A Model for Energy-Saving in an IoT Smarthome accounting for End-User Convenience

Alistair Francis Bowman Grevis-James November 2019

Contents

1	Introducti	on	2
	1.0.1	Bedroom Lightswitch	3
	1.0.2	Kitchen Laundrydryer	4
	1.0.3	Kitchen Freezer	5
	1.0.4	Kitchen Toaster	6
	1.0.5	Bathroom Exhaustfan	7
	1.0.6	Bathroom Showerfaucet	8
	1.0.7	bathroom_lightswitch	9
	1.0.8	kitchen_refrigerator	10
	1.0.9	foyer_lightswitch	11
	1.0.10	$kitchen_burner\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	12
	1.0.11	study Lightswitch	13
	1.0.12	kitchen_washingmachine	14
	1.0.13	Kitchen Lightswitch	15
	1.0.14	Livingroom Lamp	16
	1.0.15	kitchen_microwave	17
	1.0.16	$kitchen_garbagedisposal \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	18
	1.0.17	kitchen_coffeemachine	19
	1.0.18	livingroom_lightswitch	20
	1.0.19	kitchen_oven	21
	1.0.20	kitchen_dishwasher	22
	1.0.21	bathroom_sinkfaucet-hot	23
2	Reference	5	23

1 Introduction

• Using only accuracy as a metric, the original, top 5 and electrical only were compared.

A decision tree classifier

The reported averages include macro average (averaging the unweighted mean per label), weighted average (averaging the support-weighted mean per label) https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html

The last line gives a weighted average of precision, recall and f1-score where the weights are the support values. so for precision the avg is (0.501 + 0.01 + 1.0*3)/5 = 0.70. The total is just for total support which is 5 here.

Compute the F1 score, also known as balanced F-score or F-measure

The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

 $F1 = 2 * (precision * recall) / (precision + recall) \\ https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html$

1.0.1 Bedroom Lightswitch

- Confusion matrix
- KPIs

best params: {'criterion': 'entropy', 'max_depth': 4} best score: 0.9795956924239562 best features: ['bathroom_lightswitch' 'kitchen_cabinet' 'kitchen_dishwasher' 'kitchen_laundrydryer' 'livingroom_lightswitch'] feature importances: [0.02321617 0.00763424 0.00526102 0.00518979 0.00453024]

support	f1-score	recall	precision	
1543	0.99	1.00	0.98	0.0
45	0.52	0.36	0.94	1.0
1588	0.98			accuracy

macro avg $0.96\ 0.68\ 0.75\ 1588$ weighted avg $0.98\ 0.98\ 0.98\ 1588$

[[1542 1] [29 16]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.3s finished

Figure 1: ADD TEXT

1.0.2 Kitchen Laundrydryer

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.1s finished best params: {'criterion': 'gini', 'max_depth': 5} best score: 0.988034510989357 precision recall f1-score support

0.0	0.99	1.00	0.99	1565
1.0	0.70	0.30	0.42	23
			0.00	1500
accuracy			0.99	1588

macro avg $0.84\ 0.65\ 0.71\ 1588$ weighted avg $0.99\ 0.99\ 0.99\ 1588$

[[1562 3] [16 7]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 1.9s finished

Figure 2: ADD TEXT

1.0.3 Kitchen Freezer

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.5s finished best params: {'criterion': 'gini', 'max_depth': 9} best score: 0.9164305056993514

prec	ision	recall	f1-sco	re	support
0.0	0.94	0.	98	0.96	3 1423
1.0	0.76	0.	44	0.56	165
accuracy				0.93	3 1588

macro avg $0.85\ 0.71\ 0.76\ 1588$ weighted avg $0.92\ 0.93\ 0.92\ 1588$

[[1400 23] [92 73]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.1s finished

Figure 3: ADD TEXT

1.0.4 Kitchen Toaster

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.5s finished best params: {'criterion': 'gini', 'max_depth': 3} best score: 0.9886642735688645

precision	recall	f1-score	support	
0.0	0.99 0.83	1.00 0.23	0.99 0.36	1566 22
accuracy			0.99	1588

macro avg 0.91~0.61~0.68~1588 weighted avg 0.99~0.99~0.99~1588

[[1565 1] [17 5]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.7s finished

Figure 4: ADD TEXT

1.0.5 Bathroom Exhaustfan

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.3s finished best params: {'criterion': 'gini', 'max_depth': 8} best score: 0.8798412998299641

precision	recall	f1-score	support	
0.0 1.0	0.90 0.77	0.99 0.25	0.94 0.38	1384 204
accuracy			0.89	1588

macro avg $0.84\ 0.62\ 0.66\ 1588$ weighted avg $0.88\ 0.89\ 0.87\ 1588$

[[1369 15] [153 51]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.9s finished

Figure 5: ADD TEXT

1.0.6 Bathroom Showerfaucet

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits $Parallel(n_jobs=1)$: Done 270 out of 270 | elapsed: 2.5s finished best params: {'criterion': 'entropy', 'max_depth': 8} best score: 0.9669374645758549

precis	sion rec	all f1-sc	ore supp	ort
0.0	0.97	1.00	0.98	1520
1.0	0.82	0.40	0.53	68
accuracy			0.97	1588

macro avg $0.90\ 0.70\ 0.76\ 1588$ weighted avg $0.97\ 0.97\ 0.97\ 1588$

[[1514 6] [41 27]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.7s finished

Figure 6: ADD TEXT

1.0.7 bathroom_lightswitch

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.5s finished best params: {'criterion': 'gini', 'max_depth': 10} best score: 0.8392216134517287

precision	recall	f1-score	support	
0.0 1.0	0.85 0.85	0.99 0.30	0.91 0.45	1262 326
accuracy			0.85	1588

macro avg $0.85\ 0.64\ 0.68\ 1588$ weighted avg $0.85\ 0.85\ 0.82\ 1588$

[[1244 18] [227 99]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.0s finished

Figure 7: ADD TEXT

1.0.8 kitchen_refrigerator

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.0s finished best params: {'criterion': 'gini', 'max_depth': 10} best score: 0.9646073430316771

precision	recall	f1-score	support	
0.0 1.0	0.97 0.95	1.00 0.51	0.99 0.67	1506 82
accuracy			0.97	1588

macro avg 0.96~0.76~0.83~1588 weighted avg 0.97~0.97~0.97~1588

[[1504 2] [40 42]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.4s finished

Figure 8: ADD TEXT

1.0.9 foyer_lightswitch

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.9s finished best params: {'criterion': 'gini', 'max_depth': 4} best score: 0.9894199886642736

	precision	recall	f1-score	support	
	0.0	0.99 0.98	1.00 0.77	1.00 0.86	1528 60
accur	acy			0.99	1588

macro avg 0.98~0.88~0.93~1588 weighted avg 0.99~0.99~0.99~1588

[[1527 1] [14 46]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.0s finished

Figure 9: ADD TEXT

1.0.10 kitchen_burner

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.5s finished best params: {'criterion': 'entropy', 'max_depth': 8} best score: 0.9630329365829082

precision	recall	f1-score	support	
0.0	0.97	1.00	0.98	1506
1.0	0.97	0.34	0.50	82
accuracy			0.97	1588

macro avg $0.97\ 0.67\ 0.74\ 1588$ weighted avg $0.97\ 0.97\ 0.96\ 1588$

[[1505 1] [54 28]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.2s finished

Figure 10: ADD TEXT

1.0.11 study Lightswitch

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.9s finished best params: {'criterion': 'entropy', 'max_depth': 8} best score: 0.8873354745261036

precision	recall	f1-score	support	
0.0 1.0	0.89 0.81	1.00 0.07	0.94 0.13	1407 181
accuracy			0.89	1588

macro avg $0.85\ 0.53\ 0.54\ 1588$ weighted avg $0.88\ 0.89\ 0.85\ 1588$

[[1404 3] [168 13]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.3s finished

Figure 11: ADD TEXT

1.0.12 kitchen_washingmachine

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.1s finished best params: {'criterion': 'gini', 'max_depth': 3} best score: 0.9892310598904213

precision	recall	f1-score	support	
0.0	0.99 0.83	1.00 0.19	0.99 0.31	1562 26
accuracy			0.99	1588

macro avg $0.91\ 0.60\ 0.65\ 1588$ weighted avg $0.98\ 0.99\ 0.98\ 1588$

[[1561 1] [21 5]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.0s finished

Figure 12: ADD TEXT

1.0.13 Kitchen Lightswitch

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.4s finished best params: {'criterion': 'gini', 'max_depth': 10} best score: 0.797153473140626

precis	sion rec	all f1-sc	ore supp	ort
0.0	0.88	0.87	0.87	1100
1.0	0.71	0.74	0.72	488
accuracy			0.83	1588

macro avg $0.80\ 0.80\ 0.80\ 1588$ weighted avg $0.83\ 0.83\ 0.83\ 1588$

[[952 148] [127 361]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.4s finished

Figure 13: ADD TEXT

1.0.14 Livingroom Lamp

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.4s finished best params: {'criterion': 'gini', 'max_depth': 8} best score: 0.8140311102714277

precision	recall	f1-score	support	
0.0 1.0	0.81 0.83	0.99 0.16	0.89 0.27	1252 336
accuracy			0.82	1588

macro avg $0.82\ 0.58\ 0.58\ 1588$ weighted avg $0.82\ 0.82\ 0.76\ 1588$

[[1241 11] [282 54]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.0s finished

Figure 14: ADD TEXT

1.0.15 kitchen_microwave

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.3s finished best params: {'criterion': 'entropy', 'max_depth': 2} best score: 0.989042131116569

precision	recall	f1-score	support	
0.0	0.99	1.00	1.00	1575
1.0	0.00	0.00	0.00	13
accuracy			0.99	1588

macro avg $0.50\ 0.50\ 0.50\ 1588$ weighted avg $0.98\ 0.99\ 0.99\ 1588$

[[1575 0] [13 0]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.5s finished

Figure 15: ADD TEXT

1.0.16 kitchen_garbagedisposal

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.4s finished best params: {'criterion': 'gini', 'max_depth': 2} best score: 0.9975439259399207

precision	recall	f1-score	support	
0.0 1.0	1.00 0.00	1.00	1.00	1586 2
accuracy			1.00	1588

macro avg $0.50\ 0.50\ 0.50\ 1588$ weighted avg $1.00\ 1.00\ 1.00\ 1588$

[[1586 0] [2 0]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 2.9s finished

Figure 16: ADD TEXT

1.0.17 kitchen_coffeemachine

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.2s finished best params: {'criterion': 'gini', 'max_depth': 2} best score: 0.9986774985830342

precision	recall	f1-score	support	
0.0	1.00	1.00	1.00	1587
1.0	0.00	0.00	0.00	1
accuracy			1.00	1588

macro avg 0.50 0.50 0.50 1588 weighted avg 1.00 1.00 1.00 1588

[[1587 0] [1 0]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.1s finished

Figure 17: ADD TEXT

1.0.18 livingroom_lightswitch

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits $Parallel(n_jobs=1)$: Done 270 out of 270 | elapsed: 3.6s finished best params: {'criterion': 'entropy', 'max_depth': 7} best score: 0.9080546633919012

precis	ion reca	ll f1-sc	ore suppo	ort
0.0	0.91	1.00	0.95	1386
1.0	1.00	0.28	0.44	202
accuracy			0.91	1588

macro avg $0.95\ 0.64\ 0.70\ 1588$ weighted avg $0.92\ 0.91\ 0.89\ 1588$

[[1386 0] [145 57]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 4.0s finished

Figure 18: ADD TEXT

1.0.19 kitchen_oven

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.3s finished best params: {'criterion': 'entropy', 'max_depth': 2} best score: 0.9951508281377921

precision	recall	f1-score	support	
0.0	0.99	1.00	1.00	1579 9
1.0	0.00	0.00	0.00	9
accuracy			0.99	1588

macro avg $0.50\ 0.50\ 0.50\ 1588$ weighted avg $0.99\ 0.99\ 0.99\ 1588$

[[1579 0] [9 0]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.4s finished

Figure 19: ADD TEXT

1.0.20 kitchen_dishwasher

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.8s finished best params: {'criterion': 'entropy', 'max_depth': 8} best score: 0.949870898671201

prec	ision r	ecall f1-s	core sup	port
0.0	0.96	0.99	0.98	1496
1.0	0.75	0.26	0.39	92
accuracy			0.95	1588

macro avg $0.85\ 0.63\ 0.68\ 1588$ weighted avg $0.94\ 0.95\ 0.94\ 1588$

[[1488 8] [68 24]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 4.0s finished

Figure 20: ADD TEXT

1.0.21 bathroom_sinkfaucet-hot

- Confusion matrix
- KPIs

Fitting 15 folds for each of 18 candidates, totalling 270 fits $Parallel(n_jobs=1)$: Done 270 out of 270 | elapsed: 5.6s finished best params: {'criterion': 'entropy', 'max_depth': 6} best score: 0.9702752062472448

precision	recall	f1-score	support	
0.0	0.97	1.00	0.98	1514
1.0	0.86	0.42	0.56	74
accuracy			0.97	1588

macro avg $0.92\ 0.71\ 0.77\ 1588$ weighted avg $0.97\ 0.97\ 0.96\ 1588$

[[1509 5] [43 31]] Fitting 15 folds for each of 18 candidates, totalling 270 fits Parallel(n_jobs=1): Using backend SequentialBackend with 1 concurrent workers. Parallel(n_jobs=1): Done 270 out of 270 | elapsed: 3.5s finished

Figure 21: ADD TEXT

2 References