## The forcing category

DAN SAATTRUP NIELSEN

September 18, 2018

ABSTRACT. I'm an abstract

**DEFINITION 0.1.** Let  $\mathbb{F}$  be the category of separative forcing posets and complete embeddings between them.

Note that when we're dealing with *separative* posets then complete embeddings are really embeddings; i.e. they're injective.

**PROPOSITION** 0.2. Define  $\mathcal{D} := \{ f \in Mor(\mathbb{F}) \mid f \text{ is dense} \}$ . Then  $\mathcal{D}$  is a right multiplicative system for  $\mathbb{F}$ .

PROOF. (S1) For any forcing poset  $\mathbb{P}$  it trivally holds that  $id_{\mathbb{P}} : \mathbb{P} \to \mathbb{P}$  is dense.

(S2) Let  $f:\mathbb{P}\to\mathbb{Q}$  and  $g:\mathbb{Q}\to\mathbb{R}$  be dense, and let  $r\in\mathbb{R}$ . Use density of g to pick  $g\in\mathbb{Q}$  with  $g(q)\leqslant r$ , and then use density of f to pick  $g\in\mathbb{P}$  such that  $f(p)\leqslant q$ . Then  $(g\circ f)(p)=g(f(p))\leqslant g(q)\leqslant r$  by order-preservation of g, making  $g\circ f$  dense.

(S3) Let  $f: \mathbb{P} \to \mathbb{Q}$  be complete and  $i: \mathbb{P} \to \hat{\mathbb{P}}$  dense. We have to find a forcing  $\hat{\mathbb{Q}}$ , a complete  $g: \hat{\mathbb{P}} \to \hat{\mathbb{Q}}$  and a dense  $j: \mathbb{Q} \to \hat{\mathbb{Q}}$  such that



commutes.