- 1. 己知下图, 其中8253计数器用于产生8251的发送和接收时钟, TXD和RXD连在一起, 8253和8251接时钟频率1MHz。8251为异步通讯方式, 波特率为1200bps, 1个停止位, 8个数据位, 波特率因子为64。要求:
- 1)分析8253计数器提供给8251的发送和接收时钟,给出8253的工作方式_**方式3** 计算出8253计数初值_**1M/(1200*64)=13**
- 2)分析以下自发自收程序,填空编程实现从键盘输入一个字符,将其ASCII码加1后,通过异步通讯方式发送出去,再接收回来在屏幕上显示。

data segment

mes 1 db 'you can play a key on the keybord!',0dh,0ah,24h

data ends

code segment

assume cs:code,ds:data

start: mov ax,data test al,01 : 以上 2 条指令功能是 测试 mov ds,ax 发送是否准备好 jz waiti 8253 mov dx, 2BBH 先写入方式控制字 mov ah,01 mov al. 56H out1->计数器1;方式3;下面13不用BCD int 21h ; 设置计数器工作方式 out dx.al cmp al.27 mov dx. 2B9H 计数器1设置初值13 jz exit mov al. 13 mov dv 280H 8251数据口 out dx.al : 给计数器送初值 inc al xor al.al out dx,al : 发送 mov cx,03 mov cx,40h 281H 8251控制口 mov dx. s51: loop s51 delay: out dx, al mov dx, 281H next: loop delay in al,dx mov al,40h test al,02 : 以上 2 条指令功能是 检查 out dx,al : 以上 2 条指令功能是 使8251复位 接收是否准备好 iz next 0100 1111 mov al. mov dx 280h 个停止位8位数据位波特率因子64 ; 设置 8251 的工作模式 in al.dx : 以上 2 条指令功能是从8251 out dx,al 的数据口接收数据 mov al.27h mov dl.al out dx.al ; 以上 2 条指令功能是向8251送控制字允许 mov ah 02 发送和接收 int 21h lds dx,offset ms1 imp waiti mov ah,09 mov ah,4ch int 21h ; 以上 3 条指令功能功能是显示 exit waiti: mov dx, 281H 提示信息 int 21h code ends in al,dx end start

- 2. 已知卜图, 编程: 每按一次单脉冲按钮产生一个正脉冲使8255产生一次中断请求, 让CPU 进行一次中断服务: 读取逻辑电平开关k0~k7预置的ASCII码, 在屏幕上显示其对应的字符, 中断3次结束。试完成以下任务:
 - 1)分析下图及程序,分别对8255引脚PC3、PC4、PC5、CS给出所连接的信号及功能;
 - 2) 分析程序,填空编程实现上述给定的功能要求。

code segment
assume cs:code
start: mov ax,cs
mov ds,ax

mov dx, offset int_proc

mov ax, 250fH 设置功能号为25H中断类型号为0FH 功能号25为DOS功能调用

int 21h

; 设置 IRQ7 中断矢量, 其中断类型号为 0FH

cli

mov dx,21h

in al.dx

and al,07Fh

out dx.al

mov dx 28Bh 预示8255的四个端口地址为288H~28BH,即CS连接的是288H。

mov a **1011 1xxxB** 1 01 1 1 xxx ->方式1,输入, PC7~PC4输入

out dx,al ; 设置 8255 的工作方式

mov al 09h 端口C的置1置0, 100 1-> PC4置1

out dx,al ;以上2条指令完成的功能是设置PC4为1,使A端口处于中断允许

mov bl, 3 中断3次

sti ; 该条指令完成的功能是设置IF=1,允许CPU响应INTR中断请求

II: jmp I

int proc: : 中断服务程序

dx. 288H AΠ mov

al,dx ; 以上 2 条指令功能是 自8255A口 in

输入一数据

dl,al mov

ah,02h mov

21h ; 以上3条指令功能是显示ASCII int

为所输入的数据的字符

dl,0dh mov

21h int

dl,0ah mov

21h int

dx,20h 操作8259的OCW2,发出EOI mov

al,20h mov

dx,al ; 以上 3 条指令功能是 发出 8259 的E0 I 结束命令 out

dec bl

jnz next

in al.21h 操作8259的OCW1

Or al,80h

out 21h,al : 以上 3 条指令功能是

sti

设置OCW1, 屏蔽IRQ7,

mov ah,4ch 关IRQ7中断

21h int

next: iret :该条指令完成的功能是_

code ends

中断返回指令, 返回主程序的断点处

end start

附:

	D7 D6		D5	D4	D3	D2	D1	D0
	00:选择计数器 0; 10:选择计数器 2;	01: 选择计数器 1 11: 无效	00:计数器锁存: 0 10:只读写高字节: 11:先读写低字节。				X10:方式 2 101:方式 5	1:BCD 计数 0:二进制计数

8251	D7: EH		D5: RTS	D4: ER	D3: SBRK		D1: DTR	D0 : TXEN
控制字	进入搜索方式	1:内部复位	1:请求发送	1:清除错误标记	1:发断缺字符 0:正常工作	1:允许接收	1:数据终端准备好	1:允许发送

8251	D7: DSR	D6	D5: FE	D4: OE	D3: PE	D2: TXE	D1: RXRDY	DO: TXRDY
状态字		1:接收断缺字符 0:正常工作	帧校验错标志	溢出错标志	奇偶错标志	1:发送器空	1:接收器准备好	1:发送器准备好
8250	D7	D6	D5	D4	D3	D2	D1	D0

8259	D7	D6	D5	D4	D3	D2	D1	D0
OCW2	R	SL	EOI	0	0	L2	L1	LO