import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

02.Load the Dataset

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.

→

Read the Dataset

mydata=pd.read_csv('/content/drive/MyDrive/Colab Notebooks/abalone.csv')

mydata.shape

(4177, 9)

mydata.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

mydata.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

mydata.columns

mydata.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
4							•

mydata.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype				
0	Sex	4177 non-null	object				
1	Length	4177 non-null	float64				
2	Diameter	4177 non-null	float64				
3	Height	4177 non-null	float64				
4	Whole weight	4177 non-null	float64				
5	Shucked weight	4177 non-null	float64				
6	Viscera weight	4177 non-null	float64				
7	Shell weight	4177 non-null	float64				
8	Rings	4177 non-null	int64				
<pre>dtypes: float64(7), int64(1), object(1)</pre>							
memo	ry usage: 293.8+	KB					

mydata.dtypes

Sex	object
Length	float64
Diameter	float64
Height	float64
Whole weight	float64
Shucked weight	float64
Viscera weight	float64
Shell weight	float64
Rings	int64
dtype: object	

03.Perform Virtualization

sns.boxplot(mydata['Rings'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c649e0d0>

sns.boxplot(mydata['Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c647c410>

sns.boxplot(mydata['Diameter'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c63f23d0>

sns.boxplot(mydata['Whole weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c63d15d0>

sns.boxplot(mydata['Shucked weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c6336250>

sns.boxplot(mydata['Viscera weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c62b7510>

sns.boxplot(mydata['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c6290bd0>

sns.boxplot(mydata['Rings'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c61f2910>

sns.heatmap(mydata.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f30c6184490>

Bivariate Analysis

```
cols = list(mydata.iloc[:,:7].columns)
for i in range(len(cols)-1):
    for j in range(i+1, len(cols)):
        plt.scatter(mydata[cols[i]], mydata[cols[j]])
        plt.title(cols[i]+'-'+cols[j])
        plt.show()
```


04.Perform Descriptive Statistics

```
mydata = pd.DataFrame()
```

mydata.sum()

Sex MMFMIIFFMFFMMFFMIFMMMIFFFFFMMMMFMFFMFFFMFFIIII... Length 2188.715 Diameter 1703.72 Height 582.76 3461.656 Whole weight Shucked weight 1501.078 Viscera weight 754.3395 Shell weight 997.5965 Rings 41493

dtype: object

mydata.sum(1)

```
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropp """Entry point for launching an IPython kernel.
```

```
16.9045
         8.1485
1
2
        11.3700
3
        11.9305
4
         8.0540
4172
        13.9250
4173
        13.0450
4174
        12,5770
4175
        13.4425
4176
        17.2255
Length: 4177, dtype: float64
```

mydata.mean()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropp """Entry point for launching an IPython kernel.

Length 0.523992
Diameter 0.407881
Height 0.139516
Whole weight 0.828742
Shucked weight 0.359367
Viscera weight 0.180594
Shell weight 0.238831

Rings 9.933684

dtype: float64

mydata.std()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropp """Entry point for launching an IPython kernel.

0.120093 Length Diameter 0.099240 Height 0.041827 Whole weight 0.490389 Shucked weight 0.221963 Viscera weight 0.109614 Shell weight 0.139203 3.224169 Rings

dtype: float64

mydata.count()

4177 Sex Length 4177 Diameter 4177 Height 4177 Whole weight 4177 4177 Shucked weight Viscera weight 4177 Shell weight 4177 Rings 4177

mydata.min()

dtype: int64

Sex F Length 0.075 Diameter 0.055 Height 0.0 Whole weight 0.002 Shucked weight 0.001 0.0005 Viscera weight Shell weight 0.0015 Rings 1 dtype: object

mydata.describe

<boun< th=""><th>d met</th><th>thod NDFr</th><th>ame.descri</th><th>ibe of</th><th>Sex Length</th><th>n Diameter Height</th><th>Whole weight</th></boun<>	d met	thod NDFr	ame.descri	ibe of	Sex Length	n Diameter Height	Whole weight
Shuck	ed we	eight \					
0	Μ	0.455	0.365	0.095	0.5140	0.2245	
1	Μ	0.350	0.265	0.090	0.2255	0.0995	
2	F	0.530	0.420	0.135	0.6770	0.2565	
3	Μ	0.440	0.365	0.125	0.5160	0.2155	
4	I	0.330	0.255	0.080	0.2050	0.0895	
	• •		• • •		• • •	• • •	
4172	F	0.565	0.450	0.165	0.8870	0.3700	
4173	Μ	0.590	0.440	0.135	0.9660	0.4390	

4174	Μ	0.600	0.475	0.205	1.1760	0.5255
4175	F	0.625	0.485	0.150	1.0945	0.5310
4176	Μ	0.710	0.555	0.195	1.9485	0.9455

Viscera	weight	Shell	weight	Rings
	0.1010		0.1500	15
	0.0485		0.0700	7
	0.1415		0.2100	9
	0.1140		0.1550	10
	0.0395		0.0550	7
	0.2390		0.2490	11
	0.2145		0.2605	10
	0.2875		0.3080	9
	0.2610		0.2960	10
	0.3765		0.4950	12
	Viscera	0.1010 0.0485 0.1415 0.1140 0.0395 0.2390 0.2145 0.2875 0.2610	0.1010 0.0485 0.1415 0.1140 0.0395 0.2390 0.2145 0.2875 0.2610	0.0485 0.0700 0.1415 0.2100 0.1140 0.1550 0.0395 0.0550 0.2390 0.2490 0.2145 0.2605 0.2875 0.3080 0.2610 0.2960

[4177 rows $x \ 9 \ columns] >$

05. Handling Missig Values

```
mydata.duplicated().sum()
```

0

mydata.isna().sum()

0
0
0
0
0
0
0
0
0

mydata.nunique()

```
3
Sex
Length
                   134
Diameter
                   111
Height
                    51
Whole weight
                  2429
Shucked weight
                  1515
Viscera weight
                  880
                   926
Shell weight
Rings
                    28
```

dtype: int64

mydata.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4177 entries, 0 to 4176 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
dtvp	es: float64(7).	int64(1), object	(1)

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

mydata.drop(columns=['Whole weight','Shucked weight','Viscera weight','Shell weight']).des

	Length	Diameter	Height	Rings
count	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	9.933684
std	0.120093	0.099240	0.041827	3.224169
min	0.075000	0.055000	0.000000	1.000000
25%	0.450000	0.350000	0.115000	8.000000
50%	0.545000	0.425000	0.140000	9.000000
75%	0.615000	0.480000	0.165000	11.000000
max	0.815000	0.650000	1.130000	29.000000

qnt=mydata.drop(columns=['Shucked weight','Viscera weight','Shell weight'])

06.Find Outliers

qnt=mydata.drop(columns=['Sex','Viscera weight','Shucked weight']).quantile(q=[0.015,0.050]
qnt

	Length	Diameter	Height	Whole weight	Shell weight	Rings
0.015	0.215	0.1582	0.050	0.04932	0.0150	4.0
0.050	0.295	0.2200	0.075	0.12590	0.0384	6.0
0.080	0.335	0.2500	0.080	0.17954	0.0550	6.0

Q1=qnt.iloc[0]

Q4=qnt.iloc[1]

Q7=qnt.iloc[2]

```
iqr=Q4-Q1
iqr
```

Length 0.08000 Diameter 0.06180 Height 0.02500 Whole weight 0.07658 Shell weight 0.02340 Rings 2.00000

dtype: float64

iqr=Q7-Q1 iqr

Length 0.12000
Diameter 0.09180
Height 0.03000
Whole weight 0.13022
Shell weight 0.04000
Rings 2.00000

dtype: float64

upper=qnt.iloc[2]+1.5*iqr
upper

Length 0.51500
Diameter 0.38770
Height 0.12500
Whole weight 0.37487
Shell weight 0.11500
Rings 9.00000

dtype: float64

lower=qnt.iloc[0]-1.5*iqr
lower

Length 0.03500
Diameter 0.02050
Height 0.00500
Whole weight -0.14601
Shell weight -0.04500
Rings 1.00000

dtype: float64

medium=qnt.iloc[1]-1.5*iqr
medium

Length 0.11500
Diameter 0.08230
Height 0.03000
Whole weight -0.06943
Shell weight -0.02160
Rings 3.00000

dtype: float64

Replace Outliers

```
mydata['Rings']= np.where(mydata['Rings']>11.2,9.933684,mydata['Rings'])
mydata['Whole weight']= np.where(mydata['Whole weight']>3.1,2.825500,mydata['Whole weight']
```

07.Categorical Columns

```
mydata['Sex'].replace({'M': 1, 'F':0,'I':2}, inplace=True)
mydata.head(10)
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	9.933684
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.000000
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.000000
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.000000
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7.000000
5	2	0.425	0.300	0.095	0.3515	0.1410	0.0775	0.120	8.000000
6	0	0.530	0.415	0.150	0.7775	0.2370	0.1415	0.330	9.933684
7	0	0.545	0.425	0.125	0.7680	0.2940	0.1495	0.260	9.933684
8	1	0.475	0.370	0.125	0.5095	0.2165	0.1125	0.165	9.000000
9	0	0.550	0.440	0.150	0.8945	0.3145	0.1510	0.320	9.933684

Perform Encoding

```
10.000000
             634
8.000000
             568
             487
11.000000
             391
7.000000
6.000000
             259
5.000000
             115
4.000000
              57
3.000000
              15
               1
1.000000
               1
2.000000
```

Name: Rings, dtype: int64

Dropping Unwanted Columns

mydata =mydata.drop(columns=['Length'])
mydata.head()

	Sex	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	1	0.365	0.095	0.5140	0.2245	0.1010	0.150	9.933684
1	1	0.265	0.090	0.2255	0.0995	0.0485	0.070	7.000000
2	0	0.420	0.135	0.6770	0.2565	0.1415	0.210	9.000000
3	1	0.365	0.125	0.5160	0.2155	0.1140	0.155	10.000000
4	2	0.255	0.080	0.2050	0.0895	0.0395	0.055	7.000000

08. Split the Data into Depenent and Indepenent Variable

```
Y= mydata['Rings']
mydata = mydata.drop(['Rings'], axis = 1)
Y= mydata
```

	Sex	Diameter	Height	Whole weight	Shucked weight	Viscera weight
0	1	0.365	0.095	0.5140	0.2245	0.1010
1	1	0.265	0.090	0.2255	0.0995	0.0485
2	0	0.420	0.135	0.6770	0.2565	0.1415
3	1	0.365	0.125	0.5160	0.2155	0.1140
4	2	0.255	0.080	0.2050	0.0895	0.0395

```
Y=mydata.iloc[:,-1]
Y.head()
```

0 0.150

```
1  0.070
2  0.210
3  0.155
4  0.055
Name: Shell weight, dtype: float64
```

09. Scale The Independent Variables

```
from sklearn.preprocessing import StandardScaler
cls=StandardScaler()
X=cls.fit_transform(X)
Χ
     array([[-0.0105225 , -0.43214879, -1.06442415, -0.64189823, -0.60768536,
             -0.72621157],
            [-0.0105225, -1.439929, -1.18397831, -1.23027711, -1.17090984,
             -1.20522124],
            [-1.26630752, 0.12213032, -0.10799087, -0.30946926, -0.4634999]
            -0.35668983],
            [-0.0105225 , 0.67640943 , 1.56576738 , 0.70821206 , 0.74855917 ,
             0.97541324],
            [-1.26630752, 0.77718745, 0.25067161, 0.54199757, 0.77334105,
             0.73362741],
            [-0.0105225 , 1.48263359, 1.32665906, 2.28368063, 2.64099341,
              1.78744868]])
```

10. Split Data Into Training and Testing

```
from sklearn.model_selection import train_test_split

X_train,X_test,Y_train,Y_test= train_test_split(X,Y,test_size=0.4,random_state=0)
print('train data points :', len(X_train))
print('test data points : 2506
    test data points : 1671

X_train.shape
    (2506, 6)

X_test.shape
    (1671, 6)

X_train
```

```
array([[ 1.24526253, -2.14537514, -1.78174911, -1.47399037, -1.37592355, -1.46525506],
        [-0.0105225 , -0.73448285, -0.34709919, -0.77752109, -0.64373173, -0.49811173],
        [-0.0105225 , 0.82757646, 0.72888826, 0.7051529 , 0.74855917, 0.84311534],
        ...,
        [-0.0105225 , 0.42446438, 0.13111745, 0.26565325, 0.46694694, 0.23636976],
        [-1.26630752, 0.82757646, 0.6093341 , 0.60827942, 0.53002808, 0.51008957],
        [ 1.24526253, -0.83526087, -0.70576167, -1.02531323, -1.02221858, -0.96343541]])
```

X_test

```
array([[-0.0105225 , 0.21659075 , 0.17251933 , ..., 0.18101643 , -0.36887819 , 0.56939553],

[ 1.24526253 , -0.1998034 , -0.07942572 , ..., -0.43387519 , -0.44322382 , -0.34300384],

[ -0.0105225 , 0.79954256 , 0.72679844 , ..., 0.87034766 , 0.75531787 , 1.7646387 ],

...,

[ 1.24526253 , 0.67462432 , 0.62602042 , ..., 0.22486442 , -0.09402464 , 0.18618779],

[ -0.0105225 , 0.46642724 , 0.47485339 , ..., -0.06779544 , 0.20561078 , -0.12402799],

[ 1.24526253 , -1.61554351 , -1.69187405 , ..., -1.3577422 , -1.28355474 , -1.34664314]])
```

11.Build the Model

1.Linear Regression

```
from sklearn.linear_model import LinearRegression

lm = LinearRegression()

lm.fit(X_train, Y_train)

    LinearRegression()

Y_train_pred = lm.predict(X_train)

Y_test_pred = lm.predict(X_test)

from sklearn.metrics import mean_absolute_error, mean_squared_error

s = mean_squared_error(Y_train, Y_train_pred)
print('Mean Squared error of training set :%2f'%s)

p = mean_squared_error(Y_test, Y_test_pred)
print('Mean Squared error of testing set :%2f'%p)
```

```
Mean Squared error of testing set :0.000791

from sklearn.metrics import r2_score
s = r2_score(Y_train, Y_train_pred)
print('R2 Score of training set:%.2f'%s)

p = r2_score(Y_test, Y_test_pred)
print('R2 Score of testing set:%.2f'%p)

R2 Score of training set:0.95
```

R2 Score of testing set:0.96

Mean Squared error of training set :0.000995

2.Ridge

```
from sklearn.linear_model import Ridge
ridge_mod = Ridge(alpha=0.01, normalize=True)
ridge_mod.fit(X_train, Y_train)
ridge_mod.fit(X_test, Y_test)
ridge_model_pred = ridge_mod.predict(X_test)
ridge_mod.score(X_train, Y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:145: FutureWarn
     If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing
     from sklearn.pipeline import make pipeline
     model = make_pipeline(StandardScaler(with_mean=False), Ridge())
     If you wish to pass a sample_weight parameter, you need to pass it as a fit paramete
     kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
     model.fit(X, y, **kwargs)
     Set parameter alpha to: original_alpha * n_samples.
       FutureWarning,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_base.py:145: FutureWarn
     If you wish to scale the data, use Pipeline with a StandardScaler in a preprocessing
     from sklearn.pipeline import make_pipeline
     model = make pipeline(StandardScaler(with mean=False), Ridge())
     If you wish to pass a sample_weight parameter, you need to pass it as a fit paramete
     kwargs = {s[0] + '__sample_weight': sample_weight for s in model.steps}
     model.fit(X, y, **kwargs)
     Set parameter alpha to: original alpha * n samples.
       FutureWarning,
     0.9290023156453548
```


3. Support Vector Regression

```
from sklearn.svm import SVR

svr = SVR(kernel = 'linear')
svr.fit(X_train, Y_train)
svr.fit(X_test, Y_test)

    SVR(kernel='linear')

Y_train_pred = svr.predict(X_train)
Y_test_pred = svr.predict(X_test)
svr.score(X_train, Y_train)

    0.8922092465754603

svr.score(X_test, Y_test)
    0.93330364267072
```

4. Random Forest Regression

from sklearn.ensemble import RandomForestRegressor