

# **ACADGILD**

## **SESSION 10: Correlations**

## Assignment 1

Submitted by: Uday Kumar Udaykumarr019@gmail.com (M):+91-8123431864

## Data Analytics

## Table of Contents

| 1. Problem Statement | 3 |
|----------------------|---|
|                      |   |
| 2. Solution          | 3 |

#### 1. Problem Statement

- 1 Import dataset from the following link: <a href="https://archive.ics.uci.edu/ml/machine-learning-databases/00360/">https://archive.ics.uci.edu/ml/machine-learning-databases/00360/</a> Perform the below written operations:
- a) Read the file in Zip format and get it into R
- b) Create Univariate for all the columns.
- c) Check for missing values in all columns.
- d) Impute the missing values using appropriate methods
- e) Create bi-variate analysis for all relationships
- f) Test relevant hypothesis for valid relations
- g) Create cross tabulations with derived variables
- h) check for trends and patterns in time series
- Find out the most polluted time of the day and the name of the chemical compound

#### 2. Solution

a) Read the file in Zip format and get it into R

The R-script for the given problem is as follows:

```
library(readxl)
#AirQualityUCI <-read_excel(unzip("E:/uday/acadgild data analytics/supporting files/AirQualityUCI.zip"))
AirQualityUCI <- read_excel("E:/uday/acadgild data analytics/supporting files/AirQualityUCI.xlsx")
View(AirQualityUCI)
dim(AirQualityUCI)
str(AirQualityUCI)
```

The output of the R-Script (from Console window) is given as follows:

```
> library(readx1)
> AirQualityUCI <-read_excel(unzip("E:/uday/acadgild data
analytics/supporting files/AirQualityUCI.zip"))
> View(AirQualityUCI)
```



The file is read from Zip format and is viewed with name AirQualityUCI.

## b) Create Univariate for all the columns.

## The R-script for the given problem is as follows:

library(psych)
describe(Air)

#### The output of the R-Script (from Console window) is given as follows:

- > library(psych)
- > describe(Air)

| > describe()             | vars    | n              | mean          | sd             | median  | trimmed | mad     | min  | max     |
|--------------------------|---------|----------------|---------------|----------------|---------|---------|---------|------|---------|
| range skew               | kurtosi | s se           | e             |                |         |         |         |      |         |
| Date                     | 1       | 9357           | Nan           | NA             | NA      | NaN     | NA      | Inf  | -Inf    |
| -Inf NA                  | NA      | NA             |               |                |         |         |         |      |         |
| Time                     | 2       | 9357           | NaN           | NA             | NA      | NaN     | NA      | Inf  | -Inf    |
| -Inf NA                  | NA      |                |               |                |         |         |         |      |         |
| CO(GT)                   |         |                | -34.21        | 77.66          | 1.50    | -18.41  | 1.48    | -200 | 11.90   |
| 211.90 -1.6              |         | 78 0.8         |               |                |         |         |         |      |         |
| PT08.S1(CO)              |         |                |               | 329.82         | 1052.50 | 1069.72 | 218.19  | -200 | 2039.75 |
| 2239.75 -1.              |         | .83 3          |               |                |         |         |         |      |         |
| NMHC(GT)                 |         |                |               | 139.79         | -200.00 | -200.00 | 0.00    | -200 | 1189.00 |
| 1389.00 4.0              |         | 3.85 1         |               |                |         |         |         |      |         |
| C6H6(GT)                 |         |                | 1.87          | 41.38          | 7.89    | 8.75    | 6.62    | -200 | 63.74   |
| 263.74 -4.53             |         | 17 0.4         |               | 242 22         | 004 50  | 007.06  | 200 27  | 200  | 2214 00 |
| PT08.S2(NMH              | -       |                | 894.48        | 342.32         | 894.50  | 907.06  | 288.37  | -200 | 2214.00 |
| 2414.00 -0.1             |         | .37 3          | .54<br>168.60 | 257 42         | 141 00  | 147 70  | 161 21  | 200  | 1470 00 |
| NOX(GT)                  |         |                |               | 237.42         | 141.00  | 147.72  | 101.31  | -200 | 1479.00 |
| 1679.00 0.8              |         | .50 2          | .00<br>794.87 | 221 00         | 794.25  | 700 04  | 220 70  | 200  | 2682.75 |
| PT08.S3(NOX) 2882.75 -0. | •       | 9337<br>3.10 3 |               | 321.98         | 794.23  | 799.84  | 238.70  | -200 | 2082.75 |
| NO2(GT)                  |         |                | 58.14         | 126 02         | 96.00   | 72.32   | 59.30   | 200  | 339.70  |
| 539.70 -1.2              |         | 27 1.3         |               | 120.93         | 90.00   | 12.32   | 39.30   | -200 | 333.70  |
| PT08.S4(NO2)             |         |                |               | <i>1</i> 67 10 | 1445.50 | 1426 54 | 3/10 15 | -200 | 2775 00 |
| 2975.00 -1.2             | •       | .26 4          |               | 407.13         | 1773.30 | 1420.34 | 373.13  | 200  | 2773.00 |
| PT08.S5(03)              |         |                | 974.95        | 456 92         | 942.00  | 972 05  | 403 64  | -200 | 2522.75 |
| 2722.75 -0.0             |         | .64 4          |               | 130132         | 312100  | 372103  | 105101  | 200  | 2322173 |
| T                        |         |                | 9.78          | 43.20          | 17.20   | 17.39   | 9.71    | -200 | 44.60   |
| 244.60 -4.4              |         | 76 0.4         |               |                |         |         |         |      |         |
| RH                       |         | 9357           |               | 51.22          | 48.55   | 48.04   | 20.65   | -200 | 88.73   |
| 288.73 -3.93             | 3 15.   | 75 0.5         | 53            |                |         |         |         |      |         |
| АН                       |         | 9357           | -6.84         | 38.98          | 0.98    | 0.99    | 0.45    | -200 | 2.23    |
| 202.23 -4.7              | 5 20.   | 60 0.4         | 40            |                |         |         |         |      |         |

#### **Conclusion/Interpretation:**

Univariate for all the columns is created using describe() function

## c) Check for missing values in all columns.

### The R-script for the given problem is as follows:

col1<- mapply(anyNA,AirQualityUCI) col1 summary(AirQualityUCI) is.na(AirQualityUCI)

```
#or
```

```
AirQualityUCI[AirQualityUCI == -200] <- NA
View(AirQualityUCI)
library(VIM)
aggr(AirQualityUCI, col=c('pink','yellow'),
    numbers=TRUE, sortVars=TRUE,
    labels=names(AirQualityUCI), cex.axis=.7,
    gap=3, ylab=c("Missing data","Pattern")) # graphical presentation of NAs
sapply(AirQualityUCI, function(x) sum(is.na(x))) # count of NAs
AirQualityUCI$`NMHC(GT)` <- NULL
```

#### The output of the R-Script (from Console window) is given as follows:

```
> col1<- mapply(anyNA,AirQualityUCI)</pre>
> col1
                        Time
                                     CO(GT)
                                               PT08.S1(CO)
                                                                 NMHC(GT)
         Date
C6H6(GT)
                       FALSE
                                                                     TRUE
        FALSE
                                       TRUE
                                                      TRUE
TRUE
                              PT08.S3(NOx)
                                                            PT08.S4(NO2)
PT08.S2(NMHC)
                     NOx(GT)
                                                   NO2(GT)
PT08.S5(03)
         TRUE
                        TRUE
                                       TRUE
                                                      TRUE
                                                                     TRUE
TRUE
            Т
                          RH
                                         AΗ
         TRUE
                        TRUE
                                       TRUE
> summary(AirQualityUCI)
                                      Time
      Date
                                                                     CO(GT)
PT08.S1(CO)
 Min.
        :2004-03-10 00:00:00
                                Min.
                                        :1899-12-31 00:00:00
                                                                 Min.
                                                                        : 0.100
       : 647.2
Min.
 1st Qu.:2004-06-16 00:00:00
                                 1st Qu.:1899-12-31 05:00:00
                                                                 1st Qu.: 1.100
1st Qu.: 936.8
Median :2004-09-21 00:00:00
                                Median :1899-12-31 11:00:00
                                                                 Median : 1.800
Median :1063.0
        :2004-09-21 04:30:05
                                        :1899-12-31 11:29:55
 Mean
                                 Mean
                                                                 Mean
                                                                        : 2.153
Mean
       :1099.7
 3rd Qu.:2004-12-28 00:00:00
                                 3rd Qu.:1899-12-31 18:00:00
                                                                 3rd Qu.: 2.900
3rd Qu.:1231.2
        :2005-04-04 00:00:00
 Max.
                                 Max.
                                        :1899-12-31 23:00:00
                                                                 Max.
                                                                        :11.900
       :2039.8
Max.
                                                                 NA's
                                                                        :1683
       :366
NA's
                                     PT08.S2(NMHC)
    NMHC(GT)
                      C6H6(GT)
                                                          NOx(GT)
PT08.S3(NOx)
Min.
        :
            7.0
                   Min.
                          : 0.149
                                     Min.
                                            : 383.2
                                                       Min.
                                                                   2.0
                                                                         Min.
322.0
 1st Qu.: 67.0
                   1st Qu.: 4.437
                                     1st Qu.: 734.4
                                                       1st Qu.:
                                                                  98.0
                                                                         1st Qu.:
657.9
```

```
Median : 909.0
Median : 150.0
                 Median : 8.240
                                                   Median : 179.8
                                                                    Median:
805.5
Mean
      : 218.8
                 Mean
                        :10.083
                                  Mean
                                         : 939.0
                                                   Mean : 246.9
                                                                    Mean
835.4
3rd Qu.: 297.0
                 3rd Qu.:13.989
                                  3rd Qu.:1116.2
                                                   3rd Qu.: 326.0
                                                                    3rd Qu.:
969.2
       :1189.0
                       :63.742
                                         :2214.0
                                                          :1479.0
Max.
                 Max.
                                  Max.
                                                   Max.
                                                                    Max.
:2682.8
NA's
       :8443
                 NA's
                        :366
                                  NA's
                                         :366
                                                   NA's
                                                          :1639
                                                                    NA's
:366
                 PT08.S4(NO2)
                                PT08.S5(03)
   NO2(GT)
                                                      Т
                                                                      RH
Min. : 2.0
                Min. : 551
                               Min. : 221.0
                                                Min. :-1.90
                                                                Min.
9.175
                               1st Qu.: 731.4
1st Qu.: 78.0
                1st Qu.:1227
                                                1st Qu.:11.79
                                                                1st
Qu.:35.812
Median :109.0
                Median :1463
                               Median : 963.2
                                                Median :17.75
                                                                Median
:49.550
                                     :1022.8
Mean
       :113.1
                       :1456
                                                       :18.32
                Mean
                               Mean
                                                Mean
                                                                Mean
:49.232
3rd Qu.:142.0
                3rd Qu.:1674
                               3rd Qu.:1273.4
                                                3rd Qu.:24.40
                                                                3rd
Qu.:62.500
                                      :2522.8
Max.
       :339.7
                       :2775
                                                       :44.60
                Max.
                               Max.
                                                Max.
                                                                Max.
:88.725
                NA's
                       :366
                               NA's
                                      :366
                                                NA's
NA's
       :1642
                                                       :366
                                                                NA's
                                                                       :366
      AΗ
Min.
       :0.1847
1st Qu.:0.7368
Median :0.9954
Mean
       :1.0255
3rd Qu.:1.3137
Max.
      :2.2310
NA's
        :366
> is.na(AirQualityUCI)
        Date Time CO(GT) PT08.S1(CO) NMHC(GT) C6H6(GT) PT08.S2(NMHC)
NOx(GT) PT08.S3(NOx)
   [1,] FALSE FALSE FALSE
                                         FALSE
                                FALSE
                                                  FALSE
                                                                FALSE
FALSE
            FALSE
   [2,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
            FALSE
FALSE
   [3,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
FALSE
            FALSE
   [4,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
            FALSE
FALSE
   [5,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
FALSE
            FALSE
   [6,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
            FALSE
FALSE
   [7,] FALSE FALSE
                                                                FALSE
                    FALSE
                                FALSE
                                         FALSE
                                                  FALSE
FALSE
            FALSE
   [8,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
            FALSE
FALSE
   [9,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
FALSE
            FALSE
  [10,] FALSE FALSE FALSE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
            FALSE
  [11,] FALSE FALSE
                     TRUE
                                FALSE
                                         FALSE
                                                  FALSE
                                                                FALSE
FALSE
             FALSE
```

|                         |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
|-------------------------|----------------------|-------|-------|-------|-------|-------|
| [13,]                   |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
| [14,]                   | FALSE<br>FALSE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| [15,]                   | FALSE FALSE          | FALSE | FALSE | FALSE | FALSE | FALSE |
| [16,]                   | FALSE<br>FALSE FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| FALSE<br>[17,]<br>FALSE |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
| _                       | FALSE FALSE          | FALSE | FALSE | FALSE | FALSE | FALSE |
| _                       | FALSE FALSE          | FALSE | FALSE | FALSE | FALSE | FALSE |
|                         | FALSE FALSE          | FALSE | FALSE | FALSE | FALSE | FALSE |
| [21,]                   |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
| [22,]                   |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
| [23,]                   |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
| [24,]                   |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
|                         | FALSE FALSE          | FALSE | FALSE | FALSE | FALSE | FALSE |
| [26,]<br>FALSE          | FALSE FALSE<br>FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| [27,]<br>FALSE          | FALSE FALSE<br>FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| [28,]<br>FALSE          |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
| [29,]<br>FALSE          |                      | FALSE | FALSE | FALSE | FALSE | FALSE |
|                         | FALSE FALSE<br>FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
|                         | FALSE FALSE<br>FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |
| FALSE                   | FALSE FALSE<br>FALSE |       |       | FALSE |       | FALSE |
| FALSE                   |                      |       |       |       |       | FALSE |
| TRUE                    | _                    |       |       |       |       | FALSE |
| [35,]<br>FALSE          | FALSE FALSE<br>FALSE | TRUE  | FALSE | FALSE | FALSE | FALSE |
| FALSE                   | FALSE FALSE<br>FALSE |       |       |       |       | FALSE |
| FALSE                   |                      |       | FALSE | FALSE | FALSE | FALSE |
| FALSE                   | FALSE FALSE<br>FALSE |       |       | FALSE |       | FALSE |
|                         | FALSE FALSE<br>FALSE | FALSE | FALSE | FALSE | FALSE | FALSE |

|                | FALSE FALSE           | TRUE      | FALSE        | TRUE   | FALSE     | FALSE |
|----------------|-----------------------|-----------|--------------|--------|-----------|-------|
| [41,]          | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE          | FALSE                 |           |              |        |           |       |
|                | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| [46,]          | FALSE FALSE           | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE<br>[47,] | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE          | _                     | TAL ST    | TAL CT       | EALSE. | TAL ST    | FALSE |
| [48,]<br>FALSE | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| [50,]          | FALSE FALSE           | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE                 | EALCE.    | FALSE        | EALSE. | EALSE.    | FALSE |
|                | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| [54,]          | FALSE FALSE           | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE          | FALSE                 | FALSE     | FALSE        | EALSE. | FALSE     | FALSE |
| FALSE          | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| - /-           | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| [58,]          | FALSE FALSE           | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| TRUE<br>[59,]  | FALSE<br>FALSE FALSE  | TRUE      | FALSE        | FALSE  | FALSE     | FALSE |
|                | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FAI SF | FALSE     | FALSE |
| FALSE          | FALSE                 |           |              |        |           | -     |
|                | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| [62,]          | FALSE FALSE           | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE [63,]    | FALSE<br>FALSE FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE          | FALSE<br>FALSE FALSE  | FAI SF    | FΔISF        | FAI SF | FALSE     | FALSE |
| FALSE          | FALSE                 |           |              |        |           |       |
| [65,]<br>FALSE | FALSE FALSE<br>FALSE  | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| [66,]          | FALSE FALSE           | FALSE     | FALSE        | FALSE  | FALSE     | FALSE |
| FALSE          | FALSE<br>NO2(GT) PT08 | 3.S4(NO2) | PT08.S5(03)  | Т      | RH AH     |       |
|                | FALSE                 |           |              |        | LSE FALSE |       |
| [2,]           | FALSE FALSE           | FALSE FAL | SE FALSE FAL | SE     |           |       |

| F2 7  |       |       |       |       |              |              |
|-------|-------|-------|-------|-------|--------------|--------------|
| [3,]  | FALSE | FALSE |       | FALSE |              |              |
| [4,]  | FALSE | FALSE |       | FALSE |              |              |
| [5,]  | FALSE | FALSE | FALSE |       |              | FALSE        |
| [6,]  | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [7,]  | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [8,]  | FALSE | FALSE | FALSE | FALSE | <b>FALSE</b> | <b>FALSE</b> |
| [9,]  | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [10,] | TRUE  | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [11,] | FALSE | FALSE | FALSE | FALSE | FALSE        |              |
| [12,] | FALSE | FALSE |       | FALSE | FALSE        |              |
| [13,] | FALSE | FALSE |       | FALSE | FALSE        |              |
| [14,] | FALSE | FALSE |       | FALSE | FALSE        |              |
| [15,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [16,] | FALSE | FALSE | FALSE |       |              | FALSE        |
|       |       |       |       |       |              |              |
| [17,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [18,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [19,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [20,] | FALSE | FALSE |       | FALSE |              |              |
| [21,] | FALSE | FALSE |       | FALSE |              |              |
| [22,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [23,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [24,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [25,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [26,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [27,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [28,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [29,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [30,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [31,] | FALSE | FALSE | FALSE | FALSE |              | FALSE        |
| [32,] | FALSE | FALSE | FALSE | FALSE |              | FALSE        |
| [33,] | FALSE | FALSE | FALSE |       |              | FALSE        |
| [34,] | TRUE  | FALSE |       | FALSE |              | FALSE        |
| [35,] | FALSE | FALSE |       | FALSE | FALSE        |              |
|       |       |       |       |       |              |              |
| [36,] | FALSE | FALSE |       | FALSE |              | FALSE        |
| [37,] | FALSE | FALSE |       | FALSE |              |              |
| [38,] | FALSE | FALSE |       |       |              | FALSE        |
| [39,] | FALSE | FALSE |       | FALSE |              |              |
| [40,] | TRUE  | FALSE |       | FALSE |              |              |
| [41,] | FALSE | FALSE |       | FALSE |              |              |
| [42,] | FALSE | FALSE |       | FALSE |              |              |
| [43,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [44,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [45,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [46,] | FALSE | FALSE | FALSE | FALSE | FALSE        | <b>FALSE</b> |
| [47,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [48,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [49,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
| [50,] | FALSE | FALSE |       | FALSE |              |              |
| [51,] | FALSE | FALSE |       | FALSE |              |              |
| [52,] | FALSE | FALSE |       | FALSE |              |              |
| [53,] | FALSE | FALSE |       | FALSE |              |              |
| [54,] | FALSE | FALSE |       | FALSE |              |              |
| [55,] | FALSE | FALSE |       | FALSE |              |              |
|       |       |       |       |       |              |              |
| [56,] | FALSE | FALSE |       | FALSE |              |              |
| [57,] | FALSE | FALSE |       | FALSE |              |              |
| [58,] | TRUE  | FALSE |       | FALSE |              |              |
| [59,] | FALSE | FALSE | FALSE | FALSE | FALSE        | FALSE        |
|       |       |       |       |       |              |              |

```
[60,]
           FALSE
                          FALSE
                                        FALSE FALSE FALSE
  [61,]
           FALSE
                          FALSE
                                        FALSE FALSE FALSE
  [62,]
                                        FALSE FALSE FALSE
           FALSE
                          FALSE
  [63,]
           FALSE
                          FALSE
                                        FALSE FALSE FALSE
  [64,]
           FALSE
                                        FALSE FALSE FALSE
                          FALSE
  [65,]
                                        FALSE FALSE FALSE
           FALSE
                          FALSE
  [66,]
           FALSE
                          FALSE
                                        FALSE FALSE FALSE
 [ reached getOption("max.print") -- omitted 9291 rows ]
> Air[Air == -200] <- NA
  View(Air)
 library(VIM)
  aggr(Air, col=c('pink','yellow'),
        numbers=TRUE, sortVars=TRUE,
labels=names(Air), cex.axis=.7,
        gap=3, ylab=c("Missing data", "Pattern"))
                                                      # graphical presentation of NAs
 Variables sorted by number of missings:
       Variable
                     Count
                 0.9023191
       NMHC(GT)
                 0.1798653
         CO(GT)
        NO2(GT)
                 0.1754836
        NOx (GT)
                 0.1751630
    PT08.S1(CO)
                 0.0391151
       C6H6(GT)
                 0.0391151
  PT08.S2(NMHC)
                 0.0391151
                 0.0391151
   PT08.S3(NOx)
   PT08.S4(NO2)
                 0.0391151
    PT08.S5(03)
                 0.0391151
                 0.0391151
             RH 0.0391151
                 0.0391151
             AΗ
           Date 0.0000000
           Time 0.0000000
     0.8
     9.0
 Missing data
     0.4
     0.2
           CO(GT)
                    C6H6(GT)
                                      Date
                                                  CO(GT)
                                                           сене(ст)
                                                                         H A age iii
                                                         PT08.S1(CO)
                                                   # count of NAs
> sapply(Air, function(x) sum(is.na(x)))
          Date
                          Time
                                        CO(GT)
                                                  PT08.S1(CO)
                                                                     NMHC(GT)
                                          1683
                                                           366
                                                                          8443
             0
                             0
      C6H6(GT) PT08.S2(NMHC)
                                      NOx(GT)
                                                 PT08.S3(NOx)
                                                                      NO2(GT)
           366
                           366
                                          1639
                                                           366
                                                                         1642
 PT08.S4(NO2)
                  PT08.S5(03)
                                                            RH
                                                                            AΗ
           366
                           366
                                           366
                                                           366
                                                                           366
```

Variable NMHC(GT) is having 90% of missing values. Hence, NMHC(GT) is not considered and omitted from the data frame

## d) Impute the missing values using appropriate methods

#### The R-script for the given problem is as follows:

```
colSums(is.na(AirQualityUCI))
library(plyr)
AirQualityUCI[AirQualityUCI==-200.0]<-NA
for(i in 1:n
col(AirQualityUCI)){ AirQualityUCI[is.na(AirQualityUCI[,i]),i] <- mean(AirQualityUCI[,i], na.rm = TRUE)}
summary(AirQualityUCI)
```

#### The output of the R-Script (from Console window) is given as follows:

```
> AirQualityUCI[AirQualityUCI==-200.0]<-NA</p>
  for(i in 1:ncol(AirQualityUCI)){
+ AirQualityUCI[is.na(AirQualityUCI[,i]),i] <- mean(AirQualityUCI[,i], na.rm = TRUE)}
> summary(AirQualityUCI)
      Date
                                        Time
                                   Min.
         :2004-03-10 00:00:00
                                           :1899-12-31 00:00:00
                                                                    Min.
 1st Qu.:2004-06-16 00:00:00
                                   1st Qu.:1899-12-31 05:00:00
                                                                    1st Qu.: 1.200
 Median :2004-09-21 00:00:00
                                   Median :1899-12-31 11:00:00
                                                                    Median : 2.153
         :2004-09-21 04:30:05
                                           :1899-12-31 11:29:55
                                   Mean
                                                                    Mean
 3rd Qu.:2004-12-28 00:00:00
                                   3rd Qu.:1899-12-31 18:00:00
                                                                    3rd Qu.: 2.600
         :2005-04-04 00:00:00
                                           :1899-12-31 23:00:00
                                                                    Max.
                                                                             :11.900
  PT08.S1(CO)
                                           C6H6(GT)
                                                          PT08.S2(NMHC)
                       NMHC(GT)
                                               : 0.149
 Min.
         : 647.2
                    Min.
                                       Min.
                                                          Min.
                                                                    383.2
 1st Qu.: 941.2
                                                                    742.5
923.2
                    1st Qu.: 218.8
                                       1st Qu.: 4.591
                                                          1st Qu.:
 Median :1074.5
                    Median:
                              218.8
                                       Median: 8.593
                                                          Median :
                            : 218.8
                                              :10.083
       :1099.7
                                                                    939.0
 Mean
                    Mean
                                       Mean
                                                          Mean
 3rd Qu.:1221.2
                    3rd Qu.: 218.8
                                       3rd Qu.:13.636
                                                          3rd Qu.:1104.8
        :2039.8
                            :1189.0
                                               :63.741
                                                                  :2214.0
                    Max.
                                       Max.
                                                          Max.
                                       NO2(GT)
   NOx(GT)
                   PT08.53(NOx)
                                                       PT08.54(NO2)
                                                                       PT08.S5(03)
                                                                     Min. : 221.0
1st Qu.: 741.8
                                                     Min. : 551
1st Qu.:1242
Min.
            2.0
                  Min. : 322.0
1st Qu.: 665.5
                                    Min. : 2.0
1st Qu.: 85.9
                                    Min.
1st Qu.: 112.0
                                                                      Median: 982.5
Median : 229.0
                  Median : 817.5
                                    Median :113.1
                                                      Median :1456
         246.9
                            835.4
                                            :113.1
                                                             :1456
                                                                             :1022.8
Mean
                   Mean
                                    Mean
                                                      Mean
                                                                      Mean
3rd Qu.: 284.2
                   3rd Qu.: 960.2
                                     3rd Qu.:133.0
                                                                      3rd Qu.: 1255.2
                                                      3rd Qu.:1662
                          :2682.8
        :1479.0
                                            :339.7
                                                             :2775
                                                                             :2522.8
                  Max.
                                    Max.
                                                      Max.
Max.
                                                                     Max.
                        RH
                                          AH
                          9.175
                                           :0.1847
                                   Min.
        :-1.90
Min.
                 Min.
                 1st Qu.:36.550
Median :49.232
1st Qu.:12.03
                                    1st Qu.: 0.7461
Median :18.27
                                    Median :1.0154
                        :49.232
       :18.32
                                          :1.0255
Mean
                 Mean
                                   Mean
3rd Qu.:24.07
                 3rd Qu.:61.875
                                    3rd Qu.:1.2962
Max.
        :44.60
                 Max.
                         :88.725
                                   Max.
                                           :2.2310
```

#### **Conclusion/Interpretation:**

Missing values are hence imputed

## e) Create bi-variate analysis for all relationships

#### The R-script for the given problem is as follows:

```
summary(AirQualityUCI)
plot(AirQualityUCI$`NOx(GT)`~AirQualityUCI$`PT08.S2(NMHC)`)
plot(AirQualityUCI$`PT08.S1(CO)`~AirQualityUCI$`PT08.S3(NOx)`)
plot(AirQualityUCI$`NO2(GT)`~AirQualityUCI$`PT08.S4(NO2)`)
plot(AirQualityUCI$`PT08.S5(O3)`~AirQualityUCI$T)
#or
pairs(AirQualityUCI) # graph
final <- complete
final$Date <- AirQualityUCI$Date
final$Time <- AirQualityUCI$Time
library(stringr)
AirQualityUCI$Time1 <- sub(".+? ", "", AirQualityUCI$Time)
AirQualityUCI$datetime <- as.POSIXct(paste(AirQualityUCI$Date,
AirQualityUCI$Time1), format="%Y-%m-%d %H:%M:%S")
View(AirQualityUCI)
str(AirQualityUCI)
```

#### The output of the R-Script (from Console window) is given as follows:

> plot(AirQualityUCI\$`NOx(GT)`~AirQualityUCI\$`PT08.S2(NMHC)`)



> plot(AirQualityUCI\$`PT08.S1(CO)`~AirQualityUCI\$`PT08.S3(NOx)`)



### > plot(AirQualityUCI\$`NO2(GT)`~AirQualityUCI\$`PT08.S4(NO2)`)



## > plot(AirQualityUCI\$`PT08.S5(03)`~AirQualityUCI\$T)





```
> final <- complete</pre>
> final$Date <- AirQualityUCI$Date</pre>
> final$Time <- AirQualityUCI$Time</pre>
> library(stringr)
> AirQualityUCI$Time1 <- sub(".+? ", "", AirQualityUCI$Time)</pre>
> AirQualityUCI$datetime <- as.POSIXct(paste(AirQualityUCI$Date,</pre>
AirQualityUCI$Time1), format="%Y-%m-%d %H:%M:%S")
> View(AirQualityUCI)
> str(AirQualityUCI)
Classes 'tbl_df', 'tbl' and 'data.frame': 9357 obs. of 17 variables:
                : POSIXct, format: "2004-03-10" "2004-03-10" "2004-03-10" ...
 $ Date
                : POSIXct, format: "1899-12-31 18:00:00" "1899-12-31
 $ Time
19:00:00" "1899-12-31 20:00:00" ...
                       2.6 2 2.2 2.2 1.6 1.2 1.2 1 0.9 0.6 ...
 $ CO(GT)
                : num
 $ PT08.S1(CO) : num
                      1360 1292 1402 1376 1272 ...
 $ C6H6(GT)
                : num
                       11.88 9.4 9 9.23 6.52 ...
 $ PT08.S2(NMHC): num
                       1046 955 939 948 836 ...
 $ NOX(GT)
                       166 103 131 172 131 89 62 62 45 NA ...
              : num
                       1056 1174 1140 1092 1205 ...
 $ PT08.S3(NOx) : num
 $ NO2(GT)
                : num
                       113 92 114 122 116 96 77 76 60 NA ...
 $ PT08.S4(NO2) : num
                       1692 1559 1554 1584 1490 ...
 $ PT08.S5(03)
                       1268 972 1074 1203 1110 ...
                : num
 $ T
                : num
                      13.6 13.3 11.9 11 11.2 ...
 $ RH
                : num
                       48.9 47.7 54 60 59.6 ...
 $ AH
                : num
                       0.758 0.725 0.75 0.787 0.789 ...
 $ Date1
                : num
                       12487 12487 12487 12487 ...
                       "18:00:00" "19:00:00" "20:00:00" "21:00:00" ...
 $ Time1
                : chr
                : POSIXct, format: "2004-03-10 18:00:00" "2004-03-10
 $ datetime
```

19:00:00" "2004-03-10 20:00:00" ...

Bi-variate analysis for all relationships are done and plotted.

## f) Test relevant hypothesis for valid relations

#### The R-script for the given problem is as follows:

```
t.test(AirQualityUCI$`CO(GT)`, AirQualityUCI$`PT08.S1(CO)`, paired = T)
      t.test(AirQualityUCI$`C6H6(GT)`, AirQualityUCI$`PT08.S2(NMHC)`, paired = T)
      t.test(AirQualityUCI$`NOx(GT)`, AirQualityUCI$`PT08.S3(NOx)`, paired = T)
      mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$Date1)
      summary(mod)
      mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$T)
      summary(mod)
      mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$RH)
      summary(mod)
      The output of the R-Script (from Console window) is given as follows:
> t.test(AirQualityUCI$`CO(GT)`, AirQualityUCI$`PT08.S1(CO)`, paired = T)
       Paired t-test
data: AirQualityUCI$`CO(GT)` and AirQualityUCI$`PT08.S1(CO)`
t = -436.85, df = 7343, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1113.299 -1103.352
sample estimates:
mean of the differences
              -1108.325
> t.test(AirQualityUCI$`C6H6(GT)`, AirQualityUCI$`PT08.S2(NMHC)`, paired = T)
       Paired t-test
data: AirQualityUCI$`C6H6(GT)` and AirQualityUCI$`PT08.S2(NMHC)`
t = -339.41, df = 8990, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -934.3112 -923.5812
sample estimates:
mean of the differences
              -928.9462
> t.test(AirQualityUCI$`NOx(GT)`, AirQualityUCI$`PT08.S3(NOx)`, paired = T)
       Paired t-test
data: AirQualityUCI$`NOx(GT)` and AirQualityUCI$`PT08.S3(NOx)`
t = -118.66, df = 7395, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
```

95 percent confidence interval:

```
-591.8554 -572.6187
sample estimates:
mean of the differences
              -582.2371
> mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$Date1)</pre>
> summary(mod)
call:
lm(formula = AirQualityUCI$`CO(GT)` ~ AirQualityUCI$Date1)
Residuals:
    Min
             10 Median
                             3Q
                                    Max
-2.1512 -1.0913 -0.3337 0.7422 9.7166
Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
                    -4.8415230 1.8033975 -2.685 0.007276 **
(Intercept)
AirQualityUCI$Date1 0.0005512 0.0001421
                                            3.879 0.000106 ***
Signif. codes: 0 'f**' 0.001 '**' 0.05 '.' 0.1 ' '1
Residual standard error: 1.452 on 7672 degrees of freedom
  (1683 observations deleted due to missingness)
Multiple R-squared: 0.001957, Adjusted R-squared: 0.001827
F-statistic: 15.04 on 1 and 7672 DF, p-value: 0.000106
> mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$T)</pre>
> summary(mod)
call:
lm(formula = AirQualityUCI$`CO(GT)` ~ AirQualityUCI$T)
Residuals:
             1Q Median
   Min
                             3Q
                                    Max
-2.1099 -1.0686 -0.3368 0.7071 9.7894
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                2.066033
                           0.037547
                                    55.025
                                              <2e-16 ***
AirQualityUCI$T 0.003584
                           0.001891
                                      1.895
                                              0.0581 .
Signif. codes: 0 'f'**' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.436 on 7342 degrees of freedom
  (2013 observations deleted due to missingness)
Multiple R-squared: 0.000489, Adjusted R-squared: 0.0003528
F-statistic: 3.592 on 1 and 7342 DF, p-value: 0.0581
> mod <- lm(AirQualityUCI$`CO(GT)`~AirQualityUCI$RH)</pre>
> summary(mod)
call:
lm(formula = AirQualityUCI$`CO(GT)` ~ AirQualityUCI$RH)
Residuals:
            1Q Median
                             30
    Min
                                    Max
-2.1595 -1.0712 -0.3169 0.7328 9.6671
```

## g) Create cross tabulations with derived variables

#### The R-script for the given problem is as follows:

```
mydata<-AirQualityUCI
View(mydata) # 2-Way Frequency Table
attach(mydata)
#mytable <- table(A,B) # A will be rows, B will be columns
#mytable # print table
margin.table(mytable, 1) # A frequencies (summed over B)
prop.table(mytable) # cell percentages
prop.table(mytable, 1) # row percentages
range(AirQualityUCI$RH)
final <- within(AirQualityUCI,
          RHcat <- NA
          RHcat[RH<20] <- "Very Low"
          RHcat[RH>=20 & RH<=40] <- "Low"
          RHcat[RH>40 & RH<=60] <- "Medium"
          RHcat[RH>60 & RH<=80] <- "High"
          RHcat[RH>80] <- "Very High"
         })
mytable <- xtabs(`CO(GT)` ~+RHcat, data = final)
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
mytable <- xtabs(`C6H6(GT)` ~ +RHcat, data = final)
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
mytable <- xtabs(`NOx(GT)` ~+RHcat, data = final)
```

```
ftable(mytable) # print table
summary(mytable) # chi-square test of indepedence
with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), sd)) # using with()
with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), mean))
```

#### The output of the R-Script (from Console window) is given as follows:

```
> mydata<-AirQualityUCI</pre>
> View(mydata) # 2-Way Frequency Table
> attach(mydata)
The following objects are masked from mydata (pos = 5):
    AH, C6H6(GT), CO(GT), Date, datetime, NO2(GT), NOx(GT), PT08.S1(CO),
    PT08.S2(NMHC), PT08.S3(NOX), PT08.S4(NO2), PT08.S5(O3), RH, T, Time, Time1
The following objects are masked from mydata (pos = 6):
    AH, C6H6(GT), CO(GT), Date, datetime, NO2(GT), NOx(GT), PT08.S1(CO),
    PT08.S2(NMHC), PT08.S3(NOX), PT08.S4(NO2), PT08.S5(O3), RH, T, Time, Time1
The following object is masked from package:base:
> #mytable <- table(A,B) # A will be rows, B will be columns
> #mytable # print table
> margin.table(mytable, 1) # A frequencies (summed over B)
RHcat
                          Medium Very High
                  Low
                                              Very Low
 566943.9 417357.3 664434.1 77071.7
                                               65314.5
> prop.table(mytable) # cell percentages
RHcat
                    Low
                             Medium Very High
                                                   Very Low
0.31653012 0.23301451 0.37095981 0.04302986 0.03646570
> prop.table(mytable, 1) # row percentages
RHcat
     High
                  Low
                          Medium Very High
                                              Very Low
 range(AirQualityUCI$RH)
[1] NA NA
  final <- within(AirQualityUCI,</pre>
                      RHcat <- NA
                      RHcat[RH<20] <- "Very Low"
                      RHcat[RH>=20 & RH<=40] <- "Low"
                      RHcat[RH>40 & RH<=60] <- "Medium"
RHcat[RH>60 & RH<=80] <- "High"
RHcat[RH>80] <- "Very High"
> mytable <- xtabs(`CO(GT)` ~ +RHcat, data = final)</pre>
> ftable(mytable) # print table
mytable 497.1 662.5 4288.7 4302.4 5889.9
> summary(mytable) # chi-square test of indepedence
Number of cases in table: 15640.6
Number of factors: 1
> mytable <- xtabs(`C6H6(GT)` ~ +RHcat, data = final)</pre>
> ftable(mytable) # print table
mytable 2206.4370307221 4537.99826996217 23277.0380810769 25828.1012760302
```

```
1
                                                 1
                                                                       1
                                                                                             1
1
> summary(mytable) # chi-square test of indepedence
Number of cases in table: 90656.19
Number of factors: 1
  mytable <- xtabs(`NOx(GT)` ~ +RHcat, data = final)</pre>
> ftable(mytable) # print table
mytable 65314.5 77071.7 417357.3 566943.9 664434.1
> summary(mytable) # chi-square test of indepedence
Number of cases in table: 1791122
Number of factors: 1
> with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), sd)) # using with()
RHcat
                    Low
                             Medium Very High Very Low
         NA
                     NA
                                  NA
                                               NA
> with(final, tapply(`NO2(GT)`, list(RHcat=RHcat), mean))
RHcat
      High
                    Low
                             Medium Very High Very Low
         NA
                                               NA
```

## h) check for trends and patterns in time series

#### The R-script for the given problem is as follows:

```
#plot time series
tsAirqualityUCI <- EuStockMarkets[, 1] # ts data
decomposedRes <- decompose(tsAirqualityUCI, type="mult") # use type = "additive" for
additive components
plot (decomposedRes) # see plot below
stlRes <- stl(tsAirqualityUCI, s.window = "periodic")
plot(AirQualityUCI$T, type = "l")
#or
library(xts)
timeseries <- xts(final$`CO(GT)`, final$datetime)
plot(timeseries)
summary(timeseries)
ts (AirQualityUCI, frequency = 4, start = c(1959, 2))# frequency 4 =>Quarterly Data
ts (1:10, frequency = 12, start = 1990) \# freq 12 => Monthly data.
ts (AirQualityUCI, start=c(2009), end=c(2014), frequency=1) # Yearly Data
ts (1:1000, frequency = 365, start = 1990) \# freq 365 => daily data.
The output of the R-Script (from Console window) is given as follows:
> #plot time series
> tsAirqualityUCI <- EuStockMarkets[, 1] # ts data</pre>
> decomposedRes <- decompose(tsAirqualityUCI, type="mult") # use type =</pre>
"additive" for additive components
> plot (decomposedRes) # see plot below
```



> stlRes <- stl(tsAirqualityUCI, s.window = "periodic")
> plot(AirQualityUCI\$T, type = "l")





- > library(xts)
- > timeseries <- xts(final\$`CO(GT)`, final\$datetime)</pre>
- plot(timeseries)
- summary(timeseries)

| Ind     | lex         |          | tımes   | eries   |
|---------|-------------|----------|---------|---------|
| Min.    | :2004-03-10 | 18:00:00 | Min.    | : 0.100 |
| 1st Qu. | :2004-06-16 | 05:00:00 | 1st Qu. | : 1.100 |
| Median  | :2004-09-21 | 16:00:00 | Median  | : 1.800 |
| Mean    | :2004-09-21 | 16:00:00 | Mean    | : 2.153 |
| 3rd Qu. | :2004-12-28 | 03:00:00 | 3rd Qu. | : 2.900 |
| Max.    | :2005-04-04 | 14:00:00 | Max.    | :11.900 |
|         |             |          | NA's    | :1683   |

timeseries 2004-03-10 18:00:00 / 2005-04-04 14:00:00



## > ts (AirQualityUCI, frequency = 4, start = c(1959, 2))# frequency 4 =>Quarterly Data

| Date                        | Time        | CO(GT) | PT08.S1(CO) | С6H6(GT)   | PT08.S2(NMHC) |
|-----------------------------|-------------|--------|-------------|------------|---------------|
| NOx(GT)                     |             |        |             |            |               |
| 1959 Q2 1078876800<br>166.0 | -2209010400 | 2.6    | 1360.0000   | 11.8817235 | 1045.5000     |
| 1959 Q3 1078876800          | -2209006800 | 2.0    | 1292.2500   | 9.3971649  | 954.7500      |
| 103.0                       |             |        |             |            |               |
| 1959 Q4 1078876800          | -2209003200 | 2.2    | 1402.0000   | 8.9978169  | 939.2500      |
| 131.0<br>1960 Q1 1078876800 | -2208999600 | 2.2    | 1375.5000   | 9.2287964  | 948.2500      |
| 172.0                       |             |        |             |            |               |
| 1960 Q2 1078876800          | -2208996000 | 1.6    | 1272.2500   | 6.5182237  | 835.5000      |
| 131.0                       |             |        |             |            |               |
| 1960 Q3 1078876800          | -2208992400 | 1.2    | 1197.0000   | 4.7410124  | 750.2500      |
| 89.0                        |             |        |             |            |               |
| 1960 Q4 1078963200          | -2209075200 | 1.2    | 1185.0000   | 3.6243992  | 689.5000      |
| 62.0<br>1961 Q1 1078963200  | _2200071600 | 1.0    | 1136.2500   | 3.3266770  | 672.0000      |
| 62.0                        | -2209071000 | 1.0    | 1130.2300   | 3.3200770  | 072.0000      |
| 1961 Q2 1078963200          | -2209068000 | 0.9    | 1094.0000   | 2.3394162  | 608.5000      |
| 45.0                        | 220300000   | 0.5    | 103110000   | 2.3331102  | 00013000      |
| 1961 Q3 1078963200          | -2209064400 | 0.6    | 1009.7500   | 1.6966583  | 560.7500      |
| NA                          |             |        |             |            |               |
| 1961 Q4 1078963200          | -2209060800 | NA     | 1011.0000   | 1.2936198  | 526.7500      |
| 21.0                        |             |        |             |            |               |
| 1962 Q1 1078963200          | -2209057200 | 0.7    | 1066.0000   | 1.1334306  | 512.0000      |
| 16.0                        |             |        |             |            |               |
| 1962 Q2 1078963200          | -2209053600 | 0.7    | 1051.7500   | 1.6037679  | 553.2500      |
| 34.0                        |             |        |             |            |               |
| 1962 Q3 1078963200          | -2209050000 | 1.1    | 1144.0000   | 3.2436181  | 667.0000      |
| 98.0<br>1962 Q4 1078963200  | _2200046400 | 2.0    | 1333 3500   | 8.0137730  | 899.7500      |
| 174.0                       | 2203040400  | 2.0    | 1333.2300   | 0.013//30  | 033.7300      |
|                             |             |        |             |            |               |

| 1963 Q1 1078963200          | -2209042800 | 2.2  | 1351.0000 | 9.5406429  | 960.2500  |
|-----------------------------|-------------|------|-----------|------------|-----------|
| 129.0<br>1963 Q2 1078963200 | -2209039200 | 1.7  | 1233.2500 | 6.3357824  | 827.2500  |
| 112.0<br>1963 Q3 1078963200 | -2209035600 | 1.5  | 1178.7500 | 4.9715838  | 762.0000  |
| 95.0<br>1963 Q4 1078963200  | -2209032000 | 1.6  | 1236.0000 | 5.2169190  | 774.2500  |
| 104.0<br>1964 Q1 1078963200 | -2209028400 | 1.9  | 1285.5000 | 7.2699334  | 868.5000  |
| 146.0<br>1964 Q2 1078963200 | -2209024800 | 2.9  | 1371.0000 | 11.5390072 | 1033.5000 |
| 207.0<br>1964 Q3 1078963200 | -2209021200 | 2.2  | 1310.0000 | 8.8262227  | 932.5000  |
| 184.0<br>1964 Q4 1078963200 | -2209017600 | 2.2  | 1291.7500 | 8.3014134  | 911.5000  |
| 193.0                       |             |      |           |            |           |
| 1965 Q1 1078963200<br>243.0 | -2209014000 | 2.9  | 1383.0000 | 11.1515812 | 1019.7500 |
| 1965 Q2 1078963200          | -2209010400 | 4.8  | 1580.7500 | 20.7992169 | 1318.5000 |
| 281.0<br>1965 Q3 1078963200 | -2209006800 | 6.9  | 1775.5000 | 27.3598075 | 1487.7500 |
| 383.0<br>1965 Q4 1078963200 | -2209003200 | 6.1  | 1640.0000 | 24.0177569 | 1404.0000 |
| 351.0<br>1966 Q1 1078963200 | -2208999600 | 3.9  | 1312.7500 | 12.7793682 | 1076.2500 |
| 240.0                       |             |      |           |            |           |
| 1966 Q2 1078963200 94.0     | -2208996000 | 1.5  | 964.5000  | 4.7070719  | 748.5000  |
| 1966 Q3 1078963200          | -2208992400 | 1.0  | 912.7500  | 2.6457215  | 629.2500  |
| 47.0<br>1966 Q4 1079049600  | -2209075200 | 1.7  | 1080.2500 | 5.8548015  | 805.0000  |
| 122.0<br>1967 Q1 1079049600 | -2209071600 | 1.9  | 1043.7500 | 6.3742975  | 829.0000  |
| 133.0<br>1967 Q2 1079049600 | -2209068000 | 1.4  | 987.7500  | 4.1323418  | 718.0000  |
| 82.0<br>1967 Q3 1079049600  | -2209064400 | 0.8  | 888.7500  | 1.8694446  | 574.2500  |
| NA<br>1967 Q4 1079049600    | -2209060800 | NA   | 831.0000  | 1.0682926  | 505.7500  |
| 21.0                        | 220300000   | 14/1 | 031.0000  | 110002320  | 30317300  |
| 1968 Q1 1079049600<br>30.0  | -2209057200 | 0.6  | 847.2500  | 1.0224146  | 501.2500  |
| 1968 Q2 1079049600          | -2209053600 | 0.8  | 927.0000  | 1.8304312  | 571.2500  |
| 56.0<br>1968 Q3 1079049600  | -2209050000 | 1.4  | 1090.5000 | 4.3593410  | 730.2500  |
| 109.0<br>1968 Q4 1079049600 | -2209046400 | 4.4  | 1587.0000 | 17.8655867 | 1235.5000 |
| 307.0<br>1969 Q1 1079049600 | -2209042800 | NA   | 1544.5000 | 22.0741621 | 1353.0000 |
| NA<br>1969 Q2 1079049600    | -2209039200 | 3.1  | 1350.2500 | 14.0270114 | 1117.5000 |
| 187.0<br>1969 Q3 1079049600 | _2200025600 | 2.7  | 1262 7500 | 11.6456466 | 1037.2500 |
| 216.0                       |             |      |           |            |           |
| 1969 Q4 1079049600<br>143.0 | -2209032000 | 2.1  | 1206.2500 | 10.2246621 | 986.0000  |

| 1970 Q1 1079049600 -2209028 160.0                                                                                                                                                                            | 400 2.5                                      | 1251.5000                                        | 11.0399360                                               | 1015.7500                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 1970 Q2 1079049600 -2209024<br>163.0                                                                                                                                                                         | 800 2.7                                      | 1287.0000                                        | 12.8164462                                               | 1077.5000                                                |
| 1970 Q3 1079049600 -2209021<br>190.0                                                                                                                                                                         | 200 2.9                                      | 1352.7500                                        | 14.1738512                                               | 1122.2500                                                |
| 190.0<br>1970 Q4 1079049600 -2209017<br>178.0                                                                                                                                                                | 600 2.8                                      | 1309.0000                                        | 12.6905681                                               | 1073.2500                                                |
| 176.0<br>1971 Q1 1079049600 -2209014<br>150.0                                                                                                                                                                | 000 2.4                                      | 1274.0000                                        | 11.7384054                                               | 1040.5000                                                |
| 1971 Q2 1079049600 -2209010                                                                                                                                                                                  | 400 3.9                                      | 1509.5000                                        | 19.2909749                                               | 1276.5000                                                |
| 206.0<br>1971 Q3 1079049600 -2209006                                                                                                                                                                         | 800 3.7                                      | 1525.2500                                        | 18.2261783                                               | 1246.0000                                                |
| 202.0<br>1971 Q4 1079049600 -2209003                                                                                                                                                                         | 200 6.6                                      | 1843.0000                                        | 32.5562783                                               | 1609.7500                                                |
| 340.0<br>1972 Q1 1079049600 -2208999                                                                                                                                                                         | 600 4.4                                      | 1597.7500                                        | 20.0929436                                               | 1299.0000                                                |
| 274.0<br>1972 Q2 1079049600 -2208996                                                                                                                                                                         | 000 3.5                                      | 1483.5000                                        | 14.3213424                                               | 1127.0000                                                |
| 253.0<br>1972 Q3 1079049600 -2208992                                                                                                                                                                         | 400 5.4                                      | 1677.2500                                        | 21.8128651                                               | 1346.0000                                                |
| 300.0<br>1972 Q4 1079136000 -2209075                                                                                                                                                                         | 200 2.7                                      | 1279.5000                                        | 9.6389998                                                | 964.0000                                                 |
| 193.0<br>1973 Q1 1079136000 -2209071                                                                                                                                                                         | 600 1.9                                      | 1196.2500                                        | 7.3751395                                                | 873.0000                                                 |
| 139.0<br>1973 Q2 1079136000 -2209068                                                                                                                                                                         | 000 1.6                                      | 1183.7500                                        | 5.3696042                                                | 781.7500                                                 |
| 83.0<br>1973 Q3 1079136000 -2209064                                                                                                                                                                          |                                              | 1171.7500                                        | 5.3901039                                                | 782.7500                                                 |
| NA                                                                                                                                                                                                           |                                              |                                                  |                                                          |                                                          |
| PT08.S3(NOx) NO2(GT AH Date1 Time1                                                                                                                                                                           | ) PT08.S4(N                                  | 02) PT08.S5(                                     | D3) T                                                    | RH                                                       |
| 1959 Q2 1056.2500 113.                                                                                                                                                                                       | 0 1692.0                                     | 000 1267.5                                       | 000 13.600000                                            | 48.87500                                                 |
| 0.7577538 12487 NA                                                                                                                                                                                           | 0 1550 7                                     | 500 072 2                                        | F00 13 300000                                            | 47 70000                                                 |
| 1959 Q3 1173.7500 92.<br>0.7254874 12487 NA                                                                                                                                                                  | 0 1558.7                                     | 500 972.2                                        | 500 13.300000                                            | 47.70000                                                 |
| 1959 Q4 1140.0000 114.                                                                                                                                                                                       | 0 1554.5                                     | 000 1074.0                                       | 000 11.900000                                            | 53.97500                                                 |
| 0.7502391 12487 NA                                                                                                                                                                                           |                                              |                                                  | 11                                                       |                                                          |
| 1960 Q1 1092.0000 122.<br>0.7867125 12487 NA                                                                                                                                                                 | 0 1583.7                                     | 500 1203.2                                       | 500 11.000000                                            | 60.00000                                                 |
| 1960 Q2 1205.0000 116.                                                                                                                                                                                       | 0 1490.0                                     | 000 1110.0                                       | 000 11.150000                                            | 59.57500                                                 |
| 0.7887942 12487 NA                                                                                                                                                                                           |                                              |                                                  |                                                          |                                                          |
| 1960 Q3 1336.5000 96.<br>0.7847717 12487 NA                                                                                                                                                                  | 0 1393.0                                     | 000 949.2                                        | 500 11.175000                                            | 59.17500                                                 |
| 0./04//1/ 1240/ NA                                                                                                                                                                                           |                                              |                                                  |                                                          |                                                          |
| 1960 Q4 1461.7500 77.                                                                                                                                                                                        | 0 1332.7                                     | 500 732.5                                        | 000 11.325000                                            |                                                          |
| 0.7603119 12488 NA                                                                                                                                                                                           |                                              |                                                  |                                                          | 56.77500                                                 |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.                                                                                                                                                                  |                                              |                                                  | 000 11.325000<br>000 10.675000                           | 56.77500                                                 |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.<br>0.7702385 12488 NA                                                                                                                                            | 0 1332.7                                     | 500 729.5                                        | 000 10.675000                                            | 56.77500<br>60.00000                                     |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.<br>0.7702385 12488 NA<br>1961 Q2 1579.0000 60.<br>0.7648187 12488 NA                                                                                             | 0 1332.7                                     | 500 729.5                                        |                                                          | 56.77500<br>60.00000                                     |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.<br>0.7702385 12488 NA<br>1961 Q2 1579.0000 60.<br>0.7648187 12488 NA<br>1961 Q3 1705.0000 N                                                                      | 0 1332.7                                     | 500 729.5<br>000 619.5                           | 000 10.675000                                            | 56.77500<br>60.00000<br>59.67500                         |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.<br>0.7702385 12488 NA<br>1961 Q2 1579.0000 60.<br>0.7648187 12488 NA<br>1961 Q3 1705.0000 N<br>0.7516572 12488 NA<br>1961 Q4 1817.5000 34.                       | 0 1332.7<br>0 1276.0<br>A 1234.7             | 729.5<br>000 619.5<br>500 501.2                  | 000 10.675000<br>000 10.650000                           | 56.77500<br>60.00000<br>59.67500<br>60.20000             |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.<br>0.7702385 12488 NA<br>1961 Q2 1579.0000 60.<br>0.7648187 12488 NA<br>1961 Q3 1705.0000 N<br>0.7516572 12488 NA<br>1961 Q4 1817.5000 34.<br>0.7464945 12488 NA | 0 1332.7<br>0 1276.0<br>A 1234.7<br>0 1196.7 | 500 729.5<br>000 619.5<br>500 501.2<br>500 445.2 | 10.675000<br>10.650000<br>500 10.250000<br>500 10.075000 | 56.77500<br>60.00000<br>59.67500<br>60.20000<br>60.47500 |
| 0.7603119 12488 NA<br>1961 Q1 1453.2500 76.<br>0.7702385 12488 NA<br>1961 Q2 1579.0000 60.<br>0.7648187 12488 NA<br>1961 Q3 1705.0000 N<br>0.7516572 12488 NA<br>1961 Q4 1817.5000 34.                       | 0 1332.7<br>0 1276.0<br>A 1234.7<br>0 1196.7 | 500 729.5<br>000 619.5<br>500 501.2<br>500 445.2 | 000 10.675000<br>000 10.650000<br>500 10.250000          | 56.77500<br>60.00000<br>59.67500<br>60.20000<br>60.47500 |

| 1962 Q2 17                  |         | 48.0  | 1221.2500 | 471.5000   | 10.450000 | 58.12500 |
|-----------------------------|---------|-------|-----------|------------|-----------|----------|
| 0.7352951 124               |         | 02.0  | 1220 0000 | 720 7500   | 10 200000 | F0 C0000 |
| 1962 Q3 14<br>0.7417362 124 |         | 82.0  | 1339.0000 | 729.7500   | 10.200000 | 39.60000 |
| 1962 Q4 11                  |         | 112.0 | 1517.0000 | 1101.5000  | 10.750000 | 57 42500 |
| 0.7407946 124               |         | 112.0 | 1317.0000 | 1101.3000  | 10.730000 | 37.42300 |
|                             | 79.0000 | 101.0 | 1582.7500 | 1027.7500  | 10.500000 | 60,60000 |
| 0.7691108 124               |         |       |           |            |           |          |
| 1963 Q2 12                  | 18.0000 | 98.0  | 1445.7500 | 859.7500   | 10.800000 | 58.35000 |
| 0.7551831 124               | 88 NA   |       |           |            |           |          |
| •                           | 27.5000 | 92.0  | 1361.7500 | 670.5000   | 10.500000 | 57.92500 |
| 0.7351608 124               |         |       |           |            |           |          |
| •                           | 01.2500 | 95.0  | 1401.2500 | 664.0000   | 9.525000  | 66.77500 |
| 0.7950538 124               |         | 112 0 | 1536.7500 | 799.0000   | 0 200000  | 76.42500 |
| 1964 Q1 11 0.8392681 124    |         | 112.0 | 1330.7300 | 799.0000   | 8.300000  | 76.42300 |
| 1964 Q2 9                   |         | 128.0 | 1730.2500 | 1036.5000  | 8 000000  | 81.15000 |
| 0.8735885 124               |         | 12010 | 173012300 | 103013000  | 0.000000  | 01115000 |
| 1964 Q3 10                  |         | 126.0 | 1646.5000 | 946.2500   | 8.325000  | 79.80000 |
| 0.8777844 124               |         |       |           |            |           |          |
| 1964 Q4 11                  | 02.5000 | 131.0 | 1590.7500 | 956.7500   | 9.700000  | 71.15000 |
| 0.8569381 124               |         |       |           |            |           |          |
| •                           | 08.0000 | 135.0 | 1718.7500 | 1104.0000  | 9.775000  | 67.62500 |
| 0.8185012 124               |         | 454.0 | 2022 2022 | 1.100 5000 | 10 250000 | 64 47500 |
| •                           | 98.5000 | 151.0 | 2083.0000 | 1408.5000  | 10.350000 | 64.1/500 |
| 0.8065436 124<br>1965 Q3 7  |         | 172.0 | 2332.5000 | 1704.0000  | 0 650000  | 69.30000 |
| 0.8319211 124               |         | 1/2.0 | 2332.3000 | 1704.0000  | 9.030000  | 09.30000 |
|                             | 42.7500 | 165.0 | 2191.2500 | 1653.7500  | 9.650000  | 67.75000 |
| 0.8133139 124               |         |       |           |            |           |          |
|                             | 57.2500 | 136.0 | 1706.5000 | 1284.7500  | 9.125000  | 63.97500 |
| 0.7419242 124               | 88 NA   |       |           |            |           |          |
| •                           | 25.2500 | 85.0  | 1332.5000 | 821.0000   | 8.175000  | 63.40000 |
| 0.6904844 124               |         |       |           |            |           |          |
| •                           | 64.5000 | 53.0  | 1252.2500 | 551.7500   | 8.250000  | 60.82500 |
| 0.6657444 124               |         | 97.0  | 1275 0000 | 015 5000   | 0 225000  | E0 E3E00 |
| 1966 Q4 12<br>0.6437636 124 |         | 97.0  | 1375.0000 | 815.5000   | 8.323000  | 58.52500 |
| 1967 Q1 12                  |         | 110.0 | 1378.2500 | 831.5000   | 7.725000  | 59.67500 |
| 0.6307661 124               |         | 110.0 | 137012300 | 03113000   | 7.1723000 | 33.07300 |
|                             | 95.5000 | 91.0  | 1303.5000 | 691.5000   | 7.125000  | 61.80000 |
| 0.6275974 124               |         |       |           |            |           |          |
| 1967 Q3 16                  | 80.2500 | NA    | 1187.0000 | 512.0000   | 6.975000  | 62.27500 |
| 0.6261075 124               | 89 NA   |       |           |            |           |          |
| •                           | 92.7500 | 32.0  | 1133.7500 | 384.0000   | 6.100000  | 65.90000 |
| 0.6247536 124               |         | 44.0  | 1154 7500 | 204 0000   | 6 275000  | 64 07500 |
| 1968 Q1 18                  |         | 44.0  | 1154.7500 | 394.0000   | 6.275000  | 64.97500 |
| 0.6232823 124<br>1968 Q2 16 |         | 71.0  | 1222.7500 | 486.5000   | 6 750000  | 62.95000 |
| 0.6234275 124               |         | 71.0  | 1222.7300 | 400.3000   | 0.730000  | 02.33000 |
| 1968 Q3 13                  |         | 104.0 | 1360.7500 | 748.2500   | 6.450000  | 65.07500 |
| 0.6316281 124               |         |       |           | 121200     |           |          |
|                             | 96.5000 | 141.0 | 1900.2500 | 1400.2500  | 7.325000  | 63.15000 |
| 0.6499331 124               | 89 NA   |       |           | . –        |           |          |
| •                           | 67.2500 | NA    | 2058.0000 | 1587.7500  | 9.225000  | 56.20000 |
| 0.6560651 124               | 89 NA   |       |           |            |           |          |
|                             |         |       |           |            |           |          |

| 1969 Q2 912.0000<br>0.6319501 12489 NA   | 122.0 | 1711.7500 | 1237.0000 | 13.225000 41.75000 |
|------------------------------------------|-------|-----------|-----------|--------------------|
| 0.6319501 12489 NA<br>1969 Q3 969.0000   | 143.0 | 1598.2500 | 1166.5000 | 14.325000 38.45000 |
| 0.6243043 12489 NA                       | 112 0 | 1527 0000 | 050 0000  | 15 025000 26 50000 |
| 1969 Q4 1034.5000<br>0.6195323 12489 NA  | 113.0 | 1537.0000 | 959.0000  | 15.025000 36.50000 |
| 1970 Q1 1007.5000                        | 116.0 | 1592.7500 | 983.0000  | 16.100000 34.47500 |
| 0.6261647 12489 NA                       |       |           |           |                    |
| 1970 Q2 948.7500<br>0.6560306 12489 NA   | 123.0 | 1660.2500 | 1060.7500 | 16.275001 35.72500 |
| 1970 Q3 921.7500                         | 126.0 | 1740.0000 | 1139.2500 | 15.825000 37.02500 |
| 0.6609611 12489 NA                       |       |           |           |                    |
| 1970 Q4 954.0000                         | 120.0 | 1657.2500 | 1112.2500 | 15.875000 37.17500 |
| 0.6657285 12489 NA<br>1971 Q1 1005.7500  | 119.0 | 1609.7500 | 993.7500  | 16.875000 34.35000 |
| 0.6549085 12489 NA                       | 119.0 | 1009.7300 | 993.7300  | 10.073000 34.33000 |
| 1971 Q2 812.2500                         | 149.0 | 1909.7500 | 1409.5000 | 15.150000 39.55000 |
| 0.6766265 12489 NA                       |       |           |           |                    |
| 1971 Q3 821.0000<br>0.7084498 12489 NA   | 145.0 | 1846.7500 | 1447.7500 | 14.400000 43.42500 |
| 0.7084498 12489 NA<br>1971 Q4 624.0000   | 170.0 | 2390.2500 | 1886.5000 | 12.875000 50.52500 |
| 0.7478032 12489 NA                       |       |           |           |                    |
| 1972 Q1 752.0000                         | 149.0 | 1940.5000 | 1626.7500 | 12.150000 53.35000 |
| 0.7536202 12489 NA<br>1972 Q2 839.0000   | 139.0 | 1723.0000 | 1491.0000 | 10.975000 59.12500 |
| 0.7739800 12489 NA                       | 139.0 | 1723.0000 | 1491.0000 | 10.973000 39.12300 |
| 1972 Q3 740.5000                         | 134.0 | 2062.0000 | 1657.0000 | 9.675000 64.62500  |
| 0.7770739 12489 NA                       |       |           |           |                    |
| 1972 Q4 962.5000                         | 113.0 | 1543.5000 | 1285.2500 | 9.450000 64.12500  |
| 0.7597465 12490 NA<br>1973 Q1 1071.2500  | 97.0  | 1463.2500 | 1144.2500 | 9.150000 63.90000  |
| 0.7422764 12490 NA                       | 37.10 | 110312300 | 111112300 | 3.130000 03.30000  |
| 1973 Q2 1176.2500                        | 82.0  | 1364.5000 | 1042.7500 | 8.800000 63.92500  |
| 0.7256154 12490 NA                       |       | 1270 7500 | 005 5000  | 7 000000 67 52500  |
| 1973 Q3 1178.5000<br>0.7173121 12490 NA  | NA    | 1379.7500 | 995.5000  | 7.800000 67.52500  |
| datetime                                 |       |           |           |                    |
| 1959 Q2 1078921800                       |       |           |           |                    |
| 1959 Q3 1078925400                       |       |           |           |                    |
| 1959 Q4 1078929000                       |       |           |           |                    |
| 1960 Q1 1078932600<br>1960 Q2 1078936200 |       |           |           |                    |
| 1960 Q3 1078939800                       |       |           |           |                    |
| 1960 Q4 1078943400                       |       |           |           |                    |
| 1961 Q1 1078947000                       |       |           |           |                    |
| 1961 Q2 1078950600                       |       |           |           |                    |
| 1961 Q3 1078954200<br>1961 Q4 1078957800 |       |           |           |                    |
| 1962 Q1 1078961400                       |       |           |           |                    |
| 1962 Q2 1078965000                       |       |           |           |                    |
| 1962 Q3 1078968600                       |       |           |           |                    |
| 1962 Q4 1078972200                       |       |           |           |                    |
| 1963 Q1 1078975800<br>1963 Q2 1078979400 |       |           |           |                    |
| 1963 Q3 1078983000                       |       |           |           |                    |
| 1963 Q4 1078986600                       |       |           |           |                    |
| 1964 Q1 1078990200                       |       |           |           |                    |

```
1964 Q2 1078993800
1964 Q3 1078997400
1964 Q4 1079001000
1965 Q1 1079004600
1965 Q2 1079008200
1965 Q3 1079011800
1965 Q4 1079015400
1966 Q1 1079019000
1966 Q2 1079022600
1966 Q3 1079026200
1966 Q4 1079029800
1967 Q1 1079033400
1967 Q2 1079037000
1967 Q3 1079040600
1967 Q4 1079044200
1968 Q1 1079047800
1968 Q2 1079051400
1968 Q3 1079055000
1968 Q4 1079058600
1969 Q1 1079062200
1969 Q2 1079065800
1969 q3 1079069400
1969 Q4 1079073000
1970 Q1 1079076600
1970 Q2 1079080200
1970 Q3 1079083800
1970 Q4 1079087400
1971 Q1 1079091000
1971 Q2 1079094600
1971 Q3 1079098200
1971 Q4 1079101800
1972 Q1 1079105400
1972 Q2 1079109000
1972 Q3 1079112600
1972 Q4 1079116200
1973 01 1079119800
1973 Q2 1079123400
1973 Q3 1079127000
 [ reached getOption("max.print") -- omitted 9299 rows ]
> ts (1:10, frequency = 12, start = 1990) # freq 12 => Monthly data.
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct
1990
       1
           2
               3
                   4
                       5
                           6
                               7
                                   8
                                        9 10
> ts (AirQualityUCI, start=c(2009), end=c(2014), frequency=1) # Yearly Data
Time Series:
Start = 2009
End = 2014
Frequency = 1
           Date
                       Time CO(GT) PT08.S1(CO) C6H6(GT) PT08.S2(NMHC)
NOx(GT) PT08.S3(NOx)
2009 1078876800 -2209010400
                                        1360.00 11.881723
                                                                 1045.50
                               2.6
166
         1056.25
2010 1078876800 -2209006800
                               2.0
                                        1292.25 9.397165
                                                                  954.75
103
         1173.75
                               2.2
                                        1402.00 8.997817
2011 1078876800 -2209003200
                                                                  939.25
131
         1140.00
2012 1078876800 -2208999600
                               2.2
                                        1375.50 9.228796
                                                                  948.25
172
         1092.00
```

```
2013 1078876800 -2208996000
                               1.6
                                       1272.25 6.518224
131
         1205.00
                               1.2
2014 1078876800 -2208992400
                                       1197.00 4.741012
                                                                 750.25
        1336.50
     NO2(GT) PT08.S4(NO2) PT08.S5(O3)
                                                            AH Date1 Time1
                                        Т
                                                 RH
datetime
                              1267.50 13.600 48.875 0.7577538 12487
2009
         113
                  1692.00
                                                                        NA
1078921800
2010
          92
                  1558.75
                               972.25 13.300 47.700 0.7254874 12487
                                                                        NA
1078925400
                              1074.00 11.900 53.975 0.7502391 12487
2011
                  1554.50
         114
                                                                        NA
1078929000
                              1203.25 11.000 60.000 0.7867125 12487
2012
         122
                  1583.75
1078932600
2013
         116
                  1490.00
                              1110.00 11.150 59.575 0.7887942 12487
                                                                        NA
1078936200
                  1393.00 949.25 11.175 59.175 0.7847717 12487
2014
     96
                                                                        NA
1078939800
> ts (1:1000, frequency = 365, start = 1990) # freq 365 => daily data.
Time Series:
Start = c(1990, 1)
End = c(1992, 270)
Frequency = 365
               2
                              5
                                   6
                                        7
                                             8
                                                   9
                                                       10
   [1]
          1
                    3
                         4
                                                            11
                                                                 12
                                                                      13
                                                                           14
15
    16
         17
  [18]
         18
              19
                   20
                        21
                             22
                                  23
                                       24
                                             25
                                                  26
                                                       27
                                                            28
                                                                 29
                                                                      30
                                                                           31
         34
32 33
  [35]
              36
                   37
                        38
                             39
                                  40
                                       41
                                             42
                                                  43
                                                       44
                                                            45
                                                                 46
                                                                      47
                                                                           48
         35
49 50
         51
  [52]
         52
              53
                   54
                        55
                             56
                                  57
                                       58
                                             59
                                                  60
                                                       61
                                                            62
                                                                 63
                                                                      64
                                                                           65
66 67
         68
  [69]
         69
              70
                   71
                        72
                             73
                                  74
                                       75
                                             76
                                                  77
                                                       78
                                                            79
                                                                 80
                                                                      81
                                                                           82
83 84
         85
                        89
                             90
                                  91
                                       92
                                             93
                                                       95
                                                                 97
                                                                      98
                                                                           99
  [86]
         86
              87
                   88
                                                  94
                                                            96
100 101 102
                  105
                       106
                            107
                                 108
                                      109
                                            110
                                                 111
                                                      112
                                                           113
                                                                114
                                                                     115
                                                                          116
 [103] 103 104
117 118 119
                            124
 [120] 120 121
                  122
                       123
                                 125
                                      126
                                           127
                                                 128
                                                      129
                                                           130
                                                                131
                                                                     132
                                                                          133
134 135 136
 [137] 137 138
                       140
                            141
                                 142
                                      143
                                           144
                                                 145
                                                      146
                                                           147
                                                                148
                                                                     149
                                                                          150
                  139
151 152 153
 [154] 154 155
                  156
                       157
                            158
                                 159
                                      160
                                           161
                                                 162
                                                      163
                                                           164
                                                                165
                                                                     166
                                                                          167
168 169 170
 [171]
       171 172
                       174
                            175
                                 176
                                      177
                                           178
                                                 179
                                                      180
                                                           181
                                                                182
                                                                     183
                                                                          184
                  173
185 186 187
 [188] 188 189
                       191
                            192
                                 193
                                      194
                                           195
                                                 196
                                                      197
                                                           198
                                                                199
                                                                     200
                                                                          201
                  190
202 203 204
 [205] 205 206
                  207
                       208
                            209
                                 210
                                      211
                                           212
                                                 213
                                                     214
                                                           215
                                                                216
                                                                     217
                                                                          218
219 220 221
 [222] 222 223
                       225
                            226
                                 227
                                      228
                                           229
                                                230
                                                     231
                                                           232
                                                                233
                                                                     234
                                                                          235
                  224
236 237 238
 [239] 239 240
                  241
                      242
                            243
                                 244
                                           246
                                                247
                                                                          252
                                      245
                                                      248
                                                           249
                                                                250
                                                                     251
253 254 255
 [256] 256 257
                  258 259
                                 261
                                      262
                                           263
                                                264
                                                     265
                                                           266
                                                                     268
                                                                          269
                            260
                                                                267
270 271 272
 [273] 273 274 275 276 277 278
                                           280 281 282
                                      279
                                                           283 284
                                                                     285
                                                                          286
287 288 289
```

| [290] 290 291<br>304 305 306 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 |
|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| [307] 307 308<br>321 322 323 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 |
| [324] 324 325<br>338 339 340 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 |
| [341] 341 342                | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 |
| 355 356 357<br>[358] 358 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 |
| 372 373 374<br>[375] 375 376 | 377 | 378 | 379 | 380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 |
| 389 390 391<br>[392] 392 393 | 394 | 395 | 396 | 397 | 398 | 399 | 400 | 401 | 402 | 403 | 404 | 405 |
| 406 407 408<br>[409] 409 410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 | 420 | 421 | 422 |
| 423 424 425<br>[426] 426 427 | 428 | 429 | 430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 |
| 440 441 442<br>[443] 443 444 | 445 | 446 | 447 | 448 | 449 | 450 | 451 | 452 | 453 | 454 | 455 | 456 |
| 457 458 459<br>[460] 460 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 | 470 | 471 | 472 | 473 |
| 474 475 476<br>[477] 477 478 | 479 | 480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 |
| 491 492 493<br>[494] 494 495 | 496 | 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 |
| 508 509 510<br>[511] 511 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 | 524 |
| 525 526 527<br>[528] 528 529 | 530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 | 540 | 541 |
| 542 543 544<br>[545] 545 546 | 547 | 548 | 549 | 550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 |
| 559 560 561<br>[562] 562 563 | 564 | 565 | 566 | 567 | 568 | 569 | 570 | 571 | 572 | 573 | 574 | 575 |
| 576 577 578<br>[579] 579 580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 | 590 | 591 | 592 |
| 593 594 595<br>[596] 596 597 | 598 | 599 | 600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 |
| 610 611 612<br>[613] 613 614 | 615 | 616 | 617 | 618 | 619 | 620 | 621 | 622 | 623 | 624 | 625 | 626 |
| 627 628 629<br>[630] 630 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 | 640 | 641 | 642 | 643 |
| 644 645 646<br>[647] 647 648 | 649 | 650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 | 660 |
| 661 662 663<br>[664] 664 665 | 666 | 667 | 668 | 669 | 670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 |
| 678 679 680<br>[681] 681 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 | 690 | 691 | 692 | 693 | 694 |
| 695 696 697<br>[698] 698 699 | 700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 | 710 | 711 |
| 712 713 714<br>[715] 715 716 | 717 | 718 | 719 | 720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 |
| 729 730 731<br>[732] 732 733 | 734 | 735 | 736 | 737 | 738 | 739 | 740 | 741 | 742 | 743 | 744 | 745 |
| 746 747 748<br>[749] 749 750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 | 760 | 761 | 762 |
| 763 764 765                  |     |     |     |     |     |     |     |     |     |     |     |     |

| [766] 766 767<br>780 781 782 | 768 | 769 | 770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778          | 779  |
|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------------|------|
| [783] 783 784<br>797 798 799 | 785 | 786 | 787 | 788 | 789 | 790 | 791 | 792 | 793 | 794 | 795          | 796  |
| [800] 800 801                | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 | 810 | 811 | 812          | 813  |
| 814 815 816<br>[817] 817 818 | 819 | 820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829          | 830  |
| 831 832 833<br>[834] 834 835 | 836 | 837 | 838 | 839 | 840 | 841 | 842 | 843 | 844 | 845 | 846          | 847  |
| 848 849 850<br>[851] 851 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 | 860 | 861 | 862 | 863          | 864  |
| 865 866 867<br>[868] 868 869 | 870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 | 880          | 881  |
| 882 883 884<br>[885] 885 886 | 887 | 888 | 889 | 890 | 891 | 892 | 893 | 894 | 895 | 896 | 897          | 898  |
| 899 900 901<br>[902] 902 903 |     | 905 |     | 907 | 908 |     | 910 |     |     | 913 | 914          | 915  |
| 916 917 918                  |     |     |     |     |     |     |     |     |     |     | <b>5 -</b> . |      |
| [919] 919 920<br>933 934 935 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | 929 | 930 | 931          | 932  |
| [936] 936 937<br>950 951 952 | 938 | 939 | 940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948          | 949  |
| [953] 953 954<br>967 968 969 | 955 | 956 | 957 | 958 | 959 | 960 | 961 | 962 | 963 | 964 | 965          | 966  |
| [970] 970 971<br>984 985 986 | 972 | 973 | 974 | 975 | 976 | 977 | 978 | 979 | 980 | 981 | 982          | 983  |
| [987] 987 988                | 989 | 990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999          | 1000 |

Trends and patterns in time series are hence checked.

## i) Find out the most polluted time of the day and the name of the chemical compound

### The R-script for the given problem is as follows:

```
names(AirQualityUCI)
library(dplyr)

polluted <- AirQualityUCI%>% group_by(Time)%>%
    select(Time, `CO(GT)`, `C6H6(GT)`, `NO2(GT)`, `NOx(GT)`)%>%
    summarise(CO = mean(`CO(GT)`), C6H6 = mean(`C6H6(GT)`), NO2 = mean(`NO2(GT)`), NOX = mean(`NOx(GT)`))%>%
```

polluted[c(which.max(polluted\$CO),which.max(polluted\$C6H6),which.max(polluted\$NO2),which.max(polluted\$NOX)),]

#### The output of the R-Script (from Console window) is given as follows:

```
> names(AirQualityUCI)
                         "Time"
 [1] "Date"
                                            "CO(GT)"
                                                               "PT08.S1(CO)"
"С6н6(GT)"
 [6] "PT08.S2(NMHC)" "NOX(GT)"
                                            "PT08.S3(NOx)"
                                                               "NO2(GT)"
"PT08.S4(NO2)"
[11] "PT08.S5(O3)"
[16] "Time1"
                                                               "AH"
                                            "RH"
                                                                                  "Date1"
                         "datetime"
> library(dplyr)
> polluted <- AirQualityUCI%>%group_by(Time)%>%
    select(Time, `CO(GT)`, `C6H6(GT)`, `NO2(GT)`, `NOx(GT)` )%>%
summarise(CO = mean(`CO(GT)`), C6H6 = mean(`C6H6(GT)`), NO2 =
mean(`NO2(GT)`), NOX =mean(`NOx(GT)`))%>%
polluted[c(which.max(polluted$CO), which.max(polluted$C6H6), which.max(polluted
$NO2), which.max(polluted$NOX)),]
```

| Date       | Time     | CO(GT)  | PT08.S1(CO)  | NMHC(GT) | C6H6(GT)     | PT08.S2(NMHC) |
|------------|----------|---------|--------------|----------|--------------|---------------|
| 6/8/2004   | 8:00:00  | 5.8     | 1377         | -200     | 36.1         | 1688          |
| 6/9/2004   | 8:00:00  | 6.4     | 1496         | -200     | 36.9         | 1705          |
| 10/26/2004 | 18:00:00 | 9.5     | 1908         | -200     | 52.1         | 2007          |
| max        |          | 11.9    | 2039.8       | 1189.0   | 63.7         | 2214.0        |
| Date       | Time     | NOx(GT) | PT08.S3(NOx) | NO2(GT)  | PT08.S4(NO2) | PT08.S5(O3)   |
| 6/8/2004   | 8:00:00  | 376     | 525          | 125      | 2746         | 1708          |
| 6/9/2004   | 8:00:00  | 357     | 507          | 151      | 2691         | 2147          |
| 10/26/2004 | 18:00:00 | 952     | 325          | 180      | 2775         | 2372          |
| max        |          | 1479.0  | 2682.8       | 339.7    | 2775.0       | 2522.8        |

#### **Conclusion/Interpretation:**

PT08.S4(NO2) is the highest pollution at 18.00 hrs