Analyse de performance et optimisation de code AYOUB Pierre – BONNAFOUS Camille – FLAMANT Océane 16 mars 2019

INSTITUT DES SCIENCES ET TECHNIQUES DES YVELINES

Résumé

La simulation numérique est un procédé informatique visant à modéliser un phénomène par ordinateur, s'agissant le plus souvent d'un phénomène physique. Cette modélisation prend forme par des systèmes d'équations décrivant l'état du système physique représenté à chaque instant. De nombreux domaines scientifiques convergent vers la simulation informatique, tel que certaines branches de la physique, de l'analyse et de l'optimisation mathématique, ou encore le calcul haute performance en informatique. Enfin, la simulation trouve naturellement de nombreuses applications concernant des sujets variés, tel que la simulation du climat et des évènements météorologiques, la simulation d'essais nucléaires, de l'effet d'un médicament sur un corps, ou encore des astres et de l'univers. Ce rapport s'articulera donc autour de l'analyse et de l'optimisation d'un code de calcul, coeur des simulations numériques présentés ci-dessus.

Table des matières

1	Introduction	4
2	Analyse du code	5
3	Protocole expérimental	5
	3.1 Théorie	5
	3.2 Pratique	5
4	Optimisations et mesures	6
	4.1 Phase 1	6
	4.2 Phase 2	6
5	Conclusion	6

1 Introduction

Le projet que nous vous présentons aujourd'hui consiste à analyser puis, grâce à nos mesures, optimiser un code de calcul, appelé kernel.

TODO

Le déroulement du projet s'est effectué en plusieurs étapes distinctes :

- Analyse du code Cette phase consiste à analyser le programme d'un point de vue d'architecture informatique. Il convient d'étudier les choix mis en œuvres afin d'implémenter le ou les calculs nécessaires.
- Protocole expérimental Une fois l'analyse effectuée, nous pouvons en déduire le moyen le plus adapté afin de mesurer les performances de notre implémentation. Nous allons donc mettre en avant les critères théoriques à atteindre dans nos mesures, puis nous exposerons la manière dont nous avons mis ceci en pratique.
- Optimisations et mesures Grâce au protocole mis en place, nous pouvons quantifier la performance du programme. De ce fait, nous serons en mesure d'expérimenter différentes techniques d'optimisation sur le programme et d'en calculer l'accélération.

2 Analyse du code

3 Protocole expérimental

La mise en place d'un protocole expérimental de mesure est une étape nécessaire et cruciale dans tout optimisation de code. D'une part, le but de ce protocole est de mettre en lumière les points chauds du programme, c'est-à-dire les parties du code qui ralentissent considérablement l'exécution de la simulation. Ces points chauds seront les cibles de nos optimisations. D'autre part, après chaque tentative d'optimisation, le protocole doit nous permettre de mesurer l'impact de cette dernière, qu'il soit positif ou négatif, et enfin de le quantifier.

TODO

3.1 Théorie

Lors de nos expériences, il ne faut pas oublier que le hasard ou l'aléa des mesures peuvent biaiser un résultat. Afin d'éviter cela, il faut donc utiliser une valeur moyenne ou une valeur médiane.

TODO

3.2 Pratique

TODO

- 4 Optimisations et mesures
- 4.1 Phase 1
- 4.2 Phase 2
- 5 Conclusion

TODO

Acronymes