

Dependable Systems

6. Chapter Static Modeling: Fault Trees

Prof. Matthias Werner

Operating Systems Group

Dependable Systems – Static Modeling: Fault Trees 6.1 Construction

6.1 Construction

Construction of Fault Trees

- Dependencies between events and faults by boolean net
- Basic events (faults) can be associated with component hardware failures, human errors, software errors, or any other pertinent events
- ► Includes only faults that contribute to the top event
- Events and gates are not system components
- In itself not a quantitative model, but can be evaluated as one

Motivation

- ▶ Until now:description of error behaviors for single systems and "simple" compositions (in terms of set theory and reliability block diagrams)
- ► Fehlerbaumanalyse (Fault Tree Analysis, FTA) : describes possible ways in which an undesired system state can occur
 - ► Inventor H.A. Watson (Bell Labs), 1961
 - ► Identifies undesired events and faults/conditions it depends on
 - Used by Boeing since 1966, meanwhile adopted by different industries

A Winter term 2015/2016 · M. Werner

2/21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.1 Construction

Elements

Events

basic event

intermediate event

undeveloped extern event event

conditioning event

Gates

or gate

and gate

xor gate

voting gate

inhibit gate

One finds different symbols in different source

Winter term 2015/2016 · M. Werner

Example: Fault Tree of TMR System

Winter term 2015/2016 · M. Werner

5/21

osa.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.1 Construction

Procedure regarding K. B. MISRA

- 1. Define the undesired event to be analyzed what, where, when
- 2. Define boundary conditions for the analysis
 - Physical boundaries What constitutes the system?
 - ► Environmental stress boundaries What is included (earthquake, bombs, ...)?
 - Level of resolution How detailed should be the analysis for potential reasons?
- 3. Identify and evaluate fault events
 - Primary failures as basic event, secondary failures as intermediate event
- 4. Complete the gates
 - > All inputs should be completely defined before further analysis of them

Dependable Systems – Static Modeling: Fault Trees 6.1 Construction

- ► General goal: to evaluate different designs
- Objective should be phrased in terms of a system failure to be analyzed
- ▶ Define **scope** (design version, components to be included), **resolution** (based on available probability data) and ground rules (naming scheme for events and gates)
- Focus on necessary and sufficient immediate events

Winter term 2015/2016 · M. Werner

6/21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.1 Construction

Procedure regarding K. B. MISRA (cont.)

- Common mistakes
 - ▶ Ambiguous TOP event: Too general TOP event makes FTA unmanageable, too specific TOP event cannot provide a sufficient system analysis with FTA
 - ▶ Ignoring significant environment conditions: External stress might be relevant
 - ▶ Inappropriate level of resolution: Detail level of the fault tree should match the detail level of the available information
- Proper and consistent naming is very important (what failed and how)
- Basis events should be independent
- ▶ Logic can be tested in **success domain** by inverting all statements and gates

6.2 Evaluation

Evaluation

- Two kinds of evaluation
 - ► Qualitative evaluation Identify event sets which cause failure
 - ► Quantitative evaluation Determine failure probability
- Quantitative evaluation depends on qualitative evaluation

Winter term 2015/2016 · M. Werner

9/21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.2 Evaluation

Example for Boolean Reduction

$$T = E_1 \cap E_2$$

$$T = (A \cup E_3) \cap (C \cup E_4)$$

$$T = (A \cup (B \cup C)) \cap (C \cup (A \cap B))$$

Simplification

$$T = (C \cup (A \cup B)) \cap$$

$$(C \cup (A \cap B))$$

$$T = (C \cup ((A \cup B) \cap$$

$$(A \cap B)))$$

$$T = C \cup (A \cap B)$$

ightharpoonup 2 cut sets: $\{C\}$ and $\{A, B\}$

Cut Sets

- ▶ Cut set: Any group of basic events which, if all occur at the same time, cause the TOP event
- ▶ Minimal cut set (mincut): Minimal combination of basic events that induce TOP
 - Minimal" → All basic events are needed to let the TOP event occur
 - ► A long mincut shows low vulnerability, a short mincut shows high vulnerability
 - ► A singleton cut set shows a single point (of) failure
- Analysze cut set for
 - Weak points in the design
 - Bypass of intended safety features
 - Common cause problems
- Methods for cut set finding:
 - ▶ Boolean reduction, bottom-up reduction, top-down reduction, mapping to binary decision diagram, Shannon decomposition, genetic algorithms, ...

A Winter term 2015/2016 · M. Werner

10 / 21

osa.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.2 Evaluation

Method for Obtaining Cut Sets by RAUSAND

- Start at the TOP event
- ▶ OR gate: Each input to the gate is written in separate rows
- ► AND gate: Each input to the gate is written in separate columns
- ► Iteratively replace gates in rows and columns
- ► Each resulting row forms a cut set

Quantitative Analysis

Probability

Addition:

$$\Pr(X_1 \cup X_2) = \Pr(X_1) + \Pr(X_2) - \Pr(X_1 \cap X_2)$$

Multiplication:

$$\Pr(X_1 \cap X_2) = \Pr(X_2) \cdot \Pr(X_2)$$

from qualitative analysis:

$$T = C \cup (A \cap B)$$

$$Pr(T) = Pr(C) + Pr(A) Pr(B) - Pr(C) Pr(A) Pr(B)$$

Winter term 2015/2016 · M. Werner

13 / 21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.3 Discussion

6.3 Discussion

Discussion

- ► FT tend to become complex
 - Use of hierarchical approaches
 - ► Combination of FTs of subsystems

osg.informatik.tu-chemnitz.de

Tool support

Amend FTA by event tree analysis

Transfer in Transfer out

	,	•			
Initiating Event	Fire	Fire	Fire Sprinkler	Outcomes	Prob
	Detection Works	Alarm Works System Works			
			YES (P=0.8)		0.00504
		YES (P=0.7)		 Limited damage 	
Fire Starts (P= 0.01)		120 (1 = 0.1)	NO (P=0.2)	Estantia danca	
	YES (P=0.9)			 Extensive damage, people escape 	0.00126
	120 (1 = 0.0)	†	YES (P=0.8)	ρουρίο σουαρο	
		NO (P=0.3)		 Limited damage, wet 	0.00216
			NO (P=0.2)	people	
				 Death/Injury, extensive 	0.00006
				damage	
	NO (P=0.1)			•	
				 Death/Injury, extensive 	0.001
				damage	

Dependable Systems – Static Modeling: Fault Trees

Quantitative Analysis (cont.)

- Quantitative analysis helps to find dominant minimal cut set
 - Calculate the probability of each minimal cut set
 - Sort by probability
- ▶ Determine of importance of cut sets or single events
- **...**

Attention

Independence of basic events must be always ensured!

Winter term 2015/2016 · M. Werner

14 / 21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.3 Discussion

Example of a FTA Software

16 / 21

FME(C)A

- ► Failure Mode and Effects (and Criticality) Analysis
- ► Management (!) tool to risk assessment, used in several areas, e.g.,
 - transportation, esp. automotive and aviation/space
 - medical engineering
 - food industry
- ► FMEA utilizes other analysis techniques (beside fault trees, e.g., Pareto analysis) and is in turn used in other approaches (e.g., 6σ)

Winter term 2015/2016 · M. Werner

18 / 21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.3 Discussion

FMEA Process

- 1. Determine fault
- 2. Determine impact (failure) of fault (e.g. with help of fault tree analysis)
- 3. Determine severity of impact $(S \in [1, ..., 10])$
- 4. Determine probability of failure causes ($O \in [1, ..., 10]$)
- 5. Determine discover probability ($D \in [1, ..., 10]$)
- 6. Compute RPN:

$RPZ = S \cdot O \cdot D$

7. Rank, take actions, re-iterate

FTA-based Decision Making

- Use FTA to...
 - understand the logic leading to the top event, especially in complex systems
 - prioritize the contributors leading to the top event (typically 10% 20%)
 - proactively prevent the TOP event by applying targeted upgrades
 - minimize and optimize resources identify what is unimportant
 - assist the system design
 - monitor the performance of the system by FTA re-evalutation, based on former defects and failures
 - gain input data for FME(C)A

Winter term 2015/2016 · M. Werner

17 / 21

osg.informatik.tu-chemnitz.de

Dependable Systems – Static Modeling: Fault Trees 6.3 Discussion

FME(C)A: Risk Priority Number

- ► FMEA is used in case of imprecise and fuzzy knowledge
- ► Goal: determine a Risk Priority Number (RPN)
- ▶ RPN: no absolut statement, but used to rank risks
- Following parameters are considered:
 - S Severity of failures' impact (severity number)
 - Occurrence probability (occurrence number)
 - **D** Detection probability (detection number)
- All parameter values are in range from 1..10
 - ▶ 1 = non-critical, 10 = highly critical

Example of FMEA Data Acquisition

Hazard 🔻	Severiliy 🐷	Cause	Probability of Har	Risk 💌	Method of Control	Control Measures	New Probabilit	New Risk
Device falls over	Catastrophic	Material failure in support structure	Remote	8	Design	Support materials must be sufficiently strong so as to accommodate any reasonable	Improbable	12
Device catches fire	Catastrophic	Materials in device reach critical flash point, or electrical spark ignites flammable materials	Kemote	12	Design	Use flame-resistant materials	Imorobable	12
Device heats 1°C over target	Significant	Improper control of heating element	Orrasional	6	Design	Optomize circuit for close temperature control	Improbable	15
Device heats 1°C under target	Significant	Improper control of heating element	Occasional	6	Design	Optomize circuit for close temperature control	Improbable	15
Device infects occupant	Significant	Improper disinfecting of unit	Remote	10	Training	Teach users proper disinfection techniques	Improbable	15
Device loses power	Marginal	Fallure (or depletion) of power source	Occasional	11	Design	Use long-lasting power source	Remote	14
Airflow inhibited	Significant	Blockage of air passageways	Remote	10	Design	Create large airflow passages, in spatial configurations unlikely to	Improbable	15
Device rolls away	Significant	Improper locking of wheels.	Improbable	15	Design/Training	Use easy-to-lock castors on device support / train staff to lock castors whenever device is occupied	Improbable	15
Device shocks infant	Significant	Insulation of electical system fails	Improbable	15	Design	Design circuitry to be placed for from infant	Improbable	15
Visibility impared by fog or	Marginal	Moisture from unit aggregates on clear portion of device	Frequent	7	Design	Use fog-resistant materials for see- through components	Occasional	14
Heating lamp burns out	Negligible	Inevitable event - tungsten in bulb readies end of life	Frequent	13	Design/Training	Use long-lasting bulbs and train Staff to replace periodically	Improbable	20
Device dehydrates patient	Catastrophic	Improper control of device moisture content	Remote	Я	Design	Uptomize circuit for close humidity control	Improbable	12

21 / 21

osg.informatik.tu-chemnitz.de

