SME0110 – Programação Matemática – Turma 2 – 2011

Lista de Exercícios Resolução Gráfica e Modelagem Matemática

- 1) Um jovem atleta sente-se atraído pela prática de dois esportes: natação e ciclismo. Sabe, por experiência, que:
 - A natação exige um gasto em mensalidade do clube e deslocamento até a piscina que pode ser expresso em um custo médio de R\$ 3,00 (três reais) por seção de treinamento de duas horas;
 - O ciclismo, mais simples, acaba custando cerca de R\$ 2,00 (dois reais) pelo mesmo tempo de prática;
 - O orçamento do jovem permite dispor de R\$ 70,00 para treinamento;
 - Seus afazeres da universidade lhe dão liberdade de despender, no máximo, 18 horas e 80000 calorias por semana para os esforços físicos;
 - Cada seção de natação consome 1500 calorias, enquanto cada etapa ciclística despende 1000 calorias;
 - Considerando que o rapaz goste igualmente de ambos os esportes o problema consiste em planejar seu treinamento de forma a maximizar o número de seções de treinamento.
- **a.** Como o jovem deve planejar a sua vida de modo a obter o número máximo de seções? Formule o problema como um problema de otimização linear.
- **b.** Resolva o problema graficamente.
- 2) Pinocchio SA é uma empresa que produz dois tipos de brinquedos de madeira: bonecos e trens. Um boneco é vendido por R\$ 27, gasta R\$ 10 de matéria-prima de R\$ 13 de mão-de-obra. Um trem é vendido por R\$ 21, gasta 9 de matéria-prima e R\$ 10 de mão-de-obra. A manufatura dos dois brinquedos requer duas operações: carpintaria e acabamento. Um boneco requer 2 horas de acabamento e 1 hora de carpintaria. O trem requer 1 hora de acabamento e 1 hora de carpintaria. A cada semana, Pinocchio SA pode obter toda a matéria-prima necessária para as suas necessidades. Entretanto, apenas 100 horas de acabamento e 80 horas de carpintaria podem ser utilizadas para a confecção dos brinquedos. A demanda por trens é ilimitada, isto é, todos os trens produzidos têm condição de serem vendidos. Todavia, sabe-se, por experiência de mercado, que, no máximo, 40 bonecos são vendidos por semana.
- **a.** Formule um modelo matemático para esta situação e que possa ser utilizado para maximizar o lucro líquido de Pinocchio SA.
- **b.** Encontre a(s) solução(ões) ótima(s) graficamente, se houver. Quantas soluções ótimas o problema possui?
- **c.** Suponha que não se saiba o lucro por tipo de brinquedo vendido, mas os custos de produção dos dois brinquedos sejam dados: R\$ 5 por unidade de boneco produzido e R\$ 3 por unidade de trem produzido. Formule um modelo matemático para esta situação e que possa ser utilizado para minimizar o custo operacional de produção dos brinquedos. Resolva-o graficamente e compare com a solução obtida no item b.

- 3) Um pequeno produtor tem 10 unidades de terra e planeja cultivar trigo e milho para vender ao mercado interno. A produção esperada é de 20 kg por unidade de área plantada de trigo e 30 kg por unidade de área plantada de milho. Para atender ao consumo interno de sua fazenda, ele deve plantar, pelo menos, 1 unidade de área de trigo e 3 unidades de área de milho. Os silos da fazenda têm condição de armazenar 120 kg de produtos. O trigo fornece um R\$ 1,20 por kg e o milho, R\$ 0,28 por kg.
- a. Formule o problema como um problema de otimização linear.
- **b.** Resolva-o graficamente.
- **c.** O produtor tem condição de vender alguma cultura ao mercado interno? Qual e em que quantidade?
- **d.** Qual a restrição poderia ser retirada do problema sem que o valor da solução ótima fosse alterado?
- **e.** Suponha que o mercado esteja em falta de milho e, portanto, o produtor tenha um lucro de R\$ 1,00 por kg de milho. Mostre, graficamente, se a solução ótima muda.
- 4) Em um dado processo químico, podem ser produzidos (simultaneamente ou não, dependendo de certas substâncias adicionais) dois produtos (A e B) os quais são vendidos para outra indústria e utilizados na produção de um terceiro produto. Especificamente, 1 litro do produto A produz 1 litro do terceiro produto e 1 litro de B produz 2,5 litros do terceiro produto. Há uma restrição de demanda que diz que A e B devem ser produzidos numa quantidade suficiente para produzir 5 litros do terceiro produto a cada hora durante a jornada de trabalho da indústria. Durante o processo químico, sabe-se que o produto B consome oxigênio, enquanto o produto A produz oxigênio. Cada litro produzido do produto B consome 2 litros de oxigênio por hora e cada litro de produzido do produto A produz 1 litro de oxigênio por hora. Para estender a vida útil do catalisador, a quantidade de oxigênio no reator não pode exceder 2 litros por hora (se necessário, pode-se adicionar oxigênio extra sem custos relevantes). Cada litro de produto A é vendido por R\$ 25 e cada litro de produto B, R\$ 55. A indústria deseja maximizar o lucro decorrente da venda dos dois produtos.
- a. Formule o problema como um problema de programação linear.
- **b.** Resolva-o graficamente, indicando a solução ótima do problema (vértice ótimo) e o valor da função objetivo.
- **c.** Resolva o problema, graficamente, supondo que os valores R\$ 25 e R\$ 55 sejam os custos de produção de cada litro dos produtos A e B, respectivamente e o objetivo seja minimizar o custo total.

Atenção: Para cada exercício a seguir, escreva o modelo matemático e se possível, o resolva utilizando o solver do excel.

5) Três refinarias com capacidade de produção diária de gasolina de 25000, 15000 e 5000t, respectivamente, abastecem três grandes centros distribuidores, cujas necessidades são, respectivamente, 15000, 10000 e 20000 t. O abastecimento é feito através de uma rede de oleodutos com uma tarifa de \$200/t/km. Sabendo que as distâncias (em km) entre as refinarias e os centros distribuidores são apresentadas no quadro a seguir, formule um problema de programação linear para determinar a distribuição ótima.

	D1	D2	D3
R1	5	70	320
R2	75	15	220
R3	300	200	2

- 6) Uma certa corporação tem três fábricas filiais com capacidade de produção excedente. As três unidades têm capacidade para fabricar um certo produto, tendo a gerência decidido utilizar parte dessa capacidade de produção excedente para fazê-lo. Ele pode ser feito em três tamanhos - grande, médio e pequeno, os quais geram um lucro unitário líquido de \$140, \$120 e \$100, respectivamente. As fábricas 1, 2 e 3 têm capacidade excedente de mão-de-obra e de equipamento para produzirem 750, 900 e 450 unidades do produto por dia, respectivamente, independentemente do tamanho ou combinação de tamanhos envolvidos. Entretanto, a quantidade de espaço disponível para estoque de produtos em processo também impõe um limite às taxas de produção. As fábricas 1, 2 e 3 têm 1170, 1080 e 450 metros quadrados de espaço disponível para estoque de produtos em processo, em um dia de produção, sendo que cada unidade dos tamanhos grande, médio e pequeno, produzida por dia, requer, 1,8, 1.35 e 1,08 metros quadrados, respectivamente. As previsões indicam que podem ser vendidas, por dia, 900, 1200 e 750 unidades dos tamanhos grande, médio e pequeno, respectivamente. Para manter uma carga de trabalho uniforme entre as fábricas, e para reter algum tipo de flexibilidade, a gerência decidiu que a produção adicional designada a cada fábrica deve utilizar a mesma porcentagem da capacidade excedente de mão-de-obra e de equipamento. A gerência deseja saber a quantidade de produto, por tamanho, que deveria ser produzida em cada uma das fábricas, para maximizar o lucro. Formular o problema matematicamente.
- 7) (Problema de transporte de cargas) O proprietário de um navio de carga está considerando a natureza do próximo carregamento. Quatro mercadorias diferentes estão sendo oferecidas para transportar. A tabela abaixo resume os seus pesos, volumes e suas características gerais de rendimento. O navio tem três porões para carga, cada um caracterizado por capacidades de peso e volume. O porão da frente tem capacidade de peso de 100 toneladas e capacidade de volume de 6000 pés cúbicos. O porão do centro tem uma capacidade de peso de 140 toneladas e uma capacidade de volume de 8000 pés cúbicos. O porão de trás tem uma capacidade de peso de 80 toneladas e uma capacidade de volume de 5000 pés cúbicos. O problema é decidir como cada mercadoria deve ser acomodada para o transporte, se o objetivo é maximizar o rendimento total.

Mercadoria	Peso (ton.)	Volume (pés cúb./ton.)	Rendimento (\$/ton)
1	200	70	1250
2	100	50	900
3	80	60	1000
4	150	75	1200

8. Uma pequena fábrica de papel toalha manufatura três tipos de produtos A, B e C. A fábrica recebe o papel em grandes rolos. O papel é cortado, dobrado e empacotado. Dada a pequena escala da fábrica, o mercado absorverá qualquer produção a um preço constante. O lucro unitário de cada produto é respectivamente R\$ 1,00, R\$ 1,50, e R\$ 2,00. O quadro abaixo identifica o tempo requerido para operação (em horas) em cada seção da fábrica, bem como a quantidade de máquinas disponíveis, que trabalham 40 horas por semana. Planeje a produção semanal da fábrica.

Seção	Produto A	Produto B	Produto C	Q ^{de} . Máquina
Corte	8	5	2	3
Dobra	5	10	4	10
Empacotamento	0,7	1	2	2

9) Um fornecedor deve preparar, a partir de cinco tipos de bebidas de fruta disponíveis em estoque, 500 galões contendo pelo menos 20% de suco de laranja, 10% de suco de uva e

5% de suco de tangerina. Os dados referentes ao estoque são os mostrados a seguir. Formule um problema de programação matemática para determinar o quanto de cada uma das bebidas o fornecedor deve utilizar forma a obter a composição requerida a um custo total mínimo.

	Suco de	Suco de	Suco de	Estoque	Custo
	laranja(%)	uva(%)	tangerina(%)	(galões)	(\$/galão)
Bebida A	40	40	0	200	1,5
Bebida B	5	10	20	400	0,75
Bebida C	100	0	0	100	2
Bebida D	0	100	0	50	1,75
Bebida E	0	0	0	800	0,25

10) Uma empresa produz televisão em 3 fábricas: São Paulo, João Pessoa e Manaus. Os pontos principais de revenda, com as respectivas encomendas mensais são:

Rio de Janeiro	6.000 unidades
Salvador	5.000 unidades
Aracajú	2.000 unidades
Maceió	1.000 unidades
Recife	3.000 unidades

A produção máxima mensal em cada fábrica é:

São Paulo	10.000 unidades		
João Pessoa	5.000 unidades		
Manaus	6.000 unidades		

O custo de transportes das fábricas até as revendas é dado pelo quadro abaixo:

R\$ por 1.000 unidades de TV

Para	Rio de Janeiro	Salvador	Aracaju	Maceió	Recife
De	(1)	(2)	(3)	(4)	(5)
(1) São Paulo	1.000	2.000	3.000	3.500	4.000
(2) João Pessoa	4.000	2.000	1.500	1.200	1.000
(3) Manaus	6.000	4.000	3.500	3.000	2.000

Determinar o número de unidades produzidas em cada fábrica e entregues a cada revenda, a fim de minimizar o custo de transporte.

11) Uma empresa tem em estoque barras de comprimentos **11m. e 12m** as quais devem ser cortadas para atender o seguinte pedido:

Peças pequenas (i)	1	2	3
Tamanho (l _i)	3	4	4,5
Quantidade (d _i)	1200	900	800

Suponha também que a empresa tem em estoque apenas 230 barras de comprimento 11m e 250 barras de comprimento 12m. Escreva um modelo matemático que minimize a quantidade total de barras cortadas. Explicite o significado das variáveis e de cada restrição do problema. Apresente pelo menos quatro tipos de corte (padrões) para cada barra. Considere o problema como sendo de programação linear.