Physical properties of ice

The physical properties of ice are complicated functions of temperature, grain size and porosity.

We will assume the following characteristic magnitudes for these properties in a convecting ice shell:

```
phic = 1e-2; % char. background porosity [1]
dc = 1e-3; % char. grain size in [m]
Tm = 273; % melting temperature of ice [K]
```

Other general physical parameters that will be assumed constant are

```
muf = 1e-3; % viscosity of water [Pa s]
R = 8.314; % gas constant [J/(mol K)]
```

Permeability of ice

Permeability relationship of ice used here comes from van Bargen and Waff (1986) JGR, **91**, B9, 9261-9276 and is given in equation (17) on page 9273 as

$$k = \frac{d^2\phi^2}{1600}$$

for d=1 mm we get a $k_0=\frac{d^2}{1600}=6.25\cdot 10^{-10}~\text{m}^2$, which is close to the value of $k_0=10^{-9}~\text{m}^2$ chosen by Kalasouva et al. (2014) based on measured ice permeabilities at high porosities.

Shear and bulk viscosity of ice

The temperature dependence of the shear viscosity of pure ice deforming by diffusion creep at low stress is given by Barr and Showman (2009).

$$\eta = \eta_0 \exp\left[A\left(\frac{T_m}{T} - 1\right)\right]$$

where T_m is the melting temperature of the ice and A is the activation energy

$$A = \frac{Q_v^*}{RT} \sim 26$$

and the reference viscosity of ice at the melting point, η_0 , ranges from 10^{13} and 10^{15} Pa s.

```
Vm = 1.97e-5; % Molar volume of ice I [m^3/mol]
Dov = 9.1e-4; % volume diffusion constant [m^2/s]
Qvstar = 59.4e3; % volume diffusion activation energy [J/mol]

A = Qvstar/(R*Tm);
eta_diff = @(d,T) (R*T.*d.^2)/(42*Vm*Dov).*exp(Qvstar./(R*T));
eta0 = @(d) eta_diff(d,Tm);
eta = @(d,T,sw,phi) eta0(d).*exp(A*(Tm./T-1)).*exp(-abs(sw)*phi);
```

The effective bulk viscosity from Hammond et al. (2018)

```
mc = 1; % porosity exponent in bulk viscosity [1]
xi = @(d,T,sw,phi,m) eta(d,T,sw,phi)./(phi.^m);
```

Compaction length of the partially molten ice-shell

```
delta = @(d,T,sw,phi,m,n) sqrt((xi(d,T,sw,phi,m).*k(d,phi,n))/muf);
```

Properties evluated at the char. values

```
k_c = k(dc,phic,nc)

k_c = 6.2500e-14

eta_c = eta(dc,Tm,0,phic)

eta_c = 6.9979e+14

xi_c = xi(dc,Tm,0,phic,mc)

xi_c = 6.9979e+16

delta_c = delta(dc,Tm,0,phic,mc,nc)

delta_c = 2.0913e+03
```

Temperature dependence of properties

```
T = linspace(200, 273, 100);
figure('position',[10 10 1200 600])
clf
subplot 131
semilogy(T,eta(dc,T,0,phic),'linewidth',2), hold on
semilogy(T, eta(dc, T, 30, 1e-3), 'linewidth', 2)
semilogy(T, eta(dc, T, 30, 1e-2), 'linewidth', 2)
semilogy(T, eta(dc, T, 30, 1e-1), 'linewidth', 2)
semilogy(Tm,eta c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Temperature [K]'
ylabel 'shear viscosity: \eta [Pa s]'
legend('sw = 0','phi = 1e-3','phi = 1e-2','phi = 1e-1','ref. case')
subplot 132
semilogy(T,xi(dc,T,0,phic,mc),'linewidth',2), hold on
semilogy(T,xi(dc,T,30,1e-3,mc),'linewidth',2)
semilogy(T, xi(dc, T, 30, 1e-2, mc), 'linewidth', 2)
semilogy(T, xi(dc, T, 30, 1e-1, mc), 'linewidth', 2)
semilogy(Tm,xi c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Temperature [K]'
ylabel 'eff. bulk viscosity: \xi [Pa s]'
legend('sw = 0','phi = 1e-3','phi = 1e-2','phi = 1e-1','ref. case')
```

```
subplot 133
semilogy(T,delta(dc,T,0,phic,mc,nc),'linewidth',2), hold on
semilogy(T,delta(dc,T,0,1e-3,mc,nc),'linewidth',2)
semilogy(T,delta(dc,T,0,1e-2,mc,nc),'linewidth',2)
semilogy(T,delta(dc,T,0,1e-1,mc,nc),'linewidth',2)
semilogy(Tm,delta_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Temperature [K]'
ylabel 'compaction length: \delta [m]'
legend('sw = 0','phi = 1e-3','phi = 1e-2','phi = 1e-1','ref. case')
```


Porosity dependence of properties

```
phivec = logspace(-4,-1,1e2);
figure('position',[10 10 1200 600])
subplot 141
loglog(phivec,k(dc,phivec,nc),'linewidth',2), hold on
loglog(phic,k c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'porosity: \phi [1]'
ylabel 'permeability: k [m^2]'
subplot 142
loglog(phivec,eta(dc,Tm,0,phivec),'linewidth',2), hold on
loglog(phivec,eta(dc,Tm,-30,phivec),'linewidth',2)
loglog(phic,eta c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'porosity: \phi [1]'
ylabel 'shear viscosity: \eta [Pa s]'
subplot 143
loglog(phivec,xi(dc,Tm,0,phivec,mc),'linewidth',2), hold on
```

```
loglog(phivec,xi(dc,Tm,30,phivec,mc),'linewidth',2)
loglog(phic,xi_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'porosity: \phi [1]'
ylabel 'eff. bulk viscosity: \xi [Pa s]'

subplot 144
loglog(phivec,delta(dc,Tm,0,phivec,mc,nc),'linewidth',2), hold on
loglog(phivec,delta(dc,Tm,30,phivec,mc,nc),'linewidth',2)
loglog(phic,delta_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'porosity: \phi [1]'
ylabel 'compaction length: \delta [m]'
```


Grain size dependence of properties

```
dvec = logspace(-4,-2,1e2);
figure('position',[10 10 1200 600])
subplot 141
loglog(dvec*1e3,k(dvec,phic,nc),'linewidth',2), hold on
loglog(dc*1e3,k_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Grain size: d [mm]'
ylabel 'permeability: k [Pa]'

subplot 142
loglog(dvec*1e3,eta(dvec,Tm,0,phic),'linewidth',2), hold on
loglog(dc*1e3,eta_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Grain size: d [mm]'
ylabel 'shear viscosity: \eta [Pa s]'
```

```
loglog(dvec*1e3,xi(dvec,Tm,0,phic,mc),'linewidth',2), hold on
loglog(dc*1e3,xi_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Grain size: d [mm]'
ylabel 'eff. bulk viscosity: \eta [Pa s]'

subplot 144
loglog(dvec*1e3,delta(dvec,Tm,0,phic,mc,nc),'linewidth',2), hold on
loglog(dc*1e3,delta_c,'ko','MarkerFaceColor','w','markersize',10)
pbaspect([1 .8 1])
xlabel 'Grain size: d [mm]'
ylabel 'compaction length: \delta [m]'
```

