Sensors & Interfacing

Tuur Vanhoutte

24 februari 2020

${\bf Inhoud sopgave}$

1	Communicatie												1							
	1.1	Datacommun	icatie in IoT											 						. 1
	1.2	Data												 						. 1
	1.3	Communicati	e											 						. 1
		1.3.1 Comm	nunicatieafspra	aken .										 						. 2
		1.3.2 Encod	ing/Decoding											 						. 2
			en																	
			nunicatiemedia																	
			$eelden \dots$																	
			schappen van																	
		_	iken																	
			aardiseren van																	
		1.3.6 Stand	iaidiseleli vali	l .		• •	•				•	• •	• •	 •	•	 •		•		
2	Ana	doog vs digit	aal																	3
	2.1	Toestanden												 						. 3
		2.1.1 Bepaa	lde toestand											 						. 3
		-	le toestanden																	
		0	ge toestanden																	
	2.2																			
						•	•		•	•	•	• •	•	 •	•	 •	•	•		
3	Ana	doge signaler																		4
		3.0.1 Transc	ducer											 						. 4
		3.0.2 Sensor	en en Actuato	oren .										 						. 4
	3.1	Analoge com	nunicatie											 						. 4
		3.1.1 Eigens	schappen											 						. 5
			spanning - Ei																	
			lieke signalen																	
			lomein en freq																	
	ъ.																			
4	_	itale signalen																		7
	4.1	Duty Cycle																		
	4.2		e)																	
	4.3	Weergave dig	itale signalen								•			 	•					. 8
5	ΑD	/DA convers	ie																	8
	5.1	·																		
	0.1	-	eeld A																	
			eeld B																	
		_	e Rate / samp	-																
			ng																	
			ampling																	
			mentatie en ty																	
			ADC																	
			ssive approxim																	
	5.2	~	analoog conve																	
		5.2.1 Simpe	le DAC											 						. 15
		5.2.2 Simpe	le DAC adhv	PWM										 						. 16
		5.2.3 Ander	e types											 						. 16
		5.2.4 Nalozo	v -																	17

1 Communicatie

1.1 Datacommunicatie in IoT

3 lagen:

- 1. Application Layer
- 2. Fog layer
- 3. IoT Device Layer

Datacommunicatie in IoT

1.2 Data

- "Pre-informatie"
- Gegevens waaruit informatie kan worden gewonnen
- Stelt een bepaalde toestand voor

1.3 Communicatie

Overbrengen van informatie tussen deelnemers

- Boodschap
- Signaal
- Medium

1.3.1 Communicatieafspraken

- Coderen van informatie (encoding)
- Voorbeeld:
- morse-code
- Ascii-codering
 - Codering voor alle gebruikte symbolen in symbolen
 - Codering in 7 of 8 bit
 - -1 byte =1 teken
- . . .

1.3.2 Encoding/Decoding

- 1. Codifying
- 2. Sending the message
- 3. Decodifying

1.3.3 Signalen

- Licht
- Geluid
- Elektriciteit
- . . .

1.3.4 Communicatiemedia

- Twisted-Pair cable
- Coaxial cable
- Fiber-Optic cable

1.3.5 Voorbeelden

- Welke codering?
- Wat is het signaal?
- Wat is het medium?

1.3.6 Eigenschappen van media

- Vatbaarheid voor interferentie
- Overbrugbare afstand
- Praktisch
- Kostprijs

1.3.7 Afspraken

- Protocol
- Standaarden
- IEEE
- EIA (NEDA/ECA)ECIA

1.3.8 Standaardiseren van ...

- Type media en zijn specificaties
- Het gebruikte signaal en zijn toleranties
- De elektrische interferentie
- De gebruikte codering
- Foutcorrectiecodes
- Protocol
- De gebruikte connector
- ...

2 Analoog vs digitaal

- Digitaal: Discrete waarden
- Analoog: Continue waarden

2.1 Toestanden

2.1.1 Bepaalde toestand

- Temperatuur
- Licht aan/uit
- Afstand
- Tijd
- ...

2.1.2 Digitale toestanden

- Licht aan/uit
- Deur open/dicht
- \bullet Keuze van versnelling N 1 2 3 4 5 R
- Ruitenwisser interval uit interval traag snel
- ...

2.1.3 Analoge toestanden

- Tijd (!)
- Temperatuur
- Luchtdruk
- Luchtvochtigheid
- Afstand
- . .

2.2 Signalen

- Analoog signaal
- Digitaal signaal

Digital Signal

3 Analoge signalen

3.0.1 Transducer

Omzetten van een analoog signaal naar een ander analoog signaal.

Voorbeeld: elektrisch signaal omzetten naar een geluidsignaal via een luidspreker (=de transducer)

3.0.2 Sensoren en Actuatoren

- Sensor \Rightarrow meten van een fysieke eigenschap
- $\bullet\,$ Actuator \Rightarrow beïnvloeden van een fysieke parameter \Rightarrow transducers

3.1 Analoge communicatie

Sinusgolf als meest elementaire signaal

3.1.1 Eigenschappen

- DC vs AC
- Polariteit blijft gelijk bij (pulserende) DC
- Polariteit verandert bij AC

3.1.2 Wisselspanning - Eigenschappen

- RMS = Root Mean Square (= kwadratisch gemiddelde) = effectieve waarde (in geval van sinus)
 - 1. Som van alle kwadraten (= square)
 - 2. Die som delen door het aantal waardes (= mean)
 - 3. Neem de vierkantswortel van dat getal
 - Wordt vaak gebruikt in de elektriciteit om het gemiddelde vermogen te vinden
- Frequentie
- Periode
- Amplitude
- Peak of top-to-top waarde

3.1.3 Periodieke signalen

- 1 herhaling = 1 periode
- \bullet Periode (T) = tijdsduur (in s)
- \bullet Frequentie (f) = aantal periodes per seconde (in Hz)
- $F = \frac{1}{T}$ en $T = \frac{1}{F}$

3.1.4 Tijdsdomein en frequentiedomein

- Tijdsdomein: met een oscilloscoop
- Frequentiedomein: met

(Formule niet te kennen)1

Time Domain ⇔ Frequency Domain

4 Digitale signalen

Aan/uit

4.1 Duty Cycle

= Hoeveel procent van de tijd staat het signaal aan?

4.2 Flanken (edge)

- Stijgende flank
- $\bullet\,$ Dalende flank
- Belangrijk bij kloksignalen

4.3 Weergave digitale signalen

5 AD/DA conversie

Figuur 1: Analoog naar digitaal (AD converter)

Figuur 2: Digitaal naar analoog (DA converter)

5.1 Analoog naar digitaal

Figuur 3

- Range = verschil tussen laagste en hoogste waarde
- Resolutie = aantal stappen of stapgrootte in bits
- Belangrijk gevolg:
 - beide parameters bepalen de exactheid en de afwijkingen

5.1.1 Voorbeeld A

- Range = 2V 2.5V
- Resolutie = 8bits
- Dus aantal discrete stappen = $2^8 = 256 \Rightarrow 256 1 = 255$
- Stap grootte (LSB) = $\frac{range}{255} = \frac{2.5V - 2V}{255} = \frac{0.5V}{255} = 0.00196..V/stap$
- ofwel $\approx 2mV/\text{stap}$

5.1.2 Voorbeeld B

- Range = 0V 12V
- Resolutie = 12bits
- Dus aantal discrete stappen = $2^{12} = 4096 \Rightarrow 4096 1 = 4095$
- Stapgrootte (LSB) = $\frac{range}{4095} = \frac{12V 0V}{4095} = \frac{12V}{4095} = 0.0029304..V/stap$
- ofwel $\approx 3mV/\text{stap}$

Figuur 4: AD conversie

- $\bullet \ \ {\bf Quantisatie fouten}$
- Verzoorzaakt quantisatieruis

Figuur 5: AD conversie

- • Quantisatie
fouten \rightarrow dithering
- $\bullet = \underline{\text{vooraf}}$ (witte) ruis toevoegen aan signaal

Figuur 6: Dithering

5.1.3 Sample Rate / sample frequentie

= aantal conversies per seconde

Figuur 7: Sample rate

 $\bullet\,$ Nyquist \to Minimale sample rate = 2x de frequentie van het signaal

• Voorbeelden:

- HiFi Audio CD: 44.1kHz sample rate
- Oude telefoontoestellen: 8kHz sample rate
- HD-DVD Audio: 192kHz

Figuur 8: Minimale sample rate

5.1.4 Aliasing

- = HF signaal als LF 'spooksignaal' detecteren
 - Treedt op bij onvoldoende hoge sample rate
 - Anti-Aliasing filter (low-pass filter) beperkt signaal onder nyquist frequentie

Figuur 9: Anti-aliasing filter

5.1.5 Oversampling

- Sampelen met veelvoud van nyquist frequentie
- Kan worden gebruikt om de resolutie op te voeren
- Kan worden gebruikt om digitaal (DSP) te filteren
- Verhoogt het effectieve aantal bits van de ADC
 - Voorbeeld: 20bit ADC met 256x $\mathrm{OS} = 24\mathrm{bit}$ effectieve resolutie
- \bullet Undersampling \to specifiek gebruik bij mixers

5.1.6 Implementatie en types

- ullet De comparator
- Bekeken als 1-bit ADC

Figuur 10: Comparator

5.1.7 Flash ADC

- Comparator per 'level'
- Zeer snel = directe omzetting
- Complex & High power
- Lagere resoluties

Figuur 11: Flash ADC

5.1.8 Successive approximation ADC

- \bullet Gebruikt 1 comparator
- Vergelijkt een opgewekte spanning met het signaal
- $\bullet\,$ Hoge resolutie mogelijk
- \bullet Trager
- Relatief goedkoop

Figuur 12: Successive approximation ADC

5.2 Digitaal naar analoog conversie

- Omzetten digitale naar analoge waarde
- Range
- Resolutie
- $\bullet \ \ {\bf Sample frequentie}$

5.2.1 Simpele DAC

- ullet <u>Voorbeeld</u> weerstandsnetwerk

Figuur 13: Weerstandsnetwerk

5.2.2 Simpele DAC adhv PWM

- \bullet PWM == digitaal signaal
- Door variatie van duty-cycle kan de gemiddelde waarde worden gevarieerd
- Door filteren kan de blokgolf worden omgezet in een variabele analoge waarde

Figuur 14: DAC met PWM

5.2.3 Andere types

- ΣΔ
- I^2S DAC
- Nog zeer veel andere overwegingen:
 - THD (Harmonische vervorming)
 - Faseruis
 - ..

5.2.4 Nalezen:

- https://en.wikipedia.org/wiki/Digital-to-analog_converter
- https://en.wikipedia.org/wiki/Analog-to-digital_converter
- $\bullet \ \texttt{https://en.wikipedia.org/wiki/Nyquist\%E2\%80\%93Shannon_sampling_theorem}$
- https://en.wikipedia.org/wiki/Nyquist_rate
- https://en.wikipedia.org/wiki/Pulse-width_modulation
- https://en.wikipedia.org/wiki/Delta-sigma_modulation