CS213/CS213M DS&A Sharat Chandran

www.cse.iitb.ac.in/~sharat/current/213m

(Many slides obtained from colleagues, and the Internet and gratefully acknowledged using the fair use copyright law)

Agenda

- Basic Data Structures
- Abstract Data Type
- Dynamic Allocation and Amortized Complexity

Abstract Data Types

- An abstract data type (ADT) is an abstraction (functional)
- Key point: Algorithm or implementation is not specified
- An ADT specifies:
 - Data stored
 - Operations on the data
 - Error conditions associated with operations

- Example: A simple stock trading system
 - The data stored are buy/sell orders
 - The operations supported are
 - order buy(stock, shares, price)
 - order sell(stock, shares, price)
 - void cancel(order)
 - Error conditions:
 - Buy/sell a nonexistent stock
 - Cancel a nonexistent order

The Stack ADT

- The Stack ADT stores arbitrary objects and an arbitrary number of these elements
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element
- Insertions and deletions follow the last-in first-out scheme
- Why Stack? Direct applications
 - Page-visited history in a Web browser
 - Undo sequence in a text editor
 - Chain of method calls in a language that supports recursion
- Indirect applications: Auxiliary data structure

Implementation

- How can we practically use a stack?
- C++
 - Using STL (or roll your own)
- Python
 - Using list(), or the collections framework, (or roll your own)
- Performance of data structure is dependent on the implementation
 - We will approximate what has been done by the gurus to understand
 - Exposes us to memory management

Demo Before Implementation

- How to implement push() and pop() using list?
- How much memory does an empty list consume?
 - Maybe the number of actual elements, reference to actual data
- How much time does it take to push?

Agenda

- Abstract Data Type
- Basic Data Structures
 - Stack with an unlimited amount of entries
- Dynamic Allocation
 - Wanted to avoid hardcoded numbers like int a[100000]
- Key experimental observations: In Python's list implementation,
 - The list grew unpredictably large, so surely some operations are expensive?
 - Yet, it takes the same time per insert, i.e., inserting 100 million items was as cheap as inserting 1000 items
- Can we mathematically quantify this?

The Stack ADT

- The Stack ADT stores arbitrary objects
- Insertions and deletions follow the last-in first-out scheme
- Main stack operations:
 - push(object): inserts an element
 - object pop(): removes and returns the last inserted element

- Auxiliary stack operations:
 - object top(): returns the last inserted element without removing it
 - integer len(): returns the number of elements stored
 - boolean is_empty():
 indicates whether no
 elements are stored

Example

Operation	Return Value	Stack Contents
S.push(5)	_	[5]
S.push(3)	_	[5, 3]
len(S)	2	[5, 3]
S.pop()	3	[5]
S.is_empty()	False	[5]
S.pop()	5	[]
S.is_empty()	True	[]
S.pop()	"error"	[]
S.push(7)	_	[7]
S.push(9)	_	[7, 9]
S.top()	9	[7, 9]
S.push(4)	_	[7, 9, 4]
len(S)	3	[7, 9, 4]
S.pop()	4	[7, 9]
S.push(6)	_	[7, 9, 6]
S.push(8)	_	[7, 9, 6, 8]
S.pop()	8	[7, 9, 6]

Raw Material for Implementation

- A chunk of memory (often main memory or RAM) is available
- The address space is supposed to be with O(1) access
 - As easy to retrieve 0x9867231 as 0x29
 - Internal address arithmetic start + cellsize * index

Array-based Stack

- A simple way of implementing the Stack ADT uses an array
- We add elements from left to right
- A variable keeps track of the index of the top element

Array-based Stack (cont.)

- The array storing the stack elements may become full
- A push operation will then need to grow the array and copy all the elements over.

Growth

- In an append operation, we always add at the end
- When the array is full, we call the memory manager!
- How large should the new array be?
 - Incremental strategy: increase the size
 by a LARGE constant c
 - Doubling strategy: double the size

```
Algorithm append(o)
if t = S.length - 1 then
A \leftarrow \text{new} array of
size ...
for i \leftarrow 0 to n-1 do
A[i] \leftarrow S[i]
S \leftarrow A
n \leftarrow n+1
S[n-1] \leftarrow o
```

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of n append(o) operations
- We assume that we start with an empty stack represented by an array of size 1
- We call amortized time of an append operation the average time taken by an append over the series of operations, i.e., T(n)/n

Incremental Strategy Analysis

- We replace the array k = n/c times
- The total time T(n) of a series of n append operations is proportional to

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- The amortized time of an add operation is O(n)

Doubling Strategy Analysis

- We replace the array $k = \log_2 n$ times
- The total time T(n) of a series of n add operations is proportional to

$$n + 1 + 2 + 4 + 8 + ... + 2^{k} = n + 2^{k+1} - 1 = 3n - 1$$

- T(n) is O(n)
- The amortized time of an add operation is O(1)

geometric series

