МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЮРГИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

Е.В. Полицинский

ОСНОВНЫЕ ФОРМУЛЫ, СВЯЗИ МЕЖДУ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ

УДК 53(075) ББК 22.3:74.202я73 П50

Полицинский Е.В.

П50 Физика. Основные формулы, связи между физическими величинами: электронное учебное пособие / Е.В. Полицинский; Юргинский технологический институт. –ЮТИ ТПУ, 2014. – 7,67 Мб.

Электронное учебное пособие «Физика. Основные формулы, связи между физическими величинами» содержит основные формулы и пояснения к ним по курсу общей физики, может быть полезно для студентов технических направлений подготовки при выполнении индивидуальных домашних заданий по решению физических задач, а также учащимся физико-математических классов.

Системные требования: Операционная система Windows 2000/XP/Vista/7; 512 Мб оперативной памяти; дисковод для компакт-дисков, клавиатура, мышь.

© ФГАОУ ВО НИ ТПУ, Юргинский технологический институт (филиал), 2014

СОДЕРЖАНИЕ

1.	МЕХАНИКА	4
2.	ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ	15
3.	ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ	22
4.	ОПТИКА	39
	ЭЛЕМЕНТЫ КВАНТОВОЙ, АТОМНОЙ, ЯДЕРНОЙ ФИЗИКИ. ЭЛЕМЕНТЫ ФИЗИКИ ТВЁРДОГО ТЕЛА	43

ОСНОВНЫЕ ФОРМУЛЫ 1. МЕХАНИКА

Кинематика

Поступательное движение

1. Кинематическое уравнение движения материальной точки (центра масс твердого тела) вдоль оси x:

$$x = f(t)$$

где f(t) — некоторая функция времени.

2. Средняя скорость перемещения

$$\langle v_x \rangle = \frac{\Delta x}{\Delta t}$$
,

где Δx — перемещение материальной точки за интервал времени Δt .

3. Средняя путевая скорость

$$\langle \upsilon \rangle = \frac{\Delta S}{\Delta t}$$
,

где ΔS — путь, пройденный точкой за интервал Δt . Путь ΔS , в отличие от разности координат $\Delta x = x_2 - x_1$, не может убывать и принимать отрицательные значения, т.е. $\Delta S \ge 0$. Поэтому $\langle \upsilon \rangle \ge |\langle \upsilon_x \rangle|$.

4. Уравнения равномерного движения:

$$\vec{r} = \vec{\upsilon} \cdot t$$
; $S = \upsilon \cdot t$; $x = x_0 + \upsilon \cdot t$; $\upsilon_x = const$; $a = 0$.

5. Если, a>0 — движение равноускоренное; a<0 — равнозамедленное. Важнейшие формулы равноускоренного движения (a=const):

$$\begin{split} \upsilon_{\text{cp}} &= \frac{S}{t}; \\ \upsilon_{\text{cp}} &= \frac{U_0 + \upsilon}{2}; \\ \upsilon_{\text{cp}} &= \frac{\upsilon_0 + \upsilon}{2}; \\ a &= \frac{\upsilon - \upsilon_0}{t}; \\ \upsilon &= \upsilon_0 + a \cdot t; \end{split} \qquad \begin{aligned} S &= \upsilon_0 \cdot t + \frac{a \cdot t^2}{2}; \\ S &= \frac{\upsilon^2 - \upsilon_0^2}{2 \cdot a}; \\ x &= x_0 + \upsilon_{0x} \cdot t + \frac{a_x \cdot t^2}{2}. \end{aligned}$$

6. Мгновенная скорость

$$\upsilon_{x} = \frac{dx}{dt},$$

где $\frac{dx}{dt}$ – проекция скорости на координатную ось.

7. Среднее ускорение

$$\langle a_x \rangle = \Delta v_x / \Delta t$$
.

8. Мгновенное ускорение

$$a_x = \frac{dv_x}{dt}$$
,

где $\frac{dv_x}{dt}$ – проекция скорости на координатную ось.

9. Путь, пройденный точкой за промежуток времени от t_1 до t_2

$$S = \int_{t_1}^{t_2} \upsilon(t) dt.$$

10. Если известно a = a(t), то:

$$\upsilon = \upsilon_0 + \int_0^t a dt.$$

Вращательное движение

11. Кинематическое уравнение движения материальной точки по окружности:

$$\varphi = f(t); r = R = const,$$

где R — радиус окружности.

12. Между параметрами и уравнениями кинематики прямолинейного движения и движения по окружности вокруг оси или центра вращения существует аналогия (таблицы 1, 2).

Аналогия между параметрами

Таблица 1

Путь S (м)	Угол φ (рад)
Скорость υ (м/с)	Угловая скорость ω (рад/с)
Ускорение a (м/ c^2)	Угловое ускорение ε (рад/ c^2)
Время <i>t</i> (c)	Время <i>t</i> (c)

Таблица 2

Аналогия между уравнениями

Равномерное движение			
Прямолинейное	По окружности		
$\upsilon = \frac{S}{t}$	$\omega = \frac{\varphi}{t}$		
Равнопеременное движение			
Прямолинейное	По окружности		
$v_{\rm cp} = \frac{S}{t}$	$\omega_{\rm cp} = \frac{\varphi}{t}$		
$v_{\rm cp} = \frac{v_0 + v}{2}$	$\omega_{\rm cp} = \frac{\omega_0 + \omega}{2}$		
$\upsilon = \upsilon_0 + a \cdot t$	$\omega = \omega_0 + \varepsilon \cdot t$		
$S = \nu_0 \cdot t + \frac{a \cdot t^2}{2}$	$\varphi = \omega_0 \cdot t + \frac{\varepsilon \cdot t^2}{2}$		
$S = \frac{\upsilon^2 - \upsilon_0^2}{2 \cdot a}$	$\varphi = \frac{\omega^2 - \omega_0^2}{2 \cdot \varepsilon}$		

13. Связь частоты вращения n, периода вращения T и угловой скорости ω

$$T=\frac{1}{n}$$
; $\omega=2\pi n=\frac{2\pi}{T}$.

14. Быстроту изменения скорости при криволинейном движении характеризуют тангенциальным a_{τ} , нормальным a_n и полным a ускорениями.

 $\vec{a}_{\tau} \perp \vec{a}_{n}$ всегда (рис. 1).

15. Полное ускорение равно векторной сумме тангенциального и нормального ускорений

Рис. 1. Векторы тангенциального, нормального и полного ускорения точки

$$a = \sqrt{a_n^2 + a_\tau^2} \ .$$

16. Угол между векторами полного ускорения \vec{a} и нормального \vec{a}_n (рис. 1)

$$\delta = \arccos \frac{a_n}{a}$$
.

17. Тангенциальное ускорение

$$a_{\tau} = \varepsilon \cdot R$$
.

18. Нормальное (центростремительное) ускорение

$$a_n = \frac{v^2}{R} = \omega^2 \cdot R.$$

19. Связь между линейной и угловой скоростью

$$\upsilon = \omega \cdot R$$
.

20. Угловая скорость

$$\omega = \frac{d\varphi}{dt}$$
,

где $d\varphi$ — изменение угла поворота за интервал времени dt.

21. Угловое ускорение

$$\varepsilon = \frac{d\omega}{dt}.$$

22. Если известна зависимость $\omega = \omega(t)$, то

$$\varphi = \varphi_0 + \int_0^t \omega dt.$$

23. Если известна зависимость $\varepsilon = \varepsilon(t)$, то

$$\omega = \omega_0 + \int_0^t \varepsilon dt.$$

Колебательное движение

24. Уравнение гармонических колебаний материальной точки:

$$x = A\cos(u\mu t + \varphi),$$

где x — смещение колеблющейся точки от положения равновесия; A — амплитуда колебаний; ω — угловая или циклическая частота; φ — начальная фаза.

25. Скорость материальной точки, совершающей гармонические колебания,

$$\upsilon = \frac{dx}{dt} - A \cdot \omega \cdot \sin(\omega t + \varphi).$$

26. Ускорение материальной точки, совершающей гармонические колебания,

$$a = \frac{dv}{dt} = \frac{d^2x}{dt} - A \cdot \omega^2 \cdot \cos(\omega t + \varphi).$$

- 27. Сложение гармонических колебаний одного направления и одинаковой частоты:
 - а) амплитуда результирующего колебания

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos(\varphi_2 - \varphi_1)};$$

б) начальная фаза результирующего колебания

$$\varphi = arctg \frac{A_1 sin\varphi_1 + A_2 sin\varphi_2}{A_1 cos\varphi_1 - A_2 cos\varphi_2}.$$

28. Уравнения, описывающие траекторию точки, участвующей в двух взаимно перпендикулярных колебаниях:

$$x = A_1 cos\omega t$$
, $y = A_2 cos(\omega t + \varphi)$,

- a) $y = \frac{A_2}{A_1} \cdot x$ (если разность фаз $\varphi = 0$);
- б) $y = \frac{A_1}{A_2} \cdot x$ (если разность фаз $\varphi = \pm \pi$);
- в) $\frac{x^2}{A_1^2} + \frac{y^2}{A_2^2} = 1$ (если разность фаз $\varphi = \pm \frac{\pi}{2}$).
- 29. Уравнение плоской бегущей волны:

$$y = A \cdot \cos\omega \left(t - \frac{x}{v}\right),\,$$

где y — смещение любой точки из точек среды с координатой x в момент t;

 υ – скорость распространения колебания в среде.

30. Длина волны

$$\lambda = \nu \cdot T$$
.

где υ — длина волны.

31. Связь разности фаз $\Delta \varphi$ колебаний с расстоянием Δx между точками среды, отсчитанными в направлении распространения колебаний:

$$\Delta \phi = \frac{2\pi}{\lambda} \cdot \Delta x \,,$$

где λ — длина волны.

32. Кинетическая энергия вращающегося тела

$$E_{\kappa} = \frac{I \cdot \omega^2}{2}$$
,

где I – момент инерции тела; ω – угловая скорость тела.

33. Потенциальная энергия растянутой (или сжатой) пружины

$$E_{II} = \frac{k \cdot x^2}{2},$$

где k — жесткость; x — отклонение колеблющейся точки от положения равновесия.

34. Полная энергия материальной точки, совершающей гармонические колебания,

$$E = \frac{1}{2} \cdot m \cdot A^2 \cdot u q^2 = \frac{1}{2} \cdot k \cdot A^2,$$

где m — масса точки; A — амплитуда колебаний; ω — круговая (циклическая) частота; k — коэффициент квазиупругой силы ($k = m \cdot \omega^2$).

35. Период колебаний тела, подвешенного на пружине (пружинный маятник),

$$T = 2 \cdot \pi \cdot \sqrt{m/k} ,$$

где m — масса тела; k — жесткость пружины.

Формула справедлива для упругих колебаний в пределах, в которых выполняется закон Гука.

36. Период колебаний математического маятника

$$T = 2 \cdot \pi \cdot \sqrt{l/g} ,$$

где l – длина маятника; g – ускорение свободного падения.

37. Период колебаний физического маятника

$$T = 2 \cdot \pi \cdot \sqrt{\frac{L}{g}} = 2 \cdot \pi \cdot \sqrt{\frac{I}{m \cdot g \cdot l}} ,$$

где I — момент инерции колеблющегося тела относительно его оси колебаний; m — масса маятника; l — расстояние от центра масс маятника до оси ко-

лебаний; $L = \frac{I}{m \cdot a}$ — приведенная длина физического маятника; a — расстоя-

ние центра масс маятника от оси колебаний; g — ускорение свободного падения.

38. Уравнение затухающих колебаний

$$x = A_o \cdot e^{-\delta t} \cos(\omega t + \varphi),$$

где $\delta = \frac{r}{2 \cdot m}$ — коэффициент затухания, r — коэффициент сопротивления, m — масса маятника.

39. Период затухающих колебаний

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\left(\omega_o^2 - \delta^2\right)}}.$$

40. Логарифмический коэффициент затухания

$$\chi = \delta \cdot T$$
.

Динамика

Поступательное движение

41. Импульс материальной точки массой m, движущейся поступательно со скоростью υ ,

$$\vec{P} = m\vec{\upsilon}$$
.

42. Второй закон Ньютона

$$\vec{a} = \frac{\vec{F}}{m}$$
, при $m = const$ и $\upsilon \ll c$.

Или в более общем виде:

$$dp = F dt$$

где F – результирующая сила, действующая на материальную точку.

- 43. Силы, рассматриваемые в механике:
- а) сила упругости

$$F = -kx$$

где k — коэффициент упругости (в случае пружины — жёсткость); x — абсолютная деформация;

б) сила тяжести

$$F = m \cdot g;$$

в) сила гравитационного взаимодействия

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2},$$

где G — гравитационная постоянная; m_1 и m_2 — массы взаимодействующих тел; r — расстояние между телами (тела рассматриваются как материальные точки). В случае гравитационного взаимодействия силу можно выразить также через напряженность G гравитационного поля:

$$F = m \cdot G$$
;

г) сила трения (скольжения)

$$F = \mu \cdot N$$
:

где μ – коэффициент трения; N – сила нормального давления.

44. Закон сохранения импульса:

$$\sum_{i=1}^{N} \vec{P}_i = const,$$

для двух тел (i = 2)

$$m_1 \cdot \vec{v_1} + m_2 \cdot \vec{v_2} = m_1 \cdot \vec{u_1} + m_2 \cdot \vec{u_2}$$
,

где \vec{v}_1 и \vec{v}_2 – скорости тел в момент времени, принятый за начальный; \vec{u}_1 и \vec{u}_2 – скорости тех же тел в момент времени, принятый за конечный.

45. При неупругом центральном ударе двух тел с массами m_1 и m_2 общая скорость движения этих тел после удара может быть найдена по формуле:

$$u=\frac{m_1\cdot \nu_1+m_2\cdot \nu_2}{m_1+m_2},$$

где υ_{l} – скорость первого тела до удара; υ_{2} – скорость второго тела до удара.

46. При упругом центральном ударе тела будут двигаться с различными скоростями. Скорость первого тела после удара

$$u_1 = \frac{(m_1 - m_2) \cdot \upsilon_1 + 2 \cdot m_2 \cdot \upsilon_2}{m_1 + m_2}$$
.

Скорость второго тела после удара

$$u_1 = \frac{(m_2 - m_1) \cdot \upsilon_2 + 2 \cdot m_1 \upsilon_1}{m_1 + m_2}$$
.

47. Кинетическая энергия тела, движущегося поступательно

$$T = \frac{m \cdot \upsilon^2}{2}$$
 или $T = \frac{P^2}{2 \cdot m}$.

- 48. Потенциальная энергия:
- а) упругодеформированной пружины

$$\Pi = \frac{1}{2} \cdot k \cdot x^2,$$

где k – жесткость пружины; x – абсолютная деформация;

б) гравитационного взаимодействия

$$\Pi = -G \cdot \frac{m_1 \cdot m_2}{r},$$

где G – гравитационная постоянная; m_1 и m_2 - массы взаимодействующих тел; r – расстояние между ними (тела рассматриваются как материальные точки);

в) тела, находящегося в однородном поле силы тяжести,

$$\Pi = m \cdot g \cdot h$$
,

где g — ускорение свободного падения; h — высота тела над уровнем, принятым за нулевое. Формула справедлива при условии h << R, где R — радиус Земли.

49. Закон сохранения механической энергии:

$$E = T + \Pi = const.$$

50. Работа А, совершаемая внешними силами над телом,

$$A = F \cdot S \cos \alpha$$
,

где F — сила, приложенная к телу; S — пройденный путь; α — угол между направлением силы и направлением перемещения тела.

51. Работа A, совершаемая внешними силами над телом, определяется как мера изменения энергии системы:

$$A = \Delta E_{\kappa} = E_{\kappa 2} - E_{\kappa 1} = \frac{m \cdot v_2^2}{2} - \frac{m \cdot v_1^2}{2} = -\Delta E_n = -(E_{n2} - E_{n1}).$$

52. Средняя мощность за интервал времени Δt

$$N = \frac{\Delta A}{\Delta t}.$$

53. Мгновенная мощность

$$N = \frac{dA}{dt}$$
,

ИЛИ

$$N = F \cdot \upsilon \cos \alpha$$
.

54. КПД механизма

$$\eta = \frac{A_{non}}{A_{3am}} \cdot 100\% = \frac{N_{non}}{N_{3am}} \cdot 100\%.$$

55. Формула Циолковского

$$\upsilon = u \cdot \lg \frac{m_c}{m_c - \mu \cdot t},$$

где υ — скорость ракеты в момент времени t, u — скорость истечения продуктов сгорания (газов), m_c — стартовая масса ракеты, μ — массовый расход топлива.

Динамика твердого тела

56. Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots = 0.$$

57. Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

$$M_1 + M_2 + ... = 0$$
.

58. Момент силы относительно неподвижной точки O — физическая величина, определяемая произведением радиуса-вектора \vec{r} , проведённого из точки O в точку A приложения силы, на силу \vec{F} (рис. 2)

$$\overrightarrow{M} = [\overrightarrow{r}, \overrightarrow{F}].$$

Модуль вектора момента силы

$$M = F \cdot r \sin \alpha = F \cdot d$$
.

Кратчайшее расстояние между линией действия силы и точкой O – плечо силы

 $Puc.\ 2.\ Moмент\ cuлы\ \overrightarrow{M}$

59. Моментом инерции тела относительно оси вращения называется сумма произведений элементарных масс на квадрат расстояния от оси вращения

$$J = \sum_{i=1}^{n} \Delta m_i \cdot r_i^2 .$$

Таблица 3 Моменты инерции однородных тел

Тело	Положение оси вращения	Значение мо- мента инерции
Обруч, кольцо, тонкостенный цилиндр	Ось симметрии перпендикулярна плоскости торца	$J = m \cdot R^2$
Сплошной ци- линдр, диск	Ось симметрии перпендикуляр- на торцу	$J = \frac{1}{2} \cdot m \cdot R^2$
Стержень	Ось перпендикулярна стержню и проходит через середину	$J = \frac{1}{12} \cdot m \cdot l^2$
Стержень	Ось перпендикулярна стержню и проходит через конец	$J = \frac{1}{3} \cdot m \cdot l^2$
Твердый сплошной шар	Ось, проходящая через центр масс	$J = \frac{2}{5} \cdot m \cdot R^2$

60. Теорема Штейнера: момент инерции тела J относительно любой оси вращения равен моменту инерции J_{C} относительно параллельной оси, прохо-

дящей через центр масс C тела, сложенному с произведением массы m тела на квадрат расстояния a между осями

$$J = J_C + m \cdot a^2.$$

61. Кинетическая энергия тела, вращающегося вокруг неподвижной оси,

$$E_K = \frac{1}{2} \cdot J \cdot \omega^2.$$

62. Кинетическая энергия при плоском движении слагается из энергии поступательного движения со скоростью центра инерции тела и энергии вращения вокруг оси, проходящей через центр инерции

$$E_{nn} = \frac{m \cdot v_C^2}{2} + \frac{J \cdot \omega^2}{2}.$$

63. Основное уравнение динамики вращательного движения

$$M_z = J_z \cdot \varepsilon$$
,

ИЛИ

$$\overrightarrow{M} = \frac{d\overrightarrow{L}}{dt}$$
.

64. Момент импульса тела, вращающегося относительно неподвижной оси

$$L_z = J_z \cdot \omega$$
.

65. Закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, то есть не изменяется с течением времени

$$L = const$$
; $J_1 \cdot \omega_1 = J_2 \cdot \omega_2$.

Гидродинамика

66. Сила Архимеда

$$F_A = \rho \cdot V \cdot g,$$

где ρ — плотность жидкости; V — объем тела, погруженного в жидкость; g — ускорение свободного падения.

67. Гидростатическое давление

$$p = \rho \cdot g \cdot h \,,$$

где h — высота столба жидкости.

68. Уравнение неразрывности струи

$$S_1 \cdot \nu_1 = S_2 \cdot \nu_2 \,,$$

где S_1 и S_2 — площади поперечного сечения трубки тока в двух местах; υ_1 и υ_2 - соответствующие скорости течений.

69. Уравнение Бернулли для идеальной несжимаемой жидкости в общем случае:

$$p_1 + \frac{\rho \cdot v_1^2}{2} + \rho \cdot g \cdot h_1 = p_2 + \frac{\rho \cdot v_2^2}{2} + \rho \cdot g \cdot h_2$$

где p_1 и p_2 — статические давления жидкости в двух сечениях трубки тока; υ_1 и υ_2 — скорости жидкости в этих же сечениях; $\frac{\rho \cdot \upsilon_1^2}{2}$ и $\frac{\rho \cdot \upsilon_2^2}{2}$ — динамические давления жидкости в этих же сечениях; h_1 и h_2 — высоты их над некоторым уровнем; $\rho \cdot g \cdot h_1$ и $\rho \cdot g \cdot h_2$ — гидростатические давления.

Уравнение Бернулли в случае, когда оба сечения находятся на одной высоте ($h_1 = h_2$),

$$p_1 + \frac{\rho \cdot v_1^2}{2} = p_2 + \frac{\rho \cdot v_2^2}{2}.$$

70. Сила Стокса

$$F = 6 \cdot \pi \cdot \upsilon \cdot \eta \cdot r$$
,

где υ — скорость движения шарика, взвешенного в жидкости; η — коэффициент вязкости (динамическая вязкость); r — радиус шарика.

Элементы релятивисткой механики

71. Длина тела l, движущегося со скоростью υ относительно некоторой системы отсчёта, связана с длиной l_0 тела, неподвижного в этой системе. соотношением

$$l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$$
.

72. Промежуток времени $\Delta \tau$ в системе, движущейся со скоростью υ по отношению к наблюдателю, связан с промежутком времени $\Delta \tau_0$ в неподвижной для наблюдателя системе соотношением

$$\Delta \tau = \frac{\Delta \tau_0}{\sqrt{1 - \frac{\upsilon^2}{c^2}}} \,.$$

73. Зависимость массы тела от скорости

$$m = \frac{m_0}{\sqrt{1 - \frac{\upsilon^2}{c^2}}}.$$

74. Релятивистский импульс

$$p = \frac{m_0 \cdot \upsilon}{\sqrt{1 - \frac{\upsilon^2}{c^2}}}.$$

Частица называется релятивистской, если скорость частицы сравнима со скоростью света, и классической, если $\upsilon \ll c$.

75. Энергия покоя частицы

$$E_0 = m_0 \cdot c$$
.

76. Полная энергия релятивистской частицы

$$E = m_0 \cdot c + E_{\kappa},$$

где E_{κ} – кинетическая энергия частицы.

2. ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ И ТЕРМОДИНАМИКИ

1. Количество вещества однородного газа (в молях)

$$v = \frac{N}{N_A} = \frac{m}{M},$$

где N — число молекул газа; N_A — постоянная Авогадро (N_A = 6,02·10²³ моль⁻¹); M — масса газа; M — молярная масса газа.

Если система представляет смесь из нескольких газов, то количество вещества системы

$$v = v_1 + v_2 + ... + v_n = \frac{N_1}{N_A} + \frac{N_2}{N_A} + ... + \frac{N_n}{N_A}$$

или

$$v = \frac{m_1}{M_1} + \frac{m_2}{M_2} + \dots + \frac{m_n}{M_n}$$

где v_i , N_i , m_i , M_i — соответственно количество вещества, число молекул, масса, молярная масса i-го компонента смеси.

2. Относительная молекулярная масса — отношение массы молекулы к 1/12 массы атома углерода:

$$M_r = \frac{m_0}{12} \cdot m_{0C}$$

3. Молярная масса (масса одного моля вещества):

$$M = m_0 \cdot N_A$$
; $M = M_r \cdot 10^{-3} \, \text{кг/моль}$,

 Γ де m_0 — масса молекулы.

4. Молярная масса смеси газов

$$M = \frac{m_1 + m_2 + \dots + m_i}{v_1 + v_2 + \dots + v_i},$$

где m_i - масса i-го компонента смеси; v_i - количество вещества i-го компонента смеси; n - число компонентов смеси.

5. Массовая доля i-го компонента смеси газов (в долях единицы или в процентах)

$$\omega = \frac{m_i}{m},$$

где *т* - масса смеси.

6. Концентрация молекул (число молекул в единице объема)

$$n = \frac{N}{V} = \frac{N_A}{m} \rho,$$

где N — число молекул, содержащихся в данной системе; ρ — плотность вещества; m — масса.

Формула справедлива не только для газов, но и для любого состояния вещества.

7. Закон Дальтона, определяющий давление смеси газов:

$$p = p_1 + p_2 + ... + p_n$$

где p_n — парциальное давление компонента смеси; n — число компонентов смеси.

8. Закон Авогадро: моли любых газов при одинаковых температуре и давлении занимают одинаковые объёмы.

При нормальных условиях $V_m = 22,41 \cdot 10^{-3} M^3 / MOЛь$.

9. Связь температурной шкалы по Цельсию с температурной шкалой по Кельвину

$$T = t + 273^{\circ}$$
; $\Delta T = \Delta t$.

10. Основное уравнение кинетической теории газов:

$$p = \frac{1}{3} \cdot m_0 \cdot \left\langle v_{\kappa e} \right\rangle^2 \cdot n ,$$

или

$$p=\frac{2}{3}n\langle E_{\kappa}\rangle,$$

где $\langle E_{\kappa} \rangle$ — средняя кинетическая энергия поступательного движения молекулы.

11. Уравнение Менделеева-Клапейрона (уравнение состояния идеального газа):

$$p \cdot V = \frac{m}{M} \cdot R \cdot T = v \cdot R \cdot T,$$

где m — масса газа; M — молярная масса газа; R — молярная газовая постоянная $(R=8,31~\rm{Д} \pm m)$; v — количество вещества; T — термодинамическая температура.

- 12. Опытные газовые законы, являющиеся частными случаями уравнения Менделеева-Клапейрона для изопроцессов:
 - а) закон Бойля-Мариотта (изотермический процесс: T = const, m = const) $p \cdot V = const$

или для двух состояний газа

$$p_1 \cdot V1 = p_2 \cdot V_2,$$

где p_1 и V_1 — давление и объем газа в начальном состоянии, p_2 и V_2 — те же величины в конечном состоянии;

б) закон Гей-Люссака (изобарический процесс p = const, m = const)

$$\frac{V}{T} = const$$

или для двух состояний газа

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
,

где T_1 и V_1 – температура и объем газа в начальном состоянии; T_2 и V_2 – те же величины в конечном состоянии;

в) закон Шарля (изохорический процесс V = const, m = const)

$$\frac{p}{T} = const$$

или для двух состояний газа

$$\frac{p_1}{T_1} = \frac{p_2}{T_2},$$

где p_1 и T_1 - давление и температура газа в начальном состоянии; p_2 и T_2 - те же величины в конечном состоянии;

 Γ) объединенный газовый закон (m = const)

$$\frac{p \cdot V}{T} = const, \quad \frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2},$$

где p_1 , V_1 , T_1 — давление, объем и температура газа в начальном состоянии; p_2 , V_2 , V_2 — те же величины в конечном состоянии.

13. Средняя кинетическая энергия поступательного движения одной молекулы

$$E = \frac{3}{2} \cdot k \cdot T,$$

где k – постоянная Больцмана ($k = 1,38 \cdot 10^{-23}$ Дж/К).

14. Средняя полная кинетическая энергия молекулы

$$E_k = \frac{i}{2} \cdot k \cdot T,$$

где i — число степеней свободы молекулы.

- 15. Число степеней свободы молекул число независимых переменных, полностью определяющих положение системы в пространстве. Ниже (таблица 4) приведены данные по числу степеней свободы для различных моделей молекул.
- 16. Зависимость давления газа от концентрации молекул и от температуры

$$p=n\cdot k\cdot T.$$

17. Скорость молекул:

среднеквадратичная
$$\langle \upsilon_{\kappa e} \rangle = \sqrt{\frac{3 \cdot k \cdot T}{m_{\odot}}} = \sqrt{\frac{3 \cdot R \cdot T}{M}}$$
;

среднеарифметическая
$$\langle \upsilon \rangle = \sqrt{\frac{8 \cdot k \cdot T}{\pi \cdot m_0}} = \sqrt{\frac{8 \cdot R \cdot T}{\pi \cdot M}};$$

наиболее вероятная
$$\upsilon_{\scriptscriptstyle B} = \sqrt{\frac{2 \cdot k \cdot T}{m_{\scriptscriptstyle 0}}} = \sqrt{\frac{2 \cdot R \cdot T}{M}} \,,$$

Число степеней свободы для различных моделей молекул

Газ	Модель газа		Число степеней свободы		
		i_{nocm}	$i_{_{\!arepsilon pau_{\!\scriptscriptstyle i}}}$	$i_{\kappa o$ ле $\delta}$	всего
Одно- атомный	материальная точка	3	1	1	3
Двух- атомный	Две материальные точки, жёсткая связь	3	2	-	5
Двух- атомный	Две материальные точки, нежёсткая связь	3	2	2	7
Трёхатом- ный, мно- гоатом- ный	Три (много) атома, жёсткая связь	3	3	-	6

18. Закон распределения молекул по скоростям (Закон Максвелла) позволяет найти число молекул ΔN , относительные скорости которых лежат в интервале от u до $u+\Delta u$

$$\Delta N = \frac{4}{\sqrt{\pi}} \cdot N \cdot e^{-u^2} \cdot u^2 \cdot \Delta u ,$$

где $u=\frac{\upsilon}{\upsilon_{\scriptscriptstyle B}}$ — относительная скорость; υ — данная скорость; $\upsilon_{\scriptscriptstyle B}$ — наиболее ве-

роятная скорость; Δu — интервал относительных скоростей, малый по сравнению со скоростью u.

19. Барометрическая формула даёт закон убывания газа с высотой в поле силы тяжести:

$$p = p_0 \cdot \exp(-\frac{M \cdot g \cdot h}{R \cdot T}).$$

Здесь p — давление газа на высоте h, p_0 — давление на высоте h = 0, g — ускорение свободного падения. Эта формула приближённая, так как температуру нельзя считать одинаковой для больших разностей высот.

20. Закон Максвелла-Больцмана

$$dn_{\varepsilon_{v},v} \approx e^{-\frac{E}{k \cdot T}} \cdot v^{2} dv$$
,

где E — полная энергия молекулы.

21. Среднее число соударений молекулы

$$\overline{z} = \sqrt{2} \cdot n_0 \cdot \pi \cdot d^2 \cdot \overline{\upsilon} .$$

где n_0 — концентрация молекул, υ — средняя арифметическая скорость, d — эффективный диаметр молекулы.

22. Средняя длина пробега молекулы

$$\overline{\ell} = \frac{\overline{\upsilon}}{\overline{z}} = \frac{1}{\sqrt{2} \cdot n_0 \cdot \pi \cdot d^2}.$$

23. Явления переноса — необратимые процессы в термодинамически неравновесных системах, в результате которых происходит пространственный перенос энергии, массы или импульса (таблица 5).

Таблица 5 Общие сведения о явлениях переноса (одномерный случай)

Явление	Переносимая физическая	Закон, описывающий	Коэффици- енты λ , D и η
переноса	величина	явление переноса	онты ж, В н <i>ү</i>
Теплопро- водность	Энергия	Закон Фурье $j_E = -\lambda \cdot \frac{dT}{dx}$	$\lambda = \frac{1}{3} \cdot c_{\nu} \cdot \rho \cdot \langle \upsilon \rangle \cdot \langle l \rangle$
Диффузия	Macca	Закон Фика $j_m = -D \cdot \frac{d\rho}{dx}$	$D = \frac{1}{3} \cdot \langle \upsilon \rangle \cdot \langle l \rangle$
Внутреннее трение (вязкость)	Импульс	Закон Нью- тона $j_p = -\eta \cdot \frac{d\upsilon}{dx}$	$\eta = \frac{1}{3} \cdot \rho \cdot \langle \upsilon \rangle \cdot \langle l \rangle$

В таблице 5: j_E , j_m , j_p — соответственно плотность теплового потока, плотность потока массы и плотность потока импульса; λ , D, η — соответственно коэффициенты теплопроводности, диффузии и динамической вязкости; $\frac{dT}{dx}$, $\frac{d\rho}{dx}$, $\frac{d\upsilon}{dx}$ — соответственно градиенты температуры, плотности и скорости; c_V — удельная теплоёмкость газа при постоянном объёме; ρ — плотность газа; $\langle \upsilon \rangle$ — средняя скорость теплового движения молекул; $\langle l \rangle$ — средняя длина свободного пробега молекул.

$$[\lambda]1\frac{Bm}{M \cdot K}; [D]1\frac{M^2}{C}; [\eta]1 \Pi a \cdot C.$$

Зависимости между λ, D, η :

$$\eta = \rho \cdot D; \frac{\lambda}{\eta \cdot c_V} = 1$$

24. Удельные теплоемкости газов при постоянном объеме c_V и при постоянном давлении c_p

$$c_V = \frac{i \cdot R}{2 \cdot M}, \quad c_p = \frac{(i+2) \cdot R}{2 \cdot M}$$

25. Связь между удельной c и молярной C теплоемкостями

$$c = \frac{C}{M}$$
; $C = c \cdot M$.

26. Уравнение Роберта Майера:

$$C_P - C_V = R$$
.

27. Внутренняя энергия идеального газа

$$U = \frac{i \cdot m}{2 \cdot M} \cdot R \cdot T = \frac{m}{M} \cdot C_V \cdot T.$$

28. Первое начало термодинамики:

$$Q = \Delta U + A;$$

или более строго

$$\partial Q = dU + \partial A$$
,

где Q – теплота, сообщенная системе (газу); ΔU – изменение внутренней энергии системы; A – работа, совершенная системой против внешних сил.

29. Процессы, связанные с поглощением теплоты: нагревание, плавление, парообразование. С выделением – охлаждение, кристаллизация, конденсация, сгорание топлива.

При нагревании (охлаждении)

$$Q = c \cdot m \cdot \Delta t = c \cdot m \cdot \Delta T,$$

плавлении (кристаллизации)

$$Q = \lambda \cdot m$$
,

парообразовании (конденсации)

$$Q = r \cdot m$$

сжигании топлива

$$Q = g \cdot m$$
,

где c, λ, r, g — соответственно удельная теплоёмкость, удельная теплота плавления, удельная теплота парообразования, удельная теплота сгорания топлива (табличные величины).

30. Работа расширения газа:

в общем случае
$$A = \int\limits_{V_1}^{V_2} p dV;$$
 при изобарическом процессе
$$A = p \cdot (V_2 - V_I);$$
 при изотермическом процессе
$$A = \frac{m}{\mu} \cdot R \cdot T \ln \frac{V_2}{V_1};$$
 при адиабатическом процессе
$$A = -\Delta U = \frac{m}{\mu} \ C_V \cdot \Delta T$$

или

$$A = \frac{R \cdot T_1 \cdot m}{(\gamma - 1) \cdot \mu} \cdot \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right],$$

где $\gamma = C_P / C_V$ — показатель адиабаты.

31. Уравнение Пуассона, связывающее параметры идеального газа при адиабатическом процессе:

$$PV^{\gamma} = const;$$
 $\frac{T_2}{T_1} = \left(\frac{V_1}{V_2}\right)^{\gamma-1};$ $\frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^{\gamma};$ $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{\gamma-1}{\gamma}}.$

Ниже (таблица 6) приведены основные сведения для различных газовых процессов.

Таблица 6 Сравнение различных газовых проиессов

Название процесса	Закон	Первое начало термодинамики применительно к процессу	Изменение внутренней энергии ΔU	Работа $\it A$
Изотермический	$p \cdot V = const$	$\partial Q = \partial A$	0	$\frac{m}{M} \cdot R \cdot T \cdot \ln \frac{V_2}{V_1}$
Изохорный	$\frac{p}{T} = const$	$\partial Q = dU$	$\frac{m}{M} \cdot C_V dT$	0
Изобарный	$\frac{V}{T} = const$	$\partial Q = dU + \partial A$	$\frac{m}{M} \cdot C_V dT$	$p \cdot (V_2 - V_1) =$ $= \frac{m}{M} \cdot R \cdot (T_2 - T_1)$
Адиабатный	$p \cdot V^{\gamma} = const$ $T \cdot V^{\gamma - 1} = const$ $T^{\gamma} \cdot p^{1 - \gamma} = const$	$\partial Q = -dU$	$\frac{m}{M} \cdot C_V dT$	$\frac{m}{M} \cdot C_V \cdot (T_1 - T_2)$
Политропный	$p \cdot V^{n} = const$ $T \cdot V^{n-1} = const$ $T^{n} \cdot p^{1-n} = const$	$\partial Q = dU + \partial A$	$\frac{m}{M} \cdot C_V dT$	$\frac{m}{M} \cdot \frac{R}{n-1} \cdot (T_1 - T_2)$

32. Термический КПД цикла

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1},$$

где Q_1 — теплота, полученная рабочим телом от нагревателя; Q_2 — теплота, переданная рабочим телом охладителю.

33. Термический КПД цикла Карно

$$\eta = \frac{Q_1 - Q_2}{Q_1} = \frac{T_1 - T_2}{T_1},$$

где T_1 и T_2 — термодинамические температуры нагревателя и холодильника.

34. Изменение энтропии системы при её равновесном переходе из состояния 1 в состояние 2

$$\Delta S_{1\to 2} = S_2 - S_1 = \int_1^2 \frac{\partial Q}{T} = \int_1^2 \frac{\partial U + \partial A}{T}.$$

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Электростатика

1. Закон сохранения электрического заряда: в изолированной (замкнутой) системе алгебраическая сумма зарядов всех частиц остаётся постоянной: $q_1+q_2+q_3+q_4+\ldots q_n=$ const.

Замкнутая (изолированная) система — система, не обменивающаяся зарядами с внешними телами.

2. Закон Кулона: сила взаимодействия между двумя неподвижными точечными зарядами, пропорциональна произведению зарядов и обратно пропорциональна квадрату расстояния между ними.

$$F = k \cdot \frac{|Q_1| \cdot |Q_2|}{\varepsilon \cdot r^2} = \frac{|Q_1| \cdot |Q_2|}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot r^2}.$$

Здесь $k = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K \pi^2}$, $\varepsilon_0 = 8,85 \cdot 10^{-12} \Phi/M$ — электрическая постоян-

ная; є – диэлектрическая проницаемость среды (табличная величина).

3. Напряженность электростатического поля

$$\vec{E} = \frac{\vec{F}}{q_0},$$

где \vec{F} — сила, действующая на точечный положительный заряд q_0 , помещенный в данную точку поля.

4. Если электростатическое поле создано несколькими (N) точечными зарядами, то его напряжённость в любой точке поля равна геометрической сумме напряжённостей полей, созданных каждым из зарядов в отдельности.

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots + \vec{E}_N = \sum_{i=1}^{N} \vec{E}_i$$

где \vec{E}_i — напряженность поля, создаваемая зарядом с номером i.

5. Напряженность электрического поля, создаваемого точечным зарядом q на расстоянии r от заряда,

$$E = \frac{q}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot r^2} \, .$$

6. Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром) на расстоянии r от ее оси,

$$E = \frac{\tau}{2 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot r},$$

где τ – линейная плотность заряда.

Линейная плотность заряда есть величина, равная отношению заряда, распределенного по нити, к длине нити (цилиндра):

$$\tau = \frac{\Delta q}{\Lambda l} \, .$$

7. Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью

$$E = \frac{\sigma}{2 \cdot \varepsilon_0 \cdot \varepsilon},$$

где σ – поверхностная плотность заряда.

Поверхностная плотность заряда есть величина, равная отношению заряда, распределенного по поверхности, к площади этой поверхности:

$$\sigma = \frac{\Delta q}{\Delta S}$$
.

8. Напряженность поля между двумя равномерно и разноименно заряженными бесконечными параллельными плоскостями (поле плоского конденсатора)

$$E = \frac{\sigma}{\varepsilon_0 \cdot \varepsilon}.$$

- 9. Напряженность электрического поля E, создаваемого металлической заряженной сферой радиуса R на расстоянии r от центра сферы:
 - а) на поверхности сферы (r = R): $E = \frac{q}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot R^2};$
 - б) вне сферы (r > R): $E = \frac{q}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot r^2};$
 - в) внутри сферы (r < R): E = 0
- 10. Напряженность электрического поля равномерно заряженного бесконечного цилиндра

$$E = \frac{1}{2 \cdot \pi \cdot \varepsilon_0} \cdot \frac{\tau}{r}$$

11. Электрическое смещение \vec{D} связано с напряженностью \vec{E} электрического поля соотношением:

$$\vec{D} = \varepsilon_0 \cdot \varepsilon \cdot \vec{E} .$$

Это соотношение справедливо только для изотропных диэлектриков.

12. Потенциалом называется физическая величина, равная отношению потенциальной энергии, которой обладает единичный, положительный пробный заряд, помещенный в данную точку поля, к величине этого заряда:

$$\varphi = \frac{U_n}{q_0}.$$

13. Потенциал поля точечного заряда

$$\varphi = k \cdot \frac{q}{\varepsilon \cdot r} = \frac{q}{4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot r},$$

где r – расстояние от заряда до точки, в которой вычисляется потенциал.

14. Если поле создано несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

$$\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 + \dots + \mathbf{u}_N = \sum_{i=1}^N \mathbf{u}_i = \frac{1}{4 \cdot \mathbf{p} \cdot \mathbf{e}_0 \cdot \mathbf{e}} \cdot \sum_{i=1}^N \frac{q_i}{r_i}.$$

15. Для тела, заряженного по объему V

$$\mathbf{I}_{\mathbf{I}} = \frac{1}{4 \cdot \mathbf{p} \cdot \mathbf{e}_{\mathbf{I}} \cdot \mathbf{e}} \cdot \int_{V}^{\mathbf{c}} \frac{\mathbf{c}}{r} \cdot dV,$$

где $\rho = \frac{\Delta q}{\Delta V}$ – объёмная плотность заряда.

16. Для тела, заряженного по поверхности S

$$\mathbf{u} = \frac{1}{4 \cdot \mathbf{p} \cdot \mathbf{e}_{\Pi} \cdot \mathbf{e}} \cdot \int_{S} \frac{\mathbf{y}}{r} \cdot dS$$

17. Для тела заряженного по линии І

$$\mathbf{u} = \frac{1}{4 \cdot \mathbf{p} \cdot \mathbf{e}_{\mathbf{u}} \cdot \mathbf{e}} \cdot \int_{I} \frac{\mathbf{\Phi}}{r} \cdot dl.$$

18. Разность потенциалов между точками бесконечно заряженной плоскости на расстоянии x_1 и x_2 от плоскости (при ε =1)

$$\varphi_1 - \varphi_2 = \int_{x_1}^{x_2} E dx = \int_{x_1}^{x_2} \frac{\sigma}{2 \cdot \varepsilon_0} dx = \frac{\sigma}{2 \cdot \varepsilon_0} \cdot (x_2 - x_1).$$

19. Разность потенциалов между двумя бесконечными параллельными разноимённо заряженными плоскостями с расстоянием d (при ε =1)

$$\varphi_1 - \varphi_2 = \int_0^d E dx = \int_0^d \frac{\sigma}{\varepsilon_0} dx = \frac{\sigma}{\varepsilon_0} \cdot d$$

20. Для поля равномерно заряженной сферической поверхности с зарядом q (при ε =1)

$$\varphi_1 - \varphi_2 = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \cdot (\frac{1}{r_1} - \frac{1}{r_2}) \quad (r_1 > R, \ r_2 > R \ r_2 > r_1),$$

где *R* – радиус сферы.

Потенциал поля вне сферической поверхности: $\varphi = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Q}{r}$.

Внутри сферической поверхности потенциал всюду одинаков и равен потенциалу поверхности $\varphi = \frac{Q}{4 \cdot \pi \cdot \varepsilon_{\text{o}} \cdot R}$.

21. Для поля равномерно заряженного бесконечного цилиндра радиусом R (при ε =1)

$$\varphi_1 - \varphi_2 = \frac{\tau}{2 \cdot \pi \cdot \varepsilon_0} \ln \frac{r_2}{r_1} \quad (r_1 > R, \ r_2 > R \ r_2 > r_1),$$

где r_1 и r_2 — расстояния от оси заряженного цилиндра, τ — линейная плотность заряда.

22. Работа перемещения электрического заряда в электрическом поле из точки A в точку B

$$A = q(\varphi_A - \varphi_B).$$

23. Связь между напряженностью поля и потенциалом

$$\vec{E} = -\frac{d\varphi}{dr} = -grad\varphi;$$

$$\vec{E} = -(\frac{\partial \varphi}{\partial x} \cdot \vec{i} + \frac{\partial \varphi}{\partial y} \cdot \vec{j} + \frac{\partial \varphi}{\partial z} \cdot \vec{k}),$$

где \vec{i} , \vec{j} , \vec{k} – единичные векторы координатных осей x, y, z.

Для однородного электрического поля (E = const)

$$E = \frac{\varphi_1 - \varphi_2}{d} = \frac{U}{d} \,,$$

где d – расстояние вдоль линии напряженности между двумя точками с потенциалами φ_1 и φ_2 .

24. Энергия взаимодействия системы точечных зарядов $Q_1, Q_2..., Q_n$ определяется работой, которую эта система зарядов может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой

$$W = \frac{1}{2} \cdot \sum_{i=1}^{n} Q_i \cdot \varphi_i,$$

где φ_i — потенциал поля, создаваемого всеми n-1 зарядами (за исключением i-го) в точке, где расположен заряд Q_i .

25. Электрическая ёмкость уединенного проводника или конденсатора

$$C = \frac{\Delta q}{\Delta \varphi},$$

где Δq — заряд, сообщенный проводнику (конденсатору); $\Delta \varphi$ — изменение потенциала, вызванное этим зарядом.

26. Если проводник имеет форму шара:

$$C = \frac{q}{\varphi} = 4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot R ,$$

где *R* – радиус шара.

27. Ёмкость плоского конденсатора

$$C = \frac{\varepsilon_0 \varepsilon \cdot S}{d},$$

где S — площадь пластины конденсатора; d — расстояние между пластинами.

28. Ёмкость слоистого конденсатора

$$C = \frac{\varepsilon_0 S}{\frac{d_1}{\varepsilon_1} + \frac{d_2}{\varepsilon_2} + \dots + \frac{d_n}{\varepsilon_n}}.$$

29. Ёмкость цилиндрического конденсатора (два коаксиальных цилиндра длиной l и радиусами r_1 и r_2 , пространство между которыми заполнено диэлектриком с диэлектрической проницаемостью ε)

$$C = \frac{2 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot l}{\ln \frac{r_2}{r_1}}.$$

30. Ёмкость сферического конденсатора (две концентрических сферы с радиусами r_1 и r_2):

$$C = 4 \cdot \pi \cdot \varepsilon_0 \cdot \varepsilon \cdot \frac{r_1 \cdot r_2}{r_2 - r_1}.$$

31. Ёмкость батареи параллельно соединенных конденсаторов

$$C = C_1 + C_2 + ... + C_n$$

где n — число конденсаторов.

Напряжение и заряд на конденсаторах, соединенных параллельно,

$$U = U_1 = U_2 = ... = U_n,$$

 $q = q_1 + q_2 + ... + q_n.$

32. Формула для определения ёмкости батареи последовательно соединенных конденсаторов:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}.$$

Напряжение и заряд на конденсаторах, соединенных последовательно,

$$U = U_1 + U_2 + ... + U_n$$
,
 $q = q_1 = q_2 = ... = q_n$.

33. Энергия заряженного проводника

$$W = \frac{C \cdot U^2}{2} = \frac{q^2}{2 \cdot C} = \frac{q \cdot \varphi}{2},$$

где $U = \Delta \phi$ – разность потенциалов или напряжение.

34. Энергия заряженного плоского конденсатора

$$W = \frac{\varepsilon_0 \cdot \varepsilon \cdot E^2}{2} \cdot V ,$$

где V – объём конденсатора.

35. Объёмная плотность энергии электрического поля

$$\omega = \frac{\varepsilon_0 \cdot \varepsilon \cdot E^2}{2} = \frac{E \cdot D}{2} = \frac{D^2}{2 \cdot \varepsilon_0 \cdot \varepsilon}.$$

36. Сила между двумя заряженными обкладками конденсатора

$$F = -\frac{dW}{dx} = -\frac{q}{2 \cdot \varepsilon \cdot \varepsilon_0 \cdot S} = -\frac{\sigma^2 \cdot S}{2 \cdot \varepsilon \cdot \varepsilon_0} = -\frac{1}{2} \cdot \varepsilon \cdot \varepsilon_0 \cdot E^2 \cdot S$$

37. Под действием силы обкладки конденсатора сжимают пластину диэлектрика, помещённого между ними, и в диэлектрике возникает давление:

$$p = F/S = \sigma^2/2 \cdot \varepsilon \cdot \varepsilon_0 = 0, 5 \cdot \varepsilon \cdot \varepsilon_0 \cdot E^2$$
.

Электрический ток

38. Сила тока

$$I = \frac{dq}{dt} \, .$$

Сила постоянного тока

$$I = \frac{q}{t}$$
.

39. Вектор плотности тока

$$\vec{j} = \frac{I}{S} \cdot \vec{k}$$
,

где \vec{k} — единичный вектор, по направлению совпадающий с направлением движения положительных носителей заряда; S — поперечное сечение проводника.

40. Если за время dt через поперечное сечение S проводника переносится заряд

$$dq = n \cdot e \cdot \langle \upsilon \rangle \cdot Sdt$$

где $n, e, u \langle v \rangle$ — концентрация, заряд и средняя скорость упорядоченного движения зарядов, то сила тока

$$I = \frac{dq}{dt} = n \cdot e \cdot \langle \upsilon \rangle \cdot S,$$

а плотность тока

$$\vec{j} = n \cdot e \cdot \langle \overrightarrow{\upsilon} \rangle.$$

41. Сопротивление однородного проводника

$$R = \rho \frac{l}{S}$$

где ρ — удельное сопротивление; l — длина проводника; S — поперечное сечение проводника.

42. Удельная проводимость (электропроводность)

$$\sigma = \frac{1}{\rho}$$
.

43. Зависимость удельного сопротивления от температуры

$$\rho = \rho_0 \cdot (1 + \alpha \cdot t),$$

где ρ и ρ_0 – удельные сопротивления соответственно при t и 0 °C; t – температура (по шкале Цельсия); α – температурный коэффициент сопротивления.

44. В случае последовательного соединения резисторов

$$I_1 = I_2 = \dots = I_n = I,$$

$$I \cdot R = U = \sum_{i=1}^{n} U_i = I \cdot \sum_{i=1}^{n} R_i,$$

$$R = \sum_{i=1}^{n} R_i.$$

45. В случае параллельного соединения резисторов

$$U_{1} = U_{2} = \dots = U_{n} = U,$$

$$\frac{U}{R} = I = \sum_{i=1}^{n} I_{i} = U \cdot \sum_{i=1}^{n} \frac{1}{R_{i}},$$

$$\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_{i}}.$$

46. Закон Ома для участка цепи, не содержащего ЭДС

$$I=\frac{U}{R}$$
,

где I – сила тока; U – напряжение; R – сопротивление проводника.

47. Закон Ома для полной замкнутой цепи

$$I = \frac{\varepsilon}{R+r},$$

где ε – ЭДС генератора; R – внешнее сопротивление; r – внутреннее сопротивление источника тока.

48. Закон Ома в дифференциальной форме:

$$j = \sigma \cdot E = \frac{1}{\rho} \cdot E \,,$$

где E — напряженность электрического поля; σ — удельная электрическая проводимость вещества проводника; ρ — удельное сопротивление.

49. Закон Джоуля-Ленца:

$$A = Q = I \cdot U \cdot t = I^2 \cdot R \cdot t = \frac{U^2}{R} \cdot t$$

где A — работа по перемещению зарядов по проводнику; Q — количество выделенной в проводнике теплоты; t — время протекания тока.

50. Мощность тока

$$N=I\cdot U=I^2\cdot R=\frac{U^2}{R},$$

51. Полная мощность, выделяющаяся в цепи,

$$N = I \cdot \varepsilon = \frac{\varepsilon^2}{R + r}.$$

52. Коэффициент полезного действия источника тока

$$\eta = \frac{N_n}{N} = \frac{R}{R+r},$$

где N_n – полезная мощность, N – полная мощность.

53. Законы Кирхгофа для разветвленной цепи.

Первое правило Кирхгофа: алгебраическая сумма токов, сходящихся в узле, равна нулю.

Второе правило Кирхгофа: в любом замкнутом контуре, произвольно выбранном в разветвлённой электрической цепи, алгебраическая сумма произведений сил токов I_i на сопротивление R_i соответствующих участков этого контура равна алгебраической сумме ЭДС ε_k , встречающихся в этом контуре:

$$\sum_{i} I_{i} \cdot R_{i} = \sum_{k} \varepsilon_{k} .$$

54. Закон Ома по классической электронной теории

$$j = \frac{n \cdot q_e^2 \cdot \tau}{2 \cdot m_e} \cdot E,$$

где $\sigma = \frac{n \cdot q_e^2 \cdot \tau}{2 \cdot m_e}$; n — концентрация электронов; τ — время свободного пробега электронов.

По квантовой теории электропроводности металлов

$$\sigma = \frac{n \cdot q_e^2 \cdot \langle \lambda \rangle}{m_e \cdot u_0},$$

где u_0 – скорость электрона, находящегося на верхнем занятом энергетическом уровне; $<\lambda>$ – средняя длина свободного пробега электрона.

55. Плотность тока насыщения при термоэлектронной эмиссии определяется формулой

$$j_{H} = B \cdot T^{2} \cdot \exp(-\frac{A}{k \cdot T}),$$

где T — температура катода, A — работа выхода, k — постоянная Больцмана, B — эмиссионная постоянная, разная для разных металлов.

56. Закон электролиза.

Фарадей установил, что при прохождении электрического тока через электролит масса вещества выделившегося на электроде, пропорциональна заряду, прошедшему через электролит:

$$m = k \cdot \Delta q$$

или

$$m = k \cdot I \cdot \Delta t$$
,

где I — сила тока; Δt — время пропускания тока через электролит; k — электрохимический эквивалент. Он равен:

$$k = \frac{1}{e \cdot N} \cdot \frac{M}{n} = \frac{1}{F} \cdot \frac{M}{n}$$

где $e=1,6\cdot 10^{-19}$ Кл — величина элементарного заряда; $N_A=6,02\cdot 10^{23}$ моль — число Авогадро; M — молярная масса; n — валентность иона, $F=e\cdot N_A$;

$$F \approx 96500 \left(\frac{K\pi}{MODb} \right)$$
 – число Фарадея.

57. Подвижность ионов

$$b = \frac{\langle \upsilon \rangle}{E}$$

где $\langle \upsilon \rangle$ — средняя скорость упорядоченного движения ионов; E — напряжённость электрического поля.

58. Закон Ома в дифференциальной форме для электролитов и газов при самостоятельном разряде в области, далёкой от насыщения,

$$j = Q \cdot n \cdot (b_+ + b_-) \cdot E ,$$

где Q – заряд иона; n – концентрация ионов; $b_{\scriptscriptstyle +}$ и $b_{\scriptscriptstyle -}$ – подвижности соответственно положительных и отрицательных ионов.

59. Плотность тока насыщения

$$j_{\text{\tiny HAC}} = Q \cdot n_0 \cdot d \; ,$$

где n_0 — число пар ионов, создаваемых ионизатором в единице объёма в единицу времени; d — расстояние между электродами.

$$n_0 = N/(V \cdot t)$$
,

где N — число пар ионов, создаваемых ионизатором за время t в пространстве между электродами; V — объём этого пространства.

60. Напряженность электрического поля в однородном диэлектрике

$$E = \frac{\sigma_{\text{\tiny CBO}} - \sigma_{\text{\tiny ПОЛ}}}{E_{0}},$$

где $\sigma_{\text{своб}}$ – плотность на обкладках металлических пластин, создающих электрическое поле; $\sigma_{\text{пол}}$ – поверхностная плотность поляризованных зарядов.

61. Вектор поляризации

$$P = \chi \cdot \varepsilon_0 \cdot E = \sigma_{\text{пол}}$$
.

62. Связь между E и E_0

$$E = E_0 \cdot \frac{1}{1 + \chi},$$

где χ – диэлектрическая восприимчивость диэлектрика.

63. Вектор электрической индукции *D*

$$D = E \cdot \varepsilon_0 + P$$
.

В простейшем случае

$$D = \varepsilon \cdot \varepsilon_0 \cdot E$$
.

64. Формула Клаузиуса-Моссотти

$$\frac{\varepsilon-1}{\varepsilon+1} = \frac{1}{3}\alpha \cdot N,$$

где α – атомная поляризуемость; N – полное число молекул в единице объема.

65. Связь между χ и α

$$\chi = \alpha \cdot N$$

где N – число диполей в единице объема.

Магнитное поле

66. Связь магнитной индукции \vec{B} с напряженностью \vec{H} магнитного поля $\vec{B} = \mu \cdot \mu_o \cdot \vec{H}$,

где μ — магнитная проницаемость изотропной среды; μ_o — магнитная постоянная (μ_o = 12,56 · 10⁻⁷ Γ μ / μ).

В вакууме M=1 и тогда магнитная индукция в вакууме

$$\vec{B} = \mu_o \vec{H}$$
.

67. Закон Био-Савара-Лапласа:

$$d\vec{B} = \frac{\mu \cdot \mu_o}{4 \cdot \pi} \left[d\vec{l} \cdot \vec{r} \right] \frac{I}{r},$$

или

$$dB = \frac{\mu \cdot \mu_o \cdot I \sin \alpha}{4 \cdot \pi \cdot r^2} dl,$$

где dB — магнитная индукция поля, создаваемого элементом проводника длиной dl с током I; \vec{r} — радиус-вектор, направленный от элемента проводника к точке, в которой магнитная индукция вычисляется; α — угол между радиусом-вектором и направлением тока в элементе проводника.

68. Магнитная индукция в центре кругового тока

$$B = \frac{\mu \cdot \mu_o \cdot I}{2 \cdot R},$$

где R — радиус кругового витка.

69. Магнитная индукция на оси кругового тока

$$B = \frac{\mu \cdot \mu_o}{4 \cdot \pi} \cdot \frac{2 \cdot \pi \cdot R^2 \cdot I}{\left(R^2 + h^2\right)^{3/2}},$$

где h — расстояние от центра витка до точки, в которой вычисляется магнитная индукция.

70. Магнитная индукция поля прямого тока

$$B = \frac{\mu \cdot \mu_o \cdot I}{2 \cdot \pi \cdot r},$$

где r — расстояние от оси проводника до точки, в которой вычисляется магнитная индукция.

71. Магнитная индукция поля, создаваемого отрезком провода с током (рис. 3, а),

$$B = \frac{\mu \cdot \mu_o}{4 \cdot \pi} \cdot \frac{I}{r_o} \left(\cos \alpha_1 - \cos \alpha_2\right)$$

Обозначения величин ясны из рисунка. Направление вектора магнитной индукции \vec{B} обозначено точкой — это значит, что \vec{B} направлен перпендикулярно плоскости чертежа к нам.

При симметричном расположении провода относительно точки, в которой определяется магнитная индукция (рис. 3, б) $\cos \alpha_2 = \cos \alpha_1 = \cos \alpha$,

$$B = \frac{\mu \cdot \mu_0}{2 \cdot \pi} \cdot \frac{I}{r_0} \cos \alpha .$$

72. Магнитная индукция поля соленоида

$$B = \mu \cdot \mu_0 \cdot n \cdot I$$
,

где n — число витков соленоида, приходящееся на единицу длины.

73. Принцип суперпозиции: магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом

$$\overrightarrow{B} = \sum_{i=1}^{n} \overrightarrow{B}_{i} ,$$

В частном случае наложения двух полей

$$\overrightarrow{B} = \overrightarrow{B}_1 + \overrightarrow{B}_2,$$

а модуль магнитной индукции

$$B = \sqrt{B_1^2 + B_2^2 + 2 \cdot B_1 \cdot B_2 \cos \alpha} \ .$$

74. Сила, действующая на проводник с током в магнитном поле, закон Ампера:

$$F = I \cdot B \cdot l \cdot \sin \alpha$$
,

где l — длина проводника; α — угол между направлением тока в проводнике и вектором магнитной индукции \vec{B} .

Это выражение справедливо для однородного магнитного поля и прямого отрезка проводника. Если поле неоднородно и проводник не является прямым, то закон Ампера можно применять к каждому элементу проводника в отдельности:

$$d\vec{F} = I \left[d\vec{l} \cdot \vec{B} \right].$$

75. Сила взаимодействия параллельных проводников с током

$$F = \frac{\mu \cdot \mu_0 \cdot I_1 \cdot I_2}{2 \cdot \pi \cdot d} l,$$

где d — расстояние между проводами.

76. Рамка с током испытывает ориентирующие действие поля, поэтому на неё в магнитном поле действует пара сил. Вращающий момент сил зависит как от свойств поля в данной точке, так и от свойств рамки с током и определяется векторным произведением:

$$\overrightarrow{M} = \left[\overrightarrow{p}_m, \overrightarrow{B}\right],$$

где $\stackrel{
ightarrow}{p_{\scriptscriptstyle m}}$ — вектор магнитного момента рамки.

Скалярная величина момента:

$$M = p_m \cdot B \cdot \sin \alpha \,,$$

где α — угол между нормалью к плоскости контура и вектором \overrightarrow{B} .

77. Для плоского контура с током І магнитный момент

$$\vec{p}_m = I \cdot S \cdot \vec{n}$$
,

где S — площадь поверхности контура (рамки), n — единичный вектор нормали к поверхности рамки. Модуль вектора магнитного момента:

$$p_m = I \cdot S$$
.

78. Потенциальная энергия контура с током в магнитном поле

$$\Pi = -p_m \cdot B \cos \alpha .$$

За нулевое значение потенциальной энергии контура с током в магнитном поле принято расположение контура, когда вектор $\stackrel{\rightarrow}{p}_{\scriptscriptstyle m}$ перпендикулярен вектору \vec{B} .

79. Отношение магнитного момента p_m к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите:

$$\frac{P_m}{L} = \frac{1}{2} \cdot \frac{Q}{m},$$

где Q — заряд частицы; m — масса частицы.

80. Вектор намагниченности M равен

$$M = \sum \frac{p_m}{V},$$

где $p_{\scriptscriptstyle m}$ – вектор магнитного момента атомов, заключенных в объеме $Vm;\ V$ – величина всего объема $V=\sum V_{\scriptscriptstyle m}.$

81. Магнитная восприимчивость х

$$\chi = \frac{M}{H}, M = \chi \cdot H.$$

82. Относительная магнитная проницаемость µ

$$\mu = 1 + \chi$$
.

83. Магнитный момент единицы объема диамагнетика

$$M = \frac{e^2 \cdot Z \cdot \overline{R^2} \cdot N}{6 \cdot m} \cdot B.$$

84. Магнитный момент парамагнетика:

$$M = \frac{N \cdot p_m^2 \cdot B}{3 \cdot k \cdot T}.$$

85.Сила, действующая на контур с током в магнитном поле (изменяющимся вдоль оси x)

$$F = p_m \cdot \frac{\partial B}{\partial x} \cos \alpha ,$$

где $\frac{\partial B}{\partial x}$ — изменение магнитной индукции вдоль оси x, рассчитанное на единицу длины; α — угол между векторами p_m и B.

72. Сила Лоренца

$$F = Q[\vec{v} \cdot \vec{B}]$$

ИЛИ

$$F = Q \cdot \upsilon \cdot B \cdot \sin \alpha \,,$$

где \vec{v} – скорость заряженной частицы; α – угол между векторами \vec{x} и \vec{B} .

- 73. Магнитный поток:
- а) в случае однородного магнитного поля и плоской поверхности

$$\Phi = B \cdot S \cdot \cos \alpha ,$$

ИЛИ

$$\Phi = B_n \cdot S$$
,

где S — площадь контура; α — угол между нормалью к плоскости контура и вектором магнитной индукции;

б) в случае неоднородного поля и произвольной поверхности

$$\Phi = \int_{S} B_n dS ,$$

интегрирование ведется по всей поверхности.

74. Потокосцепление (полный поток)

$$\Psi = N \cdot \Phi$$
.

Эта формула для соленоида и тороида с равномерной намоткой плотно прилегающих друг к другу N витков.

75. Работа по перемещению замкнутого контура в магнитном поле

$$A = I \cdot \Delta \Phi$$
.

76. ЭДС индукции

$$\varepsilon_i = -\frac{d\Psi}{dt}$$
.

77. Разность потенциалов на концах проводника, движущегося со скоростью \vec{v} в магнитном поле,

$$U = B \cdot l \cdot \upsilon \cdot \sin \alpha$$
,

где l — длина проводника; α — угол между векторами $\vec{\upsilon}$ и \vec{B} .

78. Заряд, протекающий по замкнутому контуру при изменении магнитного потока, пронизывающего этот контур,

$$Q = \frac{\Delta\Phi}{r}$$
,

ИЛИ

$$Q = \frac{N \cdot \Delta \Phi}{r} = \frac{\Delta \Psi}{r} ,$$

где r — сопротивление контура.

79. Индуктивность контура

$$L = \frac{\Psi}{I}$$
.

80. ЭДС самоиндукции

$$E_s = -L \frac{dI}{dt}$$
.

81. Индуктивность соленоида

$$L = \mu \cdot \mu_0 \cdot n^2 \cdot V ,$$

где n — число витков, приходящееся на единицу длины соленоида; V — объем соленоида.

82.Изменение магнитного потока может достигаться также изменением тока в соседнем контуре (явление взаимной индукции). При этом индуцируемая ЭДС

$$\varepsilon = -L_{1.2} \cdot \frac{dI}{dt},$$

где $L_{\!_{1,2}}$ — взаимная индуктивность контуров.

83. Взаимная индуктивность двух соленоидов, пронизываемых общим магнитным потоком

$$L_{1,2} = \mu_0 \cdot \mu \cdot n_1 \cdot n_2 \cdot S \cdot l,$$

где n_1 и n_2 — число витков на единицу длины соленоидов.

84. Количество электричества прошедшего через поперечное сечение проводника при возникновении в нём индукционного тока

$$dq = -\frac{1}{R}d\Phi.$$

- 85. Мгновенное значение силы тока в цепи, обладающей сопротивлением r и индуктивностью L:
 - а) при замыкании цепи

$$I = \frac{\varepsilon}{r} \left(1 - e^{-\frac{r}{L}t} \right),$$

где ε – ЭДС источника тока; t – время, прошедшее после замыкания цепи;

б) при размыкании цепи

$$I = I_0 \cdot e^{-\frac{r}{L}t},$$

где I_0 - значение силы тока цепи при $t=0;\ t$ - время, прошедшее с момента размыкания цепи.

86. Энергия магнитного поля

$$W = \frac{L \cdot I^2}{2}.$$

87. Объемная плотность энергии магнитного поля (энергия, заключенная в единице объема)

$$\omega = \frac{1}{2} \cdot B \cdot H = \frac{1}{2} \cdot \frac{B^2}{\mu \cdot \mu_0} = \frac{1}{2} \cdot \mu \cdot \mu_0 \cdot H^2,$$

где B — магнитная индукция; H — напряженность магнитного поля.

Электромагнитные колебания и волны

88. Уравнение колебания заряда в LC-контуре

$$q = q_0 \cdot \cos(\omega_0 \cdot t + \varphi),$$

где q_0 ,— амплитуда; ω_0 — циклическая частота колебаний; $(\omega_0 \cdot t + \varphi)$ — фаза колебаний; φ — начальная фаза.

89. Циклическая частота

$$\omega_0 = \frac{2 \cdot \pi}{T_0} = 2 \cdot \pi \cdot v_0 ,$$

где T_0 – период колебаний, v_0 – собственная частота.

90. Ток в электрической LC-цепи

$$I = \frac{dq}{dt} = -q_0 \omega_0 \sin(\omega_0 t + \varphi).$$

91. Напряжение на конденсаторе

$$U = \frac{q}{C} = \frac{q_m}{C} \cos(\omega_o t + \varphi) = U_m \cos(\omega_o t + \varphi),$$

где $U_m = q_m/C$ – амплитуда напряжения.

92. Период колебаний заряда в LC-цепи

$$T = 2 \cdot \pi \cdot \sqrt{L \cdot C}$$
.

93. Из закона сохранения энергии следует, что при отсутствии сопротивления в колебательном контуре максимальное значение энергии электрического поля заряженного конденсатора равно максимальному значению энергии магнитного поля катушки

$$W_{\scriptscriptstyle M} = W_{\scriptscriptstyle 9}$$

или

$$\frac{C \cdot U_m^2}{2} = \frac{L \cdot I_m^2}{2}.$$

Для произвольного момента времени

$$\frac{C \cdot U^2}{2} + \frac{L \cdot I^2}{2} = const = \frac{C \cdot U_m^2}{2} = \frac{L \cdot I_m^2}{2}.$$

94. Дифференциальное уравнение затухающих колебаний

$$\ddot{x} + 2 \cdot \beta \cdot \dot{x} + \omega_0^2 \cdot x = 0; \quad \ddot{q} + 2 \cdot \beta \cdot \dot{q} + \omega_0^2 \cdot q = 0,$$

где
$$\beta = \frac{r}{2 \cdot m}$$
 или $\beta = \frac{R}{2 \cdot L}$.

95. Частота затухающих колебаний

$$\omega = \sqrt{\omega_0^2 - \beta^2}.$$

96. Зависимость амплитуды затухающих колебаний от времени

$$A(t) = A_0 \cdot e^{-\beta \cdot t}.$$

97. Логарифмический декремент затухания

$$\delta = \ln \frac{A(t)}{A(t+T)} = \beta \cdot T.$$

98. Циклическая частота *w LCR*-цепи

$$\omega = \sqrt{\frac{1}{L \cdot C} - \frac{R^2}{4 \cdot L^2}}.$$

99. Полное сопротивление в цепи Z вычисляется по формуле

$$Z = \sqrt{R^2 + (R_L - R_C)} = \sqrt{R^2 + \left(\omega \cdot L - \frac{1}{\omega \cdot C}\right)^2},$$

где R — активное сопротивление; $R_L = \omega L$ — индуктивное сопротивление; L — индуктивность цепи; $R_C = 1$ / ωC — ёмкостное сопротивление, C — ёмкость цепи.

При
$$R = 0$$
; $R_L = 0$ $Z = R_C = 1/\omega C$.

При
$$R = 0$$
; $R_C = 0$ $Z = R_L = \omega \cdot C$.

При
$$R_L = 0$$
; $R_C = 0$ $Z = R$.

При R = 0
$$Z = \left| \omega \cdot L - \frac{1}{\omega \cdot C} \right|$$
.

При
$$R_L = 0$$
 $Z = \sqrt{R^2 + \frac{1}{\omega^2 \cdot C^2}}$.

При
$$R_C = 0$$
 $Z = \sqrt{R^2 + \omega^2 \cdot L^2}$.

100. Связь амплитудного значения тока и амплитудного значения напряжения

$$I_{m} = \frac{U_{m}}{Z} = \frac{U_{m}}{\sqrt{R^{2} + \left(L\omega - \frac{1}{\omega C}\right)^{2}}}.$$

101. В таблице 7 приведены зависимости сопротивлений в цепи переменного тока от частоты.

Таблица 7 Зависимость сопротивлений в цепи переменного тока от частоты

Активное сопротивление	Реактивное индуктивное сопротивление	Реактивное ёмкостное сопротивление		
$R = \rho \cdot \frac{\ell}{S}$ $R \downarrow \qquad \qquad \omega$	$R_{L} = \omega \cdot L$ $Q \longrightarrow \omega$	$R_{C} = \frac{1}{\omega \cdot C}$ $R_{C} \downarrow \qquad \qquad \qquad \omega$		

В таблице 7: ρ — удельное сопротивление проводника; ℓ — его длина; S — площадь поперечного сечения; L — индуктивность катушки; C — электроемкость конденсатора.

102. Сдвиг фаз между напряжением и током находится по формуле

$$\operatorname{tg} \varphi = \frac{\omega \cdot L - \frac{1}{\omega \cdot C}}{R}.$$

103. Эффективное значение тока и напряжения

$$I_{9\phi} = \frac{I_m}{\sqrt{2}}; \ U_{9\phi} = \frac{U_m}{\sqrt{2}}; \ I_{9\phi} = \frac{U_m}{Z}.$$

104. Падение напряжений на активном сопротивлении, емкости и индуктивности находятся из соотношений

$$U_{9\phi} = \omega \cdot L I_{9\phi}; \quad U_{9\phi C} = \frac{1}{\omega \cdot C} I_{9\phi}; \quad U_{9\phi} = I_{9\phi} \cdot R.$$

105. Резонанс напряжений достигается тогда, когда

$$U_L = U_C$$

ИЛИ

$$\begin{split} \omega_{\text{pes}} \cdot L &= \frac{1}{\omega_{\text{pes}} \cdot C}; \\ \omega_{\text{pes}} &= \frac{1}{\sqrt{L \cdot C}}; U_{\text{pes}L} = U_{\text{pes}C} = \sqrt{\frac{L}{C}} \cdot I_{\text{m}} = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} \ U_{\text{m}}. \end{split}$$

106. Резонанс токов

$$I_{m} = \left| I_{mL} - I_{mC} \right| = U_{m} \cdot \left| \omega \cdot C - \frac{1}{\omega \cdot L} \right|;$$

если $\omega = \omega_{\text{pes}} = \frac{1}{\sqrt{L \cdot C}}$, то при R = 0 ток в подводящих проводах равен ну-

лю.

107. Мощность в цепи переменного тока

$$< P > = I_{9\phi} \cdot U_{9\phi} \cdot \cos \varphi = I_{9\phi}^2 \cdot R$$

108. Фазовая скорость электромагнитной волны

$$v = \frac{c}{\sqrt{\varepsilon_0 \cdot \mu_0}},$$

где $c=\frac{1}{\sqrt{\varepsilon_0\cdot\mu_0}}\approx 3\cdot 10^8$ м/с — скорость распространения электромагнит-

ных волн в вакууме.

109. В бегущей электромагнитной волне мгновенные и амплитудные значения напряженностей электрического и магнитного полей связаны соотношением

$$E \cdot \sqrt{\varepsilon \cdot \varepsilon_0} = H \cdot \sqrt{\mu \cdot \mu_0} .$$

110. Уравнения плоской электромагнитной волны, распространяющейся в произвольном направлении

$$E = E_{\mathcal{M}} \cdot \cos(\omega \cdot t - k \cdot r + \alpha); \ H = H_{\mathcal{M}} \cdot \cos(\omega \cdot t - k \cdot r + \alpha),$$

где $E_{\scriptscriptstyle M}$ и $H_{\scriptscriptstyle M}$ – амплитуды напряженностей электрического и магнитного полей соответственно; ω – циклическая частота; $k=\omega/\nu$ – волновое число; α – начальные фазы колебаний в точке r=0; ν – частота колебаний.

111. Объемная плотность энергии электромагнитного поля

$$w = \frac{\varepsilon \cdot \varepsilon_0 \cdot E^2}{2} + \frac{\mu \cdot \mu_0 \cdot H^2}{2}.$$

112. Вектор Пойнтинга

$$S = /E H/.$$

- 113. Мощность излучения:
- а) диполя с электрическим моментом p(t)

$$P = \frac{\mu_0}{4 \cdot \pi \cdot c} \cdot p^2;$$

б) заряда q, движущегося с ускорением а

$$P = \frac{\mu_0}{4 \cdot \pi \cdot c} \cdot q^2 \cdot a^2;$$

в) средняя мощность излучения электрона, совершающего гармонические колебания с циклической частотой ω и амплитудой a_0

$$\overline{P} = \frac{\mu_0}{12 \cdot \pi \cdot c} \omega^4 \cdot e^2 \cdot a_0^2$$

114. Эффект Доплера

$$v = v_0 \cdot \frac{\sqrt{1 - \beta^2}}{1 - \beta \cos \theta},$$

где $\beta = v / c$; v- частота волны, регистрируемой источником; v_0 – частота колебаний источника; θ – угол между прямой, соединяющей неподвижный источник, и вектором скорости источника. При $\theta = 0$ эффект Доплера называется продольным, а при $\theta = \pi/2$ – поперечным.

4. ОПТИКА

1. Закон отражения: отражённый луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведённым к границе раздела двух сред в точке падения; угол α падения равен углу γ отражения (рис. 4)

Рис.4. К закону отражения

Рис.5. К закону преломления

2. Фокусное расстояние сферического зеркала

$$F = R / 2$$

где R — радиус кривизны зеркала.

3. Оптическая сила сферического зеркала

$$D = 1 / F$$
.

4. Формула сферического зеркала

$$\pm \frac{1}{F} = \frac{1}{d} \pm \frac{1}{f},$$

где d и f — расстояния от полюса зеркала соответственно до предмета и изображения. Знак «плюс» соответствует действительным величинам, а знак «минус» — мнимым.

5. Линейное увеличение сферического зеркала Γ определяется как отношение линейных размеров изображения h' и предмета h.

$$\Gamma = \frac{h'}{h} = -\frac{f}{d}.$$

6. Закон преломления света: луч падающий, луч преломленный и перпендикуляр, проведённый к точке падения, лежат в одной плоскости; отношение синуса угла падения α к синусу угла преломления β есть величина постоянная для данных сред (рис. 5). На границе двух сред с показателями преломления n_1 и n_2

$$\frac{\sin\alpha}{\sin\beta} = n_{21},$$

где α – угол падения; β – угол преломления; $n_{12} = n_2 / n_1$ – относительный показатель преломления второй среды относительно первой; n_1 и n_2 – абсолютные показатели преломления соответственно первой и второй сред.

7. При переходе света из оптически более плотной среды в оптически менее плотную $n_2 < n_1$ можно наблюдать явление полного отражения, то есть исчезновение преломленного луча. Если второй средой является воздух $(n_2 \approx 1)$, то

$$\sin \alpha_{np} = \frac{1}{n}$$
,

где $n = n_1 > 1$ – абсолютный показатель преломления первой среды.

8. Формула тонкой линзы

Таблица 8

$$\pm \frac{1}{F} = \frac{1}{d} \pm \frac{1}{f},$$

где d и f — расстояния от оптического центра линзы соответственно до предмета и изображения. Знак «плюс» соответствует действительным величинам, а знак «минус» — мнимым.

9. Оптическая сила тонкой линзы

$$D = \frac{1}{F} = \left(\frac{n_{_{II}}}{n_{_{CP}}} - 1\right) \cdot \left(\frac{1}{R_{_{1}}} + \frac{1}{R_{_{2}}}\right),$$

где F — фокусное расстояние линзы; $n_{\scriptscriptstyle n}$ — абсолютный показатель преломления вещества линзы; $n_{\scriptscriptstyle cp}$ — абсолютный показатель преломления окружающей среды.

Радиусы выпуклых поверхностей (R_1 и R_2) берутся со знаком «плюс», вогнутых — со знаком «минус». Ниже (таблица 8) приведены изображённые на рис. 64 линзы и их характеристики.

Линзы и их характеристики

Форма линзы	0					
Название	Двояко- выпуклая	Плоско- выпуклая	Двояко- вогнутая	Плоско- вогнутая	Выпукло- вогнутая	Вогнуто- выпуклая
Радиусы	$R_1 > 0$ $R_2 < 0$	$R_1 > 0$ $R_2 = \infty$	$R_1 < 0$ $R_2 > 0$	$R_1 < 0$ $R_2 = \infty$	$R_1 > R_2 > 0$	$R_1 > R_2 < 0$
Фокусное расстояние	F > 0	F > 0	F > 0	F < 0	F < 0	F < 0

10. Оптическая сила двух тонких линз, сложенных вплотную,

$$D = D_1 + D_2.$$

11. Угловое изображение лупы

$$\Gamma = \frac{d_0}{F}$$

где d_0 – расстояние наилучшего зрения (d_0 = 25 см).

12.Угловое увеличение телескопа в случае, когда в телескоп наблюдают удаленные предметы,

$$\Gamma = \frac{F_1}{F_2},$$

где F_1 и F_2 – фокусные расстояния соответственно объектива и окуляра. 13. Скорость света в среде:

$$v = \frac{c}{n}$$

где c — скорость света в вакууме; n — показатель преломления среды.

14. Оптическая длина пути световой волны:

$$L = n \cdot l$$

где l — геометрическая длина пути световой волны в среде с показателем преломления n.

15. Оптическая разность хода двух световых волн:

$$\Delta = L_1 - L_2.$$

16. Зависимость разности фаз от оптической разности хода световых волн:

$$\Delta \varphi = 2 \cdot \pi \cdot (\frac{\Delta}{\lambda}),$$

где λ - длина световой волны.

17. Условие максимального усиления света при интерференции:

$$\Delta = \pm \kappa \cdot \lambda \ (\kappa = 0, 1, 2, ...)$$
.

18. Условие максимального ослабления света:

$$\Delta = \pm \kappa \cdot \lambda \cdot (2\kappa + 1) \cdot \frac{\lambda}{2}.$$

19. Оптическая разность хода световых волн, возникающая при отражении монохроматического света от тонкой пленки,

$$\Delta = 2 \cdot d \cdot \sqrt{n^2 - \sin^2 i_1} \pm \frac{\lambda}{2}$$

или

$$\Delta = 2 \cdot d \cdot n \cos i_2 \pm \frac{\lambda}{2} \,,$$

где d — толщина пленки; n — показатель преломления пленки; i_1 — угол падения; i_2 — угол преломления света в пленке.

20. Радиус светлых колец Ньютона в отраженном свете

$$r_k = \sqrt{(2 \cdot k - 1) \cdot R \cdot \lambda / 2}$$
 $(k = 1, 2, 3, ...),$

где k – номер кольца; R – радиус кривизны.

21. Радиус темных колец Ньютона в отраженном свете

$$r_k = \sqrt{k \cdot R \cdot \lambda}$$
.

В проходящем свете, наоборот, радиус светлого кольца определяет формула (21), а тёмного (20).

22. Угол φ отклонения лучей, соответствующий максимуму (светлая полоса) при дифракции на одной щели, определяется из условия

$$a \cdot \sin \varphi = (2 \cdot k + 1) \cdot \lambda / 2 \quad (k = 0, 1, 2, 3, ...),$$

где a — ширина щели; k — порядковый номер максимума.

23. Угол φ отклонения лучей, соответствующий максимуму (светлая полоса) при дифракции света на дифракционной решетке, определяется из условия

$$d \cdot \sin \varphi = \pm k \cdot \lambda \ (k = 0, 1, 2, 3, \dots),$$

где d – период дифракционной решетки.

24. Разрешающая способность дифракционной решетки

$$R = \lambda / \Delta \lambda = k \cdot N$$
,

где $\Delta\lambda$ — наименьшая разность длин волн двух соседних спектральных линий (λ и λ + $\Delta\lambda$), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки; N — полное число щелей решетки.

25. Формула Вульфа - Брэггов

$$2 \cdot d \cdot \sin \theta = k \cdot \lambda$$
,

где Θ — угол скольжения (угол между направлением параллельного пучка рентгеновского излучения, падающего на кристалл, и атомной плоскостью в кристалле); d — расстояние между атомными плоскостями кристалла.

26. Закон Брюстера

$$tg\varepsilon_B = n_{21}$$
,

где $\varepsilon_{\scriptscriptstyle B}$ — угол падения, при котором отразившийся от диэлектрика луч полностью поляризован; n_{21} — относительный показатель преломления второй среды относительно первой.

27. Закон Малюса

$$I = I_0 \cdot \cos^2 \alpha ,$$

где I_0 – интенсивность плоскополяризованного света, падающего на анализатор; I – интенсивность этого света после анализатора; α – угол между направлением колебаний электрического вектора света, падающего на анализатор, и плоскостью пропускания анализатора (если колебания электрического вектора падающего света совпадают с этой плоскостью, то анализатор пропускает данный свет без ослабления).

- 28. Угол поворота плоскости поляризации монохроматического света при прохождении через оптически активное вещество:
- а) $\varphi = \alpha \cdot d$ (в твердых телах), где α постоянная вращения; d длина пути, пройденного светом в оптически активном веществе;
- б) $\varphi = [\alpha] \cdot \rho \cdot d$ (в растворах), где $[\alpha]$ удельное вращение; ρ массовая концентрация оптически активного вещества в растворе.

5. ЭЛЕМЕНТЫ КВАНТОВОЙ, АТОМНОЙ, ЯДЕРНОЙ ФИЗИКИ. ЭЛЕМЕНТЫ ФИЗИКИ ТВЁРДОГО ТЕЛА.

1. Закон Стефана — Больцмана

$$R_e = \sigma \cdot T^4$$
,

где R_e — энергетическая светимость (излучательность) абсолютно черного тела; а σ — постоянная Стефана-Больцмана (σ = 5,671 · 10⁻⁸ $\frac{Bm}{M^2 \cdot K^4}$.); T — термодинамическая температура Кельвина.

2. Закон смещения Вина

$$\lambda_m = b/T$$
,

где λ_m — длина волны, на которую приходится максимум энергии излучения; b — постоянная Вина ($b = 2.9 \cdot 10^{-3} \, \text{м} \cdot \text{K}$).

3. Энергия фотона

$$\varepsilon = h \cdot v$$

или

$$\varepsilon = \hbar \cdot \omega$$
,

где h — постоянная Планка; \hbar — постоянная Планка, деленная на $2 \cdot \pi$; ν — частота фотона; ω — циклическая частота.

4. Масса фотона

$$m = \varepsilon / c^2 = h / (c \cdot \lambda),$$

где c – скорость света в вакууме; λ – длина волны фотона.

5. Импульс фотона

$$p=m\cdot c=h/\lambda$$
.

6. Формула Эйнштейна для фотоэффекта

$$h \cdot v = A + T_{\text{max}} = A + m \cdot v_{\text{max}}^2 / 2,$$

где $h \cdot v$ — энергия фотона, падающего на поверхность металла; A — работа выхода электрона; T_{max} — максимальная кинетическая энергия фотоэлектрона.

7. Красная граница фотоэффекта

$$v_0 = A/h$$

или

$$\lambda_0 = h \cdot c / A$$
,

где ν_0 — минимальная частота света, при которой еще возможен фотоэффект; λ_0 — максимальная длина волны света при которой еще возможен фотоэффект; h — постоянная Планка; c — скорость света в вакууме.

8. Формула Комптона

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_0 \cdot c} \cdot (1 - \cos \theta)$$

или

$$\Delta \lambda = \lambda' - \lambda = 2 \cdot \frac{h}{m_0 \cdot c} \sin^2 \frac{\theta}{2},$$

где λ — длина волны фотона, встретившегося со свободным или слабосвязанным электроном; λ' — длина волны фотона, рассеянного на угол θ после столкновения с электроном; m_{θ} — масса покоящегося электрона.

9. Комптоновская длина волны

$$\Lambda = h/(m_0 \cdot c) \ (\Lambda = 2,436 \text{ nm}).$$

10. Давление света при нормальном падении на поверхность

$$p=E_e\cdot(1+\rho)/c=\omega\cdot(1+\rho),$$

где E_e — энергетическая освещенность (облученность); ω — объемная плотность энергии излучения; ρ — коэффициент отражения.

11. Не только фотоны, но и электроны, и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.

Согласно де Бройлю, с каждым микрообъектом связаны, с одной стороны, корпускулярные характеристики — энергия E и импульс p, а с другой стороны, волновые характеристики — частота v и длина волны λ .

Корпускулярные и волновые характеристики микрообъектов связаны такими же количественными соотношениями, как и у фотона:

$$E = h \cdot v; \quad p = \frac{h \cdot v}{c} = \frac{h}{\lambda}.$$

Любой частице, обладающей импульсом, сопоставляется волновой процесс с длиной волны $\lambda = h \ / \ p$.

Для частиц, имеющих массу

$$\lambda = \frac{h}{p} = \frac{h \cdot \sqrt{1 - \upsilon^2 / c^2}}{m}.$$

В нерелятивистском приближении (υ << с)

$$\lambda = \frac{h}{m \cdot \nu}.$$

12. Длина волны де Бройля:

$$\lambda = 2 \cdot \pi \cdot \hbar / p$$

где p — импульс частицы.

13. Импульс частицы и его связь с кинетической энергией Т:

a)
$$p = m_0 \cdot \upsilon$$
; $p = \sqrt{2 \cdot m_0 \cdot T}$

$$(5) p = m \cdot \upsilon = \frac{m_0 \cdot \upsilon}{\sqrt{1 - (\upsilon/c)^2}}; p = \frac{1}{c} \sqrt{(2 \cdot E_0 + T) \cdot T}$$

где m_0 — масса покоя частицы; m — релятивистская масса; υ — скорость частицы; c — скорость света в вакууме; E_0 — энергия покоя частицы ($E_0 = m_0 \cdot c^2$).

- 14. Соотношение неопределенностей:
- а) $\Delta p_x \cdot \Delta x \ge \hbar$ (для координаты и импульса),

где Δp_x — неопределенность проекции импульса на ось x; Δx : — неопределенность координаты;

б) $\Delta E \cdot \Delta t \ge \hbar$ (для энергии и времени),

где ΔE — неопределенность энергии; Δt — время жизни квантовой системы в данном энергетическом состоянии.

15. Одномерное уравнение Шредингера для стационарных состояний:

$$\frac{d^2\psi}{dx^2} + \frac{2 \cdot m}{\hbar^2} \cdot (E - U) \cdot \psi(x) = 0$$

где $\psi(x)$ – волновая функция, описывающая состояние частицы; m – масса частицы; E – полная энергия; U= U(x) – потенциальная энергия частицы.

16. Плотность вероятности

$$\frac{d\omega(x)}{dx} = \left| \psi(x) \right|^2,$$

где $d\omega(x)$ – вероятность того, что частица может быть обнаружена вблизи точки с координатой x на участке dx. Вероятность обнаружения частицы в интервале от x_1 до x_2 :

$$\omega = \int_{x_2}^{x_1} |\psi(x)|^2 dx.$$

17. Решение уравнения Шредингера для одномерного, бесконечно глубокого, прямоугольного потенциального ящика:

а)
$$\psi_n(x) = \sqrt{\frac{2}{l}} \cdot \sin \frac{\pi \cdot n}{l} \cdot x$$
 (собственная нормированная волно-

вая функция);

б)
$$E_n = \frac{\pi^2 \cdot \hbar^2 \cdot n^2}{2 \cdot m \cdot l^2}$$
 (собственное значение энергии),

где n — квантовое число (n =1, 2, 3, ...); l — ширина ящика. В области $0 \le x \le l$ $U=\infty$ и $\psi(x)=0$.

18. Момент импульса электрона (второй постулат Бора):

$$L_n = \hbar \cdot n$$
,

или

$$m \cdot \upsilon_n \cdot r_n = \hbar \cdot n$$
,

где m — масса электрона; υ_n — скорость электрона на n-й орбите; r_n — радиус n-й стационарной орбиты; \hbar — постоянная Планка; n — главное квантовое число (n = 1,2,3,...).

19. Радиус *n-й* стационарной орбиты:

$$r_n = \mathbf{a_0} \cdot \mathbf{n}^2$$

где a_0 – первый боровский радиус.

20. Энергия электрона в атоме водорода:

$$E_n = E_i/n^2 ,$$

где E_I — энергия ионизации атома водорода.

21. Энергия, излучаемая или поглощаемая атомом водорода,

$$\varepsilon = \hbar \cdot \omega = E_{n2} - E_{n1}$$

или

$$\varepsilon = E_i \cdot \left(1/n_1^2 - 1/n_2^2 \right)$$

где n_1 и n_2 — квантовые числа, соответствующие энергетическим уровням, между которыми совершается переход электрона в атоме.

22. Обобщённая формула Бальмера (для частоты)

$$v = R \cdot \left(\frac{1}{m^2} - \frac{1}{n^2}\right),\,$$

где R — постоянная Ридберга. В каждой данной серии m имеет постоянное значение, $m = 1, 2, 3, \ldots$ (определяет серию); n принимает целочисленные значения начиная с числа m+1 (определяет отдельные линии данной серии).

23. Обобщённая формула Бальмера (для длины волны)

$$\frac{1}{\lambda} = R' \cdot (\frac{1}{m^2} - \frac{1}{n^2}),$$

где R' = R/c. Спектральную линию с наибольшей длиной волны из всех линий серии называют головной линией серии. Линия, соответствующая $n = \infty$, – коротковолновая граница; к ней примыкает непрерывный спектр.

24. Массовое число ядра (число нуклонов в ядре)

$$A = Z + N$$
,

где Z – зарядовое число (число протонов); N – число нейтронов.

25. Ядра химических элементов обозначают символом ${}_{Z}^{A}X$, где X – химический символ элемента (таблица 9).

Таблица 9

Описание атомного ядра

Характеристика	Обозначение	Определение
Символическая запись ядер	$_{Z}^{A}X$	Пример: $16 \overline{O}$ Массовое число (16 нуклонов) Зарядовое число (8 протонов) (8 протонов) Число нейтронов $N = A - Z$. В ядре 8 нейтронов

26. Дефект массы ядра

$$\Delta m = Z \cdot m_p + (A - Z) \cdot m_n - m_g,$$

где Z — зарядовое число (число протонов в ядре); A — массовое число (число нуклонов в ядре); (A - Z) — число нейтронов в ядре; m_p — масса протона; m_n — масса нейтрона; m_g — масса ядра.

27. Энергия связи ядра

$$E_{ce} = \Delta m \cdot c^2,$$

где Δm – дефект массы ядра; c – скорость света в вакууме.

Во внесистемных единицах энергия связи ядра равна E_{cb} =931 Δm , где дефект массы Δm — в а. е. м.; 931 — коэффициент пропорциональности (1 а. е. м. ~931 МэВ). 1 а. е. м. = 1,66057·10⁻²⁷ кг.

28. Ядерными реакциями называются искусственные превращения атомных ядер, вызванные их взаимодействиями с различными частицами или друг с другом.

Символическая запись ядерной реакции:

$$X + a \rightarrow Y + b$$

ИЛИ

где X и Y – исходное и конечное ядра; a и b – исходная и конечная частицы в реакции. Для обозначения частиц a и b приняты следующие символы: p – протон; n – нейтрон; d – дейтрон; α – альфа-частица; γ – гамма-фотон.

29. При α -распаде массовое число дочернего ядра уменьшается на 4, а зарядовое число на 2

$$_{Z}^{A}X \rightarrow _{Z-2}^{A-4}Y + _{2}^{4}He.$$

30. При β -распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным

$$_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + _{-1}^{0}e.$$

31. Для позитронного β^+ -распада

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + _{+1}^{0}e.$$

32. Энергия ядерной реакции (тепловой эффект)

$$Q = c^{2} \cdot [(m_{1} + m_{2}) - (m_{3} + m_{4})],$$

где m_1 и m_2 — массы покоя ядра — мишени и бомбардирующей частицы; $(m_3 + m_4)$ — сумма масс покоя ядер продуктов реакции.

33. Закон радиоактивного распада

$$N(t) = N_o \cdot e^{-\lambda \cdot t}$$

где N_o — начальное число радиоактивных ядер при t=0. Коэффициент пропорциональности λ — это вероятность распада ядра за время $\Delta t=1$ с. За время $\tau=1/\lambda$ количество нераспавшихся ядер уменьшится в $e\approx 2,7$ раза. Величину τ называют средним временем жизни радиоактивного ядра.

Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не e

$$N(t) = N_o \cdot 2^{-t/T},$$

где T — период полураспада.

34. Число ядер, распавшихся за время t

$$\Delta N=N_0 - N=N_0 \cdot (1-e^{-\lambda \cdot t}).$$

В случае если интервал времени Δt , за который определяется число распавшихся ядер, много меньше периода полураспада T, то число распавшихся ядер можно определить по формуле

$$\Delta N = \lambda \cdot N \cdot \Delta t .$$

35. Зависимость периода полураспада от постоянной радиоактивного распада

$$T = \frac{1}{\lambda} \cdot \ln 2 = \tau \cdot \ln 2 = 0,693 \cdot \tau.$$

36. Число N атомов, содержащихся в радиоактивном изотопе,

$$N=m\cdot N_A/M$$
,

где m — масса изотопа; M — молярная масса; N_A — постоянная Авогадро.

37. Активность A радиоактивного изотопа:

$$A = -dN / dt = \lambda \cdot N$$

или

$$A = \lambda \cdot N_0 \cdot e^{-\lambda \cdot t} = A_0 \cdot e^{-\lambda \cdot t}$$

где dN — число ядер, распадающихся за интервал времени dt; A_0 — активность изотопа в начальный момент времени.

38. Удельная активность изотопа

$$a = A/m$$
.

39. Средняя энергия квантового одномерного осциллятора

$$\langle \varepsilon \rangle = \varepsilon_0 + \frac{\hbar \cdot \omega}{e^{\hbar \cdot \omega/(k \cdot T)} - 1},$$

где ε_0 – нулевая энергия ($\varepsilon_0 = \frac{1}{2} \cdot \hbar \cdot \omega$); \hbar – постоянная Планка; ω – круговая частота колебаний осциллятора; k – постоянная Больцмана; T – термодинамическая температура.

40. Молярная внутренняя энергия системы, состоящей из невзаимодействующих квантовых осцилляторов

$$U_m = U_{0m} + 3 \cdot R \cdot \Theta_E / (e^{\Theta_{\cdot E/T}} - 1),$$

где R — молярная газовая постоянная; $\Theta_E = \hbar \cdot \omega / k$ — характеристическая температура Эйнштейна; $U_{0m} = \frac{2}{3} \cdot R \cdot \Theta_E$ — молярная нулевая энергия (по Эйнштейну).

41. Молярная теплоёмкость кристаллического твердого тела в области низких температур (предельный закон Дебая)

$$C_{m} = \frac{12 \cdot \pi^{4}}{5} \cdot R \cdot \left(\frac{T}{\Theta_{D}}\right)^{3} = 234 \cdot R \cdot \left(\frac{T}{\Theta_{D}}\right)^{3} \qquad (T < < \Theta_{D}).$$

42. Теплота, необходимая для нагревания тела,

$$Q = \frac{m}{M} \cdot \int_{T_1}^{T_2} C_m dT,$$

где m — масса тела; M — молярная масса; T_{I} и T_{2} — начальная и конечная температуры тела.

43. Распределение свободных электронов в металле по энергиям при 0°К

$$dn(\varepsilon) = \frac{1}{2 \cdot \pi^2} \cdot \left(\frac{2 \cdot m}{h^2}\right)^{\frac{3}{2}} \cdot \varepsilon^{\frac{1}{2}} d\varepsilon,$$

где $dn(\varepsilon)$ — концентрация электронов, энергия которых заключена в пределах от ε до ε + $d\varepsilon$; m — масса электрона. Это выражение справедливо при ε < ε $_F$ (где ε $_F$ — энергия или уровень Ферми).

44. Энергия Ферми в металле при T=0 K

$$\varepsilon_F = \frac{\hbar^2}{2 \cdot m} \cdot \left(3 \cdot \pi^2 \cdot n\right)^{2/3},$$

где n — концентрация электронов в металле.

45. Удельная проводимость собственных полупроводников

$$\gamma = \gamma_0 \cdot \exp(-\Delta E / 2 \cdot k \cdot T),$$

где ΔE — ширина запрещенной зоны; γ_0 — константа.

46. Сила тока в *p-n*-переходе

$$I = I_0 \cdot \left[\exp(e \cdot U / k \cdot T) - 1 \right],$$

где I_0 — предельное значение силы обратного тока; U — внешнее напряжение, приложенное к p-n-переходу.

47. Внутренняя контактная разность потенциалов

$$U_{12} = (\varepsilon_{F1} - \varepsilon_{F2}) / e$$

где ε_{F1} и ε_{F2} — энергия Ферми соответственно для первого и второго металлов; e — заряд электрона.

Учебное издание

ПОЛИЦИНСКИЙ ЕВГЕНИЙ ВАЛЕРИЕВИЧ

ОСНОВНЫЕ ФОРМУЛЫ, СВЯЗИ МЕЖДУ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ

Электронное учебное пособие

Национальный исследовательский Томский политехнический университет Система менеджмента качества Томского политехнического университета сертифицирована NATIONAL QUALITY ASSURANCE по стандарту ISO 9001:2008

