ST3131 Regression Analysis - Tutorial 2

- 1. The data set data-table-B3.csv contains data on the gasoline mileage performance of different automobiles. Write R codes to read in the data set and answer the following questions.
 - (i) Verify that $\sum_{i=1}^{n} x_i e_i = 0$ and $\sum_{i=1}^{n} \hat{y}_i e_i = 0$ for this data set.
 - (ii) Construct a plot of y against x and show the residuals on the plot. Is there any evidence that σ^2 is not constant against x?
 - (iii) Calculate SS_T , SS_{Res} , SS_R and $\hat{\sigma}^2$ or MS_{Res} .
 - (iv) Construct a 99% confidence interval for β_1 . Give an interpretation of the confidence interval.
 - (v) Construct a 99% confidence interval for β_0 . Give an interpretation of the confidence interval.
 - (vi) Construct a 99% confidence interval for σ^2 . Give an interpretation of the confidence interval.
 - (vii) Construct a 99% confidence interval for the mean mileage at $x=2000\,\mathrm{cc}$. Give an interpretation of the confidence interval.
 - (viii) Calculate the \mathbb{R}^2 and give an interpretation.
 - (ix) Calculate the correlation coefficient r between displacement and mileage and give an interpretation. Explain why the correlation coefficient is appropriate for this problem. What is the relationship between r and R^2 ?
 - (x) Construct a 99% confidence interval for the population correlation coefficient ρ . Give an interpretation of the confidence interval.
- 2. For the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ i = 1, 2, ..., n,$$

1

the least-squares estimate $\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$.

- (i) Show that $\hat{\beta}_1 = \sum_{i=1}^n c_i \ y_i$, where $c_i = \frac{x_i \bar{x}}{S_{xx}}, i = 1, 2, ..., n$.
- (ii) Show that $\sum_{i=1}^{n} c_i = 0$.
- (iii) Show that $\sum_{i=1}^{n} c_i x_i = 1$.

3. For the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ i = 1, 2, ..., n.$$

The residual $e_i = y_i - \hat{y}_i, i = 1, 2, ..., n$.

- (i) Show that $\sum_{i=1}^{n} x_i e_i = 0$.
- (ii) Show that $\sum_{i=1}^{n} \hat{y}_i e_i = 0$.

4. Distribution theory

The simple linear regression model for a response variable y and a regressor variable x based on observations $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ can be written as

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

where ϵ_i is a random variable such that $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$, i = 1, 2, ..., n and ϵ_i 's are independent.

Assume further that ϵ_i 's are normally distributed.

The following results are true:

- (i) $\hat{\beta}_1$ follows the normal distribution with mean $E(\hat{\beta}_1)$ and variance $Var(\hat{\beta}_1)$.
- (ii) $\hat{\beta}_0$ follows the normal distribution with mean $E(\hat{\beta}_0)$ and variance $Var(\hat{\beta}_0)$.
- (iii) $\frac{(n-2)MS_{Res}}{\sigma^2}$ follows the χ^2 distribution with n-2 degrees of freedom where $E(MS_{Res}) = \sigma^2$ [:: linear model theory]
- (iv) $\hat{\beta}_1$ and MS_{Res} are independent. [:: linear model theory]
- (v) $\hat{\beta}_0$ and MS_{Res} are independent. [::linear model theory]
- (vi) $\frac{\hat{\beta}_1 \beta_1}{\sqrt{MS_{Res}/S_{xx}}}$ follows the t distribution with degrees of freedom n-2.
- (vii) $\frac{\hat{\beta}_0 \beta_0}{\sqrt{MS_{Res}(1/n + \bar{x}^2/S_{xx})}}$ follows the t distribution with degrees of freedom n-2.

Prove (i), (ii), (vi) and (vii). Use result (vi) to derive a 95% confidence interval for β_1 .

5. (a) Let $x_1, x_2, ..., x_n$ be a random sample from the normal distribution with mean μ and variance σ^2 . State the distribution of $\frac{(n-1)S^2}{\sigma^2}$ where S^2 is the sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$.

2

(b) The simple linear regression model for a response variable y and a regressor variable x based on observations $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ can be written as

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

where ϵ_i is a random variable such that $E(\epsilon_i)=0$, $Var(\epsilon_i)=\sigma^2, \ i=1,2,...,n$ and ϵ_i 's are independent.

Assume further that ϵ_i 's are normally distributed.

 $\frac{(n-2)MS_{Res}}{\sigma^2}$ follows the χ^2 distribution with n-2 degrees of freedom according to linear model theory. Explain why the degrees of freedom is n-2?