Homework 6 (due Mar. 5)

MATH 110 | Introduction to Number Theory | Winter 2023

Problem 1 (15 pts). Give a counterexample to **disprove** the unique prime factorization property in $\mathbb{Z}/20[T]$.

Remark. Refer to Problem 4 in HW 2 for the related notions. Note that, to show your example fails the *unique prime factorization property*, you need to show your factors are *prime* (in the context of polynomials, irreducible), and not associated to either other (that is, not different by a nonzero constant factor).

Problem 2. Let p be a prime number.

- (a) (5 pts) Let f(T) be a polynomial modulo p of degree 2 or 3. Prove that f(T) is irreducible if and only if f(T) has no roots modulo p.
 - *Hint.* Prove the contrapositive, looking at the degrees of the divisors of f(T).
- (b) (5 pts) **Count** the number of monic polynomials modulo p of degree d.
- (c) (5 pts) Count the number of monic irreducible polynomials modulo p of degree 2.
- (d) (5 pts) Count the number of monic irreducible polynomials modulo p of degree 3.

Problem 3. Let f(T) be an integer polynomial. Its derivative f'(T) is defined to be the integer polynomial obtained from f(T) as follows: discard the constant term, then for each positive integer n, replace T^n by nT^{n-1} (here T^0 means the constant 1). One can repeat this process to define what is the k-th derivative $f^{(k)}(T)$ of f(T).

- (a) (5 pts) Give a **formula** of the degree of $f^{(k)}(T)$ in terms of the deg(f). Hint. First show that deg(f') = deg(f) - 1 as long as $f \neq 0$. Be aware of what will happen when $k > \deg(f)$.
- (b) (5 pts) **Prove that** taking derivative is compatible with modular reduction. Namely, if two integer polynomials f(T) and g(T) are congruence modulo m, then f'(T) and g'(T) are also congruence modulo m. Here m is any modulus.