平成13年(行ケ)第170号 特許取消決定取消請求事件 平成14年12月12日口頭弁論終結

判 川崎重工業株式会社 告 訴訟代理人弁理士 教 圭一郎 杉 同 Ш 毅 峰太郎 同 瀬 同 内 三喜夫 特許庁長官 被 告 太 \blacksquare 信一郎 川 信 指定代理人 間 宏 粟大大大 憲祥良克 津 同 島 吾三 同 橋野 同 同 井 幸 同 主 文

原告の請求を棄却する。

訴訟費用は原告の負担とする。 2 事実及び理由

当事者の求めた裁判

原告

(1) 特許庁が異議2000-73316号事件について平成13年3月7日に した決定を取り消す。

(2) 訴訟費用は被告の負担とする。

被告

主文と同旨

当事者間に争いのない事実

特許庁における手続の経緯

原告は,発明の名称を「鉄道線路状態検知装置および方法ならびに車体姿勢 制御装置」とする特許第3015725号の特許(平成8年2月7日特許出願、平成11年12月17日設定登録、以下「本件特許」という。)の特許権者である。

本件特許に対し、請求項1ないし5につき、特許異議の申立てがあり、特許 この申立てを、異議2000-73316号事件として審理し、その結果、 平成13年3月7日、「特許第3015725号の請求項1ないし5に係る特許を 取り消す。」との決定をし、平成13年3月26日にその謄本を原告に送達した。 2 特許請求の範囲(以下、各項の発明をまとめて呼ぶときは、「本件発明」と

いう。) 「【請求項1】鉄道車両において台車から空気バネで弾性支持された車体に搭載 へ「ローサベいて 鉄道線路の曲率ρを算出する曲率算出手段

曲率算出手段で得られた曲率の時間微分 d ρ / d t を算出する時間微分算出 手段と

曲率ρおよび時間微分dρ/dtから成る2次元座標が複数の線路状態領域 に予め区分され、曲率算出手段で算出した曲率 ρ および時間微分算出手段で算出した曲率の時間微分 d ρ / d t から成る座標(ρ , d ρ / d t)の位置を調べること によって、現在の走行位置における鉄道線路状態を判別する線路状態判別手段とを 備えたことを特徴とする鉄道線路状態検知装置。(以下「本件発明1」という。)

【請求項2】鉄道車両において台車から空気バネで弾性支持された車体に搭載 されたセンサからの信号に基づいて、鉄道線路の曲率ρを算出する工程と

曲率算出手段で得られた曲率の時間微分 d ρ / d t を算出する工程と

曲率 ρ および時間微分 d ρ / d t から成る 2 次元座標を複数の線路状態領域に予め区分しておいて、算出した曲率 ρ および曲率の時間微分 d ρ / d t から成る座標(ρ , d ρ / d t)の位置を調べることによって、現在の走行位置における鉄道線路状態を判別する工程とを備えたことを特徴とする鉄道線路状態検知方法。 (以下「本件発明2」という。)

【請求項3】 鉄道車両において台車から空気バネで弾性支持された車体に搭載 されたセンサからの信号に基づいて, 鉄道線路の曲率ρを算出する曲率算出手段

曲率算出手段で得られた曲率の時間微分 d ho / d t を算出する時間微分算出手段と、

曲率 ρ および時間微分 d ρ / d t から成る 2 次元座標が複数の線路状態領域に予め区分され、曲率算出手段で算出した曲率 ρ および時間微分算出手段で算出した曲率の時間微分 d ρ / d t から成る座標(ρ , d ρ / d t)の位置を調べることによって、現在の走行位置における鉄道線路状態を判別する線路状態判別手段と、

線路状態判別手段で得られた鉄道線路状態に基づいて、車体の姿勢を制御する姿勢制御手段とを備えたことを特徴とする車体姿勢制御装置。(以下「本件発明3」という。)

【請求項4】 鉄道車両において台車から空気バネで弾性支持された車体に搭載されたセンサからの信号に基づいて、鉄道線路の曲率 ρ を算出する曲率算出手段と、

曲率算出手段で得られた曲率の時間微分 d ρ / d t を算出する時間微分算出手段と、

曲率 ρ および時間微分 d ρ / d t から成る 2 次元座標が複数の線路状態領域に予め区分され、曲率算出手段で算出した曲率 ρ および時間微分算出手段で算出した曲率の時間微分 d ρ / d t から成る座標(ρ , d ρ / d t)の位置を調べることによって、現在の走行位置における鉄道線路状態を判別する線路状態判別手段と、

線路状態判別手段で得られた鉄道線路状態に基づいて、車体の姿勢を制御する姿勢制御手段とを備え、

前記姿勢制御手段は、車体と台車との間に設けられた左右一対の車高検知装 置と、

車体と台車との間に設けられた左右一対の空気バネと、

空気バネの圧力を供給する圧縮空気供給機構とを備え

車高検知装置が検出した車体の姿勢に基づいて、各空気バネの圧力をそれぞれ制御して車高制御を行うことを特徴とする車体姿勢制御装置。(以下「本件発明4」という。)

【請求項5】 線路状態判別手段が現在の線路状態を曲線路と判別したときは車高制御を行い、直線路と判別したときは車高制御を停止することを特徴とする請求項4記載の車体姿勢制御装置。(以下「本件発明5」という。)」

3 決定の理由

決定は、別紙決定書の写しのとおり、本件発明は、いずれも特開平6-156277号公報(以下「刊行物1」という。)に記載された発明(以下「引用発明1」という。)及び周知技術に基づいて当業者が容易に発明をすることができたものであるので、本件特許は、請求項1ないし5のいずれについても、特許法113条2号に該当し、取り消されるべきものである、と認定判断した。第3 原告主張の決定取消事由の要点

決定は、本件発明と引用発明1との一致点の認定を誤り(取消事由1),本件発明と引用発明1との後述の相違点3についての判断を誤ったものであり(取消事由2),これらの誤りが決定の結論に影響を及ぼすことは明らかであるから、違法として取り消されるべきである。

1 取消事由1(一致点の認定の誤り)

決定は、「刊行物1においては、長手方向に配置された第1軸回りの台車の角速度 ω x、第2の垂直な軸Zの周りの台車の角速度 ω z、回転角 ϕ x、 ϕ z、d ω z d ω z d

(1) 刊行物 1 には、「前記信号(原告注・角速度 ωz , 回転角 $\phi \times$ を示す。)の 1 つまたはそれ以上の信号の値が上記しきい値の上方に位置したことが判明する度 に、あるいはその値の持続(原告注・前記角速度 $\omega \times$ 、角加速度 $d\omega z / dt$ を示す信号の値の持続)が予め決定した持続時間を超える度に、可能化ユニット40は制御ユニット8を動作可能にするために可能化信号を送信する。」(甲第3号証【0

O37】)との記載,及び,「図12および図16に示すように,信号 ωx ,d ωz /dtが時間 Δ tの間,予め決定した範囲内に維持されている状態になる度に,そのことにより車両が湾曲部の遷移区間の入口または出口の開始地点に来ていることが確認される。この確認は,信号 ωx (原告注・ ϕx の誤り), ωz の値が図13,14に示すような対応するしきい値を超える度に得られる。」(同【OO41】)との記載がある。

この記載によれば、引用発明1においては、

(7) 第2及び第4の信号の値 ωz , ϕx の少なくとも一方がしきい値 ωz s, ϕx sの上方に位置した場合,

又は,

(1) 第1及び第3の信号 $\omega \times$, $d \omega z \angle d t \dot{m}$, あらかじめ決定した範囲内の

値をあらかじめ決定した時間 Δ' tよりも長く持続した場合にのみ、

可能化ユニット40からの出力信号によって、第1制御ユニット8を動作可能にするものである。したがって、刊行物1の【0041】においては、鉄道線路の状態を、 $(7)_{\omega z}$ 、 $_{\phi \times}$ の少なくとも一方がしきい値 $_{\omega z}$ s、 $_{\phi \times}$ sの上方に位置しているか、又は $(4)_{\omega \times}$ 及びd $_{\omega z}$ /dtがあらかじめ決定した範囲内の値を時間 Δ 1tよりも長く持続しているか、によって判断することが開示されているだけであり、 $_{\omega z}$ とd $_{\omega z}$ /dtとの組合せによって鉄道線路状態を検出し、可能化ユニット40からの出力信号によって、第1制御ユニット8を動作可能にすることは記載されていない。

すなわち、刊行物 1 の段落【 O O 4 1】の第 1 文の「図 1 2 および図 1 6 に示すように、信号 ω x、 $d\omega$ z/d t が時間 Δ t の間、予め決定した範囲内に維持されている状態になる度に、そのことにより車両が湾曲部の遷移区間の入口または出口の開始地点に来ていることが確認される。」と、第 2 文「この確認は、信号 ω x (原告注・ ϕ x の誤り)、 ω z の値が図 1 3、 1 4 に示すような対応するしきい値を超える度に得られる。」とは、同一の技術内容を述べているにすぎないのであり、この記載は、 $d\omega$ z/d t が Δ t の時間だけある値に維持されていることと、 ω z があるしきい値 ω z s を超えることとが、等価であることを述べているにすぎず、刊行物 1 には、 ω z の値と $d\omega$ z / d t が Δ t の時間だけある値に維持されていることとを組み合わせて用いて鉄道線路状態を検出する、との記載はない(ω z は $d\omega$ z / d t を時間積分したものであることは数学上の常識であるから、 $d\omega$ z / d t がある値に Δ t の時間維持されている場合には、 ω z があるしきい値 ω z s を超える値まで変化することは技術的常識であり、これは、刊行物 1 の図 1 4 及び図 1 6 からも明らかである。)。

(2) 刊行物 1 には、段落【 $0\ 0\ 4\ 1$ 】の前記第 1 文の「信号 $\omega \times$ 、 $d\ \omega z \angle d\ t$ が時間 Δ t の間、予め決定した範囲内に維持されている状態になる」ことと、前記第 2 文の「信号 $\phi \times$ 、 ωz が図 1 3、 1 4 に示すような対応するしきい値を超える」こととを組み合わせる技術的意義についての記載は全く存在せず、したがって、 ωz と $d\ \omega z \angle d\ t$ とを組み合わせる構成は、刊行物 1 には開示されていない。しかも、前記第 1 文には、信号 $\omega \times$ 、 $d\ \omega z \angle d\ t$ が時間 Δ t の間、あらかじめ決定した範囲内に維持されている状態が、車両が遷移区間の入り口又は出口の開始地点に来ていることに対応していることしか記載されておらず、直線部及び湾曲部(円曲線部)自体を検出する記載は、存在しない。前記第 2 文においても、信号 $\phi \times$ 、 ωz の値が、しきい値を超えることは、遷移区間の入り口又は出口の開始地点に来ていることに対応していることが記載されているにすぎず、直線部及び湾曲部(円曲線部)自体を検出する記載は、存在しない。

(3) 刊行物 1 の特許請求の範囲請求項 1 ~ 8 と,実施例に関する段落【0018】 ~【0045】の各記載とは,明りょうに対応している。すなわち,刊行物 1 の段落【0018】ないし【0029】は,請求項 1 の構成に対応し,段落【0032】ないし【0031】の記載は,請求項 2 の構成に対応し,段落【0035】の記載は,請求項 4 の構成に対応する。そして,段落【0037】及び【0041】を含む段落【0036】ないし【0041】の記載は,請求項 5 の構成に対応し,段落【0041】の記載は,請求項 7 の構成に対応し,段落【0044】及び【0045】の記載は,請求項 7 の構成に対応し,段落【0044】及び【0045】の記載は,請求項 8 の構成に対応する。このように,段落【0037】及び段落【0041】には,段落【0037】と同様に, ω z , ϕ x の一方がしきい値を超えるたび,あるいは, ω x , d ω z / d

t が時間 Δ t の間,あらかじめ決定した範囲内の値を持続するたびに,車両が湾曲部の遷移区間の入り口又は出口の開始地点に来ていることを確認するものであり, $\omega z \ge d$ $\omega z \ne d$ t の組合せによって,湾曲部の遷移区間の入り口又は出口の開始地点にあるか,湾曲部自体にあるかを判断する構成ではないことは,刊行物 1 の請求項 5 の構成から明らかである。

(4) 以上のとおり、引用発明 1 においては、カントしていない ($\phi \times$ がしきい値 $\phi \times s$ 以下である) 直線路 (ωz がしきい値 $\omega z s$ 以下) と、それ以外のもの(円曲線すなわち本曲線、緩和曲線、カントしている直線路)の2種類の線路状態を判別しているだけであり、 $\omega \times$ 、 ωz , $\phi \times$, ϕz , $d \omega z$ / d t の各値の組合せに応じて鉄道線路の状態を判断しているものではない。

決定は、引用発明1の内容を上記のとおり誤って認定したものであるから、これを前提とする本件発明と引用発明1との上記の一致点の認定は、誤りである。

2 取消事由2(相違点3についての判断の誤り)

決定は、本件発明1と引用発明1との相違点の一つとして、「鉄道線路の性質を検出するための値として、本件の請求項1に係る発明では、「曲率 ρ 」を用いており、 ρ とd ρ /dtからなる2次元座標において、複数の線路状態領域にあら行位置における鉄道線路状態を判別しているのに対して、刊行物1記載の発明では、第2の垂直な軸Zの周りの台車の角速度 ω z及びd ω z/dt,及び ω x,回転角 ϕ x, ϕ zの値を用いて鉄道線路状態を判別するもののその判断をいかに行うかは示されていない点。」(決定書6頁第4段落、以下「相違点3」という。)を認定し、路域にあらかに前上では、「刊行物1において特に示されていない ω zからの鉄道線路状態を判別するものでは、次元を標において、複数の線路状態にあらかにから、「刊行物1において特に示されていない ω zからの鉄道線路域にあらかじめ区分され、座標(ρ /dtからなる2次元座標において、複数の線路状態にあらかじめ区分され、体標(ρ /dt)の位置を調べることに表現の場所を表現である。」(決定書7頁第3段落)と判断している。決定認定した。11月第1日である。11月第1日では、11月前日に対してある。11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対して表現のは、11月前日に対しまれる。11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月前日に対しまれるのは、11月

(1) 決定は、引用発明1においては「 ω z及び ω zに関係する値である ϕ z, ω zの時間変化率である d ω z/d t を利用して車両が湾曲部の遷移区間の入口または出の開始地点に来ていることを確認することが示されているといえる。すなわち、出した ω Zとそれに関係する時間変化値から、現在の走行位置における鉄道線前としてするということができる。」(7頁第2段落)と認定し、こしたもし、として相違点3は当業者が容易になし得たことである、と判断している。/d t か 取消事由1において述べたように、引用発明1の技術内容は、 ω zとd ω z/d t t を 取消事由1において述べたように、引用発明1の技術内容は、 ω zとd ω z/d t t を の たる。 したがるの点で全く異なるのも、本件発明は、2次元座標(ρ , d ρ /d t) に関する論理値表のである。 鉄道線路の直線、右入口緩和曲線、右出口緩和曲線、左本曲線、左出口緩和曲線を、リアルタイムで正確に判別すること、決定の相違点3に関する上記判断は、誤りである。

(2) 決定は、 $\int_{\omega z}$ (ヨーレイト) より曲率 ρ を求め、該 ρ とその変化率を利用して鉄道線路状態を判断できること周知の事項(必要ならば、特開平8-26109号公報参照のこと)であり、」(決定書7頁第3段落)と認定し、これをも前提として相違点3は当業者が容易になし得たことと判断している。しかし、この判断は誤りである。

(7) 特開平8-26109号公報(甲第14号証,以下「甲14文献」という。)では、データ記憶領域に格納された信号データを抽出し、まず、曲率データの絶対値が所定値を超えた部分を曲線部と判断し(【0014】)、次に、段落【0015】記載の式によって、距離に関する曲率変化率を求めているのである。この曲率変化率は、本件発明のような時間微分 $d\rho$ /dx0 を検出することは、不可能である。

(1) 甲14文献では、その後、曲率変化率の絶対値が所定値を超えた部分を 緩和曲線と判断し(【0016】)、さらに、緩和曲線に挟まれた曲率変化率の小

さい部分を円曲線と判断し、鉄道線路状態の検出のための各動作が、順次、行われ る。甲14文献の技術内容では、曲率データの絶対値を求め、次に、曲率変化率の 絶対値を求め,その後,曲率変化率の絶対値が所定値を超えた部分を緩和曲線の区 間とみなし,緩和曲線に挟まれた区間を円曲線の区間とみなす構成を有する。この ような構成は、曲率データと曲率変化率とを同時に用いて鉄道線路状態を判別する 構成ではないから、甲14文献には、「該ρとその変化率を利用して鉄道線路状態 を判断できる」との構成は開示されておらず、決定の「ρとその変化率を利用して 鉄道線路状態を判断できることは周知」との認定は誤りである。

(1) 甲14文献は、本件出願の出願日直前に発行された刊行物であるから 甲14文献に記載された技術であるからといって、周知の事項ということになるわ

けではない。

- (3) 本件発明は,相違点3に係る構成により,次の(ア)ないし(カ)に示す効果を 奏する。これに対し、引用発明1は、これに甲14文献記載の技術内容を組み合わ せたとしても、これらの効果を達成することはできない。したがって、決定の相違 点3の判断は誤りである。
- (7) 本件発明では、 $2次元座標(\rho, d\rho/dt)$ の位置によって、7つの鉄道線路状態、すなわち直線、左右本曲線、左右入口緩和曲線、左右出口緩和曲線検出することができ、しかもカントを考慮する必要がない。

- (I) 本件発明では、 ρ とd ρ /d t との値へのノイズの混入によって、鉄道 線路状態の検出が遅れるということはなく、リアルタイムでの検出が可能である。
- (オ) 本件発明において用いられる p の値は、走行速度 v に依存しない値であ るので、走行速度vの変化にかかわらず、鉄道線路状態を検出することができる。 したがって、本件発明では、演算処理が簡素化され、メモリに一次的に保存される 内容も簡素化される。
- (カ)本件発明では、 ρ と d ρ / d t とを求める演算処理が簡単であるので、 ρ と d ρ / d t との各値を高精度で求めることができ、鉄道線路状態を正確に検出 することができる。
- 被告の反論の骨子

取消事由1(一致点の認定の誤り)について 刊行物1の段落【0041】には、「・・・図16に示すように、信 号・・・d ω z/d t が時間 Δ t の間,予め決定した範囲内に維持されている状態に なる度に、そのことにより車両が湾曲部の遷移区間の入口または出口の開始地点に 来ていることが確認される。この確認は、信号・・・ ω zの値が図・・・14に示す ような対応するしきい値を超える度に得られる。」と記載されている。この記載に よれば,引用発明1は,ωzがωzs以上であって,しかも,dωz/dtが時間Δtの 間、あらかじめ決定した範囲内に維持されている状態である場合には、車両が湾曲

部の遷移区間の入り口又は出口の開始地点に来ていると判断するものである。 刊行物1の段落【0042】には、「この装置によれば、・・・dωz/dt を示す信号のみならず、・・・角速度・・・ωz・・・を示す信号は、車両が湾曲部の遷移区間を通過するときもしくはその湾曲部自体を走行しているときに、車両ま たは線路の所望の走行特性の検出または制御のために、・・・送信することができ る。」との記載がある。この記載によれば、引用発明1は、ωzがωzsを超えるたび に、 $d\omega z/dt$ が、時間 Δt の間、あらかじめ決定した範囲内に維持されている状 態であるかどうかを確認し、

- (7) ωz が ωz s を超え、かつ、 d ωz / d t が、時間 Δ t の間、あらかじめ決定した範囲内に維持されている状態である場合には、車両が湾曲部の遷移区間の入 り口又は出口の開始地点に来ていると判断し、
- (イ) ωz が ωz sを超え、かつ、 $d\omega z$ /dtが、時間 Δ tの間、あらかじめ決 定した範囲内に維持されている状態でない場合には、車両が湾曲部自体にあるもの と判断し.
 - (ウ) ωzの値がωzsを超えない場合には、車両が直線部にあるものと判断する

ものである。

本件発明の ρ が、鉄道線路の性質に関係する値であることは明らかである d ρ / d t が、 ρ の時間微分であることも自明である。

そうすると,引用発明1の ωz と,本件発明のhoとは,共に,鉄道線路の性質 に関係する値として共通しており、また、 $d\omega z/dt$ と $d\rho/dt$ とは、いずれ も、対応する値の時間微分であるから、決定が「本件の請求項1に係る発明と刊行物1記載の発明は、「鉄道車両においてセンサからの信号に基づいて、鉄道線路の 性質に関係する値を算出する手段と、該値算出手段で得られた値の時間微分を算出する時間微分算出手段とを備え、それらの値によって、現在の走行位置における鉄道線路状態を判別する線路状態判別手段とを備えた鉄道線路状態検知装置。」であ る点で一致し、」と認定したことに誤りはない。

取消事由2 (相違点3についての判断の誤り) について

刊行物 1 に、線路状態の判断について、角速度 ω zとその時間微分である d ω z/d t とによって、湾曲部及び遷移区間の識別を行うことが記載されていること は上記のとおりであり、このことは、引用発明 1 において、角速度 ω zと、その時間 微分である d ω z/d t との二つの信号値の組合せに応じて、線路の状態を判断していることにほかならず、実質的に、角速度 ω Zと角加速度 d ω z/d t とからなる 2 次元座標の位置に応じて、鉄道線路の状態を判断しているということができる。

甲14文献には、曲率、すなわちρとその変化率とを利用して鉄道線路状態 を判断することが記載されている。また、曲率と角速度とは、曲率=車両の角速度 を刊めりることが記載されている。また、曲率と角速度とは、曲率一単向の角速度 /車両の速度、という関係にあり、線路の状態を知る上で、互いに密接な関係にある物理量であるから、引用発明 1 において線路状態の識別を行うための物理量として用いられている、角速度 ω zに代えて、曲率 ρ を用いて、 ρ と d ρ / d t とからなる 2 次元座標の位置に応じて、鉄道線路の状態を判断することは、当業者であれ ば、容易になし得る事項である。決定の相違点3に関する判断に誤りはない。 当裁判所の判断

- 取消事由1 (一致点の認定の誤り) について
 - (1) 引用発明 1
 - (7) 刊行物1の【実施例】の欄には、次の記載がある(甲第3号証)。 「【0018】

【実施例】・・・台車1の各々は、固定された車輪4を有する車軸3にサ スペンション2によって弾性的に接続されている。前記車両はさらに,油圧アクチ ュエータ6の動作に基づいて、その重心G (図4, 5) に実質的に沿う長手軸の周 りに回転し得る車体6(判決注・車体5の誤記と認める。)を具えている。

【0019】この車両がカーブ路を走行する際には,図4に概略的に示す 非補償の加速度がライン t で定義した横方向において乗客に作用し、その 加速度は次式に等しくなる。

【0020】・・・ 【数4】anc=V²/R -gφx

【0021】上記非補償の加速度の値は、図5に示すように、前記車体が その長手軸周りに角度θ回転することにより適切に減少させることができる。その 場合、非補償の加速度の値は、実際に次式の値になるものと推定される。 【数5】 $a'_n = V^2/R - g(\phi X + \theta)$

この値は、明らかに先の式の値よりも小さくなる。 【0022】本発明の車体回転制御装置は、アクチュエータ6のみならず、制御ユニット8からの制御信号により制御されるサーボバルブフをも具えてい る。本発明装置は、図3に概略的に示すように2自由度を有し、前記車両の台車1 に固定されるとともに、前記台車の長手方向に配置された感応性の第1軸11と、 前記台車の垂直方向に配置された感応性の第2軸12とを有する、少なくとも1つ のジャイロスコープ10によって実質的に特徴付けられる。

【0024】本発明に係るジャイロスコープ10は、軸Xの周りの前記台車の角速度 $\omega \times$ を示す第1の電気信号および、垂直な軸Zの周りの前記台車の角速度 ωZ を示す第2の電気信号が発生するように動作し得る。

【0025】前記装置はさらに,前記車両の速度Vを示す信号を発生する ように動作し得る,少なくとも1つの回転速度検出器13(図1)と,長手軸Xの 周りの前記台車の回転角φ×を示す信号

【数6】∫ω×dtを発生するために,ジャイロスコープ10により送信さ れた前記角速度ω×を示す信号を積分するように動作し得る、少なくとも1つの積分 器 14 とを含んでいる。ジャイロスコープ 10 および積分器 14 の間には、ローパスフィルタ 15 および A \angle Dコンバータ 16 が配置されている。

【0026】符号 17で全体的に示したマイクロプロセッサは前記装置の一部を構成する。このマイクロプロセッサは、前記回転角 $\phi \times$ を示す信号および重力加速度 g の積を形成するように動作し得る演算ユニット 18 と、回転速度検出器 1 3によって提供される速度 V を示す信号および、ジャイロスコープ 10 からの回転角速度 ωz を示す信号の積を形成するように動作し得る演算ユニット 19 とを有している。・・・

【0027】マイクロプロセッサ17はさらに、前記非補償の横加速度を示す信号を得るように、前記第2の積および前記第1の積の差を、【数7】 $anc=V^2/R-g\phi$ Xのようにして求める他の演算ユニット26を含んでいる。上述のようにして発生された信号は、サーボバルブ7に対する制御信号を発生するために、制御ユニット8に送られる。

【0028】前記車両が走行するカーブおよび、それに関連する入口および出口の遷移区間の幾何学的な特徴は、図6に与えられている。図6には、車両が一定速度Vで走行していると仮定した場合、・・・この図の最初および最後の2つの傾斜した区間は夫々、前記湾曲部の遷移区間の入口および出口と対応し、さらに、一定値となる中央区間は前記湾曲部自体と対応している。

【0030】本発明装置はさらに、台車1に固定され該台車の横加速度を示す信号を発生するように動作し得る少なくとも1つの加速度検出器27と、その信号をろ波するように動作し得るローパスフィルタであって、前記横加速度を示す信号がそのローパスフィルタ自体に送信された瞬時に関して遅延された信号を出力端において送信するように動作し得るローパスフィルタ31とを含んでいる。

【0034】このようにして求めた合成信号は、ローパスフィルタ31の出力端からの信号および図7に示すものに実質的に対応するが、時間Δtにより遅延されていないことだけが相違している。そのため、この合成信号は、図6に示すカーブと完全に一致し、制御ユニット8によって効果的に利用することができる。・・この第2の信号は、この装置に何らかの故障が起きたために前記第1の信号が使用できない場合に、前記第1の信号の場所に置き換えるための予備信号として考えることができる。

【0035】前記装置はさらに、回転速度検出器13および制御ユニット8の間に挿入されるしきい値回路34を含んでおり、しきい値回路34は、車両の速度Vが予め決定したしきい値を超えたときのみ前記制御回路に対する回転速度信号の通過を許容するように動作し得るものであり、その信号の通過は、前記回転速度の値が前記しきい値信号の値を超えた場合のみ制御ユニット8がアクチュエータ6に制御信号を送信するようにして行なう。

るに制御信号を送信するようにして行なう。 【0036】前記装置はさらに、ジャイロスコープ10から送られてきた角速度 ω zを示す信号を夫々送信される、オフセット補正器35、第2積分器37および微分器38を含んでおり、第2積分器37および微分器38は夫々、垂直軸周りの車両の回転角度 ϕ zおよび角加速度 d ω z/d t を示す信号を得るために、ローパスフィルタ23から送られてきた前記角度信号を積分および微分する。前記装置はさらに、微分器38からの信号のみならず前記オフセット補正器35、25により送信された信号、積分器14、37からの信号を入力される位相弁別器39と、位相弁別器39および制御ユニット8に接続される可能化ユニット40とを含んでいる。

【0037】位相弁別器39および可能化ユニット40は,既知の方法で,前記角速度 ωz ,回転角 $\phi \times$, ϕz (判決注・誤記である。)を示す信号の値を対応するしきい値と比較するために動作し,最終的に前記角速度 ωz (判決注・ $\omega \times o$ 誤記である。),角加速度 $d\omega z / dt$ の値の予め決定した範囲内での持続性を求めるように配置されている。前記信号の1つまたはそれ以上の信号の値が上記しきい値の上方に位置したことが判明する度に,あるいはその値の持続が予め決定した持続期間を超える度に,可能化ユニット40は制御ユニット8を動作可能にするために可能化信号を送信する。

【0038】この過程において、制御ユニット8は、前記車両の態様または速度の特別な状態が生じた場合のみ、動作可能になる。

【0039】位相弁別器39が可能化ユニット40と関連してどのように

動作し得るかを考慮するためには図11~16の線図を参照するのが好ましく, それらの筆頭の図(図11)の線図は図6の線図と対応している。

【OO41】図12および図16に示すように、信号 $\omega \times$ 、 $d\omega z \angle dt$ が時間 Δt の間、予め決定した範囲内に維持されている状態になる度に、そのことにより車両が湾曲部の遷移区間の入口または出口の開始地点に来ていることが確認される。この確認は、信号 $\omega \times$ (判決注・ $\phi \times$ の誤記である。)、 ωz の値が図13、14に示すような対応するしきい値を超える度に得られる。

【0043】車両の車体5に固定された付加的な加速度検出器41もまたこの装置の一部を形成している。この加速度検出器41は、・・残留横加速度acrを示す信号を供給するように調整されている。付加的な制御ユニット43は、加速度検出器41により供給された信号と、検出器42により検出された車体の回転角度に依存する参照値との比較を行い、前記加速度検出器により供給された信号の値と参照値との間の差が予め決定したしきい値を超えたとき、制御ユニット8に対し非駆動信号を送信するように動作し得るものである。

【0045】制御ユニット44は、非補償の加速度 ancを示す信号を発生するために、・・・信号 ωz 、Vおよび ϕx に基づいて動作するように予め調整されている。さらに、このユニットは、前記非補償の加速度を示す信号およびフィルタ31から送られてくる加速度 accを示す信号の間の比較を行う。これら2つの信号の差が予め決定されたしきい値を超える状態になる度に、前記ユニットは、制御ユニット8に対し非駆動信号を送信する。この方法により、ジャイロスコープ10により発生された非補償の加速度 anccを示す信号の制御が実施され、この制御は、車両が最大湾曲部に入っている場合に実施される。」

(イ) 刊行物 1 の上記記載により、引用発明 1 は、次のとおりのものであると 認めることができる。

車両がカーブ路を走行する際には、非補償の加速度が横方向において乗客に作用する。この横方向の加速度は、車体をその長手軸周りに角度θ回転させることにより適切に減少させることができる。

第 1 制御ユニット 8 からの第 1 制御信号は、車体に回転角 θ を与えるアクチュエータ θ のためのサーボバルブ 7 を制御する。

しきい値回路手段34によって、車両の速度Vがしきい値を超えたときのみ、第1制御ユニット8は動作可能となる。

また、位相弁別器39及び可能化ユニット40により、 ωz 、 ϕx の少なくとも一方がしきい値を超えた場合、あるいは、 ωx 、 $d\omega z$ /dt, あらかじめ決定した範囲内の値をあらかじめ決定した時間 Δt よりも長く持続した場合にのみ、可能化ユニット40からの出力信号によって、第1制御ユニット8は動作可能となる。

位相弁別器39の可能化ユニット40と関連する動作については、図1

2, 図16から、 ωx 、 $d \omega z \angle d t$ が時間 Δt の間、あらかじめ決定した範囲内に維持されている状態になるたびに、車両が湾曲部の遷移区間の入り口又は出口の開始地点に来ていることが確認され、また、図13、図14から、この確認は、 ϕx 、 ωz の値が対応するしきい値を超えるたびに、車両が湾曲部の遷移区間の入り口又は出口の開始地点に来ていることが確認されるという形で行われる。

台車1に固定され横加速度を示す信号を発生する加速度検出器27からの信号a。は、故障が起きたときの、前記第1の信号an。の予備信号とする。

この装置では、 $d\omega z/dt$, ωx , ωz , ϕx , ϕz が、車両が湾曲部の遷移区間又はその湾曲部自体を走行しているときに、所望の走行特性の検出又は制御のために、検出デバイス、制御デバイスに送信される。

制御ユニット44は、車両が最大湾曲部に入っている場合に、信号 ωz 、 V及び ϕx に基づいて計算した非補償の加速度 a_n 。を示す信号とフィルタ 31から送られてくる加速度 a_n 。を示す信号との差がしきい値を超えると、制御ユニット 8に対し非駆動信号を送信し、非補償の加速度 a_n 。を示す信号の制御を実施する。

に対し非駆動信号を送信し、非補償の加速度 a n 。を示す信号の制御を実施する。 (2)決定は、「鉄道車両においてセンサからの信号に基づいて、鉄道線路の性質に関係する値を算出する手段と、該値算出手段で得られた値の時間微分を算出する時間微分算出手段とを備え、それらの値によって、現在の走行位置における鉄道線路状態を判別する線路状態判別手段とを備えた」(決定書6頁第1段落)ことを、本件発明1と引用発明1との一致点と認定している。

原告は、刊行物 1 には、 ω zの値と、 $d\omega$ z/dt が Δ t の時間だけある値に維持されていることとを組み合わせて用いて鉄道線路状態を検出する、との記載も、直線部及び湾曲部(円曲線部)自体を検出する、との記載もない、引用発明 1 においては、カントしていない(ϕ xがしきい値 ϕ x s以下である)直線路(ω zがしきい値 ω z s以下)と、それ以外のもの(円曲線すなわち本曲線、緩和曲線、カントしている直線路)の2種類の線路状態を判別しているだけであり、 ω x、 ω z、 ϕ x、 ϕ z、 $d\omega$ z/dt の各値の組合せに応じて鉄道線路の状態を判断しているものではない、決定は、引用発明 1 の内容を上記のとおり誤って認定し、その結果、一致点の認定を誤ったものである、と主張している。

確かに、刊行物 1 には、 $\omega \times \Delta U d \omega z / d t$ が時間 Δt の間所定の範囲内に維持されたときか、あるいは、 $\phi \times \Delta U \omega z$ の値がしきい値を超えたときに、車両が湾曲部の遷移区間の入り口又は出口の開始地点に来ていることが確認され、第 1 制御ユニット 8 が動作可能となることは記載されているものの、 $\omega z \ge d \omega z / d t$ の値との組合せで鉄道線路状態を判別する、 $\omega \times \omega z$, $\omega \times \omega z$, $\omega \times \omega z$, $\omega \times \omega z$ d $\omega z / d t$ の各値の組合せに応じて鉄道線路の状態が入口遷移区間かカーブ区間か出口遷移区間かを判断しているとの記載はない。

その2次元座標から、あらかじめ区分された複数の鉄道線路状態を判別するもので あるのに対し、引用発明1では、判断をいかに行うかは示されていないことについ ては、これを引用発明1との相違点3として認定しているのであるから、決定の一 致点の前記認定に誤りはないのである。

- 本件発明2は、請求項2において、本件発明1と同一の鉄道線路状態判別 本件発明3ないし5は、請求項3ないし5において、本件発明1と同一の 鉄道線路状態判別手段を、それぞれの構成要件として規定しているものであるから、決定が、本件発明2ないし5について、引用発明1との一致点の認定を、本件発明1の場合と同趣旨と認定した点にも誤りはない。
 2 取消事由2(相違点3についての判断の誤り)について
- (1) 原告は、決定は、刊行物 1 に、「 ω z及び ω zに関係する値である ϕ z、 ω zの時間変化率である d ω z / d t を利用して車両が湾曲後の遷移区間の入口または出口の開始地点に来ていることを確認することが示されている」(7 頁第 2 段落)と認 定し、これを前提として相違点3は当業者が容易になし得たことである、と判断し ている, しかし, 引用発明 1 の技術内容は, ωz及び d ωz/ d t とを組み合わせて 現在の走行位置における鉄道線路状態を判別するものではないから、 ρ とd ρ /dt とを組み合わせた本件発明1とは、この点で全く異なるのである、と主張してい

確かに、刊行物1には、ωz及びその時間変化率であるdωz/dtを利用 して車両が湾曲部の遷移区間の入り口又は出口の開始地点に来ていることを確認す ば、引用発明 $10\omega z$ (角速度), あるいは、本件発明の曲率 ρ) とその微分信号の組合せによって、鉄道線路状態の判別をすることが、本件出願前から知られている 周知の技術事項であることは、甲14文献及び特開平6-211132号公報(乙 第2号証、以下「乙2文献」という。)の記載によって明らかである。すなわち、 次のとおりである。

甲14文献には、「平均化処理後の曲率データ・・・の絶対値が所定値を超えた部分を曲線部として、当該曲線部とその前後の軌道データを後の計算処理に用いる記憶装置上に取り出す。」(甲14号証【0014】)、「曲率変化 率・・・が大きい部分が緩和曲線に対応し、該緩和曲線に挟まれた曲率変化 率・・・の小さい部分が円曲線に相当していることが判る。そこで、曲率変化 率・・・の絶対値が所定値を超えた部分を緩和曲線の区間とみなし、また、曲線部 のうち緩和曲線に挟まれた区間を円曲線の区間とみなして・・・」(【001 6】)という形で、曲率データの絶対値が所定値を超えた部分を曲線部とし、曲率 変化率の絶対値が所定値を超えた部分を緩和曲線の区間とみなし、緩和曲線に挟まれた曲率変化率の小さい区間を円曲線の区間とみなすことが記載されている。乙2 文献には、変位量xが $x \le -\delta$ aまたは $x \ge \delta$ aならば曲線、 $-\delta$ b \le d x/d t $\leq \delta b$ かつ x $\leq -\delta a$ または x $\geq \delta$ の場合は円曲線となることが記載されている (乙第2号証【0015】及び【0016】参照)。

そして,本件出願の願書に添付した明細書及び図面(以下,併せて「本件 明細書」という。)の段落【0025】には、「このグラフにおいて、1) — th $1 < \rho < th 1$,または— $th 2 < \rho < th 2$ の領域は直線、2) $\rho \ge th 1$,および $d\rho \angle dt \ge th 3$ の領域は右入口緩和曲線、3) $\rho \ge th 1$, $\rho \ge th 2$ お よびth3<dρ/dt<th4の領域は右本曲線,4)ρ≧th2,およびdρ \angle d t \leq t h 4 の領域は右出口緩和曲線,5) $\rho \leq$ - t h 1,および d $\rho \angle$ d t \geq t h 3 の領域は左入口緩和曲線,6) $\rho \leq$ - t h 1, $\rho \leq$ - t h 2,および t h 3 <d ρ /d t <t h 4の領域は左本曲線,7) ρ \le - t h 2,85.5 t H \le th 4の領域は左出口緩和曲線、にそれぞれ分類することができる。」と記載されており、本件発明 1 の「曲率 ρ および時間微分から成る 2 次元座標・・・の位置を調べることによって、現在の走行状態における鉄道線路状態を判別する線路状態判別であることによって、現在の走行状態における鉄道線路状態を判別する線路状態制 別手段」とは、上記のとおり、二つの数値がしきい値を超えるか否かの組合せを調べることにほかならないから、これと、決定が本件出願前に知られているとした上 記の周知技術事項と異なるものではない。

そうすると、刊行物 1 に、「 ω z及び・・・d ω z/d t を利用して車両が 湾曲部の遷移区間の入口または出口の開始地点に来ていることを確認することが示 されている」(決定書7頁第2段落) ことと、「 ωz と曲率 ρ とは $\rho = \omega z/V$ の関

原告は、本件発明は、 $2次元座標(\rho, d\rho/dt)$ に関する論理値表に基づき、鉄道線路の直線、右入口緩和曲線、右本曲線、右出口緩和曲線、左入口緩和曲線を、10、以下ルタイムで(事実上同時に)正確に判別することが可能であるという、引用発明1にはない作用効果を奏する、と主張する。しかし、引用発明1と周知の技術事項から、本件発明1の構成を容易に想到し得るものであることは上記のとおりである以上、その構成から原告が主張するような作用効果が生じることが格別に予想困難であるなどの特段の事情がない限り、原告が主張する作用効果により、本件発明の進歩性が基礎付けられるわけではない。原告の主張に理由がないことは明らかである。

(2) 原告は、決定が、甲14文献を引用して、曲率 ρ とその変化率を利用して 鉄道線路状態を判断できることは周知の事項である、と認定したことは誤りであ る、と主張し、その理由として、(7) 甲14文献では、曲率データと距離に関する曲 率変化率を使用するものであるから、リアルタイムで鉄道線路状態を検出すること は不可能である、(4) 甲14文献に記載された構成は、曲率データと曲率変化率とを 同時に用いて鉄道線路状態を判別する構成ではない、(5) 甲14文献は、本件出願の 出願日直前に発行された刊行物であるから、その技術は周知の事項とはいえない、 と主張している。

また、原告の上記(ウ)の主張については、前記認定のとおり、Z2文献にも、曲率に比例する変位量 x とその微分とを用いて、鉄道線路状態を判別することが記載されているのであるから、甲 1 4 文献を 1 例として掲げ、前記周知技術を認定した決定の判断に誤りがないことは明らかである。なお、原告は、Z2文献が開示している技術は、本件発明のように曲率 ρ と d ρ ρ d t とを扱っておらず、また

緩和曲線などの鉄道線路状態の検出を開示していないのであるから,前記事項が周知であることの証拠とならない,と主張する。しかし,本件発明と前記周知技術とが全く同一である必要がないことは上記と同様であるから,原告の上記主張は,前同様に理由がない。

(3) 原告は、本件発明は、相違点3に係る構成により、前記第3・2(3)の(7)ないし(か)に示す効果を奏するのに対し、引用発明1は、これに甲14文献記載の技術内容とを組み合わせたとしても、これらの効果を達成することはできない、したがって、決定の相違点3の判断は誤りである、と主張している。

しかしながら、引用発明1及び甲14文献に示される技術に基づいて、曲率 ρ とd ρ /dtからなる2次元座標において、複数の線路状態領域にあらかじめ区分され、座標(ρ , d ρ /dt)の位置を調べることによって、現在の走行位置における鉄道線路状態を判別するとの構成は、当業者が容易になし得たと認められるのは前記認定のとおりであり、この構成とした場合には、原告が主張する(η)ないし(η)の作用効果を奏することは当然に予測できるものである。したがって、原告の上記主張が理由がないことは明らかである。

(4) 本件発明2ないし5と引用発明1との相違点3についての決定の判断は、 前記判断と同一であるから、その判断に誤りがないことは、前記のとおりである。

3 結論

以上に検討したところによれば、原告の主張する取消事由には理由がなく、その他、決定には、これを取り消すべき瑕疵は見当たらない。そこで、原告の請求を棄却することとし、訴訟費用の負担について、行政事件訴訟法7条、民事訴訟法61条を適用して、主文のとおり判決する。

東京高等裁判所第6民事部

裁判長裁判官	山	下	和	明
裁判官	設	樂	隆	_
裁判官	高	瀬	順	久