## Alexia Salavrakos - Curriculum Vitae



### **Education**

Oct. 2014 - April 2019 PhD in Quantum Information Theory

"Bell inequalities for device-independent protocols" Institute of Photonic Sciences (ICFO), Barcelona, Spain

Sept. 2012 - June 2014 Master in Physics (Research Focus)

Magna Cum Laude - 120 ECTS

Université Libre de Bruxelles, Brussels, Belgium

Sept. 2009 - June 2012 Bachelor in Physics

Magna Cum Laude - 180 ECTS

Université Libre de Bruxelles, Brussels, Belgium

## Work experience

June 2022 - present Quantum Information Scientist

Quandela, Barcelona, Spain

Quandela is a start-up dedicated to building a photonic quantum computer. As a research scientist in the theory team, I develop algorithms for photonic quantum devices, with a focus on quantum machine learning and how classical machine learning can help with the development of a quantum computer.

May 2019 - April 2022 Data Scientist

Clearpay, Barcelona, Spain (previously Pagantis)

Clearpay is a "buy now, pay later" platform for e-commerce. As a data scientist I developed machine learning models as well as monitored risk and performance. I led two main projects, one on fraud detection and one on payment optimisation, from conception to production.

Oct. 2014 - March 2019 Doctoral researcher in Quantum Information Theory

Institute of Photonic Sciences (ICFO), Barcelona, Spain

During my PhD, I studied Bell inequalities for device-independent protocols. Initially developed in the context of quantum foundations, Bell inequalities can also be seen as mathematical certificates that guarantee properties such as randomness or the security of a secret key in cryptography. My research included both theory and numerics, in particular convex optimisation and semidefinite programming.

August - Oct. 2013

#### Intern in Radiation Protection Dosimetry and Calibration Group

Belgian Nuclear Research Centre (SCK-CEN), Mol, Belgium

Research in SCK-CEN is focused on peaceful applications of radioactivity and associated societal concerns. During my internship, I conducted a series of experiments to test the properties of smartphones as radiation detectors, which led to a publication.

#### **Technical skills**

#### **Programming languages**

Python (advanced), R (advanced), Matlab (intermediate)

#### Data analysis, visualisation, machine learning and databases

SQL; Tableau; R packages data.table, h2o, caret, and ggplot2; Python packages pandas, scikit-learn, keras, tensorflow, seaborn, and matplotlib; MySQL; MongoDB; Amazon Redshift; data build tool

#### **Others**

Version control with git and GitHub

## Relevant experience

#### **Project management**

Knowledge of Agile methodology and associated software like Jira and Confluence

#### **Conference organisation**

Organising committee of the YQIS conference in Barcelona, 150 participants (19 - 21 Oct. 2016) Steering committee of YQIS conference (Dec. 2023 - present)

#### **Student supervision**

Supervision of two high school students, ICFO Joves i Ciència program (July 2015)
Supervision of an undergraduate student, ICFO Summer Fellows program (July - Sept. 2017)
Supervision of master students at Quandela for master thesis projects
(March - August 2023, April - Sept. 2024, and May - Sept. 2025)
Co-supervision of a PhD student from Pascale Senellart's group at C2N (Sept. 2023 - present)

#### **Others**

Volunteer at Codewomen - Migracode Barcelona (July 2024 - present)

#### Languages

French - native English - fluent Spanish - fluent Catalan - intermediate Greek - intermediate Dutch - intermediate

#### **Personal interests**

Yoga, Literature, Hiking, Scuba diving

## List of publications and preprints

- A. Salavrakos, N. Maring, P.-E. Emeriau, and S. Mansfield. Photon-native quantum algorithms, Mater. Quantum. Technol. **5** 023001 (2025)
- A. Salavrakos, T. Sedrakyan, J. Mills, S. Mansfield, and R. Mezher. Error-mitigated photonic quantum circuit Born machine, *Phys. Rev. A* **111**, L030401 (2025)
- T. Sedrakyan and <u>A. Salavrakos</u>. Photonic quantum generative adversarial networks for classical data, *Optica Quantum* **2**(6), 458-467 (2024)
- G.de Gliniasty, P. Hilaire, P.-E. Emeriau, S. C. Wein, <u>A. Salavrakos</u>, and S. Mansfield. A Spin-Optical Quantum Computing Architecture, *Quantum* **8**, 1423 (2024)
- N. Maring, A. Fyrillas, M. Pont, E. Ivanov, P. Stepanov, N. Margaria, W. Hease, A. Pishchagin, T. H. Au, S. Boissier, E. Bertasi, A. Baert, M. Valdivia, M. Billard, O. Acar, A. Brieussel, R. Mezher, S. C. Wein, <u>A. Salavrakos</u>, P. Sinnott, D. A. Fioretto, P.-E. Emeriau, N. Belabas, S. Mansfield, P. Senellart, J. Senellart, and N. Somaschi. A versatile single-photon-based quantum computing platform, *Nat. Photon.* **18**, 603-609 (2024)
- E. Woodhead, J. Kaniewski, B. Bourdoncle, <u>A. Salavrakos</u>, J. Bowles, A. Acín, and R. Augusiak. Maximal randomness from partially entangled states, *Phys. Rev. Research* **2**, 042028 (2020)
- J. Bowles, F. Baccari, <u>A. Salavrakos</u>. Bounding sets of sequential quantum correlations and device-independent randomness certification, *Quantum* **4**, 344 (2020)
- R. Augusiak, <u>A. Salavrakos</u>, J. Tura, and A. Acín. Bell inequalities tailored to the Greenberger-Horne-Zeilinger states of arbitrary local dimension, *New Journal of Physics* **21**, 113001 (2019)
- J.Kaniewski, I. Šupić, J. Tura, F. Baccari, <u>A. Salavrakos</u>, and R. Augusiak. Maximal nonlocality from maximal entanglement and mutually unbiased bases, and self-testing of two-qutrit quantum systems, *Quantum* **3**, 198 (2019)
- J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, <u>A. Salavrakos</u>, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O'Brien, A. Laing, and M. G. Thompson. Multidimensional Quantum Entanglement with Large-scale Integrated Optics, *Science* **360**, 285-291 (2018)
- A. Salavrakos, R. Augusiak, J. Tura, P. Wittek, A. Acín, and S. Pironio. Bell inequalities tailored to maximally entangled states, *Physical Review Letters* **119**, 040402 (2017)
- I. Šupić, R. Augusiak, <u>A. Salavrakos</u>, and A. Acín. Self-testing protocols based on the chained Bell inequalities, *New Journal of Physics* **18**, 035013 (2016)
- O. Van Hoey, <u>A. Salavrakos</u>, A. Marques, A. Nagao, R. Willems, F. Vanhavere, V. Cauwels, and L. F. Nascimento. Radiation dosimetry properties of smartphone CMOS sensors, *Radiation Protection Dosimetry* **168**, 314-321 (2016)

# **Conferences - talks and lectures**

| 20/05 - 23/05/2025 | Quantum Matter conference in Grenoble, France Contributed talk on "An error-mitigated photonic quantum circuit Born machine"                                                                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09/12 - 13/12/2024 | Winter School on Quantum Machine Learning in Trento, Italy Lecture on "Quantum machine learning on photonic platforms"                                                                                                                                                   |
| 07/05 - 10/05/2024 | Quantum Matter conference in San Sebastián, Spain Contributed talk on "SPOQC: a Spin-Optical Quantum Computing Architecture"                                                                                                                                             |
| 14/04 - 27/04/2024 | Spring School on Near-Term Quantum Computing in Benasque,<br>Spain<br>Lectures on "Photonic Circuits I & II" and "Photonic circuits with<br>Perceval"                                                                                                                    |
| 18/03 - 21/03/2024 | ICFO Spring School on Open-Source Tools for Quantum Science and Technology in Castelldefels, Spain  Lecture on "Discovering discrete variable photonic quantum computing with Perceval" and invited talk on "A versatile single-photon-based quantum computing platform" |
| 19/11 - 24/11/2023 | Quantum Techniques in Machine Learning (QTML) conference in Geneva, Switzerland  Contributed talk on "Variational quantum algorithms implemented on a general-purpose single-photon-based quantum computing platform"                                                    |
| 15/12/2022         | Alsace Tech conference cycle on AI in Strasbourg, France Lecture on "Apprentissage automatique et calcul quantique"                                                                                                                                                      |
| 03/10 - 06/10/2017 | Young Quantum Information Scientists (YQIS) conference in Erlangen, Germany  Contributed talk on "Certifying global randomness from partially entangled two-qubit states"                                                                                                |
| 01/03 - 03/03/2017 | 4th UAB-ICFO-UB Winter School on Quantum Information in Setcases, Spain  Contributed talk on "Self-testing protocols based on the chained Bell inequalities"                                                                                                             |
| 16/11 - 18/11/2016 | Colloquium on Quantum Information, Foundations and Applications (IQFA) in Paris, France  Contributed talk on "Bell inequalities for maximally entangled states"                                                                                                          |
| 02/03 - 04/03/2015 | 3rd UAB-ICFO-UB Winter School on Quantum Information in Setcases, Spain  Contributed talk on "Novel Tsirelson-like bounds"                                                                                                                                               |
| 05/02/2015         | 3rd Jornada d'Investigadors Predoctorals Interdisciplinaria in Barcelona, Spain  Contributed talk on "Can we predict everything?"                                                                                                                                        |