

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202 **MCT271**

DESCRIPTION

The MCT2XXX series optoisolators consist of a gallium arsenide infrared emitting diode driving a silicon phototransistor in a 6-pin dual in-line package.

FEATURES

- UL recognized (File # E90700)
- VDE recognized (File # 94766)
 -Add option V for white package (e.g., MCT2V-M)
 - -Add option 300 for black package (e.g., MCT2.300)
- MCT2 and MCT2E are also available in white package by specifying -M suffix, eg. MCT2-M

PIN 1. ANODE 2. CATHODE 3. NO CONNECTION 4. EMITTER 5. COLLECTOR

SCHEMATIC

APPLICATIONS

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs

MCT2 MCT2E MCT2201

MCT210 MCT2202

Parameter	Symbol	Device	Value	Units	
TOTAL DEVICE	_				
Storage Temperature	T _{STG}	ALL	-55 to +150	°C	
Operating Temperature	T _{OPR}	ALL	-55 to +100	°C	
Lead Solder Temperature	T _{SOL}	ALL	260 for 10 sec	°C	
Total Davisa Bayyar Dissipation @ T 05°C		-M	250	\^/	
Total Device Power Dissipation @ T _A = 25°C	Б	Non-M	260	mW	
Devicte chave 05°C	P_{D}	-M	2.94	\A//0C	
Derate above 25°C		Non-M	3.3	mW/°C	
EMITTER	I _F	-M	60	Λ	
DC/Average Forward Input Current		Non-M	100	mA	
Reverse Input Voltage	V _R	ALL	3	V	
Forward Current - Peak (300µs, 2% Duty Cycle)	I _F (pk)	ALL	3	Α	
LED Dower Discipation @ T 05°C	C	-M	120	mW	
LED Power Dissipation @ T _A = 25°C	P _D	Non-M	150		
Derate above 25°C		-M	1.41	m\\\/°C	
Derate above 25 C		Non-M	2.0	mW/°C	
DETECTOR	1	ALL	50	mA	
Collector Current	I _C	ALL	50	IIIA	
Collector-Emitter Voltage	V_{CEO}	ALL	30	V	
Detector Power Dissipation @ T _A = 25°C		ALL	150	mW	
Derate above 25°C	P_{D}	-M	1.76	mW/°C	
Derate above 25 C		Non-M	2.0	mvv/°C	

MCT2 MCT2E MCT2201

MCT210 MCT2202

MCT271

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified.)

INDIVIDUAL COMPONE	NT CHARACTERISTI	CS					
Parameter	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
EMITTER			MCT2/-M				
			MCT2E/-M				
	(I _F = 20 mA)		MCT271			1.50	٧
Input Forward Voltage		V _F	MCT2200		1.25		
			MCT2201				
			MCT2202				
	$(T_A = 0.70^{\circ}C, I_F = 40 \text{ mA})$		MCT210		1.33		
			MCT2/-M				
			MCT2E/-M				
		I _R	MCT271		0.001	10	μΑ
Reverse Leakage Current	(V _R = 3.0 V)		MCT2200				
			MCT2201				
			MCT2202				
	$(T_A = 0.70^{\circ}C, V_R = 6.0 V)$		MCT210				
DETECTOR	$(I_C = 1.0 \text{ mA}, I_F = 0)$	DV	ALL	20	100		V
Collector-Emitter Breakdown Vol	tage $(T_A = 0.70^{\circ}C)$	BV _{CEO}	MCT210	30	100		V
			MCT2/-M				
			MCT2E/-M				
		BV _{CBO}	MCT271	70	120		
Collector-Base Breakdown Voltag	ge $(I_C = 10 \mu A, I_F = 0)$		MCT2200				V
			MCT2201				
			MCT2202				
	$(T_A = 0-70^{\circ}C)$		MCT210	30			
			MCT2/-M		10		
			MCT2E/-M				
		BV _{ECO}	MCT271	7			
Emitter-Collector Breakdown Vol	tage $(I_E = 100 \mu A, I_F = 0)$		MCT2200	7			V
			MCT2201				
			MCT2202				
$T_A = 0$			MCT210	6	10		
Collector-Emitter Dark Current	$(V_{CE} = 10 \text{ V}, I_F = 0)$		٨١١		1	50	nA
Conector-Emitter Dark Current	$(V_{CE} = 5 \text{ V}, T_A = 0-70^{\circ}\text{C})$	I _{CEO}	ALL			30	μΑ
Collector-Base Dark Current	$(V_{CB} = 10 \text{ V}, I_F = 0)$	I _{CBO}	ALL			20	nA
Capacitance	$(V_{CE} = 0 V, f = 1 MHz)$	C _{CE}	ALL		8		pF

^{**} Typical values at $T_A = 25^{\circ}C$

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202

DC Characteristic	Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
	(T _A = 0-70°C)	CTR	MCT210	150			%
	(I _F = 10 mA, V _{CE} = 5 V)		MCT2200	20			
			MCT2201	100			
			MCT2202	63		125	
Output Callagtar			MCT2				
Output Collector Current			MCT2-M	20			
Current	$(I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V})$		MCT2E	20			
			MCT2E-M				-
			MCT271	45		90	
	$(I_F = 3.2 \text{ mA to } 32 \text{ mA}, V_{CE} = 0.4 \text{ V})$ $(T_A = 0.70^{\circ}\text{C})$		MCT210	50			
	(1A 3.13.5)	V _{CE (SAT)}	MCT2				
	$(I_C = 2 \text{ mA}, I_F = 16 \text{ mA})$		MCT2-M				
			MCT2E				
			MCT2E-M				
Collector-Emitter			MCT271			0.4	V
Saturation Voltage	$(I_C = 16 \text{ mA}, I_F = 32 \text{ mA}, T_A = 0-70^{\circ}\text{C})$		MCT210				
	$(I_C = 2.5 \text{ mA}, I_F = 10 \text{ mA})$		MCT2200				
			MCT2201				
			MCT2202				
AC Characteristic	$(I_F = 15 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 2 \text{ k}\Omega)$		MCT2		1.1		
Saturated Turn-on Time	(R _B = Open) (Fig. 20)		MCT2E		1.1		
from 5 V to 0.8 V	$(I_F = 20 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 2 \text{ k}\Omega)$	t _{on}	MCT2		1.3		
	$(R_B = 100 \text{ k}\Omega) \text{ (Fig. 20)}$		MCT2E		1.3		
	$(I_F = 15 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 2 \text{ k}\Omega)$		MCT2		50		
Saturated Turn-off Time from SAT to 2.0 V	(R _B = Open) (Fig. 20)	t _{off}	MCT2E		50		
	$(I_F = 20 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 2 \text{ k}\Omega)$		MCT2		20		
	$(R_B = 100 \text{ k}\Omega) \text{ (Fig. 20)}$		MCT2E		20		
Turn on Time	(I = 10 m) V = 10 V B = 100 O)		MCT2-M				μs
Turn-on Time	$(I_F = 10 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100 \Omega)$	t _{on}	MCT2E-M		2		
Turn-off Time	$(I_F = 10 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100 \Omega)$	t _{off}	MCT2-M		2		
			MCT2E-M		2		
Rise Time	$(I_F = 10 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100 \Omega)$	t _r	MCT2-M MCT2E-M		2		
Fall Time	$(I_F = 10 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100 \Omega)$	t _f	MCT2-M MCT2E-M		1.5		

^{**} Typical values at $T_A = 25$ °C

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202

AC Characteristic	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
Saturated turn-on time		t _{on}			1.0		
Saturated turn-off time	$(I_F = 16 \text{ mA}, R_L = 1.9 \text{k}\Omega, V_{CC} = 5 \text{ V})$		1				
(Approximates a typical	(Fig. 20)	t _{off}			48		
TTL interface)			 MCT271				
Saturated turn-on time		t _{on}	1 MIC12/1 F		1.0		
Saturated turn-off time	$(I_F = 16 \text{ mA}, R_L = 4.7 \text{k}\Omega, V_{CC} = 5 \text{ V})$		1 [
(Approximates a typical	(Fig. 20)	t _{off}			98		
low power TTL interface)							
Saturated rise time	$(I_F = 16 \text{ mA}, R_L = 560\Omega, V_{CC} = 5 \text{ V})$	t _r	t _f		1.0		
Saturated fall time	(Fig. 20, 21)	t _f			11		
Saturated propagation		_			1.0		
delay - high to low	(I 16 m A D 0.7kO) (Fig. 20.21)	I _{PD (HL)}	MICIZIO		1.0		
Saturated propagation	$(I_F = 16 \text{ mA}, R_L = 2.7 \text{k}\Omega) \text{ (Fig. 20, 21)}$	T _{PD (LH)}			50		μs
delay - low to high					50		
Non-saturated		T	MCT2200		2	10	
turn on time	$(I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100\Omega$ (Fig. 20)	T _{ON}	MCT2200 MCT2201		-	10	
Non-saturated		т	MCT2201		2	10	
turn off time		T _{OFF}	IVIC 1 2202			10	
Non-saturated rise time	$(I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100\Omega)$	t _r	MCT210		2		
Non-saturated fall time	(Fig. 20)	t _f	1 101210		2		
Non-saturated		+			2	7	
turn-on time	$(I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}, R_L = 100\Omega)$	t _{on}			4	/	
Non-saturated	(Fig. 20)		MCT271 -			7	
turn-off time		t _{off}			2	7	

^{**} Typical values at $T_A = 25^{\circ}C$

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202 **MCT271**

TYPICAL PERFORMANCE CURVES

Fig. 1 LED Forward Voltage vs. Forward Current (Black Package)

, ___ (...,

Fig. 2 LED Forward Voltage vs. Forward Current (White Package)

Fig.3 Normalized CTR vs. Forward Current (Black Package)

Fig. 5 Normalized CTR vs. Ambient Temperature (Black Package)

Fig.4 Normalized CTR vs. Forward Current

Fig. 6 Normalized CTR vs. Ambient Temperature

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202

Fig. 11 Collector-Emitter Saturation Voltage vs Collector Current (Black Package)

Fig. 12 Collector-Emitter Saturation Voltage vs Collector Current (White Package)

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202 **MCT271**

Fig. 13 Switching Speed vs. Load Resistor (Black Package)

Fig. 14 Switching Speed vs. Load Resistor (White Package)

Fig. 16 Normalized t_{on} vs. R_{BE} (White Package)

Fig. 17 Normalized toff vs. R_{BE}

Fig. 18 Normalized t_{off} vs. R_{BE} (White Package)

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202

MCT271

Fig. 19 Dark Current vs. Ambient Temperature

Figure 20. Switching Time Test Circuit and Waveforms

Figure 21. Switching Time Waveforms (MCT210)

MCT2 MCT2E MCT2201

MCT210 MCT2202 **MCT271**

Black Package (No -M Suffix)

NOTEAll dimensions are in inches (millimeters)

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202 **MCT271**

White Package (-M Suffix)

Package Dimensions (0.4"Lead Spacing) 0.350 (8.89) 0.320 (8.13) PIN 1 ID. 0.260 (6.60) 0.240 (6.10) 0.200 (5.08) 0.115 (2.93) 0.000 (2.54) 0.015 (0.38) 0.000 (0.50) 0.016 (0.41) 0.020 (0.50) 0.010 (2.54) 0.010 (2.54) 0.020 (0.50) 0.010 (0.50) 0.000 (0.50) 0.000 (0.10) 0.425 (10.80) 0.400 (10.16)

NOTE

All dimensions are in inches (millimeters)

MCT2	MCT2E	MCT210	MCT271
MCT2200	MCT2201	MCT2202	

ORDERING INFORMATION

Black Package (No Suffix)	White Package (-m Suffix)	Description
	Order Entry Idenifier	
.S	S	Surface Mount Lead Bend
.SD	SR2	Surface Mount; Tape and reel
.W	Т	0.4" Lead Spacing
.300	V	VDE 0884
.300W	TV	VDE 0884, 0.4" Lead Spacing
.3S	SV	VDE 0884, Surface Mount
.3SD	SR2V	VDE 0884, Surface Mount, Tape & Reel

MCT2 MCT2200 MCT2E MCT2201 MCT210 MCT2202 **MCT271**

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.