# On particle filters applied to electricity load forecasting

Zakarya ALI, Antoine GRELETY, Samir TANFOUS 19/01/2018

# Plan

- 1. Introduction
- 2. Model
- 3. Data
- 4. Particle Filter
- 5. PMCMC
- 6. Results
- 7. Conclusion

## On particle filters applied to electricity load forecasting

Published in 2013 By Tristan Launay, Anne Philippe and Sophie Lamarche

#### Recent developments regarding:

- Sequential Monte Carlo Methods
- Online prediction
- Wide variety of particle filters applications :
  - Filtering
  - Predicting
- Computationally cheaper approach than classic MCMC algorithms
- As effective as other proven methods



$$s_n = s_{n-1} + \epsilon_n^s$$
, with  $\epsilon_n^s \sim \mathcal{N}(0, \sigma_{s,n}^2, ] - s_{n-1}, +\infty[)$ 

$$\sigma_{s,n} = \sigma_{s,n-1} + \eta_n^s$$
, with  $\eta_n^s \sim \mathcal{N}(0, \sigma_s^2, ] - \sigma_{s,n-1}, +\infty[$ 



$$\sigma_{s,n} = \sigma_{s,n-1} + \eta_n^s, \text{ with } \eta_n^s \sim \mathcal{N}(0, \sigma_s^2, ] - \sigma_{s,n-1}, +\infty[) \qquad \sigma_{g,n} = \sigma_{g,n-1} + \eta_n^g, \text{ with } \eta_n^g \sim \mathcal{N}(0, \sigma_g^2, ] - \sigma_{g,n-1}, +\infty[)$$

Fixed parameters 
$$\theta = (\sigma, \sigma_s, \sigma_g, u^{heat}, \kappa)$$

## **Data**

- French electricity load
  - RTE: Consumption every 30 min
- Daily average temperatures in French metropolitan territory
  - Meteo France : Input every 3 hours
- Day type: weekday, weekend, bank holiday,...
- We chose to work on 2 models: 3AM and 3PM

## **Particle Filter**

$$\mathrm{ESS}(n) = \frac{1}{\sum_{k=1}^{M} (w_n^k)^2}.$$

#### At time $n \ge 1$

- 1. Sample  $\widehat{X}_n^j \sim f_n(x_n|X_{n-1}^j)$ .
- 2. Compute  $\widetilde{w}_n^j = w_{n-1}^j g_n(y_n|X_n^j)$  and set  $\widehat{w}_n^j \leftarrow \frac{\widetilde{w}_n^j}{\sum_{k=1}^M \widetilde{w}_n^k}$ .
- $ightharpoonup \bullet$  if  $\widehat{\mathrm{ESS}}(n) < 0.001M$ , set  $X_n^j \leftarrow \widehat{X}_n^j$  and  $w_n^j \leftarrow w_{n-1}^j$ .
  - if  $0.001M \le \widehat{\mathrm{ESS}}(n) < 0.5M$ , use residual-multinomial resample (see Algorithm 3.5) and regularisation move (see Algorithm 3.6) steps to set  $X_n^j$  and  $w_n^j$ .
  - if  $0.5M \le \widehat{\mathrm{ESS}}(n)$ , set  $X_n^j \leftarrow \widehat{X}_n^j$  and  $w_n^j \leftarrow \widehat{w}_n^j$ .

- 1. Resampling at n=0
- 2. Forecast  $x_n \mid x_{n-1}$
- 3. Generate M new weights
- 4. Resampling:
  - a. If ESS critically low consider observation as missing
  - o. Multinomial resampling if ESS is too low
  - c. Otherwise keep the new weights
- 5. Move to n+1

## Particle Filter - Initialization

3 methods to initialize the particle filter:

- Hand-picked values
- Use article priors

$$\sigma_{s,*}^2, \sigma_{g,*}^2 \sim \mathcal{IG}(10^{-2}, 10^{-2})$$
  $s_0 \sim \mathcal{N}(0, 10^8, \mathbb{R}_+)$   $g_0^{\text{heat}} \sim \mathcal{N}(0, 10^8, \mathbb{R}_-)$ 

- Gibbs sampler
  - o Compute the full conditionals of the the smoothed distribution

$$\pi(s_{0:n_0-1}, g_{0:n_0-1}^{heat}, \sigma_{s,*}, \sigma_{g,*}|y_{0:n_0-1})$$

## Particle Filter - Resampling

- How to fight particles degeneracy?
- Particles with important weight must remain, while we replace low weight particles

#### Multinomial resampling:

At time 
$$n \ge 0$$
  
Sample  $Z_n^j \sim \sum_{n=1}^M \omega_n^k \delta(X_n^k, dx)$   
Replace  $X_n^j \leftarrow Z_n^j$  and  $\omega_n^k \leftarrow 1/M$ 

### **PMMH**

- Estimation of the parameters  $\Theta = (\mu^{heat}, \sigma^2_{s,0}, \sigma^2_{g,0}, \sigma^2)$
- Define proposal density and hyperparameters
- Apply Metropolis-Hastings algorithm
  - Generate new proposal parameters and run the particle filter to compute the likelihood
  - Compute joint prior density of parameters
  - Compute independent gaussian proposal h()

#### GIMH (Beaumont, 2003)

From current point  $\theta_m$ 

- Sample  $\theta_{\star} \sim H(\theta_m, \mathrm{d}\theta_{\star})$
- ② With prob.  $1 \wedge r$ , take  $\theta_{m+1} = \theta_{\star}$ , otherwise  $\theta_{m+1} = \theta_{m}$ , with

$$r = \frac{p(\theta_{\star})\hat{p}(y|\theta_{\star})h(\theta_{m}|\theta_{\star})}{p(\theta_{m})\hat{p}(y|\theta_{m})h(\theta_{\star}|\theta_{m})}$$

## **Results - PMMH**

- Goal: Estimate parameters of particle filter for 3am and 3pm
  - o 200 iterations
  - Run the particle filter over 715 days
  - 4 hours running time
- Variances are higher than expected
- Problem: likelihood estimated by the particle filter is extremely low



| Acceptance rate | $\mu_{heat}$ | $\sigma_s$ | $\sigma_g$ | σ            |
|-----------------|--------------|------------|------------|--------------|
| 19%             | 12.8         | $5.7.10^4$ | $2.5.10^4$ | $1.6.10^{5}$ |

Table 2: Estimated parameters PMMH 3pm

| Acceptance rate | $\mu_{heat}$ | $\sigma_s$ | $\sigma_g$ | σ            |
|-----------------|--------------|------------|------------|--------------|
| 29%             | 8.1          | $1.8.10^4$ | $8.4.10^4$ | $2.9.10^{5}$ |

Table 1: Estimated parameters PMMH 3am

## **Results - Forecast**

- Online prediction of electricity load 1 to 4 days ahead over
   715 days
- Run particle filter initialized with Gibbs and parameters set by hand
- Predicted value +/- 25% distant from the real value
- Outlier values during Christmas period





## **Results - Forecast**

- Run particle filter with parameters simulated via PMMH
- Forecasted value about 3 times the real value in average
- Problem: PMMH estimates large variances





## Conclusion

- Particle Filter:
  - **Highly sensitive** to initial values
  - Remains computationally intensive
- Our PMMH calibration is unusable
- **However** much better forecasting with manual parameters
- Ways to improve:
  - o Increase the number of particles for theta estimation / initialization steps / forecasted days...
  - Try theta estimation with Robbins-Monro

# **Questions?**

## **Robbins-Monro**

- Other method to initialize the parameters  $\mu_{heat}$ ,  $\sigma$ ,  $\sigma_g$  and  $\sigma_s$ .
- Maximizing method for noisy function

We estimate parameters as follow:

$$heta_{n+1} = heta_n - a_n(N( heta_n) - lpha) \quad ext{with} \qquad \sum_{n=0}^\infty a_n = \infty \quad ext{ and } \quad \sum_{n=0}^\infty a_n^2 < \infty$$

With N the estimated log-likelihood gradient