

Name:	
Student ID:	

Assignment #7: Hashing

- 1. Write the hash table from a given dataset {12, 90, 73, 3, 26, 61, 48, 42, 88} using the division method as a hash function.
- 1.1 The hash table size is set to 13 and, in case the collision occurs, the linear probing should be used.

Key	Data
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

1.2 The hash table size is set to 11 and, in case the collision occurs, the chaining should be used.

Key	Data
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

ASCII code is the numerical representation of a character.

ASCII Table

Decimal	65	66	67	68	69	70	71	72	73	74	75	76	77	78
Character	Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Z
Decimal	79	80	81	82	83	84	85	86	87	88	89	90		
Character	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z		

- 2. Write the hash table from a given dataset {D, A, C, K, G, H, F, S, E, 64} using the division method as a hash function.
- 2.1 The hash table size is set to 11 and, in case the collision occurs, the linear probing should be used.

Key	Data
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

2.2 The hash table size is set to 11 and, in case the collision occurs, the quadratic probing should be used.

Key	Data
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

3.	What is t	he m	nain di	sadvantage (of linear p	robing in co	llision re	esolu	tion?
4.	List the	two	main	differences	between	sequential	search	and	binary
	search.								