

MGMTMFE 431:

Data Analytics and Machine Learning

Topic 6: Clustering and Unsupervised Learning: Part I

Spring 2019

Professor Lars A. Lochstoer

Agenda

- a. Intro: Unsupervised learning and clustering overview
- b. (Asymptotic) Principle Components Analysis
- c. Other techniques
 - i. K-means clustering (find clusters)
 - ii. Hierarchical clustering (determine number of clusters)

a. Unsupervised learning and clustering

In *unsupervised learning*, we don't know the dependent variable (the outcome we are trying to predict).

 For instance, we may want to classify users into main 'groups,' without knowing what those groups would be, ex ante

Examples include:

- 1. Principal components analysis of asset returns
- Topic modeling in text
- 3. Market segment analysis

In all of these cases, we are looking for *common patterns*

- That is, common movement that describes the main features of the data
 - **Example**: in PCA we were interested in the eigenvectors corresponding to the largest eigenvalues: the main drivers of stock returns

b. Review: Principal Component Analysis

Consider a panel of N stocks over T dates.

Denote the sample N by N covariance matrix Σ

- Recall the Spectral Decomposition:
 - from lecture 4, Empirical Methods in Finance:

A real, symmetric $m \times m$ matrix **B** has a spectral decomposition given by

$$B = P\Lambda P'$$

where

- ullet Λ is a diagonal matrix with eigenvalues λ on the diagonal that are all real and positive
- P is an $m \times m$ orthogonal matrix consisting of the m eigenvectors

b. Review: Principal Component Analysis

Recall that when we apply PCA to Σ , each eigenvector defines the portfolio weights in a portfolio with variance equal to the corresponding eigenvalue

• I.e., the factor that explains most of the variance in the panel (i.e., most of the covariance between stocks; factor 1) is given by

$$F_{1,t} = \sum_{n=1}^{N} P(n,1)R_{n,t}^{e}$$

where P(n,1) refers to the n'th row in column 1 of matrix P

Also recall, all factors obtained from the PCA are uncorrelated

Principle Components Analysis is an unsupervised machine learning technique

b. Asymptotic Principal Component Analysis

A really cool and useful technique is called *Asymptotic Principal Components Analysis*

- I've used this myself with good results in both practitioner and research settings
- Original work: Chamberlain and Rothschild (1983)
- Finance-related: Connor and Korajczyk (1986, 1993), Jones (2001) (see CCLE)

Works well when N is large and T is small

- That's exactly our problem in portfolio choice
- With large N, we get a covariance matrix with N*(N+1)/2 entries that typically entails so many elements that:
- The estimates are very noisy (to the point of being useless when you try to invert a matrix)
- 2. Could even be more elements than we have observations (N*T), so the matrix will not be full rank and can't even be inverted

b. Asymptotic Principal Component Analysis

You can read the theory behind APCA in the papers I have posted on CCLE

- Here I will only give the way to implement
- Assumption: returns follow a K-factor model
- Take a relevant sample of stock returns (perhaps last year of daily data)
- 2. Let Rt denote the T by N matrix of stock returns in this sample
- 3. Let Ω = Rt * Rt'
- 4. Get eigenvectors and eigenvalues of Ω
- 5. The eigenvectors corresponding to the *K* largest eigenvalues are the *T* returns to the *K* factors of the underlying factor model (up to a constant of proportionality).

As N goes to infinity and T > K, we can estimate the factor returns with arbitrary degree of accuracy (if the factor model is 'strict')

b. Asymptotic Principal Component Analysis

Connor and Korajczyk (1993) provide a test for how many *pervasive* factors there are

• I.e., what is *K*?

The cool thing is that you can perform this analysis rolling through the data and get a sense of

- To what extent is the factor structure time-varying
- What are the current factors driving most of the variation in stock returns
- This can help you construct better forward-looking hedge portfolios
- Perhaps this is informative for which risks are priced?
 - Presumably, if a factor is 'small' (has low volatility) it is not associated with a high risk premium, and vice versa

The dataset French_Factors_2012_2016.dta on CCLE has monthly returns over 5 years for 138 of the factors on Ken French's webpage

We will load the data and estimate the two main principal components using ACPA, as well as stocks' loadings on the two extracted factors

- Note: easy to extend to more factors
- There are 60 time series observations, 138 cross-sectional observations
 - Cannot estimate the covariance matrix of the 138 return series with 60 time observations of each series
 - But, going back more than 5 years may use data that is too old, not relevant...
 - This is where ACPA shines!

Use the MTS (Multivariate time series) package. I recommend it!

```
> # Download data and set as data.table
```

- > Factors_DT <- as. data. tabl e(read. dta("French_Factor_Data_2012_2016. dta"))
- # run asymptotic pca
- French_Factors = apca(Factors_DT[, !"date"], 2)

> qplot(1:60, French_Factors\$sdev, xlab = "factor", ylab="St. Dev. of factor", main="APCA factor standard deviations")

APCA factor standard deviations

10

Extract the two factors (in APCA, these are the two first PCs, remember)

```
pqlot(1:60,French_Factors$sdev, xlab = "factor", ylab="St.Dev. of factor", main="APCA factor standard deviations")
p # return factors extracted from apca
papca_factors <- data.table(date = 1:60, factor1 = French_Factors$factors[,1], factor2 = French_Factors$factors[,2])
pgplot(data = apca_factors, aes(x = date, y = factor1)) + geom_line(color = "red") +
geom_line(data = apca_factors, aes(x = date, y = factor2), color = "blue") + theme_bw() +
xlab('Months') + ylab('Factor Returns')</pre>
```


Extract the loadings required to replicate the factors:

Spring 2019

12

b. APCA: Link the loadings to the portfolios for intuition

1	Agric	35	Comps	69 Mom1		BM6												
2	Food	36	Chips	70 Mom2	105	ВМ7												
3	Soda	37	LabEq	71 Mom3	106	BM8												
4	Beer	38	Paper	72 Mom4	107	ВМ9												
5	Smoke	39	Boxes	73 Mom5	108	BM10												
6	Toys	40	Trans	74 Mom6	109	Size1												
7	Fun	41	Whisi	75 Mom7	110	Size2												
8	Books	42	Rtail	76 Mom8	111	Size3												
9	Hshld	43	Meals	77 Mom9	112	Size4	50	+										
10	Clths	44	Banks	78 Mom10	113	Size5												
11	Hlth	45	Insur	79 Invest1	114	Size6												
12	MedEq	46	RIEst	80 Invest2	115	Size7			_									
13	Drugs	47	Fin	81 Invest3	116	Size8			<u>na</u>									
14	Chems	48	Other	82 Invest4	117	Size9	Factor loadings		lll fl.	<u>Ա</u> . Ո	1 .L	n ₂		Лп. — —		J	_	4
15	Rubbr	49	MktBeta1	83 Invest5	118	Size10	0 0	1								Attacida		اووالله
16	Txtls	50	MktBeta2	84 Invest6	119	DP1	- 5			" -		٣ الا		•	7	97		-
17	BldMt	51	MktBeta3	85 Invest7	120	DP2	acic.		_ T		ייו	9	1			l l'		
18	Cnstr	52	MktBeta4	86 Invest8	121	DP3	ιĔ						4			_		
19	Steel	53	MktBeta5	87 Invest9	122	DP4			1				ı					
20	FabPr	54	MktBeta6	88 Invest10	123	DP5												
21	Mach	55	MktBeta7	89 Prof1	124	DP6												
22	ElcEq	56	MktBeta8	90 Prof2	125	DP7	-50											
23	Autos	57	MktBeta9	91 Prof3	126	DP8												
24	Aero	58	MktBeta10	92 Prof4	127	DP9												
25	Ships	59	Variance1	93 Prof5	128	DP10												
26	Guns	60	Variance2	94 Prof6	129	Issue1												
27	Gold	61	Variance3	95 Prof7	130	Issue2			0		50				- 1	00		
28	Mines	62	Variance4	96 Prof8	131	Issue3		·	U		50	Ba	se Asset	ts	I I	UU		
29	Coal	63	Variance5	97 Prof9	132	Issue4						24		-				
30	Oil	64	Variance6	98 Prof10	133	Issue5												
31	Util	65	Variance7	99 BM1	134	Issue6												
32	Telcm	66	Variance8	100 BM2	135	Issue7												
	PerSv		Variance9	101 BM3	136	Issue8												
34	BusSy _{ring}	019 68	Variance1	102 BM4	137	Issue9		Lochs	stoer								13	
	-10			103 BM5	138	Issue10		,										

b. APCA: Epilogue

Use factors to hedge movements in asset values not related to your strategy.

E.g., your signal for each stock and time is Xit (e.g., bm_it).

 Run Fama-MacBeth regression at each t including both your signal and the factor loadings of the APCA's to control for these 'large' factors in the cross-section of stock returns!

c. K-means clustering

- Principal components analysis is a linear clustering tool
 - Particularly useful for asset returns as portfolio returns are linear combinations of the underlying individual asset returns
- But, we may be interested in non-linear clustering techniques as well
- And, what about unstructured data like text? Can we think about factors for such data as well?
- We will start with perhaps the simplest technique: K-means clustering

c. K-means clustering

- Elegant method for partitioning data into *K* distinct, non-overlapping clusters.
 - Method needs you to specify number of clusters
 - Hierarchical clustering can help find this number (we don't have time to cover)
- Let $C_1, C_2, ..., C_K$ denote sets containing indices of the observations in each cluster. Let there be n obs. These sets satisfy the properties
- 1. $C_1 \cup C_2 \cup \cdots \cup C_K = \{1,2,\ldots,n\}$. In words, each observation belongs to at least one of the K clusters
- 2. $C_k \cap C_{k'} = \emptyset$ for all $k \neq k'$. In words, the clusters are non-overlapping: no observation belongs to more than one cluster

c. K-means clustering: main idea

- A good cluster is one where the within-cluster variation is as small as possible
 - Let $W(C_k)$ denote the within-cluster variation of cluster k
 - Then, the objective function is:

$$\underbrace{\min_{C_1,\ldots,C_K}} \sum_{k=1}^K W(C_k)$$

• A common choice for variation metric is the squared Euclidean distance, where $|C_k|$ denotes number of observations in k'th cluster

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2$$

c. K-means clustering: graphic intuition

FIGURE 10.5. A simulated data set with 150 observations in two-dimensional space. Panels show the results of applying K-means clustering with different values of K, the number of clusters. The color of each observation indicates the cluster to which it was assigned using the K-means clustering algorithm. Note that there is no ordering of the clusters, so the cluster coloring is arbitrary. These cluster labels were not used in clustering; instead, they are the outputs of the clustering procedure.

c. K-means clustering: usage

- K-Means is very popular in a variety of domains.
 - In biology it is often used to find structure in DNA-related data or subgroups of similar tissue samples to identify cancer cohorts.
 - In marketing, K-Means is often used to create market/customer/product segments.
 - In finance, a potential use-area is nonlinear volatility modeling, though more sophisticated methods are available (e.g., EGARCH)
 - But, can get sense of typical market *regimes/patterns* in, e.g., returns, valuations, etc.

c. K-means clustering: Example

Download S&P500 daily returns data (use 'spider', SPY)

```
> # Clean workspace
> rm(list = ls())
>
# K-means clusters for understanding data
> require(quantmod)
> require(ggpl ot2)
> Sys. setenv(TZ="GMT")
> getSymbol s('SPY', from='2000-01-01')
[1] "SPY"
>
> # plot density of daily SPY returns
> x=remove_missing(data.frame(d=index(Cl(SPY)), return=as.numeric(Delt(Cl(SPY)))))
Warning message:
Removed 1 rows containing missing values.
> ggpl ot(x, aes(return))+stat_density(colour="steelblue", size=2, fill=NA)+xlab(label='Daily returns')
> nasa=tail(cbind(Delt(Op(SPY), Hi(SPY)), Delt(Op(SPY), Lo(SPY)), Delt(Op(SPY), Cl(SPY))), -1)
> colnames(nasa)=c('High', 'Low', 'Close')
```


c. K-means clustering: Example

 Estimate assuming K = 5, using high, low and open as characteristics of a day

Transition matrix (autocorrelation of state/cluster) in percentage

```
> # show autocorrelations as transition counts
> xtabs(~autocorrel ati on[, 1]+(autocorrel ati on[, 2]))
                                                                                       autocorrelation[, 2]
                      autocorrelation[, 2]
                                                                 autocorrelation[, 1]
autocorrelation[, 1]
                                                5
                                                                                      1 0. 27 0. 43 0. 24 0. 03 0. 03
                        236
                             381
                                   209
                                               25
                                                                                      2 0.13 0.65 0.20 0.01 0.01
                        321 1574
                                   484
                                               23
                                                                                      3 0. 28 0. 43 0. 22 0. 03 0. 04
                        265
                             412
                                   207
                                               37
                                                                                      4 0. 22 0. 27 0. 23 0. 18 0. 10
                         29
                               36
                                    31
                                               14
                                                                                      5 0. 25 0. 14 0. 20 0. 29 0. 12
                         28
                              16
                                    22
                                               13
```


c. Optimal K

- Natural idea: look at average within-cluster variation
 - Code in Code Snippets

