5. Customer Segmentation Dataset (Unsupervised Learning - Clustering)

- 1 EDA [3 20 Slide]
- 2 SQL [22 30 Slide]
- 3 Preprocessing [31 41 Slide]
- 4 Model Training [43 70 Slide]
- 5 Conclusion [71 Slide]

Datasets:

Customer_ID	Age	Income	Location	Number_of_Active_Policies	Total_Premium_Paid	Claim_Frequency	Policy_Upgrades
bdd640fb-0667- 4ad1-9c80- 317fa3b1799d	58	40039.59	Johnberg	3	12999.70	2	0
bd9c66b3-ad3c- 4d6d-9a3d- 1fa7bc8960a9	61	153320.19	New Roberttown	5	5260.00	6	0
815ef6d1-3b8f- 4a18-b7f8- a88b17fc695a	19	36865.14	New Jamesside	2	25762.41	0	1
96da1dac-72ff- 4d2a-b86e- cbe06b65a6a4	63	136979.20	Lisatown	5	21556.47	7	2
b2b9437a-28df- 4ec4-8e4a- 2bbdc241330b	69	176474.06	Petersonberg	2	35208.83	5	2

```
[6]
     1 df5.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 1000 entries, 0 to 999
    Data columns (total 8 columns):
                                    Non-Null Count Dtype
     #
         Column
         Customer_ID
                                    1000 non-null
                                                    object
     0
                                                    int64
     1
                                    1000 non-null
         Age
                                                   float64
                                    1000 non-null
         Income
     3
         Location
                                    1000 non-null
                                                    object
         Number of Active Policies 1000 non-null
     4
                                                    int64
         Total Premium Paid
                                                    float64
                                    1000 non-null
         Claim_Frequency
                                   1000 non-null
                                                    int64
         Policy Upgrades
                                    1000 non-null
                                                    int64
    dtypes: float64(2), int64(4), object(2)
    memory usage: 62.6+ KB
[7]
    1 # Identify categorical and numerical columns
```

2 categorical columns = df5.select dtypes(include=['object']).columns.tolist()

3 numerical_columns = df5.select_dtypes(include=['int64', 'float64']).columns.tolist()

```
5 print("Categorical Columns:", categorical_columns)
6 print("Numerical Columns:", numerical_columns)

Categorical Columns: ['Customer_ID', 'Location']
Numerical Columns: ['Age', 'Income', 'Number_of_Active_Policies', 'Total_Premium_Paid', 'Claim_Frequency', 'Policy_Upgrades']
```

 $\overline{\Xi}$

	0
Customer_ID	1000
Age	63
Income	1000
Location	963
Number_of_Active_Policies	5
Total_Premium_Paid	1000
Claim_Frequency	11
Policy_Upgrades	4

dtype: int64

Primary vs. Cross-Check Columns

Primary Metrics:

Age, Income, Total_Premium_Paid, Claim_Frequency, Policy_Upgrades.

Cross-Check Analysis:

Income vs. Total_Premium_Paid:

- 1.Do higher-income customers pay more in premiums?
- 2.Age vs. Claim_Frequency: Do older customers file more claims?
- 3.Number_of_Active_Policies vs. Total_Premium_Paid: Do more policies result in higher payments?
- 4. Claim_Frequency vs. Policy_Upgrades: Are frequent claimers upgrading their policies more?

1) Histogram Distribution of

4) Bar Chart

Number_of_Active_Policies vs. Policy_Upgrades

rumber_or_Active_r officies vs. r offey_opgrades

Income,

Claim_Frequency,

Total_Premium_Paid

Identifies spread and skewness.

2) Boxplot Outlier detection in

Income and

Claim_Frequency

Detects anomalies.

3) Scatter Plot

Income vs. Total_Premium_Paid,

Age vs. Claim_Frequency

Shows correlation between numerical variables.

5) Line Chart

Highlights policy trends.

Income vs. Total_Premium_Paid

over time Identifies payment trends

6) Heatmap Correlation among all numerical variables Highlights strong relationships.

1) Histogram Distribution

Use Histplot or Distplot to Identify the Spread to Check Normal/Gausian Distribution : to befor model train, machine understand a Data is Normal Distribution

i) Income

Skewness is -0.028644209702153704 its almost near to 0 and its negative value -> its Almost a Normal Distribution

ii) Claim_Frequency

Skewness is -0.014915399033445515 its almost near to Zero its Negative Value almost Flaten Bell Curve its a Normal Distribution

iii) Total_Premium_Paid

Skewness is 0.06051372507479765 and its a Almost Normal Distribution

and Lower Boundary is 25k and Upper Boundary is 200k >>>>Most of the Income is 70 to 155K

Minimum is almost 70k and Maximum is 155k

ii) Claim_Frequency

No Outlier Detected:

Minimum Claim Frequency is 2
and Maximum Claim Frequency is 8
Lower Boundary is 0 and
Upper Boundary is 10
Most of the Claim is 2 to 8

3) Scatter Plot

i) Income vs. Total_Premium_Paid

Insights:-

Scatter Plot Represent there is no correlation between Income and Total Premium Paid,

Low Income Persons also Uses Maximum Premium Amount and High Income Persons also Uses Minimum Premium Amount

ii) Age vs. Claim_Frequency

B/W Age Groups and Claim Frequency Slightly NO Correlation because all Age groups Cover All Frequency

Age groups:

- 1) 18 30 Ages -> 17% Claims,
- 2) 31 45 Ages -> 22% Claims,
- 3) 46 60 Ages -> 25% Claims,
- 4) 60+ Ages -> 34% Claims

60+ Ages was Highest Claims Happens

4) Bar Chart

i) Number_of_Active_Policies vs. Policy_Upgrades

Insights:

- 1) 3 Policies Holders almost 30% -> 3 Policies Holders are Highest Combare to other
- 2) 4 Policies Holders are Very Low 10% only they hold
- 3) 1 to 3 Policies Holders are almost 70%

Policies Upgrade:

- 1) Policies Upgrades Start From 2 Policies holders
- 2) some 2 Policies Holders upgrader to 3 Policies, 4 Policies and 5 Policies

Recommendations:

- 1) 4 Policies Holders are very Low so Focus on 3 Policies Holder to give Offers to Upgrade to 4 Plicies Holders
- 1 Policy Holders does not upgrade to 2 Policies Holders
- 3) so Focusing on 1 Policy Holder to give best plan and Offers to Upgrade to Multiple Policy Holders
- 4) Most of the 2 Policies Holders are Upgrades to 3 Policies Holders so get Ideas form 2 to 3 Holders

5) Line Chart

Income vs. Total_Premium_Paid

Positive Correlation:

There appears to be a generally positive correlation between income and total premium paid. As income increases, the total premium paid also tends to increase. This is logical, as higher-income individuals typically have more disposable income to allocate towards insurance or other premium-based services.

Potential Outliers:

There are a **few instances where individuals with relatively lower incomes are paying very high premiums**, and conversely, **some high-income individuals are paying lower premiums**. These could be outliers due to unique circumstances or might warrant further investigation.

6) Heatmap for All Numeric Columns

All Columns are No Correlated: Some Columns are Slightly Posative and Negative Correlated

SQL

SQL - Create Table

```
1 import sqlite3
 2 import pandas as pd
 4 # File name of the uploaded CSV
 5 csv_filename = "/content/df5-customer_segmentation_dataset.csv" # Replace this with the uploaded file name
 7 # Load CSV into a pandas DataFrame
 8 df = pd.read_csv(csv_filename)
10 # Connect to SQLite database (or create a new one)
11 conn = sqlite3.connect("example.db")
12 cursor = conn.cursor()
13
14 # Write DataFrame to SQLite table
15 table_name = "df5" # Specify your table name
16 df.to_sql(table_name, conn, if_exists="replace", index=False)
17
18 print(f"Table '{table_name}' created in SQLite database.")
19
```

Table 'df5' created in SQLite database.

↑ ↓ ⇔ ■ /

1 query="Select * From df5"
2
3 result = pd.read_sql_query(query,conn)
4 result

1) Retrieve All Data

	4 resu	lt								
₹	ı	Jnnamed: 0	Customer_ID	Age	Income	Location	Number_of_Active_Policies	Total_Premium_Paid	Claim_Frequency	Policy_Upgrades
	0	0	bdd640fb-0667-4ad1-9c80- 317fa3b1799d	58	40039.59	Johnberg	3	12999.70	2	0
	1	1	bd9c66b3-ad3c-4d6d-9a3d- 1fa7bc8960a9	61	153320.19	New Roberttown	5	5260.00	6	0
	2	2	815ef6d1-3b8f-4a18-b7f8- a88b17fc695a	19	36865.14	New Jamesside	2	25762.41	0	1
	3	3	96da1dac-72ff-4d2a-b86e- cbe06b65a6a4	63	136979.20	Lisatown	5	21556.47	7	2
	4	4	b2b9437a-28df-4ec4-8e4a- 2bbdc241330b	69	176474.06	Petersonberg	2	35208.83	5	2

2) Find Customers with More than 3 Active Policies

Total 618 Users Have More than 3 Policies Out of 1000 Users

3) Find Customers Who Paid More Than \$25000 in Total Premium

```
Select
Customer ID, Age, Location, Number of Active Policies, Total Premium P
aid From df5 where Total Premium Paid>=25000 Order By
Total Premium Paid ASC;
                                       Location Number of Active Policies Total Premium Paid
                     Customer ID
                                Age
    3a6c7da6-57f7-471f-a978-cc731440adec
                                                                                  25107.80
                                 57
                                        Loganport
    5168bbf2-97af-4bde-bc8e-9d782d14e9f4
                                        Robintown
                                                                                  25161.02
                                 80
                                                                      4
   aa1d3fc6-5f31-473d-9519-830c40198303
                                      North Randy
                                                                      2
                                                                                  25249.50
```

Almost 490 Users are Paid More than \$25000 Are Premium Out of 1000 Users

4) Calculate Average Income by Age Group

```
1 query="Select Age, avg(Income) From df5 Group by Age;"
2
3 result = pd.read_sql_query(query, conn)
4 result
```

	Age	avg(Income)
0	18	68140.772857
1	19	115301.455000
2	20	106333.218125
3	21	86633.578571
4	22	102859.938571
58	76	104706.482500
59	77	121370.102000
60	78	117810.505294

y 5) Find Customers Who Have High Claim Frequency (>8)

4 r	esult		
	Customer_ID	Age	Claim_Frequency
0	35a240ae-5af3-4553-9ec4-2e0829a3b2e9	28	10
1	61b1cd22-6280-4c45-9043-5a1098ae4334	42	8
2	ae270da7-02f0-4b90-b143-262fdc5c0eed	61	10
3	e037e5ed-b8db-4672-b42d-47cc00d4af59	50	8
4	deda4e16-1b3d-4d5c-a9a1-fa6f81f76d1c	27	8
277	8ec57d47-0a0c-44e5-bc34-1b4ffbdc532e	77	10
278	74246baa-2dca-4c82-8660-a3e9736d417c	34	8
279	e83bcc84-a609-4ad0-b114-64aa52f69081	67	9

Above Claim Frequency Above 8 has 288 Cutomers its Very Bad
Highest Claim Frequency Customers are Almost Fraud

6) Rank Customers Based on Policy Upgrades (Highest First)

```
1 query="Select Customer_ID, Age, Policy_Upgrades From df5 Where Policy_Upgrades>0 Order by Policy_Upgrades DESC;"
      3 result = pd.read_sql_query(query,conn)
      4 result
₹
                               Customer_ID Age Policy_Upgrades
          43b7a3a6-9a8d-4a03-980d-7b71d8f56413
           88bd6407-2bcf-4e01-a28d-efe39bf00273
                                                                 3
           f16287e4-e9c3-49e0-b602-f8ac10f1bc81
                                              76
                                                                 3
           89fa6a68-8fb5-427b-beb7-99193f22faf8
                                                                 3
      3
                                              65
          00257ad1-eb22-43dd-87c5-421eec24a3c5
                                              33
                                                                 3
```

Almost 755 Users are Upgraded Policies Out of 1000 Customers

7) Calculate Total Premium Paid Per Location

	Location	Total_Paid	田
0	Matthewfurt	127035.01	11.
1	South Andrea	100386.12	+1
2	Port Christopher	94080.38	
3	Silvatown	91841.10	
4	Hallfurt	89163.75	

Preprocessing

1) Missing Values

dtype: int64

No Missing Values Found

If Missing Values have this Datasets.

Step 1:

check % of Missing Values if more than 70% Missing Values -> Delete that Columns

Step 2:

Check this Columns have Normal Distribution and No Outliers - Use Mean Imputation

Else use Median Imputation

Step 3:

Check that Columns Have Categorical Columns Use Mode

Step 4:

If That Dataset have Times series Use Forward fill or Backward Fill

Step 5:

If that Missing Values was Voluntarily Happen Based On Confidential else any other Situation

Client or SME or BA Give us Custom values fill us Cutom method to fill Missing Values

2) Outliers


```
1 import pandas as pd
 3 # Detect outliers using IQR for all numeric columns
 4 outliers = {}
 5
 6 for col in df5.select_dtypes(include=['number']).columns:
      Q1 = df5[col].quantile(0.25)
      Q3 = df5[col].quantile(0.75)
      IQR = Q3 - Q1
 9
10
11
      lower_bound = Q1 - 1.5 * IQR
      upper_bound = Q3 + 1.5 * IQR
12
13
14
      outliers[col] = df5[(df5[col] < lower_bound) | (df5[col] > upper_bound)][col].tolist()
15
16 # Print outliers for each column
17 for col, out in outliers.items():
      print(f"Outliers in {col}: {out}")
18
19
```

Outliers in Number_of_Active_Policies: [] Outliers in Total_Premium_Paid: [] Outliers in Claim_Frequency: [] Outliers in Policy_Upgrades: []

Outliers in Age: []
Outliers in Income: []

No Outlier Found in this Datasets

No Outlier Found in this Datasets

If Outlier Found in this Datasets:-

Step 1: Understand the Outliers

Check Data Entry Errors: Typos or incorrect values? Fix them if possible.

Assess Context: Are these extreme values realistic or expected in your data domain?

Step 2: Choose an Outlier Treatment Approach:

1) Removal Methods:

Delete Outliers: If they're definitely errors or irrelevant.

 $df_{clean} = df1[\sim((df1[A'] < lower_bound) | (df1[A'] > upper_bound))]$

2) Imputation Methods:

Replace with Mean/Median: Works well when outliers aren't extreme.

 $median = df1[A].median() \ df1[A] = np.where((df1[A] < lower_bound) \mid (df1[A] > upper_bound), \ median, \ df1[A])$

Use Mode: For categorical data with outliers

3) Transformation Methods:

Log Transformation: Reduces effect of right-skewed outliers.

 $df1[A_log] = np.log1p(df1[A])$

Square Root or Box-Cox: For data with different types of skew.

4) Capping or Clipping

Winsorization: Limit extreme values to percentiles.

from scipy.stats.mstats import winsorize df1['A_winsorized'] = winsorize(df1['A'], limits=[0.05, 0.05]) # Caps at 5th & 95th percentile

Cap at Boundaries: Replace outliers with IQR bounds.

df1['A'] = np.clip(df1['A'], lower_bound, upper_bound)

3) Encoding

No need Encoding. All Feature Columns has Numerical

3) Feature Scaling

Apply StandardScaler for numerical variables.

0		1 df5.head()							
$\overline{\Xi}$		Customer_ID	Age	Income	Location	Number_of_Active_Policies	Total_Premium_Paid	Claim_Frequency	Policy_Upgrades
	0	bdd640fb-0667-4ad1-9c80-317fa3b1799d	58	40039.59	Johnberg	3	12999.70	2	0
	1	bd9c66b3-ad3c-4d6d-9a3d-1fa7bc8960a9	61	153320.19	New Roberttown	5	5260.00	6	0
	2	815ef6d1-3b8f-4a18-b7f8-a88b17fc695a	19	36865.14	New Jamesside	2	25762.41	0	1
	3	96da1dac-72ff-4d2a-b86e-cbe06b65a6a4	63	136979.20	Lisatown	5	21556.47	7	2
	4	b2b9437a-28df-4ec4-8e4a-2bbdc241330b	69	176474.06	Petersonberg	2	35208.83	5	2

So i took Numerical Columns from [Income & Total_Premium_Paid]

Reason:

this columns have 4 digit values, 5 digit values and 6 digit values machine very tough to upderstand or high variance create so i scale this columns take as Means = 0 and take standard deviation as 1: to scale the columns as standardization.

Z-Score method

```
Location \
                           Customer_ID Age
                                              Income
  bdd640fb-0667-4ad1-9c80-317fa3b1799d
                                        58 -1.347477
                                                            Johnberg
  bd9c66b3-ad3c-4d6d-9a3d-1fa7bc8960a9 61 0.835905
                                                      New Roberttown
  815ef6d1-3b8f-4a18-b7f8-a88b17fc695a 19 -1.408661
                                                       New Jamesside
  96da1dac-72ff-4d2a-b86e-cbe06b65a6a4 63 0.520947
                                                            Lisatown
4 b2b9437a-28df-4ec4-8e4a-2bbdc241330b 69 1,282176
                                                        Petersonberg
   Number_of_Active_Policies Total_Premium_Paid Claim_Frequency \
0
                                      -0.861332
                                      -1.408809
                                      0.041455
                                      -0.256058
                                       0.709659
   Policy_Upgrades
```

-		Customer_ID	Age	Income	Location	Number_of_Active_Policies	Total_Premium_Paid	Claim_Frequency	Policy_Upgrades
	0	bdd640fb-0667-4ad1-9c80-317fa3b1799d	58	-1.347477	Johnberg	3	-0.861332	2	0
	1	bd9c66b3-ad3c-4d6d-9a3d-1fa7bc8960a9	61	0.835905	New Roberttown	5	-1.408809	6	0
	2	815ef6d1-3b8f-4a18-b7f8-a88b17fc695a	19	-1.408661	New Jamesside	2	0.041455	0	1
	3	96da1dac-72ff-4d2a-b86e-cbe06b65a6a4	63	0.520947	Lisatown	5	-0.256058	7	2
	4	b2b9437a-28df-4ec4-8e4a-2bbdc241330b	69	1.282176	Petersonberg	2	0.709659	5	2

] 1 df5.to_csv('df5_scaled.csv')

1 df5.head()

Model Training

Clustering Algorithm Selection

1) k-Means Clustering

Using Elbow Method to Find K Value that Means Number of Cluster Value

Recommended number of clusters: 3


```
Number_of_Active_Policies Total_Premium_Paid \
  Age
         Income
   58 -1.347477
                                                      -0.861332
       0.835905
                                                      -1.408809
   19 -1.408661
                                                       0.041455
      0.520947
                                                      -0.256058
      1.282176
                                                       0.709659
  Claim_Frequency Policy_Upgrades Cluster
0
                                           0
3
```


Number of data points in each cluster:

Cluster

- 0 356
- 1 347
- 2 297

Name: count, dtype: int64

Silhouette Score is 0.50

2) Hierarchical [agglomerative clustering]

Using Dendrogram
Using to Find
Number of Clusters
in Hierarchical

Actual Clusters 600 above based on Chart but am giving 4


```
Recommended number of clusters based on dendrogram: 4
Based on the dendrogram, enter the suggested number of clusters: 4
Silhouette Score for 4 clusters: 0.42
```

Number of data points in each cluster:

	(2016년 1일 : 10 10 10 10 10 10 10 10 10 10 10 10 10		
Cluster	Count		
1	299		
2	276		
4	239		
3	186		
	1	2 276 4 239	1 299 2 276 4 239

Silhouette Score is 0.42 is Low Compared to K-means

3) DBScan Algorithm

Using K-distance
Graph to Find a EPS
(Radius of Circle) and
Find Number of
Samples Per Circle

Recommended eps: 3.61 Recommended min_samples: 16


```
Enter the recommended eps value based on the elbow point: 3.61
Enter the recommended min_samples value: 16
Silhouette Score: 0.49
Number of data points in each cluster:
DBSCAN Cluster
      693
      295
                                                     Silhouette Score: 0.49
-1
        12
Name: count, dtype: int64
                               Number of Active Policies Total Premium Paid \
                    Age
                    58 -1.347477
                                                           -0.861332
                    61 0.835905
                                                           -1.408809
                    19 -1.408661
                                                            0.041455
                    63 0.520947
                                                           -0.256058
                    69 1.282176
                                                            0.709659
                    Claim_Frequency Policy_Upgrades Cluster Hierarchical_Cluster \
                 0
                 1
                                            1
                 3
                    DBSCAN Cluster
                 0
                 2
                              1
```

Silhouette Score For K- Means Clustering -> 0.50

Silhouette Score For Hierarchical Clustering -> 0.16

Silhouette Score For DBSCAN Clustering -> 0.49

Silhouette Score Near to 1 is Good - K-Means Clustering is 0.50 is Higher Compare to Other Clustering

 Use Principal Component Analysis (PCA) to reduce dimensionality before clustering.

K-Means Clustering Selected

PCA - K-Means

NUMBER OF CRUSCES

Recommended number of clusters: 3 Silhouette Score for k=3: 0.52

Number of data points in each cluster: Cluster

- 0 356
- 1 347
- 2 297

Name: count, dtype: int64

-

Claim_Frequency - Policy_Upgrades

PC1 - 0.008554 - 0.003202

PC2 - 0.999542 - 0.003785

Interpret the Clusters

Understand the meaning of each cluster:

Check the average values of original features for each cluster to see what defines them

```
1 cluster_summary = df.groupby('Cluster').mean()
  1 cluster_summary
                     Income Number_of_Active_Policies Total_Premium_Paid Claim_Frequency Policy_Upgrades
              Age
Cluster
   0
         47.952247
                   0.008523
                                                2.960674
                                                                     -0.022918
                                                                                       4.918539
                                                                                                         1.525281
         69.547550
                   0.027331
                                                3.097983
                                                                     0.045963
                                                                                       5.317003
                                                                                                         1.576369
   2
         27.835017 -0.042148
                                                3.080808
                                                                     -0.026230
                                                                                       5.050505
                                                                                                         1.461279
```


1 print(f'K-Means Inertia: {kmeans.inertia_}')

K-Means Inertia: 46237.590486579116

Step-by-Step Cluster Analysis & Insights Extraction

Now that your clustering is complete, let's analyze each cluster's characteristics. Here's what we will do

- 1. Find Cluster Centroids → Understand key feature values for each cluster.
- Z. Compare Feature Distributions → Identify patterns across clusters.
- ☑ 3. Generate Business Insights → Apply findings to fraud detection or customer segmentation.

1. Get Cluster Centroids

Average Feature Values for Each Cluster:

```
1 import pandas as pd
2
3 # Convert centroids to a DataFrame for better readability
4 centroid_df = pd.DataFrame(kmeans.cluster_centers_, columns=['PC1', 'PC2'])
5
6 # Add cluster labels
7 centroid_df.index = [f'Cluster {i}' for i in range(len(centroid_df))]
8
9 print("Cluster Centroids:\n", centroid_df)
```

```
Cluster Centroids:
PC1 PC2
Cluster 0 -1.520206 -0.163161
Cluster 1 20.077823 0.048065
Cluster 2 -21.635728 0.139416
```

This will show how different each cluster is based on PCA components.

2. Compare Feature Distributions per Cluster

4.918539

5.317003

5.050505

0

Since PCA transformed features, we need to map clusters back to original features:

```
1 # Add cluster labels to the original dataset
  2 df['Cluster'] = kmeans.labels
   4 # Group by clusters and calculate feature means
   5 cluster_summary = df.groupby('Cluster').mean()
   6
   7 print("Cluster-wise Feature Averages:\n", cluster_summary)
   8
Cluster-wise Feature Averages:
                      Income Number_of_Active_Policies Total_Premium_Paid \
               Age
Cluster
        47.952247 0.008523
                                             2.960674
                                                                -0.022918
0
        69.547550 0.027331
                                             3.097983
                                                                0.045963
        27.835017 -0.042148
                                             3.080808
                                                                -0.026230
        Claim_Frequency Policy_Upgrades Hierarchical_Cluster \
Cluster
```

3.460674

2.409222

1.000000

1.525281

1.576369

1.461279

Cluster 1 has a Highest Income, Highest Claim Frequency, High Number of Policy Upgrades, Claim Frequency

This will help us answer:

- Which cluster has higher income?
- · Which cluster has more active policies?
- Which cluster has high claim frequency (potential fraud risk)?

Large Number of Claim Frequency Happens on Cluster 2

Cluster	Key Features	Insights & Actions
Cluster 0	Low claim frequency, high income, many policies	Loyal Customers → Offer premium policies
Oluster	Medium claim frequency, moderate income	Standard Customers - Regular engagement
Cluster	High claim frequency, low income, few policies	High-Risk (Possible Fraud) → Investigate claims

√ Identifying High-Risk (Fraud-Prone) Clusters

Now, let's **identify clusters with high fraud risk** by analyzing claim frequency, income levels, and other key factors.

1. Find the High-Risk Cluster

We assume fraud-prone customers tend to have:

- Migh Claim Frequency
- Low Income
- Few Active Policies

High Claim Frequency and High Number of Active Policies Consider as a Cluster 1

Low Income Group Consider as Class 0

- · The top cluster in this list is likely the high-risk one.
- If a cluster has high claims + low income, it might indicate potential fraud.

A cluster with high median & many outliers is likely fraud-prone.

Scatter Plot of Income vs Claim Frequency

If a cluster has low income & high claim frequency, it's a fraud-risk group

3. Extracting High-Risk Customers

```
1 # Replace '2' with the actual high-risk cluster ID from analysis
2 high_risk_customers = df[df['Cluster'] == 1]
3
4 print("Number of High-Risk Customers:", len(high_risk_customers))
5 high_risk_customers.head()
```

*	Number	of	High-Risk	Customers:	347

	Age	Income	Number_of_Active_Policies	Total_Premium_Paid	Claim_Frequency	Policy_Upgrades	Cluster
1	61	0.835905	5	-1.408809	6	0	1
3	63	0.520947	5	-0.256058	7	2	1
4	69	1.282176	2	0.709659	5	2	1
14	76	1.537551	3	-0.973166	7	3	1
15	74	1.439154	4	-1.214942	2	1	1

- · Flag them for manual review
- Send data to a fraud detection model for further risk scoring

Conclusion:

The K-Means clustering approach successfully segmented the dataset into distinct groups based on policy-related features. With a silhouette score of **0.50**, K-Means outperformed Hierarchical and DBSCAN clustering, indicating well-defined clusters. PCA helped reduce dimensionality while preserving key information. This clustering can be used for customer segmentation, risk assessment, and targeted policy recommendations.

Thank You