Limites

Table des matières

1	Lim	nite de fonctions
	1.1	limite infinie en l'infini
	1.2	limite finie en l'infini
	1.3	limite finie ou infinie d'une fonction en $a\ (a \in \mathbb{R})$
	1.4	asymptote oblique
2	Pro	priétés des limites
	2.1	opérations sur les limites
	2.2	limite et ordre
	2.3	limite de la composée de deux fonctions ou d'une fonction et d'une suite
	2.4	Convergence de suites monotone

Limite de fonctions 1

1.1 limite infinie en l'infini

Définition:

- 1. La fonction f tend vers $+\infty$ quand $x \to +\infty$ (resp. $x \to -\infty$) si et seulement si tout intervalle $[\lambda; +\infty[$ $(\lambda \in \mathbb{R})$ contient toutes les valeurs de f(x) pour x assez grand (resp. -x assez grand).
 - On note $\lim_{x \to +\infty} f(x) = +\infty$ (resp. $\lim_{x \to -\infty} f(x) = +\infty$).
- 2. La fonction f tend vers $-\infty$ quand $x \to +\infty$ (resp. $x \to -\infty$) si et seulement si tout intervalle $]-\infty; \lambda[\ (\lambda \in \mathbb{R})$ contient toutes les valeurs de f(x) pour x assez grand (resp. -x assez grand).

On note
$$\lim_{x \to +\infty} f(x) = -\infty$$
 (resp. $\lim_{x \to -\infty} f(x) = -\infty$).

Exemple : • $\lim_{x \to +\infty} \sqrt{x} = +\infty$ • $\lim_{x \to +\infty} x^n = +\infty$ pour tout $n \in \mathbb{N}$ • $\lim_{x \to -\infty} x^n = +\infty$ pour tous entiers n pairs et $\lim_{x \to -\infty} x^n = +\infty$ pour tous entiers n impairs

Exercice: On considère la fonction f définie sur \mathbb{R} par $f(x) = 3x^3 + x^2$.

- 1. Donner les valeurs de f(1), f(10), f(100), f(1125).
- 2. On considère l'intervalle $]100; +\infty[$. Démontrer que pour $x > 10, f(x) \in]100; +\infty[$.
- 3. On considère un intervalle A; A avec A > 0, montrer que pour $A > \sqrt{A}$, tous les A sont dans l'intervalle $A; +\infty[$.
- 4. Que peut-on en conclure?

limite finie en l'infini 1.2

Définition: Soit l un réel, une fonction f tend vers l quand x tend vers $+\infty$ (resp. $-\infty$) si et seulement si tout intervalle ouvert contenant l contient aussi toutes les valeurs de f(x) pour x assez grand (resp. -x assez grand). On note alors $\lim_{x \to +\infty} f(x) = l$ (resp. $\lim_{x \to -\infty} f(x) = l$)

Si $\lim_{x \to +\infty} = l$ (resp. $\lim_{x \to -\infty} f(x) = l$), alors la droite d'équation y = l est asymptote à la courbe représentative de f en $+\infty$ (resp. en $-\infty$).

La droite d'équation y = l est asymptote à la courbe représentative de la fonction en $+\infty$.

La droite d'équation y = l est asymptote à la courbe représentative de f en $-\infty$.

Exemple:
$$\lim_{x \to +\infty} \frac{2+x}{x} = 1$$
 car $\frac{2+x}{x} = \frac{2}{x} + 1$ et $\lim_{x \to +\infty} \frac{2}{x} = 0$.

et
$$\lim_{x \to +\infty} \frac{2}{x} = 0.$$

limite finie ou infinie d'une fonction en a $(a \in \mathbb{R})$

Soient a un réel et un intervalle I contenant a ou dont a est un borne, f une fonction définie dans I sauf peut-être en

Définition: On dit que la fonction f tend vers l quand x tend vers a si et seulement si tout intervalle ouvert contenant l contient aussi toutes les valeurs de f(x) pour tout réel x dans I et assez proche de a.

Remarque : $\lim_{x\to a} f(x) = l$ équivaut à $\lim_{h\to 0} f(a+h) = l$.

Définition: On dit que la fonction f tend vers $+\infty$ (resp. $-\infty$) quand x tend vers a si et seulement si tout intervalle $[\lambda; +\infty[$ (resp. $]-\infty; \lambda[$) ($\lambda \in \mathbb{R}$), contient toutes les valeurs de f(x) pour tout réel x dans I et assez proche de a.

Définition: Lorsque $\lim f(x) = +\infty$ (ou $-\infty$), la droite d'équation x = a est asymptote verticale à la courbe représentative de f.

Exemple : Si $f(x) = \frac{1}{x-2}$, alors $\lim_{x \to 2 \atop x \to 2} f(x) = +\infty$ et la droite d'équation x = 2 est asymptote à la courbe représentative $\mathrm{de}\ f.$

Dans les deux cas, la droite d'équation x = a est asymptote à la courbe représentative de la fonction.

asymptote oblique

Définition : Si $\lim_{x\to +\infty} [f(x)-(ax+b)]=0$, alors la droite d'équation y=ax+b est asymptote à la courbe représentation. tative de f en $+\infty$.

Si $\lim_{x\to -\infty} [f(x)-(ax+b)]=0$, alors la droite d'équation y=ax+b est asymptote à la cour

f(x)ax+b

Remarque: On note \mathcal{C} la courbe représentative d'une fonction f et \mathcal{D} la droite d'équation y = ax + b.

Soit x un réel. Le point M de \mathcal{C} d'abscisse x a pour ordonnée f(x).

Le point N de \mathcal{D} d'abscisse x a pour ordonnée ax + b.

f(x) - (ax + b) correspond à la différence des ordonnées de ces deux points.

Exemple : Soit f une fonction définie sur $\mathbb{R} \setminus \{0\}$ par $f(x) = 2x - 3 - \frac{4}{x}$

 $f(x)-(2x-3)=-\frac{4}{x}\,;\quad \lim_{x\to -\infty}-\frac{4}{x}=0\quad \text{et}\quad \lim_{x\to +\infty}-\frac{4}{x}=0,\\ \text{donc la droite }\Delta\text{ d'équation }y=2x-3\text{ est asymptote oblique à la courbe \mathcal{C} représentative de f en $-\infty$ et en $+\infty$.}$

De plus, pour tout réel x > 0, $-\frac{4}{x} < 0$ et pour tout réel x < 0, $-\frac{4}{x} > 0$, donc la courbe \mathcal{C} est située au-dessus de la droite Δ sur $]-\infty;0[$ et en-dessous de Δ sur $]0;+\infty[$.

On désigne par M le point de la courbe $\mathcal C$ d'abscisse x et N le point de Δ de même abscisse. On cherche à résoudre l'inéquation $MN < 10^{-1}$.

$$MN < 10^{-1}$$
 signifie $\left| -\frac{4}{x} \right| < 10^{-1}$ ce qui équivaut à
$$\begin{cases} -\frac{4}{x} < 10^{-1} & \text{si } x < 0 \\ \frac{4}{x} < 10^{-1} & \text{si } x > 0 \end{cases}$$
 équivaut à $x < -40$ ou $x > 40$.

Exercice : Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{2x^2 + 3x + 4}{x + 1}$. On note $\mathcal C$ la courbe représentative de la fonction f dans un repère orthogonal.

- Déterminer trois réels a, b et c tels que pour tout $x \in [0; +\infty[$, $f(x) = ax + b + \frac{c}{x+1}$.
- Montrer que la droite Δ d'équation y = 2x + 1 est asymptote à \mathcal{C} .
- Etudier la position relative de la droite Δ et de la courbe \mathcal{C} .

2 Propriétés des limites

2.1 opérations sur les limites

Dans tous les tableaux qui suivent, α désigne un réel, ou $+\infty$, ou $-\infty$ et l et l' désignent deux réels.

Les fonctions f et q considérées sont définies au voisinage de α .

Les limites de ces fonctions sont déterminées en α .

 (u_n) et (v_n) désignent deux suites de nombres réels.

limite d'une somme

Si (u_n) ou f a pour limite	l	l	l	$+\infty$	$-\infty$	$+\infty$				
Si (v_n) ou g a pour limite	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$				
alors $(u_n + v_n)$ ou $f + g$ a pour limite	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$?				

limite d'un produit

Si (u_n) ou f a pour limite	l	l > 0	l > 0	l < 0	l < 0	$+\infty$	$+\infty$	$-\infty$	0
Si (v_n) ou g a pour limite	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
alors $(u_n \times v_n)$ ou $f \times g$ a pour limite	ll'	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$+\infty$?

remarque : limite en $+\infty$ de ax^n

On déduit du tableau que pour tout entier $n \ge 1$, $\lim_{x \to +\infty} x^n = +\infty$ et que,

Si
$$a > 0$$
, $\lim_{x \to +\infty} (ax^n) = +\infty$ et si $a < 0$, $\lim_{x \to +\infty} (ax^n) = -\infty$.

Exemple: Déterminer la limite en $-\infty$ de la fonction f définie sur \mathbb{R}^* par : $f(x) = x^3 \left(\frac{1}{x} - 2\right)$.

$$\lim_{x \to -\infty} \left(\frac{1}{x} - 2 \right) = -2 \quad \text{ et } \quad \lim_{x \to -\infty} x^3 = -\infty, \text{ donc } \lim_{x \to -\infty} f(x) = +\infty.$$

limite en l'infini d'une fonction polynôme

Exemple: Déterminer
$$\lim_{x \to +\infty} x^3 + 2x^2 - 4$$
 $x^3 + 2x^2 - 4 = x^3 \left(1 + \frac{2}{x} - \frac{4}{x^3}\right)$ et $\lim_{x \to +\infty} \frac{2}{x} = 0$; $\lim_{x \to +\infty} \frac{4}{x^3} = 0$

d'où
$$\lim_{x\to +\infty} 1 + \frac{2}{x} - \frac{4}{x^3} = 1$$
 et $\lim_{x\to +\infty} x^3 = +\infty$. Donc $\lim_{x\to +\infty} x^3 + 2x^2 - 4 = +\infty$. Remarque :La limite en $+\infty$ ou en $-\infty$ d'une fonction **polynôme** est la limite de son terme de plus haut degré.

limite d'un quotient

\longrightarrow	cas	οù	le	dénominateur	a		

- 7 cas ou le denominateur a une	mmte m	on nun					
Si (u_n) ou f a pour limite	l	l	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$\pm \infty$
Si (v_n) ou g a pour limite	$l' \neq 0$	$\pm \infty$	l'>0	l' < 0	l'>0	l' < 0	$\pm \infty$
alors $\left(\frac{u_n}{v_n}\right)$ ou $\frac{f}{g}$ a pour limite	$\frac{l}{l'}$	0	$+\infty$	$-\infty$	$-\infty$	$+\infty$?

 \rightarrow cas où le dénominateur a une limite nulle

Si (u_n) ou f a pour limite	l > 0	l > 0	l < 0	l < 0	0
Si (v_n) ou g a pour limite	0 en restant positive	0 en restant négative	0 en restant positive	0 en restant négative	0
alors $\left(\frac{u_n}{v_n}\right)$ ou $\frac{f}{g}$ a pour limite	$+\infty$	$-\infty$	$-\infty$	+∞	?

Exemple : Soit f la fonction définie sur $\mathbb{R} \setminus \left\{ \frac{3}{2} \right\}$ par : $f(x) = \frac{x^3}{4x - 6}$.

$$\lim_{x \to \frac{3}{2}} x^3 = \frac{27}{8} \quad \text{ et } \quad \lim_{x \to \frac{3}{2}} 4x - 6 = 0.$$

Si
$$x > \frac{3}{2}$$
, alors $4x - 6 > 0$ et dans ce cas, $\lim_{\substack{x \to \frac{3}{2} \\ x > \frac{3}{2}}} f(x) = +\infty$

Si
$$x < \frac{3}{2}$$
, alors $4x - 6 < 0$ et dans ce cas, $\lim_{\substack{x \to \frac{3}{2} \\ x < \frac{3}{2}}} f(x) = -\infty$

La droite d'équation $y = \frac{3}{2}$ est asymptote verticale à la courbe représentant f.

limite en l'infini d'une fonction rationnelle 2x + 4

$$\frac{2x+4}{3x^2-5} = \frac{x^2\left(\frac{2}{x} + \frac{4}{x^2}\right)}{x^2\left(3 - \frac{5}{x^2}\right)} = \frac{\frac{2}{x} + \frac{4}{x^2}}{3 - \frac{5}{x^2}} \quad \text{pour } x \neq 0$$

et
$$\lim_{x \to -\infty} \frac{2}{x} = 0$$
; $\lim_{x \to -\infty} \frac{4}{x^2} = 0$; $\lim_{x \to -\infty} \frac{5}{x^2} = 0$

donc
$$\lim_{x \to -\infty} \frac{2x+4}{3x^2-5} = 0$$

Exemple: Déterminer $\lim_{x\to -\infty} \frac{2x+4}{3x^2-5}$ $\frac{2x+4}{3x^2-5} = \frac{x^2\left(\frac{2}{x}+\frac{4}{x^2}\right)}{x^2\left(3-\frac{5}{x^2}\right)} = \frac{\frac{2}{x}+\frac{4}{x^2}}{3-\frac{5}{x^2}} \quad \text{pour } x\neq 0$ et $\lim_{x\to -\infty} \frac{2}{x} = 0$; $\lim_{x\to -\infty} \frac{4}{x^2} = 0$; $\lim_{x\to -\infty} \frac{5}{x^2} = 0$ donc $\lim_{x\to -\infty} \frac{2x+4}{3x^2-5} = 0$ Remarque: La limite en $+\infty$ ou en $-\infty$ d'une fonction rationnelle est égale à la limite du quotient des termes du plus haut degré.

2.2limite et ordre

Dans les trois propriétés qui suivent, (u_n) et (v_n) désignent deux suites de réels. l et l' sont deux réels. De plus α désigne un réel, ou $+\infty$, ou $-\infty$ et f et g sont deux fonctions définies dans un voisinage I de α . Propriété:

- 1. Si $u_n \longrightarrow l$, $v_n \longrightarrow l'$ et $u_n \le v_n$ à partir d'un certain rang, alors $l \le l'$.
- 2. Si $\lim_{x \to \alpha} f(x) = l$ et $\lim_{x \to \alpha} g(x) = l'$ et pour tout x de I, $f(x) \le g(x)$, alors $l \le l'$.

Remarque: Cette propriété n'est pas vraie pour les inégalités strictes.

Propriété:

- 1. S'il existe un rang n_0 tel que pour tout $n \ge n_0, \ u_n \ge v_n,$ et si $\lim_{n \to +\infty} v_n = +\infty,$ alors $\lim_{n \to +\infty} u_n = +\infty$
- 2. Si pour tout réel de I $f(x) \ge g(x)$, et si $\lim_{x \to \alpha} g(x) = +\infty$, alors $\lim_{x \to \alpha} f(x) = +\infty$.

Propriété:

- 1. S'il existe un rang n_0 tel que pour tout $n \ge n_0, \ u_n \le v_n,$ et si $\lim_{n \to +\infty} v_n = -\infty,$ alors $\lim_{n \to +\infty} u_n = -\infty$
- 2. Si pour tout réel de I $f(x) \leq g(x)$, et si $\lim_{x \to \alpha} g(x) = -\infty$, alors $\lim_{x \to \alpha} f(x) = -\infty$.

Exercice 1: f est la fonction définie sur \mathbb{R} par $f(x) = 1 + x + \sin x$. Déterminer $\lim_{x \to +\infty} f(x)$.

Exercice 2: g est la focntion définie sur $]0; +\infty[$ par $: g(x) = \frac{1}{\sqrt{x}} + 3 - \cos\left(\frac{1}{x}\right).$

Théorème des gendarmes :

- 1. Soient (v_n) et (w_n) deux suites convergeant vers le même réel l. Si (u_n) est une suite telle que, à partir d'un certain rang, $v_n \leq u_n \leq w_n$, alors $\lim_{n \to +\infty} u_n = l$.
- 2. α désigne un réel, ou $+\infty$, ou $-\infty$, et l un réel.

f, g et h sont trois fonctions définies sur un intervalle I voisinage de α .

Si pour tout $x \in I$, $g(x) \le f(x) \le h(x)$ et $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l$, alors $\lim_{x \to a} f(x) = l$.

$$et \quad \frac{2n-3}{n+3} \le u_n \le \frac{2n+3}{n+3}$$

Exemple 1 : Soit
$$(u_n)$$
 la suite définie pour tout $n \in \mathbb{N}$ par $u_n = \frac{2n+3(-1)^n}{n+3}$.
Pour tout entier n , on a : $-1 \le (-1)^n \le 1$, ce qui donne $2n-3 \le 2n+3(-1)^n \le 2n+3$ et $\frac{2n-3}{n+3} \le u_n \le \frac{2n+3}{n+3}$ or $\lim_{n \to +\infty} \frac{2n-3}{n+3} = \lim_{n \to +\infty} \frac{2n+3}{n+3} = 2$, donc la suite u_n converge vers 2.

Exemple 2 : Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = \frac{\sin(x)}{x}$. Déterminer $\lim_{x \to +\infty} f(x)$.

Pour tout x dans $]0; +\infty[$, $\frac{-1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$. De plus $\lim_{x \to +\infty} \frac{-1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$, donc $\lim_{x \to +\infty} f(x) = 0$.

limite de la composée de deux fonctions ou d'une fonction et d'une suite

Théorème: α , β et l désignent des réels, ou $+\infty$, ou $-\infty$.

1. Si
$$\lim_{n \to +\infty} u_n = \beta$$
 et $\lim_{x \to \beta} g(x) = l$, alors $\lim_{n \to +\infty} g(u_n) = l$

2. Si
$$\lim_{x \to \alpha} f(x) = \beta$$
 et $\lim_{x \to \beta} g(x) = l$, alors $\lim_{x \to \alpha} g(f(x)) = l$.

Exemple: Déterminer $\lim_{x \to +\infty} \sqrt{4 + \frac{1}{x^2}}$.

$$\lim_{x\to +\infty} 4 + \frac{1}{x^2} = 4 \quad \text{ et } \quad \lim_{X\to 4} \sqrt{X} = 2 \quad \text{ donc } \quad \lim_{x\to +\infty} \sqrt{4 + \frac{1}{x^2}} = 2.$$

Convergence de suites monotone

Définition : Soit (u_n) une suite de nombres réels.

La suite (u_n) est dite croissante si pour tout $n \in \mathbb{N}$, $u_{n+1} \ge u_n$.

La suite (u_n) est dite décroissante si pour tout $n \in \mathbb{N}$, $u_{n+1} \leq u_n$.

Théorème:

Une suite croissante majorée est convergente.

Une suite décroissante minorée est convergente.

Remarque: Ce théorème permet de justifier qu'une suite est convergente, il ne permet pas de déterminer la limite.