# Non Negative Matrix Factorization using separability assumption for Topic Modeling

# Durga Harish Dayapule Oregon State University

dayapuld@oregonstate.edu

#### 1. Abstract

Non Negative matrix factorization is a well studied technique for Topic Modeling problems. Solving this problem is considered as NP-Hard (i.e) no polynomial time solution. Recent work on solving this problem based on separability condition makes this problem to solve in polynomial time. In this project, a) I formally introduce the mathematical formulation of NMF problem and how it is used to solve topic modeling problem. b) Explain the separability assumption c) Replicate the results for using XRAY algorithm with synthetic dataset and four real world dataset which were not considered in the main paper. This report further include run time analysis of the algorithm in parallel mode. The XRAY algorithm shows a good anchor recovery rate and robustness to the noise. I have used cvxpy package in python to implement this algorithm.

### 2. Introduction

The challenge to develop tools which can comprehend data from web pages, newspaper articles, images, user rating has been a well studied problem in machine learning field. Topic modeling is an approach that has proved successful in all the aforementioned problems. In order to learn structure one has to posit the existence of structure, and in topic models one assumes a generative model for a collection of documents. Specifically, each document is represented as a vector of word-frequencies (the bag of words representation). Papers in theoretical CS [3] and machine learning [2] suggested that documents arise as a convex combination of (i.e. distribution on) a small number of topic vectors, where each topic vector is a distribution on words (i.e. a vector of word-frequencies). Each convex combination of topics thus is itself a distribution on words, and the document is assumed to be generated by drawing N independent samples from it. Subsequent work makes specific choices for the distribution used to generate topic combinations the well-known Latent Dirichlet Allocation (LDA) model of [4] hypothesizes a Dirichlet distribution (see Section 4). For example, fitting to a corpus of newspaper articles may reveal 50 topic vectors corresponding to, say, politics, sports, weather, entertainment etc., and a particular article could be explained as a (1/2, 1/3, 1/6)-combination of the topics politics, sports, and entertainment.

The work of [3] which states the problem of topic modeling as, there is an unknown topic matrix W with nonnegative entries with dimension  $m \times r$  and stochastically generated unknown matrix H with dimension  $(r \times n)$ . Each column of X = WH can be viewed as a probability distribution on columns of matrix W with weights corresponding to rows in matrix H. The problem of finding non-negative matrices W, H with a small inner-dimension r is called nonnegative matrix factorization (NMF) and this problem is Np-hard [6].

Lets formalize the definition of NMF and an elegant property which help to solve this problem in polynomial time. Figure 1 shows geometry of the NMF problem. Each point in the space corresponds to a column vector in data Matrix X. Each column vector in  $X \in {\rm I\!R}^{\rm mxn}$  can be viewed as a point  $\in \rm I\!R^m$ . A conical combination of vectors  $w_1, w_2, w_3...w_r$  is  $h_1w_1 + h_2w_2 + ...h_rw_r$  where  $h_i \geq 0 \forall i = 1...r$ . One can construct basis vectors  $w_1, w_2...w_r$  as a matrix (W) such that the conical combination of this matrix contains all the columns of X. In other words,  $cone(\mathbf{X}) \subset cone(\mathbf{W}) \subset \rm I\!R^m_+$ . These kind of polyhedral nesting problems studied in computational geometry are known to be NP-hard. Faced with such results, almost the en-tire algorithmic focus in the NMF literature, has centered on treating the problem as an instance of general nonconvex programming, leading to heuristic procedures that lack optimality guarantees beyond convergence to a stationary point of the objective function for approximate NMF. Recently, in a series of papers [6], promising alternative approaches have been developed based on certain separability assumption on the data which enables the NMF problem to be solved in polynomial time and assure completeness. Separability property assumes that the columns of matrix W are obtained by selecting columns from data Matrix X.

Geometrically, the assumption states the following: all columns of X reside in a cone generated by a small subset

of r columns of X. In algebraic terms,  $X = WH = X_AH$  so that the r columns of W are hidden among the columns of X (indexed by an unknown subset of indices A). Equivalently, a corresponding subset of r columns of H happen to constitute the rxr identity matrix. We refer to these columns as anchors [6]. Informally, in the context of topic modeling problems where X is a document-word matrix and W, H are document-topic and topic-term associations respectively, the separability assumption equivalently posits the existence of special anchor words in the vocabulary, whose occurence uniquely identifies the presence of a topic, and whose usage across the corpus is collectively predictive of the usage of all the other words. The separability assumption was investigated earlier by Donoho Stodden [5] in the context of deriving uniqueness conditions for NMF.

### 3. Problem Formulation

For this project, I replicated the XRAY algorithm from original paper [1]. But, I implemented cyclic Coordinate descent and a parallel computation approach to solve the Matrix regression problem, this is one of the contribution to this project. The Algorithm is as follows: For a data Matrix X = WH can be factorized in to two non-negative matrices W and H, where the columns of W contain the some columns of X, H is a special weight matrix which has two parts (i) having a lower dimension permutation matrix (ii) and a weight matrix. The Intuition behind XRAY algorithm is to find r column vectors in X which contains all the column vectors of X (i.e) in other words the conical combination of r selected vectors has to span all the X column vectors. Figure 1 provides a geometric intuition underlying the XRAY algorithm. The algorithm executes r iterations. In each iteration a new anchor column is identified. This corresponds to expanding current cone one extreme ray at a time, until the entire dataset is eventually contained in the cone defined by the full set of anchors. Figure 2 illustrates one step of the algorithm where there is an existing cone defined by three extreme rays (marked 1 to 3).

To identify the next extreme ray, the algorithm picks a point outside the current cone (a green point) and projects it to the current cone to compute a residual vector (this is called projection step). This residual vector separates the current cone from at least one non-selected extreme ray that can be found by maxi- mizing a specific selection criteria (this is called detection step). Intuitively, the algorithm picks a face of the current cone (spanned by rays 1 and 3 in Figure 2) that sees exterior points and rotates this face towards the exterior until it hits the last point. In the example shown in Figure 2, ray 4 is identified as a new extreme ray.

A Background of Cones, Extreme Rays: Recall that a cone C is a non-empty convex set that is closed with respect to taking conic combinations (i.e., linear combinations with non-negative coefficients) of its elements. A ray in C gener-

ated by a vector  $x \in C$  is the set of all vectors  $\{tx: t \geq 0\}$ . A ray R is an extreme ray if its generators cannot be expressed by taking conic combinations of elements in C that do not themselves belong to R. A cone is called finitely generated if its elements are conic combinations of a finite set of vectors, and pointed if it does not contain both a vector x as well as its negation x.

Furthermore, the generators of these extreme rays are a subset of the finite set of vectors used to originally express the cone. In the NMF context, note that any cone contained in Rm+ is pointed. This implies that cone(X) can also be described by a minimally compact set of generators, i.e.,  $cone(X) = cone(X_A)$  where A uniquely indexes the extreme rays (anchors). Thus, a non-negative matrix X admits a separable NMF with inner-dimension r if the number of extreme rays of cone(X), i.e. size of A, coincides with r. A face of a cone is the intersection between the cone and a supporting hyperplane.



Figure 1. Geometry of NMF Problem, The red dots indicate the basis vectors for conical hull, The colored region is a cone.



Figure 2. Figure Depicts one Step update process for XRAY algorithm. The Green dot indicates the points outside the current cone which is in colored region.

# **Algorithm**

Algorithm 1 details the steps for Xray Algorithm. Each iteration consists of two steps: (i) a detection step: This

# **ALGORITHM 1:** XRAY : Algorithm for Separable NMF

```
Input: X \in \mathbb{R}^{mxn}_+, Topic Dimension r
Output: Topic Matrix : W \in \mathbb{R}_+^{mxr}, Weight Matrix :
           H \in \mathbb{R}_+^{\mathrm{rxn}}, where r indices are selected from
           matrix X such that : X = WH
Initialize : Residual Matrix : R \leftarrow X, Index Set:
  A \leftarrow Set(\{\})
while |A| < r do
    1. Detection Step: Finding an Extreme Ray
      which is not in current Cone;
    j^* = \arg\max_j rac{R_i^T X_j}{p^T X_j} for any \mathbf{i}: ||R_i||_2 > 0; Exterior point Selection : ;
         \max: \mathbf{i} = \arg\max_{i} ||R_k||_2;
         dist: i = \arg \max_{j} ||(R_k^T X)_+||_2;
    2. Update the Index Set : A \leftarrow A \cup \{j^*\};
    3. Projection Step: Project onto the Current
         H = \arg \min_{B \ge 0} ||X - X_A B||_2^2 \text{ (ADMM)}
    4. Update Residual Matrix : R = X - X_A H
```

step finds a column(s) of X to be added as an anchor, and (ii) a projection step: In which all data points are projected onto the current cone to get the residuals. Projection is done by solving simultaneous nonnegative least squares problem. The least square problem is solved in a parallel mode using cvxpy software. Every residual vector  $R_i$  obtained after the projection step is normal to one of the faces of the current cone. In the selection step, we pick a face of the current cone (identified by its normal  $R_i$ ), normalize all the data points to lie on the hyper plane  $p^T x = 1$   $Y = \frac{Xj}{p^T X_j}$  for a strictly positive vector p. In this report I selected to choose  $p^T = [1, 1, 1, ...]$ , and expand the current cone by selecting an extreme ray that maximizes the inner product  $R_i^T Y_j$ . In the selection step, the choice of i can be implemented in various ways. For this project I choose two approaches (a) max :  $i = \arg \max_{i} ||R_k||_2$ , choosing the maximum residual vector (b) dist:  $\mathbf{i} = \arg \max_{j} ||(R_k^T X)_+||_2$ . So, Rest of the report uses these two approaches to solve the problem.

### **Experiments & Results**

end

Three Variants for choosing the i in selection were implemented at code level (max, dist, rand). But for the purpose of results only two are shown namely max, dist. The experiments were done both in synthetic Data and Real world Datasets. The next section talks about the experimental Setup and Results.

### **Synthetic Experiments:**

Synthetic experiments were carried out by constructing W  $\in \mathbb{R}^{210\mathrm{xr}}_+$  and  $H \in \mathbb{R}^{\mathrm{rx}200}_+$  matrices with varying inner dimension  $r \in (10, 20, 30)$ . Each entry of matrix W is generated by i.i.d uniform distribution between 0 and 5. The matrix H is decomposed into two parts  $H_1 \in I_{rXr}$  (Identity Matrix) and  $H_2 \in \mathbb{R}_+^{\operatorname{rx}200-\operatorname{r}}$ . Each column of  $H_2$  is generated according to i.i.d uniform distribution between 0 and 1. The data Matrix is set to X = WH + N, where N is the controlled noise. Each Entry in N is a i.i.d Gaussian with mean zero and standard deviation  $\delta$ , the range of  $\delta$  is chosen from 0 to 1.4. Table 1 shows the anchor recovery rate for inner dimension of r = 10, 20, 30. Both variants of the algorithm shows noise - robustness in terms of anchor recovery, For most of noise level  $\delta$  the algorithms were able to recover anchor vectors. As the noise level increased to higher level, there is a slight performance reduction in anchor recovery. Table 2 shows the run time in seconds for the algorithms, On average for recovering 10 anchors the algorithm took 4 seconds compared to 20 which is 15 seconds and anchors 30 45 seconds. This suggests that the algorithm could be scalable to higher dimension data.

# **Real Data Experiments**

I applied the algorithm to 4 new real datasets to recover the topics in the corpus, these datasets were not used in original paper. This can be considered as major contribution to this report. Table 3 provides the details of the dataset for topic modeling. The value of r in the Table 3 indicates the number of topics present in the corpus. So, this value of r is chosen for running the algorithm. The datasets have been preprocessed by removing stop-word and low term frequency filtering (count < 20), then log TF-IDF and L2 document length normalization. For the four datasets, a document -term matrix were constructed. Table 5 6 7 8 shows the ranking of leading words of the mined topics for bbc, bbcsport, guardian, irishtimes data set. It is clear from these tables that XRAY algorithm could not able to recover all the anchor vectors. For example in case of irishtimes article table 8, the topics like politics are repeated more than once, I suspect this can be due to (a) both of these documents are on the same extreme ray (b) The documents are noisy. This kind of effect is even seen for all the real world datasets. Its is evident that XRAY method fails to give clear topics with real world noisy data. This experimental results suggest that a robust anchor algorithm has to be designed.

I applied the algorithm to 4 new real datasets to recover the topics in the corpus, these datasets were not used in original paper. This can be considered as major contribution to this report. Table 3 provides the details of the dataset for topic modeling. The value of r in the Table 3 indicates the number of topics present in the corpus. So, this value of

Table 1. Show the Anchor Recovery rate for data matrix  $X \in \mathbb{R}^{210x200}_+$  using two variants of XRAY algorithm (max,dist)

| Noise Level $\delta$ | r =             | 10              | r =             | 20              | r = 30          |                 |  |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|
|                      | Max Dist        |                 | Max             | Dist            | Max             | Dist            |  |
|                      | Anchor Recovery |  |
| 0                    | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |  |
| 0.2                  | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |  |
| 0.4                  | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |  |
| 0.5                  | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |  |
| 0.6                  | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |  |
| 0.8                  | 1.000           | 1.000           | 0.998           | 1.000           | 0.998           | 0.998           |  |
| 1                    | 0.995           | 0.995           | 0.995           | 0.998           | 0.993           | 0.990           |  |
| 1.2                  | 0.995           | 1.000           | 0.990           | 0.993           | 0.978           | 0.975           |  |
| 1.4                  | 0.980           | 0.985           | 0.971           | 0.958           | 0.967           | 0.955           |  |

Table 2. XRAY Algorithm run Time for noise injected data matrix  $X \in {\rm I\!R}^{210 {\rm x} 200}_+$ 

| Noise Level $\delta$ | r =           | :10           | r =           | 20            | r=30          |               |  |
|----------------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
|                      | Max Dist      |               | Max           | Dist          | Max           | Dist          |  |
|                      | Run Time(Sec) |  |
| 0                    | 4.101         | 3.903         | 15.034        | 17.332        | 42.366        | 43.806        |  |
| 0.2                  | 3.934         | 3.811         | 16.480        | 16.978        | 42.140        | 42.925        |  |
| 0.4                  | 3.890         | 3.731         | 15.082        | 15.120        | 38.209        | 39.118        |  |
| 0.5                  | 3.704         | 3.495         | 13.913        | 14.745        | 36.705        | 41.346        |  |
| 0.6                  | 3.592         | 3.491         | 16.092        | 14.238        | 58.629        | 36.560        |  |
| 0.8                  | 3.473         | 3.414         | 14.610        | 14.077        | 34.489        | 35.025        |  |
| 1                    | 3.551         | 3.299         | 13.357        | 14.782        | 35.263        | 36.559        |  |
| 1.2                  | 3.520         | 3.441         | 13.245        | 14.611        | 39.143        | 42.159        |  |
| 1.4                  | 3.661         | 3.545         | 15.359        | 14.234        | 59.311        | 54.684        |  |

r is chosen for running the algorithm. The datasets have been preprocessed by removing stop-word and low term frequency filtering (count < 20), then log TF-IDF and L2 document length normalization. For the four datasets, a document -term matrix were constructed. Table 5 6 7 8 shows the ranking of leading words of the mined topics for bbc, bbcsport, guardian, irishtimes data set. It is clear from these tables that XRAY algorithm could not able to recover all the anchor vectors. For example in case of irishtimes article table 8, the topics like politics are repeated more than once, I suspect this can be due to (a) both of these documents are on the same extreme ray (b) The documents are noisy. This kind of effect is even seen for all the real world datasets. Its is evident that XRAY method fails to give clear topics with real world noisy data. This experimental results suggest that a robust anchor algorithm has to be designed.

# Conclusion

XRAY algorithm with two variants (max, dist) were implemented for synthetic and real world data set . XRAY shows good noise robustness for synthetic datasets with

good anchor recovery rates. XRAY algorithm was used to identify topics in bbc, bbcsport, guardian, irishtimes real world datasets. Experiment on these datasets shows that the algorithm couldn't able to recover all the anchor vectors, some vectors have same topic. This suggest that XRAY approach has draw backs while it comes to noisy real world dataset.

### References

- P. K. Abhishek Kumar, Vikas Sindhwani. Fast conical hull algorithms for near-separable non-negative matrix factorization. *ICML*, pages 1735–1780, 2013.
- [2] H. T. C. Papadimitriou, P. Raghavan and S. Vempala. Probabilistic latent semantic analysis. *UAI*, page 289296, 1999.
- [3] H. T. C. Papadimitriou, P. Raghavan and S. Vempala. Latent semantic indexing: a probabilistic analysis. *JCSS*, page 217235, 2000.
- [4] A. N. D. Blei and M. Jordan. Probabilistic latent semantic analysis. *JMLR*, page 9931022, 2003.
- [5] D. Donoho and V. W. Stodden. does non-negative matrix factorization give a correct decomposition into parts. NIPS, 2003.
- [6] R. K. S. Arora, R. Ge and A. Moitra. Computing a nonnegative matrix factorization provably. STOC, 2012.

Table 3. Details of the corpora used in the experiments, including the total number of documents n, words m, and number of anchors r.

| Corpus n m        |       |                                     |   | Desciption                              |
|-------------------|-------|-------------------------------------|---|-----------------------------------------|
| bbc 2,225 3,121 5 |       | Genearal News Articles from the BBC |   |                                         |
| bbc-Sport         | 737   | 969                                 | 5 | Sports News Articles from the BBC       |
| guardian-2013     | 6520  | 10801                               | 6 | News Articles published by The Guardian |
| irishtimes-2013   | 3,246 | 4,832                               | 6 | News Articles published by Irish Times  |

Table 5. Top 10 terms for reference ranking sets generated by XRAY Algorithm on **bbc Dataset** with m=3121, n=2225 r=5, . The Topic names are found with the help of words for each topic

|       |           |            | Max        |            |               |           |            | Dist       |             |             |
|-------|-----------|------------|------------|------------|---------------|-----------|------------|------------|-------------|-------------|
| Topic | Sports    | Sports     | Business   | Politics   | Entertainment | Sports    | Politics   | Politics   | Entertiment | Tech        |
| 1     | leicester | serve      | complaints | indonesia  | wonder        | france    | yukos      | blair      | best        | music       |
| 2     | bath      | australian | id         | relief     | character     | game      | oil        | labour     | film        | mobile      |
| 3     | england   | break      | fraud      | tsunami    | woman         | french    | bankruptcy | brown      | award       | phones      |
| 4     | sale      | open       | identity   | offer      | film          | ireland   | russian    | election   | british     | mobiles     |
| 5     | robinson  | melbourne  | theft      | effort     | female        | important | auction    | prime      | actress     | sales       |
| 6     | newcastle | win        | credit     | offered    | series        | wales     | control    | cabinet    | category    | replacement |
| 7     | lock      | assessment | consumers  | government | silver        | impressed | court      | party      | finding     | design      |
| 8     | squad     | leap       | total      | royal      | write         | nations   | russia     | government | mind        | phone       |
| 9     | andy      | guys       | internet   | downing    | feature       | focused   | state      | mps        | actor       | markets     |
| 10    | row       | ease       | someone    | operation  | produced      | half      | firm       | way        | movie       | people      |

Table 6. Top 10 terms for reference ranking sets generated by XRAY Algorithm on **bbcsport** Dataset with m=969, n=737, r=5. The Topic names are found with the help of words for each topic

|       |           |           | max       |            |             |           |         | dist     |           |             |
|-------|-----------|-----------|-----------|------------|-------------|-----------|---------|----------|-----------|-------------|
| Topic | Cricket   | athletics | Football  | Football   | Football    | UnKnown   | Cricket | Tennis   | Athletics | FootBall    |
| 1     | series    | seed      | penalty   | fa         | southampton | nations   | south   | open     | indoor    | chelsea     |
| 2     | sri       | felt      | williams  | sports     | club        | victory   | africa  | quarter  | record    | league      |
| 3     | chris     | broke     | net       | federation | linked      | australia | de      | round    | world     | united      |
| 4     | match     | strong    | subs      | suspended  | manager     | france    | england | seed     | ran       | champions   |
| 5     | australia | take      | james     | body       | jones       | england   | vaughan | federer  | olympic   | season      |
| 6     | squad     | favourite | minutes   | move       | tuesday     | world     | series  | finals   | champion  | arsenal     |
| 7     | day       | thomas    | penalties | football   | boss        | wales     | andrew  | france   | ireland   | manchester  |
| 8     | craig     | taylor    | scott     | pay        | return      | coach     | jacques | meet     | mark      | premiership |
| 9     | scott     | reached   | corner    | committee  | former      | ireland   | runs    | williams | time      | west        |
| 10    | shoulder  | suffered  | hosts     | remains    | player      | title     | jones   | roddick  | excellent | cup         |

Table 7. Top 10 terms for reference ranking sets generated by XRAY Algorithm on **guardian Dataset** with  $\mathbf{m} = \mathbf{10801}$ ,  $\mathbf{n} = \mathbf{6520}$ ,  $\mathbf{r} = \mathbf{6}$ . The Topic names are found with the help of words for each topic

| topic i | opic names are found with the help of words for each topic |             |            |           |            |           |            |            |           |         |               |             |  |
|---------|------------------------------------------------------------|-------------|------------|-----------|------------|-----------|------------|------------|-----------|---------|---------------|-------------|--|
| max     |                                                            |             |            |           |            |           | dist       |            |           |         |               |             |  |
| Topic   | Music                                                      | Music       | Music      | Flights   | Politics   | Sports    | Business   | Politics   | Fashion   | Books   | FootBall      | FootBall    |  |
| 1       | steve                                                      | orchestra   | album      | flights   | bowie      | wives     | profit     | thatcher   | fashion   | novel   | manchester    | charles     |  |
| 2       | band                                                       | event       | entirely   | airlines  | vuitton    | sua       | growth     | margaret   | capturing | james   | universally   | leeds       |  |
| 3       | jorge                                                      | events      | requisite  | boeing    | muse       | rez       | ultimately | speaker    | footwear  | book    | middlesbrough | player      |  |
| 4       | swallow                                                    | free        | comprised  | houston   | invitation | sport     | serco      | political  | somerset  | says    | bayer         | universally |  |
| 5       | saxophonist                                                | productions | hurts      | flight    | advert     | sports    | centrica   | tributes   | heels     | awesome | leverkusen    | cup         |  |
| 6       | cheek                                                      | ensemble    | runner     | incidents | louis      | behaviour | price      | disagreed  | london    | write   | portsmouth    | rangers     |  |
| 7       | harmony                                                    | quartet     | stevie     | plane     | campaign   | field     | shares     | directness | bag       | burning | watford       | season      |  |
| 8       | organ                                                      | symphony    | compulsory | flying    | singing    | man       | warmly     | herself    | pink      | hunters | city          | transfer    |  |
| 9       | remarkably                                                 | opera       | engineer   | grounded  | model      | cup       | analysts   | politics   | week      | light   | norwich       | village     |  |
| 10      | rhythms                                                    | scotland    | commodity  | tokyo     | modelling  | handball  | government | clegg      | shoes     | flew    | rooney        | football    |  |

Table 8. Top 10 terms for reference ranking sets generated by XRAY Algorithm on **irishtimes Dataset** with m=4832, n=3246 r=6. The Topic names are found with the help of words for each topic

| max   |            |             |             |              |              |            |             | dist     |          |          |             |               |  |
|-------|------------|-------------|-------------|--------------|--------------|------------|-------------|----------|----------|----------|-------------|---------------|--|
| Topic | Health     | Marketing   | Sports      | Politics     | Politics     | Politics   | Health      | Sports   | Sports   | Music    | Politics    | Politics      |  |
| 1     | illness    | consumers   | scarlets    | jobs         | european     | stone      | health      | keane    | goal     | leinster | votes       | exit          |  |
| 2     | disease    | ways        | connacht    | shatter      | institutions | armagh     | sources     | achilles | league   | ulster   | seanad      | decision      |  |
| 3     | heart      | day         | december    | welcomed     | ombudsman    | discovered | maintained  | neill    | visitors | mcgrath  | referendum  | precautionary |  |
| 4     | mental     | getting     | saturday    | plant        | citizens     | trial      | initiatives | robbie   | eto      | schmidt  | dublin      | euro          |  |
| 5     | exercise   | practical   | edinburgh   | garda        | reilly       | brain      | service     | poland   | premier  | heaslip  | referendums | ireland       |  |
| 6     | rates      | lunchtime   | ulster      | senator      | union        | walked     | budget      | donall   | side     | jackson  | castle      | european      |  |
| 7     | medication | lots        | ravenhill   | leader       | voice        | heard      | maternity   | republic | arsenal  | connell  | campaign    | imf           |  |
| 8     | smoking    | offers      | glasgow     | business     | luxembourg   | court      | insurance   | get      | hazard   | samoa    | donaill     | programme     |  |
| 9     | death      | suggestions | dragons     | announcement | officially   | injuries   | pressures   | captain  | home     | hip      | count       | zone          |  |
| 10    | factors    | consumer    | murrayfield | minister     | renewed      | women      | cuts        | surgery  | gave     | mcfadden | cent        | bailout       |  |