Équations différentielles linéaires d'ordre 1

1 Généralités

NOTATION

Dans tout ce chapitre, I est un intervalle de \mathbb{R} .

DÉFINITION: Équation différentielle linéaire du premier ordre

On appelle **équation différentielle linéaire d'ordre 1** (ou **du premier ordre**), une équation de la forme :

$$\alpha(t)y'(t) + \beta(t)y(t) = f(t), \quad \forall \ t \in I, \tag{1}$$

οù

 $\triangleright y$ est une fonction inconnue et y' est sa dérivée;

 $\triangleright \alpha$ et β sont des fonctions données, définies sur I, appelées **coefficients** de l'équation;

 \triangleright la fonction α est non nulle;

 $\,\rhd\, f$ est une fonction donnée, définie sur I, appelée \mathbf{second} \mathbf{membre} de l'équation ;

 \triangleright t est la variable de toutes ces fonctions.

REMARQUE

On parle d'équation différentielle du $premier \ ordre$ car celle-ci ne fait intervenir que la fonction inconnue y et sa dérivée $première \ y'$.

EXEMPLES

▷ L'équation

$$4y'(t) + 3y(t) = t, \quad \forall \ t \in \mathbb{R}$$

est une équation différentielle linéaire d'ordre 1 à coefficients constants avec

$$\alpha: t \mapsto 4, \ \beta: t \mapsto 3 \quad \text{et} \quad f: t \mapsto t.$$

▷ L'équation

$$(t^2+1)y'(t) - \ln(t)y(t) = e^t, \quad \forall \ t \in \mathbb{R}_+^*$$

est une équation différentielle linéaire d'ordre 1, avec

$$\alpha: t \mapsto t^2 + 1, \ \beta: t \mapsto -\ln(t) \quad \text{et} \quad f: t \mapsto e^t.$$

- \triangleright Les équations suivantes sont des équations différentielles d'ordre 1 mais ne sont pas linéaires :
 - a) $y'(t) + 3y^2(t) = t$, $\forall t \in \mathbb{R}$, à cause du terme y^2 ,
 - b) $y'(t)y(t) + ty(t) = 2t^2$, $\forall t \in \mathbb{R}$, à cause du terme y'(t)y(t).

NOTATION

L'équation différentielle (1) se note aussi simplement

$$\alpha y' + \beta y = f$$
, sur I .

Autrement dit, on ne spécifie pas la variable t et, dans l'équation, l'égalité est une égalité de fonctions. Cette notation est appelée **notation fonctionnelle**.

Exercice 5.1

Parmi les équations différentielles suivantes, préciser celles qui sont linéaires d'ordre 1 et identifier alors les coefficients et le second membre.

1)
$$e^t y'(t) + ty(t) = 2t$$
, $\forall t \in \mathbb{R}$,

2)
$$y'(t) + ty^3(t) = 1$$
, $\forall t \in \mathbb{R}$,

3)
$$y(t)y'(t) + t = 0, \forall t \in \mathbb{R},$$

4)
$$3t - 2y'(t) = -y'(t) + 5 - y'(t), \quad \forall \ t \in \mathbb{R},$$

DÉFINITION: Équation différentielle homogène

Toute équation différentielle dont le second membre est nul est dite homogène.

EXEMPLES

 \triangleright L'équation

$$4y'(t) + 3y(t) = 0, \quad \forall \ t \in \mathbb{R}$$

est une équation différentielle linéaire homogène d'ordre 1 à coefficients constants.

▷ L'équation

$$(t^2 + 1)y'(t) - \ln(t)y(t) = 0, \quad \forall \ t \in \mathbb{R}_+^*,$$

est une équation différentielle linéaire d'ordre 1 homogène.

DÉFINITION: Solution de l'équation différentielle (1)

Une solution d'une équation différentielle d'ordre 1 de la forme (1) est une fonction $y: I \to \mathbb{R}$ telle que

 $\triangleright y$ est dérivable sur I,

1 Généralités 3

 \triangleright y vérifie

$$\alpha(t)y'(t) + \beta(t)y(t) = f(t), \quad \forall \ t \in I.$$

Méthode : Vérifier que y_p est solution d'une équation différentielle

- 1. Justifier que y_p est dérivable et calculer la dérivée y'_p .
- 2. Injecter y_p dans l'équation.
- 3. Si l'égalité est vérifiée, alors y_p est solution.

EXEMPLE

Considérons l'équation différentielle linéaire du premier ordre suivante :

$$y'(t) - 2ty(t) = 4t, \quad \forall \ t \in \mathbb{R}.$$

- $\,\rhd\,$ La fonction $y_p:t\mapsto {\rm e}^{t^2}-2$ est solution de cette équation. En effet,
 - * y_p est dérivable sur \mathbb{R} comme composée de fonctions dérivables (exponentielle et polynômes) et sa dérivée est $y_p': t \mapsto 2t e^{t^2}$,
 - \star l'équation est bien vérifiée :

$$y'_p(t) - 2ty_p(t) = 2t e^{t^2} - 2t(e^{t^2} - 2) = 4t, \quad \forall \ t \in I.$$

ightharpoonup De même, pour tout réel C, la fonction $t\mapsto C\operatorname{e}^{t^2}-2$ est aussi solution de cette équation.

REMARQUE

En particulier, on déduit de l'exemple précédent qu'une équation différentielle peut avoir plus d'une solution.

EXEMPLE

Considérons l'équation différentielle linéaire du premier ordre suivante :

$$y'(t) + y(t) = t^2, \quad \forall \ t \in \mathbb{R}.$$

On cherche une solution sous la forme $y_p:t\mapsto at^2+bt+c,$ où $(a,b,c)\in\mathbb{R}^3.$ On a

$$y_p': t \mapsto 2at + b.$$

En injectant y_p dans l'équation, on obtient

$$2at + b + (at^2 + bt + c) = t^2, \quad \forall \ t \in \mathbb{R}.$$

Soit encore:

$$at^2 + (2a+b)t + b + c = t^2, \quad \forall \ t \in \mathbb{R}.$$

Par identification, on obtient

$$a = 1$$
, $2a + b = 0$ et $b + c = 0$.

On en déduit $a=1,\,b=-2$ et c=2. Ainsi, $y_p:t\mapsto t^2-2t+2$ est solution de l'équation.

Exercice 5.2

Parmi les fonctions ci-dessous, indiquer celles qui sont solutions de l'équation différentielle :

$$y'(t) + 2y(t) = \cos t, \quad \forall \ t \in \mathbb{R}.$$

1)
$$y_1: t \mapsto \frac{1}{5}(\sin t + 2\cos t),$$

2)
$$y_2: t \mapsto 3 e^{-2t}$$
,

3)
$$y_3: t \mapsto -2e^{-2t} + \frac{1}{5}(\sin t + 2\cos t),$$

3)
$$y_3: t \mapsto -2e^{-2t} + \frac{1}{5}(\sin t + 2\cos t),$$
 4) $y_4: t \mapsto \frac{23}{7}e^{-2t} + \frac{1}{5}(\sin t + 2\cos t).$

2 Résolution de l'équation homogène

Dans la suite de ce chapitre, nous étudions comment résoudre l'équation différentielle linéaire d'ordre 1 suivante :

$$\alpha(t)y'(t) + \beta(t)y(t) = f(t), \quad \text{sur } I,$$

où, pour tout $t \in I$, $\alpha(t) \neq 0$.

En posant

$$\forall t \in I, \quad a(t) := \frac{\beta(t)}{\alpha(t)} \quad \text{et} \quad g(t) := \frac{f(t)}{\alpha(t)},$$

l'équation s'écrit simplement :

$$y'(t) + a(t)y(t) = g(t)$$
, sur I .

On considère tout d'abord le cas de l'équation homogène, c'est-à-dire y'(t) + a(t)y(t) = 0 sur I.

THÉORÈME: Résolution de l'équation homogène

Soient a une fonction continue sur I, A une primitive de a sur I et $C \in \mathbb{R}$. Alors, les solutions de l'équation homogène

$$y'(t) + a(t)y(t) = 0, \quad \forall \ t \in I,$$

sont les fonctions, notées y_H , définies sur I par :

$$y_H: t \mapsto C \exp\left(-A(t)\right).$$

L'ensemble des solutions de cette équation homogène est noté

$$S_H = \{ t \mapsto C \exp(-A(t)) \mid C \in \mathbb{R} \},$$

REMARQUE

En particulier, puisque, quelque soit $C \in \mathbb{R}$, $y_H : t \mapsto C \exp(-A(t))$ est solution de l'équation homogène, on en déduit que celle-ci admet un infinité de solutions.

Remarque: Moyen mnémotechnique

On suppose que y ne s'annule pas sur I, alors l'équation y'(t) + a(t)y(t) = 0 sur I s'écrit encore

$$\frac{y'(t)}{y(t)} = -a(t), \quad \text{sur } I.$$

En intégrant l'égalité précédente, on obtient

$$ln |y(t)| = -A(t) + c, \quad \forall \ t \in I,$$

où $c \in \mathbb{R}$ est une constante. Enfin, en passant à l'exponentielle dans l'égalité précédente, on a

$$|y(t)| = e^{-A(t)+c} = e^c e^{-A(t)} = C e^{-A(t)}, \quad \forall t \in I,$$

où $C := e^c \in \mathbb{R}_+^*$. On obtient ainsi $y : t \mapsto \pm C e^{-A(t)}$.

Cette méthode permet de retrouver facilement les solutions de l'équation homogène mais \mathbf{n} 'est pas rigoureuse car on y suppose que y ne s'annule pas sur I.

EXEMPLES

$$y'(t) + 2y(t) = 0, \quad \forall \ t \in \mathbb{R},$$

sont les fonctions y_H définies sur \mathbb{R} par $y_H: t \mapsto C \exp(-2t)$, où $C \in \mathbb{R}$.

$$y'(t) + \frac{1}{t}y(t) = 0, \quad \forall \ t \in \mathbb{R}_+^*,$$

sont les fonctions y_H définies sur \mathbb{R}_+^* par $y_H: t \mapsto C \exp(-\ln t) = \frac{C}{t}$, où $C \in \mathbb{R}$.

En effet, une primitive sur \mathbb{R}_+^* de $a:t\mapsto \frac{1}{t}$ est $A:t\mapsto \ln t$.

EXERCICE 5.3

Déterminer les solutions des équations différentielles suivantes :

1)
$$3y' + 12y = 0 \text{ sur } \mathbb{R};$$

2)
$$2y'(t) - t^4y(t) = 0, \forall t \in \mathbb{R}.$$

REMARQUE

Une équation différentielle du premier ordre linéaire homogène à coefficients constants est une équation de la forme

$$y'(t) + ay(t) = 0, \quad \forall \ t \in I,$$

où $a \in \mathbb{R}$.

Dans ce cas, l'ensemble des solutions est donné par

$$S_H = \{ t \mapsto C \exp(-at) \mid C \in \mathbb{R} \}.$$

En effet, une primitive de $t \mapsto a$ est $t \mapsto at$.

EXEMPLE

On considére un circuit électrique en régime variable, comprenant un générateur de tension continue E (en V), un dipôle ohmique de résistance R (en Ω) et un condensateur de capacité C (en F). Initialement, l'interrupteur est ouvert, les tensions et intensités sont donc nulles dans tout le circuit. A l'instant t=0 s, on ferme l'interrupteur.

L'équation différentielle régissant l'évolution de la tension $u_c(t)$ aux bornes du condensateur est la suivante :

$$RC\frac{du_c(t)}{dt} + u_c(t) = E(t).$$

En utilisant la notation précédente on a l'équation

$$RCu'_c(t) + u_c(t) = E(t).$$

En divisant par RC on obtient :

$$u'_c(t) + \frac{1}{RC}u_c(t) = \frac{E(t)}{RC}.$$

Il s'agit d'une équation différentielle du premier ordre linéaire à coefficients constants. Si E(t)=0 (le cas d'une décharge d'un condensateur), l'équation est homogène et les solutions de l'équation sont les fonctions

$$u_{c,H}: t \mapsto K \exp\left(-\frac{1}{RC}t\right),$$

où $K \in \mathbb{R}$.

En posant $\tau = RC$, on peut réécrire $u_{c,H}: t \mapsto K \exp\left(-\frac{t}{\tau}\right)$, où $K \in \mathbb{R}$.

3 Résolution de l'équation avec second membre

Le théorème donné précédemment ne permet de résoudre **que** l'équation homogène, il reste donc à déterminer les solutions de l'équation lorsque $f \neq 0$.

Théorème : Résolution de l'équation avec second membre

Soient a et f deux fonctions définies et continues sur I, et A une primitive de a sur I. Si y_p est une solution (particulière) de l'équation différentielle :

$$y'(t) + a(t)y(t) = f(t), \quad \forall \ t \in I,$$

alors les solutions de cette équation sont les fonctions, notées y_G , définies sur I par :

$$y_G: t \mapsto C \exp(-A(t)) + y_p(t), \quad C \in \mathbb{R}.$$

L'ensemble des solutions générales d'une équation différentielle linéaire est noté \mathcal{S}_G :

$$S_G = \{t \mapsto C \exp(-A(t)) + y_p(t) \mid C \in \mathbb{R}\}.$$

REMARQUE

Le théorème signifie que toute solution y_G de y'(t) + a(t)y(t) = f(t) s'écrit

$$y_G = y_H + y_p,$$

où y_H est une solution de l'équation homogène et y_p une solution particulière de l'équation.

Afin de déterminer une solution particulière de l'équation y'(t) + a(t)y(t) = f(t), on applique la méthode dite de variation de la constante

On a vu que l'ensemble des solutions de l'équation homogène est :

$$S_H = \{t \mapsto C \exp(-A(t)) \mid C \in \mathbb{R}\}.$$

On cherche alors une solution particulière y_p sous la forme :

$$y_p: t \mapsto c(t) \exp(-A(t))$$
.

On dit qu'on fait varier la constante. L'objectif est donc de déterminer une telle fonction c.

MÉTHODE : VARIATION DE LA CONSTANTE

1. Donner l'expression d'une solution particulière en faisant varier la constante :

$$y_p: t \mapsto c(t) \exp(-A(t)).$$

- 2. Dériver puis injecter dans l'équation différentielle pour obtenir une expression de c'.
- 3. Déterminer une primitive de c'.
- 4. En déduire l'expression de y_p .

EXEMPLE

Soit l'équation différentielle :

$$y'(t) + 3y(t) = t^2 e^{-3t}, \quad \forall \ t \in \mathbb{R}.$$

L'ensemble des solutions de l'équation homogène est :

$$\mathcal{S}_H = \left\{ t \mapsto C e^{-3t} \mid C \in \mathbb{R} \right\}.$$

On recherche alors une solution particulière y_p sous la forme :

$$y_p: t \mapsto c(t) e^{-3t}$$
.

La dérivée de y_p est

$$y'_n: t \mapsto c'(t) e^{-3t} - 3c(t) e^{-3t}$$

ainsi

$$\forall t \in \mathbb{R}, \quad y_p'(t) + 3y_p(t) = c'(t) e^{-3t} - 3c(t) e^{-3t} + 3c(t) e^{-3t} = c'(t) e^{-3t}.$$

Donc en injectant y_p dans l'équation, on obtient pour tout $t \in \mathbb{R}$:

$$c'(t) e^{-3t} = t^2 e^{-3t}$$
 donc $c'(t) = t^2$.

On peut donc choisir la fonction $c: t \mapsto \frac{t^3}{3}$. On en déduit

$$y_p: t \mapsto \frac{t^3}{3} e^{-3t}$$

Exercice 5.4

Résoudre par la méthode de la variation de la constante les équations différentielles suivantes :

1)
$$y'(t) + y(t) = t e^{-t}, \forall t \in \mathbb{R}.$$

2)
$$y'(t) - 2ty(t) = -2t$$
, $\forall t \in \mathbb{R}$.

EXEMPLE

Dans le cas d'un circuit RC, on considére l'équation différentielle

$$u_c'(t) + \frac{1}{\tau}u_c(t) = \frac{E(t)}{\tau},$$

avec $E(t) = E_0$ constant.

On cherche une solution particulière $u_{c,p}: t \mapsto c(t) e^{-\frac{t}{\tau}}$. La dérivée de $u_{c,p}$ est

$$u'_{c,p}: t \mapsto c'(t) e^{-\frac{t}{\tau}} - \frac{1}{\tau} c(t) e^{-\frac{t}{\tau}}.$$

Donc en injectant $u_{p,c}$ et sa dérivée dans l'équation, on obtient pour tout $t \in \mathbb{R}$:

$$c'(t) e^{-\frac{t}{\tau}} = \frac{E_0}{\tau} \quad \text{donc} \quad c'(t) = \frac{E_0}{\tau} e^{\frac{t}{\tau}}.$$

On peut donc choisir la fonction $c:t\mapsto E_0\operatorname{e}^{\frac{t}{\tau}}.$ On en déduit

$$u_{c,p}: t \mapsto c(t) e^{-\frac{t}{\tau}} = E_0 e^{\frac{t}{\tau}} e^{-\frac{t}{\tau}} = E_0$$

Donc si $E(t)=E_0$, alors une solution particulière est $u_{c,p}:t\mapsto E_0$ et toutes les solutions de l'équation complète sont de la forme

$$u_c: t \mapsto K \exp\left(-\frac{t}{\tau}\right) + E_0,$$

où $K \in \mathbb{R}$.