Risolvere il massimo numero di esercizi accompagnando le risposte con spiegazioni chiare ed essenziali. *Inserire le risposte negli spazi predisposti. NON SI ACCETTANO RISPOSTE SCRITTE SU ALTRI FOGLI.* 1 Esercizio = 4 punti. Tempo previsto: 2 ore. Nessuna domanda durante la prima ora e durante gli ultimi 20 minuti.

FIRMA	1	2	3	4	5	6	7	8	TOT.

- 1. Rispondere alle sequenti domande fornendo una giustificazione di una riga:
 - a. È vero che nei campi di caratteristica 0 i polinomi irriducibili hanno solo radici semplici?
 - b. E' vero che esistono estensioni infinite e algebriche:
 - c. E' vero che se E è il campo di spezzamento di un polinomio di grado n, l'ordine del gruppo degli automorfismi Aut(E/F) è minore di n!?
 - d. Fornire un esempio di un polinomio in $\mathbf{Q}[X]$ di grado 6 il cui campo di spezzamento su \mathbf{Q} ha grado 6.
- 2. Calcolare il polinomio minimo di $i + \sqrt{5} + \sqrt{3}$ sul campo $\mathbf{Q}[\zeta], \zeta^2 + \zeta + 1 = 0$.
- 3. Enunciare e dimostrare il teorema della dimensione per estensioni di campi. Dedurne che se E/F è un estensione di grado 41, allora non esistono campi intermedi tra E e F.
- 4. Si consideri $E = \mathbf{Q}[\alpha]$ dove α è una radice del polinomio $X^3 X + 1$. Determinare il polinomio minimo su \mathbf{Q} di $1/(2\alpha 1)$.
- 5. Descrivere il gruppo $\operatorname{Aut}(\mathbf{Q}(\zeta_{24})/\mathbf{Q})$ indicandone il numero di elementi e possibilimente la struttura. (Suggerimento: provare a calcolare ζ_{24} o alcune delle sue potenze)
- 6. Si enunci nella completa generalità il Teorema di corrispondenza di Galois.
- 7. Dopo aver verificato che è algebrico, calcolare il polinomio minimo di $\cos 2\pi/9$ su **Q**.
- 8. Sia ζ_{16} una radice primitiva 16-esima dell'unità. Descrivere gli $\mathbf{Q}(\sqrt{-1})$ -omomorfismi di $\mathbf{Q}(\zeta_{16})$ in \mathbf{C} .