第四十五單元 數列極限與無窮級數的和

(甲)極限的概念

人類自古即有極限的概念,並且善用這樣的想法獲得許多豐碩的成果,這些成果都是 人類文明的珍貴資產。底下列舉幾個例子來說明極限的想法:

(1)圓周長與半徑的比爲一定值:

西元前四世紀,古希臘數學家<u>歐多克索斯</u>(Eudoxus of Cnidus)便利用極限的概念導出 <u>圓的周長</u> <u>-</u> - 定值。

歐多克索斯的想法:

設 r,r'分別是圓 $Q \cdot Q'$ 之半徑,在這兩個圓內各放一個內接正 n 邊形

將這兩個正n 邊形 $A_1A_2...A_n$ 與 $A_1A_2...A_n$ 的 問長分別記爲 $C_n \cdot C_n$

因爲 ΔQA_1A_2 與 $\Delta O'A_1'A_2'$ 相似,所以 $\frac{A_1A_2}{r}=\frac{A_1'A_2'}{r'}$

 $\Rightarrow \frac{C_n}{r} = \frac{n \cdot \overline{A_1 A_2}}{r} = \frac{n \cdot \overline{A_1' A_2'}}{r'} = \frac{C_n'}{r'} \Rightarrow \frac{C_n}{r} = \frac{C_n'}{r'}, \quad \text{對於所有內接於圓的正 } n \ \text{邊形均成立} \ .$

當「邊數n」逐漸增加,趨近於無窮大時,正n邊形的周長就逐漸趨近於「圓的周長」。

因此
$$\frac{\mathbf{QO}}{2r} = \frac{\mathbf{QO}}{2r}$$
 = 定值(與圓的大小無關)

這個定值記作π,就是**圓周長與直徑的比值**,稱爲**圓周率**。

(2)圓面積等於半周長與半徑的乘積

「九章算經」中第一章方田之中有計算圓面積的方法,術曰:「**半周半徑相乘得積步**」 (積步就是面積的意思),換成現在的說法就是圓面積等於半周長與半徑的乘積。一開始「九章算經」並沒有說明理由,直到三國時代(西元 263 年)中國數學家<u>劉徽</u>給「九章算經」作注時,提出了他的證明。

劉徽的想法:

設圓內接正 n 邊形邊長為 a_n , 周長 l_n , 面積為 S_n , 如圖

令 $\overline{AB}=a_n$, $\overline{BC}=a_{2n}$,則

 S_{2n} =(2n)·(Δ OBC 的面積)

$$= (2n) \cdot (\frac{1}{2} \overline{\mathrm{BD}} \cdot \overline{\mathrm{OC}}) \qquad = (2n) \cdot (\frac{1}{4} \overline{\mathrm{AB}} \cdot \ \overline{\mathrm{OC}})$$

$$= (2n) \cdot (\frac{1}{4}a_n \cdot r) \quad = \frac{1}{2}(n \cdot a_n) \cdot r = \frac{1}{2}l_n \cdot r$$

$$\Rightarrow$$
 S_{2n}= $\frac{1}{2}l_n\cdot r$

劉徽注曰:

「**割之彌細,所失彌少。割之又割,以至於不可割,則與圓合體,而無所失矣**」 他的看法是每次將內接正多邊形的邊數增加,邊數越多,正多邊形與圓的面積的差就 越少,最後與圓重合成一體,而就沒有誤差了。

基本上,從現在數學的眼光來看,劉徽的這段話含有重要的極限思想:

 $\lim_{n\to\infty}l_n$ =圓周長 l, $\lim_{n\to\infty}\mathbf{S}_{2n}$ =圓面積 \mathbf{S} ,再根據 $\mathbf{S}_{2n}=\frac{1}{2}l_n\cdot r$,就可得「九章算經」中圓面積

等於半周長與半徑的乘積 $(S=\frac{1}{2}l\cdot r)$ 的法則了。

(乙)數列的極限

(1)無窮數列的行為:

對於無窮數列 $\langle a_n \rangle$ 來說,除了尋找一般項是否有規則之外,另一個重要的課題是:當n愈來愈大時,研究無窮數列 a_n 是否會趨近一個定值?即「**研究數列是否有極限**」將 a_n 逐項畫在數線上,觀察數線上 a_n 的行為:

①單一方向靠近一個定實數:

例如: $\langle a_n \rangle$: $\frac{1}{1}$ 、 $\frac{1}{2}$ 、 $\frac{1}{3}$ 、...、 $\frac{1}{n}$ 、...

在數線上觀察<an>的趨向:

從數線上可以看出:

不管 n 値多大, $\frac{1}{n}$ 恆大於 0,且當項數 n 的値逐漸增大時, 動點 $\frac{1}{n}$ 會愈來愈小而逐漸 趨近於原點 0 ·

②左右振動,並且靠近一個定實數:

$$\langle a_n \rangle : \frac{-1}{1} \cdot \frac{1}{2} \cdot \frac{-1}{3} \cdot \frac{1}{4} \cdot \dots \cdot \frac{(-1)^n}{n} \cdot \dots$$

在數線上觀察<an>的趨向:

當 n 的値愈來愈大時,動點 $\frac{(-1)^n}{n}$ 會在原點 0 的左右兩側一正一負跳動,並且逐漸趨近於 0 · 故當 n 愈來愈大時,數列 $<\frac{(-1)^n}{n}$ 會朝 0 趨近。

③最後在某一點跳動:

例如: $\langle a_n \rangle$: $5 \cdot 5 \cdot 5 \cdot \dots \cdot 5 \cdot \dots$

④越來越趨向∞或-∞

$$\langle a_n \rangle : \langle 2, 4, 6, ..., 2n, ... \rangle$$

在數線上觀察<an>的趨向:

正偶數的數列:2,4,6,8,…,由左往右,逐項跨增 2 個單位,且逐漸遠離原點邁向無限大。故 n 的値愈來愈大時, $a_n=2n$ 也愈來愈大,沒有界限,因此數列 $<a_n>$ 不會趨近於某一個定數。

⑤左右振動,但越來越分開

例如: $\langle a_n \rangle$:(-3)、9、-27、81、...、 $(-3)^n$ 、....

在數線上觀察<an>的趨向:

動點(-3)ⁿ會在原點左右跳動,而且愈來愈分開,且逐漸遠離原點邁向無限大(負無限大)。

⑥在二點或二點以上振動

例如: $\langle a_n \rangle$:-1、1、-1、1、 \dots 、 $(-1)^n$ \dots

在數線上觀察<a_n>的趨向:

當 n 是奇數時, $a_n = -1$;當 n 是偶數時, $a_n = 1$,即 a_n 在 -1 與 1 兩個定數間依序跳動,故 b_n 不會趨近某一定數・

- (2)無窮數列的極限
- (a)從無窮數列的行爲來定義數列的極限:

上述的觀察中,可以得知,當n愈來愈大時,

數列 $\langle n \rangle$ 會從數列的正向愈來愈趨近0。

數列 $<\frac{(-1)^n}{n}>$ 則在原點 0 的左右兩側依序跳動,並且愈來愈趨近 0。

這兩個數列都會趨近於一個定數。

數列<2n>會沿著數列下向愈來愈大而無界限。

數列<(-1)ⁿ>會在-1 與 1 這兩個定數上依序跳動。

這兩個數列都不會趨近一個定數。

一般而言, 無窮數列的行爲可以分成兩類:

第一類:當n愈來愈大時,數列 $< a_n>$ 會趨近於某一定數,此種數列稱爲「**收斂數列**」。 第二類:當n愈來愈大時,數列 $< b_n>$ 不會趨近於某一定數,此種數列稱爲「**發散數列**」。

值得注意的是:

- (1)常數數列<c>是一個收斂數列。
- (2)跳動數列<(-1)">只在-1 和 1 上依序跳動,它不會趨近一個定數,因此數學上還是視它爲**發散數列**。

收斂數列的極限:

給定一個數列 $< a_n >$,當n 愈來愈大時, a_n 會趨近於某一個定數 α ,定數 α 稱爲數列 $< a_n >$ 的**極限** · 記爲 $\lim_{n\to\infty} a_n = \alpha$ · "→"代表趨近或趨向,符號 " ∞ "代表無限大 ·

有極限的數列稱為**收斂數列**。

例如:

$$\lim_{n\to\infty} \left(\frac{1}{2}\right)^n = 0 \; ; \; \lim_{n\to\infty} \; \frac{(-1)^n}{n} = 0 \; ; \; \lim_{n\to\infty} \frac{n}{n+1} \; = 1 \; ; \; \lim_{n\to\infty} c = c \; \circ$$

由於發散數列 $<a_n>$ 沒有極限,所以符號 $\lim a_n$ 不等於任一個定數·

例如數列<2n>或 $<2^n>$ 或 $<(-1)^n>$ 都是發散數列,此時 $\lim_{n\to\infty}2n$, $\lim_{n\to\infty}2^n$, $\lim_{n\to\infty}(-1)^n$

都不等於任一個定數:

(練習1)判別下面的數列是否有極限,如果有的話,請寫出它的極限:

$$(1)<(\frac{1}{3})^n>:\frac{1}{3},\frac{1}{9},\frac{1}{27},\frac{1}{81},\frac{1}{243},\dots$$

$$(2) < \frac{2n}{n+5} > : \frac{2}{6}, \frac{4}{7}, \frac{6}{8}, \frac{8}{9}, \frac{10}{10}, \dots, \frac{200}{105}, \dots$$

(3)
$$< a_n >$$
: 1, -1 ,2, -2 ,3, -3 , \cdots , k , $-k$, \cdots (4) $< b_n >$: 2,2,2,2, \cdots (常數數列)

$$(4) < b_n > : 2, 2, 2, \dots$$
 (常數數列)

Ans:
$$(1) \lim_{n \to \infty} \left(\frac{1}{3}\right)^n = 0$$
 $(2) \lim_{n \to \infty} \frac{2n}{n+5} = 2$ (3) 極限不存在 $(4)2$

(b)收斂數列極限的另一種看法

「當n愈來愈大時,數列 $< \frac{1}{n}$ 會趨近於0 」可以換另一個方式來描述:

欲使 $|\frac{1}{n}-0|<\frac{1}{10}$,只要選擇 $n>10^1$ 就可以辦到。

欲使 $|\frac{1}{n}-0| < \frac{1}{10^2}$,只要選擇 $n > 10^2$ 就可以辦到。

欲使 $\left|\frac{1}{n}-0\right| < \frac{1}{10^k}$,只要選擇 $n > 10^k$ 就可以辦到。

即「 $|\frac{1}{n}$ -0|要多小,只要選擇 n 足夠大都可以辦到。」

一般而言:

「 \mathbf{a} \mathbf{n} **愈來愈大時,數列**< \mathbf{a}_n >**會趨近於定數** α 」的敘述意指:

欲使 a_n 與 α 的距離 $|a_n-\alpha|$ 小於給定的任意正數,只要選擇 n 足夠大就可以辦到。 即「只要 n 足夠大, a_n 與 α 的距離 $|a_n-\alpha|$ 要多小都可以辦到」 結論:

 $\lceil \lim_{n \to \infty} a_n = \alpha \rfloor$ 表示

「只要 n 足夠大之後, a_n 與 α 的距離 $|a_n - \alpha|$ 要多小都可以辦得到 · 」

(練習2)考慮數列 $\langle a_n \rangle$, 其中 $a_n = \frac{n}{n+1}$,

- (1)求 a_n 與 1 的距離 $|a_n-1|$ 。
- (2)欲使不等式 $|a_n-1| < \frac{1}{1000}$ 成立,則 n 至少要大於多少?

(c)用計算機來體驗極限:

考慮數列 $a_n = \frac{n}{2^n}$,可以利用 Excel 試算表來猜測極限 $\lim_{n \to \infty} \frac{n}{2^n}$

(練習3)請利用 Excel 試算表來計算下列各數列的極限,若收斂請寫出極限。

$$(1)a_{n} = \frac{1 + (-3)^{n}}{2} \qquad (2)a_{n} = \frac{2n^{2} - n + 100}{3n^{2} + 1000n - 10}$$

$$(3)a_{n} = \frac{100n^{3} + n - 3}{n^{4} + 1} \qquad (4)a_{n} = \frac{2^{n} + 5^{n}}{4^{n+1} - 3^{n}} \qquad (5)a_{n} = \frac{n^{2}}{2n + 1} - \frac{n^{2}}{2n - 1}$$

(3)無窮等比數列的極限:

對於無窮等差數列,除了公差為0的情形之外,其餘都是發散數列。

至於數列 $< ar^n >$ 而言,當 a=0 或 r=0 時,數列 $< ar^n >$ 的每一項都是 0,所以極限爲 0。 當 $a\neq 0$ 或是 $r\neq 0$ 時,數列 $< ar^n >$ 爲無窮等比數列,它是收斂或發散,則與公比 r 有密切關係。

爲了簡化討論,我們只討論無窮等比數列<r">收斂與發散的情形:

(1) 先觀察 r=1, -1 的情形:

r=1 時,數列 $< r^n >$ 的每一項都是 1,所以 $\lim r^n = 1$ 。

r=-1 時,數列< $(-1)^n>:-1,1,-1,1$,…是發散數列。

(2)當|r|<1 時,

(i)0<r<1的情形:

先觀察特例 $<(\frac{1}{2})^n>$,在數線上當n愈來愈大時,這些點會愈來愈接近0,因此 $\lim_{n\to\infty}(\frac{1}{2})^n=0$ 。

一般而言,觀察數列 $< r^n > , r^{n+1} < r^n$,隨著 n 的增加, r^n 愈來愈小,且 r^n 與 0 的距離 $|r^n - 0|$ 會愈來愈趨近 0。如下圖,利用一連串相似的直角三角形,斜邊與一股長度比值爲 r,

股之長度依序為 $\overline{OA}=1$ 、 $\overline{OA}_1=r$ 、 $\overline{B_1A_2}=r^3$, $\overline{A_2B_2}=r^4$, $\overline{B_2A_3}=r^5$,…,當 n 愈來愈大時,點 A_n 與 B_n 逐漸趨近頂點 C,即線段長 r_n 愈來愈短而趨近於 0。

故當
$$0 < r < 1$$
 時, $\lim_{n \to \infty} r^n = 0$ 。

(ii)-1<r<0的情形:

再觀察特例< $(\frac{-1}{2})^n$ >,在數線上當n 愈來愈大時,這些點會依序在原點左右兩側跳動,並且逐漸的接近原點0,因此 $\lim_{n\to\infty} (\frac{-1}{2})^n = 0$ 。

一般而言,觀察數列< $r^n>$,因 0<|r|<1,由(i)的情形知: $\lim_{n\to\infty}|r^n-0|=\lim_{n\to\infty}|r|^n=0$,即 當 n 愈來愈大時, r^n 與 0 的距離 $|r^n-0|$ 會愈來愈趨近 0,因此 $\lim_{n\to\infty}r^n=0$ 。

(3)當|r|>1 時,

(i) r>1 的情形:

一般而言,觀察數列< r''>,如下圖,利用一連串相似的直角三角形,可以得知:

 $\overline{AB}=1$ 、 $\overline{AB}_1=r$ 、 $\overline{A_1B_1}=r^2$, $\overline{A_1B_2}=r^3$, $\overline{A_2B_2}=r^4$,…,當 n 愈來愈大時, $\overline{A_{n-1}A_n}$ 及 $\overline{B_{n-1}B_n}$ 愈來愈長,即 $r< r^2 < r^3 < r^4 < \cdots$,所以 r^n 要多大就多大,並不會趨近於任何一個定數,故數列 $< r^n >$ 是發散數列。

(ii)r < -1 時,

觀察特例<(-2)">的點,在數線上當n愈來愈大時,這些點會在原點兩側依序跳動,並且逐漸遠離原點。因此數列<(-2)">並不會趨近於任何一個定數,故數列<(-2)">爲發散數列。

一般而言,因|r|>1 且|r''|=|r|'',由(3) (i)知:當n 愈來愈大時,|r''|要多大就多大,對於任一實數 α 而言,同樣地 $|r''-\alpha|$ 要多大就多大,即< r''> 爲發散數列。

我們將上述討論整理如下:

當 r=0 時,雖然 $< r^n >$ 不是等比數列,但是 $\lim_{n\to\infty} r^n = 0$ 。

(練習4)試判斷下列數列是否收斂,若爲收斂數列,求出其極限值。

$$(1)<(-0.02)^n>$$
 $(2)<\frac{3^n}{7^n}>$ $(3)<(1.0001)^n>$

(丙)數列極限的性質

給定兩個收斂數列 $\langle a_n \rangle$ 與 $\langle b_n \rangle$,且 $\lim_{n \to \infty} a_n = \alpha$, $\lim_{n \to \infty} b_n = \beta$ 。將其對應項作四則運算,

可以得到一些新的數列:

$$\langle a_n+b_n \rangle$$
、 $\langle a_n-b_n \rangle$ 、 $\langle a_n\cdot b_n \rangle$ 、 $\langle \frac{a_n}{b_n} \rangle$,這些新數列是否會收斂呢?

如果收斂,其極限値是否會等於 $\alpha+\beta$ 、 $\alpha-\beta$ 、 $\alpha\beta$ 、 $\frac{\alpha}{\beta}$ 呢?

(1)極限的四則渾算:

給定兩個收斂的數列 $\langle a_n \rangle$ 、 $\langle b_n \rangle$,經四則運算之後,產生下列新的數列:

$$< a_n + b_n > \cdot < a_n - b_n > \cdot < a_n \cdot b_n > \cdot < \frac{a_n}{b_n} > (b_n \neq 0)$$
都會收斂。

唯一要注意的是,商式 $\frac{a_n}{b_n}$ 中必須附加 $\lim_{n\to\infty}b_n\neq 0$ 的條件,才能使得 $\lim_{n\to\infty}\frac{a_n}{b_n}$ 收斂。 我們寫成下面的定理: 若設 $\langle a_n \rangle$, $\langle b_n \rangle$ 均爲收斂的數列,且 $\lim_{n \to \infty} a_n = a$, $\lim_{n \to \infty} b_n = b$,

則(a)
$$\lim_{n\to\infty} (a_n \pm b_n) = a \pm b$$
 (b) $\lim_{n\to\infty} c \cdot a_n = c \cdot a$

(b)
$$\lim_{n \to \infty} c \cdot a_n = c \cdot a$$

$$(c)\lim_{n\to\infty}(a_n\cdot b_n)=a\cdot b$$

(c)
$$\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$$
 (d) $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$, $(\lim_{n \to \infty} b_n = b \neq 0)$

收斂數列的「和、差、積與商(商的分母不爲0)」仍然是收斂數列,其極限分別爲原 收斂數列之極限的「和、差、積與商」。

[說明]:

 $(c)|a_nb_n-ab|=|b_n(a_n-a)+a(b_n-b)| \le |b_n||a_n-a|+|a||b_n-b|$

當n 夠大時, $|b_n| \le M$, $|a_n - a|$ 、 $|b_n - b|$ 會夠小,

因此 $|b_n||a_n-a|+|a||b_n-b|\leq M|a_n-a|+|a||b_n-b|$ 也會夠小。

所以無論 $|a_nb_n-ab|$ 要多小,只要當n 夠大時就可辦到,故 $\lim(a_n\cdot b_n)=a\cdot b$ 。

$$\begin{aligned} (\mathrm{d}) | \frac{a_n}{b_n} &- \frac{a}{b} | = \left| \frac{a_n b - a b_n}{b_n b} \right| \\ &= \left| \frac{b(a_n - a) + a(b - b_n)}{b_n b} \right| \le \left| \frac{1}{b_n b} \right| (|b||a_n - a| + |a||b_n - b|) \end{aligned}$$

- $\lim_{n\to\infty} b_n = b \neq 0$, ...當 n 夠大時 , $|\frac{1}{b_n}| \leq M$,
- $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$, .. 當 n 夠大時, $|a_n-a|$ 、 $|b_n-b|$ 會夠小、

$$\Rightarrow |\frac{a_n}{b_n} - \frac{a}{b}| \le |\frac{1}{b_n b}| (|b||a_n - a| + |a||b_n - b|) \le M |\frac{1}{b}| (|b||a_n - a| + |a||b_n - b|)$$

故當 n 夠大時, $M|\frac{1}{b}|(|b||a_n-a|+|a||b_n-b|)$ 會夠小,

所以無論 $\left|\frac{a_n}{b_n} - \frac{a}{b}\right|$ 要多小,只要當n 夠大時就可辦到,所以 $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$ 。

[**例題**1] 設 $< a_n >$ 是收斂數列且 $\lim_{n \to \infty} a_n = \alpha$,而 $< b_n >$ 是發散數列, 試問數列 $< a_n + b_n >$ 是收斂或發散?

由上面例題可知「收斂數列與發散數列的「和與差」所形成的新數列必爲發散數列。」

至於收斂數列與發散數列的「積與商」所形成的新數列,可能收斂或發散。

[課內討論]:

試舉出兩個發散數列<a_n>、<b_n>,分別使得

- $(1) < a_n + b_n >$ 是收斂數列
- $(2) < a_n \cdot b_n >$ 是收斂數列

$$(3) < \frac{a_n}{b_n} >$$
是收斂數列

我們將前面討論的結果,表列如下:

	和差	積	商	
兩收斂數列	收斂	收斂	收斂(分母極限≠0)	
一收斂、一發散數列	發散	不一定收斂或發散	不一定收斂或發散	
兩發散數列	不一定收斂或發散	不一定收斂或發散	不一定收斂或發散	

[**例題2**] 設
$$\{a_n\}$$
爲一數列, $\lim_{n\to\infty}\frac{4a_n-2}{3a_n+1}=\frac{1}{2}$,則試證明 $\{a_n\}$ 爲一收斂數列,並求其極限値。 Ans: 1

(練習5) 已知
$$\lim_{n\to\infty} (\frac{3n-1}{4n-2} - a_n) = 4$$
,則 $\lim_{n\to\infty} a_n = ?$ Ans: $\frac{-13}{4}$

(2)一些特殊型式的極限:

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} (f(x) \cdot g(x)$$
為多項式)的求法:

(a)若
$$\deg f(n) < \deg g(n)$$
,則 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$ 。

(b)若
$$\deg f(n) = \deg g(n)$$
,則 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{f(n)}{g(n)}$ 的最高次項係數。

(c)若
$$\deg f(n) > \deg g(n)$$
,則 $\lim_{n \to \infty} \frac{f(n)}{g(n)}$ 發散。

[**例題3**] (不定型: $\frac{\infty}{\infty}$)

$$(1)\lim_{n\to\infty}\frac{2n^2+4n-1}{n^3+1}=?(2)\lim_{n\to\infty}\frac{3n^2-n+1}{2n^2}=?(3)\lim_{n\to\infty}\frac{2n^5-n+5}{n^4}=?$$

Ans: $(1)0(2)\frac{3}{2}(3)$ 發散

[**例題4**] (不定型: $\frac{\infty}{\infty}$)

(1)
$$\lim_{n \to \infty} \frac{3^n + 4^n}{3^{n+1} + 4^{n+1}} = ? \quad (2) \lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1)} = ? \quad \text{Ans} : (1)0 (2)1$$

[**例題5**] (不定型: ∞ - ∞ 、 $\frac{\infty$ - ∞ </sup>)

$$(1)\lim_{n\to\infty}(\sqrt{n+2}-\sqrt{n+1})=? \qquad (2) \quad \lim_{n\to\infty}\frac{\sqrt{n+3}-\sqrt{n+1}}{\sqrt{n+1}-\sqrt{n}}=?$$

Ans: (1)0(2)2

(練習6) 試求下列各極限:

(1)
$$\lim_{n\to\infty} \frac{8n^2 - 5n + 1}{3n^2 - 6}$$
 (2) $\lim_{n\to\infty} (\frac{m}{m+1})^n$ (其中 m 爲正數)

$$(3)$$
 $\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^m$ (其中 m 爲自然數)

Ans:
$$(1)\frac{8}{3}$$
 (2)0 (3)1

(練習7) 試求下列各極限:

$$(1) \lim_{n \to \infty} \frac{\sqrt{n+1}}{\sqrt{n^2 + 3n + 1}} = ? (2) \lim_{n \to \infty} \frac{\sqrt{2n+1} + \sqrt{n+1}}{\sqrt{4n+3}} = ?$$

$$(3) \lim_{n \to \infty} \frac{\sqrt{n^2 + 3n + \sqrt{n+1}}}{\sqrt{3n+1}} = ? (4) \lim_{n \to \infty} (n\sqrt{\frac{n+1}{n-1}} - n) = ?$$
Ans: (1)0 (2) $\frac{\sqrt{2}+1}{2}$ (3) 發散 (4)1

(丁)無窮級數的和

(1)發展無窮級數求和的程序:

第一冊中曾提到循環小數 $0.\overline{3}$ 等於 $0.\overline{3}$ 是一個有理數,如果將 $0.\overline{3}$ 寫成無窮等比級數的和,

 $0.\overline{3} = 0.3 + 0.03 + 0.003 + + \dots$

上式中的無窮數列中有無限多項,可以相加嗎?這個問題自古就困擾了許多人。 古希臘哲學家<u>齊諾</u>(Zeno of Elea 約 490BC~425BC)曾提出一個關於<u>阿基里斯</u>(Achilles) 與烏龜賽跑的詭辯,這個詭辯大致敘述如下:

「假設<u>阿基里斯</u>每秒走1公尺,烏龜每秒走0.1公尺,現在烏龜在<u>阿基里斯</u>前方10公尺的地方與<u>阿基里斯</u>同時出發,<u>齊諾</u>說<u>阿基里斯</u>永遠追不上烏龜!」

爲何齊諾說阿基里斯永遠追不上烏龜呢?

他說當<u>阿基里斯</u>來到烏龜出發的地方,此時烏龜又向前走了 0.1×10 公尺,當<u>阿基里斯</u>又往前走了 0.1×10 公尺,此時烏龜又走了 $(0.1)^2\times10....$,如此下去,<u>阿基里斯</u>永遠追不上烏龜。

阿基里斯所追趕的距離可以寫成 10+10×(0.1)+10×(0.1)²+10×(0.1)³+....

這個式子一項一項加下去永遠不會結束。

從運動學的觀點來看:

t 秒後阿基里斯走到出發點前 t(公尺)

t 秒後烏龜走到出發點前 10+0.1t (公尺)

若 t 秒時<u>阿基里斯</u>追趕上烏龜,則 t=10+0.1t 解得 $t=\frac{10}{1-0.1}$ 。

因此在 $\frac{10}{1-0.1}$ 秒後,離出發點 $\frac{10}{1-0.1}$ 公尺的地方 $\overline{\text{阿基里斯}}$ 會追上烏龜。

雖然<u>阿基里斯</u>所追趕的距離 $10+10\times(0.1)+10\times(0.1)^2+10\times(0.1)^3+\dots$ 這個式子一項一項加下去永遠不會結束,不過這個級數的和似乎要等於 $\frac{10}{1-0.1}$ 才符合觀察的結果。

接下來我們要發展一套新的概念來討論無窮等比級數 $10+10\times(0.1)+10\times(0.1)^2+10\times(0.1)^3+....$ 的和。

<<莊子•天下篇>>中記述了一段話「一尺之極,日取其半,萬世不竭。」 這段話的原意是「一尺長的竹子,每日截取去掉其自身長度的一半,可以世世代代不 斷的截取下去,永遠不會結束。」這段話隱藏著「無窮多項求和」的奧祕,讓我們來 探討這個奧祕!

將前述的竹子視爲1尺長的線段,每次截取線段自身長度的一半,那麼每天所截取的 線段長度總和可表爲

$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots + \frac{1}{2^n} + \ldots$$

我們想像線段可以世世代代不停的分割下去,故上面的式子構成了一個無窮級數。 直觀的想:所有被截取的線段長度之和不會超過一尺,會不會等於一尺呢? (1)先求前n項和 $S_n(以 n$ 表示):

設 S_n 爲前n日所截取的線段長度總和,即

等比級數和的公式
$$\mathbf{S}_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \ldots + \frac{1}{2^n} = 1 - (\frac{1}{2})^n$$

要世世代代不停的截取線段,因此數列<Sn>是一個無窮數列,

當n 愈來愈大時,觀察數列<**S**_n>的走勢:

$$S_{1} = \frac{1}{2} ,$$

$$S_{2} = \frac{1}{2} + \frac{1}{2^{2}} = 1 - (\frac{1}{2})^{2} ,$$

$$S_{3} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} = 1 - (\frac{1}{2})^{3} ,$$

$$\vdots$$

$$S_{n} = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots + (\frac{1}{2})^{n} = 1 - (\frac{1}{2})^{n} ,$$

$$\vdots$$

(2)求數列<S_n>的極限:

隨著n越來越大,數列<S $_n>$ 會越來越接近1。

因爲
$$\lim_{n\to\infty} (\frac{1}{2})^n = 0$$
,故 $\lim_{n\to\infty} S_n = 1$ 。

換句話說,前n日所分割的線段總和所形成的

數列<
$$S_n$$
>其極限爲 $1 \circ$ 即 $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots = 1 \circ$

上面求無窮級數 $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} + \dots$ 的和,分成兩個步驟:

(1)先求「部分和」形成的數列<S_n>:

$$S_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - (\frac{1}{2})^n$$

(2)求<S_n>的極限,即 $\lim_{n\to\infty}$ S_n=1。

上面兩個步驟對於求一般的無窮級數的和也適用:

設< a_n >爲無窮數列,將各項依序相加就得出**無窮級數** $a_1+a_2+a_3+.....$,此級數可以用符號 $\sum_{n=1}^{\infty}a_n$ 來表示。

令
$$S_n$$
 爲級數 $\sum_{k=1}^{\infty} a_k$ 前 n 項的和,即 $S_n = \sum_{k=1}^{n} a_k = a_1 + a_2 + \ldots + a_n$,

我們透過無窮數列<S_n>是否有「極限」,來決定無窮級數 $a_1+a_2+a_3+....$ 是否有和。 其步驟如下:

- (1)求「部分和」形成的數列<S_n>:
- (2)討論<S_n>的收斂與發散:
- (1°) 若<S_n>收斂且 $\lim_{n\to\infty}$ S_n= α ,則極限値 α 定爲此無窮級數的和。即

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} \mathbf{S}_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \alpha$$
,「和」存在的級數稱爲**收斂級數**。

 (2°) 若<S_n>發散,則無窮級數 $\sum_{k=1}^{\infty}a_{k}$ 的和不存在,「和」不存在的級數稱爲**發散級數**。

此時 $\sum_{k=1}^{\infty} a_k$ 不是一個數,僅代表該級數本身。

上述(1)(2)說明了「無窮級數 $\sum_{k=1}^{\infty}a_k$ 的求和問題就是求數列<S_n>的極限問題」。

無窮級數 $\sum_{k=1}^{\infty} a_k$ 的求和程序:

- (1) 先求「部分和」 $S_n = \sum_{k=1}^n a_k$ (用 n 來表示)。
- (2)考慮數列<S_n>的收斂或發散:

若
$$\lim_{n\to\infty} S_n = \alpha$$
,則 $\sum_{k=1}^{\infty} a_k = \alpha$ (收斂級數);若 $<$ S_n>發散,則 $\sum_{n=1}^{\infty} a_n$ 的和不存在。

(發散級數)

[**例題6**] 試求無窮級數 $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \dots + \frac{1}{n(n+1)} + \dots$ 的和。

[例題7] 試求下面無窮等比級數的和:

(1)
$$10+10\times(0.1)+10\times(0.1)^2+10\times(0.1)^3+\dots$$

(2)
$$1-2+4-8+16+\cdots+(-2)^{n-1}+\cdots$$

(練習8)求下面無窮等比級數的和:

$$(1)\sum_{n=1}^{\infty} (\frac{2}{5})^n = \frac{2}{5} + (\frac{2}{5})^2 + (\frac{2}{5})^3 + \dots + (\frac{2}{5})^n + \dots$$

$$(2)\sum_{n=1}^{\infty}(\frac{-1}{3})^n=\frac{-1}{3}+(\frac{-1}{3})^2+\ldots+(\frac{-1}{3})^n+\ldots$$

Ans:
$$(1)^{\frac{2}{3}}$$
 $(2)^{\frac{-1}{4}}$

(2)無窮等比級數的和

從例題七中發現,公比的大小會影響無窮級數的和存在與否,一般的無窮等比級數 $a+ar+ar^2+....+ar^{n-1}+.....(a\neq 0$ 且 $r\neq 0$)的和是否存在呢?

設無窮等比級數 $\sum_{k=1}^{\infty} ar^{k-1}$ 前n項和爲 S_n ,即 $S_n=a+ar+ar^2+...+ar^{n-1}$,

根據無窮級數求和的程序,

(1)求 S_n 的值:

$$S_n = a + ar + ar^2 + ... + ar^{n-1} = \begin{cases} \frac{a(1-r^n)}{1-r} = \frac{a}{1-r} (1-r^n) & \text{if } r \neq 1$$
 時 $r \neq 1$ 情 $r \neq 1$

(2)討論數列<S_n>的收斂或發散:

 (1°) 當 r≠1 時,根據數列 $< r^{\prime\prime}>$ 是否收斂來討論 $< S_{\prime\prime}>$ 收斂或發散。

當
$$-1 < r < 1$$
 時, $\lim_{n \to \infty} r^n = 0$

此時
$$\lim_{n\to\infty}$$
 $S_n = \lim_{n\to\infty} \left[\frac{a}{1-r} (1-r^n) \right] = \frac{a}{1-r}$

所以無窮等比級數 $a+ar+ar^2+...+ar^{n-1}+....=\frac{a}{1-r}$ 。

當 r>1 或 $r\le-1$ 時,因爲 $< r^n>$ 爲發散數列,故 $< \mathbf{S}_n>$ 爲發散數列。

無窮等比級數 $a+ar+ar^2+....+ar^{n-1}+....$ 的和不存在。

(2°)當 r=1 時,

 $S_n = na$,因爲 $a \neq 0$,所以< na > 爲發散數列,故 $< S_n >$ 爲發散數列。

無窮等比級數 $a+ar+ar^2+....+ar^{n-1}+....$ 的和不存在。

我們將前面的討論結果整理如下:

無窮等比級數的和:

無窮等比級數 $a+ar+ar^2+...+ar^{n-1}+...$ 的和:

- (1)當 0 < |r| < 1 時,無窮等比級數的和爲 $\frac{a}{1-r}$ 。
- (2)當|r|≥1 時,無窮等比級數的和不存在。

[例題8] 求下列無窮等比級數的和:

$$(1)\frac{1}{7} + \frac{2}{7^2} + \frac{4}{7^3} + \dots + \frac{2^{n-1}}{7^n} + \dots$$

(2)
$$\frac{4}{3} - \frac{16}{3^2} + \frac{64}{3^3} - \dots + \frac{(-1)^{n+1} \times 4^n}{3^n} + \dots$$

[解法]:

(1)一般項 $\frac{2^{n-1}}{7^n} = \frac{1}{7}(\frac{2}{7})^{n-1}$,故此無窮等比級數的首項爲 $\frac{1}{7}$,公比爲 $\frac{2}{7}$,且 $0 < |\frac{2}{7}| < 1$,因此無窮等比級數

$$\frac{1}{7}$$
+ $\frac{4}{7^2}$ + $\frac{8}{7^3}$ +.... + $\frac{2^{n-1}}{7^n}$ +...的和為 $\frac{\frac{1}{7}}{1-\frac{2}{7}} = \frac{1}{5}$ \circ

(2)一般項 $\frac{(-1)^{n+1}\times 4^n}{3^n} = (-1)\times (\frac{-4}{3})^n$,故此無窮等比級數的公比爲 $\frac{-4}{3}$,且 $\frac{-4}{3}$ | ≥ 1 ,因此無窮等比級數 $\frac{4}{3} - \frac{16}{3^2} + \frac{64}{3^3} - \dots$ $\frac{(-1)^{n+1}\times 4^n}{3^n} + \dots$ 的和不存在。

[例題9] 將下列循環小數化成分數:

$$(1)0.\overline{4}$$
 $(2)0.\overline{215}$ Ans : $(1)\frac{4}{9}$ $(2)\frac{213}{990}$

[討論]: 0.9=1 這是怎麼回事呢?真的嗎!

[解釋]:

設 $1-0.9=\alpha>0$,則由阿基米德性質

(對於任意正數a,及任意實數b而言,必存在一個正整數,使得na>b)

可找到一個正整數 n 使得 $10^n\alpha>1$,及 $\alpha>\frac{1}{10^n}$,所以 $1-0.9>\frac{1}{10^n}$

$$\Rightarrow 1-\frac{1}{10^n} > 0.999...9 > 0.999...9 > 0.999...9$$
 > 0.9 此與循環小數的意義矛盾。

[例題10] 試求下列無窮級數的和:

$$(1)\sum_{n=1}^{\infty} \left(\frac{1}{2^n} + \frac{1}{3^n}\right) = ?$$

 $(2)0.9+0.099+0.00999+0.0009999+\dots=?$

$$(3)1+2+3+...+100+(\frac{1}{2})+(\frac{1}{2})^2+...+(\frac{1}{2})^n+....$$
Ans : $(1)\frac{3}{2}$ $(2)\frac{100}{99}$ $(3)5051$

(練習9)求下列各無窮等比級數的和:

$$(1)1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots = ?$$

(2)無窮等比級數(
$$\sqrt{3}-1$$
)+($2-\sqrt{3}$)+ $\frac{3\sqrt{3}-5}{2}$ +...=?

(3) 武求
$$\sum_{n=1}^{\infty} \frac{2}{5^n} = ?$$
 Ans : $(1)\frac{2}{3}$ (2) $\frac{2\sqrt{3}}{3}$ (3) $\frac{1}{2}$

(練習10)試求
$$\sum_{n=1}^{\infty} \frac{2^{n-1}-1}{3^n} = ?$$
 Ans: $\frac{1}{2}$

(練習11)(1)化循環小數 2.312 爲分數。 (2)化循環小數 3.51 爲分數。

Ans:
$$(1)\frac{763}{330} (2)\frac{348}{99}$$

(練習12)設 x 為實數且無窮級數 $1+(1-3x)+(1-3x)^2+...+(1-3x)^{n-1}+...$ 收斂,求 x 的範圍與級數的和。Ans: $0< x< \frac{2}{3}, \frac{1}{3x}$

[**例題**11] (1)試求級數
$$\frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + \ldots + \frac{1}{n(n+2)}$$
的和。

(2)試求無窮級數
$$\frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + ... + \frac{1}{n(n+2)} + ...$$
之和。

Ans:
$$(1)\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})(2)\frac{3}{4}$$

[**例題**12] 試求級數
$$\sum_{n=1}^{\infty} \frac{2n+1}{3^{n-1}}$$
的和。 Ans: 6

(練習13) 求
$$\frac{1}{1\times 2\times 3}$$
 + $\frac{1}{2\times 3\times 4}$ ++ $\frac{1}{n(n+1)(n+2)}$ +......之和。 Ans: $\frac{1}{4}$

(練習14) 試求
$$\lim_{n\to\infty} \left[\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + ... + \frac{1}{(2n-1)(2n+1)}\right] = ?$$
 Ans : $\frac{1}{2}$ [提示:原式可視爲求無窮級數 $\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + ... + \frac{1}{(2n-1)(2n+1)} + ...$ 的和]

[**例題**13] 如圖,一單位長正方形,第一次將其平分成9塊(九格宮形),然後挖去中間一塊。第二次再將剩餘各塊各平分成9塊,分別去掉中間各一塊。...

設第 n 次挖去之正方形面積總和爲 a_n ,請問:(1) a_n =? (2) $\sum_{n=1}^{\infty} a_n$

[**例題14**] 小安從裝有 5 個紅球、3 個黑球的袋中取出一個球,假設每個球被取中的機會都相等,他看完球的顏色後,再將球放入袋中,設 P_n 代表直到第 n 次才取中紅球的機率。試求下列各小題:

 $(1)P_2 \cdot P_3$ 的值。 $(2)P_n$ 的值。 (3)一直沒取中紅球的機率。

Ans: $(1)P_2 = \frac{15}{64} \cdot P_3 = \frac{45}{512}$ (2) $P_n = (\frac{3}{8})^{n-1} \times \frac{5}{8}$ (3)0

[**例題15**] <u>阿基米德</u>曾利用一連串的三角形來逼近弓形,並計算出弓形面積。如圖,設 D 爲由直線 PQ 與 $y=x^2$ 的圖形所圍成的弓形,其中 $P(a,a^2)$ 、 $Q(b,b^2)$,在 $y=x^2$ 上取一點 $R(c,c^2)$,其中 $c=\frac{a+b}{2}$,

(1)證明:ΔPQR 的面積= $\frac{1}{8}$ (b-a)³。

(2)在 $P(a,a^2)$ 與 $R(c,c^2)$ 、 $R(c,c^2)$ 與 $Q(b,b^2)$ 的抛物線間分別取 $R_1(c_1,c_1^2)$ 、 $R_2(c_2,c_2^2)$ 其中 $c_1=\frac{a+c}{2}$, $c_2=\frac{c+b}{2}$,請證明: ΔPR_1R 面積+ ΔRR_2Q 面積= $\frac{1}{4}\cdot\frac{1}{8}(b-a)^3$ 。

(3)重複前面的動作,第一次做 1 個三角形,第二次做 2 個三角形,…,第 n 次做 2^n 個三角形,如此下次會形成無窮多個三角形,阿基米得利用這些三角形的面積和來求弓形的面積,試求出這無窮多個三角形面積和,並藉此證明弓形的面積爲 $\frac{1}{6}(b-a)^3$ 。註:上述的方法就是阿基米得的**窮竭法**。

- (練習15)平面上一動點 P 自原點 O 出發沿 x 軸正向前進一個單位,其次沿 y 軸正方向前進 $\frac{2}{3}$ 單位,再沿 x 軸負方向前進 $(\frac{2}{3})^2$ 單位,然後再沿 y 軸負方向前進 $(\frac{2}{3})^3$ 單位,以下依此種方式重複類推下去,求點 P 極限位置的坐標爲何? Ans: $(\frac{9}{13},\frac{6}{13})$
 - **(練習16)** 一皮球自離地面 10 公尺高處落下,首次反彈高度爲 $\frac{10}{3}$ 公尺,此後每次反彈高度爲其前次反彈高度的 $\frac{1}{3}$,則此球到完全靜止前,所經過路徑的總長度爲多少公尺? Ans: 20 公尺
 - (練習17) 右圖中, \overline{AB} =2, \overline{BC} =1, $\angle B$ =90°, S_1 爲ΔABC 之內接正方形, S_2 爲ΔAB₁C₁ 之內接正方形,…… (1)求 S_1 之面積。

(2)求 S_1 , S_2 ,....之面積和。Ans: $(1)\frac{4}{9}$ $(2)\frac{4}{5}$

(練習18) 如右圖,一正方形的邊長為 a,以 3:4 的順序內分各邊,再連各分點得第二個正方形,再以同順序內分第二個正方形各邊,連接各分點得第三個正方形,如此繼續下去,則一切正方形的面積總和為多人,49 2

少? Ans: $\frac{49}{24}a^2$

[直觀可靠嗎]:

(1)圖形的逼近:

(2)Cantor 集

Cantor 於 1833 年提出了一個集合,後人將它稱為 Cantor 集。

Cantor 集是由閉區間[0,1]去掉無數多個開子區間所剩下的點所成的集合,它的造法如下:

- (1)將[0,1]三等分,去掉中間的開子區間 $(\frac{1}{3},\frac{2}{3})$ 。
- (2)將(1)中所剩下的二個閉子區間 $[0,\frac{1}{3}],[\frac{2}{3},1]$ 分別再三等分,去掉中間的開子區間,

$$(\frac{1}{9},\frac{2}{9}) \cdot (\frac{7}{9},\frac{8}{9})....$$

- (3)如此繼續下去,所剩下的點所成的集合就稱爲 Cantor 集。
- (a)試問第9個步驟,所去掉的開子區間的總長等於多少?
- (b)所有去掉的開子區間的長度總和爲何?
- (c)做完(a)(b)之後是否發覺這個集合有些奇怪的現象,與你的直觀不大相同,你能描述這個奇怪的現象嗎?

(戊)夾擠定理

(1)引入夾擠原理

考慮數列 $<\frac{\sin n}{n}$ >的極限,因 $-1 \le \sin n \le 1$,故得到 $\frac{-1}{n} < \frac{\sin n}{n} < \frac{1}{n}$,

即數列 $<\frac{\sin n}{n}>$ 夾在兩個術數列 $<\frac{-1}{n}>$ 與 $<\frac{1}{n}>$ 之間,且 $\lim_{n\to\infty}\frac{-1}{n}=\lim_{n\to\infty}\frac{1}{n}=0$ 。

當n愈來愈大時,觀察坐標平面上三組動點 $A_n(n, \frac{-1}{n}) \cdot P_n(n, \frac{\sin n}{n}) \cdot B_n(n, \frac{-1}{n})$ 的分布情形(如下圖):

 A_n , P_n , B_n 三點都在同一條垂直 x 軸的直線 x=n 上,並且 P_n 恆介於 A_n 與 B_n 之間,當 n 愈來愈大時,點 A_n 與點 B_n 愈來愈接近 x 軸,故 $P_n(n,\frac{\sin n}{n})$ 也愈來愈接近 x 軸,

上述的結果,對於一般的數列也會成立,我們稱爲數列的「夾擠原理」。

(2)夾擠原理

夾擠原理:

給一個數列 $\langle c_n \rangle$,若存在兩個數列 $\langle a_n \rangle$ 與 $\langle b_n \rangle$ 滿足:

- (1)從某一項起(即 $n \ge n_0$), $a_n \le c_n \le b_n \circ (c_n$ 夾在 a_n 與 b_n 之間)
- (2) $\lim a_n = \alpha = \lim b_n$ 。(數列 $< a_n >$ 與 $< b_n >$ 有相同的極限値)

則數列 $< c_n >$ 是收斂數列,並且 $\lim_{n \to \infty} c_n = \alpha \circ (< c_n >$ 的極限就是數列 $< a_n >$ 與 $< b_n >$ 的極限)

上述原理可以用數線說明如下:

從第 n_0 項起, c_n 始終夾在 a_n 與 b_n 之間,即 $|c_n-\alpha|$ 必不大於 $|a_n-\alpha|$ 或 $|b_n-\alpha|$,如圖 1-16,所以可得 $|c_n-\alpha| \le |a_n-\alpha| + |b_n-\alpha|$ $(n \ge n_0)$ 。

那麼只要 n 足夠大, $|a_n-\alpha|$ 與 $|b_n-\alpha|$ 都會小於任意給定的正數,因此可得知只要 n 足夠大, $|c_n-\alpha|$ 也會任意小,故 $\lim_{n\to\infty} c_n=\alpha$ 。

夾擠原理的重點是:我們要找出兩個有相同極限的數列($\lim_{n\to\infty} a_n = \alpha = \lim_{n\to\infty} b_n$),將欲求極

限的數列 $< c_n >$ 夾在中間 $(a_n \le c_n \le b_n)$,那麼數列 $< c_n >$ 的極限就是數列 $< a_n >$ 與 $< b_n >$ 的極限。 $(\lim_{n \to \infty} c_n = \alpha)$ 。

[**例題**16] 設
$$a_n = \frac{n}{2^n}$$
 , $b_n = \frac{1}{n}$ $(n \in \mathbb{N})$,

- (1)列表觀察 a_n 與 b_n 的走勢,臆測 a_n 與 b_n 的大小關係。
- (2)用數學歸納法證明(1)的臆測。
- (3)數列 $<a_n>$ 是否收斂?若爲收斂,試求它的極限。 [解法]:
- (1)列表觀察 a_n 與 b_n 的走勢如下表:

•n4 ³	1₽	2₽	3₽	4₽	5₽	6₽	7₽	•••
$a_n = \frac{n}{2^n}$	$\frac{1}{2}$	2/ ₄ ←	3 8	4/16 €	5/32 €	6/64 €	7 128 €	•••
$b_n = \frac{1}{n} e^{-\frac{1}{n}}$	1 1	1/2 ←	1/3 €	1/ ₄ ↔	1/ ₅ ₽	1/ ₆ ₽	1/7 €	•••

由上表,當 n≥5 時,不等式

$$\frac{5}{32} < \frac{1}{5}$$
 , $\frac{6}{64} < \frac{1}{6}$, $\frac{7}{128} < \frac{1}{7}$,…都成立,因此我們臆測:

「當 $n \ge 5$ 時,不等式 $\frac{n}{2^n} < \frac{1}{n}$ 恆成立。」

$$(2)$$
又 $\frac{n}{2^n}$ < $\frac{1}{n}$ ⇔ 2^n > n^2 ,用數學歸納法證明不等式:「若 n ≥5,則 2^n > n^2 。」

(i)n=5, $2^5 > 5^2$ 成立。

(ii)設 n=k (k 爲正整數, $k \ge 5$)時, $2^k > k^2$ 成立。

則 n=k+1 時, $2^{k+1}=2\cdot 2^k>2k^2$(A)

另一方面,2k²>(k+1)².....(B)

因為 $2k^2-(k+1)^2=k^2-2k-1=k(k-2)-1\ge 5(5-2)-1>0$

由(A)(B)可得 2^{k+1}>(k+1)²。

即由「 $2^k > k^2$ 」成立,可以推導出「 $2^{k+1} > (k+1)^2$ 」亦成立。

由數學歸納法原理可知

對於任意正整數 $n \ge 5$,不等式 $2^n > n^2$ (等價於 $\frac{n}{2^n} < \frac{1}{n}$)恆成立。

(3)當 *n*≥5 恆有
$$0 < \frac{n}{2^n} < \frac{1}{n}$$

因爲 $\lim_{n\to\infty}\frac{1}{n}=0$,根據夾擠原理,可以得知 $\lim_{n\to\infty}\frac{n}{2^n}=0$ 。

n 的二次式 an²+bn+c

例題十六中,根據二項式定理 2^n = $(1+1)^n$ = C_0^n + C_1^n + C_2^n +...+ C_n^n ,因此當 n 為大於 1 的

正整數時,
$$2^n \ge C_1^n + C_2^n = n + \frac{n(n-1)}{2} = \frac{n^2 + n}{2}$$
,因此

$$0 < \frac{n}{2^n} \le \frac{n}{C_1^n + C_2^n} = \frac{2n}{n^2 + n}, \text{ for } 0 < \frac{n}{2^n} < \frac{2n}{n^2 + n}$$

因爲 $\lim_{n\to\infty}\frac{2n}{n^2-n}=0$,利用夾擠原理可以得知 $\lim_{n\to\infty}\frac{n}{2^n}=0$ 。

仿照上述的作法,可以得到 $0 < \frac{n^k}{2^n} \le \frac{n^k}{C_1^n + C_{k+1}^n}$ (k 爲固定正整數),其中 $C_1^n + C_k^n$ 是 n

的(k+1)次多項式,
$$\lim_{n\to\infty}\frac{n^k}{C_1^n+C_{k+1}^n}=0$$
,利用夾擠原理可以得知 $\lim_{n\to\infty}\frac{n^k}{2^n}=0$ 。

一般而言,隨著 n 的增加,形如「 2^n 的指數增長」會比形如「 $a_k n^k + a_{k-1} n^{k-1} + \ldots + a_1 n + a_0$ 多項式增長」來得快。

[**例題**17] 設
$$a_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \frac{1}{\sqrt{n^2+3}} + \dots + \frac{1}{\sqrt{n^2+n}} (n \, \text{項和})$$

試用夾擠原理證明 < a_n > 收斂,並求它的極限。

分析:

我們必須找出兩個極限相同的數列 $< b_n >$ 及 $< c_n >$,使得

 $b_n \leq a_n \leq c_n$ $(n \geq n_0$,從某一項 n_0 起),再引用夾擠原理。

考慮 a_n 之各項分母中,以最小的 $\sqrt{n^2+1}$ 及最大的 $\sqrt{n^2+n}$ 分別當公分母,則

$$a_{n} < \frac{1}{\sqrt{n^{2}+1}} + \frac{1}{\sqrt{n^{2}+1}} + \frac{1}{\sqrt{n^{2}+1}} + \dots + \frac{1}{\sqrt{n^{2}+1}} = \frac{n}{\sqrt{n^{2}+1}},$$

$$a_{n} > \frac{1}{\sqrt{n^{2}+n}} + \frac{1}{\sqrt{n^{2}+n}} + \frac{1}{\sqrt{n^{2}+n}} + \dots + \frac{1}{\sqrt{n^{2}+n}} = \frac{n}{\sqrt{n^{2}+n}},$$

$$\Rightarrow \frac{n}{\sqrt{n^{2}+n}} < a_{n} < \frac{n}{\sqrt{n^{2}+1}} \circ$$

[解法]

因 $\lim_{n\to\infty} b_n = 1 = \lim_{n\to\infty} c_n$,且 $b_n \le a_n \le c_n$,由夾擠原理得 $\lim_{n\to\infty} a_n = 1$ 。

(練習19)已知對於每一個正整數 n,數列<R $_n>$ 滿足:

$$\frac{1}{3} - \frac{1}{2n} + \frac{1}{6n^2} \le R_n \le \frac{1}{3} + \frac{1}{2n} + \frac{1}{6n^2}$$
, $\lim_{n \to \infty} R_n = ?$ Ans: $\frac{1}{3}$

(練習20)在坐標平面上,令落在以原點爲圓心,正整數n爲半徑的圓內或圓上的格子點數爲 a_n ,數學家以證明了數列 $< a_n >$ 會滿足不等式:

$$\pi(n^2-3n) \le a_n \le \pi(n^2+3n)$$
,試利用此不等式求極限値: $\lim_{n\to\infty} \frac{a_n}{n^2}$ 。 Ans: π

- (練習21)已知對於每一個正整數 n,數列 $< a_n >$ 滿足 $4n+1 \le na_n \le 4n+7$, 試求數列 $< a_n >$ 的極限。 Ans: 4
- (練習22)請利用夾擊原理求出 $\lim_{n\to\infty} (\frac{1}{n^2+1} + \frac{1}{n^2+2} + ... + \frac{1}{n^2+n}) = ?$ Ans : 0 [提示: $\frac{1}{n^2+n} \le \frac{1}{n^2+k} \le \frac{1}{n^2+1}$]
- (練習23)請利用夾擊原理求出 $\lim_{n\to\infty}\frac{10^n}{n!}$ =? Ans: 0

[提示:
$$\frac{10^n}{n!} = \frac{10}{1} \cdot \frac{10}{2} \cdot \frac{10}{3} \cdot \cdot \cdot \frac{10}{10} \cdot \frac{10}{11} \cdot \cdot \cdot \frac{10}{n} \le (\frac{10}{1} \cdot \frac{10}{2} \cdot \frac{10}{3} \cdot \cdot \cdot \frac{10}{10})(\frac{10}{11})^{n-10}$$
]

(練習24)證明 lim ⁿ√n =1。

(提示: 令
$$x_n = \sqrt[n]{n} - 1 > 0$$
 ⇒根據二項式定理 $n = (x_n + 1)^n \ge C^n_2 \cdot x_n^2$)

(練習25)(1)例題 17 中,下列求法是否正確?爲什麼?

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \frac{1}{\sqrt{n^2 + 3}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 1}} + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2}} + \dots + \lim_{n \to \infty} \frac{1}{\sqrt{n^2 + n}}$$

$$= 0$$

(2)利用夾擊原理求出
$$\lim_{n\to\infty} (\frac{1}{n^2+1} + \frac{1}{n^2+2} + ... + \frac{1}{n^2+n}) = ?$$
 Ans: (2)0

綜合練習

(1) 判斷下列的數列是否有極限,若有極限,請求出它的極限值:

(a)
$$a_n = 1 + \frac{100}{n^2}$$
 (b) $a_n = \frac{1}{2}[1 + (-1)^n]$ (c) $a_n = \frac{5n^2 + n - 7}{3n^2 - n + 5}$ (d) $a_n = (\frac{-4}{7})^n$ (e) $a_n = (\frac{11}{10})^n$

(2) 試求下列各題的極限:

(a)
$$\lim_{n\to\infty} \left(\frac{2n}{n+1} - \frac{n+1}{2n}\right)$$
 (b) $\lim_{n\to\infty} \frac{2\cdot 3^{n-1}}{3^{n+1}}$ (c) $\lim_{n\to\infty} \left(\frac{n^2-1}{n+1} - \frac{n^2+2}{n+2}\right)$ (d) $\lim_{n\to\infty} \frac{2^{n-1}-3^n}{2^n+3^{n-1}}$

(3) 下列那些選項是正確的?

$$(A)10^{10}+2-2+2-2+\ldots=10^{10}$$

(B)
$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + (\frac{-1}{3})^{n-1} + \dots = \frac{1}{1 - (\frac{-1}{3})}$$

$$(C)1+0.9+0.09+0.009+....<2$$

(D)3-6+12-24+.....+3(-2)ⁿ⁻¹+...=
$$\frac{3}{1-(-2)}$$

(E)
$$10+10^2+10^3+...+10^{1000}+\frac{1}{10}+\frac{1}{10^2}+...+(\frac{1}{10})^n+....$$
收斂

(4)下列關於無窮數列的敘述,何者爲真?

(A)
$$\lim_{n\to\infty} a_n = \alpha \Leftrightarrow \lim_{n\to\infty} (a_n)^2 = \alpha^2$$
 (B) $\lim_{n\to\infty} a_n = 0 \Leftrightarrow \lim_{n\to\infty} (a_n)^2 = 0$ (C) $\{a_n\} \cdot \{b_n\}$ 皆收斂 $\Leftrightarrow \{a_n + b_n\}$ 收斂 (D) $\{a_n\} \cdot \{b_n\}$ 皆收斂 $\Leftrightarrow \{a_n \cdot b_n\}$ 收斂

(5) 設一袋中有 3 個黑球、2 個白球,小安從袋中取球,取後放回,設第 n 次取球 小安才取得黑球的機率為 p_n ,試回答下列問題:

(a)試求
$$p_n$$
。(以 n 表示) (b)試求 $\lim p_n$ 等於多少?

(c) 試求小安沒有取得黑球的機率

(6) 已知
$$\lim_{n\to\infty} (\frac{5n-1}{3n+2} - a_n) = 7$$
,且 $< a_n>$ 是收斂數列,試求 $\lim_{n\to\infty} a_n = ?$

(7) 設n 爲正整數,坐標平面上有一等腰三角形ABC,它的三個頂點分別是A(0,1)、

$$B(\frac{1}{n},0) \cdot C(-\frac{1}{n},0)$$
,回答下列問題:

(a)試求
$$\sin\frac{A}{2} \cdot \cos\frac{A}{2} \cdot \sin A$$

- (b)用 n 來表示此三角形的外接圓**直徑**長 D_n ,
- (c)試求 $\lim_{n\to\infty} D_n$ 等於多少?
- (8) 考慮雙曲線 $y^2 x^2 = 1$ 圖形的上半部(如圖),取此雙 曲線上x坐標爲n的點與漸近線y = x的距離,記爲 d_n ,其中n 爲正整數。則 $\lim_{n \to \infty} (n \cdot d_n) = \underline{\hspace{1cm}}$ 。

(以四捨五入取到小數兩位)(2005 指定甲)

- (9) 當 n 爲正整數時,令 $x=a_n$ 、 $y=b_n$ 、 $z=c_n$ 爲三元一次聯立方程組 $\begin{cases} x+y+z=0 \\ x+2y+3z=0 \end{cases}$ 之唯一解,則 $\lim_{n\to\infty} a_n=?$ (2010 指定甲) -2nx+ny+3z=8n
- (10) 有一數列 $< a_n>$ 定義如下: $a_1=2$, $a_2=3$,當 $n \ge 3$ 時, a_n 爲 $a_{n-1}\cdot a_{n-2}$ 除以 5 的餘數, 試判斷數列 $<\frac{a_n}{10^n}>$ 的極限是否存在,若存在求其極限值。
- (11) 若 $2.\overline{9}$ 表示無窮級數 $2+\frac{9}{10}+\frac{9}{10^2}+\dots$ 之和,則下列敘述那些是正確的? (A) $2.\overline{9} < 3$ (B) $2.\overline{9} = 3$ (C) $2.\overline{9} \le 3$ (D) $2.\overline{9}$ 的整數部分是 2 (E) $2.\overline{9}$ 的整數部分是 3。
- (12) 求下列無窮級數之和:

$$(a)\frac{4}{5} + (\frac{4}{5})^2 + (\frac{4}{5})^3 + \dots (b) \sum_{k=1}^{\infty} \frac{3}{7^{k+1}} (c)\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \dots$$

(13) 求下列無窮級數的和:

(a)
$$1 - \frac{1}{3} + \frac{1}{2} + \frac{1}{9} + \frac{1}{4} - \frac{1}{27} + \dots = ?$$
 (b) $\sum_{n=1}^{\infty} \frac{2^{n-2} + 4 + (-1)^{n+1}}{5^{n-1}} = ?$

- $(c)0.7+0.077+0.00777+0.0007777+\ldots+0.00...077...7+\ldots$
- $(d)0.22+0.0202+0.002002+0.00020002+\dots$
- (14) 某一無窮等比數列之和爲28,其各項之平方和爲112,求此級數的首項與公比。
- (15) 設無窮等比級數 $1+\frac{1}{3}+(\frac{1}{3})^2+...$ 的和爲 S,其前 n 項之和爲 S_n , (a)試求 S=? (b)前 n 項的和 $S_n=$? (c)若 $|S-S_n|<\frac{1}{1000}$,則 n 至少爲多少?
- (16) 設 $C_1 \cdot C_2 \cdot C_3$...爲一群圓,其作法如下: C_1 是半徑爲 a 的圓,在圓 C_1 的內部 作四個相等的圓 C_2 (如圖),每個圓 C_2 和圓 C_1 都內切,且相鄰的兩個圓 C_2 外切; 再由任一個圓 C_2 中用同樣的作法得到四個圓 C_3 ,依此類推可作出 $C_4 \cdot C_5 \cdot \ldots \cdot$ (a)求圓 C_2 的半徑長(用 a 表示) (b)假設每一個 C_k 之面積爲 a_k (其中

k=1,2,3,,n,),求面積和 $\sum_{k=1}^{\infty} a_k = ? (用 a 表示)$

- (17) 甲乙兩人輪流丟一個公正骰子,約定擲出6點者獲勝,經由抽籤決定由甲先投 擲骰子, 試求甲獲勝的機率。
- (18) 設一下三角形 ABC 的邊長為 2, 連接各邊中點 A_1,B_1,C_1 形成 $\Delta A_1B_1C_1$, 再連接 其三邊中點形成 $\Delta A_2B_2C_2$,依此規則繼續下去,試求這些三角形的面積總和。
- (19) 有一條長度爲 1 的繩子,切取 $\frac{2}{3}$ 爲周長做一正三角形,令其面積爲 S_1 ,從剩下 $\frac{1}{3}$ 中再切取 $\frac{2}{3}$ 爲周長做第二個正三角形,令其面積爲 \mathbf{S}_2 ,依此規則下取得到的 正三角形的面積為 $S_3 \, \cdot \, S_4 \, \cdot \ldots \, \cdot$ 試問這些三角形面積的總和=?
- (20) 設 a,b 均爲實數,若 $\frac{a}{2^{1}} + \frac{b}{2^{2}} + \frac{a}{2^{3}} + \frac{b}{2^{4}} + \dots + \frac{a}{2^{2n-1}} + \frac{b}{2^{2n}} + \dots = 3$,則 2a+b=____。 (87 學科)
- (21) (a)試求 $1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+n}$ 的和。 (b)試求無窮級數 $1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+\ldots+n}+.....$ 之和。
- (22) 在坐標平面上, $L:\sqrt{3}x-y=0$,由 $A_1(2,0)$ 作 L 的垂線,其垂足爲 B_1 ,再由 B_1 向x軸作垂線,其垂足爲 A_2 ,再由 A_2 作L之垂線,其垂足爲 B_2 ,以此類推, 可得 $A_3 \cdot B_3 \cdot A_4 \cdot B_4 \cdot \dots$,則 $\overline{A_1B_1} + \overline{A_2B_2} + \overline{A_3B_3} + \dots$ 之和。
- (23) (a)證明: $k \le \sqrt{k(k+1)} \le k+1$ 。 (b)證明: $\frac{n(n+1)}{2} \le \sum_{i=1}^{n} \sqrt{k(k+1)} \le \frac{n(n+3)}{2}$ 。 (c) $\lim_{n\to\infty} \left(\frac{1}{n^2} \cdot \sum_{k=1}^n \sqrt{k(k+1)}\right) = ?$
- (24) 設 n 爲正整數,對於三次方程式 $nx^3+nx-1=0$ 而言, (a)證明此方程式恰有一實根。

 - (b)證明此實根介於 0 與一之間。
 - (c)對於正整數 n 而言,可令三次方程式 $nx^3+nx-1=0$ 的實根 x_n 形成了一個 數列 $< x_n >$,試求 $\lim x_n \circ$

進階問題

(25) 設矩陣
$$A = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{-1}{3} \end{bmatrix}$$
,且數列 $< a_n >$ 與 $< b_n >$ 滿足 $A \begin{bmatrix} a_n \\ b_n \end{bmatrix} = \begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix}$, $n = 1, 2, \ldots$,且

 a_1 =3, b_1 =-1。試求下列各小題:

(a)
$$A^n = ?$$
 (b) $\lim_{n \to \infty} (a_n + b_n) = ?$ (c) $\sum_{n=1}^{\infty} (a_n + b_n) = ?$

(26) 求下列的極限:

(a)
$$\lim_{n \to \infty} \frac{5^n - 4^{n+1}}{3^{n+1} - 5^{n+1}} = ?$$
 (b) $\lim_{n \to \infty} \sqrt{n} (\sqrt{n+1} - \sqrt{n-1}) = ?$ (c) $\lim_{n \to \infty} \frac{\sqrt{3n^2 - 2}}{\sqrt[3]{n^3 - 2n} + \sqrt{n-4}} = ?$ (d) $\lim_{n \to \infty} \frac{1 + 2 + 3 + \dots + n}{1 + 3 + 5 + \dots + (2n-1)} = ?$ (e) $\lim_{n \to \infty} (n \sqrt{\frac{n-3}{n+1}} - n) = ?$ (f) $\lim_{n \to \infty} (\frac{n^2 + 3n}{n+1} - \frac{n^3}{n^2 + 1}) = ?$

(27) 求下列數列的極限:

(a)
$$\lim_{n \to \infty} (\sqrt[8]{n^4 + 1} - \sqrt[4]{n^2 + 1}) = ?$$
 (b) $\lim_{n \to \infty} n^3 (\sqrt{n^2 + \sqrt{n^4 + 1}} - \sqrt{2}n) = ?$ (c) $\lim_{n \to \infty} (\frac{4^n + 3^n}{8^n + 3^n})^{\frac{1}{n}} = ?$

(28) 求下列各數列的極限:

(a)
$$\lim_{n \to \infty} \sqrt[n]{4^n + 3^n + 2^n + 1^n} = ?$$
 (b) $\lim_{n \to \infty} \frac{7^n}{n!} = ?$ (c) $\lim_{n \to \infty} \frac{n^3}{3^n} = ?$ (d) $\lim_{n \to \infty} \frac{1}{n} [\frac{2}{3}n] = ?$

(29) (a)若
$$\frac{1}{(2n-1)(2n+1)(2n+3)} = A[\frac{1}{(2n-1)(2n+1)} - \frac{1}{(2n+1)(2n+3)}]$$
,請問 A=? (b)試求 $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)(2k+3)} = ?$ (c)試求 $\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)(2k+3)} = ?$

(30) 設
$$a_n = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \cdots (1 - \frac{1}{n^2})$$
,試求 $\lim_{n \to \infty} a_n = ?$

(31) 一數列
$$\{a_n\}$$
滿足 $a_1+2a_2+3a_3+...+na_n=n(n+1)(n+2)$,試求 $\lim_{n\to\infty}\frac{2n}{a_n}=?$

(32) 試求下列無窮級數的和:

(a)
$$\sum_{n=1}^{\infty} \frac{1+2+...+2^n}{3^n} = ?$$
 (b) $\lim_{n\to\infty} \sum_{k=1}^n (\frac{1}{n} - \frac{k^2}{3n^3})$ (c) $\sum_{n=1}^{\infty} \frac{1}{(n+1)^2 - 1}$ (d) $\sum_{k=1}^{\infty} \frac{k}{5^k} = ?$

- (33) 設 a_n 爲 15^n 之正因數總和,則 $\lim_{n\to\infty}\frac{a_n}{15^n}=?$
- (34) 設 $\{a_n\}$ 爲一數列,如果 c 爲某一實數且對於任意正整數而言, $a_n \ge c$ 都成立,則稱 c 爲數列 $\{a_n\}$ 的下界。已知數列 $\{a_n\}$ 滿足 $a_1 = p > \sqrt{k}$ 且 $a_{n+1} = \frac{1}{2}(a_n + \frac{k}{a_n})$,其中 n 爲任意正整數,且 k 爲正定數。

(a)試證明:數列 $\{a_n\}$ 有下界。

(b)試證明: $a_{n+1} \le a_n$,n 為任意正整數。

(c)試求 $\lim_{n\to\infty} a_n = ?$

(35) (a)試證
$$\sqrt[n]{n}$$
 < 1 + $\sqrt{\frac{2}{n}}$ ° (2b)求 $\lim_{n\to\infty} n^{1/n} = ?$

(36) 設數列
$$a_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ... + \frac{1}{\sqrt{n}}$$

(a)證明:
$$2(\sqrt{n+1} - 1) < a_n < 2\sqrt{n}$$
 (b)求 $\lim_{n \to \infty} \frac{a_n}{\sqrt{n}} = ?$

綜合練習解答

(1) (a)1 (b)發散 (c)
$$\frac{5}{3}$$
 (d)0 (e)發散

(2)
$$(a)\frac{3}{2}(b)\frac{2}{9}(c)1\left[\frac{n^2-1}{n+1} - \frac{n^2+2}{n+2} = \frac{n-4}{n+2}\right](d)-3$$

- (3) (B)(E)
- (4) (B)

(5)
$$(a)p_n = (\frac{2}{5})^{n-1}(\frac{3}{5})$$
 (b)0

(c) 0[提示:小安沒有取得黑球的機率= $1-\sum_{n=1}^{\infty}p_n$]

(6)
$$\frac{26}{7}$$

(7) (a)
$$\sin \frac{A}{2} = \frac{1}{\sqrt{n^2 + 1}} \cdot \cos \frac{A}{2} = \frac{n}{\sqrt{n^2 + 1}} \cdot \sin A = \frac{2n}{n^2 + 1}$$
 (b) $D_n = \frac{n^2}{n^2 + 1}$ (c) 1

- (8) 0.35
- (9) -2

[解法]:

由 x+y+z=0 與 x+2y+3z=0,可以解得 x=t、y=-2t、z=t

再代入
$$-2nx+ny+3z=8n$$
,可得 $-2nt+n(-2t)+3t=8n\Rightarrow t=\frac{8n}{3-4n}$

所以
$$a_n = \frac{8n}{3-4n}$$
,故 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (\frac{8n}{3-4n}) = -2$ 。

(10) 0 根據數列的規則,可以得知 $< a_n > : 2,3,1,3,3,4,2,3,1,3,3,4....$ (週期性數列)

根據數列的規則,可以得知 $< a_n > : 2,3,1,3,3,4,2,3,1,3,3,4,\dots$ (週期性數列) $a_n \le 5$, $\frac{a_n}{10^n} \le \frac{5}{10^n} \Rightarrow \lim_{n \to \infty} a_n = 0$

- (11) (B)(C)(E)
- (12) (a)4 (b) $\frac{1}{4}$ (c) $\frac{2}{5}$
- (13) $(a)^{\frac{7}{4}}(b)^{\frac{20}{3}}(c)^{\frac{700}{891}}$ [提示:原式= $\frac{7}{9}$ (0.9+0.099+0.00999+...)](d) $\frac{24}{99}$ [提示:每一項拆成兩個分數之和,例如:0.0202= $\frac{2}{100}$ + $\frac{2}{10000}$]
- (14) $7, \frac{3}{4}$ [提示:將一個無窮等比級數的各項平方,依然是一個無窮等比級數,且公比為原來公比的平方]

(15) (a)
$$\frac{3}{2}$$
 (b) $\frac{3}{2}[1-(\frac{1}{3})^n]$ (c)7

(16) (a) $(\sqrt{2}-1)a$ (b) $(\frac{\sqrt{2}+1}{2})\pi a^2$

[解法]:

設圓 C_k 之半徑爲 r_k

(a)如右圖所示,可得
$$a-r_2=\overline{C_1C_2}=\sqrt{2}$$
 r_2 $\therefore r_2=\frac{a}{\sqrt{2}+1}$

(b)同理
$$r_2 - r_3 = \sqrt{2}$$
 $r_3 \Rightarrow r_3 = \frac{r_2}{\sqrt{2} + 1}$ 依此規律可得 $r_n = \frac{r_{n-1}}{\sqrt{2} + 1}$

$$\Rightarrow \frac{r_3}{r_2} = \frac{r_4}{r_3} = \dots = \frac{r_n}{r_{n-1}} = \frac{1}{\sqrt{2}+1} \Rightarrow \langle r_n \rangle$$
形成一個等比數列

且公比爲
$$\frac{1}{\sqrt{2}+1} = \sqrt{2} - 1 \Rightarrow \frac{a_2}{a_1} = \frac{a_3}{a_2} = \dots = \frac{a_n}{a_{n-1}} = (\sqrt{2} - 1)^2$$

$$\therefore \sum_{k=1}^{\infty} a_k = \frac{a^2 \pi}{1 - (\sqrt{2} - 1)^2} = \frac{\sqrt{2} + 1}{2} \pi a^2$$

(17)
$$\frac{6}{11}$$

(18)
$$\frac{4\sqrt{3}}{3}$$

(19)
$$\frac{\sqrt{3}}{72}$$

(19)
$$\frac{\sqrt{3}}{72}$$

(20) 9
(21) (a) $2(1-\frac{1}{n+1})$ (b)2

(22)
$$\frac{-65}{24}$$

(23)
$$(c)^{\frac{1}{2}}$$

(24) (a)
$$f'(x)=3nx^2+n\geq 0$$
 恆成立,因此 $f(x)$ 為遞增函數,故 $f(x)$ 的圖形只與 x 軸交一點。

$$(b)f(0)f(\frac{1}{n})<0 \qquad (c)0< x_n<\frac{1}{n} \implies \lim_{n\to\infty} x_n=0$$

(25) (a)
$$\begin{bmatrix} (\frac{1}{2})^n & 0 \\ 0 & (\frac{-1}{3})^n \end{bmatrix}$$
 (b) 0 (c) $\frac{21}{4}$

(26) (a)
$$\frac{-1}{5}$$
 (b) 1(c) $\sqrt{3}$ (d) $\frac{1}{2}$ (e)-2(f)2

(27) (a)0 (b)
$$\frac{1}{4\sqrt{2}}$$
 (c) $\frac{1}{2}$ [提示: (a) $\sqrt[8]{n^4+1} - \sqrt[4]{n^2+1} = \frac{\sqrt[4]{n^4+1} - \sqrt{n^2+1}}{\sqrt[8]{n^4+1} + \sqrt[4]{n^2+1}}$

(b)
$$n^{3}(\sqrt{n^{2} + \sqrt{n^{4} + 1}} - \sqrt{2}n) = n^{3} \frac{\sqrt{n^{4} + 1} - n^{2}}{\sqrt{n^{2} + \sqrt{n^{4} + 1}} + \sqrt{2}n}$$

$$= n^{3} \cdot \frac{(\sqrt{n^{4} + 1} - n^{2})(\sqrt{n^{4} + 1} + n^{2})}{(\sqrt{n^{2} + \sqrt{n^{4} + 1}} + \sqrt{2}n)(\sqrt{n^{4} + 1} + n^{2})} (c) (\frac{4^{n}}{8^{n}})^{\frac{1}{n}} \le (\frac{4^{n} + 3^{n}}{8^{n} + 3^{n}})^{\frac{1}{n}} \le (\frac{2 \cdot 4^{n}}{8^{n}})^{\frac{1}{n}}$$

(28) (a)4 (b)0 (c)0 (d)
$$\frac{2}{3}$$

[提示:(a) $\sqrt[n]{4^n} \le \sqrt[n]{4^n + 3^n + 2^n + 1^n} \le 4.4^n$ (b)仿照練習 8 的做法]

$$(c)3^{n} = (2+1)^{n} = 2^{n} + C^{n}_{1}2^{n-1} + C^{n}_{2}2^{n-2} + C^{n}_{3}2^{n-3} + \dots \Rightarrow \frac{n^{3}}{3^{n}} \le \frac{n^{3}}{C^{n}_{3}}$$

$$(d) \\ \underset{\sim}{\mathbb{R}} \left[\frac{2}{3}n\right] = k \cdot k \leq \frac{2}{3}n < k+1 \Rightarrow \frac{3k}{2} \leq n < \frac{3}{2}(k+1) \Rightarrow \frac{2k}{3(k+1)} < \frac{k}{n} < \frac{2}{3} \circ \right]$$

(29) (a)
$$\frac{1}{4}$$
 (b) $\frac{1}{4} \left[\frac{1}{1 \cdot 3} - \frac{1}{(2n+1)(2n+3)} \right]$ (c) $\frac{1}{12}$

(30)
$$\frac{1}{2}$$

[提示:
$$a_n = \frac{(2-1)(2+1)}{2\cdot 2} \cdot \frac{(3-1)(3+1)}{3\cdot 3} \cdot \dots \cdot \frac{(n-1-1)(n-1+1)}{(n-1)(n-1)} \cdot \frac{(n-1)(n+1)}{n \cdot n} = \frac{n+1}{2n}$$
]

(31)
$$\frac{2}{3}$$
 [提示: $na_n = n(n+1)(n+2) - (n-1)n(n+1) = 3n(n+1) \Rightarrow a_n = 3(n+1)$]

(32) (a)
$$\frac{7}{2}$$
 [提示: $\sum_{n=1}^{\infty} \frac{1+2+...+2^n}{3^n} = \sum_{n=1}^{\infty} \frac{2^{n+1}-1}{3^n} = \frac{7}{2}$]

(b)
$$\frac{8}{9}$$
 [提示: $\sum_{k=1}^{n} (\frac{1}{n} - \frac{k^2}{3n^3}) = 1 - \frac{1}{3n^3} \sum_{k=1}^{n} k^2 = 1 - \frac{1}{3n^3} \cdot \frac{n(n+1)(2n+1)}{6}$]

(c)
$$\frac{3}{4}$$
 [提示: 先求 $S_n = \sum_{k=1}^n \frac{1}{(k+1)^2 - 1} = \sum_{k=1}^n \frac{1}{k(k+2)} = \frac{1}{2} (1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2})$](d) $\frac{5}{16}$

[提示:求 S_n=
$$\sum_{k=1}^{n} \frac{k}{5^k} = \frac{5}{16} [1 - (\frac{1}{5})^n] - \frac{4}{5} (\frac{n}{5^{n+1}})]$$

(33)
$$\frac{15}{8}$$

(34) (c)
$$\sqrt{k}$$

(1) 1° 當
$$n=1$$
時, $a_1=p>\sqrt{k}$ 成立
2° 設 $n=m$ 時成立,即 $a_m>\sqrt{k}$
則 $a_{m+1}=\frac{1}{2}(a_m+\frac{k}{a})\geq \sqrt{a_m\cdot\frac{k}{a}}=\sqrt{k}$ 亦成立故知數列 $\langle a_n\rangle$ 有下界

(2)
$$a_n - a_{n+1} = a_n - \frac{1}{2}(a_n + \frac{k}{a_n}) = \frac{a_n^2 - k}{2a_n} > 0$$
 (由(1))
 $\Rightarrow a_{n+1} \le a_n$ 即數列 $\langle a_n \rangle$ 爲遞減數列

(3) 因數列 $\langle a_n \rangle$ 爲有下界且遞減的數列,由實數完備性知數列 $\langle a_n \rangle$ 會收斂 $\lim_{n \to \infty} a_n = \alpha > 0 \quad \Rightarrow \alpha = \frac{1}{2}(\alpha + \frac{k}{\alpha}) \Rightarrow \alpha = \sqrt{k}$ 所以 $\lim_{n \to \infty} a_n = \sqrt{k}$

(35) (a) [提示:
$$(1+\sqrt{\frac{2}{n}})^n=1+C^n{}_1\sqrt{\frac{2}{n}}+C^n{}_2(\sqrt{\frac{2}{n}})^2+...>1+C^n{}_2(\sqrt{\frac{2}{n}})^2=n$$
] (b)1(利用夾擠原理)

(36) (a)略 (b)2

[提示:因爲
$$\frac{1}{\sqrt{k}} = \frac{2}{\sqrt{k+\sqrt{k}}}$$
所以 $\frac{2}{\sqrt{k+\sqrt{k+1}}} < \frac{2}{\sqrt{k+\sqrt{k}}} < \frac{2}{\sqrt{k-1}+\sqrt{k}}$]

補充教材

實數完備性:

若數列 $\{a_n\}$ 中有 $a_n \le a_{n+1}$ 的性質,則稱數列 $\{a_n\}$ 爲一個遞增數列。若數列 $\{a_n\}$ 中有 $a_n \ge a_{n+1}$ 的性質,則稱數列 $\{a_n\}$ 爲一個遞減數列。若數列 $\{a_n\}$ 中的每一項 $a_n \le M$,則稱 M 爲數列 $\{a_n\}$ 的上界。若數列 $\{a_n\}$ 中的每一項 $a_n \ge m$,則稱 m 爲數列 $\{a_n\}$ 的下界。

實數完備性:遞增(減)有上(下)界的數列必收斂。

- (a)π的定義,以圓面積的求法爲例:
- (*)圓面積= $\lim_{n\to\infty}$ (圓內接正 n 邊形面積)= $\lim_{n\to\infty}$ (圓外切正 n 邊形面積)
- (**)圓周長= $\lim_{n\to\infty}$ (圓內接正n邊形周長)= $\lim_{n\to\infty}$ (圓外切正n邊形周長)

利用(*)⇒

- (a)計算π的近似值
- (b)證明圓面積= πr^2 , r 爲圓之半徑。
- (c)證明半徑為r的圓,周長為 $2\pi r$ 。

[說明]

設 A_n 爲圓內接正 n 邊形的面積,顯然 $A_n \le A_{n+1}$,且 $A_n \le B$ 面積

 $\Rightarrow \lim_{n \to \infty} A_n$ 存在且 $\lim_{n \to \infty} A_n$ =圓面積

另外 $A_n = \frac{1}{2} \times (\text{中心到邊的距離 } l_n) \times$ 周長,且圓內接正 n 邊形的周長與 l_n 比爲定値(只要

indering in the first <math>indering in the first in the first in the first <math>indering in the first in the fi

透過極限的過程 \Rightarrow 圓面積 $=\frac{1}{2}$ ×半徑×圓周長,且圓的周長與直徑比爲定値(定義爲 π)。 \Rightarrow 圓面積 $=\pi r^2$,圓周長 $=2\pi r$ 。

歷史上阿基米得、劉徽分別使用外切圓、內接圓的方法處理圓周長、圓面積的問題,進一步求 π 的近似値。(阿基米得以 $\frac{22}{7}$ 爲 π 的近似値,而劉徽以 3.1416 爲 π 的近似値) (b)e 的定義,以複利的計算爲例:(補充)

設年利率爲 r, $\frac{1}{n}$ 年爲一期,一年有 n 期,本金爲 A,複利計算則一年後的本利和爲 $A(1+\frac{r}{n})^n$,當期數 n 增加時,本利和 $A(1+\frac{r}{n})^n$ 會不會無限大的增加,或是會接近一個值

當然問題的關鍵在於 $\lim_{n\to\infty} (1+\frac{1}{n})^n$ 是否存在呢?

設 $a_n=(1+\frac{1}{n})^n$,我們可以證明 $\{a_n\}$ 遞增有上界!

[**遞增**]: 因爲
$$\frac{n+1}{n} + \frac{n+1}{n} + \dots + \frac{n+1}{n} + 1$$
 $\geq n+1$ $\frac{n+1}{n} \cdot \frac{n+1}{n} \cdot \frac{n+1}{n} \cdot 1$ 所以 $a_{n+1} \geq a_n$ \circ

[有上界]:

呢?

$$a_n = (1 + \frac{1}{n})^n$$

$$= C_0^n \cdot 1^n + C_1^n 1^{n-1} \cdot (\frac{1}{n}) + \dots + C_k^n 1^{n-k} (\frac{1}{n})^k + \dots + C_n^n (\frac{1}{n})^n$$

考慮
$$C_k^n(\frac{1}{n})^k = \frac{n!}{k!(n-k)!}(\frac{1}{n})^k = \frac{n(n-1)(n-2)...(n-k+1)}{k!}(\frac{1}{n})^k = \frac{1}{k!}$$

$$\cdot 1 \cdot (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdot \dots \cdot (1 - \frac{k-1}{n}) \le \frac{1}{k!}$$

⇒
$$a_n \le 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \le 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 1 + 2(1 - \frac{1}{2^n}) < 3$$
 (因爲 $n! \ge 2^{n-1}$)

根據實數的完備性,可證明 $\lim_{n\to\infty} (1+\frac{1}{n})^n$ 存在,定義 $e=\lim_{n\to\infty} (1+\frac{1}{n})^n$ 。

e 的近似值為 2.71828....。

因爲
$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$
,所以可以推得 $\lim_{x \to \infty} (1 + \frac{1}{x})^x = e$ 。

[**例題**1] 設 $a_n=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!}$

- (1)試證明:數列 $\{a_n\}$ 是遞增數列。
- (2)試證明:數列 $\{a_n\}$ 有上界。
- (3)請說明 $\lim_{n\to\infty}a_n$ 存在。

[**例題2**] 一數列 $\{a_n\}$,已知 a_1 =4, a_{n+1} = $\frac{1}{2}(a_n+\frac{9}{a_n})$, $\forall n \in \mathbb{N}$, (1)證明: $a_n \ge 3$ 。(2)證明: $\{a_n\}$ 爲遞減數列。 (3)求 $\lim_{n \to \infty} a_n$ =? Ans:(3)3

(練習1)

 $\exists a_1=1$, $a_{n+1}=\sqrt{1+a_n}$

- (1)請證明 $\{a_n\}$ 爲遞增數列。
- (2)試證明: $1 \le a_n \le \frac{1+\sqrt{5}}{2}$ 。
- (3)請說明數列 $\{a_n\}$ 極限存在,求極限值。 $\mathsf{Ans}:(3)\frac{1+\sqrt{5}}{2}$

(練習2) 已知
$$a_1 = \sqrt{2}, a_n = \sqrt{2a_{n-1}}$$
 , $n = 2,3,4,...$,則 $\lim_{n \to \infty} a_n = ?$ Ans : 2