The Effects of Adding Reachability Predicates in Propositional Separation Logic

A. Mansutti Joint work with S. Demri and E. Lozes

Motivation

- Many tools support separation logic as an assertion language;
- Growing demand to consider more powerful extensions;
- Focus of the community:
 - user-defined inductive predicates;
 - magic wand operator →*;
 - closure under boolean connectives.

Results

We consider propositional separation logic SL(*,-*)

+

list segment predicate 1s.

We show that its satisfiability problem is undecidable, but removing -* makes the logic PSPACE-complete.

Separation logic as an assertion language

Verification of imperative programs based on **Hoare triples**:

$$\{P\} \ C \ \{Q\}$$

where C is a program and P, Q are **assertions** in some logical language.

Any (memory) state that satisfies P will satisfy Q after being modified by C.

Hoare calculus: Proof rules manipulating Hoare triples.

Separation logic as an assertion language

The so-called frame rule

$$\frac{\{P\}\ C\ \{Q\}}{\{F\land P\}\ C\ \{F\land Q\}}$$

fails in standard Hoare logic: C can change the satisfaction of F.

Separation logic as an assertion language

The so-called **frame rule**

$$\frac{\{P\}\ C\ \{Q\}}{\{F\land P\}\ C\ \{F\land Q\}}$$

fails in standard Hoare logic: C can change the satisfaction of F.

Separation logic add the notion of **separation** (*) of a state, so that the frame rule

$$\frac{\{P\}\ C\ \{Q\}\ \operatorname{modv}(C)\cap\operatorname{fv}(F)=\emptyset}{\{F*P\}\ C\ \{F*Q\}}$$

is valid.

Separation logic

Separation logic is interpreted over **memory states** (s, h) where:

- \blacksquare *s* is a store, *s* : PVAR \rightarrow LOC;
- h is a heap, h: LOC \rightarrow_{fin} LOC.

where LOC and PVAR are countable infinite sets, e.g. \mathbb{N} .

Propositional separation logic

Syntax:

$$\phi := \neg \phi \mid \phi_1 \wedge \phi_2 \mid x = y \mid \text{emp} \mid x \mapsto y \mid \phi_1 * \phi_2 \mid \phi_1 - \phi_2$$

Semantics: standard for
$$\neg$$
 and \land ,

$$(s,h) \models x = y \iff s(x) = s(y)$$

$$(s,h) \models \mathtt{emp} \qquad \iff \operatorname{dom}(h) = \emptyset$$

$$(s,h) \models x \mapsto y \qquad \Longleftrightarrow \quad h(s(x)) = s(y) \text{ and } dom(h) = \{x\}$$

$$(s,h) \models \phi_1 * \phi_2 \iff \exists h_1, h_2 \text{ s.t. } h = h_1 + h_2 \text{ and}$$

 $(s,h_1) \models \phi_1 \text{ and } (s,h_2) \models \phi_2$

$$(s,h) \models \phi_1 - \phi_2 \iff \forall h' \text{ if } h, h' \text{ are disjoint and } (s,h') \models \phi_1$$

then $(s,h+h') \models \phi_2$

SL + Reachability predicates

 $(s,h) \models ls(x,y)$

```
\iff if s(x) = s(y) then h is empty, otherwise
                h = \{\ell_0 \mapsto \ell_1, \ell_1 \mapsto \ell_2, \dots, \ell_{n-1} \mapsto \ell_n\} with n > 1,
                \ell_0 = s(\mathbf{x}), \ \ell_n = s(\mathbf{y}) and for all i \neq j \in [0, n], \ \ell_i \neq \ell_i
(s,h) \models \operatorname{reach}(x,y)
   \iff h \supseteq \{s(x) \mapsto \ell_1, \ell_1 \mapsto \ell_2, \dots, \ell_{n-1} \mapsto s(y)\}
(s,h) \models \operatorname{reach}^+(x,y)
   \iff h \supseteq \{s(x) \mapsto \ell_1, \ell_1 \mapsto \ell_2, \dots, \ell_{n-1} \mapsto s(y)\} with n \ge 1
```

Reachability predicates

- SL(*,-*,1s) and SL(*,-*,reach) are interdefinable;
- both logics can be seen as fragments of SL(*,-*,reach⁺).

Main contribution:

- We show the undecidability of SL(*,-*,1s)
- and the PSPACE-completeness of SL(*,reach⁺).

Undecidability: Reduction of $SL(\forall, -*)$ to SL(*, -*, 1s)

We consider the first-order extension of SL(-*) obtained by adding the universal quantifier \forall .

$$(s,h) \models \forall x.\phi$$
 if and only if for all $\ell \in \mathsf{LOC}$, $(s[x \leftarrow \ell],h) \models \phi$

The satisfiability problem for $SL(\forall, -*)$ is undecidable. (IAC 2012)

Undecidability: Reduction of $SL(\forall, -*)$ to SL(*, -*, 1s)

Suppose we can express the following properties in SL(*,-*,1s)

alloc⁻¹(x) :
$$\xrightarrow{x}$$

$$n(x) = n(y) : \xrightarrow{x}$$

$$n(x) \hookrightarrow n(y) : \xrightarrow{x}$$

Then we can encode formulae of $SL(\forall, -*)$ in SL(*, -*, 1s) by using part of the heap to mimic the store's updates.

Translation from $SL(\forall, -*)$ to SL(*, -*, 1s)

Formula ψ of $SL(\forall, -*)$ with variables x_1, \dots, x_q . For the translation we use $X \supseteq \{x_1, \dots, x_q\}$ variables.

$$T(\psi_1 \wedge \psi_2, X) \stackrel{\text{def}}{=} T(\psi_1, X) \wedge T(\psi_2, X)$$

$$T(\neg \psi, X) \stackrel{\text{def}}{=} \neg T(\psi, X)$$

$$T(\mathbf{x}_i = \mathbf{x}_j, X) \stackrel{\text{def}}{=} n(\mathbf{x}_i) = n(\mathbf{x}_j)$$

$$T(\mathbf{x}_i \hookrightarrow \mathbf{x}_j, X) \stackrel{\text{def}}{=} n(\mathbf{x}_i) \hookrightarrow n(\mathbf{x}_j)$$

$$T(\forall \mathbf{x}_i \ \psi, X) \stackrel{\text{def}}{=} (\texttt{alloc}(\mathbf{x}_i) \wedge \texttt{size} = 1) \twoheadrightarrow (\text{OK}(X) \Rightarrow T(\psi, X))$$

where $\mathrm{OK}(X)$ is the formula $(\bigwedge_{i\neq i}\mathtt{x}_i\neq\mathtt{x}_j)\wedge(\bigwedge_i\lnot\mathtt{alloc}^{-1}(\mathtt{x}_i))$

Translation from $SL(\forall, -*)$ to SL(*, -*, 1s)

To correctly translate $T(\psi_1 - \psi_2, X)$ we need one copy $\bar{x_i}$ of each variable x_i .

The translation

$$\begin{split} & (\texttt{ALLOC_ONLY}(\overline{fv(\psi_1)}) \land \mathrm{T}(\psi_1, X)[\mathtt{x} \leftarrow \bar{\mathtt{x}}]) \twoheadrightarrow \\ & (((\bigwedge_{\mathtt{z} \in fv(\psi_1)} n(\mathtt{z}) = n(\bar{\mathtt{z}})) \land \mathrm{OK}(X)) \Rightarrow \\ & (\texttt{DEALLOC_ONLY}(\overline{fv(\psi_1)}) \ast \mathrm{T}(\psi_2, X))) \end{split}$$

Memory states

Separation logic is interpreted over **memory states** (s, h) where:

- s is a store, s: PVAR \rightarrow LOC;
- h is a heap, h: LOC \rightarrow_{fin} LOC.

where LOC and PVAR are countable infinite sets.

Generalized memory states

Separation logic interpreted over **generalized memory states** (L, s, h) where:

- \bullet s is a store, s : PVAR \rightarrow L;
- h is a heap, $h: L \rightarrow_{fin} L$.

where L and PVAR are countable infinite sets.

Generalized memory states: Encoding relation

$$X=\{\mathtt{x}_1,\overline{\mathtt{x}_1},\ldots,\mathtt{x}_q,\overline{\mathtt{x}_q}\},\ Y\subseteq\{\mathtt{x}_1,\ldots,\mathtt{x}_q\}.$$

 $(LOC_1, s_1, h_1) \rhd_q^Y (LOC_2, s_2, h_2)$ if it holds that:

- LOC₁ = LOC₂ \ $\{s_2(x) \mid x \in X\}$,
- for all $x, y \in X$, $s_2(x) \neq s_2(y)$,
- $b_2 = h_1 + \{s_2(x) \mapsto s_1(x) \mid x \in Y\}.$

Example: $Y = \{x, y, z\}, \bullet \in LOC_1, \bullet \in LOC_2$

Undecidability result

Lemma

 $X = \{\mathbf{x}_1, \overline{\mathbf{x}_1}, \dots, \mathbf{x}_q, \overline{\mathbf{x}_q}\}, \ Y \subseteq \{\mathbf{x}_1, \dots, \mathbf{x}_q\}, \ \psi \ be \ a \ formula \ in \ \mathrm{SL}(\forall, \twoheadrightarrow) \ with \ free \ variables \ among \ Y \ that \ does \ not \ contain \ any \ bound \ variable \ of \ \psi \ and \ (\mathrm{LOC}_1, s_1, h_1) \rhd_q^Y \ (\mathrm{LOC}_2, s_2, h_2).$

We have $(s_1, h_1) \models \psi$ iff $(s_2, h_2) \models T(\psi, X)$.

Undecidability result

Lemma

 $X = \{x_1, \overline{x_1}, \dots, x_q, \overline{x_q}\}, \ Y \subseteq \{x_1, \dots, x_q\}, \ \psi$ be a formula in $\mathrm{SL}(\forall, -*)$ with free variables among Y that does not contain any bound variable of ψ and $(\mathsf{LOC}_1, s_1, h_1) \rhd_q^Y (\mathsf{LOC}_2, s_2, h_2)$.

We have $(s_1, h_1) \models \psi$ iff $(s_2, h_2) \models T(\psi, X)$.

Theorem

A closed formula ψ of $SL(\forall, -*)$ with variables in $\{x_1, \dots, x_q\}$ is satisfiable whenever

$$igwedge_{i \in [1,q]} (\lnot \mathtt{alloc}(\mathtt{x}_i) \land \lnot \mathtt{alloc}(\overline{\mathtt{x}_i})) \land \mathrm{OK}(X) \land \mathrm{T}(\psi,X)$$

is satisfiable.

Expressing the auxiliary atomic predicates

$$n(x) = n(y)$$
, $n(x) \hookrightarrow n(y)$, alloc⁻¹(x) definable in $SL(*, -*, 1s)$.

Idea: I can express that there exists a subheap of size n that satisfies a formula ϕ with $[\phi]_n \triangleq (\phi \land \mathtt{size} = n) * \top$.

Example: n(x) = n(y) expressed with

$$[\operatorname{alloc}(x) \land \operatorname{alloc}(y) \land \psi]_2$$

where ψ exactly characterize all the heaps of size 2 where it holds

Results

The following fragments have undecidable satisfiability problem:

- $SL(*, *) + n(x) = n(y), n(x) \hookrightarrow n(y) \text{ and alloc}^{-1}(x);$
- SL(*, →, ls);
- SL(*, -*) + reach(x, y) = 2 and reach(x, y) = 3;

We consider now SL(*,reach⁺)

To show decidability:

- Find properties that can be expressed using * and reach⁺ and make atomic (test) formulae for these properties;
- * elimination: show that boolean combinations of these fomulae are sufficiently expressive to capture SL(*,reach⁺);
- show a small-model property for the logic of test formulae. Apply it to SL(*,reach⁺).

Actually, we study $SL(*,reach^+,alloc)$. This logic is at least as expressive as SL(*,-*).

Example: SL(*, -*)

In (standard) separation logic we can express:

■ size $\geq \beta$, i.e. that the heap has size at least β :

$$\neg emp * \neg emp * \dots * \neg emp$$
 β times

alloc(x), i.e. s(x) is in the domain of definition of h:

$$(x \mapsto x) \twoheadrightarrow \bot$$

 $x \hookrightarrow y$, i.e. h(s(x)) = s(y):

$$x \mapsto y * \top$$

where $\top \equiv \texttt{emp} \lor \neg \texttt{emp}$.

Example: SL(*, -*)

In (standard) separation logic we can express:

- Each Separation Logic formula is equivalent to a boolean combinations of formulae of the form x = y, alloc(x), $x \hookrightarrow y$, size $\geq \beta$. This leads to PSPACE-completeness for the satisfiability problem of SL formulae.

$$x \mapsto y * \top$$

where $\top \equiv \text{emp} \vee \neg \text{emp}$.

- Same reach⁺ formulae are satisfied;
- (alloc(x) \land size = 1) * reach⁺(z, y) satisfied only by the second memory state.

- Same reach⁺ formulae are satisfied;
- (alloc(x) \land size = 1) * reach⁺(z, y) satisfied only by the second memory state.

The order in which variables are reached from a variable is important!

- Same reach⁺ formulae are satisfied;
- size = $1 * (\neg \text{reach}^+(x, z) \land \neg \text{reach}^+(y, z))$ satisfied only by the second memory state.

- Same reach⁺ formulae are satisfied;
- size = $1 * (\neg \text{reach}^+(x, z) \land \neg \text{reach}^+(y, z))$ satisfied only by the second memory state.

The existence of "shared paths" between variables is important!

- Same reach⁺ formulae are satisfied;
- Same "order", same "shared path";
- size = $1 * (\neg \text{reach}^+(z, z) \land \text{alloc}(z) \land \text{reach}^+(x, z))$ satisfied only by the second memory state.

- Same reach⁺ formulae are satisfied;
- Same "order", same "shared path";
- size = $1 * (\neg \text{reach}^+(z, z) \land \text{alloc}(z) \land \text{reach}^+(x, z))$ satisfied only by the second memory state.

The existence of "meet points" is important!

Meet points

Memory state (s, h). Set of variables $\{x_1, \dots, x_q\}$. We define meet-point $[\![m_q(x_i, x_j)]\!]_{s,h}$.

Test formulae

Given $\{x_1, \ldots, x_q\}$ and $\alpha \in \mathbb{N}$, we define $\mathsf{Test}(q, \alpha)$ as the set of following test formulae:

$$v = v' \quad v \hookrightarrow v' \quad \mathtt{alloc}(v) \quad \mathtt{sees}_q(v,v') \geq \beta + 1 \quad \mathtt{sizeR}_q \geq \beta,$$

where $\beta \in [1, \alpha]$ and v, v' are variables x_i or meet points $m_q(x_i, x_j)$, for $i, j \in [1, q]$.

Theorem (that we want to prove)

Let ψ be in $SL(*, reach^+, alloc)$ built over the variables in x_1, \ldots, x_q . Then ψ is logically equivalent to a boolean combination of test formulae from $Test(q, |\psi|)$.

Test formulae: sees_q

$$(s,h) \models \operatorname{sees}_q(v,v') \ge \beta + 1$$

if and only if

- $[v']_{s,h}^q$ is the first location correspondant to program variables x_i or meet points $m_q(x_i, x_j)$ reached from $[v]_{s,h}^q$;
- the path from $\llbracket v \rrbracket_{s,h}^q$ to $\llbracket v' \rrbracket_{s,h}^q$ is at least of length $\beta + 1$.

Recall: The order in which variables are reached from a variable is important!

Test formulae: $sizeR_q$

$$(s,h) \models \mathtt{sizeR}_q \geq \beta$$

if and only if the number of locations in dom(h) that are not corresponding to program variables x_i or in the path between two program variables x_i , x_j is greater or equal than β , where $\beta \in [1, \alpha]$, $i, j \in [1, q]$.

Rationale:

$$arphi_{\mathsf{x},\mathsf{y}} = \mathtt{reach}(\mathsf{x},\mathsf{y}) \! = \! 3 \land \mathtt{alloc}(\mathsf{y}) \land \lnot \mathtt{reach}(\mathsf{y},\mathsf{x})$$
 $arphi_{\mathsf{x},\mathsf{y}} \land (arphi_{\mathsf{x},\mathsf{y}} * \mathtt{size} \geq \mathsf{4})$

Atomic formulae are combinations of test formulae

Lemma

Given α , $q \ge 1$, $i, j \in [1, q]$, for any atomic formula among $\operatorname{reach}^+(x_i, x_j)$, $\operatorname{ls}(x_i, x_j)$, $\operatorname{reach}(x_i, x_j)$ and $\operatorname{size} \ge \beta$ with $\beta \le \alpha$, there is a Boolean combination of test formulae from $\operatorname{Test}(q, \alpha)$ logically equivalent to it.

For example, $reach^+(x_i, x_j)$ can be shown equivalent to

$$\bigvee_{\substack{v_1,\ldots,v_n\in \mathrm{Terms}_q,\ 1\leq \delta\leq n-1}} \bigwedge_{\substack{\mathrm{sees}_q(v_\delta,v_{\delta+1})\geq 1.}}$$

where Terms_q is the set of program varibles x_i and meet points $m_q(x_i, x_j)$, $i, j \in [1, q]$.

Indistinguishability of two memory states

Lemma

Let $q, \alpha, \alpha_1, \alpha_2 \ge 1$ with $\alpha = \alpha_1 + \alpha_2$ and (s, h), (s', h') be such that $(s, h) \approx_{\alpha}^{q} (s', h')$. For all heaps h_1 , h_2 such that $h = h_1 + h_2$ there are heaps h'_1 , h'_2 such that

- $h' = h'_1 + h'_2$
- $(s,h_1) \approx_{\alpha_1}^q (s,h_1')$
- $(s, h_2) \approx_{\alpha_2}^q (s, h_2').$

where $(s, h) \approx_{\alpha}^{q} (s', h')$ whenever (s, h) and (s', h') satisfy the same test formulae of Test (q, α) .

Test formulae capture SL(*,reach⁺,alloc)

Theorem

Let φ be in $SL(*, reach^+, alloc)$ with variables x_1, \ldots, x_q .

- For all $\alpha \ge |\varphi|$ and all memory states (s,h), (s',h') such that $(s,h) \approx_{\alpha}^{q} (s',h')$, we have $(s,h) \models \varphi$ iff $(s',h') \models \varphi$.
- φ is logically equivalent to a Boolean combination of test formulae from Test $(q, |\varphi|)$.

Results

Theorem

Let φ be a satisfiable $SL(*, reach^+)$ formula built over x_1, \ldots, x_q . There is (s, h) such that $(s, h) \models \varphi$ and

$$\operatorname{card}(\operatorname{dom}(h)) \le (q^2 + q) \cdot (|\varphi| + 1) + |\varphi|$$

- The satisfiability problem for SL(*, reach⁺, alloc) is PSPACE-complete.
- The satisfiability problem for SL(*, →*, reach⁺) in which reach⁺ is not in the scope of →* is in EXPSPACE.

Concluding Remarks

Main results:

- SL(*, →, 1s) admits an undecidable satisfiability problem, but
- if 1s is not in the scope of → then the problem is decidable.

What's next? Satisfiability problem of fragments with 1s in the scope of -*.

- Little to no result in the litterature.
- SL(-*) + n(x) = n(y), $n(x) \hookrightarrow n(y)$ and $alloc^{-1}(x)$;
- \blacksquare SL(-*, 1s) and SL(-*, reach);
- SL(*, →, 1s) with negation only on atomic proposition.