SOIL EMISSIONS OF NO, N₂O AND CO₂ UNDER DIFFERENT CROPS AND PASTURE IN THE CERRADO REGION

Alessandra R. Kozovits, Êrika B. Fernandes, Katia S. Sivek, Mercedes M. C. Bustamante, Richard Zepp

Soil trace gases emissions

NO N_2O CO_2

- O₃ precursor and green-house effect
- Soil microbial production
- N oxides_ products of nitrification and denitrification
- Soil source may be similar in magnitude to fossil fuel emissions
- CO₂ microbial and root respiration

Factors that can influence emissions:

Soil N and C availability, moisture, texture and temperature

Agricultural management practices may alter these variables

Cerrado biome area (208 Million ha)

Original distribution of Cerrado vegetation

Pasture (100 million ha) Crop areas (11 million ha)

Remaining	fragments	(2002)
rcmaning	riagriichts	(2002)

Crop	Area (ha)	Prod (10 ³ t)	Brazilian Prod (%)	Export (2004)
Soybean	6,960,722	57,028	48.6	1 st
Corn	1,983,291	39,040	20.1	3 rd
Bean	187,980	2,838	10.7	
Cotton	476,472	2,233	73.9	8 th

LBA 2nd Phase (2003-2005)

- * Native Cerrado
- * Crop areas: corn, bean, cotton (fertilized with N) Soybean (non-N fertilized)

No-tillage since 1999

LBA 1st Phase (1999-2002)

- *Native Cerrado s.s. and Campo sujo (burned every 2 years, and unburned)
- *Pastures (*Brachiaria brizantha*):
- 1.Degraded (9 year-old)
- 2. Young (2 year-old)
- 3.Fertilized (60 kg N ha⁻¹)
- 4. Associated with legumes (Stylosanthes)

LBA 2nd Phase (2003-2005)

- * Native Cerrado
- * Crop areas: corn, bean, cotton (fertilized with N) Soybean (non-N fertilized)

No-tillage since 1999

LBA 1st Phase (1999-2002)

*Native Cerrado s.s. and Campo sujo (burned every 2 years, and unburned)

*Pastures (Brachiaria brizantha):

- 1.Degraded (9 year-old)
- 2. Young (2 year-old)
- 3.Fertilized (60 kg N ha⁻¹)
- 4. Associated with legumes (Stylosanthes)

Measurement schedule

Pastures: Monthy – rainy season in 2001

Crops: Following farmer management

Just before and after sowing, fertilization events and harvest

Along the growing season independently of fertilization

Cerrado: Monthly

Fluxes:

NO, N₂O, CO₂

Soil moisture

Soil temperature

Air temperature

Contribution of the main kinds of land uses to the regional trace gas emissions

NO emissions

F = fertilization

N-Fertilization (kg ha⁻¹)

Corn – 76.6, 215.0 Irrigated bean – 46.0, 180.0

First approach for regional extrapolation...

Mean response to the fertilization * 5 days

Mean response to watering after a long dry period * 3 days (native Cerrado)

Monthly means of fluxes * number of days without any fertilization or watering

Days of crop period

Mean daily fluxes for all studied areas

NO fluxes (g N ha⁻¹ d ⁻¹) rainy season, growth period

N₂O emissions from Cerrado soils are almost always under the detection limit.

Cerrado (2001)

Pasture (2001) Cerrado + crop (2003-2005)

CO₂ fluxes (kg C ha⁻¹ d⁻¹)

Estimation of soil NO emissions from crop areas in Central-Brazil (2003/2004)

Crop	NO emission (kg N ha ⁻¹)	Crop period (days)	Planted area (ha)	NO emissions in Cerrado (Mg N year ⁻¹)
Corn	0.30	173	1,983,291	595.0
Bean	0.32	135	187,980	60.2
Soybean	0.20	134	6,960,722	1,392.1
Cotton	0.81	258	476,472	385.9

Estimations...

- Based on monthly mean values of fluxes, only considering a five- or three-day effect of fertilization or watering.
- Daily, seasonal, annual variation on N-availability, soil temperature and humidity, compaction?
- Annual land cover change?

Soil N - availability

NO emission depends on multiple factors at the same time:

Soil N Moisture Temperature

CO₂ x soil moisture

CO₂ x soil temperature

Summary

- The replacement of native Cerrado vegetation by pastures and crop fields alters soil trace-gas emissions.
- Pastures soils tended to produce less NO but more CO₂ in comparison to native Cerrado and crops. Fire might lead to higher fluxes.
- The highest NO fluxes were found in the crop areas fertilized with N (corn, bean, cotton) in comparison to native Cerrado and pasture areas.
- Soybean lowest NO and CO₂ fluxes (per ha) are compensated by the large planted area - higher regional NO emissions.
- There is a need for more complex models: combined effects of soil water content, temperature, N availability

Monthly NO and CO₂ fluxes from native Cerrado soils

Soil respiration

1st Phase

Native Cerrado and Campo Sujo – Reserva Ecológica do IBGE – Jan – Apr 2001

Pastures: Fazenda Rio de Janeiro - 9-year old pastures and one 2-year old

- Traditional
- Fertilized
- Grass-legume consorption
- Young

2nd Phase

Fazendas Dom Bosco, Plamplona and DoisJ1(2003-2005)

Native Cerrado

Conversion from native cerrado to crops and pasture in 1974

- Soybean: since 1977
- Bean: since 1999

no-tillage (1999)

- Corn: since 2000
- Cotton: since 2000
- Corn, bean and cotton fertilized with inorganic N
- Soybean no N fertilization (efficient biological N-fixation)