Sur l'existence de champs browniens fractionnaires indexés par des variétés

Nil Venet

Institut de Mathématiques de Toulouse, encadrement Serge Cohen

19 Juillet 2016

On veut un modèle aléatoire

c'est à dire :

- une collection de nombres aléatoires (X_i)_{i∈I}
- avec des exigences sur leur comportement statistique

On veut un modèle aléatoire

c'est à dire :

- une collection de nombres aléatoires (X_i)_{i∈I}
- avec des exigences sur leur comportement statistique

FIGURE: Mais nos exigences sont parfois contradictoires

On veut un modèle aléatoire

c'est à dire :

- une collection de nombres aléatoires (X_i)_{i∈I}
- avec des exigences sur leur comportement statistique

FIGURE: Mais nos exigences sont parfois contradictoires

On veut un modèle aléatoire

c'est à dire :

- une collection de nombres aléatoires (X_i)_{i∈I}
- avec des exigences sur leur comportement statistique

Formellement : X_1, X_2, X_3 centrées réduites telles que pour $i \neq j$

$$\mathbb{E}(X_iX_i) = -3/4$$

est impossible. En effet

FIGURE: Mais nos exigences sont parfois contradictoires

$$\mathbb{E}(X_1 + X_2 + X_3)^2 = \sum_{i=1}^3 \mathbb{E}(X_i X_i) = 3 \times 1 + 3 \times 2 \times \left(-\frac{3}{4}\right) = -1, 5 < 0.$$

Dans le cas qui nous intéresse

On dispose d'un espace E muni d'une distance d.

FIGURE: Un exemple d'espace métrique : la Terre munie de la distance géodésique

19 Juillet 2016

Dans le cas qui nous intéresse

On dispose d'un espace E muni d'une distance d et on veut une collection de variables aléatoires $(X_P)_{P\in E}$ telle que pour deux points P et Q de E, les variables X_P et X_Q ont d'autant plus de chances de prendre des valeurs éloignées que d(P,Q) est grande.

FIGURE: Un exemple d'espace métrique : la Terre munie de la distance géodésique

Problématique

Les espaces munis d'une distance présentent des natures très diverses et on se demande pour quels espaces un tel modèle aléatoire existe.

FIGURE: Un graphe

FIGURE: Une sphère cabossée

FIGURE: Une surface non simplement connexe

Plan de l'exposé

- Généralités
 - Champs aléatoires gaussiens
 - Champs brownien fractionnaires
 - Existence de champs browniens fractionnaires
 - Variétés Riemanniennes
- Non-existence de champs browniens fractionnaires indexés par le cylindre
- 3 Perturbation de configurations critiques

Champs aléatoires gaussiens

Définition (Champ aléatoire gaussien)

Soit T un ensemble. Un champ aléatoire gaussien indexé par T est une collection de variables aléatoires $(X_t)_{t\in T}$ dont toutes les combinaisons linéaires sont gaussiennes.

Champs aléatoires gaussiens

Définition (Champ aléatoire gaussien)

Soit T un ensemble. Un champ aléatoire gaussien indexé par T est une collection de variables aléatoires $(X_t)_{t\in T}$ dont toutes les combinaisons linéaires sont gaussiennes.

Définition (Loi d'un champ)

On appelle loi d'un champ $(X_t)_{t\in T}$ la donnée de toutes les lois de vecteurs aléatoires $(X_{t_1}, \cdots, X_{t_n})$.

Champs aléatoires gaussiens

Définition (Champ aléatoire gaussien)

Soit T un ensemble. Un champ aléatoire gaussien indexé par T est une collection de variables aléatoires $(X_t)_{t\in T}$ dont toutes les combinaisons linéaires sont gaussiennes.

Définition (Loi d'un champ)

On appelle *loi d'un champ* $(X_t)_{t\in T}$ la donnée de toutes les lois de vecteurs aléatoires $(X_{t_1}, \dots, X_{t_n})$.

Lemme

La loi d'un champ gaussien est caractérisée par son espérance $t\mapsto \mathbb{E}(X_t)$ et sa covariance

$$(s,t)\mapsto \mathbb{E}(X_t-\mathbb{E}(X_t))(X_s-\mathbb{E}(X_s)).$$

- 《曰》《라》《토》《토》 1911年 **의**익()

Existence de champs gaussiens

Lemme

Étant données deux applications $m: T \to \mathbb{R}$ et $R: T \times T \to \mathbb{R}$, il existe un champ aléatoire gaussien indexé par T, d'espérance m et de covariance R si et seulement si R est de type positif, c'est-à-dire : $\forall t_1, \dots t_n \in T$, $\forall \lambda_1, \dots, \lambda_n \in \mathbb{R}$,

$$\sum_{i,j=1}^n \lambda_i \lambda_j R(t_i,t_j) \geq 0.$$

Existence de champs gaussiens

Lemme

Étant données deux applications $m: T \to \mathbb{R}$ et $R: T \times T \to \mathbb{R}$, il existe un champ aléatoire gaussien indexé par T, d'espérance m et de covariance R si et seulement si R est de type positif, c'est-à-dire : $\forall t_1, \dots, t_n \in T$, $\forall \lambda_1, \dots, \lambda_n \in \mathbb{R}$,

$$\sum_{i,j=1}^n \lambda_i \lambda_j R(t_i,t_j) \geq 0.$$

Idée de preuve

Pour tous $t_1, \dots, t_n \in T$ on obtient une matrice $(R(t_i, t_j))_{i,j}$ qui est semi-définie positive, et dont on peut prendre une racine \sqrt{R} . Par suite $\sqrt{R}\mathcal{N}(0, I_n)$ est un vecteur gaussien de covariance R. On applique le théorème de Kolmogorov pour conclure.

<ロト <個ト < 差ト < 差ト を注 り へ()

Existence de champs gaussiens

Lemme

Étant données deux applications $m: T \to \mathbb{R}$ et $R: T \times T \to \mathbb{R}$, il existe un champ aléatoire gaussien indexé par T, d'espérance m et de covariance R si et seulement si R est de type positif, c'est-à-dire : $\forall t_1, \dots t_n \in T$, $\forall \lambda_1, \dots, \lambda_n \in \mathbb{R}$,

$$\sum_{i,j=1}^n \lambda_i \lambda_j R(t_i,t_j) \geq 0.$$

Remarque

Lorsque le champ existe

$$\sum_{i,j=1}^n \lambda_i \lambda_j R(t_i,t_j) = \mathbb{E}\left(\sum_{i=1}^n \lambda_i (X_i - \mathbb{E} X_i)\right)^2.$$

◄□▶◀圖▶◀불▶◀불▶ 불章 쒸٩

Champs browniens fractionnaires

Définition (Champ brownien fractionnaire)

Soient (E,d) un espace métrique, et H>0. Un champ brownien H-fractionnaire indexé par E est un champ aléatoire gaussien $(X_x)_{x\in E}$ centré tel que

$$\mathbb{E}(X_x-X_y)^2=(d(x,y))^{2H}.$$

Champs browniens fractionnaires

Définition (Champ brownien fractionnaire)

Soient (E, d) un espace métrique, et H > 0. Un champ brownien H-fractionnaire indexé par E est un champ aléatoire gaussien $(X_x)_{x \in F}$ centré tel que

$$\mathbb{E}(X_x-X_y)^2=(d(x,y))^{2H}.$$

Remarque

• On peut ajouter l'hypothèse $X_O^H = 0$ p.s pour $O \in E$ arbitraire afin d'obtenir l'unicité en loi du champ. En effet on a alors la covariance

$$R_H(x,y) = \frac{1}{2} \left(d^{2H}(O,x) + d^{2H}(O,y) - d^{2H}(x,y) \right).$$

• Ce cas particulier est suffisant pour les questions d'existence.

• Si on choisit $(E, d) = (\mathbb{R}, |.|)$ dans la définition, on retrouve le mouvement brownien fractionnaire, qui existe pour $H \in]0, 1]$.

FIGURE: Trajectoires du mouvement brownien fractionnaire

Nil Venet (IMT)

- Si on choisit $(E, d) = (\mathbb{R}, |.|)$ dans la définition, on retrouve le mouvement brownien fractionnaire, qui existe pour $H \in]0, 1]$.
- En particulier pour H=1/2 on retrouve le *mouvement brownien*, et on parle en général de champ brownien de Lévy.

FIGURE: Trajectoires du mouvement brownien fractionnaire

Soutenance de thèse

19 Juillet 2016

Des qualités transmises aux champs browniens fractionnaires

Le mouvement brownien fractionnaire (B_t^H) est un processus aléatoire :

gaussien,

Des qualités transmises aux champs browniens fractionnaires

Le mouvement brownien fractionnaire (B_t^H) est un processus aléatoire :

- gaussien,
- à accroissements stationnaires

$$\left(B_{t_2+s}^H - B_{t_1+s}^H\right)_{t_2 \in \mathbb{R}} = \left(B_{t_2}^H - B_{t_1}^H\right)_{t_2 \in \mathbb{R}},$$

Des qualités transmises aux champs browniens fractionnaires

Le mouvement brownien fractionnaire (B_t^H) est un processus aléatoire :

- gaussien,
- à accroissements stationnaires

$$(B_{t_2+s}^H - B_{t_1+s}^H)_{t_2 \in \mathbb{R}} = (B_{t_2}^H - B_{t_1}^H)_{t_2 \in \mathbb{R}},$$

auto-similaire

$$\left(B_{\lambda t}^H\right)_{t\in\mathbb{R}}=(\lambda^HB_t^H)_{t\in\mathbb{R}}.$$

FIGURE: Champ brownien indexé par le cercle

FIGURE: Champ brownien indexé par le cercle

FIGURE: Champ brownien indexé par le cercle

FIGURE: Champ brownien indexé par le cercle

Le champ brownien fractionnaire indexé par le cercle n'existe que pour

$$0 < H \leq \frac{1}{2}.$$

FIGURE: Champ brownien indexé par le cercle

Existence de champs browniens fractionnaires

Lemme (CNS d'existence)

Il existe un champ brownien H-fractionnaire indexé par (E,d) si et seulement si d^{2H} est de type $n\acute{e}gatif$, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall c_1, \cdots, c_n \in \mathbb{R}$ tels que $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^n c_i c_j d^{2H}(x_i,x_j) \leq 0.$$

Existence de champs browniens fractionnaires

Lemme (CNS d'existence)

Il existe un champ brownien H-fractionnaire indexé par (E,d) si et seulement si d^{2H} est de type $n\acute{e}gatif$, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall c_1, \cdots, c_n \in \mathbb{R}$ tels que $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^n c_i c_j d^{2H}(x_i,x_j) \leq 0.$$

Idée de preuve

• Comme le champ est gaussien on a vu qu'il existe si et seulement si sa covariance R_H est de *type positif*, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall \lambda_1, \cdots, \lambda_n \in \mathbb{R}$,

$$\sum_{i,j=1}^n \lambda_i \lambda_j R_H(x_i, x_j) \geq 0.$$

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016 12 / 36

Existence de champs browniens fractionnaires

Lemme (CNS d'existence)

Il existe un champ brownien H-fractionnaire indexé par (E,d) si et seulement si d^{2H} est de type $n\acute{e}gatif$, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall c_1, \cdots, c_n \in \mathbb{R}$ tels que $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^n c_i c_j d^{2H}(x_i,x_j) \leq 0.$$

Idée de preuve (suite)

• Rappelons la covariance d'un champ brownien fractionnaire avec origine en $O \in E$:

$$R_H(x,y) = \frac{1}{2} \left(d^{2H}(O,x) + d^{2H}(O,y) - d^{2H}(x,y) \right).$$

• Un théorème de Schoenberg permet de conclure.

12 / 36

Indice fractionnaire d'un espace métrique

Lemme (CNS d'existence)

Il existe un champ brownien H-fractionnaire indexé par (E,d) si et seulement si d^{2H} est de type $n\acute{e}gatif$, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall c_1, \cdots, c_n \in \mathbb{R}$ tels que $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^n c_i c_j d^{2H}(x_i,x_j) \leq 0.$$

Indice fractionnaire d'un espace métrique

Lemme (CNS d'existence)

Il existe un champ brownien H-fractionnaire indexé par (E,d) si et seulement si d^{2H} est de type $n\acute{e}gatif$, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall c_1, \cdots, c_n \in \mathbb{R}$ tels que $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^n c_i c_j d^{2H}(x_i,x_j) \leq 0.$$

Théorème (Indice fractionnaire d'un espace métrique), Istas.

Il existe un $\beta_E \in [0,+\infty]$ tel que d^{2H} est de type négatif si et seulement si

$$0 < 2H \leq \beta_E$$
.

13 / 36

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016

Indice fractionnaire d'un espace métrique

Lemme (CNS d'existence)

Il existe un champ brownien H-fractionnaire indexé par (E,d) si et seulement si d^{2H} est de type $n\acute{e}gatif$, c'est-à-dire $\forall x_1, \cdots, x_n \in E$, $\forall c_1, \cdots, c_n \in \mathbb{R}$ tels que $\sum_{i=1}^n c_i = 0$,

$$\sum_{i,j=1}^n c_i c_j d^{2H}(x_i,x_j) \leq 0.$$

Théorème (Indice fractionnaire d'un espace métrique), Istas.

Il existe un $\beta_E \in [0,+\infty]$ tel que d^{2H} est de type négatif si et seulement si

$$0 < 2H \le \beta_E$$
.

Idée de preuve

La fonction $x \mapsto x^H$ est une fonction de Bernstein pour $0 < H \le 1$.

13 / 36

Variétés riemanniennes

• On peut envisager une variété différentielle M de dimension d comme un collage d'ouverts de \mathbb{R}^d .

Variétés riemanniennes

- On peut envisager une variété différentielle M de dimension d comme un collage d'ouverts de \mathbb{R}^d .
- On peut munir M d'une métrique riemannienne, qui est la donnée en chaque $P \in M$ d'un produit scalaire sur chaque espace tangent T_PM .

Variétés riemanniennes

- On peut envisager une variété différentielle M de dimension d comme un collage d'ouverts de \mathbb{R}^d .
- On peut munir M d'une métrique riemannienne, qui est la donnée en chaque $P \in M$ d'un produit scalaire sur chaque espace tangent T_PM .
- Cette métrique permet de définir la longueur L(c) d'une courbe à valeurs dans M.

• On définit maintenant la distance géodésique entre $P,Q \in M$ par

$$d_M(p,q) := \inf\{L(c), c \text{ courbe reliant } P \text{ à } Q\}$$

• On définit maintenant la distance géodésique entre $P,Q \in M$ par

$$d_M(p,q) := \inf\{L(c), c \text{ courbe reliant } P \text{ à } Q\}$$

 Les courbes qui réalisent l'infimum sont appelées les géodésiques minimales de P à Q.

ullet On définit maintenant la distance géodésique entre $P,Q\in M$ par

$$d_M(p,q) := \inf\{L(c), c \text{ courbe reliant } P \text{ à } Q\}$$

 Les courbes qui réalisent l'infimum sont appelées les géodésiques minimales de P à Q.

Remarque (globalité de d_M)

La connaissance de la métrique riemannienne dans un sous-ensemble $S \subset M$ ne suffit pas à connaitre la distance géodésique d_M sur S.

• Une géodésique fermée minimale est une courbe fermée γ telle que $\forall P, Q \in \gamma$, il existe une géodésique minimale reliant P à Q incluse dans γ .

• Une géodésique fermée minimale est une courbe fermée γ telle que $\forall P, Q \in \gamma$, il existe une géodésique minimale reliant P à Q incluse dans γ .

• Une géodésique fermée minimale est isométrique à un cercle.

Par la suite sauf mention du contraire toutes les variétés sont supposées connexes et sans bords.

• Pour une variété riemannienne $\beta_M \leq 2$ (Istas),

18 / 36

Nil Venet (IMT) Soutenance de thèse

- Pour une variété riemannienne $\beta_M \leq 2$ (Istas),
- Espaces euclidiens $\beta_{\mathbb{R}^d}=2$ (Lévy, Mandelbrot),

18 / 36

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016

- Pour une variété riemannienne $\beta_M \leq 2$ (Istas),
- Espaces euclidiens $\beta_{\mathbb{R}^d}=2$ (Lévy, Mandelbrot),
- Sphères $\beta_{\mathbb{S}^d}=1$ (Lévy, Gangolli, Istas),

Nil Venet (IMT) Soutenance de thèse

18 / 36

- Pour une variété riemannienne $\beta_M \leq 2$ (Istas),
- Espaces euclidiens $\beta_{\mathbb{R}^d} = 2$ (Lévy, Mandelbrot),
- Sphères $\beta_{\mathbb{S}^d} = 1$ (Lévy, Gangolli, Istas),
- Espaces hyperboliques réels $\beta_{\mathbb{H}^d}=1$ (Faraut et Harzallah, Istas),

- Pour une variété riemannienne $\beta_M \leq 2$ (Istas),
- Espaces euclidiens $\beta_{\mathbb{R}^d} = 2$ (Lévy, Mandelbrot),
- Sphères $\beta_{\mathbb{S}^d}=1$ (Lévy, Gangolli, Istas),
- ullet Espaces hyperboliques réels $eta_{\mathbb{H}^d}=1$ (Faraut et Harzallah, Istas),
- Dès qu'il y a un point de courbure strictement positive $\beta_M < 2$ (Istas),

- Pour une variété riemannienne $\beta_M \leq 2$ (Istas),
- Espaces euclidiens $\beta_{\mathbb{R}^d} = 2$ (Lévy, Mandelbrot),
- Sphères $\beta_{\mathbb{S}^d}=1$ (Lévy, Gangolli, Istas),
- ullet Espaces hyperboliques réels $eta_{\mathbb{H}^d}=1$ (Faraut et Harzallah, Istas),
- \bullet Dès qu'il y a un point de courbure strictement positive $\beta_{\it M} < 2$ (Istas),
- Ellipsoïde non sphérique, $\beta_{\mathcal{E}} < 1$ (Chentsov et Morozova).

Plan de l'exposé

- Généralités
 - Non-existence de champs browniens fractionnaires indexés par le cylindre
 - Non-existence des champs browniens fractionnaires indexés par le cylindre
 - Généralisation à un produit riemannien
 - Perturbation de la distance produit
 - Gromov-Hausdorff discontinuité de l'indice fractionnaire
- 3 Perturbation de configurations critiques

Le résultat sur le cylindre

On considère le cylindre qu'on peut voir comme une surface de \mathbb{R}^3 ou comme le produit riemannien $\mathbb{S}^1\times\mathbb{R}.$ On connait l'expression de la distance géodésique

$$d_{\mathbb{S}^1 \times \mathbb{R}}((\theta_1, z_1), (\theta_2, z_2)) = \left(\min(|\theta_1 - \theta_2|, 2\pi - |\theta_1 - \theta_2|)^2 + |z_1 - z_2|^2\right)^{1/2},$$

qui est identique pour des cylindres de hauteur finie.

Théorème 1 (Cylindre)

Pour tout $\varepsilon>0$ et H>0, il n'existe pas de champ brownien H-fractionnaire indexé par le cylindre $\mathbb{S}^1\times]0, \varepsilon[$. En d'autres termes

$$\beta_{\mathbb{S}^1 \times]0,\varepsilon[} = 0.$$

Nil Venet (IMT)

Idée de preuve

On dispose *n* points $(P_{i,n})_{i=1}^n$ sur le cylindre, avec les poids $c_i = (-1)^i$.

De manière à obtenir $\lim_{n\to+\infty}\sum_{i,j=1}^n c_i c_j d^{2H}(P_{i,n},P_{j,n})=+\infty.$

Nil Venet (IMT)

Soutenance de thèse

19 Juillet 2016

21 / 36

Idée de preuve

On dispose *n* points $(P_{i,n})_{i=1}^n$ sur le cylindre, avec les poids $c_i = (-1)^i$.

De manière à obtenir $\lim_{n\to+\infty}\sum_{i=1}^{n}c_ic_jd^{2H}(P_{i,n},P_{j,n})=+\infty.$

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016

21 / 36

Idée de preuve

On dispose *n* points $(P_{i,n})_{i=1}^n$ sur le cylindre, avec les poids $c_i = (-1)^i$.

De manière à obtenir $\lim_{n\to+\infty}\sum_{i=1}^n c_i c_j d^{2H}(P_{i,n},P_{j,n})=+\infty.$

Nil Venet (IMT)

Soutenance de thèse

19 Juillet 2016

21 / 36

Généralisation à un produit riemannien

Étant données deux variétés riemanniennes M et N, le produit riemannien de M et N est la variété $M \times N$ dotée de la métrique $\langle \ , \ \rangle_M + \langle \ , \ \rangle_N$, pour laquelle on a

$$d_{M \times N}((p_1, q_1), (p_2, q_2)) = \left(d_M(p_1, p_2)^2 + d_N(q_1, q_2)^2\right)^{1/2}.$$

Nil Venet (IMT)

Généralisation à un produit riemannien

Étant données deux variétés riemanniennes M et N, le produit riemannien de M et N est la variété $M \times N$ dotée de la métrique $\langle \ , \ \rangle_M + \langle \ , \ \rangle_N$, pour laquelle on a

$$d_{M\times N}((p_1,q_1),(p_2,q_2)) = \left(d_M(p_1,p_2)^2 + d_N(q_1,q_2)^2\right)^{1/2}.$$

Théorème 2

Soient M et N deux variétés riemanniennes telles que M possède une géodésique fermée minimale. On a

$$\beta_{M\times N}=0.$$

Généralisation à un produit riemannien

Étant données deux variétés riemanniennes M et N, le produit riemannien de M et N est la variété $M \times N$ dotée de la métrique $\langle \ , \ \rangle_M + \langle \ , \ \rangle_N$, pour laquelle on a

$$d_{M \times N}((p_1, q_1), (p_2, q_2)) = \left(d_M(p_1, p_2)^2 + d_N(q_1, q_2)^2\right)^{1/2}.$$

Théorème 2

Soient M et N deux variétés riemanniennes telles que M possède une géodésique fermée minimale. On a

$$\beta_{M\times N}=0.$$

Exemples

Le tore $\mathbb{T}^d:=\underbrace{\mathbb{S}^1\times\cdots\times\mathbb{S}^1}_{d \text{ foir}}$ et $\mathbb{S}^d\times\mathbb{R}$ ont des indices fractionnaires nuls.

23 / 36

Dans le cas d'une surface de rotation Γ à génératrice r croissante :

Dans le cas d'une surface de rotation Γ à génératrice r croissante :

• Pour $r(z) = 1 + z^a$, avec a > 1,

$$\beta_{\Gamma} \leq \frac{3}{a/2+1}.$$

Dans le cas d'une surface de rotation Γ à génératrice r croissante :

• Pour $r(z) = 1 + z^a$, avec a > 1,

$$\beta_{\Gamma} \leq \frac{3}{a/2+1}.$$

• Pour $r(z) = 1 + e^{-\frac{1}{z}}$,

$$\beta_{\Gamma}=0.$$

Dans le cas d'une surface de rotation Γ à génératrice r croissante :

• Pour $r(z) = 1 + z^a$, avec a > 1,

$$\beta_{\Gamma} \leq \frac{3}{a/2+1}.$$

• Pour $r(z) = 1 + e^{-\frac{1}{z}}$,

$$\beta_{\Gamma} = 0.$$

 Le majorant de l'indice fractionnaire est d'autant plus petit que le contact est d'ordre élevé avec le cylindre.

Convergence de Gromov-Hausdorff

La distance de Gromov-Hausdorff entre deux espaces métriques compacts est donnée par :

$$d_{\mathcal{GH}}(\bar{E},\bar{F}) := \inf_{I,J} d_{\mathcal{H}}(I(E),J(F)),$$

où I et J parcourent tous les plongements isométriques dans un espace ambiant (X,d), et $d_{\mathcal{H}}$ est la distance de Hausdorff sur les compacts de (X,d), donnée par :

$$d_{\mathcal{H}}(A,B) := \max\{\sup_{x \in A} d_E(x,B), \sup_{y \in B} d_E(y,A)\}.$$

◆ロト ◆個ト ◆意ト ◆意ト 夏目 釣り○

Lemme

La distance de Gromov-Hausdorff $d_{\mathcal{GH}}$ est une distance sur l'ensemble $\mathcal M$ des classes d'isométries d'espaces métriques compacts.

Lemme

La distance de Gromov-Hausdorff $d_{\mathcal{GH}}$ est une distance sur l'ensemble $\mathcal M$ des classes d'isométries d'espaces métriques compacts.

Théorème 3

L'application

$$(\mathcal{M}, d_{\mathcal{GH}}) \to [0, +\infty]$$

$$E \mapsto \beta_E$$

n'est pas continue en $E = \mathbb{S}^1$.

Lemme

La distance de Gromov-Hausdorff $d_{\mathcal{GH}}$ est une distance sur l'ensemble $\mathcal M$ des classes d'isométries d'espaces métriques compacts.

Théorème 3

L'application

$$(\mathcal{M}, d_{\mathcal{GH}}) \to [0, +\infty]$$

 $E \mapsto \beta_E$

n'est pas continue en $E = \mathbb{S}^1$.

Preuve

On a $\beta_{\mathbb{S}^1}=1$ et $\beta_{\mathbb{S}^1 imes [0,arepsilon]}=0$ pour tout arepsilon>0.

25 / 36

Plan de l'exposé

- Généralités
- 2 Non-existence de champs browniens fractionnaires indexés par le cylindre
- Perturbation de configurations critiques
 - Perturbation de configurations critiques
 - Non-dégénérescence du brownien fractionnaire indexé par les espaces hyperboliques réels
 - Variétés avec des géodésiques fermées minimales

Une question

Étant donnée une configuration $((P_1,\cdots,P_n),(c_1,\cdots,c_n))$ telle que

$$\sum_{i,j=1}^{n} c_{i}c_{j}d^{2H}(P_{i}, P_{j}) = 0,$$

peut-on donner une condition pour qu'il soit possible de perturber cette configuration pour avoir

$$\sum_{i,j=1}^{\tilde{n}}\tilde{c}_{i}\tilde{c}_{j}d^{2H}(\tilde{P}_{i},\tilde{P}_{j})>0,$$

et obtenir la non-existence du champ brownien H-fractionnaire?

◆ロト ◆個ト ◆意ト ◆意ト を言せ からで

Sur une variété riemannienne

Oui, en ajoutant un point \tilde{P}_{i_0} à une distance ε dans une direction orthogonale en P_{i_0} à toutes les géodésiques minimales reliant les P_i .

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016 28 / 36

Sur une variété riemannienne

Oui, en ajoutant un point \tilde{P}_{i_0} à une distance ε dans une direction orthogonale en P_{i_0} à toutes les géodésiques minimales reliant les P_i .

On a alors

Nil Venet (IMT)

$$\sum_{i,j=1}^{\tilde{n}} \tilde{c}_i \tilde{c}_j d^{2H}(\tilde{P}_i, \tilde{P}_j) = \sum_{i,j=1}^{n} c_i c_j d^{2H}(P_i, P_j) + \frac{c_n^2}{2} \varepsilon^{2H} + o\left(\varepsilon^{2H}\right).$$

Soutenance de thèse

4 □ ▶ 4 億 ▶ 4 億 ▶ 4 년 ▶ 4 년 ►

19 Juillet 2016

28 / 36

Perturbation de configurations critiques

Définition (Ensemble des directions les plus courtes)

Soient M une variété riemannienne, $P \in M$ et $S \subset M$, définissons l'ensemble des directions les plus courtes de P à S:

$$T_{P o S} = Vect \left\{ egin{array}{l} g'(0) \mid \exists \, Q \in S, \; g: [0,1] o M \ ext{g\'eod\'esique minimale de } P \; \grave{\mathsf{a}} \; Q \end{array}
ight\} \subset T_P(M).$$

Perturbation de configurations critiques

Définition (Ensemble des directions les plus courtes)

Soient M une variété riemannienne, $P \in M$ et $S \subset M$, définissons l'ensemble des directions les plus courtes de P à S:

$$T_{P o S} = Vect \left\{ egin{array}{l} g'(0) \mid \exists\, Q\in S,\; g:[0,1] o M \ ext{g\'eod\'esique minimale de P à Q} \end{array}
ight\} \subset T_P(M).$$

Théorème 4

Soient (M, d_M) une variété Riemannienne complète et $H \in]0,1[$. S'il existe un champ brownien H-fractionnaire indexé par M, alors pour toute configuration H-critique $((P_1, \cdots, P_n), (c_1, \cdots, c_n))$,

$$\forall i \in \{1, \cdots, n\}, \ T_{P_i \to \{P_i, j \neq i\}} = T_{P_i} M. \tag{G}$$

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016 29 / 36

Une première conséquence

Théorème 5

- Pour tout $0 < H \le 1/2$, il n'existe pas de configuration H-critique de \mathbb{H}^d .
- ② Soient $0 < H \le 1/2$ et X^H un champ brownien H-fractionnaire indexé par \mathbb{H}^d , tel qu'il existe $O \in \mathbb{H}^d$ et $X_O^H = 0$ p.s.. Pour tous points $P_1, \dots, P_n \in \mathbb{H}^d$, le vecteur gaussien $\left(X_{P_1}^H, \dots, X_{P_n}^H\right)$ est non-dégénéré.

Une première conséquence

Théorème 5

- Pour tout $0 < H \le 1/2$, il n'existe pas de configuration H-critique de \mathbb{H}^d .
- ② Soient $0 < H \le 1/2$ et X^H un champ brownien H-fractionnaire indexé par \mathbb{H}^d , tel qu'il existe $O \in \mathbb{H}^d$ et $X_O^H = 0$ p.s.. Pour tous points $P_1, \cdots, P_n \in \mathbb{H}^d$, le vecteur gaussien $\left(X_{P_1}^H, \cdots, X_{P_n}^H\right)$ est non-dégénéré.

Idée de preuve

On utilise le plongement isométrique naturel $\mathbb{H}^d \subset \mathbb{H}^{d+1}$. L'existence d'une configuration critique dans \mathbb{H}^d aboutirait à la non-existence du champ brownien fractionnaire indexé par \mathbb{H}^{d+1} .

Configurations 1/2-critiques sur les géodésiques fermées minimales

 Sur le cercle on a une configuration 1/2-critique pour toute paire de couples de points antipodaux.

Configurations 1/2-critiques sur les géodésiques fermées minimales

- Sur le cercle on a une configuration 1/2-critique pour toute paire de couples de points antipodaux.
- Même chose sur une géodésique fermée minimale d'une variété riemannienne.

Géodésiques fermées minimales

Théorème 6

Soit M une variété riemannienne complète telle qu'il existe un champ brownien de Lévy indexé par M. Pour toute géodésique fermée minimale γ et tous points antipodaux $P, P^* \in \gamma$

$$T_{P \to \{P^*\}} = T_P M.$$
 (G')

Des exemples

FIGURE: La condition (G') est vérifiée sur la sphère

Des exemples

FIGURE: La condition (G') est vérifiée sur la sphère

FIGURE: Mais par sur le cylindre

Des exemples (suite)

FIGURE: La condition (G') n'est pas vérifiée sur un ellipsoïde de rotation

Des exemples (suite)

FIGURE: La condition (G') n'est pas vérifiée sur un ellipsoïde de rotation

FIGURE: Ni sur une surface dont l'intersection avec une boule est un grand cercle de celle-ci

Pour une variété M, notons $L(M) \setminus C$ l'ensemble des lacets C^1 par morceaux qui ne sont pas homotopes à un lacet trivial.

Pour une variété M, notons $L(M) \setminus C$ l'ensemble des lacets C^1 par morceaux qui ne sont pas homotopes à un lacet trivial.

Théorème 7

Soit M une variété riemannienne de dimension au moins 2 telle qu'il existe γ de longueur minimale dans $L(M)\setminus C$.

Il n'existe pas de champ brownien de Lévy indexé par M.

Pour une variété M, notons $L(M) \setminus C$ l'ensemble des lacets C^1 par morceaux qui ne sont pas homotopes à un lacet trivial.

Théorème 7

Soit M une variété riemannienne de dimension au moins 2 telle qu'il existe γ de longueur minimale dans $L(M) \setminus C$.

Il n'existe pas de champ brownien de Lévy indexé par M.

Théorème 8

Soit M une variété riemannienne de dimension au moins 2, compacte et non simplement connexe. Il n'existe pas de champ brownien de Lévy indexé par M.

Théorème 7

Soit M une variété riemannienne de dimension au moins 2, compacte et non simplement connexe. Il n'existe pas de champ brownien de Lévy indexé par M.

Remarque

En particulier une surface sur laquelle il existe un champ brownien de Lévy est difféomorphe à la sphère.

• Questions de "localisation" pour les indices fractionnaires déjà connus.

- Questions de "localisation" pour les indices fractionnaires déjà connus.
- Un résultat de non-existence en courbure positive?

- Questions de "localisation" pour les indices fractionnaires déjà connus.
- Un résultat de non-existence en courbure positive?
- L'indice fractionnaire est-t-il semi-continu supérieurement pour la convergence de Gromov-Hausdorff? Existe-t-il une topologie "naturelle" pour laquelle il est continu?

- Questions de "localisation" pour les indices fractionnaires déjà connus.
- Un résultat de non-existence en courbure positive?
- L'indice fractionnaire est-t-il semi-continu supérieurement pour la convergence de Gromov-Hausdorff? Existe-t-il une topologie "naturelle" pour laquelle il est continu?
- Résultats d'existence. Une généralisation de la construction de Chentsov et Morozova en dimension supérieure?

- Questions de "localisation" pour les indices fractionnaires déjà connus.
- Un résultat de non-existence en courbure positive?
- L'indice fractionnaire est-t-il semi-continu supérieurement pour la convergence de Gromov-Hausdorff? Existe-t-il une topologie "naturelle" pour laquelle il est continu?
- Résultats d'existence. Une généralisation de la construction de Chentsov et Morozova en dimension supérieure?

Paul Lévy.

Processus Stochastiques et Mouvement Brownien. Suivi d'une note de M. Loève.

Gauthier-Villars, Paris, 1948.

N.N. Chentsov.

Levy Brownian motion for several parameters and generalized white noise.

Theory of Probability & Its Applications, 2(2):265-266, 1957.

P. Lévy.

Le mouvement Brownien fonction d'un point de la sphère de Riemann.

Rend. Circ. Mat. Palermo, II. Ser., 8:297-310, 1960.

Jean Bretagnolle, Didier Dacunha-Castelle, and Jean-Louis Krivine. Lois stables et espaces L^p .

Ann. Inst. H. Poincaré Sect. B (N.S.), 2:231–259, 1965/1966.

Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. H. Poincaré Sect. B (N.S.), 3:121–226, 1967.

E. A. Morozova and N. N. Čencov. Lévy's random fields.

Teor. Verojatnost. i Primenen, 13:152–155, 1968.

B.B. Mandelbrot and J.W. Van Ness.

Fractional Brownian motions, fractional noises and applications. *SIAM Rev.*, 10:422–437, 1968.

🔋 J. Faraut and K. Harzallah.

Distances hilbertiennes invariantes sur un espace homogène.

Ann. Inst. Fourier (Grenoble), 24(3):xiv, 171-217, 1974.

B.B. Mandelbrot.

Stochastic models for the earth's relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proceedings of the National Academy of Sciences, 72(10):3825–3828, 1975.

Mikhail Anatolievich Lifshits.

On representation of Levy's fields by indicators.

Theory of Probability & Description of Probability & Probability & Applications, 24(3):629–633, 1980.

Shigeo Takenaka, Izumi Kubo, and Hajime Urakawa.

Brownian motion parametrized with metric space of constant curvature.

Nagoya Math. J., 82:131-140, 1981.

S. Takenaka.

Representation of Euclidean random field.

Nagova Math. J., 105:19–31, 1987.

G. M. Molchan.

Multiparametric Brownian motion on symmetric spaces.

Probability theory and mathematical statistics, Vol. II (Vilnius, 1985), pages 275–286, 1987.

A. L. Koldobskiĭ.

The Schoenberg problem on positive-definite functions.

Algebra i Analiz, 3(3):78-85, 1991.

J. Istas.

Spherical and hyperbolic fractional Brownian motion.

Electron. Comm. Probab., 10:254-262 (electronic), 2005.

J. Istas.

Manifold indexed fractional fields.

ESAIM Probab. Stat., 16:222-276, 2012.

S. Cohen and M. A. Lifshits.

Stationary Gaussian random fields on hyperbolic spaces and on Euclidean spheres.

ESAIM Probab. Stat., 16:165-221, 2012.

Luis Santaló.

Integral geometry and geometric probability. With a foreword by Mark Kac. 2nd ed.

Cambridge: Cambridge University Press, 2nd ed. edition, 2004.

Manfredo P. do Carmo.

Differential geometry of curves and surfaces.

Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.

Translated from the Portuguese.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. *Riemannian geometry*.

Springer, 2004.

Théorème 8

Let us consider a distance d' on $\mathbb{S}^1 \times]0, \varepsilon[$ and denote by E' the resulting metric space. We define for very $h \in]0, \varepsilon[$

$$\Delta(h) := \sup_{z_1, z_2 \le h} \sup_{\theta_1, \theta_2 \in \mathbb{S}^1} \left| d'[(\theta_1, z_1), (\theta_2, z_2)] - d[(\theta_1, z_1), (\theta_2, z_2)] \right|.$$

where d denotes the classical distance on the cylinder. We call

$$\delta_{E'} := \sup \left\{ \delta > 0, \ \Delta(h) {\underset{h o 0^+}{=}} \mathcal{O}\left(h^\delta
ight)
ight\}.$$

If $\delta_{E'}$ is finite we obtain that the fractional index of E' $\beta_{E'}$ verifies

$$\beta_{E'} \leq \frac{3}{\delta_{E'} + 1},$$

and if $\delta_{F'} = +\infty$, $\beta_{F'} = 0$.

Nil Venet (IMT) Soutenance de thèse

Théorème 9

Let I be an open real interval such that there exists $\varepsilon > 0$, $]0, \varepsilon[\subset I]$ and consider the case where E' is $\mathbb{S}^1 \times I$ endowed with the Riemannian metric

$$\langle \ , \ \rangle' = (1 + f_1(\theta, z))d\theta^2 + (1 + f_2(\theta, z))dz^2,$$

with f_1 and f_2 C^{∞} functions with values in $]-1,+\infty[$. Let us assume that the Riemannian manifold E' is complete, and that

$$\sup_{P,Q\in\mathbb{S}^1\times]0,\varepsilon[}\sup\left\{\max\left(\int_{\gamma_{d'}}|d\theta|,\int_{\gamma_{d'}}|dz|\right),\frac{\gamma_{d'}\ \textit{minimal geodesic in}}{E'\ \textit{between P and }Q}\right\}<\infty$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ •□□ •□♀

Nil Venet (IMT)

Théorème 9, suite

For every $h \in I$ we define

$$z^+(h) := \sup_{P,Q \in \, \mathbb{S}^1 \times \,]0,h]} \inf \, \left\{ \begin{array}{l} \max_t(z(t)) \text{ such that } t \mapsto (\theta(t),z(t)) \text{ is a} \\ \min_t \text{ minimal geodesic in } E' \text{ between } P \text{ and } Q \end{array} \right\},$$

$$z^-(h) := \sup_{P,Q \in \, \mathbb{S}^1 \times \,]0,h]} \sup \left\{ \begin{array}{l} \min_t(z(t)) \text{ such that } t \mapsto (\theta(t),z(t)) \text{ is a} \\ \min_t \text{ minimal geodesic in } E' \text{ between } P \text{ and } Q \end{array} \right\},$$

$$F_1(h) := \sup_{z \in]z^-(h),z^+(h)[} \ \max_{\theta \in \mathbb{S}^1} \sqrt{|f_1(\theta,z)|}, \ \delta_1 := \sup \left\{\delta > 0, F_1(h) \underset{h \to 0^+}{=} O\left(h^\delta\right)\right\},$$

$$F_2(h) := \sup_{z \in]z^-(h),z^+(h)[} \ \max_{\theta \in \mathbb{S}^1} \sqrt{|f_2(\theta,z)|}, \ \delta_2 := \sup \left\{ \delta > 0, F_2(h) \underset{h \to 0^+}{=} O\left(h^\delta\right) \right\}.$$

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016

Théorème 9, suite

If $min(\delta_1, \delta_2)$ is finite we have

$$\beta_{E'} \leq \frac{3}{\min\left(\delta_1, \delta_2\right) + 1},$$

and if
$$\delta_1 = \delta_2 = +\infty$$
,

$$\beta_{E'} = 0.$$

Détails de calcul sur le cylindre, 1

$$A_N := \sum_{i,j=1}^{4N} c_i c_j d_S^{2H}(P_{i,N}, P_{j,N})$$

$$= \frac{4N^{1-2H}}{4^{2H}} \sum_{p=0}^{N-1} \left[(2p)^{2H} - 2(2p+1)^{2H} + (2p+2)^{2H} \right].$$

Lemme

For every $H \in]0, 1/2[$,

$$A_N \underset{N \to \infty}{\sim} \frac{N^{1-2H}}{4^{2H-1}} \sum_{p=0}^{\infty} \left[(2p)^{2H} - 2(2p+1)^{2H} + (2p+2)^{2H} \right].$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト 亳 章 の へ ○

10 / 12

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016

Détails de calcul sur le cylindre, 2

Lemme

Let us denote by $\mathcal{Z}_{\underline{lpha},\overline{lpha}}$ the set of all sequences of positive numbers $(z_N)_{N>0}$ such that

$$z_N N^{\underline{\alpha}} \underset{N \to \infty}{\longrightarrow} 0$$
 (H1)

and

$$z_N N^{\overline{\alpha}} \underset{N \longrightarrow \infty}{\longrightarrow} \infty.$$
 (H2)

For every 0 < H < 1/2 and $\underline{\alpha}, \overline{\alpha}$ such that $0 < \underline{\alpha} < \overline{\alpha} < 1$ we have

$$\lim_{N\to\infty}\sup_{(z_N)_{N>0}\in\mathcal{Z}_{\alpha,\overline{\alpha}}}\left|B_N(z_N)-\frac{H}{2\cdot 4^{H-1}}\right|=0.$$

4 □ ▶ 4 □ ▶ 4 亘 ▶ 4 亘 ▶ 필 등 외익으

Détails de calcul sur le cylindre, 3

On dispose n points $(P_{i,n})_{i=1}^n$ sur le cylindre, avec les poids $c_i = (-1)^i$.

$$\sum_{i,j=1}^{n} c_{i}c_{j}d^{2H}(P_{i,n},P_{j,n}) = \lfloor N^{\beta}\rfloor A_{N} + \frac{\lfloor N^{\beta}\rfloor \left(\lfloor N^{\beta}\rfloor - 1\right)}{2} \left(\frac{H}{2\cdot 4^{H-1}} + o(1)\right).$$

Nil Venet (IMT) Soutenance de thèse 19 Juillet 2016 12 / 12