Stochastische Geometrie

Vorlesung im Sommer 2019

Daniel Hug

24. April 2019

- Modelle und Methoden der Räumlichen Stochastik sind sehr allgemein.
- Breitgefächerte Anwendungsmöglichkeiten:
 - Geo- und Forstwissenschaften
 - Meteorologie etc.
 - Biologie/Medizin
 - Materialwissenschaften
 - Telekommunikation
 - Physik (kondensierte Materie, Astrophysik, ...)
- Schwerpunkt einer der drei Arbeitsgruppen in der Stochastik
- DFG-Forschergruppe "Geometry and Physics of Spatial Random Sysstems" (abgeschlossen)
- DFG-Schwerpunktprogramm "Random Geometric Systems"
- https://morphometry.org/

- Modelle und Methoden der Räumlichen Stochastik sind sehr allgemein.
- Breitgefächerte Anwendungsmöglichkeiten:
 - Geo- und Forstwissenschaften
 - Meteorologie etc.
 - Biologie/Medizin
 - Materialwissenschaften
 - Telekommunikation
 - Physik (kondensierte Materie, Astrophysik, ...)
- Schwerpunkt einer der drei Arbeitsgruppen in der Stochastik
- DFG-Forschergruppe "Geometry and Physics of Spatial Random Sysstems" (abgeschlossen)
- DFG-Schwerpunktprogramm "Random Geometric Systems"
- https://morphometry.org/

- Modelle und Methoden der Räumlichen Stochastik sind sehr allgemein.
- Breitgefächerte Anwendungsmöglichkeiten:
 - Geo- und Forstwissenschaften
 - Meteorologie etc.
 - Biologie/Medizin
 - Materialwissenschaften
 - Telekommunikation
 - Physik (kondensierte Materie, Astrophysik, ...)
- Schwerpunkt einer der drei Arbeitsgruppen in der Stochastik
- DFG-Forschergruppe "Geometry and Physics of Spatial Random Sysstems" (abgeschlossen)
- DFG-Schwerpunktprogramm "Random Geometric Systems"
- https://morphometry.org/

- Modelle und Methoden der Räumlichen Stochastik sind sehr allgemein.
- Breitgefächerte Anwendungsmöglichkeiten:
 - Geo- und Forstwissenschaften
 - Meteorologie etc.
 - Biologie/Medizin
 - Materialwissenschaften
 - Telekommunikation
 - Physik (kondensierte Materie, Astrophysik, ...)
- Schwerpunkt einer der drei Arbeitsgruppen in der Stochastik
- DFG-Forschergruppe "Geometry and Physics of Spatial Random Sysstems" (abgeschlossen)
- DFG-Schwerpunktprogramm "Random Geometric Systems"

https://morphometry.org/

- Modelle und Methoden der Räumlichen Stochastik sind sehr allgemein.
- Breitgefächerte Anwendungsmöglichkeiten:
 - Geo- und Forstwissenschaften
 - Meteorologie etc.
 - Biologie/Medizin
 - Materialwissenschaften
 - Telekommunikation
 - Physik (kondensierte Materie, Astrophysik, ...)
- Schwerpunkt einer der drei Arbeitsgruppen in der Stochastik
- DFG-Forschergruppe "Geometry and Physics of Spatial Random Sysstems" (abgeschlossen)
- DFG-Schwerpunktprogramm "Random Geometric Systems"

https://morphometry.org/

- Modelle und Methoden der Räumlichen Stochastik sind sehr allgemein.
- Breitgefächerte Anwendungsmöglichkeiten:
 - Geo- und Forstwissenschaften
 - Meteorologie etc.
 - Biologie/Medizin
 - Materialwissenschaften
 - Telekommunikation
 - Physik (kondensierte Materie, Astrophysik, ...)
- Schwerpunkt einer der drei Arbeitsgruppen in der Stochastik
- DFG-Forschergruppe "Geometry and Physics of Spatial Random Sysstems" (abgeschlossen)
- DFG-Schwerpunktprogramm "Random Geometric Systems"
- https://morphometry.org/

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

- Räumliche Stochastik
- Poissonprozesse
- Perkolationstheorie
- Zufällige (geometrische) Graphen
- Steinsche Methode (und Malliavin Kalkül)
- Wtheorie/Konzentrationsungleichungen und kombinatorische Optimierung

Beispiele: Zufällige abgeschlossene Mengen

Sandstein

Exkursionsmenge eines zufälligen Feldes

Beispiele: Punktprozesse

Positionen von Galaxiezentren

Beispiele: Punktprozesse

Figure 1.3: Cases of cancers (domiciles of patients) of the larynx (filled circles) and lung (pluses) 1974–1983 in the south of Lancashire, UK; and the location of an industrial incinerator.

Beispiele: Punktprozesse

Goldeinlagerung (Kreise), geologische Verwerfungen (Linien), Felsart (Schattierung)

Beispiele: Markierte Punktprozesse

Niederschlagsorte und -mengen (Schweiz)

Beispiele: Markierte Punktprozesse

Epizentren von Erdbeben in Neuseeland der Stärke ≥ 4.5 zwischen Januar 1945 und Mai 2011. Total: 6324 Ereignisse. Die Größe der Kreise ist proportional zu exp(Stärke), die Farben geben den Zeitpunkt an (gelb=1940s, dunkelrot=aktuell)

Beispiele: Faserprozesse

Zellulose (Teebeutel)

Beispiele: Geraden-/Faserprozesse

Zellulose (mit und ohne Zellgift)

Beispiele: Partikelprozess/ZAM

Blutzellen (Frosch)

Beispiele: ZAM/Tessellation

Industrieschaum (offenporig)

Beispiele: Tessellation

Plasmodesmata (Zellen)

Beispiele: Tessellation

Straßennetz Paris