Corrigé du DM 34

CCP 1998, maths 2: Corrigé

PARTIE I - CONSTRUCTION D'UNE MATRICE INVERSE A GAUCHE

On suppose dans cette partie que m > n et que $\operatorname{rg} A = n$.

1. Propriété d'inversibilité et de transposition

- a) L'existence de solution pour l'équation Ax = b résulte de l'hypothèse $b \in \text{Im } A$ et l'unicité du fait que A est injective puisque dim $(\text{Ker } A) = \dim E \operatorname{rg} A = n n = 0$.
- b) La matrice $B = {}^tAA$ est identifiée à un endomorphisme de l'espace vectoriel euclidien $E = \mathbb{R}^n$ dans lequel la base canonique est <u>orthonormale</u>. Ainsi, vérifier que l'endomorphisme canoniquement associé à B est symétrique revient à vérifier que la matrice B est symétrique, ce qui est immédiat puisque ${}^tB = {}^t({}^tAA) = {}^tAA = B$. Pour montrer que B est inversible, il suffit de montrer que B est injective, c'est à dire que B est inversible, il suffit de montrer que B est injective, c'est à dire que B est inversible, il suffit de montrer que B est injective, c'est à dire que B est inversible, il suffit de montrer que B est injective, c'est à dire que B est inversible B est inversible B est inversible B est injective, c'est à dire que B est inversible B

Pour montrer que B est inversible, il suffit de montrer que B est injective, c'est à dire que Ker $B = \{0_E\}$. En effet, soit $x \in \text{Ker } B$: on a Bx = 0, d'où ${}^tx({}^tAA)x = 0$, donc $||Ax||^2 = {}^t(Ax)(Ax) = 0$, d'où $Ax = 0_F$ et finalement $x = 0_F$ puisque A est injective.

c) Important : le résultat de cette question est valable aussi bien pour m > n que pour $m \le n$.

Soit $y \in F$. $\underline{y \in \operatorname{Ker}^t M} \iff {}^t My = 0_E \iff \forall \, x \in E, \, {}^t x({}^t My) = 0 \iff \forall \, x \in E, \, {}^t (Mx)y = 0 \iff \forall \, z \in \operatorname{Im} M, \, (z|y)_F = {}^t zy = 0 \iff \underline{y \in (\operatorname{Im} M)^{\perp}}.$

Ainsi $\operatorname{Ker}^t M = (\operatorname{Im} M)^{\perp}$.

En remplaçant M par tM (et en échangeant m et n), on obtient $\operatorname{Ker} M = (\operatorname{Im}{}^tM)^{\perp}$, donc $(\operatorname{Ker} M)^{\perp} = \operatorname{Im}{}^tM$.

2. Détermination d'une inverse à gauche de A

a) Lorsque $y \in F$, le vecteur $b = Py \in \text{Im } A$: d'après **1.a**, il existe un unique $x \in E$ tel que Ax = b = Py. On définit donc ainsi une application $A^{(g)}: y \longmapsto x$ de F vers E.

Vérifions que $\forall (y,y') \in F^2$, $\forall \lambda \in \mathbf{R}$, $A^{(g)}(\lambda y + y') = \lambda A^{(g)}y + A^{(g)}y'$. En effet, en notant $x = A^{(g)}y$ et $x' = A^{(g)}y'$,

on a par définition : Py = Ax et Py' = Ax', donc $P(\lambda y + y') = \lambda Py + Py' = \lambda Ax + Ax' = A(\lambda x + x')$. Ainsi, par définition de $A^{(g)}: A^{(g)}(\lambda y + y') = \lambda x + x'$, donc $A^{(g)}(\lambda y + y') = \lambda A^{(g)}y + A^{(g)}y'$.

- b) Vérifions par double implication que $Ax = Py \iff {}^{t}AAx = {}^{t}Ay$.
 - Si Ax = Py, sachant que $y Py \in (\operatorname{Im} A)^{\perp}$, alors $y Ax \in \operatorname{Ker} {}^t\!A$, donc ${}^t\!A(y Ax) = 0_E$, d'où ${}^t\!AAx = {}^t\!Ay$.

- Si ${}^t AA \, x = {}^t A \, y$, alors ${}^t A \, (y A \, x) = 0_E$, donc $z = y A \, x \in \operatorname{Ker}{}^t A = (\operatorname{Im} A)^{\perp}$. Ainsi l'égalité $y = A \, x + z$ est une décomposition de y sur $\operatorname{Im} A \oplus (\operatorname{Im} A)^{\perp}$ qui montre que $\underline{Py = A \, x}$. Donc $\forall y \in F, \ \forall x \in E, \ x = A^{(g)}y \iff {}^t AA \, x = {}^t A \, y \iff x = \left({}^t AA\right)^{-1} {}^t A \, y$, donc $A^{(g)} = \left({}^t AA\right)^{-1} {}^t A$.
- c) $\forall y \in F$, $Py = A A^{(g)} y$, donc $P = A A^{(g)} = A ({}^t A A)^{-1} {}^t A$.

 $\underline{\operatorname{Remarque}}: \boxed{\operatorname{Ker} A^{(g)} = (\operatorname{Im} A)^{\perp}}$

En effet $y \in \operatorname{Ker} A^{(g)} \iff A^{(g)} y = 0 \iff A A^{(g)} y = 0 \iff Py = 0 \iff y \in \operatorname{Ker} P = (\operatorname{Im} A)^{\perp}.$

- 3. Propriétés de $A^{(g)}$. Unicité
- a) On a $A^{(g)}A = {tAA}^{-1} {tAA} = I_n$. En particulier $A^{(g)}A$ est surjective, donc $A^{(g)}: F \longrightarrow E$ est nécessairement <u>surjective</u>, donc $\operatorname{rg} A^{(g)} = \dim E = n$.

On a aussi $\operatorname{rg} A^{(g)} = \dim F - \dim (\operatorname{Ker} A^{(g)}) = \dim F - \dim (\operatorname{Im} A)^{\perp} = \dim (\operatorname{Im} A) = n.$

- b) Si m = n, c'est à dire dim $E = \dim F$, puisque A est injective par hypothèse, alors elle est bijective dans ce cas. En composant à droite l'égalité $A^{(g)}A = I_n$ par A^{-1} , on obtient que $A^{(g)} = A^{-1}$.
- c) On suppose que $B \in \mathcal{M}_{n,m}$ vérifie $BA = I_n$ et que AB est un projecteur orthogonal.

En particulier BA est surjective, donc B est surjective :

ainsi Im(AB) = (AB)(E) = A(B(E)) = A(E) = Im A.

Donc AB est le projecteur orthogonal sur $\operatorname{Im} A$.

Donc $\forall z \in (\operatorname{Im} A)^{\perp}$, ABz = 0 et comme A est injective, on a bien : $\forall z \in (\operatorname{Im} A)^{\perp}$, Bz = 0.

Soit $y \in F$. Il se décompose en y = v + z avec $v \in \operatorname{Im} A$ et $z \in (\operatorname{Im} A)^{\perp}$.

Alors $By = Bv + Bz = Bv = BPy = BAx = x = A^{(g)}y$, donc $B = A^{(g)}$.

Rilan ·

Lorsque A est injective, parmi toutes les inverses à gauche $B \in \mathcal{M}_{n,m}$ de A (ie $BA = I_n$), il en existe une et une seule de sorte que AB soit un projecteur orthogonal : il s'agit de $A^{(g)}$.

4. Exemples

a) Comme $\operatorname{rg} A = n$, les a_i sont non nuls. On les suppose orthogonaux.

Alors le coefficient d'indice (i,k) de la matrice-produit ${}^t\!AA$ est égal à $\sum_{i=1}^n a_{ji} \, a_{jk} = (a_i | a_k) = \delta_{ik} \, \|a_i\|^2$.

 ${}^t\!AA$ est donc égale à la matrice diagonale $\mathrm{Diag}(\|a_1\|^2,\ldots,\|a_n\|^2)$.

Ainsi
$$A^{(g)} = {tAA}^{-1} A = \text{Diag}\left(\frac{1}{\|a_1\|^2}, \dots, \frac{1}{\|a_1\|^2}\right) \begin{pmatrix} {ta_1} \\ \vdots \\ {ta_n} \end{pmatrix} = \begin{pmatrix} \frac{{ta_1}}{\|a_1\|^2} \\ \vdots \\ \frac{{ta_n}}{\|a_n\|^2} \end{pmatrix}$$

 $A^{(g)} = {}^t\!A \iff \forall \, i \in [\![1]; n]\!], \ \|a_i\|^2 = 1 \iff \text{les vecteurs-colonnes de A sont $\underline{\text{orthonorm\'es}}$ dans F.}$

b) Pour b vecteur non nul de $F = \mathbf{R}^m$, on note abusivement b l'application linéaire $s \longmapsto s b$ de \mathbf{R} vers Fqui est représentée par la matrice unicolonne (b) identifiée à b.

En appliquant ce qui précède avec ici n=1, on obtient que $b^{(g)}=\frac{{}^t b}{\|b\|^2}$.

Ainsi la forme linéaire $b^{(g)}$ est caractérisée par : $\forall y \in F, \ b^{(g)} y = \frac{{}^t b \, y}{\|b\|^2} = \left| \frac{(b|y)_F}{(b|b)_F} \right|$

- 5. Description d'une méthode de détermination de $A^{(g)}$
- a) On a $F_1 = F_0 + \mathbf{R}\delta$ avec $\delta \notin F_0$, donc $d' \neq \delta$. Ainsi $d = \delta d' = \delta P_0(\delta) = p_{F_0^{\perp}}(\delta) \in F_0^{\perp}$, donc d est un vecteur non nul de F_1 orthogonal à F_0 , d'où $F_1 = F_0 \overset{\perp}{\oplus} \mathbf{R} d$. Donc $F = F_1 \overset{\stackrel{\sim}{\oplus}}{\oplus} F_1^{\perp} = F_0 \overset{\perp}{\oplus} \mathbf{R} d \overset{\perp}{\oplus} F_1^{\perp}$, ce qui montre que $F_0^{\perp} = \mathbf{R} d \oplus F_1^{\perp}$.

Tout vecteur y de F se décompose de façon unique sous la forme $y = y_0 + \alpha_y d + y_1'$ avec $y_0 \in F_0$, $\alpha_y \in \mathbf{R}$, $y_1' \in F_1^{\perp}$.

Puisque $\alpha_y d$ représente la projection orthogonale de y sur la droite $\mathbf{R}d$, on sait que $\alpha_y d = \frac{(d|y)_F}{||d||^2} d$.

Puisque $P_0 y = y_0$ et $P_1 y = y_0 + \alpha_y d$, alors $P_1 y = P_0 y + \frac{1}{\|d\|^2} (d|y)_F d$.

On remarque que $\alpha_y d = \frac{1}{\|d\|^2} ({}^t dy) \cdot d = \frac{1}{\|d\|^2} d^t dy = d d^{(g)} y$. Donc $P_1 y = P_0 y + d d^{(g)} y$ et $P_1 = P_0 + d d^{(g)}$.

b) Pour k=1...n, notons $F_k=\operatorname{Im} A_k$ le sous-espace vectoriel de F engendré par la famille (libre) (a_1, \ldots, a_k) et par P_k la projection orthogonale dans F sur F_k .

Comme $a_k \notin F_{k-1}$ pour $2 \le k \le n$, en considérant $d_k = a_k - P_{k-1} a_k$ et en appliquant le résultat du

 $P_k = P_{k-1} + d_k \, d_k^{(g)}. \text{ Or d'après } \mathbf{2.c}, \ P_k = A_k A_k^{(g)}, \text{ d'où l'égalité} \ \boxed{ (1) \quad A_k A_k^{(g)} = A_{k-1} A_{k-1}^{(g)} + d_k \, d_k^{(g)}. }$ Il y a donc une erreur dans l'énoncé.

En outre, $d_k = a_k - P_{F_{k-1}}(a_k)$, donc $d_k = (I_m - A_{k-1}A_{k-1}^{(g)}) a_k$

c) Le produit matriciel $A_k^{(g)}A_k=I_k$ effectué par blocs donne les égalités suivantes : $C_k\,A_{k-1}=I_{k-1}, \qquad C_k\,a_k=0, \qquad {}^t\gamma_k\,A_{k-1}=0, \qquad {}^t\gamma_k\,a_k=1.$

Vérifions d'abord l'affirmation de l'énoncé selon laquelle $\gamma_k \in \operatorname{Im} A_k = F_k$. En effet $A_k^{(g)} = {}^tA_kA_k)^{-1}{}^tA_k$, donc $({}^tC_k, \gamma_k) = {}^tA_k^{(g)} = A_k\,B_k$ avec $B_k = {}^tA_kA_k)^{-1}$ symétrique

En écrivant B_k sous la forme (B'_{k-1}, x_k) avec $x_k \in \mathbf{R}^k$, on obtient $\gamma_k = A_k x_k \in \operatorname{Im} A_k = F_k$.

Puisque ${}^t\gamma_k A_{k-1} = 0$, en transposant, on trouve que ${}^tA_{k-1} \gamma_k = 0$, donc $\gamma_k \in \text{Ker } {}^t A_{k-1} = (\text{Im } A_{k-1})^{\perp} = F_{k-1}^{\perp}.$

D'autre part $d_k \in F_k$ et $d_k \in F_{k-1}^{\perp}$.

Ainsi γ_k et d_k sont tous deux dans $F_k \cap F_{k-1}^{\perp}$. Mais $F_k \cap F_{k-1}^{\perp}$ est l'orthogonal de F_{k-1} pour la restriction du produit scalaire à F_k , donc $dim(F_k \cap F_{k-1}^{\perp}) = dim(F_k) - dim(F_{k-1}) = 1$. On en déduit que γ_k et d_k

du produit scalaire à Γ_k , doine $ame(\Gamma_k + \Gamma_{k-1})$ sont colinéaires : $\exists \mu_k \in \mathbf{R} / \gamma_k = \mu_k d_k$. Or $1 = {}^t\gamma_k a_k = {}^t\gamma_k (d_k + d'_k) = {}^t\gamma_k d_k \text{ car } (d_k|d'_k) = 0, \text{ donc } {}^t\gamma_k d'_k = (\gamma_k|d'_k) = 0.$ On trouve donc que $1 = \mu_k {}^td_k d_k = \mu_k \|d_k\|^2$, d'où $\boxed{\gamma_k = \frac{d_k}{\|d_k\|^2}}$ et aussi ${}^t\gamma_k = d_k^{(g)}$.

d) L'égalité (1) donne : $A_{k-1} C_k + a_k^t \gamma_k = A_{k-1} A_{k-1}^{(g)} + d_k d_k^{(g)}$.

En composant à gauche par $A_{k-1}^{(g)}$ et sachant que $A_{k-1}^{(g)}\,A_{k-1}=I_m$ et que $A_{k-1}^{(g)}\,d_k=0$ puisque

 $d_k \in (\operatorname{Im} A_{k-1})^{\perp} = \operatorname{Ker} A_{k-1}^{(g)}$ d'après la remarque du $\mathbf{2.c}, \,$ on obtient :

$$C_k = A_{k-1}^{(g)} \left[I_m + d_k d_k^{(g)} - a_k t_{\gamma_k} \right] = A_{k-1}^{(g)} \left[I_m - a_k d_k^{(g)} \right].$$

En conclusion, les formules de récurrence ci-dessus permettent de déduire la matrice $A_k^{(g)} \in \mathcal{M}_{m,k}$ à partir de $A_{k-1}^{(g)}$

L'initialisation de l'algorithme de calcul de $A^{(g)} = A_n^{(g)}$ est immédiate puisque $A_1 = a_1$, donc $A_1^{(g)} = \frac{{}^t a_1}{\|a_1\|^2}.$

PARTIE II - CONSTRUCTION D'UNE MATRICE INVERSE A DROITE

On suppose ici que m < n et que $\operatorname{rg} A = m = \dim F$, c'est à dire que A est surjective.

1. Détermination d'une inverse à droite

a) Soit $y \in F$ et x un antécédent de y par A. x se décompose en $x = x_1 + \overline{x}$ avec $x_1 \in \text{Ker } A$ et $\overline{x} \in (\text{Ker } A)^{\perp}$. On a alors $y = Ax = A\overline{x}$, ce qui prouve l'existence d'un antécédent de y dans (Ker A) $^{\perp}$. Supposons que y = Ax' avec $x' \in (\operatorname{Ker} A)^{\perp}$. Alors $A(\overline{x} - x') = 0_F$, donc $\overline{x} - x' \in \operatorname{Ker} A \cap (\operatorname{Ker} A)^{\perp}$, d'où $x' = \overline{x}$, ce qui prouve <u>l'unicité</u> d'antécédent de y dans (Ker A)^{\(\Delta\)}.

De plus si y = Az, en décomposant z en z' + z'' avec $z' \in \operatorname{Ker} A$ et $z'' \in (\operatorname{Ker} A)^{\perp}$, alors y = Az = Az'', d'où par unicité $z'' = \overline{x}$ et $||z||^2 = ||z'||^2 + ||\overline{x}||^2 \ge ||\overline{x}||^2$, donc $||\overline{x}|| \le ||z||$, donc \overline{x} est un antécédent de yde norme minimum.

Si l'on suppose que y = Az et $||z|| = ||\overline{x}||$, alors $||z'||^2 = 0$, donc z' = 0, c'est à dire $z = \overline{x}$, ce qui prouve l'unicité d'antécédent de y dans E de norme minimum.

b) Vérifions que l'application $A^{(d)}$ de F ver E est linéaire. En notant $\overline{x} = A^{(d)}y$ et $\overline{x'} = A^{(d)}y'$, alors $A(\lambda \overline{x} + \overline{x'}) = \lambda A \overline{x} + A \overline{x'} = \lambda y + y'$. Comme $\lambda \overline{x} + \overline{x'} \in (\text{Ker } A)^{\perp}$, on a par définition de $A^{(d)}$, $\lambda \overline{x} + \overline{x'} = A^{(d)}(\lambda y + y')$. $A^{(d)}(\lambda y + y') = \lambda A^{(d)}y + A^{(d)}y'$.

 $\forall y \in F, \ A^{(d)}y = \overline{x} \ \text{ et } \ A\overline{x} = y, \ \text{donc} \ AA^{(d)}y = y, \text{ c'est à dire } \boxed{AA^{(d)} = I_m.}$

2. Propriétés de $A^{(d)}$

- a) Comme $AA^{(d)}$ est injective, nécessairement $A^{(d)}$ est <u>injective</u> et donc $rg A^{(d)} = m$.
- **b** Notons $Q=A^{(d)}A$. Alors $Q^2=A^{(d)}AA^{(d)}A=A^{(d)}I_mA=A^{(d)}A=Q$, ce qui prouve que Q est un projecteur de E.

 $x \in \operatorname{Ker} Q \iff A^{(d)}Ax = 0_E \iff Ax = 0_F \iff x \in \operatorname{Ker} A \text{ puisque } A^{(d)} \text{ est injective, donc } Ker Q = \operatorname{Ker} A.$

Or $\operatorname{Im} Q = \operatorname{Im} (A^{(d)}A) \subset \operatorname{Im} A^{(d)} \subset (\operatorname{Ker} A)^{\perp} = (\operatorname{Ker} Q)^{\perp}$, ce qui suffit, avec la formule du rang, pour affirmer que $\operatorname{Im} Q = (\operatorname{Ker} Q)^{\perp}$ et :

Q est le projecteur orthogonal sur $(\operatorname{Ker} A)^{\perp}$.

- c) Lorsque m=n, on conclut de même qu'au **I.3.b** que $A^{(d)}=A^{-1}$.
- d) L'égalité $AA^{(d)} = I_m$ donne immédiatement en transposant : ${}^t(A^{(d)}){}^tA = I_m$. D'autre part, puisque $Q = A^{(d)}A$ est un projecteur orthogonal, on sait qu'il est <u>symétrique</u>, donc ${}^tQ = Q$. Or ${}^tQ = {}^tA{}^t(A^{(d)})$.

En considérant $A' = {}^t A$ dont le rang est aussi égal à m et $B' = {}^t (A^{(d)})$, on est dans les conditions d'application du résultat d'unicité obtenu au **I.3.c** (en inversant les rôles de E et F) puisque A' est injective, $B'A' = I_m$ et que A'B' est un projecteur orthogonal.

On en déduit que ${}^{t}(A^{(d)}) = B' = A'^{(g)} = ({}^{t}A'A')^{-1} {}^{t}A' = (A{}^{t}A)^{-1}A$.

En transposant, sachant que ${}^t(M^{-1})=({}^tM)^{-1}$, on obtient que $A^{(d)}={}^tA(A{}^tA)^{-1}$.

PARTIE III - GÉNÉRALISATION

1. Pseudo inverse d'une matrice rectangulaire

- a) D'après le théorème fondamental d'isomorphisme, on sait que V induit un isomorphime R de tout supplémentaire de Ker V sur Im V, ce qui s'applique en particulier à $(\operatorname{Ker} V)^{\perp}$. Ainsi R^{-1} est un isomorphisme de Im V sur $(\operatorname{Ker} V)^{\perp}$.
- b) On rappelle qu'une application linéaire est entièrement déterminée par ses restrictions à deux sous-espaces supplémentaires.

Considérons l'application W de F vers E déterminée par : $\begin{cases} \forall y \in \text{Im } V, \ Wy = R^{-1}y \\ \forall z \in (\text{Im } V)^{\perp}, \ Wz = 0_F \end{cases}$

Il est clair que W est linéaire.

Vérifions que W satisfait aux quatre conditions de l'énoncé.

• $\underline{\operatorname{Ker} W = (\operatorname{Im} V)^{\perp}}$. On a déjà $(\operatorname{Im} V)^{\perp} \subset \operatorname{Ker} W$.

Réciproquement, soit $x \in \text{Ker } W$. x se décompose en y+z avec $y \in \text{Im } V$ et $z \in (\text{Im } V)^{\perp}$. Alors $0 = Wx = Wy + Wz = Wy = R^{-1}y$, d'où y = 0 et donc $x = z \in (\text{Im } V)^{\perp}$.

• $\operatorname{Im} W = (\operatorname{Ker} V)^{\perp}$

On a déjà $\operatorname{Im} W \subset \operatorname{Im} R^{-1} = (\operatorname{Ker} V)^{\perp}$.

De plus $\dim (\operatorname{Im} W) = \dim F - \dim (\operatorname{Ker} W) = \dim F - \dim (\operatorname{Im} V)^{\perp} = \dim (\operatorname{Im} V),$ donc $\dim (\operatorname{Im} W) = n - \dim (\operatorname{Ker} V) = \dim (\operatorname{Ker} V)^{\perp}.$

 $\bullet WV = Q.$

Soit $x \in E$: il se décompose en $x = x_1 + x_2$ avec $x_1 \in \operatorname{Ker} V$ et $x_2 \in (\operatorname{Ker} V)^{\perp}$. Alors $WV x = WV x_2 = R^{-1}V x_2$ car $V x_2 \in \operatorname{Im} V$. Comme $x_2 \in (\operatorname{Ker} V)^{\perp}$, $V x_2 = R x_2$ et ainsi $WV x = R^{-1}R x_2 = x_2 = Qx$.

 $\bullet VW = P.$

Soit $y \in F$: il se décompose en $y = y_1 + y_2$ avec $y_1 \in \operatorname{Im} V$ et $y_2 \in (\operatorname{Im} V)^{\perp}$.

Alors $Wy = Wy_1 + Wy_2 = R^{-1}y_1$ par définition de W.

Ainsi $VWy = VR^{-1}y_1 = RR^{-1}y_1$ car $R^{-1}y_1 \in (\text{Ker } V)^{\perp}$. Donc $VWy = RR^{-1}y_1 = y_1 = Py$.

c) En outre $\forall y \in F$, WVWy = QWy = Wy car $Wy \in \operatorname{Im} W = (\operatorname{Ker} V)^{\perp} = \operatorname{Im} Q$, donc Wy est invariant par le projecteur Q. Ceci montre que WVW = W.

Soit W' une application linéaire de F vers E vérifiant : $W'V=Q, \quad VW'=P, \quad W'VW'=W'.$ Montrons que W'=W en considérant leurs restrictions à $\operatorname{Im} V$ et $(\operatorname{Im} V)^{\perp}$.

- * Soit $y \in \text{Im } V$. Considérons $x = R^{-1}y$: on a y = Vx et $x \in (\text{Ker } V)^{\perp} = \text{Im } Q$, donc Qx = x. Ainsi $W'y = W'Vx = Qx = x = R^{-1}y = Wy$.
- \star Soit $z \in (\operatorname{Im} V)^{\perp}$. Alors $z \in \operatorname{Ker} P$ et W'z = W'VW'z = W'Pz = W'0 = 0 = Wz.

d) Cas particuliers

- Si r = n, alors V est injective, donc $\operatorname{Ker} V = \{0_E\}$ et $Q = I_n$. Ainsi $WV = I_n$ et VW = P est un projecteur orthogonal, donc d'après l'unicité obtenue au **I.3.c**, nécessairement $W = V^{(g)}$.
- Si r = m, alors V est surjective, donc $P = I_m$.

En transposant les égalités $VW = I_m$ et WV = Q pour se ramener à l'unicité de l'inverse à gauche vérifiant la condition de **I.3.c**, on montrerait de même qu'au **II.2.d** que W est nécessairement égal à $V^{(d)}$.

2. Propriétés

D'après III.1.b, V^+ vérifie les deux propriétés suivantes : $\operatorname{Ker} V^+ = (\operatorname{Im} V)^{\perp}$ et $\operatorname{Im} V^+ = (\operatorname{Ker} V)^{\perp}$.

- Pour montrer que $(V^+)^+ = V$, il suffit de vérifier les trois propriétés caractéristiques suivantes :
 - i) $V(V^+)$ est la projection orthogonale sur $(\text{Ker }V^+)^{\perp}$ dans F
 - ii) $(V^+)V$ est la projection orthogonale sur $(\operatorname{Im} V^+)$ dans E
 - iii) $V(V^+)V = V$
 - i) résulte du fait que $V(V^+)$ est la projection orthogonale sur $\operatorname{Im} V$ et que $\operatorname{Im} V = (\operatorname{Ker} V^+)^{\perp}$.
 - (ii) résulte du fait que $(V^+)V$ est la projection orthogonale sur $(\operatorname{Ker} V)^{\perp}$ et que $(\operatorname{Ker} V)^{\perp} = \operatorname{Im} V^+$.
 - iii) est vérifiée car $\forall x \in E, \ V(V^+)Vx = PVx = Vx \ \text{car} \ Vx \in \text{Im} \ V = \text{Im} \ P.$
- On rappelle que les projecteurs orthogonaux P et Q sont symétriques.

 $\begin{array}{ll} i) \ \ ^t(V^+) \ ^tV = \ ^t(VV^+) = \ ^tP = P \ \text{projection orthogonale sur Im} \ V = (\text{Ker} \ ^tV)^\perp. \\ ii) \ \ ^tV \ ^t(V^+) = \ ^t(V^+V) = \ ^tQ = Q \ \text{projection orthogonale sur } (\text{Ker} \ V)^\perp = \text{Im} \ ^tV. \\ iii) \ \ ^t(V^+) \ ^tV \ ^t(V^+) = \ ^t(V^+) \ \text{en transposant l'égalité} \ V^+VV^+ = V^+. \end{array}$

Ces trois conditions permettent de conclure, grâce à l'unicité obtenue au c) que $({}^tV)^+ = {}^t(V^+)$.

PARTIE IV - APPLICATION NUMÉRIQUE

1. Posons $y_i = f(t_i)$ pour $i = 1 \dots m$ et considérons le polynôme (d'interpolation de Lagrange) L de degré inférieur ou égal à m-1 déterminé par les conditions : $\forall i \in [1; m], L(t_i) = y_i$.

Si l'on pose $L = \sum_{k=0}^{m-1} \alpha_k X^k$, $\sum_{i=1}^m \left(y_i - \sum_{k=0}^{m-1} \alpha_k t_i^k \right)^2 = 0 \le \varepsilon$, donc l'ensemble

 $\{n \in \mathbf{N} / \exists (x_0, x_1, \dots, x_n) \in \mathbf{R}^{n+1}, \sum_{i=1}^m \left(y_i - \sum_{k=0}^n x_k t_i^k\right)^2 \le \varepsilon \}$ est une partie non vide de \mathbf{N} contenant m-1. Elle admet donc un plus petit élément p qui vérifie donc $p \le m-1$.

Ainsi le problème posé a une solution.

2. Il est facile de vérifier que l'application $(P,Q) \longmapsto \langle P,Q \rangle = \sum_{i=1}^{m} P(t_i) Q(t_i)$ est un produit scalaire sur

 $\mathbf{R}_{m-1}[X].$ La quantité $\sum_{i=1}^{m} \left(y_i - \sum_{k=0}^{p} x_k t_i^k \right)^2$ s'interprête alors comme étant $||L - P||^2$ avec $P = \sum_{k=0}^{p} x_k X^k$.

A p fixé, on sait que cette quantité admet un minimum lorsque P est la **projection orthogonale de** Lsur le sous espace vectoriel $\mathbf{R}_n[X]$.

Pour obtenir ce polynôme P de degré $\leq p$ réalisant ce minimum, cherchons les points critiques de la

function
$$F: (x_0, x_1, \dots, x_p) \longmapsto F(x_0, \dots, x_p) = \sum_{i=1}^m (y_i - x_0 - x_1 t_1 - \dots - x_k t_i^k - \dots - x_p t_i^p)^2$$
.

Or
$$\frac{\partial F}{\partial x_k}(x_0, \dots, x_p) = -2 \sum_{i=1}^m t_i^k \left[y_i - x_0 - x_1 t_1 - \dots - x_j t_i^j - \dots - x_p t_i^p \right].$$

Les points critiques sont solutions du système (S_p) des (p+1) équations aux (p+1) inconnues x_0, \ldots, x_p

Pour
$$k = 0, 1, ..., p$$
, $x_0 \sum_{i=1}^{m} t_i^k + \dots + x_j \sum_{i=1}^{m} t_i^{k+j} + \dots + x_p \sum_{i=1}^{m} t_i^{k+p} = \sum_{i=1}^{m} t_i^k y_i$ noté β_k .

Considérons la matrice carrée d'ordre m (de Vandermonde) $A = \begin{pmatrix} 1 & t_1 & \dots & t_1^{m-1} \\ 1 & t_2 & \dots & t_2^{m-1} \\ \vdots & \vdots & & \vdots \\ 1 & t_m & \dots & t_m^{m-1} \end{pmatrix}$.

Comme les t_i sont deux à deux distincts, elle est de rang m.

Notons A_p la matrice de type (m, p + 1) constituée des p + 1 premières colonnes de A.

Avec ces notations, on remarque (!!!) qu'en notant b_p le vecteur de \mathbf{R}^{p+1} de composantes β_0, \ldots, β_p et y le vecteur de \mathbf{R}^m de composantes (y_1, \ldots, y_m) , alors $b_p = {}^t A_p y$ et que le coefficient d'indice (k, j) $0 \le k \le p, 0 \le j \le p$ du système (S_p) est égal au coefficient de même indice du produit matriciel ${}^t A_p A_p$.

Ainsi le système (S_p) est de la forme ${}^tA_pA_pX_p={}^tA_py$.

Comme rg $A_p = p + 1$, la matrice tA_pA_p est <u>inversible</u> d'après le **I.1.b**, donc (S_p) a une solution unique : le seul point critique de F est donc le point en lequel F présente un minimum.

En notant P_p la projection orthogonale sur Im A_p , on a vu au **I.2.b** que (S_p) est équivalent à $A_p X_p = P_p y$, donc à :

$$X_p = A_p^{(g)} y.$$

L'algorithme demandé utilise celui du calcul de proche en proche des $A_p^{(g)}$ obtenu à la fin de la partie I.

$$\underline{\text{Initialisation}}: \quad p = 0, \quad A_0^{(g)} = \frac{{}^t A_0}{\|A_0\|^2} = \frac{1}{m} \left(1, \dots, 1 \right) \text{ et } X_0 = (x_0) \text{ avec } x_0 = \frac{1}{m} \sum_{i=1}^m y_i.$$

$$\underline{\text{Boucle}}: \quad \text{Tant que } \sum_{i=1}^m \left(y_i - \sum_{k=0}^p x_k \, t_i^k\right)^2 > \varepsilon \quad \text{faire}:$$

 $\underline{\text{D\'ebut}}$:

 $p \longleftarrow p + 1$.

Déduire $A_p^{(g)}$ de $A_{p-1}^{(g)}$ en utilisant les formules de récurrence du **I.5.**

Calculer x_0, \ldots, x_p sachant que $X_p = A_p^{(g)} y$.

Fin

Retourner p et (x_0, \ldots, x_p) .

Fin du corrigé