Ferienkurs Seite 1

Technische Universität München

Ferienkurs Analysis 1

Hannah Schamoni

Folgen, Reihen, Potenzreihen, Exponentialfunktion

Übungsblatt

20.03.2012

1. Folgen I

Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ auf Konvergenz bzw. Divergenz und berechnen

Sie gegebenenfalls den Grenzwert, wobei a_n gegeben ist durch (a) $\frac{(n+3)(2n-1)}{n^2-5}$ (b) $\left(\frac{3+4i}{4}\right)^n$ (c) $\left(\frac{3+4i}{5}\right)^n$ (d) $\left(\frac{3+4i}{6}\right)^n$ (e) $\sqrt{n^2+n}-n$ (f) $\sqrt{n}+\sqrt{n}-\sqrt{n}$ (g) $\binom{2n}{n}2^{-n}$ (h) $\prod_{k=2}^n\left(1-\frac{1}{k^2}\right)$ Hinweis: Zeigen Sie bei (g) zunächst, dass $a_{n+1}=\frac{2n+1}{n+1}a_n$ und bei (h), dass $a_n = \frac{n+1}{2n}.$

2. Folgen II

Bestimmen Sie die Grenzwerte der wie folgt definierten Folgen (a_n) : (a) $\frac{n+\sin(n^2)}{n+\cos(n)}$ (b) $\frac{\sin(n^2\frac{\pi}{2})}{n}$ (c) $\frac{n+2\sqrt{n}}{3n-\sqrt{n}}$ (e) $\frac{(1+i)n^4-n^3+(2+3i)n}{in^4+2n^2}$ (f) $\sqrt{n^3+n}-\sqrt{n^3-1}$

(d) $n \left(1 - \sqrt{1 - \frac{c}{n}}\right)$

3. Rekursive Folge

Die Folge $(a_n)_{n\in\mathbb{N}_0}$ reeller Zahlen sei rekursiv definiert durch

 $a_0 = \frac{3}{4 - a_{n-1}}$ für $n \ge 1$.

Zeigen Sie, dass die Folge konvergiert und berechnen Sie den Grenzwert.

4. Konvergente Folge

Sei (a_n) eine konvergente Folge mit $\lim_{n\to\infty} a_n =: a$ und $s_n := \frac{1}{n} (a_1 + a_2 + \ldots + a_n)$. Zeigen Sie, dass damit auch $\lim_{n\to\infty} s_n = a$ gilt.

5. Limes superior/inferior, Häufungspunkte

Bestimmen Sie für die Folgen $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R} den Limes superior, den Limes inferior und alle Häufungspunkte. Finden Sie im Fall der Konvergenz (auch uneigentliche Konvergenz) den Grenzwert.

(a) $a_n := (-1)^n \frac{n-1}{n+1}$

(b) $a_n := (-3)^n + ((-1)^n + 1)5^n$

(c) $a_n := \sqrt[n]{3^n + ((-1)^n + 1)5^n}$

6. Aussagen über Folgen

Sei $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$. Zeigen Sie:

 $\limsup a_n = \infty \Leftrightarrow (a_n)_{n \in \mathbb{N}}$ ist nicht nach oben beschränkt

7. Konvergenz von Reihen

Untersuchen Sie folgende Reihen auf (absolute) Konvergenz bzw. Divergenz.

(a)
$$\sum_{n=0}^{\infty} \frac{n^4}{3^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin(\sqrt{n})}{n^{\frac{5}{2}}}$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n-1}}$$
 (e) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$

Hinweis zu (e): Archimedisches Axiom: $\forall x \in \mathbb{R} \ \exists n_0 \in \mathbb{N} : n_0 > x$

8. Werte von Reihen

Bestimmen Sie die Werte der angegebenen Reihen. (a) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$ (b) $\sum_{n=1}^{\infty} \frac{3}{4^n}$ (c) $\sum_{n=0}^{\infty} \frac{(-3)^n}{4^n}$ (d) $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{3}{4^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-3)^n}{4^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

9. Konvergenzradien von Potenzreihen

Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:
(a) $\sum_{n=0}^{\infty} (n^4 - 4n^3)x^n$ (b) $\sum_{n=0}^{\infty} \frac{e^n + e^{-n}}{2}x^n$ (c) $\sum_{n=0}^{\infty} \frac{x^{5n+1}}{1+2^n}$ (d) $\sum_{n=0}^{\infty} \frac{(2+(-1)^n)^n}{n}x^n$

(a)
$$\sum_{n=0}^{\infty} (n^4 - 4n^3)x^n$$

(b)
$$\sum_{n=0}^{\infty} \frac{e^n + e^{-n}}{2} x^n$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^{5n+1}}{1+2^n}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(2+(-1)^n)^n}{n} x^n$$

10. Funktionalgleichung der Exponentialfunktion

Beweisen Sie für $z, w \in \mathbb{C}$ mit Hilfe des Cauchy-Produkts:

$$\exp(z)\exp(w) = \exp(z+w)$$

11. Sinus, Cosinus

Zeigen Sie, dass für alle $x \in \mathbb{R}$ gilt:

(a)
$$\cos(3x) = 4\cos^3(x) - 3\cos(x)$$

(b)
$$\sin(3x) = -4\sin^3(x) + 3\sin(x)$$