Paikallisuus hajautetuissa verkkoalgoritmeissa
Juhana Laurinharju
Tieteellinen kirjoittaminen Helsingin Yliopisto Tietojenkäsittelytieteen laitos
Helsinki, 27. helmikuuta 2013

Johdanto

1 Määritelmiä

1.1 Verkko

Suuntaamaton verkko on pari G=(V,E), missä V on solmujoukko ja E on kaarijoukko. Kaari solmusta $v\in V$ solmuun $u\in V$ on kaksikko $\{v,u\}\in E$. Kaarta voidaan myös merkitä lyhyemmin vu. Esimerkiksi verkko G=(V,E), missä

$$V = \{a, b, c, d\} \text{ ja}$$

$$E = \{\{a, b\}, \{b, c\}, \{c, a\}, \{a, d\}\}$$

$$= \{ab, bc, ca, ad\}$$

näyttää seuraavalta

1.2 Laskennan malli

Olkoon G=(V,E) suuntaamaton verkko. Verkon jokaisessa solmussa $v\in V$ on tietokone. Laskenta koostuu kommunikointikierroksista. Yhden kommunikaatiokierroksen aikana jokainen solmu voi:

- 1. suorittaa mielivaltaista laskentaa
- 2. lähettää viestin jokaiselle naapurilleen
- 3. vastaanottaa naapureiden lähettämät viestit

Lisäksi jokaiselle solmulle $v \in V$ on annettu yksikäsitteinen tunniste $\mathrm{ID}(v) \in \{1,\ldots,|V|\}$. Laskennan päätyttyä jokaisen solmun tulee tietää oma tulosteensa.

TODO: motivointia sille, että tarkastellaan vain kommunikaatiokierrosten lukumäärää aikavaativuutena.

1.3 Verkon väritys

Verkko on $v\ddot{a}ritetty$, jos jokaiseen solmuun $v\in V$ on liitetty jokin $v\ddot{a}ri$ ja kahdella vierekkäisellä solmulla ei koskaan ole samaa väriä. Tarkemmin, verkon

G = (V, E) solmuväritys on kuvaus $c : V \to \{1, \dots, k\}$ jollain luonnollisella luvulla $k \in \mathbb{N}$. Lisäksi vaaditaan, että jos verkossa on kaari solmusta v solmuun u, eli $vu \in E$, niin $c(v) \neq c(u)$.

Verkon voi värittää k:lla värillä jos löytyy yllä olevan ehdon täyttävä kuvaus $c: V \to \{1, \dots, k\}$. Tällaista väritystä kutsutaan k-väritykseksi.

Jos verkkoa väritetään hajautetulla algoritmilla, niin jokaisen solmun tulee tietää oma värinsä laskennan päätyttyä.

1.4 Sykli

Verkko on *sykli*, jos se on yhtenäinen ja sen jokaisella solmulla on tasan kaksi naapuria.

Tarkemmin sanoen, n-sykli, missä $n \geq 3$, on verkko $C_n = (V, E)$ jolla

$$V = \{v_1, v_2, \dots, v_n\}$$

$$E = \{v_i v_{i+1} \mid 1 \le i < n\} \cup \{v_n v_1\}$$

Syklin voi aina värittää kolmella värillä.

1.5 Iteroitu logaritmi log*

Iteroitu logaritmi log* kertoo kuinka monta kertaa luvusta täytyy ottaa logaritmi, kunnes lopputulos on korkeintaan yksi. Tarkemmin,

$$\log^* x = \begin{cases} 0, & \text{jos } x \le 1, \\ 1 + \log^*(\log x), & \text{muutoin.} \end{cases}$$

Esimerkiksi

$$\log^* 16 = \log^* 2^{2^2} = 1 + \log^* 2^2$$
$$= 2 + \log^* 2 = 3 + \log^* 1 = 3$$

ja

$$\log^* 65536 = \log^* 2^{2^{2^2}} = 1 + \log^* 16$$

= 4,

joten $\log^* n$ on arvoltaan pienempi kuin 5 kun $n < 2^{65536}$. Iteroitu logaritmi on siis äärimmäisen hitaasti kasvava funktio.

1.6 Näkymä

Hajautetussa algoritmissa solmu $v \in V$ saa k:ssa kierroksessa selville oman k-ympäristönsä. Toisaalta solmu ei pysty tässä ajassa saamaan mitään selville solmuista, joiden etäisyys v:stä on yli k. Hajautettu algoritmi, jonka ajoaika on k kierrosta on siis funktio, jonka lähtöjoukkona on solmujen mahdolliset k-ympäristöt.

TODO: määrittele etäisyys

TODO: tää kaipaa varmaan vähän selvennystä

TODO: kuvasarja havainnollistamaan tätä

Erityisesti syklissä algoritmi, jonka ajoaika on k kierrosta, tekee päätöksensä k:n edeltäjän, k:n seuraajan ja oman solmun tunnisteiden perusteella. Toisin sanoen solmun $v_l \in V(C_n)$ tuloste on funktio arvoilta

$$(ID(v_{l-k}), ID(v_{l-k+1}), \dots, ID(v_{l-1}), ID(v_l), ID(v_{l+1}), \dots, ID(v_{l+k})),$$

Missä yhteen- ja vähennyslaskut suoritetaan modulo n.

TODO: Kuvasarja solmun näkymästä syklissä.

Erityisesti jos algoritmi tuottaa 3-värityksen syklissä k:ssa kierroksessa, niin täytyy olla olemassa sellainen funktio $f:[n]^{2k+1} \to [3]$, joka tuottaa laillisen 3-värityksen riippumatta siitä miten solmuille on annettu tunnisteet.

1.7 Naapurustoverkot

TODO: liitä tää syklien näkymiin

Naapurustoverkko $B_{t,n} = (V, E)$, missä V on kaikkien vektoreiden (x_1, \ldots, x_{2t+1}) joukko joilla x_i :t ovat keskenään erisuuria kokonaislukuja joukosta [n]. Verkossa $B_{t,n}$ solmut muotoa

$$(x_1,\ldots,x_{2t+1})$$
 ja (y,x_2,\ldots,x_{2t})

ovat naapureita, kun $y \neq x_{2t+1}$.

TODO: esittele [n] merkintä

Verkossa $B_{t,n}$ on $n(n-1)(n-2)\cdots(n-2t)$ solmua ja sen kaikkien kaarten asteluku on 2(n-2t-1).

TODO: termi asteluku esittelemättä

TODO: kierrosmäärä on välillä k ja välillä t

Hajautettu algoritmi, joka 3-värittää syklin t kierroksessa on funktio $c:V(B_{t,n})\to [3].$

TODO: tätä vois perustella

Nyt c on myös laillinen 3-väritys verkolle $B_{t,n}$, sillä jos c antaa solmuille

$$(x_1,\ldots,x_{2t+1})$$
 ja (y,x_2,\ldots,x_{2t})

saman värin, niin se antaa myös syklissa kahdelle vierekkäiselle solmulle saman värin kun syklissä esiintyy pätkä

$$y, x_1, x_2, \ldots, x_{2t+1}.$$

Siis jos näytetään, että verkkoa $B_{t,n}$ ei voi 3-värittää, niin ei voi myöskään olla hajautettua algoritmia joka värittäisi n-syklin kolmella värillä t kierroksessa.