NEPREKIDNOST FUNKCIJA

27. februar 2024.

Definicija neprekidnosti funkcije i primeri

Definicija

Neka su dati metrički prostori (X, d_X) , (Y, d_Y) i funkcija $f: D \to Y, D \subset X$. Za funkciju f kažemo da je **neprekidna u tački** $a \in D$ ako

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(x \in L(a, \delta) \Rightarrow f(x) \in L(f(a), \varepsilon)),$$

odnosno

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(d_X(a,x) < \delta \Rightarrow d_Y(f(a),f(x)) < \varepsilon).$$

Ako je $X=Y=\mathbb{R}(\mathbb{C}),$ tada neprekidnost funkcije $f:D\to\mathbb{R}(\mathbb{C})$ u tački a možemo zapisati na sledeći način

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(|x-a| < \delta \Rightarrow |f(x)-f(a)| < \varepsilon).$$

Zahtevi za neprekidnost u tački *a* i postojanje granične vrednost u *a* se razlikuju u sledećim činjenicama:

- za graničnu vrednost u tački a pretpostavka je da je a tačka nagomilavanja za D, a kod neprekidnosti da $a \in D$, tj. da je $f(a) + \varepsilon$ funkcija f definisana u tački a;
- kod neprekidnosti se za- f(a) ε hteva da funkcija f otvorenu loptu $L(a,\delta(\varepsilon))$ preslika u otvorenu loptu $L(f(a),\varepsilon)$, dok kod granične vrednosti je zahtev da funkcija f otvorenu loptu $L(a,\delta(\varepsilon))$ bez centra a preslika u otvorenu loptu $L(A,\varepsilon)$.

Zaključak je sledeći:

- ako je f neprekidna funkcija u tački a ne mora da postoji $\lim_{x \to a} f(x)$ (ako je $a \in D$ izolovana tačka za skup D, tada je f automatski neprekidna u tački a, dok u tom slučaju ne postoji $\lim_{x \to a} f(x)$).
- ako postoji $\lim_{x\to a} f(x)$ bez obzira da li je funkcija f definisana u tački a, funkcija ne mora da bude neprekidna u tački a. Na primer, ako posmatramo funkcije

$$f(x) = \frac{\sin x}{x}, \quad g(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 5, & x = 0 \end{cases}$$

tada važi $\lim_{\substack{x \to 0 \\ x \to 0}} f(x) = \lim_{\substack{x \to 0 \\ x \to 0}} g(x) = 1$. Ni funkcija f, ni funkcija g nisu neprekidne u tački 0, jer f nije definisana u tački 0, dok je $g(0) = 5 \neq 1$.

Dakle, da bi funkcija f bila neprekidna u tački a treba da važi:

- 1) $a \in D$, tj. funkcija f je definisana u tački a;
- 2) ako je a tačka nagomilavanja za D, tada postoji $\lim_{x \to a} f(x)$ i važi jednakost

$$\lim_{x\to a} f(x) = f(a);$$

3) ako je $a \in D$ izolovana tačka, tada je f neprekidna u tački a.

Ako je $a \in D \subset \mathbb{R}$ $(a \in D \subset \mathbb{C})$ tačka nagomilavanja za definicioni skup D i ako je $Y = \mathbb{R}$, $(Y = \mathbb{C})$ $x = a + \Delta x \in D$, $\Delta x \neq 0$ i $\Delta y = f(a + \Delta x) - f(a)$, gde su Δx i Δy redom priraštaji nezavisne i zavisne promenljive, tada neprekidnost realne funkcije jedne realne promenljive možemo izraziti na sledeći način:

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall x = a + \Delta x \in D)(|\Delta x| < \delta \Rightarrow |\Delta y| < \varepsilon),$$

odnosno

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

$$a + \Delta x \in D$$

Dakle, realna (kompleksna) funkcija jedne realne (kompleksne) promenljive je neprekidna u tački a iz domena ako priraštaj funkcije Δy u tački a teži ka nuli kada priraštaj argumenta Δx teži ka nuli.

Ako funkcija f nije neprekidna u tački a, onda kažemo da je funkcija f **prekidna** u tački a, odnosno da funkcija f ima **prekid** u tački a (tačka a je **prekid** date funkcije).

Napomena

Kako je funkcija u izolovanim tačkama neprekidna, to je realni niz (a i svaki drugi), kao funkcija iz \mathbb{N} u \mathbb{R} neprekidna funkcija.

Definicija

Neka su (X, d_X) i (Y, d_Y) metrički prostori i neka je data funkcija $f: D \to Y, D \subset X$.

- Ako je restrikcija f_E funkcije f nad nepraznim skupom $E \subset D$ neprekidna u tački $a \in E$, onda kažemo da je funkcija f neprekidna u tački a dok $x \in E$.
- Ako je f_E neprekidna u svakoj tački skupa E, onda kažemo da je f **neprekidna nad skupom** E.
- Ako je E=D, tj. ako je funkcija f neprekidna u svakoj tački definicionog skupa D, onda kažemo da je f **neprekidna funkcija**.

Primetimo, da ako je funkcija f neprekidna nad skupom E, ona ne mora biti neprekidna u svakoj tački skupa E. Na primer, ako posmatramo funkciju

$$f(x) = \begin{cases} x, & x < 0 \\ 1, & 0 \le x \le 2 \\ x, & x > 2 \end{cases}$$

vidimo da je ona neprekidna nad zatvorenim intervalom [0, 2], dok su krajnje tačke 0 i 2 prekidi date funkcije.

Ako je $f: D \to Y, D \subset \mathbb{R}$ i ako je f neprekidna u tački a dok

$$x \in E = D \cap [a, \infty) \quad (x \in E = D \cap (-\infty, a]),$$

tada kažemo da je funkcija f neprekidna u tački a sa desne (leve) strane.

Ako postoji $\lim_{x\to a^-} f(x)$, tada je funkcija f neprekidna u tački a sa leve strane ako je

$$\lim_{x\to a^-}f(x)=f(a),$$

a ako postoji $\lim_{x\to a^+} f(x)$, tada je funkcija f neprekidna u tački a sa desne strane ako je

$$\lim_{x \to a^+} f(x) = f(a).$$

Očigledno važi:

- 1) Funkcija f jedne realne promenljive je neprekidna u tački a ako i samo ako je neprekidna u tački a i sa leve i sa desne strane.
- 2) Funkcija jedne realne promenljive je neprekidna nad zatvorenim intervalom [a, b] ako i samo ako je
- neprekidna u svakoj tački otvorenog intervala (a, b);
- u tački a je neprekidna sa desne strane;
- u tački b je neprekidna sa leve strane.

L Definicija neprekidnosti funkcije i primeri

Tvrđenje

Ako su realne (kompleksne) funkcije f i g neprekidne u tački a, tada su u tački a neprekidne i sledeće funkcije:

- 1) h = f + g,
- 2) $h = f \cdot g$,
- 3) $h = \frac{f}{g}$, pod uslovom da je $g \neq 0$ u nekoj okolini tačke a.

Primeri

1. Konstantna funkcija f(x) = c je neprekidna funkcija, jer je

$$\Delta y = c - c = 0,$$

pa je

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

2. Funkcija $f(x) = \sin x$ je neprekidna za svako $x \in (-\infty, \infty)$. Birajući $\delta = \varepsilon$, za proizvoljno $\varepsilon > 0$, imamo

$$|\Delta y| = |\sin(x + \Delta x) - \sin x|$$

$$= 2 \left| \sin \frac{\Delta x}{2} \cos \frac{2x + \Delta x}{2} \right|$$

$$\leq 2 \left| \frac{\Delta x}{2} \right|$$

$$= |\Delta x| < \varepsilon,$$

tj.

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

3. Funkcija $f(x) = x^2$ je neprekidna za svako $x \in (-\infty, \infty)$, jer iz

$$\Delta y = (x + \Delta x)^2 - x^2 = \Delta x (2x + \Delta x),$$

sledi da je

$$\lim_{\Delta x \to 0} \Delta y = 0.$$

Slično, **stepena funkcija** $f(x)=x^n, n\in\mathbb{N}$ je neprekidna za svako $x\in(-\infty,\infty)$, pa kako je i konstantna funkcija neprekidna, iz prethodne teoreme sledi da je svaki **polinom** $P_n(x)$ neprekidna funkcija za svako $x\in(-\infty,\infty)$, dok je svaka **racionalna funkcija** $R(x)=\frac{P_n(x)}{Q_m(x)}$ neprekidna funkcija u svakoj tački x_0 za koju je $Q_m(x_0)\neq 0$.

4. Za funkciju

$$f(x) = \begin{cases} x - 1, & x \le 2 \\ 2x, & x > 2 \end{cases}$$

je

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (x - 1) = 1 = f(2^{-}) = f(2) \neq 4 = \lim_{x \to 2^{+}} 2x = \lim_{x \to 2^{+}} f(x).$$

Dakle, ne postoji u tački x=2 granična vrednost, pa je funkcija u tački 2 prekidna.

Za sve ostale vrednosti od x funkcija je neprekidna.

Primetimo da je funkcija f(x) neprekidna u tački 2 sa leve strane.

L Definicija neprekidnosti funkcije i primeri

5. Za funkciju

$$f(x) = \begin{cases} 2x - 3, & x \neq 1 \\ 0, & x = 1 \end{cases}$$

imamo da važi

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} (2x - 3) = -1 \neq 0 = f(1),$$

pa je funkcija f u tački 1 prekidna.

Za sve ostale vrednosti od x funkcija je neprekidna.

6. Funkcija $f: \mathbb{R}^2 \to \mathbb{R}$ definisana sa

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

nije neprekidna u tački (0,0), jer ne postoji

$$\lim_{(x,y)\to(0,0)}f(x,y).$$

└ Definicija neprekidnosti funkcije i primeri

7. Funkcija $f: \mathbb{R} \to \mathbb{R}$ data sa

$$f(x) = \left\{ egin{array}{ll} 1, & x \in \mathbb{Q} \ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{array}
ight.$$

ima prekid za svaki realan broj. Ona je neprekidna nad \mathbb{Q} , kao i nad $\mathbb{R}\setminus\mathbb{Q}$.

8. Sabiranje realnih (kompleksnih) brojeva je neprekidna funkcija.
Zaista, zbog:

$$|(x+y)-(a+b)| \le |x-a|+|y-b| \le 2\sqrt{(x-a)^2+(y-b)^2},$$

iz $\sqrt{(x-a)^2+(y-b)^2}<\frac{\varepsilon}{2}$ sledi neprekidnost sabiranja realnih brojeva.

9. Množenje realnih (kompleksnih) brojeva je neprekidna funkcija.

Kako je:

$$|xy-ab| = |(x-a)(y-b)+a(y-b)+b(x-a)| \le |x-a||y-b|+|a||y-b|+|b||x-a|$$

$$|x-a| \leq \sqrt{(x-a)^2 + (y-b)^2}, \quad |y-b| \leq \sqrt{(x-a)^2 + (y-b)^2},$$

to iz $\sqrt{(x-a)^2+(y-b)^2}<\delta$, gde je $\delta=\min\{1,\frac{\varepsilon}{1+|a|+|b|}\}$, sledi da je

$$|xy-ab|<\delta^2+\delta|a|+\delta|b|\leq \delta(1+|a|+|b|)\leq \frac{\varepsilon\cdot(1+|a|+|b|)}{1+|a|+|b|}=\varepsilon,$$

odakle zaključujemo da je množenje realnih brojeva neprekidna funkcija.

L Definicija neprekidnosti funkcije i primeri

Iz Hajneove teoreme sledi

Tvrđenje

Funkcija $f:D \to Y$ je neprekidna u tački $a \in D$

ako i samo ako

za svaki niz $\{x_n\} \subset D$ koji konvergira ka a sledi da niz $\{f(x_n)\} \subset Y$ konvergira ka f(a).

Vrste tačaka prekida funkcija

Neka su (X, d_X) i (Y, d_Y) metrički prostori i a tačka nagomilavanja za definicioni skup $D \subset X$ funkcije $f : D \to Y$.

Pretpostavimo da u tački a funkcija ima prekid.

 $\mathbf{1}^{\circ}$) Ako postoji $\lim_{\substack{x \to a \ \text{otklonljiv}}} f(x)$, onda kažemo da funkcija f u tački a ima **prividan** ili **otklonljiv prekid**, odnosno da je a prividan (otklonljiv) prekid.

a) Funkcija

$$f(x) = \frac{\sin x}{x}$$

ima u tački 0 prividan prekid (funkcija u tački 0 nije definisana), jer je

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Ako posmatramo funkciju

$$F(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

vidimo da je ona neprekidna u tački 0, jer smo je u tački 0, definisali baš sa

$$F(0) = \lim_{x \to 0} \frac{\sin x}{x} = 1.$$

b) Funkcija

$$f(x) = \begin{cases} 2x+1, & x \neq 0 \\ -1, & x = 0 \end{cases}$$

ima otklonljiv prekid u tački 0, jer je

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (2x + 1) = 1 \neq f(0) = -1.$$

Međutim, funkcija

$$F(x) = 2x + 1$$

je neprekidna u tački 0.

c) Funkcija

$$f(x) = e^{-\sqrt{\frac{x}{x+1}}}$$

ima prividan prekid u tački -1 (funkcija nije u datoj tački definisana), jer je

$$\lim_{x\to -1}e^{-\sqrt{\frac{x}{x+1}}}=0.$$

Primetimo da u ovom primeru ne postoji desna granična vrednost date funkcije u tački -1, jer funkcija nije definisana za $x \in [-1, 0)$, pa se granična vrednost poklapa sa levom graničnom vrednošću u datoj tački. Funkcija

$$F(x) = \begin{cases} e^{-\sqrt{\frac{x}{x+1}}}, & x \in \mathbb{R} \setminus [-1, 0) \\ 0, & x = -1 \end{cases}$$

dobijena iz funkcije f je neprekidna u tački -1.

 $\mathbf{2}^{\circ}$) Za $X=\mathbb{R}$, ako postoje leva i desna granična vrednost funkcije f(x) u tački a, tj. ako postoji

$$\lim_{x\to a^-} f(x) = f(a^-)$$

i

$$\lim_{x\to a^+} f(x) = f(a^+),$$

pri čemu je

$$f(a^-) \neq f(a^+),$$

onda kažemo da funkcija u tački *a* ima **skok**, odnosno da je *a* skok date funkcije.

a) Kako za funkciju

$$f(x) = \operatorname{arctg}\left(1 + \frac{1}{x}\right),$$

važi

$$\lim_{x \to 0^+} f(x) = \frac{\pi}{2}, \lim_{x \to 0^-} f(x) = -\frac{\pi}{2},$$

to data funkcija ima skok u tački 0.

b) Za funkciju

$$f(x) = \begin{cases} 2x + 1, & x \le 1 \\ 3x - 1, & x > 1 \end{cases}$$

je

$$\lim_{x \to 1^{-}} f(x) = 3 = f(1)$$

i

$$\lim_{x\to 1^+} f(x) = 2,$$

pa funkcija f u tački 1 ima skok.

- **I)** Ako u tački *a* funkcija *f* ima prividan prekid ili skok, onda kažemo da data funkcija *f* u tački *a* ima **prekid prve vrste**.
- **II)** Ako je tačka *a* prekid funkcije koji nije prve vrste, onda kažemo da u tački *a* funkcija *f* ima **prekid druge vrste**.

Ako je (Y, d_Y) metrički prostor, tada za funkciju $f: I \to Y$ koja ima konačan broj prekida prve vrste nad intervalom $I \subset \mathbb{R}$, kažemo da je f neprekidna po delovima nad intervalom I.

Neprekidnost i granična vrednost složene funkcije

Tvrđenje

Neka su dati metrički prostori (X, d_X) , (Y, d_Y) i (Z, d_Z) kao i funkcije $g: D \to Y$, $D \subset X$ i $f: Y \to Z$.

Ako je g neprekidna funkcija u tački a, f neprekidna funkcija u tački g(a), tada je složena funkcija $h = f \circ g$ neprekidna funkcija u tački a.

Dokaz. S obzirom da je f neprekidna funkcija u tački g(a) i g neprekidna funkcija u tački a to važi

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall u \in Y)(u \in L(g(a), \delta) \Rightarrow f(u) \in L(f(g(a)), \varepsilon)),$$

$$(\forall \varepsilon_1 \in \mathbb{R}^+)(\exists \delta_1 \in \mathbb{R}^+)(\forall x \in D)(x \in L(a, \delta_1) \Rightarrow g(x) \in L(g(a), \varepsilon_1)).$$

Tada birajući da je $\varepsilon_1 = \delta$, imamo

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta_1 \in \mathbb{R}^+)(\forall x \in D)(x \in L(a, \delta_1) \Rightarrow f(g(x)) \in L(f(g(a)), \varepsilon)),$$

odakle sledi da je složena funkcija $h=f\circ g$ neprekidna u tački a.

Posledica

Neka su dati metrički prostori (X, d_X) , (Y, d_Y) i (Z, d_Z) kao i funkcije $g: D \to Y$, $D \subset X$ i $f: Y \to Z$. Ako su funkcije g i f neprekidne, tada je i složena funkcija $h = f \circ g$ neprekidna.

Tvrđenje

Neka su dati metrički prostori $(X, d_X), (Y, d_Y)$ i (Z, d_Z) kao i funkcije $g: D \to Y, D \subset X$ i $f: Y \to Z$. Ako je $\lim_{x \to a} g(x) = \alpha \in Y$ i f neprekidna funkcija u tački α , tada je

$$\lim_{x\to a} f(g(x)) = f(\lim_{x\to a} g(x)) = f(\alpha).$$

$\it Dokaz.$ Funkcija $\it f$ je neprekidna u tački $\it \alpha,$ pa je

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \delta \in \mathbb{R}^+)(\forall u \in Y)(u \in L(\alpha, \delta) \Rightarrow f(u) \in L(f(\alpha), \varepsilon)).$$

Kako je $\lim_{x\to a} g(x) = \alpha$, to je

$$(\forall \varepsilon_1 \in \mathbb{R}^+)(\exists \delta_1 \in \mathbb{R}^+)(\forall x \in D \setminus \{a\})(x \in L(a, \delta_1) \Rightarrow g(x) \in L(\alpha, \varepsilon_1)),$$

a odatle uzimajući $arepsilon_1=\delta$ sledi da je

$$(\forall \varepsilon \in \mathbb{R}^+)(\forall x \in D \setminus \{a\})(x \in L(a, \delta_1) \Rightarrow f(g(x)) \in L(f(\alpha), \varepsilon)),$$

tj.
$$\lim_{x \to a} f(g(x)) = f(\alpha)$$
.

Ako je
$$\lim_{x\to\infty} g(x) = \alpha$$
 i $X = \mathbb{R}$, tada važi

$$(\forall \varepsilon \in \mathbb{R}^+)(\exists \Delta \in \mathbb{R}^+)(\forall x \in D)(x > \Delta \Rightarrow g(x) \in L(\alpha, \delta)).$$

pa sledi da

$$(\forall \varepsilon \in \mathbb{R}^+)(\forall x \in D)(x > \Delta \Rightarrow f(g(x)) \in L(f(\alpha), \varepsilon)),$$

tj.
$$\lim_{x\to\infty} f(g(x)) = f(\alpha)$$
.

Slično, kao i prethodnom slučaju se dokazuje da iz
$$\lim_{x \to -\infty} g(x) = \alpha$$
 i $X = \mathbb{R}$, sledi da je $\lim_{x \to -\infty} f(g(x)) = f(\alpha)$.

Pretpostavka da je $f: Y \rightarrow Z$ je bitna, jer ako to nije tačno teorema ne mora da važi što se vidi iz sledećeg primera

Primer

Posmatrajmo funkcije

$$f(x) = \sqrt{x}, \quad g(x) = -x^2.$$

Iz neprekidnosti u 0 funkcije f(x) i iz toga da je $\lim_{x\to 0}g(x)=0$ imamo da je

$$f(\lim_{x\to 0}g(x))=f(0)=0.$$

Kako je

$$f(g(x)) = \sqrt{-x^2},$$

to je funkcija f(g(x)) definisana samo za x = 0, pa

$$\lim_{x\to 0} f(g(x))$$

ne postoji.

Tvrđenje

Neka su dati metrički prostori (X, d_X) , (Y, d_Y) i (Z, d_Z) kao i funkcije $g: D \to Y, D \subset X$ i $f: Y \to Z$. Pretpostavimo da

- 1) $g(x) \rightarrow \alpha \in Y$, kada $x \rightarrow a$;
- 2) $f(u) \rightarrow \beta$, kada $u \rightarrow \alpha$;
- 3) a) Ako $a \in X$, $(za slučaj X = \mathbb{R}, a \in \mathbb{R}, tj. x ne teži <math>\pm \infty)$, onda $(\exists \delta^* \in \mathbb{R}^+)(\forall x \in (D \setminus \{a\}) \cap L(a, \delta^*)) g(x) \neq \alpha$;
 - b) Ako je $X = \mathbb{R}$ i $g(x) \to \alpha$, kada $x \to \infty$, onda $(\exists \delta^* \in \mathbb{R}^+)(\forall x \in D \cap (\delta^*, \infty))$ $g(x) \neq \alpha$;
 - c) Ako je $X = \mathbb{R}$ i $g(x) \to \alpha$, kada $x \to -\infty$, onda $(\exists \delta^* \in \mathbb{R}^-)(\forall x \in D \cap (-\infty, \delta^*))$ $g(x) \neq \alpha$.

Tada $f(g(x)) \rightarrow \beta$, kada $x \rightarrow a$.

Tvrđenje

Neka su dati metrički prostori (X, d_X) i (Z, d_Z) kao i funkcije $g: D \to \mathbb{R}, \ D \subset X$ i $f: \mathbb{R} \to Z$. Pretpostavimo da

- 1) $g(x) \to \pm \infty$, kada $x \to a$,
- 2) $f(u) \rightarrow \beta$, kada $u \rightarrow \pm \infty$.

Tada $f(g(x)) \rightarrow \beta$, kada $x \rightarrow a$.

Primer

Neka je
$$u=g(x)=\frac{1}{x},\ y=f(u)=(1+\frac{1}{u})^u.$$
 Kako $g(x)\to\infty,$ kada $x\to 0^+$ i $f(u)\to e,$ kada $u\to\infty,$ to je

$$\lim_{x \to 0^+} f(g(x)) = \lim_{x \to 0^+} f(\frac{1}{x}) = \lim_{x \to 0^+} (1+x)^{\frac{1}{x}} = e.$$

Kako
$$g(x) \to -\infty$$
, kada $x \to 0^-$ i $f(u) \to e$, kada $u \to -\infty$, to je

$$\lim_{x \to 0^{-}} f(g(x)) = \lim_{x \to 0^{-}} f(\frac{1}{x}) = \lim_{x \to 0^{-}} (1+x)^{\frac{1}{x}} = e,$$

pa je

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e.$$

Neprekidnost i granična vrednost složene funkcije

Primer

$$Za \ u = g(x) = \begin{cases} 2x + 1, & x \le 1 \\ 3, & x > 1 \end{cases} \quad i \ y = f(u) = \begin{cases} \frac{1}{u+3}, & u \ne 3 \\ 5, & u = 3 \end{cases}$$

$$imamo \ da \ je \ f(g(x)) = \begin{cases} \frac{1}{2x+4}, & x < 1 \\ 5, & x > 1 \end{cases}.$$

1°) Iz neprekidnosti funkcije g u tački 2 je

$$\lim_{x\to 2} g(x) = 3, \quad (\alpha = 3)$$

I

$$\lim_{u \to 3} f(u) = \frac{1}{6}, \quad (\beta = \frac{1}{6}),$$

ne sledi da je

$$\lim_{x\to 2} f(g(x)) = \frac{1}{6},$$

jer je

$$\lim_{x \to 2} f(g(x)) = \lim_{x \to 2} f(3) = 5.$$

Uslov 3) prethodne teoreme nije ispunjen, jer ne postoji okolina tačke 2 tako da je za svako x iz te okoline $g(x) \neq 3$.

2°)
$$\lim_{x\to 1} f(g(x))$$
 ne postoji iako je $\lim_{x\to 1} g(x) = 3$, i $\lim_{u\to 3} f(u) = \frac{1}{6}$.

Primer

Neka je
$$u=g(x)=\frac{1}{x},\ y=f(u)=(1+\frac{1}{u})^u.$$
 Kako $g(x)\to\infty,$ kada $x\to 0^+$ i $f(u)\to e,$ kada $u\to\infty,$ to je

$$\lim_{x \to 0^+} f(g(x)) = \lim_{x \to 0^+} f(\frac{1}{x}) = \lim_{x \to 0^+} (1+x)^{\frac{1}{x}} = e.$$

Kako
$$g(x) \to -\infty$$
, kada $x \to 0^-$ i $f(u) \to e$, kada $u \to -\infty$, to je

$$\lim_{x \to 0^{-}} f(g(x)) = \lim_{x \to 0^{-}} f(\frac{1}{x}) = \lim_{x \to 0^{-}} (1+x)^{\frac{1}{x}} = e,$$

pa je

$$\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e.$$

Osobine neprekidnih funkcija

Tvrđenje

Neka su (X, d_X) i (Y, d_Y) metrički prostori i neka je data funkcija $f: X \to Y$. Tada su sledeća tvrđenja ekvivalentna

- a) Funkcija f je neprekidna.
- b) Inverzna slika svakog otvorenog skupa $U \subset Y$ je otvoren skup.
- c) Inverzna slika svakog zatvorenog skupa $F \subset Y$ je zatvoren skup.

Tvrđenje

Neka je (X, d) metrički prostor i $f: D \to \mathbb{R}, D \subset X$ funkcija koja je neprekidna u tački $a \in D$.

Ako je f(a) > c (f(a) < c), tada postoji pozitivan realan broj ε , tako da za sve $x \in L(a, \varepsilon) \cap D$ važi f(x) > c (f(x) < c).

Dokaz. Posmatrajmo slučaj kada je f(a) > c. Analogno se dokazuje i kada je f(a) < c. Neka je $\varepsilon = f(a) - c > 0$. Kako je f neprekidna funkcija u tački a, to

$$(\exists \delta \in \mathbb{R}^+)(\forall x \in D)(x \in L(a, \delta) \Rightarrow |f(x) - f(a)| < \varepsilon),$$

tj.
$$c = f(a) - \varepsilon < f(x) < f(a) + \varepsilon$$
. Dakle,

$$(\forall x \in D)(x \in L(a, \delta) \Rightarrow f(x) > c),$$

što je i trebalo da se dokaže.

Ako funkcija f ima prekid u tački $a \in D$, teorema ne mora da važi. Na primer, ako posmatramo funkciju

$$f(x) = \begin{cases} x+1, & x < 0 \\ 2, & x \ge 0 \end{cases},$$

vidimo da ne postoji okolina $(-\varepsilon, \varepsilon)$ tačke 0, tako da iz $x \in (-\varepsilon, \varepsilon)$ sledi $f(x) > \frac{3}{2}$.

└Osobine neprekidnih funkcija

Posledica

Ako je funkcija $f: D \to \mathbb{R}, \ D \subset X$, neprekidna u tački $a \in D$ i f(a) > 0 (f(a) < 0), tada postoji otvorena lopta $L(a, \delta)$, tako da za svako $x \in D \cap L(a, \delta)$ sledi da je f(x) > 0 (f(x) < 0).

Tvrđenje

Ako je funkcija $f:[a,b] \to Y$ neprekidna nad zatvorenim intervalom [a,b], onda je ona nad tim intervalom i ograničena.

Dokaz. Dokaz ćemo dati za slučaj kada je $Y = \mathbb{R}$. Pretpostavimo da f nije ograničena nad [a,b]. Tada

$$(\forall n \in \mathbb{N})(\exists x_n \in [a, b]) |f(x_n)| > n.$$
 (1)

Posmatrajmo niz $\{x_n\}$. S obzirom da su svi članovi niza $\{x_n\}$ iz [a,b], to je dati niz ograničen, pa postoji konvergentan podniz $\{x_{n_k}\}$ datog niza. Neka je $\lim_{k\to\infty} x_{n_k} = \xi \in [a,b]$. Kako je f neprekidna funkcija nad [a,b], to je $\lim_{k\to\infty} f(x_{n_k}) = f(\lim_{k\to\infty} x_{n_k}) = f(\xi)$, odnosno sledi da je niz $\{f(x_{n_k})\}$ konvergentan, što je u suprotnosti sa (1).

Dakle, funkcija f je ograničena nad [a, b].

Obe pretpostavke iz prethodne teoreme su bitne.

Ako posmatramo funkciju $f(x) = \frac{1}{x}$, vidimo da je ona neprekidna nad intervalom (0,1], ali nad tim intervalom nije ograničena (ne postoji $\sup_{x \in (0,1]} f(x)$,

$$\text{dok je } \inf_{x \in (0,1]} f(x) = 1).$$

Ako posmatramo funkciju

$$f(x) = \begin{cases} \frac{1}{x}, & x \in (0,1] \\ 0, & x = 0 \end{cases},$$

vidimo da ona nije ograničena nad zatvorenim intervalom [0,1] (ima prekid u tački 0).

Definicija

Za neprazan skup $A \subset X$ kažemo da je **kompaktan** u metričkom prostoru (X, d_X) , ako za svaki niz $\{a_n\} \subset A$ postoji tačka nagomilavanja $a \in A$.

Metrički prostor (X, d_X) je **kompaktan** ako je X kompaktan skup u metričkom prostoru (X, d_X) .

Prethodna teorema važi i kada se zatvoreni interval zameni sa skupom kompaktnim u metričkom prostoru (X, d_X) :

Tvrđenje

Neka su (X, d_X) i (Y, d_Y) proizvoljni metrički prostori. Ako je $f: D \to Y, D \subset X$ neprekidna funkcija i ako je skup D kompaktan u metričkom prostoru (X, d_X) , tada je f ograničena funkcija.

Tvrđenje

Ako je funkcija $f:[a,b] \to \mathbb{R}$ neprekidna nad [a,b], tada ona bar jednom dostiže svoju najveću i najmanju vrednost (funkcija f(x) ima maksimum i minumum nad intervalom [a,b]), tj. postoje realni brojevi $\alpha, \beta \in [a,b]$, takvi da je

$$m = \inf_{x \in [a,b]} f(x) = f(\alpha)$$
 i $M = \sup_{x \in [a,b]} f(x) = f(\beta)$.

I ova teorema važi u opštijem slučaju, tj. važi sledeće tvrđenje:

Tvrđenje

Neka je (X, d_X) metrički prostor i $f: D \to \mathbb{R}$, $D \subset X$ neprekidna funkcija nad kompaktnim skupom D. Tada funkcija f dostiže najveću i najmanju vrednost nad skupom D.

Tvrđenje

Ako je funkcija $f:[a,b]\to\mathbb{R}$ neprekidna nad intervalom [a,b] i $f(a)\cdot f(b)<0$, tada u intervalu (a,b) postoji bar jedna nula funkcije, tj. postoji tačka $\xi\in(a,b)$, tako da je $f(\xi)=0$.

Dokaz. Ako je

$$f\left(\frac{a+b}{2}\right)=0,$$

tada je

$$\xi = \frac{a+b}{2} \in (a,b),$$

pa je teorema dokazana.

Ako je

$$f\left(\frac{a+b}{2}\right)\neq 0,$$

tada od podintervala

$$\left[a, \frac{a+b}{2}\right]$$
 i $\left[\frac{a+b}{2}, b\right]$

intervala [a, b] izaberimo onaj, koji ćemo obeležiti sa $[a_1, b_1]$, kod koga funkcija na krajevima intervala ima različit znak.

Ponavljajući isti postupak na intervalu $[a_1,b_1]$ dobićemo da je ili

$$f\left(\frac{a_1+b_1}{2}\right)=0$$
 ili $f\left(\frac{a_1+b_1}{2}\right)\neq 0$.

Ako je

$$f\left(\frac{a_1+b_1}{2}\right)=0,$$

tada je

$$\xi=\frac{a_1+b_1}{2}\in(a,b),$$

pa je teorema dokazana.

Osobine neprekidnih funkcija

Ako je

$$f\left(\frac{a_1+b_1}{2}\right)\neq 0,$$

tada od podintervala

$$\left[a_1, \frac{a_1+b_1}{2}\right] \quad \mathsf{i} \quad \left[\frac{a_1+b_1}{2}, b_1\right]$$

intervala $[a_1, b_1]$ izaberimo onaj, koji ćemo obeležiti sa $[a_2, b_2]$, kod koga funkcija na krajevima intervala ima različit znak.

Nastavljajući taj proces, dobićemo da

- 1) Posle n koraka, ako je $f\left(\frac{a_n+b_n}{2}\right)=0$, tada je $\xi=\frac{a_n+b_n}{2}$, pa je teorema dokazana.
- 2) Ako je za svako $n\in\mathbb{N},\ f(\frac{a_n+b_n}{2})\neq 0,$ tada za niz intervala $\{[a_n,b_n]\}$ važi:

-
$$[a_1, b_1] \supset [a_2, b_2] \supset ... \supset [a_n, b_n] \supset ...;$$

$$-\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}\frac{b-a}{2^n}=0;$$

pa je dati niz, niz umetnutih intervala. Sledi da postoji jedna i samo jedna zajednička tačka ξ za sve intervale.

Dokazaćemo da je $f(\xi) = 0$. Pretpostavimo suprotno, tj. da je

$$f(\xi) > 0 \quad (f(\xi) < 0).$$

Primetimo pre svega da je funkcija f definisana u tački $\xi \in (a,b)$, jer je f neprekidna nad zatvorenim intervalom [a,b]. Kako je f neprekidna u tački ξ i po pretpostavci je $f(\xi)>0$ ($f(\xi)<0$), to postoji pozitivan realan broj δ , tako da za svako x iz skupa

$$(\xi - \delta, \xi + \delta) \cap [a, b]$$

važi

$$f(x) > 0$$
 $(f(x) < 0)$.

Kako je

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi,$$

to postoji $n_0 \in \mathbb{N}$ tako da je za svako $n \geq n_0$

$$[a_n,b_n]\subset (\xi-\delta,\xi+\delta).$$

Kako je

$$f(a_n)\cdot f(b_n)<0,$$

to funkcija f nije uvek pozitivna (negativna) nad intervalom

$$(\xi - \delta, \xi + \delta)$$

što je kontradikcija.

Dakle,
$$f(\xi) = 0$$
.

Bitna je pretpostavka teoreme da je funkcija f neprekidna nad datim zatvorenim intervalom. Ako funkcija f nije neprekidna nad posmatranim zatvorenim intervalom, tada f ne mora obavezno da ima nulu nad odgovarajućim otvorenim intervalom. Na primer, ako posmatramo funkciju

$$f(x) = \begin{cases} x+2, & x \le 2 \\ -x, & x > 2 \end{cases},$$

vidimo da funkcija f nema nulu u intervalu (0,3), iako je f(0) = 2 > 0, f(3) = -3 < 0, jer funkcija f ima prekid u tački 2.

Osobine neprekidnih funkcija

Tvrđenje

Ako je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija nad [a,b] i ako je $f(a) \neq f(b)$, ona u tom intervalu uzima sve vrednosti između f(a) i f(b).

Tvrđenje

Ako je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija, tada je ili za svako $x \in [a,b]$, f(x) = c ili f([a,b]) = [c,d].

└Osobine neprekidnih funkcija

Tvrđenje

Ako je $f:(a,b)\to\mathbb{R}$ neprekidna strogo monotona funkcija nad (a,b), tada je f((a,b)) otvoren interval.

Tvrđenje

Ako je $f: I \to \mathbb{R}$ neprekidna strogo monotona funkcija nad proizvoljnim intervalom realnih brojeva I, tada je inverzna funkcija $f^{-1}: f(I) \to \mathbb{R}$ neprekidna nad f(I).

Elementarne funkcije

Osnovne elementarne funkcije su sledeće funkcije:

- konstantna funkcija $y = c, c \in \mathbb{R}$,
- stepena funkcija $y = x^{\alpha}, \ \alpha \in \mathbb{R},$
- eksponencijalna funkcija $y = a^x$, gde je a > 0 i $a \neq 1$,
- logaritamska funkcija $y = \log_a x$, gde je a > 0 i $a \neq 1$,
- trigonometrijske funkcije:

$$y = \sin x$$
, $y = \cos x$, $y = tg x$, $y = \operatorname{ctg} x$,

• inverzne trigonometrijske funkcije:

$$y = \arcsin x$$
, $y = \arccos x$, $y = \cot x$, $y = \arctan x$.

Elementarne funkcije uvodimo sledećom rekurzivnom definicijom.

Definicija

- 1. Osnovne elementarne funkcije su elementarne funkcije.
- 2. Ako su f i g elementarne funkcije, $g \neq O$ (O nula funkcija), tada su elementarne funkcije i f+g, f-g, $f \cdot g$, $\frac{f}{g}$, $f \circ g$
- 3. Elementarne funkcije se mogu dobiti samo konačnom primenom pravila 1. i 2. ove definicije.

Na primer, elementarne funkcije su:

$$y = 2x^2 + 3x + 5$$
, $y = 3^{2x} - \sin^2 x$, $y = \ln(\sqrt{x} + 3)$, $y = \frac{\ln x + 5}{\arctan x + 3x}$, $y = \ln(\arcsin x^2)$.

Na osnovu poslednje teoreme i osobina neprekidnih funkcija sledi da važi sledeća teorema

Tvrđenje

Elementarne funkcije su neprekidne u oblasti definisanosti.

Uniformna neprekidnost

Definicija

Neka su dati metrički prostori $(X, d_X), (Y, d_Y)$ i funkcija $f: D \to Y, D \subset X$. Funkcija f je **uniformno neprekidna nad** $\emptyset \neq E \subset D$ ako

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x_1, x_2 \in E)(d_X(x_1, x_2) < \delta \Rightarrow d_Y(f(x_1), f(x_2)) < \varepsilon).$$

Dakle, možemo reći da je funkcija f uniformno neprekidna nad E ako za svaki pozitivan realan broj ε , postoji pozitivan realan broj δ , koji zavisi samo od ε ali ne i od x, tako da ako je rastojanje tačaka x_1 i x_2 iz E manje od δ , tada je rastojanje slika manje od ε .

Napomena

Očigledno je, da ako je funkcija f uniformno neprekidna nad skupom E, ona je nad tim skupom i neprekidna. Da obrnuto nije uvek tačno pokazuje sledeći primer.

Primer

Funkcija $f:(0,1)\to\mathbb{R}$ definisana sa

$$f(x) = \frac{1}{x}$$

je nad intervalom (0,1) neprekidna, ali nije i uniformno neprekidna.

Da bi to pokazali pretpostavimo suprotno, tj. da je data funkcija nad intervalom (0,1) uniformno neprekidna. Tada za $0<\varepsilon<1$, postoji $\delta>0$, tako da je

$$|x_2-x_1|<\delta\Rightarrow\left|\frac{1}{x_2}-\frac{1}{x_1}\right|<\varepsilon.$$

Primetimo da kako $x_1, x_2 \in (0,1)$, to je $\delta < 1$.

Neka je

$$x_1 = \delta \in (0,1), \quad x_2 = \frac{\delta}{1+\varepsilon} \in (0,1).$$

Tada važi:

$$|x_2 - x_1| = \left| \frac{\delta}{1 + \varepsilon} - \delta \right| = \delta \frac{\varepsilon}{1 + \varepsilon} < \delta \implies \left| \frac{1}{x_2} - \frac{1}{x_1} \right| = \left| \frac{1 + \varepsilon}{\delta} - \frac{1}{\delta} \right| = \frac{\varepsilon}{\delta} > \varepsilon,$$

što je suprotno pretpostavci da je funkcija f uniformno neprekidna. Dakle, f nije uniformno neprekidna nad (0,1).

Tvrđenje

Ako je $f:[a,b] \to \mathbb{R}$ neprekidna nad [a,b], ona je nad tim intervalom i uniformno neprekidna.

Primer

Funkcija $f:(0,1]\to\mathbb{R}$ definisana sa f(x)=x je nad intervalom (0,1) neprekidna i uniformno neprekidna.

Primer

Funkcija $f: \mathbb{R} \to \mathbb{R}$ definisana sa $f(x) = x^2$ je nad intervalom $\left(-\frac{1}{3}, \frac{1}{3}\right)$ uniformno neprekidna.