Conversion in Non-Ideal Flow Reactors

$$\begin{pmatrix}
\text{mean concentration} \\
\text{of reactant} \\
\text{in exit stream}
\end{pmatrix} = \sum_{\substack{\text{all elements} \\ \text{of exit stream}}} \begin{pmatrix}
\text{concentration of reactant remaining} \\
\text{in an element of age between } t \\
\text{and } t + dt
\end{pmatrix} \begin{pmatrix}
\text{fraction of exit} \\
\text{stream which is} \\
\text{of age between } t \\
\text{and } t + dt
\end{pmatrix}$$

$$\left(\frac{\overline{C}_{A}}{C_{A0}}\right)_{\text{at exit}} = \int_{0}^{\infty} \left(\frac{C_{A}}{C_{A0}}\right)_{\text{for an element or little batch of fluid of age }t} \cdot \mathbf{E} \, dt$$

Conversion in Non-Ideal Flow Reactors

- Conversion at the reactor exit is the sum of the concentration of reactant remaining in an element multiplied by the fraction of exit between t and t+dt.
- This is represented mathematically by:

$$\left(\frac{\overline{C}_{A}}{C_{A0}}\right)_{\text{at exit}} = \int_{0}^{\infty} \left(\frac{C_{A}}{C_{A0}}\right)_{\text{for an element or little batch of fluid of age } t} \cdot \mathbf{E} \, dt \qquad (1)$$

$$\overline{X}_{A} = \int_{0}^{\infty} (X_{A})_{\text{element}} \cdot \mathbf{E} \, dt \tag{2}$$

or in a form suitable for numerical integration

$$\frac{\overline{C}_{A}}{C_{A0}} = \sum_{\substack{\text{all age} \\ \text{intervals}}} \left(\frac{C_{A}}{C_{A0}}\right)_{\text{element}} \cdot \mathbf{E} \,\Delta t \qquad (3)$$

Conversion in Non-Ideal Flow Reactors (cont.)

• In equation one, the concentration element term is dependent on the order of the reaction.

1st-Order Reactions:

$$\left(\frac{C_A}{C_{AO}}\right)_{element} = e^{-kt}$$

2nd-Order Reactions:

$$\left(\frac{C_A}{C_{AO}}\right)_{element} = \frac{1}{1 + kC_{AO}t}$$

Conversion in Non-Ideal Flow Reactors (cont.)

• Finally, the following termed can be applied to equation 1 for any order reaction.

nth-Order Reactions:

$$\left(\frac{C_A}{C_{AO}}\right)_{element} = \left[1 + (n-1)C_{AO}^{n-1}kt\right]^{\frac{1}{1-n}}$$

Conversion in Non-Ideal Flow vs. Ideal Flow Reactors

• The space time parameter, τ , is equal to the reactor volume divided by the volumetric feed rate. τ is an important parameter in calculating conversion in ideal flow reactors.

• Where τ falls on the x-axis of an E(t) curve indicates how much more or less conversion is occurring in a non-ideal reactor as compared to an ideal reactor.

Conversion in Non-Ideal Flow vs. Ideal Flow Reactors (cont.)

- Case A: Particles are spending more time than expected in the reactor. Therefore, a higher conversion is being achieved in a non-ideal situation than would be in an ideal situation.
- Case B: Particles are spending less time than expected in the reactor. Therefore, a lower conversion is being achieved in a non-ideal situation than would be in an ideal situation.

Example 11.4: Determining Conversion in Non-Ideal Reactors

- Problem Statement: A liquid is decomposing in a non-ideal reactor in Example 11.1 at a rate which can be expressed by $r_A = kC_A$ where k = 0.307 min⁻¹.
- Determine: Fraction of reactant unconverted in the real reactor and compare this with the fraction unconverted in a plug flow reactor of the same size.

For the plug flow reactor with negligible density change we have

$$\tau = C_{A0} \int_0^{X_A} \frac{dX_A}{-r_A} = -\frac{1}{k} \int_{C_{A0}}^{C_A} \frac{dC_A}{C_A} = \frac{1}{k} \ln \frac{C_{A0}}{C_A}$$

and with τ from Example 11.1

$$\frac{C_{\rm A}}{C_{\rm A0}} = e^{-k\tau} = e^{-(0.307)(15)} = e^{-4.6} = \underline{0.01}$$

Thus the fraction of reactant unconverted in a plug flow reactor equals 1.0%.

Table E11.4

t	E	kt	e^{-kt}	$e^{-kt}\mathbf{E} \Delta t$
5	0.03	1.53	0.2154	(0.2154)(0.03)(5) = 0.0323
10	0.05	3.07	0.0464	0.0116
15	0.05	4.60	0.0100	0.0025
20	0.04	6.14	0.0021	0.0004
25	0.02	7.68	0.005	0.0001
30	0.01	9.21	0.0001	0
g	iven			$\frac{C_{\rm A}}{C_{\rm A0}} = \sum e^{-kt} \mathbf{E} \Delta t = \underline{0.0469}$

$$\frac{C_{\rm A}}{C_{\rm A0}} = \frac{0.047}{0.047}$$

From the table we see that the unconverted material comes mostly from the early portion of the E curve.

A. Normal MFR

