12강 다변량 자료의 시각화 이해 |

정보통계학과 이태림 교수

- 1. 다변량 자료의 시각화를 이해한다
- 2. 별그림을 이용하여 다변량 자료를 표현할 수 있다
- 3. 다변량 자료의 상관성 검토를 위한 산점도 행렬을 작성하고 해석할 수 있다
- 4. 다변량 시각화의 R에 의한 표현

학습개요(다변량 자료의 시각화 I)

다변량자료의 시각화

별그림(star plot)

산점도 행렬 (scatter plot matrix)

- ▶ 변수가 3개 이상인 다변량 자료
- ▶ 다변량 자료는 다차원의 자료
- ▶ 별그림(star plot)
- ▶ 파이조각그림 (pie segments plot)
- ▶ 산점도 행렬
- ▶ 조건부 플롯

1. 다변량 자료의 정의

1 다변량 자료의 정의

▶ 다변량 자료 (Multivariate Data Analysis):

MDA

변수가 3개 이상인 자료의 분석

- 3차원을 넘는 시각화 정보는 처리하기가 어렵다
- 평면상에서의 삼차원 공간표현을 위한 조 처가 필요

다변량 자료의 예제(판별분석)

- Y= 집단범주 (1=구매자) (2=비구매자)
- X1=비용지각 X2=성능지각 X3=스타일지각
 X4=표본분할상태 (1=분석표본) (2=검증표본)
- 비용지각, 성능지각, 스타일지각에서 0=매우 불량 10=매우 훌륭임
- 집단범주: (1=구매자) (2=비구매자)
- 비용지각, 성능지각, 스타일지각에서
 0=매우 불량 10=매우 훌륭임
- 표본분할: (1=분석표본) (2=검증표본)

다변량 자료의 예제(요인분석)

♣ 데이터는 구내식당에 대한 학생들의 반응을 조사한 설문결과.

- 설문1. 귀하는 구내식당을 이용할 때 다음의 항목들을 어느 정도 중요 하게 생각하십니까?
- x1=청결상태, x2=음식량, x3=대기 시간, x4=음식 맛, x5=친절
- 설문2. 귀하는 구내식당을 평균적으로 일주일에 몇 번 정도 이용하십니까?
- x6=이용횟수
- 설문3. 귀하의 성별
- x7=성별 (1: 남, 2: 여)

다변량 자료의 예제(요인분석)

A COLUMNIA CHOUSTAND TOUCOGO OF THE DESCRIPTION										
🔚 요인분석예제.sav [데이터집합0] - IBM SPSS Statistics Data Editor										
파일(<u>F</u>) 편집	집(E) 보기(V)	데이터(D)	변환(<u>T</u>)	분석(<u>A</u>)	다이렉트 마	케팅(1	() 그라	I프(<u>G</u>) :	유틸리	ΞΙ(<u>U</u>)
			1	보고	서(P)	•	*			47
				기술	통계량(<u>E</u>)	•	سبب	шш		_
4:x2	3			丑		•	,			
	x1	x2	x3	평균	비교(<u>M</u>)	F	5	x6		x7
1	6	4		일반	선형모형(G)	١	5		4	
2	5	7		일반	 '화 선형 모형(Z)⊩	6		6	
3	5	3			· 모형(X)		6		4	
4	3	3			노용(C) ·분석(C)	Ĺ	4		3	
5	4	3			_	r	2		2	
6	2	6			분석(<u>R</u>)	•	3		3	
7	1	3		로그	.선형분석(<u>O</u>)	•	2		1	
8	3	5		신경	망(<u>W</u>)	•	2		2	
9	7	3		분류	분석(<u>Y</u>)	•	5		4	
10	6	4		차원	감소(<u>D</u>)	-	유 요'	인분석(F).		
11	6	6		척도	(<u>A</u>)	١	ATT TH	- 응일치 분·	선(C)	
12	3	2		비모	수 검정(N)	•			_	
13	5	7		예측	(T)	١,	[일] 최	적화 척도!	감(<u>()</u>)	
14	6	3			<u>학</u> 률(S)		7		3	
15	3	4			ㅋㄹ(U) 응답(U)	,	2		2	
16	2	7			_	r	4		4	
17	3	5			값 분석 <u>(V</u>)		2		5	
18	6	4		다중	대입(T)	•	7		4	
19	7	4		복합	· 표본(<u>L</u>)	•	5		2	
20	5	6		품질	관리(<u>Q</u>)	F	4		3	
21	2	3		✓ ROO	C 곡선(<u>V</u>)		3		2	
22	3_	4		2	3		4		3	

다변량 자료의 예제

GAP에 의한 뇌기전 그래프

3.1 Meteorological Stations in China

2. 별그림

▶ 별그림(Star plot):

Star plot

다변량을 동시에 별의 형태로 나타낸 그림

I x, y, z 세 축으로 나타내지는 3차원의 경우
 시각화하고자 하는 화면이 평면인 2차원이므로
 시각화를 위해서는 평면상에서의 삼차원
 공간표현을 위한 조처가 필요

우리나라 8개 프로야구 구단의 2006년도 전력 자료

구단	팀타율	출루율	팀방어율
현대	0.264	0.347	3.26
한화	0.255	0.329	3.34
삼성	0.249	0.332	3.05
SK	0.265	0.343	3.63
KIA	0.253	0.323	3.29
두산	0.235	0.303	3.07
LG	0.254	0.317	4.47
롯데프로	0.218	0.293	3.63

▶ 별그림 예제

우리나라 8개 프로야구 구단의 2006년도 전력 자료

■ 타율과 출루율은 클수록 좋고 방어율은 작을수록
 좋기 때문에 3개 변수를 비교할 수 있는 공통의
 스케일로 표시되도록 변수 값들이 0.2과 1사이의
 공통 범위로 변환하여 0과 1 사이의 범위값을
 취하도록 다음 식으로 변환

우리나라 8개 프로야구 구단의 2006년도 전력 자료

- 팀 타율 〉〉 0.2+0.8 (팀 타율 최소값)/(최대값-최소값)
- 팀 방어율〉 0.2+0.8×(최대값- 팀 방어율)/(최대값-최소값)
- 출루율 〉〉 0.2+0.8×(출루율 − 최소값)/(최대값-최소값)
- ▮ 변수변환 후 각 변수는 최대값 1, 최소값 0을 취한다
- ▮ 팀 타율이 크고 방어율이 작고 출루율이 클수록 큰 삼각형 형성

구단	팀타율	출루율	팀방어율	
현대	0.264	0.347	3.26	
한화	0.255	0.329	3.34	
삼성	0.249	0.332	3.05	
SK	0.265	0.343	3.63	
KIA	0.253	0.323	3.29	
두산	0.235	0.303	3.07	
LG	0.254	0.317	4.47	
롯데프로	0.218	0.293	3.63	

▶ 별그림 작성을 위한 R 프로그램

```
baseball \langle - \text{ read.csv}("프로야구 20060602.csv", header=T) x <math>\langle - \text{ baseball}[,2:4]  x[,1] \langle - 0.2+0.8*(x[,1]-\text{min}(x[,1]))/(\text{max}(x[,1])-\text{min}(x[,1])) x[,2] \langle - 0.2+0.8*(x[,2]-\text{min}(x[,2]))/(\text{max}(x[,2])-\text{min}(x[,2])) x[,3] \langle - 0.2+0.8*(\text{max}(x[,3])-x[,3])/(\text{max}(x[,3])-\text{min}(x[,3])) rownames(x) \langle - \text{ baseball}[,1] stars(x, scale=F, key.loc = c(7,2), col.stars=2:9)
```

x11(); stars(x, scale=F, draw.segments=T, full=F, key.loc = c(7,2))

▶ 별그림 작성

- ▮ 롯데와 LG는 작은 삼각형을 형성
- ▮ 삼성은 방어율은 좋지만 타율과 출루율에서 저조
- SK는 반대로 방어율이 좋지 않지만 타율과 출루율이 좋음

우리나라 8개 프로야구 구단의 2006년도 전력 자료

- ▮ 롯데와 LG는 작은 삼각형을 형성
- ▮ 삼성은 방어율은 좋지만 타율과 출루율에서 저조
- SK는 반대로 방어율이 좋지 않지만 타율과 출루율이 좋음

구단	팀타율	출루율	팀방어율
현대	0.264	0.347	3.26
한화	0.255	0.329	3.34
삼성	0.249	0.332	3.05
SK	0.265	0.343	3.63
KIA	0.253	0.323	3.29
두산	0.235	0.303	3.07
LG	0.254	0.317	4.47
롯데프로	0.218	0.293	3.63

3. 파이조각그림

3 파이조각그림 (pie segments plot)

▶ 파이조각그림 (pie segments plot)

- ▮ 각 변수는 파이조각의 면적으로 나타내진다.
- ▮ 단순한 그림은 다변수 특성을 갖는 개체들의

특성을 표현해낼 수 있지만 깊이 있는 분석을

하기는 어렵다.

4. 산점도 행렬

4 산점도 행렬

▶ 산점도 행렬 (scatterplot matrix)

- 2개의 변수 쌍으로 작성된 산점도를 변수의 개수 만큼 P×P행렬에 체계적으로 배열해놓은 그래프
- ▮ 다변량 자료의 변수간 관련성을 눈으로 확인할 수 있는 그림으로 표현하는 것이 가능
- ▶ p*(p-1)/2개의 개별 산점도를 포함
- 자료의 구조 및 특징을 파악을 위하여 효과적이고 신뢰성 있는 자료의 요약과 그래프 기법의 활용

4 산점도 행렬

▶ 산점도 예제 Fisher의 붓꽃자료 (iris data)

 ● 4개 변수; 꽃받침 길이(Sepal Length), 꽃받침의 폭(Sepal Width), 꽃잎의 길이(Petal Length), 꽃잎 폭(Petal Width)로 ahems 2개 변수간의 관계를 보여준다.

data(iris) attach(iris) pairs(iris[1:4],

main="Iris Data")

▶ 산점도 예제 Fisher의 붓꽃자료 (iris data)

Iris Data

- Sepal_Length와 Sepal_Width의 산점도에서 2개 정도의 군집이 있음
- Petal_Length와 Petal_Width에서도 2개 정도의 군집

4.5 5.5 6.5 7.5

4 산점도 행렬

▶ 품종별 색구분 산점도 행렬 (iris data)

pairs(iris[1:4], main = "Iris Data", pch = 21, bg = c("red", "green3", "blue")[unclass(iris\$Species)])

Iris Data

5. 조건부 플롯

■ 3개 변수 X, Y와 Z의 관계를 탐색하는 과정에서 변수 X와 Y의 관계를 Z에 조건화하여 보는 그래프

- 3개 변수 X, Y와 Z의 관계를 탐색하는 과정에서 변수 X와 Y의 관계를 Z에 조건화하여 볼 수 있다.
- 예 (Z=0이면 고교 재학생, Z=1이면 재수생, Z=2이면 삼수생이상). 이런 경우 수능 언어와 수능수리의 관계를 탐색하는 과정에서 재수기간(Z) 별로 X와 Y의 산점도

▶ Z가 연속형인 경우

Z를 몇 개의 구간으로 나누어 범주화

equal.count(z, number=k1, overlap=k2)

- z는 조건화 변수이고 *k1*은 구간 수이고 *k2*는 0과 1사이의 수로 구간이 겹치는 정도를 제어하는 파라미터이다.
- 이에 따른 결과로는 z 값에 따라 관측개체를 *k1*개의 구간 중 하나(또는 2개 이상)에 배속

▶ 예제 피지 섬 지진의 경도(long)와 위도(lat)

library(lattice) data(quakes) str(quakes) attach(quakes) xyplot(lat \sim long, main="Earthquakes in Fiji", pch="*", cex=2)

▶ 예제 피지 섬 지진의 경도(long)와 위도(lat)

library(lattice) data(quakes) str(quakes) attach(quakes) xyplot(lat ~ long, main="Earthquakes in Fiji", pch="*", cex=2)

▶ 예제 피지 섬 지진의 경도(long)와 위도(lat)

- depth.grp=1,2,3,4에 해당하는 long과 lat의 산점도가 왼쪽 아래, 오른쪽 아래, 오른쪽 이래, 왼쪽 위, 오른쪽 위의 순서로 놓여 있다.
- 4개의 산점도 중 아래 2개와 위 2개는 서로 달라 보인다. 즉 피지 섬 바깥쪽 낮은 곳과 안쪽 깊은 곳에 단층이 있다는 추론이 가능

다음시간안내

다변량 자료의 시각화 이해 2