Digitaltechnik

Andrej Scheuer ascheuer@student.ethz.ch 11. November 2020

AND

OR

_	ъ	3.7
A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NOR

OR aus NAND

Weitere Gates

			gnan C	NOR	вох Е	HONX F
	A	В	С	D	E	F
Г	0	0	1	1	0	1
	0	1	1	0	1	0
	1	0	1	0	1	0
L	1	1	0	0	0	1

$$XOR = (A \wedge \overline{B}) \vee (\overline{A} \wedge B)$$
$$XNOR = (A \wedge B) \vee (\overline{A \wedge B})$$

XOR aus NAND

XOR aus NOR: Gleiches Schema wie NAND + 1 Inverter

XNOR aus NAND: Gleiches Schema wie XOR aus NOR

XNOR aus NOR: Gleiches Schema wie XORaus NAND

Es versteht sich natürlich, dass wenn von "Gleichem Schema wie..." gesprochen wird, die Gates trotzdem getauscht werden müssen

PMOS

CMOS

NMOS

G	Schalter	Y
0	offen	1
1	zu	0

G	Schalter	Y
0	zu	1
1	offen	0

Konstruktion von CMOS-Gates

Regeln für CMOS-Schaltungen

- 1. CMOS-Gates bestehen aus gleich vielen NMOS und PMOS.
- 2. m Eingänge: m NMOS und m PMOS.
- 3. NMOS in Serie \rightarrow PMOS parallel
- 4. NMOS parallel \rightarrow PMOS Serie

Allg. Aufbau CMOS

Umwandlung Pull-up zu Pull-down

- 1. Teilbereiche (Blöcke) identifizieren.
- 2. Schritt 1 wiederholen, bis nur noch einzelne Transistoren vorkommen.
- 3. Falls Pull-down:
 - Von GND aus mit äusserstem Block beginnen.
 - $PMOS \rightarrow NMOS$
- 4. Falls Pull-up:
 - Von V_{DD} aus mit äusserstem Block beginnen.
 - NMOS → PMOS.

Funktionsgleichung

parallel: \vee	Pull-Up: $y = 1$	alle $I: 0 \to I$ invert.
Serie: ∧	Pull-Down: $y = 0$	alle I : $1 \rightarrow Gl$. inver

Boolsche Algebra

Grundregeln

Kommutativität

$$A \wedge B = B \wedge A$$
$$A \vee B = B \vee A$$

Assoziativität

$$A \wedge (B \wedge C) = (A \wedge B) \wedge C$$
$$A \vee (B \vee C) = (A \vee B) \vee C$$

Distributivität

$$(A \land B) \lor (A \land C) = A \land (B \lor C)$$
$$(A \lor B) \land (A \lor C) = A \lor (B \land C)$$

Nicht	$\overline{\overline{A}} = A$	
Null-Th.	$A \lor 0 = A$	$A \wedge 0 = 0$
Eins-Th.	$A \lor 1 = 1$	$A \wedge 1 = A$
Idempotenz	$A\vee A=A$	$A \wedge A = A$
V. Komp.	$A \vee \overline{A} = 1$	$A\wedge \overline{A}=0$
Adsorp.	$A \vee (\overline{A} \wedge B)$	$= A \vee B$
	$A \wedge (\overline{A} \vee B)$	$=A\wedge B$
Adsorp.	$A \lor (A \land B)$	= A
	$A \wedge (A \vee B)$	= A
Nachbar.G.	$(A \wedge B) \vee (\overline{A})$	$\overline{A} \wedge B) = B$
	$(A \vee B) \wedge (\overline{A})$	$\bar{A} \vee B) = B$

De Morgan

- $\overline{A \wedge B} = \overline{A} \vee \overline{B}$ 1. Regel
- $\overline{A \vee B} = \overline{A} \wedge \overline{B}$ 2. Regel

Regeln gelten auch für n verknüpfte Terme.

Normalformen

Minterm	Maxterm
AND-Ausdruck	OR-Ausdruck
Output: 1	Output: 0
n Schaltvar. $\rightarrow 2^n$ mögl. Minterme.	n Schaltvar. $\rightarrow 2^n$ mögl Maxterme.
nicht-invertierte Var: 1	nicht-invertierte Var: 0
invertierte Var: 0	invertierte Var: 0

Disjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 1
- 2. Minterme für diese Zeilen aufstellen
- 3. Minterme mit **OR** verknüpfen

Konjunktive Normalform

- 1. Identifiziere WT-Zeilen mit Output 0
- 2. Maxterme für diese Zeilen aufstellen
- 3. Maxterme mit AND verknüpfen

A	В	Y	Minterme	Maxterme
0	0	1	$\overline{A} \wedge \overline{B}$	
0	1	0		$A \vee \overline{B}$
1	0	0		$\overline{A} \vee B$
1	1	1	$A \wedge B$	

$$\begin{array}{lll} \mathbf{DNF} & Y = (\overline{A} \wedge \overline{B}) \vee (A \wedge B) & 1 \text{ Mint. erf.} \to & 1 \\ \mathbf{KNF} & Y = (A \vee \overline{B}) \wedge (\overline{A} \vee B) & 1 \text{ Maxt. erf.} \to & 0 \\ \end{array}$$

Schaltung nur aus:

- NOR: KNF \rightarrow De Morgan
- NAND: DNF \rightarrow De Morgan Schaltung nur aus:
 - NOR: KNF \rightarrow De Morgan
 - XNOR: DNF \rightarrow De Morgan

Karnaugh Diagramme (KVD)

AB	00	01	11	10
00	0	1	X	
01				
11				
01				

Hat das Karnaugh Diagramm 5 Dimensionen, wird die 5te Dimension auf zwei Tabellen aufgeteilt.

Don't-Care-Zustände $X \in \{0,1\}$ Redundante, überflüssige oder unmögliche Kombinationen der Eingangsvariablen werden mit einem X markiert.

Päckchen

- Päckchen immer rechteckig (Ausnahme: über Ecken).
- $\bullet~$ Umfassen möglichst grosse Zweierpotenz.
- Dürfen über Ecken und Grenzen hinausgehen und sich überlappen.

DNF

KVD ausfüllen.

- 2. Päckchen mit $\mathbf{1}$ uo X.
- 3. Vereinfachte Minterme aufstellen.
- 4. Minterme mit OR verbinden.

KNF

- 1. KVD ausfüllen.
- 2. Päckchen mit $\mathbf{0}$ uo X.
- 3. Vereinfachte Maxterme aufstellen.
- 4. Maxterme mit AND verbinden.

Hazard

Kurzzeitige, unerwünschte Änderung der Signalwerte, die durch Zeitverzögerung der Gatter entstehen.

 $\begin{tabular}{lll} {\bf \underline{Statische}} & {\bf \underline{Hazards}} & {\bf Stellen} & {\bf im} \\ {\bf \underline{KVD}}, & {\bf an} & {\bf denen} & {\bf sich} & {\bf \underline{Päck-chen}} & {\bf orthogonal} & {\bf ber \ddot{u}hren}, {\bf aber} \\ {\bf nicht} & {\bf \ddot{u}berlappen}. \\ \end{tabular}$

Eösung Berührende Päckchen mit zusätzlichen (möglichst grossen) Päckchen verbinden.

Zahlensysteme

D zu berechnende positive Zahl

R Basis/Radix von D

 b_i Koeffizient

$$D = \sum_{-\infty}^{\infty} b_i \cdot R^i$$

Darstellung D in Basis $R: \ldots b_2b_1b_0.b_{-1}b_{-2}\ldots_R$

Umwandlung Zahlensysteme

1. Ganzzahlige Division mit R: $D/R = Q_0 + r_0$. 2.

$$Q_i/R = Q_{i+1} + r_{i+1}$$

bis $Q_i = 0$.

3. Erste Operation gibt MSB, letze Operation gibt LSB (aka. unten nach oben lesen.)

Für 1 > D > 0

$$D \cdot R = P_0 \quad K_{-1} = \text{floor}(P_0) \quad a_{-1} = P_0 - K_{-1}$$

 $a_{-1} \cdot R = P_{-1} \dots$

 K_i : Koeffizienten für Zahlensystem. Erste Operation gibt MSB, letze Operation gibt LSB (aka von oben nach unten lesen).

Byte

Binär zu Hex

0000	0	0100	4	1000	8	1100	C
0001	1	0101	5	1001	9	1101	D
0010	2	0110	6	1010	A	1110	E
0011	3	0111	7	1011	B	1100 1101 1110 1111	F
0011	9	0111	'	1011	D	1111	Г

Zweierkomplement

Sign Bit 0: positiv 1: negativ

Konstruktion

- 1. Zahl |Z| in Binär B umwandeln.
- 2. B bitweise invertieren
- 3. 1 zu LSB addieren (! Übertrag)
- 4. Sign Bit hinzufügen (zuvorderst).

Ist die Blocklänge länger als Zahl, vorangehende 0(-en) miteinbeziehen.

2^{er}Komplement zu Dezimal

$$D_{(10)} = -b_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

Wertebereich 2^{er} -Komp. $\left[-2^{n-1}, 2^{n-1} - 1\right]$

mQn

$$D_{(10)} = -b_m \cdot 2^m + \sum_{i=0}^{m-1} b_i \cdot 2^i + \sum_{i=1}^n b_i \cdot 2^{-i}$$

m: Vorkommabits, n: Nachkommabits

Sign-Bit muss nur einmal vor dem m codiert werden.

Binäre Rechenoperationen

Addition

Subtraktion

Bitweise Addition der Binärzahlen. Leere Slots werden mit 0 aufgefüllt. Addition via 2^{er} Komp. Übertrag von MSB ignorieren.

 $+b_1 \cdot a \ 0$

 $+b_2 \cdot a \ 0 \ 0$

Multiplikation

- Bitweise Multiplikation des Multiplikanden a mit b_i des Multiplikator.
- Sukzessive Multiplikationen werden um ein Bit (0) nach links verschoben.

Division

- Identifiziere Teil des Divident > Divisor (Unterblock). Für jede Stelle, sodass Divident < Divisor, 0 in Quotient.
- Unterblock Divisor, 1 an Quotient anhängen, Rest behalten.
- 3. An das Resultat der Subtraktion Bits des Dividenten anhängen. Wiederholen bis Subtraktion 0 ergibt.

Parity-Bits

Hilft Bit-Fehler zu finden.

Bitsequenz wird in 4 Bits unterteilt. Pro Nibble wird ein Parity-Bit angefügt. Nach 4 Blöcken folgt ein Prüfwort.

Parity-Bit	Anz. 1	PB	Nibble + PB	
Even P_E	ungerade	1	gerade	
Even rE	gerade	0		
Odd P_O	ungerade	0	ungerade	
Odd FO	gerade	1	ungerade	

01010 11011 10111 00101 00011

Korrekt PE

0	1	0	1 1 1 0	0
1	1	0	1	1
1	0	1	1	1
0	0	1	0	1

0 0 0 1 1

0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1

Latches und FlipFlops

Kombinatorische Schaltur
Output hängt von Inpu
${\rm und} \ {\rm Verkn\"{u}pfungen} \ {\rm ab}.$

SequentielleSchaltungEnthält Rückkopplungen,OutputshängenvonvorherigenWerten ab.

Latch

(Takt)<u>zustand</u>gesteurte Schaltung → Änderungen am Eingang können während der ganzen aktiven Taktphase den Output beeinflussen.

FlipFlops Taktflan

Fehler P_E

Taktflankengesteuerte Schaltung → Input zum Zeitpunkt der Taktwechsels wird wirksam.

Latches

Alle taktzustandgesteurte Schaltungen sind gegenüber Störimpulsen empfindlich, da bei T=1 jede Änderung übernommen wird.

SR-Latch

$$Q_{n+1} = S \vee \left(Q_n \wedge \overline{R} \right)$$

Fall	\mathbf{s}	\mathbf{R}	Q_{n+1}	
1	0	0	Q_n	speichern
2	0	1	0	zurücksetzten
3	1	0	1	setzen
4	1	1	-	unzulässig

SRT-Latch

Änderungen werden nur übernommen, wenn T/CLK aktiv ist.

D-Latch

Bauelement, das Daten für die Periodendauer eines Taktes speichern kann.

$$Q_{n+1} = \left(Q_n \wedge \overline{\mathbf{T}}\right) \vee (\mathbf{D} \wedge \mathbf{T})$$

 $\begin{array}{ccc}
\Gamma & Q_{n+1} \\
0 & Q_n & \to & \text{alter Ausgang gespeichert} \\
1 & D & \to & \text{Input übernommen}
\end{array}$

FlipFlops

Input beim Übergang von $0 \rightarrow 1$ von CLK wirksam.

Input beim Übergang von $\mathbf{1} \to \mathbf{0}$ von CLK wirksam.

Positive Taktflanke

Negative Taktflanke

D-FlipFlop

$$Q_{n+1} = D$$
 wenn CLK $0 \to 1$

Master low-active Slave high-active

CLK = 0CLK = 1

SR-FlipFlop

$$Q_{n+1} = S \vee (\overline{R} \wedge Q_n)$$
 wenn CLK $0 \to 1$

Verzögerungszeiten

$$T_{\min} \ge t_{\rm pd1} + t_{\rm pd,ks} + t_{\rm s2}$$
 $f_{\max} = \frac{1}{T_{\min}}$

 t_h kann bei der Berechnung von $f_{\rm max}$ vernachlässigt werden

Diverses

Schaltelemente

Multiplexer

Sendet eines von 2^n Eingangssignalen an den Ausgang. Hat n Auswahlbits.

Demultiplexer

Sendet 1 Eingangssignal an einen von 2^n Ausgänge. n Auswahlbits.

Halbaddierer

Addiert 2 Binärzahlen A und B. Produziert Summe und Carry-Out.

$$SUM = A \oplus B$$
 $CO = A \wedge B$

Volladdierer

Nimmt einen zusätzlichen Input CI entgegen.

$$SUM = (A \oplus B) \oplus CI \qquad CO = (A \land B) \lor (S_{AB} \land CI)$$

Serienaddierer

Addition einer Stelle pro Taktschritt.

Paralleladdierer (Normalform)

Addition aller Stellen pro Taktschritt.

Vorteile

 Maximal 3 Grundgatter zwischen Input und Output.

 Laufzeit ist unabhängig von Stellenzahl der Summanden.

→ Schnell aber Schaltungsaufwendig

Ripple-Carry Addierer (Paralleladdierer)

Vorteile

• Durch Kaskadierung einfach skalierbar.

 Schaltungsaufwand linear zur Stellenzahl.

Nachteile

- SUM und CO für die i-te Stelle können erst nach der Berechnung der (i – 1)-ten Stelle gebildet werden.
- Addierzeit linear zu Stellenzahl

Langsamer als Normalformaddierer aber einfacher zu realisieren.

Carry-Look-Ahead Addierer (Paralleladdierer)

Kombination der Vorteile des Normalform- und Ripple-Carry-Addierer \rightarrow schnelle Schaltung mit begrenztem Aufwand.

Praktische Realisierung Addierer werden kaskadiert, Berechnung der Überträge erfolgt parallel zur Summenbildung.

Berechnungsaufwand ist linear zur Stellenzahl, Laufzeit bleibt konstant.

Booth-Algorithmus

Dient der Multiplikation von Binärzahlen (A & B). Berechnung über Zwischenprodukte P_i .

Division durch 2 bedeutet: Verschiebung des Kommas nach links (shift), mit Vorzeichenverdoppelung falls nötig.

a_i	a_{i-1}	Operation
0	0	$P_i = P_{i-1}/2$
0	1	$P_i = (P_{i-1} + B)/2$
1	0	$P_i = (P_{i-1} - B)/2$
1	1	$P_i = P_{i-1}/2$

Anfangswerte: $P_{-1} = 0$, $a_{-1} = 0$ Beim letzten Schritt entfällt die Division durch 2.