

Chapter 2: Lexical Analysis

Yepang Liu

liuyp1@sustech.edu.cn

The chapter numbering in lecture notes does not follow that in the textbook.

Outline

- The Role of Lexical Analyzer
- Specification of Tokens (Regular Expressions)
- Recognition of Tokens (Transition Diagrams)
- The Lexical-Analyzer Generator
- Finite Automata

The Role of Lexical Analyzer

- Read the input characters of the source program, group them into lexemes, and produces a sequence of tokens
- Add lexemes into the symbol table when necessary

The Role of Lexical Analyzer

Tokens, Patterns, and Lexemes

- A *lexeme* is a string of characters that is a lowest-level syntactic unit in programming languages
- A *token* is a syntactic category representing a class of lexemes. Formally, it is a pair <token name, attribute value>
 - Token name: an abstract symbol representing the kind of the token
 - Attribute value (optional) points to the symbol table
- Each token has a particular *pattern*: a description of the form that the lexemes of the token may take

Examples

TOKEN	INFORMAL DESCRIPTION	SAMPLE LEXEMES
if	characters i, f	if
${f else}$	characters e, 1, s, e	else
comparison	<pre>< or > or <= or >= or !=</pre>	<=, !=
\mathbf{id}	letter followed by letters and digits	pi, score, D2
${f number}$	any numeric constant	3.14159, 0, 6.02e23
literal	anything but ", surrounded by "'s	"core dumped"

Consider the C statement: printf("Total = %d\n", score);

Lexeme	printf	score	"Total = %d\n"	(• • •
Token	id	id	literal	left_parenthesis	• • •

Attributes for Tokens

- When more than one lexeme match a pattern, the lexical analyzer must provide additional information, named *attribute values*, to the subsequent compiler phases
 - Token names influence parsing decisions
 - Attribute values influence semantic analysis, code generation etc.
- For example, an **id** token is often associated with: (1) its lexeme, (2) type, and (3) the location at which it is first found. Token attributes are stored in the symbol table.

Lexical Errors

• When none of the patterns for tokens match any prefix of the remaining input

• Example: int 3a = a * 3;

Outline

- The Role of the Lexical Analyzer
- Specification of Tokens (Regular Expressions)
- Recognition of Tokens (Transition Diagrams)
- The Lexical-Analyzer Generator
- Finite Automata

Specification of Tokens

- Regular expression (正则表达式, regexp for short) is an important notation for specifying lexeme patterns
- Content of this part
 - Strings and Languages (串和语言)
 - Operations on Languages (语言上的运算)
 - Regular Expressions
 - Regular Definitions (正则定义)
 - Extensions of Regular Expressions

Strings and Languages

- Alphabet (字母表): any finite set of symbols
 - Examples of symbols: letters, digits, and punctuations
 - Examples of alphabets: {1, 0}, ASCII, Unicode
- A string (串) over an alphabet is a finite sequence of symbols drawn from the alphabet
 - The length of a string s, denoted |s|, is the number of symbols in s (i.e., cardinality)
 - Empty string (空串): the string of length $0, \epsilon$

Terms (using banana for illustration)

- Prefix (前缀) of string s: any string obtained by removing 0 or more symbols from the end of s (ban, banana, ϵ)
- Proper prefix (真前缀): a prefix that is not ϵ and not s itself (ban)
- Suffix (后缀): any string obtained by removing 0 or more symbols from the beginning of s (nana, banana, ϵ).
- Proper suffix (真后缀): a suffix that is not ϵ and not equal to s itself (nana)

Terms Cont.

- Substring (子串) of s: any string obtained by removing any prefix and any suffix from s (banana, nan, ϵ)
- Proper substring (真子串): a substring that is not ϵ and not equal to s itself (nan)
- **Subsequence** (子序列): any string formed by removing 0 or more not necessarily consecutive symbols from *s* (bnn)

How many substrings does banana have?

(Two substrings are different as long as they have different start/end index)

String Operations (串的运算)

- **Concatenation** (连接): the concatenation of two strings *x* and *y*, denoted *xy*, is the string formed by appending *y* to *x*
 - x = dog, y = house, xy = doghouse
- Exponentiation (幂/指数运算): $s^0 = \epsilon$, $s^1 = s$, $s^i = s^{i-1}s$
 - x = dog, $x^0 = \epsilon$, $x^1 = dog$, $x^3 = dogdogdog$

Language (语言)

- A language is any countable set¹ of strings over some fixed alphabet
 - The set containing only the empty string, that is $\{\epsilon\}$, is a language, denoted \emptyset
 - The set of all grammatically correct English sentences
 - The set of all syntactically well-formed C programs

¹ In mathematics, a countable set is a set with the same cardinality (number of elements) as some subset of the set of natural numbers. A countable set is either a finite set or a countably infinite set.

Operations on Languages (语言的运算)

· 并,连接,Kleene闭包,正闭包

Stephen C. Kleene

OPERATION	DEFINITION AND NOTATION
$Union ext{ of } L ext{ and } M$	$L \cup M = \{s \mid s \text{ is in } L \text{ or } s \text{ is in } M\}$
$\overline{Concatenation ext{ of } L ext{ and } M}$	$LM = \{ st \mid s \text{ is in } L \text{ and } t \text{ is in } M \}$
$Kleene\ closure\ of\ L$	$L^* = \cup_{i=0}^{\infty} L^i$
Positive closure of L	$L^+ = \cup_{i=1}^{\infty} L^i$

The exponentiation of L can be defined using concatenation. L^n means concatenating L n times.

https://en.wikipedia.org/wiki/Stephen_Cole_Kleene

Examples

- $L = \{A, B, ..., Z, a, b, ..., z\}$
- $\mathbf{D} = \{0, 1, ..., 9\}$

LUD	{A, B,, Z, a, b,, z, 0, 1,,9}	
LD	the set of 520 strings of length two, each consisting of one letter followed by one digit	
L^4	the set of all 4-letter strings	
L*	the set of all strings of letters, including ϵ	
$L(L \cup D)^*$?	
D ⁺	?	

Regular Expressions

Rules that define regexps over an alphabet Σ :

- BASIS: two rules form the basis:
 - ϵ is a regexp, $L(\epsilon) = {\epsilon}$
 - If a is a symbol in Σ , then a is a regexp, and $L(a) = \{a\}$
- **INDUCTION:** Suppose **r** and **s** are regexps denoting the languages L(**r**) and L(**s**)
 - (r) | (s) is a regexp denoting the language $L(r) \cup L(s)$
 - (r)(s) is a regexp denoting the language L(r)L(s)
 - (r)* is a regexp denoting (L(r))*
 - (r) is a regexp denoting L(r). Additional parentheses do not change the language an expression denotes.

Regular Expressions Cont.

- Following the rules, regexps often contain unnecessary pairs of parentheses. We may drop some if we adopt the conventions:
 - Precedence: closure * > concatenation > union |
 - **Associativity:** All three operators are left associative, meaning that operations are grouped from the left, e.g., a | b | c would be interpreted as (a | b) | c
- Example: (a) $| ((b)^*(c)) = a | b^*c$

Regular Expressions Cont.

- Examples: Let $\Sigma = \{a, b\}$
 - a b denotes the language {a, b}
 - (a|b)(a|b) denotes {aa, ab, ba, bb}
 - \blacksquare a* denotes { ϵ , a, aa, aaa, ...}
 - (a|b)* denotes the set of all strings consisting of 0 or more a's or b's: { ϵ , a, b, aa, ab, ba, bb, aaa, ...}
 - a a b denotes the string a and all strings consisting of 0 or more a's and ending in b: {a, b, ab, aab, aaab, ...}

Regular Language (正则语言)

- A regular language is a language that can be defined by a regexp
- If two regexps r and s denote the same language, they are *equivalent*, written as r = s

Regular Language Cont.

• Each algebraic law below asserts that expressions of two different forms are equivalent

LAW	DESCRIPTION
r s=s r	is commutative
r (s t) = (r s) t	is associative
r(st) = (rs)t	Concatenation is associative
r(s t) = rs rt; (s t)r = sr tr	Concatenation distributes over
$\epsilon r = r\epsilon = r$	ϵ is the identity for concatenation
$r^* = (r \epsilon)^*$	ϵ is guaranteed in a closure
$r^{**} = r^*$	* is idempotent

Is
$$(a|b)(a|b) = aa|ab|ba|bb$$
 true?

Regular Definitions (正则定义)

• For notational convenience, we can give names to certain regexps and use those names in subsequent expressions

If Σ is an alphabet of basic symbols, then a *regular definition* is a sequence of definitions of the form:

$$d_1 \rightarrow r_1$$

$$d_2 \rightarrow r_2$$

$$\cdots$$

$$d_n \rightarrow r_n$$

where:

- Each d_i is a new symbol not in Σ and not the same as the other d's
- Each r_i is a regexp over the alphabet $\Sigma \cup \{d_1, d_2, ..., d_{i-1}\}$

Each new symbol denotes a regular language. The second rule means that you may reuse previously-defined symbols.

Examples

Regular definition for C identifiers

Regexp for C identifiers

```
(A|B|...|Z|a|b|...|z|_)((A|B|...|Z|a|b|...|z|_)|(0|1|...|9))*
```

Extensions of Regular Expressions

- **Basic operators:** union 1, concatenation, and Kleene closure * (proposed by Kleene in 1950s)
- A few **notational extensions**:
 - One of more instances: the unary, postfix operator *

$$\circ r^{+} = rr^{*}, r^{*} = r^{+} \mid \epsilon$$

Zero or one instance: the unary postfix operator?

$$\circ r? = r \mid \epsilon$$

Character classes: shorthand for a logical sequence

$$\circ [a_1 a_2 ... a_n] = a_1 | a_2 | ... | a_n$$

$$\circ [a-e] = a \mid b \mid c \mid d \mid e$$

• The extensions are only for notational convenience, they do not change the descriptive power of regexps

Outline

- The Role of the Lexical Analyzer
- Specification of Tokens (Regular Expressions)
- Recognition of Tokens (Transition Diagrams)
- The Lexical-Analyzer Generator
- Finite Automata

Recognition of Tokens

- Lexical analyzer examines the input string and finds a prefix that matches one of the tokens
- The first thing when building a lexical analyzer is to define the patterns of tokens using regular definitions
- A special token: ws → (blank | tab | newline)+
 - When the lexical analyzer recognizes a whitespace token, it does not return it to the parser, but restart from the next character

Example: Patterns and Tokens

```
egin{array}{lll} digit & 
ightarrow & [0-9] \\ digits & 
ightarrow & digit^+ \\ number & 
ightarrow & digits (. \ digits)? \ ( \ E \ [+-]? \ digits )? \\ letter & 
ightarrow & [A-Za-z] \\ id & 
ightarrow & letter ( \ letter \ | \ digit )^* & \hline Any & if \\ then & 
ightarrow & then & then \\ else & 
ightarrow & else & else \\ relop & 
ightarrow & 
ightarrow & 
ightarrow & Any \\ \hline \end{array}
```

Patterns for tokens

LEXEMES	TOKEN NAME	ATTRIBUTE VALUE
Any ws	_	_
if	if	
then	then	_
else	${f else}$	
$\mathrm{Any}\ id$	id	Pointer to table entry
Any number	number	Pointer to table entry
<	relop	LT
<=	${f relop}$	ĹE
=	${f relop}$	EQ
<>	${f relop}$	NE
>	${f relop}$	GŤ
>=	$\overline{\mathbf{relop}}$	GE

Tokens, their patterns, and attribute values

Transition Diagrams (状态转换图)

- An important step in constructing a lexical analyzer is to convert patterns into "transition diagrams"
- Transition diagrams have a collection of nodes, called *states* (状态) and *edges* (边) directed from one node to another

LEXEMES	TOKEN NAME	ATTRIBUTE VALUE
<	relop	LT
<=	relop	ĹE
=	relop	EQ
<>	relop	NE
>	relop	GŤ
>=	relop	GE

The transition diagram in the left recognizes relop tokens

States

- Represent conditions that could occur during the process of scanning (i.e., what characters we have seen)
- The *start state* (开始状态), or *initial state*, is indicated by an edge labeled "start", which enters from nowhere
- Certain states are said to be *accepting* (接受状态), or *final*, indicating that a lexeme has been found

States 2-8 are accepting. They return a pair (token name, attribute value).

By convention, we indicate accepting states by double circles

The Retract Action

- At certain accepting states, the found lexeme may not contain all characters that we have seen from the start state (such states are annotated with *)
- When entering * states, it is necessary to retract (回退) the forward pointer, which points to the next char in the input string

- The found lexeme: <
- The characters we've seen: <b

We should retract forward one step back

Edges

- *Edges* are directed from one state to another
- Each edge is labeled by a symbol or set of symbols

In the above case, we should follow the circled edge to enter state 3 and advance the **forward** pointer

Recognition of Reserved Words and Identifiers (保留字和标识符的识别)

- In many languages, reserved words or keywords (e.g., then) also match the pattern of identifiers
- Problem: the transition diagram that searches for identifiers can also recognize reserved words

Handling Reserved Words

• Strategy 1: Preinstall the reserved words in the symbol table. Put a field in the symbol-table entries to indicate that these strings are not ordinary identifiers

Handling Reserved Words

Strategy 2: Create a separate transition diagram with <u>a high</u>
 <u>priority</u> for each keyword

Building a Lexical Analyzer from Transition Diagrams

```
return ( relop, LE)
TOKEN getRelop()
                                                                                         return ( relop, NE)
    TOKEN retToken = new(RELOP);
                                                                                         return( relog LT)
    while(1) { /* repeat character processing until a return
                                                                              (5) return (relop, EQ)
                    or failure occurs */
         switch(state) {
                                                                                         return ( relop, GE)
              case 0: c = nextChar();
                       if ( c == '<' ) state = 1;
                                                                                         return (relog GT)
                       else if (c == '=') state = 5;
                       else if ( c == '>' ) state = 6;
                       else fail(); /* lexeme is not a relop */
                       break;
              case 1: ...
              case 8: retract();
                       retToken.attribute = GT;
                       return(retToken);
         Sketch implementation of relop transition diagram
```

Building a Lexical Analyzer from Transition Diagrams

```
return ( relop, LE)
TOKEN getRelop()
                                                                                        return ( relop, NE)
    TOKEN retToken = new(RELOP):
                                                                                        return ( relog, LT)
    while(1) { /* repeat character processing until a return
                    or failure occurs */
                                                                                return ( relop, EQ)
         switch(state) {
                                                                                        return ( relop, GE)
             case 0: c = nextChar();
                       if ( c == '<' ) state = 1;
                                                                                        return (relog GT)
                       else if (c == '=') state = 5;
                       else if ( c == '>' ) state = 6;
                       else fail(); /* lexeme is not a relop */
                      break;
             case 1: ...
                                                             Use a variable state to record
              case 8: retract();
                                                                     the current state
                       retToken.attribute = GT;
                       return(retToken);
         Sketch implementation of relop transition diagram
```

Building a Lexical Analyzer from **Transition Diagrams**

```
return( relon LE)
TOKEN getRelop()
                                                                                       return ( relop, NE)
    TOKEN retToken = new(RELOP):
                                                                                       return ( relog, LT)
    while(1) { /* repeat character processing until a return
                    or failure occurs */
                                                                               return ( relop, EQ)
         switch(state)){
                                                                                       return ( relop, GE)
             case 0: c = nextChar();
                      if ( c == '<' ) state = 1;
                                                                                       return (relog GT)
                      else if (c == '=') state = 5;
                      else if ( c == '>' ) state = 6;
                      else fail(); /* lexeme is not a relop */
                      break;
             case 1: ...
                                                          A switch statement based on the
             case 8: retract():
                                                            value of state takes us to the
                      retToken.attribute = GT;
                                                                    processing code
                      return(retToken);
         Sketch implementation of relop transition diagram
```

Building a Lexical Analyzer from Transition Diagrams

```
return ( relop, LE)
TOKEN getRelop()
                                                                                         return ( relop, NE)
    TOKEN retToken = new(RELOP);
                                                                                         return ( relog, LT)
    while(1) { /* repeat character processing until a return
                                                                              (5) return ( relop, EQ)
                    or failure occurs */
         switch(state) {
                                                                                         return (relop, GE)
              case 0. c = nextChar();
                       if ( c == '<' ) state = 1:
                                                                                         return (relog GT)
                       else if (c == '=') state = 5;
                       else if (c == '>') state = 6;
                       else fail(); /* lexeme is not a relop */
                       break;
              case 1: ...
                                                       The code of a normal state:
              case 8: retract();
                                                       1. Read the next character
                       retToken.attribute = GT;
                                                       2. Determine the next state
                       return(retToken);
                                                       3. If step 2 fails, do error recovery
```

Building a Lexical Analyzer from Transition Diagrams

```
return ( relop, LE)
TOKEN getRelop()
                                                                                        return ( relop, NE)
    TOKEN retToken = new(RELOP);
                                                                                        return ( relog, LT)
    while(1) { /* repeat character processing until a return
                    or failure occurs */
                                                                                return ( relop, EQ)
         switch(state) {
                                                                                        return (relop, GE)
             case 0: c = nextChar();
                      if ( c == '<' ) state = 1;
                                                                                        return (relog GT)
                      else if (c == '=') state = 5;
                      else if ( c == '>' ) state = 6;
                       else fail(); /* lexeme is not a relop */
                      break;
             case 1: ...
                                                    The code of an accepting state:
              case 8: retract();
                                                       Perform retraction if the state has *
                       retToken.attribute = GT;
                       return(retToken);
                                                        Set token attribute values
                                                        Return the token to parser
         Sketch implementation of relop transition diagram
```

Building the Entire Lexical Analyzer

- Strategy 1: Try the transition diagram for each type of token sequentially
 - fail() resets the pointer forward and tries the next diagram
- **Problem:** Not efficient
 - May need to try many irrelevant diagrams whose first edge does not match the first character in the input stream

Building the Entire Lexical Analyzer

- Strategy 2: Run transition diagrams in parallel
 - Need to resolve the case where one diagram finds a lexeme and others are still able to process input.
 - Solution: take the longest prefix of the input that matches any pattern
- **Problem:** Requires special hardware for parallel simulation, may degenerate into the sequential strategy on certain machines

Building the Entire Lexical Analyzer

- Strategy 3: Combining all transition diagrams into one
 - Allow the transition diagram to read input until there is no possible next state
 - Take the longest lexeme that matched any pattern
- This is a commonly-adopted strategy in real-world compiler implementation (efficient & requires no special hardware)

How? Be patient ⊚, we will talk about this later.

Outline

- The Role of the Lexical Analyzer
- Specification of Tokens (Regular Expressions)
- Recognition of Tokens (Transition Diagrams)
- The Lexical-Analyzer Generator (to be discussed in lab)
- Finite Automata

44

The Lexical-Analyzer Generator Lex

- Lex, or a more recent tool Flex, allows one to specify a lexical analyzer by specifying regexps to describe patterns for tokens
- Often used with Yacc/Bison to create the frontend of compiler

Figure 3.22: Creating a lexical analyzer with Lex

Structure of Lex Programs

- A Lex program has three sections separated by %%
 - Declaration (声明)
 - Variables, constants (e.g., token names)
 - o Regular definitions
 - Translation rules (转换规则) in the form "Pattern {Action}"
 - o Each pattern (模式) is a regexp (may use the regular definitions of the declaration section)
 - o Actions (动作) are fragments of code, typically in C, which are executed when the pattern is matched
 - Auxiliary functions section (辅助函数)
 - Additional functions that can be used in the actions

Lex Program Example

```
%{
                                                 Anything in between %{ and }%
    /* definitions of manifest constants
                                                 is copied directly to lex.yy.c.
    LT, LE, EQ, NE, GT, GE,
                                                 In the example, there is only a
    IF, THEN, ELSE, ID, NUMBER, RELOP */
                                                 comment, not real C code to
%}
                                                 define manifest constants
/* regular definitions */
delim
           [ \t \n]
                                                 Regular definitions that can be
           {delim}+
WS
                                                 used in translation rules
letter [A-Za-z]
digit [0-9]
id
           {letter}({letter}|{digit})*
           {digit}+(\.{digit}+)?(E[+-]?{digit}+)?
number
%%
                        Section separator
```

Lex Program Example Cont.

```
Continue to recognize
                                                         other tokens
       {ws}
                  {/* no action and no return */}
       if
                  {return(IF);}
       then
                  {return(THEN);}
                                                         Return token name to the parser
                  {return(ELSE);}
       else
                   {vylval = (int) installID(); return(ID);}
       {id}
       {number}
                  {yylval = (int) installNum(); return(NUMBER);}
       11 < 11
                   {yylval = LT; return(RELOP);}
Literal
       11<=11
                  {yylval = LE; return(RELOP);}
strings*
       11=11
                   {yylva| = EQ; return(RELOP);}
                                                         Place the lexeme found in the
       "<>"
                  {yylval = NE; return(RELOP);}
                                                         symbol table
       11 > 11
                   {yylval = GT; return(RELOP);}
       ">="
                   {yylval \= GE; return(RELOP);}
       %%
              A global variable that stores a pointer to the symbol table entry for the lexeme.
```

Can be used by the parser or a later component of the compiler.

^{*} The characters inside have no special meaning (even if it is a special one such as *).

Lex Program Example Cont.

- Everything in the auxiliary function section is copied directly to the file lex.yy.c
- Auxiliary functions may be used in actions in the translation rules

Conflict Resolution

- When the generated lexical analyzer runs, it analyzes the input looking for prefixes that match <u>any</u> of its patterns.*
- Rule 1: If it finds multiple such prefixes, it takes the longest one
 - The analyzer will treat <= as a single lexeme, rather than < as one lexeme and = as the next
- **Rule 2:** If it finds a prefix matching different patterns, the pattern listed first in the Lex program is chosen.
 - If the keyword patterns are listed before identifier pattern, the lexical analyzer will not recognize keywords as identifiers

^{*} See Flex manual for details (Chapter 8: How the input is matched) at http://dinosaur.compilertools.net/flex/

Outline

- The Role of the Lexical Analyzer
- Specification of Tokens (Regular Expressions)
- Recognition of Tokens (Transition Diagrams)
- The Lexical-Analyzer Generator
- Finite Automata ——
- NFA & DFA
- NFA → DFA
- Regexp \rightarrow NFA
- Combining NFA's
- DFA Minimization (Self-Study Materials)

Finite Automata (有穷自动机)

- Finite automata are the simplest machines to recognize patterns
- They are essentially graphs like transition diagrams. They simply say "yes" or "no" about each possible input string.
 - Nondeterministic finite automata (NFA, 非确定有穷自动机): A symbol can label several edges out of the same state (allowing multiple target states), and the empty string ϵ is a possible label.
 - Deterministic finite automata (DFA, 确定有穷自动机): For each state and for each symbol of its input alphabet, there is exactly one edge with that symbol leaving that state.
- NFA and DFA recognize the same languages, **regular languages**, that regexps can describe.

Nondeterministic Finite Automata

- An **NFA** is a 5-tuple, consisting of:
 - 1. A finite set of states *S*
 - 2. A set of input symbols Σ , the *input alphabet*. We assume that the empty string ϵ is never a member of Σ
 - 3. A *transition function* that gives, for each state, and for each symbol in $\Sigma \cup \{\epsilon\}$ a set of *next states*
 - 4. A start state (or initial state) s_0 from S
 - 5. A set of *accepting states* (or *final states*) *F*, a subset of *S*

NFA Example

•
$$S = \{0, 1, 2, 3\}$$

The NFA can be represented as a Transition Graph:

•
$$\Sigma = \{a, b\}$$

• Start state: 0

- Accepting states: {3}
- Transition function

■
$$(0, a) \rightarrow \{0, 1\}$$
 $(0, b) \rightarrow \{0\}$

■
$$(1, b) \rightarrow \{2\}$$
 $(2, b) \rightarrow \{3\}$

$$(2, b) \rightarrow \{3\}$$

Transition Table

- Another representation of an NFA
 - Rows correspond to states
 - Columns correspond to the input symbols or ϵ
 - The table entry for a state-input pair lists the set of next states
 - Ø: the transition function has no info about the state-input pair

STATE	a	b	ϵ
0	$\{0, 1\}$	{0}	Ø
1	Ø	$\{2\}$ $\{3\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

Acceptance of Input Strings

- An NFA accepts an input string x if and only if
 - There is a path in the transition graph from the start state to one accepting state, such that the symbols along the path form x (ϵ labels are ignored).

- The language defined or accepted by an NFA
 - The set of strings labelling some path from the start state to an accepting state

NFA and Regular Languages

Deterministic Finite Automata (DFA)

- A **DFA** is a special NFA where:
 - There are no moves on input ϵ
 - For each state *s* and input symbol *a*, there is exactly one edge out of *s* labeled *a* (i.e., exactly one target state)

Simulating a DFA

- Input:
 - String x terminated by an end-of-file character **eof**.
 - DFA D with start state s_0 , accepting states F, and transition function move
- **Output:** Answer "yes" if *D* accepts *x*; "no" otherwise

```
s = s_0;

c = nextChar();

while (c != eof) \{

s = move(s, c);

c = nextChar();

}

if (s is in F) return "yes";

else return "no";
```

We can see from the algorithm:

 DFA can efficiently accept/reject strings (i.e., recognize patterns)

DFA Example

• Given the input string *ababb*, the DFA below enters the sequence of states 0, 1, 2, 1, 2, 3 and returns "yes"

What's the language defined by this DFA?

From Regular Expressions to Automata

- Regexps concisely & precisely describe the patterns of tokens
- DFA can efficiently recognize patterns (comparatively, the simulation of NFA is less straightforward*)
- When implementing lexical analyzers, regexps are often converted to DFA:
 - Regexp \rightarrow NFA \rightarrow DFA
 - Algorithms: Thompson's construction + subset construction

^{*} There may be multiple transitions at a state when seeing a symbol

Conversion of an NFA to a DFA

- The <u>subset construction</u> algorithm (子集构造法)
 - Insight: Each state of the constructed DFA corresponds to a set of NFA states
 - o Why? Because after reading the input $a_1a_2...a_n$, the DFA reaches one state while the NFA may reach multiple states
 - Basic idea: The algorithm simulates "in parallel" all possible moves an NFA can make on a given input string

After reading "a", the NFA may reach any of these states:

3, 6, 1, 7, 2, 4, 8

Example for Algorithm Illustration

- The NFA below accepts the string *babb*
 - There exists a path from the start state 0 to the accepting state 10, on which the labels on the edges form the string *babb*

Subset Construction Technique

- Operations used in the algorithm:
 - ϵ -closure(s): Set of NFA states reachable from NFA state s on ϵ -transitions alone
 - ϵ -closure(T): Set of NFA states reachable from some NFA state s in set T on ϵ -transitions alone
 - o That is, $\bigcup_{s \text{ in } T} \epsilon closure(s)$
 - move(T, a): Set of NFA states to which there is a transition on input symbol a from some state s in T

Subset Construction Technique

- Computing ϵ -closure(T)
 - It is a graph traversal process (only consider ϵ edges)
 - Computing ϵ -closure(s) is the same (when T has only one state)

• ϵ -closure(0) = ?

Fall 2022 67

Exercise

• ϵ -closure({3, 8}) = ?

Fall 2022 68

Subset Construction Technique Cont.

- The construction of the DFA *D*'s states, *Dstates*, and the transition function *Dtran* is also a search process
 - Initially, the only state in *Dstates* is ϵ -closure(s_0) and it is unmarked
 - o Unmarked state means that its next states have not been explored

- Initially, Dstates only has one unmarked state:
 - ϵ -closure(0) = {0, 1, 2, 4, 7} -- A
- Dtran is empty

 $\{0, 1, 2, 4, 7\} -- A$

 ϵ -closure(move[A, a])

 $= \epsilon$ -closure({3, 8})

 $= \{1, 2, 3, 4, 6, 7, 8\}$

- We get an unseen state {1, 2, 3, 4, 6, 7, 8} -- B
- Update Dstates: {A, B}
- Update \overline{Dtran} : {[A, a] \rightarrow B}

 $\{0, 1, 2, 4, 7\} -- A$

 ϵ -closure(move[A, b])

 $= \epsilon$ -closure({5})

 $= \{1, 2, 4, 5, 6, 7\}$

- We get an unseen state {1, 2, 4, 5, 6, 7} -- C
- Update Dstates: {A, B, C}
- Update \overline{Dtran} : {[A, a] \rightarrow B, [A, b] \rightarrow C}

{1, 2, 3, 4, 6, 7, 8} -- B

 ϵ -closure(move[B, a])

 $= \epsilon$ -closure({3, 8})

 $= \{1, 2, 3, 4, 6, 7, 8\}$

- The state {1, 2, 3, 4, 6, 7, 8} already exists (B)
- No need to update Dstates: {A, B, C}
- Update Dtran: $\{[A, a] \rightarrow B, [A, b] \rightarrow C, [B, a] \rightarrow B\}$

Illustrative Example

- Eventually, we will get the following DFA:
 - Start state: A; Accepting states: {E}

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	\overline{A}	B	C
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1,2,4,5,6,7\}$	C	$\mid B \mid$	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	$\mid B \mid$	$\mid E \mid$
$\{1, 2, 4, 5, 6, 7, 10\}$	E	B	C

This DFA can be further minimized: A and C have the same moves on all symbols and can be merged.

Regular Expression to NFA

Thompson's construction algorithm (Thompson构造法)

- The algorithm works recursively by splitting a regular expression into subexpressions, from which the NFA will be constructed using the following rules:
 - Two basis rules (基本规则): handle subexpressions with no operators
 - Three inductive rules (归纳规则): construct larger NFA's from the NFA's for subexpressions

Two basis rules:

1. The empty expression ϵ is converted to

2. Any subexpression *a* (a single symbol in input alphabet) is converted to

The inductive rules: the union case

• $s \mid t : N(s)$ and N(t) are NFA's for subexpressions s and t

By construction, the NFA's have only one start state and one accepting state

The inductive rules: the concatenation case

• st: N(s) and N(t) are NFA's for subexpressions s and t

Merging the accepting state of N(s) and the start state of N(t)

The inductive rules: the Kleene star case

• $s^* : N(s)$ is the NFA for subexpression s

Use Thompson's algorithm to construct an NFA for the regexp $r = (\mathbf{a} \mid \mathbf{b})^* \mathbf{a}$

1. NFA for the first a (apply basis rule #1)

2. NFA for the first **b** (apply basis rule #1)

Example
$$r = (a|b)^*a$$

3. NFA for (a|b) (apply inductive rule #1)

Example
$$r = (a|b)^*a$$

4. NFA for (a|b)* (apply inductive rule #3)

Example
$$r = (a|b)^*a$$

5. NFA for the second **a** (apply basic rule #1)

Example
$$r = (a|b)^*a$$

6. NFA for (a|b)*a (apply inductive rule #2)

Combining NFA's

- Why? In the lexical analyzer, we need a single automaton to recognize lexemes matching any pattern (in the lex program)
- How? Introduce a new start state with ϵ -transitions to each of the start states of the NFA's for pattern p_i

- The language that can be accepted by the big NFA is the union of the languages that can be accepted by the small NFA's
- Different accepting states correspond to different patterns

DFA's for Lexical Analyzers

- Convert the NFA for all the patterns into an equivalent DFA, using the subset construction algorithm
- An accepting state of the DFA corresponds to a subset of the NFA states, in which at least one is an accepting NFA state
 - If there are more than one accepting NFA state, this means that conflicts arise (the prefix of the input string matches multiple patterns)
 - Upon conflicts, find the first pattern whose accepting state is in the set and make that pattern the output of the DFA state

- Suppose we have three patterns: p_1 , p_2 , and p_3
 - **a** {action A_1 for pattern p_1 }
 - **abb** {action A_2 for pattern p_2 }
 - $\mathbf{a}^*\mathbf{b}^+$ {action A_3 for pattern p_3 }
- We first construct an NFA for each pattern

Combining the three NFA's

Converting the big NFA to a DFA

6 and 8 are two accepting NFA states corresponding to two patterns. We choose Pattern p2, which is specified before p3

Minimizing # States of a DFA*

• There can be many DFA's recognizing the same language

Minimizing # States of a DFA Cont.

• There can be many DFA's recognizing the same language

Minimizing # States of a DFA Cont.

- There is always a unique minimum-state DFA for any regular language (state name does not matter)
- The minimum-state DFA can be constructed from any DFA for the same language by grouping sets of equivalent states

Distinguishing States

Distinguishable states

- We say that string x distinguishes state s from state t if exactly one of the states reached from s and t by following the path with label x is an accepting state
- States s and t are distinguishable if there exists some string that distinguishes them
- For two indistinguishable states, scanning any string will lead to the same state. Such states are equivalent and should be merged.

- The empty string ϵ distinguishes any accepting state from any nonaccepting state
 - The string *bb* distinguishes state *A* from B, since *bb* takes *A* to a nonaccepting state *C*, but takes *B* to an accepting state *E*

Fall 2022 a CS323 Compilers

DFA State-Minimization Algorithm

Works by partitioning the states of a DFA into groups of states that cannot be distinguished (an iterative process)

- The algorithm maintains a partition (划分), whose groups are sets of states that have not yet been distinguished
- Any two states from different groups are known to be distinguishable
- When the partition cannot be refined further by breaking any group into smaller groups, we have the minimum-state DFA

The Partitioning Part

- 1. Start with an initial partition \prod with two groups, F and S F, the accepting and nonaccepting states of D
- 2. Apply the procedure below to construct a new partition \prod_{new}

```
initially, let \Pi_{\text{new}} = \Pi;

for (each group G of \Pi) {

partition G into subgroups such that two states s and t

are in the same subgroup if and only if for all

input symbols a, states s and t have transitions on a

to states in the same group of \Pi;

/* at worst, a state will be in a subgroup by itself */

replace G in \Pi_{\text{new}} by the set of all subgroups formed;
}
```

3. If $\prod_{\text{new}} == \prod$, let $\prod_{\text{final}} = \prod$ and the partitioning finishes; Otherwise, $\prod = \prod_{\text{new}}$ and repeat step 2

The Construction Part

- Choose one state in each group of \prod_{final} as the *representative* for that group. The representatives will be the states of the minimum-state DFA D'
 - The start state of *D'* is the representative of the group containing the start state of *D*
 - The accepting states of *D'* are the representatives of those groups that contain an accepting state of *D*
 - Establish transitions:
 - o Let s be the representative of group G in \prod_{final} ; Let the transition of D from s on input a be to state t; Let r be the representative of t's group H
 - \circ Then in D', there is a transition from s to r on input a

- Initial partition: {*A*, *B*, *C*, *D*}, {*E*}
- Handling group {*A*, *B*, *C*, *D*}: *b* splits it to two subgroups {*A*, *B*, *C*} and {*D*}
- Handling group {*A*, *B*, *C*}: *b* splits it to two subgroups {*A*, *C*} and {*B*}
- Picking A, B, D, E as representatives to construct the minimum-state DFA

STATE	a	b
\overline{A}	B	\overline{A}
B	B	D
D	B	E
E	B	A

State Minimization in Lexical Analyzers

• The basic idea is the same as the state-minimization algorithm for DFA.

• Differences are:

- Each accepting state in the lexical analyzer's DFA corresponds to a different pattern. These states are not equivalent.
- So, the initial partition should be: one group of non-accepting states + groups of accepting states for different patterns

- Initial partition: {0137, 7}, {247}, {68}, {8, 58}, {Ø}
 - We add a dead state Ø: we suppose has transitions to itself on inputs *a* and *b*. It is also the target of missing transitions on *a* from states 8, 58, and 68.

Reading Tasks

- Chapter 3 of the dragon book
 - 3.1 The role of the lexical analyzer
 - 3.3 Specification of tokens
 - 3.4 Recognition of tokens
 - 3.5 The lexical-analyzer generator Lex
 - 3.6 Finite automata
 - 3.7 From regular expressions to automata
 - 3.8 Design of a lexical analyzer generator
 - \circ 3.8.1 3.8.3, the remaining can be skipped