		MATHEN	IATIO	CS: MT-402	
		Operat	ion l	Research	
		(1114	12)	
		Time: 2Hrs.		Max. Marks: 60	Ans
1)	The cr	itical path is			(A)
	(A)	The longest path	(B)	The shortest path	
	(C)	The path operates from starting to end node	(D)	All path operates from start to end activities	
		ies A,B and C are the immediate pre ree activities are 8, 12, 6 then the ea		ssors for activity X if the earliest finish time for start time for X will be	(B)
	(A)	8	(B)	12	
	(C)	Cannot be determined	(D)	6	
3)	While	scheduling a project by CPM			(D)
	(A)	A project is divided into various activities	(B)	Required time for each activity is established	
	(C)	A sequence of various activities is made according to their importance	(D)	All of the above	
4)	In CPI	M project completion time is			(A)
	(A)	Maximum time	(B)	Minimum time	
	(C)	Average time	(D)	All of these	
5)	In netv	work diagram			(B)
	(A)	Time flows from right to left	(B)	Time flows from left to right	
	(C)	Time flows from centre to left	(D)	Time flows from centre to right	

6)	Which is an valid statement for a project having three paths A-B-C with 20 days length, A-D-C with 15 days length and A-E-C with 18 days length					
	(A)	A-D-C is the critical path	(B)	The expected duration of the project is 20 days		
	(C)	A-B-C has the max total float	(D)	The expected duration of the project is 15 days		
7)	Which	of the following is not a phase of p	roject r	management	(D)	
	(A)	Project planning	(B)	Project scheduling		
	(C)	Project controlling	(D)	Project being		
8)	The ful	Il form of PERT is			(C)	
	(A)	Program Evaluation and Rate Technology	(B)	Program Evaluation and Robot Technology		
	(C)	Program Evaluation and ReviewTechnique	(D)	Program Expert and Risk Technology		
9)		are used to represent activity i	n a net	work diagram.	(D)	
	(A)	Circles	(B)	Squares		
	(C)	V-Rectangles	(D)	Arrows		
10)		ortest possible time in which an ac	ctivity ca	an be achieved under ideal circumstances is	(B)	
	(A)	Pessimistic time estimate.	(B)	Optimistic time estimate.		
	(C)	Expected time estimate	(D)	The most likely time estimate.		
11)	PERT	analysis is based on			(D)	
	(A)	Optimistic time	(B)	Pessimistic time		
	(C)	Most likely time	(D)	All the above		
12)	Expect	ted time estimate (te) can be calcu	lated by	у	(A)	
	(A)	$\frac{t_0 + 4t_m + t_p}{6}$	(B)	$\frac{t_0 + 4t_p + t_m}{6}$		
	(C)	$\frac{4t_0 + 4t_p + 4t_m}{4}$	(D)	$\frac{t_0 + t_m + t_p}{3}$		

13)	Formu	la for total float is			(C)
	(A)	LST-EST	(B)	LFT-EFT	
	(C)	Both A and B	(D)	None	
14)	Float i	s useful for			(A)
	(A)	Rescheduling activities	(B)	Rescheduling events	
	(C)	Define Critical path	(D)	None of the above	
15)	In a qu arrival	• .	ults me	ean service rate has to be higher than mean	(A)
	(A)	True	(B)	False	
	(C)	Depending on condition	(D)	Do not know	
16)	If the a		distrib	oution inter-arrival time will follow exponential	(A)
	(A)	Poisson	(B)	Exponential	
	(C)	Both	(D)	Depending on condition	
17)	mean vehicle	rate of 10 vehicles per hours. The a	ttenda	ng according to poisson distribution with a ant renders service at an average of 15 a vehicle must wait before it is taken up for	(C)
	(A)	12 mints	(B)	15 mints	
	(C)	8 mints	(D)	9 mints	
18)	Avera	ge waiting time in the Queue W _q =			(B)
	(A)	$\frac{2\lambda}{4(\mu-\lambda)}$	(B)	$\frac{\lambda}{\mu(\mu-\lambda)}$	
	(C)	$\frac{\mu}{\lambda(\lambda-4)}$	(D)	$\frac{\mu^2}{\lambda(\lambda-\mu)}$	
19)	In M /	M / 1: FIFO model of Queuing theor	y the ¡	probability that server is idle is	(D)
	(A)	$\frac{\lambda}{\mu}$	(B)	$\frac{\mu}{\lambda}$	
	(C)	$1-\frac{\mu}{\lambda}$	(D)	$1-\frac{\lambda}{\mu}$	
	1				1

20)	The lo	ng form of EVPI Expected value of perfect information	(B)	Expected value of probability information	(A)
	(C)	Expected variable profit of Interest	(D)	Elementary variable of probability input	
21)	Hurwit	criterion is Decision making criteria	3		(B)
	(A)	Under certainty	(B)	Under uncertainty	
	(C)	Under risle	(D)	All above	
22)	In Dec (A)	ision Tree Method Decision points a Square	are rep (B)	presented by the symbol P	(C)
	(C)	Circle	(D)	None of these	
23)	Maxi n	nin criterion means decision maker	attemp	ots to	(A)
	(A)	Maximise the minimum possible profits	(B)	Minimize the expected loss.	
	(C)	Maximum regrets.	(D)	Minimum regrets.	
24)		a method for learning about a real ents the system.	syster	n by experimenting with a model that	(D)
	(A)	Decision theory.	(B)	CPM-PERT.	
	(C)	Replacement theory.	(D)	Simulation.	
25)	"X sim	ulated Y"is true iff			(C)
	i) X a	nd Y are formal system.			
	ii) Y	is taken to be the real system.			
	(A)	(i) is true.	(B) (i	i) is true.	
	(C)	Both (i) & (ii) are true.	(D)B	oth (i) & (ii) are are false.	
26)	Which	is not Methodology foe simulation p	roces	S	(C)
	(A)	Developed the simulation model.	(B)	Identify he problem.	
	(C)	The solution results is maximisation & minimisation of objective function.	(D)	Specify values of decision variable to be tested.	

27)	The Monte-carlo method of simulation was developed by				(A)
	(A)	Neumann and stainslaw Ulam.	(B)	Monte and carl Ulam.	
	(C)	Henry-carlo Neumann.	(D)	Albert Carlo.	
28)	Consi	ider the following statements			(D)
	i) ii) iii)	Simulation produced optimal res A good Simulation model may be usable model. Each application of simulation is	e very e	expensive often it takes year to develop a	
	(A)	All statements are true.	(B)	(i) and (ii)true and (iii)is false.	
	(C)	Only (iii)is true.	(D)	(ii) and (iii)are true and (i) is false.	
29)	times	, ,	mints.	equired service .The interval and service Respectively. Simulate the system for 14 ner.	(D)
	(A)	3 mints.	(B)	2.5 minutes.	
	(C)	2 minutes	(D)	3.7 minutes	
30)	Consi	der the following statements			(A)
	i) ii)	body and brain activities, simula	tion us	alance, distribution of electrolyte in human ed. ed of weapon system, war strategies.	
	(A)	(i) is true.	(B) (i	i) is true.	
	(C)	Both (i) & (ii) are true.	(D)B	oth (i) & (ii) are false.	
31)		requires the generation of a sequen ation model.	ce of r	andom numbers that is an integral part of the	e (B)
	(A)	System Simulation	(B) N	Nonte – carlo Simulation	
	(C)	Neumann – Carlo Simulation.	(D)R	andom Model.	

32)	Cons	ider the following statements		(C)
	i) ii)	Simulation is flexible and straight It can be used to analyse large and by conventional quantitative technique.	nd complex real world system that can't be solved	
	(A)	(i) is true.	(B) (ii) is true.	
	(C)	Both (i) & (ii) are true.	(D)Both (i) & (ii) are false.	
33)	avera		nter. Consumers arrive at a rate of 20 per hour and riced by cashier is 24. Then under usual idle is	(C)
	(A)	5/6	(B) 4/5.	
	(C)	1/5	(D) 1/6	
34)	All th	e parameter linear programming mod	del are assumed to be	(B)
	(A)	variables	(B) constraints	
	(C)	functions	(D) None	
35)	In M/	M/1 : ∞/FIFO model of queuing theor	ry. The probability that the server is busy is	(A)
	(A) -	$\frac{\lambda}{u}$	$(B)\frac{\mu}{\lambda}$	
	(C)	$1-\frac{\lambda}{\mu}$	(D)1- $\frac{\mu}{\lambda}$	

	If arrival rate = λ = 20 per hour and service expected waiting time of consumer in syst	e time = μ = 24 per hour under usual assumptions em is	(C)
	(A) 12.5 minutes.	(B) 5 minutes	
	(C) 15 minutes.	(D) 10 minutes.	
37)	In Decision making under certainly each a	ction will lead tooutcome.	(A)
	(A)Only One.	(B) Only two.	
	(C)infinitly.	(D)All above.	
	In Decision making under risk decision macourses of action.	aker knows the for each possible alternative	(B)
	(A)Probability of occurrence of input.	(B)Probability of occurrence of outcomes.	
	(C)Action taking.	(D) None of these.	
39)	What is the long form of EMV		(D)
	(A)Expected money value.	(B)Expected money variable.	
	(C)Elementary model value.	(D)Elementary Monetary value.	

40)	giving	•	es, concerning	certa	on has submitted th fol ain proposal depending s follows :	.	(B)
	Tech	nological advance→	Much		little	None	
	Decis	sion↓					
	Acce	pt	2		5	-1	
	Reje	ct	3		2	4	
		is thebest decision un	der certainty?	Į.			
	(A)	Accept.		(B)	Reject.		
	(C)	Not confirmed.		(D)	None.		
41)	Repla	cement is essential fo	r				(D)
	(A)	Loss of accuracy.		(B)	Reduced rate of prod	uction.	
	(C)	Frequent breakdown	ıs.	(D)	All above reasons.		
42)	Metho	d to be used to evalu	ate replacemer	nt alte	ernatives.		(D)
	(A)	Annual equivalent ar method.	nnuity	(B)	Present value metho	d.	
	(C)	MAPI method.		(D)	Any one of the above		
43)	Differe	ent replacement alterr	atives are				(D)
	(A)	Breakdown replacen	nent.	(B)	Planned replacement	t.	
	(C)	Group replacement.		(D)	All are correct as per	situation.	
44)		bjective of a scientific of inventory. The stat	•	rol sy	stem is to reduced inv	estment in various	(A)
	(A)	True.		(B)	False.		
	(C)	Cannot say		(D)	None.		

45)	The no	on-linear programming problem solv	ed by	using	(D)
	(A)	Wolfe's Method.	(B)	Kelly's cutting plane method	
	(C)	Lagrange's multiplier technique.	(D)	all of these	
46)	Econo	mic order quantity (EOQ) results in			(B)
	(A)	Reduced chances of stock outs.	(B)	Equalization of carrying cost and procurement cost	
	(C)	Favourable Procurement price.	(D)	None of these.	
47)	Buffer	stock is the level of stock			(C)
	(A)	Half of the actual stock.	(B)	At which the ordering process should start.	
	(C)	Minimum stock level below which actual stock should not fall.	(D)	maximum stock in inventory.	
48)		crease in unit price causes the aver not increase?	age d	emand rate to increase, which are of these	(A)
	(A)	Lead time.	(B)	ROP.	
	(C)	EOQ	(D)	Annual holding.	
49)	The C	ost of Insurance and taxes are inclu	ding ir	1	(D)
	(A)	Set up cost.	(B)	Cost of Ordering.	
	(C)	Cost of shortages.	(D)	Inventory carrying cost	
50)		der cost per order of an inventory is he Economic Order Quantity (EOQ)		.00 with an annual carrying cost of RS. 10 pen annual demand of 2000 unit is	r(A)
	(A)	400	(B)	410	
	(C)	500	(D)	1590.	
51)	Using	the basic EOQ model, if the ordering	g cost	doubles. The order quantity will be	(C)
	(A)	Double its formal value.	(B)	About 50% it's formal value.	
	(C)	About 71% of its formal value.	(D)	Unaffected.	
1	1				1

52)	Which	of the following is not an inventory?			(A)
	(A)	Machines.	(B)	Row material.	
	(C)	Finished products.	(D)	Consumable tools.	
53)	Which	of the following is true for inventory	contro	ol?	(D)
	(A)	Economic order quantity has minimum total cost per order.	(B)	Inventory carrying costs increasing with quantity per order.	
	(C)	Ordering cost decreases with 10 size.	(D)	All the above.	
54)	Which	of the following is a valid objective f	unctic	on for a linear programming problem?	(B)
	(A)	Max. 5xy	(B)	Min. $4x+3y+(2/3z)$	
	(C)	Max. $5x^2+6y^2$.	(D)	Min. $(x_1+x_2)/x_3$.	
55)	let Z b	e a real valued function of n variable	s defi	ned by	(B)
		or Min. $Z=f(x_1,x_2,x_3,,x_n)$ subject to where either $f(x)$ or some $g_i(x)$ or both		constraints $g_i(x)$ $\{\le,\ge or=\}$ b_i , $i=1,2,3m$, non-linear . it is general form of	
	(A)	Linear programming.	(B)	Non-linear programming.	
	(C)	C-programming.	(D)	C ⁺⁺ -programming	
56)	The ne	ecessary condition for a Max.(or Min	.) of f	(x) are	(B)
	(A)	$\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} + \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0$	(B)	$\frac{\partial L}{\partial x_j} = \frac{\partial f}{\partial x_i} - \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0$	
	(C)	$\frac{\partial L}{\partial x_i} = \sum_{i=1}^m \lambda_i \frac{\partial g_i}{\partial x_j} = 0$	(D)	$\frac{\partial L}{\partial x_i} = \frac{\partial f}{\partial x_i} + \sum_{i=1}^m \lambda_i g_i = 0$	
57)	The La	agrangian function is of the form $L(x,$	λ) = f	(x)- $\sum_{i=1}^{m} \lambda_i g_i(\mathbf{x})$ where x stand for	(C)
	(A)	Lagrangian function	(B)	Lagrangian multiplier	
	(C)	Decision variable	(D)	None	
58)	The m	ethod of lagrange multipliers is a str	ategy	for finding the	(D)
	(A)	Only maxima of function	(B)	Only minima of function	
	(C)	None	(D)	local Maxima and Minima of function	

59)	A Non	-LPP with non-linear objective functi	on an	d linear constraints such a non-LPP is called	(A)		
	(A)	Quadratic programming problem.	(B)	Non-Quadratic programming problem.			
	(C)	Linear programming problem	(D)	Non-Linear programming problem			
60)	Which	of the following is a valid objective	function	on for a QPP.	(A)		
	(A)	$\min f(\mathbf{x}) = 3x_1^2 + x_2^2 + 2x_1x_2 + x_1 + 6$ +2	бх ₂ (Е	$ \min_{\substack{f(\mathbf{x}) = 3x_1^3 + x_2^3 + 2x_1x_2 + x_1^2 \\ +6x_2 + 2}} \min_{\substack{f(\mathbf{x}) = 3x_1^3 + x_2^3 + 2x_1x_2 + x_1^2 \\ -6x_2 + 2}}. $			
	(C)	$\max f(\mathbf{x}) = 2x_1 + 3x_2 + 6x_3 + 2$	(D)	All of these			
61)	-	ocedure used to solve assignment premet costs to a table of opportunity		ms wherein one reduces the original is called	(C)		
	(A)	Stepping – stone method	(B)	MODI method			
	(C)	Matrix reduction	(D)	Simplex reduction			
62)	Occurs when the number of occupied squares is less than the number of rows plus						
	(A)	degeneracy	(B)	infeasibility			
	(C)	Unboundedness	(D)	unbalanced			
63)	The solution of transportation problem with 'm' rows(supplies) and 'n' columns (destination) is feasible if number of positive allocations are						
	(A)	m+n	(B)	m*n			
	(C)	m+n-1	(D)	m+n+1			
64)	The operations research technique which helps in minimizing total waiting and service costs is						
	(A)	Queuing theory	(B)	Decision theory			
	(C)	Both A and B	(D)	None of these			
65)	Optima	al solution of an assignment problen	n can l	be obtained only if	(A)		
	(A)	Each row and column has only one zero element	(B)	Each row and column has at least one zero element			
	(C)	The data is arrangement in a square matrix	(D)	Simplex reduction			
<u> </u>	<u> </u>				<u> </u>		

,	When be	total supply is equal to total demand	d in tra	ansportation problem , the problem is said to	(A)
	(A)	Balanced	(B)	Unbalanced	
	(C)	Degenerate	(D)	None of these	
67)	The de	ecision making criteria that should be	e achi	eve maximum long term payoff is	(B)
	(A)	EOL	(B)	EMV	
	(C)	Hurwicz	(D)	Maximax	
68)	Decisio	on theory concerned with			(D)
	(A)	Method of arriving at an optimal decision	(B)	Selecting optimal decision in sequential manner	
	(C)	Analysis of information that is available.	(D)	All of above.	
69)	All of t	he following are steps in the decision-m	naking	process EXCEPT	(D)
	(A)	Defined the problem	(B)	List alternatives	
	(C)	Identify the possible outcomes	(D)	Compute the posterior probabilities	
70)		is an activity oriented diagram.			(A)
	(A)	CPM	(B)	PERT	
	(C)	Histogram	(D)	None	
71)	PERT e	mphasis on			(A)
	(A)	Time	(B)	Activity	
	(C)	A and B	(D)	None	
72)		is concerned with the problem	of repl	acement of machine, electricity bulbs, men etc.	(B)
	(A)	Decision theory	(B)	Replacement theory	
	(C)	Simulation	(D)	None	
73)	Operat proble	• •	meth	od to arrive at the optimal solution to the	(B)
	(A)	Economical	(B)	Scientific	
	(C)	Both A and B	(D)	artistic	

	•	_	·	(B)
(A)	Management process	(B)	Decision making	
(C)	Procedure	(D)	Mathematical model	
OR car	evaluate only the effects of			(C)
(A)	Financial factors	(B)	Personal factor	
(C)	Numeric and quantifiable factor.	(D)	None	
Which of the following is not the phase of OR methodology.				(D)
(A)	Formulating	(B)	Constructing a model	
(C)	Establishing controls	(D)	Controlling the environment	
The objective function and constraints are functions of two types of variable				(B)
(A)	Positive and negative	(B)	Controllable and uncontrollable	
(C)	Strong and weak	(D)	None	
What have been constructed from OR problem and methods for solving the model that are available in many cases?				(C)
(A)	Scientific model	(B)	Algorithm	
(C)	Mathematical models	(D)	None	
Which	Which of the following is not needed to use the transportation model?			
(A)	The case of shipping one unit from each origin to each destination	(B)	The destination points and demand per period at each.	
(C)	The origin point and the capacity of supply per period at each.	(D)	Degeneracy	
		d to "b	alance" an assignment or transportation	(C)
(A)	Destination, source	(B)	Units supplies, unit demand	
(C)	Dummy rows, Dummy columns	(D)	Artificial cells, Degenerate cells.	
	various (A) (C) OR car (A) (C) Which (A) (C) What I in man (A) (C) Which (A) (C) Which (A) (C) Which (A)	various factor impacting a particular operation (A) Management process (C) Procedure OR can evaluate only the effects of	various factor impacting a particular operation. The (A) Management process (B) (C) Procedure (D) OR can evaluate only the effects of	(C) Procedure (D) Mathematical model OR can evaluate only the effects of
