ACTIVATED CARBON/POLYACENE MATERIAL COMPOSITE, ITS PRODUCTION, ELECTRICAL DOUBLE-LAYER CAPACITOR AND ITS COMPOSITE PART

Patent number:

JP4288361

Publication date:

1992-10-13

Inventor:

TABUCHI JUNJI; others: 03

Applicant:

NEC CORP

Classification:

- international:

C08L65/00; C01B31/08; H01G9/00; H01M4/02;

H01M4/60

- european:

Application number: JP19910081262 19910322

Priority number(s):

Abstract of JP4288361

PURPOSE:To obtain the title composite having an increased, capacity per unit volume and a reduced equivalent series resistance by thermally curing a mixture of activated carbon with a phenolic resin and heat-treating the mixture in a nonxidizing atmosphere to form a product having a specified C/H molar ratio.

CONSTITUTION:A mixture of a powdary or fibrous activated carbon (e.g. activated phenolic carbon powder) with a particulate or powdary phenolic resin (e.g. powdary phenol/formaldehyde resin) is thermally cured and heat-treated in a nonoxidizing atmosphere to obtain the title composite which has an H/C molar ratio in the range of 0.01 to 0.2. An electric double-layer capacitor is obtained by using this composite as a polrrizable electrode.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-288361

(43)公開日 平成4年(1992)10月13日

(51) Int.Cl. ⁸	識別記号	庁内整理番号	FΙ	技術表示箇所
C08L 65/00	LNY	8215-4 J		
C 0 1 B 31/08	Z	7003-4G		
H01G 9/00	301	7924-5E		
H 0 1 M 4/02	Z	8939-4K		
4/60		8222-4K		
				審査請求 有 請求項の数31(全 26 頁)
(21)出顧番号	特廣平3-81262		(71)出願人	000004237
				日本電気株式会社
(22)出顧日	平成3年(1991)3月	22日		東京都港区芝五丁目7番1号
			(72)発明者	田渕 順次
(31)優先権主張番号	特願平2-72208			東京都港区芝5丁目7番1号 日本電気株
(32)優先日	平 2 (1990) 3 月23日	3		式会社内
(33)優先権主張国	日本(JP)		(72)発明者	斉藤 貴之
(31)優先権主張番号	特願平2-107431			東京都港区芝5丁目7番1号 日本電気株
(32)優先日	平2 (1990) 4 月25日	3		式会社内
(33)優先権主張国	日本(JP)		(72)発明者	清水 ゆかり
(31)優先権主張番号	実願平2-98521		1	東京都港区芝5丁目7番1号 日本電気株
(32)優先日	平2 (1990) 9 月21日	3		式会社内
(33)優先権主張国	日本(JP)		(74)代理人	弁理士 舘野 千惠子
				最終頁に続く

(54)【発明の名称】 活性炭/ポリアセン系材料複合体とその製造方法、及び電気二重層コンデンサとその複合部品

(57)【要約】

【目的】 単位体積当たりの容量密度を向上させた活性 炭/ポリアセン系材料複合体を分極性電極に用いて小型 で大容量の電気二重層コンデンサを製造する。

【構成】 構成炭素原子と構成水素原子のモル比が 0.01≤ [H] / [C] ≤ 0.2の範囲の活性炭/ポリアセン系材料複合体を分極性電極1として用いる。また、活性炭とフェノール樹脂のペーストをスクリーン印刷した後、熱硬化、熱処理することにより導電性基板上に一体化された活性炭/ポリアセン系材料複合体厚膜を形成し、これを分極性電極とする。

【特許請求の範囲】

【請求項1】 - 括性炭粉末あるいは活性炭繊維と、ポリ アセン系材料との複合体であって、該複合体を構成する 炭素原子と水素原子のモル比[H]/[C]が、0.0 1 ≦ [H] / [C] ≦ 0. 2 の範囲にあることを特徴と する活性炭/ポリアセン系材料複合体。

【請求項2】 活性炭粉末あるいは活性炭繊維と粒状な いしは粉末状フェノール系樹脂との混合物を熱硬化せし め、非酸化性雰囲気中で熱処理を行うことを特徴とする 活性炭/ポリアセン系材料複合体の製造方法。

【請求項3】 活性炭粉末とポリアセン系材料との複合 体で構成されたことを特徴とする活性炭/ポリアセン系 材料複合体厚膜。

【請求項4】 活性炭粉末と粒状ないしは粉末状フェノ 一ル系樹脂を有機溶媒に溶解させた溶液の混合物を基板 上に成膜し熱硬化する工程を少なくとも1回以上行い、 次いで非酸化性雰囲気中で熱処理を行うことを特徴とす る請求項3記載の活性炭/ポリアセン系材料複合体厚膜 の製造方法。

【請求項5】 活性炭粉末と粒状ないしは粉末状フェノ 一ル系樹脂を有機溶媒に溶解させた溶液のペースト状混 合物をスクリーン印刷法により基板上に成膜し熱硬化せ しめ、次いで非酸化性雰囲気中で熱処理を行うことを特 徴とする請求項4記載の活性炭/ポリアセン系材料複合 体厚膜の製造方法。

【請求項6】 活性炭粉末と粒状ないしは粉末状フェノ 一ル系樹脂を有機溶媒に溶解させた溶液の混合液をスピ ンコーティング法により基板上に成膜し熱硬化せしめ、 次いで非酸化性雰囲気中で熱処理を行うことを特徴とす る請求項4記載の活性炭/ポリアセン系材料複合体厚膜 の創造方法。

【請求項7】 請求項1に記載の活性炭/ポリアセン系 材料複合体を分極性電極として用いたことを特徴とする 電気二重層コンデンサ。

【請求項8】 請求項3記載の活性炭ノポリアセン系材 料複合体厚膜を分極性電極として用いることを特徴とす る電気二重層コンデンサ。

【請求項9】 請求項1配載の電解液を含浸させた一対 の分極性電極を電子絶縁性でかつイオン透過性のセパレ ータを介して相対させたことを特徴とする請求項7また 40 は8配載の電気二重層コンデンサ。

【請求項10】 集電極材料として、導電性があり、か つ液体透過性のない緻密なカーボン材料またはカーボン 含有ゴムまたはカーボン含有プラスチックを用いたこと を特徴とする請求項7記載の電気二重層コンデンサ。

【請求項11】 分極性電極と集電極とが導電性接着剤 を介して電気的に接続されてなることを特徴とする請求 項10記載の電気二重層コンデンサ。

【請求項12】 分極性電極と集電極とが、分極性電極

ことにより電気的に接続されてなることを特徴とする請 求項10記載の電気二重層コンデンサ。

【請求項13】 集電極材料がカーポン含有プラスチッ クまたはカーボン含有ゴムであり、分極性電極と集電極 とが熱圧着により電気的に接続されてなることを特徴と する請求項10記載の電気二重層コンデンサ。

【請求項14】 請求項7記載の分極性電極を容器内に 収容してなる電気二重層コンデンサであって、容器は熱 可塑性樹脂を射出成型することにより作製し、かつ、集 10 電極または集電極と分極性電極の一部が容器または容器 蓋の一部として一体化されたことを特徴とする電気二重 層コンデンサ。

【請求項15】 集電体、端子電極および接続導体のう ちの少なくとも一つに、ホウ化物または炭化物または窒 化物の導電性セラミックスを用いたことを特徴とする請 求項7または8記載の電気二重層コンデンサ。

【請求項16】 ホウ化物として、2rB、CrB2, HfB2, MoB2, ScB2, TaB2, TiB2, V B2, ZrB2, CrB, Cr4B, LaB4, Mo2B5, NbB, TaB, VB, VaBa, WaBa, YBaおよび ZrB12のうちの1種以上を用いたことを特徴とする請 求項15記載の電気二重層コンデンサ。

【請求項17】 炭化物として、HfC, NbC, Ta C, TiC, VC, ZrC, V2C, Cr2C2, Co aC. MoC. MoaC. WCおよびWaCのうちの1種 以上を用いたことを特徴とする請求項15配載の電気二 重層コンデンサ。

【請求項18】 窒化物として、CrN, LaN, Nb N, TiN, VN, YN, ZrN, Nb:N, TaNB よびTa2Nのうちの1種以上を用いたことを特徴とす る請求項15記載の電気二重層コンデンサ。

【請求項19】 投影断面が正方形または長方形を有 し、外部端子取り出し用の切り欠き部が形成された上部 開放の容器の凹部に分極性電極を収納して片側電極とな し、骸片側電極2個をセパレータを挟んで相対向させ、 封止したことを特徴とする請求項7記載の電気二重層コ ンデンサ。

【請求項20】 外部端子取り出し用の切り欠き部は、 容器の一辺の中心からずれて形成され、かつ 2個の片側 電極はセパレータを挟んで相対向させた時の外部端子の 位置が投影断面上で重ならないように封止されている請 求項19記載の電気二重層コンデンサ。

【請求項21】 2個の片側電極は、セパレータを挟ん で相対向させた位置から、容器の投影断面が正方形であ る場合、相互に90度または180度または270度回 転させた位置に、また容器の投影断面が長方形である場 合、相互に180度回転させた位置に封止されている請 求項19記載の電気二重層コンデンサ。

【請求項22】 分極性電極は導電性基板あるいは導電 および/または集電極に形成された嵌合部位を嵌着する 50 性シート上に形成され、該導電性基板あるいは導電性シ

ートは集電極として機能する請求項8記載の電気二重層 コンデンサ。

【請求項23】 導電性基板の片面に分極性電極が形成された片側電極2組の間に、分極性電極を導電性基板あるいは導電性シートの両面に形成したものをセパレータを介して少なくとも1枚以上挟持してなり、少なくとも2組以上の電気二重層コンデンサを共通の集電極を介して直列接続したことを特徴とする請求項22記載の電気二重層コンデンサ。

【請求項24】 請求項22または23に配載の電気二 重層コンデンサは、プラスチックまたはゴムで形成され たガスケットと導電性基板または導電性シートとを接着 することにより封止されてなることを特徴とする電気二 重層コンデンサ。

【請求項25】 請求項22記載の電気二重層コンデンサの製造方法であって、導電性基板あるいは導電性シート上に少なくとも1個以上の活性炭ノポリアセン系材料複合体厚膜よりなる分極性電極のパターンを形成し、該パターンと同じ箇所を切り抜いたガスケットと前記分極性電極のパターンが形成された導電性基板あるいは導電 20性シートとを接着封止したもの2組を、セパレータを介して分極性電極同士が対向するように配置し、次いでガスケット同士を接着封止した後に全体を切断することにより少なくとも1個以上の電気二重層コンデンサを得ることを特徴とする電気二重層コンデンサの製造方法。

【請求項26】 分極性電極は耐酸化性のある金属基板上に形成され、一対の該金属基板上の分極性電極がセパレータを介して対向すると共に、ガスケットを介して前配金属基板の周辺部がかしめ封止されてなることを特徴とする請求項22記載の電気二重層コンデンサ。

【請求項27】 請求項26記載の電気二重層コンデンサの製造方法であって、耐酸化性のある金属基板上に、スクリーン印刷法により少なくとも1個以上の分極性電極となるパターンを活性炭粉末と熱硬化性樹脂溶液との混合物で形成し、一度に熱硬化および熱処理することにより複数個の分極性電極を形成した後、該パターンにかしめ封止する部分を同心円状にとった大きさに前記金属基板を打ち抜き、セパレータを介して一対の分極性電極を対向させ、ガスケットを介して金属基板の周辺部をかしめ封止することを特徴とする電気二重層コンデンサの40製造方法。

【請求項28】 水溶液系電解質を電解質溶液として用いた電気二重層コンデンサであって、過電圧を印加した時に放出される発生ガス同士が水になる反応を触媒する白金族の触媒よりなる触媒栓を安全装置として設けたことを特徴とする請求項7~27のいずれかに記載の電気二重層コンデンサ。

【請求項29】 水溶液系電解質を電解質溶液として用いた電気二重層コンデンサであって、過電圧を印加した時に放出される発生ガスおよび電解質溶液の排出用の安

全弁を安全装置として設けたことを特徴とする請求項? ~27のいずれかに配載の電気二重層コンデンサ。

【請求項30】 水溶液系または有機溶媒系電解質を電解質溶液として用いた電気二重層コンデンサであって、過電圧を印加した時に放出される発生ガスをイオン化させて水にする補助電極を安全装置として設けたことを特徴とする請求項7~27のいずれかに記載の電気二重層コンデンサ。

【請求項31】 請求項7~30のいずれかに記載の水 10 溶液系電気二重層コンデンサと鉛蓄電池とが同一電槽内 に封入され、かつ電気的に並列接続されてなることを特 後とする鉛蓄電池と電気二重層コンデンサとの複合部 品。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は電気二重層コンデンサあるいは電池に用いられる電極材料とその製造方法、及び 該材料を用いた電気二重層コンデンサと該コンデンサと の複合部品に関するものである。

[0002]

【従来の技術】一般的な電気二重層コンデンサの素子 (以下、基本素子と称す。) は、図1にその概略を示す ように、電解質溶液を含浸させた一対の分極性電極1を 電子絶縁性でかつイオン透過性の多孔性セパレータ3を 介して配置し、これを電子伝導性でかつイオン不透過性 の集電体2および形状保持のためのガスケット4により 封止した構造になっている。電気二重層コンデンサは、 基本素子の使用最高電圧が電解質溶液の電気分解電圧で あるため、使用電圧に応じて基本素子を一枚以上積層し 30 たものよりなる。ところで、電気二重層コンデンサは小 型で大容量のコンデンサとして、マイコン・メモリ等の パックアップや瞬時の大電流供給用補助電源などに広く 用いられている。そのため、マイコン等を組み込んだ装 置やシステムの小型化・低価格化に伴い、そこに用いら れる電気二重層コンデンサも小型・低価格で、かつ、瞬 時に大電流を流せるよう等価値列抵抗の小さな電気二重 層コンデンサが強く望まれている。この電気二重層コン デンサの小型・低価格化を実現するためには、単位体積 あたりの電気二重層容量を増加させ、電気二重層コンデ ンサの製造工程を簡略化することが非常に重要となって いる。また、等価直列抵抗を小さくするために、電気二 **重層コンデンサを構成する材料の固有抵抗を下げること** が重要である。

【0003】従来、電気二重層コンデンサの分極性電極としては、活性炭粉末もしくは活性炭繊維が用いられてきた。しかしながら、これらの電極材料はかさ密度が小さく、1つのセル内に充填できる量は小さなものとなっていた。また、これら活性炭粉末、活性炭繊維は、分極性電極として用いた場合、活性炭粉末同士、または活性炭繊維同士の接触抵抗が大きいため、電気二重層コンデ

ンサの等価直列抵抗が大きくなるといった欠点があっ た。一方、ポリアセン系材料は、特開昭58-1366 49号公報に示されるように、熱硬化性樹脂を非酸化性 雰囲気中で熱処理することにより得られる有用な材料で ある。このポリアセン系材料はイオンをドープすること ができるため、電池の活物質となり、実際に電池が開発 されている。

【0004】近年、電子部品の小型化が強く要求されて おり、電気二重層コンデンサの小型化を図るためには、 電極材料の充填密度を向上させることと、単位重量当た りの容量が大きな材料を開発する必要がある。このため 活性炭を導電性物質で結合する方法等が考えられてき た。例えば、特開昭63-226019号公報に示され るように、活性炭粉末あるいは活性炭繊維とフェノール 樹脂の混合物を炭化せしめる方法等があった。ところが フェノール樹脂を完全に炭化せしめるとカーポンとなる ため、活性炭の結合材料としてしか働かず、電極材料の うち活性炭以外のカーボン部は電極として容量発生に寄 与しないものであった。また特開昭63-226019 号公報に示されたフェノール樹脂は従来のレゾール型フ ェノール樹脂であり、大型の活性炭含有のフェノール樹 脂の熱硬化物を得るには不適当なものであった。ところ が、特公昭62-30211号公報に示された粒状ない し粉末状フェノール・ホルムアルデヒド系樹脂は従来の レゾール型フェノール樹脂に比較して重合度が大きく、 大型の活性炭含有のフェノール樹脂の熱硬化物を得るの に適した原料である。

[0005]

【発明が解決しようとする課題】上記のように、電気二 重層コンデンサの分極性材料にはいくつかの容量向上を 目指した発明がなされてきた。しかしながら、ポリアセ ン系材料だけでは比表面積を大きくするには限界があ り、電池特性としてはイオンのドープ・脱ドープを伴う ため、電池の内部抵抗が電気二重層コンデンサに比べて 大きくなるといった問題があった。また活性炭をカーボ ンで結合せしめると、カーボン部が電極として有効に働 かないという問題があった。本発明は以上述べたような 従来の問題点を解決するためになされたもので、小型で 体積当たりの容量が大きく、等価直列抵抗の低減化され た電気二重層コンデンサの電極材料を提供すると共に、 該電極材料を用いた電気二重層コンデンサならびに複合 部品を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明の第1は、活性炭 粉末あるいは活性炭繊維と、ポリアセン系材料との複合 体であって、該複合体を構成する炭素原子と水素原子の モル比 [H] / [C] が、0. 01≦ [H] / [C] ≦ 0. 2の範囲にあることを特徴とする活性炭/ポリアセ ン系材料複合体である。本発明の第2は、活性炭粉末あ るいは活性炭繊維と粒状ないしは粉末状フェノール系樹 50 ができる。

脂との混合物を熱硬化せしめ、非酸化性雰囲気中で熱処 理を行うことを特徴とする活性炭/ポリアセン系材料複 合体の製造方法である。本発明による活性炭/ポリアセ ン系材料複合体は、電気二重層コンデンサの分極性電極 として用いた場合、活性炭の電気二重層容量を利用する ため急速な充放電ができ、しかもポリアセン系材料を用 いるため活性炭材料の充填密度を向上させることができ るとともに、さらにポリアセン系材料の部分が一部容量 をもつ。このため、小型で大容量な電気二重層コンデン サの分極性電極が提供される。本発明において、[H] / [C] の値が 0.01未満であると、活性炭/ポリア セン全体がカーポン化してしまい、複合体中のポリアセ ン部分が容量に対して有効に働かなくなる。また、 [H] / [C] の値が 0. 2を越えると、フェノール樹 脂が完全にポリアセンとなっていないため導電性が低 く、複合体中のポリアセン部分が容量に対して有効に働 かなくなる。

【0007】本発明の第3は、活性炭粉末とポリアセン 系材料との複合体で構成されたことを特徴とする活性炭 20 /ポリアセン系材料複合体厚膜である。本発明の第4 は、活性炭粉末と粒状ないしは粉末状フェノール系樹脂 を有機溶媒に溶解させた溶液の混合物を基板上に成膜し 熱硬化する工程を少なくとも1回以上行い、次いで非酸 化性雰囲気中で熱処理を行うことを特徴とする上記第3 の発明に記載した活性炭/ポリアセン系材料複合体厚膜 の製造方法である。本発明の第5は、活性炭粉末と粒状 ないしは粉末状フェノール系樹脂を有機溶媒に溶解させ た溶液のペースト状混合物をスクリーン印刷法により基 板上に成膜し熱硬化せしめ、次いで非酸化性雰囲気中で 熱処理を行うことを特徴とする上記第4の発明に記載し た活性炭/ポリアセン系材料複合体厚膜の製造方法であ る。本発明の第6は、活性炭粉末と粒状ないしは粉末状 フェノール系樹脂を有機溶媒に溶解させた溶液の混合液 をスピンコーティング法により基板上に成膜し熱硬化せ しめ、次いで非酸化性雰囲気中で熱処理を行うことを特 徴とする上記第4の発明に記載した活性炭/ポリアセン 系材料複合体厚膜の製造方法である。

【0008】上配第3~6の発明は、プロック状複合体 の場合、厚さを1~2mm以下に成型することが困難な 40 ため小型化が難しく、また集電極の接続方法としては、 機械的な嵌合加工か、あるいは接着剤によるため、接触 抵抗が大きいという事情を考慮してなされたものであ る。本発明のような手段を備えると、括性炭/ポリアセ ン系材料複合体を非常に薄く形成することができるの で、電気二重層コンデンサの電極材料として用いると、 小型化、薄型化が可能である。さらに第4~6の発明の 方法によれば、成膜と熱硬化の工程を繰り返して膜厚を 変えることにより、電気二重層コンデンサの電極材料と して用いた時のコンデンサの容量を容易に制御すること

【0009】本発明の第7は、上記第1の発明に記載し た活性炭/ポリアセン系材料複合体を分極性電極として 用いたことを特徴とする電気二重層コンデンサである。 本発明の第8は、上記第3の発明に記載した活性炭/ポ リアセン系材料複合体厚膜を分極性電極として用いるこ とを特徴とする電気二重層コンデンサである。

【0010】本発明の第9は、上記第1の発明に記載し た、電解液を含浸させた一対の分極性電極を電子絶縁性 でかつイオン透過性のセパレータを介して相対させたこ とを特徴とする上配第7または第8の発明に配載した電 気二重層コンデンサである。上配第9の発明による電気 二重層コンデンサにおいては、分極性電極として用いる 活性炭/ポリアセン系複合材料は、活性炭の充填密度が 高く、電子伝導性があって結着剤が電気二重層容量を持 つため、従来の分極性電極に比べて単位体積あたりの電 気二重層容量が大きく、固有抵抗が小さい。また、固形 状であるため、分極性電極の挿入工程が簡略化され、電 気二重層コンデンサの低価格化が実現できる。さらに、 セパレータを有して分極性電極間の距離を短くしている ので、等価直列抵抗を小さくすることができる。

【0011】本発明の第10は、集電極材料として、導 電性があり、かつ液体透過性のない緻密なカーボン材料 またはカーボン含有ゴムまたはカーボン含有プラスチッ クを用いたことを特徴とする上記第7の発明に記載した 電気二重層コンデンサである。 本発明の第11は、分極 性電極と集電極とが導電性接着剤を介して電気的に接続 されてなることを特徴とする上記第10の発明に記載し た電気二重層コンデンサである。本発明の第12は、分 極性電極と集電極とが、分極性電極および/または集電 極に形成された嵌合部位を嵌着することにより電気的に 接続されてなることを特徴とする上記第10の発明に記 載した電気二重層コンデンサである。本発明の第13 は、集電極材料がカーボン含有プラスチックまたはカー ポン含有ゴムであり、分極性電極と集電極とが熱圧着に より電気的に接続されてなることを特徴とする上記第1 0 の発明に記載した電気二重層コンデンサである。上記 第10~13の発明による電気二重層コンデンサは、集 電極として安価で導電性があり、耐腐蝕性があるカーボ ン材料を用いているので、等価直列抵抗を低減させ、製 造工程を簡素化できる大容量の電気二重層コンデンサと 40 することができる。

【0012】本発明の第14は、上記第7の発明に記載 した分極性電極を容器内に収容してなる電気二重層コン デンサであって、容器は熱可塑性樹脂を射出成型するこ とにより作製し、かつ、集電極または集電極と分極性電 極の一部が容器または容器盛の一部として一体化された ことを特徴とする電気二重層コンデンサである。上記第 14の発明によれば、大量生産が可能で、かつ液漏れの 可能性が低減化された大容量の貿気二重層コンデンサと することができる。

【0013】本発明の第15は、集電体、端子電極およ び接続導体のうちの少なくとも一つに、ホウ化物または 炭化物または窒化物の導電性セラミックスを用いたこと を特徴とする上記第7または第8の発明に記載した電気 二重層コンデンサである。本発明の第16は、ホウ化物 として、ZrB、CrB2, HfB2, MoB2, Sc B2, TaB2, TiB2, VB2, ZrB2, CrB, C raB, LaBa, MoaBa, NbB, TaB, VB, V a B₂, W₂ B₅, Y B₄ および Z r B₁₂ のうちの 1 種以上 を用いたことを特徴とする上配第15の発明に記載した 電気二重層コンデンサである。本発明の第17は、炭化 物として、HfC, NbC, TaC, TiC, VC, Z rC, V2C, Cr3C2, CO2C, MOC, MO2C, WCおよびW2Cのうちの1種以上を用いたことを特徴 とする上記第15の発明に記載した電気二重層コンデン サである。本発明の第18は、窒化物として、CrN, LaN, NbN, TiN, VN, YN, ZrN, Nb2 N, TaNおよびTa2Nのうちの1種以上を用いたこ とを特徴とする上記第15の発明に記載した電気二重層 20 コンデンサである。

【0014】電気二重層コンデンサはメモリのパックア ップ用補助電源やモータ駆動時の瞬時大電流供給用補助 電源などとして使われている。特に静電容量が10F以 上であるような大容量の電気二重層コンデンサは、瞬時 大電流供給用として使用されることが多い。そのため、 電気二重層コンデンサの等価直列抵抗は極力小さくする 必要がある。活性炭/ポリアセン系材料複合体を分極性 電極に用いた電気二重層コンデンサの等価直列抵抗は、 分極性電極、集電体、接続導体、端子電極および電解液 の抵抗と接触抵抗とからなり、それぞれがほぼ均等の割 合で占めている。当初、集電体、端子電極および接続導 体には、電気伝導性があり、耐薬品性に優れ加工の容易 な炭素材料が用いられていた。しかし、炭素材料は、電 気伝導性はあるものの、金属に比べてかなり劣り、機械 的強度もそれほど強くはないという欠点を有する。とこ ろが、近年、ホウ化物、炭化物、窒化物などのセラミッ クスで、耐薬品性があり、比抵抗で0.1mΩ·cm以 下と電気伝導性に優れ、曲げ強度が300MPa(JI S R-1601)以上と機械的強度が高く、精密加工 も可能という材料が開発された。その例としては、例え ば電気化学工業株式会社より商品化されている商品名デ ンカハーキュロイが挙げられる (Fine Ceramics Repor t 8, No.7, pp264-267, 1990)。これら、ホウ化物, 炭化物、窒化物等の導電性セラミックスは以前より知ら れていたが、難焼結性であるため、製造には困難を要し ていた。しかし、低価格で製造でき、かつ放電加工によ る精密加工の可能なものが開発されたことにより、電気 二重層コンデンサの集電体、端子電極および接続導体の 材料として用いることができる。このような事情から、 上記第15~18の発明では、等価値列抵抗が小さく、

--473---

耐衝撃特性および量産性に優れた電気二重層コンデンサ が提供される。

【0015】本発明の第19は、投影断面が正方形また は長方形を有し、外部端子取り出し用の切り欠き部が形 成された上部開放の容器の凹部に分極性電極を収納して 片側電極となし、該片側電極2個をセパレータを挟んで 相対向させ、封止したことを特徴とする上記第7の発明 に配載した電気二重層コンデンサである。本発明の第2 0は、外部端子取り出し用の切り欠き部は、容器の一辺 の中心からずれて形成され、かつ2個の片側電極はセパ レータを挟んで相対向させた時の外部端子の位置が投影 **断面上で重ならないように封止されている上記第19の** 発明に記載した電気二重層コンデンサである。本発明の 第21は、2個の片側電極は、セパレータを挟んで相対 向させた位置から、容器の投影断面が正方形である場 合、相互に90度または180度または270度回転さ せた位置に、また容器の投影断面が長方形である場合、 相互に180度回転させた位置に封止されている上記第 19の発明に記載した電気二重層コンデンサである。上 記第19~21の発明によれば、構成する容器の部品点 数を減らすことができ、しかも薄型で外部端子を取り出 しやすい構造の電気二重層コンデンサが提供される。

【0016】本発明の第22は、分極性電極は導電性基 板あるいは導電性シート上に形成され、該導電性基板あ るいは導電性シートは集電極として機能する上記第8の 発明に記載した電気二重層コンデンサである。本発明の 第23は、導電性基板の片面に分極性電極が形成された 片側電極2組の間に、分極性電極を導電性基板あるいは 導電性シートの両面に形成したものをセパレータを介し て少なくとも1枚以上挟持してなり、少なくとも2組以 上の電気二重層コンデンサを共通の集電極を介して直列 接続したことを特徴とする上記第22の発明に記載した 電気二重層コンデンサである。本発明の第24は、上記 第22または第23の発明に記載した電気二重層コンデ ンサは、プラスチックまたはゴムで形成されたガスケッ トと導電性基板または導電性シートとを接着することに より封止されてなることを特徴とする電気二重層コンデ ンサである。本発明の第25は、上配第22の発明に配 載した電気二重層コンデンサの製造方法であって、導電 性基板あるいは導電性シート上に少なくとも1個以上の 活性炭/ポリアセン系材料複合体厚膜よりなる分極性電 極のパターンを形成し、該パターンと同じ箇所を切り抜 いたガスケットと前配分極性電極のパターンが形成され た導電性基板あるいは導電性シートとを接着封止したも の2組を、セパレータを介して分極性電極同士が対向す るように配置し、次いでガスケット同士を接着封止した 後に全体を切断することにより少なくとも1個以上の電 気二重層コンデンサを得ることを特徴とする電気二重層 コンデンサの製造方法である。本発明の第26は、分極 性電極は耐酸化性のある金属基板上に形成され、一対の

該金属基板上の分極性電極がセパレータを介して対向すると共に、ガスケットを介して前記金属基板の周辺部がかしめ封止されてなることを特徴とする上記第22の発明に記載した電気二重層コンデンサである。本発明の第27は、上記第26の発明に記載した電気二重層コンデンサの製造方法であって、耐酸化性のある金属基板コンデンサの製造方法であって、耐酸化性のある金属基板と、スクリーン印刷法により少なくとも1個以上の分極性電極となるパターンを活性炭粉末と熱硬化性樹脂溶液との混合物で形成し、一度に熱硬化および熱処理することにより複数値の分極性電極を形成した後、該パターンにより複数値の分極性電極を形成した後、該パターンにより複数値の分極性電極を形成した後、該パターンにかしめ封止する部分を同心円状にとった大きさに前記金属基板を打ち抜き、セパレータを介して一対の分極性電極を対向させ、ガスケットを介して金属基板の周辺部をかしめ封止することを特徴とする電気二重層コンデン

サの製造方法である。

10

【0017】上記第22~24の発明による電気二重層 コンデンサでは、分極性電極が活性炭粉末と熱硬化性樹 脂溶液との混合物を基板上に成膜することによる厚膜で 形成されているので、厚さを1~2mm以下に成型する ことが容易で、小型化が可能であると共に、成膜する時 の基板を導電性基板あるいは導電性シートとすること で、集電極として機能させることができる。このため集 電極上で直接複合体厚膜を形成することとなるので両者 は一体化され、接触抵抗が小さくなる。さらに、この導 電性基板あるいは導電性シートとガスケットとを接着す ることで、あるいは、導電性基板を耐酸化性のある金属 で形成し、ガスケットを介して金属基板をかしめ封止す ることで、簡単に素子の封止が達成される。また、上記 第25~27の発明による電気二重層コンデンサの製造 方法では、一枚の導電性基板または導電性シートに、多 数個の複合体厚膜のパターンを形成することで、本発明 による電気二重層コンデンサを量産性よく製造すること ができる。また、金属基板をかしめ封止した電気二重層 コンデンサは、一枚の金属基板に多数の複合体厚膜のパ ターンを形成し、これらのパターンをかしめ封止用の領 域を含む大きさに打ち抜くことで製造することができ

【0018】本発明の第28は、水溶液系電解質を電解質溶液として用いた電気二重層コンデンサであって、過電圧を印加した時に放出される発生ガス同士が水になる反応を触媒する白金族の触媒よりなる触媒栓を安全装置として設けたことを特徴とする上記第7~27のいずれかの発明に配載した電気二重層コンデンサであって、過電圧を印加した時に放出される発生ガスおよび電解質溶液として用いた電気二重層コンデンサであって、過電圧を印加した時に放出される発生ガスおよび電解質溶液の排出用の安全弁を安全装置として設けたことを特徴とする上記第7~27のいずれかの発明に記載した電気二重層コンデンサである。本発明の第30は、水溶液系電解質を電解質溶液として用いた電気二重層コンデンサ

であって、過電圧を印加した時に放出される発生ガスを イオン化させて水にする補助電極を安全装置として設け たことを特徴とする上記第7~27のいずれかの発明に 記載した電気二重層コンデンサである。

【0019】上記第28~30の発明によれば、定格電 圧以上の電圧を印加した場合でも、電槽内の圧力上昇や 爆発による破損等が起きることのない電気二重層コンデ ンサが提供される。即ち、過電圧を印加した時に、電解 質溶液が電気分解される結果放出される酸素ガスと水素 ガスに対し、安全装置として触媒栓、安全弁または補助 電極を設けることにより、電槽内の圧力の増大を防止 し、安全性を確保する。まず、触媒栓を設けることで、 発生した酸素ガスと水素ガスは触媒によりガス同士が反 応して水に戻される。また、安全弁を設けることで発生 ガスや電解質溶液は外気の流入なしにコンデンサ外部へ 放出される。さらに、補助電極を設けることで、発生ガ スはイオン化され、水に戻される。このようにして、い ずれも電槽内の圧力増加が防止され、電槽の破壊等を防 ぐことができる。

【0020】本発明の第31は、上記第7~30のいず れかの発明に記載した水溶液系電気二重層コンデンサと 鉛蓄電池とが同一電槽内に封入され、かつ電気的に並列 接続されてなることを特徴とする鉛蓄電池と電気二重層 コンデンサとの複合部品である。図33は、一般的な公 称電圧12Vの鉛蓄電池の概略を示す部分断面図であ る。電槽99内は隔壁により6つのプロックに区切られ ており、各プロックには櫛状の陽極板91と陰極板92 がセパレータ93とガラスマット94を挟んで交互に配 置されている(以下、1つのブロックをセルと称す)。 また、セル910内は電解質溶液である硫酸により満た されている。各セル910間は隔壁貫通式のセル間接続 導体96により電気的に直列となるように接続されてお り、98a,98bの端子により電槽99外と電気的接 統がとれるようになっている。各セル910には、充電 時に発生するガスの排気口と電解液補充のための注液口 を兼ねた液口栓911が取り付けられている。図34 は、分極性電極に固形状の活性炭を用いた一般的な電気 二重層コンデンサの概略を示す部分断面図である。水溶 液系電解質溶液を含浸させた一対の分極性電極97を接 触しないように相対させ、電槽99において隔壁により 区切られた1つのプロック内に固定する(以下、セルと 称す)。固形状の分極性電極97としては、活性炭とフ エノール系樹脂との混合物を熱処理することにより得ら れる活性炭/ポリアセン系複合材料が用いられる。セル 910の使用電圧は電解質溶液の電気分解電圧以下であ るため、使用電圧に応じてセル間接続導体96により、 セル910を電気的に直列接続した構造をもち、端子9 8 a. 98 bにより電槽 99 外と電気的接続がとれるよ うになっている。この電気二重層コンデンサは、小型で

源や瞬時大電流供給用補助電源などとして広く用いられ ている。ところで、鉛蓄電池において急速な放電(高率 放電)を行うことは寿命の低下につながるため、極力避 けなければならない。しかし、自動車用鉛蓄電池等はエ ンジン始動時にスタータへ電力を供給するなどの高率放 電を行う必要があり、サイクルサービス用鉛蓄電池等に 比べ寿命が非常に短い。これに対し、電気二重層コンデ ンサは鉛蓄電池ほどの容量はないが、急速な充放電を繰 り返しても、性能や信頼性になんら問題がないというメ リットを有する。しかし、鉛蓄電池と電気二重層コンデ ンサを電気的に並列に接続しただけでは体積効率が低下

12

【0021】これに対して、上記第31の発明によれ ば、鉛蓄電池と電気二重層コンデンサを電気的に並列接 続し、急速な充放電を電気二重層コンデンサにより行う ことで鉛蓄電池の長寿命化を計ることができる。また、 電気二重層コンデンサの分極性電極として、単位体積当 たりの電気二重層容量が大きく、比抵抗の小さな材料で ある、活性炭とフェノール系樹脂の混合物を熱処理して 得られる固形状活性炭、例えば活性炭/ポリアセン系複 合材料を用いているので、小型化が達成できる。従来、 鉛蓄電池と固形状活性炭を分極性電極として用いた電気 二重層コンデンサとを同一電槽内に封入した例はなく、 鉛蓄電池の長寿命化に極めて有効である。

[0022]

するという欠点を有する。

【実施例】以下、本発明の実施例について説明する。 請求項1,2,7の発明の実施例 実施例1

フェノール系活性炭粉末 (比表面積1200m²/g) とフェノール樹脂粉末を表1に示す配合比にてポールミ ルで乾式混合した。フェノール樹脂粉末としては、特公 昭62-30211号公報に示された粒状ないし粉末状 フェノール・ホルムアルデヒド系樹脂(鐘紡(株)製 商品名ベルバールS890)を用いた。この樹脂を用い ることにより活性炭粉末との混合が均一にできるだけで なく、重合度が従来のレゾール型フェノール樹脂に比べ て大きいこととメチロール基を有するため大型の活性炭 含有フェノール樹脂の熱硬化物を得ることができる。こ の混合粉末を150℃、100Kg/cm²の圧力で1 5分間金型成形した。これを35×10×2mm³の大 きさに切り出し、電気炉中、N2 努囲気下で表1に示す 温度で各2時間熱処理を行った。まず、活性炭/ポリア セン系材料複合体の元素分析を行い、水素原子と炭素原 子のモル比 [H] / [C] を求めた。この値と直流四端 子法で求めた導電率の値を表1に示す。次に、得られた 活性炭/ポリアセン系材料複合体を2枚用意し、30w t%硫酸中で5~8時間真空含浸を行い、複合体内部に 電解質溶液を含浸させた。この1対の電板のそれぞれの 上端を金箔で覆い、金属製クリップで挟んでリード線を 大容量のコンデンサとしてメモリなどのパックアップ電 50 とり、30 w t %硫酸を入れたピーカー内で3 c mの距

離を隔てて対向させ、簡易電気二重層コンデンサとし た。この簡易電気二重層コンデンサの両極の間に900 mVを印加し、1時間定電圧充電を行った。この後、1 0mAで定電流放電させ、電圧が540mVから450 mVに降下するのに要した時間から、この簡易電気二重 層コンデンサの容量を求めた。容量を規格化するため に、容量の値を2枚の電極の見かけの体積で割った体積 当たりの容量を表1に示す。また、1kHz, 10mA の定電流をこの簡易電気二重層コンデンサに流し、その 時両端に現れる電圧から等価直列抵抗を求めた。

【0023】表1から明らかなように、熱処理温度が高 くなるにつれて電極材料の抵抗率が小さくなるために、 電気二重層コンデンサの等価直列抵抗の値は小さくなっ ている。一方、熱処理温度については樹脂と活性炭の混 合比にかかわらず、熱処理温度700~800℃で容量 のピークが認められる。容量の値そのものは、用いる樹 脂によって種々異なっていたが、上記の傾向は、樹脂の 種類及び混合比に関係なく認められた。これは、活性炭*

*の結合剤として働くポリアセン系材料が、低温では抵抗 が高いために電気二重層容量に寄与する活性炭が有効に 働かず、高温ではカーボン化するために電極材料として 有効に働かないためである。ポリアセン系材料がどのよ うな仕組みで電気二重層容量に寄与するかは、現在のと ころその詳細は不明であるが、この実施例の場合、硫酸 中の水素イオンと硫酸イオンがそれぞれこの活性炭/ボ リアセン系材料複合体のポリアセン系材料部分にドー プ、脱ドープされることによると考えられる。原料の粒 10 状ないし粉末状フェノール・ホルムアルデヒド系樹脂と しては、上記の他にユニチカ(株)製、商品名ユニペッ クスがあり、これもほぼ同じ効果が得られる。また、フ エノール・ホルムアルデヒド系樹脂以外に、含窒素フェ ノール系樹脂、例えばフェノールユリア樹脂、フェノー ルメラミン樹脂を用いても同様の結果が得られる。

14

[0024]

【表1】

No.	混合比	(3)	熱処理 温度	[H]	抵抗率	コンデン	/サ特性
NO.	樹脂	活性炭	(C)	[C]	(Ω • cm)	容量 (F/cm³)	ESR (Ω)
1	70	30	700	0.070	0. 424	2. 14	6. 53
2	70	30	800	0.053	0.0741	1.86	1.87
3	70	30	900	0.035	0.0167	0.48	1.88
4	70	30	1000	0.022	0.0086	0. 56	1.28
5	50	50	700	0.086	0.1892	21.4	2.18
6	50	50	800	0.061	0.0515	13.5	1. 34
7	50	50	900	0.038	0.0282	13.0	1.10
8	50	50	1000	0.027	0.0143	7.7	1.15
9	40	60	600	0.151	0. 576	24.4	9.3
. 0	40	60	700	0.103	0. 166	39.1	1.99
. 1	40	60	800	0.059	0.0545	44.9	1.24
. 2	40	60	900	0.021	0.0228	33.1	1.05
. 3	40	60	1000	0.019	0.0155	30.2	1.17
4	30	70	600	0.196	1. 365	36.7	11.6
. 5	30	70	700	0.136	0. 203	43. 2	2.51
6	30	70	800	0.088	0.109	47.0	1.40

【0025】実施例2

実施例1の表1中、No. 11の試料、即ちフェノール 樹脂/活性炭=40/60 (重量比)、熱処理温度80 0℃の試料を、テトラエチルアンモニウムのホウフッ化 塩(EtaNBFa)を電解質とした1モル/1のプロピ レンカーポネート有機電解液を約5時間真空含浸させ た。2枚の電極のそれぞれの上端を金属製クリップで挟

コ内で3cmの距離を隔てて対向させ、簡易電気二重層 コンデンサとした。この簡易電気二重層コンデンサの両 極間に1.8 Vを印加し、1時間定電圧充電を行った。 この後、10mAで定電流放電させ、電圧が1080m Vから900mVに降下するのに要した時間からこの簡 易電気二重層コンデンサの容量を求めた。単位体積当た りの容量の値は10.2F/cm^aであった。実施例1 んでリード線をとり、上述の有機電解液を入れたフラス 50 と同様にして求めた等価直列抵抗の値は26Ωであっ

た。真空含浸及び測定はNaを流したグローブポックス内で行った。

【0026】 実施例3

フェノール系活性炭繊維(日本カイノール社製、比表面積2000m³/g)10gに粉末フェノール樹脂10gをメチルセルソルブ8gに溶解させたフェノール樹脂溶液を含浸させ、120℃で硬化させた。この活性炭繊維/フェノール樹脂複合材料を電気炉にてN₂中、800℃で熱処理した。元素分析の結果、[H]/[C]の値は0.057であった。得られた活性炭/ポリアセン系材料複合体を20×10×1mm³に切り出し、実施例1と同様に30wt%硫酸を真空含浸させ、30wt%硫酸中で簡易電気二重層コンデンサを組み立てた。実施例1と同様の測定方法により求めた、この材料による単位体積当たりの電気二重層容量は18.2F/cm³、等価直列抵抗の値は1.4Ωであった。

【0027】実施例4

フェノール系活性炭粉末(比表面積1200m²/g)とフェノール樹脂粉末を40/60(重量比)の割合でポールミルにて乾式混合した。この混合粉末を150℃,100Kg/cm²の圧力で15分間金型成形した。これを35×10×2mm³の大きさに切り出し、電気炉中、 N_2 努囲気下で800℃で2時間熱処理した。実施例1と同様に30wt%硫酸を真空含浸させ、30wt%硫酸中で簡易電気二重層コンデンサを組み立てた。実施例1と同様の測定方法により求めたこの材料による単位体積当たりの電気二重層容量は28.4F/cm³、等価直列抵抗の値は1.12 Ω であった。

【0028】比較例1

従来の活性炭粉末を用いた電気二重層コンデンサを試作 した。用いた粉末活性炭は、実施例1、実施例2、実施 例4で用いた粉末活性炭と同じフェノール樹脂系活性炭 であり、比表面積が1200m2/gのものである。こ れを40wt%硫酸と混合し、ペーストとした。直径3 0mmの孔を開けた厚み 0.5mmの絶縁性ゴムと、厚 み0.2mmの導電性ゴムを貼り合わせ、孔にペースト を塗り込み片側の分極性電極とした。厚み0. 1mmの ポリエチレン製セパレータを32mm径に切り出し、こ れと中心を合わせてその両側に分極性電極を対向させ、 全体に30kg/cm²の圧力を印加し、その状態で電 40 気二重層コンデンサの容量と等価直列抵抗を測定した。 容量の測定方法は、実施例1と同じく、電気二重層コン デンサの両端に1時間、900mVで定電圧充電し、1 0mAの定電流放電させ、540mVから450mVに 電圧が降下するのに要した時間から容量を測定した。圧 力をかけた時のゴムの厚みを測定して活性炭ペーストの 占める体積を求め、粉末活性炭と硫酸の混合比から粉末 活性炭の体積を算出した。容量の値を両側の活性炭の体 積で割った単位体積当たりの容量は26F/cm3であ った。等価直列抵抗の値は0.40であった。比較例1

と実施例1~4は、電極間距離が違うなどにより単純には比較できないが、上配の結果から、本発明によれば単位体積当たりの容量の向上が見られ、電気二重層コンデンサの小型化を図ることができる。しかも、電極が固体

16

ンサの小型化を図ることができる。しかも、電極が固体 であるため製造プロセスの簡便化が図れることが期待さ れる。

【0029】比較例2

フェノール系括性炭繊維(比表面積2000m*/g) 10gに水溶性レゾール型フェノール樹脂10gを含浸 させ、120℃で硬化させた。この活性炭繊維/フェノ ール樹脂複合体は厚み0.6mmのものであり、これを 電気炉にてNa中、1000℃で熱処理した。これを2 0×10mm²の面積で切り出し、実施例1と同様にし て30wt%硫酸を真空含浸させ30wt%硫酸中で簡 易電気二重層コンデンサを組み立てた。実施例1と同じ 方法で測定した、この材料による単位体積当たりの容量 は約8F/cm³であった。この容量の値は実施例1の 表1中7の場合13F/cm³であることと比較して小 さな値であり、これはレゾール型フェノール樹脂を出発 原料とした場合、緻密な分極性電極を得ることが困難で あることに起因する。さらにレゾール型のフェノール樹 脂は本発明で用いる粉末状フェノール樹脂と比較して重 合度が小さいことから、レゾール型フェノール樹脂を出 発原料として作製した分極性電極は、機械的強度が弱く 脆いものであった。本比較例は特開昭63-22601 9号公報で示された方法である。

【0030】<u>請求項3~6の発明の実施例</u> 実施例5

フェノール系活性炭粉末とフェノール樹脂粉末の重量比 が表2に示す値になるように混合した。これらの混合粉 にメチルセルソルプを加えることによりフェノール系樹 脂粉末を溶解し、E型粘度計で測定した粘度が3万~4 万センチポアズになるようにそれぞれペースト状に混合 した。このペースト状混合物を325メッシュのステン レス製スクリーンを用いて30×15mm2の面積で力 ーポン基板上に印刷し、オーブン中、150℃で30分 間熱硬化させた。これを電気炉中、N2雰囲気下で表2 に示す温度で各2時間熱処理を行った。昇降温速度は1 00℃/hとした。熱処理後の膜厚は、断面の走査型電 子顕微鏡観察の結果、約20μmであった。各厚膜を基 板から剥離し、直流四端子法で求めた抵抗率の値を表2 に示す。また、同じように基板から剥離した各厚膜のB ET法により測定した表面積を表2に示す。次に、得ら れたカーボン基板上の活性炭/ポリアセン系材料複合体 厚膜を2枚用意し、30wt%硫酸水溶液中で1時間真 空含浸を行い、複合体厚膜内部に電解質溶液を含浸させ た。この一対のカーボン基板上の分極性電極を、間に3 0wt%硫酸水溶液を浸した厚さ110μmのポリエチ レン製セパレータを挟んで電極側が内側になるように貼 50 り合わせ、外側のカーポン基板側にそれぞれ金箔を密着

させ、金属製クリップで挟みリード線をとり、全体を塩 ビ製の板で挟んで固定し簡易電気二重層コンデンサとし た。この簡易電気二重層コンデンサの両極の間に900 mVを印加し、1時間定電圧充電を行った。この後、1 mAで定電流放電させ、電圧が540mVから450m Vに降下するのに要した時間から、この簡易電気二重層 コンデンサの容量を求めた。容量を規格化するために、 容量の値を2枚の電極の見かけの体積で割った体積当た りの容量を表2に示す。また、1kHz、10mAの定 電流をこの簡易電気二重層コンデンサに流し、その時両 10 端に現れる電圧から等価直列抵抗を求めた。表2から明*

*らかなように、等価直列抵抗は活性炭/樹脂の混合比お よび熱処理温度にあまり依存せず、数十ミリオームと小 さい。また、単位体積当たりの容量は熱処理温度700 ~900℃でピークを持ち、従来の粉末活性炭を用いた 電気二重層コンデンサの2倍以上の値を示した。水溶性 レゾール型フェノール樹脂を用いても同様のペーストを 作製可能であるが、粘度の安定性の点で本実施例で用い た粉末フェノール樹脂の方が優れている。

18

[0031] 【表2】

N-	混合比(1	重量%)	熟処理		Lett July volta	コンデ	ンサ特性
No.	活性炭	樹脂	· 温度 (℃)	表面積 (m²/g)	抵抗率 (Ω・cm)	容量 (F/cw³)	ESR (mΩ)
1	50	50	600	547.7	2.28×10 ⁻¹	42.6	48
2	50	50	700	577.5	3.34×10 ⁻²	94.4	44
3	50	50	800	553.7	2.70×10 ⁻²	85. 2	52
4	50	50	900	541.6	1.90×10 ⁻²	84.6	68
5	50	50	1000	337.9	1.32×10 ⁻²	49.4	37
6	60	40	600	729.3	6.03×10 ⁻²	90.7	109
7	60	40	700	888.2	3.16×10 ⁻²	143.6	51
8	60	40	800	954.9	2.50×10 ⁻²	170.3	42
9	60	40	900	792.5	1.78×10 ⁻²	124.7	47
. 0	60	40	1000	740.0	1.58×10-3	1 13. 4	38
. 1	70	30	600	832.1	2.00×10 ⁻¹	142.8	129
. 2	70	30	700	940.7	4.47×10 ⁻²	166.0	63
. 3	70	30	800	999.3	4.79×10 ⁻²	181. 2	58
. 4	70	30	900	1010.4	3. 12×10 ⁻²	185. 3	49
. 5	70	30	1000	911. 3	2. 24×10 ⁻²	154.4	50

【0032】実施例6

フェノール系活性炭粉末とフェノール樹脂粉末の重量比 が50/50になるようにはかりとり、これらの混合粉 にメチルセルソルブを加えることによりフェノール系樹 脂粉末を溶解し、E型粘度計で測定した粘度が3万~4 のペースト状混合物を325メッシュのステンレス製ス クリーンを用いて30×15mm[®]の面積でカーボン基 板上に印刷し、オーブン中、150℃で30分間熱硬化 させ、さらにこの熱硬化膜上に再度スクリーン印刷を行 い、同様に熱硬化を行う工程を表3に示す回数行った。

これを電気炉中、N₂雰囲気下、700℃で各2時間熱 処理を行った。昇降温速度は100℃/hとした。熱処 理後の厚膜の断面の走査型電子顕微鏡観察より求めた膜 厚を表3に示す。次に、実施例5と同様の方法で簡易電 気二重層コンデンサを試作し、同様の方法で求めた簡易 万センチポアズになるようにペースト状に混合した。こ 40 電気二重層コンデンサの容量、および等価直列抵抗の値 を表3に示す。表3から明らかなように、スクリーン印 刷の回数で膜厚を変えることにより、容易にコンデンサ の容量を制御することができる。

> [0033] 【表3】

No	印刷回数	附曾	 ンサ特性
No.			ESR (mΩ)

19				
1	1	18.2	1. 70	44
2	2	35.8	3. 35	49
3	3	49.1	4. 25	60
4	4	58.8	5. 39	77

【0034】 実施例7

フェノール系活性炭粉末とフェノール樹脂粉末の重量比 が50/50になるようにはかりとり、これらの混合粉 にメチルセルソルブを加えることによりフェノール系樹 脂粉末を溶解し、E型粘度計で測定した粘度が1万セン チボアズ以下になるようにペースト状に混合した。この 混合液を直径50mmのカーボン基板上にスピンコーテ ィングし、オープン中、150℃で30分間熱硬化さ せ、さらにこの熱硬化膜上に再度スピンコーティングを 行い、同様に熱硬化を行った。これを電気炉中、N2努 囲気下、700℃で2時間熱処理を行った。昇降温速度 は100℃/hとした。熱処理後の厚膜の断面の走査型 電子顕微鏡観察より求めた膜厚は10.2 µmであっ た。次に、実施例1と同様の方法で簡易電気二重層コン デンサを試作し、同様の方法で求めた体積当たりの容量 20 は60.3F/cm3、等価直列抵抗は40mQであっ た。

【0035】実施例8

実施例5の表2中、No. 8の試料を2枚用意し、テトラ エチルアンモニウムのホウフッ化塩(E t NBF。)を 電解質とした1モル/1のプロピレンカーボネイト有機 電解液を約1時間真空含浸を行った。実施例5と同様に この一対のカーボン基板上の分極性電極を、間に上述の 有機電解液に浸した厚さ110μmのポリエチレン製セ パレータを挟んで電極側が内側になるように貼り合わ 30 せ、外側のカーボン基板側にそれぞれ金箔を密着させ、 金属製クリップで挟みリード線をとり、全体を塩ビ製の 板で挟んで固定し簡易電気二重層コンデンサとした。こ の電気二重層コンデンサの両極間に1.8 Vを印加し、 1時間定電圧充電を行った。この後、1mAで定電流放 電させ、電圧が1080mVから900mVに降下する のに要した時間からこの電気二重層コンデンサの容量を 求めた。単位体積当たりの容量の値は19.0F/cm ³であった。実施例5と同様にして求めた等価直列抵抗 の値は4.60であった。なお、活性炭と熱硬化性樹脂 溶液との混合物の成膜方法として、基板の一部をマスク し、通常の塗料の塗布方法である刷毛あるいはローラで **盤布した後、熱硬化させる方法によっても、実施例5~** 8と同様のコンデンサ特性を示す活性炭/ポリアセン系 材料複合体厚膜を得ることができた。

【0036】鯖求項9の発明の実施例

実施例 9

フェノール系活性炭粉末(比表面積1200m²/g) しめ封口して と粉末状のフェノール系樹脂とを60/40(重量比) 出すことに、 の割合でボールミルにより乾式混合し、この混合粉末を 50 を製造した。

射出成型機にて直径8.5mm,厚さ1mmのディスク 状になるように成型した。この成型体を窒素雰囲気にお いて800℃で熱処理し、活性炭/ポリアセン系複合材 料を得た。昇温速度は10℃/Hである。このとき活性 炭/ポリアセン系複合材料は等方的に7%の収縮をした ため、大きさは直径7.9mmで、厚さ0.93mmで あった。この得られた活性炭/ポリアセン系複合材料を 図1に示す分極性電極1とした。分極性電極1は電解液 である40wt%の硫酸中に入れ、この容器を5時間真 空に引くことにより電解液を含浸させた。そして、電解 液を含浸させた分極性電極1を、集電体2とガスケット 4 を圧着することにより形成された凹部へ挿入した。集 電体2には、厚さ200 mmで直径12.8mmの未加 硫の導電性プチルゴムを用いた。また、ガスケット4と しては、厚さ1mm、直径12、8mmで、同心円状に 8. 0 mmの孔をあけた未加硫のプチルゴムを用いた。 集電体2とガスケット4を圧着して形成された凹部に分 極性電極1を挿入したものを分極性電極1が相対するよ うにセパレータ3を介して圧着し、7kg/cm²の圧 力を加えた状態で120℃、3時間放置して、集電体2 とガスケット4、およびガスケット4間を加硫接着し、 基本素子8を得た。セパレータ3には、厚さ100μm でポリエチレン製の多孔性セパレータを使用した。この 基本素子8を6枚積層し、図2に示すように金属ケース 5と絶縁ケース6でかしめ封口して、電極7a, ?bで 外部に端子を取り出すことにより、動作電圧5Vの電気 二重層コンデンサを製造した。

20

【0037】実施例10

図3の分極性電極11として実施例9と同じものを使用 した。実施例9と同様に、分極性電極11に電解液を含 浸させ、集電体12とガスケット14を圧着して形成さ れた凹部に挿入した。集電体12には、直径12.8m mで厚さ50μmのカーボンを分散させたポリエチレン フィルムを、ガスケット14には、厚さ2mm, 直径1 2. 8mmで、同心円状に8. 0mmの孔をあけた未加 硫のプチルゴムを用いた。凹部に挿入した分極性電極1 1の上に同心円状に、厚さ100μmでポリプロピレン 製の多孔性セパレータ13を配置し、さらにその上に電 解液を含浸させた分極性電極11を配置した後、集電体 12により封口し、実施例9と同一条件で加硫接着して 基本索子18を得た。この基本索子18を6枚積層し、 図4に示すように金属ケース15と絶縁ケース16でか しめ封口して、電極17a、17bで外部に端子を取り 出すことにより、動作電圧5Vの電気二重層コンデンサ

【0038】実施例11

図5の分極性電極21として、実施例9と同じものを使 用した。この一対の分極性電極21の片面にそれぞれプ ラズマ溶射法により200μmのアルミニウム層を形成 したものを集電体22a、22bとし、集電体22aと 金属ケース25、および集電体22bと金属ケース26 をそれぞれ電気溶接した後、電解質として過塩素酸テト ラブチルアンモニウム、溶媒にプロピレンカーポネート を用いた電解質溶液を含浸させた。そして、ポリプロピ レン製多孔性セパレータ23を介してこれらを分極性電 極21が相対するように対向させた後、金属ケース25 および金属ケース26の閉口周縁部をガスケット24を 介して封口し、基本素子27を得た。この基本素子2 7, 有底筒状の接続カップ28および電極29a, 29 bをレーザ溶接により接続して図6に示すような動作電 圧5 Vの電気二重層コンデンサを得た。

【0039】比較例3

実施例9で用いたフェノール系活性炭粉末を図1に示す 分極性電極1とした。この分極性電極1と電解液である 質体 2 とガスケット 4 を圧着することにより形成された 凹部へ充填した。以下、実施例9と同様にして電気二重 層コンデンサを得た。上配の各実施例、比較例で得た電 気二重層コンデンサにおいて、コンデンサ特性のうち静 電容量と等価直列抵抗および漏れ電流について測定し た。静鼠容量の測定は、電気二重層コンデンサに1 k Ω *

*の抵抗を直列に接続し、5 Vの定電圧を印加したときの 時定数より算出した。また、等価直列抵抗は、電気二重 層コンデンサに1kHzで10mAの定電流を流し、電 気二重層コンデンサ両端の電圧を測定することにより求 めた。漏れ電流は、電気二重層コンデンサに直列に10 Qの抵抗を接続して5Vの定電圧を印加した後、30分 後抵抗両端にかかっている電圧より算出した。表4に各 実施例、比較例で得た電気二重層コンデンサの静電容 量、等価直列抵抗、漏れ電流を示す。また同表に、実施 10 例9と同じ分極性電極に40wt%の硫酸を含浸させ、 40wt%の硫酸中で3cmの距離を隔てて固定した一 対の分極性電極を6つ直列に接続した簡易電気二重層コ ンデンサの特性も併せて示す。実施例9と比較例3との 比較から明らかなように、基本素子の構造を同一とした とき、分極性電極として活性炭/ポリアセン系複合材料 を用いた実施例9のほうが静電容量・等価直列抵抗とも に良好な値を示した。また、製造プロセスにおいても、 実施例9のほうが分極性電極が固形状であるため、分極 性電極の挿入工程が簡略化され、電気二重層コンデンサ 40wt%の硫酸とを混合してペースト状とした後、集 20 の低価格化を実現できた。実施例10においても実施例 9と同様な効果が確認できた。また、実施例11では、 電解液として有機系のものを使用しているため等価直列 抵抗が大きいが、耐電圧が大きいため基本素子が2枚で 済み、実施例9より小型化を実現できた。

22

[0040] 【表4】

	静電容量 (F)	等価直列抵抗 (Q)	漏れ電流 (μA)	基本素子数
実施例 9	0. 304	4.2	45. 0	6
実施例10	0. 295	4.4	48.2	6
実施例11	0.318	12.8	51.1	2
比較例3	0.198	6. 3	49.0	6
簡易電気二重層 コンデンサ	0. 296	8. 3	55. 4	6

【0041】請求項10~13の発明の実施例 実施例12

活性炭粉末とフェノール樹脂粉末を重量比で60対40 の割合でとり、ボールミルにて乾式混合を行った。この 混合粉末を150℃、100kg/cm2で15分間金 型成型し、100×70×6mm¹の大きさの活性炭含 有フェノール樹脂板を得た。この活性炭含有フェノール 樹脂板を電気炉にて窒素雰囲気中、800℃で2時間熱 処理を行った。昇降温速度は1時間当たり10℃とし た。得られたプロック状炭素多孔体は活性炭/ポリアセ ン系材料複合体であり、その比表面積は窒素吸着による

電極とカーボン製集電極との接続方法を図7にて説明す 40 る。分極性電極となるブロック状炭素多孔体の上面に機 械加工によりM2のネジ穴を開け、この後、41重量% 硫酸中で真空含浸を行い、M2のカーボン製ネジ33に てカーポン製集電極32との電気的接続を行った。電解 液を隔てて相対する一対の分極性電極の組を電気二重層 コンデンサの基本素子とする。この図7に示した分極性 電極2枚と集電極の組み合わせを5組用意し、1枚の分 極性電極と集電極の組2組とともに図8のように配置 し、6室に分けられた塩化ビニル製容器34に収納する ことにより、基本素子が6個直列に接続された定格5.

BET測定により $950m^2/g$ であった。この分極性 50-5 Vの電気二重層コンデンサを作製した。この塩化ビニ

ル製容器の各室には、相対向する分極性電極同士が短絡しないように短絡防止用突起35が設けてある。またこの容器34から電解液が漏れないようにシリコンゴム製パッキン36をはさんで、塩化ビニル製容器蓋37にて封止を行っている。作製された電気二重層コンデンサの外寸は10×7×9cm³である。

23

【0042】 実施例13

実施例12と同じ分極性電極を作製し、プロック状炭素 多孔体よりなる分極性電極31の上面に機械加工により 凸部を設けた。この凸部にカーボンペースト接着剤を塗 布し、別に凹状に機械加工したカーボン製集電極32と 嵌合・接着を行い、分極性電極31と集電極32との電 気的接続を行った。この分極性電極31であるプロック 状炭素多孔体とカーボン製集電極32の接続方法を図9 に示す。同図に示すように、分極性電極31と集電極3 2とは、嵌合部位により嵌着している。この後、41重 量%硫酸中で真空含浸を行い、分極性電極31に電解液 を含浸させた。別に作製しておいた塩化ビニル製容器3 4に収納することにより、図10のように電気二重層コ ンデンサの基本素子が6個直列に接続された定格5.5 Vの電気二重層コンデンサを作製した。容器形状、容器 の封止方法、外部接続端子については実施例12と同じ である。

【0043】実施例14

実施例12と同じ分極性電極を作製するのに金型に凹部を設け、活性炭とフェノール樹脂の熱硬化物に凸部を設けた。これを電気炉にて窒素雰囲気中800℃にて炭化して得られたブロック状活性炭31の上面には凸部があり、形状としては図9に示したものと同じである。この炭化時の昇降温速度は1時間当たり5℃とした。41重量%硫酸中で真空含浸を行い、分極性電極31に電解液を含浸させた。別に凹状に機械加工したカーボン製集電極32を図9のように嵌合させ、分極性電極31と集電極32との電気的接続を行った。別に作製しておいた塩化ビニル製容器34に収納することにより、図10のように電気二重層コンデンサの基本素子が6個直列に接続された定格5、5∨の電気二重層コンデンサを作製した。容器形状、容器の封止方法、外部接続端子については実施例12と同じである。

【0044】実施例15

実施例12と同じ分極性電極を作製した。この片面に導電性カーボン含有ゴム38を加圧下180℃で熱融着させ、2枚の分極性電極31を導電性カーボン含有ゴム38にて電気的接続を行った。次に41重量%硫酸中で真空含浸を行い、分極性電極31に電解液を含浸させた。分極性電極同士を接続した組5組と、1枚の分極性電極の裏面にのみ導電性カーボン含有ゴム38を熱融着させ、一方の端を端子39と接続した組2組を図11のように配置し、基本素子を6個直列に接続した定格5.5Vの電気二重層コンデンサを作製した。容器形状、容器

の封止方法、外部接続端子については実施例12と同じである。

【0045】実施例16

実施例12と同じ分極性電極を作製した。この片面に導 **電性カーボン含有プラスチックフィルム310を加圧下** 180℃で熱融着させ、2枚の分極性電極31を導電性 カーポン含有プラスチックフィルム310にて電気的接 統を行った。次に41重量%硫酸中で真空含浸を行い、 分極性電極31に電解液を含浸させた。分極性電極同士 を接続した組5組と、1枚の分極性電極の片面にのみ導 電性カーボン含有プラスチックフィルム310を熱融着 させ、一方の端を端子39と接続した組2組を図11の ように配置し、基本素子を6個直列に接続した定格5. 5 Vの電気二重層コンデンサを作製した。容器形状、容 器の封止方法、外部接続端子については実施例12と同 じである。実施例12~16で作製した6つの電気二重 層コンデンサの静電容量と等価直列抵抗の測定を行っ た。静電容量は5Vで24時間定電圧充電後、10mA で定電流放電させ、電圧の降下が3Vから2.5Vにな 20 るのに要した時間から次式(1)に従い算出した。

$$C = \frac{I \times t}{\Delta V} \qquad \cdots (1)$$

ここに、C; 静電容量 (F)、I; 放電電流 $(10 \times 10^{-3} \, A)$ 、t; 電圧が $3 \, V$ から $2.5 \, V$ に降下するのに要した時間 (Φ) 、 ΔV ; 電圧差 $(0.5 \, V)$ である。 等価値列抵抗の測定は、電気二重層コンデンサの両端に $1 \, k \, H \, z$ 、 $10 \, m \, A$ の交流電流を印加し、その時の端子間の電圧を測定することにより求めた。 静電容量と等価値列抵抗の測定結果を次の表 $5 \, c$ にまとめる。

【0046】 【表5】

	静電容量/F	等価直列抵抗/Ω
実施例 1 2	471	6. 2
実施例13	463	1. 2
実施例 1 4	468	1. 5
実施例 1 5	475	3. 7
実施例16	472	5. 8

【0047】なお、金メッキした真ちゅうネジをそれぞれの分極性電極にさし、これらに金メッキした銅線を巻き付けることにより集電極間を電気的に接続したものを用いて実施例と同様に作製した電気二重層コンデンサの特性は、静電容量が465F、等価直列抵抗が7.8Ωであった。

【0048】 請求項14の発明の実施例

実施例17

50 活性炭粉末とフェノール樹脂粉末を重量比で60対40

の割合でポールミルにて乾式混合を行った。この混合粉 末を150℃、100kg/cm²で15分間金型成型 し、100×70×6 mm3の大きさの活性炭含有フェ ノール樹脂板を得た。活性炭含有フェノール樹脂板を電 気炉にて窒素雰囲気中、800℃で2時間熱処理を行っ た。昇降温速度は1時間当たり10℃とした。得られた プロック状炭素多孔体は活性炭ノポリアセン系材料複合 体であり、その比表面積は窒素吸着によるBET測定に より950m1/gであった。この分極性電極とカーボ ン製集電極との接続および封止方法を図12にて説明す る。プロック状炭素多孔体よりなる分極性電極41の上 面に機械加工により凸部を設けた。この凸部にカーボン ペースト接着剤を塗布し、別に凹状に機械加工したカー ポン製集電極兼外部端子42と嵌合・接着を行い、分極 性電極41と集電極兼外部端子42との電気的接続を行 った。この分極性電極41とカーボン製集電極兼外部端 子42が接続されたもの2組を金型内に置き、形締め力 25トンの射出成型機により射出成型を行って容器蓋4 3を形成した。金型は1個取りの金型を用いた。またこ の場合、集電極材料と分極性電極の樹脂封止体が得られ るわけであるから、この射出成型はアウトサート成型で あるともいえる。用いた熱可塑性樹脂はABS樹脂(ア クリロニトリループタジエンースチレン樹脂)である。 この後、41重量%硫酸水溶液中で真空含浸を行い、分 極性電極41に電解液を含浸させた。電解液を隔てて相 対する一対の分極性電極41の組が電気二重層コンデン サの基本素子である。別に射出成型により作製されたA BS製容器44に収納することにより、図12に示した 定格 1 Vの電気二重層コンデンサが作製された。ABS 製容器44との一体化は接着剤により行った。また、こ のABS製容器44には、相対向する分極性電極同士が 短絡しないように短絡防止用突起45が設けてある。ま た、後に電解液の注入が行えるように電解液注入口46 が設けてある。この図12に示した基本素子1個からな る定格1Vの電気二重層コンデンサの外寸は12×7× 1. 8 cm³ であった。

【0049】実施例18

実施例17と同じ分極性電極12枚を作製し、それぞれ の分極性電極となるプロック状炭素多孔体41の上面に 機械加工により凸部を設けた。この凸部にカーボンペー スト接着剤を塗布し、別に凹状に機械加工したカーボン 製集電極兼外部端子42と嵌合・接着を行い、電気的に 接続された分極性電極41と集電極兼外部端子42との 組み合わせを2組作製した。同様にして電気的に接続さ れた分極性電極41と集電極47の組み合わせを5組作 製した。これらを金型に入れ、形締めカ100トンの射 出成型機により射出成型を行って容器蓋43を形成し た。金型は1個取りの金型とした。用いた樹脂は射出成 型用ポリプロピレンである。樹脂により一体化された1 2個の分極性電極41に41重量%硫酸水溶液中で真空 50 26

含浸を行い、分極性電極41内へ電解液を含浸させた。 この後、別に射出成型により作製しておいたポリプロピ レン製容器44に、電解液を含浸させた分極性電極41 を収納した。ポリプロピレン製容器44との接着は接着 剤により行った。このポリプロピレン製容器44の各室 には、相対向する分極性電極同士が短絡しないように短 絡防止用突起45が設けてある。作製された基本素子が 6個直列に接続された定格5.5 Vの一体化された電気 二重層コンデンサを図13に示す。作製された電気二重 層コンデンサの外寸は10×7×9cm³である。

【0050】 実施例19

実施例17と同じ分極性電極12枚を作製した。板状の 分極性電極の片面にカーポンペースト接着剤を塗布し、 カーボン製集電極兼外部端子42と接着を行い、電気的 に接続された分極性電極41と集電極兼外部端子42と の組み合わせを2組作製した。同様にして電気的に接続 された分極性電極41と集電極47の組み合わせを5組 作製した。これらを金型に入れ、形締めカ100トンの 射出成型機により射出成型を行って容器44を形成し 20 た。金型は1個取りの金型とした。用いた樹脂は射出成 型用高密度ポリエチレンである。成型品は図14に示す ように、集電極が各室の隔壁を兼ねており、電解液を容 れる容器となる。この高密度ポリエチレン製容器44の 各室には、相対向する分極性電極同士が短絡しないよう に短絡防止用突起45が設けてある。樹脂により一体化 された12個の分極性電極41に41重量%硫酸水溶液 中で真空含浸を行い、分極性電極41内へ電解液を含浸 させた。この後、別に作製しておいた高密度ポリエチレ ン製蓋を容器と接着剤により一体化した。本実施例によ り得られた電気二重層コンデンサは、基本素子が6個直 列に接続された定格 5.5 V品である。またこの電気二 重層コンデンサの外寸は10×7×9cm³である。実 施例17~19により作製された電気二重層コンデンサ は、従来の塩化ビニル製容器でシリコンゴムパッキンで 封止したものと、単位体積当たりの容量は同じであっ た。静電容量の測定は実施例17では0.9V、実施例 18と実施例19では5Vの定電圧で24時間充電後1 0mAで定電流放電を行い、電圧の降下が実施例17で は0.54 Vから0.45 Vになるのに要した時間、実 施例18と実施例19では3Vから2.5Vになるのに 要した時間から求めた。また交流1kHz、10mAの 定電流で測定した等価直列抵抗は、従来に比べて同じか 若干低減された。具体的な測定結果を次の表6にまとめ た。

[0051] 【表6】

	定格電圧 (V)	静電容量 (F)	等価直列抵抗 (Ω)
実施例17	1.0	2920	0.1
実施例18	5. 5	469	1.0
実施例19	5. 5	485	0.6

【0052】また、液漏れの可能性を評価するために、 50 \mathbb{C} 、3 日間の高温放置試験をしたところ、従来の塩 10 を取り付け、藍を接着剤で接着することにより電槽 5 5化ビニル製容器でシリコンゴムバッキンで封止した電気 二重層コンデンサでは若干の液面の低下が見られたが、 本発明による電気二重層コンデンサはいずれも液面の低 下は見られなかった。

【0053】請求項15~18の発明の実施例 実施例20

粉末活性炭と粉末状のフェノール系樹脂を60/40 (重量比) の割合でとり、ボールミルにより72時間乾 式混合した。この混合粉を180℃で10分間熱プレス することで100mmimes70mmimes6mmの成形体を作 20 めた。充電電圧が5Vの場合、静電容量Cは、 り、これを非酸化性雰囲気において800℃で熱処理し て、活性炭/ポリアセン系複合材料を得た。この活性炭 /ポリアセン系複合材料を図15の分極性電極54とし た。分極性電極54を導電性接着剤により導電性セラミ ックスであるZrB2の端子電極51a,51bおよび 接続導体53と接合して電気的接続をとった後、これら を電解液である30wt%の硫酸溶液中に浸し、容器を 真空に引くことで電解液を分極性電極54内に含浸し た。端子電極51a,51b,接続導体53,電解液を 含浸した分極性電極54を塩化ビニル製の電槽55に入 30 れ、さらに電解液を足して電槽55内を電解液で満たす ようにした。そして、塩化ビニル製の蓋を接着剤で接着 することにより電槽55を密封し、図15に示す動作電 圧5 Vの本発明の電気二重層コンデンサを得た。

【0054】実施例21

図15の端子電極51a, 51bおよび接続導体53を 導電性セラミックスであるCrs Czにより作製したほか は実施例20と同様にして動作電圧5Vの本発明の電気 二重層コンデンサを得た。

【0055】 実施例22

図15の端子電極51a, 51bおよび接続導体53を 導電性セラミックスであるTiNにより作製したほかは 実施例20と同様にして動作電圧5Vの本発明の電気二 **重層コンデンサを得た。**

【0056】 実施例23

電解液を含浸する前の分極性電極54で導電性セラミッ クスであるTiNを挟み、導電性接着剤で接着した。導 電性セラミックスの大きさは、分極性電極との接着面に おいて4方向とも1mmのマージンを持つ大きさであ

4 で挟まれた導電性セラミックスを金型内に配置するこ とで、図16に示すような電槽55の隔壁を導電性セラ ミックスとするような構造物を作製した。この導電性セ ラミックスの隔壁は集電体52として機能し、接続導体 53としても働く。得られた分極性電極54と集電体5 2と電槽55よりなる複合体を30wt%の硫酸溶液中 に浸漬し、実施例20と同様に真空に引くことで分極性 電極54に電解液を含浸し、さらに電槽内を電解液で満 たした。これにTiNよりなる端子電極51a.51b を密封し、図16に示す動作電圧が5Vの本発明の電気 二重層コンデンサを得た。実施例20~23で製造した 電気二重層コンデンサについて、コンデンサ特性である 等価直列抵抗と静電容量を測定した。等価直列抵抗は、 電気二重層コンデンサに1kHzで10mAの定電流を 流し、電気二重層コンデンサの端子電圧を測定すること で求めた。また、静電容量は、コンデンサを100mA で定電流放電したとき、端子電圧が充電電圧の60%か ら50%になるまでの時間△tを測定することにより求

28

[0057]

 $C = I \times \Delta t / \Delta V$

 $= 0.1 \times \triangle t / (3.0 - 2.5)$ [F]

となる。

【0058】表7に各実施例の等価直列抵抗と静電容量 を示す。また、同表に、端子電極および接続導体を炭素 材料により作製した時のコンデンサ特性も併せて示す。 表7より明らかなように、集電体、端子電極、接続導体 を炭素材料から導電性セラミックスにかえることで、静 電容量を損なうことなく、等価直列抵抗を1/2以下に することができる。これは集電体、端子電極、接続導体 の固有抵抗が小さくなったほかに、接触抵抗なども低下 したものと考えられる。電解液である硫酸に対する耐薬 品性は、ホウ化物系の導電性セラミックスがわずかに容 積減少した他は特に問題はなかった。

[0059]

【表7】

	等価直列抵抗/Q	静電容量/F
実施例20	0.52	446.8
実施例 2 1	0.63	461. 0
実施例22	0.55	455.4
実施例23	0.44	457. 2
炭素材料	1.18	450. 2

【0060】本実施例では、導電性セラミックスとし て、ZrB2、Cr3C2およびTiNを用いた例につい る。電槽55を射出成形により作るとき、分極性電極5 50 て述べたが、ホウ化物の2rB, CrB2, HfB2, M

oB₂, ScB₂, TaB₂, TiB₂, VB₂, CrB, Cr₄B, LaB₄, Mo₂B₅, NbB, TaB, VB, V₃B₂, W₂B₅, YB₄, ZrB₁₂、炭化物のHfC, NbC, TaC, TiC, VC, ZrC, V₂C, Co₂C, MoC, Mo₂C, WC, W₂C、室化物のCrN, LaN, NbN, VN, YN, ZrN, Nb₂N, TaN, Ta₂Nは、それぞれ比抵抗が1mQ·cm以下であることと、これらの結晶構造および格子定数とから、上記実施例と同様の効果が得られる。従って、集電体、端子電極、接続導体にホウ化物または炭化物または窒化物の導電性セラミックスを使用することは、電気二重層コンデンサの等価直列抵抗を低減することに非常に有効であることがわかる。

【0061】<u>請求項19~21の発明の実施例</u> 実施例24

活性炭粉末とフェノール樹脂粉末を重量比で60対40 の割合でとり、ボールミルにて乾式混合を行った。この 混合粉末を150℃、100kg/cm²で15分間金 型成型し、50×70×2mm[®]の大きさの活性炭含有 フェノール樹脂板を得た。活性炭含有フェノール樹脂板 を電気炉にて窒素雰囲気中、800℃で2時間熱処理を 行った。昇降温速度は1時間当たり10℃とした。得ら れたプロック状炭素多孔体は活性炭/ポリアセン系材料 複合体であり、その比表面積は窒素吸着のBET測定に より950m2/gであった。この分極性電極とカーボ ン製集電極との接続および封止方法を図17にて説明す る。プロック状炭素多孔体よりなる分極性電極61の上 面に機械加工によりくばみを設けた。このくばみに導電 性カーボンベースト接着剤を塗布し、別に機械加工によ りくぼみを設けたカーボン製集電極兼外部端子63と接 着を行い、分極性電極61と集電極兼外部端子63との 電気的接続を行った。この分極性電極61であるプロッ ク状炭素多孔体とカーボン製集電極兼外部端子63が接 統されたものに、30重量%硫酸水溶液中で真空含浸を 行い、分極性電極61に電解液を含浸させた。これを外 部端子取り出し用に一部切り込みをあけた塩ビ製容器6 2の凹部に収納した。カーボン製集電極兼外部端子63 と、容器62の外部端子取り出し用の切り欠き部とを塩 ビ製接着剤にて封止し、外部端子63と容器62の間か ら電解液が漏れないようにした。外部端子は容器62の 40 一辺の中心からずらした位置から取り出すようにしてい る。これら片側電極2点をガラス繊維セパレータ64と シリコンゴム製ガスケット65を隔てて相対向させ、全 体をネジ止め (図示せず) により封止した。図18は、 この外部端子の配置を示す本実施例による電気二重層コ ンデンサの正面図であり、1組の分極性電極61は、そ れぞれはすかいに形成されている。この一対の分極性電 極の組が電気二重層コンデンサの基本索子である。この 図17および図18に示した基本素子1個からなる定格 1 Vの電気二重層コンデンサの外寸は84×64×6.

5 mm³ であった。

【0062】実施例25

図19は本実施例25による電気二重層コンデンサの断 面図である。実施例24と同様にして分極性電極61と カーポン製集電極兼外部端子63が導電性カーポン接着 剤で接続された組2つを作製した。これを実施例24と 同様にして30重量%硫酸水溶液中で真空含浸を行い、 分極性電極61に電解液を含浸させた。これを塩ビ製容 器62の凹部に収納した。カーボン製集電極兼外部端子 63と、容器62の外部端子取り出し用の切り欠き部と を塩ビ製接着剤にて封止し、外部端子63と容器62の 間から電解液が漏れないようにした。外部端子63は容 器62の一辺の中心にある。これら片側電極2点をガラ ス繊維セパレータ64を隔てて相対向させ、一方の片側 電極を180度回転させた位置でこれら2つの片側電極 同士を塩ビ製接着剤にて貼り合わせることにより全体を 封止した。図20は本実施例25により作製された電気 二重層コンデンサの外部端子63の配置を示す正面図で ある。この電気二重層コンデンサの外寸は84×64× 6 mm3であった。実施例24,25により作製された 電気二重層コンデンサの静電容量と等価直列抵抗の測定 を行った。静電容量の測定は、1 V で定電圧充電を12 時間行った後、10mAで定電流放電を行った。このと きのコンデンサの電圧が0.6 Vから0.5 Vになるの に要した時間から求めた。計算式は次式となる。

30

[0063]

$$C = \frac{I \times \Delta t}{\Delta V} \qquad \cdots (1)$$

【0064】ここに、Cは静電容量(F)、Iは放電電流(A、この場合10mA)、 \triangle tはコンデンサの電圧が0.6Vから0.5Vになるのに要した時間(Φ)、 \triangle Vは0.1Vである。また等価直列抵抗は交流1kHz、10mAの定電流を流し、その時のコンデンサの両端に発生する電圧を測定することにより測定した。測定結果を次の表8にまとめた。

【0065】 【表8】

)		定格電圧 (V)	静電容量 (F)	等価直列抵抗 (Ω)	
	例 2 4 例 2 5	1. 0 1. 0	480 470	0.1 0.1	

【0066】なお、下記のようにして製造した図21に 示すような構造の電気二重層コンデンサの特性は、定格 電圧5.5(V)、静電容量480(F)、等価直列抵 抗0.1(Q)であった。その製造方法は、活性炭/ポ 50 リアセン系材料複合体よりなる分極性電極61と、カー

31

ボン製集電極兼外部端子63とをそれぞれ階段状に機械加工し、導電性カーボンペーストで接続する。これら2組をセパレータを隔てて相対向させ、上部を外部端子63を取り出せるように穴を予め開けておいた上蓋容器62bと組み合わせ、接着剤等で外部端子63と上蓋容器62bとの封止を行う。この後、分極性電極61の部分を硫酸水溶液中で真空含浸を行い、分極性電極61に電解液を含浸させた。これらを容器本体62aに収納し、上蓋容器62bと接着剤で貼り合わせ、全体を封止した。この電気二重層コンデンサの外寸は84×64×8mm³であった。

【0067】<u>請求項22~27の発明の実施例</u> 事施例26

フェノール系活性炭粉末とフェノール樹脂粉末の重量比 が50/50になるようにはかりとり、これらの混合粉 にメチルセルソルブを加えることによりフェノール系樹 脂粉末を溶解し、E型粘度計で測定した粘度が3万~4 万センチポアズになるようにペースト状に混合した。こ のペースト状混合物を325メッシュのステンレス製ス クリーンを用いて、直径50mm、厚さ1mmのT1N 基板上に直径40mmの円形に印刷し、オープン中、1 50℃で30分間熱硬化させた。次いで電気炉中、N₂ 雰囲気下で700℃、2時間熱処理を行った。図22を 用いて本実施例による電気二重層コンデンサの製造方法 を説明する。活性炭/ポリアセン系材料複合体厚膜71 2 が形成されたT 1 N基板 7 1 1 に、直径 5 0 mmのテ フロンシートから同心円に直径40mmを切りとったガ スケット714をテフロン用接着剤にて貼り合わせた。 これと、もう1つの活性炭/ポリアセン系材料複合体厚 膜712が形成されたTiN基板711とを、30wt %硫酸水溶液中で1時間真空含浸を行い、複合体厚膜7 12内部に電解質溶液を含浸させた。この1対のT1N 基板上の分極性電極の間に30wt%硫酸水溶液を含浸 させた厚さ110μmのポリエチレン製セパレータ71 3を挟んで電極側が内側になるように配置し、一方のT iN基板?11とテフロン製ガスケット?14をテフロ ン用接着剤にて貼り合わせ、接着封止を行った。

【0068】得られた電気二重層コンデンサの両極の間に900mVを印加し、1時間定電圧充電を行った。この後、1mAで定電流放電させ、電圧が540mVから450mVに降下するのに要した時間から、電気二重層コンデンサの容量を求めた。また、1kHz、10mAの定電流をこの電気二重層コンデンサに流し、その時両端に現れる電圧から等価直列抵抗を求めた。本実施例により作製された電気二重層コンデンサの容量は4.7F、等価直列抵抗は0.01Qであった。また、この素子を複数個直列に積層することにより、その積層枚数に応じた耐圧の電気二重層コンデンサを得ることができる。

【0069】実施例27

フェノール系括性炭粉末とフェノール樹脂粉末の重量比 が50/50になるようにはかりとり、これらの混合粉 にメチルセルソルプを加えることによりフェノール系樹 脂粉末を溶解し、E型粘度計で測定した粘度が3万~4 万センチポアズになるようにペースト状に混合した。こ のペースト状混合物を325メッシュのステンレス製ス クリーンを用いて、図23 (a) に示すように、直径5 0mm、厚さ0.5mmのカーボン基板721の片面上 に直径40mmの円形に印刷し、オープン中、150℃ で30分間熱硬化させて熱硬化膜を形成した。また、図 23 (b) に示すように、直径50mm、厚さ50μm のカーポンシート723の両面に図23(a)と同様に して熱硬化膜を形成した。これを電気炉中、N2雰囲気 下で700℃、2時間熱処理を行った。昇降温速度は1 00℃/hとした。次に図23(a)の構造の複合体厚 膜722が形成されたカーポン基板721の複合体厚膜 側に、直径50mmのテフロンシートから同心円に直径 40mmを切りとったガスケットをテフロン用接着剤に て貼り合わせたものを2組用意した。さらに、図23 (b) の構造の複合体厚膜722が形成されたカーボン シート723の片側に、上記と同様にテフロン製ガスケ ットを接着したものを5組用意した。これらの複合体厚 膜を30wt%硫酸水溶液中で1時間真空含浸を行い、

32

【0070】次に図24に示すように、上記で得られた 図23 (a) の構造のカーポン基板721上の分極性電 極たる複合体厚膜722を分極性電極が内側になるよう に両端に配置し、その間に図23(b)の構造のカーボ ンシート上分極性電極と、30wt%硫酸水溶液を浸し た厚さ110μmのポリエチレン製セパレータ734を 交互に挟み、テフロン製ガスケット735とカーポンシ ート723をテフロン製接着剤にて貼り合わせた。外側 のカーポン基板721側にそれぞれ金箔を密着させ、金 **属製クリップで挟んでリード線をとり、全体を塩ビ製の** 板で挟んで固定し、簡易電気二重層コンデンサとした。 この簡易電気二重層コンデンサの両極の間に5.0 Vを 印加し、1時間定電圧充電を行った。この後、1mAで 定電流放電させ、電圧が3.0 Vから2.5 Vに降下す るのに要した時間から求めたこの簡易電気二重層コンデ ンサの容量は0.25Fであった。また、1kHz、1 0 mAの定電流をこの簡易電気二重層コンデンサに流 し、その時両端に現れる電圧から求めた等価直列抵抗の 値は0.22Ωであった。

複合体厚膜内部に電解質溶液を含浸させた。

【0071】 実施例28

図25に示すような構成で電気二重層コンデンサを作製した。用いたカーボン基板741は、100×70mm²、厚さ0.5mmである。これに、実施例26,27と同様のベーストと印刷法を用いて20×20mm²の正方形状の印刷パターンが同時に6つ形成されるようにした。これを実施例26,27と同様にオープン中15

0℃で30分間熱硬化させ、次いで電気炉中、N2雰囲 気下で700℃、2時間熱処理を行うことにより、複合 体厚膜742を形成した。

【0072】この後、プチルゴムを印刷パターンとネガ のパターンに切り出したものをガスケット744とし て、フェノール樹脂系接着剤で基板と密着させた。分極 性電極となる活性炭/ポリアセン系材料複合体厚膜74 2に電解液となる30wt%硫酸水溶液を滴下し、基板 全体を真空にして、電解液を分極性電極に含浸させた。 これと同じものをもう1組用意し、電解液を含浸させた 10 ガラス繊維セパレータ743を挟んで全体を一体化させ た。プチルゴムのガスケット744同士を加硫接着させ 全体を封止した。次いで、これをダイシングソーを用い て6つに切り出し、6つの電気二重層コンデンサを得 た。得られた電気二重層コンデンサの断面図を図26に 示す。本実施例で得られた電気二重層コンデンサの静電 容量、等価直列抵抗を実施例27と同様にして測定した ところ、それぞれ1.5F,0.03Ωであった。以上 の実施例においては、導電性基板あるいは導電性シート の材質としてTiNまたはカーボンを用いたが、その他 20 な電気二重層コンデンサを製造することができる。 の導電性セラミックスあるいは金属を用いることもでき る。

【0073】実施例29

フェノール系活性炭粉末とフェノール樹脂粉末の重量比 が60/40になるようにはかりとり、これらの混合粉 にメチルセルソルプを加えることによりフェノール系樹 脂粉末を溶解し、E型粘度計で測定した粘度が3万~4 万センチポアズになるようにベースト状に混合した。こ のペーストを用いて325メッシュのステンレス製スク リーンによりスクリーン印刷を行った。このスクリーン は一度に6個の直径16mmの円形が印刷できるような パターンであり、印刷されたパターンを図27に示す。 耐酸化性のある金属基板762としてはステンレス基板 を用いた。金属基板762の形状は100×70m m³、厚さ0.3mmである。この印刷された活性炭フ ェノール樹脂混合物をオープン中、150℃で30分間 熱硬化させ、さらに電気炉中、N₂雰囲気下で800℃ で2時間熱処理を行った。昇降温速度は100℃/hと した。熱処理後の膜厚は、断面を走査型電子顕微鏡観察 した結果、約30μmであった。

【0074】直径16mmに分極性電極の活性炭/ポリ アセン系材料複合体厚膜761が形成された金属基板7 62から直径23mmと18.5mmの2種類の大きさ に印刷パターンと同心円状に打ち抜いた。これら2種類 の大きさに打ち抜いたものをそれぞれ周辺部で折り曲 げ、円板を皿状に加工した。次に電解液となる(C2H 5) 4 N B F 4 (テトラエチルアンモニウムテトラフルオ ロポレート) 1mo1/1の濃度に溶解させたプロピレ ンカーポネイトを分極性電極部分に滴下し、分極性電極

34

た厚さ110μmのポリエチレン製セパレータ763を 挟んで電極側が内側になるように向かい合わせた。次い で、図28にその断面を示すように、ポリプロピレン製 ガスケット764を介して2種類の大きさの金属基板7 62のかしめ封止を行った。本実施例により得られた電 気二重層コンデンサの寸法は、直径20mm、厚さ0. 8mmのコイン形である。

【0075】次に得られた電気二重層コンデンサの静電 容量と等価直列抵抗を測定した。電気二重層コンデンサ の両極の間に2.5 Vを印加し、1時間定電圧充電を行 い、1mAで定電流放電させ、電圧が1. 5 Vから1. 25 Vに降下するのに要した時間から、電気二重層コン デンサの容量を求めた。また、1kHz、10mAの定 電流をこの電気二重層コンデンサに流し、その時の電圧 から等価直列抵抗を求めた。本実施例により作製された 電気二重層コンデンサの容量は0.1F、等価直列抵抗 は100であった。なお、本実施例では、金属基板とし てステンレス基板を用いたが、これ以外にもニッケル、 飼、金等の純金属やインコネル等の合金を用いても同様

【0076】請求項28~30の発明の実施例 実施例30

図29は、安全装置81を設けた電気二重層コンデンサ の断面図を示す。図29に示した電気二重層コンデンサ は定格電圧5Vのものである。したがって電槽83内に は接続治具84により、6つの基本セルが直列に接続さ れており、端子電極85a,85bにより外部回路と接 統できるようになっている。安全装置81は、電槽83 内の各基本セルにそれぞれ一つずつ取り付けられてい る。分極性電極82には、活性炭/炭素材料複合体を、 また電槽83にはABS樹脂を用いた。安全装置81と して白金属の触媒を用いた触媒栓を使用し、電気二重層 コンデンサを作製した。この電気二重層コンデンサを1 0 V印加した状態で10時間、室温中に放置した。

【0077】 実施例31

安全装置81として安全弁を用いたほかは、実施例30 と同様にして電気二重層コンデンサを作製した。この電 気二重層コンデンサを10V印加した状態で10時間、 室温中に放置した。

【0078】実施例32

安全装置81として補助電極を用いたほかは、実施例3 0と同様にして電気二重層コンデンサを作製した。この 電気二重層コンデンサを10V印加した状態で10時 間、室温中に放置した。表9に、各実施例における電気 二重層コンデンサの電圧印加前と印加後の電気的諸特性 ならびに電圧印加後の外観検査の結果を示す。また、安 全装置を取り付けていない電気二重層コンデンサを上記 と同様にして放置した時の結果も併せて示す。各実施例 とも外観に異常はなかったが、実施例31では電気特性 部分に電解液を真空含浸させた。別に電解液を含浸させ 50 の低下が見られた。実施例31の電気特性低下は、電解 質溶液の電気分解によって発生したガスが安全弁の作動により電気二重層コンデンサ外に放出されたため、電解質溶液の液量が低下した結果であると考えられる。安全装置を取り付けていない電気二重層コンデンサでは、電槽の亀裂などによる破損はなかったが、端子部分等のパッキンに異常があり、電解質溶液の液漏れが見られた。また、電気特性は静電容量、等価直列抵抗ともに低下した。原因は、実施例31と同様と思われる。この場合、パッキンが一種の安全弁としての役目をはたしているた*

*め、電槽に亀裂などは生じなかったが、今後、液漏れ等の防止のために電気二重層コンデンサの気密性がさらに向上すると予想され、それと同時に電槽の破損に対する危険性も大きくなる。以上より、各実施例とも過電圧による電槽やパッキン等の破損等は見られず、高い信頼性の得られることがわかる。

36

【0079】 【表9】

		実施例			安全装 置 なし
		3 0	3 1	3 2	
電圧印加前	静電容量(F)	450. 2	456.4	448.9	461.1
	等価直列抵抗 (Ω)	0. 25	0. 31	0.27	0. 25
	静電容量(F)	430. 1	362.8	452.3	350. 5
電圧印加後	等価直列抵抗 (Ω)	0. 31	0.63	0.30	0.58
	外観*)	0	0	0	Δ

- *) 外観 異常なし
 - △ パッキン等の破損により電槽の気密性に問題あり
 - × 電槽に亀裂等の破損あり

【0080】<u>請求項31の発明の実施例</u> 実施例33

図31は、本発明による定格電圧2Vの鉛蓄電池・電気二重層コンデンサ複合部品の一例の横断面図である。電槽99内は隔壁により3つのプロックに分割されており、鉛蓄電池のセル910aが1つと電気二重層コンデ 30ンサのセル910bが2つよりなる。セル910aとセル910b間はふたの内部に封止された接続導体95により電気的に並列に接続され、接続導体95は98a,98bの端子に接続している。鉛蓄電池の陽極板91、陰極板92、セパレータ93、ガラスマット94、セル間接続導体96はペースト式の自動車用鉛蓄電池のものを使用した。また、電気二重層コンデンサの分極性電極97には、活性炭ノポリアセン系複合材料を使用した。活性炭ノポリアセン系複合材料を使用した。活性炭ノポリアセン系複合材料は、活性炭とフェノール系樹脂を重量比で6:4の割合に乾式混合し、この混合40物を熱プレスにより成形した後、800℃で熱処理する

ことにより得た。電槽99はABS樹脂を用いた。 【0081】実施例34

図32は定格電圧2Vの鉛蓄電池・電気二重層コンデン サ複合部品の別の一例の横断面図である。実施例33と 比較して、電槽99内の隔壁による分割形態が違うだけ でその他は同じである。表10に各実施例と、従来例で ある定格電圧2Vの鉛蓄電池および電気二重層コンデン サの評価結果を示す。評価項目は、初期特性として容 量、等価直列抵抗を測定した。また寿命試験としては、 1時間率電流による放電と完全充電を繰り返し、定格容 量が80%まで低下する充放電サイクルのサイクル数を 測定した。表10から明らかなように、各実施例は初期 特性においては従来例に比べて問題なく、寿命試験では 従来の鉛蓄電池の寿命をはるかに上回っていることがわ かる。

40 【0082】 【表10】

	容量 (Ah)	等価直列抵 抗 (Ω)	サイクル 寿命(回)
実施例33	29.1	0.21	854
実施例34	28.3	0.25	901
鉛書電池	26. 2	0.43	128
電気二重層コンデンサ	0.7	0.11	10000回以上

[0083]

【発明の効果】以上説明したように、本発明によれば、 単位体積当たりの容量が大きく等価直列抵抗を低減する ことのできる電気二重層コンデンサの電極材料が得られ る。また、本発明によれば分極性電極として活性炭/ボ リアセン系複合材料を使用し、電解液を含浸させた一対 の分極性電極をセパレータを介して相対させた構造にす ることで、小型・低価格で等価直列抵抗の小さな重気二 重層コンデンサを得ることができる。また、集電極材料 として、導電性があり、かつ液体透過性のない緻密な力 ーポン材料またはカーボン含有ゴムまたはカーボン含有 プラスチックを用いることにより、等価直列抵抗を低減 することができ、製造工程を簡略化できる電気二重層コ ンデンサが得られる。また、射出成型を使うことにより 製造工程が簡略化でき、液漏れの可能性が低減された電 気二重層コンデンサが得られる。また、集電体または端 子電極または接続導体の少なくとも一つに、機械的強度 が高く、耐薬品性に優れ、安価なホウ化物または炭化物 または窒化物の導電性セラミックスを使用することによ 20 り、等価直列抵抗が小さく、耐衝撃性、量産性に優れた 電気二重層コンデンサを得ることができる。また、特定 の収納容器を用いることにより、より薄型で、しかも部 品の種類の少ない電気二重層コンデンサとすることがで き、製造コストが低減化される。さらに外部端子の位置 をずらすことにより外部との接続が容易になるという効 果を有する。さらに、本発明によれば、活性炭/ポリア セン系材料複合体厚膜を分極性電極に用いることで、集 電極と一体化した等価直列抵抗の低い、小型、薄型の電 気二重層コンデンサが提供され、また電子部品として量 産可能な製造方法を提供することができる。また、本発 明の電気二重層コンデンサは、触媒栓、安全弁または補 助電極の安全装置を電槽に取り付けることで、信頼性の 高い電気二重層コンデンサとすることができる。また、 本発明によれば、鉛蓄電池と電気二重層コンデンサとを 同一電槽内に封入し、電気的に並列に接続することで、 鉛蓄電池を長寿命化できる効果がある。

【図面の簡単な説明】

【図1】本発明の電気二重層コンデンサの基本素子の一 例の断面図である。

【図2】図1の基本素子を用いた動作電圧5 Vの電気二 運層コンデンサの断面図である。

【図3】本発明の電気二重層コンデンサの基本素子の一 例の断面図である。

【図4】図3の基本素子を用いた動作電圧5Vの電気二 重層コンデンサの断面図である。

【図 5 】本発明の電気二重層コンデンサの基本素子の一 例の断面図である。

【図6】図5の基本素子を用いた動作電圧5Vの電気二 重層コンデンサの断面図である。 【図7】本発明による電気二重層コンデンサの一例の分極性電極と集電極材料の接続部の断面図である。

38

【図8】本発明による電気二重層コンデンサの一例の断面図である。

【図9】本発明による電気二重層コンデンサの一例の分極性電極と集電機材料の接続部の断面図である。

【図10】本発明による電気二重層コンデンサの一例の 断面図である。

【図11】本発明による電気二重層コンデンサの一例の 断面図である。

【図12】本発明による電気二重層コンデンサの一例の 縦断面図である。

【図13】本発明による電気二重層コンデンサの一例の 縦断面図である。

【図14】本発明による電気二重層コンデンサの別の一 例の横断面図である。

【図15】本発明による電気二重層コンデンサの一例の 断面図である。

20 【図16】本発明による電気二重層コンデンサの一例の 断面図である。

【図17】本発明による電気二重層コンデンサの一例の 断面図である。

【図18】本発明による電気二重層コイデンサの一例の 正面図である。

【図19】本発明による電気二重層コンデンサの一例の 断面図である。

【図20】本発明による電気二重層コンデンサの一例の 正面図である。

30 【図 2 1】 通常の電気二重層コンデンサの断面図である。

【図22】本発明の一実施例の断面図である。

【図23】本発明の別の一実施例の構成部材の断面図である。

【図24】図23の部材を用いた簡易電気二重層コンデンサの一例の断面図である。

【図25】本発明による電気二重層コンデンサの製造方法の一例の説明図である。

【図26】本発明の一実施例の断面図である。

40 【図27】本発明による電気二重層コンデンサの製造方法の一例の説明図である。

【図28】本発明の一実施例の部分断面図である。

【図29】本発明の一実施例による電気二重層コンデン サの断面図である。

【図30】安全装置のない電気二重層コンデンサの断面 図である。

【図31】本発明の一実施例の横断面図である。

【図32】本発明の一実施例の横断面図である。

【図33】鉛蓄電池を上面より見た部分断面図である。

50 【図34】 電気二重層コンデンサを上面より見た部分断

(21)

特開平4-288361

[図6]

63 外部端子

61 分極性電極

64 セパレータ

85 ガスケット

39

面図である。 【符号の説明】

1, 11, 21 分極性電極

2, 12, 22

a, 22b 集電体

3, 13, 23 多孔性セパレータ 4, 14, 24 ガスケット

5, 15, 26, 26 金属ケース 6, 16 絶縁 7a, 7b, 17a, 17b, 29a, 29b 電極 8, 18, 27 基本素子

【図1】

_78 電極 絶縁ケース 28 接続カップ

【図3】

【図2】

【図5】

[図11]

【図14】

【図13】

[図18]

【図23】

【図19】

【図30】

フロントページの続き

(31)優先権主張番号	特願平2-249961	(31)優先権主張番号	特願平2-249971
(32)優先日	平 2 (1990) 9 月21日	(32)優先日	平2 (1990) 9月21日
(33)優先権主張国	日本 (JP)	(33)優先権主張国	日本(JP)
(31)優先権主張番号	特願平2-249962	(31)優先権主張番号	特願平2-266498
(32)優先日	平 2 (1990) 9 月21日	(32)優先日	平2 (1990)10月5日
(33)優先権主張国	日本 (JP)	(33)優先権主張国	日本(JP)
(31)優先権主張番号	実願平2-98522	(31)優先権主張番号	特願平2-266499
(32)優先日	平 2 (1990) 9 月21日	(32)優先日	平2 (1990)10月5日
(33)優先権主張国	日本 (JP)	(33)優先権主張国	日本(JP)
(31)優先権主張番号	特願平2-249970	(31)優先権主張番号	特願平3-23832
(32)優先日	平 2 (1990) 9 月21日	(32)優先日	平3 (1991) 1 月25日
(33)優先権主張国	日本 (JP)	(33)優先権主張国	日本(JP)
		(72)発明者 越智 第	E

東京都港区芝5丁目7番1号 日本電気株式会社内