

Spectroscopie de résonance magnétique nucléaire (RMN)

25-10-2023

Lecture 7

RMN du ¹³C

IV.8 Applications structurales et données de corrélations

Méthode générale d'analyse des spectres RMN ¹³C

Tenir compte de l'information concernant la multiplicité obtenue par un spectre « off-résonance » ou une DEPT.

Utiliser les tables de corrélation pour prévoir les déplacements chimiques de tous les carbones pour chaque structure proposée

IV.7 Test « DEPT »

	CH ₃	CH ₂	СН	С
Découplage à large bande	\downarrow	人	人	人
Un spectre DEPT-90			人	
Un spectre DEPT-135		γ		

Table des déplacements chimique de ¹³C

Approximate Values of Chemical Shifts for ¹³ C NMR								
(CH ₃) ₄ Si	0	* I-C	-20 - 40	c=c 100 - 150	O R-C N 155 - 185			
R-CH ₃	8 - 30	Br-C	25 - 65	C-H 110 - 170	1			
R-CH ₂ -R	15 - 55	CI-C	35 - 80		O O R ^{-C} OH R ^{-C} OR 165 - 185			
R ₃ CH	20 - 60	O-C	40 - 80	C=N 150 - 170	Q Q			
R₄C	30 - 50	N-C	30 - 65	C≡N 110 - 140	R-C-R-C-R 190 - 220			

RMN du ¹³C

IV.7 Test « DEPT »

RMN du ¹³C

IV.7 Test « DEPT »

Comme il n'y a qu'un carbone supplémentaire, cela signifie qu'il y a un CH₃ additionnel plus un proton non attribué ⇒ ce dernier ne peut qu'être localisé sur l'oxygène : OH

IV.8 Applications structurales et données de corrélations

Le déplacement chimique de C-O (40 - 80 ppm) confirme la présence d'un groupe alcool OH

$$\delta(CH_2) = 70 \text{ ppm} \longrightarrow CH_2OH$$

$$CH$$

$$CH_2OH$$

$$2 CH_3 \text{ équivalents}$$

Un autre DEPT...

C7H14O

Il existe plusieurs structures qui peuvent correspondre à ces spectres.

Nécessite un spectre H¹ NMR

Celui-ci donne 5 signaux dont:

0.9 δ (6H, doublet) 1.9 δ (3H, singulet)

5 methyl-2-hexanone

$$+ H_3C-O^-$$

$$- H_3C-OH$$

$$+ H_3C-OH$$

$$- H_3C-OH$$

$$- H_3C-OH$$

$$- H_3C-OH$$

Spectres ¹H RMN et DEPT de l'impureté

Spectre de masse de l'impureté

L'échantillon est incorporé dans une matrice qui contient des ions sodium (23 g/mol) et potassium (39 g/mol)

La masse molaire de l'impureté est donc de 427-23 = 443-39 = 404 g/mol