Memorize	not memorize
$p \vee q \equiv q \vee p$	commutative
$p \wedge q \equiv q \wedge p$	
$(p \lor q) \lor r \equiv p \lor (q \lor r)$	associative
$(p \land q) \land r \equiv p \land (q \land r)$	
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	distributive
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
$p \vee \neg p \equiv T$	negation
$p \land \neg p \equiv F$	
$\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's law
$\neg (p \land q) \equiv \neg p \lor \neg q$	
$\neg(\neg p) \equiv p$	double negation
$p \lor p \equiv p$	idempotent
$p \wedge p \equiv p$	
$p \wedge T \equiv p$	identity
$p \vee F \equiv p$	
$p \vee T \equiv T$	domination
$p \wedge F \equiv F$	
$p{\to}q \equiv \neg p \lor q$	implication law