

CSE211-Formal Languages and Automata Theory

U4L7_Reducibility and Rice's Theorem

Dr. P. Saravanan
School of Computing
SASTRA Deemed University

What is Reducibility?

- A reduction is a way of converting one problem to another such that the solution to the second can be used to solve the first
 - We say that problem A is reducible to problem B
 - Example: finding your way around City is reducible to the problem of finding and reading a map
 - If A reduces to B, what can we say about the relative difficulty of problem A and B?
 - · A can be no harder than B since the solution to B solves A
 - A could be easier
 - In example above, A is easier than B since B can solve any routing problem

Practice on Reducibility

- In our previous class work, did we reduce NFAs to DFAs or DFAs to NFAs?
 - We reduced NFAs to DFAs
 - We showed that an NFA can be reduced (i.e., converted) to a DFA via a set of simple steps
 - an DFA is a degenerate form of an NFA, we showed they have the same expressive power

Problem A is reduced to problem B

If we can solve problem $\,B\,$ then we can solve problem $\,A\,$

Problem A is reduced to problem B

If B is decidable then A is decidable

If A is undecidable then B is undecidable

Example: the halting problem

is reduced to

the state-entry problem

The state-entry problem

- Inputs:
- \cdot Turing Machine M
- \cdot State q
- String w

Question: Does M enter state q on input w?

Theorem:

The state-entry problem is undecidable

Proof:

Reduce the halting problem to

the state-entry problem

Suppose we have an algorithm (Turing Machine) that solves the state-entry problem

We will construct an algorithm that solves the halting problem

Assume we have the state-entry algorithm:

We want to design the halting algorithm:

Modify input machine M:

- \cdot Add new state q
- \cdot From any halting state add transitions to q

M' halts on state q

Algorithm for halting problem:

Inputs: machine M and string w

1. Construct machine M^\prime with state q

2. Run algorithm for state-entry problem with inputs: M^\prime , q , w

Halting problem algorithm YES State-entry algorithm Generate \mathcal{W} \mathcal{W}

We reduced the halting problem to the state-entry problem

Since the halting problem is undecidable, it must be that the state-entry problem is also undecidable

END OF PROOF

Another example:

the halting problem

is reduced to

the blank-tape halting problem

The blank-tape halting problem

Input: Turing Machine M

Question: Does M halt when started with a blank tape?

Theorem:

The blank-tape halting problem is undecidable

Proof: Reduce the halting problem to the blank-tape halting problem

Suppose we have an algorithm for the blank-tape halting problem

We will construct an algorithm for the halting problem

Assume we have the blank-tape halting algorithm:

We want to design the halting algorithm:

Construct a new machine M_w

- On blank tape writes W
- Then continues execution like M

 M_{w}

 $\frac{\text{step 1}}{\text{if blank tape}}$ then write w

 $\frac{s tep2}{execute} \ M$ with input \mathcal{W}

M halts on input string w

 $M_{\it W}$ halts when started with blank tape

Algorithm for halting problem:

Inputs: machine M and string w

1. Construct M_w

2. Run algorithm for blank-tape halting, problem with input $M_{\it w}$

Halting problem algorithm

We reduced the halting problem to the blank-tape halting problem

Since the halting problem is undecidable, the blank-tape halting problem is also undecidable

END OF PROOF

Summary of Undecidable Problems

Halting Problem:

Does machine M halt on input w?

Membership problem:

Does machine M accept string w?

In other words: Is a string w member of a

recursively enumerable language L?

Blank-tape halting problem:

Does machine M halt when starting on blank tape?

State-entry Problem:

Does machine M enter state q on input w?

References

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction to Automata Theory, Languages, and Computation, Pearson, 3rd Edition, 2011.

Peter Linz, An Introduction to Formal Languages and Automata, Jones and Bartle Learning International, United Kingdom, 6th Edition, 2016.

Next Class: Unit IV

Uncomputable Problems and Rice Theorem

Thank you.