Unions and Products

Concepts of Programming Languages Lecture 7

Announcements

- » Thanks for providing feedback on the course!
- » Lectures will be more interactive: I will be asking more questions; we will do derivations and programming together
- » More examples! Each concept will be followed by an example on typing, semantic rules, and programming. More practice via homework.

Practice Problem 1 (Tail Recursive)

Implement the function
reverse : 'a list -> 'a list

Practice Problem 2 (Tail Recursive)

Implement the function double where double l doubles every element of the list l

Homework (Tail Recursive)

```
Implement the function
delete_every_other : 'a list -> 'a list
```


Outline

- » Discuss the use of tuples and records for creating collections of data
- » Introduce algebraic data types (ADTs) for creating data with given "shapes"
- » Cover parametric and recursive ADTs for more general data structures

Products

```
let point : float * float = (2.0, 3.0)
let student : string * int = ("Franco", 244342)
```

```
let point : float * float = (2.0, 3.0)
let student : string * int = ("Franco", 244342)
```

Tuples are **ordered unlabeled** fixed—length heterogeneous collections of data

```
let point : float * float = (2.0, 3.0)
let student : string * int = ("Franco", 244342)
```

Tuples are **ordered unlabeled** fixed—length heterogeneous collections of data

(I expect that these are familiar)

```
let point : float * float = (2.0, 3.0)
let student : string * int = ("Franco", 244342)
```

Tuples are **ordered unlabeled** fixed—length heterogeneous collections of data

(I expect that these are familiar)

These are useful for returning multiple values from a function

Pattern Matching on Tuples

```
let dist (p1 : float * float) (p2 : float * float) : float =
  match p1, p2 with
  | (x1, y1), (x2, y2) ->
    let x = x1 -. x2 in
    let y = y1 -. y2 in
    sqrt ((x *. x) +. (y *. y))
```

There are no accessors for tuples

Instead we can use pattern matching

A pattern is a typed template for how a piece of data should look

A **pattern** is a typed template for how a piece of data should look

A **match-expression** is a way of *destructing* <u>any</u> piece of data

A pattern is a typed template for how a piece of data should look

A match-expression is a way of destructing any piece of data

We match on an expression e, and check if the value of e $\mathit{matches}$ with the pattern p

Note: Patterns are not Expressions

Patterns are similar to expressions, but with some key differences

They can be wildcards, they can be variables, there's a lot of possibilities (<u>link</u>)

Advanced Pattern Matching

```
let dist ((x1, y1) : float * float) ((x2, y2) : float * float) : float =
  let x = x1 - x2 in
 let y = y1 - y2 in
  sqrt((x *. x) +. (y *. y))
let dist (p1 : float * float) (p2 : float * float) : float =
 let (x1, y1) = p1 in
  let (x2, y2) = p2 in
  let x = x1 - x2 in
 let y = y1 - y2 in
  sqrt((x *. x) +. (y *. y))
```

Pattern matching can also be done implicitly in let-expressions and function arguments!

And we can do all this formally!

Tuples (Syntax Rule)

If $e_1, ..., e_n$ are well-formed expressions, then

$$(e_1, e_n)$$

is a well-formed expression

Tuples (Syntax Rule)

```
<expr> ::= ( <expr> , ... , <expr> )
```

If $e_1, ..., e_n$ are well-formed expressions, then

```
(e_1, e_n)
```

is a well-formed expression

Tuple (Typing Rule)

If $e_1,...,e_n$ are of type $\tau_1,...,\tau_n$, respectively, in the context Γ then

$$(e_1, e_n)$$

is of type τ_1 * ... * τ_n in the context Γ

Tuple (Typing Rule)

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \dots \qquad \Gamma \vdash e_n : \tau_n}{\Gamma \vdash (e_1, \dots, e_n) : \tau_1 * \dots * \tau_n} \text{ (tuple)}$$

If $e_1,...,e_n$ are of type $\tau_1,...,\tau_n$, respectively, in the context Γ then

$$(e_1, e_n)$$

is of type τ_1 * ... * τ_n in the context Γ

Tuple (Semantic Rule)

```
If e_1, \dots, e_n evaluate to v_1, \dots, v_n, respectively, then  ( \ e_1 \ , \ \dots \ , \ e_n \ )
```

evaluates to (v_1, \dots, v_n)

Tuple (Semantic Rule)

$$\frac{e_1 \Downarrow v_1 \qquad \dots \qquad e_n \Downarrow v_n}{(e_1, \dots, e_n) \Downarrow (v_1, \dots, v_n)} \text{ (tupleEval)}$$

```
If e_1, \dots, e_n evaluate to v_1, \dots, v_n, respectively, then  ( \ e_1 \ , \ \dots \ , \ e_n \ )
```

evaluates to (v_1, \dots, v_n)

```
\frac{\{x: int\} \vdash x: int}{\{x: int\} \vdash x + x : int} \xrightarrow{\{intAdd\}} \frac{\{x: int\} \vdash true : bool(tuple)}{\{x: int\} \vdash (x + x, true) : int * bool}
```

```
\{x : int\} \vdash (x + x, true) : int * bool
```

```
\{x: int\} \vdash x + x: int\} \vdash \{x: int\} \vdash true: bool
\{x: int\} \vdash (x + x, true): int * bool
```

```
\frac{\{x: int\} \vdash x: int}{\{x: int\} \vdash x + x: int} \qquad \qquad \{x: int\} \vdash true: bool \\ \{x: int\} \vdash (x + x, true): int * bool}
```

```
\frac{\{x: int\} \vdash x: int}{\{x: int\} \vdash x: int} \xrightarrow{\{x: int\} \vdash x: int} \xrightarrow{\{add\}} \{x: int\} \vdash true: bool 
\{x: int\} \vdash (x+x, true): int * bool
```

```
 \frac{\{x: int\} \vdash x: int \quad x: in
```

$$\frac{(\text{intLitEval})}{21/2} = \frac{31/3}{31/3} = \frac{(\text{intAdd})}{(\text{intAdd})} = \frac{(\text{trueLitEval})}{(\text{true})} = \frac{(\text{true})}{(\text{true})} = \frac{(\text{true})}{($$

```
(2 + 3, true) \Downarrow (5, T)
```

Example (Semantic Derivation)

Example (Semantic Derivation)

Example (Semantic Derivation)

$$\frac{2 \Downarrow 2}{2 \Downarrow 2} \frac{(\text{intEval})}{(\text{addEval})} \frac{(\text{intEval})}{(\text{trueEval})} \frac{2 + 3 \Downarrow 5}{(\text{tupleEval})} \frac{(\text{trueEval})}{(\text{tupleEval})}$$

Tuple Match (Typing Rule)

If p is of type $\tau_1 * ... * \tau_n$ in the context Γ and e is of type τ in the context Γ along with x_i of type τ_i , then

```
match p with | x_1 \rangle \dots \langle x_n \rangle = e
```

is of type τ in the context Γ

Tuple Match (Typing Rule)

$$\frac{\Gamma \vdash p : \tau_1 * \ldots * \tau_n \qquad \Gamma, x_1 : \tau_1, \ldots, x_n : \tau_n \vdash e : \tau}{\Gamma \vdash \mathsf{match} \ p \ \mathsf{with} \mid x_1, \ldots, x_n \to e : \tau} \ (\mathsf{matchTuple})$$

If p is of type $\tau_1 * ... * \tau_n$ in the context Γ and e is of type τ in the context Γ along with x_i of type τ_i , then

match
$$p$$
 with $| x_1 , ... , x_n \rightarrow e$

is of type τ in the context Γ

Tuple Match (Semantic Rule)

If p evaluates to $(v_1, ..., v_n)$ and e evaluates to v after substituting v_i for x_i ($\forall i$), then

match
$$p$$
 with $|(x_1, ..., x_n)| \rightarrow e$

evaluates to v

Tuple Match (Semantic Rule)

$$\frac{p \Downarrow (v_1,\ldots,v_n)}{(\mathsf{match}\; p\; \mathsf{with}\; |\; x_1,\ldots,x_n \to e) \Downarrow v} \; (\mathsf{match}\; Tuple\mathsf{Eval})$$

If p evaluates to $(v_1, ..., v_n)$ and e evaluates to v after substituting v_i for x_i ($\forall i$), then

match
$$p$$
 with x_1 ,..., $x_n \rightarrow e$

evaluates to v

Practice Problem

 \emptyset \vdash fun x \rightarrow match x with | (a, b) \rightarrow a + b : τ

Determine the type τ so that the above judgment is derivable from the rules below. Also give a derivation

$$\frac{\Gamma \vdash p : \tau_1 * \ldots * \tau_n \qquad \Gamma, x_1 : \tau_1, \ldots, x_n : \tau_n \vdash e : \tau}{\Gamma \vdash \mathsf{match} \ p \ \mathsf{with} \mid x_1, \ldots, x_n \to e : \tau} \ (\mathsf{matchTuple}) \qquad \frac{\Gamma \vdash e_1 : \mathsf{int} \qquad \Gamma \vdash e_2 : \mathsf{int}}{\Gamma \vdash e_1 + e_2 : \mathsf{int}} \ (\mathsf{addInt})$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{fun } x \to e : \tau_1 \to \tau_2} \text{ (fun)}$$

$$\frac{(v : \tau) \in \Gamma}{\Gamma \vdash v : \tau} \text{ (var)}$$

Solution

Homework

Implement the function

```
val fill_in_steps: (int, int, int) -> int list
```

so that fill_in_steps (a, b, c) is the shortest list of numbers starting at a, ending at c, containing b and having consecutive adjacent elements

```
example: fill_in_steps (1, 4, -2) = [1;2;3;4;3;2;1;0;-1;-2]
```


Records

```
type point = { x_cord : float ; y_cord : float }
let origin : point = { x_cord = 0. ; y_cord = 0. }

type user = {
  name : string ;
  email : string ;
  num_posts : int ;
}
```

Records are *unordered labeled* fixed—length heterogeneous collections of data

They are useful for organizing large collections of data (akin to database records)

Record Syntax (Informal)

For a record, we have to specify the type of each field When we construct a record, every field must have a value

Accessors

```
type point = { x_cord : float ; y_cord : float }
let dist (p : point) (q : point) =
  let xd = p.x_cord -. q.x_cord in
  let yd = p.y_cord -. q.y_cord in
  sqrt (xd *. xd +. yd *. yd)
```

Records support dot-notation

(we can also access records by pattern matching)

```
let new_post u : user =
    { u with num_posts = u.num_posts + 1 }
```

```
let new_post u : user =
    { u with num_posts = u.num_posts + 1 }
```

We can use with-syntax to update a smaller number of fields in a large record

```
let new_post u : user =
    { u with num_posts = u.num_posts + 1 }
```

We can use with-syntax to update a smaller number of fields in a large record

"u with num_posts incremented, keep everything else the same"

```
let new_post u : user =
    { u with num_posts = u.num_posts + 1 }
```

We can use with-syntax to update a smaller number of fields in a large record

"u with num_posts incremented, keep everything else the same"

Data in functional languages are immutable. This returns a new record with the update

demo

(tuples and records)

Homework

- » Define formal syntax rules for records
- » Define formal typing rules for records
- >> Define formal semantics rules for records

Unions

Second Greatest Feature of OCaml

Simple Variants

```
type os = BSD | Linux | MacOS | Windows
```

A **simple variant** is a *user-defined* type for values of a fixed collection of possibilities

First letter of type names is **lower_case** and Constructor names is **Upper_case**

Simple Variants

```
type os = BSD | Linux | MacOS | Windows
```

A **simple variant** is a *user-defined* type for values of a fixed collection of possibilities

First letter of type names is **lower_case** and Constructor names is **Upper_case**

Pattern Matching

```
let supported (sys : os) : bool =
  match sys with
    | BSD -> false
    | _ -> true
```

We work with variants by pattern matching:

» giving a <u>pattern</u> that a value can <u>match</u> with

>> writing what to do for each pattern

Pattern Matching

We work with variants by pattern matching:

» giving a <u>pattern</u> that a value can <u>match</u> with

>> writing what to do for each pattern

Data-Carrying Variants

Variants can carry data, which allows us to represent more complex structures

Data-Carrying Variants

```
type linux distro = Arch | Fedora | NixOS | Ubuntu
           type os
             = BSD of int * int
             Linux of linux distro * int
            MacOS of int
Note the syntax | Windows of int
           let supported (sys : os) : bool =
             match sys with
             BSD (major, minor) -> major > 2 && minor > 3
             -> true
```

Variants can carry data, which allows us to represent more complex structures

Practice Problem

```
let area (s : shape) =
  match s with
  | Rect r -> r.base *. r.height
  | Triangle { sides = (a, b) ; angle } -> Float.sin angle *. a *. b
  | Circle r -> r *. r *. Float.pi
```

Define the variant **shape** which makes this function type-check

What about variable length data?

Recursive ADTs

Greatest Feature of OCaml

Example: Lists

```
type intlist
    = Nil
    | Cons of int * intlist

let example = Cons (1, Cons (2, Cons (3, Nil)))
```

The type **intlist** is available as the type of data which a constructor of **intlist** holds

We can use recursive ADTs to create variable—length data types

Example: Lists

```
type intlist
    = Nil
    | Cons of int * intlist

let example = Cons (1, Cons (2, Cons (3, Nil)))
```

The type **intlist** is available as the type of data which a constructor of **intlist** holds

We can use recursive ADTs to create variable—length data types

The Picture

```
Cons (1,
Cons (2,
Cons (3,
Nil))
```


We think of values of recursive variants as trees with constructors as nodes and carried data as leaves

demo

(snoc for intlist)

A More Interesting Example: Expressions

$$3 + ((2*4) - 14)$$

A More Interesting Example: Expressions

$$3 + ((2*4) - 14)$$

Suppose we're building a calculator*

A More Interesting Example: Expressions

$$3 + ((2*4) - 14)$$

Suppose we're building a calculator*

Before we compute the value of an input, we first have to find an abstract representation of the input

A More Interesting Example: Expressions

$$3 + ((2*4) - 14)$$

Suppose we're building a calculator*

Before we compute the value of an input, we first have to find an abstract representation of the input

This will help us separate the tasks of evaluation and parsing

*This is exactly what we'll be doing when we build an interpreter.

A More Interesting Example: Expressions

We can represent an expression abstractly as a tree with operations as nodes and number values as leaves

A More Interesting Example: Expressions

```
type expr
    = Val of int
    | Add of expr * expr
    | Sub of expr * expr
    | Mul of expr * expr
    | Mul of expr * expr
let _ = Add (Val 3, Sub (Mul (Val 2, Val 4), Val 14))
```

Which means we can represent it as a recursive variant!

Parametrized ADTs

The last piece of the puzzle: variants can be type agnostic

The last piece of the puzzle: variants can be type agnostic

This gives us a variant which is parametrically polymorphic

```
type 'a mylist
= Nil
    | Cons of 'a * 'a mylist

let e1 : int mylist = Cons (1, Cons (2, Cons (3, Nil)))
let e2 : string mylist = Cons ("1", Cons ("2", Cons ("3", Nil)))
```

The last piece of the puzzle: variants can be type agnostic

This gives us a variant which is parametrically polymorphic

```
type 'a mylist type constructor
= Nil
| Cons of 'a * 'a mylist

let e1 : int mylist = Cons (1, Cons (2, Cons (3, Nil)))
let e2 : string mylist = Cons ("1", Cons ("2", Cons ("3", Nil)))
```

The last piece of the puzzle: variants can be type agnostic

This gives us a variant which is parametrically polymorphic

Parametric Polymorphism

```
let rev_tail (l : 'a list) : 'a list =
  let rec go acc l =
    match l with
    | [] -> acc
    | x :: xs -> go (x :: acc) xs
  in go [] l
```

Parametric Polymorphism

```
let rev_tail (l : 'a list) : 'a list =
  let rec go acc l =
    match l with
    | [] -> acc
    | x :: xs -> go (x :: acc) xs
  in go [] l
```

This allows us to write functions which can be more generally applied (reversing a list does not depend on what's in the list)

Parametric Polymorphism

```
let rev_tail (l : 'a list) : 'a list =
  let rec go acc l =
    match l with
    | [] -> acc
    | x :: xs -> go (x :: acc) xs
  in go [] l
```

This allows us to write functions which can be more generally applied (reversing a list does not depend on what's in the list)

Note. Because of type-inference, we rarely have to think about this

We'll come back to this next time...

Summary

Tuples, records, and ADTs help us organize data and create abstract interfaces

Recursive and parametrized ADTs give us richer structure