Group Actions 1

eg GC space of right cosets of H: g. (Hx) = Hxg. . Q: What is the Kernel?

det Two actions of G on S = S' one equivalent if there is a bijection $x: S \rightarrow S'$ (i.e. $\alpha(gx) = g\alpha(x)$).

So if T, T' or the associated homomorphisms of the actions,

then $\alpha T(g) = T'(g) \propto \forall g \in G.$

So $S \xrightarrow{T(S)} S$ compt ω . $S' \xrightarrow{T'(S)} S'$

eg If S = G and S' = GLeft-milt right-milt

Then $d: S \longrightarrow S'$ is an equivalence of actions: $\chi \longmapsto \chi^{-1}$

 $\alpha(g.x) = \alpha^{-1}g^{-1} = g \cdot \alpha(x)$

Group Agions 2

GCS. take $x,y \in S$. We write $x \sim_{G} y + 0$ weam y = gx for some $g \in G$.

The G-orbit of x, G.x = {gx | g ∈ G}, is an eq. class under ~..

Gacts transitively if twee is one or bit.

If let GCG by conjugation: g.x = gxg'

or bits are called "conjugatey classes"

Theorem Let GCS transitively. For x ∈ S, let

H = Stab x = [geG|gx=x]. Then GCS is

equivalent to GCG/H by left multiplication.

Notes: Stab $x \le G$. Stab gx = g-Stab $x \cdot g^{-1}$ e.g. Stab x under $G \in G$ by conjugation is C(x). Q: What is $\bigcap_{x \in S} Stab x = 7$. A: Kernel of action.

proof Fix $x \in S$. Since g acts trans, Gx = S. Let $\overline{g} = \{a \in G \mid ax = gx\} = \{a \in G \mid g^{-1}ax = x\}$ $= \{a \in G \mid g^{-1}a \in Stabx\}$ $= g \cdot Stabx$

So
$$G = \bigcup_{g \in G} \overline{g} = \bigcup_{g \in G} g \cdot Stabx$$
 (**)

We claim $\alpha: \frac{G}{\operatorname{Stab} x} \longrightarrow S$, $g: \operatorname{Stab} x \longrightarrow gx$ is an equivalence of actions.

by (X), α is surjective (by transitivity) It's clearthat α is injective by definition of \bar{g} .

So x is a bijection. Also

 $\alpha\left(g\cdot\overline{g'}\right)=\alpha\left(\overline{gg'}\right)=gg'x=g(g'x)=g\cdot\alpha\left(\overline{g'}\right)$ $\forall f,g'\in G.$

Corollary If finte G acts on S transitively, then $|S| = [G: Stab x] = \frac{|G|}{|Stab x|} \quad \text{for all } x \in S.$ arbit-stabilizerformula

Corollary If Finite G C'S, then $|G:X| = \frac{|G|}{|Stab|X|} \forall X$,

so $|S| = \sum_{\text{orbit O}} \frac{|G|}{|Stab|X_0|} \quad \text{where } X_0 \in O \quad \forall \text{ orbit O}$ $= \sum_{\text{orbit O}} [G: Stab|X_0]$

proof \forall or bit \circ , GCO transitively, and $S = \coprod_{o \in bit} \circ$.

$$|G| = |Z(G)| + \sum_{i} [G:C(y_i)]$$
 y_i
 y_i

Ilm If G = 1 and IG is a prime power, Then Z(G) = 1.

$$|Z(G)| = |G| - \sum_{y_i} [G:C(y_i)].$$
everything in RHS is div. by P, so $|Z(G)|$ is too.

Burnside's Formula Let finite G act on S. Suppose the G-action has r orbits. Then

$$r = \frac{1}{161} \sum_{g \in G} |Fix_g(S)|$$

where
$$Fix_g(S) = \{x \in S \mid gx = x\}$$
.

$$\bigcap_{g \in G} Fix_g(S) \subseteq S$$

is the set of fixed points of the action-