DOKUMENTÁCIA [KOKKE] – Študijné materiály		
Autor: Martin Janitor		
Bakalárska práca: RSA s výplňovou schémou OAEP		
Dátum: 05.06.2022		
Verzia: 1.0		
Štruktúra kryptografickej knižnice KOKKE:		
<u>KOKKE</u>		
bnc		
bn.h		
changes.txt		
source.txt		
EXTENSIONS KOKKE		
include		
ext_file.h		
ext_rsa.h		
src		
ext_file.c		
ext_rsa.c		
TESTS		
Makefile		
test_vect.c		
test01.c		
test02.c		

|----- rsa_private_1024

rsa	_public_1024
rsa	_private_2048
rsa	_public_2048
rsa	_private_4096
rsa	public 4096

OPIS KRYPTOGRAFICKEJ KNIŽNICE KOKKE

Link na pôvodnú implementáciu: https://github.com/kokke/tiny-bignum-c

Kryptografická knižnica KOKKE obsahuje algoritmus pre výpočet modulárneho umocnenia s veľkými číslami, ktorý sa využíva v RSA algoritme. Knižnica primárne nedisponuje generovaním RSA kľúčov. Pre realizáciu šifrovania a dešifrovania v rámci RSA algoritmu som implementoval funkcie, ktoré dôkazu načítavať RSA kľúče zo súborov vo špecifickom formáte, ktorý bol opísaný v dokumentácii ku kryptografickej knižnici STUDENT. Pre vhodné aplikovanie RSA algoritmu je nutné vygenerovať RSA kľúče knižnicou STUDENT a následne ich využiť v knižnici KOKKE, ktoré je priamo optimalizovaná pre takýto formát. Implementácia obsahuje aj možnosť využitia výplňovej schémy OAEP v spojení s RSA algoritmom. Implementácia výplňovej schémy OAEP sa nachádza v adresári /OAEP. Implementácia výplňovej schémy OAEP využíva hashovacie funkcie SHA-1, SHA-256 a SHA-512, ktoré sú implementované v adresári /HASH.

```
Formát reprezentujúci BN číslo:

struct bn {

DTYPE array[ BN_ARRAY_SIZE ];
};
```

Typ **DTYPE** je definovaný v súbore bn.h a definuje s akou šírkou slova sa budú vykonávať matematické operácie. Sú dostupné tri typy (1, 2 a 4 bajty). Základnou hodnotou pre **DTYPE** je hodnota 4.

OPIS SÚBOROV

bn.c, bn.h

- Implementácie základných matematických operácii s využitím veľkých čísel.
- Funkcie na konverizu a porovnanie veľkých čísel.

ext_file.c, ext_file.h

- Pridanie funkcií pre prácu so súbormi.
- Načítavanie RSA kľúčov zo súboru.
- Načítavanie a zápis správy do súboru.

ext_rsa.c, ext_rsa.h

- Implementácia funkcií pre šifrovanie a dešifrovanie s využitím algoritmu RSA.
- Využitie implementácie výplňovej schémy OAEP z projektu, ktorý je realizovaný v adresári /OAEP.

changes.txt - Opis zmien v bn.h .

source.txt - Odkaz na pôvodnú implementáciu.

TESTY

test01 Testuje overenie správnosti výpočtu matematickej operácie modulárneho umocnenia m^e mod n.

Načíta 1024-bitové RSA kľúče zo súboru. Zašifruje a dešifruje správu s využitím RSA a výplňovej schémy OAEP + meranie času šifrovania a dešifrovania. Taktiež overí pôvodnú správu s dešifrovanou správou.

test03 Načíta 2048-bitové RSA kľúče zo súboru. Zašifruje a dešifruje správu s využitím RSA a výplňovej schémy OAEP + meranie času šifrovania a dešifrovania. Taktiež overí pôvodnú správu s dešifrovanou správou.

test04 Načíta 4096-bitové RSA kľúče zo súboru. Zašifruje a dešifruje správu s využitím RSA a výplňovej schémy OAEP + meranie času šifrovania a dešifrovania. Taktiež

overí pôvodnú správu s dešifrovanou správou.

test_vect Otestovanie RSA + OAEP s testovacími vektormi dostupných na stránke

[https://www.inf.pucrs.br/~calazans/graduate/TPVLSI_I/RSA-oaep_spec.pdf].

Požadovane RSA kľúče sú načítavane zo súborov.

MAKEFILE

Vopred preddefinované MAKRA (možnosť využitia pri testoch)

- **DPRINT** [Výpis jednotlivých elementov pri generovaní RSA kľúčov, šifrovaní a dešifrovaní. Napríklad: prvočísla p a q, modulus ...]
- **DTEST_VECT** [Pridanie do projektu testovacie vektory, ktoré sú zadané "napevno" a sú priradené pri kompilácií projektu, ak je vopred zadefinované makro TEST_VECT.

Testovacie vektory: https://www.inf.pucrs.br/~calazans/graduate/TPVLSI I/RSA-oaep spec.pdf]

- DMOD_LEN=[NUMBER] [Definuje maximálnu veľkosť statického poľa pre uloženie BN čísla. Napríklad zadefinovaním MAKRA DMOD_LEN=1024, definujeme dĺžku statického poľa 1024 bitov. Maximálne číslo uložené v tejto premennej bude dosahovať hodnotu 2^1024 1.]
- TEST_VECTOR_PRINT [Spojenie MAKIER DTEST_VECT a DPRINT]

Kompilácia testu:

make test[číslo testu] príklad: make test02