COL352 Lecture 2

Contents

1 Goal of this lecture 1

2 Deterministic Finite Automata

1

1 Goal of this lecture

To mathematically define a computational problem

2 Deterministic Finite Automata

Notation 1. An alphabet is a finite set Σ of symbols.

Notation 2. By Σ^n , we the set of strings of length n constructed from symbols in Σ .

When n = 0, just to maintain consistency, we define ϵ to be an empty string, and $\Sigma^0 = {\epsilon}$.

Notation 3. Σ^* is defined to be $\bigcup_{i=0}^{\infty} \Sigma^i$.

Claim 1. The set Σ^* is in fact countably infinite.

Proof. Note that there are precisely $|\Sigma|^n$ strings of length n.

Consider any ordering of strings in Σ^n and map one string each to each element in the set $\{1+\sum_{i=0}^{n-1}|\Sigma|^i,\ldots,\sum_{i=0}^m|\Sigma|^i\}$ (it helps to visualize this as chunks of the integer number line).

Note that the range is a partition of \mathbb{N} , and thus, this map is a bijection from Σ^* to \mathbb{N} , whence we are done.

Constructing an injective map from Σ^* to \mathbb{N} is enough though.

Definition 1. A language over Σ is any subset of Σ^* .

Notation 4. If x, y are strings in Σ^* (i.e. over Σ), we denote by $x \cdot y$ (or more simply, xy), the concatenation of x and y.

Notation 5. If L_1, L_2 are languages over Σ , then by $L_1 \cdot L_2$ (or more simply L_1L_2) we denote the set $\{s_1s_2 \mid s_1 \in L_1, s_2 \in L_2\}$.

Definition 2. Let Γ, Σ be any two finite non-empty sets. A computational problem is defined as a function $f: \Gamma^* \to \Sigma^*$.

Example 1. Suppose $\Sigma = \{0, 1, ..., 9\}$, and $\Gamma = \{0, 1, ..., 9, \times\}$. Define f(x) to be the prime factorization of a number here (lexicographically maximal, with least length), considering 0 to be a prime. Then f is a computational problem.

Example 2. Let $\Sigma = \Gamma = \{0, 1\}$. Define

 $f(x) = \begin{cases} 1 & \textit{if x represents the adjacency matrix of a connected graph in row major order} \\ 0 & \textit{otherwise} \end{cases}$

Then f is a computational problem.

Example 3. A Python program is also a computational problem (output is the set of all possible bytecodes and syntax errors)

Definition 3. A decision problem is a function from Σ^* to $\{0,1\}$.

Example 4. The second last example in the previous definition is a decision problem.

Associate with any decision problem $f: \Sigma^* \to \{0,1\}$ the language $L = \{x \in \Sigma^* \mid f(x) = 1\}$. Conversely, we can associate a decision problem with every language (does x belong to the language L?). Hence decision problems are equivalent to languages (in some sense).

Example 5. $\Sigma = \{0, 1\}$, f(x) = 1 if x is the binary representation of a number divisible by 5, and 0 otherwise. $L = \{x \in \Sigma^* \mid f(x) = 1\}$.

How do we solve this problem?

end if end function

Another way of looking at this is to construct a node for all possible values of q, the set of which is \mathbb{Z}_5 .

Figure 1: Automaton for the modulo 5 check

Example 6. $\Sigma = \{a, b\}, L = \{x \in \Sigma^* \mid x \text{ ends in } ab\}.$

Idea: keep track of last two characters used.

Figure 2: Automaton for checking last two characters

Definition 4. A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, A)$ where

- ullet Q is a finite nonempty set, called the \underline{set} of states.
- ullet Σ is a finite nonempty alphabet.
- δ is a function $\delta: Q \times \Sigma \to Q$, called the <u>transition function</u>.
- q_0 is the <u>initial state</u>.
- ullet A is the set of all accepting states.