Discrete Mathematics Recitation Class

Tianyu Qiu

University of Michigan - Shanghai Jiaotong University

Joint Institute

Summer Term 2019

Contents

Group

Groups

Cycles

Orders

Subgroups

Lagrange's Theorem

Division Algorithm

Groups

Definitions

- 1. group (G, \cdot) (P150)
 - > set G
 - group Operation ·
 - associativity
 - unique identity element $(e_1 = e_1 \cdot e_2 = e_2)$
 - unique inverse element $(y_2 = y_2 \cdot e = y_2 \cdot x \cdot y_1 = e \cdot y_1 = y_1)$
- 2. abelian: $\forall x, y \in G, x \cdot y = y \cdot x \text{ (P151)}$
- trivial group: Any group that consists only of an identity element. (P160)

- ▶ If (G, \circ) is a group, then $G \neq \emptyset$ (existence of identity) (P160).
- $X = \{f : \mathbb{R} \longrightarrow \mathbb{R} | f \text{ is linear with non-zero slope} \}$. Then (X, \circ) is a group that is not abelian. (P152)
- $X' = \{f \in X | f(0) = 0\}$. Then (X', \circ) is an abelian group. (P152)

Algebra in Groups

Lemma

Groups

Let (G, \cdot) be a group. If $a, b, c \in G$ and $a \cdot b = a \cdot c$, then b = c. (P153)

Proof.

P153

Corollary

Let (G,) be a group and $a \in G$. If $a \cdot a = a$, then a = e. (P154)

Proof.

P154

Symmetric Group

Definitions (P155)

- 1. symmetric group (X, \circ) :
 - ▶ X is a set of bijections $f : [n] \rightarrow [n]$.
 - group operation is composition of functions.
- 2. *cycle notation*: bijection $f : [n] \rightarrow [n]$:

$$(k_1 k_2 \cdots k_m) \equiv f(x) = \begin{cases} f(k_i) = k_{i+1} & \text{if } i < m \\ f(k_m) = k_1 \\ f(x) = x & \text{if } x \text{ is not any of the } k_i s \end{cases}$$

with
$$m \leqslant n, k_i < n, k_i \in [n], m, n \in \mathbb{N}$$

Reading order for cycles: (P157)

- ▶ different cycles: right to left
- inside one cycle: left to right (then back to the left)

Examples for Cycles

- ▶ In S_n the identity bijection $id_{[n]} : [n] \to [n]$ can be written as (k) for any $k \in [n]$ or as empty cycle () (more generally, as e_{S_n} or just e).
- $(k_1k_2\cdots k_m) \equiv (k_2k_3\cdots k_mk_1)$
- ▶ The inverse of $(k_1k_2\cdots k_m)$ is $(k_mk_{m-1}\cdots k_1)$

The Symmetric Group (P160)

Theorem

Let $n \in \mathbb{N} \setminus \{0\}$. The group S_n is not abelian if and only if $n \geqslant 3$.

Proof.

- ▶ Suppose $n \ge 3$. In S_n the product of (01) and (012) is (01)(012) = (12), and the product of (012) and (01) is (012)(01) = (02). Therefore $(01)(012) \ne (012)(01)$, and so S_n is not abelian.
- We prove the the contrapositive: "if 0 < n < 3, then S_n is abelian". $S_1 = \{e\}$, $S_2 = \{e, (01)\}$ are abelian.

Cycles (P161)

Definitions

- 1. *length m*: a cycle with *m* distinct natural numbers.
- 2. disjoint: two cycles have no natural numbers in common.

Lemma

If α and β are disjoint cycles in S_n then $\alpha\beta = \beta\alpha$ in S_n .

Proof.

 $\forall x \in [n]$, there are three possibilities:

- 1. $x \in \alpha$, then $x \notin \beta$, $\alpha(x) \notin \beta$, $\alpha\beta(x) = \alpha(x) = \beta\alpha(x)$.
- 2. $x \in \beta$, then $x \notin \alpha, \beta(x) \notin \alpha$, $\alpha\beta(x) = \beta(x) = \beta\alpha(x)$.
- 3. $x \notin \alpha \cup \beta$, then $\alpha\beta(x) = x = \beta\alpha(x)$

Cycles (P162)

Theorem

Every element of S_n can be written as a product of disjoint cycles.

Proof.

P162-P163

- ightharpoonup (124)(352) = (12354)
- \triangleright (05)(132)(21)(143)(560) = (1423)(56) = (56)(1423)
- (45)(12)(31)(54)(02)(32)(45) = (013)(45) = (45)(013)

Cycles (P164)

Theorem

Let $n \ge 2$. Every element of S_n can be written as the product of 2 -cycles.

Proof.

e.g.
$$(2143) = (23)(214) = (23)(24)(21)$$

Cycles (P165)

Definition

Let $\sigma \in \mathcal{S}_n$. If σ can be written as a product of an odd number of 2-cycles, then we say that σ is odd. If σ can be written as a product of an even number of 2-cycles, then we say that σ is even.

Theorem

Every element of S_n is either even or odd, but not both. (uniqueness of odevity of natural numbers)

- \blacktriangleright (1032) = (12)(13)(10), so (1032) is odd.
- ▶ Identity is even. (e = (10)(01))

Orders

Definition(P166)

- \triangleright x^n : recursively defined by $x^0 = e, x^{n+1} = x \cdot x^n$.
- ▶ finite order: $\exists n \ge 1$ such that $x^n = e$
- order of x: the least n satisfying $x^n = e$.
- ▶ *infinite order*: no finite order

e.g.(P167)

- In S_4 , $(012)^3 = (012)(012)(012) = e$
- In the group $(\mathbb{Z},+)$, the element 6 has infinite order because for all $n \in \mathbb{N} \setminus \{0\}$, $6^n = \underbrace{6 + \cdots + 6}_{\text{n times}} \neq 0$

Groups

Theorem

If (G, \cdot) is a finite group, then every element of G has finite order.

Proof.

Prrof by Contradiction (P168)

Example for Group Order (P169)

Let
$$A = \{T, F\}$$
 and let $X = \{f | f : \mathbb{N} \longrightarrow A\}$. Define $\cdot : X \times X \longrightarrow X$ by: for all $f, g, h \in X$,

$$f \cdot g = h \text{ iff } \forall n \in \mathbb{N}, f(n) \oplus g(n) = h(n)$$

- $ightharpoonup (X, \cdot)$ is an abelian group
- ► The identity of (X, \cdot) is the function $f : \mathbb{N} \longrightarrow A$ defined by: for all $n \in \mathbb{N}$, f(n) = F
- \blacktriangleright (X, \cdot) is infinite. In fact, X is uncountable.
- ▶ For $g \in X$, $g \cdot g = e$. So, every element of (X, \cdot) that is not the identity has order 2.

Subgroups (P170)

Orders

Subgroups

Definition

Cycles

subgroup: Let (G, \cdot) be a group. We say that $H \subseteq G$ is a subgroup of (G, \cdot) , and write $H \leq G$ or $(H, \cdot) \leq (G, \cdot)$, if $e \in H$ and for all $x, y \in H, x \cdot y^{-1} \in H$.

Lemma

Let (G, \cdot) be a group and let $H \subseteq G$. Then $H \leq G$ if and only if (H, \cdot) is a group.

Proof.

P170

Examples for Subgroups (P171)

- ▶ If (G, \cdot) is a group, then both G and the trivial group $\{e\}$ are subgroups of (G, \cdot)
- $H = \{e, (012), (021)\}\$ is a subgroup of S_3 , but $H' = \{e, (01), (012)\}\$ is not a subgroup of S_3
- Let $X = \{f | f : \mathbb{R} \longrightarrow \mathbb{R}\}$. Then (X, +) the set X with the operation "addition of functions" is a group. And $X' = \{f : \mathbb{R} \to \mathbb{R} | f(0) = 0\}$ is subgroup of (X, +). But $X'' = \{f : \mathbb{R} \to \mathbb{R} | f(0) = 1\}$ is not a subgroup of (X, +).

The Dihedral Groups (P172-P173)

Definitions

- 1. *order of the set in a group*: the cardinality of the finite set of the group.
- 2. the dihedral group D_n : the subgroup of S_n of all symmetries of a regular n-gon. (Do the symmetry/rotation operation, do no damage to the n-gon itself)

- ▶ The order of symmetric group S_n is n! (P148).
- ▶ D_3 is the subgroup of S_3 of symmetries of an equilateral triangle and $D_3 = S_3$.

$$D_4 = \left\{ \begin{array}{c} e, (01)(23), (0123), (02)(13), (0321), \\ (01)(23)(0123), (01)(23)(02)(13), (01)(23)(0321) \end{array} \right\}$$

The Dihedral Groups (P174)

Theorem

Let $n \geqslant 3$. The group D_n has order 2n.

Proof.

Think about the symmetry/rotation operation. For n-gons, one can rotate the shape #=n-1 times and adding the initial condition, #=n choices in total. Then considering the case of symmetry, an n-gon has n symmetric lines, thus we can fold the n-gon in n ways, so #=n+n=2n in total.

Lagrange's Theorem (P176)

Definitions Let (G, \cdot) be a group, $H \leqslant G$ and $a \in G$.

- 1. *left coset*: $aH = \{a \cdot x | x \in H\}$
- 2. right coset : $Ha = \{x \cdot a | x \in H\}$

Theorem (Lagrange's Theorem)

Let (G,\cdot) be a finite group. If $H\leq G$, then the order of H divides the order of G .

Proof.

P177-P179

Division Algorithm (P180)

Definition

exact division on \mathbb{Z} (the same way as exact division on \mathbb{N})

Theorem (Division Algorithm)

Let $a\in\mathbb{Z}$ and let $b\in\mathbb{N}$ with $b\neq 0$. There exists a unique $q,r\in\mathbb{Z}$ such that

$$a = q \cdot b + r$$
 and $0 \le r < b$

q: qoutient, r: remainder

Proof.

- Uniqueness(P181)
- Existence(P182)