PHIL 222

Philosophical Foundations of Computer Science Week 4, Thursday

Sept. 19, 2024

The Lambda Calculus (cont'd)

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

is the function $f : x \mapsto M$, i.e., the f defined by f(x) = M.

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

$$x \longrightarrow (\lambda x. M) \longrightarrow M$$

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

E.g.,
$$x \longrightarrow (\lambda x.(x+3)) \longrightarrow x+3$$

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

$$x \longrightarrow (\lambda x. M) \longrightarrow M$$

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

E.g.,
$$x \longrightarrow (\lambda x.(x+3)) \longrightarrow x+3$$

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

$$x \longrightarrow (\lambda x. M) \longrightarrow M$$

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

E.g.,
$$x \longrightarrow (\lambda x.(x+3)) \longrightarrow x+3$$

$$((\lambda x.(x+3))2) = ?$$

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

$$x \longrightarrow (\lambda x. M) \longrightarrow M$$

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

E.g.,
$$x \longrightarrow (\lambda x. (x+3)) \longrightarrow x+3$$

$$((\lambda x. (x + 3)) 2) = ?$$

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

$$x \longrightarrow (\lambda x. M) \longrightarrow M$$

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

$$\frac{x}{2}$$
 $(\lambda x. (x+3))$ $x+3$

$$((\lambda x. (x+3)) 2) = ?$$

- a basic or "atomic" term, i.e., one of the variables x, y, z, . . . or the constants a, b, c, . . . ,
- (MN), obtained by the "application" of other terms M and N, or
- obtained from other terms by "abstraction".

Lambda abstraction.

$$x \longrightarrow (\lambda x. M) \longrightarrow M$$

is the function $f: x \mapsto M$, i.e., the f defined by f(x) = M.

$$\begin{array}{c}
x \\
2
\end{array}
\qquad (\lambda x. (x+3)) \qquad \begin{array}{c}
x+3 \\
2+3
\end{array}$$

$$((\lambda x. (x + 3)) 2) = 2 + 3.$$

$$\begin{array}{ccc}
x \\
2 & & \\
\end{array} ((\lambda x. (x+3)) & & \\
((\lambda x. (x+3)) 2) = 2+3.$$

$$\begin{array}{c}
x \\
2 \\
\hline
((\lambda x. (x + 3))) \\
((\lambda x. (x + 3)) 2) = 2 + 3.
\end{array}$$

$$\frac{x}{2} - \frac{(\lambda x. (x+3))}{(\lambda x. (x+3)) 2} - \frac{x+3}{2+3}$$

$$((\lambda x. (x+3)) 2) = 2+3.$$

$$\begin{array}{c}
x \\
N
\end{array} \qquad (\lambda x. M) \qquad \stackrel{M}{?}$$

$$((\lambda x. M) N) = ?$$

$$\frac{x}{2} - \frac{(\lambda x. (x+3))}{((\lambda x. (x+3)) 2)} = \frac{x+3}{2+3}$$

$$((\lambda x. (x+3)) 2) = 2+3.$$

$$\frac{x}{N} - (\lambda x. M) - \frac{M}{?}$$

$$((\lambda x. M) N) = ?$$

where we write M[N/x] for the result of substituting N for x in M (e.g., (x + 3)[2/x] = 2 + 3).

$$\begin{array}{c}
x \\
2 \\
\hline
((\lambda x. (x+3))) \\
((\lambda x. (x+3)) 2) = 2+3.
\end{array}$$

$$\begin{array}{ccc}
x \\
N & & & M \\
N & & M[N/x]
\end{array}$$

$$((\lambda x. M) N) = M[N/x]$$

where we write M[N/x] for the result of substituting N for x in M (e.g., (x + 3)[2/x] = 2 + 3).

$$\begin{array}{c}
x \\
2 \\
\hline
((\lambda x. (x+3))) \\
((\lambda x. (x+3)) 2) = 2+3.
\end{array}$$

$$\begin{bmatrix} x \\ N \end{bmatrix} \longrightarrow \begin{bmatrix} (\lambda x. M) \end{bmatrix} \longrightarrow \begin{bmatrix} M \\ M[N/x] \end{bmatrix}$$
$$((\lambda x. M) N) = M[N/x]$$

where we write M[N/x] for the result of substituting N for x in M (e.g., (x + 3)[2/x] = 2 + 3).

 β -reduction is an application of this transformation

$$((\lambda x. M) N) \xrightarrow{\beta} M[N/x]$$

to terms and subterms. Computation means to keep applying this until it no longer applies.

$$(\lambda x. ((xx) y))(\lambda z. z)$$

$$\frac{x}{\lambda z. z} - \frac{\lambda x. ((xx) y)}{\lambda z. z}$$

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y$$

$$x \longrightarrow \lambda x. ((xx)y) \longrightarrow (xx) y \longrightarrow ((\lambda z. z)(\lambda z. z)) y$$

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y$$

$$x \longrightarrow \lambda x. ((xx)y) \longrightarrow (xx) y \longrightarrow ((\lambda z. z)(\lambda z. z)) y$$

$$2 (\lambda x. ((xx) y))(\lambda x. ((xx) y))$$

E.g.,

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow z$$

$$y$$

 $(\lambda x. ((xx) y))(\lambda x. ((xx) y))$

$$\lambda x. ((xx)y) \longrightarrow \lambda x. ((xx)y) \longrightarrow (xx)y$$

E.g.,

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow y$$

 $(\lambda x. ((xx)y))(\lambda x. ((xx)y)) \rightarrow ((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$

$$\frac{x}{\lambda x. ((xx)y)} \frac{\lambda x. ((xx)y)}{((\lambda x. ((xx)y))(\lambda x. ((xx)y)))y}$$

E.g.,

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow z$$

$$y$$

 $(\lambda x. ((xx)y))(\lambda x. ((xx)y)) \rightarrow ((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$

$$\frac{x}{\lambda x. ((xx)y)} - \frac{\lambda x. ((xx)y)}{((\lambda x. ((xx)y))(\lambda x. ((xx)y)))y}$$

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow y$$

$$(\lambda x. ((xx)y))(\lambda x. ((xx)y)) \rightarrow ((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

$$\rightarrow (((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y) y$$

$$\lambda x. ((xx)y) \qquad (xx)y$$

$$((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow y$$

$$(\lambda x. ((xx)y))(\lambda x. ((xx)y)) \rightarrow ((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

$$\rightarrow (((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y) y$$

$$\lambda x. ((xx)y) \qquad (xx)y$$

$$((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow y$$

$$(\lambda x. ((xx)y))(\lambda x. ((xx)y)) \rightarrow ((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

$$\rightarrow (((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y) y \rightarrow \cdots$$

$$\lambda x. ((xx)y) \qquad (xx)y$$

$$((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

E.g.,

$$(\lambda x. ((xx)y))(\lambda z. z) \to ((\lambda z. z)(\lambda z. z)) y \to (\lambda z. z) y \to y$$

$$z \longrightarrow \lambda z. z \longrightarrow y$$

$$(\lambda x. ((xx)y))(\lambda x. ((xx)y)) \rightarrow ((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

$$\rightarrow (((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y) y \rightarrow \cdots$$

$$\lambda x. ((xx)y)$$

$$\lambda x. ((xx)y)$$

$$((\lambda x. ((xx)y))(\lambda x. ((xx)y))) y$$

Thus, according to the model "computation = β -reduction", some computation halts (like 1) but other computation fails to (like 2).

Multiple inputs? In this calculus every function takes one and only one input, so how can we treat multi-input functions, such as +?

Multiple inputs? In this calculus every function takes one and only one input, so how can we treat multi-input functions, such as +?

— We obtain 2 + 3 in two steps, using

plus :=
$$\lambda x. (\lambda y. (x + y)).$$

First apply this to 2 and obtain "2 + (blank)", and then apply it to 3 and obtain 2 + 3.

— We obtain 2 + 3 in two steps, using

plus :=
$$\lambda x$$
. (λy . ($x + y$)).

(plus 2)
$$3 = ((\lambda x. (\lambda y. (x + y))) 2) 3$$

— We obtain 2 + 3 in two steps, using

plus :=
$$\lambda x$$
. (λy . ($x + y$)).

— We obtain 2 + 3 in two steps, using

plus :=
$$\lambda x. (\lambda y. (x + y)).$$

$$(\text{plus 2}) 3 = ((\lambda x. (\lambda y. (x + y))) 2) 3 \rightarrow (\lambda y. (2 + y)) 3$$

$$x \longrightarrow \lambda x. (\lambda y. (x + y)) \longrightarrow \lambda y. (x + y)$$

$$\lambda y. (2 + y)$$

— We obtain 2 + 3 in two steps, using

plus :=
$$\lambda x. (\lambda y. (x + y)).$$

— We obtain 2 + 3 in two steps, using

plus :=
$$\lambda x. (\lambda y. (x + y)).$$

First apply this to 2 and obtain "2 + (blank)", and then apply it to 3 and obtain 2 + 3.

$$(\text{plus 2}) 3 = ((\lambda x. (\lambda y. (x + y))) 2) 3 \rightarrow (\lambda y. (2 + y)) 3 \rightarrow 2 + 3$$

$$x \longrightarrow \lambda x. (\lambda y. (x + y)) \longrightarrow \lambda y. (x + y)$$

$$\lambda y. (2 + y)$$

In this way, we technically do not need multi-input functions.

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(\cdots(x\,y)))))}_{n \text{ times}})$$

$$\bar{n} \qquad f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(\cdots(xy)))))}_{n \text{ times}})$$

$$f \longrightarrow \bar{n} \qquad f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (x(x(xy)))))f) a$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(\cdots(x\,y)))))}_{n \text{ times}})$$

$$f \longrightarrow \bar{n} \longrightarrow f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (x(x(xy)))))f) a$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(\cdots(x\,y)))))}_{n \text{ times}})$$

$$f \longrightarrow \bar{n} \qquad f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (\underbrace{x(x(xy)))}_{n \text{ times}})) f) a$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(\cdots(xy)))))}_{n \text{ times}})$$

$$f \longrightarrow \bar{n} \longrightarrow f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (\underbrace{x(x(xy)))}_{n \text{ times}}))) f) a$$

$$\to (\lambda y. (f(f(fy)))) \quad a$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(x(x(y)))))}_{n \text{ times}})))$$

$$f \longrightarrow \bar{n} \longrightarrow f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (x(x(x(y))))) f) a$$

$$\to (\lambda y. (f(f(f(y)))) a$$

$$\bar{n} := \lambda x. (\lambda y. (\underline{x(x(x(\cdots(xy))))}))$$

$$n \text{ times}$$

$$f \longrightarrow \bar{n} \longrightarrow f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (x(x(xy))))) f) a$$

$$\to (\lambda y. (f(f(fy)))) \quad a$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(x(x(y)))))}_{n \text{ times}})))$$

$$f \longrightarrow \bar{n} \qquad f^n, \text{ i.e., applying } f \text{ } n \text{ times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (x(x(x(y))))) f) a$$

$$\rightarrow (\lambda y. (f(f(f(y))))) \qquad a$$

$$\rightarrow f(f(f(a)))$$

$$\bar{n} := \lambda x. (\lambda y. (\underbrace{x(x(x(x(x(x(x(y))))))}_{n \text{ times}})))$$

$$f \longrightarrow \bar{n} \quad \text{times}$$

$$(\bar{3}f) a = ((\lambda x. (\lambda y. (x(x(x(y)))))f) a$$

$$\rightarrow (\lambda y. (f(f(f(y)))) \quad a$$

$$\rightarrow f(f(f(a)))$$

Definition. We say that a term F of the lambda calculus " λ -defines" a k-argument partial function f of natural numbers if

• whenever $f(n_1, \ldots, n_k)$ is defined and equals n,

$$((((F\overline{n_1})\overline{n_2})\cdots)\overline{n_k}) \rightarrow \cdots \rightarrow \overline{n},$$

• but when $f(n_1, ..., n_k)$ is undefined, the β -reduction of $((((F\overline{n_1})\overline{n_2})\cdots)$ never terminates.

$$(\operatorname{Add}\bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))\bar{2})\bar{3}$$

$$(\operatorname{Add}\bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))\bar{2})\bar{3}$$

$$(\operatorname{Add}\bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))\bar{2})\bar{3}$$

$$(\operatorname{Add}\bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y))))))\bar{2})\bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$(\operatorname{Add}\bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y))))))\bar{2})\bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$(\operatorname{Add}\bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y))))))\bar{2})\bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$(\operatorname{Add} \bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y))))))\bar{2})\bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

E.g., Add :=
$$\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))$$
 defines +.

$$(\operatorname{Add} \bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y))))))\bar{2})\bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

E.g., Add :=
$$\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))$$
 defines +.

$$(\operatorname{Add} \bar{2})\bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y))))))\bar{2})\bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. ((\bar{2}x)(x(x(xy)))))$$

E.g., Add :=
$$\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))$$
 defines +.

$$(\operatorname{Add} \bar{2}) \bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))) \bar{2}) \bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. ((\bar{2}x)(x(xy))))$$

$$(\operatorname{Add} \bar{2}) \bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))) \bar{2}) \bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. ((\bar{2}x)(x(x(xy)))))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. (x(x(x(x(x(xy)))))))$$

$$(\operatorname{Add} \bar{2}) \bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))) \bar{2}) \bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. ((\bar{2}x)(x(x(xy)))))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. (x(x(x(x(xy))))))$$

E.g., Add :=
$$\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))$$
 defines +.

$$(\operatorname{Add} \bar{2}) \bar{3} = ((\lambda u. (\lambda v. (\lambda x. (\lambda y. ((ux)((vx)y)))))) \bar{2}) \bar{3}$$

$$\rightarrow (\lambda v. (\lambda x. (\lambda y. ((\bar{2}x)((vx)y))))) \bar{3}$$

$$\rightarrow \lambda x. (\lambda y. ((\bar{2}x)((\bar{3}x)y)))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. ((\bar{2}x)(x(x(xy)))))$$

$$\rightarrow \cdots \rightarrow \lambda x. (\lambda y. (x(x(x(x(xy))))))$$

$$= \bar{5}$$

Theorem. For any partial function f of natural numbers,

f is Turing computable

f is partial recursive \iff *f* is λ -definable.