UT Austin CSE 386D

Homework 4

Jonathan Zhang EID: jdz357

Problem 7.1:

Prove that for $f \in H^1\left(\mathbb{R}^d\right)$, $\|f\|_{H^1\left(\mathbb{R}^d\right)}$ is equivalent to

$$\left[\int_{\mathbb{R}^d} (1 + |\xi|^2) |\hat{f}(\xi)|^2 d\xi \right]^{1/2}$$

Generalize to $H^k(\mathbb{R}^d)$?

Solution

Problem 7.2:

Prove that if $f \in H_0^1(0,1)$, then there exists C > 0 such that $||f||_{L^2(0,1)} \le C||f'||_{L^2(0,1)}$. If instead $f \in \{g \in H^1(0,1) : \int_0^1 g(x)dx = 0\}$, provide a similar estimate.

Problem 7.3:

Prove that $\delta_0 \notin (H^1(\mathbb{R}^d))^*$ for $d \geq 2$, but that $\delta_0 \in (H^1(\mathbb{R}))^*$. You will need to define that δ_0 applied to $f \in H^1(\mathbb{R})$ means.

Problem 7.4:

Prove that $H^1(0,1)$ is continuously embedded in $C_B(0,1)$, the set of bounded and continuous functions on (0,1).

Oden Institute 1