Building a neural network FROM SCRATCH

06 May 2024 18:08

> mnist data set

× m

is the volume of dataset

=> implementation

time's m ; traning images

2xm is the traning

X

$$x = \begin{bmatrix} -n' - \\ -n^2 - \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -n^3 - \end{bmatrix} = \begin{bmatrix} 2n' & 2n' & 2n' \\ 2n' & 2n' & 2n' \\ 2n' & 2n' & 2n' \end{bmatrix}$$
Hotas of $x = \begin{bmatrix} -n' - \\ 2n' & 2n' \\ 2n' &$

0,1,2....9

10 classes

Unachvaled
$$Z^{[i]} = \omega^{[i]} A^{[i]} + \omega^{[i]}$$

where ω is the property of the property o

Activation
$$A^{[i]} = g(z^{[i]}) = Relu(z^{[i]})$$

1) without it, it would be a boncy linear Regrossion

MXOI (= 1X01 MXOI OIXOI MXOI

$$A^{(2)} = Soltmax (Z^{(2)})$$

(2) Backword Propogation

10 x m 10 xm 10 xm

dz[2] Lerror of and layer?

$$d^{\omega} = \frac{1}{2} dz^{(2)} A^{(1)}$$

 $d^{2}\omega^{(2)} = \frac{1}{2} dz^{(2)} A^{(1)}$ { $d\omega^{(2)} = desivative of (ost function)}$

$$db^{(2)} = \frac{1}{m} \sum_{10 \times 1} dz^{(2)}$$

$$db^{(2)} = \frac{1}{m} \sum dz^{(2)}$$

$$\int db^{(2)} = \alpha ug of the absolute errorf$$

$$au^{ au_{2}}\omega$$

$$*g'(z^{(i)})$$

error for $dz^{\Gamma,7} = \omega^{\Gamma^2}$ dz^{Γ^2} dz^{Γ^2} dz^{Γ^2}) activation function dz^{Γ^2} of the layer loxin loxin loxin

(izu lo

to the error 10x 7xh

10×m mx 784

to the corod lox 784

10×m mx 784

(ontribution (db[1)) = 1 & dz(1)

of b[1)

to the error 10x1

lox1

3 Parameters updation

$$\omega^{(i)} := \omega^{(i)} - \alpha d\omega^{(i)}$$

$$b^{(i)} := b^{(i)} - \alpha db^{(i)}$$

$$\omega^{(2)} := \omega^{(2)} - \alpha d\omega^{(2)}$$

$$\omega^{(3)} := b^{(2)} - \alpha d\omega^{(2)}$$

$$0^{(1)} := b^{(2)} - \alpha db^{(2)}$$

Forward. Progradion Backward Propogation

Porometers