiros não nulos. Prove que mdc(a,b) = mdc(a-b,b).

Prova: (Direta) Sejam a e b inteiros não nulos e seja d = mdc(a, b). Como d é um divisor de a e de b, temos que a = dn e b = dm, para alguns inteiros n e m. Então a - b = dn - dm = d(n - m) e, portanto, d é também um divisor de a - b. Como ele não pode ser maior que o máximo divisor comum de a - b e b, temos que $d \le mdc(a - b, b)$.

Seja agora e=mdc(a-b,b). Então, e é um divisor de a-b e de b, isto é, a-b=en e b=em, para alguns inteiros n e m. Então a=(a-b)+b=en+em=e(n+m). Portanto, temos que e é um divisor tanto de a como de b. Mas e não pode ser maior do que o máximo divisor comum de a e b, isto é, $mdc(a-b,b)=e\leq mdc(a,b)$.

Os dois parágrafos acima nos dão que $mdc(a,b) \leq mdc(a-b,b)$ e $mdc(a-b,b) \leq mdc(a,b)$. Portanto, mdc(a,b) = mdc(a-b,b).

Definições úteis

Definição 1 Seja $n \in \mathbb{Z}$. n é par se existe $k \in \mathbb{Z}$ tal que n = 2k; n é impar se existe $k \in \mathbb{Z}$ tal que n = 2k + 1.

Definição 2 Sejam $n, d \in \mathbb{Z}$. Dizemos que n é divisível por d (notação d|n) se existe $k \in \mathbb{Z}$ tal que n = kd.

Definição 3 Um número n é um quadrado perfeito se existe $k \in \mathbb{Z}$ tal que $n = k^2$.

Definição 4 Seja $n \in \mathbb{Z}$ e n > 1. n é **primo** se, para quaisquer $m, k \in \mathbb{Z}$ tais que n = mk, temos m = 1 ou k = 1; n é **composto** caso contrário, isto é, se existem $m, k \in \mathbb{Z}$ tais que n = mk e $m \neq 1$ e $k \neq 1$.

Definição 5 Seja $r \in \mathbb{R}$. r é racional se existem $p, q \in \mathbb{Z}$ tais que r = p/q e $q \neq 0$; r é irracional caso contrário.

Definição 6 O Máximo divisor comum de dois inteiros a e b, denotado como mdc(a,b) é o maior inteiro que divide tanto a quanto b. O mínimo múltiplo comum de dois inteiros a e b, denotado como mmc(a,b), é o menor inteiro que é múltiplo tanto de a quanto de b. Observações: mdc(a,0) = mdc(0,a) = |a| se $a \neq 0$; $mdc(0,0) = \infty$.