RIS BING R 0

Code No.: CS-PCC-311

CAIR INSTITUTE OF TECHNOLOGY: HYDERABAD UGCALTONOMOUS

III- R Tech. -1 - Somester End Examinations (supply)-June- 2022
DESIGN & ANALYSIS OF ALGORITHMS
(COMPUTER SCIENCE AND ENGINEERING)

[Time: 3 Bours]

[Max. Marks: 70]

Answer Any Five Questions. Each Question Carries 14 Marks

[5 x 14-70M]

S No	Ouestion	BTL	BTL CO	PO
-	i. Justify the need for asymptotic no ii. Construct the recurrence relation	>	-	2,3,12,13
17	Solve the two recurrence relations given below a. T(n)=4T(n/2)+n b. T(n)=2T(n/2) + nlogs	=	-	23,12,13
to.	i. Develop the best and worst instance (Input) for quick sort and trace the quick sort and justify the time complexity. ii. What is articulation point and Illustrate a method to generate the articulation point for a given graph.	= =	7	2,3,12,13
4	L. A list of n strings, each of the length in is sorted in lexicographic order using the merge-sort algorithm. Develop the algorithm and deduce the worst case running time of the algorithm. It. Apply the Disjoint sets data structure to any real world problem.	=	14	2,3,12,13
	i. Given the graph and cost adjacency matrix of a Travelling salesperson problem. Compute gif4, [2,3]) using dynamic programming. The cost adjacency matrix is 0 10 15 20 5 0 9 10 6 13 0 12 8 8 9 0 ii. Construct the minimum spanning tree (MST) for the given graph using Prim's Algorithm.	3	n	2,3,12,13

	ri .	2.3	2,3
	e	4	vo .
	E	B	= ≥
25 24 7 18 3	i. Given the Binary search tree as mentioned below. What is the cost of the optimal binary search tree if p(i)=1/7 and q(j)=1/7 for all and j? ii. Obtain the optimal job sequence for the jobs with profits (100,10,15,27) a deadlines (2,1,2,1)	i. Find the all possible solutions for 4-queens problem using Backtracking. Explain the solution with the help of NQueens() algorithm. ii. You are given a knapsack that can carry a maximum weight of 50. There are items with profit values (60, 100, 120) and weight values {10, 20, 30}. Obtain 1 maximum profit value of the items you can carry using the knapsack using Brach a Bound approach	i. Write short notes Cooks Theorem ii. Prove Knapsack Problem is NP-Complete
	•	-	00