Elementary Function Theory – Lecture 3

In this lecture we focus exclusively on cubic functions and quartic functions.

Q1. Expand the expression (x-3)(x+1)(x-5).

Q2. Expand the expression $\left(x - \frac{1}{3}\right) \left(x + \frac{1}{4}\right) \left(x - \frac{1}{8}\right)$.

Q3. Expand the expression $(x + \sqrt{3})(x - \sqrt{2})(x - 1)$.

 $\mathbf{Q4.}$ Factorise the following expressions.

a.
$$x^3 + 3x^2 + 3x + 1$$
.

b.
$$x^3 - 6x^2 + 5x + 12$$
.

c.
$$2x^3 + 8x^2 - 38x + 28$$
.

Q5. Solve the following equations.

a.
$$x^4 - 2x^2 - 3 = 0$$
.

b.
$$x^4 - 5x^2 - 6 = 0$$
.

c.
$$x^4 - x^2 - 2 = 0$$
.

 ${\bf Q6.}$ Sketch the following curves, stating all relevant features.

a.
$$f(x) = (x+1)(x-2)(x-3)$$
.

b.
$$f(x) = (x-3)(x-4)(x-2)$$
.

c.
$$f(x) = (x+1)(x-8)(x-1)$$
.

d.
$$f(x) = (x-3)(x+5)(x+9)$$
.

Q7. Sketch the following curves, stating all relevant features.

a.
$$f(x) = (x-1)^2(x-4)$$
.

b.
$$f(x) = (x-3)(x+1)(x-6)^2$$
.

c.
$$f(x) = (x-3)(x-6)$$
.

d.
$$f(x) = x(x-4)(x-4)(x+6)$$
.

 ${\bf Q8.}$ Sketch the following curves, stating all relevant feautures.

a.
$$f(x) = (x-3)^3 + 1$$
.

b.
$$f(x) = (x-4)^3 - 5$$
.

c.
$$f(x) = (x+1)^3 + 2$$
.

d.
$$f(x) = x^3 + 2$$
.

Q9. State the transformations necessary to map $f(x) = x^3$ to $\widetilde{f}(x) = \frac{1}{2}(x+1)^3 - 4$.

Q10. State the transformations necessary to map $f(x) = x^3$ to $\widetilde{f}(x) = (1 - 2x)^3 + 16$.

Q11. State the transformations necessary to map $f(x) = x^3$ to

$$\widetilde{f}(x) = -\frac{1}{\sqrt{3}}(6x - 9)^3 + \frac{1}{\pi}.$$