Course Number : EEE F411 (4 unit course)

Course Title : Internet of Things

Instructor-In-Charge : Dr. Vinay Chamola

Note: This course is discipline elective for: Undergraduate level: B.E (EEE), B.E (E&I). For other discipline, it will be considered as an open elective.

1. Scope and Objective:

This module is designed to provide students with solid technical knowledge and skills to build Internet of Things (IoT) systems. Internet of things has evolved due to convergence of multiple technologies - embedded systems, sensor technology, real-time data analytics, machine learning etc. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation), and others all contribute to enabling the IoT. This course comprehensively covers various technologies and tools used for enabling IoT solutions. Knowledge of various topics required for building IoT prototypes like sensors and actuators/ Communications and networking and data management is also imparted in this course. This course would also help the students understand the various IoT security challenges and solution to address them. The course will also give the students exposure to how various real world problems are being solved by IoT based solutions (like in applications for smart city, smart farming etc.). There would also be some hands on sessions where students would learn how to build and program IoT systems and make end-to-end solutions for different applications. Furthermore, assignments and projects in this course would help students build IoT prototypes and apply what they have learnt in the course to solve real world problems.

2. Text Book:

(T1) Internet of Things: Principles and paradigms. R. Buyya, and A.V Dastjerdi (Elsevier), 2016.

3. Reference Books:

- (R1) "Precision Internet Of Things", by Timothy Chou (Mc Graw Hill), 2017.
- (R2) "The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press), 2017.
- (R3) "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press), 2014.
- (R4) "Internet of Things" by Raj Kamal (Mc Graw Hill), 2017.
- (R5) IEEE and ACM Transactions.

4. Course Plan

Lectures

Module	Topics covered	Lectures
	Introduction to IoT & Cyber-Physical Systems, IoT applications	
	- an overview, Different Levels of IoT Applications : Level 1 - 6	
	with examples, IoT Design Methodology & Life Cycle,	
	Introduction to IoT Physical End Points & Platforms, IoT	
Module 1: Introduction	System Design Examples (for applications like fitness tracker,	Lecture 1-
to IoT	smart parking etc.).	Lecture 4
	Introduction to sensors for IoT application development, Data	
	Acquisition, Signal Conditioning and Processing, Multi Sensor	
Module 2: Sensors and	fusion for IoT, Advanced sensing techniques (e.g. BCI/HCI),	Lecture 5 -
Actuators for IoT	Actuators and Controllers for IoT	Lecture 8
	Introduction to Arduino microcontroller & NodeMCU for IoT	
	applications, Programming with Arduino & NodeMCU and	
Module 3:	prototype development (e.g. for smart farming, smart city	
Programming IoT end	applications etc.), Introduction to Raspberry Pi, Programming	Lecture 8-
points	Raspberry Pi (Python), Rest API based hands on.	Lecture 18
	Wireless sensor networks: Introduction, Deployment,	
Module 4: Networking	Localization, Routing, MAC, Time synchronization and Multi-	Lecture 18 -
for IoT	sensor-fusion for WSN	Lecture 23
101 101	Selisor-rusion for WSIV	Lecture 25
Module 5:	Ad Hoc networks (MANET, VANET, FANET), Industrial IoT	
Communications and	Networks, Common network standards (Bluetooth, NFC,	
networking in IoT	LORA) etc., COAP and MQTT (including lab/ hands-on)	Lecture 24-31
<u> </u>	Data Management for IoT, Advanced optimization for	
	processing sensor data, Machine learning for IoT data	
Module 6: Data	analytics, Introduction to IoT Cloud Services, Case studies of	
management in IoT	Cloud services for IoT and learning how to use them.	Lecture 32-36
Module 7: Security	Cyber-attacks on IoT- Case study, Security solutions for IoT:	Lecture 37 -
issues in IoT	hardware/software	Lecture 40

<u>Lab:</u>

Lab for the course would be in-class labs during the class hours when the relevant topics are covered. Labs would consist of hands on session where the students will learn how to work with microcontrollers and raspberry pi and learn building IoT applications from the scratch. Some of the suggested lab exercises are:

- Programming Arduino/ Nodemcu (esp8266) microcontrollers.
- Blinking LED using the above microcontrollers.
- Interfacing sensors to microcontrollers.
- Connecting microcontrollers to the internet and streaming sensor data to cloud.
- Actuation using microcontrollers.
- Raspberry pi programming and application development.
- Rest API based hands on.
- Lab exercise based on COAP/ MQTT.

Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time
Midsem	1 hour	25	ТВА
Lab Test	1 hour	20	Based on the lab exercises
Project (Prototype implementation)	Will be announced	25	Continuous Evaluation
Comprehensive Examination	120mins	30	ТВА

Chamber Consultation Hour: To be announced in Class.

Notices: All notices regarding the course will be mailed.

Make-up Policy: No make-up without prior permission.

Instructor-in-charge

