$1 \quad {\rm Ridge} \ {\rm Regression}(2.1)$

Upon running the ridge regression on the provided data set, we get the best performance (low cost) on $\lambda = 0.01$ as can be seen both in the table below and in the graph from various values of λ .

	param_l2reg	mean_test_score	mean_train_score
0	0.000001	0.172579	0.006752
1	0.000010	0.172464	0.006752
2	0.000100	0.171345	0.006774
3	0.001000	0.162705	0.008285
4	0.010000	0.141887	0.032767
5	0.100000	0.144566	0.094953
6	1.000000	0.171068	0.197694
7	1.300000	0.179521	0.216591
8	1.600000	0.187993	0.233450
9	1.900000	0.196361	0.248803
10	2.200000	0.204553	0.262958
11	2.500000	0.212530	0.276116
12	2.800000	0.220271	0.288422

 $\lambda - table$

 $\lambda-figure$

2 Ridge Regression(2.2)

The following figure plots the result from ridge regression, the target function, unregularized ridge regression, and the scatter of the data points we had.

prediction-table

coef-figure

3 Ridge Regression(2.3)

The confusion matrix follows:

Confusion matrix for the threshold of 10^-6 is:

[5 385] [0 10]

Confusion matrix for the threshold of 10^-3 is:

[8 382] [0 10]

Confusion matrix for the threshold of 0.01 is:

[53 337] [0 10]

Confusion matrix for the threshold of 0.1 is:

[349 41] [3 7]

trimmed-coefs

4 Shooting Algorithm(3.1.1)

In the matrix notation, the terms from the algorithm look as follows:

$$a_j = 2\sum_{i=1}^n x_{ij}^2$$
$$\Rightarrow a_j = 2X_{.j}^T X_{.j}$$

Similarly,

$$c_j = 2\sum_{i=1}^n x_{ij}(y_i - w^T x_i + w_j x_{ij})$$

$$\Rightarrow c_j = 2X_{.j}^T (y - Xw + w_j X_{.j})$$

5 Shooting Algorithm(3.1.2)

The code for Ishooting algorithm follows:

```
### Coordinate Descent:
def soft(a, c, l1reg):
   if not a == 0:
       sgn = np.sign(c/a)
       remain = max(0, abs(c/a) - (l1reg/a))
       final = sgn*remain
    elif a == 0:
       final = 0
    return final
def coordinate_descent(X, y, l1reg):
   # warm starting
   n, num_ftrs = X.shape
   one = np.identity(num_ftrs)
   w0 = ((X.transpose()).dot(X) + l1reg*one)
   inverse = np.linalg.inv(w0)
   w1 = inverse.dot(X.transpose())
   w = w1.dot(y)
   for i in range(1000):
        for j in range(num_ftrs):
           Xj = X[:,j]
            a = 2*np.dot(Xj, Xj.transpose())
           in\_val = y - X.dot(w) + w[j]*Xj
           c = 2*Xj.dot(in_val)
           w[j] = soft(a,c,l1reg)
   return w
def random_coordinate_descent(X, y, l1reg):
   n, num_ftrs = X.shape
   w0 = np.zeros(num_ftrs)
   for i in range(1000):
       rand_lst = np.arange(num_ftrs)
        np.random.shuffle(rand_list)
        for j in rand_lst:
           Xj = X[:,j]
           a = 2*np.dot(Xj, Xj.transpose())
           in\_val = y - X.dot(w) + w[j]*Xj
            c = 2*Xj.dot(in_val)
           w[j] = soft(a,c,l1reg)
    return w
```

The figures from the output from shooting algorithm are given below in the order of zero start, random start, and warm start.

The zero start seem to give a smooth prediction function with a lot of vertical and horizontal lines. Meanwhile, the randomized function return a much less smoother function that isn't always vertical or horizontal. And finally, warm start returns a relatively smooth function that isn't always vertical or horizontal.

zero-start

random-start

warm-start

6 Shooting Algorithm(3.1.3)

The table and graph for different values of λ for the lasso follows:

l1_val	cost
0.5	0.1752
0.7	0.1705
0.9	0.1681
1.1	0.1677
1.3	0.1673
1.5	0.1671
1.7	0.1672
1.9	0.1674
2.1	0.1678
2.3	0.1683

 $\lambda - table$

The table and the figure indicates that $\lambda=1.5$ is the optimum value.

Remark: The randomized shooting algorithm, as expected, randomly performs better than cyclical descent. Following is a lambda and cost graph for a randomized descent, which upon multiple run seems to give lowest cost for λ in range (1,2)

random-tuning

The best performing Lasso prediction function with optimized λ follows:

zero-start

Furthermore you can compare the coefficient values in the following figure:

7 Shooting Algorithm(3.1.4)

The validation loss against the decreasing λ value from homotopy is in the graph below:

As exepected the validation loss decreases as we go down from a large (330) value for λ and reaches minimum at around $\lambda=1.5$

8 Lasso properties (4.1.1)

To find,

$$f'(x;v) = \lim_{h \downarrow 0} \frac{f(x+hv) - f(x)}{h}$$

Note that, the first part of: $J(w) = \|Xw - y\|_2^2 + \lambda \|w\|_1$ is differentiable and thus has same one-sided derivative as the real derivative.

And we have also calculated the gradient of $\|Xw - y\|_2^2$ previously (in the first HW), which is:

$$\nabla J(w) = 2(X^T X w - X^T y)$$

So, the directional derivative w.r.t 'v' is just the dot productwith 'v':

$$\Rightarrow \nabla J(w).v = 2(X^TXw - X^Ty).v$$

$$\Rightarrow \nabla J(0).v = -2(X^Ty).v$$

And when w = 0 as the question asks,

As for the remaining non-differentiable part,

$$f' = \lim_{h \downarrow 0} \frac{\lambda \|w + hv\|_1 - \lambda \|w\|_1}{h}$$

And, when w = 0

$$\Rightarrow f' = \lim_{h \downarrow 0} \frac{\lambda \|hv\|_1}{h}$$

$$\Rightarrow f' = \lambda ||v||_1$$

Combining the derivative,

$$J'(0; v) = -2(X^T y).v + \lambda ||v||_1$$

9 Lasso properties (4.1.2)

To find: C s.t $\lambda \geq C$ We have,

$$J'(0; v) \ge 0$$

$$\Rightarrow -2(X^T y).v + \lambda ||v||_1 \ge 0$$

$$\Rightarrow \lambda \ge \frac{2(X^T y).v}{||v||_1}$$

$$\Rightarrow C = \frac{2(X^T y).v}{||v||_1}$$

10 Lasso properties (4.1.3)

Consider,

$$\lambda \ge \frac{2(X^T y).v}{\|v\|_1}$$

Here $\frac{v}{\|v\|_1}$ is a unit vector w.r.t l_1 norm. It is easy to see that a vector v that maximizes the lower bound for the λ for w=0 to be a optimum is the one that has zero everywhere but in the position with $Sup(2(X^Ty))$. We can argue by contradiction that, if not, the weight 1 of vector v will be distributed to other components smaller than $Sup(2(X^Ty))$, which is not the maximum possible value. So, if we consider such a v,

$$Sup[\frac{2(X^Ty).v}{\|v\|_1}] = 2Sup(X^Ty)$$

, where sup is the l_{∞}

$$\Rightarrow \lambda_{max} = 2|X^T y|_{\infty}$$

This can also be seen using the Holder's inequality too, but that would be a bot of an overkill. So, $\lambda \geq 2\|X^Ty\|_{\infty}$ implies, w=0 is the local minimum since $J'(0;v)\geq 0$ in all direction v.

11 Lasso properties (4.2.1)

Here,

$$\hat{\theta} = \begin{pmatrix} a \\ b \\ r \end{pmatrix}$$

is the optimal solution, then,

$$J(\hat{\theta}) = \left\| x_1 a + x_2 b + X_r \Sigma y \right\|_2^2 + \lambda |a| + \lambda |b| + \lambda \left\| r \right\|_1$$

If a, b are part of the optimum, and they have different sign, we can say k = a + b and since a, b have different signs, k < |a| + |b|,

Then,

$$\hat{\theta'} = \begin{pmatrix} k \\ 0 \\ r \end{pmatrix}$$

is a better solution, which we can check by the fact that

$$\lambda |a| + \lambda |b| > \lambda |k|$$

This implies $\hat{\theta}'$ is the optimal. A contradiction!

So, sign of a and b is the same.

Furthermore, it is clear that for $(c, d, r^T)^T$ to also be a solution, |a + b| = |c + d|

12 Lasso properties (4.2.2)

$$\hat{\theta} = \begin{pmatrix} a \\ b \\ r \end{pmatrix}$$

minimizes the ridge regression, meaning it minimizes

$$J(\hat{\theta}) = \|x_1 a + x_2 b + X_r \Sigma y\|_2^2 + \lambda a^2 + \lambda b^2 + \lambda \|r\|_2$$

As long as a+b=k , for some constant k, the first term is unaffected, the under a+b=k we minimize,

$$\lambda a^2 + \lambda b^2$$

$$or, \lambda a^2 + \lambda (k-a)^2$$

Differentiating w.r.t 'a' and setting to zero to find minima,

$$\frac{d}{da}(\lambda a^2 + \lambda(k-a)^2) = 0$$

$$\Rightarrow (\lambda 2a - \lambda 2(k - a)) = 0$$

$$\Rightarrow \lambda(2a - 2k + 2a) = 0$$

Since $\lambda > 0$:

$$\Rightarrow a = \frac{k}{2} = b$$