Tutorial 21

Let $(f_n:I\to\mathbb{R})_{n\in\mathbb{N}}$ be a sequence of functions. If $f:I\to\mathbb{R}$ is another function, we say that f_n converges uniformly to f is for every $\epsilon>0$, there exists $N\in\mathbb{N}$ such that for all $n\geq N$ and for every $x\in\mathbb{R}$ we have $|f_n(x)-f(x)|<\epsilon$.

We say that f_n converges pointwise to f is for every $x \in \mathbb{R}$, for every $\epsilon > 0$, there exists $n \in \mathbb{N}$ such that for all $n \geq N$ we have $|f_n(x) - f(x)| < \epsilon$.

Problem 1 (antinuous)

- (1. Provide a sequence of functions $f_n: I \to \mathbb{R}$ that converges pointwise to f, yet f is not continuous.
- 2. Provide a sequence of integrable functions $f_n: I \to \mathbb{R}$ that converges pointwise to an integrable function f, yet the sequence $(\int f_n)$ does not converge to $\int f$.
- 3. Provide a sequence of integrable functions $f_n:I\to\mathbb{R}$ that converge pointwise to a non-integrable function f.
- 4. Provide a sequence of nonnegative bounded functions $f_n:I\to\mathbb{R}$, with $M_n=\sup f_n$, such that $\sum_{n=1}^\infty f_n$ converges uniformly, yet $\sum_{n=1}^\infty M_n$ does not converge. This shows the converge to the Weierstrass M-test does not hold.

$$\int_{N} \frac{f(x)^{2} x^{N}}{f(x)^{2}} \int_{N} \frac{f(x)^{2}}{f(x)^{2}} \int_{N} \frac{f(x)^{2}}{f(x)$$

$$\int_{\Lambda} \left(x \right)^{\frac{1}{2}} \int_{\Omega} \left[\left(x \right)^{\frac{1}{2}} - \frac{1}{4} \right] \int_{\Omega} \left[\left(x \right)^{\frac{$$

4. Provide a sequence of nonnegative bounded functions $f_n: I \to \mathbb{R}$, with $M_n = \sup f_n$, such

that $\sum_{n=1}^{\infty} f_n$ converges uniformly, yet $\sum_{n=1}^{\infty} M_n$ does not converge. This shows the converge to the

Problem 2 Suppose that f_n are continuous functions on [0,1] that converge uniformly to f. Prove that

$$\lim_{n \to \infty} \int_0^{1 - 1/n} f_n = \int_0^1 f.$$

Is this true if the convergence isn't uniform?

Let
$$\langle x \rangle \sim W$$
 and $\langle x \rangle \sim W$ and $\langle x \rangle \sim$

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}.$$

$$\frac{\log (|+_{\lambda}|)}{|+_{\lambda}|} = \frac{2}{\sqrt{-1}} \frac{(-1)^{n-1}}{n} \times \frac{1}{\sqrt{-1}}$$

$$\frac{1}{\sqrt{-1}} = \frac{2}{\sqrt{-1}} (-1)^{n} \times \frac{1}{\sqrt{-1}}$$

$$\frac{1}{\sqrt{-1}} = \frac{2}{\sqrt{-1}} (-1)^{n} \times \frac{1}{\sqrt{-1}}$$

$$\frac{x}{y} = \log(1+x) - \log(1+x)$$

$$\frac{x}{y} = \log$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n+2}}{n+1}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^{n+2}}{n+1}$$

$$\log((tx) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1} x^k}{n}$$

Problem 3

Prove that for $-1 < x \le 1$,

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}.$$

Problem 4

- 1. Write down the power series for $\log(1-x)$ and $\log[(1+x)/(1-x)]$ around x=0.
- 2. Show that the power series for $f(x) = \log(1-x)$ converges only for $-1 \le x < 1$, and that the power series for $g(x) = \log[(1+x)/(1-x)]$ converges only for x in (-1,1).