Komentáře k domácímu kolu kategorie Z6

1. Moje maminka se narodila 16. 3. 1948. Je to pěkné datum, platí totiž $16 \cdot 3 = 48$. Ve kterých letech 20. století bylo takových pěkných dat nejméně? Najděte všechna řešení.

ŘEŠENÍ. Protože má být pěkných dat v roce co nejméně, hledám roky, kde se neobjeví žádné takové datum. Při řešení využiji dělitelnost a rozklad čísel na součin prvočísel. Z tabulky vyplývá, že jsou to tyto roky:

1937, 1941, 1943, 1947, 1953, 1958, 1959, 1961, 1962, 1967, 1971, 1973, 1974, 1979, 1982, 1983, 1986, 1989, 1994, 1997, 2000, kde nelze najít žádné pěkné datum.

počet	rok (datum)
pěkných	
dat v roce	
0	1937, 1941, 1943, 1947, 1953, 1958, 1959, 1961, 1962, 1967, 1971, 1973,
	1974, 1979, 1982, 1983, 1986, 1989, 1994, 1997, 2000
1	1901 (1.1.), 1913 (13.1.), 1917 (17.1.), 1919 (19.1.), 1923 (23.1.),
	1929 (29.1.), 1931 (31.1.), 1934 (17.2.), 1938 (19.2.), 1939 (13.3.),
	1946 (23.2.), 1949 (7.7.), 1951 (17.3.), 1957 (19.3.), 1965 (13.5.),
	1968 (17.4.), 1969 (23.3.), 1976 (19.4.), 1985 (17.5.), 1987 (29.3.),
	1991 (13.7.), 1992 (23.4.), 1993 (31.3.), 1995 (19.5.), 1998 (14.7.)
2	1902 (2.1., 1.2.), 1903 (3.1., 1.3), 1905 (5.1., 1.5.), 1907 (7.1., 1.7.),
	1911 (11.1., 1.11.), 1925 (25.1., 5.5.), 1926 (26.1., 13.2.),
	$1933\ (11.3.,\ 3.11.),\ 1935\ (7.5.,\ 5.7.),\ 1952\ (26.2.,\ 13.4.),\ 1955\ (11.5.,\ 5.11.),$
	1964 (16.4., 8.8.), 1975 (25.3., 15.5.), 1977 (11.7., 7.11.),
	1978 (26.3., 13.6.), 1981 (27.3., 9.9.), 1999 (11.9., 9.11.)
3	1904 (4.1., 2.2., 1.4.), 1909 (9.1., 3.3., 1.9.), 1914 (14.1., 7.2, 2.7.),
	$1915\ (15.1.,5.3.,3.5.),1921\ (21.1.,7.3.,3.7.),1922\ (22.1.,11.2,2.11.),$
	$1927\ (27.1., 9.3., 3.9.), 1932\ (16.2., 8.4., 4.8.), 1944\ (22.2., 11.4., 4.11.),$
	1945 (15.3., 9.5., 5.9.), 1950 (25.2., 10.5., 5.10.), 1963 (21.3., 9.7., 7.9.),
	$1966\ (22.3.,\ 11.6.,\ 6.11.),\ 1970\ (14.5.,\ 10.7.,\ 7.10.),\ 1988\ (22.4.,\ 11.8.,\ 8.11.)$
4	1906 (6.1., 3.2., 2.3., 1.6.), 1908 (8.1., 4.2., 2.4., 1.8.),
	1910 (10.1., 5.2., 2.5., 1.10.), 1916 (16.1., 8.2., 4.4., 2.8.),
	1928 (28.1., 14.2., 7.4., 4.7.), 1942 (21.2., 14.3., 7.6., 6.7.),
	1954 (27.2., 18.3., 9.6., 6.9.), 1956 (28.2., 14.4., 8.7., 7.8.),
	1980 (20.4., 16.5., 10.8., 8.10.), 1996 (24.4., 16.6., 12.8., 8.12.)
5	1918 (18.1., 9.2., 6.3., 3.6., 2.9.), 1920 (20.1., 10.2., 5.4., 4.5., 2.10.),
	1940 (20.2., 10.4., 8.5., 5.8., 4.10.), 1984 (28.3., 21.4., 14.6., 12.7., 7.12.),
	1990 (30.3., 18.5., 15.6., 10.9., 9.10.)

6	1912 (12.1., 6.2., 4.3., 3.4., 2.6., 1.12.),
	1930 (30.1., 15.2., 10.3., 6.5., 5.6., 3.10.),
	1936 (18.2., 12.3., 9.4., 6.6., 4.9., 3.12.),
	1948 (24.2., 16.3., 12.4., 8.6., 6.8., 4.12.),
	1960 (20.3., 15.4., 12.5., 10.6., 6.10., 5.12.),
	1972 (24.3., 18.4., 12.6., 9.8., 8.9., 6.12.),
7	1924 (24.1., 12.2., 8.3., 6.4., 4.6., 3.8., 2.12.)

2. Dominik vymodeloval z plastelíny kvádr o rozměrech 6 × 3 × 19 cm. Potom jej znovu rozválel a vymodeloval tři různě veliké krychle. Ke svému překvapení zjistil, že velikosti všech hran vyšly v centimetrech jako celá čísla. Jaké rozměry měly Dominikovy krychle?

Řešení. Napřed spočítám objem kvádru s rozměry 6 cm, 3 cm, 19 cm, tj.

$$V = a \cdot b \cdot c = 6 \cdot 3 \cdot 19 = 342 \,\text{cm}^3$$
.

Podle zadání musím těchto $342 \,\mathrm{cm}^3$ rozdělit na součet objemů tří různých krychlí. Objem krychle je $V = a \cdot a \cdot a$. Protože krychle mají celočíselné hrany (v cm), hledám kombinace součtů třetích mocnin: $1^3 = 1$, $2^3 = 8$, $3^3 = 27$, $4^3 = 64$, $5^3 = 125$, $6^3 = 216$, $7^3 = 343$ (to už ale nelze použít, protože 343 je větší než 342, což je celý objem).

Kdyby bylo $V_1=216\,\mathrm{cm}^3$, zbylo by $126\,\mathrm{cm}^3$ na V_2+V_3 , a to je možné pro $V_2=125\,\mathrm{cm}^3$, $V_3=1\,\mathrm{cm}^3$. Další řešení neexistují. Hrany Dominikových krychlí mají tedy tyto velikosti: $a_1=6\,\mathrm{cm}$, $a_2=5\,\mathrm{cm}$, $a_3=1\,\mathrm{cm}$.

3. Přirozené číslo je veselé, je-li dělitelné 9 nebo 13, smutné, je-li dělitelné 12, hladové, obsahuje-li alespoň jednu nulu, malé, je-li dvojciferné, a velké, je-li trojciferné a menší než 200. Jak velký obsah může mít obdélník, jehož šířka (v centimetrech) je malá, smutná a hladová, délka je velká, veselá a hladová a jehož obvod je také hladový?

Řešení. Sířka má být malá, smutná a hladová, tj. musí to být číslo dvojciferné, dělitelné 12 a zároveň obsahovat jednu nulu: mezi dvojcifernými násobky 12 (12, 24, 36, 48, 60, 72, 84, 96) je pouze jedna možnost, a to číslo 60.

Délka má být velká, veselá a hladová, tj. musí to být číslo větší nebo rovno 100 a menší než 200, dělitelné 9 nebo 13 a musí obsahovat alespoň jednu nulu: mezi násobky 9 (108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198) nebo násobky 13 (104, 117, 130, 143, 156, 169, 182, 195) vyhovují podmínce čtyři možnosti: 108, 180, 104 a 130.

Tedy šířka $a=60\,\mathrm{cm}$ a délka může být $b_1=104\,\mathrm{cm},\ b_2=108\,\mathrm{cm},\ b_3=130\,\mathrm{cm},$ $b_4=180\,\mathrm{cm}.$ Obvod obdélníku je $o=(a+b)\cdot 2$, naše možnosti jsou pak tyto:

$$o_1 = (60 + 104) \cdot 2 = 328 \text{ cm}$$
 $o_2 = (60 + 108) \cdot 2 = 336 \text{ cm}$
 $o_3 = (60 + 130) \cdot 2 = 380 \text{ cm}$
 $o_4 = (60 + 180) \cdot 2 = 480 \text{ cm}$
 $o_4 = (60 + 180) \cdot 2 = 480 \text{ cm}$
... jsou hladové obvody.

Tedy existují 2 řešení:

$$S = 60 \cdot 130 = 7800 \,\mathrm{cm}^2,$$

 $S = 60 \cdot 180 = 10800 \,\mathrm{cm}^2.$

4. Doplňte do součinové "pyramidy" přirozená čísla tak, aby největší doplněné číslo bylo 315 a žádná dvě doplněná čísla nebyla stejná. Kolika různými způsoby se to dá udělat?

ŘEŠENÍ. Rozložíme číslo 315 na součin prvočísel: $315 = 3 \cdot 3 \cdot 5 \cdot 7$. Bude-li na vrcholu číslo 315, musí být ve druhém řádku (uprostřed pyramidy) některý z těchto součinů:

$$1 \cdot 315$$
, $3 \cdot 105$, $5 \cdot 63$, $7 \cdot 45$, $9 \cdot 35$, $15 \cdot 21$.

Protože doplněná čísla musí být různá, je třeba vyloučit součin $1 \cdot 315$. Ve třetím řádku musí být také různá čísla, proto vyloučíme tyto součiny: $3 \cdot 105$ ($\underline{3} = 1 \cdot \underline{3}$), $5 \cdot 63$ ($\underline{5} = 1 \cdot \underline{5}$), $7 \cdot 45$ ($\underline{7} = 1 \cdot \underline{7}$), $9 \cdot 35$ ($\underline{9} = 1 \cdot \underline{9}$ nebo $9 = \underline{3} \cdot \underline{3}$).

Zbývá součin $15 \cdot 21$, který umístíme do druhého řádku. Čísla 15 a 21 rozložíme takto: $15 = 3 \cdot 5$ a $21 = 3 \cdot 7$. Umístit je ale musíme buď 5, 3, 7 nebo 7, 3, 5, tj. číslo 3 uprostřed, protože je společné. Řešení jsou tedy dvě:

315							
	15		2	1			
5		3		,	7		

		3.	15		
	21		1	5	
7		3		5	

5. Ivan dostal speciální bílo-hnědou čokoládu. Zjisti hmotnost bílé části, pokud celá čokoláda má tři stejně široké řádky a tři stejně široké sloupce a váží 144 gramů.

ŘEŠENÍ. Čokoláda má tvar obdélníku a má 3 stejné řádky a 3 stejné sloupce, tedy je rozdělena na 9 shodných obdélníků. Proto je také možno rozdělit celou čokoládu na

36 trojúhelníků stejných obsahů. Shodnost obsahů těchto malých trojúhelníků je zřejmá např. z dalšího rozdělení na 4 shodné trojúhelníky:

$$S_1 = 2 \cdot \triangleright$$

$$S_2 = 2 \cdot \triangleright$$

Celá čokoláda má hmotnost 144 g. Hmotnost jednoho trojúhelníku je tedy 144 : 36 = 4 g.

Hnědá část: 10 trojúhelníků ... $10 \cdot 4 = 40 \,\mathrm{g}$.

Bílá část: 26 trojúhelníků . . . 26 \cdot 4 = 104 g.

Bílá část má hmotnost 104 gramů.

6. Tři dalmatini a dva špici váží stejně jako 14 jezevčíků. Jeden dalmatin váží stejně jako jeden špic a tři jezevčíci. Kolik jezevčíků váží 101 dalmatinů? (Psi jedné rasy váží stejně.)

Řešení. Označme dalmatina . . . d,špice . . . s,jezevčíka . . . j. Potom platí tyto rovnosti:

$$3 \cdot d + 2 \cdot s = 14 \cdot j,$$
$$d = s + 3 \cdot j$$

Spojíme oba vztahy:

$$\underbrace{(s+3\cdot j) + (s+3\cdot j) + (s+3\cdot j)}_{3\cdot d + 2\cdot s = 14\cdot j} \begin{cases} 5\cdot s + 9\cdot j = 14\cdot j \\ \Rightarrow 5\cdot s = 5\cdot j \\ s = j \end{cases}$$

Z poslední rovnosti vidíme, že špic a jezevčík váží stejně. Protože jeden dalmatin váží tolik, co jeden špic a tři jezevčíci, váží tedy tolik, co čtyři jezevčíci. Pak platí: 1 dalmatin = 4 jezevčíci, z čehož plyne, že $101 \text{ dalmatin} = 4 \cdot 101$, a to je 404 jezevčíků.