Chapter 3: Continuous Probability Distribution

July 2, 2019

1 Continuous Uniform Distribution

A continuous random variable defined over the interval (a,b) is said to follow a continuous uniform distribution if its probability density function is given by

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & otherwise \end{cases}$$

1.1 Example 1

Given $X \sim U(1, 5)$. Find: (a) P(2 < X < 4.6)

$$c = \frac{1}{b-a}$$
$$= \frac{1}{5-1}$$
$$= \frac{1}{4}$$

$$P(2 < X < 4.6) = \int_{2}^{4.6} \frac{1}{4} dx$$
$$= \frac{1}{4}x]_{2}^{4.6}$$
$$= \frac{4.6}{4} - \frac{1}{2}$$
$$P(2 < X < 4.6) = 0.65$$

- (b)P(X < 3.8)
- ìш
- (c) P(X > 4.3)

$$c = \frac{1}{4}$$
like above

$$P(X > 4.3) = \int_{4.3}^{5} \frac{1}{4} dx$$
$$= \frac{1}{4}x \Big|_{4.3}^{5}$$
$$= \frac{5}{4} - \frac{4.3}{4}$$
$$= 0.175$$

1.2 For a continuous uniform distribution, $X \sim U(a, b)$

$$\Rightarrow$$
 Mean, $\mu = \frac{a+b}{2}$. Variance, $\sigma^2 = \frac{(b-a)^2}{12}$

1.2.1 **Proof**

First part of the proof, going from the original mean formula (similar to $\frac{\sum fx}{\sum f}$, where $\sum f=1$) to the continuous uniform distribution Note: The first line below reads as, "the mean is the sum of the value of the random variable X"

$$\mu = E(X)$$

$$= \int_{-\infty}^{+\infty} xf(x) dx$$

$$= \int_{a}^{b} x \left(\frac{1}{b-a}\right) dx$$

$$= \frac{1}{b-a} \int_{a}^{b} x dx$$

$$= \frac{1}{b-a} \left[\frac{x^{2}}{2}\right]_{a}^{b}$$

$$= \frac{1}{b-a} \left(\frac{b^{2}}{2} - \frac{a^{2}}{2}\right)$$

$$= \frac{1}{b-a} \left(\frac{b^{2}-a^{2}}{2}\right)$$

$$= \frac{b^{2}-a^{2}}{2(b-a)}$$

$$= \frac{(b+a)(b-a)}{2(b-a)}$$

$$\mu = \frac{(b+a)}{2}$$

Second part, going from the original variance formula $E(X^2)-[E(X)]^2$ where E(X) is actually μ , the mean. Note: the first line below reads as, "the variance is the sum of the values squared minus the mean squared"

!!! TODO !!!

2 Exponential Distribution

The continuous random variable X has an exponential distribution, with parameter μ , if its probability density function is given by

$$f(x) = \begin{cases} \frac{1}{\mu} e^{-\frac{x}{\mu}} & x > 0\\ 0 & otherwise \end{cases}$$

Where $\mu > 0$. We write $X \sim Exp(\mu)$.

 \Rightarrow Mean, $E(X) = \mu$. Variance, $Var(X) = \mu^2$

2.1 Example 2

The lifetime of a certain brand of light bulbs is a random variable X, distributed exponentially with mean time to failure $\mu=200$ hours. What is the probability that such light bulb will last

- (i) at most 100 hours,
- (ii) between 190 and 240 hours,
- (iii) longer than 150 hours?

Answer:

1. Let X be he lifetime of a certain brand of light bulbs with $X \sim Exp(200)$.

$$\begin{split} P\left(X \leq 100\right) &= \int_{0}^{100} \frac{1}{200} e^{-\frac{x}{200}} dx \\ &= \left[-e^{-\frac{x}{200}} \right]_{0}^{100} dx \, \text{Note that: } \int e^{kx} dx = \left(\frac{1}{k} \right) e^{kx} + C \\ &= -e^{-\frac{1}{2}} - (-1) \\ &= 1 - e^{-\frac{1}{2}} \\ &= 0.3935 \end{split}$$

- 2. !!!TODO!!!
- 3. Longer than 150 hours?

$$P(X > 150) = \int_{150}^{200} \frac{1}{200} e^{-\frac{x}{200}} dx$$
$$= \left[-e^{-\frac{x}{200}} \right]_{150}^{200}$$
$$= -e^{-1} - \left(-e^{-\frac{3}{4}} \right)$$
$$= e^{-\frac{3}{4}} - e^{-1}$$
$$= 0.1045$$

3 Normal Distribution

The probability distribution of a normal random variable is called a normal distribution.

3.1 Properties of a Normal Distribution

A normally distributed random variable X with mean μ and variance $\sigma^2 \left[X \sim N \left(\mu, \sigma^2 \right) \right]$ has the following properties:

1. Probability density function

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} for - \infty < x < +\infty$$

- (a) Where $\pi = 3.14159...$ and e = 2.71828...
- 2. The graph of the probability density function of a normal distribution is a continuous bell-shaped curve with the mean μ at the center of the normal curve and the curve is symmetrical about μ
- 3. The probability distribution for Z which has **mean** $\mu = 0$ and **variance** $\sigma^2 = 1$ is called the standard normal distribution and the random variable Z is called the **standard normal random variable**

!!! TODO !!!

3.2 Example 3

Find the following probabilities for the standard Normal curve. (Use the table for "tail of the normal distribution" to help)

(a) P (
$$Z > 1.5$$
)

$$P(Z > 1.5) = 0.0668$$

(b) P (
$$Z > -2$$
)

$$P(Z > -2) = 1 - P(Z > 2)$$

= 1 - 0.2275
 $P(Z > -2) = 0.7725$

(c)
$$P(Z < 0.8)$$

!!!TODO!!!

(d) P (
$$Z < -1.5$$
)

!!!TODO!!!

(e)
$$P(-1 < Z < -0.5)$$

!!!TODO!!!

(f) P (
$$-2 < Z < 1$$
)

!!!TODO!!!

(g) P (
$$1.19 < Z < 2.12$$
)

$$P(1.19 < Z < 2.12) = 1 - P(Z > 1.19) - P(Z > 2.12)$$

= 1 - 0.1170 - 0.01700
 $P(1.19 < Z < 2.12) = 0.866$

3.3 Example 4

If Z \sim N (0,1), find the value of a if

- (a) P(Z > a) = 0.3783
- (b) P(Z > a) = 0.7823
- (c) P(Z < a) = 0.0793
- (d) P(Z < a) = 0.9693
- (e) $P(\mid Z \mid < a) = 0.9$

$$\begin{split} P\left(-a < Z < a\right) &= 0.9 \\ P\left(Z > a\right) &= 0.05 \\ \boldsymbol{a} &= \mathbf{1.6449} \end{split}$$

(f)
$$P(\mid Z \mid > a) = 0.0602$$

3.4 Example 5

The mean weight of 200 people is 67 kg and the standard deviation is 7 kg. Assuming that the weights are **Normally distributed**, determine how many people have a weight

Let X be the weight of the people with $X \sim N(67, 7^2)$

- (a) between 60 and 74 kg
- (b) more than 81kg
- (c) between 53 and 88 kg

$$\begin{split} P\left(53 \le X \le 88\right) &= P\left(\frac{53 - 67}{7} \le \frac{X - \mu}{\sigma} \le \frac{88 - 67}{7}\right) \\ &= P\left(-2 \le Z \le 3\right) \\ &= 1 - P\left(Z > 2\right) - P\left(Z > 3\right) \\ &= 1 - 0.02275 - 0.00135 \end{split}$$

$$P(53 \le X \le 88) = 0.9759$$

3.5 Example 6

The score on a final examination was **normally distributed** with mean 72 and the standard deviation 9. The top 10% of the students are receive 'A's. What is the minimum score that a student must get in order to receive an 'A'?

Let X be the student's score on a final examination with $X \sim N(72, 9^2)$

$$P(X > a) = 0.1$$

$$P\left(Z > \frac{a - 72}{\sqrt{9^2}}\right) = 0.1$$

$$\frac{a - 72}{\sqrt{9^2}} = 1.2816$$

$$a = 83.5344 marks$$

3.6 Example 7

$$P\left(Z < \frac{106 - 100}{\sigma}\right) = 0.8849$$

$$P\left(Z > \frac{106 - 100}{\sigma}\right) = 0.1151$$

$$\frac{6}{a} = 1.20$$

$$a = \frac{6}{1.2}$$

$$a = 5$$

3.7 Example 8

4 The Normal Approximation to the Binomial Distribution

4.1 Criteria

- 1. n is large (generally > 30)
- 2. p is not too small or large (closer to 0.5 the better)
- 3. $np \ge 5, nq \ge 5$

If all the criteria are met, then: The Normal distribution with mean $\mu=np$ and variance = npq 2 σ can be used to approximate the Binomial distribution X $\tilde{}$ B (n , p) \approx X $\tilde{}$ N (= np , = npq) 2 μ σ when np \geq 5 and nq \geq 5

4.2 Continuity correction factor

 \Rightarrow The addition and/or subtraction of 0.5 from the value(s) of x when the Normal distribution is used as an approximation to the Binomial distribution, where x is the number of successes in n trials.

Basically, make the size of the measurement larger

- 4.3 Example 9
- 4.4 Example 10
- 4.5 Example 11
- 4.6 Example 12

The number of calls received by an office switchboard per hour follows a Poisson distribution with parameter 30. Using the normal approximation to the Poisson distribution, find the probability that in one hour, there are

1.

(a) X= no. of calls in one hour \sim Possion with $\lambda=30$, big \sim Approximately normal with $\mu=\lambda=30,\,\sigma^2=\lambda=30$

$$P(X > 23) = P(X > 23.5) = P\left(\frac{x - \mu}{\sigma} > \frac{23.5 - 30}{\sqrt{30}}\right)$$
$$= P(Z > -1.19)$$
$$= 0.8830$$

(b)
$$P(25 \le X \le 28) = P(25 \le X \le 28)$$

 $P\left(\frac{24.5 - 30}{\sqrt{30}} < \frac{x - \mu}{\sigma} < \frac{28.5 - 30}{\sqrt{30}}\right) = P(0.29 < Z < 1)$
 $= 0.2349$

(c)
$$P(X = 34) = P(33.5 \le X \le 34.5)$$

 $P\left(\frac{33.5 - 30}{\sqrt{30}} \le Z \le \frac{34.5 - 30}{\sqrt{30}}\right) = P(0.64 \le Z \le 0.82)$
 $= 0.0550$

4.7 Example 13

The reaction time to a certain psychological experiment is normally distributed with a mean of 20 seconds and standard deviation of 4 seconds. What is the reaction time for which only 1% of all subjects is faster?

$$\mu = 20, \sigma = 4$$

$$P\left(X \le a\right) = 0.01$$

$$P\left(Z \le \frac{a-20}{4}\right) = 0.01$$

$$\frac{a-20}{4} = -2.3263$$

$$a = 10.6948 seconds$$

4.8 Example 14

$$p = 0.36$$

$$n = 400$$

$$X \sim B (n = 400, p = 0.36)$$

Since n is very big (n > 50)

$$np=144,\,nq=256\;(both\geq5)$$

We can use a normal approximation, with $X \sim N\left(144\left(np\right), 92.16\left(npq\right)\right)$

$$\begin{split} P\left(X125\right) &\approx P\left(X > 125.5\right) \\ &= P\left(Z > \frac{125.5 - 144}{\sqrt{92.16}}\right) \\ &= P\left(Z > \frac{125.5 - 144}{\sqrt{92.16}}\right) \\ &= P\left(Z > -1.93\right) \\ &= 0.9372 \end{split}$$