Other norms: l_1 -norm: $||x||_1 = \sum_{i=1}^{n} |x_i|$ sup-norm or los-horm: ||x|| = max |xil Segmences $\{x_k\}_{k=1,...}$ or $\{x_k\}$, $x_k \in \mathbb{R}^n$ Definition (Convergence) $\chi_{k} \rightarrow \chi$ lim $\chi_{k} = \chi$ Given 870, 7 Nz s.t. 11xx-211 < 8 + k > Nz Definition (Cauchy segmence) $\{x_k\}$ is Cauchy if given $\epsilon > 0$, $\exists N_{\epsilon} \leq t$. $\|x_k - x_m\| < \epsilon + \epsilon, m \geqslant N_{\epsilon}$. $\{x_{\kappa}\}\$ Converges \iff $\{x_{\kappa}\}\$ is Cauchy Definition (subsequence) infinite subset of $\{x_k\}$. $\{x_k : k \in X\}$ or $\{x_k\}_{X}$, K: infinite subset $\{Z^t\}$ Definition (Limit point) x is a limit point of [xx] if I a pulsequence of {xx} that converges to x. Définition (bounded segnence) 1/2/1 1 5 b, 4 k

Results about Bounded sequences

1. Every bounded has at least one limit point 2. A bounded Segrence converges if it has a unique limit point