Network generation and analysis Prerequisites: • Basic data types in Python: integer, float, string, boolean Basic math operations: + - / . Exponentiation , integer division // · Lists: creating, adding, removing, testing membership, testing index, indexing and slicing, iterating, enumerate • Tuples (immutable lists): creating, indexing, iterating, enumerating • Sets (unordered container that only allows unique elements): creation, testing membership, adding, deleting, logical operations • Dictionaries (map a key to a value): creating, adding, number of keys, testing membership, removing, iterating over keys / values / items • numpy arrays (ndarray can represent vectors, matrices, etc.): vectors and vector operations, matrices and matrix operations Import modules In [2]: import numpy as np import networkx as nx import matplotlib.pyplot as plt import matplotlib as mplb import collections In [3]: # see NetworkX documentation: https://networkx.org/ # dir(nx)In [4]: nx.__version_ Out[4]: '2.4' Basic data types in NetworkX Classes provided to represent network-related data: Graph - Undirected graph with self loops DiGraph - Directed graph with self loops MultiGraph - Undirected Graph with self loops and multiple edges MultiDiGraph - Directed Graph with self loops and multiple edges **Getting started** In [18]: G = nx.Graph() #create an empty undirected graph **Nodes** In [19]: G.add node(0) # int G.add_node("John") # string pos = (1.2, 3.4) # tupleG.add node (pos) G.add_nodes_from([1,2,3]) # add several nodes from a list In [20]: G.nodes() Out[20]: NodeView((0, 'John', (1.2, 3.4), 1, 2, 3)) **Node attributes** A node can have attributes: given as string-index dictionary. In [21]: G.add_node("Carla", eye_color="blue", height=170) # add new node with attributes using keyword argument G.add_node("Camelia") In [22]: G.nodes["Camelia"]["publications"] = 100 # add an attribute to an existing node In [23]: print(G.nodes) [0, 'John', (1.2, 3.4), 1, 2, 3, 'Carla', 'Camelia'] print(G.nodes(data=True)) In [24]: [(0, {}), ('John', {}), ((1.2, 3.4), {}), (1, {}), (2, {}), (3, {}), ('Carla', {'eye_color': 'blue', 'height': 170}), ('Camelia', {'publications': 100})] G.nodes['Carla'] In [25]: Out[25]: {'eye_color': 'blue', 'height': 170} In [27]: G.nodes[1] Out[27]: {} In [28]: print("Carla has ", G.nodes["Carla"]["eye_color"], " eyes. Height = ", G.nodes["Carla"]["height"]) Carla has blue eyes. Height = 170 In [30]: # KeyError: G.nodes[1]["height"] **Edges** An edge between node1 and node2 is represented as a tuple (node1, node2) In [32]: # add edge between nodes 0 and 1 $G.add_edge(0, 1)$ # add multiple edges edge_list = [(1, 2), ("Carla", "Camelia"), (3, 4)] G.add_edges_from(edge_list) Note: Nodes will be automatically created if they do not already exist. **Edge attributes** Edges can also have arbitrary attributes. An important and special attribute if "weight". G.edges[node1, node2] is a dictionary with all attribute:value pairs associated with the edge from node1 and node2 In [33]: G.add edge("Carla", "Timi", weight=10) G.add edge("Cluj", "Budapest") G.edges["Cluj", "Budapest"]['distance'] = 400 **Basic operations** In [34]: print(G.number of nodes()) # number of nodes print(len(G)) # same as above print(G.number_of_edges()) # number of edges print(G.size()) # same as above print("G has {0} nodes and {1} edges.".format(len(G), G.size())) # how to do string formatting 12 6 G has 12 nodes and 6 edges. Test if a node exists In [35]: G.has_node("Carla") Out[35]: True "Camelia" in G In [38]: Out[38]: True In [37]: 1 in G.nodes Out[37]: True Test if an edge exists In [39]: G.has edge(3,4) # must use has edge Out[39]: True In [40]: G.has_edge("Carla", 1) Out[40]: False Finding neighbors of a node In [41]: G.neighbors(1) Out[41]: <dict_keyiterator at 0x183efc88ae0> In [42]: list(G.neighbors(1)) Out[42]: [0, 2] Note: • In DiGraph objects, G.neighbors (node) gives the successors of node, as does G.successors (node) • Predecessors of node can be obtained with G.predecessors (node) Iterating over nodes and edges This can be done with G.nodes() and G.edges() In [43]: G.nodes() Out[43]: NodeView((0, 'John', (1.2, 3.4), 1, 2, 3, 'Carla', 'Camelia', 4, 'Timi', 'Cluj', 'Budapest')) In [54]: for node in G.nodes(): print(node) John (1.2, 3.4)1 2 3 Carla Camelia Timi Cluj Budapest In [53]: for node in G.nodes(): print(node, " --- ", type(node)) 0 --- <class 'int'> John --- <class 'str'> (1.2, 3.4) --- <class 'tuple'> 1 --- <class 'int'> 2 --- <class 'int'> 3 --- <class 'int'> Carla --- <class 'str'> Camelia --- <class 'str'> 4 --- <class 'int'> Timi --- <class 'str'> Cluj --- <class 'str'> Budapest --- <class 'str'> In [50]: for node, data in G.nodes(data=True): # date=True includes node attributes as dictionaries print("Node: ", node, " --- ", data) Node: 0 --- {} Node: John --- {} Node: (1.2, 3.4) --- {} Node: 1 --- {} Node: 2 --- {} Node: 3 --- {} Node: Carla --- {'eye_color': 'blue', 'height': 170} Node: Camelia --- { 'publications': 100} Node: 4 --- {} Node: Timi --- {} Node: Cluj --- {} Node: Budapest --- {} In [51]: for n1, n2, data in G.edges(data=True): print("{0} <---> {1}: {2}".format(n1, n2, data)) 0 <---> 1: {} 1 <---> 2: {} 3 <---> 4: {} Carla <---> Camelia: {} Carla <---> Timi: {'weight': 10} Cluj <---> Budapest: {'distance': 400} In [55]: for n1, n2 in G.edges(): print(n1, n2) 0 1 1 2 Carla Camelia Carla Timi Cluj Budapest Calculating degrees In [57]: G.degree() # returns a view of a dictionary with node: degree pairs for all nodes Out[57]: DegreeView({0: 1, 'John': 0, (1.2, 3.4): 0, 1: 2, 2: 1, 3: 1, 'Carla': 2, 'Camelia': 1, 4: 1, 'Timi': 1, 'Cluj': 1, 'Budapest': 1}) In [59]: print(G.degree()) [(0, 1), ('John', 0), ((1.2, 3.4), 0), (1, 2), (2, 1), (3, 1), ('Carla', 2), ('Camelia', 1), (4, 1), ('Timi', 1), ('Cluj', 1), ('Budapest', 1)] In [56]: G.degree("Carla") Out[56]: 2 In [58]: print([G.degree(node) for node in G]) [1, 0, 0, 2, 1, 1, 2, 1, 1, 1, 1, 1] Note: In directed graphs (of class <code>DiGraph</code>) there are two types of degree. Things work just as you expect • G.in degree(node) • G.out_degree(node) # same as G.degree() Adjacency matrix In [60]: nx.to numpy array(G, weight=None) Out[60]: array([[0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.], [1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.], [0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0.][0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0.],[0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.][0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.][0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.][0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.]]) Reading network data from files Node and edge data can be read from an appropriate data file. In NetworkX, several commmon graph formats can be used: edge lists · adjacency lists GML GEXF Python 'pickle' GraphML Pajek LEDA YAML File with edge list (test.txt): lines starting with # are treated as comments and ignored • use a Graph object to hold the data (i.e., network is undirected) data are separated by whitespace (' ') nodes should be treated as integers (int) encoding of the text file containing the edge list is utf-8 **Allowed formats** Node pairs with no data 1 2 Node pairs with python dictionary 1 2 {weight:7, color:"green"} In [3]: G = nx.read_edgelist("test.txt", comments="#", create_using=nx.Graph(), delimiter=' ', nodetype=int, en coding='utf-8') **Basic analysis** In [4]: N = len(G)L = G.size()degrees = [G.degree(node) for node in G] kmin = min(degrees) kmax = max(degrees)In [32]: print("Number of nodes: ", N) print("Number of edges: ", L) print() print("Average degree: ", 2*L/N) #print("Average degree (alternate calculation)", np.mean(degrees)) print() print("Minimum degree: ", kmin) print("Maximum degree: ", kmax) print("All degrees: ", degrees) Number of nodes: 443 Number of edges: 540 Average degree: 2.4379232505643342 Minimum degree: 1 Maximum degree: All degrees: [5, 2, 5, 5, 4, 3, 2, 2, 1, 2, 2, 3, 5, 2, 2, 2, 3, 3, 1, 3, 5, 8, 3, 6, 7, 6, 3, 1, 3, 3, 1, 1, 2, 4, 3, 2, 4, 5, 1, 3, 2, 7, 6, 3, 1, 2, 5, 3, 3, 1, 1, 5, 3, 5, 4, 1, 2, 2, 3, 1, 1, 2, 4, 1, 2, 5, 1, 4, 2, 3, 3, 3, 1, 4, 1, 1, 3, 3, 4, 3, 1, 1, 2, 2, 1, 4, 1, 5, 2, 6, 3, 2, 6, 3, 1, 1, 5, 4, 4, 4, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 1, 3, 2, 3, 3, 3, 3, 3, 1, 2, 1, 1, 4, 1, 1, 2, 5, 2, 3, 5, 3, 1, 3, 6, 2, 2, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 3, 2, 2, 4, 3, 2, 2, 3, 3, 3, 1, 3, 5, 2, 2, 2, 2, 3, 2, 1, 4, 1, 4, 2, 2, 3, 2, 5, 2, 2, 1, 3, 2, 3, 2, 3, 3, 2, 3, 1, 2, 7, 3, 2, 4, 2, 1, 4, 5, 3, 4, 3, 1, 1, 1, 4, 2, 2, 3, 3, 3, 4, 2, 4, 5, 1, 3, 4, 3, 4, 1, 1, 4, 1, 1, 2, 1, 3, 2, 3, 4, 3, 1, 1, 3, 1, 2, 3, 2, 3, 3, 4, 2, 3, 5, 2, 1, 2, 4, 4, 2, 4, 2, 5, 2, 4, 2, 2, 2, 4, 3, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 3, 2, 1, 2, 2, 1, 5, 1, 2, 1, 5, 6, 2, 4, 2, 1, 2, 2, 2, 2, 2, 4, 2, 4, 1, 2, 1, 3, 1, 3, 4, 6, 2, 2, 1, 2, 2, 3, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 2, 4, 2, 2, 3, 2, 4, 3, 2, 2, 2, 1, 2, 3, 3, 1, 2, 2, 2, 2, 1, 3, 1, 1, 2, 2, 4, 2, 1, 3, 1, 5, 2, 2, 2, 3, 1, 1, 1, 1, 2, 2, 2, 3, 4, 2, 1, 2, 4, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2, 2, 1, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1] **Drawing the network** In [75]: # using the force-based or "spring" layout algorithm fig = plt.figure(figsize=(10,10)) nx.draw_spring(G, node_size=40) In [76]: # using the fcircular layout algorithm fig = plt.figure(figsize=(8,8)) nx.draw circular(G, node size=40) Degree histogram In [19]: degree sequence = sorted([d for n, d in G.degree()], reverse=True) # degree sequence #print(degree sequence) degreeCount = collections.Counter(degree sequence) #print(degreeCount) #print(degreeCount.items()) deg, cnt = zip(*degreeCount.items()) plt.bar(deg, cnt, width=0.80, color="b") plt.title("Degree Histogram") plt.ylabel("Count") plt.xlabel("Degree") plt.show() Degree Histogram 160 140 120 100 80 60 20 1 2 3 6 Degree In [94]: plt.plot(deg,cnt,'bo-') plt.show() 160 140 120 100 80 60 40 20 In [96]: plt.loglog(deg,cnt,'bo') plt.show() 10¹ 10° 10° 2×10^{0} 3×10° 4×10° 6×10° Plotting the degree distribution Log-log scale: In [68]: # numpy can be used to get logarithmically-spaced bins between the minimum and maximum degree # Get 10 logarithmically spaced bins between kmin and kmax bin edges = np.logspace(np.log10(kmin), np.log10(kmax), num=10) # histogram the data into these bins density, = np.histogram(degrees, bins=bin edges, density=True) fig = plt.figure(figsize=(6,4)) # "x" should be midpoint (IN LOG SPACE) of each bin log be = np.log10(bin edges) print(log be) x = 10**((log be[1:] + log be[:-1])/2)plt.loglog(x, density, marker='o', linestyle='none') plt.xlabel(r"degree \$k\$", fontsize=16) plt.ylabel(r"\$P(k)\$", fontsize=16) # remove right and top boundaries because they're ugly ax = plt.gca()ax.spines['right'].set visible(False) ax.spines['top'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.xaxis.set ticks position('bottom') # Show the plot plt.show() 0.10034333 0.20068666 0.30103 0.40137333 0.50171666 0.60205999 0.70240332 0.80274666 0.90308999] [1.12246205 1.41421356 1.78179744 2.2449241 2.82842712 3.56359487 4.48984819 5.65685425 7.12718975] 10° £ 10⁻¹ 10^{-2} 3 × 10° 4 × 10° 2×10^{0} 6 × 10⁶ degree k In [78]: #using the bin edges generated by np.histogram fig = plt.figure(figsize=(6, 4)) y, bin edges = np.histogram(degrees, density=True, bins=10) $x = [(bin_edges[i] + bin_edges[i+1])/2$ **for** i **in** range(len(bin edges)-1)]plt.loglog(x, y, marker="o", markersize=10, color="r", linestyle='none') plt.xlabel(r"degree \$k\$", fontsize=16) plt.ylabel(r"\$P(k)\$", fontsize=16) plt.show() 10^{-1} 10^{-2} 2×10^{0} 3 × 10° 4 × 10° degree k linear-linear scale: In [55]: # Get 20 logarithmically spaced bins between kmin and kmax bin edges = np.linspace(kmin, kmax, num=10) # histogram the data into these bins density, _ = np.histogram(degrees, bins=bin edges, density=True) In [56]: fig = plt.figure(figsize=(6,4)) # "x" should be midpoint (IN LOG SPACE) of each bin log_be = np.log10(bin_edges) $x = 10**((log_be[1:] + log_be[:-1])/2)$ plt.plot(x, density, marker='o', linestyle='none') plt.xlabel(r"degree \$k\$", fontsize=16) plt.ylabel(r"\$P(k)\$", fontsize=16) # remove right and top boundaries because they're ugly ax = plt.gca()ax.spines['right'].set_visible(False) ax.spines['top'].set visible(False) ax.yaxis.set ticks position('left') ax.xaxis.set_ticks_position('bottom') # Show the plot plt.show() 0.4 0.3 0.1 0.0 degree *k*