Computational Models — Lecture 4¹

Handout Mode

Ronitt Rubinfeld and Iftach Haitner.

Tel Aviv University.

March 21/23, 2016

¹Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice Herlihy, Brown University.

Talk Outline

- Context Free Grammars/Languages (CFG/CFL)
- Algorithmic issues for CFL

Next two weeks:

- Pumping Lemma for context free languages
- Push Down Automata (PDA)
- ► Equivalence of CFGs and PDAs

► Sipser's book, 2.1, 2.2 & 2.3

Short Overview of the Course

So far we saw

- finite automata.
- regular languages,
- regular expressions,
- Myhill-Nerode theorem
- pumping lemma for regular languages.

We now introduce stronger machines and languages with more expressive power:

- pushdown automata,
- context-free languages,
- context-free grammars,
- pumping lemma for context-free languages.

Context Free Grammars (CFG)

An example of a context free grammar, G_1 :

- ► *A* → 0*A*1
- ► *A* → *B*
- **▶ B** → **#**

Terminology:

- Each line is a substitution rule or production.
- ► Each rule has the form: symbol → string.
 The left-hand symbol is a variable (usually upper-case).
- A string consists of variables and terminals.
- ► One variable is the start variable (lhs of top rule). In this case, it is *A*.

Rules for Generating Strings

- Write down the start variable.
- Pick a variable written down in current string and a derivation that starts with that variable.
- Replace that variable with right-hand side of that derivation.
- Repeat until no variables remain.
- Return final string (concatenation of terminals).

Process is inherently non deterministic.

Example

Grammar G₁:

- ► *A* → 0*A*1
- ► *A* → *B*
- **▶ B** → #

Derivation with G_1 :

- $\mathbf{A} \rightarrow 0.41$
 - \rightarrow 00A11
 - \rightarrow 000A111
 - → 000*B*111
 - \rightarrow 000#111

Parsing Trees

Indifferent to derivation order.

Question 1

What strings can be generated in this way from the grammar G_1 ?

Answer: Exactly those of the form $0^n \# 1^n \ (n \ge 0)$.

Context-Free Languages (CFL)

The language generated in this way is called the language of the grammar.

For example,
$$\mathcal{L}(G_1) = \{0^n \# 1^n \colon n \ge 0\}.$$

Any language generated by a context-free grammar is called a context-free language.

A Useful Abbreviation

Rules with same variable on left hand side

$$A \rightarrow 0A1$$

 $A \rightarrow B$

are written as:

$$A \rightarrow 0A1 \mid B$$

English-like Sentences

A grammar G_2 to describe a few English sentences:

```
< SENTENCE > \rightarrow \mathcal{NP} < VERB > \mathcal{NP} \rightarrow < ARTICLE >< NOUN > < NOUN > \rightarrow boy | girl | flower < ARTICLE > \rightarrow a | the < VERB > \rightarrow touches | likes | sees
```

Deriving English-like Sentences

A specific derivation in G_2 :

```
< \text{SENTENCE} > \rightarrow \mathcal{NP} < \text{VERB} > \\ \rightarrow < \text{ARTICLE} >< \text{NOUN} >< \text{VERB} > \\ \rightarrow \text{a} < \text{NOUN} >< \text{VERB} > \\ \rightarrow \text{a boy} < \text{VERB} > \\ \rightarrow \text{a boy sees}
```

More strings generated by G_2 :

a flower sees the girl touches

Derivation and Parse Tree

$$< \textbf{SENTENCE} > \quad \rightarrow \quad \mathcal{NP} < \textbf{VERB} > \\ \quad \rightarrow \quad < \textbf{ARTICLE} > < \textbf{NOUN} > < \textbf{VERB} > \\ \quad \rightarrow \quad \textbf{a} < \textbf{NOUN} > < \textbf{VERB} > \\ \quad \rightarrow \quad \textbf{a} \ \textbf{boy} < \textbf{VERB} > \\ \quad \rightarrow \quad \textbf{a} \ \textbf{boy} \ \textbf{sees}$$

Formal Definition

A context-free grammar is a 4-tuple (V, Σ, R, S) , where

- V is a finite set of variables
- Σ is a finite set of terminals
- R is a finite set of rules: each rule is a variable and a finite string of variables and terminals.
- S is the start symbol.
- If u and v are strings of variables and terminals, and A → w is a rule of the grammar, then uAv yields uwv, written uAv → uwv.
- ▶ $u \xrightarrow{*} v$ if u = v, or $u \to u_1 \to \ldots \to u_k \to v$ for some sequence u_1, u_2, \ldots, u_k

Definition 2

The language of the grammar G, denoted $\mathcal{L}(G)$, is $\{w \in \Sigma^* : S \stackrel{*}{\to} w\}$

where $\stackrel{*}{\rightarrow}$ is determined by G.

Example 1

$$G_3 = (\{S\}, \{a, b\}, R, S).$$

R (Rules):
$$S \rightarrow aSb \mid SS \mid \varepsilon$$

Some words in the language: *aabb*, *aababb*.

Question 3

What is this language?

Hint: Think of parentheses: i.e., a is "(" and b is ")". (()), (()())

Using larger alphabet (i.e., more terminals), ([]()), represent well formed programs with many kinds of nested loops, "if then/else" statements.

Example 2

$$G_4 = (\{S\}, \{a, b\}, R, S).$$

R (Rules):
$$S \rightarrow aSa \mid bSb \mid \varepsilon$$

Some words in the language: *abba*, *aabaabaa*.

Question 4

What is this language?

$$\mathcal{L}(G_4) = \{ww^R : w \in \{a, b\}^*\}$$
 (almost but not quite the set of palindromes)

Proving $\mathcal{L}(G_4) = \{ww^R : w \in \{a, b\}^*\}$

What do we need to show?

- **1.** If $z = ww^R$ then z is generated by G_4 .
- **2.** If z generated by G_4 then $z = ww^R$.

Part 1:

Proof by induction on the length of z.

Base: |z| = 0, then $S \to \varepsilon$. Hence $\varepsilon \in \mathcal{L}(G_4)$.

Inductive claim:

Let
$$|z| = 2k$$
.

Let $z = ww^R$ and $w = \sigma w'$. Then $z = \sigma w'(w')^R \sigma$.

Consider the derivation $S \to \sigma S \sigma$.

By the induction hypothesis $S \stackrel{*}{\to} w'(w')^R$, since $|w'(w')^R| = 2k - 2 < |z|$.

Therefore, G_5 generates $S \to \sigma S \sigma \stackrel{*}{\to} \sigma w' (w')^R \sigma = z$.

Hence $z \in \mathcal{L}(G_4)$.

Proving $\mathcal{L}(G_4) = \{ww^R : w \in \{a, b\}^*\}$

Part 2

Assume that $S \stackrel{*}{\rightarrow} Z$.

We prove by induction on the number of derivations that $z = ww^R$.

Base: If we have a single derivation, then the only possible derivation is $S \rightarrow \varepsilon$, and we are done.

Inductive claim:

Assume $S \stackrel{*}{\rightarrow} z$ in k derivations.

Assume we have $S \to \sigma S \sigma$ as the first derivation.

Then by the inductive hypothesis, $S \rightarrow w'(w')^R$.

Therefore, $z = \sigma w'(w')^R \sigma$.

Example 3

$$G_5 = (\{S, A, B\}, \{a, b\}, R, S)$$

R (Rules):

$$S \rightarrow aB \mid bA \mid \varepsilon$$

$$A \rightarrow a \mid aS \mid bAA$$

 $B \rightarrow b \mid bS \mid aBB$

Some words in the language: aababb, baabba.

Question 5

What is this language?

$$\mathcal{L}(G_5) = \{ w \in \{a, b\}^* \colon \#_a(w) = \#_b(w) \}$$

 $\#_{x}(w)$ — number of occurrences of x in w

Proving $\mathcal{L}(G_5) = \{ w \in \{a, b\}^* : \#_a(w) = \#_b(w) \}$

What do we need to show?

- 1. If w generated by G_5 then $\#_a(w) = \#_b(w)$.
- 2. If $\#_a(w) = \#_b(w)$ then w is generated by G_5 .

Claim 6

If $S \stackrel{*}{\to} w$, then $\#_{a}(w) + \#_{A}(w) = \#_{b}(w) + \#_{B}(w)$.

Claim 7

For $w \in \{a, b\}^*$ let $k = k(w) = \#_a(w) - \#_b(w)$. Then:

- 1. If k = 0, then $S \stackrel{*}{\rightarrow} wS$
- **2.** If k > 0, then $S \stackrel{*}{\rightarrow} wB^{|k|}$
- **3.** If k < 0, then $S \stackrel{*}{\rightarrow} wA^{|k|}$

Are we done?! How we prove these claims?

Proving Claim 7

Proof by induction on |w|:

- ▶ Basis: $w = \epsilon$ then k(w) = 0. Since $S \stackrel{*}{\to} S$, then $S \stackrel{*}{\to} \epsilon S$
- ▶ Induction step: for $w \in \{a, b\}^n$ write $w = w'\sigma$ with |w'| = n 1

Suppose:

1.
$$k' = k(w') = (\#_a(w') - \#_b(w')) > 0$$

2. $\sigma = a$

Note that if both are the case, we have k' = k - 1

By the induction hypothesis $S \stackrel{*}{\to} w' B^{k'}$

Since
$$B \to aBB$$
, then $S \stackrel{*}{\to} w'B^{k'} = w'BB^{k'-1} \stackrel{*}{\to} w'(aBB)B^{k'-1} = wB^{k'+1} = wB^{k(w)}$

To complete the proof, need to show for $\sigma = b$ and for $k' \le 0$, k' = 0 (6 cases in all).

Designing Context-Free Grammars

No recipe in general, but few rules-of-thumb

- ▶ If CFG is the union of several CFGs, rename variables (not terminals) so they are disjoint, and add new rule $S \rightarrow S_1 \mid S_2 \mid \ldots \mid S_i$.
- ► For languages (like $\{0^n \# 1^n : n \ge 0\}$), with linked substrings, a rule of form $R \to uRv$ is helpful to force desired relation between substrings.
- ► For a regular language, grammar "follows" a DFA for the language (see next frame).

How expressive are CFG's

Are they more expressive or less expressive than regular languages?

CFG for Regular Languages

Given a DFA : $M = (Q, \Sigma, \delta, q_0, F)$

CFG G for $\mathcal{L}(M)$:

- 1. Let R_0 be the starting variable
- **2.** Add rule $R_i \to aR_j$, for any $q_i, q_j \in Q$ and $a \in \Sigma$ with $\delta(q_i, a) = q_j$
- **3.** Add rule $R_i \to \varepsilon$, for any $q_i \in F$

Claim 8

$$\mathcal{L}(G) = \mathcal{L}(M)$$

Proof?

Claim 9

$$R_0 \stackrel{*}{\rightarrow} wR_i \text{ iff } M(w) = q_i.$$

Proof? Next class we'll see alternative proof via "Push-Down Automata"

Ambiguity in CFLs

Grammar $G: E \rightarrow E + E \mid E \times E \mid (E) \mid a$

Arithmetic Example

Consider the grammar $G' = (V, \Sigma, R, E)$, where

- ▶ $V = \{E, T, F\}$
- ► $\Sigma = \{a, +, \times, (,)\}$

$$E \rightarrow E + T \mid T$$

 $\begin{array}{ccc} & E & \rightarrow & E+T \mid T \\ \blacktriangleright & \text{Rules:} & T & \rightarrow & T \times F \mid F \end{array}$ $F \rightarrow (E) \mid a$

Claim 10

$$\mathcal{L}(G') = \mathcal{L}(G)$$

Proof? but G' is not ambiguous.

Parsing Tree of G' for $a + a \times a$

G':

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

Parsing Tree of G' for $(a+a) \times a$

G':

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

Ambiguity

Definition 11

A string w is derived ambiguously from grammar G, if w has two or more different parse trees that generate it from G. A CFG is ambiguous, if it ambiguously derives a string.

- Ambiguity is usually not only a syntactic notion but also semantic, implying multiple meanings for the same string. Think of $a + a \times a$ from last grammar.
- ▶ It is sometime possible to eliminate ambiguity by finding a different context free grammar generating the same language. This is true for the arithmetic expressions grammar.

Some languages are inherently ambiguous.

```
Example: \{1^{i}2^{j}3^{k}: i = j \lor j = k\}
```

Proof? Book!

Part I

Checking Membership

Checking Membership in a CFL

Challenge

Given a CFG G and a string w, decide whether $w \in \mathcal{L}(G)$?

Initial Idea: Design an algorithm that tries all derivations.

Problem: If G does not generate w, we'll never stop.

Possible solution: Use special grammars that are:

- just as expressive!
- better for checking membership.

Chomsky Normal Form (CNF)

A simplified, canonical form of context free grammars. $G = (V, \Sigma, R, S)$ is in a CNF, if every rule in in R has one of the following forms:

$$\begin{array}{lll} \textbf{A} \rightarrow \textbf{a}, & \textbf{A} \in \textbf{V} & \land & \textbf{a} \in \Sigma \\ \textbf{A} \rightarrow \textbf{BC}, & \textbf{A} \in \textbf{V} & \land & \textbf{B}, \textbf{C} \in \textbf{V} \setminus \{\textbf{S}\} \\ \textbf{S} \rightarrow \varepsilon. & \end{array}$$

Simpler to analyze: each derivation adds (at most) a single terminal, S only appears once, ε appears only at the empty word

CNF: Theorem

Theorem 12

Any context-free language is generated by a context-free grammar in Chomsky Normal Form.

Proof Idea: [Next time] Give algorithms which does the following:

- ▶ Add new start symbol S₀.
- ▶ Eliminate all ε rules of the form $A \to \varepsilon$.
- ▶ Eliminate all "unit" rules of the form $A \rightarrow B$.
- Patch up rules so that grammar generates the same language.
- Convert remaining "long rules" to proper form.

CNF: Bounded Derivation Length

Lemma 13

For a CNF grammar G and $w \in \mathcal{L}(G)$ with $|w| = n \ge 1$, it holds that w has a derivation of length 2n - 1.

Proof? consider the parsing tree for w – degree at most 2 and n leaves.

Advantage: Easier to check whether $w \in \mathcal{L}(G)$ – only need to try all derivations of length 2n - 1. This is finite, but there are a lot of these!

Checking Membership for Grammars in CNF Form

Given a CNF grammar $G = (V, \Sigma, R, S)$, we build a function Derive(A, x) that returns TRUE iff $A \stackrel{*}{\to} x$.

Algorithm 14 (Derive(A, x))

- ▶ If $x = \varepsilon$: if $A \to \varepsilon \in R$ (i.e., A = S) return TRUE, otherwise return FALSE.
- ▶ If |x| = 1: if $A \rightarrow x \in R$ return TRUE, otherwise return FALSE.
- ► For each $A \rightarrow BC$ and each partition $x = x_1x_2$:
 - ► Call Derive(B, x_1) and Derive(C, x_2).
 - Return TRUE if both return TRUE.
- ► Return FALSE.

Test whether $w \in \mathcal{L}(G)$ by calling Derive(S, w)

Correctness?

- ► Procedure Derive can also output a parse tree for w
- ► Have we critically used that G is in CNF?

Time Complexity of Derive

What is the time complexity $T: \mathbb{N} \to \mathbb{N}$ of Derive?

- Each recursive call tests |R| rules and n partitions.
- $ightharpoonup T(n) \leq |R| \cdot n \cdot 2T(n-1)$
- ► $T(n) \in O((|R| \cdot n)^n)$.

Still exponential...

Efficient Algorithm

- ▶ Keep in memory the results of Derive(A, x).
 - Number of different inputs: $|V| \cdot n^2$.
 - ▶ Only $|V| \cdot n^2$ calls, each takes $O(|R| \cdot n)$.
 - ► $T(n) \in O(|R| \cdot n^3 \cdot |V|)$.
- ▶ Polynomial time!
- This approach is called Dynamic Programming

Basic idea:

- If number of different inputs is limited, say \(\lambda \).
- ▶ Each run (excluding recursive calls) takes at most R(n) time
- ▶ Total running time is bounded by $T(n) \le R(n)I(n)$.