Laboratorio 4 de álgebra lineal

Semana 11

1. Al inicio de los siguientes enunciados escribe una V si es verdadero y F si es falso.

_____Si T es una transformación lineal, entonces T(x + y) = Tx + Ty.

_____Si T es una transformación lineal, entonces T(xy) = TxTy.

Si A es una matriz de 5×6 , entonces Tx = Ax es una transformación lineal de \mathbb{R}^5 en \mathbb{R}^6 .

____Si A es una matriz de 5×6 , entonces Tx = Ax es una transformación lineal de \mathbb{R}^6 en \mathbb{R}^5 .

____Si T es una transformación lineal, entonces T(4x) = 4T(x).

2. Determine si la transformación de V en W dada es lineal.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^1; T\begin{pmatrix} x \\ y \end{pmatrix} = x$$

b)
$$T: \mathbb{R}^3 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$$

c)
$$T: \mathbb{R}^4 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+z \\ y+w \end{pmatrix}$$

d)
$$T: \mathbb{R}^4 \to M_{22}; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x & z \\ y & w \end{pmatrix}$$

3. Sea T una transformación lineal de $\mathbb{R}^2 \to \mathbb{R}^3$ tal que $T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ y $T \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 0 \\ 5 \end{pmatrix}$.

Encuentre:

a)
$$T\binom{2}{4}$$

b)
$$T\begin{pmatrix} -3\\ 7 \end{pmatrix}$$

Semana 12

1. En los siguientes ejercicios encuentra el núcleo, la imagen, rango y nulidad de la transformación lineal dada. Recuerda que $T(x) = A_T x$.

a)
$$T: \mathbb{R}^3 \to \mathbb{R}^2; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} z \\ y \end{pmatrix}$$

b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - z \\ y + z \\ x - y \end{pmatrix}$$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ 2x+2y+2z \end{pmatrix}$

2. En los siguientes ejercicios encuentre la representación matricial A_T de la transformación lineal T, nu T, im T, v(T) y $\rho(T)$. Suponga que B_1 y B_2 son bases canónicas.

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3; T {x \choose y} = {x+y \choose x-y \choose 2x+3y}$$

b) $T: \mathbb{R}^3 \to \mathbb{R}^2; T {x \choose y} = {x-y+z \choose -2x+2y-2z}$

c)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
; $T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x + 2y + z \\ 2x - 4y - 2z \\ -3x + 6y + 3z \end{pmatrix}$

Semana 13

Determina si las siguientes transformaciones lineales son un isomorfismo (1-1, sobre):

a)
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
; $T {x \choose y} = {x+y \choose x-y \choose 2x+3y}$

b)
$$T: \mathbb{R}^3 \to P_2$$
, $T\binom{a}{b} = (a+b) + (a-b+c)x + cx^2$

c)
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
; $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5x - 2y \\ 3x + y \end{pmatrix}$

d)
$$T: \mathbb{R}^3 \to \mathbb{R}^3; T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + 4y - 6z \\ 5y - 2z \\ 9z \end{pmatrix}$$