

Cluster analysis: Part - II

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Explain effect of standardization(with help of an example)
- Different types of distances computation between the objects

Lets take four persons A, B,C, D with following age and height:

Person	Age (yr)	Height (cm)
Α	35	190
В	40	190
С	35	160
D	40	160

TABLE: 1

Finding Groups in Data: An Introduction to Cluster Analysis

Author(s): Leonard Kaufman, Peter J. Rousseeuw

March 1990, John Wiley & Sons, Inc.

FIGURE: 1

- In Figure 1 we can see to distinct clusters
- Let us standardize the data of Table 1
- The mean age equals $m_1 = 37.5$ and the mean absolute deviation of the first variable works out to be $s_1 = (2.5 + 2.5 + 2.5 + 2.5)/4 = 2.5$
- Therefore, standardization converts age 40 to + 1 ((40-37.5)/2.5 = 1) and age 35 ((35 37.5)/2.5 = -1) to -1
- Analogously, $m_2 = 175$ cm and $s_2 = (15 + 15 + 15 + 15)/4 = 15$ cm, so 190 cm is standardized to +1 and 160 cm to 1

- The resulting data matrix, which is unitless, is given in Table 2
- Note that the new averages are zero and that the mean deviations equal 1
- Table 2

Person	Variable 1	Variable 2
Α	1	1
В	-1	1
С	1	-1
D	-1	-1

 Even when the data are converted to very strange units standardization will always yield the same numbers

- Plotting the values of Table 2 in Figure 2 does not give a very exciting result
- Figure 2 shows no clustering structure because the four points lie at the vertices of a square
- One could say that there are four clusters, each consisting of a single point, or that there is only one big cluster containing four points
- Here standardizing is no solution

FIGURE: 2

Choice of measurement (Units)- Merits and demerits

- The choice of measurement units gives rise to relative weights of the variables
- Expressing a variable in smaller units will lead to a larger range for that variable, which will then have a large effect on the resulting structure
- On the other hand, by standardizing one attempts to give all variables an equal weight, in the hope of achieving objectivity
- As such, it may be used by a practitioner who possesses no prior knowledge

Choice of measurement- Merits and demerits

- However, it may well be that some variables are intrinsically more important than others in a particular application, and then the assignment of weights should be based on subject-matter knowledge
- On the other hand, there have been attempts to devise clustering techniques that are independent of the scale of the variables

Distances computation between the objects

- The next step is to compute distances between the objects, in order to quantify their degree of dissimilarity
- It is necessary to have a distance for each pair of objects i and j.
- The most popular choice is the <u>Fuclidean distance</u>:

$$d(i, j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \cdots + (x_{ip} - x_{jp})^2}$$

- When the data are being standardized, one has to replace all x by z in this expression
- This Formula corresponds to the true geometrical distance between the points with coordinates $(x_{i1}, ..., x_{ip})$ and $(x_{j1}, ..., x_{jp})$

- let us consider the special case with p =
 2 (Figure 3)
- Figure shows two points with coordinates (x_{i1}, x_{i2}) and (x_{i1}, x_{i2})
- It is clear that the actual distance between objects i and j is given by the length of the hypotenuse of the triangle, yielding expression in previous slide by virtue of Pythagoras' theorem

Figure 3: Illustration of the Euclidean distance formula

Distances computation between the objects

 Another well-known metric is the city block or Manhattan distance, defined by:

Interpretation

- Suppose you live in a city where the streets are all north-south or eastwest, and hence perpendicular to each other
- Let Figure 3 be part of a street map of such a city, where the streets are portrayed as vertical and horizontal lines

Interpretation

- Then the actual distance you would have to travel by car to get from location i to location j would total $|x_{i1} x_{j1}| + |x_{i2} x_{j2}|$
- This would be the shortest length among all possible paths from i to j
- Only a bird could fly straight from point i to point j, thereby covering the Euclidean distance between these points

Mathematical Requirements of a Distance Function

- Both the Euclidean metric and the Manhattan metric satisfy the following mathematical requirements of a distance function, for all objects i, j, and h:
- (D1) $d(i, j) \ge 0$
- (D2) d(i, i) = 0
- (D3) d(i, j) = d(j, i)
- (D4) $d(i, j) \le d(i, h) + d(h, j)$
- Condition (D1) merely states that distances are nonnegative numbers and (D2) says that the distance of an object to itself is zero
- Axiom (D3) is the symmetry of the distance function
- The triangle inequality (D4) looks a little bit more complicated, but is necessary to allow a geometrical interpretation
- It says essentially that going directly from i to j is shorter than making a detour over object h

Distances computation between the objects

- If d(i, j) = 0 does not necessarily imply that i = j, because it can very well happen that two different objects have the same measurements for the variables under study
- However, the triangle inequality implies that i and j will then have the same distance to any other object h, because $d(i, h) \le d(i, j) + d(j, h) = d(j, h)$ and at the same time $d(j, h) \le d(j, i) + d(i, h) = d(i, h)$, which together imply that d(i, h) = d(j, h)

Minkowski distance

 A generalization of both the Euclidean and the Manhattan metric is the Minkowski distance given by:

$$d(i,j) = (|x_{i1}-x_{j1}|^p + |x_{i2}-x_{j2}|^p + \cdots + |x_{in}-x_{jn}|^p)^{1/p},$$

Where p is any real number larger than or equal to 1

• This is also called the Lp metric, with the Euclidean (p = 2) and the Manhattan (p = 1) as special cases

Example for Calculation of Euclidean and Manhattan Distance

• Let x1 = (1, 2) and x2 = (3, 5) represent two objects as in the given Figure The Euclidean distance between the two is $\sqrt{(2^2 + 3^2)} = 3.61$. The Manhattan distance between the two is 2 + 3 = 5.

Figure: 4

n- by- n Matrix

 For example, when computing Euclidean distances between the objects of the following Table can be obtain as next slide:

- Euclidean distances between B and E:
- $((49-85)^2+(156-178)^2)^{\frac{1}{2}}=42.2$

Person	Weight(Kg)	Height(cm)
Α	15	95
В	49	156
С	13	95
D	45	160
E	85	178
F	66	176
G	12	90
Н	10	78

n- by- n Matrix

	Α	В	С	D	E	F	G	Н.
Α	0	69.8	2.0	71.6	108.6	95.7	5.8	17.7
В	69.8	0	70.8	5.7	42.2	26.3	75.7	87.2
С	2.0	70.8	0	72.5	109.9	96.8	5.1	17.3
D	71.6	5.7	72.5	0	43.9	26.4	77.4	89.2
Е	108.6	42.2	109.9	43.9	0	19.1	114.3	125.0
F	95.7	26.3	96.8	26.4	19.1	0	101.6	112.9
G	5.8	75.7	5.1	77.4	114.3	101.6	0	12.2
Н	17.7	87.2	17.3	89.2	125.0	112.9	12.2	0

Interpretation

- The distance between object B and object E can be located at the intersection of the fifth row and the second column, yielding 42.2
- The same number can also be found at the intersection of the second row and the fifth column, because the distance between B and E is equal to the distance between E and B
- Therefore, a distance matrix is always symmetric
- Moreover, note that the entries on the main diagonal are always zero,
 because the distance of an object to itself has to be zero

Distance matrix

 It would suffice to write down only the lower triangular half of the distance matrix

	Α	В	С	D	Е	F	G
В	69.8						
С	2.0	70.8					
D	71.6	5.7	72.5				
Ε	108.6	42.2	109.9	43.9			
F	95.7	26.3	96.8	26.4	19.1		
G	5.8	75.7	5.1	77.4	114.3	101.6	
Н	17.7	87.2	17.3	89.2	125.0	112.9	12.2

Selection of variables

- It should be noted that a variable not containing any relevant information (say, the telephone number of each person) is worse than useless, because it will make the clustering less apparent.
- The Occurrence of several such "trash variables" will kill the whole clustering because they yield a lot of random terms in the distances, thereby hiding the useful information provided by the other variables.
- Therefore, such non informative variables must be given a zero weight in the analysis, which amounts to deleting them

Selection of variables

- The selection of "good" variables is a nontrivial task and may involve quite some trial and error (in addition to subject-matter knowledge and common sense)
- In this respect, cluster analysis may be considered an exploratory technique

