Model-predictive control Computational Intelligence, Lecture 11

by Sergei Savin

Spring 2024

CONTENT

- Dynamical systems, linearization, discretization
- Trajectory planning
- OCP / MPC for DT-LTV
- Zonotopes and explicit MPC
 - Definition
 - ▶ Operations
 - ► Containment, convex hull
 - ► MPC

Dynamical system

Given a dynamical system described as an ODE:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}),\tag{1}$$

we can find a pair of time functions - control law $\mathbf{u}^* = \mathbf{u}^*(t)$ and state trajectory $\mathbf{x}^* = \mathbf{x}^*(t)$, that conform with the ODE (1). The problem of finding such pair is called *trajectory planning*.

Example

A forced spring-damper dynamics is described with the following state-space model:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k & -\mu \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ u \end{bmatrix}$$

LINEARIZATION

Once we found control law $\mathbf{u}^* = \mathbf{u}^*(t)$ and state trajectory $\mathbf{x}^* = \mathbf{x}^*(t)$ we can find *linearization* of the dynamical system, via Taylor expansion:

$$\mathbf{f}(\mathbf{x}, \mathbf{u}) \approx \mathbf{f}(\mathbf{x}^*, \mathbf{u}^*) + \frac{\partial \mathbf{f}}{\partial \mathbf{x}}(\mathbf{x} - \mathbf{x}^*) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u} - \mathbf{u}^*)$$
 (2)

We denote Jacobian matrices as A and B, giving as state matrix and control matrix

$$\mathbf{A}(t) = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}},\tag{3}$$

$$\mathbf{B}(t) = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}},\tag{4}$$

...for a time-varying linear system (LTV):

$$\dot{\mathbf{e}} = \mathbf{A}(t)\mathbf{e} + \mathbf{B}(t)\mathbf{u} \tag{5}$$

DISCRETIZATION

Linear system $\dot{\mathbf{e}} = \mathbf{A}(t)\mathbf{e} + \mathbf{B}(t)\mathbf{u}$ is represented as a continuous-time model. We could re-write it as a discrete time model:

$$\mathbf{z}_{i+1} = \bar{\mathbf{A}}_i \mathbf{z}_i + \bar{\mathbf{B}}_i \mathbf{u}_i \tag{6}$$

This can be done via a number of methods (with different assumptions), such as zero-order hold or by exact discretization.

Trajectory planning as optimization

We can formulate the trajectory planning as an *optimal control* problem (OCP):

minimize
$$\mathbf{x}(t), \mathbf{u}(t) = \mathbf{x}(t) + \int_{t_0}^{t_f} l(\mathbf{x}(t), \mathbf{u}(t)) dt,$$

subject to: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u})$ (7)
 $\mathbf{x}(t_0) = \mathbf{x}_0$
 $\mathbf{x}(t) \in \text{workspace}$
 $\mathbf{u}_{min} \leq \mathbf{u}(t) \leq \mathbf{u}_{max}$

This is an optimization problem with continuous variables and there are no solvers that can solve it (in a general case). We can replace the continuous time variables with a finite number of parameters. This is called *transcription*.

OCP FOR DISCRETE LTV: MPC AS QP

Given a discrete linear system $\mathbf{x}_{i+1} = \mathbf{A}_i \mathbf{x}_i + \mathbf{B}_i \mathbf{u}_i$ and a quadratic objective, we can formulate the OCP as a quadratic program:

minimize
$$\mathbf{x}_{N}^{\top}\mathbf{Q}_{N}\mathbf{x}_{N} + \sum_{i=1}^{N-1} \left(\mathbf{x}_{i}^{\top}\mathbf{Q}_{i}\mathbf{x}_{i} + \mathbf{u}_{i}^{\top}\mathbf{R}_{i}\mathbf{u}_{i}\right),$$

subject to: $\mathbf{x}_{i+1} = \mathbf{A}_{i}\mathbf{x}_{i} + \mathbf{B}_{i}\mathbf{u}_{i}$ (8)
 $\mathbf{F}_{i}\mathbf{x}_{i} \leq \mathbf{h}_{i}$
 $\mathbf{u}_{min} \leq \mathbf{u}_{i} \leq \mathbf{u}_{max}$

This can be solved efficiently; setting N to be relatively small we make it into a receding horizon model-predictive control (MPC).

Solution to (8) gives us a sequence of control actions \mathbf{u}_i .

MPC AS QP

- If problem (8) has no inequality constraints, it can be solved analytically.
- Robust control (uncertain input or uncertain model) with MPC based on quadratic program is easy to implement.
- Linear-quadratic regulator (LQR) problems are closely related. LQR allows us to obtain linear control law
 u = Kx. LQR does not depend on knowing exact initial conditions and can be solved as a single SDP (semidefinite program).
- Given a trajectory of a non-linear system, we can linearize its dynamics along the trajectory, and then find control law either via MPC or LQR.

Zonotopes and explicit MPC

ZONOTOPES

A zonotope can be defined as a point-symmetric set in n-dimensional space, described as a center $c \in \mathbb{R}^n$ and p generators $g^{(i)} \in \mathbb{R}^n$, $i \in \{1, ..., p\}$; the latter can be presented as columns of matrix $G \in \mathbb{R}^{n \times p}$:

$$\mathbb{Z} = \langle c, G \rangle = \{c + \sum_{i=1}^{p} \beta_i g^{(i)} : -1 \le \beta_i \le 1\}$$
 (9)

where β_i are scalar multipliers. Eq. (9) defines a *vector* zonotope.

ZONOTOPES

Figure 1: An example of a zonotope; source.

ALGEBRAIC OPERATIONS ON VECTOR ZONOTOPES

Vector zonotopes are closed under addition and linear transformation:

$$\langle x, X \rangle + \langle y, Y \rangle = \langle x + y, X + Y \rangle$$
 (10)

$$A\langle c, G \rangle = \langle Ac, AG \rangle, \tag{11}$$

where A is a linear operator.

ALGEBRAIC OPERATIONS ON VECTOR ZONOTOPES

Minkowski sum for vector zonotopes is defined as:

$$\langle x, X \rangle \oplus \langle y, Y \rangle = \langle x + y, (X, Y) \rangle$$
 (12)

where notation (X,Y) refers to horizontal matrix concatenation.

We can define the addition of a vector zonotope and a vector as follows:

$$\langle c, G \rangle + v = \langle c + v, G \rangle$$
 (13)

ZONOTOPE CONTAINTMENT

Given two zonotopes $\mathbb{X} = \langle x, X \rangle$ and $\mathbb{Y} = \langle y, Y \rangle$, where $X \in \mathbb{R}^{n \times n_x}$, $Y \in \mathbb{R}^{n \times n_y}$, if there exists $\Gamma \in \mathbb{R}^{n_y \times n_x}$ and $\beta \in \mathbb{R}^{n_y}$, such that:

$$X = Y\Gamma, \ y - x = Y\beta, \ ||(\Gamma, \beta)||_{\infty} \le 1 \tag{14}$$

then zonotope X is contained in zonotope Y. This method is convenient, as it requires solving a single linear program.

Approximating convex hull of two zonotopes

The following is an approximation of the convex hull of two zonotopes $\mathbb{X} = \langle x, X \rangle$ and $\mathbb{Y} = \langle y, Y \rangle$:

$$Co(\mathbb{X}, \mathbb{Y}) \subseteq \left\langle \frac{x+y}{2}, \left(\frac{X+Y}{2}, \frac{x-y}{2}, \frac{X-Y}{2}\right) \right\rangle$$
 (15)

This method is conservative and computationally inexpensive. Most importantly for our purpose, it can be incorporated in a convex optimization problem formulation as an equality constraint.

STATE PROPAGATION

We can describe how the state changes with respect to time:

$$x_{k+1} = A_k x_k + B_k u_k + d_k + w_k (16)$$

where $w_k \in \mathbb{W}_k$ is random external disturbance.

MPC: Uncertain input and certain model (1)

State propagation problem can be described as an evolution (propagation) of the initial zonotope X_1 :

$$\mathbb{X}_{k+1} = (A_k \mathbb{X}_k + B_k \mathbb{U}_k + d_k) \oplus \mathbb{W}_k \tag{17}$$

where $\mathbb{X}_k = \langle \bar{x}_k, G_k \rangle$, $\mathbb{U}_k = \langle \bar{u}_k, \theta_k \rangle$, and $\mathbb{W}_k = \langle 0_{n \times 1}, W(k) \rangle$ are zonotopes representing state, control actions, and process noise, $G_k \in \mathbb{R}^{n \times p}$, $\theta_k \in \mathbb{R}^{m \times p}$, and $W(k) \in \mathbb{R}^{n \times n_w}$ are generators or these zonotopes, $\bar{x}_k \in \mathbb{R}^n$ and $\bar{u}_k \in \mathbb{R}^m$ are their centers.

MPC: Uncertain input and certain model (2)

We can re-write the zonotope propagation as:

$$\begin{cases} G_{k+1} = (A_k G_k + B_k \theta_k, W_k) \\ \bar{x}_{k+1} = A_k \bar{x}_k + B_k \bar{u}_k + d_k \end{cases}$$
 (18)

Disturbance $w_k \in \mathbb{W}_k$ act on the system on each time step; therefore the order of the zonotopes \mathbb{X}_k grows on each time step, unless order reduction techniques are employed.

We know that state is given as $x = \bar{x}_k + G_k \beta$ and control is $u = \bar{u}_k + \theta_k \beta$. Expressing β from the first and substituting it to the second, we find control law as $u_k = K_k(x_k - \bar{x}_k) + \bar{u}_k$, where $K_k = \theta_k G_k^+$.

Lecture slides are available via Github, links are on Moodle:

github.com/SergeiSa/Computational-Intelligence-2024

