LAPORAN TUGAS

Jaringan Syaraf Tiruan

"Implementasi Algoritma Perceptron, Hebb Net, dan Adaline"

NAMA : RIDHO NUR ROHMAN WIJAYA 06111840000065

DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA KOMPUTASI DAN SAINS DATA INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA

2021

A. SOAL

Pada tugas ini akan ditampilkan penerapan algoritma dari soal yang ada.

1. Deskripsi Soal

Implementasikan algortima Perceptron, Hebb Net, dan Adaline dengan input dan target bipolar menggunakan fungsi NAND, AND NOT, OR, NOR, XOR.

2. Metode penyelesaian

Penyelesaian pada masalah ini dapat diselesaikan dengan langkah-langkah sebagai berikut:

- 1) Tentukan terlebih dahulu semua variabel yang diperlukan
- 2) Tentukan semua target yang ditanyakan
- 3) Buat function untuk setiap algoritma
- 4) Hitung semua hasil dari semua algoritma
- 5) Tampilkan komparasi hasil dari semua algoritma
- 6) Visualisasikan komparasi hasil dari semua algoritma

Pada laporan ini akan diimplementasikan dengan menggunakan bahasa pemrograman Python.

3. Jawaban Masalah

Percobaan dilakukan secara langsung dengan membangkitkan bilangan acak yang sesuai untuk setiap algoritma yang ada. Sebagai contoh untuk fungsi NAND dengan learning rate 0.15, threshold 0.12, dan tolerasi = 0.05 maka akan dihasilkan hasil sebagai berikut:

Algoritma	w_1	w_2	b
Perceptron	-0.15	-0.15	0.15
Hebb Net	-2	-2	2
Adaline	-0.25	-0.20	0.29

Sehingga akan menghasilkan garis lurus sebagai berikut:

a) Algoritma Perceptron

$$b + \sum_{i=1}^{n} w_i x_i = 0$$
$$0.15 - 0.15x_1 - 0.15x_2 = 0$$
$$x_1 + x_2 = 1$$

b) Algoritma Hebb Net

$$b + \sum_{i=1}^{n} w_i x_i = 0$$
$$2 - 2x_1 - 2x_2 = 0$$
$$x_1 + x_2 = 1$$

c) Algoritma Adaline

$$b + \sum_{i=1}^{n} w_i x_i = 0$$
$$0.29 - 0.25x_1 - 0.20x_2 = 0$$
$$25x_1 + 20x_2 = 29$$

serta jika di visualisasikan akan menghasilkan grafik sebagai berikut:

Secara keseluruhan, source code program dari setiap algoritma akan ada pada bab Source Code dan hasil training semua algoritma akan ditampilkan pada bab Running Program.

B. SOURCE CODE

Program penyelesaian masalah tersebut dapat di implementasikan pada source code berikut ini:

```
Tugas1PerceptronHebbNetAdaline.py
      # Mengimport library yang diperlukan
     import numpy as np
2.
     import matplotlib.pyplot as plt
3.
5.
     # Inisialisasi input bipolar
     xxb input = np.array([[1,1,1]],
6.
7.
                            [1,-1,1],
8.
                            [-1,1,1],
9.
                            [-1,-1,1]
10.
11.
      # Inisialisasi learning rate
12.
     learning rate = np.random.uniform(0.1,0.2)
13.
14.
     # Inisialisasi threshold
15.
     threshold = np.random.uniform(0,0.25)
16.
17.
     # Inisialisasi toleransi
18.
     tol = 0.05
19.
20.
21.
     # Inisialisasi logika NAND dengan target bipolar
22.
     target nand = np.array([-1,1,1,1])
23.
24.
     # Inisialisasi logika AND NOT dengan target bipolar
25.
     target and = np.array([-1,1,-1,-1])
26.
27.
      # Inisialisasi logika OR dengan target bipolar
28.
     target or = np.array([1,1,1,-1])
29.
30.
     # Inisialisasi logika NOR dengan target bipolar
31.
     target nor = np.array([-1,-1,-1,1])
32.
33.
     # Inisialisasi logika XOR dengan target bipolar
34.
     target xor = np.array([-1,1,1,-1])
35.
36.
37.
38.
      # Function untuk metode Perceptron
39.
      def PerceptronMethod(xxb,t,alpha,threshold):
40.
           Inisialisasi weights dan bias serta wadah weight changes
41.
         wwb = np.zeros(xxb.shape[1])
42.
         weight changes = np.ones(xxb.shape)
43.
         max iteration = 1
44.
```

```
while not np.array equal(weight changes,np.zeros(xxb.shape))
45.
      and max iteration<100:</pre>
46.
               for i in range(len(t)):
47.
                   y in = sum(xxb[i,:]*wwb)
                   \overline{\text{theta}} = \text{threshold}
48.
49.
                   if y in > theta:
50.
                       y = 1
51.
                   elif y in < -theta:</pre>
                       y = -1
52.
53.
                   else:
                       y = 0
54.
55.
                   temp = wwb
56.
                   if y != t[i]:
57.
                       wwb = wwb + alpha*t[i]*xxb[i,:]
                   weight changes[i,:] = wwb-temp
58.
59.
               max iteration += 1
60.
          return wwb
61.
62.
      # Function untuk metode Hebb Net
63.
64.
      def HebbNetMethod(xxb,y):
65.
            Inisialisasi weights dan bias
66.
          wwb = np.zeros(xxb.shape[1])
67.
68.
          for i in range(len(y)):
69.
               wwb = wwb + xxb[i,:]*y[i]
70.
          return wwb
71.
72.
73.
      # Function untuk metode Adaline
74.
      def AdalineMethod(xxb,t,alpha,tol):
75.
            Inisialisasi weight dan bias
76.
          wwb = np.zeros(xxb.shape[1])
77.
          delta = np.full(xxb.shape[1],tol+1)
78.
          max iteration = 1
79.
80.
          while max(delta[:-1])>tol and max iteration<=100:</pre>
81.
               for i in range(len(t)):
82.
                   y in = sum(xxb[i,:]*wwb)
83.
                   delta = alpha*(t[i]-y in)*xxb[i,:]
84.
                   wwb = wwb + delta
85.
               max iteration += 1
86.
          if not (np.array equal(t,TestingAdaline(xxb,wwb))):
87.
               wwb = np.zeros(xxb.shape[1])
          return wwb
88.
89.
90.
      # Function untuk testing Adaline
91.
      def TestingAdaline(xxb, wwb):
92.
          y = np.zeros(xxb.shape[0])
93.
94.
          for i in range(xxb.shape[0]):
95.
               y in = sum(xxb[i,:]*wwb)
96.
               if y in >=0:
97.
                   y[i] = 1
```

```
98.
              else:
99.
                  y[i] = -1
100.
          return y
101.
102.
103.
      # Hasil keluaran dengan metode Perceptron
     perceptron result = {
104.
          0:
105.
      PerceptronMethod(xxb input, target nand, learning rate, threshold), #
      Perceptron dengan logika AND
          1:
      PerceptronMethod(xxb input, target andnot, learning rate, threshold),
106.
      # Perceptron dengan logika AND NOT
107.
     PerceptronMethod(xxb input, target or, learning rate, threshold), #
      Perceptron dengan logika OR
      PerceptronMethod(xxb input,target nor,learning rate,threshold), #
108.
      Perceptron dengan logika NOR
     PerceptronMethod(xxb input, target xor, learning rate, threshold) #
109.
      Perceptron dengan logika XOR
110.
111.
112.
      # Hasil keluaran dengan metode Hebb Nett
113.
     hebbnet result = {
          0 : HebbNetMethod(xxb input, target nand), # Hebb Net dengan
114.
      logika AND
         1 : HebbNetMethod(xxb input, target andnot), # Hebb Net dengan
115.
      logika AND NOT
          2 : HebbNetMethod(xxb input, target or), # Hebb Net dengan
116.
      logika OR
         3 : HebbNetMethod(xxb input, target nor), # Hebb Net dengan
117.
      logika NOR
         4 : HebbNetMethod(xxb input, target xor) # Hebb Net dengan
118.
      logika XOR
119.
120.
121.
     # Hasil keluaran dengan metode Adaline
122.
     adaline result = {
          0 : AdalineMethod(xxb_input,target_nand,learning_rate,tol), #
123.
      Adaline dengan logika AND
          1 : AdalineMethod(xxb input, target and not, learning rate, tol),
124.
      # Adaline dengan logika AND NOT
          2 : AdalineMethod(xxb input, target or, learning rate, tol), #
125.
      Adaline dengan logika OR
          3 : AdalineMethod(xxb input, target nor, learning rate, tol), #
126.
      Adaline dengan logika NOR
          4 : AdalineMethod(xxb input, target xor, learning rate, tol), #
127.
      Adaline dengan logika XOR
128.
     }
129.
130.
      # Komparasi hasil keluaran dengan metode Perceptron, Hebb Net, dan
131.
      Adaline
```

```
132.
133.
      # Membuat header tabel
134.
     print("Metode Perceptron".center(40),end="")
135.
     print("Metode Hebb Net".center(40),end="")
136.
     print("Metode Adaline".center(40))
137.
138. print("".center(120,"-"))
139.
     for k in range(3):
          print("Logika".center(10) + "w1".center(10) + "w2".center(10)+
140.
     "b".center(10),end="")
141. print("".center(120,"-"))
142.
143.
     # Membuat nama logika yang digunakan
144.
     logic name = {
145.
         0 : "NAND",
146.
          1 : "AND NOT",
147.
          2 : "OR",
          3 : "NOR"
148.
          4 : "XOR"
149.
150. }
151.
152.
     for i in range (5):
153.
          logic = logic name.get(i)
154.
          result = {
155.
              0 : perceptron result[i],
156.
              1 : hebbnet result[i],
157.
              2 : adaline result[i]
158.
          }
159.
160.
           Menampilkan hasil training
161.
          for j in range(3):
162.
              print(logic.center(10) +
163.
                    "{:.2f}".format(result[j][0]).center(10) +
                    "{:.2f}".format(result[j][1]).center(10) +
164.
165.
                    "{:.2f}".format(result[j][2]).center(10), end="")
166.
          print()
167.
168. print("".center(120,"-"))
169.
170.
171. # Visualisasi hasil
172.
1<u>73.</u> target = {
174.
         0 : target_nand,
175.
          1 : target andnot,
176.
          2 : target or,
177.
          3 : target_nor,
178.
          4 : target xor,
179.
     }
180.
     title = {
          0 : ["Perceptron NAND", "Perceptron AND NOT", "Perceptron
181.
      OR", "Perceptron NOR", "Perceptron XOR"],
          1 : ["Hebb Net NAND", "Hebb Net AND NOT", "Hebb Net OR", "Hebb
182.
      Net NOR", "Hebb Net XOR"],
```

```
2 : ["Adaline NAND", "Adaline AND NOT", "Adaline OR", "Adaline
183.
      NOR", "Adaline XOR"]
184.
      }
185.
      result = {
186.
          0 : perceptron result,
          1 : hebbnet result,
187.
188.
          2 : adaline result
189.
190.
191.
      # Function untuk memvisualisasikan hasil
192.
      def plot result(k):
          plt.figure(figsize=(30,30))
193.
194.
          for i in range(5):
195.
                Warna marker
196.
              color = ["r" if c==1 else "b" for c in target[i]]
197.
198.
                Transformasikan hasil ke dalam garis linier
199.
              x = np.linspace(-2,2,2)
200.
              if result.get(k)[i][1]==0:
201.
                  m=0
202.
                  n=3
203.
              else:
204.
                  m = -result.get(k)[i][0]/result.get(k)[i][1]
205.
                  n = -result.get(k)[i][2]/result.get(k)[i][1]
206.
              y = m*x+n
207.
208.
                Visualisasikan hasil
209.
              plt.subplot(1,5,i+1)
210.
              plt.plot(x,y,"g-")
211.
                Visualisasikan marker penanda target
212.
     plt.scatter(xxb input[:,0],xxb input[:,1],c=color,linewidths=10)
213.
              plt.scatter(3,3,c="r",linewidths=5,label="+1")
214.
              plt.scatter(3,3,c="b",linewidths=5,label="-1")
215.
216.
                Buat garis sumbu-x dan sumbu-y
217.
              plt.plot([-2, 2],[0, 0],"k-")
218.
              plt.plot([0, 0],[-2, 2],"k-")
219.
220.
                Buat keterangan grafik
221.
              plt.title(title.get(k)[i], fontsize = 20)
222.
              plt.legend(fontsize = "x-large", loc = "best")
223.
              plt.axis("square")
224.
225.
                Batasi sumbu-x dan sumbu-y
226.
              plt.xlim(-2,2)
227.
              plt.ylim(-2,2)
228.
              plt.xticks([])
229.
              plt.yticks([])
230.
          plt.show()
231.
     # Komparasikan visualisasi hasil
232.
     for k in range (3):
          plot result(k)
233.
```

C. RUNNING PROGRAM

Beberapa hasil outputan dari program tersebut adalah:

1) Tampilan dengan learning rate = 0.11, threshold = 0.12, dan toleransi = 0.05

	Metode Pe	erceptron			Metode Hebb Net				Metode Adaline				
Logika	w1	w2	b	Logika	w1	w2	b	Logika	w1	w2	b		
NAND	-0.23	-0.23	0.23	NAND	-2.00	-2.00	2.00	NAND	-0.20	-0.17	0.22		
AND NOT	0.23	-0.23	-0.23	AND NOT	2.00	-2.00	-2.00	AND NOT	0.53	-0.43	-0.50		
OR	0.23	0.23	0.23	OR	2.00	2.00	2.00	OR	0.53	0.57	0.50		
NOR	-0.23	-0.23	-0.23	NOR	-2.00	-2.00	-2.00	NOR	-0.23	-0.25	-0.20		
XOR	0.00	0.00	0.00	XOR	0.00	0.00	0.00	XOR	0.00	0.00	0.00		

2) Tampilan dengan learning rate = 0.15, threshold = 0.14, dan toleransi = 0.05

	Metode Pe	erceptron			Metode Hebb Net				Metode Adaline				
Logika	w1	w2	b	Logika	w1	w2	b	Logika	w1	w2	b		
NAND	-0.15	-0.15	0.15	NAND	-2.00	-2.00	2.00	NAND	-0.25	-0.20	0.30		
AND NOT	0.15	-0.15	-0.15	AND NOT	2.00	-2.00	-2.00	AND NOT	0.55	-0.40	-0.50		
OR	0.15	0.15	0.15	OR	2.00	2.00	2.00	OR	0.55	0.60	0.50		
NOR	-0.15	-0.15	-0.15	NOR	-2.00	-2.00	-2.00	NOR	-0.30	-0.34	-0.26		
XOR	0.00	0.00	0.00	XOR	0.00	0.00	0.00	XOR	0.00	0.00	0.00		

3) Tampilan dengan learning rate = 0.11, threshold = 0.07, dan toleransi = 0.05

	Metode Pe	erceptron			Metode Hebb Net				Metode Adaline		
Logika	w1	w2	b	Logika	w1	w2	b	Logika	w1	w2	b
NAND	-0.11	-0.11	0.11	NAND	-2.00	-2.00	2.00	NAND	-0.19	-0.16	0.21
AND NOT	0.11	-0.11	-0.11	AND NOT	2.00	-2.00	-2.00	AND NOT	0.53	-0.44	-0.50
OR	0.11	0.11	0.11	OR	2.00	2.00	2.00	OR	0.53	0.56	0.50
NOR	-0.11	-0.11	-0.11	NOR	-2.00	-2.00	-2.00	NOR	-0.22	-0.24	-0.19
XOR	0.00	0.00	0.00	XOR	0.00	0.00	0.00	XOR	0.00	0.00	0.00

