

$ au_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	$\frac{1}{k^2 r_5}$	0	0	0
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{kr_5+k^3r_5}$	$\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	$\frac{3k^2r_5+2t_2}{(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{#2}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{3k^2r_5+2t_2}{(k+k^3)^2r_5t_2}$	$-\frac{i(3k^2r_5+2t_2)}{k(1+k^2)^2r_5t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_5}$	$-\frac{\sqrt{2}}{k^2 r_5 + k^4 r_5}$	$\frac{i\sqrt{2}}{kr_5+k^3r_5}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#2} \dagger^{\alpha \beta}$	$\tau_1^{\#1} + \alpha^{eta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1^-}^{\#1} +^\alpha$	$\tau_1^{\#2} +^{\alpha}$

$f_1^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^-}^{\#2}{}_{lpha}f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5$	0	0	0
$f_{1+lphaeta}^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	2 7 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_5 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{\#_2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\omega_{1}^{\#2} {\dagger}^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} +^{\alpha}$

0

	Massive particl	le	
? $J^P = 0^-$	Pole residue:	$-\frac{1}{r_2} > 0$	
J ² = 0	Polarisations:	1	
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$	
?	Spin:	0	
	Parity:	Odd	

Unitarity conditions $r_2 < 0 \&\& t_2 > 0$

(No massless particles)