# Algorithmic Learning Theory Spring 2017 Lecture 2

Instructor: Farid Alizadeh Scribe: Chien-Ming Huang Edit: Yuan Qu

1/25/2017

- 1. Review Bayes Theory(Lecture 1)
- 2. Random Variable and Distribution
  - (a) Random variable
    - i. DRV, discrete random variable
    - ii. CRV, continuous random variable
  - (b) Distribution function
    - i. CDF, cumulative distribution function
    - ii. pdf or pmf, probability density(Mass) function
  - (c) Discrete distribution
    - i. Discrete uniform distribution
    - ii. Beunoulli's distribution
    - iii. Binomial distribution
  - (d) Continuous distribution
    - i. Continuous uniform distribution
    - ii. Normal distribution
- 3. Multivariate Distributions
  - (a) Random vector
  - (b) Discrete multivariate distribution
  - (c) Binormal distribution
  - (d) Marginal distribution
  - (e) Conditional distribution
- 4. Bayes Classification

# 1 Review Bayes Theory(Lecture 1)

**Date:** 01/25/2017

See notes in "Lecture 1".

## 2 Random Variable and Distribution

#### 2.1 Random Variable

#### 2.1.1 Discrete Random Variable(D.R.V)

 $x \to t_1, t_2, \cdots, t_n$ 

#### 2.1.2 Continuous Random Variable(C.R.V)

 $x \to [\mathfrak{a},\mathfrak{b}]$  a range of value.

#### 2.2 Distribution Function

#### 2.2.1 CDF:

Cumulative Distribution Function  $F_x(t) = P_r[x \le t]$ , probability can only increase

#### 1. For Discrete:



#### 2. For Continuous:



## 2.2.2 pdf or pmf:

Probability Density(Mass) Function

#### 1. For Discrete:

$$x : F_x(t) = P_r[x = t]$$

**Date:** 01/25/2017



#### 2. For Continuous:

$$f_x(t) = \frac{d}{dt}F_x(t), F_x(t) = \int_{-\infty}^{t} f_x(t)dt$$

$$i\ f_x(t) \geq 0$$

ii 
$$\int_{-\infty}^{\infty} f_x(t) dt = 1$$

## Graph: Continuous Random Variable

probability density function, f(x)



#### 2.3 Discrete Distribution

### 2.3.1 Discrete Uniform Distribution

$$\begin{aligned} x:1,2,3,\cdots,k\\ \text{pdf}:u_x(t) = \begin{cases} \frac{1}{n}, & \text{if } t=1,2,\cdots,n\\ 0, & \text{otherwise} \end{cases} \end{aligned}$$





**Date:** 01/25/2017

#### 2.3.2 Bernoulli Distribution

$$pdf: f_x(t) = \begin{cases} p, & x = 1\\ 1-p, & x = 0\\ 0, & \text{otherwise} \end{cases}$$

$$CDF: F_x(t) = \begin{cases} 0, & x \leq 0 \\ 1-p, & 0 \leq x < 1 \\ 0, & x \geqslant 1 \end{cases}$$

#### 2.3.3 Binomial Distribution

numbers of 0's in independent Bernoulli trial with P[0] = p

pdf: 
$$b(t|p,n) = \binom{n}{t} p^t (1-p)^{n-t}, \ \binom{n}{t} = \frac{n!}{t!(n-t)!}$$

CDF: 
$$B(t|p,n) = \sum_{n=0}^{t} b(t|p,n)$$

#### 2.4 Continuous distribution

#### 2.4.1 Continuous uniform distribution

$$u(t|\alpha,b) = \begin{cases} \frac{1}{b-\alpha}, & \alpha \leqslant t \leqslant b \\ 0, & \text{otherwise} \end{cases}$$





#### 2.4.2 Normal distribution

mean=  $\mu$  and std.=  $\sigma$ 

pdf: 
$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
  
CDF:  $\frac{1}{2}[1 + \text{erf}(\frac{x-\mu}{\sigma\sqrt{2}})]$   
 $\text{erf}(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$ 

**Date:** 01/25/2017



### 3 Multivariate Distributions

#### 3.1 Random Vector

 $X_N = (x_1, x_2, \dots x_N)$  can be continuous or discrete.

CDF: 
$$F_x(t_1, t_2, \dots t_n) = P_r[x_1 \le t_1, x_2 \le t_2, \dots, x_n \le t_n]$$

$$\mathrm{pdf:} \ \begin{cases} \frac{\vartheta}{\vartheta t_1 \vartheta t_2 \vartheta t_3 \cdots \vartheta t_n} F(t_1, t_2, \cdots t_n) = f_x(t_1, \cdots, t_n), & \text{all continuous} \\ P_r[x_1 = t_1, x_2 = t_2, \cdots, x_n = t_n] = f_x(t_1, \cdots, t_n), & \text{all discrete} \end{cases}$$

both are joint distribution R.V.  $x_1, \dots, x_n$ 

#### 3.2 Discrete Multivariate Distribution

$$Y \rightarrow 1, 2, \cdots, r; \quad P[Y=r_1] = P_u; \quad \sum P_u = 1$$

repeat n times,  $x_k$ = number of times Y = k occurs

$$\mathbf{x} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$$

$$\begin{aligned} \text{pdf: } f_x(x_1, x_2, \cdots, x_n) &= P[x_1 = t_1, x_2 = t_2, \cdots, x_n = t_n] \binom{n}{t_1, t_2, \cdots, t_n} p_1^{t_1} p_2^{t_2} \cdots p_n^{t_n} \\ \binom{n}{t_1, t_2, \cdots, t_r} &= \frac{n!}{t_1! t_2! \cdots t_n!} \end{aligned}$$

#### 3.3 Binormal distribution

 $x = (x_1, x_2)$ , both continuous

**Date:** 01/25/2017

$$\underset{\sim}{\mu} = \binom{\mu_1}{\mu_2}, \sigma_1^2 \rightarrow x_1, \sigma_2^2 \rightarrow x_2, \sigma_{21} \rightarrow x_1, x_2$$

Covariance Matrix: 
$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{pmatrix}$$

$$\begin{split} \varphi(t_1,t_2|\underbrace{\mu},\Sigma) &= \frac{1}{\sqrt{2\pi \cdot Det(\Sigma)}} exp[(t-\underbrace{\mu})^T \Sigma^{-1}(t-\underbrace{\mu}),t = \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \\ \varphi(t_1) &= \int_{-\infty}^{\infty} \varphi(t_1,t_2|\cdots) dt_2 \end{split}$$

 $\text{Joint pdf: } f_{(x1,x2)}(t_1,t_2)$ 

In a similar way, for multi-normal distribution,

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_2^2 & \cdots & \cdots & \sigma_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \cdots & \cdots & \cdots & \sigma_n^n \end{bmatrix}$$

e.g.

| $x_2$ $x_1$  | 1   | 2    | 3    | $f_{\kappa_2}(t)$ |
|--------------|-----|------|------|-------------------|
| 0            | 0.1 | 0.4  | 0.2  | 0.7               |
| 1            | 0.2 | 0.05 | 0.05 | 0.3               |
| $f_{x_1}(t)$ | 0.3 | 0.45 | 0.45 |                   |

$$P[x_2 = 0] = P[x_2 = 0|x_1 = 1] + P[x_2 = 0|x_1 = 2] + P[x_2 = 0|x_1 = 3] = 0.7$$
  
 $P[x_2 = 1] = 1 - P[x_2 = 0] = 0.3$ 

## 3.4 Marginal Distribution

$$\overset{\times}{\underset{\sim}{\times}}=(x_1,x_2,\cdots,x_n)\to f_{x_{\sim}}(t_1,\cdots,t_n)$$

To calculate pdf,

$$f_{x_{\sim}}(t_{1}, t_{2}, \cdots, t_{n}) = \int_{t_{k+1}, \cdots, t_{n}}^{\infty} f_{x_{\sim}}(t_{1}, \cdots, t_{n}) dt_{k+1}, \cdots, dt_{n} = \sum_{t_{k+1}} \sum_{t_{k+2}} \cdots \sum_{t_{n}} f_{x_{\sim}}(t_{1}, \cdots, t_{n})$$

Joint pdf:  $f(t_1, t_2)$ 

$$\begin{split} \textbf{e.g.} \quad & \text{Supposed that: } x_1 \to \text{Height, } x_2 \to \text{Gender, } \begin{cases} 0 & \text{male} \\ 1 & \text{female} \end{cases} \\ & \text{For } x_2 = 0 \to \text{Height} \sim N(69, 4.5) \Leftrightarrow f_{x_1|x_2}(t_1|t_2 = 0) \varphi(t_1|\varphi = 69, \sigma = 4.5) \\ & \text{For } x_2 = 1 \to \text{Height} \sim N(65, 4.2) \Leftrightarrow f_{x_1|x_2}(t_1|t_2 = 1) \varphi(t_1|\varphi = 65, \sigma = 4.2) \\ \end{split}$$

**Date:** 01/25/2017

#### 3.5 Conditional Distribution in 2 Variables

$$\begin{split} x &= (x_1, x_2) \to joint \ f(t_1, t_2) \\ f_{x_1|x_2}(t_1|t_2) &= \frac{f_x(t_1, t_2)}{f_x(t_2)} \\ f_x(t_1, t_2) &= f_{x_1|x_2}(t_1|t_2) * f_{x_2}(t_2) \\ f_{x_2|x_1}(t_2|t_1) &= \frac{f_x(t_1, t_2)}{f_{x_1}(t_1)} \\ f_x(t_1, t_2) &= f_{x_2|x_1}(t_2|t_1) * f_{x_1}(t_1) \end{split}$$

#### 4 Bayes

#### Bayes Formula

$$\begin{array}{l} f_{x_1|x_2}(t_1|t_2) = \frac{(f_{x_2|x_1}(t_2|t_1)*f_{x_1}(t_1))}{f_{x_2}(t_2)} \\ \text{Discrete } x_1: f_{x_2}(t_2) = \sum_{t_1} f_{x_2|x_1}(t_2|t_1) * f_{x_1}(t_1) \\ \text{Continuous } x_1: f_{x_2}(t_2) = \int_{-\infty} \infty f_{x_2|x_1}(t_2|t_1) * f_{y_1}(t_1) dt \\ \text{Example: A person has height } 6?7" \\ f(x_2 = 0|x_1 = 6'7") = \frac{f_{x_1|x_2}(6'7"|x_2=0)*f_{x_2}(0)}{f_{x_1}(67)} \\ f(x_2 = 1|x_1 = 6'7") = \frac{f_{x_1|x_2}(6'7"|x_2=1)*f_{x_2}(0)}{f_{x_1}(67)} \\ \text{Example: In a box } \frac{1}{4} \text{ of coins are fake, } \frac{3}{4} \text{ of coins are real} \end{array}$$

The probability to get fake:  $P_r[head] = \frac{1}{3}, P_r[tail] = \frac{2}{3}$ The probability to get real:  $P_r[head] = \frac{1}{2}, P_r[tail] = \frac{2}{2}$ 

Take a random coin selected, n=20 times, t=7 heads, what is  $P_r[real]$ ? what is  $P_r[false]$ ?

$$\begin{aligned} x_1 &= \text{ furtheer of fleads in } fl = 20 \text{ trians} \\ x_2 &= \begin{cases} 0, \text{fake} & f_{x_2}(0) = \frac{1}{4} \\ 1, \text{real} & f_{x_2}(1) = \frac{3}{4} \end{cases} \\ f(t_2 = 0 | x_1 = 7, n = 20) &= \frac{f_{x_1 | x_2}(7 | \text{fake}, n = 20) * f_{x_2}(0)}{f_{x_1}(7)} = \binom{20}{7} \frac{1}{3}^7 \frac{2}{3}^1 3 * 0.25 = 0.45 \\ f(t_2 = 1 | x_1 = 7, n = 20) &= \frac{f_{x_1 | x_2}(7 | \text{real}, n = 20) * f_{x_2}(1)}{f_{x_1}(7)} \binom{20}{7} \frac{1}{2}^7 \frac{1}{2}^1 3 * 0.75 = 0.55 \end{aligned}$$

#### 4.2 **Bayes Classification**

$$\operatorname{Loss}(\widehat{f},\underline{x}|f),y=f(x),y=\widehat{f}(x)$$

Minimum  $E_x : Loss(\hat{f}|f)$ 

#### Scribe: Chien-Ming Huang Edit: Yuan Qu Lecture 2

$$\label{eq:Misclassification Rate: Loss} \text{Misclassification Rate: Loss}(\widehat{f}, \underbrace{x}|f) : \begin{cases} 0 & f_x = \widehat{f}(x) \\ 1 & f_x \neq \widehat{f}(x) \end{cases}$$

$$\mathrm{Risk} = E_x \ \mathrm{Loss}(\boldsymbol{\hat{f}}, \boldsymbol{\underline{x}}|f)$$

Probability of Misclassification: 
$$E_x = \sum_{t_i} t_i f_x(t_i) = \int_0^1 t \int_x (t) dt$$

$$x = \begin{cases} p & 0\\ 1 - p & 1 \end{cases}$$

#### 4.3 Bayes Classification Rule

Binary choose k 
$$P_r[y=k,\underline{x}]$$

$$\mathrm{k}{=}\;\mathrm{category}{=}\;\mathrm{avemax}\frac{P_0[x|k]P_r[k]}{P_r[x]}\propto P_0[x|k]P_r[k]$$

#### 4.4 Classification Cost Matrix

 $C_{ij}$  = cost of classification a+ number of classification of i + number of classifi-

$$\begin{array}{l} \text{f(x)} = j, \, E_x(loss(j=\hat{j},x|i) = \sum_{i=1}^k P_r[i|x]C_{ij} = \sum_{i=1}^k \frac{f(x|i)P_r[i]C_{ij}}{f_x} \propto \sum_{i=1}^k f(x|i)P_r[i]C_{ij} \end{array}$$

**Date:** 01/25/2017

## Modify Bayes Rule(Uneven Cost)

$$c = \text{avgmin} \sum_{i=1}^k f(x|i) P_r[i] C_{ij}$$

Example: Real and Fake: 
$$C = \begin{pmatrix} 0 & 1 \\ 4 & 0 \end{pmatrix}$$

real: 
$$P_r[x_2 = 1 | x_1 = 7] * C_{11} + P_r[x_2 = 0 | x_1 = 7] * C_{12}$$
  
fake:  $P_r[x_2 = 1 | x_1 = 7] * C_{21} + P_r[x_2 = 0 | x_1 = 7] * C_{22}$   
min: 
$$\begin{cases} 0.55 * 0 + 0.45 * 1 = 0.45 \\ 0.55 * 4 + 0.45 * 0 = 1.8 \end{cases}$$

$$\min \left\{ 0.55 * 0 + 0.45 * 1 = 0.45 \right\}$$

min: 
$$\begin{cases} 0.53 * 0 + 0.43 * 1 = 0.43 \\ 0.55 * 4 + 0.45 * 0 = 1.8 \end{cases}$$