Combinational Logic

Mantıksal Tasarım – BBM231

section instructor: **Ufuk Çelikcan**

Classification

1. Combinational

- no memory
- outputs depend only on the present inputs
- expressed by Boolean functions

2. Sequential

- storage elements + logic gates
- the content of the storage elements define the state of the circuit
- outputs are functions of both inputs and current state
- state is a function of previous inputs
- >> So outputs not only depend on the present inputs but also the past inputs

Combinational Circuits

- \mathbf{n} input bits \rightarrow $\mathbf{2}^{\mathbf{n}}$ possible binary input combinations
- For each possible input combination, there is one possible output value
 - truth table
 - Boolean functions (with n input variables)
- <u>Examples</u>: adders, subtractors, comparators, decoders, encoders, multiplexers.

Analysis & Design of Combinational Logic

- Analysis: to find out the function that a given circuit implements
 - We are given a logic circuit and
 - we are expected to find out
 - Boolean function(s)
 - 2. Truth table
 - 3. A possible explanation of the circuit operation (i.e. what it does)

Analysis of Combinational Logic

- First, make sure that the given circuit is, indeed, combinational.
 - Verifying the circuit is combinational
 - ✓ No memory elements
 - ✓ No feedback paths (connections)
- Second, obtain a Boolean function for each output or the truth table
- Finally, interpret the operation of the circuit from the derived Boolean functions or truth table
 - What is it the circuit doing?
 - Addition, subtraction, multiplication, comparison etc.

Obtaining Boolean Function

Example

- Boolean expressions for named wires
 - \blacksquare T₁ = abc
 - $T_2 = a + b + c$
 - $F_2 =$
 - $T_3 =$
 - $T_4 = T_3 T_2$
 - $F_1 = T_1 + T_4$
 - =
 - =
 - =
 - =

Boolean expressions for named wires

```
\blacksquare T<sub>1</sub> = abc
T_2 = a + b + c
• F_2 = ab + ac + bc
T_3 = F_2' = (ab + ac + bc)'
T_4 = T_3T_2 = (ab + ac + bc)' (a + b + c)
\blacksquare F_1 = T_1 + T_A
  = abc + (ab + ac + bc)' (a + b + c)
  = abc + ((a' + b')(a' + c')(b' + c')) (a + b + c)
  = abc + ((a' + a'c' + a'b' + b'c')(b' + c'))(a + b + c)
  = abc + (a'b' + a'c' + a'b'c' + b'c') (a + b + c)
  = abc + (a'b' + a'c' + b'c') (a + b + c)
```

- Boolean expressions for outputs
 - $F_2 = ab + ac + bc$
 - \blacksquare $F_1 =$
 - $F_1 =$
 - $\blacksquare F_1 =$
 - $\blacksquare F_1 =$

Boolean expressions for outputs

•
$$F_2 = ab + ac + bc$$

•
$$F_1 = abc + (a'b' + a'c' + b'c') (a + b + c)$$

$$\blacksquare$$
 $F_1 = abc + a'b'c + a'bc' + ab'c'$

•
$$F_1 = a(bc + b'c') + a'(b'c + bc')$$

■
$$F_1 = a(b \oplus c)' + a'(b \oplus c)$$

■
$$F_1 = (a \oplus b \oplus c) : Odd Function$$

Example: Obtaining Truth Table

$$F_1 = a \oplus b \oplus c$$

 $F_2 = ab + ac + bc$ carry sum

a	Ь	С	T_1	T_2	T_3	T ₄	F ₂	F_1
0	0	0	0	0	1	0		
0	0	1	0	1	1	1		
0	1	0	0	1	1	1		
0	1	1	0	1	0	0		
1	0	0	0	1	1	1		
1	0	1	0	1	0	0		
1	1	0	0	1	0	0		
1	1	1	1	1	0	0		

Example: Obtaining Truth Table

$$F_1 = a \oplus b \oplus c$$

 $F_2 = ab + ac + bc$ carry sum

									<u> </u>
a	b	С	T ₁	T_2	T ₃	T ₄	F ₂	F ₁	
0	0	0	0	0	1	0	0	0	
0	0	1	0	1	1	1	0	1	
0	1	0	0	1	1	1	0	1	
0	1	1	0	1	0	0	1	0	
1	0	0	0	1	1	1	0	1	
1	0	1	0	1	0	0	1	0	
1	1	0	0	1	0	0	1	0	
1_	1	1	1	1	0	0	1	1	

This is what we call full-adder (FA)

Design of Combinational Logic

Design Procedure:

- We start with the <u>verbal</u> specification about what the resulting circuit will do for us (i.e. which function it will implement)
 - Specifications are often verbal, and very likely incomplete and ambiguous (if not even faulty)
 - Wrong interpretations can result in incorrect circuit
- We are expected to find
 - Boolean function(s) (or truth table) to realize the desired functionality
 - 2. Logic circuit implementing the Boolean function(s) (or the truth table)

Possible Design Steps

- 1. Find out the <u>number of inputs and outputs</u>
- 2. Derive the <u>truth table</u> that defines the required relationship between inputs and outputs
- 3. Obtain a <u>simplified Boolean function</u> for each output
- 4. Draw the <u>logic diagram</u> (enter your design into CAD)
- 5. Verify the correctness of the design

Design Constraints

- From the truth table, we can obtain a variety of simplified expressions, all realizing the same function.
- Question: which one to choose?
- The <u>design constraints</u> may help in the selection process
- Constraints:
 - number of gates
 - propagation time of the signal all the way from the inputs to the outputs
 - number of inputs to a gate
 - number of interconnections
 - power consumption
 - driving capability of each gate

Example: Design Process

- BCD-to-2421 Converter
- Verbal specification:
 - Given a BCD digit (i.e. {0, 1, ..., 9}), the circuit computes
 2421 code equivalent of the decimal number
- Step 1: how many inputs and how many outputs?
 - four inputs and four outputs
- Step 2:
 - Obtain the truth table
 - $-0000 \rightarrow 0000$
 - $-1001 \rightarrow 1111$
 - etc.

• Truth Table

	Inputs				Outputs			
Α	В	С	D	×	У	Z	†	
0	0	0	0					
0	0	0	1					
0	0	1	0					
0	0	1	1					
0	1	0	0					
0	1	0	1					
0	1	1	0					
0	1	1	1					
1	0	0	0					
1	0	0	1					

Binary coded decimal (**BCD**) is a system of writing numerals that assigns a four-digit binary code to each digit 0 through 9 in a decimal (base-10) numeral. The four-bit BCD code for any particular single base-10 digit is its representation in binary notation, as follows:

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

Numbers larger than 9, having two or more digits in the decimal system, are expressed digit by digit. For example, the BCD rendition of the base-10 number **1895** is

0001 1000 1001 0101

2421 Code

- a **weighted** code.
 - The weights assigned to the four digits are 2, 4, 2, and 1.
- The 2421 code is the same as that in BCD from 0 to 4; however, it differs from 5 to 9.
- For example, in this case the bit combination 0100 represents decimal 4; whereas the bit combination 1101 is interpreted as the decimal 7, as obtained from $2 \times 1 + 1 \times 4 + 0 \times 2 + 1 \times 1 = 7$.
- This is also a **self-complementary** code,
 - that is, the 9's complement of the decimal number is obtained by changing the 1s to 0s and 0s to 1s.

• Truth Table

	Inputs				Out	put <i>s</i>	
Α	В	С	D	×	У	Z	†
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				

• Truth Table

	Inputs			Outputs			
Α	В	C	D	×	У	Z	†
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	1
0	1	0	0	0	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	0
0	1	1	1	1	1	0	1
1	0	0	0	1	1	1	0
1	0	0	1	1	1	1	1

Step 3: Obtain simplified Boolean expression

for each output

• Output x:

Α	В	С	D	х
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
	The	rest		X

Step 3: Obtain simplified Boolean expression

for each output

• Output x:

CD				
AB	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	X	X	Х	Х
10	1	1	X	Х

Α	В	С	D	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
	The	rest		Χ

Step 3: Obtain simplified Boolean expression

for each output

Output x:

Α	В	С	D	X			
0	0	0	0	0			
0	0	0	1	0			
0	0	1	0	0			
0	0	1	1	0			
0	1	0	0	0			
0	1	0	1	1			
0	1	1	0	1			
0	1	1	1	1			
1	0	0	0	1			
1	0	0	1	1			
	The rest						

• Output y:

AB	00	01	11	10
00				
01				
11				
10				

CD		Output z:					
AB	00	01	11	10			
00							
01							
11							
10							

A1	В	С	D	у	Z
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
	The	X	X		

• Output y:

AB	00	01	11	10
00	0	0	0	0
01	1	0	1	1
11	X	X	X	X
10	1	1	X	X

•	0	ut	pu	t	Z:
	_			_	

() ·			_	
AB\	00	01	11	10
00	0	0	1	1
01	0	1	0	0
11	X	X	X	X
10	1	1	X	X
26		_		

Α	В	С	D	у	Z
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
	The rest				X

Output y:

AB	00	01	11	10
00	0	0	0	0
01	1	0	1	1
11	X	X	X	X
10	1	1	X	X

•	Οι	ıtp	ut	z:
		-	J. J	

(C)			•	
AB	00	01	11	10 /
00	0	0	1	1
01	0	1	0	0
11	X	X	X	X
10	1	1	X	X
27	_			

Α	В	С	D	У	Z
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	1	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	0	1	1	1
	The	X	X		

$$y = A + BD' + BC$$

 $z = A + B'C + BC'D$

• Output t:

CD				
AB	00	01	11	10
00				
01				
11				
10				

t =

Α	В	С	D	Т
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
	The	rest		X

• Output t:

CD					
AB	00	01	11	10	_
00	0	1	1	0	
01	0	1	1	0	t =
11	X	X	X	X	
10	0	1	X	X	

Step 4: Draw the logic diagram

$$x = BC + BD + A$$

 $y = A + BD' + BC$
 $z = A + B'C + BC'D$

A	В	С	D	Т
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
	The	rest		X

Output t:

/CD				
AB	00	01	11	10
00	0	1	1	0
01	0	1	1	0
11	X	X	X	X
10	0	1	X	X

$$t = D$$

Step 4: Draw the logic diagram

$$x = BC + BD + A$$

 $y = A + BD' + BC$
 $z = A + B'C + BC'D$

Α	В	С	D	Т
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
The rest				X

Example: Logic Diagram

Example: Verification

- Step 5: Check the functional correctness of the logic circuit
- Apply all possible input combinations
- And check if the circuit generates the correct outputs for each input combinations
- For large circuits with many input combinations, this may not be feasible.
- Statistical techniques may be used to verify the correctness of large circuits with many input combinations

Binary Adder/Subtractor

- (Arithmetic) Addition of two binary digits
 - \bullet 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10
 - The result has two components
 - the sum (S)
 - the carry (C)
- (Arithmetic) Addition of three binary digits

Half Adder

• Truth table

×	У	С	5
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy' = x \oplus y$$

$$C = xy$$

Full Adder 1/2

- A circuit that performs the arithmetic sum of three bits
 - Three inputs
 - the range of output is [0, 3]
 - Two binary outputs

×	У	Z	С	5
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder 2/2

Karnaugh Maps

Two level implementation

1st level: three AND gates

2nd level: One OR gate

Full Adder 2/2

Karnaugh Maps

$$S = xy'z' + x'y'z + xyz + x'yz'$$

$$= ...$$

$$= ...$$

$$= x \oplus y \oplus z$$

$$C = xy + xz + yz$$
$$= xyz' + xyz + xy'z + x'yz$$

Two level implementation

1st level: three AND gates

2nd level: One OR gate

S is an odd function of the 3 input bits

$$\rightarrow$$
 S = a \oplus b \oplus C_{in}

•
$$C_{out} = ab C_{in} + ab C_{in}' + ab' C_{in} + a'b C_{in}$$

= $ab + C_{in}(ab' + a'b)$
= $ab + C_{in}(a \oplus b)$

a	b	C_{in}	C_{out}	S
0	0	0	0	O
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	O	0	O	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder: Hierarchical Realization

- Sum
 - $S = x \oplus y \oplus z = (x \oplus y) \oplus z$
- Carry
 - C = xyz' + xyz + xy'z + x'yz = xy + (xy' + x'y) z $= xy + (x \oplus y) z$
- This allows us to implement a full-adder using two half adders.

Full Adder Using Half Adders

Integer Addition 1/2

Binary adder:

- A digital circuit that produces the arithmetic sum of two binary numbers
- \blacksquare A = $(a_{n-1}, a_{n-2}, ..., a_1, a_0)$
- $\blacksquare B = (b_{n-1}, b_{n-2}, ..., b_1, b_0)$
- A simple case: 4-bit binary adder

Integer Addition 2/2

Ripple-carry adder

Hierarchical Design Methodology

- The design methodology we used to build carry-ripple adder is what is referred as <u>hierarchical design</u>.
- In classical design, we have:
 - 9 inputs including C₀.
 - 5 outputs
 - Truth tables with 2⁹ = 512 entries
 - We have to optimize five Boolean functions with 9 variables each.
- Hierarchical design
 - we divide our design into smaller functional blocks
 - connect functional units to produce the big functionality

Full Adder in Xilinx

Two-bit Adder in Xilinx

Subtractor

Recall how we do subtraction (2's complement)

$$X - Y = X + (2^n - Y) = X + ^Y + 1$$

- What is the total propagation time of 4-bit ripple-carry adder?
 - τ_{FA} : propagation time of a single full adder.
 - We have four full adders connected in cascaded fashion
 - Total propagation time: ??

Carry Propagation

- Propagation time of a full adder
 - $au_{XOR} \approx 2\tau_{AND} = 2\tau_{OR}$
 - \bullet $\tau_{FA} \approx 2\tau_{XOR}$

carry-**P**ropagate: $P_i = A_i \oplus B_i$

carry-**G**enerate: $G_i = A_i B_i$

$$S_i = P_i \oplus C_i$$
$$C_{i+1} = G_i + P_i C_i$$

Carry Propagation

Carry-lookahead design

$$C_0 = \text{input carry}$$
 $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 $C_1 = G_0 + P_0C_0$ $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 = P_2P_1P_0C_0$

Carry Propagation

Delays

- P_0 , P_1 , P_2 , P_3 : $\tau_{XOR} \approx 2\tau_{AND}$
- $C_1(S_0)$: $\approx 2\tau_{AND} + 2\tau_{AND} \approx 4\tau_{AND}$
- $C_2(S_1)$: $\approx 4\tau_{AND} + 2\tau_{AND} \approx 6\tau_{AND}$
- $C_3(S_2)$: $\approx 6\tau_{AND} + 2\tau_{AND} \approx 8\tau_{AND}$
- $C_4(S_3)$: $\approx 8\tau_{AND} + 2\tau_{AND} \approx 10\tau_{AND}$

Decoders

- A binary code of n bits
 - capable of representing 2ⁿ distinct elements of coded information
 - A decoder is a combinational circuit that converts binary information from n binary inputs to a maximum of 2ⁿ unique output lines

×	У	d_0	d_1	d_2	d_3
0	0	1	0	0	0
0	1	0	1 O	0	0
1	0	0	0	1	0
1	1	0	0	0	1

•
$$d_0 =$$

•
$$d_2 =$$

•
$$d_3 =$$

Decoder with Enable Input

e	X	У	d_0	d_1	d_2	d_3
0	X	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0 1 0 0	0	0	1

- A demultiplexer is a combinational circuit
 - it receives information from a single input line and directs it one of 2ⁿ output lines
 - It has n selection lines as to which output will get the input


```
d_0 = e when x = 0 and y = 0

d_1 = e when x = 0 and y = 1

d_2 = e when x = 1 and y = 0

d_3 = e when x = 1 and y = 1
```


Combining Decoders

- Decoders with enable inputs can be connected together to form a larger decoder circuit.
- Figure shows two 2-to-4-line decoders with enable inputs connected to form a 3-to-8-line decoder.
- When x=0, the top decoder is enabled and the other is disabled. The bottom decoder outputs are all 0's, and the top four outputs generate minterms 000 to 011.
- When x=1, the enable conditions are reversed: The bottom decoder outputs generate minterms 100 to 111, while the outputs of the top decoder are all 0's.
- This example demonstrates the usefulness of enable inputs in decoders

Decoder as a Building Block

 A decoder provides the 2ⁿ minterms of n input variable

- We can use a decoder and OR gates to realize any Boolean function expressed as sum of minterms
 - Any combinational circuit with n inputs and m outputs can be realized using
 - an n-to-2ⁿ line decoder
 - and m OR gates.

Decoder as a Building Block-ROM

Decoder as a Building Block-ROM

Example: Decoder as a Building Block

• Full adder

$$-C = xy + xz + yz$$

$$-S = x \oplus y \oplus z$$

Encoders

- An encoder is a combinational circuit that performs the inverse operation of a decoder
 - number of inputs: 2ⁿ
 - number of outputs: n
 - the output lines generate the binary code corresponding to the input value
- Example: n = 2

d_0	d_1	d_2	d_3	×	У
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

Priority Encoder

- Problem with a regular encoder:
 - only one input can be active at any given time
 - the output is undefined for the case when more than one input is active simultaneously.
- Priority encoder:
 - there is a priority among the inputs

d_0	d_1	d_2	d ₃	а	b	V
0	0	0	0	Х	Х	
1	0	0	0	0	0	1
Χ	1	0	0	U	Τ.	Τ.
Χ	X	1			0	1
X	X	Χ	1	1	1	1

Priority Encoder

- if two or more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.
- In addition to the two outputs a and b, the circuit has a third output designated by V; this is a valid bit indicator that is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there is no valid input and V is equal to 0. The other two outputs are not inspected when V equals 0 and are specified as don't-care conditions.

Priority encoder:

4-bit Priority Encoder

- In the truth table
 - X for input variables represents both 0 and 1.
 - Good for condensing the truth table
 - Example: $X100 \rightarrow (0100, 1100)$
 - This means d₁ has priority over d₀
 - d₃ has the highest priority
 - d₂ has the next
 - d₀ has the lowest priority
 - V = ?
 - The condition for output *V* is an OR function of all the input variables.

Maps for 4-bit Priority Encoder

a =

d_2d_3				
d_0d_1	00	01	11	10
00				
00 01				
11				
10				

b =

Maps for 4-bit Priority Encoder

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	1
01	0	1	1	1
11	0	1	1	1
10	0	1	1	1

a =

d_2d_3				
d_0d_1	00	01	11	10
00	X	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0

b =

4-bit Priority Encoder: Circuit

$$a = d_{1} + d_{3}$$

 $b = d_{1}d_{2}' + d_{3}$
 $V = d_{0} + d_{1} + d_{2} + d_{3}$

Multiplexers

- A combinational circuit
 - It selects binary information from one of the many input lines and directs it to a single output line.
 - Many inputs m
 - One output line
 - n selection lines \rightarrow n = ?
- Example: 2-to-1-line multiplexer
 - 2 input lines I₀, I₁
 - 1 output line Y
 - 1 select line S

5	У
0	Io
1	I_1

Y = ?

Function Table

2-to-1-Line Multiplexer

$$Y = S'I_0 + SI_1$$

Special Symbol

4-to-1-Line Multiplexer

- 4 input lines: I₀, I₁, I₂, I₃
- 1 output line: Y
- 2 select lines: S₁, S₀.

S_1	S_0	Υ
0	0	
0	1	
1	0	
1	1	

$$Y = ?$$

Interpretation:

- In case $S_1 = 0$ and $S_0 = 0$, Y selects I_0
- In case $S_1 = 0$ and $S_0 = 1$, Y selects I_1
- In case $S_1 = 1$ and $S_0 = 0$, Y selects I_2
- In case $S_1 = 1$ and $S_0 = 1$, Y selects I_3

4-to-1-Line Multiplexer: Circuit

Multiplexer with Enable Input

To select a certain building block we use enable inputs

Multiple-Bit Selection Logic 1/2

- A multiplexer is also referred as a "data selector"
- A multiple-bit selection logic selects a group of bits

Multiple-bit Selection Logic 2/2

E	5	У
1	X	all O's
0	0	A
0	1	В

Design with Multiplexers 1/2

- Reminder: design with decoders
- Half adder
 - $C = xy = \sum (3)$
 - $-S = x \oplus y = x'y + xy' = \sum (1, 2)$

 A closer look will reveal that a multiplexer is nothing but a decoder with OR gates

Design with Multiplexers 2/2

4-to-1-line multiplexer

•
$$S_1 \rightarrow X$$

•
$$S_0 \rightarrow y$$

•
$$S_1'S_0' = x'y'$$
,

•
$$S_1'S_0 = x'y$$
,

•
$$S_1S_0' = xy'$$
,

•
$$S_1S_0 = xy$$

•
$$Y = S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0' I_2 + S_1S_0 I_3$$

•
$$Y = x'y' I_0 + x'y I_1 + xy' I_2 + xyI_3$$

• Example: $S = \Sigma(1, 2)$

• Example: $S = \Sigma(1, 2)$

Design with Multiplexers Efficiently

- More efficient way to implement an nvariable Boolean function
 - 1. Use a multiplexer with n-1 selection inputs
 - 2. First (n-1) variables are connected to the selection inputs
 - 3. The remaining variable is connected to data inputs
- Example: $Y = \Sigma(1, 2)$

Design with Multiplexers Efficiently

- More efficient way to implement an nvariable Boolean function
 - 1. Use a multiplexer with n-1 selection inputs
 - 2. First (n-1) variables are connected to the selection inputs
 - 3. The remaining variable is connected to data inputs
- Example: $Y = \Sigma(1, 2)$

Design with Multiplexers

General procedure for n-variable Boolean function $F(x_1, x_2, ..., x_n)$

- 1. The Boolean function is expressed in a truth table
- 2. The first (n-1) variables are applied to the selection inputs of the multiplexer $(x_1, x_2, ..., x_{n-1})$
- 3. For each combination of these (n-1) variables, evaluate the value of the output as a function of the last variable, x_n .
 - $0, 1, x_n, x_n'$
- 4. These values are applied to the data inputs in the proper order.

• $F(x, y, z) = \Sigma(1, 2, 6, 7)$

$$\blacksquare F = x'y'z + x'yz' + xyz' + xyz$$

$$\blacksquare$$
 Y = $S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0' I_2 + S_1S_0 I_3$

Х	У	z	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

F =

F =

F=

F =

• $F(x, y, z) = \Sigma(1, 2, 6, 7)$

$$\blacksquare F = x'y'z + x'yz' + xyz' + xyz$$

$$\blacksquare$$
 Y = $S_1'S_0' I_0 + S_1'S_0 I_1 + S_1S_0' I_2 + S_1S_0 I_3$

$$I_0 = z$$
 $I_1 = z'$ $I_2 = 0$ $I_3 = 1$

Х	У	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$F = z'$$

$$F = 0$$

$$F = x'y'z + x'yz' + xyz' + xyz$$

F = z when x = 0 and y = 0

F = z' when x = 0 and y = 1

F = 0 when x = 1 and y = 0

F = 1 when x = 1 and y = 1

Design with Multiplexers

$$F=x'y'(0) + x'y(1) + xy'(1) + xy(0)$$

$$F=x'y'(z) + x'y(z') + xy'(0) + xy(1)$$

$$F=x'y'(P(z,t,q,w)) + x'y(Q(z,t,q,w)) + xy'(R(z,t,q,w)) + xy(S(z,t,q,w))$$

Design with Multiplexers

F=x'y'(P(z,t,q,w)) + x'y(Q(z,t,q,w)) + xy'(R(z,t,q,w)) + xy(S(z,t,q,w))

Combining Multiplexers

Example

Three-State Buffers

- A different type of logic element
 - Instead of two states (i.e. 0, 1), it exhibits three states (0, 1, Z)
 - Z (Hi-Z) is called high-impedance
 - When in Hi-Z state the circuit behaves like an open circuit (the output appears to be disconnected, and the circuit has no logic significance)

3-State Buffers

- Remember that we cannot connect the outputs of other logic gates.
- We can connect the outputs of three-state buffers
 - provided that no two three-state buffers drive the same wire to opposite 0 and 1 values at the same time.

C	A	У
0	X	Hi-Z
1	0	0
1	1	1

Example- 3 State MUX

Multiplexing with 3-State Buffers

Two Active Outputs - 1

What will happen if $C_1 = C_0 = 1$?

C_0	Α	В	Y
0	Х	Х	Z
1	0	Х	0
1	1	X	1
0	X	0	0
0	X	1	1
1	0	0	0
1	1	1	1
1	0	1	Sille .
1	1	0	wtech.com
	0 1 1 0 0 1 1 1	0 X 1 0 1 1 0 X 0 X 0 X 1 1 1 0 1 1 1 0	0 X X 1 0 X 1 1 X 0 X 0 0 X 1 1 0 0 1 1 1 1 0 1 1 0 1

Design Principle with 3-State Buffers

- Designer must be sure that only one control input must be active at a time.
 - Otherwise the circuit may be destroyed by the large amount of current flowing from the buffer output at logic-1 to the buffer output at logic-0.

Example- 3 State Buffer & ROM

Busses with 3-State Buffers

There are important uses of three-state buffers

Design with Verilog

Gate Level Design

```
module decoder_2x4_gates(D, A, B, e);
  output [0:3] D;
  input A, B, e;
  wire A_n, B_n;
  not G1(A n, A);
  not G2 (B_n, B);
  and G3(D[0], e, A_n, B_n);
  and G4(D[1], e, A_n, B);
  and G5(D[2], e, A, B_n);
  and G6(D[3], e, A, B);
endmodule;
```

```
D_0 = eA'B'
D_1 = eA'B
D_2 = eAB'
D_3 = eAB
```


Dataflow Modeling

 Dataflow modeling uses a number of operators that act on operands

 $D_0 = eA'B'$ $D_1 = eA'B$ $D_2 = eAB'$

 $D_3 = eAB$

About 30 different operators

```
module decoder_2x4_dataflow(
          output [0:3] D,
          input A, B,
          e);
    assign D[0] = e & ~A & ~B;
    assign D[1] = e & ~A & B;
    assign D[2] = e & A & ~B;
    assign D[3] = e & A & B;
endmodule;
```


Dataflow Modeling

- Data type "net"
 - Represents a physical connection between circuit elements
 - e.g., "wire", "output", "input".
- Continuous assignment "assign"
 - A statement that assigns a value to a net

```
-e.g., assign D[0] = e \& ~A \& ~B;
```

- -e.g., assign $A_lt_B = A < B$;
- Bus type

```
-wire [0:3] T;
```

-T[0], T[3], T[1..2];

Behavioral Modeling

- Represents digital circuits at a functional and algorithmic level
 - Mostly used to describe sequential circuits
 - Can also be used to describe combinational circuits

```
module mux_2x1_beh(m, A, B, S);
  output m;
  input A, B, S;
  reg m;
  always @(A or B or S);
   if(S == 1) m = A;
   else m = B;
endmodule;
```

Behavioral Modeling

- Output must be declared as "reg" data type
- "always" block
 - Procedural assignment statements are executed every time there is a change in any of the variables listed after the "@" symbol (i.e., sensitivity list).