

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME											
CENTRE NUMBER							CANDI NUMB				
FURTHER MATE	HEMATIC	cs								92	31/12
Paper 1									May	y/June	e 2017
										3	hours
Candidates answ	ver on the	e Questi	on Pa	per.							
Additional Materi	als:	List of F	ormul	ae (MF	10)						

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

BLANK PAGE

1	It is given that $\sum_{r=1}^{n} u_r = n^2(2n+3)$, where <i>n</i> is a positive integer.
	(i) Find $\sum_{r=n+1}^{2n} u_r$. [2]

(ii)	Find u_r .	[3]

••••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••••	•••••		•••••			•••••	•••••	
						•••••	•••••	• • • • • •
						•••••	•••••	• • • • • •
			••••••					• • • • • •
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • •
	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
					•••••		•••••	• • • • • •
								. .
					•••••		•••••	• • • • • •
•••••				•••••		•••••	•••••	•••••

3	A curve (has ea	uation tai	n v - r	for v >	0
J	A Cui ve C	mas eq	uauon ta	$\mathbf{n}_{v} - \lambda$	101 x /	· U

$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2x \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2. $ [3]
Hence find the value of $\frac{d^2y}{dx^2}$ at the point $(1, \frac{1}{4}\pi)$ on C .

4 (i) Find the value of k for which the set of linear ed	quations
--	----------

x + 1	3y +	kz =	= 4,
4x - 2	2y-1	10z =	= -5,
x +	y +	2z =	= 1,

has no unique solution.	[3]
	•••••

(ii) For this value of k, find the set of possible solutions, giving your answer in the form

$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{a} + t\mathbf{b},$	
where \mathbf{a} and \mathbf{b} are vectors and t is a scalar.	[3]
	· • • •
	•••
	· • • •
	· • • •
	•••
	· • • •
	· • • •
	· • • •
	•••
	• • • •
	••••
	•••
	• • • •
	•••
	•••
	•••

5 The matrix **A**, given by

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 6 & 4 & -6 \\ 6 & 5 & -7 \end{pmatrix},$$

has eigenvalues 1, -1 and -2.

Find a set of corresponding eigenvectors.	[4]

© UCLES 2017

6	Let $I_n =$	$\int_0^{\frac{1}{2}\pi} x^n$	$\sin x \mathrm{d}x$
---	-------------	-------------------------------	-----------------------

(i)	Prove that, for $n \ge 2$,	
	$I_n + n(n-1)I_{n-2} = n(\frac{1}{2}\pi)^{n-1}.$	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

© UCLES 2017

•••••

By finding a cubic equation whose roots are α , β and γ , solve the set of simultaneous equations are α , β and γ , solve the set of simultaneous equations are α , β and γ , solve the set of simultaneous equations are α .	quations
$\alpha + \beta + \gamma = -1$,	
$\alpha^2 + \beta^2 + \gamma^2 = 29,$	
$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -1.$	[8]
	•••••

Let $z = \cos \theta + i \sin \theta$. Show that $z - \frac{1}{z} = 2i \sin \theta$ and hence express $16 \sin^5 \theta$ in	n the
$\sin 5\theta + p \sin 3\theta + q \sin \theta$, where p and q are integers to be determined.	
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

	nce find the exact value of	J ₀	
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			
••••			

	Find the equations of the asymptotes of C .	
(ii)	Find the coordinates of the turning points of C .	

(iii)	Find the coordinates of any intersections with the coordinate axes.	2]
		••
		••
		••
(iv)	Sketch C .	3]

It is given that $x = t^{\frac{1}{2}}$, where $x > 0$ and $t > 0$, and y is a function of	x.
	It is given that $x = t^{\frac{1}{2}}$	It is given that $x = t^{\frac{1}{2}}$, where $x > 0$ and $t > 0$, and y is a function of

(i)	Show that $\frac{dy}{dx} = 2t^{\frac{1}{2}}\frac{dy}{dt}$ and $\frac{d^2y}{dx^2} = 2\frac{dy}{dt} + 4t\frac{d^2y}{dt^2}$.	[3]
		••••
		••••
		••••
		••••
(ii)	Hence show that the differential equation	
	$\frac{d^2y}{dx^2} - \left(8x + \frac{1}{x}\right)\frac{dy}{dx} + 12x^2y = 4x^2e^{-x^2} $ (*)	
	reduces to the differential equation	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - 4\frac{\mathrm{d}y}{\mathrm{d}t} + 3y = \mathrm{e}^{-t}.$	[1]
		••••
		••••
		••••
		••••

••••••

11	The	curve C has polar equation $r = a(1 + \sin \theta)$ for $-\pi < \theta \le \pi$, where a is a positive constant.	
	(i)	Sketch C.	[2]
	(**)		F 4 3
	(11)	Find the area of the region enclosed by C .	[4]
			•••••
			•••••
			•••••
			•••••

$s = (\sqrt{2})a$	$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \sqrt{(1+\sin\theta)}\mathrm{d}\theta.$	
 		 •••••
 		 •••••
 		 ••••••

(iv)	Show that the substitution $u = 1 + \sin \theta$ reduces this integral for s to $(\sqrt{2})a \int_0^2 \frac{1}{\sqrt{(2-u)}} du$. Hence
	evaluate s. [4]

12 Answer only **one** of the following two alternatives.

EITHER

The curve C has equation $y = \frac{1}{2}(e^x + e^{-x})$ for $0 \le x \le 4$.

(i)	The region R is bounded by C , the x -axis, the y -axis and the line $x = 4$. Find, in terms of coordinates of the centroid of the region R .	e, the
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

••••••
••••••
••••••
••••••
••••••
 ••••••
 ••••••
 ••••••
••••••
••••••
••••••

	•••••	•••••		•••••		•••••	•••••		•••••	•••••		•••••		•••••		•••••
••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	••••••	•••••	•••••	•••••		•••••
• • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • •	• • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		• • • • • • • •	•••••	• • • • • • • •	•••••	•••••	• • • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • • •	•••••
						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •									
• • • •	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • • • • • • • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
• • • •	•••••	•••••	•••••	•••••	•••••	• • • • • • • •	• • • • • • • •		•••••	• • • • • • • •	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • •		•••••	• • • • • • • •	• • • • • • • •	•••••	•••••	•••••	• • • • • • • • •	•••••
• • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • •	• • • • • • • •		•••••	• • • • • • • •	• • • • • • • •	•••••	•••••	•••••		••••••
	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••		• • • • • • • • •	•••••	• • • • • • • •	•••••	•••••	• • • • • • • •	•••••	•••••	•••••	••••••	••••••
••••						• • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • •						
••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
• • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • •	• • • • • • • •		•••••	• • • • • • • •	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••		•••••
• • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • •	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • •	• • • • • • • • •	•••••	• • • • • • • •	• • • • • • • • •	•••••	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

OR

The position vectors of the points A, B, C, D are

$$\mathbf{i} + \mathbf{j} + 3\mathbf{k}$$
, $3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$, $3\mathbf{i} - \mathbf{j} + \mathbf{k}$, $5\mathbf{i} - 5\mathbf{j} + \alpha\mathbf{k}$,

respectively, where α is a positive integer. It is given that the shortest distance between the line AB and the line CD is equal to $2\sqrt{2}$.

i)	Show that the possible values of α are 3 and 5.

(ii)	Using $\alpha = 3$, find the shortest distance of the point <i>D</i> from the line <i>AC</i> , giving your answer correct to 3 significant figures. [3]

Using $\alpha = 3$, find the acute angle between the planes ABC and ABD , giving your answed degrees.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.