1.1.(a)

```
1 DATA Grade;

2 INPUT ID AGE GENDER$ GPA CSCORE;

3 DATALINES;

4 1 18 M 3.7 650

5 2 18 F 2.0 490

6 3 19 F 3.3 580

7 4 23 M 2.8 530

8 5 21 M 3.5 640

9;

10 RUN;
```

1.1.(b)

```
PROC MEANS DATA = Grade MEAN MAXDEC=1;

Var GPA CSCORE;

RUN;
```

The MEANS Procedure

Variable	Mean
GPA	3.1
CSCORE	578.0

1.1.(c)

```
1 DATA Grade;
 2 INPUT ID AGE GENDER$ GPA CSCORE;
 3 \text{ INDEX} = \text{GPA} + 3 * \text{CSCORE}/500;
 4 DATALINES;
 5 1 18 M 3.7 650
 62 18 F 2.0 490
 7 3 19 F 3.3 580
 8 4 23 M 2.8 530
 9 5 21 M 3.5 640
10;
11 RUN;
12 PROC SORT DATA = Grade;
13 BY INDEX;
14 RUN;
15
16 PROC PRINT DATA = Grade;
17 Var ID GPA CSCORE INDEX;
18 RUN;
```

Ob	s	ID	GPA	CSCORE	INDEX
	1	2	2.0	490	4.94
	2	4	2.8	530	5.98
	3	3	3.3	580	6.78
	4	5	3.5	640	7.34
	5	1	3.7	650	7.60

```
1 DATA DIET;
 2 INPUT SUBJ 1-3
        HEIGHT 4-5
       WT INIT 6-8
 5
        WT FINAL 9-11
 6
        BMI INIT = sqrt((WT INIT/2.2)/(HEIGHT*0.0254));
7
        BMI_FINAL = sqrt((WT_FINAL/2.2)/(HEIGHT*0.0254));
8
9
        BMI DIFF = BMI FINAL - BMI INIT
10
11 DATALINES;
12 00768155150
13 00272250240
14 00563240200
15 00170345298
16;
17 RUN;
18 PROC SORT DATA = DIET;
19 BY SUBJ;
20 RUN;
21 PROC PRINT DATA = DIET;
22 VAR SUBJ HEIGHT BMI INIT BMI FINAL BMI DIFF
23;
24 RUN;
```

1.2(b)

Obs	SUBJ	HEIGHT	BMI_INIT	BMI_FINAL	BMI_DIFF
1	1	70	9.39144	8.72833	-0.66312
2	2	72	7.88271	7.72345	-0.15926
3	5	63	8.25671	7.53731	-0.71940
4	7	68	6.38680	6.28294	-0.10386

```
1 DATA Grade;
2 INPUT ID AGE GENDER$ GPA CSCORE;
3 INDEX = GPA + 3 * CSCORE/500;
4 DATALINES;
5 1 18 M 3.7 650
6 2 18 F 2.0 490
7 3 19 F 3.3 580
8 4 23 M 2.8 530
9 5 21 M 3.5 640
10;
11 RUN;
12
13 PROC FREQ DATA = Grade;
14 TABLES GENDER;
15 RUN;
```

GENDER	Frequency	Percent	Cumulative Frequency	Cumulative Percent
F	2	40.00	2	40.00
M	3	60.00	5	100.00

```
1 DATA CLINIC;
 2 INPUT ID$ 1-3
 3 GENDER$
 4 RACE$ 5
 5 HR 6-8
      9-11
 6 SBP
7 DBP
         12-14
8 N PROC; 15-16
9 AVE BP = DBP+(SBP-DBP)/3;
10 DATALINES;
11 001MW08013008010
12 002FW08811007205
13 003MB05018810002
14 004FB 10806801
15 005MW06812208204
16 006FB101 07404
17 007FW07810406603
18 008MW04811207006
19 009FB07719011009
20 010FB06616410610
21;
22 RUN;
23
24 PROC MEANS DATA = CLINIC N MEAN STD CLM MEDIAN;
25 var SBP DBP AVE BP;
26 RUN;
2.7
```

The MEANS Procedure

Variable	N	Mean	Std Dev		Upper 95% CL for Mean	Median
SBP	8	129.5000000	47.5424622	89.7535069	169.2464931	121.0000000
DBP	8	67.8750000	43.0628693	31.8735403	103.8764597	76.0000000
AVE_BP	8	88.4166667	43.8075698	51.7926218	125.0407116	90.6666667

```
25 PROC FREQ DATA = CLINIC;
26 TABLES GENDER /NOCUM NOPERCENT;
27 RUN;
28
29 PROC GCHART DATA = CLINIC;
30 VBAR GENDER;
31 RUN;
```



```
1 DATA PROB2_5;
2 LENGTH GROUP$ 1;
 3
        INPUT X Y Z GROUP $;
        DATALINES;
 4
        2 4 6 A
3 3 3 B
 5
 6
          3 7 A
 7
        7 5 3 B
 8
 9
        1 1 5 B
10
        2 2 4 A
        5
          5
11
            6 A
12
        F
13
        RUN;
14
15 PROC GCHART DATA = PROB2_5;
16 VBAR GROUP;
17 RUN;
18
19 PROC GPLOT DATA = PROB2 5;
20 PLOT Y * X;
21 RUN;
22
23 PROC SORT DATA=PROB2_5;
24 BY GROUP;
25 RUN;
26
27 PROC GPLOT DATA = PROB2 5;
28 BY GROUP;
29 PLOT Y * X;
30 RUN;
```



```
33 PROC GCHART DATA =CLINIC;
34 VBAR GENDER / GROUP = RACE;
35 RUN;
36
37 PROC GCHART DATA =CLINIC;
38 VBAR HR / GROUP = GENDER MIDPOINTS =50 TO 100 BY 10;
39 RUN;
40
```



```
1
      DATA 123;
2
            INPUT AGE STATUS PROGNOSIS DOCTOR GENDER STATUS2
3
                  STATUS3;
         (data lines)
5
 6
         PROC CHART DATA=123 BY GENDER;
7
            VBAR STATUS
8
            VBAR PROGNOSIS;
9
        RUN;
10
         PROC PLOT DATA=123;
11
           DOCTOR BY PROGNOSIS;
        RUN;
12
```

1st line: using invalid data set name by starting with a number

4th line: (data lines); is not a proper way to declare data set, DATALINES; would be valid

between 5th and 6th: there is no actual data in DATALINES; a set of data +; needed and put; or RUN; at the end to close the PROC

 6^{TH} line: semi colon missing after DATA =123, also if you want to use BY keyword, you should use sort first and then use BY keyword.

7th line: semi colon missing after STATUS

11th line: PLOT key word missing before DOCTOR, also BY has to be replaced by *, so PLOT DOCTOR * PROGNOSIS; will be a valid line

additional points: GENDER should be marked with \$, GENDER \$ because of its characteristics in data, variable names gives confusion by using STATUS2 and STAUS3, skipped STATUS1.

```
PROC FORMAT;

VALUE GROUP 1 = 'ControlGroup'

2 = 'Aspirin'

3 = 'Iburofen';

RUN;
```

```
1 PROC FORMAT;
      VALUE GENDER 1 = 'Male'
 3
                  2 = 'Female';
4
      VALUE $SES 'L' = 'Low'
 5
                  'M' = 'Medium'
                  'H' = 'High';
 6
      VALUE AGEGROUP LOW-20 = '<= 20'
 7
8
                   21-40 = '21 to 40'
9
                   41-HIGH = '41+';
10 RUN;
11 DATA DRUG;
      INPUT ID $ GENDER SES $ DRUG $ AGE;
12
13
      FORMAT GENDER GENDER. SES $SES.;
     LABEL SES = 'Socio-economic Status'
14
15
            DRUG = 'Drug Group'
     AGE = 'Age of Subject';
IF DRUG IN ('A' 'B' 'C' 'F') THEN
16
17
     COST = 'HIGH';
ELSE IF DRUG NE ' ' THEN
18
19
20
     COST = 'LOW';
21
22 DATALINES;
23 001 1 L B 15
24 002 2 M Z 35
25 003 2 H F 76
26 004 1 L C 21
27 005 2 H . 58
28 ;
29
30 PROC PRINT DATA=DRUG NOOBS;
31
32 RUN;
33
34 PROC FREQ DATA=DRUG;
35
    TABLES SES COST AGE;
      FORMAT AGE AGEGROUP.;
37 RUN;
38
```

ID	GENDER	SES	DRUG	AGE	COST
001	Male	Low	В	15	HIGH
002	Female	Medium	Z	35	LOW
003	Female	High	F	76	HIGH
004	Male	Low	С	21	HIGH
005	Female	High		58	

Socio-economic Status						
SES Frequency Percent Cumulative Cumulative Percent						
High	2	40.00	2	40.00		
Low	2	40.00	4	80.00		
Medium	1	20.00	5	100.00		

COST	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
HIGH	3	75.00	3	75.00	
LOW	1	25.00	4	100.00	
Frequency Missing = 1					

	Age of Subject						
AGE	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
<= 20	1	20.00	1	20.00			
21 to 40	2	40.00	3	60.00			
41+	2	40.00	5	100.00			

3.3

(a)

```
1 PROC FORMAT;
 2
      VALUE $GENDER 'M' = 'Male'
               'F' = 'Female';
 3
      VALUE $PARTY '1' = 'Republican' '2' = 'Democrat'
 4
 5
 6
                   '3' = 'Not Registered';
 7
      VALUE YESNO 0 = 'No' 1 = 'Yes';
 8 RUN;
 9
10
11 DATA SURVEY;
12
      INPUT ID
                  1-3
13
            GENDER $ 4
            PARTY $ 5
14
15
            VOTE
16
            FOREIGN 7
            SPEND 8;
17
18
      LABEL PARTY = 'Political Party'
            VOTE = 'Vote in Last Election?'
19
20
            FOREIGN = 'Agree with Government Policy?'
            SPEND = 'Should we Increase Domestic Spending?';
21
22
      FORMAT GENDER $GENDER.
23
             PARTY $PARTY.
24
             VOTE FOREIGN SPEND YESNO.;
25
26 DATALINES;
27 007M1110
28 013F2101
29 137F1001
30 117 1111
31 428M3110
32 017F3101
33 037M2101
34 |;
35
```

(b)

```
36 PROC FREQ DATA=SURVEY;
37 TABLES GENDER PARTY VOTE FOREIGN SPEND;
38 RUN;
```

GENDER	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Female	3	50.00	3	50.00	
Male	3	50.00	6	100.00	
Frequency Missing = 1					

Political Party						
PARTY Frequency Percent Cumulative Cumulative Percent Frequency Percent						
Republican	3	42.86	3	42.86		
Democrat	2	28.57	5	71.43		
Not Registered	2	28.57	7	100.00		

Vote in Last Election?						
VOTE Frequency Percent Frequency Percent						
No	1	14.29	1	14.29		
Yes	6	85.71	7	100.00		

Agree with Government Policy?				
FOREIGN Frequency Percent Cumulative Cumulative Percent				
No	4	57.14	4	57.14
Yes	3	42.86	7	100.00

Should we Increase Domestic Spending?					
SPEND	D Frequency Percent Frequency Percent Percent				
No	2	28.57	2	28.57	
Yes	5	71.43	7	100.00	

(c)

36 PROC FREQ DATA=SURVEY;
37 TABLES VOTE*(SPEND FOREIGN) / CHISQ;
RUN;

Frequency Percent Row Pct Col Pct

Table of VOTE by SPEND			
	SPEND(Should we Increase Domestic Spending?		
VOTE(Vote in Last Election?)	No	Yes	Total
No	0 0.00 0.00 0.00	1 14.29 100.00 20.00	1 14.29
Yes	2 28.57 33.33 100.00	4 57.14 66.67 80.00	6 85.71
Total	2 28.57	5 71.43	7 100.00

Statistics for Table of VOTE by SPEND

Statistic	DF	Value	Prob
Chi-Square	1	0.4667	0.4945
Likelihood Ratio Chi-Square	1	0.7376	0.3904
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.4000	0.5271
Phi Coefficient		-0.2582	
Contingency Coefficient		0.2500	
Cramer's V		-0.2582	

WARNING: 100% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test		
Cell (1,1) Frequency (F)		
Left-sided Pr <= F	0.7143	
Right-sided Pr >= F	1.0000	
Table Probability (P)	0.7143	
Two-sided Pr <= P	1.0000	

Sample Size = 7

Frequency Percent Row Pct Col Pct

Table of VOTE by FOREIGN				
	FOREIGN(Agr	FOREIGN(Agree with Government Policy?)		
VOTE(Vote in Last Election?)	No	Yes	Total	
No	1 14.29 100.00 25.00	0 0.00 0.00 0.00	1 14.29	
Yes	3 42.86 50.00 75.00	3 42.86 50.00 100.00	6 85.71	
Total	4 57.14	3 42.86	7 100.00	

Statistics for Table of VOTE by FOREIGN

Statistic	DF	Value	Prob
Chi-Square	1	0.8750	0.3496
Likelihood Ratio Chi-Square	1	1.2429	0.2649
Continuity Adj. Chi-Square	1	0.0000	1.0000
Mantel-Haenszel Chi-Square	1	0.7500	0.3865
Phi Coefficient		0.3536	
Contingency Coefficient		0.3333	
Cramer's V		0.3536	
WARNING: 100% of the cells have	e exp	ected cou	ints less

Fisher's Exact Test		
Cell (1,1) Frequency (F)	1	
Left-sided Pr <= F	1.0000	
Right-sided Pr >= F	0.5714	
Table Probability (P)	0.5714	
Two-sided Pr <= P	1.0000	

than 5. Chi-Square may not be a valid test.

Sample Size = 7

last election and spending chi value = 0.4667, p value = 0.4945 > significance level alpha = 0.05 so it fails to reject H0, There is likely no association between two. not statistically significant

last election and foreign chi value = 0.8750 p value = 0.3496 > significance level alpha = 0.05 so it fails to reject H0, There is likely no association between two. not statistically significant

(a)

```
1 DATA BLOOD;
      DO I = 1 TO 500;
 3
         WBC = INT(RANNOR(1368)*2000 + 5000);
 4
         X = RANUNI(0);
 5
         IF X LT .05 THEN WBC = .;
 6
         ELSE IF X LT .1 THEN
 7
         WBC = WBC - 3000;
 8
         ELSE IF X LT .15 THEN
 9
        WBC = WBC + 4000;
         OUTPUT;
10
     END;
11
12
      DROP I X;
13 RUN;
14
15 DATA DATASTEP;
16 SET BLOOD;
17
      LENGTH WBCGRP $ 15;
18
19
     IF WBC GE 3000 AND WBC LE 4000 THEN
20
      WBCGRP = 'Low';
     ELSE IF WBC GE 4001 AND WBC LE 6000 THEN
21
       WBCGRP = 'Medium';
22
     ELSE IF WBC GE 6001 AND WBC LE 12000 THEN
23
       WBCGRP = 'High';
24
25
     ELSE IF WBC GT 12000
      THEN WBCGRP = 'Abnormally High';
26
27
     ELSE IF WBC LT 3000 AND WBC NE . THEN
28
      WBCGRP = 'Abnormally Low';
      ELSE WBCGRP = 'Not Available';
29
30 RUN;
31
32 PROC FREQ DATA=DATASTEP;
    TABLES WBCGRP / MISSING NOCUM;
34 RUN;
```

WBCGRP	Frequency	Percent
Abnormally High	5	1.00
Abnormally Low	84	16.80
High	174	34.80
Low	58	11.60
Medium	157	31.40
Not Available	22	4.40

(b)

```
1 DATA BLOOD;
       DO I = 1 TO 500;
 2
 3
         WBC = INT(RANNOR(1368)*2000 + 5000);
 4
          X = RANUNI(0);
 5
          IF X LT .05 THEN WBC = .;
 6
         ELSE IF X LT .1 THEN
 7
         WBC = WBC - 3000;
 8
         ELSE IF X LT .15 THEN
 9
         WBC = WBC + 4000;
          OUTPUT;
10
11
       END;
12
       DROP I X;
13 RUN;
14
15 PROC FORMAT;
     VALUE WBC 3000 - 4000 = 'Low'
16
                4001 - 6000 = 'Medium'
17
                6001 - 12000 = 'High'
18
19
                LOW - <3000 = 'Abnormally Low'
20
                >12000 - HIGH = 'Abnormally High'
21
                             = 'Not Available';
22 RUN;
23
24 PROC FREQ DATA=BLOOD;
25
       TABLES WBC / MISSING NOCUM;
26
27
       FORMAT WBC WBC.;
28 RUN;
29
```

The FREQ Procedure

WBC	Frequency	Percent
Not Available	22	4.40
Abnormally Low >	84	16.80
Low	58	11.60
Medium	157	31.40
High	174	34.80
Abnormally High	5	1.00

3.5

(1)

```
1 DATA DEMOG;
 2
     INPUT WEIGHT HEIGHT GENDER $;
 3
      IF 0 LE WEIGHT LT 101 THEN
 4
5 WeightGRP = 1;
 6
     ELSE IF 101 LE WEIGHT LT 151 THEN
 7
      WeightGRP = 2;
 8
     ELSE IF 151 LE WEIGHT LE 200 THEN
 9
      WeightGRP = 3;
     ELSE IF WEIGHT GT 200 THEN
10
11
      WeightGRP = 4;
12
13
    IF 0 LE HEIGHT LE 70 THEN
14
     HeightGRP = 1;
15
     ELSE IF HEIGHT GT 70 THEN
16
      HeightGRP = 2;
17
18 DATALINES;
19 155 68 M
20 98 60 F
21 202 72 M
22 280 75 M
23 130 63 F
24 . 57 F
25 166 . M
26 ;
27
28 PROC FREQ DATA=DEMOG;
29 TABLES WeightGRP*HeightGRP;
30 RUN;
```

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of WeightGRP by HeightGRP			
	HeightGRP		
WeightGRP	1	2	Total
1	1 20.00 100.00 33.33	0.00 0.00 0.00	1 20.00
2	20.00 100.00 33.33	0 0.00 0.00 0.00	1 20.00
3	20.00 100.00 33.33	0 0.00 0.00 0.00	1 20.00
4	0 0.00 0.00 0.00	40.00 100.00 100.00	2 40.00
Total	3 60.00	2 40.00	5 100.00
Frequ	ency Mis	ssing = 2	2

```
1 PROC FORMAT;
      VALUE WeightFMT 0-100 = '1'
 2
                101-150 = '2'
 3
                151-200 = '3'
 4
71-HIGH = '2';
 7
 8 RUN;
 9
 10 DATA DEMOG;
11
   INPUT WEIGHT HEIGHT GENDER $;
12
13 DATALINES;
14 155 68 M
15 98 60 F
16 202 72 M
17 280 75 M
18 130 63 F
19 . 57 F
20 166 . M
21 ;
 22 PROC FREQ DATA=DEMOG;
   TABLES WEIGHT*HEIGHT;
FORMAT WEIGHT WeightFMT. HEIGHT HeightFMT.;
 25 RUN;
```

Frequency Percent Row Pct Col Pct

Table of WEIGHT by HEIGHT				
		HEIGHT		
WEIGHT	1	2	Total	
1	1 20.00 100.00 33.33	0 0.00 0.00 0.00	1 20.00	
2	20.00 100.00 33.33	0 0.00 0.00 0.00	1 20.00	
3	1 20.00 100.00 33.33	0 0.00 0.00 0.00	1 20.00	
4	0 0.00 0.00 0.00	40.00 100.00 100.00	40.00	
Total	3 60.00	2 40.00	5 100.00	
Fred	Frequency Missing = 2			

```
1 DATA ASTHMA;
2
     INPUT ASTHMA $ SES $ COUNT;
3
4 DATALINES;
5 YES LOW 40
6 NO LOW 100
7 YES HIGH 30
8 NO HIGH 130
9 ;
10
11 PROC FREQ DATA=ASTHMA;
     TABLES SES*ASTHMA / CHISQ;
12
13
      WEIGHT COUNT;
14 RUN;
```

The FREQ Procedure

Frequency Percent Row Pct Col Pct

Table of SES by ASTHMA							
	ASTHMA						
SES	NO YES Total						
HIGH	130 43.33 81.25 56.52	30 10.00 18.75 42.86	160 53.33				
LOW	100 33.33 71.43 43.48	40 13.33 28.57 57.14	140 46.67				
Total	230 76.67	70 23.33	300 100.00				

Statistics for Table of SES by ASTHMA

Statistic	DF	Value	Prob
Chi-Square	1	4.0262	0.0448
Likelihood Ratio Chi-Square	1	4.0234	0.0449
Continuity Adj. Chi-Square	1	3.4959	0.0615
Mantel-Haenszel Chi-Square	1	4.0128	0.0452
Phi Coefficient		0.1158	
Contingency Coefficient		0.1151	
Cramer's V		0.1158	

Fisher's Exact Test				
Cell (1,1) Frequency (F)	130			
Left-sided Pr <= F	0.9839			
Right-sided Pr >= F	0.0308			
Table Probability (P)	0.0148			
Two-sided Pr <= P	0.0552			

Sample Size = 300

Chi-square = 4.0262, p = 0.0448.

5.2

```
1 DATA EXAM;
2 INPUT (Q1-Q8)(1.);
4 DATALINES;
5 10101010
6 11111111
7 11110101
8 01100000
9 11110001
10 11111111
11 11111101
12 11111101
13 10110101
14 00010110
15 ;
16
L7 DATA POINT_BISERIAL;
18
      SET EXAM;
19
      RAW = SUM(OF Q1-Q8);
20 RUN;
21
PROC CORR DATA=POINT_BISERIAL NOSIMPLE;
23
   VAR Q1-Q8;
     WITH RAW;
24
25 RUN;
26
```

		1 With	Variables:	RAW				
		8 Variat	oles:	Q1 Q2 (Q3 Q4 Q5	Q6 Q7 Q8	3	
Pearson Correlation Coefficients, N = 10								
		Pears				,		
		Pear			efficients H0: Rho=0	,		
	Q1	Pears Q2				,	Q7	Q8
RAW	Q1 0.76447	Q2	Prob >	r under l Q4	H0: Rho=0 Q5	Q6		

5.4

(a)

```
2 DATA SCORES;
    DO SUBJECT = 1 TO 100;
4
       IF RANUNI(1357) LT .5 THEN GROUP = 'A';
5
       ELSE GROUP = 'B';
       MATH = ROUND(RANNOR(1357)*20 + 550 + 10*(GROUP EQ 'A'));
 7
       SCIENCE = ROUND(RANNOR(1357)*15 + .4*MATH + 300);
       ENGLISH = ROUND(RANNOR(1357)*20 + 500 + .05*SCIENCE +
                 .05*MATH);
       SPELLING = ROUND(RANNOR(1357)*15 + 500 + .1*ENGLISH);
10
       VOCAB = ROUND(RANNOR(1357)*5 + 400 + .1*SPELLING +
11
12
               .2*ENGLISH);
       PHYSICAL = ROUND(RANNOR(1357)*20 + 550);
13
       OVERALL = ROUND(MEAN(MATH, SCIENCE, ENGLISH, SPELLING, VOCAB,
14
15
                      PHYSICAL));
16
       OUTPUT;
17
    END;
18 RUN;
20 PROC CORR DATA=SCORES NOSIMPLE;
21 VAR MATH -- OVERALL;
```

7 Varia	bles: MA	ATH SCIENC	CE ENGLISE	SPELLING	VOCAB PI	HYSICAL OVI	FRALL
7 44114	DICS. IVII	VIII OOILIVO	DE ENGLIGI	TOI ELLINO	VOCABII	TI OIOAL OVI	LIVALL
Pearson Correlation Coefficients, N = 100							
Prob > r under H0: Rho=0							
	MATH	SCIENCE	ENGLISH	SPELLING	VOCAB	PHYSICAL	OVERALL
MATH	1.00000	0.32260 0.0011	0.18333 0.0679	0.10647 0.2917	0.15796 0.1165	0.03753 0.7108	0.62332 <.0001
SCIENCE	0.32260 0.0011	1.00000	0.09013 0.3725	0.10649 0.2916	0.08909 0.3781	0.05035 0.6188	0.54013 <.0001
ENGLISH	0.18333 0.0679	0.09013 0.3725	1.00000	0.09526 0.3458	0.70077 <.0001	0.01984 0.8447	0.61817 <.0001
SPELLING	0.10647 0.2917	0.10649 0.2916	0.09526 0.3458	1.00000	0.25311 0.0111	-0.17630 0.0793	0.38804 <.0001
VOCAB	0.15796 0.1165	0.08909 0.3781	0.70077 <.0001	0.25311 0.0111	1.00000	0.02422 0.8109	0.58300 <.0001
PHYSICAL	0.03753 0.7108	0.05035 0.6188	0.01984 0.8447	-0.17630 0.0793	0.02422 0.8109	1.00000	0.38172 <.0001
OVERALL	0.62332 <.0001	0.54013 <.0001	0.61817 <.0001	0.38804 <.0001	0.58300 <.0001	0.38172 <.0001	1.00000

(b) PHYSICAL is independent of all the other test scores but is correlated to OVERALL because it is one component of making up the OVERALL value. (OVERALL = ROUND(MEAN(MATH, SCIENCE, ENGLISH, SPELLING, VOCAB, PHYSICAL));)

(c)

```
PROC CORR DATA=SCORES NOSIMPLE;

VAR MATH -- PHYSICAL;

WITH OVERALL;

RUN;
```

The CORR Procedure

1 With Variables:	OVERALL
6 Variables:	MATH SCIENCE ENGLISH SPELLING VOCAB PHYSICAL

Pearson Correlation Coefficients, N = 100 Prob > r under H0: Rho=0								
	MATH SCIENCE ENGLISH SPELLING VOCAB PHYSICAL							
OVERALL	0.62332 <.0001	0.54013 <.0001	0.61817 <.0001	0.38804 <.0001	0.58300 <.0001	0.38172 <.0001		

5.6

(a)

```
20 SYMBOL V=DOT COLOR=BLACK;

21 PROC REG DATA=SCORES;

22 MODEL SCIENCE = MATH;

23 PLOT SCIENCE * MATH

24 RESIDUAL. * MATH;

25 RUN;

26 QUIT;

27
```

The REG Procedure Model: MODEL1 Dependent Variable: SCIENCE

Number of Observations Read	100
Number of Observations Used	100

Analysis of Variance							
Source Squares Square F Value Pr							
Model	1	2721.93239	2721.93239	11.38	0.0011		
Error	98	23433	239.11038				
Corrected Total	99	26155					

Root MSE	15.46319	R-Square	0.1041
Dependent Mean	518.55000	Adj R-Sq	0.0949
Coeff Var	2.98201		

Parameter Estimates							
Variable DF Estimate Error t Value Pr >							
Intercept	1	367.41770	44.82048	8.20	<.0001		
MATH	1	0.27257	0.08079	3.37	0.0011		

(b)

```
SYMBOL1 V=DOT COLOR=BLACK I=RLCLM95;

PROC GPLOT DATA=SCORES;

PLOT SCIENCE * MATH;

RUN;

PROC GPLOT DATA=SCORES;

PLOT SCIENCE * MATH;

RUN;
```



```
1 DATA DOSE_RESPONSE;
 2 INPUT DOSE SBP DBP;
 3 DATALINES;
4 4 180 110
5 4 190 108
 6 4 178 100
7 8 170 100
8 8 180 98
9 8 168 88
10 16 160 80
11 16 172 86
12 16 170 86
13 32 140 80
14 32 130 72
15 32 128 70
16 ;
17
18 SYMBOL1 V=DOT I=NONE COLOR=BLACK;
19 PROC REG DATA=DOSE_RESPONSE;
20 MODEL SBP = DOSE;
21 PLOT SBP * DOSE
22
       RESIDUAL. * DOSE;
23 MODEL DBP = DOSE;
24 PLOT DBP * DOSE
25
       RESIDUAL. * DOSE;
26 RUN;
27 QUIT;
```

The REG Procedure Model: MODEL1 Dependent Variable: SBP

Number of Observations	Read	12
Number of Observations	Used	12

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	4125.35942	4125.35942	90.81	<.0001
Error	10	454.30725	45.43072		
Corrected Total	11	4579.66667			

Root MSE	6.74023	R-Square	0.9008
Dependent Mean	163.83333	Adj R-Sq	0.8909
Coeff Var	4.11408		

Parameter Estimates						
Variable DF		Parameter Estimate		t Value	Pr > t	
Intercept	1	189.76812	3.34561	56.72	<.0001	
DOSE	1	-1.72899	0.18144	-9.53	<.0001	

The REG Procedure Model: MODEL2 Dependent Variable: DBP

Number of Observations Read	12
Number of Observations Used	12

Analysis of Variance					
Source	F Value	Pr > F			
Model	1	1574.40290	1574.40290	42.18	<.0001
Error	10	373.26377	37.32638		
Corrected Total	11	1947.66667			

Root MSE	6.10953	R-Square	0.8084
Dependent Mean	89.83333	Adj R-Sq	0.7892
Coeff Var	6.80096		

Parameter Estimates						
Variable DF		Parameter Estimate		t Value	Pr > t	
Intercept	1	105.85507	3.03255	34.91	<.0001	
DOSE	1	-1.06812	0.16446	-6.49	<.0001	

5.10

```
1 DATA LOG_DOSE;
       SET DOSE_RESPONSE;
        LOG_DOSE = LOG(DOSE);
  4 RUN;
  6 SYMBOL1 V=DOT I=NONE COLOR=BLACK;
7 PROC REG DATA=LOG_DOSE;
        MODEL SBP = LOG_DOSE;
  8
  9
       PLOT SBP * LOG_DOSE
  10
            RESIDUAL. * LOG_DOSE;
        MODEL DBP = LOG DOSE;
  11
        PLOT DBP * LOG_DOSE
  12
 13
             RESIDUAL. * LOG_DOSE;
 14 RUN;
 15 QUIT;
```

The REG Procedure Model: MODEL1 Dependent Variable: SBP

Number of Observations Read	12
Number of Observations Used	12

Analysis of Variance							
Source Squares Square F Value Pr >							
Model	1	3619.26667	3619.26667	37.68	0.0001		
Error	10	960.40000	96.04000				
Corrected Total	11	4579.66667					

Root MSE	9.80000	R-Square	0.7903
Dependent Mean	163.83333	Adj R-Sq	0.7693
Coeff Var	5.98169		

Parameter Estimates							
Variable DF Estimate Error t Value Pr >							
Intercept	1	218.20000	9.29710	23.47	<.0001		
LOG_DOSE	1	-22.40986	3.65052	-6.14	0.0001		

The REG Procedure Model: MODEL2 Dependent Variable: DBP

Number of Observations Read 12 Number of Observations Used 12

Analysis of Variance							
Source DF Squares Square F Value Pr >							
Model	1	1728.06667	1728.06667	78.69	<.0001		
Error	10	219.60000	21.96000				
Corrected Total	11	1947.66667					

Root MSE	4.68615	R-Square	0.8872
Dependent Mean	89.83333	Adj R-Sq	0.8760
Coeff Var	5.21649		

Parameter Estimates							
Variable DF Estimate Error t Value Pr >							
Intercept	1	127.40000	4.44567	28.66	<.0001		
LOG_DOSE	1	-15.48493	1.74560	-8.87	<.0001		

Linear fits better for SBP because an error with linear (454) is smaller than an error with log (960).

Log fits better for DBP because an error with linear (373) is bigger than an error with log (219).

```
1 DATA PROGRAMS;
    LENGTH i $ 5;
2
3
    DO i = 'CODY', 'SMITH';
        DO scores = 1 TO 14;
5
           INPUT speed 0;
 6
           OUTPUT;
       END;
7
8
    END;
9 DATALINES;
10 500 450 505 404 555 567 588 577 566 644 511 522 543 578
11 355 388 440 600 510 501 502 489 499 489 515 520 520 480
12 RUN;
13
14 PROC TTEST DATA= PROGRAMS;
15
    TITLE 'READING SPEED COMPARISON';
16
     CLASS i;
17
     VAR speed;
18 RUN;
19 PROC NPARIWAY DATA= PROGRAMS WILCOXON;
     TITLE 'WILCOXON TEST';
20
21
     CLASS i;
22
     VAR speed;
23
     EXACT WILCOXON;
24 RUN;
25
```

READING SPEED COMPARISON

The TTEST Procedure Variable: speed

i	N	Mean	Std Dev	Std Err	Minimum	Maximum
CODY	14	536.4	60.7513	16.2365	404.0	644.0
SMITH	14	486.3	59.6843	15.9513	355.0	600.0
Diff (1-2)		50.1429	60.2202	22.7611		

i	Method	Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
CODY		536.4	501.4	571.5	60.7513	44.0419	97.8730
SMITH		486.3	451.8	520.7	59.6843	43.2684	96.1540
Diff (1-2)	Pooled	50.1429	3.3568	96.9290	60.2202	47.4244	82.5277
Diff (1-2)	Satterthwaite	50.1429	3.3560	96.9297			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	26	2.20	0.0367
Satterthwaite	Unequal	25.992	2.20	0.0367

Equality of Variances							
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	13	13	1.04	0.9500			

WILCOXON TEST

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable speed Classified by Variable i							
i N Scores Under H0 Under H0 Score							
CODY	14	254.0	203.0	21.757927	18.142857		
SMITH	14	152.0	203.0	21.757927	10.857143		
Average scores were used for ties.							

Wilcoxon Two-Sample Test					
Statistic (S)	254.0000				
Normal Approximation					
Z	2.3210				
One-Sided Pr > Z	0.0101				
Two-Sided Pr > Z	0.0203				
t Approximation					
One-Sided Pr > Z	0.0140				
Two-Sided Pr > Z	0.0281				
Exact Test					
One-Sided Pr >= S	0.0090				
Two-Sided Pr >= S - Mean	0.0179				

Kruskal-Wallis Test			
Chi-Square	5.4942		
DF	1		
Pr > Chi-Square	0.0191		


```
1
2
3 DATA QUES6 4;
    DO GROUP = 'A', 'B', 'C';
4
 5
        DO I = 1 TO 10;
 6
           X = ROUND(RANNOR(135)*10 + 300 + 5*(GROUP EQ 'A') - 7*(GROUP EQ 'C'));
           Y = ROUND(RANUNI(135)*100 + X);
 8
          OUTPUT;
 9
       END;
10
     END;
11
    DROP I;
12 RUN;
13 PROC TTEST DATA=QUES6 4;
14
     TITLE "Comparing between Group A and Group C";
15
     WHERE GROUP IN ('A' 'C');
16
     VAR X Y;
17
    CLASS GROUP;
18 RUN;
```

Comparing between Group A and Group C

The TTEST Procedure Variable: X

GROUP	N	Mean	Std Dev	Std Err	Minimum	Maximum
Α	10	305.1	11.6376	3.6801	281.0	321.0
С	10	288.4	7.5011	2.3721	276.0	299.0
Diff (1-2)		16.7000	9.7903	4.3784		

GROUP	Method	Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
Α		305.1	296.8	313.4	11.6376	8.0047	21.2457
С		288.4	283.0	293.8	7.5011	5.1595	13.6941
Diff (1-2)	Pooled	16.7000	7.5014	25.8986	9.7903	7.3977	14.4781
Diff (1-2)	Satterthwaite	16.7000	7.3877	26.0123			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	18	3.81	0.0013
Satterthwaite	Unequal	15.377	3.81	0.0016

	Equality of Variances						
Method	Num DF	Den DF	F Value	Pr > F			
Folded F	9	9	2.41	0.2068			

Variable: Y

GROUP	N	Mean	Std Dev	Std Err	Minimum	Maximum
Α	10	373.7	23.9214	7.5646	326.0	405.0
С	10	338.1	38.2723	12.1028	291.0	387.0
Diff (1-2)		35.6000	31.9139	14.2724		

GROUP	Method	Mean	95% C	L Mean	Std Dev	95% CL	Std Dev
Α		373.7	356.6	390.8	23.9214	16.4540	43.6711
С		338.1	310.7	365.5	38.2723	26.3250	69.8702
Diff (1-2)	Pooled	35.6000	5.6149	65.5851	31.9139	24.1146	47.1951
Diff (1-2)	Satterthwaite	35,6000	5.1969	66.0031			

Method	Variances	DF	t Value	Pr > t
Pooled	Equal	18	2.49	0.0226
Satterthwaite	Unequal	15.101	2.49	0.0247

	Equality of Variances					
1	Method	Num DF	Den DF	F Value	Pr > F	
F	Folded F	9	9	2.56	0.1777	


```
1 DATA MEDICATION;
2 LENGTH TREAT $ 7;
3 DO TREAT = 'A', 'B', 'Placebo';
4 DO I = 1 TO 10;
5
        INPUT CHOLESTEROL @;
        OUTPUT;
7 END;
8 END;
9 DROP I;
10 DATALINES;
11
12 220 190 180 185 210 170 178 200 177 189
13 160 168 178 200 172 155 159 167 185 199
14 240 220 246 244 198 238 277 255 190 188
15;
16
17 PROC ANOVA DATA=MEDICATION;
18
    CLASS TREAT;
    MODEL CHOLESTEROL = TREAT;
19
    MEANS TREAT / SNK;
20
21 RUN;
22 QUIT;
23
24
```

The ANOVA Procedure

Class Level Information					
Class	Levels	Values			
TREAT	3	A B Placebo			

Number of Observations Read 30 Number of Observations Used 30

The ANOVA Procedure Dependent Variable: CHOLESTEROL

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	16258.46667	8129.23333	17.58	<.0001
Error	27	12483.40000	462.34815		
Corrected Total	29	28741.86667			

R-Square	Coeff Var	Root MSE	CHOLESTEROL Mean
0.565672	10.86340	21.50228	197.9333

Source	DF	Anova SS	Mean Square	F Value	Pr > F
TREAT	2	18258 48887	8129.23333	17.58	< 0001

The ANOVA Procedure Student-Newman-Keuls Test for CHOLESTEROL

E. This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha	0.05
Error Degrees of Freedom	27
Error Mean Square	462.3481

Number of Means	2	3
Critical Range	19.730539	23.841676

Means with the same letter are not significantly different.						
SNK Grouping	Mean	N	TREAT			
A	229.600	10	Placebo			
В	189.900	10	A			
В						
В	174.300	10	В			

```
1 DATA PATIENTS;
2 DO GROUP = 'Deficiency', 'Normal';
    DO I = 1 TO 4;
        DO TREAT = 'Drug', 'Placebo';
4
5
          INPUT DEPRESSION @@;
6
          OUTPUT;
7
       END;
8
   END;
9 END;
10 DROP I;
11 DATALINES;
12 9 9
13 11 6
14 10 6
15 10 7
165 12
17 4 11
18 7 10
197 11
20;
21 PROC ANOVA DATA=PATIENTS;
22 CLASS GROUP TREAT;
23
   MODEL DEPRESSION = GROUP | TREAT;
24 MEANS GROUP | TREAT / SNK;
25 RUN;
26 PROC MEANS DATA=PATIENTS NOPRINT NWAY;
27
   CLASS GROUP TREAT;
    VAR DEPRESSION;
28
29
   OUTPUT OUT=MEANS MEAN=;
30 RUN;
31 SYMBOL1 V=SQUARE C=BLACK I=JOIN;
32 SYMBOL2 V=CIRCLE C=BLACK I=JOIN;
33 PROC GPLOT DATA=MEANS;
34 PLOT DEPRESSION * TREAT = GROUP;
35 RUN;
36 DATA ONEWAY;
37 SET PATIENTS;
38
    FACTOR = TRIM(GROUP) || '-' || TREAT;
39 RUN;
40 PROC ANOVA DATA=ONEWAY;
41 CLASS FACTOR;
42
    MODEL DEPRESSION = FACTOR;
43 MEANS FACTOR / SNK;
44 RUN;
45 QUIT;
```

The ANOVA Procedure

Class Level Information						
Class	Levels	Values				
GROUP	2	Deficiency Norma				
TREAT	2	Drug Plac				

Number of Observations Read 16 Number of Observations Used 16

The ANOVA Procedure Dependent Variable: DEPRESSION

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	73.18750000	24.39583333	17.48	0.0001
Error	12	16.75000000	1.39583333		
Corrected Total	15	89.93750000			

R-Square	Coeff Var	Root MSE	DEPRESSION Mean
0.813760	14 00242	1 181454	8 437500

Source	DF	Anova SS	Mean Square	F Value	Pr > F
GROUP	- 1	0.06250000	0.06250000	0.04	0.8360
TREAT	- 1	5.06250000	5.06250000	3.63	0.0811
GROUP*TREAT	- 1	68.06250000	68.06250000	48.76	<.0001

The ANOVA Procedure

The ANOVA Procedure Student-Newman-Keuls Test for DEPRESSION

Note: This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	1.395833

Number of Means	2
Critical Range	1.2870326

Means with the same letter are not significantly different.						
SNK Grouping Mean N GROUP						
A	8.5000	8	Deficiency			
A						
A	8.3750	8	Normal			

The ANOVA Procedure

The ANOVA Procedure Student-Newman-Keuls Test for DEPRESSION

Note: This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	1.395833

Number of Means	2
Critical Range	1.2870326

Means with the same letter are not significantly different.				
SNK Grouping	Mean	N	TREAT	
A	9.0000	8	Plac	
A				
A	7.8750	8	Drug	

The ANOVA Procedure

Level of	Level of		DEPRE	SSION
GROUP	TREAT	N	Mean	Std Dev
Deficiency	Drug	4	10.0000000	0.81649658
Deficiency	Plac	4	7.0000000	1.41421356
Normal	Drug	4	5.7500000	1.50000000
Normal	Plac	4	11.0000000	0.81649658

The ANOVA Procedure

	Class Level Information			
Class	Levels	/alues		
FACTOR	4	Deficiency-Drug Deficiency-Plac Normal-Drug Normal-Plac		

Number of Observations Read 16 Number of Observations Used 16

The ANOVA Procedure Dependent Variable: DEPRESSION

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	73.18750000	24.39583333	17.48	0.0001
Error	12	16.75000000	1.39583333		
Corrected Total	15	89.93750000			

R-Square	Coeff Var	Root MSE	DEPRESSION Mean
0.813760	14.00242	1.181454	8.437500

Source	DF	Anova SS	Mean Square	F Value	Pr > F
FACTOR	3	73.18750000	24.39583333	17.48	0.0001

The ANOVA Procedure Student-Newman-Keuls Test for DEPRESSION

Note: This test controls the Type I experimentwise error rate under the complete null hypothesis but not under partial null hypotheses.

Alpha	0.05
Error Degrees of Freedom	12
Error Mean Square	1.395833

Number of Means	2	3	4
Critical Range	1.820139	2.2287451	2.4801736

Means with the same letter are not significantly different SNK Grouping Mean N FACTOR						
SNK Grouping	FACTOR					
A	11.0000	4	Normal-Plac			
A						
A	10.0000	4	Deficiency-Drug			
В	7.0000	4	Deficiency-Plac			
В						
В	5.7500	4	Normal-Drug			