Lab 2: Astronomical Spectroscopy

JESSICA BIRKY, JULIAN BEAZ-GONZALEZ, RUSSELL VAN-LINGE

ABSTRACT

In this lab...

1. INTRODUCTION

Astronomical spectroscopy, components of spectrographs, types of spectrographs

2. OBSERVATIONS

Describe ocean lab and KAST spectrographs specifications and diagrams

3. DATA REDUCTION & METHODS

Centroid routine, wavelength calibration, centroid error and calibration error Bias subtraction and normalization

4. DATA ANALYSIS & MODELING

Show centroids, wavelength calibration plots, application of wavelength solution, plots of astronomical spectra

5. DISCUSSION

What kind of astronomical sources

6. CONCLUSION

7. AUTHOR CONTRIBUTIONS

Figure 1. Centroid finding routine.

Corresponding author: Jessica Birky (A13002163)

jbirky@ucsd.edu

2 J. BIRKY

Figure 2. Wavelength calibration for the Ocean Lab spectrometer.

Figure 3. Three spectra taken on the Ocean Lab Spectrometer: the Sun, a fluorescent light bulb, and an incandescent lamp. Wavelength scale determined by calibration with emission peaks in Helium and Neon lamps.

8. APPENDIX

8.1. Centroid Identification Routine

```
def emission(data, **kwargs):
 1
 2
        thres = kwargs.get('thres', 1)
 3
 4
        x, y = np.array(data[0]), np.array(data[1])
 5
        Npix = len(x)
 6
 7
        med = np.median(y)
 8
        std = np.std(y)
 9
        cut = med + thres*std
10
11
        count_cut = []
        for i in range(Npix):
12
13
            if y[i] >= cut:
14
                count_cut.append(i)
15
16
        emission = []
17
        arr = []
```

```
18
        for i in range(len(count_cut)-1):
19
            if (count_cut[i+1] - count_cut[i]) == 1:
20
                arr.append(count_cut[i])
21
            else:
22
                arr.append(count_cut[i])
23
                if len(arr) > 5:
24
                    emission.append(np.array(arr))
25
                arr = []
26
27
   return np.array(emission)
28
29
   def centroid(data, feat_idx, **kwargs):
30
31
32
        x, y = np.array(data[0]), np.array(data[1])
33
        Npix = len(x)
34
35
       \max idx = []
36
        for feat in feat_idx:
            for idx in feat:
37
38
                if y[idx] == max(y[feat]):
39
                    max_idx.append(idx)
40
41
        return np.array(max_idx)
42
43 centroid(data, emiss)
```

8.2. Centroid Error

```
#Produces float values for the centroids, calculating their error and width
   centroids, errors, widths, intensities = [], [], [], []
   for i in np.arange(len(cent)):
       inte = []
 4
5
       for a in emiss[i]:
 6
           inte.append(data[1][a])
 7
       centr_f = sum(emiss[i]*inte)/sum(inte)
8
       err_f = sum(inte*((emiss[i]-centr_f)**2))/(sum(inte))**2
9
       width_f = sum(inte*((emiss[i]-centr_f)**2))/sum(inte)
10
11
       centroids.append(centr_f)
12
       errors.append(err_f)
13
       widths.append(width_f)
       intensities.append(max(data[1][emiss[i]]))
14
```

8.3. Wavelength Calibration