

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Pato Branco

Informações da disciplina

Código Ofertado	Disciplina/Unidade Curricular	Modo de Avaliação	Modalidade da disciplina	Oferta
SC26CP	Sistemas De Controle 2	Nota/Conceito E Frequência	Presencial	Semestral

Carga Horária					
AT	АР	APS	ANP	APCC	Total
2	2	4	0	0	60

- AT: Atividades Teóricas (aulas semanais).
- AP: Atividades Práticas (aulas semanais).
- ANP: Atividades não presenciais (horas no período).
- APS: Atividades Práticas Supervisionadas (aulas no período).
- APCC: Atividades Práticas como Componente Curricular (aulas no período, esta carga horária está incluída em AP e AT).
- Total: carga horária total da disciplina em horas.

Objetivo

Ao final da disciplina o aluno deverá ser capaz de analisar e projetar sistemas dinâmicos e de controle em tempo contínuo, utilizando o método do lugar das raízes, da resposta em frequência e através de espaço de estados. Também deverá ser capaz de implementar os controladores projetados analogicamente.

Ementa

Técnicas de projeto e compensação: avanço, atraso, avanço-atraso, PID; análise de sistemas de controle

no espaço de estados; projeto de sistemas de controle por espaço de estados.

Conteúdo Programático

Ordem	Ementa	Conteúdo	
1	Técnicas de projeto de compensação: avanço, atraso, avanço-atraso e PID.	1.1. Projeto de compensador de avanço de fase; 1.2. Projeto de compensador de atraso de fase; 1.3. Projeto de compensador de avanço-atraso de fase; 1.4. Projeto de controlador PI, PD e PID.	

Ordem	Ementa	Conteúdo	
2	Análise de sistemas de controle no espaço de estados.	2.1. Representação de sistemas dinâmicos em espaço de estados; 2.2. Formas canônicas controlável, observável, diagonal e de Jordan; 2.3. Solução das equações de estado de sistemas dinâmicos lineares e invariantes no tempo; 2.4. Controlabilidade e observabilidade.	
3	Projeto de sistemas de controle por espaço de estados.	3.1. Projeto de controladores por alocação de pólos; 3.2. Projeto de reguladores; 3.3. Projeto de servos; 3.4. Projeto de observadores de estado.	

Bibliografia Básica

NISE, Norman S. **Engenharia de sistemas de controle.** 5. ed. Rio de Janeiro: LTC, c2009. xx, 695 p. ISBN 978852161704-4.

OGATA, Katsuhiko. **Engenharia de controle moderno.** 3. ed. Rio de Janeiro: LTC, c2000. xiv, 813 p. ISBN 85-2161-243-5.

DORF, Richard C.; BISHOP, Robert H. **Sistemas de controle modernos.** 8.ed. Rio de Janeiro, RJ: LTC, 2001. 657 p. ISBN 85-216-1242-7

Bibliografia Complementar

CHEN, Chi-Tsong. **Linear system theory and design.** 3rd ed. New York, NY: Oxford University Press, 1999. 334 p. (The Oxford Series in Electrical and Computer Engineering). ISBN 0195117778.

D'AZZO, John Joachim; HOUPIS, Constantine H.. **Análise e projeto de sistemas de controle lineares.** 2.ed. Rio de Janeiro: Guanabara, 1988 660p. ISBN 85703000042

FRANKLIN, Gene F.; POWELL, J. David; EMAMI-NAEINI, Abbas. **Feedback control of dynamic systems.** 6 ed. New York, NY: Pearson, 2010. xvi, 672 p. ISBN 9780136019695.

GOLNARAGHI, M. F.; KUO, Benjamin C. **Automatic control systems.** 9th ed. Québec, CN: Wiley, c2010. xiii, 786p. ISBN 9780470048962.

HAYKIN, Simon; VAN VEEN, Barry. Sinais e sistemas. Porto Alegre: Bookman, 2001. xvii, 668 p. ISBN 8573077417.

#	Resumo da Alteração	Edição	Data	Aprovação	Data
1	ok.	Geremi Gilson Dranka	25/04/2016	Pablo Gauterio Cavalcanti	25/05/2016

27/09/2021 12:20