19/08/2020 Reinforcement Learning
Sequential decision making.
Not needed when: Listolated decision (classification, regression) Lithat decision does not affect future inputs or decisions
· Some applications can not ignore the dependence of the
Current decision on the Future (non iid data)
The Plan:
1. Kultictork R problem
2. Policy grads. & multi-tark/meta counterparts/equivalents
3. A leaving
4. Multi-took Q-learning.
1.
Imitation Learning
Ly Lots of deta
Li Short horizon decision problems
(compound of errors other wise)
Reward Function.
MDP: de fined by 5000
(Kewerd Function. MDP: de Rined by {

The god of RL:

As Graphical Model:

$$\Theta^* = \arg\max \mathbb{E}_{(s,a) \sim p_{\theta}(s,a)} \left[\Gamma(s,a) \right]$$

$$\Theta^* = \arg\max \mathbb{E}_{(s,a) \sim p_{\theta}(s,a)} \left[\Gamma(s,a) \right]$$

$$E_{(s,a) \sim p_{\theta}(s,a)} \left[\Gamma(s,a) \right]$$

RL Tesles Supervised Lezrni Ti = { p: (x), p: (y | x), Li }

Prior likelihood loss

data generating distrib. Reinforcement Learning
Task: Ji & Si, Ai, Pi(S1), Pi(S'|S,a), ri(S,a)

state action initial dynamics reward

space space state

distribution Recommendation System es RL Tasks each people = different task. La personalized P: (5'|5,a) Vary across
r: (5,a) tasks Character animation · C: (s,a) vary across X De Pi(51) | vary across
Pi(51|5,a) | garment and
initial state

· Multi-Robot RL S:, A:, p:(s,), p:(s1/s,a) very ecross robots Alternative view: A tark identifier Zi is part of the state S 5 = (3, Zi) Coriginal state

Going beck to the first definition

$$\mathcal{T}_{i} \triangleq \left\{ S_{i}, A_{i}, p_{i}(s_{1}), p_{i}(s'|s_{i}, a), r_{i}(s, a) \right\}$$

We can see how as the task identifier is now part of s, p:(s|1s,a), becomes p(s|1s,a), r:(s,a)

20/08/2020

$$\mathcal{T}_{i} \triangleq \left\{ S_{i}, A_{i}, p_{i}(s_{1}), p_{i}(s_{1}), p_{i}(s_{1}), r_{i}(s_{1}), r_{i}(s_{1}),$$

· And now it can be cart as an MDP

$$\{\mathcal{T}_i\} = \left\{ \bigcup S_i, \bigcup A_i, \frac{1}{N} \sum_{i} p_i(S_i), p(s'|S,\alpha), r(s,\alpha) \right\}$$

This says: we can apply std. single task RL to the multi-tark problem with this view of multi-tark RL

The Goal of Multi-tash Multi-task task 5=(5, Zi) Zi could be: 1-hot tark ID leng. description · Desired Good State: Zi=5g this is called God-Conditioned RL where the reward is some distance to Sg $\Gamma(s) = \Gamma(\bar{s}, s_g) = -d(\bar{s}, s_g)$ eg: Euclidean la Sparse 0/1: 1{5=5g} RL Algorithm anatomy. · Compute & = \frac{1}{t'=t} \ Y'-t \ Tt' \ Rolicy Grad · Fit Qd(s,a) (Actor Critic) Q-learning) Generate Jamples · Estimate

(model based) (run policy) Improve · O = O + d VO J (O) (Police) · tr(s) = argmax Qy(s,a) (Q-learning)

· Optimize $T_{\theta}(a|s)$ (model based)

We four to model-free for now.

Evaluating the objective sum over time period:
$$r(\tau)$$
 $\theta^* = \arg\max_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \Big[\sum_{t} r(s_{t}, a_{t}) \Big]$
 $J(\theta)$
 $J(\theta) \approx \prod_{t} \sum_{t} \sum_{t} r(s_{t}, a_{t}, a_{t})$

Samples from T_{θ}
 $from T_{\theta}$

Direct Policy Differentiation

 $J(\theta) = \mathbb{E}_{\tau \sim T_{\theta}(\tau)} \Big[r(\tau) \Big] = \int_{t} T_{\theta}(\tau) r(\tau) d\tau$

dif:

 $V_{\theta} J(\theta) = \int_{t} V_{\theta} T_{\theta}(\tau) r(\tau) d\tau$
 $= \prod_{t} (\tau) V_{\theta} T_{\theta}(\tau)$
 $= \prod_{t} (\tau) V_{\theta} T_{\theta}(\tau) r(\tau) d\tau$
 $= \prod_{t} (\tau) V_{\theta} T_{\theta}(\tau) r(\tau) d\tau$
 $= \prod_{t} (\tau) V_{\theta} T_{\theta}(\tau) r(\tau) d\tau$

Probability of traxectory under policy TT T cover all traxectory time-steps $\begin{aligned}
\Pi_{\theta}(s_{1}, a_{1}, \dots, s_{T}, a_{T}) &= p(s_{1}) \cdot \prod_{t=1}^{T} \Pi_{\theta}(a_{t}|s_{t}) \cdot p(s_{t+1}|s_{t}, a_{t}) \\
\Pi_{\theta}(\gamma) &= \lim_{t \to \infty} p(s_{t}|s_{t}) \cdot p(s_{t+1}|s_{t}, a_{t}) \\
&= \lim_{t \to \infty} p(s_{t}|s_{t}) \cdot p(s_{t}|s_{t}) \cdot$ $\log \pi_{\theta}(\Upsilon) = \log \rho(S_1) + \sum_{t=1}^{T} \log \pi_{\theta}(\alpha_t | S_t) + \log \rho(S_{t+1} | S_{t}, \alpha_t)$ $\nabla_{\theta} \mathcal{J}(\theta) = \mathbb{E}_{\gamma \sim \Pi_{\theta}(\gamma)} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \Pi_{\theta}(\alpha_{t} | S_{t}) \right) \left(\sum_{t=1}^{T} \Gamma(S_{t}, \alpha_{t}) \right) \right]$ $\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \Pi_{\theta}(\alpha_{i}, t | S_{i}, t) \right) \left(\sum_{t=1}^{T} \Gamma(S_{i}, t, \alpha_{i}, t) \right)$ and then samples return

 $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ improve the policy

REINFORCE 1. Sample { Y i} from To (at | St) 2. $\nabla_{\theta} \mathcal{J}(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t} \nabla_{\theta} \log \mathcal{T}_{\theta}(\alpha_{t}^{i}, S_{t}^{i}) \right) \left(\sum_{t} r(S_{t}^{i}, \alpha_{t}^{i}) \right)$ 3. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ Initation Learning
Ly Max. Likelihood of Expert actions · Policy gradient $abla_{\theta} \mathcal{J}(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t} \nabla_{\theta} \log_{\theta} \pi_{\theta}(\alpha_{t}^{i}, S_{t}^{i}) \right) \left(\sum_{t} r(S_{t}^{i}, \alpha_{t}^{i}) \right)$ · Maximum Lilee lihood $V_{\theta} J_{ML}(\theta) \approx \frac{1}{N} \sum_{i} \left(\sum_{t} \overline{V}_{\theta} \log \overline{T}_{\theta}(\alpha_{t}^{i}, S_{t}^{i}) \right)$ Policy gradient Samples from Wo best trayectory

We can directly apply RL + Multi-task
Example: MAML + Policy gradient
Example: IIAIIL + Policy gradient — meto learning — learning / adaptation
VL3 only 1 gradient step
θ_{1}^{*} C_{*} task
Black Box meta-learning + Policy gradients
30 Mazes - test on solve unseen mazes
· Combination with
4 Q-learning > More difficult as are not gradient based L. Actor Critic) algorithms: Boots traping is Dynamic Programming
L. Actor Critic) algorithms: Bootstraping is Dynamic Programming
Variance on Policy Grad. La carbe mitigated with barelines, trust regions
Les can be mitigated with barelines, trust regions Les see Hado van Hasselt video on baselines.
Importence weights can help to rehuse data.

Value-Based RL

Value function

$$V^{\pi}(S_{t}) = \sum_{t'=t}^{T} \mathbb{E}_{\pi} \left[r(S_{t'}, a_{t'} | S_{t}) \right]$$

Q function
$$\bigcap_{\tau} \left(S_{t}, \alpha_{t} \right) = \sum_{t'=t}^{\tau} \left[\mathbb{E}_{\pi} \left[\Gamma \left(S_{t'}, \alpha_{t'} \middle| S_{t}, \alpha_{t} \right) \right] \right]$$

Quiv.
•
$$V^{\pi}(S_t) = \mathbb{E}_{\alpha_t \sim \pi(\cdot | S_t)} \left[Q^{\pi}(S_t, \alpha_t) \right]$$

Bellman eq:

· For the optimal policy TT*

$$Q^*(s,a) = \mathbb{E}_{s'\sim p(\cdot|s,a)} \left[\Gamma(s,a) + \chi \operatorname{max} Q^*(s',a') \right]$$

Fitted Q-iteration: DP algorithm that leads to Bellman eq.

2. set y: = r(si,ai) + y. maxai Q\$ (5i,ai)

x iters

3. set \$\displain = \text{argmin} \displain \frac{1}{2} \frac{1}{2} || Q\$ (si,ai) - y: ||^2

· Now we have Qd(s,a), get policy T(a|s) from argmax Qg(s,a)

Coffpolicy algo.
ls can use replay butter
· Not grad. descent algorithm: is a DP algo. => tricky to combine with
. Can be readily extended to multi-task/goal-conditioned RL Box approad
Multitark RL Algorithms Policy To (a15) -> To (a15, Zi)
$\pi_{\theta}(a \bar{s}) \rightarrow \pi_{\theta}(a \bar{s}, Z_i)$
$Q - function$ $Q_{\phi}(\bar{s}, a) \longrightarrow Q_{\phi}(\bar{s}, a, Z_{i})$
Analogour er Multitarle S.Learn., but
· Deta distribution is controlled by the agent
· Data shaing acrosstarks?
If known dynamics of MDP while changing a cross tarks La how can we leverage this knowledge?
Hind sight relabeling Experience Replay (task 2)
Relabel experience with other task id and store both tries to shoot
task 1: { same experience} task 2: { same experience} (task 1)

Goal-conditioned RL with hindsight relabeling. 1. Collect data De = {(S1:T, Q1:T, Sgood Fi:T)} using some policy.
2. Store data in replay boffer D - Du Dk 3. Perform hind sight relabeling a. Relabel experience in The using last state as goal. $\mathcal{L}_{k}^{1} = \left\{ \left(S_{1:T}, Q_{1:T}, S_{T}, \Gamma_{1:T}^{1} \right) \right\}$ where = -d(St, ST) = distance to (new) goal b. Store D'k in Replay Buffer D - Du D'k 4. Update Policy wing replay buffer & Other relabeling in a.? "any state" (Kesult: Ly Exploration gets more efficient (exploration of for I tark helps exploration in other tasks)

Multi-task RL with relabeling Very similar structure: 1. Collect data De = {(SI:T, QI:T, Zi, FI:T)} using some policy. 2. Store de te in replay buffer Choose
Randomly
task(s) in
which the
trayectory
gets high
reword. D - D U Dk e. Perform hind sight relabeling a. Relabel experience in Dk for task $\mathcal{L}_{k}^{1} = \left\{ \left(S_{1:T}, \alpha_{1:T}, Z_{j}, \Gamma_{1:T}^{1} \right) \right\}$ where $r'_{t} = -r_{j}(S_{t})$ = return of state S_{t} ? b. Store D'k in Replay Buffer D ← Du D'k

- Reward function form is known, evaluatable

 Danamics consistent across goals/task
- La Relabelins is not that direct.
- · Using off policy algorithm

Robot example
much better with HER I mage observations we need a distance function of between

The current state

The goal state Binary reward: { 1 is some of the not o Sperce o Accurate Random, unlabeled interaction La optimal under the 0/1 reward of reaching last state. · We don't care what happens before the terminal state, all trajectories are optimal if they reach the dest red image-goal.
"We have an optimal sample
for reaching the goal"

Goal If data is a ptimal Lo use supervised imitation learning.

Similar structure again:
Collect data De = {(S1:T, Q1:T, ST, T1:T)} using some paicy. Store data in replay bother
2. Perform hind sight relabeling
a. Relabel experience in Dy using last state ST as god
D' = {(S1:T, Q1:T, ST, [1:T)} + relabeled data
where $r_t = -d \left(S_t, S_T \right)$
b. Store D'k in Replay Buffer
D ← Du D'k
3. Update policy using Supervised Initation Learning
on Replay Buffer &
Exemple of robot w/data from human: of a goal. Lo Goal I mage vs Current I mage Liting

ls it works I") 5

24/08/2020

Use insight to learn a better good representation

- 1. Collect random, unlabeled iteraction data {(5,,a,,...,at-1,5t)}
- 2. Train a latent state representation

signal state model f(x'|x,a)

st. if we plan a sequence of actions out good state St we recover the observed action sequence.

This correspond to embedding a planer in latent space into a goal condition policy

3. Throw away latent space model return god representation X

("Distributional Planning Networks!

Accurate and shapped Reward Function

Ly not sparse as with I { same image}