17.1 (GLOBAL) EXTREMA OF MULTIVARIATE FUNCTIONS

Example 1 (Licata 13.4). Find the extrema of $f = x^2 + xy - 2y$ on the closed and bounded region $R = \{(x, y) \in \mathbb{R}^2 \mid |x| \le 3, |y| \le 3\}.$

Solution. We first find the extrema of f on the interior R° of R. Then we find the extrema of f on the boundary ∂R of R. (Comparing the values will give us the extrema on R.)

For the interior extrema, first compute $\nabla f = \begin{bmatrix} 2x+y \\ x-2 \end{bmatrix}$. The critical points are the solutions to the system

$$\begin{cases} 2x + y = 0 \\ x - 2 = 0 \end{cases}$$

which gives x = 2 and hence y = -4. Therefore there are no interior local extrema.

The boundary ∂R is the union of 4 line segments:

$$B_{u} = \{(x,3) \mid -3 \le x \le 3\}$$

$$B_{d} = \{(x,-3) \mid -3 \le x \le 3\}$$

$$B_{l} = \{(-3,y) \mid -3 \le y \le 3\}$$

$$B_{r} = \{(3,y) \mid -3 \le y \le 3\}$$

- Along B_u : $f(x,3) = x^2 + 3x 6$. The interior extrema in B_u° must occur at (x,3) where 2x + 3 = 0 or x = -3/2, that is at (-3/2,3). The value is f(-3/2,3) = -33/4.
- Along B_d : $f(x,3) = x^2 3x + 6$. The interior extrema in B_d° must occur at (x,-3) where 2x-3=0 or x=3/2, that is at (3/2,-3). The value is f(3/2,-3)=15/4.
- Along B_1 : f(-3, y) = 9 5y. There are no interior extrema in B_1° .
- Along B_r : f(3, y) = 9 + y. There are no interior extrema in B_r° .

We must check the boundaries: ∂B_u , ∂B_d , ∂B_l , ∂B_r , that is the vertices of the square R:

$$f(-3,-3) = 24$$
$$f(-3,3) = -6$$
$$f(3,-3) = 6$$
$$f(3,3) = 12$$

Finally, the maximum of f on R is 24 occurring at (-3, -3). The minimum of f on R is -33/4 occurring at (-3/2, 3).

Example 2 (Licata 13.5). Find the extrema of f(x, y) = x + 2y on the closed and bounded triangular region in \mathbb{R}^2 with vertices (1,0), (3,0), and (1,4).

Solution. Since $\nabla f = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is never zero, there are no critical points in the interior R° . The boundary ∂R of R is the union of 3 line segments:

$$\begin{split} B_{b} &= \left\{ \left(x, 0 \right) \mid 1 \le x \le 3 \right\} \\ B_{l} &= \left\{ \left(1, y \right) \mid 0 \le y \le 4 \right\} \\ B_{h} &= \left\{ \left(1 - t \right) \left(1, 4 \right) + t \left(3, 0 \right) \mid 0 \le t \le 1 \right\} \\ &= \left\{ \left(1 + 2t, 4 - 4t \right) \mid 0 \le t \le 1 \right\} \end{split}$$

- Along B_b : f(x,0) = x. There are no interior extrema in B_b° .
- Along B_1 : f(1, y) = 1 + 2y. There are no interior extrema in B_1° .
- Along B_h : f(1+2t, 4-4t) = 9-6t. There are no interior extrema in B_h° .

We must check the boundaries: ∂B_b , ∂B_l , ∂B_h , that is the vertices of the triangle R:

$$f(1,0) = 1$$

 $f(3,0) = 3$
 $f(1,4) = 9$

Therefore the minimum of f on R is 1 occurring at (1,0) and the maximum of f on R is 9 occurring at (1,4).

Example 3 (Licata 13.6). Find the extrema of $f(x, y) = x^2 + xy + y^2$ on the closed and bounded region $R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$.

Solution. Since $\nabla f = \begin{bmatrix} 2x+y \\ x+2y \end{bmatrix}$, the only critical point in the interior R° is (x, y) = (0, 0). The value is f(0, 0) = 0. Parametrize the boundary ∂R of R as:

$$\partial R = \{(2\cos\theta, 2\sin\theta) \mid \theta \in \mathbf{R}\}$$

Since $f(2\cos\theta, 2\sin\theta) = 4\cos^2\theta + 4\cos\theta\sin\theta + 4\sin^2\theta = 4 + 2\sin(2\theta)$, the minimum of f on ∂R is 2 at $\theta = 3\pi/4 + n\pi$ for any integer n and the maximum of f on ∂R is 6 at $\theta = \pi/4 + n\pi$ for any integer n. Finally, the minimum of f on R is 0 attained at (x, y) = (0, 0) and the maximum of f on R is 6 attained at both $(x, y) = (\sqrt{2}, \sqrt{2})$ and $(x, y) = (-\sqrt{2}, -\sqrt{2})$.

Example 4 (Licata 13.7). Find the extrema of $f(x, y) = 2x^2 + y^2 - y + 3$ on the closed and bounded region $R = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution. Answer: Minimum is 11/4 attained at (0, 1/2). Maximum is 21/4 attained at $(-\sqrt{3}/2, -1/2)$ and $(\sqrt{3}/2, -1/2)$.

Example 5 (Licata 13.8). Find the extrema of $f(x, y) = \sin x \cos y$ on the closed and bounded region $R = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 2\pi, 0 \le y \le 3\}$.

Solution. Answer: Minimum is -1 attained at $(3\pi/2, 0)$ and $(\pi/2, \pi)$. Maximum is 1 attained at $(\pi/2, 0)$ and $(3\pi/2, \pi)$.

Example 6 (Licata 13.9). Define $f(x, y) = x^3 + x^2 - 2xy + 3y^2$.

- (a) Find all the critical points of f.
- (b) Classify each critical point of f as a local minimum, local maximum, or saddle point.
- (c) Does f have any global extrema in \mathbb{R}^2 ?

Solution.

(a) Compute $\nabla f = \begin{bmatrix} 3x^2 + 2x - 2y \\ -2x + 6y \end{bmatrix}$. The system of equations

$$\begin{cases} 0 = 3x^2 + 2x - 2y \\ 0 = -2x + 6y \end{cases}$$

can be solved by solving the second equation for y and substituting into the first equation to get the quadratic equation $0 = 3x^2 + (4/3)x$. The solutions are x = 0 and x = -4/9. Since y = x/3, we obtain the solutions, the critical points:

$$(x, y) = (0, 0)$$
 and $(x, y) = (-4/9, -4/27)$

(b) Compute H $f = \begin{bmatrix} 6x+2 & -2 \\ -2 & 6 \end{bmatrix}$ so at the critical points we have:

$$H f(0,0) = \begin{bmatrix} 2 & -2 \\ -2 & 6 \end{bmatrix}$$

$$H f(-4/9, -4/27) = \begin{bmatrix} -\frac{2}{3} & -2 \\ -2 & 6 \end{bmatrix}$$

Since $\operatorname{tr}\begin{bmatrix} 2 & -2 \\ -2 & 6 \end{bmatrix} = 8$ and $\operatorname{det}\begin{bmatrix} 2 & -2 \\ -2 & 6 \end{bmatrix} = 8$, (0,0) is a local minimum. Also, since $\operatorname{det}\begin{bmatrix} -\frac{2}{3} & -2 \\ -2 & 6 \end{bmatrix} = -8$ is negative, (-2/3, -1/3) is a saddle point.

(c) No, f does not have any global extrema in \mathbb{R}^2 . For example $f(x,0) = x^3 + x^2$ tends to ∞ as $x \to -\infty$

Example 7 (Licata 13.16). Show that the rectangle of largest area with a fixed perimeter must be a square.

Solution. Let the fixed perimeter be P > 0 and let the side lengths be x and P/2 - x. The set of possible values of x is the interval [0, P/2]. We wish to maximize A(x) = x(P/2 - x). The set of critical points, where A'(x) = P/2 - x - x = P/2 - 2x vanishes, is just x = P/4. The corresponding area is $A(P/4) = P^2/16 > 0$. The boundary values are A(0) = 0 and A(P/2) = 0 so the critical point x = P/4 is the global maximum for area. The corresponding rectangle is a square.

Example 8 (Licata 13.17). Find three positive numbers whose sum is 24 and whose product is as large as possible.

Solution. Let the numbers be x, y, and 24 - x - y where $x \ge 0$, $y \ge 0$, and $x + y \le 24$. The product is P(x, y) = xy(24 - x - y). Note that the boundary, P(x, y) = 0. The gradient is $\nabla P = \begin{bmatrix} 24y - 2xy - y^2 \\ 24x - x^2 - 2xy \end{bmatrix}$. The critical points are the solutions of:

$$\begin{cases} 0 = 24y - 2xy - y^2 = y(24 - 2x - y) \\ 0 = 24x - x^2 - 2xy = x(24 - x - 2y) \end{cases}$$

This leads to four possible system of equations:

$$\begin{cases} y = 0 \\ x = 0 \end{cases} \begin{cases} y = 0 \\ 24 - x - 2y = 0 \end{cases}$$
$$\begin{cases} 24 - 2x - y = 0 \\ x = 0 \end{cases} \begin{cases} 24 - 2x - y = 0 \\ 24 - x - 2y = 0 \end{cases}$$

Each system of equations has a single solution, so there are 4 critical points: (0,0), (24,0), (0,24), (8,8). The first three critical points are on the boundary and so P=0 for those points. Since $P(8,8)=8\cdot 8\cdot (24-16)=8^3=512$, the largest possible product is 24, achieved when all three of the numbers is equal to 8.