CY104S1_MID SEM EXAM-2022

Please read	I the que	stions	carefull	y, there	are 3	0 MC	Q type	questions	having	one marl	k each a	and or	nly
one correct	answer.	The c	duration	of exan	n is or	ne hou	ır (9:3	0 am-10:3	0 am).	Submit yo	our resp	onse	before
10:30 am.													

1
Name of The Student *
Garvit Shah
2
Admission No. *
e.g. U21EE001
U21CS089
3
Division *
F

CY104S1_MID SEM EXAM-2022

Please read the questions carefully, there are 30 MCQ type questions having one mark each and only one correct answer. The duration of exam is one hour (9:30 am-10:30 am). Submit your response before 10:30 am.

equivalents in ppm. * (1 Point)	
○ 	
75	
120	
150	
136	
5	
Permanent hardness is due to the presence of * (1 Point)	
\bigcirc $Mg(HCO_3)_2 \& MgCl_2$	
\bigcirc $Ca(HCO_3)_2$ & $CaSO_4$	
\bigcirc $Ca(HCO_3)_2$ & $CaCl_2$	
© CaCl ₂ & MgSO ₄	
6	
Which of the following statement is incorrect about zeolite (1 Point)	s? *
Zeolites is a microporous material	
Zeolites are used for purification and separation	
Zeolites cannot be used as adsorbents	
Zeolites can be used as dehydrating agents	

A water sample contains 204 mg of CaSO4/L. Calculate the hardness in terms of CaCO3

Which of the following statement is false in the water softening process? * (1 Point)
No exchange of ions in the Lime-soda process
Exchange of only cations takes place in the Zeolite process
Exchange of both cations and anions takes place in the Ion-exchange process
Exchange of both cations and anions takes place in the Lime-soda process
8
Which of the following statement(s) is incorrect about the boiler corrosion \ast (1 Point)
Dissolved oxygen can be reduced by adding hydrazine
Caustic embrittlement can be prevented by sodium phosphate as softening agent
Caustic embrittlement is due to the presence of Na2CO3 in the boiler feed
None of above
9
Calculate the total hardness in PPM for 1L of water containing the following salts: CaCl2 =22.2 mg, Ca(HCO3)2= 8.1 mg and MgCl2=9.5 mg * (1 Point)
30
<u>40</u>
35
45

The exhausted zeolite is regenerated by percolating through a solution of NaCl
The water containing turbidity can be treated by the zeolite process
Exhausted anion exchange resign is regenerated by dil. HCl
Exhausted anion exchange resign is regenerated by dil. H2SO4
11
50 mL of standard hard water containing 1 mg of pure CaCO3 per mL consumed 25 mL of EDTA solution. 50 mL of a water sample consumed 25 mL of same EDTA solution. Using complexometric titration method, calculate the hardness of water sample. * (1 Point)
750 ppm
500 ppm
① 1000 ppm
1250 ppm
12
When temporary hard water is boiled, one of the substances formed is $___$ * (1 Point)
calcium sulfate
carbon dioxide
hydrogen chloride
calcium bicarbonate

Which of the following statement(s) is true in the water softening process? * (1 Point)

Calculate the temporary and permanent hardness of water sample containing Mg(HCO3)2= 14.6mg/L, Ca(HCO3)2= 16.2mg/L, MgCl2= 9.5mg/L, CaSO4=6.8mg/L. Given molecular weight of Mg(HCO3)2= 146 g/mol, Ca(HCO3)2= 162 g/mol, MgCl2= 95 g/mol, CaSO4= 136 g/mol. * (1 Point)

- 20 ppm and 20 ppm
- 15 ppm and 20 ppm
- 20 ppm and 15 ppm
- 15 ppm and 15 ppm

14

~~ ~~ =

(1 Point)

The monomer of the polymer
$$\begin{array}{c|c}
 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH_3 & CH_3 & CH_3 & CH_3 \\
 & CH_3 & CH$$

- 1
- 2
- 3

15

(1 Point)

$$\begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}_n \text{ is a}$$

- Chain growth polymer
- Homopolymer
- Condensation polymer
- Addition polymer

16

*

(1 Point)

In which of the polymer ethylene glycol (HO-CH₂-CH₂-OH) is one of the monomer units?

- O t

17

(1 Point)

- Alternating copolymer
- Block copolymer
- Homopolymer
- Random copolymer

18

A polymer has a number average molecular weight of 50,000 and a polydispersity of 2. What is the weight average molecular weight? * (1 Point)

- 250,000
- 50,002
- 25,000

19

*

(1 Point)

A sample of atactic polystyrene is separated into 5 fractions;

Fraction	Number of Moles	Molecular Weight
1	20	10,000
2	20	20,000
3	20	30,000
4	20	40,000
5	20	50,000

What is the number average molecular weight?

- 3.66×10^4
- 2.33×10^4
- 3.0×10^4
- 4.33×10^4

20

*

(1 Point)

What is the number average molecular weight of polypropylene polymer with following composition

$$\begin{bmatrix} CH_3 \\ -CH_2 - CH - \end{bmatrix}_{400} \text{ is } 25 \% \begin{bmatrix} CH_3 \\ -CH_2 - CH - \end{bmatrix}_{800} \text{ is } 35 \%$$

$$\begin{bmatrix} CH_3 \\ -CH_2 - CH - \end{bmatrix}_{600} \text{ is } 40 \%$$

- 26,040
- 42,000
- 25,556
- 21, 000

(1 Point)

The following polymer is an example of

- Graft polymer
- Atactic polymer
- Isotactic polymer
- Syndiotactic polymer

22

(1 Point)

A representation of a section of a polymer chain that has been produced from two different monomers is given below

The two monomers are

O 4
<u> </u>
3
23
Which type of initiator is needed for emulsion polymerization? * (1 Point)
Soluble in water
Partial soluble in water
Insoluble in water
Neither soluble nor insoluble in water
24
By adding chromium to steel which of the following property is enhanced? * (1 Point)
Resistance to corrosion
Electrical characteristics
Magnetic property
Ductility
25
The alloy used for dental filling is * (1 Point)
Amalgam
Bronze
Manganin
Brass

The property of metals to be hammered into thin sheets by virtue of this feature \ast (1 Point)
Rancidity
Ductility
Conductivity
Malleability
27
Invar steel contain * (1 Point)
Tungsten
Vanadium
Nickel
Molybdenum
28
Choose the correct allotrope of Iron, generally found in steel. * (1 Point)
Austenite
Hematite
cementite
bauxite

Iron exists in two crystalline forms in steel: * (1 Point)
bcc and primitive
fcc and primitive
bcc and fcc
Iron does not found in the crystalline form
30
Which material is used for filling in sandwich structures? * (1 Point)
Polymer
Wood
Honeycomb
All of the above
31
Which is a 2D nano material? * (1 Point)
Graphene
Nanotube
Fullerene
Liposome

According to solvent selection guide of Green Chemistry the chlorinated solvents are $__$ * (1 Point)
Best choice
Reasonable
Not recommended
None of the above
33
The first listed of the 12 Principles of Green Chemistry is? * (1 Point)
Prevent waste
Benign solvents
Atom economy
Catalysis
This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not

This content is created by the owner of the form. The data you submit will be sent to the form owner. Microsoft is not responsible for the privacy or security practices of its customers, including those of this form owner. Never give out your password.

Powered by Microsoft Forms |

The owner of this form has not provided a privacy statement as to how they will use your response data. Do not provide personal or sensitive information.

Terms of use