Statistical Inference and Machine Learning Homework 2

- This assignment can be solved in groups of 1 up to 5 students. You must mention the name of all the participants. Note that all the students in a group will get the same grade.
- Deadline: 25 November 2020, 23:59 (No late submissions will be accepted)
- Upload a single pdf file on Moodle containing your solution.

1 Feature Selection [60 pts]

Algorithm:

Given a dataset $S = \{(Y^i, X^i)\}_{i=1}^n$ of n instances, where features $X = (X_1, \dots, X_d) \in \mathbb{R}^d$, and labels $Y = \{1, \dots, K\}$.

- For each value of the label Y = k
 - Estimate density p(Y = k)
- For each feature X_i , $i = \{1, \ldots, d\}$
 - Estimate its density $p(X_i)$
 - For each value of the label Y = k, estimate the density $p(X_i|Y = k)$
 - Score feature X_i , $i = \{1, ..., d\}$, using

$$I(X_i, Y) = \sum_{x_i \in \mathcal{X}, y \in \mathcal{Y}} p(x_i, y) \log_2\left(\frac{p(x_i, y)}{p(x_i)p(y)}\right)$$
(1)

where \mathcal{X} and \mathcal{Y} denote the support sets of X_i and Y.

• Choose those feature X_i with high score I_i

Insight: Informativeness of a feature

- ullet We are uncertain about label Y before seeing any input.
 - Suppose we quantify using entropy H(Y), defined as

$$H(Y) = -\sum_{y \in \mathcal{Y}} p(y) \log_2 p(y)$$
 (2)

where \mathcal{Y} denotes the support sets of Y.

- Given a particular feature X_i , the uncertainty of Y changes
 - Suppose we quantify using conditional entropy $H(Y|X_i)$, defined as

$$H(Y|X_i) = -\sum_{y \in \mathcal{Y}, x_i \in \mathcal{X}} p(x_i, y) \log_2 \frac{p(x_i, y)}{p(x_i)}$$
(3)

where \mathcal{X} and \mathcal{Y} denote the support sets of X_i and Y.

• The reduction in uncertainty is the informativeness of feature X_i

$$I(X_i, Y) = H(Y) - H(Y|X_i)$$

$$\tag{4}$$

where $I(X_i, Y)$ is the mutual information which quantifies the reduction in uncertainty in Y after seeing feature X_i .

Questions:

- 1. Given the definition of mutual information as in (4), show its calculation as in (1).
- 2. Given the definition of mutual information as in (4), derive a similar formula as equation (1) for $I(Y, X_i)$. Conclude that the mutual information is symmetric, i.e.,

$$I(X_i, Y) = I(Y, X_i). (5)$$

3. Now, let's look at an example. Given a dataset as below.

day	outlook	temperature	humidity	wind	play
1	sunny	hot	high	weak	no
2	sunny	hot	high	strong	no
3	overcast	hot	high	weak	yes
4	rain	mild	high	weak	yes
5	rain	cool	normal	weak	yes
6	rain	cool	normal	strong	no
7	overcast	cool	normal	strong	yes
8	sunny	mild	high	weak	no
9	sunny	cool	normal	weak	yes
10	rain	mild	normal	weak	yes
11	sunny	mild	normal	strong	yes
12	overcast	mild	high	strong	yes
13	overcast	hot	normal	weak	yes
14	rain	mild	high	strong	no

We want to decide whether to play or not to play Tennis on a Saturday. This is a binary classification problem (play vs no-play). Each input (a Saturday) has four features: Outlook, Temp, Humidity, Wind.

Now compute I(outlook, Y), I(temp, Y), I(humidity, Y), and I(wind, Y), respectively. Given your results, which feature is the most informative feature?

2 Decision Trees [40 pts]

Decision tree builds classification or regression models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a tree with decision nodes and leaf nodes. A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy). Leaf node (e.g., Play) represents a classification or decision. The topmost decision node in a tree which corresponds to the best predictor called root node. Decision trees can handle both categorical and numerical data.

Algorithm:

The core algorithm for building decision trees called ID3 by J.R.Quinlan which employs a top-down, greedy search through the space of possible branches with no backtracking. ID3 uses Entropy and Information Gain to construct a decision tree.

Question:

Construct the decision tree using the training dataset as above.