OPERATION OF A STEP TUNABLE MEGAWATT GYROTRON*

K.E. Kreischer and R.J. Temkin Massachusetts Institute of Technology Cambridge, Massachusetts 02139

(ELECTRON CYCLOTRON RESONANCE MASER)

^{*}Work supported by the U.S. Department of Energy, Office of Fusion Energy.

GYROTRON FUNDAMENTAL OSCILLATOR (28 GHz, 200 KW, CW, 80 KV, 8 A, length : 2m, B : 12 KG)

Electrons are emitted from a small annular band on the electron gun or cathode, usually at a high negative voltage.

Fig. 5. Normalized modal cutoff frequencies for a circular waveguide

Fig. 6. Transverse modal field distribution for a circular waveguide (first 30 modes).

Fig. 6. (Continued)

Figures reprinted with permission from Lee, C.S.; Lee, S.W.; and Chuang, S.L.: Plot of Modal Field Distribution in Rectangular and Circular Waveguides. IEEE Trans. Microwave Theory and Technol., vol. MTT-33, no. 3, Mar. 1985, p. 271.

©1985 IEEE

ORIGINAL PAGE IS OF POOR QUALITY

ADVANTAGES OF GYROTRONS

- MODERATE VOLTAGE OPERATION
 BELOW 100 kV. USE EXISTING SUPPLIES.
- INDUSTRIAL TECHNOLOGY BASE GOOD FABRICATION EXPERIENCE. RELIABILITY.
- CW OPERATION
 STABLE. BEST CHANCE TO USE A WINDOW.
- MODEST DEVICE SIZE LIKELY TO BE LEAST EXPENSIVE APPROACH.
- HIGH EFFICIENCY ENERGY RECOVERY NOT REQUIRED.
- SIMPLE DEVICE CONFIGURATION
- BASIC PHYSICS UNDERSTOOD
 EFFICIENCY, FREQUENCY, SPACE CHARGE, INSTABILITIES.

SCHEMATIC OF EXPERIMENT (MIT Gyrotron by K. Kreischer & R. Temkin)

MW GOALS

- EXTRAPOLATE 200 KW RESULTS TO MW POWER LEVELS

 SINGLE CAVITY WITH ISOLATED, ASYMMETRIC MODE
- DETERMINE IF FOLLOWING ARE POSSIBLE:

 SINGLE MODE EMISSION IN HIGHLY OVERMODED CAVITY

 BEAM PROPAGATION NEAR I_{MAX}

 BEAM-rf SEPARATION AFTER CAVITY

 CONVERSION TO POLARIZED, GAUSSIAN BEAM
- STUDY ADVANCED CAVITY CONCEPTS
 COAXIAL CAVITY
 COMPLEX CAVITY
 GYROKLYSTONS
- DEVELOP PHYSICS BASE FOR NEXT GENERATION OF GYROTRONS
 5-10 MW AT 140 GHz
 1 MW AT 280 GHz FOR CIT

GYROTRON DESIGN THEORY

- Linear theory: Starting current
- ullet Nonlinear theory: Efficiency $\eta_{\perp}(F,\mu)$ $F = {
 m normalized \ rf \ field \ amplitude}$ $\mu = {
 m normalized \ length}$
- Cavity ohmic losses sets upper limit on F
- Energy balance equation: $Q = 4\pi \left(\frac{L}{\Lambda}\right)^{2}$

• Combining these equations yields:

$$(
u_{mp}^2 - m^2) = \frac{2470 \mu \beta_{\parallel} P(\text{MW}) \nu^{2.5} (\text{GHz})}{\beta_{\perp}^2 \rho_{ohm} (\text{W/m}^2)}$$

where cavity diameter $D/\lambda = \nu_{mp}/\pi$

 Others: Maximum Current Beam Mirroring Space Charge Beam Thickness Voltage Depression

1 MW DESIGN PARAMETERS

	140 GHz	280 GHz
Current(A)	35	42
Voltage(kV)	80	80
$\eta_T(\%)$	36	30
Velocity ratio	1.93	2.0
Beam radius(cm)	0.53	1.4
Cavity radius(cm)	0.75	1.7
Cavity length(L/ λ)	6.0	7.1
Diffractive Q	450	630
Magnetic compression	30	40
Cavity current density(A/cm ²)	384 510	
Beam thickness (r_L)	3.85	3.2
Voltage depression(%)	4.0	2.6
Emitter radius(cm)	2.89	8.9
Mode	${\rm TE_{15,2,1}}$	${\rm TE_{80,4,1}}$
Mode separation(GHz)	7.2	3.0

STEP TUNING (Experimental Results)

COMPACT IGNITION TOKAMAK (10 MW, 280 GHz, CW) P. Woskov, ECH/CIT, 1987 (MIT)

Possible CIT 280 GHz Optical Transmission Line

GYROTRON WITH QUASI-OPTICAL OUTPUT COUPLER

120 GHz Designs (1 MW, 10 MW Gyrotrons)

Power(MW)	1.0	10.0
Current(A)	29	240
Voltage(kV)	80	90
$\eta_T(\%)$	43	46
Velocity Ratio	2.0	2.5
Wall Loading(kW/cm ²)	1.6	2.0
Beam Radius(cm)	0.62	1.8
Cavity Radius(cm)	0.88	1.87
Maximum Current(A)	62	560
Cathode Current Density(A/cm ²)	5	10
Beam Thickness(mm)	0.21	0.30
Cavity Length(cm)	1.33	0.98
Diffractive Q	370	193
Voltage Depression (%)	3.5	8.4
$J_s(A/cm^2)$	1150	1250
$J(A/cm^2)$	350	700

	>		
	,		