Kempe recoloring in bounded treewidth graphs

Clément Legrand-Duchesne

LaBRI, Université de Bordeaux

September 9, 2021

joint work with Marthe Bonamy and Vincent Delecroix

Clément Legrand 1 / 9

Kempe chain (1879)

Maximal bichromatic component in G

: / ·

Kempe chain (1879)

Maximal bichromatic component in ${\it G}$

Kempe chain (1879)

Maximal bichromatic component in G

< □ →

Kempe chain (1879)

Maximal bichromatic component in G

4 🗆 1

Natural questions

Application

- Powerful tool (ex: Vizing theorem)
- Sampling coloring with a Markov chain

Reconfiguration graph

- $V(R^k(G)) = k$ -colorings of G.
- α and β adjacent if $\alpha \longleftrightarrow_{\mathsf{Kempe}} \beta$

Reachability Are α and β Kempe-equivalent ?

Connectivity Is $R^k(G)$ connected ?

Diameter Estimate $diam(R^k(G))$?

Clément Legrand Some context 3 /

d-degenerate graph

G is d-degenerate if for any $H\subset G$, $\delta(H)\leq d$ Equivalently, G admits an elimination ordering $v_1\prec v_2\cdots \prec v_n$ such that

$$\forall i, |N^+(v_i)| \leq d$$

Clément Legrand Some context 4 / 9

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \ge d+1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G'

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \ge d + 1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \ge d + 1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

Lift sequence to G then recolor v_1

G

Las Vergnas, Meyniel 1981

All k-colorings of a d-degenerate graph are Kempe-equivalent for $k \ge d + 1$.

Induction: Let α and β be two colorings of G Consider $G' = G \setminus \{v_1\}$

$$\alpha_{|G'} \underset{K}{\leadsto} \beta_{|G'}$$

G'

Lift sequence to G then recolor v_1

Natural question

What is the diameter of the reconfiguration graph in this setting ?

Clément Legrand Some context 5 /

Recoloring via trivial Kempe changes

Cerecedas '07

 $R^k_{\mathsf{Glauber}}(G)$ is connected if G is d-degenerate and $k \geq d+2$

Cerecedas' conjecture '07

 $\operatorname{diam}(R^k_{\mathsf{Glauber}}(G)) \leq O(n^2)$ if G is d-degenerate and $k \geq d+2$

Recoloring via trivial Kempe changes

Cerecedas '07

 $R^k_{\mathsf{Glauber}}(G)$ is connected if G is d-degenerate and $k \geq d+2$

Cerecedas' conjecture '07

 $\operatorname{diam}(R^k_{\mathsf{Glauber}}(G)) \leq O(n^2)$ if G is d-degenerate and $k \geq d+2$

Treewidth

Graph parameter that measures how close a graph is from being a tree $tw(G) \le k$ implies G is k-degenerate

Bonamy, Bousquet '13

$$diam(R_{Glauber}^k(G)) \leq O(n^2)$$
 if $k \geq tw(G) + 2$

Recoloring via trivial Kempe changes

Cerecedas '07

 $R_{\mathsf{Glauber}}^k(G)$ is connected if G is d-degenerate and $k \geq d+2$

Cerecedas' conjecture '07

$$\operatorname{diam}(R^k_{\mathsf{Glauber}}(G)) \leq O(n^2)$$
 if G is d -degenerate and $k \geq d+2$

Treewidth

Graph parameter that measures how close a graph is from being a tree $tw(G) \le k$ implies G is k-degenerate

Bonamy, Bousquet '13

$$diam(R_{Glauber}^k(G)) \le O(n^2)$$
 if $k \ge tw(G) + 2$

Bousquet, Heinrich '19

$$diam(R_{Glauber}^k(G)) \leq O(n^{d+1})$$
 if G is d-degenerate and $k \geq d+2$

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Chordal

- A graph is chordal if it all its induced cycles are triangles
- A graph is chordal iff there exists an ordering of the vertices $v_1 \prec v_2 \cdots \prec v_n$, such that $\forall i, N^+[v_i]$ is a clique
- Chordal graphs are perfect : $\chi(H) = \omega(H)$

Bonamy, Heinrich, Ito, Kobayashi, Mizuta, Mühlenthaler, Suzuki, Wasa '20

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(\mathsf{tw}\,n^2) \text{ if } k \ge \mathsf{tw}(G) + 1$$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$\operatorname{diam}(R^k(G)) \leq O(\operatorname{tw} n^2) \text{ if } k \geq \operatorname{tw}(G) + 1$$

Bonamy, Delecroix, L. '21

$$diam(R^k(G)) \le O(tw n^2)$$
 if $k \ge tw(G) + 1$

Bonamy, Delecroix, L. '21

$$\operatorname{diam}(R^k(G)) \leq O(\operatorname{tw} n^2) \text{ if } k \geq \operatorname{tw}(G) + 1$$

G has treewidth tw iff there exists H chordal with $\omega(H)=\operatorname{tw}+1$. Let G and $k\geq \operatorname{tw}(G)+1$, H an overlying chordal graph with elimination ordering $v_1\prec v_2\prec \cdots \prec v_n$

Length of the sequence $(tw n + n + tw n) \times n = O(tw n^2)$

Further improvements of Las Vergnas and Meyniel's lemma

Bonamy, Delecroix, L. '21

G d-degenerate, with all vertices but one of degree at most d+1, then for $k \ge d+1$, diam $(R^k(G)) = O(dn^2)$

Open question

Can we bound the diameter without making additional assumptions?