Física 2 IS - Uns 2024

Curso Pf: Daniel Chiaradía

Preguntas Tipo Teoría

1. ¿Cuál es la corrección introducida en la Ley de Ampère por Maxwell?

- A) La introducción del campo magnético variable.
- B) La adición de una corriente de desplazamiento en el vacío.
- C) La eliminación del campo eléctrico en medios dieléctricos.
- D) La reducción del campo magnético en materiales ferromagnéticos.

2. ¿Qué componente adicional introdujo Maxwell en la Ley de Ampère?

- A) La densidad de corriente.
- B) La derivada temporal del campo eléctrico.
- C) El flujo magnético.
- D) La conductividad eléctrica.

3. ¿Cuántas ecuaciones componen el conjunto de Ecuaciones de Maxwell?

- A) Tres.
- B) Cuatro.
- C) Dos.
- D) Cinco.

4. ¿Cuál de las siguientes es una de las Ecuaciones de Maxwell?

- A) La ley de Gauss para el campo magnético.
- B) La ley de Gauss para el campo eléctrico.
- C) La ecuación de continuidad de la carga.
- D) La ley de Ohm.

5. ¿Qué describe el teorema de Poynting en electromagnetismo?

- A) La propagación de ondas de presión en medios líquidos.
- B) La conservación de energía en el campo electromagnético.
- C) La reflexión total de la luz en la interfaz de dos medios.
- D) La polarización de las ondas electromagnéticas.

6. ¿Cuál es el significado del vector de Poynting en electromagnetismo?

- A) La dirección del campo magnético.
- B) La densidad de flujo de energía electromagnética.
- C) La variación temporal del campo eléctrico.
- D) La intensidad del campo magnético.

7. ¿Cómo se expresa el vector de Poynting en términos de los campos eléctricos y magnéticos?

- A) $S = E \cdot B \setminus vec\{S\} = \sqrt{E} \cdot vec\{B\}S = E \cdot B$
- B) $S = E \times B \setminus vec\{S\} = vec\{E\} \setminus vec\{B\}S = E \times B$
- C) $\overrightarrow{S} = \overrightarrow{E} + \overrightarrow{B} \lor ec\{S\} = \lor ec\{E\} + \lor ec\{B\}S = E + B$
- D) $\overrightarrow{S} = \overrightarrow{E} \overrightarrow{B} \setminus vec\{S\} = \bigvee \{E\} \bigvee \{B\}S = E B$

8. ¿Qué representa la ecuación de conservación de la carga en electromagnetismo?

- A) La variación temporal del campo eléctrico.
- B) La relación entre la densidad de corriente y la densidad de carga.
- C) La generación de cargas eléctricas.
- D) La absorción de cargas en el campo.

9. ¿Qué propiedad tienen las ondas electromagnéticas en el vacío?

- A) Se propagan solo en materiales conductores.
- B) Viajan a la velocidad de la luz en el vacío.
- C) Requieren un medio para propagarse.
- D) No pueden superponerse.

10. ¿Cuál es la velocidad de propagación de una onda electromagnética en el vacío?

- A) $3\times108 \text{ m/s} 3 \times 10^8 \text{ limes } 10^8 \text{ limes } 10^8 \text{ limes } 3\times108 \text{ m/s}$
- B) 3×106 m/s³ \times 10^6 \, \text{m/s} 3×106 m/s

- C) $1.5 \times 108 \text{ m/s} 1.5 \times 10^8 \text{ \, \text{m/s}} 1.5 \times 108 \text{m/s}$
- D) $1.5 \times 106 \text{ m/s} 1.5 \times 10^6 \text{ \, \text{m/s}} 1.5 \times 106 \text{m/s}$

11. ¿Qué es la superposición de ondas electromagnéticas?

- A) La atenuación de una onda en un medio conductor.
- B) La combinación de dos o más ondas para formar una onda resultante.
- C) La interferencia destructiva de una onda.
- D) La propagación de ondas en direcciones opuestas.

12. ¿Cuál de las siguientes es una característica de las ondas planas monocromáticas?

- A) Tienen diferentes frecuencias en cada punto del espacio.
- B) Tienen una frecuencia y longitud de onda constantes.
- C) Solo se propagan en medios no homogéneos.
- D) Se atenúan rápidamente en el vacío.

13. ¿Qué representa el teorema de Poynting en términos de energía?

- A) La generación de energía eléctrica en un campo magnético.
- B) La energía almacenada en una onda electromagnética.
- C) La conservación de la carga en un campo eléctrico.
- D) La densidad de energía de un campo magnético.

14. ¿Cómo se llama el fenómeno de cambio de dirección de una onda al pasar de un medio a otro?

- A) Reflexión.
- B) Difracción.
- C) Refracción.
- D) Interferencia.

15. ¿Qué es la interferencia en el contexto de las ondas?

- A) La combinación de dos ondas para formar una onda de menor amplitud.
- B) La cancelación de ondas en un medio no homogéneo.
- C) La superposición de ondas que produce una distribución de amplitud fija.
- D) La absorción de energía de una onda en un medio conductor.

16. ¿Cuál es el resultado de la superposición de dos ondas de igual frecuencia y fase?

- A) Una onda con frecuencia mayor.
- B) Una onda con amplitud igual a la diferencia de las amplitudes individuales.
- C) Una onda con amplitud igual a la suma de las amplitudes individuales.
- D) Una onda con frecuencia variable.

17. ¿Qué ocurre en la interferencia constructiva?

- A) Las ondas se cancelan completamente.
- B) Las amplitudes se suman, formando una onda de mayor amplitud.
- C) Las amplitudes se restan, reduciendo la onda resultante.
- D) Las ondas se reflejan en la superficie.

18. ¿Qué fenómeno se observa cuando la luz atraviesa una rendija estrecha y se curva?

- A) Reflexión.
- B) Refracción.
- C) Interferencia.
- D) Difracción.

19. ¿Qué son las ondas electromagnéticas monocromáticas?

- A) Ondas con varias frecuencias y colores.
- B) Ondas de una única frecuencia y longitud de onda.
- C) Ondas que se propagan solo en medios dieléctricos.
- D) Ondas con amplitud variable.

20. ¿Cómo se relaciona la energía de una onda electromagnética con su amplitud?

- A) Es proporcional al cuadrado de la amplitud.
- B) Es directamente proporcional a la amplitud.
- C) No depende de la amplitud.
- D) Es inversamente proporcional a la amplitud.

21. ¿Qué representa el índice de refracción de un medio?

- A) La cantidad de luz absorbida en el medio.
- B) La velocidad de la luz en el medio en comparación con el vacío.
- C) La reflexión de la luz en el medio.

D) La frecuencia de las ondas electromagnéticas en el medio.

22. ¿Qué ocurre cuando una onda electromagnética incide en una interfaz entre dos medios con diferentes índices de refracción?

- A) Solo se refracta.
- B) Solo se refleja.
- C) Puede reflejarse y refractarse.
- D) Se transmite sin cambiar de dirección.

23. ¿Qué describe la ley de Snell?

- A) La reflexión total en una interfaz de medios.
- B) La relación entre el ángulo de incidencia y el ángulo de refracción.
- C) La interferencia de ondas en medios homogéneos.
- D) La difracción en rendijas estrechas.

24. ¿ Oué es la difracción de la luz?

- A) La desviación de la luz al atravesar un medio denso.
- B) La curvatura de la luz cuando atraviesa una rendija o borde.
- C) La reflexión de la luz en una superficie pulida.
- D) La absorción de luz en un medio conductor.

25. ¿Qué fenómeno produce patrones de interferencia en una pantalla cuando la luz atraviesa dos rendijas?

- A) Difracción.
- B) Polarización.
- C) Interferencia.
- D) Reflexión.

26. ¿Qué tipo de lente tiene superficies que se curvan hacia afuera?

- A) Cóncava.
- B) Convexa.
- C) Divergente.
- D) Cilíndrica.

27. ¿Qué efecto tiene una lente convexa en los rayos de luz que la atraviesan?

- A) Los hace divergir.
- B) Los hace converger.
- C) Los refleja hacia atrás.
- D) Los dispersa en múltiples direcciones.

28. ¿Qué es la aberración en un sistema óptico?

- A) La difracción de luz en un borde.
- B) La incapacidad de enfocar todos los rayos en un punto.
- C) La reflexión total interna en un prisma.
- D) La interferencia de dos fuentes de luz coherentes.

29. ¿Qué tipo de onda es una onda plana monocromática?

- A) Una onda con varias longitudes de onda.
- B) Una onda con una única frecuencia y longitud de onda constante.
- C) Una onda que viaja solo en medios sólidos.
- D) Una onda electromagnética con campo magnético variable.

30. ¿Qué ocurre en la interferencia destructiva?

- A) Las amplitudes de las ondas se suman.
- B) Las ondas se cancelan parcialmente.
- C) Las ondas se cancelan completamente.
- D) Las ondas se desvían en ángulo recto.

31. ¿Qué ocurre cuando una onda electromagnética incide en una superficie perfectamente conductora?

- A) La onda se refracta.
- B) La onda se refleja completamente.
- C) La onda se absorbe.
- D) La onda se dispersa.

32. ¿Cuál es la dirección del vector de Poynting en una onda electromagnética en el vacío?

- A) Paralela al campo eléctrico.
- B) Paralela al campo magnético.
- C) Perpendicular a ambos campos.

D) En dirección opuesta al campo magnético.

33. ¿Qué describe el principio de superposición en el contexto de ondas electromagnéticas?

- A) La suma de las amplitudes de las ondas.
- B) La cancelación de ondas de diferente frecuencia.
- C) La combinación de ondas sin alterar sus características individuales.
- D) La multiplicación de las amplitudes de las ondas.

34. ¿Cuál de las siguientes es una característica de una onda plana monocromática?

- A) Posee múltiples longitudes de onda.
- B) Posee una longitud de onda y frecuencia constantes.
- C) Viaja en direcciones múltiples.
- D) Requiere un medio para propagarse.

35. ¿Qué ocurre con una onda cuando incide sobre una superficie y se transmite a un medio con diferente densidad óptica?

- A) Solo se refleja.
- B) Solo se refracta.
- C) Puede reflejarse y refractarse simultáneamente.
- D) La onda desaparece en la interfaz.

36. ¿Qué fenómeno explica el cambio de dirección de una onda cuando pasa de un medio a otro con diferente índice de refracción?

- A) Reflexión.
- B) Interferencia.
- C) Difracción.
- D) Refracción.

37. ¿Cuál es el papel de un dieléctrico en la propagación de ondas electromagnéticas?

- A) Absorber la energía de la onda.
- B) Incrementar la velocidad de la onda.
- C) Reducir la velocidad de la onda.
- D) Dispersar la onda en múltiples direcciones.

38. ¿Qué representa el ángulo crítico en óptica?

- A) El ángulo en el cual ocurre reflexión total.
- B) El ángulo de mínima refracción.
- C) El ángulo de interferencia.
- D) El ángulo de difracción.

39. ¿Qué ocurre cuando la luz pasa de un medio de mayor índice de refracción a otro de menor índice en un ángulo superior al ángulo crítico?

- A) La luz se refracta en ambas direcciones.
- B) Ocurre reflexión interna total.
- C) La luz es absorbida.
- D) La luz se atenúa.

40. ¿Qué es una onda electromagnética polarizada?

- A) Una onda que cambia de dirección constantemente.
- B) Una onda en la que las oscilaciones del campo eléctrico están en una dirección específica.
- C) Una onda que no puede propagarse en el vacío.
- D) Una onda que presenta múltiples longitudes de onda.

41. ¿Qué tipo de interferencia ocurre cuando dos ondas de igual amplitud y en fase opuesta se encuentran?

- A) Interferencia constructiva.
- B) Interferencia destructiva.
- C) Reflexión total.
- D) Refracción parcial.

42. ¿Cuál es el efecto principal de la difracción en el comportamiento de las ondas?

- A) Que la onda se refleje.
- B) Que la onda se desvíe y se disperse.
- C) Que la onda aumente de velocidad.
- D) Que la onda mantenga su dirección original.

43. ¿Qué es un frente de onda en el contexto de ondas electromagnéticas?

A) La dirección en la que se desplaza la onda.

- B) Una superficie que conecta puntos de igual fase en la onda.
- C) La velocidad de la onda.
- D) El límite de la onda en un medio.

44. ¿Cuál es el propósito de una lente convexa en un sistema óptico?

- A) Aumentar el tamaño de los objetos.
- B) Hacer que los rayos de luz diverjan.
- C) Hacer que los rayos de luz converjan en un punto.
- D) Crear una imagen invertida de los objetos.

45. ¿Qué es la interferencia de ondas?

- A) La absorción de una onda por otra.
- B) La combinación de dos ondas que se superponen en el espacio.
- C) La reflexión de una onda en una superficie plana.
- D) La división de una onda en varias ondas más pequeñas.

46. ¿Qué es la difracción en el contexto de la óptica?

- A) La desviación de la luz cuando pasa cerca de un obstáculo o rendija.
- B) La absorción de luz en un material opaco.
- C) La transmisión de luz a través de un medio transparente.
- D) La dispersión de luz en una lente convexa.

47. ¿Qué ocurre en el enfoque de la luz en una lente delgada convexa?

- A) La luz se refracta en diferentes direcciones.
- B) La luz se enfoca en un único punto.
- C) La luz se dispersa uniformemente en la lente.
- D) La luz se refleja en el borde de la lente.

48. ¿Qué describe el vector de Poynting en términos de energía?

- A) La energía absorbida en un material dieléctrico.
- B) La densidad de flujo de energía transportada por una onda electromagnética.
- C) La cantidad de energía almacenada en un campo magnético.
- D) La dirección de propagación del campo magnético.

49. ¿Qué tipo de ondas permiten la propagación sin necesidad de un medio?

- A) Ondas mecánicas.
- B) Ondas transversales en sólidos.
- C) Ondas longitudinales en líquidos.
- D) Ondas electromagnéticas.

50. ¿Qué propiedad caracteriza a las ondas planas monocromáticas?

- A) Tienen una longitud de onda que varía en el tiempo.
- B) Tienen una frecuencia constante y una dirección definida de propagación.
- C) Se propagan solo en medios conductores.
- D) Necesitan un medio sólido para propagarse.

Capítulo II: Termodinámica

1. ¿Qué es la temperatura?

- A) Una medida de la energía interna total de un sistema.
- B) Una medida de la energía cinética promedio de las partículas de un sistema.
- C) La cantidad total de calor en un objeto.
- D) La cantidad de radiación emitida por un cuerpo.

2. ¿Qué describe el equilibrio térmico?

- A) Un estado en el cual dos objetos tienen diferentes temperaturas.
- B) Un estado en el cual dos objetos tienen la misma temperatura y no hay transferencia de calor.
- C) Un estado en el que un objeto emite más calor que otro.
- D) Un estado en el que la presión de dos sistemas es igual.

3. ¿Qué es un termómetro de gas?

- A) Un dispositivo que mide la presión de un gas.
- B) Un dispositivo que mide la temperatura basándose en la expansión de un gas.
- C) Un dispositivo que mide el volumen de un gas.
- D) Un dispositivo que mide la energía cinética de las partículas.

4. ¿Cuál es la temperatura de 0 K en grados Celsius?

- A) -273.15°C
- B) 0°C
- C) 273.15°C
- D) -100°C

5. ¿Qué propiedad describe la capacidad calorífica de un material?

- A) La energía necesaria para aumentar la temperatura de 1 kg de la sustancia en 1 K.
- B) La energía necesaria para aumentar la temperatura de todo el material en 1 K.
- C) La cantidad de energía que emite el material en un proceso isocórico.
- D) La energía necesaria para fundir el material.

6. ¿Cuál es la unidad del calor específico en el Sistema Internacional?

- A) J/K
- B) J/kg
- C) $J/kg \cdot K$
- D) J/mol

7. ¿Qué método de transferencia de calor no requiere un medio material?

- A) Conducción
- B) Convección
- C) Radiación
- D) Expansión térmica

8. ¿Qué describe la Ley de Stefan-Boltzmann?

- A) La relación entre la temperatura y la velocidad de propagación del calor.
- B) La cantidad de radiación emitida por un cuerpo en función de su temperatura absoluta.
- C) La absorción de radiación por un cuerpo negro.
- D) La emisión de luz en función de la frecuencia.

9. ¿Qué expresa la ley de enfriamiento de Newton?

- A) El calor se transfiere de un objeto frío a uno caliente.
- B) La velocidad de enfriamiento es directamente proporcional a la diferencia de temperatura con el ambiente.
- C) El calor es emitido de forma proporcional a la energía interna.
- D) La energía se conserva en un sistema cerrado.

10. ¿Qué establece la Primera Lev de la Termodinámica?

- A) El trabajo es igual al calor transferido en un proceso isocórico.
- B) La energía interna de un sistema es la suma del trabajo realizado y el calor transferido.
- C) La entropía de un sistema aumenta en un proceso irreversible.
- D) El calor y el trabajo son formas independientes de energía.

11. ¿Cuál es la ecuación de estado de un gas ideal?

- A) PV=nRTPV
- B) P+V=nRTP+V
- C) PV=nPV
- D) P=V/TP

12. ¿Qué ocurre con la energía interna de un gas ideal en un proceso adiabático?

- A) No cambia.
- B) Depende solo de la temperatura.
- C) Aumenta si la presión aumenta.
- D) Aumenta con el volumen.

13. ¿Qué propiedad se mantiene constante en un proceso isocórico?

- A) La presión
- B) La temperatura
- C) El volumen
- D) La energía interna

14. ¿Qué describe la ecuación de Clausius-Clapeyron?

- A) La relación entre el calor y la energía interna.
- B) La relación entre la presión y la temperatura en los cambios de fase.
- C) La relación entre volumen y presión en un gas ideal.
- D) La entropía en un proceso irreversible.

15. ¿Qué ocurre en un ciclo de Carnot?

- A) La eficiencia es máxima para un motor reversible entre dos temperaturas dadas.
- B) El trabajo es mínimo para un sistema cerrado.
- C) La temperatura se mantiene constante.
- D) La presión permanece constante.

16. ¿Qué describe el concepto de entropía en un sistema termodinámico?

- A) La energía total del sistema.
- B) El orden y la probabilidad de distribución de las partículas en el sistema.
- C) El volumen del sistema.
- D) La temperatura final del sistema.

17. ¿Qué tipo de onda se describe como longitudinal en un medio elástico?

- A) Ondas electromagnéticas
- B) Ondas de torsión
- C) Ondas de sonido
- D) Ondas de luz

18. ¿Qué relación describe el efecto Doppler en ondas de sonido?

- A) La relación entre la frecuencia emitida y recibida cuando la fuente y el observador están en movimiento.
- B) La relación entre el tiempo y el espacio de las ondas longitudinales.
- C) La frecuencia recibida es igual a la frecuencia emitida siempre.
- D) La velocidad es inversamente proporcional a la longitud de onda.

19. ¿ Oué es el batido en términos de ondas?

- A) La suma de dos ondas con frecuencias muy distintas.
- B) La interferencia de dos ondas de frecuencias cercanas que produce pulsaciones.
- C) La cancelación total de dos ondas.
- D) La propagación de ondas en un medio sólido.

20. ¿Qué describe el modelo ondulatorio de ondas transversales?

- A) Perturbaciones en la dirección de propagación.
- B) Movimiento de partículas en una dirección perpendicular a la propagación.
- C) Movimiento longitudinal de partículas.
- D) La frecuencia y la amplitud de una onda de presión.

21. ¿Cuál es la unidad de medida de la entropía en el Sistema Internacional?

- A) Joules (J)
- B) Joules por Kelvin (J/K)
- C) Vatios (W)
- D) Amperios (A)

22. ¿Qué sucede en un proceso termodinámico adiabático?

- A) No hay cambio en el volumen.
- B) No hay transferencia de calor hacia o desde el sistema.
- C) La presión permanece constante.
- D) La temperatura permanece constante.

23. ¿Qué expresa la ley de Boyle para un gas ideal?

- A) El volumen es directamente proporcional a la temperatura a presión constante.
- B) El volumen es inversamente proporcional a la presión a temperatura constante.
- C) La presión es inversamente proporcional a la temperatura a volumen constante.
- D) La presión es directamente proporcional al volumen.

24. ¿Qué relación describe la ley de Gay-Lussac para un gas ideal?

- A) La presión es inversamente proporcional a la temperatura.
- B) La presión es directamente proporcional a la temperatura a volumen constante.
- C) El volumen es directamente proporcional a la temperatura a presión constante.
- D) La energía interna es constante en un proceso isocórico.

25. ¿Qué describe la ecuación de estado de Van der Waals para gases reales?

- A) El comportamiento ideal de un gas.
- B) Las fuerzas intermoleculares y el volumen propio de las partículas de un gas.
- C) La relación entre la entropía y la temperatura en un gas.
- D) La temperatura crítica de un gas.

26. ¿Qué es la capacidad calorífica a volumen constante (CvC vCv) de un gas?

- A) La energía necesaria para aumentar la temperatura de una unidad de masa del gas en 1 K.
- B) La energía necesaria para aumentar la temperatura de una unidad de volumen del gas en 1 K.
- C) La cantidad de calor que se necesita para cambiar la fase del gas.
- D) La energía necesaria para aumentar la temperatura del gas en 1 K sin cambiar el volumen.

27. ¿Cuál es la eficiencia máxima teórica de una máquina de Carnot que opera entre dos temperaturas?

- A) Depende solo de las temperaturas de las fuentes caliente y fría.
- B) Depende de la presión y volumen del sistema.
- C) Depende del calor específico del sistema.
- D) Es independiente de la temperatura.

28. ¿Qué representa el ciclo Otto en termodinámica?

- A) Un ciclo de refrigeración en una máquina de vapor.
- B) Un ciclo ideal para una máquina de combustión interna.
- C) Un ciclo de un sistema de expansión libre.
- D) Un ciclo adiabático ideal.

29. ¿Qué propiedad caracteriza a un proceso isotérmico?

- A) El volumen es constante.
- B) La presión es constante.
- C) La temperatura es constante.
- D) La energía interna permanece constante.

30. ¿Cuál es el valor aproximado de la constante de los gases ideales (R)?

- A) 8.31 J/mol·K
- B) 3.14 J/mol·K
- C) 9.81 J/mol·K
- D) 1.01 J/mol·K

31. ¿Qué es la presión de vapor de un líquido?

- A) La presión en la superficie de un sólido.
- B) La presión de un gas sobre el líquido en equilibrio.
- C) La presión necesaria para comprimir el líquido.
- D) La presión necesaria para licuar el líquido.

32. ¿Qué es el movimiento Browniano?

- A) El movimiento lineal de partículas.
- B) El movimiento aleatorio de partículas suspendidas en un fluido.
- C) La aceleración de partículas en un campo eléctrico.
- D) La vibración de moléculas en estado sólido.

33. ¿Qué describe el teorema de equipartición de la energía?

- A) La energía se distribuye de manera uniforme en un sistema.
- B) Cada grado de libertad de una molécula recibe una cantidad igual de energía promedio.
- C) La energía interna de un gas es constante.
- D) El volumen y la temperatura son directamente proporcionales.

34. ¿Cuál de las siguientes es una característica de las ondas longitudinales?

A) La vibración de las partículas es perpendicular a la dirección de propagación de la onda.

- B) La vibración de las partículas es paralela a la dirección de propagación de la onda.
- C) Solo se propagan en medios sólidos.
- D) No transportan energía.

35. ¿Qué describe la ecuación de onda?

- A) La relación entre la frecuencia y el tiempo.
- B) La relación entre la velocidad de propagación y las características del medio.
- C) La velocidad de la luz en el vacío.
- D) La relación entre la amplitud y la frecuencia.

36. ¿Qué ocurre en una onda estacionaria?

- A) Las ondas viajan en direcciones opuestas y se superponen.
- B) La onda viaja en una sola dirección.
- C) La amplitud de la onda disminuye con el tiempo.
- D) La frecuencia de la onda cambia continuamente.

37. ¿Qué describe el efecto Doppler?

- A) La absorción de ondas electromagnéticas en un campo magnético.
- B) El cambio de frecuencia de una onda debido al movimiento relativo de la fuente y el observador.
- C) La reflexión de una onda en una superficie rugosa.
- D) La reducción de la amplitud de una onda en un medio.

38. ¿Qué se entiende por batido en el contexto de ondas?

- A) La disminución de amplitud de una onda a lo largo del tiempo.
- B) La interferencia de dos ondas de frecuencias similares que produce pulsaciones en la amplitud.
- C) La propagación de ondas en un medio rígido.
- D) La separación de frecuencias en una onda continua.

39. ¿Qué tipo de onda es una onda acústica?

- A) Una onda transversal.
- B) Una onda longitudinal.
- C) Una onda elástica.
- D) Una onda electromagnética.

40. ¿Cuál es una característica de las ondas transversales?

- A) Las partículas vibran en la misma dirección que la propagación de la onda.
- B) Solo se pueden propagar en líquidos.
- C) Las partículas vibran perpendicularmente a la dirección de propagación de la onda.
- D) No pueden superponerse con otras ondas.

41. ¿Qué describe el modelo ondulatorio de la propagación de ondas en una cuerda?

- A) Ondas longitudinales que se propagan a lo largo de la cuerda.
- B) Ondas transversales que vibran perpendicularmente a la longitud de la cuerda.
- C) La velocidad de la onda es independiente de la tensión de la cuerda.
- D) La amplitud de la onda aumenta al reducir la tensión.

42. ¿Qué describe la difracción de una onda?

- A) El cambio en la dirección de una onda cuando pasa de un medio a otro.
- B) La desviación de una onda al atravesar una abertura estrecha o rodear un obstáculo.
- C) La cancelación de una onda por otra.
- D) La interferencia destructiva de dos ondas.

43. ¿Qué fenómeno se produce cuando una onda sonora se encuentra con una superficie y se refleja?

- A) Dispersión.
- B) Reflexión.
- C) Refracción.
- D) Difracción.

44. ¿Qué significa que una onda sea monocromática?

- A) Tiene múltiples frecuencias.
- B) Tiene una única frecuencia y longitud de onda.
- C) Tiene una frecuencia que varía constantemente.
- D) Es una onda longitudinal.

45. ¿Qué es el espectro electromagnético?

- A) Un rango de ondas de sonido con diferentes frecuencias.
- B) Un rango de todas las longitudes de onda de radiación electromagnética.

- C) Un conjunto de ondas estacionarias.
- D) Un conjunto de ondas longitudinales en un medio elástico.

46. ¿Qué describe el fenómeno de dispersión en óptica?

- A) La desviación de la luz en un medio sólido.
- B) La separación de la luz en diferentes longitudes de onda al atravesar un prisma.
- C) La reflexión de la luz en una superficie opaca.
- D) La absorción de luz en un material.

47. ¿Cuál de las siguientes es una unidad para medir la frecuencia de una onda?

- A) Metro (m)
- B) Newton (N)
- C) Hertz (Hz)
- D) Joules (J)

48. ¿Qué ocurre cuando las ondas de luz pasan a través de una rendija estrecha?

- A) Se reflejan.
- B) Se difractan y se expanden al otro lado de la rendija.
- C) Se refractan hacia una dirección específica.
- D) Se atenúan y desaparecen.

49. ¿Qué describe el recorrido libre medio de una molécula en un gas?

- A) La distancia promedio que recorre una molécula antes de chocar con otra.
- B) La distancia total recorrida por una molécula en una hora.
- C) La distancia entre dos puntos fijos del gas.
- D) La velocidad de propagación de una molécula en el gas.

50. ¿Qué es una onda plana?

- A) Una onda que tiene amplitud variable.
- B) Una onda que se propaga en una dirección fija con frentes de onda planos.
- C) Una onda que cambia de frecuencia con el tiempo.
- D) Una onda que se propaga solo en medios sólidos.

51. ¿Cuál es la unidad de medida de la presión en el Sistema Internacional?

- A) Pascal (Pa)
- B) Joule (J)
- C) Newton (N)
- D) Kelvin (K)

52. ¿Qué fenómeno describe la reflexión de una onda?

- A) La onda se desvía en una dirección al atravesar una barrera.
- B) La onda vuelve a su medio original después de golpear una superficie.
- C) La onda se divide en varias ondas más pequeñas.
- D) La onda se anula en la interfaz.

53. ¿Qué representa el ciclo Diesel en termodinámica?

- A) Un ciclo de refrigeración para máquinas de calor.
- B) Un ciclo ideal utilizado en motores de combustión interna.
- C) Un ciclo que no realiza trabajo.
- D) Un ciclo de un motor eléctrico.

54. ¿Qué relación establece la segunda ley de la termodinámica?

- A) El calor fluye de un cuerpo caliente a uno frío espontáneamente.
- B) La energía interna de un sistema permanece constante en un ciclo.
- C) La entropía disminuye en procesos irreversibles.
- D) La eficiencia de una máquina térmica depende de la presión.

55. ¿Qué describe el proceso isotérmico?

- A) Un cambio de temperatura sin cambio en la presión.
- B) Un cambio de volumen sin transferencia de calor.
- C) Un cambio de volumen con temperatura constante.
- D) Un cambio de energía interna constante.

56. ¿Qué ocurre en un proceso isobárico?

- A) La temperatura permanece constante.
- B) La presión permanece constante.
- C) El volumen permanece constante.

D) La entropía permanece constante.

57. ¿Qué es la licuación de un gas?

- A) La conversión de un gas en vapor.
- B) La conversión de un gas en líquido.
- C) La conversión de un gas en sólido.
- D) La conversión de un líquido en gas.

58. ¿Qué significa que una onda sea longitudinal?

- A) Las partículas vibran perpendicularmente a la dirección de la onda.
- B) Las partículas vibran en la misma dirección que la propagación de la onda.
- C) La onda se propaga solo en sólidos.
- D) La onda solo se propaga en líquidos.

59. ¿Qué describe la interferencia constructiva?

- A) Las ondas se anulan completamente.
- B) Las ondas se combinan para aumentar su amplitud.
- C) Las ondas se reflejan en la superficie de un material.
- D) Las ondas disminuyen su frecuencia.

60. ¿Qué describe la superposición de ondas?

- A) La cancelación de ondas en medios homogéneos.
- B) La combinación de dos o más ondas que se encuentran en el mismo punto.
- C) La reflexión de ondas en superficies.
- D) La refracción de ondas en medios opacos.

61. ¿Qué es la expansión térmica?

- A) El aumento de volumen de un material al disminuir su temperatura.
- B) El aumento de volumen de un material al aumentar su temperatura.
- C) La disminución de volumen al aumentar la presión.
- D) La expansión de un gas al reducir la presión.

62. ¿Qué tipo de transferencia de calor depende del movimiento de un fluido?

- A) Radiación
- B) Conducción
- C) Convección
- D) Difusión

63. ¿Qué es la energía interna de un sistema?

- A) La energía total de todas las moléculas debido a su movimiento y posición.
- B) La energía transferida al sistema.
- C) La energía potencial almacenada en el sistema.
- D) La energía que se emite al exterior.

64. ¿Qué tipo de lente provoca la convergencia de rayos de luz?

- A) Lente cóncava
- B) Lente convexa
- C) Espejo plano
- D) Lente esférica

65. ¿Qué describe la ley de enfriamiento de Newton en física forense?

- A) La velocidad de propagación de calor en un fluido.
- B) La variación de la velocidad de enfriamiento de un cuerpo dependiendo de la temperatura ambiente.
- C) El aumento de temperatura en cuerpos sólidos.
- D) La emisión de luz en un material incandescente.

66. ¿Qué propiedad de un gas se mantiene constante en un proceso isocórico?

- A) La presión
- B) El volumen
- C) La temperatura
- D) La energía interna

67. ¿Cuál es el fenómeno que se observa cuando una onda de luz pasa a través de un prisma y se descompone en varios colores?

- A) Interferencia
- B) Dispersión
- C) Difracción

D) Reflexión

68. ¿Qué es el trabajo en un proceso termodinámico?

- A) La energía interna transferida al sistema.
- B) El calor absorbido o emitido.
- C) La cantidad de energía transferida a través de un cambio de volumen.
- D) La energía almacenada en el sistema.

69. ¿Qué propiedad mide un termómetro de gas?

- A) El cambio de volumen en función de la presión y la temperatura.
- B) La velocidad de enfriamiento del gas.
- C) La densidad del gas.
- D) La energía potencial del gas.

70. ¿Qué sucede cuando el índice de refracción aumenta en un medio?

- A) La velocidad de la luz aumenta.
- B) La luz se propaga en línea recta.
- C) La velocidad de la luz disminuye.
- D) La luz se refleja completamente.

71. ¿Qué ocurre en el proceso de convección?

- A) El calor se transfiere a través de contacto directo entre moléculas.
- B) La energía se transfiere mediante el movimiento de partículas en un fluido.
- C) El calor se transfiere a través de ondas electromagnéticas.
- D) El sistema se enfría por radiación térmica.

72. ¿Qué describe la ley de Stefan-Boltzmann en radiación térmica?

- A) La relación entre energía y temperatura en un sistema.
- B) La emisión de energía en función de la cuarta potencia de la temperatura.
- C) La disminución de temperatura con el aumento de la masa.
- D) La absorción de calor en un material sólido.

73. ¿Qué representa el ciclo Rankine en termodinámica?

- A) El ciclo ideal para una máquina de vapor.
- B) Un ciclo de refrigeración en sistemas de aire acondicionado.
- C) Un ciclo reversible en un motor de combustión interna.
- D) Un ciclo adiabático de expansión libre.

74. ¿Qué es la frecuencia de una onda?

- A) El tiempo que tarda en completar un ciclo.
- B) La cantidad de ciclos que realiza una onda en un segundo.
- C) La longitud de la onda.
- D) La amplitud de la onda.

75. ¿Cuál de las siguientes es una aplicación de la Ley de Boyle en la vida diaria?

- A) El inflado de globos de helio.
- B) La evaporación de agua en condiciones de presión constante.
- C) La fusión de hielo.
- D) La condensación de vapor en condiciones de volumen constante.

76. ¿Qué describe el calor específico?

- A) La cantidad de energía que un material necesita para aumentar su volumen.
- B) La cantidad de energía necesaria para cambiar la temperatura de una unidad de masa en 1 K.
- C) La capacidad del material para absorber radiación.
- D) La resistencia del material al cambio de presión.

77. ¿Qué fenómeno ocurre en el recorrido libre medio de una partícula en un gas?

- A) La partícula se mueve sin chocar en un trayecto largo.
- B) La partícula recorre distancias cortas sin colisiones.
- C) La partícula se detiene en cada trayecto.
- D) La partícula aumenta su velocidad en cada colisión.

78. ¿Qué describe la ley de Clausius-Clapeyron?

- A) La relación entre presión y temperatura en cambios de fase.
- B) La conservación de la energía en sistemas aislados.
- C) La eficiencia máxima de un motor térmico.
- D) La transferencia de calor en gases ideales.

79. ¿Qué ocurre en un sistema adiabático?

- A) No se realiza trabajo.
- B) No hay transferencia de calor con el entorno.
- C) La presión se mantiene constante.
- D) La temperatura disminuye sin cambios en la energía interna.

80. ¿Qué describe la expansión isotérmica de un gas?

- A) La expansión sin cambio en la presión.
- B) La expansión con temperatura constante.
- C) La expansión con volumen constante.
- D) La expansión sin cambio en la energía interna.

81. ¿Qué describe el teorema de equipartición de la energía?

- A) La distribución uniforme de energía entre todas las partículas de un sistema.
- B) La energía total del sistema se distribuye en cada grado de libertad con una energía promedio.
- C) La energía se conserva en un sistema cerrado.
- D) La energía se transfiere uniformemente en un sistema termodinámico.

82. ¿Qué ocurre en el Ciclo de Carnot durante un proceso isotérmico de expansión?

- A) El sistema recibe calor de la fuente caliente mientras realiza trabajo.
- B) El sistema pierde calor en un ambiente frío.
- C) La temperatura del sistema aumenta.
- D) No hay intercambio de calor.

83. ¿Qué propiedad del gas cambia en un proceso adiabático?

- A) La energía interna.
- B) La entropía.
- C) El volumen permanece constante.
- D) La presión y la temperatura permanecen constantes.

84. ¿Qué es una onda transversal?

- A) Una onda en la que las partículas oscilan en la misma dirección que la propagación de la onda.
- B) Una onda en la que las partículas oscilan perpendicularmente a la dirección de propagación.
- C) Una onda que solo se propaga en medios sólidos.
- D) Una onda longitudinal.

85. ¿Cuál es el cambio de estado que ocurre cuando el gas se licua?

- A) Gas a sólido
- B) Sólido a líquido
- C) Líquido a gas
- D) Gas a líquido

86. ¿ Oué representa el ciclo Otto en termodinámica?

- A) Un ciclo reversible en un sistema de aire acondicionado.
- B) Un ciclo ideal para motores de combustión interna de encendido por chispa.
- C) Un ciclo de expansión adiabática.
- D) Un ciclo de compresión isotérmica.

87. ¿Qué describe el concepto de entropía en un sistema?

- A) La cantidad de energía almacenada en un sistema.
- B) La medida de desorden o aleatoriedad en un sistema.
- C) La cantidad de calor en un proceso adiabático.
- D) La capacidad de un sistema para realizar trabajo.

88. ¿Qué es el calor específico de una sustancia?

- A) La cantidad de calor necesario para elevar la temperatura de toda la sustancia en 1 °C.
- B) La cantidad de calor necesario para elevar la temperatura de 1 gramo de sustancia en 1 °C.
- C) La energía interna de la sustancia.
- D) La energía cinética de las moléculas de la sustancia.

89. ¿Qué es una onda estacionaria?

- A) Una onda que se propaga en una sola dirección.
- B) Una onda que resulta de la interferencia de dos ondas de igual frecuencia y amplitud que viajan en direcciones opuestas.
- C) Una onda que disminuye su frecuencia con el tiempo.
- D) Una onda que cambia su longitud de onda.

90. ¿Qué fenómeno explica el cambio de frecuencia debido al movimiento relativo de la fuente y el observador?

- A) Efecto Doppler
- B) Efecto Compton
- C) Reflexión
- D) Resonancia

91. ¿Qué propiedad se mantiene constante en un proceso isocórico?

- A) Volumen
- B) Presión
- C) Temperatura
- D) Energía interna

92. ¿Qué describe la ley de conservación de la energía en termodinámica?

- A) La energía interna de un sistema es constante en procesos isobáricos.
- B) La energía no se crea ni se destruye, solo se transforma.
- C) La entropía siempre disminuye en un sistema cerrado.
- D) La energía aumenta con la temperatura en un proceso adiabático.

93. ¿Qué ocurre en un ciclo de Carnot cuando la temperatura de la fuente fría disminuye?

- A) La eficiencia del ciclo aumenta.
- B) La eficiencia del ciclo disminuye.
- C) El ciclo se vuelve irreversible.
- D) El sistema realiza trabajo.

94. ¿Cuál es la velocidad de propagación del sonido en el aire a temperatura ambiente?

- A) Aproximadamente 1500 m/s
- B) Aproximadamente 340 m/s
- C) Aproximadamente 500 m/s
- D) Aproximadamente 3 x 10⁸ m/s

95. ¿Qué ocurre cuando la frecuencia de una onda sonora aumenta?

- A) La longitud de onda aumenta.
- B) La longitud de onda disminuye.
- C) La velocidad de la onda disminuye.
- D) La amplitud de la onda aumenta.

96. ¿Qué representa el modelo cinético de los gases?

- A) La relación entre presión y volumen.
- B) La energía promedio de las partículas en un gas debido a su movimiento.
- C) La energía potencial de un gas.
- D) La capacidad calorífica de un gas.

97. ¿ Oué significa la eficiencia de una máquina térmica?

- A) La cantidad total de calor que absorbe del entorno.
- B) La proporción de trabajo realizado en comparación con el calor absorbido.
- C) La energía perdida en cada ciclo de operación.
- D) La capacidad del sistema para mantener el volumen constante.

98. ¿Qué describe el ciclo Rankine?

- A) El ciclo ideal para una máquina de combustión interna.
- B) El ciclo ideal para una máquina de vapor.
- C) El ciclo de un refrigerador.
- D) Un proceso isobárico.

99. ¿Qué tipo de proceso es un cambio de fase de sólido a líquido?

- A) Sublimación
- B) Condensación
- C) Fusión
- D) Solidificación

100. ¿Qué es una onda longitudinal?

- A) Una onda en la cual las partículas vibran en dirección perpendicular a la propagación.
- B) Una onda en la cual las partículas vibran en la misma dirección que la propagación.
- C) Una onda que solo se propaga en líquidos.
- D) Una onda electromagnética.

Soluciones

100. ¿Qué es una onda longitudinal?

- A) Una onda en la cual las partículas vibran en dirección perpendicular a la propagación.
- B) Una onda en la cual las partículas vibran en la misma dirección que la propagación.
- C) Una onda que solo se propaga en líquidos.
- D) Una onda electromagnética.
- Respuesta: B) Una onda en la cual las partículas vibran en la misma dirección que la propagación.

99. ¿Qué tipo de proceso es un cambio de fase de sólido a líquido?

- A) Sublimación.
- B) Condensación.
- C) Fusión.
- D) Solidificación.
- Respuesta: C) Fusión.

98. ¿Qué describe el ciclo Rankine?

- A) El ciclo ideal para una máquina de combustión interna.
- B) El ciclo ideal para una máquina de vapor.
- C) El ciclo de un refrigerador.
- D) Un proceso isobárico.
- Respuesta: B) El ciclo ideal para una máquina de vapor.

97. ¿Qué significa la eficiencia de una máquina térmica?

- A) La cantidad total de calor que absorbe del entorno.
- B) La proporción de trabajo realizado en comparación con el calor absorbido.
- C) La energía perdida en cada ciclo de operación.
- D) La capacidad del sistema para mantener el volumen constante.
- Respuesta: B) La proporción de trabajo realizado en comparación con el calor absorbido.

96. ¿Qué representa el modelo cinético de los gases?

- A) La relación entre presión y volumen.
- B) La energía promedio de las partículas en un gas debido a su movimiento.
- C) La energía potencial de un gas.
- D) La capacidad calorífica de un gas.
- Respuesta: B) La energía promedio de las partículas en un gas debido a su movimiento.

95. ¿Qué ocurre cuando la frecuencia de una onda sonora aumenta?

- A) La longitud de onda aumenta.
- B) La longitud de onda disminuye.
- C) La velocidad de la onda disminuye.
- D) La amplitud de la onda aumenta.
- Respuesta: B) La longitud de onda disminuye.

94. ¿Cuál es la velocidad de propagación del sonido en el aire a temperatura ambiente?

- A) Aproximadamente 1500 m/s.
- B) Aproximadamente 340 m/s.
- C) Aproximadamente 500 m/s.
- D) Aproximadamente 3 x 10⁸ m/s.
- Respuesta: B) Aproximadamente 340 m/s.

93. ¿Qué ocurre en un ciclo de Carnot cuando la temperatura de la fuente fría disminuye?

- A) La eficiencia del ciclo aumenta.
- B) La eficiencia del ciclo disminuye.
- C) El ciclo se vuelve irreversible.
- D) El sistema realiza trabajo.
- Respuesta: A) La eficiencia del ciclo aumenta.

92. ¿Qué describe la ley de conservación de la energía en termodinámica?

- A) La energía interna de un sistema es constante en procesos isobáricos.
- B) La energía no se crea ni se destruye, solo se transforma.
- C) La entropía siempre disminuye en un sistema cerrado.
- D) La energía aumenta con la temperatura en un proceso adiabático.
- Respuesta: B) La energía no se crea ni se destruye, solo se transforma.

91. ¿Qué propiedad se mantiene constante en un proceso isocórico?

- A) Volumen.
- B) Presión.
- C) Temperatura.
- D) Energía interna.
- Respuesta: A) Volumen.

90. ¿Qué describe la ley de Fourier en conducción térmica?

- A) La relación entre calor transferido y tiempo en una superficie plana.
- B) La relación entre temperatura y presión en un sistema cerrado.
- C) La cantidad de energía generada por un sistema.
- D) El calor perdido durante la expansión isotérmica.
- Respuesta: A) La relación entre calor transferido y tiempo en una superficie plana.
- **Comentario:** La ley de Fourier establece que la tasa de transferencia de calor a través de un material es proporcional al gradiente de temperatura y al área de la sección transversal, y es inversamente proporcional al espesor.

89. ¿Qué propiedad describe la entalpía de un sistema?

- A) La capacidad de un sistema para realizar trabajo útil.
- B) La suma de la energía interna y el producto de presión y volumen.
- C) La energía almacenada en un sistema a temperatura constante.
- D) La cantidad total de calor absorbido durante un proceso adiabático.
- Respuesta: B) La suma de la energía interna y el producto de presión y volumen.
- **Comentario:** La entalpía es una magnitud útil en procesos a presión constante, ya que representa el calor transferido al sistema.

88. ¿Qué ocurre en un proceso isotérmico de un gas ideal?

- A) La energía interna del gas aumenta.
- B) La temperatura del gas permanece constante.
- C) El gas no realiza trabajo.
- D) La presión y el volumen permanecen constantes.
- Respuesta: B) La temperatura del gas permanece constante.
- **Comentario:** En un proceso isotérmico, la energía interna de un gas ideal no cambia porque depende únicamente de la temperatura.

87. ¿Qué describe la segunda ley de la termodinámica?

A) La energía no se crea ni se destruye.

- B) La entropía de un sistema aislado siempre aumenta o permanece constante.
- C) La entropía de un sistema aislado puede disminuir en un proceso adiabático.
- D) El trabajo realizado es igual al cambio en la energía interna.
- Respuesta: B) La entropía de un sistema aislado siempre aumenta o permanece constante.
- **Comentario:** Esta ley establece la dirección de los procesos naturales, mostrando que los sistemas tienden al desorden (aumento de la entropía).

86. ¿Qué es la capacidad calorífica específica?

- A) La cantidad de calor necesaria para elevar la temperatura de una sustancia en 1 K por unidad de masa.
- B) La cantidad de calor que una sustancia puede liberar en un proceso isotérmico.
- C) La cantidad de energía absorbida en un proceso isocórico.
- D) El calor necesario para fundir una sustancia.
- Respuesta: A) La cantidad de calor necesaria para elevar la temperatura de una sustancia en 1 K por unidad de masa.
- **Comentario:** Esta propiedad es específica de cada material y es clave para entender cómo se calientan o enfrían diferentes sustancias.

85. ¿Qué ocurre cuando un gas ideal se comprime adiabáticamente?

- A) La temperatura aumenta.
- B) La temperatura disminuye.
- C) La presión permanece constante.
- D) La energía interna permanece constante.
- Respuesta: A) La temperatura aumenta.
- **Comentario:** En una compresión adiabática, el gas no intercambia calor con el entorno, pero su energía interna aumenta, lo que provoca un aumento de la temperatura.

84. ¿Qué significa un proceso isocórico?

- A) Un proceso en el que la presión permanece constante.
- B) Un proceso en el que el volumen permanece constante.
- C) Un proceso en el que la temperatura permanece constante.
- D) Un proceso adiabático sin intercambio de calor.
- Respuesta: B) Un proceso en el que el volumen permanece constante.
- **Comentario:** En un proceso isocórico, no hay trabajo realizado porque el volumen no cambia, y cualquier cambio en la energía interna se debe únicamente al calor transferido.

83. ¿Qué determina la eficiencia de un ciclo de Carnot?

- A) La cantidad total de calor absorbido durante el ciclo.
- B) La relación entre las temperaturas de las fuentes caliente y fría.
- C) La cantidad de trabajo realizado por el sistema.
- D) La diferencia de presiones entre las etapas del ciclo.
- Respuesta: B) La relación entre las temperaturas de las fuentes caliente y fría.
- Comentario: La eficiencia de Carnot es máxima cuando la temperatura de la fuente fría es muy baja en comparación con la de la fuente caliente.

82. ¿Qué representa la presión parcial de un gas en una mezcla?

- A) La fracción de volumen que ocupa el gas.
- B) La presión que el gas ejercería si estuviera solo en el mismo volumen.
- C) La presión total multiplicada por la masa del gas.
- D) La energía interna total de la mezcla.
- Respuesta: B) La presión que el gas ejercería si estuviera solo en el mismo volumen.
- **Comentario:** Según la ley de Dalton, la presión total de una mezcla de gases es la suma de las presiones parciales de cada gas.

81. ¿Qué ocurre en un ciclo de refrigeración?

- A) Se transfiere calor de un cuerpo frío a uno caliente.
- B) Se transfiere calor de un cuerpo caliente a uno frío.
- C) Se realiza trabajo neto sin intercambio de calor.
- D) La energía interna del sistema permanece constante.
- **Respuesta:** A) Se transfiere calor de un cuerpo frío a uno caliente.
- **Comentario:** Un ciclo de refrigeración requiere trabajo externo para transferir calor en contra del gradiente natural de temperatura.

80. ¿Qué significa un proceso adiabático?

- A) Un proceso en el cual la energía interna permanece constante.
- B) Un proceso en el que no hay intercambio de calor con el entorno.
- C) Un proceso a temperatura constante.
- D) Un proceso en el cual el volumen permanece constante.
- Respuesta: B) Un proceso en el que no hay intercambio de calor con el entorno.
- **Comentario:** En un proceso adiabático, todo cambio en la energía interna del sistema se debe exclusivamente al trabajo realizado, ya que no hay transferencia de calor.

79. ¿Qué relación describe la ley de Boyle?

- A) La presión y la temperatura a volumen constante.
- B) La presión y el volumen a temperatura constante.
- C) La energía interna y la presión en un proceso isocórico.
- D) La densidad y la presión de un gas ideal.
- Respuesta: B) La presión y el volumen a temperatura constante.
- Comentario: Según la ley de Boyle, para un gas ideal, el producto de presión y volumen es constante si la temperatura no cambia.

78. ¿Qué ocurre cuando la entropía de un sistema aislado aumenta?

- A) El sistema realiza más trabajo útil.
- B) El sistema se vuelve más ordenado.
- C) El sistema pierde energía interna.
- D) El sistema se mueve hacia un estado de mayor desorden.
- Respuesta: D) El sistema se mueve hacia un estado de mayor desorden.
- **Comentario:** El aumento de la entropía está asociado con el segundo principio de la termodinámica y refleja la tendencia natural hacia el equilibrio y el desorden.

77. ¿Qué describe la ecuación de estado de un gas ideal?

- A) La relación entre la energía interna y el trabajo realizado.
- B) La relación entre presión, volumen y temperatura de un gas ideal.
- C) La relación entre entalpía y energía interna.
- D) La relación entre calor específico y temperatura.
- Respuesta: B) La relación entre presión, volumen y temperatura de un gas ideal.
- **Comentario:** La ecuación de estado para un gas ideal es PV=nRTPV = nRTPV=nRT, donde PPP es presión, VVV es volumen, nnn es el número de moles, RRR es la constante universal de los gases, y TTT es la temperatura.

76. ¿Qué representa el calor específico a volumen constante?

- A) La cantidad de calor necesaria para cambiar la temperatura de un gas ideal mientras el volumen permanece constante.
- B) La energía necesaria para cambiar la presión a volumen constante.
- C) La cantidad de calor necesaria para convertir una sustancia en gas.

- D) La energía transferida en un proceso isotérmico.
- **Respuesta:** A) La cantidad de calor necesaria para cambiar la temperatura de un gas ideal mientras el volumen permanece constante.
- **Comentario:** El calor específico a volumen constante, CvC_vCv, refleja cuánto calor se necesita para elevar la temperatura sin permitir cambios en el volumen.

75. ¿Qué ocurre en un ciclo de Carnot reversible?

- A) Todo el calor absorbido se convierte en trabajo.
- B) No hay pérdidas de energía por fricción o calor no útil.
- C) La eficiencia es menor que la de otros ciclos ideales.
- D) Se transfiere calor de un cuerpo frío a uno caliente.
- Respuesta: B) No hay pérdidas de energía por fricción o calor no útil.
- **Comentario:** Un ciclo de Carnot es un modelo ideal que supone un proceso completamente reversible, maximizando la eficiencia teórica de una máquina térmica.

74. ¿Qué significa un proceso isobárico?

- A) Un proceso en el cual la presión permanece constante.
- B) Un proceso donde el volumen permanece constante.
- C) Un proceso sin intercambio de calor.
- D) Un proceso a temperatura constante.
- Respuesta: A) Un proceso en el cual la presión permanece constante.
- **Comentario:** Durante un proceso isobárico, el calor transferido al sistema puede realizar trabajo y también cambiar la energía interna del sistema.

73. ¿Qué describe la primera ley de la termodinámica?

- A) El trabajo neto realizado en un ciclo cerrado.
- B) La conservación de la energía en sistemas térmicos.
- C) La relación entre presión y temperatura en un sistema cerrado.
- D) El incremento de entropía en un sistema aislado.
- Respuesta: B) La conservación de la energía en sistemas térmicos.
- **Comentario:** La primera ley de la termodinámica establece que el cambio en la energía interna de un sistema es igual a la suma del calor agregado al sistema y el trabajo realizado sobre él.

72. ¿Qué ocurre en un sistema que experimenta un proceso isotérmico?

- A) La presión y el volumen permanecen constantes.
- B) La energía interna del sistema permanece constante.
- C) La temperatura aumenta proporcionalmente al trabajo realizado.
- D) El sistema no intercambia calor con su entorno.
- **Respuesta:** B) La energía interna del sistema permanece constante.
- **Comentario:** En un proceso isotérmico de un gas ideal, la energía interna depende únicamente de la temperatura, por lo que no cambia si esta permanece constante.

71. ¿Qué representa el ciclo Otto en termodinámica?

- A) El ciclo ideal de un motor de combustión interna.
- B) El ciclo de refrigeración en un aire acondicionado.
- C) El ciclo de un motor de vapor.
- D) Un proceso isotérmico reversible.
- Respuesta: A) El ciclo ideal de un motor de combustión interna.
- **Comentario:** El ciclo Otto describe el funcionamiento idealizado de motores como los de gasolina, con procesos de compresión, combustión y expansión.

70. ¿Qué describe la eficiencia de un motor térmico?

- A) La cantidad de calor convertido en trabajo útil.
- B) La cantidad de energía total generada por el motor.
- C) La relación entre el calor absorbido y el calor liberado.
- D) La cantidad de calor necesario para realizar un ciclo completo.
- Respuesta: A) La cantidad de calor convertido en trabajo útil.
- **Comentario:** La eficiencia de un motor térmico es la proporción del calor absorbido por el sistema que se transforma en trabajo mecánico, y es siempre menor al 100% debido a las limitaciones de la segunda ley de la termodinámica.

69. ¿Qué representa la constante universal de los gases ideales, RRR?

- A) La relación entre la presión y el volumen de un gas.
- B) El trabajo realizado por un gas en un ciclo isotérmico.
- C) Una constante que relaciona presión, volumen y temperatura en la ecuación de los gases ideales.
- D) La cantidad de energía interna almacenada en un gas ideal.
- Respuesta: C) Una constante que relaciona presión, volumen y temperatura en la ecuación de los gases ideales.
- **Comentario:** RRR tiene un valor de aproximadamente 8.31 J/(mol\cdotpK)8.31 \, \text{J/(mol\K)}8.31J/(mol\cdotpK) y aparece en la ecuación PV=nRTPV = nRTPV=nRT, que describe el comportamiento de los gases ideales.

68. ¿Qué ocurre en un proceso isotérmico reversible de un gas ideal?

- A) La energía interna del gas aumenta.
- B) La energía interna permanece constante.
- C) El gas no realiza trabajo.
- D) La presión y el volumen permanecen constantes.
- Respuesta: B) La energía interna permanece constante.
- **Comentario:** En un proceso isotérmico, la temperatura del gas no cambia. Como la energía interna de un gas ideal depende exclusivamente de la temperatura, esta también permanece constante.

67. ¿Qué describe la ley de Dalton de las presiones parciales?

- A) La suma de las presiones parciales de los gases en una mezcla equivale a la presión total.
- B) La relación entre la temperatura y la presión en un gas comprimido.
- C) La cantidad de trabajo realizado por un gas en expansión isotérmica.
- D) La transferencia de calor entre dos gases en equilibrio térmico.
- Respuesta: A) La suma de las presiones parciales de los gases en una mezcla equivale a la presión total.
- **Comentario:** Esta ley se aplica a mezclas de gases ideales y establece que cada gas en la mezcla ejerce una presión como si estuviera solo.

66. ¿Qué sucede cuando un gas se calienta a volumen constante?

- A) La presión aumenta.
- B) La presión permanece constante.
- C) La energía interna permanece constante.
- D) El volumen aumenta proporcionalmente.
- Respuesta: A) La presión aumenta.
- **Comentario:** Según la ley de Gay-Lussac, cuando un gas se calienta a volumen constante, su presión aumenta proporcionalmente al incremento de la temperatura.

65. ¿Qué ocurre cuando se reduce la temperatura de un gas ideal a presión constante?

- A) El volumen disminuye.
- B) La energía interna permanece constante.
- C) El volumen aumenta.
- D) La presión disminuye.
- Respuesta: A) El volumen disminuye.

• **Comentario:** Según la ley de Charles, el volumen de un gas ideal es directamente proporcional a su temperatura si la presión se mantiene constante.

64. ¿Qué es un proceso isotérmico?

- A) Un proceso en el cual el volumen permanece constante.
- B) Un proceso en el que la temperatura permanece constante.
- C) Un proceso adiabático sin intercambio de calor.
- D) Un proceso donde la energía interna permanece constante.
- Respuesta: B) Un proceso en el que la temperatura permanece constante.
- **Comentario:** En procesos isotérmicos, el calor agregado al sistema se utiliza completamente para realizar trabajo, sin cambiar la energía interna.

63. ¿Qué representa la energía interna de un gas ideal?

- A) La suma de la energía cinética y potencial de sus moléculas.
- B) La energía necesaria para comprimir el gas a volumen constante.
- C) La cantidad de calor absorbido por el gas en un proceso isotérmico.
- D) La energía total liberada en una expansión adiabática.
- Respuesta: A) La suma de la energía cinética y potencial de sus moléculas.
- **Comentario:** En un gas ideal, la energía interna depende únicamente de la energía cinética promedio de las moléculas, que está relacionada con la temperatura.

62. ¿Qué describe la eficiencia de un ciclo térmico reversible?

- A) La cantidad de energía interna que se pierde como calor.
- B) La cantidad de trabajo realizado en comparación con el calor absorbido.
- C) La cantidad de calor transferido a la fuente fría.
- D) La energía cinética máxima generada durante el ciclo.
- Respuesta: B) La cantidad de trabajo realizado en comparación con el calor absorbido.

61. ¿Qué propiedad es constante en un proceso isocórico?

- A) Presión.
- B) Volumen.
- C) Temperatura.
- D) Entalpía.
- Respuesta: B) Volumen.
- **Comentario:** En un proceso isocórico, el volumen del sistema no cambia, por lo que no se realiza trabajo mecánico (W=0W = 0W=0).

60. ¿Qué significa la transferencia de calor en un proceso isotérmico?

- A) Todo el calor se convierte en trabajo.
- B) La energía interna del sistema permanece constante.
- C) No hay intercambio de calor.
- D) La presión y el volumen permanecen constantes.
- Respuesta: A) Todo el calor se convierte en trabajo.
- **Comentario:** En un proceso isotérmico de un gas ideal, la energía interna no cambia, por lo que el calor suministrado se utiliza completamente para realizar trabajo.

59. ¿Qué representa la ley de Gay-Lussac?

- A) La relación entre presión y volumen de un gas a temperatura constante.
- B) La relación entre presión y temperatura de un gas a volumen constante.
- C) La relación entre volumen y temperatura de un gas a presión constante.
- D) La conservación de la energía interna en un proceso isotérmico.

- **Respuesta:** B) La relación entre presión y temperatura de un gas a volumen constante.
- **Comentario:** La ley de Gay-Lussac establece que la presión de un gas es directamente proporcional a su temperatura, siempre que el volumen se mantenga constante.

58. ¿Qué ocurre cuando un gas se comprime adiabáticamente?

- A) La energía interna permanece constante.
- B) La temperatura del gas aumenta.
- C) El gas pierde energía a su entorno.
- D) La presión disminuye.
- Respuesta: B) La temperatura del gas aumenta.
- **Comentario:** En una compresión adiabática, no hay transferencia de calor con el entorno, pero el trabajo realizado sobre el gas aumenta su energía interna y, por ende, su temperatura.

57. ¿Qué describe la ley de Charles?

- A) La relación entre presión y volumen a temperatura constante.
- B) La relación entre volumen y temperatura a presión constante.
- C) La relación entre presión y temperatura a volumen constante.
- D) La cantidad de energía interna en un proceso isotérmico.
- Respuesta: B) La relación entre volumen y temperatura a presión constante.
- **Comentario:** Según la ley de Charles, el volumen de un gas es directamente proporcional a su temperatura absoluta, si la presión no cambia.

56. ¿Qué propiedad cambia en un proceso isobárico?

- A) Presión.
- B) Volumen.
- C) Entropía.
- D) Energía interna.
- Respuesta: B) Volumen.
- **Comentario:** En un proceso isobárico, la presión permanece constante, mientras que el volumen y la temperatura del sistema pueden cambiar.

55. ¿Qué ocurre en un proceso adiabático reversible?

- A) No hay trabajo realizado.
- B) No hay transferencia de calor.
- C) La energía interna permanece constante.
- D) El gas alcanza el equilibrio térmico con el entorno.
- **Respuesta:** B) No hay transferencia de calor.
- **Comentario:** En un proceso adiabático reversible, el sistema no intercambia calor con su entorno, y los cambios en energía interna se deben exclusivamente al trabajo realizado.

54. ¿Qué representa el calor específico a presión constante (CpC_pCp)?

- A) La cantidad de calor necesaria para elevar la temperatura de una sustancia en 1 K a volumen constante.
- B) La cantidad de calor necesaria para elevar la temperatura de una sustancia en 1 K a presión constante.
- C) La cantidad de calor que un gas pierde en un proceso isotérmico.
- D) La relación entre energía interna y temperatura.
- Respuesta: B) La cantidad de calor necesaria para elevar la temperatura de una sustancia en 1 K a presión constante.
- **Comentario:** CpC_pCp es mayor que el calor específico a volumen constante (CvC_vCv) porque, además de calentar el gas, parte del calor realiza trabajo para expandir el gas a presión constante.

53. ¿Qué ocurre cuando la temperatura de un gas ideal disminuye a presión constante?

• A) El volumen aumenta.

- B) El volumen disminuye.
- C) La presión permanece constante.
- D) La energía interna aumenta.
- Respuesta: B) El volumen disminuye.
- Comentario: Según la ley de Charles, el volumen de un gas es directamente proporcional a su temperatura absoluta a presión constante, por lo que si la temperatura disminuye, el volumen también lo hace.

52. ¿Qué describe un ciclo isotérmico reversible?

- A) La energía interna del sistema aumenta proporcionalmente al calor transferido.
- B) El calor absorbido se convierte completamente en trabajo.
- C) La presión y el volumen permanecen constantes durante el ciclo.
- D) La entropía del sistema permanece constante.
- Respuesta: B) El calor absorbido se convierte completamente en trabajo.
- **Comentario:** En un proceso isotérmico, el calor que entra en el sistema se utiliza para realizar trabajo, ya que la energía interna no cambia debido a la constancia de la temperatura.

51. ¿Qué ocurre en un proceso isocórico reversible?

- A) No hay cambio de presión.
- B) No se realiza trabajo.
- C) No hay transferencia de calor.
- D) La energía interna permanece constante.
- Respuesta: B) No se realiza trabajo.
- **Comentario:** En un proceso isocórico, el volumen permanece constante, lo que implica que no se realiza trabajo (W=0W = 0W=0) y los cambios en energía interna se deben únicamente al calor transferido.

50. ¿Qué representa la eficiencia de un ciclo de Carnot?

- A) La proporción entre el trabajo realizado y el calor absorbido.
- B) La cantidad de energía interna perdida en cada ciclo.
- C) La capacidad del sistema para mantener la presión constante.
- D) La relación entre el volumen inicial y final del gas.
- Respuesta: A) La proporción entre el trabajo realizado y el calor absorbido.

49. ¿Qué ocurre cuando un gas ideal se expande isotérmicamente?

- A) La temperatura aumenta proporcionalmente al volumen.
- B) La presión y el volumen permanecen constantes.
- C) La energía interna del gas permanece constante.
- D) La energía interna aumenta debido al trabajo realizado.
- Respuesta: C) La energía interna del gas permanece constante.
- **Comentario:** En una expansión isotérmica, la temperatura del gas no cambia, lo que implica que su energía interna (que depende de la temperatura) también permanece constante.

48. ¿Qué representa la ley de conservación de la energía?

- A) La energía de un sistema siempre aumenta.
- B) La energía no se crea ni se destruye, solo se transforma.
- C) La energía interna de un sistema aislado disminuye con el tiempo.
- D) La energía de un gas depende solo de su temperatura.
- **Respuesta:** B) La energía no se crea ni se destruye, solo se transforma.
- **Comentario:** Este principio fundamental de la física se aplica tanto a sistemas mecánicos como térmicos y describe cómo la energía total de un sistema cerrado permanece constante.

47. ¿Qué ocurre en un proceso isobárico reversible?

- A) El volumen permanece constante mientras la presión varía.
- B) La presión permanece constante mientras el volumen cambia.
- C) El sistema no realiza trabajo.
- D) La temperatura permanece constante mientras el sistema intercambia calor.
- Respuesta: B) La presión permanece constante mientras el volumen cambia.
- **Comentario:** Durante un proceso isobárico, el calor transferido al sistema puede cambiar la energía interna y realizar trabajo al variar el volumen.

46. ¿Qué describe el principio de Carnot?

- A) La eficiencia de una máquina térmica depende exclusivamente de la presión y el volumen iniciales.
- B) Ninguna máquina térmica puede ser más eficiente que una máquina de Carnot operando entre las mismas temperaturas.
- C) Todo el calor absorbido por una máquina térmica puede convertirse en trabajo útil.
- D) La energía interna de un sistema siempre permanece constante durante un ciclo de Carnot.
- Respuesta: B) Ninguna máquina térmica puede ser más eficiente que una máquina de Carnot operando entre las mismas temperaturas.
- **Comentario:** El ciclo de Carnot es el estándar teórico para la eficiencia máxima de cualquier máquina térmica, y su eficiencia solo depende de las temperaturas de las fuentes caliente y fría.

45. ¿Qué significa un proceso reversible?

- A) Un proceso que ocurre rápidamente y sin pérdidas de energía.
- B) Un proceso que puede revertirse exactamente sin cambios en el sistema ni en su entorno.
- C) Un proceso en el cual la presión y el volumen permanecen constantes.
- D) Un proceso que no realiza trabajo sobre su entorno.
- Respuesta: B) Un proceso que puede revertirse exactamente sin cambios en el sistema ni en su entorno.
- Comentario: En la práctica, los procesos completamente reversibles no existen, pero son útiles como idealización en termodinámica.

44. ¿Qué ocurre cuando un gas ideal se calienta a presión constante?

- A) El volumen permanece constante.
- B) El volumen aumenta.
- C) La presión disminuye.
- D) La energía interna permanece constante.
- Respuesta: B) El volumen aumenta.
- **Comentario:** Según la ley de Charles, a presión constante, el volumen de un gas es directamente proporcional a su temperatura.

43. ¿Qué describe el trabajo realizado por un gas en un proceso isotérmico?

- A) La cantidad de energía interna que aumenta.
- B) La cantidad de energía transferida como calor al gas.
- C) La cantidad de energía interna que permanece constante.
- D) La energía transferida como calor que se convierte completamente en trabajo.
- Respuesta: D) La energía transferida como calor que se convierte completamente en trabajo.
- **Comentario:** En un proceso isotérmico, la energía interna no cambia, por lo que todo el calor agregado al sistema se utiliza para realizar trabajo.

42. ¿Qué describe la ecuación PV=nRT?

- A) La relación entre presión, volumen y temperatura de un gas ideal.
- B) La relación entre energía interna y presión en un proceso isocórico.
- C) La relación entre volumen y trabajo en un proceso adiabático.
- D) La transferencia de calor entre dos gases ideales.

- Respuesta: A) La relación entre presión, volumen y temperatura de un gas ideal.
- **Comentario:** Esta ecuación de estado describe el comportamiento macroscópico de los gases ideales, donde nnn es el número de moles y RRR la constante universal de los gases.

41. ¿Qué ocurre en un proceso adiabático irreversible?

- A) La energía interna permanece constante.
- B) La presión y el volumen permanecen constantes.
- C) Hay pérdidas de energía por fricción o disipación.
- D) No hay intercambio de calor, y el proceso es completamente eficiente.
- Respuesta: C) Hay pérdidas de energía por fricción o disipación.
- **Comentario:** En un proceso adiabático irreversible, aunque no hay transferencia de calor, las ineficiencias como la fricción convierten parte de la energía en formas no útiles.

40. ¿Qué significa que un sistema está en equilibrio térmico?

- A) No hay intercambio de energía en forma de trabajo.
- B) No hay diferencia de temperatura entre los cuerpos del sistema.
- C) La energía interna del sistema permanece constante.
- D) La presión y el volumen permanecen constantes.
- Respuesta: B) No hay diferencia de temperatura entre los cuerpos del sistema.
- Comentario: En equilibrio térmico, todos los cuerpos del sistema tienen la misma temperatura, por lo que no ocurre transferencia de calor.

39. ¿Qué describe un proceso isocórico?

- A) La presión permanece constante mientras el volumen cambia.
- B) El volumen permanece constante mientras la presión cambia.
- C) La energía interna permanece constante durante el proceso.
- D) No hay transferencia de calor durante el proceso.
- Respuesta: B) El volumen permanece constante mientras la presión cambia.
- **Comentario:** En un proceso isocórico, no se realiza trabajo (W=0W = 0W=0) porque no hay cambio de volumen. Cualquier cambio en energía interna se debe al calor transferido.

38. ¿Qué representa la entropía en un sistema termodinámico?

- A) La energía interna de un sistema a temperatura constante.
- B) La cantidad de trabajo útil que puede realizar un sistema.
- C) Una medida del desorden o la aleatoriedad en el sistema.
- D) La cantidad de calor que el sistema puede absorber sin cambiar su temperatura.
- Respuesta: C) Una medida del desorden o la aleatoriedad en el sistema.
- **Comentario:** La entropía está asociada al grado de desorden en un sistema y siempre aumenta en procesos naturales según la segunda ley de la termodinámica.

37. ¿Qué ocurre en un ciclo de Carnot?

- A) La entropía del sistema aumenta continuamente.
- B) Todo el calor absorbido se convierte en trabajo útil.
- C) La eficiencia depende exclusivamente de las temperaturas de las fuentes caliente y fría.
- D) La energía interna permanece constante durante todo el ciclo.
- Respuesta: C) La eficiencia depende exclusivamente de las temperaturas de las fuentes caliente y fría.
- Comentario: La eficiencia del ciclo de Carnot se calcula como η=1-Tfrı´aTcaliente\eta = 1 \frac{T_{\text{fría}}}{T_{\text{caliente}}}η=1-TcalienteTfrı´a, lo que lo convierte en el ciclo más eficiente teóricamente.

36. ¿Qué ocurre cuando un gas ideal se calienta a volumen constante?

- A) La presión permanece constante.
- B) La presión aumenta.
- C) El volumen aumenta proporcionalmente.
- D) La energía interna permanece constante.
- Respuesta: B) La presión aumenta.
- **Comentario:** Según la ley de Gay-Lussac, al calentar un gas a volumen constante, la presión aumenta proporcionalmente a la temperatura.

35. ¿Qué representa la primera ley de la termodinámica?

- A) La energía de un sistema aislado siempre aumenta.
- B) La energía interna de un sistema depende solo de su temperatura.
- C) La energía no se crea ni se destruye, solo se transforma.
- D) La energía de un gas ideal siempre permanece constante.
- **Respuesta:** C) La energía no se crea ni se destruye, solo se transforma.
- **Comentario:** Esta ley establece la conservación de la energía, relacionando el cambio en energía interna con el calor agregado y el trabajo realizado por o sobre el sistema.

34. ¿Qué ocurre en un sistema que experimenta un proceso isotérmico?

- A) La temperatura permanece constante, y el calor absorbido se convierte en trabajo.
- B) El volumen permanece constante, y la energía interna no cambia.
- C) La presión aumenta proporcionalmente al volumen.
- D) No hay transferencia de calor ni de trabajo.
- Respuesta: A) La temperatura permanece constante, y el calor absorbido se convierte en trabajo.
- Comentario: En un proceso isotérmico, la energía interna del gas ideal no cambia porque depende únicamente de la temperatura.

33. ¿Qué describe la eficiencia de una máquina térmica?

- A) La cantidad de calor absorbido por el sistema durante un ciclo.
- B) La proporción de calor convertido en trabajo útil.
- C) La relación entre el calor liberado y el trabajo realizado.
- D) La cantidad de energía interna perdida en un ciclo.
- Respuesta: B) La proporción de calor convertido en trabajo útil.

32. ¿Qué propiedad describe la ley de Boyle?

- A) La presión y el volumen de un gas a temperatura constante.
- B) La energía interna de un gas a presión constante.
- C) La relación entre temperatura y volumen en un proceso isotérmico.
- D) El calor absorbido en un ciclo adiabático.
- **Respuesta:** A) La presión y el volumen de un gas a temperatura constante.
- Comentario: Según la ley de Boyle, para un gas ideal, el producto de presión y volumen (P·VP \cdot VP·V) es constante si la temperatura no cambia.

31. ¿Qué significa un proceso adiabático?

- A) Un proceso en el cual la energía interna permanece constante.
- B) Un proceso donde no hay intercambio de calor con el entorno.
- C) Un proceso en el cual el volumen permanece constante.
- D) Un proceso en el que el calor absorbido se convierte completamente en trabajo.
- Respuesta: B) Un proceso donde no hay intercambio de calor con el entorno.
- **Comentario:** En un proceso adiabático, el cambio en la energía interna se debe exclusivamente al trabajo realizado, ya que no hay transferencia de calor.

30. ¿Qué describe la ecuación de los gases ideales?

- A) La relación entre presión, volumen y temperatura en un gas real.
- B) La relación entre la energía interna y la entalpía de un gas.
- C) La relación entre presión, volumen y temperatura en un gas ideal.
- D) La transferencia de calor en un proceso isotérmico.
- Respuesta: C) La relación entre presión, volumen y temperatura en un gas ideal.
- **Comentario:** La ecuación de los gases ideales es PV=nRT, donde R es la constante universal, T la temperatura absoluta, P la presión y V el volumen.

29. ¿Qué ocurre en un proceso isotérmico de un gas ideal?

- A) La temperatura aumenta a medida que el volumen cambia.
- B) La temperatura permanece constante mientras el volumen y la presión cambian.
- C) La energía interna del gas aumenta.
- D) El gas no realiza trabajo.
- Respuesta: B) La temperatura permanece constante mientras el volumen y la presión cambian.
- Comentario: En un proceso isotérmico, la temperatura no cambia, pero el gas puede realizar trabajo porque el volumen y la presión varían.

28. ¿Qué describe la segunda ley de la termodinámica?

- A) La energía interna de un sistema permanece constante en procesos isotérmicos.
- B) La entropía de un sistema aislado siempre aumenta o permanece constante.
- C) Todo el calor absorbido por un sistema se convierte en trabajo útil.
- D) El trabajo realizado por un gas es proporcional a su presión.
- Respuesta: B) La entropía de un sistema aislado siempre aumenta o permanece constante.
- **Comentario:** La segunda ley establece que los procesos naturales son irreversibles y tienden al aumento de la entropía, lo que representa el desorden o aleatoriedad del sistema.

27. ¿Qué ocurre cuando un gas ideal se comprime adiabáticamente?

- A) La energía interna permanece constante.
- B) La temperatura del gas aumenta.
- C) El volumen del gas permanece constante.
- D) El gas intercambia calor con el entorno.
- Respuesta: B) La temperatura del gas aumenta.
- **Comentario:** En una compresión adiabática, no hay intercambio de calor con el entorno, pero el trabajo realizado sobre el gas aumenta su energía interna y su temperatura.

26. ¿Qué representa la eficiencia de una máquina térmica?

- A) La cantidad de calor transferido al sistema.
- B) La relación entre el trabajo realizado y el calor absorbido.
- C) La energía interna que permanece constante en cada ciclo.
- D) La cantidad de calor liberado en el ciclo.
- Respuesta: B) La relación entre el trabajo realizado y el calor absorbido.
- Comentario: La eficiencia es η=W/Qabsorbido\eta = W / Q_\text{absorbido}η=W/Qabsorbido, lo que mide cuánta energía térmica se convierte en trabajo útil.

25. ¿Qué ocurre en un ciclo reversible?

- A) Todo el calor absorbido se convierte en trabajo útil.
- B) No hay aumento de entropía en el sistema ni en su entorno.
- C) La presión y el volumen permanecen constantes durante el ciclo.
- D) La energía interna permanece constante durante todo el proceso.
- Respuesta: B) No hay aumento de entropía en el sistema ni en su entorno.

• **Comentario:** En un ciclo reversible, los procesos pueden revertirse sin pérdidas de energía ni cambios en la entropía total del sistema y su entorno.

24. ¿Qué describe la ley de Charles?

- A) La relación entre presión y volumen a temperatura constante.
- B) La relación entre volumen y temperatura a presión constante.
- C) La relación entre presión y temperatura a volumen constante.
- D) La conservación de la energía interna en un ciclo isotérmico.
- Respuesta: B) La relación entre volumen y temperatura a presión constante.
- **Comentario:** Según la ley de Charles, el volumen de un gas es directamente proporcional a su temperatura absoluta, si la presión es constante.

23. ¿Qué ocurre cuando un gas se expande a presión constante?

- A) El volumen disminuye.
- B) La energía interna permanece constante.
- C) La temperatura aumenta.
- D) La presión aumenta proporcionalmente al volumen.
- Respuesta: C) La temperatura aumenta.
- **Comentario:** En un proceso isobárico, cuando un gas se expande, requiere calor adicional para mantener la presión constante, lo que provoca un aumento de la temperatura.

22. ¿Qué significa que un sistema esté en equilibrio térmico?

- A) No hay diferencia de temperatura entre las partes del sistema.
- B) La energía interna del sistema permanece constante.
- C) La presión y el volumen del sistema no cambian.
- D) El sistema no intercambia calor ni trabajo con el entorno.
- Respuesta: A) No hay diferencia de temperatura entre las partes del sistema.
- **Comentario:** En equilibrio térmico, todas las partes del sistema tienen la misma temperatura, lo que evita la transferencia de calor.

21. ¿Qué ocurre en un proceso isobárico reversible?

- A) La presión permanece constante mientras el volumen cambia.
- B) El volumen permanece constante mientras la presión cambia.
- C) No hay transferencia de calor ni trabajo realizado.
- D) La energía interna permanece constante durante el proceso.
- Respuesta: A) La presión permanece constante mientras el volumen cambia.
- **Comentario:** En un proceso isobárico, el calor transferido se utiliza para realizar trabajo y modificar la energía interna.

20. ¿Qué describe la ecuación de los gases ideales?

- A) La relación entre presión, volumen y temperatura en un gas ideal.
- B) La transferencia de calor en un proceso isotérmico.
- C) La relación entre energía interna y entalpía de un gas.
- D) La cantidad de trabajo realizado durante una expansión adiabática.
- Respuesta: A) La relación entre presión, volumen y temperatura en un gas ideal.
- **Comentario:** La ecuación PV=nRT describe cómo se relacionan estas variables en un gas ideal, siendo n el número de moles y R la constante universal de los gases.

19. ¿Qué ocurre cuando un gas ideal se calienta a volumen constante?

- A) El volumen aumenta proporcionalmente a la temperatura.
- B) La presión aumenta proporcionalmente a la temperatura.

- C) La presión permanece constante.
- D) La energía interna permanece constante.
- **Respuesta:** B) La presión aumenta proporcionalmente a la temperatura.
- **Comentario:** Según la ley de Gay-Lussac, a volumen constante, la presión es directamente proporcional a la temperatura absoluta.

18. ¿Qué describe la eficiencia de una máquina térmica ideal?

- A) La cantidad total de trabajo realizado en un ciclo.
- B) La relación entre el trabajo realizado y el calor absorbido.
- C) La proporción de calor liberado al entorno.
- D) La energía interna del sistema en un proceso isotérmico.
- Respuesta: B) La relación entre el trabajo realizado y el calor absorbido.

17. ¿Qué ocurre en un ciclo isotérmico reversible de un gas ideal?

- A) La temperatura del gas aumenta proporcionalmente al volumen.
- B) La energía interna del gas permanece constante.
- C) Todo el trabajo realizado se convierte en energía interna.
- D) No hay intercambio de calor con el entorno.
- Respuesta: B) La energía interna del gas permanece constante.
- **Comentario:** En un proceso isotérmico, la energía interna de un gas ideal no cambia porque depende únicamente de la temperatura, que permanece constante.

16. ¿Qué ocurre cuando un gas ideal se expande adiabáticamente?

- A) La temperatura del gas aumenta.
- B) La presión del gas aumenta.
- C) La temperatura del gas disminuye.
- D) La energía interna del gas permanece constante.
- Respuesta: C) La temperatura del gas disminuye.
- **Comentario:** En una expansión adiabática, el gas realiza trabajo sobre el entorno sin intercambiar calor, lo que disminuye su energía interna y temperatura.

15. ¿Qué significa un proceso isocórico?

- A) La presión permanece constante mientras el volumen cambia.
- B) El volumen permanece constante mientras la presión cambia.
- C) La energía interna permanece constante durante el proceso.
- D) No hay transferencia de calor durante el proceso.
- Respuesta: B) El volumen permanece constante mientras la presión cambia.
- **Comentario:** En un proceso isocórico, no hay trabajo realizado porque no hay cambio de volumen (W=0). Cualquier cambio de energía interna proviene exclusivamente del calor transferido.

14. ¿Qué describe la ley de Boyle en un gas ideal?

- A) La relación entre presión y volumen a temperatura constante.
- B) La relación entre temperatura y volumen a presión constante.
- C) La energía interna de un gas ideal en un proceso isotérmico.
- D) La cantidad de calor absorbido en un proceso adiabático.
- Respuesta: A) La relación entre presión y volumen a temperatura constante.
- Comentario: Según la ley de Boyle, el producto P·VP \cdot VP·V es constante para un gas ideal si la temperatura no cambia.

13. ¿Qué ocurre en un proceso adiabático reversible?

A) No hay transferencia de calor con el entorno.

- B) La presión y el volumen permanecen constantes.
- C) La energía interna permanece constante durante todo el proceso.
- D) No hay trabajo realizado por el gas.
- Respuesta: A) No hay transferencia de calor con el entorno.
- **Comentario:** En un proceso adiabático, todo cambio en la energía interna se debe exclusivamente al trabajo realizado, ya que no hay intercambio de calor.

12. ¿Qué describe la primera ley de la termodinámica?

- A) La conservación de la energía en sistemas térmicos.
- B) El incremento de entropía en un sistema cerrado.
- C) La relación entre presión y volumen en un proceso isotérmico.
- D) La cantidad máxima de trabajo que puede realizar un sistema.
- Respuesta: A) La conservación de la energía en sistemas térmicos.
- Comentario: La primera ley establece que el cambio en la energía interna (ΔU) es igual a la suma del calor transferido
 (Q) y el trabajo realizado (W).

11. ¿Qué representa la ecuación PV=nRT?

- A) La relación entre energía interna y entalpía de un gas ideal.
- B) La ecuación de estado de un gas ideal.
- C) La cantidad de calor absorbido durante un ciclo isotérmico.
- D) La transferencia de calor entre dos gases en equilibrio térmico.
- Respuesta: B) La ecuación de estado de un gas ideal.
- **Comentario:** Esta ecuación relaciona presión (P), volumen (V), número de moles (n), temperatura (T) y la constante universal de los gases (R).

10. ¿Qué ocurre cuando un sistema alcanza el equilibrio térmico?

- A) La energía interna del sistema disminuye.
- B) La temperatura de todas las partes del sistema es la misma.
- C) No hay intercambio de energía en forma de calor.
- D) La presión y el volumen del sistema permanecen constantes.
- Respuesta: B) La temperatura de todas las partes del sistema es la misma.
- **Comentario:** En equilibrio térmico, no hay transferencia neta de calor entre las partes del sistema porque todas están a la misma temperatura.

9. ¿Qué describe un proceso isotérmico en un gas ideal?

- A) Un proceso donde la temperatura permanece constante.
- B) Un proceso donde la presión permanece constante.
- C) Un proceso sin intercambio de calor con el entorno.
- D) Un proceso donde el volumen permanece constante.
- Respuesta: A) Un proceso donde la temperatura permanece constante.
- Comentario: En procesos isotérmicos, el calor transferido al sistema se convierte en trabajo, y la energía interna no cambia

8. ¿Qué ocurre cuando un gas ideal se calienta a presión constante?

- A) El volumen aumenta.
- B) La energía interna permanece constante.
- C) La presión aumenta proporcionalmente.
- D) El volumen permanece constante.
- Respuesta: A) El volumen aumenta.
- **Comentario:** Según la ley de Charles, a presión constante, el volumen de un gas ideal es directamente proporcional a su temperatura absoluta.

7. ¿Qué significa un proceso isotérmico?

- A) Un proceso donde la temperatura permanece constante.
- B) Un proceso donde el volumen permanece constante.
- C) Un proceso donde no hay transferencia de calor con el entorno.
- D) Un proceso donde la energía interna permanece constante.
- Respuesta: A) Un proceso donde la temperatura permanece constante.
- Comentario: En un proceso isotérmico, la temperatura no cambia, y la energía interna del gas ideal permanece constante.

6. ¿Qué describe un proceso isocórico?

- A) Un proceso donde la presión permanece constante.
- B) Un proceso donde el volumen permanece constante.
- C) Un proceso sin transferencia de calor.
- D) Un proceso donde la energía interna permanece constante.
- Respuesta: B) Un proceso donde el volumen permanece constante.
- **Comentario:** En un proceso isocórico, no se realiza trabajo (W=0) porque no hay cambio en el volumen, y los cambios de energía interna se deben únicamente al calor transferido.

5. ¿Qué ocurre cuando un gas ideal se expande adiabáticamente?

- A) La temperatura disminuye.
- B) La presión aumenta.
- C) La energía interna permanece constante.
- D) El volumen permanece constante.
- Respuesta: A) La temperatura disminuye.
- **Comentario:** En una expansión adiabática, el gas realiza trabajo sobre el entorno sin intercambiar calor, lo que reduce su energía interna y su temperatura.

4. ¿Qué representa la eficiencia de un ciclo de Carnot?

- A) La cantidad total de energía transformada en trabajo.
- B) La relación entre las temperaturas de las fuentes caliente y fría.
- C) La energía interna de un gas ideal en equilibrio.
- D) La cantidad de calor liberado en un proceso isotérmico.
- Respuesta: B) La relación entre las temperaturas de las fuentes caliente y fría.
- **Comentario:** La eficiencia del ciclo de Carnot depende exclusivamente de las temperaturas absolutas de las fuentes caliente (Tcaliente) y fría (Tfria).

3. ¿Qué ocurre cuando un gas ideal se comprime isotérmicamente?

- A) La temperatura aumenta proporcionalmente al volumen.
- B) La energía interna permanece constante.
- C) El calor absorbido se convierte completamente en energía interna.
- D) La presión permanece constante mientras el volumen disminuye.
- **Respuesta:** B) La energía interna permanece constante.
- **Comentario:** En una compresión isotérmica, la temperatura del gas no cambia, lo que implica que su energía interna (dependiente de la temperatura) permanece constante.

2. ¿Qué describe la primera ley de la termodinámica?

- A) La energía no se crea ni se destruye, solo se transforma.
- B) La relación entre entalpía y energía interna.
- C) La cantidad de trabajo realizado por un sistema cerrado.
- D) El incremento de entropía en un proceso isotérmico.
- **Respuesta:** A) La energía no se crea ni se destruye, solo se transforma.

 Comentario: La primera ley relaciona el cambio en energía interna (ΔU) con el calor transferido (Q) y el trabajo realizado (W): ΔU=Q-W

1. ¿Qué ocurre cuando un sistema alcanza el equilibrio térmico?

- A) La temperatura de todas las partes del sistema es la misma.
- B) La energía interna del sistema aumenta continuamente.
- C) No hay transferencia de calor ni trabajo.
- D) La presión y el volumen permanecen constantes.
- Respuesta: A) La temperatura de todas las partes del sistema es la misma.
- **Comentario:** En equilibrio térmico, no hay transferencia neta de calor entre las partes del sistema porque tienen la misma temperatura.

1. ¿Qué es una onda longitudinal?

- A) Una onda donde las partículas vibran perpendicularmente a la dirección de propagación.
- B) Una onda donde las partículas vibran en la misma dirección que la propagación.
- C) Una onda que solo se propaga en medios líquidos.
- D) Una onda electromagnética.
- Respuesta: B) Una onda donde las partículas vibran en la misma dirección que la propagación.
- **Comentario:** En las ondas longitudinales, como las ondas sonoras, las partículas del medio oscilan en la misma dirección en la que viaja la onda.

2. ¿Qué ocurre cuando la frecuencia de una onda aumenta?

- A) La longitud de onda aumenta.
- B) La longitud de onda disminuye.
- C) La velocidad de propagación aumenta.
- D) La amplitud de la onda aumenta.
- **Respuesta:** B) La longitud de onda disminuye.
- **Comentario:** Según la relación v=f·λ si la velocidad v es constante, un aumento en la frecuencia f implica una disminución en la longitud de onda λ Lambda.

3. ¿Qué significa la amplitud de una onda?

- A) La distancia máxima que viaja la onda en un medio.
- B) La distancia máxima que las partículas del medio se desplazan desde su posición de equilibrio.
- C) El número de oscilaciones que ocurren por segundo.
- D) La velocidad de propagación de la onda.
- Respuesta: B) La distancia máxima que las partículas del medio se desplazan desde su posición de equilibrio.
- **Comentario:** La amplitud está relacionada con la energía de la onda: ondas con mayor amplitud transportan más energía.

4. ¿Qué describe la velocidad de propagación de una onda?

- A) La frecuencia con la que ocurren las oscilaciones.
- B) La distancia recorrida por una onda en un segundo.
- C) La distancia máxima que alcanzan las partículas del medio.
- D) El tiempo que tarda la onda en completar una oscilación.
- Respuesta: B) La distancia recorrida por una onda en un segundo.
- Comentario: La velocidad de propagación depende del medio en el que se mueve la onda y se calcula como v=f·λ.

5. ¿Qué es una onda transversal?

- A) Una onda donde las partículas vibran en la misma dirección que la propagación.
- B) Una onda donde las partículas vibran perpendicularmente a la dirección de propagación.
- C) Una onda que solo se propaga en medios sólidos.

- D) Una onda que no transporta energía.
- Respuesta: B) Una onda donde las partículas vibran perpendicularmente a la dirección de propagación.
- **Comentario:** Ejemplo típico de onda transversal es una onda en una cuerda, donde la vibración es perpendicular al movimiento de la onda.

6. ¿Qué ocurre cuando una onda se refleja en una superficie?

- A) Cambia su frecuencia.
- B) Cambia su longitud de onda.
- C) Cambia su dirección, pero no su velocidad ni su frecuencia.
- D) Se absorbe completamente por el medio.
- Respuesta: C) Cambia su dirección, pero no su velocidad ni su frecuencia.
- Comentario: En la reflexión, la onda rebota al encontrar un límite entre dos medios, manteniendo su frecuencia y velocidad.

7. ¿Qué es la interferencia constructiva?

- A) La superposición de dos ondas que se cancelan entre sí.
- B) La superposición de dos ondas que se refuerzan mutuamente.
- C) La desviación de una onda al pasar por un medio.
- D) La absorción de una onda por un objeto sólido.
- Respuesta: B) La superposición de dos ondas que se refuerzan mutuamente.
- Comentario: En la interferencia constructiva, las crestas de dos ondas se alinean, resultando en una amplitud mayor.

8. ¿Qué ocurre cuando una onda cambia de medio?

- A) Cambia su frecuencia, pero no su velocidad ni longitud de onda.
- B) Cambia su velocidad y longitud de onda, pero no su frecuencia.
- C) Cambia su velocidad, frecuencia y longitud de onda.
- D) La onda se refleja completamente en el nuevo medio.
- Respuesta: B) Cambia su velocidad y longitud de onda, pero no su frecuencia.
- **Comentario:** Al pasar de un medio a otro, la frecuencia permanece constante porque depende de la fuente que genera la onda.

9. ¿Qué es la difracción de una onda?

- A) La desviación de la onda al pasar por un obstáculo o rendija.
- B) La absorción de energía de la onda por un material sólido.
- C) La superposición de dos ondas para formar una nueva onda.
- D) La reflexión de una onda en una superficie plana.
- Respuesta: A) La desviación de la onda al pasar por un obstáculo o rendija.
- Comentario: La difracción ocurre cuando las ondas se curvan al pasar por bordes o aberturas estrechas.

10. ¿Qué es la interferencia destructiva?

- A) La absorción de una onda por un objeto sólido.
- B) La superposición de dos ondas que se cancelan entre sí.
- C) La desviación de una onda al pasar por un medio.
- D) La amplificación de dos ondas que se refuerzan mutuamente.
- Respuesta: B) La superposición de dos ondas que se cancelan entre sí.
- **Comentario:** En la interferencia destructiva, las crestas de una onda se superponen con los valles de otra, resultando en una amplitud reducida o incluso nula.

11. ¿Qué determina la velocidad de una onda en un medio?

- A) La amplitud de la onda.
- B) La frecuencia de la onda.

- C) Las propiedades del medio, como densidad y elasticidad.
- D) La dirección de propagación de la onda.
- Respuesta: C) Las propiedades del medio, como densidad y elasticidad.
- **Comentario:** La velocidad de una onda depende de las características físicas del medio. Por ejemplo, en sólidos, las ondas se propagan más rápido debido a su alta elasticidad.

12. ¿Qué ocurre cuando una onda sonora aumenta su frecuencia?

- A) Su longitud de onda disminuye.
- B) Su velocidad disminuye.
- C) Su intensidad aumenta.
- D) Su amplitud aumenta.
- Respuesta: A) Su longitud de onda disminuye.
- **Comentario:** Para ondas sonoras, la relación v=f·λ. Esto indica que, si la velocidad v permanece constante, un aumento en la frecuencia f resulta en una menor longitud de onda λ\lambdaλ.

13. ¿Qué es una onda estacionaria?

- A) Una onda que no se propaga en el espacio.
- B) Una onda reflejada que tiene la misma amplitud que la original.
- C) El resultado de la interferencia entre dos ondas que viajan en direcciones opuestas.
- D) Una onda cuya frecuencia cambia con el tiempo.
- Respuesta: C) El resultado de la interferencia entre dos ondas que viajan en direcciones opuestas.
- **Comentario:** Las ondas estacionarias se caracterizan por tener nodos (puntos fijos) y antinodos (puntos de máxima amplitud).

14. ¿Qué describe la frecuencia de una onda?

- A) El número de oscilaciones que ocurren en un segundo.
- B) La distancia entre dos puntos consecutivos en fase.
- C) La velocidad a la que viaja la onda en un medio.
- D) La altura máxima de la onda desde su posición de equilibrio.
- Respuesta: A) El número de oscilaciones que ocurren en un segundo.
- Comentario: La frecuencia se mide en hertz (Hz) y está relacionada con el tono de las ondas sonoras y el color de las ondas luminosas.

15. ¿Qué ocurre cuando una onda viaja de un medio menos denso a uno más denso?

- A) Su frecuencia aumenta.
- B) Su longitud de onda aumenta.
- C) Su velocidad disminuye.
- D) Su amplitud aumenta.
- Respuesta: C) Su velocidad disminuye.
- Comentario: Al cambiar a un medio más denso, la onda disminuye su velocidad y su longitud de onda, mientras que la frecuencia se mantiene constante.

16. ¿Qué es el efecto Doppler?

- A) La desviación de una onda al pasar por un obstáculo o rendija.
- B) La superposición de dos ondas que viajan en direcciones opuestas.
- C) El cambio en la frecuencia percibida de una onda debido al movimiento relativo entre la fuente y el observador.
- D) El aumento en la amplitud de una onda al entrar en un nuevo medio.
- **Respuesta:** C) El cambio en la frecuencia percibida de una onda debido al movimiento relativo entre la fuente y el observador.
- Comentario: Este fenómeno explica cómo el sonido de una sirena parece más agudo al acercarse y más grave al alejarse.

17. ¿Qué es la resonancia?

- A) El fenómeno donde una onda se refleja completamente en un medio.
- B) La amplificación de una onda cuando su frecuencia coincide con la frecuencia natural de un sistema.
- C) La absorción total de energía por un sistema en equilibrio térmico.
- D) La interferencia destructiva de dos ondas que viajan en direcciones opuestas.
- Respuesta: B) La amplificación de una onda cuando su frecuencia coincide con la frecuencia natural de un sistema.
- **Comentario:** La resonancia ocurre, por ejemplo, en instrumentos musicales o cuando un puente vibra con la misma frecuencia que las fuerzas externas.

18. ¿Qué ocurre en la reflexión de una onda en un extremo fijo?

- A) La onda se refleja sin cambiar su dirección ni fase.
- B) La onda reflejada tiene una fase invertida respecto a la original.
- C) La amplitud de la onda reflejada aumenta.
- D) La longitud de onda de la onda reflejada cambia.
- Respuesta: B) La onda reflejada tiene una fase invertida respecto a la original.
- **Comentario:** En un extremo fijo, la onda reflejada invierte su fase, lo que significa que las crestas se convierten en valles y viceversa.

19. ¿Qué ocurre con la energía de una onda cuando su amplitud se duplica?

- A) La energía permanece constante.
- B) La energía se duplica.
- C) La energía se cuadruplica.
- D) La energía disminuye a la mitad.
- **Respuesta:** C) La energía se cuadruplica.
- **Comentario:** La energía de una onda es proporcional al cuadrado de su amplitud, por lo que duplicar la amplitud cuadruplica la energía transportada por la onda.

20. ¿Qué ocurre cuando una onda se refracta al pasar de un medio a otro?

- A) Cambia su dirección y su velocidad.
- B) Cambia su frecuencia y su longitud de onda.
- C) Se refleja completamente en la superficie de separación.
- D) Su amplitud permanece constante.
- Respuesta: A) Cambia su dirección y su velocidad.
- **Comentario:** En la refracción, la onda cambia de dirección debido a la variación en su velocidad al pasar de un medio a otro con diferentes densidades.

21. ¿Qué describe la longitud de onda?

- A) La distancia entre dos puntos consecutivos en fase.
- B) El número de oscilaciones que ocurren por segundo.
- C) La distancia máxima que alcanzan las partículas desde su posición de equilibrio.
- D) La velocidad de propagación de la onda en un medio.
- Respuesta: A) La distancia entre dos puntos consecutivos en fase.
- **Comentario:** La longitud de onda se mide entre puntos equivalentes, como crestas o valles consecutivos, y está relacionada con la velocidad y la frecuencia por λ=v/f

22. ¿Qué ocurre en la polarización de una onda?

- A) La onda se convierte en longitudinal.
- B) Las vibraciones de la onda se restringen a un solo plano.
- C) La velocidad de propagación de la onda aumenta.
- D) La amplitud de la onda se duplica.

- **Respuesta:** B) Las vibraciones de la onda se restringen a un solo plano.
- **Comentario:** La polarización ocurre en ondas transversales, como la luz, donde las oscilaciones pueden limitarse a un plano específico.

23. ¿Qué ocurre con la frecuencia de una onda cuando cambia de medio?

- A) La frecuencia aumenta proporcionalmente al cambio de velocidad.
- B) La frecuencia permanece constante.
- C) La frecuencia disminuye proporcionalmente al cambio de longitud de onda.
- D) La frecuencia cambia en función de la amplitud de la onda.
- Respuesta: B) La frecuencia permanece constante.
- **Comentario:** La frecuencia depende de la fuente que genera la onda y no del medio, por lo que permanece inalterada al cambiar de medio.

24. ¿Qué es una onda mecánica?

- A) Una onda que no necesita un medio material para propagarse.
- B) Una onda que requiere un medio material para propagarse.
- C) Una onda que se propaga únicamente en líquidos.
- D) Una onda transversal que transporta energía sin transportar materia.
- Respuesta: B) Una onda que requiere un medio material para propagarse.
- Comentario: Ejemplos de ondas mecánicas incluyen las ondas sonoras, sísmicas y las que se propagan en cuerdas.

25. ¿Qué fenómeno explica el arco iris?

- A) La reflexión total interna.
- B) La refracción y dispersión de la luz.
- C) La interferencia constructiva de la luz.
- D) La difracción de la luz al pasar por gotas de agua.
- Respuesta: B) La refracción y dispersión de la luz.
- Comentario: El arco iris ocurre debido a que la luz blanca del sol se refracta al entrar en una gota de agua y se dispersa en sus colores componentes.

26. ¿Qué ocurre en una onda estacionaria en un tubo cerrado por un extremo?

- A) Se forma un nodo en el extremo cerrado y un antinodo en el extremo abierto.
- B) Se forman nodos en ambos extremos del tubo.
- C) Solo se produce interferencia destructiva.
- D) La longitud de onda permanece constante sin importar la frecuencia.
- Respuesta: A) Se forma un nodo en el extremo cerrado y un antinodo en el extremo abierto.
- **Comentario:** En un tubo cerrado por un extremo, las ondas reflejadas y directas producen una onda estacionaria con un nodo en el extremo cerrado y un antinodo en el extremo abierto.

27. ¿Qué describe el principio de superposición de ondas?

- A) La combinación de dos o más ondas para formar una onda resultante.
- B) La reflexión total de una onda en un medio más denso.
- C) La transformación de una onda transversal en una longitudinal.
- D) La reducción de la amplitud de una onda al cambiar de medio.
- Respuesta: A) La combinación de dos o más ondas para formar una onda resultante.
- **Comentario:** Según este principio, las amplitudes de las ondas se suman algebraicamente en cada punto, pudiendo generar interferencia constructiva o destructiva.

28. ¿Qué ocurre cuando una onda sonora aumenta su intensidad?

- A) Su frecuencia aumenta.
- B) Su amplitud aumenta.

- C) Su velocidad aumenta.
- D) Su longitud de onda aumenta.
- Respuesta: B) Su amplitud aumenta.
- Comentario: La intensidad de una onda sonora está relacionada con su amplitud; ondas más intensas tienen mayor amplitud y transportan más energía.

29. ¿Qué es la dispersión de la luz?

- A) La separación de la luz en sus colores componentes debido a la variación de velocidad con la longitud de onda.
- B) La reflexión de la luz en una superficie opaca.
- C) La transmisión de luz a través de un medio homogéneo.
- D) La interferencia de dos ondas luminosas con igual longitud de onda.
- Respuesta: A) La separación de la luz en sus colores componentes debido a la variación de velocidad con la longitud de onda.
- Comentario: La dispersión ocurre, por ejemplo, en un prisma, donde la luz blanca se descompone en un espectro de colores.

30. ¿Qué es la refracción crítica?

- A) La desviación máxima de una onda al pasar de un medio menos denso a uno más denso.
- B) El ángulo de incidencia a partir del cual toda la onda se refleja en el medio original.
- C) La interferencia constructiva máxima de una onda estacionaria.
- D) La longitud de onda mínima para la propagación de una onda en un medio denso.
- Respuesta: B) El ángulo de incidencia a partir del cual toda la onda se refleja en el medio original.
- **Comentario:** Este fenómeno, conocido como reflexión total interna, ocurre cuando la onda incide con un ángulo mayor al ángulo crítico.

31. ¿Qué ocurre con una onda al atravesar un medio con diferente índice de refracción?

- A) Su frecuencia cambia proporcionalmente al índice de refracción.
- B) Su longitud de onda cambia, pero su frecuencia permanece constante.
- C) Su velocidad y frecuencia permanecen constantes.
- D) Su amplitud aumenta.
- **Respuesta:** B) Su longitud de onda cambia, pero su frecuencia permanece constante.
- **Comentario:** Al atravesar un medio con diferente índice de refracción, la velocidad y la longitud de onda cambian, pero la frecuencia depende únicamente de la fuente que genera la onda.

32. ¿Qué fenómeno se produce al superponer dos ondas con frecuencias ligeramente diferentes?

- A) Interferencia destructiva.
- B) Formación de ondas estacionarias.
- C) Aparición de pulsos o batidos.
- D) Reflexión total interna.
- Respuesta: C) Aparición de pulsos o batidos.
- **Comentario:** Los batidos son el resultado de la interferencia entre dos ondas con frecuencias similares, produciendo variaciones periódicas en la amplitud.

33. ¿Qué ocurre en la reflexión de una onda en un extremo libre?

- A) La onda reflejada tiene una fase invertida respecto a la original.
- B) La onda reflejada se refuerza por interferencia constructiva.
- C) La onda reflejada tiene la misma fase que la onda incidente.
- D) La amplitud de la onda reflejada se duplica.
- Respuesta: C) La onda reflejada tiene la misma fase que la onda incidente.
- **Comentario:** En un extremo libre, la onda reflejada no invierte su fase; las crestas permanecen crestas y los valles permanecen valles.

34. ¿Qué es el índice de refracción de un medio?

- A) La razón entre la velocidad de la luz en el vacío y en el medio.
- B) La razón entre la amplitud y la frecuencia de una onda.
- C) La relación entre la longitud de onda y la frecuencia de la luz.
- D) El ángulo de incidencia a partir del cual ocurre reflexión total interna.
- Respuesta: A) La razón entre la velocidad de la luz en el vacío y en el medio.
- Comentario: El índice de refracción n=cvn = \frac{c}{v}n=vc, donde ccc es la velocidad de la luz en el vacío y vvv la velocidad en el medio.

35. ¿Qué ocurre con la intensidad de una onda al aumentar la distancia al emisor?

- A) Aumenta proporcionalmente a la distancia.
- B) Disminuye proporcionalmente a la distancia.
- C) Disminuye proporcionalmente al cuadrado de la distancia.
- D) Permanece constante.
- Respuesta: C) Disminuye proporcionalmente al cuadrado de la distancia.
- **Comentario:** Este fenómeno, conocido como la ley del inverso del cuadrado, aplica a ondas que se propagan en todas direcciones, como las ondas sonoras.

36. ¿Qué ocurre en una onda cuando su frecuencia se duplica?

- A) Su longitud de onda se reduce a la mitad.
- B) Su velocidad de propagación se duplica.
- C) Su amplitud aumenta.
- D) Su intensidad se reduce a la mitad.
- Respuesta: A) Su longitud de onda se reduce a la mitad.
- Comentario: Según la relación $v=f\cdot\lambda v=f \cdot (1+x)$ si la velocidad es constante, aumentar la frecuencia reduce la longitud de onda.

37. ¿Qué ocurre con la energía de una onda al aumentar su amplitud?

- A) La energía aumenta proporcionalmente a la amplitud.
- B) La energía aumenta proporcionalmente al cuadrado de la amplitud.
- C) La energía permanece constante.
- D) La energía disminuye si la amplitud aumenta.
- Respuesta: B) La energía aumenta proporcionalmente al cuadrado de la amplitud.
- Comentario: Por ejemplo, una onda sonora más intensa transporta más energía debido a su mayor amplitud.

38. ¿Qué es la longitud de onda de una onda estacionaria en una cuerda fija en ambos extremos?

- A) Dos veces la distancia entre nodos consecutivos.
- B) La distancia entre un nodo y un antinodo.
- C) La distancia entre dos nodos consecutivos.
- D) Cuatro veces la distancia entre nodos consecutivos.
- Respuesta: A) Dos veces la distancia entre nodos consecutivos.

39. ¿Qué ocurre cuando una onda transversal atraviesa un material opaco?

- A) La onda se refleja completamente.
- B) La onda se absorbe completamente.
- C) Parte de la onda se refleja y parte se absorbe.
- D) La onda se refracta al pasar a través del material.
- **Respuesta:** C) Parte de la onda se refleja y parte se absorbe.
- **Comentario:** En materiales opacos, la mayor parte de la energía de la onda se absorbe, mientras que una fracción puede reflejarse.

40. ¿Qué determina el tono de una onda sonora?

- A) Su amplitud.
- B) Su frecuencia.
- C) Su velocidad de propagación.
- D) Su intensidad.
- Respuesta: B) Su frecuencia.
- **Comentario:** Las ondas sonoras con frecuencias más altas se perciben como tonos más agudos, mientras que las frecuencias bajas corresponden a tonos más graves.

41. ¿Qué es una onda armónica?

- A) Una onda cuya amplitud varía con el tiempo.
- B) Una onda que oscila con una frecuencia constante.
- C) Una onda que cambia su velocidad en cada ciclo.
- D) Una onda que no transporta energía.
- Respuesta: B) Una onda que oscila con una frecuencia constante.
- **Comentario:** Las ondas armónicas tienen una frecuencia constante y una forma sinusoidal, como ocurre en muchas vibraciones naturales.

42. ¿Qué ocurre en la interferencia de dos ondas coherentes?

- A) La amplitud resultante es la suma algebraica de las amplitudes individuales.
- B) Las ondas se cancelan completamente.
- C) Las ondas cambian su frecuencia para coincidir.
- D) Las ondas se reflejan en direcciones opuestas.
- Respuesta: A) La amplitud resultante es la suma algebraica de las amplitudes individuales.
- **Comentario:** La interferencia entre ondas coherentes puede ser constructiva (refuerzo) o destructiva (cancelación parcial o total).

43. ¿Qué es la frecuencia natural de un sistema?

- A) La frecuencia a la que un sistema vibra cuando no está sometido a fuerzas externas.
- B) La frecuencia máxima que puede alcanzar un sistema.
- C) La frecuencia a la que un sistema no puede vibrar.
- D) La frecuencia a la que un sistema absorbe energía con mayor rapidez.
- Respuesta: A) La frecuencia a la que un sistema vibra cuando no está sometido a fuerzas externas.
- **Comentario:** Los sistemas tienen frecuencias naturales de vibración, que pueden amplificarse en presencia de resonancia.

44. ¿Qué ocurre cuando una onda sonora se refleja en una superficie rígida?

- A) La onda reflejada tiene una fase invertida respecto a la original.
- B) La onda reflejada mantiene la misma fase que la original.
- C) La onda reflejada pierde energía y desaparece.
- D) La onda reflejada tiene mayor longitud de onda.
- Respuesta: B) La onda reflejada mantiene la misma fase que la original.
- **Comentario:** Cuando las ondas sonoras se reflejan en superficies rígidas, no invierten su fase, manteniendo crestas y valles en la misma posición.

45. ¿Qué es un nodo en una onda estacionaria?

- A) Un punto donde la amplitud de la onda es máxima.
- B) Un punto donde la amplitud de la onda es mínima o nula.
- C) El punto más alejado de la posición de equilibrio.
- D) Un punto donde la frecuencia cambia.

- Respuesta: B) Un punto donde la amplitud de la onda es mínima o nula.
- Comentario: Los nodos son puntos estacionarios en las ondas estacionarias donde las interferencias destruyen completamente la amplitud.

46. ¿Qué ocurre con la velocidad de una onda al cambiar a un medio más elástico?

- A) La velocidad disminuye.
- B) La velocidad aumenta.
- C) La velocidad permanece constante.
- D) La velocidad depende de la amplitud.
- Respuesta: B) La velocidad aumenta.
- **Comentario:** En medios más elásticos, las ondas se propagan más rápido debido a la mayor capacidad del medio para recuperar su forma.

47. ¿Qué fenómeno explica por qué las ondas de radio se difractan alrededor de edificios?

- A) Reflexión.
- B) Difracción.
- C) Interferencia.
- D) Refracción.
- Respuesta: B) Difracción.
- Comentario: La difracción ocurre cuando las ondas rodean obstáculos y se propagan en regiones de sombra geométrica.

48. ¿Qué determina el volumen percibido de un sonido?

- A) La frecuencia de la onda sonora.
- B) La amplitud de la onda sonora.
- C) La velocidad de propagación del sonido.
- D) La longitud de onda del sonido.
- Respuesta: B) La amplitud de la onda sonora.
- Comentario: Una mayor amplitud se traduce en una mayor intensidad sonora, lo que se percibe como un volumen más alto.

49. ¿Qué es la velocidad de fase de una onda?

- A) La velocidad con la que se propaga la energía de la onda.
- B) La velocidad con la que un punto de una fase específica se mueve en el medio.
- C) La velocidad máxima que puede alcanzar la onda.
- D) La velocidad con la que cambia la amplitud de la onda.
- Respuesta: B) La velocidad con la que un punto de una fase específica se mueve en el medio.
- Comentario: La velocidad de fase describe cómo se propaga una fase particular de la onda, como una cresta o un valle.

50. ¿Qué es un antinodo en una onda estacionaria?

- A) Un punto donde la amplitud de la onda es máxima.
- B) Un punto donde la amplitud de la onda es mínima o nula.
- C) Un punto donde la frecuencia de la onda cambia.
- D) Un punto donde la longitud de onda se reduce.
- Respuesta: A) Un punto donde la amplitud de la onda es máxima.
- **Comentario:** Los antinodos se forman en las ondas estacionarias debido a la interferencia constructiva, resultando en máximos de amplitud.