SECOND COURSE IN ANALYSIS

Ahmed Shakil

These notes are from when I took Math 105 at UC Berkeley under Professor Anuj Kumar	during the	spring
semester of 2025.		

Contents

I	Analysis in \mathbb{R}^n	1
	Linear Algebra1.1 The Basics1.2 Some Results From Linear Algebra	
2	Derivatives	6

Part I:

Analysis in \mathbb{R}^n

1 Linear Algebra

1.1 The Basics

Definition 1.1.1: Vector Space

A set V over a field \mathbb{F} (\mathbb{R} or \mathbb{C}), is a vector space if there is an operation $+: V \times V \to V$ such that for $u, v, w \in V$ the following properties hold

- 1. Commutativity: u + v = v + u
- 2. Associativity: (u + v) + w = u + (v + w)
- 3. 0 element: There exists $0 \in V$ such that $u + 0 = u \ \forall u \in V$
- 4. Additive inverse: For each $u \in V$, $\exists -u \in V$ such that u + (-u) = 0.

Furthermore, scalar multiplication must be supported: there must be an operation $\times : \mathbb{F} \times V \to V$ such that for all $a, b \in \mathbb{F}$ and $u, v \in V$ the following properties hold:

- 1. Compatibility with field multiplication: $a \times (b \times u) = (a \cdot b) \times u$
- 2. Distributivity in the following senses:

$$a \times (u + v) = a \times u + a \times v$$

 $(a + b) \times u = a \times u + b \times u$

3. Identity element of scalar multiplication: $1 \times u = u$ where $1 \in \mathbb{F}$ is the identity element.

Definition 1.1.2: Inner Product

An inner product is a function over a vector space V. The function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ has the following properties

- 1. Conjugate symmetry: $\langle u, v \rangle = \langle v, u \rangle$
- 2. Linearity in the first argument: $\langle au + bv, u \rangle = a \langle u, w \rangle + b \langle v, w \rangle$
- 3. Positive-definiteness: $\langle \cdot, \cdot \rangle \geqslant 0$ where $\langle u, u \rangle = 0$ if and only if u = 0.

A vector space equipped with an inner product is called an inner product space.

Definition 1.1.3: Norm

A norm $\|\cdot\|$ one a vector space V is a function such that for all $u, v \in V$ and for all $c \in \mathbb{F}$ the following properties hold:

- 1. Non-negativity: $\|\nu\| \ge 0$, $\forall \nu \in V$ and $\|\nu\| = 0 \iff \nu = 0$
- 2. Absolute homogeneity: ||cv|| = |c| ||v||, $\forall c \in \mathbb{F}$ and $v \in V$
- 3. Triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|, \ \forall \ \mathbf{u}, \mathbf{v} \in V$

A vector space equipped with a norm forms a normed space.

1.1. The Basics Ahmed Shakil

Remark 1.1.4

A norm induces a metric or distance d:

$$d(u,v) := ||u-v||$$

where d satisfies the following properties:

- 1. $d(u, v) \ge 0$
- 2. $d(u,v) = 0 \iff u = v$
- 3. d(u, v) = d(v, u)
- 4. $d(u, w) \leq d(u, v) + d(v, w)$

Definition 1.1.5: Linear Transformation

A linear transformation between two vector spaces V and W (with the same field \mathbb{F}) is a function:

$$T:V\to W$$

such that \forall $u, v \in V$ and $c \in \mathbb{F}$ the following holds

- 1. Additivity: T(u + v) = T(u) + T(v)
- 2. Homogeneity: T(cu) = cT(u)

Some properties as a result of the definition above is the following:

- 1. Linear transformation between finite-dimensional vector spaces can always be represented as a matrix
- 2. Rank-Nullity theorem: dim(V) = dim(ker(T)) + rank(T)

Definition 1.1.6: Isomorphism

Two vector spaces V and W are said to be isomorphic if there exists a bijective linear transformation $T: V \to W$. Here, T is known as an isomorphism between V and W, and when V and W are isomorphic we denote this as

$$V \cong W$$
.

Definition 1.1.7: Metric Space

A metric space is a set X with a function $d: X \times X \to \mathbb{R}$ (known as metric) that satisfies the following properties

- 1. Nonnegativity: $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$
- 2. Symmetry: d(x,y) = d(y,x)
- 3. Triangle inequality: $d(x, z) \le d(x, y) + d(y, z)$

Definition 1.1.8: Homeomorphism

A homeomorphism is a function $f: X \to Y$ between two metric spaces X and Y that satisfies:

1. Bijectivity: f is a bijection

- 2. Continuity: f is continuous
- 3. Inverse continuity: The inverse function $f^{-1}: Y \to X$ is also continuous

The difference between isomorphism and homeomorphism is that an isomorphism preserves the algebraic structure such as addition and multiplication whereas a homeomorphism preserves the topological structure such as continuity and compactness.

1.2 Some Results From Linear Algebra

An *m*-by-*n* matrix represents a linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined as

$$T_A(v) = Av \text{ for } v \in \mathbb{R}^n.$$

The set of linear transformations from \mathbb{R}^n to \mathbb{R}^m denoted as $\mathcal{L} = \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ also forms a vector space.

Theorem 1.2.1

Given a matrix A (*m*-by-*k*) and a matrix B (*k*-by-*n*), we have $T_A \circ T_B = T_{AB}$.

Proof. Let $\{e_j\}_{j=1}^n$ be the basis vectors of \mathbb{R}^n . We will show that both linear transformations are the same on all basis vectors. Consider any basis vector of \mathbb{R}^n , say e_j , observe the following:

$$\begin{split} (T_A \circ T_B)(e_j) &= T_{AB}(e_j) \\ T_A(T_B(e_j)) &= AB(e_j) \\ T_A(Be_j) &= Ab_j \\ T_A(b_j) &= Ab_j \\ Ab_j &= Ab_j \end{split}$$

Since both sides are equal on all basis vectors we are done.

Definition 1.2.2: Operator Norm

Given to normed spaces V and W we define the operator norm as

$$\|\mathsf{T}\| \coloneqq \sup \left\{ \frac{\|\mathsf{T}\nu\|_W}{\|\nu\|_V} \mid \nu \neq 0 \right\}.$$

The operator norm as defined above is a norm over the vector space $\mathcal{L}(V, W)$.

Theorem 1.2.3

Let $T: V \to W$ be a linear transformation between two normed spaces. Then the following are equivalent:

- 1. $\|T\| < \infty$
- 2. T is uniformly continuous
- 3. T is continuous
- 4. $\|T\|$ is continuous at the origin.

Theorem 1.2.4

Every linear transformation $T: \mathbb{R}^m \to W$ is continuous, and every isomorphism is a homeomorphism.

2 Derivatives

Definition 2.0.1: Derivative

Let $f:U\to\mathbb{R}^m$ be a function defined on an open set $U\subseteq\mathbb{R}^n$. We say f is differentiable at $p\in U$ with derivative $(Df)_p=T$ if $T:\mathbb{R}^n\to\mathbb{R}^m$ is a linear transformation such that the remainder $R:\mathbb{R}^n\to\mathbb{R}^m$ defined through

$$f(p+\nu) = f(p) + T(\nu) + R(\nu) \implies \lim_{\|\nu\| \to 0} \frac{R(\nu)}{\|\nu\|} = 0.$$

Lemma 2.0.2

Suppose $(Df)_p$ exists, then it is unique.