Focal Loss for Dense Object Detection. RetinaNet

Пудяков Ярослав 161

НИУ ВШЭ. НИС Машинное обучение и приложения (2019)

Содержание

- 1. Постановка задачи
- 2. Существующие подходы
- 3. Мотивация работы
- 4. Focall Loss
- 5. RetinaNet
- 6. Результаты
- 7. Выводы
- 8. Используемые источники

Постановка задачи Object Detection

• Для каждого объекта на изображении определить класс и выделить соответствующий ему bounding box.

Puc. 1: Object Detection (A Closer Look at Object Detection, Recognition and Tracking, Grevelink, Evelyn, December 18, 2017, software.intel.com)

Существующие подходы

- One-stages Detectors
 - OverFeat, YOLO, SSD
 - Генерируют плотную выборку возможных областей $\approx 10^5$ и напрямую пытается найти в них объекты
 - + Простая и быстрая модель.
 - Результаты на 10% 40% ниже, чем у two-stages detectors.
- Two-stages Detectors
 - R-CNN, Faster-R-CNN
 - ullet Модель генерирует возможные области. Далее отсекаются изображения, где с большой вероятностью не будет объекта, остаются только наиболее потенциальные кандидаты pprox 1000 2000
 - + Результативность
 - Время работы в разы больше, чем у one-stage детекторов.

Мотивация

- Можно ли добиться качества сравнимого с two-stages детекторами на one-stage детекторе?
- Основная проблема class imbalance
 - 1. Выделяются тысячи областей-кандидатов, но лишь немногие содержат объекты
 - 2. В сумме, огромное множество негативных примеров (не содержащих объекты), могут сильно ухудшать модель.

Focal Loss

- Решением является использование специальной функции ошибки Focal Loss.
- По аналогии с Huber Loss, направленной на заглушение влияния outliers, Focal Loss направлена на уменьшие веса inliers (легких отрицательных примеров)
- Focal Loss концетрирует обучение на множестве редких и сложных примеров.

Cross Entropy (CE)

Focal Loss основан на улучшении стандартной функции кросс-энтропии:

$$CE(p, y) = \begin{cases} -\log(p) & \text{if } y = 1\\ -\log(1-p) & \text{otherwise} \end{cases}$$

p - вероятность класса y=1, предсказанная моделью.

$$p_{
m t} = \left\{ egin{array}{ll} p & ext{if } y = 1 \ 1 - p & ext{otherwise} \end{array}
ight.$$

Перепишем функции ошибки как:

$$CE(p, y) = CE(p_t) = -\log(p_t)$$

6

Balanced Cross Entropy

Для борьбы с несбалансированными классами, обычно вводится весовой фактор $\alpha \in [0,1]$ для y=1, и $1-\alpha$ для y=0. На практике он устанавливается равным обратной частоте класса y=1, либо подбирается на кроссвалидации.

Balanced-CE:

$$\mathrm{CE}\left(\mathbf{p}_{\mathrm{t}}\right) = -\alpha_{\mathrm{t}}\log\left(\mathbf{p}_{\mathrm{t}}\right)$$

Focal Loss Definition

Balanced-CE концентрируется на классе изображения, учитывая в равной степени влияние каждого, но совсем не учитывает сложность примера - легкий ли он для детектирования, или наоборот.

Чтобы учитывать сложность примера, вводится modulating factor $(1-p_t)^\gamma,\ \gamma\geq 0$

Focal Loss:

$$\mathrm{FL}\left(p_{\mathrm{t}}
ight) = -\left(1-p_{\mathrm{t}}
ight)^{\gamma}\log\left(p_{\mathrm{t}}
ight)$$

Свойства Focal Loss

$$ext{CE}\left(
ho_{ ext{t}}
ight) = -\log \left(
ho_{ ext{t}}
ight)$$
 $ext{FL}\left(
ho_{ ext{t}}
ight) = -\left(1 -
ho_{ ext{t}}
ight)^{\gamma} \log \left(
ho_{ ext{t}}
ight)$

Focal Loss обладает следующими свойствами:

- ullet Когда пример неправильно классифицирован и $p_t o 0$, то $(1-p_t)^\gammapprox 1$ и ошибка схожа с $\mathit{CE}(p_t)$.
- Когда степень уверенности в примере очень большая $p_t \to 1$, то $(1-p_t)^\gamma \approx 0$ и ошибка на объекте в разы меньше, чем в случае с $CE(p_t)$.
- Параметр γ регулирует степень значимости легко классифицуруемых примеров. Чем больше γ , тем меньше вклад легких примеров в обучение.

Таким образом, Focal Loss заостряет внимание на трудноклассифицируемых примерах.

Balanced Focal Loss. Сравнение функций ошибок.

На практике обычно используется lpha-balanced FL.

$$FL(p_{t}) = -\alpha_{t} (1 - p_{t})^{\gamma} \log(p_{t})$$

Рис. 2: Сравнение ошибок на объекте для разной степени уверенности модели, при различном параметре γ (Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and PiotrDoll ar. Focal Loss for Dense Object Detection, 2017)

RetinaNet

RetinaNet - one-stage детектор, обучающийся при помощи Focal Loss.

Рис. 3: Архитектура сети RetinaNet. (Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and PiotrDoll ar. Focal Loss for Dense Object Detection, 2017)

Feature Pyramid Networks (FPN)

- Каждый уровень пирамиды используется для детекции
- С повышением уровня уменьшается разрешение, и растет семантическое значение
- На всех уровнях количество каналов C = 256
- \bullet *m* уровень, имеет разрешение в 2^m меньше, чем исходное изображение

Feature Pyramid Networks (FPN)

Рис. 4: FPN схема. (Review: FPN - Feature Pyramid Network (Object Detection), Sik-Ho Tsang, towardsdatascience.com, 2019)

Anchors

После извлечения карты признаков, строятся области, которые могут содержать объект.

- \bullet Области имеют площади от 32^2 до 512^2 на уровнях от P_7 до P_3 соответсвенно.
- На каждом уровне строятся прямоугольные области с соотношением сторон 1:1, 1:2, 2:1.
- Для каждого соотношения сторон рассматриваются три различных масштаба $2^0, 2^{1/3}, 2^{2/3}$
- Таким образом, на каждом уровне выделяются по 9 различных областей
- Если IoU региона с реальным bounding box больше 0.5, то мы считаем, что регион задетекли объект. Меньше 0.4 считаем, что объекта нет и это фон. Если $0.4 \leq \text{IoU} < 0.5$, то игнорируем регион при обучении.

Anchors. Пример.

Рис. 5: Различные генерируемые регионы. (The intuition behind RetinaNet, Prakash Jay, medium.com, 2018)

Classification Subnet

- Данная предсказывает вероятность нахождения класса в данном регионе. Для каждого сгенерированного региона считаются вероятности для каждого из K классовPrakash Jay, medium.com, 2018
- Сеть представляет из себя маленькую Fully Convolutional Network. К каждому уровню пирамиды прикреплена своя FCN.
- ullet Архитектура сети: 4 блока из (3x3@C+ReLU), после этого одна свертка (3x3xKA) и примение к результату сигмоиды $\sigma(\cdot)$

Box Regression Subnet

- Сеть работает параллельно Classification Subnet
- Сеть представляет из себя маленькую Fully Convolutional Network. К каждому уровню пирамиды прикреплена своя FCN.
- ullet Архитектура сети: идентична Classification Subnet, исключая лишь то, что на выходе она выдает местоположения объектов, которых 4A

Итоговая обработка

- Для увеличения скорости работы сеть обрабатывает не более чем top-1000 предсказаний регионов, которые наиболее вероятны, после уверенности модели более чем на 0.05.
- Лучшие прогнозы со всех уровней объединяются, и для получения окончательных обнаружений применяется немаксимальное подавление (NMS) с порогом 0,5.

Puc. 6: Non-maximum suppression. (Non-Maximum Suppression for Object Detection in Python, www.pyimagesearch.com, 2014)

Обучение

- Таким образом, во время обучения общий loss изображения вычисляется как сумма focal loss для всех сгенерированных регионов ($\approx 10^5$), нормализуя по количеству регионов, назначенному groundtruth bb
- Обучаем при помощи SGD

Результаты

α	AP	AP_{50}	AP_{75}	γ	α	AP	AP_{50}	AP_{75}
.10	0.0	0.0	0.0	0	.75	31.1	49.4	33.0
.25	10.8	16.0	11.7	0.1	.75	31.4	49.9	33.1
.50	30.2	46.7	32.8	0.2	.75	31.9	50.7	33.4
.75	31.1	49.4	33.0	0.5	.50	32.9	51.7	35.2
.90	30.8	49.7	32.3	1.0	.25	33.7	52.0	36.2
.99	28.7	47.4	29.9	2.0	.25	34.0	52.5	36.5
.999	25.1	41.7	26.1	5.0	.25	32.2	49.6	34.8
a) Varying α for CE loss ($\gamma = 0$)			(b) Varying γ for FL (w. optimal α					

Рис. 7: Подбор параметром γ и α . (Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and PiotrDoll ar. Focal Loss for Dense Object Detection, 2017)

Результаты

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [16]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [20]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [17]	Inception-ResNet-v2 [34]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [32]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [27]	DarkNet-19 [27]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [22, 9]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [9]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet (ours)	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet (ours)	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2

Рис. 8: Сравнение различных нейронных сетей. (Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and PiotrDoll ar. Focal Loss

(Isung-11 Lin, Priya Goyal, Ross Girsnick, Kalming He, and PlotrDoll ar. Focal Loss for Dense Object Detection, 2017)

Результаты

Рис. 9: Сравнение различных нейронных сетей. (Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and PiotrDoll ar. Focal Loss for Dense Object Detection, 2017)

Выводы

- 1. При помощи Focal Loss можно учитывать сложность примеров, а также производить балансированность по классам.
- 2. RetinaNet one-stage детектор обученный при помощи Focal loss, превосходит все известные two-stage детекторы.
- 3. RetinaNet не только получает превосходные результаты, но и довольно быстро отрабатывает. От 73-90с до 200с на изображениях из СОСО, в зависимости от backbone в FPN

Используемые источники

- 1. Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and PiotrDoll ar. Focal Loss for Dense Object Detection.arXiv e-prints, pagearXiv:1708.02002, Aug 2017
- 2. The intuition behind RetinaNet, Prakash Jay, medium.com, 2018
- 3. Review: FPN Feature Pyramid Network (Object Detection), Sik-Ho Tsang, towardsdatascience.com, 2019