Exercise 8. Find all the σ -algebras on \mathbb{N} .

Proof. Let \mathscr{A} be a σ -algebra on \mathbb{N} . For all $n \in \mathbb{N}$, let $C_n = \{A \in \mathscr{A} \mid n \in A\}$ and $U_n = \{m \in \mathbb{N} \mid C_m = C_n\}$. The family of sets $\{U_n\}_{n \in \mathbb{N}}$ is a partition of \mathbb{N} .

- for all $n \in \mathbb{N}$, $n \in U_n$ so U_n is nonempty, and $\mathbb{N} \subset \bigcup_{n \in \mathbb{N}} U_n$.
- if $n, m \in \mathbb{N}$ are such that $U = U_n \cap U_m$ is nonempty, then let $p \in U$. Since $p \in U_n$, we have $C_p = C_n$, and since $p \in U_m$, we also have $C_p = C_m$; from which we deduce that $C_n = C_m$. This last equality implies that $U_n = U_m$, so any two sets in $\{U_n\}_{n \in \mathbb{N}}$ are either disjoint or equal.

Let $\mathscr{U} = \{ \bigcup_{n \in A} U_n, A \subset \mathbb{N} \}$. Then \mathscr{U} is a σ -algebra on \mathbb{N} :

• \mathscr{U} is stable under countable unions: let $\{A_n\}_{n\in\mathbb{N}}$ be a countable family of elements of \mathscr{U} . For all n, there exists a subset B_n of \mathbb{N} such that $A_n = \bigcup_{k \in B_n} U_k$. As subsets of the countable set \mathbb{N} , the B_n are countable, so that

$$\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} \bigcup_{k\in B_n} U_k = \bigcup_{k\in B_0\cup B_1\cup \dots} U_k$$

is a countable union of sets U_k , and therefore an element of \mathscr{U} .

- We have $\mathbb{N} = \bigcup_{n \in \mathbb{N}} \{n\} \subset \bigcup_{n \in \mathbb{N}} U_n$, and conversely $\bigcup_{n \in \mathbb{N}} U_n \subset \mathbb{N}$, so $\mathbb{N} \in \mathcal{U}$.
- Let $B \in \mathcal{U}$; there exists a subset A of \mathbb{N} such that $B = \bigcup_{n \in A} U_n$. Suppose that $x \notin B$, then $x \notin U_n$ for all n in A. But since $\{U_n\}_{n \in \mathbb{N}}$ cover \mathbb{N} , we deduce that $x \in \bigcup_{n \notin A} U_n$. And since \mathbb{N} is countable, A^c is countable, and this union ranges over a countable set.

Conversely, let $x \in \bigcup_{n \notin A} U_n$. There exists $n \in A^c$ such that $x \in U_n$. If there exists $m \in A$ such that $x \in U_m$, then $x \in U_m \cap U_n$. The case m = n implies that both $n \in A$ and $n \notin A$, a contradition. And the case $m \neq n$ implies $U_m \cap U_n = \emptyset$ since the U_k are pairwise disjoint; and this contradicts the existence of x. Therefore $x \notin \bigcup_{k \in A} U_k = B$, and $B^c = \bigcup_{x \notin A} U_k \in \mathscr{U}$.

Let $A \in \mathscr{A}$, we have $A = \bigcup_{n \in A} \{n\} \subset \bigcup_{n \in A} U_n \in \mathscr{U}$, from which we deduce that $\mathscr{A} \subset \mathscr{U}$. Conversely, if $x \in \bigcup_{n \in A} U_n$, then there exists $m \in A$ such that $x \in U_m$. Thus $C_x = C_m$ and $x \in A$. Combining both results we conclude that $\mathscr{A} = \mathscr{U}$.