Семинар 25

Общая информация:

- Если $\beta \colon V \times V \to F$ билинейная форма на пространстве V и $U \subseteq V$ подпространство, то через $\beta|_U$ будем обозначать билинейную форму $\beta|_U \colon U \times U \to F$ по правилу $(u,u') \mapsto \beta(u,u')$ и называть ее будем ограничением β на U. То есть мы действуем той же самой билинейной формой, но только на подпространстве, забыв про все остальное.
- Форма $\beta: V \times V \to F$ называется симметричной, если $\beta(v,u) = \beta(u,v)$ для любых $v,u \in V$.
- Форма $\beta: V \times V \to F$ называется кососимметричной, если $\beta(v,v) = 0$ для любого $v \in V$. Отсюда следует, что $\beta(v,u) = -\beta(u,v)$ для любых $v,u \in V$. Наоборот верно только если $2 \neq 0$ в поле F.
- Для билинейной формы $\beta\colon V\times W\to F$ ее левые и правые отрогональные дополнения обозначаются следующим образом

$$U^{\perp} = \{w \in W \mid \beta(U, w) = 0\}$$
 – правое $U^{\perp} = \{v \in V \mid \beta(v, U) = 0\}$ – левое

Задачи:

1. Пусть V — четырехмерное пространство и на нем задан линейный оператор $\phi\colon V\to V$, который в некотором базисе e_1,e_2,e_3,e_4 задан матрицей

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Пусть $U = \langle e_1, e_2 \rangle$ и пусть $U^{\perp} \subseteq V^*$ – ортогональное дополнение относительно естественной билинейной формы на $V^* \times V$. Найдите жорданову нормальную форму для оператора $\phi^*|_{U^{\perp}}$.

2. Пусть $\varphi \colon V \to V$ – линейный оператор такой, что $\varphi^* \colon V^* \to V^*$ имеет следующую жорданову нормальную форму

$$\begin{pmatrix} 2 & 1 & & & \\ & 2 & 1 & & & \\ & & 2 & & & \\ & & & -3 & 1 \\ & & & & -3 \end{pmatrix}$$

Пусть $\xi \in V^*$ – произвольный собственный вектор для φ^* . Определите каким может быть минимальный многочлен для оператора $\varphi^2|_{\ker \mathcal{E}}$.

- 3. Задачник. §38, задача 38.4 (а, б).
- 4. Привести к диагональному виду следующую билинейную форму в \mathbb{R}^3 :

$$\beta(x,y) = 2x_1y_1 - x_1y_2 + x_1y_3 - x_2y_1 + x_3y_1 + 3x_3y_3$$

- 5. Приведите пример пространства $V=U\oplus W$ и билинейной формы $\beta\colon V\times V\to F$ таких, что: (1) β симметрична, (2) β невырождена, (3) $\beta|_U=0$ и $\beta|_W=0$.
- 6. В условиях предыдущей задачи покажите, что $W^{\perp} = W$ и $U^{\perp} = U$. Выведите отсюда, что U и W имеют одинаковую размерность, а значит V обязательно четно мерно в этом примере.

1

7. Задачник. $\S37$, задача 37.30 (a). (В этой задаче подразумевается, что базовое поле – \mathbb{R} .)