



#### COMP4650/6490 Document Analysis

#### Course Review & Final Exam

ANU School of Computing

#### Administrative matters

- SELT evaluations
- Quiz 3
  - Closes: 5pm on Thursday 26 October
- Practice exercise solution
  - Will be available on Tuesday
- Assignment 3
  - Results will be released later this week
- Final exam coversheet
  - Will be released on Wattle later this week
- Drop-in sessions
  - 1pm 3pm Thursday 26 October
  - 1pm 2pm Friday 27 October
  - Location: Room 3.41, Level 3, Hanna Neumann Building
- NLP-related guest lecture <u>Dr. Zheng Yuan</u> (King's College London)
  - 1pm 2pm Monday 23 October, Manning Clark Hall, Kambri



- Information retrieval (IR)
  - How can computers identify relevant information?
- Machine learning (ML) for NLP
  - How can computers learn from data?
- Natural language processing (NLP)
  - How can computers understand human language?



#### IR: Introduction

#### Classic search model





#### IR: Boolean Retrieval

Term-Document Incidence Matrix

|           | Antony and Cleopatra | <b>Julius Caesar</b> | The Tempest | Hamlet | Othello | Macbeth |
|-----------|----------------------|----------------------|-------------|--------|---------|---------|
| Antony    | 1                    | 1                    | 0           | 0      | 0       | 1       |
| Brutus    | 1                    | 1                    | 0           | 1      | 0       | 0       |
| Caesar    | 1                    | 1                    | 0           | 1      | 1       | 1       |
| Calpurnia | 0                    | 1                    | 0           | 0      | 0       | 0       |
| Cleopatra | 1                    | 0                    | 0           | 0      | 0       | 0       |
| mercy     | 1                    | 0                    | 1           | 1      | 1       | 1       |
| worser    | 1                    | 0                    | 1           | 1      | 1       | 0       |

- Inverted Index
- Boolean retrieval



#### IR: Ranked Retrieval

#### Definition (TF-IDF)

The tf-idf weight of term t in document d is as follows:

$$\mathsf{tf}\text{-}\mathsf{idf}_{t,d} = \mathsf{tf}_{t,d} \times \mathsf{idf}_t$$

#### Definition (Inverse Document Frequency (IDF))

Let  $df_t$  be the number of documents in the collection that contain a term t. The inverse document frequency (IDF) can be defined as follows:

$$\mathsf{idf}_t = \log \frac{N}{\mathsf{df}_t}$$

where N is the total number of documents.

#### **Vector Space Model**

- Representing both documents and queries as vectors (e.g. TF-IDF vectors)
- Ranking documents using the similarities (e.g. cosine similarity) between the query vector and the vectors of documents

#### **IR**: Evaluation

- Evaluation of unranked retrieval results (e.g. Boolean retrieval)
  - Precision, Recall and F-measure
  - Accuracy is not appropriate for IR
- Evaluation of ranked retrieval results
  - Precision-Recall Curve (Precision and Recall of the top-k retrieved documents)
  - Interpolated Precision  $p_{\mathsf{interp}}(r) = \max_{r' \geq r} p(r')$
  - Average Precision, MAP, Mean Reciprocal Rank, etc.



#### IR: Web search

- Documents on the web are linked by hyperlinks
- Authorities and Hubs
- Hyperlink-Induced Topic Search (HITS) algorithm
- PageRank





#### **ML**: Basics

- Linear models
  - Linear Regression, (Multinomial) Logistic Regression
  - MSE and cross entropy loss
  - Gradient descent
- Practical considerations in ML
  - Train, validation, test setup
  - Feature standardisation
  - Bias-Variance trade-off and Regularisation
  - Hyper-parameter tuning



## **ML**: Representation

- Simple document representation (BoW model)
  - Binary occurrence, word count, TF-IDF vectors
- Word representation
  - One-hot, word co-occurrence (weighted by Positive Pointwise Mutual Information, PPMI)
  - Word2Vec



## ML: Clustering

- Unsupervised learning
- Flat vs. Hierarchical clustering
- Hard vs. Soft clustering
- K-Means algorithm
- Evaluating clustering
  - Internal criteria: RSS in K-Means
  - External criteria: Evaluate w.r.t. human-defined classification, e.g. Purity



## ML: Deep Neural Networks

- Feedforward neural network
  - From logistic regression to Feedforward NN
  - Non-linear activation functions
- DNN training
  - Computation graph, back-propagation, SGD
- Recurrent Neural Network
  - Simple RNN for sequences
  - Back-propagation through time
  - Vanishing/exploding gradients
  - Better architectures (e.g. GRU, LSTM) allow learning of longer temporal dependencies



#### ML: Attention and Transformers

- Attention mechanism
  - A neural network layer that learns to select out relevant parts of the input
  - Attention in Seq2Seq (encoderdecoder) models
  - Query-Key-Value attention
- Transformers
  - Self-attention
  - (Masked) Multi-head attention
  - Positional encodings
  - Residual connection
  - Layer normalisation





## ML: Pre-training & Transfer Learning

- Neural Language Models
  - Generating text (auto-regressively)
  - Computing the likelihood of a text sequence
- Self-supervised learning
  - Use naturally existed supervision signals for training
- Pre-trained language models
  - Context specific word representations
  - ELMo, BERT, GPT models
- Transfer learning through fine-tuning
  - Task-specific layers on top of a pre-trained model
  - Fine-tuning using a small amount of (task-specific) labelled data
  - Freeze or make minimal adjustments to parameters of pre-trained models (e.g. using a small learning rate)

## NLP: Language Modelling & Smoothing

- N-gram language models
  - Markov assumption and N-gram LMs
  - Maximum likelihood estimation of N-gram probabilities
- Smoothing
  - Deal with overfitting (zero probability)
  - Adjusting low probabilities upwards and high probabilities downwards
  - Interpolation, Absolute Discounting, Kneser-Ney Smoothing, Stupid Backoff
- Evaluation of language models
  - Extrinsic evaluation: Put model in a task
  - Intrinsic evaluation:

e.g. Perplexity 
$$PP(x_{1:L}) = P(x_{1:L})^{-\frac{1}{L}} = \sqrt{\frac{1}{P(x_{1:L})}}$$



## **NLP: Syntactic Parsing**

- Constituency parsing
  - (Probabilistic) Context Free Grammar
  - Nodes represents phrases in a phrase structure tree
  - Structural ambiguity
- Dependency parsing
  - Dependencies between words
  - Nodes represent words
  - Edges represent dependencies







#### **NLP: Semantics**

- Meaning representation
  - Unambiguous, Linking to external knowledge,
     Supporting computational inference, Sufficiently expressive
- Logical semantics
  - Using  $\lambda$ -calculus: e.g. Alex likes Sam  $\rightarrow (\lambda x . LIKES(x, SAM))$ @ALEX  $\rightarrow LIKES(ALEX, SAM)$
- Predicate-argument semantics
  - A light semantic representation
     e.g. (arg1: someone) read (arg2: something)
- Lexical semantics
  - What is the meaning of words
  - How are the meanings of different words related
- Coreference Resolution



## **NLP: Additional Topics**

- Evaluation in NLP
  - Classification metrics (e.g. precision, recall, Fmeasure, and their macro-/micro-averaged counterparts)
  - Threshold free metrics (e.g. ROC-AUC)
  - Term overlap metrics (e.g. BLEU and ROUGE)
  - What to compare: algorithms, features sets, baselines; ablation studies; different datasets.
- Multi-lingual NLP
- Low resource NLP

- Monday 6 November, 2:00pm 4:15pm AEDT
- Duration:
  - Writing time: 120 minutes (more for students with EAPs + SEAs)
  - Reading time: 15 minutes
- Venue:
  - CSIT N111, N112, N113, N114, N115-N116
  - Hanna Neumann Lab 1.23 & 1.24
  - Room and Seat allocation communicated through the ANU Examinations Office
- Lab exam
  - Please log into the Student Registration and Marks System (<a href="https://cs.anu.edu.au/streams/index.php">https://cs.anu.edu.au/streams/index.php</a>) at least once before the exam
  - This registers your UID so that you will be able log into a lab computer
  - Necessary if you have never logged into a lab computer



- Closed-book lab exam
  - Access to course notes (including lecture and lab notes, quizzes and assignments) on Wattle is permitted
  - Can post questions privately to all instructors/staff on the course forum
  - Access to other materials or websites (except the course Wattle site and the course forum) is NOT permitted
- Exam will be centrally invigilated by the ANU with support from the course team
- Make sure to carefully read the coversheet on Wattle (To be released)
- Do NOT discuss exam questions nor answers during nor after the exam (some students will likely have special exam times)
- Any such behaviour is academic misconduct and treated as a very serious matter



- The exam is set as an online quiz on Wattle, with a mix of multiple choice, text, and numerical questions
- Main focus is on understanding concepts and techniques
- No programming is required as answers
- Some (simple) calculations will be required (using a non-programmable calculator is permitted)



- Questions will cover:
  - All lecture material
  - All tutorial / lab material
  - All online quizzes
  - Material from assignments
- Weighting of questions roughly corresponds to the coverage of a topic in the course



- Keep textual answers short and to the point
- Read questions carefully do not answer X if the question is Y
- Write in clear English if we cannot understand your writing you might lose marks
- Answers must be written in your own words if you directly copy sentences from lecture slides or other sources you might not receive marks (and we can detect this)



- Exam is worth 60% of final mark
- To pass the course, you need a total mark of at least 50 out of 100
- You will also need to obtain at least 50% in the final exam (hurdle assessment)
- Your final course mark consists of:
  - Three Assignment marks, each is worth 10%
  - Quiz marks: Q1 (3%), Q2 (4%), Q3 (3%)
  - Exam mark (60%)
- Final mark is (possibly, we aim not to) subject to some scaling as a result of school or college academic review



- Supplementary examination will be offered to any student who has
  - passed the hurdle assessment AND has achieved a final overall mark of at least 45% and less than 50%;
     OR
  - achieved between 45% and 49% for the hurdle assessment, and if that assessment item were passed, would otherwise pass the course



# Thank you Best of luck with the final exam We hope you enjoyed the course and learned something new