Deploying LISP in Enterprise Networks

Jordi Paillisse, Marc Portoles, Albert Lopez, Alberto Rodriguez-Natal, David Iacobacci, Johnson Leong, Victor Moreno, Albert Cabellos, Fabio Maino, and Sanjay Hooda

jordi.paillisse [at] upc.edu

IETF Side Meeting "Enterprise Scenario and Deployment Discussion" IETF 119, March, 21st

Based on the paper:

Summary

- 1. Overview of Software-Defined Access (SDA)
- 2. LISP use-cases in SDA
- 3. Architecture and Design
- 4. Evaluation

https://www.nordu.net/article/infoshare campus-network-service

Introduction: SDA

- SDN-based solution for Campus and Access Networks
- VXLAN data plane
- LISP control plane
- Unified Wired + Wireless
- Endpoint Mobility
- L3 Segmentation:
 - VXLAN VNI
 - Group-based polices
- L2 stretching

LISP use-cases in SDA

- L2/L3 Endpoint Mobility
- Reduce and distribute data plane state
- Minimize CAPEX via providing routes on-demand
 - Less data plane entries → Smaller FIB → Less memory → Reduced cost
- Incremental deployment
 - Keep existing underlay, with standard OSPF or IS-IS

Architecture & Design

Architecture

- LISP control plane
- VXLAN data plane
- EIDs are individual hosts
- Connected to xTR (LISP router)
- Proxy xTR for external connectivity (border router)

Per-device entries in the Map Server	EID – Overlay	RLOC - Underlay
	IPv4 addr.	xTR RLOC
	IPv6 addr.	xTR RLOC
	MAC addr.	xTR RLOC
	MAC addr.	IPv4 addr.

Architecture - Wireless

- WLAN controller connected to Map Server
- Controller updates endpoint location based on new device authentications

Design – Avoid resolution delay (aka No First Packet Drop)

- Add default route in LISP routers (xTR)
- Points to border router (PxTR)
- Proxy is synchronized with Map Server
- Forwards traffic on behalf of LISP routers
- Until more specific route is installed in the LISP routers

Design – Scalable L2 stretching

- Use cases:
 - Convert ARP broadcast to unicast
 - L2 protocols (eg. Apple Bonjour)
 - Legacy IoT devices (that do not use IP)
- Src. router encaps L2 frames to dst. router on VXLAN
- Resolve in Map Server missing info:
 - Use inner dst. MAC to locate dst. RLOC
 - For ARP: use MAC to EID mapping
- Forward ARP requests (instead of creating them) for coherence with IPv6 NDP

Evaluation

- Count map cache entries in
 - PxTR (all routes)
 - xTRs (on-demand routes)
- PxTR has all MS data → fraction of mappings in xTRs
- Two different deployments:
 - Depl. A 150 hosts
 - Depl. B 450 hosts
 - Routers:
 - 1-2 PxTR
 - 7-6 xTR
 - 120 AP (20 per xTR)

Handover Delay

- Massive mobility events
 - Eg. warehouse with mobile robots
- Calculate handover delay
- Lab setup
- 3 physical routers
- 198 emulated xTR
- Simulate handovers with a traffic generator

Handover Delay

- Compare LISP and BGP control planes
- Difference of approx.. one order of magnitude
- Notify only affected routers vs. all of them
- Less variability

Conclusions

- Example of a LISP deployment in an enterprise environment
- Reduced data plane state
- Distributed mobility data plane, with centralized control
- Versus classical WLAN controllers:
 - Improved routing (no triangular routing)
 - More scalable
- Reduce mobility handover

https://www.nordu.net/article/infoshare campus-network-service

Thanks for listening!

You can find the paper at:

https://arxiv.org/abs/2010.15236

Backup

Architecture - Wireless

 WLAN controller connected to Map Server

 Updates location based on new authentications

'Regular' underlay VXLAN tunnels

Design – Mobility (I)

- Static VXLAN tunnel between AP and xTR
 - Multiple APs per xTR
 - Store (AP IP → xTR RLOC) mappings
- WLAN controller detects host movement
 - Map Request: AP C? → xTR B
- Registers new location
 - EID Host → xTR B

Design – Mobility (II)

- xTR B receives Map Notify and updates local state → EID Host behind AP C
- Additional mechanisms to improve mobility:
 - Away entry (to not drop packets)
 - SMR (to notify outdated remote xTR)

Design – Mobility (and III)

• SMR

- (1) If receive traffic for EID no longer in xTR
- (2) Send SMR to xTR
- (4) xTR updates map cache
- Away entry
 - Remember EIDs no longer in xTR
 - Forward traffic to new xTR (3)

