SRM INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS

18MAB201T/Transforms and Boundary value problems UNIT II – FOURIER SERIES TUTORIAL SHEET -1

PART B Questions

1. State Dirichlet condition's for a given function to expand in Fourier series.

2. Find
$$a_1$$
 for the periodic function $f(x) = \begin{cases} \sin x, 0 < x < \pi \\ 0, \pi < x < 2\pi \end{cases}$

3.Find $\,a_{\!\scriptscriptstyle 0}\,$ for the periodic function $\,f(x)\,{=}\,e^{{\scriptscriptstyle -}x},0\,{<}\,x\,{<}\,2\pi$.

4. Find a_n for the Fourier series of periodicity 3 for $f(x) = 2x - x^2$ in 0 < x < 3

5. Find half –range cosine series for $f(x) = x, 0 < x < \pi$

PART C Questions

6. Find the Fourier series to represent ($x-x^2$) in the interval $[-\pi,\pi]$. Deduce the value of $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots$

7. Obtain the Fourier series expansion for $f(x) = x^2 i n - \pi < x < \pi$ and hence the sum of the series $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots$

8. If
$$f(x) = \begin{cases} \sin x, 0 < x < \frac{\pi}{4} \\ \cos x, \frac{\pi}{4} < x < \frac{\pi}{2} \end{cases}$$
. Express f(x) in a series of sines.

9. Find the Fourier series for $f(x) = |\cos x| in - \pi < x < \pi$ of periodicity 2π .

10. Find the Fourier series for $f(x) = |\sin x| in - \pi < x < \pi$ of periodicity 2π .

Tutorial Sheet-1

Answers

Part-A

1. State any three condition

2.
$$a_1 = 0$$

3.
$$a_0 = \frac{1 - e^{-2\pi}}{\pi}$$
.

4.
$$a_n = \frac{-9}{n^2 \pi^2}$$

5.
$$a_n = \begin{cases} \frac{-4}{\pi n^2}; & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Part - B

6.
$$f(x) = \frac{-\pi^2}{3} + \sum_{n=1}^{\infty} \frac{-4(-1)^n}{n^2} \cos nx + \sum_{n=1}^{\infty} \frac{-2(-1)^n}{n} \sin nx \text{ and } \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} \dots = \frac{\pi^2}{3}$$

7.
$$f(x) = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$$
 and $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots = \frac{\pi^4}{90}$

8.
$$f(x) = \frac{4\sqrt{2}}{\pi} \left\{ \frac{\sin 2x}{1.3} - \frac{\sin 6x}{5.7} + \frac{\sin 10x}{9.11} - \dots \right\}$$

9.
$$f(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=2}^{\infty} \frac{1}{n^2 - 1} \cos\left(\frac{n\pi}{2}\right) \cos nx$$

10.
$$f(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(4n^2 - 1)} \cos 2nx$$