Hybrid Electric Vehicles (HEV)

Automatic Control Systems

Yasser Mohamed Abd Algawad ID/20012206

Simulink Model For the original System

Input Sin Scope

Output Signal (Step Response)

The Response of the Car Speed to the input

The Response of the motor armature current to the input

Obtaining the transfer function from Simulink

Name: Linearization at model initial condition Continuous-time transfer function.

Obtaining the transfer function using MATLAB

```
%Constants // Static gains
 2 -
       Kcs = 0.5;
      Kss = 0.0433;
 3 -
      Jtot = 7.226;
 4 -
      Ra = 1;
      Kf = 0.1;
 6 -
      Kb = 2;
 7 -
 8 -
       R = 0.0615; %Ratio betwn r/itot
       PRE = 0.6154;
10 -
      Last = 1.8;
12 -
      D = tf(Kf*1/R);
13 -
     K_b = tf(Kb*1/R);
14 -
      K_ss = tf(Kss*1/R);
15
16 -
       G1 = tf(R, [Jtot, 0]);
       G2 = tf(PRE);
17 -
18
19 -
       GD_2 = parallel(D,G2);
20
21 -
       G3 = feedback(G1,GD 2);
22
23 -
      G Last = tf(Last);
24
25 -
      G4 = series(G_Last,G3);
26
27 -
      K_CS = Kcs/G4;
28
29 -
       G5 = feedback(G4, K_b);
       Ka\_GTC = tf([10 6], [1 0]);
30 -
31 -
       G6 = series(G5, Ka GTC);
32
33 -
      G7 = feedback(G6,K CS);
34
35 -
       Gsc = tf([100 \ 40], [1 \ 0]);
36 -
       G8 = series(G7,Gsc);
37
38 -
       system = feedback(G8,K_ss);
39
40
       %Total System transfere function
       SYSTEM TF = tf(system)
41 -
42
```

The transfer function would be the same if we normalized it dividing the numerator and denominator by 4.8.