Experiment-1: Introduction to MATLAB

Signals and Systems Lab(EC2P002)

School of Electrical Sciences, IIT Bhubaneswar Autumn Semester 2022

Agenda of the Experiment

In this lab session, we will do the following:

- Learn basic vector operations
- Learn basic matrix operations
- Save and load variables, matrices, audio files, image files.
- Learn loops, functions, decision making.

Vector Operations

1. Generate two vectors *u* and *v* by typing the code given below.

$$v_1 = [123410]$$

 $v_2 = [-1 -2 -3 -4 -10]$

- 2. Concatenate two vectors to form a new vector v_3 . Use $v_3 = [u, v]$ or $v_3 = [u, v]$
- 3. Type help ones and help zeros. Create vectors v_4 of 20 zeros and v_5 of 20 ones using the command. Use the size or length command to identify the size of the created vector.
- 4. Create a vector v_6 of length 20 with every entry equal to 5.
- 5. Add two vectors v_1 and v_2 by using $v_1 + v_2$. Assign it to v_7 .
- 6. Add a constant to all entries of v_7 vector. Try $v_7 + 5$
- 7. Try 1:2:10. Observe the result. Use this to create vectors
 - $v_8 = [1 \ 2 \ 3 \dots 10]$ • $v_9 = [25 \ 20 \ 15 \dots - 20]$
- 8. Pick the third value in vector v_1 . Use $v_1(3)$. Note that numbering of entries is from 1 to length(v_1). Try $v_1(6)$ and $v_1(0)$.

Vector Operations

- 9. Obtain v_{10} from v_1 by removing the third entry.
- 10. Obtain v_{11} from v_1 by picking only the odd indexed entries.
- 11. Obtain the transpose of v_1 and save it as v_{1t} .
- 12. Try the operations $v_1 * v_{1t}$ and $v_{1t} * v_1$
- 13. Try the operation $v_1 \cdot v_1$. Also try $v_1 \cdot ^2$ and $v_1 \cdot / v_2$.
- 14. Add all the entries of v_1 and store it in s
- 15. Find the average of entries in v_1
- 16. Try $v_1 == 3$. Observe the result.
- 17. Find the number of entries in v_9 greater than or equal to 15. Do not use any loops.
- 18. Provide two different methods without using loops to find the sum of entries in v_9 which are greater than 15. Hint: Use '*' and '.*'

Matrix Operations

- 1. Create a 3×4 matrix A. Use $A = [1 \ 2 \ 3 \ 4; 5 \ 6 \ 7 \ 8; 9 \ 10 \ 11 \ 12];$
- 2. Print only second row of A using A(2,:) and print only third column of A using A(:,3).
- 3. Print only first and third column of A.
- 4. Type help repmat. Use repmat command to create a 12×12 matrix B repeating the matrix A.
- 5. Use reshape command to change A into 2×6 matrix.
- 6. Use zeros, ones commands to create matrices C and D both of order 3×4 .
- 7. Use horzcat to concatenate A and C and use vertcat to concatenate A and D.
- 8. Create an identity matrix using eye command.
- 9. Use diag command to obtain diagonal elements of B.
- 10. Use tril and triu commands on the matrix B. Apply these on matrix A also.
- 11. Using sum command find the sum of each row and the sum of each column of matrix A. Find the sum of all entries in the matrix. Use sum(A(:)) or 'all'.
- Understand the difference between '*' and '.*' in matrix multiplication by choosing suitable matrices.

Random Matrices Generation

- 1. Use rand command to generate a random matrix R of order 3×4 .
- 2. Note that all the random values generated lies between 0 and 1. Suitably modify the code to obtain random matrices with entries between 5 and 10.
- 3. Use randi command to generate a matrix of uniformly distributed integers. The integers generated should belong to the interval -5 to 5.
- Use rando command to generate a matrix of random values following standard normal distribution.
- Modify the code to obtain entries from a normal distribution with mean 10 and variance 4.
- 6. Do the same for Rayleigh and Exponential distribution with scale parameter = 2 and mean parameter = 10 respectively.

Saving and Loading

- 1. Create and save two variables A and B to a file savefile.mat
- 2. Create a third variable C and append it to savefile.mat
- 3. Load all three variables from savefile.mat
- 4. Create a string array containing the names of your three friends and their ages. Use writematrix command to write the string array to an excel file.
- 5. Use readmatrix command to read from the saved excel file and compute the average age of your three friends.
- 6. Use audioread command to read an audio file.
- 7. Use audiowrite command to write a portion of the file to a new audio file.
- 8. Use imread to read a jpg image to a three dimensional matrix *F*.
- 9. Use image function to display the image.
- 10. Make the entries in F(:,:,1) all zero and display the image. Restore the image and do the same for F(:,:,2) and F(:,:,3).

Loops and functions

- Create a 100 × 100 random matrix K having integer valued elements uniformly distributed in the interval 1 to 10. Use for loop to find the sum of square of the entries in the matrix K.
- 2. Do part 1 without using for loop.
- Use tic toc command to compute the time elapsed in Part 1 and Part 2. Read more about vectorization.
- Find the number of entries greater than 5 and less than 3 in the generated matrix K.
 Use if else statement
- 5. Do part 3 without using if else statement.
- 6. Demonstrate the use of while loop by a small program.
- 7. Demonstrate the use of *switch* statement by a small program.
- 8. Define a function to find the factorial of a number.