

Pilani Campus

Artificial & Computational Intelligence

AIMLCZG557

Contributors & Designers of document content : Cluster Course Faculty Team

M4: Knowledge Representation Using Logics

Presented by Faculty Name BITS Email ID

Artificial and Computational Intelligence

Disclaimer and Acknowledgement

- Few content for these slides may have been obtained from prescribed books and various other source on the Internet
- I hereby acknowledge all the contributors for their material and inputs and gratefully acknowledge people others who made their course materials freely available online.
- I have provided source information wherever necessary
- This is not a full fledged reading materials. Students are requested to refer to the textbook w.r.t detailed content of the presentation deck that is expected to be shared over e-learning portal - taxilla.
- I have added and modified the content to suit the requirements of the class dynamics & live session's lecture delivery flow for presentation
- Slide Source / Preparation / Review:
- From BITS Pilani WILP: Prof.Raja vadhana, Prof. Indumathi, Prof.Sangeetha
- From BITS Oncampus & External: Mr.Santosh GSK

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time
M7	Ethics in Al

Knowledge Representation Using Logics

Learning Objective

At the end of this class, students Should be able to:

- 1. Represent a given knowledge base into logic formulation
- 2. Infer facts from KB using Resolution
- 3. Infer facts from KB using Forward Chaining
- 4. Infer facts from KB using Backward Chaining

Knowledge based Agent: Model & Represent

Concepts, logic Representation of a sample agent

Wumpus World Problem:

PEAS:

Performance Measure:

- +1000 for climbing out with gold,
- -1000 for falling into a pit or being eaten by Wumpus,
- -1 for each action taken and
- -10 for using an arrow

Environment: 4x4 grid of rooms. Always starts at [1, 1] facing right.

The location of Wumpus and Gold are random. Agent dies if entered a pit or live Wumpus.

Knowledge based Agent: Model & Represent

Concepts, logic Representation of a sample agent

SSSSSS SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS		Breeze	PIT
4 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Breeze SSSSSS Stench Gold	PIT	_Breeze
SSSSSS SStench S		Breeze	
START	Breeze	PIT	Breeze
1	2	3	4

Wumpus World Problem:

PEAS:

Actuators –

Forward,

TurnLeft by 90,

TurnRight by 90,

Grab – pick gold if present,

Shoot – fire an arrow, it either hits a wall or kills wumpus. Agent has only one arrow.

Climb – Used to climb out of cave, only from [1, 1]

Knowledge based Agent : Model & Represent

Concepts, logic Representation of a sample agent

SSSSS Stench		Breeze	PIT
17.5 200 200 200 200 200 200 200 200 200 20	Breeze SSSSSS Stench Gold	PIT	-Breeze
SSSSSSS		Breeze	
START	Breeze	PIT	Breeze
1	2	3	4

Why do we need Factored representation

- To reason about steps
- To learn new knowledge about the environment
- To adapt to changes to the existing knowledge
- Accept new tasks in the form of explicit goals
- To overcome partial observability of environment

Representation

$Agents\,based\,on\,Propositional logic, TT-Entail for inference from truth table$

Search Strategies

Propositional Logic

First Order Logic

Propositional Logic

Agentsbased on Propositional logic, TT-Entail for inference from truth table

A simple representation language for building knowledge-based agents

Proposition Symbol - A symbol that stands for a proposition.

E.g., W1,3 - "Wumpus in [1,3]" is a proposition and W1,3 is the symbol Proposition can be true or false

Atomic: W_{1,3}

Conjuncts : $W_{1,3} \wedge P_{3,1}$

Disjuncts: $W_{1,3} \vee P_{3,1}$

Implications:

 $(W_{1,3} \land P_{3,1}) \Longrightarrow \neg W_{2,2}$

Biconditional: $W_{1,3} \Leftrightarrow \neg W_{2,2}$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ok			
1,1 A	2,1	3,1	4,1
OK	OK		

SSSSS Stench		Breeze	PIT
177 100 100 100 100 100 100 100 100 100	SSSSS Stench S	PIT	Breeze
SSSSS Stench		-Breeze	
START	-Breeze	PIT	Breeze

3

2

Agents based on Propositional logic, TFEntail for inference from truth table

Tie break in search:

$$\neg \ , \ \land \ , \ \lor, \ \Longrightarrow \ , \Longleftrightarrow$$

 $(\neg A) \land B$ has precedence over $\neg (A \land B)$

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Knowledge based Agent: Model & Represent

Concepts, logic Representation of a sample agent

Wumpus World Problem:

PEAS:

Sensors. The agent has five sensors

Stench: In all adjacent (but not diagonal)

squares of Wumpus

Breeze: In all adjacent (but not diagonal)

squares of a pit

Glitter: In the square where gold is

Bump: If agent walks into a wall

Scream: When Wumpus is killed, it can be

perceived everywhere

Percept Format:

[Stench?, Breeze?, Glitter?, Bump?, Scream?] E.g., [Stench, Breeze, None, None, None]

Percept 1: [None, None, None, None, None]

Action: Forward

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ок			
1,1 A	2,1	3,1	4,1
OK	OK		

Percept Format: [Stench?, Breeze?, Glitter?, Bump?, Scream?]

Percept 2: [None, Breeze, None, None, None, None]

Breeze -

PIT

Breeze

3

PIT

Breeze

Breeze

1,4	2,4	3,4	4,4		
1,3	2,3	3,3	4,3	4	S S S S S S S S S S S S S S S S S S S
1,0	2,0	0,0	4,0		
1,2	2,2	3,2	4,2	3	700
OK 1,1	2,1	3,1	4,1	2	SSSSS SStench
A OK	ок				
		<u> </u>		1	START
1,4	2,4	3,4	4,4		1
1,3	2,3	3,3	4,3		
1,2	2,2 P?	3,2	4,2		
OK					
OK ,1 V OK	2,1 A B OK	3,1 P?	4,1		

Percept 3: [Stench, None, None, None, None]

Action: Move to [2, 2]

Remembers (2,2) as possible PIT and no Stench.

Representation by Propositional Logic

For each [x, y] location

 $P_{x,y}$ is true if there is a pit in [x, y]

 $W_{x,y}$ is true if there is a wumpus in [x, y]

 $B_{x,y}$ is true if agent perceives a breeze in [x, y]

 $S_{x,y}$ is true if agent perceives a stench in [x, y]

-----R is the sentence in KB

$$R_1 : \neg P_{1,1}$$

$$R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$$

$$R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$$

$$R_4 : \neg B_{1.1}$$

$$R_5: B_{2,1}$$

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

Query: $\neg P_{1,2}$ entailed by our KB?

TT - Entails Inference - Example

Agents based on Propositional logic, TTEntail for inference from truth table

 $\neg P_{1,2}$ entailed by our KB?

Way -1:

- 1. Get sufficient information B_{1,1}, B_{2,1}, P_{1,1}, P_{1,2}, P_{2,1}, P_{2,2}, P_{3,1}
- 2. Enumerate all models with combination of truth values to propositional symbols
- 3. In all the models, find those models where KB is true, i.e., every sentence R₁, R₂, R₃, R₄, R₅ are true
- 4. In those models where KB is true, find if query sentence $\neg P_{1,2}$ is true
- If query sentence ¬ P_{1,2} is true in all models where KB is true, then it entails, otherwise it won't

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
$false \\ false$	$false \\ false$	$false \\ false$	$false \\ false$	$false \ false$	$false \ false$	$false \ true$	$true \ true$	$true \ true$	$true \ false$	$true \ true$	$false \ false$	$false \\ false$
: false	: true	: false	false	: false	false	$_{false}^{:}$: true	true	: false	: true	: true	: false
false false false	true true true	false false false	false false false	false false false	false true true	$egin{array}{c} true \ false \ true \end{array}$	true true true	$true \ true \ true$	true true true	true true true	true true true	$\frac{true}{true}$
false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

TT - Entails Inference - Example

Agents based on Propositional logic, TTEntail for inference from truth table

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false $false$	$false \\ false$	$false \\ false$	$false \ false$	$false \ false$	$false \\ false$	$false \ true$	$true \ true$	$true \ true$	$rac{true}{false}$	$true \ true$	$false \ false$	false false
: false	: true	false	false	false	: false	: false	: true	$\vdots \\ true$	false	: true	: true	: false
false false false	true true true	false false false	false false false	false false false	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\frac{true}{true}$
false : true	true : true	false : true	false : true	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

Inference: Properties

- 1. Entailment : $\alpha \models \beta$
- 2. Equivalence : $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$
- 3. Validity
- 4. Satisfiability

Propositional theorem proving-Proof by resolution

Logical Equivalence rules can be used as inference rules

Inference: Example – Theorem Proving

- 1. Modes Ponens
- 2. AND Elimination

 α : I walk in rain without the umbrella

 β : I get wet

$$\alpha \rightarrow \beta$$
 β

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Inference: Example – Theorem Proving

- 1. Modes Ponens
- 2. AND Elimination

 α : I walk in rain without the umbrella

β: I get wet

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

Inference: Example – Theorem Proving

$$R_1 : \neg P_{1,1}$$
 $R_2 : B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
 $R_3 : B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 $R_4 : \neg B_{1,1}$
 $R_5 : B_{2,1}$

$$(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{De Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{De Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}$$

Query: $\neg P_{1,2}$. Can we prove if this sentence be entailed from KB using inference rules?

$$\begin{array}{lll} R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}) \\ R_6: (B_{1,1} \Rightarrow (P_{1,2} \vee P_{2,1})) \wedge ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}) & \text{Biconditional Elimination} \\ R_7: ((P_{1,2} \vee P_{2,1}) \Rightarrow B_{1,1}) & \text{And Elimination} \\ R_8: (\neg B_{1,1} \Rightarrow \neg (P_{1,2} \vee P_{2,1})) & \text{Contraposition} \\ R_9: \neg (P_{1,2} \vee P_{2,1}) & \text{Modus Ponens} \\ R_{10}: \neg P_{1,2} \wedge \neg P_{2,1} & \text{Demorgans} \\ \textbf{R11:} \neg \textbf{P}_{1,2} & \text{And Elimination} \end{array}$$

Propositional Logic

Proof by Contradiction

Towards Predicate Logic

All courses are offered and interesting

All offered courses are interesting

Some of the courses are offered and interesting [Atleast one of the offered courses is interesting]

Some of the offered courses are interesting

Towards Predicate Logic

Predicate Logic

Squares neighboring the wumpus are smelly

Objects: squares, wumpus

Unary Relation (properties of an object): smelly N-ary

Relation (between objects): neighboring

Function: -

Primary difference between propositional and first-order logic lies in "ontological commitment" – the assumption about the nature of reality.

Predicate Logic – Sample Modelling

1. "Squares neighboring the wumpus are smelly" $\forall x,y \; Neighbour(x,y) \land Wumpus(y) \Longrightarrow Smelly(x)$

Order of quantifiers is important

Predicate Logic – Sample Modelling

2. "Everybody loves somebody"

 $\forall x \exists y \ Loves(x, y)$

3. "There is someone who is loved by everyone"

 $\exists y \ \forall x \ Loves(x, y)$

Order of quantifiers is important

Predicate Logic – Sample Modelling

Brother(Richard, John) ∧ Brother(John, Richard)

King(Richard) V King(John)

 \neg King(Richard) \Rightarrow King(John)

Predicate Logic – Sample Modelling Quantifiers

Brother(Richard, John) ∧ Brother(John, Pichard) King(Richard) ∨ King(John)

 $\neg King(Richard) \Rightarrow King(John)$

"All Kings are persons" $\forall x \ King(x) \Longrightarrow Person(x)$

"King John has a crown on his head" $\exists x \ Crown(x) \ AOnHead(x, John)$

Ground Term: A term with no variables. E.g., King(Richard)

- 1. Substitute for Quantifiers
- 2. Convert into Propositional Logic
- 3. Apply inference tech

 $\forall x \ King(x) \Longrightarrow Person(x)$

Richard the Lionheart is a king ⇒ Richard the Lionheart is a person King John is a king ⇒ King John is a person

 $\exists x \ Crown(x) \ AOnHead(x, John)$

 $Crown(C_1)$ A $OnHead(C_1, John)$ ||C1 is imputed assumed fact

Consider the following problem:

The law says it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

We will prove that West is a criminal

· "All of its missiles were sold to it by Colonel West"

$$Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$$

Missiles are weapons

$$Missile(x) \Rightarrow Weapon(x)$$

Hostile means enemy

$$Enemy(x, America) \Rightarrow Hostile(x)$$

· "West, who is American"

· "The country Nono, an enemy of America"

· First, we will represent the facts in First Order Definite Clauses

" ... it is a crime for an American to sell weapons to hostile nations"

$$American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$$

"Nono ... has some missiles"

$$\exists x \ Owns(Nono, x) \land Missile(x)$$

is transformed into two definite clauses by Existential Instantiation

$$Owns(Nono, M_1)$$

 $Missile(M_1)$

- $(1) \quad American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- (2) $Missile(x) \wedge Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- $(3) Missile(x) \Rightarrow Weapon(x)$
- $(4) \quad Enemy(x, America) \Rightarrow Hostile(x)$

Missile(M1)
Owns(Nono, M1)
American (West)
Enemy (Nono, America)

Consider the following problem:

The law says it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.

We will prove that West is a criminal

Algorithm:

- 1. Start from the facts
- 2. Trigger all rules whose premises are satisfied
- 3. Add the conclusion to known facts
- 4. Repeat the steps till no new facts are added or the query is answered

- $(1) \quad American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- $2) \quad Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- $3) Missile(x) \Rightarrow Weapon(x)$
- $(4) \quad Enemy(x, America) \Rightarrow Hostile(x)$

Missile(M1)
Owns(Nono, M1)

American (West)

Enemy (Nono, America)

American(West)

 $Missile(M_1)$

 $Owns(Nono,M_1)$

Enemy(Nono,America)

- $(1) \quad American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- (2) $Missile(x) \wedge Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- 3 $Missile(x) \Rightarrow Weapon(x)$
- $(4) \quad Enemy(x, America) \Rightarrow Hostile(x)$

Missile(M1)
Owns(Nono, M1)
American (West)
Enemy (Nono, America)

- $\textbf{(1)} \quad American(x) \wedge Weapon(y) \wedge Sells(x,y,z) \wedge Hostile(z) \ \Rightarrow \ Criminal(x)$
- (2) $Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- $(3) Missile(x) \Rightarrow Weapon(x)$
- (4) $Enemy(x, America) \Rightarrow Hostile(x)$

Algorithm:

- 1. Start from the facts Conjunct Ordering
- 2. Trigger all rules whose premises are satisfied Pattern Matching
- 3. Add the conclusion to known facts Irrelevant Facts
- Repeat the steps till no new facts are added or the query is answered Redundant Rule Matching

Algorithm:

- 1. Form Definite Clause
- 2. Start from the Goals
- 3. Search through rules to find the fact that support the proof
- 4. If it stops in the fact which is to be proved → Empty Set- LHS

Divide & Conquer Strategy Substitution by Unification

Backward Chaining

- $(1) \quad American(x) \land Weapon(y) \land Sells(x, y, z) \land Hostile(z) \Rightarrow Criminal(x)$
- $(2) \quad Missile(x) \land Owns(Nono, x) \Rightarrow Sells(West, x, Nono)$
- $(3) Missile(x) \Rightarrow Weapon(x)$
- $(4) \quad Enemy(x, America) \Rightarrow Hostile(x)$

Missile(M1)

Owns(Nono, M1)

American (West)

Enemy (Nono, America)

Backward Chaining

Required Reading: AIMA - Chapter # 4.1, #4.2, #5.1, #9

Next Session Plan:

- (Prerequisite Reading: Refresh the basics of probability, Bayes Theorem, Conditional Probability, Product Rule, Conditional Independence, Chain Rule)
- Inferences using Logic (Forward / Backward Chaining / DPLL algorithm)
- Bayesian Network
- Representation

Thank You for all your Attention

Inferences (Exact and approximate-only Direct sampling)

Note: Some of the slides are adopted from AIMA TB materials