Introduction to Group Theory

Carson James

1

Contents

N	otation	vii
P	reface	1
1	Representation Theory	3
	1.1 Tannaka-Krein Duality	. 3

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Representation Theory

1.1 Tannaka-Krein Duality

Definition 1.1.0.1. Let $G \in \text{Obj}(\mathbf{TopMon})$, $V \in \text{Obj}(\mathbf{Top\,Vect}_{\mathbb{C}})$ and $\pi \in \text{Hom}_{\mathbf{TopMon}}(G, \text{End}_{\mathbf{Top\,Vect}_{\mathbb{C}}}(V))$. Then (V, π) is said to be a \mathbb{C} -representation of G. We denote the set of \mathbb{C} -representations of G by $\mathcal{R}(G, \mathbb{C})$.

Definition 1.1.0.2. Let $(V, \pi) \in \mathcal{R}(G < \mathbb{C})$. We define the **dimension of** (V, π) , denoted $\dim(V, \pi)$, by $\dim(V, \pi) = \dim V$. Then (V, π) is said to be **finite dimensional** if $\dim(V, \pi) < \infty$.

Definition 1.1.0.3. Let $G \in \text{Obj}(\mathbf{TopMon})$, (V, π) , $(W, \rho) \in \mathcal{R}(G, \mathbb{C})$ and $T \in \text{Hom}_{\mathbf{TopVect}_{\mathbb{C}}}(V, W)$ Then T is said to be (π, ρ) -equivariant if for each $g \in G$, $T \circ \pi(g) = \rho(g) \circ T$, i.e. the following diagram commutes:

$$\begin{array}{c|c} V & \xrightarrow{T} W \\ \pi(g) \downarrow & & \downarrow \rho(g) \\ V & \xrightarrow{T} W \end{array}$$

Definition 1.1.0.4. Let $G \in \text{Obj}(\mathbf{TopMon})$. We define $\mathbf{Rep}(G, \mathbb{C})$ by

- $\mathrm{Obj}(\mathbf{Rep}(G,\mathbb{C})) = \mathcal{R}(G,\mathbb{C}).$
- for $(V, \pi), (W, \rho) \in \text{Obj}(\mathbf{Rep}(G, \mathbb{C})),$

 $\operatorname{Hom}_{\mathbf{Rep}(G,\mathbb{C})}((V,\pi),(W,\rho)) = \{T \in \operatorname{Hom}_{\mathbf{TopVect}_{\mathbb{C}}}(V,W) : T \text{ is } (\pi,\rho)\text{-equivariant}\}$

• for $(V, \pi), (W, \rho), (Z, \mu) \in \mathrm{Obj}(\mathbf{Rep}(G, \mathbb{C})), T \in \mathrm{Hom}_{\mathbf{Rep}(G, \mathbb{C})}((V, \pi), (W, \rho)) \text{ and } S \in \mathrm{Hom}_{\mathbf{Rep}(G, \mathbb{C})}((W, \rho), (Z, \mu)),$

$$S \circ_{\mathbf{Rep}(G,\mathbb{C})} T = S \circ T$$

Exercise 1.1.0.5. Let $G \in \text{Obj}(\mathbf{TopMon})$. Then $\mathbf{Rep}(G, \mathbb{C})$ is a category.

Proof.

Definition 1.1.0.6. Let $G \in \mathrm{Obj}(\mathbf{TopMon})$. We define the **forgetful functor from Rep** (G,\mathbb{C}) **to** $\mathbf{TopVect}_{\mathbb{C}}$, denoted $U : \mathbf{Rep}(G,\mathbb{C}) \to \mathbf{TopVect}_{\mathbb{C}}$, by

- $U(V,\pi) = V$, $(V,\pi) \in \text{Obj}(\mathbf{Rep}(G,\mathbb{C}))$
- U(T) = T, $T \in \operatorname{Hom}_{\mathbf{Rep}(G,\mathbb{C})}((V,\pi),(W,\rho))$.

Definition 1.1.0.7. Let $G \in \text{Obj}(\textbf{TopMon})$ and $g \in G$. We define $\hat{g}: U \Rightarrow U$ by $\hat{g}_{(V,\pi)} = \pi(g)$.

Exercise 1.1.0.8. Let $G \in \text{Obj}(\mathbf{TopMon})$ and $g \in G$. Then

1. $\hat{g}: U \Rightarrow U$ is a natural transformation.

2.
$$\hat{g} \in \operatorname{End}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U)$$

Proof.

1. (a) Let $(V, \pi) \in \text{Obj}(\mathbf{Rep}(G, \mathbb{C}))$. By definition,

$$\begin{split} \hat{g}_{(V,\pi)} &= \pi(g) \\ &\in \mathrm{End}_{\mathbf{TopVect}_{\mathbb{C}}}(V) \\ &= \mathrm{Hom}_{\mathbf{TopVect}_{\mathbb{C}}}(U(V,\pi), U(V,\pi)) \end{split}$$

(b) Let $(V, \pi), (W, \rho) \in \text{Obj}(\mathbf{Rep}(G, \mathbb{C}))$ and $T \in \text{Hom}_{\mathbf{Rep}(G, \mathbb{C})}((V, \pi), (W, \rho))$. By definition, $T \in \text{Hom}_{\mathbf{TopVect}_{\mathbb{C}}}(V, W)$ and T is (π, ρ) -equivariant. Therefore

$$U(T) \circ \hat{g}_{(V,\pi)} = T \circ \pi(g)$$

$$= \rho(g) \circ T$$

$$= \hat{g}_{(W,\rho)} \circ U(T)$$

i.e. the following diagram commutes:

$$U(V,\pi) \xrightarrow{\hat{g}_{(V,\pi)}} U(V,\pi)$$

$$U(T) \downarrow \qquad \qquad \downarrow U(T)$$

$$U(W,\rho) \xrightarrow{\hat{g}_{(W,\rho)}} U(W,\rho)$$

Thus $\hat{g}: U \Rightarrow U$ is a natural transformation.

2. The previous part implies that

$$\begin{split} \hat{g} &\in \mathrm{Hom}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U,U) \\ &= \mathrm{End}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U) \end{split}$$

Definition 1.1.0.9. Let $G \in \text{Obj}(\mathbf{TopMon})$ and $(V, \pi) \in \text{Obj}(\mathbf{Rep}(G, \mathbb{C}))$. We define the (V, π) -projection, denoted $\pi_{(V,\pi)} : \text{End}_{\mathbf{TopVect}_{\mathbb{C}}^{\mathbf{Rep}(G,\mathbb{C})}}(U) \to \text{End}_{\mathbf{TopVect}_{\mathbb{C}}}(V)$, by $\pi_{(V,\pi)}(\alpha) = \alpha_{(V,\pi)}$. We define the **topology** of endomorphisms of U, denoted $\mathcal{T}_{\mathcal{E}(U)}$, by

$$\mathcal{T}_{\mathcal{E}(U)} = \tau(\pi_{(V,\pi)} : (V,\pi) \in \mathbf{Rep}(G,\mathbb{C}))$$

Definition 1.1.0.10. define addition of endomorphisms of U pointwise

Exercise 1.1.0.11. Let $G \in \text{Obj}(\mathbf{TopMon})$. Then $(\text{End}_{\mathbf{TopVect}^{\mathbf{Rep}(G,\mathbb{C})}_{\mathbb{C}}}(U), \mathcal{T}_{\mathcal{E}(U)})$ is a topological unital algebra.

Proof.

Bibliography

- [1] Introduction to Algebra
- [2] Introduction to Analysis
- [3] Introduction to Fourier Analysis
- [4] Introduction to Measure and Integration