Learning gradient long-distance phonotactics by estimating strictly piecewise distributions

Jeffrey Heinz heinz@udel.edu

University of Delaware

University of Alberta February 13, 2010

Collaborators

James Rogers Earlham College

Overview

Gradient phonotactic long-distance dependencies are provably feasibly learnable

- 1. without tiers
- 2. without a concept of similarity
- 3. without the additional structure provided by OT or P&P frameworks
- 4. with a naturally structured hypothesis space
- 5. with a learner whose behavior is provably correct

Overview

Gradient phonotactic long-distance dependencies are provably feasibly learnable

- 1. without tiers
- 2. without a concept of similarity
- 3. without the additional structure provided by OT or P&P frameworks
- 4. with a naturally structured hypothesis space
- 5. with a learner whose behavior is provably correct

- 1. Show how gradient constraints like $*a \dots b$ can be learned from positive evidence
- 2. Demonstrate the learner on various corpora
- 3. Address issues concerning typology, similarity, and tiers

- 1. Show how gradient constraints like $*a \dots b$ can be learned from positive evidence
- 2. Demonstrate the learner on various corpora
- 3. Address issues concerning typology, similarity, and tiers
 - 3.1 Since the learner can learn long-distance dependencies between unlike segments, aren't SP distributions too unrestrictive?

- 1. Show how gradient constraints like $*a \dots b$ can be learned from positive evidence
- 2. Demonstrate the learner on various corpora
- 3. Address issues concerning typology, similarity, and tiers
 - 3.1 Since the learner can learn long-distance dependencies between unlike segments, aren't SP distributions too unrestrictive?
 - 3.2 Since the learner can't learn adjacency dependencies, aren't SP distributions too restrictive?

- 1. Show how gradient constraints like $*a \dots b$ can be learned from positive evidence
- 2. Demonstrate the learner on various corpora
- 3. Address issues concerning typology, similarity, and tiers
 - 3.1 Since the learner can learn long-distance dependencies between unlike segments, aren't SP distributions too unrestrictive?
 - 3.2 Since the learner can't learn adjacency dependencies, aren't SP distributions too restrictive?
 - 3.3 What about phonological features?

- 1. Show how gradient constraints like $*a \dots b$ can be learned from positive evidence
- 2. Demonstrate the learner on various corpora
- 3. Address issues concerning typology, similarity, and tiers
 - 3.1 Since the learner can learn long-distance dependencies between unlike segments, aren't SP distributions too unrestrictive?
 - 3.2 Since the learner can't learn adjacency dependencies, aren't SP distributions too restrictive?
 - 3.3 What about phonological features?
 - 3.4 What about phonological tiers?

Outline

Long-distance dependencies

SP Distributions

Estimating SP Distributions

Demo

Issues

Outline

Long-distance dependencies

SP Distributions

Estimating SP Distributions

Demo

Tssnes

Long-distance dependencies in phonology

1. Consonantal harmony

(Jensen 1974, Odden 1994, Hansson 2001, Rose and Walker 2004, and many others)

2. Vowel harmony

Long-distance dependencies

(Ringen 1988, Baković 2000, and many others)

Sibilant Harmony example from Samala (Ineseño Chumash)

```
[stojonowonowas] 'it stood upright' (Applegate 1972:72)
```

- cf. *[stojonowonowa] and
- cf. *[∫tojonowonowas]

Sibilant Harmony example from Samala (Ineseño Chumash)

[ftojonowonowaf] 'it stood upright' (Applegate 1972:72)

- cf. *[stojonowonowaf] and
- cf. *[stojonowonowas]

Hypothesis:

Long-distance dependencies

*[stojonowonowas] and *[stojonowonowas] are ill-formed because the discontiguous subsequences sf and s are ill-formed.

(Heinz 2007, Rogers et. al 2009, Heinz to appear)

Outline

Long-distance dependencies

SP Distributions

Estimating SP Distributions

Demo

Issues

Main Idea

$$w = a_1 a_2 \dots a_n$$

Markov Assumption

(e.g. bigram model = strictly 2-local distribution)

$$Pr(w) \stackrel{\text{def}}{=} Pr(a_1 \mid \#) \times Pr(a_2 \mid a_1 \cdot) \times \dots \times Pr(a_n \mid a_{n-1} \cdot) \times Pr(\# \mid a_n)$$

Our Assumption (strictly 2-piecewise distribution)

$$Pr(w) \stackrel{\text{def}}{=} Pr(a_1 \mid \#) \times Pr(a_2 \mid a_1 <) \dots \times Pr(a_n \mid a_1, \dots, a_{n-1} <) \times Pr(\# \mid a_1, \dots a_n <)$$

$$(1)$$

Strictly 2-Piecewise distributions

w = [tojonowonowa]

Our Assumption (strictly 2-piecewise model)

$$Pr(w) \stackrel{\text{def}}{=} Pr(a_1 \mid \#) \times Pr(a_2 \mid a_1 <) \dots \times Pr(a_n \mid a_1, \dots, a_{n-1} <) \times Pr(\# \mid a_1, \dots a_n <)$$

$$(1)$$

Key Ideas:

- 1. $\Pr(\lceil \mid f,t,o,y,w,n,a <) \gg \Pr(s \mid f,t,o,y,w,n,a <)$
- 2. $Pr(s \mid f,t,o,y,w,n,a <)$ is impossibly low because $Pr(s \mid f <)$ is impossibly low.

Problem and Solution

What is $Pr(a \mid S)$?

There are $2^{|\Sigma|}$ distinct sets S which suggests there are too many(!) independent parameters in the model.

Solution: $Pr(a \mid S <)$ is a function of $Pr(a \mid s <)$ for all $s \in S$

$$Pr(a \mid S <) \stackrel{\text{def}}{=} \frac{\prod_{s \in S} Pr(a|s <)}{\sum_{a' \in \Sigma \cup \{\#\}} \prod_{s \in S} Pr(a'|s)}$$
 (2)

Theorem (Heinz and Rogers, in prep)

Equations (1) and (2) quarantee a well-formed probability distribution over all logically possible words. The distribution has $(|\Sigma|+1)^2$ parameters.

Local Summary

1. Strictly 2-Piecewise models have only $(|\Sigma|+1)^2$ parameters, but distinguish $2^{|\Sigma|}$ states!

These are, for all
$$a, b \in \Sigma \cup \{\#\}$$
, $Pr(a \mid b <)$

2. Under the working hypothesis that likelihood is the same as well-formedness (Coleman and Pierrehumbert 1997, Hayes and Wilson 2008), these parameters can be thought of as independent constraints:

$$*b \dots a$$

- 3. $Pr(s \mid f,t,o,y,w,n,a <)$ is **not** independent of $Pr(s \mid a <)$ nor $Pr(s \mid f <)$, etc.
- 4. This captures the intuition that $Pr(s \mid f,t,o,y,w,n,a <)$ is impossibly low because $Pr(s \mid f <)$ is!
- 5. It remains to be shown how to estimate the parameters.

Outline

Long-distance dependencies

SP Distributions

Estimating SP Distributions

Demo

Teeries

Section Outline

Estimating SP Distributions

- 1. Estimating regular distributions
- 2. Factored models
- 3. Estimating regular distributions from factors
- 4. Estimating SP distribution (using factored model)

Strictly 2-Local (e.g. *st)	Strictly 2-Piecewise (e.g. *s∫)
Contiguous subsequences	Subsequences (discontiguous OK)
Immediate Predecessor	Predecessor
Concatenation (\cdot)	Less than $(<)$
0 = have not just seen an [a]	0 = have never seen an [a]
1 = have just seen an [a]	1 = have seen an [a] earlier

(McNaughton and Papert 1971, Simon 1975, Rogers and Pullum 2007, Rogers et. al. 2009, Heinz and Rogers in prep)

Estimating regular distributions Example with Strictly 2-Local (bigram) model

Figure: At left a deterministic finite state acceptors (DFA) representing the family of SL₂ distributions (i.e. bigram model) with $\Sigma = \{a, b\}$. At right, a DFA describing a particular SL_2 distribution.

Theorem (1)

Let \mathcal{M} and \mathcal{M}' be DFAs with the same structure and let $\mathcal{D}_{\mathcal{M}'}$ generate a sample S. Then the maximum-likelihood estimate (MLE) of S with respect to \mathcal{M} guarantees that $\mathcal{D}_{\mathcal{M}}$ approaches $\mathcal{D}_{\mathcal{M}'}$ as the size of S goes to infinity.

Figure: At left a deterministic finite state acceptors (DFA) representing the family of SL_2 distributions (i.e. bigram model) with $\Sigma = \{a, b\}$. At right, a DFA describing a particular SL_2 distribution.

Theorem (2)

For a sample S and deterministic finite-state acceptor \mathcal{M} , counting the parse of S through \mathcal{M} and normalizing at each state optimizes the maximum-likelihood estimate.

Figure: At left a deterministic finite state acceptors (DFA) representing the family of SL_2 distributions (i.e. bigram model) with $\Sigma = \{a, b\}$. At right, a DFA describing a particular SL_2 distribution.

(Vidal et. al 2005a, 2005b, de la Higuera 2010)

Estimating regular distributions Example with Strictly 2-Local (bigram) model

Figure: At left a deterministic finite state acceptors (DFA) representing the family of SL_2 distributions (i.e. bigram model) with $\Sigma = \{a, b\}$. At right, a DFA describing a particular SL_2 distribution.

(Vidal et. al 2005a, 2005b, de la Higuera 2010)

Estimating regular distributions Example with Strictly 2-Local (bigram) model

Figure: At left a deterministic finite state acceptors (DFA) representing the family of SL_2 distributions (i.e. bigram model) with $\Sigma = \{a, b\}$. At right, a DFA describing a particular SL_2 distribution.

(Vidal et. al 2005a, 2005b, de la Higuera 2010)

$$S = \{abbb\}.$$

A list of DFAs whose product representing the family of strictly 2-local distributions (i.e. bigram model) with $\Sigma = \{a, b, c\}.$

$$S = \{abbb\}.$$

A list of DFAs whose product representing the family of strictly 2-local distributions (i.e. bigram model) with $\Sigma = \{a, b, c\}$.

$$S = \{abbb\}.$$

A list of DFAs whose product representing the family of strictly 2-local distributions (i.e. bigram model) with $\Sigma = \{a, b, c\}.$

$$S = \{abbb\}.$$

A list of DFAs whose product representing the family of strictly 2-local distributions (i.e. bigram model) with $\Sigma = \{a, b, c\}.$

$$S = \{abbb\}.$$

A list of DFAs whose product represents the family of strictly 2-piecewise distributions with $\Sigma = \{a, b, c\}$.

$$S = \{abbb\}.$$

A list of DFAs whose product represents the family of strictly 2-piecewise distributions with $\Sigma = \{a, b, c\}.$

$$S = \{abbb\}.$$

A list of DFAs whose product represents the family of strictly 2-piecewise distributions with $\Sigma = \{a, b, c\}$.

$$S = \{abbb\}.$$

A list of DFAs whose product represents the family of strictly 2-piecewise distributions with $\Sigma = \{a, b, c\}.$

Theorem

This procedure yields the ML estimate for SP distributions.

(Heinz and Rogers, in prep)

Local Summary: Estimating SP₂ Distributions

The automata product of the machines above yields the one below with $2^{|\Sigma|}$ states! But SP distributions only have the parameters on the singleton states; the rest is predictable from Equation 2.

What happens at the initial state can be determined in a variety of fashions.

Outline

Demo

Demos

- 1. Sibilant Harmony in Samala (Ineseño Chumash)
- 2. Finnish Vowel Harmony
- 3. English laterals

Samala Corpus

• 4800 words drawn from Applegate 2007, generously provided in electronic form by Applegate (p.c).

35 Consonants

	labial	coronal	a.palatal	velar	uvular	glottal
stop	p p [?] p ^h	t t [?] t ^h		k k² kh	q q² qh	3
affricates		ts ts? tsh	$\widehat{\mathrm{tf}}\widehat{\mathrm{tf}}^{2}\widehat{\mathrm{tf}}^{\mathrm{h}}$			
fricatives		$s s^{7} s^{h}$	$\int \int^{2} \int^{h}$	x x ²		h
nasal	m	n	$n^{?}$			
lateral		1 :	$l^{?}$			
approx.	W	У	7			

6 Vowels						
i	i	u				
e		O				
	a					

(Applegate 1972, 2007)

Samala: Results of SP2 estimation

		X					
P($(x \mid y <)$	S	$\widehat{\mathrm{ts}}$	ſ	$\widehat{\mathrm{tf}}$		
	S	0.0325	0.0051	0.0013	0.0002		
	$\widehat{\mathrm{ts}}$	0.0212	0.0114	0.0008	0.		
У	ſ	0.0011	0.	0.067	0.0359		
	$\widehat{\mathrm{tf}}$	0.0006	0.	0.0458	0.0314		

(Collapsing laryngeal distinctions)

Finnish: Corpus

• 44,040 words from Goldsmith and Riggle (to appear)

19 Consonants

	lab.	lab.dental	cor.	pal.	velar	uvular	glottal
stop	рb		t d	c	k g	q	
fricatives		f v	s		X		h
nasal	m		n				
lateral			1				
rhotic			r				
approx.	w		j				

0 1/0***010

o vu	weis	
-b	ack	+back
i	У	u
e	oe	O
ae		a

Back vowels and front vowels don't mix (except for [i,e], which are transparent).

Finnish: Results of SP2 estimation

		X							
P($x \mid b <)$	u	О	a	у	oe	ae	i	е
	u	0.056	0.040	0.118	0.006	0.002	0.007	0.084	0.072
	О	0.046	0.033	0.120	0.005	0.002	0.007	0.110	0.067
	a	0.045	0.031	0.130	0.005	0.002	0.007	0.095	0.060
	у	0.015	0.016	0.038	0.044	0.026	0.066	0.091	0.072
b	oe	0.023	0.027	0.058	0.030	0.014	0.053	0.095	0.067
	ae	0.014	0.014	0.034	0.036	0.015	0.086	0.091	0.073
	i	0.030	0.031	0.097	0.011	0.006	0.0240	0.088	0.080
	e	0.031	0.026	0.077	0.014	0.005	0.031	0.089	0.071

- 1. Carnegie Mellon University American English Pronouncing Dictionary
- 2. 129,463 words

		2	ζ
$P(x \mid y <)$		1	r
	1	0.014	0.0535
у	r	0.0364	0.0343

(Rhoticized schwa and [r] have been collapsed)

English: Top Unlikely Pairs

1.	CH DH	0.	12.	AY ZH	0.00011
2.	DH CH	0.	13.	SH DH	0.00012
3.	DH DH	0.	14.	WZH	0.00014
4.	DH ZH	0.	15.	NG OY	0.00014
5.	NG ZH	0.	16.	HH ZH	0.00016
6.	OY OY	0.	17.	Z DH	0.00017
7.	TH DH	0.	18.	Z OY	0.00019
8.	ZH CH	0.	19.	IY DH	0.00019
9.	ZH DH	0.	20.	K DH	0.00021
10.	ZH HH	0.	21.	UH DH	0.00023
11.	ZH TH	0.	22.	UH OY	0.00023

Typology

- Q1: Are there long-distance phonotactic patterns in natural language not licensed by similarity?
- Q2: Are the top unlikely pairs accidental generalizations or bonafide internalized generalizations of native speakers?
 - A: Presumably answerable by artificial language-learning experiments.

Similarity

- Q3: Assuming long-distance phonotactic patterns are licensed by similarity, aren't SP distributions too unrestrictive?
 - A: No. Similarity is an independent filter or bias.
 - The role of similarity can now be studied separately.
 - It is straightforward to add similarity biases to the model with Bayesian priors

Strictly Local Patterns

- Q4: Strictly Piecewise models cannot learn adjacency patterns, right? Aren't they then too restrictive?
 - A: Right they can't, but No they're not. The perspective here is that phonological learning is modularized:
 - One sublearner picks out adjacency patterns (Strictly Local)
 - One sublearner picks out long-distance patterns (Strictly Piecewise)
 - Plausibly a sublearner for stress patterns (Heinz 2009, Bergelson et. al 2010)
 - Finds common ground with a biological perspective (Gallistel and King 2009:Chap 13)

Features

Q5: The SP model looks interesting, but doesn't make use of phonological features. Isn't that a problem?

A: No.

- See poster tomorrow "Feature-Based Generalization" (Heinz and Koirala)
- Also, the SP model can be plugged into the Hayes and Wilson (2008) maxent learner adopting the same featural strategy they apply to Strictly 2-Local constraints (bigrams)

Comparison to Tier-based models

- Q6: Since long-distance patterns are learnable by tier-based n-gram models, do we need SP distributions?
 - A: The models make different predictions, making it a fruitful area for future research.

tier-based SL $(n\text{-gram})$ models	SP models		
Captures blocking effects in	Unable to capture blocking ef-		
vowel harmony	fects in vowel harmony		
Predicts unattested blocking ef-	Predicts absence of blocking in		
fects in consonantal harmony	consonantal harmony		
Only able to describe patterns	Able to describe patterns with		
with transparent vowels if they	transparent vowels		
are "off" the tier			
Requires independent theory of	Does not require independent		
tiers	theory of tiers		

Conclusion

Gradient phonotactic long-distance dependencies are provably feasibly learnable by estimating SP distributions

This happens

- 1. without tiers
- 2. without a concept of similarity
- 3. without the additional structure provided by OT or P&P frameworks
- 4. with a naturally structured hypothesis space
- 5. with a learner whose behavior is provably correct

Acknowledgments

Thanks to the University of Delaware Phonology and Phonetics group, the participants in the Fall 2009 seminar on "Likelihood and Well-formedness in Phonology," and especially Karthik Durvasula, Bill Idsardi, Cesar Koirala, and Robert Wilder for valuable discussion.

This research was supported by a 2008-2009 University of Delaware Research Fund Grant and a summer 2009 General University Research grant.