Causal Bandits: Learning Good Interventions via Causal Inference

Anonymous Author(s)

Affiliation Address email

Abstract

We study the problem of using causal models to improve the rate at which good interventions can be learned online in a stochastic environment. Our formalism combines multi-arm bandits and causal inference to model a novel type of bandit feedback that is not exploited by existing approaches. We propose a new algorithm that exploits the causal feedback and prove a bound on its simple regret that is strictly better (in all quantities) than algorithms that do not use the additional causal information.

8 1 Introduction

33

Medical drug testing, policy setting, and other scientific processes are commonly framed and analysed in the language of sequential experimental design and, in special cases, as bandit problems (Robbins, 10 1952; Chernoff, 1959). In this framework, single actions (also referred to as interventions) from a 11 12 pre-determined set are repeatedly performed in order to evaluate their effectiveness via feedback from 13 a single, real-valued reward signal. We propose a generalisation of the standard model by assuming that, in addition to the reward signal, the learner observes the values of a number of covariates drawn 14 from a probabilistic causal model (Pearl, 2000). Causal models are commonly used in disciplines 15 where explicit experimentation may be difficult such as social science, demography and economics. 16 For example, when predicting the effect of changes to childcare subsidies on workforce participation, 17 or school choice on grades. Results from causal inference relate observational distributions to 18 interventional ones, allowing the outcome of an intervention to be predicted without explicitly 19 performing it. By exploiting the causal information we show, theoretically and empirically, how 20 non-interventional observations can be used to improve the rate at which high-reward actions can be 21 identified. 22

The type of problem we are concerned with is best illustrated with an example. Consider a farmer 23 wishing to optimise the yield of her crop. She knows that crop yield is only affected by temperature, 24 a particular soil nutrient, and moisture level but the precise effect of their combination is unknown. In each season the farmer has enough time and money to intervene and control at most one of these variables: deploying shade or heat lamps will set the temperature to be low or high; the nutrient 27 can be added or removed through a choice of fertilizer; and irrigation or rain-proof covers will keep 28 the soil wet or dry. When not intervened upon, the temperature, soil, and moisture vary naturally 29 from season to season due to weather conditions and these are all observed along with the final crop 30 yield at the end of each season. How might the farmer best experiment to identify the single, highest 31 yielding intervention in a limited number of seasons? 32

Contributions We take the first step towards formalising and solving problems such as the one above. In §2 we formally introduce *causal bandit problems* in which interventions are treated as arms in a bandit problem but their influence on the reward — along with any other observations

is assumed to conform to a known causal graph. We show that our causal bandit framework
 subsumes the classical bandits (no additional observations) and contextual stochastic bandit problems
 (observations are revealed before an intervention is chosen) before focusing on the case where, like
 the above example, observations occur *after* each intervention is made.

Our focus is on the simple regret, which measures the difference between the return of the optimal 40 action and that of the action chosen by the algorithm after T rounds. In §3 we analyse a specific 41 family of causal bandit problems that we call parallel bandit problems in which N factors affect the reward independently and there are 2N possible interventions. We propose a simple causal best arm 43 identification algorithm for this problem and show that up to logarithmic factors it enjoys minimax 44 optimal simple regret guarantees of $\Theta(\sqrt{m/T})$ where m depends on the causal model and may 45 be much smaller than N. In contrast, existing best arm identification algorithms suffer $\Omega(\sqrt{N/T})$ 46 simple regret (Thm. 4 by Audibert and Bubeck (2010)). This shows theoretically the value of our 47 framework over the traditional bandit problem. Experiments in §5 further demonstrate the value of 48 causal models in this framework.

In the general casual bandit problem interventions and observations may have a complex relationship. In §4 we propose a new algorithm inspired by importance-sampling that a) enjoys sub-linear regret equivalent to the optimal rate in the parallel bandit setting and b) captures many of the intricacies of sharing information in a causal graph in the general case. As in the parallel bandit case, the regret guarantee scales like $O(\sqrt{m/T})$ where m depends on the underlying causal structure, with smaller values corresponding to structures that are easier to learn. The value of m is always less than the number of interventions N and in the special case of the parallel bandit (where we have lower bounds) the notions are equivalent.

Related Work As alluded to above, causal bandit problems can be treated as classical multi-armed bandit problems by simply ignoring the causal model and extra observations and applying an existing best-arm identification algorithm with well understood simple regret guarantees (Jamieson et al., 2014). However, as we show in §3, ignoring the extra information available in the non-intervened variables yields sub-optimal performance.

A well-studied class of bandit problems with side information are "contextual bandits" Langford and Zhang (2008); Agarwal et al. (2014). Our framework bears a superficial similarity to contextual bandit problems since the extra observations on non-intervened variables might be viewed as context for selecting an intervention. However, a crucial difference is that in our model the extra observations are only revealed *after* selecting an intervention and hence cannot be used as context.

69

70

71

72

73

74

75

76 77

78

79

80

81

82

There have been several proposals for bandit problems where extra feedback is received after an action is taken. Most recently, Alon et al. (2015), Kocák et al. (2014) have considered very general models related to partial monitoring games (Bartók et al., 2014) where rewards on unplayed actions are revealed according to a feedback graph. As we discuss in §6, the parallel bandit problem can be captured in this framework, however the regret bounds are not optimal in our setting. They also focus on cumulative regret, which cannot be used to guarantee low simple regret (Bubeck et al., 2009). The partial monitoring approach taken by Wu et al. (2015) could be applied (up to modifications for the simple regret) to the parallel bandit, but the resulting strategy would need to know the likelihood of each factor in advance, while our strategy learns this online. Yu and Mannor (2009) utilize extra observations to detect changes in the reward distribution, whereas we assume fixed reward distributions and use extra observations to improve arm selection. Avner et al. (2012) analyse bandit problems where the choice of arm to pull and arm to receive feedback on are decoupled. The main difference from our present work is our focus on simple regret and the more complex information linking rewards for different arms via causal graphs. To the best of our knowledge, our paper is the first to analyse simple regret in bandit problems with extra post-action feedback.

Two pieces of recent work also consider applying ideas from causal inference to bandit problems.

Bareinboim et al. (2015) demonstrate that in the presence of confounding variables the value that a

variable would have taken had it not been intervened on can provide important contextual information.

Their work differs in many ways. For example, the focus is on the cumulative regret and the context is observed before the action is taken and cannot be controlled by the learning agent.

Ortega and Braun (2014) present an analysis and extension of Thompson sampling assuming actions are causal interventions. Their focus is on causal induction (*i.e.*, learning an unknown causal model)

instead of exploiting a known causal model. Combining their handling of causal induction with our
 analysis is left as future work.

The truncated importance weighted estimators used in §4 have been studied before in a causal framework by Bottou et al. (2013), where the focus is on learning from observational data, but not controlling the sampling process. They also briefly discusses some of the issues encountered in sequential design, but do not give an algorithm or theoretical results for this case.

96 2 Problem Setup

We now introduce a novel class of stochastic sequential decision problems which we call *causal* 97 bandit problems. In these problems, rewards are given for repeated interventions on a fixed causal 98 model Pearl (2000). Following the terminology and notation in Koller and Friedman (2009), a causal 99 model is given by a directed acyclic graph \mathcal{G} over a set of random variables $\mathcal{X} = \{X_1, \dots, X_N\}$ 100 and a joint distribution P over \mathcal{X} that factorises over \mathcal{G} . We will assume each variable only takes on a finite number of distinct values. An edge from variable X_i to X_j is interpreted to mean that a change in the value of X_i may directly cause a change to the value of X_j . The parents of a variable 103 X_i , denoted $\mathcal{P}a_{X_i}$, is the set of all variables X_j such that there is an edge from X_j to X_i in \mathcal{G} . An intervention or action (of size n), denoted $do(\mathbf{X} = \mathbf{x})$, assigns the values $\mathbf{x} = \{x_1, \dots, x_n\}$ to the 104 105 corresponding variables $X = \{X_1, \dots, X_n\} \subset \mathcal{X}$ with the empty intervention (where no variable is 106 set) denoted do(). The intervention also "mutilates" the graph $\mathcal G$ by removing all edges from $\mathcal Pa_i$ 107 to X_i for each $X_i \in X$. The resulting graph defines a probability distribution $P\{X^c|do(X=x)\}$ 108 over $X^c := \mathcal{X} - X$. Details can be found in Chapter 21 of Koller and Friedman (2009). 109

A learner for a casual bandit problem is given the casual model's graph $\mathcal G$ and a set of *allowed actions* $\mathcal A$. One variable $Y \in \mathcal X$ is designated as the *reward variable* and takes on values in $\{0,1\}$. We denote the expected reward for the action $a = do(\boldsymbol X = \boldsymbol x)$ by $\mu_a := \mathbb E\left[Y|do(\boldsymbol X = \boldsymbol x)\right]$ and the optimal expected reward by $\mu^* := \max_{a \in \mathcal A} \mu_a$. The causal bandit game proceeds over T rounds. In round t, the learner *intervenes* by choosing $a_t = do(\boldsymbol X_t = \boldsymbol x_t) \in \mathcal A$ based on previous observations. It then observes sampled values for all non-intervened variables $\boldsymbol X_t^c$ drawn from $P\left\{\boldsymbol X_t^c|do(\boldsymbol X_t = \boldsymbol x_t)\right\}$, including the *reward* $Y_t \in \{0,1\}$. After T observations the learner outputs an estimate of the optimal action $\hat a_T^* \in \mathcal A$ based on its prior observations.

The objective of the learner is to minimise the simple regret $R_T = \mu^* - \mathbb{E}\left[\mu_{\hat{a}_T^*}\right]$. This is sometimes referred to as a "pure exploration" (Bubeck et al., 2009) or "best-arm identification" problem (Gabillon et al., 2012) and is most appropriate when, as in drug and policy testing, the learner has a fixed experimental budget after which its policy will be fixed indefinitely.

Although we will focus on the intervene-then-observe ordering of events within each round, other scenarios are possible. If the non-intervened variables are observed before an intervention is selected our framework reduces to stochastic contextual bandits, which are already reasonably well under-stood (Agarwal et al., 2014). Even if no observations are made during the rounds, the causal model may still allow offline pruning of the set of allowable interventions thereby reducing the complexity.

We note that classical K-armed stochastic bandit problem can be recovered in our framework by 127 considering a simple causal model with one edge connecting a single variable X that can take on K 128 values to a reward variable $Y \in \{0,1\}$ where $P\{Y = 1|X\} = r(X)$ for some arbitrary but unknown, 129 real-valued function r. The set of allowed actions in this case is $A = \{do(X = k) : k \in \{1, ..., K\}\}$. 130 Conversely, any causal bandit problem can be reduced to a classical stochastic |A|-armed bandit 131 problem by treating each possible intervention as an independent arm and ignoring all sampled values 132 for the observed variables except for the reward. Intuitively though, one would expect to perform 133 better by making use of the extra structure and observations. 134

3 Regret Bounds for Parallel Bandit

135

In this section we propose and analyse an algorithm for achieving the optimal regret in a natural special case of the causal bandit problem which we call the *parallel bandit*. It is simple enough to admit a thorough analysis but rich enough to model the type of problem discussed in §1, including the farming example. It also suffices to witness the regret gap between algorithms that make use of causal models and those which do not.

Figure 1: Causal Models

The causal model for this class of problems has N binary variables $\{X_1,\ldots,X_N\}$ where each $X_i\in\{0,1\}$ are independent causes of a reward variable $Y\in\{0,1\}$, as shown in Figure 1a. All variables are observable and the set of allowable actions are all size 0 and size 1 interventions: $\mathcal{A}=\{do()\}\cup\{do(X_i=j)\colon 1\le i\le N \text{ and } j\in\{0,1\}\}$ In the farming example from the introduction, X_1 might represent temperature (e.g., $X_1=0$ for low and $X_1=1$ for high). The interventions $do(X_1=0)$ and $do(X_1=1)$ indicate the use of shades or heat lamps to keep the temperature low or high, respectively.

In each round the learner either purely observes by selecting do() or sets the value of a single variable. The remaining variables are simultaneously set by independently biased coin flips. The value of all variables are then used to determine the distribution of rewards for that round. Formally, when not intervened upon we assume that each $X_i \sim \mathrm{Bernoulli}(q_i)$ where $\mathbf{q} = (q_1, \dots, q_N) \in [0, 1]^N$ so that $q_i = \mathrm{P}\{X_i = 1\}$. The value of the reward variable is distributed as $\mathrm{P}\{Y = 1 | \mathbf{X}\} = r(\mathbf{X})$ where $r: \{0, 1\}^N \to [0, 1]$ is an arbitrary, fixed, and unknown function. In the farming example, this choice of Y models the success or failure of a seasons crop, which depends stochastically on the various environment variables.

The Parallel Bandit Algorithm The algorithm operates as follows. For the first T/2 rounds it chooses do() to collect observational data. As the only link from each X_1,\ldots,X_N to Y is a direct, causal one, $P\{Y|do(X_i=j)\}=P\{Y|X_i=j\}$. Thus we can create good estimators for the returns of the actions $do(X_i=j)$ for which $P\{X_i=j\}$ is large. The actions for which $P\{X_i=j\}$ is small may not be observed (often) so estimates their returns could be poor. To address this, the remaining T/2 rounds are evenly split to estimate the rewards for these infrequently observed actions. The difficulty of the problem depends on q and, in particular, how many of the variables are unbalanced (i.e., small q_i or $(1-q_i)$). For $\tau \in [2...N]$ let $I_\tau = \{i : \min\{q_i, 1-q_i\} < \frac{1}{\tau}\}$. Define

$$m(\mathbf{q}) = \min \{ \tau : |I_{\tau}| < \tau \}$$
.

 I_{τ} is the set of variables considered 164 165 unbalanced and we tune τ to trade off identifying the low probability ac-166 tions against not having too many of 167 them, so as to minimize the worst-case 168 simple regret. When $q = (\frac{1}{2}, \dots, \frac{1}{2})$ 169 we have m(q) = 2 and when q =170 $(0,\ldots,0)$ we have m(q)=N. We do 171 not assume that q is known, thus Algo-172 rithm 1 also utilizes the samples cap-173 tured during the observational phase 174 to estimate m(q). Although very sim-175 ple, the following two theorems show 176 that this algorithm is effectively opti-177 178 mal.

156

157

158

159

160

161

162 163

Theorem 1. Algorithm 1 satisfies

$$R_T \in \mathcal{O}\left(\sqrt{\frac{m(\boldsymbol{q})}{T}\log\left(\frac{NT}{m}\right)}\right)$$

Algorithm 1 Parallel Bandit Algorithm

```
1: Input: Total rounds T and N.
  2: for t \in 1, ..., T/2 do
           Perform empty intervention do()
  3:
  4:
           Observe X_t and Y_t
  5: for a = do(X_i = x) \in \mathcal{A} do
           Count times X_i = x seen: T_a = \sum_{t=1}^{T/2} \mathbb{1}\{X_{t,i} = x\} Estimate reward: \hat{\mu}_a = \frac{1}{T_a} \sum_{t=1}^{T/2} \mathbb{1}\{X_{t,i} = x\} Y_t
  6:
           Estimate probabilities: \hat{p}_a = \frac{2T_a}{T}, \hat{q}_i = \hat{p}_{do(X_i=1)}
9: Compute \hat{m} = m(\hat{q}) and A = \left\{ a \in \mathcal{A} : \hat{p}_a \leq \frac{1}{\hat{m}} \right\}.
10: Let T_A := \frac{T}{2|A|} be times to sample each a \in A.
11: for a = do(X_i = x) \in A do
            for t \in 1, \ldots, T_A do
12:
                Intervene with a and observe Y_t
13:
14: Re-estimate \hat{\mu}_a = \frac{1}{T_A} \sum_{t=1}^{T_A} Y_t
15: return estimated optimal \hat{a}_T^* \in \arg\max_{a \in \mathcal{A}} \hat{\mu}_a
```

Theorem 2. For all T, q and all strategies, there exists a reward function such that

$$R_T \in \Omega\left(\sqrt{\frac{m(q)}{T}}\right)$$
.

The proofs of Theorems 1 and 2 may be found in Sections 7 and 8 respectively. By utilizing 181 knowledge of the causal structure, Algorithm 1 effectively only has to explore the m(q) 'difficult' 182 actions. Standard multi-armed bandit algorithms must explore all 2N actions and thus achieve 183 regret $\Omega(\sqrt{N/T})$. Since m is typically much smaller than N, the new algorithm can significantly 184 outperform classical bandit algorithms in this setting. In practice, you would combine the data from 185 both phases to estimate rewards for the low probability actions. We do not do so here as it slightly 186 complicates the proofs and does not improve the worst case regret. 187

Regret Bounds for General Graphs

188

194

195

196

197

198

200

201

203 204

205

206

207

208

209

211

212

213

214 215

216

217

218

219

220

We now consider the more general problem where the graph structure is known, but arbitrary. For 189 general graphs, $P\{Y|X_i=j\} \neq P\{Y|do(X_i=j)\}$ (correlation is not causation). However, if all 190 the variables are observable, any causal distribution $P\{X_1...X_N|do(X_i=j)\}$ can be expressed in 191 terms of observational distributions via the truncated factorization formula Pearl (2000). 192

$$P\left\{X_{1}...X_{N}|do(X_{i}=j)\right\} = \prod_{k\neq i} P\left\{X_{k}|\mathcal{P}a_{X_{k}}\right\} \delta(X_{i}-j),$$

where $\mathcal{P}_{\mathbf{a}_{X_k}}$ denotes the parents of X_k and δ is the dirac delta function.

We could naively generalize our approach for parallel bandits by observing for T/2 rounds, applying the truncated product factorization to write an expression for each $P\{Y|a\}$ in terms of observational quantities and explicitly playing the actions for which the observational estimates were poor. However, it is no longer optimal to ignore the information we can learn about the reward for intervening on one variable from rounds in which we act on a different variable. Consider the graph in Figure 1c and suppose each variable deterministically takes the value of its parent, $X_k = X_{k-1}$ for $k \in {2, \dots, N}$ 199 and $P\{X_1\} = 0$. We can learn the reward for all the interventions $do(X_i = 1)$ simultaneously by selecting $do(X_1 = 1)$, but not from do(). In addition, variance of the observational estimator for $a = do(X_1 = j)$ can be high even if $P\{X_i = j\}$ is large. Given the causal graph in Figure 1b, $P\{Y|do(X_2 = j)\} = \sum_{X_1} P\{X_1\} P\{Y|X_1, X_2 = j\}$. Suppose $X_2 = X_1$ deterministically, no matter how large $P\{X_2 = 1\}$ is we will never observe $(X_2 = 1, X_1 = 0)$ and so cannot get a good 202 estimate for P $\{Y|do(X_2=1)\}$.

To solve the general problem we need an estimator for each action that incorporates information obtained from every other action and a way to optimally allocate samples to actions. To address this difficult problem, we assume the conditional interventional distributions $P\{\mathcal{P}a_Y|a\}$ (but not $P\{Y|a\}$) are known. These could be estimated from experimental data on the same covariates but where the outcome of interest differed, such that Y was not included, or similarly from observational data subject to identifiability constraints. Of course this is a somewhat limiting assumption, but seems like a natural place to start. The challenge of estimating the conditional distributions for all variables in an optimal way is left as an interesting future direction. Let η be a distribution on available interventions $a \in \mathcal{A}$ so $\eta_a \geq 0$ and $\sum_{a \in \mathcal{A}} \eta_a = 1$. Define $Q = \sum_{a \in \mathcal{A}} \eta_a \operatorname{P} \{ \mathcal{P}a_Y | a \}$ to be the mixture distribution over the interventions with respect to η .

Our algorithm samples T actions from η and uses them to estimate the returns μ_a for all $a \in$ A simultaneously via a truncated importance weighted estimator. Let $\mathcal{P}a_Y(X)$ denote the realization of the variables in X that are parents of Y and define $R_a(X) = \frac{\mathrm{P}\{\mathcal{P}a_Y(X)|a\}}{\mathrm{Q}\{\mathcal{P}a_Y(X)\}}$

Algorithm 2 General Algorithm

return $\hat{a}_T^* = \arg\max_a \hat{\mu}_a$

Input: $T, \eta \in [0,1]^{\mathcal{A}}, B \in [0,\infty)^{\mathcal{A}}$ for $t \in \{1,\ldots,T\}$ do Sample action a_t from η Do action a_t and observe X_t and Y_t for $a \in \mathcal{A}$ do

$$\hat{\mu}_a = \frac{1}{T} \sum_{t=1}^{T} Y_t R_a(X_t) \mathbb{1} \{ R_a(X_t) \le B_a \} ,$$

$$\hat{\mu}_a = \frac{1}{T} \sum_{t=1}^T Y_t R_a(X_t) \mathbb{1} \{ R_a(X_t) \le B_a \}$$

where $B_a \ge 0$ is a constant that tunes the level

of truncation to be chosen subsequently. The

truncation introduces a bias in the estimator, but simultaneously chops the potentially heavy tail that is so detrimental to its concentration guarantees.

The distribution over actions, η plays the role of allocating samples to actions and is optimized to minimize the worst-case simple regret. Abusing notation we define $m(\eta)$ by

$$m(\eta) = \max_{a \in \mathcal{A}} \mathbb{E}_a \left[\frac{P\left\{ \mathcal{P}a_Y(X) | a \right\}}{Q\left\{ \mathcal{P}a_Y(X) \right\}} \right], \text{ where } \mathbb{E}_a \text{ is the expectation with respect to } P\left\{.|a\}$$

- We will show shortly that $m(\eta)$ is a measure of the difficulty of the problem that approximately coincides with the version for parallel bandits, justifying the name overloading. 229
- **Theorem 3.** If Algorithm 2 is run with $B \in \mathbb{R}^A$ given by $B_a = \sqrt{\frac{m(\eta)T}{\log(2T|A|)}}$. 230

$$R_T \in \mathcal{O}\left(\sqrt{rac{m(\eta)}{T}\log\left(2T|\mathcal{A}|\right)}\right)$$
.

The proof is in Section 9. Note the regret has the same form as that obtained for Algorithm 1, with 231 $m(\eta)$ replacing m(q). Algorithm 1 assumes only the graph structure and not knowledge of the 232 conditional distributions on X. Thus it has broader applicability to the parallel graph than the generic 233 algorithm given here. We believe that Algorithm 2 with the optimal choice of η is close to minimax optimal, but leave lower bounds for future work. 235

Choosing the Sampling Distribution Algorithm 2 depends on a choice of sampling distribution Q that is determined by η . In light of Theorem 3 a natural choice of η is the minimiser of $m(\eta)$.

$$\eta^* = \arg\min_{\eta} m(\eta) = \arg\min_{\eta} \underbrace{\max_{a \in \mathcal{A}} \mathbb{E}_a \left[\frac{P \left\{ \mathcal{P}a_Y(X) | a \right\}}{\sum_{b \in \mathcal{A}} \eta_b P \left\{ \mathcal{P}a_Y(X) | b \right\}} \right]}_{m(\eta)}.$$

Since the mixture of convex functions is convex and the maximum of a set of convex functions is 238 convex, we see that $m(\eta)$ is convex (in η). Therefore the minimisation problem may be tackled 239 using standard techniques from convex optimisation. An interpretation of $m(\eta^*)$ is the minimum 240 achievable worst-case variance of the importance weighted estimator. In the experimental section we present some special cases, but for now we give two simple results. The first shows that $|\mathcal{A}|$ serves as 243 an upper bound on $m(\eta^*)$.

Proposition 4. $m(\eta^*) \leq |\mathcal{A}|$. Proof. By definition, $m(\eta^*) \leq m(\eta)$ for all η . Let $\eta_a = 1/|\mathcal{A}| \, \forall a$. 244

$$m(\eta) = \max_{a} \mathbb{E}_{a} \left[\frac{P\left\{ \mathcal{P}a_{Y}(X) | a \right\}}{Q\left\{ \mathcal{P}a_{Y}(X) \right\}} \right] \leq \max_{a} \mathbb{E}_{a} \left[\frac{P\left\{ \mathcal{P}a_{Y}(X) | a \right\}}{\eta_{a} P\left\{ \mathcal{P}a_{Y}(X) | a \right\}} \right] = \max_{a} \mathbb{E}_{a} \left[\frac{1}{\eta_{a}} \right] = |\mathcal{A}|$$

The second observation is that, in the parallel bandit setting, $m(\eta^*) \leq 2m(q)$. This is easy to see 245 by letting $\eta_a = 1/2$ for a = do() and $\eta_a = \mathbb{I}\{P\{X_i = j\} \le 1/m(q)\}/2m(q)$ for the actions 246 corresponding to $do(X_i = j)$, and applying an argument like that for Proposition 4. The proof is in 247 Section 9.1. 248

Remark 5. The choice of B_a given in Theorem 3 is not the only possibility. As we shall see in the 249 experiments, it is often possible to choose B_a significantly larger when there is no heavy tail and 250 this can drastically improve performance by eliminating the bias. This is especially true when the ratio R_a is never too large and Bernstein's inequality could be used directly without the truncation. 252 For another discussion see the article by Bottou et al. (2013) who also use importance weighted estimators to learn from observational data. 254

Experiments

251

255

We compare Algorithms 1 and 2 with Successive Elimination on the parallel bandit problem under a 256 variety of conditions, including where the importance weighted estimator used by Algorithm 2 is not 257 truncated, which is justified in this setting by Remark 5. Throughout we use a model in which Ydepends only on a single variable X_1 (this is unknown to the algorithms). $Y_t \sim \text{Bernoulli}(\frac{1}{2} + \varepsilon)$ if $X_1=1$ and $Y_t\sim \mathrm{Bernoulli}(\frac{1}{2}-\varepsilon')$ otherwise, where $\varepsilon'=q_1\varepsilon/(1-q_1)$. This leads to an expected

(c) Simple regret vs horizon, T, with N=50, m=2 and fixed $\varepsilon=.3$

Figure 2: Experimental results

reward of $\frac{1}{2} + \varepsilon$ for $do(X_1 = 1)$, $\frac{1}{2} - \varepsilon'$ for $do(X_1 = 0)$ and $\frac{1}{2}$ for all other actions. We set $q_i = 0$ for $i \le m$ and $\frac{1}{2}$ otherwise. Note that changing m and thus q has no effect on the reward distribution.

We compare the performance of the Algorithm 1, which is specific to the parallel problem, but does not require knowledge of q, with that of Algorithm 2 and the Successive Reject algorithm of Audibert and Bubeck (2010). For each experiment, we show the average regret over 10,000 simulations with error bars displaying three standard errors.

In figure 2a we fix the number of variables N and the horizon T and compare the performance of the algorithms as m increases. The regret for the Successive Reject algorithm is constant as it depends only on the reward distribution and has no knowledge of the causal structure. For the causal algorithms it increases approximately with \sqrt{m} . As m approaches N, the gain the causal algorithms obtain from knowledge of the structure is outweighed by fact they do not leverage the observed rewards to focus sampling effort on actions with high pay-offs.

Figure 2b demonstrates the performance of the algorithms in the worst case environment for standard bandits, where the gap between the optimal and sub-optimal arms, $\varepsilon = \sqrt{N/(8T)}$, is just too small to be learned. This gap is learn-able by the causal algorithms, for which the worst case ε depends on $m \ll N$. In figure 2c we fix N and ε and observe that, for sufficiently large T, the regret decays exponentially. The decay constant is larger for the causal algorithms as they have observed a greater effective number of samples for a given T.

For the parallel bandit problem, the regression estimator used in the specific algorithm outperforms the truncated importance weighted estimator in the more general algorithm, despite the fact the specific algorithm must estimate q from the data. This is an interesting phenomenon that has been noted before in off-policy evaluation where the regression (and not the importance weighted) estimator is known to be minimax optimal asymptotically (Li et al., 2014).

6 Discussion & Future Work

Algorithm 2 for general causal bandit problems estimates the reward for all allowable interventions $a \in \mathcal{A}$ over T rounds by sampling and applying interventions from a distribution η . Theorem 3 shows that this algorithm has (up to log factors) simple regret that is $\mathcal{O}(\sqrt{m(\eta)/T})$ where the parameter $m(\eta)$ measures the difficulty of learning the causal model and is always less than N. The value of $m(\eta)$ is a uniform bound on the variance of the reward estimators $\hat{\mu}_a$ and, intuitively, problems where all variables' values in the causal model "occur naturally" when interventions are sampled from η will have low values of $m(\eta)$.

The main practical drawback of Algorithm 2 is that both the estimator $\hat{\mu}_a$ and the optimal sampling distribution η^* (i.e., the one that minimises $m(\eta)$) require knowledge of the conditional distributions $P\left\{\mathcal{P}a_Y \mid a\right\}$ for all $a \in \mathcal{A}$. In contrast, in the special case of parallel bandits, Algorithm 1 uses the do() action to effectively estimate $m(\eta)$ and the rewards then re-samples the interventions with variances that are not bound by $\hat{m}(\eta)$. Despite these extra estimates, Theorem 2 shows that this approach is optimal (up to log factors). Finding an algorithm that only requires the causal graph and lower bounds for its simple regret in the general case is left as future work.

Making Better Use of the Reward Signal Existing algorithms for best arm identification are based on "successive rejection" (SR) of arms based on UCB-like bounds on their rewards (Even-Dar et al., 2002). In contrast, our algorithms completely ignore the reward signal when developing their arm sampling policies and only use the rewards when estimating $\hat{\mu}_a$. Incorporating the reward signal into our sampling techniques or designing more adaptive reward estimators that focus on high reward interventions is an obvious next step. This would likely improve the poor performance of our causal algorithm relative to the successive rejects algorithm for large m, as seen in Figure 2a. For the parallel bandit the required modifications should be quite straightforward. The idea would be to adapt the algorithm to essentially use successive elimination in the second phase so arms are eliminated as soon as they are provably no longer optimal with high probability. In the general case a similar modification is also possible by dividing the budget T into phases and optimising the sampling distribution η , eliminating arms when their confidence intervals are no longer overlapping. Note that these modifications will not improve the minimax regret, which at least for the parallel bandit is already optimal. For this reason we prefer to emphasize the main point that causal structure should be exploited when available. Another observation is that Algorithm 2 is actually using a fixed design, which in some cases may be preferred to a sequential design for logistical reasons. This is not possible for Algorithm 1, since the q vector is unknown.

Cumulative Regret Although we have focused on simple regret in our analysis, it would also be natural to consider the cumulative regret. In the case of the parallel bandit problem we can slightly modify the analysis from (Wu et al., 2015) on bandits with side information to get near-optimal cumulative regret guarantees. They consider a finite-armed bandit model with side information where in reach round the learner chooses an action and receives a Gaussian reward signal for all actions, but with a known variance that depends on the chosen action. In this way the learner can gain information about actions it does not take with varying levels of accuracy. The reduction follows by substituting the importance weighted estimators in place of the Gaussian reward. In the case that q is known this would lead to a known variance and the only (insignificant) difference is the Bernoulli noise model. In the parallel bandit case we believe this would lead to near-optimal cumulative regret, at least asymptotically.

The parallel bandit problem can also be viewed as an instance of a time varying graph feedback problem (Alon et al., 2015; Kocák et al., 2014), where at each timestep the feedback graph G_t is selected stochastically, dependent on q, and revealed after an action has been chosen. The feedback graph is distinct from the causal graph. A link $A \to B$ in G_t indicates that selecting the action A reveals the reward for action B. For this parallel bandit problem, G_t will always be a star graph with the action do() connected to half the remaining actions. However, Alon et al. (2015); Kocák et al. (2014) give adversarial algorithms, which when applied to the parallel bandit problem obtain the standard bandit regret. A malicious adversary can select the same graph each time, such that the rewards for half the arms are never revealed by the informative action. This is equivalent to a nominally stochastic selection of feedback graph where q = 0.

Causal Models with Non-Observable Variables If we assume knowledge of the conditional *interventional* distributions $P\{\mathcal{P}a_Y|a\}$ our analysis applies unchanged to the case of causal models with non-observable variables. Some of the interventional distributions may be non-identifiable meaning we can not obtain prior estimates for $P\{\mathcal{P}a_Y|a\}$ from even an infinite amount of observational data. Even if all variables are observable and the graph is known, if the conditional distributions are unknown, then Algorithm 2 cannot be used. Estimating these quantities while simultaneously minimising the simple regret is an interesting and challenging open problem.

Partially or Completely Unknown Causal Graph A much more difficult generalisation would be to consider causal bandit problems where the causal graph is completely unknown or known to be a member of class of models. The latter case arises naturally if we assume free access to a large observational dataset, from which the Markov equivalence class can be found via causal discovery techniques. Work on the problem of selecting experiments to discover the correct causal graph from within a Markov equivalence class Eberhardt et al. (2005); Eberhardt (2010); Hauser and Bühlmann (2014); Hu et al. (2014) could potentially be incorporated into a causal bandit algorithm. In particular, Hu et al. (2014) show that only $\mathcal{O}(\log\log n)$ multi-variable interventions are required on average to recover a causal graph over n variables once purely observational data is used to recover the "essential graph". Simultaneously learning a completely unknown causal model while estimating the rewards of interventions without a large observational dataset would be much more challenging.

References

- Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and Schapire, R. E. (2014). Taming the monster: A fast and 356 simple algorithm for contextual bandits. In *ICML*, pages 1638–1646. 357
- Alon, N., Cesa-Bianchi, N., Dekel, O., and Koren, T. (2015). Online learning with feedback graphs: Beyond 358 bandits. In COLT, pages 23-35. 359
- Audibert, J.-Y. and Bubeck, S. (2010). Best arm identification in multi-armed bandits. In COLT, pages 13-p. 360
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (1995). Gambling in a rigged casino: The adversarial 361 362 multi-armed bandit problem. Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 322-331. 363
- Avner, O., Mannor, S., and Shamir, O. (2012). Decoupling exploration and exploitation in multi-armed bandits. 364 In ICML, pages 409-416. 365
- Bareinboim, E., Forney, A., and Pearl, J. (2015). Bandits with unobserved confounders: A causal approach. In 366 NIPS, pages 1342-1350. 367
- Bartók, G., Foster, D. P., Pál, D., Rakhlin, A., and Szepesvári, C. (2014). Partial monitoring-classification, regret 368 bounds, and algorithms. Mathematics of Operations Research, 39(4):967–997. 369
- Bottou, L., Peters, J., Quinonero-Candela, J., Charles, D. X., Chickering, D. M., Portugaly, E., Ray, D., Simard, 370
- 371 P., and Snelson, E. (2013). Counterfactual reasoning and learning systems: The example of computational
- advertising. JMLR, 14(1):3207-3260. 372
- Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities: A nonasymptotic theory of 373 independence. OUP Oxford. 374
- Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure exploration in multi-armed bandits problems. In ALT, pages 375 376 23 - 37.
- Chernoff, H. (1959). Sequential design of experiments. The Annals of Mathematical Statistics, pages 755–770. 377
- Eberhardt, F. (2010). Causal Discovery as a Game. In NIPS Causality: Objectives and Assessment, pages 87-96. 378
- Eberhardt, F., Glymour, C., and Scheines, R. (2005). On the number of experiments sufficient and in the worst 379 380 case necessary to identify all causal relations among n variables. In UAI.
- Even-Dar, E., Mannor, S., and Mansour, Y. (2002). Pac bounds for multi-armed bandit and markov decision 381 processes. In Computational Learning Theory, pages 255–270. 382
- Gabillon, V., Ghavamzadeh, M., and Lazaric, A. (2012). Best arm identification: A unified approach to fixed 383 budget and fixed confidence. In NIPS, pages 3212–3220. 384
- 385 Hauser, A. and Bühlmann, P. (2014). Two optimal strategies for active learning of causal models from interventional data. International Journal of Approximate Reasoning, 55(4):926–939. 386
- Hu, H., Li, Z., and Vetta, A. R. (2014). Randomized experimental design for causal graph discovery. In NIPS, 387 pages 2339-2347. 388
- Jamieson, K., Malloy, M., Nowak, R., and Bubeck, S. (2014). lil'UCB: An optimal exploration algorithm for 389 390 multi-armed bandits. In COLT, pages 423–439.
- Kocák, T., Neu, G., Valko, M., and Munos, R. (2014). Efficient learning by implicit exploration in bandit 391 problems with side observations. In NIPS, pages 613-621. 392
- Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT Press. 393
- Langford, J. and Zhang, T. (2008). The epoch-greedy algorithm for multi-armed bandits with side information. 394 In NIPS, pages 817–824. 395
- Li, L., Munos, R., and Szepesvari, C. (2014). On minimax optimal offline policy evaluation. arXiv preprint 396 arXiv:1409.3653. 397
- Ortega, P. A. and Braun, D. A. (2014). Generalized thompson sampling for sequential decision-making and 398 causal inference. Complex Adaptive Systems Modeling, 2(1):2. 399
- Pearl, J. (2000). Causality: models, reasoning and inference. MIT Press, Cambridge.

- Robbins, H. (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical 401 Society, 58(5):527-536. 402
- Tsybakov, A. B. (2008). Introduction to nonparametric estimation. Springer Science & Business Media. 403
- Wu, Y., György, A., and Szepesvári, C. (2015). Online Learning with Gaussian Payoffs and Side Observations. 404 In NIPS, pages 1360-1368. 405
- Yu, J. Y. and Mannor, S. (2009). Piecewise-stationary bandit problems with side observations. In *ICML*, pages 406 407

Proof of Theorem 1 408

- Assume without loss of generality that $q_1 \leq q_2 \leq \ldots \leq q_N \leq 1/2$. The assumption is non-restrictive since all variables are independent and permutations of the variables can be pushed to the 409
- 410
- reward function. The proof of Theorem 1 requires some lemmas, the first of which is an immediate 411
- consequence of the Chernoff bound (see Exercise 2.1 in Boucheron et al. (2013) for this form of the 412
- Chernoff bound). 413
- **Lemma 6.** Let $i \in \{1, ..., N\}$ and $\delta > 0$. Then

$$P\left\{|\hat{q}_i - q_i| \ge \sqrt{\frac{6q_i}{T}\log\frac{2}{\delta}}\right\} \le \delta.$$

Lemma 7. Let X_1, X_2, \ldots , be a sequence of random variables with $X_i \in [0, 1]$ and $\mathbb{E}X_i = p$ and $\delta \in [0,1]$. Then

$$P\left\{\exists t \ge n_0 : \left| \frac{1}{t} \sum_{s=1}^t X_s - p \right| \ge \sqrt{\frac{2}{n_0} \log \frac{2}{\delta}} \right\} \le 4\delta.$$

Proof. For $\delta \geq 1/4$ the result is trivial. Otherwise by Hoeffding's bound and the union bound:

$$P\left\{\exists t \ge n_0 : \left| \frac{1}{t} \sum_{s=1}^t X_s - p \right| \ge \sqrt{\frac{2}{n_0} \log \frac{2}{\delta}} \right\} \le \sum_{t=n_0}^{\infty} P\left\{ \left| \frac{1}{t} \sum_{s=1}^t X_s - p \right| \ge \sqrt{\frac{2}{n_0} \log \frac{2}{\delta}} \right\}$$

$$\le 2 \sum_{t=n_0}^{\infty} \exp\left(-\frac{t}{n_0} \log \frac{2}{\delta}\right) \le 4\delta.$$

Lemma 8. Let $\delta \in (0,1)$ and assume $T \geq 48m \log \frac{2N}{\delta}$. Then

$$P\{2m(q)/3 < m(\hat{q}) < 2m(q)\} > 1 - \delta$$
.

Proof. Let F be the event that there exists and $1 \le i \le N$ for which

$$|\hat{q}_i - q_i| \ge \sqrt{\frac{6q_i}{T} \log \frac{2N}{\delta}}.$$

- Then by the union bound and Lemma 6 we have $P\{F\} \leq \delta$. The result will be completed by showing
- that when F does not hold we have $2m(q)/3 \le m(\hat{q}) \le 2m(q)$. From the definition of m(q) and our assumption on q we have for i > m that $q_i \ge q_m \ge 1/m$ and so by Lemma 6 we have

$$\frac{3}{4} \ge \frac{1}{2} + \sqrt{\frac{3}{T} \log \frac{2N}{\delta}} \ge q_i + \sqrt{\frac{6q_i}{T} \log \frac{2N}{\delta}} \ge \hat{q}_i$$
$$\ge q_i - \sqrt{\frac{6q_i}{T} \log \frac{2N}{\delta}} \ge q_i - \sqrt{\frac{q_i}{8m}} \ge \frac{1}{2m}.$$

Therefore by the pigeonhole principle we have $m(\hat{q}) \leq 2m$. For the other direction we proceed in a similar fashion. Since the failure event F does not hold we have for $i \le m$ that

$$\hat{q}_i \le q_i + \sqrt{\frac{6q_i}{T}\log\frac{2N}{\delta}} \le \frac{1}{m}\left(1 + \sqrt{\frac{1}{8}}\right) \le \frac{3}{2m}$$
.

Therefore $m(\hat{q}) \ge 2m(q)/3$ as required.

Proof of Theorem 1. Let $\delta = m = m(q)/N$. Then by Lemma 8 we have

$$P\{2m/3 \le m(\hat{q}) \le 2m\} \ge 1 - \delta$$
.

Recall that $A=\{a\in\mathcal{A}:\hat{p}_a\leq 1/m(\hat{\boldsymbol{q}})\}$. Then for $a\in A$ the algorithm estimates μ_a from $T/(2m(\hat{\boldsymbol{q}}))\geq T/(4m)$ samples. Therefore by Hoeffding's inequality and the union bound we

429 have

$$P\left\{\exists a \in A : |\mu_a - \hat{\mu}_a| \ge \sqrt{\frac{8m}{T} \log \frac{2N}{\delta}}\right\} \le \delta.$$

For arms not in a we have $\hat{p}_a \geq 1/m(\hat{q}) \geq 1/(2m)$. Therefore if $a = do(X_i = j)$, then

$$\hat{p}_a = \frac{2}{T} \sum_{t=1}^{T/2} \mathbb{1}\{X_i = j\} \ge \frac{1}{2m}.$$

Therefore $\sum_{t=1}^{T/2} \mathbb{1}\{X_{t,i} = j\} \ge T/4m$ and by Lemma 7 we have

$$\mathbf{P}\left\{\sum_{t=1}^{T/2}\mathbb{1}\!\{X_i=j\}\geq \frac{T}{4m} \text{ and } |\hat{\mu}_a-\mu_a|\geq \sqrt{\frac{8m}{T}\log\frac{2N}{\delta}}\right\}\leq 4\delta/N\,.$$

Therefore with probability at least $1 - 6\delta$ we have

$$(\forall a \in \mathcal{A})$$
 $|\hat{\mu}_a - \mu_a| \le \sqrt{\frac{8m}{T} \log \frac{N}{\delta}} = \varepsilon.$

433 If this occurs, then

$$\mu_{\hat{a}_{x}^{*}} \geq \hat{\mu}_{\hat{a}_{x}^{*}} - \varepsilon \geq \hat{\mu}_{a^{*}} - \varepsilon \geq \mu_{a^{*}} - 2\varepsilon$$
.

434 Therefore

$$\mu^* - \mathbb{E}[\mu_{\hat{a}_T^*}] \le 6\delta + \varepsilon \le \frac{6m}{T} + \sqrt{\frac{32m}{T} \log \frac{NT}{m}},$$

which completes the result.

8 Proof of Theorem 2

We follow a relatively standard path by choosing multiple environments that have different optimal

 $\frac{1}{2}$ arms, but which cannot all be statistically separated in T rounds. Assume without loss of generality

that $q_1 \leq q_2 \leq \ldots \leq q_N \leq 1/2$. For each i define reward function r_i by

$$r_0(\boldsymbol{X}) = rac{1}{2}$$
 $r_i(\boldsymbol{X}) = egin{cases} rac{1}{2} + arepsilon & ext{if } X_i = 1 \ rac{1}{2} & ext{otherwise} \,, \end{cases}$

where $1/4 \ge \varepsilon > 0$ is some constant to be chosen later. We abbreviate $R_{T,i}$ to be the expected

simple regret incurred when interacting with the environment determined by q and r_i . Let P_i be the

corresponding measure on all observations over all T rounds and \mathbb{E}_i the expectation with respect to

 P_i . By Lemma 2.6 by Tsybakov (2008) we have

$$P_0\{\hat{a}_T^* = a^*\} + P_i\{\hat{a}_T^* \neq a^*\} > \exp(-KL(P_0, P_i))$$

where $KL(P_0, P_i)$ is the KL divergence between measures P_0 and P_i . Let $T_i(T) =$

 $\sum_{t=1}^{T} \mathbb{1}\{a_t = do(X_i = 1)\}\$ be the total number of times the learner intervenes on variable i by

setting it to 1. Then for $i \le m$ we have $q_i \le 1/m$ and the KL divergence between P_0 and P_i may be

bounded using the telescoping property (chain rule) and by bounding the local KL divergence by the

 χ -squared distance as by Auer et al. (1995). This leads to

$$\mathrm{KL}(\mathrm{P}_0,\mathrm{P}_i) \le 6\varepsilon^2 \mathbb{E}_0 \left[\sum_{t=1}^T \mathbb{1} \{X_{t,i} = 1\} \right] \le 6\varepsilon^2 \left(\mathbb{E}_0 T_i(T) + q_i T \right) \le 6\varepsilon^2 \left(\mathbb{E}_0 T_i(T) + \frac{T}{m} \right).$$

449 Define set $A=\{i\leq m:\mathbb{E}_0T_i(T)\leq 2T/m\}$. Then for $i\in A$ and choosing $\varepsilon=450$ $\min\left\{1/4,\sqrt{m/(18T)}\right\}$ we have

$$KL(P_0, P_i) \le \frac{18T\varepsilon^2}{m} = 1.$$

Now $\sum_{i=1}^{m} \mathbb{E}_0 T_i(T) \leq T$, which implies that $|A| \geq m/2$. Therefore

$$\sum_{i \in A} P_i \left\{ \hat{a}_T^* \neq a \right\} \ge \sum_{i \in A} \exp\left(-\operatorname{KL}(P_0, P_i)\right) - 1 \ge \frac{|A|}{e} - 1 \ge \frac{m}{2e} - 1.$$

Therefore there exists an $i \in A$ such that $P_i \{\hat{a}_T^* \neq a^*\} \geq \frac{\frac{m}{2e}-1}{m}$. Therefore if $\varepsilon < 1/4$ we have

$$R_{T,i} \ge \frac{1}{2} P \{\hat{a}_T^* \ne a^* | i\} \varepsilon \ge \frac{\frac{m}{2e} - 1}{2m} \sqrt{\frac{m}{18T}}.$$

Otherwise $m \geq 18T$ so $\sqrt{m/T} = \Omega(1)$ and

$$R_{T,i} \ge \frac{1}{2} P \{\hat{a}_T^* \ne a^* | i\} \varepsilon \ge \frac{1}{4} \frac{\frac{m}{2e} - 1}{2m} \in \Omega(1)$$

454 as required.

9 Proof of Theorem 3

456 Proof. First note that X_t, Y_t are sampled from Q. W define $Z_a(X_t) = Y_t R_a(X_t) 1 \{ R_a(X_t) \le B_a \}$ and abbreviate $Z_{at} = Z_a(X_t)$ and $R_{at} = R_a(X_t)$. By definition we have $|Z_{at}| \le B_a$ and

$$\operatorname{Var}_{Q}[Z_{at}] \leq \mathbb{E}_{Q}[Z_{at}^{2}] \leq \mathbb{E}_{a} \left[\frac{\operatorname{P} \{ \mathcal{P} a_{Y}(X) | a \}}{\operatorname{Q} \{ \mathcal{P} a_{Y}(X) \}} \right] \leq m(\eta).$$

458 Checking the expectation we have

$$\mathbb{E}_{Q}[Z_{at}] = \mathbb{E}_{a} [Y \mathbb{1}\{R_{at} \leq B_{a}\}] = \mathbb{E}_{a} Y - \mathbb{E}_{a} [Y \mathbb{1}\{R_{a} > B_{a}\}] = \mu_{a} - \beta_{a},$$

459 where

$$0 \le \beta_a = \mathbb{E}_a[Y1\{R_a > B_a\}] \le P\{R_a(X) > B_a|a\}$$

is the negative bias. The bias may be bounded in terms of $m(\eta)$ via an application of Markov's inequality.

$$\beta_a \le P\left\{R_a(X) > B_a|a\right\} \le \frac{\mathbb{E}_a[R_a(X)]}{B_a} \le \frac{m(\eta)}{B_a}.$$

Let $\varepsilon_a > 0$ be given by

$$\varepsilon = \sqrt{\frac{2m(\eta)}{T}}\log(2T|\mathcal{A}|) + \frac{3B_a}{T}\log(2T|\mathcal{A}|).$$

Then by the union bound and Bernstein's inequality

$$\mathrm{P}\left\{\mathrm{exists}\; a \in \mathcal{A}: |\hat{\mu}_a - \mathbb{E}_Q[\hat{\mu}_a]| \geq \varepsilon_a\right\} \leq \sum_{a \in A} \mathrm{P}\left\{|\hat{\mu}_a - \mathbb{E}_Q[\hat{\mu}_a]| \geq \varepsilon_a\right\} \leq \frac{1}{T}\,.$$

Assuming this event does not occur and letting $a^* = \arg \max_{a \in A} \mu_a$ we have

$$\mu_I \ge \hat{\mu}_I - \varepsilon_I \ge \hat{\mu}_{a^*} - \varepsilon_I \ge \mu^* - \varepsilon_{a^*} - \varepsilon_I - \beta_{a^*}$$
.

By the definition of the truncation we have

$$\varepsilon_a \le \left(\sqrt{2} + 3\right) \sqrt{\frac{m(\eta)}{T} \log\left(2T|\mathcal{A}|\right)}$$

466 and

$$\beta_a \le \sqrt{\frac{m(\eta)}{T} \log (2T|\mathcal{A}|)}$$
.

Therefore for $C = \sqrt{2} + 4$ we have

$$P\left\{\mu_I \ge \mu^* - C\sqrt{\frac{m(\eta)}{T}\log\left(2T|\mathcal{A}|\right)}\right\} \le \frac{1}{T}.$$

468 Therefore

$$\mu^* - \mathbb{E}[\mu_I] \le C\sqrt{\frac{m(\eta)}{T}\log(2T|\mathcal{A}|)} + \frac{1}{T}$$

469 as required.

470 9.1 Relationship between $m(\eta)$ and m(q)

Proposition 9. In the parallel bandit setting, $m(\eta^*) \leq 2m(q)$.

472 Proof. Recall that in the parallel bandit setting,

$$\mathcal{A} = \{do()\} \cup \{do(X_i = j) \colon 1 \le i \le N \text{ and } j \in \{0, 1\}\}$$

473 Let:

$$\eta_a = \mathbb{1}\left\{ P\left\{ X_i = j \right\} < \frac{1}{m(\boldsymbol{q})} \right\} \frac{1}{2m(\boldsymbol{q})} \text{ for } a \in do(X_i = j)$$

Let $D = \sum_{a \in do(X_i = j)} \eta_a$. From the definition of m(q),

$$\sum_{a \in do(X_i = j)} \mathbb{1} \left\{ P\left\{ X_i = j \right\} < \frac{1}{m(\boldsymbol{q})} \right\} \le m(\boldsymbol{q}) \implies D \le \frac{1}{2}$$

Let $\eta_a = \frac{1}{2} + (1-D)$ for a = do() such that $\sum_{a \in \mathcal{A}} \eta_a = 1$

476 Recall that,

$$m(\eta) = \max_{a} \mathbb{E}_{a} \left[\frac{P\left\{ \mathcal{P}a_{Y}(X) | a \right\}}{Q\left\{ \mathcal{P}a_{Y}(X) \right\}} \right]$$

We now show that our choice of η ensures $\mathbb{E}_a\left[\frac{\mathbb{P}\{\mathcal{P}a_Y(X)|a\}}{\mathbb{Q}\{\mathcal{P}a_Y(X)\}}\right] \leq 2m(q)$ for all actions a.

For the actions $a:\eta_a>0$, ie do() and $do(X_i=j):\mathrm{P}\left\{X_i=j\right\}<\frac{1}{m(q)},$

$$\mathbb{E}_a\left[\frac{\operatorname{P}\left\{X_1...X_N|a\right\}}{\sum_b \eta_b \operatorname{P}\left\{X_1...X_N|b\right\}}\right] \leq \mathbb{E}_a\left[\frac{\operatorname{P}\left\{X_1...X_N|a\right\}}{\eta_a \operatorname{P}\left\{X_1...X_N|a\right\}}\right] = \mathbb{E}_a\left[\frac{1}{\eta_a}\right] \leq 2m(\boldsymbol{q})$$

For the actions $a:\eta_a=0$, ie $do(X_i=j):\mathrm{P}\left\{X_i=j\right\}\geq \frac{1}{m(q)}$,

$$\begin{split} \mathbb{E}_{a} \left[\frac{\operatorname{P}\left\{ X_{1} ... X_{N} | a \right\}}{\sum_{b} \eta_{b} \operatorname{P}\left\{ X_{1} ... X_{N} | b \right\}} \right] \leq & \mathbb{E}_{a} \left[\frac{\mathbb{1}\left\{ X_{i} = j \right\} \prod_{k \neq i} \operatorname{P}\left\{ X_{k} \right\}}{\left(1/2 + D \right) \prod_{k} \operatorname{P}\left\{ X_{k} \right\}} \right] \\ = & \mathbb{E}_{a} \left[\frac{\mathbb{1}\left\{ X_{i} = j \right\}}{\left(1/2 + D \right) \operatorname{P}\left\{ X_{i} = j \right\}} \right] \leq \mathbb{E}_{a} \left[\frac{\mathbb{1}\left\{ X_{i} = j \right\}}{\left(1/2 \right) \left(1/m(\boldsymbol{q}) \right)} \right] \leq 2m(\boldsymbol{q}) \end{split}$$

Therefore $m(\eta*) \leq m(\eta) \leq 2m(\boldsymbol{q})$ as required.

481

482