

Лабораторная Работа №1.02

Изучение скольжения тележки по наклонной плоскости

Physics Labwork 2	x, m xm 0.22 1 1 0.22 1	h0,mm(m) 21.7 0.0217	
Sheet1 x, m,x'm,h0,mm,h0',mm 0.22,1,21.7,22.5			
https://docs.google.com/spreadsheets/d/1lh0HMmhCdxfwDRpMBdX4ue7GMdNavxrt9jGomD_UPK8/edit#g id=0			

Цели работы:

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения q.

Задачи:

- 1. Измерение времени движения тележки по рельсу с постоянным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

Объект исследования:

Тележка, перемещающаяся по наклонной плоскости при использовании воздушной подушки.

Метод проведения эксперимента:

Многократные измерения времени, в течение которого тележка проходит через оптические ворота, а также проверка соответствия полученных данных теории движения тележки по наклонной поверхности.

Экспериментальная установка:

Схема:

Установка состоит из тележки "2", движущейся по рельсу "1", который поддерживается на воздушной подушке, создаваемой с помощью воздушного насоса "3", чтобы уменьшить трение между тележкой и рельсом. На тележке установлен флажок с черными вертикальными полосами, которые регистрируются цифровым измерительным прибором, когда тележка проходит через оптические ворота. Для измерения вертикальных координат точек используется угольник.

Проведение измерений:

- 1. Мы установили направляющий рельс горизонтально. Для этого мы подключили вилку насоса к блоку питания и включили источник. Затем мы поместили тележку на рельс около точки с координатой 0,6 м. Путем вращения винта правой опоры мы достигли неподвижности тележки. Выключили насос.
- 2. Мы установили угольник вертикально на опорной плоскости и измерили вертикальные координаты h_0 и h_0' верхнего края линейки на рельсе в точках x=0,22m и x'=1,0m. Записали координаты x и x', а также измеренные значения h_0 и h_0' в Tабл. 2

А также в её дубликат в экселе, доступный по ссылке выше.

Α	В	С	D	
x, m	x'm	h0,mm	h0',mm	
0.22	1	21.7	22.5	

- 3. Мы подложили одну стандартную пластину толщиной примерно 1 см под обе ножки левой опоры.
- 4. Включили прибор ПКЦ-3, повернув тумблер на правой боковой панели.
- 5. Последовательно нажали на дистанционном пульте управления три кнопки: **«режим работы: 0»**, **«механика: сброс»**, **«индикация: время** t_1 , t_2 **»**.
- 6. Установили первые оптические воротав точке с координатой $x_1=0,15m$, а вторые $x_2=0,40m$.
- 7. Включили блок питания воздушного насоса ВС 4-15.
- 8. На дистанционном пульте управления нажали кнопку **«механика: сброс»** на цифровом приборе.
- 9. Тележку установили в крайнем левом положении и прижали к электромагниту.
- 10. На дистанционном пульте управления нажали кнопку **«механика: пуск»**. Тележка начала двигаться и последовательно прошла левые и правые оптические ворота. На дисплее прибора ПКЦ-3 отразились промежутки времени t_1 и t_2 от начала движения до прохождения ворот. Величины x_1 , x_2 , t_1 , t_2 внесли в Табл. 3 и её дубликат в экселе.

	Α	В	С	D	E
1	x1, m	x2, m	t1, c	t2, c	
2	0.15	0.4	1.8	2.8	
3	0.15	0.5	1.8	3.1	
4	0.15	0.7	1.9	3.7	
5	0.15	0.9	1.9	4.3	
6	0.15	1.1	1.8	4.6	
7					
8					
0					

- 11. Блок питания воздушного насоса ВС 4-15 был выключен.
- 12. Вторые оптические ворота были установлены последовательно в точках x2=0,50;0,70;0,90;1,10m и для каждого положения оптических ворот были выполнены пункты 5–11. (и занесены в Табл. 4+5).

	Α	В	С	D	E	F	G
1	Added Height	h, mm	h',mm	Test Number	t1, c	t2, c	
2	1	21.7	22.5	1	1.7	4.5	
3	1	21.7	22.5	2	1.8	4.6	
4	1	21.7	22.5	3	1.8	4.6	
5	1	21.7	22.5	4	1.8	4.6	
6	1	21.7	22.5	5	1.9	4.7	
7	2	20.5	22.5	1	1.2	3.2	
8	2	20.5	22.5	2	1.2	3.2	
9	2	20.5	22.5	3	1.2	3.1	
10	2	20.5	22.5	4	1.2	3.2	
11	2	20.5	22.5	5	1.2	3.1	
12	3	19.5	22.5	1	1	2.5	
13	3	19.5	22.5	2	0.9	2.5	
14	3	19.5	22.5	3	1	2.5	
15	3	19.5	22.5	4	0.9	2.5	
16	3	19.5	22.5	5	1	2.5	
17	4	18.3	22.5	1	0.8	2.2	
18	4	18.3	22.5	2	0.8	2.2	
19	4	18.3	22.5	3	0.8	2.2	
20	4	18.3	22.5	4	0.8	2.2	
21	4	18.3	22.5	5	0.8	2.2	
22	5	17.2	22.5	1	0.7	1.9	
23	5	17.2	22.5	2	0.6	1.9	
24	5	17.2	22.5	3	0.6	1.9	
25	5	17.2	22.5	4	0.6	1.9	
26	5	17.2	22.5	5	0.6	1.9	
27							

Обработка результатов

Задание 1

1. По результатам прямых измерений из Tабл. 3 были рассчитаны величины $Y=x_2-x_1$ и $Z=\frac{(t_2^2-t_1^2)}{2}$ и их погрешности. Полученные значения и погрешности были записаны в Tабл. 3.

F	G
Y = x2 - x1	Z = (t2^2 - t1^2)/
0.2	2.3
0.3	3.185
0.5	5.04
0.7	7.44
0.9	95 8.96

- 2. Теоретическая зависимость Y от Z должна была иметь линейный вид Y=aZ, с угловым коэффициентом равным ускорению. Найденные точки экспериментальной зависимости $\{Y_i; Z_i\}$ и их погрешности были нанесены на график. (cM.spach.1)
- 3. Найдено ускорение тележки методом наименьших квадратов (МНК).

$$a = rac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2} = 0.1051376565$$

$$\sigma_a = \sqrt{rac{\sum_{i=1}^{N}(Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N}Z_i^2}} = 0.0016$$

-	Н	1	J
1^2)/2		Zi*Yi	Zi^2
2.3		0.575	5.29
185		1.11475	10.144225
5.04		2.772	25.4016
7.44		5.58	55.3536
3.96		8.512	80.2816
Sui	n:	18.55375	176.471025
a =		0.1051376565	
СИП	ма =	0.0016	

1. Используя найденное значение ускорения a, построили график зависимости Y(Z)=aZ на том же рисунке, что и экспериментальные точки $\{Y_i;Z_i\}$. (см.граф.1)

Задание 2

1. Для каждой серии измерений из Табл. 4 вычислили значение синуса угла наклона рельса к горизонту по формуле:

$$\sinlpha=rac{(h_0-h)-(h_0'-h')}{x'-x}$$

В таблице, это видно под столбцом н по формуле:

=((Sheet1!\$C\$3 - B4) - (Sheet1!\$D\$3 - C4))/(Sheet1!\$B\$2Sheet1!\$A\$2) .

- 2. Для каждой серии измерений были вычислены средние значения времени t_1 и t_2 и их погрешности и помещены в таблице под столбцами 1:v.
- 3. Вычислили значение ускорения и его погрешность для каждой серии измерений по формулам:

$$egin{aligned} \langle a
angle &= rac{2(x_2-x_1)}{\langle t_2
angle^2 - \langle t_1
angle^2} \ \Delta a &= \langle a
angle \sqrt{rac{(\Delta x_{ ext{ iny H2}})^2 + (\Delta x_{ ext{ iny H1}})^2}{(x_2-x_1)^2} + 4rac{(\langle t_1
angle \Delta t_1
angle^2 + (\langle t_2
angle \Delta t_2
angle^2}{\left(\langle t_2
angle^2 - \langle t_1
angle^2
ight)^2} \end{aligned}$$

тут $\Delta_{x_{\mathrm{H}1}}$ и $\Delta_{x_{\mathrm{H}2}}$ – приборные погрешности измерения координат x_1 и x_2 ; Δt_1 и Δt_2 – абсолютные погрешности значений времен t_1 и t_2 .

- 4. Результаты расчета ускорения в виде доверительного интервала $\langle a \rangle \pm \Delta a$ были внесены в последний столбец Табл. 4+5.
- 5. Мы нашли коэффициенты линейной зависимости по следующим формулам:

$$B \equiv g = rac{\sum_{i=1}^{N} a_i \sin lpha_i - rac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin lpha_i}{\sum_{i=1}^{N} \sin lpha_i^2 - rac{1}{N} \left(\sum_{i=1}^{N} \sin lpha_i
ight)^2} = 9.32784233$$

$$A = rac{1}{N} \Biggl(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin lpha_i \Biggr) = 0.04857$$

6. Рассчитали СКО для ускорения свободного падения (коэффициента *B*) по формуле. (см. рассчеты в нижней части листка 3 таблицы)

$$\sigma_g = \sqrt{rac{\sum_{i=1}^{N} d_i^2}{D(N-2)}} = 0.324$$

где

$$d_i = a_i - (A + B \sin \alpha_i)$$

			$a = A + B \sin \alpha$.
d	0.03848357143	0.00148098527	0.04857
	-0.009525182358	0.000090729098	0.1920752666
	-0.01889217579	0.000356914308	0.3116629888
	-0.08373968397	0.007012334672	0.4551682554
	-0.1030837974	0.01062626929	0.5867147498

$$D = \sum_{i=1}^{N} \sin lpha_i^2 - rac{1}{N} \Biggl(\sum_{i=1}^{N} \sin lpha_i \Biggr)^2 = 0.00135$$

Определили абсолютную погрешность коэффициента для доверительной вероятности α = 0,90 по формуле: *(см. рассчеты в р*асчете погрешностей измерений задания 2)

$$\Delta g = 2\sigma_q = 0.648$$

Рассчитали относительную погрешность g:

$$arepsilon_g = rac{\Delta_g}{q} \cdot 100\% = 6.94\%$$

Абсолютное отклонение значения g: |gэксп-gтабл $|=9.8195-9.32784233=0.4916576702 м/с<math>^2$

Расчет погрешностей измерений:

Задание 1

Абсолютная погрешность коэффициента a для доверительной вероятности lpha=0.9:

$$\Delta_a=2\sigma_a=0.0032$$

Относительная погрешность ускорения:

$$arepsilon_a = rac{\Delta_a}{a} \cdot 100\% = 6.94\%$$

Задание 2

	для t_1, c		для t_2, c	
$N_{\scriptscriptstyle \Pi \Pi}$	$S_{\overline{t}} = \sqrt{rac{\sum_{i=1}^{n}(t_i - \langle t angle)^2}{n(n-1)}}$	$\Delta_{t_1} = \sqrt{(t_{a,n}S_{\overline{t}})^2 + (rac{2}{3}\Delta_{\scriptscriptstyle ec{H}})^2}$	$S_{\overline{t}} = \sqrt{rac{\sum_{i=1}^{n}(t_i - \langle t angle)^2}{n(n-1)}}$	$\Delta_{t_1} = \sqrt{(t_{a,n}S_{\overline{t}})^2 + (rac{2}{3}\Delta_{\scriptscriptstyle ec{H}})^2}$
1	0.036	0.1104	0.036	0.1104
2	0	0.0666	0.0245	0.095

3	0.0245	0.095	0	0.0666
4	0	0.0666	0	0.0666
5	0.02	0.0866	0	0.0666

Графики:

1) График зависимости Y = Y(Z):

$$rac{(t_2^2-t_1^2)}{2}$$
 относительно x_2-x_1

2) График зависимости ускорения а от $\sin \alpha$:

Выводы и анализ результатов работы:

Для задания 1:

На основе полученных результатов (с одной пластиной) был создан график с аппроксимирующей линией. Используя метод наименьших квадратов, был определен угловой коэффициент со значением $a=(0,1051\pm0,0032)$ (м $/c^2$). Анализ показал, что экспериментальный график схож с аналитическим при таком угловом коэффициенте. Это подтверждает предположение о равномерно ускоренном движении тележки в условиях эксперимента. Вычисленная относительная погрешность равна 6.94%, что находится в допустимых пределах.

Для задания 2:

Исследование позволило определить ускорение свободного падения как $g=(9.327\pm0.648) \mathrm{m/c^2}$. При анализе результатов было выявлено, что абсолютное отклонение (|gЭСК $\Pi-g$ Таб $\pi|=0.4916$) для g превосходит среднеквадратичное отклонение ($\sigma_g=0.324$). Это обусловлено тем, что в наших условиях время было замерено с точностью только до одной цифры после запятой.

Результаты:

Табл. 1

Наименование	Предел измерений	Цена деления	Класс точности	$\Delta_{\scriptscriptstyle H}$
Линейка на рельсе	1,3 m	1 cm/seg	_	5 mm
Линейка на угольнике	250 mm	1 mm/seg	_	0,5 mm
ПКЦ-3 в режиме секундомера	100 c	0,1 c	_	0,1 c

Табл. 2

x, m	x'm	h_0,mm	h_0',mm
0.22	1	21.7	22.5

Табл. 3

x_1, m	x_2, m	t_1,c	t_2,c	x_2-x_1,m	$rac{(t_2^2-t_1^2)}{2},c^2$
0.15	0.4	1.8	2.8	0.25	2.3
0.15	0.5	1.8	3.1	0.35	3.185
0.15	0.7	1.9	3.7	0.55	5.04
0.15	0.9	1.9	4.3	0.75	7.44
0.15	1.1	1.8	4.6	0.95	8.96

Табл. 4+5

$N_{\scriptscriptstyle{\Pi}\!\!/\!\!1}$	h,mm	h',mm	N₂	t_1,c	t_2, c	sin(lpha)	$\langle t_1 angle \pm \Delta$
1	21.7	22.5	1	1.7	4.5	0	$1.8\pm0.$
			2	1.8	4.6	0	$1.8\pm0.$
			3	1.8	4.6	0	1.8 ± 0
			4	1.8	4.6	0	1.8 ± 0
			5	1.9	4.7	0	1.8 ± 0
2	20.5	22.5	1	1.2	3.2	0.1538461538	$1.2\pm0.$
			2	1.2	3.2	0.1538461538	1.2 ± 0
			3	1.2	3.1	0.1538461538	1.2 ± 0
			4	1.2	3.2	0.1538461538	1.2 ± 0
			5	1.2	3.1	0.1538461538	$1.2\pm0.$
3	19.5	22.5	1	1	2.5	0.2820512821	0.96 ± 0.09523
			2	0.9	2.5	0.2820512821	0.96 ± 0.09523
			3	1	2.5	0.2820512821	0.96 ± 0.09523

			4	0.9	2.5	0.2820512821	0.96 ± 0.09523
			5	1	2.5	0.2820512821	0.96 ± 0.09523
4	18.3	22.5	1	0.8	2.2	0.4358974359	$0.8\pm0.$
			2	0.8	2.2	0.4358974359	$0.8\pm0.$
			3	0.8	2.2	0.4358974359	$0.8\pm0.$
			4	0.8	2.2	0.4358974359	$0.8\pm0.$
			5	0.8	2.2	0.4358974359	$0.8\pm0.$
5	17.2	22.5	1	0.7	1.9	0.5769230769	0.62 ± 0.08681
			2	0.6	1.9	0.5769230769	0.62 ± 0.08681
			3	0.6	1.9	0.5769230769	0.62 ± 0.08681
			4	0.6	1.9	0.5769230769	0.62 ± 0.08681
			5	0.6	1.9	0.5769230769	0.62 ± 0.08681

 $N_{\Pi\Pi}$ — количество пластин

h — высота на координате x=0,22m

 h^\prime — высота на координате $x^\prime=1,00m$