SECTION A

(25 *marks*)

This section consists of 3 questions. Answer all questions.

1. Evaluate the following limits (if exist):

(a)
$$\lim_{x \to 3^{-}} \frac{x^2 - 9}{|x - 3|}$$
. (3 marks)

(b)
$$\lim_{x\to 5} \frac{2x-10}{\sqrt{2x-1}-3}$$
. (3 marks)

(c)
$$\lim_{x \to +\infty} \frac{2\sqrt{x} - 4}{x - 4}.$$
 (3 marks)

2. (a) Evaluate $\frac{dy}{dx}$ when x = 0 for each of the following

(i)
$$y = \ln(x^2 + \sqrt{x^2 + 1})$$
. (3 marks)

(ii)
$$y = \frac{e^x (2x^2 + 1)}{\sqrt{x+1}}$$
. (4 marks)

(b) Given
$$y = 3^{x^2}$$
, find $\frac{dy}{dx}$. (3 Marks)

3. The function $f(x) = x^3 - 3x^2 - 9x - 4$ is defined on the interval [-2, 6]. Find the critical points of f(x) on the interval and determine whether each critical point is a minimum or maximum. (6 marks)

SECTION B

(75 *marks*)

This section consists of 7 questions. Answer all questions.

- 1. Given $z_1 = 3 + 2i$ and $z_2 = 1 3i$. Without using calculator, find $z_3 = \frac{z_2}{\overline{z}_1}$ and hence, evaluate $|z_3|$. (5 marks)
- 2. (a) Solve the equation $(\log x)^2 = \log x^3$. (5 marks)
 - (b) Find the interval notation of the inequality $2 + \left| \frac{5x+2}{x-3} \right| \ge 5$. (8 marks)
- **3.** Given the functions f and g as follows

$$f(x) = x^2 + 3x + 1,$$

$$g(x) = x - 2.$$

- (a) Find $f \circ g$ and $g \circ f$. (4 marks)
- (b) State domain and range of $g \circ f$. (3 marks)
- (c) Determine the value of x such that $f \circ g(x) = g \circ [g \circ f(x)]$. (3 marks)
- **4.** The functions f and g are defined as $f(x) = \frac{x+1}{x-5}$, $x \neq 5$ and g(x) = 4-x.
 - (a) Find $f^{-1}(x)$ and $g^{-1}(x)$. (5 marks)
 - **(b)** Evaluate $(f \circ g^{-1})(2)$. **(3 marks)**

5. (a) Given
$$f(x) = \begin{cases} 7 - 2x, & x \le p \\ \frac{x^2 + (q - 2)x - 2q}{x - 2}, & p < x \le 5 \\ 10 - (x - 7)^2, & x > 5 \end{cases}$$

with $\lim_{x\to p^+} f(x) = 3$ and the function f is continuous for all real values of x.

Determine the values of p and q.

(7 marks)

- **(b)** A function f is defined by $f(x) = \begin{cases} \frac{2(1-x)}{x-2}, & x < \frac{3}{2} \\ 2, & x \ge \frac{3}{2} \end{cases}$
 - (i) Use the definition to show that f is continuous at $x = \frac{3}{2}$. (1 mark)
 - (ii) Sketch the graph of f. (6 marks)
- 6. (a) Find $\frac{dy}{dx}$ in terms of x and y if $x^2 \sin y + 2x = y$. (7 marks)
 - (b) Differentiate $\cos^3(\ln(2x-1))$ with respect to x. (4 marks)
 - (c) Given $y = 5\sin(3x) + \sqrt{x}$. Find the value of $\frac{dy}{dx}$ when $x = \frac{\pi}{2}$. (4 marks)
- 7. (a) Find the stationary points of the curve has an equation $y = \frac{1}{3}x^3 + x^2 8x$.
 - (b) Air is pumped into a spherical balloon at a rate $54 \, cm^3 s^{-1}$. Find the rate at which the radius is increasing when the volume of balloon is $36\pi \, cm^3$. (6 marks)

END OF QUESTIONS PAPER

ANSWER:

PART A

- (a) 61.
- **(b)** 6

(c) 0

(a) (i) 0 2.

(ii) $\frac{1}{2}$

(b)
$$\frac{dy}{dx} = 3^{x^2} (\ln 3)(2x)$$

(-1,1) maximum point, (3,-31) minimum point 3.

PART B

1.
$$z_3 = \frac{9}{13} - \frac{7}{13}i$$
, $|z_3| = 0.8771$

2. (a)
$$x = 1, 1000$$

(b)
$$\left(-\infty, -\frac{11}{2}\right] \cup \left[\frac{7}{8}, 3\right] \cup \left(3, \infty\right)$$

3. **(a)**
$$f \circ g = x^2 - x - 1$$
, $g \circ f = x^2 + 3x - 1$ **(b)** $D_{g \circ f} = (-\infty, \infty), R_{g \circ f} = [-\frac{13}{4}, \infty)$

(b)
$$D_{g \circ f} = (-\infty, \infty), R_{g \circ f} = [-\frac{13}{4}, \infty)$$

(c)
$$x = \frac{1}{2}$$

4. (a)
$$f^{-1}(x) = \frac{5x+1}{x-1}, g^{-1}(x) = 4-x$$

5. (a)
$$p = 2$$
, $q = 1$

6. (a)
$$\frac{dy}{dx} = \frac{2(1+x\sin y)}{1-x^2\cos y}$$

(b)
$$\frac{dy}{dx} = -\frac{6}{2x-1}\cos^2(\ln(2x-1))\sin(\ln(2x-1))$$

7. (a)
$$\left(2, -\frac{28}{3}\right)$$
 and $\left(-4, \frac{80}{3}\right)$.

(b)
$$\frac{dr}{dt} = 0.4775 \text{ cms}^{-1}$$