Noncommutative algebras and algebraic groups

Daniel Miller

August 7, 2016

Let k be a fixed commutative ring, not necessarily a field. Let A be a unital k-algebra. The functor $A^{\times} \colon \mathsf{Sch}_k \to \mathsf{Set}$ given by

$$A^{\times}(X) = \Gamma(X, \mathscr{O}_X \otimes_k A)^{\times}$$

is, when A is "reasonable," represented by a group scheme which we denote $A_{/k}^{\times}$, or just A^{\times} . The purpose of this note is to relate algebraic properties of A with the group A^{\times} . Note for example that $M_n(k)^{\times} = GL_{n/k}$.

1 Foundations

For the moment, we work in maximal possible generality. Let S be a fixed base scheme. If \mathscr{F} is a sheaf on S and $f: X \to S$ is an object in Sch_S , we write $\mathscr{F}_X = f^*\mathscr{F}$ for the pullback of \mathscr{F} to X.

Theorem 1.1. Let \mathscr{F} be a quasi-coherent \mathscr{O}_S -module. Then the functor $\mathbf{V}(\mathscr{F})$: $\mathsf{Sch}_S \to \mathsf{Set}$ given by

$$\mathbf{V}(\mathscr{F})(X) = \hom_{\mathscr{O}_X}(\mathscr{F}_X, \mathscr{O}_X)$$

is represented by an S-scheme, also denoted $V(\mathscr{F})$. The functor $V \colon S_{qc}^{\circ} \to \mathsf{Sch}_S$ is left-exact.

Proof. That $\mathbf{V}(\mathscr{F})$ is representable is standard. To check exactness of \mathbf{V} , just note that

$$\mathbf{V}\left(\varinjlim \mathscr{F}_{\alpha}\right)(X) = \hom_{\mathscr{O}_{X}}\left(\varinjlim \mathscr{F}_{\alpha}, \mathscr{O}_{X}\right)$$
$$= \varprojlim \hom_{\mathscr{O}_{X}}(\mathscr{F}_{\alpha}, \mathscr{O}_{X})$$
$$= \left(\varprojlim \mathbf{V}(\mathscr{F}_{\alpha})\right)(X).$$

Thus, to give a morphism of schemes $\mathbf{V}(\mathscr{F}) \times \mathbf{V}(\mathscr{G}) \to \mathbf{V}(\mathscr{H})$, it suffices to give a morphism of sheaves $\mathscr{H} \to \mathscr{F} \oplus \mathscr{G}$. Note that the functor \mathbf{V} , while trivially faithful, is definitely not full. Since $\mathbf{V}(\mathscr{F})(X) = \hom_{\mathscr{O}_X}(\mathscr{F}_X, \mathscr{O}_X)$ is clearly a (commutative) group, we see that $\mathbf{V}(\mathscr{F})$ admits a group structure.

Lemma 1.2. Let \mathscr{C} be a quasi-coherent \mathscr{O}_S -coalgebra. Then $\mathbf{V}(\mathscr{C})$ is naturally an S-algebra.

Proof. In other words, the functor $\mathbf{V}(\mathscr{C})\colon \mathsf{Sch}_S \to \mathsf{Set}$ factors through the category Rin of associative unital rings. Let $\Delta\colon \mathscr{C} \to \mathscr{C} \otimes_{\mathscr{O}_S} \mathscr{C}$ be the comultiplication map, and $\eta\colon \mathscr{C} \to \mathscr{O}_S$ the conit. Then $\mathbf{V}(\mathscr{C})(X)$ is given an algebra structure via convolution:

$$1 = \eta_X$$
$$f \cdot g = (f \otimes g) \circ \Delta_X.$$

The verification that with this structure, $\mathbf{V}(\mathscr{C})$ is an S-algebra is routine. \square

So **V** gives us a functor $\mathsf{cAlg}(S_{\mathsf{qc}}) \to \mathsf{Rin}_{/S}$. If \mathscr{C} is an \mathscr{O}_S -coalgebra, then its dual sheaf \mathscr{C}^\vee is naturally an \mathscr{O}_S -algebra.

Theorem 1.3. Let \mathscr{C} be a locally free \mathscr{O}_S -coalgebra. Then $\mathscr{M} \mapsto \mathscr{M}^{\vee}$ gives an equivalence between the category of locally free (of finite type) \mathscr{C} -comodules and the category of locally free (of finite type) \mathscr{C}^{\vee} -modules.

Let $S_{\rm lf}$ be the category of locally free \mathscr{O}_S -modules of finite type.

Theorem 1.4. Let $\mathcal{M} \in S_{lf}$. Then the functor $\mathbf{W}(\mathcal{M})$: $\mathsf{Sch}_S \to \mathsf{Set}$ given by

$$\mathbf{W}(\mathscr{M})(X) = \Gamma(X, \mathscr{M}_X)$$

is representable. Moreover, $\mathcal{M} \mapsto \mathbf{W}(\mathcal{M})$ gives a left-exact tensor-functor from S_{lf} to $\mathsf{Mod}(\mathbf{W}(\mathcal{O}_S))$.

Proof. We content ourselves with showing that $\mathbf{W}(\mathcal{M}) = \mathbf{V}(\mathcal{M}^{\vee})$. Since \mathcal{M} is locally free of finite type, it is self-dual. Thus

$$\mathbf{V}(\mathscr{M}^{\vee})(X) = \hom_{\mathscr{O}_X}(\mathscr{M}_X^{\vee}, \mathscr{O}_X) = \Gamma(X, \mathscr{M}_X^{\vee\vee}) = \Gamma(X, \mathscr{M}_X)$$

as desired.

So we have a functor $\mathbf{W} \colon \mathsf{Rin}(S_{\mathrm{lf}}) \to \mathsf{Rin}_{/S}$.

2 Representations of groups and algebras

If \mathscr{A} is a locally free \mathscr{O}_S -algebra, we write $\mathrm{GL}(\mathscr{A}) = \mathscr{A}^{\times}$ for the functor $X \mapsto \Gamma(X, \mathscr{A}_X)^{\times}$. This is representable, as it can easily be written as a fiber product of schemes. Many well-known algebraic groups arise via this construction, or one of its generalizations.

Theorem 2.1. Let $\mathscr{A} \in \mathsf{Rin}(S_{\mathrm{lf}})$. Then there is a natural isomorphism $\mathrm{Lie}(\mathscr{A}^{\times}) = (\mathbf{W}(\mathscr{A}), [\cdot, \cdot])$.

Proof. Recall that for $X \in \mathsf{Sch}_S$, we write $X[\epsilon]$ for the scheme whose underlying space is the same as X, but whose structure sheaf is $\mathscr{O}_X[\epsilon]/\epsilon^2$. Then

$$\begin{aligned} \operatorname{Lie}(\mathscr{A}^{\times})(X) &= \ker(\Gamma(X, \mathscr{A}_X[\epsilon])^{\times} \to \Gamma(X, \mathscr{A}_X)^{\times}) \\ &= \Gamma(X, 1 + \epsilon \mathscr{A}_X) \\ &\simeq \mathbf{W}(\mathscr{A})(X). \end{aligned}$$

Checking that the bracket comes from the commutator on $\mathscr A$ is a simple computation. \square

3 The case of a field

Let k be a field of characteristic zero.