STA2001 Probability and Statistics (I)

Lecture 7

Tianshi Chen

The Chinese University of Hong Kong, Shenzhen

Review

Negative binomial distribution with parameter p and r:
X, the number of Bernoulli trials at which the rth success is observed, and its pmf takes the form of

pmf:
$$f(x) = {x-1 \choose r-1} p^r (1-p)^{x-r}, x \in \overline{S} = \{r, r+1, \cdots\}$$

▶ Poisson distribution with parameter $\lambda > 0$:

X, the number of occurrences of an event in a unit interval and its pmf takes the form of

pmf:
$$f(x) = \frac{\lambda^x e^{-\lambda}}{x!}, x \in \overline{S} = \{0, 1, \dots\}$$

Chapter 3 Continuous Distribution

Section 3.1 Random Variable of Continuous Type

Continuous RV

Recall that a RV $X:S\to \overline{S}$ is called a discrete RV if \overline{S} contains finite or countably infinite number of outcomes.

Now we consider RVs with \overline{S} that is an interval or unions of intervals, which are quite common (e.g., velocity of a vehicle traveling along the high way)

Discrete RV vs. Continuous RV

RV
$$X$$
 is a function $X: S \to \overline{S} \subseteq R$

Discrete RV:

Continuous RV:

pmf
$$f(x): \overline{S} \to (0, 1]$$

- 1. f(x) > 0
- $2. \sum_{x \in \overline{S}} f(x) = 1$
- 3. $P(X \in A) = \sum_{x \in A} f(x)$

Continuous RV

Definition

A RV X with \overline{S} that is an interval or unions of intervals is said to be continuous RV, if there exists a function $f(x):\overline{S} \to (0,\infty)$ such that

- 1. f(x) > 0, $x \in \overline{S}$
- $2. \int_{\overline{S}} f(x) dx = 1$
- 3. If $[a, b] \subseteq \overline{S}$

$$P(a \le X \le b) \stackrel{\Delta}{=} \int_a^b f(x) dx$$

f is the so called probability density function (pdf).

Discrete RV vs. Continuous RV

RV
$$X$$
 is a function $X: S \to \overline{S} \subseteq R$

Discrete RV:

pmf
$$f(x): \overline{S} \to (0, 1]$$

- 1. f(x) > 0
- $2. \sum_{x \in \overline{S}} f(x) = 1$
- 3. $P(X \in A) = \sum_{x \in A} f(x)$

Continuous RV:

pdf
$$f(x): \overline{S} \to (0, \infty)$$

- 1. f(x) > 0
- $2. \int_{\overline{S}} f(x) dx = 1$
- 3. $P(X \in A) = \int_A f(x) dx$

Interpretation of pdf

Interpretation of pdf

1. We often extend the domain of f(x) from \overline{S} to R and let $f(x)=0, x\notin \overline{S}$. In this case, $f(x):R\to [0,\infty)$ and \overline{S} is called the support of X.

1. We often extend the domain of f(x) from \overline{S} to R and let $f(x)=0, x\notin \overline{S}$. In this case, $f(x):R\to [0,\infty)$ and \overline{S} is called the support of X.

$$\begin{cases} f(x) \ge 0, & x \in R \\ \int_{-\infty}^{\infty} f(x) dx = 1 \\ P(a \le X \le b) = \int_{a}^{b} f(x) dx \end{cases}$$

2. For any single value a, $P(X = a) = \int_a^a f(x) dx = 0$.

Therefore, including or excluding the end points of an interval has no effect on its probability:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

2. For any single value a, $P(X = a) = \int_a^a f(x) dx = 0$.

Therefore, including or excluding the end points of an interval has no effect on its probability:

$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$

3. pdf needs not to be continuous

$$f(x) = \begin{cases} \frac{1}{2}, & 0 < x < 1, & 2 < x \le 3\\ 0, & \text{otherwise} \end{cases}$$

4. pdf needs not to be bounded, e.g., the Gamma distribution

Cumulative distribution function

Definition

 $\operatorname{cdf} F(x): R \to [0,1]$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

- 1. F(x) is nondecreasing
- 2. relation between the probability function and the cdf

$$P(a \le X \le b) = F(b) - F(a)$$

relation between the pdf and the cdf

$$f(x) = F'(x)$$

for those values of x at which F(x) is differentiable $(x) = (x + 1)^{-1} + (x + 1)^{-1} +$

Example 1 [Uniform Distribution]

Let the RV X denote the outcome when a point is selected randomly from [a,b] with $-\infty < a < b < \infty$.

Define the pdf of X

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

What is the cdf of X?

Example 1 [Uniform Distribution]

Let the RV X denote the outcome when a point is selected randomly from [a,b] with $-\infty < a < b < \infty$.

Define the pdf of X

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

What is the cdf of X?

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Uniform Distribution

For any
$$x \in [a, b]$$
, $P(X \le x) = \frac{x - a}{b - a}$

implies the probability of selecting a point from the interval [a, x] is proportional to the length of [a, x]. Such distribution is called uniform distribution and denoted by $X \sim U(a, b)$.

Uniform Distribution

For any
$$x \in [a, b]$$
, $P(X \le x) = \frac{x - a}{b - a}$

implies the probability of selecting a point from the interval [a,x] is proportional to the length of [a,x]. Such distribution is called uniform distribution and denoted by $X \sim U(a,b)$.

For example, let $X \sim U(0.1, 0.2)$

Example 2, page 96

Let Y be a continuous RV with pdf g(y) = 2y, 0 < y < 1.

What is the cdf of *Y*, $P(\frac{1}{2} < Y \le \frac{3}{4})$, $P(\frac{1}{4} < Y < 2)$?

Example 2, page 96

Let Y be a continuous RV with pdf g(y) = 2y, 0 < y < 1.

What is the cdf of *Y*, $P(\frac{1}{2} < Y \le \frac{3}{4})$, $P(\frac{1}{4} < Y < 2)$?

$$G(y) = P(Y \le y) = \int_{-\infty}^{y} g(t)dt = \begin{cases} 0, & y \le 0 \\ y^{2}, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

Example 2, page 96

Let Y be a continuous RV with pdf g(y) = 2y, 0 < y < 1.

What is the cdf of Y, $P(\frac{1}{2} < Y \le \frac{3}{4})$, $P(\frac{1}{4} < Y < 2)$?

$$G(y) = P(Y \le y) = \int_{-\infty}^{y} g(t)dt = \begin{cases} 0, & y \le 0 \\ y^{2}, & 0 < y < 1 \\ 1, & y \ge 1 \end{cases}$$

$$g(y)$$

$$G(y)$$

$$G(y)$$

$$1$$

$$1$$

$$1$$

$$P(\frac{1}{2} < Y \le \frac{3}{4}) = G(\frac{3}{4}) - G(\frac{1}{2}) = \frac{5}{16}$$

$$P(\frac{1}{4} < Y < 2) = G(2) - G(\frac{1}{4}) = \frac{15}{16}$$

Mathematical Expectation

Mathematical Expectation

Let X be a continuous RV with pdf $f(x): \overline{S} \to (0,\infty)$. If $\int_{\overline{S}} g(x) f(x) dx$ exists, it is called the mathematical expectation for g(X) and denoted by

$$E[g(X)] = \int_{\overline{S}} g(x)f(x)dx$$

If the range of X is extended from \overline{S} to R with f(x) = 0 for $x \notin \overline{S}$, then

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

Expectation is a linear operator [Theorem 2.2-1, page 60].

$$E[c_1g_1(X) + c_2g_2(X)] = c_1E[g_1(X)] + c_2E[g_2(X)]$$

Special Mathematical Expectations

- 1. [g(X) = X]: Mean of X, $E[X] = \int_{\overline{S}} x f(x) dx$
- 2. $[g(X) = (X E[X])^2]$: Variance of X,

$$Var[X] = E[(X - E[X])^2] = \int_{\overline{S}} (x - E[X])^2 f(x) dx$$

3. $[g(X) = X^r]$, Moments of X:

$$E[X^r] = \int_{\overline{S}} x^r f(x) dx$$

Special Mathematical Expectations

4. $[g(X) = e^{tX}]$: Moment generating function (mgf). If there exists h > 0, such that

$$M(t) = E[e^{tX}] = \int_{\overline{S}} e^{tx} f(x) dx$$
, $-h < t < h$ for some $h > 0$

Mgf determines the distribution of X and all moments exist and are finite

$$M^{(r)}(0) = E[X^r]$$

which can be used to derive the mean and variance of a RV X

$$E[X] = M'(0), \quad Var[X] = M''(0) - (M'(0))^2$$

Example 3, page 98

Let X have the pdf

$$f(x) = \begin{cases} \frac{1}{100}, & 0 < x < 100 \\ 0, & \text{otherwise.} \end{cases} \Leftrightarrow X \sim U(0, 100)$$

Example 3, page 98

Let X have the pdf

$$f(x) = \begin{cases} \frac{1}{100}, & 0 < x < 100 \\ 0, & \text{otherwise.} \end{cases} \Leftrightarrow X \sim U(0, 100)$$

$$E[X] = \int_{-\infty}^{\infty} xf(x)dx$$
$$= \int_{0}^{100} x \frac{1}{100} dx = \frac{1}{100} \cdot \frac{1}{2}x^{2} \Big|_{0}^{100} = 50$$

$$Var[X] = E[(X - E[X])^2] = \int_0^{100} (x - 50)^2 \frac{1}{100} dx = \frac{2500}{3}.$$

Mean and Variance for U(a, b)

Actually, for $X \sim U(a, b)$

$$E[X] = \frac{a+b}{2}, \quad Var[X] = \frac{(b-a)^2}{12},$$

They can be derived by

- 1. the definition
- 2. the mgf technique?

$$M(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)}, & t \neq 0 \\ 1, & t = 0 \end{cases}$$

It does not work as usual and is skipped.

Example 4, page 99

Question

Let X be a continuous RV and have the pdf

$$f(x) = \begin{cases} xe^{-x}, & 0 < x < \infty \\ 0, & \text{otherwise} \end{cases}$$

E[X] and Var[X]?

Example 4, page 99

Question

Let X be a continuous RV and have the pdf

$$f(x) = \begin{cases} xe^{-x}, & 0 < x < \infty \\ 0, & \text{otherwise} \end{cases}$$

E[X] and Var[X]?

$$M(t) = E[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \int_{0}^{\infty} x e^{-x} e^{tx} dx$$
$$= \int_{0}^{\infty} x e^{-(1-t)x} dx = \left[-\frac{x e^{-(1-t)x}}{1-t} - \frac{e^{-(1-t)x}}{(1-t)^2} \right] \Big|_{0}^{\infty}$$

Example 4, page 99

$$M(t) = \lim_{b \to \infty} \left[-\frac{be^{-(1-t)b}}{1-t} - \frac{e^{-(1-t)b}}{(1-t)^2} \right] + \frac{1}{(1-t)^2}$$

$$\frac{\text{when } t < 1, i.e., 1-t > 0}{1-t} \frac{1}{(1-t)^2}$$

$$M'(t) = 2 \cdot \frac{1}{(1-t)^3} \Rightarrow M'(0) = 2$$

$$M''(t) = 6 \cdot \frac{1}{(1-t)^4} \Rightarrow M''(0) = 6$$

$$E[X] = M'(0) = 2,$$

$$Var[X] = E[X^2] - (E[X])^2 = M''(0) - (M'(0))^2 = 2$$

(100p)th percentile

Definition

It is a number π_p such that the area under f(x) to the left of π_p is p. That is

$$p = \int_{-\infty}^{\pi_p} f(x) dx = F(\pi_p)$$

The 50th percentile is called the median. The 25th and 75th percentiles are called the first and third quantiles, respectively. The median is also called the 2nd quantile.

Example 5

Let X be a continuous RV with the pdf

$$f(x) = \frac{3x^2}{4^3}e^{-(\frac{x}{4})^3}, \quad 0 < x < \infty$$

What is $\pi_{0.3}$?

Example 5

Let X be a continuous RV with the pdf

$$f(x) = \frac{3x^2}{4^3}e^{-(\frac{x}{4})^3}, \quad 0 < x < \infty$$

What is $\pi_{0.3}$?

$$F(x) = \int_{-\infty}^{x} f(y) dy = \begin{cases} 0, & -\infty < x < 0 \\ 1 - e^{(-\frac{x}{4})^{3}}, & 0 \le x < \infty \end{cases}$$

$$F(\pi_{0.3}) = P(X \le \pi_{0.3}) = 0.3$$

$$\Rightarrow 1 - e^{\left(-\frac{\pi_{0.3}}{4}\right)^3} = 0.3, \quad \ln 0.7 = \left(-\frac{\pi_{0.3}}{4}\right)^3$$

$$\Rightarrow \pi_{0.3} = -4(\ln 0.7)^{\frac{1}{3}} = 2.84$$