UNIVERSITA' DEGLI STUDI DI BARI «ALDO MORO»

DIPARTIMENTO DI INFORMATICA

Corso di laurea in «informatica e tecnologie per la produzione del software»

Tesi di laurea

PREDIZIONE DELLA RADIAZIONE SOLARE ATTRAVERSO ALGORITMI DI MACHINE LEARNING

Relatore: Donato Impedovo Laureando: Simone Sorrenti

ANNO ACCADEMICO: 2017-2018

INTRODUZIONE

- Predizione dell'indice della radiazione solare per diversi orizzonti temporali:
 - 1. Orario
 - 2. Giornaliero
 - 3. Mensile
- Equazione di Penman-Monteith per determinare l'evapotraspirazione potenziale:

$$ET_0 = \frac{0,408 \,\Delta \,(Rn - G) + \gamma \,\left(\frac{900}{T_k}\right) U_2(e_a - e_d)}{\Delta + \gamma \,(1 + 0,34 \,U_2)}$$

Dove:

ETo = evapotraspirazione di riferimento (mm d ⁻¹)

 Δ = tensione di vapore saturo in funzione della temperatura (kPa °C⁻¹)

 $R_n = \text{radiazione netta (MJ m}^{-2} \text{ d}^{-1})$

 T_k = temperatura assoluta media a 2 m dal suolo (°K)

 U_2 = velocità del vento a 2 m dal suolo (m s⁻¹)

G = flusso di calore dal suolo (MJ m⁻² d⁻¹)

STATO DELL'ARTE

Algoritmi di predizione per la radiazione solare maggiormente utilizzati

Accuratezze delle predizioni della radiazione solare

Frequenza d'uso dei parametri meteorologici per la predizione della radiazione solare

METODI E METRICHE

- Per addestrare i modelli predittivi sono stati forniti in input:
 - ✓ minimo un parametro
 - ✓ massimo 4 parametri
 dei primi 4 parametri più rilevanti secondo
 gli algoritmi di Feature Selection

• Algoritmi di Feature Selection utilizzati

Pearson Correlation Recursive Feature Elimination con SVM

Random Forest

Metrica di errore usata

 $RMSE(Root\ Mean\ Square\ Error) =$

 $\frac{\sum_{i=1}^{N} (Predicted_i - Actual_i)^2}{N}$

DATA SET

- Data set fornito dall'azienda SysMan:
 - ✓ Rilevazioni dei parametri meteorologici: orarie
 - ✓ Luogo: stazione meteorologica di Molfetta (id=186)
 - ✓ Periodo: 1 luglio 2017 28 Febbraio 2018
- Data set suddiviso in Training set e Testing set:
 - 1. ~70% Training set e ~30% Testing set
 - 2. ~80% Training set e ~20% Testing set

Orizzonte	~70% Training set	~80% Training set	~30% Testing set	~20% Testing set
Orario	1 Luglio 2017 – 17	1 Luglio 2017 – 10	18 Dicembre 2017 – 28	11 Gennaio 2018 – 28
Giornaliero	Dicembre 2017	Gennaio 2018	Febbraio 2018	Febbraio 2018
Mensile	Luglio 2017-Dicembre 2017		Gennaio 2018 – Febbraio 2018	

RISULTATI SPERIMENTALI: ORIZZONTE ORARIO

RANKING	PEARSON CORRELATION	RECURSIVE FEATURE ELIMINATION CON SVM	RANDOM FOREST
1	temperatura minima		
2	temperatura media	ore di sole	orario orario
3	temperatura massima	temperatura massima	velocità del vento
4	umidità	temperatura media	<mark>ore di sole</mark>
5	velocità del vento	differenza di temperatura	giorno dell'anno
6	ore di sole	temperatura minima	pressione
7	orario	precipitazioni	umidità
8	giorno dell'anno	anno	temperatura massima
9	anno	orario	differenza di temperatura
10	differenza di temperatura	umidità	temperatura media
11	precipitazioni	pressione	precipitazioni
12	pressione	giorno dell'anno	anno

ACCURATEZZA DELLE PREDIZIONI (RMSE)					
FEATURE SELECTION PARAMETRI IN INPUT		MLP	SVM	LSTM	
	Tmin	0.456	0.522	0.557	
	Tmin + Tmed	0.446	0.518	0.574	
Pearson Correlation	Tmin + Tmed + Tmax	0.441	0.517	0.574	
	Tmin + Tmed + Tmax + RH_med	0.392	0.475	0.432	
	WS	0.575	0.44	0.437	
Recursive feature	WS + ore_sole	0.459	0.449	0.450	
11000110110110	WS + ore_sole + Tmax	0.426	0.486	0.564	
elimination (SVM)	WS + ore_sole + Tmax + Tmed	0.431	0.489	0.570	
	Tmin	0.456	0.522	0.557	
	Tmin + date_time_hour	0.271	0.508	0.349	
Random Forest	Tmin + date_time_hour + WS	0.265	0.488	0.335	
	Tmin + date_time_hour + WS + ore_sole	<mark>0.243</mark>	0.291	0.313	

- Modello predittivo più accurato: Multi-Layer Perceptron
- Algoritmo di Feature Selection migliore: Random Forest
- I parametri meteorologici che permettono di avere predizioni orarie più accurate sono: la temperatura minima, l'orario della rilevazione, la velocità del vento e le ore di sole

RISULTATI SPERIMENTALI: ORIZZONTE GIORNALIERO

RANKING	PEARSON	RECURSIVE FEATURE	RANDOM FOREST	
MAINING	CORRELATION	ELIMINATION CON SVM	RANDONTOREST	
1	ore di sole	ore di sole	<mark>ore di sole</mark>	
2	temperatura minima	precipitazioni	temperatura massima	
3	temperatura media	velocità del vento	giorno dell'anno	
4	temperatura massima	temperatura minima	<mark>umidità</mark>	
5	umidità	differenza di	differenza di	
3	umuna	temperatura	temperatura	
6	differenza di	temperatura massima	temperatura minima	
0	temperatura			
7	giorno dell'anno	anno	precipitazioni	
8	anno	umidità	pressione	
9	precipitazioni	pressione	temperatura media	
10	velocità del vento	temperatura media	velocità del vento	
11	pressione	giorno dell'anno	anno	

ACCURATEZZA DELLE PREDIZIONI (RMSE)					
FEATURE SELECTION	PARAMETRI IN INPUT	MLP SVM		LSTM	
	ore_sole	0.127	0.131	0.100	
	ore_sole + Tmin	0.103	0.103	0.168	
Pearson Correlation	ore_sole + Tmin + Tmed	0.104	0.0991	0.161	
	ore_sole + Tmin + Tmed + Tmax	0.0941	0.0959	0.170	
	ore_sole	0.127	0.131	0.100	
	ore_sole + rain	0.101	0.107	0.102	
Recursive feature elimination (SVM)	ore_sole + rain + WS	0.100	0.105	0.107	
	ore_sole + rain + WS + Tmin	0.0956	0.102	0.134	
	ore_sole	0.127	0.131	0.100	
	ore_sole + Tmax	0.103	0.101	0.170	
Random Forest	ore_sole + Tmax + giorno dell'anno	0.110	0.153	0.147	
	ore_sole + Tmax + giorno dell'anno+ RH_med	0.0928	0.155	0.117	

- Modello predittivo più accurato: Multi-Layer Perceptron
- Algoritmo di Feature Selection migliore: Random Forest
- I parametri meteorologici che permettono di avere predizioni giornaliere più accurate sono: le ore di sole, la temperatura massima, il giorno dell'anno e l'umidità relativa

RISULTATI SPERIMENTALI: ORIZZONTE MENSILE

RANKING	PEARSON CORRELATION	RECURSIVE FEATURE ELIMINATION CON SVM	RANDOM FOREST
1	ore di sole	umidità	temperatura minima
2	differenza di temperatura	temperatura massima	temperatura massima
3	temperatura massima	temperatura media	<mark>umidità</mark>
4	temperatura media	temperatura minima	differenza di temperatura
5	temperatura minima	ore di sole	pressione
6	umidità	pressione	temperatura media
7	precipitazioni	differenza di temperatura	precipitazioni
8	velocità del vento	precipitazioni	ore di sole
9	pressione	velocità del vento	velocità del vento
10	anno	anno	anno

■ MLP ■ SVM ■ LSTM

ACCURATEZZA DELLE PREDIZIONI (RMSE)					
FEATURE SELECTION	TURE SELECTION PARAMETRI IN INPUT		SVM	LSTM	
	ore_sole	0.0655	0.0537	0.0348	
	ore_sole + DiffTemp	0.01	0.0532	0.0506	
FEATURE SELECTION Pearson Correlation	ore_sole + DiffTemp + Tmax	0.0002	0.0002	0.0348	
	ore_sole + DiffTemp + Tmax + Tmin	0.000808	0.00026	0.0408	
	RH_med	0.0224	0.0203	0.0255	
	RH_med + Tmax	0.000899	0.00758	0.0266	
Recursive feature	RH_med + Tmax + Tmed	0.000874	0.00479	0.0273	
elimination (SVM)	RH_med + Tmax + Tmed + Tmin	0.000441	0.00287	0.00832	
	Tmin	0.00304	0.00245	0.0434	
	Tmin + Tmax	0.00724	0.00197	0.0511	
Random forest	Tmin + Tmax + RH_med	0.000469	0.00444	0.0270	
	Tmin + Tmax + RH_med + DiffTemp	0.000929	0.00474	0.0184	

- Modello predittivo più accurato: Multi-Layer Perceptron
- Algoritmo di Feature Selection migliore: Random Forest
- I parametri meteorologici che permettono di avere predizioni giornaliere più accurate sono: la temperatura minima, la temperatura massima, l'umidità relativa e la differenza di temperatura

CONCLUSIONI

Indipendentemente dall'orizzonte temporale:

- Il modello predittivo più accurato: Multi-Layer Perceptron
- L'algoritmo di Feature Selection migliore: Random Forest
- I parametri meteorologici che permettono di avere predizioni più accurate sono: la temperatura minima, la temperatura massima e le ore di sole

SVILUPPI FUTURI

Un possibile futuro sviluppo dello studio potrebbe essere quello di:

- Predire la radiazione solare per le stazioni meteorologiche adiacenti
- Predire la temperatura, la velocità del vento e l'umidità relativa
- Determinare l'evapotraspirazione, mediante l'equazione di Penman-Monteith, utilizzando i valori predetti dei parametri meteorologici richiesti

GRAZIE A TUTTI PER L'ATTENZIONE