

DEPARTMENT OF SOFTWARE ENGINEERING

שעת הבחינה:

משך הבחינה:

:מרצה

מספר תעודת זהות:

<u>שם הקורס</u>: מערכות זמן אמת – תוכנה

קוד הקורם: 10308

בחינת סמסטר: א' הוראות לנבחן:

תשע"ד יש לכתוב מס' ת"ז ע"ג טופס הבחינה <u>השנה:</u>

מועד: ב יש להחזיר את השאלון עם מחברת הבחינה

2 מספר ייחוס: אסור כל חומר עזר, פרט לדפי סיכום של המבחן

אסור להעביר מחברות, דפים או ספרים בין נבחנים

אין לכתוב בעפרון או <u>בצבע אדום</u>

בשרטוטים מותר להשתמש בעפרון אין להשתמש בטלפון סלולארי

אין להשתמש במחשב אישי או נייד

אין להשתמש בדיסק און קי ו/או מכשיר מדיה אחר

מבנה הבחינה והנחיות לפתרון:

משקל כל שאלה זהה – 25 נקודות.

יש לענות על 4 מתוך 5 השאלות.

במקרה שענית על יותר – יבדקו רק 4 הראשונות.

יש למחוק שאלות שאינכם רוצים שייבדקו או לציין בתחילת הבחינה איזה שאלות יש לבדוק. חלקי שאלות שונות לא יאוחדו לשאלה שלמה.

שאלה 1 יש לענות על גבי השאלון יש להקיף בעיגול את מסי סעיף התשובה הנכונה בטופס הבחינה.

שאר השאלות - יש לענות רק במחברת הבחינה ולא על גבי הטופס. יש להתחיל כל שאלה בראש עמוד חדש.

מס' נבחן

תאריך הבחינה: NIO2.20.02

17:00

3 שעות

מיקי לבנת

(25 נקי) שאלות אמריקאיות – יש להקיף בעיגול את מסי סעיף התשובה הנכונה

- A. לגבי Release Time של משימה: (יותר מתשובה אחת נכונה)
- א. Release Time יחסי משתנה בעת התיזמון של המערכת
 - ב. Release Time יחסי קבוע בעת התיזמון של המערכת
- ג. Release Time מוחלט משתנה בעת התיזמון של המערכת
 - ד. Release Time מוחלט קבוע בעת התיזמון של המערכת
- ה. Release Time אפקטיבי מתאים למשימות בלתי תלויות
- CPU's אפקטיבי מתאים למערכת מרובת Release Time ו.
 - B. הנכון לגבי תיזמון תקין: (יותר מתשובה אחת נכונה)
- א. כל משימה חייבת לעבור לפחות פעם אחת במצב Dormant
 - ב. כל משימה חייבת לעבור לפחות פעם אחת במצב Wait
- ג. כל משימה חייבת לעבור לפחות פעם אחת במצב Running
 - ד. כל משימה חייבת לעבור לפחות פעם אחת במצב Ready
 - ה. כל משימה חייבת לעבור לפחות פעם אחת במצב ISR
 - C. אלגוריתם FIFO כניסה לתור: (יותר מתשובה אחת נכונה)
 - א. הוא עם עדיפויות דינמיות
 - ב. הוא עם עדיפויות סטטיות
- ג. תיזמון Preemptive ו- Non-Preemptive יכול להיות שונה
 - ד. תיומון Preemptive -ו Preemptive תמיד זהה
- ה. תיזמון Preemptive ו- Preemptive יכול להיות זהה

- :Frames -שלגוריתם Clock Driven עם חלוקה ל- D.
- א. מתאים למערכות מסוג Preemptive ו- Non-Preemptive
 - ב. מתאים למערכות מסוג Preemptive בלבד
 - ג. מתאים למערכות מסוג Non-Preemptive בלבד
 - ד. אם לא נמצא Frame תקין, המערכת אינה תקינה
- ה. בחישוב Frame, אין השפעה ל- Deadline היחסי של המשימות
 - ו. אף תשובה א-ה אינה נכונה
- : נתונה מערכת עם 20 משימות ו- $U_T = 0.5$ ו- P = d בכל המשימות. ניתן לומר .E
 - א. המערכת תקינה ב- Preemptive RM בלבד מבלי לתזמנה
 - ב. המערכת תקינה ב- Non-Preemptive RM בלבד מבלי לתזמנה
- ג. המערכת תקינה ב- Preemptive RM ו- Non-Preemptive מבלי לתזמנה
 - ד. לא ניתן לדעת אם המערכת תקינה או לא מבלי לתזמנה
 - ה. המערכת אינה תקינה
 - ו. אף תשובה א-ה אינה נכונה

שאלה מס' 2

There is a system with 6 tasks f1, f2, f3, f4, f5, f6.

Each task operates on a separate CPU. There is a critical resource for all the tasks.

The tasks are entered in the following order:

f₁, f₂, f₃, f₄, f₅, f₆ 2 4 2 1 3 1

All the CPU's operate in the same speed.

There

Engly :

FRETT

Ville "

The tasks scheduler operates according to LAMPORT Protocol.

A. Complete the following table with the scheduled tasks of the system.

J	NUM[i]	Task and its state in the system
		J NUNI

B. מה תפקיד ה- choosing באלגוריתם? מה יקרה אם נמחוק שורה זו? (10 נקודות)

כל הזכויות שמורות © למיכאל (מיקי) לבנת. אין להעתיק, לצלם, לאחסן במאגר מידע, כל חלק שהוא מטופס הבחינה. Page 3 of 5

בטבלה הבאה מופיעים הנתונים של 3 משימות מחזוריות:

משימה	זמן מחזור	זמן ביצוע	משקל המשימה
T1	10	4	3
T2	15	5	4
T3	30	6	5

- (4 נק") א. מהו אורך ההיפר מחזור של המערכת ב- Weighted Round Robin וב- DM.
 - Weighted דיאגרמת זמנים) של המערכת בשיטת Gant Chart (5 נקי) ארמת זמנים) ארמת בשיטת Pound Robin עבור היפר מחזור שלם.
 - (4 נק') ג. האם אפשר היה לדעת אם תזמון DM יצליח ללא תיזמונו!
 - (8 נק") ד. בדוק אם תיזמון DM Preempteve תקין.
 - (4 נק') ה. אם מתחשבים ב- Deadline של המשימות גם ב- WRR, האם תיזמון WRR מצליח!

שאלה מס׳ 4

בטבלה הבאה מופיעים הנתונים של 3 משימות מחזוריות:

משימה	זמן מחזור	זמן ביצוע	Deadline
T1	4	1	4
T2	8	2	6
T3	12	5	10

לכל המשימות יש מופע 0 (זמן השיגור של התהליך הראשון של התהליך הראשון של כל משימה הוא 0).

- (5 נק') א. מה ההבדלים בין EDF, DM ו-LST!
- Earlier Deadline First ב. שרטט Gantt Chart (דיאגרמת זמנים) של המערכת בשיטת (בי שרטט Gantt Chart (בור היפרמחזור שלם. (EDF)
 - (3 נקי) ג. בצע בדיקתיות לתיזמון.
 - ג. האם ניתן היה לדעת אם תזמון RM היה גם כן מצליח, ללא שרטוט דיאגרמת הזמנים!

בבית-חולים קיימות 3 מחלקות:

- 1. עור
- 2. עיניים
- 3. פה ולסת

כל מחלקה יכולה לשרת חולה אחד בו-זמנית. זמן שהות של חולה בכל מחלקה זהה. קיימות 3 רוטינות שירות C ,B ,A לטיפול חולה בכל מחלקה בהתאמה. הטיפול בכל מחלקה מהווה קטע קריטי במערכת.

> כתוב פסיאודו-קוד של הרוטינות של טיפול בחולים ב- 3 המחלקות, בשימוש במספר סמפורים מינימלי, במקרים הבאים:

- (10 נק") א. אם חולה חייב לעבור בין מחלקות לפי הסדר של מספרי המחלקות שבשאלה.
 - (10 נק') ב. אם סדר מעבר חולה בין מחלקות אינו משנה.
 - (5 נק') ג. אם הסדר משנה, אך כל מחלקה יכולה לשרת 2 חולים בו-זמנית.
 - (5 נק') ד. אם הסדר אינו משנה, אך כל מחלקה יכולה לשרת 2 חולים בו-זמנית.
- (5 נק²) ה. אם יש בבית-חולים n מחלקות (במקום 3), מה ישתנה בתשובותיך בסעיפים א-ד מבחינת בחירת הסמפורים! (לא צריך לכתוב פסיאודו-קוד מחדש).
 - (5 נק') ו. איך תמיין את החולים שממתינים בתור לכל אחת מהמחלקות!

תקציר קורס מערכות זמן אמת (10308) למבחן

הערות:

• הסיכום אינו מיועד ללמוד ממנו את החומר אלא להיעזר בו לתזכורת על החומר שחזרתם עליו לפי רשימות הכיתה ותרגילים

כל החומר של השעורים מחייב

סמפורים:

פעולות על סמפורים:

אז הקטן ב- 1 והמשך בתוכנית $S>0$ אז הקטן ב- 1 והמשך בתוכנית	Wait	P(S)
אם $S=0$ המתן עד מצב ש $S>0$ ועבור לסעיף 1.		
הגדל את S ב- 1	Post	V(S)

Lamport פרוטוקול

```
/* Setting Initial Settings */
         num[i]=0 \ 1 \le i \le N
          choosing[i]=0.1 \le i \le N
          P_i:
 THE PARTY
              . NCS,
              choosing[i]=true
              num[i]=1+max(num[1],num[2],...,num[N])
              choosing[i]=false
              for j=1 to N
             L: if (choosing[j]=true) then goto L
             M: if (num[j]!=0)and((num[j],j)<(num[i],i)) then goto M
              CS,
              num[i]=0
              . NCS<sub>i</sub>.
15K J. 365
              Goto Pi
```

תקציר קורס מערכות זמן אמת (10308) למבחן

מושגים בסיסיים בשיגור משימות

Job	יחי עבודה המשוגרת ומבוצעת עייי המערכת, מתבצע עייי המערכת ההפעלה ולפעל על משאבי המערכת.			
Task	אוסף של job-ים שמבצעים פונקציונאליות מסוימת.			
Release Time – RT	הזמן המוקדם ביותר שבו הjob רצוי להתבצע. Dormant מצא כבר בדרך כלל בזיכרון המערכת במצב job ועובר ל- Ready רק כאשר הגיע הזמן שלו. הזמן הזה הוא לא בהכרח הזמן שהb מתחיל להתבצע בפועל, אלה תלוי באלגוריתם התור.			
Deadline – D	הזמן המאוחר ביותר שבו הjob חייב לסיים ביצוע.			
Period – P	פרק זמן שבין ה- RT (Release Time) אל 2-job ים עוקבים של אותה משימה המתבצעים זה אחר זה.			
– Execution Time - E	פרק הזמן הקצר ביותר שלוקח לjob להתבצע כאשר כל המשאבים עומדים לרשותו והוא מתבצע ברצף.			
Utilization – נצילות	$U_i = \frac{E_i}{P_i} \; ; U = \frac{E}{P} = \frac{\text{Execution Time}}{\text{Period}}$			
היפר מחזור	כפולה משותפת מינימלית של מחזורי המשימות. $\#I = H(1 - U_T) \;\; ; \;\; N_i = \frac{H}{P_i}$			

Deadline סוגי

יחסי	.job אבסולוטי לRelease Time) RT) אבסולוטי לDeadline) של אותו (הזמן בין קבוע.
אבסולוטי	הזמן בפועל בו הjob חייב לסיים ביצוע על ציר הזמן. משתנה.
אפקטיבי	גיוב שאין לו גיובים עוקבים (המתבצעים אחריו) שווה לD המוחלט שלו.
	אם יש גיובים המתבצעים אחריו, ה- D האפקטיבי שלו הוא הערך המינימאלי מתוך ה- D שלו עצמו וכל ערכי ה- D של אלו המתבצעים אחריו.

Relese-Time סוגי

הנתון של המשימה	נתון
גיוב שאין לו גיובים המתבצעים לפניו שווה ל- RT המוחלט שלו.	אפקטיבי
אם קיימים גיובים המתבצעים לפניו, ה- RT האפקטיבי הוא הערך	
המקסימאלי של ה- RT שלו עצמו וכל ערכי ה- RT הקודמים לו.	

18.191

5. W. W.

תקציר קורס מערכות זמן אמת (10308) למבחן

אלגוריתמים

שם
עם Clock-Driven
הלוקה ל- Frames
RM
QF
EDF
LST

תנאי לתקינות RM

תנאי לכך שמערכת בעלת n משימות בלתי תלויות תהיה ניתנת לתזמון תקין ב- RM בלבד הוא :

$$\sum U \le n \left(2^{\frac{1}{n}} - 1 \right)$$

מסקנות:

- 1. אם אי השוויון מתקיים ניתן לומר בוודאות שתזמון RM תקין.
- 2. אם אי השוויון אינו נכון לא ניתן להסיק שום מסקנה. יתכן שהתזמון תקין ויתכן שלא חייבים לבדוק.

 $P \le D$ התנאי תקין אך ורק עבור : התנאי הערה

כיוון שהחלק השני של התנאי תלוי רק במספר המשימות ניתן ליצור טבלה קבועה.

$$\begin{array}{c|c} n & U_{\text{max}} = n \left(\frac{1}{2^n} - 1 \right) \\ \hline 1 & 1 \\ 2 & 0.828 \\ 3 & 0.78 \\ 4 & 0.757 \\ 5 & 0.753 \\ \vdots & \vdots \\ \end{array}$$

אוטומטים סופיים – מכונת מצבים

 $M = \left\{ I, Q, q_0, F, f
ight\}$: פרמטרים אוטומט סופי M הוא פונקציה בעלת 5 פרמטרים

I	קבוצת קלט האוטומט
Q	קבוצת המצבים האפשריים של האוטומט
q_0	מצב התחלתי של האוטומט
F	קבוצת המצבים הסופיים שהאוטומט צריך להגיע אליהם
f	פונקצית המעבר ממצב למצב = טבלת מצבים

20.02, 2014

אפקה המכללה האקדמית להכדסה בתל-אביב AFEKA המכללה האקדמית להכדסה בתל-אביב

המחלקה להנדטת תוכנה

DEPARTMENT OF SOFTWARE ENGINEERING

מספר תעודת זהות:

שם הקורם: מערכות זמן אמת – תוכנה - פתלרון

<u>קוד הקורס</u>: 10308

'הוראות לנבחן: בחינת סמסטר: א'

יש לכתוב מס' ת"ז ע"ג טופס הבחינה השנה: , תשע"ד

יש להחזיר את השאלון עם מחברת הבחינה -

אסור כל חומר עזר, פרט לדפי סיכום של המבחן -

- אסור להעביר מחברות, דפים או ספרים בין נבחנים

אין לכתוב בעפרון או <u>בצבע אדום</u> -

בשרטוטים מותר להשתמש בעפרון - אין להשתמש בטלפון סלולארי

אין להשתמש במחשב אישי או נייד -

אין להשתמש בדיסק און קי ו/או מכשיר מדיה אחר -

<u>תאריך הבחינה:</u>

מספר ייחוס:

מועד:

שעת הבחינה: 17:00 משך הבחינה: 3 שעות מרצה: מיקי לבנת

מבנה הבחינה והנחיות לפתרון:

משקל כל שאלה זהה – 25 נקודות.

יש לענות על 4 מתוך 5 השאלות.

• במקרה שענית על יותר – יבדקו רק 4 הראשונות.

יש למחוק שאלות שאינכם רוצים שייבדקו או לציין בתחילת הבחינה איזה שאלות יש לבדוק. חלקי שאלות שונות לא יאוחדו לשאלה שלמה.

שאלה 1 יש לענות על גבי השאלון
יש להקיף בעיגול את מסי סעיף התשובה הנכונה בטופס הבחינה.
שאר השאלות - יש לענות רק במחברת הבחינה ולא על גבי הטופס.

יש להתחיל כל שאלה בראש עמוד חדש.

(25 נקי) שאלות אמריקאיות – יש להקיף בעיגול את מסי סעיף התשובה הנכונה

- A. לגבי Release Time של משימה: (יותר מתשובה אחת נכונה)
- א. Release Time יחסי משתנה בעת התיזמון של המערכת
 - ב. Release Time יחסי קבוע בעת התיזמון של המערכת
- ג. Release Time מוחלט משתנה בעת התיזמון של המערכת
 - ד. Release Time מוחלט קבוע בעת התיזמון של המערכת
- ה. Release Time אפקטיבי מתאים למשימות בלתי תלויות
- ו. Release Time אפקטיבי מתאים למערכת מרובת PU's אפקטיבי
 - B. הנכון לגבי תיזמון תקין: (יותר מתשובה אחת נכונה)
- א. כל משימה חייבת לעבור לפחות פעם אחת במצב Dormant
 - ב. כל משימה חייבת לעבור לפחות פעם אחת במצב Wait
- ג. כל משימה חייבת לעבור לפחות פעם אחת במצב Running
 - ד. כל משימה חייבת לעבור לפחות פעם אחת במצב Ready
 - ה. כל משימה חייבת לעבור לפחות פעם אחת במצב ISR
 - C. אלגוריתם FIFO כניסה לתור: (יותר מתשובה אחת נכונה)
 - א. הוא עם עדיפויות דינמיות
 - ב. הוא עם עדיפויות סטטיות
- ג. תיזמון Preemptive ו- Non-Preemptive יכול להיות שונה
 - ד. תיומון Preemptive ו- Preemptive תמיד זהה
- ה. תיזמון Preemptive ו- Preemptive יכול להיות זהה

- :Frames -שלגוריתם Clock Driven עם חלוקה ל- D.
- א. מתאים למערכות מסוג Preemptive ו- Non-Preemptive
 - ב. מתאים למערכות מסוג Preemptive בלבד
 - מתאים למערכות מסוג Non-Preemptive בלבד
 - ד. אם לא נמצא Frame תקין, המערכת אינה תקינה
- ה. בחישוב Frame, אין השפעה ל- Deadline היחסי של המשימות
 - ו. אף תשובה א-ה אינה נכונה
- : נתונה מערכת עם 20 משימות ו- $U_T = 0.5$ ו- P = d בכל המשימות. ניתן לומר . E
 - א. המערכת תקינה ב- Preemptive RM בלבד מבלי לתזמנה
 - ב. המערכת תקינה ב- Non-Preemptive RM בלבד מבלי לתזמנה
- ג. המערכת תקינה ב- Preemptive RM ו- Non-Preemptive מבלי לתזמנה
 - ד. לא ניתן לדעת אם המערכת תקינה או לא מבלי לתזמנה
 - ה. המערכת אינה תקינה
 - ו. אף תשובה א-ה אינה נכונה

שאלה מס' 2

There is a system with 6 tasks f1, f2, f3, f4, f5, f6.

Each task operates on a separate CPU. There is a critical resource for all the tasks.

The tasks are entered in the following order:

All the CPU's operate in the same speed.

The tasks scheduler operates according to LAMPORT Protocol.

A. Complete the following table with the scheduled tasks of the system.

Exspression	J	NUM[i]	Task and its state in the system

B. מה תפקיד ה- choosing באלגוריתם ? מה יקרה אם נמחוק שורה זו ? (10 נקודות)

כל הזכריות שמורות © למיכאל (מיקי) לבנת. אין להעתיק, לצלם, לאחסן במאגר מידע, כל חלק שהוא מטופס הבחינה. Page 3 of 8

Alltha

There i

Each serve

The met.

The per-

A ...

הביטוי	J	NUM[i]	משימה ומצבה במערכת
		NUM[4]=1	בכנסת ל- CS4 מתחילה ונכנסת ל- 14
(1,4) < (1,6)	4	NUM[6]=1	16 מתחילה ונתקעת ב- M
(1,4) < (2,1)	4	NUM[1]=2	-11 מתחילה ונתקעת ב- M
(2,1) < (2,3)	1	NUM[3]=2	f3 מתחילה ונתקעת ב- M
(2,1) < (3,5)	1	NUM[5]=3	15 מתחילה ונתקעת ב- M
(2,1) < (4,2)	1	NUM[2]=4	12 מתחילה ונתקעת ב- M
		NUM[4]=0	מסיימת את CS3 מסיימת את f4
NUM[4]=0		NUM[6]=1	משתחררת מ-M ונכנסת ל- CS6 משתחררת מ-M
(1,6) < (2,1)	6	NUM[1]=2	fl ממשיכה ונתקעת ב- M
(2,1) < (2,3)	1	NUM[3]=2	13 ממשיכה ונתקעת ב- M
(2,1) < (3,5)	1	NUM[5]=3	M -ב משארת תקועה ב- f5
(2,1) < (4,2)	1	NUM[2]=4	M -ב ב- f2 נשארת תקועה ב
		NUM[6]=0	מסיימת את CS5 מסיימת את f6
NUM[6]=0		NUM[1]=2	משתחררת מ-M ונכנסת ל- CS1 משתחררת מ-M
(2,1) < (2,3)	1	NUM[3]=2	13 נשארת תקועה ב- M
(2,1) < (3,5)	1	NUM[5]=3	M -ב ב- f5
(2,1) < (4,2)	1	NUM[2]=4	12 נשארת תקועה ב- M
		NUM[1]=0	בסיימת את CS1 מסיימת את fl
NUM[1]=0		NUM[3]=2	משתחררת מ-M ונכנסת ל- CS3 משתחררת מ-M
(2,3) < (3,5)	3	NUM[5]=3	15 נשארת תקועה ב- M
(2,3) < (4,2)	3	NUM[2]=4	12 נשארת תקועה ב- M
		NUM[3]=0	מסיימת את CS3 מסיימת את f3
NUM[3]=0		NUM[5]=3	ל משתחררת מ-M ונכנסת ל- CS5 משתחררת מ-M
(3,5) < (4,2)	5	NUM[2]=4	ל נשארת תקועה ב- M

כל הזכויות שמורות © למיכאל (מיקי) לבנת. אין להעתיק, לצלם, לאחסן במאגר מידע, כל חלק שהוא מטופס הבחינה. Page 4 of 8

ל מסיימת את CS1 מסיימת את f 5	NUM[1]=0	 NUM[1]=0
ל משתחררת מ-M ונכנסת ל- CS2 משתחררת מ-M	NUM[2]=4	
ל מסיימת את CS4 מסיימת f 2		

ב. לאפשר למשימה לחשב את [i]NUM, אם משימה אחרת הגיעה כבר לשורת M.

שאלה מס׳ 3

א. ב- WRR : ההיפר מחזור הוא סכום של כל זמני הביצוע. ב- DM : ההיפר מחזור הוא מחלק משותף מקסימאלי של כל המחזורים.

.15 עבור WRR הוא H

.30 אות DM עבור H

 T1
 T1
 T1
 T2
 T2
 T2
 T3
 T3
 T3
 T3
 T1
 T2
 T3

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

ג. לא מתקיים אי השויון Ut ≤ Umax ולכן אי אפשר היה לדעת אם RM יצליח, כך שגם לא ניתן להסיק מאומה על תקינות DM וצריך לתזמן.

התיזמון ב- DM תקין

.t= 10 -ב deadline - לא הצליח. T1 לא עמדה ב- WRR לא הצליח. ב- 10.

כל הזכריות שמורות © למיכאל (מיקי) לבנת. אין להעתיק, לצלם, לאחסן במאגר מידע, כל חלק שהוא מטופס הבחינה. Page 5 of 8

א. אלגוריתם DM הוא אלגוריתם סטטי ואילו אלגוריתמים EDF ו- LST הם דינאמיים. אלגוריתם DM מתחשב ב- deadline היחסי, אלגוריתם EDF ו- LST מתחשבים ב- deadline האבסולוטי.

אלגוריתם LST מתחשב בנוסף, גם בזמן שנותר לביצוע המשימה.

H=24 .a

$$HI = H(1-U_T) = 24(1-0.91667) = 2$$
 $N_3 = 24/12 = 2$; $N_2 = 24/8 = 3$; $N_1 = 24/4 = 6$; $N_i = H/P_i$

ד. היות ולא מתקיים P≤DL לא ניתן להשתמש בנוסחא של RM ולכן לא ניתן לדעת, ללא תיזמון.

Day

כל הזכויות שמורות © למיכאל (מיקי) לבנת. אין להעתיק, לצלם, לאחסן במאגר מידע, כל חלק שהוא מטופס הבחינה. Page 6 of 8

בבית-חולים קיימות 3 מחלקות:

- 1. עור
- 2. עיניים
- 3. פה ולסת

כל מחלקה יכולה לשרת חולה אחד בו-זמנית. זמן שהות של חולה בכל מחלקה זהה.

קיימות 3 רוטינות שירות B, A, D לטיפול חולה בכל מחלקה בהתאמה.

הטיפול בכל מחלקה מהווה קטע קריטי במערכת.

כתוב פסיאודו-קוד של הרוטינות של טיפול בחולים ב- 3 המחלקות,

בשימוש במספר סמפורים מינימלי, במקרים הבאים:

(10 נקי) א. אם חולה חייב לעבור בין מחלקות לפי הסדר של מספרי המחלקות שבשאלה.

Parkett St

- (10 נק") ב. אם סדר מעבר חולה בין מחלקות אינו משנה.
- (5 נק') ג. אם הסדר משנה, אך כל מחלקה יכולה לשרת 2 חולים בו-זמנית.
- (5 נק') ד. אם הסדר אינו משנה, אך כל מחלקה יכולה לשרת 2 חולים בו-זמנית.
- (5 נק') ה. אם יש בבית-חולים n מחלקות (במקום 3), מה ישתנה בתשובותיך בסעיפים א-ד מבחינת בחירת הסמפורים! (לא צריך לכתוב פסיאודו-קוד מחדש).
 - (5 נקי) ו. איך תמיין את החולים שממתינים בתור לכל אחת מהמחלקות!

פתרון:

א. אם הסדר מחייב, ניתן להתייחס ל- 3 מחלקות כאל מחלקה אחת עם 3 שלבים לפי הסדר ברצף. לכן מספיק סמפור בינרי יחיד S=1.

ABC:
P(S)
Use OR
Use EINAIM
Use PE & LESET
V(S)
goto ABC

.Sa=Sb=Sc=1 נקצה סמפור בינרי אחד לכל מחלקה

A:	B:	C:
P(S _A)	P(S _B)	P(S _C)
Use OR	Use EINAIM	Use PE & LESET
$V(S_A)$	V(S _B)	V(S _C)
goto A	goto B	goto C

- ג. זה כמו סעיף אי, אך נשתמש כאן עם סמפור מונה אחד S=2. בצורה כזו 2 חולים יוכלו להיות מטופלים בו זמנית במחלקות. הקוד לא משתנה מסעיף אי.
- ד. זה כמו סעיף בי, אך נשתמש כאן עם סמפורים מסוג מונה Sa=Sb=Sc=2. בצורה כזו 2 חולים יוכלו להיות מטופלים בו זמנית במחלקות. הקוד לא משתנה מסעיף בי.
 - ה. א. לא משתנה כלום. עדיין מספיק סמפור בינרי יחיד שערכו ההתחלתי = 1.
 - ב. נצטרך ח סמפורים בינריים, אחד לכל מחלקה , שערכם ההתחלתי של כולם = 1.
 - ג. לא משתנה כלום. עדיין מספיק סמפור מונה אחד S=2.
- ד. נצטרך ח סמפורים מסוג מונה, אחד לכל מחלקה , שערכם ההתחלתי של כולם = 2.
 - ו. FIFO כניסת החולים לבית החולים (מספרים....)

כל הזכויות שמורות © למיכאל (מיקי) לבנת. אין להעתיק, לצלם, לאחסן במאגר מידע, כל חלק שהוא מטופס הבחינה. Page 8 of 8