Introduction to Number Theory

Math 110 | Winter 2023

Xu Gao March 6, 2023 What we have seen last week:

- Chinese Remainder Theorem
- Reduction and lifting

They are all methods to assembling information in different modular worlds.

Today, we will dip into quadratic problems in modular worlds. Namely, *Quadratic residue*.

Specify to f(T) quadratte

Part VIII

Quadratic Residues

Definition 21.1

Let p be a prime number. We say an integer n (or the congurence class $[n]_p$) is a **quadratic residue** (**QR** for short) modulo p if the quadratic polynomial $T^2 - n$ has a solution in \mathbb{F}_p . Otherwise we say n (or the congurence class $[n]_p$) a **quadratic non-residue** (**NQR** for short) modulo p.

N.B. This property does not dependent on the choice of representative n.

Example 21.2

For each $x \in \mathbb{F}_7$, we have

Hence, the quadratic residues modulo 7 are $\overline{0}$, $\overline{1}$, $\overline{2}$, and $\overline{4}$, and the quadratic non-residues modulo 7 are $\overline{3}$, $\overline{5}$, and $\overline{6}$.

Question

How to determine whether n is a quadratic residue modulo p effectively.

Euler's Theorem

Theorem 21.3 (Euler)

Let p be an odd prime number and $a \in \Phi(p)$. Then

1. a is a quadratic residue modulo p if and only if

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

2. a is a quadratic non-residue modulo p if and only if

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}$$

N.B. By Fermat Little Theorem, we always have $a^{p-1} \equiv 1 \pmod{p}$. Since p is odd, $\frac{p-1}{2}$ is an integer and $a^{\frac{p-1}{2}}$ has to be congruent to either 1 or -1 since it is a root of $T^2 - 1$ modulo p.

Method of Partnership

One idea to prove the theorem is the method of partnership.

Method of Partnership

Example 21.5

Compute $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \pmod{11}$

Wilson's Theorem

Theorem 21.6 (Wilson)

Let p be a prime number. Then

$$(p-1)! \equiv -1 \pmod{p}$$
.

Proof. We may focus on the case p > 2 since p = 2 case is obvious. Considering $\Phi(p)$, partner x and y whenever $xy \equiv 1 \pmod{p}$. Let's see what are left over.

A natural representative x is left over after the partnering, if $x^2 \equiv 1 \pmod{p}$. We know (from the knowledge of polynomials over \mathbb{F}_p) that such natural representatives can only be 1 or p-1. Therefore,

$$(p-1)! = 1 \cdot (p-1) \cdot \text{the product of partners}$$

 $\equiv -1 \cdot \text{the product of } 1 = -1 \pmod{p}.$

Theorem 21.7

Suppose p is an odd prime. Then exactly half (i.e. $\frac{p-1}{2}$) members of $\Phi(p)$ are quadratic residues.

Proof. Consider the map

$$\Phi(p) \xrightarrow{\mathsf{X} \mapsto \mathsf{X}^2 \pmod{p}} \Phi(p).$$

We will show that this is a 2-to-1 map. Hence, the number of members in its images is exactly half of $\phi(p)$.

П

So why the map $\Phi(p) \xrightarrow{x \mapsto x^2 \pmod{p}} \Phi(p)$ is 2-to-1?

This amounts to say, for any quadratic residue $a \in \Phi(p)$, there are exactly two roots of the polynomial $T^2 - a$ modulo p.

First, since a is a quadratic residue modulo p, we know that the polynomial $T^2 - a$ has at least one root in \mathbb{F}_p . Let b be its natural representative, then $p - b \in \Phi(p)$.

Since p is odd, $p - b \neq b$. We thus obtain two different roots of $T^2 - a$ modulo p. But theorem 18.12 tells us that this polynomial has at most two roots in \mathbb{F}_p . Hence, we conclude that there are exactly two roots of the polynomial $T^2 - a$ modulo p.

Method of Partnership

Definition 21.8

Let p be a prime number and $a, x, y \in \Phi(p)$. We say x and y form a pair of a-partners if

$$xy \equiv a \pmod{p}$$
.

E.g. For p = 7, we have the following a-partners:

Proof of Euler's Theorem

Proof. If a is a quadratic residue modulo p, then there is $x \in \Phi(p)$ such that $x^2 \equiv a \notin p$. Therefore,

$$a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \pmod{p},$$

where the last congruence follows from the Fermat's little theorem.

If a is a quadratic non-residue modulo p, then any member of $\Phi(p)$ admits an a-partner distinct from it. Then the product of members of $\Phi(p)$ is precisely the product of $\frac{p-1}{2}$ pairs of a-partners. Therefore,

$$a^{\frac{p-1}{2}} \equiv (p-1)! \equiv -1 \pmod{p},$$

where the last congruence follows from the Wilson's theorem. \qed

Example 21.9

Determine whether 3 is a quadratic residue modulo 43.

To apply Euler's theorem, we need to find the minimal representative of $3^{\frac{43-1}{2}} \pmod{43}$.

3 ^x	(mod 43)
31	3
3 ²	9
34	-5
38	25
316	-20

$$3^{\frac{43-1}{2}} \equiv 3^{\frac{16-44-1}{4}} \pmod{43}$$
 $\equiv -20 \cdot -5 \cdot 3 \pmod{43}$
 $\equiv 300 \pmod{43}$
 $\equiv -1 \pmod{43}$

Hence, 3 is a quadratic non-residue modulo 43.

Corollary 21.10

Let p be an odd prime number. Then $T^2 + 1$ is irreducible modulo p if and only if $p \equiv 3 \pmod{4}$.

Proof. $T^2 + 1$ is irreducible modulo p if and only if it has no roots in \mathbb{F}_p if and only if -1 is a quadratic non-residue modulo p.

By Euler's theorem, this is equivalent to say

$$(-1)^{\frac{p-1}{2}} \equiv -1 \pmod{p}. \tag{*}$$

But we know that $(-1)^{\frac{p-1}{2}} = \begin{cases} 1 & \text{if } \frac{p-1}{2} \text{ is even,} \\ -1 & \text{if } \frac{p-1}{2} \text{ is odd.} \end{cases}$

Hence, (*) is equivalent to $p \equiv 3 \pmod{4}$.

Question

Suppose p is an odd prime number and $p \equiv 1 \pmod{4}$. How to find a root of $T^2 + 1 \mod p$?

Let A be the product of $(0,3,\dots,p-2)$, namely odd numbers in $\Phi(p)$. Let B be the product of $(2,4,\dots,p-1)$ namely even numbers in $\Phi(p)$. The factors of A and B can be paired by $X \leftrightarrow p-X$. Therefore,

$$B \equiv (-1)^{\frac{p-1}{2}} A \equiv A \pmod{p}.$$

$$B \equiv (-1)^{\frac{p-1}{2}} A \equiv A \pmod{p}.$$

On the other hand, we have

$$AB \equiv (p-1)! \equiv -1 \pmod{p}.$$

Hence, $\pm A$ are roots of $T^2 + 1$ modulo p.

$$tA = \int -1$$
 info

Definition 21.11

Let *p* be a prime number and *a* be an integer. Then the *Legendre symbol* is defined by

This is frection
$$\frac{\left(\frac{a}{p}\right)}{p} := \begin{cases}
0 & \text{if } p \mid a, \\
1 & \text{if } p \nmid a \text{ and } a \text{ is a quadratic residue modulo } p, \\
-1 & \text{if } a \text{ is a quadratic non-residue modulo } p.$$

If we use Legendre symbols, Euler's theorem can be interpreted as

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \pmod{p}.$$

Corollary 21.12

Let p be an odd prime number. Then the function $(\frac{-}{p})$ is completely multiplicative:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$
 for all $a, b \in \mathbb{Z}$.

If we translate the statement back to the definition of quadratic (non)-residue (and assume $p \nmid ab$), it says that $T^2 - ab$ is irreducible modulo p if and only if exactly one of the two polynomials $T^2 - a$ and $T^2 - b$ is irreducible modulo p.

Proof. First, since p is a prime, $p \mid ab$ if and only if $p \mid a$ or $p \mid b$. In this case, both $\left(\frac{ab}{p}\right)$ and $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ equals 0.

Now, assume $p \nmid ab$. Then by Euler's theorem,

$$\left(\frac{ab}{p}\right) \equiv \left(\underbrace{ab}\right)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \pmod{p}.$$

Since both sides are valued in ± 1 and $-1 \not\equiv 1 \pmod{p}$, we conclude that $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$.