Seminar 2

- 1. For $(\mathbb{R},*)$ associativity holds, the identity element is 6, but the symmetrical element, $x' = \frac{e-5}{x-5} + 5$ does not exist if x = 5. So $(\mathbb{R},*)$ is not a group. But $(\mathbb{R} \{5\},*)$ is a group (with the same reasoning).
- 2. $GL_n(\mathbb{R})$ is a stable subset of $M_n(\mathbb{R})$ as, $\forall A, B \in GL_n(\mathbb{R})$, with $det(A) \neq 0$ and $det(B) \neq 0 \Rightarrow det(A \cdot B) = det(A) \cdot det(B) \neq 0$. So, $A \cdot B \in GL_n(\mathbb{R})$.

Now, $(GL_n(\mathbb{R}), \cdot)$ is a group, as the multiplication of matrices is associative, the identity element is I_n , which is in $GL_n(\mathbb{R})$ as $det(I_n) = 1 \neq 0$, and $\forall A \in GL_n(\mathbb{R}) \Rightarrow det(A) \neq 0 \Rightarrow \exists A^{-1}$ the inverse of A, which is in $GL_n(\mathbb{R})$ as $det(A \cdot A^{-1}) = det(I_n) \neq 0$ and $det(A) \cdot det(A^{-1}) \neq 0$ with $det(A) \neq 0 \Rightarrow det(A^{-1}) \neq 0$.

3. U_n is a stable subset of C^* , because $\forall z_1, z_2 \in U_n \Rightarrow z_1^n = 1$ and $z_2^n = 1 \Rightarrow (z_1 \cdot z_2)^n = z_1^n \cdot z_2^n = 1$ (Remember, we can say this because the multiplication of complex numbers is commutative) $\Rightarrow z_1 \cdot z_2 \in U_n$.

Now, (U_n, \cdot) is a group, because the multiplication of complex numbers is associative, the identity element is 1, which is in U_n and $\forall z \in U_n, \exists z^{-1}$ its symmetric, which is in U_n , as $z^{-1} = \frac{1}{z}$ (which is true, as 0 is not in U_n) $\Rightarrow (z^{-1})^n = \frac{1^n}{z^n} = \frac{1}{1} = 1$.

For
$$n = 1 \Rightarrow U_1 = \{1\}.$$

For
$$n = 2 \Rightarrow U_2 = \{-1, 1\}$$
.

For
$$n \ge 3 \Rightarrow U_n = \{\cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n}) \mid k \in \{0, \dots, n-1\}\}.$$

4. Associativity: $\forall \hat{x} = x + nk, \hat{y} = y + nl, \hat{z} = z + nj \text{ in } \mathbb{Z}_n, \text{ with } k, l, j \in \mathbb{Z},$ we have: $(\hat{x} + \hat{y}) + \hat{z} = (x + y + n(k + l)) + z + nj = x + y + z + n(k + l + j) = x + nk + (y + z + n(l + j)) = \hat{x} + (\hat{y} + \hat{z}).$

Commutativity: $\forall \hat{x} = x + nk, \hat{y} = y + nl \in \mathbb{Z}_n$, with $k, l \in \mathbb{Z}$, we have: $\hat{x} + \hat{y} = x + y + n(k+l) = y + x + n(k+l) = \hat{y} + \hat{x}$.

Identity element: $\exists \hat{e} \in \mathbb{Z}_n, \forall \hat{x} \in \mathbb{Z}_n$ such that: $\hat{x} + \hat{e} = \hat{x} \Rightarrow x + nk + e + nl = n + nk \Rightarrow e + nl = 0 + n \cdot 0 \Rightarrow \hat{e} = \hat{0} \in \mathbb{Z}_n$.

Symmetric elements: $\forall \hat{x} \in \mathbb{Z}_n, \exists \hat{x'} \in \mathbb{Z}_n$ such that: $\hat{x} + \hat{x'} = \hat{0} \Rightarrow x + nk + x' + nl = 0 + n \cdot 0 \Rightarrow x' = -x, l = -k \Rightarrow \hat{x'} = -x \in \mathbb{Z}_n$.

Now, $\forall \hat{x} \in \mathbb{Z}_n \Rightarrow \hat{x} = x + n\mathbb{Z}_n$. If $x = n \Rightarrow \hat{x} = \hat{n} = n + n\mathbb{Z}_n$, but $n \in n\mathbb{Z}_n$, so $\hat{n} = n\mathbb{Z}_n = 0 + n\mathbb{Z}_n = \hat{0}$. The same goes for any multiple of n. So, $\hat{0}$ is a representative for all multiples of n.

If $x = n + 1 \Rightarrow \hat{x} = \widehat{n+1} = n + 1 + n\mathbb{Z}_n = 1 + n\mathbb{Z}_n = \hat{1}$. So, $\hat{1}$ is a representative for any $kn + 1, k \in \mathbb{Z}$.

And we do the same, until we get another multiple of n. So, in the end, $\mathbb{Z}_n = \{\hat{0}, \hat{1}, \hat{2}, \dots, \widehat{n-1}\}$. Hence, $\operatorname{card}(\mathbb{Z}_n) = n$.

- 5. (i) (S_M, \circ) is a group, as the composition of functions is associative, the identity element is the identity function $1_M(x) = x$, which is a bijective function and, $\forall f \in S_M$, with f bijective $\Rightarrow \exists f^{-1}$ its symmetric, which is also bijective.
 - (ii) Here, S_3 is the set of all bijective functions with domain and codomain of three elements. So, S_3 is actually the set of permutations of three elements.
- 6. Let $D_3 = \{r_0, r_1, r_2, s_1, s_2, s_3\}$, where:

 r_0 is a rotation by 360°

 r_1 is a rotation by 120°

 r_2 is a rotation by 240°

 s_1, s_2, s_3 are symmetries across the 3 axis of the triangle.

We know that: $r_i r_j = r_{i+j}$, $r_i s_j = s_{i+j}$ and $s_i r_j = s_i$. So, we may complete the table.

We can also see the group as the group of permutations of three elements, where the elements are the points of the triangle.

- 7. The same as *Exercise* 6, but D_4 is the group of permutations of four elements.
- 8. This is true, as the associativity is easy to prove, the identity elements if the pair (e, e'), where e is the identity element in G and e' is the identity element in G', and the symmetric of any element of the form (g_1, g'_1) is the pair (g_1^*, g'_1^*) , where g_1^* is the symmetric of g_1 in G and g'_1^* is the symmetric of g'_1 in G'.

```
9. For (\mathbb{N}, +) we have (\{0\}, +).
```

For
$$(\mathbb{N}, \cdot)$$
 we have $(\{1\}, \cdot)$.

For
$$(\mathbb{Z}, \cdot)$$
 we have $(\{-1, 1\}, \cdot)$.

For
$$(\mathbb{Q}, \cdot)$$
 we have (\mathbb{Q}^*, \cdot) .

For
$$(\mathbb{R}, \cdot)$$
 we have (\mathbb{R}^*, \cdot) .

For
$$(\mathbb{C},\cdot)$$
 we have (\mathbb{C}^*,\cdot) .

For
$$(M_n(\mathbb{R}), \cdot)$$
 we have $(GL_n(\mathbb{R}), \cdot)$. See exercise 2

For
$$(M^M, \circ)$$
 we have (S_M, \circ) . See exercise 5

- 10. (i) If G is Abelian \Rightarrow the operation is commutative $\Rightarrow (xy)^2 = (xy)(xy) = xyxy = xxyy = x^2y^2$. If $(xy)^2 = x^2y^2 \Rightarrow xyxy = xxyy$. We multiply of the right with y^{-1} and on the left with x^{-1} (we have them as G is a group) $\Rightarrow yx = xy \Rightarrow G$ is Abelian.
 - (ii) $\forall x, y \in G \Rightarrow x^2 = 1, y^2 = 1$ and $xy \in G \Rightarrow (xy)^2 = 1 \Rightarrow xyxy = 1$. We multiply on the right with y and on the left with $x \Rightarrow x^2yxy^2 = xy \Rightarrow yx = xy \Rightarrow G$ is Abelian.