${\bf Laborator~5}$ SPECTROSCOPIA RADIAȚIILOR BETA

Alexandru Licuriceanu alicuriceanu@stud.acs.upb.ro

Data: 14 Noiembrie 2022

Grupa: 325CD

1. Scopul lucrării

1.1. Determinarea energiei maxime a radiațiilor beta.

2. Teoria lucrării

- 2.1. Radiațiile beta sunt fascicule de electroni (β -) sau pozitroni (β +) provenite din nucleele atomilor radioactivi în urma proceselor de dezintegrare.
- 2.2. Radiația β apare în urma unui proces de dezintegrare din nucleu, din care rezultă un proton, un antineutrino și un electron care este expulzat:

$$n \rightarrow p + \bar{v} + e^-$$

2.3. Asemănător, în urma dezintegrării β^+ , rezultă un proton care se transformă în neutron, un neutrino și un pozitron care este expulzat:

$$p \rightarrow n + v + e^+$$

2.4. În cazul de față, particulele sunt deviate de forța Lorentz într-un câmp magnetic și este necesar studiul influenței acestui câmp asupra energiei cinetice a particulei pentru a putea reprezenta corect spectrul energetic al radiațiilor beta.

3. Instalaţia experimentală

Instalația experimentală folosită este ilustrată în figura 1, iar elementele din care este formată sunt:

- EM electromagnet.
- SA sursă de tensiune.
- M multimetru digital.
- D detector de radiații.
- \blacksquare N numărător.
- SR sursa radioactivă ⁹⁰Sr.

Figura 1. Dispozitivul experimental

4. Modul de lucru

- 4.1. A fost montată sursa radioactivă în suportul special. În cadrul acestui experiment a fost folosită o sursă de radiații de ⁹⁰Sr.
- 4.2. Am modificat tensiunea de alimentare a electromagnetului indicată de multimetrul M pentru a obține pe rând, fiecare dintre valorile curentului electric prin bobină indicate în tabelul 1. Pentru curent am folosit valori de la 0 la 1.7 A cu pași de 0.05 A.
- 4.3. Pentru fiecare valoare a curentului din tabelul 1, am setat cronometrul numărătorului la 60 de secunde și am înregistrat numărul de impulsuri.
- 4.4. Pentru a găsi valorile câmpului magnetic B pentru curenții care nu se regăsesc în tabelul 1 din referatul lucrării¹, i-am folosit pe cei existenți pentru a reprezenta grafic valorile lui B în funcție de I. Am trasat apoi o dreaptă printre aceste puncte, iar folosind ecuația sa am aflat valorile câmpului B pentru restul curenților. Graficul cu dreapta de regresie este reprezentat în figura 2 și curenții din referatul lucrării se găsesc în tabelul 1.
- 4.5. Am introdus datele experimentale și calculele aferente în tabelul 2.
- 4.6. Am reprezentat grafic n în funcție de E (energia particulelor β) în figura 3.
- 4.7. Din grafic am determinat energia cea mai probabilă E_h și am calculat energia maximă a radiației β .

3

¹ http://www.physics.pub.ro/Referate/BN030/Spectroscopia radiatiilor BETA.pdf pagina 5.

Figura 2. B în funcție de I

I (A)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7
B (mT)	2.1	4.6	6.9	9.3	12.5	14.5	16.8	19.6	22.3	24.8	28.2	31	32.7	36.1	38.2	41.1	44.1	46.7

Tabelul 1. Perechile de valori pentru curenți și câmp magnetic

5. Prelucrarea datelor experimentale

5.1. Datele experimentale obținute pentru sursa radioactivă ⁹⁰Sr sunt în tabelul 2.

- N este numărul de impulsuri detectate în intervalul de 60 de secunde.
- E reprezintă energia particulelor β .
- n' este numărul de impulsuri pe secundă și se obține din împărțirea lui N la 60 de secunde.
- \blacksquare Dispersia σ_n se calculează cu ajutorul formulei:

$$\sigma_n = \sqrt{\frac{n}{t} + \frac{f}{t_f}}$$

Unde $t=60~s,\,f=0.1~imp/s$ este numărul de impulsuri pe secundă pentru fondul de radiații, iar $t_f=600~s.$

			⁹⁰ Sr			
I (A)	B (mT)	E (keV)	N (imp)	n' (imp/s)	n = n' - f	σ_{n}
0	1.58	4.31	188	3.13	3.03	0.22
0.05	2.90	14.32	207	3.45	3.35	0.23
0.1	4.21	29.83	311	5.18	5.08	0.29
0.15	5.53	50.38	283	4.71	4.61	0.27
0.2	6.85	75.45	406	6.76	6.66	0.33
0.25	8.16	104.48	479	7.98	7.88	0.36
0.3	9.48	136.95	648	10.80	10.70	0.42
0.35	10.80	172.35	726	12.10	12.00	0.44
0.4	12.11	210.26	869	14.48	14.38	0.48
0.45	13.43	250.31	960	16.00	15.90	0.51
0.5	14.75	292.17	1040	17.33	17.23	0.53
0.55	16.07	335.58	1105	18.41	18.31	0.55
0.6	17.38	380.30	1119	18.65	18.55	0.55
0.65	18.70	426.16	1222	20.36	20.26	0.58
0.7	20.02	472.99	1259	20.98	20.88	0.59
0.75	21.33	520.66	1244	20.73	20.63	0.58
0.8	22.65	569.06	1237	20.61	20.51	0.58
0.85	23.97	618.10	1252	20.86	20.76	0.58
0.9	25.28	667.69	1134	18.90	18.80	0.55
0.95	26.60	717.77	1050	17.50	17.40	0.53
1	27.92	768.28	1010	16.83	16.73	0.52
1.05	29.24	819.17	881	14.68	14.58	0.49
1.1	30.55	870.40	872	14.53	14.43	0.49
1.15	31.87	921.94	829	13.81	13.71	0.47
1.2	33.19	973.75	793	13.21	13.11	0.46
1.25	34.50	1025.80	708	11.80	11.70	0.44
1.3	35.82	1078.08	609	10.15	10.05	0.40
1.35	37.14	1130.55	517	8.61	8.51	0.37
1.4	38.45	1183.20	460	7.66	7.56	0.35
1.45	39.77	1236.02	451	7.51	7.41	0.35
1.5	41.09	1288.99	390	6.50	6.40	0.32
1.55	42.41	1342.09	358	5.96	5.86	0.31
1.6	43.72	1395.32	327	5.45	5.35	0.29
1.65	45.04	1448.67	279	4.65	4.55	0.27
1.7	46.36	1502.12	247	4.11	4.01	0.25

Tabelul 2. Datele experimentale

Am calculat valoarea E pentru fiecare valoare B folosind formula:

$$E(keV) = \sqrt{\left(\frac{RBc}{1000}\right)^2 + 511^2 - 511}$$

Unde R = 14cm este raza de curbură pe care o parcurg electronii, iar c $\approx 3 \cdot 10^8 \ m/s$ este viteza luminii.

5.2. Reprezentarea grafică a lui n=f(E) cu regresie polinomială:

Figura 3.
n în funcție de ${\bf E}$

Din graficul din figura 3 se poate afirma faptul că $E_h \approx 500$ keV, iar energia maximă a radiației beta este de trei ori mai mare decât $E_h \leftrightarrow E_{max} = 3E_h \rightarrow$

 $E_{max} \approx 1500~keV$