15.1: Graphs and Level Curves

In the previous chapter, we considered functions of the form

$$\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle,$$

which have one independent variable t and three dependent variables f(t), g(t), and h(t). In this chapter, we consider functions of the form

$$x_{n+1} = f(x_1, x_2, \dots, x_n),$$

where we have multiple independent variables x_1, x_2, \ldots, x_n and one single dependent variable x_{n+1} . We begin with functions of two variables:

$$z = f(x, y).$$

Definition. (Function, Domain, and Range with 2 Independent Variables) A function z = f(x, y) assigns to each point (x, y) in a set D in \mathbb{R}^2 a unique real number z in a subset of \mathbb{R} . The set D is the **domain** of f. The **range** of f is the set of real numbers z that are assumed as the points (x, y) vary over the domain.

Example. Find the domain of the following functions:

$$f(x,y) = \frac{1}{xy+2}$$

$$g(x,y) = \sqrt{108 - 3x^2 - 3y^2}$$

$$h(x,y) = \log_2(x^3 - y^{1/3})$$
 $j(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 16}}$

Example. Roughly graph the following functions:

$$f(x,y) = -4x + 3y - 10$$

$$g(x,y) = x^2 + y^2 + 4$$

$$h(x,y) = \sqrt{4 + x^2 + y^2}$$

Level Curves:

A **contour curve** is formed by tracing a three-dimensional surface at a constant height. A **level curve** is formed when a contour curve is projected to the *xy*-plane.

Example. Find the level curves of the following functions:

$$f(x,y) = y - x^2 - 1$$

$$g(x,y) = e^{-x^2 - y^2}$$

$$h(x,y) = x^2 + y^2$$

Applications of Functions of Two Variables:

Example. A probability function of two variables: Suppose on a particular day, the fraction of students on campus infected with COVID-19 is r, where $0 \le r \le 1$. If you have n random (possibly repeated) encounters with students during the day, the probability of meeting at least one infected person is $p(n,r) = 1 - (1-r)^n$.

Functions of More than Two Variables:

Number of Independent Variables	Explicit Form	Implicit Form	Graph Resides In
1	y=f(x)	F(x,y)=0	$\mathbb{R}^2(xy - \text{plane})$
2	z = f(x, y)	F(x,y,z)=0	$\mathbb{R}^3(xyz - \text{space})$
3	w = f(x, y, z)	F(x,y,z,w) = 0	\mathbb{R}^4
n	$x_{n+1} = f(x_1, x_2, \dots, x_n)$	$F(x_1, x_2, \dots, x_n, x_{n+1}) = 0$	\mathbb{R}^{n+1}

Definition. (Function, Domain, and Range with n Independent Variables) The function $x_{n+1} = f(x_1, x_2, ..., x_n)$ assigns a unique real number x_{n+1} to each point $(x_1, x_2, ..., x_n)$ in a set D in \mathbb{R}^4 . The set D is the **domain** of f. The **range** is the set of real numbers x_{n+1} that are assumed as the points $(x_1, x_2, ..., x_n)$ vary over the domain.

Example. Find the domain of the following functions:

$$f(x, y, z) = 4xyz - 2xz + 5yz$$

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 9}$$

Graphs of Functions of More Than Two Variables:

The idea of level curves can be extended to **level surfaces**. Level surfaces can be used to represent functions of three variables:

