Homework 10

Jaden Wang

Problem (2.5.1). Since $F(x) \neq z \ \forall \ x \in D$, we see that $u: X \to S^{n-1}$ can be extended to all of D. Hence by the boundary theorem, $W_2(f,z) = \deg_2(u) = 0$.

Problem (2.5.2). Since $y_i \in \text{int } B_i$, $u_i : \partial B_i \to S^{n-1}$, $x \mapsto \frac{f_i(x)-z}{\|f_i(x)-z\|}$ is well-defined. And $W_2(f_i,z) = \deg_2(u_i)$. Now consider the compact manifold (removing disjoint open balls remains closed and hence compact as a subspace) with boundary $\widetilde{D} := D - \bigcup_{i=1}^{\ell} \text{int } B_i$. Let $\widetilde{f} : \partial \widetilde{D} = X \sqcup \bigsqcup_{i=1}^{\ell} \partial B_i \to \mathbb{R}^n$ be defined by f and f_i . Then define \widetilde{u} as usual using \widetilde{f} and let $\widetilde{F} = F|_{\widetilde{D}}$. Since \widetilde{F} clearly doesn't hit z, we have

$$W_2(\widetilde{f}, z) = \deg_2(\widetilde{u}) = I_2(\widetilde{u}, z) = 0$$

Recall that $I_2(\tilde{u}, z)$ is the number mod 2 of points in $\tilde{u}^{-1}(z)$. Since $\partial \widetilde{D}$ is a disjoint unions of boundaries, we can compute the intersection number by summing the intersection numbers on each disjoint boundary (mod 2), as

$$\widetilde{u}^{-1}(z) = (\widetilde{u}|_X)^{-1}(z) \sqcup \bigsqcup_{i=1}^n (\widetilde{u}|_{\partial B_i})^{-1}(z) = u^{-1}(z) \sqcup \bigsqcup_{i=1}^\ell u_i^{-1}(z)$$

Thus,

$$I_2(u,z) + \sum_{i=1}^{\ell} I_2(u_i,z) = 0 \mod 2$$

$$I_2(u,z) = -\sum_{i=1}^{\ell} I_2(u_i,z) \mod 2$$

$$I_2(u,z) = \sum_{i=1}^{\ell} I_2(u_i,z) \mod 2$$

$$W_2(f,z) = \sum_{i=1}^{\ell} W_2(f_i,z) \mod 2$$

Problem (2.5.12). By 8 we have a relation $W_2(X, z_0) = W_2(X, z_1) + \ell \mod 2$ where ℓ is the intersection number of the ray from z_0 passing through z_1 . By 9 we know that the winding number mod 2 of X around z completely determines the component that z is in. By 10 we know that the outside component has $W_2(X, z) = 0$. This implies that the points inside X

has $W_2(X, z) = 1$. For any z and a ray from z transversal to X, let z' be a point on the ray super far away that it is certainly outside X and there is no intersection with X from z' to infinity. This allows ℓ to be exactly the number of intersections of the ray with X.

 (\Rightarrow) : If z is inside X, then . We see that $\ell = W_2(X,z) - W_2(X,z') = 1 - 0 = 1 \mod 2$. So ℓ is odd.

 (\Leftarrow) : If ℓ is odd, then $W_2(X,z)=W_2(X,z')+\ell \mod 2=0+\ell \mod 2=1$. So z is inside.

Problem (2.6.1). Recall that $u: S^k \to S^k$, $\frac{f(x)}{\|f(x)\|}$ is well-defined iff $f: S^k \to \mathbb{R}^{k+1}$ doesn't hit the origin. Moreover, f(-x) = -f(x) iff u(-x) = -u(x) i.e. u carries antipodal points to antipodal points. Then $W_2(f,0) = \deg_2(u) = 1$. So they are equivalent statements.

Problem (2.6.2). Let $f: S^1 \to S^1$ satisfy f(-x) = -f(x). So

$$(\cos g(t+\pi), \sin g(t+\pi)) = f(\cos(t+\pi), \sin(t+\pi))$$
$$= f(-\cos t, -\sin t)$$
$$= -f(\cos t, \sin t)$$
$$= (-\cos g(t), -\sin g(t))$$

Hence we have $\cos g(t+\pi) = -\cos g(t) = \cos(g(t)+q\pi)$ where q is odd. Therefore, $g(t+\pi) = g(t) + q\pi$. The sin part yields the same relation. We see that $g(t+2\pi) = g(t+\pi+\pi) = g(t+\pi) + q\pi = g(t) + 2q\pi$ so this is exactly the q described by Exercise 2.4.8. It follows that $\deg_2(f) = q \mod 2 = 1$ since q is odd.

Problem (2.6.3). Since p_1, \ldots, p_n are homogeneous polynomials of odd degree, their polynomial functions $f_1, \ldots, f_n : \mathbb{R}^{n+1} \to \mathbb{R}$ are odd functions, *i.e.* $f_i(-x) = -f_i(x)$. Define $g_i := f_i|_{S^n}$. Then by corollary of Boruk-Ulam, g_i 's must possess a common root, say v, in S^n . But if v is a root of g_i , it is a root of f_i , and any scalar multiple tv of v is also a root of f_i due to homogeneous degrees. Hence they share a line of roots tv.