Math 230B Lecture Notes

Lance Remigio

May 21, 2025

Week 1

1.1 Lecture 1

1.1.1 Topics

- The derivative
- Continuity and Differentiability
- Differentiability Rules

Definition (Differentiability). (*) Let $I \subseteq \mathbb{R}$ be an interval, $f: I \to \mathbb{R}$, $c \in I$. We say f is differentiable at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists (that is, it equals a real number).

(*) In this case, the quantity $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ is called the derivative of f at c and is denoted by

$$f'(c), \frac{df}{dx}(c), \frac{df}{dx}\Big|_{x=c}$$

(*) If $f: I \to \mathbb{R}$ is differentiable at every point $c \in I$, we say f is differentiable (on I).

Remark. The following are equivalent characterizations of the differentiability:

$$\begin{split} f'(c) &= L \Longleftrightarrow \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = L \\ &\iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that if} \; 0 < |x - c| < \delta \; \text{then} \; \left| \frac{f(x) - f(c)}{x - c} - L \right| < \varepsilon \\ &\iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that if} \; 0 < |h| < \delta \; \text{then} \; \left| \frac{f(c + h) - f(c)}{h} - L \right| < \varepsilon \\ &\iff \lim_{h \to 0} \frac{f(c + h) - f(c)}{h} = L \end{split}$$

Theorem (Differentiability Implies Continuous). Let $I \subseteq \mathbb{R}$, $c \in I$, and $f : I \to \mathbb{R}$ is differentiable at c. Then f is continuous at c.

Proof. It suffices to show that $\lim_{x\to c} f(x) = f(c)$. Note that

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} \right] (x - c)$$

$$= \left[\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right] \left[\lim_{x \to c} (x - c) \right]$$

$$= (f'(c))(0)$$

$$= 0.$$

So, we have

$$\lim_{x \to c} f(x) = \lim_{x \to c} [f(x) - f(c) + f(c)]$$

$$= \lim_{x \to c} (f(x) - f(c)) + \lim_{x \to c} f(c)$$

$$= 0 + \lim_{x \to c} f(c)$$

$$= 0 + f(c)$$

$$= f(c).$$

Corollary. If $f: I \to \mathbb{R}$ is NOT continuous at $c \in I$, then f is NOT differentiable at c.

Example. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}.$$

(i) Prove that f is continuous at 0.

Proof. Our goal is to show that

 $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that if} \; |x| < \delta \; \text{then} \; |f(x) - f(c)| < \varepsilon.$

Let $\varepsilon > 0$ be given. Note that if $x \notin \mathbb{Q}$,

$$|f(x)| = |0| < \varepsilon.$$

Otherwise, we have $|f(x)| = |x^2| = |x|^2$. IN this case, we claim that $\delta = \sqrt{\varepsilon}$ will work. Indeed, if $|x| < \delta$, then we have

$$|f(x)| = |x|^2 < (\sqrt{\varepsilon})^2 = \varepsilon.$$

(ii) Prove f is discontinuous at all $x \neq 0$.

Proof. Let $c \neq 0$. Our goal is to show that f is discontinuous at c. By the sequential criterion for continuity, it suffices to find a sequence (a_n) such that $a_n \to c$ but $f(a_n) \not\to f(c)$. We will consider two cases; that is, we could either have $c \notin \mathbb{Q}$ or $c \in \mathbb{Q}$.

Suppose $c \notin \mathbb{Q}$. Since \mathbb{Q} is dense in \mathbb{R} , there exists a sequence of rational numbers (r_n) such that $r_n \to c$. Note that $f(r_n) = r_n^2 \to c^2 \neq 0$, but f(c) = 0. Clearly, $f(r_n) \not\to f(c)$ and so f must be discontinuous at c.

Suppose $c \in \mathbb{Q}$. Since the set of irrational numbers is also dense in \mathbb{R} , we can find a sequence (s_n) such that $s_n \to c$. Note that $f(s_n) = 0$, but $f(c) = c^2 \neq 0$. Thus, $f(s_n) \not\to f(c)$. Therefore, f must be discontinuous at c.

(iii) Prove that f is nondifferentiable at all $x \neq 0$.

Proof. Let $c \neq 0$. Since f is discontinuous at c, we can conclude that f is not differentiable at c.

(iv) Prove that f'(0) = 0.

Proof. We need to show

$$\lim_{x \to c} \frac{f(x) - f(0)}{x - 0} = \frac{f(x)}{x} = 0.$$

Theorem (Algebraic Differentiability Theorem). Assume that $f: I \to \mathbb{R}$ and $g: I \to \mathbb{R}$ are differentiable at $c \in I$ where $(I \text{ is an interval on } \mathbb{R})$. Then

(i) For all $k \in \mathbb{R}$, kf is differentiable at c, and

$$(kf)'(c) = kf'(c)$$

(ii) f + g is differentiable at c, and

$$(f+gk)'(c) = f'(c) + g'(c)$$

(iii) fg is differentiable at c, and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c)$$

(iv) $\frac{f}{g}$ is differentiable at c provided that $g(c) \neq 0$. Then

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{[g(c)]^2}.$$

Week 4

4.1 Lecture 6

4.1.1 Topics

- (1) The definition of Riemann-Stieltjes integral
- (2) Refinement of partitions

Definition (Almost Disjoint Intervals). We say that two intervals I and J are almost disjoint if either $I \cap J$ is empty or $I \cap J$ has exactly one point.

Definition (Partition). A partition P of an interval [a, b] is a finite set of points in [a, b] that includes both a and b. We always list the points of a partition $P = \{x_0, x_1, x_2, \dots, x_n\}$ in an increasing order; so,

$$a = x_0 < x_1 < \dots < x_n = b.$$

Remark. A partition of P of an interval [a, b] is a finite collection of almost disjoint (nonempty) compact intervals whose union is [a, b]:

$$P = I_1, I_2, \ldots, I_n$$

where

$$I_1 = [x_0, x_1], \quad I_2 = [x_1, x_2], \quad \cdots \quad I_n = [x_{n-1}, x_n].$$

Again, we denote $x_0 = a$ and $x_n = b$.

Definition (Lower Sum, Upper Sum). Let $f:[a,b]\to\mathbb{R}$ be bounded, $\alpha:[a,b]\to\mathbb{R}$ be increasing and $P=\{x_0,x_2,\ldots,x_n\}$ be a partition of [a,b]. Let $\Delta\alpha_k=\alpha(x_k)-\alpha(x_{k-1})$.

(i) The **Lower Riemann-Stieltjes Sum** of f with respect to the integrator α for the partition P is defined by

$$L(f, \alpha, P) = \sum_{k=1}^{n} m_k (\alpha(x_k) - \alpha(x_{k-1})) = \sum_{k=1}^{n} m_k \Delta \alpha_k.$$

(ii) The upper **Riemann-Stieltjes sum** of f with respect to the integrator α for the partition P is defined by

$$U(f, \alpha, P) = \sum_{k=1}^{n} M_k(\alpha(x_k) - \alpha(x_{k-1})) = \sum_{k=1}^{n} M_k \Delta \alpha_k.$$

Definition (Upper R.S Integral, Lower R.s Integral). Let $f:[a,b]\to\mathbb{R}$ be bounded, $\alpha:[a,b]\to\mathbb{R}$ be increasing. Then

(i) The **Upper R.S integral** of f with respect to α (on [a,b]) is defined by

$$U(f, \alpha) = \inf_{P \in \Pi} U(f, \alpha, P).$$

Note that the set $\{U(f, \alpha, P) : P \in \Pi\}$ is bounded below by $m(\alpha(b) - \alpha(a))$. So the infimum above is a real number.

(ii) The **Lower R.S Integral** of f with respect to α (on [a,b]) is defined by

$$L(f, \alpha) = \sup_{P \in \Pi} L(f, \alpha, P).$$

Note that the set $\{L(f, \alpha, P) : P \in \Pi\}$ the lower sums is bounded above by $M(\alpha(b) - \alpha(a))$. So, the supremum above is a real number.

Definition (Riemann-Stieltjes integrable functions). Let $\alpha:[a,b]\to\mathbb{R}$ be an increasing function. A function $f:[a,b]\to\mathbb{R}$ is said to be **Riemann-Stieltjes integrable** (on [a,b]) if

- (i) f is bounded
- (ii) $L(f, \alpha) = U(f, \alpha)$.

In this case, the R.S integral of f with respect to α , denoted by

$$\int_a^b f \ d\alpha \ \text{ or } \ \int_a^b f(x) \ d\alpha(x) \ \text{ or } \ \int_{[a,b]}^a f \ d\alpha$$

is the common value of $L(f,\alpha)$ and $U(f,\alpha)$. That is,

$$\int_a^b f \ d\alpha = L(f,\alpha) = U(f,\alpha).$$

Definition (Refinement of a Partition).

Week 9

9.1 Lectures 13-14

Theorem (Integration by Parts). Let $u:[a,b]\to\mathbb{R}$ and $v:[a,b]\to\mathbb{R}$ are differentiable and let $u'\in R[a,b]$ and $v'\in R[a,b]$. Then we have

- $(1) \ uv' \in R[a,b]$
- $(2) \ u'v \in R[a,b]$

(3)
$$\int_a^b uv' dx = u(b)v(b) - u(a)v(a) - \int_a^b u'v dx.$$

Proof. (1) Since $u:[a,b]\to\mathbb{R}$ is differentiable, we have $u\in C[a,b]$. So, we have $u\in R[a,b]$. By assumption, $v'\in R[a,b]$ and so we can conclude that $uv'\in R[a,b]$.

- (2) Using the same argument above, we have $uv' \in R[a, b]$.
- (3) By the product rule, we have

$$(uv)' = u'v + uv'.$$

In particular, since (uv)' is a sum of integrable functions, it belongs to R[a, b]. Now, we integrate both sides

$$\int_{a}^{b} (uv)' dx = \int_{a}^{b} u'v dx + \int_{a}^{b} uv' dx.$$
 (I)

According to FTC I, we have

$$\int_{a}^{b} (uv)' dx = [uv]_{x=a}^{x=b} = u(b)v(b) - u(a)v(a).$$
 (II)

Hence, we have (I) and (II) imply that

$$u(b)v(b) - u(a)v(a) = \int_a^b u'v \ dx + \int_a^b uv' \ dx$$

which further implies that

$$\int_{a}^{b} uv' \ dx = u(b)v(b) - u(a)v(a) - \int_{a}^{b} u'v \ dx.$$

9.2 Lectures 15-16

9.2.1 Topics