Statement

Time limit: 4000 ms Memory limit: 256 MB

Abhishek is a student who loves to learn new languages. He does this by making different sentences from a word list given by his friend Zhang Yu. More specifically, he makes a sentence by picking a subsequence of words (not necessarily consecutive) from the word list without changing their order.

Today Zhang gives Abhishek a list of N words for him to learn a special language. The words in the list contain only lowercase letters $\, a \,$ to $\, z \,$. Abhishek will learn this special language in a special way based on an integer K: He cannot choose any pair of words (w_1, w_2) in a sentence if their indices differ by at most K. In other words, if w_1 is at index of i and w_2 is at index j in the word list, then they must satisfy |i-j|>K to be chosen together.

To understand how efficiently he is learning this special language, Abhishek asks you to print the number of unique sentences he can make from the word list, modulo $1\,000\,000\,007\,(10^9+7)$.

Standard input

The first line contains a single integer T, the number of test cases.

Each test case has two integers N and K separated by space on the first line. The next N lines each have a string that consists of lowercase English letters, describing one word in the list.

Standard Output

For each test case, output the number of unique sentences modulo $1\,000\,000\,007\,(10^9+7)$ on a single line.

Constraints and notes

- $1 \le T \le 1000$
- $1 \le N \le 10^5$
- $0 \le K < N$
- The length of any word is between 1 to 10.
- The sum of N over all test cases in one test file does not exceed $2\cdot 10^6.$

Input	Output	Explanation
1	16	There is a single test case. The following 16 sentences are valid:
7 1		
a) a
abc		2 a a 3 a abc
abc		4 a dac
a		5 a a a
dac		6 a abc dac
		7 a abc a
a		8 a dac a
a		9 a abc dac a
		10 abc
		11 abc a
		12 abc dac
		13 abc a a
		14 abc dac a
		15 dac
		16 dac a
		Each of these sentences can be formed by picking a subsequence
		of words without violating the constraint regarding K . For

WORKSPACE / SUBMIT

example, this sentence a abc dac a can be formed by picking words at indices $\{0,2,4,6\}$ respectively. All pairs of indices differ

by more than K=1.