The RPROP algorithm

Resilient propagation for NN

Contents

- Backpropagation learning
- The RPROP algorithm
- A comparison to other propagation algorithms through experiments

Backpropagation Learning

$$w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij}(t)$$

where, in regular gradient descent,

$$\Delta w_{ij}(t) = -\eta \frac{\partial E}{\partial w_{ij}}(t) \quad .$$

With a momentum term:

$$\Delta w_{ij}(t) = -\eta \frac{\partial E}{\partial w_{ij}}(t) + \mu \Delta w_{ij}(t-1) \quad .$$

What makes RPROP special?

- Adaptation of the weight-step is not "blurred" by gradient behavior
- Instead, each weight has an individual evolving update-value
- The weight-step is only determined by its update-value and the sign of the gradient

RPROP: Weight-step Rule

$$\Delta w_{ij}(t) = \begin{cases} +\Delta_{ij}(t) &, & \text{if } \frac{\partial E}{\partial w_{ij}}(t) > 0 \\ -\Delta_{ij}(t) &, & \text{if } \frac{\partial E}{\partial w_{ij}}(t) < 0 \\ 0 &, & \text{otherwise} \end{cases}$$

exception:

$$\Delta w_{ij}(t) = -\Delta w_{ij}(t-1)$$
, if $\frac{\partial E}{\partial w_{ij}}(t-1) \cdot \frac{\partial E}{\partial w_{ij}}(t) < 0$

To avoid double punishment, let $\frac{\partial E}{\partial w_{ii}}(t) = 0$

RPROP: Learning Rule

$$\Delta_{ij}(t) = \begin{cases} \eta^+ \cdot \Delta_{ij}(t-1) &, & \text{if } s_{ij} > 0 \\ \eta^- \cdot \Delta_{ij}(t-1) &, & \text{if } s_{ij} < 0 \\ \Delta_{ij}(t-1) &, & \text{otherwise} \end{cases}$$

where
$$s_{ij} = \frac{\partial E}{\partial w_{ij}} (t-1) \cdot \frac{\partial E}{\partial w_{ij}} (t)$$
.

$$\eta^{+} = 1.2$$

$$\eta^{-} = 0.5$$

RPROP in program code

```
npos, nneg = 1.2, 0.5
dmax, dmin = 50.0, 0.000001
def update(weights):
    compute gradients(weights)
    for (w, dw, d, prevE, E) in weights:
        switch (sign(prevE * E)):
            case +1:
                 d = min(d * npos, dmax)
                 dw = d * sign(E)
            case -1:
                 d = max(d * nneg, dmin)
                \mathbf{F} = 0
             case 0:
                 dw = d * sign(E)
        prevE = E
```


Experiments

- Algorithms
 - Backpropagation (BP)
 - SuperSAB (SSAB)
 - Quickprop (QP)
 - Resilient propagation (RPROP) [our hero]
- Problems
 - The 10-5-10 encoder problem
 - The 12-2-12 encoder problem
 - Nine Men's Morris

Experiment: 10-5-10

 A neural network with 10 input and output neurons, and 5 hidden neurons

Algorithm	μ/ v	Epochs	σ
ВР	0.0	121	30
SSAB	0.8	55	11
QP	1.75	21	3
RPROP	-	19	3

Experiment: 12-2-12

 A 'tight' neural network with 12 inputs and outputs, and just 2 hidden neurons

Algorithm	μ/ v	Epochs	σ
ВР	div.	>15000	-
SSAB	0.95	534	90
QP	1.3	405	608
RPROP	-	322	112

Experiment: Nine Men's Morris

- A strategy board game for two players
- First, the players place their nine 'men' on the board, trying to get them in lines of three
- When all have been placed, the players take turns moving them

Experiment: Nine Men's Morris

- Two identical 60-30-10-1 networks linked together to play the endgame of Nine Men's Morris
- Two alternative moves are presented and the 'comparator neuron' is to decide which one is better

Algorithm	μ / v	Epochs	σ
ВР	0.5	98	34
SSAB	0.9	34	4
QP	1.75	34	12
RPROP	-	23	3

Summary

- Requires no parameter tuning
- Learning and adaptation only affected by the sign of the partial derivative
 - Computer friendly
 - Learning is equally spread over the network
- RPROP is a fast learner