Nom: Correcteur: Note:

Soit $n \in \mathbb{N}$ et $z \in \mathbb{C}$. Donner la valeur des sommes suivantes : $\sum_{k=1}^{n} k$, $\sum_{k=1}^{n} k^2$ et $\sum_{k=0}^{n-1} z^k$.

On rappelle la formule du triangle de Pascal : si $n \in \mathbb{N}$ et $k \in \mathbb{Z}$,

$$\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}.$$

Démontrer ce résultat.

On peut remarquer que pour tout entier naturel non nul k, $\ln\left(1+\frac{1}{k}\right) = \ln(k+1) - \ln(k)$.

Soit $n \in \mathbb{N}^*$, quel type de formule/simplification voit-on apparaître dans la somme $\sum_{k=1}^n \ln\left(1+\frac{1}{k}\right)$? Donner une expression simplifiée de cette somme.

Énoncer la formule du binôme de Newton. Construire le triangle de Pascal jusqu'à la ligne permettant de développer $(a+b)^5$ et écrire ce développement.