

COMP9020

Foundations of Computer Science Term 3, 2024

Lecture 4: Set Theory

Outline

Recap of Key Definitions

Set Equality

Laws of Set Operations

Derived Laws

Two Useful Results

Outline

Recap of Key Definitions

Set Equality

Laws of Set Operations

Derived Laws

Two Useful Results

Defining Sets

- Explicitly list elements
- 2 Take a subset of an existing set by restricting the elements
- 3 Build up from existing sets using Set Operations

Set Operations

Definition

 $A \cup B$ – union (a or b):

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

 $A \cap B$ – intersection (a and b):

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

 A^c – **complement** (with respect to a universal set \mathcal{U}):

$$A^c = \{x : x \in \mathcal{U} \text{ and } x \notin A\}.$$

We say that A, B are **disjoint** if $A \cap B = \emptyset$

Set Operations

Other set operations

Definition

 $A \setminus B$ – **set difference**, relative complement (a but not b):

$$A \setminus B = A \cap B^c$$

 $A \oplus B$ – **symmetric difference** (a and not b or b and not a; also known as a or b exclusively; a xor b):

$$A \oplus B = (A \setminus B) \cup (B \setminus A)$$

A **Venn Diagram** is a simple graphical approach to visualize the basic set operations.

A **Venn Diagram** is a simple graphical approach to visualize the basic set operations.

Outline

Recap of Key Definitions

Set Equality

Laws of Set Operations

Derived Laws

Two Useful Results

Set Equality

Two sets are **equal** (A = B) if they contain the same elements

To show equality:

- Examine all the elements
- Show $A \subseteq B$ and $B \subseteq A$
- Use the Laws of Set Operations

Important!

Venn diagrams can help visualize, but are **not** rigorous.

Example

Example

Example

Example

Example

Example

Show $\{3,2,1\} = (0,4)$.

Example

Show $\{3, 2, 1\} = (0, 4)$.

$$(0,4)=\{1,2,3\}=\{3,2,1\}.$$

Example

Show ${n: n \in \mathbb{Z} \text{ and } n^2 < 5} = {n: n \in \mathbb{Z} \text{ and } |n| \le 2}$

Example

Show
$$\{n : n \in \mathbb{Z} \text{ and } n^2 < 5\} = \{n : n \in \mathbb{Z} \text{ and } |n| \le 2\}$$

$${n : n \in \mathbb{Z} \text{ and } n^2 < 5} = {-2, -1, 0, 1, 2}$$

= ${n : n \in \mathbb{Z} \text{ and } |n| \le 2}$

Example

Show ${n: n \in \mathbb{Z} \text{ and } n^2 > 5} = {n: n \in \mathbb{Z} \text{ and } |n| > 2}$

Example

Show $\{n : n \in \mathbb{Z} \text{ and } n^2 > 5\} = \{n : n \in \mathbb{Z} \text{ and } |n| > 2\}$

Show:

- For all $n \in \mathbb{Z}$, if $n^2 > 5$ then |n| > 2; and
- For all $n \in \mathbb{Z}$, if |n| > 2 then $n^2 > 5$.

That is, show:

For all
$$n \in \mathbb{Z}$$
: $n^2 > 5$ if, and only if $|n| > 2$

Outline

Recap of Key Definitions

Set Equality

Laws of Set Operations

Derived Laws

Two Useful Results

Laws of Set Operations

For all sets A, B, C:

Commutativity $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Associativity $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Distribution $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Identity $A \cup \emptyset = A$

 $A \cap \mathcal{U} = A$

Complementation $A \cup (A^c) = \mathcal{U}$

 $A\cap (A^c)=\emptyset$

Substitution

Because the laws hold for all sets, we can substitute complex expressions for each set symbol.

Example

Commutativity

$$A \cup B = B \cup A$$

Substitution

Because the laws hold for all sets, we can substitute complex expressions for each set symbol.

Example

Commutativity

$$A \cup B = B \cup A$$

Therefore:

$$(C \cap D) \cup (D \oplus E) = (D \oplus E) \cup (C \cap D)$$

Example

Show that for all sets $A \cap (B \cap C) = C \cap (B \cap A)$:

Example

Example

Show that for all sets $A \cap (B \cap C) = C \cap (B \cap A)$:

$$A \cap (B \cap C) = (A \cap B) \cap C$$
 [Associativity]
= $C \cap (A \cap B)$ [Commutativity]
= $C \cap (B \cap A)$ [Commutativity]

Important!

(Aim to) limit each step to a non-overlapping applications of a single rule

16

Outline

Recap of Key Definitions

Set Equality

Laws of Set Operations

Derived Laws

Two Useful Results

Other useful set laws

The following are all derivable from the previous 10 laws.

Idempotence $A \cap A = A$

 $A \cup A = A$

Double complementation $(A^c)^c = A$

Annihilation $A \cap \emptyset = \emptyset$

 $A \cup \mathcal{U} = \mathcal{U}$

de Morgan's Laws $(A \cap B)^c = A^c \cup B^c$

 $(A \cup B)^c = A^c \cap B^c$

$$A = A \cup \emptyset$$

(Identity)

$$A = A \cup \emptyset$$
 (Identity)
= $A \cup (A \cap A^c)$ (Complementation)

$$A = A \cup \emptyset$$
 (Identity)
= $A \cup (A \cap A^c)$ (Complementation)
= $(A \cup A) \cap (A \cup A^c)$ (Distributivity)

$$A = A \cup \emptyset$$
 (Identity)
 $= A \cup (A \cap A^c)$ (Complementation)
 $= (A \cup A) \cap (A \cup A^c)$ (Distributivity)
 $= (A \cup A) \cap \mathcal{U}$ (Complementation)

$$\begin{array}{ll} A &= A \cup \emptyset & \text{(Identity)} \\ &= A \cup (A \cap A^c) & \text{(Complementation)} \\ &= (A \cup A) \cap (A \cup A^c) & \text{(Distributivity)} \\ &= (A \cup A) \cap \mathcal{U} & \text{(Complementation)} \\ &= (A \cup A) & \text{(Identity)} \end{array}$$

Outline

Recap of Key Definitions

Set Equality

Laws of Set Operations

Derived Laws

Two Useful Results

Two useful results

Definition

If A is a set defined using \cap , \cup , \emptyset and \mathcal{U} , then $\operatorname{dual}(A)$ is the expression obtained by replacing \cap with \cup (and vice-versa) and \emptyset with \mathcal{U} (and vice-versa).

Theorem (Principle of Duality)

If you can prove $A_1 = A_2$ using the Laws of Set Operations then you can prove $dual(A_1) = dual(A_2)$

Example

Absorption law: $A \cup (A \cap B) = A$

Dual: $A \cap (A \cup B) = A$

21

Application (Idempotence of \cap)

Recall Idempotence of \cup :

$$A = A \cup \emptyset \qquad \text{(Identity)}$$

$$= A \cup (A \cap A^c) \qquad \text{(Complementation)}$$

$$= (A \cup A) \cap (A \cup A^c) \qquad \text{(Distributivity)}$$

$$= (A \cup A) \cap \mathcal{U} \qquad \text{(Complementation)}$$

$$= (A \cup A) \qquad \text{(Identity)}$$

Application (Idempotence of \cap)

Invoke the dual laws!

$$A = A \cap \mathcal{U} \qquad \text{(Identity)}$$

$$= A \cap (A \cup A^c) \qquad \text{(Complementation)}$$

$$= (A \cap A) \cup (A \cap A^c) \qquad \text{(Distributivity)}$$

$$= (A \cap A) \cup \emptyset \qquad \text{(Complementation)}$$

$$= (A \cap A) \qquad \text{(Identity)}$$

Two useful results

Theorem (Uniqueness of complement)

 $A\cap B=\emptyset$ and $A\cup B=\mathcal{U}$ if, and only if, $B=A^c$.

Two useful results

Theorem (Uniqueness of complement)

$$A \cap B = \emptyset$$
 and $A \cup B = \mathcal{U}$ if, and only if, $B = A^c$.

Proof (Only if).

```
B = B \cap \mathcal{U}
                                               (Identity)
                                        (Complement)
    = B \cap (A \cup A^c)
    = (B \cap A) \cup (B \cap A^c)
                                        (Distributivity)
    = (A \cap B) \cup (A^c \cap B) (Commutativity)
    = \emptyset \cup (A^c \cap B)
                                                 (Given)
    =(A\cap A^c)\cup (A^c\cap B)
                                        (Complement)
    = (A^c \cap A) \cup (A^c \cap B) (Commutativity)
    = A^c \cap (A \cup B)
                                        (Distributivity)
    = A^c \cap \mathcal{U}
                                                 (Given)
    = A^c
                                               (Identity)
```

23

Application (Double complement)

Take
$$A=X^c$$
 and $B=X$:
$$X^c\cap X = X\cap X^c \qquad \text{(Commutativity)}$$
$$=\emptyset \qquad \text{(Complement)}$$
$$X^c\cup X = \mathcal{U} \qquad \text{(Principle of duality)}$$

By the uniqueness of complement, $(X^c)^c = X$.

Exercises

Exercises

Show the following for all sets A, B, C:

- $B \cup (A \cap \emptyset) = B$
- $\bullet \ (C \cup A) \cap (B \cup A) = A \cup (B \cap C)$
- $\bullet (A \cap B) \cup (A \cup B^c)^c = B$

Exercises

Give counterexamples to show the following do not hold for all sets:

- $\bullet \ A \setminus (B \setminus C) = (A \setminus B) \setminus C$
- $(A \cup B) \setminus C = A \cup (B \setminus C)$
- $(A \setminus B) \cup B = A$