The general architecture of a convolutional neural network

- A convolutional neural network comprises of "convolutional" and "downsampling" layers
 - The two may occur in any sequence, but typically they alternate
- Followed by an MLP with one or more layers

The general architecture of a convolutional neural network

- Convolutional layers and the MLP are learnable
 - Their parameters must be learned from training data for the target classification task
- Down-sampling layers are fixed and generally not learnable

A convolutional layer

- A convolutional layer comprises of a series of "maps"
 - Corresponding the "S-planes" in the Neocognitron
 - Variously called feature maps or activation maps

- Each activation map has two components
 - An affine map, obtained by convolution over maps in the previous layer
 - Each affine map has, associated with it, a *learnable filter*
 - An activation that operates on the output of the convolution

A convolutional layer Filter-1 Convolution Activation **Previous Previous** layer layer Convolutional

 All the maps in the previous layer contribute to each convolution

A convolutional layer Filter-1 Convolution Activation **Previous Previous** layer layer Convolutional

- All the maps in the previous layer contribute to each convolution
 - Consider the contribution of a single map

What is a convolution

Example 5x5 image with binary pixels

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Examp	Example 3x3 filter			
1	0	1		0
0	1	0		
1	0	1		

- Scanning an image with a "filter"
 - Note: a filter is really just a perceptron, with weights and a bias

What is a convolution

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Input Map

Convolved Feature

- Scanning an image with a "filter"
 - At each location, the "filter and the underlying map values are multiplied component wise, and the products are added along with the bias

0 1 0 1 0 bias 1 0 1 Filter

1 _{x1}	1 _{x0}	1 _{x1}	0	0
O _{×0}	1 _{×1}	1 _{x0}	1	0
0 _{x1}	O _{×0}	1 _{x1}	1	1
0	0	1	1	0
0	1	1	0	0

4

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "stride" of two pixels per shift

0 1 0 1 0 bias 1 0 1 Filter

1	1	1 _{x1}	O _{x0}	0 _{x1}
0	1	1 _{x0}	1 _{x1}	0 _{x0}
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1	1	0
0	1	1	0	0

4	4

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "hop" of two pixels per shift

0 1 0 1 0 bias 1 0 1 Filter

1	1	1	0	0
0	1	1	1	0
0 _{x1}	O _{x0}	1 _{x1}	1	1
0 _{x0}	0 _{x1}	1 _{x0}	1	0
O _{x1}	1 _{x0}	1 _{x1}	0	0

4	4
2	

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "hop" of two pixels per shift

0 1 0 1 0 bias 1 0 1 Filter

1	1	1	0	0
0	1	1	1	0
0	0	1 _{x1}	1 _{x0}	1 _{x1}
0	0	1 _{x0}	1 _{x1}	0 _{x0}
0	1	1 _{×1}	0 _{x0}	0 _{x1}

4	4
2	4

- Scanning an image with a "filter"
 - The filter may proceed by more than 1 pixel at a time
 - E.g. with a "hop" of two pixels per shift

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

- Each output is computed from multiple maps simultaneously
- There are as many weights (for each output map) as size of the filter x no. of maps in previous layer

A different view

Filter applied to kth layer of maps (convolutive component plus bias)

- ..A stacked arrangement of planes
- We can view the joint processing of the various maps as processing the stack using a threedimensional filter

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

$$z(s,i,j) = \sum_{p} \sum_{k=1}^{L} \sum_{l=1}^{L} w(s,p,k,l) Y(p,i+l-1,j+k-1) + b(s)$$

Engineering consideration: The size of the result of the convolution

- Recall: the "stride" of the convolution may not be one pixel
 - I.e. the scanning neuron may "stride" more than one pixel at a time
- The size of the output of the convolution operation depends on implementation factors
 - And may not be identical to the size of the input
 - Lets take a brief look at this for completeness sake

The size of the convolution

1,	1 _{×0}	1,	0	0
0,0	1,	1 _{×0}	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Input Map

Convolved Feature

- Image size: 5x5
- Filter: 3x3
- "Stride": 1
- Output size = ?

The size of the convolution

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0 _{×1}	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4	

Input Map

Convolved Feature

Image size: 5x5

• Filter: 3x3

• Stride: 1

Output size = ?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

• Image size: 5x5

• Filter: 3x3

• Stride: 2

Output size = ?

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

4	4
2	4

• Image size: 5x5

• Filter: 3x3

• Stride: 2

Output size = ?

 $Size: N \times N$

?

- Image size: $N \times N$
- Filter: $M \times M$
- Stride: 1
- Output size = ?

 $Size: N \times N$

?

- Image size: $N \times N$
- Filter: $M \times M$
- Stride: *S*
- Output size = ?

 $Size: N \times N$

?

- Image size: $N \times N$
- Filter: $M \times M$
- Stride: S
- Output size (each side) = $\lfloor (N M)/S \rfloor + 1$
 - Assuming you're not allowed to go beyond the edge of the input

Convolution Size

- Simple convolution size pattern:
 - Image size: $N \times N$
 - Filter: $M \times M$
 - Stride: S
 - Output size (each side) = $\lfloor (N M)/S \rfloor + 1$
 - Assuming you're not allowed to go beyond the edge of the input
- Results in a reduction in the output size
 - Even if S=1
 - Sometimes not considered acceptable
 - If there's no active downsampling, through max pooling and/or S>1, then the output map should ideally be the same size as the input

Solution

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

- Zero-pad the input
 - Pad the input image/map all around
 - Add P_I rows of zeros on the left and P_R rows of zeros on the right
 - Add P_L rows of zeros on the top and P_L rows of zeros at the bottom
 - P_I and P_R chosen such that:
 - $P_L = P_R OR | P_L P_R | = 1$
 - $P_1 + P_R = M-1$
 - For stride 1, the result of the convolution is the same size as the original image

Solution

0	0	0	0	0	0	0
0	1	1	1	0	0	0
0	0	1	1	1	0	0
0	0	0	1	1	1	0
0	0	0	1	1	0	0
0	0	1	1	0	0	0
0	0	0	0	0	0	0

- Zero-pad the input
 - Pad the input image/map all around
 - Pad as symmetrically as possible, such that..
 - For stride 1, the result of the convolution is the same size as the original image

Zero padding

- For an L width filter:
 - Odd L: Pad on both left and right with (L-1)/2 columns of zeros
 - Even L: Pad one side with L/2 columns of zeros, and the other with $\frac{L}{2}-1$ columns of zeros
 - The resulting image is width N + L 1
 - The result of the convolution is width N
- The top/bottom zero padding follows the same rules to maintain map height after convolution
- For hop size S>1, zero padding is adjusted to ensure that the size of the convolved output is $\lceil N/S \rceil$
 - Achieved by *first* zero padding the image with S[N/S] N columns/rows of zeros and then applying above rules

Correlation, not Convolution

Correlation

- The operation performed is technically a correlation, not a convolution
- Correlation:

$$y(i,j) = \sum_{l} \sum_{m} x(i+l,j+m)w(l,m)$$

- Shift the "filter" w to "look" at the input x block beginning at (i, j)
- Convolution:

$$y(i,j) = \sum_{l} \sum_{m} x(i-l,j-m)w(l,m)$$

Effectively "flip" the filter, right to left, top to bottom

Cost of Correlation

Correlation:

$$y(i,j) = \sum_{l} \sum_{m} x(i+l,j+m)w(l,m)$$

- Cost of scanning an $M \times M$ image with an $N \times N$ filter: $O(M^2N^2)$
 - $-N^2$ multiplications at each of M^2 positions
 - Not counting boundary effects
 - Expensive, for large filters

The other component Downsampling/Pooling

- Convolution (and activation) layers are followed intermittently by "downsampling" (or "pooling") layers
 - Often, they alternate with convolution, though this is not necessary

Alternative to Max pooling: Mean Pooling

Mean	pool with 2x2
filters	and stride 2

3.25	5.25
2	2

Compute the mean of the pool, instead of the max

Alternative to Max pooling: P-norm

Single depth slice

				•	
X	\	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
	•				V

P-norm with 2x2 filters and stride 2, p = 5

$$y = \sqrt[p]{\frac{1}{P^2} \sum_{i,j} x_{ij}^p}$$

4.86	8
2.38	3.16

Compute a p-norm of the pool

Other options

Network applies to each 2x2 block and strides by 2 in this example

- The pooling may even be a learned filter
 - The same network is applied on each block
 - (Again, a shared parameter network)

Or even an "all convolutional" net

- Downsampling may even be done by a simple convolution layer with stride larger than 1
 - Replacing the maxpooling layer with a conv layer

Setting everything together

- Typical image classification task
 - Assuming maxpooling..

- Input: 1 or 3 images
 - Black and white or color
 - Will assume color to be generic

• Input: 3 pictures

• Input: 3 pictures

Preprocessing

- Typically works with square images
 - Filters are also typically square
- Large networks are a problem
 - Too much detail
 - Will need big networks
- Typically scaled to small sizes, e.g. 32x32 or 128x128
 - Based on how much will fit on your GPU

 $I \times I$ image

• Input: 3 pictures

 K_1 total filters Filter size: $L \times L \times 3$

 $I \times I$ image

- Input is convolved with a set of K₁ filters
 - Typically K₁ is a power of 2, e.g. 2, 4, 8, 16, 32,...
 - Filters are typically 5x5, 3x3, or even 1x1

 $I \times I$ image

Small enough to capture fine features (particularly important for scaled-down images)

- Input is convolved with ♠ set of K₁ filters
 - Typically K₁ is a power 2, e.g. 2, 4, 8, 16, 32,...
 - Filters are typically 5x5, 3x3, or even 1x1

K₁ total filters

Filter size: $L \times L \times 3$

 $I \times I$ image

Small enough to capture fine features (particularly important for scaled-down images)

What on earth is this?

- Input is convolved with a set of K₁ filters
 - Typically K₁ is a power 2, e.g. 2, 4, 8, 16, 32,...
 - Filters are typically 5x5, 3x3, or ever 1x1

The 1x1 filter

- A 1x1 filter is simply a perceptron that operates over the *depth* of the map, but has no spatial extent
 - Takes one pixel from each of the maps (at a given location) as input

K₁ total filters

Filter size: $L \times L \times 3$

 $I \times I$ image

- Input is convolved with a set of K₁ filters
 - Typically K_1 is a power of 2, e.g. 2, 4, 8, 16, 32,...
 - Better notation: Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)

Filter size: $L \times L \times 3$

 $I \times I$ image

Parameters to choose: K_1 , L and S

- 1. Number of filters K_1
- 2. Size of filters $L \times L \times 3 + bias$
- 3. Stride of convolution S

Total number of parameters: $K_1(3L^2+1)$

- Input is convolved with a set of K₁ filters
 - Typically K_1 is a power of 2, e.g. 2, 4, 8, 16, 32,...
 - **Better notation:** Filters are typically 5x5(x3), 3x3(x3), or even 1x1(x3)
 - Typical stride: 1 or 2

 The input may be zero-padded according to the size of the chosen filters

- First convolutional layer: Several convolutional filters
 - Filters are "3-D" (third dimension is color)
 - Convolution followed typically by a RELU activation
- Each filter creates a single 2-D output map

Learnable parameters in the first convolutional layer

- The first convolutional layer comprises K_1 filters, each of size $L \times L \times 3$
 - Spatial span: $L \times L$
 - Depth : 3 (3 colors)
- This represents a total of $K_1(3L^2+1)$ parameters
 - "+ 1" because each filter also has a bias
- All of these parameters must be learned

- First downsampling layer: From each P × P block of each map, pool down to a single value
 - For max pooling, during training keep track of which position had the highest value

- First downsampling layer: From each $P \times P$ block of each map, pool down to a single value
 - For max pooling, during training keep track of which position had the highest value

- First downsampling layer: From each $P \times P$ block of each map, pool down to a single value
 - For max pooling, during training keep track of which position had the highest value

First pooling layer: Drawing it differently for convenience

 W_m : 3 × L × L $m = 1 ... K_1$

Jargon: Filters are often called "Kernels" The outputs of individual filters are called "channels" The number of filters (K_1, K_2, etc) is the number of channels

 First pooling layer: Drawing it differently for convenience

- Second convolutional layer: K_2 3-D filters resulting in K_2 2-D maps
 - Alternately, a kernel with K_2 output channels

(n)

 $K_1 \times \lceil I/D \rceil \times \lceil I/D \rceil$

Parameters to choose: K_2 , L_2 and S_2

- 1. Number of filters K_2
- 2. Size of filters $L_2 \times L_2 \times K_1 + bias$
- 3. Stride of convolution S_2

Total number of parameters: $K_2(K_1L_2^2+1)$ All these parameters must be learned

ng in K_2 2-D maps

- Second convolutional layer: K_2 3-D filters resulting in K_2 2-D maps
- Second pooling layer: K_2 Pooling operations: outcome K_2 reduced 2D maps

- Second convolutional layer: K_2 3-D filters resulting in K_2 2-D maps
- Second pooling layer: K_2 Pooling operations: outcome K_2 reduced 2D maps

- This continues for several layers until the final convolved output is fed to a softmax
 - Or a full MLP i

The Size of the Layers

- Each convolution layer maintains the size of the image
 - With appropriate zero padding
 - If performed without zero padding it will decrease the size of the input
- Each convolution layer may increase the number of maps from the previous layer
- Each pooling layer with hop D decreases the size of the maps by a factor of D
- Filters within a layer must all be the same size, but sizes may vary with layer
 - Similarly for pooling, D may vary with layer
- In general the number of convolutional filters increases with layers

Parameters to choose (design choices)

- Number of convolutional and downsampling layers
 - And arrangement (order in which they follow one another)
- For each convolution layer:
 - Number of filters K_i
 - Spatial extent of filter $L_i \times L_i$
 - The "depth" of the filter is fixed by the number of filters in the previous layer K_{i-1}
 - The stride S_i
- For each downsampling/pooling layer:
 - Spatial extent of filter $P_i \times P_i$
 - The stride D_i
- For the final MLP:
 - Number of layers, and number of neurons in each layer

Digit classification

Training

- Training is as in the case of the regular MLP
 - The *only* difference is in the *structure* of the network
- Training examples of (Image, class) are provided
- Define a divergence between the desired output and true output of the network in response to any input
- Network parameters are trained through variants of gradient descent
- Gradients are computed through backpropagation

Learning the network

- The weights of the neurons in the final MLP
- The (weights and biases of the) filters for every convolutional layer

Learning the CNN

- In the final "flat" multi-layer perceptron, all the weights and biases of each of the perceptrons must be learned
- In the convolutional layers the filters must be learned
- Let each layer J have K_I maps
 - $-K_0$ is the number of maps (colours) in the input
- Let the filters in the J^{th} layer be size $L_J \times L_J$
- For the J^{th} layer we will require $K_I(K_{I-1}L_I^2+1)$ filter parameters
- Total parameters required for the convolutional layers:

$$\sum_{J \in convolutional\ layers} K_J (K_{J-1}L_J^2 + 1)$$