1

Assignment 5

Prabhath Chellingi - CS20BTECH11038

Download all python codes from

https://github.com/PRABHATH-cs20-11038/ AI1103/tree/main/Assignment 5/Codes

and latex-tikz codes from

https://github.com/PRABHATH-cs20-11038/ AI1103/tree/main/Assignment_5

1 Problem

(GATE(EC)2013 - 26Q) Let U and V be two independent zero mean Gaussian random variables of variances $\frac{1}{4}$ and $\frac{1}{9}$ respectively. The probability $Pr(3V \ge 2U)$ is

- (A) 4/9
- (B) 1/2
- (C) 2/3
- (D) 5/9

2 Solution

U and V are independent random variables,

$$V \sim N\left(0, \frac{1}{9}\right) \tag{2.0.1}$$

$$U \sim N\left(0, \frac{1}{4}\right) \tag{2.0.2}$$

Let,

$$Z = 3V - 2U (2.0.3)$$

$$Z \sim N\left(0, 9 \times \frac{1}{9} + 4 \times \frac{1}{4}\right)$$
 (2.0.4)

$$Z \sim N(0,2)$$
 (2.0.5)

For Z, $\mu = 0$, and $\sigma^2 = 2$. By Gaussian Distribution,

PDF of Z,

$$f_Z(z) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(z-\mu)^2}{2\sigma^2}}$$
 (2.0.6)

$$f_Z(z) = \frac{1}{2\sqrt{\pi}}e^{-\frac{z^2}{4}}$$
 (2.0.7)

Fig. 4. Plot of of distribution function

$$\Pr(Z \ge 0) = \int_{0}^{\infty} f_{Z}(z)dz$$
 (2.0.8)

$$\Pr(Z \ge 0) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2\sqrt{\pi}} e^{-\frac{z^2}{4}} dz$$
 (2.0.9)

$$\Pr(Z \ge 0) = \frac{1}{2} \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\frac{z^2}{4}} dz$$
 (2.0.10)

$$\Pr(Z \ge 0) = \frac{1}{2} \frac{1}{2\sqrt{\pi}} \left(\sqrt{4\pi}\right) \tag{2.0.11}$$

$$\Pr(Z \ge 0) = \frac{1}{2} \tag{2.0.12}$$

$$\Pr(3V - 2U \ge 0) = \frac{1}{2} \tag{2.0.13}$$

$$\Pr(3V \ge 2U) = \frac{1}{2} \tag{2.0.14}$$

Option (B) is correct.