

# Les probabilités conditionnelles

Dans cette leçon,  $\Omega$  désigne un univers, A et B deux événements de  $\Omega$ et P une probabilité sur  $\Omega$ .

## I. Probabilités conditionnelles et arbres pondérés.

### 1. Probabilités conditionnelles.

### Définition :

Si  $P(A) \neq 0$ , la probabilité de B sachant A, notée  $P_A(B)$ , est définie par  $P_A(B) = \frac{P(A \cap B)}{P(A)}$ .

### 2.Application aux arbres pondérés.

### Propriété:

Les principales règles de construction des arbres pondérés ( ou arbres probabilistes) sont :

La somme des probabilités des événements disjoints correspondant aux branches partant d'un même noeud est 1.

Les probabilités présente sur la 2ème, 3ème, etc branches d'un chemin sont des probabilités conditionnelles.

#### REMARQUE:

Dans le cas de deux événements A et B de probabilités non nulles, on a :



### Propriété:

Si  $P(A) \neq 0$  et  $P(B) \neq 0$  alors  $P(A \cap B) = P(A) \times P_A(B) = P(B) \times P_B(A)$ .Cette formule permet de justifier l'une des règles d'utilisation des arbres pondérés :

la probabilité de l'événement correspondant à un chemin de l'arbre est le produit des probabilités inscrites sur les branches de ce chemin.