Technische Universität Berlin

Fakultät II – Institut für Mathematik Bärwolff, Grosse-Erdmann, Schmies, Trunk

 $\begin{array}{c} {\rm SS}\ 2007 \\ 23.07.2007 \end{array}$

Juli – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:							
Die Lösungen sind in Rei r geschriebene Klausuren kör					zugebe:	n. Mit	Bleistiff
Dieser Teil der Klausur umfa Rechenaufwand mit den Ke wenn nichts anderes gesagt	enntnisse	en aus	der Vor	rlesung	lösbar s	sein. Ge	_
Die Bearbeitungszeit beträ	gt 60 M	Iinute	n.				
Die Gesamtklausur ist mit beiden Teile der Klausur m					,	•	
Korrektur							
	1	2	3	4	5	6	Σ

1. Aufgabe 8 Punkte

Geben Sie an, welche der Eigenschaften offen, abgeschlossen, beschränkt, kompakt die folgenden Mengen jeweils haben.

$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z\}$$

$$B = \{(x,y,z) \in \mathbb{R}^3 \, | \, 1 < x^2 + y^2 + z^2 \leq 4 \}$$

$$C = \{(x, y, z) \in \mathbb{R}^3 \mid \sin x = 0\}$$

$$D = \{(x, y) \in \mathbb{R}^2 \mid |x| + |y| < 1\}$$

2. Aufgabe 8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{x^3 \cos y}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

- a) Ist f im Punkt (0,0) stetig?
- b) Existieren die partielle Ableitungen $\frac{\partial f}{\partial x}(0,0)$ und $\frac{\partial f}{\partial y}(0,0)$? Ermitteln Sie diese gegebenenfalls.

3. Aufgabe 6 Punkte

Gegeben sei die Kurve $\vec{x} \colon [0, \frac{\pi}{2}] \to \mathbb{R}^3 \ \text{mit} \ \vec{x}(t) = (4\cos t, \ 9\sin t, \ 0)^T.$

Ermitteln Sie auf geeignete Weise den Wert des Kurvenintegrals $\int_{\vec{s}} \vec{v} \cdot \vec{ds}$

für das Vektorfeld $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x, y, z) = (-2x \cos y, \ x^2 \sin y, \ 2)^T$.

4. Aufgabe 6 Punkte Ermitteln Sie den Wert des Flußintegrals $\iint\limits_{\partial P} \vec{v} \cdot d\vec{O}$

für das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit $\vec{v}(x,y,z) = (-\frac{1}{3}x^3,\ 2y - \frac{z}{1+x^2},\ zx^2)^T$. Dabei sei ∂B die gesamte Oberfläche von B (mit nach außen weisendem Normalenvektor) mit

$$B = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 2 - 2y\} \ .$$

5. Aufgabe 6 Punkte

Parametrisieren Sie die Mantelfläche des Kegels, der im \mathbb{R}^3 entsteht, wenn die Gerade y=2x für $x\in[0,1]$ um die y-Achse rotiert.

6. Aufgabe 6 Punkte

Sei $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorfeld mit stetigen zweiten partiellen Ableitungen. Geben Sie an, welche der folgenden Ausdrücke eine skalare Funktion, welche ein Vektorfeld und welche nicht definiert sind.

- a) $rot(rot \vec{v})$
- b) $\operatorname{div}(\operatorname{grad} \vec{v})$
- c) $rot(\operatorname{grad} \vec{v})$

- d) grad(div \vec{v})
- e) $\operatorname{div}(\operatorname{rot} \vec{v})$
- f) grad(rot \vec{v}).