1. Programkonstrukciók

Ebben a fejezetben azzal foglalkozunk, hogy lehet meglévő programokból új programokat készíteni. Háromféle konstrukciót engedünk meg: szekvencia, elágazás és ciklus. Ezek definícióit úgy adjuk meg, hogy a velük képzett relációk illeszkedjenek a korábban bevezetett program fogalmához. A programkonstrukciókat struktogrammal ábrázoljuk.

2. Szekvencia

Szekvencia esetében két programot egymás után végzünk el. Amennyiben az első program végrehajtása adott állapotból indulva nem véges vagy hibásan terminál, a második program nem tudja folytatni a végrehajtást a végpontból; az első program által generált végrehajtás egy lehetséges végrehajtása lesz a szekvenciának is.

Nevezzük csatlakozási pontnak azt az állapotot egy végrehajtási sorozatban, ahol az egyik program terminál és a másik program ugyaninnen indul el. Nem szeretnénk ha például az x:=x+1 és x:=x+2 programok szekvenciája (ahol x egész típusú) az állapottér $\{x:5\}$ eleméhez az $\{x:5\}, \{x:6\}, \{x:6\}, \{x:8\} >$ sorozatot rendelné. Ezért az egymás után véges sokszor ismétlődő csatlakozási pontokból egyet hagyjunk el.

Jelölés: Véges hosszú α sorozat utolsó elemét jelölje $\tau(\alpha)$. Tehát ha α véges, $\tau(\alpha) = \alpha_{|\alpha|}$.

Jelölés: Legyen A tetszőleges állapottér. $\alpha \in \bar{A}^*$ és $\beta \in (\bar{A} \cup \{fail\})^{**}$ úgy hogy α és β nem üres sorozatok továbbá $\tau(\alpha) = \beta_1$. Ekkor $\alpha \otimes \beta$ jelölje az α és β sorozatok összefűzésében β első elemének elhagyásával kapott sorozatot.

Általánosítsuk a jelölést $n \in \mathbb{N}^+$ darab vagy akár végtelen sok sorozat esetére. A sorozatok összefűzése (konkatenációja) után az egymás után véges sokszor ismétlődő csatlakozási pontokból egyet hagyjunk el.

Példa: Legyen $A = \{1, 2, 3, 4\}$. Ekkor

$$\otimes_4(<1,2,3,1>,<1,2,3,1>,<1,2,3,1>,<1,2,3,1>) = <1,2,3,1,2,3,1,2,3,1,2,3,1>$$

$$\otimes_4(<1>,<1>,<1>,<1,2,3,1>) = <1,1,1,2,3,1>$$

$$\otimes_{\infty}(<1>,<1>,<1>,<1>,<1>,<1>,<1>,<1,1,1,2,3,1>$$

$$\otimes_{\infty}(<1>,<1>,<1>,<1>,<1>,<1>,<1,1,1,2,3,1>$$

Definíció: Legyen A közös alap-állapottere az S_1 és S_2 programoknak. Az $(S_1; S_2)$ relációt az S_1 és S_2 programok szekvenciájának nevezzük, ha

$$(S_1; S_2)(a) = \{ \alpha \in \bar{A}^{\infty} \mid \alpha \in S_1(a) \} \cup$$

$$\{ \alpha \in (\bar{A} \cup \{fail\})^* \mid \alpha \in S_1(a) \land \alpha_{|\alpha|} = fail \} \cup$$

$$\{ \gamma \in (\bar{A} \cup \{fail\})^{**} \mid \gamma = \alpha \otimes \beta \land \alpha \in S_1(a) \land |\alpha| < \infty \land \alpha_{|\alpha|} \neq fail \land \beta \in S_2(\alpha_{|\alpha|}) \}$$

A szekvencia struktogramja:

$$\begin{array}{c|c}
\hline
S_1; S_2 \\
\hline
S_1 \\
\hline
S_2 \\
\end{array}$$

Tétel: Legyen A közös alap-állapottere az S_1 és S_2 programoknak. Az $(S_1; S_2)$ szekvencia program.

Tétel: Legyen A közös alap-állapottere az S_1 és S_2 programoknak és jelölje S az $(S_1; S_2)$ szekvenciát. Ekkor

$$p(S) = p(S_2) \odot p(S_1)$$

3. Elágazás

Definíció: Legyen A közös alap-állapottere az $S_1, \ldots S_n$ programoknak. Legyenek továbbá $\pi_1, \ldots \pi_n \in A \to \mathbb{L}$ logikai függvények. Ekkor az $IF \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ relációt az S_i programokból képzett π_i feltételek által meghatározott elágazásnak nevezzük és $(\pi_1:S_1,\ldots\pi_n:S_n)$ -nel jelöljük, ha

$$\forall a \in A : IF(a) = \omega_0(a) \cup \bigcup_{i=1}^n \omega_i(a)$$

ahol $\forall i \in [1..n]$:

$$\omega_{i}(a) = \begin{cases} S_{i}(a), & \text{ha } a \in \mathcal{D}_{\pi_{i}} \wedge \pi_{i}(a) \\ \emptyset, & \text{ha } a \in \mathcal{D}_{\pi_{i}} \wedge \neg \pi_{i}(a) \\ \{\langle a, fail \rangle\}, & \text{ha } a \notin \mathcal{D}_{\pi_{i}} \end{cases}$$

és

$$\omega_0(a) = \begin{cases} \{ < a, fail > \}, & \text{ha } \forall i \in [1..n] : (a \in \mathcal{D}_{\pi_i} \land \neg \pi_i(a)) \\ \emptyset, & \text{k\"{u}l\"{o}nben} \end{cases}$$

Az elágazás struktogramja:

$$\begin{array}{c|cccc}
\hline
 & \hline
 & \hline
 & \\
 & \hline
 & \\
 & S_1 & \cdots & S_n
\end{array}$$

Az elágazást szokás még a következő módon is leírni:

```
 \begin{array}{c} \mathbf{if} \\ \pi_1 \to S_1 \square \\ \dots \\ \pi_{n-1} \to S_{n-1} \square \\ \pi_n \to S_n \end{array}   \mathbf{fi}
```

Tétel: Legyen A közös alap-állapottere az $S_1, \ldots S_n$ programoknak. Legyenek továbbá $\pi_1, \ldots \pi_n \in A \to \mathbb{L}$ logikai függvények. Az $IF = (\pi_1 : S_1, \ldots \pi_n : S_n)$ elágazás program.

Tétel: Legyen A közös alap-állapottere az $S_1, \ldots S_n$ programoknak. Legyenek továbbá $\pi_1, \ldots \pi_n \in A \to \mathbb{L}$ logikai függvények. $IF = (\pi_1 : S_1, \ldots \pi_n : S_n)$. Ekkor

$$\mathcal{D}_{p(IF)} = \{ a \in A \mid a \in \bigcap_{i=1}^{n} \mathcal{D}_{\pi_i} \land a \in \bigcup_{i=1}^{n} \lceil \pi_i \rceil \land \forall i \in [1..n] : a \in \lceil \pi_i \rceil \implies a \in \mathcal{D}_{p(S_i)} \}$$

és

$$\forall a \in \mathcal{D}_{p(IF)} \colon p(IF)(a) = \bigcup_{i=1}^{n} p(S_i)|_{\lceil \pi_i \rceil}$$

4. Ciklus

Definíció: Legyen $\pi \in A \to \mathbb{L}$ feltétel és $S_0 \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ program. A $DO \subseteq A \times (\bar{A} \cup \{fail\})^{**}$ relációt az S_0 programból π feltétellel képzett ciklusnak nevezzük és (π, S_0) -lal jelöljük, ha $\forall a \in A$:

$$DO(a) = \begin{cases} (S_0; DO)(a) & \text{ha} \quad a \in \mathcal{D}_{\pi} \wedge \pi(a) \\ \{\langle a \rangle\} & \text{ha} \quad a \in \mathcal{D}_{\pi} \wedge \neg \pi(a) \\ \{\langle a, fail \rangle\} & \text{ha} \quad a \notin \mathcal{D}_{\pi} \end{cases}$$

A ciklus struktogramja:

$$\begin{array}{c|c}
\hline
DO \\
\hline
\pi \\
\hline
S_0
\end{array}$$

A szakirodalomban a következő mód is elterjedt a ciklus leírására:

```
while \pi do S_0 od
```

A szekvenciához és az elágazáshoz hasonló módon is definiálhatjuk a ciklust.

Definíció: $\forall a \in A$:

```
DO(a) = \begin{cases} \{\langle a, fail \rangle \}, & \text{ha } a \notin \mathcal{D}_{\pi} \\ \{\langle a \rangle \}, & \text{ha } a \in \mathcal{D}_{\pi} \land \neg \pi(a) \} \\ \{\alpha \in (\bar{A} \cup \{fail\})^{**} \mid \exists \alpha^{1}, \dots, \alpha^{n} \in (\bar{A} \cup \{fail\})^{**} : \alpha = \bigotimes_{n}(\alpha_{1}, \dots, \alpha_{n}) \land \alpha^{1} \in S_{0}(a) \land \forall i \in [1..n-1] : (\alpha^{i} \in \bar{A}^{*} \land \tau(\alpha^{i}) \in [\pi] \land \alpha^{i+1} \in S_{0}(\tau(\alpha^{i}))) \land ((\alpha^{n} \in \bar{A}^{\infty} \lor (\alpha^{n} \in (\bar{A} \cup \{fail\})^{*} \land \tau(\alpha^{i}) = fail) \lor (\alpha^{n} \in \bar{A}^{*} \land \tau(\alpha^{i}) \in \mathcal{D}_{\pi} \land \tau(\alpha^{i}) \notin [\pi]) \} \\ \bigcup \\ \{\alpha \in \bar{A}^{\infty} \mid \exists \alpha^{1}, \alpha^{2}, \dots \in \bar{A}^{*} : \alpha = \bigotimes_{\infty}(\alpha_{1}, \alpha_{2}, \dots) \land \alpha^{1} \in S_{0}(a) \land \forall i \in \mathbb{N}^{+} : (\alpha_{i} \in \bar{A}^{*} \land \tau(\alpha^{i}) \in [\pi] \land \alpha^{i+1} \in S_{0}(\tau(\alpha^{i}))) \} \\ \bigcup \\ \{\alpha \in (\bar{A} \cup \{fail\})^{*} \mid \exists \alpha^{1}, \dots, \alpha^{n} \in (\bar{A} \cup \{fail\})^{**} : \alpha = \bigotimes_{n}(\alpha_{1}, \dots, \alpha_{n}) \land \alpha^{1} \in S_{0}(a) \land \forall i \in [1..n-2] : (\alpha^{i} \in \bar{A}^{*} \land \tau(\alpha^{i}) \in [\pi] \land \alpha^{i+1} \in S_{0}(\tau(\alpha^{i}))) \\ \land (\alpha^{n-1} \in \bar{A}^{*} \land \tau(\alpha^{n-1}) \notin \mathcal{D}_{\pi} \land \alpha^{n} = \langle \tau(\alpha^{n-1}), fail \rangle) \}, \end{cases} 
ha \ a \in \mathcal{D}_{\pi} \land \pi(a)
```

Első ránézésre a definíció kissé bonyolultnak tűnik. Amennyiben sorra vesszük hogy az állapottér egy a pontjához milyen sorozatokat rendelhet a ciklus, már nem is fogjuk bonyolultnak találni a definíciót!

- Ha *a* állapotban a ciklusfeltétel nem kiértékelhető, akkor a ciklus hibásan terminál.
- Ha a állapotban a ciklusfeltétel kiértékelhető de nem teljesül a-ra, akkor a ciklus semmit nem csinál, végrehajtása befejeződik az a állapotban.
- A ciklusmagot véges sokszor elvégezzük egymás után, úgy hogy a ciklusmag utolsó végrehajtásához tartozó sorozat
 - végtelen; vagy
 - véges és a fail állapotban végződik; vagy
 - véges és utolsó elemében kiértékelhető a π feltétel, de az hamis.
- A ciklusmagot végtelen sokszor elvégezzük egymás után, mert egy végrehajtás után mindig olyan állapotba jutunk ahol a ciklusfeltétel teljesül.
- Az utolsó lehetőség az, hogy a ciklusmagot azért véges sokszor (de legalább egyszer) végezzük el egymás után, mert utoljára egy olyan állapotba jutunk ahol a ciklusfeltétel nem kiértékelhető.