# Excitonic Effects in the Calculated Spectra of Molecular Aggregates by Time-Dependent Density-Functional Theory

ASESMA 2018



Kabuyi (a.k.a. Mireille) BILONDA mkabuyi@gmail.com



Teshome Abute LELISHO tlelisho@gmail.com



Denis MAGERO denis.magero@univ-grenoble-alpes.fr



Anne Justine ETINDELE annetindele@yahoo.fr



Samuel KEBETO samuel.kebeto@gmail.com



Abdudin Geremu TEMAM

abdichem2006@gmail.com



Mark E. CASIDA mark.casida@univ-grenoble-alpes.fr

#### INTRODUCTION

- ➤ Quantum mechanics in general and DFT/TDDFT in particular help to describe the properties of the matter.
- The color is obviously one of the most attractive properties of the matter.

The fluorescein molecule is a fascinating molecule

appearing in many colors





#### **FLUORECEIN**



FIG. 1: Results obtained with QUANTUM ESPRESSO at ASESMA in Accra.



FIG.2: Absorption spectrum of fluorecein in ethanol.

Spectral effects seen in dye aggregates:

**J-aggregates** (Jelly/Scheibe) spectrum shifts to lower energies and new narrow peaks appear.

H-aggregates (hypsochromic) spectrum shifts to higher energies.



FIG 3: Spectral effects seen in dye aggregates

#### **OBJECTIVES**

•To understand the impact of aggregation (dimerization) on the spectra of the molecules

 To calculate the energy and charge transfer on the absorption spectra of the molecules

• To describe the impact of the chosen methods on spectra

#### **Kasha's Exciton Model\***

- 1. Historical theory (1960s). Necessarily very approximate!
- 2. Assumes a van der Waals (vdW) dimer.
- 3. Perturbative. Only zero and first order.
- 4. Point-dipole point-dipole approximation.





$$\Psi_1^0 \to \Psi_1^I \qquad (1)$$

$$\omega = E_1^I - E_1^0$$
 (2)



$$\Psi_2^0 \rightarrow \Psi_2^I \qquad (3)$$

$$\omega = E_1^I - E_1^0$$
 (4)

Michael Kasha (1920-2013)

$$\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{V}_{12}$$
 (5)

$$\Psi_0 = \Psi_1^0 \Psi_2^0 \tag{6}$$

$$\Psi_{I} = C_{1} \Psi_{1}^{I} \Psi_{2}^{0} + C_{2} \Psi_{1}^{0} \Psi_{2}^{I}$$
 (7)

<sup>\*</sup> **[KRE65]** M. Kasha, H.R. Rawls, and A. El Bayoumi, "The exciton model in molecular Spectroscopy", *Pure Appl. Chem.* **11**, 371 (1965).

#### **Ground-State Energy**

$$E_0 = \langle \Psi_1^0 \Psi_2^0 | \hat{H} | \Psi_1^0 \Psi_2^0 \rangle$$
 (1)

$$\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{V}_{12} \tag{2}$$

$$E_0 = \langle \Psi_1^0 \Psi_2^0 | \hat{H}_1 | \Psi_1^0 \Psi_2^0 \rangle + \langle \Psi_1^0 \Psi_2^0 | \hat{H}_2 | \Psi_1^0 \Psi_2^0 \rangle + \langle \Psi_1^0 \Psi_2^0 | \hat{V}_{12} | \Psi_1^0 \Psi_2^0 \rangle$$
(3)

$$E_0 = \langle \Psi_1^0 | \hat{H}_1 | \Psi_1^0 \rangle \langle \Psi_2^0 | \Psi_2^0 \rangle + \langle \Psi_1^0 | \Psi_1^0 \rangle \langle \Psi_2^0 | \hat{H}_2 | \Psi_2^0 \rangle + \langle \Psi_1^0 \Psi_2^0 | \hat{V}_{12} | \Psi_1^0 \Psi_2^0 \rangle \tag{4}$$

$$E_0 = E_1^0 + E_2^0 + \langle \Psi_1^0 \Psi_2^0 | \hat{V}_{12} | \Psi_1^0 \Psi_2^0 \rangle$$
 (5)

$$E_0 = E_1^0 + E_2^0 + E_{\text{vdW}}^0$$
 (6)

#### **Excited-State Energy**

$$\Psi_{I} = C_{1} \Psi_{1}^{I} \Psi_{2}^{0} + C_{2} \Psi_{1}^{0} \Psi_{2}^{I}$$
 (1)

$$\begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = E^I \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \tag{2}$$

$$A = \langle \Psi_1^I \Psi_2^0 | \hat{H} | \Psi_1^I \Psi_2^0 \rangle = \langle \Psi_1^0 \Psi_2^I | \hat{H} | \Psi_1^0 \Psi_2^I \rangle$$
 (3)

$$B = \langle \Psi_1^0 \Psi_2^I | \hat{H} | \Psi_1^I \Psi_2^0 \rangle = \langle \Psi_1^I \Psi_2^0 | \hat{H} | \Psi_1^0 \Psi_2^I \rangle$$
 (4)

$$\Psi_{\pm}^{I} = \frac{1}{\sqrt{2}} \left[ \Psi_{1}^{I} \Psi_{2}^{0} \pm \Psi_{1}^{0} \Psi_{2}^{I} \right]$$
 (5)

$$E_{\pm}^{I} = A \pm B \tag{6}$$

#### **Exciton Splitting**

$$A = \langle \Psi_1^I \Psi_2^0 | \hat{H} | \Psi_1^I \Psi_2^0 \rangle \tag{1}$$

$$B = \langle \Psi_1^0 \Psi_2^I | \hat{H} | \Psi_1^I \Psi_2^0 \rangle \tag{2}$$

$$\hat{H} = \hat{H}_1 + \hat{H}_2 + \hat{V}_{12} \tag{3}$$

$$A = E_1^I + E_2^0 + \langle \Psi_1^I \Psi_2^0 | \hat{V}_{12} | \Psi_1^I \Psi_2^0 \rangle = E_1^I + E_2^0 + E_{\text{vdW}}^I$$
 (4)

$$B = \langle \Psi_1^0 \Psi_2^I | \hat{V}_{12} | \Psi_1^I \Psi_2^0 \rangle = E_{\text{exciton splitting}}$$
 (5)

$$E_{\pm}^{I} = E_{1}^{I} + E_{2}^{0} + E_{\text{vdW}}^{I} \pm E_{\text{exciton splitting}}$$
 (6)

$$\omega_{\pm}^{I} = E_{\pm}^{I} - E^{0} = \omega_{1}^{0} + \left(E_{vdW}^{I} - E_{vdW}^{0}\right) \pm E_{\text{exciton splitting}}$$
 (7)

#### **Transition Moments**

$$\vec{\mu}^{I0} = \langle \Psi^I | \vec{r} | \Psi^0 \rangle \qquad (1)$$

$$\vec{\mu}_{\pm}^{I0} = \frac{1}{\sqrt{2}} \langle \Psi_1^I \Psi_2^0 \pm \Psi_1^0 \Psi_2^I | \vec{r} | \Psi_1^0 \Psi_2^0 \rangle \qquad (2)$$

$$\vec{\mu}_{\pm}^{I0} = \frac{1}{\sqrt{2}} \left( \vec{\mu}_{1}^{I0} \pm \vec{\mu}_{2}^{I0} \right) \tag{3}$$

$$f_{\pm}^{I} = \frac{\omega_{\pm}^{I}}{3} |\vec{\mu}_{1}^{I0} \pm \vec{\mu}_{2}^{I0}|^{2}$$
 (4)

Example: Parallel stacking  $\vec{\mu}_{1/2} \perp \vec{r}$  (5)

$$f_{+}^{I} = \frac{4}{3} \omega_{1}^{I} |\vec{\mu}_{1}^{I0}|^{2}$$
 (6)

$$f_{-}^{I} = 0$$
 (7)



Fig. 1. Ref. [KRE65]

#### Let's try to understand how this works ... "simply"!



FIG. 1. Two vertically stacked ethylene molecules.



FIG. 2. Ethylene highest occupied molecular orbital (H) and lowest unoccupied molecular orbital (L).

#### Let's try to understand how this works ... "simply"!



#### Let's try to understand how this works ... "simply"!

#### **ENERGY TRANSFER (ET)**







 $^{1}(H_{2}, L_{2})$ 

#### CHARGE TRANSFER (CT)



$$^{1}(H_{1,}L_{2})$$



$$^{1}(H_{2,}L_{1})$$

#### **COMPUTATIONAL METHODS**

Hartree-Fock and Local Spin Density Approximation (LSDA) for all calculations

Time-Dependent Density Functional Theory (TD-DFT) Calculations for the spectrum

Basis set: STO-3G,

Gaussian 09 RevD.01 package is used

#### **Progress of the project**



Fig.1 Absorption spectrum at different interplanar distances



Fig.2 Absorption spectrum at different interplanar distances





### Charge Transfer and Energy Transfer AU states

|                 |       |                     | LSDA     |          |         | HF       |          |         |  |
|-----------------|-------|---------------------|----------|----------|---------|----------|----------|---------|--|
| Distance<br>(Å) | State | Excited             | ET       | СТ       | E(eV)   | ET       | СТ       | E(eV)   |  |
| 2.5             | 31AU  | 15→17 & 16 -> 18    |          |          | 40.0466 | 0.070041 |          | 10.8466 |  |
|                 | 71AU  | 15→17 & 16 -> 18    | 0.93339  | 0.06661  | 11.8074 | 0.933348 | 0.066652 | 11.8074 |  |
| 3.5             | 21AU  | 15 -> 17 & 16 -> 18 | 0.000799 | 0.999201 | 10.7258 | 0.000803 | 0.999197 | 10.7258 |  |
|                 | 71AU  | 15 -> 17 & 16 -> 18 | 0.999203 | 0.000797 | 13.5375 | 0.999204 | 0.000796 | 13.5375 |  |
| 4               | 21AU  | 15 -> 17 & 16 -> 18 | 9.00E-05 | 0.99991  | 10.6684 | 9.19E-05 | 0.999908 | 10.6684 |  |
|                 | 71AU  | 15 -> 17 & 16 -> 18 | 0.999912 | 8.85E-05 | 14.0704 | 0.99991  | 8.98E-05 | 14.0704 |  |
| 5               | 21AU  | 15 -> 17 & 16 -> 18 | 1        | 3.66E-07 | 10.607  | 1        | 4.17E-07 | 10.607  |  |
|                 | 91AU  | 15 -> 17 & 16 -> 18 | 3.60E-07 | 1        | 14.807  | 4.23E-07 | 1        | 14.807  |  |
| 8               | 21AU  | 15 -> 17 & 16 -> 18 | 1        | 0        | 10.5576 | 1        | 0        | 10.5576 |  |
|                 | 91AU  | 15→17 & 16 -> 18    | 1        | 0        | 15.8986 | 0        | 1        | 15.8986 |  |

## Charge Transfer and Energy Transfer AG states

|                 |       |                                          | LSDA     |          |         | HF       |          |         |
|-----------------|-------|------------------------------------------|----------|----------|---------|----------|----------|---------|
| Distance<br>(Å) | State | Excited                                  | ET       | СТ       | E(eV)   | ET       | СТ       | E(eV)   |
| 3.5             | 11AG  | $15 \to 18 \& 16 \to 17$                 | 0.028399 | 0.971601 | 10.2284 | 0.028395 | 0.971605 | 10.2284 |
| 3.3             | 81AG  | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 0.973133 | 0.026867 | 13.6281 | 0.973124 | 0.026876 | 13.6281 |
|                 | 11AG  | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 0.002426 | 0.997574 | 10.3922 | 0.002423 | 0.997577 | 10.3922 |
| 4               | 81AG  | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 0.997712 | 0.002288 | 14.0787 | 0.997721 | 0.002279 | 14.0787 |
|                 | 11AG  | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 0.999993 |          |         |          | 7.21E-06 |         |
| 5               | 101AG | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 6.76E-06 | 0.999993 | 14.8071 | 6.66E-06 | 0.999993 | 14.8071 |
|                 | 11AG  | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 1        | 0        | 10.5253 | 1        | 0        | 10.5253 |
| 8               | 101AG | $15 \rightarrow 18 \& 16 \rightarrow 17$ | 1        | 0        | 15.8986 | 1        | 0        | 15.8986 |

#### **CONCLUSION**

Method shows both charge transfer and energy transfer for the  $\pi$  to  $\pi^*$  transition in dimers

Below a separation distance of 2.5 Angstroms, the model fails.

At large distance, there is no charge transfer.

#### **FUTURE PLANS**

- BSE (Better Salpeter Equation)
- ■Evaluate the BSE for more geometries
- ■Test more functionals (especially optimally-tuned range-separated functionals)
- ■Test for the effect of other basis sets.

# Thankyou