Experimental Design and Data Analysis: Assignment 4

 Andrew Bedard (2566978) & Simone van Gompel (2567525) Group 19

May 15, 2015

Exercise 1

Exercise 2

Figure 1: Pairplot of the airpollution data

Figure 2: The linear regression of the explanatory variables

3

4

5

Exercise 3

1

2

3

4

5

Exercise 4

Following the step-up method we get for the first variable:

Table 1: Results of 1-way Anova on square root of genal.txt data

Variable	R^2
ExpendPop	0.9073
ExpendEmploy	0.954
ExpendLawyers	0.9373
ExpendCrime	0.1119
ExpendBad	0.6964

ExpendEmploy had the highest score, so we take this for the second step:

Table 2: Results of 1-way Anova on square root of genal.txt data

Variable	R^2
ExpendEmploy+Pop	0.9543
ExpendEmploy+Lawyers	0.9632
ExpendEmploy+Crime	0.9551
ExpendEmploy+Bad	0.9551

Table 3: Results of 1-way Anova on square root of genal.txt data

Variable	R^2
ExpendEmploy+Lawyers+Pop	0.9637
ExpendEmploy+Lawyers+Crime	0.9632
ExpendEmploy+Lawyers+Bad	0.9639

Adding these variables yield no significant change and so we stop at the second step. The result of ExpendEmploy+Lawyer is:

Coefficients:

1 R-Code

- 1.1 Exercise 1
- 1.2 Exercise 2
- 1.3 Exercise 3
- 1.4 Exercise 4