<u>עיבוד אותות – עבודת מטלב 1</u>

מגישים:

ניר שניידר 316098052 אלמוג בודנר 315325654

<u>שאלה 1 – דגימה ושחזור:</u>

:א) גרף האות (x(t) בזמן

:x(t) הערך המוחלט של

$:|X^F(w)|$ גרף האמפליטודה של

ב)

```
: X [w) , X(t) [e n) "NOD (NOD) (Ω (NOD) (NOD) (Ω (NOD) (Ω (NOD) (NOD)
```

ג) ניתן לראות מסעיף קודם כי x(t) הינו אות חסום סרט בעל תדר מקסימלי $w_{max} = 5*w_m = 15\pi$

 T_s נרצה זמן מחזור לדגימה שיאפשר שחזור ללא שגיאות. ניקח את להיות מינימלי, כלומר את w_s להיות מקסימלי. נדגום לפי תדר נייקויסט מבטיח שלא יהיה aliasing:

$$w_s = 2w_{max} = 30\pi$$
$$T_s = \frac{2\pi}{w_s} = \frac{1}{15}$$

 $:x_{ZOH}(t)$ וכך קיבלנו את האות בנקודות $T=nT_s$ וכך

$$X_{20H}(\pm) = \sum_{n=-\infty}^{\infty} \sum_{x \in \mathbb{Z}} X(n\tau) \cdot \prod \left(\pm \frac{-\tau_2}{\tau} - \lambda t \right) = \sum_{n=-\infty}^{\infty} \sum_{x \in \mathbb{Z}} X(n\tau) \cdot \left[\delta(t - n\tau) \cdot \prod \left(\pm \frac{-\tau_2}{\tau} \right) \right] = \\ = \left(\sum_{n=-\infty}^{\infty} \sum_{x \in \mathbb{Z}} X(n\tau) \cdot \delta(t - n\tau) \right) * \prod \left(\pm \frac{-\tau_2}{\tau} \right) \\ = \left(\sum_{n=-\infty}^{\infty} \sum_{x \in \mathbb{Z}} X(n\tau) \cdot \delta(t - n\tau) \right) * \prod \left(\pm \frac{-\tau_2}{\tau} \right) \\ X_{20H}(w) = \sum_{n=-\infty}^{\infty} \sum_{x \in \mathbb{Z}} X(n\tau) \cdot \sum_{n=-\infty}^{\infty} \sum_{x \in \mathbb{Z}$$

הגרף של התמרת פורייה של האות המשוחזר ע"פ *ZOH*:

 $X_{rec}(jw)$ ונקבל את ונקבל H(jw) דרך המסנן $X_{ZOH}(jw)$ דרך את האות ע"ע"ל ע"ל התמרת פורייה הפוכה נמצא את $X_{rec}(t)$ נציגו על גרף יחד עם $X_{rec}(t)$

ניתן לראות שקיבלנו שחזור מושלם מכיוון שדגמנו בתדר נייקוויסט. קיימנו את התנאים לדגימה ושחזור אידיאליים וקיבלנו את התוצאה הצפויה. ו) ראינו מהסעיפים הקודמים שהתדר המינימלי לדגימה ושחזור אידיאליים הוא $10w_m$, נדגום כעת את האות בתדר נמוך מתדר זה וכך למעשה תנאי נייקוויסט לא יתקיים.

כצפוי יש שגיאות בגרף.

שאלה 2 – דגימה לא אחידה של אות מחזורי:

בנפרד 3 $\sin{(4\pi t)}$ ושל 5 $\cos{(7\pi t)}$ בנפרד (בדוק את זמן המחזור של ונמצא את הזמן המינימלי שהוא כפולה של שניהם:

זמן –
$$5\cos(7\pi t)=5\cos(7\pi t+2\pi)=5\cos(7\pi\left(t+\frac{2}{7}\right))$$
 מחזור מינימלי $T=\frac{2}{7}$

זמן מחזור –
$$3\sin(4\pi t)=3\sin(4\pi t+2\pi)=3\sin(4\pi t)$$
 אינימלי – $3\sin(4\pi t)=3\sin(4\pi t)$ אינימלי – $3\sin(4\pi t)=3\sin(4\pi t)$

נסיק כי *T=2* הוא זמן המחזור המינימלי המשותף.

 $x_s(t)$ והאות הדגום x(t) והאות האות האות בגרף הבא נציג את האות המקורי

נדרשות 15 נקודות דגימה מכיוון שהפונקציות סינוס וקוסינוס הן הזזות בתרה אינ בתדר ולכן נוכל להסיק כי x(t) חזום חסר ע"י $w_m=w_A=7\pi$. כדי לשחזר את x(t) מדגימותיו נרצה שתנאי נייקוויסט יתקיים - $x_s>2w_m$ מהקשר $x_s=\frac{2m}{T}$ ע"מ לשחזר את האות, וכיוון שזמן מחזור הוא 2 נדרוש לפחות 15 נקודות דגימה.

ב) המטריצה F תיראה מהצורה:

$$\begin{pmatrix} e^{-jm\omega_0t_0} & \cdots & e^{jm\omega_0t_0} \\ \vdots & \ddots & \vdots \\ e^{-jm\omega_0t_{N-1}} & \cdots & e^{jm\omega_0t_{N-1}} \end{pmatrix}$$

 $1 \leq i \leq N$, $F_{i,k} = e^{k(k-m-1)w_0t_{i-1}}$ כאשר הנוסחה לאיבר הכללי היא מספר השורה

. מספר העמודה $1 \le j \le 2M + 2$

כדי למצוא את וקטור α נפתור את המשוואה x=FA ונפריד לשני מקרים:

- a= המטריצה F ריבועית ולכן נוכל לפתור ע"י הכפלה בהופכי שלה F^{-1}_{χ}
- least square נקבל מטריצה לא ריבועית ונפתור ע"י N>2M+a $a=(F^HF)^{-1}F^HX$

עבור N נקודות הדגימה מסעיף קודם ובהנחה ש-F ריבועית נקבל קי וקטור : a ,x

1	2.5000 - 0.0000i
2	-9.7145e-16 - 1.0408e-15i
3	1.1657e-15 + 3.6082e-16i
4	-0.0000 - 1.5000i
5	5.4123e-16 - 8.3267e-16i
6	4.1633e-17 + 3.0392e-15i
7	-1.3739e-15 + 9.5063e-16i
8	-9.9920e-16 + 3.7267e-16i
9	-1.3461e-15 + 3.8858e-16i
10	1.3878e-17 - 2.9282e-15i
11	-9.7145e-17 + 3.8858e-16i
12	0.0000 + 1.5000i
13	1.4017e-15 + 1.0270e-15i
14	-2.2066e-15 + 1.5821e-15i
15	2.5000 + 0.0000i

$x_{rec}(t)$ והאות הדגום x(t) והאות האות האות גיג את בגרף הבא נציג את האות המקורי

קיבלנו שחזור מושלם.

:ד) נדגום בצורה רנדומלית את x(t) ונקבל

נחשב את מקדמי פורייה בדומה לסעיף ב', רק שכעת הדגימה הינה רנדומלית. ערכי הוקטור *a* שנקבל הם:

1	2.5000 + 0.0000i	
2	-9.9476e-14 + 2.2737e-13i	
3	-1.7053e-13 + 1.9895e-12i	
4	-0.0000 - 1.5000i	
5	-4.5475e-13 + 1.2506e-12i	
6	1.8190e-12 + 1.5348e-12i	
7	-1.1369e-12 + 1.7621e-12i	
8	2.2737e-12 + 9.8317e-13i	
9	3.4106e-12 + 3.4106e-13i	
10	2.9559e-12 - 2.0464e-12i	
11	6.8212e-13 - 2.1600e-12i	
12	-0.0000 + 1.5000i	
13	3.1264e-13 - 2.2737e-12i	
14	-1.4211e-13 - 5.9686e-13i	
15	2.5000 - 0.0000i	

 $x_{rec-rand}(t)$ ושל גרף האות המשוחזר מהדגימה הלא אחידה x(t) ושל גרף האות המשוחזר

נשים לב שעל אף שהדגימה אינה אחידה קיבלנו שחזור מושלם מכיוון שכדי לקבל שחזור מושלם יש לפתור 15 משוואות בת"ל. כל 15 המשוואות הן חלק ממחזור אחד של האות ולכן נקבל ערכי דגימה בת"ל. נזהר לא לדגום באותה נקודה פעמיים ע"מ שאכן המשוואות יהיו בת"ל אחת לשנייה ולא נוכל להשתמש בשיטה זו.

ה) נחזור על סעיפים א' – ד' כאשר נוסיף רעש אקראי למטריצה *-* α ע"י מטלב נקבל את וקטור מקדמי הפורייה

דגימה אחידה דגימה לא אחידה

1	2.5000 - 0.0000i
2	-7.1054e-15 - 2.8422e-14i
3	-7.1054e-14 - 5.6843e-14i
4	-0.0000 - 1.5000i
5	-2.8422e-14 - 3.5527e-14i
6	0.0000e+00 - 1.4211e-14i
7	-7.1054e-14 + 1.1369e-13i
8	-1.7053e-13 - 1.5215e-13i
9	1.5632e-13 + 2.8422e-14i
10	-5.6843e-14 + 4.2633e-14i
11	4.2633e-14 + 2.1316e-14i
12	0.0000 + 1.5000i
13	-2.8422e-14 - 2.8422e-14i
14	2.1316e-14 - 2.8422e-14i
15	2.5000 - 0.0000i

1	2.5000 - 0.0000i
2	1.9151e-15 + 6.5226e-16i
3	-8.3961e-16 - 6.1062e-16i
4	0.0000 - 1.5000i
5	-2.5674e-16 + 4.8572e-16i
6	-1.5266e-15 - 1.2351e-15i
7	8.8818e-16 + 3.6776e-16i
8	-5.5511e-17 + 5.6962e-16i
9	8.1879e-16 - 2.4286e-16i
10	5.8287e-16 + 1.0408e-15i
11	5.9674e-16 - 4.4409e-16i
12	0.0000 + 1.5000i
13	-1.5613e-15 + 6.8001e-16i
14	4.3021e-16 - 1.0131e-15i
15	2.5000 + 0.0000i

גרף המתאר את האות המקורי (x(t), נקודות הדגימה ($x_s(t)$, והאות המשוחזר גרף המתאר $x_{rect}(t)$ least square ע"י שיטת

■ דגימה אחידה:

• דגימה לא אחידה:

עבור דגימה F של (CN שמכאן והלאה נקראה שמכאן) condition number אחידה הוא 1.

1.4e+03 של דגימה לא אחידה הוא CN-

1.115 של דגימה אחידה עם רעש הוא CN-ה

1.7e+03 של דגימה לא אחידה עם רעש הוא CN-ה

ה-CN מספר המצב של המערכת מתאר את היחס בים השגיאה היחסית במוצא F לשגיאה היחסית בקלט. לפיכך ניתן לראות כי עבור דגימה אחידה המטריצה לשגיאה היחסית בקלט. לפיכך ניתן לראות כי עבור דגימה אחידה הינו מושלם. C>>1 בקושי רגישה לרעשים F מאוד רגישה לרעשים (C>>1) ולכן לא הצלחנו לשחזר את האות המקורי.

ו) נחזור על סעיף ה' רק עם 40 דגימות עבור דגימה לא אחידה. וקטור מקדמי הפורייה :a

1	2.4880 + 0.2685i
2	0.0111 + 0.0134i
3	0.0288 + 0.0313i
4	0.1177 - 1.4937i
5	-0.0142 + 0.0257i
6	0.0346 - 0.0147i
7	0.0191 + 0.0270i
8	0.0469 - 0.0000i
9	0.0191 - 0.0270i
10	0.0346 + 0.0147i
11	-0.0142 - 0.0257i
12	0.1177 + 1.4937i
13	0.0288 - 0.0313i
14	0.0111 - 0.0134i
15	2.4880 - 0.2685i

 $x_{s-rand}(t)$ גרף המתאר את האות המקורי x(t), נקודות הדגימה הלא אחידות $x_{rect-rand}(t)$ least square והאות המשוחזר ע"י שיטת

. 2.99 של מטריצת המקדמים F עבור דגימה לא אחידה הוא CN-ה

עבור דגימה לא אחידה עם רעש הוא CN-ה.

נשים לב כי כעת קיבלנו מספר נמוך יותר בכ-3 סדרי גודל כאשר אנו דוגמים עם 40 נקודות דגימה ולא 15. בנוסף, ניתן להבחין מהגרף כי קיבלנו שחזור קרוב לאות המקורי.

התוצאה אכן הגיונית מכיוון שהצפייה היא שהיכולת לשחזר את האות המקורי, גם עבור דגימות אקראיות, תגדל עבור מספר גדול יותר של נקודות דגימה של האות באותו זמן מחזור.

שאלה 3 – דגימה ואנליזה פונקציונאלית

```
Function C = coff(vec,Mat,T)
    [m,n]=size(Mat);
    t=linspace(0,T,m);
    complex=conj(Mat);

for i=1:n

    M(i)=(trapz(t,(vec.').*(complex(:,i).'))) ./ (trapz(t,(Mat(:,i).').*(complex(:,i).')));
end
    C=M';
end
```

. וקטור עמודה המכיל ערכים ממחזור אחד של האות בזמן רציף. – vec

שהמטריצה – מטריצה המכילה בכל שורה פונקציית בסיס אחת כף שהמטריצה – *Mat* מייצגת סט אחד של פונקציות.

. זמן מחזור -T

Ψ_n ב) מקדמי ההטלה עבור פונקציית הבסיס

C_n	g(t)	f(t)
0	-2.0051	4.4136
1	-2.0202	2.979
2	-2.0202	-0.643
3	-4.7273	-2.979
4	-6.0606	-3.1367
5	1.9394	-3.1367
6	3.3535	-2.979
7	6.0606	-0.643
8	6.0606	2.979
9	6.0606	4.227
10	-5.9394	3.1367
11	-6.0606	1.693
12	-6.0606	0.643
13	-3.3535	-1.693
14	-2.0202	-4.4227
15	5.9798	-4.4227

16	4.7273	-1.693
17	2.0202	0.643
18	2.0202	1.693
19	2.0152	3.1244

המקדמים מתאימים לנקודות בהם האות אינו מתאפס. מקדמי ההטלה עבור פונקציית הבסיס Φ_n :

C_n	g(t)	f(t)
-20	-0.001	0
-19	-0.005 + 0.0024i	0
-18	0.015 + 0.2826i	0
-17	-0.005 - 0.0022i	0
-16	-0.001	0
-15	-0.005 + 0.0254i	0
-14	0.015 + 0.3632i	0
-13	-0.005 + 0.0024i	0
-12	- 0.001	0
-11	-0.005 - 0.0022i	0
-10	0.015 + 0.5091i	0
-9	-0.005 - 0.4244i	0
-8	-0.001	0
-7	0.015 + 0.2826i	0
-6	0.015 + 0.2826i	0
-5	0.015 + 0.2826i	- 0.5 <i>i</i>
-4	-0.001	0
-3	-0.005 - 1.2732i	0
-2	0.015 + 2.5464i	2
-1	-0.005 + 0.0023i	0

C_n	g(t)	f(t)
0	-0.001	0
1	-0.005 + 0.0023i	0
2	0.015 + 2.5464i	2
3	-0.005 - 1.2732i	0
4	-0.001	0
5	-0.005 + 0.0023i	0.5 <i>i</i>
6	0.015 - 0.8487i	0
7	-0.005 - 0.0023i	0
8	-0.001	0
9	-0.005 + 0.4244i	0
10	0.015 - 0.5091i	0
11	-0.005 + 0.0022i	0
12	- 0.001	0
13	-0.005 - 0.0024i	0
14	0.015 – 0.3635 <i>i</i>	0
15	-0.005 + 0.2546i	0
16	-0.001	0
17	-0.005 + 0.0022i	0
18	0.015 - 0.2826i	0
19	-0.005 - 0.0024i	0
20	-0.001	0

הוא גל ריבועי ולכן הוא מקבל את כל התדרים, כלומר כל המקדמים g(t) שלו שונים מאפס.

מנגד f(t) היא הרכבת פונקציות טריגונומטריות בעלות מספר סופי של של הרמוניות ולכן רוב המקדמים מתאפסים.

ג) נשחזר את שתי הפונקציות ע"י שני הסטים של פונקציות הבסיס.

:השחזור של f(t) מההטלה על Φ_n מההטלה לו

:השחזור של g(t) מההטלה על Φ_n שחזור לא מושלם

:השחזור של f(t) מההטלה על שחזור לא מושלם

:השחזור של g(t) מההטלה על ψ_n מההטלה שלם

לא קיבלנו שחזור מדויק עבור כל המקרים מכיוון שכאשר נרצה לשחזר פונקציה אנו צריכים להשתמש בסט פונקציות הבסיס שפורשות אותה.

בשחזור של g(t) מההטלה על Φ_n , עבור אינסוף נקודות דגימה נקבל אינסוף מקדמים ואז השחזור יהיה שווה לטור פורייה של g(t) כאשר ההטלות הן מקדמי פורייה והאקספוננטים הם פונקציות הבסיס. כלומר, כדי לשפר את הדיוק נגדיל את מספר הדגימות.

בשחזור של f(t) מההטלה על ψ_n , לא ניתן לקבל שחזור מדויק יותר ע"י הוספת מקדמים מכיוון שבהוספת מקדמים אנו מוסיפים חלונות מוזזים שלא יתרמו להתקרבות לפונקציה באופן יותר מדויק. במידה והיינו יכולים להצר את רוחב החלונות אז ע"י כך היינו יכולים להפוך את השחזור ליותר מדויק.

(T

- עבור האות f(t) בסיס Φ_n עדיף.
- עדיף. ψ_n בסיס g(t) עדיף. •
- היתרונות בדגימה ושחזור ע"י Φ_n הן שניתן להוסיף מקדמים ובכך לשפר את רמת הדיוק של השחזור. כמו כן, בסיס זה טוב לפונקציות מחזוריות.
 - החסרונות של בסיס זה הן שהוא פחות יעיל לשחזור פונקציות עם שינויים חדים.
 - היתרונות בדגימה ושחזור ע"י ψ_n הן שניתן לשחזר פונקציות עם שינויים חדים (מדרגות למשל). החסרונות של בסיס זה הן שהוספת מקדמים לא תשפר את רמת הדיוק של שחזור האות.
- יערך האות נשמר עד הדגימה הבאה ואילו *ZOH-* השימוש אינו זהה. ב- ψ_n נחזיק את הערך הממוצע בין שתי הדגימות.