Como escrever equações em documentos técnicos sem complicação?

Ambiente Matemático no LATEX

ESTAT0090 – Estatística Computacional Prof. Dr. Sadraque E. F. Lucena sadraquelucena@academico.ufs.br

Cenário

Seu orientador acaba de devolver seu artigo com um alerta:

"As equações estão ilegíveis e amadoras. Corrija URGENTE ou não poderemos submeter ao evento!"

O que deu errado?

- Os símbolos estão sobrepostos e as frações mudam aleatoriamente de tamanho ao editar o texto.
- A numeração das equações não segue uma sequência e referências no texto apontam para equações que não existem.
- O evento exige LaTeX e você usou Word.

Cenário

O Problema

- Equações quebram ao mudar margens ou versões do software.
- Inserir uma nova equação desatualiza a numeração de TODAS as seqguintes.
- Símbolos desproporcionais (ex.: pequeno, frações gigantes)

A Motivação

- Equações sempre perfeitas (mesmo em 50 páginas).
- Numeração automática e sem erros.
- Aceito pelas principais revistas científicas.

Objetivo da aula

Na aula de hoje aprenderemos a criar:

- O ambiente matemático
- Exponentes e índices
- Frações e raízes
- Somatórios e integrais
- Formatação de espaçamento e pontos
- Teoremas
- Símbolos matemáticos
- Funções matemáticas
- Fórmulas com til, barra, chapéu, etc.

O Ambiente Matemático no LATEX

O Ambiente Matemático

- No LaTeX, as fórmulas matemáticas são inseridas no arquivo fonte por meio de comandos específicos.
- É importante informar ao LaTeX quando o texto seguinte é uma fórmula e quando ela termina para que o processamento seja feito corretamente.
- As fórmulas podem ocorrer *inline*, ou seja, incorporadas em uma linha de texto, como por exemplo $ax^2 + bx + c = 0$.
- Também é possível destacar as fórmulas do texto principal, apresentando-as em uma linha separada, como:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

O Ambiente Matemático

- No LaTeX, o modo matemático é iniciado e terminado com o uso do cifrão (\$) no meio do texto.
- Por exemplo, $ax^2 + bx + c = 0$ pode ser produzida com $ax^2 + bx + c = 0$.
- Quando as fórmulas são destacadas do texto principal, pode-se usar
 - \$\$ antes e depois da equação, ou
 - \[para iniciar e \] para terminar o modo matemático.
- A segunda fórmula no slide anterior foi obtida com:

```
$$ x=\frac{-b \pm \sqrt{b^2-4ac}}{2a} $$
```

 Para numerar as fórmulas destacadas, é possível utilizar o ambiente equation da seguinte forma:

```
\begin{equation}
  x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}
\end{equation}
```


O Ambiente Matemático

- Ao digitar espaços dentro das fórmulas, eles são ignorados pelo LaTeX. Para adicionar espaçamento, pode-se utilizar ~ ou \quad.
- Dica: se quiser dar espaço negativo, use \!.
- Os símbolos

```
+ - = < > / : ! [ ] ( ) |
```

podem ser digitados diretamente do teclado.

- Exemplo: |x| < a pode ser digitado diretamente como |x| < a.
- As chaves "{}" servem para agrupar logicamente partes da fórmula, mas elas não são impressas diretamente.
 - Se você deseja incluir chaves em uma fórmula, deve-se utilizar \{ e \} para que sejam interpretadas como parte da fórmula.

Expoentes e Índices

- O LaTeX facilita a produção de combinações de expoentes e índices com o tamanho correto.
- O caractere ^ indica um expoente e _ indica um índice.
- Exemplo:

$$x^{2}$$
 a_{n} x_{i}^{2} x_{i}^{2} x^{2n} $x^{y^{2}}$ $x^{y_{1}}$

é obtido com o código

```
$$
    x^2 \quad a_n \quad x_i^2 \quad x^2_i \quad x^{2n} \quad x^{y^2} \quad x^{y_1}
$$
```

• Observe que a ordem dos índices e expoentes não importa quando eles ocorrem juntos. Além disso, quando o índice ou expoente possui mais de um caractere, eles devem ser colocados entre chaves.

Reproduza no LaTeX o texto abaixo:

Seja X com distribuição U(a, b). A função de densidade de probabilidade (PDF) de X é dada por

$$f(x) = 1/(b-a),$$

para $a \le x \le b$. A esperança, E(X), e a variância, V(X), são respectivamente dadas por:

$$E(X) = (a + b)/2, V(X) = (b - a)^2/12.$$

Frações e Raízes}

- Frações simples podem ser escritas utilizando o caractere /, por exemplo: (a+b)/2, que resulta em (a+b)/2.
- Para frações mais complexas, você pode usar o comando \frac{num}{den},
 onde num representa o numerador e den o denominador.
 - Por exemplo: \$\frac{a+b}{2}\$.
- Para representar raízes, utilize o comando\sqrt[n]{radicando}.
 - Por exemplo: \$\sqrt[3]{8}=2\$.
- Se o argumento opcional [n] for omitido, a raiz quadrada é gerada. Exemplo: \$\sqrt{4}=2\$.
- O tamanho e o comprimento do radical são automaticamente ajustados de acordo com o tamanho do radicando.

Reproduza no LaTeX o texto abaixo:

Seja X com distribuição U(a, b). A função de densidade de probabilidade (PDF) de X é dada por

$$\frac{1}{b-a}$$

para $a \le x \le b$. A esperança, E(X), e a variância, V(X), são respectivamente dadas por:

$$E(X) = \frac{a+b}{2}, \quad V(X) = \frac{(b-a)^2}{12}.$$

Somatórios e Integrais

- Os somatórios e as integrais são operações fundamentais na matemática, frequentemente representados por meio dos comandos \sum e \int. Exemplos:
 - $\sum_{i=1}^{n} a_i$ \$\sum_{i=1}^n a_i.
 - Podemos destacar um somatório com o uso do comando \limits, da seguinte forma: sum\limits_{i=1}^n a_i.
- Da mesma forma, podemos expressar uma integral:
 - $\frac{1}{a}b f(x) dx produz \int_a^b f(x) dx$.

Reproduza no LaTeX o texto abaixo:

Considerando uma progressão geométrica (PG) com o primeiro termo a_1 , a razão r, e um total de n termos. A soma dos termos pode ser expressa da seguinte forma:

$$S_n = \frac{a_1(r^n - 1)}{r - 1}.$$

Nessa fórmula, S_n representa a soma dos n termos da PG. O termo a_1 é o primeiro termo da sequência, r é a razão com a qual os termos consecutivos são multiplicados, e n é o número total de termos na sequência.

Reproduza no LaTeX o texto abaixo:

A função de densidade de probabilidade (pdf) da distribuição exponencial pode ser expressa como:

$$f(x) = ae^{-ax}$$

para x maior ou igual a zero. A probabilidade de X < b é calculada como

$$P(X < b) = \int_0^b ae^{-ax}, dx.$$

Coeficientes Binomiais

- Os coeficientes binomiais são obtidos com o comando \choose ou com \binom{}{}.
- Exemplo:
 - $\{a \in b\}$ produz $\binom{a}{b}$
 - \$\binom{a}{b}\$ produz (a/b)

Reproduza no LaTeX o texto abaixo:

Seja X com distribuição Binomial(n, p). Para calcularmos a probabilidade de X = k, usamos

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k},$$

em que
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

Equações Numeradas

- Para numerar e referenciar equações no LaTeX, usamos o ambiente equation com o comando \label{}.
- O \label{} atribui uma "etiqueta" à equação que pode ser referenciada em qualquer parte do texto.
- O \ref{} mostra apenas o número da equação.
- O \eqref{} mostra o número da equação entre parênteses, como é comum em textos científicos.
- Exemplo:

```
A equação de uma reta é dada por:
\begin{equation}
  y = ax + b
  \label{eq:reta}
\end{equation}

Como visto na Equação \eqref{eq:exemplo}...
```


Reproduza no LaTeX o texto abaixo:

A fórmula de Bhaskara resolve equações do tipo $ax^2 + bx + c = 0$. A solução é dada por:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{1}$$

Veja que a Equação (1) depende dos coeficientes a,b e c.

Formatação de Espaçamento e Pontos

- Para inserir três pontos horizontais, use os comandos \ldots ou \cdots.
 Exemplos:
 - $a_1+\cdot cdots+a_n$ produz $a_1+\cdots+a_n$
 - x_1 , \ldots, x_n produz x_1 , ..., x_n
- Para inserir três pontos verticais, utilize o comando \vdots, que produz :
- Para usar um único ponto use \cdot. Exemplo:
 - \$x \cdot y\$ produz x · y

Formatação de Espaçamento e Pontos

- O comando \quad produz um espaço médio.
- O comando \qquad produz um espaço maior
- O comando \, dá um pequeno espaço.
- O comando \: dá um espaço médio.
- O comando \; dá um espaço grande.
- O comando \! dá um espaço negativo (backspace).
- Se você precisar incluir texto no meio das fórmulas matemáticas, o comando \mbox{texto} ou \text{texto} pode ser usado. Exemplo:
- $SIMC = \frac{\text{altura}}{\text{peso}^2}$ produz $IMC = \frac{\text{altura}}{\text{peso}^2}$

Reproduza no LaTeX:

$$x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$
 e $x_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$.

Teoremas

- Um texto matemático frequentemente inclui teoremas, proposições e outros tipos de estruturas. O LaTeX oferece um comando que permite a definição de um ambiente específico para essas estruturas.
- Para criar um novo ambiente, é necessário usar o comando no preâmbulo \newtheorem{ambiente}{título}[numeração].
 - ambiente é o nome escolhido para o novo ambiente;
 - título é a denominação que aparecerá, como teorema, lei, axioma, etc.;
 - numeração é a sequência da numeração que o ambiente irá seguir, como chapter, section, etc.
- Após a declaração do ambiente, é possível utilizá-lo para escrever o texto desejado.

```
\begin{ambiente}[nome do teorema]
  texto
\end{ambiente}
```


Exemplo

```
\documentclass{report}
\newtheorem{teo}{Teorema}[section]
\begin{document}
  \begin{teo}[Pitágoras]
      Em todo triângulo retângulo o quadrado do comprimento da
      hipotenusa é igual a soma dos quadrados dos comprimentos
      dos catetos.
    \end{teo}
\end{document}
```


Teoremas

Outros exemplos:

- \newtheorem{teo}{Teorema}[section]
- \newtheorem{lema}[teo]{Lema}
- \newtheorem{cor}[teo]{Corolário}
- \newtheorem{prop}[teo]{Proposição}

O Pacote amsthm

- O pacote amsthm da American Mathematical Society oferece recursos adicionais para escrever textos matemáticos.
- Por exemplo, para as demonstrações, pode-se utilizar o ambiente proof, que é utilizado da seguinte forma:

```
\begin{proof}
  Para demonstrar o Teorema de Pitágoras\ldots
\end{proof}
```

produz

Demonstração.

Para demonstrar o Teorema de Pitágoras...

Letras Gregas								
Símbolo	Comando	Símbolo	Comando	Símbolo	Comando			
α	\alpha	β	\beta	γ	\gamma			
δ	\delta	ϵ	\epsilon	ε	\varepsilon			
ζ	\zeta	η	\eta	θ	\theta			
θ	\vartheta	ι	\iota	κ	\kappa			
λ	\lambda	μ	\mu	ν	\nu			
ξ	\xi	О	0	π	\pi			
$\overline{\omega}$	\varpi	ρ	\rho	ρ	\varrho			
σ	\sigma	ς	\varsigma	au	\tau			
v	\upsilon	ϕ	\phi	φ	\varphi			
χ	\chi	ψ	\psi	ω	\omega			
Γ	\Gamma	Δ	\Delta	Θ	\Theta			
Λ	\Lambda	Ξ	\Xi	П	\Pi			
Σ	\Sigma	Υ	\Upsilon	Φ	\Phi			
Ψ	\Psi	Ω	\Omega					

Operadores Binários								
Símbolo	Comando	Símbolo	Comando	Símbolo	Comando			
\pm	\pm	干	\mp	×	\times			
÷	\div	•	\cdot	*	\ast			
*	\star	†	\dagger	‡	\ddagger			
\cap	\cap	U	\cup	\	\setminus			
V	\vee	\wedge	\wedge	\otimes	\otimes			
Δ	\bigtriangleup	∇	\bigtriangledown	\oplus	\oplus			
◁	\triangleleft	⊳	\triangleright	•	\odot			
0	\circ	0	\bigcirc	\$	\diamond			

Relações							
Símbolo	Comando	Comando					
<u> </u>	\le	<u>></u>	\ge	~	\sim		
*	\not<	*	\not>	\neq	\neq		
<u> </u>	\subset	\supset	\supset	\approx	\approx		
\subseteq	\subseteq	⊇	\supseteq	\simeq	\simeq		
\in	\in	∉	\notin	=	\equiv		
	\perp	\propto	\propto	\cong	\cong		

Setas								
Símbolo	Comando	Símbolo	Comando	Símbolo	Comando			
\leftarrow	\gets		\longleftarrow	†	\uparrow			
(\Leftarrow	=	\Longleftarrow	↑	\Uparrow			
\rightarrow	\to	\longrightarrow	\longrightarrow	<u> </u>	\downarrow			
(\Leftarrow	\implies	\Longrightarrow		\Downarrow			
\Leftrightarrow	\Leftrightarrow	\iff	\iff	\$	\Updownarrow			
\mapsto	\mapsto	\longmapsto	\longmapsto					

Símbolos com Dois Tamanhos								
Símbolo Comando		Símbolo		Comando	Símbolo		Comando	
\sum	\sum	\sum	П	П	\prod	0	\odot	\bigodot
ſ	\int	\int	∮	\oint	\oint	\otimes	\otimes	\bigotimes
U	U	\bigcup	\cap	\bigcap	\bigcap	\oplus	\oplus	\bigoplus

Outros Símbolos								
Símbolo	Comando	Símbolo	Comando	Símbolo	Comando			
\forall	\forall	Э	\exists	∞	\infty			
∇	\nabla	∂	\partial	Ø	\emptyset			
\Re	\Re	\Im	\Im	_	\neg			

Os símbolos que existem em dois tamanhos podem ser acrescentados limites inferiores e superiores. Exemplos:

• \$\$\bigcup_{i=0}^n A_i\$\$ produz

$$\bigcup_{i=0}^{n} A_{i}$$

• \$\$\int\limits_{-\infty}^\infty f(t)dt\$\$ produz

$$\int_{-\infty}^{\infty} f(t)dt$$

Funções Matemáticas

- Ao invés de escrever variáveis e funções matemáticas em texto normal, é recomendado utilizar formatação matemática para destacá-las.
 - Incorreto: \$cos x\$ produz *cosx*
 - Correto: \$\cos x\$ produz cosx
- É recomendado usar os comandos LaTeX para os nomes de funções prédefinidas:

•	\ \	V				0
	\a		C	C	U	2

• \cot

• \ln

• \tanh

• \coth

• \log

• \csc

• \max

• $\lim_{x\to 0} \frac{\cos x}{x}$

Funções Matemáticas

- Para definir nomes personalizados para algumas funções, é necessário defini-los no preâmbulo do arquivo.
- Exemplo:

produz

$$\lim_{x \to 0} \frac{\sin x}{x}$$

Fórmulas com Til, Barra, Chapéu, etc.

Existem diversos comandos no LaTeX para adicionar diferentes tipos de marcações em cima ou embaixo de letras ou fórmulas.

• Para colocar uma barra em cima ou embaixo de uma letra ou fórmula, podemos utilizar os comandos \overline{formula} e \underline{formula}.

⁻2

- \$\overline{X}^2\$ produz X
- \$\underline{bc}\$ produz bc

 Para uma barra pequena apenas em cima de uma letra, podemos usar o comando \bar{letra}.

• $x \in X$

Fórmulas com Til, Barra, Chapéu, etc.

- Para colocar chaves em cima ou embaixo de fórmulas, utilizamos os comandos \overbrace{formula} e \underbrace{formula}.
 - $s\sim x_1 + \c x_2 + \c x_1 + \c x_n}^n \$ produz

$$x_1 + x_2 + \underbrace{\dots}_{n-1}^{n} + x_n$$

$$n-2$$

- Para adicionar uma seta em cima de uma letra, usamos o comando \vec{letra}
 - $vec{v}$ produz \vec{v}

Fórmulas com Til, Barra, Chapéu, etc.

 É possível colocar setas sobre duas ou mais letras utilizando o comando \stackrel{\longrightarrow}{letras}.

```
• V = \c {\c AB}
```

 Para adicionar acentos circunflexos e tis sobre letras, usamos os comandos \hat, \widehat, \tilde e \widetilde.

 \sim

- $\frac{n}{\mu}$
 - \circ \$\widehat{\mu}\$ produz $\hat{\mu}$
 - \circ \$\tilde{ABC}\$ produz ABC
 - o \$\widetilde{ABC}\$ produz ABC

Reproduza no LaTeX o texto abaixo:

Seja X uma v.a. discreta que assume valores em $R_X = \{x_1, x_2, ..., x_n, ...\}$. A cada possível resultado x_i associamos a um número

$$p(x_i) = P(X(\omega_i) = x_i), \omega_i \in \Omega \in X_i \in R_X$$

dita probabilidade de x_i . A função p(x) é definida como função massa de probabilidade de X (f.m.p ou f.p de X).

As probabilidades $p(x_i)$ devem satisfazer as seguintes condições:

$$1. p(x_i) \ge 0, \forall x_i \in R_x$$

$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

Reproduza no LaTeX o texto abaixo:

Seja X uma v.a. contínua que assume valores em R_{χ} . A função $f_{\chi}(x)$ é a função densidade de probabilidade (f.d.p.) para X, se satisfaz as seguintes propriedades:

$$1. f_X(x) \ge 0, \forall x \in R_x,$$

$$2. \int_{R_X} f_X(x) dx = 1 \text{ ou } \int_{-\infty} f_X(x) dx = 1,$$

3.
$$P(a < X < b) = \int_{a}^{b} f_X(x) dx, \ \forall a, b \in R_X.$$

Ganhos da aula

- Domínio do ambiente matemático no LaTeX.
- Criação de equações inline e destacadas, com numeração automática e referências cruzadas.
- Criação de elementos matemáticos complexos e formatação avançada do modo matemático.

Material Extra

Aprofunde o que vimos em aula com esse link:

• https://www.overleaf.com/learn/latex/Mathematical_expressions

Atividade extraclasse

Reproduza todas as atividades da aula.

Fim

