Long-Run Carbon Consumption Risks and Asset Prices

Stéphane N'Dri

Université de Montréal

January, 2022

This paper

- How environmental policies that aim to reduce carbon emissions affect asset prices and household consumption?
- Do carbon emissions-related risks explain the cross-section of portfolio returns?

Motivation

- Environnemental issues
- Goods and services consumption pollutes the environnement;
- Production vs. consumption-based CO2 emissions (GCP).

 Fact
- Despite that, most papers and climate policies focus on the production side.
- Transition to green economy is a long horizon phenomenon (long-run risk);
- Need a long-run risk model to assess its effects;

Contribution

- Propose a carbon consumption-based risk measure using a novel data;
- Build a model to study the effects of environmental policies on asset prices, and on household consumption;

Findings

- Policy: (-)One std deviation decrease in expected carbon consumption (cc) growth, in the uncertainty, and in the growth of the share of cc
 - (-)Reduce consumption growth;
 - (-)Reduce dividend growth;
- 2 My long-run risk is more detectable.
 - during periods of high climate change uncertainty.
- 3 My risk factors explain the cross section of size and book-to-market sorted portfolios

Related literature

- Carbon emissions measurement : K Song et al. (2019)
 - Prior literature : mostly production approach and consumption approach
 - This paper : consumption approach and novel data
- Long-run risk models: Bansal and Yaron (2004), Bonomo et al. (2011), Constantinides and Ghosh (2011).
 - Prior literature : LRR comes from the aggregate consumption
 - This paper : LRR comes from the carbon consumption
- Climate finance : Bansal et al. (2016), Daniel et al. (2016), Giglio et al. (2021).
 - \blacksquare Prior literature : physical risk
 - This paper: transition risk

Overview

- Data construction
- Model
- Empirical evaluation and results

- The central challenge of the climate change is to assess its effect on real economy;
 - This paper uses consumption and carbon footprint to assess it.
- This paper uses :
 - National Income and Product Accounts (NIPA)
 - Economic Input-Output Life Cycle Assessment (EIO-LCA)

 Data
- All consumption data are on annual basis and span the period 1930-2018.

FIGURE - Power generation and supply Back

Sector #221100: Power generation and supply Economic Activity: \$1 Million Dollars Displaying: Greenhouse Gases Number of Sectors: Top 10 **Documentation:**

The sectors of the economy used in this model.
The environmental, energy, and other data used and their sources.

Frequently asked questions about IO-LCA (or EEIO) models.

Change Inputs (Click here to view greenhouse gases, air pollutants, etc...)

This EIO-LCA data model was contributed by Green Design Institute.

	Sector		CO2 Fossil t CO2e	CO2 Process t CO2e	CH4 t CO2e	N20 t CO2e	HFC/PFCs t CO2e
	Total for all sectors	9370	8880	31.3	346.	56.3	57.5
221100	Power generation and supply	8820	8690	0.000	23.9	54.0	55.9
212100	Coal mining	230	25.9	0.000	204.0	0.000	0.000
211000	Oil and gas extraction	129.0	36.3	23.6	69.0	0.000	0.000
486000	Pipeline transportation	67.1	30.7	0.084	36.3	0.000	0.000
482000	Rail transportation	25.9	25.9	0.000	0.000	0.000	0.000
324110	Petroleum refineries	19.8	19.8	0.000	0.061	0.000	0.000
484000	Truck transportation	9.17	9.17	0.000	0.000	0.000	0.000
230301	Nonresidential maintenance and repair	8.77	8.77	0.000	0.000	0.000	0.000
331110	Iron and steel mills	7.54	2.85	4.65	0.046	0.000	0.000
221200	Natural gas distribution	7.28	0.658	0.000	6.63	0.000	0.000

- Collect aggregate information on 12 consumption categories using NIPA;
- Carbon footprints (CFs) on these 12 categories from EIO-LCA. (Footprint and Details)

- Classify the consumption categories into two groups using the CFs:
 - Carbon consumption :

$$CC_t = \sum_{i=1}^5 C_{i,t} \tag{1}$$

■ Green consumption :

$$GC_t = \sum_{i=6}^{12} C_{i,t}$$
 (2)

• Carbon share in the total consumption is:

$$A_{CC,t} = \frac{CC_t}{CC_t + GC_t} = \frac{CC_t}{C_t} \tag{3}$$

- Then $\Delta cc_t = \Delta log CC_t$ and $\Delta \alpha_{cc,t} = \Delta log A_{CC,t}$
 - See Figure

■ Consumption-based carbon emissions:

$$CC_t = \sum_{i=1}^{12} CF_i \times C_{i,t}$$
 (4)

FIGURE - CF by household expenditure category. Pack

Table – Example of footprint at sub-category level. • Back

3825	3480
2058	2083
799	592
420	304
379	288
1259	1491
924	665
169	157
169	157
755	508
197	235
558	273
na	na
843	732
400	366
443	366
9344	11810
1004	783
382	265
622	518
5130	4397
769	710
3540	2790
423	328
398	569
3210	6630
0	1870
1780	1980
1430	2780
	2058 799 420 379 1259 924 169 169 755 197 558 na 843 400 443 9344 1004 382 622 5130 769 3540 423 398 3210 0 1780

FIGURE - C risk, CC risk, GC risk.

- Use the dividend-yield and the dividend growth of the CRSP value-weighted index;
- Use Fama-French 49 industries portfolios, and size and book-to-market sorted portfolios.

Table - Descriptive statistics: 1930-2018. Subperiod state

	E(.)	$\sigma(.)$	$\rho(1)$	$\rho(2)$	$\rho(3)$	$\rho(5)$	CV
Δd	0.0176	0.1223	0.1075	-0.1832	-0.1502	0.0459	6.9325
Δc	0.0178	0.0343	0.3150	0.0608	-0.1508	0.0098	1.9277
$\Delta \alpha_{cc}$	-0.0030	0.0134	0.4545	0.0574	-0.1233	-0.1730	-4.4179
Δcc	0.0147	0.0382	0.2717	-0.0223	-0.2057	0.0176	2.5893
$\Delta \alpha_{gc}$	0.0042	0.0215	0.4469	0.0640	-0.0749	-0.2105	5.0928
Δgc	0.0220	0.0385	0.4647	0.2063	-0.0167	-0.1006	1.7505
z_m	3.3878	0.5123	0.9276	0.8524	0.7992	0.7163	0.1512
r_m	0.0694	0.1929	0.0077	-0.2202	0.0181	-0.1215	2.7802
r_f	0.0025	0.0351	0.6852	0.3059	0.2040	0.2788	14.1068

Model - Household

- Representative agent economy;
- Can invest in n+1 assets : one riskless asset (i = 0) and n risky assets (i = 1, ..., n);
- Has the following budget constraint:

$$C_t + \sum_{i=1}^{n+1} P_{it} X_{i,t+1} = \sum_{i=1}^{n+1} (P_{it} + D_{it}) X_{it} = W_t$$
 (5)

Maximizes an Epstein-Zin utility function :

$$V_t = \left[(1 - \delta) C_t^{\frac{1 - \gamma}{\theta}} + \delta \left(E_t [V_{t+1}]^{1 - \gamma} \right)^{\frac{1}{\theta}} \right]^{\frac{\theta}{1 - \gamma}}$$
 (6)

 γ is the CRA and $\psi = 1 - \frac{1 - \gamma}{\theta}$ is the EIS.

■ We decompose the total consumption as follow (CC : carbon consumption + GC : green consumption) :

$$C_t = CC_t + GC_t \tag{7}$$

Model - BY setting

$$\Delta c_{t+1} = \nu_c + x_t + \sigma_t \epsilon_{c,t+1} \tag{8}$$

$$x_{t+1} = \rho_x x_t + \psi_x \sigma_t \epsilon_{x,t+1} \tag{9}$$

$$\sigma_{t+1}^2 = (1 - \nu)\sigma^2 + \nu\sigma_t^2 + \sigma_w \epsilon_{\sigma, t+1}$$
 (10)

Finally, the dividend of any asset i growth rate is as follow

$$\Delta d_{i,t+1} = \nu_i + \phi_i x_t + \psi_i \sigma_t \epsilon_{i,t+1} \tag{11}$$

 $\epsilon_{x,t+1}, \epsilon_{c,t+1}, \epsilon_{i,t+1}$ and $\epsilon_{\sigma,t+1}$ are i.i.d.

Model - LRCCR setting

$$\Delta c_{t+1} = \underbrace{\Delta c c_{t+1}}_{Carbon} - \underbrace{\Delta \alpha_{cc,t+1}}_{share\ of\ cc}$$
 (12)

$$\Delta c c_{t+1} = \nu_{cc} + x_t + \sigma_t \epsilon_{cc,t+1} \tag{13}$$

$$x_{t+1} = \rho_x x_t + \psi_x \sigma_t \epsilon_{x,t+1} \tag{14}$$

$$\sigma_{t+1}^2 = (1 - \nu)\sigma^2 + \nu\sigma_t^2 + \sigma_w \epsilon_{\sigma,t+1}$$
 (15)

$$\Delta \alpha_{cc,t+1} = \nu_{\alpha} (1 - \rho_{\alpha}) + \rho_{\alpha} \Delta \alpha_{cc,t} + \sigma_{\alpha} \epsilon_{\alpha,t+1} + \pi \sigma_{t} \epsilon_{cc,t+1}$$
 (16)

Finally, the dividend of any asset i growth rate is as follow

$$\Delta d_{i,t+1} = \nu_i + \phi_i x_t + \phi_{\alpha,i} \Delta \alpha_{cc,t} + \psi_i \sigma_t \epsilon_{i,t+1}$$
 (17)

 $\epsilon_{x,t+1},\epsilon_{cc,t+1},\ \epsilon_{\alpha,t+1},\epsilon_{i,t+1}$ and $\epsilon_{\sigma,t+1}$ are i.i.d.

Model - Resolution

 \blacksquare For any asset *i*, the Euler equation is given by :

$$\mathbb{E}_t(exp(m_{t+1} + r_{i,t+1})) = 1 \tag{18}$$

where

$$m_{t+1} = \theta \log(\delta) - \frac{\theta}{\psi} \Delta c c_{t+1} + \frac{\theta}{\psi} \Delta \alpha_{cc,t+1} + (\theta - 1) r_{c,t+1}$$
 (19)

■ Innovation in the SDF:

$$m_{t+1} - \mathbb{E}_t[m_{t+1}] = -\lambda_{\alpha} \underbrace{\sigma_{\alpha} \epsilon_{\alpha,t+1}}_{\mathbf{g.r}} - \lambda_{cc} \underbrace{\sigma_{t} \epsilon_{cc,t+1}}_{\mathbf{c.r}} - \lambda_{x} \underbrace{\sigma_{t} \epsilon_{x,t+1}}_{\mathbf{l.r.r}} - \lambda_{w} \underbrace{\sigma_{w} \epsilon_{\sigma,t+1}}_{\mathbf{v.r}}$$

- Four risks: green risk, carbon risk, long-run risk and the volatility risk;
- \blacksquare Expected equity premium of any asset i:

$$\mathbb{E}_{t}(r_{i,t+1} - r_{f,t}) = \lambda_{x}\beta_{i,x}\sigma_{t}^{2} + \lambda_{w}\beta_{i,w}\sigma_{w}^{2} + \lambda_{\alpha}\beta_{i,\alpha}\sigma_{\alpha}^{2} + \lambda_{cc}\beta_{i,cc}\sigma_{t}^{2}$$

Empirical evaluation strategy

- Period where no effect on firm-level nor industry-level returns.
- Identify key period where climate change matters become a public debate;
 - Goal : as of which date or period asset prices start reflecting carbon-consumption risk.
- We split our sample into three sub-periods for that reason :
 - 1930-1955 (Great economic uncertainty period);
 - **1**956-1980
 - 1981-2018 (More climate action period).

Empirical evaluation strategy

- Calibrate Θ=[$\rho_x \psi_x \psi_i \nu_{cc} \nu \nu_i \sigma_w \sigma \phi_i \delta \gamma \psi \nu_\alpha \rho_\alpha \sigma_\alpha \pi \phi_{\alpha,i}$] to match key data moments
- 2 Policy simulation
- **3** Asset pricing implications:
 - Testing the equity premium, volatility and risk-free rate puzzles:
 - $r_{f,t} = A_{0,f} + A_{1,f}x_t + A_{2,f}\sigma_t^2 + A_{3,f}\Delta\alpha_{cc,t}$
 - $\blacksquare \mathbb{E}_t r_{i,t+1} = B_0 + B_1 x_t + B_2 \sigma_t^2 + B_3 \Delta \alpha_{cc,t}$
 - Pricing portfolios (Cross-section of assets):

 - Risk premium estimates of each factors.

Table – Calibrated parameters

	1930-2018		1930-1955		1956	-1980	1981-2018	
	BY04	LRCCR	BY04	LRCCR	BY04	LRCCR	BY04	LRCCR
ρ_x	0.932	0.978	0.937	0.979	0.920	0.900	0.976	0.900
ψ_x	0.259	0.150	0.278	0.119	0.010	0.204	0.206	0.514
ψ_d	4.540	4.340	4.789	4.488	13.361	0.000	10.122	4.288
ν_x	9E-04	1E-03	1E-04	1E-03	-6E-05	2E-03	-2E-04	9E-04
ν	0.999	0.979	0.573	0.985	0.577	0.691	0.988	0.995
ν_d	0.001	-0.011	0.000	-0.025	-0.002	0.001	0.005	0.003
σ_w	5E-07	2E-08	1E-04	2E-07	7E-08	1E-05	4E-06	4E-06
σ	8E-03	3E-03	5E-04	4E-03	1E-03	1E-03	7E-04	9E-03
ϕ	2.294	3.378	2.354	3.734	321.850	10.056	0.792	1.019
δ	0.956	0.998	0.999	0.999	0.998	0.998	0.998	0.997
γ	7.074	12.290	9.878	10.084	15.940	23.016	6.063	8.732
ψ	1.379	1.487	3.018	1.495	1.574	1.235	1.503	1.486
\bar{z}	3.088	6.164	6.054	6.602	6.201	6.285	5.720	5.060
\bar{z}_m	5.344	3.981	5.153	3.522	4.754	5.696	12.820	5.548
ν_a		-3E-04		4E-05		-3E-04		-4E-04
ρ_a		0.455		0.480		-0.281		0.360
σ_a		0.006		0.006		0.014		0.004
π		1.344		0.897		3.328		0.626
ϕ_a		0.590		0.877		-0.294		1.305

Takeaway

- Ψ_x tells us how detectable the LRR is. $\Psi_{x,LRCCR} > \Psi_{x,BY}$ near climate change events periods.
- LRR in volatility and in expected cc growth :
 - \mathbf{v} smaller and close to one;
 - $ightharpoonup
 ho_x$ smaller and close to one.
- $ightharpoonup \gamma_{LRCCR} > \gamma_{BY}$ and is reasonable;
 - Agents fear more carbon risk than consumption risk.
- $\phi_{\alpha} > 1$: leverage ratio on $\Delta \alpha_{cc}$ during the period 1981-2018.

Table – Model-implied moments. • More

		$\sigma(z_m)$	EP	$E(R_f)$	$\sigma(r_{m,a})$	$\sigma(r_{f,a})$	$\rho(z_m)$
1930-2018							
	Data	0.512	0.067	0.002	0.193	0.002	0.928
BY2004	Mean	0.189	0.096	0.007	0.212	0.068	0.454
	5%	0.158	-0.029	-0.090	0.180	0.050	0.286
	50%	0.188	0.097	0.005	0.212	0.065	0.458
	95%	0.225	0.220	0.111	0.246	0.095	0.607
LRCCR	Mean	0.197	0.078	0.010	0.134	0.022	0.735
	5%	0.154	0.053	0.001	0.118	0.019	0.601
	50%	0.195	0.078	0.010	0.134	0.022	0.743
	95%	0.248	0.104	0.019	0.151	0.027	0.841
1981-2018							
	Data	0.415	0.072	0.011	0.162	0.011	0.890
BY2004	Mean	0.078	0.066	0.010	0.128	0.002	0.846
	5%	0.042	0.028	0.005	0.103	0.001	0.642
	50%	0.073	0.066	0.010	0.127	0.002	0.871
	95%	0.133	0.106	0.015	0.154	0.004	0.961
LRCCR	Mean	0.204	0.118	0.015	0.183	0.006	0.809
	5%	0.118	0.061	0.003	0.148	0.003	0.586
	50%	0.191	0.117	0.015	0.182	0.005	0.835
	95%	0.330	0.178	0.027	0.220	0.009	0.946

Predictability using LRR. Graph

- Most of the consumption capital asset pricing models find a constant risk premium : approximately constant predicted risk premium.
 - However, during period of high carbon emission risk, a long-run carbon consumption risks model finds a time-varying risk premium.
 - Much better than the usual LRR model.

Policy simulation

Table - Comparative statistics

	Δc	Δd	Δcc
Policy 1 Graph			
1930-2018	-27.12	-39.34	-32.72
1930 - 1955	-9.74	2.03	-9.48
1956-1980	-0.58	-7.87	-0.69
1981-2018	-23.26	-11.40	-34.83
Policy 2 Graph			
1930-2018	-26.79	-39.93	-32.72
1930 - 1955	-9.48	2.06	-9.48
1956 - 1980	-0.56	-7.89	-0.69
1981-2018	-23.14	-11.54	-34.83

Cross-sectional implications

- In this paper, I decompose the consumption growth risk Δc_t into two :
 - Carbon consumption (cc) growth risk (Δcc_t) ;
 - Share of carbon consumption growth risk $(\Delta \alpha_t)$.
- Add Fama and French (1993) three factors : mkt, hml, and smb
- Compute the risk premium estimates :
 - Using the two-pass CS regression
- Assess the contribution of my factors.

Cross-sectional implications

Table – Industry portfolios

	$_{ m mkt}$	hml	smb	Δcc	$\Delta lpha_{cc}$	Δgc	$\Delta \alpha_{gc}$	R^2
Ŷ	-0.0259			-0.0084	-4.1E-06			
t ratio	-1.0794			-1.6910	-0.0327			0.059
$\hat{\gamma}$	-0.0247	-0.0404	-0.0059					
t ratio	-1.0205	-2.2953	-0.3763					0.095
Ŷ	-0.0245	-0.0423	-0.0053	-0.0089				
t ratio	-1.0151	-2.3947	-0.3356	-1.7862				0.122
Ŷ	-0.0254	-0.0404	-0.0059		-3.2E-05			
t ratio	-1.0470	-2.2969	-0.3709		-0.2553			0.097
Ŷ	-0.0239	-0.0425	-0.0053	-0.0089	-1.2E-05			
t ratio	-0.9850	-2.4017	-0.3362	-1.7894	-0.0916			0.123
Ŷ	-0.0244	-0.0424	-0.0053			-0.0055	0.0034	
t ratio	-1.0067	-2.3937	-0.3377			-0.6161	0.4078	0.122

Cross-sectional implications

Table – Fama-French 25 ME/BM- sorted portfolios

	$_{ m mkt}$	hml	smb	Δcc	$\Delta \alpha_{cc}$	Δgc	$\Delta \alpha_{gc}$	R^2
$\hat{\gamma}$	-0.0944			-0.0110	-0.0007			
t ratio	-3.1680			-2.0736	-4.0674			0.191
$\hat{\gamma}$	-0.1224	0.0406	0.0248					
t ratio	-4.0071	2.5795	1.7063					0.250
$\hat{\gamma}$	-0.1147	0.0407	0.0245	-0.0085				
t ratio	-3.6605	2.5895	1.6833	-1.6078				0.259
$\hat{\gamma}$	-0.1222	0.0420	0.0199		-0.0006			
t ratio	-4.0001	2.6669	1.3647		-3.6273			0.350
$\hat{\gamma}$	-0.1259	0.0420	0.0198	-0.0106	-0.0006			
t ratio	-3.9967	2.6673	1.3551	-1.9972	-3.6567			0.351
$\hat{\gamma}$	-0.1314	0.0421	0.0209			0.0280	0.0377	
t ratio	-4.1437	2.6741	1.4318			2.9838	3.8475	0.343

Takeaway

- My risk factors perform better at explaining FF25P.
 - Carbon factors are negatively priced
 - Green factors are positively priced.

Contribution to the CS R^2

Table – Testing the difference in terms of CS \mathbb{R}^2

Industries							
	Δcc	$\Delta \alpha_{cc}$	$\Delta cc + \Delta \alpha_{cc}$	Δgc	$\Delta \alpha_{gc}$	$\Delta gc + \Delta \alpha_{gc}$	Δc
$R_{ff3}^2 - R_{new}^2$	-0.027	-0.002	-0.028	-0.004	-0.006	-0.027	-0.075
p_{cs}	0.146	0.753	0.391	0.638	0.606	0.446	0.011
p_{ms}	0.248	0.787	0.544	0.692	0.648	0.571	0.059
$p_{wald,cs}$	0.146	0.753	0.241	0.638	0.606	0.305	0.011
$p_{wald,ms}$	0.248	0.787	0.476	0.692	0.648	0.505	0.059
EFOED							
FF25P							
$R_{ff3}^2 - R_{new}^2$	-0.009	-0.100	-0.101	-0.046	-0.092	-0.093	-0.004
p_{cs}	0.294	0.022	0.044	0.076	0.048	0.082	0.510
p_{ms}	0.530	0.074	0.162	0.162	0.096	0.193	0.689
Pwald,cs	0.294	0.022	0.081	0.076	0.048	0.143	0.510
$p_{wald,ms}$	0.530	0.074	0.221	0.162	0.096	0.267	0.689

Takeaway

- Under correctly specify model assumption :
 - Three alternative specifications outperform FF3 model at 5% level
 - Two outperform at 10% level.
- \blacksquare Under misspecification assumption :
- Two of my alternative models outperform at 10% and none at 5%.

Conclusion

- Provide a model to analyze how environmental policies that aim to reduce carbon emissions affect asset prices and household consumption.
- Provide new risk factors to explain the cross-section of portfolios.

Research agendas

- Asset Pricing using Nonlinear Principal Components
 - Use truly independent nonlinear factors to predict future returns;
 - Fama-French 25 ME/BM- sorted portfolios and fifty anomaly portfolios;
 - SDF estimated using a mixture of nonlinear and linear factors outperform the one using solely linear factors or raw characteristic returns;
 - Our hybrid model requires less risk factors to achieve the highest out-of-sample performance compared to a model using only linear factors.

Research agendas

- Insurance Asset Pricing
 - Household asset pricing;
 - Intermediary asset pricing since 2013;
 - Lens of frictions in financial intermediation.
 - Due to climate change, Insurers will be more affected.
 - \blacksquare \rightarrow Insurance Asset Pricing
- Hedging Physical and Transition Climate Change Risks
 - Build transition risk using textual analysis;
 - \blacksquare transrisk = f(news)
 - Build physical risk using data on natural disasters;
 - Build hedging portfolio : mimicking portfolio approach.
 - $transrisk_t = \alpha_{tr} + w'_{tr}er_t + \epsilon_{tr,t}$
 - $physrisk_t = \alpha + w'_{pr}er_t + \epsilon_{pr,t}$

FIGURE - Fact

Source: Our World in Data based on the Global Carbon Project and UN Population Our World In Data.org/co2-and-other-greenhouse-gas-emissions • CC BY

Let us consider I categories of consumption among which J carbon consumption categories and I-J green consumption categories.

$$C_t = \sum_{i=1}^{I} C_{i,t}$$
 (20)

$$C_t = \sum_{i=1}^{J} C_{i,t} + \sum_{i=J+1}^{I} C_{i,t}$$
 (21)

$$C_t = CC_t + GC_t (22)$$

Growth rate decomposition:

$$\Delta c_{t+1} = \log(CC_{t+1} + GC_{t+1}) - \log(CC_t + GC_t)$$
(23)

$$\Delta c_{t+1} = \log(CC_{t+1}) + \log\frac{CC_{t+1} + GC_{t+1}}{CC_{t+1}} - \log(CC_t) - \log\frac{CC_t + GC_t}{CC_t}$$
 (24)

$$\Delta c_{t+1} = \Delta c c_{t+1} - \left(\log \frac{C C_{t+1}}{C C_{t+1} + G C_{t+1}} - \log \frac{C C_t}{C C_t + G C_t} \right)$$
 (25)

$$\Delta c_{t+1} = \Delta c c_{t+1} - \Delta \alpha_{CC,t+1} \tag{26}$$

where Δc_{t+1} , Δc_{ct+1} and $\Delta \alpha_{CC,t+1}$ are consumption, carbon consumption and carbon consumption share growth rates (log-difference) respectively. • LRCCR

For this decomposition, we weight each consumption category by its impact on the environment measured by their carbon footprints.

$$C_t = \sum_{i=1}^{I} CF_i \times C_{i,t} \tag{27}$$

$$C_{t} = \sum_{i=1}^{J} CF_{i} \times C_{i,t} + \sum_{i=J+1}^{I} CF_{j} \times C_{i,t}$$
 (28)

$$C_t = CC_t + GC_t \tag{29}$$

Growth rate decomposition:

$$\Delta c_{t+1} = \log(CC_{t+1} + GC_{t+1}) - \log(CC_t + GC_t)$$
(30)

$$\Delta c_{t+1} = \log(CC_{t+1}) + \log\frac{CC_{t+1} + GC_{t+1}}{CC_{t+1}} - \log(CC_t) - \log\frac{CC_t + GC_t}{CC_t}$$
(31)

$$\Delta c_{t+1} = \Delta c c_{t+1} - \left(\log \frac{C C_{t+1}}{C C_{t+1} + G C_{t+1}} - \log \frac{C C_t}{C C_t + G C_t} \right)$$
 (32)

$$\Delta c_{t+1} = \Delta c c_{t+1} - \Delta \alpha_{CC,t+1} \tag{33}$$

where Δc_{t+1} , Δc_{t+1} and $\Delta \alpha_{CC,t+1}$ are consumption, carbon consumption and carbon consumption share growth rates (log-difference) respectively. • LRCCR

Table – Descriptive statistics: 1930-1955. Descriptive statistics

	E(.)	$\sigma(.)$	$\rho(1)$	$\rho(2)$	$\rho(3)$	$\rho(5)$	CV
Δd	0.0038	0.1914	0.1244	-0.2814	-0.1927	0.0954	50.6037
Δc	0.0169	0.0540	0.3633	0.1214	-0.1689	0.0208	3.1977
$\Delta \alpha_{cc}$	0.0005	0.0231	0.4800	0.0383	-0.1503	-0.2569	50.1958
Δcc	0.0173	0.0611	0.2899	-0.0096	-0.2380	0.0343	3.5250
$\Delta \alpha_{gc}$	-0.0009	0.0378	0.4771	0.0408	-0.0949	-0.2775	-42.0192
Δgc	0.0160	0.0621	0.5495	0.2875	-0.0174	-0.1701	3.8876
z_m	2.8535	0.2265	0.4185	-0.0828	-0.2764	-0.2802	0.0794
r_m	0.0732	0.2468	0.0904	-0.2068	-0.0779	-0.0288	3.3692
r_f	-0.0103	0.0558	0.6365	0.1463	0.0169	0.2074	-5.4163

Table – Descriptive statistics: 1956-1980. Descriptive statistics

	E(.)	$\sigma(.)$	$\rho(1)$	$\rho(2)$	$\rho(3)$	$\rho(5)$	CV
Δd	0.0074	0.0523	0.2667	0.0359	0.0091	0.0053	7.0994
Δc	0.0222	0.0290	-0.0204	-0.2613	-0.0383	0.1899	1.3081
$\Delta \alpha_{cc}$	-0.0035	0.0043	-0.2815	-0.0210	0.3359	0.0456	-1.2429
Δcc	0.0187	0.0295	-0.0577	-0.2755	-0.0490	0.1629	1.5790
$\Delta \alpha_{gc}$	0.0061	0.0076	-0.2780	-0.0079	0.3276	0.0584	1.2326
Δgc	0.0283	0.0296	0.0243	-0.2123	0.0213	0.2276	1.0473
z_m	3.2918	0.1822	0.6555	0.3480	0.2547	0.1185	0.0553
r_m	0.0445	0.1779	-0.0762	-0.3736	0.1056	0.0922	4.0023
r_f	0.0030	0.0152	0.5917	0.4075	0.4660	0.2736	5.0496

Table – Descriptive statistics : 1981-2018. Descriptive statistics

	E(.)	$\sigma(.)$	$\rho(1)$	$\rho(2)$	$\rho(3)$	$\rho(5)$	CV
Δd	0.0339	0.0926	-0.0365	-0.0047	-0.0714	-0.0885	2.7331
Δc	0.0155	0.0162	0.4603	0.0530	-0.0526	-0.0747	1.0438
$\Delta \alpha_{cc}$	-0.0052	0.0066	0.3599	-0.0832	-0.2421	0.1352	-1.2812
Δcc	0.0104	0.0185	0.5090	0.0042	-0.1916	-0.1158	1.7807
$\Delta \alpha_{gc}$	0.0065	0.0083	0.3914	-0.0141	-0.1654	0.1809	1.2843
Δgc	0.0220	0.0172	0.3744	0.1211	0.1178	0.0877	0.7844
z_m	3.8166	0.4151	0.8895	0.7548	0.6669	0.4293	0.1088
r_m	0.0831	0.1618	-0.0695	-0.1204	0.0703	-0.4177	1.9464
r_f	0.0109	0.0221	0.7975	0.6500	0.5337	0.3189	2.0303

Table – Model-implied moments. • Back

		$\sigma(z_m)$	EP	$E(R_f)$	$\sigma(r_{m,a})$	$\sigma(r_{f,a})$	$\rho(z_m)$
1930-1955							
	Data	0.227	0.084	-0.010	0.247	0.010	0.418
BY2004	Mean	0.238	0.109	0.007	0.264	0.159	0.354
	5%	0.166	-0.019	-0.051	0.193	0.122	0.019
	50%	0.234	0.105	0.006	0.261	0.158	0.368
	95%	0.325	0.251	0.065	0.346	0.198	0.637
LRCCR	Mean	0.150	0.040	0.010	0.116	0.019	0.608
	5%	0.098	0.000	-0.005	0.089	0.014	0.291
	50%	0.145	0.039	0.010	0.115	0.018	0.635
	95%	0.216	0.081	0.024	0.144	0.025	0.834
1956-1980							
	Data	0.182	0.041	0.003	0.178	0.003	0.656
BY2004	Mean	0.125	0.093	-0.002	0.134	0.001	0.345
	5%	0.093	0.045	-0.002	0.102	0.001	0.019
	50%	0.124	0.093	-0.002	0.133	0.001	0.360
	95%	0.162	0.143	-0.001	0.167	0.002	0.620
LRCCR	Mean	0.175	0.068	0.003	0.197	0.019	0.282
	5%	0.119	0.003	-0.005	0.138	0.014	-0.041
	50%	0.172	0.066	0.003	0.194	0.019	0.293
	95%	0.240	0.141	0.010	0.263	0.024	0.569

FIGURE - 1930-2018 ▶ Back

FIGURE - 1981-2018 ▶ Back

FIGURE - Policy 1 : 1981-2018 ▶ Back

FIGURE - Policy 2 : 1981-2018 ▶ Back

