

Trigonometry Review Guide

Updated January 2019

Key Definition and Properties of the Trigonometric Functions

Definition of a Right Triangle

Key Vocabulary

Assume that $0<\theta<(\pi/2)$ or $0^{\circ}<\theta<90^{\circ}$

- → Hypotenuse: side opposite the right angle and the longest side of the triangle
- \rightarrow Opposite: side opposite θ
- \rightarrow Adjacent: non-hypotenuse side next to θ

Definition of a Right Triangle

Key Vocabulary

Assume that $0<\theta<(\pi/2)$ or $0^{\circ}<\theta<90^{\circ}$

- Sine: $\sin \theta = \text{opp / hyp}$
- → Cosine: $\cos \theta = \text{adj / hyp}$
- → Tangent: tan θ = opp / adj
- **Cosecant:** $\csc \theta = \text{hyp / opp} = 1 / \text{sine}$
- **Secant:** sec θ = hyp / adj = 1 / cosine
- **Cotangent:** cot θ = adj / opp = 1 / tangent

Definition of the Unit Circle

Key Vocabulary

Assume θ can be any angle

- \rightarrow sin $\theta = y / 1$
- \rightarrow cos $\theta = x / 1$
- \rightarrow tan $\theta = y / x$
- \rightarrow csc $\theta = 1/y$
- \rightarrow sec $\theta = 1/x$
- \rightarrow cot $\theta = x / y$

Definition of the Unit Circle

Key Vocabulary

For any ordered pair on the unit circle (x,y): $x = \cos \theta$ and $y = \sin \theta$

Degrees and Radians

Key Vocabulary

Angles can be measured using degrees or radians.

A **radian** is the measure of the angle that cuts off an arc of length 1 on the unit circle

If x is an angle in degrees, and t is an angle in radians, then:

$$\rightarrow$$
 $\pi / 180^\circ = t / x$

→
$$t = (\pi x) / 180^{\circ}$$

→
$$x = (180^{\circ}t) / \pi$$

Commonly used angles in degrees and radians:

Deg:	0°	30°	45°	60°	90°	120°	135°	150°	180°
Rad:	0	π/6	π/4	π/3	π/2	2π/3	3π/4	5π/6	π

Deg:	180°	210°	225°	240°	270°	300°	315°	330°	360°
Rad:	π	7π/6	5π/4	4π/3	3π/2	5π/3	$7\pi/4$	11π/6	2π

Domains of the Trig Functions

Key Property

Domain: the set of all possible values of the **independent** variable (θ below)

Domains of the trig functions:

- \rightarrow sin θ : $\forall \theta \in (-\infty,\infty)$
- \rightarrow cos θ : $\forall \theta \in (-\infty, \infty)$
- → tan θ: \forall θ ≠ (k+½) π , where k∈ \mathbb{Z}
- → csc θ: \forall θ ≠ kπ, where k∈ \mathbb{Z}
- → sec θ: \forall θ ≠ (k+½) π , where k∈ \mathbb{Z}
- → cot θ: \forall θ ≠ kπ, where k∈ \mathbb{Z}

Symbol definitions:

- → **∀**: for all
- **→ ∈**: in
- → Z: set of all integers

Ranges of the Trig Functions

Key Property

Range: the set of all possible values of the **dependent** variable after substituting the domain

Ranges of the trig functions:

- → $-1 \le \sin \theta \le 1$
- → $-1 \le \cos \theta \le 1$
- → $-\infty \le \tan \theta \le \infty$
- ⇒ csc $\theta \ge 1$ and csc $\theta \le -1$
- ⇒ sec $\theta \ge 1$ and sec $\theta \le -1$
- → $-\infty \le \cot \theta \le \infty$

Periods of the Trig Functions

Key Property

Period: The distance required for the function to complete one full cycle. It is the number, T, such that $f(\theta + T) = f(\theta)$

Let k be a fixed number and θ be any angle. Then the periods of the trig functions are:

$$\rightarrow$$
 sin (k θ): T = 2 π / k

$$\rightarrow$$
 csc (k θ): T = 2 π / k

$$\rightarrow$$
 cos (k θ): T = 2 π / k

$$\rightarrow$$
 sec (k θ): T = 2 π / k

$$\rightarrow$$
 tan (k θ): T = π / k

$$\rightarrow$$
 cot (k θ): T = π / k

Periodic Formulas

Let n be an integer. Then,

$$\Rightarrow$$
 sin (θ + 2πn) = sin θ

$$\rightarrow$$
 csc $(\theta + 2\pi n) = csc \theta$

$$\rightarrow$$
 cos (θ + 2πn) = cos θ

$$\rightarrow$$
 sec (θ + 2πn) = sec θ

$$\rightarrow$$
 tan $(\theta + \pi n) = \tan \theta$

$$\rightarrow$$
 cot $(\theta + \pi n) = \cot \theta$

Graphs of the Trigonometric Functions

Graphs of the Trig Functions

Sine Graph

The below graph shows the function $f(x) = \sin(x)$

Key Properties

- → Domain: $-\infty \le x \le \infty$
- \rightarrow Range: $-1 \le f(x) \le 1$
- \rightarrow Period: 2π
- \rightarrow x-intercept: x = k π , where k is an integer
- → y-intercept: y = 0
- \rightarrow Maximum: $(\pi/2 + 2k\pi, 1)$, where k is an integer
- \rightarrow Minimum: $(3\pi / 2 + 2k\pi, -1)$, where k is an integer

Graphs of the Trig Functions

Cosine Graph

The below graph shows the function f(x) = cos(x)

Key Properties

- → Domain: $-\infty \le x \le \infty$
- \rightarrow Range: $-1 \le f(x) \le 1$
- \rightarrow Period: 2π
- \rightarrow x-intercept: $x = \pi/2 + k\pi$, where k is an integer
- → y-intercept: y = 1
- \rightarrow Maximum: (2k π , 1), where k is an integer
- \rightarrow Minimum: $(\pi + 2k\pi, -1)$, where k is an integer

Graphs of the Trig Functions

Tangent Graph

The below graph shows the function f(x) = tan(x)

Key Properties

- → Domain: $\forall x \neq (k+\frac{1}{2})\pi$, where k is an integer
- \rightarrow Range: $-\infty \le f(x) \le \infty$
- → Period: π
- \rightarrow x-intercept: x = k π , where k is an integer
- → y-intercept: y = 0

Key Identities and Formula of the Trigonometric Functions

Tangent and Reciprocal Identities

Key Identities

Tangent and Cotangent Identities

- \rightarrow tan $\theta = \sin \theta / \cos \theta$
- \rightarrow cot $\theta = \cos \theta / \sin \theta$

Reciprocal Identities

- \rightarrow sin $\theta = 1 / \csc \theta$
- \rightarrow cos $\theta = 1 / \sec \theta$
- \rightarrow tan $\theta = 1 / \cot \theta$
- \rightarrow csc $\theta = 1 / \sin \theta$
- \rightarrow sec $\theta = 1/\cos \theta$
- \rightarrow cot $\theta = 1 / \tan \theta$

Pythagorean Theorem and Identities

Key Formulas

Pythagorean Theorem

→ Let a, b and c be the lengths of the sides of a right triangle (where c is the length of the hypotenuse). Then $a^2 + b^2 = c^2$

Pythagorean Identities

$$\rightarrow$$
 $\sin^2 \theta + \cos^2 \theta = 1$

$$\rightarrow$$
 tan² θ + 1 = sec² θ

$$\rightarrow$$
 1 + cot² θ = csc² θ

Pythagorean Triples

- A pythagorean triple is any set of three positive integers (a,b,c) such that $a^2 + b^2 = c^2$
- → Common pythagorean triples include: (3,4,5), (6,8,10), (5,12,13), (8,15,17)
- → If (a,b,c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k

Even and Odd

Key Formulas

Even and Odd Formulas

$$\rightarrow$$
 sin $(-\theta) = -\sin \theta$

$$\rightarrow$$
 $\cos(-\theta) = \cos\theta$

$$\rightarrow$$
 tan $(-\theta) = - \tan \theta$

$$\rightarrow$$
 csc $(-\theta) = - \csc \theta$

$$\rightarrow$$
 sec $(-\theta)$ = sec θ

$$\rightarrow$$
 cot $(-\theta) = -\cot \theta$

Double Angle and Half Angle

Key Formulas

Double Angle Formulas

$$\rightarrow$$
 sin (2θ) = 2 sin θ cos θ

$$\rightarrow$$
 cos (2θ) = cos² θ - sin² θ = 2 cos² θ - 1 = 1 - 2 sin² θ

$$\Rightarrow \tan (2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

Half Angle Formulas

$$\Rightarrow \quad \sin\left(\theta/2\right) = \pm \sqrt{\frac{1 - \cos(2\theta)}{2}}$$

$$\Rightarrow \quad \cos(\theta/2) = \pm \sqrt{\frac{1 + \cos(2\theta)}{2}}$$

$$\Rightarrow \tan (\theta/2) = \pm \sqrt{\frac{1 - \cos(2\theta)}{1 + \cos(2\theta)}}$$

Sum, Difference, and Product

Key Formulas

Sum and Difference

- \rightarrow $\sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
- \rightarrow $\cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- \Rightarrow tan $(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

Product to Sum Formulas

- \rightarrow sin α sin $\beta = \frac{1}{2} [\cos(\alpha \beta) \cos(\alpha + \beta)]$
- \rightarrow cos α cos β = $\frac{1}{2}$ [cos(α β) + cos(α + β)]
- \rightarrow sin α cos β = $\frac{1}{2}$ [sin $(\alpha + \beta) + \sin(\alpha \beta)$]
- \rightarrow cos α sin $\beta = \frac{1}{2} [\sin (\alpha + \beta) \sin(\alpha \beta)]$

Sum to Product Formulas

- \rightarrow sin α + sin β = 2 sin (α /2 + β /2) cos (α /2 β /2)
- \rightarrow sin α sin β = 2 cos ($\alpha/2 + \beta/2$) sin ($\alpha/2 \beta/2$)
- \rightarrow cos α + cos β = 2 cos (α /2 + β /2) cos(α /2 β /2)
- \rightarrow cos α cos β = 2 sin ($\alpha/2 + \beta/2$) sin($\alpha/2 \beta/2$)

Cofunctions

Key Formulas

Cofunction Formulas

- \rightarrow sin $(\pi/2 \theta) = \cos \theta$
- \rightarrow cos $(\pi/2 \theta) = \sin \theta$
- \rightarrow csc $(\pi/2 \theta) = \sec \theta$
- \rightarrow sec $(\pi/2 \theta) = \csc \theta$
- \rightarrow tan $(\pi/2 \theta) = \cot \theta$
- \rightarrow cot $(\pi/2 \theta) = \tan \theta$

Inverse Trig Functions

Definition of the inverse trig functions

Key Vocabulary

Definition of the inverse trig functions

- \rightarrow $\theta = \sin^{-1}(x)$ is equivalent to $x = \sin \theta$
- \rightarrow $\theta = \cos^{-1}(x)$ is equivalent to $x = \cos \theta$
- \rightarrow $\theta = \tan^{-1}(x)$ is equivalent to $x = \tan \theta$

The inverse trig functions can also be notated as

- \rightarrow sin⁻¹(x) = arcsin(x)
- \rightarrow cos⁻¹(x) = arccos(x)
- \rightarrow tan⁻¹(x) = arctan(x)

Key properties of the inverse trig functions

Key Properties

Domain and range of the inverse trig functions

Function	Domain	Range		
$\theta = \sin^{-1}(x)$	-1 ≤ x ≤ 1	$-\pi/2 \le \theta \le \pi/2$		
$\theta = \cos^{-1}(x)$	-1 ≤ x ≤ 1	$0 \le \theta \le \pi$		
$\theta = tan^{-1}(x)$	$-\infty \le X \le \infty$	-π/2 ≤ θ ≤ π/2		

The following properties hold for x in the domain and $\boldsymbol{\theta}$ in the range

- \rightarrow sin(sin⁻¹(x)) = x
- \rightarrow cos(cos⁻¹(x)) = x
- \rightarrow tan(tan⁻¹(x)) = x
- \rightarrow $\sin^{-1}(\sin(\theta)) = \theta$
- \rightarrow $\cos^{-1}(\cos(\theta)) = \theta$
- \rightarrow $\cos^{-1}(\cos\theta)) = \theta$

Laws of Sines, Cosines, and Tangents

Law of Sines

Key Vocabulary

Law of Sines

$$\rightarrow$$
 (sin α) / a = (sin β) / b = (sin γ) / c

Law of Cosines

Key Vocabulary

Law of Cosines

- → $a^2 = b^2 + c^2 2bc$ (cos α)
- ⇒ $b^2 = a^2 + c^2 2ac (cos \beta)$
- → $c^2 = a^2 + b^2 2ab (\cos \gamma)$

Law of Tangents

Key Vocabulary

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan \frac{1}{2} (\alpha - \beta)}{\tan \frac{1}{2} (\alpha + \beta)}$$

$$b - c = \tan \frac{1}{2} (\beta - \gamma)$$

$$b + c = \tan \frac{1}{2} (\beta + \gamma)$$

$$\frac{a-b}{a+c} = \frac{\tan \frac{1}{2} (\alpha - \gamma)}{\tan \frac{1}{2} (\alpha + \gamma)}$$

Complex Numbers and DeMoivre's Theorem

Definition of a complex number

Key Vocabulary

Definition of the **imaginary number** *i*

$$\rightarrow$$
 $i = \sqrt{(-1)}$

→
$$i^2 = -1$$

$$\rightarrow$$
 $i^3 = -i$

$$\rightarrow$$
 $i^4 = 1$

A **complex number** is a combination of a real number and an imaginary number and can be written in the form a + bi, where a and b are real numbers

The **conjugate** of a complex number a + bi, denoted a + bi is given by

$$\rightarrow$$
 $a + bi = a - bi$

The absolute value of a complex number, or **complex modulus** is given by

$$\Rightarrow |\mathbf{a} + \mathbf{b}i| = a^2 + b^2$$

DeMoivre's Theorem

DeMoivre's Theorem

Let $z = r(\cos \theta + i \sin \theta)$ and let n be a positive integer. Then:

$$z^n = r^n (\cos n\theta + i \sin n\theta)$$

Example: Let z = 1 - i, find z^6

First write z in polar form

- The polar form of a complex number x + yi is given by: $r(\cos \theta + i \sin \theta)$
- \rightarrow $r = \sqrt{(1)^2 + (-1)^2} = \sqrt{2}$
- \rightarrow $\theta = arg(z) = tan^{-1}(-1/1) = -\pi/4$
- \rightarrow Polar form: $z = \sqrt{2} \left[\cos(-\pi/4) + i \sin(-\pi/4) \right]$

Applying DeMoivre's Theorem gives:

$$z^{6} = (\sqrt{2})^{6} \left[\cos(6 \times (-\pi/4)) + i \sin(6 \times (-\pi/4))\right]$$

$$= 2^{3} \left[\cos(-3\pi/2) + i \sin(-3\pi/2)\right]$$

$$= 8 \left[0 + i(1)\right]$$

$$= 8i$$

DeMoivre's Theorem

Finding the *nth* roots of a number using DeMoivre's Theorem

Example: Find all the complex fourth roots of 4. That is, find all the complex solutions of $x^4 = 4$

For any positive integer n, a nonzero complex number z has exactly n distinct nth roots. If z is written in the trigonometric form r ($\cos \theta + i \sin \theta$), the nth roots of z are given by the following formula:

(*)
$$r^{1/n} [\cos(\theta/n + 360^{\circ}k/n) + i \sin(\theta/n + 360^{\circ}k/n)], \text{ for } k = 0, 1, 2, ..., n-1$$

Writing the number 4 in trigonometric form using $r = \sqrt{a^2 + b^2}$ and $\theta = \arg(z) = \tan^{-1}(b/a)$, we have the following:

→
$$4 = 4 + i(0)$$
 \Rightarrow $r = \sqrt{4^2 + 0^2}$ and $\theta = \arg(z) = \tan^{-1}(0/4) = 0 \Rightarrow 4 = 4 (\cos 0^\circ + i \sin 0^\circ)$

Using the formula (*) above with n = 4, we can find the fourth roots of 4 (cos $0^{\circ} + i \sin 0^{\circ}$):

For k = 0,
$$4^{1/4} [\cos(0^{\circ}/4 + 360^{\circ}*0/4) + i \sin(0^{\circ}/4 + 360^{\circ}*0/4)] = \sqrt{2} [\cos(0^{\circ}) + i \sin(0^{\circ})] = \sqrt{2}$$

For k = 1,
$$4^{1/4} [\cos(0^{\circ}/4 + 360^{\circ}*1/4) + i \sin(0^{\circ}/4 + 360^{\circ}*1/4)] = \sqrt{2} [\cos(90^{\circ}) + i \sin(90^{\circ})] = \sqrt{2} i$$

For k = 2,
$$4^{1/4} [\cos(0^{\circ}/4 + 360^{\circ}*2/4) + i \sin(0^{\circ}/4 + 360^{\circ}*2/4)] = \sqrt{2} [\cos(180^{\circ}) + i \sin(180^{\circ})] = -\sqrt{2}$$

For k = 3,
$$4^{1/4} [\cos(0^{\circ}/4 + 360^{\circ}*3/4) + i \sin(0^{\circ}/4 + 360^{\circ}*3/4)] = \sqrt{2} [\cos(270^{\circ}) + i \sin(270^{\circ})] = -\sqrt{2} i$$

Thus all of the complex roots of $x^4 = 4$ are: $\sqrt{2}$, $\sqrt{2}i$, $-\sqrt{2}i$

Conics

Circle

Key Formulas

The **standard form** of a circle is denoted by the formula

$$(x - h)^2 + (y - k)^2 = r^2$$

Where

- → (h,k) = center of the circle
- → r = radius of the circle

Ellipse

Key Formulas

The standard form for horizontal major axis is given by

$$(x - h)^2 + (y - k)^2 = 1$$

The standard form for vertical major axis is given by

$$(x - h)^2 + (y - k)^2 = 1$$

Where

- → (h,k) = center of the ellipse
- → 2a = length of the major axis
- → 2b = length of the minor axis
- → 0 < b < a

The **foci** of the ellipse can be found using the formula $c^2 = a^2 - b^2$ where c = foci length

Hyperbola

Key Formulas

The standard form for horizontal transverse is given by

$$(x - h)^2 - (y - k)^2 = 1$$

The standard form for vertical transverse axis is given by

$$(y - k)^2 - (x - h)^2 = 1$$

Where

- \rightarrow (h,k) = center of the hyperbola
- → a = distance between center and either vertex

The **foci** can be found using $b^2 = c^2 - a^2$ where

- c is the distance between center and either focus
- \rightarrow b > 0

Parabola

Key Formulas

A parabola that is symmetric about a **vertical axis** is given by

$$y = a (x - h)^2 + k$$

A parabola that is symmetric about a **horizontal axis** is given by

$$x = a (y - k)^2 + h$$

Where

- \rightarrow (h,k) = vertex
- → a = scaling factor

Additional Resources

Trigonometry

Additional Resources

- → https://www.khanacademy.org/math/trigonometry
- → http://web.mit.edu/jorloff/www/18.01a-esg/OCWTrig.pdf
- → https://www.mathsisfun.com/algebra/trigonometry.html
- → http://jwilson.coe.uga.edu/EMAT6680/Adcock/Adcock6690/RLAInstruct_Unit1/RLATrigMenu.htm

