

Weighted Ensemble Simulation: Review of Methodology, Applications, and Software (2017)

▼ Table of Contents

Table of Contents

ABSTRACT

INTRODUCTION

THEORY

The Original Huber-Kim Algorithm

Equilibrium, Steady States, and Kinetics

SOFTWARE

APPLICATION

CHALLENGES AND FUTURE DIRECTIONS

ABSTRACT

- Benefits of WE
 - one of the first rare-event methods capable of yielding unbiased estimates of nonequilibrium observables.
 - superlinear scaling
 - unbiased observables: rate constants and equilibrium state populations
 - can work for atomistic to cellular scope
 - some applications include:
 - protein conformational transitions
 - (un)binding

assembly processes

INTRODUCTION

- routine to carry out simulations on the ms timescale
 - which can see protein conformational changes and binding processes.
- Standard MD is difficult to characterize kinetics of biological process events for the prohibitive computational cost.
- The emergence of more accurate FF (polarizable FF and QM/MM models) will truncate the efficiency.
- Path sampling can ↑ efficiency of simulating rare events
 - by shifting the focus to functional transition than stable state.
 - they exploit the fact that these transition states are fleeting and infrequent.
 - $\circ t_b \ll t_{dwell}$ transition time magnitude less than stable or metastable region.
- Important perk is that no bias is introduced into the dynamics
 - like metadynamics, aMD, replica exchange
 - path sampling is rigorious and straightforward calculation of rate constants without assumptions
- The ability to efficiently provide kinetics observables and ensembles of unbiased pathway is highly complementary to state-of-the-art kinetics experiments.
 - Their perk is that these kinetic experiments can only measure overall rate constants of biological process
 - path sampling
 - can get rate constant of individual steps
 - provide insight into degree of diversity of pathways
 - yield ensembles of atomically detailed structures of transient states
 - not attainable from experiments

- useful to identifying residues of possible kinetic significance that could be mutated to alter rate of biological process
- WE approach as a method is a splitting strategy.

THEORY

The Original Huber-Kim Algorithm

- Phase-space points are configurations
- Velocity is not part of the picture.
- For very large *t*,
 - distribution will relax to nonequilibrium if there is an addition or removal of particles, probability, or energy
 - distribution will relax to equilibrium if there isn't ""
- Resampling converting one valid sample to another for the same distribution.
- The basic procedure of WE simulation
 - 1. initial configuration has been chosen that defines a set of trajectory walkers.
 - 2. Simulate all walkers for an arbitrary brief interval same interval.
 - 3. resample trajectories statistically, maintaining the distribution of trajectories.
- Resampling trajectories is performed using bins
 - bins are regions into which configuration space has been subdivided.
 - WE targets maintaining a fixed number of walkers per bin, M.
- Resampling is done in two ways:
 - If # of walkers < M, each walker is replicated, or split, to create multiple identical copies of the trajectory.
 - The weight of all child trajectories must sum to weight of the parent.
 - Child weights are made equal, usually.
 - If # of walkers > M, then trajectories is pruned to equal # of walkers.

- walkers are merged, and weights are summed.
- Each bin can have different targeted # of walkers.
- Choices to be made (system-specific):
 - bins are constructed
 - # of walkers are selected
 - resampling interval needs to be chosen

Equilibrium, Steady States, and Kinetics

- To calculate macroscopic rate constants between transitions without bias
 - $\circ MFPT(A \to B) = \frac{1}{Flux(A \to B; SS')}$
 - Denominator is the probability per unit time entering state B in A-to-B steady state.

SOFTWARE

APPLICATION

- can yield continuous pathways and rate constants for any type of stochastic dynamics, MC, BD, and MD.
 - highlighting generality.
- Conformational sampling
 - attractive alternative to metadynamics, adaptive biasing force, replica exchange MD,
 particularly when calculation of kinetics observables is also of interest.
- Protein folding
- Protein-peptide binding
- Protein-ligand unbinding

CHALLENGES AND FUTURE DIRECTIONS

•	Most probable path can be missed due to inadequate sampling of the slowest relevant
	motions.

•	explore WE	variation a	nd reduce	the corre	lations and	l hence im	prove sam	pling.
---	------------	-------------	-----------	-----------	-------------	------------	-----------	--------