RESEARCH TALK

Composition as nonlinear combination in semantic space: A computational characterization of compound processing

Tianqi Wang
The University of Hong Kong

tianqi93@connect.hku.hk https://tianqi93.github.io/

- Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- Characters are highly salient perceptual units, making morphological segmentation executed without effort [Tsang et al., 2018; Tse et al., 2017]

冰箱 图书馆 繁荣昌盛

- Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- Characters are highly salient perceptual units, making morphological segmentation executed without effort [Tsang et al., 2018; Tse et al., 2017]
- ► The role played by constituents in compound processing has been studied via *semantic transparency* (ST), which produced inconsistent results [Libben et al., 2003; Monsell, 1985; Sandra, 1990]

- ► Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- ► Characters are highly salient perceptual units, making morphological segmentation executed without effort [Tsang et al., 2018; Tse et al., 2017]
- ► The role played by constituents in compound processing has been studied via *semantic transparency* (ST), which produced inconsistent results [Libben et al., 2003; Monsell, 1985; Sandra, 1990]

- ► Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- Characters are highly salient perceptual units, making morphological segmentation executed without effort [Tsang et al., 2018; Tse et al., 2017]
- ► The role played by constituents in compound processing has been studied via *semantic transparency* (ST), which produced inconsistent results [Libben et al., 2003; Monsell, 1985; Sandra, 1990]

- Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- ► Characters are highly salient perceptual units, making morphological segmentation executed without effort [Tsang et al., 2018; Tse et al., 2017]
- The role played by constituents in compound processing has been studied via semantic transparency (ST), which produced inconsistent results [Libben et al., 2003; Monsell, 1985; Sandra, 1990]
- Psycholinguists started to reconceptualize ST from the compositional perspective

✓ The predictability of the compound meaning given the combination of the constituents' meanings.

Marelli & Luzzatti (2012)

- Most Chinese words are formed by the combination of characters (e.g., 冰箱 refrigerator = 冰 ice + 箱 box)
- Characters are highly salient perceptual units, making morphological segmentation executed without effort [Tsang et al., 2018; Tse et al., 2017]
- The role played by constituents in compound processing has been studied via semantic transparency (ST), which produced inconsistent results [Libben et al., 2003; Monsell, 1985; Sandra, 1990]
- ▶ Psycholinguists started to reconceptualize ST from the *compositional perspective*
- ► How does this *combinatorial process* modulate Chinese compound processing? [RQ]

✓ The predictability of the compound meaning given the combination of the constituents' meanings.

Marelli & Luzzatti (2012)

How to derive a meaning representation for the compositional compound meaning?

English

Compounding rules

Computational model

compositional

Chinese

Compounding rules

C1 C2 modifier subordinate 板 head coordinate 市 head head verb-object 地 说 verb-resultative 明 Not clear subject-predicate 晚

Computational model

Chinese

Compounding rules

C1 C2 modifier subordinate 板 head coordinate 市 head head verb-object 扫 地 说 verb-resultative 明 Not clear subject-predicate 晚

Computational model

The attributes of the compositional meaning representation

Computed metrics for attributes of the compositional embedding

CE = compositional embedding **LE** = lexicalized embedding **LN** = lexicalized neighbor

开方

Megastudy of Lexical Decision in Simplified Chinese

10,022 two-character words

Database of eye-movement measures on words in Chinese reading

6,128 two-character words

Tsang et al. (2018)

NON

REAL

Zhang et al. (2022)

Analytical procedure

Baseline model

Computed metrics

Interactions

C1 = first character C2 = second character

▶ Lexical decision of real words higher compositionality → faster and more accurate response

			zRT					ERR		
	Estimate	t	р	% ΔR ²	R^2	Estimate	t	р	% ΔR ²	R^2
Intercept	-0.33	-101.94	< 0.001			3.29	75.66	< 0.001		
LogWF	-0.20	-65.60	< 0.001			-2.05	-39.28	< 0.001		
NumStroke	0.004	6.31	< 0.001							
C1.LogCF	0.03	5.46	< 0.001			0.35	4.67	< 0.001		
C2.LogCF	0.03	4.58	< 0.001			0.52	6.29	< 0.001		
C1.LogFS	-0.06	-6.65	< 0.001			-0.50	-3.55	< 0.001		
C2.LogFS	-0.06	-6.52	< 0.001			-0.67	-4.82	< 0.001		
C2.LogNoM	0.05	3.72	< 0.001							
C1.LogNoP	0.08	2.46	0.014							
C1.ST	-0.01	-2.47	0.014			-0.37	-4.62	< 0.001		
C2.ST						-0.23	-2.93	0.003		
Baseline					0.425					0.185
SimCL	-0.40	-8.14	< 0.001	1.97	0.434	-4.18	-5.36	< 0.001	0.74	0.186
DistC	-0.95	-4.41	< 0.001	0.33	0.435					
SimCL × LogWF	0.21	4.14	< 0.001	0.30	0.436	8.22	9.26	< 0.001	5.55	0.196
SimCL × C1.LogFS						-6.00	-3.54	< 0.001	0.60	0.198
DistC × C2.LogCF	0.58	2.47	0.014	0.07	0.437					
Composition metrics				2.69	0.437				6.97	0.198

▶ Lexical decision of real words higher distinctness → faster response

			zRT					ERR		
	Estimate	t	р	% ΔR ²	R^2	Estimate	t	р	% ΔR ²	R^2
Intercept	-0.33	-101.94	< 0.001			3.29	75.66	< 0.001		
LogWF	-0.20	-65.60	< 0.001			-2.05	-39.28	< 0.001		
NumStroke	0.004	6.31	< 0.001							
C1.LogCF	0.03	5.46	< 0.001			0.35	4.67	< 0.001		
C2.LogCF	0.03	4.58	< 0.001			0.52	6.29	< 0.001		
C1.LogFS	-0.06	-6.65	< 0.001			-0.50	-3.55	< 0.001		
C2.LogFS	-0.06	-6.52	< 0.001			-0.67	-4.82	< 0.001		
C2.LogNoM	0.05	3.72	< 0.001							
C1.LogNoP	0.08	2.46	0.014							
C1.ST	-0.01	-2.47	0.014			-0.37	-4.62	< 0.001		
C2.ST						-0.23	-2.93	0.003		
Baseline					0.425					0.185
SimCL	-0.40	-8.14	< 0.001	1.97	0.434	-4.18	-5.36	< 0.001	0.74	0.186
DistC	-0.95	-4.41	< 0.001	0.33	0.435					
SimCL × LogWF	0.21	4.14	< 0.001	0.30	0.436	8.22	9.26	< 0.001	5.55	0.196
SimCL × C1.LogFS						-6.00	-3.54	< 0.001	0.60	0.198
DistC × C2.LogCF	0.58	2.47	0.014	0.07	0.437					
Composition metrics				2.69	0.437				6.97	0.198

Lexical decision of real words

Lexical decision of real words

Interaction between word frequency and compositionality

Interaction between character frequency and compositionality

Lexical decision of nonwords

higher distinctness → slower and less accurate response

			zRT					ERR		
	Estimate	t	р	% ∆R ²	R^2	Estimate	t	р	% ∆R ²	R^2
Intercept	0.28	71.25	< 0.001			9.52	101.21	< 0.001		
NumStroke	0.01	12.12	< 0.001			0.08	4.14	< 0.001		
C1.LogCF	-0.05	-9.23	< 0.001			-1.22	-8.93	< 0.001		
C2.LogCF	-0.02	-4.07	< 0.001			-0.77	-5.17	< 0.001		
C1.LogFS	0.11	10.33	< 0.001			3.18	11.01	< 0.001		
C2.LogFS	0.13	12.56	< 0.001			4.26	15.75	< 0.001		
C1.LogNoM	0.05	3.11	0.002			2.27	5.24	< 0.001		
Baseline					0.074					0.091
DistC	6.90	12.26	< 0.001	17.51	0.087	295.38	18.72	< 0.001	36.05	0.124
DistC × C2.LogCF	-2.08	-3.17	0.002	0.80	0.088					
Composition metrics				18.45	0.088				36.05	0.124

Eye-tracking data

higher compositionality → shorter first fixation duration

		First fi	xation dura	ation		Total fixation duration				
	Estimate	t	р	% ∆R ²	R^2	Estimate	t	р	% ∆R ²	R^2
Intercept	261.39	595.50	< 0.001			416.35	242.40	< 0.001		
LogWF	-8.07	-17.36	< 0.001			-29.09	-16.55	< 0.001		
NumStroke	0.71	7.60	< 0.001			1.93	5.63	< 0.001		
C2.LogCF	2.02	3.33	< 0.001			11.60	4.43	< 0.001		
C2.LogNoM						-18.85	-2.34	0.019		
Baseline					0.086					0.082
SimCL	-28.48	-3.60	< 0.001	2.76	0.088	-113.43	-3.80	< 0.001	4.63	0.086
DistC						-250.69	-2.10	0.036	0.80	0.086
DistC × LogWF						301.43	2.50	0.012	1.52	0.088
Composition metrics				2.76	0.088				7.07	0.088

Eye-tracking data

higher compositionality → shorter total fixation duration

		First fix	First fixation duration					Total fixation duration				
	Estimate	t	р	% ∆R ²	R^2	Estimate	t	р	% ΔR ²	R^2		
Intercept	261.39	595.50	< 0.001			416.35	242.40	< 0.001				
LogWF	-8.07	-17.36	< 0.001			-29.09	-16.55	< 0.001				
NumStroke	0.71	7.60	< 0.001			1.93	5.63	< 0.001				
C2.LogCF	2.02	3.33	< 0.001			11.60	4.43	< 0.001				
C2.LogNoM						-18.85	-2.34	0.019				
Baseline					0.086					0.082		
SimCL	-28.48	-3.60	< 0.001	2.76	0.088	-113.43	-3.80	< 0.001	4.63	0.086		
DistC						-250.69	-2.10	0.036	0.80	0.086		
DistC × LogWF						301.43	2.50	0.012	1.52	0.088		
Composition metrics				2.76	0.088				7.07	0.088		

Eye-tracking data

higher distinctness → shorter total fixation duration

		First fi	xation dura	ation		Total fixation duration				
	Estimate	t	р	% ∆R ²	R^2	Estimate	t	р	% ∆R ²	R^2
Intercept	261.39	595.50	< 0.001			416.35	242.40	< 0.001		
LogWF	-8.07	-17.36	< 0.001			-29.09	-16.55	< 0.001		
NumStroke	0.71	7.60	< 0.001			1.93	5.63	< 0.001		
C2.LogCF	2.02	3.33	< 0.001			11.60	4.43	< 0.001		
C2.LogNoM						-18.85	-2.34	0.019		
Baseline					0.086					0.082
SimCL	-28.48	-3.60	< 0.001	2.76	0.088	-113.43	-3.80	< 0.001	4.63	0.086
DistC						-250.69	-2.10	0.036	0.80	0.086
DistC × LogWF						301.43	2.50	0.012	1.52	0.088
Composition metrics				2.76	0.088				7.07	0.088

Eye-tracking data

Compound meaning is accessed via a holistic route and a combinatorial route

effect of word frequency effect of the computed metrics

accessibility of the holistic meaning representation

attributes associated with the end product of the combinatorial route

Compound meaning is accessed via a holistic route and a combinatorial route

compositionality

relationship of the two routes

↑ .l. convergence of the two routes ⇒ facilitate processing

divergence of the two routes ⇒ hinder processing

Compound meaning is accessed via a holistic route and a combinatorial route

- ► The meaning-composition process is executed by default [EI-Bialy et al., 2013; Libben, 2014]
 - Low frequency words: holistic representation of is not always available
 - High frequency words: combinatorial route as a backup route

Why?

- Maximize the opportunity to understand compound words
- More economical storage of lexical knowledge in the mental lexicon

► ERP megastudy of Chinese word recognition [Tsang and Zou, 2022]

Trial-level ERP ~	Hemisphere:Right + Anteriority:Central + Anteriority:Posterior + NumStroke + LogCD + C1.LogCD + C2.LogCD + C1.LogNoH + C2.LogNoH + C1.ST + C2.ST + SimCL + DistC	Dummy variable: Hemisphere Dummy variable: Anteriority Number of strokes Word frequency Character frequency Number of homophones Semantic transparency
	+ (1 Subject) + (1 Item)	

Right-central

Right-posterior

Left-central

Left-posterior

Each time window

FDR correction

Lexical decision of real words

	TW1	TW2	TW3	TW4	TW5	TW6	TW7	TW8	TW9	TW10
	0-100	100-200	200-300	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
Intercept	-1.19	0.84	1.83	-1.27	3.15	5.71	4.43	2.57	1.74	1.03
Hemisphere:Right	-0.13	0.01	0.10	0.38	0.38	0.31	0.16	-0.01	-0.05	-0.01
Anteriority:Central	0.01	0.01	-0.01	-0.06	0.00	0.03	0.07	0.07	0.05	0.03
Anteriority:Posterior	-0.66	-1.65	-1.43	-0.26	-0.27	-0.39	-0.80	-1.19	-1.01	-0.70
NumStroke	0.00	-0.01	0.02	0.00	-0.01	-0.01	0.00	0.00	0.01	0.01
LogCD	-0.06	0.00	-0.02	0.29	0.39	0.13	-0.26	-0.26	-0.20	-0.08
C1.LogCD	0.13	0.09	0.14	0.13	-0.25	-0.40	-0.25	-0.06	-0.06	-0.01
C2.LogCD	0.07	0.06	0.22	0.21	-0.20	-0.28	-0.15	-0.09	-0.05	-0.03
C1.NoH	-0.06	-0.06	-0.03	-0.01	0.00	-0.10	-0.22	-0.08	0.04	-0.06
C2.NoH	0.01	0.07	0.01	0.02	0.00	-0.10	-0.13	-0.02	-0.02	0.08
C1.ST	-0.13	-0.07	-0.02	0.00	0.07	-0.06	-0.16	-0.15	-0.07	-0.01
C2.ST	0.03	0.17	0.14	0.19	0.13	-0.07	-0.16	0.00	-0.09	0.04
SimCL	0.90	0.87	0.11	-0.46	-1.35	-1.29	-0.19	0.72	0.39	0.19
DistC	-6.32	-6.51	5.84	7.75	16.00	3.52	-9.68	-11.59	-1.61	2.85

higher distinctness → smaller N400: Fewer lexicalized distractors and relative ease of semantic access higher distinctness and compositionality → smaller LPC/P600: Ease of generating a holistic representation

Lexical decision of real words

Lexical decision of nonwords

	TW1	TW2	TW3	TW4	TW5	TW6	TW7	TW8	TW9	TW10
	0-100	100-200	200-300	300-400	400-500	500-600	600-700	700-800	800-900	900-1000
Intercept	-1.37	1.39	2.18	-4.14	0.22	0.11	1.66	4.64	3.23	1.34
Hemisphere:Right	-0.12	0.03	0.20	0.34	0.37	0.43	0.38	0.13	0.05	-0.08
Anteriority:Central	0.02	0.00	-0.03	-0.07	-0.01	0.00	0.01	0.04	0.05	0.07
Anteriority:Posterior	-0.78	-1.90	-2.17	-1.25	-0.31	0.59	1.15	0.03	-1.34	-2.25
NumStroke	0.01	0.00	0.00	0.02	-0.02	0.01	0.02	-0.01	0.01	0.02
C1.LogCD	0.06	-0.15	-0.01	0.18	-0.01	0.15	0.03	-0.35	0.06	0.07
C2.LogCD	0.19	0.11	0.11	0.24	-0.24	0.03	-0.09	-0.21	-0.22	0.05
C1.NoH	0.25	0.15	0.09	-0.19	0.19	0.37	0.06	0.28	0.23	-0.10
C2.NoH	0.02	0.14	-0.05	0.33	-0.12	0.05	-0.13	-0.25	-0.20	0.22
DistC	-5.51	-0.84	20.17	35.81	25.49	13.43	2.78	5.09	9.64	18.70

higher distinctness → smaller N400

Lexical decision of nonwords

RESEARCH TALK

THANKS

tianqi93@connect.hku.hk https://tianqi93.github.io/

