A More General Learning Model: Remove Realizability Assumption (Agnostic PAC Learning)

Realizability Assumption: there exists $h^* \in \mathcal{H}$ such that $L_{\mathcal{D},f}(h^*)=0$

Informally: the label is fully determined by the instance x

 \Rightarrow Too strong in many applications!

Relaxation: \mathcal{D} is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ $\Rightarrow \mathcal{D}$ is the joint distribution over domain points and labels.

For example, two components of \mathcal{D} :

- \mathcal{D}_{x} : (marginal) distribution over domain points
- $\mathcal{D}((x,y)|x)$: conditional distribution over labels for each domain point

Given x, label y is obtained according to a conditional probability

The Empirical and True Error

With \mathcal{D} that is a probability distribution over $\mathcal{X} \times \mathcal{Y}$ the *true error* (or risk) is:

$$L_{\mathcal{D}}(h) \stackrel{def}{=} \mathbb{P}_{(x,y)\sim\mathcal{D}}[h(x) \neq y]$$

As before \mathcal{D} is not known to the learner; the learner only knows the training data \mathcal{S}

Empirical risk: as before, that is

$$L_{\mathcal{S}}(h) \stackrel{\text{def}}{=} \frac{|\{i, 0 \leq i \leq m : h(x_i) \neq y_i\}|}{m}$$

Note: $L_S(h) =$ probability that for a pair (x_i, y_i) taken uniformly at random from S the event " $h(x_i) \neq y_i$ " holds.

An Optimal Predictor

Learner's goal: find $h: \mathcal{X} \to \mathcal{Y}$ minimizing $L_{\mathcal{D}}(h)$

Is there a best predictor?

Given a probability distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$, the best predictor is the **Bayes Optimal Predictor**

$$f_{\mathcal{D}}(x) = \begin{cases} 1 & \text{if } \mathbb{P}[y=1|x] \ge 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Proposition

For any classifier $g: \mathcal{X} \to \{0,1\}$, it holds $L_{\mathcal{D}}(f_{\mathcal{D}}) \leq L_{\mathcal{D}}(g)$.

PROOF: Exercize

Can we use such predictor? -> We don't know P(4:11x), >> We con't

Agnostic PAC Learnability

Consider only predictors from a hypothesis class \mathcal{H} .

We are going to be ok with not finding the best predictor, but not being too far off.

Definition

A hypothesis class \mathcal{H} is agnostic PAC learnable if there exist a function $m_{\mathcal{H}}$: $(0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generated by \mathcal{D} the algorithm returns a hypothesis h such that, with probability $\geq 1-\delta$ (over the choice of the m training examples):

$$L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \varepsilon.$$

Note: this is a generalization of the previous learning model.

A More General Learning Model: Beyond Binary Classification

Binary classification: $\mathcal{Y} = \{0, 1\}$

Other learning problems:

- multiclass classification: classification with > 2 labels
- regression: $\mathcal{Y} = \mathbb{R}$

Multiclass classification: same as before!

Regression

o Vector with p components

Domain set: \mathcal{X} is usually \mathbb{R}^p for some p.

Target set: $\underline{\mathcal{Y}}$ is \mathbb{R}

Training data: (as before) $S = ((x_1, y_1), \dots, (x_m, y_m))$

Learner's output: (as before) $h: \mathcal{X} \to \mathcal{Y}$

Loss: the previous one does not make much sense...

(Generalized) Loss Functions

Definition

Given any hypotheses set $\mathcal H$ and some domain Z, a loss function is any function $\ell:\mathcal H\times Z\to\mathbb R_+$

Risk function = expected loss of a hypothesis $h \in \mathcal{H}$ with respect to \mathcal{D} over Z:

$$L_{\mathcal{D}}(h) \stackrel{\text{def}}{=} \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$$

Empirical risk = expected loss over a given sample $S = (z_1, \dots, z_m) \in Z^m$:

$$L_{S}(h) \stackrel{def}{=} \frac{1}{m} \sum_{i=1}^{m} \ell(h, z_{i})$$

Some Common Loss Functions

0-1 loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{0-1}(h,(x,y)) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } h(x) = y \\ 1 & \text{if } h(x) \neq y \end{cases}$$

Commonly used in binary or multiclass classification.

Squared loss:
$$Z = \mathcal{X} \times \mathcal{Y}$$

$$\ell_{sq}(h,(x,y)) \stackrel{def}{=} (h(x) - y)^2$$

Commonly used in regression.

Note: in general, the loss function may depend on the application! But computational considerations play a role...

How to Choose the Loss Function?

Es of donification of fineuprints

Two types of errors: Palse except and Palse reject Predicted +1 0 (Poline ip it's worse than a blue -1 1 0 poline reject (Poline reject) begands on the introduction 24

Agnostic PAC Learnability for General Loss Functions

Definition

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $\ell: \mathcal{H} \times Z \to \mathbb{R}_+$ if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \varepsilon \in (0,1)$, for every distribution \mathcal{D} over Z, when running the learning algorithm on $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ i.i.d. examples generated by \mathcal{D} the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the m training examples):

$$L_{\mathcal{D}}(h) \leq \min_{h' \in \mathcal{H}} L_{\mathcal{D}}(h') + \varepsilon$$

where
$$L_{\mathcal{D}}(h) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(h, z)]$$

Machine Learning

Linear Models

Fabio Vandin

October 16th, 2023

Linear Predictors and Affine Functions

Consider
$$\mathcal{X} = \mathbb{R}^d$$

"Linear" (affine) functions:

$$L_d = \{h_{\mathbf{w},b} : \mathbf{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$$

where

$$h_{(\mathbf{w},b)}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \left(\sum_{i=1}^{d} w_i x_i\right) + b$$
b vector of features

Note:

- each member of L_d is a function $\mathbf{x} \to \langle \mathbf{w}, \mathbf{x} \rangle + b$
- b: bias

Linear Models

Hypothesis class
$$\mathcal{H}$$
: $\phi \circ L_d$, where $\phi : \mathbb{R} \to \mathcal{Y}$ entry entry \mathcal{H}

• $h \in \mathcal{H}$ is $h : \mathbb{R}^d \to \mathcal{Y}$

 ϕ depends on the learning problem

Example

- binary classification, $\mathcal{Y} = \{-1, 1\} \Rightarrow \phi(z) = \operatorname{sign}(z)$
- regression, $\mathcal{Y} = \mathbb{R} \Rightarrow \phi(z) = z$

Equivalent Notation

Given $\mathbf{x} \in \mathcal{X}$, $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{b} \in \mathbb{R}$, define:

$$ullet$$
 $\mathbf{w}'=(b,w_1,w_2,\ldots,w_d)\in\mathbb{R}^{d+1}$ o oll parameters

•
$$\mathbf{x}' = (1, x_1, x_2, \dots, x_d) \in \mathbb{R}^{d+1}$$

Then:

$$h_{\mathbf{w},b}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + b = \langle \mathbf{w}', \mathbf{x}' \rangle$$
 (1)

 \Rightarrow we will consider bias term as part of w and assume $\mathbf{x} = (1, x_1, x_2, \dots, x_d)$ when needed, with $h_{\mathbf{w}}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle$

Linear Classification

$$\mathcal{X} = \mathbb{R}^d$$
, $\mathcal{Y} = \{-1, 1\}$, 0-1 loss

Hypothesis class = halfspaces

$$HS_d = \operatorname{sign} \circ L_d = \{\mathbf{x} \to \operatorname{sign}(h_{\mathbf{w},b}(\mathbf{x})) : h_{\mathbf{w},b} \in L_d\}$$

Example: $\mathcal{X} = \mathbb{R}^2$

