PMBSR_EL1, Profiling Buffer Status/syndrome Register

The PMBSR EL1 characteristics are:

Purpose

Provides syndrome information to software when the buffer is disabled because the management interrupt has been raised.

Configuration

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMBSR EL1 are undefined.

Attributes

PMBSR EL1 is a 64-bit register.

Field descriptions

636261605958	575655545352	251 50 49	48	4746454443424140	39	38	37	3635343332
		RES0			AssuredOnly	Overlay	DirtyBit	RES0
EC	RES0	DLEAS	COLL		MSS)	,	
313029282726	252423222120	19 18 17	16	151413121110 9 8	7	6	5	4 3 2 1 0

Bits [63:40]

Reserved, res0.

AssuredOnly, bit [39] When FEAT THE is implemented:

AssuredOnly flag.

If a memory access generates a Stage 2 Data Abort, this field holds information about the fault.

AssuredOnly	Meaning
0b0	The Data Abort is not
	due to AssuredOnly.
0b1	The Data Abort is due to
	AssuredOnly.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Overlay, bit [38] When FEAT S1POE is implemented or FEAT S2POE is implemented:

Overlay flag.

If a memory access generates a Data Abort for a Permission fault, this field holds information about the fault.

Overlay	Meaning
0b0	The Data Abort is due to Base
	Permissions.
0b1	The Data Abort is due to
	Overlay Permissions.

For any other fault, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

DirtyBit, bit [37] When FEAT S1PIE is implemented or FEAT S2PIE is implemented:

DirtyBit flag.

If a write access to memory generates a Data Abort for a Permission fault using Indirect Permission, this field holds information about the fault.

DirtyBit	Meaning
0b0	The Permission Fault is not
	due to nDirty State or Dirty
	State.
0b1	The Permission Fault is due to
	nDirty State or Dirty State.

For any other fault or Access, this field is res0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

Bits [36:32]

Reserved, res0.

EC, bits [31:26]

Event class. Top-level description of the cause of the buffer management event.

EC	Meaning	MSS	Applies when
00000000	Other buffer management event. All buffer management events other than those described by other defined Event class codes.	MSS encoding for other buffer management events	
0b011110	Granule Protection Check fault, other than GPF, on write to Profiling Buffer.	MSS encoding for Granule Protection Check fault	When FEAT_RME is implemented
0b011111	Buffer management event for an implementation defined reason.	MSS encoding for a buffer management event for an IMPLEMENTATION DEFINED reason	
0b100100	Stage 1 Data Abort on write to Profiling Buffer.	MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer	
0b100101	Stage 2 Data Abort on write to Profiling Buffer.	MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer	

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field unknown. Values that are not supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [25:20]

Reserved, res0.

DL, bit [19]

Partial record lost.

Following a buffer management event other than an asynchronous External abort, indicates whether the last record written to the Profiling Buffer is complete.

DL	Meaning
0b0	PMBPTR EL1 points to the first
	byte after the last complete record
	written to the Profiling Buffer.
0b1	Part of a record was lost because of
	a buffer management event or
	synchronous External abort.
	PMBPTR_EL1 might not point to
	the first byte after the last
	complete record written to the
	buffer, and so restarting collection
	might result in a data record
	stream that software cannot parse.
	All records prior to the last record
	have been written to the buffer.

When the buffer management event was because of an asynchronous External abort, this bit is set to 1 and software must not assume that any valid data has been written to the Profiling Buffer.

This bit is res0 if the PE never sets this bit as a result of a buffer management event caused by an asynchronous External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EA, bit [18]

External abort.

EA	Meaning
0b0	An External abort has not been
	asserted.
0b1	An External abort has been
	asserted and detected by the
	Statistical Profiling Unit.

This bit is res0 if the PE never sets this bit as the result of an External abort.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

S, bit [17]

Service

S	Meaning
0b0	PMBIRQ is not asserted.
0b1	PMBIRQ is asserted. All profiling
	data has either been written to the
	buffer or discarded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

COLL, bit [16]

Collision detected.

COLL	Meaning
0b0	No collision events detected.
0b1	At least one collision event was recorded.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

The syndrome contents for each management event are described in the following sections.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

MSS encoding for stage 1 or stage 2 Data Aborts on write to buffer

_ 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RE	S 0							FS	SC		

Bits [15:6]

Reserved, res0.

FSC, bits [5:0]

Fault status code

FSC	Meaning	Applies when
0b000000	Address size	
	fault, level 0	
	of translation	
	or translation	
	table base	
	register.	
0b000001	Address size	
	fault, level 1.	
0b000010	Address size	
	fault, level 2.	
0b000011	Address size	
	fault, level 3.	
0b000100	Translation	
	fault, level 0.	
0b000101	Translation	
	fault, level 1.	
0b000110	Translation	
	fault, level 2.	
0b000111	Translation	
	fault, level 3.	
0b001001	Access flag	
	fault, level 1.	
0b001010	Access flag	
	fault, level 2.	

0b001011	Access flag fault, level 3.	
0b001000	Access flag fault, level 0.	When FEAT_LPA2 is implemented
0b001100	Permission fault, level 0.	When FEAT_LPA2 is implemented
0b001101	Permission fault, level 1.	-
0b001110	Permission fault, level 2.	
0b001111	Permission fault, level 3.	
0b010000	Synchronous External abort, not on translation table walk or hardware update of translation table.	
0b010001	Asynchronous External abort.	
0b010010	Synchronous External abort on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented
0b010011	Synchronous External abort on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented

0b010100	Synchronous External abort on translation table walk or hardware update of translation table, level 0.	
0b010101	Synchronous External abort on translation table walk or hardware update of translation table, level 1.	
0b010110	Synchronous External abort on translation table walk or hardware update of translation table, level 2.	
0b010111	Synchronous External abort on translation table walk or hardware update of translation table, level 3.	
0b011011	Synchronous parity or ECC error on memory access on translation table walk or hardware update of translation table, level -1.	When FEAT_LPA2 is implemented and FEAT_RAS is not implemented
0b100001	Alignment fault.	

0b100010	Granule Protection Fault on translation table walk or hardware update of translation table, level -2.	When FEAT_D128 is implemented and FEAT_RME is implemented
0b100011	Granule Protection Fault on translation table walk or hardware update of translation table, level -1.	When FEAT_RME is implemented and FEAT_LPA2 is implemented
0b100100	Granule Protection Fault on translation table walk or hardware update of translation table, level 0.	When FEAT_RME is implemented
0b100101	Granule Protection Fault on translation table walk or hardware update of translation table, level 1.	When FEAT_RME is implemented
0b100110	Granule Protection Fault on translation table walk or hardware update of translation table, level 2.	When FEAT_RME is implemented

0b100111	Granule Protection Fault on translation table walk or hardware update of translation table, level 3.	When FEAT_RME is implemented
0b101000	Granule Protection Fault, not on translation table walk or hardware update of translation table.	When FEAT_RME is implemented
0b101001	Address size fault, level -1.	When FEAT_LPA2 is implemented
0b101010	Translation fault, level -2.	When FEAT_D128 is implemented
0b101011	Translation fault, level -1.	When FEAT_LPA2 is implemented
0b101100	Address Size fault, level -2.	When FEAT_D128 is implemented
0b110000	TLB conflict abort.	P
0b110001	Unsupported atomic hardware update fault.	When FEAT_HAFDBS is implemented

All other values are reserved.

It is implementation defined whether each of the Access Flag fault, asynchronous External abort and synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated by the PE. For more information see 'Faults and Watchpoints'.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

MSS encoding for other buffer management events

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RE	S 0							BS	SC		

Bits [15:6]

Reserved, res0.

BSC, bits [5:0]

Buffer status code

BSC	Meaning
00000000	Buffer not filled
0b000001	Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field unknown. Values that are not supported act as reserved values when writing to this register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

MSS encoding for Granule Protection Check fault

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							RE	S 0							

Bits [15:0]

Reserved, res0.

MSS encoding for a buffer management event for an IMPLEMENTATION DEFINED reason

IMPLEMENTATION DEFINED, bits [15:0]

implementation defined.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing PMBSR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMBSR EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1010	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGRTR EL2.PMBSR EL1 ==
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS ||
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        X[t, 64] = NVMem[0x820];
    else
        X[t, 64] = PMBSR\_EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
```

MSR PMBSR EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1010	0b011

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMBSR_EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.E2PB == 'x0' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11'
then
        NVMem[0x820] = X[t, 64];
    else
        PMBSR_EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64
Instructions

Index by Encoding

External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.