CSE232 Assignment 1

Nurseiit Abdimomyn – 20172001

09/10/2018

- 1. (a) $A = \{x^2 | x \in N \land x \le 5\}$
 - (b) $B = \{(x, y) | x, y \in N \land (x + y) < 3\}$
- 2. (a) $A = \{1\}, B = \{1, 1\}$ It is true that $A \subseteq B$ and $B \subseteq A$. Thus, A = B.
 - (b) $A = \{1, 2\}, B = \{2, 1\}$ It is true that $A \subseteq B$ and $B \subseteq A$. Thus, A = B.
 - (c) $A = \{1, 2\}, B = (1, 2)$ Obviously $A \neq B$ because A is a set. Whereas, B is not.
- 3. Prove that $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$

Suppose $A = \{x | x \in A \land x \notin B\}$ and the size of it is n. Moreover, let's say that the size of the set B is m. Then it is obvious that the size of the set $A \cup B$ should equal n + m.

Now, as the size of powerset of a set is always 2 to the power the size of that set, we can see that $\mathcal{P}(A \cup B)$ has $2^{(n+m)}$ elements. While, $\mathcal{P}(A) \cup \mathcal{P}(B)$ has at most $2^n + 2^m$ elements. Hence, the equation is not always true.

- 4. (a) Please refer to the handwritten sample attached to the paper.
 - (b) $(A B) \cup (B A) = (A \cup B) \cap (\overline{A} \cup \overline{B})$ $(A - B) \cup (B - A) = (A - B) \cup (B \cap \overline{A})$ $= (A \cap \overline{B}) \cup (B \cap \overline{A})$ $= ((A \cap \overline{B}) \cup B) \cap ((A \cap \overline{B}) \cup \overline{A})$ $= (A \cup B) \cap (\overline{B} \cup B) \cap ((A \cup \overline{A}) \cap (\overline{A} \cup \overline{B})) = (A \cup B) \cap (\overline{A} \cup \overline{B})$ q.e.d.

p	$\mid q \mid$	$p \land \neg q$	$\neg p \land q$	$p \lor q$	$\mid \neg p \vee \neg q$	$(p \land \neg q) \lor (\neg p \land q)$	$ \mid (p \lor q) \land (\neg p \land \neg q) $
\overline{T}	T	F	F	T	F	$\mid F \mid$	$\mid F \mid$
\overline{T}	F	T	F	T	T	T	T
\overline{F}	T	F	T	T	T	T	T
\overline{F}	F	F	F	F	T	F	\overline{F}

- 5. $A \times B = B \times A$ is true if one of the following is satisfied.
 - (a) A = B
 - (b) $A = \emptyset$ or $B = \emptyset$
- 6. $(p \land (q \oplus r)) \lor (q \land (p \oplus r)) \lor (r \land (q \oplus p))$
- 7. (a) Please refer to the table at the top of this page.
 - (b) $(p \land \neg q) \lor (\neg p \land q) \equiv (p \lor q) \land (\neg p \lor \neg q)$ Distributive [1]: $(p \land \neg q) \lor (\neg p \land q) \equiv (\neg p \lor (p \land \neg q)) \land (q \lor (p \land \neg q)) \equiv$ Distributive [2]: $((\neg p \lor p) \land (\neg p \lor \neg q)) \land ((q \lor p) \land (q \lor \neg q)) \equiv$ $(\neg p \lor \neg q) \land (p \lor q)$ q.e.d.
- 8. $\forall x \forall y \exists z (P(x,z) \land P(y,z) \lor P(x,y))$ as $\forall x P(x,x) \equiv True$, thus $\forall x \forall y \exists z (P(x,z) \land P(y,z))$ is sufficient for this problem.
- 9. $\neg \forall x \forall y (P(x,y) \lor Q(x,y)) \equiv \exists x \exists y \neg (P(x,t) \lor Q(x,y))$ Via De Morgan's law it's $\equiv \exists x \exists y (\neg P(x,y) \land \neg Q(x,y))$