Datenbanken: Eine Einführung SS 2024

Beispiellösung zur Übung 10

Aufgabe 1

Gegeben sei die Relation R(A, B, C, D) in folgender Ausprägung:

Α	В	С	D
1	1	10	5
2	5	50	30
3	3	30	10
4	5	40	5
5	3	30	10
6	1	10	30

Welche FD gelten hier nicht? Geben Sie ggf. an, welche Zeilen der FD widersprechen.

(a) $B \rightarrow C$

Lösungsvorschlag:

gilt nicht, wegen Z2+Z4

(b) $C \rightarrow B$

Lösungsvorschlag:

unklar, ob es gilt oder nicht. Es gibt kein Tupel in der Ausprägung, dass die FD verletzt (gleiche Werte in C haben gleiche Werte in B)

(c) $D \rightarrow B$

Lösungsvorschlag:

gilt nicht, wegen Z1+Z4 und Z2+Z6

(d) $CD \rightarrow A$

Lösungsvorschlag:

gilt nicht, wegen Z3+Z5.

(e) $AB \rightarrow C$

Lösungsvorschlag:

unklar, ob es gilt oder nicht. Es gibt kein Tupel in der Ausprägung, dass die FD verletzt (gibt keine gleichen Werte in A (und somit (AB), deswegen gibt es nichts, was verletzen kann)

Aufgabe 2

Gegeben sei die Relation R(A, B, C, D, E) mit der FD-Menge $F = \{C \to AB, BE \to C, AD \to E, B \to A, AE \to C\}.$

Prüfen Sie, ob sich die folgenden FDs aus der FD-Menge F herleiten lassen.

- Falls sich eine FD $\alpha \to \beta$ herleiten lässt, zeigen Sie die Herleitung durch schrittweise Anwendung der Ableitungsregeln (R1-R6).
- Falls sich die FD $\alpha \to \beta$ nicht herleiten lässt, geben Sie eine konkrete Ausprägung für die Relation R an, in der $\alpha \to \beta$ verletzt ist, aber keine der anderen FDs aus F.
- (a) $BD \rightarrow E$

Lösungsvorschlag:

$$\{B \to A\} \vDash_{R2} BD \to AD$$

 $\{BD \to AD, AD \to E\} \vDash_{R3} BD \to E$

oder zB

$$\{B \to A, AD \to E\} \vDash_{R6} BD \to E$$

(b) $BC \rightarrow E$

Lösungsvorschlag:

A gleich, B gleich, C gleich, D unterschiedlich, E unterschiedlich

(c) $BD \rightarrow C$

Lösungsvorschlag:

$$\{B \to A, AD \to E\} \vDash_{R6} BD \to E$$

 $\{BD \to E, BE \to C\} \vDash_{R6} (BBD =)BD \to C$

oder zB

$$\{B \subseteq BD\} \vDash_{R1} BD \to B$$

$$\{B \to A, AD \to E\} \vDash_{R6} BD \to E$$

$$\{BD \to B, BD \to E\} \vDash_{R5} BD \to BE$$

$$\{BD \to BE, BE \to C\} \vDash_{R3} BD \to C$$

oder zB

$$\{B \to A\} \vDash_{R2} BD \to AD$$

$$\{BD \to AD, AD \to E\} \vDash_{R3} BD \to E$$

$$\{BD \to AD, BD \to E\} \vDash_{R5} BD \to ADE$$

$$\{BD \to ADE\} \vDash_{R4} BD \to AE$$

$$\{BD \to AE, AE \to C\} \vDash_{R3} BD \to C$$

(d) $A \rightarrow E$

Lösungsvorschlag:

A gleich, E unterschiedlich, D unterschiedlich

Variante 1: C unterschiedlich, B darf gleich oder unterschiedlich sein

Variante 2: C gleich, B gleich

(e) (Bonus) $ADE \rightarrow B$

Lösungsvorschlag:

$$\{AE \to C, C \to AB\} \vDash_{R3} AE \to AB$$

 $\{AE \to AB\} \vDash_{R2} ADE \to ABD$
 $\{ADE \to ABD\} \vDash_{R4} ADE \to B$

oder zB

$$\{AE \to C\} \vDash_{R2} ADE \to CD$$
$$\{ADE \to CD\} \vDash_{R4} ADE \to C$$
$$\{ADE \to C, C \to AB\} \vDash_{R3} ADE \to AB$$
$$\{ADE \to AB\} \vDash_{R4} ADE \to B$$

Aufgabe 3

Gegeben sei die Relation R(A, B, C, D, E) mit der FD-Menge $F = \{C \to AB, BE \to C, AD \to E, B \to A, AE \to C\}.$

- Berechnen Sie für die folgenden Attributmengen α die Hüllen bzglF. Geben Sie für jede Iteration i die Menge α^i an.
- Entscheiden Sie, ob es sich um einen Kandidaten- bzw. Superschlüssel handelt.
- (a) BD

Lösungsvorschlag:

$$\begin{split} BD^0 &= BD \\ BD^1 &= ABD \pmod{B \to A} \\ BD^2 &= ABDE \pmod{AD \to E} \\ BD^3 &= ABCDE \pmod{AE \to C} \text{ und } BE \to C) \\ BD^* &= ABCDE \end{split}$$

Superschlüssel, da Schlüsseleigenschaft erfüllt $(BD^* = R)$ Kandidatenschlüssel, da zusätzlich minimal $(B^* = AB \neq R \text{ und } D^* = D \neq R)$

(b) AC

Lösungsvorschlag:

$$AC^0 = AC$$

 $AC^1 = ABC$ (wegen $C \to AB$)
 $AC^* = ABC$

weder noch, da Schlüsseleigenschaft nicht erfüllt

(c) *ACD*

Lösungsvorschlag:

$$\begin{array}{l} ACD^0 = ACD \\ ACD^1 = ABCDE \quad \text{(wegen } AD \to E \text{ und } C \to AB\text{)} \\ ACD^* = ABCDE \quad \text{(wegen } AD \to E\text{)} \end{array}$$

Superschlüssel, da Schlüsseleigenschaft erfüllt $(ACD^* = R)$ kein Kandidatenschlüssel, da nicht minimal wegen $AD^* = R$ bzw. $CD^* = R$