異質的家計のモデル

定量的マクロ経済学

モチベーション

- ・ 政策の効果は?
 - 例えば税金が貯蓄行動に与える影響は?
 - 貯蓄行動は消費や投資を通じてGDPに大きな影響を与えるので重要
- 政策を実験したいけれど現実の世界ではできない
- 政策のシミュレーションできるようなモデルを作る

家計

• O期から無限期間生きて、t期の消費を c_t として次の効用を最大化

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t) = E_0[u(c_0) + \beta u(c_1) + \beta^2 u(c_2) + \beta^3 u(c_3) + \cdots], u' > 0, u'' < 0, \beta \in (0,1)$$

- ・ 現在の効用 $u(c_0)$ だけでなく、将来の効用 $u(c_1),u(c_2),u(c_3),\cdots$ も β,β^2,β^3 …で割り引いて考慮
- 現在の効用のための消費と、将来の効用のための貯蓄をバランスするのが最適な貯蓄行動!

所得ショック

- 将来を考慮して行動するが、将来起きる全てのことを知っているわけではない(不確実性)
- ここでは将来の不確実性の源を労働所得と考え、家計はO期時点での<u>期待値 E_0 を最大化</u>!
- 労働所得の変化は生産性の変化から来るとこのモデルでは解釈
- ・ 生産性のショック $h_t \in \mathcal{H} = \{h^1, \dots, h^{N_H}\}$
 - 簡単化のため取りうる生産性の値の候補は N_H 個(有限)とする
 - 例($N_H=2$ の場合): $h^1=0$ (万円、失業状態), $h^2=600$ (万円、職についている)

所得ショック

- 毎期毎期独立に $\mathcal{H}=\{h^1,\cdots,h^{N_H}\}$ の中から生産性が決まるのか?それだと少し現実味がない
 - 例えば $h_0=0$, $h_1=600$, $h_2=0$, $h_3=600$ のような激しい賃金変化は現実的でない
 - $h_1=0$ となる確率は h_0 に依存する: $h_0=0$ なら可能性は高いし、 $h_0=600$ なら低いだろう
- 賃金の変化の性質:今期 h_t の時、次の期 h_{t+1} となる確率はマルコフ過程 $\pi(h_{t+1}|h_t)$ に従うと仮定
 - ・例 $(N_H = 2 \text{ の場合})$: $\pi(0 \mid 600) = 0.2$, $\pi(0 \mid 0) = 0.7$

所得プロセスの近似 $\pi(h_{t+1}|h_t)$

- ・ 行列 $\pi(h_{t+1}|h_t)$ はどうやってデータから得るの?そもそも $\mathcal{H}=\{h^1,\cdots,h^{N_H}\}$ をどう作る?
- 生産性の対数は次のAR1過程に従うと仮定: $\ln h_{t+1}=\rho \ln h_t+\epsilon$, $\epsilon \sim N(0,\sigma_\epsilon^2)$
 - hが必ず正であるように対数にしている
- ρ と σ_{ϵ} は実際の個人の賃金データから推定可能
- 推定したAR1をTauchen's methodを使って $\pi(h_{t+1} | h_t)$ に近似

Tauchen's method

- 1. グリッド $\mathcal{H}=\{h^1,\cdots,h^{N_H}\}$ をdの間隔で-1* $stdd(\ln h_t)$ から+1* $stdd(\ln h_t)$ まで作る
- h_t の分布も h_{t+1} の分布も同じと仮定し、AR1の両辺の分散をとると

$$Var(\ln h_t) = \rho^2 Var(\ln h_t) + \sigma_{\epsilon}^2$$

• よって $\ln h_t$ の標準偏差は

$$stdd(\ln h_t) = \sqrt{Var(\ln h_t)} = \sqrt{\frac{\sigma_e^2}{1 - \rho^2}}$$

Tauchen's method

Tauchen's method

- 2. $\rho \ln h^j + \epsilon \in [\ln h^{j'} d/2, \ln h^{j'} + d/2]$ の時、 $h_t = h^j$ から $h_{t+1} = h^{j'}$ に行くと仮定する
- ・ $\rho \ln h^j + \epsilon \dot{m} \ln h^{j'} + d/2$ 以下になる確率から $\rho \ln h^j + \epsilon \dot{m} \ln h^{j'} d/2$ 以下になる確率を引く

・標準正規分布N(0,1)に従う ϵ/σ_ϵ が $(\ln h^{j'}+d/2-\rho\ln h^j)/\sigma_\epsilon$ 以下になる確率なので累積分布関数 Φ を使って

家計の制約

- 利子率 r と 賃金率 w (この講義ではw=1と仮定、気にしなくていいです)
- 1単位の労働、 c_t を消費、 a_{t+1} だけ貯蓄するとして、予算制約は各t期で

$$c_t + a_{t+1} = (1+r)a_t + wh_t$$
.
 「舞者の保行政策の報 と分子以行星 するとっか: S .

· 各t期で借入制約

$$a_{t+1} \ge -\underline{B} \quad ... \quad 循合. \qquad \qquad B : \quad \ell \in \mathcal{F}$$

们有专家。

・ 単純化のために、資産は a_{t+1} は $\mathcal{A} = \{a^1, \cdots, a^{N_A}\}$ のうちからしか選べないと仮定

家計の最適化問題

$$\max_{\{c_t\},\{a_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \text{ s.t. }$$

各t期で
$$c_t + a_{t+1} = (1 + r)a_t + wh_t$$

各
$$t$$
期で $a_{t+1} \ge -\underline{B}$, $c_t \ge 0$, a_0 , h_0 は所与

- どうやってこの動学的な最適化問題を解くか?
- 予算制約式を変形して $c_t = (1 + r)a_t + wh_t a_{t+1}$ とすると…

問題を単純化する $(c_t$ を消す)

$$\max_{\{a_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u((1+r)a_t + wh_t - a_{t+1}) \text{ s.t.}$$

各t期で
$$a_{t+1} \ge -\underline{B}$$
, 各t期で $(1+r)a_t + wh_t - a_{t+1} \ge 0$, a_0 , h_0 は所与

- どうやってこの動学的な最適化問題を解くか?
- 家計は将来のことを全て予想して行動することに注意
- 厄介なのは将来が無限であること

一旦有限期間Tで考える

$$\max_{\{a_{t+1}\}} E_0 \sum_{t=0}^{T} \beta^t u((1+r)a_t + wh_t - a_{t+1}) \text{ s.t.}$$

各t期で $a_{t+1} \ge -\underline{B}$, 各t期で $(1+r)a_t + wh_t - a_{t+1} \ge 0$, a_0 , h_0 は所与

Recursive formに書き換える

$$\underbrace{\max_{\{a_{t+1}\}} E_0 \sum_{t=0}^{T} \beta^t u((1+r)a_t + wh_t - a_{t+1})}_{V(a_t, h_t)} = \max_{\{a_{t+1}\}} u((1+r)a_t + wh_t - a_{t+1}) + \beta E_0 \underbrace{\sum_{t=1}^{T} \beta^{t-1} u((1+r)a_t + wh_t - a_{t+1})}_{V_{t+1}(a_{t+1}, h_{t+1})}$$

$$V_{t}(a_{t}, h_{t}) = \max_{a_{t+1}} u((1+r)a_{t} + wh_{t} - a_{t+1}) + \beta \sum_{h_{t+1}} V_{t+1}(a_{t+1}, h_{t+1})\pi(h_{t+1} \mid h_{t})$$

- ・ ここで $V_t(a_t,h_t)$ は資産 a_t と生産性 h_t を持っている時のt期以降の全効用(価値):value function
- t期以降の価値は今期の効用とt+1期以降の価値に分解できる!

無限期間に直す $(T \rightarrow \infty$ なら?)

- 直感的に,今どの期にいてもそれ以後無限期間続くので、全ての期の V_t は同じとなる(Vと呼ぶ)
- ・無限だと時間tは関係なく今日と明日の概念だけで十分。'は明日の変数 (a'は明日の資産)とすると

$$V(a,h) = \max_{a'} u((1+r)a + wh - a') + \beta \sum_{h'} V(a',h')\pi(h'|h) \text{ s.t. } -\underline{B} \le a' \le (1+r)a + wh$$

- この方程式はBellman equationと呼び、このような最大化問題の形をrecursive formと呼ぶ
- 最適な貯蓄 a_{t+1} もtに依存せず(a,h)だけの関数として決まる:policy function $g_a(a,h)$.

ではg。をどう解く?

$$V(a,h) = \max_{a'} u((1+r)a + wh - a') + \beta \sum_{h'} V(a',h')\pi(h'|h)$$

- 最適な $a'=g_a(a,h)$ を解くためには右辺の $N_A\times N_H$ の行列V(a,h)を知る必要がある
- ・ そのV(a,h)は左辺にあるが、そのためには右辺のV(a,h)が必要となりループ
- ・ 適当に作った行列 $V_0(a,h)$ を右辺のV(a,h)に入れると最大化問題が解けるので左辺を $V_1(a,h)$ とよぶ
- ・ 当然 $V_1(a,h) \neq V_0(a,h)$ となるが、今度は V_1 を右辺のVに代入、右辺と左辺が一致するまで繰り返す

Discretized value function iteration

- 1. 最初の予想として適当に行列 $V_0(a^i,h^j)$ を仮定
- 2. V_0 を所与として、各 (a^i,h^j) $\in \mathcal{A} \times \mathcal{H}$ に対して
 - 1. グリッドから以下を満たす $a' \in \mathcal{A}$ を探す

$$g_{a}(a^{i}, h^{j}) = a' \in \arg\max_{a' \in \mathcal{A}} u(wh^{j} + (1 + r)a^{i} - a') + \beta \sum_{h' \in \mathcal{H}} V_{0}(a', h')\pi(h' | h^{j})$$

2.
$$V_1(a^i, h^j) = u(wh^j + (1+r)a^i - g_a(a^i, h^j)) + \beta \sum_{h' \in \mathcal{H}} V_0(g_a(a^i, h^j), h')\pi(h'|h^j) で V_1$$
を導く

3. もし $d(V_0,V_1) < tol$ ならばおしまい(dは何かしらの距離)、そうでなければ V_0 を V_1 として2に戻る (v_0)と、 v_0 と、 v_0 と v_0 と、 v_0 と v_0 と v