Denoising Diffusion Probabilistic Models

Trevor Norton

October 26, 2023

What are diffusion models?

Generative models are unsupervised learning methods which determine the distribution p(x) from which training samples are drawn.

 Examples: Autoregressive Models, Normalizing Flows, Variational Auto-Encoders, and Generative Adversarial Networks

Diffusion probabilistic models (or, more simply, diffusion models) are a form of generative models that inject noise into a distribution and then try to learn the denoising process.

state-of-the-art performance in image generation, shape generation, and music generation

Diffusion models learn to denoise

Figure: The forward process $q(\mathbf{x}_t \mid \mathbf{x}_{t-1})$ continually adds noise. The backward process $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ learns to reverse the noising process [1].

To sample from the learned distribution, take noisy samples (typically from some simple tractable distribution) and reverse the noising process.

Paper 1: Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion models first proposed in [2].

- Inspired by methods in thermodynamics and statistics (in particular, Annealed Importance Sampling).
- Destroy the distribution using an iterative diffusion process and then learn to reverse the process.
- Use Markov chains with Gaussian transitions as forward and backward processes.

Forward process

Distribution to learn: $q(\mathbf{x}_0)$ Diffusion kernel: $T_{\pi}(\mathbf{y}|\mathbf{y}';\beta)$ Forward process: $q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = T_{\pi}(\mathbf{x}_t \mid \mathbf{x}_{t-1};\beta_t)$ Stationary distribution: $\pi(\mathbf{y}) = \int T_{\pi}(\mathbf{y} \mid \mathbf{y}';\beta)\pi(\mathbf{y}')\,\mathrm{d}\mathbf{y}'$

Forward process

Distribution to learn:
$$q(\mathbf{x}_0)$$

Diffusion kernel: $T_{\pi}(\mathbf{y}|\mathbf{y}';\beta) = \mathcal{N}(\mathbf{y};\sqrt{1-\beta}\mathbf{y}',\beta\mathbf{I})$
Forward process: $q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = T_{\pi}(\mathbf{x}_t \mid \mathbf{x}_{t-1};\beta_t)$
Stationary distribution: $\pi(\mathbf{y}) = \int T_{\pi}(\mathbf{y} \mid \mathbf{y}';\beta)\pi(\mathbf{y}')\,\mathrm{d}\mathbf{y}'$
 $\Longrightarrow \pi(\mathbf{y}) = \mathcal{N}(\mathbf{y};\mathbf{0},\mathbf{I})$

What is the forward process doing?

- If $\mathbf{x}_0 \sim \delta_0$ (i.e. $\mathbf{x}_0 = 0$ with probability 1), then $\mathbf{x}_1 \sim \mathcal{N}(0, \beta \mathbf{I})$ \Rightarrow the forward process is blurring the initial data
- ► Repeated steps in the Markov chain leads the distribution closer to pure noise: $q(\mathbf{x}_T) \approx \pi(\mathbf{x}_T)$ for T large.
- Noise schedule β_t may be treated as fixed hyperparameters or trained as a parameters of the model. (Generally want β_t increasing.)

Reverse process

For small β_t , the reverse process has approximately normal Gaussian transitions.

$$egin{aligned} p_{ heta}(\mathbf{x}_{t-1} \mid \mathbf{x}_t) &:= \mathcal{N}(\mathbf{x}_{t-1}; oldsymbol{\mu}(\mathbf{x}_t, t), oldsymbol{\Sigma}_{ heta}(\mathbf{x}_t, t)) \ p_{ heta}(\mathbf{x}_{\mathcal{T}}) &= \mathcal{N}(\mathbf{x}_{\mathcal{T}}; \mathbf{0}, \mathbf{I}) \end{aligned}$$

Need to choose θ that will reverse the process.

Ancestral sampling: After learning p_{θ} , sampling can be done by sampling from $\mathcal{N}(\mathbf{0}; \mathbf{I})$ and going through the reverse Markov chain.

Training

We want to maximize the model log-likelihood:

$$\int \log p_{\theta}(\mathbf{x}_{0})q(\mathbf{x}_{0}) d\mathbf{x}_{0}$$

$$\geq \underbrace{\int \log \left[p(\mathbf{x}_{T}) \prod_{t=1}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1})} \right] q(\mathbf{x}_{0:T}) d\mathbf{x}_{0:T}}_{=:-L}$$

$$> K$$

The term K is computationally tractable, and can be used as a lower-bound for the log-likelihood. Training then chooses μ_{θ} and Σ_{θ} (and β_{t}) to maximize K.

Figure: Random samples for model trained on CIFAR-10 dataset [2].

Paper 2: Denoising Diffusion Probabilistic Models

- ▶ In [1], they take the diffusion model and define a new variational training condition.
- The variational loss results in better sample quality.
- ► The new loss also helps demonstrate connections with score-based models (as we will see more clearly next week).

Negative Log-Likelihood

$$\begin{split} L &= \\ \mathbb{E}_{q} \Big[\underbrace{\mathcal{D}_{KL}(q(\mathbf{x}_{T} \mid \mathbf{x}_{0}) \mid\mid p(\mathbf{x}_{T}))}_{L_{T}} \\ &+ \sum_{t>1} \underbrace{\mathcal{D}_{KL}(q(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}\mathbf{x}_{0}) \mid\mid p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}))}_{L_{t-1}} \\ &- \underbrace{\log p_{\theta}(\mathbf{x}_{0} \mid \mathbf{x}_{1})}_{L_{0}} \Big] \end{split}$$

- \triangleright L_T is constant when β_t are held fixed.
- ▶ The KL divergences in L_{t-1} can be written in closed forms since the distributions are normal.

Variational Bound

Fixing $\Sigma_{ heta}(\mathbf{x}_t,t)=\sigma_t^2\mathbf{I}$ and reparameterizing

$$\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \overline{\alpha}_t}} \epsilon_{\theta}(\mathbf{x}_t, t) \right)$$

where $\alpha_t = 1 - \beta_t$ and $\overline{\alpha}_t = \prod_{s=1}^t \alpha_s$.

Minimizing L_{t-1} is equivalent to minimizing

$$\mathbb{E}_{\mathsf{x}_0,\epsilon}\left[\frac{\beta_t^2}{2\sigma_t^2\alpha_t(1-\overline{\alpha}_t)}\|\epsilon-\epsilon_{\theta}(\sqrt{\overline{\alpha}_t}\mathsf{x}_0+\sqrt{1-\overline{\alpha}_t}\epsilon,t)\|^2\right]$$

- ► The authors note that this resembles score matching: trying to learn the (Stein) score $\nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t)$
- Dropping the weighted terms gives a simplified loss

$$L_{simple}(\theta) := \mathbb{E}_{t, \mathbf{x}_0, \epsilon} \left[\| \epsilon - \epsilon_{\theta} (\sqrt{\overline{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t} \epsilon, t) \|^2 \right]$$

- ightharpoonup Using L_{simple} improves sampling quality in image generation
 - ▶ Dropping the weighting puts for emphasis on learning to denoise at large t, which is more difficult.

Figure: Generated samples on CelebA-HQ [1].

- Jonathan Ho, Ajay Jain, and Pieter Abbeel.

 Denoising Diffusion Probabilistic Models.

 In Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.

Deep Unsupervised Learning using Nonequilibrium Thermodynamics.

In Proceedings of the 32nd International Conference on Machine Learning, pages 2256–2265. PMLR, June 2015. ISSN: 1938-7228.