Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №3 з дисципліни «Теорія електричних та магнітних кіл» на тему: «Дослідження нерозгалуженого електричного кола синусоїдного струму»

> Виконав: студент ННІКІТ СП-225 Клокун Владислав Перевірив: Молчанов О. В.

1 Мета роботи

- 1. Використовуючи вимірювальні прилади, набути навички визначення параметрів ланцюга змінного струму, а саме: активного опору резистора, активного і реактивного опорів реальної котушки індуктивності і реального конденсатора.
- 2. Дослідити різні комбінації послідовного включення в ланцюг активного резистора, котушки індуктивності і конденсатора.
- 3. Дослідити резонанс у послідовному контурі.

2 Короткі теоретичні відомості

Для того, щоб визначити значення опорів різних елементів електричних ланцюгів, необхідно виміряти за допомогою приладів значення напруги, прикладеної до елемента, значення струму, який по ньому протікає, а також активну потужність, що виділяється, та кут зсуву фази. Ці величини вимірюються за допомогою вольтметра, амперметра, ватметра, фазометра.

Значення активного опору резистора визначається за законом Ома:

$$R = \frac{U}{I}$$
.

Потужність, споживана елементом, виділяється у вигляді тепла тільки на активних резисторах і вимірюється ватметром. Тому опір активного резистора можна визначити ще й за формулою:

$$R = \frac{P}{I^2}.$$

Щоб визначити значення активного опору реальних котушки індуктивності і конденсатора за допомогою вольтметра, амперметра і ватметра, використовуємо формули, що отримуємо з трикутника опорів:

$$Z = \sqrt{R^2 + X^2},$$

де $Z = \frac{U}{I}$ — модуль повного опору кола (Ом), R — повний активний опір кола (Ом), X — повний реактивний опір кола (Ом), U — діюче значення синусоїдної напруги (В), I — діюче значення синусоїдного струму (А).

$$X = X_K - X_C = \omega L - \frac{1}{LC},$$

де X_K — реактивний індуктивний опір кола (Ом), X_C — реактивний ємністний опір кола (Ом), L — індуктивність котушок кола (Гн), C — ємність конденсаторів кола Φ , ω — кутова частота (рад c^{-1}).

$$\omega = 2\pi f$$

f — циклічна частота (Гц).

3 Порядок виконання роботи

Зібрати вимірювальну частину схеми (рис. 1), використовуючи амперметр, фазометр, мультиметр і, підключаючи по черзі (лабораторний блок №8) резистор, котушку індуктивності і конденсатор, зробити необхідні вимірювання і занести їх в табл. 1.

Рис. 1: Вимірювальна частина схеми

Коло	Виміряти						Обчислити опір, Ом				
	U, B	I, A	φ , $^{\circ}$	U_R , B	U_K , B	U_C , B	R	R_K	R_C	X_K	X_C
R	10,1	$157 \cdot 10^{-3}$	0	10,1			0,06	_	_	_	_
L	11,0	$76 \cdot 10^{-3}$	77		11,1	_		0,14		*	_
С	11,3	$62 \cdot 10^{-3}$	90		_	11,3			0,18		

Табл. 1: Вимірювання 1

Використовуючи виміряні величини, обчислити значення активного опору резистора, активного і реактивного опорів котушки індуктивності і конденсатора. Отримані значення занести в табл. 1.

Підключаючи послідовно до вимірювальної частини схеми комбінації елементів RL, RC, RLC, зробити необхідні вимірювання та занести їх в табл. 2.

Коло	U, B	I, A	$arphi,^{\circ}$	U_R , B	U_K , B	U_C , B	$U_R + U_K$, B	$U_R + U_C$, B
RL	10,9	$39 \cdot 10^{-3}$	+33	7,7	6,2		_	
RC	10,9	$28 \cdot 10^{-3}$	-34	8,8	_	6,4	_	
RLC	10,8	$31 \cdot 10^{-3}$	-9	9,5	5,2	6,9	5,3	11,8

Табл. 2: Вимірювання 2

Підключити до вимірювальної частини схеми тільки котушку індуктивності (лабораторний блок N28) і конденсатор (магазин ємності). Знаючи величину реактивного опору котушки, визначити значення резонансної ємності, встановити на вході схеми напругу 5 В-7 В і, змінюючи ємність конденсатора у діапазоні 0 мк $\Phi-99,5$ мк Φ , виміряти величини, вказані в табл. 3.

No	U, B	I, A	$arphi,^{\circ}$	U_K , B	U_C , B	C , мк Φ
1	10,0	80,9 · 10	³ +29	10,0	0	0
2	10,0	$19,6 \cdot 10^{-}$	3 -31	2,3	12,7	5

Табл. 3: Вимірювання 3

№	U, B	I, A	$\varphi, ^{\circ}$	U_K , B	U_C , B	C , мк Φ
3	10,0	$44,9 \cdot 10^{-3}$	3 -31	5,4	15,7	9
4	10,0	$72,1 \cdot 10^{-3}$	-32	9,0	19,1	12
5	10,0	$361 \cdot 10^{-3}$	³ –16	47,7	53,6	22,6
6	10,0	$485 \cdot 10^{-3}$	-2	59,9	59,5	27,9
7	10,0	$202 \cdot 10^{-3}$	3 +28	28,2	18,6	37,9
8	10,0	$141 \cdot 10^{-3}$	3 +34	20,5	10,4	47,9
9	10,0		3 +36	17,3	7,4	57,9
10	10,0	$87 \cdot 10^{-3}$	3 +39	13,2	3,1	99,5

Табл. 3: Вимірювання 3

Кількість змін значення ємності дорівнює десяти, причому п'яте значення ємності змінного конденсатора має дорівнювати значенню резонансної ємності.

Побудувати в масштабі векторні діаграми напруг для кожної комбінації включення елементів. Побудувати в масштабі трикутники напруг і опорів для кожного випадку.

Побудувати в масштабі характеристики $I=f(C),\,U_K=f(C),\,U_C=f(C),\,\varphi=f(C)$ в одній координатній сітці.

4 Графічний матеріал

4.1 Коло *RL*

За виміряними даними будуємо векторну діаграму напруг для кола RL (рис. 2).

Рис. 2: Векторна діаграма напруг для кола *RL*

Оскільки $\angle \varphi > 0$, трикутники будуть називатись активно-індуктивними.

4.2 Коло *RC*

Оскільки $\angle \varphi < 0$, трикутники будуть називатись активно-ємнісними.

Рис. 3: Векторна діаграма напруг для кола *RC*

5 Висновки

Під час виконання даної лабораторної роботи ми набули навички визначення параметрів ланцюга змінного струму за допомогою вимірювальних приладів, а саме: активного опору резистора, активного і реактивного опорів реальної котушки індуктивності і реального конденсатора; дослідили різні комбінації послідовного включення в ланцюг активного резистора, котушки індуктивності і конденсатора; дослідили резонанс у послідовному контурі.