STA250 Project

Zhi Zhang

February 2021

1 Introduction

Let $\{\xi_i\}_{i=1}^n$ be a sequence of independent mean-zero random vectors in \mathbb{R}^d . Let $W = \sum_{i=1}^n \xi_i$ and $\Sigma = \text{Var}(W)$. It is well known that under finite third-moment conditions and for fixed dimension d, the distribution of W can be approximated by a Gaussian distribution with error rate $O(1/\sqrt{n})$. In this paper, we consider the approximation of probabilities of convex sets and Euclidean balls. For convex sets, Bentkus (2005) proved for the above W that if Σ is invertible and $Z \sim N(0, \Sigma)$, then

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant Cd^{1/4} \sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^3$$
 (1)

where \mathcal{A} is the collection of all measurable convex sets in \mathbb{R}^d , C is an absolute constant and $|\cdot|$ denotes the Euclidean norm when applied to a vector.

The first main result is that up to a logarithmic factor,

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leq \log C d^{1/4} \left(\sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2} \tag{2}$$

The bound (2) is optimal up to the $d^{1/4}$ and the logarithmic factors.

We then consider the Gaussian approximation on the class \mathcal{B} of all Euclidean balls, which is arguably most relevant for statistical applications, e.g., chi-square tests. We show that the factor $d^{1/4}$ in (2) can be removed if we replace \mathcal{A} with \mathcal{B} . Furthermore, we obtain an error bound that typically vanishes as long as d = o(n). Incidentally, the requirement d = o(n) is necessary for the validity of the Gaussian approximation on balls.

For a matrix M, we use $||M||_{H.S.}$ to denote its Hilbert-Schmidt norm. We use C to denote positive absolute constants which may differ in different expressions. For a vector $x \in \mathbb{R}^d$, we use

 $x_j, 1 \leq j \leq d$ to denote its components. For a sequence of vectors $x_i \in \mathbb{R}^d, 1 \leq i \leq n$, we use x_{ij} to denote the j th component of x_i for $1 \leq j \leq d$. Similarly, we write X_j and X_{ij} for the components of random vectors X and X_i , respectively.

1.1 Notations and Preliminary

Notation 1.1. For two vectors $x, y \in \mathbb{R}^d$, $x \cdot y$ denotes their inner product. For two $d \times d$ matrices M and N, we write $\langle M, N \rangle_{H.S.}$ for their Hilbert-Schmidt inner product.

$$\langle M, N \rangle_{\text{H.S.}} = \text{tr} \left(M^T N \right) = \sum_i \langle M e_i, N e_i \rangle$$

where $\{e_i : i \in I\}$ an orthonormal basis.

Notation 1.2. For real-valued functions on \mathbb{R}^d we will write $\partial_i f(x)$ for $\partial f(x)/\partial x_i$, $\partial_{ij} f(x)$ for $\partial^2 f(x)/(\partial x_i \partial x_j)$ and so forth.

Notation 1.3. We write ∇f and Hess f for the gradient and Hessian matrix of f, respectively. In addition, we denote by $\nabla^r f(x)$ the r-th derivative of f at x regarded as an r-linear form: The value of $\nabla^r f(x)$ evaluated at $u_1, \ldots, u_r \in \mathbb{R}^d$ is given by

$$\langle \nabla^r f(x), u_1 \otimes \cdots \otimes u_r \rangle = \sum_{j_1, \dots, j_r = 1}^d \partial_{j_1, \dots, j_r} f(x) u_{1, j_1} \cdots u_{r, j_r}$$

When $u_1 = \cdots = u_r =: u$, we write $u_1 \otimes \cdots \otimes u_r = u^{\otimes r}$ for short.

Notation 1.4. For any r-linear form T, its injective norm is defined by

$$|T|_{\vee} := \sup_{|u_1|\vee\ldots\vee|u_r|\leqslant 1} |\langle T, u_1\otimes\cdots\otimes u_r\rangle|$$

For an (r-1) -times differentiable function $h: \mathbb{R}^d \to \mathbb{R}$, we write

$$M_r(h) := \sup_{x \neq y} \frac{\left| \nabla^{r-1} h(x) - \nabla^{r-1} h(y) \right|_{\vee}}{|x - y|}$$

Remark 1.1. Note that $M_r(h) = \sup_{x \in \mathbb{R}^d} |\nabla^r h(x)|_{\vee}$ if h is r-times differentiable.

Finally, we refer to the following bound for derivatives of the d-dimensional standard normal density ϕ , which will be used several times in the following (cf. the inequality after Eq. (4.9) of Raič (2019 b)):

$$\int_{\mathbb{R}^d} \left| \left\langle \nabla^s \phi(z), u^{\otimes s} \right\rangle \right| dz \leqslant C_s |u|^s \quad \text{for any fixed integer } s$$
 (3)

where C_s is a constant depending only on s.

2 Main Theorem

2.1 Approximation on Convex Sets

Theorem 2.1. Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Assume $Var(W) = \Sigma$ and Σ is invertible. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ . Then,

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant Cd^{1/4} \left(\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right) \right| \vee 1 \right)$$
(4)

where A is the collection of all measurable convex sets in \mathbb{R}^d .

Remark 2.1. The bound (4) is optimal up to the $d^{1/4}$ and the logarithmic factors.

Proposition 2.1. There is an absolute constant $C_0 > 0$ such that, for sufficiently large n, we can construct centered i.i.d. random vectors ξ_1, \ldots, ξ_n in \mathbb{R}^d with finite fourth moments (which may depend on n) satisfying $Var(W) = I_d$ and

$$\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \geqslant C_0 \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4\right)^{1/2}$$

as long as $d \leq \sqrt{n}/\log n$.

Remark 2.2. Consider the situation where $\xi_i = X_i/\sqrt{n}$ and $\{X_1, X_2, \ldots\}$ is a sequence of i.i.d. mean-zero random vectors in \mathbb{R}^d with $\text{Var}(X_i) = I_d$. In this setting, $\Sigma = I_d$, and for the d-vector X_i , we have

$$\mathbb{E}|X_i|^3 \propto d^{3/2} \qquad \mathbb{E}|X_i|^4 \propto d^2$$

In this case, the right-hand side of (4) is of the order $O\left(\frac{d^{5/2}}{n}\right)^{1/2}$ up to a logarithmic factor. In contrast, the right-hand side of (1) is of the order $O\left(\frac{d^{7/2}}{n}\right)^{1/2}$. Therefore, subject to the requirement of the existence of the fourth moment, (4) is preferable to (1) in the large-dimensional setting where $d \to \infty$.

2.2 Approximation on Euclidean Balls

In this section, we show that the factor $d^{1/4}$ appearing on the right-hand side of (4) can be removed if we restrict the approximation to the class of balls. To facilitate the application to the bootstrap, here we do not assume W and Z have the same covariance matrix.

Theorem 2.2. Let $\xi = \{\xi_i\}_{i=1}^n$ be a sequence of centered independent random vectors in \mathbb{R}^d with finite fourth moments and set $W = \sum_{i=1}^n \xi_i$. Let $Z \sim N(0, \Sigma)$ be a centered Gaussian vector in \mathbb{R}^d with covariance matrix Σ . Assume Σ is invertible. Then

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant C\Psi(\delta(W, \Sigma))$$
 (5)

where $\Psi(x) = x(|\log x| \vee 1), \mathcal{B}$ is the set of all Euclidean balls in \mathbb{R}^d and

$$\delta(W, \Sigma) := \left\| I_d - \operatorname{Var}\left(\Sigma^{-1/2}W\right) \right\|_{H.S.} + \left(\sum_{i=1}^n \mathbb{E}\left|\Sigma^{-1/2}\xi_i\right|^4\right)^{1/2}$$

Remark 2.3. We can see that if $Var(W) = \Sigma$, then the typical order of the right-hand side of (5) is $O\left(\frac{d^2}{n}\right)^{1/2}$ up to a logarithmic factor. It has near-optimal dependence on n and converges to 0 if $d = o(\sqrt{n})$.

In the next result, we sacrifice the rate of n to obtain the optimal growth rate of d = o(n) in terms of the dimension.

Theorem 2.3. Let ξ, W and Z be as in Theorem 2.2. Assume $\operatorname{tr}(\Sigma^2) > 0$. Then

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant \frac{C}{\operatorname{tr}(\Sigma^2)^{1/4}} \sqrt{\tilde{\delta}(W, \Sigma)}$$
 (6)

where

$$\tilde{\delta}(W, \Sigma) := \|\Sigma - \text{Var}(W)\|_{H.S.} + \sum_{j=1}^{d} |\Sigma_{jj} - \text{Var}(W_{j})| + \sqrt{\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4}} + \sum_{j=1}^{d} \sqrt{\sum_{i=1}^{n} \mathbb{E} \left[\xi_{ij}^{4}\right]}$$

Remark 2.4. Since $\mathbb{E} |\xi_i|^4 \leq d \sum_{j=1}^d \mathbb{E} \xi_{ij}^4$, if $Var(W) = \Sigma = I_d$, the right-hand side of (6) is bounded by

$$C \max_{1 \le j \le d} \left(d \sum_{i=1}^{n} \mathbb{E} \xi_{ij}^{4} \right)^{1/4}$$

If $\max_{1 \leq i \leq n} \max_{1 \leq j \leq d} \left(\mathbb{E} \xi_{ij}^4 \right)^{1/4} = O(1/\sqrt{n})$ as $n \to \infty$ as in the typical case in applications (where $\xi_{ij} = \frac{X_{ij}}{\sqrt{n}}$ for some X_{ij} not depending on n), this converges to 0 as long as $d/n \to 0$.

Remark 2.5. The inequality

$$\mathbb{E} |\xi_i|^4 \leqslant d \sum_{j=1}^d \mathbb{E} \xi_{ij}^4$$

can be obtained by applying Holder inequality

$$\sum_{k=1}^{d} |x_k y_k| \le \left(\sum_{k=1}^{d} |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{d} |y_k|^q\right)^{\frac{1}{q}}$$

with p = q = 2 and $x_k = \xi_{ik}^2$ and $y_k = 1$. In particular, we have

$$\mathbb{E} |\xi_i|^4 = \mathbb{E} \left(\xi_{i1}^2 + \dots + \xi_{id}^2\right)^2$$

$$\leq \mathbb{E} \left[\left(\xi_{i1}^4 + \dots + \xi_{id}^4\right) (1 + \dots + 1) \right]$$

$$= d \sum_{i=1}^d \mathbb{E} \xi_{ij}^4$$

Remark 2.6. Theorem 2.3 can be used to deduce Central Limit Theorems (CLTs) for $|W-a|^2$ under suitable conditions. For example, if $a=0, \Sigma=I_d, \xi_i=X_i/\sqrt{n}$ for an i.i.d. sequence of random vectors $\{X_1,\ldots,X_n\}$ with $\max_{1\leqslant j\leqslant d}\mathbb{E}\left(X_{ij}^4\right)\leqslant C$, then by Theorem 2.3, Remark 2.4 and the CLT for chi-square random variables, we have, for $d\to\infty$ and d=o(n)

$$\frac{|W|^2 - d}{\sqrt{2d}} \to N(0, 1) \quad \text{in distribution.}$$

Proposition 2.2. Let X_1, \ldots, X_n be i.i.d. standard Gaussian vectors in \mathbb{R}^d . Let $\{e_i\}_{i=1}^n$ be i.i.d. variables independent of $\{X_i\}_{i=1}^n$ with $\mathbb{E}e_1 = 0, \mathbb{E}e_1^2 = 1, \mathbb{E}e_1^4 < \infty$ and $\operatorname{Var}\left(e_1^2\right) > 0$. Assume the law of e_1 does not depend on n. Set $W := n^{-1/2} \sum_{i=1}^n e_i X_i$ and let $Z \sim N\left(0, I_d\right)$. If

$$\sup_{x>0} |\mathbb{P}(|W| \leqslant x) - \mathbb{P}(|Z| \leqslant x)| \to 0$$

as $d, n \to \infty$, we must have $d/n \to 0$.

Proof. Since $(|Z|^2 - d)/\sqrt{2d}$ converges in law to N(0,1) as $d \to \infty$, $(|W|^2 - d)/\sqrt{2d}$ also converges in law to N(0,1). Since W has the same law as $\sqrt{V}Z'$ by assumption, where $V := n^{-1} \sum_{i=1}^n e_i^2$ and $Z' \sim N(0,I_d)$ is independent of $\{e_i\}_{i=1}^{\infty}$, $\left(V|Z'|^2 - d\right)/\sqrt{2d}$ should also converges in law to N(0,1). Since

$$\frac{V\left|Z'\right|^{2}-d}{\sqrt{2d}}=V\frac{\left|Z'\right|^{2}-d}{\sqrt{2d}}+\sqrt{\frac{d}{2}}(V-1)=(V-1)\frac{\left|Z'\right|^{2}-d}{\sqrt{2d}}+\frac{\left|Z'\right|^{2}-d}{\sqrt{2d}}+\sqrt{\frac{d}{2}}(V-1)$$

and the first term converges to 0 in probability,

$$\frac{|Z'|^2 - d}{\sqrt{2d}} + \sqrt{\frac{d}{2}}(V - 1)$$

must converge in law to N(0,1). In the above expression, the first term converges in law to N(0,1) and the first and second terms are independent, so this implies $\sqrt{d}(V-1) = o_p(1)$ as $n \to \infty$. Since $\sqrt{n}(V-1)$ converges in law to $N\left(0, \operatorname{Var}\left(e_1^2\right)\right)$, we must have $d/n \to 0$. Remark 2.7. W in Proposition 2.2 can be regarded as a bootstrap approximation of Z. Remark 2.4 and Proposition 2.2 suggest that, in general, bootstrapping may not provide a more accurate approximation than the Gaussian approximation in terms of the dependence on dimension.

3 Application to Bootstrap Approximation on Balls

Notation 3.1. X_1, \ldots, X_n : be a sequence of centered independent vectors in \mathbb{R}^d with finite fourth moments. $W := n^{-1/2} \sum_{i=1}^n X_i \ \Sigma := Var(W) \ Z \sim N(0, \Sigma) \ X_1^*, \ldots, X_n^*$: be i.i.d. draws from the empirical distribution of X

3.1 Empirical bootstrap approximation for $\mathbb{P}(W \in A)$

 $W^* := \frac{1}{\sqrt{n}} \sum_{i=1}^n (X_i^* - \bar{X})$, where $\bar{X} := \frac{1}{n} \sum_{i=1}^n X_i$ The bootstrap analog of 2.3 is given by:

Theorem 3.1. $\operatorname{tr}(\Sigma^2) > 0$, for any K > 0, we have

$$\mathbb{P}\left(\sup_{A \in \mathcal{B}} |\mathbb{P}(W^* \in A|X) - \mathbb{P}(Z \in A)| > K\sqrt{\Delta_n}\right) \leqslant \frac{C}{K^2}$$
 (7)

where

$$\Delta_n := \frac{1}{n\operatorname{tr}\left(\Sigma^2\right)^{1/2}}\left(\sqrt{\sum_{i=1}^n \mathbb{E}\left|X_i\right|^4} + \sum_{j=1}^d \sqrt{\sum_{i=1}^n \mathbb{E}\left[X_{ij}^4\right]}\right)$$

Remark 3.1. Compared to the non-asymptotic bound for the quantity of $\sup_{A \in \mathcal{B}} |\mathbb{P}(W^* \in A|X) - \mathbb{P}(Z \in A)|$ under additional distribution assumption on X_i . Ours Theorem 3.1 provides better dependence on the dimension $d(d = o(n) \text{ v.s. } d = o(n^{1/2}))$, at least when $\Sigma = I_d$; our result allows Σ to be singular; it's possible to give a non-asymptotic version of 7 but an exponential concentration if we also assume X_i are sub-Gaussian.

3.2 Wild bootstrap approximation for $\mathbb{P}(W \in A)$

Let $\{e_i\}_{i=1}^n$ be i.i.d. variables independent of $\{X_i\}_{i=1}^n$ with $\mathbb{E}e_1 = 0, \mathbb{E}e_1^2 = 1, \mathbb{E}e_1^4 < \infty$. The $W^o := \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i X_i$ is the wild bootstrap approximation of W with multiplier variables e_1, \ldots, e_n .

Theorem 3.2. $\operatorname{tr}(\Sigma^2) > 0$, for any K > 0, we have

$$\mathbb{P}\left(\sup_{A\in\mathcal{B}}|\mathbb{P}(W^o\in A|X) - \mathbb{P}(Z\in A)| > K(\mathbb{E}e_1^4)^{1/4}\sqrt{\Delta_n}\right) \leqslant \frac{C}{K^2}$$
 (8)

where Δ_n is defined in 3.1

Remark 3.2. Compared to the non-asymptotic bound for the quantity of $\sup_{A \in \mathcal{B}} |\mathbb{P}(W^o \in A|X) - \mathbb{P}(Z \in A)|$ under additional distribution assumption on X_i . Ours 3.2 provides better dependence on the n and $d(O(d/n)^{1/4}$ v.s. $O(d^2/n)^{1/5})$; ours does not require the unit skewness assumption $\mathbb{E}e_1^3 = 1$ on the multiplier variables; it's possible to give a non-asymptotic version of our result of 3.2.

4 Main Idea behind the Proof

4.1 Basic Decomposition

The proofs for Theorems 2.1 and 2.2-2.3 start with approximating the indicator function 1_A for $A \in \mathcal{A}$ or $A \in \mathcal{B}$ by an appropriate smooth function h. Then, the problem amounts to establishing an appropriate bound for $\mathbb{E}h(W) - \mathbb{E}h(Z)$.

To accomplish this, we will make use of a decomposition of $\mathbb{E}h(W) - \mathbb{E}h(Z)$ derived from the exchangeable pair approach in Stein's method for multivariate normal approximation by Chatterjee and Meckes (2008) and Reinert and Röllin (2009) along with a symmetry argument by Fang and Koike (2020a,b).

Lemma 4.1. Given a twice differentiable function $h : \mathbb{R}^d \to \mathbb{R}$ with bounded partial derivatives, we consider the Stein equation

$$\langle \operatorname{Hess} f(w), \Sigma \rangle_{H.S.} - w \cdot \nabla f(w) = h(w) - \mathbb{E}h(Z), \quad w \in \mathbb{R}^d$$
 (9)

then

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) - \mathbb{E}h(Z) \right] \phi(z) dz ds \tag{10}$$

is a solution to (9).

In the following we assume that f is thrice differentiable with bounded partial derivatives. This is true if Σ is invertible or h is thrice differentiable with bounded partial derivatives. Now we introduce the basic decomposition we will use later in proof.

Let $\{\xi'_1, \ldots, \xi'_n\}$ be an independent copy of $\{\xi_1, \ldots, \xi_n\}$, and let I be a random index uniformly chosen from $\{1, \ldots, n\}$ and independent of $\{\xi_1, \ldots, \xi_n, \xi'_1, \ldots, \xi'_n\}$. Define $W' = W - \xi_I + \xi'_I$. It is easy to verify that (W, W') has the same distribution as (W', W) (exchangeability) and

$$\mathbb{E}\left(W' - W \mid W\right) = -\frac{W}{n} \tag{11}$$

From exchangeability and (11) we have, with D = W' - W

$$0 = \frac{n}{2} \mathbb{E} \left[D \cdot \left(\nabla f \left(W' \right) + \nabla f(W) \right) \right]$$

$$= \mathbb{E} \left[\frac{n}{2} D \cdot \left(\nabla f \left(W' \right) - \nabla f(W) \right) + nD \cdot \nabla f(W) \right]$$

$$= \mathbb{E} \left[\frac{n}{2} \sum_{j,k=1}^{d} D_{j} D_{k} \partial_{jk} f(W) + R_{2} + nD \cdot \nabla f(W) \right]$$

$$= \mathbb{E} \left[\langle \text{Hess } f(W), \Sigma \rangle_{H.S.} - R_{1} + R_{2} - W \cdot \nabla f(W) \right]$$
(12)

where

$$R_1 = \sum_{j,k=1}^{d} \mathbb{E}\left\{ \left(\sum_{jk} - \frac{n}{2} D_j D_k \right) \partial_{jk} f(W) \right\}$$
 (13)

and

$$R_2 = \frac{n}{2} \sum_{j,k,l=1}^{d} \mathbb{E}D_j D_k D_l U \partial_{jkl} f(W + (1-U)D)$$

$$\tag{14}$$

and U is a uniform random variable on [0,1] independent of everything else. From (9) and (12) we have

$$\mathbb{E}h(W) - \mathbb{E}h(Z) = R_1 - R_2 \tag{15}$$

We further rewrite R_1 and R_2 respectively as follows. First, set

$$V = (V_{jk})_{1 \le j,k \le d} := \left(\mathbb{E} \left[\Sigma_{jk} - \frac{n}{2} D_j D_k \mid \xi \right] \right)_{1 \le j,k \le d}$$

Then we evidently have

$$R_1 = \sum_{j,k=1}^{d} \mathbb{E}V_{jk} \partial_{jk} f(W) = \mathbb{E}\langle V, \text{ Hess } f(W) \rangle_{H.S.}$$
 (16)

Also, one can easily verify that (cf. Eq.(22) of Chernozhukov, Chetverikov and Kato (2014))

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_i \xi_i^{\top} \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_i \xi_i^{\top} = (\Sigma - \text{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_i \xi_i^{\top} - \mathbb{E} \left[\xi_i \xi_i^{\top} \right] \right)$$
(17)

Next, by exchangeability we have

$$\mathbb{E}\left[D_{j}D_{k}D_{l}U\partial_{jkl}f(W+(1-U)D)\right]$$

$$=-\mathbb{E}\left[D_{j}D_{k}D_{l}U\partial_{jkl}f(W'-(1-U)D)\right]$$

$$=-\mathbb{E}\left[D_{j}D_{k}D_{l}U\partial_{jkl}f(W+UD)\right]$$
(18)

Hence we obtain

$$R_{2} = \frac{n}{4} \sum_{j,k,l=1}^{d} \mathbb{E} \left[D_{j} D_{k} D_{l} U \left\{ \partial_{jkl} f(W + (1 - U)D) - \partial_{jkl} f(W + UD) \right\} \right]$$
 (19)

4.2 Proof of Theorem 2.1

Since $\Sigma^{-1/2}W = \sum_{i=1}^n \Sigma^{-1/2}\xi_i$ and $\{\Sigma^{-1/2}x : x \in A\} \in \mathcal{A}$ for all $A \in \mathcal{A}$, it suffices to consider the case $\Sigma = I_d$. The proof is a combination of Bentkus (2003)'s smoothing, the decomposition (15), and a recursive argument by Raič (2019a). Fix $\beta_0 > 0$. Define

$$K(\beta_0) = \sup_{W} \frac{\sup_{A \in \mathcal{A}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|}{\max \left\{ \beta_0, \left(\sum_{i \in \mathcal{I}} \mathbb{E} |\xi_i|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i \in \mathcal{I}} \mathbb{E} |\xi_i|^4 \right) \right| \vee 1 \right) \right\}}$$
(20)

where the first supremum is taken over the family of all sums $W = \sum_{i \in \mathcal{I}} \xi_i$ of finite number of independent mean-zero random vectors with $\mathbb{E} |\xi_i|^4 < \infty$ and $\text{Var}(W) = I_d$. We will obtain a recursive inequality for $K(\beta_0)$ and prove that

$$K\left(\beta_0\right) \leqslant Cd^{1/4} \tag{21}$$

for an absolute constant C that does not depend on β_0 . Equation (4) then follows by sending $\beta_0 \to 0$.

Now we fix a $W = \sum_{i=1}^{n} \xi_i, n \ge 1$, in the aforementioned family

$$\bar{\beta} = \max \left\{ \beta_0, \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right) \right| \vee 1 \right) \right\}.$$
 (22)

and for $A \in \mathcal{A}, \varepsilon > 0$, define

$$A^{\varepsilon} = \left\{ x \in \mathbb{R}^d : \operatorname{dist}(x, A) \leqslant \varepsilon \right\} \qquad \operatorname{dist}(x, A) = \inf_{y \in A} |x - y|$$

Lemma 4.2. For any $A \in \mathcal{A}$ and $\varepsilon > 0$, there exists a function $h_{A,\varepsilon}$ (which depends only on A and ε) such that

$$h_{A,\varepsilon}(x) = 1 \text{ for } x \in A, \quad h_{A,\varepsilon}(x) = 0 \text{ for } x \in \mathbb{R}^d \setminus A^{\varepsilon}, \quad 0 \leqslant h_{A,\varepsilon}(x) \leqslant 1$$

and

$$M_1(h_{A,\varepsilon}) \leqslant \frac{C}{\varepsilon}, \quad M_2(h_{A,\varepsilon}) \leqslant \frac{C}{\varepsilon^2}$$
 (23)

where C is an absolute constant that does not depend on A and ε .

Lemma 4.3. Let ϕ be the standard Gaussian density on \mathbb{R}^d , $d \ge 2$, and let A be a convex set in \mathbb{R}^d . Then

$$\int_{\partial A} \phi \leqslant 4d^{1/4} \tag{24}$$

Lemma 4.4. For any d -dimensional random vector W and any $\varepsilon > 0$,

$$\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)| \le 4d^{1/4}\varepsilon + \sup_{A \in \mathcal{A}} |\mathbb{E}h_{A,\varepsilon}(W) - \mathbb{E}h_{A,\varepsilon}(Z)|$$
 (25)

where $h_{A,\varepsilon}$ is as in Lemma 4.2.

We now fix $A \in \mathcal{A}$ (will take sup later), $0 < \varepsilon \leq 1$, write $h := h_{A,\varepsilon}$ and proceed to bound $|\mathbb{E}h(W) - \mathbb{E}h(Z)|$ by the decomposition (15). Consider the solution f to the Stein equation (9) with $\Sigma = I_d$

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h\left(\sqrt{1-s}w + \sqrt{s}z\right) - \mathbb{E}h(Z) \right] \phi(z) dz ds$$

Since h has bounded partial derivatives up to the second order and $\Sigma = I_d$ is invertible, f is thrice differentiable with bounded partial derivatives. Using the integration by parts formula, we have for $1 \leq j, k, l \leq d$ and any constant $0 \leq c_0 \leq 1$ that

$$\partial_{jk} f(w) = \int_0^{c_0} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_j h(\sqrt{1-s}w + \sqrt{s}z) \partial_k \phi(z) dz ds + \int_{c_0}^1 -\frac{1}{2s} \int_{\mathbb{R}^d} h(\sqrt{1-s}w + \sqrt{s}z) \partial_{jk} \phi(z) dz ds$$
(26)

and

$$\partial_{jkl} f(w) = \int_0^{c_0} \frac{\sqrt{1-s}}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_{jk} h(\sqrt{1-s}w + \sqrt{s}z) \partial_l \phi(z) dz ds + \int_{c_0}^1 -\frac{\sqrt{1-s}}{2s} \int_{\mathbb{R}^d} \partial_j h(\sqrt{1-s}w + \sqrt{s}z) \partial_{kl} \phi(z) dz ds$$
(27)

We first bound R_1 in (16). We will utilize the following lemma.

Lemma 4.5. For $k \ge 1$ and each map $a : \{1, \ldots, d\}^k \to \mathbb{R}$, we have

$$\int_{\mathbb{R}^d} \left(\sum_{i_1, \dots, i_k = 1}^d a(i_1, \dots, i_k) \frac{\partial_{i_1 \dots i_k} \phi(z)}{\phi(z)} \right)^2 \phi(z) dz \leqslant k! \sum_{i_1, \dots, i_k = 1}^d \left(a(i_1, \dots, i_k) \right)^2$$
(28)

Now, using the expression of $\partial_{jk}f$ in (26) with $c_0 = \varepsilon^2$, we have

$$R_1 = R_{11} + R_{12}$$

where

$$R_{11} = \sum_{j,k=1}^{d} \mathbb{E}\left[V_{jk} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \partial_{j} h(\sqrt{1-s}W + \sqrt{s}z) \partial_{k} \phi(z) dz ds\right]$$

and

$$R_{12} = \sum_{j,k=1}^{d} \mathbb{E}\left[V_{jk} \int_{\varepsilon^2}^1 -\frac{1}{2s} \int_{\mathbb{R}^d} h(\sqrt{1-s}W + \sqrt{s}z) \partial_{jk} \phi(z) dz ds\right]$$

For R_{11} , we use the Cauchy-Schwarz inequality and the bounds (23) and (28) and obtain

$$|R_{11}| = \left| \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \mathbb{E} \sum_{j=1}^{d} \partial_{j} h(\sqrt{1-s}W + \sqrt{s}z) \sum_{k=1}^{d} V_{jk} \frac{\partial_{k} \phi(z)}{\phi(z)} \phi(z) dz ds \right|$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \mathbb{E} \left\{ \sum_{j=1}^{d} \left(\sum_{k=1}^{d} V_{jk} \frac{\partial_{k} \phi(z)}{\phi(z)} \right)^{2} \right\}^{1/2} \phi(z) dz ds$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \left\{ \int_{\mathbb{R}^{d}} \mathbb{E} \sum_{j=1}^{d} \left(\sum_{k=1}^{d} V_{jk} \frac{\partial_{k} \phi(z)}{\phi(z)} \right)^{2} \phi(z) dz \right\}^{1/2} ds$$

$$\leq \frac{C}{\varepsilon} \int_{0}^{\varepsilon^{2}} \frac{1}{2\sqrt{s}} \left\{ \mathbb{E} \sum_{j=1}^{d} \sum_{k=1}^{d} V_{jk}^{2} \right\}^{1/2} ds \leq C \left\{ \sum_{j,k=1}^{d} \mathbb{E} V_{jk}^{2} \right\}^{1/2}$$

Recall that $Var(W) = \Sigma$

$$V = \Sigma - \frac{1}{2} \sum_{i=1}^{n} \mathbb{E} \left[\xi_i \xi_i^{\top} \right] - \frac{1}{2} \sum_{i=1}^{n} \xi_i \xi_i^{\top} = (\Sigma - \text{Var}(W)) - \frac{1}{2} \sum_{i=1}^{n} \left(\xi_i \xi_i^{\top} - \mathbb{E} \left[\xi_i \xi_i^{\top} \right] \right)$$

we have

$$\mathbb{E}V_{jk}^{2} = \frac{1}{4} \operatorname{Var} \left[\sum_{i=1}^{n} \xi_{ij} \xi_{ik} \right] = \frac{1}{4} \sum_{i=1}^{n} \operatorname{Var} \left[\xi_{ij} \xi_{ik} \right] \leqslant \frac{1}{4} \sum_{i=1}^{n} \mathbb{E} \left[\xi_{ij}^{2} \xi_{ik}^{2} \right]$$

and therefore,

$$|R_{11}| \leqslant C \left\{ \sum_{j,k=1}^{d} \sum_{i=1}^{n} \mathbb{E}\left[\xi_{ij}^{2} \xi_{ik}^{2}\right] \right\}^{1/2} = C \left\{ \sum_{i=1}^{n} \mathbb{E}\left[\sum_{j=1}^{d} \xi_{ij}^{2}\right]^{2} \right\}^{1/2} = C \left(\sum_{i=1}^{n} \mathbb{E}\left|\xi_{i}\right|^{4}\right)^{1/2}$$

Applying similar arguments, we have, for R_{12} ,

$$|R_{12}| = \left| \int_{\varepsilon^{2}}^{1} \left(-\frac{1}{2s} \right) \int_{\mathbb{R}^{d}} \mathbb{E}h(\sqrt{1-s}W + \sqrt{s}z) \sum_{j,k=1}^{d} V_{jk} \frac{\partial_{jk}\phi(z)}{\phi(z)} \phi(z) dz ds \right|$$

$$\leq \int_{\varepsilon^{2}}^{1} \frac{1}{2s} \int_{\mathbb{R}^{d}} \mathbb{E} \left| \sum_{j,k=1}^{d} V_{jk} \frac{\partial_{jk}\phi(z)}{\phi(z)} \right| \phi(z) dz ds$$

$$\leq \int_{\varepsilon^{2}}^{1} \frac{1}{2s} \left\{ \int_{\mathbb{R}^{d}} \mathbb{E} \left[\sum_{j,k=1}^{d} V_{jk} \frac{\partial_{jk}\phi(z)}{\phi(z)} \right]^{2} \phi(z) dz \right\}^{1/2} ds$$

$$\leq C \int_{\varepsilon^{2}}^{1} \frac{1}{2s} \left\{ \mathbb{E} \sum_{j,k=1}^{d} V_{jk}^{2} \right\}^{1/2} ds \leq C |\log \varepsilon| \left(\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4} \right)^{1/2}$$

$$(30)$$

therefore,

$$|R_1| \leqslant C(|\log \varepsilon| \lor 1) \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4\right)^{1/2}$$
 (31)

Next, we bound R_2 . Take $0 < \eta \le 1$ arbitrarily. Using the expression of $\partial_{jkl} f$ in (27) with $c_0 = \eta^2$ and the two equivalent expressions (14) and (19) for R_2 , we have

$$R_2 = R_{21} + R_{22}$$

where

$$\begin{split} R_{21} = & \frac{1}{2} \sum_{i=1}^{n} \sum_{j,k,l=1}^{d} \mathbb{E}U\left(\xi'_{ij} - \xi_{ij}\right) \left(\xi'_{ik} - \xi_{ik}\right) \left(\xi'_{il} - \xi_{il}\right) \int_{0}^{\eta^{2}} \frac{\sqrt{1-s}}{2\sqrt{s}} \\ & \times \int_{\mathbb{R}^{d}} \partial_{jk} h\left(\sqrt{1-s} \left(W + (1-U) \left(\xi'_{i} - \xi_{i}\right)\right) + \sqrt{s}z\right) \partial_{l}\phi(z) dz ds \end{split}$$

and

$$R_{22} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j,k,l=1}^{d} \mathbb{E}U\left(\xi'_{ij} - \xi_{ij}\right) \left(\xi'_{ik} - \xi_{ik}\right) \left(\xi'_{il} - \xi_{il}\right) \int_{\eta^{2}}^{1} - \frac{\sqrt{1-s}}{2s} \times \int_{\mathbb{R}^{d}} \left[\partial_{j}h\left(\sqrt{1-s}\left(W + (1-U)\left(\xi'_{i} - \xi_{i}\right)\right) + \sqrt{s}z\right) - \partial_{j}h\left(\sqrt{1-s}\left(W + U\left(\xi'_{i} - \xi_{i}\right)\right) + \sqrt{s}z\right)\right] \partial_{kl}\phi(z)dzds$$

$$= \frac{1}{4} \sum_{i=1}^{n} \sum_{j,k,l,m=1}^{d} \mathbb{E}U(1-2U)\left(\xi'_{ij} - \xi_{ij}\right) \left(\xi'_{ik} - \xi_{ik}\right) \left(\xi'_{il} - \xi_{il}\right) \left(\xi'_{im} - \xi_{im}\right) \int_{\eta^{2}}^{1} - \frac{1-s}{2s} \times \int_{\mathbb{R}^{d}} \partial_{jm}h\left(\sqrt{1-s}\left(W + (U + (1-2U)U')\left(\xi'_{i} - \xi_{i}\right)\right) + \sqrt{s}z\right) \partial_{kl}\phi(z)dzds$$

$$(32)$$

where U' is a uniform random variable on [0,1] independent of everything else and we used the mean value theorem in the last equality. Let $W^{(i)} = W - \xi_i$ for $i \in \{1, ..., n\}$. We will use the fact that ∇h is non-zero only in $A^{\varepsilon} \setminus A$ and bound

$$\mathbb{P}\left(\sqrt{1-s}W^{(i)} \in A_i^{\varepsilon} \backslash A_i \mid U, U', \xi_i, \xi_i'\right)$$

where 0 < s < 1 and A_i is a convex set which may depend on U, U', ξ_i, ξ'_i, s and z. Let Σ_i be the covariance matrix of $W^{(i)}$ and let σ_i be its smallest eigenvalue, which will be assumed to be positive in Case 1 below. We have

$$\mathbb{P}\left(\sqrt{1-s}W^{(i)} \in A_i^{\varepsilon} \setminus A_i \mid U, U', \xi_i, \xi_i'\right) \\
= \mathbb{P}\left(\Sigma_i^{-1/2}W^{(i)} \in \frac{1}{\sqrt{1-s}}\Sigma_i^{-1/2}\left(A_i^{\varepsilon} \setminus A_i\right) \mid U, U', \xi_i, \xi_i'\right) \\
\leqslant 4d^{1/4}\frac{\varepsilon}{\sigma_i\sqrt{1-s}} + 2\sup_{A \in \mathcal{A}} \left| \mathbb{P}\left(\Sigma_i^{-1/2}W^{(i)} \in A\right) - P(Z \in A) \right|$$
(33)

where we used the $4d^{1/4}$ upper bound for the Gaussian surface area of any convex set in Lemma 4.3. From the definition in (20), we have

$$\sup_{A \in \mathcal{A}} \left| \mathbb{P} \left(\Sigma^{-1/2} W^{(i)} \in A \right) - P(Z \in A) \right| \\
\leq K(\beta_0) \max \left\{ \beta_0, \left(\sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} \left| \Sigma_i^{-1/2} \xi_j \right|^4 \right)^{1/2} \left(\left| \log \left(\sum_{\substack{j=1\\j \neq i}}^n \mathbb{E} \left| \Sigma_i^{-1/2} \xi_j \right|^4 \right) \right| \vee 1 \right) \right\}$$
(34)

Set $\beta_* = 0.19$ and $\sigma_* = (1 - \beta_*)^{1/2} = 0.9$. Recall that

$$\bar{\beta} = \max \left\{ \beta_0, \left(\sum_{i=1}^n \mathbb{E} \left| \xi_i \right|^4 \right)^{1/2} \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} \left| \xi_i \right|^4 \right) \right| \vee 1 \right) \right\}$$

• Case-1: $\bar{\beta} \leqslant \beta_*/d^{1/4}$.

In this case, we have

$$\mathbb{E} \left| \xi_i \right|^2 \leqslant \sqrt{\mathbb{E} \left| \xi_i \right|^4} \leqslant \bar{\beta} \leqslant \beta_* / d^{1/4} \leqslant \beta_*$$

for each unit vector $u \in \mathbb{R}^d$

$$\langle \Sigma_i u, u \rangle = u^{\top} \Sigma_i u = u^{\top} \left(I_d - \mathbb{E} \xi_i \xi_i^{\top} \right) u = 1 - \mathbb{E} \left(\xi_i \cdot u \right)^2 \geqslant 1 - \mathbb{E} \left| \xi_i \right|^2 \geqslant 1 - \beta_*$$

this implies $\sigma_i \geqslant \sigma_*$. Note that $x^{\frac{1}{2}}(|\log x| \vee 1)$ is an increasing function. Therefore, from (34), we have, by increasing $\sum_{\substack{j=1\\j\neq i}}^n \mathbb{E} \left| \sum_i^{-1/2} \xi_j \right|^4$ to $\frac{1}{\sigma_*^4} \sum_{j=1}^n \mathbb{E} |\xi_j|^4$,

$$\sup_{A \in \mathcal{A}} \left| \mathbb{P}\left(\Sigma^{-1/2} W^{(i)} \in A \right) - P(Z \in A) \right| \leqslant K(\beta_0) \max \left\{ \beta_0, \frac{2\bar{\beta}}{\sigma_*^2} \right\} \leqslant CK(\beta_0) \,\bar{\beta} \tag{35}$$

Applying (23), (33), (35) and (3) we have

$$|R_{21}| \leqslant \frac{C}{\varepsilon^2} \sum_{i=1}^n \mathbb{E} |\xi_i|^3 \left(d^{1/4} \varepsilon + K(\beta_0) \,\bar{\beta} \right) \eta \tag{36}$$

and

$$|R_{22}| \leqslant \frac{C}{\varepsilon^2} \sum_{i=1}^n \mathbb{E} |\xi_i|^4 \left(d^{1/4} \varepsilon + K(\beta_0) \,\bar{\beta} \right) |\log \eta| \tag{37}$$

Now, if $\sum_{i=1}^n \mathbb{E} |\xi_i|^4 < \sum_{i=1}^n \mathbb{E} |\xi_i|^3$, choose $\eta = \sum_{i=1}^n \mathbb{E} |\xi_i|^4 / \sum_{i=1}^n \mathbb{E} |\xi_i|^3 < 1$. Note that we have by the Cauchy-Schwarz inequality

$$\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{3} \leqslant \sqrt{\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{2} \sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4}} = \sqrt{d \sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4}}$$

Thus we obtain

$$|\log \eta| \leqslant \frac{1}{2} \log d - \frac{1}{2} \log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right)$$

Since $\left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4\right)^{1/2} \leqslant \bar{\beta} \leqslant \beta_*/d^{1/4}$, we have $\frac{1}{2} \log d \leq 2 \log \beta_* - \log \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4\right)$ and

$$|\log \eta| \leqslant C \left| \log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \right) \right|$$

Hence, we have

$$|R_{21}| + |R_{22}| \leqslant \frac{C}{\varepsilon^2} \sum_{i=1}^n \mathbb{E} |\xi_i|^4 \left(d^{1/4} \varepsilon + K(\beta_0) \bar{\beta} \right) \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right) \right| \vee 1 \right)$$
(38)

This inequality also holds true if $\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4 \geqslant \sum_{i=1}^{n} \mathbb{E} |\xi_i|^3$ by taking $\eta = 1$.

$$\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)|$$

$$\leq 4d^{1/4}\varepsilon + C(|\log \varepsilon| \vee 1) \left(\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4} \right)^{1/2}$$

$$+ \frac{C}{\varepsilon^{2}} \sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4} \left(d^{1/4}\varepsilon + K(\beta_{0}) \bar{\beta} \right) \left(\left| \log \left(\sum_{i=1}^{n} \mathbb{E} |\xi_{i}|^{4} \right) \right| \vee 1 \right)$$
(39)

Choose $\varepsilon = \min \left\{ \left[2C \sum_{i=1}^n \mathbb{E} |\xi_i|^4 \left(\left| \log \left(\sum_{i=1}^n \mathbb{E} |\xi_i|^4 \right) \right| \vee 1 \right) \right]^{1/2}, 1 \right\}$ with the same absolute constant C as in the third term on the right-hand side of (39) If $\varepsilon < 1$, then (39) can be simplified to

$$\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)| \leqslant \left(Cd^{1/4} + \frac{K(\beta_0)}{2}\right)\bar{\beta}$$

hence

$$\frac{\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)|}{\bar{\beta}} \leqslant Cd^{1/4} + \frac{K(\beta_0)}{2}$$

$$\tag{40}$$

If $\varepsilon = 1$, then $\sum_{i=1}^{n} \mathbb{E} |\xi_i|^4$ and $\bar{\beta}$ are bounded away from 0 by an absolute constant; hence

$$\frac{\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)|}{\bar{\beta}} \leqslant \frac{1}{\bar{\beta}} \leqslant C \tag{41}$$

• Case-2: $\bar{\beta} > \beta_*/d^{1/4}$, we trivially estimate

$$\frac{\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)|}{\overline{\beta}} \leqslant \frac{1}{\overline{\beta}} \leqslant \frac{d^{1/4}}{\beta_*} \leqslant Cd^{1/4}$$
(42)

Combining both cases together, we have

$$\frac{\sup_{A \in \mathcal{A}} |P(W \in A) - P(Z \in A)|}{\bar{\beta}} \leqslant Cd^{1/4} + \frac{K(\beta_0)}{2}$$

Note that the right-hand side of the above bound does not depend on W. Taking supremum over W, we obtain

$$K(\beta_0) \leqslant Cd^{1/4} + \frac{K(\beta_0)}{2} \tag{43}$$

4.3 The Outline of the Proof for Theorem 2.2

We first note that, for any $d \times d$ orthogonal matrix U, we have $UW = \sum_{i=1}^{n} U\xi_{i}, UZ \sim N\left(0, U\Sigma U^{\top}\right), \delta\left(UW, U\Sigma U^{\top}\right) = \delta(W, \Sigma)$ and $UB \in \mathcal{B}$ for all $B \in \mathcal{B}$. Therefore, it is enough to prove (5) when Σ is diagonal with positive entries. The proof is a combination of Zhilova (2020)'s smoothing, a Gaussian anti-concentration inequality for ellipsoids by Giessing and Fan (2020), the decomposition (15), and a recursive argument by Raič (2019a).

Fix $\beta_0 > 0$. Define

$$K'(\beta_0) = \sup_{W,\Sigma} \frac{\sup_{A \in \mathcal{B}} \left| \mathbb{P}(W \in A) - \mathbb{P}\left(\Sigma^{1/2} Z_0 \in A\right) \right|}{\max\left\{\beta_0, \Psi(\delta(W, \Sigma))\right\}}$$
(44)

where $Z_0 \sim N(0, I_d)$ and the first supremum is taken over the family of all sums $W = \sum_{i \in \mathcal{I}} \xi_i$ of finite number of independent centered random vectors with $\mathbb{E} |\xi_i|^4 < \infty$, and diagonal matrices Σ with positive entries. We will obtain a recursive inequality for $K'(\beta_0)$ and prove that

$$K'\left(\beta_{0}\right) \leqslant C\tag{45}$$

for an absolute constant C that does not depend on β_0 . Equation (5) then follows by sending $\beta_0 \to 0$.

Now we fix a $W = \sum_{i=1}^{n} \xi_i, n \ge 1$, and Σ in the aforementioned family (will take sup in (5.53) . Let

$$\bar{\beta} = \max \{ \beta_0, \Psi(\delta(W, \Sigma)) \}$$
(46)

We write σ_j for the j -th diagonal entry of $\Sigma^{1/2}$. To prove theorem 2.2, we need some technical lemmas that is applicable in the case of Euclidean ball.

Lemma 4.6. For any $A \in \mathcal{B}$ and $\varepsilon > 0$, there exists aC^{∞} function $\tilde{h}_{A,\varepsilon}$ (which depends only on A and ε) such that

$$\tilde{h}_{A,\varepsilon}(x) = 1 \text{ for } x \in A, \quad \tilde{h}_{A,\varepsilon}(x) = 0 \text{ for } x \in \mathbb{R}^d \backslash A^{\varepsilon}, \quad 0 \leqslant \tilde{h}_{A,\varepsilon}(x) \leqslant 1$$
 (47)

and

$$M_r\left(\tilde{h}_{A,\varepsilon}\right) \leqslant \frac{C}{\varepsilon^r} \quad \text{for } r = 1, 2, 3, 4$$
 (48)

and

$$\sup_{x \in \mathbb{R}^d} \left| \left\langle M, \operatorname{Hess} \tilde{h}_{A,\varepsilon}(x) \right\rangle_{H.S.} \right| \leqslant \frac{C}{\varepsilon^2} \left(\|M\|_{H.S.} + \sum_{j=1}^d |M_{jj}| \right)$$
(49)

for any $d \times d$ matrix $M = (M_{jk})_{1 \leq j,k \leq d}$, where C is an absolute constant that does not depend on A, ε or M.

Lemma 4.7. For any d -dimensional random vector W and any $\varepsilon > 0$,

$$\sup_{A \in \mathcal{B}} |P(W \in A) - P(Z \in A)| \leqslant \sup_{A \in \mathcal{B}} \mathbb{P}\left(Z \in A^{\varepsilon} \backslash A\right) + \sup_{A \in \mathcal{B}} \left| \mathbb{E}\tilde{h}_{A,\varepsilon}(W) - \mathbb{E}\tilde{h}_{A,\varepsilon}(Z) \right| \tag{50}$$

where $\tilde{h}_{A,\varepsilon}$ is as in Lemma 4.6.

Set $\tilde{\sigma} := \operatorname{tr} \left(\Sigma^2 \right)^{1/4}$. The following anti-concentration inequality is an immediate consequence of Giessing and Fan (2020, Corollary 5):

Lemma 4.8. Assume $\tilde{\sigma} > 0$. For any $\varepsilon > 0$,

$$\sup_{A \in \mathcal{B}} \mathbb{P}\left(Z \in A^{\varepsilon} \backslash A\right) \leqslant C\tilde{\sigma}^{-1} \varepsilon$$

Lemma 4.9. Ψ is an increasing function on $(0, \infty)$. Moreover, $\Psi(cx) \leq (c + \Psi(c))\Psi(x)$ for all x > 0 and $c \geq 1$.

We now fix $A \in \mathcal{B}$ (will take sup in (5.51)), $0 < \varepsilon \leqslant \tilde{\sigma}$, write $h := \tilde{h}_{A,\varepsilon}$ and proceed to bound $|\mathbb{E}h(W) - \mathbb{E}h(Z)|$ by the decomposition (15) Consider the solution f to the Stein equation (9), which is given by (10)

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \int_{\mathbb{R}^d} \left[h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) - \mathbb{E}h(Z) \right] \phi(z) dz ds$$

Since h has bounded partial derivatives up to the third order, f is thrice differentiable with bounded partial derivatives. Using the integration by parts formula, we have for $1 \le j, k, l \le d$ and any $0 \le c_0 \le 1$ that

$$\partial_{jk} f(w) = \int_0^{c_0} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_j h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) \sigma_k^{-1} \partial_k \phi(z) dz ds$$

$$+ \int_{c_0}^1 -\frac{1}{2s} \int_{\mathbb{R}^d} h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) \sigma_j^{-1} \sigma_k^{-1} \partial_{jk} \phi(z) dz ds$$

$$(51)$$

and

$$\partial_{jkl} f(w) = \int_0^{c_0} \frac{\sqrt{1-s}}{2\sqrt{s}} \int_{\mathbb{R}^d} \partial_{jk} h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) \sigma_l^{-1} \partial_l \phi(z) dz ds$$

$$+ \int_{c_0}^1 \frac{\sqrt{1-s}}{2s^{3/2}} \int_{\mathbb{R}^d} h\left(\sqrt{1-s}w + \sqrt{s}\Sigma^{1/2}z\right) \sigma_j^{-1} \sigma_k^{-1} \sigma_l^{-1} \partial_{jkl} \phi(z) dz ds.$$

$$(52)$$

We first bound R_1 in decomposition. Using the expression of $\partial_{jk}f$ in (51) with $c_0 = (\varepsilon/\tilde{\sigma})^2$, we have

$$R_1 = R_{11} + R_{12}$$

where

$$R_{11} = \sum_{j,k=1}^{d} \mathbb{E}\left[V_{jk} \int_{0}^{(\varepsilon/\tilde{\sigma})^{2}} \frac{1}{2\sqrt{s}} \int_{\mathbb{R}^{d}} \partial_{j} h\left(\sqrt{1-s}W + \sqrt{s}\Sigma^{1/2}z\right) \sigma_{k}^{-1} \partial_{k} \phi(z) dz ds\right]$$

and

$$R_{12} = \sum_{j,k=1}^{d} \mathbb{E}\left[V_{jk} \int_{(\varepsilon/\tilde{\sigma})^2}^{1} -\frac{1}{2s} \int_{\mathbb{R}^d} h\left(\sqrt{1-s}W + \sqrt{s}\Sigma^{1/2}z\right) \sigma_j^{-1} \sigma_k^{-1} \partial_{jk} \phi(z) dz ds\right]$$

For R_{11} , applying analogous arguments to (29), we obtain

$$|R_{11}| \leqslant C\tilde{\sigma}^{-1} \left\{ \sum_{j,k=1}^{d} \sigma_k^{-2} \mathbb{E} V_{jk}^2 \right\}^{1/2} \leqslant C \left\{ \sum_{j,k=1}^{d} (\sigma_j \sigma_k)^{-2} \mathbb{E} V_{jk}^2 \right\}^{1/2}$$

where we used the inequality $\tilde{\sigma} \geqslant \sigma_j$ to derive the last inequality. The triangle inequality yields, for V in (17),

$$\left\{ \sum_{j,k=1}^{d} (\sigma_{j}\sigma_{k})^{-2} \mathbb{E}V_{jk}^{2} \right\}^{1/2} \leqslant \left\| I_{d} - \operatorname{Var}\left(\Sigma^{-1/2}W\right) \right\|_{H.S.} + \frac{1}{2} \left\{ \sum_{j,k=1}^{d} (\sigma_{j}\sigma_{k})^{-2} \operatorname{Var}\left[\sum_{i=1}^{n} \xi_{ij}\xi_{ik}\right] \right\}^{1/2}$$

Besides, we have

$$\left\{ \sum_{j,k=1}^{d} (\sigma_{j}\sigma_{k})^{-2} \operatorname{Var} \left[\sum_{i=1}^{n} \xi_{ij} \xi_{ik} \right] \right\}^{1/2} = \left\{ \sum_{i=1}^{n} \sum_{j,k=1}^{d} (\sigma_{j}\sigma_{k})^{-2} \operatorname{Var} \left[\xi_{ij} \xi_{ik} \right] \right\}^{1/2} \\
\leq \left\{ \sum_{i=1}^{n} \sum_{j,k=1}^{d} (\sigma_{j}\sigma_{k})^{-2} \mathbb{E} \xi_{ij}^{2} \xi_{ik}^{2} \right\}^{1/2} \\
= \left\{ \sum_{i=1}^{n} \mathbb{E} \left[\left(\sum_{j=1}^{d} \sigma_{j}^{-2} \xi_{ij}^{2} \right)^{2} \right] \right\}^{1/2} \\
= \left(\sum_{i=1}^{n} \mathbb{E} \left[\sum_{i=1}^{d} \mathbb{E} \left[\sum_{j=1}^{d} \sigma_{j}^{-2} \xi_{ij}^{2} \right]^{2} \right] \right\}^{1/2}$$

Consequently, we obtain

$$|R_{11}| \leqslant C\delta(W, \Sigma)$$

For R_{12} , we apply analogous arguments to (30) and obtain

$$|R_{12}| \leqslant C|\log(\varepsilon/\tilde{\sigma})| \left\{ \sum_{j,k=1}^{d} (\sigma_j \sigma_k)^{-2} \mathbb{E} V_{jk}^2 \right\}^{1/2} \leqslant C|\log(\varepsilon/\tilde{\sigma})|\delta(W,\Sigma)$$

Therefore,

$$|R_1| \leqslant C(|\log(\varepsilon/\tilde{\sigma})| \lor 1)\delta(W, \Sigma)$$
 (53)

Next, we bound R_2 in 19. Using the expression of $\partial_{jkl}f$ in 52 with $c_0 = (\varepsilon/\tilde{\sigma})^2$, we have

$$R_{21} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j,k,l=1}^{d} \mathbb{E}U\left(\xi'_{ij} - \xi_{ij}\right) \left(\xi'_{ik} - \xi_{ik}\right) \left(\xi'_{il} - \xi_{il}\right) \int_{0}^{(\varepsilon/\tilde{\sigma})^{2}} \frac{\sqrt{1-s}}{2\sqrt{s}} \times \int_{\mathbb{R}^{d}} \phi_{21}(z,s) dz ds$$

$$R_{22} = \frac{1}{4} \sum_{i=1}^{n} \sum_{j,k,l=1}^{d} \mathbb{E}U\left(\xi'_{ij} - \xi_{ij}\right) \left(\xi'_{ik} - \xi_{ik}\right) \left(\xi'_{il} - \xi_{il}\right) \int_{(\varepsilon/\tilde{\sigma})^{2}}^{1} \frac{\sqrt{1-s}}{2s^{3/2}} \times \int_{\mathbb{R}^{d}} \phi_{22}(z,s) dz ds$$

and

$$\begin{split} \phi_{21}(z,s) &= \left[\partial_{jk}h\left(\sqrt{1-s}\left(W+(1-U)\left(\xi_i'-\xi_i\right)\right)+\sqrt{s}\Sigma^{1/2}z\right)\right. \\ &\left. -\partial_{jk}h\left(\sqrt{1-s}\left(W+U\left(\xi_i'-\xi_i\right)\right)+\sqrt{s}\Sigma^{1/2}z\right)\right]\sigma_l^{-1}\partial_l\phi(z) \\ \phi_{22}(z,s) &= \left[h\left(\sqrt{1-s}\left(W+(1-U)\left(\xi_i'-\xi_i\right)\right)+\sqrt{s}\Sigma^{1/2}z\right)\right. \\ &\left. -h\left(\sqrt{1-s}\left(W+U\left(\xi_i'-\xi_i\right)\right)+\sqrt{s}\Sigma^{1/2}z\right)\right]\sigma_j^{-1}\sigma_k^{-1}\sigma_l^{-1}\partial_{jkl}\phi(z) \end{split}$$

Let $W^{(i)} = W - \xi_i$ for $i \in \{1, ..., n\}$. We will use the mean value theorem for the differences involving h in the above two expressions as in (5.25), the fact that ∇h is non-zero only in $A^{\varepsilon} \setminus A$ and bound

$$\mathbb{P}\left(\sqrt{1-s}W^{(i)} \in A_i^{\varepsilon} \backslash A_i \mid U, U', \xi_i, \xi_i'\right)$$

where 0 < s < 1, U' is a uniform random variable on [0,1] independent of everything else, and A_i is a Euclidean ball which may depend on U, U', ξ_i, ξ'_i, s and $\Sigma^{1/2}z$. We have by Lemma 4.8

$$\mathbb{P}\left(\sqrt{1-s}W^{(i)} \in A_i^{\varepsilon} \setminus A_i \mid U, U', \xi_i, \xi_i'\right) \leqslant C \frac{\varepsilon}{\tilde{\sigma}\sqrt{1-s}} + 2 \sup_{A \in \mathcal{B}} \left| \mathbb{P}\left(W^{(i)} \in A\right) - \mathbb{P}(Z \in A) \right| \quad (54)$$

From (44), we have

$$\sup_{A \in \mathcal{B}} \left| \mathbb{P}\left(W^{(i)} \in A \right) - \mathbb{P}(Z \in A) \right| \leqslant K'(\beta_0) \max \left\{ \beta_0, \Psi\left(\delta\left(W^{(i)}, \Sigma \right) \right) \right\}$$
 (55)

Since

$$\left\| \operatorname{Var} \left(\Sigma^{-1/2} W \right) - \operatorname{Var} \left(\Sigma^{-1/2} W^{(i)} \right) \right\|_{H.S.} = \sqrt{\sum_{j,k=1}^{d} \left(\mathbb{E} \left(\Sigma^{-1/2} \xi_{i} \right)_{j} \left(\Sigma^{-1/2} \xi_{i} \right)_{k} \right)^{2}}$$

$$\leq \mathbb{E} \left| \Sigma^{-1/2} \xi_{i} \right|^{2} \leq \sqrt{\mathbb{E} \left| \Sigma^{-1/2} \xi_{i} \right|^{4}}$$

and $\sqrt{x} + \sqrt{y} \leqslant \sqrt{2(x+y)}$ for any $x, y \geqslant 0$, we have

$$\delta\left(W^{(i)}, \Sigma\right) \leqslant \left\|I_{d} - \operatorname{Var}\left(\Sigma^{-1/2}W\right)\right\|_{H.S.} + \sqrt{\mathbb{E}\left|\Sigma^{-1/2}\xi_{i}\right|^{4}} + \sqrt{\sum_{\substack{j=1\\j\neq i}}^{n} \mathbb{E}\left|\Sigma^{-1/2}\xi_{j}\right|^{4}}$$

$$\leqslant \left\|I_{d} - \operatorname{Var}\left(\Sigma^{-1/2}W\right)\right\|_{H.S.} + \sqrt{2\sum_{j=1}^{n} \mathbb{E}\left|\Sigma^{-1/2}\xi_{j}\right|^{4}} \leqslant \sqrt{2}\delta(W, \Sigma)$$

Hence, we obtain by Lemma 4.9

$$\Psi\left(\delta\left(W^{(i)},\Sigma\right)\right)\leqslant2\sqrt{2}\Psi(\delta(W,\Sigma))\leqslant2\sqrt{2}\bar{\beta}$$

Thus we conclude

$$\sup_{A \in \mathcal{B}} \left| \mathbb{P}\left(W^{(i)} \in A \right) - P(Z \in A) \right| \leqslant K'(\beta_0) \max \left\{ \beta_0, 2\sqrt{2}\bar{\beta} \right\} = 2\sqrt{2}K'(\beta_0)\,\bar{\beta} \tag{56}$$

Using the mean value theorem for R_{21} , R_{22} and applying (48), (54), (56) and (3) we have

$$|R_{21}| + |R_{22}| \leqslant \frac{C\tilde{\sigma}^2}{\varepsilon^2} \sum_{i=1}^n \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \left(\frac{\varepsilon}{\tilde{\sigma}} + 2\sqrt{2}K'(\beta_0) \bar{\beta} \right)$$
 (57)

where we also used the inequality $\max_{1 \leq j \leq d} \sigma_j \leq \tilde{\sigma}$. From Lemmas 4.7-4.8, Equations (15), (53) and (57) we have

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|$$

$$\leq C\tilde{\sigma}^{-1}\varepsilon + C(|\log(\varepsilon/\tilde{\sigma})| \vee 1)\delta(W, \Sigma) + \frac{C\tilde{\sigma}^{2}}{\varepsilon^{2}} \sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_{i} \right|^{4} \left(\frac{\varepsilon}{\tilde{\sigma}} + K'(\beta_{0}) \bar{\beta} \right)$$
(58)

Choose $\varepsilon = \min \left\{ \tilde{\sigma} \left[2C \sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4 \right]^{1/2}, \tilde{\sigma} \right\}$ for the same absolute constant C as in the third term on the right-hand side of (58)

• If $\varepsilon < \tilde{\sigma}$, then from (58)

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant \left(C + \frac{K'(\beta_0)}{2}\right) \bar{\beta}$$

hence

$$\frac{\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)|}{\bar{\beta}} \leqslant C + \frac{K'(\beta_0)}{2}$$
(59)

• If $\varepsilon = \tilde{\sigma}$, then $\sum_{i=1}^{n} \mathbb{E} \left| \Sigma^{-1/2} \xi_i \right|^4$ and $\bar{\beta}$ are bounded away from 0 by an absolute constant; hence,

$$\frac{\sup_{A\in\mathcal{A}}|\mathbb{P}(W\in A)-\mathbb{P}(Z\in A)|}{\bar{\beta}}\leqslant \frac{1}{\bar{\beta}}\leqslant C$$

Note that the right-hand sides of the above two bounds do not depend on W or Σ . Taking supremum over W and Σ , we obtain

$$K'(\beta_0) \leqslant C + \frac{K'(\beta_0)}{2} \tag{60}$$

This implies (45) hence (5).

4.4 Proof of Theorem 2.3

Fix $A \in \mathcal{B}$ (will take sup in the end of the proof), $\varepsilon > 0$, write $h := \tilde{h}_{A,\varepsilon}$ as in Lemma 4.6 and proceed to bound $|\mathbb{E}h(W) - \mathbb{E}h(Z)|$ by the decomposition (15). Consider the solution f to the Stein equation (9), which is given by (10). Note that we can rewrite f as

$$f(w) = \int_0^1 -\frac{1}{2(1-s)} \mathbb{E}[h(\sqrt{1-s}w + Z) - \mathbb{E}h(Z)]ds$$

Since h has bounded partial derivatives up to the fourth order, f is four times differentiable and

$$\nabla^r f(w) = \int_0^1 -\frac{(1-s)^{r/2-1}}{2} \mathbb{E} \left[\nabla^r h(\sqrt{1-s}w + \sqrt{s}Z) \right] ds$$
 (61)

We first bound R_1 in (16). Using (61), we obtain

$$R_1 = -\frac{1}{2} \int_0^1 \mathbb{E}\left[\langle V, \text{Hess } h\left(W^s\right) \rangle_{H.S.} \right] ds$$

where $W^s := \sqrt{1-s}W + \sqrt{s}Z$. Since ∇h is non-zero only in $A^{\varepsilon} \setminus A$, we have

$$R_{1} = -\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\langle V, \operatorname{Hess} h\left(W^{s}\right) \rangle_{H.S.} 1_{\{W^{s} \in A^{\varepsilon} \setminus A\}} \right] ds$$

Therefore, using (49) we obtain

$$|R_{1}| \leqslant \frac{1}{2} \int_{0}^{1} \mathbb{E} |\langle V, \operatorname{Hess} h (W^{s}) \rangle_{H.S.} | 1_{\{W^{s} \in A^{\varepsilon} \setminus A\}} ds$$

$$\leqslant \frac{C}{\varepsilon^{2}} \int_{0}^{1} \mathbb{E} \left(||V||_{H.S.} + \sum_{j=1}^{d} |V_{jj}| \right) 1_{\{W^{s} \in A^{\varepsilon} \setminus A\}} ds$$

$$= \frac{C}{\varepsilon^{2}} \int_{0}^{1} \mathbb{E} \left(||V||_{H.S.} + \sum_{j=1}^{d} |V_{jj}| \right) \mathbb{P} (W^{s} \in A^{\varepsilon} \setminus A \mid \xi) ds$$

Since Z is independent of ξ , Lemma 4.8 yields

$$\mathbb{P}\left(W^{s} \in A^{\varepsilon} \setminus A \mid \xi\right) \leqslant \frac{C\varepsilon}{\tilde{\sigma}\sqrt{s}}$$

Thus we deduce

$$|R_1| \leqslant \frac{C}{\tilde{\sigma}\varepsilon} \mathbb{E}\left(\|V\|_{H.S.} + \sum_{j=1}^d |V_{jj}|\right) \int_0^1 \frac{1}{\sqrt{s}} ds \leqslant \frac{C}{\tilde{\sigma}\varepsilon} \mathbb{E}\left(\|V\|_{H.S.} + \sum_{j=1}^d |V_{jj}|\right)$$

Using (17) and the triangle inequality, we obtain

$$\mathbb{E}\left(\|V\|_{H.S.} + \sum_{j=1}^{d} |V_{jj}|\right)$$

$$\leq \|\Sigma - \text{Var}(W)\|_{H.S.} + \sum_{j=1}^{d} |\Sigma_{jj} - \text{Var}(W_{j})| + \frac{1}{2}\sqrt{\sum_{j,k=1}^{d} \sum_{i=1}^{n} \text{Var}(\xi_{ij}\xi_{ik})} + \frac{1}{2}\sum_{j=1}^{d}\sqrt{\sum_{i=1}^{n} \text{Var}(\xi_{ij}^{2})}$$

$$\leq \|\Sigma - \text{Var}(W)\|_{H.S.} + \sum_{j=1}^{d} |\Sigma_{jj} - \text{Var}(W_{j})| + \frac{1}{2}\sqrt{\sum_{j,k=1}^{d} \sum_{i=1}^{n} \mathbb{E}\left[\xi_{ij}^{2}\xi_{ik}^{2}\right]} + \frac{1}{2}\sum_{j=1}^{d}\sqrt{\sum_{i=1}^{n} \mathbb{E}\left[\xi_{ij}^{4}\right]}$$

$$\leq \tilde{\delta}(W, \Sigma)$$

Therefore, we conclude

$$|R_1| \leqslant \frac{C}{\tilde{\sigma}\varepsilon}\tilde{\delta}(W,\Sigma) \tag{62}$$

Next we bound R_2 in (19). We rewrite it as

$$R_2 = \frac{n}{4} \sum_{j,k,l,m=1}^{d} \mathbb{E} \left[D_j D_k D_l D_m U(1 - 2U) \partial_{jklm} f(W + \tilde{D}) \right]$$
(63)

where $\tilde{D} := UD + U'(1-2U)D$ and U' is a uniform random variable on [0,1] independent of everything else. Now we set $\tilde{W}^s := \sqrt{1-s}(W+\tilde{D}) + \sqrt{s}Z$. Then, using (61), we can rewrite R_2 as

$$R_2 = n \int_0^1 -\frac{1-s}{8} \mathbb{E}U(1-2U) \left\langle \nabla^4 h\left(\tilde{W}^s\right), D^{\otimes 4} \right\rangle ds$$

Since ∇h is non-zero only in $A^{\varepsilon} \setminus A$, we can further rewrite it as

$$R_2 = n \int_0^1 -\frac{1-s}{8} \mathbb{E}U(1-2U) \left\langle \nabla^4 h\left(\tilde{W}^s\right), D^{\otimes 4} \right\rangle 1_{\left\{\tilde{W}^s \in A^\varepsilon \setminus A\right\}} ds$$

Therefore, using (48), we obtain

$$|R_{2}| \leq \frac{n}{8} \int_{0}^{1} \mathbb{E} \left| \left\langle \nabla^{4} h \left(\tilde{W}^{s} \right), D^{\otimes 4} \right\rangle \right| 1_{\left\{ \tilde{W}^{s} \in A^{\varepsilon} \setminus A \right\}} ds$$

$$\leq \frac{Cn}{\varepsilon^{4}} \int_{0}^{1} \mathbb{E} |D|^{4} 1_{\left\{ \tilde{W}^{s} \in A^{\varepsilon} \setminus A \right\}} ds$$

$$= \frac{Cn}{\varepsilon^{4}} \int_{0}^{1} \mathbb{E} |D|^{4} \mathbb{P} \left(\tilde{W}^{s} \in A^{\varepsilon} \setminus A \mid D, U, U' \right) ds$$

Since Z is independent of D, U and U', Lemma 4.8 yields

$$\mathbb{P}\left(\tilde{W}^s \in A^{\varepsilon} \setminus A \mid D, U, U'\right) \leqslant \frac{C\varepsilon}{\tilde{\sigma}\sqrt{s}}$$

Thus we conclude

$$|R_2| \leqslant \frac{Cn}{\tilde{\sigma}\varepsilon^3} \mathbb{E}|D|^4 \int_0^1 \frac{1}{\sqrt{s}} ds \leqslant \frac{C}{\tilde{\sigma}\varepsilon^3} \sum_{i=1}^n \mathbb{E}|\xi_i|^4$$
 (64)

From Lemmas 4.7-4.8 and Equations (15), (62), (64), we have

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant C\tilde{\sigma}^{-1}\varepsilon + \frac{C}{\tilde{\sigma}\varepsilon}\tilde{\delta}(W, \Sigma) + \frac{C}{\tilde{\sigma}\varepsilon^3}\sum_{i=1}^n \mathbb{E}|\xi_i|^4$$
 (65)

and by choosing $\varepsilon = \sqrt{\tilde{\delta}(W, \Sigma)}$, we obtain

$$\sup_{A \in \mathcal{B}} |\mathbb{P}(W \in A) - \mathbb{P}(Z \in A)| \leqslant \frac{C}{\tilde{\sigma}} \sqrt{\tilde{\delta}(W, \Sigma)}$$
 (66)

This completes the proof.