

iNEMO inertial module: 3D accelerometer and 3D gyroscope with digital output for industrial applications

Features

- 3D accelerometer with selectable full scale: ±2/±4/±8/±16 g
- 3D gyroscope with selectable full scale: ±125/±250/±500/±1000/±2000 dps
- Analog supply voltage: 1.71 V to 3.6 V
- SPI & I²C serial interface with main processor data synchronization
- Dedicated gyroscope output chain with low latency, low noise and dedicated low-pass filters for control loop stability (OIS and other stabilization applications)
- Auxiliary SPI serial interface for independent, low-noise low-latency data output for gyroscope and accelerometer
- Ultra-low power consumption for both accelerometer and gyroscope enabling long-lasting battery-operated applications: 0.5 mA in combo normal mode and 0.75 mA in combo high-performance mode
- · Smart FIFO up to 4 kbyte
- Smart embedded functions and interrupts: tilt detection, free-fall, wakeup, 6D/4D orientation, click and double-click
- Sensor hub feature to efficiently collect data from additional external sensors
- · Embedded hard, soft ironing for external magnetic sensor corrections
- · Embedded temperature sensor
- Embedded self-test both for gyroscope and accelerometer
- · High shock survivability
- Extended operating temperature range (-40 °C to +85 °C)
- ECOPACK[®], RoHS and "Green" compliant

Product status link

ISM330DLC

Product summary				
Order code	ISM330DLCTR			
Temperature range [°C]	-40 to +85			
Package	LGA-14L			
Package	(2.5 x 3.0 x 0.83 mm)			
Packing	cking Tape and reel			

Product label

Applications

- · Industrial IoT and connected devices
- · Antennas, platforms, and optical image and lens stabilization
- · Robotics, drones and industrial automation
- · Navigation systems and telematics
- Vibration monitoring and compensation

Description

The ISM330DLC is a system-in-package featuring a high-performance 3D digital accelerometer and 3D digital gyroscope tailored for Industry 4.0 applications.

ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

In the ISM330DLC the sensing element of the accelerometer and of the gyro are implemented on the same silicon die, thus guaranteeing superior stability and robustness.

The ISM330DLC has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps.

Delivering high accuracy and stability with ultra-low power consumption (0.75 mA in high-performance, combo mode) enables, also in the industrial domain, long-lasting battery-operated applications.

The ISM330DLC includes a dedicated configurable signal processing path with low latency, low noise and dedicated filtering specifically intended for control loop stability. Data from this dedicated signal path can be made available through an auxiliary SPI interface, configurable for both the gyroscope and accelerometer. High-performance, high-quality, small size and low power consumption together with high robustness to mechanical shock makes the ISM330DLC the preferred choice of system designers for the creation and manufacturing of versatile and reliable products.

The ISM330DLC is available in a plastic, land grid array (LGA) package.

DS12171 - Rev 3 page 2/116

1 Overview

The ISM330DLC is a system-in-package featuring a high-performance 3D digital accelerometer and 3D digital gyroscope tailored for Industry 4.0 applications.

The ISM330DLC has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g, an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps and is capable of delivering highly accurate and reliable measurements at an ultra-low power consumption (0.75 mA in high-performance, combo mode).

The ISM330DLC embeds smart features which simplify and optimize the application design and allows the usage of complex motion-sensing information also in power-constrained applications

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, and wakeup events.

Up to 4 kbyte of FIFO with dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system and protects against any loss of data.

With the sensor hub feature, data from up to 4 external sensors can be collected and stored in the internal FIFO without intervention of the application microcontroller.

Moreover, the ISM330DLC offers specific support, both for the gyroscope and the accelerometer, to applications requiring closed control loop. The device, through a dedicated auxiliary SPI interface and a configurable signal processing path having low latency and low noise, can provide data for the control loop while, at the same time, a second fully independent path can output data for other application intents.

Like the entire portfolio of MEMS sensor modules, the ISM330DLC leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

In the ISM330DLC, the sensing element of the accelerometer and of the gyroscope are implemented on the same silicon die, thus guaranteeing superior stability and robustness.

The ISM330DLC is available in a small plastic land grid array (LGA) package of 2.5 x 3.0 x 0.83 mm.

DS12171 - Rev 3 page 3/116

2 Embedded smart features

The ISM330DLC features the following on-chip smart functions:

- 4 kbyte data buffering
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- · Event-detection interrupts (fully configurable)
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity / inactivity recognition
 - Tilt (refer to Section 2.1 Tilt detection for additional information)
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
- Data rate synchronization with external trigger

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device's tilt changes. It is configurable through:

- a programmable average window
- a programmable average threshold

DS12171 - Rev 3 page 4/116

3 Pin description

Figure 1. Pin connections

angular rate (top view)

DS12171 - Rev 3 page 5/116

3.1 Pin connections

The ISM330DLC offers flexibility to connect the pins in order to have four different mode connections and functionalities. In detail:

- Mode 1: I²C slave interface or SPI (3- and 4-wire) serial interface is available;
- Mode 2: I²C slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;
- Mode 3: I²C slave interface or SPI (3- and 4-wire) serial interface is available for the application processor
 interface while an auxiliary SPI (3- and 4-wire) serial interface is available for an auxiliary host to access the
 gyroscope ONLY;
- Mode 4: I²C slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface is available for an auxiliary host to access the accelerometer and gyroscope.

Figure 2. ISM330DLC connection modes

In the following table each mode is described for the pin connections and function.

Table 1. Pin desription

Pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function		
4	CDO/CAA	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)		
1	SDO/SA0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)		
2	SDx	Connect to VDDIO or GND	I ² C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)		
3	SCx	Connect to VDDIO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI (3/4-wire) interface serial port clock (SPC_Aux)		
4	INT1	Programmable interrupt 1				
5	VDDIO ⁽¹⁾	Power supply for I/O pins				

DS12171 - Rev 3 page 6/116

Pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function
6	GND		0 V supply	
7	GND		0 V supply	
8	VDD ⁽¹⁾		Power supply	
9	INT2	Programmable interrupt 2 (INT2) /	Programmable interrupt 2 (INT2) / Data enable (DEN)/	Programmable interrupt 2 (INT2) / Data
9	Data enable (DEN) I²C master external synchronization signal (MDRDY)	enable (DEN)		
10	OCS_Aux	Leave unconnected ⁽²⁾	Leave unconnected ⁽²⁾	Auxiliary SPI 3/4-wire interface enable
11	SDO_Aux	Connect to VDD_IO or leave unconnected ⁽²⁾	Connect to VDD_IO or leave unconnected ⁽²⁾	Auxiliary SPI 3-wire interface: leave unconnected ⁽²⁾ Auxiliary SPI 4-wire interface: serial data output (SDO Aux)
12	CS	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1: SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)
13	SCL	I ² C serial clock (SCL) SPI serial port clock (SPC)	I ² C serial clock (SCL) SPI serial port clock (SPC)	l²C serial clock (SCL) SPI serial port clock (SPC)
14	SDA	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	l²C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)

^{1.} Recommended 100 nF filter capacitor.

DS12171 - Rev 3 page 7/116

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 2. Mechanical characteristics

Symbol	Parameter	Test conditions	Min. (1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit	
				±2			
14.50	Linear and the state of the sta			±4			
LA_FS	Linear acceleration measurement range			±8		g	
				±16			
				±125			
				±250		dps	
G_FS	Angular rate measurement range			±500		ups	
				±1000			
				±2000			
		FS = ±2	-3%	0.061	+3%		
1.4.00	Line and the second sec	FS = ±4		0.122		mg/LSB	
LA_So	Linear acceleration sensitivity ⁽³⁾	FS = ±8		0.244			
		FS = ±16		0.488			
		FS = ±125	-3%	4.375	+3%	_	
		FS = ±250		8.75			
G_So	Angular rate sensitivity ⁽³⁾	FS = ±500		17.50		mdps/LSB	
		FS = ±1000		35	Тифогеов		
		FS = ±2000		70			
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85° delta from $T = +25$ °	-0.024	±0.01	+0.024	%/°C	
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85° delta from T = +25°	-0.048	±0.007	+0.048	%/°C	
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁵⁾		-85	±40	+85	m <i>g</i>	
G_TyOff	Angular rate zero-rate level ⁽⁵⁾			±2		dps	
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾			±0.1		mg/ °C	
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾			±0.015		dps/°C	
LA_NL	Linear acceleration nonlinearity ⁽⁴⁾	@FS = $\pm 8 g$ Best-fit straight line		±2		%FS	
G_NL	Angular rate nonlinearity ⁽⁴⁾	@FS = ±2000 dps Best-fit straight line		±0.07		%FS	
Rn	Rate noise density in high-performance mode ⁽⁶⁾			3.8	11	mdps/√Hz	
RnRMS	Gyroscope RMS noise in normal/low-power mode ⁽⁷⁾			75		mdps	

DS12171 - Rev 3 page 8/116

Symbol	Parameter	Test conditions	Min. (1)	Typ. ⁽²⁾	Max. ⁽¹⁾	Unit
		FS = ±2 g		75	170	
		FS = ±4 <i>g</i>		80	170	
An	Acceleration noise density in high-performance mode ⁽⁸⁾	FS = ±8 <i>g</i>		90	180	μ <i>g</i> /√Hz
		FS = ±16 <i>g</i>		130	230	
		FS = ±2 g		1.8		
5140	(0)(40)	FS = ±4 <i>g</i>		2.0		(51.6)
RMS	Acceleration RMS noise in normal/low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±8 <i>g</i>		2.4		mg(RMS)
		FS = ±16 <i>g</i>		3.0		
				1.6		
				12.5		
	Linear acceleration output data rate			26		
				52		
				104		
LA_ODR				208		Hz
				416		
				833		
				1666		
				3332		
				6664		
				12.5		
				26		
				52		
				104		
G_ODR	Angular rate output data rate			208		Hz
O_ODIX	Angular rate output data rate			416		112
				833		
				1666		
				3332		
				6664		
LA_F0	Sensor resonant frequency	X,Y-axis		3.0		kHz
LA_I 0	ochsor resonant inequency	Z-axis		2.2		NI IZ
G_F0	Sensor resonant frequency			20		kHz
	Linear acceleration self-test output change(12)(13) (14)		90		1700	m <i>g</i>
Vst	Angular rate self-test output change ⁽¹⁵⁾⁽¹⁶⁾	FS = ±250 dps	20		80	dps
	Angular rate sen-test output change	FS = ±2000 dps	150		700	dps
Тор	Operating temperature range		-40		+85	°C

- 1. Min/Max values are based on characterization results, not tested in production and not guaranteed.
- 2. Typical specifications are not guaranteed.
- 3. Sensitivity values after factory calibration test and trimming.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Values after factory calibration test and trimming.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.

DS12171 - Rev 3 page 9/116

- 8. Accelerometer noise density in high-performance mode is independent of the ODR.
- 9. Accelerometer RMS noise in normal/low-power mode is independent of the ODR.
- 10. Noise RMS related to BW = ODR/2 (for ODR/9, typ value can be calculated by Typ *0.6).
- 11. This ODR is available when accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 63 for all axes.
- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 62 for all axes.
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

DS12171 - Rev 3 page 10/116

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. (1)	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode	ODR = 1.6 kHz		0.75		mA
IddNM	Gyroscope and accelerometer current consumption in normal mode	ODR = 208 Hz		0.5		mA
IddLP	Gyroscope and accelerometer current consumption in low-power mode	ODR = 52 Hz		0.35		mA
LA IddHP	Accelerometer current consumption in high-performance mode	ODR < 1.6 kHz		180		μA
LA_IUUHP	Acceleronneter current consumption in high-periormance mode	ODR ≥ 1.6 kHz		190		μΑ
LA_lddNM	Accelerometer current consumption in normal mode	ODR = 208 Hz		85		μA
		ODR = 52 Hz		25		
LA_lddLM	Accelerometer current consumption in low-power mode	ODR = 12.5 Hz		9		μA
		ODR = 1.6 Hz		4.5		
IddPD	Gyroscope and accelerometer current consumption during power-down			10		μA
Ton	Turn-on time			35		ms
V_{IH}	Digital high-level input voltage		0.7 *VDD_IO			V
V _{IL}	Digital low-level input voltage				0.3 *VDD_IO	V
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽²⁾	VDD_IO - 0.2			٧
V _{OL}	Low-level output voltage	I _{OL} = 4 mA ⁽²⁾			0.2	٧
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

4.3 Temperature sensor characteristics

@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

- 1. Typical specifications are not guaranteed.
- 2. When the accelerometer is in Low-Power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.
- 3. The output of the temperature sensor is 0 LSB (typ.) at 25 °C.
- 4. Time from power ON bit to valid data based on characterization data.

DS12171 - Rev 3 page 11/116

^{2. 4} mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 5. SPI slave timing values

Symbol	Parameter	Val	Unit	
Syllibol	Farameter	Min	Max	Offic
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

^{1.} Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 3. SPI slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both input and output ports.

DS12171 - Rev 3 page 12/116

4.4.2 I²C- inter-IC control interface

Subject to general operating conditions for Vdd and Top.

START

Figure 4. I²C timing diagram

4.4.2.1 I²C slave

Table 6. I²C slave timing values

Symbol	Symbol Parameter I²C standard mode (1)		ırd mode ⁽¹⁾	I ² C fast	Unit	
Gymbol	raiametei	Min	Max	Min	Max	
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		II.E
t _{su(SP)}	STOP condition setup time	4		0.6		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both ports.

DS12171 - Rev 3 page 13/116

4.4.2.2 I²C master

When in I 2 C Master Mode, an external sensor can be connected to the ISM330DLC. The ISM330DLC supports I 2 C Master - Fast Mode only.

Table 7. I²C slave timing values

Symbol	Parameter	I ² C Master	I ² C Fast Mode (min)	Unit
f _(SCL)	SCL clock frequency	116.3	0 (400 kHz max)	kHz
t _{w(SCLL)}	SCL clock low time	5.86	1.3	μs
t _{w(SCLH)}	SCL clock high time	2.74	0.6	ns
	Data valid time	3.9	-	μs
	SDA hold time	≥0	0	ns
	SDA setup time	≥100	100	ns
$t_{\text{su}(\text{SR})}$	Repeated START condition setup time	1.56	0.6	μs
$t_{\text{su(HD)}}$	Repeated START condition hold time	1.56	0.6	μs
t _{su(SP)}	STOP condition setup time	2.73	0.6	μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	21	1.3	μs

DS12171 - Rev 3 page 14/116

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	10,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

DS12171 - Rev 3 page 15/116

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ± 1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see mechanical characteristics).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see mechanical characteristics).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in the mechanical characteristics. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see mechanical characteristics).

DS12171 - Rev 3 page 16/116

5 Functionality

5.1 Operating modes

In the ISM330DLC, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The ISM330DLC has three operating modes available:

- only accelerometer active and gyroscope in power-down
- · only gyroscope active and accelerometer in power-down
- · both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the ISM330DLC, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.3 Accelerometer power modes

In the ISM330DLC, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

5.4 Block diagram of filters

Figure 5. Block diagram of filters

DS12171 - Rev 3 page 17/116

5.4.1 Block diagrams of the gyroscope filters

In the ISM330DLC, the gyroscope filtering chain depends on the mode configuration:

1. Mode 1 (for General Purpose (GP) functionality through primary interface) and Mode 2

Figure 6. Gyroscope digital chain - Mode 1 (GP) and Mode 2

In this configuration, the gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available if the auxiliary SPI is disabled, for more details about the filter characteristics see Table 67. Gyroscope LPF1 bandwidth selection.

Data can be acquired from the output registers and FIFO over the primary I2C/SPI interface.

2. Mode 3 / Mode 4 (for control loop functionality (OIS))

Figure 7. Gyroscope digital chain - Mode 3 / Mode 4 (OIS)

Note: HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

In this configuration, there are two paths:

- the chain for general purpose (GP) where the ODR is selectable from 12.5 Hz up to 6.66 kHz
- the chain for OIS where the ODR is at 6.66 kHz and the LPF1 is available. For more details about the filter characteristics see Table 215. Gyroscope OIS chain LPF1 bandwidth selection.

DS12171 - Rev 3 page 18/116

5.4.2 Block diagrams of the accelerometer filters

In the ISM330DLC, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- · Composite filter

Details of the block diagram appear in the following figure.

Figure 8. Accelerometer chain

The configuration of the digital filter can be set using the LPF1_BW_SEL bit in CTRL1_XL (10h) and the INPUT_COMPOSITE bit in CTRL8_XL (17h).

DS12171 - Rev 3 page 19/116

Figure 9. Accelerometer composite filter (for Modes 1/2 and Mode 3*)

Note: * Mode 3 is available only if Mode4_EN = 0 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h).

DS12171 - Rev 3 page 20/116

Figure 10. Accelerometer composite filter (Mode 4 only*)

Note: *Mode 4 is enabled when Mode4_EN = 1 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h).

DS12171 - Rev 3 page 21/116

5.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

The ISM330DLC embeds 4 kbytes data FIFO to store the following data:

- gyroscope
- accelerometer
- · external sensors
- timestamp
- temperature

Writing data in the FIFO can be configured to be triggered by the:

- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or equal to both the accelerometer and gyroscope ODRs;
- sensor hub data-ready signal;

In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the FIFO_CTRL3 (08h) and FIFO_CTRL4 (09h) registers. The available decimation factors are 2, 3, 4, 8, 16, 32.

The programmable FIFO threshold can be set in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h) using the FTH [10:0] bits.

To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to five different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 (0Ah) register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.5.1 Bypass mode

In Bypass mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty.

Bypass mode is also used to reset the FIFO when in FIFO mode.

5.5.2 FIFO mode

In FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0]) to '001'.

FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [10:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h). If the STOP_ON_FTH bit in FIFO_CTRL4 (09h) is set to '1', FIFO depth is limited up to FTH [10:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).

DS12171 - Rev 3 page 22/116

5.5.3 Continuous mode

Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)(FTH [10:0]).

It is possible to route FIFO_STATUS2 (3Bh) (FTH) to the INT1 pin by writing in register INT1_CTRL (0Dh) (INT1_FTH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh) (INT2_FTH) = '1'.

A full-flag interrupt can be enabled, INT1_CTRL (0Dh) (INT_FULL_FLAG) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the OVER_RUN flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) (DIFF_FIFO [10:0]).

5.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers FUNC_SRC1 (53h), TAP_SRC (1Ch), WAKE UP SRC (1Bh) and D6D SRC (1Dh).

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

5.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers FUNC_SRC1 (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh) are equal to '1', otherwise FIFO content is reset (Bypass mode).

5.5.6 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.

All FIFO status registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read at the start of a reading operation, minimizing the intervention of the application processor.

Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes each:

The 1st FIFO data set is reserved for gyroscope data;

The 2nd FIFO data set is reserved for accelerometer data;

The 3rd FIFO data set is reserved for the external sensor data stored in the registers from SENSORHUB1_REG (2Eh) to SENSORHUB6 REG (33h);

The 4th FIFO data set can be alternately associated to the external sensor data stored in the registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG (39h), and timestamp info, or to the temperature sensor data.

DS12171 - Rev 3 page 23/116

6 Digital interfaces

6.1 I²C/SPI interface

The registers embedded inside the ISM330DLC may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin name Pin description SPI enable I2C/SPI mode selection CS (1: SPI idle mode / I2C communication enabled; 0: SPI communication mode / I2C disabled) I²C Serial Clock (SCL) SCL/SPC SPI Serial Port Clock (SPC) I²C Serial Data (SDA) SDA/SDI/SDO SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO) SPI Serial Data Output (SDO) SDO/SA0 I²C less significant bit of the device address

Table 9. Serial interface pin description

6.2 Master I²C

If the ISM330DLC is configured in Mode 2, a master I²C line is available. The master serial interface is mapped in the following dedicated pins.

 Pin name
 Pin description

 MSCL
 I²C serial clock master

 MSDA
 I²C serial data master

 MDRDY
 I²C master external synchronization signal

Table 10. Master I²C pin details

6.3 Auxiliary SPI

If ISM330DLC is configured in Mode 3, the auxiliary SPI is available. The auxiliary SPI interface is mapped in the following dedicated pins.

Table 11. Auxiliary SPI pin details

Pin name	Pin description	
OCS_Aux	Auxiliary SPI 3/4-wire enable	
SDx	Auxiliary SPI 3/4-wire data input (SDI_Aux) and SPI 3-wire data output (SDO_Aux)	
SCx	SCx Auxiliary SPI 3/4-wire interface serial port clock	
SDO_Aux	SPI serial data	

DS12171 - Rev 3 page 24/116

6.4 I²C serial interface

The ISM330DLC I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 12. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode. In order to disable the I²C block, (I2C_disable) = 1 must be written in CTRL4_C (13h).

6.4.1 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the ISM330DLC is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the ISM330DLC behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. The following table explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 13. SAD_Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

DS12171 - Rev 3 page 25/116

Table 14. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 15. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 16. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 17. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

DS12171 - Rev 3 page 26/116

6.5 SPI bus interface

The ISM330DLC SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface communicates to the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

Figure 11. Read and write protocol

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

DS12171 - Rev 3 page 27/116

6.5.1 SPI read

Figure 12. SPI read protocol

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 13. Multiple byte SPI read protocol (2-byte example)

DS12171 - Rev 3 page 28/116

6.5.2 SPI write

Figure 14. SPI write protocol

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 15. Multiple byte SPI write protocol (2-byte example)

6.5.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 16. SPI read protocol in 3-wire mode

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

DS12171 - Rev 3 page 29/116

7 Application hints

7.1 ISM330DLC electrical connections in Mode 1

Mode 1 SS **HOST** I2C/SPI (3/4-w) NC⁽¹⁾ 11 SD0/SA0 TOP NC⁽¹⁾ ISM330DLC **VIEW** INT2 SCX GND or VDDIO 4 8 Vdd VDD INT1 I²C configuration 100nF Vdd_IO SCL SDA Pull-up to be added R_{pu}=10kOhm

Figure 17. ISM330DLC electrical connections in Mode 1

Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

DS12171 - Rev 3 page 30/116

7.2 ISM330DLC electrical connections in Mode 2

Mode 2 HOST SS I2C/SPI (3/4-w) ISM330DLC 1 11 NC⁽¹⁾ SD0/SA0 **TOP** NC⁽¹⁾ MSDA Master I2C MDRDY /INT2 **VIEW** MSCL 4 8 Vdd External VDD INT1 sensors 100nF GЙD I²C configuration GND GND Vdd IO SCL SDA Pull-up to be added R_{pu} =10kOhm

Figure 18. ISM330DLC electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

DS12171 - Rev 3 page 31/116

7.3 ISM330DLC electrical connections in Mode 3 and Mode 4

Figure 19. ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 3-wire SPI)

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

DS12171 - Rev 3 page 32/116

Figure 20. ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 4-wire SPI)

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C interface.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on VDDIO.

DS12171 - Rev 3 page 33/116

Table 18. Internal pin status

pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	Default: Input without pull- up.	Default: Input without pull- up.	Default: Input without pull- up.
1	SA0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.	Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.	Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.
	OD	Connect to VDDIO or	I ² C serial data master	Auxiliary SPI 3/4-wire interface serial data input	Default: input without pull- up.	Default: input without pull- up.	Default: input without pull- up.
2	SDx	GND	(MSDA)	(SDI) and SPI 3-wire serial data output (SDO)	Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.
		Connect to VDDIO or	I ² C serial clock master	Auxiliary SPI 3/4-wire	Default: input without pull- up.	Default: input without pull- up.	Default: input without pull- up.
3	SCx	GND	(MSCL)	interface serial port clock (SPC_Aux)	Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.
4	INT1	Programmable interrupt 1	Programmable interrupt 1	Programmable interrupt 1	Default: Output forced to ground	Default: Output forced to ground	Default: Output forced to ground
_	\/-I-I	Power supply	Power supply	Power supply			
5	Vdd_IO	for I/O pins	for I/O pins	for I/O pins			
6	GND	0 V supply	0 V supply	0 V supply			
7	GND	0 V supply	0 V supply	0 V supply			
8	Vdd	Power supply	Power supply	Power supply			
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Default: Output forced to ground	Default: Output forced to ground	Default: Output forced to ground
				Austina CDI 2/4 usina	Default: Input with pull-up.	Default: Input with pull-up.	
10	ocs	Leave unconnected	Leave unconnected	Auxiliary SPI 3/4-wire interface enabled	(See note below to disable pull-up)	(See note below to disable pull-up)	Input without pull-up
	SDO	Connect to VDDIO or	Connect to VDDIO or	Auxiliary SPI 3-wire interface: leave unconnected / Auxiliary	Default: Input with pull-up.	Default: Input with pull-up.	Default: Input without pull- up.
11	_Aux	leave unconnected	leave unconnected	SPI 4-wire interface: serial data output (SDO_Aux)	(See note below to disable pull-up)	(See note below to disable pull-up)	Pull-up is enabled if bit SIM_OIS = 1 (Aux_SPI 3- wire) in reg 70h.

pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4
12	CS	l²C/SPI mode selection (1:SPI idle mode / l²C communication enabled; 0: SPI communication mode / l²C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Default: Input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.	Default: Input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.	Default: Input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.
13	SCL	I ² C serial clock (SCL) / SPI serial port clock (SPC)	I ² C serial clock (SCL) / SPI serial port clock (SPC)	I ² C serial clock (SCL) / SPI serial port clock (SPC)	Input without pull-up	Input without pull-up	Input without pull-up
14	SDA	I ² C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Input without pull-up	Input without pull-up	Input without pull-up

Internal pull-up value is from 30 k Ω to 50 k $\Omega,$ depending on VDDIO.

Note: The procedure to disable the pull-up on pins 10-11 is as follows:

- 1. AP side: write 80h in register at address 00h
- 2. AP side: write 01h in register at address 05h (disable the pull-up on pins 10 and 11 of ISM330DLC)
- 3. AP side: write 00h in register at address 00h

8 Auxiliary SPI configurations

When the ISM330DLC is configured in Mode 3 and Mode 4, the auxiliary SPI can be connected to an auxiliary host (OIS). In this interface, the SPI can write only to the dedicated registers INT_OIS (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h).

8.1 Gyroscope filtering

The gyroscope filtering chain is illustrated in the following figure.

ADC

HP_EN_G

SPI/I2C

SPI/I2C

FIFO

SPI/I2C

FIFO

SPI/I2C

SPI/I2C

FIFO

SPI/I2C

FIFO

FIFO

SPI/I2C

FIFO

SPI/I2C

FIFO

FIFO

Figure 21. Gyroscope chain

Note:

HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

The auxiliary interface needs to be enabled in CTRL1_OIS (70h).

Gyroscope output values are in registers 22h to 27h with selected full scale (FS[1:0]_G_OIS bit in CTRL1_OIS (70h)) and ODR at 6.66 kHz.

LPF1 configuration depends on the setting of the FTYPE_[1;0] _OIS bit in register CTRL2_OIS (71h).

DS12171 - Rev 3 page 36/116

8.2 Accelerometer filtering

Accelerometer filtering is available only when Mode 4 is enabled.

Free-fall 6D/4D Smart functions SPI/I²C ODR/2 **FIFO** LPF1_BW_SEL ADC LPF1 ODR/4 HP_SLOPE_XL_EN Wake-up SLOPE **FILTER** Activity / Inactivity S/D Tap LPF_OIS SPI_Aux FILTER_XL_CONF_OIS[1:0]

Figure 22. Accelerometer chain (available only in Mode 4)

Accelerometer output values are in registers OUTX_L_XL (28h) through OUTZ_H_XL (2Dh) and ODR at 6.66 kHz.

8.2.1 Accelerometer full scale set from primary interface

If the SPI/I²C primary interface is used, the full-scale setting has been configured by the primary interface and CTRL3_OIS (72h) must be set to the same full-scale setting of the primary interface.

8.2.2 Accelerometer full scale set from auxiliary SPI

If the configuration uses only the auxiliary SPI, the full scale can be set using the FS[1:0]_XL_OIS bits in CTRL3_OIS (72h). The configuration of the low-pass filter depends on the setting of the FILTER XL CONF OIS[1:0] bits in register CTRL3_OIS (72h).

DS12171 - Rev 3 page 37/116

9 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 19. Registers address map

	Type Registe		ter address	"				
Name	Type	Hex	Binary	Default	Comment			
RESERVED	-	00	00000000	-	Reserved			
FUNC_CFG_ACCESS	r/w	01	00000001	00000000	Embedded functions configuration register			
RESERVED	-	02	00000010	-	Reserved			
RESERVED	-	03	00000011	-	Reserved			
SENSOR_SYNC_TIME_ FRAME	r/w	04	00000100	00000000	Sensor sync configuration register			
SENSOR_SYNC_RES_ RATIO	r/w	05	00000101	00000000	Sensor sync configuration register			
FIFO_CTRL1	r/w	06	00000110	00000000				
FIFO_CTRL2	r/w 07 00000111 00	00000000						
FIFO_CTRL3	r/w	80	00001000	00000000	FIFO configuration registers			
FIFO_CTRL4	r/w	09	00001001	00000000				
FIFO_CTRL5	r/w	0A	00001010	00000000				
DRDY_PULSE_CFG	r/w	0B	00001011	00000000				
RESERVED	-	0C	00001100	-	Reserved			
INT1_CTRL	r/w	0D	00001101	00000000	INT1 pin control			
INT2_CTRL	r/w	0E	00001110	00000000	INT2 pin control			
WHO_AM_I	r	0F	00001111	01101010	Who I am ID			
CTRL1_XL	r/w	10	00010000	00000000				
CTRL2_G	r/w	11	00010001	00000000				
CTRL3_C	r/w	12	00010010	00000100				
CTRL4_C	r/w	13	00010011	00000000				
CTRL5_C	r/w	14	00010100	00000000	Appeloramentar and guranana control registers			
CTRL6_C	r/w	15	00010101	00000000	Accelerometer and gyroscope control registers			
CTRL7_G	r/w	16	00010110	00000000				
CTRL8_XL	r/w	17	0001 0111	00000000				
CTRL9_XL	r/w	18	00011000	11100000				
CTRL10_C	CTRL10_C r/w		00011001	00000000				
MASTER_CONFIG	r/w	1A	00011010	00000000	I ² C master configuration register			
WAKE_UP_SRC	r	1B	00011011	output				
TAP_SRC	r	1C	00011100	output	Interrupt registers			
D6D_SRC	D_SRC r 1D 00011101 output							

DS12171 - Rev 3 page 38/116

		Register address		D (11	2			
Name	Туре	Hex	Binary	Default	Comment			
STATUS_REG/(1)(2)		45	00011110		Chatter data register for CD and OIC data			
STATUS_SPIAux	r	1E	00011110	output	Status data register for GP and OIS data			
RESERVED	-	1F	00011111	-	Reserved			
OUT_TEMP_L	r	20	00100000	output	Townson time outside to assistent			
OUT_TEMP_H	r	21	00100001	output	Temperature output data registers			
OUTX_L_G	r	22	00100010	output				
OUTX_H_G	r	23	00100011	output				
OUTY_L_G	r	24	00100100	output	Ourse and a subset of side of the OD and Old data			
OUTY_H_G	r	25	00100101	output	Gyroscope output registers for GP and OIS data			
OUTZ_L_G	r	26	00100110	output				
OUTZ_H_G	r	27	00100111	output				
OUTX_L_XL	r	28	00101000	output				
OUTX_H_XL	r	29	00101001	output				
OUTY_L_XL	r	2A	00101010	output				
OUTY_H_XL	r	2B	00101011	output	Accelerometer output registers			
OUTZ_L_XL	r	2C	00101100	output				
OUTZ_H_XL	r	2D	00101101	output				
SENSORHUB1_REG	r	2E	00101110	output				
SENSORHUB2_REG	r	2F	00101111	output				
SENSORHUB3_REG	r	30	00110000	output				
SENSORHUB4_REG	r	31	00110001	output				
SENSORHUB5_REG	r	32	00110010	output				
SENSORHUB6_REG	r	33	00110011	output				
SENSORHUB7_REG	r	34	00110100	output	Sensor hub output registers			
SENSORHUB8_REG	r	35	00110101	output				
SENSORHUB9_REG	r	36	00110110	output				
SENSORHUB10_REG	r	37	00110111	output				
SENSORHUB11_REG	r	38	00111000	output				
SENSORHUB12_REG	r	39	00111001	output				
FIFO_STATUS1	r	3A	00111010	output				
FIFO_STATUS2	r	3B	00111011	output	5150 4 4 4 4			
FIFO_STATUS3	r	3C	00111100	output	FIFO status registers			
FIFO_STATUS4	r	3D	00111101	output				
FIFO_DATA_OUT_L	r	3E	00111110	output	FIFO data autorities 1.1			
FIFO_DATA_OUT_H	r	3F	00111111	output	FIFO data output registers			
TIMESTAMP0_REG	r	40	01000000	output				
TIMESTAMP1_REG	r	41	01000001	output	Timestamp output registers			
TIMESTAMP2_REG	r/w	42	01000010	output				
RESERVED	-	43-4C		-	Reserved			

DS12171 - Rev 3 page 39/116

		Regist	er address					
Name	Type	Hex	Binary	Default	Comment			
SENSORHUB13_REG	r	4D	01001101	output				
SENSORHUB14_REG	r	4E	01001110	output				
SENSORHUB15_REG	r	4F	01001111	output				
SENSORHUB16_REG	r	50	01010000	output	Sensor hub output registers			
SENSORHUB17_REG	r	51	01010001	output				
SENSORHUB18_REG	r	52	01010010	output	Interrupt registers			
FUNC_SRC1	r	53	01010011	output	Interrunt registers			
FUNC_SRC2	r	54	01010100	output	Interrupt registers			
RESERVED	-	55-57		-	Reserved			
TAP_CFG	r/w	58	01011000	00000000				
TAP_THS_6D	r/w	59	01011001	00000000				
INT_DUR2	r/w	5A	01011010	00000000				
WAKE_UP_THS	r/w	5B	01011011	00000000				
WAKE_UP_DUR	r/w	5C	01011100	00000000	Interrupt registers			
FREE_FALL	r/w	5D	01011101	00000000				
MD1_CFG	r/w	5E	01011110	00000000				
MD2_CFG	r/w	5F	01011111	00000000				
MASTER_CMD_CODE	r/w	60	01100000	00000000				
SENS_SYNC_SPI_ ERROR_CODE	r/w	61	0110 0001	00000000				
RESERVED	-	62-65		-	Reserved			
OUT_MAG_RAW_X_L	r	66	01100110	output				
OUT_MAG_RAW_X_H	r	67	01100111	output				
OUT_MAG_RAW_Y_L	r	68	01101000	output				
OUT_MAG_RAW_Y_H	r	69	01101001	output	External magnetometer raw data output registers			
OUT_MAG_RAW_Z_L	r	6A	01101010	output				
OUT_MAG_RAW_Z_H	r	6B	01101011	output				
RESERVED	-	6C-6E		-	Reserved			
INT_OIS	r/w	6F	01101111	00000000				
CTRL1_OIS	r/w	70	01110000	00000000				
CTRL2_OIS	r/w	71	01110001	00000000	Control registers for OIS connection			
CTRL3_OIS	r/w	72	01110010	00000000				
X_OFS_USR	r/w	73	01110011	00000000	Acceleration			
Y_OFS_USR	r/w	74	01110100	00000000	Accelerometer user offset correction			
Z_OFS_USR	r/w	75	01110101	00000000	user onset correction			
RESERVED	-	76-7F		-	Reserved			

^{1.} This register status is read using the auxiliary SPI for OIS data.

DS12171 - Rev 3 page 40/116

^{2.} This register status is read using the primary interface for general-purpose interface data.

10 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

10.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w).

Table 20. FUNC_CFG_ACCESS register

FUNC_CFG_EN (0(1)	0 ⁽¹⁾				
---------------	------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 21. FUNC_CFG_ACCESS register description

	Enable access to the embedded functions configuration registers. Default value: 0
FUNC_CFG_EN	0: register access disabled
	1: register access enabled

^{1.} The embedded functions configuration registers details are available in Section 11 Embedded functions register mapping, and Section 12 Embedded functions registers description.

10.2 SENSOR_SYNC_TIME_FRAME (04h)

Sensor synchronization time frame register (r/w).

Table 22. SENSOR_SYNC_TIME_FRAME register

0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ 0 ⁽¹⁾ TPH_3 TPH_2 TPH_1 T

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 23. SENSOR_SYNC_TIME_FRAME register description

TPH_[3:0]	Sensor synchronization time frame with the step of 500 ms and full range of 5 s. Unsigned 8-bit.
	Default value: 0000 0000 (sensor sync disabled)

10.3 SENSOR_SYNC_RES_RATIO (05h)

Sensor synchronization resolution ratio (r/w)

Table 24. SENSOR_SYNC_RES_RATIO register

	0 ⁽¹⁾	RR_1	RR_0					
--	------------------	------------------	------------------	------------------	------------------	------------------	------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

DS12171 - Rev 3 page 41/116

Table 25. SENSOR_SYNC_RES_RATIO register description

	Resolution ratio of error code for sensor synchronization.
	(00: SensorSync, Res_Ratio = 2 ¹¹
RR_[1:0]	01: SensorSync, Res_Ratio = 2 ¹²
	10: SensorSync, Res_Ratio = 2 ¹³
	11: SensorSync, Res_Ratio = 2 ¹⁴)

10.4 FIFO_CTRL1 (06h)

FIFO control register (r/w).

Table 26. FIFO_CTRL1 register

FTH_7	FTH_6	FTH_5	FTH_4	FTH_3	FTH_2	FTH_1	FTH_0

Table 27. FIFO_CTRL1 register description

	FIFO threshold level setting. Default value: 0000 0000 ⁽¹⁾	
	FTH_[7:0]	Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level.
		Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO

1. For a complete watermark threshold configuration, consider FTH_[10:8] in FIFO_CTRL2 (07h).

10.5 FIFO_CTRL2 (07h)

FIFO control register (r/w).

Table 28. FIFO_CTRL2 register

FIFO TIMER	0(1)	0(1)	0 ⁽¹⁾	FIFO_ TEMP_EN	FTH10	FTH_9	FTH_8	
---------------	------	------	------------------	------------------	-------	-------	-------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 29. FIFO_CTRL2 register description

FIFO_TIMER_EN	Enables timestamp data to be stored as the 4 th FIFO data set. (0: timestamp not included in FIFO; 1: timestamp included in FIFO)
FIFO_TEMP_EN	Enables the temperature data storage in FIFO. Default: 0 (0: temperature not included in FIFO; 1: temperature included in FIFO)
FTH_[10:8]	FIFO threshold level setting. Default value: 0000 ⁽¹⁾ Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO

^{1.} For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL1 (06h)

DS12171 - Rev 3 page 42/116

10.6 FIFO_CTRL3 (08h)

FIFO control register (r/w).

Table 30. FIFO_CTRL3 register

0(1)	O(1)	DEC_FIFO_	DEC_FIFO_	DEC_FIFO_	DEC_FIFO_	DEC_FIFO_	DEC_FIFO_
0(1)	0(1)	GYRO2	GYRO1	GYRO0	XL2	XL1	XL0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 31. FIFO_CTRL3 register description

DEC_FIFO_GYRO [2:0]	Gyro FIFO (first data set) decimation setting. Default: 000 For the configuration setting, refer to Table 32.
DEC_FIFO_XL [2:0]	Accelerometer FIFO (second data set) decimation setting. Default: 000 For the configuration setting, refer to Table 33.

Table 32. Gyro FIFO decimation setting

DEC_FIFO_GYRO [2:0]	Configuration
000	Gyro sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 33. Accelerometer FIFO decimation setting

DEC_FIFO_XL [2:0]	Configuration
000	Accelerometer sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

DS12171 - Rev 3 page 43/116

10.7 FIFO_CTRL4 (09h)

FIFO control register (r/w).

Table 34. FIFO_CTRL4 register

STOF	ONL ONL	Y_HIGH_ DEC	DS4_ DEC_D	S4_ DEC_DS4	L DEC_DS3_	DEC_DS3_	DEC_DS3_
F.			FO2 FIFC		FIFO2	FIFO1	FIFO0

Table 35. FIFO_CTRL4 register description

STOP_ON_FTH Enable FIFO threshold level use. Default value: 0. (0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)	
ONLY_HIGH_DATA	8-bit data storage in FIFO. Default: 0 (0: disable MSByte only memorization in FIFO for XL and Gyro; 1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
DEC_DS4_FIFO[2:0]	Fourth FIFO data set decimation setting. Default: 000. For the configuration setting, refer to Table 36.
DEC_DS3_FIFO[2:0]	Third FIFO data set decimation setting. Default: 000. For the configuration setting, refer to Table 37.

Table 36. Fourth FIFO data set decimation setting

DEC_DS4_FIFO[2:0]	Configuration
000	Fourth FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 37. Third FIFO data set decimation setting

DEC_DS3_FIFO[2:0]	Configuration
000	Third FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

DS12171 - Rev 3 page 44/116

10.8 FIFO_CTRL5 (0Ah)

FIFO control register (r/w).

Table 38. FIFO_CTRL5 register

O(1)	ODR FIFO 3	ODR FIFO 2	ODR FIFO 1	ODB EIEO 0	FIFO MODE 2	EIEO MODE 1	EIEO MODE O
0, ,	001/_1 11 0_3	ODIX_1 11 O_2	001/_1110_1	00111110_0	I II O_IVIODE_2	THO_MODE_T	THO_MODE_0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 39. FIFO_CTRL5 register description

ODD 5150 12:01	FIFO ODR selection, setting FIFO_MODE also. Default: 0000
ODR_FIFO_[3:0]	For the configuration setting, refer to Table 40.
FIFO MODE [2:0]	FIFO mode selection bits, setting ODR_FIFO also. Default value: 000
THO_WODL_[2.0]	For the configuration setting, refer to Table 41.

Table 40. FIFO ODR selection

ODR_FIFO_[3:0]	Configuration
0000	FIFO disabled
0001	FIFO ODR is set to 12.5 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

^{1.} If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value. Moreover, these bits are effective if the DATA_VALID_SEL FIFO bit of MASTER_CONFIG (1Ah) is set to 0.

Table 41. FIFO mode selection

FIFO_MODE_[2:0]	Configuration mode
000	Bypass mode. FIFO disabled.
001	FIFO mode. Stops collecting data when FIFO is full.
010	Reserved
011	Continuous mode until trigger is deasserted, then FIFO mode.
100	Bypass mode until trigger is deasserted, then Continuous mode.
101	Reserved
110	Continuous mode. If the FIFO is full, the new sample overwrites the older one.
111	Reserved

DS12171 - Rev 3 page 45/116

10.9 DRDY_PULSE_CFG (0Bh)

Data-Ready configuration register (r/w).

Table 42. DRDY_PULSE_CFG register

DRDY_ PULSED	0 ⁽¹⁾							
-----------------	------------------	------------------	------------------	------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 43. DRDY_PULSE_CFG register description

	Enable pulsed data-ready mode. Default value: 0
DRDY_PULSED	(0: data-ready latched mode. Returns to 0 only after output data has been read;
	1: data-ready pulsed mode. The data-ready pulses are 75 µs long.)

10.10 INT1_CTRL (0Dh)

INT1 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pad's output will supply the OR combination of the selected signals.

Table 44. INT1_CTRL register

	0	0	INT1_ FULL_FLAG	INT1_FIFO_OVR	INT1_FTH	INT1_BOOT	INT1_ DRDY_G	INT1_DRDY_XL
--	---	---	--------------------	---------------	----------	-----------	--------------	--------------

Table 45. INT1_CTRL register description

INT1 FULL FLAG	FIFO full flag interrupt enable on INT1 pad. Default value: 0					
INTI_I OLL_I LAG	(0: disabled; 1: enabled)					
INIT4 FIFO OVE	FIFO overrun interrupt on INT1 pad. Default value: 0					
INT1_FIFO_OVR	(0: disabled; 1: enabled)					
INIT4 CTU	FIFO threshold interrupt on INT1 pad. Default value: 0					
INT1_FTH	(0: disabled; 1: enabled)					
INT1 BOOT	Boot status available on INT1 pad. Default value: 0					
INTI_BOOT	(0: disabled; 1: enabled)					
INT1 DRDY G	Gyroscope data-ready on INT1 pad. Default value: 0					
	(0: disabled; 1: enabled)					
INT1 DRDY XL	Accelerometer data-ready on INT1 pad. Default value: 0					
INTI_DNDI_AL	(0: disabled; 1: enabled)					

DS12171 - Rev 3 page 46/116

10.11 INT2_CTRL (0Eh)

INT2 pad control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pad's output will supply the OR combination of the selected signals.

Table 46. INT2_CTRL register

0 0	INT2_ FULL_FLAG	INT2_FIFO_OVR	INT2_FTH	INT2_ DRDY_TEMP	INT2_DRDY_G	INT2_DRDY_XL	
-----	--------------------	---------------	----------	--------------------	-------------	--------------	--

Table 47. INT2_CTRL register description

INT2_FULL_FLAG	FIFO full flag interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)				
INT2_FIFO_OVR FIFO overrun interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)					
INT2_FTH	FIFO threshold interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)				
INT2_DRDY_TEMP	Temperature data-ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)				
INT2_DRDY_G	Gyroscope data-ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)				
INT2_DRDY_XL	Accelerometer data-ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)				

10.12 WHO_AM_I (0Fh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 6Ah.

Table 48. WHO_AM_I register

0	4	4	0	4	0	4	0
0	1	1	U	1	U	1	U

DS12171 - Rev 3 page 47/116

10.13 CTRL1_XL (10h)

Linear acceleration sensor control register 1 (r/w).

Table 49. CTRL1_XL register

ODR_XL3 ODR_XL2	ODR_XL1	ODR_XL0	FS_XL1	FS_XL0	LPF1_BW_SEL	BW0_XL
-----------------	---------	---------	--------	--------	-------------	--------

Table 50. CTRL1_XL register description

ODR_XL [3:0]	Output data rate and power mode selection. Default value: 0000 (see Table 51).
FS_XL [1:0]	Accelerometer full-scale selection. Default value: 00
1 3_XL [1.0]	(00: ±2 g; 01: ±16 g; 10: ±4 g; 11: ±8 g)
LPF1_BW_SEL	Accelerometer digital LPF (LPF1) bandwidth selection. For bandwidth selection refer to CTRL8_XL (17h).
	Accelerometer analog chain bandwidth selection (only for accelerometer ODR ≥ 1.67 kHz).
BW0_XL	(0: BW @ 1.5 kHz;
	1: BW @ 400 Hz)

Table 51. Accelerometer ODR register setting

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz] when XL_HM_MODE = 1	ODR selection [Hz] when XL_HM_MODE = 0
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	х	х	Not allowed	Not allowed

DS12171 - Rev 3 page 48/116

10.14 CTRL2_G (11h)

Angular rate sensor control register 2 (r/w).

Table 52. CTRL2_G register

	G3 ODR_C	G2 ODR_G1	ODR_G0	FS_G1	FS_G0	FS_125	0(1)
--	----------	-----------	--------	-------	-------	--------	------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 53. CTRL2_G register description

ODR_G [3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 54)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 (00: ±250 dps; 01: ±500 dps; 10: ±1000 dps; 11: ±2000 dps)
FS_125	Gyroscope full-scale at ±125 dps. Default value: 0 (0: disabled; 1: enabled)

Table 54. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1	ODR [Hz] when G_HM_MODE = 0
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

DS12171 - Rev 3 page 49/116

10.15 CTRL3_C (12h)

Control register 3 (r/w).

Table 55. CTRL3_C register

BOOT BDU H_LACTIVE PP_OD SIM IF_INC B	BLE SW_RESET
---------------------------------------	--------------

Table 56. CTRL3_C register description

ВООТ	Reboots memory content. Default value: 0
ВООТ	(0: normal mode; 1: reboot memory content)
	Block Data Update. Default value: 0
BDU	(0: continuous update;
	1: output registers not updated until MSB and LSB have been read)
H_LACTIVE	Interrupt activation level. Default value: 0
II_LACTIVE	(0: interrupt output pads active high; 1: interrupt output pads active low)
PP OD	Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0
FF_OD	(0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0
SIIVI	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
BLE	Big/Little Endian Data selection. Default value 0
BLL	(0: data LSB @ lower address; 1: data MSB @ lower address)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

DS12171 - Rev 3 page 50/116

10.16 CTRL4_C (13h)

Control register 4 (r/w).

Table 57. CTRL4_C register

DEN_XL_EN	SLEEP	INT2_on_INT1	DEN_DRDY _INT1	DRDY_MASK	I2C_disable	LPF1_SEL_G	0 ⁽¹⁾
-----------	-------	--------------	-------------------	-----------	-------------	------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 58. CTRL4_C register description

DEN_XL_EN	Extend DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)
SLEEP	Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pad enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pads; 1: all interrupt signals in logic or on INT1 pad)
DEN_DRDY_INT1	DEN DRDY signal on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
DRDY_MASK	Configuration 1 data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled)
I2C_disable	Disable I ² C interface. Default value: 0 (0: both I ² C and SPI enabled; 1: I ² C disabled, SPI only)
LPF1_SEL_G	Enable gyroscope digital LPF1 if auxiliary SPI is disabled; the bandwidth can be selected through FTYPE [1:0] in CTRL6_C (15h) (0: disabled; 1: enabled)

10.17 CTRL5_C (14h)

Control register 5 (r/w).

Table 59. CTRL5_C register

ROUNDING2	ROUNDING1	ROUNDING0	DEN_LH	ST1_G	ST0_G	ST1_XL	ST0_XL

Table 60. CTRL5_C register description

ROUNDING[2:0]	Circular burst-mode (rounding) read from output registers through the primary interface. Default value: 000 (000: no rounding; others: refer to Table 61)
DEN_LH	DEN active level configuration. Default value: 0 (0: active low; 1: active high)
ST_G [1:0]	Angular rate sensor self-test enable. Default value: 00 (00: self-test disabled; others: refer to Table 62)
ST_XL [1:0]	Linear acceleration sensor self-test enable. Default value: 00 (00: self-test disabled; others: refer to Table 63)

DS12171 - Rev 3 page 51/116

Table 61. Output registers rounding pattern

ROUNDING[2:0]	Rounding pattern
000	No rounding
001	Accelerometer only
010	Gyroscope only
011	Gyroscope + accelerometer
100	Registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) only
101	Accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)
110	Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) and registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG (39h)
111	Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)

Table 62. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 63. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

DS12171 - Rev 3 page 52/116

10.18 CTRL6_C (15h)

Angular rate sensor control register 6 (r/w).

Table 64. CTRL6_C register

TRIG_EN	LVL1_EN	LVL2_EN	XL_HM_MODE	USR_OFF_W	0 ⁽¹⁾	FTYPE_1	FTYPE_0
---------	---------	---------	------------	-----------	------------------	---------	---------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 65. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to Table 66.					
LVL1_EN	DEN data level-sensitive trigger enable. Refer to Table 66.					
LVL2_EN	DEN level-sensitive latched enable. Refer to Table 66.					
	High-performance operating mode disable for accelerometer. Default value: 0					
XL_HM_MODE	(0: high-performance operating mode enabled;					
	1: high-performance operating mode disabled)					
	Weight of XL user offset bits of registers X_OFS_USR (73h), Section 10.91 Y_OFS_USR (74h), Z_OFS_USR (75h)					
USR_OFF_W	(0: 2 ⁻¹⁰ g/LSB;					
	1: 2 ⁻⁶ g/LSB)					
ETVDE[1:0]	Gyroscope low-pass filter (LPF1) bandwidth selection.					
FTYPE[1:0]	Table 67 shows the selectable bandwidth values (available if auxiliary SPI is disabled).					

Table 66. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 67. Gyroscope LPF1 bandwidth selection

FTYPE[1:0]	ODR = 800 Hz		ODR = 1.6 kHz		ODR = 3.3 kHz		ODR = 6.6 kHz	
FTTFE[T.V]	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾
00	245 Hz	14°	315 Hz	10°	343 Hz	8°	351 Hz	7°
01	195 Hz	17°	224 Hz	12°	234 Hz	10°	237 Hz	9°
10	155 Hz	19°	168 Hz	15°	172 Hz	12°	173 Hz	11°
11	293 Hz	13°	505 Hz	8°	925 Hz	6°	937 Hz	5°

^{1.} Phase delay @ 20 Hz

DS12171 - Rev 3 page 53/116

10.19 CTRL7_G (16h)

Angular rate sensor control register 7 (r/w).

Table 68. CTRL7_G register

G_HM_M	HP_EN_G	HPM1_G	HPM0_G	0 ⁽¹⁾	ROUNDING _STATUS	0 ⁽¹⁾	0 ⁽¹⁾	
--------	---------	--------	--------	------------------	---------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 69. CTRL7_G register description

G_HM_MODE	High-performance operating mode disable for gyroscope. Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_EN_G	Gyroscope digital high-pass filter enable. The filter is enabled only if the gyro is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPM_G[1:0]	Gyroscope digital HP filter cutoff selection. Default: 00 (00: 16 mHz; 01: 65 mHz; 10: 260 mHz; 11; 1.04 Hz)
ROUNDING_STATUS	Source register rounding function on WAKE_UP_SRC (1Bh), TAP_SRC (1Ch), D6D_SRC (1Dh), STATUS_REG (1Eh), and FUNC_SRC1 (53h) registers in the primary interface. Default value: 0 (0: rounding disabled; 1: rounding enabled)

DS12171 - Rev 3 page 54/116

10.20 CTRL8_XL (17h)

Linear acceleration sensor control register 8 (r/w).

Table 70. CTRL8_XL register

LPF2_XL_EN	HPCF_XL1	HPCF_XL0	HP_REF_MODE	INPUT_ COMPOSITE	HP_SLOPE_XL_ EN	0(1)	LOW_PASS_ON _6D
------------	----------	----------	-------------	---------------------	--------------------	------	--------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 71. CTRL8_XL register description

LPF2_XL_EN	Accelerometer low-pass filter LPF2 selection. Refer to Figure 9.
HPCF_XL[1:0]	Accelerometer LPF2 and high-pass filter configuration and cutoff setting. Refer to Table 72.
HP_REF_MODE	Enable HP filter reference mode. Default value: 0 ⁽¹⁾
HF_REF_MODE	(0: disabled; 1: enabled)
	Composite filter input selection. Default: 0
INPUT_COMPOSITE	(0: ODR/2 low pass filtered sent to composite filter (default)
	1: ODR/4 low pass filtered sent to composite filter)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 9.
LOW_PASS_ON_6D	LPF2 on 6D function selection. Refer to Figure 9.

^{1.} When enabled, the first output data has to be discarded.

Table 72. Accelerometer bandwidth selection

HP_SLOPE_ XL_EN	LPF2_XL_EN	LPF1_BW_SEL	HPCF_XL[1:0]	INPUT_ COMPOSITE	Bandwidth
	0	0	-	-	ODR/2
	0	1	-	-	ODR/4
0 ⁽¹⁾			00		ODR/50
(low-pass path)	1	-	01	1 (low noise) 0 (low latency)	ODR/100
			10		ODR/9
			11		ODR/400
			00		ODR/4
1 ⁽²⁾			01		ODR/100
(high-pass path)	-	-	10	0	ODR/9
			11		ODR/400

^{1.} The bandwidth column is related to LPF1 if LPF2_XL_EN = 0 or to LPF2 if LPF2_XL_EN = 1.

DS12171 - Rev 3 page 55/116

^{2.} The bandwidth column is related to the slope filter if $HPCF_XL[1:0] = 00$ or to the HP filter if $HPCF_XL[1:0] = 01/10/11$.

10.21 CTRL9_XL (18h)

Linear acceleration sensor control register 9 (r/w).

Table 73. CTRL9_XL register

DEN_X	DEN_Y	DEN_Z	DEN_XL_G	0 ⁽¹⁾	SOFT_EN	0 ⁽¹⁾	0 ⁽¹⁾
-------	-------	-------	----------	------------------	---------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 74. CTRL9_XL register description

	DEN value stored in LSB of X-axis. Default value: 1
DEN_X	(0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1
	(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN 7	DEN value stored in LSB of Z-axis. Default value: 1
DEN_Z	(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
	DEN stamping sensor selection. Default value: 0
DEN_XL_G	(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5];
	1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
	Enable soft-iron correction algorithm for magnetometer. Default value: 0 (1)
SOFT_EN	(0: soft-iron correction algorithm disabled;
	1: soft-iron correction algorithm enabled)

^{1.} This bit is effective if the IRON_EN bit of MASTER_CONFIG (1Ah) and FUNC_EN bit of CTRL10_C (19h) are set to 1.

10.22 CTRL10_C (19h)

Control register 10 (r/w).

Table 75. CTRL10_C register

(1)							
0 ⁽¹⁾	0 ⁽¹⁾	TIMER_EN	0(1)	TILT_EN	FUNC_EN	0(1)	0(1)

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 76. CTRL10_C register description

TIMER_EN	Enable timestamp count. The count is saved in TIMESTAMP0_REG (40h), TIMESTAMP1_REG (41h) and TIMESTAMP2_REG (42h). Default: 0 (0: timestamp count disabled; 1: timestamp count enabled)
TILT_EN	Enable tilt calculation. ⁽¹⁾
FUNC_EN	Enable embedded functionalities (tilt, sensor hub and ironing). Default value: 0 (0: disable functionalities of embedded functions and accelerometer filters;
	1: enable functionalities of embedded functions and accelerometer filters)

1. This is effective if the FUNC_EN bit is set to '1'.

DS12171 - Rev 3 page 56/116

10.23 MASTER_CONFIG (1Ah)

Master configuration register (r/w).

Table 77. MASTER_CONFIG register

DRDY_ON_INT1	DATA_VALID _SEL_FIFO	Q(1)	START_CONFIG	PULL_UP_EN	PASS_ THROUGH _MODE	IRON_EN	MASTER_ON
--------------	-------------------------	------	--------------	------------	---------------------------	---------	-----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 78. MASTER_CONFIG register description

DDDV ON INT1	Manage the master DRDY signal on INT1 pad. Default: 0				
DRDY_ON_INT1	(0: disable master DRDY on INT1; 1: enable master DRDY on INT1)				
	Selection of FIFO data-valid signal. Default value: 0				
DATA_VALID_SEL_FIFO	(0: data-valid signal used to write data in FIFO is the XL/Gyro data-ready;				
	1: data-valid signal used to write data in FIFO is the sensor hub data-ready)				
	Sensor hub trigger signal selection. Default value: 0				
START_CONFIG	(0: sensor hub signal is the XL/Gyro data-ready;				
	1: sensor hub signal external from INT2 pad.)				
	Auxiliary I ² C pull-up. Default value: 0				
PULL_UP_EN	(0: internal pull-up on auxiliary I ² C line disabled;				
	1: internal pull-up on auxiliary I ² C line enabled)				
PASS_THROUGH_MODE	I ² C interface pass-through. Default value: 0				
FASS_ITIKOOGII_WODE	(0: pass-through disabled; 1: pass-through enabled)				
	Enable hard-iron correction algorithm for magnetometer. Default value: 0 ⁽¹⁾				
IRON_EN	(0: hard-iron correction algorithm disabled;				
	1: hard-iron correction algorithm enabled)				
MASTED ON	Sensor hub I ² C master enable ⁽¹⁾ . Default: 0				
MASTER_ON	(0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)				

^{1.} This is effective if the FUNC_EN bit is set to '1'.

DS12171 - Rev 3 page 57/116

10.24 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r).

Table 79. WAKE_UP_SRC register

0	0	FF_IA	SLEEP_ STATE_IA	WU_IA	X_WU	Y_WU	Z_WU	
---	---	-------	--------------------	-------	------	------	------	--

Table 80. WAKE_UP_SRC register description

FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_STATE_IA	Sleep event status. Default value: 0 (0: sleep event not detected; 1: sleep event detected)
WU_IA	Wakeup event detection status. Default value: 0 (0: wakeup event not detected; 1: wakeup event detected.)
X_WU	Wakeup event detection status on X-axis. Default value: 0 (0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU	Wakeup event detection status on Y-axis. Default value: 0 (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU	Wakeup event detection status on Z-axis. Default value: 0 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

DS12171 - Rev 3 page 58/116

10.25 TAP_SRC (1Ch)

Tap source register (r).

Table 81. TAP_SRC register

0	TAP_IA	SINGLE_TAP	DOUBLE_TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP
---	--------	------------	------------	----------	-------	-------	-------

Table 82. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0
	(0: tap event not detected; 1: tap event detected) Single-tap event status. Default value: 0
SINGLE_TAP	(0: single tap event not detected; 1: single tap event detected)
	Double-tap event detection status. Default value: 0
DOUBLE_TAP	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
X_TAP	Tap event detection status on X-axis. Default value: 0
X_1A1	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Y_TAP	Tap event detection status on Y-axis. Default value: 0
1_1/41	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Z_TAP	Tap event detection status on Z-axis. Default value: 0
	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

DS12171 - Rev 3 page 59/116

10.26 D6D_SRC (1Dh)

6D orientation source register (r)

Table 83. D6D_SRC register

DEN_DRDY	D6D_IA	ZH	ZL	YH	YL	XH	XL

Table 84. D6D_SRC register description

DEN_DRDY	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ⁽¹⁾
D6D_IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)
	Z-axis high event (over threshold). Default value: 0
ZH	(0: event not detected; 1: event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0
ZL	(0: event not detected; 1: event (under threshold) detected)
YH	Y-axis high event (over threshold). Default value: 0
111	(0: event not detected; 1: event (over-threshold) detected)
YL	Y-axis low event (under threshold). Default value: 0
16	(0: event not detected; 1: event (under threshold) detected)
XH	X-axis high event (over threshold). Default value: 0
701	(0: event not detected; 1: event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0
/\L	(0: event not detected; 1: event (under threshold) detected)

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the DRDY_PULSE_CFG (0Bh) register.

10.27 STATUS_REG/STATUS_SPIAux (1Eh)

The STATUS_REG register is read by the primary interface SPI/I²C (r).

Table 85. STATUS_REG register

0 0 0 0 TDA	GDA XLDA	
-------------	----------	--

Table 86. STATUS_REG register description

	Temperature new data available. Default: 0
TDA	(0: no set of data is available at temperature sensor output;
	1: a new set of data is available at temperature sensor output)
	Gyroscope new data available. Default value: 0
GDA	(0: no set of data available at gyroscope output;
	1: a new set of data is available at gyroscope output)
	Accelerometer new data available. Default value: 0
XLDA	(0: no set of data available at accelerometer output;
	1: a new set of data is available at accelerometer output)

DS12171 - Rev 3 page 60/116

The STATUS_SPIAux register is read by the auxiliary SPI.

Table 87. STATUS_SPIAux register

0	0	0	0	0	GYRO_ SETTLING	GDA	XLDA
---	---	---	---	---	-------------------	-----	------

Table 88. STATUS_SPIAux description

GYRO_SETTLING	High when the gyroscope output is in the settling phase
GDA	Gyroscope data available (reset when one of the high parts of the output data is read)
XLDA	Accelerometer data available (reset when one of the high parts of the output data is read)

10.28 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 89. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0

Table 90. OUT_TEMP_H register

		Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8
--	--	--------	--------	--------	--------	--------	--------	-------	-------

Table 91. OUT_TEMP register description

Tomp[15:0]	Temperature sensor output data
Temp[15:0]	The value is expressed as two's complement sign extended on the MSB.

10.29 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 92. OUTX_L_G register

D=		_	_				
D7	D6	D5	D4	D3	D2	D1	D0
D1	D0		D-1		D2	D1	D0

Table 93. OUTX_L_G register description

		Pitch axis (X) angular rate value (LSbyte)
	D[7:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[7:0]	SPI1/l ² C: Gyro GP chain pitch axis output	
		SPI2: Gyro OIS chain pitch axis output

DS12171 - Rev 3 page 61/116

10.30 OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 94. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

Table 95. OUTX_H_G register description

	Pitch axis (X) angular rate value (MSbyte)
D[4E:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15:8]	SPI1/I²C: Gyro GP chain pitch axis output
	SPI2: Gyro OIS chain pitch axis output

10.31 OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 96. OUTY_L_G register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 97. OUTY_L_G register description

	Roll axis (Y) angular rate value (LSbyte)
D[7:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro GP chain roll axis output
	SPI2: Gyro OIS chain roll axis output

DS12171 - Rev 3 page 62/116

10.32 OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 98. OUTY_H_G register

D15 D14 D13	D12	D11	D10	D9	D8
-------------	-----	-----	-----	----	----

Table 99. OUTY_H_G register description

	Roll axis (Y) angular rate value (MSbyte)
D[15:8]	D[15:0] expressed in two's complement and its value depends on the interface used:
	SPI1/I ² C: Gyro GP chain roll axis output
	SPI2: Gyro OIS chain roll axis output

10.33 OUTZ_L_G (26h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 100. OUTZ_L_G register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 101. OUTZ_L_G register description

	Yaw axis (Z) angular rate value (LSbyte)
D[7:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
[0.7]	SPI1/I ² C: Gyro GP chain yaw axis output
	SPI2: Gyro OIS chain yaw axis output

DS12171 - Rev 3 page 63/116

10.34 OUTZ_H_G (27h)

Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro general-purpose interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 102. OUTZ_H_G register

D15 D14	D13 D12	D11	D10	D9	D8
---------	---------	-----	-----	----	----

Table 103. OUTZ_H_G register description

	Yaw axis (Z) angular rate value (MSbyte)
D[45:0]	D[15:0] expressed in two's complement and its value depends on the interface used:
D[15:8]	SPI1/I²C: Gyro GP chain yaw axis output
	SPI2: Gyro OIS chain yaw axis output

10.35 OUTX_L_XL (28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

Table 104. OUTX_L_XL register

D7	D6 D5	D4 D3	D2 D1	D0
----	-------	-------	-------	----

Table 105. OUTX_L_XL register description

|--|

10.36 OUTX_H_XL (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

Table 106. OUTX_H_XL register

D15 D14	D13	D12	D11	D10	D9	D8
---------	-----	-----	-----	-----	----	----

Table 107. OUTX_H_XL register description

D[15:8] X-axis linear acceleration value (MSbyte)

DS12171 - Rev 3 page 64/116

10.37 OUTY_L_XL (2Ah)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

Table 108. OUTY_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 109. OUTY_L_XL register description

D[7:0]	Y-axis linear acceleration value (LSbyte)
--------	---

10.38 OUTY_H_XL (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

Table 110. OUTY_H_XL register

	D15	D14	D13	D12	D11	D10	D9	D8
--	-----	-----	-----	-----	-----	-----	----	----

Table 111. OUTY_H_XL register description

D[15:8]	Y-axis linear acceleration value (MSbyte)
---------	---

10.39 OUTZ_L_XL (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

Table 112. OUTZ_L_XL register

D7 D6 D5 D4 D3 D2 D1	00 04 00 02 01	1 D0	D1	D2	D3	D4	DO.	D6	D7	
----------------------	------------------------	------	----	----	----	----	-----	----	----	--

Table 113. OUTZ_L_XL register description

D[7:0]	Z-axis linear acceleration value (LSbyte)
_[]	= and middle addoloration value (200) to

DS12171 - Rev 3 page 65/116

10.40 OUTZ_H_XL (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.

Table 114. OUTZ_H_XL register

D15	D14	D13	D12	D11	D10	110	D8
2.0	D	5.0	0.2	5	2.0	D3	

Table 115. OUTZ_H_XL register description

D[15:8]	Z-axis linear acceleration value (MSbyte)
---------	---

10.41 SENSORHUB1_REG (2Eh)

First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 116. SENSORHUB1_REG register

	SHub1_7	SHub1_6	SHub1_5	SHub1_4	SHub1_3	SHub1_2	SHub1_1	SHub1_0	
--	---------	---------	---------	---------	---------	---------	---------	---------	--

Table 117. SENSORHUB1_REG register description

SHub1_[7:0]	First byte associated to external sensors	
-------------	---	--

10.42 SENSORHUB2 REG (2Fh)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).

Table 118. SENSORHUB2_REG register

	SHub2_7	SHub2_6	SHub2_5	SHub2_4	SHub2_3	SHub2_2	SHub2_1	SHub2_0	
--	---------	---------	---------	---------	---------	---------	---------	---------	--

Table 119. SENSORHUB2_REG register description

SHub2_[7:0]	Second byte associated to external sensors	
-------------	--	--

10.43 SENSORHUB3 REG (30h)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operations configurations (for external sensors from x = 0 to x = 3).

Table 120. SENSORHUB3_REG register

	SHub3_7 S	SHub3_6	SHub3_5	SHub3_4	SHub3_3	SHub3_2	SHub3_1	SHub3_0	
--	-----------	---------	---------	---------	---------	---------	---------	---------	--

Table 121. SENSORHUB3_REG register description

SHub3_[7:0]	Third byte associated to external sensors	
-------------	---	--

DS12171 - Rev 3 page 66/116

10.44 SENSORHUB4_REG (31h)

Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 122. SENSORHUB4_REG register

SHub4_7	SHub4_6	SHub4_5	SHub4_4	SHub4_3	SHub4_2	SHub4_1	SHub4_0
---------	---------	---------	---------	---------	---------	---------	---------

Table 123. SENSORHUB4_REG register description

SHub4_[7:0]

10.45 SENSORHUB5_REG (32h)

Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 124. SENSORHUB5_REG register

SHub5_7 SHub5_6 SHub5_5 SHub5_4 SHub5_5	3 SHub5_2 SHub5_1 SHub5_0
---	---------------------------

Table 125. SENSORHUB5_REG register description

SHub5_[7:0]	Fifth byte associated to external sensors	
-------------	---	--

10.46 SENSORHUB6 REG (33h)

Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 126. SENSORHUB6_REG register

	SHub6_7	SHub6_6	SHub6_5	SHub6_4	SHub6_3	SHub6_2	SHub6_1	SHub6_0	
--	---------	---------	---------	---------	---------	---------	---------	---------	--

Table 127. SENSORHUB6_REG register description

SHub6_[7:0]	Sixth byte associated to external sensors	
-------------	---	--

10.47 SENSORHUB7_REG (34h)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 128. SENSORHUB7_REG register

SHub7 7	SHub7 6	SHub7 5	SHub7 4	SHub7 3	SHub7 2	SHub7 1	SHub7 0
Oriubi_i	Or lab/_o	Oriubi_C	Of Idd/_T	Cilubi_C	011007_2	Orido7_1	Oriub/_0

Table 129. SENSORHUB7_REG register description

SHub7_[7:0]	Seventh byte associated to external sensors

DS12171 - Rev 3 page 67/116

10.48 SENSORHUB8_REG (35h)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 130. SENSORHUB8_REG register

Table 131. SENSORHUB8_REG register description

SHub8 [7:0]	Eighth byte associated to external sensors
[0.1]_Odulio_	Lighth byte associated to external sensors

10.49 SENSORHUB9_REG (36h)

Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 132. SENSORHUB9_REG register

Oliabo_i Oliabo_o Oliabo_i Oliabo_i Oliabo_i Oliabo_i		SHub9_7	SHub9_6	SHub9_5	SHub9_4	SHub9_3	SHub9_2	SHub9_1	SHub9_0
---	--	---------	---------	---------	---------	---------	---------	---------	---------

Table 133. SENSORHUB9_REG register description

SHub9_[7:0] Ninth byte associated to external sensors

10.50 SENSORHUB10 REG (37h)

Tenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 134. SENSORHUB10_REG register

	SHub10_7	SHub10_6	SHub10_5	SHub10_4	SHub10_3	SHub10_2	SHub10_1	SHub10_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 135. SENSORHUB10_REG register description

SHub10_[7:0]	Tenth byte associated to external sensors	
--------------	---	--

10.51 SENSORHUB11_REG (38h)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 136. SENSORHUB11_REG register

	SHub11_7	SHub11_6	SHub11_5	SHub11_4	SHub11_3	SHub11_2	SHub11_1	SHub11_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 137. SENSORHUB11_REG register description

SHub11_[7:0]	Eleventh byte associated to external sensors	
--------------	--	--

DS12171 - Rev 3 page 68/116

10.52 SENSORHUB12_REG (39h)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 138. SENSORHUB12_REG register

SHub12_7	SHub12_6	SHub12_5	SHub12_4	SHub12_3	SHub12_2	SHub12_1	SHub12_0
----------	----------	----------	----------	----------	----------	----------	----------

Table 139. SENSORHUB12_REG register description

SHub12[7:0]	Twelfth byte associated to external sensors	
-------------	---	--

10.53 FIFO_STATUS1 (3Ah)

FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in $CTRL3_C$ (12h) to 1.

Table 140. FIFO_STATUS1 register

		DIFF_FIFO_7	DIFF_FIFO_6	DIFF_FIFO_5	DIFF_FIFO_4	DIFF_FIFO_3	DIFF_FIFO_2	DIFF_FIFO_1	DIFF_FIFO_0
--	--	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 141. FIFO_STATUS1 register description

DIFF_FIFO_[7:0]	Number of unread words (16-bit axes) stored in FIFO.	
-----------------	--	--

10.54 FIFO STATUS2 (3Bh)

FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 142. FIFO_STATUS2 register

	WaterM	OVER_RUN	FIFO_FULL_ SMART	FIFO_EMPTY	0	DIFF_FIFO_10	DIFF_FIFO_9	DIFF_FIFO_8	
--	--------	----------	---------------------	------------	---	--------------	-------------	-------------	--

Table 143. FIFO_STATUS2 register

	FIFO watermark status. The watermark is set through bits FTH_[7:0] in FIFO_CTRL1 (06h). Default value: 0
WaterM	(0: FIFO filling is lower than watermark level ⁽¹⁾ ;
	1: FIFO filling is equal to or higher than the watermark level)
OVER RUN	FIFO overrun status. Default value: 0
OVER_RON	(0: FIFO is not completely filled; 1: FIFO is completely filled)
FIFO FULL SMART	Smart FIFO full status. Default value: 0
THO_FOLE_SWART	(0: FIFO is not full; 1: FIFO will be full at the next ODR)
FIFO EMPTY	FIFO empty bit. Default value: 0
THO_LIMPTT	(0: FIFO contains data; 1: FIFO is empty)
DIFF_FIFO_[10:8]	Number of unread words (16-bit axes) stored in FIFO. ⁽²⁾

- 1. FIFO watermark level is set in FTH_[10:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
- 2. For a complete number of unread samples, consider DIFF_FIFO [7:0] in FIFO_STATUS1 (3Ah)

DS12171 - Rev 3 page 69/116

10.55 FIFO_STATUS3 (3Ch)

FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 144. FIFO_STATUS3 register

| FIFO_ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| PATTERN_7 | PATTERN_6 | PATTERN_5 | PATTERN_4 | PATTERN_3 | PATTERN_2 | PATTERN_1 | PATTERN_0 |

Table 145. FIFO_STATUS3 register description

FIFO PATTERN [7:0]	Word of recursive pattern read at the next read.
--------------------	--

10.56 FIFO_STATUS4 (3Dh)

FIFO status control register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 146. FIFO_STATUS4 register

0	0	0	0	0	0	FIFO_ PATTERN_9	FIFO_ PATTERN_8	
---	---	---	---	---	---	--------------------	--------------------	--

Table 147. FIFO_STATUS4 register description

FIFO_PATTERN_[9:8] Word of recursive pattern read at the next read.		
---	--	--

10.57 FIFO_DATA_OUT_L (3Eh)

FIFO data output register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 148. FIFO_DATA_OUT_L register

DATA	_OUT_	DATA_OUT_						
FIF	D_L_7	FIFO_L_6		FIFO_L_4		FIFO_L_2	FIFO_L_1	

Table 149. FIFO_DATA_OUT_L register description

DS12171 - Rev 3 page 70/116

10.58 FIFO_DATA_OUT_H (3Fh)

FIFO data output register (r). For a proper read of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 150. FIFO_DATA_OUT_H register

| DATA_OUT_ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| FIFO_H_7 | FIFO_H_6 | FIFO_H_5 | FIFO_H_4 | FIFO_H_3 | FIFO_H_2 | FIFO_H_1 | FIFO_H_0 |

Table 151. FIFO_DATA_OUT_H register description

DATA_OUT_FIFO_H_[7:0] FIFO data output (second byte)	DATA_OUT_FIFO_H_[7:0]	FIFO data output (second byte)
--	-----------------------	--------------------------------

10.59 TIMESTAMP0_REG (40h)

Timestamp first (least significant) byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch).

Table 152. TIMESTAMP0_REG register

TIME	TIME	TIME	TIME	TIME	TIME	TIME	TIME
STAMP0_	7 STAMP0_6	STAMP0_5	STAMP0_4	STAMP0_3	STAMP0_2	STAMP0_1	STAMP0_0

Table 153. TIMESTAMP0_REG register description

MESTAMP0_[7:0]	TIMESTAMP first byte data output
----------------	----------------------------------

10.60 TIMESTAMP1_REG (41h)

Timestamp second byte data output register (r). The value is expressed as a 24-bit word and the bit resolution is defined by setting value in WAKE_UP_DUR (5Ch).

Table 154. TIMESTAMP1_REG register

TIME								
STAMP1_7	STAMP1_6	STAMP1_5	STAMP1_4	STAMP1_3	STAMP1_2	STAMP1_1	STAMP1_0	

Table 155. TIMESTAMP1_REG register description

TIMESTAMP1 [7:0]	TIMESTAMP second byte data output
	Tivicoti wii occoria byte data octput

DS12171 - Rev 3 page 71/116

10.61 TIMESTAMP2_REG (42h)

Timestamp third (most significant) byte data output register (r/w). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch). To reset the timer, the AAh value has to be stored in this register.

Table 156. TIMESTAMP2_REG register

| TIME |
|----------|----------|----------|----------|----------|----------|----------|----------|
| STAMP2_7 | STAMP2_6 | STAMP2_5 | STAMP2_4 | STAMP2_3 | STAMP2_2 | STAMP2_1 | STAMP2_0 |

Table 157. TIMESTAMP2_REG register description

TIMESTAMP2_[7:0]	TIMESTAMP third byte data output
------------------	----------------------------------

10.62 SENSORHUB13_REG (4Dh)

Thirteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 158. SENSORHUB13_REG register

	SHub13_7	SHub13_6	SHub13_5	SHub13_4	SHub13_3	SHub13_2	SHub13_1	SHub13_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 159. SENSORHUB13_REG register description

SHub13_[7:0] Thirteenth byte associated to external sensors

10.63 SENSORHUB14_REG (4Eh)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 160. SENSORHUB14_REG register

	SHub14_7	SHub14_6	SHub14_5	SHub14_4	SHub14_3	SHub14_2	SHub14_1	SHub14_0
--	----------	----------	----------	----------	----------	----------	----------	----------

Table 161. SENSORHUB14_REG register description

SHub14_[7:0]	Fourteenth byte associated to external sensors	
--------------	--	--

10.64 SENSORHUB15_REG (4Fh)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 162. SENSORHUB15 REG register

SHub15_7	SHub15_6	SHub15_5	SHub15_4	SHub15_3	SHub15_2	SHub15_1	SHub15_0	
----------	----------	----------	----------	----------	----------	----------	----------	--

Table 163. SENSORHUB15_REG register description

SHub15_[7:0] Fifteenth byte associated to external sensors
--

DS12171 - Rev 3 page 72/116

10.65 SENSORHUB16_REG (50h)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 164. SENSORHUB16_REG register

	SHub16_7	SHub16_6	SHub16_5	SHub16_4	SHub16_3	SHub16_2	SHub16_1	SHub16_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 165. SENSORHUB16_REG register description

SHub16_[7:0]	Sixteenth byte associated to external sensors	
--------------	---	--

10.66 SENSORHUB17_REG (51h)

Seventeenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 166. SENSORHUB17_REG register

SHub17_7	SHub17_6	SHub17_5	SHub17_4	SHub17_3	SHub17_2	SHub17_1	SHub17_0	
----------	----------	----------	----------	----------	----------	----------	----------	--

Table 167. SENSORHUB17_REG register description

SHub17_[7:0]	Seventeenth byte associated to external sensors	
--------------	---	--

10.67 SENSORHUB18 REG (52h)

Eighteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 168. SENSORHUB18_REG register

	SHub18_7	SHub18_6	SHub18_5	SHub18_4	SHub18_3	SHub18_2	SHub18_1	SHub18_0	
--	----------	----------	----------	----------	----------	----------	----------	----------	--

Table 169. SENSORHUB18_REG register description

SHub18 [7:0]	Eighteenth byte associated to external sensors	
SI IUD 10 17.01	Eluliteeliili Dyte associateu to external sensors	

DS12171 - Rev 3 page 73/116

10.68 FUNC_SRC1 (53h)

Tilt, hard/soft-iron and sensor hub interrupt source register (r).

Table 170. FUNC_SRC1 register

	0	0	TILT_IA	0	0	HI_FAIL	SI_END_OP	SENSOR HUB_END_OP	
--	---	---	---------	---	---	---------	-----------	----------------------	--

Table 171. FUNC_SRC1 register description

TILT IA	Tilt event detection status. Default value: 0				
TILI_IA	(0: tilt event not detected; 1: tilt event detected)				
HI_FAIL	Fail in hard/soft-ironing algorithm.				
SI END OP	Hard/soft-iron calculation status. Default value: 0				
SI_END_OP	(0: Hard/soft-iron calculation not concluded; 1: Hard/soft-iron calculation concluded)				
SENSORHUB END OP	Sensor hub communication status. Default value: 0				
SENSORHOB_END_OP	(0: sensor hub communication not concluded; 1: sensor hub communication concluded)				

10.69 FUNC_SRC2 (54h)

Slave communication register (r).

Table 172. FUNC_SRC2 register

0	SLAVE3_NACK	SLAVE2_NACK	SLAVE1_NACK	SLAVE0_NACK	0	0	0
---	-------------	-------------	-------------	-------------	---	---	---

Table 173. FUNC_SRC2 register description

SLAVE3_NACK	This bit is set to 1 if Not Acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not Acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not Acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not Acknowledge occurs on slave 0 communication. Default value: 0

DS12171 - Rev 3 page 74/116

10.70 TAP_CFG (58h)

Enables interrupt and inactivity functions, configuration of filtering, and tap recognition functions (r/w).

Table 174. TAP_CFG register

INTERRUPTS_ ENABLE	INACT_EN1	INACT_EN0	SLOPE_FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
--------------------	-----------	-----------	-----------	----------	----------	----------	-----

Table 175. TAP_CFG register description

INTERRUPTS ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0
	(0: interrupt disabled; 1: interrupt enabled)
	Enable inactivity function. Default value: 00
	(00: disabled
INACT_EN[1:0]	01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change;
	10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode;
	11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and activity/inactivity functions. Refer to Figure 9. Accelerometer composite filter (for Modes 1/2 and Mode 3*). Default value: 0
	0: SLOPE filter applied; 1: HPF applied)
TAP X EN	Enable X direction in tap recognition. Default value: 0
IAF_A_LIN	(0: X direction disabled; 1: X direction enabled)
TAD V EN	Enable Y direction in tap recognition. Default value: 0
TAP_Y_EN	(0: Y direction disabled; 1: Y direction enabled)
TAD 7 EN	Enable Z direction in tap recognition. Default value: 0
TAP_Z_EN	(0: Z direction disabled; 1: Z direction enabled)
LIR	Latched Interrupt. Default value: 0
LIK	(0: interrupt request not latched; 1: interrupt request latched)

10.71 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).

Table 176. TAP_THS_6D register

D4D_EN	SIXD_THS1	SIXD_THS0	TAP_THS4	TAP_THS3	TAP_THS2	TAP_THS1	TAP_THS0
--------	-----------	-----------	----------	----------	----------	----------	----------

Table 177. TAP_THS_6D register description

	4D orientation detection enable. Z-axis position detection is disabled.
D4D_EN	Default value: 0
	(0: enabled; 1: disabled)
SIXD THS[1:0]	Threshold for 4D/6D function. Default value: 00
31/0_113[1.0]	For details, refer to Table 178. Threshold for D4D/D6D function.
TAD TUCKOL	Threshold for tap recognition. Default value: 00000
TAP_THS[4:0]	1 LSb corresponds to FS_XL/2 ⁵

DS12171 - Rev 3 page 75/116

Table 178. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

10.72 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).

Table 179. INT_DUR2 register

DUR	DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0

Table 180. INT_DUR2 register description

DUR[3:0]	Duration of maximum time gap for double tap recognition. Default: 0000 When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
QUIET[1:0]	Expected quiet time after a tap detection. Default value: 00 Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.
SHOCK[1:0]	Maximum duration of overthreshold event. Default value: 00 Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

10.73 WAKE_UP_THS (5Bh)

Single and double-tap function threshold register (r/w).

Table 181. WAKE_UP_THS register

SINGLE_ DOUBLE_TAP	0	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0	
-----------------------	---	---------	---------	---------	---------	---------	---------	--

Table 182. WAKE_UP_THS register description

	Single/double-tap event enable. Default: 0
SINGLE_DOUBLE_TAP	(0: only single-tap event enabled;
	1: both single and double-tap events enabled)
MIX THEIE-01	Threshold for wakeup. Default value: 000000
WK_THS[5:0]	1 LSb corresponds to FS_XL/2 ⁶

DS12171 - Rev 3 page 76/116

10.74 WAKE_UP_DUR (5Ch)

Free-fall, wakeup, timestamp and sleep mode functions duration setting register (r/w).

Table 183. WAKE_UP_DUR register

FF_DUR5	WAKE_DUR1	WAKE_DUR0	TIMER_HR	SLEEP_DUR3	SLEEP_DUR2	SLEEP_DUR1	SLEEP_DUR0

Table 184. WAKE_UP_DUR register description

FF_DUR5	Free fall duration event. Default: 0 For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration. 1 LSB = 1 ODR_time
WAKE_DUR[1:0]	Wake up duration event. Default: 00 1LSB = 1 ODR_time
TIMER_HR	Timestamp register resolution setting ⁽¹⁾ . Default value: 0 (0: 1LSB = 6.4 ms; 1: 1LSB = 25 µs)
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR) 1 LSB = 512 ODR

^{1.} Configuration of this bit affects the TIMESTAMPO_REG (40h), TIMESTAMP1_REG (41h), and TIMESTAMP2_REG (42h) registers.

10.75 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 185. FREE_FALL register

		FF_DUR4	FF_DUR3	FF_DUR2	FF_DUR1	FF_DUR0	FF_THS2	FF_THS1	FF_THS0
--	--	---------	---------	---------	---------	---------	---------	---------	---------

Table 186. FREE_FALL register description

EE DUDIA-01	Free-fall duration event. Default: 0
FF_DUR[4:0]	For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration.
FF_THS[2:0]	Free fall threshold setting. Default: 000
	For details refer to Table 187.

Table 187. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

DS12171 - Rev 3 page 77/116

10.76 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).

Table 188. MD1_CFG register

Table 189. MD1_CFG register description

INT1_INACT_STATE	Routing on INT1 of inactivity mode. Default: 0
INTI_INACT_STATE	(0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
	Single-tap recognition routing on INT1. Default: 0
INT1_SINGLE_TAP	(0: routing of single-tap event on INT1 disabled;
	1: routing of single-tap event on INT1 enabled)
	Routing of wakeup event on INT1. Default value: 0
INT1_WU	(0: routing of wakeup event on INT1 disabled;
	1: routing of wakeup event on INT1 enabled)
	Routing of free-fall event on INT1. Default value: 0
INT1_FF	(0: routing of free-fall event on INT1 disabled;
	1: routing of free-fall event on INT1 enabled)
	Routing of tap event on INT1. Default value: 0
INT1_DOUBLE_TAP	(0: routing of double-tap event on INT1 disabled;
	1: routing of double-tap event on INT1 enabled)
INT1_6D	Routing of 6D event on INT1. Default value: 0
11411_0D	(0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INIT4 TILT	Routing of tilt event on INT1. Default value: 0
INT1_TILT	(0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
	Routing of end counter event of timer on INT1. Default value: 0
INT1_TIMER	(0: routing of end counter event of timer on INT1 disabled;
	1: routing of end counter event of timer event on INT1 enabled)

DS12171 - Rev 3 page 78/116

10.77 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w).

Table 190. MD2_CFG register

INT2_INACT_ INT2_ STATE SINGLE_TAP	INT2_WU	INT2_FF	INT2_ DOUBLE_TAP	INT2_6D	INT2_TILT	INT2_IRON
---------------------------------------	---------	---------	---------------------	---------	-----------	-----------

Table 191. MD2_CFG register description

INITO INIACT CTATE	Routing on INT2 of inactivity mode. Default: 0
INT2_INACT_STATE	(0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
	Single-tap recognition routing on INT2. Default: 0
INT2_SINGLE_TAP	(0: routing of single-tap event on INT2 disabled;
	1: routing of single-tap event on INT2 enabled)
	Routing of wakeup event on INT2. Default value: 0
INT2_WU	(0: routing of wakeup event on INT2 disabled;
	1: routing of wake-up event on INT2 enabled)
	Routing of free-fall event on INT2. Default value: 0
INT2_FF	(0: routing of free-fall event on INT2 disabled;
	1: routing of free-fall event on INT2 enabled)
	Routing of tap event on INT2. Default value: 0
INT2_DOUBLE_TAP	(0: routing of double-tap event on INT2 disabled;
	1: routing of double-tap event on INT2 enabled)
INT2 6D	Routing of 6D event on INT2. Default value: 0
11412_00	(0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2 TILT	Routing of tilt event on INT2. Default value: 0
INTZ_TILT	(0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)
	Routing of soft-iron/hard-iron algorithm end event on INT2. Default value: 0
INT2_IRON	(0: routing of soft-iron/hard-iron algorithm end event on INT2 disabled;
	1: routing of soft-iron/hard-iron algorithm end event on INT2 enabled)

10.78 MASTER_CMD_CODE (60h)

Table 192. MASTER_CMD_CODE register

| MASTER_ |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CMD_CODE7 | CMD_CODE6 | CMD_CODE5 | CMD_CODE4 | CMD_CODE3 | CMD_CODE2 | CMD_CODE1 | CMD_CODE0 |

Table 193. MASTER_CMD_CODE register description

MASTER_CMD_CODE[7:0] Master command code used for stamping for sensor sync. Default value:	0
--	---

DS12171 - Rev 3 page 79/116

10.79 SENS_SYNC_SPI_ERROR_CODE (61h)

Table 194. SENS_SYNC_SPI_ERROR_CODE register

| ERROR_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CODE7 | CODE6 | CODE5 | CODE4 | CODE3 | CODE2 | CODE1 | CODE0 |

Table 195. SENS_SYNC_SPI_ERROR_CODE register description

EDDOD CODEIZAL	First and the second for a second sec
ERROR_CODE[7:0]	Error code used for sensor synchronization. Default value: 0

10.80 OUT_MAG_RAW_X_L (66h)

External magnetometer raw data (r).

Table 196. OUT_MAG_RAW_X_L register

D7	D6	D5	D4	D3	D2	D1	D0	

Table 197. OUT_MAG_RAW_X_L register description

D[7:0]	X-axis external magnetometer value (LSbyte)
D[1.0]	A data external magnetometer value (200) to

10.81 OUT_MAG_RAW_X_H (67h)

External magnetometer raw data (r).

Table 198. OUT_MAG_RAW_X_H register

D15	D14	D13	D12	D11	D10	D9	D8
							1

Table 199. OUT_MAG_RAW_X_H register description

D[15:8]

10.82 OUT_MAG_RAW_Y_L (68h)

External magnetometer raw data (r).

Table 200. OUT_MAG_RAW_Y_L register

	D7	D6	D5	D4	D3	D2	D1	D0
--	----	----	----	----	----	----	----	----

Table 201. OUT_MAG_RAW_Y_L register description

D 01		
D[7:0]	Y-axis external magnetometer value (LSbyte)	

DS12171 - Rev 3 page 80/116

10.83 OUT_MAG_RAW_Y_H (69h)

External magnetometer raw data (r).

Table 202. OUT_MAG_RAW_Y_H register

5.45	544	D40	5.40	544	5.40		
D15	D14		D12	D11	D10	D9	D8
D 10	5	D13	012	D.1.	D10		

Table 203. OUT_MAG_RAW_Y_H register description

D[15:8] Y-axis external magnetometer value (MSbyte)	
---	--

10.84 OUT_MAG_RAW_Z_L (6Ah)

External magnetometer raw data (r).

Table 204. OUT_MAG_RAW_Z_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 205. OUT_MAG_RAW_Z_L register description

ter value (LSbyte)

10.85 OUT_MAG_RAW_Z_H (6Bh)

External magnetometer raw data (r).

Table 206. OUT_MAG_RAW_Z_H register

	D15	D14	D13	D12	D11	D10	D9	D8	
--	-----	-----	-----	-----	-----	-----	----	----	--

Table 207. OUT_MAG_RAW_Z_H register description

D[15:8]

10.86 INT_OIS (6Fh)

OIS interrupt configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 208. INT_OIS register

Table 209. INT_OIS register description

INT2_DRDY_OIS	Enables the OIS chain DRDY on the INT2 pad. This setting has priority over all other INT2 settings.
LVL2_OIS	Enables level-sensitive latched mode on the OIS chain. Default value: 0

DS12171 - Rev 3 page 81/116

10.87 CTRL1_OIS (70h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 210. CTRL1_OIS register

BLE_OIS LVL1_OIS SIM_OIS MODE4_EN FS1_G_OIS FS0_G_OIS FS_125_OIS OIS_EN_
--

Table 211. CTRL1_OIS register description

	Big/Little Endian data selection. Default value: 0
BLE_OIS	(0: output LSbyte at lower register address;
	1: output LSbyte at higher register address)
LVL1_OIS	Enables level-sensitive trigger mode on OIS chain. Default value: 0
SIM OIS	SPI2 3- or 4-wire mode. Default value: 0
SIM_OIS	(0: 4-wire SPI2; 1: 3-wire SPI2)
MODE4 EN	Enables accelerometer OIS chain if OIS_EN_SPI2 = 1. Default value: 0
MODE4_EN	(0: disable; 1: enable)
	Gyroscope OIS chain full-scale selection.
	(00: ±250 dps;
FS[1:0]_G_OIS	01: ±500 dps;
	10: ±1000 dps;
	11: ±2000 dps)
FS_125_OIS	Selects gyroscope OIS chain full scale ±125 dps
1 3_123_013	(0: FS selected through bits FS[1:0]_G_OIS; 1 = ±125 dps)
	Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1).
OIS_EN_SPI2	When the OIS chain is enabled, the OIS outputs are available through the SPI2 in registers OUTX_L_G (22h) through OUTZ_H_G (27h) and STATUS_REG/STATUS_SPIAux (1Eh), and LPF1 is dedicated to this chain.

DEN mode selection can be done using the LVL1_OIS bit of register CTRL1_OIS (70h) and the LVL2_OIS bit of register INT_OIS (6Fh).

DEN mode on the OIS path is active in the gyroscope only.

Table 212. DEN mode selection

LVL1_OIS, LVL2_OIS	DEN mode
10	Level-sensitive trigger mode is selected
11	Level-sensitive latched mode is selected

DS12171 - Rev 3 page 82/116

10.88 CTRL2_OIS (71h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 213. CTRL2_OIS register

0 ⁽¹⁾	0 ⁽¹⁾	HPM1_OIS	HPM0_OIS	0 ⁽¹⁾	FTYPE_1_OIS	FTYPE_0_OIS	HP_EN_OIS
------------------	------------------	----------	----------	------------------	-------------	-------------	-----------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 214. CTRL2_OIS register description

	Gyroscope's OIS chain digital high-pass filter cutoff selection. Default value: 00
	(00: 16 mHz;
HPM[1:0]_OIS	01: 65 mHz;
	10: 260 mHz;
	11: 1.04 Hz)
ETVDE [1:0] OIS	Gyroscope's digital LPF1 filter bandwidth selection
FTYPE_[1:0]_OIS	Table 215 shows cutoff and phase values obtained with all configurations
HP_EN_OIS	Enables gyroscope's OIS chain HPF. This filter is available on the OIS chain only if HP_EN_G in CTRL7_G (16h) is set to '0'. ⁽¹⁾

^{1.} HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

Table 215. Gyroscope OIS chain LPF1 bandwidth selection

FTYPE_[1:0]_OIS	ODR = 6.6 kHz				
F11F2_[1.0]_Ol3	BW	Phase delay @ 20 Hz			
00	351 Hz	7°			
01	237 Hz	9°			
10	173 Hz	11°			
11	937 Hz	5°			

Sampling data with frequency equal or higher to 3.3 kHz is recommended.

If data is down-sampled @ 1 kHz, it is recommended to use a cutoff @ 173 Hz.

If data is down-sampled @ 2 kHz, it is recommended to use a cutoff @ 237 Hz.

10.89 CTRL3 OIS (72h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 216. CTRL3_OIS register

DEN_LH_OIS	FS1_XL_OIS	FS0_XL_OIS	FILTER_XL_ CONF_OIS_1	FILTER_XL_ CONF_OIS_0	ST1_OIS	ST0_OIS	ST_OIS_ CLAMPDIS	
------------	------------	------------	--------------------------	--------------------------	---------	---------	---------------------	--

DS12171 - Rev 3 page 83/116

Table 217. CTRL3_OIS register description

	Polarity of DEN signal on OIS chain		
DEN LH OIS	(0: DEN pin is active-low;		
DLN_LII_OI3			
	1: DEN pin is active-high)		
	Accelerometer OIS channel full-scale selection. Default value: 00		
	(00: ±2 g;		
	01: ±16 g;		
FS[1:0]_XL_OIS	10: ±4 <i>g</i> ;		
	11: ±8 g)		
	These two bits act only when the accelerometer GP chain is in power-down, otherwise the accelerometer FS value is selected only from the GP side (but it is readable also from the OIS side).		
FILTER_XL_CONF_OIS [1:0] Accelerometer OIS channel bandwidth selection (see Table 215)			
	Gyroscope OIS chain self-test selection		
	Table 219 lists the output variation when the self-test is enabled and ST_OIS_CLAMPDIS = '1'. Default value: 00		
ST[1:0]_OIS	(00: Normal mode;		
	01: Positive sign self-test;		
	10: Normal mode;		
	11: Negative sign self-test)		
	Gyro OIS chain clamp disable		
ST OIS CLAMPDIS	(0: All gyro OIS chain outputs = 8000h during self-test applied from primary interface;		
55.0_5£/wii 5.0	1: OIS chain self-test outputs as shown in Table 219. Self-test nominal output variation if self-test applied from primary or auxiliary interfaces)		

Table 218. Accelerometer OIS channel bandwidth selection

FILTER_XL_ CONF_OIS [1:0]	_	GP = 0 ≥ 1600 Hz	ODR GP ≤ 800 Hz		
CONF_013 [1.0]	BW	Phase delay ⁽¹⁾	BW	Phase delay ⁽¹⁾	
00	140 Hz	9.39°	128 Hz	11.5°	
01	68.2 Hz	17.6°	66.5 Hz	19.7°	
10	636 Hz	2.96°	329 Hz	5.08°	
11	295 Hz	5.12°	222 Hz	7.23°	

1. Phase delay @ 20 Hz

Table 219. Self-test nominal output variation

Full scale	Output variation [dps]
±2000	400
±1000	200
±500	100
±250	50
±125	25

DS12171 - Rev 3 page 84/116

10.90 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally added to the acceleration value measured on the X-axis.

Table 220. X_OFS_USR register

| X_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 221. X_OFS_USR register description

X_OFS_USR_[7	[7:0] Accelerometer X-axis user offset correction expressed in two's complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].
--------------	---

10.91 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally added to the acceleration value measured on the Y-axis.

Table 222. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 223. Y_OFS_USR register description

Y_	OFS_USR_[7:0]	Accelerometer Y-axis user offset correction expressed in two's complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].
----	---------------	---

10.92 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 224. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 225. Z_OFS_USR register description

7 050 1100 17:01	Accelerometer Z-axis user offset correction expressed in two's complement, weight depends on the
Z_OFS_USR_[7:0]	Accelerometer Z-axis user offset correction expressed in two's complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].

DS12171 - Rev 3 page 85/116

11 Embedded functions register mapping

The tables given below provide a list of registers related to the embedded functions available in the device and the corresponding addresses.

The embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Note:

All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

Table 226. Register address map embedded functions

	_	Regist	er address	D. C. 11		
Name	Туре	Hex	Binary	Default	Comment	
SLV0_ADD	r/w	02	0000010	00000000		
SLV0_SUBADD	r/w	03	00000011	00000000		
SLAVE0_CONFIG	r/w	04	00000100	00000000		
SLV1_ADD	r/w	05	00000101	00000000		
SLV1_SUBADD	r/w	06	00000110	00000000		
SLAVE1_CONFIG	r/w	07	00000111	00000000		
SLV2_ADD	r/w	08	00001000	00000000		
SLV2_SUBADD	r/w	09	00001001	00000000		
SLAVE2_CONFIG	r/w	0A	00001010	00000000		
SLV3_ADD	r/w	0B	00001011	00000000		
SLV3_SUBADD	r/w	0C	00001100	00000000		
SLAVE3_CONFIG	r/w	0D	00001101	00000000		
DATAWRITE_SRC_ MODE_SUB_SLV0	r/w	0E	00001110	0000000		
RESERVED	-	0F-15		-	Reserved	
MAG_SI_XX	r/w	24	00100100	00001000		
MAG_SI_XY	r/w	25	00100101	00000000		
MAG_SI_XZ	r/w	26	00100110	00000000		
MAG_SI_YX	r/w	27	00100111	00000000		
MAG_SI_YY	r/w	28	00101000	00001000		
MAG_SI_YZ	r/w	29	00101001	00000000		
MAG_SI_ZX	r/w	2A	00101010	00000000		
MAG_SI_ZY	r/w	2B	00101011	00000000		
MAG_SI_ZZ	r/w	2C	00101100	00001000		
MAG_OFFX_L	r/w	2D	00101101	00000000		
MAG_OFFX_H	r/w	2E	00101110	00000000		
MAG_OFFY_L	r/w	2F	00101111	00000000		
MAG_OFFY_H	r/w	30	00110000	00000000		
MAG_OFFZ_L	r/w	31	00110001	00000000		
MAG_OFFZ_H	r/w	32	00110010	00000000		

DS12171 - Rev 3 page 86/116

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS12171 - Rev 3 page 87/116

12 Embedded functions registers description

Note:

All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

12.1 SLV0 ADD (02h)

I²C slave address of the first external sensor (Sensor1) register (r/w).

Table 227. SLV0_ADD register

Slave0_add6	Slave0_add5	Slave0_add4	Slave0_add3	Slave0_add2	Slave0_add1	Slave0_add0	rw_0	
-------------	-------------	-------------	-------------	-------------	-------------	-------------	------	--

Table 228. SLV0_ADD register description

Slave0 add[6:0]	I ² C slave address of Sensor1 that can be read by sensor hub.
Siaveo_adu[o.o]	Default value: 0000000
nu 0	Read/write operation on Sensor1. Default value: 0
rw_0	(0: write operation; 1: read operation)

12.2 SLV0_SUBADD (03h)

Address of register on the first external sensor (Sensor1) register (r/w).

Table 229. SLV0_SUBADD register

	Slave0_reg7	Slave0_reg6	Slave0_reg5	Slave0_reg4	Slave0_reg3	Slave0_reg2	Slave0_reg1	Slave0_reg0	
--	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	--

Table 230. SLV0_SUBADD register description

Slave0_reg[7:0] Address of register on Sensor1 that has to be read/write according to the rw_0 bit value in SLV0_ADD (02h). Default value: 00000000

DS12171 - Rev 3 page 88/116

12.3 SLAVE0_CONFIG (04h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 231. SLAVE0_CONFIG register

Table 232. SLAVEO_CONFIG register description

	Decimation of read operation on Sensor1 starting from the sensor hub trigger. Default value: 00
	(00: no decimation;
Slave0_rate[1:0]	01: update every 2 samples;
	10: update every 4 samples;
	11: update every 8 samples.)
	Number of external sensors to be read by sensor hub. Default value: 00
	(00: one sensor;
Aux_sens_on[1:0]	01: two sensors;
	10: three sensors;
	11: four sensors.)
Sro modo	Source mode conditioned read. Default value: 0 ⁽¹⁾
Src_mode	(0: source mode read disabled; 1: source mode read enabled)
Slave0_numop[2:0]	Number of read operations on Sensor1.

Read conditioned by the content of the register at address specified in the DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)
register. If the content is non-zero, the operation continues with the reading of the address specified in the SLV0_SUBADD
(03h) register, else the operation is interrupted.

12.4 SLV1_ADD (05h)

I²C slave address of the second external sensor (Sensor2) register (r/w).

Table 233. SLV1_ADD register

Slave1_	add6 Slave1_add5	Slave1_add4	Slave1_add3	Slave1_add2	Slave1_add1	Slave1_add0	r_1
---------	------------------	-------------	-------------	-------------	-------------	-------------	-----

Table 234. SLV1_ADD register description

Slave1_add[6:0]	l²C slave address of Sensor2 that can be read by sensor hub. Default value: 0000000
r 1	Read operation on Sensor2 enable. Default value: 0
	(0: read operation disabled; 1: read operation enabled)

DS12171 - Rev 3 page 89/116

12.5 SLV1_SUBADD (06h)

Address of register on the second external sensor (Sensor2) register (r/w).

Table 235. SLV1_SUBADD register

Slave1_reg7	Slave1_reg6	Slave1_reg5	Slave1_reg4	Slave1_reg3	Slave1_reg2	Slave1_reg1	Slave1_reg0
-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 236. SLV1_SUBADD register description

Slave1_reg[7:0] Address of register on Sensor2 that has to be read according to the r_1 bit value in SLV1_ADD (05h).
Default value: 00000000

12.6 SLAVE1_CONFIG (07h)

Second external sensor (Sensor2) configuration register (r/w).

Table 237. SLAVE1_CONFIG register

Slave1 rate1	Slave1 rate0	write once	0(1)	0(1)	Slave1 numop2	Slave1_numop1	Slave1_numop0
Slave I_Tale I	Slave I_Tale0	write_orice	0(1)	0(1)	Slave I_Humop2	Slave I_Humop I	Slave I_Humopo

1. This bit must be set to '0' for the correct operation of the device.

Table 238. SLAVE1_CONFIG register description

	Decimation of read operation on Sensor2 starting from the sensor hub trigger. Default value: 00
	(00: no decimation;
Slave1_rate[1:0]	01: update every 2 samples;
	10: update every 4 samples;
write_once	11: update every 8 samples.)
	Slave 0 write operation is performed only at the first sensor hub cycle. (1)
	Default value: 0
	(0: write operation for each sensor hub cycle;
	1: write operation only for the first sensor hub cycle)
Slave1_numop[2:0]	Number of read operations on Sensor2.

1. This is effective if the Aux_sens_on[1:0] field in SLAVE0_CONFIG (04h) is set to a value other than 00.

DS12171 - Rev 3 page 90/116

12.7 SLV2_ADD (08h)

I²C slave address of the third external sensor (Sensor3) register (r/w).

Table 239. SLV2_ADD register

Slave2_add6	Slave2_add5	Slave2_add4	Slave2_add3	Slave2_add2	Slave2_add1	Slave2_add0	r_2
-------------	-------------	-------------	-------------	-------------	-------------	-------------	-----

Table 240. SLV2_ADD register description

Slave2 add[6:0]	I ² C slave address of Sensor3 that can be read by sensor hub.
Siavez_add[0.0]	Default value: 0000000
r 2	Read operation on Sensor3 enable. Default value: 0
r_2	(0: read operation disabled; 1: read operation enabled)

12.8 SLV2_SUBADD (09h)

Address of register on the third external sensor (Sensor3) register (r/w).

Table 241. SLV2_SUBADD register

Slave2_reg7	Slave2_reg6	Slave2_reg5	Slave2_reg4	Slave2_reg3	Slave2_reg2	Slave2_reg1	Slave2_reg0	
0	0	0	0	0	0	0		

Table 242. SLV2_SUBADD register description

Slave2_reg[7:0] Address of register on Sensor3 that has to be read according to the r_2 bit value in SLV2_ADD (08h). Default value: 000000000

12.9 SLAVE2_CONFIG (0Ah)

Third external sensor (Sensor3) configuration register (r/w).

Table 243. SLAVE2_CONFIG register

Slave2_rate1 Slave2_rate0 0 ⁽¹⁾ 0 ⁽¹⁾ Slave2_numop2 Slave2_numop1 Slave2_numop
--

1. This bit must be set to '0' for the correct operation of the device.

Table 244. SLAVE2_CONFIG register description

	Decimation of read operation on Sensor3 starting from the sensor hub trigger. Default value: 00
	(00: no decimation;
Slave2_rate[1:0]	01: update every 2 samples;
	10: update every 4 samples;
	11: update every 8 samples.)
Slave2_numop[2:0]	Number of read operations on Sensor3.

DS12171 - Rev 3 page 91/116

12.10 SLV3_ADD (0Bh)

I²C slave address of the fourth external sensor (Sensor4) register (r/w).

Table 245. SLV3_ADD register

Olaveo_addo Ol		Slave3_add6	Slave3_add5	Slave3_add4	Slave3_add3	Slave3_add2	Slave3_add1	Slave3_add0	r_3
--	--	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-----

Table 246. SLV3_ADD register description

Slave3 add[6:0]	I²C slave address of Sensor4 that can be read by the sensor hub.
Siaves_adu[o.o]	Default value: 0000000
r 2	Read operation on Sensor4 enable. Default value: 0
r_3	(0: read operation disabled; 1: read operation enabled)

12.11 SLV3_SUBADD (0Ch)

Address of register on the fourth external sensor (Sensor4) register (r/w).

Table 247. SLV3_SUBADD register

		Slave3_reg7	Slave3_reg6	Slave3_reg5	Slave3_reg4	Slave3_reg3	Slave3_reg2	Slave3_reg1	Slave3_reg0
--	--	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 248. SLV3_SUBADD register description

_ADD (0Bh).	Slave3_reg[7:0]
_/,00 (00)	Slave3_reg[7:0] /

12.12 SLAVE3_CONFIG (0Dh)

Fourth external sensor (Sensor4) configuration register (r/w).

Table 249. SLAVE3_CONFIG register

Slave3_rate1	Slave3_rate0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	Slave3_numop2	Slave3_numop1	Slave3_numop0
--------------	--------------	------------------	------------------	------------------	---------------	---------------	---------------

1. This bit must be set to '0' for the correct operation of the device.

Table 250. SLAVE3_CONFIG register description

	Decimation of read operation on Sensor4 starting from the sensor hub trigger. Default value: 00
	(00: no decimation;
Slave3_rate[1:0]	01: update every 2 samples;
	10: update every 4 samples;
	11: update every 8 samples.)
Slave3_numop[2:0]	Number of read operations on Sensor4.

DS12171 - Rev 3 page 92/116

12.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)

Data to be written into the slave device register (r/w).

Table 251. DATAWRITE_SRC_MODE_SUB_SLV0 register

	9	Slave dataw7	Slave dataw6	Slave dataw5	Slave dataw4	Slave dataw3	Slave dataw2	Slave dataw1	Slave dataw0
--	---	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------

Table 252. DATAWRITE_SRC_MODE_SUB_SLV0 register description

Slave dataw[7:0]	Data to be written into the slave device according to the rw_0 bit in SLV0_ADD (02h) register or address to be read in source mode.	
	Default value: 00000000	

12.14 MAG_SI_XX (24h)

Soft-iron matrix correction register (r/w).

Table 253. MAG_SI_XX register

MAG_SI_XX_7 MAG_SI_XX_6 MAG	AG_SI_XX_5 MAG_SI_XX_4 I	MAG_SI_XX_3 MAG_SI_XX_2	MAG_SI_XX_1 MAG_SI_XX_0
-----------------------------	------------------------------	---------------------------	---------------------------

Table 254. MAG_SI_XX register description

MAG_SI_XX_[7:0]	Soft-iron correction row1 col1 coefficient ⁽¹⁾ . Default value: 00001000
-----------------	---

1. Value is expressed in sign-module format.

12.15 MAG_SI_XY (25h)

Soft-iron matrix correction register (r/w).

Table 255. MAG_SI_XY register

MAG_SI_XY_7 MAG	G_SI_XY_6 MAG_SI_XY_	5 MAG_SI_XY_4	MAG_SI_XY_3	MAG_SI_XY_2	MAG_SI_XY_1	MAG_SI_XY_0

Table 256. MAG_SI_XY register description

MAG_SI_XY_[7:0]	Soft-iron correction row1 col2 coefficient ⁽¹⁾ . Default value: 00000000

1. Value is expressed in sign-module format.

12.16 MAG_SI_XZ (26h)

Soft-iron matrix correction register (r/w).

Table 257. MAG_SI_XZ register

Table 258. MAG_SI_XZ register description

MAG_SI_XZ_[7:0]	Soft-iron correction row1 col3 coefficient ⁽¹⁾ . Default value: 00000000
-----------------	---

1. Value is expressed in sign-module format.

DS12171 - Rev 3 page 93/116

12.17 MAG_SI_YX (27h)

Soft-iron matrix correction register (r/w).

Table 259. MAG_SI_YX register

Table 260. MAG_SI_YX register description

MAG_SI_YX_[7:0]	Soft-iron correction row2 col1 coefficient ⁽¹⁾ . Default value: 00000000
-----------------	---

1. Value is expressed in sign-module format.

12.18 MAG_SI_YY (28h)

Soft-iron matrix correction register (r/w).

Table 261. MAG_SI_YY register

MAG_SI_YY_7	MAG_SI_YY_6	MAG_SI_YY_5	MAG_SI_YY_4	MAG_SI_YY_3	MAG_SI_YY_2	MAG_SI_YY_1	MAG_SI_YY_0
-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 262. MAG_SI_YY register description

MAG_SI_YY_[7:0] Soft-iron correction row2 col2 coefficient ⁽¹⁾ . Default value: 00001000	MAG_SI_YY_[7:0]	Soft-iron correction row2 col2 coefficient ⁽¹⁾ . Default value: 00001000
---	-----------------	---

1. Value is expressed in sign-module format.

12.19 MAG_SI_YZ (29h)

Soft-iron matrix correction register (r/w).

Table 263. MAG_SI_YZ register

MAG_SI_YZ_7 MAG_SI_YZ_6 MAG_SI_YZ_5 MAG_SI_YZ_4 MAG_SI_YZ_3 MAG_SI_YZ_2 MAG_SI_YZ_1 MAG_SI_YZ_1 MAG_SI_YZ_2 MAG_SI_YZ_1 MAG_SI_YZ_1 MAG_SI_YZ_1 MAG_SI_YZ_2 MAG_SI_YZ_2 MAG_SI_YZ_1 MAG_SI_YZ_2 MAG_SI_YZ_1 MAG_SI_YZ_3 MAG_SI_YZ_2 MAG_SI_YZ_3 MA
--

Table 264. MAG_SI_YZ register description

MAG_SI_YZ_[7:0]	Soft-iron correction row2 col3 coefficient ⁽¹⁾ . Default value: 00000000	
-----------------	---	--

1. Value is expressed in sign-module format.

12.20 MAG_SI_ZX (2Ah)

Soft-iron matrix correction register (r/w).

Table 265. MAG_SI_ZX register

MAG_SI_ZX_7 MAG_SI_ZX	6 MAG_SI_ZX_5 MAG_SI_ZX_4	MAG_SI_ZX_3 MAG_SI_ZX_2	MAG_SI_ZX_1 MAG_SI_ZX_0
-----------------------	---------------------------	-------------------------	-------------------------

Table 266. MAG_SI_ZX register description

MAG_SI_ZX_[7:0]	Soft-iron correction row3 col1 coefficient ⁽¹⁾ . Default value: 00000000
-----------------	---

1. Value is expressed in sign-module format.

DS12171 - Rev 3 page 94/116

12.21 MAG_SI_ZY (2Bh)

Soft-iron matrix correction register (r/w).

Table 267. MAG_SI_ZY register

MAG_SI_ZY_7	MAG_SI_ZY_6	MAG_SI_ZY_5	MAG_SI_ZY_4	MAG_SI_ZY_3	MAG_SI_ZY_2	MAG_SI_ZY_1	MAG_SI_ZY_0
-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 268. MAG_SI_ZY register description

MAG_SI_ZY_[7:0]	Soft-iron correction row3 col2 coefficient ⁽¹⁾ . Default value: 00000000	
-----------------	---	--

1. Value is expressed in sign-module format.

12.22 MAG_SI_ZZ (2Ch)

Soft-iron matrix correction register (r/w).

Table 269. MAG_SI_ZZ register

	MAG_SI_ZZ_7 MAG_SI_ZZ_6	MAG_SI_ZZ_5	MAG_SI_ZZ_4	MAG_SI_ZZ_3	MAG_SI_ZZ_2	MAG_SI_ZZ_1	MAG_SI_ZZ_0
--	-------------------------	-------------	-------------	-------------	-------------	-------------	-------------

Table 270. MAG_SI_ZZ register description

MAG_SI_ZZ_[7:0]	Soft-iron correction row3 col3 coefficient ⁽¹⁾ . Default value: 00001000
-----------------	---

1. Value is expressed in sign-module format.

12.23 MAG_OFFX_L (2Dh)

Offset for X-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 271. MAG_OFFX_L register

MAG_OFFX_L_7 MAG_OFFX_L_6 MAG_OFFX_L_5 MAG_OFFX_L_4 MAG_OFFX_L_3 MAG_OFFX_L_2 MAG_OFFX_L_5 MAG_OFFX_L_5 MAG_OFFX_L_6 MAG_	MA	IAG_OFFX_L_6	MAG_OFFX_L_5	MAG_OFFX_L_4	MAG_OFFX_L_3	MAG_OFFX_L_2	MAG_OFFX_L_1	MAG_OFFX_L_0
--	----	--------------	--------------	--------------	--------------	--------------	--------------	--------------

Table 272. MAG_OFFX_L register description

G_OFFX_L_[7:0] Offset for X-axis hard-iron compensation. Default value: 00000000	
--	--

12.24 MAG_OFFX_H (2Eh)

Offset for X-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 273. MAG_OFFX_H register

MAC OFFY H 7	MAC OFFY H 6	MAC OFFY H F	MAC OFFY H 4	MAC OFFY H 2	MAC OFFY H 2	MAC OFFY H 1	MAG OFFX H 0
INIAG OFFA H /	INIAG OFFA FI O	INIAG OFFA IT S	INIAG OFFA H 4	INIAG OFFA IT 3	INIAG OFFA R Z	INIAG OFFA H I	INIAG OFFA H U

Table 274. MAG_OFFX_H register description

MAG_OFFX_H_[7:0]	Offset for X-axis hard-iron compensation. Default value: 00000000

DS12171 - Rev 3 page 95/116

12.25 MAG_OFFY_L (2Fh)

Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 275. MAG_OFFY_L register

Table 276. MAG_OFFY_L register description

MAG_OFFY_L_[7:0] Offset for Y-axis hard-iron compensation. Default value: 00000000	
--	--

12.26 MAG OFFY H (30h)

Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 277. MAG_OFFY_H register

Table 278. MAG_OFFY_H register description

12.27 MAG_OFFZ_L (31h)

Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 279. MAG_OFFZ_L register

MAG OFFZ I 7	MAG OFFZ I 6	MAG OFFZ L 5	MAG OFFZ I 4	MAG OFFZ L 3	MAG OFF7 I 2	MAG OFFZ I 1	MAG OFFZ L 0
100 01 1 2_2_7	1111110_01120	1417 (0_01 1 2_1_0	W// (O_O) Z_L	100 01 1 2_2	100 01 1 2 2 2	100 00 1 2 2 2	W// (O_O) Z_L_0

Table 280. MAG_OFFZ_L register description

MAG_OFFZ_L_[7:0]	Offset for Z-axis hard-iron compensation. Default value: 00000000
------------------	---

12.28 MAG OFFZ H (32h)

Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 281. MAG_OFFZ_H register

N/	MAG OFFZ H 7	MAG OFFZ H 6	MAG OFFZ H 5	MAG OFF7 H 4	MAG OFF7 H 3	MAG OFF7 H 2	MAG OFF7 H 1	MAG OFFZ H 0
110	IAO OITZ II I	WAS SITE II S	WING OITZ II 3	WAO OITZ II T	WAG OLIZ II S	WAG OLIZ II Z	WIAO OLIZII I	WAG OITZ II 0

Table 282. MAG_OFFZ_H register description

MAG_OFFZ_H_[7:0]	Offset for Z-axis hard-iron compensation. Default value: 00000000

DS12171 - Rev 3 page 96/116

13 Soldering information

The LGA package is compliant with the ECOPACK[®], RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Land pattern and soldering recommendations are available at www.st.com/mems.

DS12171 - Rev 3 page 97/116

14 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

14.1 LGA-14L package information

Figure 23. LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data

Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2.50	±0.1
Width [W]	3.00	±0.1
Height [H]	0.86	MAX

DM00249496 1

DS12171 - Rev 3 page 98/116

14.2 LGA-14 packing information

P2 2.00<u>±</u>0.05(I) Po 4.00±0.10(II) E1 1.75<u>±</u>0.10 Ø 1.50 0.00 0.30±0.05 D1 Ø1.50 MIN. R0.20 TYP. Ao SECTION Y-Y SECTION X-X Measured from centreline of sprocket ho to centreline of spocket. Curnulative tolerance of 10 sprocket holes is ± 0.20 Measured from centreline of sprocket hole to centreline of spocket. Other material available. (1) +/- 0.05 Ao Во 3.30 +/- 0.05 (11) Ko 1.00 +/- 0.10 (111) 5.50 +/- 0.05 +/- 0.10 8.00 (IV) Forming format : Press form - 17-B Required length: 170 meter / 22B3 reel ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 24. Carrier tape information for LGA-14 package

Figure 25. LGA-14 package orientation in carrier tape

DS12171 - Rev 3 page 99/116

Figure 26. Reel information for carrier tape of LGA-14 package

Table 283. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)				
A (max)	330			
B (min)	1.5			
С	13 ±0.25			
D (min)	20.2			
N (min)	60			
G	12.4 +2/-0			
T (max)	18.4			

DS12171 - Rev 3 page 100/116

Revision history

Table 284. Document revision history

Date	Revision	Changes
15-Jun-2017 1		Initial release
24-Nov-2017	2	Updated Table 3: Mechanical characteristics Updated footnote 1 of Table 41: FIFO ODR selection
13-Nov-2018	3	Added product label indicating ST's 10-year longevity commitment Added sensor resonant frequency to Table 2. Mechanical characteristics Updated bit 7 in Section 10.5 FIFO_CTRL2 (07h) Updated bit 0 in Section 10.76 MD1_CFG (5Eh)

DS12171 - Rev 3 page 101/116

Contents

1	Overview					
2	Emb	edded	smart features	4		
	2.1	Tilt det	tection	4		
3	Pin	descrip	tion	5		
	3.1	Pin co	onnections	6		
4	Mod	lule spe	ecifications	8		
	4.1	Mecha	anical characteristics	8		
	4.2	Electri	ical characteristics	11		
	4.3	Tempe	erature sensor characteristics	11		
	4.4	Comm	nunication interface characteristics	12		
		4.4.1	SPI - serial peripheral interface	12		
		4.4.2	I ² C- inter-IC control interface	13		
	4.5	Absolu	ute maximum ratings	15		
	4.6	Terminology				
		4.6.1	Sensitivity	16		
		4.6.2	Zero-g and zero-rate level	16		
5	Fun	ctionali	ty	17		
	5.1	Operating modes				
	5.2	Gyroscope power modes				
	5.3	Accelerometer power modes				
	5.4	Block	diagram of filters	17		
		5.4.1	Block diagrams of the gyroscope filters	17		
		5.4.2	Block diagrams of the accelerometer filters	18		
	5.5	FIFO .		22		
		5.5.1	Bypass mode	22		
		5.5.2	FIFO mode	22		
		5.5.3	Continuous mode	23		
		5.5.4	Continuous-to-FIFO mode	23		
		5.5.5	Bypass-to-Continuous mode	23		
		5.5.6	FIFO reading procedure	23		

6	Digit	tal interfaces	24
	6.1	I ² C/SPI interface	
	6.2	Master I ² C	
	6.3	Auxiliary SPI	
	6.4	I ² C serial interface	25
		6.4.1 I ² C operation	
	6.5	SPI bus interface	
		6.5.1 SPI read	
		6.5.2 SPI write	
		6.5.3 SPI read in 3-wire mode	
7	Appl	lication hints	30
	7.1	electrical connections in Mode 1	30
	7.2	electrical connections in Mode 2	30
	7.3	electrical connections in Mode 3 and Mode 4	31
		7.3.1 @NA	
8	Auxi	iliary SPI configurations	36
	8.1	Gyroscope filtering	36
	8.2	Accelerometer filtering	
		8.2.1 Accelerometer full scale set from primary interface	
		8.2.2 Accelerometer full scale set from auxiliary SPI	37
9	Regi	ister mapping	38
10	Regi	ister description	41
	10.1	FUNC_CFG_ACCESS (01h)	
	10.2	SENSOR_SYNC_TIME_FRAME (04h)	
	10.3	SENSOR_SYNC_RES_RATIO (05h)	
	10.4	FIFO_CTRL1 (06h)	
	10.5	FIFO_CTRL2 (07h)	
	10.6	FIFO_CTRL3 (08h)	
	10.7	FIFO_CTRL4 (09h)	
	10.8	FIFO_CTRL5 (0Ah)	
	10.9	DRDY_PULSE_CFG (0Bh)	
		= · · = · _ · · = - = · · · · · · · · · · · · · · ·	

10.10	INT1_CTRL (0Dh)	46
10.11	INT2_CTRL (0Eh)	47
10.12	WHO_AM_I (0Fh)	47
10.13	CTRL1_XL (10h)	48
10.14	CTRL2_G (11h)	49
10.15	CTRL3_C (12h)	50
10.16	CTRL4_C (13h)	51
10.17	CTRL5_C (14h)	51
10.18	CTRL6_C (15h)	53
10.19	CTRL7_G (16h)	54
10.20	CTRL8_XL (17h)	55
10.21	CTRL9_XL (18h)	56
10.22	CTRL10_C (19h)	56
10.23	MASTER_CONFIG (1Ah)	57
10.24	WAKE_UP_SRC (1Bh)	58
10.25	TAP_SRC (1Ch)	59
	TAP_SRC (1Ch)	
10.26		60
10.26 10.27	D6D_SRC (1Dh)	60 60
10.26 10.27 10.28	D6D_SRC (1Dh)	60 60 61
10.26 10.27 10.28 10.29	D6D_SRC (1Dh)	60 60 61 61
10.26 10.27 10.28 10.29 10.30	D6D_SRC (1Dh)	60 61 61 61
10.26 10.27 10.28 10.29 10.30 10.31	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h)	60 60 61 61 61 62
10.26 10.27 10.28 10.29 10.30 10.31 10.32	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h) OUTY_L_G (24h)	60 60 61 61 62 63
10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h) OUTY_L_G (24h) OUTY_L_G (25h)	60 60 61 61 62 63
10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h) OUTY_L_G (24h) OUTY_L_G (25h) OUTY_L_G (26h)	60 60 61 61 62 63 63 64
10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h) OUTY_L_G (24h) OUTY_L_G (25h) OUTZ_L_G (26h) OUTZ_L_G (27h)	60 60 61 61 62 63 63 64 64
10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35 10.36	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h) OUTY_L_G (24h) OUTY_L_G (25h) OUTZ_L_G (26h) OUTZ_L_G (27h) OUTZ_L_C (27h) OUTX_L_XL (28h)	60 60 61 61 62 63 64 64 64
10.26 10.27 10.28 10.29 10.30 10.31 10.32 10.33 10.34 10.35 10.36 10.37	D6D_SRC (1Dh) STATUS_REG/STATUS_SPIAux (1Eh) OUT_TEMP_L (20h), OUT_TEMP_H (21h). OUTX_L_G (22h) OUTX_H_G (23h) OUTY_L_G (24h) OUTY_L_G (25h) OUTZ_L_G (26h) OUTZ_L_G (26h) OUTZ_L_G (27h) OUTX_L_XL (28h) OUTX_H_XL (29h)	60 61 61 62 63 64 64 64 65

10.40	OUTZ_H_XL (2Dh)	66
10.41	SENSORHUB1_REG (2Eh)	66
10.42	SENSORHUB2_REG (2Fh)	66
10.43	SENSORHUB3_REG (30h)	66
10.44	SENSORHUB4_REG (31h)	66
10.45	SENSORHUB5_REG (32h)	67
10.46	SENSORHUB6_REG (33h)	67
10.47	SENSORHUB7_REG (34h)	67
10.48	SENSORHUB8_REG (35h)	67
10.49	SENSORHUB9_REG (36h)	68
10.50	SENSORHUB10_REG (37h)	68
10.51	SENSORHUB11_REG (38h)	68
10.52	SENSORHUB12_REG (39h)	68
10.53	FIFO_STATUS1 (3Ah)	69
10.54	FIFO_STATUS2 (3Bh)	69
10.55	FIFO_STATUS3 (3Ch)	69
10.56	FIFO_STATUS4 (3Dh)	70
10.57	FIFO_DATA_OUT_L (3Eh)	70
10.58	FIFO_DATA_OUT_H (3Fh)	71
10.59	TIMESTAMP0_REG (40h)	71
10.60	TIMESTAMP1_REG (41h)	71
10.61	TIMESTAMP2_REG (42h)	72
10.62	SENSORHUB13_REG (4Dh)	72
10.63	SENSORHUB14_REG (4Eh)	72
10.64	SENSORHUB15_REG (4Fh)	72
10.65	SENSORHUB16_REG (50h)	73
10.66	SENSORHUB17_REG (51h)	73
10.67	SENSORHUB18_REG (52h)	73
10.68	FUNC_SRC1 (53h)	74
10.69	FUNC_SRC2 (54h)	74

10.70	TAP_CFG (58h)75
10.71	TAP_THS_6D (59h)
10.72	INT_DUR2 (5Ah)76
10.73	WAKE_UP_THS (5Bh)76
10.74	WAKE_UP_DUR (5Ch)
10.75	FREE_FALL (5Dh)
10.76	MD1_CFG (5Eh)
10.77	MD2_CFG (5Fh)
10.78	MASTER_CMD_CODE (60h)
10.79	SENS_SYNC_SPI_ERROR_CODE (61h)79
10.80	OUT_MAG_RAW_X_L (66h)80
10.81	OUT_MAG_RAW_X_H (67h)80
10.82	OUT_MAG_RAW_Y_L (68h)80
10.83	OUT_MAG_RAW_Y_H (69h)81
10.84	OUT_MAG_RAW_Z_L (6Ah)81
10.85	OUT_MAG_RAW_Z_H (6Bh)81
10.86	INT_OIS (6Fh)81
10.87	CTRL1_OIS (70h)82
10.88	CTRL2_OIS (71h)83
10.89	CTRL3_OIS (72h)83
10.90	X_OFS_USR (73h)84
10.91	Y_OFS_USR (74h)85
10.92	Z_OFS_USR (75h)
Embe	edded functions register mapping86
Embe	edded functions registers description88
12.1	SLV0_ADD (02h)88
12.2	SLV0_SUBADD (03h)
12.3	SLAVE0_CONFIG (04h)89
12.4	SLV1_ADD (05h)89
12.5	SLV1_SUBADD (06h)90

11

12

	12.6	SLAVE1_CONFIG (07h)90
	12.7	SLV2_ADD (08h)91
	12.8	SLV2_SUBADD (09h)91
	12.9	SLAVE2_CONFIG (0Ah)91
	12.10	SLV3_ADD (0Bh)92
	12.11	SLV3_SUBADD (0Ch)
	12.12	SLAVE3_CONFIG (0Dh)
	12.13	DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)
	12.14	MAG_SI_XX (24h)93
	12.15	MAG_SI_XY (25h)93
	12.16	MAG_SI_XZ (26h)
	12.17	MAG_SI_YX (27h)94
	12.18	MAG_SI_YY (28h)94
	12.19	MAG_SI_YZ (29h)
	12.20	MAG_SI_ZX (2Ah)
	12.21	MAG_SI_ZY (2Bh)
	12.22	MAG_SI_ZZ (2Ch)
	12.23	MAG_OFFX_L (2Dh)
	12.24	MAG_OFFX_H (2Eh)
	12.25	MAG_OFFY_L (2Fh)95
	12.26	MAG_OFFY_H (30h)96
	12.27	MAG_OFFZ_L (31h)96
	12.28	MAG_OFFZ_H (32h)96
13	Solde	ering information97
14	Packa	age information98
	14.1	LGA-14L package information
	14.2	LGA-14 packing information98
Rev	ision h	istory
Con	tents .	
List	of tab	les 109

figures 115

DS12171 - Rev 3

List of tables

Table 1.	Pin desription	6
Table 2.	Mechanical characteristics	8
Table 3.	Electrical characteristics	. 11
Table 4.	Temperature sensor characteristics	. 11
Table 5.	SPI slave timing values	. 12
Table 6.	I ² C slave timing values	. 13
Table 7.	I ² C slave timing values	. 14
Table 8.	Absolute maximum ratings	. 15
Table 9.	Serial interface pin description	
Table 10.	Master I ² C pin details	. 24
Table 11.	Auxiliary SPI pin details	
Table 12.	I ² C terminology	. 25
Table 13.	SAD_Read/Write patterns	
Table 14.	Transfer when master is writing one byte to slave	
Table 15.	Transfer when master is writing multiple bytes to slave	
Table 16.	Transfer when master is receiving (reading) one byte of data from slave	
Table 17.	Transfer when master is receiving (reading) multiple bytes of data from slave	
Table 18.	Internal pin status	
Table 19.	Registers address map	
Table 20.	FUNC_CFG_ACCESS register	
Table 21.	FUNC_CFG_ACCESS register description	
Table 22.	SENSOR_SYNC_TIME_FRAME register	
Table 23.	SENSOR_SYNC_TIME_FRAME register description	
Table 24.	SENSOR_SYNC_RES_RATIO register.	
Table 25.	SENSOR_SYNC_RES_RATIO register description	
Table 26.	FIFO_CTRL1 register	
Table 27.	FIFO_CTRL1 register description.	
Table 28.	FIFO_CTRL2 register	
Table 29.	FIFO_CTRL2 register description.	
Table 30.	FIFO_CTRL3 register	
Table 31.	FIFO_CTRL3 register description.	
Table 32.	Gyro FIFO decimation setting	
Table 33.	Accelerometer FIFO decimation setting	
Table 34.	FIFO_CTRL4 register	
Table 35.	FIFO CTRL4 register description.	
Table 36.	Fourth FIFO data set decimation setting	
Table 37.	Third FIFO data set decimation setting	
Table 38.	FIFO_CTRL5 register	
Table 39.	FIFO_CTRL5 register description.	
Table 40.	FIFO ODR selection	
Table 41.	FIFO mode selection	
Table 42.	DRDY PULSE CFG register	
Table 43.	DRDY_PULSE_CFG register description	
Table 44.	INT1 CTRL register	
Table 45.	INT1_CTRL register description	
Table 46.	INT2_CTRL register	
Table 47.	INT2_CTRL register description	
Table 47.	WHO_AM_I register	
Table 49.	CTRL1_XL register	
Table 50.	CTRL1_XL register description	
Table 50.	Accelerometer ODR register setting	
Table 51.	CTRL2_G register	
IdDIC JZ.	OTINE2_O TOGOSTOL	. + 3

CTRL2_G register description	
CTRL3_C register	50
CTRL4_C register	51
CTRL4_C register description	51
CTRL5_C register	51
CTRL5_C register description	51
Output registers rounding pattern	52
· ·	
CTRL6 C register	53
**	
•	
•	
-	
= = ·	
= = · · · · · · · · · · · · · · · · · ·	
== 0	
= = ·	
· ·	
· ·	
OUTX_H_XL register	64
	CIRL2, C register CIRL3, C register CIRL3, C register description CIRL4, C register description CIRL4, C register description CIRL5, C register description CIRL6, C register description CIRL6, C register description Tingper mode selection CIRL6, C register description Tingper mode selection CIRL7, G register CIRL7, G register CIRL7, G register CIRL7, G register description CIRL8, XL register description CIRL8, XL register description CIRL8, XL register description CIRL8, XL register description CIRL10, C register description CIRL10, C register description MASTER, CONFIG register MASTER, SPANUR register description MASTER, SPANUR register DOD, SRC register description STATUS, SPANUR register DD, SRC register description DD, SRC register description DOT, STATUS, SPANUR description OUT, TEMP, I register OUT, TEMP, I register OUT, TEMP, I register OUT, L G register description OUT, L G register description OUT, L L Register description

	OUTX_H_XL register description	
	OUTY_L_XL register	
Table 109.	OUTY_L_XL register description	65
Table 110.	OUTY_H_XL register	65
Table 111.	OUTY_H_XL register description	65
Table 112.	OUTZ_L_XL register	65
Table 113.	OUTZ_L_XL register description	65
Table 114.	OUTZ_H_XL register	66
	OUTZ_H_XL register description	
	SENSORHUB1_REG register	
	SENSORHUB1_REG register description	
	SENSORHUB2_REG register	
	SENSORHUB2_REG register description	
	SENSORHUB3_REG register	
	SENSORHUB3_REG register description	
	SENSORHUB4_REG register	
	SENSORHUB4_REG register description	
	SENSORHUB5_REG register	
	SENSORHUB5_REG register description	
	SENSORHUB6_REG register	
	SENSORHUB6_REG register description	
	SENSORHUB7_REG register	
	SENSORHUB7_REG register description	
	SENSORHUB8_REG register	
	SENSORHUB8_REG register description	
	SENSORHUB9_REG register	
	SENSORHUB9_REG register description	
	SENSORHUB10_REG register	
	SENSORHUB10_REG register description	
	SENSORHUB11_REG register	
	SENSORHUB11_REG register description	
	SENSORHUB12_REG register	
	SENSORHUB12_REG register description	
	FIFO_STATUS1 register	
	FIFO_STATUS1 register description	
	FIFO_STATUS2 register	
	FIFO_STATUS2 register	
	FIFO_STATUS3 register	
	FIFO_STATUS3 register description	
	FIFO_STATUS4 register	
	FIFO_STATUS4 register description	
	FIFO_DATA_OUT_L register	
	FIFO_DATA_OUT_L register description	
	FIFO_DATA_OUT_H register.	
	FIFO_DATA_OUT_H register description	
	TIMESTAMP0_REG register	
	TIMESTAMP0_REG register description	
	TIMESTAMP1_REG register	
	TIMESTAMP1_REG register description	
	TIMESTAMP2_REG register	
	TIMESTAMP2_REG register description	
	SENSORHUB13_REG register	
	SENSORHUB13_REG register description	
Table 160.	SENSORHUB14_REG register	72

Table 182. SENSORHUB15 F.EG register description 72 Table 163. SENSORHUB16 F.EG register description 73 Table 165. SENSORHUB17 F.EG register description 73 Table 165. SENSORHUB17 F.EG register description 73 Table 165. SENSORHUB17 F.EG register of description 73 Table 167. SENSORHUB17 F.EG register of description 73 Table 168. SENSORHUB18 F.EG register of description 73 Table 169. SENSORHUB18 F.EG register of description 73 Table 171. F.LINC SRC1 register description 74 Table 172. F.LINC SRC2 register description 74 Table 173. F.LINC SRC2 register description 74 Table 174. TAP C.FG register description 74 Table 175. TAP THS G. For geigster description 75 Table 176. TAP THS G. For geigster description 75 Table 176. TAP THS G. For geigster description 75 Table 178. Threshold for D4D/D6D function 76 Table 178. Threshold for D4D/D6D function 76 Table 179. W. Threshold for D4D/D6D function 76 Table 180. W.RCE, UP THY Register description 76 Table 181. W.RCE, UP THS register description 76<		SENSORHUB14_REG register description	
Table 145 SENSORHUB16_REG register 73 Table 165 SENSORHUB17_REG register 73 Table 166 SENSORHUB17_REG register 73 Table 167 SENSORHUB17_REG register 73 Table 168 SENSORHUB18_REG register 73 Table 169 SENSORHUB18_REG register 74 Table 171 FUNC_SRC1 register 74 Table 172 FUNC_SRC2 register description 74 Table 173 FUNC_SRC2 register description 74 Table 174 TAP_CFG register description 74 Table 175 TAP_CFG register description 75 Table 176 TAP_THS_6D register description 75 Table 177 TAP_CFG register description 75 Table 178 Thresplater description 76 Table 178 Thresplater description 76 Table 178 Thresplater description 76 Table 179 INT_DUR2 register 76 Table 181 WAKE_UP_THS register 76 Table 183 WAKE_UP_THS register 76<			
Table 165. SENSORHUB17_REG register 73 Table 165. SENSORHUB17_REG register 73 Table 165. SENSORHUB17_REG register description 73 Table 168. SENSORHUB18_REG register description 73 Table 170. FUNC_SRC1 register 74 Table 171. FUNC_SRC1 register description 74 Table 172. FUNC_SRC2 register description 74 Table 173. FUNC_SRC2 register description 74 Table 175. FUNC_SRC2 register description 74 Table 175. TAP_CFG register description 75 Table 175. TAP_CFG register description 75 Table 175. TAP_CFG register description 75 Table 176. TAP_CFG register description 75 Table 177. TAP_THS_6D register description 75 Table 178. Threshold for D4D/D6D register 75 Table 177. TAP_THS_6D register description 76 Table 178. Threshold for D4D/D6D register 76 Table 179. TAP_THS_6D register 76			
Table 166 SENSORHUB17_REG register 73 Table 168 SENSORHUB18_REG register description 73 Table 168 SENSORHUB18_REG register description 73 Table 176 SUNC_SRCI register description 73 Table 171 FUNC_SRCI register description 74 Table 172 FUNC_SRC2 register description 74 Table 173 FUNC_SRC2 register description 75 Table 174 TAP_CFG register 75 Table 175 TAP_CFG register description 75 Table 176 TAP_THS_BD register description 75 Table 178 Threshold for D4D/D6D function 75 Table 178 Threshold for D4D/D6D function 76 Table 180 INT_DUR2 register 76 Table 181 WAKE_UP_THS register description 76 Table 182 WAKE_UP_THS register description 76 Table 183 WAKE_UP_DUR register description 76 Table 184 FREE_FALL register description 77 Table 185 FREE_FALL register description 77	Table 164.	SENSORHUB16_REG register	73
Table 168. SENSORHUBIT_REG register description 73 Table 168. SENSORHUBIB_REG register description 73 Table 170. FUNC_SRC1 register 74 Table 171. FUNC_SRC1 register description. 74 Table 172. FUNC_SRC2 register description. 74 Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register description. 75 Table 175. TAP_CFG register description. 75 Table 176. TAP_CFG register description. 75 Table 177. TAP_THS_8D register description. 76 Table 179. INT_DUR2 register description. 76 Table 179. INT_DUR2 register description. 76 Table 180. INT_DUR2 register description. 76 Table 181. WAKE_UP_THS register description. 76 Table 182. WAKE_UP_THS register description. 76 Table 183. WAKE_UP_DUR register. 76 Table 184. WAKE_UP_DUR register. 76 Table 185. FREE_FALL register description. 7	Table 165.	SENSORHUB16_REG register description	73
Table 168. SENSORHUB18_REG register 73 Table 170. FUNC_SRC1 register 74 Table 171. FUNC_SRC1 register description. 74 Table 172. FUNC_SRC2 register description. 74 Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register 75 Table 175. TAP_CFG register description. 75 Table 176. TAP_THS_8D register description 75 Table 177. TAP_THS_8D register description 75 Table 178. Thresplot of ro DAD/D6D function 76 Table 179. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register description 76 Table 181. WAKE_UP_THS register description 76 Table 182. WAKE_UP_TBregister description 76 Table 183. WAKE_UP_DUR register description 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 184. WAKE_UP_DUR register description 77	Table 166.	SENSORHUB17_REG register	73
Table 196. SENSORHUB18_REG register description 73 Table 171. FUNC_SRC1 register description. 74 Table 172. FUNC_SRC2 register 74 Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CS GRC2 register description. 74 Table 175. TAP_CFG register description. 75 Table 175. TAP_CFG register description. 75 Table 176. TAP_THS_6D register description. 75 Table 177. TAP_THS_6D register description. 76 Table 181. TAP_THS_6D register description. 76 Table 181. NT_DUR2 register description. 76 Table 181. WAKE_UP_THS register description. 76 Table 182. WAKE_UP_THS register description. 76 Table 184. WAKE_UP_DUR register. 76 Table 184. WAKE_UP_DUR register. 77 Table 185. FREE_FALL register description. 77 Table 186. FREE_FALL register description. 77 Table 189. MD1_CFG register description. 7	Table 167.	SENSORHUB17_REG register description	73
Table 170. FUNC_SRC1 register 74 Table 171. FUNC_SRC2 register description. 74 Table 173. FUNC_SRC2 register description. 74 Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register. 75 Table 175. TAP_CFG register description. 75 Table 176. TAP_THS_6D register. 75 Table 177. TAP_THS_6D register. 75 Table 178. Threshold for D4D/D6D function 76 Table 178. Threshold for D4D/D6D function 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register. 76 Table 183. WAKE_UP_DUR register description 76 Table 183. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 188. MD1_CFG register. 78 Table 189. MD1_CFG register. 78 Table 189. MD1_CFG register. 78 Table 189. MD1_CFG register. 79 Table 199. MD2_CFG register. 79 Table 199. MD2_CFG register description. 79	Table 168.	SENSORHUB18_REG register	73
Table 171. FUNC_SRC2 register description. 74 Table 172. FUNC_SRC2 register description. 74 Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register description. 75 Table 176. TAP_THS_6D register description. 75 Table 177. TAP_THS_6D register description 75 Table 178. Threshold for D4D/D6D function 76 Table 179. INT_DUR2 register. 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register of description 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register 77 Table 185. FREE_FALL register description 77 Table 188. FREE_FALL register description 77 Table 188. MD1_CFG register description 77 Table 188. MD1_CFG register description 78 Table 189. MD1_CFG register description 78 Table 199. MD2_CFG register description 78 Table 199. MD2_CFG register description 79 Table 199. MASTER_CMD_CODE register description 79	Table 169.	SENSORHUB18_REG register description	73
Table 171. FUNC_SRC2 register description. 74 Table 172. FUNC_SRC2 register description. 74 Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register description. 75 Table 176. TAP_THS_6D register description. 75 Table 177. TAP_THS_6D register description 75 Table 178. Threshold for D4D/D6D function 76 Table 179. INT_DUR2 register. 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register of description 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register 77 Table 185. FREE_FALL register description 77 Table 188. FREE_FALL register description 77 Table 188. MD1_CFG register description 77 Table 188. MD1_CFG register description 78 Table 189. MD1_CFG register description 78 Table 199. MD2_CFG register description 78 Table 199. MD2_CFG register description 79 Table 199. MASTER_CMD_CODE register description 79	Table 170.	FUNC SRC1 register	74
Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register 75 Table 176. TAP_CFG register description 75 Table 177. TAP_THS_BD register description 75 Table 177. TAP_THS_BD register description 76 Table 178. Threshold for D4D/D6D function 76 Table 179. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register. 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register 77 Table 185. FREE_FALL register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD_CFG register description 78 Table 189. MD1_CFG register description 78 Table 189. MD2_CFG register description 79 Table 189. SNS_SYNC_SPLERROR_CODE register 90 Table 199. MSSTER_CMD_CODE register description 79 Table 199. SENS_SYNC_SPLERROR_CODE register description 80 Table 199. OUT_MAG_RAW_X L register 80 <td></td> <td></td> <td></td>			
Table 173. FUNC_SRC2 register description. 74 Table 174. TAP_CFG register 75 Table 176. TAP_CFG register description 75 Table 177. TAP_THS_BD register description 75 Table 177. TAP_THS_BD register description 76 Table 178. Threshold for D4D/D6D function 76 Table 179. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register. 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register 77 Table 185. FREE_FALL register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD_CFG register description 78 Table 189. MD1_CFG register description 78 Table 189. MD2_CFG register description 79 Table 189. SNS_SYNC_SPLERROR_CODE register 90 Table 199. MSSTER_CMD_CODE register description 79 Table 199. SENS_SYNC_SPLERROR_CODE register description 80 Table 199. OUT_MAG_RAW_X L register 80 <td></td> <td></td> <td></td>			
Table 174. TAP_CFG register 75 Table 175. TAP_CFG register description 75 Table 177. TAP_THS_6D register description 75 Table 178. Threshold for D4D/D6D function 76 Table 178. Threshold for D4D/D6D function 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register description 76 Table 182. WAKE_UP_DUR register description 76 Table 183. WAKE_UP_DUR register description 76 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 188. MD1_CFG register 78 Table 189. MD1_CFG register 78 Table 198. MD1_CFG register description 78 Table 199. MASTER_CMD_CODE register description 79 Table 191. MASTER_CMD_CODE register description 79			
Table 175. TAP_CFG register description 75 Tablo 176. TAP_THS_8D register 75 Table 177. TAP_THS_8D register description 75 Table 178. Threshold for DAD/D6D function 76 Table 179. INT_DUR2 register. 76 Table 181. WAKE_UP_THS register description 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 185. FREE_FALL register of for free-fall function 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register description 78 Table 189. MD1_CFG register description 78 Table 190. MD2_CFG register description 78 Table 191. MD2_CFG register description 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register 80 Table 196. OUT_MAG_RAW_X L register description 80 <td></td> <td></td> <td></td>			
Table 176. TAP_THS_6D register 75 Table 177. TAP_THS_6D register description 75 Table 178. Threshold for D4D/D6D function 76 Table 179. INT_DUR2 register. 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register rescription 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register description 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register. 78 Table 189. MD1_CFG register. 78 Table 189. MD2_CFG register description. 78 Table 199. MD2_CFG register description. 79 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register description 79 Table 194. SeNS_SYNC_SPI_ERROR_CODE register 80 Table 195. SeNS_SYNC_SPI_ERROR_CODE register 80 Table 196. OUT_MAG_RAW_X L register 80 T			
Table 177. TAP_THS_6D register description 75 Table 178. Threshold for D4D/D6D function 76 Table 178. Threshold for D4D/D6D function 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register. 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register of scription 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 189. MD1_CFG register. 78 Table 189. MD1_CFG register. 78 Table 199. MD2_CFG register description. 79 Table 191. MASTER_CMD_CODE register description. 79 Table 191. SENS_SYNC_SPI_ERROR_CODE register 80 Table 191. SENS_SYNC_SPI_ERROR_CODE register 80 Table 192. OUT_MAG_RAW_X I register 80 <t< td=""><td></td><td></td><td></td></t<>			
Table 178. Threshold for D4D/D6D function 76 Table 179. INT_DUR2 register. 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register. 76 Table 182. WAKE_UP_DUR register 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register. 78 Table 189. MD1_CFG register description. 78 Table 199. MD2_CFG register description. 78 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register description 79 Table 193. MSTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 199. OUT_MAG_RAW_X I register description 80 Table 199. OUT_MAG_RAW_X I register description 80 Table 200. OUT_MAG_RAW_X I register description <td< td=""><td></td><td></td><td></td></td<>			
Table 179. INT_DUR2 register description 76 Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register 76 Table 182. WAKE_UP_DUR register description 76 Table 183. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register description. 78 Table 189. MD1_CFG register description. 78 Table 190. MD2_CFG register description. 79 Table 191. MASTER_CMD_CODE register description 79 Table 192. MASTER_CMD_CODE register description 79 Table 193. MASTER_CMD_CODE register description 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X L register 80 Table 199. OUT_MAG_RAW_X L register 80 Table 200. OUT_MAG_RAW_X L register <td></td> <td></td> <td></td>			
Table 180. INT_DUR2 register description 76 Table 181. WAKE_UP_THS register. 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register 78 Table 190. MD2_CFG register description. 78 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 195. SENS_SYNC_SPI_ERROR_cODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register 80 Table 208. OUT_MAG_RAW_X_L register description <t< td=""><td></td><td></td><td></td></t<>			
Table 181. WAKE_UP_THS register. 76 Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register description. 78 Table 190. MD2_CFG register description. 78 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register description. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X L register 80 Table 197. OUT_MAG_RAW_X L register description 80 Table 200. OUT_MAG_RAW_Y L register description 80 Table 201. OUT_MAG_RAW_Y L re			
Table 182. WAKE_UP_THS register description 76 Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register description 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register. 78 Table 189. MD2_CFG register description. 78 Table 190. MD2_CFG register description. 79 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register description. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register description. 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description. 80 Table 196. OUT_MAG_RAW_X_L register description. 80 Table 197. OUT_MAG_RAW_X_L register description. 80 Table 200. OUT_MAG_RAW_Y_L register description. 80 Table 201.			
Table 183. WAKE_UP_DUR register 77 Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register 77 Table 185. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register description 78 Table 190. MD2_CFG register description 79 Table 191. MD2_CFG register description 79 Table 192. MASTER_CMD_CODE register description 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X L register 80 Table 197. OUT_MAG_RAW_X L register 80 Table 198. OUT_MAG_RAW_X L register description 80 Table 200. OUT_MAG_RAW_Y L register description 80 Table 201. OUT_MAG_RAW_Y L register 80 Table 202. OUT_MAG_RAW_Z L register description <td></td> <td>= = ·</td> <td></td>		= = ·	
Table 184. WAKE_UP_DUR register description 77 Table 185. FREE_FALL register 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register 78 Table 189. MD1_CFG register description. 78 Table 190. MC2_CFG register 79 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register description 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register description 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 199. OUT_MAG_RAW_X_H register description 80 Table 200. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register 81 Table 202. OUT_MAG_RAW_Z_L re			
Table 185. FREE_FALL register 77 Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register 78 Table 189. MD1_CFG register description 78 Table 190. MD2_CFG register description 79 Table 191. MD2_CFG register description 79 Table 192. MASTER_CMD_CODE register 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 197. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_Y_L register description 80 Table 209. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_L register description 80 Table 203. OUT_MAG_RAW_Y_L register description 81 Table 204. OUT_MAG_RAW_Z_L register description 81 Table 205. OUT_MAG_RAW_Z			
Table 186. FREE_FALL register description 77 Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register. 78 Table 189. MD1_CFG register description. 78 Table 199. MD2_CFG register description. 79 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register description. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 195. OUT_MAG_RAW_X_L register description 80 Table 196. OUT_MAG_RAW_X_L register description 80 Table 197. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_Y_L register 80 Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register 80 Table 202. OUT_MAG_RAW_Y_H register description 80 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register 81 Table 206. OUT_MAG_RAW_Z_H register 81 </td <td></td> <td></td> <td></td>			
Table 187. Threshold for free-fall function 77 Table 188. MD1_CFG register 78 Table 189. MD1_CFG register description 78 Table 190. MD2_CFG register 79 Table 191. MD2_CFG register description 79 Table 192. MASTER_CMD_CODE register description 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_L register description 80 Table 209. OUT_MAG_RAW_Y_L register description 80 Table 200. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_L register description 80 Table 203. OUT_MAG_RAW_Y_L register description 81 Table 204. OUT_MAG_RAW_Y_L register 81 Table 205. OUT_MAG_RAW_Z_L register 81 Table 206. OUT_MAG_RAW_Z_L register description 81 Table 207. OUT_MAG_RA			
Table 188. MD1_CFG register 78 Table 189. MD1_CFG register description 78 Table 190. MD2_CFG register description 79 Table 191. MD2_CFG register description 79 Table 192. MASTER_CMD_CODE register 79 Table 193. MASTER_CMD_CODE register description 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_H register description 80 Table 198. OUT_MAG_RAW_X_H register description 80 Table 209. OUT_MAG_RAW_Y_L register description 80 Table 200. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 203. OUT_MAG_RAW_Y_H register 81 Table 204. OUT_MAG_RAW_Y_L register 81 Table 205. OUT_MAG_RAW_Y_L register 81 Table 206. OUT_MAG_RAW_Z_L register 81 Table 207. OUT_MAG_RAW_Z_L register description 81 Table 208. INT_OIS register description 81 Table 209. INT_OIS register description 81 </td <td></td> <td></td> <td></td>			
Table 189. MD1_CFG register description. 78 Table 190. MD2_CFG register. 79 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register description 80 Table 199. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_L register description 80 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register 81 Table 206. OUT_MAG_RAW_Z_L register description 81 Table 207. OUT_MAG_RAW			
Table 190. MD2_CFG register. 79 Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_Y_L register description 80 Table 200. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_L register description 80 Table 203. OUT_MAG_RAW_Y_L register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register description 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208.<			
Table 191. MD2_CFG register description. 79 Table 192. MASTER_CMD_CODE register. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X L register 80 Table 197. OUT_MAG_RAW_X L register description 80 Table 198. OUT_MAG_RAW_X L register 80 Table 199. OUT_MAG_RAW_X H register 80 Table 200. OUT_MAG_RAW_Y L register description 80 Table 201. OUT_MAG_RAW_Y L register description 80 Table 202. OUT_MAG_RAW_Y L register description 81 Table 203. OUT_MAG_RAW_Y L register description 81 Table 204. OUT_MAG_RAW_Z L register description 81 Table 205. OUT_MAG_RAW_Z L register 81 Table 206. OUT_MAG_RAW_Z H register 81 Table 207. OUT_MAG_RAW_Z H register description 81 Table 209. INT_OIS r			
Table 192. MASTER_CMD_CODE register. 79 Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_X_H register description 80 Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register description 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 209. INT_OIS register 81 Table 209. INT_OIS register descr			
Table 193. MASTER_CMD_CODE register description. 79 Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_Y_L register description 80 Table 200. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register description 80 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register description 81 Table 205. OUT_MAG_RAW_Z_H register 81 Table 206. OUT_MAG_RAW_Z_H register description 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register description. 82 Table 2			
Table 194. SENS_SYNC_SPI_ERROR_CODE register 80 Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_Y_L register description 80 Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 80 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register description 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register description 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode sele			
Table 195. SENS_SYNC_SPI_ERROR_CODE register description 80 Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 200. OUT_MAG_RAW_X_L register description 80 Table 200. OUT_MAG_RAW_Y_L register description 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register description 81 Table 203. OUT_MAG_RAW_Y_L register description 81 Table 204. OUT_MAG_RAW_Z_L register description 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register description 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register description 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213.			
Table 196. OUT_MAG_RAW_X_L register 80 Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_X_H register description 80 Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 197. OUT_MAG_RAW_X_L register description 80 Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_X_H register description 80 Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register description 81 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 198. OUT_MAG_RAW_X_H register 80 Table 199. OUT_MAG_RAW_X_H register description 80 Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register description 81 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register 83			
Table 199. OUT_MAG_RAW_X H register description 80 Table 200. OUT_MAG_RAW_Y L register 80 Table 201. OUT_MAG_RAW_Y L register description 80 Table 202. OUT_MAG_RAW_Y H register 81 Table 203. OUT_MAG_RAW_Y H register description 81 Table 204. OUT_MAG_RAW_Z L register description 81 Table 205. OUT_MAG_RAW_Z L register description 81 Table 206. OUT_MAG_RAW_Z H register 81 Table 207. OUT_MAG_RAW_Z H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register description 81 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 200. OUT_MAG_RAW_Y_L register 80 Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 201. OUT_MAG_RAW_Y_L register description 80 Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register. 82 Table 211. CTRL1_OIS register description. 82 Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register. 83			
Table 202. OUT_MAG_RAW_Y_H register 81 Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register 83		·	
Table 203. OUT_MAG_RAW_Y_H register description 81 Table 204. OUT_MAG_RAW_Z_L register 81 Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description. 82 Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register. 83			
Table 204. OUT_MAG_RAW_Z L register 81 Table 205. OUT_MAG_RAW_Z L register description 81 Table 206. OUT_MAG_RAW_Z H register 81 Table 207. OUT_MAG_RAW_Z H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 205. OUT_MAG_RAW_Z_L register description 81 Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 206. OUT_MAG_RAW_Z_H register 81 Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 207. OUT_MAG_RAW_Z_H register description 81 Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 208. INT_OIS register 81 Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83	Table 206.	OUT_MAG_RAW_Z_H register	81
Table 209. INT_OIS register description 81 Table 210. CTRL1_OIS register 82 Table 211. CTRL1_OIS register description 82 Table 212. DEN mode selection 82 Table 213. CTRL2_OIS register 83			
Table 210. CTRL1_OIS register. 82 Table 211. CTRL1_OIS register description. 82 Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register. 83			
Table 211. CTRL1_OIS register description. 82 Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register. 83			
Table 212. DEN mode selection. 82 Table 213. CTRL2_OIS register. 83			
Table 213. CTRL2_OIS register	Table 211.	CTRL1_OIS register description	82
	Table 212.	DEN mode selection	82
Table 214. CTRL2_OIS register description	Table 213.	CTRL2_OIS register	83
	Table 214.	CTRL2_OIS register description	83

Table 215.	Gyroscope OIS chain LPF1 bandwidth selection	83
Table 216.	CTRL3_OIS register	83
Table 217.	CTRL3_OIS register description	84
Table 218.	Accelerometer OIS channel bandwidth selection	84
Table 219.	Self-test nominal output variation	84
Table 220.	X_OFS_USR register	85
Table 221.	X_OFS_USR register description	85
Table 222.	Y_OFS_USR register	85
Table 223.	Y_OFS_USR register description	85
Table 224.	Z_OFS_USR register	85
Table 225.	Z_OFS_USR register description	85
Table 226.	Register address map embedded functions	86
Table 227.	SLV0_ADD register	88
Table 228.	SLV0_ADD register description	88
	SLV0_SUBADD register	
	SLV0_SUBADD register description	
	SLAVEO_CONFIG register	
	SLAVEO_CONFIG register description	
	SLV1_ADD register	
	SLV1 ADD register description	
	SLV1_SUBADD register	
	SLV1_SUBADD register description	
	SLAVE1 CONFIG register	
	SLAVE1_CONFIG register description	
	SLV2_ADD register	
	SLV2_ADD register description	
	SLV2_SUBADD register	
	SLV2_SUBADD register description	
	SLAVE2_CONFIG register	
	SLAVE2_CONFIG register description	
	SLV3_ADD register	
	SLV3_ADD register description	
	SLV3 SUBADD register	
	SLV3 SUBADD register description	
	SLAVE3_CONFIG register	
	SLAVE3_CONFIG register description	
	DATAWRITE_SRC_MODE_SUB_SLV0 register.	
	DATAWRITE SRC MODE SUB SLV0 register description	
	MAG SI XX register	
	MAG SI XX register description	
	MAG_SI_XX register	
	MAG_SI_XY register description	
	MAG_SI_XT register description	
	MAG_SI_XZ register description	
	MAG_SI_XX register	
	MAG_SI_YX register description	
	MAG_SI_TX register description	
	MAG_SI_YY register description	
	MAG_SI_TT register description	
	MAG_SI_YZ register	
	MAG_SI_ZX register	
	MAG_SI_ZX register	
	MAG_SI_ZX register description	
	MAG_SI_ZY register	
Table 200.	INIAO_OI_ZI Tegistei description	90

ISM330DLC

List of tables

Table 269.	MAG_SI_ZZ register	. 95
Table 270.	MAG_SI_ZZ register description	. 95
Table 271.	MAG_OFFX_L register	. 95
Table 272.	MAG_OFFX_L register description	. 95
Table 273.	MAG_OFFX_H register	. 95
Table 274.	MAG_OFFX_H register description	. 95
Table 275.	MAG_OFFY_L register	. 96
Table 276.	MAG_OFFY_L register description	. 96
Table 277.	MAG_OFFY_H register	. 96
Table 278.	MAG_OFFY_H register description	. 96
	MAG_OFFZ_L register	
Table 280.	MAG_OFFZ_L register description	. 96
	MAG_OFFZ_H register	
Table 282.	MAG_OFFZ_H register description	. 96
Table 283.	Reel dimensions for carrier tape of LGA-14 package	100
Table 284	Document revision history	101

List of figures

Figure 1.	Pin connections	. 5
Figure 2.	ISM330DLC connection modes	. 6
Figure 3.	SPI slave timing diagram	12
Figure 4.	I ² C timing diagram	13
Figure 5.	Block diagram of filters	17
Figure 6.	Gyroscope digital chain - Mode 1 (GP) and Mode 2	18
Figure 7.	Gyroscope digital chain - Mode 3 / Mode 4 (OIS)	18
Figure 8.	Accelerometer chain	19
Figure 9.	Accelerometer composite filter (for Modes 1/2 and Mode 3*)	20
Figure 10.	Accelerometer composite filter (Mode 4 only*)	21
Figure 11.	Read and write protocol	27
Figure 12.	SPI read protocol	28
Figure 13.	Multiple byte SPI read protocol (2-byte example)	28
Figure 14.	SPI write protocol	29
Figure 15.	Multiple byte SPI write protocol (2-byte example)	29
Figure 16.	SPI read protocol in 3-wire mode	29
Figure 17.	ISM330DLC electrical connections in Mode 1	30
Figure 18.	ISM330DLC electrical connections in Mode 2	31
Figure 19.	ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 3-wire SPI)	32
Figure 20.	ISM330DLC electrical connections in Mode 3 and Mode 4 (auxiliary 4-wire SPI)	33
Figure 21.	Gyroscope chain	36
Figure 22.	Accelerometer chain (available only in Mode 4)	37
Figure 23.	LGA-14L 2.5 x 3.0 x 0.86 mm package outline and mechanical data	98
Figure 24.	Carrier tape information for LGA-14 package	99
Figure 25.	LGA-14 package orientation in carrier tape	99
Figure 26.	Reel information for carrier tape of LGA-14 package	00

DS12171 - Rev 3 page 115/116

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12171 - Rev 3 page 116/116