NEC

PNP SILICON POWER TRANSISTOR 2SA1396

DESCRIPTION

The 2SA1396 is PNP silicon epitaxial transistor designed for switch-

ing regulator, DC-DC converter and high frequency power amplifier

application.

FEATURES

- Easy mount by eliminating Insulation Sheet and Bushing.
- Low Collector Saturation Voltage.
- High Switching Speed.
- Complementary to 2SC3568.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures

Storage Temperature	$-55 \text{ to} + 150 ^{\circ}\text{C}$
Junction Temperature	150 °C Maximum
Maximum Power Dissipation (T _c = 25 °C)	

mum Volta	ages and Currents (T _a =25 °C)		
V _{CBO}	Collector to Base Voltage	-100	٧
V _{CEO}	Collector to Emitter Voltage	-100	٧
V_{EBO}	Emitter to Base Voltage	-7.0	٧
(DC)	Collector Current (DC)		
I _{C(pulse)}	Collector Current (pulse)*	-20	Α
IB(DC)	Base Current (DC)	-5.0	Α

* PW \leq 300 μs , Duty Cycle \leq 10 %

ELECTRICAL CHARACTERISTICS (T, = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT.	TEST CONDITIONS
ton	Turn-on Time			0.5	μs	$/I_{C} = -5.0 \text{ A}, I_{B1} = -I_{B2} = -0.5 \text{ A}$
tsta	Storage Time			1.5	μs	R _L = 10 Ω, V _{CC} = 50 V
tf	Fall Time			0.5	μs	(10 15) 1 CC 11 1
hFE1	DC Current Gain**	40		200		$V_{CE} = -5.0 \text{ V, } I_{C} = -0.5 \text{ A}$
hFE2	DC Current Gain**	40		200	-	$V_{CE} = -5.0 \text{ V, } I_{C} = -3.0 \text{ A}$
hFE3	DC Current Gain**	20			_	$V_{CE} = -5.0 \text{ V, } I_{C} = -5.0 \text{ A}$
VCE(sat)	Collector Saturation Voltage**			-0.6	V	$I_C = -5.0 \text{ A}, I_B = -0.5 \text{ A}$
VBE(sat)	Base Saturation Voltage**			-1.5	V	$I_C = -5.0 \text{ A}, I_B = -0.5 \text{ A}$
VCEO (SUS)	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -5.0 \text{ A}, I_B = -0.5 \text{ A}, L = 1 \text{ mH}$
VCEX (SUS)1	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -5.0 \text{ A}, I_{B1} = -I_{B2} = -0.5 \text{ A}, T_a = 125 ° C$ L = 180 μ H, Clamped
VCEX (SUS)2	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -10 \text{ A}, I_{B1} = -1.0 \text{ A}, -\frac{1}{1}B2 = 0.5 \text{ A},$ L = 180 μ H, Clamped
ICBO	Collector Cutoff Current			-10	μΑ	$V_{CB} = -100 \text{ V}, I_{E} = 0$
ICER	Collector Cutoff Current			-1.0	mA	$V_{CE} = -100 \text{ V, R}_{BE} = 51 \Omega, T_a = 125 ^{\circ}\text{C}$
ICEX1	Collector Cutoff Current			-10	μΑ	$V_{CE} = -100 \text{ V, } V_{BE(OFF)} = 1.5 \text{ V}$
ICEX2	Collector Cutoff Current			-1.0	mA	$V_{CE} = -100 \text{ V, } V_{BE(OFF)} = 1.5 \text{ V, } T_a = 125 ^{\circ}\text{C}$
IEBO	Emitter Cutoff Current			-10	μΑ	$V_{EB} = -5.0 \text{ V, I}_{C} = 0$

Classification of hFE2

Rank	M	L	Ķ
Range	40 to 80	60 to 120	100 to 200

Test Conditions: $V_{CE} = -5.0 \text{ V}$, $I_{C} = -3.0 \text{ A}$

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME (t_{on} , t_{stg} , t_{f}) TEST CIRCUIT

