

SYSTÈME DE CLASSIFICATION BAYESIEN NAIF

MIA PARIS-SACLAY

Vincent Guigue vincent.guigue@agroparistech.fr

Lois de probabilités

Loi de Bernoulli

Définition

Épreuve de Bernoulli = expérience aléatoire qui ne peut prendre que deux résultats (succès et échec)

p= proba de succès, et q=1-p= proba d'échec.

Loi de Bernoulli

Définition

Épreuve de Bernoulli = expérience aléatoire qui ne peut prendre que deux résultats (succès et échec)

p= proba de succès, et q=1-p= proba d'échec.

Loi de Bernoulli

Variable X à support $\mathcal{X} = \{0,1\}$ telle que :

$$P(X = 1) = p$$
 et $P(X = 0) = 1 - p$

$$E(X) = p$$
 $V(X) = p(1-p)$

 $\Longrightarrow X =$ le nombre de succès de l'épreuve de Bernoulli

Loi binomiale

Définition

Épreuve binomiale = expérience aléatoire telle que :

- f 1 on répète n fois la même épreuve de Bernoulli,
- 2 les probas p et q restent inchangées pour chaque épreuve de Bernoulli,
- 3 les épreuves de Bernoulli sont toutes réalisées indépendamment les unes des autres.

Loi binomiale

Définition

Épreuve binomiale = expérience aléatoire telle que :

- f 1 on répète n fois la même épreuve de Bernoulli,
- 2 les probas p et q restent inchangées pour chaque épreuve de Bernoulli,
- 3 les épreuves de Bernoulli sont toutes réalisées indépendamment les unes des autres.

Loi binomiale de paramètres n et p

- \blacksquare X = nombre de succès de l'épreuve binomiale
- $X \sim \mathcal{B}(n,p)$
- $P(X = k) = C_n^k p^k (1-p)^{n-k}, \forall k = 0, ..., n$
- E(X) = np V(X) = np(1-p)

La planche de Galton

- ullet chaque niveau \Longrightarrow expérience de Bernoulli
- $\bullet \Longrightarrow X \sim \text{loi binomiale}$

- ۲۷

La planche de Galton

Loi normale

Loi extrêmement importante : souvent une très bonne approximation de la loi réelle

Définition : loi normale de paramètres μ et σ^2

- notée $\mathcal{N}(\mu, \sigma^2)$
- s'applique pour des variables aléatoires continues
- lacksquare densité positive sur tout $\mathbb R$:

$$f(x) = \frac{1}{\sqrt{2\pi}.\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$$

■
$$E(X) = \mu$$
 $V(X) = \sigma^2$

Fonction de densité de la loi normale

Quelques reflexes:

- 2/3 de la masse entre $+\sigma$ et $-\sigma$
- Support infini...

Mais empiriquement \sim toutes les observations entre $+3\sigma$ et -3σ

■ Facile à dériver, à tronquer, ...

Loi normale = limite d'autres lois (1/4)

Lancés de dés à 6 faces

 \Longrightarrow on compte la somme des résultats des dés

Somme pour 1 jet de dé

Loi normale = limite d'autres lois (2/4)

Somme pour 2 jets de dés

Loi normale = limite d'autres lois (3/4)

Somme pour 3 jets de dés

Loi normale = limite d'autres lois (4/4)

Somme pour 4 jets de dés

Loi normale en pratique

Théorème

$$X \sim \mathcal{N}(\mu; \sigma^2)$$

Alors la variable Y = aX + b obéit à la loi $\mathcal{N}(a\mu + b; a^2\sigma^2)$.

⇒ toute transformée affine d'une variable aléatoire suivant une loi normale suit aussi une loi normale

Loi normale en pratique

Théorème

$$X \sim \mathcal{N}(\mu; \sigma^2)$$

Alors la variable Y = aX + b obéit à la loi $\mathcal{N}(a\mu + b; a^2\sigma^2)$.

⇒ toute transformée affine d'une variable aléatoire suivant une loi normale suit aussi une loi normale

Corollaire

• X une variable aléatoire obéissant à une loi $\mathcal{N}(\mu; \sigma^2)$

$$\Longrightarrow Z = \frac{X - \mu}{\sigma}$$
 suit la loi $\mathcal{N}(0; 1)$

• Z suit une loi normale centrée (à cause de la moyenne en 0) réduite (à cause du σ^2 égal à 1)

Loi normale en pratique (2)

Théorème

$$X_1 \sim \mathcal{N}(\mu_1; \sigma_1^2), \qquad X_2 \sim \mathcal{N}(\mu_2; \sigma_2^2)$$

Si les variables sont indépendantes, alors la variable $Y=X_1+X_2$ obéit à la loi $\mathcal{N}(\mu_1+\mu_2;\sigma_1^2+\sigma_2^2)$.

Table de la loi normale centrée réduite

z_{α}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641
0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
0,7	0,2420	0,2389	0,2358	0,2327	0,2297	0,2266	0,2236	0,2206	0,2177	0,2148
0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0859	0,0853	0,0838	0,0823
1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0466	0,0455
1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233

Loi normale bi-dimensionnelle

Définition : loi normale bi-dimensionnelle

- \bullet couple de variables (X, Y)
- ullet densité dans \mathbb{R}^2 :

$$f(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho \frac{(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y} + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 \right] \right\}$$

où
$$\rho = \frac{cov(X,Y)}{\sigma_X \sigma_Y} =$$
 coefficient de corrélation linéaire

Théorème central-limite

Théorème central-limite

- \bullet $(X_n)_{n\in\mathbb{N}}$: suite de variables
 - de même loi
 - ullet d'espérance μ
 - de variance σ^2
 - mutuellement indépendantes
- alors la suite des moyennes empiriques centrées réduites

 $\frac{X_n - \mu}{\sigma / \sqrt{n}}$ tend en loi vers la loi normale centrée réduite :

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{loi}{\to} \mathcal{N}(0, 1)$$

NAIVE BAYES

Notations et représentation des données

X matrice des données

- lacksquare composée de n individus lacksquare i
- lacksquare presque toujours, $\mathcal{X} = \mathbb{R}^d$

Y étiquettes des données, $y_i \in \mathcal{Y}$

- $y_i \in \mathbb{R}$ \Rightarrow régression
- $y_i \in \{1, ..., C\}$ ⇒ classification en C catégories

Apprentissage automatique

A partir des données, construire une fonction f telle que :

$$\forall (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}, \qquad f(\mathbf{x}) \approx y$$

_

Algorithme naïf

Hypothèse d'indépendance des variables descriptives X_j

Algorithme naïf

Hypothèse d'indépendance des variables descriptives X_i

Pourquoi c'est très naïf?

 $x_{ij} \sim X_j$

 $x_{ik} \sim X_k$

Hypothèse variable par variable

Choix loi de probabilité pour (une ou toutes les) X_j e.g Bernoulli pour une image binaire : $X_j \sim Ber(p_j)$

Hypothèse variable par variable

Choix loi de probabilité pour (une ou toutes les) X_j e.g Bernoulli pour une image binaire : $X_j \sim Ber(p_j)$

$$P(X_j = 1) = p_j$$
 $P(X_j = 0) = 1 - p_j$

Vraisemblance de l'observation x_{ij} :

$$P(X_j = x_{ij}) = p_i^{x_{ij}} (1 - p_j)^{(1 - x_{ij})}$$

- 2 Une variable descriptive $X_j \Rightarrow 1$ paramètre p_j On regroupe les paramètres : $\Theta = \{p_1, \dots, p_d\}$
- 3 Optimisation des paramètres par max de vraisemblance

Hypothèse variable par variable

Choix loi de probabilité pour (une ou toutes les) X_j e.g Bernoulli pour une image binaire : $X_j \sim Ber(p_j)$

$$P(X_j = 1) = p_j$$
 $P(X_j = 0) = 1 - p_j$

Vraisemblance de l'observation x_{ij} :

$$P(X_i = x_{ij}) = p_i^{x_{ij}} (1 - p_i)^{(1 - x_{ij})}$$

- 2 Une variable descriptive $X_j \Rightarrow 1$ paramètre p_j On regroupe les paramètres : $\Theta = \{p_1, \dots, p_d\}$
- 3 Optimisation des paramètres par max de vraisemblance

Echantillon i.i.d + NB
$$\Rightarrow \mathcal{L}(X) = \prod_{i=1}^{n} \prod_{j=1}^{d} P(x_{ij}|\Theta)$$

Optimisation :
$$p_j^* = \operatorname{arg\,max}_{p_j} \mathcal{L}(X)$$

Apprentissage statistique

Identification des paramètres optimaux correspondant aux observations

Cas de la classification bayesienne naïve

- 1 classe C=1 sous-ensemble de données =1 modèle optimisé (= un ensemble de paramètre Θ_c)
- C (×d) problèmes d'optimisation distincts
- Combien de paramètres avec une modélisation de Bernoulli sur d=256 pixels?

- 1 classe C=1 sous-ensemble de données =1 modèle optimisé (= un ensemble de paramètre Θ_c)
- C (×d) problèmes d'optimisation distincts
- Combien de paramètres avec une modélisation de Bernoulli sur d=256 pixels?
- lacksquare $\Theta_c = \{p_{c,1}^\star, \dots, p_{c,d}^\star\}$ et $\Theta = \{\Theta_1, \dots, \Theta_c, \dots, \Theta_C\} \Rightarrow 2560$ paramètres

Calcul de la vraisemblance

■ Pour une valeur descriptive , sous l'hypothèse de Bernoulli :

$$P(X_j = x_{ij}) = P(X_j = x_{ij}|p_j) = p_j^{x_{ij}}(1-p_j)^{(1-x_{ij})}$$

■ Pour un **individu** , avec indépendance des variables descriptives :

$$P(\mathbf{x}_i) = P(\mathbf{x}_i|\Theta) = \prod_{j=1}^d P(X_j = x_{ij})$$

■ Pour l'**échantillon** entier :

$$\mathcal{L}(X) = \prod_{i=1}^{n} \prod_{j=1}^{d} P(x_{ij}|\Theta) = \prod_{i=1}^{n} \prod_{j=1}^{d} p_j^{x_{ij}} (1 - p_j)^{(1 - x_{ij})}$$

$\mathcal{L}(X) \Rightarrow \log \mathcal{L}(X)$

La vraisemblance a en générale vocation à être dérivée pour trouver les paramètres optimaux... Comme le log est une fonction croissante :

$$\mathop{\arg\max}_{\Theta} \mathcal{L}(X) = \mathop{\arg\max}_{\Theta} \log \mathcal{L}(X)$$

⇒ On travaille donc sur la log-vraisemblance, bien plus facile à dériver

Vraisemblance vs log-Vraisemblance

$$\mathcal{L}(X) = \prod_{i=1}^{n} \prod_{j=1}^{d} p_{j}^{x_{ij}} (1 - p_{j})^{(1 - x_{ij})}$$

$$\log \mathcal{L}(X) =$$

$$\sum_{i=1}^{n} \sum_{j=1}^{d} x_{ij} \log(p_j) (1 - x_{ij}) \log(1 - p_j)$$

Laquelle des deux préférez-vous dériver par rapport à p_j ?

Apprentissage du modèle

Comment résoudre :

$$p_j^\star = \arg\max_{p_j} \mathcal{L}(X) = \arg\max_{p_j} \sum_{i=1}^n \sum_{j=1}^d x_{ij} \log(p_j) (1 - x_{ij}) \log(1 - p_j)?$$

Solution 1

Solution 2

$$\frac{\partial \mathcal{L}_j(X)}{\partial p_j} = 0 \Leftrightarrow \dots$$
$$p_j^* = \dots$$

Apprentissage du modèle

Comment résoudre :

$$p_j^\star = \operatorname{arg\,max}_{p_j} \mathcal{L}(X) = \operatorname{arg\,max}_{p_j} \sum_{i=1}^n \sum_{j=1}^d x_{ij} \log(p_j) (1-x_{ij}) \log(1-p_j)$$
 ?

Solution 1

Solution 2

Je connais la loi de Bernoulli (ou j'ai accès à wikipedia)

$$p_j^{\star} = \frac{\sum_i x}{n}$$

Evaluation des performances

Χ

n

Décision au sens du max de vraisemblance

Est-ce que la donnée \mathbf{x}_i est plus vraisemblable sous le modèle de la classe 0, 1, ... ou C?

Passage à la gaussienne

Décision au sens du max de vraisemblance $\rightarrow p(\mathbf{x}_i \mid \mu_0, \sigma_0)$ Vérité terrain / Prédiction d X_j $\rightarrow p(\mathbf{x}_i \mid \mu_1, \sigma_1)$ Ground truth Classe c \mathbf{x}_{i} n Evaluation des performances $\rightarrow p(\mathbf{x}_i \mid \mu_9, \sigma_9)$ σ 0.15 0.10 0.05

Lois de probabilités Naive Bayes 00000000

Evaluation du modèle / Sélection de modèle

!! L'évaluation est aussi importante que l'apprentissage!!

- Evaluer sur les données d'apprentissage (=qui ont servi à régler les paramètres)
 - \Rightarrow Tricherie, surestimation des performances
- Evaluer sur des données vierges = OK

Problème de la répartition entre apprentissage et test

■ La validation croisée

Evaluation du modèle / Sélection de modèle

!! L'évaluation est aussi importante que l'apprentissage!!

- Evaluer sur les données d'apprentissage (=qui ont servi à régler les paramètres)

 ⇒ Tricherie, surestimation des performances
 - → Thenene, surestimation des per
- Evaluer sur des données vierges = OK
- La validation croisée

