

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification⁶ : C12N 15/31, 15/52, 15/82, 15/70, 5/10, 1/21, C12P 7/64, A01H 5/00		A1	(11) International Publication Number: WO 98/55625 (43) International Publication Date: 10 December 1998 (10.12.98)
(21) International Application Number: PCT/US98/11639		(81) Designated States: BR, CA, IL, JP, MX, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(22) International Filing Date: 4 June 1998 (04.06.98)		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(30) Priority Data: 60/048,650 4 June 1997 (04.06.97) US			
(71) Applicant: CALGENE, LLC [US/US]; 1920 Fifth Street, Davis, CA 95616 (US).			
(72) Inventors: FACCIOTTI, Daniel; 2636 Lafayette Drive, Davis, CA 95616 (US). METZ, James, George; 2803 Belhaven Place, Davis, CA 95616 (US). LASSNER, Michael; 721 Falcon Avenue, Davis, CA 95616 (US).			
(74) Agent: RAE-VENTER, Barbara; Rae-Venter Law Group, P.C., P.O. Box 60039, Palo Alto, CA 94306 (US).			

(54) Title: PRODUCTION OF POLYUNSATURATED FATTY ACIDS BY EXPRESSION OF POLYKETIDE-LIKE SYNTHESIS GENES IN PLANTS

(57) Abstract

The present invention relates to compositions and methods for preparing polyunsaturated long chain fatty acids in plants, plant parts and plant cells, such as leaves, roots, fruits and seeds. Nucleic acid sequences and constructs encoding PKS-like genes required for the poly-unsaturated long chain fatty acid production, including the genes responsible for eicosapentenoic acid production of *Shewanella putrefaciens* and novel genes associated with the production of docosahexenoic acid in *Vibrio marinus* are used to generate transgenic plants, plant parts and cells which contain and express one or more transgenes encoding one or more of the PKS-like genes associated with such long chain polyunsaturated fatty acid production. Expression of the PKS-like genes in the plant system permits the large scale production of polyunsaturated long chain fatty acids such as eicosapentenoic acid and docosahexenoic acid for modification of the fatty acid profile of plants, plant parts and tissues. Manipulation of the fatty acid profiles allows for the production of commercial quantities of novel plant oils and products.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

PRODUCTION OF POLYUNSATURATED FATTY ACIDS BY EXPRESSION OF POLYKETIDE-LIKE SYNTHESIS GENES IN PLANTS

INTRODUCTION

5 Field of the Invention

This invention relates to modulating levels of enzymes and/or enzyme components capable of modifying long chain poly-unsaturated fatty acids (PUFAs) in a host cell, and constructs and methods for producing PUFAs in a host cell. The invention is exemplified by production of eicosapentenoic acid (EPA) using genes derived from *Shewanella* 10 *putrefaciens* and *Vibrio marinus*.

Background

Two main families of poly-unsaturated fatty acids (PUFAs) are the $\omega 3$ fatty acids, exemplified by eicosapentenoic acid, and the $\omega 6$ fatty acids, exemplified by arachidonic acid. PUFAs are important components of the plasma membrane of the cell, where they can be found in such forms as phospholipids, and also can be found in triglycerides. 15 PUFAs also serve as precursors to other molecules of importance in human beings and animals, including the prostacyclins, leukotrienes and prostaglandins. Long chain PUFAs of importance include docosahexenoic acid (DHA) and eicosapentenoic acid (EPA), 20 which are found primarily in different types of fish oil, gamma-linolenic acid (GLA), which is found in the seeds of a number of plants, including evening primrose (*Oenothera biennis*), borage (*Borago officinalis*) and black currants (*Ribes nigrum*), stearidonic acid (SDA), which is found in marine oils and plant seeds, and arachidonic acid (ARA), which along with GLA is found in filamentous fungi. ARA can be purified from animal tissues 25 including liver and adrenal gland. Several genera of marine bacteria are known which synthesize either EPA or DHA. DHA is present in human milk along with ARA.

PUFAs are necessary for proper development, particularly in the developing infant brain, and for tissue formation and repair. As an example, DHA, is an important constituent of many human cell membranes, in particular nervous cells (gray matter), 30 muscle cells, and spermatozoa and believed to affect the development of brain functions in general and to be essential for the development of eyesight. EPA and DHA have a number of nutritional and pharmacological uses. As an example adults affected by diabetes (especially non insulin-dependent) show deficiencies and imbalances in their

levels of DHA which are believed to contribute to later coronary conditions. Therefore a diet balanced in DHA may be beneficial to diabetics.

For DHA, a number of sources exist for commercial production including a variety of marine organisms, oils obtained from cold water marine fish, and egg yolk fractions. The purification of DHA from fish sources is relatively expensive due to technical difficulties, making DHA expensive and in short supply. In algae such as *Amphidinium* and *Schyzochytrium* and marine fungi such as *Thraustochytrium* DHA may represent up to 48% of the fatty acid content of the cell. A few bacteria also are reported to produce DHA. These are generally deep sea bacteria such as *Vibrio marinus*. For ARA, microorganisms including the genera *Mortierella*, *Entomophthora*, *Phytium* and *Porphyridium* can be used for commercial production. Commercial sources of SDA include the genera *Trichodesma* and *Echium*. Commercial sources of GLA include evening primrose, black currants and borage. However, there are several disadvantages associated with commercial production of PUFAs from natural sources. Natural sources of PUFA, such as animals and plants, tend to have highly heterogeneous oil compositions. The oils obtained from these sources can require extensive purification to separate out one or more desired PUFA or to produce an oil which is enriched in one or more desired PUFA.

Natural sources also are subject to uncontrollable fluctuations in availability. Fish stocks may undergo natural variation or may be depleted by overfishing. Animal oils, and particularly fish oils, can accumulate environmental pollutants. Weather and disease can cause fluctuation in yields from both fish and plant sources. Cropland available for production of alternate oil-producing crops is subject to competition from the steady expansion of human populations and the associated increased need for food production on the remaining arable land. Crops which do produce PUFAs, such as borage, have not been adapted to commercial growth and may not perform well in monoculture. Growth of such crops is thus not economically competitive where more profitable and better established crops can be grown. Large -scale fermentation of organisms such as *Shewanella* also is expensive. Natural animal tissues contain low amounts of ARA and are difficult to process. Microorganisms such as *Porphyridium* and *Shewanella* are difficult to cultivate on a commercial scale.

Dietary supplements and pharmaceutical formulations containing PUFAs can retain the disadvantages of the PUFA source. Supplements such as fish oil capsules can

contain low levels of the particular desired component and thus require large dosages. High dosages result in ingestion of high levels of undesired components, including contaminants. Care must be taken in providing fatty acid supplements, as overaddition may result in suppression of endogenous biosynthetic pathways and lead to competition with other necessary fatty acids in various lipid fractions *in vivo*, leading to undesirable results. For example, Eskimos having a diet high in $\omega 3$ fatty acids have an increased tendency to bleed (U.S. Pat. No. 4,874,603). Fish oils have unpleasant tastes and odors, which may be impossible to economically separate from the desired product, such as a food supplements. Unpleasant tastes and odors of the supplements can make such regimens involving the supplement undesirable and may inhibit compliance by the patient.

A number of enzymes have been identified as being involved in PUFA biosynthesis. Linoleic acid (LA, 18:2 $\Delta 9, 12$) is produced from oleic acid (18:1 $\Delta 9$) by a $\Delta 12$ -desaturase. GLA (18:3 $\Delta 6, 9, 12$) is produced from linoleic acid (LA, 18:2 $\Delta 9, 12$) by a $\Delta 6$ -desaturase. ARA (20:4 $\Delta 5, 8, 11, 14$) is produced from DGLA (20:3 $\Delta 8, 11, 14$), catalyzed by a $\Delta 5$ -desaturase. Eicosapentenoic acid (EPA) is a 20 carbon, omega 3 fatty acid containing 5 double bonds ($\Delta 5, 8, 11, 14, 17$), all in the *cis* configuration. EPA, and the related DHA ($\Delta 4, 7, 10, 13, 16, 19$, C22:6) are produced from oleic acid by a series of elongation and desaturation reactions. Additionally, an elongase (or elongases) is required to extend the 18 carbon PUFAs out to 20 and 22 carbon chain lengths. However, animals cannot convert oleic acid (18:1 $\Delta 9$) into linoleic acid (18:2 $\Delta 9, 12$). Likewise, μ -linolenic acid (ALA, 18:3 $\Delta 9, 12, 15$) cannot be synthesized by mammals. Other eukaryotes, including fungi and plants, have enzymes which desaturate at positions $\Delta 12$ and $\Delta 15$. The major poly-unsaturated fatty acids of animals therefore are either derived from diet and/or from desaturation and elongation of linoleic acid (18:2 $\Delta 9, 12$) or μ -linolenic acid (18:3 $\Delta 9, 12, 15$).

Poly-unsaturated fatty acids are considered to be useful for nutritional, pharmaceutical, industrial, and other purposes. An expansive supply of poly-unsaturated fatty acids from natural sources and from chemical synthesis are not sufficient for commercial needs. Because a number of separate desaturase and elongase enzymes are required for fatty acid synthesis from linoleic acid (LA, 18:2 $\Delta 9, 12$), common in most plant species, to the more saturated and longer chain PUFAs, engineering plant host cells for the expression of EPA and DHA may require expression of five or six separate

enzyme activities to achieve expression, at least for EPA and DHA, and for production of quantities of such PUFAs additional engineering efforts may be required, for instance the down regulation of enzymes competing for substrate, engineering of higher enzyme activities such as by mutagenesis or targeting of enzymes to plastid organelles. Therefore 5 it is of interest to obtain genetic material involved in PUFA biosynthesis from species that naturally produce these fatty acids and to express the isolated material alone or in combination in a heterologous system which can be manipulated to allow production of commercial quantities of PUFAs.

10 Relevant Literature

Several genera of marine bacteria have been identified which synthesize either EPA or DHA (DeLong and Yayanos, *Applied and Environmental Microbiology* (1986) 51: 730-737). Researchers of the Sagami Chemical Research Institute have reported EPA production in *E. coli* which have been transformed with a gene cluster from the marine 15 bacterium, *Shewanella putrefaciens*. A minimum of 5 open reading frames (ORFs) are required for fatty acid synthesis of EPA in *E. coli*. To date, extensive characterization of the functions of the proteins encoded by these genes has not been reported (Yazawa (1996) *Lipids* 31, S-297; WO 93/23545; WO 96/21735).

The protein sequence of open reading frame (ORF) 3 as published by Yazawa, 20 USPN 5,683,898 is not a functional protein. Yazawa defines the protein as initiating at the methionine codon at nucleotides 9016-9014 of the *Shewanella* PKS-like cluster (Genbank accession U73935) and ending at the stop codon at nucleotides 8185-8183 of the *Shewanella* PKS-like cluster. However, when this ORF is expressed under control of a heterologous promoter in an *E. coli* strain containing the entire PKS-like cluster except 25 ORF 3, the recombinant cells do not produce EPA.

Polyketides are secondary metabolites the synthesis of which involves a set of enzymatic reactions analogous to those of fatty acid synthesis (see reviews: Hopwood and Sherman, *Annu. Rev. Genet.* (1990) 24: 37-66, and Katz and Donadio, *in Annual Review of Microbiology* (1993) 47: 875-912). It has been proposed to use polyketide 30 synthases to produce novel antibiotics (Hutchinson and Fujii, *Annual Review of Microbiology* (1995) 49:201-238).

SUMMARY OF THE INVENTION

Novel compositions and methods are provided for preparation of long chain poly-
unsaturated fatty acids (PUFAs) using polyketide-like synthesis (PKS-like) genes in
5 plants and plant cells. In contrast to the known and proposed methods for production of
PUFAs by means of fatty acid synthesis genes, by the invention constructs and methods
are provided for producing PUFAs by utilizing genes of a PKS-like system. The methods
involve growing a host cell of interest transformed with an expression cassette functional
in the host cell, the expression cassette comprising a transcriptional and translational
10 initiation regulatory region, joined in reading frame 5' to a DNA sequence to a gene or
component of a PKS-like system capable of modulating the production of PUFAs (PKS-
like gene). An alteration in the PUFA profile of host cells is achieved by expression
following introduction of a complete PKS-like system responsible for a PUFA
biosynthesis into host cells. The invention finds use for example in the large scale
15 production of DHA and EPA and for modification of the fatty acid profile of host cells
and edible plant tissues and/or plant parts.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides designations for the ORFs of the EPA gene cluster of
20 *Shewanella*. Figure 1A shows the organization of the genes; those ORFs essential for
EPA production in *E. coli* are numbered. Figure 1B shows the designations given to
subclones.

Figure 2 provides the *Shewanella* PKS-like domain structure, motifs and 'Blast'
matches of ORF 6 (Figure 2A), ORF 7 (Figure 2B), ORF 8 (Figure 2C), ORF 9
25 (Figure 2D) and ORF 3 (Figure 2E). Figure 2F shows the structure of the region of the
Anabeana chromosome that is related to domains present in *Shewanella* EPA ORFs.

Figure 3 shows results for pantethenylation - ORF 3 in *E. coli* strain SJ16.

Figure 4 is the sequence for the PKS-like cluster found in *Shewanella*, containing
ORFs 3, 4, 5, 6, 7, 8 and 9. The start and last codons for each ORF are as follows:
30 ORF3 (published-inactive): 9016, 8186; ORF3 (active in EPA synthesis): 9157, 8186;
ORF 6: 13906, 22173; ORF 7: 22203, 24515; ORF 8: 24518, 30529; ORF 9: 30730,
32358.

Figure 5 shows the sequence for the PKS-like cluster in an approximately 40 kb DNA fragment of *Vibrio marinus*, containing ORFs 6, 7, 8 and 9. The start and last condons for each ORF are as follows: ORF 6: 17394, 25352; ORF 7: 25509, 28160; ORF 8: 28209, 34265; ORF 9: 34454, 36118.

5 Figure 6 shows the sequence for an approximately 19 kb portion of the PKS-like cluster of Figure 5 which contains the ORFs 6, 7, 8 and 9. The start and last condons for each ORF are as follows: ORF 6: 411, 8369; ORF 7: 8526, 11177; ORF 8: 11226, 17282; ORF 9: 17471, 19135.

10 Figure 7 shows a comparison of the PKS-like gene clusters of *Shewanella putrefaciens* and *Vibrio marinus*; Figure 7B is the *Vibrio marinus* operon sequence.

Figure 8 is an expanded view of the PKS-like gene cluster portion of *Vibrio marinus* shown in Figure 7B showing that ORFs 6, 7 and 8 are in reading frame 2, while ORF 9 is in reading frame 3.

15 Figure 9 demonstrates sequence homology of ORF 6 of *Shewanella putrefaciens* and *Vibrio marinus*. The *Shewanella* ORF 6 is depicted on the vertical axis, and the *Vibrio* ORF 6 is depicted on the horizontal axis. Lines indicate regions of the proteins that have a 60% identity. The repeated lines in the middle correspond to the multiple ACP domains found in ORF 6.

20 Figure 10 demonstrates sequence homology of ORF 7 of *Shewanella putrefaciens* and *Vibrio marinus*. The *Shewanella* ORF 7 is depicted on the vertical axis, and the *Vibrio* ORF 7 is depicted on the horizontal axis. Lines indicate regions of the proteins that have a 60% identity.

25 Figure 11 demonstrates sequence homology of ORF 8 of *Shewanella putrefaciens* and *Vibrio marinus*. The *Shewanella* ORF 8 is depicted on the vertical axis, and the *Vibrio* ORF 8 is depicted on the horizontal axis. Lines indicate regions of the proteins that have a 60% identity.

30 Figure 12 demonstrates sequence homology of ORF 9 of *Shewanella putrefaciens* and *Vibrio marinus*. The *Shewanella* ORF 9 is depicted on the vertical axis, and the *Vibrio* ORF 9 is depicted on the horizontal axis. Lines indicate regions of the proteins that have a 60% identity.

Figure 13 is a depiction of various complementation experiments, and resulting PUFA production. On the right, is shown the longest PUFA made in the *E. coli* strain

containing the *Vibrio* and *Shewanella* genes depicted on the left. The hollow boxes indicate ORFs from *Shewanella*. The solid boxes indicate ORFs from *Vibrio*.

Figure 14 is a chromatogram showing fatty acid production from complementation of pEPAD8 from *Shewanella* (deletion ORF 8) with ORF 8 from *Shewanella*, in *E. coli* Fad E-. The chromatogram presents an EPA (20:5) peak.

Figure 15 is a chromatogram showing fatty acid production from complementation of pEPAD8 from *Shewanella* (deletion ORF 8) with ORF 8 from *Vibrio marinus*, in *E. coli* Fad E-. The chromatograph presents EPA (20:5) and DHA (22:6) peaks.

Figure 16 is a table of PUFA values from the ORF 8 complementation experiment, the chromatogram of which is shown in Figure 15.

Figure 17 is a plasmid map showing the elements of pCGN7770.

Figure 18 is a plasmid map showing the elements of pCGN8535.

Figure 19 is a plasmid map showing the elements of pCGN8537.

Figure 20 is a plasmid map showing the elements of pCGN8525.

Figure 21 is a comparison of the *Shewanella* ORFs as defined by Yazawa and those disclosed in Figure 4. When a protein starting at the leucine (TTG) codon at nucleotides 9157-9155 and ending at the stop codon at nucleotides 8185-8183 is expressed under control of a heterologous promoter in an *E. coli* strain containing the entire PKS-like cluster except ORF 3, the recombinant cells do produce EPA. Thus, the published protein sequence is likely to be wrong, and the coding sequence for the protein may start at the TTG codon at nucleotides 9157-9155 or the TTG codon at nucleotides 9172-9170. This information is critical to the expression of a functional PKS-like cluster heterologous system.

Figure 22 is a plasmid map showing the elements of pCGN8560.

Figure 23 is plasmid map showing the elements of pCGN8556.

Figure 24 shows the translated DNA sequence upstream of the published ORF 3. The ATG start codon at position 9016 is the start codon for the protein described by Yazawa *et al* (1996) *supra*. The other arrows depict TTG or ATT codons that can also serve as start codons in bacteria. When ORF 3 is started from the published ATG codon at 9016, the protein is not functional in making EPA. When ORF 3 is initiated at the TTG codon at position 9157, the protein is capable of facilitating EPA synthesis.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the subject invention, novel DNA sequences, DNA constructs and methods are provided, which include some or all of the polyketide-like synthesis (PKS-like) pathway genes from *Shewanella*, *Vibrio* or other microorganisms, for 5 modifying the poly-unsaturated long chain fatty acid content of host cells, particularly host plant cells. The present invention demonstrates that EPA synthesis genes in *Shewanella putrefaciens* constitute a polyketide-like synthesis pathway. Functions are ascribed to the *Shewanella* and *Vibrio* genes and methods are provided for the production 10 of EPA and DHA in host cells. The method includes the step of transforming cells with an expression cassette comprising a DNA encoding a polypeptide capable of increasing the amount of one or more PUFA in the host cell. Desirably, integration constructs are prepared which provide for integration of the expression cassette into the genome of a host cell. Host cells are manipulated to express a sense or antisense DNA encoding a 15 polypeptide(s) that has PKS-like gene activity. By "PKS-like gene" is intended a polypeptide which is responsible for any one or more of the functions of a PKS-like activity of interest. By "polypeptide" is meant any chain of amino acids, regardless of length or post-translational modification, for example, glycosylation or phosphorylation. Depending upon the nature of the host cell, the substrate(s) for the expressed enzyme may 20 be produced by the host cell or may be exogenously supplied. Of particular interest is the selective control of PUFA production in plant tissues and/or plant parts such as leaves, roots, fruits and seeds. The invention can be used to synthesize EPA, DHA, and other related PUFA in host cells.

There are many advantages to transgenic production of PUFAs. As an example, in 25 transgenic *E. coli* as in *Shewanella*, EPA accumulates in the phospholipid fraction, specifically in the *sn*-2 position. It may be possible to produce a structured lipid in a desired host cell which differs substantially from that produced in either *Shewanella* or *E. coli*. Additionally transgenic production of PUFAs in particular host cells offers several 30 advantages over purification from natural sources such as fish or plants. In transgenic plants, by utilizing a PKS-like system, fatty acid synthesis of PUFAs is achieved in the cytoplasm by a system which produces the PUFAs through *de novo* production of the fatty acids utilizing malonyl Co-A and acetyl Co-A as substrates. In this fashion, potential problems, such as those associated with substrate competition and diversion of normal products of fatty acid synthesis in a host to PUFA production, are avoided.

Production of fatty acids from recombinant plants provides the ability to alter the naturally occurring plant fatty acid profile by providing new synthetic pathways in the host or by suppressing undesired pathways, thereby increasing levels of desired PUFAs, or conjugated forms thereof, and decreasing levels of undesired PUFAs. Production of fatty acids in transgenic plants also offers the advantage that expression of PKS-like genes in particular tissues and/or plant parts means that greatly increased levels of desired PUFAs in those tissues and/or parts can be achieved, making recovery from those tissues more economical. Expression in a plant tissue and/or plant part presents certain efficiencies, particularly where the tissue or part is one which is easily harvested, such as seed, leaves, fruits, flowers, roots, etc. For example, the desired PUFAs can be expressed in seed; methods of isolating seed oils are well established. In addition to providing a source for purification of desired PUFAs, seed oil components can be manipulated through expression of PKS-like genes, either alone or in combination with other genes such as elongases, to provide seed oils having a particular PUFA profile in concentrated form. The concentrated seed oils then can be added to animal milks and/or synthetic or semisynthetic milks to serve as infant formulas where human nursing is impossible or undesired, or in cases of malnourishment or disease in both adults and infants.

Transgenic microbial production of fatty acids offers the advantages that many microbes are known with greatly simplified oil compositions as compared with those of higher organisms, making purification of desired components easier. Microbial production is not subject to fluctuations caused by external variables such as weather and food supply. Microbially produced oil is substantially free of contamination by environmental pollutants. Additionally, microbes can provide PUFAs in particular forms which may have specific uses. For example, *Spirulina* can provide PUFAs predominantly at the first and third positions of triglycerides; digestion by pancreatic lipases preferentially releases fatty acids from these positions. Following human or animal ingestion of triglycerides derived from *Spirulina*, these PUFAs are released by pancreatic lipases as free fatty acids and thus are directly available, for example, for infant brain development. Additionally, microbial oil production can be manipulated by controlling culture conditions, notably by providing particular substrates for microbially expressed enzymes, or by addition of compounds which suppress undesired biochemical pathways. In addition to these advantages, production of fatty acids from recombinant microbes provides the ability to alter the naturally occurring microbial fatty acid profile by

providing new synthetic pathways in the host or by suppressing undesired pathways, thereby increasing levels of desired PUFAs, or conjugated forms thereof, and decreasing levels of undesired PUFAs.

Production of fatty acids in animals also presents several advantages. Expression 5 of desaturase genes in animals can produce greatly increased levels of desired PUFAs in animal tissues, making recovery from those tissues more economical. For example, where the desired PUFAs are expressed in the breast milk of animals, methods of isolating PUFAs from animal milk are well established. In addition to providing a source 10 for purification of desired PUFAs, animal breast milk can be manipulated through expression of desaturase genes, either alone or in combination with other human genes, to provide animal milks with a PUFA composition substantially similar to human breast milk during the different stages of infant development. Humanized animal milks could serve as infant formulas where human nursing is impossible or undesired, or in the cases 15 of malnourishment or disease.

DNAs encoding desired PKS-like genes can be identified in a variety of ways. In 15 one method, a source of a desired PKS-like gene, for example genomic libraries from a *Shewanella* or *Vibrio* spp., is screened with detectable enzymatically- or chemically- synthesized probes. Sources of ORFs having PKS-like genes are those organisms which 20 produce a desired PUFA, including DHA-producing or EPA-producing deep sea bacteria growing preferentially under high pressure or at relatively low temperature.

Microorganisms such as *Shewanella* which produce EPA or DHA also can be used as a 25 source of PKS-like genes. The probes can be made from DNA, RNA, or non-naturally occurring nucleotides, or mixtures thereof. Probes can be enzymatically synthesized from DNAs of known PKS-like genes for normal or reduced-stringency hybridization methods.

For discussions of nucleic acid probe design and annealing conditions, see, for example, 30 Sambrook *et al*, *Molecular Cloning: A Laboratory Manual* (2nd ed.), Vols. 1-3, *Cold Spring Harbor Laboratory*, (1989) or *Current Protocols in Molecular Biology*, F. Ausubel *et al*, ed., Greene Publishing and Wiley-Interscience, New York (1987), each of which is incorporated herein by reference. Techniques for manipulation of nucleic acids 35 encoding PUFA enzymes such as subcloning nucleic acid sequences encoding polypeptides into expression vectors, labelling probes, DNA hybridization, and the like are described generally in Sambrook, *supra*.

Oligonucleotide probes also can be used to screen sources and can be based on sequences of known PKS-like genes, including sequences conserved among known PKS-like genes, or on peptide sequences obtained from a desired purified protein.

Oligonucleotide probes based on amino acid sequences can be degenerate to encompass the degeneracy of the genetic code, or can be biased in favor of the preferred codons of the source organism. Alternatively, a desired protein can be entirely sequenced and total synthesis of a DNA encoding that polypeptide performed.

Once the desired DNA has been isolated, it can be sequenced by known methods. It is recognized in the art that such methods are subject to errors, such that multiple sequencing of the same region is routine and is still expected to lead to measurable rates of mistakes in the resulting deduced sequence, particularly in regions having repeated domains, extensive secondary structure, or unusual base compositions, such as regions with high GC base content. When discrepancies arise, resequencing can be done and can employ special methods. Special methods can include altering sequencing conditions by using: different temperatures; different enzymes; proteins which alter the ability of oligonucleotides to form higher order structures; altered nucleotides such as ITP or methylated dGTP; different gel compositions, for example adding formamide; different primers or primers located at different distances from the problem region; or different templates such as single stranded DNAs. Sequencing of mRNA can also be employed.

For the most part, some or all of the coding sequences for the polypeptides having PKS-like gene activity are from a natural source. In some situations, however, it is desirable to modify all or a portion of the codons, for example, to enhance expression, by employing host preferred codons. Host preferred codons can be determined from the codons of highest frequency in the proteins expressed in the largest amount in a particular host species of interest. Thus, the coding sequence for a polypeptide having PKS-like gene activity can be synthesized in whole or in part. All or portions of the DNA also can be synthesized to remove any destabilizing sequences or regions of secondary structure which would be present in the transcribed mRNA. All or portions of the DNA also can be synthesized to alter the base composition to one more preferable to the desired host cell. Methods for synthesizing sequences and bringing sequences together are well established in the literature. *In vitro* mutagenesis and selection, site-directed mutagenesis, or other means can be employed to obtain mutations of naturally occurring PKS-like genes to produce a polypeptide having PKS-like gene activity *in vivo* with more desirable

physical and kinetic parameters for function in the host cell, such as a longer half-life or a higher rate of production of a desired polyunsaturated fatty acid.

Of particular interest are the *Shewanella putrefaciens* ORFs and the corresponding ORFs of *Vibrio marinus*. The *Shewanella putrefaciens* PKS-like genes can be expressed in transgenic plants to effect biosynthesis of EPA. Other DNAs which are substantially identical in sequence to the *Shewanella putrefaciens* PKS-like genes, or which encode polypeptides which are substantially similar to PKS-like genes of *Shewanella putrefaciens* can be used, such as those identified from *Vibrio marinus*. By substantially identical in sequence is intended an amino acid sequence or nucleic acid sequence exhibiting in order of increasing preference at least 60%, 80%, 90% or 95% homology to the DNA sequence of the *Shewanella putrefaciens* PKS-like genes or nucleic acid sequences encoding the amino acid sequences for such genes. For polypeptides, the length of comparison sequences generally is at least 16 amino acids, preferably at least 20 amino acids, and most preferably 35 amino acids. For nucleic acids, the length of comparison sequences generally is at least 50 nucleotides, preferably at least 60 nucleotides, and more preferably at least 75 nucleotides, and most preferably, 110 nucleotides.

Homology typically is measured using sequence analysis software, for example, the Sequence Analysis software package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, Wisconsin 53705, MEGAlign (DNAStar, Inc., 1228 S. Park St., Madison, Wisconsin 53715), and MacVector (Oxford Molecular Group, 2105 S. Bascom Avenue, Suite 200, Campbell, California 95008). BLAST (National Center for Biotechnology Information (NCBI) www.ncbi.nlm.nih.gov; FASTA (Pearson and Lipman, *Science* (1985) 227:1435-1446). Such software matches similar sequences by assigning degrees of homology to various substitutions, deletions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine and alanine; valine, isoleucine and leucine; aspartic acid, glutamic acid, asparagine, and glutamine; serine and threonine; lysine and arginine; and phenylalanine and tyrosine. Substitutions may also be made on the basis of conserved hydrophobicity or hydrophilicity (Kyte and Doolittle, *J. Mol. Biol.* (1982) 157: 105-132), or on the basis of the ability to assume similar polypeptide secondary structure (Chou and Fasman, *Adv. Enzymol.* (1978) 47: 45-148, 1978). A

related protein to the probing sequence is identified when $p \geq 0.01$, preferably $p \geq 10^{-7}$ or 10^{-8} .

Encompassed by the present invention are related PKS-like genes from the same or other organisms. Such related PKS-like genes include variants of the disclosed PKS-like ORFs that occur naturally within the same or different species of *Shewanella*, as well as homologues of the disclosed PKS-like genes from other species and evolutionarily related proteins having analogous function and activity. Also included are PKS-like genes which, although not substantially identical to the *Shewanella putrefaciens* PKS-like genes, operate in a similar fashion to produce PUFAAs as part of a PKS-like system. Related PKS-like genes can be identified by their ability to function substantially the same as the disclosed PKS-like genes; that is, they can be substituted for corresponding ORFs of *Shewanella* or *Vibrio* and still effectively produce EPA or DHA. Related PKS-like genes also can be identified by screening sequence databases for sequences homologous to the disclosed PKS-like genes, by hybridization of a probe based on the disclosed PKS-like genes to a library constructed from the source organism, or by RT-PCR using mRNA from the source organism and primers based on the disclosed PKS-like gene. Thus, the phrase "PKS-like genes" refers not only to the nucleotide sequences disclosed herein, but also to other nucleic acids that are allelic or species variants of these nucleotide sequences. It is also understood that these terms include nonnatural mutations introduced by deliberate mutation using recombinant technology such as single site mutation or by excising short sections of DNA open reading frames coding for PUFA enzymes or by substituting new codons or adding new codons. Such minor alterations substantially maintain the immunoidentity of the original expression product and/or its biological activity. The biological properties of the altered PUFA enzymes can be determined by expressing the enzymes in an appropriate cell line and by determining the ability of the enzymes to synthesize PUFAAs. Particular enzyme modifications considered minor would include substitution of amino acids of similar chemical properties, e.g., glutamic acid for aspartic acid or glutamine for asparagine.

When utilizing a PUFA PKS-like system from another organism, the regions of a PKS-like gene polypeptide important for PKS-like gene activity can be determined through routine mutagenesis, expression of the resulting mutant polypeptides and determination of their activities. The coding region for the mutants can include deletions, insertions and point mutations, or combinations thereof. A typical functional analysis

begins with deletion mutagenesis to determine the N- and C-terminal limits of the protein necessary for function, and then internal deletions, insertions or point mutants are made in the open ready frame to further determine regions necessary for function. Other techniques such as cassette mutagenesis or total synthesis also can be used. Deletion 5 mutagenesis is accomplished, for example, by using exonucleases to sequentially remove the 5' or 3' coding regions. Kits are available for such techniques. After deletion, the coding region is completed by ligating oligonucleotides containing start or stop codons to the deleted coding region after 5' or 3' deletion, respectively. Alternatively, oligonucleotides encoding start or stop codons are inserted into the coding region by a 10 variety of methods including site-directed mutagenesis, mutagenic PCR or by ligation onto DNA digested at existing restriction sites. Internal deletions can similarly be made through a variety of methods including the use of existing restriction sites in the DNA, by use of mutagenic primers via site directed mutagenesis or mutagenic PCR. Insertions are made through methods such as linker-scanning mutagenesis, site-directed mutagenesis or 15 mutagenic PCR. Point mutations are made through techniques such as site-directed mutagenesis or mutagenic PCR.

Chemical mutagenesis also can be used for identifying regions of a PKS-like gene polypeptide important for activity. A mutated construct is expressed, and the ability of the resulting altered protein to function as a PKS-like gene is assayed. Such structure- 20 function analysis can determine which regions may be deleted, which regions tolerate insertions, and which point mutations allow the mutant protein to function in substantially the same way as the native PKS-like gene. All such mutant proteins and nucleotide sequences encoding them are within the scope of the present invention. EPA is produced in *Shewanella* as the product of a PKS-like system, such that the EPA genes encode 25 components of this system. In *Vibrio*, DHA is produced by a similar system. The enzymes which synthesize these fatty acids are encoded by a cluster of genes which are distinct from the fatty acid synthesis genes encoding the enzymes involved in synthesis of the C16 and C18 fatty acids typically found in bacteria and in plants. As the *Shewanella* EPA genes represent a PKS-like gene cluster, EPA production is, at least to some extent, 30 independent of the typical bacterial type II FAS system. Thus, production of EPA in the cytoplasm of plant cells can be achieved by expression of the PKS-like pathway genes in plant cells under the control of appropriate plant regulatory signals.

EPA production in *E. coli* transformed with the *Shewanella* EPA genes proceeds during anaerobic growth, indicating that O₂-dependent desaturase reactions are not involved. Analyses of the proteins encoded by the ORFs essential for EPA production reveals the presence of domain structures characteristic of PKS-like systems. Fig. 2A shows a summary of the domains, motifs, and also key homologies detected by "BLAST" data bank searches. Because EPA is different from many of the other substances produced by PKS-like pathways, i.e., it contains 5, *cis* double bonds, spaced at 3 carbon intervals along the molecule, a PKS-like system for synthesis of EPA is not expected.

Further, BLAST searches using the domains present in the *Shewanella* EPA ORFs reveal that several are related to proteins encoded by a PKS-like gene cluster found in Anabeana. The structure of that region of the Anabeana chromosome is shown in Fig. 2F. The Anabeana PKS-like genes have been linked to the synthesis of a long-chain (C26), hydroxy-fatty acid found in a glycolipid layer of heterocysts. The EPA protein domains with homology to the Anabeana proteins are indicated in Fig. 2F.

15 ORF 6 of *Shewanella* contains a KAS domain which includes an active site motif (DXAC*) as well as a "GFGG" motif which is present at the end of many Type II KAS proteins (see Fig. 2A). Extended motifs are present but not shown here. Next is a malonyl-CoA:ACP acyl transferase (AT) domain. Sequences near the active site motif (GHS*XG) suggest it transfers malonate rather than methylmalonate, i.e., it resembles the acetate-like ATs. Following a linker region, there is a cluster of 6 repeating domains, each ~100 amino acids in length, which are homologous to PKS-like ACP sequences. 20 Each contains a pantetheine binding site motif (LGXDS*(L/I)). The presence of 6 such ACP domains has not been observed previously in fatty acid synthases (FAS) or PKS-like systems. Near the end of the protein is a region which shows homology to β -keto-ACP 25 reductases (KR). It contains a pyridine nucleotide binding site motif "GXGXX(G/A/P)".

The *Shewanella* ORF 8 begins with a KAS domain, including active site and ending motifs (Fig. 2C). The best match in the data banks is with the Anabeana HgID. There is also a domain which has sequence homology to the N-terminal one half of the Anabeana HgIC. This region also shows weak homology to KAS proteins although it 30 lacks the active site and ending motifs. It has the characteristics of the so-called chain length factors (CLF) of Type II PKS-like systems. ORF 8 appears to direct the production of EPA versus DHA by the PKS-like system. ORF 8 also has two domains with homology to β -hydroxyacyl-ACP dehydrases (DH). The best match for both domains is

with *E. coli* FabA, a bi-functional enzyme which carries out both the dehydrase reaction and an isomerization (*trans* to *cis*) of the resulting double bond. The first DH domain contains both the active site histidine (H) and an adjacent cysteine (C) implicated in FabA catalysis. The second DH domain has the active site H but lacks the adjacent C (Fig. 2C).

5 Blast searches with the second DH domain also show matches to FabZ, a second *E. coli* DH, which does not possess isomerase activity.

The N-terminal half of ORF 7 (Fig. 2B) has no significant matches in the data banks. The best match of the C-terminal half is with a C-terminal portion of the Anabeana HglC. This domain contains an acyl-transferase (AT) motif (GXSXG).

10 Comparison of the extended active site sequences, based on the crystal structure of the *E. coli* malonyl-CoA:ACP AT, reveals that ORF 7 lacks two residues essential for exclusion of water from the active site (*E. coli* nomenclature; Q11 and R117). These data suggest that ORF 7 may function as a thioesterase.

15 ORF 9 (Fig. 2D) is homologous to an ORF of unknown function in the Anabeana Hgl cluster. It also exhibits a very weak homology to NIFA, a regulatory protein in nitrogen fixing bacteria. A regulatory role for the ORF 9 protein has not been excluded. ORF 3 (Fig. 2E) is homologous to the Anabeana HetI as well as EntD from *E. coli* and Sfp of *Bacillus*. Recently, a new enzyme family of phosphopantetheinyl transferases has been identified that includes HetI, EntD and Sfp (Lambot RH, *et al.* (1996) A new 20 enzyme superfamily - the phosphopantetheinyl transferases. *Chemistry & Biology*, Vol 3, #11, 923-936). The data of Fig. 3 demonstrates that the presence of ORF 3 is required for addition of β -alanine (i.e. pantetheine) to the ORF 6 protein. Thus, ORF 3 encodes the phosphopantetheinyl transferase specific for the ORF 6 ACP domains. (See, Haydock SF *et al.* (1995) Divergent sequence motifs correlated with the substrate specificity of 25 (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases, *FEBS Lett.*, 374, 246-248). Malonate is the source of the carbons utilized in the extension reactions of EPA synthesis. Additionally, malonyl-CoA rather than malonyl-ACP is the AT substrate, i.e., the AT region of ORF 6 uses malonyl Co-A.

Once the DNA sequences encoding the PKS-like genes of an organism responsible 30 for PUFA production have been obtained, they are placed in a vector capable of replication in a host cell, or propagated *in vitro* by means of techniques such as PCR or long PCR. Replicating vectors can include plasmids, phage, viruses, cosmids and the like. Desirable vectors include those useful for mutagenesis of the gene of interest or for

expression of the gene of interest in host cells. A PUFA synthesis enzyme or a homologous protein can be expressed in a variety of recombinantly engineered cells. Numerous expression systems are available for expression of DNA encoding a PUFA enzyme. The expression of natural or synthetic nucleic acids encoding PUFA enzyme is 5 typically achieved by operably linking the DNA to a promoter (which is either constitutive or inducible) within an expression vector. By expression vector is meant a DNA molecule, linear or circular, that comprises a segment encoding a PUFA enzyme, operably linked to additional segments that provide for its transcription. Such additional segments include promoter and terminator sequences. An expression vector also may 10 include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, etc. Expression vectors generally are derived from plasmid or viral DNA, and can contain elements of both. The term "operably linked" indicates that the segments are arranged so that they function in concert for their intended purposes, for example, transcription initiates in the promoter and proceeds through the coding segment 15 to the terminator. *See* Sambrook *et al, supra.*

The technique of long PCR has made *in vitro* propagation of large constructs possible, so that modifications to the gene of interest, such as mutagenesis or addition of expression signals, and propagation of the resulting constructs can occur entirely *in vitro* without the use of a replicating vector or a host cell. *In vitro* expression can be 20 accomplished, for example, by placing the coding region for the desaturase polypeptide in an expression vector designed for *in vitro* use and adding rabbit reticulocyte lysate and cofactors; labeled amino acids can be incorporated if desired. Such *in vitro* expression vectors may provide some or all of the expression signals necessary in the system used. These methods are well known in the art and the components of the system are 25 commercially available. The reaction mixture can then be assayed directly for PKS-like enzymes for example by determining their activity, or the synthesized enzyme can be purified and then assayed.

Expression in a host cell can be accomplished in a transient or stable fashion. Transient expression can occur from introduced constructs which contain expression 30 signals functional in the host cell, but which constructs do not replicate and rarely integrate in the host cell, or where the host cell is not proliferating. Transient expression also can be accomplished by inducing the activity of a regulatable promoter operably linked to the gene of interest, although such inducible systems frequently exhibit a low

basal level of expression. Stable expression can be achieved by introduction of a nucleic acid construct that can integrate into the host genome or that autonomously replicates in the host cell. Stable expression of the gene of interest can be selected for through the use of a selectable marker located on or transfected with the expression construct, followed by 5 selection for cells expressing the marker. When stable expression results from integration, integration of constructs can occur randomly within the host genome or can be targeted through the use of constructs containing regions of homology with the host genome sufficient to target recombination with the host locus. Where constructs are targeted to an endogenous locus, all or some of the transcriptional and translational 10 regulatory regions can be provided by the endogenous locus. To achieve expression in a host cell, the transformed DNA is operably associated with transcriptional and translational initiation and termination regulatory regions that are functional in the host cell.

Transcriptional and translational initiation and termination regions are derived 15 from a variety of nonexclusive sources, including the DNA to be expressed, genes known or suspected to be capable of expression in the desired system, expression vectors, chemical synthesis. The termination region can be derived from the 3' region of the gene from which the initiation region was obtained or from a different gene. A large number 20 of termination regions are known to and have been found to be satisfactory in a variety of hosts from the same and different genera and species. The termination region usually is selected more as a matter of convenience rather than because of any particular property. When expressing more than one PKS-like ORF in the same cell, appropriate regulatory 25 regions and expression methods should be used. Introduced genes can be propagated in the host cell through use of replicating vectors or by integration into the host genome. Where two or more genes are expressed from separate replicating vectors, it is desirable 30 that each vector has a different means of replication. Each introduced construct, whether integrated or not, should have a different means of selection and should lack homology to the other constructs to maintain stable expression and prevent reassortment of elements among constructs. Judicious choices of regulatory regions, selection means and method of propagation of the introduced construct can be experimentally determined so that all introduced genes are expressed at the necessary levels to provide for synthesis of the desired products.

A variety of prokaryotic expression systems can be used to express PUFA enzyme. Expression vectors can be constructed which contain a promoter to direct transcription, a ribosome binding site, and a transcriptional terminator. Examples of regulatory regions suitable for this purpose in *E. coli* are the promoter and operator region of the *E. coli* tryptophan biosynthetic pathway as described by Yanofsky (1984) *J. Bacteriol.*, 158:1018-1024 and the leftward promoter of phage lambda (P λ) as described by Herskowitz and Hagen, (1980) *Ann. Rev. Genet.*, 14:399-445. The inclusion of selection markers in DNA vectors transformed in *E. coli* is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol.

Vectors used for expressing foreign genes in bacterial hosts generally will contain a selectable marker, such as a gene for antibiotic resistance, and a promoter which functions in the host cell. Plasmids useful for transforming bacteria include pBR322 (Bolivar, *et al*, (1977) *Gene* 2:95-113), the pUC plasmids (Messing, (1983) *Meth. Enzymol.* 101:20-77, Vieira and Messing, (1982) *Gene* 19:259-268), pCQV2 (Queen, *ibid.*), and derivatives thereof. Plasmids may contain both viral and bacterial elements. Methods for the recovery of the proteins in biologically active form are discussed in U.S. Patent Nos. 4,966,963 and 4,999,422, which are incorporated herein by reference. See Sambrook, *et al* for a description of other prokaryotic expression systems.

For expression in eukaryotes, host cells for use in practicing the present invention include mammalian, avian, plant, insect, and fungal cells. As an example, for plants, the choice of a promoter will depend in part upon whether constitutive or inducible expression is desired and whether it is desirable to produce the PUFAAs at a particular stage of plant development and/or in a particular tissue. Considerations for choosing a specific tissue and/or developmental stage for expression of the ORFs may depend on competing substrates or the ability of the host cell to tolerate expression of a particular PUFA. Expression can be targeted to a particular location within a host plant such as seed, leaves, fruits, flowers, and roots, by using specific regulatory sequences, such as those described in USPN 5,463,174, USPN 4,943,674, USPN 5,106,739, USPN 5,175,095, USPN 5,420,034, USPN 5,188,958, and USPN 5,589,379. Where the host cell is a yeast, transcription and translational regions functional in yeast cells are provided, particularly from the host species. The transcriptional initiation regulatory regions can be obtained, for example from genes in the glycolytic pathway, such as alcohol dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GPD),

phosphoglucoisomerase; phosphoglycerate kinase, etc. or regulatable genes such as acid phosphatase, lactase, metallothionein, glucoamylase, etc. Any one of a number of regulatory sequences can be used in a particular situation, depending upon whether constitutive or induced transcription is desired, the particular efficiency of the promoter in conjunction with the open-reading frame of interest, the ability to join a strong promoter with a control region from a different promoter which allows for inducible transcription, ease of construction, and the like. Of particular interest are promoters which are activated in the presence of galactose. Galactose-inducible promoters (GAL1, GAL7, and GAL10) have been extensively utilized for high level and regulated expression of protein in yeast (Lue *et al.*, (1987) *Mol. Cell. Biol.* 7:3446; Johnston, (1987) *Microbiol. Rev.* 51:458).

Transcription from the GAL promoters is activated by the GAL4 protein, which binds to the promoter region and activates transcription when galactose is present. In the absence of galactose, the antagonist GAL80 binds to GAL4 and prevents GAL4 from activating transcription. Addition of galactose prevents GAL80 from inhibiting activation by GAL4.

Preferably, the termination region is derived from a yeast gene, particularly *Saccharomyces*, *Schizosaccharomyces*, *Candida* or *Kluyveromyces*. The 3' regions of two mammalian genes, γ interferon and $\alpha 2$ interferon, are also known to function in yeast.

Nucleotide sequences surrounding the translational initiation codon ATG have been found to affect expression in yeast cells. If the desired polypeptide is poorly expressed in yeast, the nucleotide sequences of exogenous genes can be modified to include an efficient yeast translation initiation sequence to obtain optimal gene expression. For expression in *Saccharomyces*, this can be done by site-directed mutagenesis of an inefficiently expressed gene by fusing it in-frame to an endogenous *Saccharomyces* gene, preferably a highly expressed gene, such as the lactase gene.

As an alternative to expressing the PKS-like genes in the plant cell cytoplasm, is to target the enzymes to the chloroplast. One method to target proteins to the chloroplast entails use of leader peptides attached to the N-termini of the proteins. Commonly used leader peptides are derived from the small subunit of plant ribulose bis phosphate carboxylase. Leader sequences from other chloroplast proteins may also be used.

Another method for targeting proteins to the chloroplast is to transform the chloroplast genome (Stable transformation of chloroplasts of *Chlamydomonas reinhardtii* (1 green alga) using bombardment of recipient cells with high-velocity tungsten microprojectiles coated with foreign DNA has been described. See, for example, Blowers *et al* *Plant Cell*

(1989) 1:123-132 and Debuchy *et al* *EMBO J* (1989) 8:2803-2809. The transformation technique, using tungsten microprojectiles, is described by Kline *et al*, *Nature* (London) (1987) 327:70-73). The most common method of transforming chloroplasts involves using biolistic techniques, but other techniques developed for the purpose may also be used. (Methods for targeting foreign gene products into chloroplasts (Shrier *et al* *EMBO J* (1985) 4:25-32) or mitochondria (Boutry *et al*, *supra*) have been described. See also Tomai *et al* *Gen. Biol. Chem.* (1988) 263:15104-15109 and US Patent No. 4,940,835 for the use of transit peptides for translocating nuclear gene products into the chloroplast. Methods for directing the transport of proteins to the chloroplast are reviewed in Kenauf *TIBTECH* (1987) 5:40-47.

For producing PUFA_s in avian species and cells, gene transfer can be performed by introducing a nucleic acid sequence encoding a PUFA enzyme into the cells following procedures known in the art. If a transgenic animal is desired, pluripotent stem cells of embryos can be provided with a vector carrying a PUFA enzyme encoding transgene and developed into adult animal (USPN 5,162,215; Ono *et al*. (1996) *Comparative Biochemistry and Physiology A* 113(3):287-292; WO 9612793; WO 9606160). In most cases, the transgene is modified to express high levels of the PKS-like enzymes in order to increase production of PUFA_s. The transgenes can be modified, for example, by providing transcriptional and/or translational regulatory regions that function in avian cells, such as promoters which direct expression in particular tissues and egg parts such as yolk. The gene regulatory regions can be obtained from a variety of sources, including chicken anemia or avian leukosis viruses or avian genes such as a chicken ovalbumin gene.

Production of PUFA_s in insect cells can be conducted using baculovirus expression vectors harboring PKS-like transgenes. Baculovirus expression vectors are available from several commercial sources such as Clonetech. Methods for producing hybrid and transgenic strains of algae, such as marine algae, which contain and express a desaturase transgene also are provided. For example, transgenic marine algae can be prepared as described in USPN 5,426,040. As with the other expression systems described above, the timing, extent of expression and activity of the desaturase transgene can be regulated by fitting the polypeptide coding sequence with the appropriate transcriptional and translational regulatory regions selected for a particular use. Of particular interest are promoter regions which can be induced under preselected growth

conditions. For example, introduction of temperature sensitive and/or metabolite responsive mutations into the desaturase transgene coding sequences, its regulatory regions, and/or the genome of cells into which the transgene is introduced can be used for this purpose.

5 The transformed host cell is grown under appropriate conditions adapted for a desired end result. For host cells grown in culture, the conditions are typically optimized to produce the greatest or most economical yield of PUFAs, which relates to the selected desaturase activity. Media conditions which may be optimized include: carbon source, nitrogen source, addition of substrate, final concentration of added substrate, form of substrate added, aerobic or anaerobic growth, growth temperature, inducing agent, induction temperature, growth phase at induction, growth phase at harvest, pH, density, and maintenance of selection. Microorganisms such as yeast, for example, are preferably grown using selected media of interest, which include yeast peptone broth (YPD) and minimal media (contains amino acids, yeast nitrogen base, and ammonium sulfate, and lacks a component for selection, for example uracil). Desirably, substrates to be added are first dissolved in ethanol. Where necessary, expression of the polypeptide of interest may be induced, for example by including or adding galactose to induce expression from a GAL promoter.

10

15

When increased expression of the PKS-like gene polypeptide in a host cell which expresses PUFA from a PKS-like system is desired, several methods can be employed. Additional genes encoding the PKS-like gene polypeptide can be introduced into the host organism. Expression from the native PKS-like gene locus also can be increased through homologous recombination, for example by inserting a stronger promoter into the host genome to cause increased expression, by removing destabilizing sequences from either 20 the mRNA or the encoded protein by deleting that information from the host genome, or by adding stabilizing sequences to the mRNA (see USPN 4,910,141 and USPN 25 5,500,365). Thus, the subject host will have at least have one copy of the expression construct and may have two or more, depending upon whether the gene is integrated into the genome, amplified, or is present on an extrachromosomal element having multiple 30 copy numbers. Where the subject host is a yeast, four principal types of yeast plasmid vectors can be used: Yeast Integrating plasmids (YIps), Yeast Replicating plasmids (YRps), Yeast Centromere plasmids (YCps), and Yeast Episomal plasmids (YEps). YIps lack a yeast replication origin and must be propagated as integrated elements in the yeast

genome. YRps have a chromosomally derived autonomously replicating sequence and are propagated as medium copy number (20 to 40), autonomously replicating, unstably segregating plasmids. YCps have both a replication origin and a centromere sequence and propagate as low copy number (10-20), autonomously replicating, stably segregating plasmids. YEps have an origin of replication from the yeast 2 μ m plasmid and are propagated as high copy number, autonomously replicating, irregularly segregating plasmids. The presence of the plasmids in yeast can be ensured by maintaining selection for a marker on the plasmid. Of particular interest are the yeast vectors pYES2 (a YEp plasmid available from Invitrogen, confers uracil prototrophy and a GAL1 galactose-inducible promoter for expression), and pYX424 (a YEp plasmid having a constitutive TP1 promoter and conferring leucine prototrophy; (Alber and Kawasaki (1982). *J. Mol. & Appl. Genetics* 1: 419).

The choice of a host cell is influenced in part by the desired PUFA profile of the transgenic cell, and the native profile of the host cell. Even where the host cell expresses PKS-like gene activity for one PUFA, expression of PKS-like genes of another PKS-like system can provide for production of a novel PUFA not produced by the host cell. In particular instances where expression of PKS-like gene activity is coupled with expression of an ORF 8 PKS-like gene of an organism which produces a different PUFA, it can be desirable that the host cell naturally have, or be mutated to have, low PKS-like gene activity for ORF 8. As an example, for production of EPA, the DNA sequence used encodes the polypeptide having PKS-like gene activity of an organism which produces EPA, while for production of DHA, the DNA sequences used are those from an organism which produces DHA. For use in a host cell which already expresses PKS-like gene activity it can be necessary to utilize an expression cassette which provides for overexpression of the desired PKS-like genes alone or with a construct to downregulate the activity of an existing ORF of the existing PKS-like system, such as by antisense or co-suppression. Similarly, a combination of ORFs derived from separate organisms which produce the same or different PUFAAs using PKS-like systems may be used. For instance, the ORF 8 of *Vibrio* directs the expression of DHA in a host cell, even when ORFs 3, 6, 7 and 9 are from *Shewanella*, which produce EPA when coupled to ORF 8 of *Shewanella*. Therefore, for production of eicosapentanoic acid (EPA), the expression cassettes used generally include one or more cassettes which include ORFs 3, 6, 7, 8 and 9 from a PUFA-producing organism such as the marine bacterium *Shewanella*.

putrefaciens (for EPA production) or *Vibrio marinus* (for DHA production). ORF 8 can be used for induction of DHA production, and ORF 8 of *Vibrio* can be used in conjunction with ORFs 3, 6, 7 and 9 of *Shewanella* to produce DHA. The organization and numbering scheme of the ORFs identified in the *Shewanella* gene cluster are shown in Fig 1A. Maps of several subclones referred to in this study are shown in Fig 1B. For expression of a PKS-like gene polypeptide, transcriptional and translational initiation and termination regions functional in the host cell are operably linked to the DNA encoding the PKS-like gene polypeptide.

Constructs comprising the PKS-like ORFs of interest can be introduced into a host cell by any of a variety of standard techniques, depending in part upon the type of host cell. These techniques include transfection, infection, ballistic impact, electroporation, microinjection, scraping, or any other method which introduces the gene of interest into the host cell (see USPN 4,743,548, USPN 4,795,855, USPN 5,068,193, USPN 5,188,958, USPN 5,463,174, USPN 5,565,346 and USPN 5,565,347). Methods of transformation which are used include lithium acetate transformation (*Methods in Enzymology*, (1991) 194:186-187). For convenience, a host cell which has been manipulated by any method to take up a DNA sequence or construct will be referred to as "transformed" or "recombinant" herein. The subject host will have at least have one copy of the expression construct and may have two or more, depending upon whether the gene is integrated into the genome, amplified, or is present on an extrachromosomal element having multiple copy numbers.

For production of PUFAs, depending upon the host cell, the several polypeptides produced by pEPA, ORFs 3, 6, 7, 8 and 9, are introduced as individual expression constructs or can be combined into two or more cassettes which are introduced individually or co-transformed into a host cell. A standard transformation protocol is used. For plants, where less than all PKS-like genes required for PUFA synthesis have been inserted into a single plant, plants containing a complementing gene or genes can be crossed to obtain plants containing a full complement of PKS-like genes to synthesize a desired PUFA.

The PKS-like-mediated production of PUFAs can be performed in either prokaryotic or eukaryotic host cells. The cells can be cultured or formed as part or all of a host organism including an animal. Viruses and bacteriophage also can be used with appropriate cells in the production of PUFAs, particularly for gene transfer, cellular

targeting and selection. Any type of plant cell can be used for host cells, including dicotyledonous plants, monocotyledonous plants, and cereals. Of particular interest are crop plants such as *Brassica*, *Arabidopsis*, soybean, corn, and the like. Prokaryotic cells of interest include *Escherichia*, *Bacillus*, *Lactobacillus*, *cyanobacteria* and the like.

5 Eukaryotic cells include plant cells, mammalian cells such as those of lactating animals, avian cells such as of chickens, and other cells amenable to genetic manipulation including insect, fungal, and algae cells. Examples of host animals include mice, rats, rabbits, chickens, quail, turkeys, cattle, sheep, pigs, goats, yaks, etc., which are amenable to genetic manipulation and cloning for rapid expansion of a transgene expressing

10 population. For animals, PKS-like transgenes can be adapted for expression in target organelles, tissues and body fluids through modification of the gene regulatory regions. Of particular interest is the production of PUFAs in the breast milk of the host animal.

Examples of host microorganisms include *Saccharomyces cerevisiae*, *Saccharomyces carlsbergensis*, or other yeast such as *Candida*, *Kluyveromyces* or other fungi, for example, filamentous fungi such as *Aspergillus*, *Neurospora*, *Penicillium*, etc. Desirable characteristics of a host microorganism are, for example, that it is genetically well characterized, can be used for high level expression of the product using ultra-high density fermentation, and is on the GRAS (generally recognized as safe) list since the proposed end product is intended for ingestion by humans. Of particular interest is use of 20 a yeast, more particularly baker's yeast (*S. cerevisiae*), as a cell host in the subject invention. Strains of particular interest are SC334 (Mat α pep4-3 prbl-1122 ura3-52 leu2-3, 112 regl-501 gal1; (Hovland *et al* (1989) Gene 83:57-64); BJ1995 (Yeast Genetic Stock Centre, 1021 Donner Laboratory, Berkeley, CA 94720), INVSC1 (Mat α hiw3 Δ 1 leu2 trp1-289 ura3-52 (Invitrogen, 1600 Faraday Ave., Carlsbad, CA 92008) and INVSC2 25 (Mat α his3 Δ 200 ura3-167; (Invitrogen). Bacterial cells also may be used as hosts. This includes *E. coli*, which can be useful in fermentation processes. Alternatively, a host such as a *Lactobacillus* species can be used as a host for introducing the products of the PKS-like pathway into a product such as yogurt.

The transformed host cell can be identified by selection for a marker contained on 30 the introduced construct. Alternatively, a separate marker construct can be introduced with the desired construct, as many transformation techniques introduce multiple DNA molecules into host cells. Typically, transformed hosts are selected for their ability to grow on selective media. Selective media can incorporate an antibiotic or lack a factor

necessary for growth of the untransformed host, such as a nutrient or growth factor. An introduced marker gene therefor may confer antibiotic resistance, or encode an essential growth factor or enzyme, and permit growth on selective media when expressed in the transformed host cell. Desirably, resistance to kanamycin and the amino glycoside G418 are of particular interest (see USPN 5,034,322). For yeast transformants, any marker that functions in yeast can be used, such as the ability to grow on media lacking uracil, leucine, lysine or tryptophan.

Selection of a transformed host also can occur when the expressed marker protein can be detected, either directly or indirectly. The marker protein can be expressed alone or as a fusion to another protein. The marker protein can be one which is detected by its enzymatic activity; for example β -galactosidase can convert the substrate X-gal to a colored product, and luciferase can convert luciferin to a light-emitting product. The marker protein can be one which is detected by its light-producing or modifying characteristics; for example, the green fluorescent protein of *Aequorea victoria* fluoresces when illuminated with blue light. Antibodies can be used to detect the marker protein or a molecular tag on, for example, a protein of interest. Cells expressing the marker protein or tag can be selected, for example, visually, or by techniques such as FACS or panning using antibodies.

The PUFAs produced using the subject methods and compositions are found in the host plant tissue and/or plant part as free fatty acids and/or in conjugated forms such as acylglycerols, phospholipids, sulfolipids or glycolipids, and can be extracted from the host cell through a variety of means well-known in the art. Such means include extraction with organic solvents, sonication, supercritical fluid extraction using for example carbon dioxide, and physical means such as presses, or combinations thereof. Of particular interest is extraction with methanol and chloroform. Where appropriate, the aqueous layer can be acidified to protonate negatively charged moieties and thereby increase partitioning of desired products into the organic layer. After extraction, the organic solvents can be removed by evaporation under a stream of nitrogen. When isolated in conjugated forms, the products are enzymatically or chemically cleaved to release the free fatty acid or a less complex conjugate of interest, and are then subjected to further manipulations to produce a desired end product. Desirably, conjugated forms of fatty acids are cleaved with potassium hydroxide.

If further purification is necessary, standard methods can be employed. Such methods include extraction, treatment with urea, fractional crystallization, HPLC, fractional distillation, silica gel chromatography, high speed centrifugation or distillation, or combinations of these techniques. Protection of reactive groups, such as the acid or 5 alkenyl groups, can be done at any step through known techniques, for example alkylation or iodination. Methods used include methylation of the fatty acids to produce methyl esters. Similarly, protecting groups can be removed at any step. Desirably, purification of fractions containing DHA and EPA is accomplished by treatment with urea and/or fractional distillation.

10 The uses of the subject invention are several. Probes based on the DNAs of the present invention find use in methods for isolating related molecules or in methods to detect organisms expressing PKS-like genes. When used as probes, the DNAs or oligonucleotides need to be detectable. This is usually accomplished by attaching a label either at an internal site, for example via incorporation of a modified residue, or at the 5' 15 or 3' terminus. Such labels can be directly detectable, can bind to a secondary molecule that is detectably labeled, or can bind to an unlabelled secondary molecule and a detectably labeled tertiary molecule; this process can be extended as long as is practicable to achieve a satisfactorily detectable signal without unacceptable levels of background signal. Secondary, tertiary, or bridging systems can include use of antibodies directed 20 against any other molecule, including labels or other antibodies, or can involve any molecules which bind to each other, for example a biotin-streptavidin/avidin system. Detectable labels typically include radioactive isotopes, molecules which chemically or enzymatically produce or alter light, enzymes which produce detectable reaction products, magnetic molecules, fluorescent molecules or molecules whose fluorescence or light- 25 emitting characteristics change upon binding. Examples of labelling methods can be found in USPN 5,011,770. Alternatively, the binding of target molecules can be directly detected by measuring the change in heat of solution on binding of a probe to a target via isothermal titration calorimetry, or by coating the probe or target on a surface and detecting the change in scattering of light from the surface produced by binding of a target 30 or a probe, respectively, is done with the BIACore system.

PUFAs produced by recombinant means find applications in a wide variety of areas. Supplementation of humans or animals with PUFAs in various forms can result in increased levels not only of the added PUFAs, but of their metabolic progeny as well.

Complex regulatory mechanisms can make it desirable to combine various PUFAs, or to add different conjugates of PUFAs, in order to prevent, control or overcome such mechanisms to achieve the desired levels of specific PUFAs in an individual. In the present case, expression of PKS-like gene genes, or antisense PKS-like gene transcripts, 5 can alter the levels of specific PUFAs, or derivatives thereof, found in plant parts and/or plant tissues. The PKS-like gene polypeptide coding region is expressed either by itself or with other genes, in order to produce tissues and/or plant parts containing higher proportions of desired PUFAs or containing a PUFA composition which more closely resembles that of human breast milk (Prieto *et al.*, PCT publication WO 95/24494) than 10 does the unmodified tissues and/or plant parts.

PUFAs, or derivatives thereof, made by the disclosed method can be used as dietary supplements for patients undergoing intravenous feeding or for preventing or treating malnutrition. For dietary supplementation, the purified PUFAs, or derivatives thereof, can be incorporated into cooking oils, fats or margarines formulated so that in 15 normal use the recipient receives a desired amount of PUFA. The PUFAs also can be incorporated into infant formulas, nutritional supplements or other food products, and find use as anti-inflammatory or cholesterol lowering agents.

Particular fatty acids such as EPA can be used to alter the composition of infant formulas to better replicate the PUFA composition of human breast milk. The 20 predominant triglyceride in human milk is reported to be 1,3-di-oleoyl-2-palmitoyl, with 2-palmitoyl glycerides reported as better absorbed than 2-oleoyl or 2-linoleoyl glycerides (*see* USPN 4,876,107). Typically, human breast milk has a fatty acid profile comprising from about 0.15 % to about 0.36 % as DHA, from about 0.03 % to about 0.13 % as EPA, from about 0.30 % to about 0.88 % as ARA, from about 0.22 % to about 0.67 % as 25 DGLA, and from about 0.27 % to about 1.04 % as GLA. A preferred ratio of GLA:DGLA:ARA in infant formulas is from about 1:1:4 to about 1:1:1, respectively. Amounts of oils providing these ratios of PUFA can be determined without undue 30 experimentation by one of skill in the art. PUFAs, or host cells containing them, also can be used as animal food supplements to alter an animal's tissue or milk fatty acid composition to one more desirable for human or animal consumption.

For pharmaceutical use (human or veterinary), the compositions generally are administered orally but can be administered by any route by which they may be successfully absorbed, e.g., parenterally (i.e. subcutaneously, intramuscularly or

intravenously), rectally or vaginally or topically, for example, as a skin ointment or lotion. Where available, gelatin capsules are the preferred form of oral administration. Dietary supplementation as set forth above also can provide an oral route of administration. The unsaturated acids of the present invention can be administered in conjugated forms, or as salts, esters, amides or prodrugs of the fatty acids. Any pharmaceutically acceptable salt is encompassed by the present invention; especially preferred are the sodium, potassium or lithium salts. Also encompassed are the N-alkylpolyhydroxamine salts, such as N-methyl glucamine, described in PCT publication WO 96/33155. Preferred esters are the ethyl esters.

The PUFAs of the present invention can be administered alone or in combination with a pharmaceutically acceptable carrier or excipient. As solid salts, the PUFAs can also be administered in tablet form. For intravenous administration, the PUFAs or derivatives thereof can be incorporated into commercial formulations such as Intralipids. Where desired, the individual components of formulations can be individually provided in kit form, for single or multiple use. A typical dosage of a particular fatty acid is from 0.1 mg to 20 g, or even 100 g daily, and is preferably from 10 mg to 1, 2, 5 or 10 g daily as required, or molar equivalent amounts of derivative forms thereof. Parenteral nutrition compositions comprising from about 2 to about 30 weight percent fatty acids calculated as triglycerides are encompassed by the present invention. Other vitamins, and particularly fat-soluble vitamins such as vitamin A, D, E and L-carnitine optionally can be included. Where desired, a preservative such as a tocopherol can be added, typically at about 0.1% by weight.

The following examples are presented by way of illustration, not of limitation.

25

EXAMPLES

Example 1

The Identity of ORFs Derived from *Vibrio marinus*

Using polymerase chain reaction (PCR) with primers based on ORF 6 of *Shewanella* (Sp ORF 6) sequences (FW 5' primers CUACUACUACUACCAAGCT AAAGCACTTAACCGTG, and CUACUACUACUAACAGCGAAATGCTTATCAAG for *Vibrio* and SS9 respectively and 3' BW primers: CAUCAUCAUCAUGCGACC

AAAACCAAATGAGCTAATAC for both *Vibrio* and SS9) and genomic DNAs templates from *Vibrio* and a borophyllic *photobacter* producing EPA (provided by Dr. Bartlett, UC San Diego), resulted in PCR products of ca.400 bases for *Vibrio marinus* (*Vibrio*) and ca.900 bases for SS9 presenting more than 75% homology with

5 corresponding fragments of Sp ORF 6 (see Figure 25) as determined by direct counting of homologous amino acids.

A *Vibrio* cosmid library was then prepared and using the *Vibrio* ORF 6 PCR product as a probe (see Figure 26); clones containing at least ORF 6 were selected by colony hybridization.

10 Through additional sequences of the selected cosmids such as cosmid #9 and cosmid #21, a *Vibrio* cluster (Figure 5) with ORFs homologous to, and organized in the same sequential order (ORFs 6-9) as ORFs 6-9 of *Shewanella*, was obtained (Figure 7). The *Vibrio* ORFs from this sequence are found at 17394 to 36115 and comprehend ORFs 6-9.

15 Table
Vibrio operon figures

	17394 to 25349	length = 7956 nt
	25509 to 28157	length = 2649 nt
20	28209 to 34262	length = 6054 nt
	34454 to 36115	length = 1662 nt

The ORF designations for the *Shewanella* genes are based on those disclosed in Figure 4, and differ from those published for the *Shewanella* cluster (Yazawa *et al*, USPN 5,683,898). For instance, ORF 3 of Figure 4 is read in the opposite direction from the other ORFs and is not disclosed in Yazawa *et al* USPN 5,683,898 (See Fig. 24 for comparison with Yazawa *et al* USPN 5,683,898).

Sequences homologous to ORF 3, were not found in the proximity of ORF 6 (17000 bases upstream of ORF 6) or of ORF 9 (ca.4000 bases downstream of ORF 9).
30 Motifs characteristic of phosphopantethenyl transferases (Lambalot *et al* (1996) *Current Biology* 3:923-936) were absent from the *Vibrio* sequences screened for these motifs. In addition, there was no match to Sp ORF 3 derived probes in genomic digests of *Vibrio* and of SC2A *Shewanella* (another bacterium provided by the University of San Diego and

also capable of producing EPA). Although ORF 3 may exist in *Vibrio*, its DNA may not be homologous to that of *Sp* ORF 3 and/or could be located in portions of the genome that were not sequenced.

Figure 6 provides the sequence of an approximately 19 kb *Vibrio* clone comprising ORFs 6-9. Figures 7 and 8 compare the gene cluster organizations of the PKS-like systems of *Vibrio marinus* and *Shewanella putrefaciens*. Figures 9 through 12 show the levels of sequence homology between the corresponding ORFs 6, 7, 8 and 9, respectively.

Example 2

ORF 8 Directs DHA Production

As described in example 1, DNA homologous to *Sp* ORF 6 was found in an unrelated species, SS9 *Photobacter*, which also is capable of producing EPA. Additionally, ORFs homologous to *Sp* ORF 6-9 were found in the DHA producing *Vibrio marinus* (*Vibrio*). From these ORFs a series of experiments was designed in which deletions in each of *Sp* ORFs 6-9 that suppressed EPA synthesis in *E. coli* (Yazawa (1996) *supra*) were complemented by the corresponding homologous genes from *Vibrio*.

The *Sp* EPA cluster was used to determine if any of the *Vibrio* ORFs 6-9 was responsible for the production of DHA. Deletion mutants provided for each of the *Sp* ORFs are EPA and DHA null. Each deletion was then complemented by the corresponding *Vibrio* ORF expressed behind a *lac* promoter (Figure 13).

The complementation of a *Sp* ORF 6 deletion by a *Vibrio* ORF 6 reestablished the production of EPA. Similar results were obtained by complementing the *Sp* ORF 7 and ORF 9 deletions. By contrast, the complementation of a *Sp* ORF 8 deletion resulted in the production of C22:6. *Vibrio* ORF 8 therefore appears to be a key element in the synthesis of DHA. Figures 14 and 15 show chromatograms of fatty acid profiles from the respective complementations of *Sp* del ORF 6 with *Vibrio* ORF 6 (EPA and no DHA) and *Sp* del ORF 8 with *Vibrio* ORF 8 (DHA). Figure 16 shows the fatty acid percentages for the ORF 8 complementation, again demonstrating that ORF 8 is responsible for DHA production.

These data show that polyketide-like synthesis genes with related or similar ORFs can be combined and expressed in a heterologous system and used to produce a distinct PUFA species in the host system, and that ORF 8 has a role in determining the ultimate chain length. The *Vibrio* ORFs 6, 7, 8, and 9 reestablish EPA synthesis. In the case of

Vibrio ORF 8, DHA is also present (ca. 0.7%) along with EPA (ca. 0.6%) indicating that this gene plays a significant role in directing synthesis of DHA vs EPA for these systems.

Example 3

5

Requirements for Production of DHA

To determine how *Vibrio* ORFs of the cluster ORF 6-9 are used in combination with *Vibrio* ORF 8, some combinations of *Vibrio* ORF 8 with some or all of the other *Vibrio* ORFs 6-9 cluster were created to explain the synthesis of DHA.

10 *Vibrio* ORFs 6-9 were complemented with *Sp* ORF 3. The results of this complementation are presented in Figures 16b and 16c. The significant amounts of DHA measured (greater than about 9%) and the absence of EPA suggest that no ORFs other than those of *Vibrio* ORFs 6-9 are required for DHA synthesis when combined with *Sp* ORF 3. This suggests that *Sp* ORF 3 plays a general function in the synthesis of bacterial PUFAs.

15 With respect to the DHA vs EPA production, it may be necessary to combine *Vibrio* ORF 8 with other *Vibrio* ORFs of the 6-9 cluster in order to specifically produce DHA. The roles of *Vibrio* ORF 9 and each of the combinations of *Vibrio* ORFs (6,8), (7, 8), (8, 9), etc in the synthesis of DHA are being studied.

20

Example 4

Plant Expression Constructs

A cloning vector with very few restriction sites was designed to facilitate the cloning of large fragments and their subsequent manipulation. An adapter was assembled by annealing oligonucleotides with the sequences AAGCCCGGGCTT and 25 GTACAAAGCCCGGGCTTAGCT. This adapter was ligated to the vector pBluescript II SK+ (Stratagene) after digestion of the vector with the restriction endonucleases *Asp*718 and *Sst*I. The resulting vector, pCGN7769 had a single *Srf*I (and embedded *Sma*I) cloning site for the cloning of blunt ended DNA fragments.

30 A plasmid containing the napin cassette from pCGN3223, (USPN 5,639,790) was modified to make it more useful for cloning large DNA fragments containing multiple restriction sites, and to allow the cloning of multiple napin fusion genes into plant binary transformation vectors. An adapter comprised of the self annealed oligonucleotide of sequence CGCGATTAAATGGCGCGCCCTGCAGGCGGCCGCCTGCAGGGCGC

GCCATTTAAAT was ligated into the vector pBC SK+ (Stratagene) after digestion of the vector with the restriction endonuclease *Bss*HII to construct vector pCGN7765. Plamids pCGN3223 and pCGN7765 were digested with *Not*I and ligated together. The resultant vector, pCGN7770 (Figure 17), contains the pCGN7765 backbone and the napin seed 5 specific expression cassette from pCGN3223.

Shewanella constructs

Genes encoding the *Shewanella* proteins were mutagenized to introduce suitable cloning sites 5' and 3' ORFs using PCR. The template for the PCR reactions was DNA of 10 the cosmid pEPA (Yazawa *et al, supra*). PCR reactions were performed using Pfu DNA polymerase according to the manufacturers' protocols. The PCR products were cloned into *Srf*I digested pCGN7769. The primers CTGCAGCTCGAGACAATGTTGATT TCCTTATCTCTGTCC and GGATCCAGATCTCTAGCTAGTCTAGCTGAAGC TCGA were used to amplify ORF 3, and to generate plasmid pCGN8520. The primers 15 TCTAGACTCGAGACAATGAGGCCAGACCTCTAAACCTACA and CCCGGGCTC GAGCTAATTCGCCTCACTGTCGTTGCT were used to amplify ORF 6, and generate plasmid pCGN7776. The primers GAATTCTCGAGACAATGCCGCTGCGCATCG CACTTATC and GGTACCAGATCTTAGACTTCCCCTGAAGTAAATGG were used to amplify ORF 7, and generate plasmid pCGN7771. The primers GAATTCGTCG 20 ACACAATGTCATTACCAGACAATGCTTCT and TCTAGAGTCGACTTATAC AGATTCTCGATGCTGATAG were used to amplify ORF 8, and generate plasmid pCGN7775. The primers GAATTCGTCGACACAATGAATCCTACAGCAA CTAACGAA and TCTAGAGGATCCTAGGCCATTCTTGGTTGGCTTC were used to amplify ORF 9, and generate plasmid pCGN7773.

25 The integrity of the PCR products was verified by DNA sequencing of the inserts of pCGN7771, PCGN8520, and pCGN7773. ORF 6 and ORF 8 were quite large in size. In order to avoid sequencing the entire clones, the center portions of the ORFs were replaced with restriction fragments of pEPA. The 6.6 kilobase *Pac*I/*Bam*HI fragment of pEPA containing the central portion of ORF 6 was ligated into *Pac*I/*Bam*HI digested pCGN7776 to yield pCGN7776B4. The 4.4 kilobase *Bam*HI/*Bgl*II fragment of pEPA 30 containing the central portion of ORF 8 was ligated into *Bam*HI/*Bgl*II digested pCGN7775 to yield pCGN7775A. The regions flanking the pEPA fragment and the cloning junctions were verified by DNA sequencing.

Plasmid pCGN7771 was cut with *Xho*I and *Bgl*II and ligated to pCGN7770 after digestion with *Sal*I and *Bgl*II. The resultant napin/ORF 7 gene fusion plasmid was designated pCGN7783. Plasmid pCGN8520 was cut with *Xho*I and *Bgl*II and ligated to pCGN7770 after digestion with *Sal*I and *Bgl*II. The resultant napin/ORF 3 gene fusion plasmid was designated pCGN8528. Plasmid pCGN7773 was cut with *Sal*I and *Bam*HI and ligated to pCGN7770 after digestion with *Sal*I and *Bgl*II. The resultant napin/ORF 9 gene fusion plasmid was designated pCGN7785. Plasmid pCGN7775A was cut with *Sal*I and ligated to pCGN7770 after digestion with *Sal*I. The resultant napin/ORF 8 gene fusion plasmid was designated pCGN7782. Plasmid pCGN7776B4 was cut with *Xho*I and ligated to pCGN7770 after digestion with *Sal*I. The resultant napin/ORF 6 gene fusion plasmid was designated pCGN7786B4.

A binary vector for plant transformation, pCGN5139, was constructed from pCGN1558 (McBride and Summerfelt (1990) *Plant Molecular Biology*, 14:269-276). The polylinker of pCGN1558 was replaced as a *Hind*III/*Asp*718 fragment with a polylinker containing unique restriction endonuclease sites, *Ascl*, *Pac*I, *Xba*I, *Swa*I, *Bam*HI, and *Not*I. The *Asp*718 and *Hind*III restriction endonuclease sites are retained in pCGN5139. PCGN5139 was digested with *Not*I and ligated with *Not*I digested pCGN7786B4. The resultant binary vector containing the napin/ORF 6 gene fusion was designated pCGN8533. Plasmid pCGN8533 was digested with *Sse*8387I and ligated with *Sse*8387I digested pCGN7782. The resultant binary vector containing the napin/ORF 6 gene fusion and the napin/ORF 8 gene fusion was designated pCGN8535 (Figure 18).

The plant binary transformation vector, pCGN5139, was digested with *Asp*718 and ligated with *Asp*718 digested pCGN8528. The resultant binary vector containing the napin/ORF 3 gene fusion was designated pCGN8532. Plasmid pCGN8532 was digested with *Not*I and ligated with *Not*I digested pCGN7783. The resultant binary vector containing the napin/ORF 3 gene fusion and the napin/ORF 7 gene fusion was designated pCGN8534. Plasmid pCGN8534 was digested with *Sse*8387I and ligated with *Sse*8387I digested pCGN7785. The resultant binary vector containing the napin/ORF 3 gene fusion, the napin/ORF 7 gene fusion and the napin/ORF 9 gene fusion was designated pCGN8537 (Figure 19).

Vibrio constructs

The *Vibrio* ORFs for plant expression were all obtained using *Vibrio* cosmid #9 as a starting molecule. *Vibrio* cosmid #9 was one of the cosmids isolated from the *Vibrio* cosmid library using the *Vibrio* ORF 6 PCR product described in Example 1.

5 A gene encoding *Vibrio* ORF 7 (Figure 6) was mutagenized to introduce a *SaII* site upstream of the open reading frame and *BamHI* site downstream of the open reading frame using the PCR primers: TCTAGAGTCGACACAATGGCGGAATTAGCTG TTATTGGT and GTCGACGGATCCCTATTGTTCGTGTGCTATATG. A gene encoding *Vibrio* ORF 9 (Figure 6) was mutagenized to introduce a *BamHI* site upstream 10 of the open reading frame and an *XhoHI* site downstream of the open reading frame using the PCR primers: GTCGACGGATCCACAATGAATATAGTAAGTAATCATTGGCA and GTCGACCTCGAGTTAACACTCGTACGATAACTTGCC. The restriction sites were introduced using PCR, and the integrity of the mutagenized plasmids was verified 15 by DNA sequence. The *Vibrio* ORF 7 gene was cloned as a *SaII*-*BamHI* fragment into the napin cassette of *Sal*-*BglII* digested pCGN7770 (Figure 17) to yield pCGN8539. The *Vibrio* ORF 9 gene was cloned as a *SaII*-*BamHI* fragment into the napin cassette of *Sal*-*BalI* digested pCGN7770 (Figure 17) to yield pCGN8543..

Genes encoding the *Vibrio* ORF 6 and ORF 8 were mutagenized to introduce *SaII* sites flanking the open reading frames. The *SaII* sites flanking ORF 6 were introduced 20 using PCR. The primers used were: CCCGGGTCGACACAATGGCTAAAAAGAACCA CCACATCGA and CCCGGGTCGACTCATGACATATCGTTCAAAATGTCACTGA. The central 7.3 kb *BamHI*-*Xhol* fragment of the PCR product was replaced with the corresponding fragment from *Vibrio* cosmid #9. The mutagenized ORF 6 were cloned 25 into the *SaII* site of the napin cassette of pCGN7770 to yield plasmid pCGN8554.

25 The mutagenesis of ORF 8 used a different strategy. A *BamHI* fragment containing ORF 8 was subcloned into plasmid pHC79 to yield cosmid #9". A *SaII* site upstream of the coding region was introduced on and adapter comprised of the oligonucleotides TCGACATGGAAAATTGCAGTAGTAGGTATTGCTAATT GTTC and CCGGGAACAAATTAGCAATACCTACTACTGCAATTTCATG. 30 The adapter was ligated to cosmid #9" after digestion with *SaII* and *XmaI*. A *SaII* site was introduced downstream of the stop codon by using PCR for mutagenesis. A DNA fragment containing the stop codon was generated using cosmid #9" as a template with the primers TCAGATGAACCTTATCGATAAC and TCATGAGACGTCGACTTA

CGCTTCAACAAATACT. The PCR product was digested with the restriction endonucleases *Clal* and *Aat*II and was cloned into the cosmid 9" derivative digested with the same enzymes to yield plasmid 8P3. The *Sall* fragment from 8P3 was cloned into *Sall* digested pCGN7770 to yield pCGN8515.

5 PCGN8532, a binary plant transformation vector that contains a *Shewanella* ORF 3 under control of the napin promoter was digested with *Not*I, and a *Not*I fragment of pCGN8539 containing a napin *Vibrio* ORF 7 gene fusion was inserted to yield pCGN8552. Plasmid pCGN8556 (Figure 23), which contains *Shewanella* ORF 3, and *Vibrio* ORFs 7 and 9 under control of the napin promoter was constructed by cloning the 10 *Sse*8357 fragment from pCGN8543 into *Sse*8387 digested pCGN8552.

15 The *Not*I digested napin/ORF 8 gene from plasmid pCGN8515 was cloned into a *Not*I digested plant binary transformation vector pCGN5139 to yield pCGN8548. The *Sse*8387 digested napin/ORF 6 gene from pCGN8554 was subsequently cloned into the *Sse*8387 site of pCGN8566. The resultant binary vector containing the napin/ORF 6 gene fusion and napin/ORF 8 gene fusion was designated pCGN8560 (Figure 22).

Example 5

Plant Transformation and PUFA Production

EPA production

20 The *Shewanella* constructs pCGN8535 and pCGN8537 can be transformed into the same or separate plants. If separate plants are used, the transgenic plants can be crossed resulting in heterozygous seed which contains both constructs.

pCGN8535 and pCGN8537 are separately transformed into *Brassica napus*. Plants are selected on media containing kanamycin and transformation by full length 25 inserts of the constructs is verified by Southern analysis. Immature seeds also can be tested for protein expression of the enzyme encoded by ORFs 3, 6, 7, 8, or 9 using western analysis, in which case, the best expressing pCGN8535 and pCGN8537 T₁ transformed plants are chosen and are grown out for further experimentation and crossing. Alternatively, the T₁ transformed plants showing insertion by Southern are crossed to one 30 another producing T₂ seed which has both insertions. In this seed, half seeds may be analyzed directly from expression of EPA in the fatty acid fraction. Remaining half-seed

of events with the best EPA production are grown out and developed through conventional breeding techniques to provide *Brassica* lines for production of EPA.

Plasmids pCGN7792 and pCGN7795 also are simultaneously introduced into *Brassica napus* host cells. A standard transformation protocol is used (see for example 5 USPN 5,463,174 and USPN 5,750,871, however *Agrobacteria* containing both plasmids are mixed together and incubated with *Brassica* cotyledons during the cocultivation step. Many of the resultant plants are transformed with both plasmids.

DHA production

10 A plant is transformed for production of DHA by introducing pCGN8556 and pCGN8560, either into separate plants or simultaneously into the same plants as described for EPA production.

Alternatively, the *Shewanella* ORFs can be used in a concerted fashion with ORFs 6 and 8 of *Vibrio*, such as by transforming with a plant the constructs pCGN8560 and 15 pCGN7795, allowing expression of the corresponding ORFs in a plant cell. This combination provides a PKS-like gene arrangement comprising ORFs 3, 7 and 9 of *Shewanella*, with an ORF 6 derived from *Vibrio* and also an ORF 8 derived from *Vibrio*. As described above, ORF 8 is the PKS-like gene which controls the identity of the final PUFA product. Thus, the resulting transformed plants produce DHA in plant oil.

20

Example 6

Transgenic plants containing the *Shewanella* PUFA genes

Brassica plants

25 Fifty-two plants cotransformed with plasmids pCGN8535 and pCGN8537 were analyzed using PCR to determine if the *Shewanella* ORFs were present in the transgenic plants. Forty-one plants contained plasmid pCGN8537, and thirty-five plants contained pCGN8535. 11 of the plants contained all five ORFs required for the synthesis of EPA. Several plants contained genes from both of the binary plasmids but appeared to be missing at least one of the ORFs. Analysis is currently being performed on approximately 30 twenty additional plants.

Twenty-three plants transformed with pCGN8535 alone were analyzed using PCR to determine if the *Shewanella* ORFs were present in the transgenic plants. Thirteen of

these plants contained both *Shewanella* ORF 6 and *Shewanella* ORF 8. Six of the plants contained only one ORF.

Nineteen plants transformed with pCGN8537 were alone analyzed using PCR to determine if the *Shewanella* ORFs were present in the transgenic plants. Eighteen of the 5 plants contained *Shewanella* ORF 3, *Shewanella* ORF 7, and *Shewanella* ORF 9. One plant contained *Shewanella* ORFs 3 and 7.

Arabidopsis

More than 40 transgenic *Arabidopsis* plants cotransformed with plasmids pCGN8535 and pCGN8537 are growing in our growth chambers. PCR analysis to 10 determine which of the ORFs are present in the plants is currently underway.

By the present invention PKS-like genes from various organisms can now be used to transform plant cells and modify the fatty acid compositions of plant cell membranes or plant seed oils through the biosynthesis of PUFAs in the transformed plant cells. Due to 15 the nature of the PKS-like systems, fatty acid end-products produced in the plant cells can be selected or designed to contain a number of specific chemical structures. For example, the fatty acids can comprise the following variants: Variations in the numbers of keto or hydroxyl groups at various positions along the carbon chain; variations in the numbers and types (*cis* or *trans*) of double bonds; variations in the numbers and types of branches 20 off of the linear carbon chain (methyl, ethyl, or longer branched moieties); and variations in saturated carbons. In addition, the particular length of the end-product fatty acid can be controlled by the particular PKS-like genes utilized.

All publications and patent applications mentioned in this specification are 25 indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

30 The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

What is claimed is:

1. An isolated nucleic acid comprising:

a *Vibrio marinus* nucleotide sequence selected from the group consisting of the ORF 6, ORF 7, ORF 8 and ORF 9 as shown in Figure 6.

5

2. An isolated nucleic acid comprising:

a nucleotide sequence which encodes a polypeptide of a polyketide-like synthesis system, wherein said system produces a docosahexenoic acid when expressed in a host cell.

10 3. The isolated nucleic acid according to Claim 2, wherein said nucleotide sequence is derived from a marine bacterium.

4. The isolated nucleic acid according to Claim 2, wherein said nucleotide sequence is a *Vibrio marinus* ORF 8 as shown in Figure 6.

15

5. An isolated nucleic acid comprising:

a nucleotide sequence which is substantially identical to a sequence of at least 50 nucleotides of a *Vibrio marinus* nucleotide sequence selected from the group consisting of ORF 6, ORF 7, ORF 8 and ORF 9 as shown in Figure 6.

20

6. A recombinant microbial cell comprising at least one copy of an isolated nucleic acid according to Claim 1 or Claim 2.

25 7. The recombinant microbial cell according to Claim 6, wherein said cell comprises each element of a polyketide-like synthesis system required to produce a long chain polyunsaturated fatty acid.

8. The recombinant microbial cell according to Claim 7, wherein said cell is a eukaryotic cell.

30

9. The recombinant microbial cell according to Claim 8, wherein said eukaryotic cell is a fungal cell, an algae cell or an animal cell.

10. The recombinant microbial cell according to Claim 9, wherein said fungal cell is a yeast cell and said algae cell is a marine algae cell.

5 11. The recombinant microbial cell according to Claim 6, wherein said cell is a prokaryotic cell.

12. The recombinant microbial cell according to Claim 11, wherein said cell is a bacterial cell or a cyanobacterial cell.

10 13. The microbial cell according to Claim 6, wherein said recombinant microbial cell is enriched for 22:6 fatty acids as compared to a non-recombinant microbial cell which is devoid of said isolated nucleic acid.

15 14. A method for production of docosahexenoic acid in a microbial cell culture, said method comprising:

20 growing a microbial cell culture having a plurality of microbial cells, wherein said microbial cells or ancestors of said microbial cells were transformed with a vector comprising one or more nucleic acids having a nucleotide sequence which encodes a polypeptide of a polyketide synthesizing system, wherein said one or more nucleic acids are operably linked to a promoter, under conditions whereby said one or more nucleic acids are expressed and docosahexenoic acid is produced in said microbial cell culture.

15. A method for production of a long chain polyunsaturated fatty acid in a plant cell, said method comprising:

25 growing a plant having a plurality of plant cells, wherein said plant cells or ancestors of said plant cells were transformed with a vector comprising one or more nucleic acids having a nucleotide sequence which encodes one or more polypeptides of a polyketide synthesizing system which produces a long chain polyunsaturated fatty acid, wherein each of said nucleic acids are operably linked to a promoter functional in a plant cell, under conditions whereby said polypeptides are expressed and a long chain polyunsaturated fatty acid is produced in said plant cells.

16. The method according to Claim 15, wherein said long chain polyunsaturated fatty acid produced in said plant cells is a 20:5 and 22:6 fatty acid.

17. The method according to Claim 15, wherein said nucleic acids comprise 5 nucleotide sequences encoding any one of the polypeptides selected from the group consisting of *Vibrio marinus* ORF 6, ORF 7, ORF 8 and ORF 9 as shown in Figure 6 and *Shewanella putrefaciens* ORF 3, ORF 6, ORF 7, ORF 8 and ORF 9 as shown in Figure 4.

18. The method according to Claim 15, wherein said nucleic acid constructs are derived 10 from two or more polyketide synthesizing systems.

19. A recombinant plant cell which produces an long chain polyunsaturated fatty acid exogenous to said plant cell, wherein said recombinant plant cell is produced according to a method comprising:

15 transforming a plant cell or an ancestor or said plant cell with a vector comprising one or more nucleic acids having a nucleotide sequence which encodes one or more polypeptides of a polyketide synthesizing system which produces a long chain polyunsaturated fatty acid, wherein each of said nucleic acids are operably linked to a promoter functional in said plant cell whereby a recombinant plant cell is obtained; and 20 growing said recombinant plant cell under conditions whereby said polypeptides are expressed and a long chain polyunsaturated fatty acid is produced in said plant cell.

20. The recombinant plant cell according to Claim 19, wherein said recombinant plant cell is a recombinant seed cell.

25 21. The recombinant plant cell according to Claim 20, wherein said recombinant seed cell is a recombinant embryo cell.

30 22. The method according to Claim 15, wherein said long chain polyunsaturated fatty acid produced in said plant cells is eicosapentenoic acid.

23. The method according to Claim 15, wherein said long chain polyunsaturated fatty acid produced in said plant cells is docosahexenoic acid.

24. The recombinant plant cell according to Claim 19, wherein said recombinant plant cell is from a plant selected from the group consisting of *Brassica*, soybean, safflower, and sunflower.

5 25. A plant oil produced by a recombinant plant cell according to Claim 19, wherein said plant oil comprises eicosapentenoic acid.

26. A plant oil produced by a recombinant plant cell according to Claim 19, wherein said plant oil comprises docosahexenoic acid.

10 27. The plant oil according to Claim 25 or Claim 26, wherein said plant oil is encapsulated.

28. A dietary supplement comprising a plant oil according to Claim 27.

15 29. A recombinant *E. coli* cell which produces docosahexenoic acid.

30. A plant oil comprising eicosapentenoic acid.

31. A plant oil comprising docosahexenoic acid.

20 32. The recombinant microbial cell according to Claim 12, wherein said bacterial cell is a lactobacillus cell.

Fig. 1 Organization of Shewanella EPA Genes and Clones Obtained from the Sagami Chemical Institute.

Fig. 2

SHIWANELLA EPA C RFsMotifs - Domains - Homologies

Orf6 8.3 KB - 293 kD

FIG 2A

Orf7 2.3 KB - 84 kD

FIG 2B

Orf3 0.8 KB - 30 kD

Het I - pantetheine transferase

FIG 2E

Orf8 6.0 KB - 217 kD

FIG 2C

Orf9 1.6 KB - 59 kD

Anabeana - OrfX homolog

FIG 2D

**Anabeana "PKS" Genes Involved in Heterocyst
Glycolipid Synthesis****

Fig 3. **Orf3 Encodes a Phosphopantetheine Transferase**

Autoradiograph of [C^{14}] β -Alanine labelled proteins from *E. coli* (strain SJ16) cells transformed with the above listed plasmids. Cells were grown in the presence of [C^{14}] β -alanine and the appropriate antibiotics. Proteins were extracted, separated by SDS-PAGE and transferred to a PVDF membrane prior to autoradiography. ACP and an unknown (but previously observed) 35 kD protein were labelled in all of the samples. The high molecular mass proteins detected in lanes 2 and 5 are full-length (largest band) and truncated products of the *Shewanella* Orf6 gene (confirmed by Western analysis - data not shown). *E. coli* strain SJ16 is conditionally blocked in β -alanine synthesis.

Sequence Range: 1 to 37895

20	40	60	80
GATCTCTTAC AAAGAAACTA TCTCAATGTG AATTTAACCT TAATTCCGT TAATTACGGC CTGATAGAGC ATCACCAAT			
100	120	140	160
CAGCCATAAA ACTGTAAAGT GGGTACTCAA AGGTGGCTGG GCGATTCTTC TCAAATACAA AGTGCCAAC CCAAGCAAT			
180	200	220	240
CCATATCCGA TAACAGGTAA AAGTAGCAAT AAACCCAGC CCTGAGTTAG TAATACATAA CGGAATAATA GGATCACTAA			
260	280	300	320
ACTACTGCCG AAATAGTGTA ATATTCGACA GTTCTATGC TGATGTTGAG ATAATAAAA AGGGTAAAAT TCAGCAAAG			
340	360	380	400
AACGATAGCG CTTACTCATT ACTCACACCT CGGTAAAAAA GCAACTCGCC ATTAACCTGG CCAATCGTC CTTCTCTAT			
420	440	460	480
CGTCTCAAAG TTATGCCGAC TAAATAACTC TATATGTGCA TTATGATTAG CAAAAACTCC GATACCATCA AGATGAAGTT			
500	520	540	560
GTTCATCACA CCAACTCAA ACTGGCTCGA TAAGCTTACT CCCATAGCCC TTGCGTTGCT CCACATTGCG ATAGCAATA			
580	600	620	640
AACTGTAAAA TCCCACATTG GCCACTTGGT AAGCTCTCTA TAATCTGATT TTCTTTGTTA ATAAGTGCT GAGTTGAATA			
660	680	700	720
CCAAACAGTA CTTAACAAACA TCTTTAAACG CCAATGCCAA AAACCCGCTT CACCTAAGGG AACCTGCTGA GTCACTATGC			
740	760	780	800
AGGCTACGCC TATCAATCTA TCCCCAACGA ACATACCAAT AAGTGGCTGC TCCTGTTGCC AGAGCTCATT GAGTTCTTCT			
820	840	860	880
CGAATAGCCC CGCGAAGCTT TTGCTCATAAC TGCGCTTGTAT CACCACTAAA AAGTGGTTGG ATAAAAAAGG GATCATCATG			
900	920	940	960
ATAGGCGTTA TAGAGAAATAG AGGCTGCTAT GCGTAAATCT TCTGCCGTGA GATAAACTGC ACCACACTCT TCCATGGCTT			
980	1000	1020	1040
GATCTTCCAT TGTTATTGTC CTTGACCTTG ATCACACAAAC ACCAATGTAA CAAGACTGTA TAGAAGTGCA ATTAATAATC			
1060	1080	1100	1120
AATTCTGCA TTAAAGCAGGT CAGCATTCT TTGCTAAACA AGCTTTATTG GCTTTGACAA AACTTTGCT AGACTTTAAC			
1140	1160	1180	1200
GATAGAAATC ATAATGAAAC AGAAAAGCTA CAACCTAGAG GGGAAATAATC AAACAACTGC TAAGATCTAG ATAATGTAAT			
1220	1240	1260	1280
AAACACCGAG TTATCGACCA ATACTTAGAT AGAGTCATAG CAACGAGAAT AGTTATGGAT ACAACGCCGC AAGATCTATC			
1300	1320	1340	1360
ACACCTGTTT TTACAGCTAG GATTAGCAA TGATCAACCC GCAATTGAAC AGTTTATCAA TGACCATCAA TTAGGGACA			
1380	1400	1420	1440
ATATATTGCT ACATCAAGCA AGCTTTGGG GCCCATCGCA AAAGCACTTC TTAATTGAGT CATTAAATGA AGATGCCAG			
1460	1480	1500	1520
TGGACCGAAG TCATCGACCA CTTAGACACC TTATTAAGAA AAAACTAACCC ATTACAAACAG CAACTTTAAA TTTGCCGTA			
1540	1560	1580	1600
AGCCATCTCC CCCCCACCCCA CAACAGCGTT GTTGCTTATG ACCACTGGAG TACATTGTC TTTAGTCGTT TTACCATCAC			
1620	1640	1660	1680
CATGGGTACG TTGAGTGGCA TAAAAAAGCA CATAAACTTC TTTATCGGGC TGAATATAGG CTTCGTTAAA ATCAGCTGTT			
1700	1720	1740	1760
CCCATTAAAG TAACCACTTG CTCTTTACTC ATGCCTAGAG ATATCTTGT CAAATTGTC CCGTTTTAT CTTGAGTTT			

Fig. 4
1/30

1780	1800	1820	1840
CTCCCAAGCA	CCGTGATTAT	CCCACTCAGA	TTCCCCATCA
		CCAACATTGA	CCACACAGCC
		CGTTAGCCCT	AAGCTTGCAA
1860	1880	1900	1920
TCCCCAAACCA	TGCTAAACCT	AATAATTAT	TTTCATTTC
		AACTTCCGT	TATGACATTA
		TTTTGCTTA	GAAGAAAAGC
1940	1960	1980	2000
AACTTACATG	CCAAAACACA	AGCTGTTGTT	TTAAATGACT
		TTATTTATTA	TTAGCCTTT
		AGGATATGCC	TAGAGCAATA
2020	2040	2060	2080
ATAATTACCA	ATGTTAAGG	AATTGACTA	ACTATGAGTC
		CGATTGAGCA	AGTGCTAACCA
		GCTGCTAAA	AAATCAATGA
2100	2120	2140	2160
ACAAGGTAGA	GAACCAACAT	TAGCATTGAT	AAAAACCAA
		CTTGGTAATA	GCATCCCAAT
		GCGCGAGTTA	ATCCAAGGTT
2180	2200	2220	2240
TGCAACAGTT	TAAGTCTATG	AGTGCAGAAG	AAAGACAAGC
		AATACCTAGC	AGCTTAGCAA
		CAGCAAAAGA	AACTCAATAT
2260	2280	2300	2320
GGTCAATCAA	GCTTATCTCA	ATCTGAACAA	GCTGATAGGA
		TCCTCCAGCT	AGAAAACGCC
		CTCAATGAAT	TAAGAAACGA
2340	2360	2380	2400
ATTTAATGGG	CTAAAAAGTC	AATTGATAA	CTTACAACAA
		AACCTGATGA	ATAAAGAGCC
		TGACACCAAA	TGCATGTAAT
2420	2440	2460	2480
TGAACTACGA	TTGAAATGTT	TTGATAACAC	CACGATTACT
		GCAGCAGAAA	AAGCCATTAA
		TGGTTGCTT	GAAGCTTATC
2500	2520	2540	2560
GAGCCAATGG	CCAGGTTCTA	GGTCGTGAAT	TTGCCGTGTC
		ATTTAACGAT	GGTGAGTTA
		AAGCACCGAT	GTAAACCCCCA
2580	2600	2620	2640
GAAAAAAGCA	GCTTATCTAA	ACGCTTTAAT	AGTCCTGGG
		TAATAGTGC	ACTCGAAGAG
		CTAACCGAAG	CCAAATTGCT
2660	2680	2700	2720
TGCGCCACGT	CAAAAGTATA	TTGCCCAAGA	TATTAATTCT
		GAAGCATCTA	GCCAAGACAC
		ACCAAGTTGG	CAGCTACTTT
2740	2760	2780	2800
ACACAAGTTA	TGTGCACATG	TGCTCACCAAC	TAAGAAATGG
		CGACACCTTG	CAGCCTATTG
		CACTGTATCA	AATTCCAGCA
2820	2840	2860	2880
ACTGCCAACG	GCGATCATAA	ACGAATGATC	CGTTGGAAA
		CAGAATGGCA	AGCTTGTGAT
		GAATTGCAA	TGGCCGCAGC
2900	2920	2940	2960
TACTAAAGCT	GAATTGCGG	CACTTGAAGA	GCTAACAGT
		CATCAGAGTG	ATCTATTTAG
		GGTGGTTGG	GACTTACGTG
2980	3000	3020	3040
GCAGAGTCGA	ATACTTGACG	AAAATCCGA	CCTATTACTA
		TTTATACCGT	GTGGCCGTG
		AAAGCTTAGC	AGTAGAAAAG
3060	3080	3100	3120
CAGCGCTCTT	GTCCTAACGTG	TGGCAGTCAA	GAATGGCTGC
		TCGATAAACCC	ATTATTGGAT
		ATGTTCCATT	TTCGCTGTGA
3140	3160	3180	3200
CACCTGCCGC	ATCGTATCTA	ATATCTCTTG	GGACCATTAA
		TAACTCTTCC	GAGTCTTATC
		ACACTAGAGT	TTAGTCAGCA
3220	3240	3260	3280
TAAAAATGGC	GCTTATATIT	CAATTTAAAG	AAATATAAGC
		GCCATTTC	TCGATACTAT
		ATATCAGCAG	ACTATTTCC
3300	3320	3340	3360
GGGTAAATTA	GCCCCACATTA	ATTTCATCT	TTGCCAGATC
		CCTGGATGAT	CTAGTTGTGG
		CATCGACTCT	TCAATAGGTT
3380	3400	3420	3440
TAACCGCAGG	TGTAACCCCT	GGAGTCATT	CGTTTATAAA
		CTCGTTAAA	CTGTCACCTA
		ATTTAACGCT	TTGTACTTCA
3460	3480	3500	3520
CCTGGAATTT	CAATCCATAC	GCTGCCATCA	CTATTATCAA
		CCGTCAACAT	TTTATCTTCA
		TCATCAAGAA	TACCAATAAA

Fig. 4
2/30

3540	3560	3580	3600
CCAAGTCGGC	TCTTGCTTAA	GCTTTCTCTT	CATCATTAAGA
		TGACCAATGA	TGTTTTGTTG
			TAAGTATTCA
			AAATCAGTTT
3620	3640	3660	3680
GATCCCCACAC	TTGGATTAGC	TCACCTTGGC	CCCATTGTGA
		GTCAAAAAAT	AGCGGTGCAG
			AAAATGACT
			GCCAAAAAAT
3700	3720	3740	3760
GGATTAATTT	CTGCAGATAA	TGTCATTTC	AGTGCTGTT
		CAACATTAGC	AAATTCACCA
			GGTTGTTGAC
			GTACAACCGA
3780	3800	3820	3840
TTGCCAAAC	ACTGCGCCAT	CGGAGCCCCG	TCGGCGACA
		ACACACTCAG	ACTTTGTC
			TTGGCATAAA
			TATCTGGCT
3860	3880	3900	3920
GTTCACCAAG	CTTATCCATG	TAGGCTTGT	GATATTTAGA
		TAAAAAAAGA	TCTAAAGCAG
			GTAAAGAAGA
			CACTTAAGCC
3940	3960	3980	4000
AGTTCCAAA	TCAGTTATAA	TAGGGGTCTA	TTTGACATG
		GAACACGTAT	TGATGACACA
			ACATCATGAT
			CCCTACAGTA
4020	4040	4060	4080
ACGCCCCCGA	ACTTTCTGAA	TTAACCTTAG	GAAAGTCGAC
		CGGTTATCAA	GAGCACTATG
			ATGCATCTT
			ACTACAAGCG
4100	4120	4140	4160
TGCCCGTAA	ATTAACCGT	GATGCTATCG	GTCTAACCAA
		TGAGCTACCT	TTTCATGGCT
			GTGATATTG
			GAATGGCTAC
4180	4200	4220	4240
GAACTGTCTT	GGCTAAATGC	TAAAGGCAAG	CCAATGATTG
		CTATTGCAGA	CTTTAACCTA
			AGTTTTGATA
			GTAAAAATCT
4260	4280	4300	4320
GATCGAGTCT	AACTCGTTA	AGCTGTATT	AAACAGCTAT
		ACCAAAACAC	GATTGATAG
			CGTTCAAGCG
			GTTCAAGAAC
4340	4360	4380	4400
GTTTAACTGA	AGACTTAAGC	GCCTGTGCC	AAGGCACAGT
		TACGGTAAAA	GTGATTGAAC
			CTAAGCAATT
			TAACCACCTG
4420	4440	4460	4480
AGAGTCGTTG	ATATGCCAGG	TACCTGCATT	GACGATTAGT
		ATATGAACT	TGATGACTAT
			AGCTTTAACT
			CTGACTATCT
4500	4520	4540	4560
CACCGACAGT	GTTGATGACA	AACTCATGCT	TGCTGAAACG
		CTAACGCTAA	ACTTATTGAA
			ATCAAACATGC
			CTAATCACTT
4580	4600	4620	4640
CTCAGCCTGA	CTGGGGTACA	GTGATGATCC	GTTATCAAGG
		CCCTAAGATA	GACCGTAAA
			AGCTACTTAG
			ATATCTGATT
4660	4680	4700	4720
TCATTTAGAC	AGCACAATGA	ATTTCATGAG	CAGTGTGTTG
		AGCGTATATT	TGTTGATTAA
			AAGCACTATT
			GCCAATGTGC
4740	4760	4780	4800
CAAACCTACT	GTCTATGCAC	GTTATACCCG	CCGTGGTGT
		TTAGATATCA	ACCCATATCG
			TAGCGACTTT
			GAACACCTG
4820	4840	4860	4880
CAGAAAATCA	GCGCCTAGCG	AGACAGTAAT	TGATTGCACT
		ACCTACAAAA	AAACATGCC
			ATAAGCCAAG
			CTTATGGCA
4900	4920	4940	4960
TTTTTATATT	ATCAACTTGT	CATCAAACCT	CAGCCGCCAA
		GCCTTTAGT	TTTATCGCTA
			ATTAAGCCG
			CTCTCTCAGC
4980	5000	5020	5040
CAAATATTG	CAGGATTTC	CTGTAATTAA	TGGCTCCACA
		CCATGAAATA	CTCTATCGGC
			TCTACCGCAA
			AAGGTAAGTC
5060	5080	5100	5120
AAATACCTGT	AAGCCAAACA	GCTTGGCATA	TTCTCGCTG
		TGGGCTTTG	ACGGCATGAC
			TAACGCATCA
			CTTTTGAGG
5140	5160	5180	5200
CAACCGACAT	CATACTTAAT	ATTGATGATT	GCTCGCTG
		CATTGCTT	CCCGGTAAACA
			CCTGTTAGT
			CAGCAAGTCG
5220	5240	5260	5280
GCAACACTTA	AATTGTAGCG	GCGCATCTTA	AAAATAATAT
		GCTTTTCATT	AAAGTATTGC
			TCTTGGCTCA
			ACCCACCTTG
5300	5320	5340	5360

Fig 4
3/30

GATCCTTGGG TGAGCATTTC GTGCCACACA AACTAATTAA TCCTGCATTA CTTTTGACT CTTAAATGCC GCAGATTCTG
 5380 5400 5420 5440
 GCAGCCAAAT ATCTAAGGCT AAATCCACCT TTTCTAGTGT TAGGTCCATC TGCAACTCTT CTTCAATGAG CGGGGGCTCA
 5460 5480 5500 5520
 CGAAATACAA TATTAATTGC AGTGCCTGT AACACTTGCT CAATTTGATC TTGCAAGAGT TGTATTGCCG ACTCGCTGGC
 5540 5560 5580 5600
 ATACACATAA AAAGTTCGCT CACTTGAAGT GGGGTCAAAT GCTTCAAAGC TACTCGAAC TTGCTCAATT GTTGACATAG
 5620 5640 5660 5680
 CGCCCGCGAG CTGTTGATAA AGCGTCATCG CACTTGGGT AGGTTAACT CCCCTACCCA CTCGAGTAAA CAACTCTTCT
 5700 5720 5740 5760
 CCAACAATAC TTTTTAGCCT CGAAATCGCA TTACTAACCG ACGACTGAGT CAAATCCAGC TCTTCTGCCG CCCGGCTAAA
 5780 5800 5820 5840
 AGATGAGGTG CGATACACCG CAGTAAAAAC GCGAAATAAA TTAAGATCAA AAGCTTTTG CTGGACATA AATCAGCTAT
 5860 5880 5900 5920
 CTCCCTATCC TTATCCTTAT CCTTATAAAA AGTTAGCTCC AGAGCACTCT AGCTAAAAAA CAACTCAGCG TATTAAGCCA
 5940 5960 5980 6000
 ATATTTGGG AACTCAATTAA ATATTCATAA TAAAAGTATT CATAATATAA ATACCAAGTC ATAATTTAGC CCTAATTATT
 6020 6040 6060 6080
 AATCAATTCA AGTTACCTAT ACTGGCCTCA ATTAAGCAAA TGTCTCATCA GTCTCCCTGC AACTAAATGC AATATTGAGA
 6100 6120 6140
 CATAAAGCTT TGAAGCTGATT CAATCTTACG AGGTTAACCTT ATG AAA CAG ACT CTA ATG CCT ATC TCA ATC ATG
 M K Q T L M A I S I M>
 6160 6180 6200
 TCG CTT TTT TCA TTC AAT GCG CTA GCA GCG CAA CAT GAA CAT GAC CAC ATC ACT GTT GAT TAC GAA
 S L F S F N A L A A Q H E H D H I T V D Y E>
 6220 6240 6260 6280
 GGG AAA CCC GCA ACA GAA CAC ACC ATA GCT CAC AAC CAA GCT GTC GCT AAA ACA CTT AAC TTT GCC
 G K A A T E H T I A H N Q A V A K T L N F A>
 6300 6320 6340
 GAC ACG CGT GCA TTT GAG CAA TCG TCT AAA AAT CTA GTC GCC AAG TTT GAT AAA GCA ACT GCC GAT
 D T R A F E Q S S K N L V A K F D K A T A D>
 6360 6380 6400
 ATA TTA CGT GCC GAA TTT GCT TTT ATT AGC GAT GAA ATC CCT GAC TCG GTT AAC CCG TCT CTC TAC
 I L R A E F A P I S D E I P D S V N P S L Y>
 6420 6440 6460 6480
 CGT CAG GCT CAG CTT AAT ATG GTG CCT AAT GGT CTG TAT AAA GTG AGC GAT GGC ATT TAC CAG GTC
 R Q A Q L N M V P N G L Y K V S D G I Y Q V>
 6500 6520 6540
 CGC GGT ACC GAC TTA TCT AAC CTT ACA CTT ATC CGC ACT GAT AAC GGT TGG ATA GCA TAC GAT GTT
 R G T D L S N L T L I R S D N G W I A Y D V>
 6560 6580 6600
 TTG TTA ACC AAA GAA GCA GCA AAA GCC TCA CTA CAA TTT GCG TTA AAG AAT CTA CCT AAA GAT GGC
 L L T K E A A K A S L Q F A L K N L P K D G>
 6620 6640 6660 6680
 GAT TTA CCC GTT GTT GCG ATG ATT TAC TCC CAT AGC CAT GCG GAC CAC TTT GGC GGA GCT CGC GGT
 D L P V V A M I Y S H S H A D H F G G A R G>
 6700 6720 6740
 GTT CAA GAG ATG TTC CCT GAT GTC AAA GTC TAC GCC TCA GAT AAC ATC ACT AAA GAA ATT GTC GAT
 V Q E M F P D V K V Y G S D N I T K E I V D>

Fig. 4
4/30

6760 6780 6800
 GAG AAC GTA CTT GCC GGT AAC GCC ATG AGC CGC CGC GCA GCT TAT CAA TAC GGC GCA ACA CTG GGC
 E N V L A G N A M S R R A A Y Q Y G A T L G>
 6820 6840 6860
 AAA CAT GAC CAC GGT ATT GTT GAT GCT GCG CTA GGT AAA GGT CTA TCA AAA GGT GAA ATC ACT TAC
 K H D H G I V D A A L G K G L S K G E I T Y>
 6880 6900 6920 6940
 CTC GCC CCA GAC TAC ACC TTA AAC AGT GAA GGC AAA TGG GAA ACC CTG ACG ATT GAT GGT CTA GAG
 V A P D Y T L N S E G K W E T L T I D G L E>
 6960 6980 7000
 ATG GTG TTT ATG GAT GCC TCG GGC ACC GAA GCT GAG TCA GAA ATG ATC ACT TAT ATT CCC TCT AAA
 M V F M D A S G T E A E S E M I T Y I P S K>
 7020 7040 7060
 AAA GCG CTC TGG ACC GCG GAG CTT ACC TAT CAA GGT ATG CAC AAC ATT TAT ACG CTG CGC GGC GCT
 K A L W T A E L T Y Q G M H N I Y T L R G A>
 7080 7100 7120 7140
 AAA GTA CGT GAT GCG CTC AAG TGG TCA AAA GAT ATC AAC GAA ATG ATC AAT GCC TTT GGT CAA GAT
 K V R D A L K W S K D I N E M I N A F G Q D>
 7160 7180 7200
 GTC GAA GTG CTG TTT GCC TCG CAC TCT GCG CCA GTG TGG GGT AAC CAA GCG ATC AAC GAT TTC TTA
 V E V L F A S H S A P V W G N Q A I N D F L>
 7220 7240 7260
 CGC CTA CAG CGT GAT AAC TAC GGC CTA GTG CAC AAT CAA ACC TTG AGA CTT GCC AAC GAT GGT GTC
 R L Q R D N Y G L V H N Q T L R L A N D G V>
 7280 7300 7320 7340
 GGT ATA CAA GAT ATT GGC GAT GCG ATT CAA GAC ACG ATT CCA GAG TCT ATC TAC AAG ACG TGG CAT
 G I Q D I G D A I Q D T I P E S I Y K T W H>
 7360 7380 7400
 ACC AAT GGT TAC CAC GGC ACT TAT AGC CAT AAC GCT AAA GCG GTT TAT AAC AAG TAT CTA GGC TAC
 T N G Y H G T Y S H N A K A V Y N K Y L G Y>
 7420 7440 7460
 TTC GAT ATG AAC CCA GCC AAC CTT AAT CCG CTG CCA ACC AAG CAA GAA TCT TCC GCT AAC TTT GTC GAA
 F D M N P A N L N P L P T K Q E S A K F V E>
 7480 7500 7520
 TAC ATG GGC GGC GCA GAT GCC GCA ATT AAG CGC GCT AAA GAT GAT TAC GCT CAA GGT GAA TAC CGC
 Y M G G A D A A I K R A K D D Y A Q G E Y R>
 7540 7560 7580 7600
 TTT GTT GCA ACG GCA TTA AAT AAG GTG GTG ATG GCC GAG CCA GAA AAT GAC TCC CCT CGT CAA TTG
 F V A T A L N K V V M A E P E N D S A R Q L>
 7620 7640 7660
 CTA GCC GAT ACC TAT GAG CAA CTT CGT TAT CAA GCA GAA GGG GCT GGC TGG AGA AAC ATT TAC TTA
 L A D T Y E Q L G Y Q A E G A G W R N I Y L>
 7680 7700 7720
 ACT GGC GCA CAA GAG CTA CGA GTA GGT ATT CAA GCT GGC GCG CCT AAA ACC GCA TCG GCA GAT GTC
 T G A Q E L R V G I Q A G A P K T A S A D V>
 7740 7760 7780 7800
 ATC AGT GAA ATG GAC ATG CCG ACT CTA TTT GAC TTC CTC GCG GTG AAG ATT GAT AGT CAA CAG CGC
 I S E M D M P T L F D F L A V K I D S Q Q A>
 7820 7840 7860
 GCT AAG CAC GGC TTA GTT AAG ATG AAT GTT ATC ACC CCT GAT ACT AAA GAT ATT CTC TAT ATT GAG
 A K H G L V K M N V I T P D T K D I L Y I E>
 7880 7900 7920
 CTA AGC AAC GGT AAC TTA AGC AAC GCA GTG GTC GAC AAA GAG CAA GCA GCT GAC GCA AAC CTT ATG
 L S N G N L S N A V V D K E Q A A D A N L M>

Fig. 4
5/30

7940 7960 7980 8000
 GTT AAT AAA GCT GAC GTT AAC CGC ATC TTA CTT GGC CAA GTA ACC CTA AAA GCG TTA TTA GCC AGC
 <V N K A D V N R I L L G Q V T L K A L L A S>
 8020 8040 8060
 GGC GAT GCC AAG CTC ACT GGT GAT AAA ACG GCA TTT AGT AAA ATA GGC GAT AGC ATG GTC GAG TTT
 <G D A K L T G D K T A F S K I A D S M V E F>
 8080 8100 8120 8140
 ACA CCT GAC TTC GAA ATC GTA CCA ACG CCT GTT AAA TGAGGCA TTAATCTCAA CAAGTGCAAG CTAGACATAA
 <T P D F E I V P T P V K>
 8160 8180 8200
 AAATGGGGCG ATTAGACGCC CCATTTTTA TGCAATTTC AACTA GCT AGT CTT AGC TGA AGC TCG AAC AAC
 <S T K A S A R V V>
 8220 8240 8260
 AGC TTT AAA ATT CAC TTC TTC TGC TGC AAT ACT TAT TTG CTG ACA CTG ACC AAT ACT CAG TGC AAA
 <A K F N V E E A A I S I Q Q C Q G I S L A F>
 8280 8300 8320 8340
 ACG ATA ACT ATC ATC AAG ATG GCC CAG TAA ACA ATG CCA ATT ATC AGC AGC GTC CAT TTG CTG TTC
 <R Y S D D L H G L L C H W N D A A N M Q Q E>
 8360 8380 8400
 TTT AGC CTC AAT CAA ACC TAA ACC AGA CTT TTG TGG CTC AGC GTC AGG CTT ATT AGA ACT CGA CTC
 <K A E I L G L G S K Q P E A N P K N S S S E>
 8420 8440 8460
 TAG TAA AGC AAG ACC AAT ATC TTG TTT TAA CAA AAC CTG TCG CTG ATT AAG TTG ATG CTC AAC CTT
 <L L A L G I D Q K L L V Q R Q N L Q H E V K>
 8480 8500 8520 8540
 GTG ATC CGC AAT AGC ATC GGA AAT ATC AAC ACA ATG GCT CAA GCT TTT AGG TGC ATT AAC TCC AAG
 <H D A I A D S I D V C H S L S K P A N V G L>
 8560 8580 8600
 AAA ACT TTC GCT CAG TGC AGA GAA GTC AAA CGC AAA AGA TTT TAG CGA TAA TGC CAG CCC AAG TCC
 <F T E S L A S F D F A F S K L S L A L G L G>
 8620 8640 8660
 TTT CGC TTT AAT GTA AGA CTC CTT GAG CGC CCA CAA ATC AAA AAA GCG GTC TCG CTG CAA GGC CTC
 <K A K I Y S E K L A W L D F F R D R Q L A E>
 8680 8700 8720 8740
 TGG TAA CGC TAA CAA GGC TCG CTT TTC TGA TTC AGA GAA ATA ATG ACT AAG AAT AGA GTG GAT ATT
 <P L A L L A R K E S E S F Y H S L I S H I N>
 8760 8780 8800
 GGT GCT GTT ACG GCA ACG CTC AAT GTC GAC GCC AAA CTC AAT ACT AGC AGA GTC AGT TTC CTC CTT
 <T S N R C R E I D V G F E I S A S D T E E K>
 8820 8840 8860
 GCT TGC CTG ACT GCC GCC TTT ATT ATC AGC ACT GCA AAT GCC TAC TAA TAG CCA ATC TCC ACT ATG
 <S A Q S A G K N D A T C I G V L L W D G S H>
 8880 8900 8920
 ACT CAC ATT AAA GTG GAC CCC GGT TTG AGC AAA TTG CGC ATC ACT CAA TCT AGG CTT ACC TTT GTC
 <S V N F H V G T Q A F Q A D S L R P K G K D>
 8940 8960 8980 9000
 GCC ATA TTC AAA GCG CCA TTC ATT GGG GCG TAT TTC ACT ATG TTG TGA CAA TAA AGC GCG CAA ATA
 <G Y E F R W E N P R I E S H Q S L L A R L Y>
 9020 9040 9060 9080
 GCC TCT TAC CAT TAAA CCTTGACTTT TAGCTTCTTG TTTAATGTAG CGATTAACCT TAATTAACTC ATCTTCAGGC
 <G R V M>
 9100 9120 9140 9160
 AGCCATGACT TAACCAACTC TGTAGTCTGG TTATCGCACT CTTGTATTGT TAACGGACAG AAGTATAAGG AAATCAATCG

←
O-43
Fig. 4
6/30

9180 9200 9220 9240
 AGAAGTTAGC AATTTTCAG GACACTCTTT AAAGCAACAA ACATAACCCC TATTTTACCC AATTAAAGAT CAAAACCTAAA
 9260 9280 9300 9320
 GCCAAACCA ATTGAGAATA GTGTCAAAC AGCTTAAAG GAAAAAATA TAAAAAGAAC ATTATACTTG TATAAATTAT
 9340 9360 9380 9400
 TTTACACACC AAAGCCATGA TCTTCACAAA ATTAGCTCCC TCTCCCTAAA ACAAGATTGA ATAAAAAAAT AAACCTTAAC
 9420 9440 9460 9480
 TTTCATATAG ATAAAACAAA CCAATGGAT AAAGTATATT GAATTCAATT TTAAGGAAAA ATTCAAATTG AATTCAAGCT
 9500 9520 9540 9560
 CTTCACTAAA AGCATATTTT GCCGTTAGTG TGAAAAAAA CAAATTAAA AACCAACATA AACAAATAA GCAGACAATA
 9580 9600 9620 9640
 AAACCAAGGC GCAACACAAA CAACCGCTT ACAATTTCAC CAAAAAGCA ACAAGAGTAA CGTTAGTAT TTGGATATGG
 9660 9680 9700
 TTATTGTAAT TGAGAATTAA ATAACAATTA TATTAAGGGA ATG AGT ATG TTT TTA AAT TCA AAA CTT TCG CGC
 M S M F L N S K L S R>
 9720 9740 9760
 TCA GTC AAA CTT GCC ATA TCC GCA GGC TTA ACA GCC TCG CTA GCT ATG CCT GTT TTT GCA GAA GAA
 S V K L A I S A G L T A S L A M P V F A E E>
 9780 9800 9820 9840
 ACT GCT GCT GAA GAA CAA ATA GAA AGA GTC GCA GTG ACC GGA TCG CGA ATC GCT AAA GCA GAG CTA
 T A A E E Q I E R V A V T G S R I A K A E L>
 9860 9880 9900
 ACT CAA CCA GCT CCA GTC AGC CTT TCA GCC GAA GAA CTG ACA AAA TTT GGT AAT CAA GAT TTA
 T Q P A P V V S L S A E E L T K F G N Q D L>
 9920 9940 9960
 GGT AGC GTA CTA GCA GAA TTA CCT GCT ATT GGT GCA ACC AAC ACT ATT ATT GGT AAT AAC AAT AGC
 G S V L A E L P A I G A T N T I I G N N N S>
 9980 10000 10020 10040
 AAC TCA AGC GCA GGT GTT AGC TCA GCA GAC TTG CGT CTA GGT GCT AAC AGA ACC TTA GTC TTA
 N S S A G V S S A D L R R L G A N R T L V L>
 10060 10080 10100
 GTC AAC GGT AAG CGC TAC GTT GCC GGC CAA CCG GGC TCA GCT GAG GTC GAT TTG TCA ACT ATA CCA
 V N G K R Y V A G Q P G S A E V D L S T I P>
 10120 10140 10160
 ACT AGC ATG ATC TCG CGA GTT GAG ATT GTA ACC GGC GGT GCT TCA GCA ATT TAT GGT TCG GAC GCT
 T S M I S R V E I V T G G A S A I Y G S D A>
 10180 10200 10220 10240
 GTA TCA GGT GTT ATC AAC GTT ATC CTT AAA GAA GAC TTT GAA GGC TTT GAG TTT AAC GCA CGT ACT
 V S G V I N V I L K E D F E G F E F N A R T>
 10260 10280 10300
 AGC GGT TCT ACT GAA AGT GTA GGC ACT CAA GAG CAC TCT TTT GAC ATT TTG GGT GGT GCA AAC GTT
 S G S T E S V G T Q E H S F D I L G G A N V>
 10320 10340 10360
 GCA GAT GGA CGT GGT AAT GTA ACC TTC TAC GCA GGT TAT GAA CGT ACA AAA GAA GTC ATG GCT ACC
 A D G R G N V T F Y A G Y E R T K E V M A T>
 10380 10400 10420
 GAC ATT CGC CAA TTC GAT GCT TGG GGA ACA ATT AAA AAC GAA GCC GAT GGT GGT GAA GAT GAT GGT
 D I R Q F D A W G T I K N E A D G G E D D G>
 10440 10460 10480 10500
 ATT CCA GAC AGA CTA CGT GTA CCA CGA GTT TAT TCT GAA ATG ATT AAT GCT ACC GGT GTT ATC AAT
 I P D R L R V P R V Y S E M I N A T G V I N>

Fig. 4
7/30

10520 10540 10560

GCA TTT GGT GGT GGA ATT GGT CGC TCA ACC TTT GAC AGT AAC GGC AAT CCT ATT GCA CAA CAA GAA
A F G G G I G R S T F D S N G N P I A Q Q E>

10580 10600 10620

CGT GAT GGG ACT AAC AGC TTT GCA TTT GGT TCA TTC CCT AAT GGC TGT GAC ACA TGT TTC AAC ACT
R D G T N S F A F G S F P N G C D T C F N T>

10640 10660 10680 10700

GAA GCA TAC GAA AAC TAT ATT CCA GGG GTC GAA AGA ATA AAC GTT GGC TCA TCA TTC AAC TTT GAT
E A Y E N Y I P G V E R I N V G S S F N F D>

10720 10740 10760

TTT ACC GAT AAC ATT CAA TTT TAC ACT GAC TTC AGA TAT GTC AAG TCA GAT ATT CAG CAA CAA TTT
P T D N I Q F Y T D F R Y V K S D I Q Q Q F>

10780 10800 10820

CAG CCT TCA TTC CGT TTT GGT AAC ATT ATC AAT GTC GAA GAT AAC GGC TTT TTG AAT GAC GAC
Q P S F R F G N I N I N V E D N A F L N D D>

10840 10860 10880 10900

TTG CGT CAG CAA ATG CTC GAT GCG GGT CAA ACC AAT GCT AGT TTT GCC AAG TTT TTT GAT GAA TTA
L R Q Q M L D A G Q T N A S F A K F F D E L>

10920 10940 10960

GGA AAT CGC TCA GCA GAA AAT AAA CGC GAA CTT TTC CGT TAC GTC GGT GGC TTT AAA GGT GGC TTT
G N R S A E N K R E L F R Y V G G F K G G F>

10980 11000 11020

GAT ATT AGC GAA ACC ATA TTT GAT TAC GAC CTT TAC TAT GTT TAT GGC GAG ACT AAT AAC CGT CGT
D I S E T I F D Y D L Y Y V Y G E T N N R R>

11040 11060 11080

AAA ACC CTT AAT GAC CTA ATT CCT GAT AAC TTT GTC GCA GCT GTC GAC TCT GTT ATT GAT CCT GAT
K T L N D L I P D N F V A A V D S V I D P D>

11100 11120 11140 11160

ACT GGC TTA GCA GCG TGT CGC TCA CAA GTC GCA AGC GCT CAA GGC GAT GAC TAT ACA GAT CCC GCG
T G L A A C R S Q V A S A Q G D D Y T D P A>

11180 11200 11220

TCT GTC AAT CGT AGC GAC TGT GTT CCT TAT AAC CCA TTT GGC ATG GGT CAA GCT TCA GCA GAA GGC
S V N G S D C V A Y N P F G M G Q A S A E A>

11240 11260 11280

CGC GAC TGG GTT TCT GCT GAT GTG ACT CGT GAA GAC AAA ATA ACT CAA CAA GTG ATT GGT GGT ACT
R D W V S A D V T R E D K I T Q Q V I G G T>

11300 11320 11340 11360

CTC GGT ACC GAT TCT GAA GAA CTA TTT GAG CTT CAA GGT GGT GCA ATC GCT ATG GTT GGT GGT TTT
L G T D S E E L F E L Q G G A I A M V V G F>

11380 11400 11420

GAA TAC CGT GAA GAA ACC TCT GGT TCA ACA ACC GAT GAA TTT ACT AAA GCA GGT TTC TTG ACA AGC
E Y R E E T S G S T T D E F T K A G F L T S>

11440 11460 11480

GCT GCA ACG CCA GAT TCT TAT GGC GAA TAC GAC GTG ACT GAG TAT TTT GTT GAG GTG AAC ATC CCA
A A T P D S Y G E Y D V T E Y F V E V N I P>

11500 11520 11540 11560

GTA CTA AAA GAA TTA CCT TTT GCA CAT GAG TTG AGC TTT GAC GGT GCA TAC CGT AAT GCT GAT TAC
V L K E L P F A H E L S F D G A Y R N A D Y>

11580 11600 11620

TCA CAT GCC CGT AAG ACT GAA GCA TCG AAA GCT GGT ATG TTC TAC TCA CCA TTA GAG CAA CTT GCA
S H A G K T E A W K A G M F Y S P L E Q L A>

11640 11660 11680

TTC CGT GGT ACG GTC GGT GAA GCA GTC CGA GCA CCA AAC ATT GCA GAA GGC TTT AGT CCA CGC TCT

Fig. 4
8/30

Fig. 4
9/30

Look for fur
ear

TTGACAAAAT GGCGATAAAA TGTGGCTTAG CGCTAAGTTC ACCGTAAGTT TTATCGGCAT TAAGTCCCAA CAGATTATTA
 13040 13060 13080
ACGGAAACCC GCTAAACTG ATG GCA AAA ATA AAT AGT GAA CAC TTG GAT GAA GCT ACT ATT ACT TCG AAT
 M A K I N S E H L D E A T I T S N> O-
 13100 13120 13140
AAG TGT ACG CAA ACA GAG ACT GAG GCT CGG CAT AGA AAT GCC ACT ACA ACA CCT GAG ATG CGC CGA
 K C T Q T E T E A R H R N A T T T P E M R R>
 13160 13180 13200 13220
TTC ATA CAA GAG TCG GAT CTC ACT GTT AGC CAA CTG TCT AAA ATA TTA AAT ATC AGT GAA GCT ACC
 F I Q E S D L S V S Q L S K I L N I S E A T>
 13240 13260 13280
GTA CGT AAG TGG CGC AAG CGT GAC TCT GTC GAA AAC TGT CCT AAT ACC CCG CAC CAT CTC AAT ACC
 V R K W R K R D S V E N C P N T P H H L N T>
 13300 13320 13340
ACG CTA ACC CCT TTG CAA GAA TAT GTG GTT GTG GGC CTG CGT TAT CAA TTG AAA ATG CCA TTA GAC
 T L T P L Q E Y V V V G L R Y Q L K M P L D>
 13360 13380 13400 13420
AGA TTG CTC AAA GCA ACC CAA GAG TTT ATC AAT CCA AAC GTG TCG CGC TCA GGT TTA GCA AGA TGT
 R L L K A T Q E F I N P N V S R S G L A R C>
 13440 13460 13480
TTG AAG CGT TAT GGC GTT TCA CGG GTG AGT GAT ATC CAA AGC CCA CAC GTA CCA ATG CGC TAC TTT
 L K R Y G V S R V S D I Q S P H V P M R Y F>
 13500 13520 13540
AAT CAA ATT CCA GTC ACT CAA GGC AGC GAT GTG CAA ACC TAC ACC CTG CAC TAT GAA ACG CTG GCA
 N Q I P V T Q G S D V Q T Y T L H Y E T L A>
 13560 13580 13600
AAA ACC TTA GCC TTA CCT AGT ACC GAT GGT GAC AAT GTG GTG CAA GTG GTG TCT CTC ACC ATT CCA
 K T L A L P S T D G D N V V Q V V S L T I P>
 13620 13640 13660 13680
CCA AAG TTA ACC GAA GAA GCA CCC AGT TCA ATT TTG CTC GGC ATT GAT CCT CAT AGC GAC TGG ATC
 P K L T E E A P S S I L L G I D P H S D W I>
 13700 13720 13740
TAT CTC GAC ATA TAC CAA GAT GGC AAT ACA CAA GCC ACC AAT AGA TAT ATG GCT TAT CTG CTA AAA
 Y L D I Y Q D G N T Q A T N R Y M A Y V L K>
 13760 13780 13800
CAC GGG CCA TTC CAT TTA CGA AAG TTA CTC GTG CGT AAC TAT CAC ACC TTT TTA CAG CGC TTT CCT
 H G P F H L R K L L V R N Y H T F L Q R F P>
 13820 13840 13860 13880
GGA GCG ACG CAA AAT CGC CGC CCC TCT AAA GAT ATG CCT GAA ACA ATC AAC AAG ACG CCT GAA ACA
 G A T Q N R R P S K D M P E T I N K T P E T>
 13900 13920 13940
CAG GCA CCC AGT CGA GAC TCA TA ATG AGC CAG ACC TCT AAA CCT ACA AAC TCA GCA ACT GAG CAA
 Q A P S G D S> M S Q T S K P T N S A T E Q> O-
 13960 13980 14000
GCA CAA GAC TCA CAA GCT GAC TCT CGT TTA AAT AAA CGA CTA AAA CAT ATG CCA ATT GCT ATT CTT
 A Q D S Q A D S R L N K R L K D M P I A I V>
 14020 14040 14060
GCG ATG GCG AGT ATT TTT GCA AAC TCT CGC TAT TTG AAT AAG TTT TGG GAC TTA ATC AGC GAA AAA
 G M A S I F A N S R Y L N K F W D L I S E K>
 14080 14100 14120 14140
ATT GAT GCG ATT ACT GAA TTA CCA TCA ACT CAC TGG CAG CCT GAA GAA TAT TAC GAC GCA GAT AAA
 I D A I T E L P S T H W Q P E E Y Y D A D K>

Fig. 4
10/30

14160 14180 14200
 ACC GCA GCA GAC AAA AGC TAC TGT AAA CGT GGT GGC TTT TTG CCA GAT GTC GAA GTC AAC CCA ATG
 T A A D K S Y C K R G G F L P D V D F N P M>
 14220 14240 14260
 GAG TTT GGC CTG CCG CCA AAC ATT TTG GAA CTG ACC GAT TCA TCG CAA CTA TTA TCA CTC ATC GTT
 E F G L P P N I L E L T D S S Q L L S L I V>
 14280 14300 14320 14340
 GCT AAA GAA GTG TTG GCT GAT GCT AAC TTA CCT GAG AAT TAC GAC CCC GAT AAA ATT GGT ATC ACC
 A K E V L A D A N L P E N Y D R D K I G I T>
 14360 14380 14400
 TTA GGT GTC GGC GGT GGT CAA AAA ATT AGC CAC AGC CTA ACA GCG CCT CTG CAA TAC CCA GTC TTG
 L G V G G G Q K I S H S L T A R L Q Y P V L>
 14420 14440 14460
 AAG AAA GTC TTC CCC ATT AGC GGC ATT AGT GAC ACC GAC AGC GAA ATG CTT ATC AAG AAA TTC CAA
 K K V F A N S G I S D T D S E M L I K K P Q>
 14480 14500 14520 14540
 GAC CAA TAT GTC CAC TGG GAA GAA AAC TCG TTC CCA GGT TCA CTT GGT AAC GTT ATT GCG GGC CGT
 D Q Y V H W E E N S F P G S L G N V I A G R>
 14560 14580 14600
 ATC GCC AAC CGC TTC GAT TTT GGC GGC ATG AAC TGT GTG GTT GAT GCT GCC TGT CCT GGA TCA CTT
 I A N R F D F G G M N C V V D A A C A G S L>
 14620 14640 14660
 GCT CCT ATG CGT ATG GCG CTA ACA GAG CTA ACT GAA GGT CGC TCT GAA ATG ATG ATC ACC GGT GGT
 A A M R M A L T E L T E G R S E M M I T G G>
 14680 14700 14720
 GTG TGT ACT GAT AAC TCA CCC TCT ATG TAT ATG AGC TTT TCA AAA ACG CCC GCC TTT ACC ACT AAC
 V C T D N S P S M Y M S F S K T P A F T T N>
 14740 14760 14780 14800
 GAA ACC ATT CAG CCA TTT GAT ATC GAC TCA AAA GGC ATG ATG ATT GGT GAA GGT ATT GGC ATG GTG
 E T I Q P F D I D S K G M M I G E G I G M V>
 14820 14840 14860
 GCG CTA AAG CGT CTT GAA GAT GCA GAG CGC GAT GGC GAC CGC ATT TAC TCT GTC ATT AAA GGT GTG
 A L K R L E D A E R D G D R I Y S V I K G V>
 14880 14900 14920
 GGT GCA TCA TCT GAC GGT AAG TTT AAA TCA ATC TAT GCC CCT CGC CCA TCA GGC CAA GCT AAA GCA
 G A S S D G K F K S I Y A P R F S G Q A K A>
 14940 14960 14980 15000
 CTT AAC CGT GCC TAT GAT GAC GCA GGT TTT GCG CCG CAT ACC TTA GGT CTA ATT GAA GCT CAC GGA
 L N R A Y D D A G F A P H T L G L I E A H G>
 15020 15040 15060
 ACA GGT ACT GCA GCA GGT GAC GCG GCA GAG TTT GCC GGC CTT TGC TCA GTC ATT GAA GGC AAC
 T G T A A G D A A E F A G L C S V F A E G N>
 15080 15100 15120
 GAT ACC AAG CAA CAC ATT GCG CTA GGT TCA GTT AAA TCA CAA ATT GGT CAT ACT AAA TCA ACT GCA
 D T K Q H I A L G S V K S Q I G H T K S T A>
 15140 15160 15180 15200
 GGT ACA GCA GGT TTA ATT AAA GCT GCT CTT GCT TTG CAT AAC AAG GTC CTG CGG CCG ACC ATT AAC
 G T A G L I K A A L A L H H K V L P P T I N>
 15220 15240 15260
 GTT AGT CAG CCA AGC CCT AAA CTT GAT ATC GAA AAC TCA CGG TTT TAT CTA AAC ACT GAG ACT CGT
 V S Q P S P K L D I E N S P F Y L N T E T R>
 15280 15300 15320
 CCA TGG TTA CCA CGT GTT GAT CGT ACC CGG CGC CGC GCG GGT ATT AGC TCA TTT GGT TTT GGT GGC
 P W L P R V D G T P R R A G I S S F G F G G>

Fig. 4
11/30

15340 15360 15380
 ACT AAC TTC CAT TTT GTA CTA GAA GAG TAC AAC CAA GAA CAC AGC CGT ACT GAT AGC GAA AAA GCT
 T N F H F V L E E Y N Q E H S R T D S E K A>
 15400 15420 15440 15460
 AAG TAT CGT CAA CGC CAA GTG GCG CAA AGC TTC CTT ACC GCA AGC GAT AAA GCA TCG CTA ATT
 K Y R Q R Q V A Q S F L V S A S D K A S L I>
 15480 15500 15520
 AAC GAG TTA AAC GTA CTA GCA GCA TCT GCA AGC CAA GCT GAG TTT ATC CTC AAA GAT GCA GCA GCA
 N E L N V L A A S A S Q A E F I L K D A A A A>
 15540 15560 15580
 AAC TAT GGC GTA CGT GAG CTT GAT AAA AAT GCA CCA CGG ATC GGT TTA GTT GCA AAC ACA GCT GAA
 N Y G V R E L D K N A P R I G L V A N T A E>
 15600 15620 15640 15660
 GAG TTA GCA GGC CTA ATT AAG CAA GCA CTT CCC AAA CTA GCA GCT AGC GAT GAT AAC GCA TGG CAG
 E L A G L I K Q A L A K L A A S D D N A W Q>
 15680 15700 15720
 CTA CCT GGT GGC ACT AGC TAC CGC GCC GCT GCA GTA GAA GGT AAA GTT GCC GCA CTG TTT GCT GGC
 L P G G T S Y R A A A V E G K V A A L F A G>
 15740 15760 15780
 CAA GGT TCA CAA TAT CTC AAT ATG GGC CGT GAC CTT ACT TGT TAT TAC CCA GAG ATG CGT CAG CAA
 Q G S Q Y L N M G R D L T C Y Y P E M R Q Q>
 15800 15820 15840 15860
 TTT GTA ACT GCA GAT AAA GCA TTT GCC GCA AAT GAT AAA ACG CCG TTA TCG CAA ACT CTG TAT CCA
 F V T A D K V F A A N D K T P L S Q T L Y P>
 15880 15900 15920
 AAG CCT GTA TTT AAT AAA GAT GAA TTA AAG GCT CAA GAA GCC ATT TTG ACC AAT ACC GCC AAT GCC
 K P V F N K D E L K A Q E A I L T N T A N A>
 15940 15960 15980
 CAA AGC GCA ATT GGT GCG ATT TCA ATG GGT CAA TAC GAT TTG TTT ACT GCG GCT GGC TTT AAT GCC
 Q S A I G A I S M G Q Y D L F T A A G F N A>
 16000 16020 16040
 GAC ATG GTT GCA GGC CAT AGC TTT GGT GAG CTA AGT GCA CTG TGT GCT GCA GGT GTT ATT TCA GCT
 D M V A G H S F G E L S A L C A A G V I S A>
 16060 16080 16100 16120
 GAT GAC TAC TAC AAG CTG GCT TTT GCT CGT GGT GAG GCT ATG GCA ACA AAA GCA CCG CCT AAA GAC
 D D Y Y K L A F A R G E A M A T K A P A K D>
 16140 16160 16180
 GGC GTT GAA GCA GAT GCA GGA GCA ATG TTT GCA ATC ATA ACC AAG AGT CCT GCA GAC CTT GAA ACC
 G V E A D A G A M F A I I T K S A A D L E T>
 16200 16220 16240
 GTT GAA GCC ACC ATC GCT AAA TTT GAT GGG GTG AAA GTC GCT AAC TAT AAC GCG CCA ACG CAA TCA
 V E A T I A K F D G V K V A N Y N A P T Q S>
 16260 16280 16300 16320
 GTC ATT GCA GGC CCA ACA GCA ACT ACC GCT GAT GCG GCT AAA GCG CTA ACT GAG CTT GGT TAC AAA
 V I A G P T A T T A D A A K A L T E L G Y K>
 16340 16360 16380
 GCG ATT AAC CTG CCA GTA TCA GGT GCA TTC CAC ACT GAA CTT GTT GGT CAC GCT CAA GCG CCA TTT
 A I N L P V S G A F H T E L V G H A Q A P F>
 16400 16420 16440
 GCT AAA GCG ATT GAC GCA GCA CCC AAA TTT ACT AAA ACA AGC CGA GCA CTT TAC TCA AAT GCA ACT GGC
 A K A I D A A K F T K T S R A L Y S N A T G>
 16460 16480 16500 16520
 GGA CTT TAT GAA AGC ACT GCT GCA AAG ATT AAA GCC TCG TTT AAG AAA CAT ATG CTT CAA TCA GTG

Fig. 4
12/30

G L Y E S T A A K I K A S F K K H M L Q S V>
 16540 16560 16580
 CGC TTT ACT AGC CAG CTA GAA GCC ATG TAC AAC GAC GGC GCC CGT GTA TTT GTT GAA TTT GGT CCA
 R F T S Q L E A M Y N D G A R V F V E F G P>
 16600 16620 16640
 AAG AAC ATC TTA CAA AAA TTA GTT CAA GGC ACG CTT GTC AAC ACT GAA AAT GAA GTT TGC ACT ATC
 K N I L Q K L V Q G T L V N T E N E V C T I>
 16660 16680 16700
 TCT ATC AAC CCT AAT CCT AAA GTT GAT AGT GAT CTG CAG CTT AAG CAA GCA GCA ATG CAG CTA GCG
 S I N P N P K V D S D L Q L K Q A A M Q L A>
 16720 16740 16760 16780
 GTT ACT GGT GTG GTA CTC AGT GAA ATT GAC CCA TAC CAA GCC GAT ATT GCC GCA CCA GCG AAA AAG
 V T G V V L S E I D P Y Q A D I A A P A K K>
 16800 16820 16840
 TCG CCA ATG AGC ATT TCG CTT AAT GCT AAC CAT ATC AGC AAA GCA ACT CGC GCT AAG ATG GCC
 S P M S I S L N A A N H I S K A T R A K M A>
 16860 16880 16900
 AAG TCT TTA GAG ACA GGT ATC GTC ACC TCG CAA ATA GAA CAT GTT ATT GAA GAA AAA ATC GTT GAA
 K S L E T G I V T S Q I E H V I E E K I V E>
 16920 16940 16960 16980
 GTT GAG AAA CTG GTT GAA GTC GAA AAG ATC GTC GAA AAA GTG CTT GAA GTC GAG AAA GTT GTT GAG
 V E K L V E V E K I V E K V V E V E K V V E>
 17000 17020 17040
 GTT GAA GCT CCT GTT AAT TCA GTG CAA GCC AAT GCA ATT CAA ACC CGT TCA GTT GTC GCT CCA GTC
 V E A P V N S V Q A N A I Q T R S V V A P V>
 17060 17080 17100
 ATA GAG AAC CAA GTC GTG TCT AAA AAC AGT AAG CCA GCA GTC CAG AGC ATT ACT GGT GAT GCA CTC
 I E N Q V V S K N S K P A V Q S I S G D A L>
 17120 17140 17160 17180
 AGC AAC TTT TTT GCT GCA CAG CAG CAA ACC GCA CAG TTG CAT CAG CAG TTC TTA GCT ATT CCG CAG
 S N F F A A Q Q Q T A Q L H Q Q F L A I P Q>
 17200 17220 17240
 CAA TAT CGT GAG ACG TTC ACT ACG CTG ATG ACC GAG CAA GCT AAA CTG GCA AGT TCT GCT GTT GCA
 Q Y G E T F T L M T E Q A K L A S S G V A>
 17260 17280 17300
 ATT CCA GAG AGT CTG CAA CGC TCA ATG GAG CAA TTC CAC CAA CTA CAA GCG CAA ACA CTA CAA AGC
 I P E S L Q R S M E Q F H Q L Q A Q T L Q S>
 17320 17340 17360
 CAC ACC CAG TTC CTT GAG ATG CAA GCG GGT AGC AAC ATT GCA GCG TTA AAC CTA CTC AAT AGC AGC
 H T Q F L E M Q A G S N I A A L N L L N S S>
 17380 17400 17420 17440
 CAA GCA ACT TAC GCT CCA CCC ATT CAC AAT GAA GCG ATT CAA AGC CAA GTG GTT CAA AGC CAA ACT
 Q A T Y A P A I H N E A I Q S Q V V Q S Q T>
 17460 17480 17500
 GCA GTC CAG CCA GTA ATT TCA ACA CAA GTT AAC CAT GTG TCA GAG CAG CCA ACT CAA GCT CCA GCT
 A V Q P V I S T Q V N H V S E Q P T Q A P A>
 17520 17540 17560
 CCA AAA GCG CAG CCA GCA CCT GTG ACA ACT GCA GTT CAA ACT GCT CCG GCA CAA GTT GTT CGT CAA
 P K A Q P A P V T T A V Q T A P A Q V V R Q>
 17580 17600 17620 17640
 GCC GCA CCA GTT CAA GCC GCT ATT CAA CCG ATT AAT ACA AGT GTT GCG ACT ACA AGC CCT TCA GCC
 A A P V Q A A I E P I N T S V A T T T P S A>
 17660 17680 17700

Fig. 4
13/30

TTC AGC GCC GAA ACA GCA CTG AGC GCA ACA AAA GTC CAA GCC ACT ATG CTT GAA GTG GTT GCT GAG
 F S A E T A L S A T K V Q A T M L E V V A E>
 17720 17740 17760
 AAA ACC GGT TAC CCA ACT GAA ATG CTA GAG CTT GAA ATG GAT ATG GAA GCC GAT TTA GCC ATC GAT
 K T G Y P T E M L E L E M D M E A D L G I D>
 17780 17800 17820 17840
 TCT ATC AAG CGT GTA GAA ATT CTT CGC ACA GTA CAA GAT GAG CTA CCG GGT CTA CCT GAG CTT AGC
 S I K R V E I L G T V Q D E L P G L P E L S>
 17860 17880 17900
 CCT GAA GAT CTA GCT GAG TGT CGA ACG CTA GCC GAA ATC GTT GAC TAT ATG GGC AGT AAA CTG CGC
 P E D L A E C R T L G E I V D Y M G S K L P>
 17920 17940 17960
 GCT GAA GGC TCT ATG AAT TCT CAG CTG TCT ACA GGT TCC GCA GCT GCG ACT CCT GCA GCG AAT GGT
 A E G S M N S Q L S T G S A A A T P A A N G>
 17980 18000 18020
 CTT TCT GCG GAG AAA GTT CAA GCG ACT ATG ATG TCT GTG GTT GCC GAA AAG ACT GGC TAC CCA ACT
 L S A E K V Q A T M M S V V A E K T G Y P T>
 18040 18060 18080 18100
 GAA ATG CTA GAG CTT GAA ATG GAT ATG GAA GCC GAT TTA GCC ATA GAT TCT ATC AAG CGC GTT GAA
 E M L E L E M D M E A D L G I D S I K R V E>
 18120 18140 18160
 ATT CTT GGC ACA GTA CAA GAT GAG CTA CCG GGT CTA CCT GAG CTT AGC CCT GAA GAT CTA GCT GAG
 I L G T V Q D E L P G L P E L S P E D L A E>
 18180 18200 18220
 TGT CGT ACT CTA GGC GAA ATC GTT GAC TAT ATG AAC TCT AAA CTC GCT GAC GGC TCT AAG CTG CGC
 C R T L G E I V D Y M N S K L A D G S K L P>
 18240 18260 18280 18300
 GCT GAA GGC TCT ATG AAT TCT CAG CTG TCT ACA AGT GCC GCA GCT GCG ACT CCT GCA GCG AAT GGT
 A E G S M N S Q L S T S A A A A T P A A N G>
 18320 18340 18360
 CTC TCT GCG GAG AAA GTT CAA GCG ACT ATG ATG TCT GTG GTT GCC GAA AAG ACT GGC TAC CCA ACT
 L S A E K V Q A T M M S V V A E K T G Y P T>
 18380 18400 18420
 GAA ATG CTA GAA CTT GAA ATG GAT ATG GAA GCT GAC CTT GGC ATC GAT TCA ATC AAG CGC GTT GAA
 E M L E L E M D M E A D L G I D S I K R V E>
 18440 18460 18480 18500
 ATT CTT GGC ACA GTA CAA GAT GAG CTA CCG GGT TTA CCT GAG CTA AAT CCA GAA GAT TTG GCA GAC
 I L G T V Q D E L P G L P E L N P E D L A E>
 18520 18540 18560
 TGT CGT ACT CTT GGC GAA ATC GTG ACT TAT ATG AAC TCT AAA CTC GCT GAC GGC TCT AAG CTG CCA
 C R T L G E I V T Y M N S K L A D G S K L P>
 18580 18600 18620
 GCT GAA GGC TCT ATG CAC TAT CAG CTG TCT ACA AGT ACC GCT GCG ACT CCT GCA GCG AAT GGT
 A E G S M H Y Q L S T S T A A A T P V A N G>
 18640 18660 18680
 CTC TCT GCA GAA AAA GTT CAA GCG ACC ATG ATG TCT GTG GTT GCA GAT AAA ACT GGC TAC CCA ACT
 L S A E K V Q A T M M S V V A D K T G Y P T>
 18700 18720 18740 18760
 GAA ATG CTT GAA CTT GAA ATG GAT ATG GAA GCC GAT TTA GGT ATC GAT TCT ATC AAG CGC GTT GAA
 E M L E L E M D M E A D L G I D S I K R V E>
 18780 18800 18820
 ATT CTT GGC ACA GTA CAA GAT GAG CTA CCG GGT TTA CCT GAG CTA AAT CCA GAA GAT CTA GCA GAG
 I L G T V Q D E L P G L P E L N P E D L A E>
 18840 18860 18880

Fig. 4
14/4/30

WO 98/55625

PCT/US98/11639

19/106

MISSING AT THE TIME OF PUBLICATION

20020 20040 20060 20080
 GTT AGC AAT GCG TTC TTG TGG CCC AAA TTA TTG CAA CCA AAG CTC GTT GCT GGA GCA GAT GCG CGT
 V S N A F L W A K L L Q P K L V A G A D A R>
 20100 20120 20140
 CGC TGT TTT GTA ACA GCA CGT ATC GAC GGT GGC TTT GGT TAC CTA AAT ACT GAC GCC CTA AAA
 R C F V T V S R I D G G F G Y L N T D A L K>
 20160 20180 20200
 GAT GCT GAG CTA AAC CAA GCA GCA TTA GCT GGT TTA ACT AAA ACC TTA AGC CAT GAA TGG CCA CAA
 D A E L N Q A A L A G L T K T L S H E W P Q>
 20220 20240 20260 20280
 GTG TTC TGT CGC GCG CTA GAT ATT GCA ACA GAT GTT GAT GCA ACC CAT CTT GCT GAT GCA ATC ACC
 V F C R A L D I A T D V D A T H L A D A I T>
 20300 20320 20340
 AGT GAA CTA TTT GAT AGC CAA GCT CAG CTA CCT GAA CTG GGC TTA AGC TTA ATT GAT GGC AAA GTT
 S E L F D S Q A Q L P E V G L S L I D G K V>
 20360 20380 20400
 AAC CGC GTA ACT CTA GTT GCT GAA GCT GCA GAT AAA ACA GCA AAA GCA GAG CTT AAC AGC ACA
 N R V T L V A A E A A D K T A K A E L N S T>
 20420 20440 20460 20480
 GAT AAA ATC TTA GTG ACT GGT GGG GCA AAA GGG GTG ACA TTT GAA TGT GCA CTG GCA TTA GCA TCT
 D K I L V T G G A K G V T F E C A L A L A S>
 20500 20520 20540
 CGC AGC CAG TCT CAC TTT ATC TTA GCT GGG CGC AGT GAA TTA CAA GCT TTA CCA AGC TGG GCT GAG
 R S Q S H F I L A G R S E L Q A L P S W A E>
 20560 20580 20600
 GGT AAG CAA ACT AGC GAG CTA AAA TCA GCT GCA ATC GCA CAT ATT ATT TCT ACT GGT CAA AAG CCA
 G K Q T S E L K S A A I A H I I S T G Q K P>
 20620 20640 20660
 ACG CCT AAG CAA GTT GAA GCC GCT GTG TGG CCA GTG CAA AGC AGC ATT GAA ATT AAT GCC GCC CTA
 T P K Q V E A A V W P V Q S S I E I N A A L>
 20680 20700 20720 20740
 GCC GCC TTT AAC AAA CTT GGC GCC TCA GCT GAA TAC GTC AGC ATG GAT GTT ACC GAT AGC GCC CCA
 A A F N K V G A S A E Y V S M D V T D S A A>
 20760 20780 20800
 ATC ACA GCA GCA CTT AAT GGT CGC TCA AAT GAG ATC ACC GGT CTT ATT CAT GGC GCA GGT GTA CTA
 I T A A L N G R S N E I T G L I H G A G V L>
 20820 20840 20860
 GCC GAC AAG CAT ATT CAA GAC AAG ACT CTT GCT GAA CTT GCT AAA CTT TAT GGC ACT AAA GTC AAC
 A D K H I Q D K T L A E L A K V Y G T K V N>
 20880 20900 20920 20940
 GGC CTA AAA GCG CTG CTC GCG GCA CTT GAG CCA AGC AAA ATT AAA TTA CTT GCT ATG TTC TCA TCT
 G L K A L L A A L E P S K I K L L A M F S S>
 20960 20980 21000
 GCA GCA GGT TTT TAC GGT AAT ATC GGC CAA AGC GAT TAC GCG ATG TCG AAC GAT ATT CTT AAC AAG
 A A G F Y G N I G Q S D Y A M S N D I L N K>
 21020 21040 21060
 GCA GCG CTG CAG TTC ACC GCT CGC AAC CCA CAA GCT AAA GTC ATG AGC TTT AAC TGG GGT CCT TGG
 A A L Q F T A R N P Q A K V M S F N W G P W>
 21080 21100 21120 21140
 GAT GGC GGC ATG GTT AAC CCA GCG CTT AAA AAG ATG TTT ACC GAG CGT CGT GTG TAC GTT ATT CCA
 D G G M V N P A L K K M F T E R G V Y V I P>
 21160 21180 21200
 CTA AAA GCA GGT GCA GAG CTA TTT GCC ACT CAG CTA TTG GCT GAA ACT GGC GTG CAG TTG CTC ATT
 L K A G A E L F A T Q L L A E T G V Q L L I>

Fig. 4
16/30

21220 21240 21260
 GGT ACG TCA ATG CAA GGT GGC AGC GAC ACT AAA GCA ACT GAG ACT GCT TCT GTA AAA AAG CTT AAT
 G T S M Q G G S D T K A T E T A S V K K L N>
 21280 21300 21320
 GCG GGT GAG GTG CTA AGT GCA TCG CAT CCG CGT GCT GGT GCA CAA AAA ACA CCA CTA CAA GCT GTC
 A G E V L S A S H P R A G A Q K T P L Q A V>
 21340 21360 21380 21400
 ACT GCA ACG CGT CTG TTA ACC CCA AGT GCC ATG GTC TTC ATT GAA GAT CAC CGC ATT GGC GGT AAC
 T A T R L L T P S A M V F I E D H R I G G N>
 21420 21440 21460
 AGT GTG TTG CCA ACG GTA TGC GCC ATC GAC TGG ATG CGT GAA GGC GCA AGC GAC ATG CTT GGC CCT
 S V L P T V C A I D W M R E A A S D M L G A>
 21480 21500 21520
 CAA GTT AAG GTA CTT GAT TAC AAG CTA TTA AAA GGC ATT GTA TTT GAG ACT GAT GAG CCG CAA GAG
 Q V K V L D Y K L L K G I V F E T D E P Q E>
 21540 21560 21580 21600
 TTA ACA CTT GAG CTA ACG CCA GAC GAT TCA GAC GAA GCT ACG CTA CAA GCA TTA ATC AGC TGT AAT
 L T L E L T P D D S D E A T L Q A L I S C N>
 21620 21640 21660
 GGG CGT CCG CAA TAC AAG GCG ACG CTT ATC AGT GAT AAT GCC GAT ATT AAG CAA CTT AAC AAG CAG
 G R P Q Y K A T L I S D N A D I K Q L N K Q>
 21680 21700 21720
 TTT GAT TTA AGC GCT AAG GCG ATT ACC ACA GCA AAA GAG CTT TAT AGC AAC GGC ACC TTG TTC CAC
 F D L S A K A I T T A K E L Y S N G T L F H>
 21740 21760 21780 21800
 GGT CCG CGT CTA CAA GGG ATC CAA TCT GTA GTG CAG TTC GAT GAT CAA GGC TTA ATT GCT AAA GTC
 G P R L Q G I Q S V V Q F D D Q G L I A K V>
 21820 21840 21860
 GCT CTG CCT AAG CTT GAA CTT AGC GAT TGT GGT GAG TTC TTG CCG CAA ACC CAC ATG GGT GGC AGT
 A L P K V E L S D C G E F L P Q T H M G G S>
 21880 21900 21920
 CAA CCT TTT GCT GAG GAC TTG CTA TTA CAA GCT ATG CTG GTT TGG GCT CGC CTT AAA ACT GGC TCG
 Q P F A E D L L Q A M L V W A R L K T G S>
 21940 21960 21980
 GCA AGT TTG CCA TCA AGC ATT GGT GAG TTT ACC TCA TAC CAA CCA ATG GCC TTT GCT GAA ACT GGT
 A S L P S S I G E F T S Y Q P M A F G E T G>
 22000 22020 22040 22060
 ACC ATA GAG CTT GAA CTG ATT AAG CAC AAC AAA CGC TCA CTT GAA GCG AAT GTT GCG CTA TAT CGT
 T I E L E V I K H N K R S L E A N V A L Y R>
 22080 22100 22120
 GAC AAC GGC GAG TTA AGT GCC ATG TTT AAG TCA GCT AAA ATC ACC ATT AGC AAA AGC TTA ATT TCA
 D N G E L S A M F K S A K I T I S K S L N S>
 22140 22160 22180 22200
 GCA TTT TTA CCT GCT GTC TTA GCA AAC GAC AGT GAG GGC AAT TAGTGGAA ACAAAACGCTTAAAGCTAGTG
 A F L P A V L A N D S E A N>
 22220 22240 22260
 CG ATG CGG CTG CGC ATC GCA CTT ATC TTA CTG CCA ACA CCG CAG TTT GAA GTT AAC TCT GTC GAC
 M P L R I A L I L L P T P Q F E V N S V D>
 22280 22300 22320
 CAG TCA GTA TTA GCC AGC TAT CAA ACA CTG CAG CCT GAG CTA ATT GCC CTG CTT ATT AGT GCG CGC
 Q S V L A S Y Q T L Q P E L N A L L N S A P>
 22340 22360 22380
 ACA CCT GAA ATG CTC AGC ATC ACT ATC TCA GAT GAT AGC GAT GCA AAC AGC TTT GAG TCG CAG CTA

o-87

Fig. 4
17/30

T	P	E	M	L	S	I	T	I	S	D	D	S	D	A	N	S	F	E	S	Q	L>			
22400																						22460		
AAT GCT GCG ACC AAC GCA ATT AAC AAT GGC TAT ATC GTC AAG CTT GCT ACG GCA ACT CAC GCT TTG N A A T N A I N N G Y I V K L A T A T H A L>																								
22480																						22500	22520	
TTA ATG CTG CCT GCA TTA AAA GCG GCG CAA ATG CGG ATC CAT CCT CAT GCG CAG CTT GCC GCT ATG L M L P A L K A A Q M R I H P H A Q L A A M>																								
22540																						22560	22580	
CAG CAA GCT AAA TCG ACG CCA ATG AGT CAA GTA TCT GGT GAG CTA AAG CTT GGC GCT AAT GCG CTA Q Q A K S T P M S Q V S G E L K L G A N A L>																								
22600																						22620	22640	22660
AGC CTA GCT CAG ACT AAT GCG CTG TCT CAT GCT TTA AGC CAA GCC AAG CGT AAC TTA ACT GAT GTC S L A Q T N A L S H A L S Q A K R N L T D V>																								
22680																						22700	22720	
AGC GTG AAT GAG TGT TTT GAG AAC CTC AAA AGT GAA CAG CAG TTC ACA GAG GTT TAT TCG CTT ATT S V N E C F E N L K S E Q Q F T E V Y S L I>																								
22740																						22760	22780	
CAG CAA CTT GCT AGC CGC ACC CAT GTG AGA AAA GAG GTT AAT CAA GGT GTG GAA CTT GCC CCT AAA Q Q L A S R T H V R K E V N Q G V E L G P K>																								
22800																						22820	22840	
CAA GCC AAA AGC CAC TAT TGG TTT AGC GAA TTT CAC CAA AAC CGT GTT GCT GCC ATC AAC TTT ATT Q A K S H Y W F S E F H Q N R V A A I N F I>																								
22860																						22880	22900	22920
AAT GGC CAA CAA GCA ACC AGC TAT GTG CTT ACT CAA GGT TCA GGA TTG TTA GCT GCG AAA TCA ATG N G Q Q A T S Y V L T Q G S G L L A A K S M>																								
22940																						22960	22980	
CTA AAC CAG CAA AGA TTA ATG TTT ATC TTG CCG GCT AAC AGT CAG CAA CAA ATA ACC GCA TCA ATA L N Q Q R L M F I L P G N S Q Q Q I T A S I>																								
23000																						23020	23040	
ACT CAG TTA ATG CAG CAA TTA GAG CGT TTG CAG GTC ACT GAG GTT AAT GAG CTT TCT CTA GAA TGC T Q L M Q Q L E R L Q V T E V N E L S L E C>																								
23060																						23080	23100	23120
CAA CTA GAG CTG CTC AGC ATA ATG TAT GAC AAC TTA GTC AAC GCA GAC AAA CTC ACT ACT CGC GAT Q L E L L S I M Y D N L V N A D K L T T R D>																								
23140																						23160	23180	
AGT AAG CCC GCT TAT CAG GCT GTG ATT CAA GCA AGC TCT GTT AGC GCT GCA AAG CAA CAG TTA AGC S K P A Y Q A V I Q A S S V S A A K Q E L S>																								
23200																						23220	23240	
GCG CTT AAC GAT GCA CTC ACA GCG CTG TTT GCT GAG CAA ACA AAC GCC ACA TCA ACG AAT AAA GGC A L N D A L T A L F A E Q T N A T S T N K G>																								
23260																						23280	23300	23320
TTA ATC CAA TAC AAA ACA CCG GCG AGT TAC TTA ACC CTA ACA CCG CTT GGC AGC AAC AAT GAC L I Q Y K T P A G S Y L T L T P L G S N N D>																								
23340																						23360	23380	
AAC GCC CAA GCG GGT CTT GCT TTT GTC TAT CCG GGT GTG GGA ACG GTT TAC GCC GAT ATG CTT AAT N A Q A G L A F V Y P G V G T V Y A D M L N>																								
23400																						23420	23440	
GAG CTG CAT CAG TAC TTC CCT GCG CTT TAC GCC AAA CTT GAG CGT GAA GGC GAT TTA AAG GCG ATG E L H Q Y F P A L Y A K L E R E G D L K A M>																								
23460																						23480	23500	
CTA CAA GCA GAA GAT ATC TAT CAT CTT GAC CCT AAA CAT GCT GCC CAA ATG AGC TTA GGT GAC TTA L Q A E D I Y H L D P K H A A Q M S L G D L>																								
23520																						23540	23560	23580

Fig. 4
18/30

GCC ATT GCT GGC GTG GGG AGC AGC TAC CTG TTA ACT CAG CTG CTC ACC GAT GAG TTT AAT ATT AAG
 A I A G V G S S Y L L T Q L L T D E F N I K>
 23600 23620 23640
 CCT AAT TTT GCA TTA GGT TAC TCA ATG GGT GAA GCA TCA ATG TGG GCA AGC TTA GGC GTC TGG CAA
 P N F A L G Y S M G E A S M W A S L G V W Q>
 23660 23680 23700
 AAC CCG CAT GCG CTG ATC AGC AAA ACC CAA ACC GAC CCG CTA TTT ACT TCT GCT ATT TCC GGC AAA
 N P H A L I S K T Q T D P L F T S A I S G K>
 23720 23740 23760 23780
 TTG ACC GCG GTT AGA CAA GCT TGG CAG CTT GAT GAT ACC GCA GCG GAA ATC CAG TGG AAT AGC TTT
 L T A V R Q A W Q L D D T A A E I Q W N S F>
 23800 23820 23840
 GTG GTT AGA AGT GAA GCA GCG CCG ATT GAA GCC TTG CTA AAA GAT TAC CCA CAC GCT TAC CTC GCG
 V V R S E A A P I E A L L K D Y P H A Y L A>
 23860 23880 23900
 ATT ATT CAA GGG GAT ACC TGC GTA ATC GCT GCC TGT GAA ATC CAA TGT AAA GCG CTA CTT GCA GCA
 I I Q G D T C V I A G C E I Q C K A L L A A>
 23920 23940 23960 23980
 CTG GGT AAA CGC GGT ATT GCA GCT AAT CGT GTA ACG GCG ATG CAT ACG CAG CCT GCG ATG CAA GAG
 L G K R G I A A N R V T A M H T Q P A M Q E>
 24000 24020 24040
 CAT CAA AAT GTG ATG GAT TTT TAT CTG CAA CGG TTA AAA GCA GAG CTT CCT AGT GAA ATA AGC TTT
 H Q N V M D F Y L Q P L K A E L P S E I S F>
 24060 24080 24100
 ATC AGC GCC GCT GAT TTA ACT GCC AAG CAA ACG GTG AGT GAG CAA GCA CTT AGC AGC CAA GTC GTT
 I S A A D L T A K Q T V S E Q A L S S Q V V>
 24120 24140 24160
 GCT CAG TCT ATT GCC GAC ACC TTC TGC CAA ACC TTG GAC TTT ACC GCG CTA GTA CAT CAC GCC CAA
 A Q S I A D T F C Q T L D F T A L V H H A Q>
 24180 24200 24220 24240
 CAT CAA GGC GCT AAG CTG TTT GTT GAA ATT GCC GCG GAT AGA CAA AAC TGC ACC TTG ATA GAC AAG
 H Q G A K L F V E I G A D R Q N C T L I D K>
 24260 24280 24300
 ATT GTT AAA CAA GAT GGT GCC AGC AGT GTA CAA CAT CAA CCT TGT TGC ACA GTG CCT ATG AAC GCA
 I V K Q D G A S S V Q H Q P C C T V P M N A>
 24320 24340 24360
 AAA GGT AGC CAA GAT ATT ACC AGC GTG ATT AAA GCG CTT GGC CAA TTA ATT AGC CAT CAG GTG CCA
 K G S Q D I T S V I K A L G Q L I S H Q V P>
 24380 24400 24420 24440
 TTA TCG GTG CAA CCA TTT ATT GAT GGA CTC AAG CGC GAG CTA ACA CTT TGC CAA TTG ACC AGC CAA
 L S V Q P F I D G L K R E L T L C Q L T S Q>
 24460 24480 24500
 CAG CTG GCA GCA CAT GCA AAT GTT GAC AGC AAG TTT GAG TCT AAC CAA GAC CAT TTA CTT CAA GGG
 Q L A A H A N V D S K F E S N Q D H L L Q G>
 24520 24540 24560
 GAA GTC TA ATG TCA TTA CCA GAC AAT GCT TCT AAC CAC CTT TCT GCC AAC CAG AAA GGC GCA TCT
 E V>
 M S L P D N A S N H L S A N Q K G A S>
 24580 24600 24620 24640
 CAG GCA AGT AAA ACC ACT AAG CAA AGC AAA ATC GCC ATT GTC GGT TTA GCC ACT CTG TAT CCA GAC
 Q A S K T S K Q S K I A I V G L A T L Y P D>
 24660 24680 24700
 GCT AAA ACC CGG CAA GAA TTT TGG CAG AAT TTG CTG GAT AAA CGC GAC TCT CGC AGC ACC TTA ACT
 A K T P Q E F W Q N L L D K R D S R S T L T>

Fig. 4
19/30

14-48

24720 24740 24760
 AAC GAA AAA CTC GGC GCT AAC AGC CAA GAT TAT CAA GGT GTG CAA GGC CAA TCT GAC CGT TTT TAT
 N E K L G A N S Q D Y Q G V Q G Q S D R F Y>
 24780 24800 24820
 TGT AAT AAA GGC GGC TAC ATT GAG AAC TTC AGC TTT AAT GCT GCA GGC TAC AAA TTG CCG GAG CAA
 C N K G G Y I E N F S F N A A G Y K L P E Q>
 24840 24860 24880 24900
 AGC TTA AAT GGC TTG GAC GAC AGC TTC CTT TGG GCG CTC GAT ACT AGC CGT AAC GCA CTA ATT GAT
 S L N G L D D S F L W A L D T S R N A L I D>
 24920 24940 24960
 GCT GGT ATT GAT ATC AAC GGC GCT GAT TTA AGC CGC GCA GGT GTA GTC ATG GGC GCG CTG TCG TTC
 A G I D I N G A D L S R A G V V M G A L S F>
 24980 25000 25020
 CCA ACT ACC CGC TCA AAC GAT CTG TTT TTG CCA ATT TAT CAC AGC GCC GTT GAA AAA GCC CTG CAA
 P T T R S N D L F L P I Y H S A V E K A L Q>
 25040 25060 25080 25100
 GAT AAA CTA GGC GTA AAG GCA TTT AAG CTA AGC CCA ACT AAT GCT CAT ACC GCT CGC GCG GCA AAT
 D K L G V K A F K L S P T N A H T A R A A N>
 25120 25140 25160
 GAG AGC AGC CTA AAT GCA GCC AAT GGT GCC ATT GCC CAT AAC AGC TCA AAA GTG GTG GCC GAT GCA
 E S S L N A A N G A I A H N S S K V V A D A>
 25180 25200 25220
 CTT GGC CTT GGC GGC GCA CAA CTA AGC CTA GAT GCT GCC TGT GCT AGT TCG GTT TAC TCA TTA AAG
 L G L G G A Q L S L D A A C A S S V Y S L K>
 25240 25260 25280 25300
 CTT GCC TGC GAT TAC CTA AGC ACT GGC AAA GCC GAT ATC ATG CTA GCA GGC GCA GTA TCT GGC GCG
 L A C D Y L S T G K A D I M L A G A V S G A>
 25320 25340 25360
 GAT CCT TTC TTT ATT AAT ATG GGA TTC TCA ATC TTC CAC GCC TAC CCA GAC CAT GGT ATC TCA GTA
 D P F F I N M G F S I F H A Y P D H G I S V>
 25380 25400 25420
 CCG TTT GAT GCC AGC AGT AAA GGT TTG TTT GCT GCC GAA GGC GCT GGC GTA TTA GTG CTT AAA CGT
 P F D A S S K G L F A G E G A G V L V L K R>
 25440 25460 25480
 CTT GAA GAT GCC GAG CGC GAC AAT GAC AAA ATC TAT GCG GTT AGC GGC GTA GGT CTA TCA AAC
 L E D A E R D N D K I Y A V V S G V G L S N>
 25500 25520 25540 25560
 GAC GGT AAA GGC CAG TTT GTA TTA AGC CCT AAT CCA AAA GGT CAG GTG AAG GCC TTT GAA CGT GCT
 D G K G Q F V L S P N P K G Q V K A F E R A>
 25580 25600 25620
 TAT GCT GCC AGT GAC ATT GAG CCA AAA GAC ATT GAA GTG ATT GAG TGC CAC GCA ACA GGC ACA CCG
 Y A A S D I E P K D I E V I E C H A T G T P>
 25640 25660 25680
 CTT GGC GAT AAA ATT GAG CTC ACT TCA ATG GAA ACC TTC TTT GAA GAC AAG CTG CAA GGC ACC GAT
 L G D K I E L T S M E T F F E D K L Q G T D>
 25700 25720 25740 25760
 GCA CCG TTA ATT GGC TCA GCT AAG TCT AAC TTA GGC CAC CTA TTA ACT GCA GCG CAT GCG GGG ATC
 A P L I G S A K S N L G H L L T A A H A G I>
 25780 25800 25820
 ATG AAG ATG ATC TTC GCC ATG AAA GAA GGT TAC CTG CCG CCA AGT ATC AAT ATT AGT GAT GCT ATC
 M K M I F A M K E G Y L P P S I N I S D A I>
 25840 25860 25880
 CCT TCG CCG AAA AAA CTC TTC GGT AAA CCA ACC CTG CCT AGC ATG GTT CAA GGC TGG CCA GAT AAG
 A S P K K L F G K P T L P S M V Q G W P D K>

Fig. 4
20/30

KAS Turn

25900 25920 25940 25960

CCA TCG AAT AAT CAT TTT GGT GTA AGA ACC CGT CAC GCA GGC GTA TCG GTA TTT GGC TTT GGT GGC
P S N N H F G V R T R H A G V S V F G F G G>

25980 26000 26020

TGT AAC GCC CAT CTG TTG CTT GAG TCA TAC AAC GGC AAA GGA ACA GTA AAG GCA GAA GCC ACT CAA
C N A H L L L E S Y N G K G T V K A E A T Q>

26040 26060 26080

GTA CCG CGT CAA GCT GAG CCG CTA AAA GTG GTT GGC CTT CCC TCG CAC TTT GGG CCT CTT AGC AGC
V P R Q A E P L K V V G L A S H F G P L S S>

26100 26120 26140

ATT AAT GCA CTC AAC AAT GCT GTG ACC CAA GAT GGG AAT GGC TTT ATC GAA CTG CCG AAA AAG CGC
I N A L N N A V T Q D G N G F I E L P K K R>

26160 26180 26200 26220

TGG AAA GGC CTT GAA AAG CAC AGT GAA CTG TTA GCT GAA TTT GGC TTA GCA TCT GCG CCA AAA GGT
W K G L E K H S E L L A E F G L A S A P K G>

26240 26260 26280

GCT TAT GTT GAT AAC TTC GAG CTG GAC TTT TTA CGC TTT AAA CTG CCG CCA AAC GAA GAT GAC CGT
A Y V D N F E L D F L R F K L P P N E D D R>

26300 26320 26340

TTG ATC TCA CAG CAG CTA ATG CTA ATG CGA GTA ACA GAC GAA GGC ATT CGT GAT GCC AAG CTT GAG
L I S Q Q L M L M R V T D E A I R D A K L E>

26360 26380 26400 26420

CCG GGG CAA AAA GTA GCT GTA TTA GTG GCA ATG GAA ACT GAG CTT GAA CTG CAT CAG TTC CGC GGC
P G Q K V A V L V A M E T E L E L H Q F R G>

26440 26460 26480

CGG GTT AAC TTG CAT ACT CAA TTA GCG CAA AGT CTT GCC GCC ATG GGC GTG AGT TTA TCA ACG GAT
R V N L H T Q L A Q S L A A M G V S L S T D>

26500 26520 26540

GAA TAC CAA GCG CTT GAA GCC ATC GCC ATG GAC AGC GTG CTT CAT GCT GCC AAG CTC AAT CAG TAC
E Y Q A L E A I A M D S V L D A A K L N Q Y>

26560 26580 26600 26620

ACC AGC TTT ATT GGT AAT ATT ATG GCG TCA CGC GTG GCG TCA CTA TGG GAC TTT AAT GGC CCA GCC
T S F I G N I M A S R V A S L W D F N G P A>

26640 26660 26680

TTC ACT ATT TCA GCA GCA GAG CAA TCT GTG AGC CGC TGT ATC GAT GTG GCG CAA AAC CTC ATC ATG
F T I S A A E Q S V S R C I D V A Q N L I M>

26700 26720 26740

GAG GAT AAC CTA GAT GCG GTG GTG ATT GCA GCG GTC GAT CTC TCT GGT AGC TTT GAG CAA GTC ATT
E D N L D A V V I A A V D L S G S F E Q V I>

26760 26780 26800

CTT AAA AAT GCC ATT GCA CCT GTA GCC ATT GAG CCA AAC CTC GAA GCA AGC CTT AAT CCA ACA TCA
L K N A I A P V A I E P N L E A S L N P T S>

26820 26840 26860 26880

GCA AGC TGG AAT GTC GGT GAA GGT GCT GGC GCG GTC GTG CTT GTT AAA AAT GAA GCT ACA TCG GGC
A S W N V G E G A G A V V L V K N E A T S G>

26900 26920 26940

TGC TCA TAC GGC CAA ATT GAT GCA CTT GGC TTT GCT AAA ACT GCC GAA ACA GCG TTG GCT ACC GAC
C S Y G Q I D A L G F A K T A E T A L A T D>

26960 26980 27000

AAG CTA CTG AGC CAA ACT GCC ACA GAC TTT AAT AAG GTT AAA GTG ATT GAA ACT ATG GCA GCG CCT
K L L S Q T A T D F N K V K V I E T M A A P>

27020 27040 27060 27080

GCT AGC CAA ATT CAA TTA GCG CCA ATA GTT AGC TCT CAA GTG ACT CAC ACT GCT GCA GAG CAG CGT

Fig. 4
21/30

A S Q I Q L A P I V S S Q V T H T A A E Q R>
 27100 27120 27140
 GTT GGT CAC TGC TTT GCT GCA GCG GGT ATG GCA AGC CTA TTA CAC GGC TTA CTT AAC TTA AAT ACT
 V G H C F A A A G M A S L L H G L L N L N T>
 27160 27180 27200
 GTC GCC CAA ACC AAT AAA GCC AAT TGC GCG CTT ATC AAC AAT ATC AGT GAA AAC CAA TTA TCA CAG
 V A Q T N K A N C A L I N N I S E N Q L S Q>
 27220 27240 27260 27280
 CTG TTG ATT AGC CAA ACA GCG AGC GAA CAA GCA TTA ACC GCG CGT TTA AGC AAT GAG CTT AAA
 L L I S Q T A S E Q Q A L T A R L S N E L K>
 27300 27320 27340
 TCC GAT GCT AAA CAC CAA CTG GTT AAG CAA GTC ACC TTA GGT GGC CGT GAT ATC TAC CAG CAT ATT
 S D A K H Q L V K Q V T L G G R D I Y Q H I>
 27360 27380 27400
 GTT GAT ACA CCG CTT GCA AGC CTT GAA AGC ATT ACT CAG AAA TTG GCG CAA GCG ACA GCA TCG ACA
 V D T P L A S L E S I T Q K L A Q A T A S T>
 27420 27440 27460
 GTG GTC AAC CAA GTT AAA CCT ATT AAG GCC GCT GGC TCA GTC GAA ATG GCT AAC TCA TTC GAA ACG
 V V N Q V K P I K A A G S V E M A N S F E T>
 27480 27500 27520 27540
 GAA AGC TCA GCA GAG CCA CAA ATA ACA ATT GCA GCA CAA CAG ACT GCA AAC ATT GGC GTC ACC GCT
 E S S A E P Q I T I A A Q Q T A N I G V T A>
 27560 27580 27600
 CAG GCA ACC AAA CGT GAA TTA GGT ACC CCA CCA ATG ACA ACA AAT ACC ATT GCT AAT ACA GCA AAT
 Q A T K R E L G T P P M T T N T I A N T A N>
 27620 27640 27660
 AAT TTA GAC AAG ACT CTT GAG ACT GTT GCT GGC AAT ACT GTT GCT AGC AAG GTT GGC TCT GGC GAC
 N L D K T L E T V A G N T V A S K V G S G D>
 27680 27700 27720 27740
 ATA GTC AAT TTT CAA CAG AAC CAA CAA TTG GCT CAA CAA GCT CAC CTC GCC TTT CTT GAA AGC CGC
 I V N F Q Q N Q L A Q Q A H L A F L E S R>
 27760 27780 27800
 AGT GCG GGT ATG AAG GTG GCT GAT GCT TTA TTG AAG CAA CAG CTA GCT CAA GTA ACA GGC CAA ACT
 S A G M K V A D A L L K Q Q L A Q V T G Q T>
 27820 27840 27860
 ATC GAT AAT CAG GCC CTC GAT ACT CAA GCC GTC GAT ACT CAA ACA AGC GAG AAT GTA GCG ATT GCC
 I D N Q A L D T Q A V D T Q T S E N V A I A>
 27880 27900 27920 27940
 GCA GAA TCA CCA GTT CAA GTT ACA ACA CCT GTT CAA GTT ACA ACA CCT GTT CAA ATC AGT GTT GTG
 A E S P V Q V T T P V Q V T T P V Q I S V V>
 27960 27980 28000
 GAG TTA AAA CCA GAT CAC GCT AAT GTG CCA CCA TAC ACG CCG CCA GTG CCT GCA TTA AAG CCC TGT
 E L K P D H A N V P P Y T P P V P A L K P C>
 28020 28040 28060
 ATC TGG AAC TAT GCC GAT TTA GTT GAG TAC GCA GAA GGC GAT ATC GCC AAG GTA TTT GGC AGT GAT
 I W N Y A D L V E Y A E G D I A K V F G S D>
 28080 28100 28120
 TAT GCC ATT ATC GAC AGC TAC TCG CGC CGC GTA CGT CTA CGG ACC ACT GAC TAC CTG TTG GTA TCG
 Y A I I D S Y S R R V R L P T T D Y L L V S>
 28140 28160 28180 28200
 CGC GTG ACC AAA CTT GAT GCG ACC ATC AAT CAA TTT AAG CCA TGC TCA ATG ACC ACT GAG TAC GAC
 R V T K L D A T I N Q F K P C S M T T E Y D>
 28220 28240 28260

Fig. 4
22/30

ATC CCT GTT GAT GCG CCG TAC TTA GTC GAC GGA CAA ATC CCT TGG GCG GTC GCA GTC GAA TCA GGC
 I P V D A P Y L V D G Q I P W A V A V E S G>
 28280 28300 28320
 CAA TGT GAC TTG ATG CTT ATT AGC TAT CTC GGT ATC GAC TTT GAG AAC AAA GGC GAG CGG GTC TAT
 Q C D L M L I S Y L G I D F E N K G E R V Y>
 28340 28360 28380 28400
 CGA CTA CTC GAT TGT ACC CTC ACC TTC CTA GGC GAC TTG CCA CGT GGC GGA GAT ACC CTA CGT TAC
 R L L D C T L T F L G D L P R G G D T L R Y>
 28420 28440 28460
 GAC ATT AAG ATC AAT AAC TAT GCT CGC AAC GGC GAC ACC CTG CTG TTC TTC TTC TCG TAT GAG TGT
 D I K I N N Y A R N G D T L L F F F S Y E C>
 28480 28500 28520
 TTT GTC GGC GAC AAG ATG ATC CTC AAG ATG GAT GGC GGC TGC GCT GGC TTC ACT GAT GAA GAG
 F V G D K M I L K M D G G C A G F F T D E E>
 28540 28560 28580 28600
 CTT GCC GAC GGT AAA GGC GTG ATT CGC ACA GAA GAA GAG ATT AAA GCT CGC ACC CTA GTG CAA AAG
 L A D G K G V I R T E E E I K A R S L V Q K>
 28620 28640 28660
 CAA CGC TTT AAT CCG TTA CTA GAT TGT CCT AAA ACC CAA TTT ACT TAT GGT GAT ATT CAT AAG CTA
 Q R F N P L L D C P K T Q F S Y G D I H K L>
 28680 28700 28720
 TTA ACT GCT GAT ATT GAG GGT TGT TTT GGC CCA AGC CAC AGT GGC GTC CAC CAG CCG TCA CTT TGT
 L T A D I E G C F G P S H S G V H Q P S L C>
 28740 28760 28780
 TTC GCA TCT GAA AAA TTC TTG ATG ATT GAA CAA GTC AGC AAG GTT GAT CGC ACT GGC GGT ACT TGG
 F A S E K F L M I E Q V S K V D R T G G T W>
 28800 28820 28840 28860
 GGA CTT GGC TTA ATT CAG GGT CAT AAG CAC CTT GAA GCA GAC CAC TGG TAC TTC CCA TGT CAT TTC
 G L G L I E G H K Q L E A D H W Y F P C H F>
 28880 28900 28920
 AAG GGC GAC CAA GTG ATG GCT GGC TCG CTA ATG GCT GAA GGT TGT GGC CAG TTA TTG CAG TTC TAT
 K G D Q V M A G S L M A E G C G Q L L Q F Y>
 28940 28960 28980
 ATG CTG CAC CTT GGT ATG CAT ACC CAA ACT AAA AAT GGT CGT TTC CAA CCT CTT GAA AAC GCC TCA
 M L H L G M H T Q T K N G R F Q P L E N A S>
 29000 29020 29040 29060
 CAG CAA GTC CGC TGT CGC GGT CAA GTG CTG CCA CAA TCA GGC GTG CTA ACT TAC CGT ATG GAA GTG
 Q Q V R C R G Q V L P Q S G V L T Y R M E V>
 29080 29100 29120
 ACT GAA ATC GGT TTC ACT CCA CCC CCA TAT GCT AAA GCT AAC ATC GAT ATC TTG CTT AAT GGC AAA
 T E I G F S P R P Y A K A N I D I L L N G K>
 29140 29160 29180
 GCG GTC GTG GAT TTC CAA AAC CTA GGG GTG ATG ATA AAA GAG GAA GAT GAG TGT ACT CGT ATG CCA
 A V V D F Q N L G V M I K E E D E C T R Y P>
 29200 29220 29240 29260
 CTT TTG ACT GAA TCA ACA ACG GCT AGC ACT GCA CAA GTC AAC GCT CAA ACA AGT GCG AAA AAG GTC
 L L T E S T T A S T A Q V N A Q T S A K K V>
 29280 29300 29320
 TAC AAG CCA GCA TCA GTC AAT GCG CCA TTA ATG GCA CAA ATT CCT GAT CTG ACT AAA GAG CCA AAC
 Y K P A S V N A P L M A Q I P D L T K E P N>
 29340 29360 29380
 AAG GGC GTT ATT CCG ATT TCC CAT GTT GAA GCA CCA ATT ACG CCA GAC TAC CCG AAC CGT GTC CCT
 K G V I P I S H V E A P I T P D Y P N R V P>
 29400 29420 29440

Fig. 4
23/30

GAT ACA GTG CCA TTC ACC CCG TAT CAC ATG TTT GAG TTT GCT ACA GGC AAT ATC GAA AAC TGT TTC
 D T V P F T P Y H M F E F A T G N I E N C F>
 29460 29480 29500 29520
 GGG CCA GAG TTC TCA ATC TAT CGC GGC ATG ATC CCA CCA CGT ACA CCA TGC GGT GAC TTA CAA GTG
 G P E F S I Y R G M I P P R T P C G D L Q V>
 29540 29560 29580
 ACC ACA CGT GTG ATT GAA GTT AAC GGT AAG CGT GGC GAC TTT AAA AAG CCA TCA TCG TGT ATC GCT
 T T R V I E V N G K R G D F K K P S S C I A>
 29600 29620 29640
 GAA TAT GAA GTG CCT GCA GAT GCG TGG TAT TTC GAT AAA AAC ACC CAC GGC GCA GTG ATG CCA TAT
 E Y E V P A D A W Y F D K N S H G A V M P Y>
 29660 29680 29700 29720
 TCA ATT TTA ATG GAG ATC TCA CTG CAA CCT AAC GGC TTT ATC TCA GGT TAC ATG GGC ACA ACC CTA
 S I L M E I S L Q P N G F I S G Y M G T T L>
 29740 29760 29780
 GGC TTC CCT GGC CTT GAG CTG TTC CGT AAC TTA GAC GGT AGC GGT GAG TTA CTA CGT GAA GTC
 G F P G L E L F F R N L D G S G E L L R E V>
 29800 29820 29840
 GAT TTA CGT GGT AAA ACC ATC CGT AAC GAC TCA CGT TTA TTA TCA ACA GTG ATG GCC GGC ACT AAC
 D L R G K T I R N D S R L L S T V M A G T N>
 29860 29880 29900 29920
 ATC ATC CAA AGC TTT AGC TTC GAG CTA AGC ACT GAC GGT GAG CCT TTC TAT CGC GGC ACT GCG GTC
 I I Q S F S F E L S T D G E P F Y R G T A V>
 29940 29960 29980
 TTT GGC TAT TTT AAA GGT GAC GCA CTT AAA GAT CAG CTA GGC CTA GAT AAC GGT AAA GTC ACT CAG
 F G Y F K G D A L K D Q L G L D N G K V T Q>
 30000 30020 30040
 CCA TGG CAT GTC AAC GGC GTT GCT GCA AGC ACT AAG GTG AAC CTG CTT GAT AAG AGC TGC CGT
 P W H V A N G V A A S T K V N L L D K S C R>
 30060 30080 30100
 CAC TTT AAT GCG CCA GCT AAC CAG CCA CAC TAT CGT CTA GCC GGT GGT CAG CTG AAC TTT ATC GAC
 H F N A P A N Q P H Y R L A G G Q L N F I D>
 30120 30140 30160 30180
 AGT GTT GAA ATT GTT GAT AAT GGC GGC ACC GAA GGT TTA GGT TAC TTG TAT GGC GAG CGC ACC ATT
 S V E I V D N G G T E G L G Y L Y A E R T I>
 30200 30220 30240
 GAC CCA AGT GAT TGG TTC CAG TTC CAC CAA GAT CGG GTT ATG CCA GCC TCC TTA GGT
 D P S D W F F Q F H F H Q D P V M P G S L G>
 30260 30280 30300
 GTT GAA GCA ATT ATT GAA ACC ATG CAA GCT TAC GCT ATT AGT AAA GAC TTC GGC GCA GAT TTC AAA
 V E A I I E T M Q A Y A I S K D L G A D F K>
 30320 30340 30360 30380
 AAT CCT AAG TTT GGT CAG ATT TTA TCG AAC ATC AAG TGG AAG TAT CGC GGT CAA ATC AAT CCG CTG
 N P K F G Q I L S N I K W K Y R G Q I N P L>
 30400 30420 30440
 AAC AAG CAG ATG TCT ATG GAT GTC AGC ATT ACT TCA ATC AAA GAT GAA GAC CGT AAG AAA GTC ATC
 N K Q H S M D V S I T S I K D E D G K K V I>
 30460 30480 30500
 ACA GGT AAT GCC AGC TTG AGT AAA GAT GGT CGT CGC ATA TAC GAG GTC TTC GAT ATA GCT ATC AGC
 T G N A S L S K D G L R I Y E V F D I A I S>
 30520 30540 30560 30580
 ATC GAA GAA TCT GTC T AAATCGGAGT GACTGTCCTGG CTATTTACT CAATTTCTGT GTCAAAAGTC CTCACCTATA
 I E E S V>

Fig. 4
24/30

30600 30620 30640 30660
 TTCATAGGCT GCGCGCTTT TTCTGGAAAT TGAGCAAAAG TATCTGGTC CTAACCTCGAT TTATAAGAAT GGTTAATTG
 30680 30700 30720 30740
 AAAAGAACAA CAGCTAAGAG CCGCAAGCTC AATATAAATA ATTAAGGGTC TTACAAATA ATG AAT CCT ACA GCA ACT
 M N P T A T>
 30760 30780 30800
 AAC GAA ATG CTT TCT CCG TGG CCA TGG GCT GTG ACA GAG TCA AAT ATC AGT TTT GAC GTG CAA GTG
 N E M L S P W P W A V T E S N I S F D V Q V>
 30820 30840 30860
 ATG GAA CAA CAA CTT AAA GAT TTT AGC CCG GCA TGT TAC GTG GTC AAT CAT GCC GAC CAC GGC TTT
 M E Q O L K D F S R A C Y V V N H A D H G F>
 30880 30900 30920 30940
 GGT ATT GCG CAA ACT GCC GAT ATC GTG ACT GAA CAA GCG GCA AAC AGC ACA GAT TTA CCT GTT AGT
 G I A Q T A D I V T E Q A A N S T D L P V S>
 30960 30980 31000
 GCT TTT ACT CCT GCA TTA GGT ACC GAA AGC CTA GGC GAC AAT AAT TTC CGC CGC GTT CAC GGC GTT
 A F T P A L G T E S L G D N N F R R V H G V>
 31020 31040 31060
 AAA TAC GCT TAT TAC GCA CGC GCT ATG GCA AAC GGT ATT TCA TCT GAA GAG CTA GTG ATT GCC CTA
 K Y A Y Y A G A M A N G I S S E E L V I A L>
 31080 31100 31120 31140
 GGT CAA GCT GGC ATT TTG TGT TCG TTT GGA GCA GCC GGT CTT ATT CCA AGT CGC GTT GAA GCG
 G Q A G I L C G S F G A A G L I P S R V E A>
 31160 31180 31200
 CCA ATT AAC CGT ATT CAA GCA GCG CTG CCA AAT GGC CCT TAT ATG TTT AAC CTT ATC CAT AGT CCT
 A I N R I Q A A L P N G P Y M F N L I H S P>
 31220 31240 31260
 AGC GAG CCA GCA TTA GAG CGT GGC AGC GTA GAG CTA TTT TTA AAG CAT AAG CTA CGC ACC GTT GAA
 S E P A L E R G S V E L F L K H K V R T V E>
 31280 31300 31320 31340
 GCA TCA CCT TTC TTA GGT CTA ACA CCA AAA ATC GTC TAT TAC CGT GCA GCA GGA TTG AGC CGA GAC
 A S A F L G L T P Q I V Y Y R A A G L S R D>
 31360 31380 31400
 GCA CAA GGT AAA GTT GTG GTT CGT AAC AAG GGT ATC GCT AAA GTA AGT CGC ACC GAA GTG GCT GAA
 A Q G K V V V G N K V I A K V S R T E V A E>
 31420 31440 31460
 AAG TTT ATG ATG CCA GCG CCC GCA AAA ATG CTA CAA AAA CTA GTT GAT GAC GGT TCA ATT ACC GCT
 K F M M P A P A K M L Q K L V D D G S I T A>
 31480 31500 31520
 GAG CAA ATG GAG CTG GCG CAA CTT GTA CCT ATG GCT GAC GAC ATC ACT GCA GAG GGC GAT TCA GGT
 E Q M E L A Q L V P M A D D I T A E A D S G>
 31540 31560 31580 31600
 GGC CAT ACT GAT AAC CGT CCA TTA GTA ACA TTG CTG CCA ACC ATT TTA GCG CTG AAA GAA GAA ATT
 G H T D N R P L V T L L P T I L A L K E E I>
 31620 31640 31660
 CAA GCT AAA TAC CAA TAC GAC ACT CCT ATT CGT GTC GGT TGT CGT GGC GGT GTG GGT ACG CCT GAT
 Q A K Y Q Y D T P I R V G C G G G V G T P D>
 31680 31700 31720
 GCA GCG CTG GCA ACG TTT AAC ATG GGC GCG GCG TAT ATT GTT ACC GGC TCT ATC AAC CAA GCT TGT
 A A L A T F N M G A A Y I V T G S I N Q A C>
 31740 31760 31780 31800
 GTT GAA GCG GGC GCA AGT GAT CAC ACT CGT AAA TTA CTT GGC ACC ACT GAA ATG GGC GAT GTG ACT
 V E A G A S D H T R K L L A T T E M A D V T>

O-89

Fig. 4
25/30

31820	31840	31860
ATG GCA CCA GCT GCA GAT ATG TTC GAG ATG GGC GTC AAA CTG CAG GTG GTT AAG CGC GGC ACG CTA M A P A A D M F E M G V K L Q V V K R G T L>		
31880	31900	31920
TTC CCA ATG CGC GCT AAC AAG CTA TAT GAG ATC TAC ACG CGT TAC GAT TCA ATC GAA GCG ATC CCA F P M R A N K L Y E I Y T R Y D S I E A I P>		
31940	31960	31980
TTA GAC GAG CGT GAA AAG CTT GAG AAA CAA GTC TTC CGC TCA AGC CTA GAT GAA ATA TGG GCA GGT L D E R E K L E K Q V F R S S L D E I W A G>		32000
32020	32040	32060
ACA GTG GCG CAC TTT AAC GAG CGC GAC CCT AAG CAA ATC GAA CGC GCA GAG GGT AAC CCT AAG CGT T V A H F N E R D P K Q I E R A E G N P K R>		
32080	32100	32120
AAA ATG GCA TTG ATT TTC CGT TGG TAC TTA GGT CTT TCT AGT CGC TGG TCA AAC TCA GGC GAA GTG K M A L I F R W Y L G L S S R W S N S G E V>		
32140	32160	32180
GGT CGT GAA ATG GAT TAT CAA ATT TGG GCT GGC CCT GCT CTC GGT GCA TTT AAC CAA TGG GCA AAA G R E M D Y Q I W A G P A L G A F N Q W A K>		
32200	32220	32240
GGC AGT TAC TTA GAT AAC TAT CAA GAC CGA AAT GCC GTC GAT TTG GCA AAG CAC TTA ATG TAC GGC G S Y L D N Y Q D R N A V D L A K H L M Y G>		32260
32280	32300	32320
GCG CCT TAC TTA AAT CGT ATT AAC TCG CTA ACG GCT CAA GGC GTT AAA GTG CCA GCA CAG TTA CTT A A Y L N R I N S L T A Q G V K V P A Q L L>		
32340	32360	32380
CGC TGG AAG CCA AAC CAA AGA ATG GCC TA ATACACTTAC AAAGCACCAG TCTAAAAAGC CACTAATCTT R W K P N Q R M A>		32400
32420	32440	32460
GATTAGTGGC TTTTTTATT GTGGTCAATA TGAGGCTATT TAGCCTGTAA GCCTGAAAAT ATCAGCACTC TGACTTTACA 32500	32520	32540
AGCAAATTAT AATTAAGGCCA GGGCTCTACT CATTPTTACT GCTAGCAAAC AAGCAAGTG CCCAGTAAA CAACAAAGTA 32580	32600	32620
CCTGATTAT ATCGTCATAA AAGTTGGCTA GAGATTCGTT ATTGATCTTT ACTGATTAGA GTCGCTCTGT TTGGAAAAAG 32660	32680	32700
GTTTCTCGTT ATCATCAAAA TACACTCTCA AACCTTTAAT CAATTACAAC TTAGGCTTTC TGCGGGCATT TTTATCTTAT 32740	32760	32780
TTGCCACAGC TGTATTTGCC TTTAGGTTT GGGTGCAACT ACCATTAATT GAGGCCCTCAT TAGTTAAATT ATCTGAGCAA 32820	32840	32860
GAGCTCACCT CTTAAATTCA CGCTTTTCAG CAA ATG AGA AAG CCA CTA CAA ACC ATT AAT TAC GAC TAT GCG M R K P L Q T I N Y D Y A>		
32880	32900	32920
GTG TGG GAC AGA ACC TAC AGC TAT ATG AAA TCA AAC TCA GCG AGC GCT AAA AGG TAC TAT GAA AAA V W D R T Y S Y M K S N S A S A K R Y Y E K>		
32940	32960	32980
CAT GAG TAC CCA GAT GAT ACG TTC AAG AGT TTA AAA GTC GAC GGA GTC TTT ATA TTC AAC CGT ACA H E Y P D D T F K S L K V D G V F I F N R T>		33000
33020	33040	33060
AAT CAG CCA GTT TTT AGT AAA GGT TTT AAT CAT AGA AAT GAT ATA CCG CTG GTC TTT GAA TTA ACT N Q P V F S K G F N H R N D I P L V F E L T>		
33080	33100	33120
GAC TTT AAA CAA CAT CCA CAA AAC ATC GCA TTA TCT CCA CAA ACC AAG CAG GCA CAC CCA CCG GCA P E K O H P O N I A L S P O T K O A H P P A>		

Fig. 4
26/30

33140 33160 33180 33200
 AGT AAG CCG TTA GAC TCC CCT GAT GAT GTG CCT TCT ACC CAT GGG GTT ATC GCC ACA CGA TAC GGT
 S K P L D S P D D V P S T H G V I A T R Y G>
 33220 33240 33260
 CCA GCA ATT TAT AGC TCT ACC AGC ATT TTA AAA TCT GAT CGT AGC GGC TCC CAA CTT GGT TAT TTA
 P A I Y S S T S I L K S D R S G S Q L G Y L>
 33280 33300 33320
 GTC TTC ATT AGG TTA ATT GAT GAA TGG TTC ATC GCT GAG CTA TCG CAA TAC ACT GCC GCA GGT GTT
 V F I R L I D E W F I A E L S Q Y T A A G V>
 33340 33360 33380 33400
 GAA ATC GCT ATG GCT GAT GCC GCA GAC GCA CAA TTA GCG AGA TTA GGC GCA AAC ACT AAG CTT AAT
 E I A M A D A A D A Q L A R L G A N T K L N>
 33420 33440 33460
 AAA GTA ACC GCT ACA TCC GAA CGG TTA ATA ACT AAT GTC GAT GGT AAG CCT CTG TTG AAG TTA GTG
 K V T A T S E R L I T N V D G K P L L K L V>
 33480 33500 33520
 CTT TAC CAT ACC AAT AAC CAA CGG CCG CGG ATG CTA GAT TAC AGT ATA ATA ATT CTA TTA GTT GAG
 L Y H T N N O P P P M L D Y S I I I L L V E>
 33540 33560 33580
 ATG TCA TTT TTA CTG ATC CTC GCT TAT TTC CTT TAC TCC TAC TTC TTA GTC AGG CCA GTT AGA AAG
 M S F L L I L A Y F L Y S Y F L V R P V R K>
 33600 33620 33640 33660
 CTG GCT TCA GAT ATT AAA AAA ATG GAT AAA AGT CGT CAA ATT AAA AAG CTA AGG TAT CAC TAC CCT
 L A S D I K K M D K S R E I K K L R Y H Y P>
 33680 33700 33720
 ATT ACT GAG CTA GTC AAA GTT GCG ACT CAC TTC AAC GCC CTA ATG GGG AGC ATT CAG GAA CAA ACT
 I T E L V K V A T H F N A L M G T I Q E Q T>
 33740 33760 33780
 AAA CAG CTT AAT GAA CAA GTT TTT ATT GAT AAA TTA ACC AAT ATT CCC AAT CGT CGC CCT TTT GAG
 K Q L N E Q V F I D K L T N I P N R R A F E>
 33800 33820 33840 33860
 CAG CGA CTT GAA ACC TAT TGC CAA CTG CTA GCC CGG CAA CAA ATT CGC TTT ACT CTC ATC ATT GCC
 Q R L E T Y C Q L L A R Q Q I G F T L I I A>
 33880 33900 33920
 GAT GTG GAT CAT TTT AAA GAG TAC AAC GAT ACT CTT GGG CAC CTT GCT GGG GAT GAA GCA TTA ATA
 D V D H F K E Y N D T L G H L A G D E A L I>
 33940 33960 33980
 AAA GTG GCA CAA ACA CTA TCG CAA CAG TTT TAC CGT GCA GAA GAT ATT TGT GCC CGT TTT GGT GGT
 K V A Q T L S Q Q F Y R A E D I C A R F G G>
 34000 34020 34040 34060
 GAA GAA TTT ATT ATG TTA TTT CGA GAC ATA CCT GAT GAG CCC TTG CAG AGA AAG CTC GAT GCG ATG
 E E F I M L F R D I P D E P L Q R K L D A M>
 34080 34100 34120
 CTG CAC TCT TTT GCA GAG CTC AAC CTA CCT CAT CCA AAC TCA TCA ACC CCT AAT TAC GTT ACT GTG
 L H S F A E L N L P H P N S S T A N Y V T V>
 34140 34160 34180
 AGC CTT GGG GTT TGC ACA GTT GCT GTT GAT GAT TTT GAA TTT AAA AGT GAG TCG CAT ATT ATT
 S L G V C T V V A V D D F E F K S E S H I I>
 34200 34220 34240
 GGC AGT CAG GCT GCA TTA ATC GCA GAT AAG GCG CTT TAT CAT GCT AAA GCC TGT GGT CGT AAC CAG
 G S Q A A L I A D K A L Y H A K A C G R N Q>
 34260 34280 34300 34320
 TTG TCA AAA ACT ACT ATT ACT GTT GAT GAG ATT GAG CAA TTA GAA GCA AAT AAA ATC GGT CAT CAA

Fig. 4
27/30

L	S	K	T	T	I	T	V	D	E	I	E	Q	L	E	A	N	K	I	G	H	Q>	
34340																						34400
	34360																					34380
																						34460
																						34480
GCC TAA ACTCGTTCGA GTACTTTCCC CTAAGTCAGA GCTATTTGCC ACTTCAAGAT GTGGGTACAA GGCTTACTCT																						
A>																						
34420																						34480
	34440																					34460
																						34480
TTCAAAACCT GCATCAATAG AACACACCAA AATACAATAA TTTAAGTCAA TTTAGCCTAT TAAACAGAGT TAATGACAGC																						
34500																						34560
	34520																					34540
																						34560
TCATGGTCGC AACTTATTAG CTATTTCTAG CAATATAAAA ACTTATCCAT TAGTAGTAAC CAATAAAAAA ACTAATATAT																						
34580																						34640
	34600																					34620
																						34640
AAAACATATT AATCATTATT TTACAGATGA TTAGCTACCA CCCACCTAA GCTGGCTATA TTCGCACTAG TAAAAATAAA																						
34660																						34720
	34680																					34700
																						34720
CATTAGATCG GGTCAGATC AATTACCGAG TCTCGTATAA AATGTACAAT AATTCACTTA ATTTAATACT GCATATTTT																						
34740																						34800
	34760																					34780
																						34800
ACAAGTAGAG AGCGGTGATG AAACAAAATA CGAAAGGCTT TACATTAATT GAATTAGTCA TCGTGATTAT TATTCTCGGT																						
34820																						34880
	34840																					34860
																						34880
ATACTTGCTG CTGTGGCACT GCCGAAATTG ATCAATGTTA AAGATGACGC TAGGATCTCT GCGATGACCG GTCAGTTTC																						
34900																						34960
	34920																					34940
																						34960
ATCATTGAA AGTCCCCGAA AACTATACCA TAGCGGTTGG TTAGCCAAAG GCTACAAACAC TCGGGTTGAA AAGCTCTCAG																						
34980																						35040
	35000																					35020
																						35040
GCTTTGGCCA AGGTAATGTT GCATCAAGTG ACACAGGTTT TCCGTACTCA ACATCAGGCA CGAGTACTGA TGTGCATAAA																						
35060																						35120
	35080																					35100
																						35120
GCTTGTGGTG AACTATGGCA TGGCATTACC GATACAGACT TCACAAATTGG TCGGGTTAGT GATGGCGATC TAATGACTGC																						
35140																						35200
	35160																					35180
																						35200
AGATGTCGAT ATTGCTTACA CCTATCGTGG TGATATGTGT ATCTATCGCG ATCTGTATTT TATTCAACCGC TCATTACCTA																						
35220																						35280
	35240																					35260
																						35280
CTAAGGTGAT GAACTACAAA TTTAAAACGT GTGAAATAGA AATTATTGAT GCTTTCTACA ACCCTGACGG CTCAACTGGT																						
35300																						35360
	35320																					35340
																						35360
CAATTACCAT AAATTGGCG CTTATCTAAG TTGTACTTGC TCTGACCGAC ACAATAATG TCGTTCTCA GCATATATCA																						
35380																						35440
	35400																					35420
																						35440
AAATACACAG CAAAAATTG CGGTTAGCTA TATAGCTAAC CCCAAATCAT ATCTAACTTT ACACTGCATC TAATTCCAAA																						
35460																						35520
	35480																					35500
																						35520
CACTATCCAG CCAAAAGCCT AAACTATTGT TGACTCAGCG CTAAATATG CGATGCAACA AACAAGTCTT GGATCGCAAT																						
35540																						35600
	35560																					35580
																						35600
ACCTGAGCTA TCAAAATGG TCACCTCATC AGCAGTTGCGT CGTCCGTGTT CGGACTCGTT TATCACCTGA CCAATCTCAA																						
35620																						35680
	35640																					35660
																						35680
TTATCGGCGT ATTTCTGCTA TGTTGAAACT CACCAATAAC AATAGATTGA GAAGCAAGT CGCAAAACAA GCGAGCATGA																						
35700																						35760
	35720																					35740
																						35760
CTATATAGGT CAGTTGGCAA CTCTTGCTTA CCCACTTTAT CAGCGCCCAT TGCAGAAAATA TGGCGTTCTG CTTGTACCCA																						
35780																						35840
	35800																					35820
																						35840
CTGCGCTTC AATAAAAGCG CTTGAGCTGT GGTTGCTGTG ATAATAATAT CTGCTTGTTG ACAAGCAGCT TGTGCATCAC																						
35860																						35920
	35880																					35900
																						35920
AAGCTTCGGC ATTAATGCGCT TTTTCTAATA AACGCTTAAC CAAGTTTCA GTTTGCTAG CACTACGGCC AACTACCAAT																						
35940																						36000
	35960																					35980
																						36000
ACCTTAGTTA ATGAACGAAC CTTGCTCACT GCTAGCACTT CATATTCAAGC CTGATGACCG GTACCAAAAAA CAGTTAACAC																						
36020																						36080
	36040																					36060

Fig. 4
28/30

CGTACCATCT TCTCTCGCGA GGTAACTCAC TGCTACTGCA TCGGCAGCAC CAGTCCGGTA AGCATTAAACG GTAGTGGCAG
 36100 36120 36140 36160
 CAATCACCGN CTGCAACATA CCGGTTAATG GATCGAGTAA AAATACGTTA GTGCCCTGGC ATGGTAAACC ATGTTTATGG
 36180 36200 36220 36240
 TTATCAGGCC AATAGCTGCC TGTGTTCCAG CCGACAAGGT TTGGCGTTGA AGCCGACTTT AATGAGAACAA TTTCATTAAG
 36260 36280 36300 36320
 GTTCGCCCGGCTTCTGCACTAA CTACCGGGAA CAAGGTTGCT TTATCATCTA CGGCAGCGAC AAACGCTTCT TTAACAGCGA
 36340 36360 36380 36400
 TATAAGCCAG CTCATGGGAG ATGAGCTTG ATGTTGCGC TTCAGTTAA TAGATCATAT TACCACCCCT GCACTCGATT
 36420 36440 36460 36480
 CCAGATCTCA TAGCCACCAT TATCACCACAT AGTATCAAAT ACATGGTACT GAGCGTGCAT TGAAGCTGTT GCACAGGGT
 36500 36520 36540 36560
 GGTTCCGGCAA AATATGTAGA CGACTACCTA CCGGGAACTG CGCTAAATCA ATAACGCCGC CATCAACTGC TTCAATAATG
 36580 36600 36620 36640
 CCCGTGCTCTT GATTAACAGT TATAACCTGT AGACCTGATA ACACGTGACC GCTGCGTCA CACACTAAAC CATAACCACAA
 36660 36680 36700 36720
 ATCTTTGGC TGCTCTGCAG TACCTCTATC ACCCGAAAGA GCCATCCAAC CCCCATCAAT GAAAATCCAG TTTTTATCAG
 36740 36760 36780 36800
 GATTATGACC AATAACACTG GTCACTACCG TTGGCGCAAT ATCAGTTAAC TGACACACGT TTAGCCCTGC CATGACTAAA
 36820 36840 36860 36880
 TCGAAGAAGG TGTACACACC CGCTCTAACCC TCGGTGATCC CATCAAGGTT TTGATAGGTT TGGCGTCTTG GTGTTGAACC
 36900 36920 36940 36960
 AATACTAACG ATGTCACATT GCATACCCCG TGCGCGAATG CGTCAGCGC TTGTACAGCC GCTGCAACTT CATTGGCGC
 36980 37000 37020 37040
 CGCATCAATT AATTGCTGTT TTTCAAAACA TTGATATGAC TCACCAAGGT GAGTNAGTAC GCGGTGAAAA CTCGCTGCGC
 37060 37080 37100 37120
 CAGACGTTAG TATCTGAGCA ATTTCAATCA ACTTATCGC TTCCGGTGA ATACCACAC GATGGCCATC ACAATCAATT
 37140 37160 37180 37200
 TCAATTAAATG CTGGTATTTG GCAGTCATAA GAACCAACAGA AATGATTTAG CTGATGCGCT TGCTCAACAC TATCAAGTAA
 37220 37240 37260 37280
 AACTCTTGCA TTAATACCTT GGTCCAACAT TTTAGCAATA CGCGGCAACT TACCATCGGC AATACTACT GCATAAAATAA
 37300 37320 37340 37360
 TGTCTGTGTA ACCTTTAGAT GCTAAGGCCT CGGCCTCTT TACCGTTGAT ACAGTGAATG GTGAGTTTT AGTGGTAAT
 37380 37400 37420 37440
 AAAAAGTCGG CTGCTTCAAG TGATCTAAC GTTTAAAT GCGGTCTTAG GTTGCACCT AATCCTTCAA TTTTTGGCG
 37460 37480 37500 37520
 TAGTTGACTG AGGTTATTA TAAATACGGA CTTATTTACA TATAAAACG GTGTATCAAT TGCTTGATAC TGACTTTGCT
 37540 37560 37580 37600
 GAGTCGTGGA AAGTATTTGA GTAGATGGCA TCTTTAATAT CCTAGTTCAT CAATCAATCT AACAAGTTG ATGCCCTAGCC
 37620 37640 37660 37680
 ACAGTGGCTT GTATTTCATGA TGCTTGGAA AATGCTTATA TTCAAAGCTAT TTGAAAGACAA TCAAACCTCT TGTAAATGC
 37700 37720 37740 37760
 TCAGTATCCA CCAGCACCGCA TTTATTTAT ATTAACATATT ATCAAGATAT AGATTAGGTT CAAACCAAAT GATTAGTACT
 37780 37800 37820 37840
 GAAGATCTAC GTTTATCAG CGTAATCGCA AGTCATCGCA CCTTAGCTGA TGCGCTAGA ACACAAATA TCACGCCACC

Fig. 4
29/30

37860

37880

ATCAGTGACA TTAACGTTGC AGCATATTGA AAAGAAACTA TCGATTAGCC TGATC

Fig. 4
30/30

10	20	30	40	50	60
AATAGATCGACTCGCAAAAGTTGCTTAAGATAGTGTCAATATAGCTTCTTATTGTAAAT					
70	80	90	100	110	120
ATTGTTTTTATGTGTAAACATGTTAGTGTGTAAATGCTGTTAATTATCCTTTGGG					
130	140	150	160	170	180
ATTGTAATAGCTGATGTTGCTGGCTAATGAGTACTTTAGTCGGCAATATCTTGCTTTA					
190	200	210	220	230	240
AATCGCTAACCTCAGTTTAATTCAACCCACACTTGTGTATTAAAGGCTCTCTCCC					
250	260	270	280	290	300
CACCATCGACAAACCAGGATGATATGAAACCGGTAAACGTACCAAAGAGACCGACACCTG					
310	320	330	340	350	360
CAGTCATGAGTAATGCCGCAATGATACTGTCGCCAGTGGTACGGGTAGTAGTCACCGT					
370	380	390	400	410	420
AACCAACAGTCGTTATTGTCAACAAATGACCAACCAAGTGCCTGATGCCGTATTGATGT					
430	440	450	460	470	480
TACTGCCTACTTGATCCTGTTCTAACAAATAACCGATAGCACCAAAGGTGACAAGGA					
490	500	510	520	530	540
TGAAGGATATCGCAGATACCAGCGAAAGGTGGCTTAAACCGATGTTCAAAATCATTT					
550	560	570	580	590	600
TTAAGATAATTTGATGAGCGTATATTCTGAATAGATCTTAATACTCTAGCGATACGAA					
610	620	630	640	650	660
TTATGCGAATAAACTGCAGTTGCTCGACCATCGGAATACTCGACAGTAGGTCAATCCAAC					
670	680	690	700	710	720
CCCATTTCAAAACTGAAATTATTCTCAGCTTGGTAAAGCGAATTACAAAGTCAGTGA					
730	740	750	760	770	780
AAAAGAATAAGCAAATCGTATTATCTACGCTCGTTAATATTCAGTGACGTTACTTGAAA					
790	800	810	820	830	840
AGGTAAAATAAGTTGCAGTAGTGATGATACGACCACATGAAGTGATAAAATAAGCATGA					
850	860	870	880	890	900
AAATCTGAAATGGATTACATCACTGTTTTGGTGCCTACTTTAAGGTTCGTTCA					
910	920	930	940	950	960
CAATCTGCTGCCTCGGTTATTGATTGTTAATATAAACCTTAGTCAGTAGCAAGACAA					
970	980	990	1000	1010	1020
AATATATTACATCAATGTCATCGTATTATTCAACCGCGCGTGTATTAGACACCAAGA					
1030	1040	1050	1060	1070	1080
TCGTTGTATATGTTAGTCATGTCAGCGATGAGATTATCATGCGACAGGGAGAGAATTATGTT					
1090	1100	1110	1120	1130	1140
TGTTATTATTTTACGTACCTAAAGTTAATGTTGAAGAAGTAAACAGGGCGTTATTAA					

Fig. 5

1150 1160 1170 1180 1190 1200
 CGTCGGAGCTGGCACCATCGGTGATTATGATAGTTGTGCTTGGCAATGTTGGGACTGG

 1210 1220 1230 1240 1250 1260
 GCAGTTCCAACCTTACTTGGTAGGCCACATATTGGTAAGCTAAATGAGGTTGAATT

 1270 1280 1290 1300 1310 1320
 CGTTGATGAGTTAGAGTAGAAATGGTTGTCGAGCAGAAAATGTAAGGGCAGCAATAAA

 1330 1340 1350 1360 1370 1380
 TGCACCTATTGCTGCCACCCCTATGAAGAACCTGCTTATCATATTCTGCAAACATTGAA

 1390 1400 1410 1420 1430 1440
 TCTTGATGAGTTACCTTAAGTTAGATGCACTGCACCTAATTGGTCGCTGTGCTAGGTTA

 1450 1460 1470 1480 1490 1500
 GCAATTAGCAATTTGACCATGTTAGCGATAGTTGGCACAAAGTGATCGATATTAAACT

 1510 1520 1530 1540 1550 1560
 ATCCGATTCAAGATCCCATTAACTGCTGAATTAGGTTCAATTACACTTGTCTAGTGGT

 1570 1580 1590 1600 1610 1620
 TTTTCCGACAGGTGTAACCTGTTACTTGCATAAGGTTGATAATCTTACCGCATTGGC

 1630 1640 1650 1660 1670 1680
 AGGAGTTACACCTGCACCAGGCATAATACTAATTCTACCATCTGCTTGGTTAACTAACGT

 1690 1700 1710 1720 1730 1740
 TTGGATTAAGGCGCAGCCTCTAGCGCTTGAGCTTGGTACAGAGGTTAAACAGCTC

 1750 1760 1770 1780 1790 1800
 ACAACCAGCAGTGATCAAGGTCTCCAAGGCTTGGTGGATCATTACACAAGTCGAAAGC

 1810 1820 1830 1840 1850 1860
 GCGGTGAAAGGTTACGCCGAGATCACGTGATGCCACCATTAAGCTTAAAGCTGGCTC

 1870 1880 1890 1900 1910 1920
 GTCAATATTACCATCTGCTGTTAACGCGCCAATAACGACCCCTGGACACCGAGTAACCT

 1930 1940 1950 1960 1970 1980
 CATGAATTGATGTCGGAAACCATAATATCAACTTCTTGTGCTATATAACAAAATCACC

 1990 2000 2010 2020 2030 2040
 GGCGCGAGGGCGAATAATGGCATAAATGGGATCGTTGCTAGATCAATAGACTTTGTAC

 2050 2060 2070 2080 2090 2100
 AAAACCTGCGTTGGCGGTCAAGCCACCTAATGCTAATGCCGAGCACAACTCAATACGATC

 2110 2120 2130 2140 2150 2160
 GGCGCCAGATGCTTGAGCCGTCAGCAGTGATTCTATATTATCGACACATACTCTATTGT

 2170 2180 2190 2200 2210 2220
 CATTGTCATATACTCTTTAAAAAGTTATTAAAAATAATAAGCCAGCATAAGTCGT

 2230 2240 2250 2260 2270 2280
 TTTATACAATATGAAAGGGAAAAGGCGACTTAGCTCGCCTAGATCAATTATTATGGCAG

Fig. 5

2290 2300 2310 2320 2330 2340
 AATACTGCCGTATTGTGATTAGAAAGACAGTTTTAAGCTCAATAGCCGTTATCGCGTT

 2350 2360 2370 2380 2390 2400
 GTTATCTACCATCGTGTAACTTTCTGGCCTGGGTGCTTATTAAACACTGTTCAGTGGC

 2410 2420 2430 2440 2450 2460
 TGGATTAGGGTGAAATGATTCTTTCAAATCTGTTTTGTATTTAACGTACCTGT

 2470 2480 2490 2500 2510 2520
 AATGTCTTGCTGCTCACGAAGACGTACAAATATTGGTTGCGCATAGCTGGTAGTGCAGC

 2530 2540 2550 2560 2570 2580
 ATTGACATGTTGATAGAATTCAAGACGCTGAAAATTCAATGAATAGGGCAATTCAAAGTCAG

 2590 2600 2610 2620 2630 2640
 CGCGACCATGCCTGCTCGGCCATCGTGATGTGGGAGCTTGACACCATAAGCCACACTTG

 2650 2660 2670 2680 2690 2700
 CTCAATTGCACAAATCGTTAACCTGAGCTTCTACTTGCCTGCGACATTTCAACC

 2710 2720 2730 2740 2750 2760
 TTTCCAGCGGAATGTATCACCTAACCTATCCACAAAGGAAATATGGCGATAACCTGGTA

 2770 2780 2790 2800 2810 2820
 ATGAACGAGATGCCGGTATTAAAATAACAGTCACCGTCTTTAATACTGACTTAAATAG

 2830 2840 2850 2860 2870 2880
 CTTTTTATTACTTCGTTGTCATCGGTATAACCATAAACTGGTGAACGTTAGTTATCTT

 2890 2900 2910 2920 2930 2940
 TGTTAGCAGTAGCCCTGTTCTCCGTTTACTTGGTCATTTCCCTTCGCATTATA

 2950 2960 2970 2980 2990 3000
 CACAGGTTGTCATTGTCATATTGATATTGATGACGGTAAAGCAAGTGGAGTAACCCC

 3010 3020 3030 3040 3050 3060
 CGCTGTATGCCGTAAGTTCAGCGCATTGGAGAACACAAGATTACACTCACTGGCGCCATA

 3070 3080 3090 3100 3110 3120
 GAATTCAATTATGCTCGATCCAAAACGTTGTTGGAAATGATCCAAATTGGGGCG

 3130 3140 3150 3160 3170 3180
 TAATCCATTACCTATGATTTCTTATATATGCTGTTGTCTTATTGCTAGGCGGTAC

 3190 3200 3210 3220 3230 3240
 ATTTAATAAAACGGCAGAGCTCGCGATGTAAGTAAACGCACTGGCATTATGAGCACG

 3250 3260 3270 3280 3290 3300
 AACTTCATCCAAAAGCGACTTGAACTGAATTTCAGAAAGTGCAGGGTTGCTGCC

 3310 3320 3330 3340 3350 3360
 ACCAAACACGGCGCTTAATGACACTGTCAGTGCATTGTTATGGTATAGGGGGAGTGATAA

 3370 3380 3390 3400 3410 3420
 ATACAAATACATCATCAGCTGTTAAGCGTAATGATGCCATCCCCATGCCATGGATT

Fig. 5

3430 3440 3450 3460 3470 3480
 AAACCAACGGTATGGCTCATTCTGCTGCTTTGGCAGTCCAGTTTCCGAGGTAAA

 3490 3500 3510 3520 3530 3540
 GATATAAAACGCGCAATGCTTAAGCTGTATTGTGCTGTTGATTCAAGGGTTCAAACTGA

 3550 3560 3570 3580 3590 3600
 ATATCCTGCGACTAGTGTAGATATGTTTATAACCACACTCATGTCTGGCGTTCTAA

 3610 3620 3630 3640 3650 3660
 AGCGGGTACGTAAAAGACATTCTGTTGTAATGTCGATGACAAATTGGTTCAATATTATT

 3670 3680 3690 3700 3710 3720
 AATGGCGGATGTGTAGTCATCTGCGATGAGTAATTGGTATCGACCAACGCTAAGACT

 3730 3740 3750 3760 3770 3780
 ATGTTCGAGGATTGAATCCCCTGTCGTATTATCATAACAGCAATCGCGCCAAGCTT

 3790 3800 3810 3820 3830 3840
 GACAACGTGCGAGGGCAATAATGATGGTTCAAGGCCTGTTATCGAGCATGATGGCGACTTT

 3850 3860 3870 3880 3890 3900
 ATCATTTTACCAATGCCGTATTCAATGAAAGGAAATGGGCATATTGATTTGCTTGCTTATT

 3910 3920 3930 3940 3950 3960
 CAATGAATCGTAACTATAACGCTGGTCTTAAATTGTATTGCGATCAAGTCAGAGTTATT

 3970 3980 3990 4000 4010 4020
 GACAGCTTGCTGCTCTAGTAATAACCAATAGACATAAAACGTCGGGCTTGCTTGTG

 4030 4040 4050 4060 4070 4080
 TAAGTGCCATAAGCCTTGATGATTGGCTTGGGTTTTAATAGATTGATGGTACTTT

 4090 4100 4110 4120 4130 4140
 CAGGAATTGTTGCCGGTTATAACAGTCATAAGCTAATTCTTTATCAAGAAGAGGGT

 4150 4160 4170 4180 4190 4200
 TATGACACCAAATAATGGGTACCGCTGGTTAATTGGTTAGACTAAATGTGTTGTT

 4210 4220 4230 4240 4250 4260
 TTGCTGTGATAATGCGACGTTCAAACAAACTTGAGAAGGTAAAAAAATAGCATTAAA

 4270 4280 4290 4300 4310 4320
 TTGAACATCAATACTAATGTGTTGAATATCAATCAAGTTCTAATGTGCGAGCACCG

 4330 4340 4350 4360 4370 4380
 TGCTTTAGCAAACATGCCATGTGCTATTGCTGTTAAACCCCATAGTTGCTGGGAT

 4390 4400 4410 4420 4430 4440
 AAAATGTAATGGATTGGATTGTGCTTGGAGATATAAGCATATTATACGTCAA

 4450 4460 4470 4480 4490 4500
 AGGACTAAATTAAACAATGAAATCGGCTCGTAAGCATAATTGCTGGCGTATTACTAT

 4510 4520 4530 4540 4550 4560
 TTTCTCACCGCTGGAACGTTGAGATCGTGGCACGTTTCGCTGTTGCTTGTAA

Fig. 5

4570 4580 4590 4600 4610 4620
 GAATGTCGATGTACACTCCCACGCAAATTGTCCATCTACAAACACATCAATATGAGTATC
 4630 4640 4650 4660 4670 4680
 AATGAAACGTCCTGTATCCGTTATGTACTCCTTAATTACACGACATGTGCTCGTCAATAT
 4690 4700 4710 4720 4730 4740
 CGCGTTTAATGCTATCGGTTGATGTTGTATGCGATTTCGATAATGGACTAGTCCTAA
 4750 4760 4770 4780 4790 4800
 TATAGATATCGGAAATTGTGTTGATGTCATGAGTTCATCAATAATGGAAAGATCATCAC
 4810 4820 4830 4840 4850 4860
 AAATGGATAAGTAACCGGTACATAGTTGTTATTAAACCCACAGCATTAAATATATTG
 4870 4880 4890 4900 4910 4920
 CTTTAAATTCGCTGATCTATTTTGTCACGTGATAACTAAATTGCTCAGTACACACTTG
 4930 4940 4950 4960 4970 4980
 TGTCGACCAAGTGTTCATCAGTGTAAACAAATTGTATTGACCACTGCTTCACATATAA
 4990 5000 5010 5020 5030 5040
 AAGCGAGATAATCGGTTGCTTGTTAACAGTGTATCTGGTTAGCGTCATTGAAATAAT
 5050 5060 5070 5080 5090 5100
 TCATATAAGAGTATGTAGCATTATGTTAATATTTGTTTGGAAAGTTGAATTGGCGAAT
 5110 5120 5130 5140 5150 5160
 CCGTAATCGGTTATGGCAGTTCGGTCAAATACTTCAGGTAAACTCGTTACTCATACCAT
 5170 5180 5190 5200 5210 5220
 TGATAGTGTAAAGTGTGATTGACTGAATAAAGAATAGAGCTAAAGTGGAAAAATTATGCA
 5230 5240 5250 5260 5270 5280
 AGATGCGGGTATGTTATTACGCATTGCTTATGAGGCAATGAAAGAGTTAGAGGTTGATGT
 5290 5300 5310 5320 5330 5340
 CATTGAAGTACTTCTCGTTAACATAAGTGAAGAAGTACTGAATGATAAGGATCTTCG
 5350 5360 5370 5380 5390 5400
 CACACCTAATCATGCACAAACACATTGGCAAGTATTAGAAGACATATCACAAAGATCC
 5410 5420 5430 5440 5450 5460
 TAACATCGGCATTCACTTGGTGAGGAAATGCCAGTGTTCACGGGGCAGGTATTACAGTA
 5470 5480 5490 5500 5510 5520
 TCTTTTCTCAGTAGTCCTACATTGGTACTGGCTGGGAACGCGCAACAAATCTTCG
 5530 5540 5550 5560 5570 5580
 ATTAATCAGTGATGCGGCAGTGTTCTATCAAGATGGAAGGCTGTGAAGCGCGATTATC
 5590 5600 5610 5620 5630 5640
 TGTGAACCTTAGATGGTTAGCGGAAGATGCGAATCGTCATTGAATGATTGCCTAGTGAT
 5650 5660 5670 5680 5690 5700
 CGGTGCATTTAAATTTGTTATATGTGACAGAAGGCGAATTAAAGTAAGCAAAATAGC

Fig. 5

5710 5720 5730 5740 5750 5760
 CTTTGCTCATGCTCGCCCGAAAGATATTACTGCCTATACCAATGTATTTACATGTCCGAT

 5770 5780 5790 5800 5810 5820
 TGAGTTTGCTGCCGAAGATAATTATTTATTCGATGCTGATTACTCGAACGTCCCTTC

 5830 5840 5850 5860 5870 5880
 TTCGCATCGGGAGCCTGAGCTATCGCCTTACACGATCAGCTTGCAGGCCGTAAAATAGC

 5890 5900 5910 5920 5930 5940
 CAAGTTAGAACCTGCAAGATTAGTGGATAAAAGTACGTAAGGTTATTGCACAAACAACCTTGA

 5950 5960 5970 5980 5990 6000
 GTCTGGTGTGGTGACTTTAGAAAGTATCGCCACTGAACATTGACATGAAACCACGTATGCT

 6010 6020 6030 6040 6050 6060
 AAGAGCGAAGTTAGCTGACATTGATTATAACTTTAACCAAATACTCGCTGATTTCTGTTG

 6070 6080 6090 6100 6110 6120
 CGAGTTATCAAAAAACTGTTGGCGAATACGGACGAGTCTATTGATCAGATGTCTATCT

 6130 6140 6150 6160 6170 6180
 CACTGGTTTCTGAACCAAGTACTTTTATCGTGCCTTAAGCGCTGGGTTAAAATGAC

 6190 6200 6210 6220 6230 6240
 GCCAATTGAATATGCCGTAGCAAACCTCGCGGTTAGGCATGCTAACACACGAGTCCTA

 6250 6260 6270 6280 6290 6300
 AAAATTGCTGCTTAGTGCATAGTGCATAGTGCATAGTGCAGTAAGCCAAGTACAAAGC

 6310 6320 6330 6340 6350 6360
 GTTAAAGTTAAGTACTTGAGCGAACCATCAGACACCAACTACTAGATTAAGCACCTATTA

 6370 6380 6390 6400 6410 6420
 ATGATTGACCACAAATTCTGATCGTATTGCCTGTGATCCCTGCAGCTTGAGGTTGCGCAA

 6430 6440 6450 6460 6470 6480
 AAAAGCTATCGCTTCAGCAACATCAACTGGCTTACCACTTGTAAATGAATTACATAC

 6490 6500 6510 6520 6530 6540
 GACGACCAGCTTCACGAACGTAAATGGAATCGCTGTCATTGTTCAATAAAGC

 6550 6560 6570 6580 6590 6600
 CTGGTGCAACAGCATTAAATGGTGTATTGCTGCAAGCGGAGTTGCATTGCATCAA

 6610 6620 6630 6640 6650 6660
 CATAACCAATGACTGCGCCATTAGACGTTGCATAATTAGTCTGACCAAGTTACCCGCAA

 6670 6680 6690 6700 6710 6720
 TCCCACTCATCGAACACACACAAACATCGCGCCATAGTCGTTGAGCAGATCATCTTA

 6730 6740 6750 6760 6770 6780
 GCAGTCGCTCATTGATTCTTCCATTGCCGACAAGTTAATATCCATCAGTACATCCCAAT

 6790 6800 6810 6820 6830 6840
 GGTTATCCGGCATACTGCTAGCGTTTGCTTTGTTACCCCGGCATTATGGACGATGA

Fig. 5

6850 6860 6870 6880 6890 6900
 TATCAAGCGACTGTTCTGCACAAAGTCAGCAATGATATTTGGGCAGCAGCGGTAA

 6910 6920 6930 6940 6950 6960
 TATCAGCAACAAATGCTGCTACCTTCAGCAATGAGCTACTTTCAAGGTCTGTTTA

 6970 6980 6990 7000 7010 7020
 ATGCCGGAATGTCTAACAAATAACATGTGCGCCATCACGGCGAGTGTTCAAGCAATAG

 7030 7040 7050 7060 7070 7080
 CAGCCCCATGCCACGTGATGCACCAGTGACAAGTGCTGTCTTCCTGTAATGGTTTG

 7090 7100 7110 7120 7130 7140
 CCGTGTTACTTGTTCGTTAACCTCGTTAACCTCGTTAACCTCGTTAACATAG

 7150 7160 7170 7180 7190 7200
 CCCCCATTAAATCGAACCGGGTTTACGTTAACCTGTGAGATATAGGCTGATTTG

 7210 7220 7230 7240 7250 7260
 CTGAGGTTAACGAAACGTAGCGGGGCCTTAATAATTGCTCACTACCAGGTTGACATAGA

 7270 7280 7290 7300 7310 7320
 TAAGTTGACAGGTACTACCATTCTGCCTATTTCTTGGCGACACTGCGACAAAACCCCTT

 7330 7340 7350 7360 7370 7380
 CTAAAGATTTGTACAGTCGCGTAGCTTACATCGTCAAGATGTTCACTCGGATGACCTA

 7390 7400 7410 7420 7430 7440
 ACACGATCACTCTGCTGCATGGCGAGAGCTGCTTAATTACAGGTTGAAAAAAACGATGTA

 7450 7460 7470 7480 7490 7500
 ATGCACTTAATTGCTGCTGTTCTTAATGCCCTGAGGCAGTCGAAGATAATACCGTTGAAGC

 7510 7520 7530 7540 7550 7560
 GATCTGTTTAGCGATAGCATTAAAGGCTAATAGGTGTCGCGACTAAAGACGTTGATTAA

 7570 7580 7590 7600 7610 7620
 ATTCAATATTAAGATCGGCTAACGCTGACGTGTTATTAGGATAAGAAATCGTACCTCAG

 7630 7640 7650 7660 7670 7680
 CATCTTTAAATGTGTTAAGAATGGGTTAATTAAATTGCTGCTGGCTGCGCCGATGA

 7690 7700 7710 7720 7730 7740
 GTAAAGTTGCCAGAGATGAGATCGGTTCCCTGATCGTAGCGTGTAAACGTAACCGGTCGTG

 7750 7760 7770 7780 7790 7800
 GCAGATTAAGCGCTTAAATAACCTGATGTCCACTGCCATTAGCGAGTTTGCCTATG

 7810 7820 7830 7840 7850 7860
 TATCCGTCTTCTAACCTGTTATAGTGAACAGTTGAATCTGAAGATGTACATGT

 7870 7880 7890 7900 7910 7920
 GTTAAAAATTATCTGATAGCTATGACTTATCTGCCACTACGTAATAATAAGACCAGT

 7930 7940 7950 7960 7970 7980
 TCATTACATCGTTAACGATATAGTATAACTAAACTAAAGTAAATTATAATGATAAGAC

Fig. 5

M

7990 8000 8010 8020 8030 8040
 TGTTATCGTACTCGGATCAAACCTCTGATCAGCAAATAATCAAATTAGAGTTTTATTTA
 8050 8060 8070 8080 8090 8100
 AACTTGTATCAACAATGTTACATTAATGTATCTTACGTCTAATGTGCTACGGGCATATTT
 8110 8120 8130 8140 8150 8160
 AAGTCACTAAATTAAAGGAATAAACCATGACAGGTCAAACAATAAGAAGAGTAGCAATT
 8170 8180 8190 8200 8210 8220
 TCGGCCTAACCGTATCCGTTGCACGTTCAAATACAGCGTATTCAAAACTAACGTAACC
 8230 8240 8250 8260 8270 8280
 AAGATATGCTGACGGAAACTATCCGTTGGCTGGTAAATATAACCTACGTGGTGAAC
 8290 8300 8310 8320 8330 8340
 AACTGGGGGAAGTTGTTGCTGGTGCCTGAAACGCCTTGTATGACATTAAACAC
 8350 8360 8370 8380 8390 8400
 GTGAAGCCGTGCTAAGTGCAGGTCTTGCACCTGAAACGCCTTGTATGACATTCAACAAG
 8410 8420 8430 8440 8450 8460
 CTTGTGGTACTGGCTAGCTGCAGCTATCCAAGTAGCAAACAAAATTGCGCTTGGTCAA
 8470 8480 8490 8500 8510 8520
 TAGAAGCGGGTATTGCTGGTGGTCTGATAACGACATCAGATGCACCGATTGCAGTCAGTG
 8530 8540 8550 8560 8570 8580
 AAGGCATGCGTAGTGTATTACTTGAGCTTAATCGAGCTAAACGGGTAAGCAACGTTGA
 8590 8600 8610 8620 8630 8640
 AAGCACTATCTCGTCTACGTCTAACACTTGCGCCACTAACGCCGTCAAATAAGAGC
 8650 8660 8670 8680 8690 8700
 CGCGTACCAAAATGGCGATGGCGATCATGTCAAGTAACAGCGAAAGAGTGGATATCT
 8710 8720 8730 8740 8750 8760
 CACGTGAAGCACAAGATGCATTGGCCTGCGCAAGTCATCAAAATTAGCTGCAGCATATG
 8770 8780 8790 8800 8810 8820
 AAGAAGGTTCTTGATACGTTAGTTACCTATGGCCGGCTAACGAAAGATAACGTAT
 8830 8840 8850 8860 8870 8880
 TACGCGCAGATAACAACAGTTGAGAAACTGGCTAAATTGAAACCTTGTGATCAAAGTAA
 8890 8900 8910 8920 8930 8940
 ACGGCACTATGACGGCGGGTAACAGTACTAACCTTACCGATGGAGCATCAGCTGTATTAC
 8950 8960 8970 8980 8990 9000
 TTGCAAGTGAAGAATGGGCAGCGGCACATAACTTACCGTACAAGCTTATCTAACATTG
 9010 9020 9030 9040 9050 9060
 GTGAAACGGCCGCTATCGACTTCGTTGATAAGAAAGAAGGTCTGTTAATGGCGCCTGCAT
 9070 9080 9090 9100 9110 9120
 ACGCAGTGCCAAAATGTTGAAAGCGTGCTGGCCTACATTACAAGACTTCGATTACTATG

Fig. 5

9130 9140 9150 9160 9170 9180
 AAATACATGAAGCATTGCTGCGCAGTTATTAGCAACGCTAGCAGCTGGGAAGACGAAA
 9190 9200 9210 9220 9230 9240
 AATTCTGTAAAGAAAAACTGGGTCTAGATGCTGCGCTTGGTTCAATTGATATGACCAAGT
 9250 9260 9270 9280 9290 9300
 TAAACGTGAAAGGGAGTAGCTTAGCCACGGGTACCCATTGCCGCAACTGGTGGTCGTG
 9310 9320 9330 9340 9350 9360
 TTGTCGCTACGCTAGCGCAATTACTTGATCAGAAAGGTTCAGGTGTTGATCTCGA
 9370 9380 9390 9400 9410 9420
 TTTGTGCTGGTGGTCAAGGTATCACGGCAATTAGAGAAATAACGCAGCTGTTAT
 9430 9440 9450 9460 9470 9480
 TATCTATTGATTAAGCTGCTGAGATACTGGATATTTTAAATAAAACGCCAATACTGC
 9490 9500 9510 9520 9530 9540
 AGAGTATTGGCGTTTTGTAAATACCAATTCTATATAACGGTCATTTAAACACTTA
 9550 9560 9570 9580 9590 9600
 ATTTCCGGCATTGGTATCATAAAAAGCAGCACCGAAGTGCCTGTTGATTGTAGATTAAC
 9610 9620 9630 9640 9650 9660
 CTATTAAAATAGAGAGGCTAGAATTAGTCTCGTATGCTTCATTATGTACGCCAGCTGCA
 9670 9680 9690 9700 9710 9720
 CGACCCGATGGATCAGCATTGGAAACCTTCATCCAAAGCTAATGCTTCTACAGTT
 9730 9740 9750 9760 9770 9780
 GAACAAGCAACGGATTACCAACGGTACGCATTGCTGCTGAATCACCTGGGAAGTGA
 9790 9800 9810 9820 9830 9840
 TCTTCAAAGATGGCACGATAGTAGTAACCTCTTCGATCTGGTGTGTTAATTGGGAAC
 9850 9860 9870 9880 9890 9900
 TTAAATGCTGCACTTGCTAACATTGATCAGTTACCGCTTCAACGTGTACTTTAAGT
 9910 9920 9930 9940 9950 9960
 TGGTCAATCCAAGAATAACCAACACCATCAGAGAATTGTTCTTTGACGCCATACAATT
 9970 9980 9990 10000 10010 10020
 TCTTCAGGTAGTAAATCTCAAATGCTTCTCGAATGATGTTCTCAATGCCGGTCGCC
 10030 10040 10050 10060 10070 10080
 GTGATCATTTAGTTAGGGTTAGACGCATTGACGCATCAACAAATTCTTATCTAAG
 10090 10100 10110 10120 10130 10140
 AAAGGAACACGTGCTTCGATGCCCAAGCTGCCATAGATTGTTGCACGTAAGCAATCA
 10150 10160 10170 10180 10190 10200
 AACATATGTAATTATTACTTACGTACCGTCTTCATGGAATTCTTCGCATTTGGC
 10210 10220 10230 10240 10250 10260
 GCTTGTGGAAGTACAAGTAACCACCGAACAGTTCATCAGCACCTCACCAAGAAAGCACC

Fig. 5

10270 10280 10290 10300 10310 10320
 ATCTTAATCCCCATGGCTTAATTTACGTGCCATTAGGTACATAGGGGTTGATGCACGA

 10330 10340 10350 10360 10370 10380
 ATTGTTGTTACATCGTAGGTTCAATGTGGTAAATCACGTCGCGTAAAGCGTCGATACCT

 10390 10400 10410 10420 10430 10440
 TCTTGCACAGTAAATTCAATTGAATGATGGATAGTACCTAAGTGATCTGCCACTTTGT

 10450 10460 10470 10480 10490 10500
 GCAGCGGCTAAATCTGGAGAACCATTTAGGCCTACAGAGAAAGAGTGTAGTTGTGGCCAC

 10510 10520 10530 10540 10550 10560
 CATGCTTCGGTTTACCAACCGTCTCAATACGACGTTTGCATACTGTTGGGTGATTGCT

 10570 10580 10590 10600 10610 10620
 GAAATAACAGATGAATCTAACCCGCCTGATAATAATACGCCGTAAGGTACATCACACATT

 10630 10640 10650 10660 10670 10680
 AATTGACGTTAAC TGCA TTTCCAAACCTTGCTTAACAACGCTTTATCACCACCAATT

 10690 10700 10710 10720 10730 10740
 TGTGCAACGTTATCAAATCTTCCAATCACGTTGATAATAAGGCGTGACTACACCATCC

 10750 10760 10770 10780 10790 10800
 TTACTCCACAGGTAATGACCTGCTGGATTCTCAATTGAGTACAAATTGGCACTAGT

 10810 10820 10830 10840 10850 10860
 GCTTCATTTCAGAGGCAACATAAAAGTTACCGTGTTCATCATAGCCGTATAAAGAGGG

 10870 10880 10890 10900 10910 10920
 ATGATACCGATATGGTCACGGCCAATCAGGTAAAGCGTCTGTTCGTATATAAAGCG

 10930 10940 10950 10960 10970 10980
 AAAGCAAAATACCATTTAGATCATCTAAAATTGTGTGCCTTTCTTATAGCGCA

 10990 11000 11010 11020 11030 11040
 AGTATCACTTCGCAATCTGATTCTGTTGGATTCAAAGTCTACGTTCAGCGTTTCTT

 11050 11060 11070 11080 11090 11100
 AAATCTTGTGGTTATAAATTCAACCATTAACAGCAAGTACGTGTCTTTCTTCATTA

 11110 11120 11130 11140 11150 11160
 TATAGCGGCTGTGCACCATATTACATCGACAATAGCAAGACGTTCATGAACACTAAAATA

 11170 11180 11190 11200 11210 11220
 GCATTGTCACTTGTATAGATACCTGACCAATCTGGGCCGCGTGA CGTAGTAACTTGAT

 11230 11240 11250 11260 11270 11280
 AGTTCTAGTGCTTGTGCGAAGAGGTTAATGTCTGATTGATGTCTAGAATTCCGAAT

 11290 11300 11310 11320 11330 11340
 ATTGAGCACATAACTAATTCCCTCTGGGGCTGCGTCTGCAGCTAACTTCTAAATAGTGT

 11350 11360 11370 11380 11390 11400
 GTCTAATTGCCACATGTAGATTAATGCAAACTTAATGATAAAACATTATAAAAAAA

Fig. 5

11410 11420 11430 11440 11450 11460
 TGTAATTCAATGTGGAATCGATAATTAATGGCTTAAAGTGAAGATCCATTAATTGTGA

 11470 11480 11490 11500 11510 11520
 TGGCGAGGTGATAGACCAATGTAGACCTTAATGAATAAAGCAGGCACGATTGAATCCATT

 11530 11540 11550 11560 11570 11580
 CAACGCAGGTGGTACTAATCTATTGTTAACGTTATAATAGTGTAAAGGTTATA

 11590 11600 11610 11620 11630 11640
 AGTAAATAATTTAAAAACAATAATAATCCACATGCATTAAATTTATCATGATAAAACGCT

 11650 11660 11670 11680 11690 11700
 ATATCTCAATGGCAATTGGGATAAGTGTAAAATATGTAAAATGAATGAGTTGACTTG

 11710 11720 11730 11740 11750 11760
 CTTTTTTACACTAAGTGATGAAATTAAAGCTAGATGTCGTTGTTAGCATTGATTAATAA

 11770 11780 11790 11800 11810 11820
 CGTACTAAAATACGACATCTAGTATAGAAATTAAAAACAGTTGGTTTGATAGCATAA

 11830 11840 11850 11860 11870 11880
 CTGCATAAAACTAATCAGCTTATTGCTGTAAATATTGTAATTAAAGGTTAATAA

 11890 11900 11910 11920 11930 11940
 AATTATATGTCGATAAAATATAACCGTACGACCTTCCTTAAAGACGTTTGCTG

 11950 11960 11970 11980 11990 12000
 CCTAAGTTGGCCTGTTGGTCTGGGGTGTGCAATATACTTATTAGCTTTATGCCA

 12010 12020 12030 12040 12050 12060
 GTAAAGCCCGGTGATAAAATTGCTCGATTCAAGCGAAATTGTTAGTCTAAAATG

 12070 12080 12090 12100 12110 12120
 ATGGCAAAGCGTAAAAGGTAGCAAAGATCAATTATCTATGTGCTCCCTGAAATGGAT

 12130 12140 12150 12160 12170 12180
 GATACTGGAAACAAGACCGTATAATCATGGTCAATCTAGTTACTTTGTCAAACATCTTA

 12190 12200 12210 12220 12230 12240
 AGTTATGCAGAGCCAAGTGCAGCTAGTCGTGCTTATAACCGTGACCGTATGATAGTCAT

 12250 12260 12270 12280 12290 12300
 GGTGGCGAGAATTATTCCGCTACTTGAACAAGGTAAAGGCTTGTATCTTATTAGTGCCG

 12310 12320 12330 12340 12350 12360
 CATAGCTTCGCTATTGATTGAGGTTACACATTGCTTATGGCGGCCATTG

 12370 12380 12390 12400 12410 12420
 ACTATGTTAACAAATTCTGAGAATGAGTTGTCGATTGGCTGATGACACGTCAACGCGCT

 12430 12440 12450 12460 12470 12480
 ATGTTGGAGGCAGTGTATCACCGCAAGGCAGGGCTAGGGGCTCTAGTTAAATCACTT

 12490 12500 12510 12520 12530 12540
 AAGAGCGGTGAAAGCTGTTATTACTTACCTGATGAAGACCATGGACCTAACGCTAGTGTA

Fig. 5

12550 12560 12570 12580 12590 12600
 TTTGCGCCTTATTCGCACTCAAAAAGCAACTTACCTGTAATGGGCAAGCTAGCAGAA

 12610 12620 12630 12640 12650 12660
 AAAACAAATGCACTCGTTGTTCTGCGCATATAATGAATCACTAGGTAAATT

 12670 12680 12690 12700 12710 12720
 GAAACCTTATTGACCAGCAATGCAAAACTTCATCAGAAAGCCCAGAACAAAGATGCA

 12730 12740 12750 12760 12770 12780
 GTGATGATGAATAAAGAGATTGAAGCCTGATTGAATGTGGTGTGATCAATATATGTGG

 12790 12800 12810 12820 12830 12840
 ACACCTAGATTATTGAGAACACGTCCGGACGGTAAAAAAACTACTAATAAAGTTAATA

 12850 12860 12870 12880 12890 12900
 AACACCATAATCTCGTTGAATATGGTGTACCCCCCTGAATAACCCCTCTAAATTAAATA

 12910 12920 12930 12940 12950 12960
 CAAAAAAAGCCATTACGTAAACATCTAATGATGATTAGCCTGACTTGCTTGT

 12970 12980 12990 13000 13010 13020
 GTCTTAAGAGCCTAATAAACTTGATCTAGGTATAGATTCTGTCTTACGTAACCGCG

 13030 13040 13050 13060 13070 13080
 ATCTATTTTTAACCGATAGTTGTTATAATTAGTTCATATGAAAGAGATATCGTTTC

 13090 13100 13110 13120 13130 13140
 AGTAAAAGCTATTCGTTCAATAGATAATTATTTAGTCATATTCGTAATGACA

 13150 13160 13170 13180 13190 13200
 ATCATTTCTCATCTAGACTATAGATAAGAACAGAATTAAAGTAAGAACATTAAATTTC

 13210 13220 13230 13240 13250 13260
 AAGAATATAAAATATCCCATCGGAGCTATAAGAACATGAAATTAAAGACTAAATTGT

 13270 13280 13290 13300 13310 13320
 ATTGGTCCAAAACGTAACTCAGTAGAGAAACTAACAGAGCTTGTAAATGCAGGCATGAAC

 13330 13340 13350 13360 13370 13380
 GTTATGCGTTAAATTCTCATGGTAACCTTGCTGAACATTCACTGCGTATTCAAAAT

 13390 13400 13410 13420 13430 13440
 ATCCGTCAAGTAAGTGAACACTGAAATAAGAAAATTGCTGTTACTGGATACTAAAGGT

 13450 13460 13470 13480 13490 13500
 CCAGAAATCCGTACGATTAAACTAGAAAACGGTGACGATGTAATGTTGACCGCTGGTCAG

 13510 13520 13530 13540 13550 13560
 TCATTACGTTACACAGACATTAACGTGGTAGGTAATAAGACTGTGTTGCTGTAACA

 13570 13580 13590 13600 13610 13620
 TATGCTGGTTGCTAAAGACCTTAATCCTGGTGCAATCATCCTGTTGATGATGGTTA

 13630 13640 13650 13660 13670 13680
 ATTGAAATGGAAGTGTGCAACAACTGACACTGAAAGTTAAAGTACAGTATTAAATACT

Fig. 5

13690 13700 13710 13720 13730 13740
 GGTGCACTTGGTGAATAAGGCCTAACCTAACATCAGTGTAGGTCTACCTGCA
 13750 13760 13770 13780 13790 13800
 TTGTCAGAAAAAGATAAAAGCTGATTTAGCGTTGGTTGTGAGCAAGAAGTTGATTTGTT
 13810 13820 13830 13840 13850 13860
 GCTGCATCATTATTCTGAAGGCTGATGATGTAAGAGAAATTCTGAAATCTTAAAT
 13870 13880 13890 13900 13910 13920
 AATGGTGGCGAAAACATTCAAGATTATCTGAAATTGAAAACCAAGAAGGTGTAGACAAT
 13930 13940 13950 13960 13970 13980
 TTGATGAAATCTTAGCTGAATCAGACGGTATCATGGTTGCTCGTGGCGATCTCGGTGTT
 13990 14000 14010 14020 14030 14040
 GAGATCCCAGTTGAAGAAGTGTGATCATGGCACAGAAGATGATGATCAAAATGTAATAAA
 14050 14060 14070 14080 14090 14100
 GCAGGTAAAGTTGTAATTACTGCAACACAAATGCTTGTGATTCAATGATCAGTAACCCACGT
 14110 14120 14130 14140 14150 14160
 CCAACACGTGCAGAACGGCGATGTTGCCAATGCTGCTTGACGGTACCGACGCCGGA
 14170 14180 14190 14200 14210 14220
 ATGCTTCCTGGTGAAGGTAAATACCCAGTTGAAGCTGTGTCTATCATGGCA
 14230 14240 14250 14260 14270 14280
 AACATCTGTGAACGTACTGATAACTCAATGTTCTCGGATTTAGGTGCGAACATTGTTGCT
 14290 14300 14310 14320 14330 14340
 AAAAGCATGCGCATTACAGAACGCTGTGTAAAGGTGCGGTAGAAACACAGAAAAATTG
 14350 14360 14370 14380 14390 14400
 TGTGCTCCACTTATTGTTGTTGCAACTCGTGGCGGTAAATCAGCAAAATCTGTTCGTAA
 14410 14420 14430 14440 14450 14460
 TACTTCCCAGAAAGCAAATATTCTTGCTATCACAAACAAATGAAAAAGCAGCGAACAGTTA
 14470 14480 14490 14500 14510 14520
 TGCCTAACTAAAGCGTAAGCAGCTGCATCGTTGAGCAGATTGATAGCACTGATGAGTT
 14530 14540 14550 14560 14570 14580
 TACCGTAAAGGTAAAGAGCTTGCATTAGCAACTGGTTAGCTAAAGAAGGCATATCGTT
 14590 14600 14610 14620 14630 14640
 GTTATGGTATCAGGTGCGTTAGTACCATCAGGTACAACGAATACGGCATCTGTTACCAA
 14650 14660 14670 14680 14690 14700
 CTTTAAGTTGCCATATTGATATTATAAAAAGAGAGCGTATGCTCTTTTTATATCT
 14710 14720 14730 14740 14750 14760
 GTAGTTATATGTCGTACAAAAAAATGATAAAGAGTACATAAAACTATTAAATATAGCGTA
 14770 14780 14790 14800 14810 14820
 ATATATAATGATTAACGGTGATGAAAGGGTAAATAATGGATAGTGTAAACATAAAAT

Fig. 5

14830 14840 14850 14860 14870 14880
 TGGCTTAGTCCTTCTGGCGGTGGTGCAGAAAGGTATTGCTCATCTGGTGTATTAAAATA

 14890 14900 14910 14920 14930 14940
 CCTGTTAGAGCAAGATATAAGACCGAATGTAATTGCGGGTACAAGTGCTGGCTCATGGT

 14950 14960 14970 14980 14990 15000
 TGGTGCACCTTATTGCTCAGGACTTGAGATTGATGACATTTACAATTCTCATCGATGT

 15010 15020 15030 15040 15050 15060
 AAAACCTTTCTGGAAAGTTACCCGTGCCGTGGCTTATAGACCCGGCAAATT

 15070 15080 15090 15100 15110 15120
 ATATCCTGAAGTGCTAAAATATATCCCCGAGGGATAGCTTGAGTACCTCAACCTGAATT

 15130 15140 15150 15160 15170 15180
 GCGCATTGTCGCCACCAACATGTTACCGTAAAGAGGCATATATTAAAGATGGCTCCGT

 15190 15200 15210 15220 15230 15240
 GATTAATGCCTTATTAGCATCAGCCAGCTACCCCTTAGTTCTCCGATGATCATTGA

 15250 15260 15270 15280 15290 15300
 CGATCAAGTGTATTAGATGGCGGTATTGTTAATCATTCGGTGCAGTGTCAATTGAAGA

 15310 15320 15330 15340 15350 15360
 TGATTGCGATAAAATAATCGGCGTACGTGTCGCCATTGTCAGGTCAGCTGACCGA

 15370 15380 15390 15400 15410 15420
 ACTCTCGAGTATAAAAGACGTGGTATTACGTGCGTTACGCTGCAGGGTAGTGGTGC

 15430 15440 15450 15460 15470 15480
 ATTAGATAAACTATCGCAATGTGATGTGCAAATTATCCAGAACCGCTATTGAATTACAA

 15490 15500 15510 15520 15530 15540
 TACGTTGCAACCGATGAAAAATCATTACGGGAGATCTACCAAGATTGGTTATGATGCTGC

 15550 15560 15570 15580 15590 15600
 AAAAGATCAACATGACAACCTTATGGCATTGAAAGAAAGTATCACCAACAGCGAGGTTAA

 15610 15620 15630 15640 15650 15660
 AAAGAACGTCTTAGCAAATGGTTGGTGATAAACTTGCTAGCAACAGCGGCAAATAGCG

 15670 15680 15690 15700 15710 15720
 GCCCACACGGATTTATACACTAGGATAATGGCGTTAATAGCCTCACTGTCGTTGTGG

 15730 15740 15750 15760 15770 15780
 TCTCTAATTAGCTAAATCTGTGTTACTGACTCCTATTAATCATAAACGATTAT

 15790 15800 15810 15820 15830 15840
 CACGGTAAACATGACTCAAATAAAACCCGTTCACGGCATGACACTCGAAAAAGTAAT

 15850 15860 15870 15880 15890 15900
 TAACAGTCTCGTTGAAACAATATGGCTGGGATGGTCTGGATACTACATCAACATTGCG

 15910 15920 15930 15940 15950 15960
 CTTTACTGAAAATCCAAGTGTAAAGTCTAGTCCTAAATTACGTAACCCCTTGGGC

Fig. 5

AM

15970 15980 15990 16000 16010 16020
 ACGTGATAAAAGTAGAAGCGCTATATATCAAAATGGTGA
 CACTGAAGGCTAACTGTCTCCACG
 16030 16040 16050 16060 16070 16080
 CTAGCGAACCGCTGTTATAGTTAATATAAGTACTATA
 AAGCAGGGCTCGTTAATTCAAGTA
 16090 16100 16110 16120 16130 16140
 TGTAATTAACTCCTGAATACCTCCGCTTATTCAACATT
 GACTCTCTAGATAACACTCTC
 16150 16160 16170 16180 16190 16200
 AACATTACACCTTCAACATCACAGCCTCCACATAACAT
 CCGATGACATAGCCCTGTTATT
 16210 16220 16230 16240 16250 16260
 TTTCACATTATCTATATGCTATATATTAGCCATTGAT
 CAATTGAGTTAATTCTGC
 16270 16280 16290 16300 16310 16320
 AATGACAAAGATATACCATCATCCAGTACAAATT
 ATTATGAAGATAACGACCATTCTGG
 16330 16340 16350 16360 16370 16380
 TGTTGTTTACCAACCTTAACTTTAAACTTTGAAC
 GTGCACGTGAGCATGTGATAAA
 16390 16400 16410 16420 16430 16440
 TAGTGACTTACTAGCAACATTGTGGAATGAAC
 CGCGGTTAGGTTGCCTGATAAAGC
 16450 16460 16470 16480 16490 16500
 CAATATGACTTTCAAGGATGGGGTCGAATTGCT
 GAAGTGTGTGATATTGCACACTTCTT
 16510 16520 16530 16540 16550 16560
 TGTCCTAGACGGTAAGTACAAACGATCTGG
 CGCCAAGAAGTATGGCGTCCGAATGCGAC
 16570 16580 16590 16600 16610 16620
 TAGGGCTGCCGTTATCGGTGATATTGAA
 ATGGTGTGCTTAGACAAACAAAACGTTACA
 16630 16640 16650 16660 16670 16680
 GCCCATCCCTGATGATGTGTTAGCTGCA
 ATGGTTAGTGAATAAAATGGTCATGCATA
 AAAT
 16690 16700 16710 16720 16730 16740
 AGTTAACATGATTCTGGCCCGTCACGTT
 ACAGATAAGAGGGCATCCGATGCCTCCTTC
 16750 16760 16770 16780 16790 16800
 CTATTACCAACTACTGCTTATCC
 CTTCTAACTATCTTCTAACTATCTT
 TAGCGTCCATAACACACTGA
 16810 16820 16830 16840 16850 16860
 GCATTTATTCTATTAACTAGTGATTGT
 GATTTAATTATCTTCTATATATGTA
 ATTAAATG
 16870 16880 16890 16900 16910 16920
 TAATTTCAATTATTTAGCTACATTA
 AAGGCTTACGAATGTACGCTAA
 ATGAGATGT
 16930 16940 16950 16960 16970 16980
 CAGACTAATTAGCTTATTAA
 ATCTGTTAGCCGTTATATT
 TATAAAAGATGGGATTAA
 16990 17000 17010 17020 17030 17040
 CTTAAATGCAATTAA
 ATTATGGCGTAAATAGAGTGAA
 AACATGGCTAATATTCA
 CACTAAAGTC
 17050 17060 17070 17080 17090 17100
 CTGAATTATATAAAGTT
 AATCTGTTATTAGCGTT
 ACCTGGTCTTAC
 TCAAGTGAGG

Fig. 5

17110 17120 17130 17140 17150 17160
 TTTATAGCCATTATTAGTGGGATTGAAAGTGATTTAAAGCTATGTATATTATTGCAAAT

 17170 17180 17190 17200 17210 17220
 ATAAATTGTAACAATTAAGACTTGGACACTTGAGTTCAATTCCAATTGATTGGCATAA

 17230 17240 17250 17260 17270 17280
 AATTTAAAACAGCTAAATCTACCTCAATCATTTAGCAAATGTATGCAGGTAGATTTTT

 17290 17300 17310 17320 17330 17340
 TCGCCATTTAAGAGTACACTGTACGCTAGGTTTTGTTAGTGTGCAAATGAACGTTT

 17350 17360 17370 17380 17390 17400
 GATGAGCATTGTTTTAGAGCACAAAATAGATCCTTACAGGAGCAATAACGCAATGGCTA

 17410 17420 17430 17440 17450 17460
 AAAAGAACACACATCGATTAAGCACGCCAAGGATGTGTTAAGTAGTGTGATGACAAAGT

 17470 17480 17490 17500 17510 17520
 TAAATTCTCGTTGCAAGAATGTCGATTGCCATCATGGTATGGCATCGTTTGAG

 17530 17540 17550 17560 17570 17580
 ATGCTAAAACCTGGATCAATTCTGGGATAACATCGTGAECTGTGACGCTATTATTG

 17590 17600 17610 17620 17630 17640
 ATGTGCCTAGCGATCGCTGGAACATTGACGACCATTACTCGGCTGATAAAAAAGCAGCTG

 17650 17660 17670 17680 17690 17700
 ACAAGACATACTGCAAACCGGGTGGTTTCATTCCAGAGCTTGATTTGATCCGATGGAGT

 17710 17720 17730 17740 17750 17760
 TTGGTTACCGCCAAATATCCTCGAGTTAATGACATCGCTCAATTGTTGTCATTAATTG

 17770 17780 17790 17800 17810 17820
 TTGCTCGTGTGATGTTAAGTGATGCTGGCATTGGTAGTGATTATGACCATGATAAAATTG

 17830 17840 17850 17860 17870 17880
 GTATCACGCTGGGTGTCGGTGGTCAGAAACAAATTGCCATTACGTCGCGCCTAC

 17890 17900 17910 17920 17930 17940
 AAGGCCCGGTATTAGAAAAAGTATTAAAAGCCTCAGGCATTGATGAAGATGATCGCGCTA

 17950 17960 17970 17980 17990 18000
 TGATCATCGACAAATTAAAAAGCCTACATCGCTGGGAAGAGAACTCATCCCCAGGCA

 18010 18020 18030 18040 18050 18060
 TGCTAGGTAACGTTATTGCTGGTCGTATGCCAATCGTTTGATTTGGTAGCTA

 18070 18080 18090 18100 18110 18120
 GTGTGGTTGATCGGGCATCGCCTGGCTCCCTGAGCTGTTAAATGGCGATCTCAGACT

 18130 18140 18150 18160 18170 18180
 TACTTGAATATCGTTCAGAAGTCATGATATCGGGTGGTGTATGTTGATAACTCGCCAT

 18190 18200 18210 18220 18230 18240
 TCATGTATATGTCATTCTCGAAAACACCAACCGCATTACCAATGATGATATCCGTCCGT

Fig. 5

18250 18260 18270 18280 18290 18300
 TTGATGACGATTCAAAAGGCATGCTGGTGGTGAAGGTATTGGCATGATGGCGTTAAC

 18310 18320 18330 18340 18350 18360
 GTCTTGAAGATGCTAACGTGACGGCGACAAAATTATCTGTACTGAAAGGTATCGGTA

 18370 18380 18390 18400 18410 18420
 CATCTTCAGATGGTCGTTCAAATCTATTTACGCTCCACGCCAGATGGCCAAGCAAAAG

 18430 18440 18450 18460 18470 18480
 CGCTAAAACGTGTTATGAAGATGCCGGTTTGCCCCCTGAAACATGTGGTCTAATTGAAG

 18490 18500 18510 18520 18530 18540
 GCCATGGTACGGGTACCAAAGCGGGTGATGCCGCAGAATTGCTGGTGGACCAAAACACT

 18550 18560 18570 18580 18590 18600
 TTGGCGCCGCCAGTGATGAAAAGCAATATATCGCCTTAGGCTCAGTTAAATCGCAAATTG

 18610 18620 18630 18640 18650 18660
 GTCATACTAAATCTCGGGCTGGCTCTCGGGTATGATAAGGCAGCATTAGCGCTGCATC

 18670 18680 18690 18700 18710 18720
 ATAAAATCTTACCTGCAACGATCCATATCGATAAACCAAGTGAAGCCTTGGATATCAAAA

 18730 18740 18750 18760 18770 18780
 ACAGCCCCGTTATACCTAACAGCAGCGAAACGCGTCTGGATGCCACGTGAAGATGGTATT

 18790 18800 18810 18820 18830 18840
 CACGTCGTGCAGGTATCAGCTATTTGGTTTGGCGGCCACCAACTCCATATTATTTAG

 18850 18860 18870 18880 18890 18900
 AAGAGTATCGCCCAGGTACGATAGCGCATATCGCTTAAACTCAGTGAGGCCAAACTGTGT

 18910 18920 18930 18940 18950 18960
 TGATCTCGCAACGACCAACAAGGTATTGTTGCTGAGTTAAATAACTGGCGTACTAAC

 18970 18980 18990 19000 19010 19020
 TGGCTGTCGATGCTGATCATCAAGGGTTTGTATTAATGAGTTAGTGACAACGTGGCCAT

 19030 19040 19050 19060 19070 19080
 TAAAAAACCCATCCGTTAACCAAGCTCGTTAGGTTTGTGCGCGTAATGCAAATGAAG

 19090 19100 19110 19120 19130 19140
 CGATCGCGATGATTGATAACGGCATTGAAACAATTCAATGCGAACGCAGATAAAATGACAT

 19150 19160 19170 19180 19190 19200
 GGTCAGTACCTACCGGGTTTACTATCGTCAAGCCGGTATTGATGCAACAGGTAAAGTGG

 19210 19220 19230 19240 19250 19260
 TTGCGCTATTCTCAGGGCAAGGTTCGCAATACGTGAACATGGGTCGTGAATTACCTGTA

 19270 19280 19290 19300 19310 19320
 ACTTCCCAGCATGATGACAGTGCTGCGCGATGGATAAAGAGTTCAAGTGGCGCTGGTT

 19330 19340 19350 19360 19370 19380
 TAGGCCAGTTATCTGCAGTTACTTCCCTATCCCTGTTATACGGATGCCGAGCGTAAGC

Fig. 5

19390 19400 19410 19420 19430 19440
 TACAAGAAGAGCAATTACGTTAACGCAACATGCGAACCGAGCGATTGGTAGTTGAGTG

 19450 19460 19470 19480 19490 19500
 TTGGTCTGTTCAAAACGTTAACGCAAGCAGGTTAAAGCTGATTTGCTGCCGGTCATA

 19510 19520 19530 19540 19550 19560
 GTTTCGGTGAGTTAACCGCATTATGGGCTGCCGATGTATTGAGCGAAAGCGATTACATGA

 19570 19580 19590 19600 19610 19620
 TGTTAGCGCGTAGTCGTGGTCAAGCAATGGCTGCGCCAGAGCAACAAAGATTGATGCAG

 19630 19640 19650 19660 19670 19680
 GTAAGATGGCCGCTGTTGGTGATCCAAAGCAAGTCGCTGTGATCATTGATAACCTTG

 19690 19700 19710 19720 19730 19740
 ATGATGTCTCTATTGCTAACTCAACTCGAATAACCAAGTTGTTATTGCTGGTACTACGG

 19750 19760 19770 19780 19790 19800
 AGCAGGTTGCTGTAGCGGTTACAACCTTAGGTAATGCTGGTTCAAAGTTGTGCCACTGC

 19810 19820 19830 19840 19850 19860
 CGGTATCTGCTGCCTCCATACACCTTAGTTGTCACCGCAAAACCAATTGCTAAAG

 19870 19880 19890 19900 19910 19920
 CGGTTGATAGCGCTAAATTAAAGCGCCAAGCATTCCAGTGTTGCTAATGGCACAGGCT

 19930 19940 19950 19960 19970 19980
 TGGTGCATTCAAGCAAACCGAATGACATTAAGAAAAACCTGAAAAACACATGCTGGAAT

 19990 20000 20010 20020 20030 20040
 CTGTTCATTTCAATCAAGAAATTGACAACATCTATGCTGATGGTGGCCGCTATTATCG

 20050 20060 20070 20080 20090 20100
 AATTGGTCCAAAGAATGTATTAACCTAAATTGGTTGAAAACATTCTCACTGAAAAATCTG

 20110 20120 20130 20140 20150 20160
 ATGTGACTGCTATCGCGGTTAATGCTAACCTAACCGTACGTAACAAATGCGCC

 20170 20180 20190 20200 20210 20220
 AAGCTGCGCTGCAAATGGCAGTGCTTGGTGTGCAATTAGACAATATTGACCCGTACGACG

 20230 20240 20250 20260 20270 20280
 CCGTTAACCGTCCACTGTTGCGCCGAAAGCATCACCAATGTTGATGAAGTTATCTGCAG

 20290 20300 20310 20320 20330 20340
 CGTCTTATGTTAGTCCGAAACGAAGAAAGCGTTGCTGATGCATTGACTGATGGCTGGA

 20350 20360 20370 20380 20390 20400
 CTGTTAACGCAAGCGAAAGCTGTACCTGCTGTTGTGTCACAACCACAAAGTGATTGAAAAGA

 20410 20420 20430 20440 20450 20460
 TCGTTGAAGTTGAAAAGATAGTTGAACGCATTGTCGAAGTAGAGCGTATTGTCGAAGTAG

 20470 20480 20490 20500 20510 20520
 AAAAATCGTCTACGTTAATGCTGACGGTTGCTTATATCGCAAAATAATCAAGACGTTA

Fig. 5

20530 20540 20550 20560 20570 20580
 ACAGCGTGTGTTAGCAACGTGACTAATAGCTCAGTGAECTAGCAGTGATGCTGACC

 20590 20600 20610 20620 20630 20640
 TTGTTGCCTCTATTGAACGCAGTGTGGTCAATTGTTGCACACCAACAGCAATTATTAA

 20650 20660 20670 20680 20690 20700
 ATGTACATGAACAGTTATGCAAGGTCCACAAGACTACGCGAAAACAGTGCAGAACGTAC

 20710 20720 20730 20740 20750 20760
 TTGCTGCGCAGACGAGCAATGAATTACCGGAAAGTTAGACCGTACATTGTCTATGTATA

 20770 20780 20790 20800 20810 20820
 ACGAGTTCCAATCAGAAACGCTACGTGTACATGAAACGTACCTGAACAATCAGACGAGCA

 20830 20840 20850 20860 20870 20880
 ACATGAACACCATGCTTACTGGTGCTGAAGCTGATGTGCTAGCAACCCCAATAACTCAGG

 20890 20900 20910 20920 20930 20940
 TAGTGAATAACAGCCGTTGCCACTAGTCACAAGGTAGTTGCTCCAGTTATTGCTAATACAG

 20950 20960 20970 20980 20990 21000
 TGACGAATGTTGTATCTAGTGTAGTAATAACGCGGGTTGCAGTGCAAACGTGGCAT

 21010 21020 21030 21040 21050 21060
 TAGCGCCTACGCAAGAAATCGCTCCAACAGTCGCTACTACGCCAGCACCCGCATTGGTTG

 21070 21080 21090 21100 21110 21120
 CTATCGTGGCTGAACCTGTGATTGTTGCGCATGTTGCTACAGAAGTTGCACCAATTACAC

 21130 21140 21150 21160 21170 21180
 CATCACTTACACCACTGTCGCAACTCAAGCGGCTATCGATGTAGCAACTATTAACAAAG

 21190 21200 21210 21220 21230 21240
 TAATGTTAGAAGTTGTTGCTGATAAAACCGGTTATCCAACGGATATGCTGGAACGTGAGCA

 21250 21260 21270 21280 21290 21300
 TGGACATGGAAGCTGACTTAGGTATCGACTCAATCAAACGTGTTGAGATATTAGGCGCAG

 21310 21320 21330 21340 21350 21360
 TACAGGAATTGATCCCTGACTTACCTGAACCTTAATCCTGAAGATCTTGTGAGCTACGCA

 21370 21380 21390 21400 21410 21420
 CGCTTGGTGAGATTGTCGATTACATGAATTCAAAGCCCAGGCTGTAGCTCCTACAAACAG

 21430 21440 21450 21460 21470 21480
 TACCTGTAACAAAGTGCACCTGTTCGCCTGCATCTGCTGGTATTGATTTAGCCCACATCC

 21490 21500 21510 21520 21530 21540
 AAAACGTAATGTTAGAAGTGGTTGCAGACAAAACCGGTTACCCAAACAGACATGCTAGAAC

 21550 21560 21570 21580 21590 21600
 TGAGCATGGATATGGAAGCTGACTTAGTATTGATTCAATCAAGCGTGTGAAATCTTAG

 21610 21620 21630 21640 21650 21660
 GTGCAGTACAGGAGATCATAACTGATTTACCTGAGCTAAACCCCTGAAGATCTTGTGAAT

Fig. 5

21670 21680 21690 21700 21710 21720
 TACGCACCCCTAGGTGAAATCGTTAGTTACATGCAAAGCAAAGCGCCAGTCGCTGAAAGTG

 21730 21740 21750 21760 21770 21780
 CGCCAGTGGCGACGGCTCCTGTAGCAACAAAGCTCAGCACCGTCTATCGATTTGAACCACA

 21790 21800 21810 21820 21830 21840
 TTCAAACAGTGATGATGGATGTAGTTGCAGATAAGACTGGTTATCCAAC TGACATGCTAG

 21850 21860 21870 21880 21890 21900
 AACTTGGCATGGACATGGAAGCTGATTTAGGTATCGATTCAATCAAACGTGTGGAAATAT

 21910 21920 21930 21940 21950 21960
 TAGGCGCAGTGCAGGAGATCATCACTGATTACCTGAGCTAAACCCAGAAGACCTCGCTG

 21970 21980 21990 22000 22010 22020
 AATTACGCACGCTAGGTGAAATCGTTAGTTACATGCAAAGCAAAGCGCCAGTCGCTGAGA

 22030 22040 22050 22060 22070 22080
 GTGCGCCAGTAGCGACGGCTCTGTAGCAACAAAGCTCTGCACCGTCTATCGATTTAAACC

 22090 22100 22110 22120 22130 22140
 ATATCCAAACAGTGATGATGGAAGTGGTTGCAGACAAAACCGGTATCCAGTAGACATGT

 22150 22160 22170 22180 22190 22200
 TAGAACTTGCTATGGACATGGAAGCTGACCTAGGTATCGATTCAATCAAGCGTGTAGAAA

 22210 22220 22230 22240 22250 22260
 TTTTAGGTGCGGTACAGGAAATCATTACTGACTTACCTGAGCTTAACCTGAAGATCTTG

 22270 22280 22290 22300 22310 22320
 CTGAACTACGTACATTAGGTGAAATCGTTAGTTACATGCAAAGCAAAGCGCCGTAGCTG

 22330 22340 22350 22360 22370 22380
 AAGCGCCTGCAGTACCTGTTGCAGTAGAAAGTGCACCTACTAGTGTAAACAGCTCAGCAC

 22390 22400 22410 22420 22430 22440
 CGTCTATCGATTTAGACCACATCCAAAATGTAATGATGGATGTTGCTGATAAGACTG

 22450 22460 22470 22480 22490 22500
 GTTATCCTGCCAATATGCTTGAATTAGCAATGGACATGGAAGCCGACCTTGGTATTGATT

 22510 22520 22530 22540 22550 22560
 CAATCAAGCGTGTGAAATTCTAGGCGCGGTACAGGAGATCATTACTGATTACCTGAAC

 22570 22580 22590 22600 22610 22620
 TAAACCCAGAAGACTTAGCTGAACTACGTACGTTAGAAGAAATTGTAACCTACATGCAA

 22630 22640 22650 22660 22670 22680
 GCAAGGGCGAGTGGTGTACTGTAATGTAGTGGCTAGCCCTGAAAATAATGCTGTATCAG

 22690 22700 22710 22720 22730 22740
 ATGCATTTATGCAAAGCAATGTGGCGACTATCACAGCGGCCGAGAACATAAGGCGGAAT

 22750 22760 22770 22780 22790 22800
 TTAAACCGGGCGCCGAGCGCAACCGTTGCTATCTCGTCTAAGCTCTATCAGTAAAATAA

Fig. 5

22810 22820 22830 22840 22850 22860
 GCCAAGATTGTAAAGGTGCTAACGCCCTAACCGTAGCTGATGGCACTGATAATGCTGTGT

 22870 22880 22890 22900 22910 22920
 TACTTGCAGACCACCTATTGCAAACCTGGCTGGAATGTAAC TGCAATTGCAACCAACTTGGG

 22930 22940 22950 22960 22970 22980
 TAGCTGTAACAAACGACGAAAGCATTAAAGTCAGTGAACCTGGTACTTTAAATGGCG

 22990 23000 23010 23020 23030 23040
 TTGATGAAACTGAAATCAACAAACATTATTACTGCTAACGCACAATTGGATGCAGTTATCT

 23050 23060 23070 23080 23090 23100
 ATCTGCACGCAAGTAGCGAAATTAAATGCTATCGAATACCCACAAGCATAAGCAAGGCC

 23110 23120 23130 23140 23150 23160
 TGATGTTAGCCTTCTTATTAGCGAAATTGAGTAAAGTAAC TCAAGCCGCTAAAGTGCCTG

 23170 23180 23190 23200 23210 23220
 GCGCCTTATGATTGTTACTCAGCAGGGTGGTCATTAGGTTTGATGATATCGATTCTG

 23230 23240 23250 23260 23270 23280
 CTACAAGTCATGATGTGAAAACAGACCTAGTACAAAGCGGCTAACGGTTAGTTAAGA

 23290 23300 23310 23320 23330 23340
 CACTGTCTCACGAGTGGGATAACGTATTCTGTCGTGCGGTTGATATTGCTTCGTCAATTAA

 23350 23360 23370 23380 23390 23400
 CGGCTGAACAAGTTGCAAGCCTTGTAGTGAAC TACTTGTATGCTAACACTGTATTAA

 23410 23420 23430 23440 23450 23460
 CAGAAGTGGTTATCAACAAGCTGGTAAAGGCCTTGAACGTATCACGTTAACCTGGTGTGG

 23470 23480 23490 23500 23510 23520
 CTA CTGACAGCTATGCATTAACAGCTGGCAATAACATCGATGCTAAC TCGGTATTTTAG

 23530 23540 23550 23560 23570 23580
 TGAGTGGTGGCGCAAAAGGTGTAAC TGCACATTGTGTTGCTCGTATAGCTAAAGAATATC

 23590 23600 23610 23620 23630 23640
 AGTCTAACGTTCATCTATTGGGACGTTCAACGTTCTCAAGTGACGAACCGAGCTGGGCAA

 23650 23660 23670 23680 23690 23700
 GTGGTATTACTGATGAAGCGGCCTTAAAGAAAGCAGCGATGCAGTCTTGATTACAGCAG

 23710 23720 23730 23740 23750 23760
 GTGATAAACCAACACCCGTTAACGATCGTACAGCTAACCAACCAAGCTAACCGTGTG

 23770 23780 23790 23800 23810 23820
 AAATTGCGCAAACCTTGTCTGCAATTACCGCTGCTGGTGGCCAAGCTGAATATGTTCTG

 23830 23840 23850 23860 23870 23880
 CAGATGTAAC TAAATGCAGCAAGCGTACAAATGGCAGTCGCTCCAGCTATCGCTAACGTCG

 23890 23900 23910 23920 23930 23940
 GTGCAATCACTGGCATCATTGCGCGGGTGTGTAGCTGACCAATTGAGCAAA

Fig. 5

23950 23960 23970 23980 23990 24000
 AACACACTGAGTGATTTGAGTCTGTTACAGCACTAAAATTGACGGTTGTTATCGCTAC

 24010 24020 24030 24040 24050 24060
 TATCAGTCACTGAAGCAACATCAAGCAATTGGTATTGTTCTCGTCAGCGGCTGGTT

 24070 24080 24090 24100 24110 24120
 TCTACGGTAACCCGGCCAGTCTGATTACTCGATTGCCAATGAGATCTAAATAAAACCG

 24130 24140 24150 24160 24170 24180
 CATAACCGCTTAAATCATTGCACCCACAAGCTCAAGTATTGAGCTTTAAGTGGGTCTT

 24190 24200 24210 24220 24230 24240
 GGGACGGTGGCATGGTAACGCCTGAGCTAACGTATGTTGACCAACGTGGTTACA

 24250 24260 24270 24280 24290 24300
 TTATTCCACTTGATGCAGGTGCACAGTTATTGCTGAATGAAGTACTAGCCGCTAATGATAACC

 24310 24320 24330 24340 24350 24360
 GTTGTCCACAAATCCTCGTGGTAATGACTTATCTAAAGATGCTAGCTCTGATCAAAGT

 24370 24380 24390 24400 24410 24420
 CTGATGAAAAGAGTACTGCTGTAAAAAGCCACAAGTTAGTCGTTATCAGATGCTTAG

 24430 24440 24450 24460 24470 24480
 TAACTAAAAGTATCAAAGCGACTAACAGTAGCTCTTATCAAACAAAGACTAGTGCTTAT

 24490 24500 24510 24520 24530 24540
 CAGACAGTAGTGCTTTCAAGGTTAACGAAAACCACTTTAGCTGACCACATGATCAAAG

 24550 24560 24570 24580 24590 24600
 GCAATCAGGTATTACCAACGGTATGCGCGATTGCTGGATGAGTGTGACGCAAAAGCGA

 24610 24620 24630 24640 24650 24660
 CTTATAGTAACCGAGACTGTGCATTGAAGTATGTCGGTTCAAGACTATAAATTGTTA

 24670 24680 24690 24700 24710 24720
 AAGGTGTGGTTTTGATGGCAAATGAGGCAGCGGATTACCAATTCGCTGTGA

 24730 24740 24750 24760 24770 24780
 CAAGGGCGTCAGAACAGGATTCTGAAGTCCGTATTGCCGAAAGATCTTAGCCTGAAAA

 24790 24800 24810 24820 24830 24840
 GTGACGGTAAACCTGTGTTTCAATTATGCAGCGACAATATTGTTAGCAACTCAGCCACTTA

 24850 24860 24870 24880 24890 24900
 ATGCTGTGAAGGTAGAACCTCCGACATTGACAGAAAGTGTGATAGCAACAAATAAGTAA

 24910 24920 24930 24940 24950 24960
 CTGATGAAGCACAAGCGTTATACAGCAATGGCACCTGTTCCACGGTGAAAGTCTGCAGG

 24970 24980 24990 25000 25010 25020
 GCATTAAGCAGATATTAAGTTGTGACGACAAGGGCCTGCTATTGGCTGTAGATAACCG

 25030 25040 25050 25060 25070 25080
 ATGTTGCAACAGCTAAGCAGGGATCCTCCCGTTAGCTGACAAACAATATCTTGCCAATG

Fig. 5

25090 25100 25110 25120 25130 25140
 ATTTGGTTTATCAGGCTATGTTGGCTGGGTGCGCAAACAATTGGTTAGGTAGCTTAC

 25150 25160 25170 25180 25190 25200
 CTTCGGTGACAACGGCTGGACTGTGTATCGTGAAGTGGTTAGATGAAGTATTTATC

 25210 25220 25230 25240 25250 25260
 TGCAACTTAATGTTGAGCATGATCTATTGGGTTACCGCGGAGTAAAGCCCGTTGTG

 25270 25280 25290 25300 25310 25320
 ATATTCAATTGATTGCTGCTGATATGCAATTACTTGCGAAGTGAATCAGCGCAAGTCA

 25330 25340 25350 25360 25370 25380
 GTGTCAGTGACATTTGAACGATATGTCATGATCGAGTAAATAAACGATAGGCGTCAT

 25390 25400 25410 25420 25430 25440
 GGTGAGCATGGCGTCTGCTTCTCATTTAACATTAACAATATTAATAGCTAACACGC

 25450 25460 25470 25480 25490 25500
 GGTTGCTTAAACCAAGTAAACAAAGTGCTTTAGCTATTACTATCCAAACAGGATATTA

 25510 25520 25530 25540 25550 25560
 AAGAGAATATGACGGAATTAGCTGTTATTGGTATGGATGCTAAATTAGCGGACAAGACA

 25570 25580 25590 25600 25610 25620
 ATATTGACCGTGTGGAACCGCGCTTCTATGAAGGTGCTTATGTAGGTAATGTTAGCCCG

 25630 25640 25650 25660 25670 25680
 TTAGTACCGAATCTAATGTTATTAGCAATGGCGAAGAACAAAGTTATTACTGCCATGACAG

 25690 25700 25710 25720 25730 25740
 TTCTTAACCTGTCACTAGCGCAAACGAATCAGTTAAATATAGCTGATATCGCGG

 25750 25760 25770 25780 25790 25800
 TGTTGCTGATTGCTGATGTAAGGTGCTGATGATCAGCTTGTAGTCCAAATTGCATCAG

 25810 25820 25830 25840 25850 25860
 CAATTGAAAAACAGTGTGCGAGTTGTGTTATTGCTGATTTAGGCCAAGCATTAAATC

 25870 25880 25890 25900 25910 25920
 AAGTAGCTGATTTAGTTAATAACCAAGACTGTCCTGTGGCTGTAATTGGCATGAATAACT

 25930 25940 25950 25960 25970 25980
 CGGTTAATTATCTCGTCATGATCTGAACTGTAACGCAACAATCAGCTTGATGAAA

 25990 26000 26010 26020 26030 26040
 CCTTCATGGTTATAACAATGTAGCTGGGTCGCGAGTTACTTATCGCTCAACTGCGT

 26050 26060 26070 26080 26090 26100
 TTGCCAATGCTAAGCAATGTTATATACGCCAACATTAAGGGCTCGCTCAATCGGCG

 26110 26120 26130 26140 26150 26160
 TAAATGCTCAATTAAACGTTGGAAACATTAGCGATACTGCAAAGACCGCATTGCAGCAAG

 26170 26180 26190 26200 26210 26220
 CTAGCATAACTGCAGAGCAGGTTGGTTAGAAGTGTCAAGCAGTCGCTGATTGGCAA

Fig. 5

26230 26240 26250 26260 26270 26280
 TCGCATTGTCTGAAAGCCAAGGTTAACATGCTGCTTATCATACGCACAACTTGCATA

 26290 26300 26310 26320 26330 26340
 CTGCATTAAGCAGTGCCGTAGTGTGACTGGTGAAGGGGGTGTTCACAGGTCGCAG

 26350 26360 26370 26380 26390 26400
 GTTATTGAAATGTGTAATTGGTTACATCAACGTTATATTCCGGCATTAAAGATTGGC

 26410 26420 26430 26440 26450 26460
 AACAAACCGAGTGACAATCAAATGTCACGGTGGCGGAATTCAACCATTCTATATGCCTGTAG

 26470 26480 26490 26500 26510 26520
 ATGCTCGACCTGGTCCCACATGCTGATGGCTCTGCACACATTGCCGTTATAGTTGTG

 26530 26540 26550 26560 26570 26580
 TGACTGCTGACAGCTATTGTCATATTCTTTACAAGAAAACGTCTTACAAGAAACTTGT

 26590 26600 26610 26620 26630 26640
 TGAAAAGAACAGTCTGCAAGATAATGACTTAACGAAAGCAAGCTTCAGACTCTTGAAC

 26650 26660 26670 26680 26690 26700
 AAAACAATCCAGTAGCTGATCTGCACACTAATGGTTACTTGCATCGAGCGAGTTAGCAT

 26710 26720 26730 26740 26750 26760
 TAATCATAGTACAAGGTAATGACGAAGCACAATTACGCTGTGAATTAGAAACTATTACAG

 26770 26780 26790 26800 26810 26820
 GGCAGTTAAGTACTACTGGCATAAGTACTATCAGTATTAAACAGATCGCAGCAGACTGTT

 26830 26840 26850 26860 26870 26880
 ATGCCCGTAATGATACTAACAAAGCTATAGCGCAGTGCTTATTGCCGAGACTGCTGAAG

 26890 26900 26910 26920 26930 26940
 AGTTAACGAAAGAAATAACCTGGCGTTGCTGGTATCGCTAGCGTGTAAATGAAGATG

 26950 26960 26970 26980 26990 27000
 CTAAAGAACGGAAACCCCGAAGGGCAGTTATTTACCGCGCAGCCTGCAAATAAACAGG

 27010 27020 27030 27040 27050 27060
 CTGCTAACAGCACACAGAACGGTGTACCTTCATGTACCCAGGTATTGGTGCTACATATG

 27070 27080 27090 27100 27110 27120
 TTGGTTAGGGCGTGATCTATTCTATTCACAGATTTATCAGCCTGTAGCGGCTT

 27130 27140 27150 27160 27170 27180
 TAGCCGATGACATTGGCGAAAGTCTAAAGATACTTACTTAATCCACGCAGTATTAGTC

 27190 27200 27210 27220 27230 27240
 GTCATAGCTTAAAGAACTCAAGCAGTTGGATCTGGACCTGCGCGGTAACTTAGCCAATA

 27250 27260 27270 27280 27290 27300
 TCGCTGAAGCCGGTGTGGTTGCTTGTGTTACCAAGGTATTGAAGAAGTCTTG

 27310 27320 27330 27340 27350 27360
 CCGTTAAAGCTGACTTGTACAGGTTATAGCATGGGTGAAGTAAGCATGTATGCAGCAC

Fig. 5

27370 27380 27390 27400 27410 27420
 TAGGCTGCTGGCAGCAACCAGGGATTGATGAGTGCTGCCCTGCACAATCGAATACCTTA

 27430 27440 27450 27460 27470 27480
 ATCATCAACTTGCAGCGAGTTAAGAACACTACGTCAAGCATTGGGGCATGGATGATGTAG

 27490 27500 27510 27520 27530 27540
 CTAACGGTACGTTCGAGCAGATCTGGAAACCTATACCATTAAGGCAACGATTGAACAGG

 27550 27560 27570 27580 27590 27600
 TCGAAATTGCCTCTGCAGATGAAGAGATCGTGTATTGCACCATTATCAATACACCTGATA

 27610 27620 27630 27640 27650 27660
 GCTTGTGTTAGCCGGTTATCCAGAAGCCTGTCAGCGAGTCATTAAGAATTAGGTGTGC

 27670 27680 27690 27700 27710 27720
 GTGCAATGGCATTGAATATGGCGAACGCAATTACAGCGGCCAGTTATGCCGAATACG

 27730 27740 27750 27760 27770 27780
 ATCATATGGTTGAGCTATACCATATGGATGTTACTCCACGTATTAATACCAAGATGTATT

 27790 27800 27810 27820 27830 27840
 CAAGCTCATGTTATTACCGATTCCACAAACGCAGCAAAGCGATTCCACAGTATTGCTA

 27850 27860 27870 27880 27890 27900
 AATGTTGTGATGTTGGGATTTCCCACGTTGGTTAACCTTACATGACAAAGGTG

 27910 27920 27930 27940 27950 27960
 CGCGGGTATTCAATTGAAATGGGTCCAGGTCGTTCTGTTATGTAGCTGGTAGATAAGATCT

 27970 27980 27990 28000 28010 28020
 TAGTTAATGGCGATGGCGATAATAAAAGCAAAGCCAACATGTATCTGTTCTGTGAATG

 28030 28040 28050 28060 28070 28080
 CCAAAGGACCAGTGATGAACTTACTTATTCGTGCGATTGCTAAGTTAATTAGTCATG

 28090 28100 28110 28120 28130 28140
 GCGTGAATTGAAATTAGATAGCTGTTAACGGGTCATCTGGTTAAAGCAGGCCATA

 28150 28160 28170 28180 28190 28200
 TAGCAAACACGAACAAATAGTCAACATCGATATCTAGCGCTGGTAGTTAACCTCATT

 28210 28220 28230 28240 28250 28260
 GTTGAATATGGATTAAAGAGAGTAATTATGGAAAATTGCAAGTAGTAGGTATTGCTA

 28270 28280 28290 28300 28310 28320
 ATTTGTTCCCGGGCTCACAGCACCGGATCAATTGGCAGCAATTGCTGAACAACAAG

 28330 28340 28350 28360 28370 28380
 ATTGCCGCAGTAAGGCAGCCGCTGTTCAAATGGCGTTGATCCTGCTAAATACCGCCA

 28390 28400 28410 28420 28430 28440
 ACAAAAGGTGACACAGATAAATTACTGTGTCAGGGCGTTACATCAGTGATTCAATT

 28450 28460 28470 28480 28490 28500
 TTGATGCTTCAGGTTATCAACTCGATAATGATTATTAGCCGGTTAGATGACCTTAATC

Fig. 5

28510 28520 28530 28540 28550 28560
 AATGGGGCTTATGTTACGAAACAAGCCCTTACCGATGCGGGTTATTGGGGCAGTACTG

 28570 28580 28590 28600 28610 28620
 CACTAGAAAAGTGGTGTGATTTAGGTAAATTGTCATTCCAACTAAATCATCTAAC

 28630 28640 28650 28660 28670 28680
 AGCTGTTTATGCCTTGTATCATCAAGTTGTTGATAATGCCTAAAGGCGGTATTACATC

 28690 28700 28710 28720 28730 28740
 CTGATTTCAATTAACGCATTACACAGCACCGAAAAAACACATGCTGACAATGCATTAG

 28750 28760 28770 28780 28790 28800
 TAGCAGGTTATCCAGCTGCATTGATCGCGCAAGCGGGCTTGGTGGTTCACATTTG

 28810 28820 28830 28840 28850 28860
 CACTGGATGCGGCTTGTGCTTCATCTGTATAGCGTTAAGTTAGCGTGTGATTACCTGC

 28870 28880 28890 28900 28910 28920
 ATACGGGTAAAGCCAACATGATGCTTGCTGGTGGTATCTGCAGCAGATCCTATGTCG

 28930 28940 28950 28960 28970 28980
 TAAATATGGGTTCTCGATATTCCAAGCTAACCGCTAACATGTACATGCCCGTTG

 28990 29000 29010 29020 29030 29040
 ACCAAAATTCAAGGTCTATTGCCGGTGAAGGCAGGGCATGATGGTATTGAAACGTC

 29050 29060 29070 29080 29090 29100
 AAAGTGATGCAGTACGTGATGGTACATATTACGCCATTATTAAGGCGCGCATTAT

 29110 29120 29130 29140 29150 29160
 CGAATGACGGTAAAGCGAGTTGTATTAAGCCGAACACCAAGGGCAAGTATTAGTAT

 29170 29180 29190 29200 29210 29220
 ATGAACGTGCTTATGCCGATGCAGATGTTGACCCGAGTACAGTTGACTATATTGAATGTC

 29230 29240 29250 29260 29270 29280
 ATGCAACGGGCACACCTAACGGGTGACAATGTTGAATTGCGTTGATGAAACCTTTCA

 29290 29300 29310 29320 29330 29340
 GTCGCGTAAATAACAAACCATTAACGGCTCGGTTAAATCTAACCTGGTCATTGTTAA

 29350 29360 29370 29380 29390 29400
 CTGCCGCTGGTATGCCGGCATGACCAAGCTATGTTAGCGCTAGGTAAAGGTCTTATTC

 29410 29420 29430 29440 29450 29460
 CTGCAACGATTAACCTAAAGCAACCACTGCAATCTAAACCGTTACTTACTGGCGAGC

 29470 29480 29490 29500 29510 29520
 AAATGCCAACGACGACTGTGCTTGGCCAACAACCTCCGGGTGCCAAGGCAGATAAACCGC

 29530 29540 29550 29560 29570 29580
 GTACCGCAGGTGTGAGCGTATTTGGTTGGCAGCAACGCCATTGGTATTACAAAC

 29590 29600 29610 29620 29630 29640
 AGCCAACGAAACACTCGAGACTAATTAGTGTGCTAAACCAACGTGAGCCCTTGGCTA

Fig. 5

29650 29660 29670 29680 29690 29700
 TTATTGGTATGGACAGCCATTTGGTAGTGCCAGTAATTAGCGCAGTTCAAAACCTTAT

 29710 29720 29730 29740 29750 29760
 TAAATAATAATCAAAATACCTTCGTGAATTACCGAGAACAAACGCTGGAAAGGCATGGAAA

 29770 29780 29790 29800 29810 29820
 GTAAACGCTAACGTACGTACAGTCAGTACATTACGCAGCGCCTAAAGGCAGTTACGTGTTG

 29830 29840 29850 29860 29870 29880
 AACAGCTAGATATTGATTCTTGCCTTAAAGTACCGCCTAATGAAAAAGATTGCTTGA

 29890 29900 29910 29920 29930 29940
 TCCCCGCAACAGTTAATGATGATGCAAGTGGCAGACAATGCTGCGAAAGACGGAGGTCTAG

 29950 29960 29970 29980 29990 30000
 TTGAAGGTCGTAATGTTGCGGTATTAGTAGCGATGGCATGGAACGGAAATTACATCAGT

 30010 30020 30030 30040 30050 30060
 ATCGTGGTCGCGTTAATCTAACCAACCCAAATTGAAGACAGCTTATTACAGCAAGGTATTA

 30070 30080 30090 30100 30110 30120
 ACCTGACTGTTGAGCAACGTGAAGAACTGACCAATATTGCTAAAGACGGTGGCTCGG

 30130 30140 30150 30160 30170 30180
 CTGCACAGCTAAATCAGTACCGAGTTCTGGTAATATTATGGCGTCACGTATTCGG

 30190 30200 30210 30220 30230 30240
 CGTTATGGGATTTCTGGCCTGCTATTACCGTATCGGCTGAAGAAAACCTGTTATTC

 30250 30260 30270 30280 30290 30300
 GTTGTGTTGAATTAGCTGAAACCTATTCAAACCAAGTGTGATGTTGAAGCCGTTATTATG

 30310 30320 30330 30340 30350 30360
 CTGCTGTTGATTCGTTCAATTGAAAACATTACTTACGTCAGCACTACGGTCCAG

 30370 30380 30390 30400 30410 30420
 TTAATGAAAAGGGATCTGTAAGTGAATGTGGTCCGGTTAATGAAAGCAGTTCAGTAACCA

 30430 30440 30450 30460 30470 30480
 ACAATATTCTGATCAGCAACAATGGCTGGTGAAGGCGCAGCGGCTATTGTCGTTA

 30490 30500 30510 30520 30530 30540
 AACCGTCATCGCAAGTCAGTGTGAGCAAGTTATGCGCGTATTGATGCGGTGAGTTTG

 30550 30560 30570 30580 30590 30600
 CCCCTGGTAGCAATGCGAAAGCAATTACGATTGCAGCGGATAAACGATTAACACTTGCTG

 30610 30620 30630 30640 30650 30660
 GTATCAGTGTGCTGATGTAGCTAGTGTGAAGCACATGCAAGTGGTTAGTGCCGAAA

 30670 30680 30690 30700 30710 30720
 ATAATGCTGAAAAACCGCGTTACCGACTTATACCCAAGCGCAAGTATCAGTTCGGTGA

 30730 30740 30750 30760 30770 30780
 AAGCCAATATTGGTCATACGTTAATGCCCTCGGGTATGGCGAGTATTAAAACGGCGC

Fig. 5

30790 30800 30810 30820 30830 30840
 TGCTGTTAGATCAGAATACGAGTCAGAGATCAGAAAAGCAAACATATTGCTATTAACGGTC

 30850 30860 30870 30880 30890 30900
 TAGGTCGTGATAACAGCTGCGCGCATCTTATCTTATCGAGTTAGCGCAAGCGCATCAAG

 30910 30920 30930 30940 30950 30960
 TTGCACCAGCGCCTGTATCTGGTATGCCAAGCAACGCCACAGTTAGTTAAAACCATCA

 30970 30980 30990 31000 31010 31020
 AACTCGGGGGTCAGTTAATTAGCAACGCGATTGTTAACAGTGCAGTTCATCTTAACAGC

 31030 31040 31050 31060 31070 31080
 CTATTAAAGCGCAGTTGCCGGTAAGCACTTAAACAAAGTTAACCGCAGTGATGATGG

 31090 31100 31110 31120 31130 31140
 ATAACCTGAAGCCCCAAGGTATTAGCGCTCATGCAACCAATGAGTATGTGGTACTGGAG

 31150 31160 31170 31180 31190 31200
 CTGCTAACACTCAAGCTCTAACATTCAAGCATCTCATGTTCAAGCGTCAAGTCATGCAC

 31210 31220 31230 31240 31250 31260
 AAGAGATAGCACCAAACCAAGTCAAAATATGCAAGCTACAGCAGCCGCTGTAAGTTCAC

 31270 31280 31290 31300 31310 31320
 CCCTTTCTAACATCAACACACAGCGCAGCCGTAGCGGCACCGAGCGTTGGAGTGA

 31330 31340 31350 31360 31370 31380
 CTGTGAAACATAAAGCAAGTAACCAAATTCTACAGCAAGCGTCTACGCATAAAGCATT

 31390 31400 31410 31420 31430 31440
 TAGAAAGTCGTTAGCTGCACAGAAAAACCTATCGCAACTTGTGAATTGCAAACCAAGC

 31450 31460 31470 31480 31490 31500
 TGTCAATCCAAACTGGTAGTGACAATACTAACATCTAACAAACTGCGTCAACAAGCAATACAG

 31510 31520 31530 31540 31550 31560
 TGCTAACAAATCCTGTATCAGCAACGCCATTAACACTTGTGCTAATGCGCCTGTAGTAG

 31570 31580 31590 31600 31610 31620
 CGACAAACCTAACCAAGTACAGAACGCAAAAGCGCAAGCAGCTGCTACACAAGCTGGTTTC

 31630 31640 31650 31660 31670 31680
 AGATAAAAGGACCTGTTGGTTACAACATATCCACCGCTGCAGTTATTGAAACGTTATAATA

 31690 31700 31710 31720 31730 31740
 AACCAAGAAAACGTGATTACGATCAAGCTGATTGGTTGAATTGCTGAAGGTGATATTG

 31750 31760 31770 31780 31790 31800
 GTAAGGTATTGGTGCTGAATACAATATTATTGATGGCTATTGCGCGTGTACGTCTGC

 31810 31820 31830 31840 31850 31860
 CAACCTCAGATTACTTGTAGTAACACGTGTTACTGAACTTGATGCCAAGGTGCATGAAT

 31870 31880 31890 31900 31910 31920
 ACAAGAAATCATACATGTGACTGAATATGATGTGCCGTGTTGATGCCACCCTTAAATTG

Fig. 5

31930 31940 31950 31960 31970 31980
 ATGGTCAGATCCCTGGTCTGTTGCCGTCGAATCAGGCCAGTGTGATTTGATGTTGATT

 31990 32000 32010 32020 32030 32040
 CATATATCGGTATTGATTCCAAGCGAAAGCGAACGTGTTACCGTTACTTGATTGTG

 32050 32060 32070 32080 32090 32100
 AATTAACCTTCCTTGAAGAGATGGCTTTGGTGGCGATACTTACGTTACGAGATCCACA

 32110 32120 32130 32140 32150 32160
 TTGATTCGTATGCACGTAACGGCGAGCAATTATTATTCTTCTTCATTACGATTGTTACG

 32170 32180 32190 32200 32210 32220
 TAGGGGATAAGAAGGTACTTATCATGCGTAATGGTTGTGCTGGTTCTTACTGACGAAG

 32230 32240 32250 32260 32270 32280
 AACTTTCTGATGGTAAAGGC GTTATTCAACGACAAGACAAAGCTGAGTTAGCAATG

 32290 32300 32310 32320 32330 32340
 CTGTTAAATCATCATCACGCCATTACAAACATAACCGTGGTCAATACGATTATAACG

 32350 32360 32370 32380 32390 32400
 ACATGATGAAAGTTGGTTAATGGTGTGATGTTGCCAGTTGTTGGTCCGCAATATGATCAAG

 32410 32420 32430 32440 32450 32460
 GTGGCCGTAATCCATCATTGAAATTCTCGTCTGAGAAGTTCTTGATGATTGAAACGTATT

 32470 32480 32490 32500 32510 32520
 CCAAGATAGACCCAACCGGTGGTCATTGGGGACTAGGCCTGTTAGAAGGTCAAGAAAGATT

 32530 32540 32550 32560 32570 32580
 TAGACCCCTGAGCATTGGTATTTCCCTTGTCACTTAAAGGTGATCAAGTAATGGCTGGTT

 32590 32600 32610 32620 32630 32640
 CGTTGATGTCGGAAGGTTGTGGCCAAATGGCGATGTTCTTCATGCTGTCTTGGTATGC

 32650 32660 32670 32680 32690 32700
 ATACCAATGTGAACAACGCTCGTTCCAACCACTACCCAGGTGAATCACAAACGGTACGTT

 32710 32720 32730 32740 32750 32760
 GTCGTGGCAGTACTGCCACAGCGCAATACCTAACCTACCGTATGGAAGTTACTGCCA

 32770 32780 32790 32800 32810 32820
 TGGGTATGCATCCACAGCCATTCAATGAAAGCTAATATTGATATTTGCTTGACGGTAAAG

 32830 32840 32850 32860 32870 32880
 TGGTTGTTGATTCAAAACTTGAGCGTGATGATCAGCGAACAGATGAGCATTCAAGATT

 32890 32900 32910 32920 32930 32940
 ACCCTGTAACACTGCCGAGTAATGTGGCGCTTAAAGCGATTACTGCACCTGTTGCGTCAG

 32950 32960 32970 32980 32990 33000
 TAGCACCAAGCATCTCACCCGCTAACAGCGCGGATCTAGACGAACGTGGTGTGAACCGT

 33010 33020 33030 33040 33050 33060
 TTAAGTTCCCTGAACGTCCGTTAATGCGTGTGAGTCAGACTTGTCTGCACCGAAAAGCA

Fig. 5

33070 33080 33090 33100 33110 33120
 AAGGTGTGACACCGATTAAGCATTGAAAGCGCCTGCTGTTGCTGGTCATCATAGAGTC

 33130 33140 33150 33160 33170 33180
 CTAACCAAGCACCCTTACACCTGGCATATGTTGAGTTGCGACGGTAATATTC

 33190 33200 33210 33220 33230 33240
 ACTGTTTCGGTCCTGATTTGATGTTATGAAGGTCGTATTCCACCTCGTACACCTTG

 33250 33260 33270 33280 33290 33300
 GCGATTTACAAGTTGTACTCAGGTTGAGAAGTCAGGGCGAACGTTGATCTTAAAA

 33310 33320 33330 33340 33350 33360
 ATCCATCAAGCTGTAGCTGAATACTATGTACCGGAAGACGCTGGTACTTTACTAAAA

 33370 33380 33390 33400 33410 33420
 ACAGCCATGAAAATGGATGCCTATTCAATTATGGAAATTGCATTGCAACCAAATG

 33430 33440 33450 33460 33470 33480
 GCTTTATTCTGGTTACATGGGCACGCGCTTAAATACCCCTGAAAAGATCTGTTCTTCC

 33490 33500 33510 33520 33530 33540
 GTAACCTTGATGGTAGCGGCACGTTATTAAAGCAGATTGATTTACGCGGCAAGACCATTG

 33550 33560 33570 33580 33590 33600
 TGAATAAAATCAGTCTGGTTAGTACGGCTATTGCTGGTGGCGCATTATTCAAAGTTCA

 33610 33620 33630 33640 33650 33660
 CGTTTGATATGTCGTAGATGGCGAGCTTTTATCTGGTAAAGCTGTATTGGTTACT

 33670 33680 33690 33700 33710 33720
 TTAGGGTGAATCACTGACTAACCAACTGGGCATTGATAACGGTAAACGACTAATGCGT

 33730 33740 33750 33760 33770 33780
 GGTTTGTGATAACAATACCCCGCAGCGAATATTGATGTGTTGATTAACGACTAATCAGT

 33790 33800 33810 33820 33830 33840
 CATTGGCTCTGTATAAGCGCCTGTGGATAAACCGCATTATAAATTGGCTGGTCAGA

 33850 33860 33870 33880 33890 33900
 TGAACTTATCGATACAGTGTCACTGGTTGAAGCGGGTGGTAAAGCAGGGTGGCTTATG

 33910 33920 33930 33940 33950 33960
 TTTATGGCGAACGTACGATTGATGCTGATGATTGGTCTTCCGTTATCACTCCACCAAG

 33970 33980 33990 34000 34010 34020
 ATCCGGTGATGCCAGGTTCATTAGGTGTTGAAGCTATTATTGAGTTGATGCAGACCTATG

 34030 34040 34050 34060 34070 34080
 CGCTTAAATGATTGGGTGGCAAGTTGCTAACCCACGTTCATTGCGCCGATGACGC

 34090 34100 34110 34120 34130 34140
 AAGTTGATTGGAAATACCGTGGCAAATTACGCCGCTGAATAAACAGATGTCAGTGGACG

 34150 34160 34170 34180 34190 34200
 TGCATATCACTGAGATCGTGAATGACGCTGGTGAAGTGCAGACGTTGGTATGCGAATC

Fig. 5

34210 34220 34230 34240 34250 34260
 TGTCTAAAGATGGTCTCGTATTTATGAAGTAAAAACATCGTTAAGTATTGTTGAAG

 34270 34280 34290 34300 34310 34320
 CGTAAAGGGTCAAGTGTAAACGTGCTTAAGCGCCGCATTGGTAAAGACGCTTGCACGCC

 34330 34340 34350 34360 34370 34380
 GTGAATCCGTCCATGGAGGCTTGGGGTTGGCATCCATGCCAACAAACAGCAAGCTTACTTT

 34390 34400 34410 34420 34430 34440
 AATCAATACGGCTTGGTGTCCATTAGACGCCCTCGAACCTAGTAGTTAATAGACAAAATA

 34450 34460 34470 34480 34490 34500
 ATTTAGCTGTGGAATGAATATAGTAAGTAATCATTCGGCAGCTACAAAAAAGGAATTAAG

 34510 34520 34530 34540 34550 34560
 AATGTCGAGTTAGGTTAACATAAACAGCAATTAACTGGGCTTGGAAAGTAGATCC

 34570 34580 34590 34600 34610 34620
 AGCGTCAGTCATACACAAGATGCAGAAATTAAAGCAGCTTAATGGATCTAACTAAACC

 34630 34640 34650 34660 34670 34680
 TCTCTATGTGGCGAATAATTAGCGTAACGGTATACTGCTAACATACGTCAGTAGCAGG

 34690 34700 34710 34720 34730 34740
 TCGGATCAGCAATAACATCGATGTTGATGTATTGGCGTTGCGCAAAAGTTAAACCCAGA

 34750 34760 34770 34780 34790 34800
 AGATCTGGGTGATGATGCTTACAAGAAACAGCACGGCGTTAAATATGCTTATCATGGCGG

 34810 34820 34830 34840 34850 34860
 TCGGATGGCAAATGGTATTGCCTCGGTTGAATTGGTTGCGTTAGGTAAAGCAGGGCT

 34870 34880 34890 34900 34910 34920
 GTTATGTTCATTTGGTGCAGGTCTAGTGCCTGATGCGGTTGAAGATGCAATTGTCG

 34930 34940 34950 34960 34970 34980
 TATTCAAGCTGAATTACCAAATGCCCTTATGCGGTTAACCTGATCCATGCACCAGCAGA

 34990 35000 35010 35020 35030 35040
 AGAACGATTAGAGCGTGGCGCGGTTAACGTTCTAAACTGGCGTCAAGACGGTAGA

 35050 35060 35070 35080 35090 35100
 GCCTCAGCTTACCTGGTTAACTGAAACACATTGTTGGTATCGTGCCTGGTCTAAC

 35110 35120 35130 35140 35150 35160
 TAAAAACGCAGATGGCAGTGTAAATATCGTAACAAGGTTATCGCTAAAGTATCGCGTAC

 35170 35180 35190 35200 35210 35220
 CGAAGTTGGTCGCCGTTATGGAACCTGCACCGCAAAATTACTGGATAAGTTATTAGA

 35230 35240 35250 35260 35270 35280
 ACAAAATAAGATCACCCCTGAACAAGCTGCTTAGCGTTGTTGACCTATGGCTGATGA

 35290 35300 35310 35320 35330 35340
 TATTACTGGGAAGCGGATTCTGGTGGTCATAAGATAACCGTCCGTTTTAACATTATT

Fig. 5

35350 35360 35370 35380 35390 35400
 ACCGACGATTATTGGTCTGCGTGATGAAGTCAAGCGAAGTATAACTCTCCTGCATT

 35410 35420 35430 35440 35450 35460
 ACGTGTGGTGGTGGTGGTATCGAACGCCTGAAGCAGCACTCGCTGCATTAAACAT

 35470 35480 35490 35500 35510 35520
 GGGCGCGGCTTATATCGTTCTGGGTTCTGTGAATCAGGCCTGTGTTGAAGCGGGTGCATC

 35530 35540 35550 35560 35570 35580
 TGAATATACTCGTAAACTGTTATCGACAGTTGAAATGGCTGATGTGACTATGGCACCTGC

 35590 35600 35610 35620 35630 35640
 TGCAGATATGTTGAATGGGTGTGAAGCTGCAAGTATTAACCGGGTTCTATGTTCCGC

 35650 35660 35670 35680 35690 35700
 GATGCGTGCAGAAACTGTATGACTTGTATGACTCGATTGAAGATATCCC

 35710 35720 35730 35740 35750 35760
 AGCTGCTAACGTGAGAAGATTGAAAAACAAATCTCCGTGCAAACCTAGACGAGATTG

 35770 35780 35790 35800 35810 35820
 GGATGGCACTATCGCTTCTTACTGAACCGCGATCCAGAAATGCTAGCCCGTGCACGAG

 35830 35840 35850 35860 35870 35880
 TAGTCCTAACGTAAAATGGCACTTATCTTCCGTGGTATCTGGCCTTCACGCTG

 35890 35900 35910 35920 35930 35940
 GTCAAAACACAGGCAGAGAAGGGACGTGAAATGGATTATCAGATTGGCAGGCCAAGTT

 35950 35960 35970 35980 35990 36000
 AGGTGCATTCAACAGCTGGGTGAAAGGTTCTTACCTTGAAGACTATAACCGCCGTGGCGC

 36010 36020 36030 36040 36050 36060
 TGTAGATGTTGCTTGCATATGTTAAAGGTGCTGCGTATTACACGTGTAAACCAGTT

 36070 36080 36090 36100 36110 36120
 GAAATTGCAAGGTGTTAGCTTAAGTACAGAATTGGCAAGTTATCGTACGAGTGATTAATG

 36130 36140 36150 36160 36170 36180
 TTACTTGATGATATGTGAATTAATTAAAGCGCCTGAGGGCGCTTTTTGGTTTTAACT

 36190 36200 36210 36220 36230 36240
 CAGGTGTTGTAACCGAAATTGCCCTTCAAGTTAGATCGATTACTCACTCACAATATG

 36250 36260 36270 36280 36290 36300
 TTGATATCGCACTGCCATATACTTGCCTACCAAGCCCTATATTGATAATGGTGTAA

 36310 36320 36330 36340 36350 36360
 TAGTCTTAATATCCGAGTCTTCTTCAGCATAATACTAATATAGAGACTCGACCAATGT

 36370 36380 36390 36400 36410 36420
 TAAACACAAACAAAGAATATATTCTGTGACTGCCTTATTATTAACGAGTGCAGTACGA

 36430 36440 36450 36460 36470 36480
 CAGCTACTACGCTAAACAATTGATATCAGCAATTGAACAAACGTATTCTGGTCGTATCG

Fig. 5

36490 36500 36510 36520 36530 36540
 GTGTGGCTGTTTAGATACGCAAAATAAACAAACGTGGGCTTACAATGGTGTACATT
 36550 36560 36570 36580 36590 36600
 TTCCGATGATGAGTACATTCAAAACCTCGCTGCGCAGAAATGCTAAGTGAATCGACAA
 36610 36620 36630 36640 36650 36660
 ATGGTAATCTGGATCCCAGTACTAGCTCATTGATAAAGGCTGAAGAATTAAATCCCTGGT
 36670 36680 36690 36700 36710 36720
 CACCAAGTCACTAAACGTTGTGAATAACACTATTACAGTGGCGAAAGCGTGTGAAGCAA
 36730 36740 36750 36760 36770 36780
 CAATGCTGACCAGTGATAATACCGCGGCTAATATTGTTTACAGTATATCGGAGGCCCTC
 36790 36800 36810 36820 36830 36840
 AAGGCAGTTACTGCATTCTTGCAGAAATTGGTGTGAAGAGAGTCAGTTAGATCGTATAG
 36850 36860 36870 36880 36890 36900
 AACCTGAATTGAATGAAGCTAAGGTGGAGACTTGCCTGATACCGACACCGAAAGCCA
 36910 36920 36930 36940 36950 36960
 TAGTTACCACGCTCAACAAACTACTACTTGGTGTGTTCTACTTGATTGGATAAAAACC
 36970 36980 36990 37000 37010 37020
 AACTTAAACATGGATGCAAAATAATAAAGTGTCAAGATCCTTACTGCCTCTATATTAC
 37030 37040 37050 37060 37070 37080
 CGCAAGGCTGGTTATTGCCGACCGCTCAGGTGCGGGTGGTAATGGTTCTCGAGGTATAA
 37090 37100 37110 37120 37130 37140
 CTGCTATGCTTGGCACTCGAGCGTCAACCGCTAACATCAGTATTTATTAAACCGAAA
 37150 37160 37170 37180 37190 37200
 CTGAGTTAGCAATGGCAATGCGCAATGAGATTATTGTTGAGATCGGTAAAGCTGATATTCA
 37210 37220 37230 37240 37250 37260
 AAGAATACGCGGTGAAATAATAAAGTTATTTTGATAATACTTTAACGAGCGTAGCTATC
 37270 37280 37290 37300 37310 37320
 GAAGTGAGGGCGTCAATTAGACACCTTGCCTCCCTACAAATCTAATGTGTATTACCT
 37330 37340 37350 37360 37370 37380
 CGGCTAGTACAATTGCCCTAAGTTATTCGTCGCTTGGCTTAGTGCATTGCGTTA
 37390 37400 37410 37420 37430 37440
 GCCAATGTGAACACCAAGGGACTTGTGTACCAACTACCAAGCGACTTGTGTT
 37450 37460 37470 37480 37490 37500
 TATCTTTCTTAGACAAACAGAGGTTAAATGAGTGAACGCCCTCCAAATCACAGGAATGAA
 37510 37520 37530 37540 37550 37560
 TCCGCATTTCAATAAAATCTAACCCGTACCAACTCCGTACAAGTTGATCTTAGTTGTT
 37570 37580 37590 37600 37610 37620
 AAAATCTATAATAAATTCAATTACGGAATTAAATCCGTACAACCTGGAGGTTTATGGCTAC

Fig. 5

37630 37640 37650 37660 37670 37680
 TGCAAGACTGATATCCGTTGGATGAAGAAATCAAAGCTAAGGCTGAGAAAGCATCAGC

 37690 37700 37710 37720 37730 37740
 TTTACTCGGCTTAAAAAGTTAACCGAATACGTTGTCGTTAATGGACGAAGATTCAAC

 37750 37760 37770 37780 37790 37800
 TAAAGTAGTTCTGAGCATGAGAGTATTACCGTTGAAGCGAATGTATTGACCCAATTAT

 37810 37820 37830 37840 37850 37860
 GGCTGCTTGATGAAGCGAAAGCCCCAATAAAGCATTACTTGAAGCCGCTGTATTTAC

 37870 37880 37890 37900 37910 37920
 TCAGAATGGTGAGTTAACGTGAGTTATTCCAAACGTTCAAAGAACTGGATAATCAAAA

 37930 37940 37950 37960 37970 37980
 CATGACAGAGCATCATTGACTGTGGCGAAAAAGAGCTAAATGATTTATCCAAACTCAA

 37990 38000 38010 38020 38030 38040
 GCAGCCAAACATATGCAAGCAGGTATTAGCCGCACTCTGGTTTACCTGCTCTGCCCG

 38050 38060 38070 38080 38090 38100
 TTACCAACAAAAATATCCAATTGCTCATTTATAGTATCGGCCAAGCTCAATTAGC

 38110 38120 38130 38140 38150 38160
 CGCGATACGTTACCACAAGCAATGGCTAAAAGTTACACGTTATCCTATCCCTGTTTT

 38170 38180 38190 38200 38210 38220
 CTTTGCTCAACTGCCGTCCATAAAGAGTTATGGGAGTGGTTAGGCAGTTAGC

 38230 38240 38250 38260 38270 38280
 TTAATTAAAGCGTTAGAGTACCTTGGGAAATTAACCTCACATGAGAGCTACGCCATC

 38290 38300 38310 38320 38330 38340
 GTTGTGATTGTTAACTGAACAAAGCTGAGTCATTCTACGCTAAATATGGTTGACGTT

 38350 38360 38370 38380 38390 38400
 CTCTGCGAAATAATGGTCGAGTAAGAATGTTATCAATGAAAACAGTCAGTTA

 38410 38420 38430 38440 38450 38460
 TTCACTAACAGTAAGAGTTAGTATAACAGTTGTATGAATTAAATTATTATTCGGTA

 38470 38480 38490 38500 38510 38520
 ATCTCATTGCGATCACGCTAGAAGTGCAGCGGGTCAGACCGAGGCCACAATAGCAGCCG

 38530 38540 38550 38560 38570 38580
 TTACGTTAGGGGATGACTTAAAAGATAACTACTACGTCAGTGGCGATCCTAGAGGATT

 38590 38600 38610 38620 38630 38640
 AAAGGTTATGATTACAACATTATTATTGTGCTTAATTTCTATCCAATATGCGC

 38650 38660 38670 38680 38690 38700
 AAGCTGAAATATCACTGAAGTAGACTTTATGTCAGTGTGATGATCCCTAAAGATGTTG

 38710 38720 38730 38740 38750 38760
 CCAAATTAAAGATAGGTGAATCCATAACGAACGCCCTATTCTAAGTAACCATCTA

Fig. 5

38770 38780 38790 38800 38810 38820
 TTCCACTCTCGCGGGAGACGGGTAACATATATTACTCTCATCAATTGCTAACTTGAAC

 38830 38840 38850 38860 38870 38880
 ATGACTCGATAGAATTGTTATGGCTCAATTGATGGCCGAAGATTCCAGCCTTACAAGA

 38890 38900 38910 38920 38930 38940
 TGCTGGTAAATAGCGATAGGTTGCCGTGCTAGTAATGACATCTCCAGTCACAGATC

 38950 38960 38970 38980 38990 39000
 TCTATGGCTGACTTACTCGGCTTATTTCTAATGTTGCGGTATCGATTGAATTGTG

 39010 39020 39030 39040 39050 39060
 ACTCGCTAACCTTAAAGAACATGAGCTCGGCCATCTATACGGAGCTGAACATGAAGAAATAT

 39070 39080 39090 39100 39110 39120
 ATGACGACTATGCTCTATGCTGCGATATGGAGACTATACGACTATCATGAAC

 39130 39140 39150 39160 39170 39180
 TGCAGCCTGAAATGAAAGAAAAACAAATGATAAGGCATATTCACTCCCTGAATTAAAAG

 39190 39200 39210 39220 39230 39240
 TGGATGGCTTGCAGTGCAGGAAATGAAATACGAATAACAAAAGGTTATTTAGACAATA

 39250 39260 39270 39280 39290 39300
 TTGGTCGGTTAGATAGGATTGGGATATTATTCTCATCGGCTCTACTTAGTGCTGTTAT

 39310 39320 39330 39340 39350 39360
 TATGAGTGCCAGTGCTCTATCTACGATATGGCTTAACAAGTATTATCTATAGACGC

 39370 39380 39390 39400 39410 39420
 TAAGGTGTTATGTATTAAAGGGATGTTCAAGATGAAACTAGGTGAAACGATGTATAGTT

 39430 39440 39450 39460 39470 39480
 GTATAACATTTTCAACGGTTGGAACGTTGATTCTATCGGGTAACAGACCGCGACGA

 39490 39500 39510 39520 39530 39540
 TCCGCATAAGTCCGATAGTCATTACTTAGTTGGTCAGATGTTAGATGCTTGTACTCAG

 39550 39560 39570 39580 39590 39600
 AAGATAATCGAAAATGTGTCAAATAGAAATCTGAGCATTGAATATGTGACGTTAGTG

 39610 39620 39630 39640 39650 39660
 AATTAAACCGTGCACGCCAATGCTGAAGGTTTACCGTTTGTATGCTTAAGTGG

 39670 39680 39690 39700 39710 39720
 TAGTTGAAAGATTATCCGACTTCAAATGATTATTTCTATAAGTTTCAGAGTTGAA

 39730 39740 39750 39760 39770 39780
 CTATCGATATCTATAAGTCTTAGTGCACAAAACAGAACTATTATAGCGCTCAAGAAGG

 39790 39800 39810 39820 39830 39840
 CGATAATTGATAATGAATTATGCCCTGTTACTATTAAGAGACTTTAAATGACTGAGAT

 39850 39860 39870 39880 39890 39900
 ATAAGATATGACACGGAAGAACATATTGATCACAGGCGCAAGTCAGGGTTGGGCCAGG

Fig. 5

39910 39920 39930 39940 39950 39960
TATGGCCATCGAATTGCAAAATCAGGTATACTTAGCAGCTTGTGCACGTAGACTTGA

39970 39980 39990 40000 40010 40020
TAATTTAGTTGCACTGAAAGCAGAACTCTTAGCCCTCAATCCTCACATCCAATCGAAAT

40030 40040 40050 40060 40070 40080
AAAACCTTTGATGTCAATGAACATGAACAAGTCTTCACTGTTCCATGAATTCAAAGC

40090 40100 40110 40120 40130
TGAATTTGGTACGCTTGATCGTATTATTGTTAATGCTGGATTAGGCAAGGGTGGATCC

Fig. 5

10	20	30	40	50	60
AAATGCAATTAAATTATGGCGTAAATAGAGTGAAAACATGGCTAATATTCACTAAGTCCTG					
70	80	90	100	110	120
AATTTTATATAAAGTTAATCTGTTATTTAGCGTTACCTGGTCTATCAGTGAGGTTT					
130	140	150	160	170	180
ATAGCCATTATTAGTGGGATTGAAGTGATTTAAAGCTATGTATATTATTGCAAATATA					
190	200	210	220	230	240
AATTGTAACAATTAAGACTTGGACACTTGAGTTCAATTGAAATTGATTGGCATAAAAT					
250	260	270	280	290	300
TTAAACAGCTAAATCTACCTCAATCATTAGCAAATGTATGCAGGTAGATTTTTCG					
310	320	330	340	350	360
CCATTTAAGAGTACACTTGTACGCTAGGTTTTGTTAGTGTGCAAATGAACGTTTGAT					
370	380	390	400	410	420
GAGCATTGTTTTAGAGCACAAATAGATCCTTACAGGAGCAATAACGAAATGGCTAAA					
430	440	450	460	470	480
AGAACACACCACATCGATTAAGCACGCCAAGGATGTGTTAAGTAGTGTGATCAACAGTTAA					
490	500	510	520	530	540
ATTCTCGTTGCAAGAATGTCCGATTGCCATCATTGGTATGGCATCGGTTTTGCAGATG					
550	560	570	580	590	600
CTAAAAACTGGATCAATTCTGGGATAACATCGTTGACTCTGTGGACGCTATTATTGATG					
610	620	630	640	650	660
TGCCTAGCGATCGCTGGAACATTGACGACCATTACTCGGCTGATAAAAAAGCAGCTGACA					
670	680	690	700	710	720
AGACATACTGCAAACCGCGTGTTTCATTCCAGAGCTGATTTGATCCGATGGAGTTG					
730	740	750	760	770	780
GTTTACCGCCAAATATCCTCGAGTTAATGACATCGCTCAATTGTTGTCATTAATTGTTG					
790	800	810	820	830	840
CTCGTGATGTATTAAGTGATGCTGGCATTGGTAGTGATTATGACCATGATAAAATTGGTA					
850	860	870	880	890	900
TCACGCTGGGTGTCGGTGGTCAGAAACAAATTGCCATTAAACGTCGCGCTACAAG					
910	920	930	940	950	960
GCCCGGTATTAGAAAAAGTATTAAGCCTCAGGCATTGATGAAGAGATGATCGCGCTATGA					
970	980	990	1000	1010	1020
TCATCGACAAATTAAAAAGCCTACATCGGCTGGGAAGAGAAACTCATTCCCAGGCATGC					
1030	1040	1050	1060	1070	1080
TAGGTAACGTTATTGCTGGTCGTATGCCAATCGTTTGATTTGGTAGCTAACTGTG					
1090	1100	1110	1120	1130	1140
TGGTTGATGCGGCATGCGCTGGCTCCCTGCACTGTTAAATGGCGATCTCAGACTTAC					

Fig. 6

1150 1160 1170 1180 1190 1200
 TTGAATATCGTTCAGAAGTCATGATATCGGGTGGTGTATGTTGTGATAACTCGCCATTCA
 1210 1220 1230 1240 1250 1260
 TGTATATGTCATTCTCGAAAACACCAGCATTACCAATGATGATATCCGTCCGTTG
 1270 1280 1290 1300 1310 1320
 ATGACGATTCAAAAGGCATGCTGGTGGTGAAGGTATTGGCATGATGGCGTTAACGTC
 1330 1340 1350 1360 1370 1380
 TTGAAGATGCTGAACGTGACGGCGACAAAATTATTCTGTACTGAAAGGTATCGGTACAT
 1390 1400 1410 1420 1430 1440
 CTTCAGATGGTCGTTCAAATCTATTACGCTCCACGCCAGATGGCCAAGCAAAAGCC
 1450 1460 1470 1480 1490 1500
 TAAAACGTGCTTATGAAGATGCCGGTTTGCCCCCTGAAACATGTGGTCTAATTGAAGGCC
 1510 1520 1530 1540 1550 1560
 ATGGTACGGGTACCAAAGCGGGTGTGCCGCAGAATTGCTGGCTTGACCAAACACTTG
 1570 1580 1590 1600 1610 1620
 GCGCCGCCAGTGATGAAAGCAATATATGCCCTTAGGCTCAGTAAATCGCAAATTGGTC
 1630 1640 1650 1660 1670 1680
 ATACTAAATCTGCGGCTGGCTCTCGGGTATGATTAAGGCAGCATTAGCGCTGCATCATA
 1690 1700 1710 1720 1730 1740
 AAATCTTACCTGCAACGATCCATATCGATAAACCAAGTGAAGCCTGGATATCAAAAACA
 1750 1760 1770 1780 1790 1800
 GCCCGTTACCTAAACAGCGAACCGTCCTTGGATGCCACGTGAAGATGGTATTCCAC
 1810 1820 1830 1840 1850 1860
 GTCGTGCAGGTATCAGCTCATTGGTTGGCGGCCACCAACTCCATATTATTTAGAAG
 1870 1880 1890 1900 1910 1920
 AGTATCGCCCAGGTACGATAGCGCATATCGCTTAAACTCAGTGAGCCAAACTGTGTTGA
 1930 1940 1950 1960 1970 1980
 TCTCGGCAAACGACCAACAAGGTATTGTTGCTGAGTTAAATACTGGCGTACTAAACTGG
 1990 2000 2010 2020 2030 2040
 CTGTCGATGCTGATCATCAAGGGTTGTATTAATGAGTTAGTGACAACGTGGCCATTAA
 2050 2060 2070 2080 2090 2100
 AAACCCCATCCGTTAACCAAGCTCGTTAGGTTTGCGCGTAATGCAAATGAAGCGA
 2110 2120 2130 2140 2150 2160
 TCGCGATGATTGATACGGCATTGAAACAATTCAATGCGAACGCAGATAAAATGACATGGT
 2170 2180 2190 2200 2210 2220
 CAGTACCTACCGGGGTTACTATCGTCAAGCCGGTATTGATGCAACAGGTAAAGTGGTTG
 2230 2240 2250 2260 2270 2280
 CGCTATTCTCAGGGCAAGGTTCGCAATACGTGAACATGGTCGTGAATTAAACCTGTAAC

Fig. 6

2290 2300 2310 2320 2330 2340
 TCCCAAGCATGATGCACAGTGCTGCGGCGATGGATAAAGAGTTCACTGCCGCTGGTTAG

 2350 2360 2370 2380 2390 2400
 GCCAGTTATCTGCAGTTACTTCCCTATCCCTGTTATACGGATGCCGAGCGTAAGCTAC

 2410 2420 2430 2440 2450 2460
 AAGAAGAGCAATTACGTTAACGCAACATGCGCAACCAGCAGCGATTGGTAGTTGAGTGTG

 2470 2480 2490 2500 2510 2520
 GTCTGTTCAAAACGTTAACGCAAGCAGGTTAAAGCTGATTTGCTGCCGGTCATAGTT

 2530 2540 2550 2560 2570 2580
 TCGGTGAGTTAACCGCATTATGGGCTGCCGATGTATTGAGCGAAAGCGATTACATGATGT

 2590 2600 2610 2620 2630 2640
 TAGCGCGTAGTCGTGGTCAAGCAATGGCTGCGCCAGAGCAACAAGATTTGATGCAGGTA

 2650 2660 2670 2680 2690 2700
 AGATGGCCGCTGTTGGTGTACCAAAGCAAGTCGCTGTGATCATTGATACCCCTGATG

 2710 2720 2730 2740 2750 2760
 ATGTCCTATTGCTAACTCAACTCGAATAACCAAGTTGTTATTGCTGGTACTACGGAGC

 2770 2780 2790 2800 2810 2820
 AGGTTGCTGTAGCGGTTACAACCTTAGGTAATGCTGGTTCAAAGTTGTGCCACTGCCGG

 2830 2840 2850 2860 2870 2880
 TATCTGCTGCGTTCCATACACCTTAGTCGTACGCGCAAAACCATTGCTAAAGCGG

 2890 2900 2910 2920 2930 2940
 TTGATAGCGCTAAATTAAAGGCCAAGCATTCCAGTGTGTTGCTAATGGCACAGGGCTGG

 2950 2960 2970 2980 2990 3000
 TGCATTCAAGCAAACCGAATGACATTAAGAAAAACCTGAAAAACCACATGCTGGAATCTG

 3010 3020 3030 3040 3050 3060
 TTCATTTCAATCAAGAAATTGACAACATCTATGCTGATGGTGGCCGCGTATTTATCGAAT

 3070 3080 3090 3100 3110 3120
 TTGGTCCAAAGAATGTATTAACCAAATTGGTTGAAAACATTCTCACTGAAAAATCTGATG

 3130 3140 3150 3160 3170 3180
 TGACTGCTATCGCGGTTAATGCTAATCCTAAACAACCTGCGGACGTACAAATGCGCCAAG

 3190 3200 3210 3220 3230 3240
 CTGCGCTGCAAATGGCAGTGCTGGTGTGCGATTAGACAATATTGACCCGTACGACGCCG

 3250 3260 3270 3280 3290 3300
 TTAAGCGTCCACTTGTGCGCCGAAAGCATCACCAATGTTGATGAAGTTATCTGCAGCGT

 3310 3320 3330 3340 3350 3360
 CTTATGTTAGTCCGAAACGAAGAAAGCGTTGCTGATGCATTGACTGATGGCTGGACTG

 3370 3380 3390 3400 3410 3420
 TTAAGCAAGCGAAAGCTGTACCTGCTGTTGTGTCACAACCACAAGTGAATTGAAAAGATCG

Fig. 6

3430 3440 3450 3460 3470 3480
 TTGAAGTTGAAAAGATAGTTGAACGCATTGTCGAAGTAGAGCGTATTGTCGAAGTAGAAA
 3490 3500 3510 3520 3530 3540
 AAATCGTCTACGTTAATGCTGACGGTCGCTTATATCGAAAATAATCAAGACGTTAACAA
 3550 3560 3570 3580 3590 3600
 GCGCTGTTGTTAGCAACGTGACTAATAGCTAGTCAGTGACTAGCAGTGATGCTGACCTTG
 3610 3620 3630 3640 3650 3660
 TTGCCTCTATTGAACGCAGTGTGGTCAATTGTTGCACACCAACAGCAATTATTAAATG
 3670 3680 3690 3700 3710 3720
 TACATGAACAGTTATGCAAGGTCCACAAGACTACGCGAAAACAGTGCAGAACGTACTTG
 3730 3740 3750 3760 3770 3780
 CTGCGCAGACGAGCAATGAATTACCGGAAAGTTAGACCGTACATTGTCTATGTATAACG
 3790 3800 3810 3820 3830 3840
 AGTTCCAATCAGAAACGCTACGTGTACATGAAACGTACCTGAACAATCAGACGAGCAACA
 3850 3860 3870 3880 3890 3900
 TGAACACCATGCTTACTGGTGCTGAAGCTGATGTGCTAGCAACCCCAATAACTCAGGTAG
 3910 3920 3930 3940 3950 3960
 TGAATACAGCCGTTGCCACTAGTCACAAGGTAGTTGCTCCAGTTATTGCTAATACAGTGA
 3970 3980 3990 4000 4010 4020
 CGAATGTTGTTAGTGTCAAGTAATAACCGCGGCGTTGCAGTGCAAACACTGTGGCATTAG
 4030 4040 4050 4060 4070 4080
 CGCCTACGCAAGAAATCGCTCCAACAGTCGCTACTACGCCAGCACCCGATTGGTTGCTA
 4090 4100 4110 4120 4130 4140
 TCGTGGCTGAACCTGTGATTGTTGCGCATGTTGCTACAGAAGTTGCACCAATTACACCAT
 4150 4160 4170 4180 4190 4200
 CAGTTACACCAGTTGTCGCAACTCAAGCGGCTATCGATGTAGCAACTATTAAACAAAGTAA
 4210 4220 4230 4240 4250 4260
 TGTTAGAAGTTGTTGCTGATAAAACCGGTATCCAACGGATATGCTGGAACGTGAGCATGG
 4270 4280 4290 4300 4310 4320
 ACATGGAAGCTGACTTAGTATCGACTCAATCAAACGTGTTGAGATATTAGGCGCAGTAC
 4330 4340 4350 4360 4370 4380
 AGGAATTGATCCCTGACTTACCTGAACCTTAATCCTGAAGATCTGCTGAGCTACGCACGC
 4390 4400 4410 4420 4430 4440
 TTGGTGAGATTGTCGATTACATGAATTCAAAAGCCCAGGCTGTAGCTCCTACAACAGTAC
 4450 4460 4470 4480 4490 4500
 CTGTAACAAGTGCACCTGTTGCCTGCATCTGCTGGTATTGATTAGCCACATCCAAA
 4510 4520 4530 4540 4550 4560
 ACGTAATGTTAGAAGTGGTTGCAGACAAAACCGGTTACCCAAACAGACATGCTAGAAGTGA

Fig. 6

4570 4580 4590 4600 4610 4620
 GCATGGATATGGAAGCTGACTTAGGTATTGATTCAATCAAGCGTGTGGAAATCTTAGGTG
 4630 4640 4650 4660 4670 4680
 CAGTACAGGAGATCATAACTGATTACCTGAGCTAACCCCTGAAGATCTTGCTGAATTAC
 4690 4700 4710 4720 4730 4740
 GCACCCTAGGTGAAATCGTTAGTTACATGCAAAGCAAAGCGCCAGTCGCTGAAAGTGC
 4750 4760 4770 4780 4790 4800
 CAGTGGCGACGGCTCTGTAGCAAACAAGCTCAGCACCGTCTATCGATTGAAACCACATT
 4810 4820 4830 4840 4850 4860
 AAACAGTGATGATGGATGTAGTTGCAGATAAGACTGGTTATCCAAGTGCAGATGCTAGAAC
 4870 4880 4890 4900 4910 4920
 TTGGCATGGACATGGAAGCTGATTAGGTATCGATTCAATCAAACGTGTGGAAATATTAG
 4930 4940 4950 4960 4970 4980
 GCGCAGTGCAGGAGATCATCACTGATTACCTGAGCTAACCCAGAAGACCTCGCTGAAT
 4990 5000 5010 5020 5030 5040
 TACGCACGCTAGGTGAAATCGTTAGTTACATGCAAAGCAAAGCGCCAGTCGCTGAGAGTG
 5050 5060 5070 5080 5090 5100
 CGCCAGTAGCGACGGCTCTGTAGCAAACAAGCTCTGCACCGTCTATCGATTAAACCATA
 5110 5120 5130 5140 5150 5160
 TCCAAACAGTGATGATGGAAGTGGTTGCAGACAAAACCGTTATCCAGTAGACATGTTAG
 5170 5180 5190 5200 5210 5220
 AACTTGCTATGGACATGGAAGCTGACCTAGGTATCGATTCAATCAAGCGTGTAGAAATTT
 5230 5240 5250 5260 5270 5280
 TAGGTGCGGTACAGGAAATCATTACTGACTTACCTGAGCTTAACCCCTGAAGATCTTGCTG
 5290 5300 5310 5320 5330 5340
 AACTACGTACATTAGGTGAAATCGTTAGTTACATGCAAAGCAAAGCGCCCGTAGCTGAAG
 5350 5360 5370 5380 5390 5400
 CGCCTGCAGTACCTGTTGCAGTAGAAAGTGCACCTACTAGTGTAAACAGCTCAGCACCGT
 5410 5420 5430 5440 5450 5460
 CTATCGATTTAGACCACATCCAAAATGTAATGATGGATGGATGTTGCTGATAAGACTGGTT
 5470 5480 5490 5500 5510 5520
 ATCCTGCCAATATGCTTGAATTAGCAATGGACATGGAAAGCCGACCTGGTATTGATTCAA
 5530 5540 5550 5560 5570 5580
 TCAAGCGTGTGAAATTCTAGGCGCGGTACAGGAGATCATTACTGATTACCTGAACCAA
 5590 5600 5610 5620 5630 5640
 ACCCAGAAGACTTAGCTGAACGTACGTACGTTAGAAGAAATTGTAACCTACATGCAAAGCA
 5650 5660 5670 5680 5690 5700
 AGGCGAGTGGTGTACTGAAATGTAGTGGCTAGCCCTGAAAATAATGCTGTATCAGATG

Fig. 6

5710 5720 5730 5740 5750 5760
 CATTATGAAAGCAATGTGGCAGTATCACAGCGGCCAGAACATAAGCGGAATT
 5770 5780 5790 5800 5810 5820
 AACCGGCCGAGCGCAACCGTTGCTATCTCTCGTCTAAGCTCTACAGTAAATAAGCC
 5830 5840 5850 5860 5870 5880
 AAGATTGTAAAGGTGCTAACGCCTTAATCGTAGCTGATGGCACTGATAATGCTGTGTTAC
 5890 5900 5910 5920 5930 5940
 TTGCAGACCACCTATTGAAACTGGCTGGAAATGTAAGTGCATTGCAACCAACTGGTAG
 5950 5960 5970 5980 5990 6000
 CTGTAACAAACGACGAAAGCATTAAATAAGTCAGTGAACCTGGTACTTTAAATGGCGTTG
 6010 6020 6030 6040 6050 6060
 ATGAAACTGAAATCAACAAACATTATTACTGCTAACGCACAATTGGATGCAGTTATCTATC
 6070 6080 6090 6100 6110 6120
 TGCACGCAAGTAGCGAAATTAAATGCTATCGAATACCCACAAGCATCTAAGCAAGGCCTGA
 6130 6140 6150 6160 6170 6180
 TGTTAGCCTTCTTATTAGCGAAATTGAGTAAGTAACCTCAAGCCGCTAAAGTGCCTGGCG
 6190 6200 6210 6220 6230 6240
 CCTTTATGATTGTTACTCAGCAGGGTGGTCATTAGGTTTGATGATATCGATTCTGCTA
 6250 6260 6270 6280 6290 6300
 CAAGTCATGATGTGAAAACAGACCTAGTACAAAGCGGCTTAAACGGTTAGTTAACGACAC
 6310 6320 6330 6340 6350 6360
 TGTCTCACGAGTGGATAACGTATTCTGTCGTGCGGTTGATATTGCTTCGTCTAACCG
 6370 6380 6390 6400 6410 6420
 CTGAACAAAGTTGCAAGCCTTGTAGTGAACACTTGATGCTAACACTGTATTAACAG
 6430 6440 6450 6460 6470 6480
 AAGTGGTTATCAACAAAGCTGGTAAAGGCCTGAAACGTATCACGTTAAGTGGTGTGGCTA
 6490 6500 6510 6520 6530 6540
 CTGACAGCTATGCATTAACAGCTGGCAATAACATCGATGCTAACCGGTATTTTAGTGA
 6550 6560 6570 6580 6590 6600
 GTGGTGGCGCAAAAGGTGTAAGTGCACATTGTTGCTCGTATAGCTAAAGAATATCAGT
 6610 6620 6630 6640 6650 6660
 CTAAGTTCATCTTATTGGGACGTTAACGTTCTCAAGTGACGAACCGAGCTGGCAAGTG
 6670 6680 6690 6700 6710 6720
 GTATTACTGATGAAGCGGCCGTTAAAGAAAGCAGCGATGCAAGTGGTGTGGCTGGCAAGTG
 6730 6740 6750 6760 6770 6780
 ATAAACCAACACCCGTTAAGATCGTACAGCTAATCAAACCAATCCAAGCTAATCGTAAA
 6790 6800 6810 6820 6830 6840
 TTGCGCAAACCTTGTCTGCAATTACCGCTGCTGGTGGGCCAGCTGAATATGTTCTGCAG

Fig. 6

6850 6860 6870 6880 6890 6900
 ATGTAACATGCAAGCGTACAAATGGCAGTCGCTCCAGCTATCGCTAAGTCGGTG

 6910 6920 6930 6940 6950 6960
 CAATCACTGGCATCATTATGGCGGGGTGTGTTAGCTGACCAATTGAGCAAAAAA

 6970 6980 6990 7000 7010 7020
 CACTGAGTGATTTGAGTCTGTTACAGCACTAAAATTGACGGTTGTTATCGCTACTAT

 7030 7040 7050 7060 7070 7080
 CAGTCACTGAAGCAAGCAACATCAAGCAATTGGTATTGTTCTCGTCAGCGGCTGGTTCT

 7090 7100 7110 7120 7130 7140
 ACGGTAACCCCGGCCAGTCTGATTACTCGATTGCCAATGAGATCTAAATAAAACCGCAT

 7150 7160 7170 7180 7190 7200
 ACCGCTTAAATCATGCACCCACAAGCTCAAGTATTGAGCTTAACTGGGGTCCTTGGG

 7210 7220 7230 7240 7250 7260
 ACGGTGGCATGGTAACGCCTGAGCTTAAACGTATGTTGACCAACGTGGTGTACATTA

 7270 7280 7290 7300 7310 7320
 TTCCACTTGTGAGGTGCACAGTTATTGCTGAATGAACTAGCCGCTAATGATAACCGTT

 7330 7340 7350 7360 7370 7380
 GTCCACAAATCCTCGTGGTAATGACTTATCTAAAGATGCTAGCTCTGATCAAAGTCTG

 7390 7400 7410 7420 7430 7440
 ATGAAAAGAGTACTGCTGTAAGGCCACAAGTTAGTCGTTATCAGATGCTTAGTAA

 7450 7460 7470 7480 7490 7500
 CTAAAGTATCAAAGCGACTAACAGTAGCTCTTTATCAAACAAAGACTAGTGCTTTATCAG

 7510 7520 7530 7540 7550 7560
 ACAGTAGTGTCTTCAGGTTAACGAAAACCACTTTAGCTGACCATGATCAAAGGCA

 7570 7580 7590 7600 7610 7620
 ATCAGGTATTACCAACGGTATGCGCGATTGCTGGATGAGTGATGCGAGCAAAGCGACTT

 7630 7640 7650 7660 7670 7680
 ATAGTAACCGAGACTGTGCATTGAAGTATGTCGGTTCGAAGACTATAAATTGTTAAAG

 7690 7700 7710 7720 7730 7740
 GTGTGGTTTGATGGCAATGAGGCAGGCGGATTACCAAATCCAATTGTCGCCGTGACAA

 7750 7760 7770 7780 7790 7800
 GGGCGTCAGAACAGGATTCTGAAGTCGTATTGCCGAAAGATCTTAGCCTGAAAAGTG

 7810 7820 7830 7840 7850 7860
 ACGGTAAACCTGTGTTCATTATGCAGCGACAATATTGTTAGCAACTCAGCCACTTAATG

 7870 7880 7890 7900 7910 7920
 CTGTGAAGGTAGAACTTCCGACATTGACAGAAAGTGTGATAGCAACAATAAGTAACTG

 7930 7940 7950 7960 7970 7980
 ATGAAGCACAAGCGTTATACAGCAATGGCACCTTGTCCACGGTGAAGTCTGCAGGGCA

Fig. 6

7990 8000 8010 8020 8030 8040
 TTAAGCAGATATTAAGTTGTGACGACAAGGGCCTGCTATTGGCTGTCAGATAACCGATG

 8050 8060 8070 8080 8090 8100
 TTGCAACAGCTAACGAGGGATCCTTCCCCTAGCTGACAACAATATCTTGCCAATGATT

 8110 8120 8130 8140 8150 8160
 TGGTTTATCAGGCTATGTTGGTCTGGGTGCGCAAACAATTTGGTTAGGTAGCTTACCTT

 8170 8180 8190 8200 8210 8220
 CGGTGACAACGGCTGGACTGTGTATCGTAAGTGGTTAGTGAAGTATTTATCTGC

 8230 8240 8250 8260 8270 8280
 AACTTAATGTTGTTGAGCATGATCTATTGGGTCACGCAGTAAAGCCCGTTGTGATA

 8290 8300 8310 8320 8330 8340
 TTCAATTGATTGCTGCTGATATGCAATTACTTGCCGAAGTGAATCAGCGCAAGTCAGTG

 8350 8360 8370 8380 8390 8400
 TCAGTGACATTTGAACGATATGTCATGATCGAGTAATAAAACGATAGGCGTCATGGT

 8410 8420 8430 8440 8450 8460
 GAGCATGGCGTCTGCTTCTCATTTAACATTAACAATATTAATAGCTAAACGCGGT

 8470 8480 8490 8500 8510 8520
 TGCTTAAACCAAGTAAACAAGTGCTTTAGCTATTACTATTCAAACAGGATATTAAAG

 8530 8540 8550 8560 8570 8580
 AGAATATGACGGAATTAGCTGTTATTGGTATGGATGCTAAATTAGCGGACAAGACAATA

 8590 8600 8610 8620 8630 8640
 TTGACCGTGTGGAACCGCTTCTATGAAGGTGCTTATGTAGGTAATGTTAGCCGCGTTA

 8650 8660 8670 8680 8690 8700
 GTACCGAATCTAATGTTATTAGCAATGGCGAAGAACAAAGTTATTACTGCCATGACAGTC

 8710 8720 8730 8740 8750 8760
 TTAACCTCTGTCAGTCTACTAGCGAACGAAATCAGTTAAATATAGCTGATATCGCGGTGT

 8770 8780 8790 8800 8810 8820
 TGCTGATTGCTGATGTAAGGTGCTGATGATCAGCTTGTAGTCCAAATTGCATCAGCAA

 8830 8840 8850 8860 8870 8880
 TTGAAAAACAGTGTGCGAGTTGTGTTATTGCTGATTAGGCCAAGCATTAAATCAAG

 8890 8900 8910 8920 8930 8940
 TAGCTGATTAGTTAATAACCAAGACTGTCCTGTGGCTGTAATTGGCATGAATAACTCGG

 8950 8960 8970 8980 8990 9000
 TTAATTATCTCGTCATGATCTGAATCTGTAAGTCAACAAATCAGCTTGATGAAACCT

 9010 9020 9030 9040 9050 9060
 TCAATGGTTATAACAATGTTAGCTGGGTTCGCGAGTTACTTATCGCTTCAACTGCGTTG

 9070 9080 9090 9100 9110 9120
 CCAATGCTAACGCAATGTTATATACGCCAACATTAGGGCTTCGCTCAATCGGGCGTAA

Fig. 6

9130 9140 9150 9160 9170 9180
 ATGCTCAATTAAACGTTGGAAACATTAGCGATACTGCAAAGACCGCATTGCAGCAAGCTA

 9190 9200 9210 9220 9230 9240
 GCATAACTGCAGAGCAGGTTGGTTAGAAGTGTCAAGTCGCTGATTGGCAATCG

 9250 9260 9270 9280 9290 9300
 CATTGTCTGAAAGCCAAGGTTAACATGTCTGCTTATCATACGCAAACTTGCATACTG

 9310 9320 9330 9340 9350 9360
 CATTAAAGCAGTGCCCCGTAGTGTGACTGGTGAAGGCGGGTTACAGGTCGCAGGTT

 9370 9380 9390 9400 9410 9420
 TATTGAAATGTGTAATTGGTTACATCAACGTTATATTCCGGCGATTAAAGATTGGCAAC

 9430 9440 9450 9460 9470 9480
 AACCGAGTGACAATCAAATGTCACGGTGGCGGAATTACCACTCTATATGCCTGTAGATG

 9490 9500 9510 9520 9530 9540
 CTCGACCTGGTCCCCATGCTGATGGCTCTGCACACATTGCCGTTATAGTTGTGA

 9550 9560 9570 9580 9590 9600
 CTGCTGACAGCTATTGTCATATTCTTTACAAGAAAAGCTTACAAGAACTTGTGTTGA

 9610 9620 9630 9640 9650 9660
 AAGAAACAGTCTTGCAAGATAATGACTTAACGAAAGCAAGCTTCAGACTCTTGAACAAA

 9670 9680 9690 9700 9710 9720
 ACAATCCAGTAGCTGATCTGCGCACTAACGGTTACTTGCATCGAGCGAGTTAGCATTAA

 9730 9740 9750 9760 9770 9780
 TCATAGTACAAGGTAATGACGAAGCACAATTACGCTGTGAATTAGAACTATTACAGGGC

 9790 9800 9810 9820 9830 9840
 AGTTAAGTACTACTGGCATAAGTACTATCAGTATTAAACAGATCGCAGCAGACTGTTATG

 9850 9860 9870 9880 9890 9900
 CCCGTAATGATACTAACAAAGCCTATAGCGCAGTGCTTATTGCCGAGACTGCTGAAGAGT

 9910 9920 9930 9940 9950 9960
 TAAGCAAAGAAATAACCTGGCGTTGCTGGTATCGCTAGCGTGTAAATGAAGATGCTA

 9970 9980 9990 10000 10010 10020
 AAGAATGGAAAACCCGAAGGGCAGTTATTTACCGCGCAGCCTGCAAATAACAGGGCTG

 10030 10040 10050 10060 10070 10080
 CTAACAGCACACAGAACGGTGTACCTTCATGTACCCAGGTATTGGTGTACATATGTTG

 10090 10100 10110 10120 10130 10140
 GTTTAGGGCGTGATCTATTCTATTCCCACAGATTATCAGCCTGTAGCGGCTTAG

 10150 10160 10170 10180 10190 10200
 CCGATGACATTGGCGAAAGTCTAAAAGATACTTACTTAATCCACGCAGTATTAGTCGTC

 10210 10220 10230 10240 10250 10260
 ATAGCTTAAAGAACTCAAGCAGTTGGATCTGGACCTGCGCGGTAACTTAGCCAATATCG

Fig. 6

10270 10280 10290 10300 10310 10320
 CTGAAGCCGGTGTGGGTTTGCTGTGTACCAAGGTATTGAAGAAGTCTTGCCG
 10330 10340 10350 10360 10370 10380
 TTAAAGCTGACTTGCACAGGTTATAGCATGGGTAAAGTAAGCATGTATGCAGCACTAG
 10390 10400 10410 10420 10430 10440
 GCTGCTGGCAGCAACCGGGATTGATGAGTGCTCGCCTGACAAATCGAACATACCTTAATC
 10450 10460 10470 10480 10490 10500
 ATCAACTTGCAGCGAGTTAAGAACACTACGTCAGCATTGGGCATGGATGATGTAGCTA
 10510 10520 10530 10540 10550 10560
 ACGGTACGTTCGAGCAGATCTGGGAAACCTATACCATTAAAGGCAACGATTGAACAGGTAG
 10570 10580 10590 10600 10610 10620
 AAATTGCCTCTGCAGATGAAGATCGTGTATTGCACCAATTACACCTGATAGCT
 10630 10640 10650 10660 10670 10680
 TGTTGTTAGCCGGTTATCCAGAACGCTGTCAGCAGTCATTAAAGAATTAGGTGTGCGTG
 10690 10700 10710 10720 10730 10740
 CAATGGCATTGAATATGGCGAACGCAATTACAGCGCCAGCTTATGCCAACGATC
 10750 10760 10770 10780 10790 10800
 ATATGGTTGAGCTATACCATATGGATGTTACTCCACGTATTAAACCAAGATGTATTCAA
 10810 10820 10830 10840 10850 10860
 GCTCATGTATTACCGATTCCACACGCAAGCGATTCCACAGTATTGCTAAAT
 10870 10880 10890 10900 10910 10920
 GTTTGTGTGATGTGGTGGATTCCCACGTTGGTTAACCTTACATGACAAAGGTGCGC
 10930 10940 10950 10960 10970 10980
 GGGTATTCAATTGAAATGGGTCCAGGTGTCGTTATGTAGCTGGTAGATAAGATCTTAG
 10990 11000 11010 11020 11030 11040
 TTAATGGCGATGGCGATAATAAGCAAAAGCCAACATGTATCTGTTCTGTGAATGCCA
 11050 11060 11070 11080 11090 11100
 AAGGCACCAAGTGTGAACTTACTTATATTGCGATTGCTAAGTTAATTAGTCATGGCG
 11110 11120 11130 11140 11150 11160
 TGAATTGAAATTAGATAGCTTGTAAACGGTCAATCCTGGTAAAGCAGGCCATATAG
 11170 11180 11190 11200 11210 11220
 CAAACACGAACAAATAGTCACATCGATATCTAGCGCTGGTGAGTTACCTCATTAGTT
 11230 11240 11250 11260 11270 11280
 GAAATATGGATTTAAAGAGAGTAATTATGGAAAATATTGCAGTAGTAGGTATTGCTAATT
 11290 11300 11310 11320 11330 11340
 TGTTCCCGGGCTCACAGCACCGGATCAATTGGCAGCAATTGCTTGAACAACAAGATT
 11350 11360 11370 11380 11390 11400
 GCCGCAGTAAGGCAGCGCTGTTCAAATGGCGTTGATCCTGCTAAATACCGCCAACA

Fig. 6

11410 11420 11430 11440 11450 11460
 AAGGTGACACAGATAAATTTACTGTGTGCACGGCGGTTACATCAGTGATTCAATTG

 11470 11480 11490 11500 11510 11520
 ATGCTTCAGGTTATCAACTCGATAATGATTATTTAGCCGGTTAGATGACCTTAATCAAT

 11530 11540 11550 11560 11570 11580
 GGGGGCTTATGTTACGAAACAAGCCCTAACCGATGCCGGTTATTGGGGCAGTACTGCAC

 11590 11600 11610 11620 11630 11640
 TAGAAAATGTGGTGTGATTTAGGTAATTGTCATTCCAACTAAATCATCTAATCAGC

 11650 11660 11670 11680 11690 11700
 TGTTTATGCCCTTGTATCATCAAAGTTGTTGATAATGCCCTAAAGGCGGTATTACATCCTG

 11710 11720 11730 11740 11750 11760
 ATTTTCAATTAAACGCATTACACAGCACCGAAAAAACACATGCTGACAATGCATTAGTAG

 11770 11780 11790 11800 11810 11820
 CAGGTTATCCAGCTGCATTGATCGCGCAAGCGCGGGCTTGGTGGTTCACATTTGCAC

 11830 11840 11850 11860 11870 11880
 TGGATGC GGCTTGTGCTTCATCTGTTAGCGTTAAGTTAGCGTGTGATTACCTGCATA

 11890 11900 11910 11920 11930 11940
 CGGGTAAAGCCAACATGATGCTGCTGGTGC GGTTCTGCAGCAGATCCTATGTTCGTAA

 11950 11960 11970 11980 11990 12000
 ATATGGGTTTCGATATTCCAAGCTTACCCAGCTAACAAATGTACATGCCCGTTGACC

 12010 12020 12030 12040 12050 12060
 AAAATTCAACAAGGTCTATTGCGGGTGAAGGCGCGGCATGATGGTATTGAAACGTCAAA

 12070 12080 12090 12100 12110 12120
 GTGATGCAGTACGTGATGGTGATCATATTACGCCATTATTAAAGGCGGCGCATTATCGA

 12130 12140 12150 12160 12170 12180
 ATGACGGTAAAGGCGAGTTGTATTAAGCCCGAACACCAAGGGCCAAGTATTAGTATATG

 12190 12200 12210 12220 12230 12240
 AACGTGCTTATGCCGATGCAGATGTTGACCCGAGTACAGTTGACTATATTGAATGTCAATG

 12250 12260 12270 12280 12290 12300
 CAACGGGACACCTAACGGGTGACAATGTTGAATTGCGTTCGATGGAAACCTTTTCAGTC

 12310 12320 12330 12340 12350 12360
 GCGTAAATAACAAACCATTACTGGGCTGGTTAAATCTAACCTGGTCATTGTTAACTG

 12370 12380 12390 12400 12410 12420
 CCGCTGGTATGCCCTGGCATGACCAAGCTATGTTAGCGCTAGGTAAAGGTCTTATTCTG

 12430 12440 12450 12460 12470 12480
 CAACGATTAACCTAACGCAACCACTGCAATCTAAAAACGGTTACTTTACTGGCGAGCAAA

 12490 12500 12510 12520 12530 12540
 TGCCAACGACGACTGTGTCTGGCCAACAACTCCGGGTGCCAAGGCAGATAAACCGCGTA

Fig. 6

12550 12560 12570 12580 12590 12600
 CCGCAGGTGTGAGCGTATTGGTTGGCAGCAACGCCATTGGTATTACAACAGC

 12610 12620 12630 12640 12650 12660
 CAACGAAACACTCGAGACTAATTTAGTGTGCTAACACCACGTGAGCCTTGGCTATTA

 12670 12680 12690 12700 12710 12720
 TTGGTATGGACAGCCATTTGGTAGTGCCAGTAATTAGCGCAGTTCAAAACCTTATTAA

 12730 12740 12750 12760 12770 12780
 ATAATAATCAAAATACCTCCGTGAATTACCAAGAACACGCTGGAAAGGCATGGAAAGTA

 12790 12800 12810 12820 12830 12840
 ACGCTAACGTCATGCAGTCGTACAATTACGCAAAGCGCTAAAGGCAGTTACGTTGAAC

 12850 12860 12870 12880 12890 12900
 AGCTAGATATTGATTCTTGCCTTAAAGTACCGCCTAATGAAAAAGATTGCTTGATCC

 12910 12920 12930 12940 12950 12960
 CGCAACAGTTAATGATGATGCAAGTGGCAGACAAATGCTGCGAAAGACGGAGGTCTAGTTG

 12970 12980 12990 13000 13010 13020
 AAGGTCGTAATGTTGCCTTAAAGTACCGCCTAATGAAACTGGAAATTACATCAGTATC

 13030 13040 13050 13060 13070 13080
 GTGGTCGCGTTAACCAACCCAAATTGAAGACAGCTTATTACAGCAAGGTATTAACC

 13090 13100 13110 13120 13130 13140
 TGACTGTTGAGCAACGTGAAGAACTGACCAATATTGCTAAAGACGGTGTGCCTCGGCTG

 13150 13160 13170 13180 13190 13200
 CACAGCTAAATCAGTATACGAGTTCATGGTAATATTATGGCGTCACGTATTCGGCGT

 13210 13220 13230 13240 13250 13260
 TATGGGATTTCTGGCCTGCTATTACCGTATCGGCTGAAGAAAATCTGTGTTATCGTT

 13270 13280 13290 13300 13310 13320
 GTGTTGAATTAGCTGAAAATCTATTCAAAACAGTGTGATGTTGAAGCCGTATTATTGCTG

 13330 13340 13350 13360 13370 13380
 CTGTTGATTGTCGGTTCAATTGAAAACATTACTTACGTCACTACGGTCCAGTTA

 13390 13400 13410 13420 13430 13440
 ATGAAAAGGGATCTGTAAGTGAATGTGGTCCGGTTAATGAAAGCAGTTCACTAACCAACA

 13450 13460 13470 13480 13490 13500
 ATATTCTTGATCAGCAACAATGGCTGGTGGGTGAAGGCGCAGCGGCTATTGTCGTTAAC

 13510 13520 13530 13540 13550 13560
 CGTCATCGCAAGTCACTGCTGAGCAAGTTATGCGCGTATTGATGCGGTGAGTTGGCC

 13570 13580 13590 13600 13610 13620
 CTGGTAGCAATGCGAAAGCAATTACGATTGCAGCGGATAAAGCATTAAACACTTGCTGGTA

 13630 13640 13650 13660 13670 13680
 TCAGTGCTGCTGATGTAGCTAGTGTGAAAGCACATGCAAGTGGTTAGTGCCGAAAATA

Fig. 6

13690 13700 13710 13720 13730 13740
 ATGCTGAAAAACCGCGTTACCGACTTATACCCAAAGCGCAAGTATCAGTCGGTGAAAG

 13750 13760 13770 13780 13790 13800
 CCAATATTGGTCATACGTTAATGCCTCGGGTATGGCGAGTATTATTAAAACGGCGCTGC

 13810 13820 13830 13840 13850 13860
 TGTTAGATCAGAATACGAGTCAGAGATCAGAAAAGCAAACATATTGCTATTAACGGTCTAG

 13870 13880 13890 13900 13910 13920
 GTCGTGATAACAGCTGCGCGATCTTATCTGAGTTCAAGCGCAAGCGCATCAAGTTG

 13930 13940 13950 13960 13970 13980
 CACCAGCGCCTGTATCTGGTATGGCCAAGCAACGCCACAGTTAGTTAAAACCATCAAAC

 13990 14000 14010 14020 14030 14040
 TCGGTGGTCAGTTAATTAGCAACCGGATTGTTAACAGTGCAGTTCAACAGCT

 14050 14060 14070 14080 14090 14100
 TTAAAGCGCAGTTGCCGGTAAGCACTAAACAAAGTTAACCAAGCCAGTGATGATGGATA

 14110 14120 14130 14140 14150 14160
 ACCTGAAGCCCCAAGGTATTAGCGCTCATGCAACCAATGAGTATGTGGTGACTGGAGCTG

 14170 14180 14190 14200 14210 14220
 CTAACACTCAAGCTTCTAACATTCAAGCATCTCATGTTCAAGCGTCAGTCATGCACAAG

 14230 14240 14250 14260 14270 14280
 AGATAGCACCAACCAAGTTAAAATATGCAAGCTACAGCAGCCGCTGTAAGTTCACCCC

 14290 14300 14310 14320 14330 14340
 TTTCTCAACATCAACACACAGCGCAGCCGTAGCGGACCGAGCGTTGGAGTGACTG

 14350 14360 14370 14380 14390 14400
 TGAAACATAAGCAAGTAACCAAATTCACTCAGCAAGCGTCTACGCATAAAGCATTAG

 14410 14420 14430 14440 14450 14460
 AAAGTCGTTAGCTGCACAGAAAAACCTATCGCAACTTGTGAATTGCAAACCAAGCTGT

 14470 14480 14490 14500 14510 14520
 CAATCCAAACTGGTAGTGACAATACATCTAACAAACTGCGTCACAAGCAATAAGTGC

 14530 14540 14550 14560 14570 14580
 TAACAAATCCTGTATCAGCAACGCCATTAACACTTGTGTCTAATGCGCCTGTAGTAGCGA

 14590 14600 14610 14620 14630 14640
 CAAACCTAACCAAGTACAGAAGCAAAAGCGCAAGCAGCTGCTACACAAGCTGGTTTCAGA

 14650 14660 14670 14680 14690 14700
 TAAAAGGACCTGTTGGTTACAACATCCACCGCTGCAGTTAATTGAAACGTATAATAAAC

 14710 14720 14730 14740 14750 14760
 CAGAAAACGTGATTACGATCAAGCTGATTGGTTGAATTGCGCTGAAGGTGATATTGGTA

 14770 14780 14790 14800 14810 14820
 AGGTATTGGTGCAGTAAACATATTATTGATGGCTATTGCGCTCGTGTACGTCTGCCAA

Fig. 6

14830 14840 14850 14860 14870 14880
 CCTCAGATTACTGTTAGTAACACGTGTTACTGAACCTGATGCCAAGGTGCATGAATACA

 14890 14900 14910 14920 14930 14940
 AGAAAATCATACATGTGTAATGATGTGCCTGTTGATGCACCGTTCTAATTGATG

 14950 14960 14970 14980 14990 15000
 GTCAGATCCCTTGGCTGTTGCCGTCGAATCAGGCCAGTGTGATTGATGTTGATTCAT

 15010 15020 15030 15040 15050 15060
 ATATCGGTATTGATTCCAAGCGAAAGGCGAACGTGTTACCGTTACTTGATTGTGAAT

 15070 15080 15090 15100 15110 15120
 TAACTTCCTTGAAGAGATGGCTTGGTGGCGATACTTACGTTACGAGATCCACATTG

 15130 15140 15150 15160 15170 15180
 ATTCGTATGCACGTAACGGCGAGCAATTATTATTCTTCCATTACGATTGTTACGTAG

 15190 15200 15210 15220 15230 15240
 GGGATAAGAAGGTACTTATCATGCGTAATGGTTGTGCTGGTTCTTACTGACGAAGAAC

 15250 15260 15270 15280 15290 15300
 TTTCTGATGGTAAAGGCATTTCATAACCGACAAAGACAAAGCTGAGTTAGCAATGCTG

 15310 15320 15330 15340 15350 15360
 TTAAATCATCATTACGCCGTTATTACAACATAACCGTGGTCAATACGATTATAACGACA

 15370 15380 15390 15400 15410 15420
 TGATGAAGTGGTTAATGGTATGTTGCCAGTTGTTGGTCCGAATATGATCAAGGTG

 15430 15440 15450 15460 15470 15480
 GCCGTAATCCATCATGAAATTCTCGTCTGAGAAGTCTTGATGATTGAACGTATTACCA

 15490 15500 15510 15520 15530 15540
 AGATAGACCCAACCGGTGGTCATTGGGACTAGGCCTGTTAGAAGGTCAAGAAAGATTAG

 15550 15560 15570 15580 15590 15600
 ACCCTGAGCATTGGTATTCCTGTCACTTAAAGGTATCAAGTAATGGCTGGTTCGT

 15610 15620 15630 15640 15650 15660
 TGATGTCGGAAGGTGTGGCAAATGGCGATGTTCTCATGCTGTCTGGTATGCATA

 15670 15680 15690 15700 15710 15720
 CCAATGTGAACACGCTCGTTCCAACCACTACCAGGTGAATCACAAACGGTACGTTGTC

 15730 15740 15750 15760 15770 15780
 GTGGGCAAGTACTGCCACAGCGCAATACCTTAACCGTATGGAAGTTACTGCGATGG

 15790 15800 15810 15820 15830 15840
 GTATGCATCCACAGCCATTATGAAAGCTAATATTGATATTTGCTTGACGGTAAAGTGG

 15850 15860 15870 15880 15890 15900
 TTGTTGATTCAAAAACTTGAGCGTATGATCAGCGAACAGATGAGCATTACGATTACC

 15910 15920 15930 15940 15950 15960
 CTGTAACACTGCCGAGTAATGTGGCGCTTAAAGCGATTACTGCACCTGTTGCGTCAGTAG

Fig. 6

15970 15980 15990 16000 16010 16020
 CACCAAGCATCTCACCCGCTAACAGCGCGGATCTAGACGAACGTGGTGTGAACCGTTA
 16030 16040 16050 16060 16070 16080
 AGTTTCTGAACGTCCGTTAATGCGTGTGAGTCAGACTGTCTGCACCGAAAAGCAAAG
 16090 16100 16110 16120 16130 16140
 GTGTGACACCGATTAAGCATTGGCATATGTTGAGTTGCGACGGTAATATTCATACT
 16150 16160 16170 16180 16190 16200
 ACCAACGACCGTTACACCTGGCATATGTTGAGTTGCGACGGTAATATTCATACT
 16210 16220 16230 16240 16250 16260
 GTTTCGGTCCCTGATTTGATGTTATGAAGGTCGTATTCCACCTCGTACACCTGTGGCG
 16270 16280 16290 16300 16310 16320
 ATTTACAAGTTGTTACTCAGGTTGAGTGCAGGGCGAACGTCTGATCTTAAAAATC
 16330 16340 16350 16360 16370 16380
 CATCAAGCTGTGTAGCTGAATACTATGTACCGGAAGACGCTGGTACTTTACTAAAAACA
 16390 16400 16410 16420 16430 16440
 GCCATGAAAACGGATGCCTTATTCAATTATGGAAATTGCATTGCAACCAAATGGCT
 16450 16460 16470 16480 16490 16500
 RTATTTCTGGTTACATGGGCACGACGTTAAATACCCCTGAAAAAGATCTGTTCTTCCGTA
 16510 16520 16530 16540 16550 16560
 ACCTTGATGGTAGCGGCACGTTATTAAAGCAGATTGATTTACGCGGCAAGACCATTGTGA
 16570 16580 16590 16600 16610 16620
 ATAAATCAGTCTGGTTAGTACGGCTATTGCTGGTGGCGCATTATTCAAAGTTTACCGT
 16630 16640 16650 16660 16670 16680
 TTGATATGTCGTAGATGGCGAGCTATTATACTGGTAAAGCTGTATTGGTTACTTTA
 16690 16700 16710 16720 16730 16740
 GTGGTGAATCACTGACTAACCAACTGGCATTGATAACGGTAAACGACTAACGTGGT
 16750 16760 16770 16780 16790 16800
 TTGTTGATAACAATACCCCCGGAGCGAATATTGATGTGTTGATTAACTAATCAGTCAT
 16810 16820 16830 16840 16850 16860
 TGGCTCTGTATAAGCGCCTGTGGATAACCGCATTATAAATTGGCTGGTGGTCAGATGA
 16870 16880 16890 16900 16910 16920
 ACTTTATCGATACAGTGTCACTGGTTGAAGGCGGTGGTAAAGCGGGCGTGGCTATGTT
 16930 16940 16950 16960 16970 16980
 ATGGCGAACGTACGATTGATGCTGATGATTGGTTCTCCGTTACTCCACCAAGATC
 16990 17000 17010 17020 17030 17040
 CGGTGATGCCAGGTTCATTAGGTGTTGAAGCTATTATTGAGTTGATGCAGACCTATGCGC
 17050 17060 17070 17080 17090 17100
 TTAAAAATGATTTGGGTGGCAAGTTGCTAACCCACGTTCATGCGCCGATGACGCAAG

Fig. 6

17110 17120 17130 17140 17150 17160
 TTGATTGGAAATACCGTGGGCAAATTACGCCGCTGAATAAACAGATGTCAGTGGACGTGC

 17170 17180 17190 17200 17210 17220
 ATATCACTGAGATCGTGAATGACGCTGGTGAAGTGCAGATCGTTGGTATGCGAATCTGT

 17230 17240 17250 17260 17270 17280
 CTAAAGATGGTCTCGGTATTTATGAAGTAAAAACATCGTTAAAGTATTGTTGAAGCGT

 17290 17300 17310 17320 17330 17340
 AAAGGGTCAAGTGTAAACGTGCTTAAGCGCCGCATTGGTTAAAGACGCTTGCACGCCGTG

 17350 17360 17370 17380 17390 17400
 AATCCGTCCATGGAGGCTTGGGTTGGCATCCATGCCAACACAGCAAGCTTACTTTAAT

 17410 17420 17430 17440 17450 17460
 CAATACGGCTTGGTGTCCATTAGACGCCTCGAACCTAGTAGTTAATAGACAAAATAATT

 17470 17480 17490 17500 17510 17520
 TAGCTGTGGAATGAATATAGTAAGTAATCATTGGCAGCTACAAAAAAGGAATTAAGAAT

 17530 17540 17550 17560 17570 17580
 GTCGAGTTAGGTTAACAAACAACCGCAATTAACTGGGCTTGGAAAGTAGATCCAGC

 17590 17600 17610 17620 17630 17640
 GTCAGTTACACAAAGATGCAGAAATTAAAGCAGCTTAATGGATCTAACTAAACCTCT

 17650 17660 17670 17680 17690 17700
 CTATGTGGCGAATAATTCAAGGCGTAACGGTATAGCTAATCATCGTCAGTAGCAGGTGC

 17710 17720 17730 17740 17750 17760
 GATCAGCAATAACATCGATGTTGATGTATTGGCGTTGCGCAAAAGTTAAACCCAGAAGA

 17770 17780 17790 17800 17810 17820
 TCTGGGTGATGATGCTTACAAGAACAGCACGGCGTTAAATATGCTTATCATGGCGGTGC

 17830 17840 17850 17860 17870 17880
 GATGGCAAATGGTATTGCCTCGGTTGAATTGGTTGCGTTAGGTAAAGCAGGGCTGTT

 17890 17900 17910 17920 17930 17940
 ATGTTCATTTGGTGCAGGTCTAGTGCCTGATGCGGTTGAAGATGCAATTGTCGTAT

 17950 17960 17970 17980 17990 18000
 TCAAGCTGAATTACCAATGGCCCTTATGCGGTTAACCTGATCCATGCACCAGCAGAAGA

 18010 18020 18030 18040 18050 18060
 AGCATTAGAGCGTGGCGCGTTGAACGTTCTAAACCTGGCGTCAAGACGGTAGAGGC

 18070 18080 18090 18100 18110 18120
 TTCAGCTTACCTGGTTAACCTGAACACATTGTTGGTATCGTGCCTGGTCTAACTAA

 18130 18140 18150 18160 18170 18180
 AACCGCAGATGGCAGTGTAAATATCGGTAACAAGGTTATCGCTAAAGTATCGCGTACCGA

 18190 18200 18210 18220 18230 18240
 AGTTGGTCGCCGCTTATGGAACCTGCACCGCAAAATTACTGGATAAGTTATTAGAAC

Fig. 6

18250 18260 18270 18280 18290 18300
 AAATAAGATCACCCCTGAACAAGCTGCTTAGCGTTGCTTGTACCTATGGCTGATGATAT

 18310 18320 18330 18340 18350 18360
 TACTGGGAAGCGGATTCTGGTGGTCATACAGATAACCGTCCGTTAACATTATTACC

 18370 18380 18390 18400 18410 18420
 GACGATTATTGGTCTCGGTGATGAAGTGAAGCGAAGTATAACTCTCTGCATTACG

 18430 18440 18450 18460 18470 18480
 TGTTGGTGCCTGGTGGTATCGAACGCCCTGAAGCAGCACTCGCTGCATTTAACATGGG

 18490 18500 18510 18520 18530 18540
 CGCGGCTTATATCGTTCTGGGTTCTGTGAATCAGGCCTGTGAAGCGGGTGCATCTGA

 18550 18560 18570 18580 18590 18600
 ATATACTCGTAAACTGTTATCGACAGTTGAAATGGCTGATGTGACTATGGCACCTGCTGC

 18610 18620 18630 18640 18650 18660
 AGATATGTTGAAATGGGTGTGAAGCTGCAAGTATTAAAACGCCGTTCTATGTTCGCGAT

 18670 18680 18690 18700 18710 18720
 GCGTGCAGAAGAAACTGTATGACTTGTATGTGGCTATGACTCGATTGAAGATATCCCAGC

 18730 18740 18750 18760 18770 18780
 TGCTGAACGTGAGAAGATTGAAAAACAAATCTCCGTGCAAACCTAGACGAGATTGGGA

 18790 18800 18810 18820 18830 18840
 TGGCACTATCGCTTCTTACTGAACCGCATCCAGAAATGCTAGCCCCGTGCAACGAGTAG

 18850 18860 18870 18880 18890 18900
 TCCTAAACGTAAAATGGCACTTATCTTCCGTGGTATCTGGCCTTCTTCACGCTGGTC

 18910 18920 18930 18940 18950 18960
 AACACAGGCGAGAAGGGACGTGAAATGGATTATCAGATTGGCAGGCCAAGTTAGG

 18970 18980 18990 19000 19010 19020
 TGCATTCAACAGCTGGGTGAAAGGTTCTTACCTTGAAGACTATAACCGCCGTGGCGCTGT

 19030 19040 19050 19060 19070 19080
 AGATGTTGCTTGCATATGCTTAAAGGTGCTGCGTATTACACGTGAAACAGTTGAA

 19090 19100 19110 19120 19130 19140
 ATTGCAAGGTGTTAGCTTAAGTACAGAATTGGCAAGTTACGTACGAGTGATTAATGTTA

 19150 19160 19170 19180 19190 19200
 CTTGATGATATGTGAATTAATTAAAGCGCCTGAGGGCGCTTTGGTTAACTCAG

 19210 19220
 GTGTTGTAACTCGAAATTGCCCTTTC

Fig. 6

A

Start/Stop Method: AA span ≥ 25
 Genetic Code: universal

Page 1

B

Start/Stop Method: AA span ≥ 25
 Genetic Code: universal

FIG 7

Start/Stop Method: A. span ≥ 25
Genetic Code: universal

Fig. 8

Window Size = 8
Min. % Score = 60
Hash Value = 2

Scoring Matrix: BLOSUM 62

Fig. 9

Window Size = 8
Min. % Score = 60
Hash Value = 2

Scoring Matrix: BLOSUM 62

pro sh orf7

Fig. 10

Window Size = 8
Min. % Score = 60
Hash Value = 2

Scoring Matrix: BLOS 62

Fig. 11

Window Size = 8
Min. % Score = 60
Hash Value = 2

Scoring Matrix: BLOE . 62

Fig. 12

COMPLEMENTATION Sp / Vm

Fig. 13

Fig. 14

Fig. 15

<u>EPA (% Fatty acids)</u>	<u>DHA (% Fatty acids)</u>	<u>20°C</u>
0.00	0.06	pEPAD8
0.60	0.70	4
0.64	0.66	5
0.33	0.22	6s
0.45	0.59	6l
		<u>23°C</u>
0.02	0.06	pEPAD8
0.32	0.62	4
0.27	0.22	6s
0.18	0.65	6l

Fig. 16

FIG 17

pCGN8535

FIG 18

pCGN8537

FIG 19

FIG 20

Y AZAWA (ORF1) (ORF2) (ORF3) (ORF4) (ORF5) (ORF6) (ORF7) (ORF8)

FIG 21

pCGN8556

FIG 23

pCGN8560

FIG 22

ATT GGT AAA AAT AGG GGT TAT GTT TGT TGC TTT AAA GAG TGT CCT GAA
I G K N R G Y V C C P K E C P E>
↓ 9157 ↓
AAA TTG CTA ACT TCT CGA TTG ATT TCC TTA TAC TTC TGT CCG TTA ACA
K L L T S R L I S L Y F C P L T>
↓
ATA CAA GAG TGC GAT AAC CAG ACT ACA GAG TTG GTT AAG TCA TGG CTG
I Q E C D N Q T T E L V K S W L>
↓
CCT GAA GAT GAG TTA ATT AAG GTT AAT CGC TAC ATT AAA CAA GAA GCT
P E D E L I K V N R Y I K Q E A>
↓ 9016 ↓
AAA ACT CAA GGT TTA ATG GTA AGA G
K T Q G L M V R>

FIG 24

10	20	30	40	50	60
AGCGAAATGCTTATCAAGAAATTCCAGATCAATAACATCACTGGGAAGAAAATTCACTCC					
70	80	90	100	110	120
CTGGTTCACTGGTAACGTTATTCGGCCGTATTGCTAACCGCTTCGACCTGGTGGCA					
130	140	150	160	170	180
TGAACGTGTCGTTGATGCAGCATGTGCAGGCCCTTGCTGCATTGCGTATGGCATTAA					
190	200	210	220	230	240
GCGAGCTTGGTGAAGGCCGCAGCGAAATGATGATTACAGGTGGTGTGTACCGATAACT					
250	260	270	280	290	300
CACCAACCATGTACATGAGCTCTCTAAACACCGGCATTACGACAAACGAAACRATT					
310	320	330	340	350	360
AACCATTGATATTGACTCGAAAGGTATGATGATTGGTGAAGGTATCGGTATGATTGGC					
370	380	390	400	410	420
TTAAACGTCTTGAAGACGCAGAGCGTGTGGCGAACGTATCTATTCCGTGATTAAAGGTG					
430	440	450	460	470	480
TTGGGTGCATCTTCAGACGTAATTATTAAAGAGTANTTATGCGCNCGTCCCTGAAGGTC					
490	500	510	520	530	540
AGGCTAAGGCACTTAACGTGCTTACGACGATGCAGGTTCCGCACACACTGGCT					
550	560	570	580	590	600
TACTTGAAGGCCACGGCACAGGCACAGCAGCAGGTGATGTGGCAGAATTCACTGGCTTA					
610	620	630	640	650	660
ACTCTGTATTCACTGAAGGCAATGACGAAACACATCGCATTAGGTTCACTGAAAT					
670	680	690	700	710	720
CACAGATTGGTCACACTAAATCAACAGCGGTACTGCGGGTCAATCAAGCGTCTTAG					
730	740	750	760	770	780
CACTGCACCATAAAGTACTGCCGCAACAAATCAATGTAACCAAGCCCTAACCTAAACTGA					
790	800	810	820	830	840
ATATTGAAGACTCGCCTTCTACCTCAATAACACAGACGCGTCCATGGATGCAACGTGTCG					
850	860	870	880		
ATGGTACACCCGCGTCGTCGGTATTAGCTCATTTGGTTGGTG					

SS9 Photobacter

PCR Product Using Primers
Presented in Example I

FIG 25

3-21-VECTOR) by ORF. Ligated Sequence
Tuesday, November 22, 1994 11:06 PM

Page 1

Sequence Range: 1 to 605

10 20 30 40 50 60
1-21-VECTOR CCAGGTTAA GCGTTCGACG GCGCTTAAAG AGATGGGTTT TTGCGCTTAA AACAGCTTGG
1100 120 101 TO 605 OF ORF-2-A 1500 1600

0. JNP11630 1030 1040 1050 1060 1070
GCGAGTTAA GCGCTTAAAG GCGCTTAAAG AGATGGGTTT TTGCGCTTAA AACAGCTTGG

1-21-VECTOR CCAGGTTAA GCGTTCGACG GCGCTTAAAG AGATGGGTTT TTGCGCTTAA AACAGCTTGG

70 80 90 100 110 120
3-21-VECTOR TCTGATTTA GCGGATGTTA CGGTTTCCAA AGCGGCGTGT GCGGCGATTTT TTGCGCTTAA
1700 180 101 TO 605 OF ORF-2-A 2100 2200

0. JNP11630 1080 1100
TCTGATTTA GCGGATGTTA

3-21-VECTOR TCTGATTTA GCGGATGTTA

0. JNP1 61 1000 1010 1020

1-21-VECTOR

CAG AGCGGCGTGT GCGGCGATTTT TTGCGCTTAA

130 140 150 160 170 180
3-21-VECTOR GCGGAGCG TTGCGCTTAA GCGGATGTTA AGCGGCGTGT TTGCGCTTAA GCGGCGATTT
3300 340 101 TO 605 OF ORF-2-A 3700 3800

0. JNP1 61 1100 1120
0 AGCGGCGTGT GCGGCGATTTA

3-21-VECTOR

0 AGCGGCGTGT GCGGCGATTTA

0. JNP1 61 1030
ATCGGCGATTTA

3-21-VECTOR GCGGAGCG

190 200 210 220 230 240
3-21-VECTOR ATCGGCGATTTA GCGGATGTTA TTGCGCTTAA GCGGCGATTTT AGCGGCGTGT
3800 390 101 TO 605 OF ORF-2-A 4100 4200

0. JNP1 61 4300 4400
00 GCGGCGATTTT TTGCGCTTAA

3-21-VECTOR

00 GCGGCGATTTT AGCGGCGTGT

0. JNP11630 1210 1230 1250
ATCGGCGATTTA GCGGATGTTA TTGCGCTTAA AGCGGCGTGT

3-21-VECTOR ATCGGCGATTTA GCGGATGTTA TTGCGCTTAA

0. JNP1 61 2310 2330 2350
GCGGAGCG GCGGATGTTA AGCGGCGTGT

3-21-VECTOR

GCGGAGCG GCGGATGTTA AGCGGCGTGT

250 260 270 280 290 300
3-21-VECTOR AGCGGCGTGT TTGCGCTTAA GCGGATGTTA GCGGCGATTTT TTGCGCTTAA GCGGCGATTT
3300 340 101 TO 605 OF ORF-2-A 3700 3800

0. JNP1 61 4700
AGCGGCGTGT

3-21-VECTOR GCGGAGCG

0. JNP1 61

3-21-VECTOR A

0. JNP1 61 2900 2910 2920
TTGCGCTTAA GCGGATGTTA AGCGGCGTGT

3-21-VECTOR

TTGCGCTTAA GCGGATGTTA AGCGGCGTGT

310 320 330 340 350 360
3-21-VECTOR GCGGAGCG AGCGGCGTGT TTGCGCTTAA GCGGATGTTA GCGGCGATTTT TTGCGCTTAA GCGGCGATTT
4100 420 101 TO 605 OF ORF-2-A 4500 4600

ORF 6

Probe Resulting from PCR with Primers
Presented in Example I

3'-VECTOR by CRP3 Aligned sequences
Wednesday, November 25, 1998 11:08 AM

Page 3

0. Jmp1 et	1340	1348	1356	1370
3-21-VECTOR	CGGCGGT TATGCTAA CGCGGAAAC CGCGCGCGG TCGCGCGCG			
0. Jmp1 et	378	380	390	400
3-21-VECTOR	AGCGGCGGT CGCGGCGGT CGCGGCGGT CGCGGCGGT TCGCGCGCG			
	4784	101 TO 509 OF CRP3-2	300a	
0. Jmp1 et	1308	1408	1416	1420
3-21-VECTOR	CGCGGCGGT CGCGGCGGT CGCGGCGGT CGCGGCGGT			
0. Jmp1 et	1308	1408	1416	1420
3-21-VECTOR	CGCGGCGGT CGCGGCGGT CGCGGCGGT CGCGGCGGT			

FIG 26B

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/US 98/11639

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 6	C12N15/31	C12N15/52	C12N15/82	C12N15/70	C12N5/10
	C12N1/21	C12P7/64	A01H5/00		

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12N C12P C07K A01H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	NAKAHARA, TORO: "Physiological activity of docosahexaenoic acid (DHA) and its production by microbial culture" YUKAGAKU (1995), 44(10), 821-7 CODEN: YKGKAM; ISSN: 0513-398X, XP002080682 see abstract ---	6,7, 11-13
A		14,32
X	NASU M ET AL: "Efficient transformation of Marchantia polymorpha that is haploid and has very small genome DNA; Agrobacterium tumefaciens-mediated transformation of suspension cell culture, for use in eicosapentaenoic acid, arachidonic acid and antibiotic production" J.FERMENT.BIOENG.;(1997) 84, 6, 519-23 CODEN: JFBIEX ISSN: 0922-338X, XP002080470 see the whole document ---	25,27, 28,30
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

14 October 1998

Date of mailing of the international search report

23/10/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Kania, T

INTERNATIONAL SEARCH REPORT

Int'l. Application No
PCT/US 98/11639

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	KYLE D ET AL: "Long-chain omega-3 polyunsaturated fatty acids: prospects for introduction into horticultural food plants; e.g. alga eicosapentaenoic acid and docosahexaenoic acid gene cloning, expression in transgenic plant oil, crop improvement (conference paper)" HORTSCIENCE;(1990) 25, 12, 1523-26 CODEN: HJHSAR, XP002080471 * see the whole document, esp. p.1524, 2nd par. * ---	25-28, 30,31
X	EP 0 594 868 A (SAGAMI CHEM RES) 4 May 1994 cited in the application see the whole document ---	15-17, 19-22,24
X	WO 96 21735 A (SAGAMI CHEM RES) 18 July 1996 cited in the application see the whole document ---	15-17, 19-22,24
A	YAZAWA, KAZUNAGA: "Production of eicosapentaenoic acid from marine bacteria" LIPIDS (1996), 31(SUPPL., FATTY ACIDS AND LIPIDS FROM CELL BIOLOGY TO HUMAN DISEASE), S297-S300 CODEN: LPDSAP;ISSN: 0024-4201, XP002080483 cited in the application see the whole document ---	1-32
A	SOMERVILLE C R: "Future prospects for genetic modification of the composition of edible oils from higher plants; oilseed crop improvement by lipid and fatty acid modification (conference paper)" AM.J.CLIN.NUTR.;(1993) 58, 2, SUPPL., 270S-275S CODEN: AJCNAC, XP002080472 * see esp. p.274S, r. col., 1st par. * -----	1-32

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 98/11639

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0594868	A 04-05-1994	AU 673359	B	07-11-1996
		AU 4088193	A	13-12-1993
		CA 2113557	A	25-11-1993
		FI 940203	A	14-03-1994
		WO 9323545	A	25-11-1993
		JP 6046864	A	22-02-1994
		NO 940146	A	14-03-1994
		US 5683898	A	04-11-1997
		US 5798259	A	25-08-1998
WO 9621735	A 18-07-1996	AU 4400196	A	31-07-1996
		CA 2209987	A	18-07-1996
		EP 0831149	A	25-03-1998
		JP 8242867	A	24-09-1996

THIS PAGE BLANK (USPTO)

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
- OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox

THIS PAGE BLANK (USPTO)