Markov Chains

Example: Rain -> Suny Suny .5 Rain today tomowow

Sully = State 1 Rain = State 2

Markov Property

: Transition probability bu states are affected only by Current States

Transition Matrix

Rain -> Sunny

Suny > Rain

 $P = \begin{bmatrix} .5 \\ .6 .4 \end{bmatrix}$

today is sruny

Tonomow's Prob. Distribution

 $\begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} .5 & .5 \\ .6 & .4 \end{bmatrix} = \begin{bmatrix} .5 & .5 \end{bmatrix}$

How can we calculate Prob. Dist. in 3 days?

What if that's too unrealistic...

Example: Weather Lepends on history of past 2 days.

Past two days prob.

Sunny, Sunny -8 Sunny

Sunny, Rain -5 Sunny

Rain, Sunny -6 Sunny

Rain, Rain -3 Sunny

Can we use Markou Chain to Boot Model this themomenon?

It Past two days here sonny.

55 = state 1

Example 4.7/: Auto Insurance

Bonus-Malus system

Driver = State

Premium oc state.

Next state if

current state	Premium	O claims	I daim	2 claim	3 claim
	200	1	2	3	4
2	300	/	3	4	4
3	400	2	4	(1	L L
4	600	3	4	4	4

What is IP = ? if (# of claim) ~ POI(A)

h= to average # of claims per year.

Poisson Distripotion

$$P(x) = P(X = x) = \frac{e^{-\lambda}x}{x!}$$

$$\lambda = [x]^{\vee}$$

of claim
$$\sim Pol(\lambda)$$
.

$$P(\# of claim = 1) = \frac{e^{\lambda}\lambda}{0!} = e^{\lambda} = 0$$

$$P(\# of claim = 1) = \frac{e^{\lambda}\lambda}{1!} = 0$$

$$P(\# of claim = 2) = \frac{e^{\lambda}\lambda^{2}}{2!} = 0$$

$$P(\# of claim = 3) = 1 - (a_{0} + a_{1} + a_{2})$$

Claim

	, Ø	(2	23
1	/	2	3	4
2	/	3	4	4
3	2	4	4	4
4	3	4	4	4
	ļ			

$$T = \begin{bmatrix} a_{0} & a_{1} & a_{2} & 1 - (a_{0} + a_{1} + a_{2}) \\ a_{0} & 0 & a_{1} & 1 - (a_{0} + a_{1}) \\ 0 & a_{0} & 0 & 1 - a_{0} \\ 0 & 0 & a_{0} & 1 - a_{0} \end{bmatrix}$$

to each row adds up to I

+ Markou Property: IP same each year.