Taxonomic Assignment and DNA Metabarcoding

Dr. Marie Louise Davey

Why assign taxonomy at all?

Not strictly necessary to answer alpha and betadiversity questions

 Detecting shifts in community composition and genetic diversity doesn't require taxonomic assignments

Assigning taxonomy links sequences to a wealth of pre-existing information

 Linking sequences to species improves interpretation and explanation of patterns in alpha and beta diversity

Taxonomic Assignment

Markers

Marker choice impacts taxonomic assignment

- No marker is perfect
 - Markers have taxonomic bias
 - Discriminating power varies between markers and taxonomic groups
 - Database quality, availability, and completeness varies between markers

Effect of marker bias

Marker Choice

Coverage and quality of DNA barcode references for Central and Northern European Odonata

Matthias Geiger¹, Stephan Koblmüller², Giacomo Assandri³, Andreas Chovanec⁴, Torbjørn Ekrem⁶, Iris Fischer^{5,7,8}, Andrea Galimberti⁹, Michał Grabowski¹⁰, Elisabeth Haring^{5,7,8}, Axel Hausmann¹¹, Lars Hendrich¹¹, Stefan Koch¹², Tomasz Mamos¹⁰, Udo Rothe¹³, Björn Rulik¹, Tomasz Rewicz¹⁰, Marcia Sittenthaler⁷, Elisabeth Stur⁶, Grzegorz Tończyk¹⁰, Lukas Zangl^{2,14,15} and Jerome Moriniere¹⁶

Marker Choice

Coverage and quality of DNA barcode references for Central and Northern European Odonata

- COI marker was selected for barcoding
- >80% of European species have a pre-existing publicly available barcode
- 88% of species tested could be resolved using the marker

Databases

Taxonomic assignment quality is highly dependent on database accuracy and completeness

- Misidentified sequences create identification errors and low-quality assignments
- Missing reference sequences reduce resolution of taxonomic assignments, or results in misidentifications

Quality of taxonomic assignments can often be improved by creating custom-curated reference databases

Methods for Taxonomic Assignment

- Diverse algorithms are used for comparing sequences to databases and scoring the results
 - Alignment based BLAST, vsearch, OBItools
 - Phylogenetic based HmmUFOtu, TIPP, DECARD, SAP
 - Kmer-based machine learning approaches RDP, UTAX, SINTAX

Alignment based taxonomic assignment

Alignment strategy can be local (BLAST) or global (vsearch)

- Local alignments begin by checking a small piece of the query sequence against the reference database and then expanding the match to find areas of high similarity
- Global alignments find the best match in the reference database across the entire length of the query sequence

Output is typically an alignment score, percent identity, and coverage score

These are used as criteria for assigning taxonomy

Alignment based taxonomic assignment

62% similarity

93% similarity 32% coverage

Alignment based taxonomic assignment

Pros	Cons
 Extremely well developed infrastructure Easily applied to custom databases Computationally inexpensive, particularly for large databases High assignment rate 	 Typically lower taxonomic accuracy, lower precision, and lower taxonomic sensitivity than other methods Thresholds for successful assignment must be set by the user and require a priori knowledge No systematic assignment at higher taxonomic levels (unless paired with LCA)

Criteria for taxonomic assignments

Threshold Cutoffs

- A minimum 'score' must be met for a successful assignment
- 1. Identity based
- •reference sequence taxonomy is assigned for the best match exceeding the threshold value (often used in BLAST)
- 2. Confidence intervals
- •Proportion of kmers matching a given taxonomic assignment at a given taxonomic rank (ex/ SINTAX, RDP)

Lowest Common Ancestor (LCA) consensus

- Assigns consensus taxonomy based on a group of pre-defined 'best hits' for each sequence
- •Typically requires a separate additional step to calculate the LCA (ex/ LCA*, BASTA, MEGAN)

Lowest Common Ancestor Calculations

Phylogenetic based taxonomic assignment

Assignment of reads on a known reference tree, often followed by clustering or LCA analysis

- 1.Placement on the reference tree is typically done using the pplacer algorithm, which is based on HMMER alignments of the query sequences with the reference database. This is often followed by clustering or LCA analysis
- 2.Alignment based searches (BLAST) are used to identify relevant reference sequences, and MCMC or bootstrapping are used to evaluate a series of phylogenetic trees generated from the query + references

Output is typically a taxonomy string with accompanying support statistics

Phylogenetic based taxonomic assignment

b HmmUFOtu Workflow

Phylogenetic based taxonomic assignment

Pros	Cons				
 Assignment thresholds are flexible, and can vary between taxonomic groups Provides phylogenetic data about sequences Good taxonomic precision and sensitivity 	 Requires a known reference phylogeny Many algorithms require that the target gene region is alignable across the entire target group Computationally expensive Taxonomic accuracy can be compromised by an incomplete or poor reference phylogeny 				

Machine-learning based taxonomic assignment

Sequences are given a best classification based on a training set

- 1.Reads are broken into k-mers (sequence fragments of fixed length)
- 2.K-mers are compared to a training set of reference sequences with known taxonomies
- 3. Proportion of k-mers assigned to a given taxonomic level are used as a confidence score

Output is typically a taxonomy string with accompanying support statistics for each taxonomic level

Machine-learning based taxonomic assignment

Pros	Cons				
 Provides confidence intervals for all taxonomic levels Assignment thresholds are flexible, and can vary between taxonomic groups High taxonomic precision and sensitivity 	 Can be computationally intensive Often requires establishment and benchmarking of a custom training set for the classification algorithm Database insufficiencies can create inaccuracy 				

Uncertainty in Taxonomic Assignments

- One of the biggest sources of variation in metabarcoding results is bioinformatics
 - Of this variation, taxonomic assignments have the biggest impact
 - Quantifying this uncertainty is helpful in providing good monitoring data

Reccomendation 1: Probabilistic Assignment Tools

- Algorithm provides statistical confidence estimates at each taxonomic level
 - Enables use of flexible thresholds

	Kingdom	Phylum	Class	Order	Family	Genus	Species	
*								
· ·								
Promp.								
1								
*								
兼								

Reccomendation 2: External Database Controls

- Identify potential database contamination
 - BLAST training set/database against a broader database (ex/ GenBank)

Reccomendation 3: Internal Database Controls

- Identify groups with poor marker performance
 - BLAST training set against itself

Reccomendation 4: Assess Database Coverage

- Identify groups in the target geographic area with poor representation in the database
 - Compare database to local species checklists

Reccomendation 5: Assess geographic 'plausability'

- Identify taxonomic assignments that are unlikely for the focal geographic area
 - Compare assignments to local species checklists

Report Uncertainty

 Use these criteria to categorize uncertainty in taxonomic assignments or flag individual cases for further investigation

	*	Marrie	& COUNTY	1	*	煮	*	
Algorithm Confidence Score								
Database Contamination								
Marker Performance								
Database Coverage								
Geographic Plausability								

How to decide?

- Find a method that balances your community's diversity with computational time
- Look for existing database resources, particularly for machine learning approaches
- Evaluate the importance of taxonomy to your conclusions
- Be critical, report uncertainty in taxonomic assignments

