Fonction exponentielle.

I. Une fonction remarquable.

Théorème 1: Il existe une unique fonction dérivable sur Rtelle que f'=f et f(0)=1.

Ce théorème est admis.

Définition : On appelle fonction exponentielle l'unique fonction f dérivable sur Rtelle que f'=f et f(0)=1 . On note cette fonction exp.

Nous savons donc que $\exp(0)=1$ et pour tout $x \in \mathbb{R}$, $\exp'(x)=\exp(x)$

Nous admettrons de plus la propriété suivante :

Propriété : Pour tout $x \in \mathbb{R}$ $\exp(x) > 0$

II. Relation fonctionnelle.

Théorème 2: Pour tous réels x, y, $\exp(x+y) = \exp(x)\exp(y)$. Cette relation s'appelle relation fonctionnelle.

Autrement dit, l'exponentielle d'une somme de deux nombres est le produit de l'exponentielle de chacun de ces nombres.

Preuve:

Soit y un réel fixé. On sait, d'après la propriété vue au I, que $\exp x \neq 0$ pour tout x

Il s'agit de démontrer que la fonction f_y définie sur \mathbb{R} par $f_y(x) = \frac{\exp(x+y)}{\exp x}$ est constante et est égale à $\exp y$.

La fonction exponentielle étant définie et dérivable sur $\mathbb R$ alors f_y est dérivable sur $\mathbb R$

Pour
$$x \in \mathbb{R}$$
, $f_y'(x) = \frac{\exp'(x+y).\exp(x) - \exp(x+y).\exp'(x)}{\exp^2(x)} = 0$.

Donc, pour tout $x \in \mathbb{R}$ $f'_y(x) = 0$ d'où f_y est une fonction constante sur \mathbb{R} De plus $f_y(0) = \frac{\exp y}{\exp 0} = \exp y$, d'où pour tout x appartenant à \mathbb{R} $f_y(x) = \exp y$

Donc, pour tout
$$x$$
, $\frac{\exp(x+y)}{\exp(x)} = \exp(y)$.

Donc, pour tout x, $\exp(x+y) = \exp(x) \exp(y)$.

Exemple:

1.
$$\exp(3+7) = \exp(3)\exp(7)$$
 donc $\exp(10) = \exp(3)\exp(7)$

2.
$$\exp(3+(-3)) = \exp(3) \exp(-3)$$
, donc $\exp(0) = \exp(3) \exp(-3)$
On a donc $\exp(3) \exp(-3) = 1$ et donc $\exp(-3) = \frac{1}{\exp(3)}$

En généralisant, nous obtenons l'égalité suivante : $\exp(-x) = \frac{1}{\exp(x)}$

Démontrons que cette égalité est vraie pour tout $x \in \mathbb{R}$

Utilisons la formule du théorème 2 avec y=-x, on a

$$\exp(x + (-x)) = \exp(x) \exp(-x)$$

$$\Leftrightarrow \exp(0) = \exp(x) \exp(-x)$$

$$\Leftrightarrow 1 = \exp(x)\exp(-x)$$

$$\Leftrightarrow \frac{1}{\exp(x)} = \exp(-x)$$

$$\Leftrightarrow \exp(-x) = \frac{1}{\exp(x)}$$

Propriété : Pour tout x appartenant à \mathbb{R}

$$\exp(-x) = \frac{1}{\exp(x)}.$$

Propriété : Pour tout x, y appartenant à \mathbb{R}

$$\exp(x-y) = \frac{\exp(x)}{\exp(y)}$$

Démonstration : En utilisant la propriété précédente et le théorème 2 avec y=-y, on a pour tout x, y,

$$\exp(x + (-y)) = \exp(x) \exp(-y)$$

$$\Leftrightarrow \exp(x-y) = \exp(x) \times \frac{1}{\exp(y)}$$

$$\Leftrightarrow \exp(x-y) = \frac{\exp(x)}{\exp(y)}$$

Exemples:

1.
$$\exp(-3) = \frac{1}{\exp(3)}$$

2.
$$\exp(4-5) = \frac{\exp(4)}{\exp(5)} \Leftrightarrow \exp(-1) = \frac{\exp(4)}{\exp(5)}$$

Nous admettrons la propriété suivante :

Propriété:

Pour tout réel x et pour tout entier relatif n, $[\exp(x)]^n = \exp(nx)$

Exemple:

$$\exp(4)^{10} = \exp(10 \times 4) \iff \exp(4)^{10} = \exp(40)$$

III. Une autre notation.

Notons e l'image de 1 par la fonction exponentielle. On a donc e=exp(1).

Remarque : à la calculatrice, on a e \approx 2,7182818.

Comme π , le nombre e est un nombre irrationnel, c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique. Ses premières décimales sont :

 $e \approx 2,7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274...$

Le nombre *e* est également un nombre transcendant. On dit qu'un nombre est transcendant s'il n'est solution d'aucune équation à coefficients entiers.

Le nombre $\sqrt{2}$ par exemple, est irrationnel mais n'est pas transcendant puisqu'il est solution de l'équation $x^2-2=0$. Un tel nombre est dit

«algébrique».

Le premier à s'intéresser de façon sérieuse au nombre *e* est le mathématicien suisse *Leonhard Euler* (1707; 1783), ci-dessus. C'est à lui que nous devons le nom de ce nombre. Non pas qu'il s'agisse de l'initiale de son nom mais peut être car *e* est la première lettre du mot exponentiel.

Dans « Introductio in Analysin infinitorum » publié en 1748, Euler explique que :

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + ...$$

Rappelons que par exemple 5! se lit "factorielle 5" et est égal à 1 x 2 x 3 x 4 x 5. Par cette formule, il obtient une estimation de *e* avec 18 décimales exactes. Nous devons aussi à Euler la démonstration de l'irrationalité de *e*.

En utilisant la formule $[\exp(x)]^n = \exp(nx)$ avec x=1 et n=x (ce qui est un abus puisque n ne peut être qu'un nombre entier, alors que x est un nombre réel, mais faisons comme ci cela n'avait pas d'importance....), nous obtenons donc :

$$\exp(1)^x = \exp(1 \times x) \Leftrightarrow e^x = \exp(x)$$

Nous déciderons donc d'écrire : pour tout $x \in \mathbb{R}$, $\exp(x) = e^x$.

Les propriétés vues précédemment s'écrivent alors :

Pour tous
$$x$$
, y , $e^{x+y} = e^x e^y$

$$e^{-x} = \frac{1}{e^x}$$

$$e^{x-y} = \frac{e^x}{e^y}$$

$$(e^x)^n = e^{nx} \text{ pour tout } n \in \mathbb{N}$$

Visionner la vidéo suivante puis faire les exemples qui suivent : https://youtu.be/qDFjeFyA_OY

Exemples : Simplifier les expressions suivantes :

$$A = \frac{e^{7} \times e^{-4}}{e^{-5}}$$

$$B = (e^{5})^{-6} \times e^{-3}$$

$$C = \frac{1}{(e^{-3})^{2}} + \frac{(e^{4})^{-1}}{e^{2} \times e^{-6}}$$

IV. Étude de fonction.

1. Étude de la fonction exponentielle.

Nous savons que pour tout $x \in \mathbb{R}$ $\exp'(x) = \exp(x)$ et $\exp(x) > 0$. Donc la dérivée de la fonction exp est positive, donc la fonction exp est croissante.

Propriété : la fonction exp est strictement croissante sur IR

x	$-\infty$ $+\infty$
f(x)	A

Voici la courbe représentative de la fonction exponentielle.

2. Résolution d'équations et d'inéquations.

En observant le tableau de variation ou la courbe représentative de la fonction, on en déduit la propriété suivante :

Propriété;

- 1. Pour tout $m \in [0, +\infty[$, l'équation $e^x = m$ admet une solution unique dans \mathbb{R}
- 2. $e^a = e^b <=> a = b$ $e^a < e^b <=> a < b$

Visionner les vidéos suivantes : https://youtu.be/d28Fb-zBe4Y

Application : Résoudre les équations et inéquations suivantes. a. $e^{3x+1}=1$

b.
$$e^{2x^2} - e^{3-5x} = 0$$

c.
$$e^{-x+7} < e^{3x+2}$$

c. Étude d'une fonction utilisant la fonction exponentielle.

Visionner les vidéos : https://youtu.be/MA1aW8ldjo

Application : Déterminer l'ensemble de définition, calculer la dérivée puis dresser le tableau de variations de la fonction *f*.

a.
$$f(x)=xe^x$$

b.
$$f(x) = \frac{e^x}{x}$$

c. Étude d'une fonction du type $x \to e^{kx}$, k étant un nombre réel non nul.

Propriété : soit f la fonction définie sur \mathbb{R} par $f(x) = e^{kx}$, où k est un nombre réel non nul. La fonction f est dérivable sur \mathbb{R} pour tout $x \in \mathbb{R}$ $f'(x) = k e^{kx}$

Application: Soit les fonctions f et g définies sur \mathbb{R} par $f(x) = e^{2x}$ et $g(x) = e^{-3x}$.

1. Déterminer les dérivées de f et g.

$$f'(x)=2e^{2x}$$

 $g'(x)=-3e^{-3x}$

2. Étudier le signe des dérivées de f et g .

$$f'(x) > 0$$

$$g'(x) < 0$$

3. Dresser le tableau de variations des fonctions f et g.

f est croissante sur \mathbb{R}

g est décroissante sur \mathbb{R} 4. Tracer les courbes représentatives de f et g.

Visionner la vidéo suivante : https://youtu.be/lsLQwiB9Nrg

Application :Entre 1929 et 1933, aux États-Unis, les prix ont pratiquement baissé de 25%. L'indice des prix (base 100) à cette période peut être modélisé par la fonction $f(t)=100\times e^{-0,006t}$, où t est le temps en mois à partir de novembre 1929.

1. Déterminer l'indice des prix un an plus tard, au mois d'octobre 1930 ; puis au mois d'octobre 1931.

2. Déterminer le sens de variation de la fonction f.

$$f(t)=100\times e^{-0.006t}$$

 $f'(t)=100\times (-0.006) e^{-0.006t}=-0.6 e^{-0.006t}<0$
Donc la fonction f est décroissante.

3. Déterminer l'indice des prix au mois de septembre 1933.

t = 0 nov 1929

t = 47 septembre 1933

0 11/29

12 11/30

24 11/31

36 11/32

48 11/33

46 09/33

l'indice est de 75,9

- 4. La valeur obtenue correspond-elle à une baisse de 25% par rapport à novembre 1929 ?
- 5. Représenter la fonction f sur l'intervalle [0;60].
- V. Exponentielle et suites.

Soit (u_n) la suite définie sur Npar $u_n = e^{na}$, où a est un nombre réel.

Étudions la nature de la suite (u_n) .

Pour tout
$$n$$
, $u_n = e^{na}$ et $u_{n+1} = e^{(n+1)a} = e^{na+a} = e^{na}e^a = e^a u_n$.

Donc la suite (u_n) est géométrique de raison e^a .

Propriété: Pour tout réel a, la suite (u_n) définie sur \mathbb{N} par $u_n = e^{na}$ est géométrique de raison e^a .

visionner la vidéo: https://youtu.be/hKh-ry9AAO0

Application : Déterminer la raison et le premier terme des suites géométriques définies sur **N** par : $u_n = e^{-3n}$, $v_n = e^{3n+4}$, $w_n = 10e^{10n-1}$

$$u_n = e^{-3n}$$

 (u_n) est géométrique de raison e^{-3} et de premier terme $u_0 = e^{-3 \times 0} = e^0 = 1$

$$v_n = e^{3n+4} = e^{3n}e^4$$

 $v_{n+1} = e^{3(n+1)}e^4 = e^{3n+3}e^4 = e^{3n}e^3e^4 = e^3e^{3n+4}$

Donc la suite (v_n) est géométrique de raison e^3 et de premier terme $v_0 = e^{3 \times 0 + 4} = e^4$

$$w_n = 10 e^{10n-1}$$

 $w_{n+1} = 10 e^{10(n+1)-1} = 10 e^{10n+10-1} = 10 e^{10n-1} e^{10} = e^{10} w_n$

La suite (w_n) est géométrique de raison e^{10} et de premier terme $w_0 = 10 e^{10 \times 0 - 1} = 10 e^{-1}$