

Projektarbeit:

Simulation der Einbettung von Anwendungen mit Bindungs- und Routinganforderungen in Mehrprozessorsystemen

von

Daniel Jäger

Matrikel-Nr.: 21448104

Betreuung:

Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Stefan Wildermann

31. März 2015

Inhaltsverzeichnis

1	Motivation Problemspezifikation						
2							
	2.1	Selbst	einbettung in Mehrprozessorsysteme	3			
	2.2		raint-Satisfaction-Problem (CSP)				
	2.3	Min-C	Conflicts-Embedder	6			
3	Model zur Lösung des CSP-Problems						
	3.1 Implementierung des Min-Conflicts-Embedder			9			
	3.2 Klassendiagramm zum Lösen der Bindungs- und Routinganforderungen						
		3.2.1	Bindungsanforderungen	10			
		3.2.2	Routinganforderungen	13			
		3.2.3	Hinzufügen von Anforderungen	14			
		3.2.4	Überprüfen von Anforderungen	15			
		3.2.5	Zuordnen von Anforderungen	15			
4	4 Evaluierung						
5	5 Zusammenfassung						
Lit	Literatur						

Aufgabenstellung zur Projektarbeit

Ziel dieser Arbeit ist es, einen Laufzeitmechanismus für hybride Einbettungsverfahren in heterogenen, NoC-basierten Mehrprozessorsystemen umzusetzen. Dazu müssen einerseits die grundlegenden Datenstrukturen und Algorithmen bereitgestellt werden, siehe [Jä14]. Diese sollen dann in der PGAS-Programmiersprache X10 [X1014] umgesetzt werden. Letztendlich soll das umgesetzte Verfahren durch Einsatz des InvadeSIM – Simulators [RHT12] simuliert werden, und ausgewertet werden, wie es sich in einem realen Vielkernsystem verhalten würden. Hierbei soll vor allem der mit dem Constraint-Solving verbundene Rechenaufwand quantifiziert werden.

Im Rahmen der Arbeit sind folgende Arbeitsschritte zu tätigen:

- Einarbeitung in die Thematik und die grundlegenden Literatur.
- Festlegung der Datenstrukturen und Algorithmen. Für die Arbeit ausreichend ist die Umsetzung der Min-Conflict-Heuristik (siehe [Jä14]).
- Deren Umsetzung in der Programmiersprache X10.
- Simulation und experimentelle Auswertung des Laufzeitverhaltens mit Hilfe von InvadeSIM [RHT12].
- Erstellung einer schriftlichen Projektarbeit und der Dokumentation aller Programme. Archivierung der relevanten Daten auf einer CD/DVD.

1 Motivation

Zukünftige Mehrprozessorsysteme bestehen aus einer Vielzahl heterogener Ressourcen [1], in denen die Kommunikation zwischen Ressourcen durch Network-on-Chips (NoCs) ermöglicht wird (siehe z. B. [2]). Diese Technologie unterstützt Anwendungsszenarien, in denen eine sehr große Zahl an Programmen dynamisch starten und terminieren. Allerdings führt der Einsatz von immer mehr gemeinsam genutzten, heterogenen Hardwareressourcen dazu, dass die Vorhersagbarkeit nichtfunktionaler Eigenschaften der Ausführung eines Programms erschwert wird. Dies betrifft z. B. den erwarteten Durchsatz, die Echtzeit Fähigkeit, Zuverlässigkeits- oder Sicherheitseigenschaften.

Neue Ansätze wie [3, 4] schlagen daher hybride Verfahren zur Einbettung von Anwendungen (engl. hybrid application mapping) vor. Im Fokus stehen Programme zur Bildund Signalverarbeitung, die nach dem Starten Daten periodisch verarbeiten. Zur Entwurfszeit wird im Rahmen einer Entwurfsraumexploration analysiert, welchen Einfluss verschiedene Allokationen heterogener Ressourcen für die Programmausführung auf deren nichtfunktionale Eigenschaften haben. Die Exploration evaluiert und optimiert dabei eine Vielzahl solcher Implementierungsalternativen, wobei nur Alternativen beibehalten werden, die bezüglich ihrer Zielgrößen nicht durch andere dominiert werden (sog. Betrieb- spunkte [5]). Die Grundidee dieses Vorgehens ist, dass die ermittelten nichtfunktionalen Eigenschaften einer Programmausführung garantiert werden können, wenn die geforderten Ressourcen zur Laufzeit bereitgestellt werden. Hierbei müssen nach [4] bestimmte Nebenbedingungen (Constraints) eingehalten werden: Einerseits sind dies Bindungsanforderungen bezüglich der Ressourcentypen, auf die die Anwendungstasks gebunden werden können. Andererseits bestehen Routinganforderungen für die Realisierung der Datenabhängigkeiten zwischen Anwendungstasks, z. B. bezüglich der maximalen Anzahl an Sprüngen (engl. hops) durch das NoC oder der benötigten Bandbreite.

2 Problemspezifikation

In diesem Kapitel wird die Selbsteinbettung von Taskgraphen in Mehrprozessorsystemen vorgestellt. Am Beispiel von einem Network-on-Chip (NoC) werden dessen Architektur und ihre Besonderheiten näher betrachtet. Danach wird das Constraint-Satisfaction-Problem (CSP) definiert und die Bedingungen (engl. *Constraints*) für die Architektur festgelegt.

2.1 Selbsteinbettung in Mehrprozessorsysteme

In einem Mehrprozessorsystem [HN11] arbeiten mehrere Zentralprozessoren zusammen. Mehrprozessorsysteme erlauben die Verteilung der Aufträge auf mehrere physische Zentralprozessoren und helfen somit den Durchsatz zu erhöhen. Das Betriebssystem verteilt die Anwendungen (engl. *Application*) und deren Teilaufgaben (engl. *Task*) an die Zentralprozessoren.

Bei der betrachteten Architektur (Abbildung 2.1) handelt es sich um ein heterogenes Mehrprozessorsystem. Kennzeichnend dafür ist die Verwendung verschiedener Typen von Zentralprozessoren. Diese werden im Weiteren Kacheln genannt. Die einzelnen Kacheln sind in einem Netzwerk – einem sogenannten Network-on-Chip (NoC) [WWT11] [Fra11] – miteinander verbunden. Das Netzwerk ist zu einem regelmäßigen rechteckigen Gitter von Kacheln geordnet, welches N hoch und M breit ist. Die direktbenachbarten Kacheln sind mit gerichteten Links $l_i \in L$ (Abbildung 2.2) in beide Richtungen verbunden. Die Kacheln $k \in K$ sind durch die Koordinaten (x,y) definiert:

Eine Kachel kann einen Task ausführen, wenn alle Constraints (Abschnitt ??) erfüllt sind. Einer dieser Randbedingungen ist der Max-Hop-Constraint. Diese besagt, dass zwei miteinander agierenden Task eine Manhattan-Distanz d_m (Formel 2.1)nicht überschreiten dürfen.

$$d_m(k_1, k_2) = |k_1.x - k_2.x| + |k_1.y - k_2.y|$$
(2.1)

Abbildung 2.1: Simulation eines heterogenes Network-On-Chip: Die belegten Kacheln sind mit grün und die defekten Kacheln mit rot markiert. In jeder Kachel steht der Ressourcentyp (0 oder 1).

Abbildung 2.2: Die benachbarten Kacheln sind mit gerichteten Links in beide Richtungen verbunden.

Jede Anwendung, die aus mehreren Teilaufgaben, den sogenannten Tasks, besteht, besitzt einen Taskgraphen (Abbildung 2.3). Dieser wird zur Entwurfszeit des Programms erstellt und stellt die Anforderungen, die für eine erfolgreiche Einbettung notwendig sind, graphisch dar.

Abbildung 2.3: Der Taskgraph besteht aus orangefarbenen Task- und gelbgefärbten Kommunikationsknoten

Eine Applikation besteht aus miteinander verbundenen Taskknoten $t \in T$ und Kommunikationsknoten $c \in C$. Es sind nur Kanten zwischen diesen beiden Knotentypen erlaubt. Außerdem besitzt jeder Kommunikationsknoten **genau** eine Eingangskante und eine Ausgangskante. Dem Task- und dem Kommunikationsknoten werden verschiedenartige Bedingungen übergeben, die zu erfüllen sind. Die verschiedenen Typen von Constraints sind je nach Anwendungsgebiet erweiterbar.

- Taskknoten $t_i \in T$
 - TypeConstraint:
 Der Task benötigt einen bestimmten Kacheltyp
 - TaskWorkloadConstraint:
 Der Task benötigt die Kachel zu einem gewissen Prozentsatz
 - **–** ...
- Kommunikationsknoten $c_i \in C$:
 - BandwidthConstraint:
 Jeder Link auf der Route zwischen den eingebetteten Tasks muss eine bestimmte Bandbreite für die Kommunikation freihaben.

- MaxHopConstraint:

Maximale Manhattan-Distanz zwischen zwei Tasks, die mit einer Kommunikation in Verbindung stehen.

– ...

abschnitt hinzufügen Das Ziel des Algorithmus ist es, für jeden Task eine Kachel zu finden, so dass alle Anforderungen des Taskgraphen erfüllt sind. Ist dies nicht möglich, soll der Algorithmus sich beenden und einen Fehlschlag der Einbettung melden. Im Abschnitt wird mit dem Min-Conflicts-Embedder ein stochastischer Ansatz vorgestellt. Es gibt auch die Möglichkeit, die Problemstellung mit dem systematischen Ansatz zu lösen. Dies wird in der folgenden Quelle näher erläutert.

2.2 Constraint-Satisfaction-Problem (CSP)

Das Problem der Taskeinbettung lässt sich als Constraint-Satisfaction-Problem (CSP) formulieren. Ein CSP wird mit dem Tripel (V,D,B) (Definition $\ref{thm:problem}$) beschrieben. Ziel des Constraint-Satisfaction-Problems ist es, eine global konsistente Wertebelegung für alle Constraint-Variablen zu finden. Das bedeutet, es müssen alle Bedingungen erfüllt sein. Eine Bedingung ist genau dann erfüllt (Definition $\ref{thm:problem}$), wenn die Wertezuweisungen den Anforderungen der Bedingung entspricht [GRJ00]. Die Bedingungen lassen sich wie in [Jä14] umformulieren.

quelle

2.3 Min-Conflicts-Embedder

Die Min-Conflicts-Heuristik ist in der Praxis eine häufig eingesetzte Methode zum Lösen von CSPs. Es handelt sich nicht um ein systematisches Verfahren wie beim Backtracking, sondern um ein Stochastisches. Als Startpunkt wird eine zufällige Belegung der Veriablen erzeugt. Falls dies keine Lösung des CSPs ist, wovon auszugehen ist, wird eine konflikterzeugende Variable zufällig ausgewählt. Dieser wird ein Wert zugewiesen, der weniger Randbedingungen verletzt als der vorherige.

Wie bei anderen stochastischen Methoden besteht auch hier die Gefahr, dass das System in einem lokalen Minimum terminiert. Falls das eintrifft, muss eine erneute zufällige Belegung der Variablen erzeugt werden und eine neue Runde beginnt. Eine Tabu-Liste kann dabei helfen, Belegungen, die zu einem lokalen Minimum geführt haben, nicht mehr zu wählen. Nach einer vorher festgelegten Anzahl von Runden beendet sich die Heuristik und das Scheitern der Einplanung wird ausgegeben. So kann es vorkommen, dass die Min-Conflicts-Heuristik keine konsistente Lösung findet, obwohl es eine im Constraint-System gibt.

Oftmals wird die Heuristik verwendet, wenn sich das Constraint-System geringfügig

verändert hat und für das vorherige System schon eine Lösung vorhanden ist. Aus diesem Grund wird der Algorithmus auch als "heuristisches Reparieren" [MJPL90] bezeichnet.

3 Model zur Lösung des CSP-Problems

In diesem Kapitel wird zuerst die Implementierung des Min-Conflicts-Embedder (Abschnitt 3.1) mit seinen einzelnen Methoden vorgestellt. Anschließend werden anhand von Klassendiagrammen die Bindungs- (Abschnitt 3.2.1) und Routinganforderungen (Abschnitt 3.2.2) näher betrachtet. Dabei wird die innere Struktur betrachtet, die diese Anforderungen hinzufügen, testen und lösen.

3.1 Implementierung des Min-Conflicts-Embedder

Die Implementierung des Min-Conflicts-Embedder ist anhand des Aktivitätsdiagramm (Abbildung 3.1) graphisch dargestellt. Zuerst wird die Schleifenvariable der äußeren Schleife mit Null initialisiert und die Methode mapTaskRandomly aufgerufen. In map-TaskRandomly werden alle Tasks einer zufällig gewählten Kachel, die im Programmcode Unit genannt wird, zugewiesen. Es werden dabei Verletzungen der Constraints ignoriert. Anschließend wird der inneren Schleifenvariable k dem Wert Null zugewiesen und die Funktion findRandomConflictingTask aufgerufen. Diese Funktion wählt einen Task aus der Menge C der Tasks aus, die mindestens einen Constraint verletzen. Falls es keinen Task gibt (conflicting Task==null) und somit die Menge C leer ist, wurde eine Lösung gefunden (success). Ansonsten wird überprüft, ob die maximale Anzahl an Schleifendurchgängen (kMax) erreicht wurde. Wenn dies nicht der Fall ist, ruft das Programm die Funktion minConflicts auf. minConflicts bekommt als Parameter den conflictingTask übergeben und versucht für ihn eine geeignete Kachel zu finden, die zu keiner Verletzung eine Bindungs- bzw Routingbedingung führt. Falls es eine derartige Kachel nicht gibt, wird schrittweise der MaxHopConstraint gelockert. Das heißt, dass die Manhattendistanz schrittweise um eins erhöht wird, bis der Algorithmus eine geeignete Kachel gefunden hat. Ist dies der Fall, wird k inkrementiert und die Funktion findRandomConflicting-Task wiederum aufgerufen.

Hat k den Wert kMax erreicht, so ist der Durchgang beendet und alle Tasks werden ihrer Kachel entzogen (**unmapTasks**). Die Funktion **mapTaskRandomly** wird aufgerufen und ein neuer Durchgang beginnt. Falls nach jMax Durchgängen noch keine Lösung gefunden wurde, beendet sich das Programm (**fail**).

Abbildung 3.1: Das Aktivitätsdiagramm zur Min-Conflicts-Implementierung

3.2 Klassendiagramm zum Lösen der Bindungs- und Routinganforderungen

3.2.1 Bindungsanforderungen

Die Abbildung 3.2 zeigt das Klassendiagramm zum Lösen von Bindungsanforderungen. Die Klasse Task speichert in einer Liste alle Bindungsanforderungen (engl. TaskConstraint) ab und stellt folgende Funktionen zur Verfügung:

- addTaskConstraint
 fügt ein Objekt einer abgeleiteten Klasse von TaskConstraintsder Liste hinzu.
- removeTaskConstraint löscht ein Objekt einer abgeleiteten Klasse von TaskConstraint aus der Liste

• taskConstraintsAreSatisfied ruft für alle Objekte in der Liste die Funktion isSatisfied aus der Klasse TaskConstraint auf. isSatisfied überprüft, ob die jeweilige Bindungsanforderung erfüllt ist. Die Funktion gibt True zurück, wenn alle Bindungsanforderungen erfüllt sind.

- numberOfFailingConstraint gibt die Anzahl der fehlgeschlagenen Bindungsanforderungen zurück, wenn man dem Task eine Unit u zuweist.
- mapConstraints
 weist dem Task eine Unit zu. Alle Objekte, die sich in der Liste befinden, rufen die
 Methode map auf.
- unmapConstraints entzieht dem Task die Unit. Alle Objekte, die sich in der Liste befinden, rufen die Methode unmap auf.

Um von der abstrakten Klasse TaskConstraints zu erben, müssen diese abstrakten Methoden implementiert werden:

- is Feasible überprüft, ob bei Einbetten des Tasks zur Unit u die durch das Objekt repräsentierte Anforderungen erfüllt werden würde. Hierzu wird die Methode check mit der Objektvariable der zugehörigen Instanz der Klasse Unit Attribute aufgerufen.
- *sSatisfied* überprüft, ob der eingebettete Task, die durch das Objekt repräsentierte Anforderung, erfüllt. Dazu wird die Methode check der zugerhöirigen UnitAttribute-Klasse mit dem Übergabewert null aufgerufen.
- *map* ruft von der zugehörigen UnitAttribute Unterklasse die Methode update auf. Der Parameterwert ist die eigene Objektvariable
- unmap ruft von der zugehörigen UnitAttribute Unterklasse die Methode update auf. Der Parameterwert ist der negierte Wert der eigenen Objektvariable

Die Klasse Unit repräsentiert eine Kachel dem Network-on-Chip. Jede Instanz ist durch die Positionsangabe (x,y) eindeutig identifizierbar. Eine Instanz erhält Objekte der abgeleiteten Unterklassen von der abstrakten Klasse UnitAttributes. Die Klasse Unit befinden sich folgende Methoden:

• addUnitAttriubte fügt der Liste eine Objekt einer Unterklasse von UnitAttribute hinzu

Umformulie

• removeUnitAttriubte löscht ein Objekt einer Unterklasse von UnitAttribute aus der Liste

Die Kindklassen von UnitAttribute müssen die zwei abstrakten Methoden *check* und *update* implementieren. Jede Kindklasse von TaskConstraint wird dabei von genau einer Kindklasse von UnitAttribute verwendet und überprüft (*check*) oder aktualisiert (*update*) diese.

- *check* überprüft, ob es möglich ist, dass Attribut zu aktualisieren.
- *update* aktualisiert die Objektvariable des Attributs.

TypeAttribute ist ein Spezialfall. Hier kann die Objektvariable nicht, wie z. B. bei UnitWorkloadAttribute, aktualisiert werden, da sich der Ressourcentyp nicht während der Laufzeit verändert. Deshalb ruft die Funktion *update* die Funktion *check* auf und überprüft, ob der gewünschte Ressourcentyp vorliegt.

Abbildung 3.2: Klassendiagramm zum Lösen von Bindungsanforderungen

3.2.2 Routinganforderungen

Das Klassendiagramm zum Lösen von Routinganforderungen (siehe Abbildung 3.3) ist dem von Bindungsanforderungen sehr ähnlich. So sind die Methoden und deren Funktionalitäten gleich. Der Unterschied zu den Bindungsanforderungen besteht darin, dass nicht wie bei den Bindungsanforderungen die Attribute von nur einer Kachel (Unit) überprüft bzw. aktualisiert werden. Bei den Routinganforderungen werden die Attribute von mehreren Links, die zuvor mithilfe eines Routingalgorithmuses ermittelt wurden, nachgeprüft oder erneuert.

Die Routinganforderung MaxHopConstraint ist ein Spezialfall. Diese Anforderung benötigt

kein LinkAttribut wie z. B. BandwidthConstraint, da sie nur überprüft, ob die Anzahl der Links in der zuvor berechneten Route eine maximal Zahl (maxHops) nicht überschritten wird.

Abbildung 3.3: Klassendiagramm zum Lösen von Routinganforderungen

3.2.3 Hinzufügen von Anforderungen

Um Anforderungen hinzuzufügen, wird in der Klasse Task bzw. Communication die Funktion addTaskConstraint bzw. addCommunicationConstraint aufgerufen. Die Anforderung wir in der ArrayListe list gespeichert. Falls eine Anforderung vom gleiche Typ schon vorhanden ist, wird diese durch die neue Anforderung ersetzt. Jede Anforderung (außer der MaxHopsConstraint) benötigt ein Unit- oder LinkAttribute, die beim Konfigurieren des NoCs schon mit addUnitAttribute bzw. addLinkAttribute hinzugefügt werden müssen.

3.2.4 Überprüfen von Anforderungen

Um zu überprüfen, ob alle Bindungsanforderungen erfüllt sind, wird in der Klasse Task die Methode taskConstraintsAreSatisfied aufgerufen. Diese Funktion ruft bei jedem Listeneintrag die Funktion isSatisfied. isSatisfied überprüft, ob der Task schon auf eine Kachel des Network-on-Chips eingebettet wurde und ob das dazugehörige UnitAttribute einen Fehler meldet.

Mit der Funktion numberOfFailingConstraints in der Klasse Task kann man herausfinden, wie viele Bindungsanforderungen missachtet werden, wenn der Task zu einer Kachel zugeordnet wird. Hierzu wird für jeden Listeneintrag die isFeasible-Methode aufgerufen.

Die Überprüfung der Routinganforderungen funktionieren nach dem gleichen Schemata.

3.2.5 Zuordnen von Anforderungen

Wenn man die Funktion mapConstraints in der Klasse Task aufruft, werden alle für alle Listenelemente die Funktion map aufgerufen. Diese rufen, die Funktion update vom dazugehörigen Attribut auf. Dadurch wird die Objektvariable des Attributs aktualisiert.

4 Evaluierung

5 Zusammenfassung

Literatur

- [Fra11] Thomas Frank. Network on chip. In Architekturen, Herausforderungen, Lösungen. Dresden, 2011.
- [GRJ00] G. Görz, C.-R. Rollinger, and J.Schneeberger. *Handbuch der Künstlichen Intelligenz*, chapter Constraints, pages 267–285. Oldenbourg Verlag, München, 3. edition, 2000.
- [HN11] Hans Robert Hansen and Gustav Neumann. Wirtschaftsinformatik 1. In *Grundlagen und Anwendungen*. UTB GmbH, 2011.
- [Jä14] Daniel Jäger. Selbsteinbettung von Anwendungen mit Bindungs- und Routinganforderungen in Mehrprozessorsystemen. Bachelorarbeit, Department of Computer Science 12, University of Erlangen-Nuremberg, February 2014.
- [MJPL90] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair method. In *Proceedings of the eighth National conference on Articial intelligence*, pages 17–24. AAAI Press, University of Leeds, 1990.
- [RHT12] S. Roloff, F. Hannig, and J. Teich. Approximate time functional simulation of resource-aware programming concepts for heterogeneous mpsocs. In *Design Automation Conference (ASP-DAC)*, pages 187 192, New York, NY, USA, January 2012. 17th Asia and South Pacific.
- [WWT11] Andreas Weichslgartner, Stefan Wildermann, and Jürgen Teich. Dynamic decentralized mapping of tree-structured applications on noc architectures. In *In Proceedings of NOCS*, pages 201–208. ACM, New York, NY, USA, 2011.
- [X1014] X10 Programmiersprache. http://x10-lang.org/, 2014.

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 31. März 2015									
	_								
Daniel läger									