A_{∞} -minimal models of matrix factorisations

Daniel Murfet

September 17, 2016

Abstract

We study A_{∞} -minimal models of the differential graded algebras obtained from endomorphisms of generators of triangulated categories of matrix factorisations, giving explicit higher products for the cases of simple singularities.

1 Introduction

Let k be a commutative \mathbb{Q} -algebra, and $W \in k[x_1, \ldots, x_n]$ a potential in the sense of [3, §2.2] which has the origin as its only critical point. Choose a presentation of W as a sum $W = x_1W^1 + \cdots + x_nW^n$ with $W^i \in \mathfrak{m} = (x_1, \ldots, x_n)$. Then the generator of the homotopy category of matrix factorisations of W is the stabilised diagonal

$$(1.1) k^{\text{stab}} = \left(k[x] \otimes_k \bigwedge (k\psi_1 \oplus \cdots \oplus k\psi_n), \ d_{k^{\text{stab}}} = \sum_{i=1}^n x_i \psi_i^* + \sum_{i=1}^n W^i \psi_i\right)$$

where ψ_i^* and ψ_i act respectively by contraction and wedge product on the exterior algebra underlying k^{stab} [Dyc11]. The purpose of this paper is to calculate the A_{∞} -minimal model of the \mathbb{Z}_2 -graded differential graded endomorphism algebra of k^{stab}

(1.2)
$$\mathscr{A}_W = \left(\operatorname{End}_{k[x]}(k^{\operatorname{stab}}), \ \partial = [d_{k^{\operatorname{stab}}}, -] \right)$$

with differential (throughout all commutators are graded commutators)

(1.3)
$$\partial = \left[\sum_{i} x_{i} \psi_{i}^{*} + \sum_{i} W^{i} \psi_{i}, - \right]$$

(1.4)
$$= \sum_{i} x_{i}[\psi_{i}^{*}, -] + \sum_{i} W^{i}[\psi_{i}, -].$$

The minimal model is a finite-dimensional \mathbb{Z}_2 -graded vector space \mathscr{M}_W with a family

$$\left\{r_q: \left(\mathscr{M}_W[1]\right)^{\otimes q} \longrightarrow \mathscr{M}_W[1]\right\}_{q\geq 2}$$

of odd k-linear maps satisfying the forward suspended A_{∞} -constraints [1], and having the property that there is an A_{∞} -quasi-isomorphism $\mathscr{A}_W \longrightarrow \mathscr{M}_W$.

2 Background

2.1 A-infinity algebras

The tilde grading is defined by $\widetilde{x} = |x| - 1$. Throughout $\otimes = \otimes_k$.

3 Perturbation and Koszul complexes

Let k be a characteristic zero field, $R = k[x_1, \ldots, x_n]$ and let $W \in \mathfrak{m}^2$ be a potential with chosen decomposition $W = \sum_{i=1}^n x_i W^i$. To apply the A_{∞} -minimal model construction to the DG-algebra \mathscr{A}_W from (1.2) we would usually begin by finding a k-linear homotopy retract of this complex onto its cohomology. However, for our purposes it is better to first enlarge the DG-algebra to $S \otimes \mathscr{A}_W$, where S is the \mathbb{Z}_2 -graded vector space

$$(3.1) S = \bigwedge (k\theta_1 \oplus \cdots \oplus k\theta_n)$$

with grading $|\theta_i| = 1$. We make the tensor product $S \otimes \mathscr{A}_W$ into a DG-algebra in the usual way, giving the exterior algebra S the zero differential.

Definition 3.1. We define the finite-dimensional \mathbb{Z}_2 -graded vector space

(3.2)
$$\mathscr{E} = R/\mathfrak{m} \otimes \operatorname{End}_{R}(k^{\operatorname{stab}}) \cong \operatorname{End}_{k} \left(\bigwedge (k\psi_{1} \oplus \cdots \oplus k\psi_{n}) \right)$$

where $\mathfrak{m} = (x_1, \ldots, x_n)$.

We will show that $S \otimes \mathscr{A}_W$ is homotopy equivalent to \mathscr{E} viewed as a complex with zero differential (observe that \mathscr{E} does not depend on W). The corresponding homotopy retract (see Proposition 3.3 below) is our starting point for the minimal model construction. For this we use the Koszul complex of x_1, \ldots, x_n ,

(3.3)
$$K = \left(R \otimes \bigwedge (k\theta_1 \oplus \cdots \oplus k\theta_n), \ d_K = \sum_i x_i \theta_i^* \right)$$

Theorem 3.2. There is a diagram of \mathbb{Z}_2 -graded complexes and homotopy equivalences over k

(3.4)
$$S \otimes \mathscr{A}_W \xrightarrow{\exp(-\delta)} K \otimes_R \mathscr{A}_W \xrightarrow{\pi} \mathscr{E}.$$

Proof. See [2].
$$\Box$$

The notation is as follows:

• The complexes involved here are

$$\left(S \otimes \operatorname{End}_{R}(k^{\operatorname{stab}}), \ \partial\right)$$

 $\left(K \otimes_{R} \operatorname{End}_{R}(k^{\operatorname{stab}}), \ d_{K} + \partial\right)$
 $\left(\mathscr{E}, 0\right).$

• The operator $\psi_j = \psi_j \wedge -$ on k^{stab} satisfies

$$[\psi_j, d_{k^{\text{stab}}}] = [\psi_j, \sum_i x_i \psi_i^*] = x_j \cdot 1,$$

where [-,-] always denotes the graded commutator. That is, ψ_j is a homotopy for the action of x_j on k^{stab} . It is then easy to check that the odd operator $\alpha \mapsto \psi_j \circ \alpha$ on $\text{End}_R(k^{\text{stab}})$ is also a homotopy for x_j , and where it will not cause confusion we will also write ψ_j for this operator of post-composition.

• Both $S \otimes \mathscr{A}_W$ and $K \otimes_R \mathscr{A}_W$ have the same underlying \mathbb{Z}_2 -graded k-module, namely

(3.5)
$$R \otimes \bigwedge (k\theta_1 \oplus \cdots \oplus k\theta_n) \otimes \operatorname{End}_k \left(\bigwedge (k\psi_1 \oplus \cdots \oplus k\psi_n) \right).$$

On this space we define the even operator

(3.6)
$$\delta = \sum_{i=1}^{n} \psi_i \theta_i^*,$$

where ψ_i is the operator on $\operatorname{End}_R(k^{\operatorname{stab}})$ discussed above, given by $\alpha \mapsto (\psi_i \wedge -) \circ \alpha$, and θ_i^* acts by contraction on S. It is easy to check that $\exp(\delta), \exp(-\delta)$ intertwines the differentials ∂ and $d_K + \partial$ and therefore gives an isomorphism between the first two complexes in (3.4) [2, Proposition 4.11].

• The morphism of complexes $\pi: K \longrightarrow R/\mathfrak{m}$ is defined by composing the projection of K onto the submodule $R \cdot 1$ of θ -degree zero forms, with the quotient $R \longrightarrow R/\mathfrak{m}$. We also write π for the result of tensoring this morphism with $\operatorname{End}_R(k^{\operatorname{stab}})$ to obtain

$$K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}}) \xrightarrow{\pi \otimes 1} R/\mathfrak{m} \otimes_R \operatorname{End}_R(k^{\operatorname{stab}}) = \operatorname{\underline{End}}(k^{\operatorname{stab}}).$$

This is a morphism of complexes, because the differential on $\operatorname{End}_R(k^{\operatorname{stab}})$ vanishes on the quotient $\operatorname{End}(k^{\operatorname{stab}})$ by the hypothesis that $W \in \mathfrak{m}^2$.

• The k-linear homotopy inverse σ_{∞} to π in (3.4) is defined in terms of the following ingredients. The first is the k-linear connection (viewing θ_i as a 1-form)

(3.7)
$$\Delta: K \longrightarrow K, \qquad \Delta = \sum_{i} \partial_{x_{i}} \theta_{i}$$

and the degree -1 (with respect to the θ -degree) k-linear operator

$$(3.8) H = [d_K, \Delta]^{-1} \Delta.$$

We write ∂ for the differential on $\operatorname{End}_R(k^{\operatorname{stab}})$, and $\sigma: k \longrightarrow K$ for the map which sends $\lambda \in k$ to $\lambda \cdot 1 \in K$, and define k-linear maps

(3.9)
$$\sigma_{\infty} = \sum_{m>0} (-1)^m (H\partial)^m \sigma,$$

(3.10)
$$H_{\infty} = \sum_{m \ge 0} (-1)^m (H\partial)^m H.$$

Here H_{∞} is an odd operator on $K \otimes_R \operatorname{End}_R(k^{\operatorname{stab}})$. These maps satisfy:

$$(3.11) \pi\sigma_{\infty} = 1,$$

(3.12)
$$\sigma_{\infty}\pi = 1 - [d_K + \partial, H_{\infty}].$$

By inspection of (3.4), we therefore have the following:

Proposition 3.3. There is a diagram of morphisms of \mathbb{Z}_2 -graded k-complexes

$$(3.13) S \otimes \mathscr{A}_W \xrightarrow{\Phi}_{\Phi^{-1}} \mathscr{E}$$

where $\Phi = \pi \exp(-\delta)$, $\Phi^{-1} = \exp(\delta)\sigma_{\infty}$ and $\widehat{H} = \exp(\delta)H_{\infty}\exp(-\delta)$ satisfy

(3.14)
$$\Phi\Phi^{-1} = 1, \qquad \Phi^{-1}\Phi = 1 - [\partial, \widehat{H}].$$

Thus, Φ and Φ^{-1} are mutually inverse homotopy equivalences over k.

The endomorphism algebra $C = \operatorname{End}_k(S)$ is a Clifford algebra generated by the contraction θ_i^* and wedge product θ_i operators. It is observed in [2] that (3.13) is an isomorphism of Clifford representations (in the homotopy category) when the complex \mathscr{E} is equipped with the action induced by Atiyah classes:

Definition 3.4. The Atiyah classes of \mathscr{A}_W are the R-linear odd operators

$$\operatorname{At}_i = [\partial, \partial_{x_i}] : \operatorname{End}_R(k^{\operatorname{stab}}) \longrightarrow \operatorname{End}_R(k^{\operatorname{stab}}),$$

Lemma 3.5. We have

$$\operatorname{At}_{i} = -[\psi_{i}^{*}, -] - \sum_{q=1}^{n} \partial_{x_{i}}(W^{q})[\psi_{q}, -].$$

Proof. By direct calculation:

$$\begin{split} \operatorname{At}_i &= \left[[d_{k^{\operatorname{stab}}}, -], \partial_{x_i} \right] \\ &= \sum_q \left[x_q [\psi_q^*, -], \partial_{x_i} \right] + \sum_q \left[W^q [\psi_q, -], \partial_{x_i} \right] \\ &= - \sum_q \partial_{x_i} (x_q) [\psi_q^*, -] - \sum_q \partial_{x_i} (W^q) [\psi_q, -] \\ &= - [\psi_i^*, -] - \sum_q \partial_{x_i} (W^q) [\psi_q, -] \,. \end{split}$$

4 The minimal model

We now take the homotopy retract from Proposition 3.3 as the input to the usual algorithm for the construction of an A_{∞} -minimal model of the DG-algebra $S \otimes \mathscr{A}_W$. We make use of the forward suspended products for this DG-algebra, which are

$$(4.1) r_q: (S \otimes \mathscr{A}_W[1])^{\otimes q} \longrightarrow S \otimes \mathscr{A}_W[1]$$

defined to be zero except for $r_1 = \partial$ and

$$(4.2) r_2(\alpha \otimes \beta) = (-1)^{\widetilde{\alpha}\widetilde{\beta} + \widetilde{\beta} + 1} \beta \alpha$$

where $\beta\alpha$ is the usual product in $S \otimes_k \mathscr{A}_W$ and $\widetilde{\alpha} = |\alpha| - 1$. Applying the algorithm described in Section ?? to the data of the A_{∞} -algebra $\left(S \otimes \mathscr{A}_W, \{r_1, r_2\}\right)$ and the strong homotopy retract of Proposition 3.3 produces a minimal A_{∞} -algebra

$$(\mathscr{E}, \{\rho_q\}_{q>2})$$
.

The products are defined by sums over trees, for example: one tree contributing to ρ_3 is:

For this particular tree T the associated operator is

$$\rho_T = (-1)^1 \Phi \circ r_2 \circ (\Phi^{-1} \otimes \widehat{H}) \circ (1 \otimes r_2) \circ (1 \otimes \Phi^{-1} \otimes \Phi^{-1}).$$

We first describe the final algorithm which allows us to compute the operations ρ_q in terms of the Feynman rules, and then we will justify this algorithm in the remainder of the paper. Here we stick to $W \in \mathfrak{m}^3$ and consider the subalgebra of $\mathscr E$ generated by the contraction operators

$$\mathcal{M} = \bigwedge (k\psi_1^* \oplus \cdots \oplus k\psi_n^*) \subseteq \mathscr{E}.$$

The formula is expressed in terms of $vacuum\ amplitudes$ which are functionals defined for every tree T with q input vertices

$$\mathcal{O}(T) \in (\mathscr{M}^{\otimes q})^*$$

This amplitude is defined to be a sum over *configurations*

$$\mathcal{O}(T) = \sum_{c \in \mathcal{C}} \mathcal{O}(T, c) .$$

We define the even operator $\delta_i = \psi_i \theta_i^*$ on the underlying module (3.5) of $S \otimes \mathscr{A}_W$, so that $\delta = \sum_i \delta_i$. Since $[\delta_i, \delta_j] = 0$ for all i, j we have

(4.3)
$$\exp(\pm\delta) = \exp(\pm\delta_1) \cdots \exp(\pm\delta_n).$$

Lemma 4.1. For $1 \le i \le n$ there is a commutative diagram

$$(4.4) \qquad (S \otimes \mathscr{A}_{W}) \otimes (S \otimes \mathscr{A}_{W}) \xrightarrow{m_{2}} S \otimes \mathscr{A}_{W}$$

$$\downarrow^{\delta_{i} \otimes 1 + 1 \otimes \delta_{i} + [\psi_{i}, -] \otimes \theta_{i}^{*}} \downarrow \qquad \downarrow^{\delta_{i}}$$

$$(S \otimes \mathscr{A}_{W}) \otimes (S \otimes \mathscr{A}_{W}) \xrightarrow{m_{2}} S \otimes \mathscr{A}_{W}$$

Definition 4.2. We define

$$(4.5) \Xi_i = [\psi_i, -] \otimes \theta_i^* : S \otimes \mathscr{A}_W \longrightarrow S \otimes \mathscr{A}_W.$$

and

$$(4.6) \Xi = \sum_{i} \Xi_{i} .$$

Proposition 4.3. There is a commutative diagram

$$(4.7) \qquad (S \otimes \mathscr{A}_{W}) \otimes (S \otimes \mathscr{A}_{W}) \xrightarrow{m_{2}} S \otimes \mathscr{A}_{W}$$

$$exp(-\delta) \otimes exp(-\delta) \downarrow \qquad \qquad exp(-\delta)$$

$$exp(-\Xi) \downarrow \qquad \qquad exp(-\delta)$$

$$(S \otimes \mathscr{A}_{W}) \otimes (S \otimes \mathscr{A}_{W}) \xrightarrow{m_{2}} S \otimes \mathscr{A}_{W}$$

Definition 4.4. ev_T is the operator associated to the tree T with σ_{∞} on all input vertices, $m_2 \exp(-\Xi)$ on all internal vertices and H_{∞} on internal edges.

Lemma 4.5. For any tree T

$$\rho_T(\alpha_1 \otimes \cdots \otimes \alpha_q) = (-1)^{S(T,\ell)} \operatorname{ev}_{\widehat{T}}(\alpha_q \otimes \cdots \otimes \alpha_1)$$

where $\ell = (\widetilde{\alpha}_1, \dots, \widetilde{\alpha}_q)$.

5 Notes

Remark 5.1. Varying the potential W affects only the relative "strength" of the triplevertex interactions, which are indexed by the monomials γ . Thus we can, for example, examine the degeneration from x^{d+1} to x^d (bundles of minimal A_{∞} -algebras).

6 Examples

To describe the higher multiplications it is convenient to write $[\psi_i, -]$ for the natural operator on \mathscr{A} (giving ψ_i, ψ_j^* the usual anticommutation relations for fermionic creation and annihilation operators), that is

$$[\psi_i, \psi_{j_1}^* \cdots \psi_{j_t}^*] = \sum_{l=1}^t (-1)^{l-1} \psi_{j_1}^* \cdots [\psi_i, \psi_{j_l}^*] \cdots psi_{j_t}^*$$
$$= \sum_{l=1}^t (-1)^{l-1} \delta_{i=j_l} \psi_{j_1}^* \cdots \psi_{j_t}^*.$$

A general fact is that the higher multiplications on \mathscr{A} are linear combinations of products of such operators. For example, when n=2 a standard term in r_3 would look like

$$\Phi_0 \otimes \Phi_1 \otimes \Phi_2 \mapsto \lambda \cdot [\psi_1, [\psi_2, \Phi_0]] \cdot [\psi_1, \Phi_1] \cdot [\psi_2, \Phi_2] \,.$$

The coefficient λ is computed as a Feynman amplitude on a binary planar tree with with incoming fermion states $\psi_1\psi_2, \psi_1, \psi_2$ in the three leaves (respectively) and a simple list of allowed interactions, the most significant of which is a trivalent interaction vertex with an incoming fermion ψ_j and outgoing fermion θ_i and bosons $\partial_{x_i}(x^{\gamma})$ whenever the polynomial W^j has a nonzero coefficient for the monomial $x^{\gamma} = x_1^{\gamma_1} x_2^{\gamma_2}$ (the fermions θ_i are the auxiliary spinor representation generators as in [2]). There are two other interactions which do not depend on W, and which take place only at internal edges or internal vertices (respectively).

Example 6.1. Let $W = x^d$ so that $\mathscr{A} = k \oplus k \psi^*$. Then only r_2 and r_d are nonzero and on $(\mathscr{A}[1])^{\otimes d}$ the only basis element with a nonzero value under r_d is

$$r_d(\psi^* \otimes \cdots \otimes \psi^*) = 1$$
.

Another way to say this is

$$r_d(\Phi_0 \otimes \cdots \otimes \Phi_{d-1}) = \prod_{i=0}^{d-1} [\psi, \Phi_i].$$

This A_{∞} -structure is cyclic with respect to the trace form on \mathscr{A} which projects onto the $k\psi^*$ -summand. Note that all such products are expanded such that the index i increases from left to right.

References

- [Dyc11] T. Dyckerhoff, Compact generators in categories of matrix factorizations, Duke Math. J. **159** (2011), 223–274, [arXiv:0904.4713].
 - [1] C. I. Lazaroiu, Generating the superpotential on a D-brane category: I, [arXiv:hep-th/0610120].
 - [2] D. Murfet, Computing with cut systems, [arXiv:1402.4541].
 - [3] N. Carqueville and D. Murfet, Adjunctions and defects in Landau-Ginzburg models, Adv. Math. **289** (2016), 480–566.
 - [4] T. Dyckerhoff and D. Murfet, *Pushing forward matrix factorisations*, Duke Math. J. **162** (2013), 1249–1311.