## Function of Many Variables (a crash course)

Dmytro Velychko

Theoretical Neuroscience lab Philipps-Universität Marburg

Last edited: December 14, 2016

#### Essential basic elements

Multivariate calculus operates with:

- sets (with special properties)
- functional mappings (with special properties)

 $f: \mathbb{R} \to \mathbb{R}$  - classical calculus of function of single variable

 $f: \mathbb{R}^n o \mathbb{R}^m$  - multivariable calculus

#### Domain and codomain

```
f:\mathbb{R} 	o \mathbb{R} - classical calculus of function of single variable
```

 $f: \mathbb{R}^n \to \mathbb{R}$  - function defines a scalar field

 $f: \mathbb{R}^n \to \mathbb{R}^m$  - function defines a vector field

## Mappings of interest

We are interested in continuous functional mappings  $f: \mathbb{R}^n \to \mathbb{R}^m$ 

$$\lim_{\mathbf{a} \to \mathbf{x}} f(\mathbf{a}) = f(\mathbf{x}) \tag{1}$$

which are also differentiable:

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-Df_{\mathbf{a}}\cdot\mathbf{h}}{||\mathbf{h}||} = 0$$
 (2)

Here  $Df_{\mathbf{a}} \cdot \mathbf{h}$  is a linear approximation of  $f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a})$ .  $Df_{\mathbf{a}}$  is called the derivative of f at  $\mathbf{a}$ .

All the following properties follow from this idea of linear approximation (derivative)!



#### Directional derivative

But the  $Df_a \cdot \mathbf{h}$  approximation depends on both the length and the direction of  $\mathbf{h}$  vector!

Let  $f:(x_1,\ldots,x_n)\in\mathbb{R}^n\to\mathbb{R}$ . Directional derivative of a scalar function along a vector  $\mathbf{v}$  is defined as the limit:

$$\nabla_{\mathbf{v}} f(\mathbf{x}) = \lim_{h \to 0} \frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}$$
 (3)

#### Partial derivative

Partial derivative is a special case of the directional derivative, where direction is taken along the axis of some variable. Let  $f: (x_1, \dots, x_n) \in \mathbb{R}^n \to \mathbb{R}$ . If we fix all  $x_i$  but  $x_i$ , we get a

Let  $f:(x_1,\ldots,x_n)\in\mathbb{R}^n\to\mathbb{R}$ . If we fix all  $x_j$  but  $x_i$ , we get a section of the function f:

$$f^*: (x_i) \in \mathbb{R} \to \mathbb{R} \tag{4}$$

We may take the derivative of this function:

$$\frac{df^*}{dx_i}: x_i \in \mathbb{R} \to \mathbb{R} \tag{5}$$

If we extend this derivative and make it a function of other variables, which were fixed previously, we get a partial derivative:

$$\frac{\partial f}{\partial x_i}: (x_1, \dots, x_n) \in \mathbb{R}^n \to \mathbb{R}$$
 (6)

which indicate the values of the f derivative along the  $x_i$  direction.



## Differentiability implies existence of partial derivatives

**Theorem.** Let U be an open subset of  $\mathbb{R}^m$ ,

 $f: U \to \mathbb{R}^n, f(\mathbf{a}) = [f_1(\mathbf{a}), \dots, f_n(\mathbf{a})]^T, \mathbf{a} \in U$ . If f is differentiable at  $\mathbf{a}$ , then all of the partial derivatives exist at  $\mathbf{a}$ , and

$$\frac{\partial f(\mathbf{a})}{\partial x_i} = Df_{\mathbf{a}} \cdot \mathbf{e}_i \tag{7}$$

#### Jacobian matrix

**Corollary.** The derivative of a multivariable function differentiable at **a** is a matrix comprised of partial derivatives:

$$Df_{\mathbf{a}} = \begin{bmatrix} \frac{\partial f_{1}(\mathbf{a})}{\partial x_{1}} & \cdots & \frac{\partial f_{1}(\mathbf{a})}{\partial x_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}(\mathbf{a})}{\partial x_{1}} & \cdots & \frac{\partial f_{n}(\mathbf{a})}{\partial x_{m}} \end{bmatrix}$$
(8)

We call such matrix the **Jacobian matrix**. It may exists even for non-differential points.

### Non-differentiable function example

**Example.** Here is a non-differentiable function at  $\mathbf{a} = (0,0)$ , but partial derivatives exist at  $\mathbf{a}$ :

$$f(x,y) = \sqrt{x^2 + y^2} \cos(3\arccos(\frac{x}{\sqrt{x^2 + y^2}})) = \frac{x^3 - 3xy^2}{x^2 + y^2}$$
 (9)



Check that partial derivatives are not continuous at  $\mathbf{a} = (0,0)$ 



## Differentiability condition

**Theorem.** Multivariable function f is differentiable at  $\mathbf{a}$  iff all partial derivatives  $\partial f_i/\partial x_j$  exist and are continuous at the point  $\mathbf{a}$ .

#### Gradient

When  $f: \mathbb{R}^n \to \mathbb{R}$  is a scalar field, the derivative is a vector comprised of partial derivatives w.r.t each variable:

$$\nabla f(x_1, \dots, x_n) = (Df_{\mathbf{a}})^T = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right]^T$$
 (10)

With the gradient we can get the linear approximation of a scalar field function:

$$f(\mathbf{x}_0 + \delta \mathbf{x}) \approx f(\mathbf{x}_0) + (\nabla f)(\mathbf{x}_0) \cdot \delta \mathbf{x}$$
 (11)

Which  $\delta \mathbf{x}$  maximizes the  $(\nabla f)(\mathbf{x}_0) \cdot \delta \mathbf{x}$ ?

## Chain rule and Jacobian

## Chain rule for composed functions

Let  $g: t \in \mathbb{R} \to \mathbf{x} \in \mathbb{R}^n, \mathbf{x} = g(t), f: \mathbf{x} \in \mathbb{R}^n \to \mathbb{R}, f = f(\mathbf{x}) = f(g(t)),$  then the total derivative of f is:

$$\frac{df(t)}{dt} = \frac{\partial f(g(t))}{\partial g(t)} \frac{\partial g(t)}{\partial t} = \nabla f(g(t)) \cdot J_g(t) = \sum_{i=1}^n \frac{\partial f(g(t))}{\partial x_i} \frac{dx_i}{dt}$$
(12)

## Chain rule for composed functions

**Example**. Let  $g(t) = [t^2, t^3]^T$ ,  $f(g(t)) = 3g_1 + 2g_2^2 + 4$ . Find the derivative df/dt. First get the partial derivatives and gradients:

$$\nabla f(g) = \begin{bmatrix} \frac{\partial f}{\partial g_1} \\ \frac{\partial f}{\partial g_2} \end{bmatrix} = \begin{bmatrix} 3 \\ 4g_2 \end{bmatrix}$$
 (13)

$$J_{g}(t) = \frac{dg}{dt} = \begin{bmatrix} 2t \\ 3t^{2} \end{bmatrix}$$
 (14)

$$\frac{df}{dt} = \nabla f(g) \cdot J_g(t) = 3 * 2t + 4g_2 * 3t^2 = 6t + 4t^3 * 3t^2 = 12t^5 + 6t$$
(15)

#### Chain rule

In general case, for  $g: \mathbf{t} \in \mathbb{R}^m \to \mathbf{x} \in \mathbb{R}^n, \mathbf{x} = g(\mathbf{t}), f: \mathbf{x} \in \mathbb{R}^n \to \mathbb{R}^k, f = f(\mathbf{x}) = f(g(\mathbf{t})),$  the derivative of the composed function f is:

$$Df_{t} = J_{f}(g(t)) \cdot J_{g}(t)$$
(16)

# Hessian and Critical points of a cost function

#### Hessian

For a continuous differentiable  $f: \mathbb{R}^n \to \mathbb{R}$  first-order Taylor expansion at a point gave us the definition of the derivative of the multivariable function. Second-order Taylor series expansion adds quadratic terms:

$$T_{\mathbf{x}_0}^2 = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T (H(f)(\mathbf{x}_0)) (\mathbf{x} - \mathbf{x}_0)$$
(17)

The matrix  $Hf(\mathbf{x}_0)$  represents all quadratic coefficients and basically comprises second order partial derivatives:

$$H(f)_{i,j}(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_i \partial x_j} \tag{18}$$

#### Hessian

Hessian matrix is symmetric,  $H_{i,j} = H_{j,i}$ . As it is a matrix of second order partial derivatives, it can be expressed as a Jacobian of gradient:

$$H(f)(\mathbf{x}) = J(\nabla f)(\mathbf{x}) \tag{19}$$

## Critical points

To find critical points of a continuous differentiable  $f : \mathbb{R}^n \to \mathbb{R}$ , one has to find the points, where the gradient vanishes:

$$\nabla f(\mathbf{x}) = 0 \tag{20}$$

To classify, whether some critical point is a max, min, or of other type (saddle point), eigenvalues of the Hessian matrix have to be found:

- ullet all eigenvalues are positive o the critical point is a minimum
- ullet all eigenvalues are negative o the critical point is a maximum
- ullet some eigenvalues are positive and some are negative o the critical point is a saddle point

## **Convex functions**

#### Convex functions

**Definition.** Set S in some vector space V is called convex if the line segment connecting any two points in S lies entirely in S:

$$\forall \mathbf{s}_1, \mathbf{s}_2 \in S, \forall \alpha \in [0 \dots 1] : \alpha \mathbf{s}_1 + (1 - \alpha) \mathbf{s}_2 \in S$$
 (21)

#### Convex functions

**Definition.** Function  $f: \mathbb{R}^N \to \mathbb{R}$  is called convex if its set of points above the graph is convex. *Alternatively:* function is convex if the line segment connecting any two points of the function lies above the function:

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^N, \forall \alpha \in [0...1]:$$
 (22)

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$
 (23)

Correspondingly, if  $f(\mathbf{x})$  is convex, then  $-f(\mathbf{x})$  is a concave function.

Some examples of convex functions:

• 
$$f(x) = x^2$$
,  $f(x) = x^2 n$ 

• 
$$f(x) = e^x$$

## Convexity test

One of the tests on function convexity is positive-(semi)definiteness of its Hessian:

$$\forall \mathbf{x} \in X : \mathbf{x}^T H_f(\mathbf{x}) \mathbf{x} \ge 0 \tag{24}$$

## Convexity is good property in optimization

Why are convex functions so special?

- it has no local minima; if it has a minimum then it is global
- if it has multiple minima then the set of all minima is convex This gives guarantees in optimization results.

## Jensen's inequality

Form the convex function definition inequality (22) holds for any two points. This inequality remains valid if we take the sum of any number of points weighted to 1:

$$\forall \mathbf{x}_1 \dots \mathbf{x}_n \in \mathbb{R}^N, \forall \alpha_1 \dots \alpha_n \in [0 \dots 1] | \sum_{i=1\dots n} \alpha_i = 1 :$$
 (25)

$$f(\sum_{i=1...n} \alpha_i \mathbf{x}_i) \le \sum_{i=1...n} \alpha_i f(\mathbf{x}_i)$$
 (26)

This inequality can be proved by induction employing the basic case (22).

# The Rosenbrock function - the guinea pig of continuous optimization

**Exercise.** The Rosenbrock function (a.k.a Rosenbrock's banana function) is defined on  $\mathbb{R}^2$  by:

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$
 (27)

The coefficients are usually set to a=1, b=100. Find the Jacobian and the Hessian matrices. Find the critical point(s). Test various numerical optimization routines on this function.