```
In [1]: from google.colab import drive
        drive.mount('/content/drive')
        Drive already mounted at /content/drive; to attempt to forcibly remount,
        call drive.mount("/content/drive", force remount=True).
        IMPORTING THE LIBRARIES:-
In [2]: import pandas as pd
        import numpy as np
        import pickle
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        import sklearn
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import GradientBoostingClassifier, RandomForestClas
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.model selection import RandomizedSearchCV
        import imblearn
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import accuracy_score, classification_report, confus
        import tensorflow
        from tensorflow.keras.layers import Dense
        from tensorflow.keras.models import Sequential
        import warnings
        warnings.filterwarnings('ignore')
        READING THE DATASET:-
In [3]: df = pd.read csv('/content/drive/MyDrive/Colab Notebooks/Saran/train u6lu
In [4]: | df.head()
            Loan_ID Gender Married
                                  Dependents Education Self_Employed ApplicantIncome Co
Out[4]:
         0 LP001002
                                           0
                                              Graduate
                                                                No
                                                                             5849
                      Male
                               No
         1 LP001003
                                                                No
                                                                             4583
                      Male
                              Yes
                                           1
                                              Graduate
        2 LP001005
                                              Graduate
                                                                             3000
                      Male
                              Yes
                                           0
                                                                Yes
                                                   Not
        3 LP001006
                      Male
                              Yes
                                           0
                                                                No
                                                                             2583
                                               Graduate
        4 LP001008
                      Male
                                              Graduate
                                                                             6000
                               No
                                                                No
In [5]: df.drop('Loan_ID',axis=1,inplace=True)
In [6]: df.head()
```

```
Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantInc
Out[6]:
        0
                      No
             Male
                                      Graduate
                                                       Nο
                                                                    5849
                                                                                   15
        1
             Male
                     Yes
                                  1
                                      Graduate
                                                       Nο
                                                                     4583
        2
             Male
                     Yes
                                  0
                                     Graduate
                                                       Yes
                                                                    3000
                                          Not
         3
             Male
                     Yes
                                  0
                                                       No
                                                                     2583
                                                                                   23
                                      Graduate
         4
             Male
                                      Graduate
                                                                     6000
                      No
                                                       No
In [7]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 614 entries, 0 to 613
        Data columns (total 12 columns):
         #
              Column
                                  Non-Null Count Dtype
         - - -
              ----
                                  _____
         0
              Gender
                                  601 non-null
                                                  object
         1
              Married
                                  611 non-null
                                                  object
         2
              Dependents
                                  599 non-null
                                                  object
         3
              Education
                                  614 non-null
                                                  object
         4
              Self_Employed
                                  582 non-null
                                                  object
         5
              ApplicantIncome
                                  614 non-null
                                                  int64
         6
              CoapplicantIncome
                                 614 non-null
                                                  float64
         7
              LoanAmount
                                  592 non-null
                                                  float64
                                                  float64
         8
              Loan_Amount_Term
                                  600 non-null
         9
              Credit_History
                                  564 non-null
                                                  float64
         10
             Property_Area
                                  614 non-null
                                                  object
         11 Loan Status
                                  614 non-null
                                                  object
        dtypes: float64(4), int64(1), object(7)
        memory usage: 57.7+ KB
In [8]: df.isnull().sum()
Out[8]: Gender
                               13
        Married
                               3
                               15
        Dependents
        Education
                               0
        Self_Employed
                              32
        ApplicantIncome
                               0
        CoapplicantIncome
                               0
        LoanAmount
                              22
        Loan_Amount_Term
                              14
        Credit_History
                               50
        Property Area
                               0
        Loan_Status
                               0
        dtype: int64
In [9]: cat cols = ['Gender','Married','Dependents','Education','Self Employed','
        num_cols = ['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amou
        for col in cat cols:
          df[col] = df[col].fillna(df[col].mode()[0])
        for col in num cols:
          df[col] = df[col].fillna(df[col].mean())
```

```
In [10]: df.isnull().sum()
                               0
Out[10]: Gender
                               0
         Married
         Dependents
                               0
         Education
                               0
         Self Employed
                               0
         ApplicantIncome
                               0
         CoapplicantIncome
                              0
         LoanAmount
         Loan_Amount_Term
                              0
         Credit_History
                               0
                              0
         Property Area
         Loan_Status
         dtype: int64
In [11]: for col in cat_cols:
           print(col)
           print(df[col].unique())
           print('\n')
         Gender
         ['Male' 'Female']
         Married
         ['No' 'Yes']
         Dependents
         ['0' '1' '2' '3+']
         Education
         ['Graduate' 'Not Graduate']
         Self_Employed
         ['No' 'Yes']
         Property_Area
         ['Urban' 'Rural' 'Semiurban']
         Loan Status
         ['Y' 'N']
         HANDLING CATEGORICAL VALUES:-
In [12]: df.Gender.replace(['Male','Female'],[0,1],inplace=True)
In [13]: df.Married.replace(['No', 'Yes'], [0,1], inplace=True)
In [14]: df.Dependents = df.Dependents.str.replace('+','')
```

```
In [15]: df.Education.replace(['Graduate','Not Graduate'],[0,1],inplace=True)
In [16]: df.Self_Employed.replace(['No','Yes'],[0,1],inplace=True)
In [17]: df.Property Area.replace(['Urban', 'Rural', 'Semiurban'],[0,1,2],inplace=T
In [18]: df.Loan Status.replace(['Y','N'],[1,0],inplace=True)
In [19]: df.head()
            Gender Married Dependents Education Self_Employed ApplicantIncome CoapplicantInc
Out[19]:
         0
                0
                        0
                                  0
                                                                    5849
                                                                                  15
         1
                        1
                                  1
                                           0
                                                        0
                                                                    4583
         2
                                                                    3000
                0
                                  0
                                           0
                                                        1
                        1
                                                                    2583
         3
                                  0
                                                        n
                                                                                  23
                0
                        1
                                           1
                        0
                                  0
                                           0
                                                        0
         4
                0
                                                                    6000
In [20]:
        for col in cat_cols:
           df[col] = df[col].astype('int')
In [21]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 614 entries, 0 to 613
         Data columns (total 12 columns):
              Column
          #
                                  Non-Null Count Dtype
              -----
         - - -
                                  _____
                                                  ----
          0
              Gender
                                  614 non-null
                                                  int64
          1
              Married
                                  614 non-null
                                                  int64
          2
              Dependents
                                  614 non-null
                                                  int64
                                                  int64
          3
              Education
                                  614 non-null
              ApplicantIncome
              Self_Employed
          4
                                 614 non-null
                                                  int64
          5
                                 614 non-null
                                                  int64
          6
              CoapplicantIncome 614 non-null
                                                  float64
          7
                                  614 non-null
                                                  float64
              LoanAmount
          8
              Loan_Amount_Term
                                  614 non-null
                                                  float64
                                                  float64
          9
              Credit History
                                  614 non-null
                                                  int64
          10 Property_Area
                                  614 non-null
          11 Loan Status
                                  614 non-null
                                                  int64
         dtypes: float64(4), int64(8)
         memory usage: 57.7 KB
In [22]: from imblearn.combine import SMOTETomek
         smote = SMOTETomek()
         x=df.drop(columns=['Loan Status'],axis=1)
         y=df['Loan Status']
         x bal,y bal = smote.fit resample(x,y)
         print(y.value counts())
         print(y bal.value counts())
```

422
 192

Name: Loan_Status, dtype: int64

358
 358

Name: Loan_Status, dtype: int64

EDA - EXPLORATORY DATA ANALYSIS :-

In [23]: df.describe()

_			-	-	-	
1.1	13	+-	-)	-2	- 1	

	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Co
count	614.000000	614.000000	614.000000	614.000000	614.000000	614.000000	
mean	0.182410	0.653094	0.744300	0.218241	0.133550	5403.459283	
std	0.386497	0.476373	1.009623	0.413389	0.340446	6109.041673	
min	0.000000	0.000000	0.000000	0.000000	0.000000	150.000000	
25%	0.000000	0.000000	0.000000	0.000000	0.000000	2877.500000	
50%	0.000000	1.000000	0.000000	0.000000	0.000000	3812.500000	
75 %	0.000000	1.000000	1.000000	0.000000	0.000000	5795.000000	
max	1.000000	1.000000	3.000000	1.000000	1.000000	81000.000000	

UNIVARIATE ANALYSIS:-

In [24]: sns.distplot(df['ApplicantIncome'], color='r')

Out[24]: <Axes: xlabel='ApplicantIncome', ylabel='Density'>

In [25]: sns.distplot(df['Credit_History'])

Out[25]: <Axes: xlabel='Credit_History', ylabel='Density'>


```
In [26]: sns.countplot(df,x='Gender')
  plt.xlabel('Gender')
  plt.show()
  sns.countplot(df,x='Education')
  plt.xlabel('Education')
  plt.show()
```


In [27]: sns.countplot(df,x='Married')

Out[27]: <Axes: xlabel='Married', ylabel='count'>

BIVARIATE ANALYSIS:-

```
In [28]: plt.figure(figsize=(20,5))
  plt.subplot(1,3,1)
  sns.countplot(x= 'Married', hue = "Gender", data = df)
  plt.subplot(1,3,2)
  sns.countplot(x = 'Self_Employed', hue = "Education", data = df)
  plt.subplot(1,3,3)
  sns.countplot(x= 'Property_Area', hue = "Loan_Amount_Term", data =df)
```

Out[28]: <Axes: xlabel='Property_Area', ylabel='count'>


```
In [29]: sns.swarmplot(x='Gender', y='ApplicantIncome', hue = "Loan_Status", data
```

Out[29]: <Axes: xlabel='Gender', ylabel='ApplicantIncome'>

SCALING THE DATA:-

```
In [30]: scaler = StandardScaler()
x_bal = scaler.fit_transform(x_bal)
x_bal = pd.DataFrame(x_bal,columns=scaler.get_feature_names_out())
x_bal.head()
```

Out[30]:		Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	Coapplicar
	0	-0.441956	-1.137924	-0.705071	-0.475423	-0.334367	0.152709	-
	1	-0.441956	0.878793	0.357731	-0.475423	-0.334367	-0.090557	-
	2	-0.441956	0.878793	-0.705071	-0.475423	2.990726	-0.394735	-
	3	-0.441956	0.878793	-0.705071	2.103388	-0.334367	-0.474863	
	4	-0.441956	-1.137924	-0.705071	-0.475423	-0.334367	0.181724	-

SPLITTING THE DATA INTO TRAINING AND TESTTING DATA:-

```
In [31]: x_train,x_test,y_train,y_test=train_test_split(x_bal,y_bal, test_size=0.3
print(x_train.shape,x_test.shape)

(479, 11) (237, 11)
```

MODEL BUILDING:-

```
In [32]: def fit_model(model,name):
    model.fit(x_train,y_train)

y_pred = model.predict(x_train)
    print('training accuracy of ',name,' : ',accuracy_score(y_pred,y_train)
```

```
y_pred = model.predict(x_test)
print('testing accuracy of ',name,' : ',accuracy_score(y_pred, y_test))
plt.figure(figsize=(4,2))
sns.heatmap(confusion_matrix(y_test,y_pred),annot=True)
plt.show()
print(classification report(y test,y pred))
```

```
In [33]: dtc = DecisionTreeClassifier()
         fit model(dtc,"DTC")
```

training accuracy of DTC : 1.0

testing accuracy of DTC : 0.7679324894514767

	precision	recall	fl-score	support
0 1	0.74 0.80	0.81 0.73	0.77 0.77	114 123
accuracy macro avg weighted avg	0.77 0.77	0.77 0.77	0.77 0.77 0.77	237 237 237

In [34]: rfc = RandomForestClassifier() fit_model(rfc,"RFC")

training accuracy of RFC : 1.0 testing accuracy of RFC : 0.8523206751054853

	precision	recall	f1-score	support
0 1	0.86 0.84	0.82 0.88	0.84 0.86	114 123
accuracy macro avg weighted avg	0.85 0.85	0.85 0.85	0.85 0.85 0.85	237 237 237

In [35]: knn = KNeighborsClassifier()
fit model(knn,'KNN')

training accuracy of KNN : 0.824634655532359 testing accuracy of KNN : 0.7468354430379747

	precision	recall	f1-score	support
0 1	0.77 0.73	0.68 0.81	0.72 0.77	114 123
accuracy macro avg weighted avg	0.75 0.75	0.74 0.75	0.75 0.74 0.75	237 237 237

In [36]: from xgboost import XGBClassifier
xgb = XGBClassifier()
fit_model(xgb,'XGB')

training accuracy of XGB : 1.0 testing accuracy of XGB : 0.8734177215189873


```
precision
                          recall f1-score
                                             support
          0
                  0.87
                            0.87
                                      0.87
                                                 114
          1
                  0.88
                            0.88
                                      0.88
                                                 123
                                      0.87
                                                 237
    accuracy
                  0.87
                            0.87
                                      0.87
                                                 237
   macro avg
weighted avg
                  0.87
                            0.87
                                      0.87
                                                 237
```

```
In [37]: ann = Sequential()
    ann.add(Dense(units=12,activation='relu'))
    ann.add(Dense(units=24,activation='relu'))
    ann.add(Dense(units=1,activation='sigmoid'))
    ann.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accurann.fit(x_train,y_train,batch_size=100,validation_split=0.2,epochs=100)
```

```
Epoch 1/100
uracy: 0.3708 - val loss: 0.7232 - val accuracy: 0.4271
Epoch 2/100
4/4 [============ ] - 0s 11ms/step - loss: 0.7517 - acc
uracy: 0.3812 - val loss: 0.7183 - val accuracy: 0.4479
Epoch 3/100
4/4 [========== ] - 0s 13ms/step - loss: 0.7388 - acc
uracy: 0.4178 - val loss: 0.7138 - val accuracy: 0.4167
Epoch 4/100
uracy: 0.4439 - val loss: 0.7099 - val accuracy: 0.4375
Epoch 5/100
4/4 [========== ] - 0s 10ms/step - loss: 0.7166 - acc
uracy: 0.4909 - val loss: 0.7057 - val accuracy: 0.4688
Epoch 6/100
uracy: 0.5091 - val_loss: 0.7019 - val_accuracy: 0.4688
Epoch 7/100
4/4 [========== ] - 0s 15ms/step - loss: 0.6985 - acc
uracy: 0.5274 - val_loss: 0.6981 - val_accuracy: 0.5208
Epoch 8/100
uracy: 0.5352 - val loss: 0.6946 - val accuracy: 0.5729
Epoch 9/100
4/4 [========== ] - 0s 10ms/step - loss: 0.6823 - acc
uracy: 0.5587 - val_loss: 0.6910 - val_accuracy: 0.5521
Epoch 10/100
uracy: 0.5979 - val_loss: 0.6872 - val_accuracy: 0.5729
Epoch 11/100
uracy: 0.6162 - val_loss: 0.6836 - val_accuracy: 0.6042
Epoch 12/100
uracy: 0.6397 - val_loss: 0.6800 - val_accuracy: 0.6146
Epoch 13/100
4/4 [========== ] - 0s 14ms/step - loss: 0.6516 - acc
uracy: 0.6423 - val_loss: 0.6763 - val_accuracy: 0.6250
Epoch 14/100
4/4 [========== ] - 0s 11ms/step - loss: 0.6445 - acc
uracy: 0.6632 - val loss: 0.6727 - val accuracy: 0.6458
4/4 [========== ] - 0s 10ms/step - loss: 0.6371 - acc
uracy: 0.6684 - val_loss: 0.6689 - val_accuracy: 0.6458
Epoch 16/100
4/4 [============== ] - 0s 10ms/step - loss: 0.6296 - acc
uracy: 0.6971 - val loss: 0.6650 - val accuracy: 0.6354
Epoch 17/100
4/4 [========= ] - 0s 10ms/step - loss: 0.6226 - acc
uracy: 0.6997 - val_loss: 0.6613 - val_accuracy: 0.6458
Epoch 18/100
4/4 [========== ] - 0s 10ms/step - loss: 0.6154 - acc
uracy: 0.7076 - val loss: 0.6578 - val accuracy: 0.6458
Epoch 19/100
4/4 [========== ] - 0s 11ms/step - loss: 0.6086 - acc
uracy: 0.7232 - val loss: 0.6548 - val accuracy: 0.6458
Epoch 20/100
uracy: 0.7232 - val loss: 0.6512 - val accuracy: 0.6562
```

```
Epoch 21/100
uracy: 0.7311 - val_loss: 0.6481 - val_accuracy: 0.6562
Epoch 22/100
4/4 [============ ] - 0s 11ms/step - loss: 0.5877 - acc
uracy: 0.7363 - val loss: 0.6449 - val_accuracy: 0.6562
Epoch 23/100
4/4 [========== ] - 0s 11ms/step - loss: 0.5813 - acc
uracy: 0.7493 - val loss: 0.6422 - val accuracy: 0.6458
Epoch 24/100
4/4 [============ ] - 0s 11ms/step - loss: 0.5743 - acc
uracy: 0.7598 - val loss: 0.6394 - val accuracy: 0.6458
Epoch 25/100
4/4 [========== ] - 0s 17ms/step - loss: 0.5675 - acc
uracy: 0.7650 - val loss: 0.6368 - val accuracy: 0.6562
Epoch 26/100
uracy: 0.7702 - val_loss: 0.6347 - val_accuracy: 0.6562
Epoch 27/100
4/4 [=========== ] - 0s 18ms/step - loss: 0.5545 - acc
uracy: 0.7702 - val_loss: 0.6330 - val_accuracy: 0.6562
Epoch 28/100
4/4 [========== ] - 0s 11ms/step - loss: 0.5483 - acc
uracy: 0.7728 - val loss: 0.6310 - val accuracy: 0.6458
Epoch 29/100
4/4 [========== ] - 0s 10ms/step - loss: 0.5421 - acc
uracy: 0.7755 - val_loss: 0.6292 - val_accuracy: 0.6458
Epoch 30/100
uracy: 0.7807 - val_loss: 0.6276 - val_accuracy: 0.6458
Epoch 31/100
uracy: 0.7807 - val_loss: 0.6265 - val_accuracy: 0.6458
Epoch 32/100
uracy: 0.7833 - val_loss: 0.6253 - val_accuracy: 0.6458
Epoch 33/100
4/4 [========== ] - 0s 11ms/step - loss: 0.5195 - acc
uracy: 0.7833 - val_loss: 0.6246 - val_accuracy: 0.6458
Epoch 34/100
4/4 [=========== ] - 0s 13ms/step - loss: 0.5144 - acc
uracy: 0.7833 - val loss: 0.6235 - val accuracy: 0.6562
4/4 [========== ] - 0s 11ms/step - loss: 0.5098 - acc
uracy: 0.7833 - val_loss: 0.6232 - val_accuracy: 0.6562
Epoch 36/100
4/4 [============= ] - 0s 10ms/step - loss: 0.5047 - acc
uracy: 0.7859 - val loss: 0.6228 - val accuracy: 0.6562
Epoch 37/100
4/4 [========== ] - 0s 10ms/step - loss: 0.5002 - acc
uracy: 0.7833 - val_loss: 0.6226 - val_accuracy: 0.6458
Epoch 38/100
4/4 [========== ] - 0s 10ms/step - loss: 0.4955 - acc
uracy: 0.7833 - val loss: 0.6221 - val accuracy: 0.6458
Epoch 39/100
4/4 [============ ] - 0s 10ms/step - loss: 0.4916 - acc
uracy: 0.7885 - val loss: 0.6215 - val accuracy: 0.6458
Epoch 40/100
uracy: 0.7911 - val loss: 0.6214 - val accuracy: 0.6354
```

```
Epoch 41/100
uracy: 0.7911 - val_loss: 0.6216 - val_accuracy: 0.6354
Epoch 42/100
uracy: 0.7885 - val loss: 0.6214 - val_accuracy: 0.6354
Epoch 43/100
4/4 [=========== ] - 0s 19ms/step - loss: 0.4767 - acc
uracy: 0.7911 - val loss: 0.6210 - val accuracy: 0.6458
Epoch 44/100
uracy: 0.7911 - val loss: 0.6206 - val accuracy: 0.6458
Epoch 45/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4705 - acc
uracy: 0.7937 - val loss: 0.6213 - val accuracy: 0.6458
Epoch 46/100
uracy: 0.7911 - val_loss: 0.6215 - val_accuracy: 0.6458
Epoch 47/100
4/4 [=========== ] - 0s 12ms/step - loss: 0.4648 - acc
uracy: 0.7911 - val_loss: 0.6217 - val_accuracy: 0.6458
Epoch 48/100
uracy: 0.7911 - val loss: 0.6223 - val accuracy: 0.6458
Epoch 49/100
4/4 [========== ] - 0s 13ms/step - loss: 0.4597 - acc
uracy: 0.7911 - val_loss: 0.6227 - val_accuracy: 0.6458
Epoch 50/100
uracy: 0.7963 - val_loss: 0.6234 - val_accuracy: 0.6458
Epoch 51/100
uracy: 0.7990 - val_loss: 0.6230 - val_accuracy: 0.6458
Epoch 52/100
uracy: 0.8042 - val_loss: 0.6232 - val_accuracy: 0.6458
Epoch 53/100
4/4 [========== ] - 0s 10ms/step - loss: 0.4508 - acc
uracy: 0.8016 - val_loss: 0.6236 - val_accuracy: 0.6458
Epoch 54/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4491 - acc
uracy: 0.8042 - val loss: 0.6239 - val accuracy: 0.6458
Epoch 55/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4471 - acc
uracy: 0.8016 - val_loss: 0.6242 - val_accuracy: 0.6458
Epoch 56/100
uracy: 0.8016 - val loss: 0.6244 - val accuracy: 0.6458
Epoch 57/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4437 - acc
uracy: 0.8016 - val_loss: 0.6240 - val_accuracy: 0.6562
Epoch 58/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4419 - acc
uracy: 0.8042 - val loss: 0.6242 - val accuracy: 0.6667
Epoch 59/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4405 - acc
uracy: 0.8042 - val loss: 0.6253 - val accuracy: 0.6667
Epoch 60/100
uracy: 0.8068 - val loss: 0.6256 - val accuracy: 0.6667
```

```
Epoch 61/100
uracy: 0.8068 - val loss: 0.6252 - val accuracy: 0.6667
Epoch 62/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4364 - acc
uracy: 0.8068 - val loss: 0.6261 - val accuracy: 0.6667
Epoch 63/100
4/4 [========== ] - 0s 10ms/step - loss: 0.4352 - acc
uracy: 0.8068 - val loss: 0.6274 - val accuracy: 0.6667
Epoch 64/100
uracy: 0.8068 - val loss: 0.6269 - val accuracy: 0.6667
Epoch 65/100
4/4 [========== ] - 0s 10ms/step - loss: 0.4326 - acc
uracy: 0.8068 - val loss: 0.6271 - val accuracy: 0.6667
Epoch 66/100
uracy: 0.8042 - val_loss: 0.6279 - val_accuracy: 0.6667
Epoch 67/100
4/4 [========== ] - 0s 16ms/step - loss: 0.4305 - acc
uracy: 0.8068 - val_loss: 0.6280 - val_accuracy: 0.6667
Epoch 68/100
uracy: 0.8042 - val loss: 0.6285 - val accuracy: 0.6667
Epoch 69/100
4/4 [=========== ] - 0s 12ms/step - loss: 0.4287 - acc
uracy: 0.8042 - val_loss: 0.6287 - val_accuracy: 0.6667
Epoch 70/100
uracy: 0.8042 - val_loss: 0.6278 - val_accuracy: 0.6667
Epoch 71/100
uracy: 0.8068 - val_loss: 0.6287 - val_accuracy: 0.6667
Epoch 72/100
uracy: 0.8068 - val_loss: 0.6289 - val_accuracy: 0.6667
Epoch 73/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4249 - acc
uracy: 0.8068 - val_loss: 0.6289 - val_accuracy: 0.6667
Epoch 74/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4239 - acc
uracy: 0.8068 - val loss: 0.6308 - val accuracy: 0.6667
Epoch 75/100
uracy: 0.8042 - val_loss: 0.6331 - val_accuracy: 0.6667
Epoch 76/100
uracy: 0.8042 - val loss: 0.6327 - val accuracy: 0.6667
Epoch 77/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4213 - acc
uracy: 0.8042 - val_loss: 0.6322 - val_accuracy: 0.6667
Epoch 78/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4206 - acc
uracy: 0.8042 - val loss: 0.6313 - val accuracy: 0.6667
Epoch 79/100
4/4 [=========== ] - 0s 10ms/step - loss: 0.4195 - acc
uracy: 0.8042 - val loss: 0.6323 - val accuracy: 0.6667
Epoch 80/100
uracy: 0.8042 - val loss: 0.6329 - val accuracy: 0.6667
```

```
Epoch 81/100
uracy: 0.8042 - val loss: 0.6330 - val accuracy: 0.6667
Epoch 82/100
uracy: 0.8042 - val loss: 0.6333 - val accuracy: 0.6667
Epoch 83/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4163 - acc
uracy: 0.8042 - val loss: 0.6339 - val accuracy: 0.6667
Epoch 84/100
4/4 [============ ] - 0s 11ms/step - loss: 0.4155 - acc
uracy: 0.8042 - val loss: 0.6336 - val accuracy: 0.6667
Epoch 85/100
4/4 [=========== ] - 0s 13ms/step - loss: 0.4148 - acc
uracy: 0.8042 - val loss: 0.6335 - val accuracy: 0.6667
Epoch 86/100
uracy: 0.8042 - val_loss: 0.6341 - val_accuracy: 0.6667
Epoch 87/100
4/4 [=========== ] - 0s 12ms/step - loss: 0.4136 - acc
uracy: 0.8068 - val_loss: 0.6345 - val_accuracy: 0.6667
Epoch 88/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4128 - acc
uracy: 0.8068 - val loss: 0.6344 - val accuracy: 0.6667
Epoch 89/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4122 - acc
uracy: 0.8068 - val_loss: 0.6341 - val_accuracy: 0.6667
Epoch 90/100
uracy: 0.8068 - val_loss: 0.6348 - val_accuracy: 0.6667
Epoch 91/100
uracy: 0.8068 - val_loss: 0.6348 - val_accuracy: 0.6667
Epoch 92/100
uracy: 0.8068 - val_loss: 0.6358 - val_accuracy: 0.6667
Epoch 93/100
4/4 [========== ] - 0s 11ms/step - loss: 0.4097 - acc
uracy: 0.8068 - val_loss: 0.6357 - val_accuracy: 0.6667
Epoch 94/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4090 - acc
uracy: 0.8068 - val loss: 0.6374 - val accuracy: 0.6667
Epoch 95/100
4/4 [=========== ] - 0s 15ms/step - loss: 0.4085 - acc
uracy: 0.8094 - val_loss: 0.6385 - val_accuracy: 0.6667
Epoch 96/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4079 - acc
uracy: 0.8094 - val loss: 0.6374 - val accuracy: 0.6667
Epoch 97/100
4/4 [=========== ] - 0s 11ms/step - loss: 0.4074 - acc
uracy: 0.8094 - val_loss: 0.6382 - val_accuracy: 0.6667
Epoch 98/100
4/4 [=========== ] - 0s 12ms/step - loss: 0.4067 - acc
uracy: 0.8094 - val loss: 0.6371 - val accuracy: 0.6667
Epoch 99/100
4/4 [=========== ] - 0s 16ms/step - loss: 0.4060 - acc
uracy: 0.8120 - val_loss: 0.6376 - val_accuracy: 0.6771
Epoch 100/100
uracy: 0.8120 - val loss: 0.6394 - val accuracy: 0.6771
```

```
Out[37]: <keras.callbacks.History at 0x7f8615ca4e20>
In [38]: y_pred = ann.predict(x_train)
         y pred = y pred > 0.5
         print('training accuracy of ANN : ',accuracy_score(y_pred,y_train))
         y pred = ann.predict(x test)
         y_pred = y_pred > 0.5
         print('testing accuracy of ANN : ',accuracy score(y pred, y test))
         15/15 [========= ] - 0s 1ms/step
         training accuracy of ANN : 0.7828810020876826
         8/8 [========] - 0s 2ms/step
         testing accuracy of ANN : 0.7848101265822784
         *HYPER PARAMETER TUNING:-*
In [39]: from sklearn.model_selection import GridSearchCV
         params = {
             'criterion' :['gini','entropy'],
             'max_depth' : [None, 5, 10, 15],
             'min_samples_split':[2,5,10],
             'min_samples_leaf':[1,2,4]
         }
         gcv = GridSearchCV(DecisionTreeClassifier(),params,cv=5)
         gcv.fit(x_train,y_train)
         gcv.best_params_
Out[39]: {'criterion': 'entropy',
          'max_depth': 5,
          'min samples leaf': 4,
          'min_samples_split': 10}
In [51]: | dtc2 = DecisionTreeClassifier(criterion='entropy',max_depth=5,min_samples
         fit_model(dtc2,'DTC after tuning')
         training accuracy of DTC after tuning : 0.8121085594989561
         testing accuracy of DTC after tuning : 0.7637130801687764
                                               - 100
                   72
                                   42
          0
                                                80
                                                60
                                                40
                   14
                                1.1e + 02
                    0
                                   1
                       precision
                                   recall f1-score
                                                      support
                                               0.72
                    0
                           0.84
                                     0.63
                                                          114
                    1
                           0.72
                                     0.89
                                               0.80
                                                          123
                                               0.76
                                                          237
             accuracy
```

0.76

0.76

237

237

macro avg

weighted avg

0.78

0.78

0.76

0.76

```
In [41]: parameters = {
                          'n estimators' :[1,20,30,55,68,74,90,120,115],
                          'criterion' :['gini','entropy'],
                           'max features' : [ "sqrt" , "log2"],
                        'max_depth' :[2,5,8,10]
         rcv = RandomizedSearchCV(estimator=RandomForestClassifier(),param distrib
         rcv.fit(x train,y train)
         rcv.best params
Out[41]: {'n estimators': 90,
           'max_features': 'log2',
          'max depth': 8,
          'criterion': 'gini'}
In [50]: rfc2 = RandomForestClassifier(n_estimators=90, max_features='log2', max_dep
         fit_model(rfc2,'RFC ( after tuning ) ')
         training accuracy of RFC ( after tuning ) : 0.9373695198329853
         testing accuracy of RFC (after tuning) : 0.8270042194092827
                                                - 100
                                    28
          0
                                                 80
                                                 60
                                                 40
                    13
                                 1.1e + 02
                                                 20
                    0
                                    1
                       precision
                                     recall f1-score
                                                        support
                    0
                            0.87
                                      0.75
                                                 0.81
                                                            114
                                      0.89
                                                 0.84
                    1
                            0.80
                                                            123
                                                            237
                                                 0.83
             accuracy
            macro avg
                            0.83
                                      0.82
                                                 0.83
                                                            237
         weighted avg
                            0.83
                                      0.83
                                                 0.83
                                                            237
In [43]: param grid = {
             'n_neighbors': [3, 5, 7],
             'weights': ['uniform', 'distance'],
             'p': [1, 2]
         }
         g2 = GridSearchCV(estimator=KNeighborsClassifier(), param_grid=param_grid
         g2.fit(x_train, y_train)
         print( g2.best params )
         {'n_neighbors': 5, 'p': 1, 'weights': 'distance'}
In [49]: knn2 = KNeighborsClassifier(n neighbors=5,p=1,weights='distance')
         fit model(knn2,'KNN (after tuning)')
         training accuracy of KNN (after tuning) : 1.0
         testing accuracy of KNN (after tuning) : 0.810126582278481
```


Out[45]: {'learning_rate': 0.2, 'max_depth': 5, 'n_estimators': 100}

In [48]: xgb2 = XGBClassifier(learning_rate = 0.2,max_depth=5,n_estimators = 100)
fit_model(xgb2,'XGB (after tuning)')

training accuracy of XGB (after tuning) : 1.0 testing accuracy of XGB (after tuning) : 0.8649789029535865

	precision	recall	fl-score	support
0 1	0.87 0.86	0.84 0.89	0.86 0.87	114 123
accuracy macro avg weighted avg	0.87 0.87	0.86 0.86	0.86 0.86 0.86	237 237 237

SAVING THE MODEL:-

```
In [47]: pickle.dump(xgb2,open('xgb.pkl','wb'))
pickle.dump(scaler,open('scaler.pkl','wb'))
```