Going Deeper with GoogLeNet and CaffeJS

"Deep Learning in the Browser"

Christoph Körner

About me

- Visual Computing at Vienna University of Technology
- Data Scientist at T-Mobile Austria
- Author of <u>Data Visualizations with D3 and AngularJS</u>
- Author of Learning Responsive Data Visualization
- Contributor at n3-line-chart
- Organizer of <u>Vienna Kaggle Meetup</u>
- LinkedIn: <u>at.linkedin.com/in/christophkoerner</u>
- Twitter: <u>@ChrisiKrnr</u>
- Google+: +ChrisiHififm
- Github: github.com/chaosmail

Agenda

- Deep Learning Refresher
- GoogLeNet
- CaffeJS Deep Learning in the browser
- Whats next

Deep Learning Refresher

Ingredients for Deep Classif.

- Convolutions + Nonlinearities
- Pooling
- Fully Connected layers
- Softmax
- Many layers and parameters

Convolutions

Source: CS231n Github

Pooling

Source: <u>CS231n Github</u>

Parameters in Dense Layers

Parameters in Convolutions

Deep Learning Architectures

Top-1 accuracy

Top-1 accuracy density

AlexNet: 62,378,344 params (250MB)

VGG (~400MB) and ResNet (~230MB)

GoogLeNet: 6,998,552 params (28MB)

GoogLeNet "moving from fully connected to sparsely connected architectures"

GoogLeNet

- ~10 times less parameter than AlexNet
- ~15% higher classification accuracy
- ~30MB weights in memory
- ~1.5 billion MAC operations (FP)

Inception Module (Network in a Network)

Source: Princeton 2015

Ingredients for Inception Module

- Hebbian Principle
- Bottleneck Convolutions

Ingredient 1: Hebbian Principle

"Cells that fire together, wire together"

Source: Princeton 2015

A Naive Approach (does not scale)

Source: Princeton 2015

Ingredient 2: Bottleneck Convolutions

- Input features are correlated
- Remove redundancy by Aggregation
- Compute Convolutions
- Expand features afterwards (if needed)

Inception Module

Source: Princeton 2015

Extensions to v1

- Batch Norm 2015
- Inception v3 2105

Source: Eugenio Culurciello's blog

CaffeJS - DL in the Browser

Source: Caffe S

CaffeJS

- Started as Proof of Concept
- Run trained DL models in the browser
 - → especially GoogLeNet

Based on <u>ConvNetJS</u> by Andrej Karpathy

Why CaffeJS

- Client-side model evaluation
 - Fraud detection
 - Image upscaling
 - Sentiment detection
 - Gender + age detection (webcam)
 - Image filters

Why CaffeJS

- Teaching & Learning
 - No requirements (but a browser)
 - Understand & analyze Deep Nets
 - Debugging of Deep Nets (FF and BP)
 - Visualize the filters, layers, activations, etc.
 - Feed webcam stream into Deep Nets

Using pre-trained Models

- Offline training (many GPUs, long time)
- Export weights
- Perform only forward pass (no BP needed)

CaffeJS - Caffe Models in the Browser

- Work in progress...
- Prases *.prototxt models
- Transforms *.caffemodel weights into bin files
 (one file per layer) Thanks to #1669 in Keras
- Updates weights in ConvNetJS models
- Forward and backward pass

CaffeJS vs. ConvNetJS

- Graph structure for layers + layer iterator
- Gradient correction for wide models
- Fixed Local Response Normalization
- Abstractions for visualizations
- New Layers (Concat, AVG Pool, etc.)

Demos with CaffeJS

- Visualize models and structure
- Demo using Webcam and DNN
- DeepDream ported to JS

Problems of CaffeJS

- Forward pass still slow
 - 6s for GoogLeNet
 - Most time spend in early convolutions
- Too much overhead for weights (fc6 and fc7)
- Memory issues (above 200MB)

Whats next

- Fully Convolutional Nets (FCN)
- WebCL: Heterogeneous parallel computing
- WebAssembly: Compilation to the web
- <u>Deep Compression</u>: AlexNet on 7MB
- More Layers!

Some more useful resources

- <u>Tensorflow Playground</u>: Neural Nets
- CS231n: Lecture, Github, and videos
- CS231n: Caffe Tutorial
- <u>Udacity Tensorflow</u>
- DeepDream

Thank you.