Préliminaires

Courbes

Définition 0.1. Une courbe paramétrée fermée simple de classe C^k γ est une application de classe C^k d'un intervalle $[t_0, t_1]$ dans \mathbb{R}^2 telle que la restriction de γ à $]t_0, t_1[$ soit injective et $\gamma(t_0) = \gamma(t_1)$. Une courbe géométrique fermée simple de classe C^k C est l'image d'une courbe paramétrée fermée simple de classe C^k γ , γ est alors une paramétrisation de C. Une courbe géométrique fermée simple de classe C^0 est appelée courbe de Jordan.

A chaque courbe paramétrée fermée simple γ , une relation d'ordre pour les points de la courbe géométrique associée privée de $\gamma(0)$ est définie par :

$$\gamma(\alpha) \le \gamma(\beta) \Leftrightarrow \alpha \le \beta.$$

Un point b d'une courbe C privée de $\gamma(0)$ est entre a et c, où a et b sont deux points de $C \setminus \gamma(0)$ si $a \leq b \leq c$ pour la relation d'ordre associée à γ . Afin de définir l'intérieur et l'extérieur d'une courbe géométrique rappelons le théorème de Jordan.

Théorème 0.2. Dans le plan, le complémentaire d'une courbe de Jordan C est formé d'exactement 2 composantes connexes, une bornée, l'autre non.

On appellera $intérieur\ de\ C$ la composante connexe bornée et $extérieur\ de\ C$ la composante connexe non-bornée.

Discrétisation de Gauss [LT]

Pour tout $z \in \mathbb{R}^2$, $\epsilon \in \mathbb{R}_+$ on note $B_{||.||_{\infty}}(z,\epsilon) := \{x \in \mathbb{R}^2, ||x||_{\infty} \leq \epsilon\}$, c'est-à-dire un carré centré en z et de côté de longueur 2ϵ . La discrétisation de Gauss d'un ensemble A pour le pas h $G_h(K)$ est alors définie par :

$$G_h(A) := \bigcup_{z \in A \cap h\mathbb{Z}^2} B_{||.||_{\infty}}(z, \frac{h}{2}).$$

Autrement dit $G_h(A)$ est la réunion de tous les carrés formés par le réseau $h\mathbb{Z}^2$ de côté de longueur h, dont le centre est dans A. La discrétisation de Gauss d'une courbe de Jordan C $\partial_h(C)$ est la frontière de la discrétisation de Gauss de l'intérieur de C. Notons de plus :

$$Dig_G(C) := \frac{1}{h} \partial_h(C) \cap \left(\left(\frac{1}{2}, \frac{1}{2} \right) + \mathbb{Z}^2 \right).$$

Les éléments de $Dig_G(C)$ sont appelés les sommets de la discrétisation et un segment reliant deux sommets consécutifs est appelé une arête de la discrétisation.

Ensembles à portée positive et projection [Fed]

Définition 0.3 ([Fed]). Soit E un espace euclidien et A et B deux sous-ensembles de E.

— On définit la distance d entre A et un point $x \in E$ par :

$$d(x,A) := \inf_{a \in A} ||x - a||_E$$

— On définit la distance entre A et B par :

$$d(A, B) := max(sup_{a \in A}d(a, B), sup_{b \in A}d(A, b))$$

- Unp(A) est l'ensemble des points $x \in E$ ayant un unique plus proche point $a \in A$.
- La projection $\pi: Unp(A) \to A$ est définie comme étant l'application qui associe à $x \in E$, l'unique plus proche point de A.
- La portée de A en $a \in A$, notée reach(A, a), est définie par :

$$reach(A, a) := sup \{r | B_E(a, r) \subset Unp(A) \}.$$

reach(A,a) peut valoir $+\infty$.

— La portée de A est définie par :

$$reach(A) := inf_{a \in A} reach(A, a)$$

reach(A) peut valoir $+\infty$.

Proposition 0.4 ([Fed]). Soit E un espace euclidien et soit A un sous-ensemble fermé non-vide de E. Alors

- La projection π est continue.
- Plus précisément, si $0 < r < q < +\infty$, x et y sont deux points de Unp(A), $d(A,x) \le r$, $d(A,y) \le r$ et $reach(A,\pi(x)) \ge q$, $reach(A,\pi(y)) \ge q$, alors

$$||\pi(x) - \pi(y)||_E \le \frac{q}{q-r}||x-y||_E.$$

ensembles par-(r) réguliers [LCG98] [LT]

Définition 0.5. [LCG98] Soit E un espace euclidien et A un sous-ensemble de E.

— Une boule tangente intérieure de rayon r, r > 0, en un point $y \in C$ est une boule fermée euclidienne $\bar{B}_{||.||_E}(x,r)$, telle que

$$\exists x \in \overset{\circ}{A}, \ \text{tel que } \partial A \cap \partial B_{||.||_E}(x,r) = \{y\} \ \text{et } B_{||.||_E}(x,r) \subset \overset{\circ}{A} \cup \{y\}.$$

— Une boule tangente extérieure de rayon r, r > 0, en un point $y \in C$ est une boule fermée euclidienne $\bar{B}_{||.||_E}(x,r)$, telle que

$$\exists x \in (E \ A)$$
, tel que $\partial A \cap \partial B_{||.||_E}(x,r) = \{y\}$ et $B_{||.||_E}(x,r) \subset (E \ A) \cup \{y\}$.

- A est par(r, -)-régulier, si pour tout $y \in \partial A$, il existe une boule tangente intérieure de rayon r en y.
- A est par(r,+)-régulier, si pour tout $y \in \partial A$, il existe une boule tangente extérieure de rayon r en y.
- A est par(r)-régulier si A est par(r,-)-régulier et par(r,+)-régulier.

Il est possible définir la par(r)-régularité de façon équivalente (proposition 0.7).

- **Définition 0.6.** Pour tout $x \in \partial A$ possédant une boule tangente intérieure et une boule tangente extérieure de centre respectifs c_i et c_e , on définit la droite $nl(x) := (c_i, c_e)$.
 - Pour tout $x \in \partial A$ possédant une boule tangente intérieure et une boule tangente extérieure, le vecteur normal extérieur $N_e(x,l)$ (respectivement le vecteur normal intérieur $N_i(x,l)$) le segment inclus dans nl(x), d'extrémité x, de longueur l et d'intersection nonvide avec toute boule tangente extérieure en x (respectivement avec toute boule tangente intérieure en x).

Proposition 0.7 (Définition équivalente, Théorème 1 [LCG98]). Un ensemble A est est par(r)régulier si et seulement si pour tout couple de points distincts (x_1, x_2) de ∂A , $N_e(x_1, r)$, $N_i(x_1, r)$ $N_e(x_2,r) \ N_i(x_2,r) \ existent, \ N_e(x_1,r) \cap N_e(x_2,r) = \emptyset \ et \ N_i(x_1,r) \cap N_i(x_2,r) = \emptyset.$

Le lemme suivant permet de relier les notions de portée et de par(r)-régularité.

Lemme 0.8. [LT] Soit A un sous-ensemble compact de \mathbb{R}^d alors

$$reach(\partial A) \ge r \Leftrightarrow \forall r' < r, A \ est \ par(r') \text{-régulier}.$$

Ainsi pour une courbe par(r)-régulière, π est définie pour des points suffisamment proches de

Proposition 0.9. [GL] Soit A un sous-ensemble fermé C^2 du plan \mathbb{R}^2 (c'est-à-dire un ensemble dont le bord ∂A est une courbe de Jordan C^2). Alors, il existe r > 0 tel que A soit par (r)-régulier.

La proposition suivante permet de majorer la distance entre un point de la discrétisation de Gauss d'une courbe et sa projection π sur la courbe.

Proposition 0.10. [LT] Soit A un sous-ensemble compact de \mathbb{R}^2 de portée reach(A) > r. Alors pour tout pas de discrétisation h, $0 < h < \sqrt{2}r$,

$$\forall y \in \partial_h(C), \exists x \in C, \qquad tel \ que \ ||x - y||_2 \le \frac{\sqrt{2}}{2}h \ et \ y \in n\left(x, \frac{\sqrt{2}}{2}h\right), \qquad (1)$$

$$\forall x \in C, \exists y \in \partial_h(C), \qquad tel \ que \ ||x - y||_2 \le \frac{\sqrt{2}}{2}h \ et \ y \in n\left(x, \frac{\sqrt{2}}{2}h\right), \qquad (2)$$

$$\forall x \in C, \exists y \in \partial_h(C), \qquad tel \ que \ ||x - y||_2 \le \frac{\sqrt{2}}{2}h \ et \ y \in n\left(x, \frac{\sqrt{2}}{2}h\right), \tag{2}$$

où n(x,l) est le segment orienté dans le sens de la normale centré en x et de longueur 2l.

Le point 1 de la proposition 0.10 montre que π est définie dans un voisinage tubulaire de C, et le point 2 de la proposition montre que π est surjective. Cependant π n'est pas forcément injective (voir configuration de décrochement figure 1 ou figure B.6 [Lac]). Les lemmes et propositions suivantes [Lac] étudient le « défaut d'injectivité de la projection ».

Sous certaines conditions la projection π est bijective. Notons $\mathbf{n}(x)$ le vecteur unitaire orienté vers l'extérieur selon la direction de la normale à C en x et $\mathbf{w}(y)$ le vecteur unitaire orienté vers l'extérieur selon la direction de la normale à $\partial_h(C)$ en x.

Lemme 0.11 (Lemme B.11 [Lac]). Soit C une courbe par(r)-régulière. Si pour tout $y \in \partial_h(C)$, l'angle $(\mathbf{w}(y), \mathbf{n}(\pi(y))$ est dans $]-\frac{\pi}{2}, \frac{\pi}{2}[$, alors la projection π est bijective, de classe C^2 par morceaux sur chaque arête ouverte de la discrétisation.

De plus les deux propositions suivantes donnent la configuration précise dans laquelle π n'est pas bijective.

Lemme 0.12 (Lemme B.12 [Lac]). Soit A un ensemble par(r)-régulier et $h < \sqrt{2}r$. Soit $y \in$ $\partial G_h(A)$. Alors l'angle $(\mathbf{w}(y), \mathbf{n}(\pi(y)))$ est dans l'intervalle $]-\frac{\pi}{2}-\alpha, \frac{\pi}{2}+\alpha[$ avec $\alpha:=\arcsin\left(\frac{h}{4}\right)$. De plus, si y ne touche pas une configuration de décrochement (figure 1 ou figure B.6 [Lac]) alors l'angle $(\mathbf{w}(y), \mathbf{n}(\pi(y)))$ est dans l'intervalle $]-\frac{\pi}{2}, \frac{\pi}{2}[.$

Lemme 0.13 (Proposition B.13 [Lac]). Soit A un ensemble par(r)-régulier, soit $h < \sqrt{2}r$, s'il existe $y \in \partial G_h(A)$ tel que $(\mathbf{w}(y), \mathbf{n}(\pi(y)) \notin]-\frac{\pi}{2}, \frac{\pi}{2}[$, alors y appartient à une configuration de décrochement impliquant trois arêtes consécutives $[y_{i-1}, y_i]$, $[y_i, y_{i+1}]$ et $[y_{i+1}, y_{i+2}]$ (figure 1 ou figure B.6 [Lac]). De plus tous les éléments de l'arc $[\pi(y_i), \pi(y_{i+1})]$ ont plusieurs antécédents par la projection π . La longueur de l'arc $[\pi(y_i), \pi(y_{i+1})]$ est alors un $O(h^2)$. Les arcs $[\pi(\frac{y_{i-1}+y_i}{2}), \pi(y_{i+1})[$ et $]\pi(y_i), \pi(\frac{y_{i+1}+y_i}{2})]$ n'ont qu'un seul antécédent par π .

FIGURE 1 – Configuration de décrochement figure B.6 [Lac] Tous les points de l'arc x_{i+1} à x_i ont plusieurs antécédents. Par exemple, le point $\pi(y_1)$ possède pour antécédents y_1, y_2 et y_3 .

La proposition suivante mesure le « défaut d'injectivité de la projection ». Le sous-ensemble de ∂A possèdant plusieurs antécédants par la projection π est appelé partie non-bijective pour la discrétisation $\partial G_h(A)$ et est noté ∂G_h^*A .

Proposition 0.14 (Théorème B.14 [Lac]). Soit A un ensemble par(r)-régulier et $0 < h < \frac{\sqrt{10}}{5}r$. La partie non bijective ∂G_h^*A est fermée pour la topologie induite de \mathbb{R}^2 sur ∂A . La longueur de ∂G_h^*A est en O(h). Si de plus A est convexe, la longueur de ∂G_h^*A est en $O(h^2)$. Si A possède un nombre fini de points d'inflexion alors la longueur de ∂G_h^*A est aussi en $O(h^2)$.

Le contrôle de ce « défaut d'injectivité » de la projection permet de comparer les intégrales sur ∂A et $\partial_h A$.

Proposition 0.15 (Théorème B.16 [Lac]). Soit A un ensemble par(r)-régulier et soit un pas de discrétisation h, $0 < h \le \frac{\sqrt{10}}{5}r$. Si g est une fonction intégrable définie sur ∂A alors l'équation ci-dessous est vérifiée

$$\int_{bdA} g dx = \int_{\partial G_h(A)} g \circ \pi | \mathbf{n} \circ \pi(y) \cdot \mathbf{w}(y) | dy + O(h^n),$$

avec n=2 si A est convexe ou si son bord possède un nombre fini de points d'inflexion, n=1, sinon.

Remarque 0.16. Les résultats précédents (du lemme 0.11 à 0.15) sont tirés, sans modifications, de [Lac]. Cependant il semble nécessaire de supposer en plus que A soit au moins à bord C^2 .

Estimateurs semi-locaux

Dans cette sous-section, une partie des résultats du théroème 8 de [MB16] sont transposés au cas des courbes C^2 . Pour une suite finie de points $(x_i)_{i=0}^N$, une norme ||.||, on définit

$$M_{\alpha,||.||} := \left(\frac{1}{N} \sum_{i=0}^{N} ||x_i||^{\alpha}\right)^{\frac{1}{\alpha}}$$

pour $\alpha \in \mathbb{R}^*$, ainsi que

$$M_{+\infty,||.||} := \max_{i \in [|0,N|]} ||x_i||.$$

On se placera dans le cas d'un espace normé $(\mathbb{R}^2, ||.||)$. De plus ||.|| est équivalente à la norme 2, vérifiant alors :

$$|k_1||.|| \le ||.||_2 \le k_2||.||,$$

avec $k_1, k_2 \in \mathbb{R}_+^*$.

Définition 0.17. — Une fonction de motifs \mathcal{A} est une fonction qui à une courbe discrète de $(\frac{1}{2}, \frac{1}{2}) + \mathbb{Z}^2$ 4-connexe D et un pas de discrétisation h associe une suite de points $(a_i)_{i=0}^N$ de $D \cap ((\frac{1}{2}, \frac{1}{2}) + \mathbb{Z}^2)$ croissante pour une certaine paramétrisation de D.

— Une fonction de α -motifs est une fonction de motifs \mathcal{A} telle que

$$\lim_{h \to 0} h M_{\alpha,||.||} (\mathcal{A}(D,h)_{i+1} - \mathcal{A}(D,h)_i) = 0,$$

en notant $a_{N+1} := a_0$

Dans la suite C sera une courbe C^2 , donc par(r)-régulière pour un certain r > 0, $h \in]0, r[$. On note $(a_i)_{i=0}^{N_h} := \mathcal{A}(\partial_h(C), h)$, avec \mathcal{A} une fonction de $+\infty$ -motifs telle que $\lim_{h\to 0} hN_h = 0$. Pour tout, $i \in [[0, N_h]]$, $\pi_i := \pi(ha_i)$. L'objectif est alors de comparer la longueur du polygone dont les sommets sont les (ha_i) avec la longueur de la courbe C. La preuve se décompose en trois parties :

- résoudre le problème de la croissance des π_i (lemme 0.18),
- comparer la longueur des segments $h[a_i, a_{i+1}]$ et $[\pi_i, \pi_{i+1}]$ (lemme 0.19),
- comparer la longueur des cordes $[\pi_i, \pi_{i+1}]$ aux arcs de C allant de π_i à π_{i+1} (lemme 0.20). Le résultat est donné dans la proposition 0.22.

Lemme 0.18 (Presque croissance de la projection). Soient γ_C et γ_D des paramétrisations respectivement de C et de $\partial_h(C)$ définies $sur\ [0,1]$, vérifiant $\pi(\gamma_D(0)) = \gamma_C(0)$. γ_C (respectivement γ_D) définit une relation d'ordre $sur\ C$ (respectivement $sur\ \partial_h(C)$). Si b, f, g sont des points de $\partial_h(C)$ tels que b < f < g, $||f - b||_2 > \sqrt{2}h$, $||g - f||_2 > \sqrt{2}h$, alors $\pi(f)$ est entre $\pi(b)$ et $\pi(g)$.

Démonstration. Supposons par l'absurde que $\pi(f)$ ne soit pas entre $\pi(b)$ et $\pi(g)$. Supposons que $\pi(f) < \pi(b)$ (le cas $\pi(f) > \pi(g)$ se traite de la même façon). D'après le lemme 0.13, il existe c, e points de la courbe $\partial_h(C)$ tels que $b \le c < e \le f < g$ et les éléments des arcs ouverts $\pi(c)$ à $\pi(e)$ n'ont qu'un seul antécédent par π . Soit d un point de $\partial_h(C)$ tel que c < d < e. Par le théorème des valeurs intermédiaires, il existe $\tilde{t} \in]0,1[,\gamma_D^{-1}(f)<\tilde{t}<\gamma_D^{-1}(g)$ tel que $\pi(\gamma(\tilde{t}))=\pi(d)$, de plus $d < \gamma(\tilde{t})$. Contradiction!

Lemme 0.19 (Comparaison courbe discrétisée et cordes). Soit C une courbe de Jordan par(r)-régulière et soit $h \in]0, \sqrt{2}r[$, a_k et $a_{k'}$ deux points de $Dig_G(C)$, π_k et $\pi_{k'}$ les projections respectives de ha_k et $ha_{k'}$ sur C. Alors

$$|h||a_k - a_{k'}|| - ||\pi_k - \pi_{k'}||| < \frac{1}{k_1} \sqrt{2}h.$$

Démonstration.

$$\begin{split} ||\pi_k - \pi_{k'}|| &\leq ||\pi_k - ha_k|| + ||ha_k - ha_{k'}|| + ||ha_{k'} - \pi_{k'}||, \\ &\leq h||a_k - a_{k'}|| + \frac{1}{k_1} \left(||\pi_k - ha_k||_2 + ||ha_{k'} - \pi_{k'}||_2 \right), \\ &< h||a_k - a_{k'}|| + \frac{1}{k_1} \sqrt{2}h. \end{split}$$

De même :

$$h||a_k - a_{k'}|| < ||\pi_k - \pi_{k'}|| + \frac{1}{k_1}\sqrt{2}h.$$

Lemme 0.20 (Comparaison cordes et courbe). Soit C une courbe C^2 par(r)-régulière, r > 0. Soit π_i et π_{i+1} des points de C, tels que $||\pi_i - \pi_{i+1}||_2 < \sqrt{2}r$. En notant $L(\gamma_i)$ la longueur d'arc C entre π_i et π_{i+1} (arc inclus dans $B_{||.||_2}(\pi_i, \sqrt{2}r)$),

$$||\pi_i - \pi_j||_2 \le L(\gamma_i) \le 2r \arcsin\left(\frac{||\pi_i - \pi_j||_2}{2r}\right).$$

Si de plus $k_2||\pi_i - \pi_{i+1}|| < 2r$,

$$|k_1||\pi_i - \pi_j|| \le L(\gamma_i) - \le 2r\arcsin(\frac{|k_2||\pi_i - \pi_j||}{2r}).$$

Démonstration. La distance euclidienne entre π_i et π_{i+1} est plus faible que la longueur de γ_i , $||\pi_i - \pi_j||_2 \leq L(\gamma_i)$. La courbure de C est majorée par $\frac{1}{r}$ (d'après la preuve du théorème 5 de [GL]. Notons $\phi := 2\arcsin(\frac{||\pi_i - \pi_j||_2}{2r})$. La courbe longueur maximale à courbure bornée par $\frac{1}{r}$ reliant π_i à un point à distance $||\pi_i - \pi_{i+1}||_2$ est un arc de cercle de longueur $r\phi$.

Figure 2 - Lemme 0.20

Remarque 0.21. Un raisonnement similaire est utilisé dans la preuve du lemme B.10 de [Lac].

Proposition 0.22. Soient C une courbe de Jordan C^2 de longueur L(C), par(r)-régulière pour $r>0, h\in]0,r[$ telle que $Dig_G(C)$ soit une courbe discrète 4-connexe. Soit A une fonction de motifs telle que $hM_{+\infty}(\mathcal{A}(\partial_h(C),h) < 2r - \sqrt{2}h$. On note $(a_i)_{i=0}^{N_h} := \mathcal{A}(\partial_h(C),h)$. Alors:

$$\left| L(C) - h \sum_{i=0}^{N_h} ||a_{i+1} - a_i||_2 \right| \le \sum_{i=0}^{N_h} \psi_r(h||a_{i+1} - a_i||_2 + \sqrt{2}h) + l(h, r)card(I) + \sqrt{2}hN_h.$$

et pour une norme équivalente ||.||

$$\left| L(C) - h \sum_{i=0}^{N_h} ||a_{i+1} - a_i|| \right| \le \sum_{i=0}^{N_h} \rho_r(h||a_{i+1} - a_i|| + \sqrt{2}h) + l(h, r)card(I) + \frac{\sqrt{2}}{k_1}hN_h.$$

- $-l(h,r):=2r\left(lpha(h,r)-\arctan\left(rac{h/4}{r\coslpha(h,r)+h/2}
 ight)
 ight),\;(c\;$ 'est la longueur maximale d'une composante connexe de la partie non-bijective de courbe).
- I est l'ensemble des indices i tel que $\pi(a_{i+1})$ n'est pas entre $\pi(a_i)$ et $\pi(a_{i+2})$.

$$- \sum_{i=0}^{N_h} \psi_r(h||a_{i+1} - a_i||_2 + \sqrt{2}h) = O_{h\to 0} \left(N_h(hM_3 \left(\mathcal{A}(\partial_h(C), h) \right)^3 \right), - l(h, r) card(I) = O_{h\to 0}(h).$$

 $D\acute{e}monstration$. On note $\pi_{N_h+1}=\pi_0$ et $a_{N_h+1}:=a_0$. Si pour les (π_i) est croissante ou décroissante pour une certaine paramétrisation de C, c'est-à-dire $I = \emptyset$, par le lemme 0.20,

$$\left| L(C) - \sum_{i=0}^{N_h} ||\pi_{i+1} - \pi_i||_2 \right| \le \sum_{i=0}^{N_h} \left(2r \arcsin\left(\frac{||\pi_{i+1} - \pi_i||_2}{2r}\right) - ||\pi_{i+1} - \pi_i||_2 \right),$$

Sinon, d'après la preuve du lemme B.13 de [Lac],

$$\left| L(C) - \sum_{i=0}^{N_h} ||\pi_{i+1} - \pi_i||_2 \right| \le \sum_{i=0}^{N_h} \psi_r(||\pi_{i+1} - \pi_i||_2) + l(h, r) card(I),$$

Donc par le lemme 0.19,

$$\left| L(C) - h \sum_{i=0}^{N_h} ||a_{i+1} - a_i||_2 \right| \leq \sum_{i=0}^{N_h} \psi_r(||\pi_{i+1} - \pi_i||_2) + l(h, r) card(I) + \sqrt{2}h N_h,$$

$$\leq \sum_{i=0}^{N_h} \psi_r(h||a_{i+1} - a_i||_2 + \sqrt{2}h) + l(h, r) card(I) + \sqrt{2}h N_h.$$

De plus par développement limité de l'arcsinus :

$$\psi_r(h||a_{i+1} - a_i||_2 + \sqrt{2}h) = O_{h\to 0}((h||a_{i+1} - a_i||_2 + \sqrt{2}h)^3)$$

et par l'inégalité de Minkowski :

$$\left(\sum_{i=0}^{N_h} \psi_r(h||a_{i+1} - a_i||_2 + \sqrt{2}h)\right)^{1/3} \le hN_h^{1/3}M_3(\mathcal{A}(\partial_h(C), h) + h\sqrt{2}N_h^{1/3}$$

donc

$$\sum_{i=0}^{N_h} \psi_r(h||a_{i+1} - a_i||_2 + \sqrt{2}h) = O_{h\to 0} \left(N_h(hM_3 \left(\mathcal{A}(\partial_h(C), h) \right)^3 \right).$$

Finalement, par 0.13 (théorème B.13 [Lac]) $l(h,r)card(I) = O_{h\to 0}(h)$.

Références

- [Fed] Herbert Federer: Curvature measure.
- [GL] Ari Gross et Longin Latecki : Digitizations preserving topological and differential geometric properties.
- [Lac] Jacques-Olivier Lachaud : Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrète.
- [LCG98] Longin Jan LATECKI, Christopher Conrad et Ari Gross: Preserving topology by a digitization process. *Journal of Mathematical Imaging and Vision*, page 131–159, 1998.
- [LT] Jacques-Olivier Lachaud et Boris Thibert : Properties of gauss digitized shapes and digital surfaces integration. *Journal of Mathematical Imaging and Vision*.
- [MB16] Loïc MAZO et Étienne BAUDRIER: Non-local estimators: A new class of multigrid convergent length estimators. *Theoretical Computer Science*, pages 128–146, 2016.