Package 'powerPLS'

September 30, 2024
Type Package
Title Power Analysis for PLS Classification
Version 0.2.0
Description It estimates power and sample size for Partial Least Squaresbased methods described in Andreella, et al., (2024), <doi:10.48550 arxiv.2403.10289="">.</doi:10.48550>
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Imports compositions, FKSUM, nipals, MASS, foreach, parallel, simukde, ks, mytnorm
Language en-US
BugReports https://github.com/angeella/powerPLS/issues
<pre>URL https://github.com/angeella/powerPLS</pre>
Depends R (>= 2.10)
NeedsCompilation no
Author Angela Andreella [aut, cre] (Main author, https://orcid.org/0000-0002-1141-3041)
Maintainer Angela Andreella <angela.andreella@unive.it></angela.andreella@unive.it>
Repository CRAN
Date/Publication 2024-09-30 08:20:02 UTC
Contents
aqueous_humour computePower computeSampleSize mccTest PLSc

2 aqueous_humour

Index																							14
V	wheezing	 •	 •	•		 •	•	•	 •	•	•	•		•		•	•	•	•	•	•	•	13
	sim_XY .																						
	simulatePil																						
	R2Test scoreTest																						

Description

59 post-mortem aqueous humor samples collected from closed and opened sheep eyes

Usage

aqueous_humour

Format

A data frame with 59 rows and 45 variables:

ID ID observation

group class membership (C, O)

R1 metabolic values

R2 metabolic values

R3 metabolic values

R4 metabolic values

R5 metabolic values

R6 metabolic values

R7 metabolic values

R8 metabolic values

R9 metabolic values

R10 metabolic values

R11 metabolic values

R12 metabolic values

R13 metabolic values

R14 metabolic values

R15 metabolic values

R16 metabolic values

R17 metabolic values

R18 metabolic values

aqueous_humour 3

- R19 metabolic values
- R20 metabolic values
- R21 metabolic values
- R22 metabolic values
- R23 metabolic values
- R24 metabolic values
- R25 metabolic values
- R26 metabolic values
- R27 metabolic values
- R28 metabolic values
- R29 metabolic values
- R30 metabolic values
- R31 metabolic values
- R32 metabolic values
- R33 metabolic values
- R34 metabolic values
- R35 metabolic values
- R36 metabolic values
- R37 metabolic values
- R38 metabolic values
- R39 metabolic values
- **R40** metabolic values
- R41 metabolic values
- R42 metabolic values
- R43 metabolic values

Author(s)

Angela Andreella <angela.andreella@unive.it>

References

https://link.springer.com/article/10.1007/s11306-019-1533-2

4 computePower

	computePower	Power estimation	
--	--------------	------------------	--

Description

Estimates power for a given sample size, type I error level and number of score components.

Usage

```
computePower(X, Y, A, n, seed = 123,
Nsim = 100, nperm = 200, alpha = 0.05,
scaling = "auto-scaling", test = "R2",
Y.prob = FALSE, eps = 0.01, post.transformation = TRUE,
fast=FALSE,transformation = "clr")
```

Arguments

X	Data matrix where columns represent the p variables and rows the n observations.					
Υ	Data matrix where columns represent the two classes and rows the n observations.					
Α	Number of score components					
n	Sample size					
seed	Seed value					
Nsim	Number of simulations					
nperm	Number of permutations					
alpha	Type I error level					
scaling	Type of scaling, one of c("auto-scaling", "pareto-scaling", "mean-centering"). Default to "auto-scaling"					
test	Type of test statistic, one of c("score", "mcc", "R2"). Default to "R2".					
Y.prob	Boolean value. Default FALSE. IF TRUE Y is a probability vector					
eps	Default 0.01. eps is used when Y.prob = FALSE to transform Y in a probability vector.					
post.transformation						
	Boolean value. TRUE if you want to apply post transformation. Default to TRUE					
fast	Use the function fk_density from the FKSUM R package for kernel density estimation. Default to FALSE.					
transformation	Transformation used to map Y in probability data vector. The options are "ilr" and "clr".					

Value

Returns a matrix of estimated power for each number of components and tests selected.

computeSampleSize 5

Author(s)

Angela Andreella

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

Examples

```
## Not run:
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- computePower(X = datas$X, Y = datas$Y, A = 3, n = 20, test = "R2")
## End(Not run)</pre>
```

computeSampleSize

Sample size estimation

Description

Compute optimal sample size

Usage

```
computeSampleSize(n, X, Y, A, alpha, beta,
nperm, Nsim, seed, test = "R2",...)
```

n	Vector of sample sizes to consider
X	Data matrix where columns represent the p variables and rows the n observations.
Υ	Data matrix where columns represent the two classes and rows the n observations.
Α	Number of score components
alpha	Type I error level. Default to 0.05
beta	Type II error level. Default to 0.2.
nperm	Number of permutations. Default to 100.
Nsim	Number of simulations. Default to 100.
seed	Seed value
test	Type of test, one of c("score", "mcc", "R2"). Default to "R2".
	Further parameters.

6 mccTest

Value

Returns a data frame that contains the estimated power for each sample size and number of components considered

Author(s)

Angela Andreella

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

See Also

computePower

Examples

```
## Not run:
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- computeSampleSize(X = datas$X, Y = datas$Y, A = 2, A = 3, n = 20, test = "R2")
## End(Not run)</pre>
```

mccTest

MCC test

Description

Performs permutation-based test based on Matthews Correlation Coefficient

Usage

```
mccTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = "auto-scaling",
post.transformation = TRUE)
```

X	data matrix where columns represent the p variables and rows the n observations.
Υ	data matrix where columns represent the two classes and rows the n observations.
nperm	number of permutations. Default to 200.
Α	number of score components

PLSc 7

randomization Boolean value. Default to FALSE. If TRUE the permutation p-value is computed

Y. prob Boolean value. Default FALSE. IF TRUE Y is a probability vector

eps Default 0.01. eps is used when Y.prob = FALSE to transform Y in a probability

vector

scaling Type of scaling, one of c("auto-scaling", "pareto-scaling", "mean-centering").

Default "auto-scaling".

post.transformation

Boolean value. TRUE if you want to apply post transformation. Default TRUE

Value

List with the following objects:

```
pv raw p-value. It equals NA if randomization = FALSE
pv_adj adjusted p-value. It equals NA if randomization = FALSE
test estimated test statistic
```

Author(s)

Angela Andreella

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

See Also

Other test statistics implemented: scoreTest R2Test.

Examples

```
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1) out <- mccTest(X = datas$X, Y = datas$Y, A = 1) out
```

PLSc

PLS classification

Description

Performs Partial Least Squares classification

Usage

```
PLSc(X, Y, A, scaling = "auto-scaling", post.transformation = TRUE, eps = 0.01, Y.prob = FALSE, transformation = "ilr")
```

PLSc PLSc

Arguments

X Data matrix where columns represent the p variables and rows the n observa-

tions.

Y Data matrix where columns represent the two classes and rows the n observa-

tions.

A Number of score components

scaling Type of scaling, one of c("auto-scaling", "pareto-scaling", "mean-centering").

Default to "auto-scaling"

post.transformation

Boolean value. TRUE if you want to apply post transformation. Default TRUE

eps Default 0.01. eps is used when Y. prob = FALSE to transform Y in a probability

vector

Y. prob Boolean value. Default FALSE. IF TRUE Y is a probability vector

transformation Transformation used to map Y in probability data vector. The options are "ilr"

and "clr". Default @ilr.

Value

List with the following objects:

W Matrix of weights

X_loading Matrix of X loading

Y_loading Matrix of Y loading

X Matrix of X data (predictor variables)

Y Matrix of Y data (dependent variable)

T_score Matrix of scores

Y fitted Fitted Y matrix

B Matrix regression coefficients

M Number of orthogonal components if post.transformation=TRUE is applied.

Author(s)

Angela Andreella

References

Stocchero, M., De Nardi, M., & Scarpa, B. (2021). PLS for classification. Chemometrics and Intelligent Laboratory Systems, 216, 104374.

Examples

```
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2) out <- PLSc(X = datas$X, Y = datas$Y, A = 3)
```

R2Test 9

|--|--|

Description

Performs permutation-based test based on R2

Usage

```
R2Test(X, Y, nperm = 100, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = "auto-scaling",
post.transformation = TRUE)
```

Arguments

Υ

Χ	data matrix where columns represent the p variables and rows the n observa-
	tions.

data matrix where columns represent the two classes and rows the n observa-

tions.

nperm number of permutations. Default to 200.

A number of score components

randomization Boolean value. Default to FALSE. If TRUE the permutation p-value is computed

Y. prob Boolean value. Default FALSE. IF TRUE Y is a probability vector

eps Default 0.01. eps is used when Y. prob = FALSE to transform Y in a probability

vector

scaling Type of scaling, one of c("auto-scaling", "pareto-scaling", "mean-centering").

Default "auto-scaling".

post.transformation

Boolean value. TRUE if you want to apply post transformation. Default TRUE

Value

List with the following objects:

```
pv raw p-value. It equals NA if randomization = FALSE
pv_adj adjusted p-value. It equals NA if randomization = FALSE
test estimated test statistic
```

Author(s)

Angela Andreella

10 scoreTest

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

See Also

Other test statistics implemented: mccTest scoreTest.

Examples

```
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2) out <- R2Test(X = datas$X, Y = datas$Y, A = 1) out
```

scoreTest

Score test

Description

Performs permutation-based test based on predictive score vector

Usage

```
scoreTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = "auto-scaling",
post.transformation = TRUE)
```

Arguments

X	data matrix where columns represent the p variables and rows the n observations.
Υ	data matrix where columns represent the two classes and rows the n observations.
nperm	number of permutations. Default to 200.
Α	number of score components
randomization	Roolean value Default to EALSE If TDUE the permutation p value is computed

randomization Boolean value. Default to FALSE. If TRUE the permutation p-value is computed

Y. prob Boolean value. Default FALSE. IF TRUE Y is a probability vector

eps Default 0.01. eps is used when Y. prob = FALSE to transform Y in a probability

vector

scaling Type of scaling, one of c("auto-scaling", "pareto-scaling", "mean-centering").

Default "auto-scaling".

post.transformation

Boolean value. TRUE if you want to apply post transformation. Default TRUE

simulatePilotData 11

Value

List with the following objects:

```
pv raw p-value. It equals NA if randomization = FALSE
pv_adj adjusted p-value. It equals NA if randomization = FALSE
test estimated test statistic
```

Author(s)

Angela Andreella

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

See Also

Other test statistics implemented: mccTest R2Test.

Examples

```
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2) out <- scoreTest(X = datas$X, Y = datas$Y, A = 1) out
```

simulatePilotData

Simulate pilot data

Description

Simulate cluster pilot data

Usage

```
simulatePilotData(seed = 123, nvar, clus.size, nvar_rel,m, A = 2, S1 = NULL, S2 = NULL)
```

seed	Seed value
nvar	Number of variables
clus.size	Vector of two elements, specifying the size of classes (only two classes are considered)
nvar_rel	Number of variables relevant to predict the dependent variable
m	Effect size of separation between classes

12 sim_XY

Α	Oracle number of score components
S1	Covariance matrix for the first class. Default NULL, i.e., the identity is considered.
S2	Covariance matrix for the second class. DefaultNULL, i.e., the identity is considered.

Author(s)

Angela Andreella @return List with the following objects:

 ${f X}$ matrix of predictor variables with nvar columns and the sum of clus. size values as number of rows.

Y vector of dependent variable with the sum of clus. size values as length

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

Examples

```
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)</pre>
```

sim_XY

Simulate pilot data

Description

Simulate data matrix under the alternative hypothesis with n observations by kernel density estimation

Usage

```
sim_XY(out, n, seed = 123, post.transformation = TRUE, A, fast = FALSE)
```

out	Output from PLSc
n	Number of observations to simulate
seed post.transforma	Seed value tion
	Boolean value. Default to TRUE, i.e., post transformation is applied in PLSc
A	Number of score components used in PLSc.
fast	Use the function $fk_density$ from the FKSUM R package for kernel density estimation. Default to FALSE.

wheezing 13

Value

Returns a list:

Y_H1 dependent variable, matrix with 2 columns and n rows (observations)

X_H1 predictor variables, matrix with n rows (observations) and number of columns equal to out\$X (i.e., original dataset)

Author(s)

Angela Andreella

References

For the general framework of power analysis for PLS-based methods see:

Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.

See Also

```
PLSc, ptPLSc
```

Examples

```
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2) out <- PLSc(X = datas$X, Y = datas$Y, A = 3) out_sim <- sim_XY(out = out, n = 10, A = 3)
```

wheezing

Wheezing data

Description

32 urine samples from children at risk of early-onset asthma and those with transient wheezing.

Usage

wheezing

Format

A data frame with 32 rows and 176 variables

Author(s)

Angela Andreella <angela.andreella@unive.it>

References

```
https://onlinelibrary.wiley.com/doi/10.1111/pai.12879
```

Index