Intro to ML

A training course for security researchers

Alex Marks-Bluth

Course Structure

Problem Based Learning

Each day (week) we will dive into a cybersecurity problem with a dataset and "learn from doing"

Day 0	Self-study and preparations	
Day 1	DNS tunneling	
Day 2	Spam/not-spam	
Day 3	L7DDoS - Volumetric Attack or Sale?	
Day 4	Network Intrusion Detection	
Day 5	TBD	

Goals of the course "Think DS"

Use ML as a tool

- ML toolkit in Splunk
- Jupyter and standard python ML packages
- Know how to apply to cybersecurity datasets
- How to adapt existing models/pipelines to new data

Familiarity with ML

- Data science concepts
- Stages in researching and production
- > Strategies in ML

Know how to ask for help

- How to get more specific help
 - What to ask
 - o Who to ask
- How to work with DS consultants

About Me

Alex Marks-Bluth

- Industry Data Scientist in cybersecurity industry > 10 years
 - Startups
 - Enterprise
 - Consulting
- Leads multidisciplinary teams of DS and security researchers in web security research in Akamai
- Work with large scale data and distributed systems, real time and offline data science systems

DNS tunneling

DNS Tunneling

Housekeeping

Splunk

Notebooks

https://github.com/marksbluth/ML course

Data

https://github.com/ggyggy666/DNS-Tunnel -Datasets/tree/main Data Research questions

Goal

Research questions

Goal

Data Science in Industry

(What I do vs what my mother thinks I do)

Hard parts are

- > Framing a problem in a way that ML can solve
- Integrating ML solutions into a larger product
- Designing a ML system to work in production
- Testing a ML system
- Learning how to "smell" DS
- > Just like the smell test in code. Patterns, anti-patterns, assumptions

JAKE-CLA

e2e example on DNS data

- some practical work :)

Getting Started	09:00
From data to insights	09:45
Coffee break	10:30
ML Inputs and outputs	10:45
e2e example on DNS data	11:30

Getting Started

09:00

Tooling

- > databases
- > notebooks
 - Jupyter, other
- experiment tracking + artifactory
 - o MLFlow

From data to insights

09:45

- > Data to dataframe
- > Exploratory data analysis (EDA)
- > how to frame a question in ML
 - intro to optimization functions
- ➤ How to structure a DS project

From data to insights

Step-by-step:

Data to dataframe

- Data = structured, unstructured, queries, ...
- ➤ Dataframe = rows and columns
 - Ordered
 - Distributed, single node
 - Pandas = standard, but pandas has some pointy edges
- "ML ready" dataframe = matrix of numbers
- (ML output = number(s) -> how to go back to relevant output?)

From data to insights

Step-by-step (continued)

Exploratory data analysis (EDA)

- > Issues, errors, dirty
- > Skew(s)
- Data sizing
- Data drift

How to frame a question in ML

- ➤ (intro to optimization functions)
- Classical optimization functions
- ➤ DL what happens here?

ML as an optimization problem

Linear Regression - how does it work

Linear regression is the simplest of "ML" models

- However is a good thought example of how more complicated models work
- Whiteboard example...
- What are some potential issues with linear regression?
 - Many dimensions
 - Skew
 - Large data
 - Entropy of data
 - How are these issues different for other models?

ML as an optimization problem

Types of optimizations

Supervised learning

= stick close to these labeled examples

Unsupervised learning

= find lowest energy

Semi-Supervised Learning

Reinforcement Learning

Lots more models!

<u>Supervised learning</u> (wikipedia)

- Support-vector machines
- ➤ Linear regression
- Logistic regression
- ➤ Naive Bayes
- Linear discriminant analysis
- Decision trees
- > K-nearest neighbor algorithm
- Neural networks (Multilayer perceptron)
- > Similarity learning
- Trees effectively allow for non-linear relationships while maintaining explainability:
- Decision tree
- Random forest
- Gradient boosting, XGBoost, CatBoost

Lots more models!

<u>Unsupervised Learning</u> (wikipedia)

Clustering

- ➤ hierarchical clustering (eg Birch)
- ➤ K-means
- ➤ DBSCAN
- ➤ HDBscan

Anomaly detection

- Local Outlier Factor
- Isolation Forest
- Autoencoder

Latent variable models

Getting Started 09:00 From data to 09:45 insights 10:30 **Coffee break ML Inputs and** 10:45 outputs e2e example on 11:30 **DNS** data

Getting Started	09:00
From data to insights	09:45
Coffee break	10:30

ML Inputs and outputs

10:45

Taxonomy:

types of data

- structured, unstructured, balanced, skewed
- types of models
 - supervised, unsupervised, semi-supervised, self-supervised, reinforcement

Getting Started	09:00		
From data to insights	09:45		
Coffee break	10:30		
		Tools	
ML Inputs and outputs	10:45	sklearn package, Splunk Machine Learning Toolkit	
		Discussion - How to use ML	
e2e example on DNS data	11:30	without being an expert Examples - linear regression vs	
		Building blocks - python vs machine code - levels of abstraction in DS	

Checks for EDA + FE processes

Assumptions

Repeatable

Scaleable

Testable

Actual short courses that I recommend!

https://developers.google.co m/machine-learning

