* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] As mentioned above, Mn–Zn which starts this invention as explained According to the ferrite, it is conventional Mn–Zn. Compared with a ferrite, it can be markedly alike, big electric resistance and the outstanding initial permeability can be obtained, and it is 1MHz. It becomes what is fully equal also to an activity in the RF field which exceeds, and becomes suitable as the core ingredient for RFs, and an electric-wave absorber. Moreover, Mn–Zn concerning this invention For a ferrite, Fe 2O3 is Mn–Zn of under 50 mol% by content of TiO2 and SnO2. Since baking in atmospheric air is attained also in the ferrite, it contributes to an improvement of manufacturability and reduction of a manufacturing cost greatly.

[Translation done.]

(19)日本国特許庁 (JP)

(12) 特 許 公 報(B2)

(11)特許番号

特許第3108803号 (P3108803)

(45)举行日	平成12年11	月13月	(2000	11	13)
(40) 761 1 12	7702164711	71100	LLUUU.		. 137

(24)登録日 平成12年9月14日(2000.9.14)

(51) Int.Cl. ⁷	識別記号	FΙ	
C01G 49/00		C01G 49/	00 B
C 0 4 B 35/38		CO4B 35/3	38 Z
H01F 1/34		H01F 1/3	34 B
27/25		31/	00 A
30/00		27/3	24 B
			請求項の数 5 (全 10 頁)
(21)出願番号	特願平11-29993	(73)特許権者	000114215
			ミネペア株式会社
(22)出顧日	平成11年2月8日(1999.2.8)		長野県北佐久郡御代田町大字御代田
			4106 - 73
(65)公開番号	特開2000-133510(P2000-133510A)	(72)発明者	小林 修
(43)公開日	平成12年5月12日(2000.5.12)		静岡県磐田郡浅羽町浅名1743番地1 ミ
審查請求日	平成11年2月8日(1999.2.8)		ネベア株式会社 開発技術センター内
(31)優先権主張番号	特願平10-249190	(72)発明者	本田 弘司
(32) 優先日	平成10年8月19日(1998.8.19)		静岡県磐田郡浅羽町浅名1743番地1 ミ
(33)優先権主張国	日本(JP)		ネベア株式会社 開発技術センター内
		(72)発明者	川崎 俊治
			静岡県磐田郡浅羽町浅名1743番地1 ミ
			ネペア株式会社 開発技術センター内
		(74)代理人	100068618
			弁理士 萼 経夫 (外3名)
		審査官	山田 靖
			最終頁に続く

(54) 【発明の名称】 Mn-Znフェライト

1

(57)【特許請求の範囲】

【請求項1】 基本成分組成が、Fe, O, 44.0~50.0 mol% (ただし、50.0mol%は除く)、 ZnO 4.0~26.5 mol%、TiQ およびSnQ のうちの1種または2種 0.1~8.0mol%、残部 MnOであり、かつ 150Q m以上の電気抵抗を有することを特徴とするMn - Zn フェライト。

【請求項2】 副成分として、 CaO 0.005~0.200 mass % およびSiQ 0.005~0.050 mass%のうちの1種または2種を含有することを特徴とする請求項1に記載のMn-Zn フェライト。

【請求項3】 副成分として、V,O, 0.010~0.200 mass %、 Bi,O, 0.005~0.100 mass%、 In,O, 0.005~0.10 0 mass%、 PbO 0.005~0.100 mass%、 MoO, 0.001~0.0 50 mass%、 WO, 0.001~0.050 mass%のうちの1種または2種以上を含有することを特徴とする請求項1また

2

は2に記載のMn - Zn フェライト。

【請求項4】 副成分として、ZrQ、0.010~0.200 mass %、Ta, Q, 0.010~0.200 mass %、HfQ, 0.010~0.200 mass %、HfQ, 0.010~0.200 mass %、Y, Q, 0.010~0.2 00 mass %のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載のMn - Zn フェライト。

【請求項5】 副成分として、 Cr.O, 0.020~0.300 mass% および Al.O, 0.020~0.300 mass% のうちの1種ま 10 たは2種を含有することを特徴とする請求項1または2 に記載のMn - Zn フェライト。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、軟磁性を有する酸 化物磁性材料に係り、より詳しくはスイッチング電源用 3

トランス、ロータリートランス、偏向ヨークなどに用いられる低損失材、各種インダクタンス素子、EMI対策に用いられるインピーダンス素子等の電子部品、あるいは電波吸収材に用いて好適なMnーZnフェライトに関する。

[0002]

【従来の技術】軟磁性を有する代表的な酸化物磁性材料 としては、Mn - Zn フェライトがある。このMn - Z n フェライトは、従来一般には50 mo1%よりも多いFe2 0 ,、平均的には52~55 mol%のFe.O, と、10~24 mol% 10 の ZnOと、残部 MnOとを含有する基本成分組成となって いる。そして通常は、Fe, O, 、ZnO、MnO の各原料粉末 を所定の割合で混合した後、仮焼、粉砕、成分調整、造 粒、成形の各工程を経て所定の形状とし、しかる後、窒 素を流すことにより酸素濃度を低く抑えた還元性雰囲気 中で、1200~1400℃に3~4時間保持する焼成処理を行 って製造される。ととで、還元性雰囲気中で焼成する理 由は、Fe, O, が50 mo1%より多い場合に、大気中で焼成 すると十分に緻密化が進まず、良好な軟磁性が得られな くなるためである。また、Fe³ の還元で生成するFe 21 は正の結晶磁気異方性を有し、Fe³¹ の負の結晶磁 気異方性を打ち消して軟磁性を高める効果があるが、大 気中で焼成したのでは、このような還元反応も期待でき ないためである。

[0003]

【発明が解決しようとする課題】ところで、Mn-Znフェライトを磁心材料として用いる場合、使用する周波数領域が高くなるに従って渦電流が流れ、これによる損失が大きくなる。したがって、磁心材料として使用できる周波数の上限を高めるには、その電気抵抗をできるだけ大きくする必要があるが、上記した一般的なMn-Znフェライトにおける電気抵抗は、上記した Fe^{i} と Fe^{i} との間(イオン間)での電子の授受もあって、1 Qmより小さい値となり、使用できる周波数も数百 ktZ程度が限界で、これを超える周波数領域では透磁率(初透磁率)が著しく低下して、軟磁性材料としての特性を全く失ってしまう、という問題があった。

【0004】なお、一部では、Mn - Zn フェライトの電気抵抗を高めるため、上記主成分に対する副成分としてCaO、SiQ、等を添加して結晶粒界を高抵抗化すると共 40に、1200℃程度の低温焼成を行って結晶粒径を5μm程度に小さくして結晶粒界の割合を増やす対策を採っているが、このような対策でも、1Ωmを超える電気抵抗を得ることは困難で、根本的な対策とはならない。

【0005】本発明は、上記従来の問題点に鑑みてなされたもので、その目的とするところは、大きな電気抵抗を有して、1 MHz を超える高周波領域での使用にも十分に耐えるMn-Zn フェライトを提供することにある。【0006】

【課題を解決するための手段】上記目的を達成するた

め、本発明の1つは、基本成分組成が、Fe, 0, 44.0~5 0.0 mol% (ただし、50.0 mol%は除く)、ZnO 4.0~2 6.5 mol%、TiQ およびSnQ のうちの1種または2種 0.1~8.0mol%、残部 MnOであり、かつ 150Ω m以上の電気抵抗を有することを特徴とする。

【0007】また、本発明の他の1つは、上記基本成分組成に対し副成分として、 CaO 0.005~0.200 mass%およびSiQ 0.005~0.050 mass%のうちの1種または2種を含有させたことを特徴とする。

10 【0008】上記2つの発明は、所望により、さらに以下に述べる副成分を含有させた組成とすることができる。その1つは、副成分として、V₂O₃ 0.010~0.200 mass%、Bi₂O₃ 0.005~0.100 mass%、In₂O₃ 0.005~0.100 mass%、In₂O₃ 0.005~0.100 mass%、MoO₃ 0.001~0.050 mass%、WO₃ 0.001~0.050 mass%のうちの1種または2種以上を含有させた組成である。他の1つは、副成分として、ZrO₃ 0.010~0.200 mass%、Ta₂O₃ 0.010~0.200 mass%、Mb₂O₃ 0.010~0.200 mass%、Y₂O₃ 0.010~0.200 mass%のうちの1種または2種以上を含有させた組成である。さらに他の1つは、副成分として、Cr₂O₃ 0.020~0.300 mass%および Al₂O₃ 0.020~0.300 mass%のうちの1種または2種を含有させた組成である。

[0009]

【発明の実施の形態】本発明は、 $1\,\text{MHz}$ を超える高周波領域での使用にも十分に耐えるMn-Zn フェライトを提供するため、既存のMn-Zn フェライトの基本成分である Fe,O_3 、ZnO、MnO の他に、新たにTiQ およびSnQのうちの1 種または2 種を含有させるようにしたもので、その基本成分組成は、 Fe,O_3 44.0 \sim 50.0 mol% (ただし、SnQ0 のうちの1 種または2 種 0.1 \sim 8.0 mol%、残部 MnO2 なっている。

【0010】Mn - Zn フェライトにおける鉄成分はF e' およびFe' として存在するが、TiおよびSnは、こ のFeinから電子を受け取ってFeinを生成させること が知られている。したがって、これらを含有させること により大気中で焼成してもFe¹ を生成することができ る。本発明においては、基本成分組成中に占めるTiO,お よび/またはSnO,の含有量を 0.1~8.0 mo1%とすると とで、Feinの生成量を制御してFeinとFeinとの存 在比を最適化し、正負の結晶磁気異方性を相殺すること により、優れた軟磁性を得ることを可能にしている。ま た、本発明によれば、価数の安定なTi¹¹ およびSn¹¹ が多く存在するため、Fe''とFe'との間での電子の やり取りはほとんど阻止され、従来よりも格段に大きい (10) 倍程度) 電気抵抗が得られようになる。ただし、 TiO, および/またはSnO, の含有量が 0.1 mo 1%未満では その効果が小さく、 8.0 mo1%より多いと初透磁率が低 50 下するので、上記範囲 0.1~8.0 mo1%とした。

【0011】上記したように、本発明は大気中で焼成しても十分な軟磁性が得られるように、Fe.O。を50 mol% 未満に抑えて緻密化を促進する必要がある。しかし、このFe.O。が少なすぎると初透磁率の低下を招くので、少なくとも44.0 mol%は含有させるようにする。ZnO は、キュリー温度や飽和磁化に影響を与えるが、あまり多いとキュリー温度が低くなって実用上問題となり、逆に少なすぎると飽和磁化が減ってしまうため、上記範囲 4.0~26.5 mol%とするのが望ましい。

【0012】CaO およびSiQ,は、前記したように結晶粒 10 界を高抵抗化することが知られているが、Mn - Zn フェライトの焼結を促進する働きがあることも知られている。したがって、上記した基本成分組成にCaO、SiQ,を副成分として加えることは高密度な磁性材料を得る上で効果的となるが、所望の効果を得るにはCaO およびSiQ,を0.005 mass%以上含有させる必要がある。しかし、あまり多すぎると異常粒成長が起こってしまうため、CaOは0.200 mass%に、SiQ,は0.050 mass%にそれぞれ上限を抑えるのが望ましい。

【0013】本発明は、副成分としてV₂O₃、 Bi₂O₃、 I 20 n₂O₃、 PbO、MoO₃および WO₃の1種または2種以上を含有させてもよいものである。これらの副成分はいずれも低融点酸化物で、焼結を促進する作用がある。ただし、それらの含有量が少ないとその効果が小さく、逆に多すぎると異常粒成長が起こってしまうため、V₂O₃は 0.010~0.200 mass%、 Bi₂O₃、In₂O₃、 PbO は0.005~0.10 0 mass%、 WO₃は 0.001~0.050 mass%とするのが望ましい。

【0014】本発明は、副成分としてZrQ、Ta,Q、HfQ、Nb,Q、およびY,Qの1種または2種以上を含有させ 30でもよいものである。これら副成分はいずれも高融点酸化物で、粒成長を抑制する作用がある。結晶粒が小さくなると電気抵抗が増大するので、これら副成分を適量含有させることで、高周波領域における初透磁率を改善することができる。ただし、それらの含有量が少ないとその効果が小さく、逆に多すぎると初透磁率が低下してしまうため、これらの含有量はいずれも 0.010~0.200 mass%とするのが望ましい。

【0015】本発明は、副成分としてCr.O. および Al.Q.のうちの1種または2種を含有させてもよいものである。 これら副成分は初透磁率の温度特性を改善する効果があるが、あまり少ないとその効果が小さく、逆に多すぎると初透磁率が低下してしまうため、これらの含有量は 0.020~0.300 mass%とするのが望ましい。

【0016】Mn - Zn フェライトの製造に際しては、 予め主成分としてのFe,O, 、ZnO、TiO,および/または SnO,およびMnO の各原料粉末を所定の比率となるように 秤量し、これらを混合して混合粉末を得、次に、この混合粉末を仮焼、微粉砕する。前記仮焼温度は、目標組成によって多少異なるが、850~950 ℃の温度範囲内で適 50

宜の温度を選択することができる。また、混合粉末の微粉砕には汎用のボールミルを用いることができる。そして、この微細な混合粉末に、所望により上記種々の副成分の粉末を所定の比率で添加混合し、目標組成の混合粉末を得る。その後は、通常のフェライト製造プロセスに従って造粒、成形を行い、さらに焼成を行って焼成体を得る。前記造粒は、ボリビニルアルコール、ボリアクリルアミド、メチルセルロース、ボリエチレンオキシド、グリセリン等のバインダーを添加して行い、また成形は、例えば、80MPa以上の圧力を加えて行い、さらに焼成は、空気中で、例えば1000~1300℃の温度に適宜の時間保持する方法で行う。

【0017】 このようにして得られたMn-Znフェライトは、TiQ、および/またはSnQ、を主成分として含有するので、電気抵抗が従来のMn-Znフェライトに比べて著しく増大(10' 倍程度)する。また、一般に軟磁性フェライトにおける初透磁率 μ の限界は、そのフェライトを使用する周波数 f (M+Z) に反比例し、 $\mu=K/f$ ($K=1500\sim2000$)なる式で与えられる値で見積るようにしているが、本Mn-Znフェライトによれば、5 M+Z においても見積りどおりの初透磁率 $300\sim400$ を得るととができ、1 M+Z を超える高周波向けの磁心材料、電波吸収材として好適となる。

[0018]

【実施例】実施例1

Fe, O, が42.0~52.0 mol%、TiQ,またはSnQ, が 2.0 mol%、残部が MnOとZnOとでモル比26: 25となるように各原料粉末をボールミルにて混合した後、空気中、 900℃で2時間仮焼し、さらにボールミルにて20時間粉砕して、混合粉末を得た。次に、この混合粉末を先の組成となるように成分調整し、さらにボールミルにて1時間混合した。次に、この混合粉末にボリビニルアルコールを加えて造粒し、80MPaの圧力で外径18mm、内径10mm、高さ4mmのトロイダル状コアを成形し、その後、各成形体を焼成炉に入れ、空気中で、1300℃で3時間焼成し、表1に示すような試料1-1~1-7を得た。

【0019】また、比較のため、Fe, Q, が52.5 mol%、MnOが24.2 mol%、ZnO が23.3 mol%となるように各原料粉末をボールミルにて混合した後、空気中、900℃で2時間仮焼し、さらにボールミルにて20時間粉砕して、混合粉末を得た。次に、この混合粉末を先の組成となるように成分調整すると共に、副成分としてCaO 0.050mas s%と SiQ, 0.010 mass%とを加え、さらにボールミルにて1時間混合した。次に、この混合粉末にボリビニルアルコールを加えて造粒し、80MPaの圧力で外径18mm,内径10mm,高さ4mmのトロイダル状コアを成形し、その後、成形体を焼成炉に入れ、窒素雰囲気中で、1200℃で3時間焼成し、従来と同じくFe, Q, が50mol%よりも多い試料1−8を得た。

【0020】そして、上記のようにして得た各試料1-

8

7

1~1-8について、蛍光X線分析によって最終的な成分組成を確認すると共に、焼成体密度、500kHz並びに5 MHzでの初透磁率、電気抵抗および1MHz, 50mTにおける磁心損失を測定した。それらの結果を表1に一括して* *示す。 【0021】 【表1】

試料	57.0	基本原	成分組成	(mol 9	6)	焼成体密 度×10°	電気抵抗	初透	næ.	磁心損失
番号	区分	Fe ₂ 0 ₂	Mn0	Zn0	TiO ₂	(kg/m³)	(sn Ω).,	500kHz	5 MHz	(kW/m²)
1-1	比較	52.0	23.5	22.5	2.0	4. 48	1.3	260	1	>3000
1-2	本発明	50.0	24.5	23.5	2.0	4.81	1.8 ×10°	1150	300	970
1-3	本発明	48.0	25.5	24.5	2.0	4. 89	2.3 ×10 ^a	1590	390	820
1-4	本発明	46.0	26.5	25.5	2.0	4.92	2.4 ×10°	1380	370	870
1-5	本発明	44.0	27.5	26.5	2.0	4.93	2.6 ×10*	1050	320	980
1-6	比較	42.0	29.0	27.5	2.0	4.93	2.9 ×10°	520	180	2190
1-7	本発明	48.0	25.5	24.5	SnO ₂ 2.0	4.90	2.2 ×10°	1580	400	850
1-8	比較	52.5	24.2	23.3	0	4.88	1.5 ×10 ⁻¹	1590	1	1390

【0022】表1に示す結果より、Fe,Q, が50.0 mo1% よりも多い試料1-1 (比較試料)に対し、Fe,Q, が50.0 mo1%以下の試料1-2~1-7は、いずれも十分に密度が高く、また電気抵抗、500kHzおよび5 MHz での初透磁率共に著しく高くなっており、しかも磁心損失は 30小さくなっている。試料1-2~1-7の中では、Fe,Q, が50.0 mo1%の試料1-2よりも48.0 mo1%の試料1-3 および1-7の方が、初透磁率が比較的高くなっている。また、比較試料としての試料1-6は、Fe,Q, が44.0 mo1%以下と少なくなっているため、500kHzおよび5 MHz での初透磁率が本発明試料に比べてかなり低くなっている。また、従来と同じくFe,Q, が50 mo1%よりも多い試料1-8は、5 MHz での初透磁率が、真空での透磁率のレベル1まで下がっており、軟磁性材料としての特性を完全に失っている。

【0023】実施例2

Fe, O, が48.0 mol%、TiO, またはSnO, が0~10.0 mol%、 残部が MnOとZnOとでモル比26: 25となるように各

原料粉末をボールミルにて混合した後、空気中、 900℃ で2時間仮焼し、さらにボールミルにて20時間粉砕し て、混合粉末を得た。次に、この混合粉末を先の組成と なるように成分調整し、さらにボールミルにて1時間混 合した。次に、この混合粉末にポリビニルアルコールを 加えて造粒し、80MPa の圧力で外径18mm, 内径10mm, 髙 さ4mmのトロイダル状コアを成形し、その後、各成形体 を焼成炉に入れ、空気中で、1300℃で3時間焼成し、表 2に示すような試料2-1~2-7を得た。そして、と のようにして得た各試料2-1~2-7について、最終 的な成分組成を蛍光X線分析によって確認すると共に、 5 MHz での初透磁率および 1 MHz , 50mTにおける磁心損 失を測定した。それらの結果を表2に示す。また、本発 明試料1-3、2-3、2-4、2-5および2-7に 40 ついては、1 MHz, 50mTにおける磁心損失の温度特性も 測定した。それらの結果を図1に示す。

[0024]

【表2】

10

技科	区分	基本	L成分組	初透磁率	磁心損失		
番号	ارها	Fe ₂ O ₁	Fe ₂ O ₁ MnO ZnO TiO ₂		TiO ₂	5 MHz	(k\/m°)
2-1	比較	48.0	26.5	25.5	0	40	>3000
2-2	本発明	48.0	26.5	25.4	0.1	300	940
1-3	本発明	48.0	25.5	24.5	2.0	390	820
2-3	本発明	48.0	24.5	23.5	4.0	390	810
2-4	本発明	48.0	23.6	22.5	6.0	400	800
2-5	本発明	48.0	22.4	21.6	8.0	330	830
2-6	比较	48.0	21.4	20.6	10.0	220	1160
2-7	本発明	48.0	22.4	21.6	SnO _# 8.0	340	830

【0025】表2に示す結果より、TiO、を全く含まない 試料2-1 (比較試料)に対し、TiQを適量含んだ本発 明試料1-3、2-2~2-5並びにSnO,を適量含んだ 本発明試料2-7は、何れも著しく初透磁率が高く、か つ磁心損失が著しく小さくなっている。また、TiQを比 較的多量(10.0 mol%)に含有する試料2-6(比較試 料)は、TiQを全く含まない比較試料2-1に比べて初 透磁率が高く、かつ磁心損失が小さくなっているもの の、本発明試料1-3、2-1~2-5並びに2-7に 比べれば、初透磁率が低く、かつ磁心損失が大きくな。 30 にポリビニルアルコールを加えて造粒し、80MPa の圧力 ている。

9

【0026】また、図1に示す結果より、例えば、TiQ =2.0mo1%の試料1-3は温度変化が少なく、インダク タンス素子用フェライト、インピーダンス素子用フェラ イトとして有効に活用できる。また、TiO₂ = 4.0~8.0m o1%を含む本発明試料1-3、2-3~2-5並びに2 -7は、磁心損失が最低値を示す温度が40~80℃の範囲 でばらついているが、使用する温度に応じてこれらを使 い分けることで、特に低損失フェライトとして有効に活 用できる。

【0027】実施例3

Fe₂O₃ が48.0 mol%、 MnOが25.5 mol%、 ZnO が24.5 m o1%、TiQが 2.0 mo1%となるように(実施例1の試料 1-3と同じ) 各原料粉末をボールミルにて混合した 後、空気中、 900℃で2時間仮焼し、さらにボールミル にて20時間粉砕して、混合粉末を得た。次に、この混合 粉末を先の組成となるように成分調整し、副成分として CaO またはSiO を表4に示すように種々の量加え、さら にボールミルにて1時間混合した。次に、この混合粉末 で外径18mm, 内径10mm, 高さ4mmのトロイダル状コアを 成形し、その後、各成形体を焼成炉に入れ、空気中で、 1300℃で3時間焼成し、表3に示すような試料3-1~ 3-6を得た。そして、このようにして得た各試料3-1~3-6について、最終的な成分組成を蛍光X線分析 によって確認すると共に、焼成体密度と5MHz での初透 磁率を測定した。それらの結果を表3に示す。

[0028]

【表3】

試料	区分	基本	本成分組	克 (moi	1 %)	副成分	焼結体密			
番号	Δ 77	Fe ₂ 0 ₂	MnO	Zn0	TiO _s	CaO	SiO ₂	度×10° (kg/m²)	5 MHz	
1-3	本発明	48.0	25. 5	24.5	2.0	0	0	4.89	390	
3 – 1	本発明	"	"	"	"	0.005	0	4.91	400	
3-2	本発明	"	"	11	"	0.200	0	4.93	410	
3-3	比較	II .	n	n	11	0.300	0	4.94	280	
3-4	本発明	"	<i>11</i>	"	"	0	0.005	4.91	400	
3-5	本発明	II .	"	n	n	0	0.050	4.94	420	
3-6	比較	"	jj	"	"	0	0.100	4.96	270	

【0029】表3に示す結果より、CaO またはSiO。を適 20 てV,O。、 Bi,O。、 In,O。、 PbO、MoO。、WO。を所定量加 **量含有させた試料3-1、3-2、3-4および3-5** (本発明試料)では、これらを全く含まない試料1-3 (実施例1の本発明試料) に対し、いずれも密度および 初透磁率が改善されている。しかし、CaO またはSiO,を 多めに含有させた試料3-3および3-6(比較試料) では、前記した本発明試料に比べて、密度は向上するが 初透磁率は低くなっている。

【0030】実施例4

実施例3と同じ基本成分組成の混合粉末に、副成分とし

え、その後、実施例3と同じ条件で混合、造粒、成形お よび焼成を行い、表4に示すような試料4-1~4-1 4を得た。そして、このようにして得た各試料4-1~ 4-14について、最終的な成分組成を蛍光X線分析に よって確認すると共に、焼成体密度と5MHz での初透磁 率を測定した。それらの結果を表4に示す。

[0031]

【表4】

試料	区分	基2	本成分組成	克 (mol	. %)	副成分	(mass%)	焼結体密	初透磁率
番号	LAT	Fe ₂ 0 ₃	Mn0	Zn 0	TiO:	種類	含有量	度×10 ² (kg/m ²)	5 MHz
1 - 3	本発明	48.0	25.5	24.5	2.0	なし		4.89	390
4-1	本発明	"	n	"	n	V208	0.010	4.90	400
4 - 2	本発明	"	"	"	"	VaOa	0.200	4.91	410
4-3	比較	"	11	"	n	V±O.	0.300	4.95	290
4-4	本発明	"	n	"	"	Bi ₂ O ₃	0.005	4.91	410
4-5	本発明	"	"	"	"	Bi ₂ O ₂	0.100	4.94	430
4-6	比較	"	"	"	"	Bia0a	0.200	4.97	270
4-7	本発明	"	n.	"	n	IngOs -	0.100	4.94	420
4-8	本発明	"	"	"	11	Pb0	O. 100	4.93	420
4-9	本発明	"	. 11	"	n'	MoO _a	0.001	4.90	400
4-10	本発明	"	"	"	"	MoO.	0.050	4.94	410
4-11	比較	<i>II</i> ·	"	"	"	MoO.	0.100	4.96	280
4-12	本発明	"	"	"	"	WO.	0.050	4.93	400
4-13	本発明	"	"	n	"	Va0s Ca0	0.200 0.200	4.93	410
4-14	本発明	"	II .	"	"	V.O. SiO.	0.200 0.050	4.93	420

【0032】表4に示す結果より、VaOa、 BiaOa、 Ina O₃、 PbO、MoO₃、WO₃ を適量含有させた試料4-1、4 -2, 4-4, 4-5, $4-7\sim4-10$, $4-12\sim$ 4-14 (本発明試料)では、これらを全く含まない試 料1-3 (実施例1の本発明試料) に対し、いずれも密 度および初透磁率が改善されている。しかし、これら副 成分を多めに含有させた試料4-3、4-6、4-11 (比較試料)では、前記した本発明試料に比べて、密度 30 気抵抗を測定した。それらの結果を表5に示す。 は向上するが初透磁率は低くなっている。

【0033】実施例5

実施例3と同じ基本成分組成の混合粉末に、副成分とし てZrO, 、 Ta, O, 、HfO, 、Nb, O, 、Y, O, を所定量加え、そ の後、実施例3と同じ条件で混合、造粒、成形および焼 成を行い、表5に示すような試料5-1~5-9を得 た。そして、このようにして得た各試料5-1~5-9 について、最終的な成分組成を蛍光X線分析によって確 認すると共に、結晶粒径、5MHz での初透磁率および電

[0034]

【表5】

ı	

試料	区分	基本	卜成分組 原	克(mol	%)	副成分	(mass%)	結晶	初透磁率	電気抵抗
番号	الكا	Fe ₂ 0 ₂	MnO	Zn0	TiO ₂	種類	含有量	粒径(μπ)	5 MHz	(Ωm)
1-3	本発明	48.0	25.5	24.6	2.0	なし		14	390	2.3 ×10 ⁸
5-1	本発明	"	"	ji	"	Zr02	0.010	8	400	2.5 ×10 ³
5-2	本発明	n	"	ıı.	"	Zr0 ₂	0.200	5	420	2.8 ×10 ⁸
5-3	比較	jj	jj	n	jj .	Zr02	0.300	4	290	2.9 ×10 ³
5-4	本発明	"	וו	II	11	HfO ₂	0.200	6	410	2.7 ×10°
5-5	本発明	n	"	n	"	Ta ₂ O ₃	0. 200	6	410	2.8 ×10 ⁸
5-6	本発明	jj	"	IJ	"	Nb205	0.200	7	400	2.6 ×10 ³
5-7	本発明	II .	II))	"	<u>Y_RO₃</u>	0.200	5	430	3.0 ×10°
5-8	本発明	<i>))</i>	j)	JJ.	n	Zr0a Ca0	0. 200 0. 200	5	430	2.9 ×10 ²
5-9	本発明	II	n	יוו	"	Zr02 Si02	0.200 0.050	5	430	3.0 ×10 ³

【0035】表5化示す結果より、2rQ、 TaQ、HfQ、NbQ、YQ。を適量含有させた試料5-1、5-2、 $5-4\sim5-9$ (本発明試料)は、これらを全く含まない試料1-3(実施例1の本発明試料)の結晶粒径 14μ mに対し、その結晶粒径が $5\sim8\mu$ mと小さくなっており、これに伴って初透磁率も改善されている。しかし、試料5-3のように副成分が多めに含有されているもの(比較試料)では、結晶粒径は小さくなるものの、初透磁率の改善効果は認められない。

【0036】実施例6

実施例3と同じ基本成分組成の混合粉末に、副成分としてCr₂O₃、Al₂O₃を所定量加え、その後、実施例3と同じ条件で混合、造粒、成形および焼成を行い、表6に示

すような試料 $6-1\sim6-6$ を得た。そして、とのようにして得た各試料 $6-1\sim6-6$ について、最終的な成分組成を蛍光X線分析によって確認すると共に、結晶粒径、 $5\,MHz$ での初透磁率および相対温度係数を測定した。なお、相対温度係数は初透磁率の温度特性を表す指標で、次式で与えられる。

相対温度係数= $(\mu_1 - \mu_1)/\mu_1^2/(T_1 - T_1)$ ただし μ_1 :温度 T_1 (通常は 20° C)における初透磁窓

μ₂:温度T₂における初透磁率それらの結果を表6に示す。【0037】

【表6】

試料		基本成分組成 (mol %)		(mol %) 副成分(masss%)		(mass%)	初透磁率	相対温度係数/℃		
番号	区分	Fe ₂ O ₄	Mn0	Zn0	TiO:	種類	含有量	5 MHz	-20~20℃	20~60℃
1-3	本発明	48.0	25.5	24.5	2.0	なし	·	390	15×10-*	11×10-4
6-1	本発明	"	"	"	11	Cra0a	0.020	390	9×10-5	8×10-
6-2	本発明	n	"	"	"	Cr ₂ O ₂	0.300	380	7×10 ⁻⁶	5×10-6
6-3	比較	"	n	"	"	Cr _z O _s	0.600	260	6×10-•	5×10-6
6 – 4	本発明	"	"	"	"	Al ₂ 0,	0.300	390	9×10-*	8×10-6
6-5	本発明	"	<i>"</i>	"	"	Cr ₂ 0 ₈ CaO	0.300 0.200	390	7×10-•	8×10-6
6-6	本発明	"	"	"	"	Cr ₂ O ₃ SiO ₂	0.300 0.050	400	8×10 ⁻⁶	8×10 ⁻⁶

【0038】表6に示す結果より、Cr, O, 、Al, O, を適 量含有させた試料6-1、6-2、6-4~6-6(本 例1の本発明試料)の結晶粒径に対し、相対温度係数が 小さくなっており、温度特性が改善されている。しか し、試料6-3のように副成分が多めに含有されている もの(比較試料)では、相対温度係数が小さくなってい るものの、初透磁率が低下している。

[0039]

【発明の効果】以上、説明したように、本発明に係るM n-Znフェライトによれば、従来のMn-Znフェラ米

* イトに比べて格段に大きな電気抵抗と優れた初透磁率と を得ることができ、1 MHz を超える高周波領域での使用 発明試料)は、これらを全く含まない試料1-3(実施 20 にも十分に耐えるものとなって、髙周波向けの磁心材 料、電波吸収材として好適となる。また、本発明に係る Mn - Zn フェライトは、TiQ、SnQの含有によりFe, O ,が50 mo1%未満のMn - Zn フェライトにおいても大 気中での焼成が可能になっているので、製造性の改善、 製造コストの低減に大きく寄与するものとなる。

【図面の簡単な説明】

【図1】磁心損失に及ぼす温度とTiQ、SnQ。含有量の影 響を示すグラフである。

【図1】

フロントページの続き・

(56)参考文献 特開 昭60-262404 (JP, A)

特開 昭60-132301 (JP, A)

特開 昭60-132302 (JP, A)

特開 平7-86022 (JP, A)

特開 平9-180925 (JP, A)

特開 平11-199235 (JP, A)

V. P. Microshkin et al., "Electrical C

onductivity of Man

ganese-Zinc Ferros

pinels", Phys. stat. sol., Vol. 66, 1981, pp.

503 - 507

(58)調査した分野(Int.Cl.', DB名)

C01G 49/00

C04B 35/38

H01F 1/34

REGISTRY (STN)