Lecture 3

Correlation: Displacement vs Horsepower

Correlation: Answer

displacement vs horsepower

[1] 0.7909486

Correlation: Displacement vs Miles per Gallon

Correlation: Answer

Correlation: Real Axle Ratio vs Quarter Mile Time

rear axle ratio vs quarter mile time

Correlation: Answer

rear axle ratio vs quarter mile time

[1] 0.09120476

Correlation Example: nonlinear

Correlation Example: nonlinear, answer

OLS Regression

- Our goal: to estimate the causal effect of some treatment
 - e.g. how does welfare reform impact poverty rates?
 - Does getting the flu vaccine improve your health?
 - Does increasing teacher salary improve students outcomes?
 - Do cats respond to cat music?
 - * This is a real academic paper.

OLS Regression: Causal Relationships

- Even simple causal models can have very complicated formulas. Think physics calculations
- We need to simplify this model to get anywhere. We assume a linear relationship
- e.g. student grades increase (or decrease) linearly with teacher salary
 - Going from \$20,000/year to \$21,000/year has the same effect on grades as going from \$150,000/year to \$151,000/year
 - We relax this assumption later

A Roadmap of What's to Come

- Start with mechanics of OLS and how to interpret
 - Focus is on describing data
- Once we get to multivariate OLS we can control for issues we know cause bias
- We finish by engineering specific controls to create "quasi-experiments"

OLS Regression: "The Core Model"

- We arrive at what the book calls the core model, though you will not see this terminology elsewhere
 - It's also called the regression equation or estimating equation
- It is a generic formula that applies to any relationship between x and y:
- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

OLS Regression: Example

- Suppose we use the teacher salary example: how do student's test scores relate to teacher salaries on average?
- We can rename our "core model":
 - $grade_i = \beta_0 + \beta_1 salary_i + \varepsilon_i$
- How do we interpret β_1 ? β_0 ?

OLS Regression: iClicker

- $grade_i = \beta_0 + \beta_1 salary_i + \varepsilon_i$
- Salary is in dollars. Grade is in GPA scale (1-4). Interpret β_1
- A A 1 unit increase in GPA is associated with a β_1 dollar increase in teacher salary, on average
- B A 1 dollar increase in teacher salary is associated with a β_1 unit increase in student GPA, on average
- C A β_1 unit increase in GPA is associated with a 1 dollar increase in teacher salary, on average
- D A β_1 dollar increase in teacher salary is associated with a 1 unit increase in student GPA, on average

OLS Regression: "The Core Model"

- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
 - $-y_i$ is our outcome (dependent) variable for individual i. Here it's student i's grade
 - $-\beta_0$ is the intercept. If we take our model seriously it's the **average** grade for a student whose teacher has 0 salary
 - $-\ x_i$ is the independent variable for individual i. Here it is student i's teacher's salary
 - $-\beta_1$ is the slope. This is the actual (average) causal effect of increasing x by 1 unit on y

OLS Regression: "The Core Model"

- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- ε_i is the error term. It captures every factor not included in our model (which is a lot of things!)

- Examples: student intelligence. Other student characteristics (e.g. demographics). Whether the student is interested in a subject. Whether the student slept in for an exam.
- It has mean value of 0

Sources of variation

- Suppose we talk about "the" causal effect of increasing teacher salary on grades. Consider the following ways that teacher salary can increase:
 - A more qualified teacher is hired
 - A bonus is paid based on performance
 - Teachers with low pay are laid off and class sizes increase
 - There is a shortage of teachers, driving up salaries
 - Salaries must be increased due to bad working conditions
 - Hours are increased, so salary is also increased

What we're measuring

- We're measuring the average association between the two variables in the data
 - We're getting a mix of all of the possible reasons why different teachers have different salarys (and students have different grades)
 - The weightings are based on the population and sample we use
- This is called a reduced form estimate.
- Just describing this data is often useful

OLS Regression: Estimating the Core Model

- We don't know the true values of β_0, β_1 , so we need to estimate
- We end up estimating $y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + \hat{\varepsilon}_i$
- \bullet Hats are used to indicate estimates. We know the actual value of x and y, but not anything else

OLS Questions

- $grade_i = \beta_0 + \beta_1 salary_i + \varepsilon_i$
 - salary_i is salary (in thousands of dollars), $grade_i$ is final grade in percent (e.g. 100)
 - Suppose $\beta_0 = 60, \beta_1 = 1$ how do we interpret this?
 - Student 1 has a teacher who is paid \$20000. Calculate $\hat{g}rade_1$
 - Student 1's actual grade in class was a 65. What is ε_1 ?

OLS Questions

- $grade_i = \beta_0 + \beta_1 salary_i + \varepsilon_i$
 - salary_i is salary (in thousands of dollars), $grade_i$ is final grade in percent (e.g. 100)
 - What is included in ε ?
 - Suppose we estimate $\hat{\beta}_0 = 40, \hat{\beta}_1 = 2$. What is $\hat{g}rade_1, \hat{\varepsilon}_1$?
 What is included in $\hat{\varepsilon}$ that is not included in ε ?

OLS Regression: Some Observations

- Core model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- Key question 1: If the model is this simplified, is it even useful?
- From a **predictive analytics** perspective this is very weak. But as long as some simple assumptions are satisfied (covered later) this efficiently measures an average causal effect.
- This is important for policy evaluation. If a union negotiates a salary increase what will happen to the average grade? This is the causal effect.

OLS Regression: Some Observations

- Key Question 2: Given our model, how do we calculate β_1 (and β_0)?
- We can never observe β_1 , but we can estimate it as $\hat{\beta}$ using ordinary least squares regression
- $\hat{\beta}_1$ is a sample statistic (we'll calculate later)
- We then have to ask if $\hat{\beta}_1$ is close to β_1

OLS regression: ideas

- Our model is a line, and we have data. We estimate β_0, β_1 by finding the best fit line to the observed data
- We can measure the fit using sum of squared errors or mean squared error
- $SSE = \sum \varepsilon_i^2 = \sum (y_i \beta_0 \beta_1 x_i)^2$, MSE = SSE/n

OLS Regression: Graph

OLS Regression: Fitting

- Here we have a scatterplot of data, and the line y = 3 + 1.1x. For each point we can calculate the error term, then take the average to get the mean square error.
- How do we know what the best fit line is?
- Naive: for every possible β_0, β_1 compute the MSE (or SSE), then choose the parameters that give the lowest value (best fit)
 - This is actually how many machine learning models work, but they use methods from calculus to make it fast