Lumiere: A Space-Time Diffusion Model for Video Generation

Omer Bar-Tal * 1 2 Hila Chefer * 1 3 Omer Tov * 1 Charles Herrmann † 1 Roni Paiss † 1 Shiran Zada † 1 Ariel Ephrat † 1 Junhwa Hur † 1 Guanghui Liu 1 Amit Raj 1 Yuanzhen Li 1 Michael Rubinstein 1 Tomer Michaeli 1 4 Oliver Wang 1 Decjing Sun 1 Tali Dekel 1 2 Inbar Mosseri † 1

Google Research

날짜: 2024-11-26

발표자:홍진욱

Contents

4 Experiments Introduction 5 Conclusion Method 6 Contribution Q&A

Introduction

Background

- While deep generative models have shown astonishing results in the visual domain.
- Recent progress achieves promising results of video generation such as text-to-video, image-to-video, and video-to-video.

Introduction

Summary

- Lumiere successfully extend the capability of a pretrained text-to-image model (Imagen) into video generation for various applications.
- Different from common approaches, which adopt a cascade of temporal super-resolution, Lumiere can generate full frames at once (80 frames, 16 fps, 5s).
- Space-Time UNet (STUNet) + Temporal super-resolution w/ multi-diffusion
- Competitive results on benchmark (UCF101) and user-study.

Imagen (NeurlPS '22)

Imagen Video for Text-to-Video Generation (ArXiv '22)

- Imagen video generates the contents of videos from a user-provided text prompt, sequentially increasing the spatial and temporal resolutions.
- Here, spatial and temporal super-resolutions are separately processed.

Common Approaches of T2V vs. Lumiere

(a) Common Approach with TSR model(s)

First, generate key frames at a low resolution and a low frame ratio (fps)

Divide the total duration into some chunks, and conduct temporal super-resolution (TSR).

- (-) base model: aliasing on fast motions
- (-) TSR model: inconsistent motions, covariate shifts

For each chunk at the high frame ratio, conduct spatial super-resolutions.

Common Approaches of T2V vs. Lumiere

Generate whole frames at a low spatial resolution (128x128, 80 frames, 16 fps, 5 seconds)

Conduct spatial super-resolutions for overlapped video clips using the technique of multi-diffusions.

Space-Time UNet (STUNet)

- Temporal layers are added into the base model of Imagen that freeze its weights.
- For the computational efficiency, temporal attentions are used only for coarsest level.

Common Approaches of T2V vs. Lumiere

- Due to memory constraints, the inflated SSR network can operate only on short segments of the video.
- To avoid temporal boundary artifacts, Lumiere employs Multidiffusion along the temporal axis for smooth transitions.

Space-Time UNet (STUNet)

MultiDiffusion process: Panorama

 Ψ as close as possible to Φ

$$\Psi(J_t) = \operatorname{argmin}_{J} \sum_{i=1}^{n} ||F_i(J) - \Phi(F_i(J_t))||^2$$

Conditional Video Generation

- For conditional video generation, an input condition and a binary mask map are concatenated into the noised input of STUNet.
- Various applications can be implemented with different making patterns: Image-to-Video, Inpainting,
 Cinemagraphs

Conditional Video Generation

Image-to-Video Text-to-Video A girl winking and smiling A cat playing piano Golden retriever puppy in the park, autumn Chocolate syrup pouring on a vanilla ice cream Bigfoot walking through the woods in Northern California A teddy bear running in New York City Astronaut walking on the planet Mars A panda playing a ukulele at home Beer pouring into glass Sunset time lapse at the beach Flying through an intense battle between pirate ships in a stormy ocean Jack russell terrier dog snowboarding. GoPro shot Epic tracking of a gorilla walking gracefully Flying through a temple in ruins, epic, mist Bee buzzing busily around a field of blooming wildflowers Ancient pharaoh singing and smiling and shaking his head like

(A)

Stylized Generation

 $W_{\text{interpolate}} = \alpha \cdot W_{\text{style}} + (1 - \alpha) \cdot W_{\text{orig}}.$

An owl perched on a branch, melting golden 3D style

Reference **Image**

A cartoon of a bunny nibbling on a carrot

A cartoon of a hot air balloon taking off

Image

A flower, melting golden 3D style

Image

A sticker style butterfly surrounded by flowers

A sticker style fox

A bear twirling with delight, 3D rendering

A bunny hopping in the meadow, 3D rendering

A watercolor painting of ducks swimming in a pond

Video-to-Video via SDEdit

Results

- Zero-shot text-to-video on UCF101.
- User study on 113 text prompts (~ 400 user judgements).

Method	FVD↓	IS ↑
MagicVideo (Zhou et al., 2022)	655.00	
Emu Video (Girdhar et al., 2023)	606.20	42.70
Video LDM (Blattmann et al., 2023b)	550.61	33.45
Show-1 (Zhang et al., 2023a)	394.46	35.42
Make-A-Video (Singer et al., 2022)	367.23	33.00
PYoCo (Ge et al., 2023)	355.19	47.76
SVD (Blattmann et al., 2023a)	242.02	-
Lumiere (Ours)	332.49	37.54

Results

A sheep to the right of a wine glass

Teddy bear skating in Times Square

Conclusion

- A new text-to-video generation framework is presented using a pretrained T2I model.
- To learn globally-coherent motion, a space-time U-Net architecture design enables to generate the whole frames at once with a low resolution.
- Lumiere shows State-of-the-art results and is applicable for various applications.