AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCES

(AIMS RWANDA, KIGALI)

Name: Sittana Osman Afifi Mohamedelmubarak

ch 2

Zero-Knowledge proofs: Implementation of the Graph Isomorphism Protocol Date: May 22, 2020

1 Graph isomorphism

Definition 1 (Graph [1]). An undirected graph consists of a set of vertices (nodes) V and a set of edges E.

Two nodes u and v are said to be adjacent if there is an edge $(u, v) \in E$.

We can describe graph using its adjacency matrix which is a square matrix $M_{n\times n}$, with $m_{ij}=1$ if $(i,j)\in E$ and 0 otherwise.

Definition 2. Let V(G), E(G) denote the vertex set and edge set of a graph G respectively. Then, a pair of graphs (G_0, G_1) are **isomorphic** (denoted $G_0 \cong G_1$) if there exists a bijective map $\Pi : V(G_0) \longmapsto V(G_1)$ such that $\forall x, y \in V(G_0), (x, y) \in E(G_0)$ if and only if $(\Pi(x)\Pi(y)) \in E(G_1)$. The permutation Π is called an isomorphism.[2]

In other words: two graphs are said to be isomorphic if after we relabel vertices in one graph we get the other graph (with the same adjacency matrix).

Example 3. Two isomorphic graphs with their corresponding adjacency matrices.

Figure 1: Two isomorphic graphs.

	1	2	3	4	5
1	0	0	1	1	0
2	0	0	0	1	1
3	1	0	0	0	1
4	1	1	0	0	0
5	0	1	1	0	0

Table 1	: adiacency	matrix	of	G_{0}

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	0	1	0
3	0	0	0	1	1
4	0	1	1	0	0
5	1	0	1	0	0

Table 2: adjacency matrix of G_1

In Figure 1 G_1 is obtained, by relabeling the vertices of G_0 according to the following permutation: (1, 4, 5, 2, 3). This means that Node 3 in G_0 becomes Node 5 in G_1 , Node 4 becomes Node 2.

1.1 Graph Isomorphism based Zero-Knowledge Proofs

Suppose we have two isomorphic graphs G_0 and G_1 and $G_1 = \Pi(G_0)$, with limited messages between the prover (P) and verifier (V), P wants to prove to V he knows the secret Π without showing him what is Π exactly. In the previous example, we can see that it is easy to show if two graphs are isomorphic or not but this process isn't always simple; suppose we have two graphs each with 10 vertices and 28 edges, such as the graphs in Figure 2:

Figure 2: Two isomorphic graphs.

Then ZKP can provide a protocol that P can prove to V he knows the secret Π without revealing Π itself.

The protocol is done by applying a random permutation (φ) on G_0 by P, with:

$$H = \varphi(G_0)$$

and the honest prover has to be able to find a permutation such that he could transform H to either G_0 or G_1 (i.e to prove $H \cong G_0$ or $H \cong G_1$)

1.2 Zero-Knowledge Protocol for Graph Isomorphism

We have two graphs known by both parties G_0 and G_1 such that they have n vertices, define S_n as a set of permutations of n elements.

The protocol proceeds by the following:[2]

Input: pair of graphs (G_0, G_1)

- 1. **prover** chooses random permutation σ from S_n , and sends $H = \sigma(G_0)$.
- 2. **verifier** chooses ch randomly from $\{0,1\}$ and sends it to the prover.
- 3. **prover** if ch = 0: then sends $\varphi = \sigma$ else sends $\varphi = \sigma \circ \Pi^{-1}$.
- 4. **verifier** output <u>ACCEPT</u> if $H = \varphi(G_{ch})$ else output is <u>REJECT</u>.

1.3 graph isomorphism (GI) decision problem

Definition 4 (graph isomorphism (GI) decision problem [3]). *Input: pair of two finite graphs* (G_0, G_1) .

Output: ACCEPT if and only if they are isomorphic.

Complexity can be measured in the number of vertices.

1.3.1 The complexity of GI [3]

If we have two graphs and we want to check whether they are isomorphic or not; the brute force algorithm is to apply all possible permutation in S_n but this run in n! and it's slower than any exponential algorithm.

There is a petter algorithm but not in polynomial-time, because no polynomial-time algorithm yet is known to solve it (if it was in P, then there is no need to apply ZKP; the verifier can check if graphs are isomorphic).

Moreover, GI also isn't considered to be NP-complete, This put GI in intermediate complexity problems (neither P nor NP-complete). In László Babai's paper [4] according to **Corollary**, **1.1.2** GI can be solved in quasipolynomial time and it's run in $O(exp(log(n)^c))$

Theorem 5. [3]

The above protocol satisfies completeness, soundness $\frac{1}{2}$, and zero-knowledge.

Proof

Completeness. Completeness is quite straight forward, here we are dealing with honest prover $G_0 \cong G_1$ who knows Π , the verifier will check φ for both possible cases:

1. (ch = 0): from step (1) P calculates $H = \sigma(G_0)$ and he should find a bijective map from H to G_0 :

it's clear that $\varphi = \sigma$ because $\sigma(G_0) = \sigma(G_0)$

2. (ch = 1): P has to find a map from H to G_1 or to show that $H \cong \varphi(G_1)$: We know that:

$$G_1 = \Pi(G_0) \tag{1}$$

$$H = \sigma(G_0) \tag{2}$$

After we comibne equation 1 and equation 2:

$$H = \sigma(\Pi^{-1}(G_1))$$
$$H = (\sigma \circ \Pi^{-1})(G_1)$$

So

$$\varphi = \sigma \circ \Pi^{-1}$$

The V has to check that $H \cong \varphi(G_1)$:

$$\varphi(G_1) = \sigma \circ \Pi^{-1}(G_1) = (\sigma \circ \Pi^{-1} \circ \Pi)(G_0) = H$$

As we see if the prover knows Π he can always return the correct permutation.

Soundness $\frac{1}{2}$. For any prover P^* such that $G_0 \ncong G_1$ interacting with an honest verifier V^* , then P^* must submit some φ to the verifier, P^* can do something like:

- 1. choose random φ .
- 2. pick random H and send it to V.

Since $G_0 \ncong G_1$ then H such is isomorphic to G_0 or G_1 , so whatever prover does, after it sends H, H cannot be isomorphic to both G_0 and G_1 .

So whatever happens, honest verifier always has at least 1/2 chance to choose b that fails the prover, so:

$$Pr[P^* \text{ convinces } V \text{ that } G_0 \cong G_1] \leq 1/2$$

If we want to decrease the soundness to be negligible we have to repeat the verification procedure sufficiently many times, if we repeate it n times it will be soundness with 2^{-n} which is smaller than any polynomial-time algorithm.

zero-knowledge. We want to show that there exists a polynomial-time simulator S such that if G_0 and G_1 are isomorphic then for an honest prover and for every verifier V^* :

Distribution of transcript
$$(P, V^*)$$
 = Distribution of transcript $S(G_0, G_1, V^*)$ (3)

How S works:

- 1. $S_n \leftarrow$ random permutation from S_n .
- 2. $b \leftarrow$ random bit from $\{0,1\}$..
- 3. $H = \sigma(G_b)$.
- 4. Send H to V^* to get ch.
- 5. If ch = b, output σ and return the transcript, else loop.

Now we want to show equation 3 is satisfied:

First: the transcript is $\{H, ch(H, V^*), \sigma\}$ where H is a result of applying a random permutation on G_0 (same as a result of applying a random permutation on G_1), ch was generated by V^* from H and σ is a random permutation from S_n .

In the simulator, the distribution is generated in the same way, only there is always probability $\frac{1}{2}$ the simulator loop. But this probability $(\Pr[b \neq ch])$ is independent of H so it doesn't change the distribution of transcripts.

Then we want to show is a polynomial-time:

Let k be the number of loops, we want to show that S is polynomial-time by calculating the expected value of k:

When k = 1: E[k] = 1/2When k = 2: E[k] = 1/4

When k = 3: E[k] = 1/8 and so on But this is a geometric distribution:

$$P(X = x) = q^{x-1}p$$

where q=1-p With $E[k]=\sum_{i=1}i*pr(k=i)=\frac{1}{p}=2$ Since the expected value of k while k is the number of loops is 2, then S is polynomial-time.

References

- [1] J. L. Gross and J. Yellen, Handbook of graph theory. CRC press, 2003.
- [2] V. Goyal and J. Ackerman, "Introduction to Cryptography, Lecture 19: Zero-Knowledge Proofs I," 2018. URL: https://www.cs.cmu.edu/~goyal/s18/15503/scribe_notes/ lecture21.pdf. Last visited on 2020/05/13.
- [3] O. Goldreich, Foundations of cryptography: volume 1, basic tools. Cambridge university press, 2007.
- [4] L. Babai, "Graph isomorphism in quasipolynomial time," in Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pp. 684–697, 2016.