

AUTONOMICZNY TRACKER SOLARNY

Ignacy Rogatty

Promotor: dr hab. inż. Jacek Rezmer

CEL I ZAKRES PRACY

- Celem pracy było wykonanie systemu podążającego za słońcem (trackera solarnego) na mikrokontrolerze i silnikach elektrycznych.
- Zakres pracy obejmował opracowanie koncepcji urządzenia, wykonanie części mechanicznej i elektronicznej urządzenia, utworzenie programu sterującego i komunikacyjnego oraz prowadzenie testów i analizę działania systemu.

RODZAJE TRACKERÓW SOLARNYCH

Two-axis tracking PV array

Rys. 1. Tracker dwuosiowy

One axis tracking PV array with axis oriented south.

Rys. 2. Tracker jednoosiowy

TRACKER SOLARNY JEDNOOSIOWY POCHYLONY

Rys. 3. Chiński tracker jednoosiowy pochylony

KĄT AZYMUTU I ELEWACJI

Rys. 4. Wizualizacja kątów azymutu i elewacji, oraz horyzontu i zenitu

ZAŁOŻENIA PROJEKTOWE

- Budowa prototypu trackera solarnego jednoosiowego pochylonego wraz z panelem stałym jako punkt odniesienia.
- Możliwość manualnej regulacji kąta nachylenia trackera na przestrzeni roku.
- Przeprowadzenie badań prototypu, które udowodnią tezę, że tracker jednoosiowy pochylony jest w stanie wyprodukować zbliżoną ilość energii do trackera dwuosiowego przy zmniejszonych kosztach inwestycji.

KONSTRUKCJA

Rys. 5. Konstrukcja prototypu trackera jednoosiowego pochylonego

ELEKTRONIKA

Rys. 6. Elementy elektroniczne prototypu trackera jednoosiowego pochylonego

PROGRAM ARDUINO

- Pomiar napięcia na zaciskach paneli fotowoltaicznych.
- Pomiar kątów nachylenia trackera w dwóch osiach, przeliczanie ich na kąty azymutu i elewacji.
- Obliczanie pozycji Słońca na niebie na podstawie lokalizacji trackera i czasu UTC.
- Przesyłanie tych danych do komputera PC poprzez port szeregowy oraz zapis na kartę MicroSD.
- 3 tryby wybierane przyciskiem (manualny, automatyczny, testowy).
- Regulacja dwupołożeniowa kąta azymutu i elewacji trackera za pomocą silnika krokowego.

TESTY PROGRAMU

```
**********
Tryb automatyczny
18.12.2021 -- 16:34:19
Napiecie na panelu 1: 2.64
Napiecie na panelu 2: 3.05
Wartość zadana azymutu trackera: -30.18
Kat azymutu Słońca:
                    -57.81
Kat azymutu trackera: 3.84
Kat elewacji Słońca: -3.66
Kat elewacji trackera: 51.51
Kat elewacji panelu stałego: 51.67
***********
Tryb automatyczny
18.12.2021 -- 16:34:20
Napiecie na panelu 1: 2.65
Napiecie na panelu 2: 3.10
Wartość zadana azymutu trackera: -30.18
Kat azymutu Słońca:
                    -57.81
Kat azymutu trackera: 3.77
Kat elewacji Słońca:
Kat elewacji trackera: 52.28
Kat elewacji panelu stałego: 52.44
```

```
21.09.2022 11:03:00 2.23 1.41 -5.67 39.23 39.46 -5.85 39.35 3 21.09.2022 11:04:00 2.21 1.41 -5.27 39.44 39.64 -6.17 39.33 3 21.09.2022 11:05:00 2.23 1.40 -5.46 39.37 39.59 -6.50 39.32 3 21.09.2022 11:06:00 2.24 1.39 -6.64 39.11 39.42 -6.82 39.30 3 21.09.2022 11:07:00 2.23 1.40 -6.47 39.14 39.44 -7.14 39.28 3 21.09.2022 11:08:00 2.26 1.41 -6.55 38.96 39.26 -7.46 39.26 3 21.09.2022 11:09:00 2.24 1.42 -6.18 38.94 39.21 -7.78 39.24 3 21.09.2022 11:10:00 2.20 1.41 -7.17 39.15 39.52 -8.11 39.21 3 21.09.2022 11:11:00 2.21 1.41 -7.66 38.47 38.88 -8.43 39.19 3 21.09.2022 11:12:00 2.22 1.41 -7.55 39.47 39.88 -8.75 39.17 3 21.09.2022 11:13:00 2.20 1.41 -7.88 38.81 39.25 -9.07 39.14 3 21.09.2022 11:14:00 2.23 1.39 -9.45 38.54 39.17 -9.39 39.12 3
```

Rys. 8. Ramki danych zapisane na karcie SD

Rys. 7. Ramki danych przesyłane przez port szeregowy

BADANIE OPTYMALNEGO KĄTA NACHYLENIA

Rys. 9. Zależność wyprodukowanej energii przez tracker dwuosiowy od kąta nachylenia trackera dla dnia 21 września 2022

BADANIA PRODUKCJI ENERGII

- Napisano skrypt Matlab'a obliczający teoretyczną produkcję energii.
- Dane wczytywane są z pliku tekstowego zapisanego w trakcie badań na karcie SD.

Rys. 10. Tor ruchu Słońca i kierunku trackera na niebie dla: a) 21 czerwca, b) 21 września

BADANIE PRODUKCJI – LATO

Rys. 11. Teoretyczna moc produkowana przez panel stały, na trackerze jednoosiowym i na trackerze dwuosiowym dla dnia 21 czerwca 2022

Energia wyprodukowana przez panel stały: 1.512kWh
Energia wyprodukowana przez tracker 1-osiowy: 1.936kWh
Energia wyprodukowana przez tracker 2-osiowy: 2.077kWh
Zysk energii trackera 1-osiowego w stosunku do panelu stałego: 28.1%
Zysk energii trackera 2-osiowego w stosunku do panelu stałego: 37.4%
Stosunek energii z trackera 1-os. do energii z trackera 2-os.: 93.2%

Rys. 12. Teoretyczna energia wyprodukowana przez wszystkie 3 panele fotowoltaiczne dla dnia 21 czerwca 2022

BADANIE PRODUKCJI – JESIEŃ

Rys. 13. Teoretyczna moc produkowana przez panel stały, na trackerze jednoosiowym i na trackerze dwuosiowym dla dnia 21 września 2022

Energia wyprodukowana przez panel stały: 1.1kWh
Energia wyprodukowana przez tracker 1-osiowy: 1.34kWh
Energia wyprodukowana przez tracker 2-osiowy: 1.351kWh
Zysk energii trackera 1-osiowego w stosunku do panelu stałego: 21.9%
Zysk energii trackera 2-osiowego w stosunku do panelu stałego: 22.9%
Stosunek energii z trackera 1-os. do energii z trackera 2-os.: 99.2%

Rys. 14. Teoretyczna energia wyprodukowana przez wszystkie 3 panele fotowoltaiczne dla dnia 21 września 2022

BADANIE PRODUKCJI – ZIMA

Rys. 11. Teoretyczna moc produkowana przez panel stały, na trackerze jednoosiowym i na trackerze dwuosiowym dla dnia 21 grudnia 2022

Energia wyprodukowana przez panel stały: 0.6715kWh
Energia wyprodukowana przez tracker 1-osiowy: 0.7043kWh
Energia wyprodukowana przez tracker 2-osiowy: 0.7253kWh
Zysk energii trackera 1-osiowego w stosunku do panelu stałego: 4.88%
Zysk energii trackera 2-osiowego w stosunku do panelu stałego: 8.01%
Stosunek energii z trackera 1-os. do energii z trackera 2-os.: 97.1%

Rys. 12. Teoretyczna energia wyprodukowana przez wszystkie 3 panele fotowoltaiczne dla dnia 21 grudnia 2022

PODSUMOWANIE

- Z badań wynika, że dla wszystkich trackerów solarnych okres, w którym zysk produkcji energii elektrycznej w stosunku do paneli stałych jest największy to okres letni. Najniższy zysk energii jest w okresie zimowym.
- W przypadku badanego trackera jednoosiowego pochylonego największą skuteczność śledzenia ruchu Słońca na niebie uzyskuje się w okolicach przesilenia wiosennego i jesiennego.
- Cel i zakres pracy zostały zrealizowane, a badania dowiodły, że przy zastosowaniu trackera jednoosiowego pochylonego jest możliwe uzyskanie produkcji energii na bardzo zbliżonym poziomie do trackera dwuosiowego przy zmniejszonych kosztach inwestycji.

DZIĘKUJĘ ZA UWAGĘ