جلسه نهم داده کاوی

یادآوری مجدد k-means با مثال عددی

Point	X1	X2	Х3	Y
P1	1	2	3	1.5
P2	2	1	4	2.5
Р3	3	2	5	7.3
P4	4	3	6	4.2
P5	5	4	7	9.11
P6	6	5	8	1.2

انتخاب مراکز (در شروع رندم انتخاب می شود)

Centroid C1 =
$$P1 = (1, 2, 3)$$

Centroid C2 =
$$P2 = (2, 1, 4)$$

انتصاب:

Point	Distance to C1 (P1)	Distance to C2 (P2)
P1	$\sqrt{(1-1)^2+(2-2)^2+(3-3)^2}=0$	$\sqrt{(1-2)^2+(2-1)^2+(3-4)^2}=\sqrt{3}$
P2	$\sqrt{(2-1)^2 + (1-2)^2 + (4-3)^2} = \sqrt{3}$	$\sqrt{(2-2)^2+(1-1)^2+(4-4)^2}=0$
P3	$\sqrt{(3-1)^2 + (2-2)^2 + (5-3)^2} = \sqrt{8}$	$\sqrt{(3-2)^2 + (2-1)^2 + (5-4)^2} = \sqrt{3}$
P4	$\sqrt{(4-1)^2 + (3-2)^2 + (6-3)^2} = \sqrt{19}$	$\sqrt{(4-2)^2 + (3-1)^2 + (6-4)^2} = \sqrt{12}$
P5	$\sqrt{(5-1)^2 + (4-2)^2 + (7-3)^2} = \sqrt{36}$	$\sqrt{(5-2)^2 + (4-1)^2 + (7-4)^2} = \sqrt{27}$
P6	$\sqrt{(6-1)^2 + (5-2)^2 + (8-3)^2} = \sqrt{59}$	$\sqrt{(6-2)^2 + (5-1)^2 + (8-4)^2} = \sqrt{48}$

تعيين انتصاب

Cluster 1 (C1): {P1}

Cluster 2 (C2): {P2, P3, P4, P5, P6}

بروز رسانی مراکز

برای c1 که فقط p1 را داریم که همان به عنوان c1 در مرحله بعد خواهدبود. برای c2 :

X1=(2+3+4+5+6)/5=4, X2=(1+2+3+4+5)/5=3, X3=(4+5+6+7+8)/5=6

Point	Distance to C1	Distance to C2	Closest Centroid
P1	0	$\sqrt{(1-4)^2+(2-3)^2+(3-6)^2}=\sqrt{19}$	C1
P2	$\sqrt{3}$	$\sqrt{(2-4)^2 + (1-3)^2 + (4-6)^2} = \sqrt{12}$	C1
Р3	$\sqrt{8}$	$\sqrt{(3-4)^2 + (2-3)^2 + (5-6)^2} = \sqrt{3}$	C2
P4	$\sqrt{19}$	$\sqrt{(4-4)^2+(3-3)^2+(6-6)^2}=0$	C2
P5	$\sqrt{36}$	$\sqrt{(5-4)^2 + (4-3)^2 + (7-6)^2} = \sqrt{3}$	C2
P6	$\sqrt{59}$	$\sqrt{(6-4)^2+(5-3)^2+(8-6)^2}=\sqrt{12}$	C2

```
در یک فولدر مانند DM-9-TXTs تعدادی فایل متنی داریم.
# Print TF-IDF vectors
for i, file name in enumerate(file_names):
                                                    اگر هر كدام از این فایل ها به مانند یک مستند باشد هدف آن
  print(f"TF-IDF for {file name}:")
                                                        است که بردار tf-idf مربوط به هر کدام را بدست آوریم:
  vector = tfidf matrix[i]
                                                  import os
  for index, value in zip(vector.indices, vector.data):
                                                  from sklearn.feature extraction.text import
    print(f" {feature names[index]}: {value}")
                                                  TfidfVectorizer
  print()
                                                  # Folder containing your text files
from sklearn.cluster import KMeans
                                                  folder path = "DM-9-TXTs"
num clusters = 3 # We want three clusters
                                                  # Read all files and store their contents
kmeans = KMeans(n_clusters=num_clusters,
                                                  documents = []
random state=42)
                                                  file names = []
kmeans.fit(tfidf matrix)
                                                  for file name in os.listdir(folder path):
# Interpret the Results
                                                     if file name.endswith(".txt"):
clusters = kmeans.labels_
                                                       file names.append(file name)
                                                       with open(os.path.join(folder path,
# Display the files in each cluster
                                                  file name), 'r', encoding='utf-8') as file:
for cluster num in range(num clusters):
                                                         documents.append(file.read())
  print(f"Cluster {cluster_num + 1}:")
                                                  # Compute TF-IDF
  for i, label in enumerate(clusters):
                                                  vectorizer = TfidfVectorizer()
    if label == cluster num:
                                                  tfidf matrix =
       print(f" {file_names[i]}")
                                                  vectorizer.fit transform(documents)
  print()
                                                  feature names =
                                                  vectorizer.get feature names out()
```