Note that I am operating under the convention that N, n, m, i, j are natural numbers unless otherwise specified. I am also operating under the convention $v_a(b) = \{x \in \mathbb{R} : b-a < x < b+a\}$

Exercise: Abbott 5.2.3 (a,b)

- (a) Find from definition the derivative of $h(x) = \frac{1}{x}$. Note that $\frac{1}{x}$ is defined on $\mathbb{R} \{0\}$. Choose $c \in \mathbb{R} \{0\}$. Consider the function $g(x) = \frac{h(x) h(c)}{x c}$. Note that g(x) is defined on $A = \mathbb{R} \{c\}$ and thus c is a limit point of the domain a. Note that $g(x) = \frac{1/x 1/c}{x c}$. Define d(x) = x c, note that $d(x) \neq 0$ for $x \in A$. Note that $g(x) = \frac{1/x 1/(x d(x))}{d(x)} = \frac{x d(x) x}{x(x d(x))d(x)} = \frac{-1}{x(x d(x))}$. Note that as $x \to c$ $d(x) \to 0$ and thus by the arithmetic limit therm $g(x) \to \frac{-1}{c^2}$. Thus by definition $h'(c) = \frac{-1}{c^2}$.
- (b) Suppose $g(c) \neq 0$. Find (f/g)'(c), assuming that f and g are differentiable at c. Note that (f/g)(x) = f(x) * 1/g(x). Define h(x) = 1/x. Note (f/g)(x) = f(x) * h(g(x)), everywhere that f/g is defined. Note that (f/g)(c) is defined. Note that (f/g)'(c) = f'(c)h(g(x)) + f(c)h'(g(c))g'(c) by the chain rule and product rule. Note that $(f/g)'(c) = \frac{f'(c)}{g(c)} + \frac{-f(c)g'(c)}{g(c)^2} = \frac{f'(c)g(c) f(c)g'(c)}{g(c)^2}$.

Exercise: Abbott 5.3.1

- (a) Suppose f' exists and is continuous on [a,b]. Note that f is continuous on [a,b]. Noting that [a,b] is compact and f' is a continuous mapping $f':[a,b] \to \mathbb{R}$ we can say that f' achieves a minimum and a maximum in [a,b], lets call them a and b respectively. Define $M = \max(-a,b)$. Note that for all $x \in [a,b]$, $-M \le a \le f'(x) \le b \le M$ and thus $|f'(x)| \le M$. Choose $x \ne y \in [a,b]$. By the mean value theorem there exists a $c \in [a,b]$ such that $f'(c) = \frac{f(x) f(y)}{x y}$. Note that $\frac{f(x) f(y)}{x y} = f'(c) \le M$. Conclude that f is Lipschitz on [a,b].
- (b) Suppose f' exists and is continuous on [a, b]. Suppose that |f'(x)| < 1 for all $x \in [a, b]$. Note that f' achieves a maximum and a minimum in [a,b], take the one with the largest absolute value, lets call it M with associated value x_M . Note that $|M| = |f'(x_M)| < 1$, and $|f'(c)| \le M$ for all $c \in [a, b]$. Choose $x, y \in [a, b]$. If x = y note that |f(x) f(y)| = 0 = |M||x y|. Suppose $x \ne y$. Note that $\frac{|f(x) f(y)|}{|x y|} = |f'(c)|$ for some $c \in [a, b]$. Thus $\frac{|f(x) f(y)|}{|x y|} \le |M|$ and so $|f(x) f(y)| \le |M||x y|$. Thus f is a contraction function.

Exercise: Abbott 5.3.2

Suppose f is differentiable on some interval A. Suppose further that $f'(x) \neq 0$ for all $x \in A$. Suppose f(x) = f(y) for some $x \neq y \in A$. Note that there exists a $c \in A$ such that $f'(c) = \frac{f(x) - f(y)}{x - y} = \frac{0}{x - y} = 0$. We have reached a contradiction and thus conclude $f(x) \neq f(y)$ for all $x \neq y \in A$, or that the function f is one-to-one.

The converse is not true, consider $f(x) = x^3$ on A = [-1, 1]. Clearly this function is differentiable with derivative $f'(x) = 3x^2$ and also one-to-one. However note that f'(0) = 0.

Exercise: Abbott 5.3.6 (a,b)

- (a) Let $g: A = [0, a] \to \mathbb{R}$ be differentiable, g(0) = 0, and $|g'(x)| \le M$ for all $x \in A$. Choose $x \in A$. If x = 0 then |g(x)| = 0 = Mx. Suppose $x \ne 0$. Note that there exists a $c \in [0, a]$ such that $g'(c) = \frac{g(x) g(0)}{x 0} = \frac{g(x)}{x}$. Note that $\frac{|g(x)|}{x} = |\frac{g(x)}{x}| \le M$ and thus $|g(x)| \le Mx$.
- (b) Let $h: A = [0, a] \to \mathbb{R}$ be twice differentiable, h'(0) = h(0) = 0, and $|h''(x)| \le M$ for all $x \in A$. Define $g: A \to \mathbb{R}$ as g(x) = h'(x). Note that g(0) = 0, and $|g'(x)| \le M$ for all $x \in A$, thus $|g(x)| \le Mx$. Note $|h'(x)| \le Mx$ for all $x \in A$. Define $f(x) = Mx^2/2$. Note that f'(x) = Mx. Note that $|h'(x)|/|f'(x)| \le 1$ for all $x \in (0, a]$. Choose $x \in [0, a]$. If x = 0 clearly $|h(x)| \le Mx^2/2$. Suppose $x \ne 0$. By the general mean value theorem there exists a $c \in (0, x)$ such that $\frac{h'(c)}{f'(c)} = \frac{h(x) h(0)}{f(x) f(0)} = \frac{h(x)}{f(x)}$ thus $|\frac{h(x)}{f(x)}| \le 1$ or $|h(x)| \le Mx^2/2$.

Exercise: Abbott 5.3.7

Proof. Suppose f is differentiable on a interval A and that $f'(x) \neq 0$. Further suppose f has at least two fixed points, a, b. Note that there exists a $c \in A$ such that $f'(c) = \frac{f(a) - f(b)}{a - b} = \frac{a - b}{a - b} = 1$. We have a contradiction and so conclude that there is at most one fixed point. \Box

Exercise: Abbott 6.2.1 (a,b)

Let
$$f_n(x) = \frac{nx}{1+nx^2}$$
.

- 1. Find the point-wise limit. Choose $x \in (0, \infty)$. Consider the sequence $f_n(x)$. Note that $\frac{nx}{1+nx^2} = \frac{x}{1/n+x^2} \to \frac{x}{x^2} = \frac{1}{x}$.
- 2. Suppose uniform convergence on $(0, \infty)$. There exists $N \in \mathbb{N}$ such that if $n \ge N$ then for all $x \in (0, \infty)$, $|f_n(x) 1/x| < 1$. Choose $x = \min(1/2, 1/\sqrt{N})$. Note that $|f_n(x) 1/x| < 1$ so $\frac{1}{x(1+nx^2)} < \epsilon$ or $1 < \epsilon x(1+nx^2) < \epsilon x(1+1) < \epsilon = 1$, a contradiction thus f is not uniformly convergent.

Exercise: Abbott 6.2.7

Suppose f is uniformly continuous on \mathbb{R} . Define $f_n(x) = f(x - 1/n)$. Choose $\epsilon > 0$. There exists a $\delta > 0$ such that for $x, y \in \mathbb{R}$ if $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. Define $N \in \mathbb{N}$ such that $1/N < \delta/2$. Choose $n, m \ge N$, $x \in \mathbb{R}$. Note that $0 < 1/n, 1/m < \delta/2$ and thus $|1/n - 1/m| \le 1/n + 1/m < \delta$ or $|(x - 1/m) - (x - 1/n)| < \delta$. Thus $|f_n(x) - f_m(x)| < \epsilon$. We conclude that the Cauchy criterion is met and thus $f_n(x)$ converges uniformly. Also note that as $n \to \infty$, $f(x - 1/n) \to f(x)$. Thus $f_n \to f$ point-wise.

To the point that uniform continuity is necessary, consider the function $f(x) = x^2$. This function violates uniform continuity and also will not have the property described above. This can be demonstrated easily since $|f(x - 1/n) - f(x)| = |-2x/n + 1/n^2|$ can be made large for any particular n by choosing a large x, in other words if you gave me a N that was supposed to work with a ϵ I could choose a huge x value and break the uniform convergence inequality.

Exercise: Abbott 6.3.5

Define $g_n(x) = \frac{nx + x^2}{2n}$ and g(x) as the limit of the $g_n(x)$.

- (a) Note that $g_n(x) = \frac{nx + x^2}{2n} = \frac{x + x^2/n}{2} \rightarrow x/2 = g(x)$. Noting that x/2 is a polynomial we can say g(x) is differentiable and g'(x) = 1/2.
- (b) Note that $g_n'(x) = \frac{n+2x}{2n} = \frac{1+2x/n}{2}$. Consider a interval [-M, M]. Choose $\epsilon > 0$. Note that there exists a $N \in \mathbb{N}$ such that $1/N < \epsilon/2M$. Choose $n, m \ge N$. Choose $x \in [-M, M]$. Note that $|g_n'(x) g_m'(x)| = |x/n x/m| \le |x/n| + |x/m| < M/n + M/m < \epsilon$. Conclude that $g_n'(x)$ converges uniformly and note that it converges on 1/2. Conclude g'(x) = 1/2.
- (c) Define $f_n(x) = \frac{nx^2 + 1}{2n + x}$. Note that $f_n(x) = \frac{x^2 + 1/n}{2 + x/n} \rightarrow x^2/2 = f(x)$, thus f'(x) = x.
- (d) Note that $f'_n(x) = \frac{4n^2x + 2n + 2nx^2 + x nx^2 + 1}{(2n+x)^2} = \frac{4x + 2n + x^2/n + x/n^2 + 1/n^2}{4 + 4x/n + x^2/n^2}$.

Math 401: Homework 10

(W) (Hand this one in to David.)

Exercise: Abbott 6.2.5

Proof. Suppose $f_n: A \to \mathbb{R}$.

Suppose for every $\epsilon > 0$ there exists a $N \in \mathbb{N}$ such that if $n, m \geq N$ and $x \in A$, $|f_n(x) - f_m(x)| < \epsilon$. Note that for a particular x, $f_n(x)$ is a Cauchy sequence and thus converges, thus $f_n(x)$ converges point-wise to some function f(x). Choose $\epsilon > 0$. There exists a $N \in \mathbb{N}$ such that if $n, m \geq N$ and $x \in A$, $|f_n(x) - f_m(x)| < \epsilon/2$. Choose $n \geq N$. Note that $|f_n(x) - f_m(x)| < \epsilon/2$, $f_n(x) - \epsilon/2 < f_m(x) < f_n(x) + \epsilon/2$ for all $m \geq N$. By the limit order theorem $f_n(x) - \epsilon < f_n(x) - \epsilon/2 \leq f(x) \leq f_n(x) + \epsilon/2 < f_n(x) + \epsilon$, so $|f_n(x) - f(x)| < \epsilon$. Therefore $f_n \to f$ uniformly.

Suppose $f_n \to f$ uniformly. Choose $\epsilon > 0$. There exists a $N \in \mathbb{N}$ such that for all $x \in A$ and $n \ge N$, $|f_n(x) - f(x)| < \epsilon/2$. Choose $x \in A$, $n, m \ge N$. Note that $|f_n(x) - f_m(x)| = |f_n(x) - f(x)| + |f(x) - f_m(x)| < \epsilon/2 + \epsilon/2 = \epsilon$.

We have now demonstrated that a sequence converges uniformly if and only if it adheres to the Cauchy criterion for uniform convergence.