Predicting
Airline Delays
Using K-Nearest
Neighbor

Michael Srouji Max Sestero Kishan Baliga

Motivation

- Very prevalent in everyday business
- Frustrating issue
- There is previous work to lead us in the right direction

Resources Used

- Sklearn
 - Sklearn is a python library that has an implementation of KNN
 - Sklearn has functions to measure the accuracy of our model
- Pandas
 - Used to create our data frame
- Google Colab
 - Allows us to code on google servers with more resources than our own computers
 - Easy to collaborate

The Data

- Data Expo 2009: Airline on time data
- All domestic flights from October 1987 to April 2008
- Over 100 Million total entries

Features Considered

- Year
- Month
- Day
- Day of Month
- Day of Week
- Scheduled
 Departure Time
- Scheduled Arrival
 Time
- Unique CarrierCode
- Flight Number

- Tail Number
- Scheduled length
- Origin Airport code
- Distance
- Taxi in Time
- Carrier Delay
- Weather Delay
- NAS Delay
- Security Delay
- Late Aircraft Delay

One-hot encoding

	UniqueCarrier
0	MQ
1	C0
2	WN
3	US
4	AA
49995	US
49996	CO
49997	9E
49998	MQ
49999	UA

```
DepDelay
    -2.0
    83.0
    10.0
   119.0
    -3.0
    -2.0
```

Feature Selection

Features Selected	Score
weatherDelay	0.06961472481
carrierDelay	0.139108085
nasdelay	0.0898226848
SecurityDelay	0.0001111020107
LateAircraftDelay	0.2597882169
Month	0.006998284042
Origin	0.007446575209
Dest	0.005141299766
UniqueCarrier	0.006039788912

Not Selected	Score
DayofMonth	0.002026315179
Distance	0.0005194320672
DayOfWeek	0.0008655544318
Diverted	0.0002815180716
TaxiIn	0.0009594809797
TailNum	0.0018245151
CRSDepTime	0.01231459712
CRSElapsedTime	0.0007187784523
CRSArrTime	0.004617141762
FlightNum	0.001992471424

Choosing a K value

K	Score
50	0.4411189053
50	0.4411169055
100	0.4438037517
150	0.4420239524
200	0.4396128147
250	0.4391826344
300	0.4362385688
350	0.4339085182
400	0.4314667864
450	0.4287227357
500	0.4249183134

Our Code

https://colab.research.google.com/drive/1_PWjD0 uwC1LcRnNCNbHjQYEiL2ySPTTd?usp=sharing

Validation

- We used the Sklearn score function to measure the accuracy of our model
- The score function returns a value from 0 to 1 representing the coefficient of determination of the prediction
- We used a test set that used 30% of our total data
- Our model achieved a score of 0.44

Prediction Visualization

Only Delayed Flights

Only Non Delayed Flights

Limitations

- KNN is a slow algorithm
 - Does not work well with large datasets and high dimensional datasets
 - Only 50000 total entries considered
- Sensitive to noise and outliers
- Prone to Overfitting