

ML Engineer Program Syllabus

About FourthBrain

FourthBrain educates aspiring Machine Learning engineers on the technical and practical skills required to provide immediate value to an AI product development or R&D team. Our programs emphasize open collaboration and communication, and our unique approach to cohort-based learning is aimed at helping you achieve your personal career goals while giving you the best chance to develop strong, lasting relationships with other ML practitioners on similar journeys.

Your Learning Transformation

By the end of this course, you will be able to contribute to high-performing Al product teams by leveraging real-world data to **build**, **package**, and **deploy** state-of-the-art ML models as containerized web applications in cloud-based production environments.

Capstone Project

Capstone projects are designed to demonstrate your understanding of MLE software development and its implications. This includes understanding the potential business-value of your application and its extensibility, as well as the tools required to build, optimize, package, and deploy your ML models in a production software development environment. Projects are typically developed in groups of two or three; solo projects are possible, especially in situations where external support (i.e., your colleagues or other collaborators are available). Final deliverables will include a final presentation and GitHub repo, which together will allow you to share the details of what you've accomplished with your potential users, collaborators, employers, or the wider open-source ML community. You can see past capstone projects here.

Career Growth

The Machine Learning Engineer program is designed for you to acquire the skills and knowledge required to work on a Machine Learning Engineering team. Whatever your reason for taking the program - to get a new role at a new company, to gain skills for your current job, or just for fun - we will support your career growth by helping you connect to professionals and employers, via guest speaking events and inviting employers to the final project presentation day. Career services assistance is available during the program and after graduation to help ensure that all candidates achieve their career goals.

Program Format

Each week, we will curate content related to the weekly topic for you to review asynchronously. You will come together with your instructors and peers to discuss, contextualize, and practice the concepts for the week.

The Machine Learning Engineer program is divided into four pillars: Data Centric Al, Machine Learning Modeling, Al Applications, and MLOps.

During our first week we kick off the course with a review of important ML software engineering tools. We get our development environment set up and test out that we can build basic ML models.

Our last week is completely focused on Demo Day for your projects!

Weekly Schedule

Week	Live Session Concepts	Coding Exercise(s)	Capstone
Week 1 Getting Started with ML Engineering	 Program Overview Software Development Environment setup 	MLE Basic <u>Tools</u> : • Unix CLI, Git, Conda, Pip, Jupyter • Pandas, Matplotlib, Seaborn, Sci-Kit Learn	 Networking
Week 2 Al Product Development	 Al Product Development Lifecycle & ML Project Scoping Data Centric Al Responsible ML Principles 	 Creating a sentiment analyzer <u>Tools</u>: Hugging Face Transformers Library, Twitter API 	 Ideation Workshop Al Product/ML Project Scoping
Week 3 The Difficulties of Real Data	 Best Practices for High-Quality Data REST APIs Fine-Tuning Pre-Trained Models Building ML POCs and MVPs 	 Collect real data from Twitter and Reddit APIs Fine-Tune a pre-trained transformer for sentiment analysis Develop a data-centric proof of concept Tools: Hugging Face Trainer API, Reddit API 	Peer Review and Teaming

Week 4 Data Engineering	 Data Engineering Workflows Data Wrangling & Exploratory Data Analysis Feature Selection & Engineering Data Leakage Building ETL Pipelines 	 Exploring and wrangling structured data to predict sales with simple ML pipeline Track and manage datasets Build an ETL workflow Tools: Airflow, DVC 	 Project Proposals Project Pitch Day I
Week 5 Big (and Good) Data	 Types of Distributed Computing for ML Data Preparation Big Data Tool Landscape How Good Data Becomes Big Data 	 Build an ML pipeline and perform distributed hyperparameter tuning to predict subscriptions & promotions Tools: Spark, Delta Lake, MLlib 	Exploratory Data Analysis and Data Lineage Documentatio n
Week 6 Supervised ML, AutoML, and Explainability	 Essential Regression & Classification Algorithms Data Imbalance Accuracy Metrics AutoML Libraries Al Explainability 	 Detect data imbalances and predict electronics purchases with explainable ML pipelines Perform AutoML to search for an optimal tree-based pipeline Tools: TPOT, SHAP, Streamlit 	Establish ML Modeling Baseline

Week 7 Deep Learning and Model Version Control	 Neural Network Basics Recurrent Neural Networks (RNNs) Long Short-Term Memory Networks (LSTMs) Generative Adversarial Networks (GANs) ML Model Version Control 	 Build, train, and evaluate a neural network for fuel efficiency prediction from scratch Compare neural network performance based on type Tools: MLflow Tracking 	Initial GitHub Documentatio n
Week 8 Unsupervised, Semi-Supervised, and Self-Supervised Learning	 Dealing with Unstructured Data Clustering Dimensionality Reduction Label propagation/label spreading Co-training algorithms Zero-shot learning 	 Performing Customer Segmentation Predicting product sales using semi-supervised learning Tools: Sk-learn (pca, Kmeans, Silhouette Analysis) 	Data & Model Iterations
Week 9 Computer Vision	 Convolutional Neural Networks (CNNs) Computer Vision Benchmarks Dealing with Images Object Detectors Semantic Segmentation Explainability & Saliency 	 Few-shot dog detection dogs through fine-tuning of a pre-trained single shot multibox detector Tools: TensorFlow Model Garden 	

Week 10 Natural Language Processing	 Natural Language Benchmarks Dealing with Text Tokenization & Word Embeddings Bag of Words, Term Frequency Inverse Document Frequency Using Pre-Trained Word Embeddings Named Entity Recognition 	 Analyze tweets using basic NLP tasks Build hate speech detectors using a naive Bayes classifier and a bidirectional LSTM Tools: Tensorboard Embedding Projector, LIME Text Explainer 	Project Pitch Day II
Week 11 Transformers	 Encoder and Decoder Networks Bidirectional Encoder Representations from Transformers (BERT) General Pre-Trained Transformers (GPT-3) Fine-Tuning of Pre-Trained Transformers 	 Build a transformer model for news article text classification from scratch Fine-tune a pre trained transformer Tools: Hugging Face Models 	Project Deployment Demonstration
Week 12 Deployment and MLOps	 Web Application Frameworks ML Inference (Batch, Streaming, Real-Time, Edge) MLOps Level 0: Manual 	 Deploy a public API stock prediction service <u>Tools</u>: VS Code, FastAPI, AWS 	GitHub Repository Revisions

Week 13 ML Application Infrastructure for Deployment	 Operating Systems and Virtual Machines Containers and Container Orchestration Model Management and Model Registries 	 Build and deploy a containerized stock prediction service Manage model versions with a model registry Tools: Docker, MLflow Model Registry 	1-Page Narrative and Infrastructure Diagramming
Week 14 ML Model Serving and Delivery	 Model Servers, Architecture, and Platforms Continuous Integration and Delivery (CI/CD) 	 Implement stock prediction app within a serverless computing service Deploy stock prediction service Tools: AWS Lambda, API Gateway 	Final Feature Additions
Week 15 Monitoring and Automating ML Workflows and Pipelines	 ML Monitoring & Observability MLOps L1: Pipeline Automation Full-Stack MLOps in the Cloud 	 Build, train, optimize, deploy, and monitor a salary prediction app on AWS <u>Tools</u>: AWS SageMaker, CloudWatch 	Final Capstone Presentation Submission
Week 16 Demo Week!	Storytelling WorkshopCapstone Presentation Practice	• Final Capstone GitHub submission!	Demo Day!

Apply today to the Machine Learning Engineer Program!