メンガー凸性と測地性

1

定義 1.1. (X,d) を距離空間とする. $x,y \in X, t \in [0,1]$ に対して, $z \in X$ で

$$d(x, z) = td(x, y), \quad d(z, y) = (1 - t)d(x, y)$$

を満たすものを, t 中間点という.

注意 1.2. 中間点という用語は、別の使われ方もするので注意する.

命題 **1.3.** (X,d) を距離空間とする.

$$\{z \in Z \mid d(x,y) = d(x,z) + d(z,y)\}\$$

は有界閉集合である.

証明. $z_n \rightarrow z$ とすると,

$$d(x, z) + d(z, y) = \lim d(x, z_n) + \lim d(z_n, y) = \lim d(x, y) = d(x, y)$$

が成り立つので、閉集合である. また、

$$d(x,z) \le d(x,z) + d(z,y) = d(x,y)$$

が成り立つので, 有界である.

命題 1.4. (X,d) をプロパー距離空間とする. TFAE

- (1)(X,d) はメンガー凸 である.
- (2) 任意の $2 点 x, y \in X$ に対して, 1/2 中間点が存在する...
- (3) 任意の $2 点 x, y \in X$ に対して、任意の $t \in [0,1]$ に対して t 中間点が存在する.
- (4)(X,d) は測地的である.

証明. $(4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (4), (1) \Rightarrow (2) \Rightarrow (1)$ の順で示すことにする.

- $(4) \Rightarrow (3)$. $x,y \in X$ に対して, x,y を結ぶ測地線 γ_y^x をとり, $z = \gamma_y^x(td(x,y))$ とすればよい.
- $(3) \Rightarrow (2)$. 明らかである.
- $(2) \Rightarrow (4).$ $D := \left\{ \frac{k}{2^n} d(x,y) \mid n \in \mathbb{N}, k = 0,1,\dots,2^n \right\} \subset [0,d(x,y)]$ と定める. D から X への等長写像 γ で、 $\gamma(0) = x, \gamma(d(x,y)) = y$ を満たすものがつくれる. D は x を中心とする半径 d(x,y) の閉球の中に含まれ、(X,d) がプロパーであることから半径有限の閉球はコンパクトであるので、完備である(コンパクトならば完備であることを思い出しておく). 従って、 $t \in [0,d(x,y)]$ に対して、 $t_n \in D$ で $t_n \to t$ となる列をとる. $\gamma(t_n)$ は閉球の中のコーシー列であるので、収束列である.

$$\gamma(t) := \lim \gamma(t_n)$$

と定める. γ は定め方から連続写像である. $t,t'\in[0,d(x,y)]$ に対しては, $t_n\to t,t'_n\to t'$ となる D の点列をとると,

$$d(\gamma(t), \gamma(t')) = \lim d(\gamma(t_n), \gamma(t'_n)) = \lim d(t_n, t'_n) = d(t, t')$$

が成り立つので、たしかに γ はx,yを結ぶ等長写像である.

(1) \Rightarrow (2). 前述の命題より, $S_x \coloneqq \left\{z \in X \mid d(x,y) = d(x,z) + d(z,y), d(x,z) \le \frac{1}{2}d(x,y) \right\}$ は有界閉集合であるので, (X,d) がプロパーであることからコンパクトである. 連続関数

$$z \mapsto d(x, z)$$

を考え、 S_x 上の最大値を実現する点を $z\in S_x$ とする. $d(x,z)=\frac{1}{2}d(x,y)$ であれば、この点 z が求める点であるので証明は終了する. $d(x,z)<\frac{1}{2}d(x,y)$ であったと仮定する. $T_y:=\{w\in X\mid d(z,y)=d(z,w)+d(w,y),d(y,w)\leq \frac{1}{2}d(x,y)\}$ と定めて、連続関数

$$w \mapsto d(w, y)$$

の S_y 上の最大値を実現する点を $w\in S_y$ とする. $d(y,w)=\frac{1}{2}d(x,y)$ であれば、この点 w が求める点であるので証明は終了する. $d(w,y)<\frac{1}{2}d(x,y)$ であったと仮定する.

$$d(x, z) + d(z, y) = d(x, y), \quad d(z, w) + d(w, y) = d(z, y)$$

であるので,

$$d(z, w) = d(x, y) - d(x, z) - d(z, y)$$

である. $d(x,z), d(z,y) < \frac{1}{2}d(x,y)$ であることから, d(z,w) > 0 であるので, メンガー凸性から,

$$d(z,\eta) + d(\eta,w) = d(z,w)$$

なる点 $\eta \in X$ がとれる.

$$d(x, \eta) + d(\eta, y) = d(x, y), \quad d(x, \eta) > d(x, z)$$

であることから, d(x,z) が $z\mapsto d(x,z)$ の S_x 上の最大値であることに矛盾する.