Лабораторная работа № 7

"Исследование алгоритмов определения минимального остовного дерева"

Задание:

- 1. Разработать проект для исследования алгоритмов определения минимального остовного дерева (МОД) в соответствии с вариантом (таблица 1).
- 2. Создать класс для исследования алгоритмов построения МОД со следующими полями, свойствами, и методами:
 - число вершин графа п,
 - число ребер графа т,
 - метод задания ХҮ-координат вершин графа,
 - матрица длин ребер полносвязного графа,
 - метод генерации случайного связного графа на n вершинах и m ребрах,
 - матрица длин ребер сгенерированного графа,
 - матрица смежности графа (или/и любая другая структура для представления графа),
 - очередь по приоритетам длин ребер сгенерированного графа (простейший вариант) возвращает из оставшихся ребер ребро минимальной длины,
 - метод, выводящий информацию о графе число вершин, число ребер, матрица длин ребер, матрица смежности, матрица списка ребер и т.д.
 - метод проверки связности графа,
 - метод определения МОД алгоритмом Краскала (метод возвращает список ребер МОД),
 - метод проверки ацикличности графа,
 - метод определения безопасности вставляемого ребра для алгоритма Краскала,
 - метод определения МОД алгоритмом Прима (метод возвращает список ребер МОД),
 - метод определения безопасности вставляемого ребра для алгоритма Прима,
 - метод определения длины МОД на основании списка ребер МОД,
 - метод, выводящий информацию о МОД число вершин, список ребер МОД, список длин ребер МОД, длина МОД.
 - 3. Разработать интерфейс проекта, позволяющий:
 - задавать размерность графа;
- осуществлять выбор алгоритма определения МОД для исследования;
 - задавать координаты вершин графа;
 - выводить и редактировать координаты вершин графа;

- задавать количество ребер графа X (в процентах от максимально возможного числа ребер $X=m/m_{\rm max}*100\%$) (граф должен оставаться связным);
 - выводить информацию о графе;
- выводить информацию о построенном МОД (список ребер и длину МОД);
- осуществлять вывод информации о результатах исследования алгоритмов (значения показателя качества работы алгоритмов).
- 4. Создать проект, реализующую алгоритмы определения МОД в соответствии с вариантом. В проекте *предусмотреть*:
 - реализацию интерфейса по п. 2;
 - сравнительную оценку исследуемых алгоритмов;
- 5. Для формирования координат вершин графа использовать датчик равномерно распределенных чисел *rand*().
- 6. Результатом работы алгоритма определения МОД является список вершин и длина остовного дерева.

Письменный отчет по лабораторной работе должен содержать:

- 1. Титульный лист. (Название лабораторной работы. Фамилия, имя, отчество, номер группы исполнителя, дата сдачи.)
 - 2. Математическую постановку задачи.
 - 3. Выполняемый вариант и его содержание.
 - 4. Диаграмму классов.
- 5. Исходные тексты разработанных программ (обязательны комментарии).
- 6. Исследование программной реализации алгоритмов, содержащее следующие материалы, таблицы и графики:
- *примеры пошаговой работы* исследуемых алгоритмов Краскала и Прима для небольшой размерности задачи (n=7), также для исходного графа привести матрицы смежностей, длин ребер, списка ребер, списка длин ребер, инцидентности (в соответствии с вариантом таблица 2);
- сведенную в mаблицу зависимость количества операций (Op) (или времени выполнения T) исследуемых алгоритмов от размерности задачи n при различных X;

Пример таблицы:

Таблица 1 Алгоритм Краскала, количество ребер X=50%

n	50	 500
T, ms		

- графики зависимости показателя качества (количества операций или времени выполнения) исследуемых алгоритмов от размерности задачи n при различных X.

- 7. Количество операций (или время счета) исследуемого алгоритма определяется как математическое ожидание ∂ ля числа испытаний не менее 100.
- 8. Привести результаты тестирования проекта (вывод информации о графе, вывод информации о МОД, построенном различными алгоритмами для n=7).
- 9. *Выводы* по лабораторной работе (в выводах провести сравнительную характеристику исследованных алгоритмов определения кратчайшего остовного дерева).

Варианты задач по лабораторной работе:

- 1. Алгоритм определения МОД Краскала.
- 2. Алгоритм определения МОД Прима.

Таблица 1. – Варианты заданий

Вариант	Координаты Х, Ү	X, %	Варианты задач	Вариант	Координаты Х, Ү	X, %	Варианты задач
1	100, 100	50, 60, 70	1, 2	11	200, 600	50, 60, 70	1, 2
2	100, 200	60, 70, 80	1, 2	12	200, 800	60, 70, 80	1, 2
3	100, 300	50, 60, 70	1, 2	13	400, 800	50, 60, 70	1, 2
4	100, 500	55, 65, 75	1, 2	14	800, 400	55, 65, 75	1, 2
5	200, 100	60, 70, 80	1, 2	15	500, 1000	60, 70, 80	1, 2
6	300, 100	50, 60, 70	1, 2	16	1000, 500	50, 60, 70	1, 2
7	400, 100	55, 65, 75	1, 2	17	1000, 800	55, 65, 75	1, 2
8	500, 100	65, 75, 85	1, 2	18	1000, 900	65, 75, 85	1, 2
9	200, 200	50, 60, 70	1, 2	19	1000, 700	50, 60, 70	1, 2
10	200, 400	55, 65, 75	1, 2	20	600, 1000	55, 65, 75	1, 2

X, Y = (100, 200) — координаты вершин графа распределены в прямоугольнике 100 (по оси OX) на 200 (по оси OY).

Таблица 2. – Варианты заданий для пошаговой работы

Литература

- 1. Майника Э. Алгоритмы оптимизации на сетях и графах.-М.:Мир, 1981.-323с.(с.23-29).
- 2. Зубов В.С. Справочник программиста. Базовые методы решения графовых задач и сортировки.- М.: Филинъ,1999.-256с.(с.163-165).
- 3. Гудман С., Хидетниеми С. Введение в разработку и анализ алгоритмов.-М.:Мир, 1981.-(с.181-196).
- 4. Филлипс Д., Гарсиа-Диас А. Методы анализа сетей.-M.:Мир, 1984.-496c.(c.103-c.108).
- 5. Бондарев В.М., Рублинецкий В.И., Качко Е.Г. Основы программирования.-Харьков:Фолио;1998. –368с.(с.125-с.130).
- 6. Лекции по теории графов/Емеличев В.А. и др..-М.:Наука, 1990.-384c.(c.59-c.63).

Контрольные вопросы

- 1. Каково определение графа ?
- 2. Какими свойствами обладает обыкновенный граф ?
- 3. Какие вершины называются смежными
- 4. Какая часть графа называется подграфом ?
- 5. Какая часть графа называется суграфом ?
- 6. Каково определение степени вершины графа ?
- 7. Каково определение вектора степеней вершин графа?
- 8. Как задается маршрут в неорграфе ?
- 9. Какова длина маршрута в неорграфе ?
- 10. Какой маршрута называется цепью ?
- 11. Какой маршрута называется простой цепью ?
- 12. Какой маршрута называется циклическим ?
- 13. Каково определение гамильтонова цикла ?
- 14. Каково определение эйлерова цикла ?
- 15. Каково определение матрицы смежностей графа?
- 16. Каково определение матрицы инцидентности графа?
- 17. Как определяется граф с помощью матрицы списка ребер?
- 18. Как определяется граф с помощью списка ребер ?
- 19. Как определяется граф с помощью списка смежных вершин?

20.	Какие операции могут быть выполнены над абстрактным графом					
21.	В чем состоит задача поиска кратчайшего остовного					
Z I •	(покрывающего) дерева?					
22.	В чем состоит алгоритм генерации случайного связного графа					
~~.	на п вершинах и m ребрах?					
23.	В чем состоит алгоритм Краскала решения задачи поиска КОД?					
24.	В чем состоит алгоритм проверки безопасности очередного					
27.	вставляемого ребра в алгоритме Краскала?					

- 25. Какова сложность алгоритм Краскала?
- 26. В чем состоит алгоритм Прима решения задачи поиска КОД?
- 27 В чем состоит алгоритм проверки безопасности очередного вставляемого ребра в алгоритме Прима?
- 28. Какова сложность алгоритм Прима ?
- 29. В чем состоит алгоритм проверки связности графа?
- 30. Каково определение очереди с приоритетом?

Краткий теоретический материал

Задача поиска минимального остовного (покрывающего) дерева

Пусть дан связный неориентированный граф G=(X, U) (X-множество вершин графа, U-множество ребер графа), для которого заданы веса (стоимости) всех ребер, представляемые вещественными числами.

Остовным (покрывающим — spanning tree) деревом S=(X, T) (T - множество ребер дерева) графа G называется неориентированное дерево, содержащее все узлы графа. Вес (стоимость) остовного дерева S=(X, T) графа G определяется как сумма весов ребер, входящих в остовное дерево.

Рисунок 1. Исходный взвешенный граф G и два его остовных дерева T_1 и T_2 .

Задача построения минимального остовного дерева (МОД) состоит в отыскании остовного дерева минимального веса в графе G=(X, U).

Так как в соответствии с теоремой Кэли полносвязный граф с п вершинами имеет n^{n-2} различных остовных деревьев, то алгоритм полного перебора для нахождения остовного дерева минимального веса будет иметь экспоненциальную временную сложность, то есть $O(n^{n-2})$. Однако задача построения МОД считается одной из самых легких оптимизационных задач на графах, так как точное решение этой задачи можно получить с помощью одного из "жадных" полиномиальных алгоритмов — алгоритма Краскала или алгоритма Прима.

1. Алгоритм Краскала построения МОД

Алгоритма Краскала основан на следующей лемме:

Пусть G=(X, U) — связный неориентированный граф и S=(X, T) — остовное дерево для него. Тогда а) для любых двух узлов $x_1, x_2 \in X$ путь между x_1 и x_2 в S единственен; б) если к S добавить ребро из (U - T), то возникнет ровно один цикл.

Алгоритма Краскала предусматривает:

- 1) последовательный выбор ребер исходного графа с наименьшим весом;
- 2) ребра, образующие в процессе построения циклы, в остовное дерево не включаются;
- 3) процес построения дерева продолжается, пока не будут выбраны m=n-1 (m число ребер в остовном дереве; n число вершин исходного графа G) ребер.

Рассмотрим пример построения МОД с помощью алгоритма Краскала.

Рисунок 2. Исходный взвешенный граф G типа "колесо".

Отсортируем ребра графа G в порядке возрастания их весов (Таблица 1). (На самом деле ребра не сортируются, а хранятся в виде сортирующего дерева, 2-3-дерева или какой-нибудь другой приемлемой структуры данных, пока они не потребуются. Кроме того, число ребер, выбираемых для построения остовного дерева равно ||T||, что меньше ||U||, то есть множество ребер U никогда не упорядочивается полностью.)

Таблица 1 – Ребра графа G в порядке возрастания их весов (рис. 2)

		1 1
№	Ребро	Стоимость
1	$(\mathbf{x}_1, \mathbf{x}_7)$	2
2	(x_3, x_4)	3
3	(x_2, x_7)	5
4	(x_3, x_7)	10
5	(x_2, x_3)	16
6	(x_4, x_7)	17
7	(x_4, x_5)	18
8	(x_1, x_2)	21
9	(x_1, x_6)	24
10	(x_5, x_7)	26
11	(x_5, x_6)	29
12	(x_6, x_7)	37

Таблица 2 — Процесс построения МОД на графе G (рис. 2)

Шаг	Ребро	Действие	Связные подграфы
0			1,2,3,4,5,6,7
1	(1,7)	Добавить	{1,7},2,3,4,5,6
2	(3, 4)	Добавить	{1,7},2,{3,4},5,6
3	(2,7)	Добавить	{1,2,7},{3,4},5,6
4	(3,7)	Добавить	{1,2,3,4,7},5,6
5	(2,3)	Отвергнуть	{1,2,3,4,7},5,6
6	(4, 7)	Отвергнуть	{1,2,3,4,7},5,6
7	(4, 5)	Добавить	{1,2,3,4,5,7},6
8	(1, 2)	Отвергнуть	{1,2,3,4,5,7},6
9	(1, 6)	Добавить	{1,2,3,4,5,6,7}

Первоначально множество связных подграфов графа G содержит каждую вершину графа в виде одноэлементного множества, то есть мощность множества равна числу вершин в графе G. Наименьший вес имеет ребро (1, 7), следовательно, оно добавляется к дереву и одноэлементные множества $\{1\}$ и $\{7\}$ сливаются в множество $\{1, 7\}$. На четвертом шаге добавляется ребро (3, 7), после чего только вершины 5 и 6 еще не вошли в остовное дерево. На пятом шаге следующее по минимальности ребро (2, 3) не включается в остовное дерево, так как его включение приведет к образованию цикла. После 9-го шага множество связных подграфов содержит все 7 вершин исходного графа G, а остовное дерево содержит m=6 ребер, то есть алгоритм Краскала закончил свою работу. Минимальное остовное дерево для графа G изображено на рис. 3, вес построенного остовного дерева минимален и равен 62.

<u>Сложность</u> алгоритма Краскала - $O(k \cdot \log k)$, где k – количество ребер в данном графе. Алгоритм Краскала лучше работает с графами, слабо насыщенными ребрами.

Рисунок 3. Минимальное остовное дерево веса 62 для графа G.

2. Алгоритм Прима построения МОД

Алгоритм Прима состоит в следующем:

- 1. Из ребер графа G выбираем ребро минимального веса, пусть это будет ребро e_1 между вершинами a и b, то есть e_1 = (a, b), и строим на нем дерево T_1 , полагая, что множество вершин этого дерева -X T_1 = $\{a, b\}$, а множество ребер UT_1 = $\{e_1\}$.
- 2. Если число ребер дерева i < n-1, то среди ребер, соединяющих вершины T_i с вершинами графа G, не входящими в T_i , выбираем ребро e_{i+1} минимального веса. Строим дерево T_{i+1} , присоединяя к T_i ребро e_{i+1} вместе с его не входящими в T_i концами.

Последовательность деревьев в алгоритме Прима

Последовательность деревьев в алгоритме Краскала

<u>Сложность</u> алгоритма Прима - $O(n^2)$. Алгоритм Прима недостаточно эффективен в применении к "редким" графам, то есть к графам, слабо насыщенным ребрами.