ПРИКЛАДИ КРАТНИХ ІНТЕГРАЛІВ

Приклади. 1. Якщо

$$A = \{(x_1, x_2) \mid x_1 \in [-1, 1], \ x_1^2 - 1 \le x_2 \le x_1^4 + 3\},\$$

ТО

$$\int_{A} (x_1 + 2x_2) dx_1 dx_2 = \int_{-1}^{1} \left(\int_{x_1^2 - 1}^{x_1^4 + 3} (x_1 + 2x_2) dx_2 \right) dx_1 =$$

$$= \int_{-1}^{1} (x_1 x_2 + x_2^2) \Big|_{x_2 = x_1^2 - 1}^{x_2 = x_1^4 + 3} dx_1 =$$

$$= \int_{-1}^{1} ((x_1^5 + 3x_1 + x_1^8 + 6x_1^4 + 9) - (x_1^3 - x_1 + x_1^4 - 2x_1^2 + 1)) dx_1 =$$

$$= (x_1^6 / 6 + 2x_1^2 + x_1^9 / 9 + x_1^5 + 8x_1 - x_1^4 / 4 + 2x_1^3 / 3)|_{-1}^{1} =$$

$$= 2/9 + 2/5 + 16 + 4/3 = (10 + 18 + 720 + 60)/45 = 808/45.$$

2. Якщо

$$A = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le 4\},\$$

то перейдемо до полярних координат: $r \in [0,2], \ \varphi \in [0,2\pi], \ J=r,$

$$\int_{A} (x_1 + 2x_2) dx_1 dx_2 = \int_{0}^{2} \left(\int_{0}^{2\pi} (r\cos\varphi + 2r\sin\varphi) r d\varphi \right) dr.$$

3. Якщо

$$A = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \le 4, \ x_1 \le 0\},\$$

то перейдемо до сферичних координат: $r \in [0,2], \ \varphi \in [\pi/2,3\pi/2], \ \psi \in [-\pi/2,\pi/2], \ J=r^2\cos\psi,$

$$\int_{A} (x_1 + 2x_2 + x_3) dx_1 dx_2 dx_3 =$$

$$= \int\limits_0^2 \left(\int\limits_{\pi/2}^{3\pi/2} \left(\int\limits_{-\pi/2}^{\pi/2} (r\cos\varphi\cos\psi + 2r\sin\varphi\cos\psi + r\sin\psi) r^2\cos\psi d\psi \right) d\varphi \right) dr.$$

4. Якщо

$$A = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 \le 4, |x_3| \le 2\},\$$

то перейдемо до циліндричних координат: $r \in [0,2], \ \varphi \in [0,2\pi], \ h \in [-2,2], \ J=r,$

$$\int_{A} (x_1 + 2x_2 + x_3) dx_1 dx_2 dx_3 = \int_{0}^{2} \left(\int_{0}^{2\pi} \left(\int_{-2}^{2\pi} (r\cos\varphi + 2r\sin\varphi + h) r dh \right) d\varphi \right) dr$$

HAPALYBAHHS 3 PEOMETPIT

ax,+6x2+Cx3+d=0 - nrowung

$$X_1^2 + X_2^2 + X_3^2 = R^2 - coepa$$
 (b coep. Koopguhatax $Z = R$)

$$\frac{\chi_1^2}{a^2} + \frac{\chi_2^2}{\theta^2} + \frac{\chi_3^2}{c^2} = 1 - exincoig$$

 $X_3 = X_1^2 + X_2^2 - e \lambda i n \tau u z n u \bar{u} n a pa \delta o \lambda o i g$ (6 yuingp. Koopguhatax $h=2^2$)

$$\chi_{3}^{2} = \chi_{1}^{2} + \chi_{2}^{2} - Kohyc$$
 $(\chi_{3} > 0)$

(b guingp Koopg. h=z, b copeputax $\psi = \frac{\pi}{4}$)

$$X_1^2 + X_2^2 = 1 - \underline{UuningP(upyzobuŭ)}$$

(b ymingp. Loopy 7=1)

 $X_3 = X_1^2 - X_2^2 - 2$ nepôdolizhum napadolog ("cigno"), Tako $\times X_3 = X_1 X_2$

 $\chi_2^2 = \chi_1^2 + \chi_2^2 - 1$ - ognonopox Huhhuu Zinepanoig

ЗАСТОСУВАННЯ КРАТНИХ ІНТЕГРАЛІВ

1. Обчислити масу фігури $A \subset \mathbb{R}^2$ зі щільністю $\rho(x_1, x_2)$, якщо A – компактна і вимірна, $\rho \in C(A)$ (Щільність плоска, з одиницями типу $\kappa \Gamma/M^2$).

Розв'язок: наблизимо множину A множиною $A_{(n)}$, складеною зі стандартних квадратиків. На кожному квадратику при великих n щільність приблизно стала. Тому сумарна маса приблизно рівна

$$\sum_{Q \subset A_{(n)}} \rho(\xi(Q)) m(Q) = S_n(\rho, A).$$

При $n \to \infty$ отримаємо точну масу:

$$M(A) = \int_{A} \rho(x_1, x_2) dx_1 dx_2.$$

Якщо щільність – тотожна одиниця, то маса рівна площі. Тому

$$S(A) = \int_{A} 1 dx_1 dx_2.$$

2. Аналогічно виводиться формула для центра мас фігури. Центр мас системи матеріальних точок $A_1, ..., A_k$ з масами $M_1, M_2, ..., M_k$ має координати

$$x_{ic} = \frac{x_i(A_1)M_1 + x_i(A_2)M_2 + \dots + x_i(A_k)M_k}{M_1 + M_2 + \dots + M_k}.$$

При великих n брусики розбиття Q можна замінити на матеріальні точки з масами $\rho(\xi(Q))m(Q)$ в точках $\xi(Q)$. Тоді координата центра наближено рівна

$$\frac{\sum\limits_{Q\subset A_{(n)}}\xi_i(Q)\rho(\xi(Q))m(Q)}{M(A)} = \frac{S_n(x_i\rho,A)}{M(A)}.$$

При $n \to \infty$ отримаємо точну формулу:

$$x_{ic} = \frac{1}{M(A)} \int_{A} x_i \rho(x_1, x_2) dx_1 dx_2, \ i = 1, 2.$$

3. Якщо $A\subset \mathbb{R}^3$ – компактна та вимірна, $\rho\in C(A)$, то маса тіла A

$$M(A) = \int_{A} \rho(x_1, x_2, x_3) dx_1 dx_2 dx_3.$$

Якщо щільність – тотожна одиниця, то маса рівна об'єму. Тому

$$V(A) = \int\limits_A 1 dx_1 dx_2 dx_3.$$

Центр мас тіла має координати

$$x_{ic} = \frac{1}{M(A)} \int_{A} x_i \rho(x_1, x_2, x_3) dx_1 dx_2 dx_3, \ i = 1, 2, 3.$$

Аналогічно отримують формули для моментів інерції та інших механічних величин.

НЕВЛАСНІ КРАТНІ ІНТЕГРАЛИ

ОЗНАЧЕННЯ 1. Нехай $B \subset \mathbb{R}^p$ – необмежена множина, послідовність $\{D_n: n \geq 1\}$ компактних вимірних множин, задовольняє умови:

- 1) $\forall n \geq 1 : D_n \subset D_{n+1} \subset B;$
- 2) $\forall R > 0 \ \exists n \in \mathbb{N} : B \cap \overline{B}(\overline{0}, R) \subset D_n$.

Таку послідовність $\{D_n: n \geq 1\}$ називають вичерпною для множини B.

Приклади. 1. Для множини $B = [0, +\infty)$ зручною послідовністю вичерпних множин є відрізки $D_n = [0, n], \ n \ge 1.$

2. Для множини $B = \mathbb{R}^2$ зручними послідовностями вичерпних множин є квадрати

$$D_n = [-n, n] \times [-n, n], \ n \ge 1,$$

та круги

$$D_n = \{(x_1, x_2) \mid x_1^2 + x_2^2 \le n^2\}, \ n \ge 1.$$

3. Для множини $B=\mathbb{R}^3$ зручними послідовностями вичерпних множин є куби

$$D_n = [-n, n] \times [-n, n] \times [-n.n], \ n \ge 1,$$

та кулі

$$D_n = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 \le n^2\}, \ n \ge 1.$$

ОЗНАЧЕННЯ 2. Нехай $B \subset \mathbb{R}^p$ – необмежена множина, для неї існує вичерпна послідовність $\{D_n: n \geq 1\}$, $f \in C(B)$. Інтегралом від функції f по множині B називають границю $\int\limits_B f(\vec{x})d\vec{x} = \lim\limits_{n \to \infty} \int\limits_{D_n} f(\vec{x})d\vec{x}$.

Якщо вона існує, скінченна і не залежить від вибору вичерпної послідовності, інтеграл називають збіжним, інакше його називають розбіжним.

ТЕОРЕМА 1. Нехай $B \subset \mathbb{R}^p$ — необмежена множина, $f \in C(B)$ — невід'ємна. Для того, щоб невласний інтеграл $\int\limits_B f(\vec{x})d\vec{x}$ був збіжним, необхідно й достатньо, щоб для деякої вичерпної послідовності $\{D_n: n \geq 1\}$ послідовність інтегралів $\left\{\int\limits_{D_n} f(\vec{x})d\vec{x}: n \geq 1\right\}$ була обмежена.

ДОВЕДЕННЯ. Необхідність. Якщо невласний інтеграл збіжний, то відповідна послідовність інтегралів для довільної вичерпної послідовності збіжна, а отже обмежена.

Достатність. Послідовність інтегралів неспадна та обмежена, а отже збіжна до деякого числа I. Розглянемо довільну іншу вичерпну послідовність $\{E_n: n \geq 1\}$. Тоді

$$\forall n \in \mathbb{N} \ \exists R > 0 : E_n \subset B \cap \overline{B}(\overline{0}, R) \subset D_{k(n)}$$

для деякого номера k(n) згідно означення. Тому

$$\int_{E_n} f(\vec{x}) d\vec{x} \le \int_{D_{k(n)}} f(\vec{x}) d\vec{x} \le I,$$

отже послідовність $\left\{ \int\limits_{E_n} f(\vec{x}) d\vec{x} : n \geq 1 \right\}$ монотонна, обмежена і має границю, не меншу за I, тобто

$$\lim_{n \to \infty} \int_{E_n} f(\vec{x}) d\vec{x} \le \lim_{n \to \infty} \int_{D_n} f(\vec{x}) d\vec{x}.$$

Але в цих міркуваннях поміняти послідовності $\left\{ \int\limits_{D_n} f(\vec{x}) d\vec{x} : n \geq 1 \right\}$ і $\left\{ \int\limits_{E_n} f(\vec{x}) d\vec{x} : n \geq 1 \right\}$ місцями, отримаємо протилежну нерівність.

ТЕОРЕМА 2. Невласний кратний інтеграл збіжний тоді й лише тоді, коли він збіжний абсолютно, тобто збіжний інтеграл $\int_{B} |f(\vec{x})| d\vec{x}$.

Зауваження. Цей факт означає, що умовно збіжних кратних інтегралів не існує. Зокрема, при p=1 частковим випадком невласного кратного інтеграла не буде відомий невласний інтеграл.

ОЗНАЧЕННЯ 3. Нехай $B \subset \mathbb{R}^p$ – необмежена множина, $f \in C(B)$. Якщо інтеграл $\int\limits_B f(\vec{x}) d\vec{x}$ розбіжний, але існує і скінченна границя

$$\lim_{R \to \infty} \int_{B \cap \overline{B}(\overline{0},R)} f(\vec{x}) d\vec{x},$$

то її називають головним значенням розбіжного інтеграла і позначають $v.p.\int\limits_B f(\vec{x})d\vec{x}.$

ПРИКЛАДИ. 1. Інтеграл $\int\limits_0^\infty \frac{\sin x}{x} dx$ умовно збіжний, як звичайний невласний інтеграл, але розбіжний, як кратний. При цьому

$$v.p. \int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

2. Інтеграл $\int\limits_{-\infty}^{\infty} \frac{x}{x^2+1} dx$ розбіжний і як невласний, і як невласний кратний, проте $v.p.\int\limits_{-\infty}^{\infty} \frac{x}{x^2+1} dx = 0.$

ОЗНАЧЕННЯ 1. Нехай $B \subset \mathbb{R}^p$ — обмежена множина, $x_0 \in B$, послідовність $\{D_n : n \geq 1\}$ компактних вимірних множин, задовольняє умови:

- 1) $\forall n \geq 1 : D_n \subset D_{n+1} \subset B$;
- 2) $\forall r > 0 \ \exists n \in \mathbb{N} : B \backslash B(\overline{x_0}, r) \subset D_n$.

Таку послідовність $\{D_n: n \geq 1\}$ називають вичерпною для множини B.

Приклади. 1. Для множини B=[0,1] і точки $x_0=0$ зручною послідовністю вичерпних множин є відрізки $D_n=[\frac{1}{n},1],\ n\geq 1.$

2. Для множини $B = \{(x_1, x_2) \mid x_1^2 + x_2^2 \leq 1\}$ і точки $x_0 = (0, 0)$ зручною послідовністю вичерпних множин є кільця

$$D_n = \{(x_1, x_2) \mid \frac{1}{n^2} \le x_1^2 + x_2^2 \le 1\}, \ n \ge 1.$$

3. Для множини $B=\{(x_1,x_2,x_3)\mid x_1^2+x_2^2+x_3^2\leq 1\}$ і точки $x_0=(0,0,0)$ зручною послідовністю вичерпних множин є кільця

$$D_n = \{(x_1, x_2, x_3) \mid \frac{1}{n^2} \le x_1^2 + x_2^2 + x_3^2 \le 1\}, \ n \ge 1.$$

ОЗНАЧЕННЯ 2. Нехай $B \subset \mathbb{R}^p$ – обмежена множина, $x_0 \in B$, для неї існує вичерпна послідовність $\{D_n : n \geq 1\}$, $f \in C(B \setminus \{x_0\})$. Інтегралом від функції f по множині B називають границю

$$\int_{B} f(\vec{x})d\vec{x} = \lim_{n \to \infty} \int_{D_n} f(\vec{x})d\vec{x}.$$

Якщо вона існує, скінченна і не залежить від вибору вичерпної послідовності, інтеграл називають збіжним, інакше його називають розбіжним.

ТЕОРЕМА 3. Нехай $B \subset \mathbb{R}^p$ — обмежена множина, $x_0 \in B, f \in C(B \setminus \{x_0\})$ — невід'ємна. Для того, щоб невласний інтеграл $\int_B f(\vec{x}) d\vec{x}$ був збіжним, необхідно й достатньо, щоб для деякої вичерпної послідовності $\{D_n: n \geq 1\}$ послідовність інтегралів $\left\{\int_{D_n} f(\vec{x}) d\vec{x}: n \geq 1\right\}$ була обмежена.

Доведення аналогічне теоремі 1.

ТЕОРЕМА 4. Невласний кратний інтеграл від необмеженої функції збіжний тоді й лише тоді, коли він збіжний абсолютно, тобто збіжний інтеграл $\int_{\mathcal{B}} |f(\vec{x})| d\vec{x}$.

Зауваження. Цей факт означає, що умовно збіжних кратних інтегралів не існує. Зокрема, при p=1 частковим випадком невласного кратного інтеграла не буде відомий невласний інтеграл.

ОЗНАЧЕННЯ 3. Нехай $B \subset \mathbb{R}^p$ – обмежена множина, $x_0 \in B$, $f \in C(B \setminus \{x_0\})$. Якщо інтеграл $\int_B f(\vec{x}) d\vec{x}$ розбіжний, але існує і скінченна границя $\lim_{r \to 0} \int_{B \setminus B(x_0,r)} f(\vec{x}) d\vec{x}$, то її називають головним значенням розбіжного інтеграла і позначають $v.p.\int_{\mathcal{D}} f(\vec{x})d\vec{x}$.

 ПРИКЛАДИ. Інтеграл $\int_{-1}^{1} \frac{dx}{x}$ розбіжний і як невласний, і як невласний кратний, проте v.p. $\int_{1}^{1} \frac{dx}{x} = 0.$

ТЕОРЕМА 5. (Про заміну змінної). Якщо $A \subset \mathbb{R}^p$ – відкрита множина, функція $f \in C(A)$, $B \subset A$ — необмежена множина, збігається невласний кратний інтеграл $\int f(\vec{x}) d\vec{x}$. Якщо відображення $\vec{g}:A \to \mathbb{R}^p$ задовольняють умови теореми про заміну змінної на кожній множині з деякої вичерпної послідовності $\{D_n: n \geq 1\}$, то формула заміни змінної вірна для всієї множини B.

Ідея доведення. Запишемо формулу заміни змінної для кожної множини вичерпної послідовності і перейдемо до границі при $n \to \infty$. Послідовність $\{\vec{g}(D_n): n \geq 1\}$ буде вичерпною для $\vec{g}(B)$, бо

$$\vec{g}^{-1}(\vec{g}(B) \cap \overline{B}(\overline{0}, R)) \subset B$$

– компактна, а отже, обмежена множина, а тому міститься в деякій множині D_n . (Для інтегралів від необмеженої функції міркування аналогічні).

ПРИКЛАДИ.
$$\int\limits_{[0,+\infty)^2} e^{-x_1^2-x_2^2} dx_1 dx_2 = \int\limits_{[0,+\infty)\times[0,\frac{\pi}{2}]} re^{-r^2} dr d\varphi = \frac{\pi}{4}.$$

При цьому за формулою інтегрування по циліндричній множині

$$\int_{[0,+\infty)^2} e^{-x_1^2 - x_2^2} dx_1 dx_2 = \int_{[0,+\infty)} e^{-x_1^2} dx_1 \cdot \int_{[0,+\infty)} e^{-x_2^2} dx_2 = \left(\int_{[0,+\infty)} e^{-x^2} dx \right)^2,$$

звідки отримаємо формулу для інтеграла Ейлера-Пуассона.