MATH H113: Honors Introduction to Abstract Algebra

2016-02-19

- Subgroups of S_3
- Normalizers, centralizers, etc.
- Subgroups of cyclic groups

Homework due 2016-02-26:

- 2.1: 8, 14, 15
- 2.2: 6, 10
- 2.3: 2, 9, 11, 16
- 2.4: 3, 7, 15

Subgroups of S_3

```
S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (3\ 2\ 1)\} We've found the following subgroups so far: \{(1)\}, \langle x \rangle, \langle y \rangle, \langle z \rangle, \langle w \rangle, S_3 Claim: There are no other subgroups. Let H < S_3 - If |H \cap \{x,y,z\}| = 3 then H = S_3 (last time) - If |H \cap \{x,y,z\}| = 2 then if x,y \in H then z = xyz \in H, contradiction. Similarly if x,y \in H use y = zxz " " if y,z \in H use x = yzy - If |H \cap \{x,y,z\}| = 1 If x \in H (\Longrightarrow H \supseteq \langle x \rangle = \{1,2\}) and H \neq \langle x \rangle then H must contain w or w^{-1} \therefore H \ni w, so y = wx \in H, contradiction. Similarly if y \in H, get a contradiction using z = wy " " z \in H, " " x = wz - If |H \cap \{x,y,z\}| = 0 then H \subseteq \{(1),w,w^{-1}\} so either H = \{(1)\} or H contains w or w^{-1} (H \ni w, \therefore H \supseteq \langle w \rangle) \therefore H = \langle w \rangle
```

Diagram of subgroups of S_3 :

where the vertical or slanted lines are all of the inclusions.

Note: $\langle x \rangle \cup \langle y \rangle$ is not a subgroup of S_3 because $xy = (1\ 2)(1\ 3) = (1\ 3\ 2) = w^{-1}$ is not in $\langle x \rangle \cup \langle y \rangle$. So the union of some subgroups is usually *not* a subgroup. However, the intersection of subgroups is a subgroup.

Let $\{H_i : i \in I\}$ be a nonempty collection of subgroups of a group G. Then $H = \bigcap H_i$ is a subgroup of G.

 $\begin{aligned} & \mathbf{Proof:} \ i \in H_i \ \forall i, \text{ so } 1 \in \bigcap_{i \in I} H_i; \text{ in particular, } H \neq \emptyset \\ & \text{Also, if } x,y \in H \text{ then } x,y \in H_i \forall i, \ \therefore \ xy^{-1} \in H_i \ \forall i, \ \therefore \ xy^{-1} \in \bigcap_{i \in I} H_i = H. \end{aligned}$ Therefore $H \leq G$.

Centralizers and Normalizers

Definition: Let G be a group and let A be a *subset* of G. Then:

- a. The centralizer of A in G is the set $C_G(A) = \{g \in G : gag^{-1} = a \ \forall a \in A\}.$
- b. The normalizer of A in G is the set $N_G(A) = \{g \in G : gAg^{-1} = A\}$. Here $gAg^{-1} = \{gag^{-1} : a \in A\}.$

Variations: If $a \in G$, then we write $C_G(a) = C_G(\{a\}) = \{g \in G : gag^{-1} \in$ a} = { $g \in G : g \text{ commutes with } a$ }. $C_G(A) = \bigcap_{a \in A} C_G(a) \text{ (if } A \neq \emptyset).$

Also, if A = G then $C_G(G)$ is called the center of G, and is written Z(G). All of these are subgroups of G.

For any set $A \in G$, $C_G(A) \subseteq N_G(A)$.

For example, $C_G(G) = Z(G)$ but $N_G(G) = G$.

 $Z(G) = G \iff G \text{ is abelian } (ghg^{-1} = a \iff h = g^{-1}ag)$

Definition: Let a group G act on a set S. Then for $s \in S$, the stabilizer of s in G is $G_s = \{g \in G : g \cdot s = s\}$. This is a subgroup of G. Examples:

- 1. If we let G act on itself by conjugation: $g \cdot s = gsg^{-1} \ \forall s \in G = S, g \in G \text{ then } G_s = C_G(s).$
- 2. If $G=S_3$ and $S=\{1,2,3\}$ with the usual action $\sigma\cdot a=\sigma(a)$ $(\sigma\in G,a\in S)$, then $G_3=\langle (1\ 2)\rangle$
- 3. Similarly if $G = S_4$ and $S = \{1, 2, 3, 4\}$, with G acting on S via σ , then $G_4 \cong S_3$ (via $\sigma \in G \mapsto \sigma|_{\{1,2,3\}} \in S_3$)

Note also: Let H_1 and H_2 be subgroups of G. Then $H_1 \leq H_2 \iff H_1 \subseteq H_2$. **Proof**:

- $\bullet \implies$ is part of the definition of a subgroup
- \Leftarrow group operation on H_1 and H_2 are compatible since they both come from the operation on $G: H_1 \leq G \implies H_1 \neq \emptyset$ and $xy^{-1} \in H_1 \ \forall x, y \in H_1 \implies H_1 \leq H_2$ (since $H_1 \subseteq H_2$).

Subgroups of Cyclic Groups

Definition: A group (or subgroup) H is *cyclic* if there is an element $x \in H$ such that $H = \langle x \rangle = \{x^n : n \in \mathbb{Z}\} = \text{image of } \mathbb{Z} \to H \text{ given by } n \mapsto x^n.$

Such an element x is called a *cyclic generator* for H.

 $(\langle x \rangle = \{nx : x \in \mathbb{Z}\} \text{ if } H \text{ is written additively})$

If x is a cyclic generator for H_1 then so is x^{-1} ($\{x^n : n \in \mathbb{Z}\} = \{(x^{-1})^m : m \in \mathbb{Z}\}$ \$ (take m = -n)).

We saw a week ago that:

if $|x| = \infty$ then $\langle x \rangle \cong \mathbb{Z}$

if $|x| = m < \infty$ then $\langle x \rangle \cong \mathbb{Z}/m\mathbb{Z}$

in either case, $|x| = |\langle x \rangle|$.

Corollary: Any two cyclic groups of the same order are isomorphic.

Proposition: Any subgroup of \mathbb{Z} is cyclic. If it's non-trivial, then it is generated by its smallest positive element.

Proof: If $H = \{0\}$, then $H = \langle 0 \rangle$ is cyclic.

to be continued...