Korrespondenzproblem

Soeren Berken-Mersmann

DHBW Karlsruhe

17. April 2015

Gliederung

- Postsches Korrespondenzproblem
- 2 Simulation einer Turingmaschine
- 3 Beweis der Nichtberechenbarkeit
- 4 Beweise weiterer Probleme

Postsches Korrespondenzproblem

$$\begin{bmatrix} 1 \\ 111 \end{bmatrix} \begin{bmatrix} 10111 \\ 10 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$

Wer findet eine Reihenfolge, so dass unten und oben jeweils die gleiche Folge steht?

Postsches Korrespondenzproblem

$$\begin{bmatrix} 1 \\ 111 \end{bmatrix} \begin{bmatrix} 10111 \\ 10 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$

Wer findet eine Reihenfolge, so dass unten und oben jeweils die gleiche Folge steht?

$$I_1 = (2,1,1,3) : \begin{bmatrix} 10111 \\ 10 \end{bmatrix} \begin{bmatrix} 1 \\ 111 \end{bmatrix} \begin{bmatrix} 1 \\ 111 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 001 \\ 0 \end{bmatrix} \begin{bmatrix} 01 \\ 011 \end{bmatrix} \begin{bmatrix} 01 \\ 101 \end{bmatrix} \begin{bmatrix} 10 \\ 001 \end{bmatrix}$$

Wer findet hierfür eine Lösung?

$$\begin{bmatrix} 001 \\ 0 \end{bmatrix} \begin{bmatrix} 01 \\ 011 \end{bmatrix} \begin{bmatrix} 01 \\ 101 \end{bmatrix} \begin{bmatrix} 10 \\ 001 \end{bmatrix}$$

Wer findet hierfür eine Lösung?

$$I_1 = (2,4,3,4,4,2,1,2,4,3,4,3,4,4,3,4,4,2,1,4,4,2,1,3,4,1,1,3,...)$$

$$\begin{bmatrix} 10\\101\end{bmatrix}\begin{bmatrix} 011\\11\end{bmatrix}\begin{bmatrix} 101\\011\end{bmatrix}$$

$$\begin{bmatrix} 10\\101 \end{bmatrix} \begin{bmatrix} 011\\11 \end{bmatrix} \begin{bmatrix} 101\\011 \end{bmatrix}$$

$$\begin{bmatrix} 10\\101 \end{bmatrix}$$

$$\begin{bmatrix} 10\\101 \end{bmatrix} \begin{bmatrix} 011\\11 \end{bmatrix} \begin{bmatrix} 101\\011 \end{bmatrix}$$
$$\begin{bmatrix} 10\\101 \end{bmatrix} \begin{bmatrix} 101\\011 \end{bmatrix}$$

$$\begin{bmatrix} 10 \\ 101 \end{bmatrix} \begin{bmatrix} 011 \\ 11 \end{bmatrix} \begin{bmatrix} 101 \\ 011 \end{bmatrix}$$
$$\begin{bmatrix} 10 \\ 101 \end{bmatrix} \begin{bmatrix} 101 \\ 011 \end{bmatrix} \begin{bmatrix} 101 \\ 011 \end{bmatrix} ...$$

Dieses mal offensichtlich ohne Lösung

Postsches Korrespondenzproblem (formell)

Definition des PKP

Gegeben sei eine endliche Menge an Wortpaaren $K=((x_1,y_1),...,(x_k,y_k))$, über dem Alphabet Σ mit $x_i,y_i\in\Sigma$. Gibt es eine Folge von Indizes $i_1,i_2,...,i_n\in 1,2,...,k,n\geq 1$, so dass $x_{i_1},x_{i_2},...x_{i_n}=y_{i_1},y_{i_2},...,y_{i_n}$.

Simulation einer Turingmaschine

Um die zu Beweisen, dass das PKP nicht berechenbar ist, werden wir eine Turingmaschine simulieren.

Dafür müssen wir zuerst den Rechenweg einer Turingmaschine formalisieren.

Zustand einer Turingmaschine

- Linkskontext: u
- Interner Zustand: *q*
- Gelesenes Symbol: a
- Rechtskontext: w

Somit lässt sich der Zustand Q_t einer Turingmaschine zum Zeitpunkt t durch die Folge $u_tq_ta_tw_t$ darstellen.

Rechenweg

Den Rechenweg einer Turingmaschine können wir als die Folge von Zuständen $Q_0, ..., Q_n$ vom Startzeitpunkt t=0 bis zum Endzeitpunkt t=n bei dem die Turingmaschine einen der Endzustände erreicht hat.

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \rightarrow q_10R$.

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 0110101q_010010\sharp$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 0$ $0110101q_010010\sharp 0$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 01$ $0110101q_010010\sharp 01$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

0110101 q_0 10010 \sharp 01101011 q_1 00010 \sharp 011 0110101 q_0 10010 \sharp 011

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 0110$ $0110101q_010010\sharp 0110$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 01101$ $0110101q_010010\sharp 01101$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 011010$ $0110101q_010010\sharp 011010$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 0110101$ $0110101q_010010\sharp 0110101$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

0110101 q_0 10010 \sharp 01101011 q_1 00010 \sharp 0110101111 q_1 0110101 q_0 10010 \sharp 01101011 q_1 0

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

 $0110101q_010010\sharp 01101011q_100010\sharp 011010111q_10\\0110101q_010010\sharp 01101011q_100$

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

0110101 q_0 10010 \sharp 01101011 q_1 00010 \sharp 011010111 q_1 0010 0110101 q_0 10010 \sharp 01101011 q_1 00010

Formalisierte Darstellung: 0110101, q_01 , 0010 \sharp 01101011, q_10 , 0010 Der Lesekopf liest eine 1 und befindet sich in Zustand q_0 , die Regel die Anwendung gefunden hat ist $q_01 \to q_10R$.

Simulation der Regel $q_10 o q_11$

0110101 q_0 10010 \sharp 01101011 q_1 00010 \sharp 011010111 q_1 0010 \sharp 0110101 q_0 10010 \sharp 01101011 q_1 00010 \sharp

1. Anfangsregel

 $(\sharp,\sharp\sharp q_0w\sharp)$

1. Anfangsregel

 $(\sharp,\sharp\sharp q_0w\sharp)$

2. Kopierregeln

 $(a,a) \qquad \qquad \text{für alle } a \in \Gamma \cup \{\sharp\}$

1. Anfangsregel

```
(\sharp,\sharp\sharp q_0w\sharp)
```

2. Kopierregeln

(a, a) für alle
$$a \in \Gamma \cup \{\sharp\}$$

3. Überführungsregeln

$$(qa, cq')$$
 falls $qa \rightarrow q'cR$, für $q \in Q$, $a \in \Gamma$
 $(bqa, q'bc)$ falls $qa \rightarrow q'cL$, für $q \in Q$, $a \in \Gamma$

1. Anfangsregel

```
(\sharp,\sharp\sharp q_0w\sharp)
```

2. Kopierregeln

(a, a) für alle
$$a \in \Gamma \cup \{\sharp\}$$

3. Überführungsregeln

$$(qa, cq')$$
 falls $qa \rightarrow q'cR$, für $q \in Q$, $a \in \Gamma$
 $(bqa, q'bc)$ falls $qa \rightarrow q'cL$, für $q \in Q$, $a \in \Gamma$

4. Aufholregeln

1. Anfangsregel

 $(\sharp,\sharp\sharp q_0w\sharp)$

2. Kopierregeln

(a, a) für alle
$$a \in \Gamma \cup \{\sharp\}$$

3. Überführungsregeln

$$(qa, cq')$$
 falls $qa \rightarrow q'cR$, für $q \in Q$, $a \in \Gamma$
($bqa, q'bc$) falls $qa \rightarrow q'cL$, für $q \in Q$, $a \in \Gamma$

4. Aufholregeln

$$(aq, q) \qquad \qquad \text{für } a \in \Gamma \text{ und } q \in Q_f$$

$$(qa, q) \qquad \qquad \text{für } a \in \Gamma \text{ und } q \in Q_f$$

5. Abschlussregel

$$(q\sharp\sharp\sharp,\sharp)$$

für
$$q \in Q_f$$

Beweis der Nichtberechenbarkeit

Beweise weiterer Probleme

Seien G_1 und G_2 zwei kontextfreie Grammatiken, und $L_1 = L(G_1)$ und $L_2 = L(G_2)$ zwei daraus konstruierte kontextfreie Sprachen.

Eindeutigkeit

Ist G_1 eindeutig?

Gleichheit

Ist $L_1 = L_2$?

Eindeutigkeit

Gleichheitstest

Vielen Dank für Ihre Aufmerksamkeit!