- Convergence of sequences of r.v.s
- ► Limit Theorems

Example: Assume X_n is a Discrete r.v. with the following PMF, defined on the same Probability Space:

$$\begin{array}{c|c} X_n & 3 + \frac{1}{n^2} & n \\ \hline \mathbb{P}(X_n = x) & 1 - \frac{1}{n} & \frac{1}{n}. \end{array}$$

Which of the followings are true (use only the definitions):

- $X_n \stackrel{\mathbb{P}}{\longrightarrow} 3;$
- $\longrightarrow X_n \xrightarrow{qm} 3;$
- $X_n \xrightarrow{D} 3$?

Example: Assume

$$X_n \sim Unif\left[0, \frac{1}{n}\right]$$

and X_n are defined on the same Probability Space. Which of the followings are true (use only the definitions):

- $X_n \stackrel{\mathbb{P}}{\longrightarrow} 0;$
- $\longrightarrow X_n \xrightarrow{qm} 0;$
- $\longrightarrow X_n \stackrel{D}{\longrightarrow} 0$?

Example

Example: Show that if $X_n \sim Binom\left(n, \frac{\lambda}{n}\right)$, then $X_n \stackrel{D}{\longrightarrow} Pois(\lambda)$.

Note: Note that when using $X_n \stackrel{D}{\longrightarrow} Pois(\lambda)$ we mean $X_n \stackrel{D}{\longrightarrow} X$, where $X \sim Pois(\lambda)$.

```
lambda <- 1.2; n <- 10; t <- seq(0,7, 0.1)
plot(t,pbinom(t, size = n, prob = lambda/n), type = "s", ylim = c(0,1), ylab = "CDF")
par(new = T)
plot(t, ppois(t, lambda = lambda), type = "s", col = "red", ylim = c(0,1), ylab = "CDF")</pre>
```


Example

Example: Let $X_n \sim Unif[0, n]$. Find the limit in Distributions of $Y_n = \frac{X_n}{n}$. Let us visually show that $Y_n \stackrel{D}{\rightarrow} Y$, where $Y \sim Unif[0, 1]$.

```
n <- 10000 ## We use Y_n
m <- 10000 ## No. of generated numbers
y <- runif(m, min = 0, max = n)/n
hist(y, freq = F)
abline(h = 1, col = "red", lwd = 2)</pre>
```


Some Properties

Theorem: Assume $X_n \stackrel{a.s.(P,qm,D)}{\longrightarrow} X$ and $Y_n \stackrel{a.s.(P,qm,D)}{\longrightarrow} Y$. Then

$$X_n + Y_n \stackrel{a.s.(P,qm)}{\longrightarrow} X + Y;$$

- $X_n \cdot Y_n \stackrel{a.s.(P)}{\longrightarrow} X \cdot Y$; and $\alpha \cdot X_n \stackrel{qm}{\longrightarrow} \alpha \cdot X$ for any constant α ;
- ▶ If $g \in C(\mathbb{R})$, then $g(X_n) \stackrel{a.s.(P,D)}{\longrightarrow} g(X)$

Note: In the general case, if $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{D}{\longrightarrow} Y$, then not necessarily $X_n + Y_n \stackrel{D}{\longrightarrow} X + Y$.

But we have:

Theorem (Slutsky) Assume $X_n \stackrel{D}{\longrightarrow} X$ and $Y_n \stackrel{P}{\longrightarrow} c$, where $c \in \mathbb{R}$ is a constant. Then

- $X_n + Y_n \xrightarrow{D} X + c;$
- $X_n \cdot Y_n \xrightarrow{D} c \cdot X$

Relationship between Convergence Types

Theorem: (Convergence Relationship Diagram)

Note: Inverse implications are not always correct. But, say, the following holds: If $X_n \stackrel{D}{\longrightarrow} X$ and $X \equiv constant$, then $X_n \stackrel{P}{\longrightarrow} X$ ($X_n = 1$) and X are defined on the same Probability space).

Note

Note: Mostly, in our course, we will deal with the following type of sequences of r.v.s:

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n},$$

and to calculate the limit of this sequence $\overline{X}_1, \overline{X}_2, ..., \overline{X}_n, ...$, we will use our famous Limit Theorems: LLN and CLT.

Sequence of IID r.v.

Assume X_n is a sequence of **Independent**, **Identically Distributed** (IID) r.v.s. This means that:

All X_n -s have the same Distribution. In particular, all numerical partial characteristics of X_n coincide. In particular,

$$\mathbb{E}(X_1) = \mathbb{E}(X_2) = ... = \mathbb{E}(X_n) = ...,$$

$$Var(X_1) = Var(X_2) = ... = Var(X_n) =$$

We will use this many-many-many-many-... times.

 \triangleright X_n -s are independent. Say, in particular,

$$Var(X_1+X_2+...+X_n) = Var(X_1)+Var(X_2)+...+Var(X_n) = n \cdot Var(X_1).$$

Idea of the LLN and CLT

Assume we have a sequence X_n of IID rvs. We want to study the behavior of either the sum

$$S_n = X_1 + X_2 + ... + X_n$$

or the average

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Note: Not an easy task to find the Distribution of S_n or \overline{X}_n . Even for n = 2. We need Convolutions!

What we know about S_n and \overline{X}_n

Some important known facts about S_n and \overline{X}_n in the general case:

$$\mathbb{E}(S_n) = n \cdot \mathbb{E}(X_1), \qquad \mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1);$$

so the mean of the means is the mean $\ddot{\ }$, and

$$Var(S_n) = n \cdot Var(X_1), \qquad Var(\overline{X}_n) = \frac{Var(X_1)}{n}.$$

The last property is the mathematical proof of the effectivness of "7 angam chapir, mek angam ktrir" $\ddot{\ }$

The interpretation of $\mathbb{E}(\overline{X}_n) = \mathbb{E}(X_1)$ and $Var(\overline{X}_n) = \frac{Var(X_1)}{n}$: the values of \overline{X}_n are centered at $\mathbb{E}(X_1)$ and are becoming more and more concentrated around that number as n increases.