Tarea 03

David Gómez

VIGILADA MINEDUCACIÓN

Índice

1.	Seco	ción 2.1	2
	1.1.	Punto 1: Nombre todas las funciones booleanas unarias	2
	1.2.	Punto 3: Demuestre que $H_{\not\equiv}=(H_{\neg}\circ H_{\equiv})$	2
	1.3.	Punto 4: Tabla de verdad	2
		1.3.1. a) $(true \not\equiv false)$	2
		1.3.2. d) $(p \land (\neg q))$	2
		1.3.3. j) $((p \land q) \rightarrow p)$	2
		1.3.4. k) $(p \to (p \land q))$	2
		1.3.5. m) $((p \equiv (q \equiv r)) \equiv ((p \equiv q) \equiv r))$	3
	1.4.	Punto 5: Comparar $(p \land q)$ y $((p \lor q) \equiv (p \equiv q))$	3
	1.5.	Punto 8: Una no tautología	3
	1.6.	Punto 9	3
		1.6.1. a) Definir las relaciones	3
		1.6.2. b) Investigar cuando una relación binaria es	4
		1.6.3. c) Clasificar las relaciones lógicas	4
	1.7.		5
	1.8.	Punto 14: Juana quiere ir de compras	5
		1.8.1. a) Especificar las opciones	5
		100 1) 0	5
2.		ción 2.2	6
	2.1.		6
		w) FF0 w v v 1 w 1 w · (†)	6
		"/ FFO" " " " " - 1 " " (†)	6
			6
	2.3.	Punto 7: Demostrar	6
	2.4.	Punto 8: Demostrar	7
	2.5.	Punto 9: Demostrar	7

Página 1 Taller 02

1. Sección 2.1

1.1. Punto 1: Nombre todas las funciones booleanas unarias

- H¬
- \blacksquare H_{false}
- \blacksquare H_{true}

1.2. Punto 3: Demuestre que $H_{\not\equiv}=(H_{\neg}\circ H_{\equiv})$

				_								
	ϕ	ψ	$(\phi \not\equiv \psi)$		ϕ	ψ	$(\phi \equiv \psi)$		ϕ	ψ	$(\phi \equiv \psi)$	$(\neg(\phi \equiv \psi))$
	T	Т	F		Т	Т	T		Т	Т	T	F
	T	F	Т		Т	F	F		Т	F	F	T
	F	Т	Т		F	Т	F		F	Т	F	F
	F	F	F		F	F	Т		F	F	Т	Т
•	$H_{ eq}$ $H_{ eq} \circ H_{ eq}$											

1.3. Punto 4: Tabla de verdad

1.3.1. a) $(true \not\equiv false)$

true	false	$(true \not\equiv false)$
T	F	T

1.3.2. d) $(p \wedge (\neg q))$

p	q	$(\neg q)$	$(p \wedge (\neg q))$
T	F	T	T
Т	Т	F	F
F	F	T	F
F	Т	F	F

1.3.3. j)
$$((p \land q) \to p)$$

p	q	$(p \wedge q)$	$((p \land q) \to p)$
T	Т	T	T
Т	F	F	T
F	Т	F	F
F	F	F	Т

1.3.4. k) $(p \to (p \land q))$

p	q	$(p \wedge q)$	$(p \to (p \land q))$
T	T	T	T T
Т	F	F	F
F	Т	F	т
F	F	F	T T

Página 2 Taller 02

1.3.5.	m) $((p \equiv$	$(q \equiv r)) \equiv$	$((p \equiv q) \equiv r))$
--------	------------------------	------------------------	----------------------------

p	q	r	$(q \equiv r)$	$(p \equiv q)$	$(p \equiv (q \equiv r))$	$((p \equiv q) \equiv r)$	$((p \equiv (q \equiv r)) \equiv ((p \equiv q) \equiv r))$
T	Т	T	T	Т	T	Т	T
T	Т	F	F	Т	F	F	T
Т	F	Т	F	F	F	F	T
Т	F	F	T	F	Т	Т	T
F	Т	Т	T	F	F	F	T
F	Т	F	F	F	Т	Т	T
F	F	Т	F	Т	Т	Т	T
F	F	F	T	Т	F	F	T

1.4. Punto 5: Comparar $(p \wedge q)$ y $((p \vee q) \equiv (p \equiv q))$

p	q	$(p \wedge q)$	$(p \lor q)$	$(p \equiv q)$	$((p \vee q) \equiv (p \equiv q))$	$((p \land q) \equiv ((p \lor q) \equiv (p \equiv q)))$
T	Т	T	T	T	T	T
Т	F	F	T	F	F	T
F	Т	F	T	F	F	T
F	F	F	F	Т	F	T

1.5. Punto 8: Una no tautología

$$(((p \vee q) \to r) \equiv ((p \to q) \wedge (q \to r)))$$

p	q	r	$(p \lor q)$	$((p \lor q) \to r)$	$(p \to q)$	$(q \rightarrow r)$	$((p \to q) \land (q \to r))$	$(((p \lor q) \to r) \equiv ((p \to q) \land (q \to r)))$
T	T	Т	T	T	T	T	T	T
T	Т	F	T	F	T	F	F	Т
Т	F	Т	T	T	F	T	F	F
Т	F	F	T	F	F	T	F	Т
F	Т	Т	T	T	T	T	T	Т
F	T	F	T	F	T	F	F	Т
F	F	Т	F	T	T	T	T	Т
F	F	F	F	T	T	T	T	T

1.6. Punto 9

1.6.1. a) Definir las relaciones

■ R₌

$$R_{\equiv} := \{ (x, y) \in \mathbb{B}^2 \, | \, H_{\equiv}(x, y) = \mathtt{T} \}$$

R_≠

$$R_{\neq} := \{ (x, y) \in \mathbb{B}^2 \mid H_{\neq}(x, y) = \mathtt{T} \}$$

■ R_∨

$$R_{\vee} := \{(x, y) \in \mathbb{B}^2 \mid H_{\vee}(x, y) = \mathsf{T}\}$$

■ R_∧

$$R_{\wedge} := \{(x,y) \in \mathbb{B}^2 \,|\, H_{\wedge}(x,y) = \mathtt{T}\}$$

 \blacksquare R_{\rightarrow}

$$R_{\to} := \{ (x, y) \in \mathbb{B}^2 \, | \, H_{\to}(x, y) = \mathsf{T} \}$$

R_←

$$R_{\leftarrow} := \{(x,y) \in \mathbb{B}^2 \,|\, H_{\leftarrow}(x,y) = \mathtt{T}\}$$

Página 3 Taller 02

1.6.2. b) Investigar cuando una relación binaria es...

Supóngase \mathbb{A} un conjunto no vacío y se define la relación $R_{\sim}(x,y) := \{(x,y) \in \mathbb{A}^2 \mid x \sim y\}$

- \bullet Asociativa: $(\forall x,y,z\in\mathbb{A}:(x\sim y)\sim z=x\sim (y\sim z))$
- Conmutativa: $(\forall x, y \in \mathbb{A} : x \sim y = y \sim x)$
- Reflexiva: $(\forall x \in \mathbb{A} : x \sim x)$
- Irreflexiva: $(\forall x \in \mathbb{A} : (x, x) \notin R_{\sim})$
- Asimétrica: $(\forall x, y \in \mathbb{A} : ((x, y) \in R_{\sim}) \Rightarrow ((y, x) \notin R_{\sim}))$
- Antisimétrica: $(\forall x, y \in \mathbb{A} : (x \sim y) \Rightarrow x = y)$
- Idempotente: $(\forall x \in \mathbb{A} : x \sim x = x)$
- Transitiva: $(\forall x, y, z \in \mathbb{A} : ((x \sim y) \land (y \sim z)) \Rightarrow (x \sim z))$

1.6.3. c) Clasificar las relaciones lógicas

- R=
 - Asociativa
 - Conmutativa
 - Reflexiva
 - Transitiva
- R_≠
 - Conmutativa
 - Irreflexiva
- R_∨
 - Asociativa
 - Conmutativa
 - Reflexiva
 - Idempotente
 - Transitiva
- R_∧
 - Asociativa
 - Conmutativa
 - Reflexiva
 - Idempotente
 - Transitiva
- R_→
 - Reflexiva
 - Transitiva
- R_←
 - Reflexiva
 - Transitiva

Página 4 Taller 02

1.7. Punto 13: Considere 4 cartas...

Si suponemos el conjunto letras en las cartas $\mathbb{L} = \{A, B, C, \dots, Z\}$, el conjunto de las vocales $\mathbb{V} = \{A, E, I, O, U\}$, el conjunto de números en las cartas (naturales) \mathbb{N} , la sucesión de los pares $\{S_n\}$, $S_n = 2n$, $n \in \mathbb{N}$ y la sucesión de los impares $\{U_n\}$, $U_n = 2n - 1$, $n \in \mathbb{N}$ entonces el enunciado dice que:

$$(\forall x, y \in \mathbb{L} \times \mathbb{N} : (x \in \mathbb{V}) \to (y \in \{S_n\}))$$

Por contradicción se tendría entonces

$$(\neg(\forall x, y \in \mathbb{L} \times \mathbb{N} : (x \in \mathbb{V}) \to (y \in \{S_n\})))$$

$$(\exists x, y \in \mathbb{L} \times \mathbb{N} : (\neg((x \in \mathbb{V}) \to (y \in \{S_n\}))))$$

$$(\exists x, y \in \mathbb{L} \times \mathbb{N} : (x \in \mathbb{V}) \land (y \notin \{S_n\}))$$

$$(\exists x, y \in \mathbb{L} \times \mathbb{N} : (x \in \mathbb{V}) \land (y \in \{U_n\}))$$

Ya que también se tiene que $((p \to q) \land p) \therefore q$, Entonces hay que voltear la carta de la cual se puede ver la "A" y la carta de la cual se puede ver el 3. La primera debido a que se debe comprobar que el antecedente con valor verdadero equivalga al consecuente con valor verdadero. La segunda debido a que se debe comprobar que la negación a la proposición tenga un valor falso, y a su vez cumpla con $((p \to q) \land (\neg q)) \therefore (\neg p)$

1.8. Punto 14: Juana quiere ir de compras...

p: podar el césped

l: lavar y secar los platos

t: doblar las toallas de la cocina

d: limpiar el polvo

f: fregar los pisos

h: hacer mercado

r : recoger la ropa de la lavandería

q: ir de compras

1.8.1. a) Especificar las opciones

$$((p \vee (l \wedge t) \vee d \vee f \vee (h \wedge r)) \equiv q)$$

1.8.2. b) Suponiendo que...

Se tiene entonces:

$((p \lor (l \land t) \lor d \lor f \lor (h \land r)) \equiv q)$	Hipótesis
$(\neg d)$	Hipótesis
$(\lnot f)$	Hipótesis
$(\neg p)$	Hipótesis
$(\lnot l)$	Hipótesis
t	Hipótesis
(h)	Hipótesis
$(\lnot r)$	Hipótesis
$\overline{(((false \lor (false \land true) \lor false \lor false \lor (true \land false))) \equiv q)}$	Aplicación del valor de verdad de las hipótesis
$((false \lor false \lor false \lor false \lor false) \equiv q)$	Aplicación de tabla de verdad
$(false \equiv q)$	Aplicación de tabla de verdad
$(\neg q)$	definición de equivalencia

[∴] Juana no puede ir de compras

Página 5 Taller 02

2. Sección 2.2

2.1. Punto 1: Considere la proposición ϕ ...

$$\phi = ((((\neg p) \lor q) \equiv (r \to p)) \leftarrow (q \lor (\neg (q \land q))))$$

2.1.1. a) proponga una valuación v tal que $\mathbf{v}(\phi) = \mathsf{T}$

$$\begin{aligned} (\mathbf{v}[(((\neg p) \lor q) \equiv (r \to p))] &= \mathtt{T}) \lor (\mathbf{v}[(q \lor (\neg (q \land q)))] = \mathtt{F}) \\ (\mathbf{v}[((\neg p) \lor q)] &= \mathbf{v}[(r \to p)]) \lor (\mathbf{v}[q] &= \mathbf{v}[(\neg (q \land q))] = \mathtt{F}) \end{aligned}$$
 negación de Metateorema 2.23

El antecedente siempre será verdad, por lo que hay que llegar a que la consecuencia también lo sea...

$$(\mathbf{v}[(\neg p)] = \mathtt{T} \vee \mathbf{v}(q) = \mathtt{T}) \wedge (\mathbf{v}[r] = \mathtt{F} \vee \mathbf{v}[p] = \mathtt{T})$$

Tomando $p \mapsto T$ una posible valuación sería:

$$\bar{\mathbf{v}}[\phi] = \{ p \mapsto \mathtt{T}, q \mapsto \mathtt{T}, r \mapsto \mathtt{T} \}$$

2.1.2. b) proponga una valuación w tal que $\mathbf{w}(\phi) = \mathbf{F}$

Tomando lo obtenido en el punto anterior, entonces:

$$\bar{\mathbf{w}}[\phi] = \{p \mapsto \mathtt{T}, q \mapsto \mathtt{F}, r \mapsto \mathtt{T}\}$$

2.2. Punto 6: Demostrar

$$\mathbf{v}[(\phi \equiv \phi)] = \mathbf{T}$$

$$\mathbf{v}[\phi] = \mathbf{v}[\phi]$$

$$\therefore \mathbf{v}[(\phi \equiv \phi)] = \mathbf{T}$$

Enunciado/ proposición a probar Metateorema 2.23

2.3. Punto 7: Demostrar

$$\mathbf{v}[(\phi \equiv (\neg \phi))] = \mathbf{F}$$

$$\mathbf{v}[\phi] \neq \mathbf{v}[(\neg \phi)]$$

$$\therefore \mathbf{v}[(\phi \equiv (\neg \phi))] = \mathbf{F}$$

Enunciado/ proposición a probar negación de Metateorema 2.23

Página 6 Taller 02

2.4. Punto 8: Demostrar

$$\mathbf{v}[(\phi \lor (\neg \phi))] = \mathbf{T}$$
$$(\mathbf{v}[\phi] = \mathbf{T}) \lor (\mathbf{v}[\neg \phi] = \mathbf{T})$$

Enunciado/ proposición a probar negación de Metateorema 2.23

Tomando $\phi \mapsto \mathtt{T}$

$$\begin{aligned} \mathbf{v}[\neg \phi] &= \mathbf{F} \\ H_{\vee}(\mathbf{T},\mathbf{F}) &= \mathbf{T} \end{aligned}$$

Tomando $\phi \mapsto \mathbf{F}$

$$\mathbf{v}[\neg \phi] = \mathsf{T}$$

$$H_{\vee}(\mathsf{F}, \mathsf{T}) = \mathsf{T}$$

$$\therefore \mathbf{v}[(\phi \vee (\neg \phi))] = \mathsf{T}$$

2.5. Punto 9: Demostrar

$$\mathbf{v}[(\phi \land (\neg \phi))] = \mathbf{T}$$
$$(\mathbf{v}[\phi] = \mathbf{F}) \lor (\mathbf{v}[\neg \phi] = \mathbf{F})$$

Enunciado/ proposición a probar negación de Metateorema 2.23

Tomando $\phi \mapsto \mathtt{T}$

$$\begin{aligned} \mathbf{v}[\neg \phi] &= \mathbf{F} \\ H_{\wedge}(\mathbf{T},\mathbf{F}) &= \mathbf{F} \end{aligned}$$

Tomando $\phi \mapsto \mathbf{F}$

$$\mathbf{v}[\neg \phi] = \mathtt{T}$$

$$H_{\wedge}(\mathtt{F}, \mathtt{T}) = \mathtt{F}$$

$$\therefore \mathbf{v}[(\phi \vee (\neg \phi))] = \mathtt{F}$$

Página 7 Taller 02