— Algorithm Metropolis Adjusted Langevin Algorithm (MALA)

Input: Target $f(x) \propto \exp(-V(x))$, initial distribution π_0 , step-size $\epsilon > 0$, sample size N.

1: Define the Markov kernel

$$q_{LG}(x, \cdot) := \mathcal{N}(x - \epsilon \nabla V(x), 2\epsilon I).$$

- 2: Run Metropolis Hastings with input f, π_0 , q_{LG} , N.
- 3: **Output:** Sample $\{X^{(n)}\}_{n=1}^{N}$.

— Algorithm Parallel Tempering

Input: Inverse temperatures $\beta_1 = 1 > \cdots > \beta_K$, proposal Markov kernels $\{q_k(x,z)\}_{k=1}^K$, initializations $\{X_k^{(0)}\}_{k=1}^K$, sample size N.

- 1: **for** $n = 0, 1, \dots, N-1$ **do**
- for $k=1,\ldots,K$ do generate $X_k^{(n+1)}$ by doing a Metropolis Hastings step (including accept/reject) with 3: current state $X_k^{(n)}$, proposal kernel q_k , and target f_{β_k} .
- end for 4:
- Choose $\ell, m \in \{1, \dots, K\}$ with $\ell \neq m$ uniformly at random. 5:
- 6:
- for $k \notin \{\ell, m\}$ do set $X_k^{(n+1)} = \tilde{X}_k^{(n+1)}$. 7:
- end for 8:
- 9: Attempt a swap of states between the ℓ -th and the m-th chains:

10:

$$(X_{\ell}^{(n+1)}, X_m^{(n+1)}) = \begin{cases} (\tilde{X}_m^{(n+1)}, \tilde{X}_{\ell}^{(n+1)}) & \text{with probability } a_{\ell,m}, \\ (\tilde{X}_{\ell}^{(n+1)}, \tilde{X}_m^{(n+1)}) & \text{with probability } 1 - a_{\ell,m}, \end{cases}$$

where 11:

$$a_{\ell,m} := \min \left\{ 1, \frac{f_{\beta_{\ell}}(\tilde{X}_{m}^{(n+1)}) f_{\beta_{m}}(\tilde{X}_{\ell}^{(n+1)})}{f_{\beta_{m}}(\tilde{X}_{m}^{(n+1)}) f_{\beta_{\ell}}(\tilde{X}_{\ell}^{(n+1)})} \right\}.$$

- 12: **end for**
- 13: **Output:** Sample = $\{X_1^{(n)}\}_{n=1}^N$.