

一种真正以业务为中 心的访问控制模型

李德辉

众图识人 CEO

目录

从信息化视角看访问控制

一种真正以业务为中心的访问控制模型

开始使用 ABAC

各部门采用信息系统替代独立 业务的手工操作,提高企业核 心竞争力的作用有限。 通过统一的信息系统平台实现 内部业务信息的集成和跨部门、 跨地区、多业务的综合协同, 企业核心竞争力和各部门间的 协调作业能力大幅提升。 信息化开始成为企业发展战略的 重要组成部分,实现信息技术与 公司各项业务和环节的全面融合,信息系统持续集成,整体应用水 平显著提升。

信息化不同阶段产生的业务价值增长曲线

分散建设独立信息系统 单一部门信息化

RBAC 满足需求

统一建设全局信息系统 企业级信息化

RBAC 角色爆炸

持续提升与集成共享信息系统 产业链级信息化

需要新的访问控制模型

分散建设阶段

业务驱动力

各业务部门为了提高工作效率,纷纷采用信息系统 替代手工操作,开展基于各自业务的单一信息化建 设

信息化特点

- 各部门独立建设
- 信息系统数量多,系统用户少、规模小
- 系统应用效率低,建设、维护成本较高
- 形成众多的信息孤岛, 信息共享程度低
- 无法有效支持业务协调和战略决策

业务价值

- 企业各业务部门处理各自相对简单的研发设计、生产及经营业务,提高了工作效率
- 对提高企业核心竞争力的作用有限

访问控制

- 访问用户少,业务范围小
- 访问控制到操作级别,不进行数据级控制
- 访问环境简单:设备固定,网络环境简单
- 适合RBAC模型

统一建设阶段

业务驱动力

通过统一的信息系统平台实现内部业务信息的集成 和跨部门、跨地区、多业务的综合应用,企业核心 竞争力和各部门间的协调作业能力大幅提升

信息化特点

- 信息系统数量大幅减少
- 各系统用户多、规模大、应用范围广
- 系统应用效率高,整体运行维护成本下降
- 信息孤岛数量大幅度减少, 信息共享成都大幅提高
- 信息安全和在被体系基本完备

业务价值

- 实现业务、资金、信息在一个平台上管理
- 实现业务信息的跨部门、跨地区、多业务综合应用
- 企业的核心竞争力和各部门间的协调作业能力大幅提升
- 基本实现业务系统和支持战略决策

访问控制挑战

- 访问用户多,必须区分业务范围
- 需要根据业务上下文进行访问控制
- 继续采用RBAC模型导致角色爆炸

RBAC 在加入业务上下文后产生角色爆炸

某股份制银行:不同网点柜员,可选择的金融产品和操作的金额不一样,银行在全国有上万个网点,产生上干种角色

某大型制造业:不同地区公司的相同岗位的人能够访问的数据不同,能够进行的操作不同,ERP中的数十万角色

持续提升阶段

业务驱动力

信息化开始成为企业发展战略的重要组成部分, 实现信息技术与公司各项业务和环节的全面融合, 信息系统持续集成,整体应用水平显著提升

信息化特点

- 系统功能持续完善,系统集成度持续提升,更加满足业务需求
- 系统的应用更深入,更广泛,对业务的支持作用持续提升
- 信息化与业务战略发展和转型实现一体化

业务价值

- 信息化全面融入研发、设计、生产、经营、管理、决策活动,基于知识进行快速战略决策
- 多行业、多地区、多业务全面集成与协同,有效改造和提升企业价值链

访问控制挑战

- 系统级的访问控制
- 操作级的访问控制
- 数据级的访问控制
- 结合访问环境上下文进行访问控制

目录

从信息化视角看访问控制

一种真正以业务为中心的访问控制模型

开始使用 ABAC

传统访问控制模型 RBAC

RBAC:

- 基于角色的访问控制,角色定义了一个用户 拥有的权限
- 静态授权,角色需要绑定到用户后才生效
- 适用于信息化第一阶段的访问控制场景
- 一旦访问控制因素变多,将产生**角色爆炸**

角色数量随访问控制因素呈几何增长:

ABAC 访问控制模型

ABAC:

- 基于属性的访问控制模型
- 通过基于属性的访问控制策略灵活定义访问者(身份属性)在什么条件下(访问环境上下文属性)可以访问什么对象(对象属性)
- 运行时**动态授权**,属性或策略改变后权限立即变更生效
- 一旦访问控制因素变多,只增加一个属性

属性随访问控制因素呈线性增长:

ABAC VS. RBAC

	RBAC	ABAC	业务价值
逻辑表达能力	仅支持一种:角色包含一组权限	可表达逻辑复杂的访问控制策略	几百条访问控制策略替代上百万的用户角色,为 业务全面协同带来的复杂访问控制提供 扩展能力
以业务为中心	否,根据业务规则难以定义角色	是,策略语言直接描述业务规则	
业务上下文	少量,否则会导致角色爆炸	只需要增加一个属性	
环境上下文	不支持	支持	随时随地 都能安全处理业务
访问控制粒度	操作级	数据级	安全开展部门间、合作伙伴间的 数据共享 业务
访问控制生效	静态,预先定义	动态,运行时生效	大量减少授权工作
标准化程度	仅数据结构模型	策略标准、参考架构	保障 互操作性 /实现 中心化授权

ABAC

用ABAC实现RBAC, 只需要:

- 定义一个属性:角色
- 定义一条策略:如果用户角色包含了对应权限,用户可以访问

分公司的**身份管理员**可以为<u>所属公司</u>的用户授权<u>办公类</u>应用帐号,只能在<u>办公时间</u>通过<u>自己的电脑</u>进行操作

目录

从信息化视角看访问控制

一种真正以业务为中心的访问控制模型

开始使用 ABAC

标准: NIST ABAC Guide 2014

大数据:
IC-ITE 使用ABAC对共享
情报进行访问控制

企业应用: SAP 使用ABAC进行动 态授权管理 2016

云: 使用ABAC在AWS进行可 扩展的权限管理 2018

通过 ID.LINK 获得动态授权的能力

- ·IAM自身的访问控制
- ・为第三方系统提供根 据环境上下文的动态 访问控制

- ・通过ID.LINK集中管 理属性及策略
- ・与第三方系统集成, 提供根据业务上下文 的动态访问控制

- ・通过ID.LINK集中管 理属性及策略
- ・为第三方应用提供属 性及策略数据

ID.LINK 策略编辑UI

THANKS 2019北京网络安全大会 2019 BEIJING CYBER SECURITY CONFERENCE