[16-833] Homework 3: Written Report

Bharath Somayajula

March 25, 2023

Contents

_	Linear SLAM		
	1.1	Odometry	1
		1.1.1 Measurement Function	1
		1.1.2 Jacobian	1
	1.2	Landmark	1
		1.2.1 Jacobian	2
	Non-Linear SLAM		
	2.1	Landmark	2
		2.1.1 Jacobian	9

1 Linear SLAM

1.1 Odometry

1.1.1 Measurement Function

Since the odometry results in a change in position, the measurement function is simply

$$h_o(\mathbf{r}^t, \mathbf{r}^{t+1}) = \mathbf{r}^{t+1} - \mathbf{r}^t$$

1.1.2 Jacobian

The Jacobian of measurement function is

$$H_o(\mathbf{r}^t, \mathbf{r}^{t+1}) = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

1.2 Landmark

Since landmarks are measured using the relative position of the robot and landmark, the measurement function is simply

$$h_l(\mathbf{r}^t, \mathbf{l}^k) = \mathbf{l}^k - \mathbf{r}^t$$

1.2.1 Jacobian

The Jacobian of measurement function is

$$H_l(\mathbf{r}^t, \mathbf{l}^k) = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

2 Non-Linear SLAM

2.1 Landmark

2.1.1 Jacobian

$$H_l(\mathbf{r}^t, \mathbf{l}^k) = \begin{bmatrix} \frac{l_y - r_y}{(l_x - r_x)^2 + (l_y - r_y)^2} & \frac{-(l_x - r_x)}{(l_x - r_x)^2 + (l_y - r_y)^2} & \frac{-(l_y - r_y)}{(l_x - r_x)^2 + (l_y - r_y)^2} & \frac{l_x - r_x}{(l_x - r_x)^2 + (l_y - r_y)^2} \\ \frac{-(l_x - r_x)^2 + (l_y - r_y)^2}{\sqrt{(l_x - r_x)^2 + (l_y - r_y)^2}} & \frac{l_x - r_x}{\sqrt{(l_x - r_x)^2 + (l_y - r_y)^2}} & \frac{l_x - r_x}{\sqrt{(l_x - r_x)^2 + (l_y - r_y)^2}} \end{bmatrix} \end{bmatrix}$$