

TIMBER ENGINEERING - VSM196

LECTURE 4 -

EWP: PLYWOOD, BOARDS AND PANELS, I-BEAMS

SPRING 2020

Topic

- Engineered Wood Products (EWP):
 - Structural Composite Lumber (SCL), beams, boards and panels, plywood, Cross-laminated timber (CLT) and I-beams
- [DoTS: (2.6) 2.7 and 5.1]

Content

- Introduction (what are EWP?)
- Types used as beams and panels
- Some facts related to properties of common EWP
- Plywood an specific example of layered board
- Cross-laminated timber (CLT)
- I-beams from different wood-based materials
- Design exercises C2 & C3 (Homework C1)

Intended Learning Outcomes of this lecture

- You understand the benefits of Engineered Wood Production (EWP)
- You can distinguish and describe different EWPs
- You can describe the production of EWPs
- You can determine the stress distribution and capacities of EWPs
- You know the possible failure modes of different EWPs
- You can choose an adequate EWP

Engineered wood products - EWP

- Better use of the raw material
 - Using small dimensional logs
 - Making use of low quality material and residuals
 - Make use of larger portion of the log material
- · Overcoming the dimensional limitations
 - · Larger sections and length
 - Plates and panels
 - Conversion and size effect
- Improved material properties
 - Overcoming the anisotropy
 - Less variability in properties and removal of defects
 - Higher strength and stiffness
- Higher dimensional stability
 - · less shrinkage, less distortion etc.

CHALMERS UNIVERSITY OF TECHNOLOGY

Engineered Wood Products – EWP

Examples

Less variability

Figure 2.31 in DoTS is not quite correct!
 The strength class of the solid timber and glulam is not the same!

(DoTS: 2.7.2.1.1), cf. Fig 2.31

Engineered Wood Products – EWP

Beams, joists, studs

- Glulam Glued Laminated timber
- LVL Laminated Veneer Lumber (Kerto®)
- PSL Parallel Strand Lumber (Parallam®)
- Intrallam® combination of LVL & Parallam
- LSL Long Strand Lumber (Timberstrand®)
- I-beams combinations of different products

Engineering Wood Products (EWP)

Glulam

LVL - "Kerto"

Parallam - PSL

Laminated Veneer Lumber (Kerto®)

- Made from spruce or pine
- Veneers with normal thickness of 3 mm

- Kerto-S
 - Thickness from 21 to 90 mm
 - All veneers parallel to the grain
 - E_{mean} = 13800 Mpa
- Kerto-Q (Plywood)
 - Thickness from 21 to 69 mm
 - Some veneers are cross-grained
 - E_{mean} = 10000 MPa (for 21-24 mm)

KERTO ® S

KERTO ® Q

Structural Composite Lumber (SCL)

- SCL products (in North America) include:
 - Laminated Veneer Lumber (LVL),
 - Parallel Strand Lumber (PSL) (Parallam®)
 - Laminated Strand Lumber (LSL) (TimberStrand®) and
 - Oriented Strand Lumber (OSL)

- Used as rafters, headers, beams, joists, rim boards, studs and columns.
- SCL products are also used for wood I-joist flanges and truss chords.

Laminated strand lumber (LSL)

- LSL and oriented strand lumber (OSL) products are an extension of the technology used to produce oriented strandboard (OSB) structural panels, early 1990
- Common in US and Canada
- LSL is sold as TimberStrand®
- Small strands
- (waste or from fast-grown trees)
- High density
- Used often as studs (framing)

LSL in wall studs and timber framing

 USA and Canada SP Technical Research Institute of Sweden

Parallel Strand Lumber (PSL)

- Common in Canada and US
- Establ. ~1986
- Large strands cut from veneers
- High density
- Characteristic surface
- Used for large and small members
- Possible to treat with preservatives due to voids in the structure
- Fire: comparable to sawn timber

Engineered Wood Products – EWP

Boards and panels

- Plywood boards of layered plies or veneers
- OSB Oriented Strand Board boards of large particles known as waferboards or flakeboards
- Particleboard or chipboard heated particles from waste wood, flakes, chips or dust glued under pressure
 - Cement bonded particleboards
- Fibreboards seven different board types of different densities and properties - wet and dry process A11/4

Common fibres are: shavings, sawdust, fibre, large particles, wafers, and strands

CHALMERS UNIVERSITY OF TECHNOLOGY

Plywood

- Glued to the odd number of plies or veneers
 - Veneer thickness $t \approx 3mm$

CHALMERS IIIIVERSITY OF TECHNOLOGY

Oriented Strand Board (OSB)

- To replace plywood as panel product
- Flakes (or wafers) from fast-growing hardwood (aspen-poplar in USA, Scots pine in Europe)
- Production:
 - flakes: 50 to 75 mm long and 0.4 to 0.6 mm thick cut tangentially from wood
 - Resin (2-4%) by weight: phenolformaldehyde and/or MDI (Methane Diphenyl Isocyanate)
 - under heat and pressure to form panels (like chipboards)
 - three orthogonal layers; face layers aligned parallel to the longitudinal axis of the panel, core layer aligned perpendicular to the long axis or randomly deposited (core to face = 60:40)

Fibreboard

According to EN 622

- Hardboards (HB)
- Mediumboards (MBL & MBH)
- Softboards (SB)
- MDF (dry process boards)

Fibreboard - differences

Manufacturing process	Board density				
	Low < 400 kg/m ³	Medium $\geq 400 \ kg/m^3$, $< 900 \ kg/m^3$	High $\ge 900 \ kg/m^3$		
Wet	Softboard (SB)	Low Density Mediumboard (MBL)	Hardboard (HB)		
	Impregnated Softboard (SB.I)	High Density Mediumboard (MBH)	Tempered Hardboard (HB.I)		
Dry	odomi i Pomo E od Replica garacija re	Medium Density Fibreboard (MDF)			

Ref: STEP1-A11, 1995

Dimension stability of timber and panels

Percentage change in dimension from 65% to 85% RH

Timber or	Percentage change in dimension				
wood-based panel type	Parallel to grain or board length	Perpendicular to board length	Through thickness		
Solid Timber	de hord his estetti i	i ne revittili			
Douglas Fir	<0,10	0,80 (R)	1,00 (T)		
Beech	<0,10	1,20 (R)	2,00 (T)		
Plywood					
Douglas Fir	0,15	0,15	2,00		
Chipboard					
Loadbearing dry	0,25	0,25	7,00		
Loadbearing humid	0,20	0,20	4,00		
Cement Bonded Particleboard	0,18	0,18	0,50		
OSB	0,20	0,20	10,00		
Fibreboards					
Hardboard	0,15	0,15	3,50		
Tempered Hardboard	0,15	0,15	3,50		
MDF	0,20	0,20	3,50		
Natas	D is madial discation				

Notes:

R is radial direction.

Ref: STEP1-A11, 1995

T is tangential direction.

EWP – increased strength properties

• Comparison of bending strengths f_m of sawn timber and wood-based panels

- (a) Softwood
- (c) Tempered Hardboard
- (e) MDF
- (g) Chipboard
- Parallel to grain or strong direction
- (b) Softwood Plywood
- (d) Hardboard
- (f) OSB
- (h) Cement Bonded Particleboard
- Perpendicular to grain or weak direction

Ref: STEP1-A11, 1995

EWP - increased creep

• Creep as defined in EC5 with $k_{\it def}$ factor

$$E_t = \frac{E}{1 + \varphi_t} = \frac{E}{1 + k_{def}}$$

Material	Service class		
	1	2	3
Timber, glulam, LVL	0,60	0,80	2,00
Plywood	0,80	1,00	2,50
OSB	1,50	2,25	-
Particleboard	2,25	3,00	-
Fibreboard, hard	2,25	3,00	-
Fibreboard, medium	3,00	4,00	-
Fibreboard, MDF	2,25	3,00	-

EC5: Table 3.2

Cross-Laminated Timber (CLT) - sv: korslimmat trä (KL-trä)

Replacement of beams, joists, studs and thin panels

- CLT is also called solid wood panel, X-Lam, XLAM,
- CLT is made from three or more layers of solid-sawn timber that are orthogonally bonded together with structural adhesives to form a solid, straight rectangularshaped panel

 CLT is becoming increasingly popular as an alternative to conventional structural materials in multi-storey buildings and commercial construction

Development and commercial introduction of EWP

- LVL laminated veneer lumber,
- MDF medium density fibreboard,
- OSB oriented strand board,
- PSL parallel strand lumber,
- CLT cross laminated timber

(DoTS: 2.7)

Rehearsal question

• A8

- Name three most common (in Sweden and Europe) engineered wood-based products used for load-bearing purposes and what are they made up of?
- What are the most important properties do they have that make them preferable to the solid timber in many situations?
- What is the main difference between LVL Kerto Q and Kerto S? How are they commonly used?

Plywood

- Wood in thin layers, known as plies or veneers
- Production of an "endless" ply ribbon by rotary peeling

- Unwinding of a log to obtain a wooden ribbon of about 2 mm to 4 mm thickness
- Dried and bonded with an angle of 90° between the grain direction in adjacent layers

(DoTS: 2.7.2.2)

CHALMERS UNIVERSITY OF TECHNOLOGY

5 layers cross-section

- grain direction of the face veneer
- d_i thickness of each veneer

(b) Five-ply plywood

(c) Three-ply blockboard

(d) Five-ply blockboard

(e) Laminboard

(a) The structure of a three-ply plywood

Plywood – structural properties

Affected by the following parameters:

- Geometrical factors (no. of veneers, composition)
- Material factors (wood species, moisture content)
- Load factors (type of stresses, direction of stress related to the grain direction of the face veneer, load duration)

Plywood – axes of bending

 Bending about an axis in the plane of the board

 Bending about an axis perp. to the plane of the board

Plywood in bending - bending perpendicular to the plane

- Stiffness in dependency of the orientation:
 - a) Parallel to the grain of face veneer
 - b) Perpendicular to the grain of face veneer

$$\Longrightarrow EI = \sum E_i I_i$$

(DoTS: 2.7.2.2)

Bending perpendicular to the plane

- Difference in stiffness between E_{\parallel} and E_{\perp}
- Examples with 5 veneers:
- Assume: $E_{90,mean} = 0$ for the layers
- $E_{0,mean} = E_0$ and b = 1 gives
 - for σ_m parallel to grain of face veneer

•
$$E_{\parallel}I = E_0 \left(3\frac{d^3}{12} + 2d(2d)^2 \right) = 33\frac{E_0 d^3}{4}$$

• for σ_m perpendicular to grain of face veneer

•
$$E_{\perp}I = E_0 \left(2\frac{d^3}{12} + 2d \ d^2 \right) = 13\frac{E_0 d^3}{6}$$

$$E_{\parallel} = \frac{33E_0 d^3 12}{4 \cdot (5d)^3} = 0,79E_0$$

$$E_{\perp} = \frac{13E_0 d^3 12}{6 \cdot (5d)^3} = 0,21E_0$$

- $E_{90,mean}$ is taken as $\frac{1}{30}E_{0,mean}$, as would be typical for softwood veneers, the improvements in moduli are:
 - $E_{\parallel} = 0.80E_0$ for $\sigma_m \parallel$ grain of face veneer
 - $E_{\perp} = 0.24 E_0$ for $\sigma_m \perp$ grain of face veneer

Ref: STEP1-A10, 1995

Plywood - in plane bending

- Orientation:
 - Parallel to the grain of face veneer
 - Perpendicular to the grain of face veneer b)

Plywood - in plane bending

- Difference in stiffness between E_{\parallel} and E_{\perp}
- Examples with 5 veneers:
- Assume: $E_{90.mean} = 0$ for the layers
- $E_{0.mean} = E_0$ and b = 1 gives

•
$$E_{\parallel}I=3rac{dh^3}{12}E_0$$
 for $\sigma_m\parallel$ grain of face veneer

•
$$E_{\perp}I = 2\frac{dh^3}{12}E_0$$
 for $\sigma_m \perp$ grain of face veneer

•
$$E_{\parallel}I = 3\frac{dh^3}{12}E_0$$
 for σ_m || grain of face veneer $E_{\parallel} = \frac{dh^3E_012}{4\cdot 5dh^3} = 0,60E_0$
• $E_{\perp}I = 2\frac{dh^3}{12}E_0$ for $\sigma_m \perp$ grain of face veneer $E_{\perp} = \frac{dh^3E_012}{6\cdot 5dh^3} = 0,40E_0$

$$E_{\perp} = \frac{dh^3 E_0 12}{6 \cdot 5dh^3} = 0.40E_0$$

- If $E_{90,mean} = \frac{1}{30} E_{0,mean}$
 - $E_{\parallel} = 0.61E_0$ for $\sigma_m \parallel$ grain of face veneer
 - $E_{\perp} = 0.41E_0$ for $\sigma_m \perp$ grain of face veneer

Ref: STEP1-A10, 1995

Plywood - in shear

- a) panel shear
- b) planar (rolling) shear

Ref: STEP1-A10, 1995

Panel & rolling (planar) shear in an I-beam

Plywood – tension and compression

- a) parallel
- b) perpendicular to the grain of the face veneer

- $E_{\parallel} = \frac{1}{5d} (3dE_0 + 2d \cdot 0) = 0.60E_0$ for $\sigma_m \parallel$ grain of face veneer
- $E_{\perp} = \frac{1}{5d}(2dE_0 + 3d \cdot 0) = 0.40E_0$ for $\sigma_m \perp$ grain of face veneer

Plywood – general classification

 Strength and stiffness in bending parallel and perpendicular to the grain of face veneer

- Example:
 - F 50/25 E70/25

$$f_{m,0,k} = 50N/mm^2$$

 $f_{m,90,k} = 25N/mm^2$
 $E_{m,0,mean} = 7000N/mm^2$
 $E_{m,90,mean} = 2500N/mm^2$

Plywood – special grades

Table 1.7 Strength and stiffness properties and density values of selected American and Swedish structural plywoods

Section properties		Characteristic strength (N/mm²)								Density (kg/m³)		Mean modulus of rigidity (N/mm ²)	Mean modulus of elasticity (N/mm²)			
		Bending		Compression		Tension		Panel	Planar (rolling) shear	Characteristic	Mean	Panel shear	Bending		Tension and compression	
Plywood type	Nominal thickness (mm)	f _{m,0,k}	f _{m,90,k}	$f_{ m c,0,k}$	f _{c,90,k}	f _{t,0,k}	ft.90.k	f _{v,k}	fr,k	$ ho_{\mathbf{k}}$	$ ho_{ m mean}$	$G_{ m v,mean}$	E _{m,0,mean}	E _{m.90.mean}	E _{t/c.0,mean}	E _{t/c} ,90,mean
American plywood Grade: C-D Exposure 1 (CDX)	12.5 21	23.5 14.8	12.2 10.1	13.9 10.6	8.1 7.7	13.6 10.5	7.2 6.9	3.2 3.2	0.9 0.9	410 410	460 460	500 500	10300 7800	2500 2500	6800 5200	4600 3900
Swedish plywood Grade: P30	12 24	23.0 21.6	11.4 12.4	15.0 15.4	12.0 11.4	15.0 15.4	12.0 11.4	2.9 2.9	0.9 0.9	410 410	460 460	500 500	9200 8700	4600 5000	7200 7400	4800 4600

Note: 1. Characteristic value of modulus of elasticity, $E_{i,k} = 0.8 \times E_{i,mean}$.

2. Number of plies > 5.

Bending parallel to grain: $f_{m,0,k}$ and $E_{m,0,mean}$ Planar shear: $f_{r,0,k}$

Bending perpendicular to grain: $f_{m,90,k}$ and $E_{m,90,mean}$ Planar shear: $f_{r,90,k}$

Tension or compression parallel to grain: $f_{t,0,k}, f_{c,0,k}$ and $E_{t,0,mean}, E_{c,0,mean}$

Tension or compression perpendicular to grain: $f_{1,90,k}$, $f_{c,90,k}$ and $E_{1,90,mean}$, $E_{c,90,mean}$

Panel shear:

Product specific properties of Kerto-S and Kerto-Q

Property	Kerto-S Thickness 21–90 mm	Kerto-Q Thickness 21–24 mm	Kerto-Q Thickness 27–69 mm
Strength values	·		
Bending edgewise $f_{m,0,edge,k}$	44	28	32
- Size effect parameter s	0,12	0,12	0,12
Bending flatwise, parallel to grain $f_{m,0,flat,k}$ (thickness 21–90 mm)	50	32	36
Bending flatwise, perpendicular to grain $f_{m,90,{\rm flat},k}$		8,0 2)	8,0
Tension parallel to grain $f_{t,0,k}$	35	19	26
Tension edgewise, perpendicular to grain $f_{\rm t,90,edge,k}$	0,8	6,0	6,0
Tension flatwise, perpendicular to grain $f_{\rm t,90,flat,k}$	-	14.	-
Compression parallel to grain $f_{c,0,k}$	35	19	26
Compression edgewise, perpendicular to grain $f_{c,90,{\rm edge},k}$	6	9	9
Compression flatwise, perpendicular to grain $f_{c,90,{\sf flat},k}$	1,8	2,2	2,2
Shear edgewise $f_{v,0,edge,k}$	4,1	4,5	4,5
Shear flatwise, parallel to grain $f_{ m v,0,flat,k}$	2,3	1,3	1,3
Shear flatwise, perpendicular to grain $f_{v,90,flat,k}$	-	0,6	0,6

Product specific properties of Kerto-S and Kerto-Q

Property	Kerto-S Thickness 21–90 mm	Kerto-Q Thickness 21–24 mm	Kerto-Q Thickness 27–69 mm
Stiffness values for capacity analysis			
Elastic modulus			
– parallel to grain, along $E_{0,k}$	11 600	8 300	8 800
- parallel to grain, across E _{90,k}	-	1 000 2)	1 700
– edgewise, perpendicular to grain $E_{90,\text{edge},k}$	350	2 000	2 000
– flatwise, perpendicular to grain $E_{90,{\rm flat},k}$	100	100	100
Shear modulus			
– edgewise G _{0,edge,k}	400	400	400
– flatwise, parallel to grain $G_{0,flat,k}$	400	60	100
– flatwise, perpendicular to grain $G_{90,\mathrm{flat},k}$	÷	16	16
Stiffness values for deformation calculations, mean value	s		
Elastic modulus			
– parallel to grain, along $E_{0,mean}$	13 800	10 000	10 500
- parallel to grain, across E _{90,mean}		1 200 2)	2 000
- edgewise, perpendicular to grain E _{90,edge,mean}	430	2 400	2 400
– flatwise, perpendicular to grain $E_{90, {\rm flat}, {\rm mean}}$	130	130	130
Shear modulus			
- edgewise G _{0,edge,mean}	600	600	600
– flatwise, parallel to grain $G_{0,\text{flat},\text{mean}}$	600	60	120
- flatwise, perpendicular to grain G _{90,flat,mean}	+	22	22
Density			
Density $ ho_{\scriptscriptstyle K}$	480	480	480
Density $ ho_{mean}$	510	510	510

Rehearsal questions

- **A6.** In which case (a) or (b) is the modulus of elasticity of plywood E_{\parallel} (outer ply parallel to main plate direction) with the same number of veneers larger and why? Derive the values for 5 plies plywood.
 - a) Bending perpendicular to the plate
 - b) In-plane bending
- A7. In which case (a) or (b) is the modulus of elasticity of plywood E_{\perp} (outer ply perpendicular to main plate direction) with the same number of veneers larger and why? Derive the values for 5 plies plywood.
 - a) Bending perpendicular to the plate
 - b) In-plane bending

Example C3 Roof cover made of plywood

- Design (ULS) the plywood cladding (in the central part of the building) for the load combination of wind and snow load, with snow as the main load. Plywood panels (12 x 1200 x 2400 mm) is a continuous panel with tongued-and-grooved joints between the panels.
- Location Göteborg
- Primary beams spacing 3m, purlins - spacing 1.2m
- Roof angle 30°.
- Service class 2
- Design snow load: 0.58 kN/m² ($\psi_0 = 0.7$)
- design wind load: 0.25 kN/m² ($\psi_0 = 0.3$)
- Roof cover 0.1 kN/m²
- Self-weight of the purlin: 0.03 kN/m

Cross-laminated timber (CLT)

Cross Laminated Timber (CLT) – Production

Cross Laminated Timber (CLT) – Production

Cross-Laminated Timber (CLT)

- Late 90's: first products in Austria and Germany
- Developed in Austria (Technical University of Graz)
- 1998: first austrian product certification
- Layer of structural materials are glued crossed to each other
- Same glued adopted for glulam (PRF, MUF, PUR)
- · Structural optimisation is possible

Cross-Laminated Timber (CLT)

Modern production of CLT, cf. glulam

- Kiln-dry boards to 12% MC (but range 8 to 15% ±2%)
- Strength grading (tensile strength ex. T14),
- Finger jointing lamellas tB (boards)
 - Thickness $t_B = (12 \text{ to } 45 \text{ mm})$
 - Width $w_B = (40 \text{ to } 300 \text{ mm})$
 - $w_B/t_B > 4$, due to rolling shear stresses between the layers
- Four-side planing
- Surface bonding
 - (bond line thickness of the gluline is within 0.1 to 0.3 mm)

Cross-Laminated Timber (CLT)

Cross-Laminated Timber (CLT)

Examples of application

Cross-Laminated-Timber - CLT

Cross-Laminated-Timber - CLT

· Example of stress distribution in shear

I-beams and box beams

Concept

Efficient material use

higher production costs

Example

- Nailed trusses of a storage building Dätwyler Altdorf, Switzerland 1954
- Span 22.5m,
- Crane attached to trusses

Glued thin-webbed I-beams, box beams and SSP

Examples

Boxbeams

Examples

• Large I-beams

Examples

• I-beams with steel web

I-joists - manufacture

- Strength grading of timber (flange)
- Fingerjointing to desired length (flange)
- Cutting of groove (flange)
- Jointing and cutting of tongue for the webmaterial
- Jointing of flanges and web to a beam

- Manufacturing varies between mills
 - Strength grading
 - Orientation of the flange

Masonite beam ®

Glued thin-webbed I-beams and box beams – Performance

- The flanges carry the stresses caused by bending moment and axial forces
- The web (or webs) carry the stresses from shear forces
- They have a high load-carrying capacity and stiffness compared with their weight
- The dimensions of I-sections are often determined by the need for insulation and its thickness

Members with full composite action

- What is full composite action?
 - When strain compatibility applies

- Examples of members with full composite action
 - I- beams
 - Hollow section beams
 - Stress-skinned panels (SSP)

Conditions for composite action

- When a glued joint is used and the thickness of the glue line is small then full composite action can be assumed
- When the connection is made by mechanical fasteners and/or a thick glue line, partial composite action should be assumed

Stress distribution

Linear strain distribution + different MOE => different stresses

Rehearsal question

- Describe (draw) the stress and strain distribution over
- the cross-section for the glued thin-webbed I-beam.
- Complete interaction between the flanges and the web is assumed. The MOE varies for different component parts,
 - a) $E_1 = 2E_2$
 - b) $E_1 = 3E_2$

Rehearsal question

- Describe (draw) the stress and strain distribution over
- the cross-section for the glued thin-webbed I-beam.
- Complete interaction between the flanges and the web is assumed. The MOE varies for different component parts, ,
 - a) $E_1 = 2E_2$
 - b) $E_1 = 3E_2$

Possible failure modes and positions of failure

- 1. Compression failure of the compression flange
- 2. Tension failure of the tension flange
- 3. Shear failure of the web panel
- 4. Shear buckling failure of the web panel
- 5. Shear failure of the flange-to-web interface
- 6. Shear failure of open web panel joints and web panels with holes
- 7. Buckling failure due to axial loading, not shown in Figure
- 8. Patch loading failure, i.e. concentrated loading acting perpendicular to the flanges
- 9. Compression failure of the outer flange surfaces caused by concentrated forces acting perpendicular to the grain
- 10. Overall web buckling failure
- 11. Local web buckling caused by bending moments and/or axial force

CHALMERS

Verification of I-beams

For linear strain distribution

- Flanges should satisfy
 - $\sigma_{f,c,max,d} \leq f_{m,d}$
 - $\sigma_{f,t,max,d} \leq f_{m,d}$
 - $\sigma_{f,c,d} \leq k_c \cdot f_{c,0,d}$ it may be assumed
 - $\sigma_{f,t,d} \leq f_{t,0,d}$

where l_c distance between lateral bracing of flange

- The web should satisfy
 - $\sigma_{w,c,d} \leq f_{c,w,d}$
 - $\sigma_{w,t,d} \leq f_{t,w,d}$

CHALMERS

Verification of I-beams

For linear strain distribution

- · Shear stresses in the web:
 - Without detailed buckling analysis: $h_w \le 70b_w$

•
$$F_{v,w,Ed} \le \begin{cases} b_w h_w \left(1 + \frac{0.5(h_{f,t} + h_{f,c})}{h_w}\right) f_{v,0,d} & h_w \le 35b_w \\ 35b_w^2 \left(1 + \frac{0.5(h_{f,t} + h_{f,c})}{h_w}\right) f_{v,0,d} & 35b_w \le h_w \le 70b_w \end{cases}$$

$$\tau_{mean,d} \leq \begin{cases} f_{v,r,d} & h_f \leq 4b_{ef} \\ f_{v,r,d} \left(\frac{4b_{ef}}{h_f}\right)^{0.8} & \text{for} \end{cases}$$

$$h_f > 4b_{ef}$$

• Where
$$b_{ef} = \begin{cases} b_w & \text{for box beams} \\ b_w/2 & \text{for I-beams} \end{cases}$$

Load-duration and moisture influence on deformation

• (1) SLS – composites with materials having different time-dependent properties, the final mean values are:

$$E_{mean,fin} = \frac{E_{mean}}{(1 + k_{def})}$$
 $G_{mean,fin} = \frac{G_{mean}}{(1 + k_{def})}$

• (2) ULS – the distribution of member forces and moments is affected by the stiffness distribution in the structure, the final mean values are:

$$E_{mean,fin} = \frac{E_{mean}}{\left(1 + \psi_2 k_{def}\right)}$$
 $G_{mean,fin} = \frac{G_{mean}}{\left(1 + \psi_2 k_{def}\right)}$

- Where:
 - ψ_2 is the factor for the quasi-permanent value of the action causing the largest stress in the relation to the strength

Use, advantages and failure modes

- Framing walls, floors and roofs
 - + Well insulated structures
 - + Very light structures
 - Time-consuming connections
- Failures:
 - Tension failure in lower flange
 - Buckling of upper flange
 - Shear failure of the web

Built-up, wood-based I-beams

- How do we connect flanges to the web?
- How do we splice the web made of boards of short length?

Design of an overlap splice in a plywood web

- Suggestion for how the capacity of a nail-glued overlap splice can be calculated when loaded by a moment and shear force.
- Outer veneers are horizontal (parallel with the span of the I-beam)

- Where
 - σ_r the maximum normal stress from the bending moment
 - τ_{mean} the mean shear streess

An overlap splice

- Consider a normal force on a strip with the depth ${\cal H}_e$ at the edge of the web:
 - Plywood with 3 veneers

$$N_x = \sigma_r \sum t_{\parallel} \cdot H_e = \sigma_r \cdot t_0 \cdot H_e$$

$$N_{xy} = \tau_{mean} \cdot t \cdot H_e$$

$$R = \sqrt{N_x^2 + N_{xy}^2} = \sqrt{(\sigma_r \cdot t_0)^2 + (\tau_{mean} \cdot t)^2} \cdot H_e$$

An overlap splice

• These forces can be collected to a single resultant force which is:

$$R = \sqrt{N_x^2 + N_{xy}^2} = \sqrt{(\sigma_r \cdot t_0)^2 + (\tau_{mean} \cdot t)^2} \cdot H_e \le l \cdot H_e \cdot f_{r,d}$$

 The resultant force R has to be transmitted to the overlap member by means of rolling shear acting on both sides of the web

$$R = f_{r,d} \cdot l \cdot H_e$$

$$f_{r,d} = \tau_{rolling}^{min} = \frac{R}{2 \cdot l/2 \cdot H_e}$$

$$l \ge \frac{\sqrt{(\sigma_r \cdot t_0)^2 + (\tau_{mean} \cdot t)^2}}{f_{r.d}}$$

Example C2 Splice of the web in an I-beam

- Design (ULS) the double-sided overlap splice in the plywood I-beam. The splice in the beam is subjected to a bending moment of M_{sd} = 18 kNm and a shear force of V_{sd} = 7.8 kN (design values). Strength classes C24 and P30 for the timber flanges and the plywood web respectively.
- The beam is situated in an ordinary residential building. Service class 2.
 Assume that the splice is of the same material as the web
 - The outer veneers are parallel to the direction of the beam
 - b) The outer veneers are perpendicular to the direction of the beam

Examples C1 – Shear capacity of a I-beam

- Determine the shear capacity of the I-beam!
 - The load is of medium-term duration.
 - Service class 1 can be assumed.
 - Timber in the flanges is C24 and in the web OSB/3
 - There is full interaction between flanges and the web.

CHALMERS

UNIVERSITY OF TECHNOLOGY