සියලුම හිමිකම් ඇවිරිණි / AL/ 2021/10/]		l							10	E		I
		So	தென்	மாகாண	க் கஎ	ந் <mark>வித்</mark> தி	ර්තමේන්තුව තணக்களம் ent of Educa	ntion				
	Gene	eral Cer		`		_	kamination - 2022	1 (New Syll	labus)			
Grade	13		Comb	oined	Ma	them	atics - I	(Addition	al Readin _į			urs inutes)
Index	Number							Class				
Name	;											
Instruct	tions:											
*	This questio	n paper co	onsists tw	o parts;								
	Part A (Que	estion 1 - 1	0) and Pa	rt B (Q	uesti	on 11 -	17)					
*	Part A:											
	Answer all	question	s. Write y	our ans	swers	to eacl	n question in	the space p	rovided.	You n	nay	use
	additional sł	neets if mo	ore space	is neede	ed.							
*	Part B :											
	Answer five	e question	ns only. W	Vrite you	ur ans	swers of	n the sheets p	rovided.				
*	At the end o	f the time	allotted,	tie the a	answ	er scrip	ts of the two	parts togeth	ner so tha	t Part	A is	on
	top of Part I	3 and hand	d them ov	er to the	supe	rvisor.						
	-			•		-	stion paper fi	rom the Exa	mination	s Hall.	•	
*	In this paper	g denote	es the acc	eleratio	n due	to grav	rity.					
			For	Exam	nine	rs' Us	se only					
(1	0) Combin	ed Mathe	ematics I									_
Part	Question	n No.	Ma	arks			Paper I					
	1						Paper II					
	2						Total					
	3						Final Ma	rks				
	4											
A	5											
	7							Final N	Nonlea			
	8						T NT 1		/Iaiks			
	9						In Numb					_
	10						In Words					
	11											
	12							C. 1. N.	1			
	13						76.11	Code Nu	ımbers			4
В	14				_		Marking	Examiner				_
	15 16				\dashv		Checked	by:	1.			
	17							<i>-j</i> .	2.			

Total Percentage

Combined Mathematics - Southern Province

Supervised by:

	Part A
01.	Find all real values of x, satisfying the inequality $x - \frac{4}{x} \le 3$.
	Hence, solve $2 x+3 \le 2-x$
Cor	mbined Mathematics - Southern Province Page 2

0.2	$(8 + x)^{1/3} - 2 \sin 2x = 1$
03.	Show that, $\lim_{x \to 0} \frac{\left[(8+x)^{1/3} - 2 \right]}{x^2} \sin 2x = \frac{1}{6}$
	\mathbf{v}^2
04.	Show that, the equation of the tangent drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$,
04.	Show that, the equation of the tangent drawn to the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$.
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$.
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing
04.	at the point $P = (4\cos\theta, 3\sin\theta)$ is $\frac{x}{4}\cos\theta + \frac{y}{3}\sin\theta = 1$. Find the value of $\theta \left(0 < \theta < \frac{\pi}{2}\right)$, such that, the normal drawn to the above ellipse at point θ passing

		•••••		•••••			
		•••••		•••••	•••••	•••••	•••••
		•••••		•••••	•••••	•••••	•••••
•••••	••••••••••	•••••	••••••••	•••••	•••••	•••••	•••••
		•••••		•••••		•••••	•••••
	••••••	•••••		•••••	•••••	•••••	•••••
		•••••		•••••			•••••
•••••							
straight line <i>x</i> Show that, the	= 3, and the x he volume of	- axis. (see the the solid the	ne figure). nus generate	ed by rotatin		у ↑	$\frac{1}{3}$
Show that, the about the x -about the x -	= 3, and the x he volume of	- axis. (see the solid the solid the π radians is	the figure). aus generate $3 \pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin		y \ 0	
Show that, the about the x -about the x -	= 3, and the x ne volume of axis through 2	- axis. (see the solid the solid the π radians is	the figure). aus generate $3 \pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin		y \ 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Show that, the about the x -a	= 3, and the x ne volume of axis through 2	- axis. (see the solid the solid the π radians is	the figure). aus generate $3 \pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin		y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Show that, the about the x -about the x -	= 3, and the x ne volume of axis through 2	- axis. (see the solid the solid the π radians is	the figure). aus generate $3 \pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin		y↑ 0	
Show that, the about the <i>x</i> -a	= 3, and the x ne volume of axis through 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of exist hrough 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of axis through 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3
Show that, the about the <i>x</i> -a	= 3, and the x- ne volume of axis through 2	- axis. (see the solid the solid the π radians is	the figure). The figure generate $3\pi \left(1 - \frac{\pi}{4}\right)$	ed by rotatin	g S	0	3

the distance A							
•••••	••••••	•••••••	•••••••	••••••	•••••••		•••••••••••
•••••	••••••••••	••••••	••••••	••••••	•••••	•••••••	••••••••••
•••••	•••••	•••••	•••••	•••••	••••••	•••••	••••••
•••••		••••••	••••••	•••••	••••••	••••••	••••••
		•••••	•••••		•••••		•••••
•••••			•••••	•••••	•••••		••••••
				•••••	•••••		•••••
							•••••
••••••••••	•••••••••••	•	••••••	••••••	•••••••	•	•••••••••••
•••••	••••••		••••••	•••••	••••••		••••••
•••••	••••••	•••••	•••••	•••••	•••••		•••••
		•••••	•••••		•••••		•••••
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of t	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of t	he tangent	s drawn to	the parame	tric curve g	given by <i>x</i> =
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
Find the points and y=2-4t+		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$
		radient of the	he tangent	s drawn to	the parame	tric curve g	given by $x =$

	Find the area of the region enclosed by the curves $y = x^2$ and $x + y = 2$.
10.	Express, $\sqrt{3} \cos x - \sin x$ in form R $\cos (x+a)$. (Where R > 0 and 0 < a < $\frac{\pi}{2}$) Hence, solve the equation, $\sqrt{3} \cos 2x - \sin 2x + 1 = 0$.

Part B

* Answer five questions only.

11. (a) Let $k \ne 0$ is a real constant. Given that, the quadratic equation $2kx^2 + 12x + 2k - 5 = 0$ has real roots. Show that, $2k^2 - 5k - 18 \le 0$.

Find the maximum and the minimum values of k.

Let α and β are roots of equation $2kx^2 + 12x + 2k - 5 = 0$. Find the quadratic equation, whose roots are $2(\alpha + \beta)$ and $3\alpha\beta$.

- (b) Let $f(x) = x^3 + px^2 + q$ and $g(x) = x^3 + qx^2 p$, where p and q are real numbers. Given that (x + 2) is a factor of f(x), and when g(x) is divided by (x + 1), the remainder is -8. Find the values of p and q. Find the least value of f(x) g(x), for these values of p and q.
- 12. (a) Let, $f(x)=x^3+1$ and g(x)=ax+b for $x \in \mathbb{R}$, where a and b are real constants. Given that, f(g(0))=2 and g(f(0))=3. Find the values of a and b. Find $g^{-1}(x)$ for these values of a and b.
 - (b) Find the values of constants A, B and C such that, $x^4 + 3x^3 + 4x^2 + 3x + 1 = A(x^2 + 1)^2 + Bx(x^2 + 1) + Cx^2$ for all $x \in \mathbb{R}$ Hence, write the partial fractions, of $\frac{x^4 + 3x^3 + 4x^2 + 3x + 1}{x(x^2 + 1)^2}$
 - (c) Solve the following simultaneous equation for x and y. $2\log_9 x + \log_3 y = 3$ and $2^{x+3} - 8^{y+1} = 0$
 - (d) Write down the equation of straight line l, passing through the point A = (0, 3) and gradient (-2). The line l meets the line y = mx at point B, where $m (m \ne -2)$ is a constant. Find m, using the coordinate of B.

Given that, the area of triangle OAB is $\frac{9}{2}$ square units, find the values of m, where O is the origin.

13. (a) Write down $\cos(A+B)$ and $\cos(A-B)$ in terms of $\cos A$, $\cos B$, $\sin A$ and $\sin B$.

Hence, show that, $\cos C + \cos D = 2 \cos \left(\frac{C + D}{2}\right) \cos \left(\frac{C - D}{2}\right)$

Deduce that, $\cos C - \cos D = 2 \sin \left(\frac{C + D}{2}\right) \sin \left(\frac{C - D}{2}\right)$

(b) Let $f(x) = x^2 + (7 + p)x + p$ for $p \in \mathbb{R}$. Show that the equation f(x) = 0 has two distinct real roots for any real value of p.

Find the value of p, when the difference of two roots of f(x) = 0 is minimum.

Show that, the minimum difference of two roots of f(x) = 0 is $2\sqrt{6}$.

Let g(x) as the function f(x), corresponding to the value founded above for p.

Write down g(x) in form $g(x) = (x - a)^2 + b$, where a and b are constants to be determined.

Hence, express the properties of y = g(x).

Sketch the graph of y = g(x).

14. (a) Let, $f(x) = \frac{x+1}{(x+2)^2}$ for $x \ne -2$, f'(x), the derivative of f(x), is given by $f'(x) = \frac{-x}{(x+2)^3}$, for $x \ne -2$.

Find f''(x) where f''(x) represents the second derivative of f(x).

Sketch the graph of y = f(x) indicating the asymptotes, turning points and point of inflection.

(b) The given figure indicates a circular lake of centre a and radius 2 km. AB is a chord and AC is a diameter.

A man can swim with uniform velocity $2\sqrt{3}$ kmh⁻¹ along AB. He can walk with constant velocity 4 kmh⁻¹ along the bank of the lake from B to C.

 $\overrightarrow{BAC} = \theta$. Find the time taken $T(\theta)$ in hours to move from A to C as shown in the diagram.

Find the value of θ , when the time taken to move to C is a maximum, by using the sign of $\frac{dT}{d\theta}$.

- 15. (a) By using a suitable substitution and using integration by parts, evaluate, $\int_{1}^{\sqrt{3}} \frac{1}{x^2} \tan^{-1}(\frac{1}{x}) dx$
 - (b) Use the substitution $t = 7^x$ to find $\int (7^{2x} 3)^2 dx$.
 - (c) Integrate by using partial fractions,

$$\int \frac{(4x^3 + 2x^2 + 2x)}{x^4 - 1} \, \mathrm{d}x$$

(d) Show that, $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$

Hence, evaluate,
$$\int_{1}^{6} \frac{\sqrt{7-x}}{\sqrt{x} + \sqrt{7-x}} dx$$

16. Let $A \equiv (1, 1)$ and $B \equiv (5, 9)$. Find the equation of straight line AB. Also, show that, the point $C \equiv (4, 2)$ does not lie on AB.

The line passing through C and perpendicular to AB intersects AB at D. Find the coordinates of D and show that, AD:DB=1:3.

Also, find the coordinates of point E, such that, ADCE is a rectangle.

Let F is the point of intersection of line AB and line x + y = k. The line parallel to AC and passing through F, also passing through E. Find the constant k.

- 17. (a) If A, B and C are angles of a triangle, prove that, $\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$
 - (b) Obtain the general solutions, of the equation, $3 2\cos x 4\sin x \cos 2x + \sin 2x = 0$
 - (c) State the sine rule and cosine rule for any triangle ABC in usual notation. In usual notation, prove that, $b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$ for triangle ABC.
 - (d) Prove that, $2\cos^2\theta 2\cos^22\theta = \cos 2\theta \cos 4\theta$. Deduce that, $\cos 36^\circ - \cos 72^\circ = \frac{1}{2}$.