Fundamentos Lógicos y Algebraicos

Interpretation of First-Order Formulas

Departamento de Sistemas Informáticos y Computación (DSIC) Universidad Politécnica de Valencia (UPV)

> Salvador Lucas http://slucas.webs.upv.es/

Máster en Ingeniería y Tecnología de Sistemas Software (MITSS)

What is the *meaning* of the following expressions?

- 5+5
- zusatz(V,V)
- f(a,b)
- x+0
- philosopher(plato)
- philosopher(david)
- q(c)
- $(\forall x)$ isPhilosopher $(x) \Rightarrow$ isClever(x)
- $(\forall m)(\forall n)$ $m :: Int \land n :: Int \Rightarrow m + n :: Int$

- 1 Interpreting function symbols. Algebras
- 2 Interpreting terms
- 3 Interpreting predicate symbols. First-Order Interpretations
- 4 Interpreting atoms
- 6 Interpreting formulas

Given a signature of function symbols \mathcal{F} , an \mathcal{F} -algebra is a pair $\mathcal{A} = (\mathsf{dom}(\mathcal{A}), \mathcal{F}_{\mathcal{A}})$, where

• dom(A) is a non-empty set (the domain or carrier), often written A

```
\mathcal{F} = \{\text{homer, plato, socrates}\}, all of them constant symbols
  \mathcal{A}_1 \quad \{ \mathfrak{D}, \mathfrak{D}, \mathfrak{D} \}
```

```
\mathcal{A}_2 \quad \{ \underline{\&}, \underline{\bigcirc}, \underline{\blacksquare} \}
A_3 \mathbb{N} = \{0, 1, 2, \ldots\}
\mathcal{A}_4 \{
```

• \mathcal{F}_A is a set of mappings $f^A: A^k \to A$ for each $f \in \mathcal{F}$ with k = ar(f).

$\mathcal{F}\!=\!\{\texttt{homer}, \texttt{plato}, \texttt{socrates}\}$	$f\in\mathcal{F}$	$f^{\mathcal{A}_1}$	$f^{\mathcal{A}_2}$	$f^{\mathcal{A}_3}$	$f^{\mathcal{A}_4}$	
	homer			5		
	plato	T		5		
	socrates	6		8		

A valuation mapping $\alpha: \mathcal{X} \to \mathcal{A}$ gives values to the variable symbols.

The *evaluation* mapping $[\cdot]^{\mathcal{A}}_{\alpha}: \mathcal{T}(\mathcal{F}, \mathcal{X}) \to \mathcal{A}$ is defined as follows: for all terms $t \in \mathcal{T}(\mathcal{F}, \mathcal{X})$:

t	$[t]^{\mathcal{A}}_{lpha}$	Comment
variable x	$\alpha(x)$	Use the valuation mapping α
constant a	$a^\mathcal{A}$	a interpreted using ${\mathcal F}$ -algebra ${\mathcal A}$
$f(t_1,\ldots,t_k)$	$f^{\mathcal{A}}([t_1]^{\mathcal{A}}_{\alpha},\ldots,[t_k]^{\mathcal{A}}_{\alpha})$	Recursion + interpretation f^{A} of f

Example (Interpreting terms without variables - valuation unneeded!)

Let $\mathcal{F}=\{1,add_{/2}\}$ and $\mathcal{A}=(\mathbb{N},\mathcal{F}_{\mathbb{N}})$ be given by $1^{\mathcal{A}}=1$ and $add^{\mathcal{A}}(x,y)=x+y$ for all $x,y\in\mathbb{N}$. For any *valuation function* α ,

$$[1]^{\mathcal{A}}_{\alpha}=1^{\mathcal{A}}=\mathbf{1}$$

•

$$[add(1, add(1, 1))]_{\alpha}^{\mathcal{A}} = add^{\mathcal{A}}([1]_{\alpha}^{\mathcal{A}}, [add(1, 1)]_{\alpha}^{\mathcal{A}})$$

$$= add^{\mathcal{A}}(1, add^{\mathcal{A}}([1]_{\alpha}^{\mathcal{A}}, [1]_{\alpha}^{\mathcal{A}}))$$

$$= add^{\mathcal{A}}(1, add^{\mathcal{A}}(1, 1))$$

$$= add^{\mathcal{A}}(1, 1 + 1)$$

$$= add^{\mathcal{A}}(1, 2)$$

$$= 1 + 2$$

$$= 3$$

This is an intended interpretation, but it is not the only one

Example (Interpreting terms without variables - valuation unneeded!)

Let $\mathcal{F}=\{1, add_{/2}\}$ and $\mathcal{A}=(\mathbb{N}, \mathcal{F}_{\mathbb{N}})$ be given by $1^{\mathcal{A}}=2$ and $add^{\mathcal{A}}(x,y)=x\times y$ for all $x,y\in\mathbb{N}$. For any valuation function α ,

$$[1]^{\mathcal{A}}_{\alpha}=1^{\mathcal{A}}=2$$

•

$$[add(1, add(1, 1))]_{\alpha}^{\mathcal{A}} = add^{\mathcal{A}}([1]_{\alpha}^{\mathcal{A}}, [add(1, 1)]_{\alpha}^{\mathcal{A}})$$

$$= add^{\mathcal{A}}(2, add^{\mathcal{A}}([1]_{\alpha}^{\mathcal{A}}, [1]_{\alpha}^{\mathcal{A}}))$$

$$= add^{\mathcal{A}}(2, add^{\mathcal{A}}(2, 2))$$

$$= add^{\mathcal{A}}(2, 2 \times 2)$$

$$= add^{\mathcal{A}}(2, 4)$$

$$= 2 \times 4$$

$$= 8$$

This is (perhaps) an unintended (but still valid) interpretation

Example (Interpreting terms with variables - valuation required!)

Let
$$\mathcal{F}=\{0,+_{/2}, imes_{/2}\}$$
 and $\mathcal{A}=(\mathbb{N},\mathcal{F}_{\mathbb{N}})$ be given by

$$0^{\mathcal{A}} = 0$$
, $x + {}^{\mathcal{A}} y = x + y$, and $x \times {}^{\mathcal{A}} y = x$ (!)

for all $x, y \in \mathbb{N}$. Let α be given by $\alpha(x) = \alpha(y) = 2$ and $\alpha(z) = 1$. Then,

2

$$\begin{aligned} [(x+y)\times(x+z)]^{\mathcal{A}}_{\alpha} &= [x+y]^{\mathcal{A}}_{\alpha}\times^{\mathcal{A}}[x+z]^{\mathcal{A}}_{\alpha} \\ &= ([x]^{\mathcal{A}}_{\alpha}+^{\mathcal{A}}[y]^{\mathcal{A}}_{\alpha})\times^{\mathcal{A}}([x]^{\mathcal{A}}_{\alpha}+^{\mathcal{A}}[z]^{\mathcal{A}}_{\alpha}) \\ &= (\alpha(x)+^{\mathcal{A}}\alpha(y))\times^{\mathcal{A}}(\alpha(x)+^{\mathcal{A}}\alpha(z)) \\ &= (2+^{\mathcal{A}}2)\times^{\mathcal{A}}(2+^{\mathcal{A}}1) \\ &= 4\times^{\mathcal{A}}3 \\ &= 4 \end{aligned}$$

An \mathcal{F} , Π -interpretation (or *structure*) \mathcal{I} on a *domain* \mathcal{A} is a triple $\mathcal{I} = (\mathcal{A}, \mathcal{F}_{\mathcal{A}}, \Pi_{\mathcal{A}})$ where

- $(\mathcal{A}, \mathcal{F}_{\mathcal{A}})$ is an \mathcal{F} -algebra,
- The equality symbol = is interpreted (if used) as the *equality on* A,
- for each *n*-ary $P \in \Pi$, $P^{\mathcal{I}} \in \Pi_{\mathcal{A}}$ is an n-ary *relation* on \mathcal{A} :

$$P^{\mathcal{I}} \subseteq \mathcal{A}^n = \mathcal{A} \underbrace{\times \cdots \times}_{n \text{ times}} \mathcal{A}$$

i.e., $P^{\mathcal{I}}$ is a (possibly empty) set of *n*-tuples (x_1, \ldots, x_n) , where $x_i \in \mathcal{A}$ for all $1 \le i \le n$.

$\Pi = \{ philosopher_{/1}, teacherOf_{/2} \}$				
Interpretation	Domain	$\texttt{philosopher}^{\mathcal{I}_i}$	$\texttt{teacherOf}^{\mathcal{I}_i}$	
\mathcal{I}_1	\mathcal{A}_1	$\{ 2, 0 \}$	$\{(0, 2)\}$	
\mathcal{I}_2	${\cal A}_1$	$\{2, 0\}$	$\{(\mathfrak{D},\mathfrak{D}),(\mathfrak{D},\mathfrak{D}),(\mathfrak{D},\mathfrak{D})\}$	
\mathcal{I}_3	\mathcal{A}_2	{ 🧟 }	$\{(\underline{\&}, \overline{\blacksquare})\}$	
\mathcal{I}_4	\mathcal{A}_3	{5 }	Ø	

Given an \mathcal{F} , Π -interpretation \mathcal{I} on a domain \mathcal{A} and a *valuation mapping* $\alpha: \mathcal{X} \to \mathcal{A}$, atoms $P(t_1, \ldots, t_n)$ are interpreted as follows:

$$[P(t_1,\ldots,t_n)]_{\alpha}^{\mathcal{I}}=\mathsf{true}\;\mathsf{iff}\;([t_1]_{\alpha}^{\mathcal{I}},\ldots,[t_n]_{\alpha}^{\mathcal{I}})\in P^{\mathcal{I}}$$

where $[_]^{\mathcal{I}}_{\alpha}: Form(\Sigma, \mathcal{X}) \to Bool$ is called the *interpretation* mapping.

Interp.	Domain	$\mathtt{homer}^{\mathcal{A}_i}$	$[exttt{philosopher(homer)}]^{\mathcal{I}_i}_{lpha}$
\mathcal{I}_1	\mathcal{A}_1		$false \ (\mathfrak{D} otin \{ \mathfrak{D}, \mathfrak{D} \} = philosopher^{\mathcal{I}_1})$
\mathcal{I}_2	${\cal A}_1$		$false\ (\mathfrak{D} otin \{ \mathfrak{D}, \mathfrak{D} \} = philosopher^{\mathcal{I}_2})$
\mathcal{I}_3	\mathcal{A}_2	2	$true\ (\climate{1mu} \in \{\climate{1mu}\} = philosopher^{\mathcal{I}_3})$
\mathcal{I}_4	\mathcal{A}_3	5	$true\ (5 \in \{5\} = \mathtt{philosopher}^{\mathcal{I}_4})$

Interp.	Domain	$\mathtt{homer}^{\mathcal{A}_i}$	· ,	$[exttt{teacherOf(homer,x)}]^{\mathcal{I}_i}_lpha$
\mathcal{I}_1	\mathcal{A}_1	1	9	false $((\mathfrak{D}, \mathfrak{D}) \notin \{(\mathfrak{D}, \mathfrak{D})\})$
\mathcal{I}_2	${\cal A}_1$	0	9	true $((\mathfrak{D}, \mathfrak{D}) \in \{(\mathfrak{D}, \mathfrak{D}), (\mathfrak{D}, \mathfrak{D}), (\mathfrak{D}, \mathfrak{D})\})$
\mathcal{I}_3	\mathcal{A}_2	<u>&</u>	<u>.</u>	true $((2, 3)) \in \{(2, 3))$

The interpretation mapping is extended to deal with arbitrary (well-formed) formulas. Connectives and quantifiers have a *fixed* interpretation, though.

Use of *connectives*: and
$$(\land)$$
, or (\lor) , implies (\Rightarrow) , not (\neg)

Other connectives (e.g., \Leftrightarrow , xor, ...) handled similarly

$F = philosopher(x) \land teacherOf(homer,x)$					
Interp.	$\alpha(x)$	$[ext{philosopher}(ext{x})]^{\mathcal{I}_i}_{lpha}$	$[\texttt{teacherOf(homer,x)}]^{\mathcal{I}_i}_{\alpha}$	$[F]^{\mathcal{I}_i}_lpha$	
\mathcal{I}_1	9	true	false	false	
\mathcal{I}_2	3	true	true	true	
\mathcal{I}_3		false	true	false	

Use of *quantifiers*: **existential** (\exists) and **universal** (\forall)

If $(\exists x)$ F' holds, then $a \in A$ as above is called a *witness*.

$$F = (\exists x) \text{ teacherOf (homer,x)}$$

$$F = (\forall x)(\text{philosopher}(x) \Rightarrow \text{teacherOf}(y,x))$$

Interp. $\alpha(y)$ $[F]_{\alpha}^{\mathcal{I}_i}$ Comment

- \mathcal{I}_1 **Solution** false Both \P and \mathbb{Z} are philosophers, but not taught by \mathbb{Z} .
- \mathcal{I}_2 graph true Both \P and \mathbb{Z} are philosophers taught by \mathbb{Z} .
- \mathcal{I}_3 so false so is a philosopher, but he did *not* taught to himself.

References

Chin-Liang Chang and Richard Char-Tung Lee.

Symbolic Logic and Mechanical Theorem Proving.

Academic Press, 1973.

Alan G. Hamilton.

Lógica para matemáticos.

Paraninfo, 1981.

Elliot Mendelson.

Introduction to Mathematical Logic. Fourth edition.

Chapman & Hall, 1997.