

LOG2810 STRUCTURES DISCRÈTES

CONTRÔLE PÉRIODIQUE 2 E2023

SOLUTIONNAIRE

LOG1810-H2023 Contrôle périodique 2 Solutionnaire

Exercice 1 (2 points)

Soit R la relation d'équivalence suivante dans l'ensemble $E = \{1, 2, 3, 4, 5, 6\}$.

 $\mathbf{R} = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}$ Donnez les classes d'équivalence de \mathbf{R} .

Réponse :

Les classes d'équivalence de R sont :

- **{1, 5}**
- {2, 3, 6}
- {4}

Exercice 2 (3 points)

On définit sur \mathbb{R}^2 la relation \perp par :

$$(a, b) \perp (c, d) \Leftrightarrow [(ab = cd) \land (ac \ge 0)]$$

 \perp est-elle une relation antisymétrique ? Justifiez votre réponse.

Réponse:

Preuve par contre-exemple. Considérons (8, 2) et (4, 4) \mathbb{R}^2 .

On a $(8, 2) \perp (4, 4)$, car 8.2 = 4.4 = 16 et 8.4 = 32 et $32 \ge 0$.

De plus, $(4, 4) \perp (8, 2)$. EN effet, car 4.4 = 8.2 = 16 et 4.8 = 32 et $32 \ge 0$.

$$[(8, 2) \perp (4, 4)] \wedge [(4, 4) \perp (8, 2)] \wedge [(8, 2) \neq (4, 4)]$$

Exercice 3 (3 points)

Calculez:

3 x 10⁹ mod 97

Détaillez toutes les étapes de votre calcul.

Note: $810 = 8 \times 97 + 34$

Réponse :

```
Nous avons successivement:
```

 $100 = 10^2 \text{ donc } 10^2 \equiv 3 \pmod{97}$

 $10^9 = 10 \times 100^4$

 $10^9 \equiv 10 \times 3^4 \pmod{97}$

 $10^9 \equiv 10 \times 81 \pmod{97}$

D'après l'Énoncé, 810 = 8 x 97 + 34

Donc $10^9 \equiv 34 \pmod{97}$

 $3 \times 10^9 \equiv 3 \times 34 \pmod{97}$

 $3 \times 10^9 \equiv 102 \pmod{97}$

D'où $3 \times 10^9 \equiv 5 \pmod{97}$

LOG1810-H2023 Contrôle périodique 2 Solutionnaire

Exercice 4 (4.5 points)

Déterminez l'ensemble des entiers x tel que :

 $(2x + 17) \equiv 15 \mod 18$

Réponse:

 $(2x + 17) \equiv 15 \mod 18$ (2x + 17) + 18y = 15 2x + 18y = -2x + 9y = -1

Résolvons l'équation x + 9y = 1.

En utilisant l'algorithme d'Euclide étendu, nous avons les vecteurs [1, 1, 0][9, 0, 1].

Les opérations successives permettent d'obtenir [1, 1, 0][1, -8, 1]

(-8, 1) est une solution particulière de x + 9y = 1.

Alors, (8, -1) est une solution particulière de x + 9y = -1.

X = 9k + 8 avec k entier.

Exercice 5 (3 points)

Est-ce que n^3+2n^2 est Ω (n^3) ? Justifiez votre réponse.

Réponse :

 n^3+2n^2 et n^3 sont tous deux des polynômes de même degré. D'après la règle sur les polynômes, chacun est O de l'autre. Ainsi n^3 est $O(n^3+2n^2)$. Par conséquent, n^3+2n^2 est $O(n^3)$.

Exercice 6 (4.5 points)

Montrez par récurrence que pour tout entier positif non nul n,

 $5n^3 + n$ est divisible par 6.

Réponse:

Soit la P(n): $5n^3 + n$ est divisible par 6, avec n un entier positif non nul.

Étape de base :

Prenons n = 1. On a $5n^3 + n = 5+1 = 6$.

6 est divisible par lui-même, donc la propriété est vrai à l'ordre n=1.

Étape inductive:

Supposons que P(n) est vrai pour un entier positif non nul n quelconque et montrons que P(n+1) est vrai c'est-à-dire que $5(n+1)^3 + (n+1)$ est divisible par 6.

Développons l'expression $5(n+1)^3 + (n+1)$. On a :

$$5(n+1)^3 + (n+1) = 5n^3 + n + 15n^2 + 15n + 6$$

Par hypothèse d'induction, 5n³+ n est divisible par 6. Donc 5n³+ n +6 est divisible par 6.

 $15n^2 + 15n = 15n(n + 1) = 3 \times 5n(n+1)$

n(n+1) est le produit de deux entiers consécutifs dont l'un est pair. n(n+1) est alors divisible par 2 et par conséquent $3 \times 5n(n+1)$ est divisible par 6.

Ainsi $5n^3 + n + 15n^2 + 15n + 6 = 5(n+1)^3 + (n+1)$ est divisible par 6.

La propriété est donc vraie à l'ordre n+1.

Nous pouvons conclure à l'étape inductive que si P(n) est vrai alors P(n+1).

Conclusion générale

La propriété est vraie à l'ordre 1, Lorsqu'elle est vraie à l'ordre n, elle l'est à l'ordre n+1. D'où, pour tout n entier positif non nul, **5n³ + n** est divisible par 6.