27 de octubre de 2022. Parcial de Análisis Matemático III. Cursos 5 A y B.

Para aprobar, se requiere resolver correcta y justificadamente 3 Ejercicios.

1. Sea $f(z) = \frac{Log(1-z)}{z}$ a) Hallar los puntos singulares de f en el plano complejo ampliado y clasificarlos.

b)) Calcular $\int_{C^+} f(z)(2z+3+\frac{1}{z})dz;$ $C^+: \{|z|=\frac{\pi}{4}\}$

- 2. Sean $C_r : \{|z+1| = r\}, \text{ con } r > 0.$
 - a) ¿Para qué valores de r > 0 la circunferencia C_r se transforma, mediante la inversión $f(z) = \frac{1}{z}$, en otra circunferencia?
 - b) Si r=2, halle una transformación homográfica w=g(z) que transforme la circunferencia C_r en la recta Re(w)+Im(w)=0
- 3. Sea f(z) entera de forma tal que Re(f) = 2x(3-y) y f(1+i) = 1+i, calcular $\int_C f(z)dz$ siendo C el arco de parábola $y = x^2 + 1$ desde (0,1) hata (1,2).
- 4. Sea la función $f(z) = \frac{1 \cos(1/z)}{z}$. Hallar el desarrollo en Serie de Laurent válido en un entorno de z = 0. ¿Cuál es el dominio de convergencia? ¿Qué tipo de singularidad es z = 0 y cuánto vale el residuo en ese punto?
- 5. Sea $I(\alpha) = \int_{-\infty}^{\infty} \frac{x^{\alpha}}{1+x^2} dx$, α real. Hallar para qué valores de α resulta $I(\alpha)$ convergente. Calcular, entre I(0) e I(1), la que resulte convergente.