Multivariate Statistical Analysis

Lecture 07

Fudan University

luoluo@fudan.edu.cn

- Unbiasedness
- 2 Sufficiency
- 3 Completeness
- 4 Efficiency

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency

Unbiasedness

An estimator ${f t}$ of a parameter vector ${m heta}$ is unbiased if and only if

$$\mathbb{E}[\mathsf{t}] = \boldsymbol{\theta}.$$

For the estimators obtain from MLE for normal distribution,

- the vector $\hat{\mu}$ is an unbiased estimator of μ ;
- 2 the matrix $\hat{\Sigma}$ is a biased estimator of Σ .

- Unbiasedness
- Sufficiency
- Completeness
- 4 Efficiency

Sufficiency

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for a family of distributions of random variable \mathbf{y} with parameter $\boldsymbol{\theta}$, if the conditional distribution of \mathbf{y} given $\mathbf{t}(\mathbf{y}) = \mathbf{t}_0$ does not depend on $\boldsymbol{\theta}$.

- $oldsymbol{0}$ The statistic ${f t}$ gives as much information about $oldsymbol{ heta}$ as the entire sample ${f y}$.
- For the MLE of normal distribution, we check the sufficiency by taking

$$\theta = \{\mu, \Sigma\}, \quad \mathbf{y} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \quad \text{and} \quad \mathbf{t}(\mathbf{y}) = \{\bar{\mathbf{x}}, \mathbf{S}\}.$$

Theorem

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for θ if and only if the density $f(\mathbf{y}; \theta)$ can be factored as

$$f(\mathbf{y}; \boldsymbol{\theta}) = g(\mathbf{t}(\mathbf{y}); \boldsymbol{\theta})h(\mathbf{y})$$

where $g(\mathbf{t}(\mathbf{y}); \boldsymbol{\theta})$ and $h(\mathbf{y})$ are nonnegative and $h(\mathbf{y})$ does not depend on $\boldsymbol{\theta}$.

- Unbiasedness
- 2 Sufficiency
- 3 Completeness
- 4 Efficiency

Completeness

A family of distributions of statistics \mathbf{t} indexed by parameter $\boldsymbol{\theta}$ is complete if for every real-valued function $g(\mathbf{t})$, we have

$$\mathbb{E}[g(\mathbf{t})] \equiv 0$$

identically in θ implies $g(\mathbf{t}) = 0$ except for a set of \mathbf{t} of probability 0 for every θ .

Completeness

Theorem

The sufficient set of statistics $\bar{\mathbf{x}}$, \mathbf{S} is complete for μ , $\mathbf{\Sigma}$ when the sample is drawn from $\mathcal{N}(\mu, \mathbf{\Sigma})$.

Sketch of the proof:

① We have $N\hat{\mathbf{\Sigma}} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} = \sum_{\beta=1}^{N} b_{\alpha\beta} \mathbf{x}_{\beta}$ and

$$\mathbf{B} = \begin{bmatrix} \times & \dots & \times \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \dots & \frac{1}{\sqrt{N}} \end{bmatrix}$$

② The condition $\mathbb{E}[g(\bar{\mathbf{x}}, n\mathbf{S})] \equiv 0$ implies the Laplace transform of

$$g\left(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}\right) h(\bar{\mathbf{x}}, \mathbf{B})$$

is zero, where $\mathbf{B} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N \bar{\mathbf{x}} \bar{\mathbf{x}}^{\top}$ and $h(\bar{\mathbf{x}}, \mathbf{B})$ is the joint density of $\bar{\mathbf{x}}$ and \mathbf{B} .

- Unbiasedness
- 2 Sufficiency
- Completeness
- 4 Efficiency

Concentration Ellipsoid

If a p-dimensional random vector \mathbf{y} has mean vector

$$oldsymbol{
u} = \mathbb{E}[\mathsf{y}]$$

and covariance matrix

$$oldsymbol{\Psi} = \mathbb{E}\left[(\mathbf{y} - oldsymbol{
u}) (\mathbf{y} - oldsymbol{
u})^ op
ight] \succ \mathbf{0},$$

then

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\nu})^{\top} \boldsymbol{\Psi}^{-1} (\mathbf{z} - \boldsymbol{\nu}) = p + 2\right\}$$

is called the concentration ellipsoid of y.

Concentration Ellipsoid

Let θ be a vector of p parameters in a distribution, and let \mathbf{t} be a vector of unbiased estimators (that is, $\mathbb{E}[\mathbf{t}] = \theta$) based on N observations from that distribution with covariance matrix Ψ .

Then the ellipsoid

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[N \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$

lies entirely within the ellipsoid of concentration of \mathbf{t} , where f is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.

The ellipsoid

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[N \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$

lies entirely within the ellipsoid of concentration of t

$$\left\{\mathbf{z}: (\mathbf{z} - \boldsymbol{\theta})^{\top} \left(\mathbb{E} \left[(\mathbf{t} - \boldsymbol{\theta}) (\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \right)^{-1} (\mathbf{z} - \boldsymbol{\theta}) = \rho + 2 \right\},\,$$

that is

$$\left(N\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right]\right)^{-1} \leq \mathbb{E}\left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top}\right].$$

The ellipsoid

$$\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \mathbb{E} \left[\mathbf{N} \cdot \frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^{\top} \right] (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}$$
(1)

lies entirely within the ellipsoid of concentration of t

$$\left\{ \mathbf{z} : (\mathbf{z} - \boldsymbol{\theta})^{\top} \left(\mathbb{E} \left[(\mathbf{t} - \boldsymbol{\theta})(\mathbf{t} - \boldsymbol{\theta})^{\top} \right] \right)^{-1} (\mathbf{z} - \boldsymbol{\theta}) = p + 2 \right\}.$$
 (2)

- If the ellipsoid (1) and the ellipsoid (2) are identical, then the unbiased estimator **t** is said to be efficient.
- ② In general, the ratio of the volume of ellipsoid (1) to that of the ellipsoid (2) defines the efficiency of the unbiased estimator t.

Multivariate Cramér-Rao Inequality

Theorem

Under the regularity condition (everything is well-defined, integration and differentiation can be swapped), we have

$$N\mathbb{E}\left[(\mathbf{t} - \boldsymbol{ heta})(\mathbf{t} - \boldsymbol{ heta})^{\top}\right] \succeq \left(\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{ heta})}{\partial \boldsymbol{ heta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{ heta})}{\partial \boldsymbol{ heta}}\right)^{\top}\right]\right)^{-1},$$

where $\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}$ and $f(\mathbf{x}, \boldsymbol{\theta})$ is the density of the distribution with respect to the components of $\boldsymbol{\theta}$.

- Let $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ and $\mathbf{s} = \frac{\partial \ln g(\mathbf{X}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$, where g is the joint density on N samples.
- ② For unbiased estimator \mathbf{t} of $\boldsymbol{\theta}$, we have $Cov[\mathbf{t}, \mathbf{s}] = \mathbf{I}$.

We define the Fisher information matrix as

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right].$$

Under the regularity condition, we have

$$\mathbb{E}\left[\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \left(\frac{\partial \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right)^{\top}\right] = -\mathbb{E}\left[\frac{\partial^2 \ln f(\mathbf{x}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}}\right].$$

Consider the case of the multivariate normal distribution.

- **1** If $\theta = \mu$, then $\bar{\mathbf{x}}$ is efficient.
- ② If $\theta = \{\mu, \Sigma\}$, then $\{\bar{\mathbf{x}}, S\}$ has efficiency

$$\left(\frac{N-1}{N}\right)^{p(p+1)/2},$$

which converges to 1 if $N \to +\infty$.

