Lecture 17 - The Weyl Group

November 1, 2012

1 Information on Weyl groups

Theorem 1.1 Let \triangle be a base of Φ

- a) If $\gamma \in E$ is regular, there exists some $\sigma \in W$ so that $(\sigma(\gamma), \alpha) > 0$ for all $\alpha \in \Delta$; in particular W acts transitively on Weyl chambers
- b) If \triangle' is any other base, there is an element $\sigma' \in \mathcal{W}$ so that $\sigma'(\triangle') = \triangle$; in particular \mathcal{W} acts transitively on bases
- c) If α is any root, there exists some $\sigma \in \mathcal{W}$ so that $\sigma(\alpha) \in \Delta$
- d) W is generated by the σ_{α} for $\alpha \in \triangle$
- e) If $\sigma(\triangle) = \triangle$ for some $\sigma \in \mathcal{W}$, then $\sigma = 1$; in particular \mathcal{W} acts simply transitively on the bases.

Pf. For the time being we'll make a distinction between W', the group generated by reflection in elements in \triangle , and the full Weyl group W.

a) Set
$$\delta = \frac{1}{2} \sum_{\alpha \in \Phi^+} \alpha$$
. Choose σ so that $(\sigma^{-1}(\delta), \gamma)$ is as small as possible. But then

$$\left(\sigma^{-1}(\delta), \gamma\right) \geq \left(\sigma^{-1}(\sigma_{\alpha}\delta), \gamma\right) = \left(\delta - \alpha, \sigma\gamma\right) = \left(\sigma^{-1}\delta, \gamma\right) - \left(\alpha, \sigma\gamma\right) \tag{1}$$

Equality exists only when γ is not regular, which is assumed not to be the case. Thus $(\sigma\gamma, \alpha) > 0$ as promised.

b) We have seen that W' transitively permutes the Weyl chambers. Since every base determine a chamber, there is an element $\sigma \in W'$ that takes the chamber \mathcal{C} (corresponding to Δ) to the chamber \mathcal{C}' (corresponding to Δ'). By the indecomposability of Δ and Δ' , they must now be the same (up to ordering).

- c) Find a vector γ so that $\alpha \perp \gamma$ but so that γ is not perpendicular to any other root. Slightly perturbing γ , we can make (α, γ) smaller than any other positive (β, γ) . Clearly then α is indecomposable.
- d) Given any root β , by (b) and (c) we know there is a transformation $\sigma \in \mathcal{W}'$ so that $\sigma(\beta) \in \Delta$. Then

$$\sigma_{\beta} = \sigma^{-1} \sigma_{\sigma^{-1} \beta} \sigma \tag{2}$$

is an element of \mathcal{W}' . Thus any generator of \mathcal{W} is an element of \mathcal{W}' , so that $\mathcal{W} = \mathcal{W}'$.

e) Any element $\sigma = \sigma_{\alpha_1} \dots \sigma_{\alpha_t}$ can be written minimally. By a previous lemma, σ takes at least one positive element (namely α_t) to a negative element, and therefore does not act on Δ itself.

According to the theorem, given any map $\sigma \in \mathcal{W}$ we can write

$$\sigma = \sigma_{\alpha_1} \dots \sigma_{\alpha_t} \tag{3}$$

where $\alpha_i \in \Delta$. If t is minimal, we say t is the *length* of the map σ relative to the base Δ , denoted $l(\sigma)$. We also define l(1) = 0. Define $n(\sigma)$ to be the number of positive roots $\beta > 0$ for which $\sigma(\beta) < 0$.

Lemma 1.2 Given any $\sigma \in \mathcal{W}$, we have $n(\sigma) = l(\sigma)$.

Pf. This is an induction on $l(\sigma)$. Clearly it is true for $l(\sigma) = 0$. Assume the theorem holds for all τ with $l(\tau) \leq t-1$, and let σ be so that $l(\sigma) = t$. Then if $\sigma = \sigma_{\alpha_1} \dots \sigma_{\alpha_t}$ is a minimal expression for σ , we have that σ sends α_t to $-\alpha_t$. Then $\sigma' = \sigma \sigma_{\alpha_t} = \sigma_{\alpha_1} \dots \sigma_{\alpha_{t-1}}$ (which is also minimal) sends α_t to α_t , but since σ_{α_t} sends all positive roots besides α_t to positive roots, we have $n(\sigma') = n(\sigma) - 1$. Since clearly also $l(\sigma') = l(\sigma) - 1$, the theorem is proved by induction.

Lemma 1.3 Assume λ , μ are vectors in the closure of $\mathfrak{C}(\Delta)$, and assume some $\sigma \in \mathcal{W}$ has $\sigma \lambda = \mu$. Then σ is a product of simple reflections that fix λ ; in particular $\lambda = \mu$.

Pf. Since σ sends at least one simple root, say α , to a negative root, we have

$$0 \ge (\sigma \alpha, \mu) = (\alpha, \sigma^{-1} \mu) = (\alpha, \lambda) \ge 0 \tag{4}$$

Therefore equality holds, so $\sigma_{\alpha}\lambda = \lambda$. But then $\sigma'\lambda = \sigma\sigma_{\alpha}\lambda = \sigma\lambda = \mu$. However $l(\sigma') = l(\sigma) - 1$, so we can apply induction on $l(\sigma)$ to obtain the result.

2 Irreducible root systems

A root system Φ is called irreducible if it cannot be partitioned into non-empty subsets, so that the elements of either subset is perpendicular to all vectors in the other.

Lemma 2.1 A root system Φ is irreducible if and only if every base \triangle is irreducible.

Pf. If a base \triangle is reducible so that $\triangle = \triangle' \cup \triangle''$, then the Weyl group, which is generated by that base, is also reducible. This is due to the fact that if $(\alpha, \beta) = 0$ then $\sigma_{\alpha}\sigma_{\beta} = \sigma_{\beta}\sigma_{\alpha}$, so $\mathcal{W} = \mathcal{W}' \times \mathcal{W}''$. Every root is conjugate to a simple root, but since \mathcal{W}' , \mathcal{W}'' fix, respectively, the (orthogonal) subspaces spanned by \triangle' , \triangle'' , any root that is conjugate to an element of \triangle' is not conjugate to an element of \triangle'' , and vice-versa. Thus since the subspaces $span\Delta'$ and $span\Delta''$ are fixed under \mathcal{W} , every root is either in one or the other, so therefore the root system is decomposable. The converse is even easier.

Lemma 2.2 Let Φ be an irreducible root system. Relative to the partial ordering < on Φ^+ there is a unique maximal root β (in particular ht $\beta >$ ht α for all $\alpha \in \Phi$ and $(\beta, \alpha) \geq 0$ for all $\alpha \in \Phi^+$).

Pf. Choose a β so that β is maximal among all roots that it is comparable to. We first prove that it is comparable to all simple roots. If not, there is some $\alpha \in \Delta$ so that $\beta - \alpha$ is not a root. Thus $(\beta, \alpha) \leq 0$. But if equality holds, then α is orthogonal to all simple roots that comprise β , so that Δ is partitioned orthogonally, an impossibility. Since $(\beta, \alpha) < 0$, we have that $\beta + \alpha$ is a root, and $\beta + \alpha > \beta$, an impossibility.

Since β is comparable to all simple roots, we can see it is comparable to all positive roots. Specifically, if $\beta - \alpha$ is not a root then $(\beta, \alpha) \leq 0$, but equality cannot hold because both are positive linear combinations of base roots and β involves all base roots, so because $(\beta, \alpha) < 0$ then $\beta + \alpha$ is a root and is comparable to β , contradicting the maximality of β . \square

Lemma 2.3 Let Φ be irreducible. Then W acts irreducibly on E. In particular the W-orbit of any $\alpha \in \Phi$ spans E.

Pf. If \mathcal{W} does not act irreducibly, so $E' \subset E$ is a proper subspace preserved by \mathcal{W} , then the orthogonal compliment E'' also has an action of \mathcal{W} . By reducibility, clearly either $\alpha \in E'$ or else $E' \subset P_{\alpha}$ and similarly for E''. As a consequence all roots lie in either E' or E'', contradicting the irreducibility of Φ .

Lemma 2.4 Let Φ be irreducible. Then at most two root lengths occur in Φ , and all roots of a given length are conjugate under W.

Pf. Provided $(\alpha, \beta) \neq 0$, the only possible ratios of their length-squares are $\frac{1}{3}, \frac{1}{2}, 1, 2, 3$. Further, for any α , its orbit under \mathcal{W} contains a vector α' so that $(\alpha', \beta) > 0$. This proved the first assertion, since the existence of three root lengths would imply a ratio of $\frac{2}{3}$.

Let α, β be roots of the same root length. We may assume $(\alpha, \beta) > 0$. If they are distinct, then one of $\langle \alpha, \beta \rangle$, $\langle \beta, \alpha \rangle$ is ± 1 , and therefore $\langle \alpha, \beta \rangle = \langle \beta, \alpha \rangle = +1$. Then

$$(\sigma_{\alpha}\sigma_{\beta}\sigma_{\alpha})(\beta) = (\sigma_{\alpha}\sigma_{\beta})(\beta - \alpha) = \sigma_{\alpha}(-\alpha) = \alpha$$
 (5)

Lemma 2.5 Let Φ be irreducible, and have two root lengths. Then the maximal root is long.

Pf. Let β be the maximal root. Because β is comparable to all positive roots, $(\beta, \alpha) \geq 0$ for all $\alpha \in \Phi^+$, and equality cannot hold, so β is in the fundamental Weyl chamber. Given any α , it is in some chamber, and since the Weyl group transitively permutes chamber, we can assume α is in the fundamental chamber. Then $\beta-\alpha$ is a positive root, and $(\gamma,\beta-\alpha)\geq 0$ for any γ in the closure of the fundamental chamber. Then $|\beta|^2-(\beta,\alpha)\geq 0$ and $(\alpha,\beta)-|\alpha|^2\geq 0$, so that $|\beta|^2>(\alpha,\beta)\geq |\alpha|^2$.