

Resit TI2316 Automata, Languages & Computability

August 13, 2019, 9:00-12:00

- Total number of pages (without this cover page): 10.
- This exam consists of 10 open questions, the weight of each subquestion is indicated on the exam.
- Consulting handouts, readers, notes, books or other sources during this exam is prohibited. The use of electronic devices such as calculators, mobile phones etc is also prohibited.
- A single exam cannot cover all topics, so do not draw conclusions based on this exam about topics that are never tested.
- Formulate your answers in correct English and write legibly (use scrap paper first). Do not give irrelevant information, this could lead to a deduction of points.
- Before handing in your answers, ensure that your name and student number is on every page and indicate the number of pages handed in on (at least) the first page.
- **Note:** for some exercises a maximum is stated for the number of lines an answer can consist of! Exceeding this number may lead to deduction of points.

Question:	1	2	3	4	5	6	7	8	9	10	Total
Points:	5	4	8	6	6	6	4	4	4	9	56

Learning goals coverage, based on the topics of the study assignments:

Learning goals coverage, based on the to	pics of the	e study as	signmei	nts:				
Goal	M16	E16	M17	E17	R17	MT18	ET18	RT 18
Strings & Operations								
Inductive proof over strings								
Languages & Operations								i i
(Formal) def. of DFA	2b	1a	1a, 1b		1a, 5c	1a		1a
Accepting words & Recognising languages (DFA)				1a	1b			
(Formal) def. of δ^*	1b		1a, 1b	1b		1b		
Regular languages & operations			i i			1c		1b
Extension input alphabet of a DFA				2b				
Closure under union, complement, intersection	2b	2c		2a	1c	2a,2b		2
(Formal) def. of NFA	1a		1c	3c	5c			3a
Equivalence of NFA & DFA		2c	3a,3c		2b			İ
Accepting words & Recognising languages (NFA)			2a		2a	3 a		3b
Closure under concat and star	1d	1c	2b		2c	3 b		
(Formal) def. of regexp		2a		3a,3c	2d, 5c	3 b		
(Formal) def. of GNFA		_	1c	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,	4		i
Equivalence of NFA & regexp	1 c	2b	3b,3c	3d				3c
Accepting words & Recognising languages (GNFA)			0.0,00	3b				"
Nonregular languages	2a		4	4		5		i
Pumping lemma for reg. languages	2a		4	4		7		4
Basic concepts of grammar	3a		5a					-
(Formal) def. of CFGs	3c	1b,3a,3b	5b		3a,3c	5 a		5a
Derivations & Ambiguity	3b	15,50,55	0.5		3b	5 b		5a
Closure of context-free lang	3d	3 c	5c		0.5			""
Converting a CFG into CNF	54	3d	30	5a				5b
(Formal) def. of PDAs	4a, 4b, 4c	Ju		Su	4a			55
Equivalence of CFGs & PDAs	14, 15, 16			5b	4b	6		
(Formal) def of (multitape) DTMs		4a,4b,4c		35	1.0	•	1a,1c	6a
(Formal) def of (multitage) NTMs		14, 15, 10		8a,8b	5a,5b, 5c		2a,2b,2c	6b
Deciders		4d,5b,5c		8c	34,35, 30		3a	7
Equivalence of TMs		14,55,50		6b			1b	6c
Comp. power of NTMs and DTMs				OB	5d		15	"
Differences between NTMs and DTMs					Su			
König's Lemma							2	
Enumerators				9a	6a		_	8a
Recognisers		5b		9a	Ou .		3b	
Hilbert's Entscheidungsproblem		35		Ju			35	
Churing-Turing Thesis								
Encoding TMs/Problems								
Decidable languages				6a	6b			
Countable vs Uncountable				- Ou	8a			
Hilbert Hotel					Oa			
(Un)Countability of Q and R					8b			
Halting problem				6c,6d	9a			8b
Acceptance problem		5a(?)		9a	Ju		4a	
Universal TMs		54(1)		Ja				
co-Turing-recognizability				9b			4b	
(Formal) def. of a reduction				7a,7b			5a,5b	
Direct reductions				14,15			7	9
Computable functions				8a	9b		· '	9
Mapping/Many-to-one reducability		5b,6		0a 10a,10b	9b 9c			10
Rice's theorem		35,0		104,100	10		6	10
Reduction via computation histories					10		"	
reduction via computation materies	1	l						

1. (a) (3 points) Consider a modification of the DFA model, called SFA. The SFA model is identical to the DFA with the extra requirement that |F|=1. Is the SFA model equally expressive as the DFA model? If so, explain how we can construct an SFA from a DFA. If not, give an example of a DFA that has no SFA equivalent and argue why (no full proof is needed).

Solution: Take a machine D that returns true only if the remainder when dividing by 3 is at most 1. This has two accept states q_0 (the start state) and q_1 (for a remainder of 1), and only q_2 rejects. It needs all three of these states however, as we need to keep track of a 3 option counter. Thus we cannot create an SFA for this as we cannot collapse q_0 and q_1 together.

(b) (2 points) Take two DFAs D_1 and D_2 . Now take the language $L = (L(D_1) \cup L(D_2))^*$. Is L regular? Explain your answer in at most 5 lines.

Solution: Yes, regularity is closed under both \cup and *.

2. (4 points) Consider the two DFAs D_1 and D_2 below. Create a new DFA D_3 with at most 5 states, so that language: $L(D_3) = L(D_1) \cap L(D_2)$. Explain how you constructed your answer in at most 5 lines.

Solution: $L(D_1)$ is described by the regular expression: $(1 \cup 3)^*(0 \cup 2)(0 \cup 2)^*$. $L(D_2)$ is described by the regular expression: $(0 \cup 2)^*(1 \cup 3)(0 \cup 2)^*$. Thus $L(D_3)$ (the intersection), must have at least one 1 or 3(this must be at the start) and then followed by at least one 0 or 2, followed by zero or more iterations of 0 or 2. Thus the regular expression: $(1 \cup 3)(0 \cup 2)(0 \cup 2)^*$. In a DFA:

3. Consider the NFA $N=(\{q_0,q_1,q_2\},\{a,b,c\},\delta,q_2,\{q_1\})$, whose transition graph is depicted below.

(a) (2 points) Give a formal description of δ in the form of a table.

(b) (1 point) Give a word $w \in L(N)$ such that |w| = 5 and $w^R \notin L(N)$.

Solution: For example aaaab.

(c) (5 points) Consider now the NFA N', whose transition graph is depicted below.

Construct a regular expression R such that L(N') = L(R) using the method from Sipser. Show all intermediate steps.

Solution:

Add start state and accept state:

Remove q_0 :

Remove q_1 :

Remove q_2 :

So take $R = (aa^*b(a \cup b)^*(a \cup \varepsilon))^*aa^*b(a \cup b)^*$

4. (6 points) Consider the language of correctly closed angular brackets that uses the alphabet $\Sigma = \{\langle, \rangle\}$.

 $L = \{w \mid w \text{ is a well-formed sequence of angular brackets}\}$

For example $\langle\langle\rangle\rangle$ and $\langle\langle\rangle\langle\rangle\rangle$ are both elements of L, but $\langle\langle\rangle$ is not. Is L regular? If so, prove it by constructing a regular expression R such that L=L(R). If not, prove it using the pumping lemma.

Solution:

Proof. Proof by contradiction:

- ullet Suppose L is regular.
- This means there must exist some pumping length p > 0 for L such that all words w longer than p can be split up into three parts x, y and z, with |y| > 0 and $|xy| \le p$.
- For this division of w, and any $i \geq 0$, $xy^iz \in L$.
- ullet Let's take the word $w=\langle^p\rangle^p$ which is in L.

- ullet This word is longer than p, so the above holds for this word.
- Given the requirements, we know that there is only one possible split

-
$$x=\langle^{\alpha},y=\langle^{\beta} \text{ and } z=\langle^{p-\alpha-\beta}\rangle^{p}$$
, with $0\leq\alpha< p$, $0<\beta\leq p$ and $\alpha+\beta\leq p$.

* Now, taking $i=0$, we get $\langle^{\alpha}b^{p-\alpha-\beta}\rangle^{p}=\langle^{p-\beta}\rangle^{p}$, which is clearly not in L since $\beta>0$.

 \bullet We have obtained a contradiction, so L must not be regular.

5. Consider the following CFG $G=(\{A,B,C\},\{m,i,a\},R,B)$, with R described as:

$$\begin{split} A &\to m \mid B \\ B &\to m \mid AiC \mid \varepsilon \\ C &\to iBa \end{split}$$

(a) (1 point) Give a word $w \in L(G)$, such that $3 \le |w| \le 5$ and such that w contains the letter m exactly twice.

Solution: For example: $B \Rightarrow AiC \Rightarrow miC \Rightarrow miiBa \Rightarrow miima$

(b) (5 points) Convert G to Chomsky normal form using the method from Sipser. Show all intermediate steps.

Solution: Add a new start state S:

$$\begin{split} S &\to B \\ A &\to m \mid B \\ B &\to m \mid AiC \mid \varepsilon \\ C &\to iBa \end{split}$$

Remove ε -rules (first from B):

$$\begin{split} S &\to B \mid \varepsilon \\ A &\to m \mid B \mid \varepsilon \\ B &\to m \mid AiC \\ C &\to iBa \mid ia \end{split}$$

Now from A:

$$\begin{split} S &\rightarrow B \mid \varepsilon \\ A &\rightarrow m \mid B \\ B &\rightarrow m \mid AiC \mid iC \\ C &\rightarrow iBa \mid ia \end{split}$$

Remove unit rules:

$$\begin{split} S \rightarrow m \mid AiC \mid iC \mid \varepsilon \\ A \rightarrow m \mid AiC \mid iC \\ B \rightarrow m \mid AiC \mid iC \\ C \rightarrow iBa \mid ia \end{split}$$

Fix remaining rules

$$\begin{split} S &\rightarrow m \mid AU_{\mathsf{ic}} \mid U_{\mathsf{i}}C \mid \varepsilon \\ A &\rightarrow m \mid AU_{\mathsf{ic}} \mid U_{\mathsf{i}}C \\ B &\rightarrow m \mid AU_{\mathsf{ic}} \mid U_{\mathsf{i}}C \\ C &\rightarrow U_{\mathsf{ib}}U_{\mathsf{a}} \mid U_{\mathsf{i}}U_{\mathsf{a}} \\ U_{\mathsf{ic}} &\rightarrow U_{\mathsf{i}}C \\ U_{\mathsf{ib}} &\rightarrow U_{\mathsf{i}}B \\ U_{\mathsf{i}} &\rightarrow i \end{split}$$

6. Consider the deterministic TM D on the left (you should assume all missing transitions lead to a reject state) and the non-deterministic TM N on the right. For both machines $\Sigma = \{k, r, a, n, s\}$ and $q_{\sf acc}$ is the accepting state. You should also assume the tape is bound on the left side for both machines.

(a) (2 points) What is L(D)? Explain your answer in at most 5 lines.

Solution: All words that start with sr are accepted. The word cannot start with m as $m \notin \Sigma$, so it must start with s, from here the only path that gets us to $q_{\rm acc}$ is for the word sr. Thus $L(D) = \{srx \mid x \in \Sigma^*\}.$

(b) (2 points) Give a word of length 3 that is in the language L(N) but not in the language L(D). Give a series of configurations that shows $w \in L(N)$.

Solution: For example: kan (though ka followed by any symbol from Σ will work):

- $q_0kan \sqcup$
- $zq_1an \sqcup$
- $q_1zmn\sqcup$
- $aq_{\mathsf{acc}}mn\sqcup$

(c) (2 points) Add at most 2 transition (labels) to N to create N', so that $L(D) \subseteq L(N')$. Only give the added labels, and the states between which they should be added, for your answer (not a full diagram).

Solution: Add the transition label $s \to s, R$ and $r \to r, R$ between q_0 and q_1 , and q_1 and q_{acc} respectively.

7. (4 points) Construct an NTM of at most 5 states that decides the language: $L = \{w \mid w = a^n b^n \text{ such that } n \geq 0\}$. A transition diagram suffices as an answer.

- 8. For each of the following claims, either explain why they are true, or give a counterexample if they are false. Start your answer with either the word "True" or "False" indicating which of the two options applies.
 - (a) (2 points) Enumerators only exist for finite languages.

Solution: False. Consider the enumerator for the infinite set \mathbb{N} : 1. Write 0 on the tape. 2. Add 1 to the previous number and write the result on the tape. 3. Go to 2.

(b) (2 points) If a problem is undecidable, it is also *not* co-Turing-recognisable.

Solution: False, consider for example EQ_{CFG} which is undecidable, but is co-Turing-recognisable. You can enumerate all words and if you find one that is not recognised by both grammars, it is not in EQ_{CFG} .

9. (4 points) Consider the following faulty proof to show that $HALT_{TM}$ is undecidable.

Proof. Assume for the sake of contradiction that TM R decides $HALT_{\mathsf{TM}}$. We construct a TM S to decide A_{TM} .

S = "On input $\langle M, w \rangle$, an encoding of a TM M and a string w:

- 1. Run TM R on input $\langle M, w \rangle$.
- 2. Simulate M on w until it halts.
- 3. If M has accepted, accept; if M has rejected, reject."

Clearly, if R decides $HALT_{\mathsf{TM}}$, then S decides A_{TM} . Because A_{TM} is undecidable, $HALT_{\mathsf{TM}}$ must also be undecidable.

This tentative proof contains a flaw, which causes it to be invalid. In what step(s) does this flaw occur and what is the flaw (for 2 points), and what should this/these step(s) in the proof look like instead (for 2 points)?

Solution: Proof can be found on page 217 of the book.

10. Suppose we have the following language

```
L = \{\langle M, D \rangle \mid \text{When we run } M \text{ on } hi \text{, it outputs } D \text{ on the tape,} which is a DFA that accepts the word hello.\}
```

We intend to prove that this language is undecidable. To that end we use a mapping reduction from $HALT_{TM}$ to L. The reduction f is computed by the following TM F:

 $F = \text{"On input } \langle M, w \rangle$:

1. Construct the following TM M':

M' = "On input x:

- 1. Clear the input from the tape.
- 2. Run M on w.
- 3. See question a.
- 4. See question a.
- 2. Write $\langle M', D \rangle$ to the output tape, where D is a DFA with 1 state which is accepting and transitions to itself for all input letters."
- (a) (4 points) What should be done in steps 3 and 4 of M'?

Solution:

- 3. Create a DFA D with 1 state which is accepting and transitions to itself with all input letters.
- 4. Write D to the tape and accept."

(b) (5 points) Provide a proof showing f satisfies the requirements of a mapping reduction.

Solution:

Proof. We need to show that f is computable and reliable. F computes f, so f is computable. f is also reliable, because:

- $\langle M, w \rangle \in HALT_{\mathsf{TM}} \Rightarrow f(\langle M, w \rangle) \in L$ holds, since if M halts on w, M' leaves D on the tape on input hi (it always does this regardless of input) and this is indeed a DFA that accepts the word hello. So, $\langle M', D \rangle \in L$.
- $\langle M, w \rangle \notin HALT_{\mathsf{TM}} \Rightarrow f(\langle M, w \rangle) \notin L$ holds, since if M does not halt on w, M' will never write the correct output to the tape.