

Image-Based Situation Awareness Audit 8.5.2018

Sakari Lampola

Previous Audit 28.2.2018

Next steps

- Kalman filter parameter adjustments (Q1)
- Dataset selection (Q1)
- Stereo vision (Q2)
- Camera yaw, pitch, roll estimation (Q2)
- Speech recognition (Q2)
- Semantic segmentation (Q2)
- Experiments in the wild (Q2)
- Paper (Q3)
- Speech analysis (Q3)
- Speech generation (Q3)
- Use cases (Q4)

Other

- Body forecast
 - kinetic
 - based on class history
 - based on swarm history
- R matrix estimation
- Monograph or papers

Project Plan

	2018			2019			2020			2021					
Methodology															
Preparation of research infra															
Method survey															
Building test cases															
Testing and comparison															
Prototype		П													
Definition															
Planning		П													
Implementation		П													
Testing and fixing		П													Г
Method follow-up															
Writing thesis															Г
Dissertation		П													

- 1. Methodology / Preparation of research infra
 - a. Software platforms are constructed and tested
 - b. Off-the-shelf models are acquired and tested
 - c. Necessary skills on platforms are learned
- 2. Methodology / Method survey
 - a. Current state-of-art methods are studied
 - b. Methods are constructed and tested on the software platforms
- 3. Method follow-up
 - a. Screening of conference papers related to the subject
 - b. Possibly integrating new methods to the project

Work Done

Dataset Selection

Specification:

- Video
- Stereo
- Distance information
- Outdoor + indoor
- Odometry

Select category: City | Residential | Road | Campus | Person | Calibration

Data Category: City

2011_09_26_drive_0001 (0.4 GB) Length: 114 frames (00:11 minutes) Image resolution: 1392 x 512 pixels Labels: 12 Cars, O Vans, O Trucks, O Pedestrians, O Sitters, 2 Cyclists, 1 Trams, 0 Misc ownloads: [unsynced+unrectified data] [synced+rectified data] [calibration] [tracklets]

2011_09_26_drive_0002 (0.3 GB)

Image resolution: 1392 x 512 pixels Labels: 1 Cars, 0 Vans, 0 Trucks, 0 Pedestrians, 0 Sitters, 2 Cyclists, 0 Trams, 0 Misc

2011_09_26_drive_0005 (0.6 GB)

Length: 160 frames (00:16 minutes) Image resolution: 1392 x 512 pixels abels: 9 Cars, 3 Vans, 0 Trucks, 2 Pedestrians, 0 Sitters, 1 Cyclists, 0 Trams, 0 Misownloads: [unsynced+unrectified data] [synced+rectified data] [calibration] [tracklets]

The KITTI Vision

and Toyota Technological Institute at Chicago

home setup stereo flow sceneflow depth odometry object tracking road semantics raw data submit results

Andreas Geiger (MPI Tübingen) | Philip Lenz (KIT) | Christoph Stiller (KIT) | Raquel Urtasun (University of Toronto)

Raw Data

This page contains our raw data recordings, sorted by category (see menu above). So far, we included only sequences, for which we either have 3D object labels or which occur in our odometry benchmark training set. The dataset comprises the following information, captured and synchronized at 10 Hz:

- Raw (unsynced+unrectified) and processed (synced+rectified) grayscale stereo sequences (0.5 Megapixels, stored in png format)
- Raw (unsynced+unrectified) and processed (synced+rectified) color stereo sequences (0.5 Megapixels, stored in png format)
- 3D Velodyne point clouds (100k points per frame, stored as binary float matrix)
- 3D GPS/IMU data (location, speed, acceleration, meta information, stored as text file)
- Calibration (Camera, Camera-to-GPS/IMU, Camera-to-Velodyne, stored as text file)
- 3D object tracklet labels (cars, trucks, trams, pedestrians, cyclists, stored as xml file)

Open question: Indoor? Self generated?

```
def detectMobileNetSSD(image, confidence level):
   Detection of objects based on MobileNet and SSD
                                                                                                           Image is resized to 300*300 pixels
    NET = cv2.dnn.readNetFromCaffe("MobileNetSSD_deploy.prototxt.txt", \
                                    "MobileNetSSD deploy.caffemodel")
    (height, width) = image.shape[:2]
   blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 0.007843, (300, 300), 127.5)
    # Pass the blob through the network and obtain the detections
    NET.setInput(blob)
    detections = NET.forward()
                                                                    In [42]: (height, width) = image.shape[:2]
                                                                             (height, width)
In [39]: image = cv2.imread("1.png")
                                                                    Out[42]: (370, 1224)
          plt.axis('off')
          plt.imshow(image)
                                                                    In [43]: image3=image[:,427:797,:]
Out[39]: <matplotlib.image.AxesImage at 0x121574d1048>
                                                                    In [46]: width/height
                                                                    Out[46]: 3.308108108108108
                                                                  In [41]: image2= detectMobileNetSSD(image, 0.0)
                                                                            plt.axis('off')
                                                                            plt.imshow(image2)
                                                                           C:\Program Files\Anaconda3\lib\site-packages\ipyker
                                                                  Out[41]: <matplotlib.image.AxesImage at 0x1214c7c7cf8>
In [40]: smaller_image = cv2.resize(image, (300, 300))
          plt.axis('off')
          plt.imshow(smaller_image)
Out[40]: <matplotlib.image.AxesImage at 0x1214c7a0e10>
                                                                   In [45]: image4= detectMobileNetSSD(image3, 0.0)
                                                                           plt.axis('off')
                                                                           plt.imshow(image4)
                                                                   Out[45]: <matplotlib.image.AxesImage at 0x1214c92eb00>
```

Resized KITTI image is too deformed to be useful. We need another network implementation!

Tensorflow Object Detection API

Creating accurate machine learning models capable of localizing and identifying multiple objects in a single image remains a core challenge in computer vision. The TensorFlow Object Detection API is an open source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models. At Google we've certainly found this codebase to be useful for our computer vision needs, and we hope that you will as well.

COCO-trained models {#coco-models}

Model name	Speed (ms)	COCO mAP[^1]	Outputs
sd_mobilenet_v1_coco	30	21	Boxes
sd_inception_v2_coco	42	24	Boxes
faster_rcnn_inception_v2_coco	58	28	Boxes
faster_rcnn_resnet50_coco	89	30	Boxes
faster_rcnn_resnet50_lowproposals_coco	64		Boxes
rfcn_resnet101_coco	92	30	Boxes
faster_rcnn_resnet101_coco	106	32	Boxes
faster_rcnn_resnet101_lowproposals_coco	82		Boxes
faster_rcnn_inception_resnet_v2_atrous_coco	620	37	Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_coco	241		Boxes
faster_rcnn_nas	1833	43	Boxes
faster_rcnn_nas_lowproposals_coco	540		Boxes
mask_rcnn_inception_resnet_v2_atrous_coco	771	36	Masks
mask_rcnn_inception_v2_coco	79	25	Masks
mask_rcnn_resnet101_atrous_coco	470	33	Masks
mask_rcnn_resnet50_atrous_coco	343	29	Masks

Kitti-trained models {#kitti-models}

faster_rcnn_resnet101_kitti 79 87 Boxes	Model name	Speed (ms)	Pascal mAP@0.5 (ms)	Outputs	
	faster_rcnn_resnet101_kitti	79	87	Boxes	•

Lottery prize!!!! Will be used to implement localization and velocity estimation

Open Images-trained models {#open-images-models}

Model name	Speed (ms)	Open Images mAP@0.5[^2]	Outputs
faster_rcnn_inception_resnet_v2_atrous_oid	727	37	Boxes
faster_rcnn_inception_resnet_v2_atrous_lowproposals_oid	347		Boxes

People Dataset- Tasks- Evaluate-

News

- 2017 Challenge Winners for Detection, Keypoint, & Stuff tasks have been announced!
 Please visit the Joint COCO and Places Recognition ICCV workshop page for details.
- This website is now hosted on Github, which provides page source and history.
- Keypoint analysis tools are now available, see keypoints evaluation, Section 4.

What is COCO?

COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features:

- Object segmentation
- Recognition in context
- Superpixel stuff segmentation
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories
- 91 stuff categories
- ✓ 5 captions per image
- 250,000 people with keypoints

Collaborators

Tsung-Yi Lin Google Brain Genevieve Patterson MSR

Matteo R. Ronchi Caltech

Yin Cui Cornell Tech

Michael Maire TTI-Chicago

Serge Belongie Cornell Tech

Lubomir Bourdey WaveOne, Inc.

Ross Girshick FAIR

NUSS OII SHICK FAIR

James Hays Georgia Tech

Pietro Perona Caltech

Deva Ramanan CMU

Larry Zitnick FAIR

Piotr Dollár FAIR

Sponsors

Research Paper

Download the paper that describes the Microsoft COCO dataset.

Image format / cropping

$$s_w$$
 = sensor pixel width = 1392

Assumptions:

- image is symmetrically cropped (optical center fixed)
- rectification ignored

$$x_i = (s_w - i_w)/2$$
$$y_i = (s_h - i_h)/2$$

$$y_i = (s_h - i_h)/2$$

Stereo Vision

Right

Compatible OS

Windows 7, 8, 10

Linux

:::ROS

SDK System Requirements

- > Dual-core 2,3GHz or faster processor
- > 4 GB RAM or more
- > Nvidia GPU with compute capability > 3.0

In The Box

- > ZED Stereo camera
- > Mini Tripod stand
- > USB Drive with Drivers and SDK
- > Documentation

Dimensions

Features

- > High-Resolution and High Frame-rate 3D Video Capture
- > Depth Perception indoors and outdoors at up to 20m
- > 6-DoF Positional Tracking
- > Spatial Mapping

Video

Video Mode	Frames per second	Output Resolution (side by side)
2.2K	15	4416x1242
1080p	30	3840×1080
720p	60	2560x720
WVGA	100	1344x376

Depth

 Depth Resolution
 Depth Format

 Same as selected video resolution
 32-bits

 Depth Range
 Stereo Baseline

 0.5 - 20 m (2.3 to 65 ft)
 120 mm (4.7")

Mapping left and right image patterns

class,confidence,x,y,width,height,hue0,hue1,hue2,saturation,value
2,1.00,566.00,215.50,52.00,137.00,0.315,0.437,0.247,71.996,124.843
2,1.00,530.50,216.00,49.00,134.00,0.291,0.468,0.242,72.229,121.822

x,y = bounding box center location saturation,value = mean values

3-bin hue histogram:

Pattern matching based on feature difference is required!

class,confidence,x,y,width,height,hue0,hue1,hue2,saturation,value 1,1.00,1010.50,206.50,113.00,53.00,0.354,0.438,0.208,74.793,48.389 1,1.00,1096.00,207.00,124.00,48.00,0.313,0.514,0.173,75.248,79.118 1,1.00,1157.50,208.50,121.00,49.00,0.274,0.551,0.175,79.360,81.186 1,1.00,500.50,215.00,129.00,94.00,0.367,0.389,0.244,75.836,70.045 2,1.00,592.00,229.50,78.00,155.00,0.550,0.254,0.196,59.824,104.288 1,1.00,619.50,187.50,37.00,31.00,0.286,0.323,0.391,58.958,58.623 2,1.00,159.00,190.50,36.00,79.00,0.434,0.220,0.346,77.767,116.533 2,1.00,293.50,180.50,17.00,45.00,0.354,0.299,0.346,78.097,70.915 2,1.00,127.50,180.00,25.00,64.00,0.493,0.174,0.333,97.595,144.548 2,1.00,216.00,200.00,34.00,90.00,0.422,0.256,0.322,82.717,112.057 2,1.00,184.50,184.00,33.00,72.00,0.413,0.229,0.358,68.688,159.507 2,1.00,177.50,185.50,33.00,75.00,0.395,0.244,0.361,70.105,148.906 2,0.98,272.50,179.50,19.00,51.00,0.397,0.261,0.342,80.279,69.196 2,0.79,235.00,180.50,16.00,47.00,0.483,0.209,0.309,94.992,127.202 1,1.00,1087.00,207.50,124.00,49.00,0.292,0.507,0.201,71.784,76.482 1,1.00,993.50,207.00,115.00,50.00,0.348,0.410,0.242,72.279,47.679 1,1.00,475.00,215.00,132.00,94.00,0.311,0.366,0.323,69.133,74.729 1,1.00,609.00,186.00,36.00,30.00,0.144,0.298,0.557,59.536,30.091 2,1.00,550.50,230.00,81.00,152.00,0.564,0.262,0.175,60.986,116.519 2,1.00,187.50,200.50,37.00,91.00,0.394,0.285,0.322,78.999,107.080

2,1.00,147.50,191.50,39.00,81.00,0.381,0.260,0.359,69.986,128.833 2,1.00,222.50,178.50,15.00,45.00,0.376,0.330,0.293,78.055,120.033

2,1.00,260.00,180.50,20.00,55.00,0.394,0.267,0.339,79.143,69.303 2,1.00,112.00,178.50,26.00,65.00,0.509,0.172,0.319,90.011,143.473

1,1.00,1153.50,209.00,127.00,50.00,0.209,0.593,0.198,77.370,78.260 2,0.99,169.00,180.50,28.00,67.00,0.432,0.317,0.251,75.630,159.326 Probabilistic model answering the question: What is the probability two patterns represent the same object?

Feature vector F:

- confidence
- X
- \
- width
- heigth
- hue0
- hue1
- hue2
- saruration
- value

Note: Class is not included as it is **required** to be the same

Assumption:

P(i and j are same pattern) $\sim N(F_i - F_i \mid \mu_F, V_F)$

 μ_F , V_F were estimated by matching 84 patterns in 28 KITTI stereo image pairs representing city, residential, campus and person categories, including both cars and pedestrians.

dValue

-0.003060

5.324796

Note: Mean disparity (dX) is appr. 30 pixels

]:[covariance=	df.cov()									
	covariance										
		dConfidence	dX	dY	dWidth	dHeight	dHue0	dHue1	dHue2	dSaturation	dValue
	dConfidence	0.002886	-0.069214	-0.022539	0.116641	-0.000818	-0.000207	0.000077	0.000131	0.046382	-0.003060
	dX	-0.069214	411.545898	1.482788	53.121056	-1.707401	0.007306	-0.041094	0.034841	-31.935069	5.324796
	dY	-0.022539	1.482788	6.991394	-20.158348	-2.624785	0.019775	-0.025219	0.005289	-2.481722	2.036318
	dWidth	0.116641	53.121056	-20.158348	559.761905	75.860585	0.054818	-0.032215	-0.022245	4.598916	-36.784720
	dHeight	-0.000818	-1.707401	-2.624785	75.860585	30.356282	0.030632	-0.030119	-0.000337	2.336329	-2.746706
	dHue0	-0.000207	0.007306	0.019775	0.054818	0.030632	0.001820	-0.001190	-0.000622	-0.019008	0.125514
	dHue1	0.000077	-0.041094	-0.025219	-0.032215	-0.030119	-0.001190	0.001925	-0.000741	0.040519	-0.041532
	dHue2	0.000131	0.034841	0.005289	-0.022245	-0.000337	-0.000622	-0.000741	0.001361	-0.021563	-0.083944
	dSaturation	0.046382	-31.935069	-2.481722	4.598916	2.336329	-0.019008	0.040519	-0.021563	24.449793	2.102903

2.036318 -36.784720 -2.746706 0.125514 -0.041532 -0.083944

2.102903 78.502261

In [24]: df.describe()

Out[24]:

	dConfidence	dX	dY	dWidth	dHeight	dHue0	dHue1	dHue2	dSaturation	dValue
count	84.000000	84.000000	84.000000	84.000000	84.000000	84.000000	84.000000	84.000000	84.000000	84.000000
mean	-0.002024	30.119048	0.142857	1.595238	1.071429	0.020762	-0.012524	-0.008333	3.859619	-1.029405
std	0.053724	20.286594	2.644124	23.659288	5.509654	0.042662	0.043879	0.036886	4.944673	8.860150
min	-0.440000	-1.000000	-12.000000	-102.000000	-24.000000	-0.117000	-0.181000	-0.166000	-11.327000	-26.690000
25%	0.000000	14.875000	-0.500000	-3.250000	-1.000000	-0.001250	-0.035250	-0.024500	1.041750	-3.944250
50%	0.000000	27.500000	0.000000	0.000000	1.000000	0.018500	-0.010000	-0.002000	3.741000	-1.281000
75%	0.000000	41.125000	0.625000	7.000000	2.250000	0.043000	0.014250	0.014250	5.875000	3.061000
max	0.210000	91.500000	12.000000	89.000000	20.000000	0.219000	0.106000	0.089000	25.595000	28.532000

In [20]: sns.pairplot(df)

Out[20]: <seaborn.axisgrid.PairGrid at 0x29b57b73588>

Pattern matching is done using Hungarian algorithm with the distance metrics:

$$d_{ij} = -log(P(i \text{ and } j \text{ are same pattern})) = -log(N(F_i - F_j | \mu_F, V_F))$$

If the probability that the patterns are same is near 1, the distance will be near zero. As the probability decreases, the distance increases. The log is required to compare small numbers without numerical issues.

Simple example

Complicated example


```
class, confidence, x, y, width, height, hue0, hue1, hue2, saturation, value
1,1.00,1010.50,206.50,113.00,53.00,0.354,0.438,0.208,74.793,48.389
1,1.00,1096.00,207.00,124.00,48.00,0.313,0.514,0.173,75.248,79.118
1,1.00,1157.50,208.50,121.00,49.00,0.274,0.551,0.175,79.360,81.186
1,1.00,500.50,215.00,129.00,94.00,0.367,0.389,0.244,75.836,70.045
2,1.00,592.00,229.50,78.00,155.00,0.550,0.254,0.196,59.824,104.288
1,1.00,619.50,187.50,37.00,31.00,0.286,0.323,0.391,58.958,58.623
2,1.00,159.00,190.50,36.00,79.00,0.434,0.220,0.346,77.767,116.533
2,1.00,293.50,180.50,17.00,45.00,0.354,0.299,0.346,78.097,70.915
2,1.00,127.50,180.00,25.00,64.00,0.493,0.174,0.333,97.595,144.548
2,1.00,216.00,200.00,34.00,90.00,0.422,0.256,0.322,82.717,112.057
2,1.00,184.50,184.00,33.00,72.00,0.413,0.229,0.358,68.688,159.507
2,1.00,177.50,185.50,33.00,75.00,0.395,0.244,0.361,70.105,148.906
2,0.98,272.50,179.50,19.00,51.00,0.397,0.261,0.342,80.279,69.196
2,0.79,235.00,180.50,16.00,47.00,0.483,0.209,0.309,94.992,127.202
1,1.00,1087.00,207.50,124.00,49.00,0.292,0.507,0.201,71.784,76.482
1,1.00,993.50,207.00,115.00,50.00,0.348,0.410,0.242,72.279,47.679
1,1.00,475.00,215.00,132.00,94.00,0.311,0.366,0.323,69.133,74.729
1,1.00,609.00,186.00,36.00,30.00,0.144,0.298,0.557,59.536,30.091
2,1.00,550.50,230.00,81.00,152.00,0.564,0.262,0.175,60.986,116.519
2,1.00,187.50,200.50,37.00,91.00,0.394,0.285,0.322,78.999,107.080
2,1.00,147.50,191.50,39.00,81.00,0.381,0.260,0.359,69.986,128.833
2,1.00,222.50,178.50,15.00,45.00,0.376,0.330,0.293,78.055,120.033
2,1.00,260.00,180.50,20.00,55.00,0.394,0.267,0.339,79.143,69.303
2,1.00,112.00,178.50,26.00,65.00,0.509,0.172,0.319,90.011,143.473
```

1,1.00,1153.50,209.00,127.00,50.00,0.209,0.593,0.198,77.370,78.260

2,0.99,169.00,180.50,28.00,67.00,0.432,0.317,0.251,75.630,159.326

class,confidence,x,y,width,height,hue0,hue1,hue2,saturation,value

 $1,1.00,1010.50,206.50,113.00,53.00,0.354,0.438,0.208,74.793,48.389\\1,1.00,1096.00,207.00,124.00,48.00,0.313,0.514,0.173,75.248,79.118\\1,1.00,1157.50,208.50,121.00,49.00,0.274,0.551,0.175,79.360,81.186\\1,1.00,500.50,215.00,129.00,94.00,0.367,0.389,0.244,75.836,70.045\\2,1.00,592.00,229.50,78.00,155.00,0.550,0.254,0.196,59.824,104.288\\1,1.00,619.50,187.50,37.00,31.00,0.286,0.323,0.391,58.958,58.623\\2,1.00,159.00,190.50,36.00,79.00,0.434,0.220,0.346,77.767,116.533\\2,1.00,293.50,180.50,17.00,45.00,0.354,0.299,0.346,78.097,70.915\\2,1.00,127.50,180.00,25.00,64.00,0.493,0.174,0.333,97.595,144.548\\2,1.00,216.00,200.00,34.00,90.00,0.422,0.256,0.322,82.717,112.057\\2,1.00,177.50,185.50,33.00,75.00,0.395,0.244,0.361,70.105,148.906\\2,0.98,272.50,179.50,19.00,51.00,0.397,0.261,0.342,80.279,69.196\\2,0.79,235.00,180.50,16.00,47.00,0.483,0.209,0.309,94.992,127.202$

1,1.00,1087.00,207.50,124.00,49.00,0.292,0.507,0.201,71.784,76.482
1,1.00,993.50,207.00,115.00,50.00,0.348,0.410,0.242,72.279,47.679
1,1.00,475.00,215.00,132.00,94.00,0.311,0.366,0.323,69.133,74.729
1,1.00,609.00,186.00,36.00,30.00,0.144,0.298,0.557,59.536,30.091
2,1.00,550.50,230.00,81.00,152.00,0.564,0.262,0.175,60.986,116.519
2,1.00,187.50,200.50,37.00,91.00,0.394,0.285,0.322,78.999,107.080
2,1.00,147.50,191.50,39.00,81.00,0.381,0.260,0.359,69.986,128.833
2,1.00,222.50,178.50,15.00,45.00,0.376,0.330,0.293,78.055,120.033
2,1.00,260.00,180.50,20.00,55.00,0.394,0.267,0.339,79.143,69.303
2,1.00,112.00,178.50,26.00,65.00,0.509,0.172,0.319,90.011,143.473
1,1.00,1153.50,209.00,127.00,50.00,0.209,0.593,0.198,77.370,78.260
2,0.99,169.00,180.50,28.00,67.00,0.432,0.317,0.251,75.630,159.326

In [120]: np.set_printoptions(precision=0) print(distance_matrix)

```
27.
        6. 424. 315. 583.
                              999.
                                    999.
                                          999.
                                                999.
                                                      999.
                                                              64.
                                                                  999.]
                                                              21.
                                                                  999.]
                        695.
                              999.
                                    999.
                                          999.
                                                 999.
                                                      999.
            543. 427.
            653.
                  532.
                        999.
                              999.
                                    999.
                                          999.
                                                999.
                                                      999.
  9.
                                                               7.
                                                                   999.]
              7.
                  235.
                        154.
                             153. 257.
                                          295.
                                                232.
                                                      387.
                                                            693.
                                                                  328.]
566.
      438.
      616.
            164.
                  600.
                          7. 372.
                                    532.
                                          690.
                                                592.
                                                      999.
                                                            999.
                                                                  651.]
718.
            191.
                        542.
                              313.
                                    345.
                                          208.
                                                      367.
                                                                  328.]
453.
      331.
                   19.
                                                155.
                                                            588.
            260.
                        546.
                                                 74.
                                                       35.
      999.
                  406.
                               29.
                                      8.
                                           54.
                                                            999.
                                                                    31.]
999.
      999.
            246.
                  182.
                        631.
                              107.
                                     93.
                                           23.
                                                  9.
                                                       79.
                                                            999.
                                                                    82.]
999.
999.
      999.
            385.
                  449.
                        740.
                               96.
                                     45.
                                           40.
                                                 85.
                                                        6.
                                                            999.
                                                                    25.1
            157.
                  372.
                                     22.
                                           92.
      999.
                        372.
                                5.
                                                 92.
                                                       86.
                                                            999.
                                                                    68.]
999.
            336.
                  443.
                        643.
                               79.
                                           53.
                                                114.
                                                       35.
                                                            999.
                                                                    14.]
999.
      999.
                                     21.
            314. 435.
                        613.
                               62.
                                     14.
                                           53.
                                                106.
                                                       36.
                                                            999.
999.
      999.
                                                                    16.]
            260.
                                           25.
                                                  6.
      999.
                  206.
                        633.
                              102.
                                     88.
                                                       68.
                                                            999.
                                                                    79.1
999.
      999. 327.
                  302. 717. 122.
                                     86.
                                           23.
                                                 49.
                                                       35. 999.
                                                                    51.]]
999.
```

In [122]: row_ind, col_ind = linear_sum_assignment(distance_matrix) print(row_ind) print(col ind)

```
[ 0 1 2 3 4 5 6 8 9 10 12 13]
[ 1 0 10 2 4 3 6 9 5 11 8 7]
```


After implementing stereo vision, we have two distance estimates:

- 1. Distance based on stereo vision. Accurate in short distances (for Kitti, 20 meters)
- 2. Distance based on size. Can be used in long distances where stereo vision is inaccurate.

$$d_{size} = \frac{f * r}{\cos(\alpha) * \cos(\beta) * r_i * s_h/p_h}$$

 $s_h = sensor\ height\ (m)$ $p_h = image\ height\ (pixels)$ $r_i = pattern\ radius\ (pixels)$ $r = body\ radius\ (m),\ mean\ from\ class\ specific\ distribution$ $f = focal\ length\ (m)$ $\alpha = altitude\ (rad)$ $\beta = azimuth\ (rad)$

$$d_{stereo} = \frac{f * b}{\cos(\alpha) * \cos(\beta) * ds * s_w/p_w}$$

 s_w = sensor width (m) p_w = image width (pixels) f = focal length (m) b = base line (m) ds = disparity (pixels) α = altitude (rad) β = azimuth (rad)

Combining distance estimates:

$$d = k_{stereo} * d_{stereo} + k_{size} * d_{size}$$

```
fraction = 0.25
def calculate_coefficients(estimated_distance, stereo_max_distance):
    if estimated_distance < (1-fraction)*stereo_max_distance:
        k_size = 0.0
        k_stereo = 1.0
    elif estimated_distance > (1+fraction)*stereo_max_distance:
        k_size = 1.0
        k_stereo = 0.0
    else:
        11 = estimated_distance - (1-fraction)*stereo_max_distance
        12 = (1+fraction)*stereo_max_distance - (1-fraction)*stereo_max_distance
        k_size = 11/12
        k_stereo = 1 - k_size
    return k_stereo, k_size
```

Initialization:

$$estimated_distance = 0.5 * d_{stereo} + 0.5 * d_{size}$$

Procedure is iterated until convergence or max_iter (or just used once?)

dsize = 21.0

Estimating disparity using matched patterns

Left camera pattern: x_min_left x_max_left

Right camera pattern: x_min_right x_max_right

Pattern disparity = 0.5 * (x_min_left+x_max_left)-0.5*(x_min_right+x_max_right)

3D projection

$$(x_b, y_b, z_b) = t^* (x_p, y_p, z_p)$$

Where:

$$(x_p, y_p, z_p) = (-\frac{s_w}{2} + p_x * \frac{s_w}{p_w}, \frac{s_h}{2} - p_y * \frac{s_h}{p_h}, -f)$$

$$t = \frac{d}{\sqrt{x_p^2 + y_p^2 + z_p^2}}$$

 $s_w = sensor \ width \ (m)$ $s_h = sensor \ height \ (m)$ $p_w = image \ width \ (pixels)$ $p_h = image \ height \ (pixels)$ $f = focal \ length \ (m)$ $p_x = pattern \ center \ point \ location \ (x, pixels)$ $p_y = pattern \ center \ point \ location \ (y, pixels)$

Note! Only left image used. Right image is used only for disparity calculation (in the context of distance estimation and 3D projection).

Kalman Filter Parameter Adjustments

Two levels of filtering:

- 1. Pattern
 - Pattern movement estimation for missing detections
- 2. Body
 - Coordinate and velocity estimation

Before

```
PATTERN_ALFA = 200.0 # Pattern initial location error variance
PATTERN BETA = 10000.0 # Pattern initial velocity error variance
PATTERN_C = np.array([[1.0, 0.0]]) # Pattern measurement matrix
PATTERN Q = np.array([200.0]) # Pattern measurement variance
PATTERNR = np.array([[0.1, 0.0],
                        [0.0, 1.0]]) # Pattern state equation covariance
BODY ALFA = 100000.0 # Body initial location error variance
BODY BETA = 100000.0 # Body initial velocity error variance
BODY_C = np.array([[1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 1.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0, 0.0]
]) # Body measurement matrix

BODY_DATA_COLLECTION_COUNT = 30 # How many frames until notification
BODY_Q = np.array([[200.0, 0.0, 0.0],
                    [0.0, 200.0, 0.0],
[0.0, 0.0, 200.0]]) # Body measurement variance 200
BODY_R = np.array([[0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                   ]) # Body state equation covariance
```

PATTERN ALFA

- 2*std = 20px, first detection bounding box accuracy PATTERN_BETA
- 2*std = 200 px/s = 20 px / frame

PATTERN Q

• 2*std = 20px, detection accuracy

PATTERN_R

- Location, no teleporting
- Velocity, 2*std = 20px/frame = 200 px/s

BODY_ALFA

• 2*std = 6 m, first location accuracy

BODY_BETA

• 2*std = 20 m/s

BODY_Q

• 2*std = 10m, measurement accuracy

BODY_R

- Location, no teleporting
- Velocity (x,z), 2*std = 2 m/s2
- Velocity (y), 2*std = 0,6 m/s2

The Big Picture

Next Steps

Next steps

- Kalman filter parameter adjustments (Q1)
- Dataset selection (Q1)
- Stereo vision (Q2)
- Camera yaw, pitch, roll estimation (Q2)
- Speech recognition (Q2)
- Semantic segmentation (Q2)
- Experiments in the wild (Q2)
- Paper (Q3)
- Speech analysis (Q3)
- Speech generation (Q3)
- Use cases (Q4)

Discussion

Thank you!

lampola@student.tut.fi
https://github.com/SakariLampola/Thesis