Second homework assignment

PhD in Business Economics

Course: Advanced Bayesian Econometrics

Professor: Hedibert Freitas Lopes

Due date: 12h, February 11th, 2021.

Use, preferably, Rmarkdown (via RStudio) to produce your report in PDF or HTML.

Fitting Gaussian and Student's t ARMA(1,1) model

Let us assume that some observed time series data $\{y_1, \ldots, y_n\}$ follows an ARMA(1,1) model

$$y_t = \phi y_{t-1} + \varepsilon_t + \gamma \varepsilon_{t-1}$$

where $\varepsilon_1, \ldots, \varepsilon_n$ are i.i.d. either $\mathcal{M}_0 : N(0, \sigma^2)$ or $\mathcal{M}_1 : t_{\nu}(0, \tau^2)$, where $\tau^2 = (\nu - 2)/\nu\sigma^2$. We will keep ν fixed and known throughout. In addition, in order to simplify the homework, we will assume that $y_0 = \varepsilon_0 = 0$. Therefore, it is easy to see that $\{\varepsilon_1, \ldots, \varepsilon_n\}$ are deterministically obtained from $\theta = (\phi, \gamma, \sigma)$ and the data $y^n = \{y_1, \ldots, y_n\}$: $\varepsilon_1 = y_1$ and $\varepsilon_t = y_t - \phi y_{t-1} - \gamma \varepsilon_{t-1}$, for $t = 2, \ldots, n$.

Likelihood functions. To avoid overloading the notation, let us drop (ε_0, y_0) in what follows. The likelihood functions are, therefore,

$$\mathcal{L}(\theta|y^n, \mathcal{M}_0) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{\sum_{t=1}^n \varepsilon_t^2}{2\sigma^2}\right\}$$

$$\mathcal{L}(\theta|y^n, \mathcal{M}_1) = \left(\frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu\tau^2}}\right)^n \prod_{t=1}^n \left(1 + \frac{1}{\nu} \frac{\varepsilon_t^2}{\tau^2}\right)^{-\frac{\nu+1}{2}}.$$

Prior distribution. Let us assume that

$$p(\theta) = p(\phi, \gamma, \sigma^2) = p(\phi)p(\gamma)p(\sigma^2),$$

for

$$\phi \sim U(-1,1)$$

 $\gamma \sim U(-1,1)$
 $\sigma^2 \sim IG(5/2,5(1.4)/2).$

Hence, we are constraining our inference to the class of stationary and invertible ARMA(1,1) models. In additional, prior mean, mode and standard deviation for σ^2 is around 2.33, 1 and 3.3, respectively. Also, $Pr(\sigma^2 \in (0.33, 26.3)) \approx 99.9\%$, so $\sigma < 0.5$ or $\sigma > 5$ are essentially ruled out as well.

Simulating some data. You should simulate two datasets of size n=400, one with Gaussian errors and the other with Student's t errors where $\sigma=1, \ \nu=4, \ \phi=0.98$ and $\gamma=-0.64$. Feel free to use the following R script:

```
set.seed(12345)
n = 400
sig=1.0
nu=4
phi=0.98
theta=-0.64
tau = sqrt((nu-2)/nu)*sig
e.n = sig*rnorm(n)
e.t = tau*rt(n,df=nu)
y.n = rep(0,n)
y.t = rep(0,n)
y.n[1] = e.n[1]
y.t[1] = e.t[1]
for (t in 2:n){
  y.n[t] = phi*y.n[t-1]+e.n[t]+theta*e.n[t-1]
  y.t[t] = phi*y.t[t-1]+e.t[t]+theta*e.t[t-1]
par(mfrow=c(1,1))
ts.plot(cbind(y.n,y.t),col=1:2,main="ARMA(1,1) data")
legend("bottomleft",legend=c("Gaussian","Student's t"),col=1:2,lty=1,bty="n")
```

Questions: Answer the following questions for each one of the two datasets generated by the previous script.

1. Maximum likelihood inference.

What are the maximum likelihood estimates (MLE) of θ under both models? Use the R function nlm to minimize the negative of the likelihood functions. Are the results similar to the ones from the R function arima(y,order=c(1,0,1))?

2. Bayesian inference via Monte Carlo methods.

(a) Use sampling importance resampling (SIR) to sample from both posterior distributions of θ :

$$p(\theta|y^n, \mathcal{M}_0) \propto \mathcal{L}(\theta|y^n, \mathcal{M}_0)p(\theta)$$

 $p(\theta|y^n, \mathcal{M}_1) \propto \mathcal{L}(\theta|y^n, \mathcal{M}_1)p(\theta).$

Use these draws whenever necessary in the next several questions.

(b) Compute posterior means, medians and 95% credibility interval for ϕ , γ and σ^2 . Are posterior means (and medians) similar to their MLE counterparts?

- (c) Plot the contours of the posterior density. What are the posterior probabilities that $\phi > 0.9$ under both models?
- 3. Prior predictive, Bayes factor and posterior model probability.
 - (a) Compute both prior predictive $p(y^n|\mathcal{M}_0)$ and $p(y^n|\mathcal{M}_1)$. We can approximate the prior predictive densities, for j=0,1

$$p(y^n|\mathcal{M}_j) = \int_0^\infty \int_{-1}^1 \int_{-1}^1 \prod_{t=1}^n p(y_t|y_{t-1}, \theta, \mathcal{M}_j) d\phi d\gamma d\sigma^2,$$

via Monte Carlo by

$$\widehat{p}(y^{n}|\mathcal{M}_{j}) = \frac{1}{M} \sum_{i=1}^{M} p(y_{t}|y_{t-1}, \phi^{(i)}, \gamma^{(i)}, \sigma^{2(i)}\mathcal{M}_{j}),$$

where $\theta^{(1)}, \ldots, \theta^{(M)}$ are draws from the prior $p(\theta)$. Let us use M = 100,000.

(b) Compute a MC approximation to the Bayes factor:

$$B_{01} = \frac{p(y^n | \mathcal{M}_0)}{p(y^n | \mathcal{M}_1)}.$$

(c) Finally, the posterior model odds can be computed as

$$\frac{Pr(\mathcal{M}_0|y^n)}{Pr(\mathcal{M}_1|y^n)} = \frac{Pr(\mathcal{M}_0)}{Pr(\mathcal{M}_1)} \times B_{01},$$

where $Pr(\mathcal{M}_0)$ and $Pr(\mathcal{M}_1)$ are the prior probabilities assigned to models \mathcal{M}_0 and \mathcal{M}_1 , respectively. Assuming $Pr(\mathcal{M}_0) = Pr(\mathcal{M}_1)$, obtain a MC approximation to $Pr(\mathcal{M}_0|y^n)$, the posterior model probability of the Gaussian model.

Discuss your findings.