2015-EE-"14-26"

1

ai24btech11028 - Ronit Ranjan

- 1) Consider a function $\overrightarrow{f} = \frac{1}{r^2} \hat{r}$, where r is the distance from the origin and \hat{r} is the unit vector in the radial direction. The divergence of this function over a sphere of radius R, which includes the origin is

 [2015-EE]
 - a) 0
 - b) 2π
 - c) 4π
 - d) $R\pi$
- 2) When the wheatstone bridge shown in the figure is used to find the value of resistor R_X , the galvanometer G indicates zero current when $R_1 = 50\Omega$, $R_2 = 65\Omega$ and $R_3 = 100\Omega$. If R_3 is known with $\pm 5\%$ tolerance on its nominal value of 100Ω , what is the range of R_X in Ohms? [2015-EE]

- a) [123.50, 136.50]
- b) [125.89, 134.12]
- c) [117.00, 143.00]
- d) [120.25, 139.75]
- 3) A (0-50A) moving coil ammeter has a voltage drop of 0.1V across its terminals at full scale deflection. The external shunt resistance (in milliohms) needed to extend its range to (0-500 A) is [2015-EE]
- 4) Of the four characteristics given below, which are the major requirements for an instrumentation amplifier? [2015-EE] P. High common mode rejection ratio Q. High input impedance R. High linearity S. High output impedance
 - a) P, Q and R only
 - b) P and R only
 - c) P, Q and S only
 - d) Q, R and S only
- 5) In the following chopper, the duty ratio of swithc S is 0.4. If the inductor and capacitor are sufficiently large to ensure continous inductor current and ripple free capacitor voltage, the changing current(in Ampere) of the 5V battery, under steady-state, is ______ [2015-EE]

- 6) A moving average function is given by $y(t) = \frac{1}{T} \int_{t-T}^{t} u(\tau) d\tau$. If the input u is a sinusoidal signal of frequency $\frac{1}{2T}$ Hz, then in steady state, the output y will lag u (in degree) by
- 7) The impulse response g(t) of a system, G, is as shown in Figure(a). What is the maximum value attained by the impulse response of two cascaded blocks of G as shown in Figure(b)

- a) $\frac{2}{3}$ b) $\frac{3}{4}$ c) $\frac{4}{5}$ d) 1
- 8) Consider a one-turn rectangular loop of wire placed in a uniform magnetic field as shown in the figure. The plane of the loop is perpendicular to the field lines. The resistance of the loop is 0.4Ω , and its inductance negligible. The magnetic flux density(in Tesla) is a function of time and is given by $B(t) = 0.25 \sin \omega t$, where $\omega = 2\pi \times 50$ radian/second. The power absorbed (in Wat) by the loop from the magnetic field is [2015-EE]

9) A steady current I is flowing in -x direction through each of the two infinitely long wires at $y = \pm \frac{L}{2}$ as shown in the figure. The permeability of the medium is μ_0 . The \overrightarrow{B} - field at (0, L, 0) is [2015-EE]

c) 0
d)
$$-\frac{3\mu_0 I}{4\pi L}\hat{Z}$$

10) Consider the circuit shown in the figure. In this circuit $R = 1k\Omega$ and $C = 1\mu F$. The input voltage is sinusoidal with a frequency of 5-Hz, represented as a phasor with magnitude V_i and phase angle 0 radian as shown in the figure. The output voltage is represented as phasor with magnitude V_0 and phase angle δ radian. What is the value of the output phase angle δ (in radian) relative to the phase angle of the input voltage? [2015-EE]

- a) 0
- b) π
- c) $\frac{\pi}{2}$
- d) $-\frac{\pi}{2}$

11) In the given circuit, the silicon tranistor has $\beta = 75$ and a collector voltage $V_C = 9V$. Then the ratio of R_B and R_C is ______ [2015-EE]

12) In the 4×1 , the output F is given by $F = A \oplus B$. Find the required input $I_3I_2I_1I_0'$ [2015-EE]

- b) 0110
- c) 1000
- d) 1110
- 13) Consider a HVDC link which used thryistor based line-commutated converters as shown in the figure. For a power flow of 750 MW from a System 1 to System 2, the voltage at the two ends, and the current, are given by : $V_1 = 500kV$, $V_2 = 485kV$ and I = 1.5kA. If the direction of power flow is to be reversed(that is, from System 2 to System 1) without changing the electrical connections, then which one of the following combinations is feasible? [2015-EE]

- a) $V_1 = -500kV$, $V_2 = -485kV$ and I = 1.5kA
- b) $V_1 = -485kV$, $V_2 = -500kV$ and I = 1.5kA
- c) $V_1 = 500kV$, $V_2 = 485kV$ and I = -1.5kA
- d) $V_1 = -500kV$, $V_2 = -485kV$ and I = -1.5kA