

Convolutional Neural Networks (CNN) Architectures II

01VGG/Mini-VGG

02

How to use 1x1 Conv. Layers

CNN Architectures II

03

GoogLeNet Mini-GoogLeNet 04

 ${\sf DeeperGoogLeNet}$

05

Tiny ImageNet Challenge

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman*

Visual Geometry Group, Department of Engineering Science, University of Oxford {karen, az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3 \times 3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16–19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ComvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convolutional networks (ConvNets) have recently enjoyed a great success in large-scale image and video recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et al., 2014; Simonyan & Zisserman, 2014) which has become possible due to the large public image repositories, such as ImageNet (Deng et al., 2009), and high-performance computing systems, such as GPUs or large-scale distributed clusters (Dean et al., 2012). In particular, an important role in the advance of deep visual recognition architectures has been played by the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al., 2014), which has served as a testbed for a few generations of large-scale image classification systems, from high-dimensional shallow feature encodings (Perronnin et al., 2010) (the winner of ILSVRC-2011) to deep ConvNets (Krizhevsky et al., 2012) (the winner of ILSVRC-2012).

With ConvNets becoming more of a commodity in the computer vision field, a number of attempts have been made to improve the original architecture of Krizhevsky et al. (2012) in a bid to achieve better accuracy. For instance, the best-performing submissions to the ILSVRC-2013 (Zeiler & Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive window size and smaller stride of the first convolutional layer. Another line of improvements dealt with training and testing the networks densely over the whole image and over multiple scales (Sermanet et al., 2014; Howard, 2014). In this paper, we address another important aspect of ConvNet architecture design—its depth. To this end, we fix other parameters of the architecture, and steadily increase the depth of the network by adding more convolutional layers, which is feasible due to the use of very small (3 × 3) convolution filters in all layers.

As a result, we come up with significantly more accurate ConvNet architectures, which not only achieve the state-of-the-art accuracy on ILSVRC classification and localisation tasks, but are also applicable to other image recognition datasets, where they achieve excellent performance even when used as a part of a relatively simple pipelines (e.g. deep features classified by a linear SVM without fine-tuning). We have released our two best-performing models to facilitate further research.

	F (M) (M)	ConvNet C	onfiguration	1911	
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB imag	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
10 FE0/ET	929 105 3±45007 3		pool	300 100 100 100 100	V 76 25575
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	110	222	conv1-512	conv3-512	conv3-512
			2.00 6.00 0.00		conv3-512
100	(A) - 1/20 - 1/20 (A)		pool	535 Wildeling S. N. S. S. S.	a number of the state of
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			111111111111111111111111111111111111111		conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

VGG #16 or VGG #19

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

- Filter size is constant
- Number of filters increase along the architecture
- Pre-training

```
# import the necessary packages
from tensorflow.keras.applications import VGG16
model = VGG16(weights="imagenet")
```


Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 224, 224, 3)]	0
block1_conv1 (Conv2D)	(None, 224, 224, 64)	1792
block1_conv2 (Conv2D)	(None, 224, 224, 64)	36928
block1_pool (MaxPooling2D)	(None, 112, 112, 64)	0
block2_conv1 (Conv2D)	(None, 112, 112, 128)	73856
block2_conv2 (Conv2D)	(None, 112, 112, 128)	147584
block2_pool (MaxPooling2D)	(None, 56, 56, 128)	0
block3_conv1 (Conv2D)	(None, 56, 56, 256)	295168
block3_conv2 (Conv2D)	(None, 56, 56, 256)	590080
block3_conv3 (Conv2D)	(None, 56, 56, 256)	590080
block3_pool (MaxPooling2D)	(None, 28, 28, 256)	0

(None,	28, 28, 512)	1180160
(None,	28, 28, 512)	2359808
(None,	28, 28, 512)	2359808
(None,	14, 14, 512)	0
(None,	14, 14, 512)	2359808
(None,	14, 14, 512)	2359808
(None,	14, 14, 512)	2359808
(None,	7, 7, 512)	0
(None,	25088)	0
(None,	4096)	102764544
(None,	4096)	16781312
(None	1999)	4097000
	(None,	(None, 28, 28, 512) (None, 28, 28, 512) (None, 28, 28, 512) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 512) (None, 14, 14, 512) (None, 7, 7, 512) (None, 25088) (None, 4096) (None, 4096)

Total params: 138,357,544 Trainable params: 138,357,544

Non-trainable params: 0

Layer Type	Output Size	Filter Size / Stride
INPUT IMAGE	$32 \times 32 \times 3$	
CONV	$32 \times 32 \times 32$	$3 \times 3, K = 32$
ACT	$32 \times 32 \times 32$	
BN	$32 \times 32 \times 32$	
CONV	$32 \times 32 \times 32$	$3 \times 3, K = 32$
ACT	$32 \times 32 \times 32$	
BN	$32 \times 32 \times 32$	
POOL	$16 \times 16 \times 32$	2×2
DROPOUT	$16 \times 16 \times 32$	
CONV	$16 \times 16 \times 64$	$3 \times 3, K = 64$
ACT	$16 \times 16 \times 64$	
BN	$16 \times 16 \times 64$	
CONV	$16 \times 16 \times 64$	$3 \times 3, K = 64$
ACT	$16 \times 16 \times 64$	
BN	$16 \times 16 \times 64$	
POOL	$8 \times 8 \times 64$	2×2
DROPOUT	$8 \times 8 \times 64$	
FC	512	
ACT	512	
BN	512	
DROPOUT	512	3
FC	10	
SOFTMAX	10	

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)		32, 32, 32)	896
activation (Activation)	(None,	32, 32, 32)	0
batch_normalization (BatchNo	(None,	32, 32, 32)	128
conv2d_1 (Conv2D)	(None,	32, 32, 32)	9248
activation_1 (Activation)	(None,	32, 32, 32)	0
batch_normalization_1 (Batch	(None,	32, 32, 32)	128
max_pooling2d (MaxPooling2D)	(None,	16, 16, 32)	0
dropout (Dropout)	(None,	16, 16, 32)	0
conv2d_2 (Conv2D)	(None,	16, 16, 64)	18496
activation_2 (Activation)	(None,	16, 16, 64)	0
batch_normalization_2 (Batch	(None,	16, 16, 64)	256
conv2d_3 (Conv2D)	(None,	16, 16, 64)	36928
activation_3 (Activation)	(None,	16, 16, 64)	0
batch_normalization_3 (Batch	(None,	16, 16, 64)	256
max_pooling2d_1 (MaxPooling2	(None,	8, 8, 64)	0
dropout_1 (Dropout)	(None,	8, 8, 64)	0
flatten (Flatten)	(None,	4096)	0
dense (Dense)	(None,	512)	2097664
activation_4 (Activation)	(None,	512)	0
batch_normalization_4 (Batch	(None,	512)	2048
dropout_2 (Dropout)	(None,	512)	0
dense_1 (Dense)	(None,	10)	5130
activation_5 (Activation)	(None,	10)	0

Total params: 2,171,178
Trainable params: 2,169,770
Non-trainable params: 1,408

airplane automobile bird cat deer dog frog horse ship truck

https://www.cs.toronto.edu/~kriz/cifar.html

The CIFAR-10 dataset

- 60,000 32x32x3 images
- 10 classes
- 6000 images per class
- 50,000 training images
- 10,000 test images

	2					Confusio	n Matrix					
	airplane -	816	10	43	13	27	7	10	6	41	27	
aut	tomobile -	6	909	1	5	1	4	6	3	15	50	- 800
	bird -	39	3	705	43	78	50	64	13	4	1	
	cat -	9	5	40	649	56	143	74	18	0	6	- 600
True label	deer -	3	3	34	35	848	18	29	22	6	2	
Tue	dog -	7	1	19	119	40	765	21	25	0	3	- 400
	frog -	4	1	18	30	23	12	908	3	1	0	
	horse -	6	0	21	25	48	52	4	837	3	4	- 200
	ship -	31	12	8	8	9	4	5	4	906	13	
	truck -	15	40	4	7	3	2	7	11	17	894	
		airplane	automobile	bird	cat	deer Predicte	dog ed label	frog	horse	ship	truck	- 0

Predictions

How to Use 1x1
Convolutions to
Manage Model
Complexity

Network In Network

Min Lin^{1,2}, Qiang Chen², Shuicheng Yan²

¹Graduate School for Integrative Sciences and Engineering ²Department of Electronic & Computer Engineering National University of Singapore, Singapore {linmin, chenqiang, eleyans}@nus.edu.sg

Abstract

We propose a novel deep network structure called "Network In Network" (NIN) to enhance model discriminability for local patches within the receptive field. The conventional convolutional layer uses linear filters followed by a nonlinear activation function to scan the input. Instead, we build micro neural networks with more complex structures to abstract the data within the receptive field. We instantiate the micro neural network with a multilayer perceptron, which is a potent function approximator. The feature maps are obtained by sliding the micro networks over the input in a similar manner as CNN; they are then fed into the next layer. Deep NIN can be implemented by stacking mutiple of the above described structure. With enhanced local modeling via the micro network, we are able to utilize global average pooling over feature maps in the classification layer, which is easier to interpret and less prone to overfitting than traditional fully connected layers. We demonstrated the state-of-the-art classification performances with NIN on CIFAR-10 and CIFAR-100, and reasonable performances on SVHN and MNIST datasets.

1 Introduction

1x1 convolutional layer

The depth of the output of one convolutional layer is only defined by the number of parallel filters applied to the input.

	-5775	ConvNet C	onfiguration	1911 - 7	
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
+0 PEOVES	100 Tel 144-155 A		pool	M 0 0000	74 3-5-5
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
				1 1 1 1 1	conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	100	222 111	conv1-512	conv3-512	conv3-512
					conv3-512
	ga a la esta a Maria		pool	25	i
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
			Y		conv3-512
-			pool		-
			4096		
			4096		
			1000		
		soft	-max		

Problem of Too Many Feature Maps

The depth of the input or number of filters used in convolutional layers often increases with the depth of the network, resulting in an increase in the number of resulting feature maps.

A large number of feature maps in a convolutional neural network can cause a problem of computational demand.

Pooling layers are designed to downscale feature maps. Nevertheless, pooling layers do not change the number of filters in the model, the depth, or number of channels.


```
# example of a 1x1 filter for dimensionality reduction
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D
# create model
model = Sequential()
model.add(Conv2D(32, (5,5), padding="valid", activation="relu", input_shape=(28, 28, 192)))
# summarize model
model.summary()
```

Layer (type)	Output	Shape	Param #
conv2d_17 (Conv2D)	(None,	24, 24, 32	2) 153632

Total params: 153,632 Trainable params: 153,632 Non-trainable params: 0


```
# create model
model = Sequential()
model.add(Conv2D(16, (1,1), activation="relu", input_shape=(28, 28, 192)))
model.add(Conv2D(32, (5,5), padding="valid", activation="relu"))
# summarize model
model.summary()
```

Layer (type)	Output	Shar	ре		Param #
conv2d_14 (Conv2D)	(None,	28,	28,	16)	3088
conv2d_15 (Conv2D)	(None,	24,	24,	32)	12832

Total params: 15,920 Trainable params: 15,920 Non-trainable params: 0

Sep 2014

409.4842v1

GoogLeNet

Going deeper with convolutions

Christian Szegedy Wei Liu Yangqing Jia University of North Carolina, Chapel Hill Google Inc. Google Inc.

Pierre Sermanet Scott Reed **Dragomir Anguelov Dumitru Erhan** Google Inc. University of Michigan Google Inc. Google Inc.

Vincent Vanhoucke Andrew Rabinovich

> Google Inc. Google Inc.

Abstract

We propose a deep convolutional neural network architecture codenamed Inception, which was responsible for setting the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. This was achieved by a carefully crafted design that allows for increasing the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

32 filters, $1 \times 1 \times 192$

GoogLeNet incarnation of the Inception architecture

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
					Teduce		Teduce		proj		
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	$3\times3/2$	$56 \times 56 \times 64$	0								
convolution	$3\times3/1$	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100M
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	$1\times1\times1024$	0								
dropout (40%)		$1\times1\times1024$	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

The total loss used by the inception net during training.
total_loss = real_loss + 0.3 * aux_loss_0 + 0.3 * aux_loss_1

26 Feb 03530v2

MiniGoogLeNet

UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION

Chiyuan Zhang*

Massachusetts Institute of Technology chiyuan@mit.edu

Samy Bengio Google Brain bengio@google.com Moritz Hardt Google Brain mrtz@google.com

Benjamin Recht[†]

University of California, Berkeley brecht@berkeley.edu

Oriol Vinyals Google DeepMind vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a remarkably small difference between training and test performance. Conventional wisdom attributes small generalization error either to properties of the model family, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional approaches fail to explain why large neural networks generalize well in practice. Specifically, our experiments establish that state-of-the-art convolutional networks for image classification trained with stochastic gradient methods easily fit a random labeling of the training data. This phenomenon is qualitatively unaffected by explicit regularization, and occurs even if we replace the true images by completely unstructured random noise. We corroborate these experimental findings with a theoretical construction showing that simple depth two neural networks already have perfect finite sample expressivity as soon as the number of parameters exceeds the number of data points as it usually does in practice.

We interpret our experimental findings by comparison with traditional models.

Conv Module C,KxK filters. SxS strides Convolution C. KxK filters SxS strides **Batch Norm** Activation ReLU Inception (Small) 28x28x3 inputs

Inception Module

Inception Module

176 + 160 filters

176 + 160 filters

Mean Pooling

7x7 kernel (global)

Fully Connected

10-way outputs

Images

28x28x3 inputs

Conv Module

96.3x3 filters 1x1 strides

Inception Module 32 + 32 filters

Inception Module

32 + 48 filters

Downsample Module

80 filters

Inception Module

112 + 48 filters

Inception Module

96 + 64 filters

Inception Module

80 + 80 filters

Inception Module

48 + 96 filters

Downsample Module

96 filters

MiniGoogLeNet

MiniVGG

	precision	recall	f1-score	support		precision	recall	f1-score	support
airplane	0.91	0.92	0.92	1000	airplane	0.87	0.82	0.84	1000
automobile	0.95	0.97	0.96	1000	automobile	0.92	0.91	0.92	1000
bird	0.89	0.85	0.87	1000	bird	0.79	0.70	0.74	1000
cat	0.81	0.80	0.81	1000	cat	0.69	0.65	0.67	1000
deer	0.89	0.90	0.90	1000	deer	0.75	0.85	0.80	1000
dog	0.86	0.85	0.85	1000	dog	0.72	0.77	0.74	1000
frog	0.89	0.95	0.92	1000	frog	0.80	0.91	0.85	1000
horse	0.94	0.92	0.93	1000	horse	0.89	0.84	0.86	1000
ship	0.95	0.94	0.94	1000	ship	0.91	0.91	0.91	1000
truck	0.94	0.94	0.94	1000	truck	0.89	0.89	0.89	1000
accuracy			0.90	10000	accuracy			0.82	10000
macro avg	0.90	0.90	0.90	10000	macro avg	0.83	0.82	0.82	10000
weighted avg	0.90	0.90	0.90	10000	weighted avg	0.83	0.82	0.82	10000
			1.6M	Params.				2.1M	l Params.

()

- 800

- 600

- 400

- 200

MiniVGG

- 800

600

- 400

200

MiniGoogLeNet

The Tiny ImageNet Challenge

cs231n Stanford course on Convolutional Neural Networks

200 classes, each class includes 450 training images, 50 validation images, and 50 testing images 90k training images
10k validations
10k test

patch size/stride	output size	depth	#1x1	#3x3 reduce	#3x3	#5x5 reduce	#5x5	pool proj
5x5/1	64, 64, 64	1						
3x3/2	32, 32, 64	0						
3x3/1	32, 32, 192	2		64	192			
3x3/2	16, 16, 192	0						
	16, 16, 256	2	64	96	128	16	32	32
	16, 16, 480	2	128	128	192	32	96	64
3x3/2	8, 8, 480	0						
	8, 8, 512	2	192	96	208	16	48	64
	8, 8, 512	2	160	112	224	24	64	64
	8, 8, 512	2	128	128	256	24	64	64
	8, 8, 528	2	112	144	288	32	64	64
	8, 8, 832	2	256	160	320	32	128	128
3x3/2	4, 4, 832	0						
4x4/1	1, 1, 832	0						
	1, 1, 832	0						
	1, 1, 200	1						
	1, 1, 200	0					3.6M	l Params
	5x5/1 3x3/2 3x3/1 3x3/2 3x3/2	5x5/1 64, 64, 64 3x3/2 32, 32, 64 3x3/1 32, 32, 192 3x3/2 16, 16, 192 16, 16, 256 16, 16, 480 3x3/2 8, 8, 480 8, 8, 512 8, 8, 512 8, 8, 512 8, 8, 528 8, 8, 832 3x3/2 4x4/1 1, 1, 832 1, 1, 832 1, 1, 200	5x5/1 64, 64, 64 1 3x3/2 32, 32, 64 0 3x3/1 32, 32, 192 2 3x3/2 16, 16, 192 0 16, 16, 256 2 2 16, 16, 480 2 2 3x3/2 8, 8, 480 0 8, 8, 512 2 8, 8, 512 2 8, 8, 528 2 8, 8, 832 2 3x3/2 4, 4, 832 0 4x4/1 1, 1, 832 0 1, 1, 200 1	5x5/1 64, 64, 64 1 3x3/2 32, 32, 64 0 3x3/1 32, 32, 192 2 3x3/2 16, 16, 192 0 16, 16, 256 2 64 16, 16, 480 2 128 3x3/2 8, 8, 480 0 8, 8, 512 2 192 8, 8, 512 2 160 8, 8, 512 2 128 8, 8, 528 2 112 8, 8, 832 2 256 3x3/2 4, 4, 832 0 4x4/1 1, 1, 832 0 1, 1, 200 1	5x5/1 64, 64, 64 1 3x3/2 32, 32, 64 0 3x3/1 32, 32, 192 2 64 3x3/2 16, 16, 192 0 64 16, 16, 256 2 64 96 16, 16, 480 2 128 128 3x3/2 8, 8, 480 0 8, 8, 512 2 192 96 8, 8, 512 2 160 112 128 128 8, 8, 512 2 128 128 128 8, 8, 512 2 128 128 144 8, 8, 832 2 112 144 8, 8, 832 2 256 160 3x3/2 4, 4, 832 0 4x4/1 1, 1, 832 0 1, 1, 200 1	5x5/1 64, 64, 64 1 3x3/2 32, 32, 64 0 3x3/1 32, 32, 192 2 64 192 3x3/2 16, 16, 192 0 0 128 16, 16, 256 2 64 96 128 16, 16, 480 2 128 128 192 3x3/2 8, 8, 480 0 0 2 208 8, 8, 512 2 192 96 208 8, 8, 512 2 160 112 224 8, 8, 512 2 128 128 256 8, 8, 528 2 112 144 288 8, 8, 832 2 256 160 320 3x3/2 4, 4, 832 0 4x4/1 1, 1, 832 0 1, 1, 200 1	5x5/1 64, 64, 64 1 3x3/2 32, 32, 64 0 3x3/1 32, 32, 192 2 64 192 3x3/2 16, 16, 192 0 16, 16, 256 2 64 96 128 16 16, 16, 480 2 128 128 192 32 3x3/2 8, 8, 480 0 128 16 8, 8, 512 2 192 96 208 16 8, 8, 512 2 160 112 224 24 8, 8, 512 2 128 128 256 24 8, 8, 512 2 128 128 256 24 8, 8, 528 2 112 144 288 32 3x3/2 4, 4, 832 0 444/1 1, 1, 832 0 4x4/1 1, 1, 200 1 1 1 1 1 1	5x5/1 64, 64, 64 1 3x3/2 32, 32, 64 0 3x3/1 32, 32, 192 2 64 192 3x3/2 16, 16, 192 0 0 128 16 32 16, 16, 256 2 64 96 128 16 32 16, 16, 480 2 128 128 192 32 96 3x3/2 8, 8, 480 0

5a 5b

Training Loss and Accuracy [Epoch 40]

opt = SGD(1e-3,momentum=0.9)

[INFO] predicting on test data...

[INFO] rank-1: 30.23% [INFO] rank-5: 54.34% epoch_10.hdf5

epoch_15.hdf5

poch_20.hdf5

epoch_25.hdf5

epoch_30.hdf5

epoch_35.hdf5

epoch_40.hdf5

epoch_5.hdf5

DeepGoogLeNet

Extensions

Change the conv_module to use CONV => RELU => BN instead of the original CONV => BN => RELU ordering.

- 2. Attempt using **ELUs** instead of **ReLUs**.
- 3. Use Wandb.ai

Experiment #01

Experiment #02

Experiment #03

Learning Rate
1e - 02
1e - 03
1e - 04

Inception modules
4a-4e is removed
SGD

Epoch	Learning Rate
1 - 20	1e-3
21 - 30	1e-4
31 - 40	1e-5

Inception modules
4a-4e is removed
Adam

Epoch	Learning Rate
1 - 40	1e-3
41 - 60	1e-4
61 - 70	1e-5

Inception modules 4a-4e is enabled Adam

