Redução do erro amostral na estimativa do volume de povoamentos de Eucalyptus ssp. por meio de escaneamento laser aerotransportado

Scientia Forestalis, volume 43, n. 108 dezembro de 2015

Redução do erro amostral na estimativa do volume de povoamentos de *Eucalyptus* ssp. po escaneamento laser aerotransportado

Reducing of the sampling error in *Eucalyptus* ssp. stand volume through airborne laser scanning estimation

Danitiele Cristina França Laranja¹
Eric Bastos Gorgens²
Carlos Pedro Boechat Soares³
André Gracioso Peres da Silva⁴
Luiz Carlos Estraviz Rodriguez⁵

Recebido em 22/10/2014 - Aceito para publicac

Resumo

O inventário florestal é uma importante atividade que fornece uma ampla gama de informações sobre os parâmetros populacionais de florestais, com base em delineamentos de amostragem. Assim, este trabalho apresenta e avalia o uso combinado de levantamentos lase (ALS - *Airborne Laser Scanning*) e de dupla amostragem para estimativa de volume em plantios de eucalipto, comparando os resultad delineamentos amostrais tradicionais como a amostragem casual simples e a amostragem casual estratificada. No primeiro cenário de du assumiu-se a primeira fase como sendo a métrica de altura percentil 90 (P90) derivado dos dados ALS. No segundo cenário, adotou-se o p e a métrica de proporção porcentagem de todos os retornos acima da média relacionada aos primeiros retornos (ARMFR), derivadas de (*Light Detection And Ranging*). Através de simulações buscou-se determinar a intensidade amostral necessária para atender um erro máximo de 5%. O estudo foi realizado em uma área de 401,6 hectares localizada nos municípios de São Miguel Arcanjo e Pilar do Sul, onde e medidas 37 parcelas em campo. O menor erro de amostragem obtido foi o da dupla amostragem com regressão múltipla (±1,8%), seg amostragem com estimador de regressão simples; amostragem casual estratificada; e amostragem casual simples, confirmando o poter dados do sensor laser para melhorar as estimativas de volume do inventário florestal, possibilitando a redução da intensidade amostra apenas 10 unidades de amostra, o erro da dupla amostragem obtido na regressão múltipla foi de ± 3,4%.

Palavras-chave: LiDAR, Delineamento Amostral, Erro Amostral, Dupla Amostragem, Métricas ALS.

Abstract

Forest inventory is an important activity to provide a wide range of information about the parameters from extensive forested areas bas designs. This study evaluates the use of ALS (Airborne Laser Scanning) metrics as part of a double sampling design for stand volur *Eucalyptus* plantation, comparing the results to traditional sampling designs such as simple random sampling and stratified random sampling the double sampling first phase was the height metric of the 90th percentile (P90) derived from LiDAR (Light Detection And Ranging) dat double sampling scenario we adopted the 90th percentile (P90) and the density metric percentage of all returns above the mean of first realso derived from LiDAR data. Through simulations we sought to determine the sampling intensity required to obtain a sampling error at most was conducted in 401,6 hectares of *Eucalyptus* plantation located between the municipalities of São Miguel Arcanjo and Pilar do Sul (São F plots were measured in the field. The smallest sampling error was obtained from the double sampling with multiple regression (±1,8%) follow sampling with simple regression, the stratified random sampling and the simple random sampling; confirming the use of ALS data to imp estimation and enabling the sampling intensity reduction. The error of double sampling with multiple regression was ±3,4% considering only 1 **Keywords**: LiDAR, double sampling, sample design, sampling error, ALS metrics.

¹Mestranda em Recursos Florestais. USP - Universidade de São Paulo - Departamento de Ciências Florestais / ESALQ - Escola Superior de Agricultura Av. Pádua Dias, 11 - 13418-900 - Piracicaba, SP. E-mail: danitiele.cfl@gmail.com.

²Professor e Pesquisador do Departamento de Engenharia Florestal. UFVJM – Universidade Federal dos Vales do Jequitinhonha e Mucuri. Campus JK - F 583, 5000 – Alto do Jacuba - 39100-000 – Diamantina, MG. E-mail: gorgens@usp.br.

³Professor Titular do Departamento de Engenharia Florestal. UFV – Universidade Federal de Viçosa – Centro de Ciências Agrárias – Campus Universitá Viçosa, MG. E-mail: csoares@ufv.br.

⁴Mestre em Recursos Florestais. USP - Universidade de São Paulo - Departamento de Ciências Florestais / ESALQ - Escola Superior de Agricultura "Lui Pádua Dias, 11 - 13418-900 - Piracicaba, SP. E-mail: andregracioso@gmail.com.

⁵Professor Associado do Departamento de Ciências Florestais. USP - Universidade de São Paulo / ESALQ - Escola Superior de Agricultura "Luiz de Quias, 11 - 13418-900 - Piracicaba, SP. E-mail: Icer@usp.br.

INTRODUÇÃO

O Inventário florestal tem por objetivo a quantificação e qualificação dos atributos florestais existentes em uma área, sendo uma peça impormanejo florestal, seja de florestas naturais, seja de florestas plantadas. Ele é capaz de fornecer detalhes da floresta, por meio de técnicas que estimam os parâmetros da população (PÉLLICO NETTO; BRENA, 1997; MORAIS FILHO et al., 2003).

Em função do tamanho das florestas e da densidade de indivíduos por unidade de área, normalmente os inventários florestais são realiza amostragem. Diferentes delineamentos amostrais existem para melhor estimar o valor de um determinado parâmetro populacional e a sua

amostral (E(%)) é determinado a partir do erro padrão da média ($S_{\overline{y}}$), que nada mais é que uma medida de variabilidade da média q amostras são tomadas da população (SHIVER; BORDERS, 1996).

Na amostragem casual simples (ACS), todos os elementos da população possuem a mesma probabilidade de pertencer à amostra. A p da ACS é que o lançamento aleatório das parcelas pode resultar na não representação de todos os estratos da floresta, resultando assin imprecisas da população. Neste caso, quando a população pode ser dividida em estratos homogêneos, emprega-se a amostragem cas (ACE). Os estratos devem ser representados na amostra na mesma proporção com que existem na população. Quanto mais estratific consequentemente mais homogêneo os estratos, o erro amostral tende a diminuir, uma vez que o erro padrão da média também diminui.

Em casos em que um maior nível de detalhe e precisão são requeridos, a dupla amostragem (ou amostragem em duas fases) se ofe interessante alternativa. Na primeira fase (também conhecida como fase simples), os esforços são direcionados para a obtenção de uma sem se preocupar com a variável de interesse. Assim, a variável auxiliar deve ser de mais fácil mensuração e altamente correlacionada co interesse. A intensidade amostrada durante a primeira fase é geralmente superior à intensidade da segunda fase (SHIVER; BORDERS, 1990).

Na segunda fase (também conhecida como fase completa), a intensidade amostral é menor e medem-se simultaneamente a variável aux de interesse nas unidades amostrais. Não é necessário que as fases ocorram de maneira simultânea. No entanto, é fundamental que r sejam coletadas as duas variáveis de forma a permitir que um estimador de regressão relacione a variável auxiliar e a variável de inte BORDERS, 1996).

A dupla amostragem (DA) permite que as informações dos dados auxiliares sejam usadas para melhorar a precisão e exatidão das variáveis do inventário florestal, quando comparadas com os inventários baseados apenas nas observações da variável de interesse. Essa r através do uso de estimadores de regressão ou de razão e depende do nível de correlação entre os dados de sensoriamento remoto e inventário florestal (STEPHENS et al., 2012).

É muito comum o uso de informações obtidas por sensores remotos na primeira fase de uma dupla amostragem em levantamentos flores Breidenbach (2007), por exemplo, demonstraram que o emprego de variáveis auxiliares obtidas a partir do sensoriamento remoto pode aum e a exatidão das estimativas de inventário. As primeiras aplicações da dupla amostragem em inventários florestais utilizaram na primeira f extraídas de fotos aéreas. Em seguida, imagens de satélite passaram a substituir as fotos aéreas (VAN DEUSEN et al., 1999). O esca aerotransportado, baseado em tecnologias LiDAR (*Light Detection And Ranging*) apresenta-se como alternativa tecnológica viável capaz a resultados quando métricas resultantes desses levantamentos são usadas como variáveis auxiliares em inventários de dupla amostragem.

O escaneamento laser aerotransportado (ALS – Airborne Laser Scanning) tem ganhado destaque (MALTAMO et al., 2004). Os semissores de pulsos de luz laser, baseiam-se nos mesmos princípios dos sistemas RADAR, emissores de ondas de rádio (GIONGO tecnologia LiDAR baseada em sensores acoplados aos processos de varredura a laser aerotransportado gera uma grande quantic tridimensional sobre a estrutura vertical e horizontal da floresta com alta precisão, baixo custo e alta velocidade de aquisição de dados 2010).

A escolha do melhor método amostral, além de considerar as características da população, deve adequar a expectativa de maior precisão possível. A não consideração de características específicas da população estudada, pode acarretar custos maiores de inventário (CESAI Dessa forma, justificam-se as análises de diferentes métodos de amostragem, que busquem reduzir o tempo e o custo de execução do invihaja prejuízos à precisão e à exatidão das estimativas.

Næsset et al. (2013) reforçam a recomendação de desenhos amostrais eficientes para inventários, especialmente relacionados à incerte Diferentes estratégias de amostragem têm sido analisadas com base em técnicas de simulação.

A hipótese deste trabalho é de que a alta densidade de pontos amostrados em levantamentos laser aerotransportados aliado à alta cor métricas LiDAR e parâmetros biofísicos da floresta pode ser utilizada na primeira fase do método dupla amostragem e, também, para r intensidade amostral de campo.

O estudo foi realizado em uma área de 401,6 hectares pertencente à empresa Suzano Papel e Celulose, localizada no interior do Estad nos municípios de São Miguel Arcanjo e Pilar do Sul (Figura 1). O clima da região é caracterizado pela precipitação média anual de 140 média de 715 m (classificação de Köppen: Cfb). O relevo é ondulado com inclinação máxima de 32 graus (GAVA, 1997).

Figura 1. Localização dos municípios da área de estudo.

Figure 1. Localization of the study area.

A área é dividida em talhões, formados por plantios clonais do gênero *Eucalyptus*, manejados para a produção de celulose. Apresenta anos e foram plantados utilizando-se clones originários de quatro grupos genéticos diferentes, em espaçamento 3 x 2,2m. Foram considerac os dados coletados em 37 parcelas circulares com área de 380,13 m² (Tabela 1).

Tabela 1. Caracterização dos povoamentos do estudo.

Table 1. Characterization of the study stands.

Unidade de Produção	Área (ha)	Nº de neveelee	DAP (cm)		Altura (m)		VT
Unidade de Produção	Area (na)	N° de parcelas	Média	Desvio	Média	Desvio	Média
1	101,47	10	14,0	0,61	23,2	0,86	266,5
2	64,18	5	14,8	0,38	24,8	0,62	293,7
3	50,32	5	15,9	0,27	25,9	0,65	358,4
4	83,31	7	16,0	0,50	26,6	0,61	387,7
5	102,34	10	16,2	0,88	26,3	1,07	362,9

Obs.: DAP= Diâmetro a altura do peito, VTCC= Volume total com casca.

Levantamento dos dados LiDAR

Os dados LiDAR foram obtidos em dezembro de 2013, com uma aeronave CESNA modelo 206, equipada com uma unidade inercial Appla modelo POS AV 150 e sensor LiDAR Harrier 68i da Trimble. As especificações do voo encontram-se detalhadas na Tabela 2.

Tabela 2. Especificações do voo.

Table 2. Flight specifications.

Características	Descrição dos parâmetros
Densidade de pontos	10 pontos/m²
Diâmetro do pulso no alvo (footprint)	0,22 m
Ângulo de abertura para varredura (FOV)	45°
Faixa de varredura	363,11 m
Altura do voo	438,32 m
Taxa de escaneamento	174,05 Hz
Taxa de emissão	400 kHz

Levantamento de campo

As 37 parcelas foram lançadas de forma aleatória dentro das 5 unidades de produção (UP). Em cada parcela foram medidos os diâmic peito (DAP) de todas as árvores, a altura total das 10 árvores localizadas na linha central da parcela e 4 alturas totais das árvores de maior hipsométrico de Campos et al. (1984) foi utilizado para estimação das alturas (H) das árvores não medidas e o volume foi estimado Schumacher e Hall (1933), para os quais foram fornecidos pela empresa os coeficientes adequados para a região onde o estudo está ins total com casca (VTCC) de cada parcela é resultado da soma dos volumes individuais, e convertido para volume por hectare com base na ái

Delineamentos amostrais

O volume total com casca da área de estudo foi estimado através de três delineamentos amostrais consolidados em cinco cenários. parcelas foram processadas assumindo amostragem casual simples (ACS). Em seguida, duas estratificações foram implementadas. A primicasual estratificada (ACE I) usou apenas o material genético como variável de estratificação. Na ACE II considerou-se o material genético produção (UP) como critérios de estratificação. A UP foi escolhida por agrupar áreas submetidas a condições semelhantes de maneja abordagens de dupla amostragem (DA) pelo estimador da regressão foram desenvolvidas. A primeira abordagem (DA I) assumiu aper LiDAR como variável auxiliar na primeira fase. A segunda abordagem (DA II) considerou duas métricas LiDAR como variáveis auxiliares na primeira desenvolvidas de distribuição vertical dos retornos LiDAR (SILVA et al., 2015).

Na amostragem casual simples, sendo \overline{Y} a média amostral e t a estatística t de *Student*, tabelada para n-1 graus de liberdade com 5% o erro de amostragem percentual pode ser estimado pela equação 1 (SHIVER; BORDERS, 1996).

$$E(\%) = \frac{S_{\overline{Y}} \cdot t}{\overline{V}} \cdot 100$$
 (1)

Ainda com relação à ACS, sendo y_i o volume por hectare da *i*-ésima parcela, S_y^2 é a variância do volume por hectare das parcelas,

parcelas e N é o número total de unidades amostrais possíveis dentro da população, a média (Equação 2) e a variância da média (Equaç calculadas da seguinte forma (SHIVER; BORDERS, 1996):

$$\bar{Y} = \frac{\sum y_i}{n}$$
 (2)

$$S_{\bar{y}}^2 = \frac{S_y^2}{n} \cdot \left(\frac{N-n}{N}\right) \quad (3)$$

O erro padrão da média pode ser então calculado através da equação 4:

$$S_{\bar{y}} = \pm \sqrt{S_{\bar{y}}^2} \quad (4)$$

Na amostragem casual estratificada, sendo $ar{Y}_j$ a média dos volumes das unidades de amostra do j-ésimo estrato, n_j o número de par

estrato, N_j o número de parcelas possível no j-ésimo estrato, N o número de unidades de amostra possíveis na população e S_j^2 a varia estrato, a média estratificada (Equação 5) e a variância da média estratificada (Equação 6) podem ser estimadas através de (SHIVER; BORI

$$\overline{Y} = \frac{\sum N_j \overline{Y_j}}{N}$$
 (5)

$$S_{\bar{y}}^2 = \sum \left(\left(\frac{N_j}{N} \right)^2 \cdot \frac{S_j^2}{n_j} \cdot \left(\frac{N_j - n_j}{N_j} \right) \right) \tag{6}$$

O erro padrão da média foi obtido, extraindo-se a raiz quadrada da equação 6.

Na DA I, o estimador da regressão (Equação 7) foi escolhido para relacionar a variável de interesse (2ª fase) volume total com casca variável auxiliar (1ª fase) percentil 90 (P90), que expressa a altura abaixo da qual se encontram 90% dos retornos LiDAR:

$$VTCC = \beta_0 + \beta_1 P90 + \varepsilon \quad (7)$$

Em que β_i = coeficientes do modelo e ε = erro aleatório.

Já na DA II, foram utilizadas duas variáveis auxiliares (percentil 90 – P90 e porcentagem de retornos acima da média dos primeiros retornos em uma regressão linear múltipla (Equação 8) para relacionar essas duas métricas LiDAR (1ª fase) com a variável de interesse VTCC (2ª fas

$$VTCC = \beta_0 + \beta_1 P90 + \beta_2 ARMFR + \varepsilon$$
 (8)

Em que β_i = coeficientes do modelo e ε = erro aleatório.

Na dupla amostragem, a variância da média amostral (Equação 9) é uma combinação da variância do VTCC mensurado na 2ª fase e regressão que relaciona a variável auxiliar com a variável de interesse (Equação 10), podendo ser estimado por (SHIVER; BORDERS, 1996

$$S_{\bar{y}_{dl}}^2 = \frac{S_{\bar{y}}^2}{n} \cdot \left(1 - \left(\frac{n'-n}{n'}\right) \cdot \rho^2\right)$$
 (9)

Em que n' e n = número de parcelas na 1ª e 2ª fase, respectivamente e p pode ser calculado a partir do coeficiente de determinação aju (SHIVER; BORDERS, 1996):

$$\rho = \sqrt{R_{adj}^2} \quad (10)$$

A métrica de altura P90 foi escolhida com base no trabalho desenvolvido por Zonete et al. (2010), que encontrou o percentil 90 (P90) e mais promissoras para modelar volume de plantios florestais. Silva et al. (2015) sugeriu a inclusão métricas de proporção para ajudar a variação do volume. Assim na DA II, foi adicionado ao estimador da regressão a métrica de densidade ARMFR.

Intensidade amostral

Para que a determinação da intensidade amostral ideal nas cinco estratégias amostrais se faça de forma comparativa optou-se por utilizar simulação variando gradativamente o número de parcelas até que o erro amostral atinja nível satisfatório.

O processo de simulação consistiu, portanto, num processo de redução gradativa ao acaso do número de parcelas (n) até que o erro atingisse ±5%. A cada redução, n parcelas eram escolhidas ao acaso e as estatísticas da amostragem (erro padrão, intervalo de confiança recalculadas. O processo de escolha e de cálculo das estatísticas da amostragem foi repetido 50 vezes para cada redução. Caso a red número mínimo de parcelas definido para cada delineamento amostral, sem que o erro atingisse ±5%, a simulação era encerrada. O nú parcelas foi definido como 10 parcelas para as amostragens ACS e DA, e em 3 parcelas por estrato na amostragem ACE.

RESULTADOS E DISCUSSÃO

A estratificação reduziu o erro amostral em mais de 2 pontos percentuais. Enquanto que o erro via amostragem casual simples apre amostral de ±4,8%, a estratificação por um nível (material genético) apresentou um erro amostral de ±3,4%, que pôde ser reduzido para amostragem foi implementada em dois níveis (material genético e UP). Essa melhora era esperada, uma vez que a estratifica homogeneidade das sub amostras e reduz a variância global (Tabela 3).

Tabela 3. Resumo das estatísticas dos delineamentos amostrais.

Table 3. Summary of the statistics of the sampling designs.

	, 1 3 3					
Amostragem	VTCC (m³/ha)	Variância da média (m³/ha)	Erro Padrão (m³/ha)	Intervalo de Confiança(m³/ha)	Erro	
ACS	331,6	89,7	±9,5	±16,0		
ACE I	335,5	45,3	±6,7	±11,4		
ACE II	333,3	27,0	±5,2	±8,8		
DA I	319,8	14,5	±3,8	±6,4		
DA II	328,3	12,8	±3,6	±6,0		

A dupla amostragem atingiu um erro amostral ainda menor, chegando a ±2,0% utilizando uma regressão simples como estimador (D utilizando a regressão múltipla como estimador (DA II). A regressão linear simples (Equação 7) apresentou coeficientes significativos (Tabe de determinação ajustado (R²adj) de 83,7 % e erro padrão dos resíduos de 23,3 (m³/ha). A análise de resíduos pode ser visualizada na Figu

Tabela 4. Resumo estatístico da regressão linear simples.

Table 4. Statistical summary of the simple linear regression.

	Estimado	Erro Padrão	Valor de t	P-Valor
Intercepto	-335,37	49,04	-6,84	6,18E-08
P90	24,25	1,78	13,64	1,42E-15

Obs.: *** significativo a 0,001%.

A regressão linear múltipla usada na DA II (Equação 8) composta por uma métrica de altura (P90) e uma de densidade (ARMFR) apresei significativos (Tabela 5), coeficiente de determinação ajustado (R²adj) de 85,3 % e erro padrão dos resíduos de 22,15 (m³/ha). A análise d ser visualizada na Figura 2.

Tabela 5. Resumo estatístico da regressão linear múltipla.

Table 5. Statistical summary of the multiple linear regression.

	Estimado	Erro Padrão	Valor de t	P-Valor
Intercepto	-435,34	65,56	-6,64	1,28E-07
P90	24,37	1,69	14,41	4,88E-16
ARMFR	1,59	0,73	2,17	0,0371

Obs.: *** significativo a 0,001% e * significativo a 0,05%

Figura 2. Gráfico percentual dos resíduos em função do volume estimado.

 $\textbf{Figure 2}. \ \ \text{Percentage of the residuals related to the estimated volume}.$

A utilização da a alta correlação entre as métricas LiDAR (P90 e ARMFR) e os parâmetros populacionais do povoamento possibilitou um meio de dupla amostragem mais precisa da variável de interesse (volume). A redução do erro amostral por meio de DA pode reduzir custi menores intensidades amostrais podem manter o erro amostral dentro de intervalos satisfatórios. Stephens et al. (2011) também ob aplicando a dupla amostragem utilizando métricas LiDAR como primeira fase para estimar o estoque de carbono nas florestas da N regressão linear simples utilizada vinculando a primeira e a segunda fase da dupla amostragem obteve um coeficiente de correlaçã melhorando em 6% a estimativa anterior do estoque de carbono. Utilizando dados de biomassa de uma floresta simulada, Næsset et al. (20 uma redução do erro padrão de ±2,8 Mg ha⁻¹, considerando a amostragem casual simples, para ±1,0 Mg ha⁻¹ na dupla amostragem utilizanc

Na simulação desenvolvida para verificar a intensidade amostral para um erro aceitável de ±5%, a dupla amostragem permitiu uma reduç número de parcelas em relação à amostragem casual simples. Para um erro aceitável de ±5%, são necessárias 35 parcelas seguindo a ACS ACE I. Na ACE II e na DA, a intensidade amostral atingiu o limite mínimo de parcelas proposto anteriormente sem que o erro atingisse amostral da ACE II ficou em ±3,5% (18 parcelas – 3 por extrato) e o erro amostral da DA I e da DA II ficaram em ±3,8% (10 parcelas) e ±3,4 respectivamente.

Tabela 6. Tamanho amostral dos delineamentos amostrais para o erro máximo de ±5%.

Table 6. Sample size of sampling designs for a maximum error of $\pm 5\%$.

Amostragem	Número de Parcelas	Erro Amostral (%)
ACS	35	±5,0
ACE I	17	±4,8
ACE II	18	±3,5
DA I	10	±3,8
DA II	10	±3,4

CONCLUSÕES

A alta correlação existente entre o volume e as métricas LiDAR permitiu uma considerável melhora das estimativas de volume no invatravés da aplicação da dupla amostragem. Seu uso permite inclusive uma redução do número de parcelas medidas em campo para um camostral tolerável.

Com a popularização e redução dos custos associados aos levantamentos laser aerotransportados, o uso desta tecnologia pode consideráveis de exatidão e de redução de custos. Especialmente para inventários de grandes áreas, inclusive considerando florestas localizam em locais cujo trabalho de campo ocorre em condições extenuantes. Dessa forma, os inventários nacionais também podem se ba abordagem de dupla amostragem com primeira fase baseada em métricas LiDAR.

AGRADECIMENTOS

Este trabalho é parte do programa de pesquisa desenvolvido pelo GET-LiDAR (Grupo de Estudos em Tecnologia LiDAR) do Departame Florestais, ESALQ/USP. Agradecemos o apoio da Suzano Papel e Celulose por viabilizar o levantamento laser aerotransportado e pela cole campo. Agradecemos também à CAPES pelas bolsas de mestrado e doutorado concedidas aos pesquisadores envolvidos neste projeto. A revisores anônimos pelas valiosas contribuições.

REFERÊNCIAS BIBLIOGRÁFICAS

ANDERSEN, H. E.; BREIDENBACH, J. Statistical properties of mean stand biomass estimators in a Lidar-based double sampling forest si ISPRS WORKSHOP ON LASER SCANNING 2007 AND SILVILASER 2007, 36, 2007, Espoo. Anais... Espoo: ISPRS, 2007. p. 8-13.

CAMPOS, J. C. C.; RIBEIRO, J. O.; PAULA NETO, F. Inventário florestal nacional: reflorestamento Minas Gerais. Brasília: IBDF, 1984. 126

CESARO, A.; ENGEL, O. A.; FINGER, C. A. G.; SCHNEIDER, P. R. Comparação dos métodos de amostragem de área fixa, relascopia, e quanto a eficiência, no inventário florestal de um povoamento de Pinus sp. Ciência Florestal, Santa Maria, v. 4, n. 1, p. 97-108, jun. 1994.

GAVA, J. L. Efeito da adubação potássica em plantios de E. *grandis* conduzidos em segunda rotação em solos com diferentes teores de p **Série Técnica IPEF**, Piracicaba, n. 30, p. 89-94, 1997.

GIONGO, M.; KOEHLER, H. S.; MACHADO, S. A.; KIRCHNER, F. F.; MARCHETTI, M. LiDAR: princípios e aplicações florestais. **Pes Brasileira**, Colombo, v. 30, n. 63, p. 231-244, ago./out. 2010.

MALTAMO, M.; MUSTONEN, K.; HYYPPÄ, J.; PITKÄNEN, J.; YU, X. The accuracy of estimating individual tree variables with airborne las boreal nature reserve. **Canadian Journal of Forest Research**, Ottawa, v. 34, n. 9, p. 1791-1801, 2004.

NÆSSET, E.; GOBAKKEN, T.; BOLLANDSÅS, O. M.; GREGOIRE, T. G.; NELSON, R. STÅHL, G. Comparison of precision of biomass estir field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway. **Remote Sensing of Environment**, New York, v. mar. 2013.

PÉLLICO NETTO, S.; BRENA, D. A. Inventário Florestal. Curitiba: Editado pelos autores, 1997. 316 p.

SCHUMACHER, F. X.; HALL, F. S. Logarithmic expression of timber-tree volume. **Journal of Agricultural Research,** Washington, v. 47, I

SHIVER, B. D.; BORDERS, B. E. Sampling techniques for forest resource inventory. New York: John Wiley & Sons, 1996, 356 p.

SILVA, A. G. P.; GÖRGENS, E. B.; CAMPOE, O. C.; ALVARES, C. A.; STAPE, J. L.; RODRIGUEZ, L. C. E. Assessing biomass based o profiles using airborne laser scanning data in eucalypt plantations. **Scientia Agricola**, v. 72, n. 6, p. 504–512, 2015.

STEPHENS, P. R.; KIMBERLEY, M. O.; BEETS, P. N.; PAUL, T. S. H.; SEARLES, N.; BELL, A.; BRACK, C.; BROADLEY, J. Airborne scar double sampling forest carbon inventory. **Remote Sensing of Environment**, New York, v. 117, p. 348-357, 2012.

VAN DEUSEN, P. C.; PRISLEY, S. P.; LUCIER, A. A. Adopting an annual inventory system: user perspectives. **Journal of Forestry,** Bethesd 11-14 1999

ZONETE, M. F. Estimação de parâmetros biométricos de plantios clonais de eucalipto no sul da Bahia: uma aplicação da tecnologia laser a **Scientia Forestalis**, Piracicaba, v. 38, n. 86, p. 225-235, 2010. Disponível em: < http://ipef.br/publicacoes/scientia/nr86/cap10.pdf >. Ace 2014.