

Professional Elective – I Paper Name: Digital Forensics

Paper Code: PEC-CS501B Credit: 3

Lesson Plan

University Name:			University of Engineering and Management, Kolkata				
Stream:			CSE/CSE(AIML)				
Course Type:			Theoretical Computer Science				
Paper Name:			Formal Languages and Automata Thoery				
Pa	Paper Code:			PCC-CSE502			
	Credit:			4/3			
	e Education	onal	Through this paper students will enhance their knowledge in				
C	Objective:		mathematical models of programming languages, computers and				
			capability of a computer.				
				nentary discrete mathematics including			
Pre	-Requisite	es:	function, relation, product, partial order, equivalence relation, graph				
				& tree. They should have a thorough understanding of the principle			
			of mathematical induction.				
	CO1			To understand the symbol, alphabet, string, formal languages,			
	~		grammar, theoretical machine/automata				
	Course CO2		To understand FA, DFA, NFA, their conversions and applications				
Outcome	Outcome: CO3		To understand regular languages, expressions				
	CO4		To understand CFG, CFL, DCFL, Non-DCFL, PDA, DPDA, NDPDA				
CO5 CO6			To understand Turing machine To understand Decidability, Undecidability, NP-Completeness				
Serial	Module						
Number	No.	le Chapter Name		Topic	No.	Mapping Mapping	
Nullibei	110.	Ivan	10	Introduction to concepts of alphabet,	110.	Mapping	
1	01	1 Introduc	ction	language, production rules, grammar	01-02	CO1	
1	01	miroduction		and automaton	01 02		
				Finite state model,			
2	01	Finite		concept of DFA and its problems,	03-05	CO2	
		Automa		concept of NFA and its problems			
				NFA to DFA conversion,			
3				Construction of DFA & NFA for any			
		Fini	tα	given string and vice versa,			
	01	Automat	Minimization of FA		05-10	CO2	
		Automata		and equivalence of two FA, Mealy &			
				Moore machine and their problems,			
				Limitations of FSM			

Professional Elective – I Paper Name: Digital Forensics Professional Elective – I

Paper Code: PEC-CS501B Credit: 3

Lesson Plan

Serial Number	Module No.	Chapter Name	Topic	Lecture No.	CO Mapping
4	02	Regular language and expression	Introduction to the concept of Chomsky Classification of Grammar, language generation from production rules and vice- versa. regular language and regular expressions, identity rules	11-13	CO3
5	02	Regular language and expression	Arden's theorem state and prove, Construction of NFA from regular expression, Conversion of NFA with null moves to without null moves, closure properties, pumping lemma and its applications	14-16	CO3
6	03	Context Free Grammar, Languages	Introduction to Context Free Grammar, Derivation trees, sentential forms. Right most and leftmost derivation of strings, concepts of ambiguity. Minimization of CFG, Chomsky normal form, Greibach normal form, Pumping Lemma for Context Free Languages, Enumeration of properties of CFL (proofs omitted)	17-19	CO4
7	03	Context Free Grammar, Languages	Closure property of CFL, Ogden's lemma & its applications, Push Down Automata: Push down automata, definition and description, Acceptance of CFL, Acceptance by final state and acceptance by empty state and its equivalence	20-22	CO4
8	03	Push Down Automata	Equivalence of CFL and PDA, interconversion, DCFL and DPDA	23-25	CO4

Professional Elective – I Paper Name: Digital Forensics

Paper Code: PEC-CS501B Credit: 3 Lesson Plan

Serial Number	Module No.	Chapter Name	Торіс	Lecture No.	CO Mapping
9	04	Turing Machine	Turing Machine, definition, model, Design of TM, Computable functions, Church's hypothesis, counter machine, Types of Turing machines (proofs not required), Universal Turing Machine, Halting problem	26-28	CO5
10	04	Turing Machine	Decidability, Undecidability, P, NP	29-30	CO6
11	05	Finite State Machine	Basic definition of sequential circuit, block diagram, mathematical representation, concept of transition table and transition diagram, Design of sequence detector	31-32	CO1
12	05	Finite State Machine	Finite state machine: Definitions, capability & state equivalent, kth-equivalent concept, Merger graph, Merger table	33-34	CO1
13	05	Finite State Machine	Compatibility graph, Finite memory definiteness, testing table & testing graph	35	CO1

Professional Elective – I Paper Name: Digital Forensics

Paper Code: PEC-CS501B Credit: 3

Lesson Plan

	Title	Author(s)	Publishing House	Edition	
	Introduction to the Theory of Computation	Michael Sipser	PWS Publishing	Fifteenth Edition	
Text Books:	Introduction to Automata Theory, Languages, and Computation	John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman	Pearson Education Asia	Latest Edition	
	Theory of Computer Science: Automata, Languages and Computation	Mishra K.L.P	PHI	Third Edition	
	Introduction to Languages and The Theory of Computation	John Martin	Pearson	Latest Edition	
Reference Books:	Automata and Computability, Undergraduate Texts in Computer Science	Dexter C. Kozen	Springer	Latest Edition	