Aufgabe 4

(a) Betrachten Sie das folgende Code-Beispiel (in Java-Notation):

```
int mystery(int n) {
   int a = 0, b = 0;
   int i = 0;
   while (i < n) {
      a = b + i;
      b = a;
      i = i + 1;
   }
   return a;
}</pre>
```

 $Code-Beispiel\ auf\ Github\ ansehen: \verb|src/main/java/org/bschlangaul/examen/examen_66115/jahr_2020/herbst/o_notation/Mystery1.java/org/schlangaul/examen/examen_66115/jahr_2020/herbst/o_notation/Mystery1.java/org/schlangaul/examen/e$

Bestimmen Sie die asymptotische worst-case Laufzeit des Code-Beispiels in \mathcal{O} -Notation bezüglich der Problemgröße n. Begründen Sie Ihre Antwort.

Die asymptotische worst-case Laufzeit des Code-Beispiels in \mathcal{O} -Notation ist $\mathcal{O}(n)$.

Die while-Schleife wird genau n mal ausgeführt. In der Schleife wird die Variable i in der Zeile i = i + 1; inkrementiert. i wird mit 0 initialisiert. Die while-Schleife endet wenn i gleich groß ist wir n.

(b) Betrachten Sie das folgende Code-Beispiel (in Java-Notation):

```
int mystery(int n) {
       int r = 0;
       while (n > 0) {
7
         int y = n;
         int x = n;
         for (int i = 0; i < y; i++) {
10
11
           for (int j = 0; j < i; j++) {
             r = r + 1;
12
           }
13
           r = r - 1;
         }
15
         n = n - 1;
16
17
        return r;
```

Code-Beispiel auf Github ansehen: src/main/java/org/bschlangaul/examen/examen_66115/jahr_2020/herbst/o_notation/Mystery2.java

Bestimmen Sie für das Code-Beispiel die asymptotische worst-case Laufzeit in \mathcal{O} -Notation bezüglich der Problemgröße n. Begründen Sie Ihre Antwort.

```
while: n-mal

1. for: n, n - 1, ..., 2, 1

2. for: 1, 2, ..., n - 1, n

n \times n \times n = \mathcal{O}(n^3)
```

(c) Bestimmen Sie eine asymptotische Lösung (in Θ -Schreibweise) für die folgende Rekursionsgleichung:

$$T(n) = T\left(\frac{n}{2}\right) + \frac{1}{2}n^2 + n$$

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

$$a: a = 1$$

$$b: b = 2$$

$$f(n): f(n) = \frac{1}{2}n^2 + n$$

$$\log_b a = \log_2 1 = 0$$
Erster Fall: $f(n) \in \mathcal{O}\left(n^{\log_b a - \varepsilon}\right)$

$$\frac{1}{2}n^2 + n \notin \mathcal{O}(n^{-1})$$
Zweiter Fall: $f(n) \in \Theta\left(n^{\log_b a}\right)$

$$\frac{1}{2}n^2 + n \notin \Theta(1)$$
Dritter Fall: $f(n) \in \Omega\left(n^{\log_b a}\right)$

$$\varepsilon = 2$$

$$\frac{1}{2}n^2 + n \in \Omega(n^2)$$
Für eine Abschätzung suchen wir eine Konstante, damit gilt:
$$1 \cdot f\left(\frac{n}{2}\right) \le c \cdot f(n)$$

$$\frac{1}{2} \cdot \frac{1}{4}n^2 + \frac{1}{2}n \le c \cdot \left(\frac{1}{2} \cdot n^2 + n\right)$$
Damit folgt $c = \frac{1}{4}$
und $0 < c < 1$

$$\Rightarrow \Theta\left(\frac{1}{2}n^2 + n\right)$$

$$\Rightarrow \Theta(n^2)$$