Hipotesis:

- Los estampados del mismo tipo pero de diferenctes maquinas son indistinguibles
- 2. No hay inflación
- 3. Las fracciones de productos se venden a un precio porporcional al de la unidad
- 4. El pedido se deb cumplir por ende se trata de una demanda mínima
- 5. Se vende todo lo que se produce

Objetivo

Detenrmina la cantidad de horas de cada tipo de máquina que se usarán para hacer ambos estampados para máximizar las ganancias en un periodo de un día

Constantes:

 $M_{SC}(\$/dia)$: precio (\$) de la tela de Scooby por metro (m)

 $L_{SC}\left(m/hs\right)$: metros (m) de tela de Scooby producidos por hora (hs) en la maquina lenta

 $R_{SC}(m/hs)$: metros (m) de tela de Scooby producidos por hora (hs) en la maquina rápida

 $K_{SN}(\$/dia)$: precio (\$) de la tela de Snoopy por metro (m)

 $L_{SN}(m/hs)$: metros (m) de tela de Snoopy producidos por hora (hs) en la maquina lenta

 $R_{SN}(m/hs)$: metros (m) de tela de Snoopy producidos por hora (hs) en la maquina rápida

$$R_{SC}~=~7m/hs$$

$$L_{SN} \ = \ 2m/hs$$

Variables:

 $x_{i,j}(hs)$: horas (hs) de maquina i usadas en estampado k donde $i\epsilon\{r,\,l\}$ y $i\epsilon\{sn,\,sc\}$

r = rapida

l = lenta

sn = snoopy

sc = scooby

Objetivo funcional:

$$Z_{MAX} \; = \; K_{SN}(\$) \, * \, (R_{SN}(m/hs) \, * \, x_{r,sn}(hs) \, + \, L_{SN}(m/hs) \, * \, x_{l,sn}(hs)$$

Restricciones:

Demanda mínima:

$$R_{SN}(m/hs) * x_{r,sn}(hs) + L_{SN}(m/hs) * x_{l,sn}(hs) \geq 10.000 \ R_{SC}(m/hs) * x_{r,sc}(hs) + L_{SC}(m/hs) * x_{l,sc}(hs) \geq 9.000$$

Horas disponibles máximas de cada maquina:

$$egin{array}{lll} x_{r,sn}(hs) \, + \, x_{r,sc}(hs) \, \leq \, 70(maq) \, * \, 8(hs/maq) \ x_{l,sn}(hs) \, + \, x_{l,sc}(hs) \, \leq \, 60(maq) \, * \, 8(hs/maq) \end{array}$$

Resolución por software:

Archivo mod

```
/* Declaracion de variables */
var x_r_sn >= 0;
var x_l_sn >= 0;
var x_r_sc >= 0;
var x_l_sc >= 0;
/* Definicion del funcional */
maximize z: 50 * (1 * x_r_sn + 2 * x_l_sn) + 80 * (7 * x_r_sc + 9 * x_l_sc);
/* Restricciones */

/* Demanda mınima */
s.t. demMinSn: 1 * x_r_sn + 2 * x_l_sn >= 10000;
s.t. demMaxSc: 7 * x_r_sc + 9 * x_l_sc >= 9000;
/* Hs disponibles de maquinas */
s.t. dispMaqRap: 1 * x_r_sn + 7 * x_r_sc <= 70 * 8;
s.t. dispMaqLen: 2 * x_l_sn + 9 * x_l_sc <= 60 * 8;
end</pre>
```

Archivo sol

Problem: ej Rows: 5 Columns: 4 Non-zeros: 12

Status: UNDEFINED

Objective: z = 0 (MAXimum)

No.	Row name	St	Activity	Lower bound	Upper bound	Marginal
1	Z	В	0			
2	demMinSn	В	0	10000		
3	demMaxSc	В	0	9000		
4	dispMaqRap	В	0		560	
	dispMaqLen	В	0		480	
No.	Column name	St	Activity	Lower bound	Upper bound	Marginal
1	X_r_sn	NL	0	0		< eps
2	x_l_sn	NL	0	0		< eps
3	X r sc	NL	0	0		< eps
4	x_l_sc	NL	0	0		< eps

Karush-Kuhn-Tucker optimality conditions:

KKT.PE: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

KKT.PB: max.abs.err = 1.00e+04 on row 2
 max.rel.err = 1.00e+00 on row 2
 PRIMAL SOLUTION IS INFEASIBLE

KKT.DE: max.abs.err = 7.20e+02 on column 4
 max.rel.err = 9.99e-01 on column 4
 DUAL SOLUTION IS WRONG

KKT.DB: max.abs.err = 0.00e+00 on row 0
 max.rel.err = 0.00e+00 on row 0
 High quality

End of output