Course Project, Spring 2016

Cluster-State Quantum Computing

Mayra Amezcua, Dileep V. Reddy, Zach Schmidt

May 24, 2016

CIS410/510 Introduction to Quantum Information Theory

Lecturer: Prof. Xiaodi Wu

Computer and Information Science, University of Oregon

Table of Contents

- Motivation
 - Gates through teleportation
- Cluster states
 - Definition
 - Representations
 - Properties
- Universal computation through CS

- Linear wire
- Arbitrary single qubit operations
- Two qubit operations
- Advantages and disadvantages
 - Parallelizability
 - Experimental implementations
 - Cluster state model as an analysis tool

template frame

test block

some text

test varblock

Variable block (here 4cm)

test alert

some alert

test example

some example citation ¹

¹Auth, DV, 123, 2001.

One-way quantum computing, measurement based quantum computing As opposed to circuit based quantum computing

Basic teleporation

Callback to teleportation discussion

Motivation Cluster states

