Quin-AD(OMe)-FMK M.Wt:389

## FIGURE 1A

Quin-VAD(OMe)-FMK M.Wt:488; C24H19N4O6F

## FIGURE 2

## FIGURE 2A





O-(C=O)-VD(OMe)-CH2-ASA

Caspase 8

| inh conc                                                                                     | log of con                                                                              | % inhib                                                                |              | Q-(C=O)-VD(OMe)-CH <sub>2</sub> -ASA                 |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|------------------------------------------------------|
| 0.005uM<br>0.01uM<br>.025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -2.301<br>-2<br>-1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.398 | 0<br>0<br>0<br>0<br>4.7<br>5.5<br>21.1<br>45.5<br>73.6<br>96.8<br>99.8 | % inhibition | 120<br>100<br>80<br>60<br>40<br>20<br>3 2 1 20 0 1 2 |
|                                                                                              |                                                                                         |                                                                        |              | log of colle. In all                                 |

Caspase 1

| inh conc | log of con | % inhib |
|----------|------------|---------|
|          |            |         |
| .025uM   | -1.602     | 0       |
| .05uM    | -1.301     | 0       |
| .1uM     | -1         | 0       |
| 0.5uM    | -0.301     | 18.2    |
| 1uM      | 0          | 34.8    |
| 2.5uM    | 0.3979     | 69.7    |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |
| 25uM     | 1.398      | 100     |
| 50uM     | 1.6989     | - 100   |
|          |            |         |

## Q-(C=O)-VD(OMe)-CH<sub>2</sub>-ASA



## FIGURE 11

Caspase 3

| 0.01uM -2 0<br>.025uM -1.602 2.3<br>.05uM -1.301 9.1<br>.1uM -1 6.4                                                                                                                           | inh conc                                                                          | log of con                                                                    | % inhib                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 1uM         0         45           2.5uM         0.3979         74.8           5uM         0.6989         91.5           10uM         1         98.2           25uM         1.398         100 | 0.01uM<br>.025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM | -2<br>-1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.398 | 0<br>0<br>2.3<br>9.1<br>6.4<br>29.3<br>45<br>74.8<br>91.5<br>98.2<br>100 |

## Q-(C=O)-VD(OMe)-CH<sub>2</sub>-ASA



Caspase 1

| inh conc                                                                         | log of con                                                                          | % inhib                                                  |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|
| .0025uM<br>.005uM<br>.01uM<br>.025uM<br>.05uM<br>.1uM<br>0.5uM<br>1.5uM<br>2.5uM | -2.602<br>-2.301<br>-2<br>-1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989 | % inhib  3.14 2.6 1.4 10.3 8.3 23.7 50.9 66.29 90.3 96.3 |
| 10uM<br>25uM<br>50uM                                                             | 1<br>1.3979<br>1.6979                                                               | 100<br>100<br>100                                        |

Indole-(C=O)-VD(OMe)-CH2-OPh



| inh conc | log of con | % inhib |
|----------|------------|---------|
| .0025uM  | -2.602     | 16.3    |
| .005uM   | -2.301     | 19.4    |
| .01uM    | -2         | 22.6    |
| .025uM   | -1.602     | 42.86   |
| .1uM     | -1         | 44      |
| 0.5uM    | -0.301     | 74      |
| 1uM      | 0          | 87.4    |
| 2.5uM    | 0.3979     | 97.1    |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |
| 25uM     | 1.3979     | 100     |
| 50uM     | 1.6979     | 100     |

Caspase 1

## FIGURE 13

### Melatonin-VD(OMe)-CH2-OPh







| Caspase 1 |          |            | TRP-VD(OCH <sub>1</sub> )-CH <sub>2</sub> -OPh · TFA |            |                                         |
|-----------|----------|------------|------------------------------------------------------|------------|-----------------------------------------|
|           | inh conc | log of con | % inhib                                              |            |                                         |
|           | 0.0025uM | -2.602     | 0                                                    |            |                                         |
|           | 0.005uM  | -2.301     | 0                                                    |            | 120                                     |
|           | 0.01uM   | -2         | 0                                                    |            |                                         |
|           | .025uM   | -1.602     | 0                                                    |            | 100                                     |
|           | .05uM    | -1.301     | 0                                                    |            | 80 \$                                   |
|           | .1uM     | -1         | 20.7                                                 | 5          |                                         |
|           | 0.5uM    | -0.301     | 42.7                                                 | Ě          | 60/                                     |
|           | 1uM      | 0          | 81.7                                                 | inhibition | 6                                       |
|           | 2.5uM    | 0.3979     | 100                                                  | .⊑         |                                         |
|           | 5uM      | 0.6989     | 100                                                  | %          | 20                                      |
|           | 10uM     | 1          | 100                                                  |            |                                         |
|           | 25uM     | 1.398      | 100                                                  |            | • • • • • • • • • • • • • • • • • • • • |
|           | 50uM     | 1.6989     | 100                                                  | -          | -8 -2 -1 20 1 2                         |
|           |          |            |                                                      |            | log of conc. in uM                      |

## FIGURE 17A

Caspase 9

| inh conc | log of con | % inhib |
|----------|------------|---------|
| 025uM    | -1.602     | 33 6    |
| 05uM     | -1.301     | 43.9    |
| 1uM      | -1         | 58.7    |
| .0.5uM   | -0.301     | 90 7    |
| .1uM     | 0          | 94.7    |
| .2.5uM   | 0.3979     | 100     |
| .5uM     | 0 6989     | 100     |
| 25uM     | 1 3979     | 100     |
| 50uM     | 1.6979     | 100     |

## Q-(C=O)-L-D-(OMe)-CH<sub>2</sub>-F (the FMK)



## FIGURE 17B

Caspase 9

|                                                                                    | Ca                                                                       |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| log of con                                                                         | % inhib                                                                  |
| -1 602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.3979<br>1.6979 | 25 7<br>37.3<br>58.9<br>88.9<br>94.9<br>96.1<br>100<br>100               |
|                                                                                    | -1 602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.3979 |

# Q-(C=O)-L-D-(OMe)-CH<sub>2</sub>-F (the FMK)



## FIGURE 18A

Caspase 9

| -n conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | log of con                                                               | % inhib                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|
| .025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM<br>50uM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0 3979<br>0.6989<br>1<br>1.3979 | 47 3<br>64.4<br>81.2<br>97.8<br>99.5<br>100<br>100<br>100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          |                                                           |
| The State of |                                                                          | Ca                                                        |



Q-(C=O)-V-D-(OCH<sub>3</sub>)-CH<sub>2</sub>-F (the FMK)

## FIGURE 18B

Caspase 9

| inh conc     | log of con       | % innib      |
|--------------|------------------|--------------|
| .025uM       | -1 602<br>-1.301 | 62.2<br>76.3 |
| 05uM<br>1uM  | -1               | 81.3         |
| 0.5uM<br>1uM | -0.301<br>0      | 99.1<br>100  |
| 2.5uM<br>5uM | 0.3979<br>0.6989 | 100<br>100   |
| 10uM         | 1                | 100          |
| 25uM<br>50uM | 1 3979<br>1 6979 | 100<br>100   |
|              |                  |              |

# Q-(C=O)-V-D-(OCH<sub>3</sub>)-CH<sub>2</sub>-F (the FMK)









### Q-(C=O)-L-D-CH2-OPh

### Caspase 1

| inh conc | log of con | % inhib |
|----------|------------|---------|
| .025uM   | -1 602     | 19      |
| .05uM    | -1 301     | 22      |
| .1uM     | -1         | 19      |
| 0.5uM    | -0 301     | 46 7    |
| 1uM      | 0          | 69.5    |
| 2.5uM    | 0 3979     | 92 7    |
| 5uM      | 0 6989     | 98 5    |
| 10uM     | 1          | 87.3    |



### 3 71 U 0

| inii cone | log or con | oinni ec |
|-----------|------------|----------|
| .025uM    | -1 602     | 39.8     |
| .05uM     | -1 301     | 55.98    |
| .1uM      | -1         | 67.2     |
| 0.5uM     | -0 301     | 95.8     |
| 1uM       | 0          | 98 5     |
| 2.5uM     | 0.3979     | 100      |
| 5uM       | 0 6989     | 100      |
| 10uM      | 1          | 100      |
|           |            |          |

## FIGURE 22

## Q-(C=O)-V-D-CH<sub>2</sub>-OPh



25A

**FIGURE** 

### Non esterase treated Inhibitor D with Caspase 3

inh conc log of con % inhib 37.8 .025uM -1.602 -1 301 52 .05uM 1uM -1 73 0.5uM -0 301 100 1uM 100 0 3979 100 2.5uM 0 6989 100 5uM 10uM 100

1 3979

1.6979

100

100

25uM

50uM

Q-(C=O)-L-D-(OMe)-CH2-F



## FIGURE 25B

Esterase treated Inhibitor D with Caspase 3

 $Q-(C=O)-L-D-(OMe)-CH_2-F$ 

| inh conc | log of con | % inhib |
|----------|------------|---------|
| .025uM   | -1 602     | 38.2    |
| .05uM    | -1.301     | 68.9    |
| .1uM     | -1         | 80.7    |
| 0.5uM    | -0 301     | 97.6    |
| 1uM      | 0          | 96.6    |
| 2.5uM    | 0 3979     | 96.2    |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |
| 25uM     | 1 3979     | 100     |
| 50uM     | 1.6979     | 100     |
|          |            |         |



| inh conc                                                                        | log of con                                                               | % inhib                                                  | Q-(C=O)-V-D-(OMe)-CH     | ,-#· |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|------|
| .025uM<br>.05uM<br>.1uM<br>0.5uM<br>1uM<br>2.5uM<br>5uM<br>10uM<br>25uM<br>50uM | -1.602<br>-1.301<br>-1<br>-0.301<br>0<br>0.3979<br>0.6989<br>1<br>1.3979 | 40.1<br>54.9<br>73.2<br>81.7<br>100<br>100<br>100<br>100 | Est trtd lc.w/ Caspase 1 |      |

## FIGURE 24

log of conc. in uM



### Q-LD-OPh

|         | _      |      |
|---------|--------|------|
| 0-05.64 | -1.301 | 5.5  |
| 0-124   | -1     | 11   |
| 0.5 mM  | -0.301 | 46   |
| Last    | 0      | 68   |
| 2.5mm   | 0.3979 | 86.8 |
| 5 44    | 0.6989 | 94.5 |
| 1024    | 1      | 100  |
| 2541    | 1.3979 | 100  |
| 5000    | 1 6989 | 100  |



## FIGURE 27

### Q-VD-OPh





Caspase 3 w/ IE -

| inh conc | log of con | % inhib |
|----------|------------|---------|
| .025uM   | -1.602     | 31.85   |
| .05uM    | -1.301     | 47.1    |
| .1uM     | -1         | 59.2    |
| 0.5uM    | -0.301     | 96.2    |
| 1uM      | 0          | 100     |
| 2.5uM    | 0.3979     | 100     |
| 5uM      | 0.6989     | 100     |
| 10uM     | 1          | 100     |
| 25uM     | 1.3979     | 100     |
| 50uM     | 1.699      | 100     |
|          |            |         |

## Q-(C=O)-LD-CH<sub>2</sub>-O-Ph



FIGURE 28

IMPORTANT AMINO AGI
$$\begin{array}{cccc} C_0 & & & \\ C_0 & & \\ & C_0 & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

L - Valine (Val)

L-Alanine (Ala)

L - Phenylalanin**e** (Phe)

L-Serine (Ser)

L - Methionine (Meth.)

L-Cystine (Cys-5-5-Cys)

$$\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$