? Why does central differencing fail for convection-dominated flow when N=5, but seems to work when $N\geq 20$?

The answer lies in the **Péclet number** and how it relates to **grid size**.

♦ What is the **Cell Peclet Number**?

The Péclet number (Pe) for a control volume is:

$$Pe = \frac{F}{D} = \frac{\rho u \Delta x}{\Gamma}$$

Where:

- ρu = convective flux (convection strength)
- Γ = diffusion coefficient
- $\Delta x = \frac{L}{N}$ = grid size (cell width)

\bigcirc So: **Pe** is directly proportional to Δx

This means:

- Coarse grid (small N, large Δx) \rightarrow Large Pe
- Fine grid (large N, small Δx) \rightarrow Small Pe

Central Differencing Becomes Unstable When:

Because:

- The scheme produces negative coefficients
- Leads to oscillations, overshoot, and unbounded behavior

$$\diamond$$
 Case 1: $N=5$

- $\Delta x = 1/5 = 0.2$
- For example, if u = 2.5, then:

$$Pe = \frac{1 \cdot 2.5 \cdot 0.2}{0.1} = 5$$

This is **well above 2**, so the central differencing scheme is **unstable and inaccurate**.

$$\diamond$$
 Case 2: $N = 20$

- $\Delta x = 1/20 = 0.05$
- Same velocity u = 2.5:

$$Pe = \frac{1 \cdot 2.5 \cdot 0.05}{0.1} = 1.25$$

Now Pe $< 2 \rightarrow$ the scheme is stable, bounded, and behaves well!

Final Answer:

The **central differencing scheme** assumes the solution varies **smoothly** between nodes. When the grid is coarse, this assumption fails in convection-dominated flows, and the scheme gives unphysical results.

But when the grid is refined (higher N, smaller Δx), the local Peclet number becomes smaller, and the solution appears smooth over short distances — so the central differencing works again.

Practical Rule of Thumb:

Use central differencing only when:

Local Peclet Number (Pe) < 2

Otherwise:

Use upwind, hybrid, or higher-order schemes like QUICK.