Лекция 5

Некоторые решения задач из лекции 4.

Задача 3. а) Найдите классы сопряженности в группе D_n .

б) Найдите коммутант группы D_n .

Указание: используйте, то что любой элемент D_n может быть записан в виде r^b или sr^b и соотношения на r,s найденные на лекции

в)* Представьте группу D_n в виде нетривиального полупрямого произведения.

Ответ. а) Если n нечетно, то все симметрии sr^b образуют один класс сопряженности. Если n четно, то симметрии распадаются на два класса сопряженности: sr^{2a} и sr^{2a-1} . Повороты r^a и r^b сопряжены только если a=b или a=n-b.

- б) Если n нечетно, то коммутант это группа всех поворотов r^a . Если n четно, то коммутант это группа всех четных поворотов r^{2a} .
- B) $D_n \simeq C_2 \ltimes C_n \blacksquare$

Задача 4. Пусть G — группа движений сохраняющих куб, G_0 — подгруппа собственных движений.

- а) Постройте нетривиальный гомоморфизм из G_0 в S_4 используя действие G на множестве диагоналей куба. Является ли он изоморфизмом?
- б) Найдите классы сопряженности в группе G_0 . Опишите эти классы геометрически (как вращения, симметрии или зеркальные повороты).
- в) Опишите G как произведение (прямое или полупрямое). Сколько существует классов сопряженности в G?

Решение. Пункты а,б аналогичны задаче из прошлого задания, доказывается, что $G_0 \simeq S_4$, классы сопряженности S_4 мы знаем, их 5 штук. Внутри всей G есть поддгруппа C_2 порожденная центральной симметрией. Любой элемент из G являяется либо собственным движением либо произведением собственного движения и центральной симметрии. Поэтому $G \simeq C_2 \times G_0$. Для описания классов сопряженности применим предложение.

Предложение 1. Классы сопряженности произведения групп $G \times H$ являют собой произведения классов сопряженности группы G и группы H.

Доказательство. Достаточно заметить, что элементы $(g_1, h_1), (g_2, h_2) \in G \times H$ сопряжены тогда и только тогда когда элементы $g_1, g_2 \in G$ сопряжены и элементы $h_1, h_2 \in H$ сопряжены.

T.e. в нашей задаче группа G имеет $2 \cdot 5 = 10$ классов сопряженности.

Замечание. Для полупрямого произведение аналогичное предложение неверно. Примером является прошлая задача — хотя $D_n \simeq C_2 \ltimes C_n$, количество классов сопряженности в D_n не равно 2n.

Представления групп.

Определение 1. Пусть G — конечная группа, V — конечномерное комплексное векторное пространство. Гомоморфизм групп $\rho:G\to GL(V)$ называется (конеч-

номерным, комплексным) npedcmasnehuem группы G. Пространство V называется npocmpancmsom npedcmasnehus. Размерность $\dim V$ называется pasmephocmsom npedcmasnehus.

Если в пространстве V выбран базис e_1, e_2, \ldots, e_n , то можно считать, что представление задает гомоморфизм $\rho: G \to GL(n, \mathbb{C})$. В частности, одномерные представления — это тоже самое, что и гомоморфизмы из G в \mathbb{C}^* .

Часто допускают вольность речи и говорят что V и есть представления, имея в виду, что ρ или ясен из контекста или не важен. Также, нередко ρ опускают в формулах, т.е. вместо $\rho(g)v$ пишут gv.

Определение 2. Пусть дана группа G и два ее векторных представления $\rho_1: G \to GL(V_1)$ и $\rho_2: G \to Gl(V_2)$. Изоморфизмом представлений называется изоморфизм векторных пространств $\varphi: V_1 \to V_2$ коммутирующий с действием группы:

$$\varphi(\rho_1(g)v) = \rho_2(g)\varphi(v)$$

$$V_1 \xrightarrow{\varphi} V_2$$

$$\downarrow \rho_2(g)$$

$$V_1 \xrightarrow{\varphi} V_2$$

В терминах матриц это означает, что для любого g матрицы $\rho_1(g)$ и $\rho_2(g)$ сопряжены: $\rho_2(g) = \varphi \rho_1(g) \varphi^{-1}$.

Примеры

- **1** (Перестановочное представление) Пусть группа G действует на множестве X, |X| = n. Тогда есть представление группы G в векторном пространстве \mathbb{C}^n с базисом e_x , где $x \in X$. Действие группы задается формулой $\rho(g)e_x = e_{qx}$.
- **2** Частным случаем прошлого примера является представление группы S_n в пространстве \mathbb{C}^n . Группа действует перестановкой базисных векторов.

Пусть n=3. Тогда это перестановочное представление S_3 задается матрицами:

$$e \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (1, 2, 3) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad (1, 3, 2) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$(1, 2) \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad (1, 3) \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad (2, 3) \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

3 (Регулярное представление) Этот пример тоже является частным случаем первого примера. А именно, можно рассмотреть действие группы на себе умножениями слева. Более явно — пусть |G|=n, тогда рассмотрим пространство $V=\mathbb{C}^n$ с базисом e_x занумерованным элементами $x\in G$. Группа действует на V по формуле $ge_x=e_{gx}$.

Определение 3. Подпространство $U \subset V$ называется nodnpedcmaвлением (другой термин — $uneapuanmnoe\ nodnpocmpancmeo$), если оно является G инвариантным, т.е. для если любых $g \in G, u \in U$ выполняется $\rho(g)u \in U$.

Пример. Расмотрим перестановочное представление S_3 . Оно имеет два нетривиальных (отличных от $\{0\}$ и V) подпредставления

$$U_1 = \{ \sum x_i e_i | x_1 = x_2 = x_3 \}, \quad U_2 = \{ \sum x_i e_i | \sum x_i = 0 \},$$

Все пространство \mathbb{C}^3 разлагается в прямую сумму подпространств U_1 и U_2 . Если выбрать в \mathbb{C}^3 базис, согласованный с этим разложением (например $e_1+e_2+e_3, e_1-e_2, e_1-e_3$, то матрицы, соответствующие операторам $\rho(g)$ будут блочными.

В общем случае, если есть подпредставление $U\subset V$, то выберем базис в V дополняющий базис в пространстве U. Тогда матрицы операторов $\rho(g)$ будут иметь блочный вид $\rho(g)=\begin{pmatrix} A(g) & B(g) \\ 0 & D(g) \end{pmatrix}$. Условие того, что ρ задает представление записывается как $\rho(g_1g_2)=\rho(g_1)\rho(g_2)$ или в терминах матриц

$$\begin{cases} A(g_1g_2) = A(g_1)A(g_2) \\ B(g_1g_2) = A(g_1)B(g_2) + B(g_1)D(g_2) \\ D(g_1g_2) = D(g_1)D(g_2) \end{cases}$$

Первое уравнение означает, что сопоставление $g \mapsto A(g)$ задает представление группы g, пространством этого представления является U. По третьему уравнению сопоставление $g \mapsto D(g)$ также задает представление группы G, пространством этого представления является ϕ актор пространство V/U.

В примере выше можно выбрать базис так, что в блочной форме блок B равен нулю. Это приводит к следующему определению.

Определение 4 (Прямая сумма представлений). Пусть дана группа G и два ее векторных представления V_1, ρ_1 и V_2, ρ_2 . Тогда пространство $V = V_1 \oplus V_2$ также имеет структуру представления группы G, в котором g переходит в оператор заданный блочной матрицей $\rho(g) = \begin{pmatrix} \rho_1(g) & 0 \\ 0 & \rho_2(g) \end{pmatrix}$.

Например, выше для трехмерного представления группы S_3 мы построили U_1 и U_2 такие, что $\mathbb{C}^3 \simeq U_1 \oplus U_2$. Естественно спросить — всегда ли можно занулить блок B? Иными словами, для любого ли инвариантного подпространства $U_1 \subset V$ можно найти подпространство $U_2 \subset V$ которое является дополнительным к U_1 (то есть $U_1 \cap U_2 = 0$, $U_1 \oplus U_2 = V$) и инввариантным относительно действия группы G. Вообще говоря, ответ отрицательный, как показывает следующий пример.

Рассмотрим следующее двумерное представление группы Z, в котором $n \mapsto \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. Тогда подпространство, натянутое на первый базисный вектор e_1 является инвариантным, но никакого дополнительного к нему инвариантного подпространства нет.

Однако верна следующая теорема

Теорема 2. Пусть G конечная группа, V ее представление, $U_1 \subset V$ инвариантное подпространство. Тогда существует дополнительное инвариантное подпространство

 $U_2 \subset V$.

Доказательство. Изложим доказательство двумя способами.

Первый способ. Сделаем треугольную замену базиса при помощи матрицы $\begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix}$, где

$$S = \frac{1}{|G|} \sum_{g \in G} A(g)B(g^{-1}).$$

Тогда при сопряжении такой матрицей матрицы $\rho(h)$ становятся блочно-диагональными.

Второй способ. Доказательство основано на очень важной идее усреднения. Первым примером такой идеи является усреднение в представлении. А именно, для любого представления V конечной группы G и любого вектора $v \in V$

$$\rho(h)\left(\frac{1}{|G|}\sum_{g\in G}\rho(g)v\right) = \frac{1}{|G|}\sum_{g\in G}\rho(hg)v = \frac{1}{|G|}\sum_{g\in G}\rho(g)v.$$

То есть, стартуя с произвольного вектора $v \in V$ при помощи усреднения по группе мы построили вектор инвариантный относительно группы.

Теперь вернемся к нашей теореме. Чтобы построить инвариантное дополнение к $U_1 \subset V$ мы построим проектор P на U_1 , инвариантный относительно действия группы. Тогда в качестве U_2 можно будет взять ядро P. Для того, чтобы построить такой P, возьмем сначала P_0 — какой-то проектор на U_1 , напомним, что эти слова означают, что $P_0^2 = P_0$, $\operatorname{Im} P_0 = U_1$. Тогда P определяется при помощи усреднения:

$$P = \frac{1}{|G|} \sum_{g \in G} \rho(g) P_0 \rho(g^{-1}).$$

Тогда легко проверить, что P — проектор на U_1 и $\rho(h)P = P\rho(h)$. Значит $U_2 = \operatorname{Ker} P$ является инвариантным дополнением к U_1 . \blacksquare

Естественно хотеть выбрать в качестве U_2 ортогональное дополнение к U_1 . На самом деле так можно сделать при удачном выборе скалярного произведения, мы обсудим это на следующей лекции.

Определение 5. Представление V называется nenpusodumum, если у него нет подпредставлений отличных от 0 и V.

Ясно, что любое одномерное представление неприводимо. Другим примером неприводимого представления является U_2 , можно проверить, что в нем нет одномерных инвариантных подпространств.

Теорема 3 (Машке). Любое конечномерное комплексное представление V конечной группы G разлагается в прямую сумму неприводимых представлений $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$.

Теорема легко следует из теоремы 2. Если V неприводимо, то все уже доказано. Если нет, то найдем подпредставление $U_1 \subset V$ тогда ему есть дополнительное U_2 .

Если они оба неприводимы, то $V = U_1 \oplus U_2$, если нет, то будем их разлагать дальше пока не приведем все V к сумме неприводимых.

Примеры

1. Пусть $G = C_n$ циклическая группа, как обычно обозначим ее образующую через r. Любое представление C_n задается образом $\rho(r)$, который должен удовлетворять условию $\rho(r)^n = E$. Отсюда следует, что матрица $\rho(r)$ диагонализируема и ее собственные значения равны $\sqrt[n]{1}$.

Так как различных комплексных $\sqrt[n]{1}$ существует n, то у группы C_n есть n различных неприводимых представления Обозначим эти представления R_j , $0 \le j \le n-1$, в представлении R_j элемент r^m переходит в $\exp(\frac{2pi}{n}mj)$.

Любое представление C_n разлагается в сумму представлений R_j . Точнее, если оператор $\rho(r)$ имеет a_0 собственных значений равных $1, \ a_1$ собственных значений равных $e^{\frac{2\pi i}{n}}, \ldots, \ a_{n-1}$ собственных значений равных $e^{\frac{2\pi i}{n}(n-1)}$, то $R = R_0^{\oplus a_0} \oplus R_1^{\oplus a_1} \oplus \ldots R_{n-1}^{\oplus a_{n-1}}$.

2. Пусть $G = S_3$, найдем все ее одномерные представления. Любая транспозиция имеет порядок 2, значит должна переходить либо в 1, либо в -1. Так как тройной цикл имеет порядок 3, то он должен перейти в $\sqrt[3]{1}$, но он равен произведению транспозиций. Значит, единственная возможность, если тройные циклы перейдут в 1. Тогда все транспозиции должны перейти в одно и то же. Если они все переходят в 1, то это тривиальное представление. Если все переходят в -1, то это знаковое представление.

Предложение 4. В любом одномерном представлении $\varphi \colon G \to \mathbb{C}^*$ коммутант [G,G] лежит в ядре.

Доказательство. Коммутант порождается элементами вида $xyx^{-1}y^{-1}$. Так как \mathbb{C}^* абелева, то

$$\varphi(xyx^{-1}y^{-1}) = \varphi(x)\varphi(y)\varphi(x^{-1})\varphi(y^{-1}) = \varphi(x)\varphi(x^{-1})\varphi(y)\varphi(y^{-1}) = e,$$

а, значит и весь коммутант, лежит в ядре.

Определение 6. Пусть дано представление $\rho: G \to GL(V)$. Характером представления называется функция $\chi_V(g) = \text{Tr}(\rho(g))$, где Tr - это след матрицы.

Предложение 5. Характеры изоморфных представлений совпадают.

Доказательство Изоморфизм представлений в терминах матриц означает $\rho_1(g) = \phi \rho_2(g) \phi^{-1}$, т.е. матрицы $\rho_1(g)$ и $\rho_2(g)$ сопряжены, значит, их следа равны.

Домашнее задание

Решения задач 1-3 надо прислать или принести до начала лекции 14 марта. Решения задач 4-6 надо прислать или принести до начала лекции 28 марта. Помимо письменной сдачи надо быть готовым ответить на вопросы по решениям.

Упражнение 1. а) Регулярное представление C_3 задается матрицами

$$e \mapsto \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad r \mapsto \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad r^2 \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

Найдите инвариантные подпространства в этом представлении. Разложите их в сумму представлений R_i , описанных на лекции.

б) Найдите матрицу перехода φ которая приводит регулярное представление C_3 к сумме одномерных.

Задача 2. а) Докажите, что характеры сопряженных элементов равны.

- б) Задайте представление U_2 (из примера на лекции) матрицами. Например можно воспользоваться базисом $e_1 e_2, e_1 e_3$.
- в) Найдите характеры тривиального, перестановочного и регулярного представлений S_3 . Найдите характер представления U_2 .

Задача 3. а) Пусть R_{α} — вращение трехмерного пространства относительно некоторой оси на угол α . Найдите след матрицы R_{α} .

Пусть S_{α} — зеркальный поворот — композиция вращения трехмерного пространства относительно некоторой оси на угол α и отражения относительно плоскости перпендикулярной этой оси. Найдите след матрицы S_{α} .

- б) Мы знаем, что S_4 изоморфна группе $cummempu\ddot{u}$ $mempa \ni \partial pa$, поэтому каждому элементу S_4 можно сопоставить матрицу 3×3 . Это дает трехмерное представление $\rho_3 \colon S_4 \to GL(3)$. Найдите характер ρ_3 .
- в) Мы знаем, что S_4 изоморфна группе вращений куба, поэтому каждому элементу S_4 можно сопоставить матрицу 3×3 . Это дает трехмерное представление $\rho_4 \colon S_4 \to GL(3)$. Найдите характер ρ_4 .

Задача 4. а) Докажите, что для любой группы G коммутант является нормальной подгруппой.

б)* Докажите, что фактор по коммутанту является коммутативной группой.

Задача 5. а) Найдите все одномерные представления группы S_n .

б)* Докажите, что коммутант S_n это A_n .

Указание: докажите, что любой тройной цикл лежит в коммутанте, а, далее, докажите, что тройные циклы порождают A_n .

Задача 6. * а) Проверьте, что для матриц A(g), B(g), C(g) и матрицы S, введенной в доказательстве Теоремы 2, выполнено свойство

$$\begin{pmatrix} 1 & S \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A(h) & B(h) \\ 0 & D(h) \end{pmatrix} \begin{pmatrix} 1 & -S \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} A(h) & 0 \\ 0 & D(h) \end{pmatrix}$$

для любого $h \in G$. Указание: воспользуйтесь соотношениями на матрицы A, B, C. Также надо будет делать замену переменной в сумме.

б) Проверьте, что формула для S получается конструкцией усредения из второго способа в доказательстве Теоремы 2, примененной к проектору $P_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.