Sestavili študentje 1.letnika UNI FE generacija 2016/17

GIBANJE

Enakomerno (a=0)

s = vt

Enakomerno pospešeno

(a=konst) $s = v_0 t + \frac{a_0 t^2}{2}$

 $v = v_0 + at$

 $v^2 = v_0^2 + 2as \quad v = at$

Prosti pad (a=-g)

 $y = h - \frac{gt^2}{2}$ *tik preden pade (y=0):

$$t = \sqrt{\frac{2h}{g}} \quad v = -\sqrt{2gh}$$

Navpični met (a=-g)

$$y = v_o t - \frac{gt^2}{2}$$

*Najvišja točka dosežena:

$$t = \frac{v_0}{g} \quad h = \frac{{v_0}^2}{2g}$$
Vodoravni met

$$vx_0 = v_0 \quad vy_0 = -gt$$

$$vx_0 = v_0 \ vy_0 = -gt$$

$$x = v_0 t \quad y = h - \frac{gt^2}{2}$$

*Ko telo pade:

$$t_p = \sqrt{\frac{2h}{g}} \quad x = v_0 \sqrt{\frac{2h}{g}}$$

 $vx_0 = v_0 \cos \varphi$ $vy_0 = v_0 \sin \varphi$ $v_x = v_0 cos \varphi$ $v_y = v_0 sin \varphi$

 $x = \frac{v_0^2}{g} \sin(2\varphi) - \text{domet}$

 $y = xtg\varphi - \frac{gx^2}{2v_0^2cos^2\varphi}$ -enačba

parabole leta

. KROŽENJE

α – kotni pospešek

 $\omega-kotna\;hitrost$

a_r - radialni pospešek

a_t – tangentni pospešek

 t_0 – obhodni čas

f – frekvenca

$$f = \frac{1}{t_0}$$

 $\omega = 2\pi f \quad \omega = \frac{\varphi}{t}$

 $v = \frac{2\pi r}{t_0} = \omega r$ $\alpha = \frac{\omega}{t} = \frac{a_t}{r} \quad a_t = \alpha r$ $a_r = \omega v = \frac{v^2}{r} = \omega^2 r$

*enakomerno (α =0, $\omega = \omega_0 =$

konst.)

 $\varphi = \omega_0 t$

*enakomerno pospešeno

 $\omega = \omega_0 + \alpha_0 t$ $\omega^2 = \omega_0^2 + 2\alpha_0 \varphi$ $\varphi = \omega_0 t + \frac{\alpha t^2}{2}$

 $N = \frac{\varphi}{2\pi} - \text{število obratov}$ **SILA**

Gravitacijski zakon

 g_0 – težn.posp.zemlje

 $(= 9.81 \frac{kgm}{s^2})$

R – polmer zemlje (6400 km)

h - višina telesa nad zemljo

G - gravitacijska konst

G = gravitatijska konst $(=6,67 \ 10^{-11} \ Nm^2)_{kg^2}$ $F = G \frac{m_1 m_2}{r^2}$ $F_g = G \frac{M m}{(R+h)^2}$ $g_0 = G \frac{M}{R^2}$ $F_g = m \ g_0$

$$g(h) = g_0 \frac{R^2}{(R+h)^2}$$

*satelit okoli planeta
$$g = a_r = \frac{v^2}{r} = \frac{v^2}{(R+h)}$$

Drugi Newtnow zakon

$$\sum F = m \ a$$

Trenje in lepenje

 $F_t = k_t F_n$

 $k_l = \tan \alpha$ - ko telo zdrsne

Sile na klancu

 $F_d = F_g \sin \alpha$

 $F_s = F_g \cos \alpha$

 $F_l = k_l \cdot F_s, , , k_l = \tan \alpha$

 $a = g(\sin\varphi - k_{tr}\cos\varphi)$ Sile pri kroženju

 $F_{cf} = m\omega^2 r_0$

 $F_{Cor} = -2m(\omega \times v_r)$

 $F_{sist} = m\omega^2 r_0 - 2m(\omega \times v_r)$

GIBALNA KOLIČINA

 $\int F dt$ – sunek sile

$$\int F dt = \Delta G = G_2 - G_1$$

G = m v

*če sunek zunanje sile=0

*popolnoma neelastični trk:

$$m_1 v_1 + 0 = (m_1 + m_2)v$$

*popolnoma elastični trk:

$$m_1 v'_1 + m_2 v'_2 = m_1 v_1 + m_2 v_2$$

*streljanje iztrelkov z maso m:

$$v_{n+1} = v_n + \frac{mv'}{M - Nm}$$

Sila curka

$$\phi_{m} = \frac{dm}{dt} = \rho \phi_{v} = \rho S v$$

$$\phi_{v} = \frac{dV}{dt} = S v$$

$$F_{c} = \phi_{m}(v_{2} - v_{1}) = 2\rho S v (v_{2} - v_{1})$$
Since the state of the stat

Sistem točkastih mas

$$\vec{\Gamma} = \sum_{i} \vec{r_i} \times m_i \vec{v_i}$$

$$\frac{d\vec{\Gamma}}{dt} = \sum_{i} \overrightarrow{M_i} = \overrightarrow{M}$$

J – vztrajnostni moment

Γ – vrtilna količina

 $\int M dt$ – sunek navora

 $M = J\alpha$ $M = F r sin\varphi$ $\Gamma = J\omega$ $\Gamma = r G$

$$\int M dt = \Delta \Gamma = \Gamma_2 - \Gamma_1$$

$$r\int F dt = \int M dt$$

Vztrajnostni moment

*Steinerjev izrek:

 $J = J^* + mr^{*2}$

Palica: $J^* = \frac{ml^2}{12}$ $J = \frac{ml^2}{3}$ Obroč: $J = mr^2$

Valj: $J = \frac{mr^2}{2}$ Točka: $J = mr^2$

Krogla: $J = \frac{2}{5}mr^2$

ENERGIJA

Delo (đuli)

 $A - \text{delo} (j = Nm = kg \, m^2/s^2)$

 $A=F\ s\ cos \varphi$ delo pri premiku

A=M arphi delo navora pri vrtenju

 $A = -p\Delta V$ delo tlaka

(deformacijsko)

 $A = \int_{r_1}^{r_2} \vec{F} \ \overrightarrow{dr}$

Kinetična energija

$$W_k = \frac{mv^2}{2} = \frac{J\omega^2}{2}$$

Potencialna energija

 $W_n = mgh$

Prožnostna energija

$$W_{pr} = \frac{kx^2}{2}$$

Ohranitev energije

 $A = \Delta W_k + \Delta W_p + \Delta W_{pr}$ MOČ(watti)

$$A = \int P \, dt$$

P = F v moč pri premem gibanju $P = M\omega$ moč navora pri vrtenju

NIHANJE

 ω_0 - lastna krožna frekvenca

 x_0 – amplituda (odmik)

δ – fazni zamik

 $x(t) = x_0 \sin(\omega t + \delta)$

 $v(t) = x(t) = x_0 \omega \cos(\omega t + \delta)$

 $a(t) = \ddot{x}(t) =$

 $w = \frac{mv^2}{2} + \frac{kx^2}{2}$ $w = \frac{mv^2}{2} + \frac{kx^2}{2}$

*če je nihanje sinusno (nastavek) $\ddot{x} = -\omega^2 x \qquad \ddot{\varphi} = -\omega^2 \varphi$

$\alpha = \ddot{\varphi}$ Nihalo na vijačno vzmet

$$F = -k x \quad l = \frac{m g}{x_0}$$

$$t_0 = 2\pi \sqrt{\frac{m}{k}} \qquad \omega = \sqrt{\frac{k}{m}}$$

$$W_{pr} = \frac{k x^2}{2} \quad W_k + W_{pr} = \frac{k x_0^2}{2}$$

Nihalo na polžasto vzmet

D – konstanta vzmeti

 $M = -D\varphi$ $M = J\alpha$

$$\begin{split} \varphi(t) &= \varphi_0 \sin(\omega t + \delta) \\ t_0 &= 2\pi \sqrt{\frac{J}{D}} \qquad \omega = \sqrt{\frac{J}{D}} \\ dA &= M \cdot d\varphi = D\varphi \cdot d\varphi \end{split}$$

$$dA = M \cdot d\varphi = D\varphi \cdot A = \frac{D{\varphi_0}^2}{2} = W_{pr}$$
Matematično nihalo

Matematično nihalo (nitno)

$$M \doteq mgl\varphi \qquad \alpha = -\frac{g}{l}\varphi$$

Fizično nihalo

$$r_T$$
 – ročica telesa

$$M \doteq mgr_T \varphi$$
$$t_0 = 2\pi \sqrt{\frac{J}{mgr_T}}$$

Nedušeno nihanje

$$\omega_0 t_0 = 2\pi$$

$$\omega_0 t_0 = 2\pi$$

$$\omega_0 = \frac{2\pi}{t_0} = 2\pi r_0$$

$$\omega_0 = \frac{2h}{t_0} = 2\pi r_0$$

$$W_{nihanja} = \frac{kx_0^2}{2} = \frac{mv_0^2}{2}$$

$$v = \frac{dx}{dt} = x_0 \omega_0 \cos(\omega_0 t + \sigma)$$

$$a = \frac{d^2x}{dt^2} = x_0 \omega_0^2 \sin(\omega_0 t + \sigma)$$

$$v = \frac{1}{dt} = x_0 \omega$$

 at^{2} $= -x_{0}\omega_{0}^{2}\sin(\omega_{0}t + \sigma)$ $a = -\omega_{0}^{2}x(t)$

$x = x_0 \sin(\omega_0 t + \sigma)$ Dušeno nihanje

 $-kx - 2m\beta \dot{x} = m\ddot{x}$ 2.člen je

sila upora Koeficient dušenja

 $\beta = \frac{\gamma}{2m}$

$$x = x_0 e^{-\beta \cdot t} \cos(\sqrt{{\omega_0}^2 - \beta^2} \cdot t)$$

Znižana frekvenca zaradi dušenja

$$\omega = \sqrt{{\omega_0}^2 - \beta^2}$$

Če je $\beta > \omega_0$:

$$x = x_0 e^{-(\beta + \sqrt{\beta^2 - \omega_0^2}) \cdot t}$$

Vsiljeno nihanje

$$F(t) = F_0 \sin(\omega t)$$
$$\omega_0^2 = \frac{k}{m}$$

$$\omega \ll \omega_0$$

$$\omega_0^2 x \cong \frac{F_0}{m} \sin(\omega t)$$
Fazni zamik

$$\tan \sigma = \frac{-2\beta\omega}{\omega_0^2 - \omega}$$
Sklopling pilon

Sklopljeno nihanje

 $M = J\ddot{\varphi}$ $\ddot{\varphi} = \frac{d^2\varphi}{dt^2} = \alpha$ $\dot{\varphi} = \frac{d\varphi}{dt} = \omega$

 $M = mgr_T \sin \varphi$ $\varphi \ll 1$

$\sin \varphi = \varphi$ Sestavljanje dveh pravokotnih nihani

$$x = x_0 \cos(\omega_1 t)$$

$$y = y_0 \sin(\omega_0 t - \sigma)$$

$$F_v = \frac{k_{upora} \varrho S v^2}{2}$$
VALOVANJE

k – valovno št.

 λ - valovna dolžina

c – hitrost valovanja *f* – frekvenca

$$f$$
- frekvenca
 $c = \lambda \cdot f = \frac{\omega}{k} ... k = \frac{2\pi}{\lambda} = \frac{w}{c} ... \omega \cdot t = 2\pi$
 $y = A \sin(\omega t - kx)$

$y = A\sin(2\pi \cdot f(t - \frac{x}{c}))$

Napeta struna
$$c = \sqrt{\frac{F}{\rho S}} = \sqrt{\frac{F}{\mu}}$$
 Stoječe valovanje

Stoječe valovanje

$$y(x,t) = -2y_0\cos(wt)\sin(kx)$$

$$A = 2v_0 \sin(kx)$$

$$c = \sqrt{\frac{F_0}{\delta S}} \dots \lambda_n = \frac{2l}{N+1}$$

$$v_n = \frac{c(N+1)}{2l}$$
Glasnost

Glasnost
$$g = 10\log \frac{j}{j_0}$$

Dopplerjev pojav

*Gibanje zvočnika

- približevanje, + oddaljevanje
$$f = \frac{f_0}{1 \mp \frac{v_0}{c}}$$

$$f = f_0(1 \pm \frac{v_0}{c})$$

Kovina Kapljevina
$$c = \sqrt{\frac{E}{\rho}} \qquad c = \sqrt{\frac{1}{\chi \rho}}$$

$$c = \sqrt{\frac{\kappa \cdot R \cdot T}{M}} = \sqrt{\frac{\kappa \cdot p}{\rho}}$$

$$S_0 = 2S_0 \cos \frac{\delta}{2}$$

Lomni zakon

$$\frac{\sin\alpha}{\sin\beta} = \frac{c}{c_1}$$

Energija valovanja

$$W = \rho \cdot s_0^2 \omega^2 \sin^2(\omega t - kx)$$

Gostota moči

$$j = \frac{s^2 \omega^2 \rho \cdot c}{2}$$

Gostota energije

$$j = w \cdot c, ,, w = \frac{\rho(s_0 \omega)^2 c}{2}$$

Gostota toka

$$P = \int j \cdot dS$$

TLAK / NAPETOST

p – tlak (F pravokotno na S) $p = \frac{F}{S} \qquad F = -k x$

$$p = \frac{1}{S}$$
 $F = -$

*natezna obremenitev

E- prožnostni (Youngov) modul

 ε – relativni raztezek

 σ – natezna trdnost

$$\frac{F}{S} = E\varepsilon \qquad \varepsilon = \frac{\Delta l}{l}$$

$$\sigma = (\frac{F}{S})_{max}$$
*tlačna obremenitev

*tlačna obremenitev
$$\chi - \text{stisljivost snovi (hi)}$$

$$\frac{\Delta V}{V} = -\chi \Delta p$$

*strižna obremenitev

 θ – kot zasuka

G – strižni modul

 τ – strižna napetost (F vzporedna

na S) $\tau = \frac{F}{S} = G \vartheta$

$$D = \frac{\pi G R^4}{2l} \qquad M = \frac{\pi G R^4}{2l} = \frac{1}{2l} R^4$$

*Torzijska obremenitev
$$D = \frac{\pi G R^4}{2l} \qquad M = D \varphi$$
*\$\psi - Poissonovo \text{ \text{stevilo}} \\
$$G = \frac{E}{2(1+\mu)} \qquad \chi = \frac{3(1-2\mu)}{E}$$
*\$\text{deformacijo}

*deformacije

-elastične

-plastične

-viskozne (n – viskoznost eta)

 $\frac{F}{S} = \eta \frac{v}{h}$ v-hitrost premika, h-višina snovi F je vzporedna površini (S)

-snov z vsemi tremi: visoko

elastična

Deformacija trdnih snovi

$$\frac{F}{S} = E \frac{\Delta x}{x}$$

$$a_x = \frac{F}{S} = G\varphi$$

$$\frac{\Delta V}{M} = -\chi \frac{F}{R}$$

$$\frac{dV}{V} = -\chi \frac{V}{S}$$

Deformacija trdnih snovi $\frac{F}{S} = E \frac{\Delta x}{x}$ Strižna deformacija $\tau_x = \frac{F}{S} = G \varphi$ Vsestransko stiskanje $\frac{\Delta V}{V} = -\chi \frac{F}{S}$ MEHANIKA TEKOČIN

1.Hidrostatika(tekoč. miruje)

1.Hidrostatika(tekoč. miruje)
$$p_0 - \text{zračni tlak na } 0m$$

$$(= 1.013 \text{ } Bar)$$

$$1Bar = 10^5 Pa (Pa = N/m^2)$$

$$\rho_0 - \text{gostota vode } (= 1000kg/m^3)$$
*Kapljica
$$\Delta p = \frac{2\eta}{R} = \eta \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$
*Kapilarni dvig/spust
$$2n\cos\alpha$$

$$\Delta p = \frac{2\eta}{R} = \eta \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$h = \frac{2\eta \cos\alpha}{\delta gr}$$

*Pascalovo načelo hidravlika

$$\frac{F}{S} = \frac{F_1}{S_1}$$

*Hidrostatični tlak

$$p = p_0 + \rho g \Delta h$$

*Arhimedovo načelo sila vzgona

$$F_{vzg} = \rho_0 \, g \, V$$

$$\frac{V_1}{V} = \frac{\rho}{\rho_0}$$
V in RO: del telesa nad vodo
VI in RO 0: del telesa v vodi

 $\rho < \rho_0$ teža manjša od vzgona

 $\rho = \rho_0$ teža enaka vzgonu (lebdenje)

 $\rho > \rho_0$ teža večja od vzgona (padanje)

*Površinska napetost

W₀ – povprečna potencialna energija

energija
$$\Delta W_p = \sigma \Delta S \quad \Delta W_p$$

$$= \frac{(\Delta S / \pi r_0^2)(NW_0)}{2}$$

$$F = \sigma 2l \text{ sila za povečanje S milnice na preskli$$

prečki 2.Hidrodinamika (gibanje tekočin)

*Kontinuitetna enačba

$$\phi_{m_1} = \phi_{m_2} \qquad v_1 S_1 = v_2 S_2$$

$$\psi_{m_1} - \psi_{m_2} \qquad v_{13_1} - v_{23_2}$$
*Bernulijeva enačba
$$v_1 + \frac{\rho v_1^2}{2} + \rho g h_1 = v_2 + \frac{\rho v_2^2}{2} + \rho g h_2$$
*Viskoznost
$$\frac{F}{S} = -\eta \frac{v}{z}$$
*Upor

$$\frac{F}{S} = -\eta \frac{v}{z}$$

d – največji čelni presek $R_e = \frac{d\rho v}{\eta}$

$$R_e = \frac{d\rho v}{n}$$

1. Linearen zakon

 $F_u = 6\pi r \eta v - \text{Viskozni upor}$

2. Kvadraten zakon

 $F_u = \frac{1}{2}C_u S \rho v^2 - \text{Dinamični}$

 $\hat{C_u}$ – koificient dinam. upora ***Vzgon**

$$F_v = \frac{1}{2}C_v S \rho v^2$$
 – Dinamični

 C_v – koificient dinam. vzgona

 $F_p = \varrho g V$

 $F_{upora} = G\pi R\mu V$

*Zastojni tlak

$$\Delta p = \frac{\rho v^2}{2}$$

$$S\varrho v^2 k$$

*Zastojii tiak
$$\Delta p = \frac{\rho v^2}{2}$$

$$F_{upora} = \frac{S\varrho v^2 k_{upora}}{2}$$
*Tok v ceveh (Poiseuille-ov

zakon)

$$\Phi_{v} = \frac{(\rho_{1} - \rho)\pi \cdot r^{4}}{8 \cdot \eta \cdot l}$$
*Volumski pretok

<u>Široka cev:</u>

$$\overline{\Phi_{\nu} \cong \nu_0 \cdot S} = \nu_0 \cdot \pi \cdot R^2$$

$$\frac{Ozka \text{ cev:}}{\Phi_{\nu}} = \frac{V_0 \cdot \pi \cdot R^2}{2}$$

*Povprečna ukrivljenost
$$H = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$
 TERMODINAMIKA

1.Zakon termodinamike

$$\Delta W_n = A_z + Q$$
$$dA = -p \ dV$$

$$dW_n = dQ - p \ dV$$

$$v_{ef} = \frac{\sqrt{\overline{v^2}}}{\overline{v^2}m}$$

$$\begin{split} v_{ef} &= \sqrt{\overline{v^2}} \\ \overline{W_k} &= \frac{\overline{v^2}m}{2} = \frac{3}{2}kT \\ \overline{W_k} &= \frac{5}{2}kT \end{split}$$

*Splošna plinska enačba idealnega plina

idealnega plina
$$N_A$$
 – avogadrovo število =
 $6,02 \cdot 10^{26} \frac{1}{k_{mol}}$
 k – Boltzmanova konst =
 $1,38 \cdot 10^{-23} \frac{1}{K}$
 R_{-} splošna plinska konst =

$$6,02\,10^{26}\,1/_{kmol}$$

$$1,38 \ 10^{-23} J/_{k}$$

R – splošna plinska konst = $8314 \frac{J}{kmol K}$

$$pV = nRT$$

$$n = \frac{m}{M} = \frac{N}{N_A}$$

$$p = nkT$$

$$a = \frac{m}{M} = \frac{N}{N_A}$$

$$p = nkT k = R/N_A$$

*Notranja energija (idealnega

$$W_n = c_v m \Delta T \qquad W_n = N \overline{W}$$

$$= m \left(\frac{3R}{2M}\right) T$$

plina)
$$\Delta W_n = c_v m \Delta T \qquad W_n = N \overline{W_k}$$

$$= m \left(\frac{3R}{2M}\right) T$$

$$Q = c_p m \Delta T$$

$$c_p = c_v + \frac{R}{M}$$

$$\kappa = \frac{c_p}{c_v}$$
**Tzohorna sprememba

*Izohorna sprememba

(V=konst.)

$$\frac{p_1}{T_1} = \frac{p}{T} \qquad A = -\int_{V_1}^{V} \rho \ dV$$

$$W_n - W_{n_1} = (Q)_V = mc_v(T - T_1)$$

*Izobarna sprememba

p=konst.

$$\frac{\overline{V}_1}{T_1} = \frac{V}{T}$$

$$\begin{aligned} & \frac{V_1}{V_1} = \frac{V}{T} \\ & \frac{V_1}{T_1} = \frac{V}{T} \\ & W_n - W_{n_1} = (Q)_p + (A)_p \\ & = mc_p(T - T_1) \end{aligned}$$

$$= mc_p(T - T_1)$$
*Izotermna sprememba

T=konst.

$$(A)_T = -p_1 V_1 \ln \frac{V}{V_1}$$

$$(A)_T = -p_1 V_1 \operatorname{lr}$$

$$p_1V_1 = pV$$
-razpenjanje: $A < 0$, $Q > 0$

dovajamo Q če ne bi se ohaldu-stiskanje:
$$A > 0$$
, $Q < 0$ sistem

oddaja toploto *Adiabatna sprememba

S=konst.

$$T \propto pV$$
 $T_1V_1^{\kappa-1} = TV^{\kappa}$

*Adiabatna sprememba S=konst.
$$T \propto pV \qquad T_1V_1^{\kappa-1} = TV^{\kappa-1}$$

$$p \propto \frac{T}{V} \qquad p_1V_1^{\kappa} = pV^{\kappa}$$

$$V \propto \frac{T}{p} \qquad \frac{T_1^{\kappa}}{p_1^{\kappa-1}} = \frac{T^{\kappa}}{p^{\kappa-1}}$$
 *Izotermna stislivost (pV =

$$V \propto \frac{T}{p} \quad \frac{T_1^{\kappa}}{p_1^{\kappa-1}} = \frac{T^{\kappa}}{p^{\kappa-1}}$$

*Izotermna stisljivost (pV =

konst)

$$\chi_T = \frac{1}{p}$$
*Adiabatna stisljivost ($pV^{\kappa} =$

konst)

$$\chi_Q = \frac{1}{\kappa p}$$

*Temperaturni raztezek snovi

 $\beta = 3\alpha$

-Volumenski

$$\Delta V = \beta \ V \ \Delta T$$

$$\Delta l = \alpha \ l \ \Delta T \quad \beta$$
*Izračun toplote

$$-V = konst.$$

$$A = -p \ dV$$
$$\Delta W_n = Q$$

$$\Delta W_n = Q$$
$$Q = mc_v \, \Delta T$$

$$-p = konst.$$

$$Q = mc_v \Delta T$$

$$-p = \text{konst.}$$

$$A = -p(V - V_1)$$

$$\Delta W_n = Q - p(V - V_1)$$

$$Q = mc_v \Delta T$$

$$< v^2 > = \frac{3kT}{m_1}$$

$$\langle v^2 \rangle = \frac{3k'}{m}$$

*Prevajanje toplote
$$P = \frac{Q}{t} \qquad j = \frac{P}{S}$$

$$j = -\lambda \frac{T_1 - T_2}{d}$$
Toplotni stroj

$$\eta$$
 -izkoristek

$$\eta = \frac{\mid A_{kr} \mid}{Q_{do}} = 1 - \frac{\mid Q_{od} \mid}{Q_{do}}$$

$$\Delta W_n = A_{kr} + Q_{do} - |Q_{od}| = 0$$

$$\eta = 1 - \frac{T_2}{T_1}$$

Hladilnik
$$\eta = \frac{A}{Q_1} = \frac{T_2}{T_1} - 1, , P = P_0 \cdot \eta$$

$$\Delta s \ge \int \frac{dQ}{T}$$
, enačaj če je sprememba reverzibilna

$$S = klnW, \quad W = \frac{M!}{N! (M - N)!}$$

sprememba reverzibilna
$$S = k \ln W \quad W = \frac{1}{2}$$

$$\Delta s \ge \int \frac{av}{r}$$
, enačaj če je sprememba reverzibiln

$$M_0 = \frac{V}{V_0}$$

Entropija

sprememba reverzibilna
$$S = klnW, W = \frac{M!}{M!}$$

Atomov
$$M_0 = \frac{V}{M_0}$$

$$\Delta W n = 0$$

$$Q = -A$$