MNUM-PROJEKT, zadanie 2.42

1. Proszę napisać program służący do obliczania wartości własnych macierzy nieosobliowych metodą rozkładu QR w dwóch wersjach: bez przesunięć i z przesunięciami dla macierzy symetrycznej, oraz w wersji z przesunięciami dla macierzy niesymetrycznej. Następnie proszę przetestować skuteczność (zbieżność) obu wersji algorytmu dla 30 różnych macierzy losowych o wymiarach: 5×5, 10×10 i 20×20. Proszę podać średnią liczbę iteracji dla metody bez przesunięć i z przesunięciami. Dla wybranych macierzy proszę porównać otrzymane wyniki z wartościami własnymi obliczonymi poleceniem *eig*.

Uwagi:

- W programie nie można wykorzystać dostępnych w Matlabie poleceń qr i eig.
- Macierz $\mathbf{B} = (\mathbf{A} + \mathbf{A}^{\mathrm{T}})$ jest macierzą symetryczną dla dowolnej macierzy \mathbf{A} .
- 2. Dla następujących danych pomiarowych (próbek):

x_i	y_i
-5	-18,7370
-4	-8,1583
-3	-1,9146
-2	-0,3887
-1	1,8030
0	1,1890
1	0,4738
2	0,4726
3	0,0941
4	-2,3716
5	-6,6512

metodą najmniejszych kwadratów należy wyznaczyć funkcję wielomianową y=f(x) najlepiej aproksymującą te dane (proszę przetestować wielomiany różnych rzędów). W sprawozdaniu proszę przedstawić na rysunku otrzymaną funkcję na tle danych. Do rozwiązania zadania najmniejszych kwadratów proszę wykorzystać:

- a) układ równań normalnych,
- b) układ równań liniowych z macierzą **R** wynikającą z rozkładu QR macierzy układu równań problemu.

Dla każdego układu równań proszę obliczyć błąd rozwiązania jako normę residuum (wektor residuum $\mathbf{r} = \mathbf{A}\mathbf{x} - \mathbf{b}$).

Uwagi:

- Rysowaną funkcję proszę próbkować 10 razy częściej niż dane.
- Dane sa obarczone pewnym błędem (szumem pomiarowym).

Programy muszą być napisane w Matlabie.

Sprawozdanie powinno zawierać:

- krótki opis zastosowanych algorytmów,
- wydruki dobrze skomentowanych programów z implementacją użytych algorytmów,
- prezentację otrzymanych wyników,
- komentarz do otrzymanych wyników oraz wnioski z eksperymentów (ocena poprawności wyników, dokładności, efektywności algorytmów itd.).

Sprawozdanie powinno być wysłane na adres prowadzącego: a.krzemienowski@elka.pw.edu.pl. Termin: 19.04, godz. 14:00.