Lista 2: Otimização I

A. Ramos *

September 3, 2017

Abstract

Lista em constante atualização.

- 1. Convexidade (continuação)
- 2. Condições de otimalidade
- 1. Usando a noção de projeção *prove* as seguinte versões do teorema de separação de Hahn-Banach (Caso finito dimensional).

Sejam K_1 e K_2 conjuntos convexos não vazios de \mathbb{R}^n com interseção vazia, i.e. $K_1 \cap K_2 = \emptyset$.

- (a) Se $z \notin cl(K_1)$. Mostre que existe $a \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$ tal que $\langle a, z \rangle < \gamma \leq \langle a, x \rangle$, para todo $x \in K_1$.
- (b) Existência de um hiperplano suporte. Se $z \in cl(K_1) \setminus int(K_1)$. Mostre que existe $a \neq 0 \in \mathbb{R}^n$, $\gamma \in \mathbb{R}$ tal que $\langle a, z \rangle \leq \gamma \leq \langle a, x \rangle$, para todo $x \in K_1$. Dica: Use o item anterior e a continuidade da projeção.
- (c) Se K_1 é compacto e K_2 é fechado. Prove que existe $a \in \mathbb{R}^n$, $\gamma_1, \gamma_2 \in \mathbb{R}$ tal que $\langle a, x \rangle < \gamma_1 < \gamma_2 < \langle a, y \rangle$, para todo $x \in K_1$ e $y \in K_2$.
- 2. (Lema de Farkas) Seja A uma matriz $m \times n$ e $c \in \mathbb{R}^n$. Então, exatamente uma das seguintes sistemas tem solução.
 - (a) Existe x tal que Ax < 0, $c^Tx > 0$.
 - (b) Existe y tal que $A^T y = c, y \ge 0$.

Dica: Use os teoremas de separação de Hahn-Banach.

- 3. (a) Seja $C \neq \emptyset$ um conjunto convexo fechado de \mathbb{R}^n e $x^* \notin C$. Mostre que existe $p \neq 0$ tal que $p^T(x-x^*) \leq 0, \forall x \in C$.
 - (b) Seja $C \neq \emptyset$ um conjunto convexo de \mathbb{R}^n e $z \in \partial C$. Então, existe $n \neq 0$ tal que $\langle n, c \overline{c} \rangle \leq 0$, $\forall c \in C$. Isto é, no caso finito-dimensional, o cone normal de C em um ponto da fronteira admite sempre um elemento não nulo.
- 4. (a) Seja K é um cone. Mostre que o cone K convexo se, e somente se $K+K\subset K$.
 - (b) Seja $K \subset \mathbb{R}^n$ um cone convexo. Prove que $M := K \cap -K$ é o maior subespaço linear contido em K, e que K K é o menor subespaço linear que contem K.
- 5. Seja $C \neq \emptyset \subset \mathbb{R}^n$. Mostre que conv(C) é compacto se C é compacto. Forneça um exemplo em que conv(C) não é fechado mesmo que C for fechado.
- 6. (a) Se $C_1 \subset C_2$. Mostre que $C_2^{\circ} \subset C_1^{\circ}$. Forneça um exemplo onde $C_2^{\circ} = C_1^{\circ}$ mas $C_2^{\circ} \neq C_1^{\circ}$.
 - (b) Sejam C_1 e C_2 dois cones. Prove que $(C_1 + C_2)^{\circ} = C_1^{\circ} \cap C_2^{\circ}$
 - (c) Se C_1 e C_2 são dois cones convexos fechados. $(C_1 \cap C_2)^\circ = cl(C_1^\circ + C_2^\circ)$
 - (d) Seja A uma matriz real $m \times n$. Defina $C := \{x \in \mathbb{R}^n : Ax \leq 0\}$. Mostre que $C^{\circ} = \{A^T\lambda : \lambda \in \mathbb{R}^m, \lambda \geq 0\}$.
 - (e) Prove que $[\operatorname{Sym}_{+}^{m}(\mathbb{R})]^{\circ} = -\operatorname{Sym}_{+}^{m}(\mathbb{R})$.
- 7. Seja $K \neq \emptyset$ um cone convexo. Prove que se $x \in \text{int}(K)$, então $\langle x, y \rangle < 0$ para todo $y \neq 0 \in K^{\circ}$.
- 8. Seja $\mathcal{V} := \{v_1, \dots, v_m\}$ um conjunto de vetores em \mathbb{R}^n . Mostre que \mathcal{V} é um conjunto afim independente 1 se, e somente se para todo $j = 1, \dots, m$ os vetores $\{v_1 v_j, \dots, v_m v_j\} \setminus \{0\}$ são linearmente independentes.
- 9. Prove o teorema de dualidade forte de Programação Linear, usando os teoremas de separação de Hahn-Banach.
- 10. Seja C um conjunto não vazio de \mathbb{R}^n . Defina

$$C^{\infty} := \{ d \in \mathbb{R}^n : \exists x \in C, \text{ tal que } x + td \in C, \forall t \ge 0 \}.$$

O conjunto C^{∞} é chamado de cone de recessão. Desenhe. Verifique o seguinte:

^{*}Department of Mathematics, Federal University of Paraná, PR, Brazil. Email: albertoramos@ufpr.br.

¹O conjunto $\mathcal{V} := \{v_1, \dots, v_m\}$ é afim independente, se a única solução do sistema $\sum_{i=1}^m \alpha_i v_i = 0$, $\sum_{i=1}^m \alpha_i$ é a solução nula.

- (a) Mostre que C^{∞} é um cone não vazio. Se C é convexo, então temos que C^{∞} é um cone convexo.
- (b) Se C é convexo fechado. Verifique que $C^{\infty} = \{d \in \mathbb{R}^n : C + d \subset C\}$.
- (c) Suponha que C é um conjunto convexo fechado. Prove que C é limitado se, e somente se $C^{\infty} = \{0\}$.
- 11. Homogenização. Seja $C \neq \emptyset$ um conjunto convexo em \mathbb{R}^n . Defina $\hat{C} := \{(x,1) \in \mathbb{R}^n \times \mathbb{R}, x \in C\}$ e $K(\hat{C}) := \{t(x,1), t > 0, x \in C\}$. O conjunto $K(\hat{C})$ é chamado de homogenização de C. Prove que $K(\hat{C})$ é um cone convexo e que $cl\{K(\hat{C})\} = K(\hat{C}) \cup \{(d,0) : d \in C^{\infty}\}$.
- 12. Seja $f:U\to\mathbb{R}$ uma função convexa derivável no aberto convexo $U\subset\mathbb{R}^n$ e $x^*\in U$. Prove que

$$\operatorname{conv}\{y \in \mathbb{R}^n : y = \lim_{n \to \infty} \nabla f(x^n), \ x^n \to x^*\}$$

é um convexo compacto.

- 13. (Testes de convexidade usando derivadas). Seja $f: E \to \mathbb{R}$ diferenciável, onde E é um espaço finito-dimensional (por exemplo, $E = \mathbb{R}^m$, $E = \operatorname{Sym}^m(\mathbb{R})$, ..., etc). Então, f é (estritamente) convexa se, e somente se algumas das siguentes condições valem:
 - (a) $f(y) \ge (>) f(x) + \langle \nabla f(x), y x \rangle, \forall x, y \text{ (com } x \ne y \text{)}$
 - (b) $\nabla f(x)$ é (estritamente) mononota. i.e. $\langle \nabla f(x) \nabla f(y), x y \rangle \geq (>)0, \forall x, y \ (\text{com } x \neq y)$
 - (c) $\nabla^2 f(x) \ge (\succ)0$, para todo x. (aqui assumimos que f é duas vezes diferenciável)
 - (d) Dê um exemplo de uma função $f:(-1,1)\to\mathbb{R}$ estritamente convexa tal que f''(0)=0.
 - (e) Seja $f(X) := -\ln \det(X)$, $X \in \operatorname{Sym}_{++}^m(\mathbb{R})$. Use o item (b), que $\nabla f(X) = -X^{-1}$ ($X \in \operatorname{Sym}_{++}^m(\mathbb{R})$) e que $\operatorname{tr} Z + \operatorname{tr} Z^{-1} \geq 2m$, $\forall Z \in \operatorname{Sym}_{++}^m(\mathbb{R})$ (com igualdade se, e somente se Z = I) para provar que $f(X) := -\ln \det(X)$ é estritamente convexa.
- 14. Determine a convexidade
 - (a) $f(x,y) := xe^{-(x+y)}$, $f(x,y,z) = x^2 + 3y^2 + 9z^2 2xy + 6yz + 2zx$
 - (b) Mostre que f(x) := g(Ax + a) é convexa, se g é convexa, A é uma matriz $m \times n$ e $a \in \mathbb{R}^m$
 - (c) Prove que $f(x) = \theta(g(x))$ é (estritamente) convexa se g é (estritamente) convexa e θ é (estritamente) não decrescente.
- 15. Considere que $f: U \to \mathbb{R}$ é uma função de classe C^2 , onde U é um aberto de \mathbb{R}^n . Suponha que f é uma função harmonica em U, isto é, $\Delta f(x) := \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} f(x) = 0$, para todo $x \in U$. Prove que se x^* é um ponto critico de f e a Hessiana de f em x^* não é identicamente nulo. Então, x^* deve ser um ponto de sela.
- 16. (a) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 . Prove que se f tem um mínimo local que não é minimo global. Então, f deve ter um outro ponto critico.
 - (b) Considere $f(x,y) := (xy x 1)^2 + (x^2 1)^2$. Prove que f tem dois mínimos locais.
 - (c) Prove que $f(x,y) := x^3 3xe^y + e^{3y}$ tem um único critico ponto que é minimo local mas não é mínimo global. Compare com a item (a).
- 17. (Condição suficiente para otimalidade). Seja $f:U\to\mathbb{R}$ uma função de classe C^2 , onde U é um aberto de \mathbb{R}^n . Se $x^*\in U$ é um ponto crítico e $\nabla^2 f(x^*)$ é definida positiva. Então, x^* é um minimo local estrito de f em U.
- 18. Considere o problema de minimização de uma função diferenciável sobre um espaço afim.

min
$$f(x)$$
 sujeito a $Ax = b$,

onde $f: \mathbb{R}^m \to \mathbb{R}$, A é matriz $m \times n$ e $b \in \mathbb{R}^m$. Se x^* é um minimizador local então $\operatorname{proj}_{N(A)} \nabla f(x^*) = 0$.

19. Seja A uma matriz quadrática $n \times n, b \in \mathbb{R}^n$ e considere o problema de quadrático

min
$$f(x) := \frac{1}{2}\langle x, Ax \rangle + \langle b, x \rangle$$
 sujeito a $x \ge 0$

Se x^* minimizador local deste problema quadrático, mostre que $Ax^* + b \ge 0$, $x^* \ge 0$ e $\langle Ax^* + b, x^* \rangle = 0$. Ainda mais, prove que essas condições são suficiente para a otimalidade se A é definida positiva.

- 20. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa derivável, $C \in \mathbb{R}^n$ um conjunto convexo fechado, e $t \geq 0$. Prove que $x^* \in C$ é solução do problema $\min f(x)$ sujeito a $x \in C$ se, e somente se $x^* = \operatorname{proj}_C(x^* t\nabla f(x^*))$.
- 21. Seja $\{e^1,\ldots,e^n\}$ a base canonica de \mathbb{R}^n e considere o problema do elipsoide de volume minimo

$$\min - \ln \det(X)$$
 s.a $||Xe^i|| \le 1, \forall i = 1, \dots, n$ e $X \in \operatorname{Sym}_{++}^n(\mathbb{R})$.

- (a) Prove que o problema admite solução.
- (b) Use as condições de otimalidade de primeira ordem para mostrar que X=I é a única solução de dito problema. Dica: Veja exercício 11 (e).
- (c) Deduza a designal dade de Hadamard, i.e. $\det(x^1x^2\dots x^n) \leq \|x^1\| \|x^2\|\dots \|x^n\|$ para qual quer matriz $(x^1x^2\dots x^n) \in \operatorname{Sym}_{++}^n(\mathbb{R})$.