Zadanie 17. (0-1)

Kąt α jest ostry i $tg\alpha = \frac{2}{3}$. Wtedy

A.
$$\sin \alpha = \frac{3\sqrt{13}}{26}$$
 B. $\sin \alpha = \frac{\sqrt{13}}{13}$ **C.** $\sin \alpha = \frac{2\sqrt{13}}{13}$ **D.** $\sin \alpha = \frac{3\sqrt{13}}{13}$

$$\mathbf{B.} \quad \sin \alpha = \frac{\sqrt{13}}{13}$$

$$\mathbf{C.} \quad \sin \alpha = \frac{2\sqrt{13}}{13}$$

D.
$$\sin \alpha = \frac{3\sqrt{13}}{13}$$

Zadanie 18. (0–1)

Z odcinków o długościach: 5, 2a+1, a-1 można zbudować trójkąt równoramienny. Wynika stad, że

A.
$$a = 6$$

B.
$$a = 4$$
 C. $a = 3$

C.
$$a = 3$$

D.
$$a = 2$$

Zadanie 19. (0–1)

Okręgi o promieniach 3 i 4 są styczne zewnętrznie. Prosta styczna do okręgu o promieniu 4 w punkcie P przechodzi przez środek okręgu o promieniu 3 (zobacz rysunek).

Pole trójkata, którego wierzchołkami są środki okręgów i punkt styczności P, jest równe

A. 14

B. $2\sqrt{33}$ **C.** $4\sqrt{33}$

D. 12

Zadanie 20. (0-1)

Proste opisane równaniami $y = \frac{2}{m-1}x + m - 2$ oraz $y = mx + \frac{1}{m+1}$ są prostopadłe, gdy

A. m = 2

B. $m = \frac{1}{2}$ **C.** $m = \frac{1}{3}$ **D.** m = -2