Weibliche Geschlechtsorgane

Lutz Slomianka – Anatomisches Institut, Universität Zürich

Übersicht I

- Äussere und innere Genitale
- Äussere Genitale (Vulva)
 - Schamberg
 - Schamlippen: Verschluss der inneren Genitale
 - Scheidenvorhof und Scheidenvorhofdrüsen
 - Mündung der Harnröhre in den Scheidenvorhof
 - Clitoris (Glans clitoridis)
- Innere Genitale
 - beginnend mit der Vagina (Scheide)
 - Uterus (Gebärmutter), Tuben (Eileiter) und Ovarien (Eierstöcke)

Übersicht II

[2]

Übersicht III

überschuss: reifung von mehreren eizellen gleichzeitig, aber im normalfall schliesst nur eine eizelle die reifung ab und geht über in die ovulation

Ovar

- recht kleine, intraperitoneal gelegene, paarige Organe
 - ~3 cm lang, ~7-14 g
- durch Ligamente an Beckenwand und Uterus aufgehängt
 - Lig. ovarii proprium und Lig. suspensorium ovarii
- **▶** Entwicklung und Abgabe der weibliche Gameten Oozyten
 - ▶ Pubertät: ~400.000 (pränatal gebildet) davon zur Ovulation ~400
- endokrine Funktionen
- umgeben von einer zellreichen, bindegewebigen Kapsel und bekleidet durch eine Serosa (einschichtiges, kubisches Epithel)
- Einteilung in Rinden- und Markzone (Cortex und Medulla)
 - Rindenzone: Follikel eingebettet in ein zelluläres Stroma
 - Markzone: keine Follikel, reich vaskularisiert
- Gefäss und Nervenversorgung über das Mesovar(ium)
 - ▶ Eintritt in die Markzone am Hilus des Ovars

Primordial- und Primärfollikel

oozyt

Follikelreifung I

Primordialfollikel

- einschichtige Lage flacher Zellen (Follikelepithel) um den Oozyt – Durchmesser etwa 30 μm
- Die Follikulogenese ist unter der Kontrolle hypophysärer Hormone (FSH).
- FSH initiiert Reifung mehrerer Primordialfollikel, von denen in der Regel nur eines zur Sprungreife gelangt.

Primärfollikel

- einschichtig, isoprismatische (kubische) Lage von Granulosazellen um die Eizelle; auch Oestradiol Synthese
- ▶ Bildung der Zona pellucida: Glykoproteine → Spermatozoenbindung und Auslösung der Akrosomenreaktionwichtig für befruchtung

Sekundärfollikel

- this fact is inconsistent with the english literature mehrere Schichten von Granulosazellen um den Oozyt Durchmesser mehr als 100 µm
- Bildung der Follikelhülle (Theca interna und externa)

Follikelreifung II

- ► Tertiärfollikel(eng: secondary follicle)
 - Bildung der Follikelhöhle (Antrum)
 - Grössenwachstum; Oozyt exzentrisch, von
 Granulosazellen umgeben im Cumulus oophorus
 - zum präovulatorischen (Graaf-) Follikel
- Ovulation (Follikelsprung)
 - LH Gipfel
 - Oozyt frei im Antrum des Follikels umgeben von Granulosazellen (Corona radiata)
 - Riss der Follikelwand und der Kapsel und Serosa des Ovars, in einem anämischen Bereich nahe der Oberfläche des Ovars (Stigma) (wegen program. zelltod durch hypoxia)

Atresie

 Zugrundegehen von Follikeln in Laufe der Reifung durch Apoptose der follikulären Zellen

Tertiärfollikel

atretischer Follikel

Follikelreifung III

- Corpus luteum
- ► Ensteht durch Differenzierung und
 Hypertrophie der Granulosazellen und der
 Theca interna Zellen nach dem Eisprung und
 begleitet von Gefässbildung (Angiogenese)
 → Bildung eines endokrinen Organs
- Granulosa- und Thecaluteinzellen
- produzieren Progesteron und Östrogene
- bei Schwangerschaft: Grössenzunahme bis 3 cm
- keine Implantation: Rückbildung nach ~14 Tagen
- Vernarbung des Corpus luteum zum Corpus albicans

Eileiter

alle drei namen wichtig

Tuba uterina (gr. Salpinx; auch Oviduct)

 Aufnahme der Eizelle, Befruchtung und Entwicklung der Zygote (bis Morula)

- intraperitoneal, 11-16 cm lang
- unterteilt in Infundibulum, Ampulle und Isthmus
- passiert durch die Uteruswand (intramuraler Eileiter)
- über Mesosalpinx mit dem Lig. latum verbunden:
 Gefässe und Nerven

sehr stark gefaltete Tunica mucosa

- einschichtig, hochprismatisches Epithel
- Drüsenzellen (Ernährung des Keims) und Zilien-tragende Zellen
- Tubengravidität
- Salpingitis → Tubenverschluss durch 'Verklebung' der Mucosafalten → Infertilität

Tunica muscularis

- Peristaltik
- Serosa

Uterus

Fruchthalter

Zervix

Gebärmutterhals unteres Drittel des Uterus → Uterusverschluss

ragt in die Scheide vor (Portio vaginalis)

zyklische Änderungen von Menge und Konsistenz des Sekrets der Drüsen: 'Schleimpfropf' dann periovulatorisch dünnflüssiges Sekret (nicht bei Pille)

- keine deutlichen Änderungen der Morphologie im Zyklus
- wesentlich weniger Muskulatur als im

Korpus

- nach ventral flektiert (Anteflexio)
- Fundus: Kuppe des Uterus

Uterus: Wandbau

Perimetrium

Peritonealüberzug des Uterus

Myometrium

- Schichten glatter Muskulatur
- Hypertrophie während der Schwangerschaft
- Austreibung des Fetus, Menstruation

Endometrium

- **Oberflächenepithel**: Implantation; **Glandulae uterinae** (tubuläre Drüsen); **Lamina propria**: lockeres, zellreiches Bindegewebe
- Stratum basale keine deutlichen morphologische Veränderungen während des Zyklus; Regeneration des
- Stratum functionale
 zyklische Veränderungen; Abstossung im Zuge der Menstruationsblutung (Desquamation)
- Blutversorgung aus spiralig verlaufenden Arterien

Uterus: Zyklus

Proliferationsphase

- Menstruation bis Eisprung; Östrogen (Follikel)
- Regeneration von Drüsen und Oberflächenepithel aus dem Stratum basale; Proliferation von Stromazellen

Sekretionsphase

- ~14 25 Tage nach der Menstruation
- Östrogen → und Progesteron ✓ (Corpus luteum)
- Sägeblattform des Drüsenepithelsform ändert sich von drüsen
- Lipid- und Glykogeneinlagerungen in Stromazellen
 (Prädeziduazellen → Schwangerschaft → Deziduazellen)

Ischämiephase

- nach dem 25. Tag
- Kontraktion der Spiralarterien

Desquamationsphase

- Ausweitung der Spiralarterien, Riss der Kapilarwände
- NO, Prostaglandine, fibrinolytische Faktores wird als menstruation NO vasodilator: öffnet spiralarterien etc.

fibrinolytische faktoren: blut gerinnt nicht

Der Zyklus im Überblick

hormonale Änderungen

The state of the s

[3]

Follikelentwicklung im Ovar

Zyklus des Endometriums im Uterus

Vagina

- dehnbarer, fibromuskulärer Schlauch im kleinen Becken
 - reich sensorisch innerviert aber relativ begrenzte

 Schmerzempfindlichkeit falls normal innerviert wäre, dann noch mehr schmerzen empfindbar
 - ~10 cm lang, kleiner Teil intraperitoneal
 - ventrale Relationen: Harnblase und Harnröhre
 - dorsale Relationen: Analkanal und Rektum
 - Excavatio rectouterina (Peritonealraum)entzündng kann hier oft geschehen

Tunica mucosa

- mehrschichtiges Plattenepithel mit Glykogeneinlagerungen (Milchsäurebakterien pH 4-5, Säurebarriere) aktive symbiose mit milchsäurebaktieren
- zyklische Veränderungen der Zellmorphologiedie dann den frauen helfen (Vaginalabstriche)
 (säurebarriere für pathogene)
- Lamina propria zellreich mit Venenplexus (Schwellkörper)

Tunica muscularis

- glatte Muskulatur, elastische Fasern
- Adventitia

Mamma

- Brustdrüse haben alle seperaten ausgang (20-30 öffnungne für die milch)
- etwa 20 Einzeldrüsen über Milchgänge
 (Ductuli lactiferi) und Sinus lactiferi mit der Brustwarze (Papilla mammaria) verbunden
 - separate Mündungen auf der Brustwarze
 - eingelagert in Binde- und Fettgewebe
 - volle Reifung erst im Laufe der Schwangerschaft
 - Involution der Drüsenläppchen nach dem Abstillen rückbildung wieder wenn stillen vorbei
- dichte sensible Innervation von Brustwarze und Areolae
 - Milchejektionsreflex Oxytocin; Prolactin
- Mammakarzinom
 - Karzinom: maligner Tumor epithelialen Ursprungs
 - Inzidenz 10%, am häufigsten prä- und postmenopausal

Abb. 14-19 Makroskopische Anatomie der Mamma. Sagittalschnitt (Schema). Vier Lobi (Einzeldrüsen) sind dargestellt, jeder Lobus wird durch einen eigenen Ductus lactifer colligens drainiert.

Mamma: Histologie

- tubuloalveoläre Drüse
 - merokrine Sekretion von Peptiden, Lactose, Immunoglobulinen
 - apokrine Sekretion von Lipiden
- ruhend: Läppchen aus Terminalductus und rudimentären tubulären Endstücken mit Stammzellen → Proliferation
 - eingebettet in ein feinfibrilläres, reich vaskularisiertes Bindegewebe
 - Aktivierung durch ein Zusammenspiel von u.a.
 Östrogenen, Progesteron und Prolactin
- aktiv: weitlumige, dicht gepackte Endstücke (Alveolen)
 - sekretorische Zellen
 - myoepitheliale Zellen → Milchejektionsreflex (Oxytocin)

Bildquellen

- 1. Martini et al., 2012, Anatomie, 6. aktualisierte Auflage, Pearson
- Lippert, 2006, Lehrbuch Anatomie, 7. Auflage, Urban & Schwarzenberg
- 3. Benninghoff und Drenckhahn, 2003, Anatomie, Makroskopische Anatomie, Histologie, Embryologie, Zellbiologie, Band 1, 16. Auflage, Urban & Fischer