Matematický software Obyčejné diferenciální rovnice

RNDr. Zbyšek Posel, Ph.D.

Katedra informatiky, PŘF UJEP

Analytické řešení obyčejných diferenciálních rovnic

Obyčejná diferenciální rovnice udává vztah mezi funkcí a jejími derivacemi ve tvaru:

$$F(x, f(x), f'(x), f''(x),) = 0$$

Řešením je každá funkce g(x) vyhovující výše uvedené rovnici. Volbou počátečních podmínek $[x_0, f_0 = f(x_0)]$ vybíráme z množiny funkcí g(x) jednu konkrétní.

- Analytické metody řešení ODE prvního řádu.
 - Separace proměnných

$$y' = x$$

$$\frac{dy}{dx} = x$$

$$dy = xdx$$

$$\int dy = \int xdx$$

$$y = \frac{x^2}{2} + C$$

Více lze o řešení obyčejných diferenciálních rovnic nalézt v [1] nebo v [2].

Analytické řešení obyčejných diferenciálních rovnic

• Homogenní rovnice.

$$y'=f\left(\frac{y}{x}\right) \quad (x\neq 0)$$

• (Homogenní) Lineární rovnice.

$$y' + a(x)y = 0$$

$$y = Ce^{-\int a(x)dx}$$

$$y' + a(x)y = b(x)$$

$$y = C(x)e^{-\int a(x)dx}$$

$$y = e^{-\int a(x)dx} \cdot \int b(x)e^{\int a(x)dx}$$

Bernoulliova rovnice

$$y' + a(x)y = b(x)y^n$$

Pomocí obyčejné diferenciální rovnice nebo soustavy rovnic popisujeme děje, které se mění v čase.

$$\frac{\mathrm{d}F(t)}{\mathrm{d}t}\neq 0$$

Pomocí obyčejné diferenciální rovnice nebo soustavy rovnic popisujeme děje, které se mění v čase.

 $\frac{\mathrm{d}F(t)}{\mathrm{d}t}\neq 0$

Matematický software

- Využít matematických funkcí softwaru pro řešení problémů z oblasti matematiky a numerické matematiky.
- Funkce softwaru nezávislé na verzi.

Pomocí obyčejné diferenciální rovnice nebo soustavy rovnic popisujeme děje, které se mění v čase.

 $\frac{\mathrm{d}F(t)}{\mathrm{d}t}\neq 0$

Matematický software

- Využít matematických funkcí softwaru pro řešení problémů z oblasti matematiky a numerické matematiky.
- Funkce softwaru nezávislé na verzi.

Počítačové zpracování signálu

Využití transformací pro analýzu jednoduchých signálů, jejich korelací apod.

Pomocí obyčejné diferenciální rovnice nebo soustavy rovnic popisujeme děje, které se mění v čase.

 $\frac{\mathrm{d}F(t)}{\mathrm{d}t}\neq 0$

Matematický software

- Využít matematických funkcí softwaru pro řešení problémů z oblasti matematiky a numerické matematiky.
- Funkce softwaru nezávislé na verzi.

Počítačové zpracování signálu

Využití transformací pro analýzu jednoduchých signálů, jejich korelací apod.

Úvod do strojového učení

Praktická analýza dat pomocí existujících frameworků. jako jsou tensorFlow, Scikit-learn, Keras apod.

Příklady

Fyzikální soustavy (pohybová rovnice)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\omega x - \beta \frac{\mathrm{d}x}{\mathrm{d}t} - F_0 \sin(\Omega t)$$

Biologické modely

$$\frac{\mathrm{d}S(t)}{\mathrm{d}t} = -\beta S(t)I(t)$$
$$\frac{\mathrm{d}I(t)}{\mathrm{d}t} = \beta S(t)I(t) - \gamma R(t)$$
$$\frac{\mathrm{d}R(t)}{\mathrm{d}t} = \gamma R(t)$$

• Finanční modely

$$dr(t) = \alpha r(t)dt + \beta r(t)dW(t)$$

Numerické metody řešení

Numerické metody pro řešení ODE

$$y^{i+1} = F(x^i, y^i, y^{i-1}, ..., y^{i-k})$$

Jednokrokové metody (Euler, Runge-Kutta, Verlet, Leap-Frog)

$$y^{i+1} = y^i + hf(x^i, y^i)$$

 Vícekrokové metody (Prediktor-korektor, Prediktor-modifikátor-korektor, Adams-Bashforth)

$$y^{i+1} = y^{i} + \frac{3}{2}hf(x^{i}, y^{i}) - \frac{1}{2}hf(x^{i-1}, y^{i-1})$$

Více lze o numerických metodách nalézt např. v [3] nebo v [4].

Eulerova metoda

$$y' = x$$
; $y(x_0) = 2, x_0 = 0$

Analytické řešení rovnice je

$$y(t) = \frac{x^2}{2} + C$$
, $y(0) = \frac{0}{2} + C \rightarrow C = 2$

Místo derivace budeme využívat diferenci

$$\frac{\mathrm{d}}{\mathrm{d}t} \Rightarrow \frac{\Delta}{\Delta t}$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = x \Rightarrow \frac{\Delta y}{\Delta x} = x$$

• Dle vztahu $\Delta y = y(x + \Delta x) - y(x)$ přepíšeme rovnici do tvaru jednokrokové metody a upravíme

$$\Delta y = x\Delta x$$
$$y(x + \Delta x) - y(x) = x\Delta x$$
$$y(x + \Delta x) = y(x) + x\Delta x$$

Eulerova metoda

$$y' = x$$
; $y(x_0) = 2, x_0 = 0$

Obecné schéma jednokrokové iterační metody

$$y^{i+1} = y^i + hf(x^i, y^i)$$

• Úprava naší rovnice do iterační podoby

$$y(x + \Delta x) = y(x) + x\Delta x$$
$$y^{i+1} = y^{i} + hx^{i}; \quad y^{0} = 2$$

Přesnost odhadu numerické metody

- Odhad - nesouhlasí s přesným řešením -.
- Chyba metody
 - Krok h je příliš velký.
 - Jednokroková metoda odhaduje $y^{i+1} = F(y^i)$ pouze.
- Zaokrouhlovací chyba $h \to 0$.

Řešení rovnic

Vyřešte rovnici

$$y' = x$$
; $y(x_0) = 2, x_0 = 0$

pomocí

- symbolické matematiky,
- vybrané numerické metody (jednokrokové),
- vybrané vestavěné funkce softwaru (např. integrate).

Porovnejte jednotlivá řešení z hlediska implementace, rychlosti a přesnosti řešení.

Řešení Verhulstova populačního modelu

Vyřešte následující diferenciální rovnici pomocí symbolické a numerické matematiky.

$$\frac{\mathrm{d}N(t)}{\mathrm{d}t} = rN(t)\left(1 - \frac{N(t)}{K}\right)$$

kde r=2 a K=50 jsou konstanty. Uvažujte počáteční podmínku N(0)=1

Řešení Verhulstova populačního modelu

<u>Řešení Verhulstova populačního modelu</u>

• Verhulstův model růstu populace (1838)

Řešení Verhulstova populačního modelu

- Verhulstův model růstu populace (1838)
- r Specifická míra růstu populace.

Řešení Verhulstova populačního modelu

- Verhulstův model růstu populace (1838)
- r Specifická míra růstu populace.
- *K* Kapacita prostředí. Horní hranice populace.

Řešení soustavy rovnic - nucené kmitání

Vyřešte následující soustavu diferenciální rovnici pomocí symbolické a numerické matematiky.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = v$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\omega x - \beta \frac{\mathrm{d}x}{\mathrm{d}t} - F_0 \sin(\Omega t)$$

kde $\omega = 1$, $\beta = 0.05$, $F_0 = 2.0$ a $\Omega = 0.63$.

Uvažujte počáteční podmínky jsou x=3.0, v=0.0.

Řešení soustavy rovnic - nucené kmitání

$$\begin{aligned} \frac{\mathrm{d}x}{\mathrm{d}t} &= v \\ \frac{\mathrm{d}x}{\mathrm{d}t} &= -\omega x - \beta \frac{\mathrm{d}x}{\mathrm{d}t} - F_0 \sin(\Omega t) \end{aligned}$$

Postupně zkuste měnit parametry $\omega=1$, β , F_0 a Ω a porovnejte jejich vliv na stabilitu řešení.

Vizualizace řešení - vektorové pole

Zobrazte jednotlivá řešení následujících rovnic pomocí vektorového pole.

$$y' = x + y$$
$$y' = -\frac{x}{y}$$
$$y' = \frac{y^2}{x}$$

- Zvolte řešení (x, y) v rozsahu (-5, 5).
- Pro řešení rovnic zvolte numerickou nebo symbolickou matematiku.
- Vyznačte řešení, které vyhovuje Vámi vybraným počátečním podmínkám.

Vizualizace řešení - vektorové pole

Zobrazte jednotlivá řešení následujících rovnic pomocí vektorového pole.

Stiff rovnice a jejich soustavy

- 1952 Klasické numerické metody selhávají při popisu určitých chemických reakcí. Rychle reagující komponenta dosáhla rovnováhy daleko dříve než zbytek systému, který se mění velice pomalu.
- 1963 Důvodem selhání řešení je špatná stabilita klasických metod pro tyto typy úloh.
- Neexistuje žádná ucelená definice stiff systému. Obecně jde o systém, kde se řešení mění velice pomalu, ale v okolí, kde nás řešení zajímá dochází k velice rychlému ustavení rovnováhy.
- Detekce "tuhosti" systému pomocí vlastních čísel Jacobiho matice

Stiff rovnice a jejich soustavy

Definice tuhosti soustavy

Soustava obyčejných diferenciálních rovnic je tuhá, jestliže všechny vlastní čísla λ_j matice J mají zápornou reálnou část a koeficient tuhosti S je velký. Matice J je Jakobián soustavy ODR. Po seřazení vlastních čísel, tak aby platilo

$$|R_e(\lambda_1)| \le |R_e(\lambda_2)| \le \dots \le |R_e(\lambda_n)|$$

dostaneme $\lambda_{min}=\lambda_1$ a $\lambda_{max}=\lambda_n.$ Koeficient tuhosti je poté dán vztahem

$$S = \frac{|R_e(\lambda_{max})|}{|R_e(\lambda_{min})|}$$

Stiff rovnice a jejich soustavy

Jakobián soustavy ODR

Mějme soustavu n ODR definovaných jako

$$y'_{j} = f_{j}(y_{1}, y_{2}, ..., y_{n}, x_{1}, x_{2}, ..., x_{n}); \quad j = 1, 2, ..., n; \quad y = y(x)$$

Jakobián soustavy rovnice je poté definován jako matice parciálních derivací

$$J = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \cdots & \cdots & \cdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}$$

Stiff rovnice a jejich soustavy - výpočet tuhosti soustavy

Mějme soustavu ODR prvního řádu

$$y' = -10y + z$$
$$z' = y - 10z$$

Jakobiho matice J této soustavy vypadá následovně

$$J = \begin{pmatrix} \frac{\partial}{\partial y}(-10y+z) & \frac{\partial}{\partial z}(-10y+z) \\ \frac{\partial}{\partial y}(y-10z) & \frac{\partial}{\partial z}(y-10z) \end{pmatrix} = \begin{pmatrix} -10 & 1 \\ 1 & -10 \end{pmatrix}$$

Vyřešením rovnice $\mathbf{J} \cdot \mathbf{x} = \lambda \cdot \mathbf{x}$ dostaneme vlastní čísla Jakobiho matice J.

Stiff rovnice a jejich soustavy - výpočet tuhosti soustavy

Vlastní čísla matice J najdeme pomocí v7po4tu determinantu rovnice

$$\det(\mathbf{J} - \lambda \cdot \mathbf{E}) = \det \begin{bmatrix} \begin{pmatrix} -10 & 1 \\ 1 & -10 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix} =$$

$$= \det \begin{bmatrix} \begin{pmatrix} -10 - \lambda & 1 \\ 1 & -10 - \lambda \end{pmatrix} \end{bmatrix} =$$

$$= \lambda^2 + 20\lambda + 99$$

Vyřešením této kvadratické rovnice dostaneme $\lambda_1=\lambda_{min}=-9$, $\lambda_2=\lambda_{max}=-11$. Koeficient tuhosti nabývá hodnoty

$$S = rac{|R_e(\lambda_{max})|}{|R_e(\lambda_{min})|} = rac{11}{9} pprox 1.2$$

Ačkoli nabývají obě vlastní čísla záporných hodnot, tak je koeficient tuhosti malý a tato soustava není klasifikována jako tuhá.

Stiff rovnice a jejich soustavy - výpočet tuhosti soustavy

Soustavu

$$y' = -10y + z$$
$$z' = y - 10z$$

modifikuje následovně

$$y' = -100y - 0.01z$$

 $z' = y - 0.0001z$

a spočítáme koeficient tuhosti stejným způsobem

$$S = \frac{99.999}{0.0011} = \approx 9 \cdot 10^4$$

Tato soustava je charakterizována velikou tuhostí a je potřeba zvolit adekvátní metodu nebo (v některých případech dostačující) adekvátně malý integrační krok.

Stiff rovnice a jejich soustavy - numerické metody

Stiff soustavy vyžadují modifikace stávajících numerických metod, většinou do tvaru implicitních schémat. Mezi používané metody patří

- Implicitní a semiimplicitní Eulerova metoda,
- Rosenbrockovy metody (semiimplicitní tvar metod Rungeho-Kutty),
- Bulirsch-Stoerovy metody nebo tzv GBS metody,
- vícekrokové Gearovy metody.

Stiff rovnice a jejich soustavy - Implicitní Eulerova metoda

Mějme funkci f(x,y), kde y=y(x), definovanou na intervalu $\langle a,b\rangle$, který ekvidistantně rozdělíme na subintervaly s délkou h. Poté bude vztah pro explicitní a implicitní Eulerovu metodu vypadat následovně.

Explicitní a implicitní Eulerova metoda

Taylorův rozvoj pro funkci f(x + h, y(x + h))

$$f(x+h,y(x+h)) = f(x,y(x)) + f'(x,y(x))h + ... + O(h^2)$$

Explicitní vyjádření Eulerovy metody:

$$f'(x,y(x)) = \frac{f(x+h,y(x+h)) - f(x,y(x))}{h} + O(h^2)$$

Implicitní vyjádření Eulerovy metody:

$$f'(x+h,y(x+h)) = \frac{f(x+h,y(x+h)) - f(x,y(x))}{h} + O(h^2)$$

Stiff rovnice a jejich soustavy - Implicitní Eulerova metoda

$$f'(x,y(x)) = \frac{f(x+h,y(x+h)) - f(x,y(x))}{h} + O(h^2)$$
$$f'(x+h,y(x+h)) = \frac{f(x+h,y(x+h)) - f(x,y(x))}{h} + O(h^2)$$

Stiff rovnice a jejich soustavy - Cvičení

U následující rovnice nejdříve odvoď te a poté aplikujte implicitní i explicitní Eulerovu metodu. Postupně změňte krok h a sledujte přesnost a stabilitu obou metod, např. pomocí globální chyby. Počáteční podmínka je $y(0) = y_0 = 0$.

$$y'=-100y+100$$

U následující soustavy rovnic nejdříve vypočítejte její koeficient tuhosti a poté pomocí implicitní a explicitní Eulerovy metody soustavu vyřešte. Počáteční podmínky jsou $y(0) = y_0 = 0$ a $z(0) = z_0 = 0$.

$$y' = 998y + 1998z$$

 $z' = -999y - 1999z$

Literatura I

Jura Charvát Bruno Budínský. Matematika II.

Vydavatelství ČVUT, 2002.

Karel Rektorys a kol. *Přehled užité matematiky II.* SNTL, 1988.

Miroslav Vicher.

Numerická matematika.

Ediční středisko PF UJEP, 2003.

William H. Press; Saul A. Teukolsky; William T. Vetterling; Brian P. Flannery.

Numerical Recipes in C - The art of scientific computing. Cambridge university press, 2002.

Mathworks: makers of matlab and simulink.

www.mathworks.com/help/.

Online [2017-20-12].

Literatura II

Adrian B. Biran.

What should every engineer know about Matlab and Simulink. CRC Press, 2010.