В дальнейшем важно рассматривать комплекснозначные функции.

Пусть $E \subset \mathbb{R}^m$ измеримо. Будем говорить, что $f \colon E \to \mathbb{C}$ измерима (интегрируема), если $\operatorname{Re} f$ и $\operatorname{Im} f$ измеримы (интегрируемы) на E. В случае интегрируемости определим

$$\int_{E} f d\mu = \int_{E} \operatorname{Re} f d\mu + i \int_{E} \operatorname{Im} f d\mu.$$

Нетрудно проверить, что полученный интеграл обладает свойством линейности.

Замечание. Справедливо неравенство $\left|\int_{E}fd\mu\right|\leqslant\int_{E}|f|d\mu$. В самом деле, число $\int_{E}fd\mu$ запишем в показательной форме $\int_{E}fd\mu=\left|\int_{E}fd\mu\right|e^{i\theta}$. Тогда

$$\left| \int_E f d\mu \right| = e^{-i\theta} \int_E f d\mu = \int_E e^{-i\theta} f d\mu = \int_E \operatorname{Re}[e^{-i\theta} f] d\mu \leqslant \int_E |e^{-i\theta} f| d\mu \leqslant \int_E |f| d\mu.$$

Третье равенство получено по определению, т.к. интеграл от функции $e^{-i\theta}f$ действителен.

При интегрировании в периодическом случае полезно иметь в виду

Замечание. Если функция f на $\mathbb R$ является ω -периодической, то интегралы по любым отрезкам длины ω от нее одновременно существуют и в случае существования равны.

В самом деле, пусть f интегрируема на отрезке $[a, a + \omega]$. Для произвольного $b \in \mathbb{R}$ найдем такое k, что $a + k\omega \in [b, b + \omega)$. Тогда

$$\int_a^{a+\omega} f d\mu = \int_{a+(k-1)\omega}^{a+k\omega} f d\mu = \left(\int_{a+(k-1)\omega}^b f d\mu + \int_b^{a+k\omega}\right) f d\mu = \left(\int_b^{a+k\omega} + \int_{a+k\omega}^{b+\omega}\right) f d\mu = \int_b^{b+\omega} f d\mu.$$

Пространства Лебега

Пусть $1 \leqslant p < \infty$. Положим

$$L_p(E) = \Big\{ f \colon E \to \mathbb{C} : \ f \ \text{измерима и } \int_E |f|^p d\mu < +\infty \Big\}.$$

Если $f,g\in L_p(E)$ и $\lambda\in\mathbb{C}$, то очевидно, что $\lambda f\in L_p(E)$. Кроме того, выполнено $|f+g|^p \leqslant (2\max(|f|,|g|))^p \leqslant 2^p(|f|^p+|g|^p)$, а значит, также $f+g \in L_p(E)$. Следовательно, $L_p(E)$ является линейным пространством. Положим

$$||f||_p = \left(\int_E |f|^p d\mu\right)^{1/p}.$$

Лемма 1. Пусть $a, b > 0, 1 < p, q < \infty, u \frac{1}{p} + \frac{1}{q} = 1$. Тогда $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$, причем равенство имеет место только в случае $a^p = b^q$.

A В силу строгой выпуклости экспоненты $e^{tx+(1-t)y} \le te^x + (1-t)e^y$, $t \in (0,1)$, причем равенство возможно только при x=y. Осталось положить $t=\frac{1}{p}$ и $x=p\ln a,\ y=q\ln b.$

Теорема 1 (неравенство Гельдера). Пусть $1 < p, q < \infty$ и $\frac{1}{p} + \frac{1}{q} = 1$. Если $f \in L_p(E)$, $g \in L_q(E)$, mo $fg \in L_1(E)$ u $||fq||_1 \leq ||f||_p ||q||_q$.

 $lackвar{}$ Если $\|f\|_p=0$, то f=0 п.в., а значит, fg=0 п.в. Следовательно, $\|fg\|_1=0$ и утверждение верно. Аналогично для $||g||_q = 0$.

Далее считаем $||f||_p ||g||_q > 0$. По лемме 1 для любого $x \in E$ выполнено

$$\frac{|f(x)|}{\|f\|_p} \frac{|g(x)|}{\|g\|_q} \leqslant \frac{1}{p} \left(\frac{|f(x)|}{\|f\|_p} \right)^p + \frac{1}{q} \left(\frac{|g(x)|}{\|g\|_q} \right)^q.$$

Проинтегрировав неравенство, получим

$$\frac{1}{\|f\|_p\|g\|_q}\int_E|f||g|d\mu\leqslant \frac{1}{p}\frac{\int_E|f|^pd\mu}{\|f\|_p^p}+\frac{1}{q}\frac{\int_E|g|^qd\mu}{\|g\|_q^q}=\frac{1}{p}+\frac{1}{q}=1,$$

что равносильно заявленному неравенству.

Замечание. Равенство в теореме 1 имеет место лишь в случае неотрицательных α, β , не равных нулю одновременно, что $\alpha|f|^p=\beta|g|^q$ п.в. на E. Для $\|f\|_p\|g\|_q=0$ это верно. В противном случае $\frac{|f(x)|}{\|f\|_p}\frac{|g(x)|}{\|g\|_q}=\frac{1}{p}\left(\frac{|f(x)|}{\|f\|_p}\right)^p+\frac{1}{q}\left(\frac{|g(x)|}{\|g\|_q}\right)^q$ для п.в. $x\in E$, а значит, (для таких x) $\frac{|f(x)|^p}{\|f\|_p^p}=\frac{|g(x)|^q}{\|g\|_q^q}$ по лемме 1.

Теорема 1' (неравенство Минковского). *Если* $f, g \in L_p(E)$, то $f + g \in L_p(E)$ и $||f + g||_p \le ||f||_p + ||g||_p$.

▲ Применим неравенство Гельдера для p и $q = \frac{p}{p-1}$:

$$||f+g||_p^p = \int_E |f+g|^p d\mu \leqslant \int_E |f| \cdot |f+g|^{p-1} d\mu + \int_E |g| \cdot |f+g|^{p-1} d\mu \leqslant$$

$$\leqslant \left(\int_E |f|^p d\mu \right)^{1/p} \left(\int_E |f+g|^p \right)^{1/q} + \left(\int_E |g|^p d\mu \right)^{1/p} \left(\int_E |f+g|^p \right)^{1/q} =$$

$$= (||f||_p + ||g||_p)||f+g||_p^{p-1},$$

что равносильно заявленному неравенству.

Задача. Докажите, что равенство в теореме 1' возможно лишь в случае неотрицательных α, β , не равных нулю одновременно, что $\alpha f = \beta g$ п.в. на E.

На $L_p(E)$, $p \geqslant 1$, введем отношение $f \sim g \Leftrightarrow f = g$ п.в. на E. Тогда \sim является отношением эквивалентности, согласованным с операциями сложения и умножения на скаляр. Полученное фактор-пространство будем также обозначать как $L_p(E)$, т.е. в дальнейшем будем отождествлять совпадающие п.в. функции.

Следствие. $L_p(E)$ относительно $\|\cdot\|_p$ является нормированным пространством:

- 1) $||f||_p \geqslant 0$, $||f||_p = 0 \Rightarrow f = 0$ п.в. на E;
- 2) $\|\lambda f\|_p = |\lambda| \|f\|_p$;
- 3) $||f + g||_p \le ||f||_p + ||g||_p$.

Последнее неравенство очевидно при p = 1 и следует из теоремы 1' при p > 1.

Задача. Докажите, что если $\mu(E) < \infty$ и $1 \le p < q$, то $L_q(E) \subset L_p(E)$.

Напомним, что полное нормированное пространство называется банаховым.

Лемма 2. Нормированное пространство X является банаховым \iff для всякой последовательности $\{x_n\}$ из X сходимость ряда $\sum\limits_{n=1}^{\infty}\|x_n\|$ влечет сходимость ряда $\sum\limits_{n=1}^{\infty}x_n$.

 \blacktriangle (\Rightarrow) Пусть $\{x_n\} \subset X$, такая что $\sum_{k=1}^{\infty} \|x_k\| < \infty$. Тогда $s_n = \sum_{k=1}^n x_k$ фундаментальна: $\forall \varepsilon > 0 \; \exists N \; \forall m, n \in \mathbb{N} \; m > n \geqslant N$ $\|s_m - s_n\| \leqslant \sum_{k=n+1}^m \|x_k\| \leqslant \sum_{k=N+1}^\infty \|x_k\| < \varepsilon$.

В силу полноты X последовательность $\{s_n\}$ сходится.

 (\Leftarrow) Пусть $\{y_n\}$ – фундаментальная последовательность в X. Тогда $\forall k \ \exists n_k \ \forall m,n \geqslant n_k \ (\|y_m-y_n\| < 2^{-k})$. Без ограничения общности можно считать, что $n_{k+1} > n_k$. Положим $x_k = y_{n_{k+1}} - y_{n_k}$. Поскольку

$$\sum_{k=1}^{\infty} ||x_k|| = \sum_{k=1}^{\infty} ||y_{n_{k+1}} - y_{n_k}|| \leqslant \sum_{k=1}^{\infty} 2^{-k} < \infty,$$

то по предположению $s_k = \sum_{i=1}^k x_i = y_{n_{k+1}} - y_{n_1}$ сходится в X. Таким образом, $\{y_{n_k}\}$ есть сходящаяся подпоследовательность $\{y_n\}$. Так как $\{y_n\}$ фундаментальна, то $\{y_n\}$ сходится.

Замечание. Если $y_n \to y$, то $||y_n|| \to ||y||$. Это следует из неравенства $|||y_n|| - ||y||| \leqslant ||y_n - y||$.

Теорема 2. Пространство $L_p(E)$ банахово.

▲ Пусть $\{f_k\}$, такая что $\sum_{k=1}^{\infty} \|f_k\|_p < \infty$. Рассмотрим $F(x) = \sum_{k=1}^{\infty} |f_k(x)|$. Частичные суммы $F_m = \sum_{k=1}^m |f_k|$ нестрого возрастуют, поэтому по теореме Леви $\int_E F^p d\mu = \lim_{m \to \infty} \int_E F_m^p d\mu$. Так как $\|F_m\|_p \leqslant \sum_{k=1}^{\infty} \|f_k\|_p$, то функция F^p интегрируема на E. В частности, F(x) конечно для п.в. x.Для

таких x определена функция $f(x) = \sum_{k=1}^{\infty} f_k(x)$, т.к. $|f(x)| \leq F(x)$. Кроме того, $||f||_p \leq ||F||_p$, т.е. $f \in L_p(E)$, и по замечанию

$$||f - \sum_{k=1}^{n} f_k|| \le \sum_{k=n+1}^{\infty} ||f_k||_p \to 0.$$

По лемме 2 заключаем, что $L_p(E)$ банахово.

Замечание. Из доказательств леммы 2 и теоремы 2 следует, что если $f_n \to f$ в $L_p(E)$, то существует подпоследовательность $\{f_{n_k}\}$, сходящаяся к f почти всюду.

Для понимания устройства $L_p(E)$ полезны следующие утверждения.

Будем называть функции с компактным носителем ϕ инитными. Обозначим через $C_c^{\infty}(\mathbb{R}^m)$ $(C_c(\mathbb{R}^m))$ множество всех финитных гладких (непрерывных) на \mathbb{R}^m функций.

Лемма 3. Пусть $f \in L_p(E)$ и $\varepsilon > 0$. Тогда найдется такая финитная простая функция φ , что $||f - \varphi||_p < \varepsilon$.

A Так как $|f - f \cdot I_{B_k(0)}|^p \leqslant |f|^p$ и $|f|^p$ интегрируема, то по теореме Лебега $||f - f \cdot I_{B_k(0)}||_p \to 0$ при $k \to \infty$. Заменяя функцию f на $f \cdot I_{B_k(0)}$, можно изначально считать, что f финитная.

Если $f \geqslant 0$, то найдется такая последовательность простых функций $\{\varphi_k\}$, что $0 \leqslant \varphi_k \leqslant \varphi_{k+1}$ и $\varphi_k \to f$. Так как $|f - \varphi_k|^p \leqslant |f|^p$ и функция $|f|^p$ интегрируема, то по теореме Лебега $||f - \varphi_k||_p \to 0$ при $k \to \infty$, причем все φ_k финитны, поскольку $0 \leqslant \varphi_k \leqslant f$.

Пусть f — произвольная вещественнозначная функция, $f = f^+ - f^-$. По доказанному существуют такие финитные простые функции φ^+ , φ^- , что $\|f^+ - \varphi^+\|_p < \frac{\varepsilon}{2}$ и $\|f^- - \varphi^-\|_p < \frac{\varepsilon}{2}$. Положим $\varphi = \varphi^+ - \varphi^-$. Тогда φ — финитная простая функция и по неравенству треугольника

$$||f - \varphi||_p \le ||f^+ - \varphi^+||_p + ||f^- - \varphi^-||_p < \varepsilon.$$

Если функция f комплекснозначная, то аппроксимируем $\operatorname{Re} f$ и $\operatorname{Im} f$.

Теорема 3. Пусть $f \in L_p(E)$ и $\varepsilon > 0$. Тогда найдется такая функция $g \in C_c^{\infty}(\mathbb{R}^n)$, что $||f - g|_E||_p < \varepsilon$ (здесь $g|_E - cy$ жение g на E).

▲ По предыдущей лемме функция f является L_p -пределом финитных простых функций. Так как простая функция есть линейная комбинация индикаторов, то достаточно показать, что для каждого ограниченного измеримого A индикатор I_A является L_p -пределом гладких финитных функций.

По свойству регулярности меры Лебега найдутся открытые множества $G\supset A$ и $H\supset A^c$, такие что $\mu(G\setminus A)<\frac{\varepsilon}{2}$ и $\mu(H\setminus A^c)<\frac{\varepsilon}{2}$. Положим $K=H^c$. Тогда K — компакт, $K\subset A$ и $\mu(G\setminus K)\leqslant \mu(G\setminus A)+\mu(A\setminus K)<\varepsilon$. По теореме о существовании гладкого разбиения единицы найдется такая функция $g\in C_c^\infty(\mathbb{R}^n)$, что $0\leqslant g\leqslant 1$ и сужение $g|_K\equiv 1$. Тогда

$$||I_A - g|_E||_p^p = \int_E |I_A - g|^p d\mu = \int_{(G \cap E) \setminus K} |I_A - g|^p d\mu \le \int_{G \setminus K} 1 \ d\mu = \mu(G \setminus K).$$

Поскольку $\mu(G \setminus K) < \varepsilon$, это завершает доказательство.

Пусть $1\leqslant p<\infty$. Обозначим через $L_p(\mathbb{T})$ линейное пространство 2π -периодических измеримых функций $f\colon\mathbb{R}\to\mathbb{C}$, для которых $f\in L_p(-\pi,\pi)$. Положим $\|f\|_p=\left(\int\limits_{-\pi}^\pi |f|^p\,d\mu\right)^{1/p}$.

Обозначим через $C(\mathbb{T})$ линейное пространство 2π -периодических непрерывных функций.

Следствие. Пусть $f \in L_p(\mathbb{T})$ и $\varepsilon > 0$. Тогда найдется такая функция $h \in C(\mathbb{T})$, что $||f - h||_p < \varepsilon$.

▲ Без ограничения общности можно считать, что f вещественнозначна. По теореме 3 найдется финитная непрерывная функция, что $||f - g||_p < \frac{\varepsilon}{2}$. Функция g ограниченна, $|g| \leq M$. Для $\delta \in (0, \pi)$ определим функцию

$$h(x) = \begin{cases} g(x), & x \in [-\pi + \delta, \pi - \delta], \\ \frac{g(-\pi + \delta)}{\delta}(\pi + x), & x \in [-\pi, -\pi + \delta), \\ \frac{g(\pi - \delta)}{\delta}(\pi - x), & x \in (\pi - \delta, \pi]. \end{cases}$$

Так как $h(-\pi) = h(\pi)$, то h продолжима на \mathbb{R} с периодом 2π . Очевидно, что $h \in C(\mathbb{T})$ и

$$||g - h||_p^p = \int_{-\pi}^{\pi} |g - h|^p d\mu = \left(\int_{-\pi}^{-\pi + \delta} + \int_{\pi - \delta}^{\pi}\right) |g - h|^p d\mu \leqslant (2M)^p \cdot 2\delta.$$

Уменьшив δ так, чтобы выполнилось неравенство $(2M)^p \cdot 2\delta < (\frac{\varepsilon}{2})^p$, получим $||g-h||_p < \frac{\varepsilon}{2}$. Тогда $||f-h||_p \leqslant ||f-g||_p + ||g-h||_p < \varepsilon$.

Пусть $f: \mathbb{R}^m \to \mathbb{C}$ и $h \in \mathbb{R}^m$. Определим сдвиг функции $f_h: \mathbb{R}^m \to \mathbb{C}$, $f_h(x) = f(x+h)$. Отметим, что f и f_h одновременно лежат в $L_p(\mathbb{R}^m)$, и в этом случае $||f||_p = ||f_h||_p$.

Теорема 4 (непрерывность сдвига). Если $f \in L_p(\mathbb{R}^m)$, то $||f_h - f||_p \to 0$ при $h \to 0$.

▲ По теореме 3 для $\varepsilon > 0$ существует непрерывная функция g, такая что $\|f - g\|_p < \frac{\varepsilon}{3}$ и g = 0 вне некоторого $B_r(0)$. Тогда, учитывая $\|(f - g)_h\|_p = \|f - g\|_p$, имеем

$$||f_h - f||_p \le ||f_h - g_h||_p + ||g_h - g||_p + ||f - g||_p < \frac{2\varepsilon}{3} + ||g_h - g||_p.$$

По теореме Кантора g равномерно непрерывна на $\overline{B}_{r+1}(0)$. Поэтому существует $0 < \delta \leqslant 1$, что если $x,y \in \overline{B}_{r+1}(0)$ и $|x-y| < \delta$, то $|g(x)-g(y)| < \frac{\varepsilon}{3M}$, где $M^p = \mu(B_{r+1}(0))$. Пусть $x,x+h \in \mathbb{R}^m$, причем $|h| < \delta$. Тогда либо $x,x+h \in B_{r+1}(0)$ и в этом случае $|g(x+h)-g(x)| < \frac{\varepsilon}{3M}$, либо $x,x+h \notin B_r(0)$ и в этом случае g(x+h)-g(x)=0. Поэтому

$$||g_h - g||_p^p = \int_{B_{r+1}(0)} |g(x+h) - g(x)|^p d\mu < \frac{\varepsilon^p}{(3M)^p} \int_{B_{r+1}(0)} d\mu = \frac{\varepsilon^p}{3^p}.$$

Таким образом, $\|g_h - g\|_p < \frac{\varepsilon}{3}$ при всех $|h| < \delta$. Следовательно, $\|f_h - f\|_p < \varepsilon$ при $|h| < \delta$.

Задача. Пусть $f \in L_p(\mathbb{T})$. Покажите, что $||f_h - f||_p \to 0$ при $h \to 0$.

Следующее утверждение играет ключевую роль в гармоническом анализе.

Пемма 4 (Римана об осцилляции). Пусть I- промежуток в \mathbb{R} и $f\in L_1(I)$. Тогда

$$\int_{I} f(x) e^{i\lambda x} d\mu \to 0 \quad npu \ \lambda \to \pm \infty.$$

B частности, $\int_I f(x) \cos \lambda x \ dx \to 0$, $\int_I f(x) \sin \lambda x \ dx \to 0$ при $\lambda \to \pm \infty$.

A Продолжив функцию f нулем вне I, можно считать, что $I=\mathbb{R}$. Сделаем в интеграле замену $x=t+\frac{\pi}{\lambda}$:

$$\int_{\mathbb{R}} f(x) \, e^{i\lambda x} \, d\mu = \int_{\mathbb{R}} f\left(t + \frac{\pi}{\lambda}\right) \, e^{i\lambda\left(t + \frac{\pi}{\lambda}\right)} \, d\mu = -\int_{\mathbb{R}} f\left(t + \frac{\pi}{\lambda}\right) \, e^{i\lambda t} \, d\mu.$$

Тогда

$$\int_{\mathbb{R}} f(x) e^{i\lambda x} d\mu = \frac{1}{2} \int_{\mathbb{R}} \left(f(x) - f\left(x + \frac{\pi}{\lambda}\right) \right) e^{i\lambda x} d\mu.$$

По непрерывности сдвига

$$\left| \int_{\mathbb{R}} f(x) e^{i\lambda x} d\mu \right| \leqslant \frac{1}{2} \int_{\mathbb{R}} \left| f(x) - f\left(x + \frac{\pi}{\lambda}\right) \right| d\mu \to 0$$

при $\lambda \to \pm \infty$, что завершает доказательство.

Свертка и ее свойства

Определение. Пусть функции f и g измеримы в \mathbb{R}^m . Функция f*g, определяемая как

$$(f * g)(x) = \int_{\mathbb{R}^m} f(x - t) g(t) d\mu(t),$$

называется $ceepm\kappa o \ddot{u} f$ и g.

Замечание. Покажем, что функция $\varphi(x,t) = f(x-t) g(t)$ измерима в \mathbb{R}^{2m} . Для этого достаточно показать, что f(x-t) измерима в \mathbb{R}^{2m} . Будем предполагать, что f вещественнозначна. Пусть $E_a = \{x \in \mathbb{R}^m : f(x) < a\}$ и $L: (x,t) \mapsto (x-t,t)$. Тогда

$$\{(x,t) \in \mathbb{R}^{2m} : f(x-t) < a\} = \{(x,t) \in \mathbb{R}^{2m} : (x-t) \in E_a\} = L^{-1}(E_a \times \mathbb{R}^m)$$

измеримо как линейный образ измеримого множества.

Свойства.

- 1) Если $f,g \in L_1(\mathbb{R}^m)$, то свертка определена почти всюду на \mathbb{R}^m и $f * g \in L_1(\mathbb{R}^m)$.
- **Δ** Введем обозначение $H(x) = \int_{\mathbb{R}^m} |f(x-t)g(t)| \, d\mu(t)$.

По теореме Тонелли

$$\int_{\mathbb{R}^m} H(x) \, d\mu(x) = \int_{\mathbb{R}^m} \left(\int_{\mathbb{R}^m} |f(x-t)| \, d\mu(x) \right) \, |g(t)| \, d\mu(t).$$

Сделаем во внутреннем интеграле замену x - t = y. Тогда

$$\int_{\mathbb{R}^m} H(x) \, d\mu(x) = \int_{\mathbb{R}^m} |f(y)| \, d\mu(y) \cdot \int_{\mathbb{R}^m} |g(t)| \, d\mu(t) = ||f||_1 \cdot ||g||_1.$$

Следовательно, H интегрируема, а значит, конечна почти всюду. Интегрируемость f*g следует из оценки $\int\limits_{\mathbb{R}^m} |f*g| \, d\mu(x) \leqslant \int\limits_{\mathbb{R}^m} H(x) \, d\mu(x)$.

- 2) Если $f, g \in L_1(\mathbb{R}^m)$, то f * g = g * f п.в.
- lacktriangle В интеграле из определения свертки достаточно сделать замену x-t=y.
- 3) Пусть $f \in L_p(\mathbb{R}^m)$, $g \in L_q(\mathbb{R}^m)$, где 1/p + 1/q = 1. Тогда f * g определена, равномерно непрерывна, и для всех $x \in \mathbb{R}^m$ верно $|(f * g)(x)| \leq ||f||_p \cdot ||g||_q$.
- ▲ По неравенству Гельдера

$$H(x) = \int_{\mathbb{R}^m} |f(x-t)| |g(t)| d\mu(t) \le$$

$$\le \left(\int_{\mathbb{R}^m} |f(x-t)|^p d\mu(t) \right)^{1/p} \cdot \left(\int_{\mathbb{R}^m} |g(t)|^q d\mu(t) \right)^{1/q} = ||f||_p \cdot ||g||_q$$

Это доказывает существование свертки и неравенство из условия. Покажем равномерную непрерывность. Для $x,h \in \mathbb{R}^m$ имеем

$$|(f * g)(x + h) - (f * g)(x)| = \left| \int_{\mathbb{R}^m} (f_h(x - t) - f(x - t)) g(t) d\mu(t) \right| =$$

$$= |((f_h - f) * g)(x)| \le ||f_h - f||_p \cdot ||g||_q$$

Осталось применить непрерывность сдвига. Равномерная непрерывность следует из того, что правая часть не зависит от x.

Замечание. Утверждение п. 3 очевидно выполняется и для p=1, если считать $q=\infty$, а g измеримой и ограниченной, $\|g\|_{\infty}=\sup_{\mathbb{R}^m}|g|$. Это также дает важнейшее достаточное условие существования свертки.

В периодическом случае свертка определяется аналогично.

Определение. Пусть f и $g-2\pi$ -периодические измеримые функции на \mathbb{R} . Сверткой f и g называется функция вида $(f*g)(x) = \int_{-\pi}^{\pi} f(x-t) \, g(t) \, d\mu(t)$.

Условие существования (п. 1) и свойства 2 и 3 справедливы и в периодическом случае: в доказательствах достаточно заменить область интегрирования на интервал $(-\pi,\pi)$.

Определение. Семейство функций $\{\varphi_n \in C(\mathbb{T}) \colon n \in \mathbb{N}\}$ называется annpoксимативнойединицей, если

- 1) $\varphi_n(t) \geqslant 0$;
- $2)\int\limits_{-\pi}^{\pi}\varphi_n(t)dx=1$ для всех $n\in\mathbb{N};$ $3)\lim_{n\to\infty}\int\limits_{\delta\leqslant|t|\leqslant\pi}\varphi_n(t)dt=0$ для любого $\delta\in(0,\pi).$

Замечание. Если $\sup_{t \to 0} \varphi_n(t) \to 0$, то п. 3 очевидно выполняется.

Примеры. 1) Функции $\varphi_n(t) = \frac{1}{c_n} (1 + \cos t)^n$, где $c_n = \int_0^\pi (1 + \cos t)^n dt$, образуют аппроксимативную единицу. В проверке нуждается только п. 3 из определения единицы. Для этого оценим числа c_n снизу:

$$c_n = 2^{n+1} \int_0^{\pi} \cos^{2n} \frac{t}{2} dt \geqslant 2^{n+1} \int_0^{\pi} \cos^{2n} \frac{t}{2} \sin \frac{t}{2} dt = \frac{2^{n+2}}{2n+1} > \frac{2^n}{n}.$$

Тогда $\sup_{\delta \leqslant |t| \leqslant \pi} \varphi_n(t) = \frac{2^n}{c_n} \cos^{2n} \frac{\delta}{2} \leqslant n \cos^{2n} \frac{\delta}{2} \to 0$ для любого $\delta \in (0,\pi)$, т.к. $q = \cos^2 \frac{\delta}{2} \in (0,1)$.

2) Для $n\in\mathbb{N}$ положим $c_n=\int\limits_1^1(1-t^2)^ndt$ и пусть $\varphi_n\in C(\mathbb{T})$, такая что $\varphi_n(t)=\frac{1}{c_n}(1-t^2)^n$ при $|t|\leqslant 1,\ \varphi_n(t)=0$ при $1\leqslant |t|\leqslant \pi.$ Покажем, что функции φ_n образуют аппроксимативную единицу. Снова достаточно проверить п. 3 из определения единицы. Имеем

$$c_n = 2 \int_0^1 (1 - t^2)^n dt \ge 2 \int_0^1 (1 - t)^n dt = \frac{2}{n+1} \ge \frac{1}{n}.$$

Тогда $\sup_{\delta\leqslant |t|\leqslant 1} \varphi_n(t) = \frac{2}{c_n} (1-\delta^2)^n \leqslant 2n(1-\delta^2)^n \to 0$ для любого $\delta\in(0,1),$ т.к. $q=1-\delta^2\in(0,1).$ Поскольку $\varphi_n(t)=0$ при $1\leqslant |t|\leqslant \pi,$ то $\sup_{\delta\leqslant |t|\leqslant \pi}\varphi_n(t)\to 0$ для любого $\delta\in (0,\pi).$

Задача. Покажите, что периодическая непрерывная функция равномерно непрерывна на \mathbb{R} . **Теорема 5**. Пусть $\{\varphi_n\}$ — аппроксимативная единица и $f \in C(\mathbb{T})$. Тогда $f * \varphi_n \rightrightarrows f$ на \mathbb{R} .

A Из п. 2 определения единицы имеем $f(x) = \int_{-\pi}^{\pi} f(x) \varphi_n(t) dt$. Поэтому

$$f * \varphi_n(x) - f(x) = \int_{-\pi}^{\pi} (f(x-t) - f(x))\varphi_n(t)dt.$$

Зафиксируем $\varepsilon > 0$ и, пользуясь равномерной непрерывностью f, выберем такое $\delta \in (0,\pi)$, что $(|t|<\delta\Rightarrow |f(x-t)-f(x)|\leqslant \frac{\varepsilon}{2})$. Разобьем последний интеграл следующим образом:

$$f * \varphi_n(x) - f(x) = \left(\int_{-\delta}^{\delta} + \int_{\delta \leqslant |t| \leqslant \pi} \right) (f(x - t) - f(x)) \varphi_n(t) dt =: I_1 + I_2$$

и оценим каждое слагаемое справа. Имеем

$$|I_1| < \frac{\varepsilon}{2} \int_{-\pi}^{\pi} \varphi_n(t) dt = \frac{\varepsilon}{2}.$$

Функция f, как периодическая непрерывная функция, ограничена, $|f| \leq M$ на \mathbb{R} . Поэтому

$$|I_2| \leqslant \int_{\delta \leqslant |t| \leqslant \pi} (|f(x-t)| + |f(t)|) \varphi_n(t) dt \leqslant 2M \int_{\delta \leqslant |t| \leqslant \pi} \varphi_n(t) dt.$$

По п. 3 определения единицы найдется такое $N=N(\delta),$ что $2M\int\limits_{\delta < t} \varphi_n(t)dt < \frac{\varepsilon}{2}$ при всех $n\geqslant N$. При таких n выполнено $|I_2|<rac{arepsilon}{2},$ а значит, $|f*arphi_n(x)-f(x)|<arepsilon.$ Это доказывает, что $f * \varphi_n \rightrightarrows f \text{ Ha } \mathbb{R}. \blacksquare$

Определение. Функция $T(x) = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos kx + b_k \sin kx$ называется *тригонометрическим* многочленом.

По формулам Эйлера $\cos kx = \frac{e^{inx} + e^{-inx}}{2}$, $\sin kx = \frac{e^{inx} - e^{-inx}}{2i}$, поэтому всякий тригонометрический многочлен может быть записан в виде $T(x) = \sum_{k=-n}^n c_k e^{ikx}$.

Следствие 1 (первая теорема Вейерштрасса). Пусть $f \in C(\mathbb{T})$ и $\varepsilon > 0$. Тогда найдется тригонометрический многочлен T(x), такой что

$$||f - T||_{\infty} := \sup_{[-\pi,\pi]} |f(x) - T(x)| < \varepsilon.$$

A В качестве аппроксимативной единицы возьмем функции $\varphi_n(t) = \frac{2^n}{c_n} \cos^{2n} \frac{t}{2}$ из примера 1. По формуле бинома $\varphi_n(t) = \frac{2^n}{c_n} \left(\frac{e^{\frac{it}{2}} + e^{-\frac{it}{2}}}{2} \right)^{2n} = \sum_{k=-n}^n \alpha_k e^{ikx}$, где $\alpha_k = \frac{1}{2^n c_n} C_{2n}^{n+k}$, поэтому все φ_n являются тригонометрическими многочленами. Покажем, что функции $f * \varphi_n$ являются тригонометрическими многочленами. В самом деле,

$$f * \varphi_n(x) = \int_{-\pi}^{\pi} \sum_{k=-n}^{n} \alpha_k e^{ik(x-t)} f(t) dt = \sum_{k=-n}^{n} \alpha_k e^{ikx} \int_{-\pi}^{\pi} e^{-ikt} f(t) dt =: \sum_{k=-n}^{n} \beta_k e^{ikx}.$$

По теореме 5 $f * \varphi_n \rightrightarrows f$ на \mathbb{R} . Поэтому достаточно положить $T(x) = f * \varphi_n(x)$ для подходящего n.

Следствие 2 (вторая теорема Вейерштрасса). Пусть функция f непрерывна на отрезке [a,b] и $\varepsilon > 0$. Тогда найдется алгебраический многочлен P(x), такой что

$$||f - P||_{\infty} := \sup_{[a,b]} |f(x) - P(x)| < \varepsilon.$$

\(\Delta\) Утверждение теоремы не меняется при линейных заменах аргумента. Поэтому можно ограничиться доказательством для случая отрезка [0,1]. Положим Q(t) = f(0) + (f(1) - f(0))t.

Свяжем с f функцию $g \in C(\mathbb{T})$, такую что

$$g(t) = \begin{cases} f(t) - Q(t), & t \in [0, 1], \\ 0, & t \in [-\pi, \pi] \setminus [0, 1], \end{cases}$$

и в качестве аппроксимативной единицы возьмем функции φ_n из примера 2. Тогда по теореме 5 $g*\varphi_n\rightrightarrows g$ на $\mathbb{R}.$ Но при $x\in[0,1]$ имеем

$$g * \varphi_n(x) = \int_0^1 g(t)\varphi_n(x-t)dt = \frac{1}{c_n} \int_0^1 g(t)(1-(x-t)^2)^n dt = \sum_{k=0}^{2n} \alpha_k x^k =: p_{2n}(x).$$

Поэтому при достаточно большом $n \sup_{[0,1]} |g(x) - p_{2n}(x)| < \varepsilon$, а значит, $||f - P||_{\infty} < \varepsilon$, где многочлен $P(x) = p_{2n}(x) + Q(x)$.

Определение. Пусть X — нормированное пространство. Система $\{e_k\}_{k=1}^{\infty}$ называется *полной* в X, если

$$\forall x \in X \ \forall \varepsilon > 0 \ \exists \alpha_1, \dots, \alpha_n \ \left(\left\| x - \sum_{k=1}^n \alpha_k e_k \right\| < \varepsilon \right).$$

Теорема 6. Вещественная и комплексная тригонометрические системы $\{1/2, \cos kx, \sin kx\}_{k=1}^{\infty}$ $u \{e^{inx}\}_{n\in\mathbb{Z}}$ полны в $L_p(\mathbb{T})$.

▲ Пусть $f \in L_p(\mathbb{T})$ и $\varepsilon > 0$. По следствию теоремы 3 найдется такая функция $h \in C(\mathbb{T})$, что $||f - h||_p < \varepsilon$. По первой теореме Вейерштрасса существует такой тригонометрический многочлен T, что $||h - T||_{\infty} < \varepsilon$. Тогда

$$||h - T||_p = \left(\int_{-\pi}^{\pi} |h - T|^p d\mu\right)^{1/p} < \varepsilon \cdot (2\pi)^{1/p}.$$

Из неравенства треугольника получаем, что

$$||f - T||_p \le ||f - h||_p + ||h - T||_p < (1 + (2\pi)^{1/p}) \cdot \varepsilon,$$

что доказывает утверждение.

Определение. Пусть V — комплексное линейное пространство. Функция (\cdot, \cdot) : $V \times V \to \mathbb{C}$ называется *скалярным произведением*, если она удовлетворяет следующим свойствам-аксиомам:

- 1) $\forall x \in V : (x, x) \geqslant 0, (x, x) = 0 \Leftrightarrow x = \overline{0};$
- 2) $\forall \lambda \in \mathbb{C} \ \forall x, x', y \in V \colon \ (\lambda x + x', y) = \lambda(x, y) + (x', y);$
- 3) $\forall x, y \in V : (x, y) = \overline{(y, x)}$.

Пространство V с фиксированным на нем скалярным произведением называется npedeunbedepmobum.

Замечание. Каждое предгильбертово пространство является нормированным, если положить $||x|| = \sqrt{(x,x)}$. Неравенство треугольника следует из неравенства Коши-Буняковского-Шварца $|(x,y)| \leq ||x|| \cdot ||y||$.

Примеры. 1) Пространство $L_2(\mathbb{T})$ является предгильбертовым относительно скалярного произведения

$$(f,g) = \int_{-\pi}^{\pi} f\bar{g} \, d\mu.$$

Интегрируемость $f\bar{g}$ следует из неравенства $2|f\bar{g}| \leq |f|^2 + |g|^2$.

2) Пространством l_2 называется множество последовательностей комплексных чисел $x=\{x_k\}$, удовлетворяющих условию $\sum_{k=1}^{\infty}|x_k|^2<\infty$, с операциями почленного умножения на числа, почленного сложения и со скалярным произведением $(x,y)=\sum_{k=1}^{\infty}x_k\overline{y_k}$. Корректность операции сложения следует из неравенства $|x_k+y_k|^2\leqslant 2(|x_k|^2+|y_k|^2)$, а из неравенства $|x_k\overline{y}_k|\leqslant |x_k|^2+|y_k|^2$ следует, что ряд в определении (x,y) сходится абсолютно.

Определение. Векторы $x, y \in V$ называются ортогональными, если (x, y) = 0. Пишут $x \perp y$. Лемма 1 (теорема Пифагора). Если $x_1, \ldots, x_n \in V$ и $x_i \perp x_j$ при $i \neq j$, то

$$||x_1 + \ldots + x_n||^2 = ||x_1||^2 + \ldots + ||x_n||^2.$$

 \blacktriangle В силу условия $(x_i, x_i) = 0$ при $i \neq j$ имеем

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \left(\sum_{i=1}^{n} x_i, \sum_{j=1}^{n} x_j \right) = \sum_{i,j=1}^{n} (x_i, x_j) = \sum_{i=1}^{n} \|x_i\|^2. \blacksquare$$

Определение. Семейство векторов $\{e_k\}_{k=1}^{\infty}$ называется *ортогональной системой* (ОС), если $e_i \perp e_j$ при $i \neq j$ и $||e_i|| \neq 0$ при любом i.

Замечание. Элементы, входящие в ОС, линейно независимы. В самом деле, домножая равенство $\lambda_1 e_1 + \ldots + \lambda_m e_m = \bar{0}$ скалярно на e_i , получим $\lambda_i = 0$ $(i = 1, \ldots, m)$.

Определение. Пусть $\{e_k\}_{k=1}^{\infty}$ — ОС и $x \in V$. Тогда числа $\hat{x}_k = \frac{(x,e_k)}{\|e_k\|^2}$ называются коэффици-ентами Фурье элемента x, а $\sum_{k=1}^{\infty} \hat{x}_k e_k - pядом$ Фурье x по системе $\{e_k\}_{k=1}^{\infty}$. Пишут $x \sim \sum_{k=1}^{\infty} \hat{x}_k e_k$.

Коэффициенты Фурье обладают минимальным свойством: n-я частичная сумма ряда Фурье дает наилучшее приближение x среди линейных комбинаций e_1, \ldots, e_n . А именно, справедлива

Теорема 1. Минимум нормы $\left\| x - \sum_{k=1}^{n} c_k e_k \right\|$ достигается в том и только в том случае, когда $c_k = \hat{x}_k, \ k = 1, \dots, n$. При этом справедливо тождество Бесселя

$$\left\| x - \sum_{k=1}^{n} \hat{x}_k e_k \right\|^2 = \|x\|^2 - \sum_{k=1}^{n} |\hat{x}_k|^2 \|e_k\|^2.$$

- \blacktriangle Положим $S_n = \sum_{k=1}^n \hat{x}_k e_k$.
- 1) Сначала проверим, что $x-S_n\perp y$ при любом y из линейной оболочки $L=\langle e_1,\dots,e_n\rangle.$ Достаточно установить, что $x-S_n\perp e_m$ при всех $m=1,\dots,n.$ Это так, поскольку

$$(x - S_n, e_m) = (x, e_m) - (S_n, e_m) = (x, e_m) - \sum_{k=1}^n \hat{x}_k(e_k, e_m) = (x, e_m) - \hat{x}_m ||e_m||^2 = 0.$$

2) Пусть $y=\sum_{k=1}^n c_k e_k$. Так как $S_n-y\in L$, то $x-S_n\perp S_n-y$. Поэтому по лемме 1

$$||x - y||^2 = ||(x - S_n) + (S_n - y)||^2 = ||x - S_n||^2 + ||S_n - y||^2 = ||x - S_n||^2 + \sum_{k=1}^{n} |c_k - \hat{x}_k|^2 ||e_k||^2.$$

Откуда $||x-y|| \ge ||x-S_n||$ и равенство возможно только когда все $c_k = \hat{x}_k$. Тождество Бесселя получается, если в равенстве для $||x-y||^2$ положить $y = \bar{0}$.

Следствие 1 (неравенство Бесселя). Пусть $\{e_k\}_{k=1}^{\infty}$ — ОС и $x \in V$. Тогда справедливо неравенство

 $\sum_{k=1}^{\infty} |\hat{x}_k|^2 ||e_k||^2 \leqslant ||x||^2.$

A Из тождества Бесселя $\sum_{k=1}^{n} |\hat{x}_k|^2 ||e_k||^2 \leqslant ||x||^2$ для любого $n \in \mathbb{N}$. Следовательно, ряд сходится и его сумма не превосходит $||x||^2$.

Следствие 2. Пусть $\{e_k\}_{k=1}^{\infty}$ — ОС и $x = \sum_{k=1}^{\infty} c_k e_k$. Тогда $c_k = \hat{x}_k, \ k = 1, 2, \dots$

▲ Если $c_m \neq \hat{x}_m$, то при $n \geqslant m$ имеем $\left\| x - \sum_{k=1}^n c_k e_k \right\|^2 \geqslant \sum_{k=1}^n |\hat{x}_k - c_k|^2 \|e_k\|^2 \geqslant |\hat{x}_m - c_m|^2 \|e_m\|^2 > 0$. ■

Теорема 2. Если $\{e_k\}_{k=1}^{\infty}$ — OC и $x \in V$. Тогда следующие утверждения эквивалентни:

1)
$$\forall \varepsilon > 0 \ \exists c_1, \dots, c_n : \ \left\| x - \sum_{k=1}^n c_k e_k \right\| < \varepsilon;$$

2)
$$x = \sum_{k=1}^{\infty} \hat{x}_k e_k;$$

3)
$$||x||^2 = \sum_{k=1}^{\infty} |\hat{x}_k|^2 ||e_k||^2$$
 (равенство Парсева́ля).

 \blacktriangle (1 \Rightarrow 2) Пусть ε > 0. В силу минимальности коэффициентов Фурье $\left\|x-\sum_{k=1}^{n}\hat{x}_{k}e_{k}\right\|<\varepsilon$ и также при любом $m \geqslant n$

$$\left\| x - \sum_{k=1}^{m} \hat{x}_k e_k \right\| \leqslant \left\| x - \sum_{k=1}^{n} \hat{x}_k e_k \right\| < \varepsilon.$$

Следовательно, $x=\sum_{k=1}^{\infty}\hat{x}_ke_k$. Импликация $(2\Rightarrow 1)$ очевидна.

Равносильность $(2 \Leftrightarrow 3)$ имеет место в силу тождества Бесселя.

Определение. ОС $\{e_k\}_{k=1}^{\infty}$ в предгильбертовом пространстве V называется (ортогональным) базисом, если $x=\sum\limits_{k=1}^{\infty}\hat{x}_ke_k$ для любого $x\in V.$

Теорему 2 можно переформулировать в следующем виде.

Теорема 2′. Если $\{e_k\}_{k=1}^{\infty}$ — ОС. Тогда следующие утверждения эквивалентны:

- 1) система $\{e_k\}_{k=1}^{\infty}$ полна; 2) система $\{e_k\}_{k=1}^{\infty}$ является базисом;

3)
$$\forall x \in V \left(\|x\|^2 = \sum_{k=1}^{\infty} |\hat{x}_k|^2 \|e_k\|^2 \right).$$

Пример. Вещественная и комплексная тригонометрические системы $\{1/2, \cos kx, \sin kx\}_{k=1}^{\infty}$ и $\{e^{inx}\}_{n\in\mathbb{Z}}$ образуют базис в $L_2(\mathbb{T})$.

Проверим ортогональность $\{e^{inx}\}_{n\in\mathbb{Z}}$:

$$\int_{-\pi}^{\pi} e^{int} \, \overline{e^{imt}} \, dt = \int_{-\pi}^{\pi} e^{i(n-m)t} \, dt = \begin{cases} 0, & n \neq m, \\ 2\pi, & n = m. \end{cases}$$

Аналогично устанавливается ортогональность $\{1/2, \cos kx, \sin kx\}_{k=1}^{\infty}$. При этом $\int_{-\pi}^{\pi} (\frac{1}{2})^2 dt = \frac{\pi}{2}$, $\int_{-\pi}^{\pi} \cos^2 kt dt = \int_{-\pi}^{\pi} \sin^2 kt dt = \pi$.

Для функции $f \in L_2(\mathbb{T})$ коэффициенты Фурье вычисляются по формулам:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, d\mu(t), \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, d\mu(t), \ k \in \mathbb{N}_0,$$
$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, e^{-int} \, d\mu(t), \ n \in \mathbb{Z}.$$

Такие коэффициенты связаны соотношениями:

$$\widehat{f}(\pm k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)(\cos kt \mp i \sin kt) d\mu(t) = \frac{a_k \mp ib_k}{2}, \quad \widehat{f}(0) = \frac{a_0}{2}, \ k \in \mathbb{N}.$$

Откуда следуют равенства частичных сумм:

$$S_n(f,x) := \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx = \sum_{k=-n}^n \widehat{f}(k)e^{ikx}.$$

Следовательно, ряды Фурье S(f,x) функции f по тригонометрическим системам совпадают:

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{inx}.$$

В этом заключается эквивалентность записи ряда Фурье по действительной и комплексной системам. Комплексной форме в дальнейшем будем отдавать предпочтение.

Так как тригонометрические системы полны в $L_2(\mathbb{T})$, утверждение про базис следует по теореме 2'. Таким образом,

$$f = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = \sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{inx} \quad \text{B} \quad L_2(\mathbb{T}).$$

Запишем равенство Парсеваля для тригонометрических систем:

$$||f||_2^2 = |a_0|^2 (1/2, 1/2) + \sum_{k=1}^{\infty} |a_k|^2 (\cos kx, \cos kx) + |b_k|^2 (\sin kx, \sin kx) = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2 (e^{inx}, e^{inx}).$$

$$\frac{1}{\pi} \int_{-\pi}^{\pi} |f|^2 d\mu = \frac{|a_0|^2}{2} + \sum_{k=1}^{\infty} (|a_k|^2 + |b_k|^2) = 2 \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2.$$

Определение. Предгильбертово пространство, полное относительно нормы, порожденной скалярным произведением, называется *гильбертовым*.

Теорема 3 (Рисс-Фишер). Пусть $\{e_k\}_{k=1}^{\infty} - OC$ в гильбертовом пространстве H и $\{\alpha_k\}_{k=1}^{\infty} \subset \mathbb{C}$, такая что $\sum_{k=1}^{\infty} |\alpha_k|^2 \|e_k\|^2 < \infty$. Тогда существует такой $x \in H$, что $x = \sum_{k=1}^{\infty} \alpha_k e_k$.

$$\blacktriangle$$
 Положим $S_n = \sum_{k=1}^n \alpha_k e_k$ и $\sigma_n = \sum_{k=1}^n |\alpha_k|^2 \|e_k\|^2$. Для любых $n, p \in \mathbb{N}$ выполнено $\|S_{n+p} - S_n\|^2 = \left(\sum_{k=n+1}^{n+p} \alpha_k e_k, \sum_{k=n+1}^{n+p} \alpha_k e_k\right) = \sum_{k=n+1}^{n+p} |\alpha_k|^2 \|e_k\|^2 = |\sigma_{n+p} - \sigma_n|$ (*)

Поскольку $\sum_{k=1}^{\infty} |\alpha_k|^2 \|e_k\|^2$ сходится, то $\{\sigma_n\}$ фундаментальна, а значит, $\{S_n\}$ также фундамен-

тальна в силу (*). Так как H полно, то $\{S_n\}$ сходится к некоторому $x \in H$, т. е. $x = \sum_{k=1}^{\infty} \alpha_k e_k$.

Определение. Система $\{e_k\}_{k=1}^{\infty}$ в предгильбертовом пространстве называется *замкнутой*, если из условия $(x,e_k)=0$ для всех $k\in\mathbb{N}$ следует, что $x=\bar{0}$.

Теорема 4. Ортогональная система в гильбертовом пространстве H замкнута тогда и только тогда, когда она полна.

A Пусть $x \in H$, такой что $(x, e_k) = 0$. Если ОС $\{e_k\}$ полна, то по теореме $2 \ x = \sum_{k=1}^{\infty} \hat{x}_k e_k$. Поскольку все $\hat{x}_k = 0$, то $x = \bar{0}$.

Пусть $\{e_k\}$ замкнута, $x \in H$. По неравенству Бесселя ряд $\sum |\hat{x}_k|^2 \|e_k\|^2$ сходится, поэтому по теореме 3 существует $y = \sum_{k=1}^{\infty} \hat{x}_k e_k$. Тогда по следствию 2 теоремы 1 все $\hat{x}_k = \hat{y}_k$. Откуда по линейности $(y-x)_k = 0$, а значит, $(y-x,e_k) = 0$ для всех $k \in \mathbb{N}$. В силу замкнутости системы y = x. Теперь полнота $\{e_k\}$ следует из $(1 \Leftrightarrow 2)$ теоремы 2'.

Задача. Пусть $P_n(x)=(x^n(1-x)^n)^{(n)},\ n=0,1,2,\dots$ (многочлены Лежандра). Докажите, что система $\{P_n\}$ образует базис в $L_2(-1,1)$.

В этом разделе будем рассматривать функции из $L_1(\mathbb{T})$. Для таких функций определены коэффициенты Фурье по тригонометрической системе:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt \, d\mu(t), \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, d\mu(t), \ k \in \mathbb{N}_0,$$
$$\widehat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \, e^{-int} \, d\mu(t), \ n \in \mathbb{Z}.$$

Займемся вопросами поточечной и равномерной сходимостей рядов Фурье

$$S(f,x) := \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{inx}.$$

Отметим, что если $f, g \in L_1(\mathbb{T})$ и $\alpha, \beta \in \mathbb{C}$, то

1)
$$\alpha \widehat{f} + \beta g(n) = \alpha \widehat{f}(n) + \beta \widehat{g}(n);$$
 2) $\widehat{f}(n) \to 0$ при $n \to \pm \infty$.

Первое свойство следует из линейности интеграла Лебега, второе — из леммы Римана об осцилляции. __

Поточечная сходимость рядов Фурье

Исследование сходимости ряда Фурье начнем с интегрального представления $S_n(f,x)$, найденного Дирихле:

$$S_n(f,x) = \sum_{k=-n}^n \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt} d\mu(t) \right) e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \sum_{k=-n}^n e^{ik(x-t)} d\mu(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_n(x-t) d\mu(t).$$

Функция $D_n(t) := \frac{1}{2} \sum_{k=-n}^n e^{ikt} = \frac{1}{2} + \sum_{k=1}^n \cos kt$ называется n-м ядром Дирихле. Непосредственно из определения следует, что функция D_n непрерывна, четна, 2π -периодична и $\int_{-\pi}^{\pi} D_n(t) dt = \pi$. Кроме того, $S_n(f,x) = (\frac{1}{\pi}f * D_n)(x)$.

Из периодичности подынтегральных функций $S_n(f,x)=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x-s)\,D_n(s)\,d\mu(s).$ Теперь ввиду четности D_n , сумму $S_n(f,x)$ можно переписать в виде

$$S_n(f,x) = \frac{1}{\pi} \int_0^{\pi} (f(x+t) + f(x-t)) D_n(t) d\mu(t).$$

Просуммировав геометрическую прогрессию при $t \neq 2\pi m, m \in \mathbb{Z},$ получим

$$D_n(t) = \frac{1}{2}e^{-int}(1 + e^{it} + \dots + e^{2int}) = \frac{1}{2}e^{-int} \cdot \frac{e^{(2n+1)it} - 1}{e^{it} - 1} = \frac{e^{(n+1/2)it} - e^{-(n+1/2)it}}{2(e^{it/2} - e^{-it/2})} = \frac{\sin(n + \frac{1}{2})t}{2\sin\frac{t}{2}}.$$

Лемма 1. Пусть $f \in L_1(\mathbb{T})$ и $0 < \delta \leqslant \pi$. Тогда для кажедого $x \in \mathbb{R}$ выполнено

$$S_n(f,x) = \frac{1}{\pi} \int_0^{\delta} \frac{f(x+t) + f(x-t)}{t} \sin\left(n + \frac{1}{2}\right) t \, d\mu(t) + \varepsilon_n(x),\tag{1}$$

 $ede \ \varepsilon_n(x) \to 0 \ npu \ n \to \infty.$

▲ Имеем

$$S_n(f,x) = \frac{1}{\pi} \int_0^{\pi} (f(x+t) + f(x-t)) \frac{\sin(n+\frac{1}{2})t}{2\sin\frac{t}{2}} d\mu(t).$$

Пусть $0 < \delta \leqslant \pi$. Тогда

$$S_n(f,x) = \frac{1}{\pi} \int_0^{\delta} \frac{f(x+t) + f(x-t)}{t} \sin\left(n + \frac{1}{2}\right) t \, d\mu(t) + \frac{1}{\pi} \int_{\delta}^{\pi} \frac{f(x+t) + f(x-t)}{t} \sin\left(n + \frac{1}{2}\right) t \, d\mu(t) + \frac{1}{\pi} \int_0^{\pi} (f(x+t) + f(x-t)) \left(\frac{1}{2\sin\frac{t}{2}} - \frac{1}{t}\right) \sin\left(n + \frac{1}{2}\right) t \, d\mu(t).$$

Функция h(t) = f(x+t) + f(x-t) интегрируема на $(0,\pi]$, функция $g(t) = \frac{1}{2\sin\frac{t}{2}} - \frac{1}{t}$ непрерывна и ограничена на $(0,\pi]$ $(g(t)\to 0$ при $t\to 0)$. Поэтому функция hg интегрируема на $(0,\pi]$. Аналогично устанавливается, что функция h(t)/t интегрируема на $[\delta,\pi]$. Следовательно, второй и третий интегралы стремятся к нулю при $n\to\infty$ по лемме Римана, что доказывает утверждение. \blacksquare

Теорема 1. Пусть $f \in L_1(\mathbb{T})$, $x \in \mathbb{R}$. Тогда $\lim_{n \to \infty} S_n(f, x) = S$ в том и только в том случае, когда найдется $\delta \in (0, \pi]$, что

$$\lim_{n \to \infty} \int_0^{\delta} \frac{f(x+t) + f(x-t) - 2S}{t} \sin\left(n + \frac{1}{2}\right) t \, d\mu(t) = 0.$$
 (2)

 \blacktriangle Для функции $\tilde{f}\equiv 1$ все суммы $S_n(\tilde{f},x)=1$, поэтому по формуле (1) имеем

$$1 = \frac{2}{\pi} \int_0^{\delta} \frac{\sin(n + \frac{1}{2})t}{t} dt + o(1).$$

Умножая это равенство на S и вычитая из (1), получим

$$S_n(f,x) - S = \frac{1}{\pi} \int_0^{\delta} \frac{f(x+t) + f(x-t) - 2S}{t} \sin\left(n + \frac{1}{2}\right) t \, d\mu(t) + o(1),$$

что доказывает утверждение.

Задача. Докажите, что $\int_0^\infty \frac{\sin t}{t} \, dt = \frac{\pi}{2}$.

Из признаков сходимости рядов Фурье на практике наиболее употребителен признак Ди́ни. **Теорема 2** (Дини). Пусть $f \in L_1(\mathbb{T})$ и $x \in \mathbb{R}$. Если для числа $S \in \mathbb{C}$ существует такое $\delta > 0$, что

$$\int_0^{\delta} \frac{|f(x+t) + f(x-t) - 2S|}{t} d\mu(t) < \infty,$$

то ряд Фурье S(f,x) сходится в точке x к числу S.

▲ Подынтегральная функция лежит в $L_1(0, \delta)$. Поэтому по лемме Римана выполнено (2) и утверждение вытекает из теоремы 1. ■

Следствие 1. Пусть $f \in L_1(\mathbb{T})$ и $x \in \mathbb{R}$. Если существуют конечные односторонние пределы $f(x \pm 0)$ и конечные

$$\alpha_{\pm} = \lim_{t \to +0} \frac{f(x+t) - f(x\pm 0)}{t},$$

то ряд Фурье S(f,x) сходится в точке x к числу $S=\frac{f(x+0)+f(x-0)}{2}$.

lacktriangle Положим $arphi_x(t)=rac{f(x+t)+f(x-t)-2S}{t},\ t>0.$ Функция $arphi_x$ измерима и

$$\varphi_x(t) = \frac{f(x+t) - f(x+0)}{t} + \frac{f(x-t) - f(x-0)}{t} \xrightarrow{t \to +0} \alpha_+ - \alpha_-.$$

Следовательно, φ_x ограничена на некотором интервале $(0, \delta)$, и можно применить теорему 2.

Следствие 2. Пусть 2π -периодическая функция f в каждой точке x имеет конечные односторонние производные $f'_{\pm}(x)$. Тогда S(f,x)=f(x) для всех $x\in\mathbb{R}$.

Приведем в качестве задачи признак Дирихле, дополняющий признак Дини.

Задача. Пусть $f \in L_1(\mathbb{T})$ и $x \in \mathbb{R}$. Покажите, что если существует такое $\delta > 0$, что на интервалах $(x - \delta, x)$ и $(x, x + \delta)$ функция f монотонна и ограничена, то ряд Фурье S(f, x) сходится в точке x к числу $\frac{f(x+0)+f(x-0)}{2}$.

Хотя коэффициенты Фурье функции f определены глобально, сходимость ряда Фурье f в точке зависит только от поведения функции в сколь угодно малой окрестности точки. Это вытекает из следующего npuhuuna локализации.

Теорема 3 (Риман). Пусть $f, g \in L_1(\mathbb{T})$. Если f = g в некоторой окрестности точки x, то ряды Фурье S(f,x) и S(g,x) сходятся или расходятся одновременно, и если сходятся, то κ одному значению.

▲ Пусть f = g на $(x - \delta, x + \delta)$ при некотором $\delta > 0$. Тогда f(x + t) + f(x - t) = g(x + t) + g(x - t) при $0 \le t < \delta$, а значит, по (1) имеем $S_n(f, x) = S_n(g, x) + o(1)$. ■

Почленное дифференцирование и интегрирование рядов Фурье

Определение. Функция f называется $\kappa y co$ u ho u he u ho u he u

Теорема 4. Пусть $f \in C(\mathbb{T})$ и f' кусочно-непрерывна на $[-\pi, \pi]$. Тогда ряд Фурье производной S(f', x) получается почленным дифференцированием ряда S(f, x), т.е. S(f', x) = (S(f, x))'.

▲ По формуле интегрирования по частям имеем

$$2\pi \widehat{f}'(n) = \int_{-\pi}^{\pi} f'(t) \, e^{-int} \, d\mu(t) = f(t) \, e^{-int} \Big|_{t=-\pi}^{\pi} + in \int_{-\pi}^{\pi} f(t) \, e^{-int} \, d\mu(t) = 2\pi i n \widehat{f}(n).$$

Внеинтегральный член равен нулю в силу 2π -периодичности произведения f на экспоненту. Следовательно, $\hat{f}'(n) e^{inx} = \left(\hat{f}(n) e^{inx}\right)'$, что и утверждалось.

Замечание. Если f' кусочно-непрерывна на [a,b], то сама f также кусочно-непрерывна на [a,b]. В самом деле, пусть $\alpha < \beta$ — две соседние точки разрыва функции f' и $c \in (\alpha,\beta)$. По формуле Ньютона—Лебница $f(x) = f(c) + \int_c^x f'(t)dt$. Тогда из непрерывности интеграла с переменным верхним пределом следует, что f непрерывна на (α,β) и существуют конечные $f(\alpha+0), f(\beta-0)$.

Следствие. Пусть $f, f', ..., f^{(m-1)} \in C(\mathbb{T})$ и $f^{(m+1)}$ кусочно-непрерывна на $[-\pi, \pi]$ $(m \in \mathbb{N})$. Тогда $\widehat{f}(n) = O\left(\frac{1}{|n|^{m+1}}\right)$ при $n \to \pm \infty$.

▲ По замечанию выше функция $f^{(m)}$ кусочно-непрерывна на $[-\pi,\pi]$. Последовательно применяя теорему 4, получим $\widehat{f^{(m)}}(n) = (in)^m \widehat{f}(n)$.

Добавим ко всем точкам разрыва $f^{(m+1)}$ точки $\pm \pi$ и полученное множество упорядочим по возрастанию: $-\pi = x_0 < x_1 < \cdots < x_N = \pi$. По формуле интегрирования по частям имеем

$$\int_{x_{j-1}}^{x_j} f^{(m+1)}(t) e^{-int} dt = f^{(m)}(t) e^{-int} \Big|_{t \to x_{j-1} + 0}^{t \to x_j - 0} + in \int_{x_{j-1}}^{x_j} f^{(m)}(t) e^{-int} dt.$$

Просуммировав равенства по всем j и разделив на 2π , получим $\widehat{f^{(m+1)}}(n) = \lambda_n + i n \widehat{f^{(m)}}(n)$, где последовательность

$$\lambda_n = \frac{1}{2\pi} \sum_{j=1}^{N} \left(f^{(m)}(x_j - 0) e^{-inx_j} - f^{(m)}(x_{j-1} + 0) e^{-inx_{j-1}} \right)$$

ограничена. Так как $\widehat{f^{(m+1)}}(n) = o(1)$, то заключаем, что $\widehat{in}\,\widehat{f^{(m)}}(n) = O(1)$ при $n \to \pm \infty$. Откуда $(in)^{m+1}\widehat{f}(n) = O(1)$ при $n \to \pm \infty$, что завершает доказательство. \blacksquare

Задача. Докажите, что если в условиях следствия $\widehat{f}(n) = O\left(\frac{1}{|n|^{m+1+\varepsilon}}\right)$ для некоторого $\varepsilon > 0$, то $f^{(m)} \in C(\mathbb{T})$.

Теорема 5. Пусть $f, f', \ldots, f^{(m-1)} \in C(\mathbb{T})$ и $f^{(m)}$ кусочно-непрерывна на $[-\pi, \pi]$ $(m \in \mathbb{N})$. Тогда ряд Фурье S(f, x) сходится к функции f равномерно на \mathbb{R} , причем справедлива оценка

$$||S_n(f) - f||_{\infty} \le Cn^{-m + \frac{1}{2}} ||f^{(m)}||_2.$$

▲ По следствию 2 из признака Дини $f(x) = \sum_{n=-\infty}^{\infty} \widehat{f}(n)e^{inx}$, причем по теорему 4 $\widehat{f^{(m)}}(k) = (ik)^m \widehat{f}(k)$ при всех $k \in \mathbb{Z}$. Тогда для всякого $x \in \mathbb{R}$ имеем

$$|S_n(f,x) - f(x)| = \Big| \sum_{|k| > n} \widehat{f}(n) e^{ikx} \Big| \leqslant \sum_{|k| > n} |\widehat{f}(k)| = \sum_{|k| > n} \frac{1}{|k|^m} \cdot |\widehat{f}^{(m)}(k)|.$$

Откуда по неравенству Коши-Буняковского-Шварца

$$||S_n(f) - f||_{\infty} \le \left(\sum_{|k| > n} \frac{1}{k^{2m}}\right)^{1/2} \left(\sum_{|k| > n} |\widehat{f^{(m)}}(k)|^2\right)^{1/2}.$$

По неравенству Бесселя $2\pi \sum |\widehat{f^{(m)}}(k)|^2 \leqslant \|f^{(m)}\|_2^2$. Кроме того,

$$\sum_{k=n+1}^{\infty} \frac{1}{k^{2m}} \leqslant \sum_{k=n+1}^{\infty} \int_{k-1}^{k} \frac{dx}{x^{2m}} = \int_{n}^{\infty} \frac{dx}{x^{2m}} = \frac{n^{-2m+1}}{2m-1}.$$

Следовательно, $||S_n(f) - f||_{\infty} \leqslant C n^{-m + \frac{1}{2}} ||f^{(m)}||_2$, где C зависит только от m.

Лемма 2. Пусть $f, f_k \in L_1(\mathbb{T}), \|f_k - f\|_1 \to 0$ при $k \to \infty$. Тогда $\widehat{f_k}(n) \to \widehat{f}(n)$ для всех $n \in \mathbb{Z}$.

▲ Вытекает из оценки

$$|\widehat{f}_k(n) - \widehat{f}(n)| = \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - f_n(x)) e^{ikx} dx \right| \le \frac{1}{2\pi} ||f_k - f||_1.$$

Теорема 6. Пусть $f \in L_1(\mathbb{T})$ и $F(x) = \int_0^x f(t) \, d\mu(t) - \widehat{f}(0) \, x$. Тогда $F \in C(\mathbb{T})$ и ее ряд Фурье получается почленным интегрированием ряда S(f,x):

$$S(F,x) = \widehat{F}(0) + \sum_{n \neq 0} \frac{\widehat{f}(n)}{in} e^{inx},$$

причем такой ряд равномерно сходится к F.

 \blacktriangle Функция F имеет период 2π :

$$F(x+2\pi) - F(x) = \int_{x}^{x+2\pi} f(t) \, d\mu(t) - 2\pi \widehat{f}(0) = \int_{-\pi}^{\pi} f(t) \, d\mu(t) - 2\pi \widehat{f}(0) = 0.$$

По следствию теоремы 1.3 для каждого k найдется такая $f_k \in C(\mathbb{T})$, что $\|f_k - f\|_1 < \frac{1}{k}$. Определим $F_k(x) = \int_0^x f_k(t) dt - \widehat{f}_k(0) x$. Тогда $F_k - 2\pi$ -периодическая непрерывно-дифференцируемая функция и $F_k' = g_k$, где $g_k = f_k - \widehat{f}_k(0)$. По теореме $4 \ \widehat{g}_k(n) = in \widehat{F}_k(n)$ при всех $n \in \mathbb{Z}$. Очевидно, $\widehat{g}_k(n) = \widehat{f}_k(n)$ при $n \neq 0$, так что

$$\widehat{F}_k(n) = \frac{1}{in} \widehat{f}_k(n), \ n \neq 0. \tag{3}$$

Далее, для $x \in [-\pi, \pi]$ имеем

$$|F_k(x) - F(x)| \le \left| \int_0^x (f_k - f) d\mu \right| + |(\widehat{f}_k(0) - \widehat{f}(0))x| \le ||f_k - f||_1 + \pi |\widehat{f}_k(0) - \widehat{f}(0)|.$$

Следовательно, $F_k \rightrightarrows F$ на $[-\pi,\pi]$. Тогда F непрерывна на $[-\pi,\pi]$, а значит, и на $\mathbb R$. Так как $\|F_k-F\|_1\leqslant 2\pi\|F_k-F\|_\infty$, то $\|F_k-F\|_1\to 0$. Переходя в равенствах (3) к пределу при $k\to\infty$, по лемме получим $\widehat F(n)=\frac{1}{in}\widehat f(n)$ при $n\ne 0$.

Равномерная сходимость ряда S(F,x) к F выполнена по следствию из теоремы Фейера.

Следствие 1. Пусть $f \in L_1(\mathbb{T})$. Тогда

$$\int_{x}^{y} f(t)d\mu(t) = \sum_{n=-\infty}^{\infty} \widehat{f}(n) \int_{x}^{y} e^{int}dt.$$

▲ Следует по теореме в силу равенства $\int_x^y f(t) d\mu(t) = \widehat{f}(0)(y-x) + F(y) - F(x)$. ■ Замечание. Если в равенстве F(x) = S(F,x) положить x = 0, то получится

$$0 = \widehat{F}(0) + \sum_{n \neq 0} \frac{\widehat{f}(n)}{in} = \widehat{F}(0) + \sum_{n=1}^{\infty} \frac{\widehat{f}(n) - \widehat{f}(-n)}{in} = \widehat{F}(0) - \sum_{n=1}^{\infty} \frac{b_n(f)}{n}.$$

Функции из $L_1(\mathbb{T})$ полностью определяются своими коэффициентами Фурье (теорема единственности). А именно, верно

Следствие 2^* . Пусть $f,g\in L_1(\mathbb{T})$ и $\widehat{f}(n)=\widehat{g}(n)$ для всех $n\in\mathbb{Z}$. Тогда f=g п.в. на \mathbb{R} .

 \blacktriangle По следствию 1 функции f и q имеют на каждом отрезке совпадающие интегралы. Поэтому они совпадают п.в. ■

Суммирование рядов Фурье методом средних арифметических

Ряд Фурье непрерывной функции может расходиться на множестве меры нуль. Тем не менее, он всегда суммируем методом средних арифметических, причем такие суммы равномерно сходятся к самой функции.

Определение. Пусть $f \in L_1(\mathbb{T})$. Определим

$$\sigma_N(f, x) = \frac{1}{N+1} \sum_{n=0}^{N} S_n(f, x).$$

Суммы σ_N называются $\mathit{суммами}\ \Phi \acute{e} \check{u} epa$ функции f

Задача. Докажите, что
$$\sigma_n(f,x) = \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) \, \hat{f}(k) \, e^{ikx}$$
.

Используя интегральное представление $S_n(f,x)$, получаем следующее:

$$\sigma_N(f,x) = \frac{1}{N+1} \sum_{n=0}^{N} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) D_n(t) d\mu(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) F_N(t) d\mu(t),$$

где $F_N=rac{1}{N+1}\sum_{i=0}^N D_n(t)-N$ -е ядро Фейера. Из свойств ядра Дирихле следует, что $F_N\in C(\mathbb{T})$ и $\int_{-\pi}^{\pi} F_N(t) dt = \pi$. Кроме того, ввиду равенства $D_n(t) = \frac{\sin{(n+\frac{1}{2})t}}{2\sin{\frac{t}{n}}}$, имеем

$$(N+1)F_N(t) = \sum_{n=0}^N \frac{\sin\left(n + \frac{1}{2}\right)t\sin\frac{t}{2}}{2\sin^2\frac{t}{2}} = \sum_{n=0}^N \frac{\cos nt - \cos\left(n + 1\right)t}{4\sin^2\frac{t}{2}} = \frac{1 - \cos\left(N + 1\right)t}{4\sin^2\frac{t}{2}}.$$

Итак, $F_N(t) = \frac{1}{N+1} \frac{\sin^2 \frac{(N+1)t}{2}}{2\sin^2 \frac{t}{2}} \ (t \neq 2\pi m)$. Поэтому $F_N \geqslant 0$ и $F_N(t) \leqslant \frac{1}{2(N+1)} \cdot \frac{1}{\sin^2 \frac{\delta}{2}}$ при $\delta \leqslant |t| \leqslant \pi$ для всякого $\delta \in (0, \pi)$.

Таким образом, $\left\{\frac{1}{\pi}F_N\right\}$ является аппроксимативной единицей. Поскольку $\sigma_N(f,x)=\frac{1}{\pi}f*F_N(x),$ то из теоремы 1.5 следует

Теорема 7 (Фейер). Пусть $f \in C(\mathbb{T})$. Тогда $\sigma_N(f) \rightrightarrows f$ на \mathbb{R} .

Получим один признак равномерной сходимости ряда Фурье. Нам понадобится

Лемма 3. Пусть $\{a_n\}$ – последовательность комплекс чисел. Если $a_n \to 0$, то $\frac{a_1 + \ldots + a_n}{n} \to 0$.

 \blacktriangle Пусть $\varepsilon > 0$. Найдется такое N, что $|a_n| < \frac{\varepsilon}{2}$ при всех n > N. Положим $C = |a_1 + \ldots + a_N|$,

тогда при n > N $\left| \frac{a_1 + \ldots + a_n}{n} \right| \leqslant \frac{|a_1 + \ldots + a_N| + |a_{N+1}| + \ldots + |a_n|}{n} \leqslant \frac{C}{n} + \frac{n - N}{n} \frac{\varepsilon}{2}.$

Второе слагаемое в правой части меньше $\frac{\varepsilon}{2}$. При достаточно больших n первое слагаемое также можно сделать меньше $\frac{\varepsilon}{2}$.

Следствие. Пусть $f\in C(\mathbb{T})$, причем $\widehat{f}(n)=o\left(\frac{1}{|n|}\right)$ при $n\to\infty$. Тогда ряд Фурье S(f,x)cxodumcя равномерно κ f на \mathbb{R} .

 \blacktriangle По теореме Фейера $\sigma_N(f) \rightrightarrows f$ на $\mathbb R$. Поэтому достаточно проверить, что $S_n(f) - \sigma_{n-1}(f) \rightrightarrows 0$. Имеем

$$|S_n(f,x) - \sigma_{n-1}(f,x)| = \left| \sum_{k=-n}^n \frac{|k|}{n} \widehat{f}(k) e^{ikx} \right| \le \frac{1}{n} \sum_{k=-n}^n |k| |\widehat{f}(k)|.$$

По условию $|k\widehat{f}(k)| = o(1)$, а значит, по лемме 3 $\frac{1}{n} \sum_{k=-n}^{n} |k\widehat{f}(k)| = o(1)$ при $k \to \infty$. Поэтому $\|S_n(f) - \sigma_{n-1}(f)\|_{\infty} \leqslant \frac{1}{n} \sum_{k=-n}^{n} |k\widehat{f}(k)| \to 0. \quad \blacksquare$

Пусть $E \subset \mathbb{R}^m$ измеримо, A — множество, пусть функция $f \colon E \times A \to \mathbb{C}$ такая, что $f(\cdot, \alpha) \in L_1(E)$ при каждом $\alpha \in A$. Рассмотрим функцию, определяемую равенством

$$I(\alpha) = \int_{E} f(x, \alpha) \, d\mu(x) \ (\alpha \in A).$$

Будем интересоваться вопросами, при каких условиях функция I непрерывна/дифференцируема? Для наглядности ограничимся случаем, когда A есть промежуток в \mathbb{R} .

Теорема 1 (о непрерывности). Пусть $E \subset \mathbb{R}^m$ измеримо, $A \subset \mathbb{R}$ — промежсуток, $\alpha_0 \in A$. Пусть функция $f \colon E \times A \to \mathbb{C}$ такая, что

- 1) $f(\cdot, \alpha)$ измерима на E для кажедого $\alpha \in A$;
- 2) $f(x,\cdot)$ непрерывна в точке α_0 для п.в. $x \in E$;
- 3) существует интегрируемая функция $\varphi \colon E \to \mathbb{R}$ такая, что для п.в. $x \in E$ и всех $\alpha \in A$ выполнено $|f(x,\alpha)| \leqslant \varphi(x)$.

Tогда функция I непрерывна в точке α_0 .

▲ Из пп 1 и 3 следует, что функция $f(\cdot, \alpha)$ интегрируема на E при каждом $\alpha \in A$, а значит, функция $I(\alpha)$ корректно определена.

Возьмем произвольную последовательность $\alpha_k \in A$, $\alpha_k \to \alpha_0$. Определим $f_k(x) = f(x, \alpha_k)$, $k \in \mathbb{N}_0$. Тогда из условий $f_k(x) \to f_0(x)$ и $|f_k(x)| \leqslant \varphi(x)$ для п.в. $x \in E$. По теореме Лебега о мажорированной сходимости получаем, что

$$I(\alpha_k) = \int_E f(x, \alpha_k) \, d\mu(x) \to \int_E f(x, \alpha_0) \, d\mu(x) = I(\alpha_0).$$

В силу произвольности $\{\alpha_k\}$ заключаем, что функция I непрерывна в точке α_0 .

Следствие. Пусть $E \subset \mathbb{R}^m$ — компакт и A — промежуток. Если $f \in C(E \times A)$, то $I \in C(A)$.

▲ Пусть $\alpha_0 \in A$. Найдем такое $\delta > 0$, что $J = A \cap [\alpha_0 - \delta, \alpha_0 + \delta]$ является отрезком. По теореме Вейерштрасса f ограничена на компакте $E \times J$. Поэтому по теореме 1 (в качестве φ можно взять константу, ограничивающую |f|) функция I непрерывна в точке α_0 . ■

Пример. Рассмотрим интеграл $I(\alpha) = \int_0^{+\infty} \alpha e^{-\alpha x} dx$, $\alpha \geqslant 0$. Подынтегральная функция очевидно непрерывна на \mathbb{R}^2 . Тем не менее, функция I разрывна в $\alpha = 0$, т.к. I(0) = 0 и $I(\alpha) = 1$ при $\alpha > 0$ (достаточно внести α под дифференциал). Это показывает существенность условия (3) в теореме 1 и компактности в следствии.

Теорема 2 (о дифференцируемости). Пусть $E \subset \mathbb{R}^m$ измеримо, $A \subset \mathbb{R}$ — промежуток. Пусть функция $f \colon E \times A \to \mathbb{C}$ такая, что

- 1) $f(\cdot, \alpha)$ интегрируема на E для каждого $\alpha \in A$;
- 2) $f(x,\cdot)$ дифференцируема на A для n.в. $x \in E$;
- 3) существует интегрируемая функция $\varphi \colon E \to \mathbb{R}$ такая, что для п.в. $x \in E$ и всех $\alpha \in A$ выполнено $\left| \frac{\partial f}{\partial \alpha}(x,\alpha) \right| \leqslant \varphi(x)$.

Тогда функция І дифференцируема на А и

$$I'(\alpha) = \int_E \frac{\partial f}{\partial \alpha}(x, \alpha) d\mu(x).$$

A Зафиксируем $\alpha_0 \in A$ и пусть $\alpha_k \in A \setminus \{\alpha_0\}$, $\alpha_k \to \alpha_0$. Положим $g_k(x) = \frac{f(x,\alpha_k) - f(x,\alpha_0)}{\alpha_k - \alpha_0}$. Тогда $g_k(x) \to \frac{\partial f}{\partial \alpha}(x,\alpha)$ для п.в. x. По теореме Лагранжа о среднем $g_k(x) = \frac{\partial f}{\partial \alpha}(x,c_k)$ для некоторой точки c_k между α_0 и α_k . Поэтому $|g_k(x)| \leqslant \varphi(x)$ для п.в. x. По теореме Лебега получаем, что

$$\frac{I(\alpha_k) - I(\alpha_0)}{\alpha_k - \alpha_0} = \int_E g_k(x) \, d\mu(x) \to \int_E \frac{\partial f}{\partial \alpha}(x, \alpha_0) \, d\mu(x).$$

В силу произвольности $\{\alpha_k\}$ существует

$$\lim_{\alpha \to \alpha_0} \frac{I(\alpha) - I(\alpha_0)}{\alpha - \alpha_0} = \int_E \frac{\partial f}{\partial \alpha}(x, \alpha_0) \, d\mu(x),$$

T. e.
$$I'(\alpha_0) = \int_E \frac{\partial f}{\partial \alpha}(x, \alpha_0) d\mu(x)$$
.

Следствие. Пусть $E \subset \mathbb{R}^m$ — компакт, A — промежуток, f, $\frac{\partial f}{\partial \alpha} \in C(E \times A)$. Тогда $I \in C^1(A)$ и $I'(\alpha) = \int_E \frac{\partial f}{\partial \alpha}(x,\alpha) d\mu(x)$.

Пример. Рассмотрим интеграл $I(\alpha) = \int_0^{+\infty} \alpha^2 e^{-\alpha x} dx$, $\alpha \geqslant 0$. Этот интеграл вычисляется явно: $I(\alpha) = \alpha$, так что I'(0) = 1. С другой стороны, подынтегральная функция всюду дифференцируема и $\frac{\partial f}{\partial \alpha}(x,\alpha) = (2\alpha - x\alpha^2)e^{-\alpha x}$. Но поскольку $\frac{\partial f}{\partial \alpha}(x,0) = 0$, равенство в теореме 2 при $\alpha = 0$ не выполнено. Это показывает существенность условия (3) в теореме 2 и компактности в следствии.

Задача. Пусть $f, \frac{\partial f}{\partial \alpha} \in C([a,b] \times [c,d])$, а функции $\varphi, \psi : [c,d] \to [a,b]$ дифференцируемы на [c,d], и $a \leqslant \varphi(\alpha) \leqslant \psi(\alpha) \leqslant b$ для всех $\alpha \in [c,d]$. Докажите, что $J(\alpha) = \int\limits_{\varphi(\alpha)}^{\psi(\alpha)} f(t,\alpha) dt$ дифференцируема на [c,d]. Найдите $J'(\alpha)$.

Вместе с исследованием дифференцируемости естественно поставить вопрос об интегрируемости по параметру. Поскольку он в большой общности решен в теореме Фубини, здесь нет необходимости его касаться.

Иногда приходится иметь дело с условно сходящимися интегралами с параметром. В этом случае теоремы 1 и 2 неприменимы. При перенесении результатов нам потребуется новое понятие — равномерная сходимость несобственного интеграла. Имеет смысл рассмотреть вопрос с более общих позиций, чему и посвящен следующий раздел.

Равномерная сходимость семейства функций

Определение. Пусть X — произвольное множество, Y — метрическое пространство, y_0 — предельная точка Y. Пусть заданы функции $f: X \times Y \to \mathbb{C}, \ g: X \to \mathbb{C}$.

Говорят, что функция f равномерно на X сходится κ g npu $y \to y_0$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in \mathring{B}_{\delta}(y_0) \ \forall x \in X \ (|f(x,y) - g(x)| < \varepsilon)$$

или, что эквивалентно,

$$\sup_{x \in X} |f(x, y) - g(x)| \xrightarrow{y \to y_0} 0.$$

Пишут $f(x,y) \underset{X}{\Longrightarrow} g(x)$ при $y \to y_0$ или $\lim_{y \to y_0} f(x,y) = g(x)$ равномерно по $x \in X$.

Отметим, что на f полезно смотреть как на семейство функций $\{f(\cdot,y)\}_{y\in Y}$, индексированных параметром y.

Замечание. Множество $Y = \mathbb{N} \cup \{\infty\}$ является метрическим пространством с метрикой $\rho(m,n) = \left|\frac{1}{m} - \frac{1}{n}\right| \left(\frac{1}{\infty} = 0\right)$. Положим $f_n(x) := f(x,n), y_0 = \infty$. Тогда понятие $f(x,n) \underset{X}{\Longrightarrow} g(x)$ при $n \to \infty$ в смысле данного выше определения в точности совпадает с понятием равномерной сходимости последовательности $\{f_n\}$ к g на множестве X. С другой стороны, само определение равномерной сходимости семейства функций можно сформулировать на языке последовательностей.

Задача. Покажите:
$$f(x,y) \underset{X}{\Longrightarrow} g(x)$$
 при $y \to y_0 \Leftrightarrow \forall \{y_n\} \subset Y \setminus \{y_0\} \ (y_n \to y_0 \Rightarrow f(x,y_n) \underset{X}{\Longrightarrow} g(x))$.

Теорема 3 (критерий Коши равномерной сходимости). Пусть Y — метрическое пространство, y_0 — предельная точка Y. Для того, чтобы функция $f: X \times Y \to \mathbb{C}$ при $y \to y_0$ равномерно на X сходилась κ некоторой функции, необходимо и достаточно выполнения условия Komu

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y', y'' \in \mathring{B}_{\delta}(y_0) \ \forall x \in X \quad (|f(x, y') - f(x, y'')| < \varepsilon). \tag{1}$$

 \blacktriangle (\Rightarrow) Зафиксируем $\varepsilon > 0$. Если $f(x,y) \underset{X}{\Longrightarrow} g(x)$ при $y \to y_0$, то существует такое $\delta > 0$, что для всех $y \in \mathring{B}_{\delta}(y_0)$ и $x \in X$ выполнено $|f(x,y) - g(x)| < \frac{\varepsilon}{2}$. Тогда для $y', y'' \in \mathring{B}_{\delta}(y_0)$ и $x \in X$ имеем

$$|f(x,y') - f(x,y'')| \leqslant |f(x,y') - g(x)| + |g(x) - f(x,y'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 (\Leftarrow) Если f удовлетворяет условию (1), то в каждой точке $x \in X$ для функции $f(x,\cdot)$ выполняется условие Коши существования предела при $y \to y_0$. Положим $g(x) := \lim_{y \to y_0} f(x,y)$, $x \in X$. Перейдем в неравенстве (1) к пределу при $y'' \to y_0$ (при фиксированном y'). Тогда заключаем, что неравенство $|f(x,y') - g(x)| \leqslant \varepsilon$ выполняется при любых $y' \in \mathring{B}_{\delta}(y_0)$ и $x \in X$. Это означает, что $f(x,y) \underset{X}{\Longrightarrow} g(x)$ при $y \to y_0$.

Следующая теорема о перестановке пределов является ключевой в данном разделе.

Теорема 4. Пусть X, Y — метрические пространства, x_0, y_0 — предельные точки X и Y соответственно. Пусть функция $f: (X \setminus \{x_0\}) \times (Y \setminus \{y_0\}) \to \mathbb{C}$ такова, что

- 1) $\lim_{y\to y_0} f(x,y) = \varphi(x)$ существует равномерно по $x\in X\setminus \{x_0\};$
- 2) $\lim_{x\to x_0} f(x,y) = \psi(y)$ существует для каждого $y\in Y\setminus\{y_0\}.$

Тогда предели $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)$ и $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$ существуют и равны.

 \blacktriangle Пусть $\varepsilon > 0$. По п. 1 имеем

$$\exists \delta > 0 \,\forall y \in \mathring{B}_{\delta}(y_0) \,\forall x \in X \setminus \{x_0\} \, (|f(x,y) - \varphi(x)| < \varepsilon). \tag{2}$$

Фиксируем $y \in \mathring{B}_{\delta}(y_0)$. По п. 2 найдется такое $\sigma > 0$, что $|f(x,y) - \psi(y)| < \varepsilon$ при всех $x \in \mathring{B}_{\sigma}(x_0)$. Пусть $x, x' \in \mathring{B}_{\sigma}(x_0)$. Тогда по неравенству треугольника

$$|\varphi(x) - \varphi(x')| \le |\varphi(x) - f(x,y)| + |f(x,y) - \psi(y)| + |\psi(y) - f(x',y)| + |f(x',y) - \varphi(x')|,$$

откуда $|\varphi(x)-\varphi(x')| < 4\varepsilon$. Таким образом, в точке x_0 для функции φ выполняется условие Коши, а значит, существует $a = \lim_{x \to x_0} \varphi(x)$. Если в неравенстве (2) перейти к пределу при $x \to x_0$ (при фиксированном y), то получим $|\psi(y)-a| \leqslant \varepsilon$ для всех $y \in \mathring{B}_{\delta}(y_0)$. Следовательно, $\lim_{y \to y_0} \psi(y) = a$.

Замечание. Из доказательства теоремы 4 следует, что оба повторных предела равны двойному $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$. Так что теорема дает достаточное условие существования двойного предела.

Следствие 1. Пусть X и Y — метрические пространства, y_0 — предельная точка Y. Пусть функция $F: X \times (Y \setminus \{y_0\}) \to \mathbb{C}$ такова, что

- 1) функция $F(\cdot,y)$ непрерывна в точке $x_0 \in X$ при каждом $y \neq y_0$;
- 2) $F(x,y) \underset{X}{\Longrightarrow} \varphi(x) npu y \to y_0.$

Тогда функция φ непрерывна в точке x_0 .

▲ Если x_0 — изолированная точка X, то φ непрерывна в точке x_0 по определению. Если x_0 — предельная точка X, то $\lim_{x\to x_0} F(x,y) = F(x_0,y)$ для каждого $y \in Y \setminus \{y_0\}$. По теореме 4 имеем

$$\lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \lim_{y \to y_0} F(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} F(x, y) = \lim_{y \to y_0} F(x_0, y) = \varphi(x_0). \blacksquare$$

Следствие 2. Пусть A- промежуток, Y- метрическое пространство и y_0- предельная точка Y. Пусть функция $H: A \times (Y \setminus \{y_0\}) \to \mathbb{C}$ такова, что

- 1) функция $H(\cdot, y)$ дифференцируема на A при каждом $y \neq y_0$;
- 2) $\frac{\partial H}{\partial x}(x,y) \underset{\Lambda}{\Longrightarrow} v(x) npu y \to y_0;$
- 3) $H(x,y) \stackrel{\cap}{\to} u(x)$ $npu \ y \to y_0$ dis $ecex \ x \in A$.

Тогда функция и дифференцируема на A, причем u' = v.

 \blacktriangle Зафиксируем $x_0 \in A$ и рассмотрим функцию

$$W(x,y) = \frac{H(x,y) - H(x_0,y)}{x - x_0}, \ x \neq x_0.$$

По п. 3 существует $\lim_{y\to y_0}W(x,y)=\frac{u(x)-u(x_0)}{x-x_0}$. Покажем, что этот предел равномерен по x. Пусть $y_1,\ y_2\in Y\setminus\{y_0\}$. По теореме Лагранжа о среднем, примененной к функции $H(\cdot,y_2)-H(\cdot,y_1)$, найдется θ между x и x_0 , что

$$W(x, y_2) - W(x, y_1) = \frac{[H(x, y_2) - H(x, y_1)] - [H(x_0, y_2) - H(x_0, y_1)]}{x - x_0} = \frac{\partial H}{\partial x}(\theta, y_2) - \frac{\partial H}{\partial x}(\theta, y_1).$$

По п. 2 функция $\frac{\partial H}{\partial x}$ удовлетворяет условию Коши равномерной сходимости. Поэтому

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y_1, y_2 \in \mathring{B}_{\delta}(y_0) \ \forall x \in A \ (|W(x, y_2) - W(x, y_1)| < \varepsilon).$$

По критерию Коши $\lim_{y\to y_0}W(x,y)$ равномерен по x. По п. 1 при каждом $y\neq y_0$ существует $\lim_{x\to x_0}W(x,y)=\frac{\partial H}{\partial x}(x_0,y)$. Следовательно, по теореме 4 существует

$$\lim_{x \to x_0} \frac{u(x) - u(x_0)}{x - x_0} = \lim_{x \to x_0} \lim_{y \to y_0} W(x, y) = \lim_{y \to y_0} \lim_{x \to x_0} W(x, y) = \lim_{y \to y_0} \frac{\partial H}{\partial x}(x_0, y),$$

т.е. $u'(x_0) = v(x_0)$, что завершает доказательство.

Несобственные интегралы с параметром

Пусть $-\infty < a < b \le +\infty$, A — множество и задана функция $f:[a,b) \times A \to \mathbb{C}$, непрерывная при любом $\alpha \in A$. Пусть при любом $\alpha \in A$ существует конечный (комплекснозначный) предел $\lim_{y\to b-0} \int_a^y f(x,\alpha)\,dx =: \int_a^b f(x,\alpha)\,dx$ (интеграл сходится). Под несобственным интегралом с параметром будем понимать функцию, определяемую равенством

$$I(\alpha) = \int_{a}^{b} f(x, \alpha) dx \ (\alpha \in A).$$

Аналогично определяется несобственный интеграл с особой точкой в левом конце промежутка интегрирования.

Определение. Говорят, что несобственный интеграл $\int_a^b f(x,\alpha)dx$ сходится равномерно на A (или по $\alpha \in A$), если он сходится при каждом $\alpha \in A$ и

$$\forall \varepsilon > 0 \ \exists b' \in [a,b) \ \forall y \in (b',b) \ \forall \alpha \in A \ \left(\left| \int_a^y f(x,\alpha) dx - \int_a^b f(x,\alpha) dx \right| < \varepsilon \right)$$

или, что эквивалентно,

$$\sup_{\alpha \in A} \left| \int_{y}^{b} f(x, \alpha) dx \right| \xrightarrow{y \to b - 0} 0.$$

Замечание. Положим $I(\alpha,y)=\int_a^y f(x,\alpha)dx,\ I(\alpha)=\int_a^b f(x,\alpha)dx.$ Тогда равномерная сходимость $I(\alpha)$ означает, что $I(\alpha,y)\underset{A}{\Longrightarrow} I(\alpha)$ при $y\to b-0.$

Свойства несобственных интегралов с параметром

С1 (непрерывность). Пусть функция f непрерывна на $[a,b) \times [c,d]$ и $\int_a^b f(x,\alpha) dx$ равномерно сходится на [c,d]. Тогда функция $I(\alpha) = \int_a^b f(x,\alpha) dx$ непрерывна на [c,d].

▲ Положим $I(\alpha,y) = \int_a^y f(x,\alpha) \, dx$. По следствию из теоремы 1 функция $I(\cdot,y)$ непрерывна на [c,d] при каждом $y \in [a,b)$. Равномерная сходимость интеграла означает, что $I(\alpha,y) \stackrel{}{\Longrightarrow} I(\alpha)$ при $y \to b-0$. Тогда по следствию 1 из теоремы 4 заключаем, что функция I также непрерывна на [c,d]. ■

С2 (дифференцируемость). Пусть $f, \frac{\partial f}{\partial \alpha}$ непрерывны на $[a,b) \times [c,d], \int_a^b \frac{\partial f}{\partial \alpha}(x,\alpha) dx$ равномерно сходится на [c,d] и $\int_a^b f(x,\alpha) dx$ сходится при любом $\alpha \in [c,d]$. Тогда функция $I(\alpha)$ непрерывно дифференцируема на [c,d] и

$$I'(\alpha) = \int_a^b \frac{\partial f}{\partial \alpha}(x, \alpha) dx.$$

▲ Положим $I(\alpha,y) = \int_a^y f(x,\alpha) \, dx$. По следствию из теоремы 2 функция $I(\cdot,y)$ дифференцируема на [c,d] при каждом $y \in [a,b)$ и $\frac{\partial I}{\partial \alpha}(\alpha,y) = \int_a^y \frac{\partial f}{\partial \alpha}(x,\alpha) dx$. По условию $\frac{\partial I}{\partial \alpha} \Longrightarrow \int_a^b \frac{\partial f}{\partial \alpha}(x,\alpha) dx$ при $y \to b - 0$. Тогда по следствию 2 из теоремы 4 получаем, что функция I дифференцируема на [c,d], причем $I'(\alpha) = \int_a^b \frac{\partial f}{\partial \alpha}(x,\alpha) dx$. Непрерывность I' на [c,d] следует по предыдущему утверждению. ■

C3 (интегрируемость). Пусть функция f непрерывна на $[a,b) \times [c,d]$ и $\int_a^b f(x,\alpha) dx$ равномерно сходится на [c,d]. Тогда

$$\int_{c}^{d} I(\alpha) d\alpha = \int_{a}^{b} \left(\int_{c}^{d} f(x, \alpha) d\alpha \right) dx.$$

▲ Отметим, что интеграл в левой части существует, т.к. I непрерывна на [c,d]. Положим $I(\alpha,y)=\int_a^y f(x,\alpha)\,dx$. По условию $I(\alpha,y) \underset{[c,d]}{\Longrightarrow} I(\alpha)$ при $y\to b-0$. Тогда $\int_c^d I(\alpha,y)d\alpha \to \int_c^d I(\alpha)d\alpha$ при $y\to b-0$. Это следует из оценки

$$\left| \int_{c}^{d} I(\alpha, y) d\alpha - \int_{c}^{d} I(\alpha) d\alpha \right| \leqslant \int_{c}^{d} |I(\alpha, y) - I(\alpha)| d\alpha \leqslant (d - c) \sup_{\alpha \in [c, d]} |I(\alpha, y) - I(\alpha)|.$$

Функция f непрерывна на компакте $[a,y] \times [c,d]$, а значит, интегрируема на этом множестве. Поэтому по теореме Фубини $\int_c^d I(\alpha,y) d\alpha = \int_a^y \left(\int_c^d f(x,\alpha) d\alpha \right) dx$. Осталось в этом равенстве перейти к пределу при $y \to b-0$.

Признаки равномерной сходимости несобственных интегралов с параметром

Пусть $-\infty < a < b \leqslant +\infty, A$ — множество и задана функция $f \colon [a,b) \times A \to \mathbb{C}$, непрерывная при любом $\alpha \in A$.

Теорема 5 (критерий Коши). Несобственный интеграл $\int_a^b f(x,\alpha) \, dx$ равномерно сходится на A тогда и только тогда, когда

$$\forall \varepsilon > 0 \ \exists b_{\varepsilon} \in [a, b) \ \forall \xi, \eta \in (b_{\varepsilon}, b) \ \forall \alpha \in A \ \left(\left| \int_{\xi}^{\eta} f(x, \alpha) \, dx \right| < \varepsilon \right). \tag{3}$$

 \blacktriangle (\Rightarrow) Пусть $\varepsilon > 0$. Так как интеграл $\int_a^b f(x,\alpha) dx$ сходится равномерно на A, то найдется такое $b_{\varepsilon} \in [a,b)$, что

$$\forall y \in (b_{\varepsilon}, b) \ \forall \alpha \in A \ \left(\left| \int_{u}^{b} f(x, \alpha) dx \right| < \frac{\varepsilon}{2} \right).$$

Следовательно, для любого отрезка $[\xi,\eta]\subset (b_{arepsilon},b)$ имеем

$$\left| \int_{\xi}^{\eta} f(x, \alpha) \, dx \right| \leqslant \left| \int_{\xi}^{b} f(x, \alpha) \, dx \right| + \left| \int_{\eta}^{b} f(x, \alpha) \, dx \right| < \varepsilon.$$

 (\Leftarrow) Пусть для интеграла $\int_a^b f(x,\alpha) \, dx$ выполняется условие Коши (3). Тогда при любом фиксированном $\alpha \in A$ этот интеграл сходится по критерию Коши для интегралов без параметра. Перейдем в (3) к пределу при $\eta \to b-0$. Тогда

$$\forall \varepsilon > 0 \ \exists b_{\varepsilon} \in [a, b) \ \forall \xi \in (b_{\varepsilon}, b) \ \forall \alpha \in A \ \left(\left| \int_{\xi}^{b} f(x, \alpha) \, dx \right| \leqslant \varepsilon \right).$$

Это означает, что интеграл сходится равномерно на A.

Замечание. Данная теорема — результат применения критерия Коши равномерной сходимости (теорема 3) к функции $I(\alpha, y) = \int_a^y f(x, \alpha) dx$ на множестве A при $y \to b - 0$.

Теорема 6 (признак Вейерштрасса). *Пусть на множестве* $[a,b) \times A$ заданы непрерывные функции f и φ , удовлетворящие условиям:

- 1) $|f(x,\alpha)| \leqslant \varphi(x)$ das $ecex\ x \in [a,b)$ u $ecex\ \alpha \in A;$
- 2) $\int_a^b \varphi(x) dx \ cxo \partial umcs$.

Tогда $\int_a^b f(x,\alpha) dx$ равномерно сходится на A.

▲ Утверждение следует из неравенства $\sup_{\alpha \in A} \left| \int_{\xi}^{\eta} f(x,\alpha) \, dx \right| \leqslant \int_{\xi}^{\eta} \varphi(x) \, dx$ и критерия Коши. ■

Установим признак равномерной сходимости несобственных интегралов от произведения функций. Как и в случае интегралов без параметра, доказательство опирается на лемму Абеля, формулировку которой напоминаем.

Лемма (Абель). Пусть функции f, g непрерывны на [a,b], причем g монотонна. Если $\left| \int_a^x f(t)dt \right| \leqslant M$ для всех $x \in [a,b]$, то справедлива оценка

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leqslant 2M(|g(a)| + |g(b)|).$$

Теорема 7 (признак Дирихле). Пусть на множестве $[a,b) \times A$ заданы непрерывные функции f и g, удовлетворящие условиям:

- 1) функция $F(x,\alpha) = \int_a^x f(t,\alpha) \, dt$ ограничена на $[a,b) \times A$;
- 2) функция $g(\cdot,\alpha)$ монотонна на [a,b) при любом $\alpha\in A;$
- 3) $g(x,\alpha) \underset{A}{\Longrightarrow} 0 \text{ npu } x \to b 0.$

Тогда несобственный интеграл $J(\alpha) = \int_a^b f(x,\alpha)g(x,\alpha)dx$ равномерно сходится на A.

▲ Пусть $\varepsilon > 0$. Выберем C > 0 так, что $|F| \leqslant C$ на $[a,b) \times A$. Поскольку $g(x,\alpha) \underset{A}{\Longrightarrow} 0$ при $x \to b - 0$, то существует $b_{\varepsilon} \in [a,b)$, такое что $|g(x,\alpha)| < \frac{\varepsilon}{8C}$ для всех $x \in (b_{\varepsilon},b)$ и $\alpha \in A$. Зафиксируем $\alpha \in A$ и пусть $[\xi,\eta] \subset (b_{\varepsilon},b)$. Имеем $\left|\int_{\xi}^{x} f(t,\alpha)dt\right| = |F(x,\alpha) - F(\xi,\alpha)| \leqslant 2C$ для всех $x \in [\xi,\eta]$. Тогда по лемме Абеля

$$\left| \int_{\xi}^{\eta} f(x, \alpha) g(x, \alpha) dx \right| \leq 4C(|g(\xi, \alpha)| + |g(\eta, \alpha)|) < 4C \frac{\varepsilon}{4C} = \varepsilon.$$

По критерию Коши интеграл $\int_a^b f(x,\alpha)g(x,\alpha)dx$ сходится равномерно на A.

Пример. Вычислим *интеграл Дирихле* $\int\limits_0^{+\infty} \frac{\sin x}{x} dx$.

Рассмотрим интеграл $I(\alpha) = \int_0^{+\infty} \frac{\sin x}{x} \, e^{-\alpha x} \, dx \ (\alpha \geqslant 0)$. Имеем $\left| \int_0^x \sin t \, dt \right| \leqslant 2$, $\left| \frac{e^{-\alpha x}}{x} \right| \leqslant \frac{1}{x} \to 0$ при $x \to +\infty$. Следовательно, интеграл $I(\alpha)$ сходится равномерно на $[0, +\infty)$ по признаку Дирихле. Поскольку подынтегральная функция непрерывна (считаем, что при x = 0 она равна единице), то функция I непрерывна на луче $[0, +\infty)$.

Покажем, что I можно дифференцировать по параметру. Пусть $0 < c < d < \infty$. Для любого $\alpha \in [c,d]$ выполнено $\left|\frac{\partial f}{\partial \alpha}(x,\alpha)\right| = |e^{-\alpha x}\sin x| \leqslant e^{-cx}$ и функция $\varphi(x) = e^{-cx}$ интегрируема на $[0,+\infty)$. Аналогично устанавливается интегрируемость функции $f(x,\alpha) = \frac{\sin x}{x} e^{-\alpha x}$ на $[0,+\infty)$ для $\alpha \in [c,d]$. Тогда по теореме 2 имеем

$$I'(\alpha) = -\int_0^{+\infty} e^{-\alpha x} \sin x \, dx = e^{-\alpha x} \cos x \Big|_0^{+\infty} + \alpha \int_0^{+\infty} e^{-\alpha x} \cos x \, dx =$$
$$= -1 + \alpha \left(e^{-\alpha x} \sin x \Big|_0^{+\infty} + \alpha \int_0^{+\infty} e^{-\alpha x} \sin x \, dx \right) = -1 - \alpha^2 I'(\alpha).$$

Откуда $I'(\alpha) = -\frac{1}{1+\alpha^2}$ на [c,d]. В силу произвольности выбора отрезка [c,d] заключаем, что равенство верно и на их объединении, т. е. на луче $(0,+\infty)$. Следовательно, $I(\alpha) = -\arctan \alpha + C$, $C \in \mathbb{R}$, при $\alpha > 0$.

Из оценки $|I(\alpha)|\leqslant \int_0^{+\infty}e^{-\alpha x}\,dx=\frac{1}{\alpha}$ получаем, что $\lim_{\alpha\to+\infty}I(\alpha)=0$. Следовательно, $C=\frac{\pi}{2}$ и $I(\alpha) = \frac{\pi}{2} - \arctan \alpha$ на $(0, +\infty)$. Поскольку $I(\alpha)$ непрерывна в точке $\alpha = 0$, то $I(0) = \frac{\pi}{2}$. Таким образом, $\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$.

Приложение: доказательство леммы Абеля

Пусть $T_n=\{x_i\}_{i=0}^n$ — разбиение [a,b] на n равных частей. Положим $C=\sup_{[a,b]}|f|,\ \Delta_k g=g(x_{k-1})-g(x_k)$ и $f(x_k)$ и $f(x_k)$ $\sigma_n = \sum_{k=1}^{n} g(\xi_k) \int_{x_{k-1}}^{x_k} f(x) dx, \quad \xi_k \in [x_{k-1}, x_k].$

В силу монотонности g все $\Delta_k g$ одного знака и на k-м отрезке разбиения $|g(x)-g(\xi_k)|\leqslant |\Delta_k g|$. Поэтому

$$\left| \int_a^b f(x)g(x)dx - \sigma_n \right| = \left| \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x)(g(x) - g(\xi_k))dx \right| \leqslant \sum_{k=1}^n |\Delta_k g| \int_{x_{k-1}}^{x_k} |f|dx \leqslant C \frac{b-a}{n} \left| \sum_{k=1}^n \Delta_k g \right| =: \alpha_n.$$

Так как $\sum_{k=1}^n \Delta_k g = g(b) - g(a)$, то $\alpha_n \to 0$, а значит, $\sigma_n \to \int_a^b f g dx$.

Применим неравентсво Абеля для последовательностей, положив $a_k = \int_{x_{k-1}}^{x_k} f$ и $b_k = g(\xi_k)$. Тогда, учитывая, что $\left|\sum_{i=1}^k a_i\right| = \left|\int\limits_a^{x_k} f dx\right| \leqslant M$, имеем $|\sigma_n| \leqslant 2M(|g(\xi_1)| + |g(\xi_n)|)$. Свобода при выборе ξ_k , позволяет считать $\xi_1 = a$, $\xi_n = b$. Переходя к пределу при $n \to \infty$ в оценке для σ_n , получаем требуемое неравенство.

Замечание. В лемме Абеля функция f комплекснозначна, а функция g вещественнозначна, т.к. монотонна.

Интегралы Эйлера

Определение. Функция

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

называется гамма-функцией Эйлера.

Для установления области определения, исследуем этот интеграл на сходимость. Поскольку $t^{x-1}e^{-t}\sim t^{x-1}$ при $t\to +0$, то интеграл $\int_0^1 t^{x-1}e^{-t}\,dt$ сходится $\Leftrightarrow x>0$. Поскольку $t^{x-1}e^{-t}=(t^{x-1}e^{-t/2})\cdot e^{-t/2}=o(e^{-t/2})$ при $t\to +\infty$, то интеграл $\int_1^{+\infty} t^{x-1}e^{-t}\,dt$ сходится при любом x.

Следовательно, функция Γ определена при любом x > 0.

Лемма 1. $\Gamma(x+1) = x \cdot \Gamma(x), x > 0$. В частности, $\Gamma(n+1) = n!$ при $n \in \mathbb{N}$.

▲ По формуле интегрирования по частям

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt = -t^x e^{-t} \Big|_0^{+\infty} + x \int_0^{+\infty} t^{x-1} e^{-t} dt = x \cdot \Gamma(x).$$

Последовательно применяя полученную формулу, имеем $\Gamma(n+1) = n(n-1) \cdot \ldots \cdot 1 \cdot \Gamma(1)$. Прямое вычисление дает $\Gamma(1) = \int_0^{+\infty} e^{-t} dt = 1$.

Лемма 2. Функция $\Gamma \in C^{\infty}(0,+\infty)$, причем

$$\Gamma^{(k)}(x) = \int_0^{+\infty} t^{x-1} e^{-t} \ln^k t \, dt.$$

 \blacktriangle Надо обеспечить шаг индукции. Имеем $\frac{\partial}{\partial x}(t^{x-1}e^{-t}\ln^k t)=t^{x-1}e^{-t}\ln^{k+1}t$. Пусть 0< c< d. На отрезке [c,d] справедливы оценки $|t^{x-1}e^{-t}\ln^{k+1}t|\leqslant t^{c-1}e^{-t}|\ln t|^{k+1}$ при всех $t\in (0,1)$ и

 $|t^{x-1}e^{-t}\ln^{k+1}t| \leqslant t^{d-1}e^{-t}\ln^{k+1}t$ при всех $t \in [1,+\infty)$, причем функции в правых частях итегрируемы на указанных промежутках. Тогда $\Gamma^{(k+1)}(x) = \int_0^{+\infty} t^{x-1}e^{-t}\ln^{k+1}t\,dt$ на [c,d] по теореме 2. Так как [c,d] произвольный, то формула верна при всех $x \in (0,+\infty)$.

Определение. Функция

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

называется бета-функцией Эйлера.

Это несобственный интеграл с особенностями в точке t=0 (при x<1) и в точке t=1 (при y<1). Для подынтегральной функции $f(t)=t^{x-1}(1-t)^{y-1}$ верно $f(t)\sim t^{x-1}$ при $t\to +0$, а значит, в окрестности нуля f интегрируема при x>0, и $f(t)\sim (1-t)^{y-1}$ при $t\to 1-0$, а значит, в окрестности точки 1 f интегрируема при y>0.

Следовательно, функция B определена при любых x > 0, y > 0.

Теорема 8. Справедлива формула $B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ при $x>0,\ y>0$.

 \blacktriangle Запишем $\Gamma(x)\Gamma(y)$ в виде двойного интеграла

$$\Gamma(x)\Gamma(y) = \int_0^\infty t^{x-1}e^{-t} \left(\int_0^\infty s^{y-1}e^{-s} \, ds \right) \, dt = \iint_{(0,+\infty)^2} t^{x-1}e^{-t}s^{y-1}e^{-s} \, ds dt.$$

Сделаем замену s=u(1-v) и t=uv, диффеоморфно отображающую $E=(0,\infty)\times(0,1)$ на $(0,+\infty)^2$. Учитывая, что якобиан замены J=u, получаем

$$\Gamma(x)\Gamma(y) = \iint_E (uv)^{x-1} e^{-uv} u^{y-1} (1-v)^{y-1} e^{-u(1-v)} u \, du \, dv = \iint_E u^{x+y-1} e^{-u} (1-v)^{y-1} v^{x-1} du dv = \int_0^{+\infty} u^{x+y-1} e^{-u} \left(\int_0^1 v^{x-1} (1-v)^{y-1} \, dv \right) du = B(x,y) \Gamma(x+y). \blacksquare$$

Лемма 3 (формула удвоения Лежандра). $\Gamma(x)\Gamma(x+\frac{1}{2})=\frac{\sqrt{\pi}}{2^{2x-1}}\Gamma(2x), \ x>0.$

Δ Учитывая, что $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ формулу удвоения можно переписать следующим образом:

$$\frac{\Gamma(x)\Gamma(x)}{\Gamma(2x)} = \frac{1}{2^{2x-1}} \frac{\Gamma(1/2)\Gamma(x)}{\Gamma(x+1/2)} \Leftrightarrow B(x,x) = \frac{1}{2^{2x-1}} B\left(\frac{1}{2},x\right).$$

Поскольку $\int_0^{1/2} t^{x-1} (1-t)^{x-1} dt = \int_{1/2}^1 t^{x-1} (1-t)^{x-1} dt$, то $B(x,x) = 2 \int_0^{1/2} t^{x-1} (1-t)^{1-x} dt$. Сделав в последнем интеграле замену $t = \frac{1}{2} - \frac{\sqrt{s}}{2}$, получим

$$\int_0^{1/2} t^{x-1} (1-t)^{1-x} dt = \frac{1}{2^{2x}} \int_0^1 (1-\sqrt{s})^{x-1} (1+\sqrt{s})^{x-1} \frac{1}{\sqrt{s}} ds = \frac{1}{2^{2x}} \int_0^1 s^{-1/2} (1-s)^{x-1} ds.$$

Умножая на 2 обе части, получим $B(x,x) = \frac{B(\frac{1}{2},x)}{2^{2x-1}}$.

Теорема 9 (формула дополнения). $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}, x \in (0,1).$

A Рассмотрим функцию $\varphi(x) = \frac{1}{\pi}\Gamma(x)\Gamma(1-x)\sin\pi x \ (x\in(0,1))$. Отметим, что $\varphi(x)>0$ и $\varphi(1-x)=\varphi(x)$ на (0,1). Поскольку $\varphi(x)=\frac{\sin\pi x}{\pi x}\Gamma(x+1)\Gamma(1-x)$, то $\lim_{x\to+0}\varphi(x)=1$. Положим $\varphi(0)=1=\varphi(1)$. Имеем

$$\varphi'(0) = \lim_{x \to +0} \frac{\varphi(x) - 1}{x} = \lim_{x \to +0} \frac{(1 + o(x)))\Gamma(x + 1)\Gamma(1 - x) - 1}{x} =$$

$$= \lim_{x \to +0} \left(\frac{\Gamma(x + 1)\Gamma(1 - x) - 1}{x} + o(1)\Gamma(x + 1)\Gamma(1 - x) \right) = (\Gamma(x + 1)\Gamma(1 - x))' \Big|_{x=0} =$$

$$= \Gamma'(1)\Gamma(1) - \Gamma(1)\Gamma'(1) = 0.$$

Следовательно, $(\ln \varphi)'(0) = \frac{\varphi'(0)}{\varphi(0)} = 0$. Ввиду равенства $\varphi(x) = \varphi(1-x)$ также $\varphi'(1) = 0$, $(\ln \varphi)'(1) = 0$.

По формуле удвоения Лежандра

$$\varphi\left(\frac{x}{2}\right)\varphi\left(\frac{1}{2} + \frac{x}{2}\right) = \frac{1}{\pi}\Gamma\left(\frac{x}{2}\right)\Gamma\left(1 - \frac{x}{2}\right)\sin\frac{\pi x}{2} \cdot \frac{1}{\pi}\Gamma\left(\frac{1}{2} + \frac{x}{2}\right)\Gamma\left(\frac{1}{2} - \frac{x}{2}\right)\cos\frac{\pi x}{2} = \frac{\sqrt{\pi}}{\pi 2^{x-1}}\Gamma(x)\frac{\sqrt{\pi}}{\pi 2^{-x}}\Gamma(1 - x)\frac{1}{2}\sin\pi x = \varphi(x).$$

Определим на [0,1] функцию $g=(\ln\varphi)'$. Логарифмируя равенство $\varphi(\frac{x}{2})\varphi(\frac{1}{2}+\frac{x}{2})=\varphi(x)$ и беря производную, получаем

 $\frac{1}{2}g\left(\frac{x}{2}\right) + \frac{1}{2}g\left(\frac{1}{2} + \frac{x}{2}\right) = g(x). \tag{4}$

Докажем, что $g \equiv 0$. Функция g по теореме Вейерштрасса достигает своих точных граней. Проверим, что $g(0) = \max g$. Если $\max g = g(x_0)$ для $x_0 \in (0,1)$, то из (4) по индукции $g(x_0) = g(\frac{x_0}{2^n})$. Тогда $g(0) = \lim_{n \to \infty} g(\frac{x_0}{2^n}) = g(x_0)$. Аналогично устанавливается, что $g(0) = \min g$. Следовательно, $g \equiv g(0) = 0$. Тогда $\ln \varphi = C$ на [0,1]. Учитывая условие $\varphi(0) = 1$, получим C = 0, а значит, $\varphi \equiv 1$, что и требовалось. \blacksquare

Задача. Докажите, что

а)
$$\Gamma(x+a) \sim x^a \Gamma(x)$$
 при $x \to +\infty$; б) $\Gamma(x) = \lim_{n \to \infty} \frac{n^x n!}{x(x+1) \cdot \dots \cdot (x+n)}$.

Определение. Пусть $f \in L_1(\mathbb{R})$. Преобразованием Фурье функции f называется функция \widehat{f} , определяемая равенством

$$\widehat{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-iyx} d\mu(x) \ (y \in \mathbb{R}).$$

Замечание. Существование интеграла в формуле \widehat{f} следует из равенства $|f(x)e^{-iyx}| = |f(x)|$ и интегрируемости f.

Пример. Найдем преобразование Фурье индикатора $I_{[-1,1]}$.

По формуле Эйлера $e^{-iyx} = \cos yx - i \sin yx$. Тогда ввиду нечетности функции синус имеем

$$\widehat{I_{[-1,1]}}(y) = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-iyx} dx = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} \cos yx \, dx.$$

Следовательно, $\widehat{I_{[-1,1]}}(y) = \sqrt{\frac{2}{\pi}} \, \frac{\sin y}{y}$ при $y \neq 0$ и $\widehat{I_{[-1,1]}}(0) = \sqrt{\frac{2}{\pi}}$.

Отметим, что поскольку несобственный интеграл от функции $y \mapsto \frac{\sin y}{y}$ по \mathbb{R} не сходится абсолютно, то $\widehat{I_{[-1,1]}} \notin L_1(\mathbb{R})$.

Свойства преобразования Фурье. Пусть $f,g\in L_1(\mathbb{R})$ и $\alpha,\beta\in\mathbb{C}$. Тогда

- 1) $\widehat{\alpha f + \beta g} = \widehat{\alpha f} + \widehat{\beta g}$;
- 2) функция \widehat{f} ограничена;
- 3) если $f_h = f(\cdot + h)$ и $\delta_t f = f(t \cdot)$ (t > 0), то $\widehat{f_h}(y) = e^{ihy}\widehat{f}(y)$ и $\widehat{\delta_t f}(y) = \frac{1}{t}\widehat{f}(\frac{y}{t})$ для всех $y \in \mathbb{R}$;
- 4) функция \widehat{f} непрерывна и $\widehat{f}(y) \to 0$ при $y \to \pm \infty.$
- ▲ Линейность следует из линейности интеграла Лебега. Ограниченность следует из оценки

$$|\widehat{f}(y)| \leqslant \int_{\mathbb{R}} |f(x)| e^{-iyx} d\mu(x) = \int_{\mathbb{R}} |f| d\mu = ||f||_1, \quad y \in \mathbb{R}.$$

Соответствующими заменами в интеграле устанавливается п. 3.

Докажем п. 4. Для любых $y, h \in \mathbb{R}$ имеет место оценка:

$$\left| \widehat{f}(y+h) - \widehat{f}(y) \right| = \frac{1}{\sqrt{2\pi}} \left| \int_{\mathbb{R}} f(x) \left(e^{-ixh} - 1 \right) e^{-iyx} d\mu(x) \right| \leqslant \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |f(x)| \left| e^{-ihx} - 1 \right| d\mu(x).$$

Так как $|f(x)||e^{-ihx}-1| \leq 2|f(x)|$ и $f \in L_1(\mathbb{R})$, то последний интеграл стремится к нулю при $h \to 0$ по теореме 4.1 о непрерывности интеграла с параметром. Это доказывает непрерывность \widehat{f} (и даже равномерную непрерывность, т.к. оценка интеграла равномерна по y). Второе утверждение вытекает из леммы Римана об осцилляции.

Замечание. Под преобразованием Фурье также понимают отображение $F: L_1(\mathbb{R}) \to C_0(\mathbb{R})$, $F[f] = \hat{f}$, где $C_0(\mathbb{R})$ — пространство непрерывных на \mathbb{R} функций, стремящихся к нулю при $y \to \pm \infty$, с sup-нормой.

- 5) $\widehat{f * q} = \sqrt{2\pi} (\widehat{f} \cdot \widehat{q}).$
- ▲ Для фиксированного $y \in \mathbb{R}$ функция $(x,t) \mapsto f(x-t) g(t) e^{-iyx}$ интегрируема на \mathbb{R}^2 , т.к. произведение первых двух сомножителей интегрируемо (см. свертка), а экспонента ограничена. Поэтому по теореме Фубини

$$\begin{split} \widehat{\sqrt{2\pi}} \, \widehat{(f * g)}(y) &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x - t) \, g(t) \, d\mu(t) \right) e^{-iyx} \, d\mu(x) = \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x - t) \, e^{-i(x - t)y} \, d\mu(x) \right) g(t) \, e^{-ity} \, d\mu(t) = 2\pi \widehat{f}(y) \widehat{g}(y), \end{split}$$

что завершает доказательство.

Задача. Пусть $f_k, f \in L_1(\mathbb{R})$ и $f_k \to f$ по норме $L_1(\mathbb{R})$. Докажите, что $\widehat{f_k} \rightrightarrows \widehat{f}$ на \mathbb{R} .

Следующие свойства ввиду их особой важности сформулируем в виде теорем.

Теорема 1 (преобразование Фурье производной). Пусть функция $f \in C^1(\mathbb{R})$ и $f, f' \in L_1(\mathbb{R})$. Тогда $\widehat{f}'(y) = iy \cdot \widehat{f}(y)$ для всех $y \in \mathbb{R}$.

▲ Убедимся сначала, что $\lim_{x\to\pm\infty} f(x)=0$. Действительно, по формуле Ньютона–Лейбница $f(x)-f(0)=\int_0^x f'(t)dt$. Так как по условию функция f' интегрируема, то правая часть этого равенства имеет конечные пределы при $x\to\pm\infty$. Следовательно, конечные пределы существуют и у функции f. Эти пределы обязаны равняться нулю, т.к. в противном случае $|f|\geqslant c>0$ в некоторой окрестности $+\infty$ или $-\infty$, что противоречит интегрируемости f. Теперь в равенстве

$$\sqrt{2\pi} \ \widehat{f'}(y) = \int_{-\infty}^{+\infty} f'(x) \, e^{-iyx} \, dx = f(x) \, e^{-iyx} \Big|_{x \to -\infty}^{x \to +\infty} - (-iy) \int_{-\infty}^{+\infty} f(x) \, e^{-iyx} \, dx$$

внеинтегральный член равен нулю, что завершает доказательство.

Замечание. Теорема 1 остается справедливой, если $f \in L_1(\mathbb{R})$ и $f(x) = \int_{-\infty}^x \varphi d\mu$ для некоторой $\varphi \in L_1(\mathbb{R})$.

Следствие. Пусть $f \in C^n(\mathbb{R})$ $(n \in \mathbb{N})$ u f, f',..., $f^{(n)} \in L_1(\mathbb{R})$. Тогда $\widehat{f^{(n)}}(y) = (iy)^n \widehat{f}(y)$ u $\widehat{f}(y) = o\left(\frac{1}{u^n}\right)$ npu $y \to \pm \infty$.

Теорема 2 (производная преобразования Фурье). Пусть $f \in L_1(\mathbb{R})$ $u \ (x \mapsto x \ f(x)) \in L_1(\mathbb{R})$. Тогда $\widehat{f} \in C^1(\mathbb{R})$, причем $\frac{d}{du}\widehat{f} = F[-ixf(x)]$.

▲ При любом $y \in \mathbb{R}$ выполнено $|-ix f(x) e^{-iyx}| = |x f(x)|$. Поэтому по теореме 4.2 о дифференцировании интеграла по параметру

$$\sqrt{2\pi} \, \frac{d}{dy} \widehat{f}(y) = \int_{\mathbb{R}} \frac{\partial}{\partial y} (f(x) \, e^{-iyx}) \, d\mu(x) = \int_{\mathbb{R}} -ix \, f(x) \, e^{-iyx} \, d\mu(x),$$

что завершает доказательство. ■

Следствие. Пусть $f \in L_1(\mathbb{R})$ и $(x \mapsto x^n f(x)) \in L_1(\mathbb{R})$. Тогда $\widehat{f} \in C^n(\mathbb{R})$.

▲ Так как $|x^k| \le 1 + |x|^n$, то $x^k f(x) \in L_1(\mathbb{R})$ для $k = 0, \ldots, n-1$. Осталось последовательно применить теорему 2. ■

Пример. Найдем преобразование Фурье функции $f(x) = e^{-x^2/2}$.

Функция f удовлетворяет на $\mathbb R$ равенству $f'(x)=-x\,f(x)$. Применив к обеим частям полученной формулы преобразование Фурье, по теоремам 1 и 2 получим $iy\widehat{f}(y)=-i(\widehat{f}(y))'$. Таким образом, функция \widehat{f} является решением дифференциального уравнения z'(y)=-yz(y). Решая это уравнение, находим $\widehat{f}(y)=Ce^{-y^2/2}$. Поскольку $\widehat{f}(0)=1$, то C=1, и $\widehat{f}=f$.

Задача. Покажите, что если $f \in L_1(\mathbb{R})$, такая что $(x \mapsto \frac{f(x)}{x}) \in L_1(\mathbb{R})$, то $\int_{-\infty}^{+\infty} \widehat{f}(y) dy = 0$ (интеграл понимается как несобственный).

Интеграл Фурье

Определение. Пусть функция f интегрируема на любом $[a,b] \subset \mathbb{R}$ (локально интегрируема). Интегралом f в смысле главного значения (principal value) называется следующий предел:

v. p.
$$\int_{\mathbb{R}} f d\mu := \lim_{u \to +\infty} \int_{-u}^{u} f d\mu.$$

Замечание. Если $f \in L_1(\mathbb{R})$, то по теореме Лебега о мажорированной сходимости существует

v. p.
$$\int_{\mathbb{R}} f \, d\mu = \lim_{u \to +\infty} \int_{\mathbb{R}} f \cdot I_{[-u,u]} \, d\mu = \int_{\mathbb{R}} f \, d\mu.$$

Обратное утверждение неверно: например, для любой непрерывной нечетной функции интеграл в смысле главного значения определен и равен нулю, но сама функция может быть неинтегрируемой на \mathbb{R} .

Определение. Пусть $f \in L_1(\mathbb{R})$. Интегралом Фурье функции f называется

$$S(f,x) := \frac{1}{\sqrt{2\pi}} \text{ v. p.} \int_{\mathbb{R}} \widehat{f}(y) \, e^{iyx} \, d\mu(y) = \frac{1}{\sqrt{2\pi}} \lim_{u \to +\infty} \int_{-u}^{u} \widehat{f}(y) \, e^{iyx} d\mu(y).$$

Замечание. Если преобразование Фурье служит в непериодическом случае аналогом коэффициентов Фурье, то интеграл Фурье служит аналогом ряда Фурье. Чтобы усилить эту аналогию, получим еще один вид для S(f,x). Подставив интегральное представление \widehat{f} в выражение $\widehat{f}(y)e^{iyx}+\widehat{f}(-y)e^{-iyx}$, получим интеграл (по t) от функции $\frac{1}{\sqrt{2\pi}}f(t)(e^{iy(x-t)}+e^{-iy(x-t)})$. Выражение в скобках равно $2\cos y(x-t)=2(\cos yt\cos yx+\sin yt\sin yx)$. Поэтому

$$S(f,x) = \int_0^{+\infty} (a(y)\cos yx + b(y)\sin yx) \, dy,$$

$$a(y) = \frac{1}{\pi} \int_{\mathbb{R}} f(t)\cos yt \, d\mu(t), \qquad b(y) = \frac{1}{\pi} \int_{\mathbb{R}} f(t)\sin yt \, d\mu(t)$$

(в первом равенстве интеграл понимается как несобственный).

Исследуем вопрос сходимости интеграла Фурье. Для этого рассмотрим частичные интегралы

$$S_u(f,x) = \frac{1}{\sqrt{2\pi}} \int_{-u}^{u} \widehat{f}(y) e^{iyx} d\mu(y).$$

Покажем, что $S_u(f,x) = \frac{1}{\pi}(f*D_u)(x)$, где $D_u(t) = \frac{\sin ut}{t}$. По определению \widehat{f} имеем

$$S_u(f,x) = \frac{1}{2\pi} \int_{-u}^{u} e^{iyx} \left(\int_{\mathbb{R}} f(t) e^{-iyt} d\mu(t) \right) d\mu(y) = \frac{1}{2\pi} \int_{-u}^{u} \left(\int_{\mathbb{R}} f(t) e^{iy(x-t)} d\mu(t) \right) d\mu(y).$$

Так как функция $(y,t)\mapsto f(t)\,e^{iy(x-t)}$ интегрируема на $[-u,u] imes\mathbb{R}$, то по теореме Фубини получаем

$$S_{u}(f,x) = \frac{1}{2\pi} \int_{\mathbb{R}} f(t) \left(\int_{-u}^{u} e^{iy(x-t)} d\mu(y) \right) d\mu(t) =$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} f(t) \cdot \frac{e^{iy(x-t)}}{i(x-t)} \Big|_{y=-u}^{y=u} d\mu(t) = \frac{1}{\pi} \int_{\mathbb{R}} f(t) \cdot \frac{\sin u(x-t)}{x-t} d\mu(t) =$$

$$= \frac{1}{\pi} \int_{\mathbb{R}} f(x-s) \cdot \frac{\sin us}{s} d\mu(s) = \frac{1}{\pi} (f * D_{u})(x).$$

Запись $S_u(f,x)$ в виде свертки с D_u позволяет получить результат, аналогичный лемме 3.1 для рядов Фурье.

Лемма 1. Пусть $f \in L_1(\mathbb{R})$ и $x \in \mathbb{R}$. Тогда

1) для любого $\delta > 0$ выполнено

$$S_u(f,x) = \frac{1}{\pi} \int_0^{\delta} \frac{f(x+t) + f(x-t)}{t} \sin ut \, d\mu(t) + o(1), \ u \to +\infty.$$

 $(2)\lim_{u\to+\infty}S_u(f,x)=S$ в том и только в том случае, когда найдется $\delta>0$, что $\lim_{u\to+\infty}\int_0^\delta \frac{f(x+t)+f(x-t)-2S}{t}\sin ut\,d\mu(t)=0.$

 \blacktriangle Пользуясь четностью функции D_u , интеграл $S_u(f,x)$ можно переписать в виде

$$S_u(f,x) = \frac{1}{\pi} \int_0^\infty (f(x+t) + f(x-t)) D_u(t) d\mu(t) = \frac{1}{\pi} \left(\int_0^\delta + \int_\delta^\infty \right) \frac{f(x+t) + f(x-t)}{t} \sin ut \, d\mu(t).$$

Функция $\frac{f(x+t)+f(x-t)}{t}$ интегрируема на $[\delta,+\infty)$ как произведение интегрируемой функции на ограниченную непрерывную функцию 1/t. Поэтому второй интеграл стремится к нулю при $u\to +\infty$ по лемме Римана об осцилляции, что доказывает п. 1.

Поскольку $\int_0^\delta \frac{\sin ut}{t} dt = \int_0^{\delta u} \frac{\sin s}{s} ds \to \frac{\pi}{2}$, то

$$S = \frac{2S}{\pi} \int_0^{\delta} \frac{\sin ut}{t} d\mu(t) + o(1), \quad u \to +\infty.$$

Вычитая полученное равенство из равенства п. 1 имеем второе утверждение.

Как следствие п. 2 леммы 1 и леммы Римана об осцилляции справедлива

Теорема 3 (признак Дини). Пусть $f \in L_1(\mathbb{R})$ и $x \in \mathbb{R}$. Если для $S \in \mathbb{C}$ существует такое $\delta > 0$, что

$$\int_0^{\delta} \frac{|f(x+t) + f(x-t) - 2S|}{t} d\mu(t) < \infty,$$

то интеграл Фурье функции f в точке x сходится κS , m. e. S(f,x) = S.

Дословно повторяя доказательства следствий признака Дини для рядов, получаем

Следствие (формула обращения). *Если* $f \in L_1(\mathbb{R})$ *и* в точке $x \in \mathbb{R}$ существуют конечные $f'_{\pm}(x)$, то S(f,x) = f(x), т.е.

$$f(x) = \frac{1}{\sqrt{2\pi}} \text{ v. p.} \int_{\mathbb{R}} \widehat{f}(y) e^{iyx} d\mu(y).$$

В связи с формулой обращения наряду с преобразованием Фурье полезно ввести следующее понятие.

Определение. Для $f \in L_1(\mathbb{R})$ обратным преобразованием Фуръе называется функция, определяемая равенством

$$\check{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{iyx} d\mu(x) \quad (y \in \mathbb{R}).$$

Замечание. Если $f \in L_1(\mathbb{R})$, то $\check{f}(y) = \hat{f}(-y)$. Если к тому же $\widehat{f} \in L_1(\mathbb{R})$, то интеграл Фурье $S(f,x) = (\widehat{f})^{\vee}(x)$ и формула обращения примет вид $f(x) = (\widehat{f})^{\vee}(x)$ (чем и мотивируется термин «обратное преобразование Фурье»).

Пример. Найдем преобразование Фурье функции $f(x) = e^{-|x|}$ $(x \in \mathbb{R})$

По определению

$$\widehat{f}(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-|x|} e^{-ixy} d\mu(x) = \sqrt{\frac{2}{\pi}} \operatorname{Re} \int_{0}^{+\infty} e^{-(1+iy)x} dx = \sqrt{\frac{2}{\pi}} \operatorname{Re} \frac{1}{1+iy} = \sqrt{\frac{2}{\pi}} \frac{1}{1+y^2}.$$

Всюду функция f имеет конечные односторонние производные и $\widehat{f} \in L_1(\mathbb{R})$, поэтому по формуле обращения

$$e^{-|x|} = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \widehat{f}(y) e^{iyx} d\mu(y) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{e^{iyx}}{1+y^2} dy = \frac{2}{\pi} \int_0^{+\infty} \frac{\cos yx}{1+y^2} dy.$$

Таким образом, мы получаем значение интеграла Лапласа $\int_0^{+\infty} \frac{\cos yx}{1+y^2} dy = \frac{\pi}{2} e^{-|x|}$.

Формула обращения верна для п.в. x без предположения гладкости, однако это потребует развития техники. Начнем с леммы, которая имеет самостоятельный интерес.

Лемма 2. $Ecnu f, g \in L_1(\mathbb{R}), mo$

$$\int_{\mathbb{R}} \widehat{f}g \, d\mu = \int_{\mathbb{R}} f\widehat{g} \, d\mu.$$

A Интегрируемость $|f(\xi) g(x) e^{-ix\xi}|$ следует из условия $f, g \in L_1(\mathbb{R})$ по теореме Тонелли. Тогда по теореме Фубини

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(\xi) e^{-ix\xi} d\mu(\xi) \right) g(x) d\mu(x) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} g(x) e^{-ix\xi} d\mu(x) \right) f(\xi) d\mu(\xi). \blacksquare$$

Лемма 3. Пусть $\varphi \in L_1(\mathbb{R})$, такая что $\varphi \geqslant 0$ и $\int_{\mathbb{R}} \varphi d\mu = 1$. Пусть $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon} \varphi(\frac{x}{\varepsilon})$, $\varepsilon > 0$. Тогда для любой $f \in L_1(\mathbb{R})$ выполнено $\|\varphi_{\varepsilon} * f - f\|_1 \to 0$ при $\varepsilon \to +0$.

lacktriangle Так как $\int_{\mathbb{R}} arphi_{arepsilon}(t) d\mu(t) = 1$, то $f(x) = \int_{\mathbb{R}} f(x) arphi_{arepsilon}(t) d\mu(t)$. Поэтому по теореме Тонелли

$$\|\varphi_{\varepsilon} * f - f\|_{1} = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} (f(x - t) - f(x)) \varphi_{\varepsilon}(t) d\mu(t) \right| d\mu(x) \le$$

$$\le \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x - t) - f(x)| \varphi_{\varepsilon}(t) d\mu(t) \right) d\mu(x) =$$

$$= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |f(x - t) - f(x)| d\mu(x) \right) \varphi_{\varepsilon}(t) d\mu(t) = \int_{\mathbb{R}} \|f_{-t} - f\|_{1} \varphi_{\varepsilon}(t) d\mu(t)$$

(где $f_{-t}=f(\cdot-t)$ – функция сдвига). Зафиксируем $\sigma>0$. По теореме 1.4 о непрерывности сдвига найдется такое $\eta>0$, что $\|f_{-t}-f\|_1\leqslant\sigma$ при $|t|\leqslant\eta$. Это позволит нам «отделиться от нуля» и оценить последний интеграл. Так как $\|f_{-t}\|_1=\|f\|_1$, то

$$\left(\int_{|t| \leq \eta} + \int_{|t| > \eta}\right) \|f_{-t} - f\|_1 \varphi_{\varepsilon}(t) d\mu(t) \leq \sigma + 2\|f\|_1 \int_{|t| > \eta} \varphi_{\varepsilon}(t) d\mu(t).$$

Заменой $s=\frac{t}{\varepsilon}$ последний интеграл сводится к $\int_{|s|>\frac{\eta}{\varepsilon}} \varphi(s)\,d\mu(s)$, а значит, он стремится к нулю при $\varepsilon\to +0$ по теореме Лебега. Поэтому найдется такое $\varepsilon_0>0$, что последнее слагаемое будет меньше σ при всех $\varepsilon\in (0,\varepsilon_0)$. Следовательно, $\|\varphi_\varepsilon*f-f\|_1<2\sigma$ при всех $\varepsilon\in (0,\varepsilon_0)$, что завершает доказательство. \blacksquare

Теорема 4 (формула обращения). Если $f, \widehat{f} \in L_1(\mathbb{R})$, то $(\widehat{f})^{\vee} = (\check{f})^{\wedge} = f$ п.в. на \mathbb{R} .

Замечание. Функция $(\check{f})^{\wedge}$ непрерывна по свойству 4, т.к. $\check{f}(x) = \widehat{f}(-x) \in L_1(\mathbb{R})$. Поэтому если функция f удовлетворяет условиям теоремы, то она п.в. совпадает с непрерывной функцией.

▲ Пусть $\varphi(t) = \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$. Так как $\varphi > 0$ и $\int_{\mathbb{R}} \varphi d\mu = 1$, то семейство $\varphi_{\varepsilon}(t) = \frac{1}{\varepsilon}\varphi(\frac{t}{\varepsilon})$, $\varepsilon > 0$, удовлетворяет лемме 3.

Зафиксируем $x \in \mathbb{R}$ и положим $\psi_{\varepsilon}(t) = \varphi(\varepsilon t) \cdot e^{ixt}$. Вычислим преобразование Фурье функции ψ_{ε} , используя замену $\tau = t\varepsilon$:

$$\widehat{\psi_{\varepsilon}}(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \varphi(\varepsilon t) \cdot e^{-i(y-x)t} dt = \frac{1}{\varepsilon \sqrt{2\pi}} \int_{\mathbb{R}} \varphi(\tau) \cdot e^{-i\frac{y-x}{\varepsilon}\tau} d\tau = \frac{1}{\varepsilon} \widehat{\varphi}\left(\frac{y-x}{\varepsilon}\right).$$

Так как функция $e^{-\tau^2/2}$ инвариантна относительно преобразования Фурье, то $\widehat{\varphi}\left(\frac{y-x}{\varepsilon}\right) = \varphi\left(\frac{y-x}{\varepsilon}\right)$ и, значит, $\widehat{\psi}_{\varepsilon}(y) = \varphi_{\varepsilon}(y-x)$.

Следовательно, равенство из леммы 2 примет вид

$$\int_{\mathbb{D}} \widehat{f}(y) \, \psi_{\varepsilon}(y) \, d\mu(y) = (\varphi_{\varepsilon} * f)(x). \tag{1}$$

Поскольку $|\widehat{f}|\psi_{\varepsilon}| \leqslant \frac{1}{\sqrt{2\pi}}|\widehat{f}|$, то левая часть (1) при $\varepsilon \to +0$ стремится к $(\widehat{f})^{\vee}(x)$ по теореме 4.1 о непрерывности интеграла с параметром. По лемме 3 правая часть (1) стремится к f по L_1 -норме. Рассмотрим произвольную положительную последовательность $\{\varepsilon_n\}$, сходящуюся к нулю. Согласно замечанию после теоремы 1.2 существует подпоследовательность $\{\varepsilon_n\}$, такая что $\varphi_{\varepsilon_{n_k}} * f \to f$ п.в. на \mathbb{R} . Полагая в формуле (1) $\varepsilon = \varepsilon_{n_k}$ и переходя к пределу при $k \to \infty$, получим, что $(\widehat{f})^{\vee}(x) = f(x)$ для п.в. $x \in \mathbb{R}$. Если в левой части последнего равенства сделать замену y на (-y), то получим $(\check{f})^{\wedge}(x) = f(x)$ для п.в. $x \in \mathbb{R}$. \blacksquare

Следствие (единственность). Если $f, g \in L_1(\mathbb{R})$ и $\widehat{f} = \widehat{g}$, то f = g почти всюду.

▲ Пусть h = f - g, тогда $\hat{h} = 0$. По теореме 4 получаем, что h = 0 почти всюду. ■ Приведем один признак интегрируемости преобразования Фурье. Лемма 4. $Ec_{\Lambda}u \ f \in C^{2}(\mathbb{R}) \ u \ f, f', f'' \in L_{1}(\mathbb{R}), \ mo \ \hat{f} \in L_{1}(\mathbb{R}).$

▲ По следствию теоремы 1 $\widehat{f}(y) = o(\frac{1}{y^2})$ при $y \to \pm \infty$. Тогда существует такое K > 0, что $|\widehat{f}(y)| \leq \frac{1}{y^2}$ при всех $|y| \geqslant K$. Функция \widehat{f} непрерывна, поэтому найдется такое C > 0, что $|\widehat{f}| \leq C$ на [-K, K]. Следовательно,

$$\int_{\mathbb{R}} |\widehat{f}(y)| dy \leqslant \int_{|y| \leqslant K} |\widehat{f}(y)| dy + \int_{|y| \geqslant K} \frac{dy}{y^2} \leqslant 2KC - \frac{2}{y} \Big|_{K}^{+\infty} = 2KC + \frac{2}{K} < +\infty. \blacksquare$$

Пространство Шварца

Определим класс Шварца $S(\mathbb{R}) = \{ \varphi \in C^{\infty}(\mathbb{R}) \colon \forall m, k \in \mathbb{N}_0 \ x^m \varphi^{(k)}(x) \to 0 \ \text{при} \ x \to \infty \}.$

Относительно стандартных операций сложения и умножения на скаляр $S(\mathbb{R})$ является линейным пространством.

Примером функции, входящим в класс $S(\mathbb{R})$, может служить функция $f(x)=e^{-x^2}$. Это следует из того, что $x^m(e^{-x^2})^{(k)}=P(x)e^{-x^2}$ для некоторого многочлена P, и $e^{-x^2}=o(x^{-n})$ при $x\to\infty$ для любого $n\in\mathbb{N}$.

Замечание. 1) $C_c^{\infty}(\mathbb{R}) \subset S(\mathbb{R}) \subset L_p(\mathbb{R})$. Левое включение очевидно, докажем правое. Пусть $\varphi \in S$. Так как φ непрерывна, то достаточно установить интегрируемость в некоторых окрестностях $\pm \infty$. Зафиксируем целое $m \geqslant 2/p$. Тогда найдется $K \geqslant 1$, что $|x^m \varphi(x)| \leqslant 1$ при всех $|x| \geqslant K$. Следовательно, $|x^{2/p} \varphi(x)| \leqslant 1$ или $|\varphi(x)|^p \leqslant 1/x^2$ при $|x| \geqslant K$, что и требовалось.

2) Если
$$\varphi \in S(\mathbb{R})$$
, то а) $\varphi' \in S(\mathbb{R})$, т.к. $(\varphi')^{(k)} = \varphi^{(k+1)}$, и б) $x\varphi(x) \in S(\mathbb{R})$, т.к. $(x\varphi(x))^{(k)} = x\varphi^{(k)}(x) + k\varphi^{(k-1)}(x)$.

Роль класса S проясняет следующее свойство.

Лемма 5. $Ecnu \varphi \in S(\mathbb{R}), mo \widehat{\varphi} \in S(\mathbb{R}).$

 \blacktriangle Так как $x^k \varphi(x) \in S \subset L_1$ для всех k, то по следствию из теоремы $2 \ \widehat{\varphi} \in C^\infty(\mathbb{R})$. Далее,

$$y^{m}\widehat{\varphi}^{(k)}(y) = y^{m}F[(-ix)^{k}\varphi(x)](y) = \frac{1}{i^{m}}(iy)^{m}F[(-ix)^{k}\varphi(x)](y) = \frac{1}{i^{m}}F[\frac{d^{m}}{dx^{m}}((-ix)^{k}\varphi(x))](y). \tag{2}$$

Функция $h(x) := \frac{d^k}{dx^k} \left((-ix)^k \varphi(x) \right) \in S \subset L_1$, поэтому $\widehat{h}(y) \to 0$ при $y \to \infty$, что завершает доказательство.

Класс S используется в следующих ситуациях. Во-первых, он позволяет определить преобразование Фурье на $L_2(\mathbb{R})$, продолжив F с S «по непрерывности» с сохранением скалярного произведения $(\varphi,\psi)=\int_{\mathbb{R}} \varphi\overline{\psi}dx$. В этой связи важна

Теорема 5. Отображение $F: S(\mathbb{R}) \to S(\mathbb{R}), \ F[\varphi] = \widehat{\varphi}$, является унитарным оператором, т.е. линейной биекцией, такой что $(F[\varphi], F[\psi]) = (\varphi, \psi)$ для всех $\varphi, \psi \in S(\mathbb{R})$. В частности,

$$\int_{\mathbb{R}} |\widehat{\varphi}(x)|^2 dx = \int_{\mathbb{R}} |\varphi(x)|^2 dx.$$

- ■1) По лемме 5 $F[S(\mathbb{R})] \subset S(\mathbb{R})$. Далее, пусть $f \in S$. Так как $f, \hat{f} \in S \subset L_1$ и $f \in C^{\infty}$ то $(\hat{f})^{\vee} = (\check{f})^{\wedge} = f$ всюду на \mathbb{R} . Это означает, что отображение F биективно и $F^{-1} = \check{\cdot}$ обратное преобразование Фурье.
 - 2) Пусть $g:=F^{-1}[\overline{\psi}]$ (черта сверху комплексное сопряжение). Тогда $F[g]=\overline{\psi}$ и

$$g(y) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \overline{\psi(x)} e^{iyx} dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \psi(x) e^{-iyx} dx = \overline{F[\psi]}.$$

Полагая в лемме 2 $f=\varphi$, получим $(F[\varphi],F[\psi])=\int_{\mathbb{R}}\widehat{\varphi}\overline{\widehat{\psi}}dx=\int_{\mathbb{R}}\varphi\overline{\psi}dx=(\varphi,\psi).$

Коснемся другого приложения класса S.

Определение. Пространством Шварца называется $S(\mathbb{R})$ со сходимостью, определяемой следующим образом. Пусть $\varphi_n, \varphi \in S(\mathbb{R})$ $(n \in \mathbb{N})$, тогда

$$\varphi_n \to \varphi$$
 в $S(\mathbb{R}) \iff \forall m, k \in \mathbb{N}_0 \ x^m \varphi_n^{(k)}(x) \underset{\mathbb{R}}{\Longrightarrow} x^m \varphi^{(k)}(x)$ при $n \to \infty$.

Замечание. 1) Непосредственно из определения получаем, что если $\varphi_n \to 0$ в $S(\mathbb{R})$, то в $S(\mathbb{R})$ также $\varphi'_n \to 0$ и $P\varphi_n \to 0$, где P – многочлен.

2) Если $\varphi_n \to 0$ в $S(\mathbb{R})$, то $\varphi_n \to 0$ в $L_1(\mathbb{R})$. Действительно, из условия $(1+x^2)\varphi_n(x) \underset{\mathbb{R}}{\Longrightarrow} 0$. Поэтому для $\varepsilon > 0$ найдется такой номер N, что для всех $n \geqslant N$ и $x \in \mathbb{R}$ выполнено $|(1+x^2)\varphi_n(x)| \leqslant \varepsilon$, а значит, $\int_{\mathbb{R}} |\varphi_n(x)| dx \leqslant \int_{\mathbb{R}} \frac{\varepsilon}{1+x^2} dx = \varepsilon \pi$ при $n \geqslant N$.

Пример. Пусть $\varphi \in S(\mathbb{R})$ и $\varphi_n(x) = \varphi(x + \frac{1}{n})$ — сдвиг φ $(n \in \mathbb{N})$. Покажем, что $\varphi_n \to \varphi$ в $S(\mathbb{R})$. Зафиксируем $m, k \in \mathbb{N}_0$. По теореме Лагранжа $x^m \left(\varphi^{(k)} \left(x + \frac{1}{n} \right) \right) - \varphi^{(k)}(x) \right) = x^m \varphi^{(k+1)}(c) \frac{1}{n}$ для некоторого c = c(x, n), лежащего между x и $x + \frac{1}{n}$. Тогда верна оценка

$$|x|^m |\varphi^{(k+1)}(c)| \leq (|c|+1)^m |\varphi^{(k+1)}(c)| = \sum_{p=0}^m C_m^p |c|^p |\varphi^{(k+1)}(c)|.$$

Так как $\varphi \in S$, то последняя сумма, как функция от c, непрерывна и стремится к нулю при $c \to \infty$. Следовательно, она ограничена, $\sum C_m^p |c|^p |\varphi^{(k+1)}(c)| \leqslant M$ для всех $c \in \mathbb{R}$. Такая оценка выполнена и для c = c(x,n), откуда $\sup_{\mathbb{R}} |x|^m |\varphi_n^{(k)}(x) - \varphi^{(k)}(x)| \leqslant \frac{M}{n} \to 0$. Сопряженное пространство S' всех непрерывных функционалов на S называется простран-

Сопряженное пространство S' всех непрерывных функционалов на S называется пространством обобщенных функций. Это приводит к значительному расширению понятия «функции» (отражено в названии), что имеет первостепенное значение в различных вопросах математической физики. В связи с определением преобразования Фурье в S' важна

Теорема 6. Отображение $F: S(\mathbb{R}) \to S(\mathbb{R})$ непрерывно.

■ Нам нужно показать, что если $\varphi_n \to \varphi$ в $S(\mathbb{R})$, то $F[\varphi_n] \to F[\varphi]$ в $S(\mathbb{R})$.

Зафиксируем $k, m \in \mathbb{N}_0$ и определим $f_n(x) = \varphi_n(x) - \varphi(x)$, $g_n(x) = \frac{d^m}{dx^m} \big((-ix)^k f_n(x) \big)$. Так как $f_n \to 0$ в S, то $g_n \to 0$ в S, а значит, $g_n \to 0$ в L_1 . Следовательно, $\sup_{\mathbb{R}} |F[g_n]| \leqslant \frac{1}{\sqrt{2\pi}} \|g_n\|_1 \to 0$. По формуле (2) имеем $y^m \widehat{f}_n^{(k)}(y) = \frac{1}{i^m} F[g_n](y) \Rightarrow 0$. Заключаем, что $\widehat{f}_n = \widehat{\varphi}_n - \widehat{\varphi} \to 0$ в S, что завершает доказательство. \blacksquare