Assignment 1

Name: Navaneeth Shaji

```
Roll Number: 21CS30032
```

```
In [ ]: # import all the necessary libraries here
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import LabelEncoder
        from sklearn.linear_model import LogisticRegression
        from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score
        from sklearn.preprocessing import StandardScaler
In [ ]: df = pd.read_csv('../../dataset/cross-validation.csv')
        # replacing null values with mode
        df = df.fillna(df.mode().iloc[0])
       X = df.iloc[:, 1:-1].values
        y = df.iloc[:, -1].values
        display(df)
        m= X.shape[0]
        n= X.shape[1]
        print(X.shape)
        label_encoder = LabelEncoder()
        list = [0,1,2,3,4,10]
        for i in list:
            x = X[:,i]
            X[:,i] = label_encoder.fit_transform(x)
        y = label_encoder.fit_transform(y)
```

	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Status
0	LP001002	Male	No	0	Graduate	No	5849	0.0	120.0	360.0	1.0	Urban	Υ
1	LP001003	Male	Yes	1	Graduate	No	4583	1508.0	128.0	360.0	1.0	Rural	N
2	LP001005	Male	Yes	0	Graduate	Yes	3000	0.0	66.0	360.0	1.0	Urban	Υ
3	LP001006	Male	Yes	0	Not Graduate	No	2583	2358.0	120.0	360.0	1.0	Urban	Υ
4	LP001008	Male	No	0	Graduate	No	6000	0.0	141.0	360.0	1.0	Urban	Υ
609	LP002978	Female	No	0	Graduate	No	2900	0.0	71.0	360.0	1.0	Rural	Υ
610	LP002979	Male	Yes	3+	Graduate	No	4106	0.0	40.0	180.0	1.0	Rural	Υ
611	LP002983	Male	Yes	1	Graduate	No	8072	240.0	253.0	360.0	1.0	Urban	Υ
612	LP002984	Male	Yes	2	Graduate	No	7583	0.0	187.0	360.0	1.0	Urban	Υ
613	LP002990	Female	No	0	Graduate	Yes	4583	0.0	133.0	360.0	0.0	Semiurban	N

614 rows × 13 columns

```
(614, 11)
```

```
In [ ]: # splitting the dataset into 5 folds
        X1, X2, y1, y2 = train_test_split(X, y, test_size=0.2, random_state=0)
        X2, X3, y2, y3 = train_test_split(X2, y2, test_size=0.25, random_state=0)
        X3, X4, y3, y4 = train_test_split(X3, y3, test_size=0.33, random_state=0)
        X4, X5, y4, y5 = train_test_split(X4, y4, test_size=0.5, random_state=0)
        # storing the folds in a list
        X_{list} = [X1, X2, X3, X4, X5]
        y_{list} = [y1, y2, y3, y4, y5]
In [ ]: # training the model for each fold
        # storing the accuracy, precision and recall for each fold
        accuracy_list = np.zeros(5)
        precision_list = np.zeros(5)
        recall_list = np.zeros(5)
        for i in range(5):
```

```
X_test = X_list[i]
y_{test} = y_{list[i]}
X_train = np.array([])
y_train = np.array([])
for j in range(5):
   if j != i:
        if X_train.size == 0:
           X_{train} = X_{list[j]}
            y_{train} = y_{list[j]}
            X_train = np.concatenate((X_train, X_list[j]))
            y_train = np.concatenate((y_train, y_list[j]))
# training the model
classifier = LogisticRegression(random_state=0, solver='saga', max_iter=10000)
classifier.fit(X_train, y_train)
# predicting the test set results
y_pred = classifier.predict(X_test)
# making the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
acc = accuracy_score(y_test, y_pred)
accuracy_list[i] = acc
precision = precision_score(y_test, y_pred)
precision_list[i] = precision
recall = recall_score(y_test, y_pred)
recall_list[i] = recall
```

```
In [ ]: print("Mean Accuracy: ", accuracy_list.mean())
        print("Mean Precision: ", precision_list.mean())
        print("Mean Recall: ", recall_list.mean())
```

Mean Accuracy: 0.7298718970453673 Mean Precision: 0.7384370568993837 Mean Recall: 0.9876328844790928

In []: