2.1.协议接口	2
2.2.硬件接口	2
2.3.MODBUS 的 RTU 模式的通用通讯帧格式	2
2.4.MODBUS 地址对应表	2
2.5.MODBUS 功能码	5
2.5.1 03 功能 (读保持寄存器)	5
2.5.2 04 功能 (读输入寄存器)	5
2.5.3 06 功能 (写单个保持寄存器)	6
2.5.4 10 功能 (写多个保持寄存器)	7
2.5.5 错误数据回应	7
2.6.CRC 校验计算方法	8
2.6.1 计算函数	8
2.6.2 计算工具	9
2.7.操作举例	9
2.7.1.读取系统显示相关信息	
2.7.2. 读取系统设置相关信息	
2.7.3. 读取开关设置相关信息	
2.7.4. 读取 NTC 探温参数相关信	11
2.7.5. 读取设置参数相关信息	11
2.7.6. 读取 NTC1 温度校准相关信息	
2.7.7. 设置 TEC1 控制温度(40100)	
2.7.8. 设置 TEC1 温控开关(40040)	
2.7.9. 设置 TEC1 输出电压 (40101)	
2.7.10. 设置 TEC1 PID P 值 (40107)	
2.7.11. 设置继电器工作模式 (40005)	
2.7.12. 设置 TEC1 温升 (40009)	
2.7.13. 按键功能码 (40001)	
2.7.14. 设置参数批量设置	
2.7.15. NTC1 校准参数批量设置	16

2.1.协议接口

MODBUS RTU 协议,

2.2.硬件接口

● 通讯接口: RS232

● 通讯参数:波特率:115200,数据为8,开始位1,停止位1,校验位无

2.3.MODBUS 的 RTU 模式的通用通讯帧格式

起始时间间隔	地址码	功能码	数据区	CRC 校验	CRC 校验	结束时间间隔
				(低位)	(高位)	
T1-T2-T3-T4	1 Byte	1 Byte	n Bytes	1 Byte	1 Byte	T1-T2-T3-T4

- RTU 模式中,信息开始至少需要有3.5ms 的静止时间,依据使用的波特率,很容易计算这个静止的时间(如上表格中的T1-T2-T3-T4)。发送完最后一个字符号后,也有一个3.5ms 的静止时间,然后才能发送一个新的信息。
- 整个信息必须连续发送。如果在发送帧信息期间,出现大于1.5ms 的静止时间时,则接收设备刷新不完整的信息,并假设下一个地址数据。
- 同样一个信息后,立即发送的一个新信息,(若无3.5 ms 的静止时间)这将会产生一个错误。是因为合并信息的CRC 校验码无效而产生的错误。
- 地址码: 1-64, 对应分机 1-分机 64

● 功能代码: 3,6

● 校验方式: CRC-16

2.4.MODBUS 地址对应表

地址十进制	注释	字节	意义 (2Byte)注释	支持指令			
系统显示寄存器组,只读寄存器,只允许 04 指令操作							
30000	NTC1 显示温度	s16	09 C4 = 2500 = 25.00 °C	04 指令			
30001	NTC2 显示温度	s16	F6 3C = -2500 = -25.00 °C	04 指令			
30002	实时水流量值	u16	09 C4 = 1000 = 10.00L	04 指令			
30003	NTC1 设置温度	s16	09 C4 = 2500 = 25.00 °C	04 指令			
30004	NTC2 设置温度	s16	09 C4 = 2500 = 25.00°C	04 指令			
30005	NTC1 温控开关	u16	0: 美闭 1: 开启	04 指令			

30006	NTC2 温控开关	u16	0: 关闭 1: 开启	04 指令
30007	水泵开关状态	u16	0: 关闭 1: 开启	04 指令
	报警信息		Bit0: NTC1 温度报警	04 指令
2000		4.6	Bit1: NTC2 温度报警	
30008		u16	Bit2: 水流量报警	
			Bit3: 水流报警	
30009	TEC1 PID 输出值	s16	范围 +128 ~ -128	04 指令
30010	TEC2 PID 输出值	s16	范围 +128 ~ -128	04 指令
30011	水流量脉冲值	u16	00 32 = 50	04 指令
激活信息寄存	器组,只读寄存器组,	只允	许 04 指令操作	
39000	设备类型	u16	0- 6553	04 指令
39001	设备型号	u16	0- 6553	04 指令
39002	软件版本	u16	0- 6553	04 指令
39003	硬件版本	u16	0- 6553	04 指令
39004	生产日期-H	u16	00 03 37 EF = 210927	04 指令
39005	生产日期-L	u16	2021年 09月 27日	04 指令
39006	激活模式	u16	0: 单次 0x5AA5: 永久	04 指令
39007	激活时间	u16	0- 65536h,单位小时	04 指令
39008	剩余时间	u16	0- 65536h,单位小时	04 指令
39009	累计时间	u16	0- 65536h,单位小时	04 指令
39010	开机次数	u16	0- 65536 次	04 指令
39011	加密字节	u16	加密字节,用于生成密码	04 指令
39012-39021	设备名称[10]	u16	设备名称	04 指令
39022-39027	UUID[6]	u16	唯一 ID,用于生成密码	04 指令
系统参数寄存	器组,保持寄存器			
40000	设备地址	u16	1-254	03、06、10 指令
40001	按键寄存器	u16	0xffff 无效键值	03、06、10 指令
40002	按键数值	u16	按键数据	03、06、10 指令
40003	密码寄存器-H	u16	00 0B 1A 93 = 727699	03、06、10 指令
40004	密码寄存器-L	u16	输入密码	03、06、10 指令
40005	继电器模式	u16	0: 手动 1: 水冷 2: 风冷	03、06、10 指令
40006	最大水流量	u16	09 C4 = 2500 = 25.00L	03、06、10 指令
40007	最小水流量	u16	$00 \ 32 = 50 = 0.50L$	03、06、10 指令
40008	流量修正系数	u16	09 C4 = 1000 = 1.000	03、06、10 指令
40009	NTC1 温升设置	s16	$00 \text{ OA} = 10 = 10^{\circ}\text{C/m}$	03、06、10 指令
40010	NTC2 温升设置	s16	$00 \text{ OA} = 10 = 10^{\circ}\text{C/m}$	03、06、10 指令
40011	继电器回差值	u16	00 14 = 20	
开关设置寄存	器组,保持寄存器			
40040	TEC1 温控开关	u16	0: 关闭 1: 开启	03、06、10 指令
40041	TEC2 温控开关	u16	0: 关闭 1: 开启	03、06、10 指令
40042	水泵 控制开关	u16	0: 关闭 1: 开启	03、06、10 指令

40043	NTC1 温度报警			
		u16	0: 关闭 1: 开启	03、06、10 指令
40044	NTC2 温度报警	u16	0: 关闭 1: 开启	03、06、10 指令
40045	水流量报警开关	u16	0: 关闭 1: 开启	03、06、10指令
40046	水量报警开关	u16	0: 关闭 1: 开启	03、06、10 指令
3 路探温寄存器		l		- U.S. A.
40080	NTC3 实时温度	s16	09 C4 = 2500 = 25.00 °C	03 指令
40081	NTC4 实时温度	s16	09 C4 = 2500 = 25.00 ℃	03 指令
40082	NTC5 实时温度	s16	09 C4 = 2500 = 25.00 °C	03 指令
40083	NTC3 最大温度	s16	09 C4 = 2500 = 25.00 °C	03、06、10 指令
40084	NTC3 最小温度	s16	09 C4 = 2500 = 25.00 °C	03、06、10 指令
40085	NTC3 报警开关	s16	0: 关闭 1: 开启	03、06、10 指令
40086	NTC4 最大温度	s16	09 C4 = 2500 = 25.00°C	03、06、10 指令
40087	NTC4 最小温度	s16	09 C4 = 2500 = 25.00°C	03、06、10 指令
40088	NTC4 报警开关	s16	0: 关闭 1: 开启	03、06、10 指令
40089	NTC5 最大温度	s16	09 C4 = 2500 = 25.00°C	03、06、10 指令
40090	NTC5 最小温度	s16	09 C4 = 2500 = 25.00 ℃	03、06、10 指令
40091	NTC5 报警开关	s16	0: 关闭 1: 开启	03、06、10 指令
参数设置寄存	器组,保持寄存器			
40100	TEC1 设置温度	s16	09 C4 = 25.00°C	03、06、10 指令
40101	输出电压	u16	04 B0 = 12.00V	03、06、10 指令
40102	补偿温度	s16	00 00 = 0.00 °C	03、06、10 指令
40103	最大温度	s16	2E EO =12000 = 120.00℃	03、06、10 指令
40104	最小温度	s16	F0 60 = -4000 = -40.00°C	03、06、10 指令
40105	B 值	u16	OD 6B = 3435	03、06、10 指令
40106	Rt25	u16	00 OA = 10 K	03、06、10 指令
40107	P值	u16	04 4C = 1100	03、06、10 指令
40108	I值	u16	01 90 = 400	03、06、10 指令
40109	D值	u16	00 C8 = 200	03、06、10 指令
40110	TEC2 设置温度	s16	09 C4 = 25.00°C	03、06、10 指令
40111	输出电压	u16	04 B0 = 12.00V	03、06、10 指令
40112	补偿温度	s16	00 00 = 0.00 °C	03、06、10 指令
40113	最大温度	s16	2E EO =12000 = 120.00°C	03、06、10 指令
40114	最小温度	s16	F0 60 = -4000 = -40.00°C	03、06、10 指令
40115	B 值	u16	OD 6B = 3435	03、06、10 指令
40116	Rt25	u16	00 OA = 10 K	03、06、10 指令
40117	P值	u16	04 4C = 1100	03、06、10 指令
40118	I值	u16	01 90 = 400	03、06、10 指令
40119	D值	u16	00 C8 = 200	03、06、10 指令
校准相关寄存器	器,保持寄存器			
40200-40271	NTC1 温度校准	u16	设置温度、实际温度	03、06、10 指令
40300-40371	NTC2 温度校准	u16	设置温度、实际温度	03、06、10 指令

2.5.MODBUS 功能码

2.5.1 03 功能 (读保持寄存器)

报文格式

地址	功能码	寄存器地址		读取寄存器个数		CRC16 校验	
1Byte	1byte	2byte		2byte		2byte	
Addr	03	地址高位	地址低位	数据高位	数据高位	CRC_L	CRC_H

回应报文

地址	功能码	数据长度	读取的数据 N	CRC16 校	验
1Byte	1byte	1byte	N * 2byte	2byte	
Addr	03	读取数据长度 N*2	数据 N	CRC_L	CRC_H

例如: 读取 从 40100 处读取 20 个寄存器

发送: 01 03 9C A4 00 14 2A 76 01: 设备地址 03: 功能码

9C A4: 寄存器地址 40100 00 14: 读取寄存器个数 20

2A 76: CRC 校验 76 2A

回应: 01 03 28 09 C4 04 B0 00 00 2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 09 C4 04 B0 00 00

2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 80 D8

01: 设备地址 03: 功能码 28: 数据长度 = 读取寄存器个数 * 2

80 D8: CRC 校验 D8 80

寄存器	描述	寄存器	描述
40100	09 C4 = 25.00℃,TEC 设置温度	40110	09 C4 = 25.00℃,TEC 设置温度
40101	04 B0 = 12.00V,TEC 输出电压	40111	04 B0 = 12.00V,TEC 输出电压
40102	00 00 = 0.00℃,补偿温度 0℃	40112	00 00 = 0.00℃,补偿温度 0℃
40103	2E E0 = 120.00℃,最大温度	40113	2E E0 = 120.00℃,最大温度
40104	F0 60 = -40.00℃,最小温度	40114	F0 60 = -40.00℃,最小温度
40105	OD 6B = 3435,B 值	40115	OD 6B = 3435,B 值
40106	00 0A = 10K,Rt25℃	40116	00 0A = 10K,Rt25℃
40107	04 4C = 1100, PID P值	40117	04 4C = 1100, PID P值
40108	01 90 = 400, PID I 值	40118	01 90 = 400, PID I 值
40109	00 C8 = 200, PID D值	40119	00 C8 = 200, PID D值

2.5.2 04 功能 (读输入寄存器)

报文格式

地址	功能码	寄存器地址	读取寄存器个数	CRC16 校验
1Byte	1byte	2byte	2byte	2byte

Addr	04	地址高位	地址低位	数据高位	数据高位	CRC_L	CRC_H
回应报文							
地址	功能码	数据长度	数据长度		读取的数据 N		验
1Byte	1byte	1byte		N * 2byte		2byte	
Addr	04	读取数据长	·度 N *2	数据 N		CRC L	CRC H

例如: 读取 从 30000 处读取 12 个寄存器

发送: 01 04 75 30 00 0C EA 0C 01: 设备地址 04: 功能码

75 30: 寄存器地址 30000 00 0C: 读取寄存器个数 12

EA OC: CRC 校验 OC EA

回应: 01 04 18 09 FE 09 BC 00 00 09 C4 09 C4 00 00 00 00 00 00 00 00 00 00 00 00 363

01: 设备地址 04: 功能码 18: 数据长度 = 读取寄存器个数 * 2

03 63: CRC 校验 63 03

寄存器	描述	寄存器	描述
30000	09 FE = 25.58℃,NTC1 显示温度	30006	00 00 = 0,TEC2 温控关闭
30001	09 BC = 24.92℃,NTC2 显示温度	30007	00 00 = 0,继电器状态关闭
30002	00 00 = 0L,水流量为 0	30008	00 00 = 0,无系统报警
30003	09 C4 = 25.00℃,TEC1 设置温度	30009	00 00 = 0,TEC1 PID 输出 0
30004	09 C4 = 25.00℃,TEC2 设置温度	30010	00 00 = 0,TEC2 PID 输出 0
30005	00 00 = 0,TEC1 温控关闭	30011	00 00 = 0, 水流量脉冲 0

2.5.3 06 功能 (写单个保持寄存器)

报文格式

1V > 111 > 1	10人们为							
地址	功能码	寄存器地址		写入的数据		CRC16 校验		
1Byte	1byte	2byte		2byte		2byte		
Addr	06	地址高位	地址低位	数据高位	数据高位	CRC_L	CRC_H	

报文格式

地址	功能码	寄存器地址		写入的数据		CRC16 校验	
1Byte	1byte	2byte		2byte		2byte	
Addr	06	地址高位	地址低位	数据高位	数据高位	CRC_L	CRC_H

例如: 设置 控温温度为 20.00℃ (40100)

发送: 01 06 9C A4 07 D0 E5 D5 01: 设备地址 06: 功能码

9C A4: 寄存器地址 40100 (控制温度设置)

07 D0:数据 2000 = 20.00℃ E5 D5: CRC 校验 D5 E5

回应: 01 06 9C A4 07 D0 E5 D5

2.5.4 10 功能 (写多个保持寄存器)

报文格式

地址	功能码	寄存器	地址	寄存器	个数	字节计数	数据 N		CRC16 杉	を验
1Byte	1byte	2by	/te	2b	yte	1byte	N;	*2byte	2by	te
Addr	10	地址	地址	数据	数据	字节计数	数据	数据	CRC_H	CRC_H
		高位	低位	高位	高位		高位	低位		

回应格式

地址	功能码	寄存器地址		寄存器个数		CRC16 校验	
1Byte	1byte	2byte		2byte		2byte	
Addr	10	地址高位	地址低位	数据高位	数据高位	CRC_L	CRC_H

例如:设置 40100-40119, 数据为为如下

寄存器	描述	寄存器	描述
40100	09 C4 = 25.00℃,TEC 设置温度	40110	09 C4 = 25.00℃,TEC 设置温度
40101	04 B0 = 12.00V,TEC 输出电压	40111	04 B0 = 12.00V,TEC 输出电压
40102	00 00 = 0.00℃,补偿温度 0℃	40112	00 00 = 0.00℃,补偿温度 0℃
40103	2E E0 = 120.00℃,最大温度	40113	2E E0 = 120.00℃,最大温度
40104	F0 60 = -40.00℃,最小温度	40114	F0 60 = -40.00℃,最小温度
40105	OD 6B = 3435,B 值	40115	OD 6B = 3435,B 值
40106	00 0A = 10K,Rt25℃	40116	00 0A = 10K,Rt25℃
40107	04 4C = 1100, PID P值	40117	04 4C = 1100, PID P值
40108	01 90 = 400, PID I 值	40118	01 90 = 400, PID I 值
40109	00 C8 = 200, PID D值	40119	00 C8 = 200, PID D值

发送: 01 10 9C A4 00 14 28 09 C4 04 B0 00 00 2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 09 C4 04 B0 00 00 2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 F8 87

01: 设备地址 10: 功能码 09 A4: 寄存器地址 40100

00 14: 需要写入寄存器的个数 20

28 : 写入数据的个数 20*2=40=0x28

F8 87: CRC 校验 87 F8

回应: 01 10 9C A4 00 14 AF B5

2.5.5 错误数据回应

报文格式

地址	功能码	异常码	CRC16	
1byte	1byte	1byte	2byte	
Addr	功能码 0x80	01~02	CRC_L	CRC_H

异常应答码

异常码 名称	说明
--------	----

01	非法功能	所收到的报文功能对于被编址从机是不允许执行的。
02	非法数据地址	数据字段中的地址对于被编址的从机是禁止的。

例 1:

设备回应: 01 85 01 E2 90

01: 设备地址 85: 功能码 = 05

01: 非法功能(应为不支持此05指令,所以错误)

E2 90: CRC 校验 90 E2

例 2:

发送: 01 03 9C 45 00 01 BB 8F

回应: 018302C0F1

01: 设备地址 03: 功能码

9C 45: 寄存器地址 40005 , 没有这个地址所以错误

00 01: 读取寄存器个数 BB 8F: CRC 校验 8E 5B

2.6.CRC 校验计算方法

CRC 校验,是对数据帧所有数据进行校验

2.6.1 计算函数

```
参数: data (数据块起始地址)、dataSize (数据块Byte 的个数)
返回: CRC 计算结果
uint16 CRC_Calculate(uint8 *data, uint16 dataSize)
{
    uint8 i;
    uint8 temp;
    uint16 j;
    uint16 CRCode;
    CRCode=0xffff;
    for(j=0;j<dataSize;j++)
    {
        CRCode = CRCode data[j];
        for( i = 0; i < 8; i++ )
        {
        temp = CRCode & 0x0001;
    }
```

```
CRCode = (CRCode >> 1);
if(temp ==1)
{
    CRCode = (CRCode^0xA001);// 0xA001 为预置多项式,常量值
}
}
return CRCode;
```

2.6.2 计算工具

在浏览器输入网址: http://www.ip33.com/crc.html

设置参数模型: CRC-16/MODBUS

x16+x15+x2+1

2.7.操作举例

主意: 部分寄存器不支持 10 03 04 指令,详细请参考 2.4

2.7.1.读取系统显示相关信息

例如: 读取 从 30000 处读取 12 个寄存器

发送: 01 04 75 30 00 0C EA 0C 01: 设备地址 04: 功能码

75 30: 寄存器地址 30000 00 0C: 读取寄存器个数 12

EA OC: CRC 校验 OC EA

回应: 01 04 18 09 FE 09 BC 00 00 09 C4 09 C4 00 00 00 00 00 00 00 00 00 00 00 00 3 63

01: 设备地址 04: 功能码 18: 数据长度 = 读取寄存器个数 * 2

03 63: CRC 校验 63 03

寄存器	描述	寄存器	描述
30000	09 FE = 25.58℃,NTC1 显示温度	30006	00 00 = 0,TEC2 温控关闭
30001	09 BC = 24.92℃,NTC2 显示温度	30007	00 00 = 0,继电器状态关闭
30002	00 00 = 0L,水流量为 0	30008	00 00 = 0, 无系统报警
30003	09 C4 = 25.00℃,TEC1 设置温度	30009	00 00 = 0,TEC1 PID 输出 0
30004	09 C4 = 25.00℃,TEC2 设置温度	30010	00 00 = 0,TEC2 PID 输出 0
30005	00 00 = 0,TEC1 温控关闭	30011	00 00 = 0, 水流量脉冲 0

2.7.2. 读取系统设置相关信息

例如: 读取 从 40000 处读取 12 个寄存器

发送: 01 03 9C 40 00 0C 6A 4B 01: 设备地址 03: 功能码

9C 40: 寄存器地址 40000 00 0C: 读取寄存器个数 12

6A 4B: CRC 校验 4B 6A

回应: 01 03 18 00 01 FF FF 00 00 FF FF FF 00 01 09 C4 00 32 34 15 00 0A 00 0A 00 1E F1 95

01: 设备地址 03: 功能码 18: 数据长度 = 读取寄存器个数 * 2

F1 95: CRC 校验 95 F1

寄存器	描述	寄存器	描述
40000	00 01 = 1,设备地址	40106	09 C4 = 25.00L,最大水流量
40101	FF FF ,无效功能码	40107	00 32 = 0.50L ,最小水流量
40102	00 00,按键值 0	40108	34 15 = 13.333,水流量系数
40103	FF FF FF FF 无效密码数据	40109	00 0A = 10℃/m,TEC1 温升设置
40104		40110	00 0A = 10℃/m,TEC1 温升设置
40105	00 01 = 1,继电器水冷模式	40111	00 1E = 30,继电器回差设置值

2.7.3. 读取开关设置相关信息

例如: 读取 从 40040 处读取 7 个寄存器

发送: 01 03 9C 68 00 07 AB 84 01: 设备地址 03: 功能码

9C 68: 寄存器地址 40040 00 07: 读取寄存器个数 7

AB 84: CRC 校验 84 AB

回应: 01 03 0E 00 00 00 00 00 00 01 00 00 00 00 00 FF D5

01: 设备地址 03: 功能码 0E: 数据长度 = 读取寄存器个数 * 2

FF D5: CRC 校验 D5 FF

寄存器	描述	寄存器	描述
40040	00 00 = 0,TEC1 温控关闭	40044	00 00 = 0, NTC2 温度报警关闭
40041	00 00 = 0,TEC2 温控关闭	40045	00 00 = 0, 水流量报警关闭
40042	00 00 = 0,继电器关闭	40046	00 00 = 0, 水流信号报警关闭
40043	00 01 = 1, NTC1 温度报警开启		

2.7.4. 读取 NTC 探温参数相关信

例如: 读取 从 40080 处读取 12 个寄存器

发送: 01 03 9C 90 00 0C 6B B2 01: 设备地址 03: 功能码

9C 90: 寄存器地址 40080 00 0C: 读取寄存器个数 12

6B B2: CRC 校验 B2 6B

回应: 01 03 18 09 C4 09 C4 09 C4 2E E0 F0 60 00 00 2E E0 F0 60 00 00 2E E0 F0 60 00 00 46 21

01: 设备地址 03: 功能码 18: 数据长度 = 读取寄存器个数 * 2

46 21: CRC 校验 21 46

寄存器	描述	寄存器	描述
40080	09 C4 = 25.00℃,NTC3 实时温度	40086	2E E0 = 120.00℃,NTC4 最大温度
40081	09 C4 = 25.00℃,NTC4 实时温度	40087	F0 60 = -40.00℃,NTC4 最下温度
40082	09 C4 = 25.00℃,NTC5 实时温度	40088	00 00 = 0,NTC4 报警关闭
40083	2E E0 = 120.00℃,NTC3 最大温度	40089	2E E0 = 120.00℃,NTC5 最大温度
40084	F0 60 = -40.00℃,NTC3 最下温度	40090	F0 60 = -40.00℃,NTC5 最下温度
40085	00 00 = 0,NTC3 报警关闭	40091	00 00 = 0,NTC5 报警关闭

2.7.5. 读取设置参数相关信息

例如: 读取 从 40100 处读取 20 个寄存器

发送: 01 03 9C A4 00 14 2A 76 01: 设备地址 03: 功能码

9C A4: 寄存器地址 40100 00 14: 读取寄存器个数 20

2A 76: CRC 校验 76 2A

回应: 01 03 28 09 C4 04 B0 00 00 2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 09 C4 04 B0 00 00

2E EO FO 60 OD 6B 00 OA 04 4C 01 90 00 C8 80 D8

01: 设备地址 03: 功能码 28: 数据长度 = 读取寄存器个数 * 2

80 D8: CRC 校验 D8 80

寄存器	描述	寄存器	描述
40100	09 C4 = 25.00℃,TEC 设置温度	40110	09 C4 = 25.00℃,TEC 设置温度
40101	04 B0 = 12.00V,TEC 输出电压	40111	04 B0 = 12.00V,TEC 输出电压
40102	00 00 = 0.00℃,补偿温度 0℃	40112	00 00 = 0.00℃,补偿温度 0℃
40103	2E E0 = 120.00℃,最大温度	40113	2E E0 = 120.00℃,最大温度
40104	F0 60 = -40.00℃,最小温度	40114	F0 60 = -40.00℃,最小温度
40105	OD 6B = 3435,B 值	40115	OD 6B = 3435,B 值
40106	00 0A = 10K,Rt25℃	40116	00 0A = 10K,Rt25℃
40107	04 4C = 1100, PID P值	40117	04 4C = 1100, PID P值
40108	01 90 = 400, PID I 值	40118	01 90 = 400, PID I 值
40109	00 C8 = 200, PID D值	40119	00 C8 = 200, PID D 值

2.7.6. 读取 NTC1 温度校准相关信息

例如: 读取 从 40200 处读取 72 个寄存器

发送: 01 03 9D 08 00 48 EB 92 01: 设备地址 03: 功能码

9D 08: 寄存器地址 40200 00 48: 读取寄存器个数 72

EB 92: CRC 校验 92 EB

回应: 01 03 90 EC 78 F0 60 F4 48 F8 30 FC 18 00 00 03 E8 07 D0 0B B8 0F A0 13 88 17 70 1B 58 1F 40 23 28 27 10 2A F8 2E E0 32 C8 36 B0 3A 98 3E 80 42 68 46 50 4A 38 4E 20 52 08 55 F0 59 D8 5D C0 61 A8 65 90 69 78 6D 60 71 48 75 30 EC 78 F0 60 F4 48 F8 30 FC 18 00 00 03 E8 07 D0 0B B8 0F A0 13 88 17 70 1B 58 1F 40 23 28 27 10 2A F8 2E E0 32 C8 36 B0 3A 98 3E 80 42 68 46 50 4A 38 4E 20 52 08 55 F0 59 D8 5D C0 61 A8 65 90 69 78 6D 60 71 48 75 30 82 3D

01: 设备地址 03: 功能码 90: 数据长度 = 读取寄存器个数 * 2

82 3D: CRC 校验 3D 82

寄存器	描述	寄存器	描述
40200	EC 78 = -50.00℃,控温温度	40236	EC 78 = -50.00℃,实际温度
40201	F0 60 = -40.00℃,控温温度	40237	F0 60 = -40.00℃,实际温度
40202	F4 48 = -30.00℃,控温温度	40238	F4 48 = -30.00℃,实际温度
40203	F8 30 = -20.00℃,控温温度	40239	F8 30 = -20.00℃,实际温度
40204	FC 18 = -10.00℃,控温温度	40240	FC 18 = -10.00℃,实际温度
40205	00 00 = 0.00℃,控温温度	40241	00 00 = 0.00℃,实际温度
40206	03 E8 = 10.00℃,控温温度	40242	03 E8 = 10.00℃,实际温度
40207	07 D0 = 20.00℃,控温温度	40243	07 D0 = 20.00℃,实际温度
40208	0B B8 = 30.00℃,控温温度	40244	OB B8 = 30.00℃,实际温度
40209	OF AO = 40.00℃,控温温度	40245	OF AO = 40.00℃,实际温度
40210	13 88 = 50.00℃,控温温度	40246	13 88 = 50.00℃,实际温度
40211	17 70 = 60.00℃,控温温度	40247	17 70 = 60.00℃,实际温度
40212	1B 58 = 70.00℃,控温温度	40248	1B 58 = 70.00℃,实际温度
40213	1F 40 = 80.00℃,控温温度	40249	1F 40 = 80.00℃,实际温度

40214	23 28 = 90.00℃,控温温度	40250	23 28 = 90.00℃,实际温度
40215	27 10 = 100.00℃,控温温度	40251	27 10 = 100.00℃,实际温度
40216	2A F8 = 110.00℃,控温温度	40252	2A F8 = 110.00℃,实际温度
40217	2E E0 = 120.00℃,控温温度	40253	2E E0 = 120.00℃,实际温度
40218	32 C8 = 130.00℃,控温温度	40254	32 C8 = 130.00℃,实际温度
40219	36 B0 = 140.00℃,控温温度	40255	36 B0 = 140.00℃,实际温度
40220	3A 98 = 150.00℃,控温温度	40256	3A 98 = 150.00℃,实际温度
40221	3E 80 = 160.00℃,控温温度	40257	3E 80 = 160.00℃,实际温度
40222	42 68 = 170.00℃,控温温度	40258	42 68 = 170.00℃,实际温度
40223	46 50 = 180.00℃,控温温度	40259	46 50 = 180.00℃,实际温度
40224	4A 38 = 190.00℃,控温温度	40260	4A 38 = 190.00℃,实际温度
40225	4E 20 = 200.00℃,控温温度	40261	4E 20 = 200.00℃,实际温度
40226	52 08 = 210.00℃,控温温度	40262	52 08 = 210.00℃,实际温度
40227	55 F0 = 220.00℃,控温温度	40263	55 F0 = 220.00℃,实际温度
40228	59 D8 = 230.00℃,控温温度	40264	59 D8 = 230.00℃,实际温度
40229	5D C0 = 240.00℃,控温温度	40265	5D C0 = 240.00℃,实际温度
40230	61 A8 = 250.00℃,控温温度	40266	61 A8 = 250.00℃,实际温度
40231	65 90 = 260.00℃,控温温度	40267	65 90 = 260.00℃,实际温度
40232	69 78 = 270.00℃,控温温度	40268	69 78 = 270.00℃,实际温度
40233	6D 60 = 280.00℃,控温温度	40269	6D 60 = 280.00℃,实际温度
40234	71 48 = 290.00℃,控温温度	40270	71 48 = 290.00℃,实际温度
40235	75 30 = 300.00℃,控温温度	40271	75 30 = 300.00℃,实际温度

2.7.7. 设置 TEC1 控制温度(40100)

设置 TEC1 控制温度 20.00℃ 发送: 01 06 9C A4 07 D0 E5 D5 01: 设备地址 06: 功能码

9C A4: 寄存器地址 40100 07 D0: 2000 = 20.00℃

E5 D5: CRC 校验 D5 E5

回应: 01 06 9C A4 07 D0 E5 D5

设置 TEC1 控制温度 -20.00℃ 发送: 01 06 9C A4 F8 30 A5 AD 01: 设备地址 06: 功能码

9C A4: 寄存器地址 40100 F8 30: -2000 = -20.00℃

A5 AD: CRC 校验 AD A5 回应: 01 06 9C A4 F8 30 A5 AD

2.7.8. 设置 TEC1 温控开关(40040)

开启 TEC1 温控开关

发送: 01 06 9C 68 00 01 E7 86 01: 设备地址 06: 功能码

9C 68: 寄存器地址 40040 00 01: 开启温控

E7 86: CRC 校验 86 E7

回应: 01 06 9C 68 00 01 E7 86

关闭 TEC1 温控开关

发送: 01 06 9C 68 00 00 26 46 01: 设备地址 06: 功能码

9C 68: 寄存器地址 40040 00 00: 关闭温控

26 46: CRC 校验 46 26 回应: 01 06 9C 68 00 00 26 46

2.7.9. 设置 TEC1 输出电压 (40101)

设置 TEC 最大输出电压 12.00V 发送: 01 06 9C A5 04 B0 B4 CD 01: 设备地址 06: 功能码

9C A5: 寄存器地址 40101 04 B0: 1200 = 12.00V

B4 CD: CRC 校验 CD B4 回应: 01 06 9C A5 04 B0 B4 CD

2.7.10. 设置 TEC1 PID P 值 (40107)

设置 TEC1 PID P 值 1100

发送: 01 06 9C AB 04 4C D5 4F 01: 设备地址 06: 功能码

9C AB: 寄存器地址 40107 04 4C: 1100

D5 4F: CRC 校验 4F D5

回应: 01 06 9C AB 04 4C D5 4F

2.7.11. 设置继电器工作模式 (40005)

设置继电器工作模式 水冷 发送: 01 06 9C 45 00 01 77 8F 01: 设备地址 06: 功能码

9C 45: 寄存器地址 40005 00 01: 水冷模式

77 8F: CRC 校验 77 8F

回应: 01 06 9C 45 00 01 77 8F

2.7.12. 设置 TEC1 温升 (40009)

设置 TEC1 温升 10℃/m

发送: 01 06 9C 49 00 0A F6 4B 01: 设备地址 06: 功能码

9C 49: 寄存器地址 40009 00 0A: 10 = 10℃/m

F6 4B: CRC 校验 4B F6

回应: 01 06 9C 49 00 0A F6 4B

2.7.13. 按键功能码 (40001)

功能码: 0x080A 保存数据 发送: 01 06 9C 41 08 0A 70 49 01: 设备地址 06: 功能码

9C 41: 寄存器地址 40001 08 0A: 0x080A, 保存设置数据

70 49: CRC 校验 70 49

回应: 01 06 9C 41 08 0A 70 49 功能码: 0x1401 清除报警 发送: 01 06 9C 41 14 01 39 4E 01: 设备地址 06: 功能码

9C 41: 寄存器地址 40001 1401: 0x1401,清除报警

70 49: CRC 校验 70 49

回应: 01 06 9C 41 14 01 39 4E

2.7.14. 设置参数批量设置

例如: 设置 40100-40119 , 数据为为如下

寄存器	描述	寄存器	描述
40100	09 C4 = 25.00℃,TEC 设置温度	40110	09 C4 = 25.00℃,TEC 设置温度
40101	04 B0 = 12.00V,TEC 输出电压	40111	04 B0 = 12.00V,TEC 输出电压
40102	00 00 = 0.00℃,补偿温度 0℃	40112	00 00 = 0.00℃,补偿温度 0℃
40103	2E E0 = 120.00℃,最大温度	40113	2E E0 = 120.00℃,最大温度
40104	F0 60 = -40.00℃,最小温度	40114	F0 60 = -40.00℃,最小温度
40105	OD 6B = 3435,B 值	40115	OD 6B = 3435,B 值
40106	00 0A = 10K,Rt25℃	40116	00 0A = 10K,Rt25℃
40107	04 4C = 1100, PID P值	40117	04 4C = 1100, PID P值
40108	01 90 = 400, PID I 值	40118	01 90 = 400, PID I 值
40109	00 C8 = 200, PID D值	40119	00 C8 = 200, PID D值

发送: 01 10 9C A4 00 14 28 09 C4 04 B0 00 00 2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 09 C4 04 B0 00 00 2E E0 F0 60 0D 6B 00 0A 04 4C 01 90 00 C8 F8 87

01: 设备地址 10: 功能码

09 A4: 寄存器地址 40100

00 14: 需要写入寄存器的个数 20

28 : 写入数据的个数 20 * 2 = 40 = 0x28

F8 87: CRC 校验 87 F8

回应: 01 10 9C A4 00 14 AF B5

2.7.15. NTC1 校准参数批量设置

发送: 01 10 9D 08 00 48 90 EC 78 F0 60 F4 48 F8 30 FC 18 00 00 03 E8 07 D0 0B B8 0F A0 13 88 17 70 1B 58 1F 40 23 28 27 10 2A F8 2E E0 32 C8 36 B0 3A 98 3E 80 42 68 46 50 4A 38 4E 20 52 08 55 F0 59 D8 5D C0 61 A8 65 90 69 78 6D 60 71 48 75 30 EC 78 F0 60 F4 48 F8 30 FC 18 00 00 03 E8 07 D0 0B B8 0F A0 13 88 17 70 1B 58 1F 40 23 28 27 10 2A F8 2E E0 32 C8 36 B0 3A 98 3E 80 42 68 46 50 4A 38 4E 20 52 08 55 F0 59 D8 5D C0 61 A8 65 90 69 78 6D 60 71 48 75 30 AC AC

01: 设备地址 10: 功能码

9D 08: 寄存器地址 40200

00 48: 需要写入寄存器的个数 72

90: 写入数据的个数 72*2=144=0x90

AC AC: CRC 校验 AC AC 回应: 01 10 9D 08 00 48 6E 51

2.7.16. 设置 NTC3-5 参数批量设置

例如:设置 40083-40091,数据为为如下

寄存器	描述	寄存器	描述
40083	2E E0 = 120.00℃,NTC3 最大温度	40088	00 00 = 0,NTC4 报警关闭
40084	F0 60 = -40.00℃,NTC3 最下温度	40089	2E E0 = 120.00℃,NTC5 最大温度
40085	00 00 = 0,NTC3 报警关闭	40090	F0 60 = -40.00℃,NTC5 最下温度
40086	2E E0 = 120.00℃,NTC4 最大温度	40091	00 00 = 0,NTC5 报警关闭
40087	F0 60 = -40.00℃,NTC4 最下温度		

发送: 01 10 9C 93 00 09 12 2E E0 F0 60 00 00 2E E0 F0 60 00 00 2E E0 F0 60 00 00 B6 74

01: 设备地址 10: 功能码 9C 93: 寄存器地址 40083

00 09: 需要写入寄存器的个数 09

12 : 写入数据的个数 20 * 2 = 40 = 0x28

B6 74: CRC 校验 74 B6

回应: 01 10 9C 93 00 09 DE 72