Indukcja pozaskończona – wersja dla prowadzącego

Grzegorz Dłużewski

17 lipca 2020

Dzień 1 – Podobieństwa, przystawania i okrąg.

Pierwsze 15 minut

Przypominam cechy podobieństwa, przystawania, pokazuję, skąd się biorą.

- Zadanie 1. Czy cecha bok, bok, nie-ten-kat też jest cecha przystawania?
- **Zadanie 2.** Punkt P leży na przekątnej AC kwadratu ABCD. Punkty Q i R są rzutami prostokątnymi punktu P odpowiednio na proste CD i DA. Wykazać, że BP = RQ.

Pokazanie tw. o kącie środkowym i wyprowadzenie stąd dwóch warunków równoważnych na to, że cztery punkty leżą na jednym okregu.

Zadanie 1. Czworokąt ABCD ma prostopadłe przekątne, a ponadto $\angle BAC = 40^{\circ}$, $\angle ACD = 50^{\circ}$, $\angle ADB = 30^{\circ}$. Znaleźć miare kata $\angle ABC$.

Pół godziny pojedynków

Light mode:

- **Zadanie 1.** Dwa okręgi Γ_1 i Γ_2 przecinają się w punktach A i B. Prosta ℓ przechodząca przez punkt B przecina ponownie okręgi Γ_1 i Γ_2 w punktach C i D. Udowodnić, że niezależnie od wyboru prostej ℓ wszystkie tak powstałe trójkaty ACD sa podobne.
- **Zadanie 2.** Dany jest trójkąt ostrokątny ABC, przy czym $ACB=45^{\circ}$. Wysokości trójkąta ABC przecinają się w punkcie H. Wykazać, że CH=AB.
- **Zadanie 3.** Dwa okręgi Γ_1 i Γ_2 przecinają się w punktach A i B. Prosta ℓ_1 przechodząca przez punkt A przecina Γ_1 i Γ_2 odpowiednio w punktach C i D, z kolei prosta ℓ_2 przechodząca przez punkt B przecina Γ_1 i Γ_2 odpowiednio w punktach E i F. Udowodnić, że proste CE i DF są równoległe.

Dark mode:

- **Zadanie 1.** Dany jest trójkąt ABC oraz punkty D,E,F leżące odpowiednio na bokach BC,CA,AB tego trójkąta. Udowodnić, że okręgi opisane na trójkątach AEF,DBF,DEC przecinają się w jednym punkcie.
- **Zadanie 2.** Dany jest trójkąt ABC, na którego bokach (poza trójkątem) zbudowano kwadraty ABDE i ACFG. Udowodnić, że EC = BG.
- **Zadanie 3.** Dwa okręgi Γ_1 i Γ_2 przecinają się w punktach A i B. Prosta ℓ przechodząca przez punkt A przecina okręgi Γ_1 i Γ_2 odpowiednio w punktach C i D. Dla jakiego wyboru prostej ℓ długość odcinka CD jest największa?

Insane mode:

- **Zadanie 1.** Dany jest trójkąt prostokątny ABC o przeciwprostokątnej BC. Po jego zewnętrznej stronie zbudowano kwadrat BCDE o środku F. Udowodnić, że prosta AF jest dwusieczną kąta BAC.
- **Zadanie 2.** Na trójkącie ABC opisano okrąg. Punkty P,Q i R są symetryczne do środka tego okręgu odpowiednio względem prostych BC,CA i AB. Wykazać, że trójkąty ABC i PQR są przystające.
- **Zadanie 3.** Na bokach AC i BC trójkąta ABC, po jego zewnętrznej stronie, zbudowano kwadraty ACDE i BCFG. Pokazać, że środki odcinków AB, DF i środki tych kwadratów są wierzchołkami kwadratu.

Ostatnie 15 minut

Mając dane dwa trójkąty o tej samej podstawie i pewnych kątach naprzeciw, co musi być spełnione, aby miały ten sam promień okregu opisanego?

Zadanie 1. W równoległoboku ABCD punkt P spełnia $\angle APB + \angle CPD = 180^{\circ}$. Udowodnić, że $\angle PAB = \angle PCB$.

Dyskusja na temat różnych podejść, jak wykorzystać te 180°, obroty, itp. Następnie translacja zadania na to, co to zadanie mówi nam o promieniach okręgów opisanych.

Dzień 2. Kąt dopisany, motyw równoległoboku

Pierwsze 15 minut

Pokazanie twierdzenia o kącie dopisanym (zarówno po kątach, jak i przez "limiting argument" z czworokąta).

Zadanie 1. Z jakiego punktu obserwacji kolumna wydaje się największa? Udowodnić, że zachodzi wtedy $PA \cdot PB = PC^2$.

Wracając do tematu przystawania trójkątów

Zadanie 1. Czy cecha "środkowa – okalające kąty" jest cechą przystawania?

Pół godziny pojedynków

Light mode:

- **Zadanie 1.** Udowodnić, że trójkąt prostokątny wtedy i tylko wtedy, gdy środkowa jest równa połowie boku (przeciwprostokątnej).
- **Zadanie 2.** W trójkącie ABC narysowano okrąg Γ_1 styczny do prostej AB w punkcie A i przechodzący przez punkt C oraz okrąg Γ_2 styczny do prostej BC w punkcie B i przechodzący przez punkt A. Udowodnić, że punkt przecięcia P (różny od A) okręgów Γ_1, Γ_2 leży również na okręgu Γ_3 , który jest styczny do prostej CA w punkcie C i przechodzi przez punkt B.
- **Zadanie 3.** W sześciokącie *ABCDEF* każda para naprzeciwległych boków jest równoległa i równa. Udowodnić, że *AD*, *BE* i *CF* przecinają się w jednym punkcie.

Dark mode:

- **Zadanie 1.** Wewnątrz czworokąta ABCD znajduje się taki punkt P, że AP = BP, CP = DP, $\angle APB = \angle CPD = 90^{\circ}$. Wykaż, że trójkąty APD oraz BPC mają równe pola.
- **Zadanie 2.** Okrąg wpisany w trójkąt ABC jest styczny do boków BC, CA, AB odpowiednio w punktach D, E, F. Prosta równoległa do AB, przechodząca przez punkt C, przecina proste FE i FD odpowiednio w punktach K i L. Udowodnij, że na czworokacie KEDL można opisać okrąg.
- **Zadanie 3.** Czworokąt T jest wpisany w okrąg Γ_1 oraz opisany na okręgu Γ_2 , przy czym K, L, M, N są punktami styczności T z Γ_2 . Wykaż, że $KM \perp LN$.
- Zadanie 4. Dany jest trójkąt ABC. Wykaż, że z jego środkowych można zbudować trójkąt.

Ostanie 15 minut

Zadanie 1. Okrąg Γ wpisany w trójkąt ABC jest styczny do boków BC, CA, AB odpowiednio w punktach D, E, F. Wykaż, że środki P, Q, R okręgów wpisanych w trójkąt AEF, BFD, CDE leżą na okręgu Γ .

Dygresja o tym, że DP, EQ, FR są współpękowe, jako zaliczka na kolejny dzień.

Dzień 3. Podstawowe współpękowości, symetrie

Pierwsze 15 minut

Pokazanie, czemu wysokości, dwusieczne i środkowe w trójkącie przecinają się w jednym punkcie.

- **Zadanie 1.** Punkty K i L są środkami odpowiednio boków CD i BC równoległoboku ACBD. Udowodnij, że odcinki BK i DL przecinają się na przekątnej AC.
- **Zadanie 2.** Sześciokąt ABCDEF jest wpisany w okrąg i AB = BC, CD = DE, EF = FA. Wykaż, że główne przekątne tego sześciokąta przecinają się w jednym punkcie.

I bonusowo, jako rozruch do myślenia kreatywnego

Zadanie 1. Pewien drwal żyje w punkcie A i każdego ranka musi się udać do punktu B, który leży po drugiej stronie rzeki. Rzeka zaś jest wyznaczona przez dwie równoległe proste, a jej nurt jest na tyle silny, że drwal może ją przepływać jedynie w kierunku prostopadłym do nurtu. Jak powinien pójść, żeby droga do pracy była jak najkrótsza?

Pół godziny pojedynków

Light mode

- **Zadanie 1.** W równoległoboku ABCD niech K, L będą odpowiednio środkami boków CD i AB. Udowodnić, że proste BK i DL dziela przekatna AC na trzy równe cześci.
- **Zadanie 2.** Mamy rzekę jak w poprzednim zadaniu i dwa punkty A, B po tej samej stronie rzeki. Wyznacz taki punkt P na rzece, dla którego suma AP + BP przyjmuje najmniejszą wartość.
- **Zadanie 3.** Miara każdego kąta sześciokąta ABCDEF wynosi 120°. Udowodnij, że symetralne odcinków AB, CD, EF przecinają się w jednym punkcie.

Dark mode

- **Zadanie 1.** Dany jest czworokąt wypukły ABCD, w którym AD + BC = CD. Dwusieczne kątów BCD i CDA przecinają się w punkcie S. Udowodnij, że AS = BS.
- **Zadanie 2.** Dane są dwa okręgi Γ_1 i Γ_2 , jak również punkt P. Znaleźć (o ile to możliwe) punkty A i B po jednym na każdym z okręgów w taki sposób, by P był środkiem odcinka AB.
- **Zadanie 3.** W trójkącie ABC wysokości AD, BE i CF przecinają się w punkcie H. Udowodnić, że H jest środkiem okręgu wpisanego w trójkąt DEF.

Ostatnie 15 minut

Powrót do zadania z rzeką i wprowadzenie metryki poprzez uznanie, że poruszanie się rzeką (w żadną stronę) nic nie kosztuje. Udowodnienie, że granica nieużywania rzeki to parabola.

Dzień 4. pola, łuki

Wyjaśnienie, jak można "pałować" zadania po łukach.

- Zadanie 1. Zadanie 2. z wstępu dnia 3. Pokazanie, że te proste są wysokościami innego trójkąta.
- **Zadanie 2.** Shooting lemma, tzn. na okręgu dane są punkt A, B, C, przy czym A jest środkiem łuku BC. Wtedy przecięcia dowolnych dwóch prostych przechodzących przez A z prostą BC i okręgiem dają cztery punkty na jednym okręgu.

Pokazanie, że pola trójkatów się nie zmieniają, jeśli ruszamy odpowiednio wierzchołkiem/podstawą.

- **Zadanie 1.** Dany jest pięciokąt ABCDE, w którym przekątna AD jest równoległa do boku BC, a przekątna CE jest równoległa do boku AB. Wykazać, że pola trójkątów ABE i BCD są równe.
- **Zadanie 2.** Dany jest trapez ABCD (o podstawach AB i CD), w którym przekątne przecinają się w punkcie P. Udowodnić, że pola trójkatów APD i BPC są równe.

Pół godziny pojedynków

Light mode:

- **Zadanie 1.** Dany jest czworokąt ABCD wpisany w okrąg Γ . Niech E, F, G, H oznaczają odpowiednio środki (krótszych) łuków AB, BC, CD, DA. Udowodnić, że proste EG i FH są prostopadłe.
- **Zadanie 2.** Punkty M i N odpowiednio środkami boków AB i CD czworokąta wypukłego ABCD. Proste AN i DM oraz BN i CM przecinają się odpowiednio w punktach P i Q. Udowodnić, że [APD] + [BQC] = [MPNQ].
- **Zadanie 3.** Czworokąt ABCD jest wpisany w okrąg. Punkty K_1, K_2 leżą wewnątrz boku AB, punkty L_1, L_2 leżą wewnątrz boku BC, punkty M_1, M_2 leżą wewnątrz boku CD, oraz punkty N_1, N_2 leżą wewnątrz boku DA, przy czym punkty $K_1, K_2, L_1, L_2, M_1, M_2, N_1, N_2$ są parami różne i leżą w tej kolejności na jednym okręgu ω . Niech a, b, c, d będą odpowiednio długościami łuków $N_2K_1, K_2L_1, L_2M_1, M_2N_1$ okręgu ω , nie zawierających punktów K_2, L_2, M_2, N_2 odpowiednio. Wykazać, że

$$a+c=b+d$$
.

Dark mode:

- **Zadanie 1.** Dany jest czworokąt ABCD wpisany w okrąg. Proste AB i CD przecinają się w punkcie P, z kolei proste BC i DA przecinają się punkcie Q. Udowodnić, że dwusieczne kątów APC i AQC są prostopadłe.
- **Zadanie 2.** Dany jest czworokąt wypukły ABCD. Punkty K,L leżą na boku AB, przy czym AK = KL = LB, a punkty M,N leżą na boku CD, przy czym CM = MN = ND. Wykazać, że pole czworokąta KLMN jest równe $\frac{1}{3}$ pola czworokąta ABCD.
- **Zadanie 3.** Lemat o trójliściu, tzn. w trójkącie ABC, niech I oznacza środek okręgu wpisanego, zaś S środek łuku AB (niezawierającego C) okręgu opisanego na ABC. Udowodnić, że SA = SB = SI.

Ostatnie 15 minut

Jak myśleć o zadaniach pokazane na przykładzie 3 zadań z kwadratem w tle.

- **Zadanie 1.** Dany jest kwadrat ABCD oraz punkt E na łuku AB okręgu nań opisanym. $M = ED \cap AB$, $N = EC \cap BD$. Udowodnić, że $MN \perp BD$.
- **Zadanie 2.** Pierwsze zdanie jak wyżej. $M = AB \cap ED$, $N = BE \cap AD$, $P = MN \cap BC$. Udowodnić, że N, E, P, C leżą na jednym okręgu.
- **Zadanie 3.** Dany jest kwadrat ABCD oraz punkty E i F na bokach BC i CD takie, że $\angle EAF = 45^{\circ}$. $P, Q = AE, AF \cap BD$. Udowodnić, że P, Q, F, C, E leżą na jednym okręgu.