

Pianificazione mediante programmazione dinamica

Outline

- Introduzione
- Policy Evaluation
- Policy Iteration
- Value Iteration
- Estensioni della Programmazione Dinamica

Cos'è la Programmazione Dinamica

- Introdotta nel 1953 da Richard Bellman
- Dinamica → problema con componente sequenziale o temporale
- Programmare → ottimizzare un «programma», cioè una policy
- Un metodo per risolvere problemi complessi suddividendoli in sottoproblemi (in modo ricorsivo)
 - Risolvere i sottoproblemi
 - Combinare le soluzioni dei sottoproblemi
- Non è divide et impera
 - Si differenzia per la decomposizione con overlap

Requisiti della Programmazione Dinamica

- La programmazione dinamica (DP) è un metodo generale per la risoluzione di problemi caratterizzati da due proprietà:
 - Sottostruttura ottimale
 - Si applica il principio di ottimalità
 - La soluzione ottima può essere suddivisa in sottoproblemi
 - Overlapping dei sottoproblemi
 - I sottoproblemi ricorrono più volte
 - Le soluzioni possono essere memorizzate nella cache e riutilizzate
- I processi decisionali di Markov soddisfano entrambe le proprietà
 - La Bellman Equation consente una suddivisione ricorsiva
 - La value function memorizza e riutilizza le soluzioni

Pianificazione tramite Programmazione Dinamica

- La programmazione dinamica assume la piena conoscenza del MDP
- Viene utilizzata per la pianificazione in un MDP
 - Un modello dell'ambiente è noto
 - L'agente migliora la sua policy
- Per le predizioni:
 - ▶ Input: MDP <*S*, *A*, *P*, *R*, γ > ed una policy π
 - Output: value function v_{π}
- Per il controllo:
 - Input: MDP <S, A, P, R, γ>
 - Output: optimal value function v_* e optimal policy π_*

Altre applicazioni della Programmazione Dinamica

- La programmazione dinamica viene utilizzata per risolvere molti problemi:
 - Algoritmi di pianificazione
 - Algoritmi su stringhe (ad esempio, allineamento di sequenze)
 - Algoritmi su grafi (ad esempio, calcolo del percorso più breve)
 - Modelli basati su grafi (ad esempio, algoritmo di Viterbi)
 - Bioinformatica (ad esempio, modelli reticolari)

Policy Evaluation

Iterative Policy Evaluation

- \blacktriangleright Problema: valutare una policy π
- Soluzione: applicazione iterativa del backup della Bellman Expectation

$$v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_{\pi}$$

- Utilizzando backup sincroni,
 - ▶ Ad ogni iterazione k + 1
 - ▶ Per tutti gli stati s ∈ S
 - Aggiornare $V_{k+1}(s)$ da $V_k(s')$
 - dove s' è uno stato successore di s

Iterative Policy Evaluation (2)

Iterative Policy Evaluation

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s) arbitrarily, for $s \in \mathcal{S}$, and V(terminal) to 0 Loop:

$$\begin{array}{l} \Delta \leftarrow 0 \\ \text{Loop for each } s \in \mathbb{S} \colon \\ v \leftarrow V(s) \\ V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ \text{until } \Delta < \theta \end{array}$$

Valutazione di una Policy casuale nell'esempio Gridworld

 $R_t = -1$ on all transitions

- MDP episodica non scontata $(\gamma = 1)$
- Stati non terminali 1, ..., 14
- Uno stato terminale (mostrato due volte come cella ombreggiata)
- Le azioni che portano fuori dalla griglia lasciano lo stato invariato
- ▶ La ricompensa è -1 fino a quando non viene raggiunto lo stato terminale
- L'agente segue una policy casuale uniforme

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation nell'esempio Gridworld

Greedy Policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

Iterative Policy Evaluation nell'esempio Gridworld (2)

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Policy Iteration

Come migliorare una Policy

- \blacktriangleright Data una policy π
 - Valutare la policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

• Migliorare la policy agendo in maniera greedy rispetto a v_{π}

$$\pi' = \mathsf{greedy}(v_\pi)$$

- Nell'esempio Gridworld la policy migliorata era ottimale, $\pi' = \pi^*$
- In generale, sono necessarie diverse iterazioni di miglioramento / valutazione
- \blacktriangleright Tuttavia, questo processo di Policy Iteration converge sempre a π_*

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

Policy Iteration

Valutazione della Policy Stima di v_{π} Iterative Policy Evaluation

Miglioramento della Policy Generazione di $\pi' \ge \pi$ Greedy Policy Improvement

Policy Improvement

- Consideriamo una policy deterministica $a = \pi(s)$
- Possiamo migliorare la policy agendo in modo greedy

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} q_{\pi}(s, a)$$

Questo migliora il valore di qualsiasi stato s rispetto ad uno step,

$$q_{\pi}(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_{\pi}(s,a) \geq q_{\pi}(s,\pi(s)) = v_{\pi}(s)$$

▶ Pertanto, migliora la value function, $v_{\pi'}(s) \ge v_{\pi}(s)$

```
v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))
= \mathbb{E}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t = \pi'(s)]
= \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]
\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_t = s]
= \mathbb{E}_{\pi'}[R_{t+1} + \gamma \mathbb{E}[R_{t+2} + \gamma v_{\pi}(S_{t+2}) | S_{t+1}, A_{t+1} = \pi'(S_{t+1})] \mid S_t = s]
= \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2}) \mid S_t = s]
\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 v_{\pi}(S_{t+3}) \mid S_t = s]
\vdots
\leq \mathbb{E}_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \cdots \mid S_t = s]
= v_{\pi'}(s).
```

Policy Improvement (2)

Se i miglioramenti terminano,

$$q_{\pi}(s,\pi'(s))=\max_{a\in\mathcal{A}}q_{\pi}(s,a)=q_{\pi}(s,\pi(s))=v_{\pi}(s)$$

Allora la Bellman Optimality Equation è stata soddisfatta

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- ▶ Pertanto, $v_{\pi}(s) = v_*(s)$ per tutti gli $s \in S$
- Quindi π è una policy ottimale

Policy Iteration

$$\pi_0 \xrightarrow{\mathrm{E}} v_{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} v_{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_* \xrightarrow{\mathrm{E}} v_*$$

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$; $V(terminal) \doteq 0$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Esempio: Autonoleggio

- Stati: Due sedi, massimo 20 auto in ciascuna sede
- Ricompensa: 10\$ per ogni auto noleggiata (deve essere disponibile)
- Azioni: Spostare fino a 5 auto da una sede all'altra durante la notte (costo 2\$ per ogni auto)
- Transizioni: Auto restituite e richieste in modo casuale
 - Distribuzione di Poisson, n restituzioni/richieste con probabilità $\sim \frac{\lambda^n}{n!} e^{-\lambda}$
 - Prima sede: media delle richieste = 3, media delle restituzioni = 3
 - Seconda sede: media delle richieste = 4, media delle restituzioni = 2

Policy Iteration

Modified Policy Iteration

- La policy evaluation deve convergere verso $v_{\pi *}$?
 - Dobbiamo introdurre una condizione di arresto?
 - Ad esempio, ε-convergence della value function
 - Oppure dobbiamo semplicemente fermarci dopo k iterazioni della policy evaluation?
 - Ad esempio, nell'esempio gridworld k = 3 è stato sufficiente per ottenere una policy ottimale
- Perché non aggiornare la policy ad ogni iterazione? cioè fermarsi dopo k = 1
 - Ciò corrisponde alla value iteration (mostrata di seguito)

Policy Iteration Generalizzata

Valutazione della Policy Stima di v_{π} Qualsiasi policy evaluation

Miglioramento della Policy Generazione di $\pi' \ge \pi$

Qualsiasi algoritmo di policy improvement

Value Iteration

Principio di Ottimalità

- Ogni policy ottimale può essere suddivisa in due componenti:
 - lacktriangle Una prima azione ottimale A_*
 - \blacktriangleright Seguita da una policy ottimale dallo stato successore s'

Teorema (Principio di Ottimalità)

- Una policy $\pi(a|s)$ raggiunge il valore ottimale dallo stato s (cioè $v_{\pi}(s) = v_{*}(s)$) se e solo se per ogni stato s' raggiungibile da s
 - \triangleright π raggiunge il valore ottimale dallo stato s', $v_{\pi}(s') = v_*(s')$

Deterministic Value Iteration

- \blacktriangleright Se si conosce la soluzione dei sottoproblemi $v_*(s')$
- Allora la soluzione v_{*}(s) può essere identificata con un lookahead di un solo passo

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_*(s')$$

- L'idea della value iteration consiste nell'applicare questi aggiornamenti iterativamente
- Intuizione: iniziare con le ricompense finali e lavorare all'indietro
 - Funziona anche con MDP stocastici

Esempio: Shortest Path

Problem

 V_1

 V_2

V

0	-1	-2	-3
-1	-2	ဒု	အု
-2	-3	-3	-3
-3	-3	-3	-3

 V_4

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-4
-3	-4	-4	-4

 V_5

0	-1	-2	-3
-1	-2	-3	-4
-2	-3	-4	-5
-3	-4	-5	-5

 V_6

0	۲	-2	3
1	-2	ဒု	-4
-2	-3	-4	-5
-3	-4	-5	-6

 V_7

Value Iteration

- ightharpoonup Problema: trovare la policy ottimale π
- Soluzione: applicazione iterativa del backup della Bellman Optimality

$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_*$$

- Utilizzando backup sincroni,
 - Ad ogni iterazione k + 1
 - ▶ Per tutti gli stati s ∈ S
 - Aggiornare V_{k+1} da $V_k(s')$
- ▶ A differenza della policy iteration, non c'è una policy esplicita
- Le intermediate value function potrebbero non corrispondere a nessuna policy

Value Iteration (2)

$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s') \right)$$

$$v_{k+1} = \max_{a \in \mathcal{A}} (\mathbf{R}^a + \gamma \mathbf{P}^a v_k)$$

Value Iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
 \begin{array}{c|c} & \Delta \leftarrow 0 \\ & \text{Loop for each } s \in \mathbb{S} \text{:} \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big] \\ & \Delta \leftarrow \max(\Delta,|v-V(s)|) \\ & \text{until } \Delta < \theta \end{array}
```

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

Esempio Programmazione Dinamica

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Algoritmi di programmazione dinamica sincrona

Problema	Bellman Equation	Algoritmo
Predizione	Bellman Expectation Equation	Iterative Policy Evaluation
Controllo	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Controllo	Bellman Optimality Equation	Value Iteration

- Gli algoritmi sono basati sulla state-value function $v_{\pi}(s)$ o $v_{*}(s)$
 - lacktriangle Complessità $O(mn^2)$ per iterazione, per m azioni ed n stati
- ▶ Potrebbero essere applicati anche alla action-value function $q_{\pi}(s, a) = q_*(s, a)$
 - Complessità $O(m^2n^2)$ per iterazione

Estensioni

Programmazione dinamica asincrona

- I metodi di DP descritti finora utilizzano backup sincroni
 - Tutti gli stati sono sottoposti a backup parallelamente
 - Se l'insieme di stati è molto ampio, anche un singolo sweep può essere proibitivo. Ad esempio nel backgammon 10²⁰ stati.
- La DP asincrona esegue il backup degli stati singolarmente, in qualsiasi ordine
 - Per ogni stato selezionato, bisogna applicare un backup appropriato
 - Può ridurre significativamente l'elaborazione
 - Convergenza garantita se tutti gli stati continuano ad essere selezionati

Programmazione dinamica asincrona

- Tre semplici approcci:
 - Programmazione dinamica in-place
 - Prioritised sweeping
 - Programmazione dinamica real-time

Programmazione dinamica in-place

 La value iteration sincrona memorizza due copie della value function

Per ogni s in S

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_{old}(s')$$
$$v_{old}(s) \leftarrow v_{new}(s)$$

 La value iteration in-place memorizza solo una copia della value function

Per ogni s in S

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Prioritised Sweeping

 Utilizza il Bellman error per guidare la selezione degli stati, ad esempio

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v(s') \right) - v(s) \right|$$

- Esegue il backup dello stato con il Bellman error residuo più grande
- Aggiorna il Bellman error degli stati interessati dopo ogni backup
- Richiede la conoscenza delle dinamiche inverse (stati predecessori)
- Può essere implementato in modo efficiente tramite l'utilizzo di una coda di priorità

Programmazione dinamica real-time

- Idea: considerare solo gli stati rilevanti per l'agente
- Utilizza l'esperienza dell'agente per guidare la selezione degli stati
 - ▶ Dopo ogni time-step S_t , A_t , R_{t+1}
 - Esegue il backup dello stato S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

Backup Full-Width

- La DP utilizza backup full-width
- Per ogni backup (sincrono o asincrono)
 - Viene considerato ogni stato e azione successiva
 - Si utilizza la conoscenza delle transizioni del MDP e della funzione di ricompensa
- La DP è efficace per problemi di medie dimensioni (milioni di stati)
- Per problemi di grandi dimensioni la DP è soggetta alla curse of dimensionality
 - Il numero di stati n = |S| cresce esponenzialmente con il numero di variabili di stato
- Anche un solo backup può essere troppo costoso

Backup Sample

- Utilizzo di ricompense e transizioni campionarie <S, A, R, S'>
- Al posto della funzione di ricompensa R e delle transizioni dinamiche P
- Vantaggi:
 - Model-free: non è richiesta alcuna conoscenza prelimina del MDP
 - Evita la curse of dimensionality attraverso il campionamento
 - ▶ Il costo del backup è costante, indipendente da n = |S|

Programmazione dinamica approssimata

- Approssima la value function
 - Utilizza un approssimatore di funzioni $\hat{v}(s, \mathbf{w})$
 - Applica la programmazione dinamica a $\hat{\mathbf{v}}(\cdot, \mathbf{w})$
- Ad esempio, la Fitted Value Iteration si ripete ad ogni iterazione k,
 - ▶ Stati sample $\tilde{S} \subseteq S$
 - Per ogni stato $s \in \tilde{S}$, viene stimato il valore target utilizzando la Bellman Optimality Equation

$$\tilde{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w_k}) \right)$$

Addestra la value function successiva $\hat{v}(\cdot; w_{k+1})$ usando i target $\{(s, \hat{v}_k(s))\}$