The Pandemic within COVID-19: Assessing Misinformation Susceptibility

Kyle Rogers Reiko Matsuda-Dunn Ryan Karasopoulos Son Pham

Project Overview

- Data from late March mid May 2020 study on susceptibility to coronavirus misinformation.
- Survey data includes:
- o demographic information
- political affiliation
- o personal views on coronavirus
- degree of preparedness for coronavirus
- media sourcing
- o trust in institutions and community

Questions We Sought to Answer

- How do digital communications influence people's interpretation of the news?
- Are there trends in political beliefs and in susceptibility to misinformation?
- Beliefs and concerns about COVID-19 versus other world
- The similarity and trends among the different countries.

List of Tools

leay.

- NumPy, Pandas, MatPlotLib, Plotly, Python, including various libraries Tkinter, scikit Learn
- Git/Github group repository
- Overleaf group Latex integration
- Google Drive group presentation,

Data Preparation

- Data originally in 15 separate files based on country:
- o Aligned and appended to one another.
- Data converted to 'floats' where appropriate.
- Null values were left, and dealt with on a case by case basis.
- 12,744 objects were contained in the final dataset.

Methods Applied

- Exploratory Statistical Analysis Apriori Analysis
- Classification
- o Decision Trees
- o Naive Bayesian
- Clustering
- o k-Means
- o DBSCAN

Knowledge Gained - Preliminary Results

- The UK is vastly overrepresented in the data compared to other countries
 - Political Affiliations followed an approximate bell curve, skewed slightly towards "Liberal"
- Relatively Low Correlations Between Question Classes
- Most Correlation Coefficients were between 0 and 0.2
- "Severity of Infection" most closely correlated with "Worry About Coronavirus" (~0.45 CC)

Knowledge Gained - Exploratory Statistics

- Probability questions for participants to gauge knowledge in math
- Attributes:
- o Num1, Num2a, Num2b, Num3
- Pattern
- o MX, SE, IT has wide quartile
- ranges
- o Higher deviations from the truth

Knowledge Gained - Apriori Analysis

- Visualize the level of support each country has for each activity shownFrequent-1 Itemsets shows pattern
 - among mask-wearers. o US, UK, SE have low mask support
- o Same countries remain top with cases per million population

Description	washing hands more often	using alcohol-based hand sanitizer more often	wearing a face mask	avoiding social events	avoiding public transport	eating out less	touching your face less	shopping for groceries less	cooking at home more	staying home from work	purchasing extra supplies
Activity	1	2	m	4	2	9	7	œ	6	10	11

Knowledge Gained - Bayesian Classification

- Build a classification model to predict which attributes contribute to the susceptibility to misinformation
- Gain table shows top attributes that contain the highest information gain are trust-related attributes

attribute	gain
PosterstrustQ1	0.0535
WHOtrustQ1	0.0454
workplacetrustQ1	0.0367
SocialmediatrustQ1	0.0326
FinitePool_2	0.0236
FriendstrustQ1	0.0221
Govrestrict_3	-0.0072
Trustingroups_9	-0.0073
Politics	-0.0076
FinitePool_3	-0.0081
Personal_6	-0,0082
Friends_6	-0.0094

Knowledge Gained - Bayesian Classification

- Our model used Vaccine1, Vaccine2, and CanadaQ1 as potential class labels
- CanadaQ1 was split into 2 groups:
- o 1,2,3 = Not Serious
- 0.4.5 = Serious
- Highest probability of acceptance
- o Age group 45-54
- Lowest probability
- o Age group 18-24

Knowledge Gained - K-means clustering

- Trust in general (13) & Trust in Gov. (4) higher for more WHO exp.
- o Less WHO exp. -> Lower trust in non-gov officials
- More social media use -> more affected
- All believe certainty of worldwide case/death/spread estimates
- Worry from COVID High, those highly affected even higher

Knowledge Gained - DBSCAN

Most susceptible to misinformation:

- Low trust in all sources of information **Somewhat** susceptible to misinformation:
- Slightly higher trust in social media.

Knowledge Gained - DBSCAN

Most susceptible to misinformation:

- Politically diverse group
- **Somewhat** susceptible to misinformation:
- A range of political opinions:
- One small cluster (N=17):
- Right-wing, but believe in greater government control
 - Others are centrists across are variety of measures 0

Future Work and Applications

Repeat:

Survey to provide insight on changes in responses.

More nuanced approach:

- Group that is susceptible to misinformation is very small (3.8% of the dataset)
- Diversity in that group makes it resistant to classification methods.
- Difficult to create an accurate predictive model to determine who is susceptible to misinformation from the current data

Resources

• Github:

https://github.com/summeryriddles/geopolymeric-tribbles

heroku

Visualization: https://pharsalus.herokuapp.com/