

DCI and Subsea Trends

Moustafa Kattan, Distinguished Architect Sushin Suresan Adackaconam (ssuresan), Product Manager BRKOPT-2012

Agenda

- Introduction
- Technology direction
- 400G Digital Coherent Optics
- Compact Modular aka DCI
- Subsea Optical Transmission
- Software
- Conclusion

Optical & Optics Domains

DC & Client Optics

- Grey optics
- Within a building or campus or city
- Ethernet
- Optimize for Cost, Power, Density

Line Optics

- Multiple channels / DWDM (Colored)/ Fiber
- Across country/Ocean (100's to 10,000 km +)
- Forward Error Correction (FEC)
- Optimize for Performances, Spectral Efficiency, Cost, Density

Technology Direction

What is important for different applications?

2010 2013 2015 2017 2020 Metro 100G coherent introduced to 10G DWDM operator networks 100G QPSK Capacity increases in network 10x 40G SC/DC Long Haul Simpler to use for long haul coherent and metro networks 100G coherent used for

100G coherent with

extended CD

compensation

Subsea

40G SC/DC

coherent

BRKOPT-2012

upgrading existing subsea

cables that were

compensated.

2022

2010 2013 2015 2020 2017 2022 250G 16QAM CFP2-ACO CFP2-ACO QSFP 100G non coherent introduced with DSP Metro 10G DWDM on host. CFP2-ACO 250G 16QAM 100G QPSK introduced - 2.5x 200G capacity in metro. 16QAM 40G SC/DC **Long Haul** 150G 8QAM 8QAM used to get coherent 100G QPSK 50-100% increase in long haul. Specialized 50G BPSK/100G 100G coherent with QPSK/150G 8QAM 40G SC/DC transponders for Subsea extended CD extended CD coherent subsea cables. compensation compensation

2010 2013 2015 2020 2017 2022

Metro

QSFP-DD pluggable - valuable in metro and long haul. Fits into router line card ports. Low power and space.

400G DCO introduced with

Long Hau •

Gen-2 multi-haul - 6000+ options on trunk from constellation shaping and flexible baud-rates, 70-100 Gbd. Significant improvement in SNR. 30-40% improvement in capacity in LH.

Subsea

2010

2013

2015

2017

2020

2022

Metro

Long Hau

Subsea

 800G/2x400G DCO planned with QSFP-DD pluggable – valuable in metro and long haul. Fits into router line card ports. Low power and space.

 Gen-3 multi-haul – Further improvement in SNR and power/100G. 120-150 Gbd.

OSFP-DD

400G Digital Coherent Optics

The benefits of coherent optics integration

400G DWDM DCO Variants

- OIF standardized QSFP-DD ZR aiming a P2P connectivity of 120km (Metro)
- AT&T OpenROADM MSA defines a standard for WDM Interoperable Interfaces operating at 400G, 300G and 200G for Regional and Long-Haul applications (~0 dBm launch power)
- Acacia and NEL agreed to support an interoperable mode called OpenZR+ leveraging oFEC to
 extend the interoperability among Vendors using QSFP-DD form factor (~-10dBm launch power)
- Cisco QSFP-DD supports OIF ZR, Open ROADM FEC and OpenZR+ on the same pluggable

Model	Line Rate	Mode	Modulation Format	FEC	OTN OH	Baud Rate (GB)	Target OSNR
OIF 400G ZR	400G	ZR	16QAM	CFEC	NO	59.84	26dB
OpenROADM MSA	400G	OR	16QAM	OFEC	YES	63.14	24dB (in DRAFT)
Open ZR+	400G	OZR+	16QAM	OFEC	NO	60.14	24dB
Cisco QDD ZR+ Version	400G	OZR+	16QAM	OFEC	NO	60.14	22 dB

OpenZR+ MSA

Combines two standardization efforts to enable high performance pluggable modules that provide multi-vendor interoperability.

For more information: http://openzrplus.org/

Coherent Optics Models for the router

Direct on Router

Router and TXP with DCOs

Router and TXP

Future Coherent DSP Evolution

- Lower Power Consumption and Increase Processing Power → 5nm
 - Improved Optical Performances for Subsea & ULH applications
 - Double Pluggable capacity (from 400G to 800G)
 QSFP-DD800 :::
- Optimized DSP Capacity around 400GE Clients
 - Multi-carrier support to drive Subsea & ULH applications
 - Up to 1.2Tbps per carrier for DCI and Metro applications
- Flex Spectrum WDM Layer to enable all applications
 - Even 100GHz Channel Grid is too small at this point!

Compact Modular aka DCI

Cisco NCS 1000 compact modular Product Suite

Gen-2 multi-Haul with NCS 1004

6484 unique modes on the NCS 1004 Turbo Coherent DSP Most industry solutions offer <10 modes today

Turbo Coherent with NCS 1004 - 6484 options

North America Back Bone Upgrade with Gen-1 Multi-Haul n x 100G view

SNR distribution for NA long haul

North America Back Bone Upgrade with Gen2 Multi-Haul n x 50G view

SNR distribution for NA long haul

Subsea Optical Transmission

cisco Live!

Cisco in Subsea/undersea?

*Subsea, undersea will be used interchangeably

How is Subsea different from Terrestrial?

- More expensive fiber pure silica core, higher effective area fiber
 - Eg: EX3000 150micron, 0.16db/km
- EDFA amplifiers with symmetrically spacing and operated at Fixed Output Power
- Power management Noise Loading to maintain Total Power in fiber and CW Idlers on older compensated Systems
- Newer Uncompensated cables are very similar to Terrestrial coherent networks

Where is Cisco in subsea today?

Completed 6 Deployments

- 1x 10000km+ => 3.7 + b/s/Hz
- 1x 5000-10000km => 4.2+ b/s/Hz
- 4x 4000-5000km => 5.33+ b/s/Hz

Public Announcements

- MAREA
- INDIGO-WEST
- INDIGO-CENTRAL

NCS 1004 Multi-Haul Transponder

- NCS 1004 shipping since April 2019
 - Flexible baud-rate and constellations, NLEQ
- L-Band shipping, 400GE to ship in February 2021
- Deployed over 3rd party OLS + Open cable, over Cisco OLS

Subsea Market Trends

- Market driven by Web/OTT: deploying new cables to improve connectivity across the globe (50%+ of total capacity)
- Open cables from sub-com, NEC, ASN
- Space Division Multiplexing (SDM) starting to appear in Subsea

- New uncompensated cables driving unique value:
 - New Routes toward areas not sufficiently covered today
 - Low latency routes bypassing Europe through "Southern Routes"
 - Increased resiliency 90% of Japan cables impacted by 2011 Tsunami as all terminated in the same area
- More Details on OTT Players and undersea <u>here</u>

Upgrading older cables from 2000

- Between 1997 and 2001, there were 97 subsea cable systems built.
- With a 25 year life approaching and high O&M costs, what is the path forward?
 - Build new cables ? More capacity, Better economics
 - Lease capacity/spectrum? DC players driving lower costs
 - Upgrade and extend life of cables ? Strategic cable assets, Slower deployments due to regulatory and other issues.

SE improvements for subsea – trans-Atlantic cable

BRKOPT-2012

SDM approach for trans-Atlantic cable

- Map same set of EDFA pumps to more fibers. Lower EDFA launch power and therefore, lower SNR (OSNR = 58 + Pin - NF - 10x log10 N) but, lower impact to SE.
- SE = 2 x log₂ (1+SNR) so, 3dB lower SNR -> 20% lower SE

• L-Band not as efficient as C-Band – 1db lower o/p power for same EDFA Capacity(Tbps) for different scenarios

As we move the network to multi-haul, how can we make things better? Software

Present Mode of Operation

Manual tuning to optimize this - can take days

Excess margin in the network

SNR vs frequency

With Cisco Automated Subsea Tuning

Using Machine Learning to do what a human expert can do?

Reference OTDR trace data

Train ML classifier neural network to identify Fiber Events

Neural Network

Using Machine Learning to do what a human expert can do?

Conclusion

DCI and Subsea Applications

- Innovation pace in DCI and Subsea is nothing but accelerating
- Simplification and Automation are key drivers for the Innovation in Optical and Networking in general
- Coherent Multi-Haul Transmission is driving major innovation across networks in LH Terrestrial and Submarine applications
- New QSFP-DD Coherent form factors are emerging for DCI applications

Thank you

