LASSO and Linear Regression

Parissa Amin

2022-10-09

Loading the data

```
Loading and scaling.
library(coefplot)
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.3
library(glmnet)
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 4.2.3
## Loaded glmnet 4.1-4
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(reshape2)
x<-read.csv("D:/MultiOmics/Data/FeatVal.csv")
rownames(x) \leftarrow x[,2]; x \leftarrow x[,-1:-2]
x <- x[, c(names(x)[-which(names(x) == "Response")], "Response")]</pre>
x[x=="False"] <- 0
x[x=="True"] <- 1
x[] <- lapply(x, as.numeric)</pre>
```

Linear

 $x[x=="NaN"] \leftarrow 0$

 $x[,1:93] \leftarrow scale(x[,1:93])$

Model<-lm(x\$Response~.,data=x[,1:93])</pre> summary(Model) ## ## lm(formula = x\$Response ~ ., data = x[, 1:93])## ## Residuals: ## Min 1Q Median 3Q Max ## -0.6444 -0.2117 0.0000 0.1710 0.6713 ## ## Coefficients: (11 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 0.268456 0.032579 8.240 9.85e-12 *** ## cin 0.076056 0.023 0.9814 0.001776 ## purity -0.066051 0.079447 -0.8310.4088 ## ploidy 0.072600 0.887 0.3782 0.064407 ## n_total 0.128607 0.067468 1.906 0.0610 -0.098 ## fraction_cancer -0.1230791.250121 0.9219 ## fraction_lymph 0.028595 0.945607 0.030 0.9760 ## fraction_stromal 0.052567 1.814061 0.029 0.9770 ## median_cancer_KDE_knn_50 0.258553 0.142552 1.814 0.0743 . ## median_lymph_KDE_knn_50 -0.103958 0.116264 -0.894 0.3745 ## median_stromal_KDE_knn_50 -0.035424 0.112473 -0.315 0.7538 ## HRD -0.020617 0.065503 -0.3150.7539 ## Telomeric.AI -0.066257 0.120842 -0.548 0.5853 ## LST 0.172471 0.083977 2.054 0.0440 * ## HRD.sum NΑ NANANA ## B2M -0.127164 0.132906 -0.9570.3422 ## TAP1 -0.696 0.4887 -0.139368 0.200173 ## TAP2 -0.027736 0.145411 -0.191 0.8493 ## HLA.A 0.020614 0.186716 0.110 0.9124 ## HLA.B 0.343580 0.253804 1.354 0.1804 ## HLA.C -0.171880 0.125085 -1.3740.1741 ## HLA.DPA1 -0.022335 0.238324 -0.094 0.9256 ## HLA.DPB1 -1.060 -0.295190 0.278421 0.2929 ## HLA.E 0.159876 0.166916 0.958 0.3416 ## HLA.F -0.128836 0.169668 -0.7590.4504 ## PD.1 0.035026 0.165653 0.211 0.8332 ## CTLA.4 -0.080318 0.217669 -0.3690.7133 ## LAG3 0.025098 0.115139 0.218 0.8281 ## TIGIT 0.325854 0.271769 1.199 0.2348 -0.001335 ## TIM3 0.158109 -0.008 0.9933 ## PD.L1 0.021935 0.130433 0.168 0.8670 ## PD.L2 0.022408 0.137800 0.163 0.8713 ## CD27 -0.105652 0.212951 -0.496 0.6214 ## ICOS 1.207 0.301583 0.249847 0.2317 ## ID01 0.023971 0.140454 0.171 0.8650 ## Act.CD4 0.056437 0.135069 0.418 0.6774 ## Act.CD8 -0.222905 0.240955 -0.9250.3583

0.007398

0.350307

-0.264728

-0.049154

Tem.CD4

Tem.CD8

MDSC

Treg

0.105569

0.226179

0.153932

0.151816 -0.324

0.070

1.549

-1.720

0.9443

0.1262

0.0902

0.7471

##	T.cells	-0.149413	0.266184	-0.561	0.5765
##	CD8.T.cells	0.047181	0.140722	0.335	0.7385
##	Cytotoxic.lymphocytes	0.267646	0.193070	1.386	0.1703
##	NK.cells	0.094826	0.126228	0.751	0.4552
##	B.lineage	-0.029104	0.136213	-0.214	0.8315
##	Monocytic.lineage	-0.226654	0.171172	-1.324	0.1900
##	Myeloid.dendritic.cells	0.015437	0.079666	0.194	0.8469
##	Neutrophils	-0.036579	0.067794	-0.540	0.5913
##	Endothelial.cells	0.065313	0.123948	0.527	0.6000
##	Fibroblasts	-0.175810	0.087599	-2.007	0.0488
##	Signature.1	0.477342	0.337040	1.416	0.1614
##	Signature.2	0.134591	0.096648	1.393	0.1684
##	Signature.3	0.357294	0.218448	1.636	0.1067
##	Signature.4	0.105934	0.071827	1.475	0.1450
##	Signature.5	0.042791	0.069033	0.620	0.5375
	Signature.6	0.135720	0.082894	1.637	0.1063
	Signature.7	0.103558	0.068985	1.501	0.1381
	Signature.8	0.063032	0.072760	0.866	0.3895
	Signature.9	0.039605	0.093273	0.425	0.6725
	Signature.10	0.042678	0.086271	0.495	0.6225
	Signature.11	0.028530	0.061783	0.462	
	Signature.12	0.040741	0.058833		
	Signature.13	0.136636	0.115571	1.182	0.2413
	Signature.14	NA	NA	NA	NA
	Signature.15	0.112969	0.109160	1.035	0.3045
	Signature.16	0.026522	0.066103	0.401	0.6896
	Signature.17	NA	NA	NA	NA
	Signature.18	0.083046	0.079962	1.039	0.3028
	Signature.19	NA	NA	NA	NA
	Signature.20	0.017353	0.047038	0.369	0.7134
	Signature.21	0.002938	0.061131	0.048	0.9618
	Signature.22	NA	NA	NA	NA
	Signature.23	NA	NA	NA	NA
	Signature.24	0.109786	0.102697	1.069	0.2890
	Signature.25	0.068364	0.068664	0.996	0.3231
	Signature.26	0.079058	0.052971	1.492	0.1403
	Signature.27	0.006329	0.047552	0.133	0.8945
	Signature.28	NA	NA	NA	NA
	Signature.29	0.079463	0.105541	0.753	0.4542
	Signature.30	NA	NA	NA	NA
	Unknown	NA	NA	NA	NA
	NumberMutationsAnalysed	-0.020245	0.077584	-0.261	0.7950
	iC10	0.045166	0.052614	0.858	0.3937
	Stage	-0.124797	0.055196	-2.261	0.0271
	LNStatus	-0.036233	0.052840	-0.686	0.4953
	ER	-0.014188	0.077878	-0.182	0.8560
	HER2	NA	NA	NA	NA
	PAM50_Basal	-0.314313	0.310297	-1.013	0.3148
	PAM50_Her2	-0.173301 -0.238650	0.300364	-0.577 -0.972	0.5659
	PAM50_LumA	-0.238659 -0.301775	0.245586	-0.972 -0.912	0.3347
	PAM50_LumB	-0.301775 -0.135567	0.331042	-0.912 -0.898	0.3653
	PAM50_Normal	-0.135567 NA	0.150966 NA	-0.898 NA	0.3725 NA
	PAM50_Unk	IV A	IVA	IVA	IVA
##					

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3977 on 66 degrees of freedom
## Multiple R-squared: 0.6433, Adjusted R-squared: 0.2001
## F-statistic: 1.452 on 82 and 66 DF, p-value: 0.05886
#LASSO
y1<-data.matrix(x[,1:93])</pre>
y2<-data.matrix(x$Response)
cv_model <- cv.glmnet(y1,y2, alpha = 1)</pre>
best_lambda <- cv_model$lambda.min</pre>
lasso_coef=predict(cv_model,type="coefficients",s=best_lambda)[1:93,]
nonzeroCoef<-lasso coef[which(lasso coef!=0)]</pre>
nonzeroCoef<- as.data.frame(nonzeroCoef)</pre>
nonzeroCoef[,2]<- rownames(nonzeroCoef)</pre>
nonzeroCoef.m<- melt(nonzeroCoef)</pre>
## Using V2 as id variables
Cross validation LASSO:
plot(cv_model)
```



```
ggplot(nonzeroCoef.m,aes(x=V2,y=value,color=V2))+geom_point(size=5)+
theme(text = element_text(size =8))+
theme(axis.text.x=element_text(angle = -90, hjust = 0))
```


Conlusion

Along side the ML and XAI model, I wanted to try two more traditional approaches to fit features to response to NAC. I used linear regression and LASSO. While linear regression doesnt identify many significant features, lasso gives me 8 features that are relatively similar to the features I found to be important using SHAP values.