Introduction to Regression

Hee-il Hahn

Professor

Department of Information and Communications Engineering Hankuk University of Foreign Studies hihahn@hufs.ac.kr

Linear Regression

- 지도학습의 한 분야로 연속적인 숫자(실수)를 예측하는 것
 - □ 어떤 사람의 교육수준, 나이, 주거지를 바탕으로 연간소득 예측하는 문제
 - □ 측정된 점들의 열로부터 가장 근사한 방정식을 구하는 문제

inputs	outputs
$x_1 = 1$	$y_1 = 1$
$x_2 = 3$	$y_2 = 2.2$
$x_3 = 2$	$y_3 = 2$
$x_4 = 1.5$	$y_4 = 1.9$
$x_5 = 4$	$y_5 = 3.1$

Linear regression assumes that the expected value of the output given an input, E[Y|X], is linear.

i.e.,
$$E[Y|X] = \alpha + \beta X$$
 or $E[Y|X] = \alpha + \beta_1 X_1 + \dots + \beta_p X_p$ where $E[Y|X] = \int y f(y/x) dy$

- Simplest case: Out(x) = wx for some unknown w.
- \Box Given the data, we can estimate w.

2-parameter linear regression

Observable dataset : $\mathbf{d}_1(x_1, y_1), \mathbf{d}_2(x_2, y_2) \dots \mathbf{d}_n(x_n, y_n)$

Model: y = wx + b

Compute mean squared error of the model on the dataset

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - wx_i - b)^2$$

To minimize MSE

$$\begin{cases} \frac{\partial}{\partial w} MSE = \frac{\partial}{\partial w} \frac{1}{n} \sum_{i=1}^{n} (y_i - wx_i - b)^2 = 0 & \rightarrow \sum_{i=1}^{n} x_i (y_i - wx_i - b) = 0 \\ \frac{\partial}{\partial b} MSE = \frac{\partial}{\partial b} \frac{1}{n} \sum_{i=1}^{n} (y_i - wx_i - b)^2 = 0 & \rightarrow \sum_{i=1}^{n} (y_i - wx_i - b) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} w \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ w \sum_{i=1}^{n} x_i + nb = \sum_{i=1}^{n} y_i \end{cases} \text{ if } b = 0, \quad w = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \text{ (즉, } y = wx 로 모델링하면)$$

Bayesian linear regression

- Assume that the data is formed by $y_i = wx_i + noise_i$
 - the noise signals are independent
 - the noise has a normal distribution with mean 0 and unknown variance σ^2
 - \neg p(y|w,x) has a normal distribution with mean wx and variance σ^2
- $y \sim N(wx, \sigma^2)$
- We have a set of data $\mathbf{d}_1(x_1, y_1), \mathbf{d}_2(x_2, y_2)...\mathbf{d}_n(x_n, y_n)$.
- We want to infer w from the data.

$$P(w|\mathbf{d}_1,\mathbf{d}_2,...,\mathbf{d}_n) = P(w|\mathbf{D})$$

- We can use BAYES rule to work out a posterior distribution for w given the data.
- Or, we could do Maximum Likelihood Estimation.

Maximum likelihood estimation of w

- Choose the parameter w that maximizes the probability of the data, given that parameter.
- MLE asks: "For which value of w is this data most likely to have happened?"

For what
$$w$$
, is $P(\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_n | w)$ maximized?

- \equiv For what w, is $\prod_{i=1}^n P(\mathbf{d}_i|w)$ maximized?
- \equiv For what w, is $\prod_{i=1}^{n} exp\left(-\frac{1}{2}\left(\frac{y_i-wx_i}{\sigma}\right)^2\right)$ maximized?
- \equiv For what w, is $\sum_{i=1}^{n} (y_i wx_i)^2$ minimized?

where $P(\mathbf{d}_1, \mathbf{d}_2, ..., \mathbf{d}_n | w)$ is called the Likelihood, and

$$P(\mathbf{d}_i|w) = P(y_i|w,x_i) = \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{1}{2}\left(\frac{y_i-wx_i}{\sigma}\right)^2\right).$$

First result

• MLE with Gaussian noise is the same as minimizing the L_2 error

$$\operatorname{argmin}_{w} \sum_{i=1}^{n} (y_i - wx_i)^2$$

The maximum likelihood w is the one that minimizes sum-of-squares of residuals

$$E = \sum_{i=1}^{n} (y_i - wx_i)^2$$

= $\sum_{i=1}^{n} y_i^2 - (2\sum_i x_i y_i)w + (\sum_i x_i^2)w^2$

We want to minimize a quadratic function of w.

Linear regression

Easy to show the sum of squares is minimized when

$$w = \frac{\sum x_i y_i}{\sum x_i^2}$$

The maximum likelihood model is:

$$Out(x) = wx$$

We can use it for prediction.

Note: In Bayesian stats you'd have ended up with a prob distribution of w

And predictions would have given a prob disribution of expected output

Often useful to know your confidence.

Max likelihood can give some kinds of confidence too.

Maximum a Posteriori estimation of w

MAP

- \Box Choose w that maximizes the posteriori probability of w.
- \Box Posterior probability of w is given by the Bayes Rule:

$$P(w|\mathbf{D}) = \frac{P(w)P(\mathbf{D}|w)}{P(\mathbf{D})}$$

where P(w): Prior probability of w assumed as $w \sim N(0, \gamma^2)$

 $P(\mathbf{D})$: Probability of data (independent of w)

$$P(\mathbf{D}) = \int P(w)P(\mathbf{D}|w)dw$$

Maximum a Posteriori estimation - cont'd

MAP

```
\widehat{w}_{MAP} = \operatorname{argmax}_{w} P(w|\mathbf{D})
= \operatorname{argmax}_{w} \frac{P(w)P(\mathbf{D}|w)}{P(\mathbf{D})}
\cong \operatorname{argmax}_{w} P(w)P(\mathbf{D}|w)
= \operatorname{argmax}_{w} \prod_{i=1}^{n} P(\mathbf{d}_{i}|w) P(w)
= \operatorname{argmax}_{w} \sum_{i=1}^{n} logP(\mathbf{d}_{i}|w) + logP(w)
(cf: \widehat{w}_{MLE} = \operatorname{argmax}_{w} P(\mathbf{D}|w)
= \operatorname{argmax}_{w} \prod_{i=1}^{n} P(\mathbf{d}_{i}|w))
```

Maximum a Posteriori estimation - cont'd

For what w, is
$$\prod_{i=1}^{n} P(\mathbf{d}_i|w)P(w)$$
 maximized?

 \equiv

For what
$$w$$
, is $\prod_{i=1}^{n} exp\left(-\frac{1}{2}\left(\frac{y_i-wx_i}{\sigma}\right)^2\right) exp\left(-\frac{1}{2}\left(\frac{w}{\gamma}\right)^2\right)$ maximized?

 \equiv

For what
$$w$$
, is $\sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_i - wx_i}{\sigma} \right)^2 - \frac{1}{2} \left(\frac{w}{\gamma} \right)^2$ maximized?

 \equiv

For what
$$w$$
, is $\sum_{i=1}^{n} (y_i - wx_i)^2 + \left(\frac{\sigma w}{v}\right)^2$ minimized?

Second result

MAP with a Gaussian prior on w is the same as minimizing the L_2 error plus an L_2 penalty on w

$$\operatorname{argmin}_{w} \sum_{i=1}^{n} (y_{i} - wx_{i})^{2} + \rho w^{2}$$

$$\rho = \frac{\sigma}{\gamma}$$

- MLE estimation of a parameter leads to unregularized solutions.
- MAP estimation of a parameter leads to regularized solutions.
- □ The prior distribution P(w) acts as a regularizer in MAP estimation.

Multivariate regression

What if the inputs are vectors?

Write matrix X and y:

$$\mathbf{X} = \begin{bmatrix} x_{11} & \cdots & x_{1p} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{np} \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_p \end{bmatrix}$$

where
$$\mathbf{x}_1=(x_{11},\cdots,x_{1p})$$
, $\mathbf{x}_2=(x_{21},\cdots,x_{1p})$, \cdots $\mathbf{x}_n=(x_{n1},\cdots,x_{np})$

Assume that the data is formed by $y_i = \mathbf{w}^T \mathbf{x}_i + noise_i$

$$y \sim N(\mathbf{w}^T \mathbf{x}, \sigma^2)$$

Probability of each response variable

$$P(\mathbf{d}_i|\mathbf{w}) = P(y_i|\mathbf{w},\mathbf{x}_i) = \frac{1}{\sqrt{2\pi}\sigma}exp\left(-\frac{1}{2}\left(\frac{y_i-\mathbf{w}^T\mathbf{x}_i}{\sigma}\right)^2\right).$$

• Given data $\mathbf{D} = \{\mathbf{d}_1(\mathbf{x}_1, y_1), \dots, \mathbf{d}_n(\mathbf{x}_n, y_n)\}$, we want to estimate the weight vector \mathbf{w} . Likelihood:

$$L(\mathbf{w}) = P(\mathbf{D}|\mathbf{w}) = P(y|\mathbf{w}, \mathbf{X}) = \prod_{i=1}^{n} P(\mathbf{d}_{i}|\mathbf{w})$$
$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} exp\left(-\frac{1}{2}\left(\frac{y_{i} - \mathbf{w}^{T}\mathbf{x}_{i}}{\sigma}\right)^{2}\right)$$

Log-likelihood:

$$logL(\mathbf{w}) = \sum_{i=1}^{n} \left\{ -\frac{1}{2} log(2\pi\sigma^{2}) - \frac{1}{2} \left(\frac{y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}}{\sigma} \right)^{2} \right\}$$

Maximum likelihood solution:

$$\begin{split} \widehat{\mathbf{w}}_{MLE} &= \operatorname{argmax}_{\mathbf{w}} \prod_{i=1}^{n} P(\mathbf{d}_{i} | \mathbf{w}) \\ &= \operatorname{argmax}_{\mathbf{w}} \sum_{i=1}^{n} -\frac{1}{2} \left(\frac{y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}}{\sigma} \right)^{2} \\ &= \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} \left(\frac{y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}}{\sigma} \right)^{2} \\ &= (X^{T} X)^{-1} X^{T} \mathbf{y} \end{split}$$

$$(\text{from } \frac{d}{d\mathbf{w}} (\mathbf{y} - X \mathbf{w})^{T} (\mathbf{y} - X \mathbf{w}) = \mathbf{0})$$

- Maximum-a-Posteriori Solution:
 - Assume a Gaussian prior distribution over the weight vector w.

$$P(\mathbf{w}) \sim N(0, \lambda^{-1} \mathbf{I}) = \frac{1}{(2\pi)^{p/2}} exp\left(-\frac{\lambda}{2} \mathbf{w}^T \mathbf{w}\right)$$

Posteriori probability:

$$P(\mathbf{w}|\mathbf{D}) = \frac{P(\mathbf{w})P(\mathbf{D}|\mathbf{w})}{P(\mathbf{D})}$$

Log Posteriori probability:

$$logP(\mathbf{w}|\mathbf{D}) = log \frac{P(\mathbf{w})P(\mathbf{D}|\mathbf{w})}{P(\mathbf{D})}$$

Maximum-a-Posteriori Solution:

$$\begin{split} \widehat{\mathbf{w}}_{MAP} &= \operatorname{argmax}_{\mathbf{w}} \log P(\mathbf{w} | \mathbf{D}) \\ &= \operatorname{argmax}_{\mathbf{w}} \left\{ \log P(\mathbf{D} | \mathbf{w}) + \log P(\mathbf{w}) \right\} \\ &= \operatorname{argmax}_{\mathbf{w}} \left\{ \log P(\mathbf{w}) + \sum_{i=1}^{n} \log P(\mathbf{d}_{i} | \mathbf{w}) \right\} \\ &= \operatorname{argmax}_{\mathbf{w}} \left\{ -\frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} - \sum_{i=1}^{n} \frac{1}{2} \left(\frac{y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}}{\sigma} \right)^{2} \right\} \\ &= \operatorname{argmin}_{\mathbf{w}} \left\{ \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} + \sum_{i=1}^{n} \frac{1}{2} \left(\frac{y_{i} - \mathbf{w}^{T} \mathbf{x}_{i}}{\sigma} \right)^{2} \right\} \\ &= \operatorname{argmin}_{\mathbf{w}} \left\{ \frac{\lambda}{2} \mathbf{w}^{T} \mathbf{w} + \frac{1}{2\sigma^{2}} (\mathbf{y} - \mathbf{X} \mathbf{w})^{T} (\mathbf{y} - \mathbf{X} \mathbf{w}) \right\} \\ &= \left(\mathbf{X}^{T} \mathbf{X} + \frac{\sigma^{2}}{2} \lambda \mathbf{I} \right)^{-1} \mathbf{X}^{T} \mathbf{y} \end{split}$$

Constant term in linear regression

- We may expect linear data that does not go through the origin.
- Statisticians and Neural Net Folks all agree on a simple obvious hack. Can you guess??

The constant term

The trick is to create a fake input " X_0 " that always takes the value 1.

X_1	X_2	Y
2	4	16
3	4	17
5	5	20

X_0	X_1	X_2	Y
1	2	4	16
1	3	4	17
1	5	5	20

Before:

$$Y = w_1 X_1 + w_2 X_2$$
" Poor model "

After:

$$Y = w_1 X_1 + w_2 X_2$$
 $Y = w_0 X_0 + w_1 X_1 + w_2 X_2$

"has a fine constant term "

you Should be able to see the MLE w_0 , w_1 , w_2 by inspection.

Linear regression with varying noise

 Suppose you know the variance of the noise that was added to each data point.

X _i	y _i	σ_i^2
1/2	1/2	4
1	1	1
2	1	1/4
2	3	4
3	2	1/4

Assume
$$y_i \sim N(wx_i, \sigma_i^2)$$

What is the MLE estimate of w ?

MLE estimation with varying noise

 $\operatorname{argmax}_{w} \operatorname{log} P(\mathbf{d}_{1}, \mathbf{d}_{2}, \dots, \mathbf{d}_{n} | w, \sigma_{1}^{2}, \dots, \sigma_{n}^{2})$

$$= \operatorname{argmin}_{w} \sum_{i=1}^{n} \frac{(y_i - wx_i)^2}{\sigma_i^2}$$

$$\rightarrow w = \frac{\sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}}$$

Nonlinear regression

Suppose you know that y is related to a function of x in such a way that the predicted values have a non-linear dependence on w, e.g. :

Assume
$$y_i \sim N(\sqrt{w + x_i}, \sigma^2)$$

What is the MLE estimate of *w*?

Nonlinear regression - cont'd

 $\operatorname{argmax}_{w} log P(\mathbf{d}_{1}, \mathbf{d}_{2}, ..., \mathbf{d}_{n} | w, \sigma_{1}^{2}, ..., \sigma_{n}^{2})$

$$= \operatorname{argmin}_{w} \sum_{i=1}^{n} \frac{(y_{i} - \sqrt{w + x_{i}})^{2}}{\sigma_{i}^{2}}$$

$$\rightarrow w \quad such \ that \quad \sum_{i=1}^{n} \frac{y_i - \sqrt{w + x_i}}{\sigma_i^2 \sqrt{w + x_i}} = 0$$

Nonlinear regression - cont'd

- Common (but not only) approach:
- Numerical Solutions:
 - Line Search
 - Simulated Annealing
 - Gradient Descent
 - Conjugate Gradient
 - Levenberg Marquart
 - Newton's Method
 - Also, special purpose statistical-optimization-specific tricks such as E.M.

Polynomial regression

So far we've mainly been dealing with linear regression

Quadratic regression

It's trivial to do linear fits of fixed nonlinear basis functions.

Quadratic regression - cont'd

Each component of a z vector is called a term.

Each column of the Z matrix is called a term column

How many terms in a quadratic regression with *m* inputs?

- •1 constant term
- •m linear terms
- •(m+1)-choose-2 = m(m+1)/2 quadratic terms (m+2)-choose-2 terms in total = $O(m^2)$

Note that solving $\beta = (\mathbf{Z}^T \mathbf{Z})^{-1} (\mathbf{Z}^T \mathbf{y})$ is thus $O(m^6)$

Qth-degree polynomial regression

