AD8107

### 3W超小封装单声道音频功率放大器

Ver1 (

### 产品概述

AD8107是一款AB类,单声道带关断模式,桥式音频功率放大器。在输入1KHz,5V工作电压时,最大驱动功率为: 3W(3Ω负载, THD<10%), 2W(3Ω负载, THD<1%); 音频范围内总谐波失真噪音小于1%(20Hz-20KHz); AD8107应用电路简单,只需要极少数外围器件,就能提供高品质的输出功率。AD8107输出不需要外接耦合电容或上举电容、缓冲网络、反馈电阻。

AD8107采用DFN8L\_2\*2封装,特别适用于低功耗、小体积的便携穿戴式系统。AD8107可以通过控制进入休眠模式,从而减少功耗: AD8107内部有过热自动关断保护机制。AD8107工作稳定,且单位增益稳定。通过配置外围电阻,可以调整放大器的电压增益,方便应用。

## 产品特点

- 输出功率高(3Ω负载,1KHz频率) THD+N<10%(3W),THD+N<1%(2W)
- 掉电模式漏电流小: 1µA(典型)
- 外部增益可调
- 单位增益稳定
- 宽工作电压范围: 2.0V~5.5V
- 不需要耦合电容或上举电容、缓冲网络
- 芯片第3脚无功能
- 采用DFN8L 2\*2封装

# 产品用途

- 个人电脑
- 智能穿戴产品
- 玩具及游戏机
- 便携式消费类电子产品

## 订购信息

| 产品型号   | 封装        | 丝印        | 包装     |
|--------|-----------|-----------|--------|
| AD8107 | DFN8L_2*2 | 8107 XXXX | 5000/盘 |

## 内部原理框图



图1 AD8107内部原理框图



3W超小封装单声道音频功率放大器

Ver1.0

# 引脚定义图



## 引脚描述

| 引脚号 | 符号           | 引脚描述                       |
|-----|--------------|----------------------------|
| 1   | SD(shutdown) | 关断控制端(高电平芯片停止工作,低电平芯片正常工作) |
| 2   | BYP(Bypass)  | 偏置电压输出端                    |
| 3   | INP          | NC                         |
| 4   | INN          | 模拟输入反相端                    |
| 5   | VO1          | 模拟输出端1                     |
| 6   | VDD          | 电源正                        |
| 7   | GND          | 电源地                        |
| 8   | VO2          | 模拟输出端2                     |

# 典型应用电路



图3 AD8107典型应用电路

### 注: 以上应用图中元件说明

- $R_i$ : 与 $R_i$ 一起设置闭环增益的输入电阻,同时还与 $C_i$ 形成了高通滤波器,且 $f_C$ =1/(2  $\pi$   $R_iC_i$ )。
- $C_i$ : 输入耦合电容,主要用于隔离运放输入端的直流电压,同时还与输入电阻 $R_i$ 构成高通滤波器, $f_c$ =1/(2  $\pi$   $R_iC_i$ )。
- R<sub>f</sub>: 与R<sub>i</sub>共同设置闭环增益的反馈电阻。
- $C_s$ : 提供电源滤波器的电源旁路电容,参照"应用信息"部分设置和选取恰当的旁路电容。
- $C_B:\ V_{DD}$  /2 参考电压Bypass引脚的滤波电容,参照"应用信息"部分设置和选取恰当的旁路电容

2022年5月

2/6





AD8107

# 3W超小封装单声道音频功率放大器

Ver1 (

## 绝对最大额定值

| 参数       | 符号              | 最大额定值     | 单位   |  |
|----------|-----------------|-----------|------|--|
| 电源电压     | V <sub>DD</sub> | 6         | V    |  |
| 输入电压     | Vin             | -0.3∼VDD  | V    |  |
| 人体模型静电电压 | HBM ESD         | 2000      | V    |  |
| 机器模型静电电压 | MM ESD          | 250       | V    |  |
| 储存温度     | Ts              | -60~150   | °C   |  |
| 节点温度     | TJ              | 150       | °C   |  |
| 焊接温度     | T∟              | 260(10秒内) | °C   |  |
| 热阻θιc    | θJc(SOP)        | 35        | °C/W |  |
| 热阻θJA    | θJA(SOP)        | 140       | °C/W |  |

注:各项参数若超出"绝对最大值"的范围,将有可能对芯片造成永久性损伤。以上给出的仅是极限范围,在这样的极限条件下工作,芯片的技术指标将得不到保证。长期工作在"绝对最大值"附近,会影响芯片的可靠性。

## 推荐工作条件

| 参数   | 符号              | 数值            | 单位 |
|------|-----------------|---------------|----|
| 工作电压 | V <sub>DD</sub> | 2.0~5.5       | V  |
| 工作温度 | Topr            | <b>-40∼85</b> | °C |

# 电气特性(VDD=5V,TA=25℃)

| 参数       | 符号              | 测试条件                                               | 最小值 | 典型值 | 最大值 | 单位 |
|----------|-----------------|----------------------------------------------------|-----|-----|-----|----|
| 工作电压     | V <sub>DD</sub> | -                                                  | 2.0 | 5   | 5.5 | V  |
| 静态电流     | lod             | Vdd=5V,无负载                                         | -   | 10  | -   | mA |
| 关断电流     | loff            | -                                                  | -   | 0.1 | -   | μA |
| 输出失调电压   | Vos             | V <sub>IN</sub> =0V                                | -   | 10  | -   | mV |
| 电源抑制比    | PSRR            | V <sub>ripple</sub> =200mV <sub>PP</sub> ,f=217KHz | -   | 85  | -   | dB |
|          |                 | V <sub>ripple</sub> =200mV <sub>PP</sub> ,f=1KHz   | -   | 90  | -   | dB |
| 输出功率     | Po              | THD+N=10%,f=1KHz,R∟=3Ω                             | -   | 3   | -   | W  |
|          |                 | THD+N=1%,f=1KHz,Rι=3Ω                              | -   | 2   | -   | W  |
| 总谐波失真+噪声 | THD+N           | Po=1W,RL=8Ω,20Hz≤f≤20KHz                           | -   | 0.1 | -   | %  |

地址:深圳市福田区滨河大道联合广场A座1308

电话:0755-82568882/82568883 网址:http://www.idchip.cn





AD8107

3W超小封装单声道音频功率放大器

Ver1.0

## 应用信息

#### 1. 桥式输出结构说明

由电路原理图可知,AD8107芯片内部有两对放大器组成,且其结构有稍微的差异。前级输入运放的增益可在芯片外部进行设置,而后级输出运放在芯片内部已经设置了反向的单位增益。芯片输入运放的闭环增益由R<sub>f</sub>和R<sub>i</sub>进行设置,而输出运放的增益则由芯片内部的两个20KΩ的电阻所固定。图1所示前级运放的输出作为下级运放的输入,导致两级运放的输出信号大小保持一致,仅相位相差180°。因此,芯片的增益应为:

### Avd=2\*(Rf/Ri)

当在输出端Vo<sub>1</sub>和Vo<sub>2</sub>之间接上不同的负载时,运放就建立了"桥式模式"。桥式模式工作方式与通常应用时负载一端接的单端模式不同。桥式运放在设计上也与单端模式有所差异,例如在对负载提供驱动能力上,其输出幅度是输入电压的两倍。从而,在相同条件下与单端模式相比可提供四倍的输出功率。这就在不限制电流和发音清晰的情况下提高了输出功率。

应用与耳机音频功放中的桥式结构,同样优于单端运放。因为不同的输出信号 $V_{O1}$ 和 $V_{O2}$ 的中心电平为 $V_{DD}/2$ ,不存在与地之间的直流电压。还省掉了在单端单电源(单端输出)模式结构中需要的输出耦合电容。如果在单端输出运放中不加入输出耦合电容,其 $V_{DD}/2$ 电压就直接通过负载到将导致芯片内部功耗增大,同时还会损喇叭。较大输出耦合电容(如470 $\mu$ F)与负载( $8\Omega$ )构成了一个高通滤波器来防止低频响应。这种结构不会对小于20Hz以下的信号产生响应,但是要在PCB板的尺寸和系统成本,低频响应之间进行折中考虑。

#### 2. 功率损耗

功率损耗是在设计一个成功的运放(不管是桥式还是单端)时所主要关心的。桥式运放提升功率的一个直接的结果就是芯片内部功耗的增加。式(1)中示出了一个桥式运放在给定的电源电压下驱动一个指定的输出负载时的最大功耗。

PDMAX=
$$4*(VDD)^2/(2\pi^2RL)$$
 (1)

因为AD8107在同一个芯片封装中有两个运放工作,其内部最大功耗是单个运放的4倍。即使随着功耗的增加 AD8107也不需要散热片。由式(1),假设使用5V电源和8Ω负载,其最大功耗为625mW。从式(1)计算所得的最大功耗不能高于式(2)所得的功耗。

PDMAX= 
$$(T_{JMAX}-T_{A})/\theta_{JA}$$
 (2)

对于AD8107的表面级封装,θJA=140°C/W,TJMAX=150°C。依赖于系统工作的环境温度TA,式(2)可用于计算由芯片封装所能承受的内部最大功耗。如果式(1)的结果比式(2)大,此时就需要降低电源电压或者提高负载阻值。在5V电源和8Ω负载的典型应用下,没有其它因素影响最大结温,器件工作于最大功耗时最大的环境温度可接近62.5°C由于功耗是输出功率的函数,因此如果典型工作时不工作在最大功率附近,故环境温度还可以适当提高。



# 深圳市英锐芯电子科技有限公司

AD8107

3W超小封装单声道音频功率放大器

Ver1 0

#### 3. 电源旁路

对于任何功放,恰当的电源旁路选择是低噪声性能和过高电源过滤至关重要的。Bypass和电源管脚电容的位置应尽量接近芯片。大的电源旁路电容的增加可以提升低频时的THD+N,这也应归咎于电容的增加提高了电源的稳定性。典型应用10μF和0.1μF的旁路电容于5V电源,来提高电源的稳定性,但不仅仅局限于AD8107的电源旁路。旁路电容尤其是C的选择,依赖于低频 THD+N,系统成本和尺寸的折中考虑。

### 4. 关断功能

为了在不使用芯片时降低功耗,AD8107带有 SHUTDOWN 引脚来关断运放的偏置电路。当逻辑高电平加于 SHUTDOWN 引脚上时,SHUTDOWN 就启动使运放关断,输出与扬声器立即断开。当电源电压作用于 SHUTDOWN引脚上时,典型的关断静态电流为1μA。在多数应用中,外部输入信号一般通过一个微处理器的管脚控制,它可以提供一个快速平滑的转换。另外一个方法是通过单极点、单向开关和一个上拉电阻实现,当开关闭合后,信号SHUTDOWN接地,芯片可以正常工作;当开关打开后,信号SHUTDOWN通过47KΩ的上拉电阻接到电源,将会使芯片关断。在 AD8107内部没有上拉电阻,故SHUTDOWN引脚电压由外部设置,或者将内部逻辑门悬空,以防导致运放不能正常工作。AD8107的SHUTDOWN引脚不要悬空,以免受到外部信号干扰导致功放开启或者关断,不需要使用可接地。



3W超小封装单声道音频功率放大器

# 封装尺寸(DFN8L\_2\*2)







| Symbol | Dimensions In Millimeters |       | Dimensions In Inches |       |  |
|--------|---------------------------|-------|----------------------|-------|--|
|        | Min                       | Max   | Min                  | Max   |  |
| Α      | 0.500                     | 0.600 | 0.020                | 0.024 |  |
| A1     | 0.000                     | 0.050 | 0.000                | 0.002 |  |
| A2     | 0.152(REF)                |       | 0.006(REF)           |       |  |
| b      | 0.225                     | 0.275 | 0.009                | 0.011 |  |
| D      | 1.950                     | 2.050 | 0.077                | 0.081 |  |
| D1     | 1.550                     | 1.650 | 0.061                | 0.065 |  |
| E      | 1.950                     | 2.050 | 0.077                | 0.081 |  |
| E1     | 0.800                     | 0.900 | 0.031                | 0.035 |  |
| е      | 0.500(BSC)                |       | 0.020(BSC)           |       |  |
| L      | 0.300                     | 0.400 | 0.012                | 0.016 |  |

声明: 在使用本产品之前建议仔细阅读本资料;

本资料中的信息如有变化, 恕不另行通知;

本资料仅供参考,本公司不承担任何由此而引起的任何损失;

本公司也不承担任何在使用过程中引起的侵犯第三方专利或其它权利的责任。