# **Enumeration of (unique reduced alternating) knot diagrams**

Ciaran McCreesh, Alice Miller, Patrick Prosser, **Craig Reilly**, James Trimble





#### What is a knot?

■ A *knot* is an embedding of the circle in  $\mathbb{R}^3$ .

#### What is a knot?

- A *knot* is an embedding of the circle in  $\mathbb{R}^3$ .
- An intuitive way to think about this is to consider a knot as a knotted piece of string with the ends glued together.

- A function  $f: \mathbb{R}^3 \to \mathbb{R}^2$  where f(x, y, z) = f(x, y), is called a *projection map*, and the image of a knot K under f is called the *projection* of K.
- Such a projection is often referred to as the *shadow* of K.

• Information regarding the orientation of arcs at crossings is given by leaving gaps in a knot's shadow..





#### Representations of knots

- Knot diagrams are really just 4-valent planar graphs.
  - The vertices in the graph correspond to the crossings in the knot diagram.
  - The arcs between vertices correspond to arcs between crossings in the knot diagram.
  - The arcs are decorated with their orientation at their source and target crossings.
- Other data structures familiar to computer scientists can be used, linked lists of crossings were popular in the 1950's.

#### Representations of knots

- The representations used by topologists are typically also used for representing knots in a computer.
- Examples are Dowker-Thistlethwait codes (DT codes), Gauss codes, braid representatives, Conway notation, and many more.

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - **1** Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



-1 , 4

- The strategy for representing a given knot (with *n* crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



-1 , 4 , -3

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



-1 . 4 . -3 . 1

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - **1** Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



-1 . 4 . -3 . 1 . -2

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.



-1 , 4 , -3 , 1 , -2 , 3

- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - 1 Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

$$-1$$
 , 4 ,  $-3$  , 1 ,  $-2$  , 3 ,  $-4$ 



- The strategy for representing a given knot (with n crossings) by a Gauss code is as follows.
  - **1** Label the crossings with the numbers 1 to *n*.
  - Pick a point on the knot.
  - 3 Pick a direction and walk around the knot, writing out a list of the numbers you come to (with a negative sign indicating that a crossing was visited on an under strand). Stop when each number appears twice once with each sign.

$$-1$$
 , 4 ,  $-3$  , 1 ,  $-2$  , 3 ,  $-4$  , 2



- There are three sensible questions to ask:
  - Do all knots give rise to a Gauss code?
  - Can two Gauss codes correspond to the same knot?
  - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
  - Do all knots give rise to a Gauss code? Yes.
  - Can two Gauss codes correspond to the same knot?
  - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
  - Do all knots give rise to a Gauss code? Yes. Trivially.
  - Can two Gauss codes correspond to the same knot?
  - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
  - Do all knots give rise to a Gauss code? Yes. Trivially.
  - Can two Gauss codes correspond to the same knot? Yes.
  - Do all Gauss codes represent a knot?

- There are three sensible questions to ask:
  - Do all knots give rise to a Gauss code? Yes. Trivially.
  - Can two Gauss codes correspond to the same knot? Yes.
  - Do all Gauss codes represent a knot? No!

$$-1$$
, 4,  $-3$ , 1  $-2$ , 3,  $-4$ , 2





$$-1$$
, 4,  $-3$ , 1  $-2$ , 3,  $-4$ , 2

$$2, -4, 3, -2, 1, -3, 4, -1$$

$$1, -4, 3, -1, 2, -3, 4, -2$$





Our candidate is a code with the lexicographically minimum shadow (where a shadow corresponds to an unsigned code). For this knot the shadow is:

1, 2, 3, 1, 4, 3, 2, 4.



Our candidate is a code with the lexicographically minimum shadow (where a shadow corresponds to an unsigned code). For this knot the shadow is:

For which the diagram now shows the labelling giving rise to the signed code:

$$-1$$
, 2,  $-3$ , 1,  $-4$ , 3,  $-2$ , 4.



■ Is this new?

■ Is this new? Kinda.

- Is this new?
- Topologists don't seem to care about labelling a knot in a canonical manner when determining a knot's Gauss code.
- But such a lexicographically minium representation of a the shadow code is necissary in the input of an algorithm which follows.

Is this new?

| Name     | Gauss Notation                                              |
|----------|-------------------------------------------------------------|
| $3_{-}1$ | -1, 3, $-2$ , 1, $-3$ , 2                                   |
| $4_1$    | 1, $-4$ , $3$ , $-1$ , $2$ , $-3$ , $4$ , $-2$              |
| $5_{-}1$ | -1, 4, $-2$ , 5, $-3$ , 1, $-4$ , 2, $-5$ , 3               |
| $5_2$    | -1, $5$ , $-2$ , $1$ , $-3$ , $4$ , $-5$ , $2$ , $-4$ , $3$ |
| $6_{-}1$ | -1, 4, $-3$ , 1, $-5$ , 6, $-2$ , 3, $-4$ , 2, $-6$ , 5     |
| $6_{-2}$ | -1, 4, $-3$ , 1, $-2$ , 6, $-5$ , 3, $-4$ , 2, $-6$ , 5     |
| 6_3      | 1, -6, 2, -1, 4, -5, 6, -2, 3, -4, 5, -3                    |

## Symmetries involved in Gauss code enumeration

stuff