Date: 24/09/17

Ahsanullah University of Science and Technology

Department of Computer Science and Engineering

Third Year, First Semester

Final Examination, Spring 2017

Course No: CSE 3109

Course Title: Digital System Design Full Marks: 70

Time: 3 Hours

[There are 7(Seven) questions. Answer any 5(Five) questions.] [Marks allotted are indicated in the right margin within '[]'.]

1.a) Derive simplified function for D and B_{\emptyset} of Figure 1.

[4]

Figure 1: Circuit for 1.a)

b) The following register-transfer operations specify a four-state control of the sequence register and [5] decoder type. G is a 2-bit sequence register and T₀, T₁, T₂ and T₃ are the outputs of the decoder.

G **←**G+1 xT_0 : G ← 10 yT_0 : G ←11 zT_0 : $T_1+T_2+T_3: G - G+1$

Draw the state diagram of the control and design the sequence register with JK flip-flops.

c) Design a combinational circuit using a PLA. The circuit accepts a 2-bit number and generates an [5] output binary number equal to the cube of the input number. Derive the PLA program table for this circuit.

(2.a) What is mnemonics? Explain with example.

- [2] [2]
- b) How do Program Counter and Ring Counter differ from each other? Explain with example.

c) Translate the following program into SAP-1 machine language.

[4]

	A	Address	Instruction	٥٥
PC	•	0H	LDA 9H	
	X Y	1H	ADD AH	01
MAR Input	ALU	2H	ADD BH	- 1
•		3H	SUB CH	01
ram	G	4H	OUT	DIO OF
-0		5H	HLT	
IR	D	9H	01H	OF
0.1		AH	02H	
CU	D	ВН	03H	
		CH	04H	

d) Describe the SAP-1 architecture.

[6]

Page 1 of 3

Figure 2: control state diagram for problem 3

		Figure 2: control state di	agrain for problem 3		
a)	The state diagram of a c You must represent the C Design the control using	control unit is shown in Figure 30 state as T_0 , 01 state as T_1 , four D flip-flops.	ure 2. It has four states a 10 state as T ₂ and 11 state	nd two inputs I and R. e as T ₃ .	[4]
b)	b) Design the control using two J-K flip-flops and a 2×4 decoder.				
c) 1	Design the control using	a PLA.			[5]
A.a) D	Describe bidirectional reg	sister of SAP -2 architecture			[2]
p) E	Explain handshaking of S	AP-2 architecture with exar	nple.		[3]
c) I	How much time delay do	es this SAP -2 subroutine pr	oduce?		[4]
d)	The traffic lights on a ma	MVI A,0AH (10°) MVI B,64H (10°) MVI C,47H - 7\ DCR C JNZ LOOP3 DCR B JNZ LOOP2 DCR A JNZ LOOP1 RET I, DCR, JNZ and RET is 7, 4 ain road show green for 90 s, the control inputs to peripheral	, 10/7 and 10 respectively yellow for 10 s, and red for	or 40 s. Bits 1, 2 and 3	[5]
	program in mnemonics f	te control inputs to peripheral or SAP-2 that produces time of	equipment that runs these delays of 90 , 10 and 40 s	e traffic lights. Write a for the traffic lights.	
(8.a)	3.a) Describe the write and read operations of a RAM.				
b)	b) What is Shift Register? What are the differences between SRAM and DRAM?				[3]
c)	Design an arithmetic circ the circuit performs the decrement operation F =	cuit with one selection variable addition operation $F = A - A - 1$.	the s and two data inputs A + B. When s = 1, the	A and B. When s = 0, circuit performs the	[3]
	0101	Page 2 of A + 1 A + 1	_	0001 1110 1 NS 1111 1×105	

d) Deign an arithmetic logic unit with three selection variables S₂, S₁ and S₀, that generates the following arithmetic and logic operations. When S₂=0 the arithmetic operations are done and when S₂=1 the logical operations are done.

Sı	S ₀	C _{in} = 0	$C_{in} = 1$	$C_{in} = \times (don't care)$
0	0	F = A + 1	F = A	F = AB (AND)
0	1	F = A - B	F = A - B - 1	$F = A \oplus B \text{ (XOR)}$
1	0	F = B - A	F = B - A - 1	F = A + B (OR)
1	1	F = A + B + 1	F = A + B	$F = A \uparrow B (NAND)$

6.a) What is Modified Booth's algorithm? Explain with example.

[3]

[6]

110

[6]

b) Design a 3-bit gray code counter as shown in the state diagram of Figure 3. Use J-K flip-flops.

[5]

To Initilization

To B3 6 B3

To D0 nothing

To A+B E & cont

Ty A+B+1 E & cont

Figure 3: State Diagram for problem 6 (b)

If m = 110110, r = 101101, x = 6 and y = 6; using the Booth's multiplication algorithm determine the initial value of A, S and P. Show all the steps of Booth's algorithm to find the final value of P.

Design a hard-wired control to implement the addition and subtraction of two fixed-point binary numbers represented in sign magnitude form. Your design must include the following steps:

- i. Equipment Configuration [2]
- ii. Derivation of the Algorithm
 iii. Flowchart
- iv. Control state diagram and Sequence of microoperationsv. Design of Hard-wired Control[4]

You must use an ALU that has the following function table:

110,10

S ₂	S ₁	S_0	C_{in}	Output
0	0	1	0	F = A + B
0	1	0	1	F = A - B
1	1	1	0	F = A'
0	0	0	1	F = A + 1

Ø	0	0
	0	1
	1	0
	1	

$$76.51.50 \text{ Cin } L.72W$$
Page 3 of 3
 101.10
 100.100
 110.100
 110.100