What is Claimed Is:

- 1 1. A method for decomposition of projection data acquired by scanning a set of objects
- 2 using at least two x-ray spectra, the projection data including low energy projections (P_L) and
- 3 high energy projections (P_H) , said method comprising:
- A. solving the projections P_L and P_H to determine a photoelectric line integral (A_p)
- 5 component of attenuation and a Compton line integral (A_c) component of
- 6 attenuation of the set of scanned objects using multi-step fitting; and
- 7 B. reconstructing a Compton image I_c and a photoelectric image I_p from A_c and A_p .
- 1 2. The method of claim 1, further including, prior to step A, performing a calibration
- 2 procedure using simulated data or measured data or some combination of simulated and
- 3 measured data.
- 1 3. The method of claim 1, further including, prior to step A, performing a calibration
- 2 procedure, wherein said calibration procedure includes generating low energy iso-transmission
- 3 contours for known values of P_L at known values of A_p and at known values of A_c .
- 1 4. The method of claim 3, wherein said calibration procedure includes, for each of said low
- 2 energy iso-transmission contours, fitting A_p to a polynomial function $g_L(A_c)$, wherein g_L is a
- 3 polynomial function that represents the shape of the contour.
- 1 5. The method of claim 4, wherein g_L includes a set of coefficients g_{Li} determined at said
- 2 known values of P_L and said calibration procedure includes fitting the values of each coefficient
- 3 g_{Li} to a polynomial function $h_{Li}(P_L)$.
- 1 6. The method of claim 1, wherein said calibration procedure includes computing minimum
- 2 and maximum values of $P_{\rm H}$ for each of said low-energy iso-transmission contours as a function
- 3 of P_L .

- 1 7. The method of claim 6, wherein said calibration procedure includes fitting the minimum
- 2 values of P_H to a polynomial function $m_L(P_L)$.
- 1 8. The method of claim 6, wherein said calibration procedure includes fitting the maximum
- 2 values of P_H to a polynomial function $n_L(P_L)$.
- 1 9. The method of claim 1, wherein said calibration procedure includes generating high
- 2 energy iso-transmission contours for known values of P_H at known values of the A_p and at known
- 3 values of the A_c .
- 1 10. The method of claim 9, wherein said calibration procedure includes, for each of said high
- 2 energy iso-transmission contours, fitting A_p to a polynomial function $g_H(A_c)$, wherein g_H is a
- 3 polynomial function that represents the shape of the contour for a given $P_{\rm H}$.
- 1 11. The method of claim 10, wherein said g_H includes a set of coefficient g_{Hi} determined at
- 2 said known values of $P_{\rm H}$ and said calibration procedure includes fitting the values of each
- 3 coefficient g_{Hi} to a polynomial function $h_{Hi}(P_H)$.
- 5 12. The method of claim 1, wherein step A includes generating a low energy iso-transmission
- 6 contour corresponding to P_L and a high energy iso-transmission contour corresponding to P_H .
- 1 13. The method of claim 12, wherein step A includes determining the values of the A_p and A_c
- 2 at the intersection of said low energy iso-transmission contour and the high energy iso-
- 3 transmission contour.

4

- 1 14. The method of claim 13, wherein the intersection of the low energy iso-transmission
- 2 contour and the high energy iso-transmission contour is determined by equating a first
- 3 polynomial function $g_L(A_c)$ representing said low energy iso-transmission contour, wherein g_L is
- 4 a polynomial function that represents the shape of the contour of P_L , with a second polynomial

- 5 function $g_H(A_c)$ representing said high energy iso-transmission contour, wherein g_H is a
- 6 polynomial function that represents the shape of the contour for a given $P_{\rm H}$.
- 1 15. The method of claim 12, further including computing a modified value of the input low
- 2 energy projection data (P_{Lc}) and a modified value of the input high energy projection data (P_{Hc}) ,
- 3 wherein each of said modified values $P_{\rm Lc}$ and $P_{\rm Hc}$ are clamped to be bounded between two
- 4 values.
- 1 16. The method of claim 15, including representing the low energy iso-transmission contour
- 2 with a polynomial function g_L and determining a set of coefficients of g_L as a function of P_{Lc} .
- 1 17. The method of claim 15, including representing the high energy iso-transmission contour
- 2 with a polynomial function g_H and determining a set of coefficients of g_H as a function of P_{Hc} .
- 1 18. The method of claim 15, further including, prior to step A, generating calibration data
- 2 using P_L , wherein P_{Lc} is computed by clamping the value of P_L to lie between 0 and the
- 3 maximum value of P_L used to generate said calibration data.
- 1 19. The method of claim 15, wherein the modified value $P_{\rm Hc}$ is determined by clamping the
- value of $P_{\rm H}$ to lie between a minimum value of $P_{\rm H}(P_{\rm Hmin})$ and a maximum value of $P_{\rm H}(P_{\rm Hmax})$.
- 1 20. The method of claim 19, including determining $P_{\rm Hmin}$ as a function of $P_{\rm Lc}$ and a
- 2 polynomial function n_L and determining P_{Hmax} as a function of P_{Lc} and a polynomial function m_{Lc}
- 3 wherein m_L is a polynomial function that determines P_{Hmin} for a given value of P_{Lc} and wherein
- 4 n_L is a polynomial function that determines P_{Hmin} for a given value of P_{Lc} .
- 1 21. The method of claim 1, wherein step A includes calculating a scaled Compton line
- 2 integral value (A_{cs}) as a function of a scale factor s_c and A_c and calculating a scaled photoelectric
- 3 line integral value (A_{ps}) as a function of a scale factor s_p and A_{ps} .

- 1 22. The method of claim 21, wherein step B includes constructing said I_c and said I_p as a
- 2 function of said A_{cs} and said A_{ps} .
- 1 23. The method of claim 1, further including, after step B, determining an image of a basis
- 2 function $X(I_X)$ and a basis function $Y(I_Y)$, by solving I_c and I_p on a pixel-by-pixel basis, wherein
- 3 the basis functions $X(I_X)$ and $Y(I_Y)$ are functions linearly combined to determine the pixel
- 4 intensities in I_c and I_p .
- 1 24. A method for decomposition of projection data acquired by scanning a set of objects
- 2 using at least two x-ray spectra, said projection data including low energy projection data (P_L)
- 3 and high energy projection data (P_H) , said method comprising:
- A. performing a calibration procedure using at least some simulated data or measured data or a combination of simulated and measured data, including:
- 6 i. generating low energy iso-transmission contours for known values of P_L and high energy iso-transmission contours for known values of P_H ;
- 8 ii. generating a polynomial g_L that represents the shape of the low energy iso-
- 9 transmission contour for each P_L , wherein g_L includes a set of coefficients
- g_{Li} determined at said known values of P_L ;
- 11 iii. generating a polynomial g_H that represents the shape of the high energy
- iso-transmission contour for each P_H , wherein g_H includes a set of
- coefficients g_{Hi} determined at said known values of P_{Hi} ;
- iv. generating polynomials h_L that represents the variation of the coefficients
- of the polynomial g_L as a function of P_L ;
- 16 v. generating polynomials $h_{\rm H}$ that represents the variation of the coefficients
- of the polynomial g_H as a function of P_H ;
- 18 vi. determining the minimum and maximum values of $P_{\rm H}$ for each
- transmission line corresponding each P_L ;
- vii. generating a polynomial $m_{\rm H}$ that represents the variation of the minimum

21			value of $P_{\rm H}$ as a function of $P_{\rm L}$; and		
22		viii.	generating a polynomial $n_{\rm H}$ that represents the variation of the maximum		
23			value of $P_{\rm H}$ as a function of $P_{\rm L}$;		
24	' В.	solvin	g the projections P_L and P_H to determine a photoelectric line integral (A_p)		
25		compo	onent of attenuation and a Compton line integral (A_c) component of		
26		attenu	ation of the set of scanned objects using a multi-step fitting procedure,		
27		including:			
28		i.	computing the values of each coefficient g_{Li} using a polynomial function		
29			$h_{\rm Li}(P_{\rm L})$ and computing the values of each coefficient $g_{\rm Hi}$ using a		
30			polynomial function $h_{Hi}(P_H)$; and		
31		ii.	determining A_c and A_p as a function of P_L and P_H , using the coefficients of		
32			g_L and the coefficients of g_H ; and		
33	C.	recons	tructing a Compton image I_c and a photoelectric image I_p from A_c and A_p .		
1	25. The	The method of claim 24, further including, after step C, determining an image of a basis			
2		function $X(I_X)$ and a basis function $Y(I_Y)$, by solving image I_c and image I_p on a pixel-by-			
3		pixel basis.			
1	26. A s	ystem for o	decomposing projection data for a set of scanned objects acquired using at		
2		t two x-ray spectra, said system comprising:			
3	A.		for storing low energy projection data (P_L) and high energy projection data		
4		$(P_{\rm H});$	(2) Frestown Cana		
5	B.		mposition module configured to determine a photoelectric line integral (A_p)		
6		compo	nent of attenuation and a Compton line integral (A_c) component of		
7		attenua	tion for P_{L} and P_{H} using multi-step fitting; and		
8	C.	an imag	ge construction module configured to construct a Compton image (Ic) and a		
9		photoel	ectric image (I_p) from the A_p and A_c .		

- D. a calibration module configured to calibrate the decomposition module using at least some simulated data or measured data or a combination of simulated data and measured data.
- 1 28. The system of claim 27, wherein the calibration module is configured to generate low
- 2 energy iso-transmission contours for known values of P_L at known values of A_p and at known
- 3 values of A_c .
- 1 29. The system of claim 28, wherein the calibration module is configured, for each of said
- 2 low energy iso-transmission contours, to fit A_p to a polynomial function $g_L(A_c)$, wherein g_L is a
- 3 polynomial function that represents the shape of the contour.
- 1 30. The system of claim 29, wherein g_L includes a set of coefficients g_{Li} determined at said
- 2 known values of P_L and the calibration module is configured to fit said set of coefficients g_{Li} to a
- 3 polynomial function $h_{Li}(P_L)$.
- 4 31. The system of claim 28, wherein the calibration module is configured to compute the
- 5 minimum and maximum values of $P_{\rm H}$ for each of the low-energy iso-transmission contours
- 6 corresponding to P_L .
- 7
- 1 32. The system of claim 28, wherein the calibration module is configured to fit the minimum
- 2 values of $P_{\rm H}$ to a polynomial function $m_{\rm L}$ ($P_{\rm L}$).
- 1 33. The system of claim 28, wherein the calibration module is configured to fit the maximum
- 2 values of $P_{\rm H}$ to a polynomial function $n_{\rm L}(P_{\rm L})$.
- 1 34. The system of claim 27, wherein the calibration module is configured to generate high
- 2 energy iso-transmission contours for known values of P_H at known values of A_p and at known
- 3 values of A_c .

- 1 35. The system of claim 34, wherein the calibration module is configured, for each of said
- 2 high energy iso-transmission contours, to fit A_p to a polynomial function of $g_H(A_c)$, wherein g_H is
- 3 a polynomial function that represents the shape of the contour for a given $P_{\rm H}$.
- 1 36. The system of claim 34, wherein g_H includes a set of coefficients g_{Hi} determined at said
- 2 known values of $P_{\rm H}$ and the calibration module is configured to fit said set of coefficients $g_{\rm Hi}$ to a
- 3 polynomial function $h_{Hi}(P_H)$.
- 1 37. The system of claim 26, wherein the decomposition module is configured to generate a
- 2 low energy iso-transmission contour corresponding to $P_{\rm L}$ and a high energy iso-transmission
- 3 contour corresponding to $P_{\rm H}$.
- 1 38. The system of claim 37, wherein the decomposition module is configured to determine
- 2 the values of A_p and A_c at the intersection of said low energy iso-transmission contour and the
- 3 high energy iso-transmission contour.
- 1 39. The method of claim 37, wherein the decomposition module is configured to compute a
- 2 modified value of the input low energy projection data (P_{Lc}) and a modified value of the input
- 3 high energy projection data (P_{Hc}), and configured to clamp said modified values P_{Lc} and P_{Hc}
- 4 between two values.
- 1 40. The system of claim 39, wherein the decomposition module is configured to clamp the
- 2 values of P_L to lie between 0 and the maximum value of P_L used to generate a set of calibration
- data and to compute the modified value P_{Lc} as a function of the clamped values of P_{Lc} .
- 1 41. The system of claim 39, wherein the decomposition module is configured to clamp $P_{\rm Hc}$
- between a minimum value of $P_{\rm H}(P_{\rm Hmin})$ and a maximum value of $P_{\rm H}(P_{\rm Hmax})$.

- 1 42. The system of claim 43, wherein the decomposition module is configured to determine
- 2 P_{Hmin} as a function of P_{Lc} and a polynomial n_{L} and to determine P_{Hmax} as a function of P_{Lc} and a
- 3 polynomial m_L , wherein m_L is a polynomial function representing the coefficients of P_L for the
- 4 minimum values of $P_{\rm H}$ and wherein $n_{\rm L}$ is a polynomial function representing the coefficients of
- 5 $P_{\rm L}$ for the maximum values of $P_{\rm H}$.
- 1 43. The system of claim 26, wherein the decomposition module is configured to calculate a
- 2 scaled Compton line integral value (A_{cs}) as a function of a scale factor s_c and A_c and to calculate a
- 3 scaled photoelectric line integral value (A_{ps}) as a function of a scale factor s_p and A_{ps} .
- 1 44. The system of claim 45, wherein the image reconstruction module is configured to
- 2 reconstruct said I_c and said I_p as a function of said A_{cs} and said A_{ps} .
- 1 45. The system of claim 26, wherein the image reconstruction module is configured to
- determine an image of a basis function $X(I_X)$ and of a basis function $Y(I_Y)$, by solving I_c and I_p
- 3 on a pixel-by-pixel basis, wherein the basis functions $X(I_X)$ and $Y(I_Y)$ are functions linearly
- 4 combined to determine the pixel intensities in I_c and I_p .
- 1 46. A system for decomposing projection data for a set of scanned objects acquired using at
- 2 least two x-ray spectra, said system comprising:
- A. media for storing low energy projection data (P_L) and high energy projection data
- $4 (P_{\mathsf{H}});$
- B. a calibration module configured to calibrate the decomposition module using at
- least some simulated data or measured data or a combination of simulated and
- 7 measured data, and configured to:
- 8 i. generate a low energy iso-transmission contour corresponding to P_L and a
- high energy iso-transmission contour corresponding to $P_{\rm H}$;
- 10 ii. generate a polynomial g_L that represents the shape of the low energy iso-
- transmission contour, wherein g_L includes a set of coefficients g_{Li}

12		determined at said known values of P_L ;
13	iii.	generate a polynomial gH that represents the shape of the high energy iso-
14		transmission contour, wherein g _H includes a set of coefficients g _{Hi}
15		determined at said known values of $P_{\rm H}$;
16	iv.	generate polynomials h_L that represents the variation of the coefficients of
17		the polynomial g_L as a function of P_L ;
18	v.	generate polynomials $h_{\rm H}$ that represents the variation of the coefficients of
19		the polynomial g_H as a function of P_H ;
20	vi.	determine the minimum and maximum values of $P_{\rm H}$ for each transmission
21		line corresponding each P_L ;
22	vii.	generate a polynomial $m_{\rm H}$ that represents the variation of the minimum
23		value of $P_{\rm H}$ as a function of $P_{\rm L}$; and
24	viii.	generate a polynomial $n_{\rm H}$ that represents the variation of the maximum
25		value of $P_{\rm H}$ as a function of $P_{\rm L}$;
26	C. a deco	omposition module configured to determine a photoelectric line integral (A_p)
27	compo	onent of attenuation and a Compton line integral (A_c) component of
28	attenu	ation for P_L and P_H using multi-step fitting, and configured to:
29	i.	compute the values of each coefficient g_{Li} using a polynomial function
30		$h_{Li}(P_L)$ and to compute the values of each coefficient g_{Hi} using a
31		polynomial function $h_{Hi}(P_H)$; and
32	ii.	determine A_c and A_p as a function of P_L and P_H using the coefficients of g_L
33		and the coefficients of g_H ; and
34	D. an ima	age reconstruction module configured to reconstruct a Compton image (I _c)
35	and a p	photoelectric image (I_p) from the A_p and A_c .

- The system of claim 46, wherein the image construction module is configured to 1 47. determine an image of a basis function $X(I_X)$ and of a basis function $Y(I_Y)$, by solving image I_c 2 3
 - and image I_p on a pixel-by-pixel basis.