

Interativa

Álgebra Linear

Autor: Prof. Hugo Gava Insua

Colaboradoras: Profa. Vanessa Santos Lessa

Profa. Christiane Mazur Doi

Professor conteudista: Hugo Gava Insua

Mestrando em Engenharia de Produção pela Universidade Paulista (UNIP), especialista em Ensino de Matemática pela Universidade Cruzeiro do Sul (2017) e graduado em Matemática pela Universidade Metodista de São Paulo (2000). Atua como docente na Universidade Paulista (UNIP). Também trabalhou como docente na rede oficial e privada de ensino do estado de São Paulo.

Dados Internacionais de Catalogação na Publicação (CIP)

Insua, Hugo Gava.

Álgebra Linear / Hugo Gava Insua. – São Paulo: Editora Sol, 2022.

172 p., il.

Nota: este volume está publicado nos Cadernos de Estudos e Pesquisas da UNIP, Série Didática, ISSN 1517-9230.

1. Matriz. 2. Espaços vetoriais. 3. Base. I. Título.

CDU 512.8

U514.99 - 22

[©] Todos os direitos reservados. Nenhuma parte desta obra pode ser reproduzida ou transmitida por qualquer forma e/ou quaisquer meios (eletrônico, incluindo fotocópia e gravação) ou arquivada em qualquer sistema ou banco de dados sem permissão escrita da Universidade Paulista.

Prof. Dr. João Carlos Di Genio Reitor

Profa. Sandra Miessa Reitora em Exercício

Profa. Dra. Marilia Ancona Lopez Vice-Reitora de Graduação

Profa. Dra. Marina Ancona Lopez Soligo Vice-Reitora de Pós-Graduação e Pesquisa

Profa. Dra. Claudia Meucci Andreatini Vice-Reitora de Administração

Prof. Dr. Paschoal Laercio Armonia Vice-Reitor de Extensão

Prof. Fábio Romeu de Carvalho Vice-Reitor de Planejamento e Finanças

Profa. Melânia Dalla Torre Vice-Reitora de Unidades do Interior

Unip Interativa

Profa. Elisabete Brihy Prof. Marcelo Vannini Prof. Dr. Luiz Felipe Scabar Prof. Ivan Daliberto Frugoli

Material Didático

Comissão editorial:

Profa. Dra. Christiane Mazur Doi Profa. Dra. Angélica L. Carlini Profa. Dra. Ronilda Ribeiro

Apoio:

Profa. Cláudia Regina Baptista Profa. Deise Alcantara Carreiro

Projeto gráfico:

Prof. Alexandre Ponzetto

Revisão:

Vitor Andrade Jaci Albuquerque

Sumário

Álgebra Linear

APRESENTAÇÃO	9 11 12 14 15 16
1 MATRIZES E SISTEMAS LINEARES 1.1 Definição de matriz	12 14 14 15 16
1 MATRIZES E SISTEMAS LINEARES 1.1 Definição de matriz	12 14 14 15 16
1.1 Definição de matriz	12 14 14 15 16
	14 14 15 16 16
1.2 Mai(12es especials	14 15 16 16
	15 16 16
1.2.1 Matriz quadrada 1.2.2 Matriz diagonal	16 16
1.2.3 Matriz diagonal	16
1.2.4 Matriz nula	
1.2.5 Matriz transposta de uma matriz dada	16
1.3 Operações com matrizes	
1.3.1 Igualdade de matrizes	
1.3.2 Adição de matrizes	
1.3.3 Multiplicação de escalar por uma matriz	
1.3.4 Multiplicação de matrizes	
1.4 Matriz inversa	
1.5 Sistemas lineares	
1.5.1 Sistemas lineares equivalentes	26
1.5.2 Sistemas escalonados	
1.5.3 Resolução e discussão de um sistema linear	29
1.5.4 Sistema homogêneo e solução trivial	29
1.5.5 Interpretação geométrica dos sistemas lineares	32
2 ESPAÇOS VETORIAIS	42
2.1 Definição	
2.1.1 Propriedades	
2.2 Subespaço vetorial	
2.3 Soma de subespaços	
2.4 Intersecção de subespaços vetoriais	
2.4.1 Propriedades	
2.4.2 Soma direta	
2.5 Combinações lineares	
2.5.1 Definição	
2.5.2 Propriedades dos subespaços gerados	
2.6 Espaços vetoriais finitamente gerados	
2.7 Dependência e independência linear	

3 BASE E DIMENSÃO	64
3.1 Determinação de vetores linearmente dependentes e independentes no \mathbb{R}^n	64
3.1.1 Propriedades	
3.2 Base	66
3.3 Dimensão	
3.3.1 Propriedades	
3.4 Determinação da base de um subespaço	68
4 VETOR COORDENADA	71
4.1 Definição	
4.2 Mudança de base	72
Unidade II	
5 TRANSFORMAÇÕES LINEARES	88
5.1 Aplicações entre conjuntos	
5.2 Transformações lineares	
5.2.1 Definição	
5.2.2 Operador linear	
5.2.3 Propriedades	
5.3 Núcleo e imagem	
5.3.1 Núcleo	
5.3.2 Propriedades	
5.3.4 Propriedades	
·	
6 MATRIZ DE UMA TRANSFORMAÇÃO LINEAR	
6.1 Operações com transformações lineares	
6.2 Operador inversível	
6.3 Matriz de uma transformação linear	
7 OPERADORES	
7.1 Operador ortogonal	
7.2 Operador simétrico	
7.3 Determinantes	
7.3.1 Propriedades	
7.3.3 Determinante da composição	
7.4 Formas bilineares	
7.5 Produto interno	
7.5.1 Norma	
7.6 Métrica	135
8 TRANSFORMAÇÕES LINEARES PLANAS	137
8.1 Dilatação e contração	
8.1.1 Dilatação ou contração na própria direção	
8.1.2 Dilatação ou contração na direção do eixo x	
8.1.3 Dilatação ou contração na direção do eixo y	

8.2 Reflexão	
8.2.1 Reflexão em relação ao eixo x	
8.2.2 Reflexão em relação ao eixo y	
8.2.3 Reflexão em relação à origem do plano	
8.2.4 Reflexão em relação à reta y = x	
8.3 Projeção	
8.3.1 Projeção em relação ao eixo x	
8.3.2 Projeção em relação ao eixo y	
8.4 Cisalhamento	
8.4.1 Cisalhamento em relação ao eixo x	
8.4.2 Cisalhamento em relação ao eixo y	
8.5 Rotação	
8.6 Exemplos práticos	

APRESENTAÇÃO

Caros alunos, ao abordar a álgebra e a álgebra linear, acentuaremos sua importância para a ciência da computação e os objetivos do curso.

No estudo de geometria analítica, vocês aprenderam somar pares de vetores e multiplicá-los por escalares; agora, generalizando essas operações, em álgebra linear, vamos atingir outros objetos – matrizes, funções e sequências. Dessa forma, podemos entender álgebra como o estudo das operações aritméticas sobre conjuntos e álgebra linear como o estudo dos espaços vetoriais, conjuntos não vazios onde valem as propriedades da adição e multiplicação por escalar.

A álgebra linear é parte integrante da grade curricular de diversos cursos superiores, entretanto, na ciência da computação, sua aplicação ganha real importância na área da computação gráfica, para construção de objetos 2D e 3D, tratamento de imagem, aprendizagem de máquina e reconhecimento de padrões.

Assim, o estudo da álgebra linear visa ao desenvolvimento do raciocínio lógico abstrato para aquisição das competências necessárias para a representação, manipulação e análise de objetos planos e tridimensionais por meio de dispositivos gráficos digitais.

INTRODUÇÃO

Este livro-texto é dividido em duas unidades com quatro títulos cada.

A primeira unidade abordará propriedades dos espaços e subespaços vetoriais, operações de soma, intersecção e soma direta. Estudaremos também combinações lineares que compõem os vetores de um espaço vetorial, bases e dimensões de um subespaço, bem como a matriz mudança de base.

Na segunda unidade, vamos destacar as transformações lineares, matrizes associadas às transformações lineares utilizando-se das bases canônicas, operadores e as transformações lineares planas definidas por rotações, cisalhamentos, contrações, dilatações, reflexões e projeções.

Unidade I

1 MATRIZES E SISTEMAS LINEARES

Muitas vezes, quando queremos demonstrar, com maior clareza, situações ou dados que envolvam números, é conveniente ordená-los em linhas e colunas como uma tabela. Uma tabela numérica é o que, em matemática, chamamos de matriz.

Com o desenvolvimento da ciência da computação, as matrizes ganharam grande importância, pois qualquer imagem vista na tela de um computador ou *smartphone* nada mais é do que uma matriz, e cada valor discriminado nas linhas e colunas dessa matriz representam um ponto aceso na tela. A este ponto damos o nome de pixel. Quanto maior a matriz, melhor resolução poderá ter a imagem.

Em outra aplicação, podemos considerar que uma indústria de laticínios vende leite, queijo e iogurte. Os dados do 1º trimestre de um ano das vendas desses produtos, em unidades, foram dispostos na tabela a seguir.

Tabela 1

	Janeiro	Fevereiro	Março
Leite	123000	135000	132000
Queijo	25000	27000	26500
logurte	78000	81000	79700

Caso o administrador queira saber quantas unidades de leite foram vendidas em março, basta olhar o número inserido na 1ª linha e na 3ª coluna. Por outro lado, se quiser saber quantas unidades de queijo foram vendidas em fevereiro, basta olhar o número inserido na 2ª linha e na 2ª coluna. Por fim, caso ele queira saber a quantidade de iogurte vendidas em janeiro, basta olhar o número inserido na 3ª linha e na 1ª coluna.

Uma tabela como essa, cujos números foram dispostos em 3 linhas e 3 colunas, chamamos de matriz 3x3 (matriz três por três). A seguir, a representação matemática dessa matriz:

123000	135000	132000		123000	135000	132000
25000	27000	26500	ou	25000	27000	26500
78000	81000	79700		78000	81000	79700

1.1 Definição de matriz

Considera-se m e n inteiros maiores que 1. Definimos como matriz mxn a tabela formada por números reais dispostos em m linhas e n colunas. A matrizes são nomeadas com uma letra maiúscula de nosso alfabeto.

Assim:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 é uma matriz de ordem 2x2

$$B = \begin{pmatrix} 1 & 6 \\ 2 & 5 \\ 3 & 4 \end{pmatrix}$$
 é uma matriz de ordem 3x2

$$C = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 & 6 \end{pmatrix}$$
 é uma matriz de ordem 2x3

D = (6 8 2) é uma matriz de ordem 1x3 (matriz linha)

$$E = \begin{pmatrix} 3 \\ 5 \\ 7 \end{pmatrix} \text{ é uma matriz de ordem } 3x1(\text{matriz coluna})$$

Mais adiante, ao estudar os espaços vetoriais, veremos que a matriz linha e a matriz coluna serão chamadas de vetores.

Os números reais que formam as matrizes são chamados de elementos. Tomemos a matriz

$$M = \begin{pmatrix} 9 & 1 & 5 \\ 2 & 8 & 3 \\ 6 & 4 & 7 \end{pmatrix}$$
:

- o elemento 9 está na 1ª linha e na 1ª coluna e é denotado por a₁₁ (elemento **a** um um).
- o elemento 1 está na 1ª linha e na 2ª coluna e é denotado por a₁₂ (elemento **a** um dois).
- o elemento 5 está na 1ª linha e na 3ª coluna e é denotado por a₁₃(elemento **a** um três).
- o elemento 2 está na 2ª linha e na 1ª coluna e é denotado por a₂₁ (elemento **a** dois um).
- o elemento 8 está na 2ª linha e na 2ª coluna e é denotado por a₂₂ (elemento **a** dois dois).

ÁLGEBRA LINEAR

- o elemento 3 está na 2ª linha e na 3ª coluna e é denotado por a₂₃ (elemento **a** dois três).
- o elemento 6 está na 3º linha e na 1º coluna e é denotado por a₃₁ (elemento **a** três um).
- o elemento 4 está na 3ª linha e na 2ª coluna e é denotado por a₃₂ (elemento **a** três dois).
- o elemento 7 está na 3ª linha e na 3ª coluna e é denotado por a₃₃ (elemento **a** três três).

Dessa forma, representamos os elementos de uma matriz, com uma letra minúscula do nosso alfabeto, acompanhado de dois índices: o primeiro índice representa a linha; o segundo, a coluna em que o elemento está posicionado.

Genericamente, podemos indicar um elemento qualquer de uma matriz como a_{ij.} Onde i representa a linha e j a coluna da posição do elemento.

Assim:

$$M_{mxn} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \text{ ou } M_{mxn} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Outra forma de representação de uma matriz qualquer é $A = (a_{ij})_{mxn}$

Vejamos alguns exemplos.

1) Identifique os elementos
$$a_{12}$$
, a_{22} e a_{23} da matriz $\begin{pmatrix} 0 & 4 & -2 \\ 3 & -1 & 8 \end{pmatrix}$
 $a_{12} = 4$, $a_{22} = -1$ e $a_{23} = 8$

2) Escreva as matrizes

a)
$$A = (a_{ij})_{mxn}$$
, com $1 \le i \le 3$ e $1 \le j \le 3$, tal que
$$\begin{cases} a_{ij} = 0 \text{ para } i = j \\ a_{ij} = 2 \text{ para } i \ne j \end{cases}$$

A matriz será de ordem 3x3 com:

$$a_{11} = a_{22} = a_{33} = 0$$
 e $a_{12} = a_{13} = a_{21} = a_{23} = a_{31} = a_{32} = 2$

Logo:

$$A = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$$

b)
$$A = (a_{ij})_{2x4}$$
 com $a_{ij} = |i - j|$

$$a_{11} = |1 - 1| = |0| = 0$$

$$a_{12} = |1 - 2| = |-1| = 1$$

$$a_{12} = |1 - 3| = |-2| = 2$$

$$a_{14} = |1 - 4| = |-3| = 3$$

$$a_{21} = |2 - 1| = |1| = 1$$

$$a_{22} = |2 - 2| = |0| = 0$$

$$a_{22} = |2 - 3| = |-1| = 1$$

$$a_{24} = |2 - 4| = |-2| = 2$$

$$A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 1 & 2 \end{pmatrix}$$

1.2 Matrizes especiais

1.2.1 Matriz quadrada

Considere uma matriz $A = (a_{ij})_{mxn}$.

Chamamos a matriz A de matriz quadrada somente se a quantidade de linhas for igual à quantidade de colunas, ou seja, m = n.

Dizemos que uma matriz quadrada é de ordem nxn ou, simplesmente, ordem n.

São exemplos de matrizes quadradas:

(3) é uma matriz quadrada de ordem 1x1, ou ordem 1.

$$\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$$
 é uma matriz quadrada de ordem 2x2, ou ordem 2.

$$\begin{pmatrix} -5 & 3 & -1 \\ 6 & -4 & 2 \\ 1 & 3 & 7 \end{pmatrix}$$
 é uma matriz quadrada de ordem 3x3, ou ordem 3.

$$\begin{pmatrix} 1 & 2 & 4 & 3 \\ 5 & 4 & 2 & 1 \\ 3 & 7 & 0 & 1 \\ 2 & 6 & 4 & 0 \end{pmatrix}$$
 é uma matriz quadrada de ordem 4x4, ou ordem 4.

Os elementos, em uma matriz quadrada, em que i = j, formam a diagonal principal.

Já os elementos em que i + j = n + 1 formam a diagonal secundária.

1.2.2 Matriz diagonal

Chamamos de matriz diagonal a matriz quadrada de ordem $n \ge 2$ cujos elementos acima e abaixo da diagonal principal são todos iguais a zero, ou seja, para todo i \ne j, então, $a_{ij} = 0$.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 7 \end{pmatrix} B = \begin{pmatrix} -5 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 7 \end{pmatrix} C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

1.2.3 Matriz identidade

Chamamos de matriz identidade, denotada por I_n a matriz diagonal cujos elementos da diagonal principal sejam todos iguais a 1, ou seja:

$$I_n = \begin{cases} a_{ij} = 1 \text{ para } i = j \\ a_{ij} = 0 \text{ para } i \neq j \end{cases}$$

$$I_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} I_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

1.2.4 Matriz nula

Como o próprio nome sugere, chamamos de matriz nula a matriz cujos elementos são todos iguais a zero. Matematicamente:

$$A = (a_{ij})_{mxn'} com a_{ij} = 0$$

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} C = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} D = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} E = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

1.2.5 Matriz transposta de uma matriz dada

Seja a matriz A de ordem mxn. Chamamos de matriz transposta de A e indicamos por A^t de ordem nxn, obtida transformando, ordenadamente, as linhas de A em colunas.

Vejamos os exemplos.

Determine a matriz transposta das matrizes a seguir.

a)
$$A = (2 \ 3 \ 4)$$

$$A^{t} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$$

b) B =
$$\begin{pmatrix} 1 & 8 \\ 5 & 2 \end{pmatrix}$$

$$B^{t} = \begin{pmatrix} 1 & 5 \\ 8 & 2 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 1 & 3 & 7 \\ 9 & 8 & 2 \end{pmatrix}$$

$$C^{t} = \begin{pmatrix} 1 & 9 \\ 3 & 8 \\ 7 & 2 \end{pmatrix}$$

d)
$$D = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 8 & 9 \end{pmatrix}$$

$$D^{t} = \begin{pmatrix} 1 & 5 & 8 \\ 2 & 6 & 9 \end{pmatrix}$$

1.3 Operações com matrizes

1.3.1 Igualdade de matrizes

Consideremos duas matrizes quaisquer de mesma ordem, por exemplo, $A = (a_{ij})_{2x3} e B = (b_{ij})_{2x3}$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} e B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$$

Dizemos que A = B somente se os elementos que ocupam posições análogas forem iguais.

$$a_{11} = b_{11}$$

$$a_{12} = b_{12}$$

$$a_{13} = b_{13}$$

$$a_{21} = b_{21}$$

$$a_{22} = b_{22}$$

$$a_{23} = b_{23}$$

Portanto:

Sejam as matrizes $A = (a_{ij})_{mxn} e B = (b_{ij})_{mxn} de mesma ordem. Então:$

$$A = B \Leftrightarrow a_{ii} = b_{ii} com \ 1 \le i \le m \ e \ 1 \le j \le n$$

Vejamos os exemplos.

1) Dadas as matrizes $A = \begin{pmatrix} x & -1 \\ 3 & 4 \end{pmatrix} e B = \begin{pmatrix} 1 & -1 \\ y & 4 \end{pmatrix}$, qual é o valor de x e y para que A = B?

Resolução

Como os elementos que ocupam posições análogas têm que ser iguais, temos:

O elemento x ocupa a posição a_{11} , seu análogo em B é $b_{11} = 1$, logo x = 1.

O elemento y ocupa a posição b_{21} , seu análogo em A é $a_{21} = 3$, logo y = 3.

2) Dadas as matrizes
$$A = \begin{pmatrix} x + y & -1 \\ 1 & x - y \end{pmatrix} e B = \begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$$
, qual é o valor de x e y para que $A = B$?

Resolução

Como os elementos que ocupam posições análogas têm que ser iguais, temos:

- O elemento x + y ocupa a posição a_{11} , seu análogo em B é $b_{11} = 4$.
- O elemento x y ocupa a posição b_{22} , seu análogo em B é $b_{22} = 2$.

Portanto:

$$\begin{cases} x + y = 4 \\ x - y = 2 \end{cases}$$

Resolvendo o sistema, temos:

$$x = 3 e y = 1$$

1.3.2 Adição de matrizes

Sejam as matrizes $A = (a_{ij})_{mxn}$ e $B = (b_{ij})_{mxn}$ de mesma ordem. Denomina-se soma da matriz A com a matriz B, denotada por A + B, a matriz S, de ordem mxn, obtida somando-se os elementos de posição análoga de A e B.

Dessa forma, se A = $(a_{ij})_{mxn}$ e B = $(b_{ij})_{mxn'}$ a soma de A + B é a matriz S = $(s_{ij})_{mxn'}$ de modo que $a_{ij} + b_{ij} = s_{ij'}$ com $1 \le i \le m$ e $1 \le j \le n$. Valendo as seguintes propriedades:

- $\bullet A + B = B + A$
- (A + B) + C = A + (B + C)
- A + 0 (matriz nula) = A
- A + (-A) = 0 (matriz nula)

Vejamos alguns exemplos.

Determine a soma A + B nos itens a seguir.

a)
$$A = \begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix} e B = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 \\ 4 & 6 \end{pmatrix} + \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1+2 & 3+(-1) \\ 4+1 & 6+0 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 5 & 6 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 5 & 8 & -1 \\ -4 & 3 & 6 \end{pmatrix} e B = \begin{pmatrix} 3 & -2 & 5 \\ 10 & 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 5 & 8 & -1 \\ -4 & 3 & 6 \end{pmatrix} + \begin{pmatrix} 3 & -2 & 5 \\ 10 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 5+3 & 8+(-2) & -1+5 \\ -4+10 & 3+0 & 6+(-1) \end{pmatrix} = \begin{pmatrix} 8 & 6 & 4 \\ 6 & 3 & 5 \end{pmatrix}$$

c)
$$A = \begin{pmatrix} 1 & 10 & -5 \\ 3 & 2 & 2 \\ -1 & 4 & 3 \end{pmatrix} e B = \begin{pmatrix} 2 & -10 & 5 \\ -3 & -1 & -2 \\ 1 & -4 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 10 & -5 \\ 3 & 2 & 2 \\ -1 & 4 & 3 \end{pmatrix} + \begin{pmatrix} 2 & -10 & 5 \\ -3 & -1 & -2 \\ 1 & -4 & 2 \end{pmatrix} = \begin{pmatrix} 1+2 & 10+(-10) & -5+5 \\ 3+(-3) & 2+(-1) & 2+(-2) \\ -1+1 & 4+(-4) & 3+2 \end{pmatrix} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$

1.3.3 Multiplicação de escalar por uma matriz

Considere uma matriz $A = (a_{ii})_{mxn}$ e um número real (escalar) α . A matriz α . A terá a mesma ordem de A e seus elementos são αa_{ii} .

Vejamos o exemplo.

Dada a matriz
$$A = \begin{pmatrix} 3 & -2 \\ 5 & 1 \\ -7 & 6 \end{pmatrix}$$
, determine o valor de 2A.

Resolução

$$2A = 2 \cdot \begin{pmatrix} 3 & -2 \\ 5 & 1 \\ -7 & 6 \end{pmatrix} = \begin{pmatrix} 2.3 & 2.(-2) \\ 2.5 & 2.1 \\ 2.(-7) & 2.6 \end{pmatrix} = \begin{pmatrix} 6 & -4 \\ 10 & 2 \\ -14 & 12 \end{pmatrix}$$

1.3.4 Multiplicação de matrizes

Introduziremos o conceito de multiplicação de matrizes através de uma aplicação prática, pois esta operação não é tão intuitiva como as outras operações vistas até agora.

Uma indústria produz dois tipos de produtos, A e B. Para a produção desses produtos, a indústria utiliza três tipos de matéria-prima, X, Y, Z. Assim:

Tabela 2

	Produtos		
	Α	В	
Х	7	5	
Υ	6	3	
Z	5	4	

Podemos representar essa tabela através da matriz A:

$$A = \begin{pmatrix} 7 & 5 \\ 6 & 3 \\ 5 & 4 \end{pmatrix}$$

A indústria produz 150 produtos do tipo A e 130 produtos do tipo B por dia, onde podemos representar pela matriz B.

$$B = \begin{pmatrix} 150 \\ 130 \end{pmatrix}$$

Dessa forma, qual a quantidade diária de matéria-prima necessária para a fabricação dos produtos A e B?

$$X: 7.150 + 5.130 = 1700$$

$$Y: 6.150 + 3.130 = 1290$$

$$Z: 5.150 + 4.130 = 1270$$

Com os resultados obtidos, podemos fazer a representação pela matriz A . B.

$$A . B = \begin{pmatrix} 1700 \\ 1290 \\ 1270 \end{pmatrix}$$

De forma matricial, temos:

A.B =
$$\begin{pmatrix} 7 & 5 \\ 6 & 3 \\ 5 & 4 \end{pmatrix}$$
 $\cdot \begin{pmatrix} 150 \\ 130 \end{pmatrix} = \begin{pmatrix} 7.150 + 5.130 \\ 6.150 + 3.130 \\ 5.150 + 4.130 \end{pmatrix} = \begin{pmatrix} 1700 \\ 1290 \\ 1270 \end{pmatrix}$

Vimos, portanto, que cada elemento da matriz produto A. B é ordenadamente a soma dos produtos de cada linha da matriz A pela coluna da matriz B e que sua ordem é igual à "quantidade de linhas de A" \times "quantidade de colunas de B".

Note que a quantidade de colunas da matriz A é igual à quantidade de linhas da matriz B. Assim, a multiplicação entre matrizes só será possível quando a quantidade de colunas da primeira matriz for igual à quantidade de linhas da segunda matriz.

Agora podemos definir a multiplicação entre matrizes.

Seja a matriz $A = (a_{ij})_{mxn} e B = (b_{ij})_{nxp}$, definimos a matriz produto $A \cdot B = C(c_{ij})_{mxp}$, de forma que cada elemento c_{ij} é o resultado da soma dos produtos de cada linha i de A por cada coluna j de B.

Daqui para frente indicaremos A. B simplesmente por AB.

Vejamos os exemplos.

1) Dadas as matrizes
$$A = \begin{pmatrix} 3 & 5 \\ 2 & 1 \end{pmatrix} e B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
, determine AB.

Resolução

$$AB = \begin{pmatrix} 3 & 5 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 3.1+5.3 & 3.2+5.2 & 3.3+5.1 \\ 2.1+1.3 & 2.2+1.2 & 2.3+1.2 \end{pmatrix} = \begin{pmatrix} 18 & 16 & 14 \\ 5 & 6 & 8 \end{pmatrix}$$

2) Dadas as matrizes
$$A = \begin{pmatrix} 4 & 5 & 6 \end{pmatrix} e B = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$$
, determine AB.

Resolução

AB=
$$\begin{pmatrix} 4 & 5 & 6 \end{pmatrix}$$
. $\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$ = $\begin{pmatrix} 4.3+5.2+6.1 \end{pmatrix}$ = $\begin{pmatrix} 28 \end{pmatrix}$

3) Dadas as matrizes
$$A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 4 & 2 \end{pmatrix} B = \begin{pmatrix} 3 & 5 \\ 2 & 1 \end{pmatrix}$$
, determine AB.

$$AB = \begin{pmatrix} 2 & 3 \\ 1 & 0 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 5 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 2.3+3.2 & 2.5+3.1 \\ 1.3+0.2 & 1.5+0.1 \\ 4.3+2.2 & 4.5+2.1 \end{pmatrix} = \begin{pmatrix} 12 & 13 \\ 3 & 5 \\ 16 & 22 \end{pmatrix}$$

Para a multiplicação de matrizes, valem as seguintes propriedades:

•
$$A \cdot (B + C) = AB + AC$$

•
$$(B + C) \cdot A = BA + CA$$

A propriedade comutativa não vale para a multiplicação de matrizes.

1.4 Matriz inversa

Consideremos um número real x, sabemos que seu inverso é $\frac{1}{x}$ e que o produto x . $\frac{1}{x}$ = 1.

Pensando de maneira análoga, dada uma matriz A de ordem n, é possível encontrar uma matriz B, também de ordem n, cujo produto $AB = I_n$ (matriz identidade)? Se essa matriz B existir, a chamaremos de inversa de A e a indicaremos por A^{-1} . Assim:

$$A \cdot A^{-1} = I_n$$

Vejamos os exemplos.

Determine, se possível, a matriz inversa de:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 3 & 1 \\ 1 & 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1.a+0.d+0.g & 1.b+0.e+0.h & 1.c+0.f+0.i \\ 1.a+3.d+1.g & 1.b+3.e+1.h & 1.c+3.f+1.i \\ 1.a+2.d+0.g & 1.b+2.e+0.h & 1.c+2.f+0.i \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b & c \\ a+3d+g & b+3e+h & c+3f+i \\ a+2d & b+2e & c+2f \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Pelo conceito de igualdade de matrizes, temos:

$$a = 1$$
, $b = 0$, $c = 0$

$$a + 2d = 0 \Rightarrow 1 + 2d = 0 \Rightarrow d = \frac{-1}{2}$$

$$b + 2e = 0 \Rightarrow 0 + 2e = 0 \Rightarrow e = 0$$

$$c + 2f = 1 \Rightarrow 0 + 2f = 1 \Rightarrow f = \frac{1}{2}$$

$$a + 3d + g = 0 \Rightarrow 1 + \left(\frac{-3}{2}\right) + g = 0 \Rightarrow g = \frac{1}{2}$$

$$b + 3e + h = 1 \Rightarrow 0 + 0 + h = 1 \Rightarrow h = 1$$

$$c + 3f + i = 0 \Rightarrow 0 + \left(\frac{3}{2}\right) + i = 0 \Rightarrow i = \frac{-3}{2}$$

Logo, A⁻¹ =
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 = $\begin{pmatrix} 1 & 0 & 0 \\ \frac{-1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{-3}{2} \end{pmatrix}$

$$A = \begin{pmatrix} 1 & 0 \\ 5 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 5 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1.a+0.c & 1.b+0.d \\ 5.a+0.c & 5.b+0.d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ 5a & 5b \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Note que é impossível determinar os valores de a, b, c e d, logo a matriz $A = \begin{pmatrix} 1 & 0 \\ 5 & 0 \end{pmatrix}$ não possui inversa.

Sobre matriz inversa, podemos afirmar que:

• Dada a matriz A, se existir A⁻¹, dizemos que A é inversível, caso contrário, A é não inversível ou singular.

- Se a matriz A é inversível, então A-1 é única.
- Seja A e sua inversa A-1, a matriz I_n será de mesma ordem que A e A-1.

1.5 Sistemas lineares

Sejam os números reais α_1 , α_2 , ..., α_n e α , com $n \ge 1$. Sejam também as incógnitas x_1 , x_2 , ..., x_n .

A equação da forma $\alpha_1 x_1 + \alpha_2 x_2 + ... + \alpha_n x_n = \beta$ é uma equação linear, onde os números reais $\alpha_1, \alpha_2, ..., \alpha_n$ são chamados de coeficientes e $x_1, x_2, ..., x_n$ de incógnitas.

A solução de uma equação linear com n incógnitas é uma sequência ou n-nupla de n números reais denotados por $(s_1, s_2, ..., s_n)$, de tal modo que:

$$\alpha_1 S_1 + \alpha_2 S_2 + \dots + \alpha_n S_n = \beta$$

Vejamos um exemplo.

Seja a equação linear $3x_1 + 2x_2 + x_3 = 7$, verifique se a sequência ordenada (1, 2, 0) é solução da equação dada.

Resolução

$$(S_1, S_2, S_3) = (1, 2, 0)$$

$$3s_1 + 2s_2 + 0s_3 = 7 \Rightarrow 3 \cdot 1 + 2 \cdot 2 + 1 \cdot 0 = 7 \Rightarrow 7 = 7$$

Logo, a sequência ordenada (1, 2, 0) é solução da equação.

Considere concomitantemente um conjunto de m equações lineares com n incógnitas cada equação. Define-se sistema linear se este conjunto de equações lineares for indicado como segue:

$$\begin{cases} \alpha_{11}x_1 + ... + \alpha_{1n}x_n = \beta_1 \\ \alpha_{21}x_1 + ... + \alpha_{2n}x_n = \beta_2 \\ \vdots \\ \alpha_{m1}x_1 + ... + \alpha_{mn}x_n = \beta_m \end{cases}$$

Da mesma forma, a n-nupla de números reais $(s_1, s_2, ..., s_n)$ será solução de um sistema linear somente se for solução de cada uma das m equações simultaneamente.

Vejamos outro exemplo.

Dado o sistema linear a seguir, verifique se a n-nupla (1, 2, 3) é solução.

$$\begin{cases} x + 2y + 3z = 14 \\ 2x + y + z = 7 \\ x - y + 3z = 8 \end{cases}$$

Resolução

Substituiremos em todas as equações, 1 em x, 2 em y e 3 em z, do seguinte modo:

$$1 + 2 \cdot 2 + 3 \cdot 3 = 14 \Rightarrow 14 = 14$$

$$2.1 + 2 + 3 = 7 \Rightarrow 7 = 7$$

$$1 - 2 + 3 \cdot 3 = 8 \Rightarrow 8 = 8$$

Logo, a n-dupla (1, 2, 3) é solução do sistema linear dado.

Os sistemas lineares são classificados de acordo com a quantidade de soluções que ele apresenta. Assim:

- sistema linear de impossível (SI) se não admitir nenhuma solução;
- sistema linear possível e determinado (SPD) se admitir uma única solução;
- sistema linear possível e indeterminado (SPI) se admitir mais que uma solução.

1.5.1 Sistemas lineares equivalentes

Dado os sistemas lineares $S \in S_1$. Se o conjunto solução de S for igual ao conjunto solução de S_1 , dizemos que $S \in S_1$ são equivalentes e indicamos por $S \sim S_1$. Se S for sistema impossível (SI), S_1 também será.

É fácil verificar que os sistemas S: $\begin{cases} x+y=-1 \\ x-y=3 \end{cases} \in S_1: \begin{cases} 2x+2y=-2 \\ 3x-3y=9 \end{cases}$ são equivalentes, pois o par ordenado (1,-2) é solução de ambos.

Perceba que a primeira e a segunda equação de S_1 são, respectivamente, o dobro e o triplo da primeira e da segunda equação de S.

Seguindo esse raciocínio, podemos obter sistemas equivalentes a partir de qualquer sistema linear por meio de operações elementares. Essas operações elementares visam tornar o sistema linear mais

simples e, assim, encontrar o conjunto solução. A seguir, serão mostradas as operações elementares

por meio do sistema linear S:
$$\begin{cases} 3x + 2y + z = 10 \\ x + 2y + 3z = 14 \\ 3x + y + 2z = 11 \end{cases}$$

I – Permutação: mudar a posição entre duas equações de um sistema linear.

$$\begin{cases} 3x + 2y + z = 10 \ L_1 \\ x + 2y + 3z = 14 \ L_2 \\ 3x + y + 2z = 11 \ L_3 \end{cases} \begin{cases} 3x + 2y + z = 10 \\ 3x + y + 2z = 11 \\ x + 2y + 3z = 14 \end{cases}$$

Note que permutamos de posição a linha 3 (L_3) com a linha 2 (L_2) e que a terna ordenada (1, 2, 3) é solução.

II – Multiplicação: multiplicar por um número real y ≠ 0 uma das equações do sistema linear.

Multiplicando por -3 a linha L₂

$$\begin{cases} 3x + 2y + z = 10 \ L_1 \\ 3x + y + 2z = 11 \ L_2 \\ x + 2y + 3z = 14 \ (-3L_3) \end{cases} \sim \begin{cases} 3x + 2y + z = 10 \ L_1 \\ 3x + y + 2z = 11 \ L_2 \\ -3x - 6y - 9z = -42 \ L_3 \end{cases}$$

Note que após a multiplicação -3 (L₃), a terna ordenada (1, 2, 3) é solução.

III - Soma: somar duas quaisquer equações do sistema linear.

Em L_3 somaremos $L_2 + L_3$

$$\begin{cases} 3x + 2y + z = 10 \ L_1 \\ 3x + y + 2z = 11 \ L_2 \\ -3x - 6y - 9z = -42 \ L_3 \end{cases} \begin{cases} 3x + 2y + z = 10 \ L_1 \\ 3x + y + 2z = 11 \ L_2 \\ 0x - 5y - 7z = -31 \ L_3 \end{cases}$$

Note que a incógnita x foi eliminada de L_3 , tornando o sistema linear mais simples e que a terna (1, 2, 3) é solução.

Agora que aprendemos as operações elementares, vamos dar continuidade à resolução desse sistema para apresentar outro conceito importante sobre sistemas lineares.

1.5.2 Sistemas escalonados

Multiplicaremos por -1 a linha 1 (L₁)

$$\begin{cases} 3x + 2y + z = 10 L_1 \\ 3x + y + 2z = 11 L_2 \\ 0x - 5y - 7z = -31 L_3 \end{cases} \sim \begin{cases} -3x - 2y - z = -10 L_1 \\ 3x + y + 2z = 11 L_2 \\ 0x - 5y - 7z = -31 L_3 \end{cases}$$

Em L_2 somaremos $L_1 + L_2$

$$\begin{cases} -3x - 2y - z = -10 L_1 \\ 3x + y + 2z = 11 L_2 \\ 0x - 5y - 7z = -31 L_3 \end{cases} \sim \begin{cases} -3x - 2y - z = -10 L_1 \\ 0x - y + z = 1 L_2 \\ 0x - 5y - 7z = -31 L_3 \end{cases}$$

Multiplicaremos por -5 a linha 2 (L₂)

$$\begin{cases} -3x - 2y - z = -10 \ L_1 \\ 0x - y + z = 1 \ L_2 \\ 0x - 5y - 7z = -31 \ L_3 \end{cases} \sim \begin{cases} -3x - 2y - z = -10 \ L_1 \\ 0x + 5y - 5z = -5 \ L_2 \\ 0x - 5y - 7z = -31 \ L_3 \end{cases}$$

Em L_3 somaremos $L_2 + L_3$

$$\begin{cases}
-3x - 2y - z = -10 L_1 \\
0x + 5y - 5z = -5 L_2 \\
0x - 5y - 7z = -31 L_3
\end{cases} \sim \begin{cases}
-3x - 2y - z = -10 L_1 \\
0x + 5y - 5z = -5 L_2 \\
0x - 0y - 12z = -36 L_3
\end{cases}$$

Percebam que os coeficientes nulos em cada uma das equações, a partir da segunda, é maior que na equação precedente. Quando isso ocorre, dizemos que o sistema linear está **escalonado**.

Continuando a resolução, temos:

$$-12z = -36 \Rightarrow z = 3$$

 $5y - 5z = -5 \Rightarrow 5y - 15 = -5 \Rightarrow y = 2$
 $-3x - 2y - z = -10 \Rightarrow -3x - 4 - 3 = -10 \Rightarrow x = 1$

Assim, a terna ordenada (1, 2, 3) é solução.

1.5.3 Resolução e discussão de um sistema linear

Resolver um sistema linear significa, através das operações elementares, encontrar o conjunto solução.

Discutir um sistema linear é classificá-lo em sistema possível e determinado (SPD), possível e indeterminado (SPI) ou impossível (SI).

De maneira geral, resolve-se um sistema linear aplicando as operações elementares de maneira a se escalonar o sistema. Se, no curso do escalonamento, qualquer uma das equações ficar da forma $0x_1 + 0x_2 + ...0x_n = \beta$, com $\beta \neq 0$, podemos dizer que o sistema é Sl. Conforme L3 do sistema a seguir:

$$\begin{cases} 4x + 3y - z = 4 \\ 0x + 3y - 2z = -3 \\ 0x + 0y + 0z = 2 \end{cases}$$

Caso isso não ocorra, restam duas alternativas:

- Se o número de equações for igual ao número de incógnitas, o sistema é SPD.
- Se o número de equações for menor que o número de incógnitas, o sistema é SPI.

1.5.4 Sistema homogêneo e solução trivial

Considere um sistema linear de m equações e n incógnitas.

$$\begin{cases} \alpha_{11}x_1 + ... + \alpha_{1n}x_n = \beta_1 \\ \alpha_{21}x_1 + ... + \alpha_{2n}x_n = \beta_2 \\ \vdots \\ \alpha_{m1}x_1 + ... + \alpha_{mn}x_n = \beta_m \end{cases}$$

Se ocorrer de $\beta_1 = \beta_1 = ... = \beta_1 = 0$, o sistema linear será chamado de homogêneo.

É fácil perceber que em um sistema linear homogêneo a n-dupla (0, 0, ..., 0) é solução e a chamamos de solução trivial.

Durante o processo de escalonamento de um sistema linear homogêneo, pode ocorrer de serem obtidas equações do tipo 0 = 0. Neste caso, pode-se, simplesmente, eliminar essa equação.

Vejamos alguns exemplos.

Resolva os sistemas a seguir por escalonamento e depois os classifique.

a)
$$\begin{cases} x + 2y - z = 4 \\ x + y + z = 9 \\ 3x + y - 4z = -7 \end{cases}$$

Resolução

Permutar L₃ com L₁

$$\begin{cases} x + 2y - z = 4 \\ x + y + z = 9 \\ 3x + y - 4z = -7 \end{cases} \sim \begin{cases} 3x + y - 4z = -7 \\ x + y + z = 9 \\ x + 2y - z = 4 \end{cases}$$

Multiplicar L_2 por -1 e em L_3 somar $L_2 + L_3$

$$\begin{cases} 3x + y - 4z = -7 \\ x + y + z = 9 \\ x + 2y - z = 4 \end{cases} \sim \begin{cases} 3x + y - 4z = -7 \\ -x - y - z = -9 \\ x + 2y - z = 4 \end{cases} \sim \begin{cases} 3x + y - 4z = -7 \\ -x - y - z = -9 \\ y - 2z = -5 \end{cases}$$

Multiplicar L_2 por 3 e em L_2 somar $L_1 + L_2$

$$\begin{cases} 3x + y - 4z = -7 \\ -x - y - z = -9 \\ y - 2z = -5 \end{cases} \sim \begin{cases} 3x + y - 4z = -7 \\ -3x - 3y - 3z = -27 \\ y - 2z = -5 \end{cases} \sim \begin{cases} 3x + y - 4z = -7 \\ -2y - 7z = -34 \\ y - 2z = -5 \end{cases}$$

Multiplicar L_3 por 2 e em L_3 somar $L_2 + L_3$

$$\begin{cases} 3x + y - 4z = -7 \\ -2y - 7z = -34 \\ y - 2z = -5 \end{cases} \begin{cases} 3x + y - 4z = -7 \\ -2y - 7z = -34 \\ 2y - 4z = -10 \end{cases} \begin{cases} 3x + y - 4z = -7 \\ -2y - 7z = -34 \\ -11z = -44 \end{cases}$$
 assim:

$$-11z = -44 \Rightarrow z = 4$$

Substituindo z = 4 em 2y - 4z = -10

$$2y - 16 = -10 \implies y = 3$$

Substituindo y = 3 e z = 4 em x + y + z = 9

$$x + 3 + 4 = 9 \Rightarrow x = 2$$

O conjunto solução é a terna ordenada (2, 3, 4). Como o número de equações é igual ao número de incógnitas, o sistema é SPD e (2, 3, 4) é solução única.

a)
$$\begin{cases} x - y + 2z = 1 \\ x + y + z = 0 \end{cases}$$

Resolução

Multiplicando L_2 por -1 e em L_2 somar $L_1 + L_2$, temos:

$$\begin{cases} x - y + 2z = 1 \\ x + y + z = 0 \end{cases} \sim \begin{cases} x - y + 2z = 1 \\ -x - y - z = 0 \end{cases} \sim \begin{cases} x - y + 2z = 1 \\ -2y + z = 0 \end{cases}$$

Nesse momento não há mais operações elementares para realizar. Assim:

$$z = 2y$$

Substituindo z = 2y em x - y + 2z = 1, temos:

$$x = 1 - 3y$$

Portanto, a solução do sistema é toda terna ordenada da forma (1 - 3y, y, 2y). Como o número de equações é menor que o número de incógnitas, o sistema SPI possui infinitas soluções.

a)
$$\begin{cases} x - y - z = 2 \\ x + y + z = 1 \\ 3x + 2y + 2z = 4 \end{cases}$$

Resolução

Permutar L₃ com L₁

$$\begin{cases} x - y - z = 2 \\ x + y + z = 1 \\ 3x + 2y + 2z = 4 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ x + y + z = 1 \\ x - y - z = 2 \end{cases}$$

Multiplicar L_2 por -1 e em L_3 somar $L_2 + L_3$

$$\begin{cases} 3x + 2y + 2z = 4 \\ x + y + z = 1 \\ x - y - z = 2 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ -x - y - z = -1 \\ x - y - z = 2 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ -x - y - z = -1 \\ -2y - 2z = 1 \end{cases}$$

Multiplicar L_2 por 3 e em L_2 somar $L_1 + L_2$

$$\begin{cases} 3x + 2y + 2z = 4 \\ -x - y - z = -1 \\ -2y - 2z = 1 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ -3x - 3y - 3z = -3 \\ -2y - 2z = 1 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ -y - z = 1 \\ -2y - 2z = 1 \end{cases}$$

Multiplicar L_2 por -2 e em L_3 somar $L_2 + L_3$

$$\begin{cases} 3x + 2y + 2z = 4 \\ -y - z = 1 \\ -2y - 2z = 1 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ 2y + 2z = -2 \\ -2y - 2z = 1 \end{cases} \sim \begin{cases} 3x + 2y + 2z = 4 \\ 2y + 2z = -2 \\ 0y + 0z = -1 \end{cases}$$

Como chegamos em L_3 , em uma equação do tipo $0x_1 + 0x_2 + ...0x_n = \beta$, com $\beta \neq 0$, não existe solução para esse sistema, logo ele é SI.

1.5.5 Interpretação geométrica dos sistemas lineares

Sistemas lineares 2x2

Já sabemos que sistemas lineares 2x2 são aqueles com duas equações e duas incógnitas.

Dado o sistema linear $\begin{cases} x+y=5\\ x-y=1 \end{cases}$ percebe-se que cada uma das equações representam uma reta do plano cartesiano.

Vamos resolver esse sistema pelo método da soma e encontrar a solução se houver.

$$\begin{cases} x + y = 5 \\ x - y = 1 \end{cases}$$

Somando as duas equações, obtemos:

$$2x = 6 \Rightarrow x = 3$$

Substituindo x = 7 em x - y = 4, temos:

$$3 - y = 1 \Rightarrow y = 2$$

Logo, o par ordenado (3, 2) é solução do sistema.

Vamos agora esboçar em mesmo plano as retas que representam cada uma das equações lineares.

Figura 1

Note que o ponto de intersecção das retas x + y = 5 e x - y = 1 é o ponto (3, 2), justamente a solução do sistema.

Portanto, duas retas concorrentes em um plano indicam que o sistema é possível e determinado (SPD).

Dado o sistema
$$\begin{cases} x - 3y = 4 \\ 2x - 6y = 3 \end{cases}$$

Multiplicando a primeira equação por -2 e o resultado somando a segunda equação, temos:

$$\begin{cases} -2x + 6y = 4 \\ 2x - 6y = 3 \end{cases}$$

$$0x + 0y = 7$$

Logo, o sistema não tem solução.

Esboçando o gráfico:

Figura 2

Portanto, duas retas paralelas em um plano indicam que o sistema é impossível (SI).

Dado o sistema
$$\begin{cases} 2x + 4y = 10 \\ 3x + 6y = 15 \end{cases}$$

Multiplicando a primeira equação por -3, a segunda equação por 2 e somando o resultado, temos:

$$\begin{cases} -6x - 12y = -30 \\ 6x + 12y = 30 \end{cases}$$

0x + 0y = 0, logo o sistema apresenta infinitas soluções.

Esboçando gráfico:

Figura 3

Portanto, duas retas coincidentes em um plano indicam que o sistema é possível e indeterminado (SPI).

Sistemas lineares 3x3

Os sistemas lineares 3x3 são aqueles formados por três equações e três incógnitas. De forma geral, um sistema linear desse tipo é representado por:

$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

Cada uma dessas equações que formam o sistema linear representam os planos α_1 , α_2 e α_3 no espaço, respectivamente. Assim, a intersecção dos três planos representa a solução (x, y, z) do sistema. Podemos associar ao sistema linear duas matrizes, a saber:

$$(1) \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} e (2) \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ a_3 & b_3 & c_3 & d_3 \end{pmatrix}$$

Na matriz (1), denotaremos os vetores-linha por:

$$I_1 = (a_1, b_1, c_1)$$

$$I_2 = (a_2, b_2, c_2)$$

$$I_3 = (a_3, b_3, c_3)$$

Já na matriz (2) por:

$$L_1 = (a_1, b_1, c_1, d_1)$$

$$L_2 = (a_2, b_2, c_2, d_2)$$

$$L_3 = (a_3, b_3, c_3, d_3)$$

Os planos α_1 , α_2 e α_3 podem ocupar diferentes posições entre eles no espaço, de acordo com as relações matemáticas existentes entre os vetores-linhas de cada matriz, e essas posições indicarão se o sistema é SPD, SPI ou SI. Vejamos:

• 1ª posição relativa: os três planos são coincidentes.

Ocorre quando L_1 , L_2 e L_3 são múltiplos entre si. Neste caso, α_1 , α_2 e α_3 e todos os pontos (x, y, z) que pertençam aos planos são solução do sistema, logo há infinitas soluções, portanto o sistema é SPI.

Exemplo:

$$\begin{cases} x + y + z = 2 \rightarrow L_1 = (1, 1, 1, 2) \\ 3x + 3y + 3z = 6 \rightarrow L_2 = (3, 3, 3, 6) \\ 6x + 6y + 6z = 12 \rightarrow L_3 = (6, 6, 6, 12) \end{cases}$$

Figura 4

Note que $L_2 = 2L_1$ e $L_3 = 6L_1$ ou $L_3 = 2L_2$

Da primeira equação x + y + z = 2, tiramos que z = 2 - x - y, logo a solução para o sistema é toda terna ordenada da forma (x, y, 2 - x - y) com $x \in y$ reais e arbitrários.

• 2ª posição relativa: dois planos coincidem e o terceiro é paralelo.

Ocorre quando L_2 é múltiplo de L_1 , mas L_3 não é múltiplo de L_1 . Neste caso, $\alpha_1 = \alpha_2 \neq \alpha_3$ e assim não existe uma terna ordenada (x, y, z) que, ao mesmo tempo, pertença aos três planos. Portanto, o sistema é SI.

Exemplo:

$$\begin{cases} x + y + z = 2 \rightarrow L_1 = (1, 1, 1, 2) \\ 3x + 3y + 3z = 6 \rightarrow L_2 = (3, 3, 3, 6) \\ 6x + 6y + 6z = 5 \rightarrow L_3 = (6, 6, 6, 5) \end{cases}$$

Figura 5

• 3ª posição relativa: dois planos coincidem e o terceiro é secante.

Ocorre quando I_1 e I_2 são múltiplos, como também L_2 é múltiplo de L_1 , mas L_3 não é múltiplo de L_1 . Neste caso, o sistema é SPI e a solução são todos os pontos (x, y, z) da reta r.

Exemplo:

$$\begin{cases} x + y + z = 2 \rightarrow L_1 = (1, 1, 1, 2) \\ 3x + 3y + 3z = 6 \rightarrow L_2 = (3, 3, 3, 6) \\ 6x + 6y + z = 12 \rightarrow L_3 = (6, 6, 1, 12) \end{cases}$$

Figura 6

Resolvendo o sistema:

$$\begin{cases} x+y+z=2 \\ 6x+6y+z=12 \end{cases} \Rightarrow \begin{cases} -6x-6y-6z=-12 \\ 6x+6y+z=12 \end{cases} \Rightarrow z=0 \text{ e } y=2-x$$

Portanto, a solução do sistema é o conjunto da forma (x, 2 - x, 0) com x real e arbitrário.

• 4ª posição relativa: os três planos são paralelos dois a dois.

Ocorre quando I_1 , I_2 e I_3 são múltiplos entre si, todavia, L_1 , L_2 e L_3 não são múltiplos quando tomados dois a dois. Neste caso, o sistema é SI, pois os planos não têm pontos em comum.

Exemplo:

$$\begin{cases} x + y + z = 2 \rightarrow L_1 = (1, 1, 1, 2) \\ 3x + 3y + 3z = 3 \rightarrow L_2 = (3, 3, 3, 3) \\ 6x + 6y + 6z = 5 \rightarrow L_3 = (6, 6, 6, 5) \end{cases}$$

Figura 7

• 5ª Posição relativa: dois planos paralelos entre si e o terceiro secante.

Ocorre quando I_2 é múltiplo de I_1 , mas I_2 não é múltiplo de I_1 , como também I_3 não é múltiplo de I_1 . Neste caso, o sistema é SI, pois $\alpha_1 \cap \alpha_2 \cap \alpha_3 = \emptyset$.

Exemplo:

$$\begin{cases} x + y + z = 2 \rightarrow L_1 = (1, 1, 1, 2) \\ 3x + 3y + 3z = 3 \rightarrow L_2 = (3, 3, 3, 3) \\ 6x + 6y + z = 5 \rightarrow L_3 = (6, 6, 1, 5) \end{cases}$$

Figura 8

• 6ª posição relativa: os três planos são distintos e compartilham uma reta.

Ocorre quando I_1I_2 e I_3 não são múltiplos entre si e I_3 é combinação linear de I_1 e I_2 . Neste caso, os infinitos pontos (x, y, z) da reta são solução do sistema, pois $\alpha_1 \cap \alpha_2 \cap \alpha_3 = r$. Logo o sistema é SPI. Estudaremos combinação linear no próximo capítulo.

Exemplo:

$$\begin{cases} x + y + z = 2 \longrightarrow L_1 = (1, 1, 1, 2) \\ 3x + y + z = 3 \longrightarrow L_2 = (3, 1, 1, 3) \\ 4x + 2y + 2z = 5 \longrightarrow L_3 = (4, 2, 2, 5) \end{cases}$$

Figura 9

Resolvendo o sistema:

$$\begin{cases} x + y + z = 2 \\ 3x + y + z = 3 \end{cases} \sim \begin{cases} -x - y - z = -2 \\ 3x + y + z = 3 \end{cases}$$

2x = 1, então

$$x = \frac{1}{2}$$

$$\begin{cases} 3x + y + z = 3 \\ 4x + 2y + 2z = 5 \end{cases} \sim \begin{cases} 12x + 4y + 4z = 12 \\ -12x - 6y - 6z = -15 \end{cases}$$

$$-2y - 2z = -3$$
, então

$$z = \frac{3 - 2y}{2}$$

Portanto, os pontos que são solução e fazem parte da reta r são da forma $\left(\frac{1}{2}$, y, $\frac{3-2y}{2}\right)$ com y real e arbitrário.

• 7º posição relativa: os três planos, dois a dois, concorrem, segundo retas paralelas umas às outras.

Ocorre quando l_1 , l_2 e l_3 não são múltiplos entre si, mas l_3 é combinação linear de l_1 e l_2 , no caso, $l_3 = l_1 + l_2$, fato que não ocorre com l_3 . Como os planos não são coincidentes nem paralelos, logo o sistema não tem solução SI).

Exemplo:

$$\begin{cases} x + y - 3z = 1 \rightarrow L_1 = (1, 1, -3, 1) \\ 4x + 3y - 2z = 3 \rightarrow L_2 = (4, 3, -2, 3) \\ 5x + 4y - 5z = 7 \rightarrow L_3 = (5, 4, -5, 7) \end{cases}$$

Figura 10

• 8ª posição relativa

Ocorre quando os vetores I_1 , I_2 e I_3 são linearmente independentes. Neste caso, os três planos se interceptam em um único ponto P, que é a solução do sistema. Estudaremos mais adiante a dependência linear.

Exemplo:

$$\begin{cases} x - y + z = 1 \rightarrow L_1 = (1, -1, 1, 1) \\ 2x + y + 2z = 0 \rightarrow L_2 = (2, 1, 2, 0) \\ 3x - 4y + z = 1 \rightarrow L_3 = (3, -4, 1, 1) \end{cases}$$

Resolvendo o sistema:

$$\begin{cases} x - y + z = 1 \\ 2x + y + 2z = 0 \end{cases} \sim \begin{cases} x - y + z = 1 \\ y - z = -1 \end{cases} \sim \begin{cases} x - y + z = 1 \\ y - z = -1 \end{cases}$$

$$3y = -2$$

$$3z = 1$$

Logo a solução do sistema é $\left(0, \frac{-2}{3}, \frac{1}{3}\right)$.

2 ESPAÇOS VETORIAIS

2.1 Definição

Dizemos que um conjunto de vetores V não vazio, ou seja, $V \neq \emptyset$ é um espaço vetorial sobre $\mathbb R$ somente se estiverem definidas:

I – A soma entre quaisquer vetores $(u, v) \in V$ e as propriedades:

- a) u + v = v + u, para quaisquer $u, v \in V$ (comutativa)
- b) u + (v + w) = (u + v) + w, para quaisquer u, v, $w \in V$ (associativa)
- c) Existe em V um único elemento neutro, denotado 0, tal que u + 0 = 0 + u = u
- d) Para todo $u \in V$, existe o oposto $(-u) \in V$ tal que u + (-u) = 0

II – A multiplicação de qualquer vetor $u \in V$ por qualquer escalar $\alpha \in \mathbb{R}$ e as propriedades:

a)
$$\alpha \cdot (\beta \cdot u) = (\alpha \cdot \beta) \cdot u$$

b)
$$(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$$

c)
$$\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$$

d)
$$1.u = u$$

Note que tanto a soma como a multiplicação devem pertencer a V.

Vejamos alguns exemplos de espaços vetoriais.

1) O espaço vetorial \mathbb{R} .

Sendo \mathbb{R} o conjunto dos números reais, fica fácil perceber que na soma de números reais se verificam válidas as propriedades em I. Da mesma forma, para a multiplicação, as propriedades em II se verificam válidas.

2) O espaço vetorial \mathbb{R}^2 , conjunto dos pares ordenados que formam o plano.

Seja
$$\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}, \log o$$
:

Soma:
$$u + v = (x, y) + (s, t) = (x + s, y + t) \in \mathbb{R}^2$$

Multiplicação:
$$\alpha$$
 . $u = \alpha$. $(x, y) = (\alpha x, \alpha y) \in \mathbb{R}^2$

Verifica-se facilmente que as propriedades descritas em I e II são válidas.

3) Se \mathbb{R} e \mathbb{R}^2 são espaços vetoriais, \mathbb{R}^n também poderá ser considerado espaço vetorial sobre \mathbb{R} , desde que sejam possíveis a soma e a multiplicação, conforme exposto a seguir:

$$\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\}$$

$$\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$

$$\mathbb{R}^{4} = \{(x, y, z, s) \mid x, y, z, s \in \mathbb{R}\}$$

:

$$\mathbb{R}^{n}=\{(\mathbf{x_{_{1}}},\mathbf{x_{_{2}}},...,\mathbf{x_{_{n}}})\:/\:\mathbf{x_{_{i}}}\in\mathbb{R}\}$$
, então

$$\left(x_{_{1}},\,x_{_{2}},\,...,\,x_{_{n}}\right)+\left(z_{_{1}},\,z_{_{2}},\,...,\,z_{_{n}}\right)=\left(x_{_{1}}+z_{_{1}},\,x_{_{2}}+z_{_{2}},\,...,\,x_{_{n}}+z_{_{n}}\right)\in\,\mathbb{R}^{n}$$

$$\alpha \cdot (x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n) \in \mathbb{R}^n$$

Exemplo de aplicação

Pressupondo-se a verificação das propriedades contidas nos itens I e II da definição a, sugerimos fazê-las como exercício.

4) O espaço vetorial da matriz $M_{mxn}(\mathbb{R})$ com as operações da definição:

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}$$

Definimos:

$$A + B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

$$\kappa \cdot A = \kappa \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \kappa a_{11} & \dots & \kappa a_{1n} \\ \vdots & \ddots & \vdots \\ \kappa a_{m1} & \dots & \kappa a_{mn} \end{pmatrix}$$

5) O espaço $P_n(\mathbb{R})$, conjunto de todos os polinômios de grau menor ou igual a n, com $n \ge 0$, incluindo o polinômio nulo.

Sejam os polinômios:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

$$q(x) = b_n x^n + b_{n-1} x^{n-1} + ... + b_1 x + b_0$$

As operações de soma e multiplicação por escalar são dadas por:

$$p(x) + q(x) = (a_n + b_n)x^n + (a_{n-1} + b_{n-1})x^{n-1} + ... + (a_1 + b_1)x + (a_0 + b_0) \in P_n$$

$$k \cdot p(x) = ka_n x^n + ka_{n-1} x^{n-1} + ... + ka_1 x + ka_0 \in P_n$$

Assim, as propriedades I e II da definição são imediatas.

Você deve estar se perguntando se existe algum conjunto que não seja um espaço vetorial. Vejamos o exemplo a seguir.

6) 0 conjunto $V = \{(x,1) / x \in \mathbb{R}\}.$

Sejam u = (x, y) e v = (r, t), vetores de V, de imediato percebemos que y e t serão iguais a 1, então:

 $u + v = (x, 1) + (r, 1) = (x + r, 2) \notin V$, pois a segunda componente do par ordenado é 2, o que contradiz a condição dada na definição. Logo V não é espaço vetorial sobre \mathbb{R} .

2.1.1 Propriedades

Como consequências imediatas da definição de um espaço vetorial V sobre \mathbb{R} , apresentamos a seguir algumas propriedades.

- $\forall \alpha \in \mathbb{R}, \alpha . 0 = 0$
- $\forall u \in V, u \cdot 0 = 0$
- $\forall \alpha \in \mathbb{R} \text{ e } \forall u \in V, \alpha . u = 0 \Leftrightarrow \alpha = 0 \text{ ou } u = 0$
- $\forall \alpha \in \mathbb{R} \ e \ \forall u \in V, (-\alpha) \ . \ u = \alpha \ . \ (-u) = -(\alpha u)$
- $\forall \alpha, \beta \in \mathbb{R} e \ \forall u \in V, (\alpha \beta) . u = (\alpha u \beta u)$
- $\forall \alpha \in \mathbb{R} \ e \ \forall u, v \in V, \alpha . (u v) = (\alpha u \alpha v)$

Lembrete

Os elementos u,v de V são denominados vetores, e os números reais α_1 , ..., α_n , escalares.

Note que 0 é o vetor nulo, não o confundir com o escalar 0.

2.2 Subespaço vetorial

Seja V um espaço vetorial sobre \mathbb{R} e S um subconjunto de V, ou seja, S \subseteq V, dizemos que S é subespaço vetorial de V se S também for um espaço vetorial.

Portanto, para demonstrar que S é um subespaço vetorial, utilize o teorema a seguir:

Um subconjunto $W \subseteq V$ é subespaço vetorial de V somente se puderem ser verificadas as três condições a seguir:

 $I - 0 \in W$

II – $\forall u,v \in W \text{ temos } u + v \in W$

III – $\forall \alpha \in \mathbb{R}$ e $\forall u \in W$ temos $\alpha \cdot u \in W$

Chamamos de subespaços triviais quando W = V e W = 0.

Vejamos alguns exemplos.

1) W = $\{(0, y, 0) \in \mathbb{R}^3\}$ é subespaço vetorial de \mathbb{R}^3 ?

Verificando condição I: 0 ∈ W

Note que a 1ª e a 3ª componentes das coordenadas de todos os vetores que compõe W devem ser iguais a 0 e que para a 2ª componente, y, não há restrição de valor, logo $0 = (0, 0, 0) \in W$.

Verificando condição II: ∀u,v ∈ W temos u + v ∈ W

Sejam
$$u = (0, y, 0) e v = (0, t, 0) com u, v \in W$$

Logo
$$u + v = (0, y, 0) + (0, t, 0) = (0, y + t, 0) \in W$$

Verificando condição III: $\forall \alpha \in R \in \forall u \in W \text{ temos } \alpha \cdot u \in W$

Seja
$$\alpha \in R$$
 e u = $(0, y, 0) \in W$

$$\alpha \cdot u = (0, \alpha y, 0) \in W$$

Satisfeitas as três condições, podemos afirmar que W é subespaço vetorial de \mathbb{R}^3 .

2) W =
$$\{(x,1) \in \mathbb{R}^2\}$$
 é subespaço vetorial de \mathbb{R}^2 ?

Note que em todos os vetores que compõe W, a 2^a componente da coordenada será sempre igual a 1, assim $0 = (0, 0) \notin W$. Logo W não é subespaço vetorial de \mathbb{R}^2 .

3) A reta W = $\{y = 2x \in \mathbb{R}^2\}$ é um subespaço vetorial de \mathbb{R}^2 ?

Note que os pares ordenados que formam o conjunto de retas que compõe W são da forma (x, 2x).

Verificando a condição I: 0 ∈ W

Se
$$x = 0$$
, verifica-se que $y = 2$. $0 = 0$, assim $0 = (0,0) \in W$

Verificando a condição II: $\forall u,v \in W$ temos $u + v \in W$

Sejam $u = (x, 2x) e v = (s, 2s) com u, s \in W$, temos:

$$u + v = (x, 2x) + (s, 2s) = (x + s, 2x + 2s) \in W$$

Verificando condição III: $\forall \alpha \in \mathbb{R} \ e \ \forall u \in W \ temos \ \alpha$. $u \in W$

Seja
$$\alpha \in \mathbb{R}$$
 e u = (x, 2x) \in W, então α . u = (α x, 2 α x) \in W

Satisfeitas as três condições, podemos afirmar que W é subespaço vetorial de \mathbb{R}^2 .

4)
$$W = \left\{ \begin{pmatrix} 1 & b \\ a & 1 \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$
 é subespaço de $M_2(\mathbb{R}^2)$?

 $M_2(\mathbb{R}^2)$ é o conjunto de todas as matrizes quadradas de ordem 2 de números reais.

Verificando condição I: 0 ∈ W

 $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ \in W? Não, pois os elementos a_{11} e a_{22} devem ser iguais a 1, dessa forma, $a_{11} = a_{22} = 1 \neq 0$. Logo W não é subespaço vetorial de $M_3(\mathbb{R}^2)$.

5) W =
$$\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$
 é subespaço vetorial de $M_2(\mathbb{R}^2)$?

Note que pertencem a W todas as matrizes cujos elementos das posições a_{12} e a_{21} são iguais a 0 e os demais elementos podem ser quaisquer uns.

Verificando condição I: 0 ∈ W

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in W$$

Verificando condição II: $\forall A,B \in W$, temos $A + B \in W$

Sejam as matrizes $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} e B = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$ pertencentes a W, temos:

$$A + B = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} + \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix} = \begin{pmatrix} a+c & 0 \\ 0 & b+d \end{pmatrix} \in W$$

Verificando condição III: $\forall \alpha \in R \ e \ \forall A \in W$, temos $\alpha \cdot A \in W$

$$\alpha \cdot \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} \alpha a & 0 \\ 0 & \alpha b \end{pmatrix} \in W$$

Satisfeitas as três condições, podemos afirmar que W é subespaço vetorial de $M_2(\mathbb{R}^2)$.

6) Considere o espaço vetorial dos polinômios de grau \leq 3, denotado por P_3 , incluindo o polinômio nulo, aplicando as três condições. Depois, mostre que P_2 , conjunto dos polinômios de grau \leq 2, é subespaço vetorial de P_3

Verificando condição I: $0 \in P_2$

 $0 \in P_{2}$, pois 0 é o polinômio nulo.

Verificando condição II: $\forall p(x), q(x) \in P_2$, temos $p(x) + q(x) \in P_2$

Sejam
$$p(x) = a_2x^2 + a_1x + a_0 e q(x) = b_2x^2 + b_1x + b_0$$

$$p(x) + q(x) = (a_2 + b_3)x^2 + (a_1 + b_1)x + (a_0 + b_0) \in P_2$$

Verificando condição III: $\forall p(x) \in P_2 \in \forall \alpha \in \mathbb{R}$, temos $\alpha \cdot p(x) \in P_2$

$$\alpha \cdot p(x) = \alpha \cdot (a_2 x^2 + a_1 x + a_0) = \alpha a_2 x^2 + \alpha a_1 x + \alpha a_0 \in P_2$$

Satisfeitas as três condições, podemos afirmar que P2 é subespaço vetorial de P₃.

7) W=
$$\{(x, y, z) \in \mathbb{R}^3 | x=y \in z=0\}$$
 é subespaço de \mathbb{R}^3 ?

Percebemos que os vetores de W devem ter o 1º e o 2º componente da coordenada iguais e o 3º componente deve ser igual a 0. Dessa maneira, os vetores de W são da forma $(x, x, z) \in \mathbb{R}^3$.

Verificando a condição I: $0 \in \mathbb{R}^3$

$$0 = (0, 0, 0) \in \mathbb{R}^3$$

Verificando a condição II: ∀u,v ∈ W, temos u + v ∈ W

Sejam u = (x, x, z) e v = (r, r, t) ambos $\in W$ com z = t = 0

$$u + v = (x + r, x + r, z + t) = (x + r, x + r, 0) \in W$$

Verificando a condição III: $\forall \alpha \in R \ e \ \forall u \in W$, temos $\alpha \cdot u \in W$

$$\alpha \cdot u = \alpha \cdot (x, x, z) = (\alpha x, \alpha x, \alpha z) = (\alpha x, \alpha x, 0) \in W$$

Satisfeitas as três condições, podemos afirmar que W é subespaço vetorial de \mathbb{R}^3 .

2.3 Soma de subespaços

Dados U e W subespaços vetoriais de V, definimos soma de U com W, denotada por U + W como:

$$U + W = \{ s \in W \mid s = u + w \text{ com } u \in U \text{ e } w \in W \}$$

É imediato perceber que para a soma U + W vale a propriedade comutativa e a propriedade do elemento neutro para a adição, ou seja:

$$U + W = W + U e que U + 0 = 0$$

Note que, pela definição, se U e W são subespaços vetoriais de V, então U + W também é subespaço vetorial de V.

Vejamos alguns exemplos.

1) Sejam U =
$$\{(x,0,0) \in \mathbb{R}^3\}$$
 e W = $\{(0, y, 0) \in \mathbb{R}^3\}$, determine a soma U + V.

Chamamos u = (x, 0, 0) e w = (0, y, 0) então:

$$S = U + W = (X, 0, 0) + (0, y, 0) = (X + 0, 0 + y, 0 + 0)$$

$$\therefore$$
 U + W = (x, y, 0)

Graficamente, a soma U + W corresponde ao plano formado pelos eixos x e y.

Figura 11

2) Sejam U = $\{(0, y, z, t) \in \mathbb{R}^4\}$ e W = $\{(x, y, 0, t) \in \mathbb{R}^4\}$ subespaços vetoriais de \mathbb{R}^4 , determine a soma U + W.

Observe que em U e W há letras repetidas e, como são subespaços diferentes, é preciso fazer a modificação das letras em comum em qualquer um deles, visto que, apesar da mesma grafia, não necessariamente assumirão os mesmos valores.

Portanto, modificam-se as letras em $U = \{(0, a, b, c) \in \mathbb{R}^4\}$

Assim:

$$S = U + W = (0, a, b, c) + (x, y, 0, t) = (0 + x, a + y, b + 0, c + t)$$

$$\therefore$$
 U + W = (x, a + y, b, c + t)

3) Sejam U = $\{(x, y) \in \mathbb{R}^2/y - 3x = 0\}$ e W = $\{(x, y) \in \mathbb{R}^2/x = 2y\}$ subespaços vetoriais de \mathbb{R}^2 , determine a soma U + W.

Pelas características dos subespaços U e W, devemos reescrevê-lo da seguinte forma:

$$U = \{(x, 3x) \in \mathbb{R}^2\} \in W = \{(2y, y) \in \mathbb{R}^2/\}$$

Dessa forma, eliminamos letras repetidas e podemos efetuar a soma.

$$S = U + W = (x, 3x) + (2y, y) = (x + 2y, 3x + y)$$

$$\therefore U + W = (x + 2y, 3x + y)$$

2.4 Intersecção de subespaços vetoriais

Dados dois subespaços vetoriais U e W do espaço vetorial V. A intersecção entre U e W, denotada por U \cap W, é dada por:

$$U \cap W = \{r \in V / r \in U e r \in W\}$$

Demostraremos a seguir que, se U e W são subespaços vetoriais de V, a intersecção U ∩ W também é subespaço de V.

- $0 \in U \cap W$, pois, $0 \in U$ e $0 \in W$
- \forall r, s \in U \cap W, r + s \in U \cap W
- $\forall r \in U \cap W, \forall \alpha \in \mathbb{R}, \alpha . r \in U \cap W$

2.4.1 Propriedades

- $U \cap \{0\} = \{0\}$
- $U \cap W \subset U \in U \cap W \subset W$

Vejamos alguns exemplos.

1) Dados U = $\{(0, y) \in \mathbb{R}^2\}$ e W = $\{(x, 0) \in \mathbb{R}^2\}$, ambos subespaços vetoriais de \mathbb{R}^2 , determine U \cap W.

Pela definição, a intersecção entre U e W é todo vetor que, ao mesmo tempo, pertença a U e a W. Dessa forma, para determinar U ∩ W, devemos igualar os vetores de U com o vetor de W.

$$(0, y) = (x, 0)$$

Para este sistema, há uma única solução possível, portanto, sistema possível e determinado (SPD), x = 0 e y = 0.

Logo
$$U \cap W = \{(0, 0)\}.$$

2) Dada a matriz $A = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in M_2(\mathbb{R}) \right\}$ e $B = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \in M_2(\mathbb{R}) \right\}$ subespaços vetoriais de $M_2(\mathbb{R})$, determinar $A \cap B$.

Pela definição A \cap B = {r \in M₂(\mathbb{R}) / r \in A e r \in B}, devemos igualar os vetores de A aos vetores de B. Todavia, como temos a letra "a" comum em A e B, convém substituir por outra letra.

$$r \in A \Rightarrow r = \begin{pmatrix} a & b \\ c & 0 \end{pmatrix}$$

$$r \in B \Rightarrow r = \begin{pmatrix} u & 0 \\ 0 & d \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & 0 \end{pmatrix} = \begin{pmatrix} u & 0 \\ c & d \end{pmatrix}$$

Assim, temos: a = u, b = 0, c = 0 e d = 0. Sendo u qualquer, temos infinitas soluções, portanto sistema possível e indeterminado (SPI).

$$Logo A \cap B = \left\{ \begin{pmatrix} u & 0 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$

3) Sendo U = $\{(x, y, 0, 3y) \in \mathbb{R}^4\}$ e W= $\{(x + z, 0, t, z), determine U <math>\cap$ W.

Pela definição $U \cap W = \{r \in V \mid r \in W\}$, devemos igualar os vetores de U aos vetores de W. Todavia, a letra x é comum a U e a W, portanto convém substituí-la.

$$(x, y, 0, 3y) = (a + z, 0, t, z)$$

Assim, podemos escrever o sistema

$$\begin{cases} x = a + z \\ y = 0 \\ t = 0 \\ 3y = z \end{cases}$$

Resolvendo o sistema, encontramos x = a, y = 0, z = 0 e t = 0, portanto $U \cap W \{(a, 0, 0, 0)\}$

4) Dados U =
$$\{(x, y, z) \in \mathbb{R}^3 / x + y - 2z = 0\}$$
 e W = $\{(x, y, z) \in \mathbb{R}^3 / 2y - z = 0\}$, determine U \cap W.

Neste caso, usaremos uma forma diferente de resolução. Tomaremos as condições dadas nos subespaços U e W e resolveremos o sistema gerado por essas condições.

$$\begin{cases} x + y - 2z = 0 \\ 2y - z = 0 \end{cases}$$

Logo z = 2y e x = 3y, com y qualquer.

Assim,
$$U \cap W = \{(3y, y, 2y) \in \mathbb{R}^3\}$$

Importante notar que, na intersecção de subespaços vetoriais, para o sistema a ser resolvido existem apenas duas possiblidades de solução:

- $U \cap W = \{0\}$, portanto SPD.
- U ∩ W apresenta infinitas soluções, portanto SPI.

2.4.2 Soma direta

Sejam os subespaços vetoriais U e W do espaço vetorial V, tal que U \cap W = {0} e U + W = V. Neste caso dizemos que V é soma direta dos subespaços U e W e indicaremos por V = U \oplus W.

Vejamos alguns exemplos.

1) Dados os subespaços $U = \{(x, y, 0) \in \mathbb{R}^3\}$ e $W = \{(0, y, z) \in \mathbb{R}^3\}$, verificar se \mathbb{R}^3 é soma direta de U e W.

Devemos verificar as duas condições.

$$\mathsf{U} \cap \mathsf{W} = \{0\}$$

$$(x, y, 0) = (0, a, z) \Rightarrow x = 0, y = a e z = 0$$

Logo
$$U \cap W = \{(0, a, 0) \neq (0, 0, 0)\}$$

Como a primeira condição não foi satisfeita, \mathbb{R}^3 não é soma direta de U e W.

2) Dados os subespaços $U = \{(x, 0, 0) \in \mathbb{R}^3\}$ e $W = \{(0, y, z) \in \mathbb{R}^3\}$, verificar se \mathbb{R}^3 é soma direta de U e W.

Devemos verificar as duas condições.

$$I - U \cap W = \{0\}$$

$$(x, 0, 0) = (0, y, z) \Rightarrow x = 0, y = 0 e z = 0$$

Logo
$$U \cap W = \{(0, 0, 0)\}$$

$$II - U + W = V$$

$$(x, 0, 0) + (0, y, z) = \{(x, y, z) \in \mathbb{R}^3\}$$

Satisfeitas as condições (I) e (II), podemos afirmar que R³ é soma de direta de U e W.

3) Dados A =
$$\left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$
 e B = $\left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{R}) \right\}$, verifique se M2(R) é soma direta de A e B.

Devemos verificar as duas condições.

$$I - A \cap B = \{0\}$$

$$\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$$

Pela igualdade de matrizes, obtemos o sistema:

$$\begin{cases} a = 0 \\ b = 0 \\ c = 0 \\ d = 0 \end{cases}$$

$$Logo A \cap B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$II - A + B = M_2(\mathbb{R})$$

$$\begin{pmatrix} a & 0 \\ c & d \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$

Satisfeitas as condições (I) e (II), podemos afirmar que $M_2(\mathbb{R})$ é soma direta de A e B.

4) Dados A =
$$\left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$
 e B = $\left\{ \begin{pmatrix} 0 & q \\ 0 & 0 \end{pmatrix} \in M_2(\mathbb{R}) \right\}$, verifique se $M_2(\mathbb{R})$ é soma direta de A e B.

Devemos verificar as duas condições.

$$A \cap B = \{0\}$$

$$\begin{pmatrix} a & b \\ c & 0 \end{pmatrix} = \begin{pmatrix} 0 & q \\ 0 & 0 \end{pmatrix}$$

Pela igualdade de matrizes, obtemos o sistema:

$$\begin{cases} a = 0 \\ c = 0 \end{cases}$$

$$Logo A \cap B = \begin{pmatrix} 0 & q \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Não satisfeita a condição (I), podemos afirmar que $M_2(\mathbb{R})$ não é soma direta de A e B.

Dados U = $\{(x, y, 0) \in \mathbb{R}^3 / x - y = 0\}$ e W = $\{(a, b, c) \in \mathbb{R}^3 / b - c = 0\}$, verifique se \mathbb{R}^3 é soma direta de U e W.

$$I - U \cap W = \{0\}$$

Igualando os vetores de U aos vetores de V:

$$(x, y, 0) = (a, b, c)$$

Pela igualdade, obtemos o sistema:

$$\begin{cases} x = a \\ y = b \\ 0 = c \end{cases}$$

Pelas condições dadas de U e W, verifica-se x = y e b = c. Do sistema verifica-se que y = b. Portanto x = y = b = c = 0

Logo
$$U \cap W = \{(0, 0, 0)\}$$

$$II - U + W = V$$

$$(x, y, 0) + (a, b, c) = \{(x + a, y + b, c) \in \mathbb{R}^3\} = \mathbb{R}^3$$

Satisfeitas as condições (I) e (II), podemos afirmar que \mathbb{R}^3 é soma direta de U e W.

2.5 Combinações lineares

Seja V um espaço vetorial sobre \mathbb{R} , considere o subconjunto $U = \{(u_1, u_2, ..., u_n) \subset V\}$. Tomemos agora um subconjunto de V, formado a partir de U, denotado por $[U] = \{\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n / \alpha_1, \alpha_2, ... \alpha_n \in \mathbb{R}\}$ e subespaço de V.

2.5.1 Definição

Chamamos [U] de **subespaço gerado** de U, e cada elemento de [U] é uma **combinação linear** de u_1 , u_2 , ..., u_n , ou combinação linear de U. Podemos dizer que os vetores de U geram [U] ou ainda que os vetores de U são geradores.

Vejamos alguns exemplos.

1) Escrever o vetor u = (4, 3) como combinação linear dos vetores v = (1, 0) e w = (0, 1).

Para que u seja combinação linear de v e w, devemos ter:

$$u = \alpha v + \beta w$$

$$(4, 3) = \alpha(1, 0) + \beta(0, 1)$$

$$(4, 3) = (\alpha, 0) + (0, \beta)$$

$$(4, 3) = (\alpha, \beta)$$

Da igualdade, podemos montar o sistema:

$$\begin{cases} \alpha = 4 \\ \beta = 3 \end{cases}$$

$$Logo (4, 3) = 4(1, 0) + 3(0, 1)$$

2) Escrever o vetor u = (10, 2, -2) como combinação linear dos vetores v = (2, 4, 0) e w = (2, -2, 2).

Para que u seja combinação linear de v e w, devemos ter:

$$u = \alpha v + \beta w$$

$$(10, 2, -2) = \alpha(2, 4, 0) + \beta(2, -2, 2)$$

$$(10, 2, -2) = (2\alpha, 4\alpha, 0) + (2\beta, -2\beta, 2\beta)$$

$$(10, 2, -2) = (2\alpha + 2\beta, 4\alpha - 2\beta, 0 + 2\beta)$$

Da igualdade, podemos montar o sistema:

$$\begin{cases} 2\alpha + 2\beta = 10 \\ 4\alpha - 2\beta = 2 \end{cases}$$
 sistema impossível
$$2\beta = -2$$

Como o sistema não tem solução, u não pode ser escrito como combinação linear de v e w.

3) Escrever o vetor u=(2,4,-3) como combinação linear dos vetores v=(1,0,0), w=(0,-1,0), z=(0,0,2).

Para que u seja combinação linear de v e w, devemos ter:

$$u = \alpha v + \beta w + \gamma z$$

$$(2, 4, -3) = \alpha(1, 0, 0) + \beta(0, -1, 0) + \gamma(0, 0, 2)$$

$$(2, 4, -3) = (\alpha, 0, 0) + (0, -\beta, 0) + (0, 0, 2\gamma)$$

$$(2, 4, -3) = (\alpha, -\beta, 2\gamma)$$

Da igualdade, podemos montar o sistema:

$$\begin{cases} \alpha = 2 \\ -\beta = 4 \iff \begin{cases} \alpha = 2 \\ \beta = -4 \\ \gamma = -1.5 \end{cases}$$

Logo (2, 4, -3) = 2(1, 0, 0) - 4(0, -1, 0) - 1,5(0, 0, 2)

4) Escrever a matriz $A = \begin{pmatrix} 2 & 4 \\ 10 & 6 \end{pmatrix}$ como combinação linear das matrizes $B = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e $D = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$.

Para que A seja combinação linear de B, C e D, devemos ter:

$$A = \alpha B + \beta C + \gamma D$$

$$\begin{pmatrix} 2 & 4 \\ 10 & 6 \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 4 \\ 10 & 6 \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 2\alpha & 0 \end{pmatrix} + \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \gamma & \gamma \end{pmatrix}$$

$$\begin{pmatrix} 2 & 4 \\ 10 & 6 \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ 2\alpha + \gamma & \gamma \end{pmatrix}$$

Da igualdade podemos montar o sistema:

$$\begin{cases} \alpha = 2 \\ \beta = 4 \\ 2\alpha + \gamma = 10 \\ \gamma = 6 \end{cases}$$

Logo
$$\begin{pmatrix} 2 & 4 \\ 10 & 6 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix} + 4 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + 6 \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Dizer que um vetor u é combinação linear de outros vetores é o mesmo que escrever u em função desses outros vetores.

2.5.2 Propriedades dos subespaços gerados

Se R e S são subconjuntos de W, então valem as propriedades.

- R ⊂ [R], ou seja, R está contido no subespaço gerado [R]
- Se $S \subset R$, então $[S] \subset [R]$
- Se R, S \subset W, então [R \cup S] = [R] + [S]
- Se U = [R] e V = [S], então U + V = $[R \cup S]$

Vejamos alguns exemplos.

1) Dado $U = \{(2, 0, 3), (0, 0, 2)\} \subset \mathbb{R}^3$, determine [U].

Lembrando que o subespaço gerado por U é o conjunto de todas as combinações lineares possíveis formadas a partir dos vetores (2, 0, 3) e (0, 0, 2).

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = \alpha(2, 0, 3) + \beta(0, 0, 2)\}$$

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (2\alpha, 0, 3\alpha) + (0, 0, 2\beta)\}$$

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (2\alpha, 0, 3\alpha + 2\beta)\}$$

$$[U] = \{(2\alpha, 0, 3\alpha + 2\beta) \in \mathbb{R}^3\}$$

2) Dado U =
$$\{(-2, 0, 2), (0, -1, 2), (0, 1, 0)\} \subset \mathbb{R}^3$$
, determine [U].

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = \alpha(-2, 0, 2) + \beta(0, -1, 2) + \gamma(0, 1, 0)\}$$

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (-2\alpha, 0, 2\alpha) + (0, -\beta, 2\beta) + (0, \gamma, 0)\}$$

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (-2\alpha, -\beta + \gamma, 2\alpha + 2\beta)\}$$

$$[U] = \{(-2\alpha, -\beta + \gamma, 2\alpha + 2\beta) \in \mathbb{R}^3\}$$

3) Determine os geradores de W = $\{(x, y) \in \mathbb{R}^2 \mid x = 4y\}$

Dada a condição que x = 4y, reescrevemos os vetores de $W = \{(4y, y) \in \mathbb{R}^2\}$

Os vetores de W estão escritos em função de y. Assim, para determinarmos os geradores, colocamos y em evidência, ou seja, w = (4y, y) = y(4, 1).

Logo
$$U_1 = \{(4,1)\}$$
 gera W.

Observe que podemos também escrever os vetores de W em função de x, ou seja $y = \frac{1}{4}x$, e assim $W = \left\{ \left(x, \frac{1}{4}x \right) \in \mathbb{R}^2 \right\}$

Colocando a letra x em evidência, temos w = $\left(x, \frac{1}{4}x\right) = x\left(1, \frac{1}{4}\right)$

Logo
$$U_2 = \left\{ \left(1, \frac{1}{4} \right) \right\}$$
 gera W.

Portanto, U_1 e U_2 geram W, então W = [(4, 1)] e W = $\left[\left(1, \frac{1}{4}\right)\right]$

4) Dado o subespaço vetorial $W = \{(3x, 2x - z, z) \in \mathbb{R}^3\}$, determine os geradores de W.

Como os vetores de W estão escritos em função da letra x e da letra z, podemos concluir que teremos dois vetores geradores.

Designemos por w = (3x, 2x - z, z) e encontramos os dois vetores em função de cada uma das letras.

$$W = (3x, 2x - z, z) = (3x, 2x, 0) + (0, -z, z)$$

Colocando em evidência as letras x e z, temos:

$$W = (3x, 2x - z, z) = x(3, 2, 0) + z(0, -1, 1)$$

Logo $U = \{(3, 2, 0), (0, -1, 1)\}$ são geradores de W ou W = [(3, 2, 0), (0, -1, 1)]

5) Determine os geradores do subespaço W =
$$\left\{ \begin{pmatrix} a & 2b \\ a-b & c \end{pmatrix} \in M_2(\mathbb{R}) \right\}$$

Como os vetores de W estão escritos em função das letras a, b e c, concluímos que teremos três vetores geradores.

Escrevemos os vetores em função de cada letra.

$$\begin{pmatrix} a & 2b \\ a - b & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ a & 0 \end{pmatrix} + \begin{pmatrix} 0 & 2b \\ -b & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix}$$

Colocamos as letras em evidência.

$$\begin{pmatrix} a & 2b \\ a-b & c \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Logo os geradores de W são:

$$U = \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \text{ gera W ou W} = \left[\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right]$$

2.6 Espaços vetoriais finitamente gerados

Anteriormente, aprendemos que é possível gerar subespaços vetoriais a partir de conjuntos geradores finitos. Veremos agora que também é possível gerar alguns espaços vetoriais através desses mesmos conjuntos.

Vejamos alguns exemplos:

1) Dado U =
$$\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \subset \mathbb{R}^3$$
, determine [U].

Vamos determinar todas as possíveis combinações lineares com os vetores de U.

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = \alpha(1, 0, 0) + \beta(0, 1, 0) + \gamma(0, 0, 1)\}$$

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (\alpha, 0, 0) + (0, \beta, 0) + (0, 0, \gamma)\}$$

$$[U] = \{(x, y, z) \in \mathbb{R}^3 / (x, y, z) = (\alpha, \beta, \gamma)\}$$

$$[U] = \{(\alpha, \beta, \gamma) \in \mathbb{R}^3\}$$

Nota-se facilmente que $[U] = \mathbb{R}^3$

Podemos estender que \mathbb{R}^n também é espaço vetorial finitamente gerado.

2) Dado U =
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \subset \mathbb{R}^3, \text{ determine [U]}.$$

$$[U] = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2\left(\mathbb{R}\right) / \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \alpha \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \delta \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$[\mathsf{U}] = \left\{ \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \in \mathsf{M}_2 \left(\mathbb{R} \right) / \begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} = \begin{pmatrix} \alpha & \mathsf{0} \\ \mathsf{0} & \mathsf{0} \end{pmatrix} + \begin{pmatrix} \mathsf{0} & \beta \\ \mathsf{0} & \mathsf{0} \end{pmatrix} + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \gamma & \mathsf{0} \end{pmatrix} + \begin{pmatrix} \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \delta \end{pmatrix} \right\}$$

$$[U] = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R}) / \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \right\}$$

$$[\mathsf{U}] = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathsf{M}_2(\mathbb{R}) \right\}$$

Vemos, portanto, que $[U] = M_2(R)$

Da mesma forma, podemos generalizar que M_{mxn} (R) também é espaço vetorial finitamente gerado.

3) Dado o conjunto de todos os polinômios reais P(R). Sabemos que para este conjunto valem as operações de soma e multiplicação por escalar, portanto P(R) é um espaço vetorial sobre R. Determine um sistema finito de geradores de P(R).

Para o conjunto finito $U = \{p_1, ..., p_n\} \subset P(R)$, considere:

- Que cada p_i seja não nulo.
- Que p_n seja o polinômio de maior grau de U.

As combinações lineares possíveis são:

$$\alpha_{\scriptscriptstyle 1} p_{\scriptscriptstyle 1} + ... + \alpha_{\scriptscriptstyle n} p_{\scriptscriptstyle n}$$

A combinação linear de maior grau será menor ou igual ao grau de p_n . Todavia, P(R) abrange todos os polinômios reais, incluindo os de grau maior que o grau de p_n . Logo [U] \neq P(R) para todo conjunto finito U \subset P(R). Concluímos, portanto, que P(R) não é um espaço vetorial finitamente gerado.

2.7 Dependência e independência linear

Considere V um espaço vetorial sobre \mathbb{R} , um conjunto $S = \{u_1, u_2, ..., u_n\} \subset V$ e um conjunto de escalares $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{R}$.

• S será linearmente independente (LI) se:

$$\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n = 0$$
, com $\alpha_1 = \alpha_2 = ... = \alpha_n = 0$

• S será linearmente dependente (LD) se:

 $\alpha_1 u_1 + \alpha_2 u_2 + ... + \alpha_n u_n = 0$, com ao menos um escalar diferente de zero.

Então, se quisermos determinar se um conjunto de vetores é LI ou LD, devemos montar a combinação linear e igualar a zero as equações do sistema resultante da combinação linear.

Se o sistema admitir solução única (SPD), os vetores serão LI. Se o sistema admitir infinitas soluções (SPI), os vetores serão LD.

Vejamos alguns exemplos.

1) Verificar se os vetores do conjunto $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \subset \mathbb{R}^3$ são LI ou LD.

$$\alpha(1, 0, 0) + \beta(0, 1, 0) + \gamma(0, 0, 1) = (0, 0, 0)$$

$$(\alpha, 0, 0) + (0, \beta, 0) + (0, 0, \gamma) = (0, 0, 0)$$

$$(\alpha, \beta, \gamma) = (0, 0, 0)$$

$$\begin{cases} \alpha = 0 \\ \beta = 0 \\ \gamma = 0 \end{cases}$$

Como todos os escalares são iguais a zero e o sistema é SPD, os vetores de S são LI.

2) Verificar se os vetores do conjunto $S = \{(1,1,0,0), (0,2,0,0), (3,1,0,0)\} \subset \mathbb{R}^4$ são LI ou LD.

$$\alpha(1, 1, 0, 0) + \beta(0, 2, 0, 0) + \gamma(3, 1, 0, 0) = (0, 0, 0, 0)$$

$$(\alpha, \alpha, 0, 0) + (0, 2\beta, 0, 0) + (3\gamma, \gamma, 0, 0) = (0, 0, 0, 0)$$

$$(\alpha + \gamma, \alpha + 2\beta + \gamma, 0, 0) = (0, 0, 0, 0)$$

$$\begin{cases} \alpha + 3\gamma = 0 \\ \alpha + 2\beta + \gamma = 0 \end{cases} \Rightarrow \begin{cases} \alpha = -3\gamma \\ 2\beta - 2\gamma = 0 \end{cases}$$

Como o sistema é SPI, os vetores do conjunto S são LD.

3) Verificar se os vetores do conjunto $S = \{(1,-2,3), (4,0,-2), (1,2,3)\} \subset \mathbb{R}^3$ são LI ou LD.

$$\alpha(1, -2, 3) + \beta(4, 0, 2) + \gamma(1, 2, 3) = (0, 0, 0)$$

$$(\alpha, -2\alpha, 3\alpha) + (4\beta, 0, 2\beta) + (\gamma, 2\gamma, 3\gamma) = (0, 0, 0)$$

$$(\alpha + 4\beta + \gamma, -2\alpha + 2\gamma, 3\alpha + 2\beta + 3\gamma) = (0, 0, 0)$$

$$\begin{cases} \alpha + 4\beta + \gamma = 0 \text{ (I)} \\ -2\alpha + 2\gamma = 0 \text{ (II)} \\ 3\alpha + 2\beta + 3\gamma = 0 \text{ (III)} \end{cases}$$

Simplificando o sistema, temos:

$$\begin{cases} \alpha + 4\beta + \gamma = 0 \text{ (I)} \\ -2\alpha + 2\gamma = 0 \text{ (II)} \end{cases} \sim \begin{cases} 2\alpha + 4\beta = 0 \\ 6\alpha + 2\beta = 0 \end{cases}$$

Logo $\alpha = \beta = \gamma = 0$, portanto os vetores de S são LI.

4) Verificar se os vetores
$$v_1 = \begin{pmatrix} 5 & 10 \\ 4 & 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ são LD ou LI.

$$\alpha \begin{pmatrix} 5 & 10 \\ 4 & 2 \end{pmatrix} + \beta \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} + \gamma \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 5\alpha & 10\alpha \\ 4\alpha & 2\alpha \end{pmatrix} + \begin{pmatrix} \beta & 2\beta \\ 2\beta & \beta \end{pmatrix} + \begin{pmatrix} \gamma & 2\gamma \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 5\alpha + \beta + \gamma & 10\alpha + 2\beta + 2\gamma \\ 4\alpha + 2\beta & 2\alpha + \beta \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{cases} 5\alpha + \beta + \gamma = 0 \\ 10\alpha + 2\beta + 2\gamma = 0 \\ 4\alpha + 2\beta = 0 \\ 2\alpha + \beta = 0 \end{cases}$$

Simplificando o sistema:

$$\begin{cases} 5\alpha + \beta + \gamma = 0 \\ 10\alpha + 2\beta + 2\gamma = 0 \\ 4\alpha + 2\beta = 0 \end{cases} \sim \begin{cases} 5\alpha + \beta + \gamma = 0 \\ 2\alpha + \beta = 0 \end{cases}$$

Como o sistema é SPI, os vetores v₁, v₂ e v₃ são LD.

3 BASE E DIMENSÃO

3.1 Determinação de vetores linearmente dependentes e independentes no \mathbb{R}^{n}

Veremos agora um dispositivo prático que ajudará a determinar vetores LI e LD através da montagem e escalonamento de uma matriz. As linhas da matriz serão formadas pelas coordenadas dos vetores. Na sequência, aplicam-se as operações elementares até transformá-las em uma matriz triangular (escalonada). Assim:

- os vetores serão LD se na matriz triangular houver linha ou linhas nulas;
- os vetores serão LI se nenhuma linha da matriz triangular for nula.

Vejamos alguns exemplos.

1) Verificar se os vetores do conjunto $S = \{(1,-2,3), (4,0,-2), (1,2,3)\} \subset \mathbb{R}^3$ são LI ou LD utilizando o dispositivo prático.

Vamos transformar em zero os elementos abaixo da diagonal principal da matriz, por meio das operações elementares.

• 1º passo: montar as linhas da matriz com as coordenadas dos vetores e zerar o elemento a_{21} . Para isso, substituiremos a linha 2 (L_2) da matriz pela combinação linear $-4L_1 + L_2$.

$$\begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 \\ 0 & 8 & 10 \\ 1 & 2 & 3 \end{pmatrix}$$

$$L_{3} = -4L_{3} + L_{3}$$

• 2º passo: zerar o elemento a₃₁ substituindo a linha 3 (L₂) pela combinação linear -L₁ + L₂.

$$\begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 \\ 0 & 8 & 10 \\ 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 \\ 0 & 8 & 10 \\ 0 & 4 & 0 \end{pmatrix}$$

$$L_2 = -4L_1 + L_2$$
 $L_3 = -L_1 + L_3$

• 3º passo: zerar o elemento a_{32} substituindo a linha 3 (L_3) pela combinação linear $-2L_3 + L_2$.

$$\begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & -2 \\ 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 \\ 0 & 8 & 10 \\ 1 & 2 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 \\ 0 & 8 & 10 \\ 0 & 4 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 \\ 0 & 8 & 10 \\ 0 & 0 & 10 \end{pmatrix}$$
$$L_{2} = -4L_{1} + L_{2} \qquad L_{3} = -L_{1} + L_{3} \qquad L_{3} = -2L_{3} + L_{2}$$

Como a matriz está escalonada e nenhuma linha é nula, logo os vetores de S são LI.

- 2) Verificar se os vetores do conjunto $S = \{(1, 1, 0, 0), (0, 2, 0, 0), (3, 1, 0, 0)\} \subset \mathbb{R}^4$ são LI ou LD utilizando o dispositivo prático.
 - 1º passo: montar as linhas da matriz com as coordenadas dos vetores e zerar o elemento a₃₁. Para isso, substituiremos a linha 3 (L₃) da matriz pela combinação linear -3L₁ + L₃.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{pmatrix}$$

$$L_{2} = -3L_{1} + L_{2}$$

• 2° passo: zerar o elemento a_{32} substituindo a linha 3 (L_3) pela combinação linear $L_2 + L_3$.

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$L_{3} = -3L_{1} + L_{3} \qquad L_{3} = -2L_{2} + L_{3}$$

Como a matriz está escalonada e possui a última linha nula, logo os vetores de S são LD.

3.1.1 Propriedades

Seja um espaço vetorial V sobre R:

- Considere S um subconjunto finito e não vazio de V. Se S contém o vetor nulo 0 então S é LD.
- Sejam S_1 e S_2 subconjuntos finitos e não vazios de V_1 se S_2 e S_3 e S_4 é LD então S_2 é LD.
- Se S, subconjunto finito e não vazio de V, for LI, então qualquer subconjunto de S é LI.

3.2 Base

Considere um espaço vetorial finitamente gerado V. Designamos de base de V o subconjunto B ⊂ V somente se:

- [B] = V
- Béll

De acordo com a definição, podemos dizer que todo vetor v de V é combinação linear dos vetores da base B. Denotaremos os escalares desta combinação linear de coordenadas de v na base B de acordo com a notação v = $(\alpha_1, \alpha_2, ..., \alpha_n)_B$.

Teoremas

- Todo espaço vetorial finitamente gerado tem base.
- Todas as bases de um espaço vetorial finitamente gerado V têm o mesmo número de vetores.

Se o espaço vetorial $V = \{0\}$, então \emptyset é base de V.

3.3 Dimensão

De acordo com o teorema II, denominamos dimensão de um espaço vetorial finitamente gerado V e a quantidade de vetores de qualquer uma de suas bases. Para a dimensão de um espaço vetorial, usaremos a notação dim V.

3.3.1 Propriedades

Considere U e W subespaços de V.

ÁLGEBRA LINEAR

- $\dim V \ge \dim U$
- $\dim V = \dim U \Leftrightarrow V = U$
- $\dim (U + W) = \dim U + \dim W \dim (U \cap W)$

Vejamos alguns exemplos.

1) Seja V = \mathbb{R}^3 = {(x, y, z) / x, y, z $\in \mathbb{R}$ }. Consideremos o subconjunto U = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Mostremos que U é base de V.

De acordo com a definição, verificaremos as duas condições:

• [U] =V

$$x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = (x, 0, 0) + (0, y, 0) + (0, 0, z) = (x, y, z) = V$$

• U é Ll

$$\alpha(1, 0, 0) + \beta(0, 1, 0) + \delta(0, 0, 1) = (0, 0, 0)$$

$$(\alpha, 0, 0) + (0, \beta, 0) + (0, 0, \delta) = (0, 0, 0)$$

$$(\alpha, \beta, \delta) = (0, 0, 0) \Rightarrow \alpha = \beta = \delta = 0$$

Como o sistema apresentou solução única (SPI), U é LI.

Logo U é base V e dim V = 3

Aplicando o mesmo raciocínio, temos:

$$U = \{(1, 0), (0,1)\}$$
 é base de \mathbb{R}^2 e dim $\mathbb{R}^2 = 2$.

$$U = \{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$$
 é base de \mathbb{R}^4 e dim $\mathbb{R}^4 = 4$

:

$$U = \{(1, 0, ..., 0), (0, 1, ..., 0), ..., (0, 0, ..., 1) \text{ \'e base de } \mathbb{R}^n \text{ e dim } \mathbb{R}^n = n\}$$

As bases anteriores são as mais simples e são chamadas de **bases canônicas**.

2) O subconjunto
$$U = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$
 é uma base de $M_2(\mathbb{R})$?

Verificaremos as duas condições da definição:

$$[U] = M_2(\mathbb{R})$$

$$x \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + y \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + z \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + w \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} =$$

$$= \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ y & 0 \end{pmatrix} + \begin{pmatrix} 0 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & w \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

 $Logo [U] = M_2(\mathbb{R})$

U é LI

$$\alpha \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \gamma \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \delta \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \beta & 0 \end{pmatrix} + \begin{pmatrix} 0 & \gamma \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & \delta \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Assim:

$$\alpha = 0$$
 $\beta = 0$

$$\gamma = 0$$

$$\delta = 0$$

Como o sistema apresentou solução única (SPI), U é LI.

Logo U é base de $M_2(\mathbb{R})$ e dim $M_2(\mathbb{R}) = 4$.

3.4 Determinação da base de um subespaço

Para determinarmos a base de um subespaço U, devemos encontrar um sistema gerador de U, que chamaremos de S, ou seja, [S] = U. Depois, vamos verificar se S é LI ou LD. Após esta verificação, as seguintes situações podem ocorrer:

- Se S é Ll, então é base de U.
- Se S é LD, determinamos o maior subconjunto de S que seja Ll.

Para a segunda situação, devemos nos recordar que, em uma matriz escalonada, as linhas não nulas representam vetores LI. Assim, esses vetores não nulos formam a base de U.

Vejamos alguns exemplos.

- 1) Determine uma base e a dimensão do subespaço $U = \{(3y, 2y, y) \in \mathbb{R}^3\}$
- 1º passo: encontrar um sistema de geradores de U.

$$(3y, 2y, y) = y(3, 2, 1)$$

Logo [(3, 2, 1)] = U, ou seja, o vetor (3, 2, 1) gera U.

• 2º passo: verificar se o conjunto {(3, 2, 1)} é Ll ou LD.

Como $(3, 2, 1) \neq (0, 0, 0)$, temos que $\{(3, 2, 1)\}$ é LI, portanto base de U.

Assim, $B = \{(3, 2, 1)\}$ é base de U e dim U = 1, pois B tem apenas um vetor.

- 2) Determine uma base e a dimensão do subespaço $U = \{(3y, 2y) \in \mathbb{R}^2\}$
- 1º passo: encontrar um sistema de geradores de U.

$$(3y, 2y) = y(3,2)$$

Logo [(3, 2)] = U, ou seja, o vetor (3, 2) gera U.

• 2º passo: verificar se o conjunto {(3, 2)} é Ll ou LD.

Como $(3, 2) \neq (0, 0, 0)$, temos que $\{(3, 2)\}$ é LI, portanto base de U.

Assim, $B = \{(3, 2)\}$ é base de U e dim U = 1, pois B tem apenas um vetor.

- 3) Determine uma base e a dimensão do subespaço $U = \{(x, y, x 3y) \in \mathbb{R}^3\}$
- 1º passo: encontrar um sistema de geradores de U.

$$(x, y, x - 3y) = (x, 0, x) + (0, y, -3y) = x(1, 0, 1) + y(0, 1, -3)$$

Logo [(1, 0, 1), (0, 1, -3)] = U, ou seja, $\{(1, 0, 1), (0, 1, -3)\}$ gera U.

• 2º passo: verificar se o conjunto {(1, 0, 1), (0, 1, -3)} é LI ou LD.

$$\begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & -3
\end{pmatrix}$$

Note que a matriz já está escalonada e que não há linhas nulas, portanto os vetores são Ll.

Assim, $B = \{(1, 0, 1), (0, 1, -3)\}$ é base de U e dim U = 2, pois B tem dois vetores.

- 4) Seja V= [(2, 1, 1), (1, 0, 1), (0, -1, 1)] $\subset \mathbb{R}^3$, encontre uma base e a dimensão de V.
- 1º passo: encontrar um sistema de geradores de V.

 De acordo com o enunciado, temos que B = {(2, 1, 1), (1, 0, 1), (0, -1, 1)} gera V.

• 2º passo: verificar se o conjunto $B = \{(2, 1, 1), (1, 0, 1), (0, -1, 1)\}$ é LI ou LD.

Com os vetores de B formamos as linhas da matriz:

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

Permutando a primeira e a segunda linha, temos:

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$$

Fazendo $-2L_1 + L_2$

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Fazendo $L_2 + L_3$

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Perceba que, na matriz escalonada, a última linha é nula, logo os vetores de B são LD. Entretanto, as linhas não nulas formam vetores Ll. Assim, uma base de V é $C = \{(1, 0, 1), (0, 1, -1)\}$ e dim V = 2.

4 VETOR COORDENADA

Antes de detalhar o que vem a ser o vetor coordenada, devemos estabelecer que uma base ordenada de um espaço V é a base na qual é determinado quem é o primeiro vetor, o segundo vetor e assim por diante.

4.1 Definição

Dessa forma, seja V um espaço vetorial de dimensão finita, onde B = $\{u_1, u_2, ..., u_n\}$ é base de V. Logo todos os vetores v de V podem ser escritos como combinação linear de vetores u de B, de modo que:

$$V = \alpha_1 U_1 + ... + \alpha_n U_n$$

Denominamos coordenadas do vetor v em relação à base ordenada B os escalares α_1 ... α_n da igualdade v = $\alpha_1 u_1 + ... + \alpha_n u_n$.

A notação para o vetor coordenada é na forma de matriz

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$
B

Vejamos os exemplos:

1) Seja B = $\{1, 1+t, 1+t^2\}$ base ordenada de P_2 , conjunto dos polinômios de grau ≤ 2 , determine o vetor coordenada do polinômio p = $3 + 5t + t^2$.

Escrevemos p como combinação linear dos vetores de B:

$$3 + 5t + t^2 = \alpha \cdot 1 + \beta(1+t) + \gamma(1+t^2)$$

$$3 + 5t + t^2 = \alpha + \beta + \beta t + \gamma + \gamma t^2$$

$$3 + 5t + t^2 = (\alpha + \beta + \gamma) + \beta t + \gamma t^2$$

$$\begin{cases} \alpha + \beta + \gamma = 0 \\ \beta = 5 \\ \gamma = 1 \end{cases}$$

Resolvendo o sistema, temos $\alpha = -3$, $\beta = 5$ e $\gamma = 1$

Logo a matriz do vetor coordenada em relação à base ordenada B é:

$$\begin{pmatrix} -3 \\ 5 \\ 1 \end{pmatrix}$$
B

2) Seja B = $\{(1, 0, 2), (1, 1, 1), (1, 0, -1)\}$ base ordenada do \mathbb{R}^3 , determine o vetor coordenada de V = (-1, 1, 2).

Escrevemos v como combinação linear de B:

$$(-1, 2, 2) = \alpha \cdot (1, 0, 2) + \beta(1, 1, 1) + \gamma(1, 0, -1)$$

$$(-1, 2, 2) = \alpha \cdot (1, 0, 2) + \beta(1, 1, 1) + \gamma(1, 0, -1)$$

$$(-1, 2, 2) = (\alpha, 0, 2\alpha) + (\beta, \beta, \beta) + (\gamma, 0, -\gamma)$$

$$(-1, 2, 2) = (\alpha + \beta + \gamma, \beta, 2\alpha + \beta - \gamma)$$

$$\begin{cases} \alpha + \beta + \gamma = -1 \\ \beta = 2 \\ 2\alpha + \beta - \gamma = 2 \end{cases}$$

Resolvendo o sistema, temos α = -1, β = 2, γ = -2

4.2 Mudança de base

Para facilitar a leitura do texto, diremos apenas base em vez de base ordenada.

Considere o espaço vetorial V de dimensão n e também duas bases de V, qual sejam, $B = \{u_1, ..., u_n\}$ e $C = \{v_1, ..., v_n\}$. Existirá, tão somente, uma única família de escalares α_{ij} , de modo que cada vetor de C seja escrito como combinação linear dos vetores de B, ou seja:

$$V_1 = \alpha_{11}U_1 + ... + \alpha_{n1}U_n$$

:

$$v_{n}=\alpha_{1n}u_{1}+...+\alpha_{nn}u_{n}$$

A matriz quadrada de ordem n denomina-se matriz de mudança da base B para base C.

$$P = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \cdots & \alpha_{nn} \end{pmatrix}$$

Percebam que a matriz mudança da base é formada pelo vetor coordenada de cada vetor de C em relação à base B, os quais são dispostos em colunas.

Vejamos alguns exemplos.

1) Qual a matriz de mudança da base $B = \{2, 2 + 2t\}$ para a base $\{2, 2t\}$ no espaço $P_1(\mathbb{R})$?

$$\begin{cases} 2 = x_1 \cdot 2 + y_1 \cdot (2 + 2t) \\ 2t = x_2 \cdot 2 + y_2 \cdot (2 + 2t) \end{cases} \Rightarrow \begin{cases} 2 = 2x_1 + 2y_1 + 2y_1 t \\ 2t = 2x_2 + 2y_2 + 2y_2 t \end{cases}$$

Igualando os termos semelhantes:

$$\Rightarrow \begin{cases} 2 = 2x_1 + 2y_1 \\ 0 = 2y_1 \end{cases} e \begin{cases} 0 = 2x_2 + 2y_2 \\ 2 = 2y_2 \end{cases} \Rightarrow x_1 = 1, y_1 = 0, x_2 = -1 e y_2 = 1$$

Logo:

$$P = \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

2) Qual a matriz mudança da base $B = \{(0, 0, 1), (1, 0, 1), (1, 1, 1)\}$ para a base $C = \{(0, 0, 1), (0, 1, 1), (1, 0, 1)\}$?

$$\begin{cases} (0, 0, 1) = x_1(0, 0, 1) + y_1(1, 0, 1) + z_1(1, 1, 1) \\ (0, 1, 1) = x_2(0, 0, 1) + y_2(1, 0, 1) + z_2(1, 1, 1) \Rightarrow \\ (1, 0, 1) = x_3(0, 0, 1) + y_3(1, 0, 1) + z_3(1, 1, 1) \end{cases}$$

$$\begin{cases} (0, 0, 1) = (0, 0, x_1) + (y_1, 0, y_1) + (z_1, z_1, z_1) \\ (0, 1, 1) = (0, 0, x_2) + (y_2, 0, y_2) + (z_2, z_2, z_2) \Rightarrow \\ (1, 0, 1) = (0, 0, x_3) + (y_3, 0, y_3) + (z_3, z_3, z_3) \end{cases}$$

$$\begin{cases} (0, 0, 1) = (y_1 + z_1, z_1, x_1 + y_1 + z_1) \\ (0, 1, 1) = (y_2 + z_2, z_2, x_2 + y_2 + z_2) \Rightarrow \\ (1, 0, 1) = (y_3 + z_3, z_3, x_3 + y_3 + z_3) \end{cases}$$

$$\begin{cases} y_1 + z_1 = 0 \\ z_1 = 0 \\ x_1 + y_1 + z_1 = 1 \end{cases} \Rightarrow x_1 = 1, y_1 = 0 \text{ e } z_1 = 0$$

$$\begin{cases} y_2 + z_2 = 0 \\ z_2 = 1 \\ x_2 + y_2 + z_2 = 1 \end{cases} \Rightarrow x_2 = 1, y_2 = -1 \text{ e } z_2 = 1$$

$$\begin{cases} y_3 + z_3 = 1 \\ z_3 = 0 \\ x_3 + y_3 + z_3 = 1 \end{cases} \Rightarrow x_3 = 0, y_3 = 1 \text{ e } z_3 = 0$$

Logo a matriz mudança da base B para base C é:

$$P = \begin{pmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Saiba mais

Amplie seus conhecimentos sobre os assuntos tratados até no capítulo 4, item 4.5 a 4.9 da seguinte obra:

CALLIOLI, C. A. Álgebra linear. 3. ed. São Paulo: Harbra, 1980.

Observe a seguir mais alguns exemplos.

1) A matriz A =
$$(a_{ij})3x2$$
, de modo que $a_{ij} = \begin{cases} (-2)^{i+j}, \text{ se } i \neq j \\ 0, \text{ se } i = j \end{cases}$ é:

A)
$$\begin{pmatrix} 0 & 8 \\ 8 & 0 \\ 16 & 32 \end{pmatrix}$$

$$B)\begin{pmatrix}0&8&16\\8&0&32\end{pmatrix}$$

C)
$$\begin{pmatrix} 0 & -8 \\ -8 & 0 \\ 16 & -32 \end{pmatrix}$$

$$D) \begin{pmatrix} 0 & -8 & 16 \\ -8 & 0 & -32 \end{pmatrix}$$

E)
$$\begin{pmatrix} 0 & -8 \\ 8 & 0 \\ -16 & 32 \end{pmatrix}$$

Resolução

A matriz é da forma $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$, assim:

$$a_{11} \Rightarrow i = j \Rightarrow a_{11} = 0$$

$$a_{12} \Rightarrow i \neq j \Rightarrow a_{12} = (-2)^{1+2} = -8$$

$$a_{21} \Rightarrow i \neq j \Rightarrow a_{21} = (-2)^{2+1} = -8$$

$$a_{22} \Rightarrow i = j \Rightarrow a_{22} = 0$$

$$a_{31} \Rightarrow i \neq j \Rightarrow a_{31} = (-2)^{3+1} = 16$$

$$a_{32} \Rightarrow i \neq j \Rightarrow a_{32} = (-2)^{3+2} = -32$$

A alternativa correta é C.

A)
$$x = 1 e y = 3$$

B)
$$x = -1 e y = -3$$

C)
$$x = 3 e y = 1$$

D)
$$x = 3 e y = -1$$

E)
$$x = 3 e y = 1$$

Resolução

Sendo a igualdade composta por duas matrizes de ordem 2x1, podemos fazer:

$$\begin{cases} 3x - y = 10 \\ 2x + 5y = 1 \end{cases}$$

Isolando y na primeira equação, temos y = 3x - 10

Substituindo na segunda equação y = 3x - 10, temos:

$$2x + 5(3x - 10) = 1 \Rightarrow 2x + 15x - 50 = 1 \Rightarrow 17x = 51 \Rightarrow x = 3$$

Substituindo x = 3 na equação y = 3x - 10, temos:

$$y = 3 \cdot 3 - 10 \Rightarrow y = -1$$

A alternativa correta é D.

3) Dadas as matrizes $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & y \\ 1 & -1 & 3 \end{pmatrix}$ e $B = \begin{pmatrix} 1 & 4 & 1 \\ x & 5 & -1 \\ 3 & 6 & z \end{pmatrix}$, o valor de x, y e z para que se tenha $B = A^t$ é:

A)
$$x = 2$$
, $y = -6$ e $z = 3$

B)
$$x = 2$$
, $y = 6$ e $z = 3$

C)
$$x = -2$$
, $y = -6$ e $z = 3$

D)
$$x = 2$$
, $y = -6$ e $z = -3$

E)
$$x = -2$$
, $y = -6$ e $z = -3$

Resolução

$$B = A^{t} = \begin{pmatrix} 1 & 4 & 1 \\ x & 5 & -1 \\ 3 & 6 & z \end{pmatrix} = \begin{pmatrix} 1 & 4 & 1 \\ 2 & 5 & -1 \\ 3 & y & 3 \end{pmatrix}$$

Comparando os elementos de posição análoga, temos:

$$x = 2$$
, $y = 6$ e $z = 3$

A alternativa correta é B.

4) O valor de m, n, p e q, tal que
$$\begin{pmatrix} m & n \\ p & q \end{pmatrix} + \begin{pmatrix} n & 2m \\ q & 2q \end{pmatrix} = \begin{pmatrix} 11 & 8 \\ 9 & 6 \end{pmatrix}$$
 é:

A)
$$m = -3$$
, $n = 14$, $p = 7$ e $q = 2$

B)
$$m = 3$$
, $n = 14$, $p = 7 e q = 2$

C)
$$m = -3$$
, $n = -14$, $p = 7$ e $q = 2$

D)
$$m = -3$$
, $n = 14$, $p = -7$ e $q = 2$

E)
$$m = -3$$
, $n = 14$, $p = 7$ e $q = -2$

Resolução

$$\begin{pmatrix} m+n & n+2m \\ p+q & 3q \end{pmatrix} = \begin{pmatrix} 11 & 8 \\ 9 & 6 \end{pmatrix}$$

Por questão de conveniência iniciaremos pela equação:

$$3q = 6 \Rightarrow q = 2$$

Substituindo q = 2 em p + q = 9, temos:

$$p + q = 9 \Rightarrow p = 9 - 2 \Rightarrow p = 7$$

Se
$$m + n = 11 \Rightarrow m = 11 - n$$

Substituindo m = 11 - n em n + 2m = 8, temos:

$$n + 2m = 8 \Rightarrow n = 8 - 2m \Rightarrow n = 8 - 2(11 - n) \Rightarrow n = 8 - 22 + 2n \Rightarrow n = 14$$

Unidade I

Substituindo n = 14 em m + n = 11, temos:

$$m + n = 11 \Rightarrow m + 14 = 11 \Rightarrow m = -3$$

Logo
$$m = -3$$
, $n = 14$, $p = 7$ e $q = 2$

A alternativa correta é A.

- 5) Dadas as matrizes $A = \begin{pmatrix} 3 & 0 \\ 2 & 4 \end{pmatrix}$ a matriz B, tal que $AB = I_2$ é:
- $A) \begin{pmatrix} \frac{-1}{6} & 0 \\ \frac{1}{4} & \frac{1}{3} \end{pmatrix}$
- $B) \begin{pmatrix} \frac{1}{4} & 0\\ \frac{1}{3} & \frac{-1}{6} \end{pmatrix}$
- $C) \begin{pmatrix} \frac{1}{3} & 0\\ \frac{1}{4} & \frac{-1}{6} \end{pmatrix}$
- $D) \begin{pmatrix} \frac{1}{4} & 0 \\ \frac{-1}{6} & \frac{1}{3} \end{pmatrix}$
- $E) \begin{pmatrix} \frac{1}{3} & 0 \\ \frac{-1}{6} & \frac{1}{4} \end{pmatrix}$

Resolução

$$\begin{pmatrix} 3 & 0 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{pmatrix} 3a + 0c & 3b + 0d \\ 2a + 4c & 2b + 4d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} 3a & 3b \\ 2a + 4c & 2b + 4d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow$$
 3a = 1 \Rightarrow a = $\frac{1}{3}$, 3b = 0 \Rightarrow b = 0

$$2a + 4c = 0 \Rightarrow 2 \cdot \frac{1}{3} + 4c = 0 \Rightarrow 4c = -\frac{2}{3} \Rightarrow c = -\frac{2}{12} \Rightarrow c = -\frac{1}{6}$$

$$2b + 4d = 1 \Rightarrow 0 + 4d = 1 \Rightarrow d = \frac{1}{4}$$

Logo a matriz B =
$$\begin{pmatrix} \frac{1}{3} & 0\\ \frac{-1}{6} & \frac{1}{4} \end{pmatrix}$$

A alternativa correta é E.

Saiba mais

Para aprofundar seus conhecimentos, leia:

ANTON, H.; BUSBY, R. C. *Álgebra linear contemporânea.* São Paulo: Bookman, 2006.

Nesta unidade, definimos como matriz mxn a tabela formada por números reais dispostos em m linhas e n colunas.

Estudamos a igualdade, a soma e a multiplicação entre matrizes, a exemplo da multiplicação por um número real **a**:

a.
$$\begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} \mathbf{a}b_{11} & \mathbf{a}b_{12} & \mathbf{a}b_{13} \\ \mathbf{a}b_{21} & \mathbf{a}b_{22} & \mathbf{a}b_{23} \end{pmatrix}$$

Nesse contexto, vimos que a multiplicação entre matrizes só será possível quando a quantidade de colunas da primeira matriz for igual à quantidade de linhas da segunda matriz.

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} e B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{pmatrix}$$

 $A \cdot B = N$ ão é possível.

Em sistema lineares, destacamos o conjunto de m equações e n incógnitas:

$$\begin{cases} \alpha_{11}x_1+...+\alpha_{1n}x_n=\beta_1\\ \alpha_{21}x_1+...+\alpha_{2n}x_n=\beta_2\\ \vdots....\vdots\\ \alpha_{m1}x_1+...+\alpha_{mn}x_n=\beta_m \end{cases}$$

- sistema linear impossível (SI) se não admitir nenhuma solução;
- sistema linear possível e determinado (SPD) se admitir uma única solução;
- sistema linear possível e indeterminado (SPI) se admitir mais que uma solução.

Quando dois sistemas lineares S_1 e S_2 apresentam o mesmo conjunto solução, são chamados de sistemas lineares equivalentes.

S:
$$\begin{cases} x + y = -1 \\ x - y = 3 \end{cases}$$
 e S_1 :
$$\begin{cases} 2x + 2y = -2 \\ 3x - 3y = 9 \end{cases}$$
 são equivalentes, pois o par

ordenado (1,-2) é solução de ambos.

Por sua vez, o sistema linear escalonado ocorre quando os coeficientes nulos em cada uma das equações, a partir da segunda, são maiores que na equação precedente. Escalona-se um sistema linear através das operações elementares de permutação da posição de duas equações, multiplicação de um número real por uma equação e soma de duas equações quaisquer do sistema.

Um sistema escalonado de três equações e três incógnitas estará escalonado se estiver na forma:

$$\begin{cases} X + y + Z = a \\ y + Z = b \\ Z = 0 \end{cases}$$

Em seguida, destacamos o espaço e o subespaço vetorial. Assim, ao estudar as operações, vimos que as operações como subespaços são soma, intersecção e soma direta.

Por fim, foram apresentadas a base e a dimensão. Chamamos de base de V o subconjunto $B \subset V$ somente se:

- [B] =V
- Béll

Denominamos dimensão um espaço vetorial finitamente gerado V, a quantidade de vetores de qualquer uma de suas bases. Para a dimensão de um espaço vetorial, usamos a notação dim V.

Questão 1. Considere o sistema linear mostrado a seguir, formado por três incógnitas $(x_1, x_2 e x_3)$ e três equações.

$$\begin{cases} 3x_1 + 2x_2 - 5x_3 = 12 \\ -2x_1 + 7x_2 + x_3 = 3 \\ 5x_1 - x_2 - x_3 = 8 \end{cases}$$

Assinale a alternativa que apresenta corretamente a solução do sistema.

- A) (4, 0, 0)
- B) (1/3, 5, -1/5)
- C) (2, 1/2, -1)
- D) (10, 3/2, 3)
- E) (245/153, 158/153, -157/153)

Resposta correta: alternativa E.

Análise da questão

As operações a seguir podem ser usadas para resolvermos sistemas lineares quando montamos uma matriz composta pelos coeficientes e pelos termos independentes do sistema em estudo.

Deve-se fazer o seguinte:

- somar os elementos de duas linhas da matriz;
- multiplicar os elementos de uma linha da matriz por um número real diferente de zero;
- somar os múltiplos dos elementos de uma linha com elementos de outra linha da matriz;
- trocar posições de linhas da matriz.

Vejamos como essas operações são processadas no caso do sistema linear dado no enunciado da questão.

$$\begin{cases} 3x_1 + 2x_2 - 5x_3 = 12 \\ -2x_1 + 7x_2 + x_3 = 3 \\ 5x_1 - x_2 - x_3 = 8 \end{cases}$$

Com os coeficientes e com os termos independentes desse sistema, podemos elaborar a matriz a seguir.

$$\begin{pmatrix}
3 & 2 & -5 & 12 \\
-2 & 7 & 1 & 3 \\
5 & -1 & -1 & 8
\end{pmatrix}$$

Multiplicamos todos os elementos da 1º linha por 1/3 a fim de ficarmos com o elemento da 1º linha e 1º coluna igual a 1:

$$\begin{pmatrix}
3. \frac{1}{3} & 2. \frac{1}{3} & -5. \frac{1}{3} & 12. \frac{1}{3} \\
-2 & 7 & 1 & 3 \\
5 & -1 & -1 & 8
\end{pmatrix} = \begin{pmatrix}
1 & \frac{2}{3} & -\frac{5}{3} & 4 \\
-2 & 7 & 1 & 3 \\
5 & -1 & -1 & 8
\end{pmatrix}$$

Multiplicamos todos os elementos da 1ª linha por 2 e somamos tais elementos aos elementos da 2ª linha, a fim de ficarmos com o elemento da 2ª linha e 1ª coluna igual a 0:

$$\begin{pmatrix} 1 & \frac{2}{3} & -\frac{5}{3} & 4 \\ -2+2 & 7+\frac{4}{3} & 1-\frac{10}{3} & 3+8 \\ 5 & -1 & -1 & 8 \end{pmatrix} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{5}{3} & 4 \\ 0 & \frac{25}{3} & -\frac{7}{3} & 11 \\ 5 & -1 & -1 & 8 \end{pmatrix}$$

Multiplicamos todos os elementos da 2ª linha por 3/25, a fim de ficarmos com o elemento da 2ª linha e 2ª coluna igual a 1:

$$\begin{pmatrix}
1 & \frac{2}{3} & -\frac{5}{3} & 4 \\
0.\frac{3}{25} & \frac{25}{3}.\frac{3}{25} & -\frac{7}{3}.\frac{3}{25} & 11.\frac{3}{25} \\
5 & -1 & -1 & 8
\end{pmatrix} = \begin{pmatrix}
1 & \frac{2}{3} & -\frac{5}{3} & 4 \\
0 & 1 & -\frac{7}{25} & \frac{33}{25} \\
5 & -1 & -1 & 8
\end{pmatrix}$$

Multiplicamos todos os elementos da 1ª linha por -5 e os somamos aos da 3ª linha, a fim de ficarmos com o elemento da 3ª linha e 1ª coluna igual a 0:

$$\begin{pmatrix} 1 & \frac{2}{3} & -\frac{5}{3} & 4\\ 0 & 1 & -\frac{7}{25} & \frac{33}{25}\\ 5-5 & -1-\frac{10}{3} & -1+\frac{25}{3} & 8-20 \end{pmatrix} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{5}{3} & 4\\ 0 & 1 & -\frac{7}{25} & \frac{33}{25}\\ 0 & -\frac{13}{3} & \frac{22}{3} & -12 \end{pmatrix}$$

Multiplicamos todos os elementos da 2ª linha por 13/3 e os somamos aos da 3ª linha, a fim de ficarmos com o elemento da 3ª linha e 2ª coluna igual a 0:

$$\begin{pmatrix}
1 & \frac{2}{3} & -\frac{5}{3} & 4 \\
0 & 1 & -\frac{7}{25} & \frac{33}{25} \\
0 & -\frac{13}{3} + \frac{13}{3} & \frac{22}{3} - \frac{91}{75} & -12 + \frac{429}{75}
\end{pmatrix} = \begin{pmatrix}
1 & \frac{2}{3} & -\frac{5}{3} & 4 \\
0 & 1 & -\frac{7}{25} & \frac{33}{25} \\
0 & 0 & \frac{153}{25} & -\frac{157}{25}
\end{pmatrix}$$

Multiplicamos todos os elementos da 3º linha por 25/153, a fim de ficarmos com o elemento da 3º linha e 3º coluna igual a 1:

$$\begin{pmatrix} 1 & \frac{2}{3} & -\frac{5}{3} & 4 \\ 0 & 1 & -\frac{7}{25} & \frac{33}{25} \\ 0.\frac{25}{153} & 0.\frac{25}{153} & \frac{153}{25} & \frac{25}{153} & -\frac{157}{25} & \frac{25}{153} \end{pmatrix} = \begin{pmatrix} 1 & \frac{2}{3} & -\frac{5}{3} & 4 \\ 0 & 1 & -\frac{7}{25} & \frac{33}{25} \\ 0 & 0 & 1 & -\frac{157}{153} \end{pmatrix}$$

Agora, com base na última matriz, voltamos à forma de sistema:

$$\begin{cases} 1x_1 + \frac{2}{3}x_2 - \frac{5}{3}x_3 = 4 \\ 0x_1 + 1x_2 - \frac{7}{25}x_3 = \frac{33}{25} \\ 0x_1 + 0x_2 + 1x_3 = -\frac{157}{153} \end{cases}$$

Começamos com a terceira equação:

$$1x_3 = -\frac{157}{153} \Rightarrow x_3 = -\frac{157}{153}$$

Conhecendo o valor de x_3 ($x_3 = -157/153$), determinamos o valor de x_2 resolvendo a 2ª equação:

$$1x_2 - \frac{7}{25}x_3 = \frac{33}{25} \rightarrow x_2 - \frac{7}{25} \cdot \frac{-157}{153} = \frac{33}{25} \rightarrow x_2 = \frac{33}{25} - \frac{1099}{3825} \rightarrow x_2 = \frac{33}{25} - \frac{1099}{3825}$$

$$x_2 = \frac{5049 - 1099}{3825} \rightarrow x_2 = \frac{3950}{3825} \rightarrow x_2 = \frac{158}{153}$$

Conhecendo os valores de x_2 e de x_3 (x_2 = 158/153 e x_3 = -157/153), determinamos o valor de x_1 resolvendo a 1ª equação:

$$1x_1 + \frac{2}{3} \cdot \frac{158}{153} - \frac{5}{3} \cdot \frac{-157}{153} = 4 \rightarrow x_1 = 4 - \frac{316}{459} - \frac{785}{459}$$

$$x_1 = \frac{1836 - 316 - 785}{459} \rightarrow x_1 = \frac{735}{459} \rightarrow x_1 = \frac{245}{153}$$

Logo, a solução do sistema de equações é $(x_1, x_2, x_3) = (245/153, 158/153, -157/153)$

Questão 2. Considere as asserções a seguir e a relação proposta entre elas.

I - O conjunto $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ não é uma base para o espaço R3.

porque

II – O conjunto $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ é linearmente dependente (LD). Assinale a alternativa correta.

- A) As asserções I e II são verdadeiras, e a asserção II justifica a asserção I.
- B) As asserções I e II são verdadeiras, e a asserção II não justifica a asserção I.
- C) As asserções I e II são falsas.
- D) A asserção I é verdadeira, e a asserção II é falsa.
- E) A asserção I é falsa, e a asserção II é verdadeira.

Resposta correta: alternativa C.

Análise da questão

O conjunto $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ é linearmente independente (LI). Vejamos o porquê disso.

Observe a seguinte igualdade:

$$\alpha(1,1,1) + \beta(-1,1,0) + \delta(1,0,-1) = (0,0,0)$$

Usando operações algébricas, chegamos a:

$$(\alpha, \alpha, \alpha) + (-\beta, \beta, 0) + (\delta, 0, -\delta) = (0, 0, 0)$$

$$(\alpha - \beta + \delta, \alpha + \beta, \alpha - \delta) = (0,0,0)$$

$$\alpha - \beta + \delta = 0$$

$$\alpha + \beta = 0$$

$$\alpha - \delta = 0$$

A partir das duas últimas equações, obtemos:

$$\beta = -\alpha$$

$$\delta = \alpha$$

Substituindo essas igualdades em α - β + δ = 0, ficamos com:

$$\alpha - \beta + \delta = 0 \rightarrow \alpha - (-\alpha) + \alpha = 0 \rightarrow 3\alpha = 0 \rightarrow \alpha = 0$$

Se $\alpha = 0$, então:

$$\beta = -\alpha = 0 \rightarrow \beta = 0$$

$$\delta=\alpha=0 \to \delta=0$$

Concluímos que o conjunto $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ é linearmente independente (LI).

Adicionalmente, o conjunto $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ gera o espaço R^3 . Vejamos o porquê disso.

Considere o elemento $u = (x, y, z)$ que pertence ao R3. Podemos escrever esse elemento como:
u = (x, y, z) = a(1, 1, 1) + b(-1, 1, 0) + c(1, 0, -1)
u = (x, y, z) = (a, a, a) + (-b, b, 0) + (c, 0, -c)
u = (x, y, z) = (a - b + c, a + b, a - c)
Assim:
x = a - b + c
y = a + b
z = a - c
Trata-se de um sistema com solução única (indicado pelo fato de o determinante ser diferente de zero). Logo, há escalares a, b e c que permitem que o vetor $u = (x, y, z)$ que pertence ao R3 possa ser escrito como uma combinação linear (CL) dos elementos do conjunto $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$.
Concluímos que $U = \{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ gera todo o espaço vetorial R^3 e que é um conjunto LI. Logo, trata-se de uma base para R^3 .