ЖОРДАНОВА ФОРМА СОПРОВОЖДАЮЩИХ МАТРИЦ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

И. Н. Нестеров, С. В. Клочков, А. С. Чурсанова

Рассматривается линейное однородное дифференциальное уравнение

$$x^{(n)} = \alpha_1 x^{(n-1)} + \ldots + \alpha_n x,$$

где $\alpha_k \in \mathbb{C}, k=\overline{1,n}$. Данное уравнение обычным способом (см. [1]) сводится к системе линейных дифференциальных уравнений вида

$$\dot{y} = Ay$$
,

где матрица оператора $A:\mathbb{C}^n \to \mathbb{C}^n$ имеет вид

$$\mathcal{A} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_n & \alpha_{n-1} & \alpha_{n-1} & \dots & \alpha_1 \end{pmatrix},$$

а $P(\lambda)=\lambda^n-\alpha_1\lambda^{n-1}-\ldots-\alpha_n, \lambda\in\mathbb{C}$ – характеристический многочлен этой матрицы.

Теорема 1. Пусть $\lambda_1, \ldots, \lambda_m$ — собственные значения матрицы \mathcal{A} кратностей k_1, \ldots, k_m соответственно, где $\sum\limits_{i=1}^m k_i = n$. Тогда эсорданова форма для матрицы \mathcal{A} имеет вид

$$\mathcal{J} = \begin{pmatrix} \mathcal{J}_{1} & 0 & \dots & 0 \\ 0 & \mathcal{J}_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mathcal{J}_{m} \end{pmatrix}, s d e \ \mathcal{J}_{i} = \begin{pmatrix} \lambda_{i} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{i} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda_{i} \end{pmatrix}.$$

 $Mampuua\ nepexoda\ \mathcal{U}\ umeem\ вид$

$$\mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_m)$$
,

где матрицы $U_i \in Matr_{n,k_i}(\mathbb{C}), i = \overline{1,m},$ имеют вид

$$\mathcal{U}_{i} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \lambda_{i} & 1 & \dots & 0 \\ \lambda_{i}^{2} & 2\lambda_{i} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{i}^{n-1} & (n-1)\lambda_{i}^{n-2} & \dots & \prod_{k=1}^{k_{i}-1} (n-k)\lambda_{i}^{n-k_{i}} \end{pmatrix}.$$

Доказательство. Пусть λ_i - собственное значение матрицы \mathcal{A} кратности k_i . Найдем соответствующие ему собственный и присоединенные векторы. Рассмотрим матрицу вида

$$\mathcal{A} - \lambda_i I = \begin{pmatrix} -\lambda_i & 1 & 0 & \dots & 0 \\ 0 & -\lambda_i & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ \alpha_n & \alpha_{n-1} & \alpha_{n-1} & \dots & \alpha_1 - \lambda_i \end{pmatrix},$$

где I — единичная матрица.

Пусть $x_i \in \mathbb{C}^n$ - собственный вектор, отвечающий собственному значению λ_i . Тогда справедливо равенство

$$(\mathcal{A} - \lambda_i I) \, x_i = 0, \tag{1}$$

где $x_i = (x_{i1}, x_{i2}, \dots, x_{in})$. Очевидно, что $x_{i1} \neq 0$ (иначе вектор x_i был бы нулевым). Без ограничения общности можно считать, что $x_{i1} = 1$. Тогда равенство (1) эквивалентно системе уравнений:

$$\begin{cases}
-\lambda_i + x_{i2} = 0, \\
-\lambda_i x_{i2} + x_{i3} = 0, \\
\dots \\
-\lambda_i x_{in-2} + x_{in-1} = 0, \\
\alpha_n + \alpha_{n-1} x_{i2} + \dots + (\alpha_1 - \lambda_i) x_{in} = 0.
\end{cases}$$
(2)

Решив систему (2), получим, что

$$x_i = (1, \lambda_i, \lambda_i^2, \dots, \lambda_i^{n-1}).$$

Пусть $k_i \neq 1$. Найдем присоединенные векторы к вектору x_i .

Пусть $x_{i,j} \in \mathbb{C}^n, 1 \leq j \leq k_i - 1$ - присоединенные векторы, отвечающие собственному значению λ_i . Первый присоединенный вектор $x_{i,1}$ есть решение уравнения

$$(\mathcal{A} - \lambda_i I) \, x_{i,1} = x_i, \tag{3}$$

где $x_{i,1}=(x_{1,1},x_{2,1},\ldots,x_{n,1})$ - подлежащий определению присоединенный вектор, x_i - собственный вектор, отвечающий собственному значению λ_i . Пусть $x_{1,1}=0$. Тогда равенство (3) эквивалентно системе уравнений:

$$\begin{cases} x_{2,1} = 1, \\ -\lambda_i x_{2,1} + x_{3,1} = \lambda_i, \\ \dots \\ -\lambda_i x_{n-2,1} + x_{n-1,1} = \lambda_i^{n-2}, \\ \alpha_{n-1} x_{2,1} + \alpha_{n-2} x_{3,1} \dots + (\alpha_1 - \lambda_i^{n-1}) x_{n,1} = \lambda_i^{n-1}. \end{cases}$$

$$(4)$$

Поскольку $P'(\lambda_i) = 0$, тогда, решив систему (4), получим вектор

$$x_{i,1} = (0, 1, 2\lambda_i, 3\lambda_i^2, \dots, (n-1)\lambda_i^{n-2}),$$

который является присоединенным к собственному вектору x_i . Аналогичным образом устанавливается, что векторы

$$x_{i,p} = \left(\underbrace{0, \dots, 0}_{p}, p!, (p+1)! \lambda_{i}, \dots, \prod_{k=1}^{p} (n-k) \lambda_{i}^{n-p-1}\right),$$

где $1 \leq p \leq k_i - 1$, являются присоединенными к вектору x_i . Таким образом, доказано, что матрица \mathcal{U} составлена из собственных и присоединенных векторов. Поэтому $det(\mathcal{U}) \neq 0$, и, следовательно, матрица \mathcal{U} является матрицей перехода к жордановой форме и имеет вид

$$\mathcal{U} = (\mathcal{U}_1, \mathcal{U}_2, \dots, \mathcal{U}_m)$$
,

где матрицы $U_i \in Matr_{n,k_i}(\mathbb{C}), i=1\dots m$, имеют вид

$$\mathcal{U}_{i} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \lambda_{i} & 1 & \dots & 0 \\ \lambda_{i}^{2} & 2\lambda_{i} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{i}^{n-1} & (n-1)\lambda_{i}^{n-2} & \dots & \prod_{k=1}^{k_{i}-1} (n-k)\lambda_{i}^{n-k_{i}} \end{pmatrix}.$$

Теорема доказана.

Литература

- 1. *Боровских А.В.*, *Перов А.И.* Лекции по обыкновенным дифференциальным уравнениям // Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2004, 540 стр
- 2. *Баскаков А. Г.* Лекции по алгебре // Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2013, 159 стр