TD:

Exercice 1. Soient x et y deux nombres réels. Démontrer les inégalités suivantes.

- 1. $|x| + |y| \le |x + y| + |x y|$.
- 2. $1+ |xy-1| \le (1+ |x-1|) (1+ |y-1|)$.
- 3. $\frac{|x+y|}{1+|x+y|} \le \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$

Exercice 2. Montrer que :

- 1. $\forall (a,b) \in \mathbb{R}^2$, $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$. Etudier dans quel cas on a l'égalite.
- 2. $\forall (a,b) \in \mathbb{R}^2$, $\left| \sqrt{|a|} \sqrt{|b|} \right| \le \sqrt{|a-b|}$

Exercice 3.

1. Les ensembles suivants sont-ils majorés ? minorés ? Si oui, déterminer leur borne inférieure, leur borne supérieure.

$$A = \left\{ x \in \mathbb{R}; x^2 < 2 \right\} \quad B = \left\{ \frac{1}{n}; \ n \in \mathbb{N}^\star \right\} \quad C = \left\{ \frac{1}{n} - \frac{1}{p}; \ (p, n) \in \mathbb{N}^\star \times \mathbb{N}^\star \right\}$$

2. On considère la partie de \mathbb{R} suivante :

$$D = \left\{ \frac{x^2 + 2}{x^2 + 1} \quad \middle| \quad x \in \mathbb{R} \right\}$$

Déterminer, s'ils existent, $\sup D$, $\inf D$, $\min D$, $\max D$.

Exercice 4.

Montrer que $\sqrt{3} \notin \mathbb{Q}$

Exercice 5. Soit x un nombre réel. On note E(x) la partie entière de x.

- 1. Montrer que $\forall x \in \mathbb{Z}, \quad E(x) + E(-x) = 0.$
- 2. Montrer que $\forall x \in \mathbb{R} \setminus \mathbb{Z}$, E(x) + E(-x) = -1
- 3. Prouvez que $\forall x, y \in \mathbb{R}$

$$E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1.$$

4. Démontrer que $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}^*$

$$E\left[\frac{E(nx)}{n}\right] = E(x).$$

Exercice 6. En utilisant les définitions, montrer que

- a. La suite de terme général $u_n = (-1)^n$ est divergente.
- b. La suite de terme général $v_n = 1 + \frac{(-1)^n}{n}$ converge vers 1.
- c. La suite de terme général $w_n = \frac{n}{n^3 + 1}$ converge vers 0.
- d. La suite de terme général $t_n = \frac{n^3 + 1}{n^3 + n^2 + 2}$ converge vers I.

Exercice 7. On considère une suite (U_n) définie sur par : \mathbb{N}

$$U_0 = 4$$
 et $U_{n+1} = 2U_n - 3$.

Soit la suite (V_n) définie sur \mathbb{N} par :

$$V_n = U_n - 3.$$

- 1. Quelle est la nature de la suite (U_n) ?
- 2. Montrer que la suite (V_n) est géométrique.
- 3. Donner l'expression de (V_n) en fonction de n.
- 4. En déduire l'expression de (U_n) . en fonction de n.
- 5. Calculer la somme des 11 premiers termes de (U_n) .

Exercice 8. Donner l'expression du terme général des suites récurrentes (u_n) suivantes

- 1. $u_{n+2} = 3u_{n+1} 2u_n$ $u_0 = 3$ $u_1 = 5$;
- 2. $u_{n+2} = 4u_{n+1} 4u_n$ $u_0 = 1$ $u_1 = 0$;
- 3. $u_{n+2} = u_{n+1} u_n$ $u_0 = 1$ $u_1 = 2$.

Exercice 9. Trois suites, u, v, et w sont définies de la manière suivante sur \mathbb{N}^* .

$$u\begin{cases} u_1 = 1 \\ n > 1 : u_{n+1} = \frac{1}{3}(u_n + 2v_n) \end{cases} \qquad v\begin{cases} v_1 = 12 \\ n > 1 : v_{n+1} = \frac{1}{4}(u_n + 3v_n) \end{cases}$$
$$w : \forall n \in \mathbb{N}^*, \qquad w_n = u_n - v_n.$$

- 1. Démontrer que w est une suite géométrique convergente à termes négatifs ;
- 2. Démontrer que u et v sont adjacentes :
- 3. On considère la suite t définie, pour tout n par

$$t_n = 3u_n + 8v_n.$$

Démontrer que t est constante. Est elle convergente ?

4. Démontrer que u et v ont la même limite. Trouver cette limite.

Exercice 10. Dans chacun des cas ci-dessous, trouver une suite simple équivalente à la suite (a_n) dont on donne le terme général. En déduire si elle possède une limite.

a)
$$\frac{2n^2 - n - 10}{n^3 + n + 2}$$
 b) $\sqrt{n^3 + 5n^2} - \sqrt{n^3 + n}$ c) $\frac{n! + n^n}{n^{n+2} + 3^n}$

Exercice 11.

- 1. En utilisant la définition, montrer que :
 - (a) $\lim_{x\to 0} x \sin(1/x) = 0.$
 - (b) $\lim_{x \to 1} \frac{1}{(x-1)^4} = +\infty$.
- 2. Calculer $\lim_{x\to 0} \frac{e^{3x} e^{-x}}{\sin 5x}$ en utilisant la règle de l'Hospital.
- 3. Calculer $\lim_{x\to 0} \frac{\tan(x) \sin(3x)}{\ln(1+x)}$.
- 4. Montrez que la fonction f définie sur $]0, +\infty[$ par $f(x) = \frac{1}{\sqrt{x}}$ n'est pas uniformément continue sur $]0, +\infty[$.
- 5. Montrez que la fonction f définie sur \mathbb{R} par $f(x) = x^2$ est uniformément continue sur]0,1[.

Exercice 12.

- 1. Montrer pour tout x > 0 que $\frac{1}{2\sqrt{x+1}} \le \sqrt{x+1} \sqrt{x} \le \frac{1}{2\sqrt{x}}$.
- 2. Montrer que $x_0 = -\frac{7}{2}$ est un minimum local de la fonction f définie sur \mathbb{R} par $f(x) = x^2 + 7x + 3$.

Exercice 13.

1. Déterminer les réels a, b et c tels que la fonction f définie ci-dessous soit de classe C^2 sur \mathbb{R} .

$$f(x) = \begin{cases} e^x & si \quad x \le 0\\ ax^2 + bx + c & si \quad x > 0. \end{cases}$$

- 2. Soient a et b deux réels tels que a < b. Soient f et g deux fonctions définies sur [a,b], dérivables sur [a,b]. On suppose que g' ne s'annule pas sur [a,b].
 - (a) Montrer que le théorème de Rolle s'applique à la fonction

$$x \mapsto (f(b) - f(a))g(x) - (g(b) - g(a))f(x).$$

(b) En déduire qu'il existe un point $c \in]a,b[$ tel que :

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}.$$

3. On prend 100 comme valeur approchée de $\sqrt{10001}$. À l'aide du théorème des accroissements finis, majorer l'erreur commise.

Exercice 14.

1. Montrer que $\forall x \in [-1;1]$, $\arcsin(x) + \arccos(x) = \frac{\pi}{2}$. (on pourra étudier les variations de la fonction $f: x \mapsto \arcsin(x) + \arccos(x)$).

3

2. Calculer
$$\lim_{x\to 0} \frac{\frac{x^3}{2} + \arctan(x) - \arcsin(x)}{\frac{x^3}{2} + x(\cos(x) - 1)}$$

Exercice 15.

Étudier la convexité des fonctions suivantes :

- 1. $f: x \mapsto x(x-1)(x-4)$.
- 2. cosinus.