

Adaptive Weighting Multi-Field-of-View CNN for Semantic Segmentation in Pathology

CVPR

LONG BEACH CALIFORNIA June 16-20, 2019

Hiroki Tokunaga¹ Yuki Teramoto² Akihiko Yoshizawa² Ryoma Bise^{1,3}

¹Kyushu University, Fukuoka, Japan ²Kyoto University Hospital, Kyoto, Japan ³Research Center for Medical Bigdata, National Institute of Informatics, Tokyo, Japan

Pathological diagnosis of lung cancer

- Pathological diagnosis of lung cancer is used to determine the treatment policy and predict the prognosis of patients.
- The aim of our study is to automatically segment a lung WSI into cancer subtypes region.

Effect of field of view

- Patch image segmentation:
 - ➤ The size of WSI is too large.⇒ Patch-based approach

Patches with different FOV

A Part of a pathological image

- Trade-off between the field of view and the spatial resolution:
 - We Investigated how the contextual information is related to the discriminative features for segmenting cancer subtypes.
 - The Venn diagrams show that the contextual information from different magnification images is effective.

Adaptive Weighting Multi-Field-of-View CNN

- Our proposed model aggregates expert CNNs by adaptively weighting each expert depending on the input image.
 - Expert CNN: is specialized in segmenting particular magnification images.
 - Weighting CNN: adaptively estimates the weights of the expert CNNs.
 - Aggregating CNN: concatenates the outputs of expert CNNs with the estimated weights. This outputs the final segmentation result.

X_i^1 X_i^2 X_i^3 X_i^3 X_i^3 X_i^3 X_i^3 X_i^4 X_i^2 X_i^3 X_i^3 X_i^4 $X_i^$

Output of M-class

Semantic Segmentation

Training algorithm

- 1. Pre-train Expert CNNs $\{f_{E_k}\}_{k=1}^3$
- 2. Generate training data for Weighting CNN
- 3. Train Weighting CNN f_W
- 4. Train the integrated network $(\{f_{E_k}\}_{k=1}^3, f_A)$
- 5. Repeat 2-4 until convergence

The change in the correct answer rate for pre-trained Experts and after the end-to-end learning

After the end-to-end learning, although the circle of each expert became small on average, the union of the prediction results became large.

Experiments

- Two-version proposed models:
 - Ours (Adaptive): Adaptive Weighting Multi-Field-of-View CNN
 - Ours (Fixed): Fixed Weighting Multi-Field-of-View CNN that uses the fixed weight 1.0 for aggregation

Qualitative evaluation:

Quantitative evaluation: Four-class subtypes segmentation

r our diade dubtyped degimentation						
Network	Magnification	OP	PC	mIo		
U-net	20x	0.446	0.446	0.30		
U-net	10x	0.484	0.481	0.33		
U-net	5x	0.524	0.537	0.37		
SegNet	20x	0.477	0.477	0.32		
SegNet	10x	0.547	0.544	0.39		
SegNet	5x	0.492	0.525	0.32		
Dilated-net	20x	0.433	0.422	0.27		
Dilated-net	10x	0.445	0.456	0.31		
Dilated-net	5x	0.515	0.528	0.37		
DeepLabv3+	20x	0.585	0.580	0.43		
DeepLabv3+	10x	0.625	0.624	0.47		
DeepLabv3+	5x	0.588	0.583	0.43		
Hard-Switch-CNN	(20x, 10x, 5x)	0.486	0.484	0.34		
Ours (Fixed)	(20x,10x,5x)	0.641	0.642	0.50		
Ours (Adaptive)	(20x, 10x, 5x)	0.672	<u>0.676</u>	0.53		

Four-class segmentation accuracy of Ours(Adaptive) using other experts

Expert network	Magnification	mloU	ımprovemen
U-net	(20x,10x,5x)	0.536	0.157
SegNet	(20x, 10x, 5x)	0.459	0.061
Dilated-net	(20x, 10x, 5x)	0.537	0.159
DeepLabv3+	(20x, 10x, 5x)	0.510	0.036

- Conclusion:
 - Our model achieved the best performance and the fixed version was second best on four-class subtypes segmentation task.

[1] O. Ronneberger+, U-net: Convolutional networks for biomedical image segmentation, MICCAI 2015.
[2] V. Badrinarayanan+, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, TPAMI 2017

[3] F. Yu+, Multi-scale context aggregation by dilated convolutions, ICLR 2016.
[4] L. Chen+, Rethinking atrous convolution for semantic image segmentation, arXiv 2017

2017. [5] D. B. Sam+, Switching convolutional neural network for crowd counting, CVPR 2017.