МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им М.В.Ломоносова

Механико-математический факультет Кафедра теории вероятностей

Отчёт по практикуму на ЭВМ задание 2

Уравнение теплопроводности

Выполнил: студент 4 курса 408 группы Мироненко А.В.

Вариант 22

Постановка задачи

Требуется методом конечных разностей в области $D = \{(x,t): 0 < x < 1, 0 < t \le 1\}$ приближённо решить уравнение теплопроводности

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + f(x, t)$$

с начальным $u(x,0)=u_0(x)$ при t=0 и краевыми условиями u(0,t)=u(1,t)=0 при $\forall t\geq 0$. Сетка в области $\bar{D}=D\cup\Gamma$ задаётся равномерной по обеим переменным, т.е.

$$x_m = mh$$
, $m = 0, 1, ..., M$, $Mh = 1$; $t^n = n\tau$, $n = 0, 1, ..., N$, $N\tau = 1$

и используются обозначения: для сеточной функции u в точке $(x_m, t^n) - u_m^n$, а для разностного аналога оператора

$$\frac{\partial^2 u}{\partial x^2}$$
 при $x=x_m$ выражение $\Lambda u_m=\frac{u_{m+1}-2u_m+u_{m-1}}{h^2}$

Вариант задания 22: метод левой прогонки и схема для $1 \leq m \leq M-1, \quad 1 \leq n \leq N-1$

$$\frac{1}{6} \frac{u_{m+1}^{n+1} - u_{m+1}^n}{\tau} + \frac{2}{3} \frac{u_m^{n+1} - u_m^n}{\tau} + \frac{1}{6} \frac{u_{m-1}^{n+1} - u_{m-1}^n}{\tau} = \Lambda u_m^{n+1} + \varphi_m$$

Разложение и погрешность аппроксимации

Данной схеме соответствует точка разложения $(x = x_m, t = t^{n+1})$.

Правая часть $\varphi_m = f(x_m, t^{n+1})$

Тогда погрешность аппроксимации будет выглядеть так:

$$ERR = \frac{h^2}{6} \frac{\partial^3 u}{\partial t \partial x^2} - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4} - \frac{\tau}{2} \frac{\partial^2 u}{\partial t^2} + \bar{O}\left(\tau + n^2\right)$$

Устойчивость

Была рассмотрена вспомогательная задача на собственные значения: $\Lambda v_m = -\mu v_m, 1 \le m \le M-1, v_0 = v_M = 0, Mh = 1$ Её решением является набор собственных векторов и значений

$$v_m^{(k)} = \sqrt{2}\sin(\pi kmh), \mu^{(k)} = \frac{4}{h^2}\sin^2\frac{\pi kh}{2}, 1 \le k \le M - 1$$

Что позволяет выразить собственные значения исходной разностной схемы:

$$\lambda = \frac{\cos(\pi kh) + 2}{\cos(\pi kh) + 2 + \mu^{(k)} 3\tau}$$

Отсюда получаем, что при всех τ, h, k верно $|\lambda| \leq 1$. Следовательно, схема абсолютно устойчива.

Таблицы погрешностей

Для
$$u_2(x,t) = \sqrt{105}e^{-t+1}x^2(1-x)$$
, $f_2(x,t) = \sqrt{105}e^{1-t}(x^2(x-1)-2+6x)$
 $\downarrow NM \rightarrow \parallel 10 \quad 100 \quad 1000$
 $10 \quad 3.683e - 03 \quad 5.468e - 03 \quad 5.468e - 03$
 $100 \quad 1.333e - 03 \quad 5.130e - 04 \quad 5.307e - 04$
 $1000 \quad 1.784e - 03 \quad 3.540e - 05 \quad 5.273e - 05$

Для
$$u_4(x,t) = \sqrt{2}e^{-\pi^2(t-1)}\sin(\pi x), \quad f_4(x,t) = 0$$

$$\downarrow NM \to \begin{vmatrix} 10 & 100 & 1000 \\ \hline 10 & 1.835e + 01 & 1.915e + 01 & 1.916e + 01 \\ \hline 100 & 4.668e - 01 & 5.785e - 01 & 5.796e - 01 \\ \hline 1000 & 3.174e - 02 & 4.873e - 02 & 4.957e - 02 \\ \hline \end{cases}$$