

AlGenOps

Integrating Generative AI into Platform Engineering for Regulated Software

Riccardo Soro

DevOps Engineer

rsoro@imolainformatica.it

riccardo-soro

Nicolas Fantoni

Platform Engineer

nfantoni@imolainformatica.it

nicolas fantoni

nicolas-fantoni

Requirements

Requirements - Performance

Requirements - Cost

Application A

Application B

Application C

Application A

Application B

Which model to use?

Requirements - Sicurezza

Which model to use?

Which model to use?

Generative AI, introduction

Question: What fruit can I put in the fruit salad?

Answer: in the fruit salad you can put...

Hyperparameters: Top-K

Hyperparameters: Top-P

•
$$P = 0.8$$

Hyperparameters: Temperature

•
$$T = 0.5$$

Hyperparameters: Temperature

Considerations

High temperature = greater randomness in response

Temperature at 0 = deterministic model (approximately), local optimum is sought

Reiterate on high temperature finds global optimum sooner or later

Requirements - Quantity of generated data

Application A

Application B

Prompt Template

Instructions:

Focus on context

Forget everything you know and by analysing the code I will pass on to you solve this issue: {issue}

{code}

Response:

reduction of hallucinations

Baselines					
PaLM 2-L	(Kojima et al., 2022)	A_begin	Let's think step by step. 85.7		44.9
PaLM 2-L	(Zhou et al., 2022b)	A_begin	Let's work this out in a step by step way to be sure we have the right answer.	72.8	48.4
PaLM 2-L		A_begin	Let's solve the problem.	87.5	44.1
PaLM 2-L		A_begin	(empty string)	69.3	37.8
text-bison	(Kojima et al., 2022)	Q_begin	Let's think step by step.	92.5	31.9
text-bison	(Zhou et al., 2022b)	Q_begin	Let's work this out in a step by step way to be sure we have the right answer.	93.7	32.3
text-bison		Q_begin	Let's solve the problem.	85.5	29.9
text-bison		Q_begin	(empty string)	82.2	33.5
Ours					
PaLM 2-L	PaLM 2-L-IT on GSM8K	A_begin	Take a deep breath and work on this problem step-by-step.	95.3	54.3
text-bison	PaLM 2-L-IT on GSM8K	Q_begin	Let's work together to solve math word problems! First, we will read and discuss the problem together to make sure we understand it. Then, we will work together to find the solution. I will give you hints and help you work through the problem if you get stuck.	96.8	37.8

Requirements - Zero Trust

How do you test the generated Unit Tests?

Validation requirement of the generated Unit Test.

- The project must compile
- Tests must pass
- Coverage must increase
- Unit Test must be of quality

However, how do you define a quality Unit Test?

Use of mutation tests

What are mutation tests?

Idea:

A quality Unit Test must fail if the logic in the code changes (e.g. the conditions of an if are changed)

How do you test fixes to QA Issues?

Validation requirement of the fix generated:

- The project must compile
- Tests must pass
 - Coverage must be high
 - Tests must be of quality
- •The generated code must solve the issue and must not introduce others

Flow chart: unit test generation

Results

Considerations

- Generating fixes is more complex than generating test classes
- Specialization better than Dimension
- Some models do not require a GPU (mistral7B)

Model	Dimension	Resolved Issue	Coverage generated
LamaCode 34B	34	6	14%
Dolphin-2.6-mixtral 8x7B	56	2	6%
Mistral 7B	7	2	15.4%
Mixtral 8X22B	176	3	9,3%

Collaboration with opensource projects
Define the application prioritization and selection algorithms
Define the selection and prioritization algorithms for quality/vulnerability resolutions and code coverage
Use of models with greater contextual capacity
Find pioneers to implement a solution in a real-world environment
Integration with other tools
Finetuning of the model for custom frameworks

Thank You

IMOLA · BOLOGNA · MILANO

www.imolainformatica.it | blog.imolainformatica.it

