Flip Flop

Input: D, CLK

Output: Q

Ci sono oggetti simili ai latch ma che hanno un funzionamento leggermente diverso.

Quando CLK passa dal segnale 0 al segnale 1 (*fronte di salita*) Q assume il valore di D e lo ricorda finché non si presenterà un nuovo fronte di salita.

Multi Flip Flop

Enabled Flip Flop

Inputs: CLK, D, EN

L'input EN controlla quando viene dato un nuovo valore a D Funzione:

EN = 0 il flip-flop torna allo stato precedente

EN = 1 D passa attraverso Q

Resettable Flip Flop

Inputs: D, CLK, Reset

Funzione

Reset = 1 Q è forzato a 0

Reset = 0 Si comporta come un normale flip flop

2 tipi:

Sincrono: Si resetta solo sul fronte di salita

Asincrono: si resetta quando Reset = 1

Settable Flip Flop

Inputs: D, CLK, Set

Funzione

Reset = 1 Q è forzato a 1

Reset = 0 Si comporta come un normale flip flop

Circuiti sincroni sequenziali

- Si rompe il ciclo inserendo registri
- I registri contengono lo stato del sistema
- Lo stato cambia sul fronte di salita

Regole per la composizione

- Ogni elemento o è un registro o è un circuito combinatorio
- Ci deve essere almeno un registro
- Tutti i registri ricevono lo stesso segnale di CLK
- Tutti i percorsi ciclici contengono almeno 1 registro

Macchina a stati finiti

La macchina a stati finiti mantiene lo stato corrente, e carica il prossimo stato sul fronte di salita.

Il prossimo stato è determinato dallo stato corrente e dagli input, ci sono due tipi di macchine a stati e differiscono nella logica degli output :

Moore FSM: output dipendono solo dallo stato corrente

Melay FSM: gli output dipendono dallo stato corrente e dall'input

FSM Block blox

Inuts: CLK, Reset, T_A , T_B

Output: L_A , L_B

FSM Diagramma di transizione

Stati: cerchi

Transizioni : archi

CURRENT	INPUTS	INPUTS	NEXT
STATE			STATE
S	ΤL	ТВ	S'
S0	0	Х	S1
S0	1	Х	S0
S1	Χ	Х	S2
S2	Χ	0	S3
S2	Х	1	S2
<u>S3</u>	Х	Х	S0

FSM Tavola codificata di transizione e stati

CURRENT	//	INPUTS	//	NEXT	//
STATE				STATE	
S_1	S_0	T_A	T_B	S_1	S_0
0	0	0	Χ	0	1
0	0	1	Χ	0	0
0	1	Х	Х	1	0
1	0	Х	0	1	1
1	0	Х	1	1	0
1	1	Х	Х	0	0

State	Encoding		
S0	00		
S1	01		
S2	10		
S3	11		

$$S_{1}' = S_{1}\bar{S_{0}}T_{B} + S_{0}S_{1} + S_{1}S_{0}\bar{T_{0}} = S_{1} \oplus S_{0}$$

$$S_{0}' = S_{1}\bar{S_{0}}\bar{T_{A}} + S_{1}\bar{S_{0}}\bar{T_{B}} = \bar{S_{B}}(\bar{S_{1}}\bar{T_{A}} + S_{1}\bar{T_{0}})$$

Questa codifica ci dice informazioni sugli stati precedenti, correnti e sulle variabili.

FSM Tavola di output

Current	State	Outputs	Outputs	Outputs	Outputs
S_1	S_0	S_{A_1}	S_{A_0}	L_{B_1}	L_{B_0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

output	encoding
green	00
yellow	01
red	10

FMS REGISTRO STATI

