REMARKS

Entry of the amendments to the specification, claims and abstract before examination of the application is respectfully requested.

If there are any questions regarding this amendment or the application in general, a telephone call to the undersigned would be appreciated since this should expedite the prosecution of the application for all concerned.

If necessary to effect a timely response, this paper should be considered as a petition for an Extension of Time sufficient to effect a timely response, and please charge any deficiency in fees or credit any overpayments to Deposit Account No. 05-1323 (Docket #225/50783).

December 31, 2001

Respectfully submitted,

James F. McKeown Registration No. 25,406

CROWELL & MORING, LLP P.O. Box 14300 Washington, DC 20044-4300 Telephone No.: (202) 624-2500 Facsimile No.: (202) 628-8844

VERSION WITH MARKINGS TO SHOW CHANGES MADE TO THE ABSTRACT

A brake system for a vehicle is equipped with a brake servo assistance unit for the automatic generation of brake force and with at least one sensor for the generation of a measuring signal[, which]. This signal represents an activity on the part of the driver and can be fed to a brake pressure control unit[, it being possible to generate an]. An activation control signal for the actuation of the brake servo assistance unit can be generated should the measuring signal lie within an activation value range. In order to improve [the] operating reliability, at least two sensors are provided for [the] measurement of an activity on the part of the driver, and an activation control signal can be generated should the measuring signals from the sensors each exceed a reference value.

JC Jec'd PCT/PIO 3 1 DEC 2001 Attorney Locket No. 225/50783 Marked-up Specification

BRAKE SYSTEM FOR A VEHICLE

BACKGROUND OF THE INVENTION

The <u>present</u> invention relates to a brake system for a vehicle [according to the precharacterizing clause of Claim 1].

[The publication DE 44 27 246 A1 discloses a brake system for a motor vehicle for automatically initiating a braking action with an enhanced brake pressure in excess of driver demand in the event of an emergency braking movement made by the driver's foot. The pressure applied by the driver by way of the brake pedal is registered by a pressure sensor; if the pressure exceeds a threshold value, an activation control signal is generated for initiation of the braking action with enhanced brake pressure.

According to a design disclosed by DE 196 41 470 A1, a travel sensor, which monitors the range of movement of the driver's foot, is arranged in the footwell of the vehicle. The travel sensor, however, only measures the initiation of a movement, not the speed of the movement. A second travel sensor on the brake pedal determines the time difference between the generation of the measuring signals of both sensors and forms the basis for deciding whether this constitutes an emergency braking movement.

In the case of the designs described there is the problem that, should a sensor fail, there is no possibility of detecting an emergency reaction on the part of the driver, and it is no longer possible to activate the automatic brake device.

10019486 USPEDE

Attorney Bocket No. 225/50783

Marked-up Specification

Furthermore, in the event of a fault it is not possible to deactivate an already

activated brake device, because as the criterion for deactivation the measuring

signals of the sensors must fall below reference values, but with defective sensors

such measuring signals cannot be generated correctly, if at all.] DE 43 29 140 A1

discloses a brake system with two brake circuits in which a brake servo

assistance unit performs an automatic braking action. The brake servo

assistance unit is activated when the brake pedal is operated very rapidly. For

this purpose the brake system has a pedal position sensor and a pressure sensor.

DE 195 20 609 A1 describes a pressure sensor for measuring the pressure

arranged at the outlet of the brake master cylinder in both brake circuits of the

brake system.

EP 08 19 591 A1 discloses a method for performing an automatic braking

action. The brake servo assistance unit is first activated when the accelerator

pedal return rate of travel exceeds a certain threshold value, and this temporary

activation is maintained only if a brake pedal actuation occurs during a specific

time window.

SUMMARY OF THE INVENTION

[The problem addressed by the invention is to improve the operating

reliability of an automatic brake system.

According to the invention this problem is solved by the features of Claim

1.

- 2 -

Attorney bocket No. 225/50783

Marked-up Specification

According to the innovation at least two sensors are provided, the measuring signals from each of the sensors needing to lie within defined activation value ranges for actuation of the brake servo assistance unit to occur; otherwise automatic activation of the brake servo assistance unit is not permitted. This permits a more precise definition of situations in which automatic braking is to be initiated. The system is designed with redundancy, because the activation conditions can be defined in such a way that the signals of one sensor for the activation of the brake system lie in a higher value range, whereas the signals of the second sensor lie in a lower value range.

In a preferred embodiment a temporary, preventative activation can be performed for a limited period of time should the higher reference value of one sensor be exceeded, whilst the lower reference value of the second sensor has not yet been attained. In this situation the conditions for unrestricted activation are not yet met, but activation is nonetheless undertaken for the limited period of time and is advantageously maintained provided that the reduced reference value of the second sensor is exceeded during the period of activation. If the conditions for permanent activation are not fulfilled during the defined period, a deactivation control signal is automatically generated an object of the present invention is to avoid unnecessary activations of the brake servo assistance unit and at the same time to ensure a fail-safe operation of the brake system.

According to the invention this object has been achieved by providing that two pressure sensors are provided and have different reference values assigned

Attorney bocket No. 225/50783

Marked-up Specification

thereto, each of the pressure sensors being operatively associated with one of the

brake circuits, and the activiation control signal is generated for temporary

activiation of the brake servo assistance unit for a limited time period, in the

event that a higher of the reference values from the first pressure sensor is

exceeded and a lower of the reference values for the second pressure sensor has

not yet been attained.

According to the invention a temporary, preventative activation is

performed for a limited period of time should the higher reference value of one

sensor be exceeded, while the lower reference value of the second sensor has not

yet been attained. In this situation the conditions for unrestricted activation are

not yet met, but activation is nonetheless undertaken for the limited period of

time and is advantageously maintained provided that the reduced reference

value of the second sensor is exceeded during the period of activation. If the

conditions for permanent activation are not fulfilled during the defined period, a

deactivation control signal is automatically generated.

This improved procedure affords the advantage that additional brake force

is made available within a shorter response time. Furthermore, the reactive

effect on the driver is reduced, since owing to the limited period of time the

braking action only takes partial effect. This avoids [causing] irritation being

caused to the driver.

The activation control signal is suitably generated should a gradient be

calculated from successive measuring signals of each of the two sensors and the

- 4 -

10019486 OSZGP

Attorney Locket No. 225/50783

Marked-up Specification

gradients for each of the two sensors exceed a reference value. As an alternative

activation criterion, however, it is also [possible] contemplated to take account of

the gradient for one sensor and the absolute value for the second sensor. It is

furthermore [possible] contemplated to utilize the absolute values from both

sensors in order to assess whether activation is to be undertaken.

For deactivation of the brake servo assistance unit it is duly sufficient for

the measuring signal from just one sensor to fall below a reference value.

Adopting this approach ensures that even in the event of one sensor failing, the

automatic generation of brake force is deactivated again provided that the

measuring signal from at least one intact sensor delivers a measuring signal that

lies within the deactivation value range. This makes it possible to avoid

operating situations in which the brake system erroneously delivers brake force

even though a situation that justifies the provision of additional brake force no

longer exists; that is the brake system is of redundant design with regard to

deactivation and operating safety is improved.

The values for the activation range and the deactivation range may differ,

for example, activation occurring at higher values, or in the event of higher

gradients derived from the absolute measuring signals, than deactivation. The

differing activation and deactivation conditions increase the margin of safety

against erroneous, accidental activation of the brake system.

[In a first advantageous embodiment, two pressure sensors are provided.

The use of two sensors of the same type permits an activation of the brake servo

- 5 -

IDDI9486 D522D2

Attorney Bocket No. 225/50783

Marked-up Specification

assistance unit for differing pressure values or pressure gradients of the

pressure sensors, thereby increasing the fail-safety.]

It may be appropriate[, however,] to [design] configure at least one sensor

as a travel sensor. Where one pressure sensor and one travel sensor are

provided, a current speed value is preferably determined from successive

measuring signals of the travel sensor, and together with the pressure gradient

of the pressure sensor this is used as the basis for the query as to whether the

brake system is to be activated. As an alternative condition, however, account

may also be taken of the pressure/speed or pressure gradient/travel combination.

In an advantageous development, it is merely sufficient for the measuring

signal of the travel sensor to fall below a reference value, in order to trigger the

deactivation control signal.

It may be advisable to provide alternative conditions both for the

activation and for the deactivation of the brake system. Activation or

deactivation then occurs if just one of the formulated conditions is met.

BRIEF DESCRIPTION OF THE DRAWINGS

[Further advantages and suitable embodiments are set out in the further

claims, the description of the figures and the drawing, which represents a circuit

diagram of a hydraulic brake system according to the invention.] Other objects,

advantages and novel features of the present invention will become apparent

- 6 -

Attorney Bocket No. 225/50783

Marked-up Specification

from the following detailed description of the invention when considered in

conjunction with the accompanying drawings.

The sole figure is a schematic circuit diagram of the hydraulic brake

system according to the present invention.

DETAILED DESCRIPTION OF THE DRAWINGS

The brake system 1 of a motor vehicle comprises an actuating unit 2 for

activation of the wheel brake by the driver, a hydraulic unit 3 for transmission

and modulation of the required brake pressure and wheel brake units 4 on the

front left (FL), front right (FR), rear left (RL) and rear right (RR) wheels of the

vehicle. The actuating unit 2 comprises a brake pedal 5, a booster 6, a master

cylinder 7 and a reservoir tank 8[; in]. In addition, a trip switch 9 and a travel

sensor 10 are assigned to the actuating unit 2. The hydraulic unit 3 comprises

two brake circuits 11a, 11b, which are of inverse design construction. The first

brake circuit 11a supplies brake pressure to the RL and FR wheel brake units,

the second brake circuit 11b is assigned to FL and RR wheel brake units.

A brake light switch may also be used in place of the trip switch 9.

When the brake pedal 5 is actuated, the pedal force applied by the driver

is boosted by the booster 6, the force generated by the booster 6 being converted

in the master cylinder 7, which is fed with hydraulic medium from the reservoir

tank 8, into hydraulic brake pressure, which is delivered to the two brake

circuits 11a, 11b of the hydraulic unit 3.

- 7 -

10019486 DSEEDE

Attorney Schet No. 225/50783

Marked-up Specification

The following description of the hydraulic unit 3 relates only to the first

brake circuit 11a, the second brake circuit 11b in the [exemplary] illustrated

embodiment shown being of similar construction to the first brake circuit 11a.

All components of the hydraulic unit 3 can be adjusted by [means of] signals from

a control unit (not shown).

The brake pressure generated in the master cylinder 7 is delivered by way

of a hydraulic line 12 to the RL and FR wheel brake units of the first brake

circuit 11a. The hydraulic line 12 comprises three sections 12a, b, c, [a] the first

section 12a branching off from the master cylinder 7 dividing into the two

further sections 12b, c, which are each assigned to a wheel brake unit, FR and

RL respectively. A servo valve 13a, b, c is arranged in each section 12a, b, c of

the hydraulic line 12 and a non-return valve is assigned to each servo valve 13a,

b, c[, the]. The non-return valve assigned to the first servo valve 13a in the

common line section 12a [opening] opens in the direction of the wheel brake

units, whereas the non-return valves assigned to the other servo valves 13b, c

open in the direction of the actuating unit 2. The common line section 12a is

connected to a compensating accumulator 21 upstream of the servo valve 13a.

When the driver operates the brake pedal 2, thereby generating a brake

pressure, control signals from the control unit move the servo valves 13a, b, c

into the opening position, so that the brake pressure from the actuating unit 2

can be delivered to the wheel brake units 4 in order to generate a wheel brake

force.

- 8 -

10019486.05EEOE

Attorney Scket No. 225/50783 Marked-up Specification

The return flow of hydraulic medium is by way of a return line 14, which comprises two line sections 14b, c, which branch off from the feed line sections 12b, c, and a common line section 14a, into which the sections 14b, c open and which in turn opens into the upper section 12a of the hydraulic line 12. [A] Each servo valve 15a, b, c is arranged in each respective section 14a, b, c of the return line 14[, an]. An intermediate accumulator and a non-return valve opening in the direction of the return flow [being] are situated in the upper line section 14a between the union of the lower line sections 14b, c and the upper servo valve 15a. The servo valves 15a, b, c may be opened by the control unit for the return flow of hydraulic medium.

In the brake circuit 11a of the hydraulic unit 3 an automatic brake servo assistance unit 16 is furthermore provided[, which]. The unit 16 comprises a hydraulic pump 17, a hydraulic motor 18 and an intermediate accumulator 19 in a line 20[,] which branches off from the section 14a of the return line 14 and which opens into the common line section 12a of the hydraulic line 12 downstream of the servo valve 13a. On actuation of the hydraulic motor 18 and the hydraulic pump 17 respectively, additional brake pressure is generated, which additional pressure is fed into the common line section 12a and delivered to the wheel brake units 4, thereby generating a boosted brake force. The actuation of hydraulic motor 18 and hydraulic pump 17 [–], both the activation and the deactivation, is triggered by control signals from the control unit as a function of input signals[,] which are generated as measuring signals by the

10019486 OS2202

Attorney Scket No. 225/50783

Marked-up Specification

sensors 9, 10 in the actuating unit 2 and, where applicable, by other sensors 22,

23 in the hydraulic unit 3.

The sensor 9 in the actuating unit 2 is [designed] configured as a trip

switch[,] which is installed in the booster 6 and has the function of deactivating

the automatic brake servo assistance unit 16 as soon as the brake pedal 5,

starting from an actuation position, covers a release travel towards the initial

home position. In this event, the driver withdraws the pedal force, from which it

can be inferred that no additional brake servo assistance is required, whereupon

the servo assistance unit is deactivated.

The further sensor 10 in the actuating unit 2 is [designed] configured as a

travel sensor, which senses either the control movement of the brake pedal or the

control movement of the cylinder in the master cylinder 7 corresponding to the

control movement of the brake pedal. The sensor 22 in the hydraulic unit 3 is

[designed as] a pressure sensor[,] which is arranged in the common line section

12a and measures the pressure in the hydraulic line 12.

The brake servo assistance unit 16 is activated in the event of at least one of

the following criteria being fulfilled:

The pressure gradient in the hydraulic line 12 is calculated from successive

measuring signals of the pressure sensor 22 in the control unit. The speed

with which the brake pedal 5 or the cylinder of the master cylinder 7 is moved

is correspondingly calculated from successive measuring signals of the travel

sensor 10. Should both the pressure gradient and the speed exceed a

- 10 -

Attorney Cket No. 225/50783

Marked-up Specification

reference value assigned to each of them respectively, an activation control

signal is generated for activation of the brake servo assistance unit 16.

The pressure value determined in the pressure sensor 22 and the speed value

derived from the measuring signals of the travel sensor 10 exceed a reference

value assigned to each of them respectively.

The pressure gradient derived from the measuring signals of the pressure

sensor 22 and the travel determined in the travel sensor exceed a reference

value assigned to each of them respectively.

- The measuring signals from the pressure sensor 22 and the measuring

signals from the pressure sensor 23 exceed a reference value in each case.

Pressure values and/or pressure gradients may be used as measuring signals.

Instead of an arrangement of the pressure sensors spread over two brake

circuits, it may also be appropriate to arrange both pressure sensors in one

brake circuit.

The measuring signals from the sensors must in each case exceed an

assigned reference value for an activation control signal to be generated. The

reference values may assume different values, especially where two sensors of

the same type are provided, with the lower value being obtained through

multiplying the higher value by a reduction factor, which suitably lies between

0.5 and 1.

- 11 -

10019486 052202

Attorney Scket No. 225/50783

Marked-up Specification

[If need be] In this case, a two-stage activation is performed. Once the

higher reference value of a sensor is exceeded, but the lower reference value of

the second sensor has not yet been attained, a temporary activation can occur for

a limited period, which is cancelled again, provided that the lower reference

value of the second sensor is not exceeded during the set period of time. The

period of time according to which the temporary activation is proportionately

calculated is advantageously between one and ten working cycles of the brake

system.

Should a higher reference value and at least one lower reference value be

exceeded simultaneously in both sensors, activation occurs with no time limit. In

this case, deactivation occurs only when the deactivation conditions are fulfilled.

[Where appropriate, a time window is allowed, within which the

measuring signals or the values derived from the measuring signals from travel

sensor 10 and pressure sensor 22 must exceed the corresponding reference

value.]

The brake servo assistance unit 16 is deactivated by way of the trip switch

9 [should] if the forces fall below a force reference value. The trip switch

switches as a function of the pedal force acting on the brake pedal.

[It may also be expedient, however, to initiate the deactivation should the

measuring signal from the travel sensor 10 fall below a reference value, which

- 12 -

Attorney Scket No. 225/50783

Marked-up Specification

may differ from the corresponding reference value for activation and may in

particular assume a higher absolute value, in order to achieve a relatively rapid

deactivation of the servo assistance unit] Deactivation may also occur if the

measuring signal from the travel sensor 10 falls below a reference value, which

may differ from the corresponding reference value for activation and may in

particular assume a higher absolute value, in order to achieve a relatively rapid

deactivation of the servo assistance unit. In addition, further deactivation

criteria may be formulated, which are dependent on the pressure value, the

pressure gradient or on the speed of the brake pedal control movement. If the

deactivation criteria are formulated as a function of the sensor values of the

travel sensor 10 or the pressure sensor 22, the trip switch 9 may also be

dispensed with.

Taking account of two different measuring principles by using a pressure

sensor and a travel sensor has the advantage that the failure probability of the

brake servo assistance unit 16 is reduced, because the different types of sensors

react to a fault in different ways.

In the second brake circuit 11b, a further pressure sensor 23 measures the

pressure in the second hydraulic line supplying the brake circuit 11b. Doubling

the number of pressure sensors in different brake circuits allows the brake

system to be designed with redundancy and also formulated with limiting

conditions.

- 13 -

10019486 DSEEDE

Attorney Scket No. 225/50783

Marked-up Specification

[Consideration is given to activation of the brake servo assistance unit in

particular where the pressure gradients of both pressure sensors 22, 23 exceed a

reference value, it being possible to set the reference values at different levels.

In an alternative embodiment, activation occurs if the gradient of one pressure

sensor and the pressure value of the second pressure sensor each exceed a

reference value. In both cases it is possible to set a time window, during which

the measuring signals must meet the specified conditions] The brake servo

assistance unit is activated, for example, when the pressure gradients of both

pressure sensors 22, 23 exceed a reference value, the reference values being

different. In an alternative embodiment, activation occurs if the gradient of one

pressure sensor and the pressure value of the second pressure sensor each

exceed a reference value. In both cases it is possible to set a time window, during

which the measuring signals must meet the specified conditions.

Deactivation advantageously occurs should one of the two pressure signals

fall below a further reference value, mainly the deactivation threshold.

The two pressure sensors are appropriately arranged in different brake

circuits. [It may also be appropriate, where necessary, however, to provide two

sensors in one brake circuit.]

In preferred embodiments, just two pressure sensors, or just one pressure

sensor and one travel sensor, or just one pressure sensor, one travel sensor and

one trip switch are used throughout the entire brake system. A force sensor or

- 14 -

es. 4) 4 .5

10019486.05EEOE

Attorney Scket No. 225/50783

Marked-up Specification

force sensors may also be used [as equivalents to] instead of the pressure sensor

or pressure sensors.

Use of the present invention is feasible both in open hydraulic circuits and

in closed hydraulic circuits of the brake system. The brake system according to

the invention may be designed both with diagonally split brake circuits and with

front axle/rear axle split brake circuits.

- 15 -

Attorney Docket No. 225/50783 Marked-up Specification

Abstract

A brake system for a vehicle is equipped with a brake servo assistance unit for the automatic generation of brake force and with at least one sensor for the generation of a measuring signal[, which]. This signal represents an activity on the part of the driver and can be fed to a brake pressure control unit[, it being possible to generate an]. An activation control signal for the actuation of the brake servo assistance unit can be generated should the measuring signal lie within an activation value range. In order to improve [the] operating reliability, at least two sensors are provided for [the] measurement of an activity on the part of the driver, and an activation control signal can be generated should the measuring signals from the sensors each exceed a reference value.