

Contents lists available at ScienceDirect

## Physics Letters B

www.elsevier.com/locate/physletb



# Search for supersymmetric partners of electrons and muons in proton–proton collisions at $\sqrt{s} = 13 \,\text{TeV}$



The CMS Collaboration \*

CFRN Switzerland

#### ARTICLE INFO

Article history: Received 13 June 2018 Received in revised form 15 December 2018 Accepted 7 January 2019 Available online 16 January 2019 Editor: M. Doser

Keywords: CMS Physics SUSY

#### ABSTRACT

A search for direct production of the supersymmetric (SUSY) partners of electrons or muons is presented in final states with two opposite-charge, same-flavour leptons (electrons and muons), no jets, and large missing transverse momentum. The data sample corresponds to an integrated luminosity of 35.9 fb<sup>-1</sup> of proton-proton collisions at  $\sqrt{s} = 13 \text{ TeV}$ , collected with the CMS detector at the LHC in 2016. The search uses the  $M_{T2}$  variable, which generalises the transverse mass for systems with two invisible objects and provides a discrimination against standard model backgrounds containing W bosons. The observed yields are consistent with the expectations from the standard model. The search is interpreted in the context of simplified SUSY models and probes slepton masses up to approximately 290, 400, and 450 GeV, assuming right-handed only, left-handed only, and both right- and left-handed sleptons (mass degenerate selectrons and smuons), and a massless lightest supersymmetric particle. Limits are also set on selectrons and smuons separately. These limits show an improvement on the existing limits of approximately 150 GeV. © 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

#### 1. Introduction

The standard model (SM) of particle physics provides a description of the fundamental particles and their interactions, and its predictions have been confirmed experimentally with increasing precision over the last several decades. Supersymmetry (SUSY) [1-8], one of the most promising extensions of the SM, addresses several open questions for which the SM has no answer, such as the hierarchy problem and the origin of dark matter. The theory postulates a new fundamental symmetry that assigns to each SM particle a SUSY partner whose spin differs by one half, causing the SUSY partner of an SM fermion (boson) to be a boson (fermion). In addition to stabilising the Higgs boson (H) mass via cancellations between quantum loop corrections including the top quark and its superpartner, SUSY provides a natural dark matter candidate, if R-parity [9] is conserved, in the form of the lightest SUSY particle (LSP), which is assumed to be massive and stable.

SUSY particles (sparticles) that are coloured, the squarks and gluinos, are produced via the strong interaction with significantly larger cross sections than colourless sparticles of equal masses, at the Large Hadron Collider (LHC). However, if the squarks and gluinos are too heavy to be produced at the LHC, the direct production of colourless sparticles, such as the electroweak superpartners

Supersymmetric models predict charged sleptons ( $\tilde{e}_L$ ,  $\tilde{\mu}_L$ ,  $\tilde{\tau}_L$ ,  $\widetilde{e}_R$ ,  $\widetilde{\mu}_R$ ,  $\widetilde{\tau}_R$ ), the superpartners of the charged left-handed and right-handed SM leptons, which can be produced at proton-proton (pp) colliders in direct electroweak pair production. At sufficiently heavy slepton masses, the sleptons undergo a two-body decay into one of the heavier neutralinos or a chargino, while direct decays to a neutralino LSP are favoured for light slepton masses. This Letter presents a search for directly produced selectrons and smuons  $(\tilde{e}_L,$  $\widetilde{\mu}_L$ ,  $\widetilde{e}_R$ ,  $\widetilde{\mu}_R$ ), under the assumption of direct decays  $\widetilde{\ell} \to \ell \widetilde{\chi}_1^0$  with 100% branching ratio, as sketched in Fig. 1. The final state contains little or no hadronic activity and provides a clean signature composed of two opposite-charge (OC), same-flavour (SF) leptons



Fig. 1. Diagram of slepton pair production with direct decays into leptons and the lightest neutralino.

<sup>(</sup>charginos  $(\widetilde{\chi}_1^\pm)$ , neutralinos  $(\widetilde{\chi}_2^0)$ , and sleptons  $(\widetilde{\ell})$ ), would be the dominant observable SUSY process.

<sup>\*</sup> E-mail address: cms-publication-committee-chair@cern.ch.

and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the "Excellence of Science - EOS" - be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület ("Momentum") Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Centre (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

#### References

- P. Ramond, Dual theory for free fermions, Phys. Rev. D 3 (1971) 2415, https://doi.org/10.1103/PhysRevD.3.2415.
- [2] Y.A. Gol'fand, E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of P invariance, JETP Lett. 13 (1971) 323, URL: http://www.jetpletters.ac.ru/ps/1584/article\_24309.pdf.
- [3] A. Neveu, J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86, https://doi.org/10.1016/0550-3213(71)90448-2.
- [4] D.V. Volkov, V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438, URL: http://www.jetpletters.ac.ru/ps/1766/article\_26864.pdf.
- [5] J. Wess, B. Zumino, A Lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52, https://doi.org/10.1016/0370-2693(74) 90578-4.
- [6] J. Wess, B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B 70 (1974) 39, https://doi.org/10.1016/0550-3213(74)90355-1.
- [7] P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104, https://doi.org/ 10.1016/0550-3213(75)90636-7.
- [8] H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep. 110 (1984) 1, https://doi.org/10.1016/0370-1573(84)90008-5.

- [9] G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575, https://doi.org/10.1016/0370-2693(78)90858-4.
- [10] D. Alves, et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005, https://doi.org/10.1088/0954-3899/39/10/105005, arXiv: 1105.2838.
- [11] CMS Collaboration, Interpretation of searches for supersymmetry with simplified models, Phys. Rev. D 88 (2013) 052017, https://doi.org/10.1103/PhysRevD. 88 052017, arXiv:1301.2175
- [12] ATLAS Collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS detector, J. High Energy Phys. 05 (2014) 071, https://doi.org/10.1007/JHEP05(2014)071, arXiv:1403.5294.
- [13] CMS Collaboration, Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036, https://doi.org/10.1140/epjc/s10052-014-3036-7, arXiv:1405.7570.
- [14] ATLAS Collaboration, Search for electroweak production of supersymmetric particles in final states with two or three leptons at  $\sqrt{s} = 13 \text{ TeV}$  with the ATLAS detector, arXiv:1803.02762.
- [15] ATLAS Collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at  $\sqrt{s} = 13$  TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 052010, https://doi.org/10.1103/PhysRevD. 97.052010, arXiv:1712.08119.
- [16] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, https://doi.org/10.1088/1748-0221/3/08/S08004.
- [17] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079, https://doi.org/10.1007/JHEP07(2014)079, arXiv:1405.0301.
- [18] M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930, https://doi.org/10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
- [19] M. Grazzini, S. Kallweit, D. Rathlev, M. Wiesemann, W<sup>±</sup>Z production at the LHC: fiducial cross sections and distributions in NNLO QCD, J. High Energy Phys. 05 (2017) 139, https://doi.org/10.1007/JHEP05(2017)139, arXiv: 1703.09065.
- [20] F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini, D. Rathlev, L. Tancredi, E. Weihs, ZZ production at hadron colliders in NNLO QCD, Phys. Lett. B 735 (2014) 311, https://doi.org/10.1016/j.physletb.2014.06.056, arXiv:1405.2219.
- [21] F. Caola, K. Melnikov, R. Röntsch, L. Tancredi, QCD corrections to ZZ production in gluon fusion at the LHC, Phys. Rev. D 92 (2015) 094028, https://doi.org/10. 1103/PhysRevD.92.094028, arXiv:1509.06734.
- [22] J.M. Campbell, R.K. Ellis, M. Czakon, S. Kirchner, Two loop correction to interference in gg → ZZ, J. High Energy Phys. 08 (2016) 011, https://doi.org/10.1007/JHEP08(2016)011, arXiv:1605.01380.
- [23] T. Binoth, G. Ossola, C.G. Papadopoulos, R. Pittau, NLO QCD corrections to triboson production, J. High Energy Phys. 06 (2008) 082, https://doi.org/10.1088/ 1126-6708/2008/06/082, arXiv:0804.0350.
- [24] D.T. Nhung, L.D. Ninh, M.M. Weber, NLO corrections to WWZ production at the LHC, J. High Energy Phys. 12 (2013) 096, https://doi.org/10.1007/JHEP12(2013) 096, arXiv:1307.7403.
- [25] S. Yong-Bai, Z. Ren-You, M. Wen-Gan, L. Xiao-Zhou, Z. Yu, G. Lei, NLO QCD + NLO EW corrections to WZZ productions with leptonic decays at the LHC, J. High Energy Phys. 10 (2015) 186, https://doi.org/10.1007/JHEP10(2015)186, arXiv:1507.03693, Erratum: https://doi.org/10.1007/JHEP10(2016)156.
- [26] W. Hong, Z. Ren-You, M. Wen-Gan, G. Lei, L. Xiao-Zhou, W. Shao-Ming, NLO QCD+EW corrections to ZZZ production with subsequent leptonic decays at the LHC, J. Phys. G 43 (2016) 115001, https://doi.org/10.1088/0954-3899/43/11/115001, arXiv:1610.05876.
- [27] S. Yong-Bai, R.-Y. Zhang, W.-G. Ma, X.-Z. Li, L. Guo, NLO QCD and electroweak corrections to WWW production at the LHC, Phys. Rev. D 95 (2017) 073005, https://doi.org/10.1103/PhysRevD.95.073005, arXiv:1605.00554.
- [28] S. Dittmaier, A. Huss, G. Knippen, Next-to-leading-order QCD and electroweak corrections to WWW production at proton-proton colliders, J. High Energy Phys. 09 (2017) 034, https://doi.org/10.1007/JHEP09(2017)034, arXiv:1705. 03722.
- [29] W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Production of charginos, neutralinos, and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780–3783, https://doi.org/10.1103/PhysRevLett.83.3780.
- [30] B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Gaugino production in protonproton collisions at a center-of-mass energy of 8 TeV, J. High Energy Phys. 10 (2012) 081, https://doi.org/10.1007/JHEP10(2012)081, arXiv:1207.2159.
- [31] B. Fuks, M. Klasen, D.R. Lamprea, M. Rothering, Precision predictions for electroweak superpartner production at hadron colliders with RESUMMINO, Eur. Phys. J. C 73 (2013) 2480, https://doi.org/10.1140/epjc/s10052-013-2480-0, arXiv:1304.0790.

A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin<sup>37</sup>, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

V. Blinov <sup>38</sup>, T. Dimova <sup>38</sup>, L. Kardapoltsev <sup>38</sup>, D. Shtol <sup>38</sup>, Y. Skovpen <sup>38</sup>

Novosibirsk State University (NSU), Novosibirsk, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

State Research Center of Russian Federation, Institute for High Energy Physics of NRC "Kurchatov Institute", Protvino, Russia

## A. Babaev, S. Baidali

National Research Tomsk Polytechnic University, Tomsk, Russia

P. Adzic<sup>39</sup>, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

## C. Albajar, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Universidad de Oviedo, Oviedo, Spain

- I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca,
- A. García Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero,
- P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno,
- L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

- D. Abbaneo, B. Akgun, E. Auffray, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci,
- C. Botta, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d'Enterria,
- A. Dabrowski, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, T. du Pree, M. Dünser,
- N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita 40, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk,
- D. Gigi, A. Gilbert, K. Gill, F. Glege, D. Gulhan, J. Hegeman, V. Innocente, A. Jafari, P. Janot,
- O. Karacheban <sup>17</sup>, J. Kieseler, A. Kornmayer, M. Krammer <sup>1</sup>, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri,
- M. Mannelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic 41, F. Moortgat, M. Mulders,
- J. Ngadiuba, S. Orfanelli, L. Orsini, F. Pantaleo 14, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani,
- A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi <sup>42</sup>, M. Rovere, H. Sakulin,
- C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas <sup>43</sup>, A. Stakia, J. Steggemann, M. Tosi, D. Treille, A. Tsirou, V. Veckalns <sup>44</sup>, W.D. Zeuner

101. 1031, D. 11cmc, A. 13110d, V. Veckams , VV.D. 201

CERN, European Organization for Nuclear Research, Geneva, Switzerland