Número:	Nome:	
_	 •	

LEIC/LETI – 2014/15 - 2º Teste de Sistemas Operativos 9/Janeiro/2015

Identifique todas as folhas. Responda no enunciado no espaço fornecido. Justifique todas as respostas. Duração: 1h30m

Grupo I [6 v]

Considere um sistema de memória virtual paginada com 24 bits de endereçamento, em que cada página tem o tamanho de 4Kbytes (2^12 bytes). Considere que só possui 8Kbytes de RAM e que a TLB possui 1 única entrada (os dígitos de proteção são R para leitura, W para escrita e X para execução).

Considere o processo com a seguinte tabela de páginas:

Página	Presente	Protecção	Base
0	0	RW	
1	0	RW	
2	0	R	
3	0	R	
4	0	RW	-

1. [1.0 v] Qual o papel da TLB no processo de tradução de endereços.				

2. [3.0 v] Considere que o processo não possui páginas virtuais em memória, pode usar qualquer uma das tramas físicas (i.e. páginas físicas) e que a TLB está vazia. Considere que o processo realiza acessos à memória conforme discriminado, exatamente por esta ordem. Complete a seguinte tabela, considerando uma política de substituição FIFO. Note que os endereços virtuais assim como os físicos estão indicados em hexadecimal.

Tipo de acesso	Endereço virtual	Excepção	TBL hit?	Carregou a página?	Endereço físico	TLB após o acesso
Leitura	000002	Page Fault	Não	Sim	0x000002	0 → 0
Leitura	0041FC					
Escrita	000FEE					
Leitura	001123					
Escrita	000FFF					
Leitura	004FFF					
Leitura	002354					
Leitura	002043					
Escrita	003FFA					

LRU) em vez de usarem exatamente LRU como políticas de substituição de paginas.

3. [2.0 v] Indique uma razão para a maioria dos sistemas usar aproximações de Least Recently Used (

Página	3	de	10
I agiiia	J	uc	10

Número:	
---------	--

Grupo II [7 v]

Considere o seguinte programa servidor.

```
for(;;) {
                                                                   FD ZERO (&readfds);
| Programa servidor.c (gera binario "servidor")
                                                                   if (accepted) {
#include <stdio.h>
                                                                    FD SET(0, &readfds);
#include <svs/time.h>
                                                                    FD SET(s2, &readfds);
#include <sys/types.h>
                                                                    maxfd = s2;
#include <sys/socket.h>
#include <sys/un.h>
                                                                   else {
                                                                    FD_SET(0, &readfds);
#define SOCK_PATH "echo_socket"
                                                                    FD_SET(s, &readfds);
#define SZ_STR 100
                                                                    maxfd = s;
                                                                   }
int main(void)
                                                                   select(maxfd+1, &readfds, NULL, NULL, NULL);
int s, s2, t;
 struct sockaddr un local, remote;
                                                                   if (FD ISSET(0, &readfds)){
 char str[SZ_STR];
                                                                    read (0, &byteread, 1);
 char byteread;
                                                                    if (byteread=='a')
 int accepted = 0;
                                                                     printf ("STDIN\n");
 fd set readfds;
 int maxfd;
                                                                   if (!accepted && FD_ISSET(s, &readfds)) {
                                                                    t = sizeof(remote);
 if ((s = socket(AF_UNIX, SOCK_STREAM, 0)) == -1) {
                                                                    if ((s2 = accept(s, (struct sockaddr *)&remote, &t)) == -
  perror("socket");
                                                                     1) {
  exit(1);
                                                                     perror("accept");
 }
                                                                     exit(1);
 local.sun family = AF UNIX;
                                                                    printf ("Connected to client\n");
 strcpy(local.sun_path, SOCK_PATH);
                                                                    accepted = 1;
 unlink(local.sun path);
                                                  sizeof(struct
 if (bind(s, (struct sockaddr *)&local,
                                                                   if (accepted && FD ISSET(s2, &readfds)) {
    sockaddr_un)) == -1) {
                                                                    read (s2, &byteread, 1);
  perror("bind");
                                                                    if (byteread=='a')
  exit(1);
                                                                     printf ("SOCKET\n");
                                                                 }
 if (listen(s, 1) == -1) {
                                                                 }
  perror("listen");
  exit(1);
```

1. [0.5 v] Diga, justificando, que tipo de socket é criado.

	Pagina 4 de 10
2.	[0.5 v] Para que serve a chamada "bind"? Justifique a sua resposta tendo em conta o sistema de
	ficheiros.
	Tierren 65.
3.	
	"accepted" está a false.
4.	[1.0 v] Considere que lança o servidor e depois escreve a seguinte string no terminal onde lançou o
••	servidor:
	▶ banana <ret></ret>

Diga qual o output do programa servidor.

Considere o seguinte programa cliente.	
/*	<pre>server.sun_family = AF_UNIX; strcpy(server.sun_path, SOCK_PATH); if (connect(sock, (struct sockaddr *) &server, sizeof(st sockaddr_un)) < 0) { close(sock); perror("connecting stream socket"); exit(1); } while ((c = getc(stdin))!=EOF) { write (sock, &c, 1); } }</pre>
[1.0 v] Para que serve a chamada "connect"?	

- 6. [1.0 v] Considere que lança o servidor num terminal. Considere que, noutro terminal, lança o programa cliente acima (já com o servidor em execução) e depois escreve a seguinte string no terminal onde lançou o cliente:
 - laranja<RET>

Diga qual o output do programa servidor.

Considere o seguinte programa "pai":

```
if (pid == 0) {
| Programa pai.c (gera binario "pai")
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
                                                                       if (execl ("./servidor", "servidor", NULL) == -1) {
int main (int argc, char** argv) {
                                                                        perror("servidor");
 int fd[2];
                                                                        exit(EXIT_FAILURE);
 int pid;
 char c;
                                                                     else if (pid != -1){
 if (pipe(fd) == -1) {
  perror("pipe");
  exit(EXIT_FAILURE);
 pid = fork ();
                                                                      while ((c = getc(stdin))!=EOF) {
                                                                        write (1, &c, 1);
                                                                     }
```

Número:	Página 7 de 10	

7. [2.0 v] Acrescente o código necessário no programa acima, de forma a que o input do processo pai seja processado pelo processo servidor.

Grupo III [7 v]

Considere o sistema de ficheiros do Unix e o conteúdo da seguinte diretoria, de nome /users/so/:

	Cada entrada na diretoria tem, neste exemplo, exatamente 12 bytes					
	InodeTamanhoTamanhoTipoNomeEntradaNome					
Deslocamento	(4 bytes)	(2 bytes)	(1 byte)	(1 byte)	(4 bytes)	
0	10111	12	1	2	.\0\0\0	
12	10112	12	2	2	\0\0\0	
24	10113	16	8	1	abcd.txt	

1. [1.0 v] Altere o conteúdo da directoria para reflectir o resultado de executar o seguinte comando para criar um "hard link":

link /users/so/abcd.txt /users/so/xxx

Considere o seguinte estado das tabelas que suportam o acesso aos ficheiros (considere que cada bloco tem 4K de tamanho) num sistema UNIX.

2. [2.0 v] Altere diretamente o esquema acima para representar o estado das mesmas tabelas após o processo P2 fazer "fork", criando desta forma um processo P3 (filho de P2).

Considere de novo o seguinte estado das tabelas que suportam o acesso aos ficheiros:

3. [2.0 v] Altere diretamente o esquema acima para representar o estado das mesmas tabelas após o processo P1 fazer a chamada sistema

open ("/users/so/abcd.txt", O_RDONLY)

4. [0.5 v] Considere que apos o open acima, o processo i 1 executa o seguinte codigo.
<pre>nbytes = read(4, buf, 1);</pre>
será necessário trazer algum bloco para memória? Em caso afirmativo, diga qual. Justifique.
5. [0.5 v] Considere que após a chama read acima, o processo P1 executa o seguinte código:
<pre>offset lseek(4, 5000, SEEK_SET); nbytes = read(4, buf, 1);</pre>
Será necessário trazer algum bloco para memória? Em caso afirmativo, diga qual. Justifique.
6. [1.0 v] Num sistema de ficheiros Unix, indique para que serve o superbloco: