STAT 30100: MATHEMATICAL STATISTICS-1

Winter 2020

Homework 0

Solutions by

JINHONG DU

12243476

STAT 30100, Homework 0

This assignment covers the handouts probmeasures.pdf and charfn.pdf.

- 1. In each case determine whether or not ν is absolutely continuous with respect to μ . Say why or why not. If it is, give the density.
 - (a) Ω is the positive integers, \mathcal{F} is the collection of all subsets of Ω , μ is counting measure, ν is the measure associated with the random variable X = # fair coin tosses needed to get first head.

Since $\Omega = \{1, 2, \ldots\}$ and μ is the counting measure, we have $\forall A \in \mathcal{F}$, $\mu(A) = 0$ if and only if $A = \emptyset$. It is clear that $\mu(\emptyset) = 0$. To see the other side, if $A \neq \emptyset$, then $\exists k \in \Omega$ such that $k \in A$, i.e., at least one element in A, i.e. $\mu(A) \geq 1 > 0$, which is a contradiction.

Since ν is a measure and $\nu(\emptyset) = 0$, we have that ν is absolutely continuous with respect to μ . $\forall k \in \Omega$,

$$\nu(\{k\}) = f(k)\mu(\{k\}),$$

i.e.,

$$\frac{1}{2^k} = f(k),$$

and therefore $f(k) = \frac{1}{2^k}$ for $k \in \Omega$. So

$$f(x) = \begin{cases} \frac{1}{2^x} &, x \in \Omega \\ 0 &, x \notin \Omega \end{cases}.$$

(b) $\Omega = \mathbb{R}^1$, \mathcal{F} is the collection of Borel subsets of \mathbb{R}^1 , μ is the measure associated with a uniform(0,1) random variable, ν is the measure associated with a normal(0,1) random variable.

Let $A = [2,3] \subset \mathbb{R}$, then $A \in \mathcal{F}$. Since

$$\mu(A) = 0$$

$$\nu(A) = \int_{2}^{3} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}}, dx > 0,$$

1

 ν is not absolutely continuous with respect to $\mu.$

2. Suppose measures μ and ν on (Ω, \mathcal{F}) are mutually singular with $\mu(\Omega) > 0$ and $\nu(\Omega) > 0$. Show that this implies that neither measure is absolutely continuous with respect to the other.

Proof. Since μ and ν are mutually singular, there exists $S_{\mu}, S_{\nu} \in \mathcal{F}$ such that $\mu(\Omega \setminus S_{\mu}) = 0$, $\nu(\Omega \setminus S_{\nu}) = 0$ and $S_{\mu} \cap S_{\nu} = \emptyset$.

Since $\mu(\Omega) = \mu(\Omega \setminus S_{\mu}) + \mu(S_{\mu})$, we have $\mu(S_{\mu}) = \mu(\Omega) > 0$. Analogously, $\nu(S_{\nu}) = \nu(\Omega) > 0$. Since $S_{\nu} \subseteq \Omega \setminus S_{\mu}$, we have

$$\nu(S_{\nu}) \le \nu(\Omega \setminus S_{\mu}) \le \nu(\Omega),$$

i.e., $\nu(\Omega \setminus S_{\mu}) = \nu(\Omega) > 0$, which implies that ν is not absolutely continuous with respect to μ . Since $S_{\mu} \subseteq \Omega \setminus S_{\nu}$, we have

$$\mu(S_{\mu}) \le \mu(\Omega \setminus S_{\nu}) \le \mu(\Omega),$$

i.e., $\mu(\Omega \setminus S_{\nu}) = \mu(\Omega) > 0$, which implies that μ is not absolutely continuous with respect to ν .

3. Verify properties (1) and (2) in the handout on characteristic functions.

Proof. (1) $\forall t \in \mathbb{R}$,

$$\phi_X(0) = \mathbb{E}e^{i\cdot 0\cdot X} = \mathbb{E}1 = 1$$
$$|\phi_X(t)| = |\mathbb{E}e^{itX}| \le \mathbb{E}|e^{itX}| = \mathbb{E}1 = 1$$

 $(2) \ \forall \ a,b \in \mathbb{R}.$

$$\phi_{a+bX}(t) = \mathbb{E}e^{it(a+bX)}$$
$$= e^{ita}\mathbb{E}e^{i(tb)X}$$
$$= e^{ita}\phi_X(tb)$$