

MICROMECHANICAL MODELS OF TRANSVERSE CRACKING IN ULTRA-THIN FIBER-REINFORCED COMPOSITE LAMINATES

L. Di Stasio^{1,2}, Z. Ayadi¹, J. Varna²

¹EEIGM, Université de Lorraine, Nancy, France ²Division of Materials Science, Luleá University of Technology, Luleá, Sweden

Journée de l'Équipe 304, Nancy (FR), July 5, 2017

Outline

- Thin Ply Fiber Reinforced Polymer Laminates
- Mark Company C
- Micromechanical modeling
- Preliminary Results & Perspectives
- Conclusions & Outlook
- Appendices & References

> THIN PLY FRP LAMINATES

Spread Tow Technology: Introduction

- Firstly developed for commercial use in Japan between 1995 and 1998
- In the last decade its use has been spreading, from sports' equipments to mission-critical applications as in the Solar Impulse 2
- Only a few producers wolrdwide: NTPT (USA-CH), Oxeon (SE),
 Chomarat (FR), Hexcel (USA), Technomax (JP)

(a) By North Thin Ply Technology.

(b) By TeXtreme.

Spread Tow Technology: Foundations

Conclusions Appendices & References

Visual Definition of Transverse Cracking

(d) By Prof. Dr. E. K. Gamstedt, KTH, SE.

For a visual definition of intralaminar transverse cracking.

The Thin Ply Effect

Measurements of in-situ transverse strength from D. L. Flaggs & M. H. Kural, 1982 [1].

n Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References

hin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References

Objectives & Approach

Objectives

- Investigate the influence of volume fraction, thin ply thickness and bounding plies' thicknesses on crack initiation
- To infere a relationship like

$$\textit{G}_{*\textit{c}} = \textit{G}_{*\textit{c}}\left(\theta_{\textit{debond}}, \Delta\theta_{\textit{debond}}, \textit{E}_{(\cdot\cdot)}, \nu_{(\cdot\cdot)}, \textit{G}_{()}, \textit{VF}_{\textit{f}}, \textit{t}_{\textit{ply}}, \frac{t_{\textit{ply}}}{t_{\textit{bounding plies}}}\right)$$

Approach

- Design and categorization of different Representative Volume Elements (RVEs)
- Automated generation of RVEs geometry and FEM model
- Finite Element Simulation (in Abagus)

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_c Numerical Evaluation

MICROMECHANICAL MODELING

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_c Numerical Evaluation

From macro to micro

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_C Numerical Evaluation

Representative Volume Elements (RVEs)

- ✓ 2D space
- ✓ Linear elastic materials
- ✓ Displacement control
- \checkmark Dirichlet-type boundary conditions
- ✓ Linear elastic fracture mechanics
- ✓ Contact interaction

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_c Numerical Evaluation

Mesh Design and Generation

Why a good mesh is fundamental

- 1. Geometric discretization has a strong effect on non-linear FEM simulations
- 2. Damage is a process that implies changes in geometry, i.e. generation of surfaces and domain splitting
- 3. Fracture mechanics quantities depends on the local mesh topology and refinement

4-step procedure for mesh generation

- 1. The boundary is generated patching analytical parameterizations
- 2. The boundary is split into a set of 4 corners (c_i) and 4 edges (e_i)
- 3. Interior nodes are created applying transfinite interpolation using multi-dimensional linear Lagrangian interpolants

$$P_1(x, p_j) = \sum_{i=1}^n p_i \prod_{k=1}^n \frac{x - x_k}{x_j - x_k} \quad P_2(x, y, p_j, q_j) = P_1(x, p_j) \otimes P_1(y, q_j)$$

$$r(\xi, \eta) = P_1(\xi, e_2, e_4) + P_1(\eta, e_1, e_3) - P_2(\xi, \eta, c_1, c_2, c_3, c_4)$$

4. The mesh is smoothed applying elliptic mesh generation

$$g^{11}\underline{r}_{\xi\xi} + 2g^{12}\underline{r}_{\xi\eta} + g^{22}\underline{r}_{\eta\eta} = 0$$

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_n Numerical Evaluation

Angular discretization

Angular discretization at fiber/matrix interface: $\delta = \frac{360^{\circ}}{4N_{\circ}}$.

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_n Numerical Evaluation

Virtual Crack Closure Technique (VCCT)

$$G_I = \frac{Z_C \Delta w_C}{2B\Delta a}$$
 $G_{II} = \frac{X_C \Delta u_C}{2B\Delta a}$ \iff In-house routine and Abaqus

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References RVEs' Design Mesh Design G_c Numerical Evaluation

J-integral evaluation

$$J_{i} = \lim_{\varepsilon \to 0} \int_{\Gamma} \left(W\left(\Gamma\right) n_{i} - n_{j} \sigma_{jk} \frac{\partial u_{k}\left(\Gamma, x_{i}\right)}{\partial x_{i}} \right) d\Gamma \Longleftrightarrow \text{*CONTOUR INTEGRAL in Abaqus}$$

$$\sigma_0$$
 for $\mathit{Vf_f} = 0.001$, $\frac{\mathit{L}}{\mathit{B_t}} \sim 28$ and $\delta = 0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black $\sigma_0 = \frac{E}{1-v^2}\varepsilon$.

$$G_0$$
 for $Vf_f=0.001$, $\frac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black G_0 calculated assuming $\sigma_0 = \frac{E}{1-\epsilon} \varepsilon$.

$$\sigma_0$$
 for $Vf_f=0.000079$, $\frac{L}{B_f}\sim 100$ and $\delta=0.4^\circ$

In red small strain FEM, in black $\sigma_0 = \frac{E}{1-\nu^2} \varepsilon$.

$$G_0$$
 for $Vf_f=0.000079$, $\frac{L}{R_f}\sim 100$ and $\delta=0.4^\circ$

In red small strain FEM, in black G_0 calculated assuming $\sigma_0 = \frac{E}{1-\nu^2}\varepsilon$.

$$\frac{G_{(\cdot \cdot \cdot)}}{G_0}$$
 for $V_f = 0.001$, $\frac{L}{B_t} \sim 28$ and $\delta = 0.4^\circ$

In red small strain FEM, in green finite strain FEM, in black BEM results.

 $\frac{G_{(\cdot \cdot \cdot)}}{G_0}$ for $V_f=0.001$, $\frac{L}{B_f}\sim 28$ and $\delta=0.4^\circ$, small strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in black BEM results.

$$\frac{G_{(\cdot \cdot \cdot)}}{G_0}$$
 for $V_f=0.001$, $\frac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$, small strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in green evaluation with in-house VCCT routine, in black BEM results.

$$\frac{G_{(\cdot \cdot \cdot)}}{G_0}$$
 for $V_f=0.001$, $\frac{L}{B_f}\sim 28$ and $\delta=0.4^\circ$, finite strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in black BEM results.

$$\frac{G_{(\cdot,\cdot)}}{G_0}$$
 for $V_f=0.001$, $\frac{L}{R_f}\sim 28$ and $\delta=0.4^\circ$, finite strain formulation

Fading from blue to red J-Integrals evaluated at contours at increasing distance from the crack tip, in green evaluation with in-house VCCT routine, in black BEM results.

nin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References

Conclusions & Outlook

Conclusions

- 2D micromechanical models have been developed to investigate crack initiation in thin ply laminates
- A numerical procedure has been devised and implemented to automatize the creation of FEM models
- Analyses for $VF_f \rightarrow 0$ (matrix dominated RVE) conducted to validate the model with respect to previous literature

Outlook

- Investigate the dependence on VF_f , t_{ply} , $\frac{t_{ply}}{t_{bounding plies}}$ and different material systems
- Study numerical performances with respect to model's parameters
- Repeat for different RVEs and compare

Appendices

Thin Ply FRP Laminates Objectives & Approach

Micromechanical modeling

Results Conclusions Appendices & References

References

▲ APPENDICES & REFERENCES

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References

Spread Tow Technology: Implications

- Strong reduction in ply's thickness and weight
- Reduction in laminate's thickness and weight
- Higher fiber volume fraction and more homogeneous fiber distribution
- Ply thickness to fiber diameter ratio decreases of at least 1 order of magnitude, from > 100 to ≤ 10
- Increased load at damage onset and increased ultimate strength, in particular for transverse cracking

Thin Ply FRP Laminates **Appendices**

Objectives & Approach Micromechanical modeling

Results

Conclusions Appendices & References

RVEs: Variations on a Theme

Appendices

References

Micromechanical modeling

Results

Appendices & References

RVEs: First Variation on a Theme

Objectives & Approach

Isolated RVE with zero vertical displacement BC.

Thin Ply FRP Laminates

Appendices References

Objectives & Approach Micromechanical modeling

Results

Conclusions Appendices & References

RVEs: Second Variation on a Theme

Isolated RVE with homogeneous displacement BC.

Appendices

Thin Ply FRP Laminates

References

RVEs: Third Variation on a Theme

Objectives & Approach

Bounded RVE.

Thin Ply FRP Laminates

Appendices References

Objectives & Approach Micromechanical modeling

Results

Conclusions Appendices & References

Topological transformation

Appendices References

Thin Ply FRP Laminates Objectives & Approach

romechanical modeling

Results

Conclusions Appendi

Appendices & References

Mesh parameters

$$\begin{split} E &= (-f_1 \cdot R_f, +f_1 \cdot R_f) \\ & F &= f_2 R_f (-\cos 45^\circ, \sin 45^\circ) \\ \\ G &= R_f (-\cos 45^\circ, \sin 45^\circ) \\ \\ H &= (R_f + f_3 (l - R_f)) (-\cos 45^\circ, \sin 45^\circ) \end{split}$$

 $E \equiv (-f_1 \cdot R_f, +f_1 \cdot R_f)$ $F \equiv f_1 R_f \ (-\cos 45^\circ, \sin 45^\circ)$ $G \equiv R_f \ (-\cos 45^\circ, \sin 45^\circ)$

 $H\equiv (R_f+f_h(l-R_f))\,(-\cos 45^\circ,\sin 45^\circ)$

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References Appendices References

Finite Element Model in Abaqus

Method

ABAQUS/STD static analysis + VCCT + J-integral.

Type

Static, i.e. no inertial effects. Relaxation until equilibrium.

Elements

CPE4/CPE8

Interface

Tied surface constraint & contact mechanics

Input variables

 R_f , V_f , material properties, interface properties.

Control variables

 θ , $\Delta\theta$, $\bar{\varepsilon}_X$.

Output variables

Stress field, crack tip stress, stress intensity factors, energy release rates, a.

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References Appendices References

Evaluation of G_0

$$G_0 = \pi R_f \sigma_0^2 \frac{1 + k_m}{8G_m} \tag{1}$$

$$k_m = 3 - 4\nu_m \tag{2}$$

$$\sigma_0^{undamaged} = \frac{E_m}{1 - \nu_m^2} \varepsilon_{xx} \tag{3}$$

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References Appendices References

References

Parvizi A., Bailey J.E; On multiple transverse cracking in glass fibre epoxy cross-ply laminates. Journal of Materials Science, 1978; 13:2131-2136.

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References
Appendices References

References

Luis Pablo Canal, Carlos González, Javier Segurado, Javier LLorca; Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling. Composites Science and Technology, 2012; 72(11):1223-1232.

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References
Appendices References

References

- Stephen W. Tsai; *Thin ply composites*. JEC Magazine 18, 2005.
- Znedek P. Bazant; Size Effect Theory and its Application to Fracture of Fiber Composites and Sandwich Plates. in Continuum Damage Mechanics of Materials and Structures, eds. O. Allix and F. Hild, 2002.
- Robin Amacher, Wayne Smith, Clemens Dransfeld, John Botsis, Joël Cugnoni; *Thin Ply: from Size-Effect Characterization to Real Life Design* CAMX 2014, 2014
- Ralf Cuntze; The World-Wide-Failure-Exercises -I and II for UD-materials.

Thin Ply FRP Laminates Objectives & Approach Micromechanical modeling Results Conclusions Appendices & References
Appendices References

References

Pedro P. Camanho, Carlos G. Dávila, Silvestre T. Pinho, Lorenzo Iannucci, Paul Robinson; *Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear.* Composites Part A: Applied Science and Manufacturing, vol. 37, n. 2, 2006.

References

- J. A. Nairn; The Initiation and Growth of Delaminations Induced by Matrix Microcracks in Laminated Composites. International Journal of Fracture, vol. 57, 1992.
- Joel Cugnoni, Robin Amacher, John Botsis; *Thin ply technology advantages. An overview of the TPT-TECA project.* 2014.

Objectives & Approach Appendices & References Results References

References

Donald L. Flaggs, Murat H. Kural; Experimental Determination of the In Situ Transverse Lamina Strength in Graphite/Epoxy Laminates. Journal of Composite Materials, vol. 16, n. 2, 1982.

