Задачи оценивания геномного расстояния на графах де Брёйна

Константинов Антон Владимирович, гр. 15.Б04-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доцент Коробейников А. И. Рецензент: м.н.с. Шлемов А. Ю.

Санкт-Петербург 2019

Задача сборки генома

Основные термины

- Геномом будем называть строку S над четырёхбуквенным алфавитом $\{A, T, G, C\}$.
- Рид (или прочтение) короткая подстрока S.
- k-мер подстрока S, имеющая длину k.

Пусть \Re — набор ридов для генома S.

Задача сборки генома

По набору строк $\mathfrak R$ восстановить («собрать») как можно более длинные контиги — непрерывные подстроки исходной строки $\mathcal S$. В идеале хочется получить всю строку $\mathcal S$ целиком.

Граф де Брёйна

Пусть k — положительное целое число.

Сжатый граф де Брёйна строки \mathcal{S} — направленный мультиграф следующей конструкции:

- 1. Множество вершин графа множество всех k-меров строки S.
- 2. Для каждого (k+1)-мера, содержащегося в \mathcal{S} , в граф добавляется ребро $v_1 \to v_2$, где v_1 и v_2 его префикс и суффикс длины k соответственно. Кратность такого ребра равна количеству вхождений соответствующего (k+1)-мера в геном.
- 3. Пути, не имеющие разветвлений, заменяются рёбрами путём конкатенации соответствующих (k+1)-меров.

Постановка задачи

Зафиксируем пару ${f e}_1, {f e}_2$ рёбер графа де Брёйна. Будем предполагать, что

- 1. $\mathbf{e}_1 = \mathcal{S}[a,b]$ и $\mathbf{e}_2 = \mathcal{S}[c,d]$, где a < c;
- 2. \mathbf{e}_1 и \mathbf{e}_2 соединяет путь $\boldsymbol{p} = \mathbf{e}_1 \to p_1 \to \ldots \to p_m \to \mathbf{e}_2$.

Графовое расстояние: $d_{\text{graph}}(\mathbf{e}_1, \mathbf{e}_2; p) = \sum_{i=1}^m |p_i| - (m+1)k$,

Геномное расстояние: $d_{\text{genome}}(\mathbf{e}_1, \mathbf{e}_2) = c - b$.

Определим множества

 $\mathbf{D}_{\mathrm{graph}} = \big\{ d_{\mathrm{graph}}(\mathbf{e}_1, \mathbf{e}_2; oldsymbol{p}) \mid oldsymbol{p}$ – путь, соединяющий \mathbf{e}_1 с $\mathbf{e}_2 \big\},$

 $\mathbf{D}_{\mathrm{genome}} = \big\{ d_{\mathrm{genome}}(\mathbf{e}_1^{(i)}, \mathbf{e}_2^{(j)}) \mid \mathbf{e}_s^{(t)} - t$ -ое вхождение \mathbf{e}_s в геном $\mathcal{S} \big\},$

 ${rac{3}{A}}{rac{A}{A}}{rac{A}{A}}$: Найти пересечение ${f D}={f D}_{
m graph}\cap{f D}_{
m genome}.$

Вероятностная модель парных ридов

Из чего состоит библиотека ридов \mathfrak{R} ?

Пусть

- 1. ξ дискретная случайная величина с носителем $\{1,\dots,|\mathcal{S}|\}$, имеющая смысл координаты в геноме,
- 2. η независимая от ξ неотрицательная целочисленная случайная величина (т. н. **длина вставки**),
- 3. ℓ положительное целое число (длина рида).
- 1. Фрагмент подстрока генома, имеющая вид $\mathcal{S}[\xi,\xi+\eta]$;
- 2. Левый рид префикс длины ℓ фрагмента, т. е. подстрока $\mathcal{S}[\xi,\xi+\ell]$;
- 3. Правый рид суффикс длины ℓ фрагмента, т.е. подстрока $\mathcal{S}[\xi+\eta-\ell,\xi+\eta].$

Вероятностный подход к задаче

Рис. 1: Расположение ридов на рёбрах графа

Пусть $(r_1,r_2)\in\mathfrak{R}$, и r_i является подстрокой ребра \mathbf{e}_i (i=1,2).

Введём обозначения:

- 1. g геномное расстояние между e_1 и e_2 ,
- 2. t расстояние от конца r_1 до конца e_1 ,
- 3. τ координата начала r_2 на e_2 .

Вероятностный подход к задаче

Рассмотрим формально выборку $((t_1, \tau_1, g_1), \dots, (t_n, \tau_n, g_n))$.

- 1. Реализации (t,τ) наблюдаются только при условии $A_{\mathbf{e}_2}(r_2)=\{$ рид r_2 приложен к $\mathbf{e}_2\}$ (будем считать, что r_1 уже приложен);
- 2. Реализации g не наблюдаются вовсе.

При этом

- 1. Совместное распределение вектора (t_i, au_i) зависит от g_i как от параметра.
- 2. t_i , au_i и g_i связаны соотношением $au_i = \eta_i t_i g_i 2\ell$, где $g_i \in \mathbf{D}$.

Получаем набор реализаций $\mathbb{T}=\Big((t_1, au_1),\ldots,(t_n, au_n)\Big).$

В этом случае исходная задача сводится к статистическому выводу для g_i по \mathbb{T} .

Апостериорное распределение для одной реализации

Было получено выражение для функции вероятности $p(g \mid t, \tau, A_{\mathbf{e}_2}).$

Предложение

Пусть длина вставки η имеет распределение \mathcal{P}_{η} с функцией распределения $F(x)=\mathbb{P}(\eta< x)$. Будем считать, что априорно g равномерно распределена на $\mathbf{D}_{\mathrm{graph}}$.

Тогда

$$p(g \mid t, \tau, A_{\mathbf{e}_2}) = \frac{q(\tau, g, t)}{\sum_{j=1}^{k} q(\tau, g^{(j)}, t)},$$

где

$$q(x,y,z) = \frac{F(x+y+z+2\ell+1) - F(x+y+z+2\ell)}{F(y+z+\ell+M) - F(y+z+2\ell)}.$$

Переход к случаю нескольких реализаций

- На практике для каждого рида $(r_1, r_2) \in \mathfrak{R}$ реализуется собственное расстояние $g^{(i)} \in \mathbf{D}_{genome}$ для некоторого i.
- Поэтому нельзя напрямую сделать переход к повторной независимой выборке, как это обычно бывает в статистике.

Приходим к модели смеси:

$$(t, au)\sim \sum_{i=1}^k\pi_i\mathcal{L}_{ au,t}ig(g^{(i)}ig),$$
 где $\pi_i\geq 0$ и $\sum_{i=1}^k\pi_i=1.$

Здесь π_i мы можем оценить, усредняя апостериорную вероятность $p(g^{(i)} \mid t, \tau, A_{\mathbf{e}_2})$ по всем имеющимся реализациям.

Апостериорное распределение для n реализаций

Получено следующее утверждение, дающее апостериорное распределение g при условии набора реализаций (t,τ) .

Предложение

Пусть длина вставки η имеет распределение \mathcal{P}_{η} с функцией распределения $F(x)=\mathbb{P}(\eta< x)$. Будем считать, что априорно g равномерно распределена на $\mathbf{D}_{\mathrm{graph}}$.

Тогда

$$p(g \mid \mathbb{T}, A_{\mathbf{e}_2}) = \frac{1}{n} \sum_{i=1}^{n} \left[\frac{q(\tau_i, g, t_i)}{\sum_{j=1}^{k} q(\tau_i, g^{(j)}, t_i)} \right],$$

где

$$q(x,y,z) = \frac{F(x+y+z+2\ell+1) - F(x+y+z+2\ell)}{F(y+z+\ell+M) - F(y+z+2\ell)}.$$

Данные

Во всех следующих примерах используются графы де Брёйна, построенные по различным библиотекам ридов для первых 400 тысяч нуклеотидов генома E.coli (штамм $K12\ MG1655$).

Реальные риды. Были рассмотрены две библиотеки:

- 1. Первая («Библиотека А») имеет близкое к нормальному распределение η . Использовалась ф. р. нормального распределения с оценёнными параметрами ($\mu\approx215$, $\sigma\approx10$).
- 2. Для второй библиотеки («Библиотека Б») в качестве F использовалась эмпирическая ф. р. (med $\eta \approx 480$).

Распределения длины вставки

(a) Библиотека А. Хорошо аппроксимируется нормальным с параметрами $\mu=215,\ \sigma=10$

(b) Библиотека Б. Используем эмпирическую ф. р., ${\rm mode}\ \eta = 480$

Рис. 2: Распределения длины вставки для библиотек А и Б

Библиотека А

(b) Гистограмма $\eta - q$

Рис. 3: Неповторные рёбра

160

00, 10

Библиотека А

Рис. 4: Одно из рёбер имеет двойную кратность

Библиотека Б

(b) Гистограмма $\eta - q$

Рис. 5: Неповторные рёбра

Библиотека Б

(а) Апостериорное распределение

Рис. 6: Одно из рёбер имеет двойную кратность

Библиотека Б

(а) Апостериорное распределение

Рис. 7: Одно из рёбер имеет тройную кратность

0.004

Заключение

В работе была рассмотрена задача оценки геномных расстояний между рёбрами в графе де Брёйна.

- 1. Построена вероятностная модель, позволяющая получать требуемые оценки в виде апостериорных вероятностей для расстояний, имеющихся в графе.
- 2. Построенная модель протестирована на реальных геномных данных.

В дальнейшем полученные оценки, например, могут быть применены в геномных ассемблерах для разрешения повторов в графе де Брёйна.