

Report No: CCISE190502304

FCC REPORT

Applicant: APRIX LATINOAMERICA S.A.

Address of Applicant: ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE

CABAL PANAMA

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: Aprix Tab8ii

Trade mark: APRIX/KONNEN

FCC ID: 2AHJQ-APT8IIA

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 09 May, 2019

Date of Test: 09 May, to 30 May, 2019

Date of report issued: 31 May, 2019

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	00 31 May, 2019 Original	

Tested by: Mike OU Date: 31 May, 2019

Test Engineer

Reviewed by: Date: 31 May, 2019

Project Engineer

3 Contents

Page

1	COV	ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
5		ERAL INFORMATION	
J	GEN	ERAL INFORMATION	
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	7
	5.7	LABORATORY FACILITY	
	5.8	LABORATORY LOCATION	7
	5.9	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	POWER SPECTRAL DENSITY	24
	6.6	BAND EDGE	29
	6.7	Spurious Emission	36
	6.7.1	Restricted Band	36
	6.7.2		
	6.8	FREQUENCY STABILITY	53
7	TES	T SETUP PHOTO	55
8	EUT	CONSTRUCTIONAL DETAILS	56

Test Summary

Test Item	Section in CFR 47	Test Result			
Antenna requirement	15.203 & 15.407 (a)	Pass			
AC Power Line Conducted Emission	15.207	Pass			
Conducted Peak Output Power	15.407 (a) (1) (iv)	Pass			
26dB Occupied Bandwidth	15.407 (a) (5)	Pass			
Power Spectral Density	15.407 (a) (1) (iv)	Pass			
Band Edge	15.407(b)	Pass			
Spurious Emission	15.407 (b) & 15.205 & 15.209	Pass			
Frequency Stability	15.407(g)	Pass			
Pass: The EUT complies with the essential requirements in the standard.					

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	APRIX LATINOAMERICA S.A.
Address:	ADVANCED 099 BLDG SUITE 4 C CALLE BEATRIZ M DE CABAL PANAMA
Manufacturer:	Todos industrial limited
Address:	Room 308, Building #5, Cofoc (Fuan) Robotics Industrial Park, No.90, Dayang Road, Fuyong Street, Shenzhen City, P.R. China

5.2 General Description of E.U.T.

<u>-</u>	
Product Name:	Tablet PC
Model No.:	Aprix Tab8ii
Operation Frequency:	5150MHz-5250MHz
Channel numbers:	Band 1: 802.11a/n-HT20/ac-HT20: 4, 802.11n-HT40/ac-HT40: 2, 802.11ac-HT80: 1
Channel separation:	802.11802.11a/n-HT20/ac-HT20: 20MHz, 802.11 n-HT40/ac-HT40: 40MHz, 802.11 ac-HT80: 80MHz
Modulation technology (IEEE 802.11a):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11n):	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology (IEEE 802.11ac):	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed (IEEE 802.11a):	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps,MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps, MCS1:30Mbps, MCS2:45Mbps, MCS3:60Mbps, MCS4:90Mbps, MCS5:120Mbps, MCS6:135Mbps, MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.02 dBi
Power supply:	Rechargeable Li-ion polymer Battery DC3.8V/4500mAh
AC adapter:	Model: BY120502000 Input: AC100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel						
		E	Band 1			
802.11a/n-H	IT20/ac-HT20	802.11n	-HT40/ac-HT40	802	.11ac-HT80	
Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	38	5190MHz	42	5210MHz	
40	5200MHz	46	5230MHz			
44	5220MHz					
48	5240MHz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Band 1					
802.11a/n-HT20/ac-HT20 802.11n-HT40/ac-HT40			802.1	1ac-HT80		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest	5180MHz	Lowest	5190MHz	Middle	5210MHz	
Middle	5200MHz	Highest	5230MHz			
Highest	5240MHz					

5.3 Test environment and test mode

Operating Environment:				
Temperature:	24.0 °C	24.0 °C		
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100	% duty cycle transmitting with modulation.		
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:				
Per-scan all kind of data rate, an	d found the follow lis	t were the worst case.		
Mode		Data rate		
802.11a		6 Mbps		
802.11n20		6.5 Mbps		
802.11n40		13 Mbps		
802.11ac		29.3 Mbps		

Report No: CCISE190502304

5.4 Description of Support Units

N/A

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.9 Test Instruments list

Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919b)
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Spectrum Analyzer	Agilent	N9020A	MY50510123	11-10-2018	11-09- 2019
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-18-2019	03-17-2020
Signal Generator	R&S	SMR20	1008100050	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
DC Power Supply	XinNuoEr	WYK-10020K	1409050110020	10-31-2018	10-30-2019
Temperature Humidity Chamber	HengPu	HPGDS-500	20140828008	09-24-2018	09-23-2019
Simulated Station	Rohde & Schwarz	CMW500	140493	07-16-2018	07-15-2019

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.02 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	,	Limit (d	dBuV)	
Littitt	Frequency range (MHz) Quasi-peak			
	0.15-0.5	66 to 56*	0.15-0.5	
	0.5-5	56	0.5-5	
	5-30	60	5-30	
	* Decreases with the logarit			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment Test table/Insulation plan Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	— AC power	
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details.			
Test results:	Passed			

Measurement Data:

Product name:	Tablet PC	Product model:	APRIX TAB8II		
Test by:	Mike	Test mode:	5G Wi-Fi Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

	Freq	Read Level	Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	dB	dBu₹	dBu∇	<u>dB</u>	
1	0.154	53.58	-0.45	10.78	63.91	65.78	-1.87	QP
2	0.154	44.82	-0.45	10.78	55.15	55.78	-0.63	Average
1 2 3 4 5 6 7 8 9	0.170	34.62	-0.43	10.77	44.96	54.94	-9.98	Average
4	0.178	33.81	-0.43	10.77	44.15	54.59	-10.44	Average
5	0.198	31.94	-0.41	10.76	42.29	53.71	-11.42	Average
6	0.222	28.83	-0.40	10.76	39.19	52.74	-13.55	Average
7	0.253	37.79	-0.40	10.75	48.14	61.64	-13.50	QP
8	0.310	34.99	-0.38	10.74	45.35	59.97	-14.62	QP
9	0.701	39.43	-0.38	10.77	49.82	56.00	-6.18	QP
10	0.751	31.32	-0.38	10.79	41.73	46.00	-4.27	Average
11	0.763	39.03	-0.38	10.80	49.45	56.00	-6.55	QP
12	8.916	32.16	-0.58	10.89	42.47	60.00	-17.53	QP

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Tablet PC	Product model:	APRIX TAB8II
Test by:	Mike	Test mode:	5G Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB	
2 0.158 46.39 -0.68 10.77 56.48 65.56 -9.08 Q 3 0.158 39.30 -0.68 10.77 49.39 55.56 -6.17 A	
	QР
	QΡ
4 0.170 32.48 -0.68 10.77 42.57 54.94 -12.37 A 5 0.178 41.74 -0.69 10.77 51.82 64.59 -12.77 Q 6 0.178 30.68 -0.69 10.77 40.76 54.59 -13.83 A 7 0.327 36.97 -0.63 10.73 47.07 59.53 -12.46.0	Average
5 0.178 41.74 -0.69 10.77 51.82 64.59 -12.77 Q 6 0.178 30.68 -0.69 10.77 40.76 54.59 -13.83 A 7 0.327 36.97 -0.63 10.73 47.07 59.53 -12.46.0	Average
6 0.178 30.68 -0.69 10.77 40.76 54.59 -13.83 A	QP .
7 0 327 36 97 -0 63 10 73 47 07 59 53 -12 46 0	Average
1 0.021 00.01 0.00 10.10 41.01 00.00 12.40 4	
8 0.598 23.48 -0.64 10.77 33.61 46.00 -12.39 A	Average
9 0.751 27.91 -0.64 10.79 38.06 46.00 -7.94 A	Average
10 0.775 42.01 -0.64 10.80 52.17 56.00 -3.83 Q	QΡ
11 0.775 27.94 -0.64 10.80 38.10 46.00 -7.90 A	
12 3.224 27.59 -0.68 10.91 37.82 56.00 -18.18 Q	
13 8.869 34.52 -0.78 10.89 44.63 60.00 -15.37 Q	⊋P

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10: 2013, KDB789033				
Limit:	(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.				
Test setup:					
	Spectrum Analyzer E.U.T Non-Conducted Table				
	Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

		Band 1			
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result	
	Lowest	3.96			
802.11a	Middle	3.88	24.00	Pass	
	Highest	3.62		1	
	Lowest	3.58			
802.11n20	Middle	3.56	24.00	Pass	
	Highest	3.29			
222 11 12	Lowest	3.49	24.00	Dana	
802.11n40	Highest	3.14	24.00	Pass	
	Lowest	3.63			
802.11ac20	Middle	3.57	24.00	Pass	
	Highest	3.26			
802.11ac40	Lowest	3.42	24.00	Door	
	Highest	3.62	24.00	Pass	
802.11ac80	Lowest	3.28	24.00	Pass	

Test plot as follows:

Band 1:

6.4 Occupy Bandwidth

orr Goodpy Barrawratir					
Test Requirement:	FCC Part15 E Section 15.407 (a) (5)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	Band 1: N/A (26dB Emission Bandwidth and 99% Occupy Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Band 1:

		26						
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	21.01	21.06	38.86	21.24	39.04			
Middle	21.08	21.30		21.12		79.52	N/A	PASS
Highest	19.91	19.06	38.65	20.03	39.01			
+ .		99	9% Occupy Ba	andwidth (MHz)			
Test Channel	802.11a	802.11n (HT20)	802.11n (HT40)	802.11ac (HT20)	802.11ac (HT40)	802.11ac (HT80)	Limit	Result
Lowest	17.03	18.04	36.15	18.08	36.15			
Middle	16.97	18.02		18.04		75.46	N/A	PASS
Highest	16.99	18.04	36.15	18.08	36.16			

Test plot as follows:

Band 1:

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (iv)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

		Band 1			
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result	
	Lowest	-5.70			
802.11a	Middle	-5.93	11.00	Pass	
	Highest	-6.22			
802.11n(HT20)	Lowest	-6.40			
	Middle	-6.73	11.00	Pass	
	Highest	-6.72			
000 44 = (UT40)	Lowest	-9.17	44.00	Dana	
802.11n(HT40)	Highest	-9.52	11.00	Pass	
	Lowest	-6.46			
802.11ac(HT20)	Middle	-6.30	11.00	Pass	
	Highest	-6.97			
802.11ac(HT40)	Lowest	-9.17	44.00	Dana	
	Highest	-9.57	11.00	Pass	
802.11ac(HT80)	Middle	-12.92	11.00	Pass	

Test plot as follows:

6.6 Band Edge

RMS 1MHz 3MHz Average Value Band Limit (dBuV/m @3m) Remark Band 1 68.20 Peak Value Band 1 54.00 Average Value For transmitters operating in the 5.15-5.26 GHz band. All emissions outside of the 5.15-5.25 GHz band. All emissions outside of the field strength. Band. All emissions of the anterers above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the heights from 1 meter to 4 meters and the nate natural maximum value of the field strength. Both horizontal and vertical polarizations of the anterna was tuned to heights from 1 meter to 4 meters and the natural measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the notatible was tuned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Speci								
Detector RBW VBW Remark	Test Requirement:	FCC Part 15 E Section 15.407 (b)						
Quasi-peak 120kHz 30kHz Quasi-peak Valt	Test Method:	ANSI C63.10:2013	, KDB 789033					
Quasi-peak 120kHz 300kHz Average Value	Receiver setup:	Detector	RBW	VBW	Remark			
Band Limit (68.0\) Remark	'	Quasi-peak	120kHz	300kHz	Quasi-peak Value			
Band 1		RMS	1MHz	3MHz	Average Value			
For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. Remark: 1. Band 1 limit:	Limit:	Band	Limit (dBu	V/m @3m)	Remark			
For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of th 5.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. Remark: 1. Band 1 limit: E[dByV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenn tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the notatable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT mould be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quas peak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.9 for details Refer to section 5.3 for details		Rand 1	68	3.20	Peak Value			
S.15-5.35 GHz band shall not exceed an e.i.r.p. of ~27 dBm/MHz. Remark: 1. Band 1 limit: E[dBjV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set3 maters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenn tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT mould be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quas peak or average method as specified and then reported in a data sheet. Test setup: Refer to section 5.9 for details Refer to section 5.3 for details								
Test Instruments: Refer to section 5.9 for details Test mode: Refer to section 5.3 for details		5.15-5.35 GHz band s Remark: 1. Band 1 limit:	P[dBm] + 95.2=68. Dlaced on the top a 3 meter camber be position of the set 3 meters awa a was mounted or eight is varied fro determine the ma and vertical polar surement. ected emission, the the antenna was e rotatable was tu imum reading. For system was see dwidth with Maxin level of the EUT ed, then testing of uld be reported. Orgin would be re-	25 GHz band: All e.i.r.p. of -27 dB 2 dBuV/m, for EI of a rotating ta the table was highest radiation of the top of a value of the top of a value of the top of the	emissions outside of the sm/MHz. PR[dBm]=-27dBm. ble 0.8 meters above rotated 360 degrees in. ference-receiving ariable-height antenna of four meters above the field strength. antenna are set to ranged to its worst is from 1 meter to 4 grees to 360 degrees out Function and set in the peak values in the peak values in a data.			
Test mode: Refer to section 5.3 for details			(Turntable) Ground F	3m	a Tower			
	Test Instruments:	Refer to section 5.9	for details		,			
Test results: Passed	Test mode:	Refer to section 5.3	for details					
	Test results:	Passed						

Measurement Data (worst case):

Band 1:

Danu I.								
	Band 1 - 802.11a							
	Test channel: Lowest channel							
			Dete	ector: Peak Val	ue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	48.93	31.77	7.05	41.93	45.82	68.20	-22.38	Horizontal
5150.00	49.12	31.77	7.05	41.93	46.01	68.20	-22.19	Vertical
			Detec	tor: Average V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5150.00	38.46	31.77	7.05	41.93	35.35	54.00	-18.65	Horizontal
5150.00	39.23	31.77	7.05	41.93	36.12	54.00	-17.88	Vertical
			Test cha	nnel: Highest o	hannel			
			Dete	ector: Peak Val	ue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	48.47	31.77	7.11	41.89	45.46	68.20	-22.74	Horizontal
5350.00	47.96	31.77	7.11	41.89	44.95	68.20	-23.25	Vertical
			Detec	tor: Average V	alue			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	38.64	31.77	7.11	41.89	35.63	54.00	-18.37	Horizontal
5350.00	39.05	31.77	7.11	41.89	36.04	54.00	-17.96	Vertical

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)										
Test channel: Lowest channel										
Detector: Peak										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)			Polarization		
5150.00	48.14	31.77	7.05	41.93	45.03	68.20 -23.17		Horizontal		
5150.00	48.23	31.77	7.05	41.93	45.12	68.20	-23.08	Vertical		
			De	etector: Averag	je					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.67	31.77	7.05	41.93	35.56	54.00	-18.44	Horizontal		
5150.00	38.53	31.77 7.05 41.93 35.42 54.00		-18.58	Vertical					
				nnel: Highest						
			Det	ector: Peak Va	lue			ı.		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.53	31.77	7.11	41.89	45.52	68.20	-22.68	Horizontal		
5350.00	48.59	31.77	7.11	41.89	45.58	68.20	-22.62	Vertical		
			Detec	ctor: Average \	/alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	it Polarization		
5350.00	38.16	31.77	7.11	41.89	35.15	54.00	-18.85	Horizontal		
5350.00	38.27	31.77	7.11	41.89	35.26	54.00	-18.74	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	49.21	31.77	7.05	41.93	46.10	68.20	68.20 -22.10 Horiz			
5150.00	49.53	31.77	7.05	41.93	46.42	68.20	-21.78	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	39.52	31.77	7.05	41.93	36.41	54.00 -17.59		Horizontal		
5150.00	39.46	31.77	7.05	41.93	36.35	54.00	-17.65	Vertical		
			Test cha	nnel: Highest o	channel					
			Dete	ector: Peak Va	lue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.67	31.77	7.11	41.89	41.89	68.20	-26.31	Horizontal		
5350.00	48.53	31.77	7.11	41.89	41.89	68.20	-26.31	Vertical		
			Detec	tor: Average V	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.91	31.77	7.11	41.89	35.90 54.00 -18.10 Horizontal					
5350.00	38.36	31.77	7.11	41.89	35.35	54.00	-18.65	Vertical		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT20)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)			Over Limit (dB)	Polarization		
5150.00	49.22	31.77	7.05	41.93	46.11 68.20 -22.0		-22.09	Horizontal		
5150.00	48.78	31.77	7.05	41.93	45.67	68.20	-22.53	Vertical		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	39.12	31.77	7.05	41.93	36.01	54.00 -17.99		Horizontal		
5150.00	00 38.36 31.77 7.05 41.93 35.25 54.00		-18.75	Vertical						
			Test cha	annel: Highest	channel					
			Det	ector: Peak Va	alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	48.74	31.77	7.11	41.89	45.73	68.20	-22.47	Horizontal		
5350.00	48.53	31.77	7.11	41.89	45.52	68.20	-22.68	Vertical		
			Dete	ctor: Average \	/alue					
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	38.46	31.77	7.11	41.89	35.45	54.00	-18.55	Horizontal		
5350.00	38.91	31.77	7.11	41.89	35.90	54.00	-18.10	Vertical		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT40)									
Test channel: Lowest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level Limit Line (dBuV/m) (dBuV/m)		Over Limit (dB)	Polarization	
5150.00	49.52	31.77	7.05	41.93	46.41 68.20 -21.79		-21.79	Horizontal	
5150.00	48.37	31.77	7.05	41.93	45.26	68.20	-22.94	Vertical	
			Dete	ctor: Average \	√alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I Pol		
5150.00	39.53	31.77	7.05	41.93	36.42	54.00 -17.58		Horizontal	
5150.00	.00 38.14 31.77 7.05 41.93 35.03 54.00				-18.97	Vertical			
			Test cha	annel: Highest	channel				
			Det	ector: Peak Va	alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	I Polarization	
5350.00	48.53	31.77	7.11	41.89	45.52	68.20	-22.68	Horizontal	
5350.00	48.36	31.77	7.11	41.89	45.35	68.20	-22.85	Vertical	
			Dete	ctor: Average	√alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.23	31.77	7.11	41.89	35.22	54.00	-18.78	Horizontal	
5350.00	38.09	31.77	7.11	41.89	35.08	54.00	-18.92	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT80)									
Test channel: Lowest channel									
			Det	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)			Polarization	
5150.00	49.64	31.77	7.05	41.93	46.53	68.20	-21.67	Horizontal	
5150.00	49.48	31.77	7.05	41.93	46.37	68.20	-21.83	Vertical	
			Detec	ctor: Average \	/alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5150.00	40.03	31.77	7.05	41.93	36.92	54.00	-17.08	Horizontal	
5150.00	40.11	31.77	7.05	41.93	37.00	54.00 -17.0		Vertical	
			Test cha	annel: Highest	channel				
			Det	ector: Peak Va	lue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	48.30	31.77	7.11	41.89	41.89	68.20	-26.31	Horizontal	
5350.00	48.08	31.77	7.11	41.89	41.89	68.20	-26.31	Vertical	
			Detec	ctor: Average \	/alue				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	38.24	31.77	7.11	41.89	35.23	54.00	-18.77	Horizontal	
5350.00	38.16	31.77	7.11	41.89	35.15	54.00	-18.85	Vertical	

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

6.7.1	Restricted Band								
	Test Requirement:	FCC Part15 E Section 15.407(b)							
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	4.5 GHz to 5.15 GHz and 5.35GHz to 5.46GHz							
	Test site:	Measurement Di	stance: 3	3m					
	Receiver setup:	Frequency	Detec		RBW		BW	Remark	
		Above 1GHz	Pea RMS		1MHz 1MHz		ИHz ИHz	Peak Value Average Value	
	Limit:	Frequency			t (dBuV/m @3		/11 12	Remark	
	-	Above 1GH					Peak Value		
				1 (1	54.00			verage Value	
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 							
	Test setup: Horn Antenna Tower Ground Referece Plane Test Receiver Antenna Tower Controller								
	Test Instruments:	Refer to section	5.9 for d	etails					
	Test mode:	Refer to section	5.3 for de	etails					
	Test results:	Passed							

Measurement Data (worst case):

Band 1:

	Band 1 – 802.11a												
				nnel: Lowest o									
	Detector: Peak Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4500.00	48.36	34.50	6.80	42.05	47.61	74.00	-26.39	Horizontal					
4500.00	48.13	34.50	6.80	42.05	47.38	74.00	-26.62	Vertical					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4500.00	38.43	34.50	6.80	42.05	37.68	54.00	-16.32	Horizontal					
4500.00	39.10	34.50	6.80	42.05	38.35	54.00	-15.65	Vertical					
			Test cha	nnel: Highest o	channel								
	1		Dete	ctor: Peak Va	lue								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5460.00	39.06	34.90	7.18	41.85	39.29	74.00	-34.71	Horizontal					
5460.00	38.67	34.90	7.18	41.85	38.90	74.00	-35.10	Vertical					
			Detec	tor: Average V	alue								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5460.00	38.47	34.90	7.18	41.85	38.70	54.00	-15.30	Horizontal					
5460.00	38.64	34.90	7.18	41.85	38.87	54.00	-15.13	Vertical					

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11n(HT20)												
				•									
			Test cha	nnel: Lowest o	hannel								
			Dete	ector: Peak Va	lue								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4500.00	48.89	34.50	6.80	42.05	48.14	74.00	-25.86	Horizontal					
4500.00	48.34	34.50	6.80	42.05	47.59	74.00	-26.41	Vertical					
Detector: Average Value													
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
4500.00	38.16	34.50	6.80	42.05	37.41	54.00	-16.59	Horizontal					
4500.00 38.06 34.50 6.80 42.05 37.31 54.00 -16.69													
			Test cha	nnel: Highest o	channel								
			Dete	ector: Peak Va	lue								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5460.00	49.11	34.90	7.18	41.85	49.34	74.00	-24.66	Horizontal					
5460.00	48.45	34.90	7.18	41.85	48.68	74.00	-25.32	Vertical					
			Detec	tor: Average V	alue								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization					
5460.00	39.06	34.90	7.18	41.85	39.29	54.00	-14.71	Horizontal					
5460.00	38.06	34.90	7.18	41.85	38.29	54.00	-15.71	Vertical					

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11n(HT40)											
			Test cha	annel: Lowest o	hannel							
			Dete	ector: Peak Va	lue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	49.26	34.50	6.80	42.05	48.51	74.00	-25.49	Horizontal				
4500.00	49.34	34.50	6.80	42.05	48.59	74.00	-25.41	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	38.21	34.50	6.80	42.05	37.46	54.00	-16.54	Horizontal				
4500.00 39.53 34.50 6.80 42.05 38.78 54.00 -15.22												
			Toot obo	nnel: Highest o	ah ann al							
				ector: Peak Va								
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	48.17	34.90	7.18	41.85	48.40	74.00	-25.60	Horizontal				
5460.00	48.29	34.90	7.18	41.85	48.52	74.00	-25.48	Vertical				
			Detec	tor: Average V	'alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	38.64	34.90	7.18	41.85	38.87	54.00	-15.13	Horizontal				
5460.00	38.32	34.90	7.18	41.85	38.55	54.00	-15.45	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11ac(HT20)											
				nnel: Lowest o							
			Dete	ector: Peak Va	lue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	48.71	34.50	6.80	42.05	47.96	74.00	-26.04	Horizontal			
4500.00	47.14	34.50	6.80	42.05	46.39	74.00	-27.61	Vertical			
			Detec	tor: Average V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4500.00	38.39	34.50	6.80	42.05	37.64	54.00	-16.36	Horizontal			
4500.00 37.98 34.50 6.80 42.05 37.23 54.00 -16.77 V											
			Test cha	nnel: Highest o	channel						
			Dete	ector: Peak Va	lue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	48.79	34.90	7.18	41.85	49.02	74.00	-24.98	Horizontal			
5460.00	48.73	34.90	7.18	41.85	48.96	74.00	-25.04	Vertical			
			Detec	tor: Average V	alue						
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5460.00	38.24	34.90	7.18	41.85	38.47	54.00	-15.53	Horizontal			
5460.00	38.26	34.90	7.18	41.85	38.49	54.00	-15.51	Vertical			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT40)											
			Test cha	nnel: Lowest o	hannel							
			Dete	ector: Peak Val	lue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	48.16	34.50	6.80	42.05	47.41	74.00	-26.59	Horizontal				
4500.00	48.67	34.50	6.80	42.05	47.92	74.00	-26.08	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	38.49	34.50	6.80	42.05	37.74	54.00	-16.26	Horizontal				
4500.00	38.62	34.50	6.80	42.05	37.87	54.00	-16.13	Vertical				
			Test cha	nnel: Highest o	channel							
			Dete	ector: Peak Val	ue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	48.89	34.90	7.18	41.85	49.12	74.00	-24.88	Horizontal				
5460.00	48.71	34.90	7.18	41.85	48.94	74.00	-25.06	Vertical				
			Detec	tor: Average V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	38.25	34.90	7.18	41.85	38.48	54.00	-15.52	Horizontal				
5460.00	38.19	34.90	7.18	41.85	38.42	54.00	-15.58	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)											
			Test cha	nnel: Lowest c	hannel							
			Dete	ector: Peak Val	ue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	48.26	34.50	6.80	42.05	47.51	74.00	-26.49	Horizontal				
4500.00	48.76	34.50	6.80	42.05	48.01	74.00	-25.99	Vertical				
Detector: Average Value												
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4500.00	38.06	34.50	6.80	42.05	37.31	54.00	-16.69	Horizontal				
4500.00 38.34 34.50 6.80 42.05 37.59 54.00 -16.41 V												
			Test cha	nnel: Highest o	hannel							
			Dete	ector: Peak Val	ue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	49.52	34.90	7.18	41.85	49.75	74.00	-24.25	Horizontal				
5460.00	49.13	34.90	7.18	41.85	49.36	74.00	-24.64	Vertical				
			Detec	tor: Average V	alue							
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
5460.00	39.16	34.90	7.18	41.85	39.39	54.00	-14.61	Horizontal				
5460.00	39.03	34.90	7.18	41.85	39.26	54.00	-14.74	Vertical				

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C S	ection 15.209 a	and 15.205			
Test Method:	ANSI C63.10: 20)13				
Test Frequency Range:	30MHz to 40GHz	Z				
Test site:	Measurement Di	stance: 3m				
Receiver setup:	Frequency	Detector	RBW	VB	W	Remark
	30MHz-1GHz	Quasi-peak	100kHz	3001	kHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3MI	Hz	Peak Value
		RMS	1MHz	3MI	Hz	Average Value
Limit:	Frequency		nit (dBuV/m @3	Bm)		Remark
	30MHz-88MI		40.0			uasi-peak Value
	88MHz-216M		43.5			uasi-peak Value
	216MHz-960N		46.0			uasi-peak Value
	960MHz-1GI	HZ	54.0		Q	uasi-peak Value
	Above 1GH	lz	68.20 54.00			Peak Value Average Value
	Remark:		54.00			Average value
	Above 1GHz limit:					
	$E[dB\mu V/m] = EIRF$		3.2 dBuV/m, for	EIPR[d	 Bm]=-2	27dBm.
Test Procedure:	1GHz)/1.5m table was re radiation. 2. The EUT wa antenna, wh tower. 3. The antenna ground to de horizontal a measureme 4. For each su and then the and the rota the maximu 5. The test-red Specified Ba 6. If the emiss limit specifie the EUT wo 10dB margin	as set 3 meters as set 3 meters as height is varied at height is varied etermine the modulation of the modulation of the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing uld be reported as set to the ed, then testing the ed to the ed, then testing uld be reported as set to the ed, then testing und the ed to the	above the gromees to determine away from the ded on the toped from one maximum value arizations of the tion, the EUT valued from 0 degrees set to Pea Maximum Hold EUT in peak recould be stoped. Otherwise the ested one by the sted one by t	e interformeter to e anter to was arrangees to Mode mode was one emisone usi	a 3 m e positi ference riable four n field s nna are anged n 1 me o 360 c ct Fun- vas 10 nd the essions ing pe	eter camber. The on of the highest e-receiving height antenna eters above the trength. Both e set to make the to its worst case eter to 4 meters degrees to find ction and dB lower than the peak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz	Table A	lim A		Search Antenna F Test exceiver	

Measurement Data (worst case):

Below 1GHz

Product Name:	Tablet PC	Product Model:	APRIX TAB8II
Test By:	Mike	Test mode:	5G Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	41.422	46.00	12.37	1.24	29.89	29.72	40.00	-10.28	QP
1 2 3 4 5	133.619	49.25	9.91	2.33	29.31	32.18	43.50	-11.32	QP
3	181.920	46.62	10.03	2.74	28.96	30.43	43.50	-13.07	QP
4	209.313	44.55	11.04	2.86	28.77	29.68	43.50	-13.82	QP
5	247.682	39.83	12.62	2.81	28.55	26.71	46.00	-19.29	QP
6	601.427	33.12	19.51	3.94		27.64			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test By:MikeTest mode:5G Wi-F	ï Tx mode
Test Frequency: 30 MHz ~ 1 GHz Polarization: Horizont	al
Test Voltage: AC 120/60Hz Environment: Temp: 2-	4℃ Huni: 57%

	Freq		ntenna Factor				Limit Line		Remark
3	MHz	dBu∜	<u>dB/m</u>	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	121.976	43.77	10.74	2.19	29.38	27.32	43.50	-16.18	QP
2	166.068	51.54	9.49			34.58			
2	181.283	54.67	10.01	2.74	28.96	38.46	43.50	-5.04	QP
4	207.123	48.41	10.92	2.86	28.78	33.41	43.50	-10.09	QP
5	245.090	45.69	12.50	2.82	28.57	32.44	46.00	-13.56	QP
4 5 6	377.259	39.09	14.99	3.09				-17.51	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz: Band 1:

			Ban	nd 1 – 802.11a					
			Test chan	nel: Lowest ch	nannel				
			Detec	ctor: Peak Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10360.00	48.39	40.10	9.82	41.97	56.34	68.20	-11.86	Vertical	
10360.00	48.16	40.10	9.82	41.97	56.11	68.20	-12.09	Horizontal	
			Detecto	or: Average Va	lue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10360.00	38.67	40.10	9.82	41.97	46.62	54.00	-7.38	Vertical	
10360.00	38.49	40.10	9.82	41.97	46.44	54.00	-7.56	Horizontal	
			Test char	nel: Middle ch	annel				
			Detec	ctor: Peak Valu	ıe				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10400.00	48.72	40.00	9.85	41.95	56.62	68.20	-11.58	Vertical	
10400.00	48.43	40.00	9.85	41.95	56.33	68.20	-11.87	Horizontal	
			Detecto	or: Average Va	alue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10400.00	38.71	40.00	9.85	41.95	46.61	54.00	-7.39	Vertical	
10400.00	38.96	40.00	9.85	41.95	46.86	54.00	-7.14	Horizontal	
			Test chan	nel: Highest cl	nannel				
			Detec	tor: Peak Valu	ie				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10480.00	48.93	39.70	9.96	41.88	56.71	68.20	-11.49	Vertical	
10480.00	49.67	39.70	9.96	41.88	57.45	68.20	-10.75	Horizontal	
			Detecto	or: Average Va	lue				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
10480.00	39.12	39.70	9.96	41.88	46.90	54.00	-7.10	Vertical	
10480.00	39.23	39.70	9.96	41.88	47.01	54.00	-6.99	Horizontal	
Remark [.]	1	1	1	1					

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 – 802.11n(HT20)								
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	49.16	40.10	9.82	41.97	57.11	68.20	-11.09	Vertical
10360.00	49.07	40.10	9.82	41.97	57.02	68.20	-11.18	Horizontal
			Detecto	r: Average Val	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	38.67	40.10	9.82	41.97	46.62	54.00	-7.38	Vertical
10360.00	38.49	40.10	9.82	41.97	46.44	54.00	-7.56	Horizontal
			Test chani	nel: Middle cha	annel			
			Detect	tor: Peak Value	9			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	48.37	40.00	9.85	41.95	56.27	68.20	-11.93	Vertical
10400.00	48.26	40.00	9.85	41.95	56.16	68.20	-12.04	Horizontal
			Detecto	r: Average Val	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	38.30	40.00	9.85	41.95	46.20	54.00	-7.80	Vertical
10400.00	38.13	40.00	9.85	41.95	46.03	54.00	-7.97	Horizontal
				nel: Highest cha				
	ı			tor: Peak Value		T	T	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	48.37	39.70	9.96	41.88	56.15	68.20	-12.05	Vertical
10480.00	49.43	39.70	9.96	41.88	57.21	68.20	-10.99	Horizontal
			Detecto	r: Average Val	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	38.32	39.70	9.96	41.88	46.10	54.00	-7.90	Vertical
10480.00 Remark:	39.05	39.70	9.96	41.88	46.83	54.00	-7.17	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 1 - 802.11n(HT40)								
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10380.00	48.17	40.00	9.85	41.95	56.07	68.20	-12.13	Vertical
10380.00	48.26	40.00	9.85	41.95	56.16	68.20	-12.04	Horizontal
			Detecto	r: Average Va	ue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10380.00	38.26	40.00	9.85	41.95	46.16	54.00	-7.84	Vertical
10380.00	38.36	40.00	9.85	41.95	46.26	54.00	-7.74	Horizontal
			Test chani	nel: Highest ch	annel			
			Detec	tor: Peak Valu	е			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10460.00	48.23	39.80	9.92	41.90	56.05	68.20	-12.15	Vertical
10460.00	48.31	39.80	9.92	41.90	56.13	68.20	-12.07	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatio n
10460.00	38.29	39.80	9.92	41.90	46.11	54.00	-7.89	Vertical
10460.00	38.16	39.80	9.92	41.90	45.98	54.00	-8.02	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT20)							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	48.79	40.10	9.82	41.97	56.74	68.20	-11.46	Vertical
10360.00	48.17	40.10	9.82	41.97	56.12	68.20	-12.08	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10360.00	38.26	40.10	9.82	41.97	46.21	54.00	-7.79	Vertical
10360.00	38.31	40.10	9.82	41.97	46.26	54.00	-7.74	Horizontal
				nel: Middle ch				
				tor: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	48.92	40.00	9.85	41.95	56.82	68.20	-11.38	Vertical
10400.00	48.91	40.00	9.85	41.95	56.81	68.20	-11.39	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10400.00	38.26	40.00	9.85	41.95	46.16	54.00	-7.84	Vertical
10400.00	39.06	40.00	9.85	41.95	46.96	54.00	-7.04	Horizontal
				nel: Highest ch				
				tor: Peak Valu				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	48.37	39.70	9.96	41.88	56.15	68.20	-12.05	Vertical
10480.00	48.73	39.70	9.96	41.88	56.51	68.20	-11.69	Horizontal
			Detecto	or: Average Va	lue			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10480.00	38.26	39.70	9.96	41.88	46.04	54.00	-7.96	Vertical
10480.00 Remark:	38.69	39.70	9.96	41.88	46.47	54.00	-7.53	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 - 802.11ac(HT40)							
	Test channel: Lowest channel							
	Detector: Peak Value							
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10380.00	48.67	40.10	9.82	41.97	56.62	68.20	-11.58	Vertical
10380.00	48.81	40.10	9.82	41.97	56.76	68.20	-11.44	Horizontal
			Detecto	or: Average Va	lue			
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10380.00	37.96	40.10	9.82	41.97	45.91	54.00	-8.09	Vertical
10380.00	38.10	40.10	9.82	41.97	46.05	54.00	-7.95	Horizontal
				nel: Highest ch				
			1	ctor: Peak Valu		<u> </u>	l .	
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10460.00	48.97	40.00	9.85	41.95	56.87	68.20	-11.33	Vertical
10460.00	48.76	40.00	9.85	41.95	56.66	68.20	-11.54	Horizontal
Detector: Average Value								
Frequenc y (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10460.00	38.21	40.00	9.85	41.95	46.11	54.00	-7.89	Vertical
10460.00	38.29	40.00	9.85	41.95	46.19	54.00	-7.81	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

	Band 1 – 802.11ac(HT80)							
	Test channel: Middle channel							
			Detec	ctor: Peak Valu	ie			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10420.00	49.12	40.00	9.85	41.95	57.02	68.20	-11.18	Vertical
10420.00	49.21	40.00	9.85	41.95	57.11	68.20	-11.09	Horizontal
	Detector: Average Value							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
10420.00	39.06	40.00	9.85	41.95	46.96	54.00	-7.04	Vertical
10420.00	39.11	40.00	9.85	41.95	47.01	54.00	-6.99	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.8 Frequency stability

0.6 Frequency Stability					
Test Requirement:	FCC Part15 E Section 15.407 (g)				
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.				
Test setup:	Spectrum analyzer FUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		F	Man Parietian (num)		
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)		
	102V	5179.987453	2.42		
20	120V	5179.976771	4.48		
	138V	5179.964956	4.83		

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test co	onditions	Francisco (MALIE)	May Deviation (name)
Voltage(ac)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.989463	2.03
	-10	5179.986437	2.61
	0	5179.979862	3.89
120\/	10	5179.984316	3.03
120V	20	5179.993446	1.27
	30	5179.998763	0.24
	40	5179.989679	1.99
	50	5179.989734	1.98