Génie logiciel

UFR des Sciences Fondamentales et Appliquées

Machine Learning

- Apprentissage automatique à partir de données
- Ajustement d'un modèle pour faire des prédictions
- Applications : reconnaissance d'images, classification, prédictions...

Univer

Notre projet

- Objectif : entraîner un réseau neuronal à classifier des spirales
- Outils : C, SDL2, Git, Doxygen

Réseau de Neurones

- Neurone = entrées + poids + fonction d'activation
- Rétropropagation pour apprendre
- Réseau = empilement de neurones

Génération des spirales

- Génération automatique via spirales d'Archimède
- Amélioration progressive (v1 → v3)
- Sauvegarde/chargement des réseaux via fichiers .bin

Spiral V1

Spiral V3

Spirales personnalisées

- Nombre de classes au choix de l'utilisateur
- Apprentissage dynamique

Spiral Avec classification N:3

Spiral Avec classification N:5

Spiral Avec classification N:8

El Mahdi Benfdal Ewen Croizier

Dessin personnalisé

- L'utilisateur dessine ses propres points
- Entraînement direct sur ces données

Gestion de projet avec Git

- Dépôt Git structuré
- Branches: version initiale, v2, v3, final
- Suivi clair des étapes

master

Documentation & Rapport

- Doxygen : génération automatique des docs
- Rapport complet (méthodes, résultats)
- Benchmarks réalisés

<u>Démonstration live</u>

Université

de Poitiers

Temps et répartition

- Environ 30 à 40 heures de travail
- Répartition : développement, SDL, Git, doc, test

