则未考试试卷

北京工业大学 2013-2014 学年第 11 学期《工程力学 11》

北京工业大学 2013—2014 学年第 11 学期

《工程力学II》期末考试试卷A卷

考试说明:	考试时长95分钟、	一张 A4 纸开卷
承诺:		

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分 条例》,承诺在考试过程中自觉遵守有关规定,服从监考教师管理,诚信考试, 做到不违纪、不作弊、不替考。若有违反,愿接受相应的处分。

承诺人:	学号:	班号:

注:本试卷共_7_大题,共_8_页,满分100分,考试时必须使用卷后附加的统一答题纸或草稿纸。

巻 面 成 绩 汇 总 表 (阅卷教师填写)

题号 - 三 三 四 五 六 总成绩

满分 10 20 16 14 14 10 16

得分

得 分

是非题(正确划"",错误划"多一每题1分,共10分)

- 1. 作用于刚体上某点的力,可以移动到刚体的任意点,并不改变该力对刚体的作用效应。 (×)
- 2. 超静定结构的全部支座约束力均可由静力学平衡方程求出。 (×)
- 3. 构件的强度表示构件抵抗破坏的能力。 (√)
- 4. 过一点某一方向的正应力为零,则该方向的线应变必为零。 (×)
- 5. 在减速箱中,一般高速轴的直径较小,而低速轴的直径较大。 (√)
- 6. 梁发生平面弯曲时其横截面绕中性层与纵向对称面的交线旋转。 (×)
- 7. 在低碳钢扭转实验中,扭转破坏沿横截面剪断是由最大切应力引起的。

(V)

	WWW. 《工程力学 II》 期末考试试		卷		
	北京工业大学 2013—2014 学年第 11 学期《工程力学 11 》 期末写成成		对于塑性材		
8.	北京工业大学 2013—2014 学年第 11 字两 W T T T T T T T T T T T T T T T T T T	(×)	
	料通常采用最大拉应力埋化和心心	(×)	
9.	在一点的应力状态中, 主应力一定大于零。	(1)	
10.	柔度越大, 压杆越容易失稳。				

得分

二、填空题(1-3每空1分,4-6每空2分,共20分)

- 2. 根据工程力学的要求,变形固体材料的三个基本假定是:

均匀连续假设 、 各向同性假设 、 小变形假设

3. 已知悬臂梁受力如图所示,若用积分法求该悬臂梁的挠曲线方程,确定积分常数的边界条件为 $y_A=0$ 、 $\theta_A=0$ 、 θ_B θ_B

- 4. 某轴的转速为 100 r/min, 传递的功率为 10 kW, 该轴所承受的扭矩是 955 Nm。
- 5. 杆件受力如图所示,横截面面积 $A_{1-1}=10mm^2$, $A_{2-2}=20mm^2$,此杆处于平衡状态,则力 $P=_200$ N 、杆件横截面最大正应力 $\sigma_{max}=_25$ MPa 。

6. 铆接件的连接板厚度为 δ ,铆钉直径为d,则铆钉切应力=___ $4P/\pi d^2$ ___, 挤压应力=___ $P/\delta d$ ___。

北京工业大学 2013—2014 学年第 11 学期《 工程力学 11 》 期末考试试卷

得分

三、单选题 (每题 2分, 共 16分)

1. 等截面直杆受轴向荷载作用, 抗拉刚度 EA 为常数,

则杆件的轴向总变形丛为

A. $\frac{Pl}{EA}$

B. $\frac{2Pl}{EA}$

C. $\frac{3Pl}{EA}$

D. <u>5Pl</u>

2. 低碳钢拉伸的过程如图所示, 屈服极限对应的点是

[B].

A. a 点

B. b. 想

C.. c 点

D. d点

3. 图示阶梯形杆。ABB发为钢质材料。BD段为铝质材料,在外力P作用下,贝

下列说法正确的是了一

(C) CD 段轴力最大

(D) 三段轴力一样大

4. 实心圆轴受扭转力偶作用,横截面上的扭矩为 M_T,下列三种(横截面上)沿径向的应力分布图中【 B 】是正确的。

北京工业大学2013-2014 学年第 11 学期《工程力学 11》 期末考试试卷

位 界

四、计算题(14分)

图示静定结构由两根梁 AB 和 BD 通过中间铰链 B 连接组成,其中 A 处为固定端, E 处作用有外加力偶 m。已知:均布载荷 q=10kN/m,为 偶矩 m=40kNm,a=2m,不计自重。(1)分别画出整体受力图、AB 受力图和 BC 受力图:(2)试求 A、C 二处的约束力。

解: (1) 整体受力图、AB 受力图和 BC 的受力图如下图

(2) 求 A、B 两点的约束反力

以BC为研究对象,列垩衡成程:

$$\sum M_B = 0 \qquad -m - q \cdot a \cdot \frac{a}{2} + F_C \cdot 2a = 0$$

解得:
$$F_C = \frac{m}{2a} + \frac{1}{4}qa = 15kN$$

以整体为研究对象,列平衡方程:

$$\begin{cases} \sum F_x = 0 & F_{Ax} = 0 \\ \sum F_y = 0 & F_{Ay} - q \cdot 2a + F_C = 0 \\ \sum M_A = 0 & M_A - q \cdot 2a \cdot 2a - m + F_C \cdot 4a = 0 \end{cases}$$

解得: $F_{Ax}=0kN$, $M_A=4qa^2+m-4F_Ca=80kN\cdot m$ 所以, A点的约束反力: $F_{Ax}=0kN$, $F_{Ay}=25kN$, $M_A=80kN\cdot m$ C点的约束反力: $F_C=15kN$

详见: 网学天地 (www.e-studysky.com); 咨询QQ: 2696670126

北京工业大学 2013—2014 学年第 II 学期《 工程力学 II 》 期末考试试卷

得 分

五、计算题(14分)

梁受力如图所示,已知: q和 a。(1) 求支座反力; (2) 画出剪力图和弯

矩图(所有数值均用 q 和 a 表示)。(16分)

解: (1) 求约束力

受力图如图所示

列平衡方程:

$$\sum_{A} F_{y} = 0 \qquad F_{A} + F_{C} - q \cdot a - F = 0$$

$$\sum_{A} M_{B} = 0 \qquad -F_{A} \cdot 2a + F \cdot a - q \cdot a \cdot \frac{a}{2} = 0$$
求解得: $F_{A} = \frac{1}{4}qa$, $F_{C} = \frac{7}{4}qa$

$$(2) 剪力方程: AB 段 \qquad F_{Q} = \frac{1}{4}qa$$

$$BC 段 \qquad F_{Q} = -qx + 3qa$$

$$BC 段 \qquad M_{AB}(x) = \frac{1}{4}qax$$

$$BC 段 \qquad M_{BC}(x) = -\frac{3}{4}qax + qa^{2}$$

$$CD Q \qquad M_{CD}(x) = -\frac{1}{2}q \cdot x^{2} + 3qa \cdot x - \frac{9}{2}qa^{2}$$

(3) 剪力图和弯矩图

北京工业大学 2013—2014 学年第 11 学 期《 工程力学 11 》 期末考试试卷

六、计算题(10分)

原始单元体如图所示,试求三个主应力和最大切应力。(应力单位 MPa)

解:根据题意已知一个主应力为不

投影为平面单元体

根据
$$\sigma_{\text{max}}$$
 $=$ $\frac{\sigma_x + \sigma_y}{2} \pm \sqrt{(\frac{\sigma_x - \sigma_y}{2})^2 + (\tau_x)^2} = \begin{cases} 130MPa \\ 30MPa \end{cases}$

则 $\sigma_1 = 130 MPa$, $\sigma_1 = 40 MPa$, $\sigma_1 = 30 MPa$

$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2} = 50MPa$$