Slide 6 Exercises

1). Consider the following set of processes with their *arrival time*, *CPU burst time*, and *priority* details:

Process	Arrival Time (ms)	Burst (ms)	Priority
P_1	0	8	3
P_2	1	9	1
P ₃	2	7	2
P_4	3	3	5
P_5	4	12	4

Draw the *Gantt chart* and show the *average waiting time* for the execution of these processes using the following scheduling algorithms:

- 1.1) First-Come First-Served (FCFS)
- 1.2) Shortest-Job-First (SJF)
- 1.3) Priority
 - 1.4) Round-Robin (RR) (time quantum = 4).
- 2). Consider the following set of processes with their *arrival time*, *CPU burst time* and *priority* details:

Process	Arrival Time (ms)	CPU Burst (ms)	Priority
P_1	0	6	4
P_2	1	3	1
P ₃	2	10	2
P_4	3	8	3

Draw the *Gantt chart*, and show the *average waiting time* of the processes based on the following scheduling algorithms:

2.1) First-Come First-Served (FCFS)

- 2.2) Shortest-Job-First (SJF)
- 2.3) Priority
- 2.4) Round-Robin (time quantum = 4).
- 3). Consider the following set of processes with their arrival time, CPU burst time and priority details:

Process	Arrival Time (ms)	CPU Burst (ms)	Priority
P_1	0	11	1
P_2	1	4	3
P_3	2	8	4
P_4	3	24	2

Draw the *Gantt chart*, and show the *average waiting time* of the processes based on the following scheduling algorithms:

- 3.1) First-Come First-Served (FCFS)
- 3.2) Shortest-Job-First (SJF)
- 3.3) Priority
- 3.4) Round-Robin (time quantum = 4).
- 4). A CPU-scheduling algorithm determines an order for the execution of its scheduled processes. Given n processes to be scheduled on one processor, how many different schedules are possible?
- 5). Explain the difference between preemptive and non-preemptive scheduling.
- 6). Assume that an operating system maps user-level threads to the kernel using the many-to-many model and that the mapping is done through the use of LWPs. Furthermore, the system allows program developers to create real-time threads. Is it necessary to bind a real-time thread to an LWP?
- 7). Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound programs?