МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

ИНСТИТУТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И УПРАВЛЯЮЩИХ СИСТЕМ

Лабораторная работа №2

по дисциплине: Архитектура вычислительных систем тема: «Структура команд процессора»

Выполнил: ст. группы ПВ-223 Пахомов Владислав Андреевич

Проверили: ст. пр. Осипов Олег Васильевич

Лабораторная работа №2 Структура команд процессора Вариант 8

Цель работы: изучить структуру команд процессора, научиться составлять машинный код простейших команд.

Задания для выполнения к работе:

- 1. Ознакомиться с теоретическим материалом главы 2 учебника В.И. Юрова «Assembler» "Программно-аппаратная архитектура IA-32 процессоров Intel".
- 2. В соответствии с вариантом задания определить по символьному описанию команд их машинный код (для 5 команд), а также по машинному коду команд определить их символьное описание (для 2 машинных кодов).

Задание:

Символьное описание команд на языке Assembler:

```
OR AX, DX
MOV SI, 14789h
ADD AL, [ESI+8]
CMP BYTE PTR [EBP+4], 'j'
MOV AX, [EBX+EDI+17h]
```

Машинные коды команд в 16 системе счисления:

BB 6400 B8 7800

Команда 1: OR AX, DX.

Команда выполняет побитовое OR над регистрами AX и DX. Т.к. AX и DX имеют размер 16 байт, команда будет содержать **префикс** = **66h**. Для OR **КОП** = **000010**. Можем установить байт $\mathbf{d} = \mathbf{0}$ чтобы результат выполнения сохранился в регистр по адресу r/m. Так как размер пересылаемых данных равен 2 байтам, $\mathbf{w} = \mathbf{1}$. Оба операнда имеют регистровую адресацию, $\mathbf{mod} = \mathbf{11}$. Регистру AX соответствует **000**. Поместим его в $\mathbf{r/m} = \mathbf{000}$. Регистру DX соответствует $\mathbf{reg} = \mathbf{010}$.

Префикс	КОП	d	W	mod	reg	r/m
1100110	000010	0	1	11	010	000
66h	09h			D0h		

Итоговая команда в машинном виде: 6609D0 и занимает 3 байта.

Команда 2: MOV SI, 14789h

Команда выполняет копирование числа в регистр SI. SI имеет размер 16 байт, команда будет содержать **префикс** = **66h**. Для MOV **KOII** = **1011**. Так как размер пересылаемых данных равен 2 байтам, $\mathbf{w} = \mathbf{1}$. Код для регистра SI $\mathbf{reg} = \mathbf{110}$. Число 14789h разбивается на 2 байта, идущие в обратном порядке. Первый байт = **89h**. Второй байт = **47h**. Лишние данные отсекаются.

Префикс	КОП	W	reg	data	reg
1100110	1011	1	110	10001001	01000111
66h	BEh			89h	47h

Итоговая команда в машинном виде: 66ВЕ8947h и занимает 4 байта.

Команда 3: ADD AL, [ESI+8]

Команда выполняет добавление числа в регистр AL из памяти с адресом [ESI+8]. Для ADD $\mathbf{KOH} = \mathbf{000000}$. Для следования операторов используем $\mathbf{d} = \mathbf{1}$ – результат запишется в reg. Размер пересылаемых данных = 1 байт, следовательно ставим $\mathbf{w} = \mathbf{0}$. Для кодирования эффективного адреса достаточно 1 байта, следовательно $\mathbf{mod} = \mathbf{01}$. Для AL $\mathbf{reg} = \mathbf{000}$. $\mathbf{r/m} = \mathbf{110}$ для ESI. после чего задаётся смешение $\mathbf{8} = \mathbf{00001000}$.

КОП	d	W	mod	reg	r/m	8
000000	1	10	01	000	110	00001000
02h			46h	08h		

Итоговая команда в машинном виде: 024608 и занимает 3 байта.

Команда 4: CMP BYTE PTR [EBP+4], 'j'

Команда выполняет сравнение значения из ячейки [EBP+4] с 'j. Для СМР **КОП** = 10000000/111. **mod** = 01, так как для кодирования смещения достаточно одного байта. **r/m** = 101. 4 = 00000100. **j** = 01101010 = 6Ah.

101: 00000100: 0110101	0 01111				
КОП	mod	КОП	4	ʻj'	
10000000	01 111 101			00000100	01101010
80h	7Dh			04h	6A

Итоговая команда в машинном виде: 807D046A и занимает 4 байта.

Команда 5: MOV AX, [EBX+EDI+17h]

Команда выполняет копирование числа по адресу [EBX+EDI+17h] в регистр АХ. АХ имеет размер 16 байт, команда будет содержать **префикс** = 66h. Для MOV **КОП** = 100010. Так как размер пересылаемых данных равен 2 байтам, $\mathbf{w} = \mathbf{1}$. Результат записывается в гед, следовательно $\mathbf{d} = \mathbf{1}$. $\mathbf{mod} = \mathbf{01}$, так как для кодирования смещения достаточно одного байта. Код для регистра АХ $\mathbf{reg} = \mathbf{000}$. $\mathbf{r/m} = \mathbf{100}$ для кодирования эффективного адреса. SIB включает в себя: $\mathbf{scale} = \mathbf{00}$, $\mathbf{base} = \mathbf{111}$, $\mathbf{index} = \mathbf{011}$. Смещение $\mathbf{17h} = \mathbf{00010111}$.

Префикс	КОП	d	W	mod	reg	r/m	scale	index	base	17h
1100110	100010	1	1	01	000	100	00	011	111	00010111
66h	8Bh			44h			1Fh	17h		

Итоговая команда в машинном виде: 668B441F17 и занимает 5 байт.

Команда 6: ВВ 6400

КОП ВВ соответствует команде MOV. w = 1, следовательно используется отправка 16 или 32 байтовых данных. reg = 011, что соответствует регистру BX/EBX. Далее идут два байта данных 64h и 00h, что соответствует числу 0064h = 100. Так как отправляются два байта данных, можем предположить, что используется регистр BX. Команде не хватает префикса 66h.

MOV BX, 100

Команда 7: В8 7800

Коп B8 соответствует команде **MOV**. **w** = **1**, следовательно используется отправка 16 или 32 байтовых данных. **reg** = **000**, следовательно регистр = AX/EAX. Далее идут два байта данных 78h и 00h, что соответствует числу **0078h** = **120**. Так как отправляются два байта данных, можем предположить, что используется регистр AX. Команде не хватает префикса 66h.

MOV AX, 120

Зашита лабы:

Для add r8, qword ptr ss:[rsp+0x30] (для x32)

Префикс	КОП	d	W	mod	reg	r/m	scale	index	base	30h
01001000	000000	1	1	01	011	100	00	100	100	00110000
48h	03h			5Ch			24h			30h

Для add r8, gword ptr ss:[rsp+0x30] (для x64)

Префик	g_re	g_r/	g_i	КО	d	W	mo	reg	r/m	scal	inde	base	30h
c	g	m		Π			d			e	X		
01001	X	X	X	000	1	1	01	01	10	00	100	100	00110
				000				1	0				000
48h				03h			5Ch			24h			30h

reg – первый операнд

g_reg – группа регистров первого операнда

r/m – второй операнд

g_r/m – группа регистров второго операнда или base

index – индекс при вычислении эффективного адреса

g_i – группа регистров индекса эффективного адреса

Вывод: в ходе лабораторной изучили работы структуру команд процессора, научились составлять машинный код простейших команд.