Algorytmy wyszukiwania

- Liniowe
- Binarne
- Transformacje kluczowe

Słownik – przykład z imionami

Wyszukiwanie przy użyciu jednego z pól

lmię i nazwisko	Adres
Greta Thunberg	Sztokholm, Sztokholmska 21/88
Donald Trump	Nowy Jork, Nowojorska 8/1
John Rambo	Bagno, Bagieńska 100/x
Xi Jinping	Pekin, Pekińska 34/5

Operacje

Operation	Description
Initialize	Initialize internal structure; create an empty table
IsEmpty	True iff the table has no elements
Insert	Given a key and an entry, insert it into the table
Find	Given a key, find the entry associated with the key
Remove	Given a key, find the entry associated with the key and remove it from the table

Implementacje

- Ile kluczy będzie mi potrzebne?
- Jak będziemy znajdować wartości odpowiadające danym kluczom?
- Jakie będą rozmiary tablicy?
 - Zbyt mała = kolizje
 - Zbyt duża = marnotrawstwo
- Jak długo będziemy przechowywać tablicę w pamięci?

Transformacja kluczowa

- Równomiernie rozdziela klucze i odpowiadające jej wartości.
- Minimalizuje kolizje.

Musi to być funkcja bliska funkcji losowej, ale deterministyczna.

adres = klucz mod n

Mia	M	77	i	105	a	97	279	4
Tim	Т	84	i	105	m	109	298	1
Bea	В	66	е	101	а	97	264	0
Zoe	Z	90	0	111	е	101	302	5
Sue	S	83	u	117	е	101	301	4

Jak unikać kolizji?

