Problem Set 1

Natasha Watkins

Exercise 1.3

 \mathcal{G}_1 is not an algebra.

• Take $B \in \mathcal{G}_1$. Its complement, B^c , is closed, and therefore not in \mathcal{G}_1 . Hence, \mathcal{G}_1 is not closed under complements.

 \mathcal{G}_2 is an algebra.

 \mathcal{G}_3 is a σ -algebra.

Exercise 1.7

 \mathcal{A} is a σ -algebra of X. $\{\emptyset, X\} \subset \mathcal{A} \subset \mathcal{P}(X)$.

Part 1:

- By definition, $\emptyset \in \mathcal{A}$.
- $\emptyset \in \mathcal{A}$ implies $\emptyset^c = X \in \mathcal{A}$.
- So $\{\emptyset, X\}$ is the smallest σ -algebra of X.

Part 2:

- Suppose $\mathcal{P}(X)$ is not the largest σ -algebra on X.
- Then there is $B \in X$ such that $\mathcal{P}(X) \cup B$ is a σ -algebra of X, where $B \notin \mathcal{P}(X)$.
- But $B \in X$, so $B \in \mathcal{P}(X)$. This is a contradiction, so $\mathcal{P}(X)$ must be the largest σ -algebra.

Exercise 1.10

 $\{S_{\alpha}\}\$ is a family of σ -algebras on X.

- As $\emptyset \in \mathcal{S}_{\alpha}$ for all $\alpha, \emptyset \in \cap_{\alpha} \mathcal{S}_{\alpha}$.
- Given $A \in \cap_{\alpha} \mathcal{S}_{\alpha}$, $A \in \mathcal{S}_{\alpha}$ for all α and $A^c \in \mathcal{S}_{\alpha}$ for all α . So $A^c \in \cap_{\alpha} \mathcal{S}_{\alpha}$.
- Given $A_1, A_2, \dots \in \cap_{\alpha} \mathcal{S}_{\alpha}$, $A_1, A_2, \dots \in \mathcal{S}_{\alpha}$ for all α . So $\bigcup_{n=1}^{\infty} A_n \in \mathcal{S}_{\alpha}$ for all α . Hence, $\bigcup_{n=1}^{\infty} A_n \in \cap_{\alpha} \mathcal{S}_{\alpha}$.

Therefore, $\cap_{\alpha} S_{\alpha}$ is a σ -algebra.

Exercise 1.17

- $A, B \in \mathcal{S}, A \subset B$. $A \cup (B \cap A^c) = B$. As A and $B \cap A^c$ are disjoint, $\mu(A) + \mu(B \cap A^c) = \mu(B)$. This implies $\mu(A) \leq \mu(B)$.
- Suppose we form a sequence

$$B_1 = A_1$$

$$B_2 = A_2 \cap A_1^c$$

$$B_3 = A_3 \cap (A_2^c \cup A_3^c)$$

$$\vdots$$

$$B_n = A_n \setminus \bigcup_{i=1}^{\infty} A_i$$

 B_i is a sequence of disjoint sets, so $\mu(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i)$.

- As $B_i \subset A_i \ \forall i$, by monotonicity, $\sum_{i=1}^{\infty} \mu(B_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- Therefore $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$

Exercise 1.18

- $\lambda(\emptyset) = \mu(\emptyset \cap B) = \mu(\emptyset) = 0.$
- $\lambda(\bigcup_{i=1}^{\infty} A_i) = \mu((\bigcup_{i=1}^{\infty} A_i \cap B) = \mu(\bigcup_{i=1}^{\infty} (A_i \cap B))$
- As $\{A_i\}$ is collection of disjoint sets,

$$\mu(\bigcup_{i=1}^{\infty} (A_i \cap B)) = \sum_{i=1}^{\infty} \mu(A_i \cap B) = \sum_{i=1}^{\infty} \lambda(A_i)$$

so $\lambda(A)$ is a measure on (X, \mathcal{S}) .

Exercise 1.20

- $\bullet \ \cap_{i=1}^n A_i = A_n$
- $\mu(\cap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(\cap_{i=1}^n A_i) = \lim_{n \to \infty} \mu(A_n)$

Exercise 2.10

• μ^* is an outer measure, so it satisfies $\mu^*(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu^*(A_i)$

- Considering $B \cap E$ and $B \cup E^c$, by countably subadditivity, $\mu^*((B \cap E) \cup (B \cap E^c)) = \mu^*(B) \le \mu(B \cap E) + \mu(B \cap E^c)$
- Combining this with (*), we see that $\mu^*(B) = \mu(B \cap E) + \mu(B \cap E^c)$

Exercise 2.14

• An open set $(a,b) \subset \mathbb{R}$ can be expressed as

$$\bigcup_{n=N}^{\infty} \left(a, b - \frac{1}{n} \right]$$

so (a, b) is in $\sigma(A)$, as $\sigma(A)$ is closed under countable unions

- An open interval can be expressed as a disjoint union of open intervals, so any arbitrary open set O is also in $\sigma(A)$
- So $\sigma(\mathcal{O}) \subset \sigma(\mathcal{A}) \subset \mathcal{M}$, where $\sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R})$

Exercise 3.1

- Consider a countable set $A \subset \mathbb{R}$, with $\{a_i\}_{i=1}^n \in A$
- Given $\epsilon < 0$, we can construct an open interval around a_i as

$$A_i = (a_i - \frac{\epsilon}{2^i}, a_i + \frac{\epsilon}{2^i})$$

- So $\mu(A_i) = \frac{\epsilon}{2^i}$ and $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i) = \epsilon$
- As $A \subset \bigcup_{i=1}^n A_i$ and ϵ is arbitrarily chosen, $\mu(A) = 0$

Exercise 3.4

 $\{x \in X : f(x) \le a\}$

- Consider $f(x) \in (-\infty, a)$
- As \mathcal{M} is closed under complements, $(-\infty, a)^c = [a, \infty)$
- (a, ∞) can be written as $\bigcup_{n=N}^{\infty} [a \frac{1}{n}, \infty)$, which is in \mathcal{M}
- $(a, \infty)^c$ is $(-\infty, a]$ which is in \mathcal{M} given closedness under complements
- In the other direction, $(-\infty, a)$ can be expressed as

$$\bigcup_{n=N}^{\infty} \left(-\infty, a - \frac{1}{n} \right]$$

• As \mathcal{M} is closed under countable unions, $f(x) \in (-\infty, a)$ is equivalent to $f(x) \in (-\infty, a]$

$$\{x \in X : f(x) > a\}$$

- Consider $f(x) \in (a, \infty)$
- As \mathcal{M} is closed under complements, $(a, \infty)^c = (-\infty, a]$ is contained in \mathcal{M}
- So $f(x) \in (a, \infty)$ is equivalent to $f(x) \in (-\infty, a]$. As shown above, this is equivalent to $f(x) \in (-\infty, a)$

$$\{x \in X : f(x) \ge a\}$$

- Consider $f(x) \in [a, \infty)$
- As \mathcal{M} is closed under complements, $[a, \infty)^c = (-\infty, a)$ is contained in \mathcal{M}
- So $f(x) \in (a, \infty)$ is equivalent to $f(x) \in (-\infty, a)$

Exercise 4.13

As $||f||=f^++f^-< M$, then $f^+<$ and $f^-< M$. So both $\int_E f^+d\mu$ and $\int_E f^-d\mu$ are finite, so $f\in \mathscr{L}^1(\mu,E)$