7)
$$y = x^{4}$$

 $y' = 4x^{4-1}$
 $= 4x^{3}$

$$3 = \sqrt{3}x^{\circ}$$
 $O(3x^{-1}) = 0$
 $3x = \sqrt{3}x^{\circ}$ $I(3x^{\circ}) = 3$
 $3x^{2} = \sqrt{3}x^{\circ}$ $2(3x^{-1}) = 6x$

 $= -\frac{3}{64} \times -4$

15)
$$s(t) = t^3 - 2t' + 4$$

 $s'(t) = 3t^2 - 2t'$
 $= 3t^2 - 2$

25) Function
$$Y = \frac{1}{(4x)^3} = \frac{(4x)^{-3}}{3} = \frac{4^{-3}x^{-3}}{4^{-3}x^{-3}} = \frac{1}{(\frac{1}{64})(-3x^{-3}-1)}$$

$$= \frac{1}{(4x)^3} = \frac{2x^3 - 4x^2 + 3}{x^2}$$

$$= \frac{2x^3}{x^2} - \frac{4x^2}{x^2} + \frac{3}{x^2}$$

$$= \frac{2(x^2 - 4 + 3x^2)}{x^2}$$

55)
$$y = \frac{1}{2}x^{2} + 5x$$
.

 $y' = \frac{1}{2}(2x) + 5$.

 $= x + 5$ function of the slope for y'

When is the slope zero?

 $0 = x + 5$
 $x = -5$
 $y' = \frac{1}{2}(-5)^{2} + 5(-5)$
 $y' = \frac{1}{2}(-5)^{2} + 5(-5)$