LEAD SCORING CASE STUDY

Focusedbusines sapproachusing logistic regressio technique

Chaitanya Devarshi

Business Objective

To help X Education select most promising leads (*Hot Leads*), i.e. the leads that are most Nlikelyto convert into paying customers.

Higher Lead Conversion Focused Rate Marketing

Selection of Hot Leads Importing and Observing the past data provided by

Univariate and Bivariate

- Missing value imputation
- Removing duplicate data
- Outlier treatment
- Dropping unnecessary columns

 and other redundancies
- Feature standardization
- Feature selection using RFE Manual feature elimination based on p-values and VIFs

- Dummy variable creation
- Building another model using PCA
- Comparing the two models

 Evaluating model based on various evaluation metrics

- Finalizingthe first model
- Using predicted probabilities to calculate Lead Scores:
- Finding the optimal LeadScore= Probability* 100 probability threshold

Numerical Variables

Peoplespendingmoretimeonwebsitearemorelikelytogetconvert ed.

Lead Origin

- 'API and 'LandingPageSubmissiongenerate the most leads but have less conversion rates, whereas 'LeadAddForm generates less leads but conversion rate is great.
- Tryto increasecon versionate for API and Landing Page Submission and increase eadsgeneration using Lead Add Form.

Lead Source

Very high conversion rates for lead sources 'Reference' and 'Welingak Website'. Most leads are generated through 'DirectTraffic' and 'Google'.

Current Occupation

Working rofessional re most likely to get converted.

Tags

High conversion rates for tags 'Willrevertafterreading theemail', 'Closedby Horizon', 'LosttoEINS', and 'Busy'.

Last Notable Activity

Highest conversion rate is for the last notable activity 'SMS Sent'.

Gener	alized Linear Mod	lei Regression	Kesnits	.=========			
Dep. Variable:	Converted	No. Observations: 63			51		
Model:	GLM	Df Residuals:		63	38		
Model Family:	Binomial	Df Model:			12		
Link Function:	logit	Scale:		1.00	000		
Method:	IRLS	Log-Likelihoo	od:	-1601	.0		
Date: M	lon, 18 May 2020			3202	.0		
Time:	02:23:54			3.48e+	-04		
No. Iterations:	8						
Covariance Type:	nonrobust						
		coef	std err	z	P> z	[0.025	0.975]
const		-1.9192	0.211	-9.080	0.000	-2.333	-1.505
Do Not Email		-1.2835	0.212	-6.062	0.000	-1.698	-0.868
Lead Origin_Lead Add F	orm	1.2035	0.368	3.267	0.001	0.482	1.925
Lead Source_Welingak W	lebsite	3.2825	0.820	4.002	0.000	1.675	4.890
Tags Busy		3.8043	0.330	11.525	0.000	3.157	4.451
Tags Closed by Horizzo	n	7.9789	0.762	10.467	0.000	6.485	9.473
Tags Lost to EINS		9.1948	0.753	12.209	0.000	7.719	10.671
Tags Ringing		-1.8121	0.336	-5.401	0.000	-2.470	-1.154
Tags Will revert after	1 3.9906	0.228	17.508	0.000	3.544	4.437	
Tags switched off	-2.4456	0.586	-4.171	0.000	-3.595	-1.297	
Lead Quality_Not Sure	-3.5218	0.126	-28.036	0.000	-3.768	-3.276	
Lead Quality_Worst	-3.9106	0.856	-4.567	0.000	-5.589	-2.232	
Last Notable Activity_	2.7395	0.120	22.907	0.000	2.505	2.974	

Final Model Summary: All p values are zero.

Heatmap

const														
Do Not Email		1	-0.033	0.00015	-0.028	-0.052	-0.031	-0.0051	-0.022	0.028	0.046	0.095	-0.029	
Lead Origin_Lead Add Form		-0.033	1	0.47	-0.038	0.26	0.02	-0.075	0.064	-0.043	-0.2	-0.068	0.13	
Lead Source_Welingak Website		0.00015	0.47	3	-0.018	0.059	0.011	-0.049	0.067	-0.02	0.059	-0.033	0.068	
Tags_Busy		-0.028	-0.038	-0.018	1	-0.026	-0.019	-0.054	-0.17	-0.022	0.057	-0.036	0:1	
Tags_Closed by Horizzon		-0.052	0.26	0.059	-0.026	1	-0.026	-0.073	-0.23	-0.03	-0.18	-0.046	-0.11	
Tags_Lost to EINS		-0.031	0.02	0.011	-0.019	-0.026	1	-0.052	-0.16	-0.022	0.0058	-0.0058	-0.077	
Tags_Ringing		-0.0051	-0.075	-0.049	-0.054	-0.073	-0.052	1	-0.46	-0.062	0.16	-0.098	0.076	
ags_Will revert after reading the email		-0.022	0.064	0.067	-0.17	-0.23	-0.16	-0.46	1	-0.19	0.014	-0.31	0.13	
Tags_switched off		0.028	-0.043	-0.02	-0.022	-0.03	-0.022	-0.062	-0.19	1	0.043	-0.033	0.06	
Lead Quality_Not Sure		0.046	-0.2	0.059	0.057	-0.18	0.0058	0.16	0.014	0.043	1	-0.34	-0.16	
Lead Quality_Worst		0.095	-0.068	-0.033	-0.036	-0.046	-0.0058	-0.098	-0.31	-0.033	-0.34	1	-0.14	
Last Notable Activity_SMS Sent		-0.029	0.13	0.068	0.1	-0.11	-0.077	0.076	0.13	0.06	-0.16	-0.14	্ৰ	
	const	Do Not Email	Lead Origin_Lead Add Form	Lead Source_Welingak Website	Tags_Busy	Tags_Closed by Horizzon	Tags_Lost to EINS	Tags_Ringing	Tags. Will revert after reading the amail	Tags_switched off	Lead Quality_Not Sure	Lead Quality_Worst	Last Notable Activity_SMS Sent	

ROC curve

Correlations between features in the final model are negligible.

Area undercurve= 0.95

Finding Optimal Threshold

Graph showing changes in Sensitivity, Specificity and Accuracy with changes in the probability threshold values

Optimalcutoff= 0.20

Confusion Matrix Final Results

For train set

For test set

Data	Train set	Test set
Accuracy	0.9111	0.9078
Sensitivity	0.8573	0.8412
Specificity	0.9449	0.9457
FalsePositiveRate	0.0550	0.0542
PositivePredictiveValue	0.9070	0.8984
Negative PredictiveValue	0.9135	0.9126
AUC	0.9488	0.9388

Relative Importance Of Features

Feature Importance

- Three variables which contribute most towards the probability of a lead conversion in decreasing order of impact are:
 - I. Tags_Lost toEINS
 - II. Tags_ClosedbyHorizzon
 - III. Tags_Willrevert afterreadingthe email
- These are dummy features created from the categorical variable Tags.
- All three **contribute positively** towards the probability of a lead conversion.
- These results indicate that the company should **focusmoreonthe** leads withthesethree tags.

Situation1: Company has interns for 2 months. They wish to make lead conversion more aggressive. They want almost all of the potential leads to be converted and hence, want to make phone calls to as much of such people as possible.

Solution:

- > Sensitivity = TruePositives/(TruePositives + FalseNegatives)
- ➤ Sensitivity can be defined as the number of actual conversions predicted correctly out of total number of actual conversions. As we saw earlier, sensitivity decreases as the threshold increases.
- ➤ High sensitivity implies that our model will correctly predict almost all leads who are likely to convert. At the same time, it may overestimate and misclassify some of the non-conversions as conversions.

As the company has extra man-power for two months and wants to make the lead conversion more aggressive, it is a good strategy to go for **highsensitivity**. To achieve high sensitivity, we need to **choosea lowthresholdvalue**.

Situation2: At times, the company reaches its target for a quarter before the deadline. It wants the sales team to focus on some new work. So during this time, the company's aim is to not make phone calls unless it's extremely necessary.

Solution:

- > Specificity = TrueNegatives/(TrueNegatives + FalsePositives)
- ➤ Specificity can be defined as the number of actual non-conversions predicted correctly out of total number of actual non-conversions. It increases as the threshold increases.
- ➤ High specificity implies that our model will correctly predict almost all leads who are not likely to convert. At the same time, it may misclassify some of the conversions as non-conversions.

- As the company has already reached its target for a quarter and doesn't want to make unnecessary phone calls, it is a good strategy to go for **highspecificity**.
- ➤ It will ensure that the phone calls are only made to customers who have a very high probability of conversion. To achieve high specificity, we need to **choose a highthresholdvalue**.

Recommendations

- By referring to the data visualizations, focus on
 - Increasing the conversion rates for the categories generating more leads and
 - Generating more leads for categories having high conversion rates.

- Pay attention to the relative importance of the features in the model and their positive or negative impact on the probability of conversion.
- Based on varying business needs, modify the probability threshold value for identifying potential leads.