# Lecture 5 – Formal grammars, regular and context-free grammars

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2025

<sup>\*</sup> Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

# Recap of Lecture 4

- regular expressions
- Kleene's theorem (two variants)
- constructions: RE to  $\epsilon$ -NFA, DFA to RE
- state elimination algorithm
- string substitution, homomorphism, inverse homomorphism
- decision properties

CHAPTER 2: GRAMMARS

# 2.1 Formal grammars

# Palindromes are not regular

palindrome:  $w = w^R$ , e.g. racecar, step\_on\_no\_pets

## **Example**

The language  $L_{\mathrm{pal}} = \{ w \in \{0,1\}^* \mid w = w^R \}$  is not regular.

(A standard Pumping lemma argument using  $w = 0^n 10^n$ .)

How to represent  $L_{\rm pal}$ ? We can use a (context-free) grammar,  $G = (\{S\}, \{0,1\}, \mathcal{P}, S)$  with the following set of production rules:

$$\mathcal{P} = \{S 
ightarrow \epsilon, \ S 
ightarrow 0, \ S 
ightarrow 1, \ S 
ightarrow 050, \ S 
ightarrow 151\}$$

For brevity, we also write  $\mathcal{P} = \{S \rightarrow \epsilon \mid 0 \mid 1 \mid 0S0 \mid 1S1\}$ .

# Formal grammar: the definition

A formal (generative) grammar: G = (V, T, P, S) where

- V is a finite nonempty set of nonterminals (variables)
- T is a finite set of terminal symbols (terminals),  $V \cap T = \emptyset$
- $S \in V$  is the start symbol
- $\mathcal{P}$  is a finite set of production rules of the form  $\alpha \to \beta$  where
  - $\alpha \in (V \cup T)^+ \setminus T^+$ , the head (must contain some variable!)
  - $\beta \in (V \cup T)^*$ , the body

A grammar is context-free (a CFG) if the head is a single variable, i.e., the rules are of the form  $A \to \beta$  for  $A \in V$  and  $\beta \in (V \cup T)^*$ .

The production rules thus represent a recursive definition of the language, starting from the start symbol (see the example).

# Derivation, the language of a grammar

Let G = (V, T, P, S) be a grammar.

- $\gamma$  one-step derives  $\delta$  (write  $\gamma \Rightarrow_{\mathcal{G}} \delta$  or just  $\gamma \Rightarrow \delta$ ) if  $\gamma = \eta \alpha \nu$  and  $\delta = \eta \beta \nu$  for some  $\alpha \to \beta \in \mathcal{P}$  and  $\eta, \nu \in (V \cup T)^*$
- $\gamma$  derives  $\delta$  (write  $\gamma \Rightarrow_G^* \delta$  or just  $\gamma \Rightarrow^* \delta$ ) if there are  $\beta_1, \ldots, \beta_n \in (V \cup T)^*$  s.t.  $\gamma = \beta_1 \Rightarrow \beta_2 \Rightarrow \cdots \Rightarrow \beta_n = \delta$  (Note that always  $\gamma \Rightarrow^* \gamma$ .)
- the sequence  $\beta_1, \ldots, \beta_n$  is a derivation of  $\delta$  from  $\gamma$ , it is minimal if  $\beta_i \neq \beta_j$  for  $i \neq j$
- a sentential form is any  $\delta \in (V \cup T)^*$  such that  $S \Rightarrow_G^* \delta$

The language generated by G, L(G) consists of words over the terminals derivable from the start symbol:

$$L(G) = \{ \omega \in T^* \mid S \Rightarrow_G^* \omega \}$$

(Similarly, for any  $A \in V$  define  $L(A) = \{\omega \in T^* \mid A \Rightarrow_G^* \omega\}$ .)

# 2.2 Chomsky hierarchy

# Chomsky hierarchy (of grammars)

### Restricting the form of production rules:

- Type 0: **general grammars** 
  - $\alpha_1 A \alpha_2 \rightarrow \beta$  where  $A \in V$ ,  $\alpha_1, \alpha_2, \beta \in (V \cup T)^*$
  - recursively enumerable languages  $\mathcal{L}_0$
- Type 1: context-sensitive grammars
  - $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \gamma \alpha_2$ ,  $A \in V$ ,  $\gamma \in (V \cup T)^+$ ,  $\alpha_1, \alpha_2 \in (V \cup T)^*$
  - note: the variable must be rewritten to at least one symbol
  - ullet sometimes we allow  $S 
    ightarrow \epsilon$ , then S cannot appear in any body
  - ullet context-sensitive languages  $\mathcal{L}_1$
- Type 2: context-free grammars
  - $A \rightarrow \beta$  where  $A \in V$ ,  $\beta \in (V \cup T)^*$
  - ullet context-free languages  $\mathcal{L}_2$
- Type 3: right-linear grammars (aka regular grammars)
  - $A \rightarrow \omega B$  or  $A \rightarrow \omega$  where  $A, B \in V, \omega \in T^*$
  - regular languages  $\mathcal{L}_3$

# The classes are ordered by (strict) inclusion

$$\mathcal{L}_0 \supset \mathcal{L}_1 \supset \mathcal{L}_2 \supset \mathcal{L}_3$$

- context-sensitive languages are recursively enumerable: the head of a CSG contains a variable
- context-free languages are context-sensitive: the context  $\alpha_1, \alpha_2$  is empty; we can eliminate  $\epsilon$ -productions  $A \to \epsilon$
- regular languages are context-free: body can have any form
- strict inclusion: we will give examples later

# 2.3 Regular grammars

# **Right-linear grammars**

A grammar G is right-linear (regular, type 3), if its production rules are of the form  $A \to \omega B$  or  $A \to \omega$  where  $A, B \in V, \omega \in T^*$ .

(At most one variable in the body, it can only be at the end.)

## **Example**

$$\textit{G} = (\{\textit{S},\textit{A},\textit{B}\},\{\textit{0},\textit{1}\},\mathcal{P},\textit{S})$$
 where

$$\mathcal{P} = \{ S \to 0S \mid 1A \mid \epsilon, A \to 0A \mid 1B, B \to 0B \mid 1S \}$$

A derivation of  $01101 \in L(G)$ :

$$S \Rightarrow 0S \Rightarrow 01A \Rightarrow 011B \Rightarrow 0110B \Rightarrow 01101S \Rightarrow 01101$$

Corresponds to FA: nonterminals are states, generate means read.

#### **Theorem**

A language is regular, iff it is generated by a right-linear grammar.

# Example: binary numbers divisible by 5



# Derivation examples

$$A \Rightarrow 0A \Rightarrow 0$$
  $(n = 0)$   
 $A \Rightarrow 1B \Rightarrow 10C \Rightarrow 101A \Rightarrow 101$   $(n = 5)$   
 $A \Rightarrow 1B \Rightarrow 10C \Rightarrow 101A \Rightarrow 1010A \Rightarrow 1010$   $(n = 10)$   
 $A \Rightarrow 1B \Rightarrow 11D \Rightarrow 111C \Rightarrow 1111A \Rightarrow 1111$   $(n = 15)$ 

# Finite automaton to right-linear grammar

Given a DFA  $A = (Q, \Sigma, \delta, q_0, F)$  define a right-linear grammar  $G = (Q, \Sigma, \mathcal{P}, q_0)$ , i.e. nonterminals are states, with productions:

- $p \rightarrow aq$  for all transitions  $\delta(p, a) = q$
- $p \to \epsilon$  for every final state  $p \in F$

To show that L(A) = L(G):

• For the empty word:

$$\epsilon \in L(A)$$
 iff  $q_0 \in F$  iff  $q_0 \to \epsilon \in \mathcal{P}$  iff  $\epsilon \in L(G)$ 

• For a word  $w = a_1 \dots a_n$ :  $a_1 \dots a_n \in L(A)$  iff there are  $q_0, \dots, q_n \in Q$  s.t.  $\delta(q_i, a_{i+1}) = q_{i+1}$  for i < n and  $q_n \in F$ . This means that  $q_0 \Rightarrow a_1 q_1 \Rightarrow \dots \Rightarrow a_1 \dots a_n q_n \Rightarrow a_1 \dots a_n$  is derivation of  $a_1 \dots a_n$ , which shows that  $a_1 \dots a_n \in L(G)$ .  $\square$ 

(Note: Same construction works for NFA or  $\epsilon$ -NFA.)

# Right linear grammar to finite automaton

Given a right-linear grammar we construct a  $\epsilon$ -NFA.

Encoding productions based on their form:

- $A \rightarrow aB$  are encoded directly as transitions
- $A \rightarrow \epsilon$  ( $\epsilon$ -productions) define accepting states
- $A \rightarrow B$  (unit productions) correspond to  $\epsilon$ -transitions

Productions with more terminals,  $A \rightarrow a_1 \dots a_n B$  or  $A \rightarrow a_1 \dots a_n$ :

- introduce new variables  $Y_1, Y_2, \dots, Y_{n+1}$
- replace with  $A \to a_1 Y_2$ ,  $Y_2 \to a_2 Y_3$ , ...,  $Y_{n-1} \to a_{n-1} Y_n$ , and finally either  $Y_n \to a_n B$  or  $Y_n \to a_n Y_{n+1}$ ,  $Y_{n+1} \to \epsilon$

Similarly,  $A \rightarrow a$  can be rewritten to  $A \rightarrow aY$ ,  $Y \rightarrow \epsilon$ .

(Think of a state diagram but edges labelled with words, subdivide them. For edges pointing nowhere, add a new final state.)

# Standardization of a right-linear grammar

Sometimes we want to get rid of unit productions too, this can be done by taking transitive closure (same as removing  $\epsilon$ -transitions).

We call grammars G and G' equivalent if L(G) = L(G').

#### Lemma

For any right-linear grammar G there exist an equivalent G' which only has productions of the form  $A \to aB$  or  $A \to \epsilon$ .

Formalizing the previous slide, define  $G' = (V', T, \mathcal{P}', S)$  where V' contains the original variables V plus all new variables used for encoding. Productions  $\mathcal{P}'$  are as described.

To remove unit productions  $(A \to B)$ , take the transitive closure  $U(A) = \{B \in V \mid A \Rightarrow^* B\}$ . For every production  $B \to \gamma \in \mathcal{P}$  with  $B \in U(A)$  add the production  $A \to \gamma$  to  $\mathcal{P}'$ .

# Formalizing the construction of an automaton

Given a right-linear grammar, first standardize it:  $G = (V, T, \mathcal{P}, S)$  with productions only of the form  $A \to aB$  or  $A \to \epsilon$ .

Define an NFA  $A=(Q,\Sigma,\delta,S_0,F)$ , where Q=V,  $\Sigma=T$ ,  $S_0=\{S\}$ ,  $F=\{A\mid A\to\epsilon\in\mathcal{P}\}$ , and the transitions are:

$$\delta(A,a) = \{B \mid A \to aB \in \mathcal{P}\} \text{ for } A \in V, a \in T$$

To show that L(G) = L(A): For the empty word,  $\epsilon \in L(G)$  iff  $S \to \epsilon \in \mathcal{P}$  iff  $S \in F$  iff  $\epsilon \in L(A)$ . Otherwise,  $w = a_1 \dots a_n \in L(G)$  iff there is a derivation  $S \Rightarrow a_1 X_1 \Rightarrow \dots \Rightarrow a_1 \dots a_n X_n \Rightarrow a_1 \dots a_n$ .

Equivalently, in A there are states  $X_0, X_1, \ldots, X_n \in Q$  such that  $X_0 = S \in S_0, X_n \in F$  and  $X_{i+1} \in \delta(X_i, a_i)$ . But this means that  $a_1 \ldots a_n \in L(A)$ .

(Note: Easier to leave unit productions in, construct an  $\epsilon$ -NFA:  $\delta(A, \epsilon) = \{B \mid A \rightarrow B \in \mathcal{P}\}.$ )

# Linear grammars an linear languages

### A context-free grammar is

- left-linear if productions are of the form  $A \to B\omega$  or  $A \to \omega$ ,
- linear if productions are of the form  $A \to \omega B \omega'$  or  $A \to \omega$

where  $A, B \in V$  and  $\omega, \omega' \in T^*$ . A language is linear if it is generated by some linear grammar.

- Left-linear grammars generate regular languages. (L is regular iff  $L^R$  is, reversing bodies gives a right-linear grammar.)
- But not every linear language is regular! Example:  $L = \{0^n1^n \mid n \ge 1\}$ , linear rules  $S \to 0S1 \mid 01$
- Observe: productions can be split to left-linear and right-linear
- Not every context-free language is linear, for example  $L = \{w \in \{0,1\}^* \mid |w|_0 = |w|_1\}$ . Context-free grammar later, to prove non-linearity use a version of PL for linear languages.

# 2.4 Context-free grammars

# **Example: simple expressions**

Recall that in a CFG, the head always consists of a single variable.

Consider 
$$G=(\{E,I\},\{+,*,(,),a,b,0,1\},\mathcal{P},E)$$
 where 
$$\mathcal{P}=\{E\to I,$$
 
$$E\to E+E,$$
 
$$E\to E+E,$$
 
$$E\to (E).$$

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1 \}$$

- Rules 1-4 describe expressions *E*.
- Rules 5-10 describe identifiers I, correspond to the regular expression (a + b)(a + b + 0 + 1)\*.

### Parse trees

The tree is the data structure of choice to represent the source program in a compiler, facilitating translation into executable code.

Derivations from CFG naturally correspond to trees. Apply a production → append symbols from body as children of head.





### The definition

A parse tree for a CFG is a labeled ordered tree such that:

- $\bullet$  inner nodes are labeled by variables from V
- the root is labeled by the start symbol S
- leaves have labels from  $V \cup T \cup \{\epsilon\}$
- ullet if a leaf is labeled  $\epsilon$ , it must be the only child of its parent
- if an inner node is labeled A and its children  $X_1, \ldots, X_k$  (ordered left-to-right), then  $A \to X_1, \ldots, X_k \in P$

The yield of a parse tree is the string  $\gamma \in (V \cup T)^*$  obtained by reading the labels on all leaves left-to-right.

Note: yields containing only terminals  $\leftrightsquigarrow$  words from the language

# Leftmost and rightmost derivations

Leftmost derivation  $\Rightarrow_{lm}$ ,  $\Rightarrow_{lm}^*$ : in each step rewrite the leftmost (first) variable; rightmost  $\Rightarrow_{rm}$ ,  $\Rightarrow_{rm}^*$ : rewrite the rightmost (last)

Example: Same productions for each variable but different order

- leftmost:  $E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E \Rightarrow_{lm} a * (E)$   $\Rightarrow_{lm} a * (E + E) \Rightarrow_{lm} a * (I + E) \Rightarrow_{lm} a * (a + E) \Rightarrow_{lm} \Rightarrow_{lm}$  $a * (a + I) \Rightarrow_{lm} a * (a + I0) \Rightarrow_{lm} a * (a + I00) \Rightarrow_{lm} a * (a + b00)$
- rightmost:  $E \Rightarrow_{rm} E * E \Rightarrow_{rm} E * (E) \Rightarrow_{rm} E * (E + E) \Rightarrow_{rm} E * (E + I) \Rightarrow_{rm} E * (E + I0) \Rightarrow_{rm} E * (E + I00) \Rightarrow_{rm} E * (E + b00) \Rightarrow_{rm} E * (I + b00) \Rightarrow_{rm} E * (a + b00) \Rightarrow_{rm} I * (a + b00) \Rightarrow_{rm} a * (a + b00)$

# Derivations and parse trees

#### **Theorem**

Given a context-free grammar G = (V, T, P, S) and  $\gamma \in (V \cup T)^*$ , the following are equivalent:

- (i)  $A \Rightarrow^* \gamma$
- (ii)  $A \Rightarrow_{lm}^* \gamma$
- (iii)  $A \Rightarrow_{rm}^* \gamma$
- (iv) There is a parse tree with root A and yield  $\gamma$ .

**Proof** (ii) $\Rightarrow$ (i) and (iii) $\Rightarrow$ (i) are trivial. We will show (i) $\Rightarrow$ (iv) and (iv) $\Rightarrow$ (ii) [analogously (iv) $\Rightarrow$ (iii)].



# Parse tree to leftmost derivation: an example



- Root:  $E \Rightarrow_{lm} E * E$
- Leftmost child of the root:  $E \Rightarrow_{lm} l \Rightarrow_{lm} a$
- Rightmost child of the root:  $E \Rightarrow_{lm} (E) \Rightarrow_{lm} (E+E) \Rightarrow_{lm} (I+E) \Rightarrow_{lm} (a+E)$  $\Rightarrow_{lm} (a+I) \Rightarrow_{lm} (a+I0) \Rightarrow_{lm} (a+I00) \Rightarrow_{lm} (a+b00)$
- Leftmost integrated to root:  $E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E$
- Full derivation:  $E \Rightarrow_{lm} E * E \Rightarrow_{lm} I * E \Rightarrow_{lm} a * E \Rightarrow_{lm}$   $\Rightarrow_{lm} a * (E) \Rightarrow_{lm} a * (E + E) \Rightarrow_{lm} a * (I + E) \Rightarrow_{lm}$   $\Rightarrow_{lm} a * (a + E) \Rightarrow_{lm} a * (a + I) \Rightarrow_{lm} a * (a + I) \Rightarrow_{lm}$  $\Rightarrow_{lm} a * (a + I) \Rightarrow_{lm} a * (a + I)$

# Parse tree to leftmost derivation: the proof

**Observe:** If  $\beta_1 \Rightarrow \beta_2 \Rightarrow \cdots \Rightarrow \beta_n$  is a derivation, then for any  $\alpha, \alpha' \in (V \cup T)^*$ ,  $\alpha\beta_1\alpha' \Rightarrow \alpha\beta_2\alpha' \Rightarrow \cdots \Rightarrow \alpha\beta_n\alpha'$  is a derivation.

Suppose we have a parse tree with root A and yield  $\gamma$ . Induction on the depth of the tree.

**Base:** depth 1, root A with children that read  $\gamma$ 

 $A \rightarrow \gamma$  is a production, thus  $A \Rightarrow_{\mathit{Im}} \gamma$  is a one-step derivation

**Induction step:** depth n > 1, root A with children  $X_1, X_2, \dots, X_k$ 

- If  $X_i$  is a terminal, define  $\gamma_i = X_i$
- If  $X_i$  is a variable, then by induction  $X_i \Rightarrow_{lm}^* \gamma_i$ .

To construct the leftmost derivation, show by induction on  $i=1,\ldots,k$  that  $A\Rightarrow_{lm}^*\gamma_1\gamma_2\ldots\gamma_iX_{i+1}X_{i+2}\ldots X_k$ 

Finally, when i = k, the result is a leftmost derivation of  $\gamma$  from A.

# The induction within the induction

Assuming that  $A \Rightarrow_{lm}^* \gamma_1 \gamma_2 \dots \gamma_{i-1} X_i X_{i+1} X_{i+2} \dots X_k$ , show

$$A \Rightarrow_{lm}^* \gamma_1 \gamma_2 \dots \gamma_i X_{i+1} X_{i+2} \dots X_k$$

- If  $X_i$  is a terminal, do nothing, just increment i.
- If  $X_i$  is a variable, rewrite the derivation

$$X_i \Rightarrow_{lm} \alpha_1 \Rightarrow_{lm} \alpha_2 \cdots \Rightarrow_{lm} \gamma_i$$

to the following:

$$\gamma_{1}\gamma_{2}\dots\gamma_{i-1}X_{i}X_{i+1}X_{i+2}\dots X_{k} \Rightarrow_{lm}$$

$$\gamma_{1}\gamma_{2}\dots\gamma_{i-1}\alpha_{1}X_{i+1}X_{i+2}\dots X_{k} \Rightarrow_{lm}$$

$$\vdots$$

$$\Rightarrow_{lm}\gamma_{1}\gamma_{2}\dots\gamma_{i-1}\gamma_{i}X_{i+1}X_{i+2}\dots X_{k}$$

(To construct a rightmost derivation, go from i = k down to 1.)

# Derivation to parse tree

Suppose we have a derivation  $A = \beta_1 \Rightarrow \beta_2 \Rightarrow \cdots \Rightarrow \beta_n = \gamma$ .

We construct a parse tree with root A and yield  $\gamma$  by induction on the number of steps n in the derivation.

**Base** (n = 1): A is a single-vertex parse tree

**Induction step** (n > 1): We have  $A \Rightarrow^* \beta_{n-1} \Rightarrow \beta_n$ .

Suppose  $\beta_{n-1} = \alpha C \alpha'$  and  $\beta_n = \alpha \delta \alpha'$  for a production  $C \to \delta$ .

By induction, we have a parse tree with root A and yield  $\alpha C \alpha'$ . Find the leaf corresponding to C and append to it new leaves labelled by the symbols from  $\delta$ .

This shows that (i) $\Rightarrow$ (iv), and thus the theorem is proved.

# 2.5 Ambiguity in grammars

# Ambiguity: an example



- Two different parse trees for the same expression.
- Important difference: 1 + (2 \* 3) = 7 but (1 + 2) \* 3 = 9
- Imagine source file interpretable as two different programs.
- This grammar can be modified to remove ambiguity.
- Different derivations with the same parse tree are not an issue (e.g. left-most and right-most).

"The chef made her duck."

# **Amiguous context-free grammars**

A context-free grammar G is ambiguous if for some  $\omega \in L(G)$  there exist two different parse trees with root S and yield  $\omega$ . Otherwise the grammar is unambiguous.

**Example:** our grammar for simple expressions is ambiguous,  $\omega = a + a * a \in L(G)$  is yielded by both of the following parse trees:



# Inherent ambiguity of context-free languages

A context-free language L is unambiguous if there exists an unambiguous grammar generating it, and L is inherently ambiguous otherwise (i.e., if every CFG for L is ambiguous).

**Example:**  $L = \{a^n b^n c^k d^k \mid n, k \ge 1\} \cup \{a^n b^k c^k d^n \mid n, k \ge 1\}$  is inherently ambiguous. Here is an ambiguous grammar with two parse trees for  $\omega = aabbccdd$ .

$$S \rightarrow AB \mid C$$
  
 $A \rightarrow aAb \mid ab$   
 $B \rightarrow cBd \mid cd$   
 $C \rightarrow aCd \mid aDd$   
 $D \rightarrow bDc \mid bc$ 



Why inherently? Idea: any grammar will generate at least some  $a^nb^nc^nd^n$  in the two different ways.



# Removing ambiguity

- There is no algorithm deciding if a given CFG is ambiguous.
- There exist inherently ambiguous context-free languages (see the example above).
- There are certain techniques for removing ambiguity.

## Different causes for ambiguity:

- The precedence of operators is not respected.
- A sequence of identical operators associates from left or right.
- E.g. for rules  $S \to \text{if then } S \text{ else } S \mid \text{if then } S \mid \epsilon$ , the word if then if then else has two meanings: if then (if then else) or if then (if then) else

#### Possible solutions:

- syntax error (Algol 60)
- else belongs to the closer if (rules ordered by preference)
- parentheses, begin—end, or indentation (Python)

# **Enforcing precedence**

Introduce a new variable for each level of 'binding strength': '

- a factor is an expression that cannot be broken by any operator: identifiers, parenthesized expressions
- a term is an expression not broken by +
- an expression can be broken by either \* or +.

# An unambiguous grammar:

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$
  
 $F \rightarrow I \mid (E)$   
 $T \rightarrow F \mid T * F$   
 $E \rightarrow T \mid E + T$ 

right: the only parse tree for a + a \* a



# **Unambiguity and compilers**

Compiling an expression (a stack for intermediate results + two registers):

- (1)  $E \rightarrow E + T$  ... pop r1; pop r2; add r1,r2; push r2
- (2)  $E \rightarrow T$
- (3)  $T \rightarrow T * F$  ... pop r1; pop r2; mul r1,r2; push r2
- (4)  $T \rightarrow F$
- (5)  $F \rightarrow (E)$
- (6)  $F \rightarrow a$  ... push a
  - 'a+a\*a' is obtained by applying rules 1,2,4,6,3,4,6,6
  - reverse the sequence and choose only code-generating rules: 6,6,3,6,1
  - now replace the rules with the corresponding code:
     push a; push a; pop r1; pop r2; mul r1,r2; push
     r2; push a; pop r1; pop r2; add r1,r2; push r2

# **Summary of Lecture 5**

- Grammars: general, context-sensitive, context-free, right-linear (regular) – Chomsky hierarchy
- The language of a grammar, derivation
- Right-linear grammars correspond to FA (and so do left/linear)
- Linear grammars are stronger
- Context-free grammars: parse tree and its yield
- (un)ambiguous grammars, inherently ambiguous languages