

Applications

- 3 Phase Boost Converter Applications
- Secondary Side Synchronous Rectification

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} max	Qg
100V	$18m\Omega@V_{GS} = 10V$	24nC

Benefits

- Very low R_{DS(ON)} at 10V V_{GS}
- Low Gate Charge
- Fully Characterized Avalanche Voltage and Current
- 100% Tested for R_G
- Lead-Free (Qualified up to 260°C Reflow)
- RoHS compliant (Halogen Free)
- Low Thermal Resistance
- Large Source Lead for more reliable Soldering

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain-to-Source Voltage	100	V
V_{GS}	Gate-to-Source Voltage	± 20	1 °
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	9.3	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	7.4	1 ,
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	46	Α
I _{DM}	Pulsed Drain Current ①	75	1
P _D @T _A = 25°C	Power Dissipation ©	3.1	14/
P _D @T _A = 70°C	Power Dissipation ©	2.0	 W
	Linear Derating Factor ®	0.025	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case @		1.6	°C/W
$R_{\theta JA}$	Junction-to-Ambient ©		40	*C/VV

Notes ① through ⑤ are on page 9 www.irf.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	100	_	_	V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.11		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		14.4	18	mΩ	V _{GS} = 10V, I _D = 9.3A ③
$V_{GS(th)}$	Gate Threshold Voltage	3.0	3.7	4.9	V	V - V I - 100uA
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-11		mV/°C	$V_{DS} = V_{GS}$, $I_D = 100\mu A$
I _{DSS}	Drain-to-Source Leakage Current			20		$V_{DS} = 80V$, $V_{GS} = 0V$
			_	250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	- ^	V _{GS} = 20V
	Gate-to-Source Reverse Leakage		_	-100	nA	$V_{GS} = -20V$
gfs	Forward Transconductance	19	_	_	S	$V_{DS} = 50V, I_D = 7.4A$
Q_g	Total Gate Charge		24	36		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		5.2	_		$V_{DS} = 50V$
Q _{gs2}	Post-Vth Gate-to-Source Charge		1.5	_	nC	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		8.6	_	nc	I _D = 7.4A
Q_godr	Gate Charge Overdrive		8.7			See Fig.17 & 18
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		10.1	_		
Q _{oss}	Output Charge		12	_	nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		0.8		Ω	
t _{d(on)}	Turn-On Delay Time		12	_		$V_{DD} = 50V, V_{GS} = 10V$
t _r	Rise Time		7.5	_		I _D = 7.4A
t _{d(off)}	Turn-Off Delay Time		18	_	ns	$R_G=1.8\Omega$
t _f	Fall Time		4.1			See Fig.15
C _{iss}	Input Capacitance		1510	_		$V_{GS} = 0V$
C _{oss}	Output Capacitance	_	230	_	pF	$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance		59			f = 1.0MHz

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy ②		21	mJ
I _{AR}	Avalanche Current ①		7.4	Α

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current			2.8		MOSFET symbol	
	(Body Diode)			2.0	Α	showing the	
I _{SM}	Pulsed Source Current			75	_ ^	integral reverse	
	(Body Diode) ①			75		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 7.4$ A, $V_{GS} = 0$ V ③	
t _{rr}	Reverse Recovery Time		31	47	ns	$T_J = 25^{\circ}C$, $I_F = 7.4A$, $V_{DD} = 50V$	
Q_{rr}	Reverse Recovery Charge		210	320	nC	di/dt = 800A/μs ③ See Fig.16	
t _{on}	Forward Turn-On Time	Intrinsi	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

International TOR Rectifier

IRFH5053PbF

 $(V) = 0.1 \\ (V) = 0.1 \\ (V)$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

3

International
Rectifier

14.0 I_D= 7.4A 12.0 VGS, Gate-to-Source Voltage (V) V_{DS}= 80V V_{DS}= 50V 10.0 8.0 6.0 4.0 2.0 0.0 5 0 10 15 20 25 30 Q_G, Total Gate Charge (nC)

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRFH5053PbF

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International IOR Rectifier

Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

Fig 14b. Unclamped Inductive Waveforms 6

Fig 15a. Switching Time Test Circuit

Fig 15b. Switching Time Waveforms www.irf.com

Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 17. Gate Charge Test Circuit

Fig 18. Gate Charge Waveform

PQFN Package Details

International TOR Rectifier

DIM	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	.0315	.0394	0.800	1.000	
A1	.0000	.0020	0.000	0.050	
ь	.0140 .0180		0.356	0.456	
С	.0080 REF,		0.203 REF.		
D	.2362 BASIC		6.0 BASIC		
E	.1969 BASIC		5.0 8	BASIC	
е	.0500 BASIC		1,270	BASIC	
e1	.0250 BASIC		0.635	BASIC	

PQFN Part Marking

TOP MARKING (LASER)

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com

PQFN Tape and Reel

Ao	6.30	+/-	0.1
Во	5.30	+/-	0.1
Ko	1.20	+/-	0.1
F	5.50	+/-	0.1
P 1	8.00	+/-	0.1
W	12.00	+/-	0.3

- Measured from centreline of sprocket hole to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is ± 0.20.
- (III) Measured from centreline of sprocket hole to centreline of pocket.
- (IV) Other material available.
- (V) Typical SR of form tape Max 10⁹ OHM/SQ

ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.75mH, $R_G = 25\Omega$, $I_{AS} = 7.4$ A.
- Athic is guaranteed by design
- ⑤ When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.12/08

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.