Kalló Bernát 1. beadandó / 3. feladat 2010. október 5–6. KABRABI.ELTE Objektumelvű alkalmazások fejlesztése kallo.bernat@gmail.com 3. csoport Szabóné Nacsa Rozália

Feladat

Valósítsuk meg a nagyon nagyszámok típusát! Ábrázoljuk a számokat számjegyeik sorozatával, amelyet egy dinamikus helyfoglalású tömbben helyezzünk el, és implementáljuk a hatékony összeadás és a szorzás műveleteit! Tegye lehetővé két nagyszám típusú változó közötti értékadást!

Bignum típus

Típusértékhalmaz

A természetes számok.

Típusműveletek

1. Összeadás

e := a + b

2. Szorzás

e := a * b

3. Létrehozás sztringből

A tízes számrendszerbeli alakja alapján hozza létre a számot.

4. Sztringgé alakítás

Állítsa elő a tízes számrendszerbeli alakját.

5. Beolvasás

Beolvassa a szám tízes számrendszerbeli alakját.

6. Kiírás

Írja ki a tízes számrendszerbeli alakját.

Reprezentáció

Egy tömbben (v) tároljuk a szám tízes számrendszerbeli számjegyeit. A 0-s index az egyes helyiértéknek felel meg. Külön mezőben (n) tároljuk a számjegyek számát. Az n-edik helyen nem állhat 0, ha a nullát akarjuk reprezentálni, n=0 lesz.

Például az 1234 reprezentációja $(n:4,v:\langle 4,3,2,1\rangle)$. A 0 reprezentációja $(n:0,v:\langle \rangle)$.

Implementáció

Itt a specifikációban szereplő függvényekhez hozzáveszünk még néhányat, amelyeket az összeadáshoz és a szorzáshoz felhasználunk.

1. Egy jegy lekérdezése

Visszaadja a szám egy jegyét, vagy 0-t.

2. Összeadás

A nagyszámokat az írásbeli összeadásnak megfelelően adjuk össze a legkisebb helyiértéktől kezdve a legnagyobbig. Az eredmény leföljebb eggyel lesz hosszabb, mint a hosszabbik operandus, az egyszerűség kedvéért ennyit le is foglalunk a tömbnek.

3. Egész számmal szorzás

A nagyszámokat (rendes) egész számmal az írásbeli szorzásnak megfelelően szorzunk, számjegyenként a legkisebb helyiértéktől kezdve, nagyon hasonlóan az összeadáshoz. Itt is megtehetjük, hogy rögtön a szám hosszánál eggyel nagyobb tömböt foglalunk le, mert ennél hosszabb nem lehet a szorzat. Viszont a szám hosszánál lehet rövidebb, akkor, ha a szorzó 0, ezért ezt külön meg kell nézni.

e := a * x	
	x = 0
e.n = 0	new e.v[a.n+1]
	k := a.jegy(0) * x
	i := 0
	$i \leq a.n \lor k > 0$
	$e.v[i] := k \bmod 10$
	i := i + 1
	k := k div 10 + a.jegy(i) * x
	e.n := i

4. Tízhatvánnyal szorzás

Egy nagyszámot tíz hatványával szorozni hatékonyabban is lehet, mint az előző algoitmussal:

$e := a * 10^x$	
new e.v[a.n+x]	
i := 0x - 1	
e.v[i] := 0	
i := xa.n + x - 1	
e.v[i] := a.v[i-x]	
e.n := a.n + x	

5. Szorzás

A szorzást vissza tudjuk vezetni a számjeggyel való szorzásra, a tízhatvánnyal való szorzásra és az összeadásra, az írásbeli szorzásnak megfelelően.

6. Létrehozás sztringből

7. Sztringgé alakítás

8. Beolvasás

9. Kiírás

C++ megvalósítás

A Bignum osztályt a bignum.cpp/bignum.h fájlokban valósítjuk meg. A műveletek nagy részét operátor-felüldefiniálással implementáljuk. A további dokumentációt lásd a forráskódban.

A kódban megvalósítjuk az említetteken kívül az értékadást, a copy konstruktort, ill. a destruktort.

Tesztelési terv

A teszteléshez a CxxTest keretrendszert használjuk. Ez a cxxtest/ mappában található. A tesztek a test/test.h fájlban vannak, és a (cxxtest által generált) make test-et kell futtatni a teszteléshez.

Feketedoboz tesztesetek

- 1. Számok összeadása átvitel nélkül
- 2. Számok összeadása átvitellel
- 3. Nulla összeadása más számmal, nullával
- 4. Számok szorzása
- 5. Számok szorzása 1-gyel, 0-val
- 6. Nagyon nagy számok (> $2^{32},2^{64})$ össze
adása, szorzása

Ezek egyben a sztring és Bignum közötti konverziókat is tesztelik.

Fehérdoboz tesztesetek

- 1. Szorzás kommutativitása az előző esetekben (mivel az algoritmusban nem szimmetrikusan kezeltük a-t és b-t)
- 2. Szorzáshoz használt segéd metódusok tesztelése
- 3. Copy konstruktor tesztelése
- 4. Értékadás tesztelése