

Departamento de Matemática, Universidade de Aveiro

Cálculo II — 2.º Teste de Avaliação Mista 14 de junho de 2012

Duração: 2h

- Justifique todas as respostas e indique os cálculos efetuados -

[15pts] 1. Calcule a soma da série $\sum_{n=0}^{\infty} \frac{2^n - 2^{n+1}}{2^{2n+1}}$.

[15pts] 2. Sejam $\sum_{n=1}^{\infty} a_n$ uma série numérica de termos positivos e $\ell = \lim_{n \to +\infty} (na_n)$.

Mostre que se $\ell \in \mathbb{R}^+$, então a série $\sum_{n=1}^\infty a_n$ é divergente.

3. Estude a natureza (divergência, convergência simples ou convergência absoluta) das seguintes séries:

[25pts] (a) $\sum_{n=1}^{\infty} \frac{4^n n!}{(2n)!}$

[20pts]

[25pts] (b) $\sum_{n=1}^{\infty} (-1)^n \frac{2n+3}{(n+1)(n+2)}$

4. Considere a função f definida por $f(x)=\sum_{n=1}^{\infty}\frac{(x-1)^n}{3^n\sqrt{n}}$, $x\in D$.

[30pts] (a) Determine o domínio D de convergência da série de potências, indicando os pontos onde a convergência é simples ou absoluta.

(b) Determine a série de Taylor no ponto 1 da função $g(x)=x+f^{\prime}(x)$.

5. Considere a função f dada por $f(x) = \sqrt[3]{1+x}$.

[10pts] (a) Escreva a fórmula de MacLaurin de ordem 1 da função f (com resto de Lagrange).

[20pts] (b) Usando a fórmula obtida na alínea anterior, calcule uma aproximação de $\sqrt[3]{1,3}$ e mostre que o erro cometido nessa aproximação é inferior a 10^{-2} .

6. Considere a série de Fourier

$$\frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{(2n)^2 - 1}$$

associada à função f, periódica de período 2π , definida em $[-\pi,\pi]$ por $f(x)=|\sin x|$.

[15pts] (a) Mostre que a série é uniformemente convergente em \mathbb{R} .

[15pts] (b) Indique, justificando, a função soma da série dada.

[10pts] (c) Usando a representação de f em série de Fourier, mostre que $\sum_{n=1}^{\infty} \frac{1}{(2n)^2 - 1} = \frac{1}{2}$.