

Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: Cálculo 2 Código: CM312 Semestre: Semestre 2024/2

Lista 7

- 1. Determine a derivada direcional de f no ponto dado e na direção indicada pelo ângulo θ .
 - (a) $f(x,y) = x^2y^3 + 2x^4y$, (1,-2), $\theta = \pi/3$
- (b) $f(x,y) = \text{sen}(x+2y), (4,-2), \theta = 3\pi/4$
- (c) $f(x,y) = xe^{-2y}$, (5,0), $\theta = \pi/2$
- (d) $f(x,y) = (x^2 y)^3$, (3,1), $\theta = 3\pi/4$

- (e) $f(x,y) = y^x$, (1,2), $\theta = \pi/2$
- **2.** (i) Determine o gradiente de f.
 - (ii) Calcule o gradiente no ponto P.
 - (iii) Determine a taxa de variação de f em P na direção do vetor \mathbf{u} .
- (a) $f(x,y) = x^3 4x^2y + y^2$, P(0,-1), $\mathbf{u} = \langle \frac{3}{5}, \frac{4}{5} \rangle$ (b) $f(x,y) = e^x \operatorname{sen} y$, $P(1,\pi/4)$, $\mathbf{u} = \langle \frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}} \rangle$ (c) $f(x,y,z) = xy^2z^3$, P(1,-2,1), $\mathbf{u} = \langle \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}} \rangle$ (d) $f(x,y,z) = xy + yz^2 + xz^3$, P(2,0,3), $\mathbf{u} = \langle -\frac{2}{3}, -\frac{1}{3} \rangle$
- 3. Determine a derivada direcional da função no ponto dado na direção do vetor v.
 - (a) f(x,y) = x/y, (6,-2), $\mathbf{v} = \langle -1, 3 \rangle$

(b) $f(x,y) = \sqrt{x-y}$, (5,1), $\mathbf{v} = \langle 12, 5 \rangle$

(c) $a(x,y) = xe^{xy}$, (-3,0), $\mathbf{v} = 2\mathbf{i} + 3\mathbf{i}$

- (d) $q(x, y) = e^x \cos y$, $(1, \pi/6)$, $\mathbf{v} = \mathbf{i} \mathbf{j}$
- (e) $f(x, y, z) = \sqrt{xyz}$, (2, 4, 2), $\mathbf{v} = \langle 4, 2, -4 \rangle$
- (f) $g(x, y, z) = xe^{yz} + xye^z$, (-2, 1, 1), $\mathbf{v} = \mathbf{i} 2\mathbf{j} + 3\mathbf{k}$
- (g) $g(x, y, z) = x \arctan(y/z)$, (1, 2, -2), $\mathbf{v} = \mathbf{i} + \mathbf{j} \mathbf{k}$ (h) $g(x, y, z) = z^3 x^2 y$, (1, 6, 2), $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j} + 12\mathbf{k}$
- 4. Determine a taxa de variação máxima de f no ponto dado e a direção em que isso ocorre.

 - (a) $f(x,y) = \sqrt{x^2 + 2y}$, (4, 10), (b) $f(x,y) = \cos(3x + 2y)$, $(\pi/6, -\pi/8)$

 - (c) $f(x,y) = xe^{-y} + 3y$, (1,0) (d) $f(x,y) = \ln(x^2 + y^2)$, (1,2)

 - (e) f(x, y, z) = x + y/z, (4, 3, -1) (f) $f(x, y, z) = \frac{x}{y} + \frac{y}{z}$, (4, 2, 1)
- 5. A temperatura T em uma bola de metal é inversamente proporcional à distância do centro da bola, que tomamos como a origem. A temperatura no ponto (1, 2, 2) é de 120.
 - (a) Determine a taxa de variação de T em (1,2,2) em direção ao ponto (2,1,3)
 - (b) Mostre que em qualquer ponto da bola a direção de maior crescimento na temperatura é dada por um vetor que aponta para a origem.
- **6.** Suponha que em uma certa região do espaço o potencial elétrico V seja dado por $V(x,y,z) = 5x^2 3xy + xyz$.
 - (a) Determine a taxa de variação do potencial em P = (3, 4, 5) na direção do vetor $\mathbf{v} = \mathbf{i} + \mathbf{j} \mathbf{k}$.
 - (b) Em que direção V varia mais rapidamente em P?
 - (c) Qual a taxa máxima de variação em P?
- 7. Seja f uma função de duas variáveis que tenha derivadas parciais contínuas e considere os pontos A = (1,3), B=(3,3), C=(1,7) e D=(6,15). A derivada direcional em A na direção do vetor AB é 3, e a derivada direcional em A na direção \vec{AC} é 26. Determine a derivada direcional de f em A na direção do vetor \vec{AD} .

8. Determine as equações (i) do plano tangente e (ii) da reta normal para a superfície dada no ponto especificado.

(a)
$$xy + yz + zx = 3$$
, $(1, 1, 1)$

(b)
$$xyz = 6$$
, $(1, 2, 3)$

(c)
$$x^2 + y^2 - z^2 - 2xy + 4xz = 4$$
, $(1, 0, 1)$

(d)
$$x^2 - 2y^2 - 3z^2 + xyz = 4$$
, $(3, -2, -1)$

(e)
$$xe^{yz} = 1$$
, $(1, 0, 5)$

(f)
$$4x^2 + y^2 + z^2 = 24$$
, $(2, 2, 2)$

(g)
$$x^2 - 2y^2 + z^2 = 3$$
, $(-1, 1, -2)$

- 9. Se f(x,y)=xy, encontre o vetore gradiente $\nabla f(3,2)$ e use-o para encontrar a reta tangente à curva de nível f(x,y) = 6 no ponto (3,2). Esboce a curva de nível, a reta tangente e o vetor gradiente.
- 10. Determine as equações paramétricas da reta tangente à curva formada pela interseção do paraboloide $z=x^2+y^2$ com o elipsoide $4x^2 + y^2 + z^2 = 9$ no ponto (-1, 1, 2).
- 11. (a) Mostre que a função $f(x,y) = \sqrt[3]{xy}$ é contínua e suas derivadas parciais f_x e f_y existem na origem, mas as derivadas direcionais em todas as outras direções não existem.
 - (b) Use o computador para traçar o gráfico de f perto da origem e comente como ele confirma a parte (a).

Respostas:

- 1. (a) $7\sqrt{3} 16$
 - (b) $\frac{\sqrt{2}}{2}$
 - (c) -10
 - (d) $-672\sqrt{2}$
 - (e) 1
- **2.** (a) (i) $(3x^2 8xy)\mathbf{i} + (2y 4x^2)\mathbf{j}$ (ii) $-2\mathbf{j}$ (iii) $-\frac{8}{5}$
 - (b) (i) $e^x \sin y \mathbf{i} + e^x \cos y \mathbf{j}$ (ii) $\frac{\sqrt{2}}{2} e(\mathbf{i} + \mathbf{j})$ (iii) $\frac{1}{\sqrt{10}} e^x \sin y \mathbf{j}$
 - (c) (i) $\langle y^2z^3, 2xyz^3, 3xy^2z^2 \rangle$, $\langle 4, -4, 12 \rangle$, (iii) $\frac{20}{\sqrt{3}}$
 - (d) (i) $\langle y + z^3, x + z^2, 2yz + 3xz^2 \rangle$, (ii) $\langle 27, 11, 54 \rangle$, (iii) $\frac{43}{2}$
- **3.** (a) $-\frac{2\sqrt{10}}{5}$
 - (b) $\frac{7}{52}$
 - (c) $\frac{29}{\sqrt{13}}$
 - (d) $\frac{1+\sqrt{3}}{2\sqrt{2}}e$
- **4.** (a) $\frac{\sqrt{17}}{6}$, $\langle 4, 1 \rangle$
 - (b) $\sqrt{\frac{13}{2}}$, $\langle -3, -2 \rangle$
 - (c) $\sqrt{5}$, $\langle 1, 2 \rangle$
- **5.** (a) $\frac{40}{3\sqrt{3}}$
 - (b)
- **6.** (a) $32\sqrt{3}$
 - (b) $\langle 38, 6, 12 \rangle$
 - (c) $2\sqrt{406}$
- 8.

(iii)
$$\frac{43}{3}$$

- (f) $-\frac{e\sqrt{14}}{7}$
- (g) $-\frac{\pi}{4\sqrt{3}}$
- (h) 8

(e) $\frac{1}{6}$

- (d) $\frac{2\sqrt{5}}{5}$, $\langle 1, 2 \rangle$
- (e) $\sqrt{11}$, $\langle 1, -1, -3 \rangle$
- (f) $\frac{\sqrt{17}}{2}$, $\langle 1, 0, -4 \rangle$

(a) (i) x + y + z = 3 (ii) x = y = z

(b) (i) 6x + 3y + 2z = 18 (ii) $\frac{1}{6}(x - 1) = \frac{1}{3}(y - 2) = (e)$ (i) x + 5y = 1 (ii) $x - 1 = \frac{y}{5}$, (ii) z = 5 (f) (i) 4x + y + z - 12 (ii) x - 2 - z - 2

(c) (i) 3x - y + z = 4 (ii) $\frac{x-1}{3} = -y = z - 1$

(d) (i) 8x + 5y = 14, (ii) $\frac{x-3}{8} = \frac{y+2}{5}$ (ii) z = -1

(f) (i) 4x + y + z = 12, (ii) $\frac{x-2}{4} = y - 2 = z - 2$

(g) (i) x + 2y + 2z + 3 = 0, (ii) $x + 1 = \frac{y-1}{2} = \frac{z+2}{2}$

9. $\langle 3, 2 \rangle$, 2x + 3y = 12

10. x = -1 - 10t, y = 1 - 16t, z = 2 - 12t

11. (a)

(b)