Kapitel 3 – Kombinatorische Logik

- 1. Kombinatorische Schaltkreise
- 2. Boolesche Algebren
- **3. Boolesche Ausdrücke, Normalformen, zweistufige Synthese**
 - 3.1 Boolesche Ausdrücke, Disjunktive Normalform
 - 3.2 zweistufige Logikminimierung
- 4. Berechnung eines Minimalpolynoms

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Armin Biere

Institut für Informatik Sommersemester 2024

Kombinatorische Schaltkreise – zweistufig

Ziel:

Wir werden zeigen, dass sich jede Boolesche Funktion als ein Polynom, d.h. als eine Disjunktion (ODER-Verknüpfung) von Monomen, die ihrerseits Konjunktionen (UND-Verknüpfungen) von Eingangsvariablen und negierten Eingangsvariablen sind, darstellen lässt.

- Wir werden für solche Darstellungen Kostenkriterien aufstellen und diese optimieren.
- Monome und Polynome sind spezielle Boolesche Ausdrücke.

Das Problem der zweistufigen Logikminimierung

- **Gegeben:** Eine Boolesche Funktion $f = (f_1, ..., f_m)$ in n Variablen und m Ausgängen in Form einer Tabelle der Dimension $(n+m) \cdot 2^n$ oder einer Menge von m Polynomen $\{q_1, ..., q_m\}$ mit $f_i = q_i$.
- **Gesucht:** m Polynome $p_1, ..., p_m$, so dass p_i für alle i der Funktion f_i entspricht und die Kosten $cost(p_1, ..., p_m)$ minimal sind.
- Ab sofort werden nur noch Funktionen mit einem Ausgang betrachtet.

Veranschaulichung von $\{0,1\}^n$

Veranschaulichung von $\{0,1\}^4$ durch Karnaugh-Veitch

Funktion wird als Tabelle dargestellt.

Gray-Code für die Einträge: nur ein Bit Unterscheidung von einem Wert zum nächster.

	00	01	11	10
00				
01				
11				
10				

4 Variablen

Eigentlich Torus (wikipedia bild)

0000	0100	1100	1000 °
0001	0101	1101	1001
0011	0111	1111	1011
0010	0110	1110	1010

		00	01	11	10
<i>x</i> ₁ <i>x</i> ₂	00	1	1	0	0
	01	0	0	0	0
	11	1	1	1	1
	10	0	1	0	0

		00	01	11	10
<i>x</i> ₁ <i>x</i> ₂	00	1	1	0	0
	01	0	0	0	0
	11	1	1	1	1
	10	0	1	0	0

Bedeckung = $2^k \times 2^\ell$ Viereck, was maximal x_3x_4

1001 nicht maximal!

7/18

Also:
$$f = x_1 x_2 + x_1' x_2' x_3' + x_2 x_3' x_4$$

Veranschaulichung durch Würfel

Jede Boolesche Funktion f in n Variablen und einem Ausgang kann über einen n-dimensionalen Würfel durch Markierung der ON(f)-Menge spezifiziert werden.

■ Beispiel:

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1' x_2' x_3' + x_1 x_2' x_3' x_4$$

Monome und Polynome als Teilwürfel

- Monome der Länge k entsprechen (n k)-dimensionalen Teilwürfeln!
- Ein Polynom entspricht einer Vereinigung von Teilwürfeln.

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_1' x_2' x_3'$$

Zweistufige Logikminimierung als Überdeckungsproblem auf dem Würfel

Gegeben: Boolesche Funktion f in n Variablen und einem Ausgang, in Form eines markierten n-dimensionalen Würfels.

■ **Gesucht**: Eine minimale Überdeckung der markierten Knoten durch maximale Teilwürfel im *n*-dimensionalen

Würfel.

$$X_1X_2 + X_1'X_2'X_3' + X_2'X_3'X_4$$

Minimale Kosten

Gegeben ein PLA mit m>1 Ausgängen und jede Funktion ist durch ein Minimalpolynom, also eine Minimallösung, die die Funktion überdeckt wie auf der vorherigen Folie, realisiert. Sind die gesamten Kosten des PLA folglich auch minimal?

- a. Ja.
- b. Nein.

Implikanten und Primimplikanten

Definition

Eine Boolesche Funktion $f \in \mathbb{B}_n$ ist kleiner gleich einer anderen Booleschen Funktion $g \in \mathbb{B}_n$ ($f \leq g$), wenn $\forall \alpha \in \mathbb{B}^n : f(\alpha) \leq g(\alpha)$. (Das heißt, wenn f an einer Stelle 1 ist, dann auch g.)

Definition

Sei f eine Boolesche Funktion mit einem Ausgang. Ein Implikant von f ist ein Monom q mit $q \leq f$. Ein Primimplikant von f ist ein maximaler Implikant q von f, das heißt es gibt keinen Implikanten s ($s \neq q$) von f mit $q \leq s$.

Implikanten und Primimplikanten können durch *n*-dimensionale Würfel veranschaulicht werden.

Veranschaulichung durch Würfel

- Ein Implikant von f ist ein Teilwürfel, der nur markierte Knoten enthält.
- Ein Primimplikant von f ist ein maximaler Teilwürfel mit dieser Eigenschaft.

Illustration für konkrete Funktion

Implikanten

- alle markierten Knoten
- alle Kanten, deren Ecken alle markiert sind
- alle Flächen, deren Ecken alle markiert sind
- alle 3-dimensionalen
 Würfel, deren Ecken alle markiert sind

Allgemein

 Die Implikanten sind die Teilwürfel, deren Ecken alle markiert sind.

Illustration für konkrete Funktion

Implikanten

- alle markierten Knoten
- alle Kanten, deren Ecken alle markiert sind
- alle Flächen, deren Ecken alle markiert sind
- alle 3-dimensionalen
 Würfel, deren Ecken alle markiert sind

Allgemein

 Die Implikanten sind die Teilwürfel, deren Ecken alle markiert sind.

Es gibt 3 Primimplikanten, der durch unseren Würfel definierten Funktion:

Es gibt 3 Primimplikanten, der durch unseren Würfel definierten Funktion:

Es gibt 3 Primimplikanten, der durch unseren Würfel definierten Funktion:

■ *X*₂

 $\blacksquare \ x_1'x_3'$

Es gibt 3 Primimplikanten, der durch unseren Würfel definierten Funktion:

Es gibt 3 Primimplikanten, der durch unseren Würfel definierten Funktion:

- X_2

Es gibt 3 Primimplikanten, der durch unseren Würfel definierten Funktion:

$$X_3'x_4$$

Polynome und Implikanten einer Funktion f

Lemma

Die Monome eines Polynoms p von f sind alle Implikanten von f.

Beweis: (durch Widerspruch)

- Annahme:
 - Es gibt ein Polynom p von f, das ein Monom m_j enthält, welches nicht Implikant von f ist, d.h. es gilt nicht: $\psi(m_j) \le f$
- Das heißt es gibt Belegung $(\alpha_1, ..., \alpha_n)$ der Variablen $(x_1, ..., x_n)$ mit

■
$$f(\alpha_1,...,\alpha_n) = 0$$

■ $\psi(m_i)(\alpha_1,...,\alpha_n) = 1$, also auch $\psi(p)(\alpha_1,...,\alpha_n) = 1$

Demnach ist $\psi(p) \neq f$, also p kein Polynom von f.

⇒ Widerspruch!