(3O) Самостоятельная работа № 7 Представление чисел в памяти ЭВМ

Цель: изучение беззнакового и знакового представлений целых чисел, а также представления чисел в формате с плавающей запятой в памяти ЭВМ.

Задания.

- 1. Получить однобайтное беззнаковое представление десятичного числа.
- 2. Получить десятичное число по его однобайтному беззнаковому представлению.
 - 3. Получить однобайтное знаковое представление десятичного числа.
- 4. Получить десятичное число по его однобайтному знаковому представлению.
- 5. Получить четырёхбайтное представление десятичного числа в формате с плавающей запятой.
- 6. Получить десятичное число по его четырёхбайтному представлению в формате с плавающей запятой.

Задания выполнить *подробно* в соответствии с методическими указаниями (по образцу). Методические указания, теоретические сведения и пример выполнения заданий приведены после таблицы с заданиями.

Решения заданий рекомендуется выполнить на бумаге ручкой, а в docx-файл отчета вставить скан-копии или хорошо читаемые фотографии выполненных заданий.

Отчет следует начать с титульного листа.

Далее привести цель работы.

Затем привести индивидуальное задание i и решение индивидуального задания i (i = 1, 2, ..., n; где n – количество заданий в данной работе).

В конце отчета поместить вывод.

Таблица 1 – Задания 1, 2, 3, 4

Вариант	Задание			
	1	2	3	4
1	189	00001100	-53	11111001
2	66	00010001	-23	11001100
3	111	00001001	-14	10010011
4	6	01000101	4	11100010
5	243	01001101	10	10000110
6	7	00000010	69	11101010
7	219	00100001	-91	00010100
8	123	10010110	-42	00001001
9	209	01110011	104	11111100
10	170	11100111	-70	11111000
11	242	01011110	40	10101110
12	162	10001100	85	00110110
13	252	01000011	-18	00111011
14	58	01010000	82	01010111
15	69	01100011	-90	01011111
16	220	10110010	55	01010011
17	222	01110100	14	00101000
18	13	11101000	-113	10011101
19	246	00110001	-55	10010100
20	203	00010101	13	01100100
21	105	00111110	-55	11011100
22	21	11101000	-82	11101100
23	192	01001010	8	01110011
24	22	00011001	-22	01110000
25	227	00100011	-45	11000100
26	44	11100101	96	01110100
27	24	10000101	-91	00010001
28	162	01100000	101	01111100
29	128	00010000	69	00100111
30	125	11110010	108	00001001

Таблица 2 – Задания 5, 6

Dominorm	Задание			
Вариант	5	6		
1	3,5	1100010001110000000000000000000000		
2	-0,001953125	0100010011010000000000000000000000		
3	-5	010000101110000000000000000000000000000		
4	-256	001111110100000000000000000000000000000		
5	32	001111111100000000000000000000000000000		
6	3072	101111000000000000000000000000000000000		
7	20	0100001101100000000000000000000000		
8	0,015625	101111111010000000000000000000000000000		
9	0,046875	010001010011000000000000000000000000000		
10	-112	101111011000000000000000000000000000000		
11	-16	0100001100100000000000000000000000		
12	0,25	110000100000000000000000000000000000000		
13	-3,5	001111111000000000000000000000000000000		
14	-60	010000111000000000000000000000000		
15	-20	001111010100000000000000000000000000000		
16	-16	001111001000000000000000000000000000000		
17	6144	101111111000000000000000000000000000000		
18	-128	110001100100000000000000000000000000000		
19	112	110000100001000000000000000000000000000		
20	-43,25	001111111011000000000000000000000000000		
21	22	001111001010000000000000000000000000000		
22	-0,0625	110000010000000000000000000000000000000		
23	-6,5	1100000111110000000000000000000000		
24	-0,9375	1100000111010000000000000000000000		
25	1024	01000000011000000000000000000000		
26	3,75	001111001100000000000000000000000000000		
27	0,5	101111000100000000000000000000000000000		
28	0,171875	101111101000000000000000000000000000000		
29	-384	1100001111010000000000000000000000		
30	5	11000101111110000000000000000000000		

Основные положения

Числа, как и любая другая информация, представляются в памяти ЭВМ в виде цифровых двоичных кодов.

1 Форматы чисел с фиксированной запятой

Данные форматы используются для представления целых чисел.

1.1 Беззнаковое представление

Однобайтное беззнаковое представление обеспечивает хранение 256 десятичных целых чисел из диапазона от 0 до 255 включительно.

Для получения такого представления десятичного числа из приведённого выше диапазона необходимо перевести это число в двоичную систему счисления (СС) и при необходимости полученный двоичный код дополнить слева нулями до 8 цифр.

Для определения десятичного числа по его беззнаковому представлению необходимо перевести заданное двоичное число в десятичную СС.

1.2 Знаковое представление

Знаковое представление в одном байте памяти тоже обеспечивает хранение 256 десятичных целых чисел, но уже из диапазона от –128 до 127 включительно. При этом неотрицательные числа (положительные числа и нуль) кодируются таким же образом, как и при беззнаковом представлении, а для получения знакового представления отрицательного числа необходимо:

- а) определить абсолютную величину заданного числа;
- б) уменьшить полученное число на один;
- в) определить беззнаковое представление последнего числа;
- г) инвертировать полученный двоичный код (каждый 0 заменить на 1 и каждую 1 заменить на 0).

Для получения десятичного числа по его знаковому представлению необходимо:

- если двоичный код начинается с цифры 0, то действовать так же, как и при беззнаковом представлении;
 - в противном случае:
 - а) инвертировать двоичный код;
 - б) перевести полученное двоичное число в десятичную СС;
 - в) увеличить полученное десятичное представление на один;
 - г) присоединить к последнему числу знак «минус».

2 Формат чисел с плавающей запятой одинарной точности

Число одинарной точности (в языке С# соответствует типу float) — формат представления вещественных чисел размером 32 бита (4 байта). Под ним понимают формат чисел с плавающей запятой (ПЗ) стандарта IEEE 754.

В четырёхбайтном представлении числа в формате с ПЗ выделяют три поля:

- а) в старшем (левом) разряде разряде 31 хранится знак числа (знак плюс кодируется нулём, знак минус единицей);
- б) восемь разрядов (с разряда 30 по разряд 23) хранят смещенный порядок числа (то есть порядок числа, увеличенный на 127);
- в) в оставшихся 23 разрядах (разряды 22–0) хранится нормализованная мантисса числа без первой цифры, поскольку в такой мантиссе эта цифра всегда 1.

Нормализованная мантисса двоичных чисел — мантисса, значения которой лежат в диапазоне $[1_2;10_2)$, то есть $[1_{10};2_{10})$.

Рисунок 1 – Представление числа 0,15625₁₀ в формате с ПЗ одинарной точности

Для получения четырёхбайтного представления десятичного числа в формате с плавающей запятой необходимо:

- а) перевести модуль заданного числа в двоичную СС (то есть без учёта знака минус для отрицательных чисел);
- б) представить двоичное число в экспоненциальной форме с нормализованной мантиссой M_2 и соответствующим порядком P_2 : $M_2 \times 10_2^{P_2}$;
 - в) полученный порядок увеличить на 127_{10} (1111111_2);
 - г) заполнить соответствующие разряды искомого представления.

Для получения десятичного числа по его четырёхбайтному представлению в формате с плавающей запятой необходимо:

- а) определить знак числа;
- б) выписать порядок и уменьшить его на 127_{10} (1111111_2);
- в) определить нормализованную мантиссу;
- г) записать двоичное число в экспоненциальной форме: $M_2 \times 10_2^{P_2}$;
- д) получить его десятичное представление.

Пример выполнения задания

1. Получить однобайтное беззнаковое представление десятичного числа 98.

Решение.

Для получения однобайтного беззнакового представления заданного числа переведём его в 2-ичную СС и при необходимости полученный двоичный код дополним слева нулями до 8 цифр:

$$98_{10} = 1100010_2 = 01100010_2$$
.

Ответ: 01100010.

2. Получить десятичное число по его однобайтному беззнаковому представлению 00100101.

Решение.

Определим десятичное число по его беззнаковому представлению необходимо путём перевода заданного 2-ичного числа в десятичную СС:

$$00100101_2 = 37_{10}$$
.

Ответ: 37.

3a. Получить однобайтное знаковое представление десятичного числа 51.

Решение.

Поскольку заданное число является неотрицательным, кодируем его таким же образом, как и при беззнаковом представлении:

$$51_{10} = 110011_2 = 00110011_2$$
.

Ответ: 00110011.

36. Получить однобайтное знаковое представление десятичного числа –34.

Решение.

Поскольку заданное число является отрицательным, определим его абсолютное значение, уменьшим это значение на один, получим беззнаковое представление последнего числа и, наконец, выполним инверсию двоичного кода:

$$-34_{10} \rightarrow 34_{10} \rightarrow 33_{10} \rightarrow 00100001_2 \rightarrow 110111110_2.$$

Ответ: 110111110.

4а. Получить десятичное число по его однобайтному знаковому представлению 01001101.

Решение.

Поскольку двоичный код начинается с цифры 0, действуем также, как и при беззнаковом представлении:

$$01001101_2 = 77_{10}.$$

Ответ: 77.

4б. Получить десятичное число по его однобайтному знаковому представлению 10110101.

Решение.

Поскольку двоичный код начинается с цифры 1, инвертируем его, переведём полученное двоичное число в десятичную СС, увеличим десятичное представление на один и, наконец, присоединим к последнему числу знак «минус»:

$$10110101_2 \rightarrow 01001010_2 \rightarrow 74_{10} \rightarrow 75_{10} \rightarrow -75_{10}$$
.

Ответ: -75.

Задания 5, 6

Данный код необходимо разделить на три поля: знак, см. порядок, мантисса.

Для вычисления порядка числа (показателя степени) из восьмиразрядного поля смещенного порядка вычитается смещение порядка, равное $127_{10} = 01111111_2$: $01111110_2 - 01111111_2 = -00000011_2 = -11_2 = -3_{10}$.

Так как значения нормализованной двоичной мантиссы лежат в диапазоне $[1_2;10_2)$, то целая часть такой мантиссы всегда равна единице. Поэтому в поле мантиссы записывается только её дробная часть, то есть фактический размер нормализованной мантиссы числа составляет 24 бита, а не 23 бита, которые эта мантисса занимает в памяти.

Для вычисления модуля мантиссы к единице добавляется дробная часть мантиссы из 23-разрядного поля мантиссы:

Искомое число равно произведению мантиссы со знаком (знак находится в разряде 31) на число два $(10_2 = 2_{10})$ в степени порядка:

$$-1.01_2 \times 10_2^{-11_2} = -1.01_2 \times 2_{10}^{-3_{10}} = -101_2 \times 2_{10}^{-5_{10}} = -5_{10} \times 2_{10}^{-5_{10}} =$$
 $= -5_{10} \times 0.03125_{10} = -0.15625_{10}$
Otbet: -0.15625_{10} .

Кодирование десятичных чисел в данный формат осуществляется аналогичным образом, но в обратном порядке.