Box #____ Math 65 Section 1 Homework 3 17 May 2018

Collaborators:

Poole 6.3 #16 Let \mathcal{B} and \mathcal{C} be bases for \mathcal{P}_2 . If $\mathcal{B} = \{x, 1 + x, 1 - x + x^2\}$ and the change-of-basis matrix from \mathcal{B} to \mathcal{C} is

$$\mathcal{P}_{\mathcal{C}\leftarrow\mathcal{B}}=egin{bmatrix}1&0&0\0&2&1\-1&1&1\end{bmatrix}.$$

Find C.

Poole 6.3 #22 Let *V* be an *n*-dimensional vector space with basis $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$. Let *P* be an invertible $n \times n$ matrix and set

$$\mathbf{u}_i = p_{1i}\mathbf{v}_1 + \dots + p_{ni}\mathbf{v}_n$$

for i = 1, ..., n. Prove that $C = \{\mathbf{u}_1, ..., \mathbf{u}_n\}$ is a basis for V and show that $P = P_{\mathcal{B} \leftarrow \mathcal{C}}$.

Poole 6.4 #20 Show that there is no linear transformation $T: \mathbb{R}^3 \to \mathcal{P}_2$ such that

$$T\begin{bmatrix}2\\1\\0\end{bmatrix} = 1 + x, \quad T\begin{bmatrix}3\\0\\2\end{bmatrix} = 2 - x + x^2, \quad T\begin{bmatrix}0\\6\\-8\end{bmatrix} = -2 + 2x^2.$$

Poole 6.4 #24 Let $\mathbf{v}_1, ..., \mathbf{v}_n$ be vectors in a vector space V and let $T: V \to W$ be a linear transformation.

- (a) If $\{T(\mathbf{v}_1), ..., T(\mathbf{v}_n)\}$ is linearly independent in W, show that $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ is linearly independent in V.
- (b) Show that the converse of part (a) is false. That is, it is not necessarily true that if $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ is linearly independent in V, then $\{T(\mathbf{v}_1),...,T(\mathbf{v}_n)\}$ is linearly independent in W. Illustrate this with an example $T: \mathbb{R}^2 \to \mathbb{R}^2$.

Poole 6.4 #32 Let $T: V \to V$ be a linear transformation such that $T \circ T = I$.

- (a) Show that $\{\mathbf{v}, T(\mathbf{v})\}$ is linearly dependent if and only if $T(\mathbf{v}) = \pm \mathbf{v}$.
- (b) Give an example of such a linear transformation with $V = \mathbb{R}^2$.

Poole 6.5 #4 Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be the linear transformation defined by T(p(x)) = xp'(x).

- (a) Which, if any, of the following are in $\ker(T)$? (i) 1 (ii) x (iii) x^2
- (b) Which, if any, of the polynomials in part (a) are in range(T)?
- (c) Describe ker(T) and range(T).

Poole 6.5 #28 Show that $T: \mathcal{P}_n \to \mathcal{P}_n$ defined by T(p(x)) = p(x-2) is an isomorphism.

7

Poole 6.5 #34 Let $S: V \to W$ and $T: U \to V$ be linear transformations.

- (a) Prove that if $S \circ T$ is one-to-one, so is T.
- (b) Prove that if $S \circ T$ is onto, so is S.