Laborator 6

Cuprins

Aplicația 1	1
Aplicația 2	1
Aplicaţia 3	2

Aplicația 1

Aplicația 1. Se efectuează un control prin sondaj privind conținutul X de grăsime al laptelui integral. Conținutul mediu de grăsime este stabilit la cel puțin 3.6%. Pentru a verifica dacă această condiție este îndeplinită, s-au luat 9 probe, obținându-se următoarele procente de grăsime:

```
3.5 3.3 3.6 3.2 3.4 3.1 3.5 3.7 3.3
```

Știind că $X \sim N(m, \sigma)$, cu abaterea standard teoretică cunoscută $\sigma = 0.18$, să se verifice dacă laptele respectă normele calitative, când nivelul de semnificație $\alpha = 0.04$.

```
X = [3.5 3.3 3.6 3.2 3.4 3.1 3.5 3.7 3.3];
sigma = 0.18;
m_0 = 3.6;
alpha = 0.04;
tail = -1;
[h, ~, ~, zval] = ztest(X, m_0, sigma, alpha, tail);
if h == 0
    fprintf('Se acceptă ipoteza H_0.')
end
if h == 1
    fprintf('Se respinge ipoteza H_0.')
end
```

Se respinge ipoteza H_0.

Din **ztest**, **h = 1**, deci ipoteza H_0 se respinge. Se acceptă ipoteza H_1 , deci conținutul mediu de grăsime este sub 3.6%.

Aplicația 2

Aplicația 2. Caracteristica X reprezintă prețul unui produs în anul următor. 35 experți își exprimă opiniile privind prețul produsului în anul următor. Aceștia estimează prețul produsului în anul viitor la:

Dacă se știe că anul acesta prețul mediu al produsului a fost de 2.55 mii lei, sunt motive suficiente pentru a susține ipoteza că anul viitor prețul mediu va fi mai mare față de cel de anul acesta? Se va utiliza un nivel de semnificație $\alpha=0.05$.

```
tail = 1;
[h, ~, ~, ~] = ttest(X, m_0, alpha, tail);
if h == 0
    fprintf('Se acceptă ipoteza H_0.')
end
```

Se acceptă ipoteza H_0.

```
if h == 1
    fprintf('Se respinge ipoteza H_0.')
end
```

Din **ttest**, h = 0, deci ipoteza H_0 se acceptă. Anul viitor, prețul mediu va fi mai mare față de cel de anul acesta.

Aplicația 3

Aplicația 3. Se consideră caracteristica X ce urmează legea normală $N(m, \sigma)$. Relativ la caracteristica X se efectuează o selecție repetată de volum n = 18, obținându-se datele de selecție:

```
6.16 6.55 5.32 6.26 6.10 5.61 5.87 6.10 6.83
7.07 5.60 6.91 6.22 5.98 6.21 5.94 5.96 6.45
```

Să se verifice ipoteza nulă H_0 : $\sigma = 0.4$, cu alternativa H_1 : $\sigma \neq 0.4$, când se consideră nivelul de semnificație $\alpha = 0.05$.

```
X = [6.16 6.55 5.32 6.26 6.1 5.61 5.87 6.1 6.83 7.07 5.60 6.91 ...
        6.22 5.98 6.21 5.94 5.96 6.45];
n = 18;
sigma_0 = 0.4;
alpha = 0.05;
tail = 0;
[h, ~, ~, ~] = vartest(X, sigma_0^2, alpha, 0);
if h == 0
        fprintf('Se acceptă ipoteza H_0.')
end
```

Se acceptă ipoteza H_0.

```
if h == 1
    fprintf('Se respinge ipoteza H_0.')
end
```

Din vartest, h = 0, deci se acceptă ipoteza H_0 .