Camada de Transporte – Parte I

Prof. Jaime Cohen

2018

Sumário

Camada de Transporte (Parte I)

Protocolos de transporte

- Provê um serviço de comunicação entre processos sobre um serviço de comunicação entre hospedeiros.
- Implementado nos hospedeiros
- Envia segmentos entre processos
- Segmentos encapsulam dados da aplicação (ex. HTTP, SMTP, FTP)
- Protocolos de Transporte: TCP e UDP

UDP

- ► Demultiplexação
- ► Checagem simples de erros (*checksum*)

UDP - User Datagram Protocol

- serviço de comunicação entre processos
- permite a múltiplos processos em um mesmo hospedeiro compartilhar a rede
- mensagens são entregues de uma vez para a aplicação
- o tamanho das mensagens é limitado

UDP: Cabeçalho

UDP: Demultiplexação e Filas

UDP: Demultiplexação e Filas

- ► A demultiplexação do UDP é baseada em dois valores:
 - ► Endereço IP de Destino
 - ► Porta de Destino

TCP

Propriedades do TCP

- Transmissão confiável
- ► Controle de fluxo
- ► Controle de congestionamento

UDP versus TCP

- UDP
 - mensagens individuais
 - não confiável (perdas, fora de ordem, duplicações)
 - sem conexão
- ▶ TCP
 - ► fluxo de bytes
 - confiável
 - orientado à conexão
 - controle de fluxo
 - controle de congestionamento

Propriedades de um protocolo confiável

- Garantia de entrega das mensagens
- ► Mensagens entregues em ordem
- Sem mensagens duplicadas
- Suporta mensagens longas
- Sincronização entre transmissor e receptor
- Permitir ao receptor exercer controle de fluxo no transmissor
- Suportar várias aplicações em cada hospedeiro

O problema:

A rede subjacente:

- Perde pacotes (que carregam mensagens ou partes de mensagens)
- Entrega pacotes fora de ordem
- Duplica pacotes
- Envia pacotes de tamanho limitado
- Entrega pacotes com atrasos arbitrários

Problema ⇒ prover para a aplicação um serviço de transporte confiável sobre redes com as características listadas acima.

TCP: fluxo de bytes confiável

- Confiável
- Orientado à conexão
- Orientado a fluxo de bytes

Controle de Fluxo e Congestionamento

- Controle de Fluxo ⇒ impedir que o transmissor sobrecarregue o receptor
- Controle de Congestionamento ⇒ prevenir excesso de dados na rede

Protocolo Fim a Fim

Problemas a serem resolvidos

- conexões lógicas entre processos executados em diferentes hospedeiros
- ► RTTs (latências) têm grande variação
- pacotes podem ser entregues fora de ordem e perdidos
- ► cada lado da conexão dever ser capaz de descobrir os recursos que o outro lado utiliza ⇒ tamanho do buffer
- ▶ o TCP deve descobrir a capacidade da redes

Segmentos TCP

- ▶ as aplicações enviam/recebem fluxos de bytes
- mas o TCP transmite blocos de bytes

Segmentos TCP

- o transmissor armazena uma quantidade suficiente de bytes antes de enviar:
 - ▶ faz isso por questão de eficiência ⇒ aproveitar a carga dos pacotes
- o destinatário grava os dados recebidos de uma pacote no buffer
- ▶ a aplicação lê os dados do buffer no seu próprio ritmo
- um bloco de dados com cabeçalho enviado pelo TCP é chamado de segmento

Segmento TCP

- SrcPort e DstPort identificam as portas
- Acknowledgment, SequenceNum e AdvertisedWindow são utilizados pelo algoritmo de janela deslizante
- ► cada byte possui um número de sequência ⇒ SequenceNum contém o número de sequência do primeiro byte de dados contido no segmento
- ► Acknowledgment e AdvertisedWindow contém informações sobre o fluxo de dados no sentido oposto.

- ► Flags contém informações de controle
 - ► SYN, FIN, RESET, PUSH, URG, ACK.
- SYN e FIN são utilizados no estabelecimento e fechamento da conexão
- ACK determina se o campo Acknowledgment carrega informação

- URG marca dados urgentes.
 - permite a transmissão de dados fora da sequência
 - UrgPtr indica onde os dados não urgentes começam
- ► PUSH indica que o transmissor forçou o envio com um push
 - o transmissor notifica o processo receptor

- RESET indica uma situação de exceção
 - e solicita o fim da conexão
- checksum é usado para verificar a integridade do segmento, e é aplicado ao:
 - ▶ cabeçalho
 - dados
 - pseudo-cabeçalho: endereços IP da origem e destino (cabeçalho IP)

Início de uma Conexão TCP

Handshake de 3 vias

Confirmações

Confirmações e Retransmissões

Janela Deslizante do TCP

- ► Tem com objetivos
 - garantir entrega confiável
 - garantir entrega dos bytes em ordem
 - ► forçar o controle de fluxo entre o transmissor e o receptor

Janela Deslizante do TCP

Janela Deslizante do TCP

- Transmissor
 - ▶ LastByteAcked ≤ LastByteSent
 - ► LastByteSent ≤ LastByteWritten
- Receptor
 - LastByteRead < NextByteExpected
 - $NextByteExpected \leq LastByteRcvd + 1$