Московский государственный технический университет им. Н.Э. Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа №3 по дисциплине «Методы машинного обучения»

Выполнил: студент группы ИУ5И-21М

Ли Лююй

1. Цель лабораторной работы

изучение продвинутых способов предварительной обработки данных для дальнейшего формирования моделей.

2. Основная часть

72940.000000

max

82.000000

1.000000

1.000000

271.740000

97.600000

1.000000

3. масштабирование признаков (не менее чем тремя способами)

```
import sklearn.preprocessing as preproc
data['standardized_n'] = preproc.StandardScaler().fit_transform(data[['avg_glucose_level']])
data['minmax_n'] = preproc.minmax_scale(data[['avg_glucose_level']])
data['l2_normalized_n'] = preproc.normalize(data[['avg_glucose_level']], axis = 0)
fig,(ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize = (7, 12))
plt.subplots adjust(wspace =0, hspace =0.5)
ax1.hist(data['avg_glucose_level'], bins = 100, color = 'g')
ax1.set_xlabel('')
ax1.set_ylabel('glucose')
ax1.set_title('original data')
ax2.hist(data['standardized_n'], bins = 100, color = 'g')
ax2.set_xlabel('')
ax2.set_ylabel('glucose')
ax2.set_title('standardized')
ax3.hist(data['minmax_n'], bins = 100, color = 'g')
ax3.set_xlabel('')
ax3.set_ylabel('glucose')
ax3.set_title('min-max')
ax4.hist(data['12_normalized_n'], bins = 100, color = 'g')
ax4.set_xlabel('')
ax4.set_ylabel('glucose')
ax4.set_title('L2-normailzation')
plt.show()
```


4. обработку выбросов для числовых признаков (по одному способу для удаления выбросов и для замены выбросов);

```
u = data['avg glucose level'].mean()
std = data['avg glucose level'].std()
error = data[np.abs(data['avg glucose level'] - u) > 3*std]
data_c = data[np.abs(data['avg glucose level'] - u) <= 3*std]</pre>
print(data c.head())
print(error.head())
     id gender
                                smoking status stroke
                          bmi
                age ...
                          36.6
0
   9046
                67.0 ...
                                                   1
1 51676
             0 61.0
                                                   1
                          NaN
                                            2
2 31112
                                           2
                                                   1
            1 80.0 ... 32.5
3 60182
            0 49.0 ... 34.4
                                           3
                                                   1
  1665
            0 79.0 ... 24.0
                                                   1
[5 rows x 12 columns]
                                  smoking status stroke
       id gender
                  age ...
                            bmi
    54401
33
               1 80.0 ... 30.5
45
   19824
               1 76.0 ... 33.6
                                             2
122 13491
               1 80.0 ... 31.7
                                             3
                                                     1
123 44033
              1 56.0 ... 35.8
135 71279
              0 71.0 ... 38.7
                                                     1
[5 rows x 12 columns]
```

5. обработку по крайней мере одного нестандартного признака (который не является числовым или категориальным);

6. отбор признаков:

6.1один метод из группы методов фильтрации (filter methods);

6.2один метод из группы методов обертывания (wrapper methods);

```
#Wrapper
features = ['id', 'age',
 'hypertension',
 'heart disease',
 'ever married',
 'Residence type',
 'avg_glucose_level',
 'bmi',
 'gender',
 'work_type',
 'smoking status']
label = ['stroke']
X 1 = data[features]
y_1 = data[label]
X_1.bmi=(X_1.bmi.fillna(28.74))
X 1.gender=(X 1.gender.fillna(1))
```

```
from imblearn.over_sampling import SMOTE

smote = SMOTE()
x_smote, y_smote = smote.fit_resample(X_1, y_1)

from sklearn.model_selection import train_test_split
x_train,X_test, y_train,y_test=train_test_split(x_smote,y_smote,test_size=0.33,random_state=42)

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(X_train, y_train)
```

6.3один метод из группы методов вложений (embedded methods).

```
#Embedded
from sklearn.feature selection import SelectFromModel
from sklearn.linear_model import LogisticRegression
SelectFromModel(LogisticRegression(C=0.1)).fit_transform(X_train, y_train)
array([[0.
                , 2.24309724, 0.
      [0.
                                        ],
      [0.
                                       ],
                , 2.63624944, 2.75749963],
      [0.
      [0.
                , 2. , 3. ],
                            , 0.50776673]])
      [0.
```

Список литературы

- [1] Гапанюк Ю. Е. Лабораторная работа «Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей» [Электронный ресурс] // GitHub. 2019. Режим доступа: https://github.com/ugapanyuk/ml_course/wiki/LAB_KNN (дата обращения: 05.04.2019). [2] Team The IPython Development. IPython 7.3.0 Documentation [Electronic resource] // Read the Docs. 2019. Access mode: https://ipython.readthedocs.io/en/stable/ (online; accessed: 20.02.2019).
- [3] Waskom M. seaborn 0.9.0 documentation [Electronic resource] // PyData. 2018. —

Access mode: https://seaborn.pydata.org/ (online; accessed: 20.02.2019).

- [4] pandas 0.24.1 documentation [Electronic resource] // PyData. 2019. Access mode: http://pandas.pydata.org/pandas-docs/stable/ (online; accessed: 20.02.2019).
- [5] dronio. Solar Radiation Prediction [Electronic resource] // Kaggle. 2017. Access mode: https://www.kaggle.com/dronio/SolarEnergy (online; accessed: 18.02.2019).
- [6] Chrétien M. Convert datetime.time to seconds [Electronic resource] // Stack Overflow.
- 2017. Access mode: https://stackoverflow.com/a/44823381 (online; accessed: 20.02.2019).
- [7] scikit-learn 0.20.3 documentation [Electronic resource]. 2019. Access mode: https://scikit-learn.org/ (online; accessed: 05.04.2019).