import the library ¶

```
In [1]: import os
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set()
    %matplotlib inline

import warnings
warnings.filterwarnings('ignore')
```

import dataset

```
In [2]: USAHousing = pd.read_csv('USA_Housing.csv')
USAHousing.head()
```

Out[2]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price	Address
0	79545.45857	5.682861	7.009188	4.09	23086.80050	1.059034e+06	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.64245	6.002900	6.730821	3.09	40173.07217	1.505891e+06	188 Johnson Views Suite 079\nLake Kathleen, CA
2	61287.06718	5.865890	8.512727	5.13	36882.15940	1.058988e+06	9127 Elizabeth Stravenue\nDanieltown, WI 06482
3	63345.24005	7.188236	5.586729	3.26	34310.24283	1.260617e+06	USS Barnett\nFPO AP 44820
4	59982.19723	5.040555	7.839388	4.23	26354.10947	6.309435e+05	USNS Raymond\nFPO AE 09386

To find the information about the dataset

In [3]: USAHousing.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 7 columns): Column Non-Null Count Dtype _____ ----0 Avg. Area Income 4990 non-null float64 1 Avg. Area House Age 5000 non-null float64 Avg. Area Number of Rooms float64 4995 non-null Avg. Area Number of Bedrooms 4994 non-null float64 Area Population 5000 non-null float64 5 Price 5000 non-null float64 5000 non-null Address object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [4]: USAHousing.describe()

Out[4]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	4990.000000	5000.000000	4995.000000	4994.000000	5000.000000	5.000000e+03
mean	68584.719991	5.977222	6.987693	3.981874	36163.516039	1.232073e+06
std	10651.192423	0.991456	1.005938	1.234497	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61481.465105	5.322283	6.299156	3.140000	29403.928700	9.975771e+05
50%	68797.671885	5.970429	7.002940	4.050000	36199.406690	1.232669e+06
75%	75779.145465	6.650808	7.665622	4.490000	42861.290770	1.471210e+06
max	107701.748400	9.519088	10.759588	6.500000	69621.713380	2.469066e+06

Dropping the "Avg. Area Number of Bedrooms" as it is not significant because we already have "Avg. Area Number of Rooms"

In [5]: USAHousing=USAHousing.drop(["Avg. Area Number of Bedrooms"],axis=1)

Data Preprocessing

Missing value treatement

```
In [6]: USAHousing.isnull().sum()
Out[6]: Avg. Area Income
                                      10
        Avg. Area House Age
                                       0
                                       5
        Avg. Area Number of Rooms
        Area Population
                                       0
        Price
                                       0
        Address
                                       0
        dtype: int64
In [7]: USAHousing.isnull().sum()/len(USAHousing)*100
Out[7]: Avg. Area Income
                                      0.2
        Avg. Area House Age
                                      0.0
        Avg. Area Number of Rooms
                                      0.1
        Area Population
                                      0.0
        Price
                                      0.0
        Address
                                      0.0
        dtype: float64
```

Check outlier and then will decide whether we have to use mean or median approach

```
In [8]: sns.boxplot(y = 'Avg. Area Income', data=USAHousing)
plt.show()
```



```
In [9]: USAHousing['Avg. Area Income'] = USAHousing['Avg. Area Income'].fillna(USAHousing
In [10]: sns.boxplot(y = 'Avg. Area Number of Rooms', data=USAHousing)
          plt.show()
              11
              10
           Avg. Area Number of Rooms
               9
               8
               7
               6
               5
               4
               3
In [11]: USAHousing['Avg. Area Number of Rooms'] = USAHousing['Avg. Area Number of Rooms'
In [12]: USAHousing.isnull().sum()
Out[12]: Avg. Area Income
                                         0
          Avg. Area House Age
                                         0
          Avg. Area Number of Rooms
                                         0
                                         0
          Area Population
          Price
                                         0
          Address
                                         0
          dtype: int64
```

Encoding concept

```
In [13]: USAHousing.head(2)
```

Out[13]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Area Population	Price	Address
0	79545.45857	5.682861	7.009188	23086.80050	1059033.558	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
1	79248.64245	6.002900	6.730821	40173.07217	1505890.915	188 Johnson Views Suite 079\nLake Kathleen, CA

```
In [14]: USAHousing['Address'] = USAHousing['Address'].astype('category')
USAHousing['Address'] = USAHousing['Address'].cat.codes
```

Before proceding further e need to chek if "Address" column is significant or not through ANOVA Testing

ANOVA Testing - two way or multiple way anova

As we can conclude P value is greator than 0.5, the column is non-significant we can rop it.

```
In [ ]:
```

Address is non-significant variable to predict USA Housing price. hence, we have to drop this variable

```
In [16]: USAHousing = USAHousing.iloc[:,0:-1]
```

In [17]: USAHousing.head()

Out[17]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Area Population	Price
0	79545.45857	5.682861	7.009188	23086.80050	1.059034e+06
1	79248.64245	6.002900	6.730821	40173.07217	1.505891e+06
2	61287.06718	5.865890	8.512727	36882.15940	1.058988e+06
3	63345.24005	7.188236	5.586729	34310.24283	1.260617e+06
4	59982.19723	5.040555	7.839388	26354.10947	6.309435e+05

Handling outlier


```
In [20]: USAHousing.columns
```

```
In [21]: Q1 = USAHousing.quantile(0.25)
Q3 = USAHousing.quantile(0.75)
IQR = Q3 - Q1

pos_outlier = Q3 + 1.5 * IQR

neg_outlier = Q1 - 1.5 * IQR
```

```
In [22]: print(Q1)
        print("****************5)
        print(Q3)
        print("*******************5)
        print(IQR)
        print("*******************5)
        print(pos outlier)
        print("*****************5)
        print(neg_outlier)
        Avg. Area Income
                                  61485.150192
        Avg. Area House Age
                                      5.322283
        Avg. Area Number of Rooms
                                      6.299692
        Area Population
                                  29403.928700
        Price
                                 997577.135075
        Name: 0.25, dtype: float64
        *************************
        Avg. Area Income
                                 7.576652e+04
        Avg. Area House Age
                                 6.650808e+00
        Avg. Area Number of Rooms
                                 7.665281e+00
        Area Population
                                 4.286129e+04
        Price
                                 1.471210e+06
        Name: 0.75, dtype: float64
        ************************
        Avg. Area Income
                                  14281.368910
        Avg. Area House Age
                                      1.328525
        Avg. Area Number of Rooms
                                      1.365589
        Area Population
                                  13457,362070
        Price
                                 473633.069425
        dtype: float64
                    ****************
        Avg. Area Income
                                 9.718857e+04
        Avg. Area House Age
                                 8.643597e+00
        Avg. Area Number of Rooms
                                 9.713664e+00
        Area Population
                                 6.304733e+04
        Price
                                 2.181660e+06
        dtype: float64
        ************************
        Avg. Area Income
                                  40063.096827
        Avg. Area House Age
                                      3.329495
        Avg. Area Number of Rooms
                                      4.251308
        Area Population
                                   9217.885595
        Price
                                 287127.530937
        dtype: float64
        ***********************************
In [23]: new df = USAHousing.copy()
```

```
localhost:8888/notebooks/Desktop/Data Science/Test/Shubham Singh EDA/USA Housing Price data/USA Housing Price.ipynb#
```

```
In [24]: income q1 = new df['Avg. Area Income'].quantile(0.25)
         income q3 = new df['Avg. Area Income'].quantile(0.75)
         income iqr = income q3 - income q1
         income upper = income q3 + 1.5 * income igr
         income lower = income q1 - 1.5 * income iqr
In [25]: new df['Avg. Area Income'] = np.where(new df['Avg. Area Income'] > income upper,
                                               np.where(new_df['Avg. Area Income'] < income</pre>
                                                      new df['Avg. Area Income']) )
In [26]: | age_q1 = new_df['Avg. Area House Age'].quantile(0.25)
         age q3 = new df['Avg. Area House Age'].quantile(0.75)
         age iqr = age q3 - age q1
         age upper = age q3 + 1.5 * age iqr
         age_lower = age_q1 - 1.5 * age_iqr
In [27]: new_df['Avg. Area House Age'] = np.where(new_df['Avg. Area House Age'] > age_uppe
                                               np.where(new_df['Avg. Area House Age'] < age
                                                      new df['Avg. Area House Age']) )
In [28]: room q1 = new df['Avg. Area Number of Rooms'].quantile(0.25)
         room q3 = new df['Avg. Area Number of Rooms'].quantile(0.75)
         room iqr = room q3 - room q1
         room_upper = room_q3 + 1.5 * room_iqr
         room lower = room_q1 - 1.5 * room_iqr
In [29]: new_df['Avg. Area Number of Rooms'] = np.where(new_df['Avg. Area Number of Rooms')
                                               np.where(new df['Avg. Area Number of Rooms'
                                                      new df['Avg. Area Number of Rooms'])
In [30]: |pop_q1 = new_df['Area Population'].quantile(0.25)
         pop q3 = new df['Area Population'].quantile(0.75)
         pop iqr = pop q3 - pop q1
         pop upper = pop q3 + 1.5 * pop iqr
         pop_lower = pop_q1 - 1.5 * pop_iqr
In [31]: new df['Area Population'] = np.where(new df['Area Population'] > pop upper,pop upper.
                                               np.where(new df['Area Population'] < pop_low</pre>
                                                      new df['Area Population']) )
```



```
In [33]: new_df.head(2)
```

Out[33]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Area Population	Price
0	79545.45857	5.682861	7.009188	23086.80050	1059033.558
1	79248.64245	6.002900	6.730821	40173.07217	1505890.915

Spliting the data into independent variable and dependent variable

```
In [34]: x = new_df.iloc[:,0:-1]
y = new_df['Price']
```

```
In [35]: x.head()
```

Out[35]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Area Population
0	79545.45857	5.682861	7.009188	23086.80050
1	79248.64245	6.002900	6.730821	40173.07217
2	61287.06718	5.865890	8.512727	36882.15940
3	63345.24005	7.188236	5.586729	34310.24283
4	59982.19723	5.040555	7.839388	26354.10947

```
In [36]: y.head()
```

Out[36]: 0

- 0 1.059034e+06
- 1 1.505891e+06
- 2 1.058988e+06
- 3 1.260617e+06
- 4 6.309435e+05

Name: Price, dtype: float64

Feture Scaling

Only done on Independend variable

```
In [37]: from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    sc_x = sc.fit_transform(x)
    pd.DataFrame(sc_x)
```

Out[37]:

	0	1	2	3
0	1.036382	-0.298541	0.021620	-1.325622
1	1.008309	0.025747	-0.256381	0.407049
2	-0.690457	-0.113082	1.523179	0.073326
3	-0.495800	1.226822	-1.398967	-0.187484
4	-0.813869	-0.949376	0.850726	-0.994293
4995	-0.758470	1.877474	-0.849064	-1.350917
4996	0.936679	1.035210	-0.410236	-1.069131
4997	-0.491501	1.290004	-2.179585	-0.293363
4998	-0.055437	-0.448985	0.142416	0.655755
4999	-0.291006	0.015012	-0.194947	1.048775

5000 rows × 4 columns

Finding correlation

```
In [38]: plt.figure(figsize=(20,15))
    corr = new_df.corr()
    sns.heatmap(corr, annot=True, cmap='coolwarm')
    plt.show()
```


VIF - Variance Inflation Factor - to check multicollinearity

```
In [39]: variable = sc_x
variable.shape
Out[39]: (5000, 4)
```

```
In [40]: from statsmodels.stats.outliers_influence import variance_inflation_factor
    variable = sc_x

vif = pd.DataFrame()

vif['Variance Inflation Factor'] = [variance_inflation_factor(variable, i ) for i
    vif['Features'] = x.columns
```

A variance inflation factor (VIF) is a measure of the amount of multicollinearity in regression analysis. Multicollinearity exists when there is a correlation between multiple independent variables in a multiple regression model.

```
In [41]: vif
Out[41]:
Variance Inflation Factor Features
```

	Variance Inflation Factor	Features
0	1.000335	Avg. Area Income
1	1.000432	Avg. Area House Age
2	1.000214	Avg. Area Number of Rooms
3	1.000537	Area Population

Split the data into training and test for building the model and for prediction

```
In [42]: from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_
    print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
    (3750, 4) (1250, 4) (3750,) (1250,)
```

Building Linear Regression Model

```
In [43]: from sklearn.linear_model import LinearRegression
lm = LinearRegression()
lm.fit(x_train, y_train)

Out[43]: LinearRegression()
```

Predict house price by using linear Regression model with test dataset

```
In [45]:
         y_pred_price = lm.predict(x_test)
         y_pred_price_train = lm.predict(x_train)
In [46]: y_pred_price
Out[46]: array([1258927.55438276, 818030.31383002, 1745948.45303454, ...,
                1119387.19935068, 717217.37633985, 1516456.6242839 ])
In [47]: y_test
Out[47]: 1718
                 1.251689e+06
         2511
                 8.730483e+05
         345
                 1.696978e+06
         2521
                 1.063964e+06
         54
                 9.487883e+05
         1881
                 1.727211e+06
         2800
                 1.707270e+06
         1216
                 1.167450e+06
         1648
                 7.241217e+05
         3063
                 1.561234e+06
         Name: Price, Length: 1250, dtype: float64
```

Validate the actual price of the test data and predicted price

OLS Method

In [50]: from statsmodels.regression.linear_model import OLS
import statsmodels.regression.linear_model as smf

In [51]: reg_model = smf.OLS(endog = y_train, exog=x_train).fit()

In [52]: reg_model.summary()

Out[52]:

OLS Regression Results

Dep. Variable:PriceR-squared (uncentered):0.964Model:OLSAdj. R-squared (uncentered):0.964Method:Least SquaresF-statistic:2.513e+04Date:Tue, 18 Jul 2023Prob (F-statistic):0.00

Time: 17:13:50 Log-Likelihood: -51813.

No. Observations: 3750 **AIC:** 1.036e+05

Df Residuals: 3746 **BIC:** 1.037e+05

Df Model: 4

Covariance Type: nonrobust

std err P>|t| [0.025 0.975] coef Avg. Area Income 10.2138 0.314 32.572 0.000 9.599 10.829 Avg. Area House Age 4.928e+04 3477.982 14.169 0.000 4.25e+04 5.61e+04 Avg. Area Number of Rooms -8043.4871 3213.779 -2.503 0.012 -1.43e+04 -1742.559 **Area Population** 8.5551 0.382 22.388 0.000 7.806 9.304

 Omnibus:
 0.318
 Durbin-Watson:
 1.997

 Prob(Omnibus):
 0.853
 Jarque-Bera (JB):
 0.368

 Skew:
 -0.002
 Prob(JB):
 0.832

 Kurtosis:
 2.952
 Cond. No.
 7.91e+04

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The condition number is large, 7.91e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Checking linearity

In [53]: plt.scatter(y_test, y_pred_price)

Out[53]: <matplotlib.collections.PathCollection at 0x29144fd7700>

Checking Normality of Residual

Concluding this model

Adj. R-squared (uncentered): 0.964

All variable is statically significant (p <= 0.05)

No bias and variance found

Assumptions

- 1) Linearity Satisfied
- 2) Normality of Residuals-Satisfied
- 3) Homoscedasticity Satisfied (there is no outlier and residual is normaly distributed)

By using sklearn linear model

training accuracy: 91.6%

test accuracy = 91.3%

Lasso regularization

Test Accuracy: 0.9136094231024974

```
In [56]: from sklearn.linear_model import Lasso
    lasso = Lasso(alpha=0.1)
    lasso.fit(x_train, y_train)
    print("Lasso Model :", (lasso.coef_))

Lasso Model : [2.17361817e+01 1.65748364e+05 1.22571580e+05 1.52958076e+01]

In [57]: y_pred_train_lasso = lasso.predict(x_train)
    y_pred_test_lasso = lasso.predict(x_test)

In [58]: print("Training Accuracy :", r2_score(y_train, y_pred_train_lasso))
    print()
    print("Test Accuracy :", r2_score(y_test, y_pred_test_lasso))

Training Accuracy : 0.9164810029817745
```

Ridge Regression (L2- Regularization)

```
In [59]:
    from sklearn.linear_model import Ridge
    ridge = Ridge(alpha=0.3)
    ridge.fit(x_train, y_train)
    print("Ridge Model :", (ridge.coef_))

Ridge Model : [2.17361606e+01 1.65734410e+05 1.22561619e+05 1.52958135e+01]

In [60]: y_pred_train_ridge = ridge.predict(x_train)
    y_pred_test_ridge = ridge.predict(x_test)

In [61]: print("Training Accuracy :", r2_score(y_train, y_pred_train_ridge))
    print()
    print("Test Accuracy :", r2_score(y_test, y_pred_test_ridge))

    Training Accuracy : 0.9164810006924011

    Test Accuracy : 0.9136091673700831

In []:
```

ElasticNet

```
In [62]: from sklearn.linear_model import ElasticNet
    elastic = ElasticNet(alpha=0.3, l1_ratio=0.1)
    elastic.fit(x_train, y_train)

Out[62]: ElasticNet(alpha=0.3, l1_ratio=0.1)

In [63]: y_pred_train_elastic = elastic.predict(x_train)
    y_pred_test_elastic = elastic.predict(x_test)

In [64]: print("Training Accuracy :", r2_score(y_train, y_pred_train_elastic))
    print()
    print("Test Accuracy :", r2_score(y_test, y_pred_test_elastic))

    Training Accuracy : 0.9006377625329316

    Test Accuracy : 0.8957612813811744

In []:
```

Performance matrix

Mean Absolute Error (MAE)

Mean Absolute Percent Error (MAPE)

Mean Squared Error (MSE)

Root Mean Squared Error (RMSE)

Gradient Descent

```
In [ ]:
```

```
In [70]: from sklearn.model selection import train test split
         x_train, x_test, y_train, y_test = train_test_split(sc_x, y, test_size=0.25, rand
         print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
         (3750, 4) (1250, 4) (3750,) (1250,)
In [ ]:
In [71]: | from sklearn.linear_model import SGDRegressor
In [72]: |gd model = SGDRegressor()
         gd_model.fit(x_train, y_train)
Out[72]: SGDRegressor()
In [73]: y_pred_gd_train = gd_model.predict(x_train)
         y_pred_gd_test = gd_model.predict(x_test)
In [74]: print("GD Trainging Accuracy :", r2_score(y_train, y_pred_gd_train))
         print()
         print("GD Test Accuracy :", r2_score(y_test, y_pred_gd_test))
         GD Trainging Accuracy : 0.9164489870225674
         GD Test Accuracy : 0.9136865188216712
 In [ ]:
```