

Universidade Federal Fluminense – UFF Instituto de Humanidades e Saúde – RHS Departamento de Ciências da Natureza – RCN Campus de Rio das Ostras – CURO

1⁹ Prova de GA 18/05/2022 - 2022-1 Turma K1

Instruções

- A interpretação das questões faz parte dos critérios de avaliação.
- Responda cada questão de maneira clara e organizada.
- Resultados sem justificativas não serão considerados.
- Uma questão com mais de uma solução terá nota zero.
- Os celulares devem ser mantidos desligados
- Resposta final correta com solução incorreta terá nota zero.
- Não é permitido o compartilhamento de material.
- Não é permitido sair da sala (tomar água, ir ao banheiro e etc) sem entregar definitivamente a avaliação.
- Aos alunos envolvidos em algum tipo de fraude, mesmo que identificada posteriormente, será atribuído nota zero na prova.

Quest.	Pts	N
1	1	
2	2,5	
3	3	
4	3,5	
Total:	10	

Nome: GABARITO

- 1. [1 pt] Responda a cada um dos itens abaixo.
 - (a) Qual é o nome do objeto geométrico representado pela equação x+2y+5=0 no espaço? Qual é a relação entre este objeto e o vetor $\vec{u}=(1,2,0)$?
 - (b) Escreva a equação da esfera de centro em C = (1, -2, 7) e raio $\sqrt{3}$.
 - (c) Obtenha um vetor ortogonal a $\vec{u}=(1,0,-3)$ e $\vec{v}=(-3,2,1)$ simultaneamente.
 - (d) Sejam \vec{u} e \vec{v} dois vetores não nulos. Se $\vec{u} \cdot \vec{v} = 0$, o que podemos concluir?
 - (e) Dados \vec{u} e \vec{v} dois vetores não nulos. O que representa geometricamente $\|\vec{u} \times \vec{v}\|$?
- 2. [2,5 pts] Sejam A=(1,0,5), B=(-2,1,1), C=(-3,1,0) e D=(4,-2,1) vértices de um tetraedro. Calcule o volume e a altura relativa ao vértice A deste tetraedro.
- 3. [3 pts] Encontre o raio e o centro da circunferência que é a interseção do plano $\pi: -x+2y-2=0$ com a esfera $(x-1)^2+y^2+(z+3)^2=9$.
- 4. [3,5 pts] Uma quadrado ABCD tem a diagonal BD contida na reta r: x = y z 1 = -z. Sendo A = (0,0,1) um dos seus vértices, determine os outros três.

Auestail:

a) D'objeto geometrico representado por x+2y+5=0 e' um plamo. 0 reta $\vec{u}=(1,2,0)$ e' ortogonal ao plano.

b)
$$(x-1)^2 + (y+2)^2 + (3-7)^2 = 3$$
.

c)
$$\vec{u} = (1,0,-3)$$
 =) $\vec{u} \times \vec{v} = (66,8,2) \perp \vec{v}$
 $\vec{v} = (-3,2,1)$
Salternoo que $\vec{u} \times \vec{v} = \vec{v} = (66,8,2) \perp \vec{v}$

Dedemos koncluir que û e à rão ortogonais.

e) Il û x à Il representa a área do paralelogramos
que tem como lados adjacentes arepresentants
de û e à icom a mema origen.

austas 2:

$$\vec{BD} = (6, -3, 0)$$

Volume do Tetraedro:

V=1/[
$$\vec{B}\vec{A}$$
, $\vec{B}\vec{C}$, $\vec{B}\vec{D}$] = $\left[3 - 1 \ 4\right]$ = $\frac{9}{6}$ = $\frac{3}{2}$

Area da base BDC:

$$\vec{BC} \times \vec{BD} = (-3, -6, 3) = |A_b| = |BC \times BD| = BVG.$$

$$=) A_b = \| \vec{B} \vec{c} \times \vec{B} \vec{D} \| = \sqrt{\frac{9+36+9}{2}} = 3\sqrt{2+4} = 3\sqrt{6}.$$

lom vivo, V= 3 As. h., don', do malely ig.

$$1h = \frac{3V}{Ab} = \frac{9}{3V} = \frac{9}{3V} = \frac{3V}{3V} = \frac{3V}{3V} = \frac{3V}{2}$$

5 abentos que C = (1,0,-3) e'o centro da espera.

Determinando o raio do circulo

Zela figura, podemos ser que o sais do cerento o dado por:

$$n^2 + d(c,c)^2 \pm 9$$

Noto que $d(c, c_0) = d(c, \pi), dan',$

$$d(c,\pi) = \frac{|-1-2|}{\sqrt{1+4}} = \frac{3}{\sqrt{5}} \cdot \text{lom now},$$

$$x^{2} + 9 = 9 \Rightarrow x^{2} = 9 - \frac{3}{5} = \frac{36}{5}$$

$$\Rightarrow x = \frac{6}{5} = \frac{6}{5}$$

-4-

Determinance centro Co:

Deentro do cinculo Co pertence à reta o que passa por C e i normal ao plano. Nels que

 $\Delta: X = (3,0,-3) + t(-2,2,0)$ = (1-t,2t,-3).

lom viso, $C_0 = (1-t, 2t, -3)$ para algem $t \in \mathbb{R}$ lomo $C_0 \in \mathcal{T}$, termos que

$$-(1-t)+4t-2=0=)-1+t+4t-2=0$$

$$C_{0} = \left(1 - \frac{2}{5}, \frac{6}{5}, -3\right) = \left(\frac{2}{5}, \frac{6}{5}, -3\right).$$

Questas 4:

Questão 4:

Seja da medida da diagonal.

Entas
$$\frac{d}{d} = \text{dist}(A, \pi) = \|AP\|$$

Parequiação de π termos:

 $(A, \pi) = \|AP\|$
 $(A, \pi) = \|AP\|$

fozendo 3 = t, temos i

$$\pi: \begin{cases} \mathcal{R} = -t \\ \mathcal{J} = 1 \\ \mathcal{J} = t \end{cases}, den', R = (0,1,0) \in \pi e$$

$$\vec{\chi} = (-1,0,1) / \pi.$$

lom NNO) $\overrightarrow{AP} = (0,1,-1)$ e

$$\mathcal{L}(A, \Pi) = \frac{\|\overrightarrow{AP} \times \overrightarrow{\Pi}\|}{\|\overrightarrow{\Pi}\|} = \frac{\|(\Delta, 1, 1)\|}{\|\nabla Z\|} = \frac{\|Z\|}{\|Z\|}.$$

$$\Rightarrow d = 2\sqrt{2}.$$

Por Litazoros, rahemos que d= l V2, don,

$$l = \sqrt{3} \cdot \frac{1}{\sqrt{2}} = \frac{2\sqrt{3}}{2} = \sqrt{3}$$

Norto caro, peura encontrar Be D, deremos furcar or parts de J que distan J3 de A, isto é, reja X = (-t, 1, t), dui,

$$d(X,A) = \sqrt{3} \Rightarrow \sqrt{t^2 + 1 + (t-1)^2} = \sqrt{3}$$

=)
$$t^{2}+1+t^{2}-2+1=3$$

=) $2t^{2}-2+-1=0$ =) $t=2\pm\sqrt{4+8}$

$$=) t = 2 \pm \sqrt{12} = 2 \pm 2\sqrt{3} = 4 \pm 2\sqrt{3}$$

Fazendo t= 1+13 em X terros:

$$B = \begin{pmatrix} 1+\sqrt{3} \\ 2 \end{pmatrix} \begin{pmatrix} 1+\sqrt{3} \\ 2 \end{pmatrix}$$

X temos: Fazendo t = 1-5 om

$$\mathcal{D} = \begin{pmatrix} 1 + \sqrt{3} \\ 2 \end{pmatrix}, 1 - \sqrt{3} \end{pmatrix}.$$

Por fin, pola lui do Baralelogramo, $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD} = (-1 - \cancel{5}, 1, -1 + \cancel{5}) + (-1 + \cancel{5}, 1, -1 - \cancel{5})$

$$=(-1,2,-1)$$

$$\Rightarrow C = (-1,2,0)$$
: