Final Report

Scientific Study in Solar and Plasma Physics Relative to Rocket and Balloon Projects

NAS8-38609 DO 20

Period of Performacne: December 9, 1993 - December 8, 1993

Prepared by:

Dr. S. T.Wu

Department of Mechanical and Aerospace Engineering and Center for Space Plasma and Aeronomic Research The University of Alabama in Huntsville Huntsville, AL 35899

(NASA-CR-193885) SCIENTIFIC STUDY
IN SOLAR AND PLASMA PHYSICS
RELATIVE TO ROCKET AND BALLOON
PROJECTS Final Report, 9 Dec. 1991
- 8 Dec. 1993 (Alabama Univ.)
31 p

N94-24461

Unclas

G3/92 0204202

NASA National Aeronautical and		Heport Doct	ument Pac	ae					
Socos Acentry 1. Report No.		Government Accession i		ent's Catalog No.	,				
•									
Final 4. Titile and Subtitle			5. Report	Due					
Scientific Study	in Sola	r and Plasma Phys	11CS	/93					
Relative to Rocke	t and B	alloon Projects	1	ming Organization Code					
•				rsity of Alabama in Hui					
7. Aurthor(s)			8. Perion	ming Organization Repor	t No.				
S. T. Wu				Final					
3. 1. wu			10. Work	Unit No.					
									
9. Performing Organization			11. Conti	ract or Grant No.					
University of Alabam Huntsville, Alabama		sville	NACR	_38600 DO 20					
nunsvine, Alabama	33033		<u> </u>	NAS8-38609 D0 20 13. Type of report and Period covered Draft Final 12/9/91 - 12/8/93					
12. Sponsoring Agency Na	me and Ad	dress							
National Aeronautics		ce Administration							
Washington, D.C. 20									
					•				
16.Abstract					·				
Provide scinetifi contained in rese rocket and ballon	arch pr	ograms and instru							
Develop flight in objectives and pa					ram				
Participate in so data and provide									
17. Key Words (Suggested	by Author	(s))	18. Distribution Stat						
Solar Physics				01,1; Eml3/L.Smit -52/Reichman,1+re	•				
Plasma Physics			_	ch Info Fac.,l+re	-				
19. Security Class. (of this	report)	20. Security Class. (of th	is page)	21. No. of pages	22. Price				
Unclassified		Unclassified		32	***				

In April of 1992 Dr. Robert Stein visited Dr. D. Hathaway (SSL/MSFC/NASA) and the P.I. to discuss magnetohydrodynamic waves through the solar atmosphere.

Dr. Marta Rovira, from the Institute of Astronomy at Buenos Aires, Argentina visited SSL/MSFC/NASA and the University for a two week period in April 1992 to discuss solar physics and magnetic field research.

September 1992 the P.I. had extensive discussions with the SSL/MSFC/NASA personnel (Dr. J. Davis) concerning the plans for the instrumentation development on board rocket projects. In particular the development of vector solar magnetograph on balloon flights.

Dr. Robert Rosner was invited and accepted an invitation to returned to Huntsville in March 1993 to discuss further the present magnetohydrodynamic wave generation on the solar surface and its effects on the dynamics in the solar and stellar atmosphere.

Dr. S. T. Wu and Dr. J. Davis again discussed the development of vector solar magnetograph on balloon flights as part of the instrumentation planning of rocket projects in June 1993.

In October 1993 Dr. Chin-Chun Wu performed asstudy of slow shock evoluiton by numerical simulation modeling and gave a report to the P.I. These results are scheduled to be presented at the 1993 Annual Fall Meeting of the Amerian Geophysical Union. Some of the key results are included in the appendix.

APPENDIX

Numerical Study on the MHD Slow Shock Generation and Propagation in the Solar Wind

- S. T. Wu, C. C. Wu, (Center for Space Plasma and Aeronomic Research and Department of Mechanical Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899; 205-895-6413; e-mail wu@cspara.dnet.nasa.gov)
- S. T. Suess, Space Science Laboratory, NASA/MSFC, Huntsville, AL 35812
- J. K. Chao, Institute of Space Science, National Central University, Chung li, Taiwan, Republic of China

It is well-known that most MHD shocks observed at 1 AU are MHD fast shocks. Only very limited number of MHD slow shocks are observed at 1 AU. In order to understand why there are only a few MHD shocks observed at 1 AU we have performed a numerical study using an adaptive grid, unsteady, two-dimensional MHD model (Pantichob, Wu and Suess, 1987 AIAA Paper 87-1218, Washington, DC) to investigate the MHD slow shock generation and propagation in the solar wind. In these numerical experiments a total of twenty-two cases of numerical calculations with various boundary perturbation are performed. These numerical results are summarized as follows:

- The forward slow shock (FSS) and reversed slow shock (RSS) can pass through each other and keep its own characteristics
- 2. The second FSS will catch the first FSS and emerge into a stronger FSS.
- The FSS always disappears within a distance of 140 R_S (solar radii) from the sun when there is a forward fast shock propagating in front of them.
- 4. When a FSS propagates behind a FFS, it shows the decreasing mach number of FSS.
- 5. When a FSS propagates in front of a forward fast shock (FFS), it always will be caught by the FFS and destroyed by it.
- 6. In all the tests we have performed we have not discovered that the FSS (RSS) evolves into a FFS.

This work supported by NASA Headquarters Grant NAGW-9.

- 1. 1993 Fall Meeting
- 2. 000610709
- 3. (a) S. T. Wu M&A Engr., UAH HSV, AL 35899 (b) Tel: 205-895-6413 (c) Fax: 205-895-6382
- 4. SPA
- 5. SHO3
- 6. Poster
- 7.0%
- 8. \$50 check enclosed
- 9. C
- 10. n/a
- 11. No

SHOCK GENERATION AND PROPAGATION NUMERICAL STUDY ON THE MHD SLOW IN THE SOLAR WIND

S. T. Wu, C. C. Wu* (Center for Space Plasma and Aeronomic Research and Department of Mechancial and S. T. Suess, Space Science Laboratory, National Aeronautics and Space Administration/George C. Marshall and J. K. Chao, Institute of Space Science, National Centeral University, Chung li, Taiwan, ROC Aerospace Engineering, The University of Alabama in Huntsville, Huntsville, AL 35899 USA Space Flight Center (NASA/MSFC), Marshall Space Flight Center, AL 35899 USA

*Also Institute of Space Science, National Centeral University, Chung Ii, Taiwan, ROC

OBJECTIVES

Paper 87-1218, Washington, DC) to investigate the MHD slow shock generation and propagation in It is well-known that most MHD shocks observed at 1 AU are MHD fast shocks. Only very limited number of MHD slow shocks are observed at 1 AU. In order to understand why there are only a few MHD slow shocks observed at 1 AU we have performed a numerical study using an adaptive grid, unsteady, two-dimensional MHD model (Pantichob, Wu and Suess, 1987 AIAA the solar wind.

NUMERICAL MODEL

This study is based on a numerical model entitled "An Adaptive Grid, Unsteady Model for a only adaptive grid along the radial direction, we surpress this code to one-dimension (radial flow) Two-Dimensional MHD Flow" given by Panitchob, Wu and Suess (1987). Since this model has for this study. The steady-state is the typical quiet solar wind solution:

TABLE I. Summary	Summary of Steady State Values at 28 Rs and 1 AU	t 28 Rg and 1 AU
Dependent Variable	Steady State	Steady State
	Value at 28 R _S	Value at 1 AU
T, K	3.7684 x 10 ⁵	1.3 x 105
p, gm/cm ³	1.026×10^{-21}	1.453 x 10-23
V _L , km/s	261.28	312.890
V _{ϕ} , km/s	4.0012	1.263
B _r , gauss	2.948 x 10-3	5 x 10-5
B_{ϕ} , gauss	-6.1357×10^{-4}	-7.143 x 10-5
γ: Polytrophic Index	1.25	1.25

NUMERICAL EXPERIMENTS FOR SIMULATION OF SHOCKS (ONE-DIMENSIONAL STUDY)

In the present formulation, there are six parameters (i.e. ρ , T, V_r, V $_{\varphi}$, B_r, and B $_{\varphi}$) which can the following six catagories as shown in Figure 1. Using these forms of perturbations with various constant for the one-dimension case. In addition, the ϕ -components of velocity and magnetic field are two orders of magnitude smaller than the r-components. Thus we simply ignore the effects of physical parameters, p, V_r, and T. On the basis if this scenario, we classify the perturbation into the \$\phi\$-components perturbations. Therefore, we shall focus our study on the perturbation of the combinations of physical parameters (ρ'/ρ_0 , ν'/ν_0 , T'/T_0), we have performed 22 experiments. be perturbed to generate MHD shocks. Since $\nabla \cdot \vec{B} = 0$ must be satisfied, it implies that $r^2 B_r =$ These 22 experiments are depicted in Table II.

Figure 1. The Types of Perturbations.

Table II Listing of 22 Cases of Six Different Types of Perturbations

	first	perti	ırbation	seco	nd pe	erturbation	
Case	ρ',	υ <u>΄</u> υ _{το}	$\frac{T'}{T_{\circ}}$	<u>e''</u> p.	<u>v''</u>	<u>T''</u> T•	Perturbation Type
1 2 3 4 5	0.4	0.4	0.4				I I I I I
7 8 9 10 11	1.6 3.2	1.6 2.0	1.6				II II II II
12 13 14 15 16 17 18	0.4 0.4 5.0 2.0	0.4 0.4 1.6	3.2 0.4 0.4 5.0 5.0				II III III III IV IV IV
19 20 21 22	0.4	0.4 0.4 0.4	0.4 0.4 0.4	5.0 5.0	1.6 1.6 1.6	3.2 5.0	V VI VI VI

where subscript "o" denotes the initial values at the reference point, which is at 28 R_S ; superscript "'" denotes the variable value of first perturbation; "'" denotes the variable value of second perturbation at the low boundary which is at 28 R_S for this study; 0.4 (0.8) means the perturbation decreasing to 40 percent (80 percent) of its initial value; 1.6 (2.0, 3.2, 5.0) denotes the variable of the perturbation increasing to 160 (200, 320, 500) percent of its initial value.

NUMERICAL RESULTS

In this presentation we only show the representative cases.

I. Single Pulse (i.e. square wave) Perturbation

The perturbations of Type I, II, III, and IV belong in this category. Their characteristics are summarized in Tables III, IV, V, and VI, respectively. From these results we found:

- . From the numerical results of Type I and III, we notice the following:
- (a) the negative square wave perturbation generated a pair of slow shocks (one FSS and one RSS). The shock strength of these SSs increases as they propagate toward Earth. (see Tables III and IV).
- (b) when the RSS and FSS cross each other their characteristics are preserved.
- (c) Once the FSS is formed, it will propagate toward Earth without evolving to a FFS.
- From the simulation of Type II and IV perturbations, we note the following: α
- (a) The positive square wave disturbance gives birth to both slow shocks (SS) and fast shocks (FS), it shows that FFS takes longer time to develop in comparison to FSS (see Figure 3).
- (b) The strength of the FFS increases with radial distance but the strength of the FSS behaves opposite. (see Tables IV and Figure 3).
- (c) The FSS with a mach number < 2.5 propagates behind a FFS with a mach number > 1.7, this FSS will disappear near 140 Rs.

Table III. Summary Results of Type I Perturbations

ı		·					
	M_{\star} at 35 200 R_{\star} R_{\star}	1.87	1.62	2.41	1.95	2.27	1.66
	M, 35 R,	1.41	1.21	2.08	1.68	1.15	1.63
FSS	ave. M,	1.68	1.42	2.33	1.70	1.72	1.47
	ned r (R,)	29.8	33.5	31.7	32.1	33.1	33.1
	$ \begin{array}{c c} \text{formed} \\ \text{Time} & i \\ \text{(hrs)} & (\overline{h}) \end{array} $	11	13	13	13	13	13
	perturbation	$\frac{e'}{\rho_o} = 0.4$	$\frac{p'}{p_0} = 0.8$	$\frac{v_{r}^{\prime}}{v_{ro}} = 0.4$	$\frac{v_{r}^{2}}{v_{r}^{2}}=0.8$	$\frac{T'}{T_o}=0.4$	$\frac{T'}{T_o} = 0.8$
	case	F	7	က	4	ro	9

		formed		RSS	M,	M, at
perturbation	Tin (h	Time (hrs)	r (R,)	ave. M,	35 R,	150 R,
$\frac{\rho'}{\rho_o}=0.4$	(7)	 	29.5	1.78	1.77	2.31
$\frac{\rho'}{\rho_o} = 0.8$	6,2	က	29.6	1.54	1.50	1.64
$\frac{v_{\star}^{\prime}}{v_{\tau_o}}=0.4$	$\vec{-}$	13	29.4	1.86	1.95	1.83
$\frac{v_{r_o}'}{v_{r_o}} = 0.8$	\leftarrow	13	29.6	1.54	1.68	1.95
$\frac{T'}{T_o}=0.4$	כיי	က	29.9	1.76	1.70	2.00
$\frac{T'}{T_o} = 0.8$	c.)	3	29.7	1.55	1.51	1.73

Table IV. Summary Results of Type II Perturbations

				FFS		
		forn	ıed		M_{\bullet}	,
case	perturbation	Time	r	ave.	100	200
		(hrs)	(R_{\bullet})	M_f	R_*	R.
7	$\frac{\overline{v_{-}}}{\overline{v_{-0}}} = 1.6$	9	50.0	1.38	1.33	1.70
	1	7	45.9	1.76	1.78	2.09
8	$\frac{v_{-}}{v_{-0}}=2.0$	•				
9	$\frac{\rho'}{\rho_0} = 1.6$	33	94.3	1.08	1.04	1.12
10	$\frac{\rho'}{\rho_{\bullet}} = 3.2$	19	6 9.9	1.12	1.05	1.22
11	$\frac{T'}{T_0} = 1.6$	19	6 6.8	1.07	1.04	1.13
12	$\frac{T'}{T_{\circ}} = 3.2$	21	75.4	1.30	1.12	1.55
		i		FSS		
	l	form	ned		M.	at
case	perturbation	Time	r	ave.	60	200
		(hrs)	(R.)	M.	R.	R.
				1		
7	$\frac{v_{\tau}'}{v_{\tau_0}} = 1.6$	3	33.2	1.83	2.00	1.42
8	$\frac{v_r}{v_{ro}} = 2.0$	3	33.6	2.01	2.40	1.48
9	$\frac{\rho'}{\rho_{\bullet}} = 1.6$	15	54.4	1.51	1.50	1.42
10	$\frac{\rho'}{\rho_{\bullet}}=3.2$	5	37.1	1.66	1.78	1.66
11	$\frac{T'}{T_{\bullet}} = 1.6$	9	44.0	1.50	1.52	1.47
12	$\frac{T'}{T_{\bullet}} = 3.2$	5	37.1	1.79	1.89	1.47
				RSS		
		form	ned			at
case	perturbation	Time	r	ave.	35	150
		(hrs)	(R,)	М,	R.	R,
	,					
7	$\frac{v_r}{v_{r_0}} = 1.6$	3	31.3	2.28	2.11	2.64
8	$\frac{\overline{v_r}}{\overline{v_{ro}}} = 2.0$	3	32.2	2.82	2.54	2.56
9	$\frac{\rho'}{\rho_{\bullet}} = 1.6$	13	29.6	1.61	1.49	1.77
10	$\frac{\rho'}{\rho_*}=3.2$	13	29.6	1.79	1.76	1.78
11	$\frac{T'}{T_{\bullet}} = 1.6$	13	29.5	1.58	1.50	1.62
12	$\frac{T'}{T_o} = 3.2$	3	29.7	1.55	1.12	1.55

Table V. Summary Results of Type III Perturbations

			FSS					
Case	perturbation	form Time (hrs)		ave. M ,	M, 35 R,	at 200 R,		
13	$\frac{v_{r}'}{v_{r_0}} = 0.4, \frac{T'}{T_0} = 0.4$	13	31.1	2.71	1.44	2.90		
14	$\frac{v_{\tau}'}{v_{\tau_0}}=0.4, \frac{\rho'}{\rho_0}=0.4;$	13	31.9	2.58	2.23	2.79		
15	$\frac{\rho'}{\rho_{\bullet}} = 0.4, \frac{T'}{T_{\bullet}} = 0.4;$	11	29.6	2.00	1.56	2.02		
				RSS				
Case	perturbation	form Time (hrs)	r	ave.	M, 35 R,	at 150 R.		
13	$\frac{v_r'}{v_{r_0}} = 0.4, \frac{T'}{T_0} = 0.4$	13	29.4	1.92	2.05	1.83		
14	$\frac{v_r'}{v_{ro}} = 0.4, \frac{\rho'}{\rho_o} = 0.4;$	13	29.5	1.70	1.79	1.81		
15	$\frac{\rho'}{\rho_{\bullet}} = 0.4, \frac{T'}{T_{\bullet}} = 0.4;$	3	29.9	2.06	2.34	2.50		

Table VI. Summary Results of Type IV Perturbations

				FFS		
Case	perturbation	form Time (hrs)		ave. M_f	M_f 60 R_{ullet}	at 200 R.
16	$\frac{v_r'}{v_{r_0}} = 1.6, \frac{T'}{T_0} = 5.0$	5	40.1	1.79	1.35	2.14
17	$\frac{\rho'}{\rho_0} = 5.0, \frac{v'_r}{v_{r_0}} = 1.6$	5	40.2	1.68	1.27	2.05
18	$\frac{\rho'}{\rho_{\bullet}} = 2.0, \frac{T'}{T_{\bullet}} = 5.0$	11	54.0	1.71	1.16	2.04
				FSS		
Case	perturbation	form Time (hrs)	r	ave.	disar Time (hrs)	1
16	$\frac{v_{\bullet}'}{v_{\bullet \bullet}} = 1.6, \frac{T'}{T_{\bullet}} = 5.0$	5	38.6	2.34	5 3	152.2
17	$\frac{\rho'}{\rho_{\bullet}} = 5.0, \frac{v_r'}{v_{r_{\bullet}}} = 1.6$	5	38.3	2.39	45	131.1
18	$\frac{\rho'}{\rho_{\bullet}} = 2.0, \frac{T'}{T_{\bullet}} = 5.0$	5	38.1	2.42	53	148.2

Figure 2. The evolution of radial velocity for case 1, $\frac{\rho'}{\rho_o} = 0.4$

Figure 3. The evolution of radial velocity for case 9, $\frac{\rho'}{\rho_o} = 1.6$

II. Multiple Pulses (Square Waves) Perturbations (i.e. Type V and VI): Shock -Shock Interactions

differences between Type V and Type VI perturbations are the perturbed physical parameters. From In this section we present the interactions between fast shocks (FS) and slow shocks (SS). To radial velocity evolution is shown in Figure 4, 5, and 6. The numerical results due to Type VI are achieve these numerical experiments we combined the Type I and Type II perturbations which is named as Type V perturbation. A summary of numerical results is shown in Table VII and their shown in Table VIIIa, b and their radial velocity evolution is shown in Figure 7 and 8. Note, the these results, we learned the following:

- followed by FSS(B). At t = 49 hrs, FFW(B) steepened into a FFS(B) after it caught the FFS(A) shown in Figure 9, there are four waves (i.e. RSS(A), FSS(A), FFW(B) and FSS(B)) generated and RSS(B) from behind (see Figure 10). It showed that the FSS(A) and RSS(A) disappeared Case 19 shows that the second perturbation generated shocks (i.e. FSS(A) and RSS(A) will interact with the first perturbtion generated shocks (i.e. FFW(B), FFS(B) and FSS(B)). As at t = 21 hrs; the RSS(A) is in front of FSS(A); FFW(B) is behind FSS(A) and FFW(B) is and the FSS(a) merged with FSS(B) into a stronger FSS(A+B)
- Case 19b shows that the FFS(B) caught FSS(A) from behind, and the FSS(A) was destroyed by FFS(B). (see Figure 5). ä

- II. Multiple Pulses (Square Waves) Perturbations (i.e. Type V and VI): Shock -Shock Interactions (Cont.)
- In the meantime, the FSS(A) and RSS(A) were ahead of FFW(B). These four wave interactions into the system which has a FSS(A) and a RSS(A) at \sim 65 R_S. At t = 45 hrs (i.e. 20 hrs after we introduced the second perturbation) we observed a FFW(B) forming and followed by a FSS(B). The results of Case 19c are identical to Case 5 before we introduced the second perturbation are shown in Figure 6.
- results showed that a FSS(A) was fromed at 31.9 R_S (t = 13 hrs), and the average shock strength Table VIIIa and Figure 8. In this case, the second perturbation was introduced at t = 33 hrs, the was 2.58 (mach no.) before it was caught by the FFS(B) from behind. The FSS(A) disappeared at ~187 R_s (t = 101 hrs). The FFS(B) was formed at ~66 R_s (t = 49 hrs) and the shock strength To illustrate the numerical results from Type VI perturbation we present Case 21a as shown in is 1.83 (mach no.) The FSS(B) was formed at 36 R_S (t = 37 hrs) and disappeared at 117 R_S t = 73 hrs). At t = 69 hrs, we observed the FSS(A) in front of the FFS(B) and the FSS(B) behind the FFS(B). But at t = 73 hrs the FSS(B) disappeared and FSS(A) was caught by the FFS(B) from behind and destroyed FSS(A) 4

Table VII: Summary Results of Type V Perturbations

				FFS(B)			1
		form	ed at	<u> (-)</u>	1 1	(, at	second
Case	perturbation	Time	i r	ave.	140	180	perturbation
		(hrs)	(R.)	M_f	R	R.	starts at(hrs)
		(1100)	1	1	1	1200	300200 (0011113)
19.a	$\frac{T'}{T_{\bullet}}=0.4; \frac{T''}{T_{\bullet}}=3.2$	49	100.0	1.36	1.41	1.55	15
19.b	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	69	120.9	1.48	1.44	1.51	25
19.c	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	81	132.0	1.50	1.26	1.52	33
}		FSS(A+B)		}}		1	
		form	ed at			. at	second
Case	perturbation	Time		ave.	140	180	perturbation
<u> </u>		(hrs)	(R.)	M_{\star}	R.	R.	starts at(hrs)
19.a	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	49	93.5	2.23	2.15	2.24	15
				FSS(A)		<u> </u>	
		form	ed at	Ì	M, at		second
Case	perturbation	Time	r	ave.	140	180	perturbation
		(hrs)	(R_*)	M_f	R,	R.	starts at(hrs)
19.a	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	13	33.1	1.36	29	59.0	15
19.b	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	13	32.7	1.623	81	145.9	25
19.c	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	13	33.1	1.72	113	184.5	33
				FSS(B)	<u> </u>		
		forme	dat		M	. at	second
Case	perturbation	Time	r	ave.	140	180	perturbation
		(hrs)	(R,)	M_f	R.	R.	starts at(hrs)
19.b	$\frac{T'}{T_{\bullet}}=0.4; \frac{T''}{T_{\bullet}}=3.2$	29	35.3	1.80	69	114.8	25
19.c	$\frac{T'}{T_{\bullet}} = 0.4; \frac{T''}{T_{\bullet}} = 3.2$	37	35.1	1.69	113	184.5	33

Where (A) denotes the shock generated by the first perturbation; (B) denotes the shock generated by the second perturbation; (A+B) denotes the merged shock from two shocks which were generated by the first and second perturbations.

Table VIIIa. Summary Results of Type VI Perturbations; Second Perturbation Starts at t = 15 hrs.

			FS	S(A+B)	
Case	perturbation	form Time (hrs)	r (<i>R</i> ,)	ave. M,	M, 60 R,	at 200 R.
20.b	$\frac{\rho'}{\rho_0} = 0.4, \frac{v'_{\tau}}{v_{\tau_0}} = 0.4; \frac{\rho''}{\rho_0} = 5.0, \frac{v''_{\tau}}{v_{\tau_0}} = 1.6$	25	49.9	3.14	3.40	2.84
21.b	$\frac{v'_{r_0}}{v_{r_0}} = 0.4, \frac{T'}{T_0} = 0.4; \frac{\rho''}{\rho_0} = 5.0, \frac{v''_{r_0}}{v_{r_0}} = 1.6$	25	48.6	3.46	4.56	2.35
22.b	$\frac{v'_{r_0}}{v_{r_0}} = 0.4, \frac{T'}{T_0} = 0.4; \frac{v''_{r_0}}{v_{r_0}} = 1.6, \frac{T''}{T_0} = 5.0$	25	48.1	3.16	4.44	2.47
			F	FS(B)		
Case	perturbation	form Time (hrs)		ave.	M, 60 R,	at 200 R.
20.b	$\frac{\rho'}{\rho_{\bullet}} = 0.4, \frac{v'_{r}}{v_{r_{\bullet}}} = 0.4; \frac{\rho''}{\rho_{\bullet}} = 5.0, \frac{v''_{r}}{v_{r_{\bullet}}} = 1.6$	25	52.9	1.89	1.22	2.21
21.b	$\frac{v_{r_{e}}'}{v_{r_{e}}} = 0.4, \frac{T'}{T_{e}} = 0.4; \frac{\rho''}{\rho_{e}} = 5.0, \frac{v''}{v_{r_{e}}} = 1.6$	25	51.4	1.89	1.22	2.26
22.b	$\frac{\mathbf{r}_{r_{\bullet}}^{\prime}}{\mathbf{r}_{r_{\bullet}}} = 0.4, \frac{T^{\prime}}{T_{\bullet}} = 0.4; \frac{\mathbf{r}_{r_{\bullet}}^{\prime\prime}}{\mathbf{r}_{r_{\bullet}}} = 1.6, \frac{T^{\prime\prime}}{T_{\bullet}} = 5.0$	25	51.5	1.96	1.16	2.02

Table VIIIb. Summary Results of Type VI Perturbation; Second Perturbation Starts at t = 33 hrs.

				FFS(B)		
		form	d at		M_{\bullet}	at
Case	perturbation	Time	r	ave.	60	200
	·	(hrs)	(R.)	М.	R,	R.
20.a	$\frac{\rho'}{\rho_0} = 0.4, \frac{v'_{r_0}}{v_{r_0}} = 0.4; \frac{\rho''}{\rho_0} = 5.0, \frac{v''_{r_0}}{v_{r_0}} = 1.6$	37	37.4	1.81	1.38	2.30
21.a	$\frac{v_r'}{v_{r-1}} = 0.4, \frac{T'}{T_0} = 0.4; \frac{\rho''}{\rho_0} = 5.0, \frac{v_r''}{v_{r-1}} = 1.6$	49	66.3	1.83	1.10	1.95
22.a	$\frac{v_{r_{\bullet}}'}{v_{r_{\bullet}}} = 0.4, \frac{T'}{T_{\bullet}} = 0.4; \frac{v_{r_{\bullet}}''}{v_{r_{\bullet}}} = 1.6, \frac{T''}{T_{\bullet}} = 5.0$	37	37.8	1.95	1.20	2.58
		FSS		FSS(B)		
		fori	ned		disapp	eared
Case	perturbation	Time	r	ave.	Time	r
	·	(hrs)	(R.)	М.	(hrs)	(R_*)
20.a	$\frac{\rho'}{\rho_{\bullet}} = 0.4, \frac{v'_{r_{\bullet}}}{v_{r_{\bullet}}} = 0.4; \frac{\rho''}{\rho_{\bullet}} = 5.0, \frac{v''_{r_{r_{\bullet}}}}{v_{r_{\bullet}}} = 1.6$	41	45.23	1.97	85	147.
21.a	$\frac{v_{r_0}'}{v_{r_0}} = 0.4, \frac{T_0'}{T_0} = 0.4; \frac{\rho''}{\rho_0} = 5.0, \frac{v''}{v_{r_0}} = 1.6$	37	35.86	1.45	73	116.8
22.a	$\frac{v_r'}{v_{ro}} = 0.4, \frac{T'}{T_0} = 0.4; \frac{v_r''}{v_{ro}} = 1.6, \frac{T''}{T_0} = 5.0$	37	36.33	1.53	73	119.2
L	· ·					
		6	med	FSS(A)		peared
		Time	mea I	ave.	Time	r
Case	perturbation	(hrs)	(R_*)	M.	(hrs)	(R,)
-		: \ <i>)</i> 	1			`
20.a	$\frac{\rho'}{\rho_{\bullet}} = 0.4, \frac{v'_{r}}{v_{\tau_{\bullet}}} = 0.4; \frac{\rho''}{\rho_{\bullet}} = 5.0, \frac{v''_{r}}{v_{\tau_{\bullet}}} = 1.6$	13	31.1	2.71	85	154.8
21.a	$\frac{v'_{\bullet}}{v_{\bullet \bullet}} = 0.4, \frac{T'}{T_{\bullet}} = 0.4; \frac{\rho''}{\rho_{\bullet}} = 5.0, \frac{v''_{\bullet}}{v_{\bullet \bullet}} = 1.6$	13	31.9	2.58	101	187.1
22.a	$\frac{v_r'}{v_{r_0}} = 0.4, \frac{T'}{T_0} = 0.4; \frac{v_r''}{v_{r_0}} = 1.6, \frac{T''}{T_0} = 5.0$	11	29.6	2.00	89	162.
22.4	v 0.1, T 0.1, v 1.0, T 0.0					

Figure 4. The evolution of radial velocity for case 19a, $\frac{\rho'}{\rho_0} = 0.4$, $\frac{\rho''}{\rho_0} = 3.2$

Figure 5. The evolution of radial velocity for case 19b, $\frac{\rho'}{\rho_0} = 0.4$, $\frac{\rho''}{\rho_0} = 3.2$

Figure 6. The evolution of radial velocity for case 19c, $\frac{\rho'}{\rho_0} = 0.4$, $\frac{\rho''}{\rho_0} = 3.2$

Figure 7. The evolution of radial velocity for case 21b, $\frac{v'}{v_{r_o}} = 0.4$, $\frac{T'}{T_o} = 0.4$, $\frac{\rho''}{\rho_o} = 5.0$, $\frac{v''}{r_o} = 1.6$.

Figure 8. The evolution of radial velocity for case 21a, $\frac{v'}{v_{r_O}} = 0.4$, $\frac{T'}{T_O} = 0.4$; $\frac{\rho''}{\rho_O} = 5.0$, $\frac{v''_r}{r_O} = 1.6$.

Figure 9. The solar solution versus heliocentric distance at t = 21 hrs of case 19a, $\frac{\rho'}{\rho_o}$ = 0.4, $\frac{\rho''}{\rho_o}$ = 3.2

Figure 10. The solar solution versus heliocentric distance at t = 49 hrs of case 19a, $\frac{\rho'}{\rho_o} = 0.4$, $\frac{\rho''}{\rho_o} = 3.2$

SUMARY

On the basis of these twenty-two numerical experiments, we found:

- 1. The forward slow shock (FSS) and reversed slow shock (RSS) can pass through each other and keep its own characteristics.
- 2. The second FSS will catch the first FSS and emerge into a stronger FSS.
- 3. The FSS always disappears within a distance of 140 R_S (solar radii) from the sun when there is a forward fast shock propagating in front of them.
- 4. When a FSS propagates behind a forward fast shock (FFS), it shows decreasing mach number
- 5. When a FSS propagates in front of a FFS, it always will be caught by the FFS and destroyed
- 6. In all the tests we have performed we have not discovered that the FSS (RSS) evolves into a

This work is supported by NASA Headquarters Grant NAGW-9