#### Extraction of Mesh from FreeSurfer

Lars Magnus Valnes

University of Oslo

March 4, 2016

# Goals

We some goals for today :

## Goals

We some goals for today :

• Basic understanding of FreeSurfer

#### Goals

We some goals for today:

- Basic understanding of FreeSurfer
- Know how to extract a binary surface file from FreeSurfer.

#### Goals

We some goals for today:

- Basic understanding of FreeSurfer
- Know how to extract a binary surface file from FreeSurfer.
- Construction of a mesh with mshr.

#### Introduction

Some basic things about FreeSurfer.

#### Introduction

Some basic things about FreeSurfer.

• FreeSurfer is a set of software tools for the study of cortical and subcortical anatomy structures.

#### **Int**roduction

Some basic things about FreeSurfer.

- FreeSurfer is a set of software tools for the study of cortical and subcortical anatomy structures.
- Most of FreeSurfer is automated. Thus simple to use, but not to debug.

#### Introduction

Some basic things about FreeSurfer.

- FreeSurfer is a set of software tools for the study of cortical and subcortical anatomy structures.
- Most of FreeSurfer is automated. Thus simple to use, but not to debug.
- The code written in C and based on ITK (National Library of Medicine Insight Segmentation and Registration Toolkit).



# Setting up FreeSurfer

• Download from • here and obtain license.txt • here

- Download from here and obtain license.txt here
- FreeSurfer require that we set some environment variables.

- Download from here and obtain license.txt here
- FreeSurfer require that we set some environment variables.
- This can be done by modifying .bashrc or .tcshrc.

- Download from here and obtain license.txt here
- FreeSurfer require that we set some environment variables.
- This can be done by modifying .bashrc or .tcshrc.
- Two useful environment variables to know are:

- Download from here and obtain license.txt here
- FreeSurfer require that we set some environment variables.
- This can be done by modifying .bashrc or .tcshrc.
- Two useful environment variables to know are:
  - \$FREESURFER\_HOME
  - \$SUBJECTS\_DIR

# Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing:

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

PATH2MRI refers to the complete path to a nifti file or a single DICOM file in a serie.

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

PATH2MRI refers to the complete path to a nifti file or a single DICOM file in a serie.

The next step is to type:

## FreeSurfer<sup>1</sup>

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

PATH2MRI refers to the complete path to a nifti file or a single DICOM file in a serie.

The next step is to type:

\$recon-all -subjid NAME -all

## FreeSurfer<sup>1</sup>

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

PATH2MRI refers to the complete path to a nifti file or a single DICOM file in a serie.

The next step is to type:

\$recon-all -subjid NAME -all

The flag -all will initialize a complete FreeSurfer process.

# FreeSurfer<sup>1</sup>

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

PATH2MRI refers to the complete path to a nifti file or a single DICOM file in a serie.

The next step is to type:

\$recon-all -subjid NAME -all

The flag -all will initialize a complete FreeSurfer process.

The process is stepwise and each step is described ...

#### Running FreeSurfer

The first step is to input the MRIs to FreeSurfer, this is done by typing: \$recon-all -subjid NAME -i PATH2MRI

Here NAME refers to what you want the folder in \$SUBJECT\_DIR to be named, and it will store all the output related to the MRI.

PATH2MRI refers to the complete path to a nifti file or a single DICOM file in a serie.

The next step is to type:

\$recon-all -subjid NAME -all

The flag -all will initialize a complete FreeSurfer process.

The process is stepwise and each step is described •here.

For more through details, I recommend reading the relate articles found

#### Output Structure in FreeSurfer

The output will be written to folders in \$SUBJECTS\_DIR/subjid, and we can look at the folders by typing :

#### Output Structure in FreeSurfer

The output will be written to folders in \$SUBJECTS\_DIR/subjid, and we can look at the folders by typing :

\$recon-all -subjid name -i path\_to\_dicom

\$ls \$SUBJECTS\_DIR/name

#### File Formats in FreeSurfer

#### File Formats in FreeSurfer

FreeSurfer will generate many different types of files, thus we will have a short introduction to a selected few.

 The extension .mgh is volume of voxels and a compressed .mgh file has the the extension .mgz.

#### File Formats in FreeSurfer

- The extension .mgh is volume of voxels and a compressed .mgh file has the the extension .mgz.
- Surface files, which are 3D triangulated binary surface files.

#### File Formats in FreeSurfer

- The extension .mgh is volume of voxels and a compressed .mgh file has the the extension .mgz.
- Surface files, which are 3D triangulated binary surface files.
- Label are text files with vertices and corresponding values ( integer or string), Label file

#### File Formats in FreeSurfer

- The extension .mgh is volume of voxels and a compressed .mgh file has the the extension .mgz.
- Surface files, which are 3D triangulated binary surface files.
- Label are text files with vertices and corresponding values (integer or string),
- Annotation files contains a collection of labels, and also includes a colour table

#### File Formats in FreeSurfer

- The extension .mgh is volume of voxels and a compressed .mgh file has the the extension .mgz.
- Surface files, which are 3D triangulated binary surface files.
- Label are text files with vertices and corresponding values (integer or string), Label file
- Annotation files contains a collection of labels, and also includes a colour table
- Atlas contains probabilistic information estimated to label neuroanatomy each location on a cortical surface model.

#### File Formats in FreeSurfer

- The extension .mgh is volume of voxels and a compressed .mgh file has the the extension .mgz.
- Surface files, which are 3D triangulated binary surface files.
- Label are text files with vertices and corresponding values ( integer or string), ►Label file
- Annotation files contains a collection of labels, and also includes a colour table
- Atlas contains probabilistic information estimated to label neuroanatomy each location on a cortical surface model.
- Template used to analyse longitudinal volumes.

## Surface Files

For this presentation we will focus on surface files, and there are different types :

#### Surface Files

For this presentation we will focus on surface files, and there are different types :

• ?h.pial surface displays gyri and sulci, the sulci is barely visible.

#### Surface Files

For this presentation we will focus on surface files, and there are different types :

- ?h.pial surface displays gyri and sulci, the sulci is barely visible.
- ?h.white surface displays boundary between white and grey matter.

#### Surface Files

For this presentation we will focus on surface files, and there are different types :

- ?h.pial surface displays gyri and sulci, the sulci is barely visible.
- ?h.white surface displays boundary between white and grey matter.
- ?h.inflated surface shows fully the sulci.

#### Surface Files

For this presentation we will focus on surface files, and there are different types :

- ?h.pial surface displays gyri and sulci, the sulci is barely visible.
- ?h.white surface displays boundary between white and grey matter.
- ?h.inflated surface shows fully the sulci.



#### Coordinate Systems

## Coordinate Systems

FreeSurfer works with multiple coordinate systems, and we will look at most of them.

• Scanner-space, often LPS (Left Posterior Superior)

## Coordinate Systems

- Scanner-space, often LPS (Left Posterior Superior)
- Voxel coordinates, (256,256,256)

#### Coordinate Systems

- Scanner-space, often LPS (Left Posterior Superior)
- Voxel coordinates, (256,256,256)
- Scanner RAS-coordinates, stands for Right Anterior Superior

#### Coordinate Systems

- Scanner-space, often LPS (Left Posterior Superior)
- Voxel coordinates, (256,256,256)
- Scanner RAS-coordinates, stands for Right Anterior Superior
- TkReg-RAS , the coordinate system for tksurfer and surfaces.

#### Coordinate Systems

FreeSurfer works with multiple coordinate systems, and we will look at most of them.

- Scanner-space, often LPS (Left Posterior Superior)
- Voxel coordinates, (256,256,256)
- Scanner RAS-coordinates, stands for Right Anterior Superior
- TkReg-RAS , the coordinate system for tksurfer and surfaces.

More details are found here.

#### Freeview

Freeview is graphic user interface for FreeSurfer, and can be opened by typing :

\$ freeview.

#### Freeview

Freeview is graphic user interface for FreeSurfer, and can be opened by typing :

\$ freeview.

#### Freeview

Freeview is graphic user interface for FreeSurfer, and can be opened by typing :

\$ freeview.

• We can also add flags with more specifications:

#### Freeview

Freeview is graphic user interface for FreeSurfer, and can be opened by typing :

- \$ freeview.
  - We can also add flags with more specifications:
    - -v \$SUBJECTS\_DIR/bert/mri/aseg.mgz:colormap=lut:opacity=0.2
    - -f \$SUBJECTS\_DIR/bert/surf/rh.white:edgecolor=blue
    - $\begin{tabular}{ll} -f $SUBJECTS\_DIR/bert/surf/lh.white:annot=aparc.annot:name=pial\\ \_aparc:visible=0 \end{tabular}$

# Working in Freeview

## Working in Freeview

When working with surface files, it can be

• Overlay, load a thickness file to see the thickness of the surface.

## Working in Freeview

- Overlay, load a thickness file to see the thickness of the surface.
- Annotation, will display a collection of labels on a surface.

#### Working in Freeview

- Overlay, load a thickness file to see the thickness of the surface.
- Annotation, will display a collection of labels on a surface.
- Curvature, shows the curvature of the surface.

## Working in Freeview

- Overlay, load a thickness file to see the thickness of the surface.
- Annotation, will display a collection of labels on a surface.
- Curvature, shows the curvature of the surface.
- Label, will highlight a specific part of the surface.

#### Introduction

Mesh extraction is to obtain a 3D triangulated surface file from Freesurfer and we will look at :

#### Introduction

Mesh extraction is to obtain a 3D triangulated surface file from Freesurfer and we will look at :

• Scripts from brainder.org.

#### Introduction

Mesh extraction is to obtain a 3D triangulated surface file from Freesurfer and we will look at :

- Scripts from brainder.org.
- FreeSurfer commands

# Command for extraction of a 3D triangulated surface file.

## Brainder scripts

Brainder.org is a sharing website with application towards FreeSurfer.

## Brainder scripts

Brainder.org is a sharing website with application towards FreeSurfer.

• Generating the surfaces for subcortical structures, aseg2srf.sh

#### Brainder scripts

Brainder.org is a sharing website with application towards FreeSurfer.

- Generating the surfaces for subcortical structures, aseg2srf.sh
- Importing FreeSurfer cortical meshes into Blender, srf2obj.gawk

The Script aseg2srf.sh

# The Script aseg2srf.sh

• Obtains the mesh from a volume of voxels.

## The Script aseg2srf.sh

- Obtains the mesh from a volume of voxels.
- Can have topological defects.

## The Script aseg2srf.sh

- Obtains the mesh from a volume of voxels.
- Can have topological defects.
- aseg2srf.sh

#### Commands for Skull Surface

We can also obtain surfaces by adding optional inputs to FreeSurfer commands.

```
$mri_watershed -useSRAS -surf
$SUBJECT_DIR/bert/surf/outer
$SUBJECT_DIR/bert/mri/orig_nu.mgz
$SUBJECT_DIR/bert/trash/trash.mgz
```

#### Commands for Skull Surface

We can also obtain surfaces by adding optional inputs to FreeSurfer commands.

```
$mri_watershed -useSRAS -surf
$SUBJECT_DIR/bert/surf/outer
$SUBJECT_DIR/bert/mri/orig_nu.mgz
$SUBJECT_DIR/bert/trash/trash.mgz
```

This command will generate four surfaces :

Inner skull

#### Commands for Skull Surface

We can also obtain surfaces by adding optional inputs to FreeSurfer commands.

```
$mri_watershed -useSRAS -surf
$SUBJECT_DIR/bert/surf/outer
$SUBJECT_DIR/bert/mri/orig_nu.mgz
$SUBJECT_DIR/bert/trash/trash.mgz
```

This command will generate four surfaces:

- Inner skull
- Outer skull

#### Commands for Skull Surface

We can also obtain surfaces by adding optional inputs to FreeSurfer commands.

```
$mri_watershed -useSRAS -surf
$SUBJECT_DIR/bert/surf/outer
$SUBJECT_DIR/bert/mri/orig_nu.mgz
$SUBJECT_DIR/bert/trash/trash.mgz
```

This command will generate four surfaces:

- Inner skull
- Outer skull
- Outer skin

#### Commands for Skull Surface

We can also obtain surfaces by adding optional inputs to FreeSurfer commands.

```
$mri_watershed -useSRAS -surf
$SUBJECT_DIR/bert/surf/outer
$SUBJECT_DIR/bert/mri/orig_nu.mgz
$SUBJECT_DIR/bert/trash/trash.mgz
```

This command will generate four surfaces:

- Inner skull
- Outer skull
- Outer skin
- Brain surface





#### Surf2Mesh

• A set of scripts to create a mesh from a .asc file can be seen • here.



#### Surf2Mesh

- A set of scripts to create a mesh from a .asc file can be seen here.
- Contains .asc to .off/.stl conversion, will preferably become obsolete.

#### Surf2Mesh

- A set of scripts to create a mesh from a .asc file can be seen here
- Contains .asc to .off/.stl conversion, will preferably become obsolete.
- Also there are some scripts to simplify the mesh creation.

#### Surf2Mesh

- A set of scripts to create a mesh from a .asc file can be seen here.
- Contains .asc to .off/.stl conversion, will preferably become obsolete.
- Also there are some scripts to simplify the mesh creation.
- ► Extmesh\_utility.py





# Future

• Python module Nibabel.

# **Future**

- Python module Nibabel.
- Register commands.

#### **Future**

- Python module Nibabel.
- Register commands.
- Accurately marking subdomains of extracted mesh.