

Descripción de un proceso de separación y ordenamiento por medio de colores.

Cesar Augusto Ospina Munoz

Juan Jose Pacheco Arias

Luis Miguel Arenas Tamayo

AUTOMATIZACIÓN DE PROCESOS

UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN

FACULTAD DE MINAS MEDELLÍN 2022

Índice 1. Desc

1.	Des	scripción del proceso	3
1	.1.	Principios de operación del proceso	3
1	.2.	Áreas funcionales	3
Е	l pro	ceso diseñado se puede dividir en tres áreas de especial importancia, las cuales	;
S	on:		3
1	.2.1.	Selección	3
	1.2.	.2. Empacado	4
	1.2.	.3. Almacenamiento	5
1	.3.	Capacidad de producción.	5
1	.4.	Equipos y tecnología.	5
1	.5.	Diagrama conceptual	5
1	.6.	Diagrama de instrumentación	6
2.	Car	racterización de las dinámicas	7
3.	Tab	ola de señales	7
4.	Esp	pecificación de equipos e instrumentos	11
4.1	. Р	Pick and place	11
6.	Red	d de Petri del proceso.	16
8.	Cor	ndiciones para el arranque	25
9.	Мо	dos de marcha. (Norma gema)	27
9	.1.	F1. Procedimiento normal	28
9	.2.	F2. Marcha de preparación.	28
9	.3.	F3. Marcha de cierre.	28
9	.4.	F4. Marchas de verificación sin orden.	28
9	.5.	A1. Parada en el estado inicial.	28
10.	D	Descripción de la secuencia	30
11.	E	specificación de la parada	31
1	1.1.	Modo automático	31
1	1.2.	Modo manual	31
12.	S	Seguridades y enclavamientos	31
13.	Е	specificación del panel de control	33
14.	С	Conclusiones	36
1	4.1.	Conclusiones del proyecto	36
1	4.2.	Conclusiones del curso	36
15.	R	Referencias	36

1. Descripción del proceso

1.1. Principios de operación del proceso

Para llevar a cabo el proceso se da uso de principios únicamente físicos, entre los que podemos encontrar:

- Sensores ópticos donde se detecta la intensidad de luz recibida del color asociado y se calcula la relación de la luz recibida.
- Las leyes ópticas geométricas, las cuales son usadas por los sensores para determinar la presencia del objeto en lugares específicos.

Figura 1 Sensor óptico

Figura 2 Sensor óptico planta implementada.

1.2. Áreas funcionales

El proceso diseñado se puede dividir en tres áreas de especial importancia, las cuales son:

1.2.1. Selección

En esta área se tiene como objetivo diferenciar entre tres tipos de placas de acuerdo con su color y textura, dichos objetos están representados lo siguiente

Figura 3 Representación de tres tipos de objetos de acuerdo con el color y textura.

Se tiene entonces que de acuerdo con su color y textura un sensor óptico toma un estado de encendido, haciendo que cada objeto sea llevado a una banda transportadora distinta por medio de un clasificador de rueda, los sensores son usados para el encendido y apagado de las bandas transportadoras y para el conteo de los objetos.

Figura 4 Etapa de selección de acuerdo con el color

1.2.2. Empacado

Esta área es la encargada de realizar el empacado de los objetos por medio de un brazo pick and place, este de forma neumática toma los objetos y los traslada a otra banda transportadora que posee cajas abiertas para su posterior almacenamiento.

Figura 5 Etapa de Empacado por medio de un brazo pick and place

1.2.3. Almacenamiento

Finalmente se tiene una etapa de almacenamiento, donde cada estantería almacena un máximo de 54 objetos, como se tiene tres estanterías el almacén tendrá como capacidad de almacenamiento 162 objetos, en esta área contamos con tres grúas, tres transportadores de carga y múltiples sensores.

Figura 5. Etapa de almacenamiento

1.3. Capacidad de producción.

Se tienen tres estanterías, cada una con 54 espacios para almacenar los objetos, por lo tanto, la capacidad de producción es de 162 objetos máximo.

1.4. Equipos y tecnología.

Se usan los siguientes equipos para la obtención del producto final:

- Clasificador de rueda.
- Brazos pick and place.
- Grúas de almacenado.
- Transportadores de carga.
- Sensores retrorreflectivos.
- Sensores ópticos.
- Sensores difusos.

1.5. Diagrama conceptual

Figura 6 Diagrama conceptual.

1.6. Diagrama de instrumentación

Figura 7 Diagrama de instrumentación

2. Caracterización de las dinámicas

Los equipos a usar en el proyecto son elementos que se caracterizan por dinámicas booleanas, es decir, que poseen dos estados, encendido o apagado, por lo tanto son dinámicas discretas, y estás cubren las bandas transportadoras, sensores difusos, reflectores, ópticos y brazo pick and place.

3. Tabla de señales

Variable	Símbolo	Dirección	TIPO	Comentario
START	10	%10.0	Bool	Boton de start: Es el encargado de dar el inicio de la operación del sistema
I1_EntradaObjetos	11	%I0.1	Bool	Sensor, encargado de detectar que ya se emitió un objeto
I2_SensorPasoInicial	12	%10.2	Bool	Sensor, para detectar el paso del objeto por la primera banda
I3_SensorVisionBR	13	%10.3	Bool	Sensor de vision encargado de detectar la ficha de color azul
I4_SensorVisionGR	14	%10.4	Bool	Sensor de vision encargado de detectar la ficha de color verde
I5_SensorVisionBG	15	%10.5	Bool	Sensor de vision encargado de detectar la ficha de color verde con estampado
I6_BandaBascula	16	%I0.6	Bool	Sensor que se encarga de activar la selección por rueda
I7_SensorForward	l7	%10.7	Bool	Sensor que activa la banda Forward 1
I8_SensorLeft	18	%I1.0	Bool	Sensor que activa la banda Left 1
I9_SensorRigth	19	%l1.1	Bool	Sensor que activa la banda Right 1
I10_SensorLeft2	l10	%l1.2	Bool	Sensor que activa la banda Left 2
I11_SensorForward2	l111	%I1.3	Bool	Sensor que activa la banda Forward 2
I12_SensorRigth2	l12	%I1.4	Bool	Sensor que activa la banda Right 2
I13_SensorLeft3	l13	%I1.5	Bool	Sensor que activa la banda Left 3
I14_SensorForward3	l14	%I1.6	Bool	Sensor que activa la banda Forward 3
I15_SensorRigth3	l15	%I1.7	Bool	Sensor que activa la banda Right 3
I16_SensorGrab1	l16	%12.0	Bool	Sensor de presión del pick and place 1, encargado de detectar que se puede agarrar a presión el objeto
l17_SensorGrab2	117	%l2.1	Bool	Sensor de presión del pick and place 2, encargado de detectar que se puede agarrar a presión el objeto
I18_SensorGrab3	l18	%l2.2	Bool	Sensor de presión del pick and place 3, encargado de detectar que se puede agarrar a presión el objeto

I19_SensorBandaA1	l19	%I2.3	Bool	Sensor que activa la banda del almacenamiento izquierdo
I20_SensorBandaA2	120	%I2.4	Bool	Sensor que activa la banda del almacenamiento delantero
I21_SensorBandaA3	121	%I2.5	Bool	Sensor que activa la banda del almacenamiento derecho
I22_LimAdelaA1	122	%I2.6	Bool	Sensor que sensa que la bandeja de la grua left está accionada
I23_LimSubA1	123	%I2.7	Bool	Sensor que sensa que la bandeja subiendo de la grua left está accionada
I24_LimAdelaA2	124	%I3.0	Bool	Sensor que sensa que la bandeja hacia delante de la grua right está accionada
I25_LimSubA2	125	%l3.1	Bool	Sensor que sensa que la bandeja subiendo de la grua forward está accionada
M.Emitter	126	%l3.2	Bool	Modo manual: El sensor activa el emisor de objetos
M.BI_B2	127	%I3.3	Bool	Modo manual: Boton que activa las bandas iniciales
M.Q3_ON	128	%l3.4	Bool	Modo manual: Selector encendido que se encarga de activar el selector de rueda en dirección forward
M.Q3_OFF	129	%I3.5	Bool	Modo manual: Selector apagado que se encarga de activar el selector de rueda en dirección forward
M.LEFT_DECISION	130	%l3.6	Bool	Modo manual: Boton que activa el selector de rueda que hace girar hacia la izquierda
M.RIGHT_DECISION	l31	%l3.7	Bool	Modo manual: Boton que activa el selector de rueda que hace girar hacia la derecha
I_4.0_PosicionA1	140	%I4.0	Bool	Sensor que detecta la posición de la grua en su punto inicial, de la grua left
I_4.1_PosicionA2	I41	%l4.1	Bool	Sensor que detecta la posición de la grua en su punto inicial, de la grua forward
I_4.2_PosicionA3	142	%I4.2	Bool	Sensor que detecta la posición de la grua en su punto inicial, de la grua right
M.Left bands	143	%14.3	Bool	Modo manual: Boton que activa las bandas left, entre el selector de rueda y el pick and place

M.Forward bands	144	%14.4	Bool	Modo manual: Boton que activa las bandas forward, entre el selector de rueda y el pick and place
M.Right bands	l45	%I4.5	Bool	Modo manual: Boton que activa las bandas right, entre el selector de rueda y el pick and place
I4.6_M.GrabOn	146	%I4.6	Bool	Selector activado que activa el Grab
I4.7_M.GrabOff	147	%I4.7	Bool	Selector que desactivar el Grab
I5.0_M.EjeXOn	I 50	%I5.0	Bool	Selector que activa el eje X
I5.1_M.EjeXOff	I 51	%I5.1	Bool	Selector que desactivar el eje X
I5.2_M.EjezOn	l52	%I5.2	Bool	Selector que activa el eje Y
I5.3_M.EjezOff	I 53	%I5.3	Bool	Selector que desactivar el eje Y
I5.4_M.EmitterM	154	%I5.4	Bool	Boton que emite un palé para organizar los objetos
l5.5_M.BandasA	155	%I5.5	Bool	Boton que activa las bandas que se dirigen hacia el almacenamiento.
STOP	156	%I5.7	Bool	Boton de Stop: Se encarga de hacer el paro de emergencia de la planta
AUTOMATICO	I 60	%I6.0	Bool	Selector de modo automático
MANUAL	l61	%I6.1	Bool	Selector de modo manual
Q0_EntradaObjetos		%Q0.0	Bool	Emisor de objetos
Q1_BandaInicial		%Q0.1	Bool	Banda inicial para el movimiento de los objetos
Q2_BandaInicial2		%Q0.2	Bool	Banda inicial 2 para el movimiento de los objetos
Q3_Forward		%Q0.3	Bool	Activa el clasificador de rueda en dirección adelante
Q4_Left		%Q0.4	Bool	Activa el clasificador de rueda en dirección izquierda
Q5_Right		%Q0.5	Bool	Activa el clasificador de rueda en dirección derecha
Q6_BandaLeft1		%Q0.6	Bool	Banda 1 izquierda para el traslado de los objetos
Q7_BandaForward1		%Q0.7	Bool	Banda 1 delantera para el traslado de los objetos
Q8_BandaRigth1		%Q1.0	Bool	Banda 1 derecha para el traslado de los objetos
Q9_BandaLeft2		%Q1.1	Bool	Banda 2 izquierda para el traslado de los objetos
Q10_BandaForward2		%Q1.2	Bool	Banda 2 delantera para el traslado de los objetos
Q11_BandaRigtht2		%Q1.3	Bool	Banda 2 derecha para el traslado de los objetos
Q12_BandaLeft3		%Q1.4	Bool	Banda 3 izquierda para el traslado de los objetos
Q13_BandaForward3		%Q1.5	Bool	Banda 3 delantera para el traslado de los objetos
Q14_BandaRigth3		%Q1.6	Bool	Banda 3 derecha para el traslado de los objetos

Q15_PickX1	%Q1.7	Bool	Movimiento en X del pick and place izquierdo
Q16_PickGrab1	%Q2.0	Bool	Agarre neumático del pick and place izquierdo
Q17_PickZ1	%Q2.1	Bool	Movimiento en Z del pick and place izquierdo
Q18_PickX2	%Q2.2	Bool	Movimiento en X del pick and place delantero
Q19_PickGrab2	%Q2.3	Bool	Agarre neumático del pick and place delantero
Q20_PickZ2	%Q2.4	Bool	Movimiento en Z del pick and place delantero
Q21_PickX3	%Q2.5	Bool	Movimiento en X del pick and place derecho
Q22_PickGrab3	%Q2.6	Bool	Agarre neumático del pick and place derecho
Q23_PickZ3	%Q2.7	Bool	Movimiento en Z del pick and place derecho
Q24_BandaLeftA1	%Q3.0	Bool	Banda de rodillos 1 izquierda
Q25_BandaLeftA2	%Q3.1	Bool	Banda de rodillos 2 izquierda
Q26_BandaForwardA1	%Q3.2	Bool	Banda de rodillos 1 delantera
Q27_BandaForwardA2	%Q3.3	Bool	Banda de rodillos 2 delantera
Q28_BandaRightA1	%Q3.4	Bool	Banda de rodillos 1 derecha
Q29_BandaRightA2	%Q3.5	Bool	Banda de rodillos 2 derecha
Q30_EmisorA1	%Q3.6	Bool	Emisor de caja para almacenado izquierdo
Q31_EmisorA2	%Q3.7	Bool	Emisor de caja para almacenado delantero
Q32_EmisorA3	%Q4.0	Bool	Emisor de caja para almacenado derecho
Q33_AdelanteA1	%Q4.1	Bool	Movimiento adelante de la paleta de carga izquierda
Q34_SubirA1	%Q4.2	Bool	Movimiento subir de la paleta de carga izquierda
Q35_AtrasA1	%Q4.3	Bool	Movimiento atrás de la paleta de carga izquierda
Q36_AdelanteA2	%Q4.4	Bool	Movimiento adelante de la paleta de carga delantera
Q37_SubirA2	%Q4.5	Bool	Movimiento subir de la paleta de carga delantera
Q38_AtrasA2	%Q4.6	Bool	Movimiento atrás de la paleta de carga delantera
Q39_AdelanteA3	%Q4.7	Bool	Movimiento adelante de la paleta de carga derecha
Q40_SubirA3	%Q5.0	Bool	Movimiento subir de la paleta de carga derecha
Q41_AtrasA3	%Q5.1	Bool	Movimiento atrás de la paleta de carga derecha
Q44_LightAutomatico	%Q5.2	Bool	Luz que indica el funcionamiento en modo automático
Q45_LightManual	%Q5.3	Bool	Luz que indica el funcionamiento en modo manual
Q46.RemoverM	%Q5.4	Bool	Remover para la demostración del modo manual

Q41_PosicionA1	%QW30	Int	Posición de almacenado para estantería
			izquierda
Q42_PosicionA2	%QW32	Int	Posición de almacenado para estantería
			delantera
Q43_PosicionA3	%QW34	Int	Posición de almacenado para estantería
			derecha
Left count	%QW36	Int	Display para el conteo de objetos en el
			almacenamiento izquierdo
Forward count	%QW38	Int	Display para el conteo de objetos en el
			almacenamiento delantero
Right count	%QW40	Int	Display para el conteo de objetos en el
			almacenamiento derecho

Tabla 1 Tabla de señales

4. Especificación de equipos e instrumentos

4.1. Pick and place

Figura 8 Brazo pick and place real.

- Referencia: Robot cartesiano 90-320T
- Número de ejes: 2
- Usos: Prensa de inyección para distintas industrias
- Ventajas: Alta velocidad y silencioso
- Carga máxima: 0 kg 3 kg
- Radio de acción: 75 cm 230 cm
- Tomado de: https://www.directindustry.es/prod/santsai-machinery/product-216965-2275595.html

4.2. Clasificador de rueda

Figura 9 Clasificador de rueda real

Referencia: Sistema de clasificación pop-up TSM

Tipo: Pop-up

Usos: Para diferentes paquetes

Cadencia: 6000 paquetes/hora

Tomado de: https://www.directindustry.es/prod/transnorm-system-gmbh/product-58734-2174021.html

4.3. Transelevador

Figura 10 Transelevador para almacenado

- Unidad de almacenamiento y recuperación para hasta 500 kg
- Tomado de: https://www.directindustry.es/prod/gis-ag/product-14507-1400355.html

4.4. Estanterías

Figura 11 Estanterías reales

Tomado de: https://www.directindustry.es/prod/jiangsu-union-logistics-system-engineering-co-ltd/product-81083-2419613.html

4.5. Sensor óptico

Figura 12 Sensor óptico real.

- Referencia: Sensor óptico de forma DotScan
- Magnitud física: De forma, de superficie, de luz blanca cromática
- Tomado de: https://www.directindustry.es/prod/zeiss-industrial-metrology/product-5693-2367670.html

4.6. Sensor difuso

Figura 13 Sensor difuso real

Referencia: E3S-CD16

Distancia de detección: 700 mm

Voltaje de alimentación: 24 V

Temperaturas de trabajo: -25 °C a 55 °C

Tomado de: https://co.mouser.com/ProductDetail/Omron-Automation-and-Safety/E3S-CD16?qs=TwPrcXezm70Cn5r0Jm7jqQ%3D%3D

4.7. Sensor reflectivo

Figura 14 Sensor reflectivo real

Referencia: WL12-3P1131

Principio: Barrera fotoeléctrica réflex

Tipo de luz: Luz roja visibleLongitud de onda: 640 nm

 Tomado de: https://www.sick.com/es/es/fotocelulas/fotocelulas/w12-3/w112-3p1131/p/p241312

5. Procesos del automatismo.

Al momento de diseñar un proceso automatizado se debe de tener en cuenta la existencia de dos modos: Manual y Automático.

- **5.1. Modo manual:** Para ilustrar suficientemente claro el proceso se implementa un modo manual para los lugares: Start, Selección, Pick and Place.
 - **5.1.1. Start:** Inicialmente se dispone de un botón que simula la entrada de objetos y debido a que este proceso se hace de forma secuencial, solo se puede enviar un objeto al tiempo, por lo que el botón inicial emite solo una caja al tiempo, posterior a esto se tiene un botón de movimiento de las bandas, el cual se encarga de mover las bandas iniciales ubicadas entre el emisor y el selectos.
 - **5.1.2. Selector:** En este momento se cuenta con 2 botones y un selector, el selector se debe mantener siempre encendido, ya que sin este no hay selección y los dos botones que se encargan de decidir hacia la derecha o izquierda, terminada la selección se cuenta con un botón que acciona las bandas ubicadas entre el selector y el pick and place.
 - **5.1.3. Pick and Place:** Por último, en el pick and place se cuenta con otro modo manual que sigue el procedo de: Mover el eje Z del pick and place, agarrar a presión el objeto, mover en el eje X y finalmente mover en el eje Z y dejar de agarrar. Para este proceso se cuentan con 3 selectores: movimiento eje Z, movimiento eje X y Grab, además de dos botones los cuales, el primero emite un palé, y el segundo para accionar las bandas finales.

5.2. Modo automático.

El modo automático consiste en la emisión de un objeto, luego este objeto pasa por 3 sensores ópticos los cuales están configurados para distinguir únicamente una de las fichas enviadas. Una vez uno de los sensores a detectado una de las fichas el selector es programado para que tome una de las tres direcciones, luego de que es seleccionado la rama por la que se dirigirá se llega hasta el pick and place, cuando llega al pick and place, esta toma la ficha y la ubica dentro de un contenedor, activando la última sección, el almacenado, en esta sección el automatismo lleva la cuenta de las posiciones que han sido ya usadas y se procede a ubicarlas en el siguiente lugar disponible. Finalmente se repite todo el proceso.

6. Red de Petri del proceso.

Para mayor ilustración de la red de Petri, dirigirse al anexo, cabe recalcar que el botón de **STOP** está presente en cualquier transición del proceso.

El árbol de alcanzabilidad del proceso obtenido mediante el CPN Tools, es el siguiente:

Y sacando el reporte de propiedades del CPN Tools, se puede concluir que:

A. La red es limitada ya que no se acumulan marcas en ningún lugar de la red de Petri y estas están acotadas $(P_i \le k)$, donde k = 1, esto implica que la red de Petri del sistema también es segura. Otro modo de llegar a esta conclusión es desde el árbol de alcanzabilidad, ya que este es finito y el mayor valor en los marcajes es 1.

Best Integer Bound	s
--------------------	---

	Upper	Lowe
New_Page'P0 1	1	0
New_Page'P10 1	1	0
New_Page'P1 1	1	0
New_Page'P11 1	1	0
New_Page'P12 1	1	0
New_Page'P13 1	1	0
New_Page'P14 1	1	0
New_Page'P15 1	1	0
New_Page'P16 1	1	0
New_Page'P17 1	1	0
New_Page'P18 1	1	0
New_Page'P19 1	1	0
New_Page'P20 1	1	0
New_Page'P2 1	1	0
New_Page'P21 1	1	0
New_Page'P22 1	1	0
New_Page'P23 1	1	0
New_Page'P24 1	1	0
New_Page'P25 1	1	0
New_Page'P26 1	1	0
New_Page'P27 1	1	0

Propiedad limitada, CPN Tools: reporte de propiedades. (Ver todo el reporte en el archivo adjunto)

B. La red es cíclica, debido a que para cualquier marcaje inicial existe una secuencia de disparos que permite regresar a dicho marcaje, (σ que lleven de Mx a M0).

Home	Properties
Hom	e Markings
	A11

Propiedad cíclica, CPN Tools: reporte de propiedades.

C. La red es viva ya que hay una secuencia de disparos que llegan de M hasta Mo. Además, el TranSet != 0

Liveness Properties

Dead Markings
None

Dead Transition Instances
None

Live Transition Instances
All

7. Análisis del proceso basado en la red de Petri.

A continuación se procede a realizar la descripción del proceso sobre la red de petri, haciendo alusión a cada una de las decisiones que toma el automatismo para cumplir su objetivo.

El proceso se divide en cuatro secciones principales: Inicio del automatismo, Clasificación, empaquetado y almacenado.

Inicio de automatismo: El proceso inicia con cuando se selecciona el modo automático y se presiona el botón de **START.**

Clasificación: La sección de clasificación se realiza a partir de 3 sensores ubicados en la primera parte del proceso (I3_SensorVisionBR, I4_SensorVisionGR, I5_SensorVisionBG) estos generan que la red de Petri tenga una representación de selección ya que solo se puede activar un sensor al tiempo y la activación de este sensor, conduciendo el producto por una de las tres ramas dispuestas en el proceso. Posterior a esto el sistema sigue su curso hasta la sección de empaquetado. Cabe mencionar que el automatismo a partir de este momento se divide en tres ramas semejantes, por lo que solo se explicará una de las ramas y esta explicación aplica de igual manera para las demás.

- **Empaquetado:** El proceso de empaquetado inicia con un flanco de bajada detectado en el sensor (I13_SensorLeft3), lo cual activa el pick and place, el proceso que realiza este es el siguiente:
 - Se activa el desplazamiento en Z del pick and place.
 - Cuando se detecta un flanco de subida en el sensor de presión ubicado en el pick and place, se activa el sujetador a presión y se desactiva el movimiento en Z.
 - Pasado 1 segundo de esto se activa el desplazamiento en X del pick and place, manteniendo la presión del sujetador.
 - Transcurridos 2 segundos de esto se procede a activar el desplazamiento en Z y cuando se desplaza completamente se desactiva el sujetador.
 - Finalmente el pick and place vuelve a su posición inicial y activa la última sección del proceso.

- Almacenamiento: La sección de empaquetado inicia cuando se detecta un flanco de subida en el sensor (I19), que es el que está ubicado al final de la banda transportadora, posterior a esto se realiza la siguiente secuencia de sucesos:
 - Se extiende el soporte de la grúa hacia adelante, tomando el palet con la fucha.
 - Transcurridos 3 segundos se procede a levantar el soporte de la grúa para después de 3 segundos retraer este soporte y quedar a la espera de la posición a ubicar el objeto.
 - Luego de ordenar la posición del objeto, la grúa se ubica en esta posición.
 - Posterior a esto, el soporte se desplaza hacia atrás.
 - o Pasados 2 segundos se posiciona en la parte central de la grúa

 Finalmente la grúa vuelve a la posición inicial y cuando esta llega, se inicia todo el sistema de nuevo.

8. Condiciones para el arranque

Elemento	Tipo	Estado
Emisor de objetos	Actuador	Apagado
Banda inicial para el movimiento de los objetos	Actuador	Apagado
Banda inicial 2 para el movimiento de los objetos	Actuador	Apagado
Activa el clasificador de rueda en dirección adelante	Actuador	Apagado
Activa el clasificador de rueda en dirección izquierda	Actuador	Apagado
Activa el clasificador de rueda en dirección derecha	Actuador	Apagado
Banda 1 izquierda para el traslado de los objetos	Actuador	Apagado
Banda 1 delantera para el traslado de los objetos	Actuador	Apagado
Banda 1 derecha para el traslado de los objetos	Actuador	Apagado
Banda 2 izquierda para el traslado de los objetos	Actuador	Apagado
Banda 2 delantera para el traslado de los objetos	Actuador	Apagado
Banda 2 derecha para el traslado de los objetos	Actuador	Apagado
Banda 3 izquierda para el traslado de los objetos	Actuador	Apagado
Banda 3 delantera para el traslado de los objetos	Actuador	Apagado
Banda 3 derecha para el traslado de los objetos	Actuador	Apagado
Movimiento en X del pick and place izquierdo	Actuador	Apagado
Agarre neumático del pick and place izquierdo	Actuador	Apagado

Movimiento en Z del pick and place izquierdo	Actuador	Apagado
Movimiento en X del pick and place delantero	Actuador	Apagado
Agarre neumático del pick and place delantero	Actuador	Apagado
Movimiento en Z del pick and place delantero	Actuador	Apagado
Movimiento en X del pick and place derecho	Actuador	Apagado
Agarre neumático del pick and place derecho	Actuador	Apagado
Movimiento en Z del pick and place derecho	Actuador	Apagado
Banda de rodillos 1 izquierda	Actuador	Apagado
Banda de rodillos 2 izquierda	Actuador	Apagado
Banda de rodillos 1 delantera	Actuador	Apagado
Banda de rodillos 2 delantera	Actuador	Apagado
Banda de rodillos 1 derecha	Actuador	Apagado
Banda de rodillos 2 derecha	Actuador	Apagado
Emisor de caja para almacenado izquierdo	Actuador	Apagado
Emisor de caja para almacenado delantero	Actuador	Apagado
Emisor de caja para almacenado derecho	Actuador	Apagado
Movimiento adelante de la paleta de carga izquierda	Actuador	Apagado

Movimiento subir de la paleta de carga izquierda	Actuador	Apagado
Movimiento atrás de la paleta de carga izquierda	Actuador	Apagado
Movimiento adelante de la paleta de carga delantera	Actuador	Apagado
Movimiento subir de la paleta de carga delantera	Actuador	Apagado
Movimiento atrás de la paleta de carga delantera	Actuador	Apagado
Movimiento adelante de la paleta de carga derecha	Actuador	Apagado
Movimiento subir de la paleta de carga derecha	Actuador	Apagado
Movimiento atrás de la paleta de carga derecha	Actuador	Apagado
Luz que indica el funcionamiento en modo automático	Actuador	Apagado
Luz que indica el funcionamiento en modo manual	Actuador	Apagado
Remover para la demostración del modo manual	Actuador	Apagado
Posición de almacenado para estantería izquierda	Actuador	Apagado
Posición de almacenado para estantería delantera	Actuador	Apagado
Posición de almacenado para estantería derecha	Actuador	Apagado
Display para el conteo de objetos en el almacenamiento izquierdo	Actuador	Apagado
Display para el conteo de objetos en el almacenamiento delantero	Actuador	Apagado
Display para el conteo de objetos en el almacenamiento derecho	Actuador	Apagado

Tabla 2 Tabla de condiciones para el arranque

9. Modos de marcha. (Norma gema)

^{*}Para todos los sensores involucrados en el proceso su estado inicial debe ser el falso binario.

9.1. F1. Procedimiento normal

Por medio del panel de control, el cual será especificado en más detalle, en la sección 9, se puede acceder al modo automático, los botones adicionales habilitados en este modo son el Start, Stop y Reset. Accionar el botón de start dará inicio a la operación de la planta desde la etapa de selección, pasando por la etapa de empacado y finalizando en la etapa de almacenamiento, se podría afirmar que la intervención humana solo es aquella que simula el "emitter" en el software factory io, aunque esta etapa podría venir de otro apartado automatizado, el botón de Stop detiene todas las etapas de la planta y el botón reset logra que todas las etapas vuelvan a su estado inicial.

9.2. F2. Marcha de preparación.

En este proceso que sucede antes de iniciar el procedimiento normal (es decir presionar el botón start) se debe verificar que se cumplan todas las condiciones de arranque mencionadas en el apartado 4.

9.3. F3. Marcha de cierre.

Cuando las zonas de carga estén llenas el proceso se debe pausar usando el botón stop para que así las cajas sean transportadas a su lugar de destino. Posteriormente se hace una nueva marcha de preparación para iniciar el procedimiento normal de nuevo.

9.4. F4. Marchas de verificación sin orden.

Por medio del panel de control, el cual será especificado en más detalle en la sección 9, se puede acceder al modo manual, para este caso el modo manual sólo permitirá el manejo de una de las etapas del proceso, específicamente la etapa de empaquetado, es decir, el manejo del brazo pick and place, por lo tanto esta etapa aparte de los botones de Start, Stop y Reset, habrán botones para el movimiento en los ejes posibles del pick and place, para poder generar su operación manual, también el botón de agarre y soltado del objeto por medio actuador neumático.

9.5. A1. Parada en el estado inicial.

Corresponde al estado de reposo, en el que todo el proceso está parado y cada elemento está en su posición inicial, el pick and place debe estar recogido completamente y la grúa del almacén debe de estar en la parte inferior .

9.6. A2. Parada pedida a final de ciclo.

Es el estado en el que se espera a que termine el proceso actual de salida pero sin recibir entrada del producto. En este caso, se espera a que todas las cajas se almacenen, evitando que ingresen cajas nuevas al proceso. Esto pasa cuando se quiere cambiar del modo manual al modo automático.

9.7. A6. Puesta del sistema en el estado inicial.

En este estado del proceso se colocan las maquinarias en el estado inicial, por si se desea pasar al modo manual del proceso.

9.8. D1. Parada de emergencia.

Se activa utilizando el botón de emergencia, el cual detiene el proceso en cualquier momento. Por posibles accidentes en las bandas transportadoras del proceso

10. Descripción de la secuencia

Figura 15 Diagrama de flujo de descripción de secuencia

11. Especificación de la parada

11.1. Modo automático

Se puede detener el proceso de la planta por medio del botón Stop ubicado en el panel de control, este devuelve todas las etapas a su estado inicial.

11.2. Modo manual

El modo manual está disponible para la etapa inicial, es decir, la etapa de selección y en la etapa de empaquetado donde se hace uso del brazo pick and place del lado izquierdo, es decir, la banda por la cual transitan las piezas de color azul liso.

12. Seguridades y enclavamientos

Para la seguridad del proceso y de los operarios se colocan unos topes alineadores, con la finalidad de que el objeto cuando es seleccionado y transportado por las bandas no se salga de esta.

Además se coloca una reja para evitar el contacto directo del operario con las bandas transportadoras y el pick and place, aunque esta reja no limita totalmente el exceso, por norma este espacio solo será usado si se necesita hacer mantenimiento del proceso.

Figura 16 Seguridades

Se necesita un enclavamiento para diferenciar entre el modo manual y el modo automático ya que mientras se esté operando con uno de estos no se podrá empezar

el modo contrario. Esto requiere un enclavamiento entre los botones de Start y Stop en el tablero de control principal y el tablero del modo manual del pick and place.

- Modo automático: En el modo automático solo es necesario un enclavamiento y este es el colocado para decidir entre el modo automático y manual únicamente.
- Modo Manual: En el modo manual si contamos con varios enclavamientos bien definidos.
 - El primer enclavamiento, es que si se emitió un objeto y este aun no se a desplazado fuera del sensor (1.I1.EntradaObjetos), no se podrá emitir otro objeto.

```
%Q0.0

"Q0_
EntradaObjetos"

%46.1

"M6.0

"M1_
"MANUAL"

"AUTOMATICO"

EntradaObjetos"

"M.Emitter"
```

Figura 17 Enclavamiento de la entrada

 El segundo enclavamiento se refiere al momento en el que se está accionando las bandas iniciales, ya que estas no se pueden accionar si se están emitiendo objetos.

```
%M0.2
                                                                                %Q0.1
  "P2"
                                                                          "Q1_BandaInicial"
   4 1
                                                                                 ( )-
 %M0.3
  "P3"
  4 H
 %M0.4
  "P4"
  4 F
  %16.1
                     %16.0
                                                             %13.3
                                         %13.2
"MANUAL"
                 "AUTOMATICO"
                                      "M.Emitter"
                                                           "M.BI_B2"
```

Figura 18 Enclavamiento de banda inicial

 Como tercer enclavamiento se tiene que el selector de rueda no se puede desplazar hacia la izquierda si se están moviendo hacia la derecha también.

Figura 19 Enclavamiento de selector de rueda 1

 Como cuarto enclavamiento y análogo al anterior, no se podrá mover el selector de rueda hacia la derecha si se estaba moviendo hacia la izquierda.

Figura 20 Enclavamiento de selector de rueda 2

13. Especificación del panel de control

En la siguiente imagen se muestran los elementos que componen el panel de control principal, donde podemos notar.

- El selector para los dos modos (Automático y manual).
- Un botón de stop para los dos modos(Automático y manual).
- Una luz azul la cual se encenderá para indicar que se está en el modo manual.
- Se tendrá un indicador que mostrará la cantidad de objetos que ha pasado por cada una de las bifurcaciones
- Para el modo automático se tienen los siguientes botones:
 - o Start, es el botón encargado de iniciar el proceso de producción.
 - Stop, es el botón encargado de parar el proceso de producción.
 - Reset, es el botón encargado de reiniciar el proceso de producción.
- Para el modo manual se tienen los siguientes botones:
 - Botón para agarrar/soltar el objeto.

- Botón para el desplazamiento del eje Z, este botón nos permitirá mover el pick and place en el eje Z para que baje y tome los objetos.
- Botón para el desplazamiento del eje X, este botón nos permitirá mover el pick and place en el eje X para que se desplace de una cinta transportadora a otra.

Figura 21 Panel de control Manual - Automático.

Figura 22 Panel de control Manual - Automático (Pick and Place).

Tablas de señales con adicción de seguridades y enclavamientos

Señal enclavada 1	Señal enclavada 2	Tipo	Función
I6.0.Automatico	I6.1.Manual	Input booleana	Enclavamiento para diferenciar entre el modo manual y el modo automático ya que mientras se esté operando
1.I1.EntradaObjetos	I3.2.M.Emiter	Input booleana	Enclavamiento para limitar que no entre una ficha cuando otra ya esté en proceso
I3.2.M.Emiter	I3.3.M.BI_B2	Input booleana	Enclavamiento para evitar que se muevan las bandas mientras se emite un objeto
I3.7.M.Right_Decision	I3.7.M.Left_Decision	Input booleana	Enclavamiento para evitar que el selector de rueda se accione hacia la izquierda y derecha al mismo tiempo

Tabla 3 Tabla explicativa de enclavamientos.

14. Conclusiones

14.1. Conclusiones del proyecto

- Se obtuvieron habilidades en simulación gracias a la metodología de gemelo digital, este acercamiento aunque con limitaciones en las plantas es un abrebocas enriquecedor sobre el funcionamiento de la industria y su automatización.
- Se adquirieron destrezas en investigación, redacción y creación de diagramas y tablas asociados a la automatización de una planta.
- Fue provechoso y gratificante realizar un automatismo por medio del lenguaje ladder y poder observar su funcionamiento en una planta.
- Se ratifica la importancia de la creación de la red de Petri y sus propiedades para una programación más efectiva en el software TIA Portal.

14.2. Conclusiones del curso

- El curso en general es muy provechoso, a pesar de la virtualidad se pudieron desarrollar las habilidades y conceptos necesarios sobre la automatización de procesos gracias a la metodología de gemelo digital, se destacan principalmente las temáticas de lógica cableada, que aunque sea un proceso que ya no es muy usado, fue importante para entender las bases de la lógica programacional, las redes de Petri un componente fundamental para el entendimiento de los automatismos y finalmente el manejo de softwares, como lo son el CPN tools, TIA Portal, CodeSys y Factory.io.
- Todas las habilidades adquiridas son de gran importancia para un futuro laboral en el campo de la automatización, se destaca además el énfasis que se hace en la asignatura sobre la transición a la cuarta revolución industrial donde muchas tecnologías y técnicas serán parte de la automatización, como lo es el internet de las cosas y la computación en el borde.

15. Referencias

- [1] "Automatización de Procesos: Diapositivas 2021_2." https://unvirtual.medellin.unal.edu.co/mod/folder/view.php?id=107234
- [2] "CPN Tools A tool for editing, simulating, and analyzing Colored Petri nets." https://cpntools.org/
- [3] "Totally Integrated Automation Portal | Automation Software | Siemens Global." https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html
- [4] "Next-Gen PLC Training Factory I/O." https://factoryio.com/