Podstawy Obliczeń Komputerowych Laboratorium 2

Kamil Czop 259613 Łukasz Majchrzak 262761 Wtorek 11:15TN - Y02-37c - Dr inż. Konrad Kluwak

16 czerwca 2023

1 Metody interpolacji wielomianowej

1.1 Cel ćwiczeń

Celem wykonanego laboratorium było wykorzystanie dowolnego algorytmu interpolacji wielomianowej oraz interpolacji wykorzystującej funkcje sklejające.

1.2 Dane

x	10	20	30	40	50				
y = cos(x)	0.98	0.93	0.86	0.76	0.64				
Szukane $x: 21^{\circ}$									

2 Metoda Lagrange

Wielomianowa metoda interpolacyjna wykorzystuje zależność:

$$W(x) = \sum_{i=0}^{n} y_i = \frac{\varphi_i(x)}{\varphi_i(x_i)} = \sum_{i=0}^{n} \frac{\prod j \neq i(x - x_j)}{j \neq i(x_i - x_j)}$$

Algorithm 1 Wstępny algorytm lagrange

```
Require: x_1 \dots x_N, y_1 \dots y_N, x_s
Ensure: y_s
 1: procedure Lagrange-old
         res \leftarrow 0
          for i \leftarrow 1 to N do
 3:
              a \leftarrow y(i)
 4:
              a_d \leftarrow 1
 5:
              res_{seq} = 1
 6:
              for j \leftarrow 1 to n do
 7:
                   if j \neq i then
 8:
                        a_d \leftarrow a_d * (x_i - x_j)
 9:
                        res_{seq} \leftarrow res_{seq} * (x_s - x_i)
10:
                   Next j
              a \leftarrow a/a_d
12:
              res_{seg} = res_{seg} * a
13:
              res = res + res_{seq}
14:
              Next i
15:
16:
          Stop
```


Rysunek 1: Interpolacja metodą Lagrange'a

Dla x = 21 wartość interpolowana wynosi: 0.9242.

Wykorzystywany w pierwsej wersji algorytm nie jest optymalny, ani natywny względem metod dostępnych w środowisku MATLAB. Zaprezentowany pseudokod korzysta z własności iteracyjnych algorytmu sumując kolejno wyznaczone elementy wielomianu.

Krzywa uzyskana jako całościowy wynik interpolacji przechodzi przez wszystkie punkty, co sugeruje prawidłowość działania implementacji metody.

3 Metoda sześciennych funkcji sklejanych - Cubic Spline

Metoda funkcji sklejanych wskazuje nazwą iż do interpolacji wykorzystujemy więcej niż jedną funkcję. Cubic Spline partycjonuje oś x celem utworzenia sześciennych funkcji których krzywe łączą się w jedno w znanych nam punktach badanej funkcji bazowej.

Rysunek 2: Interpolacja wykorzystująca Cubic Spline

Uzyskano wartość dla szukanego x : $y \approx 0.9259$

Rysunek 3: Poszczególne "podfunkcje" sklejające

Na załączonym wykresie dokładnie widać "sklejanie funkcji", gdzie pierwsza funkcja odwzorowywuje $x \in [10:20)$, druga funkcja $x \in [20:30)$, trzecia $x \in [30:40)$, czwarta $x \in [40:50)$ oraz piąta nie wykorzystana w zakreślonym obszarze $x \in [50:\infty)$.

Rysunek 4: Poszczególne wartości poziomów wartości w wielomianie

Na załączonym wykresie można zauważyć jak utworzone funkcje się zmieniają, w szczególności jak przejżymy przebieg stałej części parametru a, gdzie widać "schodkowanie", wraz ze przejściem do wartości punktu bazowego.

W interpolowanym przypadku, część liniowa o parametrze b była zawsze ujemna, wartość b była wystarczająco wysoka by ukazać kształt piłokształtny na wykresie.

Wartości parametrów

a	0.9800	0.9300	0.8600	0.7600	0.6400
b	-0.0120	-0.0037	-0.0091	-0.0107	0
c	0.0013	-4.46e - 4	-0.0001	-5.71e - 5	-2.71e - 5
d	-5.71e - 5	1.14e - 5	1.42e - 6	-7.14e - 6	0

3.1 Porównanie

Rysunek 5: Porównanie interpolacji Cubic Spline i metody Lagrange'a

4 Wektory własne i wartości własne macierzy

4.1 Dane

$$A = \begin{bmatrix} 3 & 1 & 2 \\ 1 & 8 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$

4.2 Uzyskany wynik

5 Github, bibliografia, dokumentacja

- https://github.com/Myknakryu/pok-2023
- https://traf-barak.pwr.edu.pl/wp-content/uploads/2020/08/Raport.pdf
- https://www.youtube.com/watch?v=2YmCaxcKyBY