Summer school: GoTo

Application of Modern Machine Learning in Music

Ashuha Arseniy

Yandex, Moscow Institute of Physics and Technology

mail: ars.ashuha@gmail.com, slides: https://github.com/ars-ashuha/slides

September 19, 2016

Who am I, and why I'm standing here?

Education

- 1. Bachelor Degree at Bauman University
- 2. Master Degree at MIPT University (in progress)
- 3. Additional Education at YDS as irregular student (in progress)
- Work

RAMBLER&Co

- 1. Data Scientist (2.5 year) Rambler, ML Group
- 2. Deep Learning Intern Yandex, Music Group (in progress)
- 3. TA at ML practical course MIPT, Department of IHT (in progress)

How to apply ML for Music Data to get Money?

Your are working in a big music service as a data scientist

▶ In this service there's a lot of music data — mp3 files

user_id	tracks_id
123	[1, 2, 3]
124	[1000, 11, 23, 23]
999999	[1]

tracks_id	file
1	1.mp3
2	2.mp3
999999	999999.mp3

► You were given the task – make money using this data

What is the sound?

► Waves and Recording

▶ How to store sound? Store as big-big array with sampling frequency

ightharpoonup [1,2,3,5,3,2,1,1,1,1,2,3,5,3,2], Usually 16 000 float per second

Finding similar tracks

► How to find similar tracks using ML methods?

Data: 30 sec * 16000 features, 10^7 items Task: define function of *similarity*(*track_i*, *track_i*)

- Why ordinary methods are so bad?
 - shift and noise tolerance, over-fitting
- ▶ Metric approach is still good idea, if we have a high level description
- Good representation of music track
 - ▶ Human guitar, rock, Queen, 1997, UK, 3 min.,
 - ► Computer good small vector of numbers

Get good representation using Neural Nets

Problem

We need to get picture!

What is the sound part 2?

We have some wave

represent wave as a sum of two waves

sound is a combination of big waves range

What we lost in our representation?

What is the sound part 2? Get Frequency

We need to train Neural Nets, but how can we do that?!

- ▶ But how can we train nets on music?
- Let's invent a fake machine learning task

- genre classification
- artist classification
- rating prediction
- **•**

Fully connected NN

- ▶ too many parameters number of weights = $16^4 * neurons + ...$
- ▶ It doesn't work =(

Convolution NN

Let's invent some convolution architecture

important detail – pooling of time axis [Spotify))) Deep Learning]

General scheme, what did we do?

How to measure quality of good representation?

What we have?

- ▶ We have represented each track as a vector
- ▶ But maybe our solution is too bad, how can we understand that?
- ▶ How to test "good representation"?

Let's invent the metrics:

- by hand
- using assessors
- recommendation quality
- using vectors to classify another labels

Let's adapt to Different length and Additional information

How to use any length?:

- 1. Average prediction for many patches
- 2. Recurrent neural net on many patches

3. Whatever?

How to take account?:

1. Lyrics

$$Concat(TextRNN, Conv) \rightarrow FC \rightarrow Cost$$

- 2. Genre, Artist, Year embedding too, multi-cost task
- 3. ...

Technical details

How to build fast system for million users?

- 1. pre-compute vectors and tracks simulation
- 2. fast key-value storage

Current Status of your Field!

Thanks for your attention!