[Problem 5]

Determine whether each set equipped with the given operation is a vector space. For those that are not vector space identify the vector space axioms that fail.

In order for some set V to be a vector space the following 10 axioms must be true:

	Closure under addition	$\vec{u} + \vec{v} \in V$
A1	For any vectors u and v in the set, $u+v$ is also in	
,,_	the set	
	Existence of an additive identity	$\vec{u} + 0 = \vec{u}$
		u + 0 = u
	There exists a vector 0 in the set such that for any	
A2	vector u in the set, $u+0=u$.	
	Related:	
	- A3:Existence of additive inverses	
	Existence of additive inverses	$\vec{u} + (-\vec{u}) = 0$
А3	For every vector u in the set, there exists a vector	
	-u in the set such that $u + (-u) = 0$	
	Associativity of addition	$\vec{u} + (v + w) = (\vec{u} + \vec{v}) + w$
	For any vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} in the set, $u + (v + w) =$	
A4	(u+v)+w	
	fundamental property of addition	
	Commutativity of addition	$\vec{u} + \vec{v} = \vec{v} + \vec{u}$
A5		u + v = v + u
AS	For any vectors u and v in the set, $u+v=v+u$	
MA	fundamental property of addition	→ = T7
M1	Closure under scalar multiplication	$c\vec{u} \in V$
	For any scalar c and any vector cu in the set, cu is	
	also in the set.	
	Implied by:	
	- A1: Closure under addition	
M2	Distributive property - vector addition	$c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$
	For any scalar c and any vectors u and v in the set,	
	c(u+v) = cu + cv + cv.	
	Implied by:	
	- A1: Closure under addition	
	- A4: Associativity of addition	
	- A5: Commutativity of addition	
M3	Distributive Property - scalar addition	$(c+d)\vec{u} = c\vec{u} + d\vec{u}$
	For any scalars c_1 and c_2 and any vector u in the	
	set, $(c_1 + c_2)u = c_1u + c_2u + cv$.	
	$c_1 + c_2 \mu - c_1 \mu + c_2 \mu + c_4 \nu$	
	Implied by:	
	- A1: Closure under addition	
	- A4: Associativity of addition	
	- A5: Commutativity of addition	(1→) (1)→
M4	Associative Property	$c(d\vec{u}) = (cd)\vec{u}$
	(Compatibility of scalar multiplication with field	
	multiplication)	
	For any scalars c_1 and c_2 and any vector u in the	
	set, $(c_1c_2)u = c_1(c_2u) + cv$.	
	Implied by:	
	- A1: Closure under addition	
	- A4: Associativity of addition	
	- A5: Commutativity of addition	
M5	Multiplicative identity	$1(\vec{u}) = \vec{u}$
	For any vector u in the set, $1u = u$, where 1 is the	-
	multiplicative identity of the underlying field.	
	Implied by:	
	- A1: Closure under addition	
	- A4: Associativity of addition	
	- A5: Commutativity of addition	

Axioms M1 to M5 (axioms of scalar multiplication) are usually implied by A1-A5 (axioms of addition).

(1) The set $U = \{(x,0) \in \mathbb{R}^2\}$ with the standard operations on \mathbb{R}^2

	Let	$u = (x_1, 0) \in U$ $v = (x_2, 0) \in U$.
		$u - (x_1, 0) \in U$ $v = (x_2, 0) \in U$ $u + v \in U$
4.1	Then	
A1		$= (x_1, 0) + (x_2, 0) \in U$
		$=(x_1+x_2,0)\in U$
		Therefore A1 holds.
	Let	$u = (x,0) \in U$
		the zero vector in U be $0 = (0,0)$
A2	Then	u + 0 = u
		= (x,0) + 0
		$=(x,0)\in U$
		Therefore A2 holds.
	Let	$u = (x,0) \in U \qquad -u = (-x,0) \in U$
	Then	u + (-u) = 0
A3		=(x,0)+(-x,0)
		=(0,0)=0
		Therefore A3 holds.
		on in \emph{U} follows the same rules as addition in \emph{R}^2 , so associativity holds.
	OR	
	Let	$u = (x_1, 0) \in U$ $v = (x_2, 0) \in U$ $w = (x_3, 0) \in U$
	Then	u + (v + w) = (u + v) + w
		$= (x_1,0) + (x_2 + x_3,0 + 0)$
A4		$=(x_1 + (x_2 + x_3), 0 + (0 + 0))$
		$= ((x_1 + x_2) + x_3, (0 + 0) + 0)$
		$= (x_1 + x_2, 0 + 0) + (x_3, 0)$
		$= ((x_1,0) + (x_2,0)) + (x_3,0)$
		-2
A5	Additi	on in \emph{U} follows the same rules as addition in \emph{R}^2 , so commutativity holds.

All 5 fundamental axioms for vector spaces are satisfied, $U = \{(x,0) \in \mathbb{R}^2\}$ with the standard operations on \mathbb{R}^2 is a vector space.

Axioms M1 to M5 (axioms of scalar multiplication) are usually implied by A1-A5 (axioms of addition).

(2) The set $V = \{(x,0) \in \mathbb{R}^2 : y \ge 0\}$ with the standard operations on \mathbb{R}^2

```
u=(x_1,0)\in \overline{V}
                                        v = (x_2, 0) \in V
      be arbitrary vectors in V
      where x_1 and x_2 are real numbers
Α1
      Then u + v \in V
              =(x_1,0)+(x_2,0)\in V
              =(x_1+x_2,0)\in V
              Therefore A1 holds.
              u = (x, 0) \in V
      be an arbitrary vector in V
      where x is a real number
      Let the zero vector in V be 0 = (0,0)
      But if x = 0 (as is the case for the zero vector)
Α2
      then y \ge 0 is not satisfied,
      violating the definition of V
      Then -u \notin V
      V does not have an additive identity,
      and thus, it is not a vector space.
              u = (x, 0) \in V
                                       -u = (-x, 0) \in V
      be arbitrary vectors in V
      But if x < 0
      then y \ge 0 is not satisfied,
Α3
      violating the definition of V
      Then -u \notin V
      V does not have additive inverses,
      and thus, it is not a vector space.
      Addition in V follows the same rules as addition in \mathbb{R}^2, so associativity holds.
      OR
      Let
              u = (x_1, 0) \in V
                                      v = (x_2, 0) \in V
                                                       w = (x_3, 0) \in V
      be arbitrary vectors in V
      where x_1 , x_2 and x_3 are real numbers
Α4
      Then u + (v + w) = (u + v) + w
              = (x_1, 0) + (x_2 + x_3, 0 + 0)
              = (x_1 + (x_2 + x_3), 0 + (0 + 0))
              = ((x_1 + x_2) + x_3, (0 + 0) + 0)
              = (x_1 + x_2, 0 + 0) + (x_3, 0)
              = ((x_1,0) + (x_2,0)) + (x_3,0)
              Therefore A4 holds.
      Addition in V follows the same rules as addition in \mathbb{R}^2, so commutativity holds.
Α5
```

V fails to satisfy A2 Existence of an additive identity
V fails to satisfy A3 Existence of additive inverses
Thus V is not a vector space

Axioms M1 to M5 (axioms of scalar multiplication) are usually implied by A1-A5 (axioms of addition).

(3) The set $W = \{(x,0) \in \mathbb{R}^2 : x + y = 0\}$ with the standard operations on \mathbb{R}^2

```
u = (\overline{x_1, 0)} \in W
                                         v=(x_2,0)\in W
      Let
      be arbitrary vectors in \boldsymbol{W}
      where x_1 and x_2 are real numbers
Α1
      Then
              u + v \in W
               =(x_1,0)+(x_2,0)\in W
               =(x_1+x_2,0)\in W
              Therefore A1 holds.
              u = (x, 0) \in W
      be arbitrary vectors in \boldsymbol{W}
      where x is a real number
Α2
      Let the zero vector in W be 0 = (0,0)
      Then
             u + 0 = u
               =(x,0)+0
               =(x,0) \in W
              Therefore A2 holds.
               u = (x, 0) \in W
                                        -u = (-x, 0) \in W
      be arbitrary vectors in W
      where x is a real number
Α3
              u + (-u) = 0
               =(x,0)+(-x,0)
               =(0,0)=0
      Therefore A3 holds.
      Addition in W follows the same rules as addition in \mathbb{R}^2, so associativity holds.
      OR
      Let
              u = (x_1, 0) \in W
                                         v = (x_2, 0) \in W
                                                                  w = (x_3, 0) \in W
      be arbitrary vectors in W
      where x_1 , x_2 and x_3 are real numbers
Α4
      Then
              u + (v + w) = (u + v) + w
               = (x_1,0) + (x_2 + x_3,0 + 0)
               = (x_1 + (x_2 + x_3), 0 + (0 + 0))
               = ((x_1 + x_2) + x_3, (0 + 0) + 0)
               = (x_1 + x_2, 0 + 0) + (x_3, 0)
               = ((x_1,0) + (x_2,0)) + (x_3,0)
      Therefore A4 holds.
      Addition in W follows the same rules as addition in \mathbb{R}^2, so commutativity holds.
Α5
```

All 5 fundamental axioms for vector spaces are satisfied, $W = \{(x,0) \in R^2 : x+y=0\}$ with the standard operations on R^2 is a vector space.

(4) The set $X = \{(x, y) \in \mathbb{R}^2\}$ with the standard vector addition but with scalar multiplication defined by $k(x, y) = (k^2x, k^2y)$.

```
u=(x_1,y_1) \in \overline{X}
                                             v = (x_2, y_2) \in X
       be arbitrary vectors in X
       where x_1 , x_2 , y_1 and y_2 are real numbers
Α1
       Then
                u + v \in X
                = (x_1, y_1) + (x_2, y_2) \in X
                =(x_1+x_2,y_1+y_2)\in X
                Therefore A1 holds.
                u = (x, y) \in X
       be an arbitrary vector in \boldsymbol{X}
       where x and y are real numbers
Α2
                the zero vector in X be 0 = (0,0)
       Then
                u + 0 = u
                =(x,y)+0
                =(x,y)\in X
                Therefore A2 holds.
       Let
                u = (x, y) \in X
       be an arbitrary vector in X
       where x and y are real numbers
       The additive inverse of u is -u = (-x, -y) \in X
                C(x,y)
                =(c^2x,c^2y)
А3
                the given scalar multiplication c(x,y) = (c^2x, c^2y)
                c(-x,-y)
                =((-1)^2x,(-1)^2y)
                the given scalar multiplication c(x,y) = (c^2x, c^2y)
                Therefore A3 fails.
       Addition in X follows the same rules as addition in \mathbb{R}^2, so associativity holds.
                                            v = (x_2, y_2) \in X
                                                                       w = (x_3, y_3) \in X
       Let
                u=(x_1,y_1)\in X
       be arbitrary vectors in X
       where \boldsymbol{x}_1 , \boldsymbol{x}_2 , \boldsymbol{x}_3 , \boldsymbol{y}_1 , \boldsymbol{y}_2 and \boldsymbol{y}_3 are real numbers
Α4
       Then
                u + (v + w) = (u + v) + w
                = (x_1, y_1) + (x_2 + x_3, y_2 + y_3)
                = (x_1 + (x_2 + x_3), y_1 + (y_2 + y_3))
                = ((x_1 + x_2) + x_3, (y_1 + y_2) + y_3)
                = (x_1 + x_2, y_1 + y_2) + (x_3, y_3)
                = ((x_1, y_1) + (x_2, y_2)) + (y_3, y_3)
                Therefore A4 holds.
Α5
       Addition in X follows the same rules as addition in \mathbb{R}^2, so commutativity holds.
```

```
Let
               c \in X
       be an arbitrary scalar in X
       Let u = (x, y) \in X
      be an arbitrary vector in X
      where \boldsymbol{x} and \boldsymbol{y} are real numbers
M1
      Then
             c \in X
               =c.u(x,y)
               =c(x,y)
               =(c^2x,c^2y)
               the given scalar multiplication c(x,y) = (c^2x, c^2y).
               =(c^2x,c^2y)\in X
               Therefore M1 holds.
      Let
               c \in X
      be an arbitrary scalar in \boldsymbol{X}
                u=(x_1,y_1)\in X
                                                  v = (x_2, y_2) \in X
      be arbitrary vectors in X
      where x_1 , x_2 , y_1 and y_2 are real numbers
               c(u+v) = cu + cv
      Then
      Since u+v\in X , through {\bf Closure} under addition
               Then u + v \in X
               = (x_1 + x_2, y_1 + y_2) \in X
      LHS
               c(u+v)
M2
               = c(x_1 + x_2, y_1 + y_2)
               =c^2(x_1+x_2), c^2(y_1+y_2)
               the given scalar multiplication c(x,y) = (c^2x, c^2y).
               =(c^2x_1+c^2x_2, c^2y_1+c^2y_2)
      RHS
               cu + cv
               = (c^2x_1, c^2y_1) + (c^2x_2, c^2y_2)
               the given scalar multiplication c(x,y) = (c^2x, c^2y).
               =(c^2x_1+c^2x_2, c^2y_1+c^2y_2)
      And LHS = RHS or c(u + v) = cu + cv
               Therefore M2 holds.
      Let
               c \in X
                                                   d \in X
      be arbitrary scalars in X
                u = (x, y) \in X
      be an arbitrary vector in \boldsymbol{X}
      Then
             (c+d)u = cu + du
МЗ
      LHS
               (c+d)u
               =((c+d)^2x,(c+d)^2y)
      RHS
               cu + du
               = (c^2x, c^2y) + (d^2x, d^2y)
               the given scalar multiplication c(x,y) = (c^2x, c^2y).
               =((c^2+d^2)x,(c^2+d^2)y)
               Therefore M3 holds.
```

```
Let
                                                d \in X
              c \in X
      be arbitrary scalars in X
      u=(x,y)\in X
      be an arbitrary vector in \boldsymbol{X}
      Then
              c(du) = (cd)u
      LHS
              c(du)
              =c(dx,dy)
              =(c^2dx,c^2dy)
M4
              the given scalar multiplication c(x,y) = (c^2x, c^2y).
      RHS
              (cd)u
              =((cd)^2x,(cd)^2y)
              the given scalar multiplication c(x,y) = (c^2x, c^2y).
               = (c^2d^2x, c^2d^2y)
               =(c^2dx,c^2dy)
      And LHS = RHS or c(du) = (cd)u
              Therefore M4 holds.
      Let
              u=(x,y)\in X
      Then
              1(u) = u
               =1(x,y)
M5
               =(1x,y)\in X
               =(x,y)\in X
               Therefore M5 holds.
```

 $\it X$ fails to satisfy A3 Existence of additive inverses Thus $\it X$ is not a vector space

(5) The set 2x2 matrices $Y=\{\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}:a,b,c\in R^2\}$ with the standard matrix addition and scalar multiplication.

	Let $u = \begin{bmatrix} a_1 & b_1 \\ c_1 & 0 \end{bmatrix} \in Y$ $v = \begin{bmatrix} a_2 & b_2 \\ c_2 & 0 \end{bmatrix} \in Y$
	be arbitrary matrices in Y
	where a_{1} , b_{1} , c_{1} , a_{2} , b_{2} , c_{2} are real numbers
A1	
	Then $u+v \in X$
	$= \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & 0 \end{bmatrix}$
	Therefore A1 holds.
	Let $u = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in Y$
	be an arbitrary matrix in Y
	where a , b , c are real numbers
	micro w , s , o and real named s
	Let the zero matrix in X be $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
A2	Let the zero matrix in λ be $0 - \begin{bmatrix} 0 & 0 \end{bmatrix}$
	Then $u+0=u$
	$\begin{bmatrix} a+0 & b+0 \end{bmatrix}$
	$= \begin{bmatrix} a+0 & b+0 \\ c+0 & 0+0 \end{bmatrix}$
	$=\begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	Let $u = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in Y$
	be an arbitrary matrix in Y
	where a , b , c are real numbers
А3	
	The additive inverse of u is $-u = \begin{bmatrix} -a & -b \\ -c & 0 \end{bmatrix} \in Y$
	$\begin{bmatrix} -c & 0 \end{bmatrix}$
	Therefore A3 holds.
	Addition in Y follows the same rules as addition of 2x2 matrices, so
A4	associativity holds.
	Addition in Y follows the same rules as addition of 2x2 matrices, so
A 5	commutativity holds.

	Let $k \in X$ be an arbitrary scalar in X
	Let $u = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in Y$
	be an arbitrary matrix in Y where a , b , c are real numbers
M1	Then $k \in X$
	$= k \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$
	$= \begin{bmatrix} ka & kb \\ kc & 0 \end{bmatrix}$
	Therefore M1 holds. Let $k \in X$
	be an arbitrary scalars in X
	Let $u = \begin{bmatrix} a_1 & b_1 \\ c_1 & 0 \end{bmatrix} \in Y$ $v = \begin{bmatrix} a_2 & b_2 \\ c_2 & 0 \end{bmatrix} \in Y$
	be arbitrary matrices in Y where a_1 , b_1 , c_1 , a_2 , b_2 , c_2 are real numbers
	Then $k(u+v) = ku + kv$
	LHS $k(u+v)$
M2	$= k \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & 0 \end{bmatrix}$ $= \begin{bmatrix} ka_1 + ka_2 & kb_1 + kb_2 \\ kc_1 + kc_2 & 0 \end{bmatrix}$
	$\begin{bmatrix} -\left\lfloor kc_1 + kc_2 & 0 \right\rfloor \end{bmatrix}$
	RHS $ku + kv$
	$= k \begin{bmatrix} a_1 & b_1 \\ c_1 & 0 \end{bmatrix} + k \begin{bmatrix} a_2 & b_2 \\ c_2 & 0 \end{bmatrix}$
	$= \begin{bmatrix} ka_1 & kb_1 \\ kc_1 & 0 \end{bmatrix} + \begin{bmatrix} ka_2 & kb_2 \\ kc_2 & 0 \end{bmatrix}$
	$ = \begin{bmatrix} ka_1 + ka_2 & kb_1 + kb_2 \\ kc_1 + kc_2 & 0 \end{bmatrix} $
	And LHS = RHS or $k(u+v) = ku + kv$
	Therefore M2 holds. Let $k \in X$ $l \in X$
	Let $k \in X$ $l \in X$ be arbitrary scalars in X
	Let $u = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in Y$
	be an arbitrary matrix in Y where a , b , c are real numbers
M3	Then $(k+l)u = ku + lu$
	LHS $(k+l)u$
	$= (k+l) \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}$
	$= \begin{bmatrix} a(k+l) & b(k+l) \\ c(k+l) & 0 \end{bmatrix}$
	$= \begin{bmatrix} ka + la & kb + lb \\ kc + lc & 0 \end{bmatrix}$

```
RHS
                            ku + lu
                            = k \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} + l \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}= \begin{bmatrix} ka & kb \\ kc & 0 \end{bmatrix} + \begin{bmatrix} la & lb \\ lc & 0 \end{bmatrix}= \begin{bmatrix} ka + la & kb + lb \\ kc + lc & 0 \end{bmatrix}
             And LHS = RHS or (k+l)u = ku + lu
                             Therefore M3 holds.
                                                                                                l \in X
             be arbitrary scalars in X
                          u = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in Y
             be an arbitrary matrix in Y
             where a , b , c are real numbers
             Then c(du) = (cd)u
             LHS k(lu)
                           = k \begin{bmatrix} la & lb \\ lc & 0 \end{bmatrix}= \begin{bmatrix} kla & klb \\ klc & 0 \end{bmatrix}
             RHS
                            = (kl) \begin{bmatrix} a & b \\ c & 0 \end{bmatrix}= \begin{bmatrix} kla & klb \\ klc & 0 \end{bmatrix}
             And LHS = RHS or c(du) = (cd)u
                              Therefore M4 holds.
                            u = \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} \in Y
             be an arbitrary matrix in Y
             where a , b , c are real numbers
M5
             Then 1(u) = u
                              Therefore M5 holds.
```

All 10 axioms for vector spaces are satisfied, The set 2x2 matrices $Y = \{ \begin{bmatrix} a & b \\ c & 0 \end{bmatrix} : a,b,c \in R^2 \}$ with the standard matrix addition and scalar multiplication is a vector space.

[Problem 6]

Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations on $u=(u_1,u_2,u_3)$ and $v=(v_1,v_2,v_3)$:

$$u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3); ku = (ku_1, ku_2, 0)$$

(1) Compute u+v and ku for u=(-1,2,-3) , v=(2,-3,1) and k=-2 u+v = $\Big((-1+2), \Big(2+(-3)\big), (-3+1)\Big)$ = (1,-1,-2)

$$ku$$
= (-2)(-1,2,-3)
= (-1(-2),2(-2),-3(-2))
= (2,-4,6)

(2) Determine whether the Axioms 7, 8, 9 and 10 hold.

```
Ιf
              k(u+v) = ku + kv Then
      LHS
              k(u+v)
              = k(u_1 + v_1, u_2 + v_2, u_3 + v_3)
              = (k(u_1 + v_1), k(u_2 + v_2), k(u_3 + v_3))
              =(ku_1 + kv_1, ku_2 + kv_2, ku_3 + kv_3)
M2
      RHS
              ku + kv
              = (ku_1, ku_2, 0) + (kv_1, kv_2, 0)
              =(ku_1 + kv_1, ku_2 + kv_2, 0)
      LHS \neq RHS or c(du) \neq (cd)u
              Therefore M2 fails
               u = (k, l)
      be an arbitrary vector
      where k and l are arbitrary scalars
      Then
              (k+l)u = ku + lu
      LHS
              (k+l)u
              =((k+l)u_1,(k+l)u_2,0)
              the given scalar multiplication ku = (ku_1, ku_2, 0)
              = (ku_1 + lu_1, ku_2 + lu_2, 0)
МЗ
      RHS
              ku + lu
              = ((k+l)u_1, (k+l)u_2, 0)
              the given scalar multiplication ku = (ku_1, ku_2, 0)
              =(ku_1 + lu_1, ku_2 + lu_2, 0)
      And LHS = RHS or c(u + v) = cu + cv
              Therefore M3 holds.
```

```
Let
      be an arbitrary vector
      Let k and l be arbitrary scalars
      Then
              k(lu) = (kl)u
      LHS
              k(lu)
              = (ku_1, ku_2, 0)
              the given scalar multiplication ku = (ku_1, ku_2, 0)
Μ4
      RHS
              (kl)u
              =((kl)u_1,(kl)u_2,0)
              the given scalar multiplication ku = (ku_1, ku_2, 0)
              = (ku_1, ku_2, 0)
      And LHS = RHS or k(lu) = (kl)u
              Therefore M4 holds.
      Let
      be an arbitrary vector
      Then
              1(u) = u
              =(1u_1,1u_2,0)
M5
              the given scalar multiplication ku = (ku_1, ku_2, 0)
              =(u_1,u_2,0)
              Therefore M5 holds.
```

Axiom 7 (M2) Distributive property of vector addition over scalar addition fails Thus V is not a vector space

[Problem 7]

```
Let V be a vector space,
u a vector in V;
and k a scalar.
Then show that if ku = 0, then ku = 0 or u = 0
Proof by cases:
Case 1: k = 0
       If k = 0
       Then ku = 0
       Thus u = 0
Case 2: k \neq 0
       If k \neq 0
       Then ku/k = 0/k
       Thus u = 0
Thus If k \neq 0 Then ku = 0 \implies u = 0
Therefore if ku=0, then ku=0 or u=0
Proof by contrapositive:
P: if ku = 0, then (ku = 0) or (u = 0)
P': if \neg(u=0) and \neg(k=0) \Rightarrow \neg(ku=0)
Assume \neg((ku=0)or\ (u=0))
                                   negation of the conclusion of P
```

Then $k \neq 0$ and $u \neq 0$ if $u \neq 0$, then $ku \neq 0$

Thus P implies P'

Thus $ku \neq 0$

[Problem 8]

Let $-\infty$ and ∞ denote two distinct objects, neither of which is in R. Define an addition and scalar multiplication on $R \cup \{\infty\} \cup \{-\infty\}$ Specifically, the sum and product of two real numbers is as usual, and for $k \in R$ define:

$$k\infty = \begin{cases} -\infty & \text{if } k < 0 \\ 0 & \text{if } k = 0 \\ \infty & \text{if } k > 0 \end{cases} \qquad k(-\infty) = \begin{cases} \infty & \text{if } k < 0 \\ 0 & \text{if } k = 0 \\ -\infty & \text{if } k > 0 \end{cases}$$

- 1. $k + \infty = \infty + k = \infty$
- 2. $k + (-\infty) = -\infty + k = -\infty$
- 3. $\infty + \infty = \infty$
- 4. $(-\infty) + (-\infty) = -\infty$
- $5. \infty + (-\infty) = 0$

Show that $R \cup \{\infty\} \cup \{-\infty\}$ is not a vector space over R.

Given

 $\infty \notin R$

 $-\infty \notin R$

 $\infty + (-\infty) = 0$

Implied

 $-\infty \neq 0$

 $\infty = 0$

 $0 \notin R$

Axioms of addition A1, A2 & A3 all faill

Thus $R \cup \{\infty\} \cup \{-\infty\}$ is not a vector space over R.