AT THE CROSSROADS OF DATA

Presenting the CAMOTECCER relational database of archaeological ceramics from Central Asia

Andreas Angourakis, Verónica Martínez Ferreras, Josep M. Gurt, Enrique Ariño Gil, Shakir R. Pidaev

Session #312 - Ancient pottery in Central Asia: large scale perspective on the production systems and the cultural interactions

available at https://andros-spica.github.io/EAA2018_ceramics/

CONTEXT

CAMOTECCER project (2013-17), CERAC project (2017-20)

Archaeological and archaeometric study on ceramic production in Surkhan Darya region, southern Uzbekistan.

Archaeological context (function)

Dating

Geochemical and Petrographic measurements (XRF, XRD, OM, SEM-EDS)

Shape and decorative style

The complete characterisation of archaeological pottery

chronotypological database for pottery

What types are there?
Where and when were each
type produced?
How and for what purpose
were they manufactured?

Archaeological context (function)

Dating

Geochemical and Petrographic measurements (XRF, XRD, OM, SEM-EDS)

Shape and decorative style

The complete characterisation of archaeological pottery

Archaeological context (function)

Dating

Geochemical and Petrographic measurements (XRF, XRD, OM, SEM-EDS)

Shape and decorative style

chronotypological database for pottery

What types are there?
Where and when were each
type produced?
How and for what purpose
were they manufactured?

Identify
processes of
cultural
interaction and
technological
transfer

Trade
Migration
Imitation
Hegemony
Innovation

AREAS OF DEVELOPMENT:

- Historical and ethnographic research
- Definition of a theoretical model for (non-industrial) pottery production
- Archaeometric characterisation of archaeological pottery
- Geological characterisation of the region (raw materials)
- Experimentation regarding the properties and the functional capabilities of ceramic containers
- Formalisation of the theoretical model

AREAS OF DEVELOPMENT:

- Historical and ethnographic research
- Definition of a theoretical model for (non-industrial) pottery production(→ data base design)
- Archaeometric characterisation of archaeological pottery
- Geological characterisation of the region (raw materials)
- Experimentation regarding the properties and the functional capabilities of ceramic containers
- Formalisation of the theoretical model

Integrate results of many different archaeometric techniques on ceramics

Integrate results of many different archaeometric techniques on ceramics

Integrate results of many different archaeometric techniques on ceramics

Concerns

• centralize data management

Integrate results of many different archaeometric techniques on ceramics

- centralize data management
- standardise qualitative data

Integrate results of many different archaeometric techniques on ceramics

- centralize data management
- standardise qualitative data
- facilitate new entries

Integrate results of many different archaeometric techniques on ceramics

- centralize data management
- standardise qualitative data
- facilitate new entries
- export data sets (.csv) for statistical analysis

• *relational* database

- relational database
- combines archaeological and archaeometric data

- relational database
- combines archaeological and archaeometric data
- more than 700 ceramic individuals

- relational database
- combines archaeological and archaeometric data
- more than 700 ceramic individuals
- sites in the Surkhan Darya region, Uzbekistan

- relational database
- combines archaeological and archaeometric data
- more than 700 ceramic individuals
- sites in the Surkhan Darya region, Uzbekistan
- Hellenistic to Islamic period

- relational database
- combines archaeological and archaeometric data
- more than 700 ceramic individuals
- sites in the Surkhan Darya region, Uzbekistan
- Hellenistic to Islamic period
- + over 200 wine Roman amphorae from Catalonia (generality test)

TABLES AND RELATIONSHIPS

TABLES > INDIVIDUAL

IndividualT			
Analytical code	TRZ001	Drawing	
Archaeological site	Termez - Kara Tepe	V	
Sector	TZ-KT-Monastery	V	
Archaeological context	TZ-KT-K2-SU11	<u> </u>	
Chronological interval	483 533		
Period	Kushan-Sassanid Period		
Deposition	indeterminate	~	
Functional category	table ware	~	
Provenance		<u> </u>	

Gathers the basic information on ceramic individuals Links them to the archaeological and archaeometric data

TABLES > CONTEXT

Stratigraphic unit related to individuals
Relates to a site and (optionally) to a site sector
Dated numerically and/or linked to a period
Variables regarding inferred function

TABLES > SITE

Site **name** and initials

Geographical coordinates and parent unit ("region")

Environmetal situation and surface area

TABLES > SUBDIVISION

SubdivisionT	
NAME	Termez
TYPE	alluvial unit
PARENT	Bas Surkhan

Recursive structure of geographical units

e.g., Termez \rightarrow Bas Surkhan \rightarrow South Surkhan Darya region \rightarrow Surkhan Darya region \rightarrow Uzbekistan

Stride, S. (2005). Géographie archéologique de la province du Surkhan Darya (Ouzbékistan du sud / Bactriane du nord). Ph.D thesis, Université Paris I Panthéon-Sorbonne.

TABLES > CHEM

Chem_id •	CODE	→ Reference Gr →	Fe2O3 🔻	Al2O3 •	MnO ▼	P2O5 -	TiO2 🔻	MgO ▼	CaO ▼	Na2O 🔻	K2O ▼	SiO2 ▼	Ba ▼
563	SAL028	SAL-1	6,12	16,51	0,07	0,10	0,74	1,62	3,22	0,57	2,94	64,75	0,0578
564	SAL029	SAL-IND	4,94	14,16	0,06	0,18	0,65	3,73	6,96	0,59	4,01	58,67	0,0843
565	SAL032	SAL-2	5,98	16,57	0,08	0,12	0,66	1,87	9,26	0,53	2,79	54,18	0,0735
566	SBL001	SBL-IND	5,13	15,07	0,07	0,23	0,69	1,54	11,65	1,03	2,60	58,47	0,0554
567	SBL006	SBL-1	4,97	13,62	0,06	0,14	0,71	1,25	9,76	0,55	2,75	60,16	0,0465
568	SBL011	SBL-1	5,23	14,14	0,07	0,18	0,78	1,33	9,55	0,60	2,80	59,73	0,0447
569	SBL024	SBL-1	5,87	15,15	0,07	0,18	0,77	1,71	6,82	0,63	3,05	61,27	0,0580
570	SBL028	SBL-1	5,12	13,97	0,06	0,17	0,74	1,41	8,92	0,55	3,01	60,10	0,0441
571	SBL032	SBL-1	6,12	15,74	0,07	0,13	0,80	2,01	7,98	0,76	3,01	60,32	0,0519
572	SBL038	SBL-2	5,16	14,33	0,07	0,53	0,64	1,56	14,23	0,92	2,57	56,77	0,0637
573	SBL040	SBL-2	4,75	13,36	0,06	0,33	0,59	1,41	12,42	0,50	3,13	57,64	0,0493
574	SBL042	SBL-2	4,59	13,26	0,06	0,28	0,59	1,42	13,62	0,55	3,34	55,79	0,0556
575	SBL043	SBL-2	5,23	14,90	0,06	0,28	0,65	1,82	13,47	1,24	2,27	56,76	0,0562
576	SBL045	SBL-2	5,29	14,88	0,06	0,39	0,69	1,62	10,88	0,68	3,24	59,70	0,0599
29	TRZ001	IND	5,41	14,51	0,09	0,29	0,59	4,06	10,47	2,05	3,24	54,98	0,0496
30	TRZ002	IND	6,23	16,01	0,11	0,19	0,62	3,86	9,41	1,62	3,30	55,93	0,0569
31	TRZ003	IND	5,67	15,01	0,09	0,25	0,62	4,06	10,13	1,62	3,39	55,24	0,0465
32	TRZ004	IND	6,16	15,93	0,09	0,35	0,67	3,92	8,47	1,81	3,80	55,98	0,0522
33	TRZ005	IND	5,97	15,34	0,09	0,24	0,66	3,82	10,10	1,46	3,42	53,80	0,0398
34	TRZ006	IND	5,77	14,79	0,09	0,21	0,63	4,46	10,21	1,46	3,28	52,98	0,0444
35	TRZ008	IND	5,98	15,73	0,09	0,22	0,67	3,35	7,98	1,74	3,80	58,40	0,0474
36	TRZ009	IND	5,57	14,35	0,10	0,27	0,60	3,65	10,96	1,63	3,03	55,36	0,0503
37	TRZ010	IND	5,63	15,13	0,09	0,23	0,59	3,86	10,20	1,41	3,27	55,32	0,0473
38	TRZ011	IND	5.46	14.47	0.09	0.31	0.61	4.41	12.60	1.19	3.29	52.58	0.0458

Geochemical data (XRF)

+ reference group (if determined)

TABLES > CHEM REFERENCE GROUP

Chen	nReferenceGrou	рТ		
4	Id ▼	ChemReferenceGroup	w	ChemReferenceGroup_Parent
+	1	BIF		BIF
+	2	BIF-1		BIF
+	3	BIF-IND		
+	4	AUM		AUM
+	5	AUM-2		AUM
+	6	AUM-1		AUM
+	7	AUM-IND		
+	8	ELV		ELV
+	9	ELV-1		ELV
+	10	ELV-2		ELV
+	11	ELV-3		ELV
+	12	ELV-IND		
+	13	SBL		SBL
+	14	SBL-1		SBL
+	15	SBL-2		SBL
+	16	SBL-IND		
+	17	FEU		FEU
+	18	FEU-1A		FEU
+	19	FEU-1B		FEU
+	20	FEU-2A		FEU
+	21	FEU-2B		FEU
+	22	FEU-IND		
+	23	SAL		SAL
+	24	SAL-1		SAL
+	25	SAL-2		SAL
+	26	SAL-IND		
+	27	DRING		DRING

	Z/ FININC	FIMIL
+	28 PRINC-1	PRINC
+	29 PRINC-IND	
+	30 CP	CP

TABLES > PETRO

Petrographic *qualitative* data (thin section optical microscopy) + firing temperature (inferred from X-ray diffraction) + fabric group (if determined)

Whitbread, I.K. (1995). Greek transport amphorae: a petrological and archaeological study, British School at Athens, Fitch Laboratory Occasional Paper 4, Athens.

TABLES > PETRO > VOIDS

PetroT

Voids Coarse fraction	Fine fraction			
	Overall frequency	common		
	Mega-vesicles frequency	none	Mega-vughs frequency	none
	Macro-vesicles frequency	none	Macro-vughs frequency	none
	Meso-vesicles frequency	none	Meso-vughs frequency	few
	Micro-vesicles frequency	frequent	Micro-vughs frequency	predominant v
	Mega-channels frequency	none	Mega-planes frequency	none
	Macro-channels frequency	none	Macro-planes frequency	none
	Meso-channels frequency	none	Meso-planes frequency	none
	Micro-channels frequency	none	Micro-planes frequency	none

Frequency and frequency per type of size (micro to mega) and shape (vesicles, vughs, channels, planes)

TABLES > PETRO > COARSE FRACTION

General characteristics + Frequency per type of rock and crystal

TABLES > PETRO > FINE FRACTION

General characteristics + Frequency per type of crystal

TABLES > FABRIC GROUP

iii F	abricGroupT		
	Id च	FabricGroup 🔫	FabricGroup_Parent
+	56	ISL-1	ISL
+	16	ISL-1A	ISL-1
+	17	ISL-1B	ISL-1
+	118	ISL-1C	ISL-1
+	119	ISL-1D	ISL-1
+	57	ISL-2	ISL
+	18	ISL-2A	ISL-2
+	19	ISL-2B	ISL-2
+	20	ISL-2C	ISL-2
+	58	ISL-3	ISL
+	21	ISL-3A	ISL-3
+	59	ISL-4	ISL
+	117	ISL-4A	ISL-4
+	60	ISL-5	ISL
+	35	ISL-5A	ISL-5
+	61	ISL-6	ISL
+	36	ISL-6A	ISL-6
+	22	ISL-Indet	ISL
+	23	ISL-OUTLIER	ISL
+	63	KPT	
+	62	KPT-A	KPT
+	1	KPT-A1	KPT-A
+	2	KPT-A2	KPT-A
+	3	KPT-A3	KPT-A
+	4	KPT-A4	KPT-A

+	5 KPT-A5	KPT-A	
+	6 KPT-A6	KPT-A	
+	7 KPT-B	KPT	

TABLES > SURFACE

SurfaceT
Analytical code TRZ001 V
Internal surface thickness min. v max. v
External surface thickness min. v max. v
Interface (slip-to-body contact surface)
Pore frequency v
State of vitrification V
Decoration
Any stamp marks? none Any Incised marks? lines
Any painted motifs? none
Finishing
Smoothed? yes Polished? no
Coating
Slipped? indeterminate v Glossed? indeterminate v Glazed? no v

General properties + decoration, finishing and coating

TABLES > SHAPE

Shape					
CODE TRZ381				MAIN	
Тур	e determination				
Is the type fully d	Prototype H_C-2	Type H_C-2-Indet			
	Measures				
Total height (mm)	Greatest diameter (ı	nm)			
Rim diameter (mm)	Neck diameter (mm				
Base diameter (mm)	Number of handels				
Parall	els in the data base				
✓ Shape_Id ▼ Analytic Is the type ful ▼ FRAGM	▼ Prototype ▼	Shape class 🔻	Total height (mm) 🔻	Rim diameter (mm) 🔻	Base diameter
70 TRZ095 no rim	H_C-2 Ci				
68 TRZ117 no rim 69 TRZ119 no rim	H_C-2 Co	•			
69 TRZ119 no rim 26 TRZ210 no body to rim	H_C-2 Co				
29 TRZ213 no body	H_C-2 C	•			
		r			

Typology and measurements

TABLES > SHAPE CLASS

Shape	Name ShapeName	▼ ShapeFunction ▼	Description •
+	1 Amphora	transport storage vessel	Ovoid body and often the base ends in a point, to facilitate stacking
+	2 Stamnos	table ware	Relatively rare vessel with globular body and many variations in the
+	3 Krater	table ware	Large vessel that comes in many distinctive shapes. Mixing wine and
+	4 Psykter	table ware	Cooling wine
+	5 Kantharos	table ware	Wine-drinking vessel, generally two-handled, wide-mouthed, and fo
+	6 Kylix	table ware	Drinking-cup. Its traditional shape is broad and shallow, with two fla
+	7 Rhyton	table ware	Drinking cup that can take many different shapes, generally flamboy
+	8 Equinus	table ware	Bowl with its rim curved to the inside.
F	9 Olpe	table ware	A small pitcher usually with just one handle and no spout, as compa
+	10 Skyphos	table ware	A deep drinking vessel with two horizontal handles and it may or ma
+	11 Lagynos	table ware	Wine jug popular in the Hellenistic period. It is characterized by a lo
F	12 Oinchoe	table ware	A (wine-) pouring vessel (from the krater into a drinking-cup). Its mo
+	13 Ichthya	table ware	Plate used to serve fish. It commonly has a small well in the center to
+	14 Hydria	common ware	Three-handled vase for drawing, storage or transport water. The tw
+	15 Pyxis	common ware	Small box or containers, generally flat based, to hold cosmetics.
+	16 Lekythos	common ware	Small vessel, usually flatfooted, with one vertical handle or without
+	17 Aryballos	common ware	Small globular flask with a very narrow neck, almost always with jus
+	18 Alabastron	common ware	Elongated flask with a rounded bottom, narrow neck, and two vesti
+	19 Ampulla	common ware	Small vessel with handles on both sides, used to contain oils or ungu
+	20 Lamp	common ware	Oil lamp
+	21 Pithos	storage vessel	Very large storage iars for grain or liquids. It is set partially into the

Name, functional category and description

APPLICATION

Integrative multivariate statistical analysis

We defined four protocols for analysing geochemical and petrographic data:

Angourakis, A., Martínez Ferreras, V., Torrano, A. and Gurt Esparraguera, J.M. (2018). Presenting multivariate statistical protocols in R using Romanwine amphorae productions in Catalonia, Spain. Journal of Archaeological Science, 93: 150-165.

https://doi.org/10.1016/j.jas.2018.03.007

Data in Surface and Shape tables still need to be addressed.

EXAMPLE

45 tableware individuals from 4 sites:

- *Kampyr Tepe*, Hellenistic period (**KPT**)
- Termez Tchingiz Tepe, Yuezhi to Kushan-Sassanid period
 (TT)
- *Termez Kara Tepe*, Kushan-Sassanid period (**KT**)
- Termez Ancient Quarters, Islamic period (ISL)

PROTOCOL 1: CHEM TABLE

PROTOCOL 2: PETRO TABLE

PROTOCOL 3: CHEM AND PETRO TABLES

PROTOCOL 4: CHEM AND SELECTION OF PETRO VARIABLES

AT THE CROSSROADS OF DATA

Presenting the CAMOTECCER relational database of archaeological ceramics from Central Asia

Andreas Angourakis, Verónica Martínez Ferreras, Josep M. Gurt, Enrique Ariño Gil, Shakir R. Pidaev

THANK YOU!

address any questions to A. Angourakis: andros.spica@gmail.com

