

به نام خدا

کارگاه علم داده با پایتون پیشرفته

جلسه چهارم: Classification یا طبقه بندی K نزدیک ترین همسایه (KNN)

: مدرس

مهرناز جليلي

دانشُمِو کارشناسی ارشد علم داده ها

دانشگاه شهید بهشتی

- Understand Classification
- Understand different methods such as KNN, Decision Trees, Logistic Regression and SVM
- Apply on datasets
- Evaluate

- Supervised
- Categorizing unknown items in classes
- Target is categorical with discrete values (called classifier)
- Binary: 2 values vs Multi Class

- Loan (age, income, load size, previous records, ...)
- Churn (age, address, income, equip, data usage, calls, ...)
- Spam / Important email
- Handwriting/Speech recognition
- Biometric identification

- Decision Trees (ID3, C4.5, C5.0)
- Naive Bayes
- Linear Discriminant Analysis
- K-Nearest Neighbor
- Logistic Regression
- Neural Networks
- Support Vector Machines

KNN

	region	tenure	age	marital	address	income	ed	employ	retire	gender	reside	custcat
0	2	13	44	1	9	64.0	4	5	0.0	0	2	1
1	3	11	33	1	7	136.0	5	5	0.0	0	6	4
2	3	68	52	1	24	116.0	1	29	0.0	1	2	3
3	2	33	33	0	12	33.0	2	0	0.0	1	1	1
4	2	23	30	1	9	30.0	1	2	0.0	0	4	3
5	2	41	39	0	17	78.0	2	16	0.0	1	1	3
6	3	45	22	1	2	19.0	2	4	0.0	1	5	2
7	2	38	35	0	5	76.0	2	10	0.0	0	3	4
8	3	45	59	1	7	166.0	4	31	0.0	0	5	3

KNN

- pick K
- calculate of the unknown points distance from all cases
- predict based on the K nearest points
- How to find "distance" (Euclidean can be one way)
- How to choose K (low -> noise & overfit; high -> too general). Use the different Ks with test set and see which K is good.

KNN

- KNN can be used to compute a continuous target (regression)
- Say find 3 of the closest cases and find the median

KNN Evaluation

- Evaluation explains the performance of our model
- On test data we have y and ŷ
- There are different model evaluation metrics: Jaccard index, F1-score, and Log Loss.

KNN Evaluation / Jaccard Index

y: Actual labels

 \hat{y} : Predicted labels

$$J(y,\hat{y}) = \frac{|y \cap \hat{y}|}{|y \cup \hat{y}|} = \frac{|y \cap \hat{y}|}{|y| + |\hat{y}| - |y \cap \hat{y}|}$$

$$\hat{y}$$
: [1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1]

$$J(y, \hat{y}) = \frac{8}{10+10-8} = 0.66$$

KNN Evaluation / F1-Score

KNN Evaluation / LogLoss

Performance of a classifier where the predicted output is a probability

	tenure	age	address	income	ed	employ	equip	callcard	wireless	churn		1		Predicted churn	LogLoss
0	11.0	33.0	7.0	136.0	5.0	5.0	0.0	1.0	1.0	1)			0.91	0.11
1	33.0	33.0	12.0	33.0	2.0	0.0	0.0	0.0	0.0	1				0.13	2.04
2	23.0	30.0	9.0	30.0	1.0	2.0	0.0	0.0	0.0	0	⊢ est	/	*	0.04	0.04
3	38.0	35.0	5.0	76.0	2.0	10.0	1.0	1.0	1.0	0				0.23	0.26
4	7.0	35.0	14.0	80.0	2.0	15.0	0.0	1.0	0.0	0)			0.43	0.56
										*				LogLoss	= 0.60

Actual Labels $\,y\,$

$$LogLoss = -\frac{1}{n} \sum_{i} (y \times \log(\hat{y}) + (1 - y) \times \log(1 - \hat{y}))$$

Predicted Probability

Lab: KNN

L04-MehrnazJalili