Deep Learning

Neural Networks

A "Simple" Classification Problem

How about this classification problem?

Linear model can not solve the problem

We need non-linear models

A Linear Model

- Linear Regression if output is continuous
- Logistic Regression if output is discrete

Linear Regression $y = \mathbf{w}\mathbf{x} + b$

Logistic Regression $y = \sigma(\mathbf{w}\mathbf{x} + b)$

Add Complexity

How about now?

Make it non-linear

Why Non-linear Activation

- The non-linearities activation function increases the capacity of model
- Without non-linearities, deep neural networks is meaningless: each extra layer is just one linear transform.
- How to select activation functions?
 You can select an activation function which will approximate the distribution
 - faster leading to faster training process.

Forward Computation

Forward Computation

$$u_i = \sum_{k=1}^{N} w_{ki} x_k$$

$$h_i = f(u_i)$$

$$u_j' = \sum_{i=1}^N w_{ij}' h_i$$

$$y_j = f(u_j')$$

Forward Computation

- 1. Take f as the non-linear activation
- 2. Linear Transformation: $h = W_1 x$
- 3. 2-layer Neural Network: $h = W_2 f(W_1 x)$
- 4. 3-layer Neural Network: $h = W_3 f(W_2 f(W_1 x))$

 Neural Network is a model that recursively applies the matrix multiplication and non-linear activation function.

Neural networks can be arbitrarily complex

Training done via
BackProp algorithm:
gradient descent in
very non-convex
space

$$\min_{\substack{E(f(x),t)+R\\ \text{data}\\ \text{architecture}\\ \text{error function}\\ \text{regularization term}\\ \text{optimizer}}$$

Gradient Descent

Like hiking down a mountain

Credit: https://ml-cheatsheet.readthedocs.io/en/latest/gradient descent.html

Step 1:

Forward pass to compute the network output and "error"

Step 2:

Backward pass to compute gradients

And update the model weights based on gradients.

$$E = \frac{1}{2} \sum_{j=1}^{M} (y_j - t_j)^2$$

$$\frac{\partial E}{\partial y_j} = y_j - t_j$$

$$\frac{\partial E}{\partial u_j'} = \frac{\partial E}{\partial y_j} \cdot \frac{\partial y_j}{\partial u_j'}$$

$$\frac{\partial E}{\partial w'_{ij}} = \frac{\partial E}{\partial u'_{j}} \cdot \frac{\partial u'_{j}}{\partial w'_{i}}$$

$$\frac{\partial E}{\partial h_i} = \sum_{j=1}^{M} \frac{\partial E}{\partial u_j'} \frac{\partial u_j'}{\partial h_i}$$

$$\frac{\partial E}{\partial u_i} = \frac{\partial E}{\partial h_i} \cdot \frac{\partial h}{\partial u}$$

$$\frac{\partial E}{\partial w_{ki}} = \frac{\partial E}{\partial u_i} \cdot \frac{\partial u}{\partial w}$$

How to find learning rate?

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/

A Joke

Training Process

- 1. Initialize neural network randomly
- 2. Get output with input data
- 3. Compare outputs with ground truth in training data

Iteratively perform

- Get loss function
- 5. Update weights with backpropagation and gradient descent algorithm

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \bigtriangledown f(\mathbf{x}_n)$$

- Stochastic gradient descent (SGD)
 - Randomly shuffle the data
 - Batch size k: the number of data used for steps 2-5
 - One epoch: the full scan of all the training data. How many times will the weights be updated in one epoch?
 - Number of Epoch T: the number of iterations to stop training

Types of Gradient Descent Algorithms

- Batch Gradient Descent
- 2. Mini-batch Gradient Descent
- 3. Stochastic Gradient Descent

batch size = Number of data

1<bath size< number of data

batch size = 1

Batch SGD

Batch SGD: batch size is the number of training data

- 1 only update model parameters after all training data have been evaluated.
- 2 stable error gradient
- 3 need a large memory
- 4 may lead to a less optimal solution

Mini-Batch SGD

Mini-batch SGD: split the dataset into small batches and take the average of the gradient over the batch and update the weights

- 1 more efficient than SGD
- 2 requires additional hyperparameter i.e. mini-batch size
- 3 hints on batch size:
 - * a power of two that fits the memory requirements of GPU or CPU.
- * small -> a learning process that converges quickly at the cost of noise in the training
- * large -> a learning process that converges slowly with accurate estimate of the error gradient

Mini-Batch vs Batch

Batch gradient descent

Mini-batch gradient descent

Except SGD

SGD

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \alpha \bigtriangledown f(\mathbf{x}_n)$$

Momentum, Adam, AdaGrad, RMSProp

Non-linear Activation Functions

When Gradient is zero

Neural Network

1. From Wiki:

 NN is based on a collection of connected units of nodes called artificial neurons which loosely model the neurons in a biological brain.

2. From another way:

NN is running several 'logistic regression' at the same time (expanding at width and depth)

dimensions).

Neural Computation

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

The fact that a neuron is essentially a logistic regression unit:

1 performs a dot product with the input and its weights
2 adds the bias and apply the non-linearity

Neural Network Visualization

Playground

Deep Learning/Deep Neural Networks

Shallow vs Deep

End-to-End Learning

Representation Learning in DL

From Deep Learning (Goodfellow)

Representation Matters

Task: Draw a line to separate the **green triangles** and **blue circles**.

We want to project the data into the **new** feature/vector space that data is **linearly separated**

Kernel Tricks in SVM

Low-dim, Original Space

High-dim, Linearly Separated Space

"Trick" in Deep Learning

Low-dim, Original Space

High-dim, Linearly Separated Space

Why Deep Learning

Deep Learning

- Deep learning is a subfield of machine learning
- Most machine learning methods work well because of high-quality feature engineering/representation learning.
- Deep learning is an end-to-end structure, which supports automatic representation learning
- Different network structures: CNN, RNN, LSTM, GRU, Attention model, etc.

Applications of DL

Deep Learning for Speech

The first real-world tasks addressed by deep learning is speech recognition

Deep Learning for Computer Vision

- Computer vision may be the most well-known breakthrough of DL.
- ImageNet Classification with Deep Convolutional Neural Networks.

ImageNet Scoreboard

Deep Learning For Arts

Style transfer based on Deep Learning: use one image to stylize another.

Deep Learning For Data Generation

Given training data, generate new data samples from same distribution

Examples of Photorealistic GAN-Generated Faces.

AutoML and Neural Architecture Search

Source:Lex Fridman

DL/NN is not New

Deep Learning Timeline

Why is Deep Learning Powerful Now?

- Feature engineering require high-level expert knowledge, which are easily over-specified and incomplete.
- Large amounts of training data
- Modern multi-core CPUs/GPUs/TPUs
- Better deep learning 'tricks' such as regularization, optimization, transfer learning etc.

When DL may not Work

You need to get off your non-motor vehicle when u pass the pedestrian crossing.

detected offender

The Challenge of Deep Learning

Ask the right question and know what the answer means:
 Image classification is not scene understanding.

Select, collect, and organize the right data to train on:

Efficient Teaching/Efficient Learning

Humans can learn from few examples

- DL/machine require thousands/millions of examples
 - Data augmentation

Limitations

DL always requires a large amount of annotated data

14 million

Pre-training, Transfer Learning, Data Augmentation

 Generalization capability is low, e.g. the model that perform well on benchmarked datasets fail badly on real world images

- Easily got attacked by random, tiny noise
- How to explain such huge black box

Attack Machine Learning

Attack Machine Learning

Adversarial Examples

99.3% confidence

Open Al

57.7% confidence

These stickers made an artificial-intelligence system read this stop sign as 'speed limit 45'.

Scientists have evolved images that look like abstract patterns — but which DNNs see as familiar objects.

onature

Why deep-learning Als are so easy to fool

Three points behind Successful ML Application

Deep algorithms, i.e., deep learning

Zhihua ZHOU

Strong supervision information (data with high quality labels)

Stable learning environment

Limitations of DL

Three challenges for Deep Learning

- Deep Supervised Learning works well for perception
 - When labeled data is abundant.
- Deep Reinforcement Learning works well for action generation
 - When trials are cheap, e.g. in simulation.
- Three problems the community is working on:
- ▶ 1. Learning with fewer labeled samples and/or fewer trials
 - Self-supervised learning / unsup learning / learning to fill in the blanks
 - learning to represent the world before learning tasks
- **2. Learning to reason,** beyond "system 1" feed-forward computation.
 - Making reasoning compatible with gradient-based learning.
- 3. Learning to plan complex action sequences
 - Learning hierarchical representations of action plans

Key Takeaways

Neural Network is: 1 linear transformation 2 non-linear activation

 Gradient Descent plus Back-Propagation is used to find the model parameters of neural networks

Deep learning: neural network with a deep structure (many layers)

 Deep learning is the method which tries to learn features by the model itself without human efforts