

Composable.Finance - Democracy

Substrate Pallet Security Audit

Prepared by: Halborn

Date of Engagement: September 19th, 2022 - September 26th, 2022

Visit: Halborn.com

DOCU	MENT REVISION HISTORY	3
CONT	ACTS	3
1	EXECUTIVE OVERVIEW	4
1.1	INTRODUCTION	5
1.2	AUDIT SUMMARY	5
1.3	TEST APPROACH & METHODOLOGY	5
	RISK METHODOLOGY	6
1.4	SCOPE	8
2	ASSESSMENT SUMMARY & FINDINGS OVERVIEW	9
3	FINDINGS & TECH DETAILS	10
3.1	(HAL-01) POTENTIAL UNEXPECTED BEHAVIOUR CAUSED BY BIG PREIMAGE INFORMATIONAL	E - 12
	Description	12
	Code Location	12
	Risk Level	13
	Recommendation	13
3.2	(HAL-02) USAGE OF ROOT ORIGIN - INFORMATIONAL	14
X	Description	14
	Code Location	14
	Risk Level	14
	Recommendation	14
4	AUTOMATED TESTING	14
4.1	CARGO AUDIT	16
	Description	16
	Results	16

DOCUMENT REVISION HISTORY

VERSION	MODIFICATION	DATE	AUTHOR
0.1	Document Creation	09/25/2022	Michal Bajor
0.2	Draft Review	09/26/2022	Timur Guvenkaya
0.3	Draft Review	09/26/2022	Gabi Urrutia

CONTACTS

CONTACT	COMPANY	EMAIL	
Rob Behnke	Halborn	Rob.Behnke@halborn.com	
Steven Walbroehl	Halborn	Steven.Walbroehl@halborn.com	
Gabi Urrutia	Halborn	Gabi.Urrutia@halborn.com	
Timur Guvenkaya	Halborn	Timur.Guvenkaya@halborn.com	
Michal Bajor	Halborn	Michal.Bajor@halborn.com	

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Composable. Finance engaged Halborn to conduct a security audit on their smart contracts beginning on September 19th, 2022 and ending on September 26th, 2022. The security assessment was scoped to the smart contracts provided to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and assigned a full-time security engineer to audit the security of the smart contract. The security engineer is a blockchain and smart-contract security expert with advanced penetration testing, smart-contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

- Ensure that Substrate pallet's functions operate as intended
- Identify potential security issues with the Substrate pallet

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing to balance efficiency, timeliness, practicality, and accuracy regarding the scope of the Composable Substrate pallets. While manual testing is recommended to uncover flaws in logic, process, and implementation; automated testing techniques help enhance coverage of the code and can quickly identify items that do not follow security best practices. The following phases and associated tools were used throughout the term of the audit:

Research into the architecture, purpose, and use of the platform.

- Smart contract manual code review and walkthrough to identify any logic issue.
- Mapping out possible attack vectors
- Thorough assessment of safety and usage of critical Rust variables and functions in scope that could lead to arithmetic vulnerabilities.
- On chain testing of core functions(polkadot.js).
- Active Fuzz testing {cargo-fuzz, honggfuzz}
- Scanning dependencies for known vulnerabilities (cargo audit).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk assessment methodology by measuring the LIKELIHOOD of a security incident and the IMPACT should an incident occur. This framework works for communicating the characteristics and impacts of technology vulnerabilities. The quantitative model ensures repeatable and accurate measurement while enabling users to see the underlying vulnerability characteristics that were used to generate the Risk scores. For every vulnerability, a risk level will be calculated on a scale of 5 to 1 with 5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

- 5 Almost certain an incident will occur.
- 4 High probability of an incident occurring.
- 3 Potential of a security incident in the long term.
- 2 Low probability of an incident occurring.
- 1 Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

- 5 May cause devastating and unrecoverable impact or loss.
- 4 May cause a significant level of impact or loss.
- 3 May cause a partial impact or loss to many.
- 2 May cause temporary impact or loss.
- 1 May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL	HIGH	MEDIUM	LOW	INFORMATIONAL
----------	------	--------	-----	---------------

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

1.4 SCOPE

The review was scoped to the democracy pallet in frame directory in the ComposableFi/substrate repository.

Commit IDs used for the engagement:

• 76e3033cd1ebe9487757381fd2f34f3fb54caa93

2. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL	HIGH	MEDIUM	LOW	INFORMATIONAL
0	0	0	0	2

LIKELIHOOD

SECURITY ANALYSIS	RISK LEVEL	REMEDIATION DATE
POTENTIAL UNEXPECTED BEHAVIOUR CAUSED BY BIG PREIMAGE	Informational	-
USAGE OF ROOT ORIGIN	Informational	-

FINDINGS & TECH DETAILS

3.1 (HAL-01) POTENTIAL UNEXPECTED BEHAVIOUR CAUSED BY BIG PREIMAGE - INFORMATIONAL

Description:

The democracy pallet requires a preimage to be submitted prior to submitting a proposal. The preimage itself is constructed by hashing the encoded proposal and matching it with its corresponding asset ID. User can submit anything as an encoded proposal, not necessarily a valid one. The user submitting the preimage via note_preimage function needs to transfer some balance, which depends on the size of the encoded_proposal. The encoded proposal is represented as a Vector of bytes in the code. When the number of tokens owed for this proposal is calculated, the length of the encoded_proposal is casted to u32 type. This will work as expected for proposals of size not exceeding 4 GB; however, it will break if the user manages to send bigger proposals.

Code Location:

```
since: now,
expiry: None,

since: now,
expiry: None,

since: now,
expiry: None,

since: now,
expiry: None,

since: now,
expiry: None,
expiry: None,

since: now,
expiry: None,
expiry: N
```

Risk Level:

Likelihood - 1 Impact - 1

Recommendation:

It is recommended to implement a verification mechanism which will first check the size of encoded_proposal and will not perform any further computation if that size exceeds a predefined limit.

3.2 (HAL-02) USAGE OF ROOT ORIGIN - INFORMATIONAL

Description:

The democracy pallet is using the root origin in multiple function. Using such origin does not align with the blockchain paradigm of decentralization.

Code Location:

An exemplary function utilizing a root origin:

Listing 2: substrate/frame/democracy/src/lib.rs (Line 956) 955 pub fn cancel_queued(origin: OriginFor<T>, which: ReferendumIndex) L, -> DispatchResult { 956 T::EnsureRoot::ensure_origin(origin)?; 957 T::Scheduler::cancel_named((T::DemocracyId::get(), which). L, encode()) 958 .map_err(|_| Error::<T, I>::ProposalMissing)?; 959 Ok(()) 960 }

Risk Level:

Likelihood - 1 Impact - 1

Recommendation:

It is recommended to not use a root origin and introduce an appropriate committee for handling administrative operations.

AUTOMATED TESTING

4.1 CARGO AUDIT

Description:

Halborn used automated security scanners to assist with detection of well-known security issues and vulnerabilities. Among the tools used was cargo audit, a security scanner for vulnerabilities reported to the RustSec Advisory Database. All vulnerabilities published in https://crates.io are stored in a repository named The RustSec Advisory Database. cargo audit is a human-readable version of the advisory database which performs a scanning on Cargo.lock. Security Detections are only in scope. All vulnerabilities shown here were already disclosed in the above report. However, to better assist the developers maintaining this code, the auditors are including the output with the dependencies tree, and this is included in the cargo audit output to better know the dependencies affected by unmaintained and vulnerable crates.

Results:

Crate: owning_ref

Version: 0.4.1

Title: Multiple soundness issues in owning_ref

Date: 2022-01-26

ID: RUSTSEC-2022-0040

URL: https://rustsec.org/advisories/RUSTSEC-2022-0040

Solution: No safe upgrade is available!

Crate: rocksdb Version: 0.18.0

Title: Out-of-bounds read when opening multiple column families with TTL

Date: 2022-05-11

ID: RUSTSEC-2022-0046

URL: https://rustsec.org/advisories/RUSTSEC-2022-0046

Solution: Upgrade to >=0.19.0

Crate: time
Version: 0.1.44

Title: Potential segfault in the time crate

Date: 2020-11-18

ID: RUSTSEC-2020-0071

URL: https://rustsec.org/advisories/RUSTSEC-2020-0071

Solution: Upgrade to >=0.2.23

Crate: ansi_term
Version: 0.12.1

Warning: unmaintained

Title: ansi_term is Unmaintained

Date: 2021-08-18

ID: RUSTSEC-2021-0139

URL: https://rustsec.org/advisories/RUSTSEC-2021-0139

Crate: serde_cbor
Version: 0.11.2

Warning: unmaintained

Title: serde_cbor is unmaintained

Date: 2021-08-15

ID: RUSTSEC-2021-0127

URL: https://rustsec.org/advisories/RUSTSEC-2021-0127

Crate: sp-version Version: 5.0.0 Warning: yanked THANK YOU FOR CHOOSING

HALBORN