24 秋- 数学分析 1 (回忆版)

February 10, 2025

1. (7 分) 求含参形式的函数导数
$$\begin{cases} y(t) = t - \arctan t \\ x(t) = \ln(t^4 + 1) \end{cases}$$

2.
$$(7 分)$$
 求 $\lim_{x\to\infty} \left[\frac{1}{\tan(\sin\frac{1}{x})} - \frac{1}{\sin(\sin\frac{1}{x})} \right]$

3.
$$(7 \%) \ m \in \mathbb{N}, \ \ \ \ \ \ \ \frac{\sin(x^m) - \sin^m x}{x^{m+2}}$$

- 4. (21 分, 每题 7 分) 求不定积分
 - (a) $\int \frac{1}{\cos 2x} dx$
 - (b) $\int (\frac{\ln x}{x})^2 dx$
 - (c) $\int \frac{\sqrt[6]{x} + \sqrt[3]{x^2} + x}{x(\sqrt[3]{x} + 1)} dx$
- 5. (10 分) 绘制 $y = x \ln(x+1)$ 的函数图像
- 6. (14分)
 - (a) 叙述至少三个实数定理
 - (b) 叙述紧集的定义, 判断 $\{\sin \frac{1}{n} | n = 1, 2, 3 \cdots \}$ 是否为紧集
 - (c) 证明紧集上的连续函数有界
- 7. (14分)
 - (a) $n \ge 8$,用微分的知识证明 $\sqrt{n^{\sqrt{n+1}}} \ge \sqrt{n+1}^{\sqrt{n}}$
 - (b) 求 $y = \frac{1}{x^{2025}}$ 图像上的点到原点的最小距离
- 8. (10 分) 已知 f(x) 为 $(-\infty, +\infty)$ 的凹函数,若 f(x) 在 $\pm \infty$ 处有渐近线且渐近线平行于 x 轴,则 f 为常值函数
- 9. (10分)
 - (a) 证明 $x^{n}(x-1) = 1$ 在 $(0,+\infty)$ 中仅有一个解
 - (b) 设解为 x_n , 证明 x_n 收敛并求其极限
- 10. (10 分) 附加题: f 在 $(0,+\infty)$ 中有无穷多个零点,且 f 在这些零点处可导,且导数不为 0,任取 f 的零点列 $\{x_n\}$,证明 $\lim_{n\to+\infty}x_n=+\infty$