

2 Concept Learning

SS 19 – Multimedia II:

Machine Learning and Computer Vision

Multimedia Computing & Computer Vision, Universität Augsburg Rainer.Lienhart@informatik.uni-augsburg.de www.multimedia-computing.{de,org}

Outline

Concept learning = acquire the definition of a general category given a sample of positive and negative training examples of the category

- Learning from examples
- General-to-specific ordering over hypotheses
- Version spaces and candidate elimination algorithm
- Picking new examples
- The need for inductive bias

Note: simple approach assuming no noise, illustrates key concepts

What Do You Know?

- Induction ←→ Deduction: What is the difference?
 - Examples: Law of Free Fall in Newtonian Mechanics

$$d = \frac{1}{2} * g * t^{2}$$

 $v = g * t$ $g \approx 9.81 [m/s^{2}]$
 $a = g$

- Our Approach to Learning:
 - Search a very large hypotheses space to determine the hypothesis that best fits the observed data <u>and</u> any prior knowledge held by the learner

Training Examples for EnjoySport

Sky	Temp	Humid	Wind	Water	Forecast	EnjoySpt
Sunny	Warm	Normal	Strong	Warm	Same	Yes
Sunny	Warm	High	Strong	Warm	Same	Yes
Rainy	Cold	High	Strong	Warm	Change	No
Sunny	Warm	High	Strong	Cool	Change	Yes

Goal: What is the general concept?

Attribute:

Sunny,	Warm,	Normal,	Strong,	Warm,	Same,
Rainy,	Cold	High	Light	Cool	Change
Cloudy					

Prototypical Concept Learning Task

Given:

- Instances X: Possible days, each described by the attributes
 Sky, AirTemp, Humidity, Wind, Water, Forecast
 - Represented as 6-tuple such as $x_1 = \langle Sunny, Warm, Normal, Strong, Warm, Same \rangle$
- Target function c(x)
- Learned function h(x): EnjoySport: $X \rightarrow \{0,1\}$
- Hypotheses space H: what is our set of hypotheses $h \in H$?
- Training examples D: Positive and negative examples of the target function

$$\{\langle x_1, c(x_1) \rangle, \dots, \langle x_m, c(x_m) \rangle\}$$

In our case: $\{\langle x_1, 1 \rangle, \langle x_2, 1 \rangle, \langle x_3, 0 \rangle, \langle x_4, 1 \rangle\}$

Representing Hypotheses

Many possible representations

Here, *h* is conjunction of constraints on attributes

Each constraint can be

- a specific value (e.g., "Water = Warm")
- don't care (e.g., "Water = ?")
- no value allowed (e.g., "Water = Ø")

For example,

Prototypical Concept Learning Task

Given:

- Instances X: Possible days, each described by the attributes
 Sky, AirTemp, Humidity, Wind, Water, Forecast
- Target function c(x)
- Learned function h(x): EnjoySport: $X \rightarrow \{0,1\}$
- Hypotheses H: Conjunctions of literals.
 - E.g. < ?, Cold, High, ?, ?, ? >
- Training examples D: Positive and negative examples of the target function

$$\{\langle x_1, c(x_1) \rangle, \dots, \langle x_m, c(x_m) \rangle\}$$

Determine:

A hypothesis h in H such that h(x) = c(x) for all x in D.

Inductive Learning Hypothesis

The inductive learning hypothesis:

Any hypothesis found to approximate the target function well over a sufficiently large set of training examples will also approximate the target function well over other unobserved examples.

Instance, Hypotheses, and More-General-Than

$$x_1$$
=
 x_2 =

96 distinct instances

5120 syntactically distinct hypotheses 973 semantically distinct hypotheses

Find-S Algorithm

- 1. Initialize h to the most specific hypothesis in H
- 2. For each positive training instance *x*

For each attribute constraint a_i in h

If the constraint a_i in h is satisfied by x

Then do nothing

Else

Then replace a_i in h by the next more general constraint that is satisfied by x

3. Output hypothesis *h*

Hypothesis Space Search by Find-S

Implicit assumption: Target function c(x) is in H

 $x_1 = \langle Sunny \ Warm \ Normal \ Strong \ Warm \ Same \rangle, +$ $x_2 = \langle Sunny \ Warm \ High \ Strong \ Warm \ Same \rangle, +$ $x_3 = \langle Rainy \ Cold \ High \ Strong \ Warm \ Change \rangle, x_4 = \langle Sunny \ Warm \ High \ Strong \ Cool \ Change \rangle, +$

Complaints about Find-S

- Can't tell whether it has learned the concept
- Can't tell when training data is inconsistent
- Picks a maximally specific h (why?)
- Depending on H, there might be several!
- Does not use "negative" training examples!

Consistency

 A hypothesis h is consistent with a set of training examples D of target concept c if and only if h(x)=c(x) for each training example <x, c(x)> in D.

Consistent(h, D)
$$\equiv (\forall \langle x, c(x) \rangle \in D) : h(x) = c(x)$$

Version Space

 The version space VS_{H,D} with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H \mid Consistent(h, D)\}$$

List-Then-Eliminate Algorithm

- VersionSpace ← a list containing every hypothesis in H
- 2. For each training example, $\langle x, c(x) \rangle$, remove from *VersionSpace* any hypothesis *h* for which $h(x) \neq c(x)$
- 3. Output the list of hypotheses in VersionSpace

Representing Version Spaces

 The general boundary G of version space VS_{H,D} is the set of its maximally general members

$$G = \left\{ g \in H \mid Consistent(g, D) \land \left(\neg \exists g' \in H \mid \left(g' >_{g} g \right) \land Consistent(g', D) \right) \right\}$$

 The specific boundary S of version space VS_{H,D} is the set of its maximally specific members

$$S = \left\{ s \in H \mid Consistent(s, D) \land \left(\neg \exists s' \in H \mid \left(s >_{g} s' \right) \land Consistent(s', D) \right) \right\}$$

Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H \mid (\exists s \in S)(\exists g \in G)(g \ge_g h \ge_g s) \}$$

where $x \ge_g y$ means x is more general or equally general than y.

Candidate Elimination Algorithm

G \leftarrow maximally general hypotheses in H S \leftarrow maximally specific hypotheses in H For each training example d, do

- If d is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of *G* is more general than *h*
 - Remove from S any hypothesis that is more general than another hypothesis in S

Candidate Elimination Algorithm

- If d is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - Remove g from G
 - Add to G all minimal specializations h of g such that
 - 1. h is consistent with d, and
 - 2. some member of S is more specific than h
 - Remove from G any hypothesis that is less general than another hypothesis in G

Example Trace

Example Version Space

Remarks

- VS learned by Candidate-Elimination algorithm will converge towards hypothesis that correctly describes the target concept, provided
 - 1. No errors in training examples
 - 2. Target concept c is in H

The target concept is exactly learned when *S* and *G* boundary sets converge to a single & identical hypothesis.

What Next Training Example?

<Sunny Warm Normal Light Warm Same>

How should these be classified?


```
<Sunny Warm Normal Strong Cool Change>
<Rainy Cool Normal Light Warm Same>
<Sunny Warm Normal Light Warm Same>
```


What justifies this?

Inductive leap:

- $+ \langle Sunny Warm Normal Strong Cool Change \rangle$
 - $+ \langle Sunny Warm Normal Light Warm Same \rangle$

 $S: \langle Sunny \ Warm \ Normal \ ? \ ? \rangle$

Why believe we can classify the unseen ?

<Sunny Warm Normal Strong Warm Same>

An Unbiased Learner

- Idea: Choose H that expresses every teachable concept (i.e., H is the power set of X)
- Let H' be the set of disjunctions, conjunctions, negations over previous H. E.g.,

```
\langle Sunny \ Warm \ Normal \ ? \ ? \ ? \ \lor \neg \langle ? \ ? \ ? \ ? \ Change \rangle
```

- What are S, G in the candidate-elimination algorithm in this case?
 - -S = disjunction (OR) of positive examples
 - G = conjunction (AND) of negations (NOT) of negative examples

Fundamental Property

Fundamental property of inductive inference:

A learner that makes no a priori assumptions regarding the identity of the target concept has no rational basis for classifying any unseen instance.

Inductive Bias

Consider

- concept learning algorithm L
- instances X, target concept c
- training examples $D_c = \{\langle x, c(x) \rangle\}$
- let $L(x_i, D_c)$ denote the classification assigned to the instance x_i by L after training on data D_c .

Definition:

 The *inductive bias* of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

where $A \vdash B$ means A logically entails B

Inductive and Equivalent Deductive Systems

Three Learners with Different Biases

- 1. Rote learner. Store examples, Classify x iff it matches previously observed example.
 - no inductive bias
- 2. Version space Candidate-Elimination algorithm
 - → target concept can be represented in its hypothesis space
- 3. Find-S
 - → target concept can be represented it its hypothesis space + all instances are negative instances unless the opposite is entailed by the training data

Summary Points

- 1. Concept learning as search through H
- 2. General-to-specific ordering over *H*
- 3. Version space Candidate-Elimination algorithm
- 4. S and G boundaries characterize learner's uncertainty
- 5. Learner can generate useful queries
- 6. Inductive leaps possible only if learner is biased
- 7. Inductive learners can be modeled by equivalent deductive systems