

P75NF75

Pb Free Plating Product

75V,80A Heatsink Planar N-Channel Power MOSFETs

FEATURES

- * $R_{DS(ON)}$ = 9.5m Ω @ V_{GS} = 10 V(Typical)
- * Ultra low gate charge (typical 117 nC)
- * Fast switching capability
- * Low reverse transfer Capacitance (C_{RSS}= typical 240 pF)
- * Avalanche energy Specified
- * Improved dv/dt capability, high ruggedness

 $BV_{DSS} = 75V$ $R_{DS(ON)} = 0.011 \text{ ohm}$ $I_D = 80A$

General Description

This N-channel enhancement mode field-effect power transistor using THINKI Semiconductor advanced planar stripe, DMOS technology intended for off-line switch mode power supply.

Also, especially designed to minimize rds(on) and high rugged avalanche characteristics. The TO-220M-SQ pkg is well suited for adaptor power units,amplifiers,inverters and SMPS application.

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	75	V
Gate-Source Voltage		V_{GSS}	±20	V
Continuous Drain Current	T _C = 25°C	I _D	80	Α
Pulsed Drain Current (Note 2)		I _{DM}	320	Α
Single Pulsed Avalanche Energy (Note 3)		E _{AS}	700	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	12	V/ns
Power Dissipation	TO-220/TO-263	P_D	300	W
	TO-220F		45	W
Junction Temperature		TJ	+175	°C
Storage Temperature		T _{STG}	-55 ~ +175	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by safe operating area
- 3. Starting T_J =25°C, I_D =40A, V_{DD} =37.5V
- 4. $I_{SD} \le 80A$, $di/dt \le 300A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le T_{JMAX}$

Rev.08C Page 1/5

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Lungtion to Austriant	TO-220/TO-263	θ_{JA}	62.5	°C /W
Junction to Ambient	TO-220F		62.5	°C /W
Junction to Case	TO-220/TO-263	θ_{JC}	0.5	°C /W
	TO-220F		3.33	°C /W

■ ELECTRICAL CHARACTERISTICS (T_C = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	75			V	
Drain-Source Leakage Current		I _{DSS}	$V_{DS} = 75 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ	
Gate-Source Leakage Current	Forward	I _{GSS}	$V_{GS} = 20V, V_{DS} = 0 V$			100	nA	
	Reverse		$V_{GS} = -20V, V_{DS} = 0 V$			-100	nA	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2.0	3.0	4.0	V	
Static Drain-Source On-State Resistance		R _{DS(ON)}	V_{GS} = 10 V, I_{D} = 40 A		9.5	11	mΩ	
DYNAMIC CHARACTERISTICS								
Input Capacitance Output Capacitance Reverse Transfer Capacitance		C _{ISS}	V _{GS} = 0 V, V _{DS} = 25 V f = 1MHz		3700		pF	
		Coss			730		pF	
		C _{RSS}	I - IIVIMZ		240		pF	
SWITCHING CHARACTERISTICS								
Turn-On Delay Time		t _{D(ON)}			25		ns	
Turn-On Rise Time Turn-Off Delay Time		t_R	V_{DD} = 37.5V, I_{D} =45A,		100		ns	
		t _{D(OFF)}	V_{GS} =10V, R_{G} =4.7 Ω		66		ns	
Turn-Off Fall Time		t _F			30		ns	
Total Gate Charge		Q_G	\/ - 60\/ \/ - 10 \/		117	160	nC	
Gate-Source Charge		Q_GS	$V_{DS} = 60V, V_{GS} = 10 V$		27		nC	
Gate-Drain Charge		Q_GD	I _D = 80A		47		nC	

■ ELECTRICAL CHARACTERISTICS(Cont.)

PARAMETER	CVMDOL	TEST CONDITIONS	MAINI	TVD	MAX	LINIT		
. , , , , , , , , , , , , , , , , , , ,	SYMBOL	TEST CONDITIONS	MIN	TYP	IVIAA	UNIT		
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS								
Drain-Source Diode Forward Voltage (Note 2)	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 80\text{A}$			1.5	V		
Continuous Source Current	Is				80	Α		
Pulsed Source Current (Note 1)	I _{SM}				320	Α		
Reverse Recovery Time	t _{RR}	$I_S = 80A, V_{DD} = 25 V$		132		ns		
Reverse Recovery Charge	Q_{RR}	dI _F / dt = 100 A/μs		660		μC		

Note: 1. Pulse width limited by safe operating area

2. Pulsed: pulse duration=300 μ s, duty cycle 1.5%

Rev.08C Page 2/5

■ TEST CIRCUITS AND WAVEFORMS

1A Peak Diode Recovery dv/dt Test Circuit

1B Peak Diode Recovery dv/dt Waveforms

Rev.08C Page 3/5

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

2A Switching Test Circuit

2B Switching Waveforms

3A Gate Charge Test Circuit

3B Gate Charge Waveform

4A Unclamped Inductive Switching Test Circuit

4B Unclamped Inductive Switching Waveforms

Rev.08C Page 4/5

TYPICAL CHARACTERISTICS

Gate Threshold Voltage, V_{TH} (V)

Drain-Source Breakdown Voltage, BV_{DSS}(V)

Rev.08C Page 5/5