Graph Augmentation for GNNs

General GNN Framework

Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure augmentation

(4) Graph augmentation

Why Augment Graphs

Our assumption so far has been

- Raw input graph = computational graph
 Reasons for breaking this assumption
 - Features:
 - The input graph lacks features
 - Graph structure:
 - The graph is too sparse → inefficient message passing
 - The graph is too dense → message passing is too costly
 - The graph is too large → cannot fit the computational graph into a GPU
 - It's unlikely that the input graph happens to be the optimal computation graph for embeddings

Graph Augmentation Approaches

- Graph Feature augmentation
 - The input graph lacks features → feature augmentation
- Graph Structure augmentation
 - The graph is too sparse → Add virtual nodes / edges
 - The graph is too dense → Sample neighbors when doing message passing
 - The graph is too large → Sample subgraphs to compute embeddings
 - Will cover later in lecture: Scaling up GNNs

Why do we need feature augmentation?

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- a) Assign constant values to nodes

- (1) Input graph does not have node features
 - This is common when we only have the adj. matrix
- Standard approaches:
- b) Assign unique IDs to nodes
 - These IDs are converted into one-hot vectors

One-hot vector for node with ID=5

	Constant node feature	One-hot node feature
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High. Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High . $O(V)$ dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Example: Cycle count feature:
 - Can GNN learn the length of a cycle that v_1 resides in?
 - Unfortunately, no

 v_1 resides in a cycle with length 3

 v_1 resides in a cycle with length 4

- v_1 cannot differentiate which graph it resides in
 - Because all the nodes in the graph have degree of 2
 - The computational graphs will be the same binary tree

 v_1 resides in a cycle with length 3

 v_1 resides in a cycle with length 4

 v_1 resides in a cycle with infinite length

The computational graphs for node v_1 are always the same

More about this topic later!

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Solution:
 - We can use cycle count as augmented node features

We start from cycle with length 0

Augmented node feature for v_1

 v_1 resides in a cycle with length 3

Augmented node feature for v_1

 v_1 resides in a cycle with length 4

Why do we need feature augmentation?

- (2) Certain structures are hard to learn by GNN
- Other commonly used augmented features:
 - Node degree
 - Clustering coefficient
 - PageRank
 - Centrality
 - •
- Any feature we have introduced in Lecture 2 can be used!

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (1) Add virtual edges
 - Common approach: Connect 2-hop neighbors via virtual edges
 - Intuition: Instead of using adj. matrix A for GNN computation, use $A + A^2$
- Use cases: Bipartite graphs
 - Author-to-papers (they authored)
 - 2-hop virtual edges make an author-author collaboration graph

Authors Papers

Add Virtual Nodes / Edges

- Motivation: Augment sparse graphs
- (2) Add virtual nodes
 - The virtual node will connect to all the nodes in the graph
 - Suppose in a sparse graph, two nodes have shortest path distance of 10
 - After adding the virtual node, all the nodes will have a distance of two
 - Node A Virtual node Node B
 - Benefits: Greatly improves message passing in sparse graphs

Node Neighborhood Sampling

- Previously:
 - All the nodes are used for message passing

New idea: (Randomly) sample a node's neighborhood for message passing

Neighborhood Sampling Example

- For example, we can randomly choose 2 neighbors to pass messages in a given layer
 - lacktriangle Only nodes B and D will pass messages to A

Neighborhood Sampling Example

- In the next layer when we compute the embeddings, we can sample different neighbors
 - Only nodes C and D will pass messages to A

Neighborhood Sampling Example

- In expectation, we get embeddings similar to the case where all the neighbors are used
 - Benefits: Greatly reduces computational cost
 - Allows for scaling to large graphs (more about this later)
 - And in practice it works great!

