

Taller de implantes físicos en red team

Emmanuel Seoane
Diego Bruno
Javier Antunez

Hola!

Soy Emmanuel

Trabajo en desarrollo de software.

Muchos me conocen como DSR! De indetectables Me gusta el hardware hacking

Hola!

Soy Diego

Trabajo entre otros temas planificando y ejecutando ejercicios de Red Team.

Instructor en Hackademy y EKO Trainings

You can find me at @Blackmantisec

Hola!

Soy Javier

Trabajo entre otros temas planificando y ejecutando ejercicios de Red Team.

Instructor en Hackademy y EKO Trainings

You can find me at @javierantunez

Cyber Kill Chain

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

- Puede darse por diferentes vías:
 - Acceso físico (ej: Clonado/emulación de tarjetas de control de acceso –ej_
 Proxmark, Flipper zero, Hunter Cat NFC-)

- Acceso físico a estaciones de trabajo
- Implantación de hardware (ej: WHID, WHID Elite, rubber ducky, pwnpi, etc).

Ocultandose a plena vista

 Ataques de redes inalámbricas (Rogue APs, Evil Twin, etc)

Persistencia/C&C en el target

 Nos permite retomar el acceso sin volver a ingresar físicamente (ej: Wifi Pineapple, Raspberry Pi+4G, bashbunny, Lan turtle)

Persistencia/C&C en el target

- Para no perder el acceso una vez logrado el ingreso físico a instalaciones del target.
- Buscamos pasar desapercibidos:

Persistencia/C&C en el target

 Para no perder el acceso una vez logrado el ingreso físico a instalaciones del target.

Buscamos pasar desapercibidos:

0001011

300 ta 11 30 113 a

https://github.com/xchwarze/wifi-

pineapple-cloner

Requerimientos

- Raspberry Pi pico (RPI2040)
- Cable micro USB
- Algunas descargas (a continuación)

Requerimientos

 https://github.com/dbisu/picoducky/releases/downloa d/v1.4/pico-duckyv1.4_win_es.zip

Conectar la raspi a la PC

 Se detectara como medio de almacenamiento
 RPI-RP2 (E:)

- Descomprimir el ZIP descargado
- Copiar el archivo de circuit Python * al raíz de la unidad nueva.

adafruit-circuitpython-raspberry_pi_pico-es-7.3.2.uf2

 La raspi se va a rebootear inmediatamente y arracara con un Nuevo nombre

 La raspi se va a rebootear inmediatamente y arracara con un Nuevo nombre

- Copiar la carpeta lib del zip al raiz de la raspi
- Copiar code.py del zip al raiz de la raspi
- Modificar payload.dd y agregar el siguiente texto "DELAY 250" luego de "GUI r" y antes de la palabra "notepad" [KEM The next Tou

STRING notepad

Salvar los cambios

 Copiar la payload.dd modificado al raiz de la raspi

 Para evitar que se ejecute el payload para reconfigurar puentear (Pin 1 y 3)

Modo stealth

No muestra el almacenamiento (jump pines

18 y 20)

Payloads variados para arrancar

 https://github.com/h ak5darren/USB-Rubber-Ducky/wiki/Payloads

Ducky script reference

 https://docs.hak5.or g/hak5-usb-rubberducky/ducky-scriptquick-reference

EKOPARTY

EKOPARTY

THANKS! GRACIAS!

@EKOZONAREDTEAM