EAFIT UNIVERSITY IT AND SYSTEMS DEPARTMENT CHOICE OF THE PROJECT Third report

Objective: Implementation of the numerical methods seen until this point in the semester, including the additional ones.

Course: Numerical analysis.

Teacher: Edwar Samir Posada Murillo.

Semester: 2020-2.

Due date for the Third report: Wednesday November 11.

Project name: Numerical views. Project Repository: Link Repo

Members:

Mariana Ramírez Duque (marami21@eafit.edu.co)

Nicolás Roldán Ramírez (nroldanr@eafit.edu.co)

Mateo Sánchez Toro (msanchezt@eafit.edu.co)

Maria Cristina Castrillon (Mcastri6@eafit.edu.co)

Report description: We will write the pseudocode of each method followed by an example execution. The code can be found on the repository link cited above

1 Methods:

Gaussian Elimination with partial pivot Gaussian Elimination with total pivot

Fixed Point

```
Algorithm 1: Incremental search
    input: f: function to find root of,
              X0: first root approximation,
              Delta: delta(x),
              N: maximum number of iterations,
    if (y=0) then
        x0 is root;
    else
        x1 \leftarrow [x0 \ delta]
        y1 \leftarrow [f(x1)]
       counter \leftarrow [1]
    while y1 * y0 > 0 and counter < n do do
        x0 \leftarrow [x1]
        y0 \leftarrow [y1]
        x1 \leftarrow [x0 + delta]
       y1 \leftarrow [f(x1)]
      counter \leftarrow counter + 1
    if (y1==0) then
        x1 is root;
    else
        if (y1 * y0 < 0) then
           [x0,x1] define an interval;
         | print("didn't find interval in N iterations")
```

```
Algorithm 2: Bisection
```

```
input: xi: lower limit of the interval,
          xs: the upper range,
          f: function to find,
          N: maximum number of iterations,
          tol: tolerance,
yi \leftarrow f(xi)
ys \leftarrow f(xs)
if (yi==0) then
   print("xi is root")
else
    if (ys==0) then
       print("xs is root")
else
    if (yi * ys > 0) then
       print("Inappropriate range")
else
    xm \leftarrow (xi + xs)/2
    ym \leftarrow f(xm)
   error \leftarrow tol + 1
   counter \leftarrow [1]
while ymf = 0 and (error > tol)and(contador < n \ do \ do
(yi * ym > 0) xi \leftarrow xm, yi \leftarrow ym
else
    xs \leftarrow xm, ys \leftarrow ym
   xaux \leftarrow xm
    xm \leftarrow xi + xs/2
    ym \leftarrow f(xm)
    error \leftarrow xm - xaux
  counter \leftarrow +1
if (ym == 0) then
   print("xm is root")
else
    if (error < tol) then
       print("Xm is root with an error equal to error")
else
 | print("The method failed")
```

```
Algorithm 3: False Rule
```

```
input: a: lower limit of the interval,
          b: the upper range,
          f: function to find,
          N: maximum number of iterations,
          tol: tolerance,
ya \leftarrow f(a)
yb \leftarrow f(b)
if (ya==0) then
   print("a is root")
else
    if (yb==0) then
       print("b is root")
else
    if (ya * yb > 0) then
       print("Inappropriate range")
else
   p \leftarrow a - f(a) * (b - a)/f(b) - f(a)
   yp \leftarrow f(p)
   error \leftarrow tol + 1
  counter \leftarrow [1]
while ypf = 0 and (error > tol)and(contador < n \ do \ do
(ya * yp > 0) a \leftarrow p, ya \leftarrow yp
else
   b \leftarrow p, yb \leftarrow yp
   paux \leftarrow p
   p \leftarrow a - f(a) * (b - a)/f(b) - f(a)
   yp \leftarrow f(p)
    error \leftarrow p - paux
 \_counter \leftarrow +1
if (yp == 0) then
   print("p is root")
else
    if (error < tol) then
       print("p is root with an error equal to error")
 | print("The method failed")
```

```
Algorithm 4: Multiple roots
```

```
input: f: function to find root of,
           fprime: derivative of f,
           f2prime: second derivative of f,
           tol: error tolerance,
           N: maximum number of iterations,
           X0: first root approximation
output: root approximation x
x \leftarrow x0
fun \leftarrow (x)
funprime \leftarrow fprime(x)
\text{fun2prime} \leftarrow f2prime(x)
error \leftarrow infinity
for i \leftarrow 0 to N do
    if error \leq tol(i,i) = 0 then
     | break;
    error \leftarrow xx \leftarrow x0
    fun \leftarrow f(x)
    funprime \leftarrow fprime(x)
    \text{fun2prime} \leftarrow f2prime(x)
    error \leftarrow infinity
    error \leftarrow abs(error - x)
```

Algorithm 5: Gaussian elimination

```
input: nxn matrix A, column vector b
output: solution vector x

if (A \text{ is not square}) \text{ or (size of } A \text{ and size of } b \text{ are not computable)} then

| break;
if det(A) = 0 then
| break;
A \leftarrow [A b]
for i \leftarrow 1 to n - 1 do

| if \bar{A}(i,i) = 0 then
| fund l such that \bar{A}(l,i) \neq 0;
| swith \bar{A}(i) and \bar{A}(l)
for j \leftarrow i + 1 to n do
| multiplier M_{j,i} \leftarrow \frac{\bar{A}(j,i)}{\bar{A}(i,i)}
| \bar{A}_j \leftarrow \bar{A}_J - M_{j,i} * \bar{A}_i

x \leftarrow \text{susreg}(\bar{A})
```

Algorithm 6: Gaussian elimination with partial pivot

```
input: square n x n matrix A, n vector b
output: solution vector x

if det(A) == 0 then

| break;

for i \leftarrow 1 to n-1 do

| champion \leftarrow i

| for j \leftarrow champion + 1 to n-1 do

| if abs(A(j,i)) == abs(A(champion,i)) then
| | champion \leftarrow i

| Swap row in A(champion) with A(i)

| Swap value in b(champion) with b(i)

| for j \leftarrow i + 1 to n-1 do

| multiplicand \leftarrow \frac{A(j,i)}{A(i,i)}
| A_j \leftarrow A_J - M_{j,i} * A_i

| x \leftarrow susreg(A)
```

Algorithm 7: Gaussian elimination with total pivot

```
input: square n x n matrix A, n vector b
output: solution vector x
if det(A) == 0 then
   break;
posStamp \leftarrow [from0ton - 1]for i \leftarrow 1 to n - 1 do
   row \leftarrow i
   col \leftarrow i
    for j \leftarrow row to n-1 do
       for k \leftarrow col to n-1 do
           if abs(A(i,j)) == abs(A(row,col)) then
           | \text{row} \leftarrow i \text{ col} \leftarrow j
   if col != i then
       Swap column A(,col) with A(,i) Swap value in posStamp(col) with
        posStamp(i)
    if col != i then
       Swap row A(row) with A(i) Swap value in b(row) with b(i)
   for j \leftarrow i + 1 to n - 1 do
     x \leftarrow \text{susreg}(A)
Sort x using posStamp
```

```
Algorithm 8: Fixed Point

input : f(x), g(x), x0, tol, N

output: The approximate root

Define variables

int i = 0;

double x = 0;

Start While (AbsoluteValue (f (x)); = tol i = N)

x = g(x);
i + + ;

End While

Start if (AbsoluteValue (f (x)) i= tol i = N)

print "Root:" + x;
else
```

Algorithm 9: Secant

End if

print "Not possible to obtain root"

```
input: iter, xi, f(xi),E
output: The approximate root
I = f(X_0)
If I = 0 Then
Show: "Xo is Root"
Y1 = f(X1)
Counter = 0
Error = Tolerance + 1
While
X2 = X1 - ((Y1 * (X1 X0)) / Den)
Error = Abs ((X2 - X1) / X2)
Xo = X1
I = Y1
X1 = X2
Y1 = f(X1)
Counter = Counter + 1
End while
If Y1 = 0 Then
Show: "X1 is Root"
Otherwise If Error Tolerance Then
Show: "X1 'is an approximate root with a tolerance' Tolerance"
Otherwise If Den = 0 Then
Show: 'There is possibly a multiple root'
```

```
Algorithm 10: Newton
```

```
input : f(x), g(x), x0, tol, N
output: The approximate root
if fx == 0:
return the root
end if
if dfun == 0:
return Error, derivative cannot be 0.
end if
counter = 0
error = tolerance + 1
while error; tol and fx! = 0 and dfx! = 0 and counter jiterations:
xn = xi - (fx / dfx)
fx = fun.evaluate2 (xn)
dfx = dfun.evaluate2 (xn)
end while
if type_error == 0:
error = - xn-xi -
else:
error = - (xn-xi) / xn -
end if
xi = xn
counter +1
if fx == 0:
return xi is root
elif error ¡tol:
return xn is an approximation to a root with a tolerance"
elif dfx == 0:
return xn is a possible multiple root
else:
return The method failed in n iterations
end if
```

Extra method Aikten

Extra method Steffensen

Algorithm 11: Extra method Aikten

Algorithm 12: Extra method Steffensen

```
input : function f, float tolerance, integer maxIterations, float approximation output: root of f

x0 \leftarrow approximation
x1 \leftarrow f(x0)
x2 \leftarrow f(x1)
x3 \leftarrow aiktkenEcuation(x0, x1, x2)
for i \leftarrow 1 to maxIterations do

| if abs(x0 - x3) j = tolerance then
| break;
| x0 \leftarrow x1
| x1 \leftarrow x2
| x2 \leftarrow f(i+3)
| x3 \leftarrow aiktkenEcuation(x0, x1, x2)
| x \leftarrow x3
```

Algorithm 13: Extra method Muller

input: function f, root approximation 1 x0, root approximation 2 x1, root

approximation 3 x2, tolerance tol, Maximum number of iterations N

```
output: root approximation
h1 = x1 - x0
h2 = x2 - x1
t1 = (f(x1) - f(x0))/h1
t2 = (f(x2) - f(x1))/h2
d = (t2 - t1)/(h2 + h1)
for i \leftarrow 3 to N do
   b = t2 + h2 * d
   D = (b^2 - 4 * f(x2) * d)^{1/2}
   if abs(b-D) < abs(b+D) then
    E = b + D;
   else
    E = b - D
   h = (-2 * f(x2))/E
   e = x
   x = x2 + h
   e = abs(e - x)
   if abs(e) \leq tol) then
    | break;
   x0 = x1
   x1 = x2
   x2 = x
   h1 = x1 - x0
   h2 = x2 - x1
   t1 = (f(x1) - f(x0))/h1
   t2 = (f(x2) - f(x1))/h2
   d = (t2 - t1)/(h2 + h1)
```

Vandermonde

input: x, y

Algorithm 14: Vandermonde

```
output: Polynomial coefficients, Vandermonde polynom Repeat Repeat A(j,i)=X(j)**(n-i) until(j < n) until(i < n) print: (Reverse A)*y
```

Newton Divided difference

Algorithm 15: Newton Divided difference

```
input: vector x0, x1, ...xn, vector values f(x0); a point to evaluate output: Divided differences F0,0 ...Fn,n

Step 1

for i=0,...,n do

\subseteq Set Fi,0= f(Xi)

Step 2

for i=1,...,n do

\subseteq for j=1,2,....i do

\subseteq Set Fi,j= ((Fi,j-1) - (Fi-1,j-1))/(Xi-Xi-j)

\subseteq End;

Output (F0,0...,Fi,i,...Fn,n)

STOP
```

Algorithm 16: Lagrange

```
input: vector x0, x1, ...xn, vector values f(x0); a point to evaluate output: P Lagrange polynomial P(x) evaluated at z

Step 1

Initialize variables. Set P z equal zero. Set n to the number of pairs of points (x, y). Set L to be the all ones vector of length n

Step 2

for i=1,2,....n do

Step 3

for j=1,2,....i do

Step 4

if i=j then Li=(z-Xj)/(Xi-Xj)*Li then

break;

Step 5

Pz= (Li*yi+Pz))

Step 6 Output Pz. STOP
```

Algorithm 17: Neville

```
input : Numbers x0, x1, ...xn, values f(x0), f(x1)...f(xn)

output: the table Q with p(x)=Qn,n

Step 1

for i=1,2,....n do

for j=1,2,....i do

Set Q(ij)=((x-xi-j)Qi,j-1-(x-xi)Qi-1,j-1)/(xi-xi-j)

Step 2

Output(Q);

STOP
```

Simple LU

```
Algorithm 18: Simple LU
```

```
input: nxn matrix A, column vector b
output: solution vector x

if (A is not square) or (size of A and size of b are not computable) then

| break;

if det(A) = 0 then

| break;

A \leftarrow LU

z \leftarrow progresiveSustitution([L b])

x \leftarrow RegressiveSustitution([U z])
```

Partial Pivoting LU SOR Gauss-Seidel Jacobi

2 Pruebas

Incremental search

Algorithm 19: Partial Pivoting LU

```
input: nxn matrix A, column vector b
output: solution vector x

if (A \text{ is not square}) \text{ or (size of } A \text{ and size of } b \text{ are not computable)} then

| break;

if det(A) = 0 then

| break;

PA \leftarrow LU

z \leftarrow progresiveSustitution([L P*b])

x \leftarrow RegressiveSustitution([U z])
```

Algorithm 20: SOR

err = error

```
input: nxn matrix A, column vector b, initial approximation X0, weighing factor
          w, tolerance, maximum interations Nmax
output: solution vector x, final number of iterations iter, error err
A \leftarrow D - L - U
T \leftarrow (D - w * L)^{-1} * ((1 - w) * D + w * U)
C \leftarrow w * (D - w * L)^{-1} * b
xant \leftarrow x0
count \leftarrow 0
error = 100
while error > tolerance and counter < nmax do
   xact = T * xant + C
   error = norm(xant - xact)
   xant = xact;
  cont = cont + 1;
x = xact
iter = cont
```

Algorithm 21: Gauss-Seidel

input: nxn matrix A, column vector b, initial aproximation X0, weighing factor w, tolerance, maximum interations Nmax

output: solution vector x, final number of iterations iter, error err

```
\begin{array}{l} A \leftarrow D - L - U \\ T \leftarrow (D - L)^{-1} * U) \\ C \leftarrow (D - L)^{-1} * b) \\ xant \leftarrow x0 \\ count \leftarrow 0 \\ error = 100 \\ \textbf{while} \ \ error > tolerance \ and \ counter < nmax \ \textbf{do} \\ & xact = T * xant + C \\ & error = norm(xant - xact) \\ & xant = xact; \\ & cont = cont + 1; \\ x = xact \\ & iter = cont \\ err = error \end{array}
```

Algorithm 22: Jacobi

input: nxn matrix A, column vector b, initial aproximation X0, weighing factor w, tolerance, maximum interations Nmax

output: solution vector x, final number of iterations iter, error err

```
\begin{array}{l} A \leftarrow D - L - U \\ T \leftarrow (D)^{-1} * (L + U) \\ C \leftarrow (D)^{-1} * b \\ xant \leftarrow x0 \\ count \leftarrow 0 \\ error = 100 \\ \textbf{while} \ error > tolerance \ and \ counter < nmax \ \textbf{do} \\ & xact = T * xant + C \\ & error = norm(xant - xact) \\ & xant = xact; \\ & cont = cont + 1; \\ x = xact \\ & iter = cont \\ err = error \end{array}
```

INCREMENTAL SEARCHES

```
Results:
There is a root of f in [-2.5, -2.0]
There is a root of f in [-1.0, -0.5]
There is a root of f in [ 0.5 , 1.0 ]
There is a root of f in [ 2.0 , 2.5 ]
There is a root of f in [ 4.0 , 4.5
There is a root of f in [ 5.0 , 5.5 ]
There is a root of f in [ 7.0 , 7.5
There is a root of f in [ 8.0 , 8.5
There is a root of f in [ 10.0 , 10.5 ]
There is a root of f in [ 11.5 , 12.0 ]
There is a root of f in [ 13.5 , 14.0
There is a root of f in [ 14.5 , 15.0
There is a root of f in [ 16.5 , 17.0
There is a root of f in [ 17.5 , 18.0
There is a root of f in [ 19.5 , 20.0
There is a root of f in [ 21.0 , 21.5
There is a root of f in [ 22.5 , 23.0
There is a root of f in [ 24.0 , 24.5
There is a root of f in [ 26.0 , 26.5
There is a root of f in [ 27.0 , 27.5
There is a root of f in [ 29.0 , 29.5
There is a root of f in [ 30.0 , 30.5
There is a root of f in [ 32.0 , 32.5
There is a root of f in [ 33.5 , 34.0
There is a root of f in [ 35.0 , 35.5
There is a root of f in [ 36.5 , 37.0
There is a root of f in [ 38.5 , 39.0
There is a root of f in [ 39.5 , 40.0
There is a root of f in [ 41.5 , 42.0
There is a root of f in [ 43.0 , 43.5
There is a root of f in [ 44.5 , 45.0
There is a root of f in [ 46.0 , 46.5 ]
>>>
```

Bisection

BISECTION

Results:							
	iter	a	xm	b	f(Xm)	E	
	1.0	0.50000000000	0.75000000000	1.000000000000	-0.11839639385	0.25000000000	
	2.0	0.75000000000	0.87500000000	1.000000000000	-0.03681769076	0.12500000000	
	3.0	0.87500000000	0.93750000000	1.000000000000	0.00063391616	0.06250000000	
	4.0	0.87500000000	0.90625000000	0.93750000000	-0.01777228923	0.03125000000	
	5.0	0.90625000000	0.92187500000	0.93750000000	-0.00848658221	0.01562500000	
	6.0	0.92187500000	0.92968750000	0.93750000000	-0.00390535863	0.00781250000	
	7.0	0.92968750000	0.93359375000	0.93750000000	-0.00163043812	0.00390625000	
	8.0	0.93359375000	0.93554687500	0.93750000000	-0.00049693532	0.00195312500	
	9.0	0.93554687500	0.93652343750	0.93750000000	0.00006882244	0.00097656250	
	10.0	0.93554687500	0.93603515625	0.93652343750	-0.00021397351	0.00048828125	
	11.0	0.93603515625	0.93627929688	0.93652343750	-0.00007255479	0.00024414062	
	12.0	0.93627929688	0.93640136719	0.93652343750	-0.00000186098	0.00012207031	
	13.0	0.93640136719	0.93646240234	0.93652343750	0.00003348203	0.00006103516	
	14.0	0.93640136719	0.93643188477	0.93646240234	0.00001581085	0.00003051758	
	15.0	0.93640136719	0.93641662598	0.93643188477	0.00000697501	0.00001525879	
	16.0	0.93640136719	0.93640899658	0.93641662598	0.00000255703	0.00000762939	
	17.0	0.93640136719	0.93640518188	0.93640899658	0.00000034803	0.00000381470	
	18.0	0.93640136719	0.93640327454	0.93640518188	-0.00000075648	0.00000190735	
	19.0	0.93640327454	0.93640422821	0.93640518188	-0.00000020422	0.00000095367	
	20.0	0.93640422821	0.93640470505	0.93640518188	0.00000007190	0.00000047684	
	21.0	0.93640422821	0.93640446663	0.93640470505	-0.00000006616	0.00000023842	
	22.0	0.93640446663	0.93640458584	0.93640470505	0.00000000287	0.00000011921	
	23.0	0.93640446663	0.93640452623	0.93640458584	-0.00000003164	0.00000005960	

0.9364045262336731 is root with tol: 5.960464477539063e-08

Figure 2: Proof of Bisection

False Rule

FALSE RULE Results: f(Xm) | 0.00005875601 | iter xm | 0.93650605167 | 1.0 0.93394038072 | 0.93394038072 | 0.00256567095 1.000000000000 0.00010132092 2.0 0.93640473074 0.93650605167 0.00000008678 0.93640473074 0.00000000013 3.0 0.93394038072 0.93640458110 0.00000014964 0.000000000022 4.0 | 0.93394038072 | 0.93640458088 0.93640458110 0.00000000000

0.936404580879889 is root with tol: 2.2098023411132317e-10

Figure 3: Proof of False Rule

Multiple roots

```
Raices multiples
                            f(xi)
        -2.342106e-01 |
                         2.540578e-02 |
                                         1.234211e+00
        -8.458280e-03 |
                          3.56706le-05 |
                                          2.426689e-01
        -1.189018e-05 |
                         7.068790e-11 |
                                           8.470170e-03
        -4.218591e-11 | 0.000000e+00 |
                                         1.189023e-05
        -4.218591e-11 | 0.000000e+00 |
                                          8.437181e-11
A root approximation was found at -4.218590698935789e-11
```

Figure 4: Proof of Gaussian Elimination

```
\{2.0, -1.0, 0.0, 3.0, 1.0\}
{1.0, 0.5, 3.0, 8.0, 1.0}
\{0.0, 13.0, -2.0, 11.0, 1.0\}
{14.0, 5.0, -2.0, 3.0, 1.0}
Phase 1
{14.0, 5.0, -2.0, 3.0, 1.0}
{1.0, 0.5, 3.0, 8.0, 1.0}
\{0.0, 13.0, -2.0, 11.0, 1.0\}
{2.0, -1.0, 0.0, 3.0, 1.0}
{14.0, 5.0, -2.0, 3.0, 1.0}
\{0.0,\ 0.1428571428571428571429,\ 3.14285714285714285714285714285714286,\ 0.9285714285714286\}
\{0.0, 13.0, -2.0, 11.0, 1.0\}
\{0.0, -1.7142857142857142857142, 0.2857142857142857, 2.5714285714285716, 0.8571428571428572\}
Phase 2
{14.0, 5.0, -2.0, 3.0, 1.0}
{0.0, 13.0, -2.0, 11.0, 1.0}
{0.0, 0.1428571428571429, 3.142857142857143, 7.785714285714286, 0.9285714285714286}
\{0.0, -1.7142857142857142857142, 0.2857142857142857, 2.5714285714285716, 0.8571428571428572\}
{14.0, 5.0, -2.0, 3.0, 1.0}
{0.0, 13.0, -2.0, 11.0, 1.0}
{0.0, 0.0, 3.1648351648351647, 7.664835164835164, 0.9175824175824177}
{0.0, 2.220446049250313E-16, 0.021978021978021955, 4.021978021978022, 0.989010989010989}
Phase 3
{14.0, 5.0, -2.0, 3.0, 1.0}
{0.0, 13.0, -2.0, 11.0, 1.0}
{0.0, 0.0, 3.1648351648351647, 7.664835164835164, 0.9175824175824177}
{0.0, 2.220446049250313E-16, 0.021978021978021955, 4.021978021978022, 0.989010989010989}
{14.0, 5.0, -2.0, 3.0, 1.0}
{0.0, 13.0, -2.0, 11.0, 1.0}
{0.0, 0.0, 3.1648351648351647, 7.664835164835164, 0.9175824175824177}
{0.0, 2.220446049250313E-16, 0.0, 3.96875, 0.9826388888888889}
{14.0, 5.0, -2.0, 3.0, 1.0}
{0.0, 13.0, -2.0, 11.0, 1.0}
{0.0, 0.0, 3.1648351648351647, 7.664835164835164, 0.9175824175824177}
{0.0, 2.220446049250313E-16, 0.0, 3.96875, 0.9826388888888889}
Answers (0.03849518810148731, -0.18022747156605426, -0.30971128608923887, 0.24759405074365706)
```

Figure 5: Proof Partial Pivot

```
{2.0, -1.0, 0.0, 3.0, 1.0}
{1.0, 0.5, 3.0, 8.0, 1.0}
\{0.0, 13.0, -2.0, 11.0, 1.0\}
{14.0, 5.0, -2.0, 3.0, 1.0}
Phase 1
{11.0, 13.0, -2.0, 0.0, 1.0}
{8.0, 0.5, 3.0, 1.0, 1.0}
{3.0, -1.0, 0.0, 2.0, 1.0}
{3.0, 5.0, -2.0, 14.0, 1.0}
{11.0, 13.0, -2.0, 0.0, 1.0}
{0.0, -8.954545454545455, 4.454545454545455, 1.0, 0.2727272727272727}
{0.0, -4.545454545454545, 0.5454545454545454, 2.0, 0.7272727272727273}
\{0.0, 1.454545454545455, -1.4545454545454546, 14.0, 0.727272727272727273\}
Phase 2
{11.0, 0.0, -2.0, 13.0, 1.0}
{0.0, 14.0, -1.4545454545454546, 1.4545454545455, 0.7272727272727273}
{0.0, 2.0, 0.545454545454545454, -4.5454545454545, 0.7272727272727273}
{11.0, 0.0, -2.0, 13.0, 1.0}
{0.0, 14.0, -1.4545454545454545454545, 1.45454545455, 0.7272727272727273}
{0.0, 0.0, 0.7532467532467532, -4.753246753246753, 0.6233766233766234}
{0.0, 0.0, 4.558441558441559, -9.058441558441558, 0.22077922077922077}
Phase 3
{11.0, 0.0, 13.0, -2.0, 1.0}
{0.0, 14.0, 1.454545454545455, -1.45454545454546, 0.7272727272727273}
{0.0, 0.0, -9.058441558441558, 4.558441558441559, 0.22077922077922077}
{0.0, 0.0, -4.753246753246753, 0.7532467532467532, 0.6233766233766234}
{11.0, 0.0, 13.0, -2.0, 1.0}
{0.0, 14.0, 1.454545454545455, -1.45454545454546, 0.7272727272727273}
\{0.0, 0.0, -9.058441558441558, 4.558441558441559, 0.22077922077922077\}
\{0.0, 0.0, 0.0, -1.6387096774193548, 0.5075268817204301\}
{11.0, 0.0, 13.0, -2.0, 1.0}
{0.0, 14.0, 1.454545454545455, -1.45454545454546, 0.7272727272727273}
\{0.0, 0.0, -9.058441558441558, 4.558441558441559, 0.22077922077922077\}
\{0.0, 0.0, 0.0, -1.6387096774193548, 0.5075268817204301\}
Answers (0.03849518810148732, -0.18022747156605426, -0.30971128608923887, 0.24759405074365706)
```

Figure 6: Proof Total Pivot

```
Eliminaci�n Gaussiana Simple
Etapa 0
                  3.
[[ 2.
       -1.
             0.
                        1. ]
[ 1.
        0.5 3.
                  8.
                        1. ]
 [ 0.
       13.
            -2.
                        1. ]
                 11.
        5.
                       1. ]]
 [14.
            -2.
                  3.
Etapa 1
[[ 2.
         -1.
                0.
                      3.
                             1. ]
         1.
                3.
                      6.5
                             0.5]
[ 0.
         13.
               -2.
                             1. ]
                     11.
                            -6.]]
[
   0.
         12.
               -2.
                    -18.
Etapa 2
[[ 2.
         -1.
                0.
                             1. ]
                      3.
    0.
          1.
               3.
                      6.5
                             0.5]
    0.
          0.
              -41.
                     -73.5 -5.5]
    0.
          0.
              -38.
                    -96. -12. ]]
Etapa 3
                                      3.
[[ 2.
              -1.
                           0.
                                                  1.
                                                          ]
                                                          ]
                                                  0.5
[ 0.
               1.
                           3.
                                      6.5
[ 0.
               0.
                         -41.
                                    -73.5
                                                 -5.5
[ 0.
               0.
                                    -27.878049
                                                 -6.902439]]
                           0.
Despu�s de sustituci�n regresiva:
x:
[[ 0.03849519]
[-0.18022747]
 [-0.30971128]
[ 0.24759405]]
```

Figure 7: Proof of Gaussian Elimination

Muller Method

```
Muller method

iter| x0 | x1 | x2 | Root | E

0 | -1.000000e+00 | 0.000000e+00 | 1.000000e+00 | |

1 | -1.000000e+00 | 0.000000e+00 | 1.000000e+00 | -2.220446e-16 |

2 | 0.000000e+00 | 1.000000e+00 | -2.220446e-16 | 0.000000e+00

A root aproximation was found at -2.220446049250313e-16
```

Figure 8: Proof of Muller Method

Fixed Point

```
iter xi g(xi) f(xi) E
0 -0.5 -0.6842068330717285 -0.2931087267313766 0.10000010000000001
1 -0.6842068330717285 -0.6999584211588118 -0.16388637436010217 0.18420683307172847
2 -0.6999584211588118 -0.6964329939682882 -0.15288781535493412 0.015751588087083324
3 -0.6964329939682882 -0.6972792521639637 -0.15534454046026097 0.0035254271905236223
4 -0.6972792521639637 -0.697079089789521 -0.1547545467399959 0.00084625819567552
5 -0.697079089789521 -0.6971266036840224 -0.15489408050278758 0.00020016237444264728
6 -0.6971266036840224 -0.6971153345307346 -0.1548609575705832 4.751389450130539e-05
7 -0.6971153345307346 -0.6971180078402816 -0.1548688134852106 1.1269153287751799e-05
8 -0.6971180078402816 -0.6971173736982946 -0.15486694987383254 2.6733095469522183e-06
9 -0.6971173736982946 -0.6971175241262941 -0.15486739194527666 6.34141986921577e-07
10 -0.6971175241262941 -0.69711748844261 -0.15486728707928488 1.5042799950126806e-07
-0.69711748844261 is an aproximation with tolerance of 1e-07 and after 11 iterations
```

Figure 9: Proof of Fixed Point

Secant

```
Iter xi f(xi) E
0 0.5 -0.2931087267313766
1 1 0.03536607938024017
2 0.946166222306525 0.005619392737863826 0.05383377769347497
3 0.9359965807911726 -0.00023632217470054284 0.010169641515352379
4 0.9364070023767038 1.4022358909571153e-06 0.00041042158553117325
5 0.9364045814731196 3.4371649970665885e-10 2.420903584265943e-06
6 0.9364045808795615 -4.996003610813204e-16 5.935580915661376e-10
0.9364045808795624 is the root
```

Figure 10: Proof of Secant

Newton

```
Iter xi f(xi) E
0 0.5 -0.2931087267313766 1.0000001
1 0.9283919899125719 -0.004662157097372055 0.4283919899125719
2 0.9363667412673313 -2.1912619882713535e-05 0.007974751354759446
3 0.9364045800189902 -4.98339092214195e-10 3.783875165885853e-05
0.9364045808795621 its an aproximation to a root with a tolerance of 1e-07
```

Figure 11: Proof of Newton

Doolitle

```
24 [0.5251077877274448, 0.25545768216313536, -0.41047969902650905, -0.2816585612350974]
25 [0.5251083414671069, 0.25545801583827094, -0.4104799594870898, -0.281658892623501]
26 [0.5251086734271935, 0.25545821587239254, -0.4104801156299903, -0.2816590912867551]
27 [0.5251088724331645, 0.25545833579037724, -0.41048020923573025, -0.2816592103829217]
28 [0.5251089917347855, 0.25545840767972766, -0.41048026535121496, -0.28165928177960226]
29 [0.5251090632546336, 0.25545845077650514, -0.4104802989917548, -0.28165932458103016]
30 [0.5251091061298989, 0.25545847661249077, -0.41048031915884275, -0.2816593502399575]
```

Figure 12: Proof of Doolitle

Jacobi

```
42
       1.5e-06
                  0.525106 0.255457 -0.410479
                                                 -0.281657
43
       1.1e-06
                  0.525107 0.255457 -0.410479
                                                 -0.281658
44
                  0.525107 0.255457 -0.410479
       8.7e-07
                                                 -0.281658
45
       6.5e-07
                  0.525108 0.255458
                                      -0.410480
                                                  -0.281658
       4.9e-07
                  0.525108 0.255458
                                                  -0.281659
46
                                      -0.410480
47
       3.7e-07
                  0.525108 0.255458 -0.410480
                                                 -0.281659
48
       2.8e-07
                  0.525109 0.255458 -0.410480
                                                 -0.281659
49
       2.1e-07
                  0.525109 0.255458
                                     -0.410480
                                                 -0.281659
50
       1.6e-07
                  0.525109 0.255458
                                      -0.410480
                                                 -0.281659
51
       1.2e-07
                  0.525109 0.255458
                                      -0.410480
                                                 -0.281659
52
       9.0e-08
                  0.525109 0.255458
                                      -0.410480
                                                  -0.281659
```

Figure 13: Proof of Jacobi

Vandermonde

```
Vandermonde Matrix:
[[-1. 1. -1. 1.]
          0.
 [ 0.
      0.
              1.]
 [27. 9.
          3.
              1.]
 [64. 16.
          4.
             1.]]
Polynomial coefficients: [-1.1417 5.825 -5.5333
                                                        1
                                                   3.
Vandermonde polynom:
-1.1416666666666666 *x^ 3 +
5.82499999999999 *x^ 2 +
-5.53333333333333 *x^ 1 +
```

Figure 14: Proof of Vandermonde

Newton Divided Difference

```
Newton's polynomial coefficients:
[ 15.5
         -12.5
                    3.5417 -1.1417]
Newton's Divided Difference Table
[[ 15.5
            0.
                     0.
    3.
           -12.5
                     0.
                              0.
            1.6667
                    3.5417
   8.
                              0.
           -7.
                   -2.1667 -1.1417]]
Newton's polynom:
-1.1416666666667*x*(x - 3.0)*(x + 1.0) + 3.54166666666667*x*(x + 1.0) - 12.5*x
+ 3.0
Newton's simple polynom::
-1.1416666666667*x**3 + 5.825*x**2 - 5.533333333333*x + 3.0
```

Figure 15: Proof of Newton Divided Difference

Lagrange

```
Lagrange interpolating polynomials:

L0 -0.05*x**3 + 0.35*x**2 - 0.6*x

L1 0.083333333333333*x**3 - 0.5*x**2 + 0.416666666666667*x + 1.0

L2 -0.083333333333333*x**3 + 0.25*x**2 + 0.3333333333333*x

L3 0.05*x**3 - 0.1*x**2 - 0.15*x

Lagrange polynom

15.5*L0+3.0*L1+8.0*L2+1.0*L3
```

Figure 16: Proof of Lagrange

Spline Linear

Lineal tracers coefficients -12.5 <-> 3.0 1.66667 <-> 3.0 -7.0 <-> 29.0 Lineal tracers 3.0 - 12.5*x 1.6666666666666667*x + 3.0 29.0 - 7.0*x

Figure 17: Proof of Spline Linear

Spline Square

Cuadratic tracers coefficients 0.0 <-> -12.5 <-> 3.0 4.72222 <-> -12.5 <-> 3.0 -22.83333 <-> 152.83333 <-> -245.0 Cuadratic tracers 3.0 - 12.5*x 4.722222222222222*x**2 - 12.5*x + 3.0 -22.8333333333333*x**2 + 152.833333333333*x - 245.0

Figure 18: Proof of Spline Square

Spline Cubic

```
Cubic tracers coefficients

2.53333 <-> 7.6 <-> -7.43333 <-> 3.0
-1.52222 <-> 7.6 <-> -7.43333 <-> 3.0
2.03333 <-> -24.4 <-> 88.56667 <-> -93.0

Cubic tracers

2.533333333333333*x***3 + 7.6*x**2 - 7.433333333333*x + 3.0
-1.5222222222222*x**3 + 7.6*x**2 - 7.433333333333*x + 3.0
2.0333333333333*x**3 - 24.4*x**2 + 88.566666666667*x - 93.0
```

Figure 19: Proof of Spline Cubic

Neville

```
[[15.5, None, None, None], [3.0, 3.0 - 12.5*x, None, None], [8.0, 1.666666666666667*x + 3.0, -0.25*(3.0 - 12.5*x)*(x - 3.0) + 0.25*(x + 1.0)*(1.6666666666667*x + 3.0), None], [1.0, 29.0 - 7.0*x, 0.25*x*(29.0 - 7.0*x) - 0.25*(x - 4.0)*(1.6666666666666667*x + 3.0), -0.2*(x - 4.0)*(-0.25*(3.0 - 12.5*x)*(x - 3.0) + 0.25*(x + 1.0)*(1.666666666666667*x + 3.0)) + 0.2*(x + 1.0)*(0.25*x*(29.0 - 7.0*x) - 0.25*(x - 4.0)*(1.6666666666666667*x + 3.0))]] -1.1416666666666667*x**3 + 5.825*x**2 - 5.533333333333333*x + 3.0
```

Figure 20: Proof of Neville