Politecnico di Bari

Complementi di Analisi Matematica

Laurea Ingegneria Informatica e Automazione

A.A. 2016/2017 Appello 6 novembre 2017 Traccia A

Cogr	nome	Nome	N° Matricola	
Programma:		precedente AA 2014/2015 \square	da AA 2014/2015 in poi \square	
1)	Enunciare e dime	controvo una versiona del teorema gullo trac	formata di Laplace della derivata	
1)	Enunciare e dime	ostrare una versione del teorema sulla tras	formata di Lapiace dena derivata	<u>.</u> .
D				5 pts.
Per	gli anni accademic	i precedenti al 2014/2015, si sostituisca l'	esercizio 1) con il seguente:	
1)	Dimostrare che se A	e una serie di funzioni converge totalment	e su un insieme A allora converge uniforme	emente su
				5 pts.
2)	Determinare l'ins	sieme di convergenza puntuale per la serie	di potenze in \mathbb{R} :	
		$\sum_{n=1}^{+\infty} \frac{n \log n}{n^2 + 1} (x$	$(1)^n$.	
				7 pts.
3)	Calcolare			
		$\int_{C^+(3,2)} \frac{\operatorname{Log}}{(z-3)}$	$\frac{(0)z}{(-i)^3} dz$	
	dove $C^+(3,2)$ è la	a circonferenza di centro 3 e raggio 2, orie	ntata positivamente.	
				6 pts.
4)	Enunciare e dimo	ostrare il teorema di Hermite-Liouville.		
				5 pts.
5)	Usando il metodo	o dei residui, calcolare		
		$\int_{-\infty}^{+\infty} \frac{e^{-it}}{1+it}$	$\frac{d}{dt}$	
				6 pts.
6)	Calcolare la serie	e di soli seni della funzione $f(x) = x^2, x \in$	[0,1]. Usando tale serie stabilire che	
		$\frac{1}{8} + 4 \sum_{h=0}^{+\infty} \frac{(-1)^h}{\pi^3 (2h+1)^3}$	$= \sum_{h=0}^{+\infty} \frac{(-1)^h}{\pi(2h+1)}.$	

7 pts.