Examenul de bacalaureat 2010 Proba E - c) Proba scrisă la MATEMATICĂ

Filiera teoretică, profilul real, specializarea matematică - informatică. Filiera vocațională, profilul militar, specializarea matematică – informatică

MODEL

- Toate subiectele (I, II şi III) sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.
- La toate subjectele se cer rezolvări complete.

SUBIECTUL I (30 de puncte)

- **5p 1.** Determinați partea reală a numărului complex $(\sqrt{3} + i)^6$.
- **5p** 2. Se consideră funcția $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{1}{\sqrt[3]{x}}$. Calculați $(f\circ f)(512)$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $\cos 2x + \sin x = 0$.
- **5p 4.** Se consideră mulțimea $M = \{0,1,2,3,4,5\}$. Determinați numărul tripletelor (a,b,c) cu proprietatea că $a,b,c \in M$ și a < b < c.
- **5p** | **5.** Calculați distanța dintre dreptele paralele de ecuații x + 2y = 6 și 2x + 4y = 11.
- **5p** | **6.** Paralelogramul *ABCD* are AB = 1, BC = 2 şi $m(\angle BAD) = 60^{\circ}$. Calculați produsul scalar $\overrightarrow{AC} \cdot \overrightarrow{AD}$.

SUBIECTUL al II-lea

(30 de puncte)

- **1.** Pentru $a, b, c \in \mathbb{R}^*$, se consideră sistemul $\begin{cases} ax + by + cz = b \\ cx + ay + bz = a \\ bx + cy + az = c \end{cases}$, $x, y, z \in \mathbb{R}$.
- **5p** a) Arătați că determinantul sistemului este $\Delta = (a+b+c)(a^2+b^2+c^2-ab-ac-bc)$.
- **5p b**) Rezolvați sistemul în cazul în care este compatibil determinat.
- **5p** c) Știind că $a^2 + b^2 + c^2 ab ac bc = 0$, arătați că sistemul are o infinitate de soluții (x, y, z), astfel încât $x^2 + y^2 = z 1$.
 - **2.** Se consideră mulțimea $G = \left\{ \begin{pmatrix} a & b \\ \hat{0} & c \end{pmatrix} | a,b,c \in \mathbb{Z}_4 \right\}$.
- **5p** a) Determinați numărul elementelor mulțimii G.
- **5p b)** Dați un exemplu de matrice $A \in G$ cu proprietatea că det $A \neq \hat{0}$ și det $A^2 = \hat{0}$.
- **5p** c) Determinați numărul soluțiilor ecuației $X^2 = \begin{pmatrix} \hat{1} & \hat{0} \\ \hat{0} & \hat{0} \end{pmatrix}, X \in G$.

SUBIECTUL al III-lea

(30 de puncte)

- **1.** Se consideră funcția $f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + x + 1}{x + 1}$.
- **5p** a) Determinați ecuația asimptotei spre $+\infty$ la graficul funcției f.
- **5p b)** Calculați f'(x), $x \in \mathbb{R} \setminus \{-1\}$.
- **5p** c) Demonstrați că funcția f este concavă pe intervalul $(-\infty, -1)$.
 - **2.** Pentru orice $n \in \mathbb{N}^*$ se consideră funcțiile $f_n : \mathbb{R} \to \mathbb{R}, f_n(x) = |\sin nx|$ și numerele $I_n = \int_{\pi}^{2\pi} \frac{f_n(x)}{x} dx$.
- **5p** a) Calculați $\int_0^{\pi} f_2(x) dx$.
- **5p b**) Arătați că $I_n \le \ln 2$.
- **5p** c) Arătați că $I_n \ge \frac{2}{\pi} \left(\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} \right)$.