

planetmath.org

Math for the people, by the people.

closure of a vector subspace in a normed space is a vector subspace

 ${\bf Canonical\ name} \quad {\bf Closure Of A Vector Subspace In A Normed Space Is A Vector Subspace}$

Date of creation 2013-03-22 15:00:16 Last modified on 2013-03-22 15:00:16

Owner gumau (3545) Last modified by gumau (3545)

Numerical id 7

Author gumau (3545)

Entry type Result
Classification msc 15A03
Classification msc 46B99
Classification msc 54A05

Related topic ClosureOfAVectorSubspaceIsAVectorSubspace2 Related topic ClosureOfSetsClosedUnderAFinitaryOperation

Let $(V, \|\cdot\|)$ be a normed space, and $S \subset V$ a vector subspace. Then \overline{S} is a vector subspace in V.

Proof

First of all, $0 \in \overline{S}$ because $0 \in S$. Now, let $x, y \in \overline{S}$, and $\lambda \in K$ (where K is the ground field of the vector space V). Then there are two sequences in S, say $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ which converge to x and y respectively.

Then, the sequence $(x_n + \lambda \cdot y_n)_{n \in \mathbb{N}}$ is a sequence in S (because S is a vector subspace), and it's trivial (use properties of the norm) that this sequence converges to $x + \lambda \cdot y$, and so this sum is a vector which lies in \overline{S} .

We have proved that \overline{S} is a vector subspace. QED.