Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

Primer Semestre 2014

Curso : Probabilidad y Estadística

Sigla : EYP1113

Interrogación :

Profesor : Ricardo Aravena (Sec. 1 y 3) y Ana María Araneda (Sec. 2 y 4)

Ayudantes : Carlos Cayuman, Fabián Fuentealba, Alonso Molina, Genaro Olave.

• Se permite el uso de calculadora científica básica.

- No se permite usar apuntes, correctores y cualquier aparato de transmisión electrónica (por ejemplo celulares y aparatos con bluetooth y wifi).
- Alumnos que escriban sus soluciones con lápiz mina, o cualquier tipo de lápiz borrable, renuncian a su derecho a re-corrección.
- El alumno que sea sorprendido copiando o en otras actividades reñidas con las normas de comportamiento académico, será calificado con nota 1.0 (uno cero) en la interrogación y su caso será informado a la Dirección de Docencia de la Escuela de Ingeniería.
- En su lugar de trabajo Ud. debe tener solo lápices, sus cuadernillos y calculadora.
- Recuerde poner su N° de lista en ambos cuadernillos.

Problema 1

La intensidad de la luz (en candelas) en un punto fijo dado puede ser expresada por la relación:

$$I = \frac{C}{D^2},$$

donde C corresponde a la potencia luminosa de la fuente (en vatios), y D a la distancia desde la fuente al punto dado (en mts). Suponga que la potencia luminosa de la fuente distribuye Uniforme, tomando valores entre 1 y 2 (vatios), mientras que la distancia a la fuente distribuye Exponencial de parámetro 1 en 1/mts.

a) Determine la función de densidad de D^2 .

Solución: Sea la transformación $U = g(D) = D^2$. Su inversa está dada por $g^{-1}(u) = \sqrt{u}$ [0,3] (sólo raíz positiva pues D es positivo). De este modo,

$$\frac{dg^{-1}(u)}{du} = \frac{1}{2\sqrt{u}} > 0.$$
 [0,5]

Por otra parte, la función de densidad de D corresponde a:

$$f_D(d) = e^{-d}, d > 0, [0,2]$$

cero en otro caso. [0,2] Luego, la función de densidad de $U=D^2$ está dada por:

$$f_U(u) = \frac{1}{2\sqrt{u}} e^{-\sqrt{u}}, \quad u > 0,$$
 [0,6]

cero en otro caso. [0,2]

b) Asuma que D^2 distribuye Gama de parámetros $\kappa=1$ y $\nu=1/2$, y C Uniforme como antes. Determine la función de densidad de la intensidad de la luz, asumiendo que C y D^2 son independientes.

Solución:

Alternativa 1: Tenemos I = g(C, U) = C/U, donde

$$C \sim \text{Uniforme}(1,2), \qquad U \sim Gama(1,1/2).$$

Luego, la función de densidad conjunta de estas dos últimas variables corresponde a:

$$f_{cu}(c,u) = \frac{1}{2-1} \frac{(1/2)^1}{\Gamma(1)} u^{1-1} e^{-u/2}$$
$$= \frac{1}{2} e^{-u/2}, \quad [\mathbf{0,4}]$$

con $1 \le c \le 2$ y u > 0, cero en otro caso [0,2]. Por otra parte,

$$C = g^{-1}(I) = UI,$$
 [0,4]

luego:

$$\frac{dg^{-1}(i)}{di} = u > 0.$$
 [0,4]

De este modo, la densidad de la intensidad de la luz está dada por:

$$f_I(i) = \int f_{cu}(ui, u) \ u \ du.$$
 [0,8]

Para determinar los límites de integración, consideremos que $1 \le c \le 2$, es decir, $1 \le u$ $i \le 2$, por lo que:

$$\frac{1}{i} \le u \le \frac{2}{i}.$$
 [0,8]

Luego,

$$f_I(i) = \int_{1/i}^{2/i} \frac{1}{2} e^{-u/2} u \, du$$
 [0,4]

Haciendo cambio de variable x = u/2,

$$f_I(i) = 2 \int_{1/(2i)}^{1/i} x e^{-x} dx.$$

Integrando por partes, con $u=x,\,dv=e^{-x}\,dx,$ con lo que du=dx y $v=-e^{-x}$ se llega a

$$f_I(i) = 2\left\{e^{-1/(2i)}\left(1+\frac{1}{2i}\right)-e^{-1/i}\left(1+\frac{1}{i}\right)\right\}, i>0,$$
 [0,4]

cero en otro caso. [0,2]

Alternativa 2: Tenemos I = g(C, U) = C/U, donde

$$C \sim \text{Uniforme}(1, 2), \qquad U \sim Gama(1, 1/2).$$

Luego, la función de densidad conjunta de estas dos últimas variables corresponde a:

$$f_{cu}(c,u) = \frac{1}{2-1} \frac{(1/2)^1}{\Gamma(1)} u^{1-1} e^{-u/2}$$
$$= \frac{1}{2} e^{-u/2}, \quad [\mathbf{0},\mathbf{4}]$$

con $1 \le c \le 2$ y u > 0, cero en otro caso [0,2]. Por otra parte,

$$U = g^{-1}(I) = \frac{C}{I},$$
 [0,4]

luego:

$$\frac{dg^{-1}(i)}{di} = -\frac{c}{i^2} < 0.$$
 [0,4]

De este modo, la densidad de la intensidad de la luz está dada por:

$$f_I(i) = \int f_{cu}(c, c/i) \frac{c}{i^2} dc.$$
 [0,8]

Dado que no existen restricciones sobre los valores de c para un valor de i fijo, integramos en $1 \le c \le 2$ [0,8]:

$$f_I(i) = \int_1^2 \frac{1}{2} e^{-c/(2i)} \frac{c}{i^2} dc \qquad [\mathbf{0,4}]$$
$$= \frac{1}{2i^2} \int_1^2 e^{-c/(2i)} c dc.$$

Haciendo cambio de variable y = c/(2i),

$$f_I(i) = 2 \int_{1/(2i)}^{1/i} y e^{-y} dy.$$

Integrando por partes, con $u=y,\, dv=e^{-y}\, dy,$ con lo que du=dy y $v=-e^{-y}$ se llega a

$$f_I(i) = 2\left\{e^{-1/(2i)}\left(1+\frac{1}{2i}\right)-e^{-1/i}\left(1+\frac{1}{i}\right)\right\}, i>0, \quad [\mathbf{0,4}]$$

cero en otro caso. [0,2]

[1,0] punto base

Problema 2

En una propuesta es necesario desarrollar 3 tareas. Estas tareas pueden ser realizadas de diferentes formas, con distintos equipos de profesionales. Suponga que los costos de cada tarea en términos de HT: hrs/trabajador (antiguas HH: hrs/hombre) se comportan como variables aleatorias Normales, con los siguientes parámetros: $E(T_i)$, $Var(T_i)$, donde T_i corresponde al costo de realizar la tarea i, i=1,2,3. Debido a que en algunas etapas debe participar un mismo profesional, existe correlación entre estos costos, de manera que la correlación entre los costos de las tareas 1 y 2 es -0,5. Puede asumir que las correlaciones restantes entre los costos son nulas. Suponga que dos opciones de valorización de la propuesta corresponden a:

$$A=2\ T_1+\frac{T_2}{2}+\frac{T_3}{2},\quad y\ B=T_1+T_2+T_3,\quad \text{con}$$

$$E(T_1)=15,\ Var(T_1)=9,\quad Corr(T_1,T_2)=-0,5$$

$$E(T_2)=15,\ Var(T_2)=4,\quad E(T_3)=20,\ Var(T_3)=9$$

a) Obtenga la probabilidad de que la valorización calculada según A sea mayor que 60.

Solución: Se pide:

$$P(A > 60) = 1 - \Phi\left(\frac{60 - \mu_A}{\sigma_A}\right),\,$$

dado que A es una combinación lineal de variables aleatorias Normales. Tenemos

$$\mu_{A} = 2E(T_{1}) + \frac{1}{2}E(T_{2}) + \frac{1}{2}E(T_{3})$$

$$= 2 \times 15 + \frac{1}{2} \times 15 + \frac{1}{2} \times 20$$

$$= 47, 5. \quad [\mathbf{0,5}]$$

$$Var(A) = 4 Var(T_{1}) + \frac{1}{4} Var(T_{2}) + \frac{1}{4} Var(T_{3}) + 2 Cov \left(2T_{1}, \frac{T_{2}}{2}\right) [\mathbf{0,5}]$$

$$= 4 \times 9 + \frac{1}{4} \times 4 + \frac{1}{4} \times 9 + 2\rho_{12} \sqrt{Var(T_{1})} \sqrt{Var(T_{2})} \quad [\mathbf{0,3}]$$

$$= 36 + 1 + \frac{9}{4} - 2 \times 0, 5 \times 3 \times 2$$

$$= 33, 25. \quad [\mathbf{0,3}]$$

$$\sigma_{A} = \sqrt{33.25} = 5, 77.$$

Luego,

$$P(A > 60) = 1 - \Phi\left(\frac{60 - 47, 5}{5, 77}\right)$$
 [0,3]
= 1 - \Phi(2, 17)
= 1 - 0,985 = 0,015. [0,1]

b) Obtenga la probabilidad de que la valorización calculada según B sea mayor que 60.

Solución: Se pide:

$$P(B > 60) = 1 - \Phi\left(\frac{60 - \mu_B}{\sigma_B}\right),\,$$

dado que B es una combinación lineal de variables aleatorias Normales. Tenemos

$$\mu_{B} = E(T_{1}) + E(T_{2}) + E(T_{3})$$

$$= 15 + 15 + 20$$

$$= 50. \quad [\mathbf{0}, \mathbf{5}]$$

$$Var(B) = Var(T_{1}) + Var(T_{2}) + Var(T_{3}) + 2 \rho_{12} \sqrt{Var(T_{1})} \sqrt{Var(T_{2})}$$

$$= 9 + 4 + 9 - 2 \times 0, 5 \times 3 \times 2$$

$$= 16. \quad [\mathbf{0}, \mathbf{3}]$$

$$\sigma_{B} = \sqrt{16} = 4.$$

Luego,

$$P(B > 60) = 1 - \Phi\left(\frac{60 - 50}{4}\right) \qquad [\mathbf{0,3}]$$
$$= 1 - \Phi(2,5)$$
$$= 1 - 0,994 = 0,006. \qquad [\mathbf{0,1}]$$

c) Determine la covarianza entre ambas valorizaciones, A y B.

Solución: Se pide:

$$Cov(A,B) = Cov\left(2\,T_1 + \frac{1}{2}\,T_2 + \frac{1}{2}\,T_3, \ T_1 + T_2 + T_3\right)$$

$$= 2\,Cov(T_1,T_1) + 2\,Cov(T_1,T_2) + \frac{1}{2}\,Cov(T_2,T_1) + \frac{1}{2}\,Cov(T_2,T_2) + \frac{1}{2}\,Cov(T_3,T_3)$$

$$[\mathbf{0,2}] \ \mathbf{por} \ \mathbf{cada} \ \mathbf{t\acute{e}rmino}$$

$$= 2\,Var(T_1) + 2\,\rho_{12}\sqrt{Var(T_1)}\sqrt{Var(T_2)} + \frac{1}{2}\,\rho_{12}\sqrt{Var(T_1)}\sqrt{Var(T_2)} + \frac{1}{2}\,Var(T_2) + \frac{1}{2}\,Var(T_3))$$

$$= 2\times9 - 2\times0, 5\times3\times2 - \frac{1}{2}\times0, 5\times3\times2 + \frac{1}{2}\times4 + \frac{1}{2}\times9 \qquad [\mathbf{0,2}] \ \mathbf{por} \ \mathbf{cada} \ \mathbf{t\acute{e}rmino}$$

$$= 17.$$

[1,0] punto base.

5

Problema 3

a) Suponga que en cada transacción X_i corresponde al precio de compra de un Real (moneda brasileña) en pesos, e Y_i al valor de venta. Obtenga la probabilidad aproximada de que, en valor absoluto, el promedio de las diferencias entre precios de compra y venta de 100 transacciones, sea mayor a \$11, donde $E(X_i) = 240$, $E(Y_i) = 230$; $V(X_i) = 16$, $V(Y_i) = 9$. Asuma que los valores están asociados, de manera que su correlación es igual a -0,3,

Solución: Sea $Z_i = X_i - Y_i, i = 1, \dots, 100$. Se pide:

$$P(|\bar{Z}| > 11),$$

donde

$$\bar{Z} = \frac{1}{100} \sum_{i=1}^{100} Z_i.$$

El Teorema del Límite Central dice que, ya que n = 100 es suficientemente grande,

$$\bar{Z} \stackrel{.}{\sim} Normal\left(\mu, \frac{\sigma}{\sqrt{100}}\right),$$

donde

$$\mu = E(Z_i) = E(X_i) - E(Y_i) = 240 - 230 = 10 \quad [\mathbf{0,6}]$$

$$\sigma^2 = Var(Z_i) = Var(X_i) + Var(Y_i) - 2 Cov(X_i, Y_i) \quad [\mathbf{0,6}]$$

$$= 16 + 9 + 2 \times 0, 3 \times 4 \times 3$$

$$= 32, 2. \quad [\mathbf{0,3}]$$

$$\sigma = \sqrt{32, 2} = 5, 67.$$

De este modo, podemos usar que

$$\bar{Z} \sim Normal(10; 0, 567).$$
 [0,6]

Luego, la probabilidad pedida corresponde a:

$$\begin{split} P(|\bar{Z}| > 11) &= P(\bar{Z} > 11) + P(\bar{Z} < -11) & [\textbf{0,5}] \\ &= 1 - \phi \left(\frac{11 - 10}{0,567}\right) + \Phi \left(\frac{-11 - 10}{0,567}\right) \\ &= 1 - \Phi(1,76) + \Phi(-37) & [\textbf{0,3}] \\ &= 1 - 0,96 + 0 = 0,04. & [\textbf{0,1}] \end{split}$$

b) En una barra de largo 1 metro, se realiza un corte en un punto X_1 con distribución Uniforme sobre el largo de la barra. Si se observa $X_1 = x_1$, se realiza luego un segundo corte en la barra de largo x_1 , en un punto X_2 con distribución Uniforme entre 0 y x_1 . Finalmente, si se observa $X_2 = x_2$, se realiza un corte en la barra de largo x_2 en un punto X_3 , con distribución Uniforme entre 0 y x_2 .

Encuentre la esperanza y varianza de X_3 utilizando el teorema de esperanza y varianza iteradas.

Solución: Tenemos:

$$X_1 \sim \text{Uniforme}(0, 1)$$

 $X_2|X_1 = x_1 \sim \text{Uniforme}(0, x_1)$
 $X_3|X_2 = x_2 \sim \text{Uniforme}(0, x_2)$

Se pide:

$$E(X_3) = E(E(X_3|X_2))$$
 [0,2]
= $E\left(\frac{X_2}{2}\right) = \frac{1}{2} E(X_2)$. [0,2]

Por otra parte,

$$E(X_2) = E(E(X_2|X_1))$$
 [0,2]
= $E\left(\frac{X_1}{2}\right) = \frac{1}{2} E(X_1)$
= $\frac{1}{4}$. [0,2]

Luego,

$$E(X_3) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}.$$
 [0,2]

Se pide:

$$Var(X_3) = E(Var(X_3|X_2)) + Var(E(X_3|X_2))$$
 [0,2]
= $E\left(\frac{X_2^2}{12}\right) + Var\left(\frac{X_2}{2}\right)$
= $\frac{1}{12}E(X_2^2) + \frac{1}{4}Var(X_2)$. [0,4]

Por otra parte,

$$Var(X_2) = E(Var(X_2|X_1)) + Var(E(X_2|X_1))$$
 [0,2]

$$= E\left(\frac{X_1^2}{12}\right) + Var\left(\frac{X_1}{2}\right)$$

$$= \frac{1}{12}E(X_1^2) + \frac{1}{4}Var(X_1)$$
 [0,4]

$$= \frac{1}{12}(Var(X_1) + E^2(X_1)) + \frac{1}{4}Var(X_1)$$

$$= \frac{1}{12}\left(\frac{1}{12} + \frac{1}{4}\right) + \frac{1}{4} \times \frac{1}{12}$$

$$= \frac{1}{36} + \frac{1}{48}.$$
 [0,4]

Luego,

$$Var(X_3) = \frac{1}{12} \left(Var(X_2) + E^2(X_2) \right) + \frac{1}{4} Var(X_2)$$
$$= \frac{1}{12} \left(\frac{1}{36} + \frac{1}{48} + \frac{1}{16} \right) + \frac{1}{4} \left(\frac{1}{36} + \frac{1}{48} \right). \quad [\mathbf{0,4}]$$

[1,0] punto base

Problema 4

Un muon es una partícula elemental con carga eléctrica -1 y un momento angular intrínseco (o giro) de 1/2. El decaimiento de un muon en un positron, e^+ , un electrón neutrino, ν_e , y un muon antineutrino, $\bar{\nu}_{\mu}$, tiene un ángulo de distribución T, con función de densidad dada por:

$$f_T(t) = \frac{1}{2\pi} (1 + \alpha \cos(t)), \quad -\pi \le t \le \pi,$$

donde α es parámetro de no isometría que toma valores en [-1/3, 1/3], y depende de la polarizacion del rayo de muon y la energía del positrón. Encuentre el estimador de momentos del parámetro α , en base a una muestra aleatoria simple de T, dada por t_1, \ldots, t_n .

Solución: Comenzamos por obtener el primer momento de la distribución:

$$E(T) = \int_{-\pi}^{\pi} t \, \frac{1}{2\pi} (1 + \alpha \cos(t)) \, dt \qquad [\mathbf{1}, \mathbf{0}]$$
$$= \frac{1}{2\pi} \left\{ \int_{-\pi}^{\pi} t \, dt + \alpha \int_{-\pi}^{\pi} t \, \cos(t) \, dt \right\}.$$

Tomando u = t y $dv = \cos(t) dt$, tenemos du = dt, $v = \sin(t)$,

$$E(T) = \frac{1}{2\pi} \left\{ \frac{\pi^2 - (-\pi)^2}{2} + \alpha \left(t \sin(t) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \sin(t) dt \right) \right\}$$

= 0, [1,0]

que no depende de α . Luego, debemos buscar el segundo momento de la distribución:

$$E(T^2) = \int_{-\pi}^{\pi} t^2 \frac{1}{2\pi} (1 + \alpha \cos(t)) dt \qquad [\mathbf{1}, \mathbf{0}]$$
$$= \frac{1}{2\pi} \left\{ \int_{-\pi}^{\pi} t^2 dt + \alpha \int_{-\pi}^{\pi} t^2 \cos(t) dt \right\}.$$

Tomando $u = t^2$ y $dv = \cos(t) dt$, tenemos du = 2t dt, $v = \sin(t)$,

$$E(T^{2}) = \frac{1}{2\pi} \left\{ \frac{\pi^{3} - (-\pi)^{3}}{3} + \alpha \left(t^{2} \sin(t) \Big|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} 2t \sin(t) dt \right) \right\}$$
$$= \frac{1}{2\pi} \left\{ \frac{2\pi^{3}}{3} + \alpha \left(-\int_{-\pi}^{\pi} 2t \sin(t) dt \right) \right\}.$$

Tomando u = t y $dv = \sin(t) dt$, tenemos du = dt, $v = -\cos(t)$,

$$E(T^{2}) = \frac{1}{2\pi} \left\{ \frac{2\pi^{3}}{3} - 2\alpha \left(-t \cos(t) \Big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \cos(t) dt \right) \right\}$$
$$= \frac{1}{2\pi} \left\{ \frac{2\pi^{3}}{3} + 4\pi\alpha \right\}. \quad [\mathbf{1,5}]$$

Alternativa 1: Igualar:

$$\frac{1}{2\pi} \left\{ \frac{2\pi^3}{3} + 4\pi \hat{\alpha} \right\} = \frac{1}{n} \sum_{i=1}^n T_i^2, \qquad [1,0]$$

y despejando $\hat{\alpha}$ obtenemos,

$$\hat{\alpha} = \frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} T_i^2 - \frac{\pi^2}{3} \right)$$
 [0,5].

Alternativa 2: Igualar:

$$Var(T) = E(T^2) = S_n^2,$$
 [1,0]

es decir,

$$\frac{1}{2\pi} \left\{ \frac{2\pi^3}{3} + 4\pi \hat{\alpha} \right\} = S_n^2.$$

y despejando $\hat{\alpha}$ obtenemos,

$$\hat{\alpha} = \frac{1}{2} \left(S_n^2 - \frac{\pi^2}{3} \right).$$
 [0,5]

[1,0] punto base

Tiempo: 2 Horas

Formulario

• Propiedades función $\Gamma(\cdot)$:

(1)
$$\Gamma(k) = \int_0^\infty u^{k-1} e^{-u} du;$$
 (2) $\Gamma(a+1) = a \Gamma(a);$

(3)
$$\Gamma(n+1) = n!$$
, si $n \in \mathbb{N}_0$; (4) $\Gamma(1/2) = \sqrt{\pi}$

• Propiedades función $B(\cdot, \cdot)$:

(1)
$$B(q, r) = \int_0^1 x^{q-1} (1-x)^{r-1} dx;$$
 (2) $B(q, r) = \frac{\Gamma(q) \Gamma(r)}{\Gamma(q+r)}$

• Propiedad distribución Gamma:

Si
$$T \sim \text{Gamma}(k, \nu) \Rightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu t)^x e^{-\nu t}}{x!}, \text{ si } k \in \mathbb{N}$$

- \blacksquare Esperanza y Varianza iterada $E(Y) = E(E(Y/X)) \ V(Y) = V(E(Y/X)) + E(V(Y/X))$
- Igualdades

$$\sum_{k=0}^{n} \binom{n}{k} a^x b^{n-k} = (a+b)^n, \quad \sum_{k=x}^{\infty} \phi^k = \frac{\phi^x}{1-\phi} \quad \text{si } |\phi| < 1, \quad \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = \exp(\lambda)$$

- Si $f(x) = \sin(x)$, su derivada con respecto a x corresponde a $f'(x) = \cos(x)$.
- Si $f(x) = \cos(x)$, su derivada con respecto a x corresponde a $f'(x) = -\sin(x)$.

Distribuciones

Distribución	Densidad de Probabilidad	Θ_X	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \ldots, n$	$n,\ p$	$\begin{array}{c} \mu_X = n p \\ \sigma_X^2 = n p (1-p) \\ M(t) = \left[p e^t + (1-p) \right]^n, t \in \mathbb{R} \end{array}$
Geométrica	$p\left(1-p\right)^{x-1}$	$x = 1, 2, \dots$	p	$\mu_X = 1/p$ $\sigma_X^2 = (1-p)/p^2$ $M(t) = p e^t / [1 - (1-p) e^t], t < -\ln(1-p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\ldots$	$r,\ p$	$\begin{split} \mu_X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \\ M(t) &= \left\{ p e^t/[1-(1-p) e^t] \right\}^r , t < -\ln(1-p) \end{split}$
Poisson	$\frac{(\nut)^xe^{-\nut}}{x!}$	$x = 0, 1, \dots$	ν	$\begin{array}{l} \mu_X = \nut \\ \sigma_X^2 = \nut \\ M(t) = \exp\left[\lambda\left(e^t - 1\right)\right], t \in \mathbb{R} \end{array}$
Exponencial	$\nu e^{-\nu x}$	$x \ge 0$	ν	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	$x \ge 0$	$k,\ u$	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = \left[\nu/(\nu - t)\right]^k, t < \nu$
Normal	$\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	$-\infty < x < \infty$	$\mu,~\sigma$	$\begin{split} \mu_X &= \mu \\ \sigma_X^2 &= \sigma^2 \\ M(t) &= \exp(\mut + \sigma^2t^2/2), t \in \mathbf{R} \end{split}$
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zeta x)} \exp \left[-\frac{1}{2} \left(\frac{\ln x - \lambda}{\zeta} \right)^2 \right]$	$x \ge 0$	λ, ζ	$\begin{split} \mu_X &= \exp\left(\lambda + \frac{1}{2}\zeta^2\right) \\ \sigma_X^2 &= \mu_X^2 \left(e^{\zeta^2} - 1\right) \\ E(X^r) &= e^{r\lambda}M_Z(r\zeta), \text{con } Z \sim \text{Normal}(0,1) \end{split}$
Uniforme	$\frac{1}{(b-a)}$	$a \leq x \leq b$	a, b	$\begin{split} \mu_X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^{t\;b} - e^{t\;a}]/[t\;(b-a)], t \in \mathbb{R} \end{split}$
Beta	$\frac{1}{B(q, r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	$a \leq x \leq b$	$q,\ r$	$\mu_X = a + \frac{q}{q+r} (b-a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\frac{\binom{m}{x}\binom{N-m}{n-x}}{\binom{N}{n}}$	$\max\{0, n+m-N\} \leq x \leq \min\{n, m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Tabla Normal Estándar

Distribución Normal Estándar

S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998