Computational Fluid Dynamics: Lecture 7 (ME EN 6720)

Prof. Rob Stoll

Department of Mechanical Engineering
University of Utah

Spring 2014

Parabolic Equations

Parabolic Equations:

• Equations of the form: $\frac{\partial u}{\partial t} = \alpha \nabla^2 u$

- This equation is representative of diffusion type problems
- Examples of problems dominated by diffusion:
 - -Heat transfer in a solid
 - -mass transport through porous media
 - -Couette flow
 - -Poiseuille flow
 - -laminar-fully developed flow phenomena
- Lets **examine the 1D version of this equation** and look at examples of techniques:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Explicit Schemes

Simple Explicit Method:

-using a forward in time and centered in space (FTCS) scheme we get the following algebraic equation:

algebraic equation:
$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \frac{1}{(\Delta x)^2} \left[u_{i+1}^n - 2u_i^n + u_{i-1}^n \right] \quad \text{or} \quad u_i^{n+1} = u_i^n + \frac{\alpha \Delta t}{(\Delta x)^2} \left[u_{i+1}^n - 2u_i^n + u_{i-1}^n \right]$$

$$= \Delta t \quad \frac{\text{The scheme has:}}{\bullet \text{ T.E. }} \quad \bullet \text{ diffusion number}$$

$$\bullet \text{ stability: conditioned on } d = \frac{\alpha \Delta t}{(\Delta x)^2} \leq \frac{1}{2}$$

- in general we have N-2 equations with N-2 unknowns at each time step
- for this explicit method the equations are independent. i.e. we can calculate point *i* at Δt without points *i-1* or *i-2*, etc.
- How could we improve on this (better T.E. and/or stability)?
- -Use a centered in time discretization for $\frac{\partial u}{\partial t}$ $\Rightarrow \frac{u_i^{n+1} u_i^{n-1}}{2\Delta t} = \alpha \frac{1}{(\Delta x)^2} \left[u_{i+1}^n 2u_i^n + u_{i-1}^n \right]$
- -**T.E.** \sim $O[\Delta t^2, \Delta x^2]$
- -stability: we can show that this scheme is unconditionally unstable
- -This scheme is basically useless!

Implicit Schemes

• Simple Implicit Method:

-using forward in time and centered in space:

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \frac{1}{(\Delta x)^2} \left[u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1} \right]$$

The scheme has:

- T.E. $\sim \mathbf{O}[\Delta t, \Delta x^2]$
- stability: unconditionally stable

-here we end up with:

N-2 unknownsN-2 equationsEquations are coupled

-we have to solve a systems of linear algebraic equations at each time step

Implicit Schemes

how can we improve our implicit scheme?

-average our two schemes (simple explicit and implicit)

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \left[\theta \frac{u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1}}{(\Delta x)^2} + (1 - \theta) \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{(\Delta x)^2} \right] \text{ with } 0 \le \theta \le 1$$

-for:

- θ =0 \rightarrow simple explicit method T.E.~ $O[\Delta t, \Delta x^2]$ and stability: d≤½
- θ =1 \rightarrow simple implicit method T.E.~ $O[\Delta t, \Delta x^2]$ and stability: unconditional
- $\theta = \frac{1}{2}$ **Crank-Nicolson** scheme.
- -Crank-Nicolson is one of the most popular ways to solve parabolic equations.

System of Equations

- In general for all the methods we have a system of Equations
 - •What does this system look like?

-simple implicit: $\frac{u_i^{n+1} - u_i^n}{\Delta t} = \alpha \frac{1}{(\Delta x)^2} \left[u_{i+1}^{n+1} - 2u_i^{n+1} + u_{i-1}^{n+1} \right]$

-separating known and unknown terms: $-\frac{\alpha \Delta t}{(\Delta x)^2} u_{i-1}^{n+1} + \left(1 + \frac{2\alpha \Delta t}{(\Delta x)^2}\right) u_i^{n+1} - \frac{\alpha \Delta t}{(\Delta x)^2} u_{i+1}^{n+1} = u_i^n$

or
$$b_{i}u_{i-1}^{n+1} + d_{i}u_{i}^{n+1} + a_{i}u_{i+1}^{n+1} = u_{i}^{n}$$
 where $a_{i} = b_{i} = \frac{-\alpha\Delta t}{(\Delta x)^{2}}$; $c_{i} = u_{i}^{n}$; $d_{i} = \left(1 + \frac{2\alpha\Delta t}{(\Delta x)^{2}}\right)$

-we can write this in matrix form: $(A\vec{x} = b)$

$$\begin{bmatrix} d_1 & d_1 & \cdots & d_1 \\ d_2 & a_2 & 0 & \cdots & 0 \\ b_3 & d_3 & a_3 & 0 & \cdots & 0 \\ 0 & b_4 & d_4 & a_4 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \vdots & \vdots & \vdots \\ A & \overrightarrow{X} & \overrightarrow{D} & \overrightarrow{D} & THE UNIVERSITY OF ITALES.$$

$$c_{2}^{*} = c_{2} - b_{2}u_{1}^{n+1}$$

$$c_{N-1}^{*} = c_{N-1} - a_{N-1}u_{N}^{n+1}$$

$$c_{i}^{*} = c_{i}$$

Implicit 1-D Heat Equation

Implicit Solutions to the 1-D Heat Equation:

- we need to solve: $\frac{u_i^{n+1} u_i^n}{\Delta t} = \frac{\alpha}{(\Delta x)^2} \left[u_{i+1}^{n+1} 2u_i^{n+1} + u_{i-1}^{n+1} \right]$
- we can rearrange this into:

$$b_i u_{i-1}^{n+1} + d_i u_i^{n+1} + a_i u_{i+1}^{n+1} = c_i$$
 where $a_i = b_i = -\frac{\alpha \Delta t}{(\Delta x)^2}$; $c_i = u_i$; $d_i = 1 + \frac{2\alpha \Delta t}{(\Delta x)^2}$

• This is a system of linear (dependent) equations

• we get c_2^* and c_{N-1}^* from our BCs:

$$c_{2}^{*} = c_{2} - b_{2}u_{1}^{n+1}$$

$$c_{N-1}^{*} = c_{N-1} - a_{N-1}u_{N}^{n+1}$$

$$c_{i}^{*} = c_{i}$$

Solving the System of Equations

- In general, solving a system of linear equations requires $\sim O(N^3)$ operations (Gaussian elimination)
- We have a **tridiagnol system** of equations
 - -This is a special case which can be solved very efficiently
- A few notes about the Matrix A:
 - -it is diagonally dominant: $|d_i| \ge |b_i| + |a_i|$
 - -it has positive elements in the diagonal and negative elements in the off diagonals
 - -for these conditions we have a M-matrix and a solution will always exist.
- A good way to solve this type of system is the **Thomas Algorithm**
 - (i) First we can transform the matrix into an upper-triangular matrix by:

$$d'_{i} = d_{i} - \frac{b_{i}}{d'_{i-1}} a_{i-1}$$

$$c'_{i} = c^{*}_{i} - \frac{b_{i}}{d'_{i-1}} c'_{i-1}$$
for $i = 3 \to N-1$

(ii) Now we just need to do a backwards substitution to find our values:

$$u_{N-1}^{n+1} = \frac{c'_{N-1}}{d'_{N-1}}$$

$$u_i^{n+1} = \frac{(c'_i - a_i u_{i+1}^{n+1})}{d'_i}$$
 for $i = N - 2, N - 3 \to 2$

2-D Heat Equation

- Computational cost of the Thomas Algorithm is ~O(N)
- see Ferziger page 95 for more details on the Thomas Algorithm

• 2-D Heat Equation

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \alpha \left[\frac{u_{i+1,j}^{n} - 2u_{i,j}^{n} + u_{i-1,j}^{n}}{\left(\Delta x\right)^{2}} + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{\left(\Delta y\right)^{2}} \right]$$

•T.E. $\sim \mathbf{0}[\Delta t, (\Delta x)^2, (\Delta x)^2]$

•Stability:
$$\left[\frac{\alpha \Delta t}{\left(\Delta x\right)^{2}} + \frac{\alpha \Delta t}{\left(\Delta y\right)^{2}}\right] \leq \frac{1}{2}$$

$$d_{x} \qquad d_{y}$$
-if $\Delta x = \Delta y \Rightarrow d_{x} = d_{y} \Rightarrow d \leq \frac{1}{4}$

-explicit method in **2-D is twice as restrictive as in 1-D**

Implicit 2-D Heat Equation

Implicit Scheme for 2-D heat: (simple implicit)

$$\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} = \alpha \left[\frac{u_{i+1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i-1,j}^{n+1}}{\left(\Delta x\right)^{2}} + \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{\left(\Delta y\right)^{2}} \right]$$

•We can rearrange this into: (using same idea as for 1-D)

$$a_{i,j}u_{i+1,j}^{n+1} + b_{i,j}u_{i-1,j}^{n+1} + c_{i,j}u_{i,j}^{n+1} + d_{i,j}u_{i,j-1}^{n+1} + e_{i,j}u_{i,j+1}^{n+1} = f_{i,j}$$

-if we drop the indexes and note that $b_{i,j}=d_{i,j}$ and $a_{i,j}=e_{i,j}$ (for a uniform grid) we get a Matrix looks as follows for the given 2D mesh:

Implicit 2-D Heat Equation

- •The matrix for the 2-D heat equation (with simple implicit) is a pentadiagonal matrix (in 3-D we would have even more diagonals).
- •As we add diagonals our cost (computationally) goes up considerably
- We need an alternative method

Alternating Direction Implicit (ADI): Ferziger pg 105-107

•Idea: breakup the problem into different directions:

$$-\underline{\text{x-sweep}}: \quad \frac{u_{i,j}^{n+\frac{1}{2}} - u_{i,j}^{n}}{\left(\Delta t/2\right)} = \alpha \left[\frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{\left(\Delta x\right)^{2}} + \frac{u_{i,j+1}^{n} - 2u_{i,j}^{n} + u_{i,j-1}^{n}}{\left(\Delta y\right)^{2}} \right]$$

$$-\underline{\text{y-sweep}}: \ \frac{u_{i,j}^{n+1} - u_{i,j}^{n+\frac{1}{2}}}{\left(\frac{\Delta t}{2}\right)} = \alpha \left[\frac{u_{i+1,j}^{n+\frac{1}{2}} - 2u_{i,j}^{n+\frac{1}{2}} + u_{i-1,j}^{n+\frac{1}{2}}}{\left(\Delta x\right)^2} + \frac{u_{i,j+1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j-1}^{n+1}}{\left(\Delta y\right)^2} \right]$$

This gives us two tridiagnol systems:

*
$$-d_1 u_{i-1,j}^{n+\frac{1}{2}} + (1+2d_1) u_{i,j}^{n+\frac{1}{2}} - d_1 u_{i+1,j}^{n+\frac{1}{2}} = d_2 u_{i,j+1}^n + (1-2d_2) u_{i,j}^n + d_2 u_{i,j-1}^n$$
 $d_1 = \frac{1}{2} d_x$
* $-d_2 u_{i,j-1}^{n+1} + (1+2d_2) u_{i,j}^{n+1} - d_2 u_{i,j+1}^{n+1} = d_1 u_{i-1,j}^{n+\frac{1}{2}} + (1-2d_1) u_{i,j}^{n+\frac{1}{2}} + d_1 u_{i-1,j}^{n+\frac{1}{2}}$ $d_2 = \frac{1}{2} d_y$