Fano Method

Rui Wang

Thursday 6th July, 2017

Abstract

123

1 Basic framework

Throughout, we let \mathcal{P} denote a class of distributions on a sample space \mathcal{X} , and let $\theta : \mathcal{P} \to \Theta$ denote a function defined on \mathcal{P} , that is, a mapping $P \mapsto \theta(P)$. The goal is to estimate the parameter $\theta(P)$ based on observations X_i drawn from the distribution P.

To evaluate the quality of an estimator $\hat{\theta}$, we let $\rho: \Theta \times \Theta \to \mathbb{R}_+$ denote a semimetric on the space Θ , which we use to measure the error of an estimator for the parameter θ , and let $\Phi: \mathbb{R}_+ \to \mathbb{R}_+$ be a non-decreasing function with $\Phi(0) = 0$.

2 Fano inequality

Let V be a random variable taking values in a finite set V, and assume that we observe a random variable X, and then must estimate or guess the true value of \hat{V} . That is, we have the Markov chain

$$V \to X \to \hat{V}$$
.

Let the function $h_2(p) = -p \log p - (1-p) \log(1-p)$ denote the binary entropy.

Proposition 1 (Fano inequality). For any Markov chain $V \to X \to \hat{V}$, we have

$$h_2(\Pr(\hat{V} \neq V)) + \Pr(\hat{V} \neq V) \log(|\mathcal{V}| - 1) \ge H(V|\hat{V}).$$

Proof. Let E be the indicator for the event that $\hat{X} \neq X$, that is, E = 1 if $\hat{V} \neq V$ and is 0 otherwise. Then we have

$$\begin{split} &H(V|\hat{V}) = H(V, E|\hat{V}) = H(V|E, \hat{V}) + H(E|\hat{V}) \\ = &\Pr(E = 0) \underbrace{H(V|E = 0, \hat{V})}_{0} + \Pr(E = 1)H(V|E = 1, \hat{V}) + H(E|\hat{V}) \\ \leq &\Pr(E = 1) \log(|\mathcal{V}| - 1) + H(E) \end{split}$$

Remark 1. During the proof, X is not needed.

Corollary 1. Assume V is uniform on V, then

$$\Pr(\hat{V} \neq V) \ge 1 - \frac{I(V; X) + \log 2}{\log(|\mathcal{V}|)}.$$

Proof. Note that $h_2(\Pr(\hat{V} \neq V)) \leq \log 2$ and

$$H(V|\hat{V}) = H(V) - I(V;\hat{V}) \ge H(V) - I(V;X) = \log(|\mathcal{V}|) - I(V;X).$$

3 Th classical (local) Fano method

References