

Filosofía

- Basados en la teoría de la evolución de Darwin, "reproducción y supervivencia del más apto".
- Los cromosomas hacen parte de la población, la reproducción y la mutación de su hijo se genera una nueva población.
- A cada cromosoma se le asocia una función matemática que mide su aptitud (fitness fuction).

Algoritmo

Población inicial

- Binario: cada gen (j) de los cromosomas (i),
 If rand>0.5,cromo(i,j)=1; else cromo(i,j)=0;
- **Entero:** Si requiere que no se repitan los números emplear permutaciones.
- Real: Se genera una matriz aleatoria, donde cada gen tiene un valor mínimo (vi) y un valor máximo (vs). Cromo(i,j)=(vs-vi)*rand+vi;

Selección

- Consiste en el criterio para seleccionar los padres. Según Darwin los mejores deberían sobrevivir para crear la nueva generación:
 - Ruleta
 - Rango
 - Torneo
 - Aleatorio

Selección: Ruleta

- Los padres se seleccionan de acuerdo a su "aptitud". Los mejores cromosomas son los que tienen mas probabilidad de ser elegidos.
 - Calcule la suma de las aptitudes de todos los cromosomas (S).
 - Genere un numero aleatorio entre [0-S]-> r.
 - Realice sumas parciales de las aptitudes de los cromosomas, pare cuando se supere r.

Selección: Ruleta

Cromosoma	Aptitud	% Total
1	6.82	31
2	1.11	5
3	8.48	38
4	2.57	12
5	3.08	14
Total	22.05	100

Selección: Rango

Primero se realiza un *ranking* de acuerdo a la aptitud. Posteriormente se inicia en 1 para el que tenga la menor aptitud, 2 para el segundo menor, hasta llegar a N para el mayor.

Selección: Torneo

 Se realiza una ruleta K veces. De los K cromosomas seleccionados se crea un subgrupo. Se seleccionar el mejor del subgrupo como padre.

Cruce

Es un operador genético utilizado para actualizar la configuración de los cromosoma de cada generación. Hereda particularidades de los padres.

- Un punto
- Dos puntos
- Uniforme
- Permutación (codificación entera)
- Aritmético (codificación real)

Cruce: Un punto

Se selecciona un punto de corte, el hijo recibe la cadena previa al corte del Padre A, y la parte faltante del Padre B:

Cruce: Dos Puntos

Proceso similar a un punto, pero esta vez la cadena se corta en 2 puntos:

Cruce: Uniforme

Se copian aleatoriamente los genes de los padres:

```
For i=1:10,
       r=rand();
                                         Padre A
       If r > = 0.5,
                                                         Hijo
               hijo(i)=padrea(i);
                                         Padre B
       else
               hijo(i)=padreb(i);
       end
end
```


www.itm.edu.co

Cruce: Permutación

Cuando los genes son enteros:

- Normal
- Un punto
- Orden 1
- Parcialmente mapeado
- Ciclo

Permutación: Normal

Se selecciona un punto de corte, y se intercambian los alelos. Se aplica cuando no importa si se repiten los números:

Permutación: Un punto

Se selecciona un punto de corte, se copia del padre A los genes hasta el corte, del padre B se toman en orden los elemento que no estén:

Permutación: Orden 1

La idea es preservar el orden relativo de los genes. Procedimiento:

- Seleccione un segmento del padre A.
- Copie el segmento al hijo.
- Copie los números que no están en el segmento, al primer hijo:
 - Empezando a la derecha del punto de corte.
 - Usando el orden del padre B.

Permutación: Orden 1

1. Seleccionar segmento del padre:

2. Copiar el resto del padre B, desde el lado derecho, sin repetir :

Remutación: Parcialmente mapeado

- 1. Seleccione al azar un segmento de padre A y cópielo al hijo.
- Comenzando en el primer punto de corte busque elementos en ese segmento del padre B que no han sido copiados.
- 3. Para cada gen *i* busque en el hijo que elemento *j* se copio en su lugar desde padre A.
- 4. Ubique a *i* en la posición ocupada por *j* en padre B.
- 5. Si la posición ocupada por *j* en padre B ya esta ocupada por *k* en el hijo, ponga a *i* en la posición ocupada por *k* en el padre B.
- 6. Después de ubicar los genes del segmento, el resto se llena con los genes del padre B.

Institució Permutación: Parcialmente mapeado

Permutación: Ciclo

Realizar un ciclo de alelos desde Padre A de las siguiente forma:

- Empezar con el primero alelo de Padre A.
- Mirar el alelo en la misma posición en Padre B.
- Vaya a la posiciones con el mismo alelo en A.
- Agregue este alelo al ciclo.
- Repita el procedimiento hasta encontrar el primero alelo de padre A.

Permutación: Ciclo

• Identificar ciclos:

Copiar ciclos alternados a los hijos:

Cruce: Aritmético

Utilizado cuando los genes están codificados en valores reales. Se aplica la regla

Hijo(i)=a*Padrea(i)+(1-a)*Padreb(i) con 0<a<1

Casos:

- Unitario
- Simple
- Completo

Aritmético: Unitario

Seleccionar el gen del cromosoma y aplica la formula: a=0.5

www.itm.edu.co

Aritmético: Simple

Seleccionar el punto de corte del cromosoma y aplicar la formula: a=0.5

Aritmético: Completo

Se aplica la formula para todos los genes de los cromosomas padre: a=0.5

Mutación

Crea pequeñas variaciones a los hijos, de esta forma se esta cerca de la herencia de los padres.

- Inversión del bit (codificación binaria)
- Cambio de orden (codificación entera)
- Suma número aleatorio (cod. Real)

Institución Universitari Mutación: Inversión del bit

Los bits seleccionados se niegan:

Institución Universit Mutación: Cambio de orden

Dos genes son seleccionados y se intercambian su valor:

Institución: Suma numero aleatorio

Se suma una pequeña cantidad aleatoria a los genes seleccionados:

Inserción

- Se van agregando los hijos en una nueva población hasta que se llena.
- Elitismo: en cada iteración se almacena el cromosoma con mayor aptitud.

Bibliografía

• Escalante, HG. Et al. Particle Swarm Model Selection. Journal of Machine Learning Research 10 (2009) 405-440.

