Eigen-16

Title

Free vibration analysis of a cable net structure

Description

A cable net structure is subjected to the initial stress, σ = 150ksi. Determine the frequency of a free vibration.

Structural geometry and analysis model

MODEL

Analysis Type

3-D eigenvalue analysis

Unit System

in, lbf

Dimension

Length 120 in Width 120 in

Element

Truss element

Material

Modulus of elasticity $E = 2.0 \times 10^4 \text{ ksi}$

Poisson's ratio v = 0.0

Weight density $\gamma = 0.29 \text{ lbf/in}^3$

Sectional Property

Area: 0.5 in²

Boundary Condition

Node 1~3, 6, 7, 10~12: Constrain all DOFs

Load Case

Initial stress 150 ksi

Results

EIGENVALUE ANALYSIS										
	Mode	Frequ	ency	Period	Toloron					
	No	(rad/sec)	(cycle/sec)	(sec)	Tolerance					
	1	353,25	56,22	0,02	1,4410e-009					

The first frequency (Number of nodes for each cable: 3)

EIGENVALUE ANALYSIS										
	Mode	Frequ	ency	Period	Tolerance					
	No	(rad/sec)	(cycle/sec)	(sec)	Tolerance					
	1	365,71	58,20	0,02	6,0495e-007					

The first frequency (Number of nodes for each cable: 6)

EIGEN VALUE ANALYSIS										
	Mode	Frequ	iency	Period	Tolerance					
	No [(rad/sec)	(cycle/sec)	(sec)	Tolerance					
	1	368,87	58,71	0,02	3,5649e-007					

The first frequency (Number of nodes for each cable: 12)

Comparison of Results

								Unit: Hz	
	Galerkin membrane	Membrane	FEM analysis (Ref.3)			MIDAS/Civil			
Result	analogy (Ref.1)	analogy (Ref.2)	3 nodes	` ′	12 nodes	3 nodes	12 nodes		
Frequency	59.10	58.80	61.59	59.55	59.05	56.22	58.20	58.71	

References

Soler, A.I., and H. Afshari, "On Analysis of Cable network vibrations using Galerkin's Method", Journal of Applied Mechanics, Vol.37, 1970

Chandhari, B.S, "Some aspect of dynamics of cable networks", Ph.D. Dissertation, University of Pennsylvania

Leonard, J. W., "Incremental response of 3D cable networks", Journal of Engineering Mechanics division, ASCE, Vol. 99

Timoshenko, S. J., and D.H. Young, "Vibration Problems in Engineering", D. Van Nostrand, New York