VE281

Data Structures and Algorithms

Min Heaps

Outline

- Min Heap Basics
- Implementation of Min Heap
- Initializing a Min Heap

Review: Priority Queue

- A collection of items.
- Each item has a key (or "priority").
- Support the following operations:
 - isEmpty
 - size
 - enqueue: put an item into the priority queue.
 - **dequeueMin**: remove element with **min** key.
 - **getMin**: get item with **min** key.

Runtime of implementation by binary heap

Binary Heap

• A binary heap is a complete binary tree.

Min Heap

- A min heap is
 - a binary heap, and
 - a tree where for any node v, the key of v is smaller than or equal to (\leq) the keys of any descendants of v.
- <u>Property</u>: The key of the root of **any** subtree is always the smallest among all the keys in that subtree.

Min Heap

- However, the keys of nodes **across** subtrees have no required relationship.
 - Different from binary search trees, which we will show later.

Heap Height

• Assume the heap has n nodes, the height of the heap is $\lceil \log_2(n+1) \rceil - 1$

Binary Heap Implementation as an Array

- Store the elements in an array in the order produced by a level-order traversal.
- The first element is stored at index 1.

Index Relation

Index relation allows us to move up and down a heap easily.

- A node at index i ($i \neq 1$) has its parent at index $\lfloor i/2 \rfloor$.
- Assume the number of nodes is n. A node at index i ($2i \le n$) has its left child at 2i.
 - If 2i > n, it has no left child.
- A node at index i ($2i + 1 \le n$) has its right child at 2i + 1.
 - If 2i + 1 > n, it has no right child.

Outline

• Min Heap Basics

• Implementation of Min Heap

• Initializing a Min Heap

Min Heap Implementation

- We also have a **size** variable to keep the number of nodes in the heap.
 - The heap elements are stored in heap[1], heap[2], ..., heap[size].
- Operations
 - isEmpty: return size==0;
 - size: return size;
 - getMin: return heap[1];

Procedure of enqueue

• Insert **newItem** as the rightmost leaf of the tree.

heap[++size] = newItem;

- The tree may no longer be a heap at this point!
- **Percolate up newItem** to an appropriate spot in the heap to restore the heap property.

Percolate Up

Illustration

Percolate Up

Code

```
void minHeap::percolateUp(int id) {
  while(id > 1 && heap[id/2] > heap[id]) {
    swap(heap[id], heap[id/2]);
    id = id/2;
  }
}
```

- Pass index (**id**) of array element that needs to be percolated up.
- Swap the given node with its parent and move up to parent until:
 - we reach the root at position 1, or
 - the parent has a smaller or equal key.

enqueue

Code

```
void minHeap::enqueue(Item newItem) {
  heap[++size] = newItem;
  percolateUp(size);
}
```

- What is the time complexity?
 - $O(\log n)$

Procedure of dequeueMin

- The min item is at the root. Save that item to be returned.
- Move the item in the rightmost leaf of the tree to the root.swap(heap[1], heap[size--]);

• The tree may no longer be a heap at this point!

Procedure of dequeueMin

- Percolate down the recently moved item at the root to its proper place to restore heap property.
 - For each subtree, if the root has a larger search key than either of its children, swap the item in the root with that of the smaller child.

Percolate Down

Illustration

Percolate Down

Code

```
void minHeap::percolateDown(int id) {
  for(j = 2*id; j <= size; j = 2*id) {
    if(j < size && heap[j] > heap[j+1]) j++;
    if(heap[id] <= heap[j]) break; find the smaller child
    swap(heap[id], heap[j]);
    id = j;
}</pre>
```

- Pass index (**id**) of array element that needs to be percolated down.
- Swap the key in the given node with the smallest key among the node's children, moving down to that child, until:
 - we reach a leaf node, or
 - both children have larger (or equal) key

dequeueMin Code

```
Item minHeap::dequeueMin() {
   swap(heap[1], heap[size--]);
   percolateDown(1);
   return heap[size+1];
}
```

- What is the time complexity?
 - $O(\log n)$

Outline

- Min Heap Basics
- Implementation of Min Heap
- Initializing a Min Heap

- How do we initialize a min heap from a set of items?
- Simple solution: insert each entry one by one.
 - The worst case time complexity for inserting the k-th item is $O(\log k)$, so creating a heap in this way is $O(n \log n)$.
- Instead, we can do better by putting the entries into a **complete** binary tree and running **percolate down** intelligently.

- Put all the items into a complete binary tree.
 - Implemented using an array.
- Starting at the rightmost array position that has a child, percolate down all nodes in reverse level-order.
 - The rightmost array position that has a child is size/2.
- Procedure:

```
For i = size/2 down to 1 percolateDown(i);
```

Illustration

- Input items: 9, 8, 7, 6, 5, 4, 3, 2, 1
- First step: put all the items into a complete binary tree.

Illustration

• Starting at the rightmost array position that has a child, percolate down all nodes in reverse level-order.

Node at index 9/2 = 4

Move to next lower array position.

Illustration

Node at index 3

Move to next lower array position.

Illustration

Node at index 2

Move to next lower array position.

Illustration

Node at index 1

Time Complexity Analysis

- Suppose: the **height** of the heap is h.
- Note: Number of nodes at level $k \ (0 \le k \le h)$ is $\le 2^k$.
- Note: The worst case time complexity of percolating down a node at level k is O(h-k).

Time Complexity Analysis

$$T(h) \le \sum_{k=0}^{h-1} 2^k O(h-k) = O\left(\sum_{k=0}^{h-1} 2^k (h-k)\right)$$

• What is
$$S(h) = \sum_{k=0}^{h-1} 2^k (h-k)$$
?

$$S(h) = 2^{0}h + 2^{1}(h-1) + 2^{2}(h-2) + \dots + 2^{h-1} \cdot 1$$

$$2S(h) = 2^{1}h + 2^{2}(h-1) + \dots + 2^{h-1} \cdot 2 + 2^{h} \cdot 1$$

$$2S(h) = 2^{1}h + 2^{2}(h-1) + \dots + 2^{h-1} \cdot 2 + 2^{h} \cdot 1$$

$$S(h) = 2S(h) - S(h) = 2^1 + 2^2 + \dots + 2^h - h = 2^{h+1} - 2 - h$$

Time Complexity Analysis

$$T(h) \le O(2^{h+1} - 2 - h)$$

• For a complete binary tree, we have

$$h = \lceil \log_2(n+1) \rceil - 1 \le \log_2(n+1)$$

where n is the number of nodes.

- Therefore, the algorithm for initializing a min heap with n nodes has worst case time complexity T(n) = O(n).
 - Better than the way to enqueue entry one by one.

Application: Median Maintenance

- Input: a sequence of numbers $x_1, x_2, ..., x_n$, one-by-one
- Output: at each time step i, the median of $x_1, x_2, ..., x_i$
- Problem: how to do this with $O(\log i)$ time at each step i?
- Hint: using two heaps, one min heap and one max heap
- <u>Key idea</u>: maintain the smallest half $(\left\lceil \frac{n}{2} \right\rceil)$ in max heap and the largest half $(\left\lceil \frac{n}{2} \right\rceil)$ in the min heap
- Question: How do you get the median (i.e., the $\left|\frac{n}{2}\right|$ -th smallest item)?
 - Answer: get max from the max heap

How to Insert a New Item?

- <u>Key problem</u>: maintain the **invariant** that the smallest half $(\left|\frac{n}{2}\right|)$ in max heap and the largest half $(\left|\frac{n}{2}\right|)$ in the min heap
 - To maintain balance between the two heaps
- If n (before insertion) is even
 - If new item <= min(minHeap), insert it into maxHeap
 - Else (new item > min(minHeap)), first extract min value from minHeap, then insert that value in maxHeap, and finally insert new item into minHeap
- If n (before insertion) is odd
 - If new item $\geq = \max(\max Heap)$, insert it into minHeap
 - Else (new item < max(maxHeap<math>)), first extract max value from maxHeap, then insert that value in minHeap, and finally insert new item into maxHeapTime complexity is $O(\log i)$