Complexidade de Algoritmos

Mariana Kolberg

Visão Geral

Objetivo

Estudar a análise e o projeto de algoritmos

Estrutura

- Parte I: análise de algoritmos, i.e. o estudo teórico do desempenho e uso de recursos
 - Pré-requisito para o projeto de algoritmos
- Parte II: as principais técnicas para projetar algoritmos
 - Programação dinâmica
 - Algoritmos gulosos
 - Divisão e conquista
- ▶ Parte III: classes de complexidade

Introdução

- Um algoritmo é um procedimento que consiste em um conjunto de regras não ambiguas as quais especificam, para cada entrada, uma sequência finita de operações, terminando com uma saída correspondente.
- Um algoritmo resolve um problema quando, para qualquer entrada, produz uma resposta correta, se forem concedidos tempo e memoria sucientes para a sua execução.

Motivação

- ▶ Teoria da computação
 - Quais problemas são efetivamente computáveis?
- Projeto de algoritmos
 - Quais problemas são eficientemente computáveis?
- Para responder, temos que saber o que eficiente signica.
 - Uma definição razoável é considerar algoritmos em tempo polinomial como eficiente (tese de Cobham-Edmonds).

Custos de algoritmos

- Qual custo é de interesse?
- Uma execução tem vários custos associados:
 - Tempo de execução, uso de espaço (cache, memoria, disco), consumo de energia, ...
 - Existem caractersticas e medidas que são importantes em contextos diferentes
 - Linhas de codigo fonte (LOC), legibilidade, manutenabilidade, corretude, custo de implementação, robustez, extensibilidade,...
 - A medida mais importante e nosso foco: tempo de execução.

Qual o melhor algoritmo?

- Um problema pode ser resolvido através de diversos algoritmos com complexidades diferentes;
 - Resolução de sistemas lineares de tamanho n
 - Método de Cramer precisa aprox. 6n! operações de ponto flutuante (OPF)
 - Método de Gauss precisa aprox. n³-n OPF.

ordem	Método de Cramer	Método de Gauss
2	$22\mu s$	$50\mu s$
3	$102\mu s$	$159\mu s$
4	$456 \mu s$	$353 \mu s$
5	2.35ms	$666 \mu s$
10	1.19min	4.95ms
20	15255 séculos	38.63ms

O fato de um algoritmo resolver um dado problema não significa que seja aceitável na prática.

Motivação para algoritmos eficientes

Por que analisar a eficiência de algoritmos se os computadores estão cada dia mais rápidos?

Motivação para algoritmos eficientes

- Um algoritmo ineficiente em um computador rápido não ajuda!
- Suponha que uma máquina resolva um problema de tamanho x em um dado tempo.
- Qual tamanho de problema uma maquina 10 vezes mais rapida resolve o mesmo tempo?

complexidade de tempo	máquina lenta	máquina rápida $(10x)$	
log_2n	x_0	x_0^{10}	
n	$ x_1 $	$10x_1$	
$n\log_2 n$	x_2	$10x_2$ (p/ x_2 grande)	
n^2	x_3	$3.16x_3$	
n^3	$ x_4 $	$2.15x_4$	
2^n	$ x_5 $	$x_5 + 3.3$	
3^n	x_6	$egin{array}{c} 2.15x_4 \ x_5 + 3.3 \ x_6 + 2.096 \ \end{array}$	

Complexidade do Algoritmo x Tamanho máximo de problema resolvível

Crescimento de funções

Crescimento de funções

Tamanho da entrada

		10	100	10 ³	10 ⁴	10 ⁵	10 ⁶
	log₂n	3	6	9	13	16	19
de	n	10	100	1000	10 ⁴	10 ⁵	10 ⁶
cida	n log₂n	30	664	9965	10 ⁵	10 ⁶	10 ⁷
<u>ple</u>	n²	100	10 ⁴	10 ⁶	10 ⁸	10 ¹⁰	10 ¹²
complexidade	n³	10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
O	2 ⁿ	10 ³	10 ³⁰	10 ³⁰⁰	10 ³⁰⁰	10 ³⁰⁰⁰	10 ³⁰⁰⁰⁰⁰

1 ano =
$$365 \times 24 \times 60 \times 60 \approx 3 \times 10^7$$
 segundos
1 século $\approx 3 \times 10^9$ segundos
1 milénio $\approx 3 \times 10^{10}$ segundos

Panorama de tempo de execução

- ▶ Tempo constante: O (1) mais rápido, impossível
- ▶ Tempo sublinear:
 - \triangleright O (log log n) : super-rápido
 - ▶ O (log n) : logarítmico muito bom
- ► Tempo linear: O (n) é o melhor que se pode esperar quando é necessário examinar toda a entrada
- Tempo n log n: O (n log n): limite de muitos problemas práticos, ex.: ordenar uma coleção de números. Comum em problemas de divisão e conquista.
- Tempo polinomial:
 - $O(n^2)$: quadrático
 - $O(n^k)$: polinomial ok para n pequeno
- Tempo exponencial
 - 0 (kⁿ)
 - ▶ O (n!)
 - $ightharpoonup O(n^n)$

Comparar eficiências

- Como comparar eficiências? Uma medida concreta do tempo depende
 - do tipo da maquina usada (arquitetura, cache, memoria, ...)
 - da qualidade e das opções do compilador ou ambiente de execução
 - do tamanho do problema (da entrada)
- ▶ Portanto, foram inventadas maquinas abstratas.
 - A análise da complexidade de um algoritmo consiste em determinar o número de operações básicas (atribuição, soma, comparação, ...) em relação ao tamanho da entrada.

Análise Assintótica

- O tempo de execução de um algoritmo para uma determinada entrada pode ser medido pelo número de operações primitivas que ele executa.
 - o número de operações fornece um nível de detalhamento grande.
- Portanto, analisamos somente a taxa ou ordem de crescimento, substituindo funções exatas com cotas mais simples.

Análise Assintótica

 Complexidade é também chamada esforço requerido ou quantidade de trabalho.

Complexidade no pior caso

 Considera-se a instância que faz o algoritmo funcionar mais lentamente;

Complexidade média

 Considera-se todas as possíveis instâncias e mede-se o tempo médio.

Medidas de Complexidade

- ▶ A complexidade pode ser calculada através do:
 - Tempo de execução do algoritmo determinado pelas instruções executadas : quanto "tempo" é necessário para computar o resultado para uma instância do problema de tamanho n;
 - Espaço de memória utilizado pelo algoritmo: quanto "espaço de memória/disco" é preciso para armazenar a(s) estrutura(s) utilizada(s) pelo algoritmo.
- Desforço realizado por um algoritmo é calculado a partir da quantidade de vezes que a operação fundamental é executada.
 - Para um algoritmo de ordenação, uma operação fundamental é a comparação entre elementos quando à ordem.

- ▶ A complexidade exata possui muitos detalhes
- A escolha de um algoritmo é feita através de sua taxa de crescimento
- Esta taxa é representada através de cotas que são funções mais simples.
- A ordem de crescimento do tempo de execução de um algoritmo fornece uma caracterização simples de eficiência do algoritmo.

- A complexidade por ser vista como uma propriedade do problema.
- Logo, é possível obter uma medida independente do tratamento dado ao problema ou do caminho percorrido na busca da solução, portanto independente do algoritmo.

- Imagine um algoritmo com número de operações an²+bn+c
- Para análise assintótica não interessam
 - os termos de baixa ordem
 - os coeficientes constantes

Logo o tempo de execução deste algoritmo tem cota igual a n^2 , ou seja, $O(n^2)$.

- Considere dois algoritmos A e B com tempo de execução $O(n^2)$ e $O(n^3)$, respectivamente.
 - Qual deles é o mais eficiente ?
- Considere dois programas A e B com tempos de execução 100n² milisegundos, e 5n³ milisegundos, respectivamente.
 - Qual é o mais eficiente?

- Assintoticamente consideramos um algoritmo com complexidade $O(n^2)$ melhor que um algoritmo com $O(n^3)$.
- De fato, para n sucientemente grande O(n²) sempre é melhor.
- Mas na pratica, não podemos esquecer o tamanho do problemo real.
 - tamanho n<20, B será mais eficiente que A.
 - Se n é grande, A é mais eficiente

- Considere dois computadores :
 - $ightharpoonup C_1$ que executa 10^7 instruções por segundo (10 milhões);
 - Arr C₂ que executa Arr 10⁹ instruções por segundo (1 bilhão).
- Considere dois algoritmos de ordenação:
 - ▶ A cujo código exige 2n² instruções
 - B cujo código exige 50nlog n instruções.
- Quanto tempo C₁ e C₂ gastam para ordenar um milhão de números usando os algoritmos A e B ?

Algoritmo	Comp. C_1	Comp. C_2	
Alg A	$\frac{2.(10^6)^2 instruções}{10^7 instruções/s} = 2.10^5 s$	$\frac{2.(10^6)^2 instruções}{10^9 instruções/s} = 2.10^3 s$	
Alg B	$rac{50.10^6 \log 10^6 ext{instruções}}{10^7 ext{instruções/s}} = 30 ext{s}$	$rac{50.10^6 \log 10^6 ext{instruções}}{10^9 ext{instruções/s}} = \mathbf{0.3s}$	

É importante analisar a complexidade de um algoritmo para utilizar adequadamente os recursos disponíveis!!!!

- Considere dois algoritmos A e B com complexidades 8n² e n³, respectivamente.
 - Qual é o mais eficiente ?
 - Qual é o maior valor de n, para o qual o algoritmo B é mais eficiente que o algoritmo A?

Os algoritmos têm igual desempenho quando n=8.

Até n=7, B é mais eficiente que A.

Um algoritmo tem complexidade 2n². Num certo computador A, em um tempo t, o algoritmo resolve um problema de tamanho 25. Imagine agora que você tem disponível um computador B 100 vezes mais rápido. Qual é o tamanho máximo do problema que o mesmo algoritmo resolve no mesmo tempo t?

- No computador A, a quantidade de instruções executadas é 2.(25)²
- No computador B, a quantidade de instruções executadas é 100.2.(25) ²
- O tamanho do problema resolvido em B é $2n^2 = 100.2.(25)^2 \rightarrow n = 250.$

Problemas superpolinomiais?

- Consideramos a classe P de problemas com solução em tempo polinomial tratável.
- NP é outra classe importante que contem muitos problemas práticos (e a classe
 P).
 - Não se sabe se todos possuem algoritmo eficiente.
- Problemas NP-completos são os mais complexos da classe NP:
 - > Se um deles tem uma solução eficiente, toda classe tem.
- Vários problemas NP-completos são parecidos com problemas que têm algoritmos eficientes.
 - Ciclo euleriano x Ciclo hamiltoniano
 - Caminhos mais curtos x Caminhos mais longo
 - Satisfatibilidade 2-CNF x Satisfatibilidade 3-CNF

Revisão

Logaritmos - propriedades

$$\begin{split} \log_a(1) &= 0 \\ a^{\log_a(n)} &= n \\ \log_a(n \cdot m) &= \log_a(n) + \log_a(m) \\ \log_a(\frac{n}{m}) &= \log_a(n) - \log_a(m) \\ \log_a(n^m) &= m \cdot \log_a(n) \\ \log_a(n) &= \log_b(n) \cdot \log_a(b) \\ \log_a(n) &= \frac{\log_c(n)}{\log_c(a)} \\ \log_b(a) &= \frac{1}{\log_c(b)} \\ a^{\log_c(b)} &= b^{\log_c(a)} \\ \end{split} \qquad \text{expoentes}$$

Revisão – somatórios

Para k uma constante arbitrário temos

$$\sum_{i=1}^{n} k a_i = k \sum_{i=1}^{n} a_i$$

Distributividade

$$\sum_{i=1}^{n} k = nk$$

$$\sum_{i=1}^n \sum_{j=1}^m a_i b_j = \left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) \quad \text{Distributividade generalizada}$$

$$\sum_{i=1}^{n} (a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i$$

Associativiade

$$\sum_{i=1}^{p} a_i + \sum_{i=p+1}^{n} a_i = \sum_{i=1}^{n} a_i$$

$$\sum_{i=0}^{n} a_{p-i} = \sum_{i=p-n}^{p} a_{i}$$

Revisão - séries

$$\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2}$$

série aritmética

$$\sum_{i=0}^{n} x^{i} = \frac{x^{n+1} - 1}{x - 1}$$

série geométrica

se |x| < 1 então

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$

série geométrica infinitamente decrescente

$$\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2$$

$$\sum_{i=0}^{n} i^2 = \frac{n \cdot (n+1) \cdot (2 \cdot n + 1)}{6}$$

Revisão – indução matemática

Importante para provar resultados envolvendo inteiros

- Seja P(n) uma propriedade relativa aos inteiros.
- ▶ Se P(n) é verdadeira para n=1 e
- ▶ se P(k) verdadeira implica que P(k+1) é verdadeira
- ▶ então P(n) é verdadeira para todo inteiro n≥1

Para aplicarmos indução matemática deve-se:

- Passo inicial: verificar se P(n) é verdadeira para a base n₀
- Hipótese: assumir P(n) válida
- Prova: provar que P(n) é valida para qualquer valor de $n \ge n_0$
- Se os passos acima forem vericados, conclui-se que P(n) é valida para qualquer valor de $n \ge n_0$

Exercícios

- mostre que $n! \le n^n$ mostre que $\frac{1}{\log_a(c)} = \log_c(a)$
- Demonstre a propriedade dos expoentes
- Encontre uma fórmula alternativa para

$$\sum_{i=1}^{n} (2 \cdot i - 1)$$

e prove seu resultado via indução matemática.

Use indução matemática para provar que

$$\sum_{i=0}^{n-1} a \cdot q^{i} = \frac{a \cdot (q^{n} - 1)}{q - 1}$$

Dica: theoretical computer science cheat sheet:

http://www.tug.org/texshowcase/cheat.pdf