A Simple Summary of Orbital Mechanics

Leonardo Tiditada Pedersen

8 October 2024

Contents

1	\mathbf{Der}	ivation of Kepler's First Law	2			
	1.1	Step 1: Acceleration in Polar Coordinates	2			
	1.2	Step 2: Newton's Law of Gravitation	2			
	1.3	Step 3: Solving the Differential Equation	3			
	1.4	Step 4: The Orbit Equation and Eccentricity	3			
2	Ene	ergy, Eccentricity, and Orbit Types	5			
	2.1	Classifying Orbits	5			
3	The Vis-Viva Equation					
	3.1	For Ellipses and Circles $(E_{tot} \leq 0)$	6			
	3.2	For Hyperbolas $(E_{tot} > 0)$	6			
	3.3	Special Case Velocities	6			
4	Perihelion and Aphelion (Key Points)					
	4.1	Distances	7			
	4.2	Velocities	7			
5	Kep	oler's Other Two Laws	8			
	_	Second Law: Law of Equal Areas				
		Third Law: Law of Periods				

1 Derivation of Kepler's First Law

This is the derivation for the equation of an orbit, starting from Newton's Law of Gravitation.

1.1 Step 1: Acceleration in Polar Coordinates

We work in a 2D plane. The position vector \vec{r} is given by:

$$\vec{r} = r\hat{r}$$

where \hat{r} is the unit vector in the radial direction and $\hat{\theta}$ is the unit vector in the tangential (angular) direction.

The time derivatives of the unit vectors are:

$$\frac{d\hat{r}}{dt} = \frac{d\hat{r}}{d\theta} \frac{d\theta}{dt} = \dot{\theta}\hat{\theta}$$

$$\frac{d\hat{\theta}}{dt} = \frac{d\hat{\theta}}{d\theta} \frac{d\theta}{dt} = -\dot{\theta}\hat{r}$$

The **velocity** \vec{v} is the first time derivative of position:

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(r\hat{r}) = \dot{r}\hat{r} + r\frac{d\hat{r}}{dt}$$
$$\vec{v} = \dot{r}\hat{r} + r\dot{\theta}\hat{\theta}$$

The **acceleration** \vec{a} is the second time derivative:

$$\begin{split} \vec{a} &= \frac{d\vec{v}}{dt} = \frac{d}{dt}(\dot{r}\hat{r} + r\dot{\theta}\hat{\theta}) \\ \vec{a} &= (\ddot{r}\hat{r} + \dot{r}\frac{d\hat{r}}{dt}) + (\dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}) \\ \vec{a} &= (\ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta}) + (\dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} - r\dot{\theta}^2\hat{r}) \end{split}$$

Grouping the \hat{r} and $\hat{\theta}$ terms gives the acceleration in polar coordinates:

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = (\ddot{r} - r\dot{\theta}^2)\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$$

1.2 Step 2: Newton's Law of Gravitation

Newton's Second Law is $\vec{F} = m\vec{a}$. The gravitational force between a large mass M (like the sun) and a small mass m (like a planet) is a central force:

$$\vec{F} = -\frac{GMm}{r^2}\hat{r}$$

Now we set $\vec{F} = m\vec{a}$:

$$-\frac{GMm}{r^2}\hat{r} = m(\ddot{r} - r\dot{\theta}^2)\hat{r} + m(r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$$

Equating the components gives two differential equations:

(Radial)
$$\ddot{r} - r\dot{\theta}^2 = -\frac{GM}{r^2}$$
 (1)

(Tangential)
$$r\ddot{\theta} + 2\dot{r}\dot{\theta} = 0$$
 (2)

1.3 Step 3: Solving the Differential Equation

First, look at the tangential equation (2). It can be rewritten as:

$$\frac{1}{r}\frac{d}{dt}(r^2\dot{\theta}) = 0 \implies \frac{d}{dt}(r^2\dot{\theta}) = 0$$

This means $r^2\dot{\theta}$ is a constant. We call this constant h, the specific angular momentum (h=L/m).

$$h = r^2 \dot{\theta} = \text{constant}$$

This is **Kepler's Second Law** (a body sweeps out equal areas in equal times, since $dA/dt = \frac{1}{2}r^2\dot{\theta} = h/2$).

Now, we solve the radial equation (1). It's hard to solve with respect to time (t). We change the variable from r to u = 1/r and from t to θ .

- r = 1/u
- $\bullet \ \dot{\theta} = \frac{h}{r^2} = hu^2$
- $\dot{r} = \frac{d}{dt}(\frac{1}{u}) = -\frac{1}{u^2}\frac{du}{dt} = -\frac{1}{u^2}\frac{du}{d\theta}\frac{d\theta}{dt} = -\frac{1}{u^2}\frac{du}{d\theta}(hu^2) = -h\frac{du}{d\theta}$
- $\ddot{r} = \frac{d}{dt}(-h\frac{du}{d\theta}) = \frac{d}{d\theta}(-h\frac{du}{d\theta})\frac{d\theta}{dt} = (-h\frac{d^2u}{d\theta^2})(hu^2) = -h^2u^2\frac{d^2u}{d\theta^2}$

Substitute these into the radial equation (1):

$$\begin{split} (\ddot{r}) - (r)(\dot{\theta})^2 &= -\frac{GM}{r^2} \\ (-h^2 u^2 \frac{d^2 u}{d\theta^2}) - (\frac{1}{u})(hu^2)^2 &= -GMu^2 \\ -h^2 u^2 \frac{d^2 u}{d\theta^2} - h^2 u^3 &= -GMu^2 \end{split}$$

Divide the entire equation by $-h^2u^2$:

$$\frac{d^2u}{d\theta^2} + u = \frac{GM}{h^2}$$

This is a standard second-order linear inhomogeneous differential equation.

1.4 Step 4: The Orbit Equation and Eccentricity

The general solution to $\frac{d^2u}{d\theta^2} + u = \frac{GM}{h^2}$ is the sum of the homogeneous solution (u_h) and the particular solution (u_p) .

- Particular solution (u_p) : A constant C. $0 + C = GM/h^2 \implies u_p = GM/h^2$.
- Homogeneous solution (u_h) : Solution to u'' + u = 0. $u_h = A\cos(\theta \theta_0)$. We can set the phase $\theta_0 = 0$ by rotating our coordinate system so that $\theta = 0$ is the point of closest approach (periapsis). So, $u_h = A\cos(\theta)$.

The full solution is $u = u_p + u_h$:

$$u(\theta) = \frac{GM}{h^2} + A\cos(\theta) = \frac{GM}{h^2} \left(1 + \frac{Ah^2}{GM}\cos(\theta) \right)$$

We define the **eccentricity** (e) as $e = \frac{Ah^2}{GM}$.

$$u(\theta) = \frac{GM}{h^2} (1 + e\cos(\theta))$$

Since u = 1/r, we flip the equation to get the polar form of the orbit:

$$r(\theta) = \frac{h^2/GM}{1 + e\cos(\theta)}$$

This is **Kepler's First Law**: The path of a body in orbit is a conic section (circle, ellipse, parabola, or hyperbola) with the central body (M) at one focus.

2 Energy, Eccentricity, and Orbit Types

The total energy of the system (E_{tot}) determines the shape of the orbit. The total energy is the sum of kinetic (K) and potential (U) energy.

$$E_{tot} = K + U = \frac{1}{2}mv^2 - \frac{GMm}{r}$$

Through a more involved derivation (substituting $v^2 = \dot{r}^2 + (r\dot{\theta})^2$ using the solutions from section 1), this energy can be shown to be constant and related to the eccentricity e and specific angular momentum h

$$E_{tot} = \frac{G^2 M^2 m}{2h^2} (e^2 - 1)$$

2.1 Classifying Orbits

We can also relate the energy to the **semi-major axis** (a). For a bound elliptical orbit, $2a = r_p + r_a$, where r_p (periapsis) and r_a (apoapsis) are the closest and farthest points.

•
$$r_p = r(\theta = 0) = \frac{h^2/GM}{1+e}$$

•
$$r_a = r(\theta = \pi) = \frac{h^2/GM}{1-e}$$

$$2a = r_p + r_a = \frac{h^2}{GM} \left(\frac{1}{1+e} + \frac{1}{1-e} \right) = \frac{h^2}{GM} \left(\frac{1-e+1+e}{1-e^2} \right) = \frac{2h^2}{GM(1-e^2)}$$

This gives a key relationship: $h^2 = GMa(1 - e^2)$. Substituting this h^2 into the energy equation:

$$E_{tot} = \frac{G^2 M^2 m}{2(GMa(1 - e^2))} (e^2 - 1) = \frac{GMm}{2a(1 - e^2)} (-(1 - e^2))$$
$$E_{tot} = -\frac{GMm}{2a}$$

This fundamental equation links total energy to the size of the orbit. The type of orbit depends directly on the total energy and eccentricity

Orbit Type		00 (000)	Description
Circular	e = 0	$E_{tot} = -\frac{GMm}{2R}$	Bound, minimum energy
Ellipse	0 < e < 1	$E_{tot} = \frac{2R}{2a} < 0$	Bound, closed orbit
Parabola	e = 1	$E_{tot} = 0$	Unbound, open (escape orbit)
Hyperbola	e > 1	$E_{tot} = +\frac{GMm}{2a} > 0$	Unbound, open

^{*}Note: For hyperbolas, a is defined as $a = \frac{h^2}{GM(e^2-1)}$, which is why E_{tot} becomes positive.*

3 The Vis-Viva Equation

The **vis-viva equation** (living force) gives the velocity v of an orbiting body at any distance r from the center. It is derived directly from the energy conservation equation.

$$E_{tot} = \frac{1}{2}mv^2 - \frac{GMm}{r}$$

3.1 For Ellipses and Circles $(E_{tot} \leq 0)$

We use $E_{tot} = -\frac{GMm}{2a}$ [cite: 2]:

$$-\frac{GMm}{2a} = \frac{1}{2}mv^2 - \frac{GMm}{r}$$
$$\frac{GMm}{r} - \frac{GMm}{2a} = \frac{1}{2}mv^2$$

Divide by m/2:

$$2(\frac{GM}{r} - \frac{GM}{2a}) = v^2 \implies v^2 = GM(\frac{2}{r} - \frac{1}{a})$$
$$v = \sqrt{GM\left(\frac{2}{r} - \frac{1}{a}\right)}$$

This is the vis-viva equation for bound orbits.

3.2 For Hyperbolas $(E_{tot} > 0)$

We use $E_{tot} = +\frac{GMm}{2a}$ [cite: 3]:

$$+\frac{GMm}{2a} = \frac{1}{2}mv^2 - \frac{GMm}{r}$$
$$\frac{GMm}{r} + \frac{GMm}{2a} = \frac{1}{2}mv^2$$
$$v = \sqrt{GM\left(\frac{2}{r} + \frac{1}{a}\right)}$$

3.3 Special Case Velocities

• Circular Velocity (v_{circ}): For a circle, r = a = R.

$$v_{circ} = \sqrt{GM\left(\frac{2}{R} - \frac{1}{R}\right)} = \sqrt{\frac{GM}{R}}$$

• Escape Velocity (v_{esc}) : This is the speed needed to reach infinity, which is a parabolic orbit $(E_{tot} = 0, \text{ so } a \to \infty)$.

$$v_{esc} = \sqrt{GM\left(\frac{2}{r} - \frac{1}{\infty}\right)} = \sqrt{\frac{2GM}{r}}$$

• Relationship: Notice that $v_{esc} = \sqrt{2} \times v_{circ}$. To escape from a circular orbit, you must multiply your speed by $\sqrt{2}$.

4 Perihelion and Aphelion (Key Points)

These are the points of closest and farthest approach, respectively. (The general terms are periapsis and apoapsis; "helion" is specific to the Sun).

4.1 Distances

As shown in Section 2.1, for an ellipse:

- Perihelion distance (r_p) : $r_p = a(1-e)$
- Aphelion distance (r_a) : $r_a = a(1+e)$

For a parabola (e = 1):

- $r_p = \frac{h^2/GM}{1+1} = \frac{h^2}{2GM}$
- $r_a = \infty$ (it never returns)

For a hyperbola (e > 1):

• $r_p = a(e-1)$ (using the hyperbola definition of a)

4.2 Velocities

We find the velocities at these points by plugging the distances into the vis-viva equation. For an ellipse:

• Perihelion velocity $(v_p, \max \text{ speed})$:

$$v_p^2 = GM\left(\frac{2}{r_p} - \frac{1}{a}\right) = GM\left(\frac{2}{a(1-e)} - \frac{1}{a}\right)$$
$$v_p^2 = \frac{GM}{a}\left(\frac{2 - (1-e)}{1-e}\right) = \frac{GM}{a}\left(\frac{1+e}{1-e}\right)$$
$$v_p = \sqrt{\frac{GM}{a}\left(\frac{1+e}{1-e}\right)}$$

• Aphelion velocity $(v_a, \min \text{ speed})$:

$$v_a^2 = GM\left(\frac{2}{r_a} - \frac{1}{a}\right) = GM\left(\frac{2}{a(1+e)} - \frac{1}{a}\right)$$
$$v_a^2 = \frac{GM}{a}\left(\frac{2 - (1+e)}{1+e}\right) = \frac{GM}{a}\left(\frac{1-e}{1+e}\right)$$
$$v_a = \sqrt{\frac{GM}{a}\left(\frac{1-e}{1+e}\right)}$$

These also satisfy the conservation of angular momentum: $v_p r_p = v_a r_a = h$.

5 Kepler's Other Two Laws

5.1 Second Law: Law of Equal Areas

As shown in the derivation (Section 1.3), the tangential equation of motion implies:

$$\frac{dA}{dt} = \frac{1}{2}r^2\dot{\theta} = \frac{h}{2} = \text{constant}$$

A line joining a planet and the Sun sweeps out equal areas in equal intervals of time. This means the planet moves **fastest** at perihelion (closest) and **slowest** at aphelion (farthest).

5.2 Third Law: Law of Periods

The area of an ellipse is $A = \pi ab$, where $b = a\sqrt{1-e^2}$ is the semi-minor axis.

$$A = \pi a^2 \sqrt{1 - e^2}$$

The total area is swept out in one period, T.

$$A = \int_0^T \frac{dA}{dt} dt = \int_0^T \frac{h}{2} dt = \frac{hT}{2}$$

Equating the two expressions for area:

$$\frac{hT}{2} = \pi a^2 \sqrt{1 - e^2} \implies T = \frac{2\pi a^2 \sqrt{1 - e^2}}{h}$$

Square both sides:

$$T^2 = \frac{4\pi^2 a^4 (1 - e^2)}{h^2}$$

From Section 2.1, we know $h^2 = GMa(1 - e^2)$. Substitute this in:

$$T^2 = \frac{4\pi^2 a^4 (1 - e^2)}{GMa(1 - e^2)}$$

$$T^2 = \left(\frac{4\pi^2}{GM}\right)a^3$$

The square of the orbital period (T) is directly proportional to the cube of the semi-major axis (a).