#### Dr. Xuan Dieu Bui

School of Applied Mathematics and Informatics, Hanoi University of Science and Technology

- Surface Integrals of scalar Fields
  - Surface Area
  - Formulations

- Surface Integrals of vector Fields
  - Oriented Surfaces
  - Formulations
  - The Divergence Theorem

- Surface Integrals of scalar Fields
  - Surface Area
  - Formulations
- Surface Integrals of vector Fields
  - Oriented Surfaces
  - Formulations
  - The Divergence Theorem

# Surface Integrals of scalar Fields

#### Review of the Definite Integral



- i) divide [a,b] into n subintervals  $[x_{i-1},x_i]$  of equal width  $\Delta x = \frac{b-a}{n}$
- ii) choose sample points  $x_i^*$  in these subintervals,
- iii) form the Riemann sum  $\sum_{i=1}^{n} f(x_i^*) \Delta x$
- iv) take the limit  $\int\limits_a^b f(x)dx = \lim\limits_{n \to \infty} \sum\limits_{i=1}^n f(x_i^*) \Delta x$

### Surface Area



Consider the surface  $r(u, v) = x(u, v) \cdot \vec{i} + y(u, v) \cdot \vec{j} + z(u, v) \cdot \vec{k}, (u, v) \in D$ .

- Divide D into subrectangles  $R_{ij}$  and let  $(u_i^*, v_j^*)$  be the lower left corner  $R_{ij}$ .
- The part  $S_{ij}$  of the surface that corresponds to  $R_{ij}$  is called a patch. Let  $r_u^* = r_u(P_{ij}^*), r_v^* = r_v(P_{ij}^*)$ .

Dr. Xuan Dieu Bui Surface Integrals I ♡ HUST

### Surface Area



Each patch  $S_{ij}$  can be approximated by the parallelogram determined by the vectors  $\Delta u r_u^*$  and  $\Delta v r_v^*$  with area  $|(\Delta u r_u^*) \times (\Delta v r_v^*)| = |r_u^* \times r_v^*| \Delta u \Delta v$  so an approximation to the area of is

$$\sum_{i=1}^{m} \sum_{j=1}^{n} |r_{u}^{*} \times r_{v}^{*}| \Delta u \Delta v.$$

#### Definition

$$A(S) = \iint_D |r_u \times r_v| du dv.$$

Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 6 / 31

## Surface Integrals of scalar Fields





Let S be 
$$r(u, v) = x(u, v)\vec{i} + y(u, v)\vec{j} + z(u, v)\vec{k}, (u, v) \in [a, b] \times [c, d].$$

- i) divide S in to patches by dividing [a, b] into m subintervals  $[x_{i-1}, x_i]$  and dividing [c, d] into n subintervals, each of equal length.
- ii) choose sample points  $P_{ij}^{*}$  in each patch,
- iii) form the Riemann sum  $\sum\limits_{i=1}^m\sum\limits_{j=1}^nf(P_{ij}^*)\Delta S_{ij}$
- iv) take the limit  $\iint\limits_{S} f(x,y,z) dS = \lim\limits_{n \to \infty} \sum\limits_{i=1}^{n} f(x_{i}^{*},y_{i}^{*},z_{i}^{*}) \Delta S_{ij}$ .

Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 7

#### **Formulations**





In our discussion of surface area, we made the approximation

$$\Delta S_{ij} \approx |r_u^* \times r_v^*| \Delta u \Delta v.$$

Therefore

$$\iint_{S} f(x,y,z)dS = \iint_{D} f(x(u,v),y(u,v),z(u,v))|r_{u} \times r_{v}|dudv.$$

Dr. Xuan Dieu Bui Surface Integrals I ♡ HUST 8 / 31

#### **Formulations**

Any surface with equation z = z(x, y) can be parameterized

$$x=x,y=y,z=z(x,y)$$
 and  $r_x\times r_y=\sqrt{1+(z_x')^2+\left(z_y'\right)^2}$ . Therefore, if

- the surface S is given by z = z(x, y),
- the projection of S onto Oxy is D,

then

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x,y,z(x,y)) \sqrt{1+(z'_{x})^{2}+(z'_{y})^{2}} dxdy.$$



Dr. Xuan Dieu Bui Surface Integrals 9 / 31

## Surface Integrals of scalar Fields

### Example

Evaluate 
$$\iint\limits_{S}\left(z+2x+\frac{4y}{3}\right)dS$$
, where 
$$S=\left\{\left(x,y,z\right)|\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1,x,y,z\geqslant0\right\}$$



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 10 / 31

## Surface Integrals of scalar Fields

### Example

Evaluate 
$$\iint\limits_{S}\left(x^{2}+y^{2}\right)dS$$
, where  $S=\left\{ \left(x,y,z\right)|z=x^{2}+y^{2},0\leqslant z\leqslant 1\right\}$ .



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 11 / 31

- Surface Integrals of scalar Field
  - Surface Area
  - Formulations
- Surface Integrals of vector Fields
  - Oriented Surfaces
  - Formulations
  - The Divergence Theorem

# Oriented Surfaces (Two-sided Surfaces)

Let S be a surface. At every point, there are two unit normal vectors  $\overrightarrow{n}$  and  $-\overrightarrow{n}$ .

- If it is possible to choose a unit normal vector at every such point so that it varies continuously over *S*, then *S* is called an oriented surface. There are two possible orientations for any orientable surface.
- Conversely, S is called a nonorientable surface.





Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 13 / 31

- S is an oriented surface with unit normal vector  $\vec{n}$ ,
- a fluid with density  $\rho(x, y, z)$  and velocity field  $\vec{v}(x, y, z)$  flowing through S.
- **Problem:** Evaluate the mass of fluid per unit time crossing *S*.



- S is an oriented surface with unit normal vector  $\vec{n}$ ,
- a fluid with density  $\rho(x, y, z)$  and velocity field  $\vec{v}(x, y, z)$  flowing through S.
- **Problem:** Evaluate the mass of fluid per unit time crossing *S*.



The mass of fluid per unit time crossing  $S_{ij}$  is approximated by

$$(\rho \vec{v} \cdot \vec{n})\Delta(S_{ij}) = (\vec{F} \cdot \vec{n})\Delta(S_{ij}).$$

- S is an oriented surface with unit normal vector  $\vec{n}$ ,
- a fluid with density  $\rho(x, y, z)$  and velocity field  $\vec{v}(x, y, z)$  flowing through S.
- **Problem:** Evaluate the mass of fluid per unit time crossing *S*.



The mass of fluid per unit time crossing  $S_{ij}$  is approximated by

$$(\rho \vec{v} \cdot \vec{n})\Delta(S_{ij}) = (\vec{F} \cdot \vec{n})\Delta(S_{ij}).$$

$$\iint\limits_{S} \vec{F} \cdot \vec{n} dS = \iint\limits_{S} \vec{F}(x, y, z) \cdot \vec{n}(x, y, z) dS.$$

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 14 / 31

#### **Definition**

If  $\vec{F} = P(x, y, z)\vec{i} + Q(x, y, z)\vec{j} + R(x, y, z)\vec{k}$  is a continuous vector field defined on an oriented surface S with unit normal vector  $\vec{n}$ , then the surface integral of  $\vec{F}$  over S is

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy := \iint\limits_{S} \vec{F} \cdot \vec{n} dS.$$

This integral is also called the flux of  $\vec{F}$  across S.

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 15 / 31

#### Surface Integrals of scalar Fields

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x(u,v),y(u,v),z(u,v))|r_{u}\times r_{v}|dudv.$$

Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 16 / 31

#### Surface Integrals of scalar Fields

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x(u,v),y(u,v),z(u,v))|r_{u}\times r_{v}|dudv.$$

Let S be given by r(u, v), then a normal vector is  $\vec{N} = r_u \times r_v = (A, B, C)$ .

Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 16 / 31

#### Surface Integrals of scalar Fields

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x(u,v),y(u,v),z(u,v))|r_{u}\times r_{v}|dudv.$$

Let S be given by r(u, v), then a normal vector is  $\vec{N} = r_u \times r_v = (A, B, C)$ .

• If  $N \uparrow \uparrow n$ , then  $n = \left(\frac{A}{|r_u \times r_v|}, \frac{B}{|r_u \times r_v|}, \frac{C}{|r_u \times r_v|}\right)$  Therefore,

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = \iint\limits_{D} (AP + BQ + CR) du dv.$$

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 16 / 31

#### Surface Integrals of scalar Fields

$$\iint\limits_{S} f(x,y,z)dS = \iint\limits_{D} f(x(u,v),y(u,v),z(u,v))|r_{u}\times r_{v}|dudv.$$

Let S be given by r(u, v), then a normal vector is  $\vec{N} = r_u \times r_v = (A, B, C)$ .

• If  $N \uparrow \uparrow n$ , then  $n = \left(\frac{A}{|r_u \times r_v|}, \frac{B}{|r_u \times r_v|}, \frac{C}{|r_u \times r_v|}\right)$  Therefore,

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = \iint\limits_{D} (AP + BQ + CR) du dv.$$

• If  $N \uparrow \downarrow n$ , then

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = -\iint\limits_{D} (AP + BQ + CR) du dv.$$

Dr. Xuan Dieu Bui Surface Integrals I ♡ HUST 16 / 31

If 
$$P = Q = 0$$
 and 
$$\begin{cases} S : z = z(x, y), \\ (x, y) \in D \end{cases}$$

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 17 / 31

If 
$$P = Q = 0$$
 and  $\begin{cases} S : z = z(x, y), \\ (x, y) \in D \end{cases} \Rightarrow \vec{N} = (-z'_x, -z'_y, 1).$ 

#### **Formulations**

- If  $(\widehat{\overrightarrow{n}}, Oz) < \frac{\pi}{2}$ , then  $\iint\limits_{S} Rdxdy = \iint\limits_{D} R(x, y, z(x, y)) dxdy$ .
- If  $(\widehat{n}, Oz) > \frac{\pi}{2}$ , then  $\iint_S Rdxdy = -\iint_D R(x, y, z(x, y)) dxdy$ .

#### Remark:

$$I = \iint_{S} Pdydz + \iint_{S} Qdzdx + \iint_{S} Rdxdy.$$

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 17 / 31

### Example

Evaluate  $\iint_S z(x^2 + y^2) dxdy$ , where S is a half of the sphere  $x^2 + y^2 + z^2 = 1, z \ge 0$ , with the outer-pointing normal vector.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 18 / 31

### Example

Evaluate  $\iint\limits_S y dx dz + z^2 dx dy$ , where S is the surface  $x^2 + \frac{y^2}{4} + z^2 = 1, x \geqslant 0, y \geqslant 0, z \geqslant 0$  is oriented downward.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 19 / 31

### Example

Evaluate  $\iint x^2y^2z dxdy$ , where S is the surface  $x^2+y^2+z^2=R^2, z\leq 0$ and is oriented upward.



Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 20 / 31

### Ostrogradsky-Gauss Theorem (The Divergence Theorem)

$$\iint\limits_{S} Pdydz + Qdzdx + Rdxdy = \iiint\limits_{V} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dxdydz.$$

Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 21 / 31

### Ostrogradsky-Gauss Theorem (The Divergence Theorem)

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = \iiint\limits_{V} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz.$$

#### Example

Evaluate the following integrals, where S is the surface  $x^2 + y^2 + z^2 = a^2$  with outward orientation.

a. 
$$\iint_{\mathcal{E}} x dy dz + y dz dx + z dx dy$$

b.  $\iint_{S} x^3 dy dz + y^3 dz dx + z^3 dx dy.$ 

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 21 / 31

### Example

Evaluate the following integrals, where S is the surface  $x^2 + y^2 + z^2 = a^2$  with outward orientation.

a. 
$$\iint_{S} x dy dz + y dz dx + z dx dy$$

b. 
$$\iint_{S} x^3 dy dz + y^3 dz dx + z^3 dx dy.$$



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 22 / 31

• If S is inward oriented, then

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = - \iiint\limits_{V} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

• If S is not closed, then we use the "close off" technique.

Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 23 / 31

• If S is inward oriented, then

$$\iint\limits_{S} P dy dz + Q dz dx + R dx dy = - \iiint\limits_{V} \left( \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz$$

If S is not closed, then we use the "close off" technique.

#### Example

Evaluate  $\iint_S ydxdz + z^2dxdy$ , where  $S: x^2 + \frac{y^2}{4} + z^2 = 1, x, y, z \ge 0$ , is oriented downward.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 23 / 31

### Example

Evaluate  $\iint_S x^2 y^2 z dx dy$ , where S is the surface  $x^2 + y^2 + z^2 = R^2, z \le 0$  and is oriented upward.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 24 / 31

### Example

Evaluate  $\iint\limits_S y^2zdxdy+xzdydz+x^2ydxdz$ , where S is the boundary of the domain  $x\geq 0, y\geq 0, x^2+y^2\leq 1, 0\leq z\leq x^2+y^2$  which is outward oriented.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 25 / 31

### Example

Evaluate  $\iint\limits_S x dy dz + y dz dx + z dx dy$ , where S the boundary of the domain  $(z-1)^2 \leqslant x^2 + y^2, a \leqslant z \leqslant 1, a > 0$  which is outward oriented.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 26 / 31

#### Stokes' Formula

$$\int_{C} Pdx + Qdy + Rdz$$

$$= \iint_{C} \left( \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dydz + \left( \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dzdx + \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy,$$

where the orientation of S induces the positive orientation of the boundary curve C shown in the figure.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 27 / 31

### Stokes' Formula

### Example

Evaluate  $\int_{L} \vec{F} \cdot d\vec{r} = \int_{L} Pdx + Qdy + Rdz$ , where

$$\vec{F}(x, y, z) = (x + y^2)\mathbf{i} + (y + z^2)\mathbf{j} + (z + x^2)\mathbf{k},$$

*L* is the triangle ABC, A(1,0,0), B(0,1,0), C(0,0,1) oriented counterclockwise as viewed from above.



Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 28 / 31

### Stokes' Theorem

#### Example

Use Stokes' Theorem to evaluate  $\int_C F \cdot dr = \int_C Pdx + Qdy + Rdz$ . In each case C is oriented counterclockwise as viewed from above.

- **1**  $F(x,y,z) = (x+y^2)\mathbf{i} + (y+z^2)\mathbf{j} + (z+x^2)\mathbf{k}$ , C is the triangle with vertices (1,0,0), (0,1,0) and (0,0,1).
- ②  $F(x, y, z) = \mathbf{i} + (x + yz)\mathbf{j} + (xy \sqrt{z})\mathbf{k}$ , C is the boundary of the part of the plane 3x + 2y + z = 1 in the first octant.
- **3**  $F(x, y, z) = yz\mathbf{i} + 2xz\mathbf{j} + e^{xy}\mathbf{k}$ , C is the circle  $x^2 + y^2 = 16$ , z = 5.
- $F(x, y, z) = xy\mathbf{i} + 2z\mathbf{j} + 3y\mathbf{k}$ , C is the curve of intersection of the plane x + z = 5 and the cylinder  $x^2 + y^2 = 9$ .

Dr. Xuan Dieu Bui Surface Integrals I ♡ HUST 29 / 31

#### Relation between Surface Integrals of scalar and vector Fields

$$\iint_{S} [P(x, y, z) \cos \alpha + Q(x, y, z) \cos \beta + R(x, y, z) \cos \gamma] dS$$

$$= \iint_{S} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy,$$

where  $n = (\cos \alpha, \cos \beta, \cos \gamma)$  is the unit normal vector of S.

Dr. Xuan Dieu Bui Surface Integrals I  $\heartsuit$  HUST 30 / 31

## Relation between two kind of Surface Integrals

### Example

Let S be the part of the sphere  $x^2 + y^2 + z^2 = 1$  that contained in the cylinder  $x^2 + x + z^2 = 0$ ,  $y \ge 0$ . S is outward oriented. Prove that

$$\iint\limits_{S}(x-y)dxdy+(y-z)dydz+(z-x)dxdz=0.$$



Dr. Xuan Dieu Bui Surface Integrals I ♥ HUST 31 / 31