WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/29, C07K 14/415, C12N 5/04, 5/14, A01H 5/00, C12N 15/10, 15/82

(11) International Publication Number:

WO 99/19492

A2

(43) International Publication Date:

22 April 1999 (22.04.99)

(21) International Application Number:

PCT/EP98/06977

(22) International Filing Date:

9 October 1998 (09.10.98)

(30) Priority Data:

PO 9745

10 October 1997 (10.10.97) ΑÜ

(71) Applicant (for all designated States except US): RHONE-POULENC AGRO [FR/FR]; 14/20, rue Pierre Baizet, F-69009 Lyon (FR).

(72) Inventors; and

DOUTRIAUX, (75) Inventors/Applicants (for US only): Marie-Pascale [FR/FR]; 64, route de Villebon, F-91160 Saulx les Chartreux (FR). BETZNER, Andreas, Stefan [AU/AU]; 40 Dallachy Place, Page, ACT 2614 (AU). FREYSSINET, Georges [FR/FR], 21, rue de Nervieux, F-69450 Saint Cyr au Mont d'Or (FR). PEREZ, Pascal [FR/FR]; 17, chemin de la Pradelle, Varennes, F-63450 Chanonat (FR).

(74) Agent: GENIN, Patrick; Rhône-Poulenc Agro, DPI, 14/20, rue Pierre Baizet, F-69009 Lyon (FR).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHODS FOR OBTAINING PLANT VARIETIES

(57) Abstract

An isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide functionally involved in the DNA mismatch repair system of a plant.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark ·	LK	Sri Lanka	SE	Sweden		
EE	Estonia ·	LR	Liberia	SG	Singapore		

10

Methods for Obtaining Plant Varieties

TECHNICAL FIELD

The present invention relates to nucleotide sequences which encode polypeptides involved in the DNA mismatch repair systems of plants, and to the polypeptides encoded by those nucleotide sequences. The invention also relates to nucleotide sequences and polypeptide sequences for use in altering the DNA mismatch repair system in plants. The invention also relates to a process for altering the DNA mismatch repair system of a plant cell, to a process for increasing genetic variations in plants and to processes for obtaining plants having a desired characteristic.

BACKGROUND OF THE INVENTION

Plant breeding essentially relies on and makes use of genetic variation which occurs naturally within and between members of a family, a genus, a species or a subspecies. Another source of genetic variation is the introduction of genes from other organisms which may or may not be related to the host plant.

Allelic loci or non-allelic genes which constitute or contribute to desired quantitative (e.g. growth performance, yield, etc.) or qualitative (e.g. deposition, content and composition of seed storage products; pathogen resistance genes: etc.) traits that are absent, incomplete or inefficient in a species or subspecies of interest are typically introduced by the plant breeder from other species or subspecies, or *de novo*. This introduction is often done by crossing, provided that the species to be crossed are sexually compatible. Other means of introducing genomes, individual chromosomes or genes into plant cells or plants are well known in the art. They include cell fusion, chemically aided transfection (Schocher et al., 1986, Biotechnology 4: 1093) and ballistic (McCabe et al., 1988, Biotechnology 6: 923), microinjection (Neuhaus et al., 1987, TAG 75: 30), electroporation of protoplasts (Chupeau et al., 1989, Biotechnology 7: 53) or microbial transformation methods such as Agrobacterium mediated transformation (Horsch et al., 1985, Science 227: 1229; Hiei et al., 1996, Biotechnology 14: 745).

However, when a foreign genome, chromosome or gene is introduced into a plant, it will often segregate in subsequent generations from the genome of the recipient plant or plant cell during mitotic and meiotic cell divisions and, in consequence, become lost from the host plant or plant cell into which it had been introduced. Occasionally, however, the introduced genome, chromosome or gene physically combines entirely or in part with the genome, chromosome or gene of the host plant or plant cell in a process which is called recombination.

Recombination involves the exchange of covalent linkages between DNA molecules in regions of identical or similar sequence. It is referred to here as homologous recombination if donor and recipient DNA are identical or nearly identical (at least 99%).

base sequence identity), and as homeologous recombination if donor and recipient DNA are not identical but are similar (less than 99% base sequence identity).

The ability of two genomes, chromosomes or genes to recombine is known to depend largely on the evolutionary relation between them and thus on the degree of sequence similarity between the two DNA molecules. Whereas homologous recombination is frequently observed during mitosis and meiosis, homeologous recombination is rarely or never seen.

From a breeder's perspective, the limits within which homologous recombination occurs, therefore, define a genetic barrier between species, varieties or lines, in contrast to homeologous recombination which can break this barrier. Homeologous recombination is thus of great importance for plant breeding. Accordingly there is a need for a process for enhancing the frequency of homeologous recombination in plants. In particular, there is a need for a process of increasing homeologous recombination to significantly shorten the length of breeding programs by reducing the number of crosses required to obtain an otherwise rare recombination event.

At least in Escherichia coli, homologous and homeologous recombination are known to share a common pathway that requires among others the proteins RecA, RecB, RecC. RecD and makes use of the SOS induced RuvA and RuvB, respectively. It has been suggested that mating induced recombination follows the Double-Strand Break Repair 20 model (Szostak et al., 1983, Cell 33, 25-35), which is widely used to describe genetic recombination in eukaryotes. Following the alignment of homologous or homeologous DNA double helices the RecA protein mediates an exchange of a single DNA strand from the donor helix to the aligned recipient DNA helix. The incoming strand screens the recipient helix for sequence complementarity, seeking to form a heteroduplex by hydrogen 25 bonding the complementary strand. The displaced homologous or homeologous strand of the recipient helix is guided into the donor helix where it base pairs with its counterpart strand to form a second heteroduplex. The resulting branch point then migrates along the aligned chromosomes thereby elongating and thus stabilising the initial heteroduplexes. Single stranded gaps (if present) are closed by DNA synthesis. The strand cross overs 30 (Holliday junction) are eventually resolved enzymatically to yield the recombination products.

Although in wild type *E. coli* homologous and homeologous recombination are thus mechanistically similar if not identical, homologous recombination in conjugational crosses *E. coli* x *E. coli* occurs five orders of magnitude more frequently than homeologous recombination in conjugational crosses *E. coli* x *S. typhimurium* (Matic et al. 1995; Cell 80, 507-515). The imbalance in favour of homologous recombination was shown to be caused largely by the bacterial MisMatch Repair (MMR) system since its

inactivation increased the frequency of homeologous recombination in E. coli up to 1000 fold (Rayssiguier et al. 1989, Nature 342, 396-401).

In E. coli, the MMR system (reviewed by Modrich 1991, Annual Rev Genetics 25, 229-253) is composed of only three proteins known as MutS, MutL and MutH. MutS recognizes and binds to base pair mismatches. MutL then forms a stable complex with mismatch bound MutS. This protein complex now activates the MutH intrinsic single stranded endonuclease which nicks the strand containing the misplaced base and thereby prepares the template for DNA repair enzymes.

During recombination, MMR components inhibit homeologous recombination. In vitro experiments demonstrated that MutS in complex with MutL binds to mismatches at the recombination branch point and physically blocks RecA mediated strand exchange and heteroduplex formation (Worth et al., 1994; PNAS 91, 3238-3241). Interestingly, the SOS dependent RuvAB mediated branch migration is insensitive to MutS/MutL, explaining the observed slight increase in SOS dependent homeologous recombination.

15 Homeologous mating even induces the SOS response, thereby taking advantage of RuvAB induction (Matic et al. 1995, Cell 80, 507-515).

The MMR system thus appears to be a genetic guardian over genome stability in *E. coli*. In this role it essentially determines the extent to which genetic isolation, that is, speciation, occurs. The diminished sensitivity of the SOS system to MMR, however, allows (within limits) for rapid genomic changes at times of stress, providing the means for fast adaptation to altered environmental conditions and thus contributing to intraspecies genetic variation and species evolution.

The important role of MMR in preserving genomic integrity has been established also in certain eukaryotes. In its efficiency, the human MMR, for example, may even counteract potential gene therapy tools such as triple-helix forming oligonucleotides including RNA-DNA hybrid molecules (Havre et al., 1993, J. Virology 67: 7234-7331; Wang et al., 1995, Mol. Cell. Biol. 15: 1759-1768; Kotani et al., 1996, Mol. Gen. Genetics 250: 626-634; Cole-Strauss et al., 1996, Science 273: 1387-1389). Such oligonucleotides are designed to introduce single base changes into selected DNA target sequences in order to inactivate for example cancer genes or to restore their normal function. The resulting base mismatches however are recognised by the mismatch repair system which then directs removal of the mismatched base, thereby reducing the efficiency of oligonucleotide induced site-specific mutagenesis.

To date, two families of related genes, homologous to the bacterial MutS and MutL genes have been identified or isolated in yeast and mammals (recent reviews by Arnheim and Shibata, 1997, Curr. Opinion Genet. Dev. 7, 364-370; Modrich and Lahue, 1996, Annual Rev. Biochem. 65, 101-133; Umar and Kunkel, 1996, Eur. J. Biochem. 238, 297-307). Biochemical and genetic analysis indicated that eukaryotic MutS homologs (MSH)

. 25

and MutL homologs (MLH. PMS), respectively, fulfil similar protein functions as their bacterial counterparts. Their relative abundance, however, could reflect different mismatch specificity and/or specialisation for different tissues or organelles or developmental processes such as mitotic versus meiotic recombination.

To date, six different genes homologous to *MutS* have been isolated in yeast (yMSH), and their homologs have been found in mouse (mMSH) and human (hMSH), respectively. Encoded proteins yMSH2, yMSH3 and yMSH6 appear to be the main MutS homologs involved in MMR during mitosis and meiosis in yeast, where the complementary proteins MSH3 and MSH6 alternatively associate with MSH2 to recognise different mismatch substrates (Masischky et al., 1996, Genes Dev. 10, 407-420). Similar protein interactions have been demonstrated for the human homologs hMSH2, hMSH3 and hMSH6 (Acharya et al., 1996, PNAS 93, 13629-13634).

MutL homologs (MLH and PMS), recently reviewed by Modrich and Lahue (1996, Annual Rev. Biochem. 65. 101-133) have so far been found in yeast (yMLH1 and yPMS1), mouse (mPMS2) and human (hMLH1, hPMS1 and hPMS2). The hPMS2 is a member of a family of at least 7 genes (Horii et al., 1994, Biochem. Biophys. Res. Commun. 204, 1257-1264) and its gene product is most closely related to yPMS1. Prolla et al. (1994, Science 265, 1091-1093) presented evidence for yPMS1 and yMLH1 to physically associate with each other and, together, to interact with the MutS homolog 20 yMSH2 to form a ternary complex involved in mismatch substrate binding.

However, while medical interest in mismatch repair has prompted extensive research on MMR in bacteria, yeast and mammals, MMR genes have not been isolated from higher plants prior to the present invention and no attempts to adjust the plant MMR to plant breeding needs have been reported.

SUMMARY OF THE INVENTION

According to a first embodiment of the invention, there is provided an isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide functionally involved in the DNA mismatch repair system of a plant. In one form of this embodiment, the invention provides an isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human. More particularly, the invention provides polynucleotide sequences encoding polypeptides which are homologous to the mismatch repair polypeptides MSH3 and MSH6 of Saccharomyces cerevisiae. Still more particularly, the invention provides the coding sequences of the genes AtMSH3 and AtMSH6 of Arabidopsis thaliana. as defined hereinbelow, and polynucleotide sequences encoding polypeptides which are homologous to polypeptides encoded by AtMSH3 and AtMSH6.

According to a second embodiment of the invention, there is provided an isolated and purified polypeptide functionally involved in the DNA mismatch repair system of a plant, for example a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human such as a polypeptide encoded by the genes AtMSH3 or AtMSH6 of Arabidopsis thaliana, as defined hereinbelow.

According to a third embodiment of the invention, there is provided an isolated and purified DNA molecule comprising a polynucleotide sequence selected from the group consisting of (i) a sequence encoding a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence; and (ii) a sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant.

According to a fourth embodiment of the invention there is provided a chimeric gene comprising a DNA sequence selected from the group consisting of (i) a sequence encoding a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence, and (ii) a sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant: together with at least one regulation element capable of functioning in a plant cell. Examples of such regulation elements include constitutive, inducible, tissue type specific and cell type specific promoters such as 35S, NOS, PR1a, AoPR1 and DMC1. Typically, a chimeric gene of the fourth embodiment will also include at least one terminator sequence, more typically exactly one terminator sequence.

In the third and fourth embodiments, said interference, by said polynucleotide sequence, with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair peptide of a yeast or a human typically occurs by hybridisation or by co-suppression.

According to a fifth embodiment of the invention there is provided a plasmid or vector comprising a chimeric gene of the fourth embodiment. A vector of the fifth 30 embodiment may be, for example, a viral vector or a bacterial vector.

According to a sixth embodiment of the invention, there is provided a plant cell stably transformed, transfected or electroporated with a plasmid or vector of the fifth embodiment.

According to seventh embodiment of the invention, there is provided a plant 35 comprising a cell of the sixth embodiment.

According to an eighth embodiment of the invention, there is provided a process for at least partially inactivating a DNA mismatch repair system of a plant cell, comprising

transforming or transfecting said plant cell with a DNA sequence of the third embodiment or a chimeric gene of the fourth embodiment or a plasmid or vector of the fifth embodiment, and causing said DNA sequence to express said polynucleotide or said polypeptide.

According to a ninth embodiment of the invention, there is provided a process for increasing genetic variation in a plant comprising obtaining a hybrid plant from a first plant and a second plant, or cells thereof, said first and second plants being genetically different: altering the mismatch repair system in said hybrid plant; permitting said hybrid plant to self-fertilise and produce offspring plants; and screening said offspring plants for plants in which homeologous recombination has occurred. For example, homeologous recombination may be evidenced by new genetic linkage of a desired characteristic trait or of a gene which contributes to a desired characteristic trait.

According to a tenth embodiment of the invention there is provided a process for obtaining a plant having a desired characteristic, comprising altering the mismatch repair system in a plant, cell or plurality of cells of a plant which does not have said desired characteristic, permitting mutations to persist in said cells to produce mutated plant cells, deriving plants from said mutated plant cells, and screening said plants for a plant having said desired characteristic.

In a preferred form of the ninth and tenth embodiments of the invention, the step of altering the mismatch repair system comprises introducing into said hybrid plant, plant, cell or cells a chimeric gene of the fourth embodiment and permitting the chimeric gene to express a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence in a mismatch repair gene of the hybrid plant, plant, cell or cells, or a polypeptide capable of disrupting the DNA mismatch repair system of the hybrid plant or cells.

In other embodiments, the invention provides (a) an oligonucleotide capable of hybridising at 45°C under standard PCR conditions to a DNA molecule of the first embodiment; (b) an oligonucleotide capable of hybridising at 45°C under standard PCR conditions to the DNA of SEQ ID NO: 18 and (c) an oligonucleotide capable of hybridising at 45°C under standard PCR conditions to the DNA of SEQ ID NO:30; with the proviso that the oligonucleotide of (a), (b) and (c) is other than SEQ ID NO:1 or SEQ ID NO:2.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a diagrammatic representation of the primer sequences used to as isolate AtMSH3.

Figure 2 is a plasmid map of clone 52, showing restriction enzyme cleavage sites in the 5' half of the full-length cDNA for AtMSH3.

Figure 3 is a plasmid map of clone 13, showing restriction enzyme cleavage sites in the 3' half of the full-length cDNA for AtMSH3.

Figure 4 is a sequence listing of the coding sequence of AtMSH3, together with a deduced sequence of the encoded polypeptide.

Figure 5 is a protein alignment of yeast (Saccharomyces cerevisiae) and Arabidopsis thaliana MSH3 protein.

Figure 6 provides a diagrammatic representation of the primer sequences used to isolate AtMSH6.

Figure 7 is a plasmid map of clone 43, showing restriction enzyme cleavage sites in to the 5' half of the full-length cDNA for AtMSH6.

Figure 8 is a plasmid map of clone 62, showing restriction enzyme cleavage sites in the 3' half of the full-length cDNA for AtMSH6.

Figure 9 is a sequence listing of the coding sequence of AtMSH6, together with a deduced sequence of the encoded polypeptide.

Figure 10 is a protein alignment of yeast (Saccharomyces cerevisiae) and Arabidopsis thaliana MSH6 protein.

Figure 11 is a genomic sequence listing of AtMSH6.

Figure 12 is a plasmid map of plasmid pPF13.

Figure 13 is a plasmid map of plasmid pPF14.

Figure 14 is a plasmid map of plasmid pCW186.

Figure 15 is a plasmid map of plasmid pCW187.

Figure 16 is a plasmid map of plasmid pPF66.

Figure 17 is a plasmid map of plasmid pPF57.

Figure 18 is a diagrammatic representation of an antisense gene construction for use in homeologous meiotic recombination.

Figure 19 is a plasmid map of plasmid p3243.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the inventors' discovery that there exist in higher plants genes which are homologous to MMR genes in E. coli, and to MMR genes in yeasts and humans.

Thus, the inventors have identified genes, herein designated AtMSH3 and AtMSH6, of the plant Arabidopsis thaliana which encode the proteins AtMSH3 and AtMSH6. These plant proteins are homologous to yMSH3 and yMSH6, respectively. The present inventors have isolated cDNAs encoding the proteins AtMSH3 and AtMSH6 and have isolated the complete gene encoding AtMSH6. Given the teaching herein, other genes (for example AtMSH2, and genes of other plants) may be obtained which are involved in DNA mismatch repair in plants, including other genes which encode polypeptides homologous to MMR proteins of yeasts or humans, such as genes which encode

polypeptides homologous to yeast MSH2. MLH1 or PMS2. or to human MLH1. PMS1 or PMS2. For example, given the teaching herein, genes of members of the Brassicaceae family or of other unrelated families, for example the Poaceae, the Solanaceae, the Asteraceae, the Malvaceae, the Fabaceae, the Linaceae, the Canabinaceae, the Dauaceae and the Cucurbitaceae family, and which encode polypeptides homologous to MMR proteins of yeasts or humans may be obtained.

Examples of plants whose genes encoding polypeptides homologous to MMR proteins of yeasts or humans may be obtained given the teaching herein include maize, wheat, oats, barley, rice, tomato, potato, tobacco, capsicum, sunflower, lettuce, artichoke, safflower, cotton, okra, beans of many kinds including soybean, peas, melon, squash, cucumber, oilseed rape, broccoli, cauliflower, cabbage, flax, hemp, hops and carrot.

Within the meaning of the present invention, a first polypeptide is defined as homologous to a second polypeptide if the amino acid sequence of the first polypeptide exhibits a similarity of at least 50% on the polypeptide level to the amino acid sequence of the second polypeptide.

A procedure which may be followed to obtain genes AtMSH3 and AtMSH6 is described in Example 1. Essentially the same technique may be applied to obtain other mismatch repair genes of Arabidopsis thaliana, and essentially the same technique as 20 exemplified herein may be applied to cDNA obtained by reverse transcription of RNA from other plants. Alternatively, given the sequence information disclosed herein, other degenerate oligonucleotide primers, especially oligonucleotides of the invention which are capable of hybridising at 45°C under standard PCR conditions (such as the conditions described in Example 1 using primers UPMU and DOMU) to AtMSH3 and/or AtMSH6 25 may be designed and obtained for use in isolating sequences of plant mismatch repair genes which are homologous to AtMSH3 or AtMSH6, from other plants. oligonucleotides of the invention which are capable of hybridising at 45°C under standard PCR conditions to plant mismatch repair genes of plants other than Arabidopsis thaliana also fall within the scope of the present invention and may be utilised to obtain mismatch Typically, such oligonucleotides are capable of 30 repair genes of still other plants. hybridising at 45°C under standard PCR conditions to a DNA molecule which encodes a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or a human. The temperature at which oligonucleotides of the invention hybridise to AtMSH3 and/or AtMSH6, or to plant mismatch repair genes of plants other than Arabidopsis thaliana, or 35 to DNA molecules which encode polypeptides which are homologous to a mismatch repair polypeptide of a yeast or a human may be higher than 45°C, for example at least 50°C, or at least 55°C, or at least 60°C or as high as 65°C.

The successful gene isolation disclosed herein demonstrates for the first time the existence of MMR in higher plants and indicates the presence of other plant MMR genes. For example, genes encoding the plant homologs of MSH1. MSH2. MSH4, MSH5, PMS1, PMS2 and MLH1 may be identified given the teaching herein. Such genes, as well as those specifically described herein, separately or in combination, are useful in manipulating the plant MMR for plant breeding purposes. Thus, for example, the plant MMR may be altered by including in a plant cell a polynucleotide sequence as defined herein above with reference to the third embodiment of the invention, and causing the polynucleotide sequence to express either a polynucleotide which disables a plant MMR gene, or a polypeptide which disrupts the plant's MMR system.

The DNA molecule of the third embodiment of the invention includes a polynucleotide sequence (herein referred to as a MMR altering gene) which may for example encode sense, antisense or ribozyme molecules characterised by sufficient base sequence similarity or complementarity to the gene to be altered to permit the antisense or 15 ribozyme molecule to hybridise with the plant MMR gene in vivo or to permit the sense molecule to participate in co-suppression. Alternatively, the MMR altering gene may encode a protein or proteins which interfere with the activity of a plant MMR protein and thus disrupt the plant's MMR system. For example, such encoded proteins may be antibodies or other proteins capable of interfering with MMR protein function, such as by 20 complexing with a protein functionally involved in plant MMR thereby disrupting the MMR of the plant. An example of such a protein is the MSH3 protein of Arabidopsis thaliana described herein or a protein of another plant which is homologous to the MSH3 protein of A. thaliana. For instance, overexpression of MSH3 in a plant cell causes MSH2 present in the cell to be substantially completely complexed, disrupting the 25 mismatch repair mechanism or mechanisms in the cell which are functionally dependent Similarly, mismatch repair on the presence of a complex of MSH2 with MSH6. mechanisms which depend on the presence of a complex of MSH2 and MSH3 may be disrupted by the overexpression of MSH6.

A chimeric gene of the fourth embodiment, incorporating a MMR altering gene, may be prepared by methods which are known in the art. Similarly, the MMR altering gene may be introduced into a plant cell, regenerating tissue or whole plant by techniques known in the art as being suitable for plant transformation, or by crossing. Known transformation techniques include Agrobacterium tumefaciens or A. rhizogenes mediated gene transfer, ballistic and chemical methods, and electroporation of protoplasts.

The MMR altering gene or genes are typically expressed from suitable promoters. Suitable promoters may direct constitutive expression, such as the 35S or the NOS promoter. Usually, however, the promoter will direct either inducible or tissue specific (e.g. callus; embryonic tissue; etc.), cell type specific (e.g. protoplasts; meiocytes; etc.) or developmental (e.g. embryo) expression of the altering gene or genes, in order for the

MMR system to function in tissue types or cell types, or at developmental stages of the plant, in which it is not desirable for the MMR system to be altered. Using such promoters, therefore, the activity of a MMR altering gene may be limited to a specific stage during plant development or it may be altered by controlling conditions external to the plant, and the deleterious effects of a permanently disabled or altered DNA mismatch repair system in a plant may be avoided. Examples of suitable promoters which are not constitutive are known in the art and include inducible promoters such as *PR*1a (reviewed by Gatz, 1997, Annual Rev. Plant Phys. Plant Mol. Biol. 48: 89), tissue specific promoters such as *AoPR1* (Sabahattin et al., 1993, Biotechnology 11: 218), and cell-type specific promoters such as *DMC*1.

A chimeric gene in accordance with the invention may further be physically linked to one or more selection markers such as genes which confer phenotypic traits such as herbicide resistance, antibiotic resistance or disease resistance, or which confer some other recognisable trait such as male sterility, male fertility, grain size, colour, growth rate, flowering time, ripening time, etc.

The process of the tenth embodiment of the invention provides, for example, a process for generating intraspecies genetic variation by altering the mismatch repair system in a plant cell, in regenerating plant tissue or in a whole plant. The plant cell, regenerating tissue or whole plant includes and expresses one or more MMR altering 20 genes which are capable of altering mismatch repair in the plant cell, regenerating tissue or whole plant. Alteration of MMR may be achieved, for example, by inactivating the genes encoding plant MSH3 and/or plant MSH6. It is preferred to inactivate the plant MSH3 and MSH6 encoding genes at the same time and in the same plant cell, regenerating tissue or whole plant. Typically in this preferred form of the invention 25 inactivation of either plant MSH3 or MSH6 alone is insufficient to substantially alter the plant's mismatch repair system and only when both MSH3 and MSH6 are inactivated simultaneously is the plant's mismatch repair system sufficiently altered to prevent the MMR system from recognising base pair mismatches, base insertions or deletions as a result of DNA replication errors, DNA damage, or oligonucleotide induced site-specific 30 mutagenesis. However, in some applications of the invention, inactivation of only one gene may also be used to cause genomic instability or increase the efficiency of sitespecific mutagenesis.

If desired, the MMR altering gene or genes may later be rendered non-functional or ineffective, or may be removed from the genome of the plant cell, regenerating tissue or whole plant in order to restore mismatch repair in the plant cell, regenerating tissue or whole plant. The MMR altering gene or genes may be inactivated by means of known gene inactivation tools, such as ribozymes, or may be removed from the genome using gene elimination systems known in the art, such as CRE/LOX. It is preferred to render two genes, whose gene products combine to incapacitate MMR, ineffective by separating

the altering genes through segregation. Therefore, in a preferred embodiment of the invention a first plant cell or plant is generated in which only plant MSH3 is incapacitated, and a second plant cell or plant is generated in which only plant MSH6 is incapacitated. The combination of both genomes, for example by crossing, then produces significant MMR deficiency in those cells or plants which have inherited both altering genes. If the altering genes are expressed from unlinked loci, gene segregation restores MMR activity in the progeny of the cells or plants.

In a process of the ninth embodiment of this invention, homeologous recombination is enhanced between different genomes, chromosomes or genes in plant cells or plants by altering MMR in said plant cells or plants. Such genomes, chromosomes or genes are characterised in that they originate from different plant families, genera, species, subspecies, plant varieties or lines. Hybrid plant cells or hybrid plants may be produced by crossing, by cell fusion or by other techniques known in the art. These plant cells or plants are further characterised by expressing one or more genes that are capable of altering mismatch repair in the plant cell or plants.

In the process of the ninth embodiment, the homeologous recombination is typically for the purpose of introducing a desired characteristic in the hybrid plant. In this typical application of the process of the ninth embodiment, and in the process of the tenth embodiment the desired characteristic may be any characteristic which is of value to the plant breeder. Examples of such characteristics are well known in the art and include altered composition or quality of leaf or seed derived storage products (e.g. oil, starch, protein), altered composition or quality of cell walls (e.g. decrease in lignin content), altered growth rate, prolonged flowering, increased plant yield or grain yield, altered plant morphology, resistence to pathogens, tolerance to or improved performance under environmental stresses of various kinds, etc.

In a preferred form of the tenth embodiment, an MMR altering gene is cointroduced along with the homeologous genome, chromosome or gene of another plant
cell or plant into an MMR proficient plant cell or MMR proficient plant to produce a
hybrid plant cell or hybrid plant in which homeologous recombination can occur.

Suitably, the MMR proficient plant cell or MMR proficient plant may also include an
MMR altering gene. For example a gene capable of inactivating plant MSH3 may be cointroduced along with the homeologous genome, chromosome or gene of another plant
cell or plant into an MMR proficient plant cell or MMR proficient plant in which MSH6
is inactivated. A resultant hybrid plant in which homeologous recombination occurs will
include both the MSH3 and MSH6 altering genes and its MMR system will therefore be
inactivated.

In this form of the invention, if hybrid plants are to be produced by crossing, the MMR altering gene preferably originates from the male parent, thus ensuring that the

MMR altering gene is always introduced and is not present in the recipient cell. That is, the MMR of the recipient cell, prior to introduction of the MMR altering gene, is typically proficient. Alternatively, if an MMR altering gene is present in a recipient cell it may be ineffective or inefficient on its own, or it may be linked to an inducible or tissue specific or cell type specific promoter which only renders the MMR altering gene active under limited conditions.

Thus, in a preferred form of the process of the ninth embodiment, the MMR system of the hybrid plant is initially unaltered. In this form of the process, the step of altering the mismatch repair system may comprise introducing into the hybrid plant, or cells thereof, a MMR altering gene, such as by Agrobacterium tumefaciens or A. rhizogenes mediated gene transfer, ballistic and chemical methods, and electroporation of protoplasts.

The MMR altering gene or genes are typically expressed from suitable promoters, as described above. Preferably, the promoter is transcriptionally active in mitotically and meiotically active tissue and/or cells to ensure MMR alteration after chromosome pairing at mitosis and meiosis, respectively. The preferred timing for MMR alteration is at meiosis, because recombinant genomes, chromosomes or genes are directly transmitted to the progeny. A suitable meiocyte specific promoter is for example the *DMC*1 promoter from *Arabidopsis thaliana* ssp. *Ler*. (Klimyuk and Jones, 1997, Plant J. 11, 1-14). However, mitotic homeologous recombination is also a desirable outcome as somatic recombination events can be transmitted to offspring due to the totipotency of plant cells and the lack of predetermined germ cells in plants.

If desired, the MMR altering gene or genes may later be rendered non-functional or ineffective, or may be removed from the hybrid plant or hybrid plant cells, in order to restore mismatch repair in the hybrid plant or hybrid plant cells. The MMR altering gene or genes may be inactivated by means of known gene inactivation tools as described herein above.

EXAMPLES

Example 1. Cloning of the AtMSH3 and AtMSH6 coding sequences

Isolation of partial AtMSH3 and AtMSH6 consensus sequences

30

Degenerate oligonucleotides UPMU (SEQ ID NO:1) and DOMU (SEQ ID NO:2)

UPMU CTGGATCCACIGGICCIAA(C/T)ATG

DOMU CTGGATCC(A/G)TA(A/G)TGIGTI(A/G)C(A/G)AA

were used to isolate AtMSH3 and AtMSH6 sequences by PCR amplification.

Primers UPMU and DOMU correspond to conserved amino acid sequences of the proteins MutS (E. coli and S. typhimurium), HexA (S. pneumoniae). Repl (mouse) and Ducl (human). The conserved regions to which they are targeted are TGPNM for UPMU (amino acid positions 852-856 for AtMSH6 and 816-820 for AtMSH3) FATHY or FVTHY

for DOMU (amino acid positions 964-968 for AtMSH6 and 928-932 for AtMSH3, respectively.) These primers have been used to isolate MSH2 and MSH1 from yeast (Reenan and Kolodner, Genetics 132: 963-973 (1992)) and MSH2 from *Xenopus* and mouse (Varlet et al., Nuc. Acids Res. 22:5723-5728 (1994)).

Template single strand cDNA was produced by reverse transcription of 2 µg total RNA from a cell suspension culture of Arabidopsis thaliana ecotype Columbia (Axelos et al. 1989, Mol. Gen. Genetics 219: 106-112). The PCR reaction was performed under the following conditions in a final volume of 100µl: 0.2mM dNTP, 1µM each primer, 1XPCR buffer, lu Taq DNA polymerase (Appligene) in the presence of template cDNA. PCR 10 parameters were 5 minutes at 94°C, followed by 30 cycles of 40 seconds at 95°C, 90 seconds at 45°C, 1 minute at 72°C. The amplification products were cloned into pGEM-T vector (Promega) and sequenced. Two different clones were isolated, S5 (350bp) was homologous to MSH3, S8 (327bp) was homologous to MSH6. Complete cDNA sequences were then isolated according to the Marathon cDNA amplification kit procedure (Clontech). 15 In summary, this procedure involves producing double stranded cDNA by reverse transcription of 2µg polyA+ RNA from the cell suspension culture of Arabidopsis. Adaptors are ligated on each side of the cDNA. The ligated cDNA is used as a template for 5' and 3' RACE PCR reactions in the presence of primers that are specific for the adaptor on one side (AP1 and AP2), and specific for the targeted gene on the other side. A 5' and a 3' 20 fragment that overlap are thus produced for each gene. The complete gene coding sequence can be reconstituted taking advantage of a unique restriction site, if available, in the overlapping region. Specific details of this procedure as it was used to isolate AtMSH3 and AtMSH6 coding regions, are as follows.

Isolation of AIMSH3 complete coding sequence

25

From the sequence of clone S5, primer 636 (SEQ ID NO:3) was designed:

636 TGCTAGTGCCTCTTGCAAGCTCAT.

Primer AP1 (SEQ ID NO:4) is complementary to a portion of an adaptor sequence which had been ligated to the 5' and 3' ends of *Arabidopsis* cDNA:

API CCATCCTAATACGACTCACTATAGGGC.

PCR performed on the ligated cDNA with primers 636 and AP1 for the 5' RACE PCR was followed by a second round of amplification with the nested primers AP2 (SEQ ID NO:5) and S525 (SEQ ID NO:6)

AP2 ACTCACTATAGGGCTCGAGCGGC

S525 AGGTTCTGATTATGTGTGACGCTTTACTTA

35 (the latter was also designed to correspond to a part of the sequence of clone S5) and produced a 2720bp DNA fragment. Figure 1 provides a diagrammatic representation of the primer sequences used to isolate AtMSH3. Another primer (S51, SEQ ID NO:7)

S51 GGATCGGGTACTGGGTTTTGAGTGTGAGG

was designed closer to the 5' border and permitted the determination of 99bp upstream to the ATG initiation codon. For the 3' RACE PCR, a first PCR reaction was performed with primers AP1 and 635 (SEQ ID NO:8).

- GCACGTGCTTGATGGTGTTTTCAC
- 5 followed by a second round of amplification, using the nested primers AP2 and S523 (SEQ ID NO:9)
- S523 TCAGACAGTATCCAGCATGGCAGAAGTA

 which produced a DNA fragment of 890bp. Both DNA fragments were subcloned into pGEM-T and sequenced. Since PCR amplification using the Expand Long Template PCR system (Boehringer-Mannheim) produced errors in the sequence, new oligonucleotides were designed to isolate those sequences again by PCR, but with the high fidelity DNA polymerase Pfu. PCR with primers 1S5 (SEQ ID NO:10) and S53 (SEQ ID NO:11)
 - 1S5 ATCCCGGGATGGGCAAGCAAAAGCAGCAGACGA
 - S53 GACAAAGAGCGAAATGAGGCCCCTTGG
- amplified the 1244bp fragment clone 52 (SEQ ID NO:12, cloned into pUC18/Sma1). PCR with primers S52 (SEQ ID NO:13) and 2S5 (SEQ ID NO:14)
 - 2S5 ATCCCGGGTCAAAATGAACAAGTTGGTTTTAGTC
 - S52 GCCACATCTGACTGTTCAAGCCCTCGC
- amplified the 2104bp clone 13 (SEQ ID NO:15, cloned into pUC18/Sma1). The complete 20 coding sequence of the AtMSH3 gene was reconstructed in pUC18 by ligating the 5' half of AtMSH3 (clone 52) to the 3' half of AtMSH3 (clone 13) after digesting with BamH1 which has a unique cleavage site in the overlapping region of both clones. This manipulation yielded plasmid pPF26. The SmaI fragment from pPF26 contains the complete AtMSH3 coding sequence. The remaining primers referred to in Figure 1 are as follows:
 - S51 GGATCGGGTACTGGGTTTTGAGTGTGAGG (SEQ ID NO:16)
 - S525 AGGTTCTGATTATGTGTGACGCTTTACTTA (SEQ ID NO:17)

Figures 2 and 3 provide plasmid maps of clones 52 and 13 respectively, showing restriction enzyme cleavage sites. The complete AtMSH3 coding sequence (SEQ ID NO:18) 30 is 3246bp long and is shown in Figure 4 together with the deduced sequence (SEQ ID NO:19) of the encoded polypeptide. AtMSH3 is clearly homologous to the yeast and mouse MSH3 genes. A sequence alignment of polypeptides encoded by AtMSH3 and that encoded by Saccharomyces cerevisiae MSH3 is set out in Figure 5.

Isolation of the AtMSH6 complete coding sequence and genomic sequences

- The same procedure allowed isolation of the *AtMSH6* cDNA. Figure 6 provides a diagrammatic representation of the primer sequences used to isolate *AtMSH6*. For the 5' RACE PCR, primers 638 (SEQ ID NO:20) and AP1 (SEQ ID NO:4)
 - 638 TCTCTACCAGGTGACGAAAAACCG
 allowed the amplification of a 2889 DNA fragment. Primer S81 (SEQ ID NO:21)

CGTCGCCTTTAGCATCCCCTTCCTTCAC S81

helped define the 142bp upstream to the ATG initiation codon. On the 3' side, RACE PCR was initially performed with primers S823 (SEQ ID NO:22) and AP1 (SEQ ID NO:4) ,

GCTTGGCGCATCTAATAGAATCATGACAGG S823

5 and then with the nested primers 637 (SEQ ID NO:23) and AP2 (SEQ ID NO:5).

GACAGCGTCAGTTCTTCAGAATGC 637

to produce a 774bp DNA fragment. As for AtMSH3, those fragments were cloned and sequenced. Re-isolation of the DNA sequence using the high fidelity Pfu polymerase and newly designed primers 1S8 (SEQ ID NO:24) and S83 (SEQ ID NO:25) (for the 5' side) led 10 to a 2182 bp DNA fragment identified as clone 43 (SEQ ID NO:26, cloned in pUC18/Sma1), and a 1379bp clone identified as clone 62 (SEQ ID NO:27, also cloned in pUC18/Sma1).

ATCCCGGGATGCAGCGCCAGAGATCGATTTTGT 1S8 **2S8**

ATCCCGGGTTATTTGGGAACACAGTAAGAGGATT (SEQ ID

NO:28) 15

GCGTTCGATCATCAGCCTCTGTGTTGC (SEQ ID NO:29) S82

CGCTATCTATGGCTGCTTCGAATTGAG S83

Figures 7 and 8 provide plasmid maps of clones 43 and 62 respectively, showing restriction enzyme cleavage sites. Clones 43 and 62 were digested by the Xmn1 restriction enzyme for 20 which a unique site is present in their overlapping region and then ligated. The complete AtMSH6 coding sequence (SEQ ID NO:30) is 3330bp long and is shown in Figure 9 together with the deduced sequence (SEQ ID NO:31) of the encoded polypeptide. AtMSH6 is clearly homologous to the yeast and mouse MSH6genes. A sequence alignment of polypeptides encoded by AtMSH6 and that encoded by Saccharomyces cerevisiae MSH6 is 25 set out in Figure 10.

An AtMSH6 genomic sequence was also isolated from a genomic DNA library constituted after partial Sau3AI digestion of DNA from the Arabidopsis cell suspension. 8062bp were sequenced that covered the At.MSH6 gene and show colinearity with the cDNA. 16 introns are found scattered along the gene. The complete genomic sequence 30 (SEO ID NO:98) is shown in Figure 11.

A measure of somatic variation in MMR deficient plants Example 2.

Constructs

Constructs with antisense AtMSH3 or antisense AtMSH6 or both AtMSH3/AtMSH6 under the control of a single 35S promoter have been inserted into the binary vector 35 pPZP121 (Hajdukiewicz et al., Plant Mol. Biol. 23, 793-799) between the right and left borders of the T-DNA. The pPZP121 plasmid confers chloramphenicol resistance to Escherichia coli or Agrobacterium tumefaciens bacteria. The aacCl gene is carried by the T-DNA and allows selection of transformed plant cells on gentamycin (Hajdukiewicz et al., Plant Mol. Biol. 25, 989-994). For the purpose of expressing antisense constructs. a 35S promoter/terminator cassette with a polylinker was introduced into pPZP121. The 3' ends of the considered genes have been chosen since this region seems more efficient for antisense inhibition. For AtMSH3 this corresponds to clone 13 (2104bp), for AtMSH6 this corresponds to clone 62 (1379bp). Clone 13 comprises 2104bp of the 3' region that were cut off the pUC18 vector by Sal1/Sst1 restriction, blunted with T4 DNA polymerase and ligated into the T4 DNA polymerase blunted BamHI site of pPZP121/35S, creating clone pPF13. The same procedure was followed for the 3' region of AtMSH6 clone 62 (1379bp) thus creating plasmid pPF14. For the double constructs, the 3' region (from clone 62) of AtMSH6 was introduced ahead of the AtMSH3 region into pPF13 creating pCW186 and reciprocally, the 3' region of AtMSH3 (from clone 13) was introduced ahead of AtMSH6 into pPF14, creating pCW187.

These constructs were introduced into the Arabidopsis cells (as described below) of wildtype Columbia and of the Columbia tester line.

An alternative strategy to antisense inhibition of AtMSH6 comes from experiments of Marra et al. (1998, Proc. Natl. Acad. Sci USA 95, 8568-8573) who show that overexpression of functional MSH3 results in depletion of MSH6 protein in human cells. This depletion may generate a mismatch repair mutant phenotype.

For the purpose of overexpressing functional AtMSH3 protein in plant cells, the complete MSH3 coding region was excised from pPF26 (example 1) by digestion with 20 SmaI, and was inserted into the SmaI site of pCW164. The resulting construct was named pPF66. It contains a complete AtMSH3 gene under the control of the 35S promoter inside the left (LB) and right (RB) border of the T-DNA. This T-DNA also contains the hpt2 gene for gentamycin selection. Plasmid pPF66 was introduced into Arabidopsis cells as described below. One cell clone was selected which clearly overexpressed the AtMSH3 gene as shown by Northern analysis. Figures 12-16 provide plasmid maps of plasmids pPF13, pPF14, pCW186, pCW187 and pPF66, respectively.

Construction of tester construct

For the purpose of Forward Mutagenesis Assays, a tester construct was built containing the coding regions for nptII, codA, uidA. All three genes are driven by the 35S promoter and are terminated by the 35S terminator. This construct was obtained by introducing an EcoR1 fragment encoding the codA cassette (2.5kb) and a HindIII fragment encoding the uidA (GUS) cassette (2.4kb) into the pPZP111 vector (Hajdukiewicz et al.,1994, Plant Mol Biol 23: 793-799) which already contained the nptII expression cassette. This new plasmid was named pPF57. NptII is used to select for transformed plant cells. 35 GUS is used to analyse the degree of gene silencing in the construct (i.e. to identify cell lines in which the transgenes are expressed), and codA is used as a marker for forward mutagenesis (described below).

PCT/EP98/06977 17

The plasmid map of pPF57 is provided in Figure 17.

Plant cell transformation

The constructs are introduced into Agrobucterium by electroporation. Plant cells are then transformed by co-cultivation. A suspension culture of Arabidopsis thaliana cells that 5 has been established by Axelos et al. (1992, Plant Physiol. Biochem. 30, 1-6) may be used. One day old freshly subcultured cells are diluted five times into AT medium (Gamborg B5 medium, 30g/l sucrose, 200µg/l NAA). 10µl of saturated Agrobacterium containing the transforming T-DNA constructs are added to 10ml diluted cells in a 100ml erlenmeyer. The co-cultivation is agitated slowly (80rpm) for 2 days. The cells are then washed 3 times into 10 AT medium and finally resuspended in the same initial volume (10ml). The culture is agitated for 3 days to allow expression before plating on selection plates (AT/BactoAgar 8g/l+gentamycin 50µg/ml). Transformed individual calli are isolated 3 weeks later.

Tester Strain

The tester construct on plasmid pPF57 was introduced into Arabidopsis cells of 15 wildtype Columbia using the transformation protocol described above. Among 10 candidate transformants, one cell clone was shown (by Southern analysis) to have a unique T-DNA insertion. All three genes were shown to be functional in this cell line as indicated by resistance to kanamycin, blue staining in the presence of X-Glu (GUS), and sensitivity to 5-fluoro-cytosine (codA).

MMR altering genes (described above) were then introduced individually into the 20 tester line and transformed cells are used for analysis of both Microsatellite Instability and Forward Mutagenesis.

Microsatellite analysis

Microsatellites have been described in Arabidopsis (Bell and Ecker, 1994, Genomics 25 19. 137-144). The present Example is based on a study of instability of microsatellites that are polymorphic amongst different ecotypes. DNA is extracted from the transformed calli. Specific primers have been defined that are used to amplify the microsatellite sequence. One of the two primers is previously P32 labelled by T4 kinase. In case of a polymorphic variation, new PCR products appear that do not follow the expected pattern of migration on 30 a polyacrylamide gel. This is a commonly observed feature for MMR deficient cells in yeast or mammalian cells.

In particular, the present Example describes a study on microsatellites ca72 (CA18), nga172 (GA29), and ATHGENEA(A39), chosen because they belong to the types predominantly affected in human mismatch repair deficient tumors. The size of these 35 microsatellites is not conserved from one Arabidopsis ecotype to the other.

Arabidopsis cells which are transformed with an MMR altering gene (above) and control cells not expressing the MMR altering gene are allowed to form calli. DNA is 10

rapidly extracted from the calli and is analysed for microsatellite instability as described in detail by Bell and Ecker 1994. Genomics 19, 137-144. In summary, the relevant microsatellite is amplified by PCR using P32 labelled primers. The PCR products are separated on a DNA sequencing gel for size determination. Size differences between microsatellites from transformed and control cells not expressing the MMR altering gene in question indicate microsatellite instability as a result of MMR alteration.

The sequences of primers used for PCR amplification of microsatellites ca72 and nga172 are included in Table 1. PCR amplification of microsatellite ATHGENEA made use of a forward primer containing the sequence

ACCATGCATAGCTTAAACTTCTTG (SEQ ID NO:32)

and of a reverse primer containing the sequence

ACATAACCACAAATAGGGGTGC (SEQ ID NO:33).

The amplification for microsatellite ca72 revealed in Columbia control cells (with respect to the MMR altering gene) a 248 bp long PCR fragment instead of the published length of 124 bp. DNA sequencing verified this fragment as a CA₁₈ microsatellite.

Forward mutagenesis assay

Tester cells transformed with antisense AIMSH3 or antisense AtMSH6 or both AtMSH3/AIMSH6 are analysed for the stability of the codA gene. The functional codA gene confers to sensitivity to 5-fluoro-cytosine (5FC), whereas a gene inactivating mutation in codA will confer resistance to 5FC. The frequency of resistant cells is therefore a good indicator of somatic variation as a direct result of MMR alteration. Variants resistant to 5FC are first analysed for GUS activity. If GUS is inactive, 5FC resistance is assumed to be due to gene silencing (all three genes are under the 35S promoter). If GUS is active, 5FC resistance is assumed to be due to forward mutations that have inactivated codA. PCR is then performed on the putative codA mutant genes which is then sequenced to confirm the presence of forward mutations in codA.

Besides codA, other marker genes may also be used for the Forward Mutagenesis Assay such as the ALS gene (conferring sensitivity to valine or to sulfonylurea; Hervieu and Vaucheret, 1996, Mol. Gen. Genet. 251 220-224; Mazur et al. 1987, Plant Physiol. 85 1110-30 1117).

Example 3. Homeologous meiotic recombination in Arabidopsis thaliana

A. Construction of a meiocyte specific gene expression cassette comprising the DMC1 promoter and the NOS terminator

(i) The DMC1 promoter may be used as published by Klimyuk and Jones, 1997, 35 Plant J. 11.1-14). To obtain a more convenient alternative for gene cloning, a 3.3 Kb

long subfragment of the *DMC*1 promoter was obtained by PCR from genomic DNA of *Arabidopsis thaliana* (ssp. Landsberg erecta "Ler").

The PCR was done in three rounds:

Round One: A 3.7 Kb long product was obtained using the forward primer 5 DMCIN-A comprising the sequence

GAAGCGATATTGTTCGTG (SEQ ID NO:34)

and the reverse primer DMCIN-B comprising the sequence

AGATTGCGAGAACATTCC (SEQ ID NO:35).

The weak amplification product was then used as template for round two and three.

Round Two: A 3.1 Kb long product comprising the promoter and the 5' untranslated leader was obtained using forward primer DMCIN-1, which contained the sequence

acgcgtcgacTCAGCTATGAGATTACTCGTG (SEQ ID NO:36)

and introduced a Sall cloning site at the 5' end of the promoter fragment, and reverse primer DMCIN-2 which contained the sequence

gctctagaTTTCTCGCTCTAAGACTCTCT (SEQ ID NO:37)

and introduced a XbaI site at the 3' end of the PCR fragment.

Round Three: A 0.2 Kb long product comprising the first exon/intron of the *DMC*1 promoter was obtained using forward primer DMCIN-3, which contained the sequence

gctctagaGCTTCTCTTAAGTAAGTGATTGAT (SEQ ID NO:38)

and introduced a XbaI site at the 5' end of the PCR fragment, and reverse primer DMCIN-4, containing the sequence

tecceeggetegagagatetecatggTTTCTTCAGCTCTATGAATCC (SEQ ID NO:39) and introduced at the 3' end of the PCR product restriction sites for Ncol. BglII. Xhol and 25 Smal.

The products obtained in round Two and Three were digested with XbaI and subsequently ligated to reconstitute a 3.3 Kb long DMC1 promoter from which the first two in-frame ATG start codons were replaced with a unique restriction site for XbaI. This promoter can be cloned between the restriction sites for SalI and SmaI of p3264, which contains the SacI-EcoRI NOS terminator in pBIN19, to yield the entire expression cassette in pBIN19. This cassette contains the following cloning sites: NcoI, BgIII, XhoI. SmaI and (already present on p3264) KpnI and SacI.

(ii) Another strategy yielded the following convenient *DMC*1 promoter. A 1.8 kb DNA fragment comprising the 3' terminal part of the meiocyte specific *DMC*1 promoter was isolated by PCR from purified genomic DNA of *Arabidopsis thaliana* (ssp. Landsberg erecta "Ler"). The forward PCR primer (DMC1a) contained the sequence

acgcgtcgacGAATTCGCAAGTGGGG (SEQ ID NO:40)

and introduced a Sall cloning site at the 5' end of the promoter fragment. The reverse PCR primer (DMC1b) contained the sequence

tccatggagatctcccgggtacCGATTTGCTTCGAGGG (SEQ ID NO:41)

introducing a polylinker region at the 3' end of the promoter fragment. The PCR reaction was carried out with VENT DNA Polymerase (NEB) over 25 cycles using the following cycling protocol: 1 minute at 94°C, 1 minute at 54°C, 2 minutes at 72°C.

The PCR reaction yielded a blunt ended DNA fragment which was digested with restriction enzyme Sall and was cloned into the cleavage sites of restriction enzymes Sall and Smal in plasmid p2030, a pUC118 derivative containing the Sacl-EcoRI NOS terminator fragment of pBIN121. The cloning yielded plasmid p2031, containing the DMC1 promoter-polylinker-NOS terminator expression cassette depicted in Figure 18.

10 B. Construction of an MSH3 antisense gene under the control of the DMC1 promoter

A 2.1 kb DNA fragment encoding the carboxyterminal part of AtMSH3 was removed from the polylinker of clone 13 described in Example 1 after (i) digestion with KpnI, (ii) blunting of the DNA ends generated by KpnI and (iii) digestion with BamHI. The isolated fragment was then cloned in antisense orientation downstream of the DMC1 promoter in plasmid p2031, which had been digested with restriction enzymes SmaI and BgIII. This cloning yielded plasmid p2033 (Figure 18).

After digestion of p2033 with EcoRI, a 4.1 kb DNA fragment was recovered comprising the DMC1 promoter, the partial MSH3 cDNA in antisense orientation with respect to the promoter and the NOS terminator. This fragment was cloned into the EcoRI restriction site of plant transformation vector pNOS-Hyg-SCV to yield plasmid p3242 (Figure 18).

C. Construction of a combined MSH6/MSH3 antisense gene under the control of a single DMC1 promoter

A 3.1 kb fragment, encoding in antisense orientation the partial AtMSH6 and AtMSH3 sequences and the 35S terminator, was isolated from pCW186 by digestion with KpnI. The fragment was treated with Klenow enzyme to blunt both ends. It was then cloned into the SmaI site of plasmid p3243 (a pNOS-Hyg-SCV derivative, illustrated in Figure 19), which had been opened to delete the region between the SmaI sites. Clones containing the fragment in the antisense orientation with respect to the DMC1 promoter (described in 30 A(ii) above) were identified by diagnostic digestion with BamHI. The selected construct was named p3261.

Another practical way of cloning the double antisense gene is as follows. A 1 kb DNA fragment encoding the carboxyterminal part of AtMSH6 is isolated from clone 62 described in Example 1 after digestion of clone 62 plasmid DNA with BamHI, which cleaves in the 5' polylinker region flanking the partial cDNA, and with EcoRI, which cleaves within the cDNA. The isolated fragment is treated with Klenow enzyme to blunt both its ends and is cloned into the recipient plasmid p2033 or p3242. For the purpose of

cloning, the recipient plasmid may be cleaved with either AvaI or NcoI and can be blunted with Klenow enzyme to produce blunt acceptor ends for fragment cloning. This cloning yields two opposite orientations of cloned fragment DNA with respect to the DMC1 promoter. These can be identified by diagnostic digestion with restriction enzymes ScaI or XmnI in conjunction with SacI. The selected construct contains the DMC1 promoter, the combined partial cDNAs for AtMSH3 and AtMSH6 (both cloned in antisense orientation with respect to the DMC1 promoter) and the NOS terminator. If the recipient plasmid is p2033, the combined antisense gene under control the single DMC1 promoter is recovered from the vector after EcoRI digestion and is cloned into the EcoRI restriction site of pNOS-Hyg-SCV.

D. Construction of a full-length MSH3 sense gene under control of the DMC1 promoter for overexpression of functional MSH3 protein

Overexpression of MSH3 protein was shown in human cells (Marra et al., 1998, Proc. Natl. Acad. Sci. USA 95, 8568-8573) to complex all available MSH2 protein. This leaves MSH6 protein without its partner, leading to the degradation of MSH6 protein and eventually to a mismatch repair phenotype.

This phenomenon is exploited to increase homeologous meiotic recombination in Arabidopsis as an alternative to antisense inhibition of AtMSH6. For this purpose the full-length cDNA encoding AtMSH3 is isolated from plasmid pPF66 by digestion with SmaI and is cloned into the SmaI site of the DMC1 expression cassettes described in A(i).

E. Selection of Recombination markers on homeologous chromosomes of Arabidopsis thaliana subspecies Landsberg erecta (Ler), Columbia (Col) and C24, respectively

E(i). Visual recombination markers in Arabidopsis th. subspecies C24:

Agrobacterium mediated transformation with a T-DNA containing a 35S-GUS gene, inactivated by insertion of a 35S-Ac transposable element (Finnegan et al., 1993, Plant Mol. Biol. 22, 625-633), had yielded a C24 line in which the T-DNA construct was integrated into chromosome 2. Genetic and molecular analysis of this line shows that the Ac transposon had excised from its T-DNA locus thereby restoring GUS activity, but had re-inserted into the chromosome at a distance of 16.4 cM, where it stayed fixed (due to disablement of Ac) within the chlorina gene. Insertional inactivation of the chlorina gene caused a bleached phenotype in those plants that were homozygous for this mutation. Because of the two linked phenotypic markers, chlorina3A:Ac and GUS, this C24 line was used in crosses to wildtype Ler for analysis of meiotic homeologous recombination on chromosome 2 in conjunction with molecular recombination markers.

35 <u>E(ii)</u>. Visual recombination markers in Arabidopsis th. Ler:

The Ler line NW1 (obtained from NASC, Nottingham, UK) contains one recessive visual marker per chromosome. i.e. an-1 on Chr.1, py-1 on Chr.2, gl1-1 on Chr.3, cer2-1

on Chr.4, and msl-1 on Chr.5. This line is used in crosses to wildtype C24 which expresses an MMR altering gene for analysis of meiotic homeologous recombination on chromosomes 1-5 in conjunction with molecular recombination markers listed in Table 1.

Other Ler lines from NASC have several visual markers in close proximity to each other on the same chromosome. When these lines are used for hybrid production, analysis of homeologous meiotic recombination may make use entirely of visual recombination markers. Particularly suitable for crossing to C24 wildtype that is expressing a MMR altering gene are the following Ler lines:

NW22: relative markers are dis1 - (4 cM) - ga4 - (11 cM) - th1 on chromosome 1.

NW10: relevant markers are tz-201 - (5 cM) - cer3 on chromosome 5.

NW134, relevant markers are ttg - (4 cM) - ga3 on chromosome 5.

10

NW24 (abi3-1) and NW64 (gl1-1). When present in the same plant on chromosome 3, abi3-1 and gl1-1 are 13 cM apart. Since this marker combination is not available from NASC, we have combined these markers by crossing line NW24 to line NW64. The F1 offspring were allowed to self-fertilise and to produce F2 seeds. F2 Plants which carry both markers as homozygous traits on the same chromosome can be identified firstly, by germinating F2 seeds on germination medium containing selective concentrations of abscisic acid, and subsequently, by identifying among the abscisic acid resistant plants those individuals which show the glabra phenotype.

20 E(iii) Molecular recombination markers in Col, Ler and C24:

The genome of Arabidopsis thaliana is interspersed with unique base sequences arranged as simple tandem repeats. Allelic repeats can vary in length between different Arabidopsis subspecies and when amplified by PCR yield diagnostic DNA products of different length named Simple Sequence Length Polymorphisms (SSLPs). Many SSLPs have been genetically mapped and have been assigned to unique chromosome locations on the recombinant inbred map (Bell and Ecker, 1994, Genomics 19, 137-144; Lister and Deans lines, Weeds World 4i, May 1997).

In Table 1 are listed 28 mapped and established SSLPs between Ler and Col. A number of PCR primer pairs are described herein (SEQ ID NO:42 to SEQ ID NO:97) which also yielded SSLPs between C24 and Ler (19 SSLPs) or between C24 and Col (25 SSLPs), respectively. Polymorphic SSLPs can be used as molecular markers in the analysis of homeologous recombination between genomes from these subspecies.

The PCR reactions (25 µL) were carried out over 35 cycles (15 seconds at 94°C, 30 seconds at 55°C and 30 seconds at 72°C), with 0.25 U Taq DNA polymerase and 0.6 µg genomic DNA in reaction buffer containing 2 mM MgCl₂. PCR products were separated by agarose gel electrophoresis (4% ultra high resolution agarose) and visualised by ethidiumbromide staining. The results from the PCR experiments are summarised in

Table 1, which also shows the sequence of PCR primers, primer annealing temperature (Tm), PCR product length and chromosome location of SSLP (with respect to the RI map of May 1997, Weeds World 4i).

F. Production of hybrid plants

C24 plants heterozygous for chlorina3A.Ac/GUS are crossed as male to emasculated wildtype Ler to produce Ler/C24(chlorina3A, GUS) hybrid seeds.

Due to the heterozygosity of the C24 parent, only 50 % of hybrid plants have inherited the chlorina3A:Ac/GUS locus. The remaining 50% of hybrid plants are wildtype with respect to chlorina3A:Ac/GUS. Since the mutant locus is linked to a kanamycin resistance gene (contained on the same T-DNA as GUS) mutant plants can be pre-selected by germinating hybrid seeds on germination medium containing 50 mg/L kanamycin.

Ler plants homozygous for the five chromosome markers are male sterile (msl-1) and are crossed without emasculation to wildtype C24 to produce Ler(an-1, py-1, gll-1, cer2-1, msl-1)/C24 hybrid seeds.

Other Ler plants, which are male fertile, are crossed after emasculation of the female parent to produce Ler/C24 hybrid seeds.

G. Introduction of MSH3 and MSH6/3 antisense genes into Arabidopsis and analysis of meiotic homeologous recombination

(i) Transformation of hybrid plants and analysis of homeologous meiotic recombination

The plant transformation vectors comprising the antisense genes described in (B) and (C) above are introduced into Agrobacterium tumefaciens strain AGL1 (Lazo et al., 1991, Bio/Technology 9, 963-967) by electroporation. Recombinant Agrobacterium clones are selected on LB medium containing 50 mg/L rifampicin and 100 mg/L carbenicillin. Selected clones are used to infect roots of Arabidopsis hybrid plants (described in (F) above) using the root transformation protocol of Valvekens et al. (1988, PNAS 85, 5536-5540) except that shoot and root inducing media contain hygromycin (10 mg/L) instead of kanamycin.

Plants regenerated from roots of hybrid plants are genetic clones of root donating plants and therefore are again genetic hybrids of two Arabidopsis subspecies described in 30 (F). However, in contrast to the root donating plants, the regenerated hybrid plants also contain the introduced transgene and the co-introduced hygromycin resistance gene with the latter allowing these plants to grow on hygromycin containing culture medium.

Hygromycin resistant plants are then allowed to enter the reproductive phase and to produce gametes by meiotic divisions of microspore and megaspore mothercells. At meiosis, the *DMC*1 promoter is activated and can direct the expression of antisense genes described in (B) and (C) above, leading to decreased *MSH*6 and/or *MSH*3 gene

expression. This in turn depletes the gamete mothercells of MSH6 and/or MSH3 protein, thus causing alteration of MMR during meiotic divisions and increasing the recombination frequency between homeologous chromosomes.

Transgenic plants are then allowed to self-fertilise and to produce seeds. These seeds (F2 seeds with respect to hybrid production), and the plants derived therefrom, carry the homeologous recombination events which can be identified by using the visual and molecular recombination markers described in (E) above.

In case of homeologous recombination between chromosomes of Ler and C24(chlorina3A:Ac, GUS), the analysis concentrates on chromosome 2 by selecting plants showing the visual phenotypic marker chlorina. This marker thus serves as a reference point as it indicates that respective chromosomes 2 originate from C24. Other markers, such as GUS or molecular markers, on chromosome 2 may then be used to identify chromosomal regions which are derived from the Ler chromosome as a result of homeologous recombination. F2 plants of control transformants not expressing the antisense gene(s) can be analysed in parallel and the results can be used for comparison to homeologous recombination results obtained in antisense plants.

(ii) <u>Transformation of C24 wildtype</u>, hybrid plant production and analysis of homeologous meiotic recombination

Introduction of MMR altering genes into wildtype C24 is done using the root transformation protocol as described in G(i) for transformation of hybrid plants. Transformed plants are selected by resistance to either 10 mg/L hygromycin (in case of transformation with T-DNA's derived from pNOS-Hyg-SCV) or to 50 mg/L kanamycin (in case of transformation with T-DNA's derived from pBIN19).

Transgenic plants are then allowed to self-fertilise and to produce seeds (T1 seeds).

Segregation of the antibiotic resistance gene in the T1 population then indicates the number of transgene loci. Lines with a single transgene locus (indicated by a 3:1 ratio of resistant:sensitive plants) are selected and are bred to homozygosity. This is done by collecting selfed seeds (T2) from T1 plants and subsequent testing of at least four independent T2 seed populations for segregation of the antibiotic resistance gene. T2 populations which do not segregate the antibiotic resistance gene are assumed to be homozygous for both the resistance gene and the linked MMR altering gene.

C24 plants homozygous for the MMR altering gene are then crossed to Ler lines homozygous for recessive visual markers (see E(ii)) to produce C24/Ler hybrid plants as described in (F). These F1 hybrids are then allowed to enter the reproductive phase and to produce gametes by meiotic division of microspore and megaspore mothercells. At meiosis, the DMC 1 promoter is activated and can direct the expression of antisense or sense genes described in (B), (C) and (D) above, leading to decreased MSH6 and/or MSH3 gene expression. This in turn depletes the gamete mothercells of MSH6 and/or MSH3

protein, thus causing alteration of MMR during meiotic divisions and increasing the recombination frequency between the homeologous chromosomes of C24 and Ler. Recombination events are then scored in the F2 generation.

For recombination analysis, the hybrid plants are allowed to self-fertilise and to produce F2 seeds. F2 plants are then preselected for a first visual marker. Since this marker is recessive, its visual presence indicates homozygosity for Ler DNA at the relevant locus. Those F2 plants which show this first visual marker are then analysed for the presence or absence of a second visual marker which in the Ler parent is closely linked to the first marker. Absence of the second visual marker indicates recombination between the relevant C24 and Ler chromosomes between the first and second marker. The frequency of recombination in transgenic hybrids is compared to the recombination frequency in control hybrids not expressing the MMR altering gene.

Examples of recombination analysis are the following.

The Ler line NW22(dis1. ga4. th1) is used for crosses to transformedC24.

F2 plants are preselected first for thiamine requirement (th1) and then are further analysed for re-appearance of wildtype height (loss of ga4) and/or re-appearance of normal trichomes (loss of dis1) as a result of recombination.

The Ler line NW10(tz-201, cer3) is used for crosses to transformedC24.

F2 plants are then preselected first for thiazole requirement (12) and then are further 20 analysed for re-appearance of normal, i.e. non-shiny stems (loss of cer3) as a result of recombination.

The Ler line NW134 (ttg, ga3) is used for crosses to transformed C24. F2 plants are first preselected for dwarfish appearance (ga3) and are then analysed for re-appearance of trichomes (loss of ttg) as a result of recombination.

Ler plants homozygous for abi3-1 and gl1-1 are used for crosses to transformed C24. F2 plants are first preselected for their ability to germinate in the presence of abscisic acid and are then analysed for re-appearance of trichomes on the leaves (loss of gl1-1) as a result of recombination.

In the case of homeologous recombination between transformed C24 and the Ler line NW1 (an-1, py-1, gll-1, cer2-1, msl-1), recombination analysis is similar the one described above, except that the second marker is not a visual marker but has to be a molecular marker. This is because the Ler parent carries only one visual marker per chromosome.

Chromosome RI Map Position	=	TABLE 1: SS	SSLP Markers in Arabidopsis thaliana Subspecies	anana	nosbecies		
	Aap	PCR Primer Pair	Primer Sequence	Tm (°C)	length/COL	length/LER	length/C24
C:7		ATEAT! F	GCCACTGCGTGAATGATATG	57.8	172	162	162
		ATEAT! R	CGAACAGCCAACATTAATTCCC	58.2			
1 9.3		NGA63 F	AACCAAGGCACAGAAGCG	57.3	=	68	120
		NGA63 R	ACCCAAGTGATCGCCACC	59.6			
1 40.1		NGA248 F	TACCGAACCAAAACACAAAGG	56.1	143	129	no amplific.
		NGA248 R	TCTGTATCTCGGTGAATTCTCC	58.2			
1 81.2		NGA128 F	GGTCTGTTGATGTCGTAAGTCG	60.1	180	0 6 1	no amplific.
		NGA128 R	ATCTTGAAACCTTTAGGGAGGG	58.2			
1 81.2	~:	NGA280 F	CTGATCTCACGGACAATAGTGC	60.1	105	85	85
		NGA280 R	GGCTCCATAAAAAGTGCACC	57.8			
111.4	4.	NGA111 F	CTCCAGTTGGAAGCTAAAGGG	99	128	162	170
		NGA111 R	TGTTTTTAGGACAAATGGCG	70			
[] ca.	ca. 7.5	NGA168 F	CCTTCACATCCAAAACCCAC	57.8	213	217	208
		NGA 168 R	GCACATACCCACAACCAGAA	57.8			

	97 55	13C11261	CGCTACGCTTTTCGGTAAAG	57.8	161	661	961
	ca. 40		GCACAGTCCAAGTCACAACC	59.9			
	62.2	NGA361L	AAAGAGATGAGAATTTGGÁC	51.7	114	120	114
		NGA361R	ACATATCAATATATTAAAGTAGC	49.5			
	73	NGA168 F	TCGTCTACTGCACTGCCG	59.6	151	135	135
		NGA168 R	GAGGACATGTATAGGAGCCTCG	6.19			
	ca. 77	AthBIO2 L	TGACCTCCTCCATGGAG	59.9	141	209	139
		AthBIO2 R	TTAACAGAACCCAAAGCTTTC	54.5			
	ca. 83	AthUBIQUE L	AGGCAAATGTCCATTTCATTG	54.1	146	148	148
		AthUBIQUE R	ACGACATGCAGATTTCTCC	57.8			
	3.4	NGA172 F	AGCTGCTTCCTTATAGCGTCC	09	162	136	140
		NGA172 R	CATCCGAATGCCATTGTTC	55.4			
=	12.8	NGA126 F	GAAAAACGCTACTTTCGTGG	56.1	119	147	по атрії пс.
		NGA126 R	CAAGAGCAATATCAAGAGCAGC	58.2			
III	17.5	NGA162 F	CATGCAATTTGCATCTGAGG	55.8	107	68	no amplific.
		NGA162 R	CTCTGTCACTCTTTTCCTCTGG	1.09			

	81.8	NGA6 F	TGGATTTCTTCCTCTTCAC	56.1	143	123	143
		NGA6 R	ATGGAGAGCTTACACTGATC	56.1			
2	19.8	NGA12 F	AATGTTGTCCTCCCTCCTC	59.9	247	234	220
		NGA12 R	TGATGCTCTGAAACAAGAGC	58.2			
<u>>1</u>	24.1	NGA8 F	GAGGCCAAATCTTTATTTCGG	56.1	154	861	190
		NGA8 R	TGGCTTTCGTTTATAAACATCC	54.5			
<u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>	102	NGA1107 L	GCGAAAAACAAAAAATCCA	50.2	150	140	140
		NGA1107 R	CGACGAATCGACAGAATTAGG	58			
				_			
>	11.8	NGA225 F	GAAATCCAAATCCCAGAGAGG	58	611	189	611
		NGA225 R	TCTCCCCACTAGTTTTGTGTCC	1.09			
>	16.7	NGA249 F	TACCGTCAATTTCATCGCC	55.4	125	115	115
		NGA249 R	GGATCCCTAACTGTAAAATCCC	58.2			
>	19.9	CA72 F	AATCCCAGTAACCAAACACACA	56.3	124	110	110
		CA72 R	CCCAGTCTAACCACGACCAC	61.9			
>	20	NGA151 F	GTTTTGGGAAGTTTTGCTGG	55.8	150	120	130
		NGA151 R	CAGTCTAAAAGCGAGAGTATGATG	58.6			

						.61	(1/2,1
>	24	NGA106 F	GTTATGGAGITICTAGGGCACG	60.1	157	123	08:1
		NGA 106 R	TGCCCCATTITGTTCTTCTC	55.8			
					. 1	001	133
>	37.8	NGA139 F	AGAGCTACCAGATCCGATGG	59.9	174	132	132
		NGA139 R	GGTTTCGTTTCACTATCCAGG	55.8			
							000
>	50	NGA76 F	GGAGAAATGTCACTCTCCACC	1.09	231	> 250	300
		NGA76 R	AGGCATGGGAGACATTTACG	57.8			
>	61.1	ATHSO191 L	CTCCACCAATCATGCAAATG	55.8	148	156	146
		ATHSO191 R	TGATGTTGATGGAGATGGTCA	53.7			
							0.50
>	81.7	NGA129 F	TCAGGAGGAACTAAAGTGAGGG	60.1	177	179	7/1
		NGA 129 R	CACACTGAAGATGGTCTTGAGG	1.09			

CLAIMS

- 1. An isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide functionally involved in the DNA mismatch repair system of a plant.
- 5 2. A DNA molecule according to claim 1 wherein said polypeptide is homologous to a mismatch repair polypeptide of a yeast or of a human.
 - 3. A DNA molecule according to claim 1 wherein said polypeptide is homologous to AtMSH3 (SEQ ID NO: 19) or to AtMSH6 (SEQ ID NO: 31).
- 4. An isolated and purified polypeptide functionally involved in the DNA 10 mismatch repair system of a plant.
 - 5. A polypeptide according to claim 4 which is homologous to a mismatch repair polypeptide of a yeast or of a human.
- 6. An isolated and purified polypeptide selected from the group consisting of a polypeptide encoded by the gene AtMSH3 (SEQ ID NO: 18), a polypeptide encoded by the gene AtMSH6 (SEQ ID NO:30), polypeptides homologous to a polypeptide encoded by the gene AtMSH3 (SEQ ID NO: 18) and polypeptides homologous to a polypeptide encoded by the gene AtMSH6 (SEQ ID NO:30).
- 7. An isolated and purified DNA molecule comprising a polynucleotide sequence selected from the group consisting of (i) a sequence encoding a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence; and (ii) a sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant.
- 8. A DNA molecule according to claim 7 comprising a polynucleotide sequence encoding a polynucleotide capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence.
- 9. A DNA molecule according to claim 8 wherein said polynucleotide is capable 30 of interfering with the expression of a plant polynucleotide sequence is a sense polynucleotide, an antisense polynucleotide or a ribozyme.
 - 10. A DNA molecule according to claim 7 comprising a polynucleotide sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant.

- 11. A DNA molecule according to claim 10 wherein said polypeptide is homologous to AtMSH3 (SEQ ID NO: 19) or to AtMSH6 (SEQ ID NO: 31).
- 12. A DNA molecule according to claim 10 further comprising a regulation element capable of causing overexpression of said polypeptide in a cell of said plant.
- 13. A chimeric gene comprising:

a DNA sequence selected from the group consisting of (i) a sequence encoding a polynucleotide capable of interfering with the expression of a plant polynucleotide sequence encoding a polypeptide which is homologous to a mismatch repair polypeptide of a yeast or of a human and thereby disabling said plant polynucleotide sequence, and (ii) a sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant; and

at least one regulation element capable of functioning in a plant cell.

- 14. A chimeric gene according to claim 13 wherein said regulation element is selected from constitutive, inducible, tissue type specific and cell type specific promoters.
- 15. A chimeric gene according to claim 13 comprising a DNA sequence encoding a polypeptide capable of disrupting the DNA mismatch repair system of a plant, wherein said regulation element is capable of causing overexpression of said polypeptide in a cell of said plant.
- 16. A chimeric gene according to claim 13 wherein said regulation element is selected from the group consisting of 35S, NOS, PR1a, AoPR1 and DMC1.
 - 17. A plasmid or vector comprising a chimeric gene according to any one of claims 13-16.
 - 18. A plant cell stably transformed, transfected or electroporated with a plasmid or vector according to claim 17.
- 19. A plant comprising a cell according to claim 18.
 - 20. A plant according to claim 19 selected from plants of the families Brassicaceae, Poaceae, Solanaceae, Asteraceae, Malvaceae, Fabaceae, Linaceae, Canabinaceae, Dauaceae and Cucurbitaceae.
- 21. A process for at least partially inactivating a DNA mismatch repair system of a plant cell, comprising transforming or transfecting said plant cell with a DNA molecule according to any one of claims 1-3 or 7-12 and causing said DNA sequence to express said polynucleotide or said polypeptide.
 - 22. A process for at least partially inactivating a DNA mismatch repair system of a plant cell, comprising transforming or transfecting said plant cell with a chimeric gene

according to any one of claims 13-16 and causing said DNA sequence to express said polynucleotide or said polypeptide.

- 23. A process for at least partially inactivating a DNA mismatch repair system of a plant cell, comprising transforming or transfecting said plant cell with a plasmid or vector according to claim 17 and causing said DNA sequence to express said polynucleotide or said polypeptide.
- 24. A process for increasing genetic variation in a plant comprising obtaining a hybrid plant from a first plant and a second plant, or cells thereof, said first and second plants being genetically different; altering the mismatch repair system in said hybrid plant; permitting said hybrid plant to self-fertilise and produce offspring plants; and screening said offspring plants for plants in which homeologous recombination has occurred.
- 25. A process according to claim 24 wherein a first gene is incapacitated in said first plant, a second gene is incapacitated in said second plant, and said first and second genes are incapacitated in said hybrid plant thereby altering the mismatch repair system of said hybrid plant.
 - 25. A process according to claim 25 wherein said incapacitation of the mismatch repair system of said hybrid plant is reversible.
- 26. A process according to claim 24 wherein a new genetic linkage of a desired characteristic trait or of a gene which contributes to a desired characteristic trait is 20 observable in at least one of said offspring plants.
- 27. A process for obtaining a plant having a desired characteristic, comprising altering the mismatch repair system in a plant, cell or plurality of cells of a plant which does not have said desired characteristic, permitting mutations to persist in said cells to produce mutated plant cells, deriving plants from said mutated plant cells, and screening said plants for a plant having said desired characteristic.
- 28. A process according to claim 27 wherein said step of altering the mismatch repair system comprises introducing into said hybrid plant, plant, cell or cells a chimeric gene according to claim 13 and permitting the chimeric gene to express a polynucleotide which is capable of interfering with the expression of a plant polynucleotide sequence in a mismatch repair gene of the hybrid plant, plant, cell or cells, or a polypeptide capable of disrupting the DNA mismatch repair system of the hybrid plant, cell or cells.
 - 29. A process according to claim 28 comprising inactivating an MSH3 gene and/or an MSH6 gene of said plant.
- 30. A process according to claim 28 comprising inactivating an MSH3 gene and an MSH6 gene of said plant.

- 31. A process according to claim 27 comprising at least partially inactivating the mismatch repair system of said plant in a predetermined cell type or in a predetermined tissue of said plant.
- 32. A process according to claim 31 further comprising restoring mismatch repair 5 in said cell type or said tissue.
 - 33. An oligonucleotide capable of hybridising at 45°C under standard PCR conditions to a DNA molecule according to claim 1 with the proviso that said oligonucleotide is other than SEQ ID NO:1 or SEQ ID NO:2.
- 34. An oligonucleotide capable of hybridising at 45°C under standard PCR to conditions to the DNA of SEQ ID NO: 18 with the proviso that said oligonucleotide is other than SEQ ID NO:1 or SEQ ID NO:2.
 - 35. An oligonucleotide capable of hybridising at 45°C under standard PCR conditions to the DNA of SEQ ID NO:30 with the proviso that said oligonucleotide is other than SEQ ID NO:1 or SEQ ID NO:2.

Figure 1

Figure 2

Comments/References: 52= 3' side of S5 (AtMSH3) 1244bp in pUC18/Sma1

Figure 3

Comments/References: 13 = 3' side of S5 (AtMSH3) 2104bp in pUC18/Sma1

•
ø
검
Б
rd E

1	CCT	CCTAAGAAA	AAGC	GCGCGCGAAAATTGGCAACCCAAGTTCGCCATAGCCACGACCACGACCTTCCATTTCTCTTAAACGGAGGA	SAAAF	ATTGG	CAAC	CCAA	GTTC	GCCA	TAGC	CACG	ACCA	CGAC	CTTC	CATT	rcic	LTAA	ACGG.	AGGA	80
81 1	GAT	GATTACGAA		TAAAGCAATT	AATT	ATG	၁၅၅	AAG K	CAA	AAG K	CAG Q	CAG	ACG T	ATT	TCT	CGT '	TTC 7	TTC C	GCT A	CCC P	144 15
145 16	AAA K	CCC	AAA K	TCC S	CCG P	ACT T	CAC H	GAA E	CCG P	AAT N	CCG P	GTA V	GCC A	GAA	TCA	TCA	ACA (T	CCG O	CCA	cc6 P	204 35
205 36	AAG	ATA I			ACT	GTA V	TCC S	TTC	TCT S	CCT P	TCC S	AAG K	CGT R	AAG K	CTT	CTC	TCC (S	GAC C	CAC	CTC L	264 55
265 56	GCC A	GCC A	GCG A	TCA	CCC	AAA K	AAG K	CCT P	AAA K	CTT L	TCT	CCT P	CAC	ACT	CAA	AAC (CCA (GTA C	CCC	GAT D	324 75
325 76	CCC P	AAT N	TTA L	CAC H	CAA Q	aga R	TTT F	CTC L	CAG Q	AGA R	TTT F	CTG L	GAA E	CCC	TCG	CCG P	GAG (E	GAA 1	TAT	GTT V	384 95
385 96	000 6	GAA E	ACG T	TCA S	TCA S	TCG S		AAA K	TAC Y	ACA T	CCA P	TTG L	GAA E		CAA	GTG (GTG (GAG (E	CTA	AAG K	444 115
445 116	AGC S	A.A.G K	TAC Y	CCA P	GAT D	GTG V	GTT V	TTG L	ATG M	GTG V	GAA E		GGT G	TAC	AGG	TAC Y	AGA 3	TTC 1	TTC	GGA G	504 135
505 136	gaa E	GAC D	GCG A		ATC I	GCA A	GCA A	CGC R	GT'G V	TTG L	GGT G	ATT	TAC Y	GCT A	CAT H	ATG 0		CAC 7		TTC F	564 155
991 196	ATG M	ACG T	GCG A	AGT S	GTG V	CCA P	ACA T	TTT F	CGA R		AAT N				AGA	AGA (CTG (GTG P	AAT	GCA A	624 175
525 176	GGA	TAC Y	AAG K	ATT I	GGT G	GTA V	GTG V	AAG K	CAG Q	ACT			GCA A		ATT	AAG 7	TCC (S	CAT G		GCA	684 195
565 196	AAC N	CGG R	ACC	၁၅၁	CCT P	TTT F	TTC F	CGG R	GCA G	CTG I.	TCG S	GCG		TAT Y	ACC	AAA K	9 SCC 1	ACG C	CTT	GAA E	744 215
745 216	GCG A	GCT A	GAG E	GAT D	ATA I	AGT	GGT G	GGT G	TGT C	GGT	GGT	GAA E	GAA E	GG'F G	TTT	GGT	TCA (CAG P	AGT	AAT N	804 235
305 236	TTC	$\mathop{\mathrm{TTG}}_{\mathrm{L}}$	GTT V	TGT C	GTT V	GTG V	GAT D	GAG E	AGA R	GTT V	A.A.G K	TCG S	GAG E	ACA	TTA	, 299	TGT (C	GGT P	ATT	GAA E	864 255
365 256	ATG M	AGT S	TTT F	GAT D	GTT V	AGA R	GTC V	GGT G	GTT V	GTT V	၁၅၅	GTT V	GAA E	ATT I	TCG	ACA (GGT (GAA G	GTT	GTT V	924 275

د/ د						_ (1)	× inu	I (Conti	ບ 🗬	-				_		-	Æ		ı,	H	556
1824	AGG	ATG	GAA	TCT	GAC	CAA	AAG	ATA	၁၅၅	CTT	ეეე	CAG	ATT	CAA	AAG	999	909	CTT	TTA	ATT	1765
1764 555	GCT A	GAA E	ATG M	GTT V	GCA A	ATT I	TTC	GAG	ACA T	gcc A	AAA K	GCT A	ACT T	CGG R	CAT H	TTT F	ATC I	aga R	ACA T	ATA I	1705 536
1704 535	GGA	CGT R	CAA O	ATT I	GAT D	TCT S	TCA S	AGA R	TCT	ATG M	GCT	ACA T	${ t TTG}$	GTC V	TCA S	TCC S	CTC L	GTG V	CTC	TAT Y	1645 516
1644 515	TTT F	GAG E	CCT P	TCA S	GTA V	ATT I	GCA A	AGA R	GAG E	TCT	GGT G	GAA E	GAA E	GTT V	${ m TTG}$	GAG E	AGT S	AGC	CTC L	CAG Q	1585 496
1584 495	TCC	TCT S	AGT S	CAT H	TCT	GGA G	ATG M	TGC	GCT A	TCT	ATT I	GAG E	TCT S	GTT V	GCT A	GAT D	CTT L	CGG R	GCT A	TCT	1525 476
1524 475	ATA	$_{\rm L}^{\rm TTG}$	AAT	AGA R	GAT D	TGC C	CTA L	CCT P	CAT H	ACT T	GFG V	TGG W	CAC H	AGA R	$_{\mathbf{L}}^{\mathbf{CTT}}$	CTT L	AGG R	TCC S	GCT G	TAT Y	1465 456
1464 455	GTA	ACA T	CTT L	ACA T	CAC H	AAT N	ATG M	AAT N	CAT H	TTC F	TTA L	TCC S	9 299	TCT S	GAA E	TCG	GGA G	GAT D	TCA S	AAT N	1405 436
1404 435	AAT	AAA K	GTG V	GTT V	GAG E	${ m TTG}$	CAG Q	CAS	$\mathop{\mathtt{CTG}}_{\mathbf{L}}$	ACT T	AAT N	GCC A	TCA S	$_{\rm L}^{\rm cTC}$	ACT T	ATG M	GAG E	ACA T	AAC N	AGT S	1345 416
1344 415	TCA S	$_{ m L}^{ m TTG}$	TCT	CGC R	TTT F	TCA S	gcc A	9 999	CAA Q	TAC Y	CTT L	ATC	AGG R	gaa E	TTT F	GGA G	TTT F	CAG Q	A A A	CTC L	1285 396
1284 395	CAT H	TGC C	TTT F	ACG T	CTA L	GCC	CTC L	GCC A	CAA O	GTT V	ACT T	CTG L	CAT H	CCA P	ATG M	AAC N	ATG M	ATT I	ACA T	CAT H	1225 376
1224 375	GTT V	ACA T	${ m TTG}_{ m L}$	TGC	TCT	ATG M	GGA G	AAA K	GAA E	GCT A	GCT A	GAG E	CTG L	AAG K	ATG M	gaa E	AAA K	GAT D	GAT D	GAA E	1165 356
1164 355	TTA L	AAC	GGT G	GCA A	AGC S	ATC	AAA K	GAA E	TGT	TTA L	TCA S	ATT I	GTT V	GAG E	GAT D	GTA V	GCA	AAT N	GGT G	AAT N	1105 336
1104 335	AGC S	TTC F	TGT C	GAT D	CTG L	TCA S	GCC A	CG'F R	GAA E	GTG V	CGA R	GTT V	AAC N	TCA S	ACC T	CCT P	GGA G	GCT A	CAT M	GCA	1045 316
1044 315	GTG V	$_{\rm L}^{\rm rrg}$	TTT F	A.A.G K	GAG E	ACT T	CAA O	CAA Q	TCA S	$_{\rm L}^{\rm cTT}$	CCT P	CAG O	၁၅၅	$_{\rm L}^{\rm ctr}$	${f TTG}$	CTG L	GAG E	GCT A	CCA P	TCA S	985 296
984 295	TTG L	AGC S	TTG L	ATT I	GTG V	GCT A	GAG E	TTA L	GGA G	AGT S	AGA R	ATG M	${ m TTC}$	AAT N	GAT D	AAT N	TTC F	GAG E	GAA E	TAT Y	925 276

1884 595	1944 615	2004 635	2064 655	2124 675	2184 695	2244 715	2304 735	2364 755	2424 775	2484 795	2544 815	2604 835	2664 855	2724 875
æ	£-	£.	Ę⊶	်ာ	9	Ą:	AGT S	CAC H	TGT C	CAA Q	ATC I	ATA I	GGT G	GAA E
TCA S	GCT A	GCT A	TTT F	TTG L	AAG K	GCA A								
ATT I	GCG A	CTT L	TCA S	CAT H	ACC T	CTA L	TTC F	TTG L	GAC D	TTA L	ATT I	TCC	GAT D	CTA L
GTT V	GAA E	GAG E	GCT A	ACA T	AGC S	GCT A	AGT S	TGT C	GAT D	ATA I	CAA	ATT I	CTT L	TTT F
TCT	AAG K	CCT P	ATA I	ATC	AAT N	CTA L	AAG K	GAC D	GTG V	ACT T	TGC	TTA L	GTG V	ACC T
ATT I	AAT N	TTT F	TCG S	9 9	GTA V	GAG E	CTC L	CTG L	TTT F	GAG E	TAT Y	GCT A	CAC H	AGT
TTG L	CTA L	CAA Q	TCC	TCG S	A A A	GAT D	TTC F	GCA A	GAG E	CTG L	GAA E	GTT V	CTG L	AGA R ed)
A.A.A K	GCC	GAC D	GAT D	GTG V	616 V	177G 1.	AGT S	GCT A	CCC	GTA V	9 9	CAA	AAG K	G CAT GGC AG H G R (Continued)
AGA R	TCT S	AGC S	CTG L	CAA	TGG W		GAT D	$_{\rm L}^{\rm CTT}$	CGT R	CCT P	GAA E	CGT R	GCC A	CAT H
${f T}{f T}{f G}$	CTC L	TCC	AAG K	CTT L	AAT N	GCT A	TGG W	GCT A	GTC V	CAT H	GCA A	ATC I	TTC	ర్ధ 🌉
CTT	CTT L	ACT T	GAA E	TTT F	ATG H	GTA V	TCG S	CAA.	TAT Y	cgr R	CAT H	TAT Y	TCA S	ATC I
ACT T	AAA K	ATC I	AGG R	GAA E	CCT P	A'TA I	GCT A	GTT V	A.A.C.	GGT G	$_{\rm L}^{\rm rrg}$	TGC C	GCG A	AGT S
TCT S	GGA G	CTA L	ATC I	${ m TTG}$	GTC V	GAA E	CGA R	GCC	AAG K	TCT	ATT I	AGC S	CCA P	GAC D
CGA R	GCC A	ATA I	GTC V	AAT	AAG K	CCA P	A.A.C.	GC'F A	AAC	CAG Q	ACA T	AAG K	GTA V	TCA
GTG V	AAT N	GAC D	TTA L	CGA R	TCC S	CCC P	GTG V	A.A.G K	AGA R	ATA I	GAC D	GGA G	TTT F	GCT A
ACT	GAC D	CTC	GTT V	ATT I	GAT D	CAT H	ATT I	TTT E	TCT	AAC N	AAT N	GGA G	TCC S	GGT G
GCA A	GTT V	$_{\rm L}^{\rm TTG}$	GCA A	GCT A	GTT V	TAT Y	GCC A	GAT D	CTA L	ATA I	CCA P	ATG M	GGT G	ATG M
TCT	GTG V	GAC D	CAA	CTC	CCC	CGA R	CTT L	ACA T	ACT T	GAG E	GTC V	AAC	GTT V	200 8 - 1
CAA	GTT V	GGT G	CGC R	AAG K	CTG L	ATT I	CAT H	TAC Y	TCA S	GTT V	TTC F	CCT P	CAG Q	ACT T
ATG M	CCT	CGA R	GCT A	AAG K	GAG E	ACT T	gaa E	TAC Y	CTT L	CCA P	AAC N	GGA G	GCT A	TTC F
AGT S	TCC S	GTT V	GAA E	CGC R	ATA I	A.A.G K	ACT T	AGA R	TCC	GAA E	GAT D	ACC T	ATG M	GTT V
1825 576	1885 596	1945 616	2005 636	2065 656	2125 676	2185 696	2245 716	2305 736	2365 756	2425	2485 796	2545 816	2605 836	2665 856

2784 895	2844 915	2904 935	2964 955	3024 975	3084 995	3144	3204 1035	3264 1055	3324 1075	3397 1082	3458 5	3522 16
TTA L	TTA L	ATA I	ACA T	GTG V	CCA	, AGA R	GAA E	GAC D	A CTA	TGA TTTAATCTTAACATTATAGCAACTGCAAGGTCTTGATCATCTGTTAGTTGCG	CCG P	
ATA I	ACA T	GAA E	CTG L	CTT L	CCT P	GCA A	GAA E	GAG E	AGA R	TTAG	AAT N	AAA
GTT V	GCA A	CCT P	TAT Y	AAG K	ATA I	CGT R	GCA	GAA E	ATC I	TCTG	TCT	AAAA
CTT L	TAT Y	TAC Y	TCG	TAT Y	CAG Q	GTA V	0 0	TCT	AAA K	ATCA	GAT D	AAAA
TCG S	GCC A	CAT H	GTC V	CTA L	gcc A	GAG E	AGA R	CTC L	0 0	CTTG	ATG M	CCC GCA TAA AAAAAAAAAAAAAAAAAAAAAAAAAAAA
CGT R	ATT I	ACG T	CAT H	TAC Y	CTT L	GCT A	CCG P	GCT A	GCT A	AGGT	TAG AGAG ATG	AAAA ed)
TCT S	GCC	GTC V	TAC Y	ACC T	CAG Q	GAA E	GAA E	T'IT F	ATT I	rgca	AG A	AAAA inu
TCT	GTA V	TTT E	ACA T	GTG V	GCT A	TTG L	GAA E	ž Ž	AAG K	CAAC	AAT T	aaaaaaaaaaa (Continued)
TGT C	GGT G	CTT L	999 9	GAT D	GTT V	AAA K	CAT H	CTG L	TGG W	ATAG	GAG A E N	AAA 4 (6
ACC	GAC D	GTT V	GTT V	GAT D	A.A.G K	GCA A	GGA G	GAC D	GCT A	CATT	₽ E	TAA , I re
AGA R	CAC H	${ m TTG}$	TCT S	CAT H	TTT F	GCT A	GAA E	GCA A	CAT' H	rtaa(ACA AGA AAA T R K	GCA TAA PAA PAA PAA PAA PAA PAA PAA PAA PA
ATC	ACA T	TGT C	GGT G	GAT D	GGT G	ATG M	CCA P	TTT F	AAG K	4ATC	CA A	လ P
ATA I	AGC S	AGA R	CCA P	TAT Y	TTT F	TCA S	GAA E	${ m TTG} \ { m L}$	TTA L	TTT	ATA AI I	CCA P
CAC H	ACT T	A.A.G K	TTC F	AGT S	AGC S	ATT I	GGA G	GAC D	TTT E		AGT A' S I	TCT
TCA S	၁၅၅	GAA E	GGA G	၁၅၅	AGG R	GCC	ATG M	GGT G	GAG E	TTT F	ATT A(I S	TTT F
GCG A	AGA R	GCA A	AAC N	AAA K	AGC S	CGA R	CGC R	CTA L	TTC F	TCA S	TGT A'C	ATC I
GAA	GGA G	CTA L	AGT S	GAT D	TGC C	CGT R	ACA T	GCT A	GCA A	TGT C	ATG TC M	TAC Y
AGT	CTT	CTC L	ATC I	AAG K	CTT L	ATA I	AAT	TCG S	A A	ACT T		CAG Q
TTA	GAG E	CAT H	GAG E	CAG Q	GGT G	TGT C	AGA R	ATT I	TGG W	CCA P	TACTAACTT	TTG L
GAA	GAT	CAG	GCT	TTG L	CGT R	TCA	GAG	TCT	CCT P	AAA K	TAC	GTG V
2725 876	2785 896	2845 916	2905 936	2965 956	3025 976	3085 996	3145	3205 1036	3265 1056	3325	3398	3459 6

Figure 5

MOND, AT SA BORNERAR WENT STREET OF THE TANKER OF THE TANK	SHISC OF VESTINESS. SHISC OF VESTINESS. SHISC OF VESTINESS. SHISC OF VESTINESS. SHISC OF VESTINESS OF VESTINESS OF VERTICAL SACTOR OF VESTINESS OF VESTINESS OF VESTINESS OF VESTINESS OF VESTINESS OF VESTINESS. SHISC OF THE THE VESTINESS OF VESTINESS OF VESTINESS OF VESTINESS OF VESTINESS.	92		S C N R N R R N R R N R R N R R R R R R R	# 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NSB3_AL 590 BISVISBPVVVDMAGELDGALKKEŠAVRGDELDILITS-SDQPPELAEARQAVLVISEKDDSSINGPRKKEAIRADENDKELLOVSGIFELIRLP NSB3_SC 591 BFSBLNRLLSTTGLPBFFFHIRVSŠVEKKNSDKQVEDPPKLNNTOCSKGIIKIQRESVĀSQĒKREĻŠRIĒKVEKPVENĪADEVDYLI KVKNŠ	MSH)_AL 680 VDSKVEMMWYKVHSTKKTIÑYHPPEIVAGLDEBALATKHPAIVNHASYDSEPKRYKTOFRANOADAALOGGBEBTLSARKYVRPEPVDD MSH)_SC 686 OIKDLPDDWIKVINDKKYSRFTTPRTOKLTOK BEYYKDLBIKESELQYKERENTERKITCHBAOTOGILSBAATSCNYNYRPTPUMG	MSH) AL 775 CEPVEINIGSGRHPVLETIDGDNYVPHDTILHABGEYCQLITGPRHGGKSCYIROVALDGHAGYGSPVPABFAULUTRIGAHDDLHAG HSH) SC 781 GGALIAKNARWPIIES-DOVHYVPHDIHHSFENGCKHITGPRHGGKESKIROVALGTHAGTGSPVPAEKIRUSIFFHULTRIGAHDDLHAG	MSB3_AC 870 RSTELREDSRASHIRTGSSRSDVILDBLGRGDSPHDGVATAYALLARKRG-BVHTVARAPRASISKOPGSVGTVHVSKLTTOKOKGST HSB3_SC 873 DSTENVBHLDILHHUMKRSDLLHDBVGRODGHHOGIAISVALIKYFSELSDGPHTHFPHLOEIKSPLIRMKHWDVVRKOKTGE	msb3_at 964 OnddWtxbyrchyrchyrchyrcholmandlean branchard mangrachard mangrach ar 964 Ondwtxbrach branchard	MBB3_At 1059 AFEFLKHAMKURGKPTOFF MBB3_SC 1032
--	---	----	--	---	---	--	---	---	---	--	--

Figure 6

Figure 7

Comments/References: 43= 5' side of S8 (AtMSH6) 2182 bp in pUC18/Sma1

Figure 8

Comments/References: 62= 3' side of S8 (AtMSH6) 1379bp in pUC18/Sma1

80	153 4	213 24	273	333	393 84	104	51.	14	16	18	75	81	87	26
သသ	m	TCC	999 9	AGA R	CCG P	AAA K	GAT D	X AAA	GAA E	GCT A	GTA V	gaa E	AGA R	TTC
TCC	CAG	GTT 7 V	GAA (E	GTT V	AAG K	GTA V	AAT N	GGT G	GTA V	CGT R	CCT P	X X	AAT N	GTT V
TCT	s R R	TTG (AAG (R I	GAG (E	TTT F	TTT E	$\frac{\text{CTG}}{\text{L}}$	AAT N	TCA S	CCA P	GTT V	AAG K	gcc *	GAT D
CCAP	cAG	GGT 1 G 1	GTG A	GAT (GGA G	AAG K	CCG P	AAT N	AGA R	CGT R	AAG K	GAG E	GAT D	CCT P
5000	A ATG	AAG O	AAT O	GTC (TCT	CAT H	GTT V	rcc S	CTT L	ATG M	GAT D	GGA G	AGG R	CCA P
AGCCCTGAGGAGTATCGTTTCCGCCATTTCTACGACGCAAGGCGAAAATTTTTGGCGCCAATCTTTCCCCCC	TCTCTCAGCTCAAAACATCGTTTCTCTCTCTCTCTCTCTC	ACG A	TTT 1 F	TCT (CCG	ATG M	GTT V	CGT R	gaa E	999 G	GAG E	TGT	ATC I	ATA I
VAAAT	rtcc	ACT /	CGA .	A AA	CTG L	ATT	GAT D	T'I'T F	GCT A	CCA P	A.A.G K	GTT V	CGA R	CAC H
3GCG	ACAA	GCG 1	CCA O	TCG	GTC V	AAT N	GAN E	CAA	AGA R	ACA T	TTT F	CCG P	TCT	TTA L
3CAA(rctc/	GCG (GGA G	GTT V	CGT R	TCC	CGA R	CCT P	9 999	GAA E	ACT	GAT D	TCT	ACC T
GAC	rctc	ACC T		GCT	CGT R	TTC	AGC S	ATT I	AGT S	CCA P	ATG M	CAG Q	GAG E	AAG K
rcta(rcac'	CCC	AGC S	TTT F	CCG P	$_{\rm L}^{\rm crg}$	AGG R	GT'T V	TTC F	GGT G	GAA E	CTC L	CTT L	AGA R
CATT	rctc'	AAA K	299	CGT R	GTT V	TCC	GAG E	GAT D	AGT S	CCT P	GAT D	ATG M	TGG W	GAT D
)೨೨೨೨	TTTC'	CAA	၁၅၅	GTA V	AAG K	TCG S	GGA G	A.A.T.	TTT E	GTT V	GAG E	AAA K	gaa E	TAC
GTTT(ATCG	TTC	9 999	TCT S	GAG E	GCT A	TCT S	GCT A	GCT A	GAT D	CTG L	$_{\rm L}^{\rm crg}$	TTT F	CTT
IATC	PAAC	TTC	၁၅၅	GCT A	CCG P	GAT D	TGT C	AAG K	CAT H	၁၅၅	GTT V	AGG R	A'A'A	CCC
3GAG'	CTCA	TCT	AGC S	GAC D	CCA P	GST G	GAT D	ATG M	AAC N	GAT D	CGA R		ACC	GAT D
CTGA	TCAG	TTG L		ວອອ	ACT	GCC	CGA R		AGA R	GTA V			GGA G	GAT
AGCC	rctc	ATT	GCT A	AAA K	GAT D	TCC S	GAT D	CTA L	GAA E					CCT P
STTG		TCG	GAT		ACG T	GAA E	GAT D	TCT S	CAA	ATA I	CGC R			CGT
AAAAGTTG	TTTCGAAT	AGA '	299					TCA	ACT T	GAT D	TCT	TTG L	GTA	AGA R
-	81		214	274 45	334 65	394 85	454 105	514	574 145	634 165	694 185	754	814	874 245

993 284	1053 304	1113 324	1173 344	1233 364	1293 384	1353 404	1413 424	1473	1533 464	1593	1653 504	1713 524	1773 544	1833 564
GCA TCA CAA AAG CAA TAT TGG AGT GTT AAG AGT GAA TAT ATG GAC ATT A S Q K Q Y W S V K S E Y M D I	AAA GTG GGG AAA TTT TAT GAG CTG TAT GAG CTA GAT GCG GAA TTA GGT K V G K F Y E L Y E L D A E L G	GAC TGG AAG ATG ACT AGT GGT GTG GGA AAA TGC AGA CAG GTT GGT D W K M T M S G V G K C R Q V G	GGG ATA GAT GAG GCA GTG CAA AAG CTA TTA GCT CGT GGA TAT AAA GTT G I D E A V Q K L L A R G Y K V	CAG CTA GAA ACA TCT GAC CAA GCA AAA GCC AGA GGT GCT AAT ACT ATA Q L E T S D Q A K A R G A N T I	CTA GTT CAG GTA TTA ACT CCA TCA ACA GCA AGC GAG GGA AAC ATC GGG L V Q V L T P S T A S E G N I G	CAT CTT CTT GCT ATA AAA GAG ATC AAA ATG GAG CTA CAA AAG TGT TCA H L L A I K E I K M E L Q K C S	TTT GCT TTT GTT GAC TGT GCC TTG AGG TTT TGG GTT GGG TCC ATC	TCA TGT GCT CTT GGA GCG TTA TTG ATG CAG GTT TCT CCA AAG GAAS CAAA AAAAAAAAAAAAAAAAAAAAA	AGT AAA GGG CTA TCA AGA GAA GCA CAA AAG GCT CTA AGG AAA TAT ACG S K G L S R E A Q K A L R K Y T	ACG GCG GTA CAG TTG GCT CCA GTA CCA CAA GTA ATG GGG GAT ACA GAT T A V Q L A P V P Q V M G D T D	AGA AAT ATA ATA GAA TCT AAC GGA TAC TTT AAA GGT TCT TCT GAA TCA R N I I E S N G Y F K G S S E S	GTT GAT GGT CTA AAT GAA TGT GAT GTT GCC CTT AGT GCT CTT GGA GAG V D G L N E C D V A L S A L G E	CTG TCT AGG CTA AAG CTA GAA GAT GTA CTT AAG CAT GGG GAT ATT TTT L S R L K L E D V L K H G D I F	TAC AGG GGT TGT CTC AGA ATT GAT GGC CAG ACG ATG GTA AAT CTT GAG Y R G C L R I D G Q T M V N L E Figure 9 (Continued)
TG TCT M S	TTC TTT F F	GAG CTT E L	GAA AGT E S	ATC GAG I E	AGG AAG R K	GCC GTC	TAT GGA Y G	GAT GCA D A	TAT GAC Y D	GGG TCT G S	GGA GTT G V	TGT GCT C A	AAT CAT N H	CAA GTT Q V
AAG AAA ATG K K M	GTG CTT	CAC AAG O	ATC TCT (I S I	GGA CGA	ATT CCA	CCT GAT	ACT GTG T V	AGC GAT S D	GTG TTA V L	TTG ACA L T	GCT GCT	TGG AAC W N	CTA ATT L I	CCA TAC P Y
934 <i>1</i> 265	996 285	1054	1114 325	1174 345	1234 365	1294 385	1354 405	1414	1474	1534 465	1594 485	1654 505	1714 525	1774 545

1893 584	1953 604	2013 624	2073 644	2133 664	2193 684	2253 704	2313 724	2373 744	2433	2493 784	2553 804	2613 824	2673 844	2733 864
AAC	GAT D	AGT S	CGC R	GTG V	GAT D	AAA K	GCC A	ACT T	CAC H	GGA G	ACA T	. GGT G	ATT I	r cGT
GAT D	AAA K	GAA	GGA G	AAA K	ATT I	TGT C	GCA A	GAA E	ATT I	GCT A	AAA K	GAT D	AGC S	CTT
CTT	CTC	TCA S	CTC L	X X	GGA G	CTC L	GAA E	GCT A	GTC V	TCT	CAG Q	GCC	0 0	CTT L
TAT C	CCA (AAC 7	CTG (999	AGT S	AAA K	TTC F	AAC N	GAG E	CTC L	AAT N	GCA A	AGT S	ACT
AAA K	CAT H	GCA	AGA R	CTG L	AGA R	TAT Y	CAA Q	GAA E	TCT	AGT S	CAG Q	GTT	AGC S	TCA S
TAC Y	TGC	ACG T	GAA	C'IT L	TTC F	CTT L	TCT	GAT D	TGG W	GCA A	GAT D	GCA A	AGA R	AAA K
TTG	ATC	TTC F	T'TA L	GCT' A	999	TTG L	CTT L	ACA T	CAA	GCA A	ACA T	TTT F	AGA R	GGA G L nued
ACC 7	TGG 🛪	GAA	GAC D	CC.T P	A A A	AGT S	TTT F	GTG V	ACT T	ATC I	GCT A	CCA P	GCT A	G GGC GGA AA G G K (Continued)
2 500	AAT'	GAA (CCA P	TTG L	GTG V	ATG M	TTA L	GAT D	GCA A	GCA A	GAA E	CAT H	gag E	E & 6
TCA (AGG 1	GTT (CTT (GTG V	ATT I	ATG M	GAG E	CAA	AGA R	TTT F	TCA S	TGG W	၁၅၁	CCA AAC P N Figure
CCT T	T'fA 7 L F	GTA (AAA C	TCT	CAA	AA'T N	CTA L	AAC	GAA	TCT S	GAA E	CTA L	CTT L	CCA P Fig
GGT (CTC 1	GAT (CAC I) V	999	TCA S	ე ეეე	CAG Q	ATC I	AGA R	CCC P	GGA G	CTC L	GGA G
GGT (CGA C	CTT (CTC (TCA	TTT F	GAA E	AGC S	TAT Y	TTT E	CTG L	TTT F	CAA	ATA I	ACG T
GAT (AAG (CGG R	TAT	TCA	GCA A	A.A.G K	A A A	AAT N	CTT L	GTC V	ATT I	ATC I	GAT D	CTG L
TGT (GGT 1	AAA _	CAG .	CGA R	A AA	CAG O	GGA G	CCA P	gaa E	GAT D	GTT V	AAA K	AAT N	TTA L
AGC 1 S (ACT (AAT N) 299	GTT	GTT V	CTA L	GTA V	TTT F	ATC I	CTA L	CCT	CTT L	CCG P	TTG L
AAT A	•	ATC /	ACT (AGC S	CGA R	GCT		GAC	CTT	TGC C	AGG R	ATA I	GTT V	TCA S
AAC A	_	AGC 1		TCT		TTG		AGC S	ATA I	AGC S	gcc A	CCA P	CCT	CGG R
TTT P		GAA 1		AAG Y	AAA O	TTG	CCT	GAT D			ATG M	999 9	TTG L	CCT P.
ATA T I		GTA G			CTG A	CTG 3	CTT (ATA (ACC	AGC S	AAA K	CAA	CAT H
1834 <i>1</i> 565]						2194 685		2314 725	2374	2434 765	2494 785	2554 805	2614 825	2674 845

ATC ATG ACA 285 I M T 904	100	S AAT GCA ACT 2313 N A T 924	C GAT GGA TAC 2973 D G Y 944	ATG CTC TTT M L F	ACC TCG AAA T S K		GGA CTT CAA GTG 3213 G Br. Q V 1024	GCT GCT CAA GCC 3273 A A Q A 1044	GAG TTC TCA AGT 3333 E F S S 1064	CAC AAC AAT GCC 3393 H N N A 1084	ATC AAA TCC TCT 3453 I K S S 1104	TAA CACTATCTGAAGCTCGTTAAGTCTTTTGCCTCTCT 3521	CGA TTA AAA R L K	3606 28
	TCT GAT AGA S D R	GTT CTT CAG V L Q	AGT ACT TTC S T F	CAA TGT CGG Q C R	CCA CGT GTC P R V	CGT GGT TO R G C	AGC TAC G	TCA GGT G S G A	AGA TCT G R S E	GTC GCC CA	CAT GAG A H E I	crcgrraac	G TTT CCT F P	•
> ⊶	GGC GCA TO	GCG TCA G' A S V	GGA ACT A	AAA GTT C K v Q	TCT CAC C	CAA CCA C	CCT GAG P	ACA GCA 1	GAG CTA A	TCT CGA C	TTA TGG (ATCTGAAG	A AAA TTG K L	(Continued)
ပ	CTT	ACA T	AGA R	GAG E	GCG A	TAT Y	TGT C	GAA E	AGT S	ATT	T TGC 1 C I	AA CACTI	ATC AAA I K	o.
ı O	ACA AGG T R	ACT GAG T E	CTG GGC L G	CTG GTA L V	GAA TTC E F	TCT GAT S D	GGA GCT G A	GTG GTT V V	AAG TCA K S	GTG GGT V G	TTG TTT L F	ACA T	TTA TAT L Y	Figure
A	TTC	TGC C	GAA E	CAC	A.A.G K	AGA R	GAG E	C CAA	AAC T'FC N F	TCA TTG S L	GAC ACT D T	GCT ATG A M	TGC	AAA AAA K K
I F	ACT ATC T I	GTA GAA V E	CTT GAC L D	TTT CGT F R	CTC ACC L T	AAA TCA K S	TTA ACC. L T	CCA AAC P N	GGA AA E N	AAG TC K S	TAC GF Y D	ATG M	AAA AAA K K	AAA K
; >	GAT D	${ m TTG}$	ATC I	GTT V	CCT P	TTC F	CGT R	ATA I	ອ	CTC L	AT GAC D	A TAA	CTT A	AAA AAA K K
r A	CTC GTG L V	ACC TTT T F	CTA GTA L V	TAC TCG Y	TAC CAC Y H	TGC GCA C A	TTG TAC L Y	GCT GGA A G	TCA AT"F S I	GAC TGG D W	GAA GAT E D	CCC AAA P K	ATT CCT I P	AAA K
	TCC S	AGT	TCA	GCA	CAT H	GCT A	TTC	ATG M	AGA R	GAA	၁၅၅	GTT V	TTT	AAA AAA K K
GCA ACA A T	GAA ATC E I	GGA GAG G E				CAC ATG H M	CTA GTG L V	GCA CTC A L			CCC ATT P I	TAC TGT Y	G ATG M	AAA AP K
2734 (865 <i>i</i>	2794 (885					3094 985	31.54 1005	3214 1025	3274 1045	3334 1065	3394 1085	3454 1105	3522 1	3580 20

Figure 10

ARRENGE BE STATE OF THE STATE O	•	ATHERSON OF THE STANDARD OF TH	ARMEN		و با در	NO PR BN NA BE NN NN 15 NB NN NO NO NN NP NO NC NP NO NO BN 10 PN NN NN N	HERE OF THE PROPERTY OF THE PR
		20 00 00 00 00 00	S62 HIGGIPANSCOGOS STITANT VALUE VARIONINA STONE STATE			46 6	RIODELINAMOLINO VARTA DE POLICIARA LE RESPONDA DE LA CONTRA DE LA CONTRA DE LA CARTA DEL CONTRA DEL CARTA DE LA CARTA DEL CARTA DE LA CARTA DE LA CARTA DEL CA
		10 00 00 00 00 00 00 00 00 00 00 00 00 0	S62 WESTPHESCOCOS STEP NATURAL NAME OF THE SECOND S	648SVRSS	ر ر		SLACE OF THE FALL OF THE FALL OF THE FOREST OF THE FALL OF THE FAL
	ب د د د د د د د د د د د		. د د د	د در در	د	908	S GESTELZBOTERA SVEGNATED BEVILDERGROUSS FOOTANTA SUTERIOS LOFFANIA PER REGARIES EN ERELA BELLORAS. 4. EN STERVELA BENATED BEVILDER SOOTANTA SULUEN A THIOS LOFFANIA PER BESKREIS EN PER BELLORAS.
THE CONTRACT OF THE CONTRACT O			در بن بن بن	در بن بن بن	u	1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1	elforcestoro other proversolve in the companies of the co
	الاي در		فد در در در در	ند در بی بر			

	50
TTTTTTGGTTGCTAACAATAAAGGTATACGGTTTTATGTCATCAATATAA	100
CTATATATAAAAGAAATGAAAGATATATTGTTTTTTCATTTATCAAAC	150
AAAACAACAAGACTTTTTTTTTTTTTTTTTTTTTTTTTT	200
GATAAACGACATCGTTTAATCATTTCCCAATTTTACCCCTAAGTTTAACA	250
CCTAGAACCTTCTCCATCTTCGCAAGCACAGCCTGATTAGGAACAGCTTT	300
ACCATTCTCATATTCCTGAACTACCTGAGTCCTCTCATTGATCTGTTTCG	350
CCAAATCCGCTTGTGACATCTTCTTCTCCAATCTCGCTTTCTGTATCATC	400
AACCTCACCTCTGCTTTCACACGATCCATCGCCGCAGGCTCTGTTTCTTC	450
TTCCAGCTTCTTCGTGTTAATCACCGGAACCGCCGTAGATTTCCCCTTTT	500
TGTTCGAACCGGCATCGAATTTCTTAACCGTTTGAACCGCGACACCGTTT	550
CTCAGAGCTGCGTTAACCGCTTTCGGATCGCGTAGGTCTTGGCTCTTTTG	600
TTTTGATTTGTGGAGAACTACTGGTTCCCAGTCTTGTGTTACTGCTCCTG	650
GGTATCTGCTCGGCATCGTCGATGAATTGAGAGAAAGGAACAACGCGAAA	700
ATTTTATTAATCTGAGTTTTGAAATTGAGAAACGATGAAGATGAAGAATG	750
TTGTTGAGAGGATTGTGATATTATATATACGAAGATTGGTTTCTGGAGA	800
ATTCGATCATCTTTTCTCCATTTTCGTCTCTGGAACGTTCTTAGAGATG	850
ATTGACGACGTGTCATTATCTGATTTGCAGTTAACCAATGCTTTTTGGGT	900
TGGATTCGTGGTACACCATATTATCCGATTTGGCTCAATGGTTTTATATA	950
AATTTGGTTTTCGGTTCGGTTATGAGTTATCATTAAAATTAAGCTAACCA	1000
AAAATTTTCGTAAAATTTATTTCGGTTTCAATTCGGATCCCTTACTTCCA	1050
GAACCGAATTATTCGAAACCGGGGTTAGCCGAACCGAATACCAATGCCTG	1100
ATTGACTCGTTGGCTAGAAAGATCCAACGGTATACAATAATAGAACATAA	1150
ATCGGACGGTCATCAAAGCCTCAAAGAGTGAACAGTCAACAAAAAAAGTT	1200
GAGCCCTGAGGAGTATCGTTTCCGCCATTTCTACGACGCAAGGCGAAAAT	1250
TTTTGGCGCCAATCTTTCCCCCCTTTCGAATTCTCTCAGCTCAAAACATC	1300
GTTTCTCTCTCACTCTCTCACAATTCCAAAAAATGCAGCGCCAGAGAT	1350
CGATTTTGTCTTCCAAAAACCCACGGCGGCGACTACGAAGGGTTTG	1400
GTTTCCGGCGATGCTGCTAGCGGCGGGGGGGGCGGCAGCGAGACCACGATTT	1450
AATGTGAAGGAAGGGGATGCTAAAGGCGACGCTTCTGTACGTTTTGCTGT	1500
TTCGAAATCTGTCGATGAGGTTAGAGGAACGGATACTCCACCGGAGAAGG	1550
TTCCGCGTCGTGTCCTGCCGTCTGGATTTAAGCCGGCTGAATCCGCCGGT	1600
GATGCTTCGTCCCTGTTCTCCAATATTATGCATAAGTTTGTAAAAGTCGA	1650
TGATCGAGATTGTTCTGGAGAGAGGTACTAATCTTCGATTCTCTTAATTT	1700
TGTTATCTTTAGCTGGAAGAAGAAGATTCGTGTAATTTGTTGTATTCGTT	1750
GGAGAGATTCTGATTACTGCATTGGATCGTTGTTTACAAATTTTCAGGAG	1800
CCGAGAAGATGTTCCCGCTGAATGATTCATCTCTATGTATG	1850
ATGATGTTATTCCTCAATTTCGTTCCAATAATGGTAAAACTCAAGAAAGA	1900
AACCATGCTTTTAGTTTCAGTGGGAGAGCTGAACTTAGATCAGTAGAAGA	1950
TATAGGAGTAGATGGCGATGTTCCTGGTCCAGAAACACCAGGGATGCGTC	2000
CACGTGCTTCTCGCTTGAAGCGAGTTCTGGAGGATGAAATGACTTTTAAG	2050
GAGGATAAGGTTCCTGTATTGGACTCTAACAAAAGGCTGAAAATGCTCCA	2030
GGATCCGGTTTGTGGAGAGAAGAAGAAGTAAACGAAGGAACCAAATTTG	2100
NATEGETTGAGTETTETEGAATCAGGGATGCCAATAGAAGAEGTECTGAT	2200
GATCCCCTTTACGATAGAAAGACCTTACACATACCACCTGATGTTTTCAA	2200

TO THE CONTRACT OF THE CONCENTRAL ACACTGA A TATA	2250
GAAAATGTCTGCATCACAAAAGCAATATTGGAGTGTTAAGAGTGAATATA	2300
TGGACATTGTGCTTTTCTTTAAAGTGGTTAGTAACTATTAACTTATG	2350
CAATCCATTTCCTCAATGTGATTTGTTCACTTACATCTGTTTACGTTATG	2400
CTCTTCTCAGGGGAAATTTTATGAGCTGTATGAGCTAGATGCGGAATTAG	2450
GTCACAAGGAGCTTGACTGGAAGATGACCATGAGTGGTGTGGGAAAATGC	2500
AGACAGGTAAATTAGTTGAAACAACTGGCCTGCTTGAATTATTGTGTCTA	2550
TAAATTTTGACACCACCTTTTGTTTCAGGTTGGTATCTCTGAAAGTGGGA	2600
TAGATGAGGCAGTGCAAAAGCTATTAGCTCGTGGGTAAGGGAACCATCAT	2650
ACTTTATGGAATTCGTTTACTGCTACTTCGGCTAGGATTTAAGAAATGGA	2700
AATCACTTCAAGCATCATTAGTTAGGATCCTGAGAACTCAGGATGTTTTC	2750
TTATTCGTTATATAATAAGTCTTTTCATCAAGGAGTAACAAACA	2800
GCACAATATTTGTGTGCTCACTGGCAAGGCATATATACCCAGCTAACCTT	2850
TGCTAGTTCACTGTAGTAACAGTTACGGATAATATATGTTTACTTGTATG	
TGGTACCCTCATTTTGTCTCTCATGGAGGCTTTGAAGCCTTGTGTTGAAA	2900
CTGGATAGTTACATATGCTTCCAACAGAAACTAGCATGCAGATTCATATG	2950
CTTTCCTATTCTACTAATTATGTATTGACACACTCGTTGTTTCTTTTGAA	3000
AGATATAAAGTTGGACGAATCGAGCAGCTAGAAACATCTGACCAAGCAAA	3050
AGCCAGAGGTGCTAATACTGTAAGTTTTCTTGGATAGGTCAAGGAGAGTG	3100
TTGCAGACTGTTTTGATCATTTCTTTTTTTGTACATTACTTTCATGCTG	3150
TAATTAACTCAATGGCTATTCTGGTCTGATTATCAGATAATTCCAAGGAA	3200
GCTAGTTCAGGTATTAACTCCATCAACAGCAAGCGAGGGAAACATCGGGC	3250
CTGATGCCGTCCATCTTCTTGCTATAAAAGAGGTTTGTTATTTACTTATT	3300
TATCTTATCATGTTCAGTTCATCCAAGTCCTGAAAAATTACACTCTTCTT	3350
TACCAATCTTCCATCAAGCTGTGTAAAGGATTTGGAATTAGAAAATCATT	3400
ATTTGATGCTTTGTTTTATATGCAAGAGGTTCCCTTGAAAAGATCTGTTT	3450
AAGATTCTTTGCACTTGAAAAATTCAATCTTTTTAAGTGAATCCCCTACT	3500
TTCTTACAATGATCATAGTCTGCAATTGCATGTCAAGTAATATCATTCCT	3550
TGTTACTGCATCCCCCTCTTTCTTAATGACCATTGTCTATGTTGTGTTTG	3600
TCTCGTGTGCTGGAGAAAATGATAGCTGATCCAAGCTGTACATTATCATG	3650
ATTAAGTAGCTGCTCAGGAATTGCCTTTGGTTACATTGCCTAATGGTTTG	3700
ATGTCAATTTTTCTTCTGAATCTTTATTTTAGATCAAAATGGAGCTACAA	3750
AAGTGTTCAACTGTGTATGGATTTGCTTTTGTTGACTGTGCTGCCTTGAG	3800
GTTTTGGGTTGGGTCCATCAGCGATGATGCATCATGTGCTGCTCTTGGAG	3850
CGTTATTGATGCAGGTAAGCAAGTGTATTCTGTATCTTATGTGTACCATG	3900
TGACTTCCTGTGCATATATTTGGGTTGCAGGAACTAATTCTGAATCACCA	3950
TTTGGTATGTTTTTCCAGGTTTCTCCAAAGGAAGTGTTATATGACAGTA	4000
AAGGTAAACTGCTTGTATCGCCAGTTGTTTTGTTAAACAGAATTTAAGGT	4050
AAATGACACTGGTTAATTTAAAGTGCATACATGTTGAAATATTGCAGGGC	4100
TATCAAGAGAAGCACAAAAGGCTCTAAGGAAATATACGTTGACAGGTACC	4150
ATTTCAGTAGGCAAGCTAACTGACAATTTAACCGCTCACCGAATGATAGG	4200
TCTCTTAAACATTGCTAATGTAGATGATGTTTATGTTTCAATCTAATAGG	4250
GTCTACGGCGGTACAGTTGGCTCCAGTACCACAAGTAATGGGGGATACAG	4300
ATGCTGCTGGAGTTAGAAATATAATAGAATCTAACGGATACTTTAAAAGGT	4350
TCTTCTGAATCATGGAACTGTGCTGTTGATGGTCTAAATGAATG	4400
ICIICIGARICATORITATION	

THE STATE OF THE S	4450
TGCCCTTAGTGCTCTTGGAGAGCTAATTAATCATCTGTCTAGGCTAAAGG	4500
TGTGTTGGCTTGTTTAGTTTTTGCTTTTCACAAATTAAGCAAAGGAACTT	4550
TTCATAACTTACAGTTTCTATCTACTTGCAGCTAGAAGATGTACTTAAGC	4600
ATGGGGATATTTTTCCATACCAAGTTTACAGGGGTTGTCTCAGAATTGAT	4650
GGCCAGACGATGGTAAATCTTGAGATATTTAACAATAGCTGTGATGGTGG	4700
TCCTTCAGGCAAGTGCATATTTCTTTTTTTGATAACTTCAACTAGAGGGCA	4750
GACATAGAAGGAAAAATTCTAATACTTCGTACGGATCTCCAGTAAGTA	4800
AGCCGATTTTTGTTTACCTATGTAGGGACCTTGTACAAATATCTTGATAA	4850
CTGTGTTAGTCCAACTGGTAAGCGACTCTTAAGGAATTGGATCTGCCATC	4900
CACTCAAAGATGTAGAAAGCATCAATAAACGGCTTGATGTAGTTGAAGAA	4950
TTCACGGCAAACTCAGAAAGTATGCAAATCACTGGCCAGTATCTCCACAA	5000
ACTTCCAGACTTAGAAAGACTGCTCGGACGCATCAAGTCTAGCGTTCGAT	5050
CATCAGCCTCTGTTGCCTGCTCTTCTGGGGAAAAAAGTGCTGAAACAA	5100
CGAGTAAGTATCAATCACAAGTTTTCTGAGTAATGCCTTCCATGAGTAGT	5150
ATAGGACTAAAACATTACGGGTCTAGCTAAAGACTGTTCTCCTTCTTTTG	5200
CAATGTCTGGTTATTCATTACATTTCTCTTAACTTATTGCATTGCAGGTT	
AAAGCATTTGGGCAAATTGTGAAAGGGTTCAGAAGTGGAATTGATCTGTT	5250
GTTGGCTCTACAGAAGGAATCAAATATGATGAGTTTGCTTTATAAACTCT	5300
GTAAACTTCCTATATTAGTAGGAAAAAGCGGGCTAGAGTTATTTCTTTC	5350
CAATTEGAAGCAGCCATAGATAGCGACTTTECAAATTATCAGGTGCCCAT	5400
CTATCTTTCATACTTTACAACAAAATGTCTGTCACTACTCAAAGCAATGC	5450
ATATGGCTTAGATCTCAACTCACACCCCGAGGATCCTAAAGGGATTTGCT	5500
TTTTATTCCTAATGTTTTTGGATGGTTTGATTTATTTCTAACTTGAACTT	5550
ATTAATCTTGTACCAGAACCAAGATGTGACAGATGAAAACGCTGAAACTC	5600
TCACAATACTTATCGAACTTTTTATCGAAAGAGCAACTCAATGGTCTGAG	5650
GTCATTCACACCATAAGCTGCCTAGATGTCCTGAGATCTTTTGCAATCGC	5700
AGCAAGTCTCTCTGCTGGAAGCATGGCCAGGCCTGTTATTTTTCCCGAAT	5750
CAGAAGCTACAGATCAGAATCAGAAAACAAAAGGGCCAATACTTAAAATC	5800
CAAGGACTATGGCATCCATTTGCAGTTGCAGCCGATGGTCAATTGCCTGT	5850
TCCGAATGATATACTCCTTGGCGAGGCTAGAAGAAGCAGTGGCAGCATTC	5900
ATCCTCGGTCATTGTTACTGACGGGACCAAACATGGGCGGAAAATCAACT	5950
CTTCTTCGTGCAACATGTCTGGCCGTTATCTTTGCCCAAGTTTGTATACT	6000
CGTTAGATAATTACTCTATTCTTTGCAATCAGTTCTTCAACATGAATAAT	6050
AAATTCTGTTTTCTGTCTGCAGCTTGGCTGCTACGTGCCGTGTGAGTCTT	6100
GCGAAATCTCCCTCGTGGATACTATCTTCACAAGGCTTGGCGCATCTGAT	6150
AGAATCATGACAGGAGAGAGTAAGTTTTGTTCTCAAAATACCAATTCCTC	6200
GAACTATTTACTCAGATTTTGTCTGATTGGACAAGGTGGTTTTGCTTTTT	6250
TTTAGGTACCTTTTGGTAGAATGCACTGAGACAGCGTCAGTTCTTCAGA	6300
ATGCAACTCAGGATTCACTAGTAATCCTTGACGAACTGGGCAGAGGAACT	6350
AGTACTTCGATGGATACGCCATTGCATACTCGGTAACCTGCTCTTCTCC	6400
TTCAACTTATACTTGATCAACAAAAACATGCAATTCATTTTGCTGAA	6450
ACTIATTGATTATATCAGGTTTTTCGTCACCTGGTAGAGAAAGTTCAAT	6500
GTCGGATGCTCTTGCAACACATTACCACCTCTCACCAAGGAATTCGCG	6550
GTCGGATGCTCTTTGCAACACATTACCACCCTCTCACCAAGGAATTGGGC TCTCACCCCACGTGTCACCTCGAAACACATGGCTTGCGCATTCAAATCAAG	6600
TCTCACCCACGTGTCACCTCGAAACACATGGCTTGCGCATTCASSTCAS	

Figure 11 (Continued)

ATCTGATTATCAACCACGTGGTTGTGATCAAGACCTAGTGTTCTTGTACC	6650
GTTTAACCGAGGGAGCTTGTCCTGAGAGCTACGGACTTCAAGTGGCACTC	6700
ATGGCTGGAATACCAAACCAAGTGGTTGAAACAGCATCAGGTGCTGCTCA	6750
AGCCATGAAGAGATCAATTGGGGAAAACTTCAAGTCAAG	6800
CTGAGTTCTCAAGTCTGCATGAAGACTGGCTCAAGTCATTGGTGGGTATT	6850
TCTCGAGTCGCCCACAACAATGCCCCCATTGGCGAAGATGACTACGACAC	6900
TTTGTTTTGCTTATGGCATGAGATCAAATCCTCTTACTGTGTTCCCAAAT	6950
AAATGGCTATGACATAACACTATCTGAAGCTCGTTAAGTCTTTTGCTTCT	7000
CTGATGTTTATTCCTCTTAAAAAATGCTTATATATCAAAAAATTGTTTCC	7050
TCGATTATAACAAGATTATATGTATCTGTCGGTTTAGCTATGGTATAT	7100
AATATATGTATGTTCATGAGATTGGTCAAGAGAAATACTCACAAACAGTA	7150
TATTAAGAAGGAAATATGTTTATGCATTAATTTAAGTTTCAAGATAAACT	7200
GCAAATAACCTCGACTAAAGTTGCAAAGACCAAACACAAATTACAAAACT	7250
TATAAGACTTAAGTTCTGAATTCCCTAAAACCAAAAAAAA	7300
TATTTTGTTGCATCTACAAACAACACAAACCTACATAGTTTATAACTTAC	7350
TCATCACTGAGATTAACATCAGAATCATTCTCCATTTCTTCATCTTCACT	7400
CTCATCATCACCACCACCATGATGATTCTCCTCCTCTTCACGTAACC	7450
TAGCAATCTCACTCTGAGCTCTATCAACAATCTGCTTCTTCTGCAACTCC	7500
AAATCTCTCTGAAAATCAGCTCTCATCTTCTCCAACTCCTTCATTTGCTC	7550
TTTCTTACTCTTCTCCATCTTCTCATAAACCTTCCCAAACCTCTCAACAG	7600
AATCCGCCAACATCTTATACGAAGCAGCGTCATTAACCTTCTTCCTCTCG	7650
TACTCAACCTCATCCTCATCCTCCTCCTCTCAGAATCACCAGGACT	7700
ATCCATCATCAAACCCATTAGACTTATCTAAATAAACCTTAGTGT	7750
TCATAAACACAAACTCACCTGAATCAACACCACAAGCTAAACCTAAATCC	7800
GACTTGGGCGAAACACAAAGCAACATATCCAACTTATTGAAAAACGACCA	7850
TTTACTTGAACCTAAACCTGATTTCTCAACCTTAATCTTCTCTTTTCTAT	7900
ACTTCCTCTTCAAGTCATCATCTCTCCTACATTGCGTCTCAGATTTC	7950
TCCATCCTTAGCTCCTCACTCTCTCAGCTACTTCATTCCAATCCTC	8000
GTTCCTCAAACTCCTTCTACCCAATTGCAAAAACCTATCTCCCCAAACTT	8050
CAAGCAACACAA	8062

Figure 11 (Continued)

Figure 12

Comments/References: AtMSH3 3' side antisense : AtMSH3 3' (13 = 2104bp) from pUC18/13 Sal1/Sst1/T4 into pCW164 BamH1/T4 in Agrobacterium LBA44O4

Figure 13

Comments/References: AtMSH6 (S8) 3' side antisens : 62 Sal1/Sst1/T4 (1379bp) into pCW164 BamH1/T4

Figure 14

Comments/References: AtMSH6 3'/AtMSH3 3' antisense : AtMSH6 (S8) 3' side (62=1379bp) Sal1/Sst1/T4 into pPF13 (pCW164 AtMSH3 (S5) 3' side (13=2104) antisens)/Sma1. in LBA4404

Figure 15

Comments/References: AtMSH3 3'/AtMSH6 3' antisens (D): AtMSH3 (S5) 3' side (13=2104bp) Sal1/Sst1/T4 into pPF14 (AtMSH6 (S8) 3'side (62=1379bp) antisense into pCW164)/Sma1. in LBA4404

Figure 16

Comments/References: AtMSH3 (S8) complete, sense orientation : pPF26 (3342bp)

Sma1 into pCW164 Sma1

Figure 17

Comments/References: pPZP111 with codA EoR1 cassette in EcoR1 site and HInd3 GUS cassette in Hind3 site. KanR. All genes under Promoter/terminator 35S

Figure 18

Figure 19

p3243

1

SEQUENCE LISTING

```
<110>
            Rhone-Poulenc Agro; Betzner, Andreas Stefan; Doutriaux,
            Marie-Pascale; Freyssinet, Georges; Perez, Pascual.
<120>
            Methods for obtaining plant varieties
            395498C
<130>
            PO9745
<150>
            1997-10-10
<151>
<160>
            98
            1
<210>
            23
<211>
<212>
            DNA
            Artificial sequence
<213>
<220>
            modified_base
<221>
<222>
             11
<223>
             Ι
<220>
             modified_base
<221>
<222>
             14
             I
<223>
<220>
             modified_base
<221>
<222>
             17
<223>
             Ι
<220>
<223>
             Degenerate oligonucleotides UPMU used to isolate AtMSH3 and
             AtMSH6.
<300>
<301>
             Reenan and Kolodner
<302>
             Genetics
<303>
             132
<306>
             963-973
<307>
             1992
<400>
                                                                      23
ctggatccac nggnccnaay atg
```

<210> 2 <211> 23 <212> DNA

2

```
Artificial sequence
<213>
<220>
<221>
             modified_base
<222>
<223>
             I
<220>
<221>
             modified_base
<222>
             18
<223>
             Ι
<220>
             Degenerate oligonucleotides DOMU used to isolate AtMSH3 and
<223>
             AtMSH6.
<300>
             Reenan and Kolodner
<301>
<302>
             Genetics
<303>
             132
<306>
             963-973
<307>
             1992
             2
<400>
                                                                       23
ctggatccrt artgngtnrc raa
<210>
             3
<211>
             24
<212>
             DNA
<213>
             Artificial sequence
<220>
             MSH3 specific primer 636 for PCR using cDNA of Arabidopsis
<223>
             thaliana ecotype Columbia
<400>
             3
                                                                        24
tgctagtgcc tcttgcaagc tcat
<210>
             4
<211>
             27
<212>
             DNA
             Artificial sequence
<213>
<220>
<223>
             Primer AP1 for PCR using cDNA of Arabidopsis thaliana ecotype
             Columbia containing adapter sequences ligated to both its
             ends
<400>
             4
```

	5	
aaaraaraar	acgaeteaet ataggge	27
CCacccaac	acyacteaes asagge	
<210>	5	
<211>	23	
<212>	DNA	
	Artificial sequence	
<213>	Artificial sequence	
<220>		
<223>	Primer AP2 for PCR using cDNA of Arabidopsis thaliana eco	otype
	Columbia containing adapter sequences ligated to both its	5
	ends	
<400>	5	
actcactata	gggctcgagc ggc	23
<210>	6	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	MSH3 specific primer S525 for PCR using cDNA of Arabidop	sis
	thaliana ecotype Columbia	
<400>	6	
aggttctgat	tatgtgtgac gctttactta	30
<210>	7	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>	and the second s	
<223>	MSH3 specific primer S51 for PCR using cDNA of Arabidops	ils
	thaliana ecotype Columbia	
<400>	7	
		20
ggatcgggta	a ctgggttttg agtgtgagg	29
•		
<210>	8	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	MSH3 specific primer 635 for PCR using cDNA of Arabidops	515
	thaliana ecotype Columbia	

4

<400>	8
gcacgtgctt	gatggtgttt tcac 24
<210>	9
<211>	28
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	MSH3 specific primer S523 for PCR using cDNA of Arabidopsis
1225	thaliana ecotype Columbia
<400>	9
tcagacagta	tccagcatgg cagaagta 28
<210>	10
<211>	33
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	MSH3 specific primer 1S5 for PCR using cDNA of Arabidopsis
	thaliana ecotype Columbia
<400>	10
atcccgggat	gggcaagcaa aagcagcaga cga 33
<210>	11
<211>	27
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	MSH3 specific primer S53 for PCR using cDNA of Arabidopsis
(223)	thaliana ecotype Columbia
<400>	11
gacaaagagc	gaaatgaggc cccttgg 27
	2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
<210>	12
<211>	1250
<212>	DNA
<213>.	Arabidopsis thaliana ecotype Columbia
-223	Clone 52

. . . . _

<400> 12					
cccgggatgg gcaagcaaaa	gcagcagacg	atttctcgtt	tcttcgctcc	caaacccaaa	60
teccegaete acgaacegaa	tccggtagcc	gaatcatcaa	caccgccacc	gaagatatcc	120
gccactgtat ccttctctcc	ttccaagcgt	aagcttctct	ccgaccacct	cgccgccgcg	180
tcacccaaaa agcctaaact	ttctcctcac	actcaaaacc	cagtacccga	tcccaattta	240
caccaaagat ttctccagag	atttctggaa	ccctcgccgg	aggaatatgt	tcccgaaacg	300
tcatcatcga ggaaatacac	accattggaa	cagcaagtgg	tggagctaaa	gagcaagtac	360
ccagatgtgg ttttgatggt	ggaagttggt	tacaggtaca	gattcttcgg	agaagacgcg	420
gagategeag caegegtgtt	gggtatttac	gctcatatgg	atcacaattt	catgacggcg	480
agtgtgccaa catttcgatt	gaatttccat	gtgagaagac	tggtgaatgc	aggatacaag	540
attggtgtag tgaagcagac	tgaaactgca	gccattaagt	cccatggtgc	aaaccggacc	600
ggcccttttt tccggggact	grcggcgrtg	tataccaaag	ccacgcttga	agcggctgag	660
gatataagtg gtggttgtgg	tggtgaagaa	ggttttggtt	cacagagtaa	tttcttggtt	720
tgtgttgtgg atgagagagt	taagtcggag	acattaggct	gtggtattga	aatgagtttt	780
gatgttagag teggtgttgt	tggcgttgaa	atttcgacag	gtgaagttgt	ttatgaagag	840
ttcaatgata atttcatgag	aagtggatta	gaggctgtga	ttttgagctt	gtcaccagct	900
gagetgttge ttggeeagee	tctttcacaa	caaactgaga	agtttttggt	ggcacatgct	960
ggacctacct caaacgttcg	agtggaacgt	gcctcactgg	attgtttcag	caatggtaat	1020
gcagtagatg aggttatttc	attatgtgaa	aaaatcagcg	caggtaactt	agaagatgat	1080
aaagaaatga agctggaggc	tgctgaaaaa	ggaatgtctt	gcttgacagt	tcatacaatt	1140
atgaacatgc cacatctgac	tgttcaagcc	ctcgccctaa	cgttttgcca	tctcaaacag	1200
tttggatttg aaaggatcct	ttaccaaggg	gcctcatttc	gctctttgtc		1250
<210> 13 <211> 34 <212> DNA <213> Artificia	ıl sequence				
<220>					

<223> MSH3 specific primer 2S5 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

PCT/EP98/06977

<400> 13 34 atcccgggtc aaaatgaaca agttggtttt agtc <210> 14 27 <211> DNA <212> <213> Artificial sequence <220> MSH3 specific primer S52 for PCR using cDNA of Arabidopsis <223> thaliana ecotype Columbia <400> 14 27 gccacatctg actgttcaag ccctcgc 15 <210> <211> 2110 <212> DNA Arabidopsis thaliana ecotype Columbia <213> Clone 13 <223> <400> 15 60 gccacatctg actgttcaag ccctcgccct aacgttttgc catctcaaac agtttggatt tgaaaggatc ctttaccaag gggcctcatt tcgctctttg tcaagtaaca cagagatgac 120 tototoageo aataototgo aacagttgga ggttgtgaaa aataattoag atggatogga 180 atotggotoc trattocata atatgaatoa cacacttaca gratatggtt ccaggottet 240 300 tagacactgg gtgactcatc ctctatgcga tagaaatttg atatctgctc ggcttgatgc 360 tgtttctgag atttctgctt gcatgggatc tcatagttct tcccagctca gcagtgagtt 420 ggttgaagaa ggttctgaga gagcaattgt atcacctgag ttttatctcg tgctctcctc 480 agtictigaca getatgticta gaticatictga tatticaacgt ggaataacaa gaaticttica 540 toggactget aaagccacag agttcattgc agttatggaa gctattttac ttgcggggaa 600 gcaaattcag cggcttggca taaagcaaga ctctgaaatg aggagtatgc aatctgcaac tgtgcgatct actcttttga gaaaattgat ttctgttatt tcatcccctg ttgtggttga 660 720 caatgoogga aaacttotot otgooctaaa taaggaagog gotgttogag gtgacttgot 780 cgacatacta atcacttcca gcgaccaatt tcctgagctt gctgaagctc gccaagcagt tttagtcatc agggaaaagc tggattcctc gatagcttca tttcgcaaga agctcgctat 840

ccgaaatttg gaatttcttc	aagtgtcggg	gatcacacat	ttgatagagc	tgcccgttga	900
ttccaaggtc cctatgaatt	gggtgaaagt	aaatagcacc	aagaagacta	ttcgatatca	960
tcccccagaa atagtagctg	gcttggatga	gctagctcta	gcaactgaac	atcttgccat	1020
tgtgaaccga gcttcgtggg	atagtttcct	caagagtttc	agtagatact	acacagattt	1080
taaggetgee gtteaagete	ttgctgcact	ggactgtttg	cactcccttt	caactctatc	1140
tagaaacaag aactatgtcc	gtcccgagtt	tgtggatgac	tgtgaaccag	ttgagataaa	1200
catacagtct ggtcgtcatc	ctgtactgga	gactatatta	caagataact	tcgtcccaaa	1260
tgacacaatt ttgcatgcag	aaggggaata	ttgccaaatt	atcaccggac	ctaacatggg	1320
aggaaagagc tgctatatcc	gtcaagttgc	tttaatttcc	ataatggctc	aggttggttc	1380
ctttgtacca gcgtcattcg	ccaagctgca	cgtgcttgat	ggtgttttca	ctcggatggg	1440
tgcttcagac agtatccagc	atggcagaag	tacctttcta	gaagaattaa	gtgaagcgtc	1500
acacataatc agaacctgtt	cttctcgttc	gcttgttata	ttagatgagc	ttggaagagg	1560
cactagcaca cacgacggtg	tagccattgc	ctatgcaaca	ttacagcatc	tcctagcaga	1620
aaagagatgt ttggttcttt	ttgtcacgca	ttaccctgaa	atagctgaga	tcagtaacgg	1680
attcccaggt tctgttggga	cataccatgt	ctcgtatctg	acattgcaga	aggataaagg	1740
cagttatgat catgatgatg	tgacctacct	atataagctt	gtgcgtggtc	tttgcagcag	1800
gagetttggt tttaaggttg	ctcagcttgc	ccagatacct	ccatcatgta	tacgtcgagc	1860
catttcaatg gctgcaaaat	tggaagctga	ggtacgtgca	agagagagaa	atacacgcat	1920
gggagaacca gaaggacatg	aagaaccgag	aggcgcagaa	gaatctattt	cggctctagg	1980
tgacttgttt gcagacctga	aatttgctct	ctctgaagag	gacccttgga	aagcattcga	2040
gtttttaaag catgcttgga	agattgctgg	caaaatcaga	ctaaaaccaa	cttgttcatt	2100
ttgacccggg					2110

<210> 16 <211> 29 <212> DNA

<213> Artificial sequence

<220>

<223> MSH3 specific primer S51 for PCR using cDNA of Arabidopsis
thaliana ecotype Columbia

<400> 16

PCT/EP98/06977

ggat	.cggg	rta c	tggg	rttt	g ag	rtgtg	agg									29
<210 <211 <212	. >		17 30 DNA													
<213	>		Art	ific	ial	sequ	ence	:								
<220																
<223	>		MSH3 specific primer S525 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia													
<400) >		17													
aggt	tctg	gat t	atgt	gtga	ic go	ttta	ictta	ì								30
<210)>		18													
<211	. > ·		352	2												
<212	? >		DNA							•						
<213	S >		Ara	bido	psis	tha	lliar	a ec	otyp	e Co	lumi	oia				
<220) >															
<221	.>		CDS	3												
<222	?>		(10	0)	(3	342)										
<223	3 >						igth	CDNA	and	ded	luceo	l sec	queno	ce of	the	encoded
			po]	yper	tide	2										
<400) >		18													
ccta	agaa	aag o	gcgo	gaaa	aa tt	ggca	aacco	c aag	gttcg	gcca	tago	ccacq	gac o	cacga	accttc	60
catt	tete	ctt a	aaac	ggagg	ga ga	attad	cgaat	. aaa	agcaa	act						99
					_		_		_							
														CCC		147
_	GIY	ьys	GIN		GIN	GIN	inr	iie		arg	Pne	Pne	Ala	Pro	rys	
1				5					10					15		
ccc	aaa	tcc	cca	act	cac	qaa	cca	aat	cca	gta	acc	gaa	tca	tca	aca	195
									_	_	_	_		Ser		
	•		20					25					30			
cca	cca	cca	aac	ata	tcc	acc	act	gta	tac	ttc	tct	cct	tcc	aag	cat	243
														Lys		
		35	-2 -				40				-	45	-	-,0	5	
aaσ	CEE	CEC	tcc	gac	cac	ctc	acc	acc	aca	tca	ccc	222	220	cct	222	291
														Pro		47 =
-,0	50				5	55		n_u	U	UCL	60	בעם	Lys		2,3	
														cac		339
Leu	Ser	Pro	His	Thr	Gln 70	Asn	Pro	Val	Pro	Asp	Pro	Asn	Leu	His	Gln	
m ~					/ ()					/ -					¥ (1)	

_			_	_		-	_	ccc Pro		_	-					387
								aca Thr 105								435
								gtg Val								483
								gac Asp								531
								cac His								579
								gtg Val				_				627
								act Thr 185			_	_		_		675
								ttt Phe				_	_		_	723
								gct Ala								771
ggt Gly 225	ggt Gly	gaa Glu	gaa Glu	ggt Gly	ttt Phe 230	ggt Gly	tca Ser	cag Gln	agt Ser	aat Asn 235	ttc Phe	ttg Leu	gtt Val	tgt Cys	gtt Val 240	819
gtg Val	gat Asp	gag Glu	aga Arg	gtt Val 245	aag Lys	tcg Ser	gag Glu	aca Thr	tta Leu 250	Gly	tgt Cys	ggt Gly	att Ile	gaa Glu 255	atg Met	867
								gtt Val 265								915
gaa Glu	gtt Val	gtt Val 275	tat Tyr	gaa Glu	gag Glu	ttc Phe	aat Asn 280	gat Asp	aat Asn	ttc Phe	atg Met	aga Arg 285	agt Ser	gga Gly	tta Leu	963

								•								
														ggc Gly		1011
									_	_				gga Gly		1059
														agc Ser 335	Asn	1107
		_	_	_	_	-				_	-			agc Ser		1155
			_	_	_		-	_	-	_		_	_	gaa Glu		1203
														cat His		1251
	-		_		_		_		_				_	ttt Phe		1299
	_							_			_		_	cca Ser 415	_	1347
			_				-			_		_	_	gag Glu	-	1395
														cat His		1443
-						-		_					_	cac His		1491
					_	_	_		_			_		ctt Leu	_	1539
														tcc Ser 495		1587

		_					-	ggt Gly 505			_	-				1635
	Glu							tca Ser				_				1683
								aca Thr								1731
	_					_	-	atg Met	-	_				-		1779
-			_					aag Lys		_		-	_		-	1827
_			•			_		act Thr 585		-	-		_			1875
					-		_	gac Asp		_						1923
			_	_		_	_	cga Arg		_	_		_			1971
								gag Glu		_	_	_	-		-	2019
								gat Asp								2067
								gaa Glu 665								2115
								gat Asp								2163
								act Thr								2211

				Asp									ctt Leu	Ala	2259
705				710					715					720	
	-	-	_			-	_			_	-		agt Ser 735	_	2307
		_		_	-	_	-		-		_	_	ctg Leu		2355
_	_							_		_			gtc Val	_	2403
		_	_	_	-	_		_					cag Gln		2451
	_		_							_			gtc Val		2499
	_		_		-	_		-		_			atc Ile 815		2547
		_					-			-		_	gct Ala		2595
		_	-	_	_				-				ttc Phe	_	2643
													tca Ser		2691
													gaa Glu		2739
													tta Leu 895		2787
													gcc Ala		2835

. . . _

WO 99/19492 PCT/EP98/06977

			. 5		
	Gln His Leu			ttg gtt ctt tt Leu Val Leu Ph 925	
-	_	_	_	gga ttc cca gg Gly Phe Pro Gl	
		Val Ser Tyr	_	cag aag gat aa Gln Lys Asp Ly 96	rs .
				aag ctt gtg cg Lys Leu Val Ar 975	
				cag ctt gcc ca Gln Leu Ala Gl 990	
	Ser Cys Ile		Ile Ser Met	gct gca aaa tt Ala Ala Lys Le 1005	
			·	atg gga gaa co Met Gly Glu Pr	
	- '	Arg Gly Ala		att tcg gct ct Ile Ser Ala Le 104	eu
		Leu Lys Phe		gaa gag gac co Glu Glu Asp Pr 1055	
			Ala Trp Lys	att gct ggc as Ile Ala Gly Ly 1070	
_	a aaa cca act 1 Lys Pro Thr 5	_	_	ttaacattat	3362
agcaactgca	aggtcttgat c	atctgttag tt	gcgtacta act	tatgtgt attagta	ataa 3422
caagaaaaga	gaattagaga g	atggattct aa	teeggtgt tge	agtacat ctttct	cca 3482
cccgcataaa	aaaaaaaaa a	aaaaaaaaa aa	aaaaaaa		3522

<210> 19 <211> 1081 <212> PRT

<213 <223					psis cide			a ec	otyp	e Co	lumb	oia			
< 400) >		19												
Met 1	Gly	Lys	Gln	Lys 5	Gln	Gln	Thr	Ile	Ser 10	Arg	Phe	Phe	Ala	Pro 15	Lys
Pro	Lys	Ser	Pro 20	Thr	His	Glu	Pro	Asn 25	Pro	Val	Ala	Glu	Ser 30	Ser	Thr
Pro	Pro	Pro 35	Lys	Ile	Ser	Ala	Thr 40	Val	Ser	Phe	Ser	Pro 45	Ser	Lys	Arg
Lys	Leu 50	Leu	Ser	Asp	His	Leu 55	Ala	Ala	Ala	Ser	Pro 60	Lys	Lys	Pro	Lys
Leu 65	Ser	Pro	His	Thr	Gln 70	Asn	Pro	Val	Pro	Asp 75	Pro	Asn	Leu	His	Glr 80
Arg	Phe	Leu	Gln	Arg 85	Phe	Leu	Glu	Pro	Ser 90	Pro	Glu	Glu	Tyr	Val 95	Pro
Glu	Thr	Ser	Ser 100	Ser	Arg	Lys	Tyr	Thr 105	Pro	Leu	Glu	Gln	Gln 110	Val	Val
Glu	Leu	Lys 115	Ser	Lys	Tyr	Pro	Asp 120	Val	Val	Leu	Met	Val 125	Glu	Val	Gly
Tyr	Arg 130	Tyr	Arg	Phe	Phe	Gly 135	Glu	Asp	Ala	Glu	Ile 140	Ala	Ala	Arg	Va]
Leu 145	Gly	Ile	Tyr	Ala	His 150	Met	Asp	His	Asn	Phe 155	Met	Thr	Ala	Ser	Va]
Pro	Thr	Phe	Arg	Leu 165	Asn	Phe	His	Val		Arg		Val	Asn	Ala 175	_
Tyr	Lys	Ile	Gly 180	Val	Val	Lys	Gln	Thr 185	Glu	Thr	Ala	Ala	Ile 190	Lys	Ser
His	Gly	Ala 195	Asn	Arg	Thr	Gly	Pro 200	Phe	Phe	Arg	Gly	Leu 205	Ser	Ala	Lev
Tyr	Thr 210	Lys	Ala	Thr	Leu	Glu 215	Ala	Ala	Glu	Asp	Ile 220	Ser	Gly	Gly	Cys
Gly 225	Gly	Glu	Glu	Gly	Phe 230	Gly	Ser	Gln	Ser	Asn 235	Phe	Leu	Val	Cys	Va]
Val	Asp	Glu	Arg	Val 245	Lys	Ser	Glu	Thr	Leu 250	Gly	Cys	Gly	Ile	Glu 255	Met

- Ser Phe Asp Val Arg Val Gly Val Gly Val Glu Ile Ser Thr Gly 260 265 270
- Glu Val Val Tyr Glu Glu Phe Asn Asp Asn Phe Met Arg Ser Gly Leu 275 280 285
- Glu Ala Val Ile Leu Ser Leu Ser Pro Ala Glu Leu Leu Gly Gln
 290 295 300
- Pro Leu Ser Gln Gln Thr Glu Lys Phe Leu Val Ala Met Ala Gly Pro 305 310 315 320
- Thr Ser Asn Val Arg Val Glu Arg Ala Ser Leu Asp Cys Phe Ser Asn 325 330 335
- Gly Asn Ala Val Asp Glu Val Ile Ser Leu Cys Glu Lys Ile Ser Ala 340 345 350
- Gly Asn Leu Glu Asp Asp Lys Glu Met Lys Leu Glu Ala Ala Glu Lys 355 360 365
- Gly Met Ser Cys Leu Thr Val His Thr Ile Met Asn Met Pro His Leu 370 375 380
- Thr Val Gln Ala Leu Ala Leu Thr Phe Cys His Leu Lys Gln Phe Gly 385 390 395 400
- Phe Glu Arg Ile Leu Tyr Gln Gly Ala Ser Phe Arg Ser Leu Ser Ser 405 410 415
- Asn Thr Glu Met Thr Leu Ser Ala Asn Thr Leu Gln Gln Leu Glu Val 420 425 430
- Val Lys Asn Asn Ser Asp Gly Ser Glu Ser Gly Ser Leu Phe His Asn 435 440 445
- Met Asn His Thr Leu Thr Val Tyr Gly Ser Arg Leu Leu Arg His Trp
 450 455 460
- Val Thr His Pro Leu Cys Asp Arg Asn Leu Ile Ser Ala Arg Leu Asp 465 470 475 480
- Ala Val Ser Glu Ile Ser Ala Cys Met Gly Ser His Ser Ser Ser Gln 485 490 495
- Leu Ser Ser Glu Leu Val Glu Glu Gly Ser Glu Arg Ala Ile Val Ser 500 505 510
- Pro Glu Phe Tyr Leu Val Leu Ser Ser Val Leu Thr Ala Met Ser Arg 515 520 525
- Ser Ser Asp Ile Gln Arg Gly Ile Thr Arg Ile Phe His Arg Thr Ala 530 535 540

Lys 545	Ala	Thr	Glu	Phe	Ile 550	Ala	Val	Met	Glu	Ala 555	Ile	Leu	Leu	Ala	Gly 560
Lys	Gln	Ile	Gln	Arg 565	Leu	Gly	Ile	Lys	Gln 570	Asp	Ser	Glu	Met	Arg 575	Ser
Met	Gln	Ser	Ala 580	Thr	Val	Arg	Ser	Thr 585	Leu	Leu	Arg	Lys	Leu 590	Ile	Ser
Val	Ile	Ser 595	Ser	Pro	Val	Val	Val 600	Asp	Asn	Ala	Gly	Lys 605	Leu	Leu	Ser
Ala	Leu 610	Asn	Lys	Glu	Ala	Ala 615	Val	Arg	Gly	Asp	Leu 620	Leu	Asp	Ile	Leu
Ile 625	Thr	Ser	Ser	Asp	Gln 630	Phe	Pro	Glu	Leu	Ala 635	Glu	Ala	Arg	Gln	Ala 640
Val	Leu	Val	Ile	Arg 645	Glu	Lys	Leu	Asp	Ser 650	Ser	Ile	Ala	Ser	Phe 655	Arg
Lys	Lys	Leu	Ala 660	Ile	Arg	Asn	Leu	Glu 665	Phe	Leu	Gln	Val	Ser 670	Gly	Ile
Thr	His	Leu 675	Ile	Glu	Leu	Pro	Val 680	Asp	Ser	Lys	Val	Pro 685	His	Asn	Trp
Val	Lys 690	Val	Asn	Ser	Thr	Lys 695	Lys	Thr	Ile	Arg	Tyr 700	His	Pro	Pro	Glu
Ile 705	Val	Ala	Gly	Leu	Asp 710	Glu	Leu	Ala	Leu	Ala 715	Thr	Glu	His	Leu	Ala 720
Ile	Val	Asn	Arg	Ala 725	Ser	Trp	qaA	Ser	Phe 730	Leu	Lys	Ser	Phe	Ser 735	Arg
Tyr	Tyr	Thr	Asp 740	Phe	Lys	Ala	Ala	Val 745	Gln	Ala	Leu	Ala	Ala 750	Leu	Asp
Cys	Leu	His 755	Ser	Leu	Ser	Thr	Leu 760	Ser	Arg	Asn	Lys	Asn 765	Tyr	Val	Arg
Pro	Glu 770	Phe	Val	Asp	Asp	Cys 775	Glu	Pro	Val	Glu	Ile 780	Asn	Ile	Gln	Ser
Gly 785	Arg	His	Pro	Val	Leu 790	Glu	Thr	Ile	Leu	Gln 795	Asp	Asn	Phe	Val	Pro 800
Asn	Asp	Thr	Ile	Leu 805	His	Ala	Glu	Gly	Glu 810	Tyr	Cys	Gln	Ile	Ile 815	Thr
Gly	Pro	Asn	Met 820	Gly	Gly	Lys	Ser	Cys 825	Tyr	Ile	Arg	Gln	Val	Ala	Leu

Ile Ser Ile Met Ala Gln Val Gly Ser Phe Val Pro Ala Ser Phe Ala

Lys Leu His Val Leu Asp Gly Val Phe Thr Arg Met Gly Ala Ser Asp

Ser Ile Gln His Gly Arg Ser Thr Phe Leu Glu Glu Leu Ser Glu Ala

Ser His Ile Ile Arg Thr Cys Ser Ser Arg Ser Leu Val Ile Leu Asp

Glu Leu Gly Arg Gly Thr Ser Thr His Asp Gly Val Ala Ile Ala Tyr

Ala Thr Leu Gln His Leu Leu Ala Glu Lys Arg Cys Leu Val Leu Phe

Val Thr His Tyr Pro Glu Ile Ala Glu Ile Ser Asn Gly Phe Pro Gly

Ser Val Gly Thr Tyr His Val Ser Tyr Leu Thr Leu Gln Lys Asp Lys

Gly Ser Tyr Asp His Asp Asp Val Thr Tyr Leu Tyr Lys Leu Val Arg

Gly Leu Cys Ser Arg Ser Phe Gly Phe Lys Val Ala Gln Leu Ala Gln

Ile Pro Pro Ser Cys Ile Arg Arg Ala Ile Ser Met Ala Ala Lys Leu

Glu Ala Glu Val Arg Ala Arg Glu Arg Asn Thr Arg Met Gly Glu Pro

Glu Gly His Glu Glu Pro Arg Gly Ala Glu Glu Ser Ile Ser Ala Leu

Gly Asp Leu Phe Ala Asp Leu Lys Phe Ala Leu Ser Glu Glu Asp Pro

Trp Lys Ala Phe Glu Phe Leu Lys His Ala Trp Lys Ile Ala Gly Lys

Ile Arg Leu Lys Pro Thr Cys Ser Phe

<210>

<211>

<212> DNA

Artificial sequence <213>

	18
<220>	
<223>	MSH6 specific primer 638 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia
<400>	20
tctctaccag g	tgacgaaaa accg 24
<210>	21
<211>	28
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Primer S81 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia
<400>	21
cgtcgccttt a	gcatcccct tccttcac 28
<210>	22
<211>	30
<212>	DNA
<213>	Artificial sequence
<220>	,
<223>	MSH6 specific primer S823 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia

<400> 22

gcttggcgca tctaatagaa tcatgacagg

30

<210>	23	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	MSH6 specific primer 637 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia	3
<400>	23	
gacagcgtca g	gttcttcaga atgc	24

24 <210> <211> 33 <212> DNA

· · · · · · -

<213>	Artificial sequence	
<220>		
<223>	MSH6 specific primer 1S8 for PCR using cDNA of Arabidopsis	_
.4237	thaliana ecotype Columbia	-
<400>	24	
atcccgggat	gcagegecag agategattt tgt	33
<210>	25	
<211>	27	
<212>	DNA	
<213>	Artificial sequence	
	Artificial beddenee	
<220>		
<223>	MSH6 specific primer S83 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia	S
<400>	25	
cgctatctat	ggetgetteg aattgag	27
<210>	26	
<211>	1385	
<212>	DNA	
<213>	Arabidopsis thaliana ecotype Columbia	
<223>	Clone 43	
<400>	26	
cccgggatgc	agegecagag ategattttg tetttettee aaaaacecae ggeggegaet	60
acgaagggtt	tggtttccgg cgatgctgct agcggcgggg gcggcagcgg aggaccacga	120
tttaatgtga	aggaagggga tgctaaaggc gacgcttctg tacgttttgc tgtttcgaaa	180
tctgtcgatg	aggttagagg aacggatact ccaccggaga aggttccgcg tcgtgtcctg	240
ccgtctggat	ttaageegge tgaateegee ggtgatgett egteeetgtt eteeaatatt	300
atgcataagt	ttgtaaaagt cgatgatcga gattgttctg gagagaggag ccgagaagat	360
gttgttccgc	tgaatgattc atctctatgt atgaaggcta atgatgttat tcctcaattt	420
cgttccaata	atggtaaaac tcaagaaaga aaccatgctt ttagtttcag tgggagagct	480
gaacttagat	cagtagaaga tataggagta gatggcgatg ttcctggtcc agaaacacca	540
gggatgcgtc	cacgtgcttc tcgcttgaag cgagttctgg aggatgaaat gacttttaag	600
gaggataagg	ttcctgtatt ggactctaac aaaaggctga aaatgctcca ggatccggtt	660

WO 99/19492 PCT/EP98/06977

tgtggagaga	agaaagaagt	aaacgaagga	accaaatttg	aatggcttga	gtcttctcga	720
atcagggatg	ccaatagaag	acgtcctgat	gatccccttt	acgatagaaa	gaccttacac	780
ataccacctg	atgttttcaa	gaaaatgtćt	gcatcacaaa	agcaatattg	gagtgttaag	840
agtgaatata	tggacattgt	gcttttcttt	aaagtgggga	aattttatga	gctgtatgag	900
ctagatgcgg	aattaggtca	caaggagctt	gactggaaga	tgaccatgag	tggtgtggga	960
aaatgcagac	aggttggtat	ctctgaaagt	gggatagatg	aggcagtgca	aaagctatta	1020
gctcgtggat	ataaagttgg	acgaatcgag	cagctagaaa	catctgacca	agcaaaagcc	1080
agaggtgcta	atactataat	tccaaggaag	ctagttcagg	tattaactcc	atcaacagca	1140
agcgagggaa	acatcgggcc	tgatgccgtc	catcttcttg	ctataaaaga	gatcaaaatg	1200
gagctacaaa	agtgttcaac	tgtgtatgga	tttgcttttg	ttgactgtgc	tgccttgagg	1250
ttttgggttg	ggtccatcag	cgatgatgca	tcatgtgctg	ctcttggagc	gttattgatg	1320
caggtttctc	caaaggaagt	gttatatgac	agtaaagggc	tatcaagaga	agcacaaaag	1390
gctctaagga	aatatacgtt	gacagggtct	acggcggtac	agttggctcc	agtaccacaa	1440
gtaatggggg	atacagatgc	tgctggagtt	agaaatataa	tagaatctaa	cggatacttt	1500
aaaggttctt	ctgaatcatg	gaactgtgct	gttgatggtc	taaatgaatg	tgatgttgcc	1560
cttagtgctc	ttggagagct	aattaatcat	ctgtctaggc	taaagctaga	agatgtactt	1620
aagcatgggg	atattttcc	ataccaagtt	tacaggggtt	gtctcagaat	tgatggccag	1680
acgatggtaa	atcttgagat	atttaacaat	agctgtgatg	gtggtccttc	agggaccttg	1740
tacaaatatc	ttgataactg	tgttagtcca	actggtaagc	gactcttaag	gaattggatc	1800
tgccatccac	tcaaagatgt	agaaagcatc	aataaacggc	ttgatgtagt	tgaagaattc	1860
acggcaaact	cagaaagtat	gcaaatcact	ggccagtatc	tccacaaact	tccagactta	1920
gaaagactgc	tcggacgcat	caagtctagc	gttcgatcat	cagcctctgt	gttgcctgct	1980
cttctgggga	aaaaagtgct	gaaacaacga	gttaaagcat	ttgggcaaat	tgtgaaaggg	2040
ttcagaagtg	gaattgatct	gttgttggct	ctacagaagg	aatcaaatat	gatgagtttg	2100
ctttataaac	tctgtaaact	tcctatatta	gtaggaaaaa	gcgggctaga	gttatttctt	2160
tctcaattcg	aagcagccat	agatagcg				2188

27

<210>

<211><212><213><223>	1385 DNA Arabidops Clone 62	sis thaliana	a ecotype Co	olumbia		
<400>	27					
catcageete	tgtgttgcct	gctcttctgg	ggaaaaaagt	gctgaaacaa	cgagttaaag	60
catttgggca	aattgtgaaa	gggttcagaa	gtggaattga	tctgttgttg	gctctacaga	120
aggaatcaaa	tatgatgagt	ttgctttata	aactctgtaa	acttcctata	ttagtaggaa	180
aaagcgggct	agagttattt	ctttctcaat	tcgaagcagc	catagatagc	gactttccaa	240
attatcagaa	ccaagatgtg	acagatgaaa	acgctgaaac	tctcacaata	cttatcgaac	300
tttttatcga	aagagcaact	caatggtctg	aggtcattca	caccataagc	tgcctagatg	360
tcctgagatc	ttttgcaatc	gcagcaagtc	tetetgetgg	aagcatggcc	aggcctgtta	420
tttttcccga	atcagaagct	acagatcaga	atcagaaaac	aaaagggcca	atacttaaaa	480
tccaaggact	atggcatcca	tttgcagttg	cagccgatgg	tcaattgcct	gttccgaatg	540
atatactcct	tggcgaggct	agaagaagca	gtggcagcat	tcatcctcgg	tcattgttac	600
tgacgggacc	aaacatgggc	ggaaaatcaa	ctcttcttcg	tgcaacatgt	ctggccgtta	660
tctttgccca	acttggctgc	tacgtgccgt	gtgagtcttg	cgaaatctcc	ctcgtggata	720
ctatcttcac	aaggcttggc	gcatctgata	gaatcatgac	aggagagagt	acctttttgg	780
tagaatgcac	tgagacagcg	tcagttcttc	agaatgcaac	tcaggattca	ctagtaatcc	840
ttgacgaact	gggcagagga	actagtactt	tcgatggata	cgccattgca	tactcggttt	900
ttcgtcacct	ggtagagaaa	gttcaatgtc	ggatgctctt	tgcaacacat	taccaccctc	960
tcaccaagga	attegegtet	cacccacgtg	tcacctcgaa	acacatggct	tgcgcattca	1020
aatcaagatc	tgattatcaa	ccacgtggtt	gtgatcaaga	cctagtgttc	ttgtaccgtt	1080
taaccgaggg	agcttgtcct	gagagctacg	gacttcaagt	ggcactcatg	gctggaatac	1140
caaaccaagt	ggttgaaaca	gcatcaggtg	ctgctcaagc	catgaagaga	tcaattgggg	1200
aaaacttcaa	gtcaagtgag	ctaagatctg	agttctcaag	tctgcatgaa	gactggctca	1260
agtcattggt	gggtatttct	cgagtcgccc	acaacaatgc	ccccattggc	gaagatgact	1320
acgacacttt	gttttgctta	tggcatgaga	tcaaatcctc	ttactgtgtt	cccaaataac	1380

ccggg	1385
<210>	28
<211>	34
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	MSH6 specific primer 2S8 for PCR using cDNA of Arabidopsis thaliana ecotype Columbia
<400>	26
atcccgggtt	atttgggaac acagtaagag gatt 34
<210>	29
<211>	27
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	MSH6 specific primer S82 fcr PCR using cDNA of Arabidopsis thaliana ecotype Columbia
<400>	29
gcgttcgatc	atcagcctct gtgttgc 27
<210>	30
<211>	3606
<212>	DNA
<213>	Arabidopsis thaliana ecotype Columbia
<220>	
<221>	CDS
<222>	(142)(3468)
<223>	AtMSH6 full-length cDNA and deduced sequence of the encoded polypeptide
<400>	30
aaaagttgag	ccctgaggag tatcgtttcc gccatttcta cgacgcaagg cgaaaatttt 60
tggcgccaat	cttteccccc tttegaatte teteagetea aaacategtt teteteteac 120
tctctctcac	aattccaaaa a atg cag cgc cag aga tcg att ttg tct ttc 171 Met Gln Arg Gln Arg Ser Ile Leu Ser Phe 1 5 10

							23							
												ggc Gly 25		219
												gtg Val		267
												tcg Ser		315
												gtt Val		363
												gst Gly		411
												gtc Val 105		459
												ccg Pro		507
	_											caa Gln		555
_				-								agt Ser		603
_		_	_	-	_	-	_	-			_	gat Asp		651
_	-						_	_		_	-	tct Ser 185		699
_	_	_	-	_					_		_	aag Lys		747
			_								-	ccg Pro		795

									-								
tgt Cys	gga Gly 220	gag Glu	aag Lys	aaa Lys	gaa Glu	gta Val 225	aac Asn	gaa Glu	gga Gly	acc Thr	aaa Lys 230	ttt Phe	gaa Glu	tgg Trp	ctt Leu	843	
		cc: Ser														891	
		gat Asp														939	
		gca Ala														987	
		gtg Val 285														1035	
		gcg Ala														1083	
		gtg Val														113.1	
		gca Ala														1179	
		cag Gln														1227	
		att Ile 365			_		_	_	_							1275	
		gga Gly														1323	
		aaa Lys				Gln					Val					1371	
		gac Asp	_	_	Ala		-			Val						1419	i

gat Asp	gca Ala	tca Ser	tgt Cys 430	gct Ala	gct Ala	ctt Leu	gga Gly	gcg Ala 435	tta Leu	ttg Leu	atg Met	cag Gln	gtt Val 440	tct Ser	cca Pro	14	167
aag Lys	gaa Glu	gtg Val 445	tta Leu	tat Tyr	gac Asp	agt Ser	aaa Lys 450	ggg Gly	cta Leu	tca Ser	aga Arg	gaa Glu 455	gca Ala	caa Gln	aag Lys	15	515
gct Ala	cta Leu 460	agg Arg	aaa Lys	tat Tyr	acg Thr	ttg Leu 465	aca Thr	Gly	tct Ser	acg Thr	gcg Ala 470	gta Val	cag Gln	ttg Leu	gct Ala	15	563
cca Pro 475	gta Val	cca Pro	caa Gln	gta Val	atg Met 480	ggg Gly	gat Asp	aca	gat Asp	gct Ala 485	gct Ala	gga Gly	gtt Val	aga Arg	aat Asn 490	16	611
ata Ile	ata Ile	gaa Glu	tct Ser	aac Asn 495	gga Gly	tac Tyr	ttt Phe	aaa Lys	ggt Gly 500	tct Ser	tct Ser	gaa Glu	tca Ser	tgg Trp 505	aac Asn	10	659
tgt Cys	gct Ala	gtt Val	gat Asp 510	ggt Gly	cta Leu	aat Asn	gaa Glu	tgt Cys 515	gat Asp	gtt Val	gcc Ala	ctt Leu	agt Ser 520	gct Ala	ctt Leu	1	707
					cat His			Arg								1	755
		Gly			ttt Phe		Tyr					Gly				1	803
att Ile 555	Asp	ggc Gly	cag Gln	acg Thr	atg Met 560	Val	aat Asn	ctt Leu	gag Glu	ata Ile 565	Phe	aac Asn	aat Asn	agc Ser	tgt Cys 570	1	851
gat Asp	ggt Gly	ggt Gly	cct Pro	tca Ser 575	Gly ggg	acc Thr	ttg Leu	tac Tyr	aaa Lys 580	Tyr	ctt Leu	gat Asp	aac Asn	tgt Cys 585	gtt Val	1	899
agt Ser	cca Pro	act Thr	ggt Gly 590	' Lys	r cga 'Arg	ctc Leu	tta Leu	agg Arg 595	Asn	tgg Trp	ato Ile	tgc Cys	cat His 600	Pro	ctc Leu	1	.947
			. Glu		ato			Arg					. Glu			1	995
		AST			agt 1 Ser		Glr					ı Tyr			: aaa : Lys	2	2043

											aag Lys					209
		_			_		_		_		aaa Lys			_		2139
				_							ggg					218
	-	_	_	_	_		_	_	-		aat Asn	_				2239
				_						_	gga Gly 710					2283
											gat Asp					233:
		_			_			_	_		gct Ala	_				2379
			_				-	_	-		caa Gln				-	242
				_	_		_	_	_	_	tct Ser		-		-	247
-	_			-		_	_	-			gtt Val 790				-	252
											Gly					257:
											gcc Ala					261
											aga Arg					266

	cct cgg tca Pro Arg Ser				
	ctt ctt cgt Leu Leu Arg	_			
	tac gtg ccg Tyr Val Pro 880				
	aca agg ctt Thr Arg Leu 895			Met Thr	
-	ttg gta gaa Leu Val Glu 910			-	
-	gat tca cta Asp Ser Leu	-			
-	gat gga tac Asp Gly Tyr			-	
	gtt caa tgt Val Gln Cys 960	Arg Met Leu	_		
-	ggaa ttc gcg Glu Phe Ala 975			Ser Lys	_
-	ttc aaa tca Phe Lys Ser 990	-	Tyr Gln Pro		
	gtg ttc ttg Val Phe Leu		Thr Glu Gly		
	ctt caa gtg Leu Gln Val	-		Pro Asn	
	a gca tca ggt Ala Ser Gly 1040	Ala Ala Gln			

			Lys					Arg			ttc Phe		Ser			3339
-	-	Trp		_			Val				cga Arg	Val	_			3387
	Ala				-	Asp	_		_		ttg Leu		-			3435
His					Ser		_	-			taaa	tggo	cta			3478
tgac	ataa	aca c	tato	tgaa	ag ct	cgtt	aagt	ctt	ttg	ctc	tctg	gatgt	tt a	ttc	ctctta	3538
aaaa	atgo	ett a	tata	atcaa	aa aa	atto	gttt	c cto	gatt	aaa	aaaa	aaaa	aa a	aaaa	aaaaa	3598
aaaa	ıaaaa	a														3606
<210 <211 <212 <213 <223	l> !> }>		Pol	: abido	opsis otide			па ес	cotyp	oe Co	olumb	oia				
< 400)>		31													
Met 1	Gln	Arg	Gln	Arg 5	Ser	Ile	Leu	Ser	Phe 10	Phe	Gln	Lys	Pro	Thr 15	Ala	
Ala	Thr		Lys 20		Leu		Ser	-		Ala	Ala	Ser	-		Gly	
Gly	Ser	Gly 35	Gly	Pro	Arg	Phe	Asn 40	Val	Arg	Glu	Gly	Asp 45	Ala	Lys	Gly	
Asp	Ala 50	Ser	Val	Arg	Phe	Ala 55	Val	Ser	Lys	Ser	Val 60	Asp	Glu	Val	Arg	
Gly 65	Thr	Asp	Thr	Pro	Pro 70	Glu	Lys	Val	Pro	Arg 75	Arg	Val	Leu	Pro	Ser 80	
Gly	Phe	Lys	Pro	Ala 85	Glu	Ser	Ala	Gly	Asp 90	Ala	Ser	Ser	Leu	Phe 95	Ser	
Asn	Ile	Met	His 100	Lys	Phe	Val	Lys	Val 105	Asp	Asp	Arg	Asp	Cys 110	Ser	Gly	
Clu	N ~~	Sar	7 ~~	G1.,	3	Wa 1	77-1	Pro	7	\ an	A	co~	C-~	t 011	C	

Met	130	Ala	Asn	Asp	vai	135	Pro	GIII	FIIE	Arg	140	ASII	MSII	Gly	БуЗ
Thr 145	Gln	Glu	Arg	Asn	His 150	Ala	Phe	Ser	Phe	Ser 155	Gly	Arg	Ala	Glu	Leu 160
Arg	Ser	Val	Glu	Asp 165	Ile	Gly	Val	Asp	Gly 170	Asp	Val	Pro	Gly	Pro 175	Glu
Thr	Pro	Gly	Met 180	Arg	Pro	Arg	Ala	Ser 185	Arg	Leu	Lys	Arg	Val 190	Leu	Glu
Asp	Glu	Met 195	Thr	Phe	Lys	Glu	Asp 200	Lys	Val	Pro	Val	Leu 205	Asp	Ser	Asn
Lys	Arg 210	Leu	Lys	Met	Leu	Gln 215	Asp	Pro	Val	Cys	Gly 220	Glu	Lys	Lys	Glu
Val 225	Asn	Glu	Gly	Thr	Lys 230	Phe	Glu	Trp	Leu	Glu 235	Ser	Ser	Arg	Ile	Arg 240
Asp	Ala	Asn	Arg	Arg 245	Arg	Pro	Asp	Asp	Pro 250	Leu	Tyr	Asp	Arg	Lys 255	Thr
Leu	His	Ile	Pro 260	Pro	Asp	Val	Phe	Lys 265	Lys	Met	Ser	Ala	Ser 270	Gln	Lys
Gln	Tyr	Trp 275	Ser	Val	Lys	Ser	Glu 280	Tyr	Met	Asp	Ile	Val 285	Leu	Phe	Phe
Lys	Val 290	Gly	Lys	Phe	Tyr	Glu 295	Leu	Tyr	Glu	Leu	Asp 300	Ala	Glu	Leu	Gly
His 305	Lys	Glu	Leu	Asp	Trp 310	Lys	Met	Thr	Met	Ser 315	Gly	Val	Gly	Lys	Cys 320
Arg	Gln	Val	Gly	Ile 325	Ser	Glu	Ser	Gly	Ile 330		Glu	Ala	Val	Gln 335	Lys
Leu	Leu	Ala	Arg 340	Gly	Tyr	Lys	Val	Gly 3 4 5		Ile	Glu	Gln	Leu 350	Glu	Thr
Ser	Asp	Gln 355		Lys	Ala	Arg	Gly 360		Asn	Thr	Ile	Ile 365	Pro	Arg	Lys
Leu	Val 370	Gln	Val	Leu	Thr	Pro 375		Thr	Ala	Ser	Glu 380		Asn	Ile	Gly
Pro 385	_	Ala	Val	His	Leu 390		Ala	Ile	Lys	Glu 395		Lys	Met	Glu	Leu 400
Gln	Lys	Cys	Ser	Thr		Tyr	Gly	Phe	Ala		Val	Asp	Cys	Ala	

Leu	Arg	Phe	Trp 420	Val	Gly	Ser	Ile	Ser 425	Asp	Asp	Ala	Ser	Cys 430	Ala	Ala
Leu	Gly	Ala 435	Leu	Leu	Met	Gln	Val 440	Ser	Pro	Lys	Glu	Val 445	Leu	Tyr	Asp
Ser	Lys 450	Gly	Leu	Ser	Arg	Glu 455	Ala	Gln	Lys	Ala	Leu 460	Arg	Lys	Tyr	Thr
Leu 465	Thr	Gly	Ser	Thr	Ala 470	Val	Gln	Leu	Ala	Pro 475	Val	Pro	Gln	Val	Met 480
Gly	Asp	Thr	Asp	Ala 485	Ala	Gly	Val	Arg	Asn 490	Ile	Ile	Glu	Ser	Asn 495	Gly
Tyr	Phe	Lys	Gly 500	Ser	Ser	Glu	Ser	Trp 505	Asn	Cys	Ala	Val	Asp 510	Gly	Leu
Asn	Glu	Cys 515	Asp	Val	Ala	Leu	Ser 520	Ala	Leu	Gly	Glu	Leu 525	Ile	Asn	His
Leu	Ser 530	Arg	Leu	Lys	Leu	Glu 535	Asp	Val	Leu	Lys	His 540	Gly	Asp	Ile	Phe
Pro 545	Tyr	Gln	Val	Tyr	Arg 550	Gly	Cys	Leu	Arg	Ile 555	Asp	Gly	Gln	Thr	Met 560
Val	Asn	Leu	Glu	Ile 565	Phe	Asn	Asn	Ser	Cys 570	Asp	Gly	Gly	Pro	Ser 575	Gly
Thr	Leu	Tyr	Lys 580	Tyr	Leu	Asp	Asn	Cys 585	Val	Ser	Pro	Thr	Gly 590	Lys	Arg
		595					His 600					605			
Asn	Lys 610	Arg	Leu	Asp	Val	Val 615	Glu	Glu	Phe	Thr	Ala 620	Asn	Ser	Glu	Ser
Met 625	Gln	Ile	Thr	Gly	Gln 630	Tyr	Leu	His	Lys	Leu 635	Pro	Asp	Leu	Glu	Arg 640
Leu	Leu	Gly	Arg	Ile 645	Lys	Ser	Ser	Val	Arg 650	Ser	Ser	Ala	Ser	Val 655	Leu
Pro	Ala	Leu	Leu 660	Gly	Lys	Lys	Val	Leu 665	Lys	Gln	Arg	Val	Lys 670	Ala	Phe
Gly	Gln	Ile 675	Val	Lys	Gly	Phe	Arg 680	Ser	Gly	Ile	Asp	Leu 685	Leu	Leu	Ala
Leu	Gln 690	Lys	Glu	Ser	Asn	Met 695	Met	Ser	Leu	Leu	Tyr 700	Lys	Leu	Cys	Lys

. . .

Leu Pro Ile Leu Val Gly Lys Ser Gly Leu Glu Leu Phe Leu Ser Gln Phe Glu Ala Ala Ile Asp Ser Asp Phe Pro Asn Tyr Gln Asn Gln Asp Val Thr Asp Glu Asn Ala Glu Thr Leu Thr Ile Leu Ile Glu Leu Phe Ile Glu Arg Ala Thr Gln Trp Ser Glu Val Ile His Thr Ile Ser Cys Leu Asp Val Leu Arg Ser Phe Ala Ile Ala Ala Ser Leu Ser Ala Gly Ser Met Ala Arg Pro Val Ile Phe Pro Glu Ser Glu Ala Thr Asp Gln Asn Gln Lys Thr Lys Gly Pro Ile Leu Lys Ile Gln Gly Leu Trp His Pro Phe Ala Val Ala Ala Asp Gly Gln Leu Pro Val Pro Asn Asp Ile Leu Leu Gly Glu Ala Arg Arg Ser Ser Gly Ser Ile His Pro Arg Ser Leu Leu Thr Gly Pro Asn Met Gly Gly Lys Ser Thr Leu Leu Arg Ala Thr Cys Leu Ala Val Ile Phe Ala Gln Leu Gly Cys Tyr Val Pro Cys Glu Ser Cys Glu Ile Ser Leu Val Asp Thr Ile Phe Thr Arg Leu Gly Ala Ser Asp Arg Ile Met Thr Gly Glu Ser Thr Phe Leu Val Glu Cys Thr Glu Thr Ala Ser Val Leu Gln Asn Ala Thr Gln Asp Ser Leu Val Ile Leu Asp Glu Leu Gly Arg Gly Thr Ser Thr Phe Asp Gly Tyr Ala Ile Ala Tyr Ser Val Phe Arg His Leu Val Glu Lys Val Gln Cys Arg Met Leu Phe Ala Thr His Tyr His Pro Leu Thr Lys Glu Phe Ala Ser His Pro Arg Val Thr Ser Lys His Met Ala Cys Ala Phe Lys Ser

PCT/EP98/06977

- - -

Arg Ser Asp T 995	yr Gln Pro Arg Gly Cys Asp Gln Asp Leu Val Phe Leu 1000 1005	
Tyr Arg Leu T 1010	hr Glu Gly Ala Cys Pro Glu Ser Tyr Gly Leu Gln Val 1015 1020	
Ala Leu Met A 1025	la Gly Ile Pro Asn Gln Val Val Glu Thr Ala Ser Gly 1030 1035 1040	
Ala Ala Gln A	ala Met Lys Arg Ser Ile Gly Glu Asn Phe Lys Ser Ser 1045 1050 1055	
	Ser Glu Phe Ser Ser Leu His Glu Asp Trp Leu Lys Ser 160 1065 1070	
Leu Val Gly I 1075	lle Ser Arg Val Ala His Asn Asn Ala Pro Ile Gly Glu 1080 1085	
Asp Asp Tyr A	Asp Thr Leu Phe Cys Leu Trp His Glu Ile Lys Ser Ser 1095 1100	
Tyr Cys Val 9	Pro Lys	
<210>	32	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220> <223>	Forward primer for PCR amplification of ATHGENEA	
<223>	microsatellite	
<400>	32	24
accatgcata g	cttaaactt cttg	4 ک
<210>	33	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220> <223>	Reverse primer for PCR amplification of ATHGENEA microsatellite	
<400>	33	

33

<210>	34				
<211>	18				
<212>	DNA				
<213>	Artificial sequence				
<220>					
<223>	Forward primer DMCIN-A for PCR	on genomic	DNA	of	Arabidopsis
	thaliana ssp. Landsberg erecta	_			
	charrana sop. bandsberg crecta	Der			
<400>	34				
<400>	34				
~~~~~					18
gaagcgatat	tgtttgt				10
<210>	35				
<211>	18				
<212>	DNA				
<213>	Artificial sequence				
<220>					
<223>	Reverse primer DMCIN-B for PCR		DNA	of	Arabidopsis
	thaliana ssp. Landsberg erecta	"Ler"			
<400>	35				
agattgcgag	aacattcc				18
<210>	36				
<211>	31				
<212>	DNA				
<213>	Artificial sequence				
<220>					
<223>	Forward primer DMCIN-1 for PCR	on genomic	באם	٥f	Arabidonsis
(223)	thaliana ssp. Landsberg erecta	-	DNA	OL	Arabidopsis
	charrana ssp. bandsberg erecta	per			
<400>	2.6				
<400>	36				
					21
acgcgtcgac	tcagctatga gattactcgt g				31
210	20				
<210>	37				
<211>	29				
<212>	DNA				
<213>	Artificial sequence				
<220>					
<223>	Reverse primer DMCIN-2 for PCR	on genomic	DNA	of	Arabidopsis
	thaliana ssp. Landsberg erecta				<b>~</b> .
<400>	37				
gctctagatt	totogotota agactotot				29
-	e e e e e e e e e e e e e e e e e e e				

<210> <211>	38 32	
<212>	DNA	
<213>	Artificial sequence	
~2137		
<220>		
<223>	Forward primer DMCIN-3 for PCR on genomic DNA of Arabidopsi	s
	thaliana ssp. Landsberg erecta "Ler"	
<400>	38	
gctctagagc	ttctcttaag taagtgattg at 3	2
210	20	
<210>	39	
<211>	48	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer DMCIN-4 for PCR on genomic DNA of Arabidopsi	S
(223)	thaliana ssp. Landsberg erecta "Ler"	_
	challana ssp. Landsberg erecta Ler	
<400>	39	
tcccccqqqc	togagagato tocatggitt ottoagotot atgaatoo 4	8
<210>	40	
<211>	26	
<212>	DNA	
<213>	Artificial sequence	
	r	
<220>		
<223>	Forward primer DMCla for PCR on genomic DNA of Arabidopsis	
	thaliana ssp. Landsberg erecta "Ler"	
<400>	40	
<400>	40	
acqcqtcqac	gaattcgcaa gtgggg 2	: 6
		_
<210>	41	
<211>	38	
<212>	DNA	
<213>	Artificial seguence	
•		
<220>		
<223>	Reverse primer DMC1b for PCR on genomic DNA of Arabidopsis	
	thaliana ssp. Landsberg erecta "Ler"	
<400>	41	

WO 99/19492 PCT/EP98/06977

tccatggaga	totocogggt accgatttgo ttogaggg	38
<210>	42	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of ATEAT1 SSLP marker Arabidopsis thaliana subspecies	rin
<400>	42	
gccactgcgt	gaatgatatg	20
<210>	43	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
12237	nzerzera begaenee	
<220>		
<223>	Reverse primer for PCR amplification of ATEAT1 SSLP marker Arabidopsis thaliana subspecies	r in
<400>	43	
cgaacagcca	acattaattc cc	22
<210>	44	
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA63 SSLP marker	in
	Arabidopsis thaliana subspecies	
<400>	44	
aaccaaggca	cagaagcg	18
<210>	45	
<210>	18	
<211>	DNA	
<212>		
<b>~~13</b> >	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA63 SSLP marker Arabidopsis thaliana subspecies	in

<400>	45	
acccaagtga	LCGCCacc	18
4000443034		
<210>	46	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA248 SSLP market	r in
	Arabidopsis thaliana subspecies	
<400>	46	
(400)	10	
taccgaacca	aaacacaaag g	21
<210>	47	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA248 SSLP market	r in
	Arabidopsis thaliana subspecies	
<400>	47	
(100)	••	
tctgtatctc	ggtgaattct cc	22
<210>	48	
<211>	22	
<212>		
	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA128 SSLP market	: in
	Arabidopsis thaliana subspecies	
<400>	48	
11002	10	
ggtctgttga	tgtcgtaagt cg	22
<210>	49	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
	on-worker bedreamed	
<220>		

WO 99/19492 PCT/EP98/06977

<223>	Reverse primer for PCR amplification of NGA128 SSLP marker in Arabidopsis thaliana subspecies
<400>	49
atcttgaaac	ctttagggag gg 22
<210>	50
<211>	22
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Forward primer for PCR amplification of NGA280 SSLP marker in Arabidopsis thaliana subspecies
<400>	50
ctgatctcac	ggacaatagt gc 22
<210>	51
<211>	20
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Reverse primer for PCR amplification of NGA280 SSLP marker in Arabidopsis thaliana subspecies
<400>	51
ggctccataa	aaagtgcacc 20
<210>	52
<211>	21
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Forward primer for PCR amplification of NGA111 SSLP marker in
	Arabidopsis thaliana subspecies
<400>	52
ctccagttgg	aagctaaagg g 21
<210>	53
<211>	21
<212>	DNA
<213>	Artificial sequence
	•

38

₹220>		
<223>	Reverse primer for PCR amplification of NGA111 SSLP marke. Arabidopsis thaliana subspecies	r in
<400>	53	
tgttttttag	gacaaatggc g	21
<210>	5 <b>4</b>	
<211>	20	
<212>	DNA	
<213>		
(213)	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA168 SSLP marke: Arabidopsis thaliana subspecies	r in
<400>	54	
ccttcacatc	caaaacccac	20
<210>	55	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA168 SSLP market Arabidopsis thaliana subspecies	r in
<400>	55	
gcacataccc	acaaccagaa	20
<210>	56	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
	<del></del>	
<220>		
<223>	Forward primer for PCR amplification of NGA1126 SSLP marks in Arabidopsis thaliana subspecies	er
<400>	56	
cgctacgctt	ttcggtaaag	20

- - - - - <del>-</del>

PCT/EP98/06977 WO 99/19492

<210>	57	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA1126 SSLP marker in Arabidopsis thaliana subspecies	
<400>	57	
gcacagtcca	agtcacaacc 2	0
<210>	58	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA361 SSLP marker	in
	Arabidopsis thaliana subspecies	
<400>	58	
aaagagatga	gaatttggac 2	0
<210>	59	
<211>	23	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA361 SSLP marker : Arabidopsis thaliana subspecies	in
<400>	59	
acatatcaat	atattaaagt agc 2	3
<210>	60	
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA168 SSLP marker : Arabidopsis thaliana subspecies	in
<400>	60	

tcgtctactg	cactgccg	18
<210>	61	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA168 SSLP marker Arabidopsis thaliana subspecies	in
<400>	61	
gaggacatgt	ataggageet eg	22
<210>	62	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of AthBIO2 SSLP marke in Arabidopsis thaliana subspecies	r
<400>	62	
tgacctcctc	ttccatggag	20
<210>	63	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of AthBIO2 SSLP marke	r
	in Arabidopsis thaliana subspecies	
<400>	63	
ttaacagaaa	cccaaagctt tc	22
<210>	64	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
	cliffer and action	
<220>		
<223>	Forward primer for PCR amplification of AthUBIQUE SSLP mar	ker

.. . ..

```
<400>
             64
aggcaaatgt ccatttcatt g
                                                                          21
<210>
             65
<211>
             20
<212>
             DNA
<213>
             Artificial sequence
<220>
<223>
             Reverse primer for PCR amplification of AthUBIQUE SSLP marker
             in Arabidopsis thaliana subspecies
<400>
             65
acgacatggc agatttctcc
                                                                          20
<210>
             66
<211>
             21
<212>
             DNA
<213>
             Artificial sequence
<220>
<223>
             Forward primer for PCR amplification of NGA172 SSLP marker in
             Arabidopsis thaliana subspecies
<400>
             66
agctgcttcc ttatagcgtc c
                                                                         21
<210>
             67
<211>
             19
<212>
             DNA
<213>
             Artificial sequence
<220>
<223>
             Reverse primer for PCR amplification of NGA172 SSLP marker in
             Arabidopsis thaliana subspecies
<400>
             67
catccgaatg ccattgttc
                                                                         19
<210>
             68
<211>
             21
<212>
            DNA
<213>
            Artificial sequence
<220>
```

WO 99/19492 PCT/EP98/06977

<223>	Forward primer for PCR amplification of NGA126 SSLP marker in Arabidopsis thaliana subspecies	LI
<400>	63	
gaaaaaacgc	tactttcgtg g 21	L
<210>	69	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
	•	
<220>		
<223>	Reverse primer for PCR amplification of NGA126 SSLP marker i Arabidopsis thaliana subspecies	Ln
<400>	69 .	
caagagcaat	atcaagagca gc 22	2
<210>	70	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
(213)		
<220>		
<223>	Forward primer for PCR amplification of NGA162 SSLP marker i Arabidopsis thaliana subspecies	ın
<400>	70	
catgcaattt	gcatctgagg 20	)
<210>	71	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA162 SSLP marker i Arabidopsis thaliana subspecies	Ln
<400>	71	
ctctgtcact	cttttcctct gg 22	2
<210>	72	
<211>	21	
<211>	DNA	
<213>	Artificial sequence	
	······································	

PCT/EP98/06977

WO 99/19492

<220>		
<223>	Forward primer for PCR amplification of NGA6 SSLP marker in Arabidopsis thaliana subspecies	1
<400>	72	
tggatttctt	cctctcttca c	21
<210>	73	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA6 SSLP marker in	1
	Arabidopsis thaliana subspecies	•
<400>	73	
atggagaagc	ttacactgat c	21
<210>	74	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
	•	
<220>		
<223>	Forward primer for PCR amplification of NGA12 SSLP marker i	n
	Arabidopsis thaliana subspecies	•••
<400>	74	
aatgttgtgg	tecectecte	20
aacgeegeee		. 0
<210>	75	
<211>	22	
<211>	DNA	
<212>		
(213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA12 SSLP marker i	n.
	Arabidopsis thaliana subspecies	
<400>	75	
tgatgctctc	tgaaacaaga gc	22

44

<210>	76
<211>	21
<212>	DNA
<213>	Artificial sequence
	•
<220>	
<223>	Forward primer for PCR amplification of NGA8 SSLP marker in Arabidopsis thaliana subspecies
<400>	76
gagggcaaat	ctttatttcg g
<210>	77
<211>	22
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Reverse primer for PCR amplification of NGA8 SSLP marker in
	Arabidopsis thaliana subspecies
<400>	77
tggctttcgt	ttataaacat cc 22
<210>	78
<211>	21
<212>	DNA
<213>	Artificial sequence
	***************************************
<220>	
<223>	Forward primer for PCR amplification of NGA1107 SSLP marker
	in Arabidopsis thaliana subspecies
<400>	78
gcgaaaaaac	aaaaaaatcc a 21
<210>	79
<211>	21
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Reverse primer for PCR amplification of NGA1107 SSLP marker
	in Arabidopsis thaliana subspecies

<400>

cgacgaatcg	acagaattag g	21
<210>		
<211>	80	
	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA225 SSLP marker Arabidopsis thaliana subspecies	ir
<400>	80	
gaaatccaaa	tcccagagag g	21
<210>	81	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA225 SSLP marker Arabidopsis thaliana subspecies	in
<400>	81	
tctccccact	agttttgtgt cc	22
<210>	82	
<211>	19	
<212>	DNA	
<213>		
12237	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA249 SSLP marker Arabidopsis thaliana subspecies	in
<400>	82	
taccgtcaat	ttcatcgcc 1	. 9
<210>	83	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA249 SSLP marker Arabidopsis thaliana subspecies	in

<400>	83	
ggatocotaa	ctgtaaaatc cc 2	2
<210>	84	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of CA72 SSLP marker in Arabidopsis thaliana subspecies	
<400>	84	
aatcccagta	accaaacaca ca 2	2
<210>	85	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of CA72 SSLP marker in	
~ <b></b>	Arabidopsis thaliana subspecies	
<400>	85	
cccagtctaa	ccacgaccac 2	0
<210>	86	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA151 SSLP marker	۔ د
	Arabidopsis thaliana subspecies	11
<400>	86	
gttttgggaa	gttttgctgg 2	0
<210>	87	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
	· · · · · · · · · · · · · · · · · · ·	
~220×		

PCT/EP98/06977 WO 99/19492

11 0 77	17472	
	47	
<223>	Reverse primer for PCR amplification of NGA151 SSLE Arabidopsis thaliana subspecies	o marker in
<400>	87	•
cagtctaaaa	gcgagagtat gatg	24
<210>	88	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA106 SSLF Arabidopsis thaliana subspecies	marker ir
<400>	88	
gttatggagt	ttctagggca cg	22
<210>	8 9	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Reverse primer for PCR amplification of NGA106 SSLP Arabidopsis thaliana subspecies	marker in
<400>	89	
tgccccattt	tgttcttctc	20
<210>	90	
<211>	20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Forward primer for PCR amplification of NGA139 SSLP	
(223)	Arabidopsis thaliana subspecies	marker in
<400>	90	
agagctacca	gatccgatgg	20

<210>	91	
<211>	21	
<212>	DNA	
<213>	Artificial	sequence

48

<220> <223>	Reverse primer for PCR amplification of NGA139 SSLP marker in
	Arabidopsis thaliana subspecies
<400>	91
ggtttcgttt	cactatecag g 21
<210>	92
<211>	22
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Forward primer for PCR amplification of NGA76 SSLP marker in Arabidopsis thaliana subspecies
<400>	92
ggagaaaatg	tcactctcca cc 22
<210>	93
<211>	20
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Reverse primer for PCR amplification of NGA76 SSLP marker in Arabidopsis thaliana subspecies
<400>	93
aggcatggga	gacatttacg 20
<210>	94
<211>	20
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Forward primer for PCR amplification of ATHSO191 SSLP marker
	in Arabidopsis thaliana subspecies
<400>	94
ctccaccaat	catgcaaatg 20

<210> <211>	95 21
<212>	DNA .
<213>	
<213>	Artificial sequence
<220>	
<223>	Reverse primer for PCR amplification of ATHSO191 SSLP marker in Arabidopsis thaliana subspecies
<400>	95
tgatgttgat	ggagatggtc a 21
<210>	96
<211>	22
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Forward primer for PCR amplification of NGA129 SSLP marker in
	Arabidopsis thaliana subspecies
<400>	96
tcaggaggaa	ctaaagtgag gg 22
<210>	97
<211>	22
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Reverse primer for PCR amplification of NGA129 SSLP marker in Arabidopsis thaliana subspecies
<400>	97
cacactgaag	atggtcttga gg 22
<210>	98
<211>	8062
<212>	DNA
<213>	Arabidopsis thaliana ecotype Columbia
<220>	
<223>	Genomic DNA sequence of AtMSH6
<400>	97

aagaaatgaa	agatatatat	tgttttttca	tttatcaaac	aaaacaacaa	gactttttt	120
ttacttttta	cattggtcaa	caaaatacaa	gataaacgac	atcgtttaat	catttcccaa	180
ttttacccct	aagtttaaca	cctagaacct	tctccatctt	cgcaagcaca	gcctgattag	240
gaacagcttt	accattctca	tattcctgaa	ctacctgagt	cctctcattg	atctgtttcg	300
ccaaatccgc	ttgtgacatc	ttcttctcca	atctcgcttt	ctgtatcatc	aacctcacct	360
ctgctttcac	acgatccatc	gccgcaggct	ctgtttcttc	ttccagcttc	ttcgtgttaa	420
tcaccggaac	cgccgtagat	ttcccctttt	tgttcgaacc	ggcatcgaat	ttcttaaccg	480
tttgaaccgc	gacaccgttt	ctcagagctg	cgttaaccgc	tttcggatcg	cgtaggtctt	540
ggctcttttg	ttttgatttg	tggagaacta	ctggttccca	gtcttgtgtt	actgctcctg	600
ggtatctgct	cggcatcgtc	gatgaattga	gagaaaggaa	caacgcgaaa	attttattaa	660
tctgagtttt	gaaattgaga	aacgatgaag	atgaagaatg	ttgttgagag	gattgtgata	720
tttatatata	cgaagattgg	tttctggaga	attcgatcat	ctttttctcc	attttcgtct	780
ctggaacgtt	cttagagatg	attgacgacg	tgtcattatc	tgatttgcag	ttaaccaatg	840
ctttttgggt	tggattcgtg	gtacaccata	ttatccgatt	tggctcaatg	gttttatata	900
aatttggttt	teggtteggt	tatgagttat	cattaaaatt	aagctaacca	aaaattttcg	960
taaaatttat	ttcggtttca	attcggatcc	cttacttcca	gaaccgaatt	attcgaaacc	1020
ggggttagcc	gaaccgaata	ccaatgcctg	attgactcgt	tggctagaaa	gatccaacgg	1080
tatacaataa	tagaacataa	atcggacggt	catcaaagcc	tcaaagagtg	aacagtcaac	1140
aaaaaagtt	gagecetgag	gagtatcgtt	tccgccattt	ctacgacgca	aggcgaaaat	1200
ttttggcgcc	aatctttccc	ccctttcgaa	ttctctcagc	tcaaaacatc	gtttctctct	1260
cactctctct	cacaattcca	aaaaatgcag	cgccagagat	cgattttgtc	tttcttccaa	1320
aaacccacgg	cggcgactac	gaagggtttg	gtttccggcg	atgctgctag	cggcgggggc	1380
ggcagcggag	accacgattt	aatgtgaagg	aaggggatgc	taaaggcgac	gcttctgtac	1440
gttttgctgt	ttcgaaatct	gtcgatgagg	ttagaggaac	ggatactcca	ccggagaagg	1500
ttccgcgtcg	tgtcctgccg	tctggattta	agccggctga	atccgccggt	gatgcttcgt	1560
ccctgttctc	caatattatg	cataagtttg	taaaagtcga	tgatcgagat	tgttctggag	1620
agaggtacta	atcttcgatt	ctcttaattt	tgttatcttt	agctggaaga	agaagattcg	1680

tgtaatttgt	tgtattcgtt	ggagagattc	tgattactgc	attggatcgt	tgtttacaaa	1740
ttttcaggag	ccgagaagat	gttgttccgc	tgaatgattc	atctctatgt	atgaaggcta	1800
atgatgttat	tcctcaattt	cgttccaata	atggtaaaac	tcaagaaaga	aaccatgctt	1860
ttagtttcag	tgggagagct	gaacttagat	cagtagaaga	tataggagta	gatggcgatg	1920
ttcctggtcc	agaaacacca	gggatgcgtc	cacgtgcttc	tcgcttgaag	cgagttctgg	1980
aggatgaaat	gacttttaag	gaggataagg	ttcctgtatt	ggactctaac	aaaaggctga	2040
aaatgctcca	ggatccggtt	tgtggagaga	agaaagaagt	aaacgaagga	accaaatttg	2100
aatggcttga	gtcttctcga	atcagggatg	ccaatagaag	acgtcctgat	gateceettt	2160
acgatagaaa	gaccttacac	ataccacctg	atgttttcaa	gaaaatgtct	gcatcacaaa	2220
agcaatattg	gagtgttaag	agtgaatata	tggacattgt	gcttttcttt	aaagtggtta	2280
gtaactatta	atctagtgtt	caatccattt	cctcaatgtg	atttgttcac	ttacatctgt	2340
ttacgttatg	ctcttctcag	gggaaatttt	atgagctgta	tgagctagat	gcggaattag	2400
gtcacaagga	gcttgactgg	aagatgacca	tgagtggtgt	gggaaaatgc	agacaggtaa	2460
attagttgaa	acaactggcc	tgcttgaatt	attgtgtcta	taaattttga	caccaccttt	2520
tgtttcaggt	tggtatctct	gaaagtggga	tagatgaggc	agtgcaaaag	ctattagctc	2580
gtgggtaagg	gaaccatcat	actttatgga	attcgtttac	tgctacttcg	gctaggattt	2640
aagaaatgga	aatcacttca	agcatcatta	gttaggatcc	tgagaactca	ggatgttttc	2700
ttattcgtta	tataataagt	cttttcatca	aggagtaaca	aacaaaactt	gcacaatatt	2760
tgtgtgctca	ctggcaaggc	atatataccc	agctaacctt	tgctagttca	ctgtagtaac	2820
agttacggat	aatatatgtt	tacttgtatg	tggtaccctc	attttgtctc	tcatggaggc	2880
tttcaagcct	tgtgttgaaa	ctggatagtt	acatatgctt	ccaacagaaa	ctagcatgca	2940
gattcatatg	ctttcctatt	ctactaatta	tgtattgaca	cactcgttgt	ttcttttgaa	3000
agatataaag	ttggacgaat	cgagcagcta	gaaacatctg	accaagcaaa	agccagaggt	3060
gctaatactg	taagttttct	tggataggtc	aaggagagtg	ttgcagactg	tttttgatca	3120
tttcttttc	tgtacattac	tttcatgctg	taattaactc	aatggctatt	ctggtctgat	3180
tatcagataa	ttccaaggaa	gctagttcag	gtattaactc	catcaacagc	aagcgaggga	3240
aacatcgggc	ctgatgccgt	ccatcttctt	gctataaaag	aggtttgtta	tttacttatt	3300

3360 tatettatea tgtteagtte atecaagtee tgaaaaatta cactettett taccaatett 3420 ccatcaagct gtgtaaagga tttggaatta gaaaatcatt atttgatgct ttgttttata tgcaagaggt tcccttgaaa agatctgttt aagattcttt gcacttgaaa aattcaatct 3480 ttttaagtga atcccctact ttcttacaat gatcatagtc tgcaattgca tgtcaagtaa 3540 tateatteet tgttactgea tecceetett tettaatgae cattgtetat gttgtgtttg 3600 tetegtgtge tggagaaaat gatagetgat ceaagetgta cattateatg attaagtage 3660 tgctcaggaa ttgcctttgg ttacattgcc taatggtttg atgtcaattt ttcttctgaa 3720 tetttatttt agateaaaat ggagetaeaa aagtgtteaa etgtgtatgg atttgetttt 3780 gttgactgtg ctgccttgag gttttgggtt gggtccatca gcgatgatgc atcatgtgct 3840 gctcttggag cgttattgat gcaggtaagc aagtgtattc tgtatcttat gtgtaccatg 3900 tgacttcctg tgcatatatt tgggttgcag gaactaattc tgaatcacca tttggtatgt 3960 tttttccagg tttctccaaa ggaagtgtta tatgacagta aaggtaaact gcttgtatcg 4020 ccagttgttt tgttaaacag aatttaaggt aaatgacact ggttaattta aagtgcatac 4080 atgttgaaat attgcagggc tatcaagaga agcacaaaag gctctaagga aatatacgtt 4140 gacaggtace atttcagtag gcaagctaac tgacaattta accgctcacc gaatgatagg 4200 tetettaaae attgetaatg tagatgatgt ttatgtttea atetaatagg gtetaeggeg 4260 gtacagttgg ctccagtacc acaagtaatg ggggatacag atgctgctgg agttagaaat 4320 ataatagaat ctaacggata ctttaaaggt tcttctgaat catggaactg tgctgttgat 4380 ggtctaaatg aatgtgatgt tgcccttagt gctcttggag agctaattaa tcatctgtct 4440 aggctaaagg tgtgttggct tgtttagttt ttgcttttca caaattaagc aaaggaactt 4500 ttcataactt acagtttcta tctacttgca gctagaagat gtacttaagc atggggatat 4560 ttttccatac caagtttaca ggggttgtct cagaattgat ggccagacga tggtaaatct 4620 tgagatattt aacaataget gtgatggtgg teetteagge aagtgeatat ttettttttg 4680 ataacttcaa ctagagggca gacatagaag gaaaaattct aatacttcgt acggatctcc 4740 agtaagtaat agccgatttt tgtttaccta tgtagggacc ttgtacaaat atcttgataa 4800 ctgtgttagt ccaactggta agcgactctt aaggaattgg atctgccatc cactcaaaga 4860 tgtagaaagc atcaataaac ggcttgatgt agttgaagaa ttcacggcaa actcagaaag 4920

tatgcaaatc	actggccagt	atctccacaa	acttccagac	ttagaaagac	tgctcggacg	4980
catcaagtct	agcgttcgat	catcagcete	tgtgttgcct	gctcttctgg	ggaaaaaagt	5040
gctgaaacaa	cgagtaagta	tcaatcacaa	gttttctgag	taatgccttc	catgagtagt	5100
ataggactaa	aacattacgg	gtctagctaa	agactgttct	ccttcttttg	caatgtctgg	5160
ttattcatta	catttctctt	aacttattgc	attgcaggtt	aaagcatttg	ggcaaattgt	5220
gaaagggttc	agaagtggaa	ttgatctgtt	gttggctcta	cagaaggaat	caaatatgat	5280
gagtttgctt	tataaactct	gtaaacttcc	tatattagta	ggaaaaagcg	ggctagagtt	5340
atttctttct	caattcgaag	cagccataga	tagcgacttt	ccaaattatc	aggtgcccat	5400
ctatctttca	tactttacaa	caaaatgtct	gtcactactc	aaagcaatgc	atatggctta	5460
gatctcaact	cacaccccga	ggatcctaaa	gggatttgct	ttttattcct	aatgtttttg	5520
gatggtttga	tttatttcta	acttgaactt	attaatcttg	taccagaacc	aagatgtgac	5580
agatgaaaac	gctgaaactc	tcacaatact	tatcgaactt	tttatcgaaa	gagcaactca	5640
atggtctgag	gtcattcaca	ccataagctg	cctagatgtc	ctgagatctt	ttgcaatcgc	5700
agcaagtctc	tctgctggaa	gcatggccag	gcctgttatt	tttcccgaat	cagaagctac	5760
agatcagaat	cagaaaacaa	aagggccaat	acttaaaatc	caaggactat	ggcatccatt	5820
tgcagttgca	gccgatggtc	aattgcctgt	tccgaatgat	atactccttg	gcgaggctag	5880
aagaagcagt	ggcagcattc	atcctcggtc	attgttactg	acgggaccaa	acatgggcgg	5940
aaaatcaact	cttcttcgtg	caacatgtct	ggccgttatc	tttgcccaag	tttgtatact	6000
cgttagataa	ttactctatt	ctttgcaatc	agttcttcaa	catgaataat	aaattctgtt	6060
ttctgtctgc	agcttggctg	ctacgtgccg	tgtgagtctt	gcgaaatctc	cctcgtggat	6120
actatcttca	caaggcttgg	cgcatctgat	agaatcatga	caggagagag	taagttttgt	6180
tctcaaaata	ccaattcctc	gaactattta	ctcagatttt	gtctgattgg	acaaggtggt	6240
tttgcttttt	tttaggtacc	tttttggtag	aatgcactga	gacagcgtca	gttcttcaga	6300
atgcaactca	ggattcacta	gtaatccttg	acgaactggg	cagaggaact	agtactttcg	6360
atggatacgc	cattgcatac	tcggtaacct	gctcttctcc	ttcaacttat	acttgttgat	6420
caacaaaaac	atgcaattca	ttttgctgaa	acttattgat	ttatatcagg	tttttcgtca	6480
cctggtagag	aaagttcaat	gtcggatgct	ctttgcaaca	cattaccácc	ctctcaccaa	6540

ggaattcgcg	tctcacccac	gtgtcacctc	gaaacacatg	gcttgcgcat	tcaaatcaag	6600
atctgattat	caaccacgtg	gttgtgatca	agacctagtg	ttcttgtacc	gtttaaccga	6660
gggagcttgt	cctgagagct	acggacttca	agtggcactc	atggctggaa	taccaaacca	6720
agtggttgaa	acagcatcag	gtgctgctca	agccatgaag	agatcaattg	gggaaaactt	6780
caagtcaagt	gagctaagat	ctgagttctc	aagtctgcat	gaagactggc	tcaagtcatt	6840
ggtgggtatt	tctcgagtcg	cccacaacaa	tgccccatt	ggcgaagatg	actacgacac	6900
tttgttttgc	ttatggcatg	agatcaaatc	ctcttactgt	gttcccaaat	aaatggctat	6960
gacataacac	tatctgaagc	tcgttaagtc	ttttgcttct	ctgatgttta	ttcctcttaa	7020
aaaatgctta	tatatcaaaa	aattgtttcc	tcgattataa	caagattata	tatgtatctg	7080
tcggtttagc	tatggtatat	aatatatgta	tgttcatgag	attggtcaag	agaaatactc	7140
acaaacagta	tattaagaag	gaaatatgtt	tatgcattaa	tttaagtttc	aagataaact	7200
gcaaataacc	tcgactaaag	ttgcaaagac	caaacacaaa	ttacaaaact	tataagactt	7260
aagttctgaa	ttccctaaaa	ccaaaaaaaa	aaacagaaca	tattttgttg	catctacaaa	7320
caacacaaac	ctacatagtt	tataacttac	tcatcactga	gattaacatc	agaatcattc	7380
tccatttctt	catcttcact	ctcatcatca	tcáccaccac	catgatgatt	ctcctcct	7440
tcacgtaacc	tagcaatctc	actctgagct	ctatcaacaa	tetgettett	ctgcaactcc	7500
aaatctctct	gaaaatcagc	tctcatcttc	tccaactcct	tcatttgctc	tttcttactc	7560
ttctccatct	tctcataaac	cttcccaaac	ctctcaacag	aatccgccaa	catcttatac	7620
gaagcagcgt	cattaacctt	cttcctctcg	tactcaacct	catcatcctc	atcctcctcc	7680
tcttcagaat	caccaggact	atccatcatc	tcatcaaacc	cattagactt	atctaaataa	7740
accttagtgt	tcataaacac	aaactcacct	gaatcaacac	cacaagctaa	acctaaatcc	7800
gacttgggcg	aaacacaaag	caacatatcc	aacttattga	aaaacgacca	tttacttgaa	7860
cctaaacctg	atttctcaac	cttaatcttc	tctttctat	acttcctctt	caagtcatca	7920
atcattctcc	tacattgcgt	ctcagatttc	tccatcctta	gctcctcact	cactttctca	7980
gctacttcat	tccaatcctc	gttcctcaaa	ctccttctac	ccaattgcaa	aaacctatct	8040
ccccaaactt	caagcaacac	aa				8062

### **PCT**

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/82, 15/29, C07K 14/415, C12N 15/10, 5/04, 5/14, A01H 5/00

(11) International Publication Number:

WO 99/19492

A3 (43) Internati

(43) International Publication Date:

22 April 1999 (22.04.99)

(21) International Application Number:

PCT/EP98/06977

(22) International Filing Date:

9 October 1998 (09.10.98)

(30) Priority Data:

PO 9745

10 October 1997 (10.10.97) AU

(71) Applicant (for all designated States except US):
RHONE-POULENC AGRO [FR/FR]; 14/20, rue Pierre

Baizet, F-69009 Lyon (FR).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DOUTRIAUX, Marie-Pascale [FR/FR]; 64, route de Villebon, F-91160 Saulx les Chartreux (FR). BETZNER, Andreas, Stefan [AU/AU]; 40 Dallachy Place, Page, ACT 2614 (AU). FREYSSINET, Georges [FR/FR]; 21, rue de Nervieux, F-69450 Saint Cyr au Mont d'Or (FR). PEREZ, Pascal [FR/FR]; 17, chemin de la Pradelle, Varennes, F-63450 Chanonat (FR).

(74) Agent: GENIN, Patrick; Rhône-Poulenc Agro, DPI, 14/20, rue Pierre Baizet, F-69009 Lyon (FR). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### **Published**

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:
24 June 1999 (24.06.99)

(54) Title: METHODS FOR OBTAINING PLANT VARIETIES

(57) Abstract

An isolated and purified DNA molecule comprising a polynucleotide sequence encoding a polypeptide functionally involved in the DNA mismatch repair system of a plant.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	ÜA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	2W	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2311	Zimozowc
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Inte. onal Application No PCT/EP 98/06977

CLASSIFICATION OF SUBJECT MATTER PC 6 C12N15/82 C12N A. CLASS C12N15/29 C07K14/415 C12N15/10 C12N5/04 C12N5/14 A01H5/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N A01H Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Α WO 95 15381 A (CHAPELLE ALBERT DE ;UNIV 1-5. JOHNS HOPKINS (US)) 8 June 1995 33-35 see the whole document WO 97 37011 A (SETRATECH S A R L ; BORTS Α 1 - 35RHONA HARRIET (GB); LOUIS EDWARD JOHN (GB) 9 October 1997 see abstract see the whole document WO 90 07576 A (SETRATECH) 12 July 1990 Α 1,7-27,31.32 see the whole document and specially page 5, line 16-31, examples 3-4 -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents : "T" later document published after the international filing date "A" document defining the general state of the art which is not or priority date and not in conflict with the application but cited to understand the principle or theory underlying the considered to be of particular relevance "E" earlier document but published on or after the international invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but in the art. later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16 April 1999 03/05/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016 Mateo Rosell, A.M.

Inter onal Application No
PCT/EP 98/06977

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category '	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Α	WO 97 01634 A (ANGELETTI P IST RICHERCHE BIO ;JIRICNY JOSEF (IT); PALOMBO FABIO () 16 January 1997 see page 1, line 18 - page 2, line 28 see page 58	1,2
A	PROLLA T A ET AL: "MLH1, PMS1, AND MSH2 INTERACTIONS DURING THE INITATION OF DNA MISMATCH REPAIR IN YEAST" SCIENCE, Vol. 265, 19 August 1994, pages 1091-1093	1,2,4,5
	XP000676403 cited in the application	
4	A. WATANABE ET AL., : "Genomic organization and expresssion of the human MSH3 gene" GENOMICS, vol. 31, 1996, pages 311-318, XP002099967 see the whole document and specially Fig.3	1-6
1	ACHARYA S ET AL: "hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6"	1-6
	PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, no. 93, October 1996, pages 13629- 13629, XP002080159 cited in the application sequences from this paper deposited in GenBank under AC= U61981 (hMSH3), and U54777 and U73732-7 (hMSH6). see the whole document	
	K. LIU ET AL., : "characterization of the mouse Rep-3 gene: sequence similarities to bacterial and yeast mismatch-repair proteins" GENE, vol. 147, 1994, pages 169-177, XP002099968 see the whole document and specially Figure 2.	1-6
	I. IACCARINO ET AL., : "MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2" CURRENT BIOLOGY, vol. 6, no. 4, April 1996, pages 484-486, XP002099969 sequence is deposited at GenBank under AC= Z47746. see the whole document	1-6
	-/	
	,	

Inte. ional Application No PCT/EP 98/06977

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PCT/EP 98/06977
Category *		
<del> </del>		Relevant to claim No.
A 	CORRADI A ET AL: "CDNA SEQUENCE, MAP, AND EXPRESSION OF THE MURINE HOMOLOG OF GTBP, ADNA MISMATCH REPAIR GENE" GENOMICS, vol. 36, no. 2, 1 September 1996, pages 288-295, XP000613761 see the whole document and specially Fig.1	1-6
<b>Р</b> , Х	DATABASE EMBL NUCLEOTIDE AND PROTEIN SEQUENCES,13 July 1998, XP002099368 HINXTON, GB AC= AJ007791. Arabidopsis thaliana mRNA for mismatch repair protein (MSH3) see abstract	1-6
, x	DATABASE EMBL NUCLEOTIDE AND PROTEIN SEQUENCES,1 August 1998, XP002099369 HINXTON, GB AC= 065607. Arabidopsis thaliana. Putative mismacht DNA repair protein see abstract	1-5
, X	DATABASE EMBL NUCLEOTIDE AND PROTEIN SEQUENCES,16 October 1997, XP002099371 HINXTON, GB AC= AF009657. Arabidopsis thalian MutS homolog 6-like protein mRNA. see abstract -& K.M. CULLIGAN AND J.B. HAYS: "DNA mismatch repair in plants" PLANT PHYSIOLOGY, vol. 115, 1997, pages 833-839, XP002099372 see the whole document	1-6
	DATABASE EMBL NUCLEOTIDE AND PROTEIN SEQUENCES,17 December 1998, XP002099373 HINXTON, GB AC= AJ131669. Triticum aestivum mRNA for MSH3 protein, MSH3 gene. see abstract	1-6
	DATABASE EMBL NUCLEOTIDE AND PROTEIN SEQUENCES, 12 October 1998, XP002099370 HINXTON, GB AC= AJ007792. Arabidopsis thaliana DNA mismatch repair protein, MSH6 gene. see abstract	1-6

Information on patent family members

Inter onal Application No
PCT/EP 98/06977

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9515381	Α	08-06-1995	EP JP US US	0730648 A 9506509 T 5693470 A 5837443 A	11-09-1996 30-06-1997 02-12-1997 17-11-1998
WO 9737011	Α	09-10-1997	NONE		
WO 9007576	A	12-07-1990	FR AT AU CA DE DE EP ES IE JP	2641793 A 127519 T 4834390 A 2006549 A 68924174 D 68924174 T 0449923 A 2077058 T 72469 B 4503601 T	20-07-1990 15-09-1995 01-08-1990 26-06-1990 12-10-1995 14-03-1996 09-10-1991 16-11-1995 09-04-1997 02-07-1992
WO 9701634	Α	16-01-1997	IT AU	RM950434 A 6241296 A	27-12-1996 30-01-1997