MACS203b

1 Convergence de variables aléatoires

Calcul sur les événements

Prop. • $Si(A_n)_n$ est croissante, $\mathbf{P}(\bigcup_n A_n) = \lim_{n \to \infty} \mathbf{P}(A_n)$.

- $Si(A_n)_n$ est décroissante, $\mathbf{P}(\bigcap_n A_n) = \lim_{n \to \infty} \mathbf{P}(A_n)$.
- $Si \forall n, \mathbf{P}(A_n) = 0 \text{ alors } \mathbf{P}(\bigcup_n A_n) = 0.$
- $Si \forall n, \mathbf{P}(A_n) = A \text{ alors } \mathbf{P}(\bigcap_n A_n) = 1.$

Def. $\limsup_{n\to\infty}A_n=\bigcap_{n\in\mathbb{N}}\bigcup_{k\geqslant n}A_k$, i.e. $\omega\in\limsup_nA_n\iff \forall n,\exists k\geqslant n,\omega\in A_k$.

Donc $\limsup_n A_n$ est réalisé ssi une infinité de A_n est réalisé.

Lem (de Borel-Cantelli). $Si \sum_{n} \mathbf{P}(A_n) < \infty$, alors $\mathbf{P}(\limsup_{n} A_n) = 0$.

Autrement dit, il y a une proba 1 pour que seulement un nombre fini de A_n soient réalisés.

Convergence p.s., en probabilité et dans L^p

Def. (i) On dit que $X_n \xrightarrow{\mathbf{P}} X$ (converge en probabilité) si $\forall \epsilon > 0, \mathbf{P}(\|X_n - X\| > \epsilon) \xrightarrow[n \to \infty]{} 0.$

- (ii) On dit que $X_n \xrightarrow{\mathrm{p.s.}} X$ (converge presque sûrement), si $\forall \omega$ **P**-p.p, $X_n(\omega) \to X(\omega)$. Autrement dit il existe $A \in \mathcal{F}$ tel que $\mathbf{P}(A) = 1$ et $\forall \omega \in A, \lim_n X_n(\omega) = X(\omega)$.
- (iii) On dit que $X_n \xrightarrow{L^p} X$ (converge vers X dans $L^p(\Omega, \mathbf{R}^d)$) si $X_n, X \in L^p$ et $\mathbf{E}(\|X_n X\|^p) \longrightarrow 0$.

Prop. On note $X_n = \left(X_n^{(1)}, \dots, X_n^{(d)}\right)$ sur $\mathcal{X} = \mathbf{R}^d$. Alors $X_n \xrightarrow{p.s.} X$ p.s. (resp. en probabilité, dans L^p) ssi $\forall k \in [1, d], X_n^{(k)} \xrightarrow{p.s.} X^{(k)}$ (resp. en probabilité, dans L^p).

Prop. Si $X_n \xrightarrow{p.s.} X$ ou $X_n \xrightarrow{L^p} X$ alors $X_n \xrightarrow{\mathbf{P}} X$.

Prop. Si $\forall \epsilon > 0, \sum_{n} \mathbf{P}(\|X_n - X\| > \epsilon) < \infty$ alors $X_n \xrightarrow{p.s.} X$.

Prop. $X_n \stackrel{\mathbf{P}}{\longrightarrow} X$ ssi de toute sous-suite $X_{\varphi(n)}$ on peut extraire une autre sous-suite $X_{\varphi\circ\psi(n)}$ telle que $X_{\varphi\circ\psi(n)} \stackrel{p.s.}{\longrightarrow} X$.

Th (de continuité). Soit $h \colon \mathbf{R}^d \to \mathbf{R}^p$ mesurable et continue sur $C \in \mathcal{B}(\mathbf{R}^d)$ tel que $\mathbf{P}(X \in C) = 1$:

- (i) $Si X_n \xrightarrow{p.s.} X alors h \circ X_n \xrightarrow{p.s.} h \circ X$
- (ii) $Si X_n \xrightarrow{\mathbf{P}} X \text{ alors } h \circ X_n \xrightarrow{\mathbf{P}} h \circ X.$

Th (Loi forte des grands nombres). Soit (X_n) i.i.d. telle que $\mathbf{E}(\|X_1\|) < \infty$. Alors $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{p.s.} \mathbf{E}(X_1)$.

Th (Loi faible des grands nombres). Soit (X_n) i.i.d. telle que $\mathbf{E}(\|X_1\|^2) < \infty$. On a $\frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{\mathbf{P}} \mathbf{E}(X_1)$.

2 Convergence en loi

Définitions et propriétés

Def. Une mesure de proba μ sur $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d)))$ est caractérisée par sa fonction de répartition

$$F_{\mu} \colon (x_1, \dots, x_d) \mapsto \mu \left(\prod_i] -\infty ; x_i \right]$$

Prop. • F_{μ} croissante.

- $F_{\mu}(-\infty) = 0, F_{\mu}(+\infty) = 1$
- F_{μ} est continue à droite et $\mu(x_0) = F_{\mu}(x_0) F_{\mu}(x_0^-)$

Th. Deux mesures distintes ne peuvent pas avoir la même fonction de répartition.

Soit $X: \Omega \to \mathbf{R}^d$ une v.a. On note $P_X = \mathbf{P} \circ X^{-1}$ la loi de X. P_X est une mesure de proba sur \mathbf{R}^d . On note F_X sa fonction de répartition. Pour d = 1, $F_X(x) = \mathbf{P}(X \le x)$.

Def. Soit $(\mu_n)_n$, μ des mesures de proba sur \mathbf{R}^d . On dit que μ_n converge faiblement (ou étroitement) vers μ si $\lim_n F_{\mu_n}(x) = F_{\mu}(x)$ en tout x point de continuité de F_{μ} . On note $\mu_n \Rightarrow \mu$.

Def. $(X_n)_n, X$ v.a. sur \mathbf{R}^d . On dit que X_n converge en loi vers X (noté $X_n \xrightarrow{\mathcal{L}} X$) si $P_{X_n} \Rightarrow P_X$.

Prop. Si $X_n \xrightarrow{\mathbf{P}} X$ alors $X_n \xrightarrow{\mathcal{L}} X$.

Th (de représentation de **Skorohod**). Soit $(\mu_n)_n$, μ des mesures de proba sur \mathbf{R}^d telles que $\mu_n \Rightarrow \mu$. Il existe un espace de proba et des v.a. (Y_n) , Y sur cet espace à valeurs dans $(\mathbf{R}^d, \mathcal{B}(\mathbf{R}^d))$ telles que $Y \sim \mu$, $\forall n, Y_n \sim \mu_n$ et Y est limite simple des Y_n , i.e. $\forall \omega, Y_n(\omega) \longrightarrow Y(\omega)$.

1

Th (de continuité). Soit $h: \mathbf{R}^d \to \mathbf{R}^p$ mesurable et continue sur $C \in \mathcal{B}(\mathbf{R}^d)$ tel que $\mathbf{P}(X \in C) = 1$. Si $X_n \xrightarrow{\mathcal{L}} X$ alors $h \circ X_n \xrightarrow{\mathcal{L}} h \circ X$.

Th. Les affirmations suivantes sont équivalentes :

- (i) $\mu_n \Rightarrow \mu$,
- (ii) pour toute fonction f continue, $\mu_n(f) \longrightarrow \mu(f)$,
- (iii) pour toute fonction f lipschitzienne, $\mu_n(f) \longrightarrow \mu(f)$,
- (iv) pour tout $A \in \mathcal{B}(\mathbf{R}^d)$ tel que $\mu(\delta A) = 0$ (frontière de A), $\mu_n(A) \longrightarrow \mu(A)$.

Th (de **Portmanteau**). *On a équivalence entre :*

- (i) $X_n \xrightarrow{\mathcal{L}} X$,
- (ii) $\forall f \colon \mathbf{R}^d \to \mathbf{R}$ continue bornée, $\mathbf{E}(f(X_n)) \longrightarrow \mathbf{E}(f(X))$,
- (iii) $\forall A \subset \mathbf{R}^d$ tel que $\mathbf{P}(X \in \delta A) = 0$, on a $\mathbf{P}(X_n \in A) \longrightarrow \mathbf{P}(X \in A)$ où $\delta A = \bar{A} \setminus \mathring{A}$,
- (iv) $\forall t \in \mathbf{R}^d$, $\lim_n \phi_{X_n}(t) = \phi_X(t)$.

Th. Soit $m \in \mathbf{N}^*$ et $h : \mathbf{R}^d \to \mathbf{R}^p$ mesurable et continue sur $C \in \mathcal{B}(\mathbf{R}^d)$ tel que $\mathbf{P}(X \in C) = 1$. Si $\mu_n \Rightarrow \mu$ alors $\mu_n h^{-1} \Rightarrow \mu h^{-1}$.

Th (Procédé de Cramer-Wold). *Soit* X_n , X *des v.a. sur* \mathbf{R}^d . *On a* $X_n \xrightarrow{\mathcal{L}} X \iff \forall t, \langle t \mid X_n \rangle \xrightarrow{\mathcal{L}} \langle t \mid X \rangle$.

Mesures tendues

Lem (d'Helly). Soit $(F_n)_n$ une suite de fonctions de répartition. Il existe une sous-suite $(\varphi(n))_n$ et $F: \mathbf{R} \to [0;1]$ croissante, continue à droite, telle que $\lim_n F_{\varphi(n)}(x) = F(x)$ en tout x point de continuité de F.

On ajoute une condition pour que la limite vérifie $\lim_{x\to -\infty} F(x) = 0$ et $\lim_{x\to +\infty} F(x) = 1$.

Def. $(\mu_n)_n$ est dite **tendue** si $\forall \varepsilon > 0, \exists \mathcal{K}$ compact, $\forall n, \mu_n(\mathcal{K}) \ge 1 - \varepsilon$.

Dans le cas d = 1 on peut prendre $\mathcal{K} = [-K; K]$.

Def. $(X_n)_n$ est **tendue** si $\forall \varepsilon > 0, \exists \mathcal{K}$ compact, $\forall n, \mathbf{P}(X_n \in \mathcal{K}) \ge 1 - \varepsilon$.

Prop. (i) Toute famille finie de mesures de probabilité est tendue.

(ii) Une suite de mesures qui converge faiblement est tendue.

Th (de Prokhorov). Soit une famille M de mesures de probabilité. Alors M est tendue si et seulement si elle est relativement séquentiellement compacte pour la topologie de la convergence faible, i.e. de toute suite $(\mu_n)_n$ de $\mathcal M$ on peut extraire une sous suite $(\mu_{\varphi(n)})_n$ telle que $\mu_{\varphi(n)} \Rightarrow \mu$ avec μ une mesure de probabilité.

Prop. Soit $(\mu_n)_n$ tendue. Si toute sous-suite faiblement convergente de $(\mu_n)_n$ converge vers μ , alors $\mu_n \Rightarrow \mu$.

Fonction caractéristique

Def. La fonction caractéristique d'une mesure de proba μ sur \mathbf{R}^d est ϕ_{μ} : $\begin{array}{ccc} \mathbf{R}^d & \to & \mathbf{C} \\ t & \mapsto & \int e^{i\langle t|x\rangle} \,\mathrm{d}\mu(x) \end{array} .$

Th. $\varphi_{\mu} = \varphi_{\nu} \implies \mu = \nu$.

Prop. Soit μ une mesure sur \mathbf{R} et $p \in \mathbf{N}$ tel que $\int |x|^p d\mu(x) < \infty$. Alors ϕ_{μ} est p fois continument dérivable et $\forall t \in \mathbf{R}$, sa p^e dérivées satisfait $\forall t \in \mathbf{R}, \phi_{\mu}^{(p)} = \int i^p x^p e^{itx} d\mu(x)$.

Ex.
$$\forall t \in \mathbf{R}, \phi_{\mathcal{N}(0,1)}(t) = e^{-t^2/2}$$
.

Prop. Pour Y = AX + b on a $\forall t, \phi_Y(t) = e^{i\langle t|b\rangle}\phi_X(A^*t)$.

Prop. ϕ_{μ} est continue en zéro.

Th (de Lévy). Soit $(\mu_n)_n$, μ des mesures de probabilité sur \mathbf{R}^d . $\mu_n \Rightarrow \mu$ ssi $\forall t \in \mathbf{R}^d$, $\phi_{\mu_n}(t) \longrightarrow \phi_{\mu}(t)$.

Théorème centrale limite

Not. $\mathcal{N}(m,\sigma^2)$ désigne la loi de densite $\rho(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-m)^2}{2\sigma^2}}$, et si $\sigma^2 = 0$ c'est la loi δ_m .

Pour X gaussien, sa fonction caractéristique vérifie $\phi_X(t) = e^{i\langle t|m\rangle} e^{-\frac{1}{2}\langle t|\Sigma t\rangle}$ où $m = \mathbf{E}(X)$ et $\Sigma = \text{Cov}(X)$. **Th** (central limite). *Soit* $(X_n)_n$ *iid tel que* $\mathbf{E}(\|X_1\|^2) < \infty$. *Alors*

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mathbf{E}(X_1)) \Rightarrow \mathcal{N}(0, \operatorname{Cov}(X_1)) .$$

Th (de Linderbergh). *Soit un tableau de v.a.* $(X_{i,n})_{1 \le i \le n}$ *tel que*

- $\forall n$, les v.a $X_{1,n}, \ldots, X_{n,n}$ sont indépendantes,
- $\forall n, \forall i \leqslant n, \mathbf{E}(X_{i,n}) = 0$,
- $\forall n, \forall i \leqslant n, \mathbf{E}(X_{i,n}) = \Sigma$ $\exists \Sigma, \lim_n \sum_{i=1}^n \operatorname{Cov}(X_{i,n}) = \Sigma$ $\forall \varepsilon > 0, \lim_n \sum_{i=1}^n \mathbf{E}(\|X_{i,1}\|^2 \mathbf{1}_{\|X_{i,n}\|} > \varepsilon) = 0$ (condition de Lindebergh).

Alors $\sum_{i=1}^{n} X_{i,n} \xrightarrow{\mathcal{L}} \mathcal{N}(0,\Sigma)$.

Lem. Soit $\mathcal{U}:=\{z\in\mathbf{C}\mid |z|\leqslant 1\}, n\in\mathbf{N}^*$ et deux familles $(z_i)_{1\leqslant i\leqslant n}$ et $(w_i)_{1\leqslant i\leqslant n}$ de \mathcal{U} . Alors $|\prod_{i=1}^n z_i-\prod_{i=1}^n w_i|\leqslant n$ $\sum_{i=1}^{n} |z_i - w_i|.$

Manipulation des convergences

Quelques règles

Prop. (i) $\forall a \in \mathbf{R}^d, X_n \xrightarrow{\mathcal{L}} a \iff X_n \xrightarrow{\mathbf{P}} a$

$$\begin{array}{ccc} \left. & X_n \xrightarrow{\mathcal{L}} X \\ & Y_n - X_n \xrightarrow{\mathcal{L}} 0 \end{array} \right\} \implies Y_n \xrightarrow{\mathcal{L}} X$$

$$(iii) \ \forall a \in \mathcal{Y}, \ \begin{array}{c} X_n \overset{\mathcal{L}}{\longrightarrow} X \\ Y_n \overset{\mathcal{L}}{\longrightarrow} a \end{array} \right\} \implies (X_n, Y_n) \overset{\mathcal{L}}{\longrightarrow} (X, a)$$

$$\begin{array}{ccc} \text{(iv)} & X_n \overset{\mathbf{P}}{\longrightarrow} X \\ & Y_n \overset{\mathbf{P}}{\longrightarrow} c \end{array} \right\} \implies (X_n, Y_n) \overset{\mathbf{P}}{\longrightarrow} (X, c)$$

Notation o_P , O_P

• On dit que $X_n = o_P(1)$ si $X_n \xrightarrow{\mathbf{P}} 0$. Not.

• On dit que $X_n = o_P(Y_n)$ si $\exists (Z_n) \xrightarrow{\mathbf{P}} 0, X_n = Z_n Y_n$.

• On dit que $X_n = O_p(1)$ si (X_n) est borné en probabilité, i.e. (X_n) est tendue. • On dit que $X_n = O_P(Y_n)$ si $\exists (Z_n) = O_p(1), X_n = Z_n Y_n$.

Prop. Si $X_n \stackrel{\mathcal{L}}{\longrightarrow} X$ alors $X_n = O_P(1)$.

Prop. (i) $o_P(1) + O_P(1) = O_P(1)$,

(ii) $o_P(1) \cdot O_P(1) = o_P(1)$,

(iii) $o_P(1) + o_P(1) = o_P(1)$,

(iv) $\frac{1}{1+o_P(1)} = O_P(1)$.

Lem (de **Slutsky**). Soit $(X_n)_n$ et $(Y_n)_n$ tels que $X_n \xrightarrow{\mathcal{L}} X$ et $Y_n \xrightarrow{\mathcal{L}} a$:

(i) Pour $a \in \mathcal{X}$ quelconque, $X_n + Y_n \xrightarrow{\mathcal{L}} X + c$.

(ii) Dans le cas réel $a \in \mathbf{R}$, $X_n Y_n \longrightarrow cX$ et $\frac{X_n}{Y_n} \longrightarrow \frac{X}{c}$ si $a \neq 0$.

Delta-méthode

Soit $g: \mathbf{R}^d \to \mathbf{R}^m$ dérivable en un point $\nu \in \mathbf{R}^d$ de matrice jacobienne $\nabla g(\nu)$.

 $\text{Rappel}: \lim_{h \to 0} \frac{\|g(\nu+g) - g(\nu) - \nabla g(\nu) \cdot h\|}{\|h\|} = 0, \nabla g(\nu) = \left(\frac{\partial g_i(\nu)}{\partial \nu_j}\right)_{i \in \llbracket 1; d \rrbracket, j \in \llbracket 1; m \rrbracket}$

Th. Soit $g: \mathbf{R}^d \to \mathbf{R}^m$ dérivable en ν . Soient T_n, T des v.a. sur \mathbf{R}^d et (r_n) une suite réelle telle que $\lim_n r_n = +\infty$ et $r_n(T_n - \nu) \xrightarrow{\mathcal{L}} T$. Alors $r_n(g(T_n) - g(\nu)) \xrightarrow{\mathcal{L}} \nabla g(\nu) \cdot T$.

Statistique asymptotique

• $(\Omega, \mathcal{F}, \mathbf{P})$ espace de proba, Not.

• $(X_i)_{i\in\mathbb{N}}$ v.a. iid

• $\forall i \in \mathbf{N}, X_i = (X_i^{(1)}, \dots, X_i^{(d)})^\mathsf{T},$

• ||·|| norme euclidienne.

Introduction

Def. Estimateur $\hat{\theta}_n$ à valeurs dans $\Theta \subset \mathbf{R}^q$: transformation mesurable de (X_1, \dots, X_n) . $\hat{\theta}_n$ est faiblement consistant si $\hat{\theta}_n \xrightarrow{\mathbf{P}} \theta_0$. $\hat{\theta}_n$ est fortement consistant si $\hat{\theta}_n \xrightarrow{\text{p.s.}} \theta_0$. $\hat{\theta}_n$ est asymptotiquement normal si $\sqrt{n}(\hat{\theta}_n - \hat{\theta}_n)$ θ_0) $\Longrightarrow \mathcal{N}(0, \sigma_0^2)$.

Rem. La consistance est différente du biais. En effet, soit $\bar{X}^n = \frac{1}{n} \sum_{i=1}^n X_i$, $\hat{\theta}_n = \bar{X}^n + \frac{1}{n}$ est fortement consistant (si $\mathbf{E}(X_1) < \infty$) et biaisé car $\mathbf{E}(\hat{\theta}_n) - \mathbf{E}(X_1) = \frac{1}{n}$.

À l'inverse $\hat{\theta}_n = X_1$ est sans biais mais non consistant.

Def. $\hat{\theta}_n$ est un M-estimateur si $\hat{\theta}_n \in \arg\min_{\theta \in \Theta} M(\theta)$. $\hat{\theta}_n$ est un Z-estimateur si $\Psi_n(\hat{\theta}_n) = 0$.

• Moindres carrés : $\hat{\beta}_n$ est défini par $\hat{\beta}_n = \arg\min_{\beta \in \mathbf{R}^d} \sum_{i=1}^n (Y_i - X_i^\mathsf{T}\beta)^2$.

• Maximum de vraisemblance : soit la famille paramétrique $\mathcal{P} = \{f_{\theta} \mid \theta \in \Theta\}$ selon lauelle est distribuée les données (X_1, \ldots, X_n) .

$$\hat{\theta}_n = \arg\max_{\theta \in \Theta} \frac{1}{n} \log(f_{\theta}(X_i))$$

• Estimateur des moments et estimateur des moments généralisés : $\hat{\theta}_n \in \arg\min_{\theta \in \Theta} \left\| \frac{1}{n} \sum_{i=1}^n g(X_i) - \int g \, d\mathbf{P}_{\theta} \right\|$.

un Z-estimateur si M_n est continuement dérivableh sur Θ et $\hat{\theta}_n$ est un point intérieur à Θ . Alors $\nabla M_n(\hat{\theta}_n) = 0$. **Prop** (Consistance).

Prop (Consistance Z-estimateur). $Si \hat{\theta}_n$ est un Z-estimateur et

- $\sup_{\theta \in \Theta} \|\Psi_n(\theta) \Psi(\theta)\| \xrightarrow{\mathbf{P} \text{ resp. p.s.}} 0,$ $\forall \varepsilon > 0, \inf_{\theta \in \Theta \setminus B(\theta_0, \varepsilon)} \|\Psi(\theta)\| > \|\Psi(\theta_0)\|,$

alors $\hat{\theta}_n \stackrel{\mathbf{P}}{\longrightarrow} \stackrel{\textit{resp. p.s.}}{\longrightarrow} \theta_0$.

Lem. Supposons

- (i) Θ compact,
- (ii) $\forall \theta \in \Theta, \mathbf{E}(|\rho(X_1, \theta)|) < \infty$,
- (iii) $\exists r : \mathcal{X} \to \mathbf{R}_+, \mathbf{E}(r(X_1)) < \infty \text{ où ...}$

Lem (Vérification de la condition d'identifiabilité). Soit $\Theta \subset \mathbf{R}^q$ compact et $M \in \mathcal{C}^0(\Theta)$ telle que θ_0 en est l'unique maximum. Alors $\forall \varepsilon > 0$, $\inf_{\theta \in \Theta \setminus B(\theta_0, \varepsilon)} M(\theta) > M(\theta_0)$.

Prop. Soit Θ compact. Supposons $\mathbf{E}_{\theta_0} \|g\| < +\infty$ et $\hat{\theta}_n \in \arg\min_{\theta \in \Theta} \left\| \frac{1}{n} \sum_i g(X_i) - \mathbf{E}_{\theta} g \right\|$. Si, de plus, $\theta \mapsto \mathbf{E}_{\theta} g$ est injective et continue alors $\hat{\theta}_n \xrightarrow{p.s.} \theta_0$.

Normalité asymptotique

On considère ici uniquement les Z-estimateurs : $\frac{1}{n}\sum_{i=1}^n \psi(X_i,\hat{\theta}_n) = \Psi_n(\hat{\theta}_n) = 0.$

Th. Supposons que:

- (i) $\hat{\theta}_n \stackrel{\mathbf{P}}{\longrightarrow} \theta$,
- (ii) il existe un voisinage $v(\theta_0)$ tel que $\forall x \in \mathcal{X}, \theta \mapsto \psi(x, \theta)$ est \mathcal{C}^2 sur $v(\theta_0)$ et $\forall k \in [1; q], \mathbf{E}\left[\sum_{\theta \in v(\theta_0)} \|\psi_k(X_1, \theta)\|\right] < 0$

(iii) soit
$$\Phi \colon (x,\theta) \mapsto \begin{pmatrix} \nabla_{\theta} \psi_1(x,\theta) \\ \vdots \\ \nabla_{\theta} \psi_q(x,\theta) \end{pmatrix} \in \mathbf{R}^{q \times q} \text{ tel que } \mathbf{E} [\|\Phi(X_1,\theta_0)\|] < +\infty \text{ et } \mathbf{E} [\Phi(X_1,\theta_0)] = Q(\theta_0) \text{ est inversible,}$$

(iv) $\mathbf{E}[\|\psi(X_1,\theta_0)\|^2] < +\infty.$

Alors
$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -Q(\theta_0)^{-1} \left(\frac{1}{\sqrt{n}} \sum_i \psi(X_i, \theta_0)\right) + o_P(1)$$
. En particulier

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, Q(\theta_0)^{-1} \operatorname{Var}(\psi(X_1, \theta_0))(Q(\theta_0)^{-1})^{\mathsf{T}}\right)$$