

USER INTERFACES FOR EMBEDDED SYSTEMS

Lecture 9: Statistics

Stefan Wagner sw@eng.au.dk

AGENDA

- Introduction
- Descriptive statistics
- Central tendency and variability
- Visualizing data with charts and graphs
- Histogram and boxplot
- t-test
- Correlations

STATISTICS AS A PHENOMENA

- "If your experiment needs statistics, you ought to have done a better experiment"
- -Ernest Rutherford (nuclear physicist)

- "There are three kinds of lies: lies, damned lies, and statistics"
- -Benjamin Disraeli (British statesman and literary figure)
- -Mark Twain (novelist)

DESCRIPTIVE STATISTICS

- Describes data in a sample
- Does not infer anything about the population
- Collect, classify, summarize, and present data
- Proceed to inferential statistics if
 - There is enough data to infer about the population
 - Your data is representative of the population
- Remember: With statistics
 - You do not prove a correlation or causality
 - You merely render a correlation probable

POPULATIONS AND SAMPLES (1/2)

- Statistics are calculated from the samples
- Inferences are made from the sample to the population
- In descriptive statistics we only look at samples

POPULATIONS AND SAMPLES (2/2)

NOTATION AND TERMINOLOGY

- A statistical parameter is a single measure of some attribute of a population
 - e.g. artithmetic mean
- A statistic is a single measure of some attribute of a sample
 - e.g. arithmetic mean
- E.g, the sample mean is a **statistic** which **estimates** the population mean, which is a **statistical parameter**

TYPES OF DATA

- > Nominal data
- > unorderd data, cannot be compared, apples vs bananas
- Ordinal data
- > Ordered data that can be compared, task performance 10 seconds vs 30 seconds
- > Poor vs good, relative ranking, is number 3 is better than 6, but is it 2 times better?
- > Interval data
- > From a scale 1-10

O Poor O Fair O Good O Excellent
Poor O O O O Excellent

- > Range data
- Interval data with a specified offset (e.g. all tests starts with 0 seconds to infinity)

SAMPLE SIZE & CONFIDENCE INTERVALS

> Central question:

> how many participants are needed"?

Sample size:

- Three to four participants might be enough for some studies
- Other studies might need thousands of participants

Confidence intervals indicates how results can be generalized

- E.g. with 95 % confidence we can say that between 36 and 98 % of larger population will be able to successfully complete a given task when using a sample n=5
- With n=100 the 95% confidence interval numbers are 71% to 86%. Larger samples, higher confidence.

Table 2.1 Example of How Confidence Intervals Change as a Function of Sample Size

Number Successful	Number of Participants	Lower 95% Confidence	Upper 95% Confidence
4	5	36%	98%
8	10	48%	95%
16	20	58%	95%
24	30	62%	91%
40	50	67%	89%
80	100	71%	86%

Note: These numbers indicate how many participants in a usability test successfully completed task and the confidence interval for that mean completion rate in the larger population.

LAW OF LARGE NUMBERS: DIE ROLL EXAMPLE

LAW OF LARGE NUMBERS IN AVERAGE OF DIE ROLLS

AVERAGE CONVERGES TO EXPECTED VALUE OF 3.5

COUNTER BALANCING

> Avoid or negate a learning effect by using counter balancing

Table 2.2 Example of How to Counterbalance Task Order for Four
Participants and Four Tasks

Participant	First Task	Second Task	Third Task	Fourth Task
P1	T1	T2	T3	T4
P2	Т3	T1	T4	T2
P3	T2	T4	T1	T3
P4	T4	T3	T2	T1

APPLIED DESCRIPTIVE STATISTICS

> Descriptive statistics:

> are essential for any interval or ratio-level data. Descriptive statistics, as the name implies, describe the data without saying anything about the larger population.

> Inferential statistics:

- > let you draw some conclusions or infer something about a larger population above and beyond your sample.
- Descriptive statistics are very easy to calculate using most statistical software packages.
- > Inferential statistics are more difficult and error prone.

APPLIED DESCRIPTIVE STATISTICS: COMMON MEASURES

	Α	В	С	D	E	F
1	Participant	Task time		Task time		
2	P1	34		Mean	35.0833333	Average of Sample (S)
3	P2	33		Standard error (sample std)	3.24611267	Stdev/Sqrt(Count) of S
4	P3	28		Median	33.5	Midway point in S
5	P4	44		Mode	22	Most common value in S
6	P5	46		Standard deviation	11.2448641	Spread relative to mean of S
7	P6	21		Sample variance	126.446970	Spread relative to mean of S
8	P7	22		Kurtosis	-1.32152597	Peakedness of PD of S
9	P8	53		Skewness	0.25144172	Asymmetry of PD of S
10	P9	22		Range	32	Max – Min of S
11	P10	29		Minimum	21	Min value of elements in S
12	P11	39		Maximum	53	Max value of elements in S
13	P12	50		Sum	421	Sum of element values in S
14				Count	12	Number of elements in S
15				Confidence level (95%)	Relia confidence level (95%) 6.36226393 abou	
	Central tender	ncy measures		Variability measures	Other meas	Tullis08

CENTRAL TENDENCY

- Clustering around a central measure
 - Mean, Median, and Mode
- Median location = 50th percentile
- Mode, i.e. the most commonly occurring score

	Α	В	С	D	E
1	Participant	Task time		Task time	
2	P1	34		Mean	35.0833333
3	P2	33		(
4	P3	28		Median	33.5
5	P4	44		Mode	22

VARIABILITY

- Spread of data "measured" as "distance" to central tendency
 - The larger the spread the more data you need for higher confidence
- Sample range
 - distance between max and minimum
 - Identifies outliers and coding errors (e.g. if scale is 1-5, a zero value is wrong)
- Sample variance
 - estimator for population variance relative to the mean value
- Sample standard deviation
 - estimator for population standard deviation e.g. an average of 10 seconds
- Confidence interval (in Excel)
 - = confidence (alpha, standard deviation, sample size)
 - alpha = significance level (often 0,05 0,01): meaning how certain do we want to be

EXAMPLE: SAMPLE MEAN AND SAMPLE STANDARD DEVIATION

EXERCISE

> 45 minutes Exercise

- > 1) Recruit four(+) participants from your peer group
- > 2) Have them solve a specified task from your scenario using your two prototypes
- > 3) Record for each participant:
- > 3.1) Time to solve task using prototype 1
- > 3.2) Time to solve task using prototype 2
- > 4) Enter the data into excel
- > 5) Calculate the mean, median, mode for each column (=AVERAGE, =MEDIAN, =MODE)
- 6) Calculate the standard deviation, and the confidence interval (=STDEV.S(C5:C8))
- > 7) Calculate the 95% Confidence
- > 8) Calculate the Confidence Interval

	Time to perfor	20 15 23 23 19 18 21 15 23 23 19 15 20,75 17,75 20,50 16,50		
Participant	Prototype 1	Prototype 2		
P1	20	15		
P2	23	23		
P3	19	18		
P4	21	15		
Maximum	23	23		
Minimum	19	15		
Mean/Average	20,75	17,75		
Median	20,50	16,50		
Mode	#N/A	15,00		
Std. Deviation	1,71	3,77		
Confidence 95% *)	1,67	3,70		
*) meaning that:				
with 95% certainty				
data are in the range	22,42	21,45		
to max	24,67	26,70		

VISUALIZING DATA IN GRAPHS

- Precision and clarity is a virtue and necessity in any field of science
- Please remember
 - Label diagrams and axes
 - Always remember units (SI)
 - Do not imply more precision than data allows, e.g. decimals
 - Careful if using colors and fancy diagram types, e.g. 3D
 - Do not overload diagrams with information
 - Use confidence intervals whenever possible

HISTOGRAMS, GRAPHS, AND PLOTS

What is wrong with these?

GRAPHS WITH CONFIDENCE INTERVALS

Successful Completion Rate, by Task

(Error bars represent 90% confidence interval)

BOXPLOT

• E.g. comparing means of three independent samples

Boxplot (overview):

Design A

Design B

Design C

TOP 10 MISTAKES IN DATA GRAPHS

- 1. Not labeling axes or units
- 2. Implying more precision in your data than it deserves
- 3. Not showing confidence intervals when you can
- 4. Not starting a bar graph at lowest possible y-axis value (usually 0)
- 5. Using a line graph when it should be a bar graph
- 6. Using 3D when it doesn't add any value
- 7. Trying to include too much
- 8. Poor labeling of pie charts
- 9. Using colors as the only way to convey information
- 10. Not knowing when to use stacked bar graphs

SUGGESTED SOFTWARE

- Excel, Open Office Calc and other spreadsheets
- Matlab (ENG and ASE uses this)
- SPSS (Statistical Package for the Social Sciences)
- STATA (Aarhus University Hospital uses this)
- STATISTICA
- R (free)
- GNU Octave (free)

COMPARING SAMPLES

> Is prototype 1 more efficient than 2?

- > Just compare means and medians for simple comparison
- > Use statistical tests for comparing means with greater power
- > For small populations (n < 30) e.g. use t-test
- > For larger populations use z-test (n > 29)
- Comparing two samples use t-test, more than two use ANNOVA

> Independent samples

- If you compare two different groups (e.g. novice users to experienced users)
- Use an unpaired t-test

> Dependent samples

- If you compare the same group of participants using two different prototypes
- > Use a paried t-test

PAIRED T-TEST

	Α	В	С	D			
1	Participant	Design A_SUS	Design B_SUS		t-Test: Two Samples for Means		
2	P1	80	48				
3	P2	88	55			Design A_SUS	Design B_SUS
4	P3	76	53		Mean	77.7500000	57.0833333
5	P4	90	80		Variance	125.4772727	153.7196970
6	P5	93	81		Observations	12.0000000	12.0000000
7	P6	67	51		Pearson Correlation	0.6521213	
8	P7	68	61		Hypothesized Mean Difference	0.0000000	
9	P8	55	41		df	11.0000000	
10	P9	77	55		t Stat	7.2295917	
11	P10	71	57		P(T<=t) one-tail	0.0000084	
12	P11	88	59		t Critical one-tail	1.7958848	
13	P12	80	44		P(T<=t) two-tail	0.0000169	
14					t Critical two-tail	2.2009852	

UNPAIRED T-TEST

	А	В	С	D	E	F
1	Expert_time	Novice_time		t-Test: Two Samples Assuming E	qual Variance	
2	34	45				
3	33	48			Expert_time	Novice_time
4	28	53		Mean	35.08333333	49.33333333
5	44	66		Variance	126.4469697	229.6969697
6	46	67		Observations	12	12
7	21	35		Pooled Variance	178.0719697	
8	22	39		Hypothesized Mean Difference	0	
9	53	21		df	22	
10	22	34		t Stat	-2.61572876	
11	29	55		P(T<=t) one-tail	0.007892632	
12	39	59		t Critical one-tail	1.717144335	
13	50	70		P(T<=t) two-tail	0.015785265	
14				t Critical two-tail	2.073873058	

T-TEST IN EXCEL

T-TEST

So given the assumption (hypothesis) – that there is no difference between tasks times between prototype 1 and 2, there is p = 0.07 that this is the case. p should be lower than 0.05 for significance (95%), and p < 0.01 (99%) for high significance. Thus, data are not significantly different ... but close

	Time to perfor	m task 1 (s)			
Participant	Prototype 1	Prototype 2	t-Test: Paired Two Sample for Means		
P1	20	15			
P2	23	23		Prototype 1	Prototype 2
P3	19	18	Mean	20,75	17,75
P4	21	15	Variance	2,92	14,25
			Observations	4,00	4,00
Maximum	23	23	Pearson Correlation	0,66	
Minimum	19	15	Hypothesized Mean Difference	0,00	
Mean/Average	20,75	17,75	df	3,00	
Median	20,50	16,50	t Stat	2,04	
Mode	#N/A	15,00	P(T<=t) one-tail	0,07	
Std. Deviation	1,71	3,77	t Critical one-tail	2,35	
Confidence 95% *)	1,67	3,70	P(T<=t) two-tail	0,13	
*) meaning that:			t Critical two-tail	3,18	
with 95% certainty					
data are in the range	22,42	21,45			
to max	24,67	26,70			

CORRELATIONS

> Investigating whether parameters has a relationship

	Α	В	С	D	E	F	G			
1	Participa	nt Months of Experience	Errors			Months of Experience	Errors			
2	P1	6	4		Months of Exp	1				
3	P2 🗘	6	6		Errors	-0.76160463	1			
4	P3	8	3							
5	P4	5	7			İ		1		
6	P5	4	3		12					
7	P6	12	1							
8	P7	11	3		— ☐ 10	•				
9	P8	1	9		& 8	<u> </u>				
10	P9	9	4		Ors				$R^2 = 0$.	58
11	P10	8			<u> </u>		•			
12	P11	4			<u> </u>		\rightarrow		-	
13	P12	2	5		ag .	•	Ť	•		*
					Average Errors per Day			•	-	
					€ 0					
					O	1 3 5	5	7	9	11
								•		11
						Mor	nths of I	Experie	nce	

ADDING TREND LINES / REGRESSION ANALYSIS

REFERENCES

- [Tullis08] Tullis and Albert, Measuring the User Experience, 2008
- [Sharp02] Sharp, Rogers, and Preece, Interaction Design, 2002
- [Nielsen94] Jakob Nielsen, Usability Engineering, 1994
- [Rubin94] Jeffrey Rubin, Handbook of Usability Testing, 1994
- [Garret02] J.J. Garret, The Elements of User Experience, 2002
- [IDBook11] www.id-book.com
- [Popper68] Popper, K. R. The Logic of Scientific Discovery. London: Hutchinson
- [Smith97] S.W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, 1997