

逆空間における回折条件の表現

$$\left| \mathbf{k} \right| = \left| \mathbf{k}_0 \right| = \frac{1}{\lambda} \tag{1}$$

 $(h\,k\,l)$ 面の法線単位ベクトル $m{n}_{h\,k\,l}$ // $m{G}_{hkl}^*$: $(h\,k\,l)$ 面の逆格子ベクトル

$$\therefore \quad \boldsymbol{n}_{hkl} = \frac{\boldsymbol{G}_{hkl}^*}{\left|\boldsymbol{G}_{hkl}^*\right|} \tag{2}$$

 $\therefore \quad \Delta \mathbf{K} = \mathbf{k} - \mathbf{k}_0 = \mathbf{G}_{hkl}^*$

(3)即ち、Bragg 反射の条件は「<mark>散乱ベクトル=逆格子ベクトル</mark>」のときに回折波が強く生じるということ!

エバルドの作図

 \mathbf{k}_0 : 入射波波数ベクトル, \mathbf{k} : 回折波波数ベクトル, λ : 波長, 2θ : 回折角, θ : Bragg 角

 \mathbf{O}^* : 逆格子原点, \mathbf{G} : 逆格子点, \mathbf{G}^*_{hkl} : 逆格子ベクトル, \mathbf{T} : Ewald 球の中心

格子・逆格子と回折条件

● 逆格子点

X線と電子線の Ewald 球の比較

問題: 格子定数 a_0 = 4.0 Åの bcc の(200)面の面間隔は d_{200} = 2.0 Åである. これに対応する 200keV の電子線(波長 λ_e = 0.02508 Å)の回折角 γ_e および, CuK_{α} 特性 X 線(波長 λ_X = 1.541738 Å)の回折角 $2\theta_X$ を求めよ.

解:

電子線回折では、 $d_{200}\sin\gamma_e=\lambda_e$

$$\therefore \qquad \gamma_e = \sin^{-1} \frac{\lambda_e}{d_{200}} = \sin^{-1} \frac{0.02508\text{Å}}{2.0\text{Å}} = 0.01254 \ rad = 0.7185 \ \text{deg}$$

X線回折では、 $2d_{200}\sin\theta_X = \lambda_X$

$$\theta_X = \sin^{-1} \frac{\lambda_X}{2d_{200}} = \sin^{-1} \frac{1.541738\text{Å}}{2 \times 2.0\text{Å}} = 0.3957 \ rad = 22.67 \ \text{deg}$$

$$\therefore 2\theta_X = 45.34 \text{ deg}$$
 //

X線 回折角が大きい → 角度精度が高い → 格子定数の精密測定 → **単位胞内**で平均構造を表現

電子線 回折角が小さい → 前方散乱 → レンズが使える → 回折像, 像の観察 → 単位胞の外の構造観察可能

図1 レンズによる回折像と像の形成

X線回折の要素過程と解析の流れ

入射 X 線 → 電子の Thomson 散乱 → 原子からの散乱 (原子散乱因子)

- → 単位胞からの散乱 (結晶構造因子)
 - → 結晶からの散乱 (Laue 関数, 逆格子)

回折実験の流れ

結晶 ⇔ 原子面(hkl)の集合 → 面間隔 立方晶 正方晶・・・

$$\rightarrow$$
 Bragg 回折 $\rightarrow 2d_{hkl} \sin \theta = \lambda$

↓← λは既知

↓← 2*θ* を測定

 d_{hkl} が求まる

↓ ← (hkl)が決まる

 a_0,b_0,c_0 などの格子定数が決まる

↓←(*hkl*)の消滅則

単位胞内の原子配置が決まる = 結晶構造が決まる