

Chapt. II S. fl.
JU-24

Sue & Reury Augt 1856
 15th at Front Fau
 Hall. In the 2.V.G.S.

ADDRESS

BY

ANDREW CROMBIE RAMSAY, Esq.,

LL.D., F.R.S., V.P.G.S., Director General of the Geological Survey of
the United Kingdom, and of the Museum of Practical Geology,

PRESIDENT.

ON THE RECURRENCE OF CERTAIN PHENOMENA IN GEOLOGICAL TIME.

In this address I propose to consider the recurrence of the same kind of incidents throughout all geological time, as exhibited in the various formations and groups of formations that now form the known parts of the external crust of the earth. This kind of investigation has for many years forced itself on my attention, and the method I adopt has not heretofore been attempted in all its branches. In older times, Hutton and Playfair, in a broad and general manner, clearly pointed the way to the doctrine of uniformity of action and results, throughout all known geological epochs down to the present day; but after a time, like the prophets of old, they obtained but slight attention, and were almost forgotten, and the wilder cosmical theories of Werner more generally ruled the opinions of the geologists of the time. Later still, Lyell followed in the steps of Playfair, with all the advantages that the discoveries of William Smith afforded, and aided by the labours of that band of distinguished geologists, Sedgwick, Buckland, Mantell, De la Beche, Murchison, and others, all of whom some of us knew. Notwithstanding this new light, even now there still lingers the relics of the belief (which some of these geologists also maintained), that the physical phenomena which produced the older strata were not only different in kind, but also in degree from those which now rule the external world. Oceans, the waters of which attained a high temperature, attended the formation of the *primitive* crystalline rocks. Volcanic eruptions, with which those of modern times are comparatively insignificant, the sudden upheaval of great mountain chains, the far more rapid decomposition and degradation of rocks, and, as a consequence, the more rapid deposition of strata formed from their waste—all these were assumed as certainties, and still linger in some parts of the world among living geologists of deservedly high reputation. The chief object of this

address is, therefore, to attempt to show, that whatever may have been the state of the world long before geological history began, as now written in the rocks, all known formations are comparatively so recent in geological time, that there is no reason to believe that they were produced under physical circumstances differing either in kind or degree from those with which we are now more or less familiar.

It is unnecessary for my present purpose to enter into details connected with the recurrence of marine formations, since all geologists know that the greater part of the stratified rocks were deposited in the sea, as proved by the molluscs and other fossils which they contain, and the order of their deposition and the occasional stratigraphical breaks in succession are also familiar subjects. What I have partly to deal with now, are exceptions to true marine stratified formations, and after some other important questions have been considered, I shall proceed to discuss the origin of various non-marine deposits from nearly the earliest known time down to what by comparison may almost be termed the present day.

Metamorphism.

All, or nearly all, stratified formations have been in a sense metamorphosed, since, excepting certain limestones, the fact of loose incoherent sediments having been by pressure and other agencies turned into solid rocks constitutes a kind of metamorphism. This, however, is only a first step toward the kind of metamorphism the frequent recurrence of which in geological time I have now to insist upon, and which implies that consolidated strata have undergone subsequent changes of a kind much more remarkable.

Common stratified rocks chiefly consist of marls, shales, slates, sandstones, conglomerates, and limestones, generally distinct and definite; but not infrequently a stratum, or strata, may partake of the characters in varied proportions of two or more of the above-named species. It is from such strata that metamorphic rocks have been produced, exclusive of the metamorphism of igneous rocks, on which I will not enter. These may be looked for in every manual of geology, and usually they may be found in them.

As a general rule, metamorphic rocks are apt to be much contorted, not only on a large scale, but also that the individual layers of mica, quartz and felspar in gneiss are bent and folded in a great number of minute convolutions, so small that they may be counted by the hundred in a foot or two of rock. Such metamorphic rocks are often associated with masses of granite both in bosses and in interstratified beds or layers, and where the metamorphism becomes extreme it is often impossible to draw a boundary line between the gneiss and the granite; while, on the other hand, it is often impossible to draw any true boundary between gneiss (or other metamorphic rocks) and the ordinary strata that have

undergone metamorphism. Under these circumstances, it is not surprising that when chemically analysed, there is often little difference in the constituents of the unmetamorphosed and the metamorphosed rock. This is a point of some importance in relation to the origin and non-primitive character of gneiss and other varieties of foliated strata, and also of some quartzites and crystalline limestones.

I am aware that in North America formations consisting of metamorphic rocks have been stated to exist of older date than the Laurentian gneiss, and under any circumstances it is obvious that vast tracts of pre-Laurentian land must have existed in all regions, by the degradation of which, sediments were derived wherewith to provide materials for the deposition of the originally unaltered Laurentian strata. In England, Wales, and Scotland attempts have also been made to prove the presence of more ancient formations, but I do not consider the data provided sufficient to warrant any such conclusion. In the Highlands of Scotland, and in some of the Western Isles, there are gneissic rocks of pre-Cambrian age, which, since they were first described by Sir Roderick Murchison in the North-west Highlands, have been, I think justly, considered to belong to the Laurentian series, unconformably underlying Cambrian and Lower Silurian rocks, and as yet there are no sufficient grounds for dissenting from his conclusion that they form the oldest known rocks in the British Islands.

It is unnecessary here to discuss the theory of the causes that produced the metamorphism of stratified rocks, and it may be sufficient to say, that under the influence of deep underground heat, aided by moisture, sandstones have been converted into quartzites, limestones have become crystalline, and in shaly, slaty, and schistose rocks, under like circumstances, there is little or no development of new material, but rather, in the main, a re-arrangement of constituents according to their chemical affinities in rarely crystalline layers, which have very often been more or less developed in pre-existing planes of bedding. The materials of the whole are approximately the same as those of the unaltered rock, but have been re-arranged in layers, for example, of quartz, felspar, and mica, or of hornblende, &c., while other minerals, such as schorl and garnets, are of not infrequent occurrence.

It has for years been an established fact that nearly the whole of the mountain masses of the Highlands of Scotland (exclusive of the Laurentian, Cambrian, and Old Red Sandstone formations), mostly consist of gneissic rocks of many varieties, and of quartzites and a few bands of crystalline limestone, which, from the north shore to the edge of the Old Red Sandstone, are repeated again and again in stratigraphical convolutions great and small. Many large bosses, veins, and dykes of granite are associated with these rocks, and, as already stated, it sometimes happens that it is hard to draw a geological line between granite and gneiss and *vice versa*. These rocks, once called Primary or Primitive, were first proved by Sir Roderick Murchison to be of Lower Silurian age, thus revolu-

tionising the geology of nearly one-half of Scotland. To the same age belongs by far the greater part of the broad hilly region of the south of Scotland that lies between St. Abb's Head on the east and the coast of Ayrshire and Wigtonshire on the west. In the south-west part of this district, several great masses of granite rise amid the Lower Silurian rocks, which in their neighbourhood pass into mica-schist and even into fine-grained gneiss.

In Cornwall the occurrence of Silurian rocks is now well known. They are of metamorphic character, and partly associated with granite; and at Start Point, in South Devonshire, the Silurian strata have been metamorphosed into quartzites.

In parts of the Cambrian areas, Silurian rocks in contact with granite have been changed into crystalline hornblendic gneiss, and in Anglesey there are large tracts of presumed Cambrian strata, great part of which have been metamorphosed into chlorite and mica-schist and gneiss, and the same is partly the case with the Lower Silurian rocks of the centre of the island, where it is almost impossible to disentangle them from the associated granite.

In Ireland similar metamorphic rocks are common, and, on the authority of Prof. Hull, who knows them well, the following statements are founded:—‘Metamorphism in Ireland has been geographical and not stratigraphical, and seems to have ceased before the Upper Silurian period.

‘The epoch of greatest metamorphism appears to have been that which intervened between the close of the Lower Silurian period and the commencement of the Upper Silurian, taking the formations in ascending order.

‘It is as yet undecided whether Laurentian rocks occur in Ireland. There are rocks in north-west Mayo very like those in Sutherlandshire, but if they are of Laurentian age they come directly under the metamorphosed Lower Silurian rocks, and it may be very difficult to separate them.

‘Cambrian purple and green grits are not metamorphosed in the counties of Wicklow and Dublin, but the same beds at the southern extremity of County Wexford, near Carnsore Point, have been metamorphosed into mica-schist and gneiss.

‘In the east of Ireland the Lower Silurian grits and slates have not been metamorphosed, except where in proximity to granite, into which they insensibly pass in the counties of Wicklow, Dublin, Westmeath, Cavan, Longford, and Down; but in the west and north-west of Ireland they have been metamorphosed into several varieties of schists, horn-blende-rock, and gneiss, or foliated granite.’

It would be easy to multiply cases of the metamorphism of Silurian rocks on the continent of Europe, as, for example, in Scandinavia, and in the Ural Mountains, where, according to Murchison, ‘by following its masses upon their strike, we are assured that the same zone which in one

tract has a mechanical aspect and is fossiliferous, graduates in another parallel of latitude into a metamorphic crystalline condition, whereby not only the organic remains, but even the original impress of sedimentary origin are to a great degree obliterated.' The same kind of phenomena are common in Canada and the United States; and Medlicott and Blanford, in 'The Geology of India,' have described the thorough metamorphism of Lower Silurian strata into gneiss and syenitic and hornblende schists.

In Britain, none of the Upper Silurian rocks have undergone any serious change beyond that of ordinary consolidation, but in the Eastern Alps at Gratz, Sir Roderick Murchison has described both Upper Silurian and Devonian strata interstratified with separate courses of metamorphic chloritic schist.

Enough has now been said to prove the frequent occurrence of metamorphic action among Cambrian and Lower and Upper Silurian strata.

If we now turn to the Devonian and Old Red Sandstone strata of England and Scotland, we find that metamorphic action has also been at work, but in a much smaller degree. In Cornwall and Devon, five great bosses of granite stand out amid the stratified Silurian, Devonian, and Carboniferous formations. Adjoining or near these bosses the late Sir Henry De la Beche remarks, that 'in numerous localities we find the coarser slates converted into rocks resembling mica-slate and gneiss, a fact particularly well exhibited in the neighbourhood of Meavy, on the south-east of Tavistock,' and 'near Camelford we observed a fine arenaceous and micaceous grauwacke turned into a rock resembling mica-slate near the granite.' Other cases are given by the same author, of slaty strata turned into mica-schist and gneiss in rocks now generally considered to be of Devonian age.

The Devonian rocks and Old Red Sandstone are of the same geological age, though they were deposited under different conditions, the first being of marine, and the latter of fresh-water, origin. The Old Red Sandstone of Wales, England, and Scotland has not, as far as I know, suffered any metamorphism, excepting in one case in the north-east of Ayrshire, near the sources of the Avon Water, where a large boss of granite rises through the sandstone, which all round has been rendered crystalline with well-developed crystals of felspar.

On the continent of Europe, a broad area of Devonian strata lies on both banks of the Rhine and the Moselle. Forty years ago, Sedgwick and Murchison described the crystalline quartzites, chlorite, and micaceous slates of the Hunsrück and the Taunus, and from personal observation I know that the rocks in the country on either side of the Moselle are, in places, of a foliated or semi-foliated metamorphic character. In the Alps also, as already noticed, metamorphic Devonian strata occur interstratified with beds of metamorphic schists, and, Sir Roderick adds, 'we have ample data to affirm, that large portions of the Eastern Alps . . . are

occupied by rocks of true palaeozoic age, which in many parts have passed into a crystalline state.'

I know of no case in Britain where the Carboniferous strata have been thoroughly metamorphosed, excepting that in South Wales, beds of coal, in the west of Caermarthenshire and in South Pembrokeshire, gradually pass from so-called bituminous coal into anthracite. The same is the case in the United States, in both instances the Carboniferous strata being exceedingly disturbed and contorted. In the Alps, however, Sir Roderick Murchison seems to have believed that Carboniferous rocks may have been metamorphosed : a circumstance since undoubtedly proved by the occurrence of a coal-measure calamite, well preserved, but otherwise partaking of the thoroughly crystalline character of the gneiss in which it is imbedded, and which was shown to me by the late Prof. Gastaldi, at Turin.

I am well acquainted with all the Permian strata of the British Islands and of various parts of continental Europe, and nowhere, that I have seen, have they suffered from metamorphic action, and strata of this age are, I believe, as yet unknown in the Alps. This closes the list of metamorphism of palaeozoic strata.

I will not attempt (they are so numerous) to mention all the regions of the world in which Mesozoic or Secondary formations have undergone metamorphic action. In Britain and the non-mountainous parts of France, they are generally quite unaltered, but in the Alps it is different. There, as everyone knows who is familiar with that region, the crystalline rocks in the middle of the chain have the same general strike as the various flanking stratified formations. As expressed by Murchison, 'as we follow the chain from N.E. to S.W. we pass from the clearest types of sedimentary rocks, and, at length, in the Savoy Alps, are immersed in the highly altered mountains of Secondary limestone,' while 'the metamorphism of the rocks is greatest as we approach the centre of the chain,' and, indeed, any one familiar with the Alps of Switzerland and Savoy knows that a process of metamorphism has been undergone by all the Jurassic rocks (Lias and Oolites) of the great mountain chain. Whether or not any strata of Neocomian and Cretaceous age have been well metamorphosed in this region I am unable to say ; but it seems to be certain that the Eocene or Lower Tertiary Alpine formation, known as the Flysch, contains beds of black schists which pass into Lydian stone, and also that in the Grisons it has been converted into gneiss and mica-schist, a fact mentioned by Studer and Murchison. I also have seen in the country north of the Oldenhorn, nummulitic rocks so far foliated that they formed an imperfect gneiss.

In Tierra del Fuego, as described by Darwin, clay slates of early cretaceous date pass into gneiss and mica-slate with garnets, and in Chonos Islands, and all along the great Cordillera of the Andes of Chili, rocks of Cretaceous or Cretaceo-oolitic age have been metamorphosed into foliated mica-slate and gneiss, accompanied by the presence of granite, syenite, and greenstone.

This ends my list, for I have never seen, or heard, of metamorphic rocks of later date than those that belong to the Eocene series. Enough, however, has been said to prove, that from the Laurentian epoch onward, the phenomenon of extreme metamorphism of strata has been of frequent recurrence all through Palaeozoic and Mesozoic times, and extends even to a part of the Eocene series equivalent to the soft unaltered strata of the formations of the London and Paris basins, which excepting for their fossil contents, and sometimes highly inclined positions, look as if they had only been recently deposited.

Volcanoes.

The oldest volcanic products of which I have personal knowledge are of Lower Silurian age. These in Wales consist of two distinct series, the oldest of which, chiefly formed of felspathic lavas and volcanic ashes, lie in and near the base of the Llandeilo beds, and the second, after a long interval of repose, were ejected and intermingled with the strata forming the middle part of the Bala beds. The Lower Silurian rocks of Montgomeryshire, Shropshire, Radnorshire, Pembrokeshire, Cumberland and Westmoreland are to a great extent also the result of volcanic eruptions, and the same kind of volcanic rocks occur in the Lower Silurian strata of Ireland. I know of no true volcanic rocks in the Upper Silurian series.

In the old Red Sandstone of Scotland lavas and volcanic ashes are of frequent occurrence, interstratified with the ordinary lacustrine sedimentary strata. Volcanic rocks are also intercalated among the Devonian strata of Devonshire. I know of none in America or on the Continent of Europe.

In Scotland volcanic products are common throughout nearly the whole of the Carboniferous sub-formations, and they are found also associated with Permian strata.

I now come to the Mesozoic or Secondary epochs. Of Jurassic age (Lias and Oolites), it is stated by Lyell with some doubt, that true volcanic products occur in the Morea and also in the Apennines, and it seems probable, as stated by Medlicott and Blanford, that the Rajmahal traps may also be of Jurassic age.

In the Cordillera of South America, Darwin has described a great series of volcanic rocks intercalated among the Cretaceo-oolitic strata that forms so much of the chain ; and the same author in his 'Geological Observations in South America,' states that the Cordillera has been, probably with some quiescent periods, a source of volcanic matter from an epoch anterior to our Cretaceo-oolitic formation to the present day. In the Deccan volcanic traps rest on Cretaceous beds, and are overlaid by Nummulitic strata, and according to Medlicott and Blanford, these were poured out in the interval between Middle Cretaceous and Lower Eocene times.

In Europe the only instance I know of a volcano of Eocene age is

that of Monte Bolca near Verona, where the volcanic products are associated with the fissile limestone of that area.

The well-preserved relics of Miocene volcanoes are prevalent over many parts of Europe, such as Auvergne and The Velay, where the volcanic action began in Lower Miocene times, and was continued into the Pliocene epoch. The volcanoes of the Eifel are also of the same general age, together with the ancient Miocene volcanoes of Hungary.

The volcanic rocks of the Azores, Canaries, and Madeira are of Miocene age, while in Tuscany there are extinct volcanoes that began in late Miocene, and lasted into times contemporaneous with the English Coralline Crag. In the north of Spain also, at Olot in Catalonia, there are perfect craters and cones remaining of volcanoes that began to act in newer Pliocene times and continued in action to a later geological date. To these I must add the great *coulées* of Miocene lava, so well known in the Inner Hebrides, on the mainland near Oban, &c., in Antrim in the north of Ireland, in the Faroe Islands, Greenland, and Franz-Joseph Land. It is needless, and would be tiresome, further to multiply instances, for enough has been said to show that in nearly all geological ages volcanoes have played an important part, now in one region, now in another, from very early Palaeozoic times down to the present day; and, as far as my knowledge extends, at no period of geological history is there any sign of their having played a more important part than they do in the epoch in which we live.

On a larger scale by hand *Mountain Chains.*

The mountain-chains of the world are of different geological ages, some of them of great antiquity, and some of them comparatively modern.

It is well known that in North America the Lower Silurian rocks lie unconformably on the Laurentian strata, and also that the latter had undergone a thorough metamorphism and been thrown into great anticlinal and synclinal folds, accompanied by intense minor convolutions, before the deposition of the oldest Silurian formation, that of the Potsdam Sandstone. Disturbances of the nature alluded to imply beyond a doubt that the Laurentian rocks formed a high mountain chain of pre-Silurian date, which has since constantly been worn away and degraded by sub-aerial denudation.

In Shropshire, and in parts of North Wales, and in Cumberland and Westmoreland, the Lower Silurian rocks by upheaval formed hilly land before the beginning of the Upper Silurian epoch; and it is probable that the Lower Silurian gneiss of Scotland formed mountains at the same time, probably very much higher than now. However that may be, it is certain, that these mountains formed high land before and during the deposition of the old Red Sandstone, and the upheaval of the great Scandinavian chain (of which the Highlands may be said to form an out-

lying portion) also preceded the deposition of the Old Red Strata. In both of these mountain regions the rocks have since undergone considerable movements, which in the main seem to have been movements of elevation, accompanied undoubtedly by that constant atmospheric degradation to which all high land is especially subject.

The next great European chain in point of age is that of the Ural, which according to Murchison is of pre-Permian age, a fact proved by the Permian conglomerates which were formed from the waste of the older strata. On these they lie quite unconformably and nearly undisturbed on the western flank of the mountains.

In North America the great chain of the Alleghany Mountains underwent several disturbances, the last (a great one) having taken place after the deposition of the Carboniferous rocks, and before that of the New Red Sandstone. The vast mountainous region included under the name of the Rocky Mountains, after several successive disturbances of upheaval, did not attain its present development till after the Miocene or Middle Tertiary epoch.

In South America, notwithstanding many oscillations of level recorded by Darwin, the main great disturbance of the strata that form the chain of the Andes took place apparently *in post-cretaceous times*.

The Alps, the rudiments of which began in more ancient times, received their greatest disturbance and upheaval in post-Eocene days, and were again raised at least 5,000 feet (I believe much more) at the close of the Miocene epoch. The Apennines, the Pyrenees, the Carpathians, and the great mountain region on the east of the Adriatic and southward into Greece, are of the same general age, and this is also the case in regard to the Atlas in North Africa, and the Caucasus on the borders of Europe and Asia. In the north of India the history of the Great Himalayan range closely coincides with that of the Alps, for while the most powerful known disturbance and elevation of the range took place after the close of the Eocene epoch, a subsequent elevation occurred in post-Miocene times closely resembling and at least equal to that sustained by the Alps at the same period.

It would probably not be difficult by help of extra research to add other cases to this notice of recurrences of the upheaval and origin of special mountain chains, some of which I have spoken of from personal knowledge; but enough has been given to show the bearing of this question on the argument I have in view, namely, that of repetition of the same kind of events throughout all known geological time.

*But no older than the granite. No Mountain chain of
Salt and Salt Lakes. Only one*

I now come to the discussion of the circumstances that produced numerous recurrences of the development of beds of various salts (chiefly common rock-salt) in many formations, which it will be seen are to a great extent connected with continental or inland conditions. In com-

paratively rainless countries salts are often deposited on the surface of the ground by the effect of solar evaporation of moisture from the soil. Water dissolves certain salts in combination with the ingredients of the underlying rocks and soils, and brings it to the surface, and when solar evaporation ensues the salt or salts are deposited on the ground. This is well known to be the case in and near the region of the Great Salt Lake in North America, and in South America in some of the nearly rainless districts of the Cordillera, extensive surface-deposits of salts of various kinds are common. The surface of the ground around the Dead Sea is also in extra dry seasons covered with salt, the result of evaporation, and in the upper provinces of India (mentioned by Medlicott and Blanford) ‘many tracts of land in the Indo-Gangetic alluvial plain are rendered worthless for cultivation by an efflorescence of salt known in the North-West Provinces as *Reh*,’ while every geographer knows that in Central Asia, from the western shore of the Caspian Sea to the Kinsan Mountains of Mongolia, with rare exceptions nearly every lake is salt in an area at least 3,500 miles in length. This circumstance is due to the fact that all so-called fresh-water springs, and therefore all rivers, contain small quantities of salts in solution only appreciable to the chemist, and by the constant evaporation of pure water from the lakes, in the course of time, it necessarily happens that these salts get concentrated in the water by the effect of solar heat, and, if not already begun, precipitation of solid salts must ensue.

The earliest deposits of rock-salt that I know about have been described by Mr. A. B. Wynne of the Geological Survey of India, in his Memoir ‘On the Geology of the Salt Range in the Punjab.’¹ The beds of salt are of great thickness, and along with gypsum and dolomitic layers occur in marl of a red colour like our Keuper Marl. This colour I have for many years considered to be, in certain cases, apt to indicate deposition of sediments in inland lakes, salt or fresh, as the case may be, and with respect to these strata in the Punjab Salt Range, authors seem to be in doubt whether they were formed in inland lakes or in lagoons near the seaboard, which at intervals were liable to be flooded by the sea, and in which in the hot seasons salts were deposited by evaporation caused by solar heat. For my argument, it matters but little which of these was the true physical condition of the land of the time, though I incline to think the inland lake theory most probable. The age of the strata associated with this salt is not yet certainly ascertained. In ‘The Geology of India’ Medlicott and Blanford incline to consider them of Lower Silurian age, and Mr. Wynne, in his ‘Geology of the Salt Range,’ places the salt and gypsum beds doubtfully on the same geological horizon.

The next salt-bearing formation that I shall notice is the Salina or Onondaga Salt Group of North America, which forms part of the Upper Silurian rocks, and lies immediately above the Niagara Limestone. It is rich in gypsum and in salt-brine, often of a very concentrated character,

¹ Many earlier notices and descriptions of the Salt Range might be quoted, but Mr. Wynne’s is enough for my purpose.

'which can only be derived from original depositions of salt,' and it is also supposed by Dr. T. Sterry Hunt to contain solid rock-salt 115 feet in thickness at the depth of 2,085 feet, near Saginaw Bay in Michigan.

In the Lower Devonian strata of Russia near Lake Ilmen, Sir R. Murchison describes salt springs at Starai Russa. Sinkings 'made in the hope of penetrating to the source of these salt springs,' reached a depth of 600 feet without the discovery of rock salt, 'and we are left in doubt whether the real source of the salt is in the lowest beds of the Devonian rocks or even in the Silurian system.'

In the United States brine springs also occur in Ohio, Pennsylvania, and Virginia, in Devonian rocks.

In Michigan salts are found from the Carboniferous down to the Devonian series; and in other parts of the United States, Western Pennsylvania, Virginia, Ohio, Illinois, and Kentucky, from the lower Coal-measures salts are derived which must have been deposited in inland areas, since even in the depths of inland seas that communicate with the great ocean, such as the Mediterranean and the Red Sea, no great beds of salt can be deposited. Before such strata of salt can be formed, supersaturation must have taken place.

In the North of England at and near Middlesbrough two deep bore-holes were made some years ago in the hope of reaching the Coal-measures of the Durham coal-field. One of them at Salthome was sunk to a depth of 1,355 feet. First they passed through 74 feet of superficial clay and gravel, next through about 1,175 feet of red sandstones and marls, with beds of rock-salt and gypsum. The whole of these strata (excepting the clay and gravel) evidently belong to the Keuper marls and sandstones of the upper part of our New Red series. Beneath these they passed through 67 feet of dolomitic limestone, which in this neighbourhood forms the upper part of the Permian series, and beneath the limestone the strata consist of 27 feet of gypsum and rock-salt and marls, one of the beds of rock-salt having a thickness of 14 feet. This bed of Permian salt is of some importance, since I have been convinced for long that the British Permian strata were deposited, not in the sea, but in salt lakes comparable in some respects to the great salt lake of Utah, and in its restricted fauna to the far greater salt lake of the Caspian Sea. The gypsum, the dolomite or magnesian limestone, the red marls covered with rain-pittings, the sun-cracks, and the impressions of footprints of reptiles made in the soft sandy marls when the water was temporarily lowered by the solar evaporation of successive summers, all point to the fact that our Permian strata were not deposited in the sea, but in a salt lake or lakes once for a time connected with the sea. The same may be said of other Permian areas in the central parts of the Continent of Europe, such as Stassfurt and Anhalt, Halle and Altern in Thuringia, and Sperenberg, near Berlin, and also in India.¹

¹ See 'Physical Geology and Geography of Great Britain,' 5th edition, where the question is treated in more detail.

Neither do I think that the Permian strata of Russia, as described by Sir Roderick Murchison, were necessarily, as he implies, deposited in a wide ocean. According to his view all marine life universally declined to a minimum after the close of the Carboniferous period, that decline beginning with the Permian and ending with the Triassic epoch. Those who believe in the doctrine of evolution will find it hard to accept the idea which this implies, namely, that all the prolific forms of the Jurrasic series sprang from the scanty faunas of the Permian and Triassic epochs. On the contrary, it seems to me more rational to attribute the poverty of the faunas of these epochs to accidental abnormal conditions in certain areas, that for a time partially disappeared during the deposition of the continental Muschelkalk which is absent in the British Triassic series.

In the whole of the Russian Permian strata only fifty-three species were known at the time of the publication of ‘Russia and the Ural Mountains,’ and I have not heard that this scanty list has been subsequently increased. I am therefore inclined to believe that the red marls, grits, sandstones, conglomerates, and great masses of gypsum and rock-salt were all formed in a flat inland area which was occasionally liable to be invaded by the sea during intermittent intervals of minor depression, sometimes in one area, sometimes in another, and the fauna small in size and poor in numbers is one of the results, while the deposition of beds of salt and gypsum is another. If so, then in the area now called Russia, in sheets of inland Permian water, deposits were formed strictly analogous to those of Central Europe and of Britain, but on a larger scale.

Other deposits of salt deep beneath overlying younger strata are stated to occur at Bromberg in Prussia, and many more might be named as lying in the same formation in northern Germany.

If we now turn to the Triassic series it is known that it consists of only two chief members in Britain, the Bunter Sandstones and the Keuper or New Red Marls, the Muschelkalk of the Continent being absent in our islands. No salt is found in the Bunter sandstones of England, but it occurs in these strata at Schöningen in Brunswick and also near Hanover. In the lower part of the Keuper series deposits of rock-salt are common in England and Ireland. At Almersleben, near Calbe, rock-salt is found in the Muschelkalk, and also at Erfurt and Slottenheim in Thuringia and at Wilhelmsglück in Wurtemburg. In other Triassic areas it is known at Honigsen, in Hanover, in middle Keuper beds. In the red shales at Sperenberg and Lieth on the Lower Elbe, salt was found at the depth of 3,000 feet, and at Stassfurth the salt is said to be ‘several hundred yards thick.’

In Central Spain rock-salt is known, and at Tarragona, Taen, and also at Santander in the north of Spain, all in Triassic strata. Other localities may be named in the Upper Trias, such as the Salzkammergut, Aussee, Hallstatt, Ischl, Hallein in Salzburg, Halle in the Tyrol, and Berchesgaden in Bavaria.

In the Salt Range of mountains in Northern India saliferous strata are referred with some doubt by Medlicott and Blanford to the Triassic strata.

In the Jurassic series (Lias and Oolites) salt and gypsum are not uncommon. One well-known instance occurs at Berg in the valley of the Rhone in Switzerland, where salt is derived from the Lias. Salt and gypsum are also found in Jurassic rocks at Burgos in Spain. At Gap in France there is gypsum, and salt is found in the Austrian Alps in Oolitic limestone.

In the Cretaceous rocks salt occurs, according to Lartet, at Jebel Usdom by the Dead Sea, and other authorities state that it occurs in the Pyrenees and at Biskra in Africa, where 'mountains of salt' are mentioned as of Cretaceous age. The two last-named localities are possibly uncertain; but whether or not this is the case, it is not the less certain that salt has been deposited in Cretaceous rocks, and, judging by analogy, probably in inland areas of that epoch.

In the Eocene or Older Tertiary formations, rock-salt is found at Cardona in Spain, and at Kohat in the Punjab it occurs at the base of Nummulitic beds. It is also known at Mandi in India in strata supposed to be of Nummulitic Eocene age.

The record does not end here, for a zone of rock-salt lies in Sicily at the top of the Salina clays in Lower Miocene beds, and in Miocene strata gypsum is found at several places in Spain, while salt also occurs in beds that are doubtfully of Miocene age (but may be later) at Wielitzka in Poland, Kalusz in Galicia, Bukowina, and also in Transylvania.

In Pliocene or Later Tertiary formations, thick beds of gypsum are known in Zante, and strata of salt occur in Roumania and Galicia, while in Pliocene rocks, according to Dana, or in Post-Tertiary beds, according to others, a thick bed of pure salt was penetrated to a depth of 38 feet at Petit Anse in Louisiana. This ends my list, though I have no doubt that, by further research, many more localities might be given. Enough, however, has been done to show that rock-salt (and other salts) are of frequent *recurrence* throughout all geological time, and as in my opinion it is impossible that common salt can be deposited in the open ocean, it follows that this and other salts must have been precipitated from solutions, which, by the effect of solar evaporation became at length supersaturated, like those of the Dead Sea, the great salt lake of Utah, and in other places which it is superfluous to name.

Fresh-water. Lakes and Estuaries.

I now come to the subject of recurrences of fresh-water conditions both in lakes and estuaries. In the introduction to the 'Geology of India' by Messrs. Medlicott and Blanford, mention is made of the Blaini and Krol rocks as probably occupying 'hollows formed by denudation in the old gneissic rocks,' and the inference is drawn that 'if this be a correct view,

it is probable that the *cis*-Himalayan palæozoic rocks are in great part of fresh-water origin, and that the present crystalline axis of the Western Himalayas approximately coincides with the shore of the ancient palæozoic continent, of which the Indian peninsula formed a portion.¹ The Krol rocks are classed broadly with ‘Permian and Carboniferous’ deposits, but the Blaini beds are doubtfully considered to belong to Upper Silurian strata. If this point be by-and-by established, this is the earliest known occurrence of fresh-water strata in any of the more ancient palæozoic formations.

It is a fact worthy of notice that the colour of the strata formed in old lakes (whether fresh or salt) of palæozoic and mesozoic age is apt to be red: a circumstance due to the fact that each little grain of sand or mud is usually coated with a very thin pellicle of peroxide of iron. Whether or not the red and purple Cambrian rocks¹ may not be *partly* of fresh-water origin, is a question that I think no one but myself has raised.²

There is, however, in my opinion, no doubt with regard to the fresh-water origin of the Old Red Sandstone, as distinct from the contemporaneous marine deposits of the Devonian strata. This idea was first started by that distinguished geologist, Doctor Fleming, of Edinburgh, followed by Mr. Godwin-Austen, who, from the absence of marine shells and the nature of the fossil fishes in these strata, inferred that they were deposited, not in the sea, as had always been asserted, but in a great fresh-water lake or in a series of lakes. In this opinion I have for many years agreed, for the nearest analogies of the fish are, according to Huxley, the *Polypterus* of African rivers, the *Ceratodus* of Australia, and in less degree the *Lepidosteus* of North America. The truth of the supposition that the Old Red Sandstone was deposited in fresh water, is further borne out by the occurrence of a fresh-water shell, *Anodonta Jukesii*, and of ferns in the Upper Old Red Sandstone in Ireland; and the same shell is found at Dura Den in Scotland, while in Caithness, along with numerous fishes, there occurs the small bivalve crustacean *Estheria Murchisoniae*.

I think it more than probable that the red series of rocks that form the Catskill Mountains of North America, (and with which I am personally acquainted) were formed in the same manner as the Old Red Sandstones of Britain; for excepting in one or two minor interstratifications, they contain no reliques of marine life, while ‘the fossil fishes of the Catskill beds, according to Dr. Newberry, appear to represent closely those of the British Old Red Sandstone.’ (Dana.)

The Devonian rocks of Russia, according to the late Sir Roderick Murchison, consist of two distinct types, viz. Devonian strata identical in general character with those in Devonshire and in various parts of the

¹ By Cambrian, I mean only the *red and purple* rocks of Wales, England, Scotland, and Ireland, older than the Menesian beds, or any later division of the Silurian strata, that may chance to rest upon them.

² ‘On the Red Rocks of England of older date than the Trias.’ *Jour. Geol. Soc.* 1871, vol. 28.

continent of Europe. These are exclusively of a marine character, while the remainder corresponds to the Old Red Sandstone of Wales, England, and Scotland.

At Tchudora, about 105 miles S.E. of St. Petersburg, the lowest members of the series consist of flag-like compact limestones accumulated in a tranquil sea and containing fucoids and encrinites, together with shells of Devonian age, such as Spirifers, Terebratulae, Orthis, Leptaenias, Avicula, Modiola, Natica, Bellerophon, &c., while the upper division graduates into the Carboniferous series as it often does in Britain, and, like the Old Red Sandstone of Scotland, contains only fish-remains, and in both countries they are of the same species. ‘Proceeding from the Valdai Hills on the north,’ the geologist ‘quits a Devonian Zone with a true “Old Red” type dipping under the Carboniferous rocks of Moscow, and having passed through the latter, he finds himself suddenly in a yellow-coloured region, entirely dissimilar in structure to what he had seen in any of the northern governments, which, of a different type as regards fossils, is the true stratigraphical equivalent of the Old Red system.’ This seems to me, as regards the Russian strata, to mean, that just as the Devonian strata of Devonshire are the true equivalents of the Old Red Sandstone of Wales and Scotland, they were deposited under very different conditions, the first in the sea and the others in inland fresh-water lakes. At the time Sir Roderick Murchison’s work was completed, the almost universal opinion was that the Old Red Sandstone was a marine formation. In the year 1830, the Rev. Dr. Fleming, of Edinburgh, read a paper before the Wernerian Society in which he boldly stated that the ‘Old Red Sandstone is a fresh-water formation’ of older date than the Carboniferous Limestone. This statement, however, seems to have made no impression on geologists till it was revived by Godwin-Austen in a memoir ‘On the Extension of the Coal-measures,’ &c., in the Journal of the Geological Society, 1856. Even this made no converts to what was then considered a heretical opinion. I have long held Dr. Fleming’s view, and unfortunately published it in the third edition of ‘The Physical Geology and Geography of Great Britain,’ without at the time being aware that I had been forestalled by Dr. Fleming and Mr. Godwin-Austen.

To give anything like a detailed account of all the fresh-water formations deposited in estuaries and lakes from the close of the Old Red Sandstone times down to late Tertiary epochs, is only fitted for a manual of geology, and would too much expand this address; and I will therefore give little more than a catalogue of these deposits in ascending order.

In the Coal-measure parts of the Carboniferous series, a great proportion of the shales and sandstones are of fresh-water origin. This is proved all over the British Islands by the shells they contain, while here and there marine interstratifications occur, generally of no great thickness. There is no doubt among geologists that these Coal-measure strata were chiefly

deposited under estuarine conditions, and sometimes in lagoons or in lakes; while numerous beds of coal formed by the life and death of land plants, each underlaid by the soil on which the plants grew, evince the constant recurrence of terrestrial conditions. The same kind of phenomena are characteristic of the Coal-measures all through North America, and in every country on the continent of Europe, from France and Spain on the west, to Russia in the east, and the same is the case in China and in other areas.

In Scotland, according to Prof. Judd, fresh-water conditions occur more or less all through the Jurassic series, from the Lias to the Upper Oolites. In England, fresh-water strata, with thin beds of coal, are found in the Inferior Oolite of Yorkshire, and in the middle of England and elsewhere in the Great Oolite. The Purbeck and Wealden strata, which, in a sense, fill the interval between the Jurassic and Cretaceous series, are almost entirely formed of fresh-water strata, with occasional thin marine interstratifications. By some the Wealden beds are considered to have been formed in and near the estuary of a great river, while others, with as good a show of reason, believe them to have been deposited in a large lake subject to the occasional influx of the sea.

In the eastern part of South Russia the Lias consists chiefly of fresh-water strata, as stated by Neumayr.

The Godwana rocks of Central India range from Upper Palaeozoic times well into the Jurassic strata, and there all these formations are of fresh-water origin. Fresh-water beds with shells are also interstratified with the Deccan traps of Cretaceous and Tertiary (Eocene) age, while 2,000 feet of fresh-water sands overlie them.

In South-western Sweden, as stated by Mr. Bauerman, 'the three coalfields of Hoganas, Stabbarp, and Rodingé, lie in the uppermost Triassic or Rhaetic series.' In Africa, the Karoo beds, which it is surmised may be of the age of the New Red Sandstone, contain beds of coal. In North America, certain fresh-water strata, with beds of lignite, apparently belong to the Cretaceous and Eocene epochs, and in the north of Spain and south of France, there are fresh-water lacustrine formations in the highest Cretaceous strata.

In England the lower and upper Eocene strata are chiefly of fresh-water origin, and the same is the case in France and other parts of the Continent. Certain fresh-water formations in Central Spain extend from the Eocene to the upper Miocene strata.

There is only one small patch of Miocene beds in England, at Bovey Tracey, near Dartmoor, formed of fresh-water deposits with interstratified beds of lignite or Miocene coal. On the continent of Europe, Miocene strata occupy immense independent areas, extending from France and Spain to the Black Sea. In places too numerous to name, they contain beds of 'brown coal,' as lignite is sometimes called. These coal-beds are often of great thickness and solidity. In one of the pits which I descended near Teplitz, in Bohemia, the coal, which lies in a true basin,

is 40 feet thick, and underneath it there is a bed of clay, with rootlets, quite comparable to the underclay which is found beneath almost every bed of coal in the British and other coal-fields of the Carboniferous epoch. The Miocene rocks of Switzerland are familiar to all geologists, who have traversed the country between the Jura and the Alps. Sometimes they are soft and incoherent, sometimes formed of sandstones, and sometimes of conglomerates, as on the Righi. They chiefly consist of fresh-water lacustrine strata, with some minor marine interstratifications which mark the influx of the sea during occasional partial submergences of portions of the area. These fresh-water strata, of great extent and thickness, contain beds of lignite, and are remarkable for the relics of numerous trees and other plants which have been described by Prof. Heer of Zurich, with his accustomed skill. The Miocene fresh-water strata, of the Sewalik Hills in India are well known to most students of geology, and I have already stated that they bear the same relation to the more ancient Himalayan mountains that the Miocene strata of Switzerland and the North of Italy do to the pre-existing range of the Alps. In fact, it may be safely inferred that something far more than the rudiments of our present continents existed long before Miocene times, and this accounts for the large areas on those continents which are frequently occupied by Miocene fresh-water strata. With the marine formations of Miocene age this address is in no way concerned, nor is it essential to my argument to deal with those later tertiary phenomena, which in their upper stages so easily merge into the existing state of the world.

Glacial Phenomena.

I now come to the last special subject for discussion in this address, viz., the Recurrence of Glacial Epochs, a subject still considered by many to be heretical, and which was generally looked upon as an absurd crotchet when, in 1855, I first described to the Geological Society, boulder-beds, containing ice-scratched stones, and erratic blocks in the Permian strata of England. The same idea I afterwards applied to some of the Old Red Sandstone conglomerates, and of late years it has become so familiar, that the effects of glaciers have at length been noted by geologists from older Palæozoic epochs down to the present day.

In the middle of last July I received a letter from Prof. Geikie, in which he informed me that he had discovered mammilated *moutonnée* surfaces of Laurentian rocks, passing underneath the Cambrian sandstones of the north-west of Scotland at intervals, all the way from Cape Wrath to Loch Torridon, for a distance of about 90 miles. The mammilated rocks are, says Prof. Geikie, '*as well rounded off as any recent roche moutonnée*', and, 'in one place these bosses are covered by a huge angular breccia of this old gneiss (Laurentian) with blocks sometimes five or six feet long.' This breccia, where it occurs, forms the base of the Cambrian strata of Sutherland, Ross, and Cromarty, and while the higher strata are

always well stratified, where they approach the underlying Laurentian gneiss, ‘they become pebbly, passing into coarse unstratified agglomerates or boulder-beds.’ In the Gairloch district, ‘it is utterly unstratified, the angular fragments standing on end and at all angles,’ just as they do in many modern moraine mounds wherever large glaciers are found. The general subject of Palæozoic glaciers has long been familiar to me, and this account of more ancient glaciers of Cambrian age is peculiarly acceptable.

The next sign of ice in Britain is found in the lower Silurian rocks of Wigtonshire and Ayrshire. In the year 1865 Mr. John Carrick Moore took me to see the Lower Silurian graptolitic rocks at Corswall Point in Wigtonshire, in which great blocks of gneiss, granite, &c., are imbedded, and in the same year many similar erratic blocks were pointed out to me by Mr. James Geikie in the Silurian strata of Carrick in Ayrshire. One of the blocks at Corswall, as measured by myself, is nine feet in length, and the rest are of all sizes, from an inch or two up to several feet in diameter. There is no gneiss or granite in this region nearer than those of Kirkcudbrightshire and Arran, *and these are of later geological date than the strata amid which the erratic blocks are imbedded.* It is therefore not improbable that they may have been derived from some high land formed of Laurentian rocks of which the outer Hebrides and parts of the mainland of Scotland form surviving portions. If so, then I can conceive of no agent capable of transporting large boulders and dropping them into the Lower Silurian mud of the seas of the time save that of icebergs or other floating ice, and the same view with regard to the neighbouring boulder-beds of Ayrshire is held by Mr. James Geikie. If, however, any one will point out any other natural cause still in action by which such results are at present brought about, I should be very glad to hear of it.

I must now turn to India for further evidence of the action of palæozoic ice. In the Himalayas of Pangi, S.E. of Kashmir, according to Medlicott and Blanford, ‘old slates, supposed to be Silurian, contain boulders in great numbers,’ which they believe to be of glacial origin. Another case is mentioned as occurring in ‘transition beds of unknown relations,’ but in another passage they are stated to be ‘very ancient, but no idea can be formed of their geological position.’ The *underlying rocks are marked by distinct glacial striations.*

The next case of glacial boulder-beds with which I am acquainted is found in Scotland, and in some places in the north of England, where they contain what seem to be indistinctly ice-scratched stones. I first observed these rocks on the Lammermuir Hills, south of Dunbar, lying unconformably on Lower Silurian strata, and soon inferred them to be of glacial origin, a circumstance that was subsequently confirmed by my colleagues, Prof. and Mr. James Geikie, and is now familiar to other officers of the Geological Survey of Scotland.

I know of no boulder formations in the Carboniferous series, but they are well known as occurring on a large scale in the Permian brecciated conglomerates, where they consist ‘of pebbles and large blocks of stone

generally angular, imbedded in a marly paste. . . . the fragments have mostly travelled from a distance, apparently from the borders of Wales, and some of them are three feet in diameter.' Some of the stones are as well scratched as those found in modern moraines or in the ordinary boulder-clay of what is commonly called the Glacial Epoch. In 1855 the old idea was still not unprevalent that during the Permian Epoch, and for long after, the globe had not yet cooled sufficiently to allow of the climates of the external world being universally affected by the constant radiation of heat from its interior. For a long time, however, this idea has almost entirely vanished, and now, in Britain at all events, it is little if at all attended to, and other glacial episodes in the history of the world have continued to be brought forward and are no longer looked upon as mere ill-judged conjectures.

The same kind of brecciated boulder-beds that are found in our Permian strata occur in the Rotheliegende of Germany, which I have visited in several places, and I believe them to have had a like glacial origin.

Mr. G. W. Stow, of the Orange Free State, has of late years given most elaborate accounts of similar Permian boulder-beds in South Africa. There, great masses of moraine matter not only contain ice-scratched stones, but on the banks of rivers where the Permian rock has been removed by aqueous denudation, the underlying rocks, well rounded and mammillated, are covered by deeply incised glacier grooves pointing in a direction which at length leads the observer to the pre-Permian mountains from whence the stones were derived that formed these ancient moraines.¹

Messrs. Blanford and Medlicott have also given in 'The Geology of India' an account of boulder-beds in what they believe to be Permian strata, and which they compare with those described by me in England many years before. There the Godwana group of the Talchir strata contains numerous boulders, many of them six feet in diameter, and 'in one instance *some of the blocks were found to be polished and striated, and the underlying Vindhyan rocks were similarly marked.*' The authors also correlate these glacial phenomena with those found in similar deposits in South Africa, discovered and described by Mr. Stow.

In the Olive group of the Salt range, described by the same authors, there is a curious resemblance between a certain conglomerate 'and that of the Talchir group of the Godwana system.' This 'Olive conglomerate' belongs to the Cretaceous series, and contains ice-transported erratic boulders derived from unknown rocks, one of which of red granite 'is polished and striated on three faces in so characteristic a manner that very little doubt can exist of its having been transported by ice.' One block of red granite at the Mayo Salt Mines of Khewra 'is 7 feet high and 19 feet in circumference.' In the 'Transition beds' of the same

¹ Mr. Stow's last memoir on this subject is still in manuscript. It is so exceedingly long, and the sections that accompany it are of such unusual size, that the Geological Society could not afford their publication. It was thought that the Government of the Orange Free State might undertake this duty, but the late troubles in South Africa have probably hindered this work—it is to be hoped only for a time.

authors, which are supposed to be of Upper Cretaceous age, there also are boulder beds with erratic blocks of great size.

I know of no evidence of glacial phenomena in Eocene strata excepting the occurrence of huge masses of included gneiss in the strata known as Flysch in Switzerland. On this question, however, Swiss geologists are by no means agreed, and I attach little or no importance to it as affording evidence of glacier ice.

Neither do I know of any Miocene glacier-deposits excepting those in the north of Italy near Turin, described by the late eminent geologist, Gastaldi, and which I saw under his guidance. These contain many large erratic boulders derived from the distant Alps, which, in my opinion, were then at least as lofty or even higher than they are now, especially if we consider the immense amount of denudation which they underwent during Miocene, later Tertiary, and post-tertiary times.

At a still later date there took place in the north of Europe and America what is usually misnamed '*The Glacial Epoch*', when a vast glacial mass covered all Scandinavia, and distributed its boulders across the north of Germany, as far south as the country around Leipzig, when Ireland also was shrouded in glacier ice, and when a great glacier covered the larger part of Britain, and stretched southward, perhaps nearly as far as the Thames on the one side, and certainly covered the whole of Anglesey, and probably the whole, or nearly the whole, of South Wales. This was after the advent of man.

Lastly, there is still a minor Glacial Epoch in progress on the large and almost unknown Antarctic continent, from the high land of which in latitudes which partly lie as far north as 60° and 62° , a vast sheet of glacier-ice of great thickness extends far out to sea and sends fleets of icebergs to the north, there to melt in warmer latitudes. If in accordance with the theory of Mr. Croll, founded on astronomical data, a similar climate were transferred to the northern hemisphere, the whole of Scandinavia and the Baltic would apparently be covered with glacier-ice, and the same would probably be the case with the Faroe Islands and great part of Siberia, while even the mountain tracts of Britain might again maintain their minor systems of glaciers.

Conclusions.

In opening this address, I began with the subject of the oldest metamorphic rocks that I have seen—the Laurentian strata. It is evident to every person who thinks on the subject that their deposition took place *far from the beginning of recognised geological time*. For there must have been older rocks by the degradation of which they were formed. And if, as some American geologists affirm, there are on that continent metamorphic rocks of more ancient dates than the Laurentian strata, there must have been rocks more ancient still to afford materials for the deposition of these pre-Laurentian strata.

*So I wonder over how long these were
ruled up*

Starting with the Laurentian rocks, I have shown that the phenomena of *metamorphism* of strata have been continued from that date all through the later formations, or groups of formations down to and including part of the Eocene strata in some parts of the world.

In like manner I have shown that ordinary volcanic rocks have been ejected in Silurian, Devonian, Carboniferous, Jurassic, Cretaceo-oolitic, Cretaceous, Eocene, Miocene, and Pliocene times, and from all that I have seen or read of these ancient volcanoes, I have no reason to believe that volcanic forces played a more important part in any period of geological time than they do in this our modern epoch. *But two Shewai* *less* *long*

So, also, mountain chains existed before the deposition of the Silurian rocks, others of later date before the Old Red Sandstone strata were formed, and the chain of the Ural before the deposition of the Permian beds. The last great upheaval of the Alleghany Mountains took place between the close of the formation of the Carboniferous strata of that region and the deposition of the New Red Sandstone.

According to Darwin, after various oscillations of level, the Cordillera underwent its chief upheaval after the Cretaceous epoch, and all geologists know that the Alps, the Pyrenees, the Carpathians, the Himalayas, and other mountain-chains (which I have named) underwent what seems to have been their chief great upheaval after the deposition of the Eocene strata, while some of them were again lifted up several thousands of feet after the close of the Miocene epoch.

The deposition of salts from aqueous solutions in inland lakes and lagoons appears to have taken place through all time—through Silurian, Devonian, Carboniferous, Permian, Triassic, Jurassic, Cretaceous, Eocene, Miocene, and Pliocene epochs—and it is going on now.

In like manner fresh-water and estuarine conditions are found now in one region, now in another, throughout all the formations or groups of formations possibly from Silurian times onward; and glacial phenomena, so far from being confined to what was and is generally still termed *the Glacial Epoch*, are now boldly declared, by independent witnesses of known high reputation, to begin with the Cambrian epoch, and to have occurred somewhere, at intervals, in various formations, from almost the earliest Palaeozoic times down to our last post-Pliocene ‘Glacial Epoch.’

If the nebular hypothesis of astronomers be true (and I know of no reason why it should be doubted), the earth was at one time in a purely gaseous state, and afterwards in a fluid condition, attended by intense heat. By-and-by consolidation, due to partial cooling, took place on the surface, and as radiation of heat went on, the outer shell thickened. Radiation still going on, the interior fluid matter decreased in bulk, and, by force of gravitation, the outer shell being drawn towards the interior, gave way, and, in parts, got crinkled up, and this, according to cosmogonists, was the origin of the earliest mountain-chains. I make no objection to the hypothesis, which, to say the least, seems to be the best that can be offered and looks highly probable. But, assuming that

it is true, these hypothetical events took place so long before authentic geological history began, as written in the rocks, that the earliest of the physical events to which I have drawn your attention in this address was, to all human apprehension of time, so enormously removed from these early assumed cosmical phenomena, *that they appear to me to have been of comparatively quite modern occurrence, and to indicate that from the Laurentian epoch down to the present day, all the physical events in the history of the earth have varied neither in kind nor in intensity from those of which we now have experience.* Perhaps many of our British geologists hold similar opinions, but, if it be so, it may not be altogether useless to have considered the various subjects separately on which I depend to prove the point I had in view.

Turner.

example of the good the British Association does in fostering science and stimulating scientific aspiration. In 1839 Mr. Andrew Crombie Ramsay, then a young man of five-and-twenty, acted as a member of a local committee at Glasgow to prepare for the reception of the Association there in the following year. To him was delegated the congenial task of preparing a geological map and model of the lovely little island of Arran—that Highland microcosm. This map and model being duly exhibited at the meeting in 1840, were so much noticed by geologists that Mr. (afterwards Sir) Roderick Murchison asked Mr. Ramsay to accompany him to Russia on a geological survey which he was about to undertake at the instance of the Czar. In March, 1841, however, while Mr. Ramsay tarried in London before setting out for Russia, he was offered the post of Assistant-Geologist on the Geological Survey of Great Britain, and accepted it. Since then he has risen to be Director-General of this great scientific department. His papers on geological subjects, notably those on glacial action in North America, Switzerland, North Wales, and Scotland, are of the highest geological interest, and his theory of a glaciation in the far distant Permian Period, which succeeded to the carboniferous, in the development of our planet, was the first hint of the doctrine of recurring periods of terrestrial cold. Besides his Government appointments, Mr. Ramsay has occupied the chairs of geology in University College, London, and the Royal School of Mines. He was elected Fellow of the Royal Society as long ago as 1849, and the Universities of Edinburgh and Glasgow have conferred upon him the degree of LL.D. His highest honour was, however, bestowed upon him last year, when he was elected to the Presidential chair of the British Association. The son of a local Scottish chemist, he has risen, like many others of his countrymen, to a position of the highest eminence.

◎

