Existence and Uniqueness of Solutions to First-Order IVPs

Department of Mathematics IIT Guwahati

 ${\sf RA/RKS/MGPP/KVK}$

In this lecture, we shall find answers to the following questions.

- When a solution to an IVP exists?
- If a solution to the IVP exists, Is it unique?
- Under what conditions, a solution to the IVP is unique?
- As initial conditions/ functions vary, how the solutions to the IVP vary? Will it vary continuously?

Example-1.

ODE:
$$x \ y'(x) = 4y$$
 for $x \in I = [-1, 1]$,
IC: $y(0) = 1$.

Any function y(x) satisfying the ODE xy'(x) = 4y in a neighbourhood of 0 will take value y(0) = 0 and hence it will not satisfy y(0) = 1. Therefore, this IVP has no solution.

Example-2.

ODE:
$$y'(x) = 4y$$
 for $x \in \mathbb{R}$,
IC: $y(0) = 1$.

There is a unique solution to this IVP and is given by $y(x) = e^{4x}$ for $x \in \mathbb{R}$.

Example-3.

ODE:
$$y'(x) = \sqrt{|y|}$$
 for $x \in \mathbb{R}$, IC: $y(0) = 0$.

The solutions to this IVP are: $y_1(x) = 0$ for all $x \in \mathbb{R}$ and $y_2(x) = x^2/4$ for $x \ge 0$ and $y_2(x) = 0$ for x < 0. Note that, this IVP has two solutions $y_1(x)$ and $y_2(x)$. Example-4.

ODE:
$$y' = 3 y^{2/3}$$
 for $x \in \mathbb{R}$,
IC: $y(0) = 0$.

The solutions to this IVP are:

$$y_c(x) = \left\{ egin{array}{ll} 0 & ext{if} & x \leq c \ (x-c)^3 & ext{if} & x \geq c \end{array}
ight. \quad ext{where } c \geq 0 \; .$$

For each real number $c \ge 0$, we have a solution $y_c(x)$ to the IVP. Therefore, this IVP has infinitely many solutions.

Observation: Thus, an IVP

$$y'(x) = f(x, y), \quad y(x_0) = y_0$$

may have none, precisely one, or more than one solution.

Well-posed IVP: An IVP is said to be well-posed if

- it has a solution,
- the solution is unique and,
- the solution is continuously depends on the initial data y_0 and f.

(Cauchy)-Peano Theorem

Let D be bounded domain containing the point (x_0, y_0) . Consider the IVP:

ODE:
$$y' = f(x, y) \text{ on } D$$
, (1)

IC:
$$y(x_0) = x_0$$
. (2)

Let

$$R = \{(x, y) \in \mathbb{R}^2 : |x - x_0| \le a, |y - y_0| \le b, a > 0, b > 0\}$$

be a closed rectangle in D .

Theorem ((Cauchy)-Peano Theorem)

If $f(x, y) \in C(R)$, then there exists a solution y(x) to the IVP on the interval $|x - x_0| \le h$, where $h = \min(a, b/M)$ and $|f(x, y)| \le M$ for all $(x, y) \in R$.

Note: The Cauchy-Peano's theorem ensures the existence of solutions to the IVP (1)-(2) locally and does not say about the uniqueness of solutions.

Definition (Lipschitz Condition)

Let f(x, y) be a real valued function defined on a bounded domain D. We say that f satisfies Lipschitz condition in the (second) variable y with a Lipschitz constant K if

$$|f(x, y_1) - f(x, y_2)| \le K|y_1 - y_2|$$

for any (x, y_1) and (x, y_2) in D.

Example: The function f(x,y) = x|y| satisfies Lipschitz condition with respect to the variable y on the bounded domain $D = \{(x,y) \in \mathbb{R}^2 : 0 < x < 2 \text{ and } -4 < y < 4\}$. For any (x,y_1) and (x,y_2) in D, we have

$$|f(x, y_1) - f(x, y_2)| = x||y_1| - |y_2|| \le 2|y_1 - y_2|.$$

Let $R = \{(x, y) \in \mathbb{R}^2 : |x - x_0| \le a, |y - y_0| \le b\}$, where a, b > 0.

Theorem (Picard Theorem)

If f(x, y) is continuous and satisfies Lipschitz condition in the variable y with Lipschitz constant K on the closed rectangle R, then there exists a unique solution y(t) to the IVP

ODE:
$$y' = f(x, y)$$
 on R ,
IC: $y(x_0) = y_0$.

on the interval $|x-x_0| \le h$, where $h = \min(a, b/M)$ and $|f(x,y)| \le M$ for all $(x,y) \in R$.

By applying the Picard theorem, we can conclude that the solution $y(x) = e^{4x}$ to the IVP of Example-2 (y' = 4y with y(0) = 1) is unique in the interval $|x| \le h = \min(a, (1/4))$.

Note: In Examples 3 and 4, f(x, y) fails to satisfy Lipschitz condition in every neighborhood of the origin.

Corollary to Picard Theorem: If f(x,y) and $\frac{\partial f}{\partial y}$ is continuous

on the closed rectangle R, then there exists a unique solution y(x) to the IVP (1)-(2) on the interval $|x-x_0| \le h$, where $h = \min(a, b/M)$ and $|f(x,y)| \le M$ for all $(x,y) \in R$.

Justification: If $\frac{\partial f}{\partial y} \in C(R)$, then by applying the MVT for the variable y, it follows that

$$|f(x, y_1) - f(x, y_2)| \le \max_{(x, y) \in R} \left| \frac{\partial f}{\partial y} \right| |y_1 - y_2| \le K |y_1 - y_2|$$

for all $(x, y_1), (x, y_2) \in R$. Thus, f satisfies Lipschitz condition in the variable y with Lipschitz constant K on R. Now, Picard theorem ensures the existence of unique solution to IVP (1)-(2).

Note: There exists a function f(x, y) for which $\frac{\partial f}{\partial y}$ is not continuous on a closed rectangle R, but f satisfies Lipschitz condition in the variable y with Lipschitz constant K on R.

Example: Take
$$f(x, y) = |y|$$
 for $(x, y) \in R$, where $R = \{(x, y) \in \mathbb{R}^2 : |x| \le 1, |y| \le 1\}$.

Note that $\frac{\partial f}{\partial y}$ does not exist at (x,0). But, f satisfies Lipschitz condition in the variable y with Lipschitz constant K=1.

Example: Let $R: |x| \le 5, |y| \le 3$ be the rectangle. Consider the IVP

$$y' = 1 + y^2, \quad y(0) = 0$$

over R.

Here, a = 5, b = 3. Then

$$\max_{(x,y)\in R} |f(x,y)| = \max_{(x,y)\in R} |1+y^2| \le 10 (= M),$$

$$\max_{(x,y)\in R} \left| \frac{\partial f}{\partial y} \right| = \max_{(x,y)\in R} 2|y| \le 6 (= K).$$

$$\alpha = \min\{a, \frac{b}{M}\} = \min\{5, \frac{3}{10}\} = 0.3 < 5.$$

Note that the solution of the IVP is $y = \tan x$. This solution is valid in the interval $|x| \le 0.3$ in stead of the entire interval $|x| \le 5$.

Method to find the solution to the IVP provided by Picard Theorem (Method of Successive Approximations)

Step 1: Set
$$y_0(x) = y_0$$
 for all $x \in \mathbb{R}$.
Step 2: Compute
$$y_n(x) = y_0(x) + \int_{x_0}^{x} f(s, y_{n-1}(s)) ds \qquad \text{for } n = 1, 2, \cdots$$

This $y_n(x)$ is called the Picard Successive Approximation or Picard Iterate.

Step 2: Limit of Iterates

$$y(x) := \lim_{n \to \infty} y_n(x)$$
 for $x \in I = [x_0 - h, x_0 + h]$.

Under the hypothesis of Picard's theorem, $\{y_n(x)\}$ converges uniformly on the interval I and the limit function y(x) is the unique solution of the given IVP (1)-(2) in I.

Example. Solve y' = 2y with y(0) = 1 by the method of successive approximations.

Here f(x,y) = 2y for $(x,y) \in \mathbb{R}^2$.

Step 1: Initial Approximation

Set $y_0(x) = y_0 = 1$ for all $x \in \mathbb{R}$.

Step 2: Computing Successive Approximations

$$y_1(x) = y_0(x) + \int_{x_0}^x f(s, y_0(s)) ds = 1 + \int_0^x 2 ds = 1 + 2x.$$

$$y_2(x) = y_0(x) + \int_{x_0}^x f(s, y_1(s)) ds = 1 + \int_0^x 2(1 + 2s) ds$$

$$= 1 + 2x + 2x^2.$$

$$y_3(x) = y_0(x) + \int_{x_0}^x f(s, y_2(s)) ds = 1 + \int_0^x 2(1 + 2s + 2s^2) ds$$

$$= 1 + 2x + 2x^2 + \frac{4x^3}{3}.$$

Step 3: Limit of Successive Approximations (if possible compute)

$$y_n(x) = \sum_{k=0}^n \frac{(2x)^k}{k!} \to e^{2x} =: y(x) \text{ for } x \in \mathbb{R} \quad \text{as } n \to \infty.$$

Exercise. Solve y' = 2x - y with y(0) = 1 by the method of successive approximations.

Answer:

$$y_0(x) = 1; \quad y_1(x) = 1 - x + x^2; \quad y_2(x) = 1 - x + \frac{3x^2}{2} - \frac{x^3}{3}$$

$$y_3(x) = 1 - x + \frac{3x^2}{2} - \frac{x^3}{2} + \frac{x^4}{12}$$

$$y_n(x) = (2x - 2) + \left(3\sum_{k=0}^{n} \frac{(-x)^k}{k!}\right) + (-1)^{n+1} \frac{2x^{n+1}}{(n+1)!}$$

Observe that $y_n(x) \to y(x) := (2x - 2) + 3e^{-x}$ for $x \in \mathbb{R}$. $y(x) = 2x - 2 + 3e^{-x}$ is the unique solution to the given IVP.

Continuous Dependence of Solutions on Initial Conditions

Let f(x, y) be continuous and satisfy Lipschitz condition in the variable y with Lipschitz constant K on the closed rectangle R. Let $\phi(x, y_0)$ be the unique solution to the IVP:

$$y' = f(x, y)$$
 $y(x_0) = y_0$ in $|x - x_0| \le h$.

Let $N_r(y_0)$ be the open neighborhood of y_0 with some radius r > 0.

Assume that for each $y^* \in N_r(y_0)$, there exists a unique solution $\phi(x, y^*)$ to new IVP:

$$y' = f(x, y)$$
 with $y(x_0) = y^*$ in $|x - x_0| \le h$.

Then the function $g: y^* \mapsto \phi(x, y^*)$ is a continuous function at y_0 . That is, for a given $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|y^* - y_0| < \delta \implies |\phi(x, y^*) - \phi(x, y_0)| < \epsilon.$$

That is, the solutions to the IVP depend continuously on the initial conditions.

Continuous Dependence of Solutions on functions f

Let f(x, y) be continuous and satisfy Lipschitz condition in the variable y with Lipschitz constant K on the closed rectangle R.

Let $\phi(x)$ be the unique solution to the IVP: y' = f(x, y) with $y(x_0) = y_0$ in $|x - x_0| \le h$.

Let g(x, y) be a continuous function such that

$$|g(x,y)-f(x,y)| \le \epsilon$$
 for all $(x,y) \in R$.

Let $\psi(x)$ be the unique solution to the IVP: y' = g(x, y) with $y(x_0) = y_0$ in $|x - x_0| \le h$.

Then the solutions satisfy

$$|\phi(x)-\psi(x)|<rac{\epsilon\left(\mathrm{e}^{Kh}-1
ight)}{K}\qquad ext{on }|x-x_0|\leq h.$$

That is, the solutions to the IVP depend continuously on the functions f.

Application of Previous Slide

Consider the IVP y'(x) = f(x, y) with y(0) = 0, where $f(x, y) = x^2 + y^2 + y + 1$.

Let $\psi(x)$ denote its soluion on $|x - 0| \le h$.

We can obtain information about the solution $\psi(x)$ in a sufficiently small neighborhood of (0,0) from the solution $\phi(x)$ to the IVP y'(x) = y + 1 with y(0) = 0.

Reason: If x and y sufficiently small, then $|(x^2+y^2+y+1)-(y+1)|=|x^2+y^2|$ can be made less than any given $\epsilon>0$ and, hence we can apply the result mentioned in the previous slide to get

$$|\phi(x)-\psi(x)|<rac{\epsilon\left(e^{Kh}-1
ight)}{K}\qquad ext{on }|x-0|\leq h$$
 .

*** Fnd ***

