Regression

Input: x's (covariates, features, independent, predictors, explanatory variables)

Output: y (outcome, response, dependent variable)

Goal: Find a regression function, $\ ypprox f(x,eta)$

Simple Linear Regression: $y=eta_0+eta_1 x$

Multiple Linear Regression: $y=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_dx_d$

Linear Regression

Parameter Estimation Technique for LR

Multiple Linear Regression

Multiple Linear regression model: $\ \hat{y}=eta_0+eta_1x_1+eta_2x_2+\cdots+eta_dx_d$

Goal: To find $\beta_0, \beta_1, \dots, \beta_d$

 $d \longrightarrow$ number of input features

Predicted Output value (\hat{y}) : $eta_0 + eta_1 x_1 + eta_2 x_2 + \cdots + eta_d x_d$

Actual Output value ($m{y}$): $m{eta}_0 + m{eta}_1 x_1 + m{eta}_2 x_2 + \dots + m{eta}_d x_d + \epsilon$

Error or Residual (ϵ): $y - \hat{y}$

Multiple Linear Regression

For n set of observations:

$$egin{array}{lll} y_1 &=& eta_0 + eta_1 x_{11} + eta_2 x_{12} + \cdots + eta_d x_{1d} + \epsilon_1 \ y_2 &=& eta_0 + eta_1 x_{21} + eta_2 x_{22} + \cdots + eta_d x_{2d} + \epsilon_2 \ y_3 &=& eta_0 + eta_1 x_{31} + eta_2 x_{32} + \cdots + eta_d x_{3d} + \epsilon_3 \ dots && dots \ y_n &=& eta_0 + eta_1 x_{n1} + eta_2 x_{n2} + \cdots + eta_d x_{nd} + \epsilon_n \ \end{array}$$

$$egin{bmatrix} y_1 \ y_2 \ dots \ y_n \end{bmatrix} = egin{bmatrix} bar{1} & x_{11} & \cdots & x_{1d} \ 1 & x_{21} & \cdots & x_{2d} \ dots & dots & \ddots & dots \ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} egin{bmatrix} eta_0 \ eta_1 \ dots \ eta_d \end{bmatrix} + egin{bmatrix} \epsilon_1 \ \epsilon_2 \ dots \ eta_n \end{bmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon \tag{1}$$

SSE for Multiple Linear Regression

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y_i})^2 = \sum_{i=1}^{n} \epsilon_i^2$$

$$\epsilon^T \epsilon = \left[egin{array}{cccc} \epsilon_1 & \epsilon_2 & \dots & = \epsilon_n \end{array}
ight]. egin{array}{cccc} \epsilon_1 \ \epsilon_2 \ dots \ \epsilon_n \end{array}
ight] = \epsilon_1^2 + \epsilon_2^2 + \dots \epsilon_n^2 = \sum_{i=1}^n \epsilon_i^2 \ dots \ \epsilon_n \end{array}$$

$$SSE = \epsilon^T \epsilon$$

Errors or Residuals

ullet Predicted Output value: $\hat{y_i} = eta_0 + eta_1 x_i$

ullet Observed Output value: $y_i = eta_0 + eta_1 x_i + \epsilon_i$

actual value y_i

estimated value $\hat{\hat{\mathbf{y}}}_{i}$

Error or Residual, $\ \epsilon_i = y_i - \hat{y_i}$

Sum of Squares of Errors (SSE)

SSE, also called Residual Sum of Squares(RSS) is always convex

$$ext{SSE} = \sum_{i=1}^n (y_i - \hat{y_i})^2 = \sum_{i=1}^n (y_i - (eta_0 + eta_1 x_i))^2$$

Figure: Plot of SSE

SSE for Multiple Linear Regression

From equation (1): $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$

So,
$$\epsilon = \mathbf{y} - \mathbf{X} oldsymbol{eta}$$

$$ext{SSE} = \epsilon^T \epsilon = (\mathbf{y} - \mathbf{X} oldsymbol{eta})^T (\mathbf{y} - \mathbf{X} oldsymbol{eta})$$

Solving for *\beta*

• Choose parameters $\beta_0, \beta_1, \dots, \beta_d$ such that **SSE** is minimum.

• Parameters at minimum point of SSE is obtained through setting:

First derivative of SSE w.r.t parameters = 0

• Take partial derivative of SSE with respect to column vector, $oldsymbol{eta}$ and equate to 0.

Taking Partial derivative w.r.t. beta

$$rac{\partial \, ext{SSE}}{\partial oldsymbol{eta}} \; = \; rac{\partial}{\partial oldsymbol{eta}} (\mathbf{y} - \mathbf{X} oldsymbol{eta})^T (\mathbf{y} - \mathbf{X} oldsymbol{eta})$$

$$= \quad rac{\partial}{\partialoldsymbol{eta}}(\mathbf{y^T}\mathbf{y} + oldsymbol{eta}^T\mathbf{X}^T\mathbf{X}oldsymbol{eta} - 2oldsymbol{eta}^T\mathbf{X}^T\mathbf{y})$$

 $oldsymbol{eta}^Toldsymbol{eta}=oldsymbol{eta}^2$

$$= 2 \mathbf{X}^T \mathbf{X} oldsymbol{eta} - 2 \mathbf{X}^T \mathbf{y}$$

$$rac{\partial \, \mathsf{SSE}}{\partial oldsymbol{eta}} = 2 \mathbf{X}^T \mathbf{X} oldsymbol{eta} - 2 \mathbf{X}^T \mathbf{y} = 0$$

$$2\mathbf{X}^T\mathbf{X}\boldsymbol{\beta} = 2\mathbf{X}^T\mathbf{y}$$

$$\hat{oldsymbol{eta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Non Existence of $(\mathbf{X}^T\mathbf{X})^{-1}$ and n>>d

• There should not be multicollinearity/dependence among the features.

Number of Observations should be greater than the number of unknowns

Non-iterative methods ffind optimal parameters in a single iteration

Non-Iterative Method

$$oldsymbol{eta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Single Iteration

Iterative Methods ffind optimal parameters using a number of iterations

Iterative Method

- Random initialization of parameters
- Sequence of approximations using an update rule
- Gradient Descent is a **first order** iterative optimization approach

Gradient Descent is similar to getting down a hill...

Gradient Descent uses the gradient of the function to ffind the minimum point

Gradient Descent Algorithm

Step 1: Initialize the value of x randomly

Step 2: Calculate
$$\dfrac{\partial f(x)}{\partial x}$$
 Learning Rate Step 3: Update x as: $x:=x-\alpha\dfrac{\partial f(x)}{\partial x}$

Step 4: Repeat steps 2, and 3 until convergence

Example

$$f(x) = x^2 + 3x - 5$$

 $x = 2.4$
 $lpha = 0.25$

$$x:=x-lpharac{\partial\,f(x)}{\partial\,x} \ :=2.4-0.25 imes7.8 \ :=0.45$$

Second iteration
$$x:=x-lpharac{\partial\,f(x)}{\partial\,x} \ :=0.45-0.25 imes3.9 \ :=-0.525$$

Example

Optimal value of $\,x=-1.4999\,$

Min. of $f(x)=-7.25\,$

Learning Rate determines the size of the steps taken while moving towards the minimum of the function.

Too Small Learning Rate

Requires more iterations to converge

Too Large Learning Rate

Overshoots the minimum point in the function

Gradient Descent may get stuck in the local minima of non-convex functions

Fig. Convex Function

Fig. Non-convex Function

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
	•••			•••
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

$$egin{aligned} \hat{oldsymbol{y}} &= oldsymbol{X}eta \ egin{aligned} \hat{oldsymbol{y}} &= oldsymbol{X}eta \ egin{aligned} \hat{oldsymbol{y}}_1 \ \hat{y_2} \ \vdots \ \hat{y_{200}} \end{bmatrix} = egin{bmatrix} 1 & x_{1\,1} & x_{1\,2} & x_{1\,3} \ 1 & x_{2\,1} & x_{2\,2} & x_{2\,3} \ \vdots & \vdots & \ddots & \vdots \ 1 & x_{200\,1} & x_{200\,2} & x_{200\,3} \end{bmatrix} imes egin{bmatrix} eta_0 \ eta_1 \ eta_2 \ eta_3 \end{bmatrix} \ \hat{eta}_1 \ eta_2 \ eta_3 \ eta_3 \ \end{pmatrix} \ \hat{eta}_1 \ eta_2 \ eta_3 \ eta_3 \ \end{pmatrix} \ \hat{eta}_1 \ \hat{eta}_2 \ eta_3 \ \hat{eta}_3 \ \end{pmatrix} \ \hat{eta}_1 \ \hat{eta}_2 \ \hat{eta}_3 \ \hat$$

http://faculty.marshall.usc.edu/gareth-james/ISL/Advertising.csv

Cost function for linear regression is the sum of squared error multiplied by ½

$$egin{align} J(eta_0,eta_1,eta_2,eta_3) &= rac{1}{2} \ \sum_{i=1}^n ig(\hat{y_i}-y_iig)^2 \ &= rac{1}{2} \sum_{i=1}^n (eta_0 x_{i0} + eta_1 x_{i1} + eta_2 x_{i2} + eta_3 x_{i3}) - y_i)^2 \ \end{aligned}$$

Gradients can be calculated by finding the partial derivatives

$$\begin{aligned} & \text{partial derivatives} \\ & \frac{\partial}{\partial \beta_1} J(\beta_0, \beta_1, \beta_2, \beta_3) = \frac{\partial}{\partial \beta_1} \; \frac{1}{2} \; \sum_{i=1}^n (\hat{y_i} - y_i)^2 \\ & = \frac{1}{2} \; \sum_{i=1}^n \left[\frac{\partial}{\partial \beta_1} (\hat{y_i} - y_i)^2 \right] \\ & = \frac{1}{2} \; \sum_{i=1}^n \left[\frac{\partial (\hat{y_i} - y_i)^2}{\partial (\hat{y_i} - y_i)} \right] \times \frac{\partial (\hat{y_i} - y_i)}{\partial \beta_1} \\ & = \frac{1}{2} \; \sum_{i=1}^n \mathbf{Z} (\hat{y_i} - y_i) \times \left[\frac{\partial (\hat{y_i} - y_i)}{\partial \beta_1} \right] \\ & = \sum_{i=1}^n (\hat{y_i} - y_i) \times \frac{\partial (\beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3}) - y_i)}{\partial \beta_1} \\ & = \sum_{i=1}^n (\hat{y_i} - y_i) \; \mathbf{x}_{i1} \end{aligned}$$

Gradients w.r.t other parameters

$$egin{aligned} rac{\partial J}{\partial eta_1} &= \sum_{i=1}^n (\hat{y_i} - y_i) x_{i1} \ rac{\partial J}{\partial eta_0} &= \sum_{i=1}^n (\hat{y_i} - y_i) x_{i0} = \sum_{i=1}^n (\hat{y_i} - y_i) \ rac{\partial J}{\partial eta_2} &= \sum_{i=1}^n (\hat{y_i} - y_i) x_{i2} \ rac{\partial J}{\partial eta_3} &= \sum_{i=1}^n (\hat{y_i} - y_i) x_{i3} \end{aligned}$$

$$\left|rac{\partial J}{\partialeta_j} = \sum_{i=1}^n (\hat{y_i} - y_i) x_{ij}
ight|$$

Gradient Descent uses the gradients to update the parameters

Repeat until convergence:

$$eta_0 := eta_0 - lpha rac{\partial J}{\partial eta_0} \ eta_1 := eta_1 - lpha rac{\partial J}{\partial eta_1} \ eta_2 := eta_2 - lpha rac{\partial J}{\partial eta_2} \ eta_3 := eta_3 - lpha rac{\partial J}{\partial eta_3}$$

$$ightharpoonup \left | rac{\partial J}{\partial eta_j} = \sum_{i=1}^n (\hat{y_i} - y_i) x_{ij}
ight |$$

Simultaneously updated

Gradient Descent on Advertisement Dataset

Learning rate = 0.0000003

$$\beta_0 = 1.75$$

$$\beta_1 = 0.05$$

$$\beta_2=0.20$$

$$\beta_3 = 0.01$$

$$y = 1.75 + 0.05x_1 + 0.20x_2 + 0.01x_3$$

Comparison with OLS

OLS

- No need to choose any hyperparameter
- n >> d, $(X^T X)^{-1}$
- Always gives exact solution
- O(d³)

Gradient Descent

- Need to choose learning rate and number of iterations
- No such constraints
- May not always give exact solution
- O(kd²)