Showcase - 802.11 Wireless Handover

Avaliação de Desempenho de Sistemas - 13 de Julho de 2025

Arthur Cadore M. Barcella, Deivid Fortunato Frederico

Sumário

Parte 1 - Seleção e Apresentação de Showcase	3
Breve Revisão de Conceitos e Tecnologias Usadas	5
Modelo Simulado	. 10
A Simulação	. 15

Parte 1 - Seleção e Apresentação de Showcase

Objetivo do Experimento

- Avaliar o comportamento de handover em redes Wi-Fi 802.11.
 - Simular o processo de entrega entre dois pontos de acesso (APs).
 - Beacon de transmissão
 - Verificação ativa
 - Autenticação
 - Associação
- Analisar o desempenho do handover em termos de eventos wireless, backoff e troca de canal.
- Medir estatísticas de eventos wireless, troca de canal e backoff.
- https://inet.omnetpp.org/docs/showcases/wireless/handover/doc/index.html

Breve Revisão de Conceitos e Tecnologias

Usadas

Redes sem fio 802.11

- IEEE 802.11: padrão global para redes locais sem fio (WLANs).
- Desenvolvidas e mantidas pelo IEEE (Institute of Electrical and Electronics Engineers).
- Desde sua primeira versão em 1997, o padrão evoluiu para incluir diversas melhorias e novas funcionalidades.

Geração Wi-Fi	Alcance (m)	Taxas Máximas (bits/s)	Protocolos / Características	Frequências Simultâneas
Wi-Fi 0 (802.11)	20	1 a 2 Mbps	FHSS ou DSSS	2.4 GHz
Wi-Fi 1 (802.11b)	35	11 Mbps	DSSS	2.4 GHz
Wi-Fi 2 (802.11a)	35	54 Mbps	OFDM	5 GHz
Wi-Fi 3 (802.11g)	38	54 Mbps	OFDM	2.4 GHz
Wi-Fi 4 (802.11n)	70	600 Mbps (com 4x4 MIMO)	MIMO, Canal 40 MHz	2.4 GHz e 5 GHz
Wi-Fi 5 (802.11ac)	35	6.9 Gbps (com 8x8 MIMO)	MU-MIMO (downlink), Canais 80/160 MHz	5 GHz
Wi-Fi 6 (802.11ax)	70	9.6 Gbps	OFDMA, MU-MIMO (uplink/downlink), TWT	2.4 GHz e 5 GHz
Wi-Fi 6E (802.11ax)	70	9.6 Gbps	OFDMA, MU-MIMO, TWT	2.4 GHz, 5 GHz e 6 GHz
Wi-Fi 7 (802.11be)	70	>40 Gbps	M-LO, Preamble Puncturing, Canais 320 MHz, 4096-QAM	2.4 GHz, 5 GHz e 6 GHz

Conceitos de AP, STA, canais e eventos MAC

- AP1/AP2: pontos de acesso
 - Dispositivos que conectam estações móveis à rede.
 - Transmitem beacons periodicamente para anunciar sua presença.
 - Gerenciam a comunicação entre estações móveis e a rede.
- STA: estação móvel
 - Dispositivos móveis que se conectam aos APs.
 - ► Podem ser laptops, smartphones, tablets, etc.
 - ► Monitoram sinais de APs e realizam handover quando necessário.
- Parâmetros de rádio, canal, potência, etc.
 - Canais: bandas de frequência usadas para comunicação.
 - Potência de transmissão: afeta o alcance e a qualidade do sinal.
 - ► Eventos MAC: eventos de controle de acesso ao meio, como backoff e handover.
 - Cada AP opera em um canal específico.
 - Estações móveis realizam varredura de canais para encontrar APs disponíveis.

Conceitos de AP, STA, canais e eventos MAC (ii)

STA (P) Infraestrutura de rede Legenda: AP (GP) Ponto de acesso sem fio (AP) Hospedeiro sem fio (STA) Hospedeiro sem fio em movimento STA ((STA - Handover) Áma da asbartura

Figura 1: Elementos de Uuma rede sem fio

8/25

Handover em redes sem fio (802.11)

- Handover: processo de transferência de conexão entre APs.
 - Monitoramento e Detecção
 - Estação móvel (STA) monitora sinais de APs.
 - Avalia qualidade do sinal e decide quando trocar de AP.
 - Varredura de Canais
 - STA realiza varredura ativa para encontrar APs disponíveis.
 - Envia sondas (probe requests) e recebe respostas (probe responses).
 - Seleção de AP
 - STA escolhe o AP com melhor sinal ou menor carga (Força do sinal (RSSI), qualidade (SNR))
 e Capacidade do AP.
 - Autenticação e Associação
 - STA autentica com o novo AP.
 - Estabelece associação para iniciar comunicação.

Estrutura

- Estrutura dos nodos: APs, STA móvel, links
 - 2 APs (Access Points).
 - ▶ 1 STA (Wireless Host) móvel.
- Topologia e posicionamento dos elementos
 - ▶ 2 APs posicionados em locais fixos.
 - STA móvel se desloca entre os APs.
- Modelos de tráfego e mobilidade
 - Tráfego gerado pelo STA móvel.
 - ▶ Mobilidade linear com velocidade fixa.

Topologia

radioMedium

Figura 2: Elaborada pelo Autor

Cenário de Handover

Topologia

```
package inet.showcases.wireless.handover;
   import inet.node.inet.WirelessHost;
   import inet.node.wireless.AccessPoint;
   import
   inet.physicallayer.wireless.ieee80211.packetlevel.Ieee80211ScalarRadioMedium;
   import inet.visualizer.canvas.integrated.IntegratedCanvasVisualizer;
   network HandoverShowcase
9
       parameters:
           @display("bgb=640,420");
       submodules:
           visualizer: IntegratedCanvasVisualizer {
14
               parameters:
                   @display("p=100,200");
```

Topologia (ii)

```
radioMedium: Ieee80211ScalarRadioMedium {
17
18
                parameters:
                    @display("p=100,100");
20
            host: WirelessHost {
                parameters:
                    @display("p=50,280; r=,,#707070");
23
24
            ap1: AccessPoint {
25
                parameters:
26
                    @display("p=100,350; r=,,#707070");
28
            ap2: AccessPoint {
30
                parameters:
                    @display("p=500,350; r=,,#707070");
32
33
```

A Simulação

Parâmetros

- Configuração da rede:
 - Número de APs: 2
 - ► STA: 1
 - canais: 5
- Fatores e níveis:
 - Canal:
 - AP1: canal 2
 - AP2: canal 3
 - Host: canal 0 (varredura ativa)
 - Total: 5 canais disponíveis

- Distância:
 - Área de movimento: 40m a 600m (560m total)
 - Distância entre APs: 400m
- ► Mobilidade:
 - Modelo: LinearMobility (10 m/s)
 - Direção: 0° (horizontal)
 - Tempo: 250s de simulação

Parâmetros (ii)

- Parâmetros fixados:
 - Potência de transmissão: 2.0mW (todos os dispositivos)
 - ▶ Beacon interval: 100ms
 - ► Probe delay: 0.1s
 - Tempo mínimo/máximo por canal: 0.15s/0.30s
 - Intervalo de atualização de mobilidade: 100ms
 - Taxa de transmissão: valores padrão IEEE 802.11

- Coleta via vetores do OMNeT++/INET:
 - Arquivos gerados:
 - General-#0.vec (dados temporais)
 - General-#0.vci (índices para acesso rápido)
 - Estatísticas escalares em .sca
 - Análise pós-processamento com Python/ matplotlib
 - Vetores monitorados:
 - radioChannel (mudanças de canal)
 - acceptConfirm/dropConfirm (conexões/ desconexões)
 - Eventos de backoff e MAC
 - Estatísticas por AP (AP1/AP2)

Parâmetros (iii)

- Métricas analisadas:
 - Eventos wireless por AP:
 - Contagem total de eventos MAC por AP1 e AP2
 - Distribuição temporal dos eventos
 - Comparação de atividade entre APs
 - ► Eventos de backoff:
 - Períodos de backoff ativo/inativo
 - Duração dos períodos de contenção
 - Frequência de eventos CSMA/CA
 - ► Trocas de canal (handover):
 - Timeline de conexões (AP1 \leftrightarrow AP2)
 - Momentos de mudança de canal
 - Duração de cada associação
 - Número total de handovers realizados

Parâmetros

```
[General]
  network = HandoverShowcase
  # management submodule parameters
  **.mgmt.numChannels = 5
6
  # access point
  **.ap1.wlan[*].mgmt.ssid = "AP1"
  **.ap2.wlan[*].mgmt.ssid = "AP2"
  **.ap*.wlan[*].mgmt.beaconInterval = 100ms
11
  *.host*.mobility.typename = "LinearMobility"
  *.host*.mobility.speed = 10mps
  *.host*.mobility.initialMovementHeading = 0deg
  *.host*.mobility.updateInterval = 100ms
  *.host.mobility.constraintAreaMinX = 40m
*.host.mobility.constraintAreaMaxX = 600m
```

Parâmetros (ii)

```
# wireless channels
    **.analogModel.ignorePartialInterference = true
    **.ap1.wlan[*].radio.channelNumber = 2
    **.ap2.wlan[*].radio.channelNumber = 3
    **.host.wlan[*].radio.channelNumber = 0 # just initially -- it'll scan
```

```
# wireless configuration
**.radio.transmitter.power = 2.0mW # sets communication ranges

**.networkConfiguratorModule = "" # no need for configurator

**.wlan[*].agent.activeScan = true
**.wlan[*].agent.defaultSsid = ""

**.wlan[*].agent.channelsToScan = "" # "" means all

**.wlan[*].agent.probeDelay = 0.1s

**.wlan[*].agent.minChannelTime = 0.15s

**.wlan[*].agent.maxChannelTime = 0.3s
```

Parâmetros (iii)

```
# visualization
# visualizer.physicalLinkVisualizer.displayLinks = true
# .ap*.wlan[*].radio.displayCommunicationRange = true
```

Contagem de eventos

Figura 3: Elaborada pelo Autor

Backoffs no tempo

Figura 4: Elaborada pelo Autor

Evento Backoff Active

Handover

Figura 5: Elaborada pelo Autor

Tempo vs AP conectado (handover)

Referências

- OMNeT++ INET Framework: https://inet.omnetpp.org/
- Showcase 802.11 Wireless Handover: https://inet.omnetpp.org/docs/showcases/wireless/handover/doc/index.html
- Kurose, Ross (2013). Computer Networking: A Top-Down Approach. Pearson.
- OMNeT++ Documentation: https://omnetpp.org/doc/omnetpp/manual/#sec:inet-showcases