31/08/2022

Lecture I . Heat equation:

Let U(t,x) denote the temperature at point x at time t. One dimensional heat equation is:

$$\partial_t u = k \partial_x^2 u$$

where k 70 is a constant (the thermal conductivity of the material)

That is, the change in heat at a specific point is proportional to the second derivative of the heat along the wire.

· Method of Separation of variables

we write U(t,x) = Z(t) Y(x), a product of a function of x.

we obtain, dtult-x) = Z'(t) y(x)

Thus. Z'(t) y(x) = k Z(t) y"(x)

assuming 2(t), y (x) are non-zero,

we have
$$\frac{z'(t)}{z(t)} = \frac{y''(x)}{y(x)} = \lambda$$
 $k=1$

Since the left-hand) is a constant with respect to x, and the night-hand side is a constant w.r.t t. both sides must be constant.

$$\Rightarrow \begin{cases} 2^{l}(t) - \lambda 2(t) = 0 \\ y''(x) - \lambda y(x) = 0 \end{cases}$$

N < 0: physical solution

Let
$$\lambda = -w^2$$
. Then, $\int z'(t) + w^2 z(t) = 0$ (2)

The general solution of
$$②$$
 takes the form $Y(x) = O_w(x) + O_w(x) + O_w(x)$

The general solution of
$$\mathbb{D}$$
 is $2(t) = c \exp(-w^2t)$

So we have
$$u(t.x) = z(t)y(x)$$

=
$$\exp(-w^2+)$$
 (A_w (wx) + B_w in (wx))

Observe that superposition (linear combination) is also
a solution. Thus.

$$u(t\cdot x) = c_0 + \sum_{w=0}^{\infty} exp(-w^2+) \left(A_w cos(wx) + B_w sin(wx) \right)$$

$$= c_0 + \sum_{w=0}^{\infty} \left(a_w cos(wx) + b_w sin(wx) \right)$$

solve the equation.

Note that it is a representation in the form of a Fourier series with coefficients depending on the time t

II. wave equation

method of separation of variables:

(eq)
$$\partial_t^2 \Psi(t, x) = \partial_x^2 \Psi(t, x)$$

$$\Rightarrow$$
 A(x) B"(+) = B(+) A"(x)

$$\Rightarrow \frac{B''(t)}{B(t)} = \frac{A''(x)}{A(x)} = Constant = -\omega^2$$

we get two equations: B"(+) = - w2 B(+).

A"(
$$\pi$$
) = - ω^2 A(π)

$$\Rightarrow B(t) = \alpha \cos(\omega t) + \beta \sin(\omega t)$$
A(π) = $\alpha \cos(\omega t) + \beta \sin(\omega t)$

Boundary condition: A(0) = A(π) = 0 $\Rightarrow \alpha = 0$

$$\Rightarrow \Psi_{\omega}(t, \pi) = \beta \sin(\omega \pi) \left[\frac{\partial \cos(\omega t)}{\partial \cos(\omega t)} + \frac{\partial \sin(\omega t)}{\partial \cos(\omega t)} \right]$$
By superposition. formally.

Au(t)

$$\Psi(t, \pi) = \sum_{\omega = 0}^{\infty} A_{\omega}(t) \sin(\omega \pi) \cdot \sin(\omega t)$$
Where $A_{\omega}(t) = \frac{\partial \omega}{\partial \omega} \cos(\omega t) + \frac{\partial \omega}{\partial \omega} \sin(\omega t)$

By initial conditions

Consider initial conditions: $\Psi(0, \pi) = f(\pi)$

$$2\pi + \Psi(0, \pi) = g(\pi)$$

we require that

$$2\pi - \omega + \beta \cos(\omega t) = g(\pi)$$

$$2\pi - \omega + \beta \cos(\omega t) = g(\pi)$$

$$2\pi - \omega + \beta \cos(\omega t) = g(\pi)$$

This raises the question:

Given f on $(0, \lambda)$, $f(0) = f(\lambda) = 0$. Can we find $f(x) = \frac{x}{2} dw \sin(wx)$?

Theorem 1: Let $f \in L^2(\mathbb{T})$. Then $\lim_{N \to \infty} \|S_N f - f\|_{L^2(\mathbb{T})} = 0$.

Remark: Snf(x) = I f(h) e zaikx, Sng(x) = I g(h) e zaikx

=
$$\int_{0}^{1} \sum_{|\mathbf{k}| \leq N} \widehat{f}(\mathbf{k}) e^{2ai\mathbf{k}x} \sum_{|\mathbf{m}| \leq N} \widehat{g}(\mathbf{m}) e^{-2ai\mathbf{m}x} dx$$

=
$$\sum_{|k|,|m| \leq N} \widehat{f}(k) \widehat{g}(m) \int_{0}^{1} e^{22i(k-m)x} dx$$

$$= \sum_{|\mathbf{k}| \leq N} \widehat{f}(\mathbf{k}) \widehat{g}(\mathbf{k})$$

In particular, $\|S_N f\|_{L^2(T)}^2 = \sum_{|k| \le N} |\hat{f}(k)|^2$

pf: 1° First we observe that $e_k(x) = e^{2\lambda i k n}$ form an orthonormal basis basis of $L^2(TP)$

$$z^{\circ}$$
, $z_{N}f = \sum_{|b| \leq N} (f, e_{b}) e_{b}$

therefore.
$$|f - S_N f|, e_{\hat{s}} = 0$$
 $\forall |\hat{s}| \leq N$

Then the orthonormal property of the family seed implies that f-SNf is orthonormal to e_i for all 10i $\leq N$. i.e.

In particular,

$$||f||_{L^{2}}^{2} = ||f - S_{N}f||_{L^{2}}^{2} + ||S_{N}f||_{L^{2}}^{2}$$

$$\geq ||S_{N}f||_{L^{2}}^{2}$$

Pf of
$$f * g (3) = \hat{f} g ''$$

$$f * g (3) = \frac{1}{22} \int_{-2}^{2} (f * g) (x) e^{-ixg} dx$$

$$= \frac{1}{22} \int_{-2}^{2} \frac{1}{22} \int_{-2}^{2} f(y) g(x-y) dy e^{-ixg} dx$$

$$= \frac{1}{22} \int_{-2}^{2} f(y) e^{-i1y} \left(\frac{1}{22} \int_{-2}^{2} g(x-y) e^{-i3x} dx \right) dy$$

$$= \frac{1}{22} \int_{-2}^{2} f(y) e^{-i3y} \left(\frac{1}{22} \int_{-2}^{2} g(x) e^{-i3x} dx \right) dy$$

$$= \hat{f}(5) \hat{g}(5)$$