# CIS 6600 Advanced Topics in Computer Graphics and Animation

Dr. Stephen H. Lane (shlane@cis.upenn.edu)
University of Pennsylvania

Spring 2024

# Fluid Simulation



#### **Overview**

- Introduction
  - Applications
    - Film
    - Games
    - Scientific visualization
- Fluid Simulation Approaches
  - Height Field Methods
  - Physics-Based Approaches (Navier-Stokes equations)
    - Momentum equation (describe as more sophisticated form of f=ma)
    - Incompressibility equation (what is divergence free flow)
    - Typical boundary conditions (no slip and free slip)
    - Eulerian vs. Lagrangian Approaches (i.e. volumetric vs particle-based approaches)
    - Volumetric approaches (Eulerian)
    - MAC grid representation of pressure and velocity quantities
    - Simulation approach (based on steps in Stam paper)
  - Particle-based approaches (Lagrangian)
    - Smoothed Particle Hydrodynamics (SPH)
    - Basic Principles
    - Typical Kernel functions
    - Simulation approach
  - Hybrid methods
    - · For example, PIC and FLIP
- Fluid Surface Representation
  - Marker particles
  - Level sets

# What distinguishes fluids?



- What distinguishes fluids?
  - No "preferred" shape
  - Always flows when force is applied
  - Deforms to fit its container
  - Internal forces depend on velocities, not displacements

- Applications
  - Film
    - Avatar2
    - Croods
    - Moana
    - 2012
  - Games
    - Unity
    - Unreal
  - Scientific Visualization
    - Atmospheric Simulation
    - Hydrology (oceans and river flows)
    - Aerodynamics laminar and turbulent flows
    - Astrophysics
    - Medical (blood flows)







- Fluid Equations of Motion
  - For physical simuations, we have Newton's second law:

$$F = ma$$

– Specialized for fluids:

"Navier-Stokes Equations"

- What can we achieve so far?
  - Newtonian fluid (water, oceans)
  - Smoke
  - Fire
  - Granular flow (Sand)
  - Non-Newtonian fluids
    - Blood, honey, goop, viscoelatic flow











- Fluid Characteristics
  - Basic properties
    - Pressure
    - Density
    - Viscosity (subject to shear stress)
    - Surface tension

- Different types of fluids:
  - Incompressible (divergence-free) fluids: Fluids doesn't change volume (very much).
  - Compressible fluids: Fluids change their significantly.
  - Viscous fluids: Fluids tend to resist a certain degrees of deformation
  - Inviscid (Ideal) fluids: Fluids don't have resistance to the shear stress
  - Turbulent flow: Flow that appears to have chaotic and random changes
  - Laminar (streamline) flow: Flow that has smooth behavior

- Different types of fluids (Con't):
  - Newtonian fluids: Fluids continue to flow, regardless of the force acting on it
  - Non-Newtonian fluids:
    - Fluids that have non-constant viscosity
    - Fluids may change physical behavior under different environmental conditions (i.e. phase transition)



## Fluid Simulation Approaches

#### Height Field Methods

- Represent the water surface as a continuous 2D function u(x,y)
- Discretize into grids
- Imagine applying force to one column and integrating F=ma to get new height
- Do the same for all columns in u [i, j]





#### Fluid Simulation Approaches

 effect of force on height propagates to neighboring cells using a damped kernel function

```
Use two arrays float u[N,M], v[N,M]
Initialize u[i,j] with interesting function
Initialize v[i,j]=0

loop
v[i,j] +=(u[i-1,j] + u[i+1,j] + u[i,j-1] + u[i,j+1])/4 - u[i,j]
v[i,j] *= 0.99
u[i,j] += v[i,j]
visualize(u[])
endloop
```

fit smooth surface to height field before rendering



#### **Quick Math Review**

 Gradient (∇): A vector pointing in the direction of the greatest rate of increment

$$\nabla u = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right) \quad \text{u can be a scalar or a vector}$$



 Divergence (∇·): Measure how the vectors are converging or diverging at a given location (volume density of the outward flux)

$$\nabla \cdot \boldsymbol{u} = \frac{\partial \boldsymbol{u}}{\partial x} + \frac{\partial \boldsymbol{u}}{\partial y} + \frac{\partial \boldsymbol{u}}{\partial z} \quad \text{u can only be a vector}$$







Sink,  $Div(\mathbf{u}) < 0$ 

#### **Quick Math Review**

■ Laplacian ( $\Delta$  or  $\nabla^2$ ): Divergence of the gradient

$$\nabla \cdot \nabla u = \nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \qquad \text{u can be a scalar or a vector}$$

Finite Difference: Derivative approximation

$$\frac{\partial u}{\partial x} = \frac{u_{i+1} - u_i}{x_{i+1} - x_i}$$

# The Basic Equations

#### **Computational Fluid Dynamics**

- The Navier-Stokes Equations (developed around 1842 -1850)
  - Precise mathematical model of physical fluid flow in nature
  - Complicated, can be solved analytically only in very simple cases
  - No progress until 1950 when numerical algorithms started to appear
  - Can be very accurate (airplane aerodynamics, ...)
  - Complex (difficult to implement)
  - Computational intensive (i.e. slow)
- For graphics applications
  - Simulation needs to look convincing
    - (does not always have to be physically accurate)
  - fast
  - simple to implement
  - stable (i.e. never "blows up")

#### **Notation**

- velocity with components (u,v,w)
- ρ: fluid density
- p: pressure
  - force per unit area that the fluid exerts on anything.
- $\vec{g}$ : acceleration due to gravity or animator
- μ: dynamic viscosity

# **Navier-Stokes Equations**

- Important Concepts
  - Conservation of Mass
  - Conservation of Momentum
  - Conservation of Volume
  - Internal and External forces
  - Viscosity
  - Boundary Conditions

#### **Navier-Stokes Equations**

- The state of the fluid in any point of time is modeled as velocity vector field:
  - a function that assigns velocity vector to any point in space



- The Navier-Stokes Equations:
  - precise description of evolution of velocity field over time

#### **Navier-Stokes Equations**

"Momentum Equation"

$$\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} + \frac{1}{\rho} \nabla p = \vec{g} + \nu \nabla \cdot \nabla \vec{u}$$

"Incompressibility condition"

$$\nabla \cdot \vec{u} = 0$$

 $\vec{u}$ : Velocity

t: Time

 $\rho$ : Density

*p*: Pressure

 $\vec{g}$ : Gravity

 $\nu$ : Kinematic Viscosity

# The Momentum Equation

# The Momentum Equation

- Just a specialized version of  $\vec{F} = m\vec{a}$
- Let's build it up intuitively
- Imagine modeling a fluid with a bunch of particles (e.g. blobs of water)
  - A blob has a mass m, a volume V, and velocity  $\vec{u}$
  - We'll write the acceleration  $\vec{a}$  as  $\frac{D\vec{u}}{Dt}$  (the "material derivative")

$$m\vec{a} = \vec{F}$$

$$m\frac{D\vec{u}}{Dt} = \vec{F}$$

• What are the forces  $ar{F}$  that act on the fluid blob?

# The Momentum Equation

Forces on Fluids

$$m\vec{a} = \vec{F}$$

$$m\frac{D\vec{u}}{Dt} = \vec{F}$$

$$m\frac{D\vec{u}}{Dt} = \vec{F}_{gravity} + \vec{F}_{pressure} + \vec{F}_{viscosity}$$

#### **Forces on Fluids: Gravity**

Gravity: F<sub>gravity</sub>



$$m\frac{D\vec{u}}{Dt} = m\vec{g} + \dots$$

 And a blob of fluid also exerts contact forces on its neighboring blobs (i.e. pressure)...

#### **Forces on Fluids: Pressure**

- Pressure: F<sub>pressure</sub>
  - The "normal" contact force is pressure (force/area)
    - How blobs push against each other, and how they stick together
  - If pressure is equal in every direction, net force is zero...
    Important quantity is pressure gradient:

$$m\frac{D\vec{u}}{Dt} = m\vec{g} - V\nabla p + \dots$$

 We integrate the pressure over the blob's volume (which is equivalent to integrating the pressure over blob's surface)

- Viscosity: F<sub>viscosity</sub>
  - What characterizes a viscous liquid?
    - "Thick", damped behavior
    - Higher resistance to flow





- Viscosity: F<sub>viscosity</sub>
  - Think of it as frictional part of contact force:
     a sticky (viscous) fluid blob resists other blobs moving past it
  - Viscous fluid resists deforming
  - Force that make particles move at average speed
  - For now, simple model is that we want velocity to be blurred/diffused/...
  - Blurring in PDE form comes from the Laplacian:  $\nabla^2 \vec{u} = \nabla \cdot \nabla \vec{u}$

$$m\frac{D\vec{u}}{Dt} = m\vec{g} - V\nabla p + V\mu\nabla\cdot\nabla\vec{u}$$

Loss of energy due to internal friction between molecules moving at different velocities.



- acts to oppose relative motion.
- causes an exchange of momentum

Loss of energy due to internal friction between molecules moving at different velocities.



- acts to oppose relative motion.
- causes an exchange of momentum

Loss of energy due to internal friction between molecules moving at different velocities.



- acts to oppose relative motion.
- causes an exchange of momentum

## **Viscosity**

Loss of energy due to internal friction between molecules moving at different velocities.



- acts to oppose relative motion.
- causes an exchange of momentum

Imagine fluid particles with general velocities.



Each particle interacts with nearby neighbours, exchanging momentum.

Amount of momentum exchanged is proportional to:

- Velocity gradient,  $\nabla u$ .
- Viscosity coefficient, μ

For any closed region, net in/out flow of momentum:

$$\int_{\partial\Omega}\mu\nabla u\cdot n=\iint\mu\nabla\cdot\nabla u$$

So the viscosity force is:  $\vec{F}_{viscosity} = V \mu \nabla \cdot \nabla \vec{u}$ 

- The end result is a smoothing of the velocity.
  - This is exactly the action of the Laplacian operator

$$\nabla \cdot \nabla = \nabla^2$$

For scalar quantities, the same operator is used to model diffusion

#### **The Continuum Limit**

 $m\frac{D\vec{u}}{Dt} = m\vec{g} - V\nabla p + V\mu\nabla\cdot\nabla\vec{u}$ 

- Model the world as a continuum:
  - # particles →∞
     Mass and volume →0
- In the limit we want  $m\frac{D\vec{u}}{Dt} = \vec{F}$  to be more than 0 = 0:
  - Divide by mass

$$\frac{D\vec{u}}{Dt} = \vec{g} - \frac{V}{m}\nabla p + \frac{V}{m}\mu\nabla\cdot\nabla\vec{u}$$

### The Continuum Limit - Con't

$$\frac{D\vec{u}}{Dt} = \vec{g} - \frac{V}{m}\nabla p + \frac{V}{m}\mu\nabla\cdot\nabla\vec{u}$$

• The fluid density is  $\rho = \frac{m}{V}$ 

$$\frac{D\vec{u}}{Dt} = \vec{g} - \frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \nabla \cdot \nabla \vec{u}$$

$$\frac{D\vec{u}}{Dt} = \vec{g} - \frac{1}{\rho} \nabla p + \nu \nabla \cdot \nabla \vec{u} \qquad \nu = \frac{\mu}{m} \implies \text{dynamic viscosity}$$

• The only weird thing is  $\frac{D\vec{u}}{Dt}$  ...



## Lagrangian vs. Eulerian



#### Lagrangian viewpoint:

- Treat the world like a particle system
- Label each speck of matter, track where it goes (velocity, accel, etc.)
- Point of reference moves with the material

#### Eulerian viewpoint:

- Point of reference is stationary
- Measure stuff as it flows past
- Example: Measuring temperature of wind
  - Lagrangian: weather balloon, floating with the wind



Eulerian: weather station on ground, wind blows past





## Eulerian vs. Lagrangian







## Eulerian vs. Lagrangian



 Lagrangian: Wind comprised of a set of moving particles, each with a temperature value at a particular point in space



## Eulerian vs. Lagrangian



 Eulerian: A fixed grid of temperature (sensor) values, that the wind flows through.



## Relating Eulerian and Lagrangian

Consider the temperature T(x,t) at a point following a given path, x(t).



Two ways temperature changes:

- Heating/cooling occurs at the current point.
- Following the path, the point moves to a cooler/warmer location.

### **Time Derivatives**

Mathematically:

$$\frac{D}{Dt}T(x,t) = \frac{\partial T}{\partial t} + \frac{\partial T}{\partial x}\frac{\partial x}{\partial t}$$

Chain rule!

$$= \frac{\partial T}{\partial t} + \nabla T \cdot \frac{\partial x}{\partial t}$$

Definition of *∇* 

$$= \frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T$$

Choose  $\frac{\partial x}{\partial t} = u$ 

 $\frac{D}{Dt}$  is called the *Material Derivative* 

Change at a point moving with the velocity field.

Change due to movement.

$$\frac{DT}{Dt} = \frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T$$

Change at the current (fixed) point.

#### General Case

- We have fluid moving in a velocity field u
- It possesses some quality (i.e. property) q
- At an instant in time t and a position in space x, the fluid at x has property value q(x,t)
- How fast is that blob of fluid's q changing w.r.t time?
- Answer:
  - the Material Derivative:  $\frac{Dq}{Dt}$

- Writing D/Dt Out
  - We can explicitly write it out from components:

$$\frac{Dq}{Dt} = \frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q$$

$$= \frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} + v \frac{\partial q}{\partial y} + w \frac{\partial q}{\partial z}$$

This holds even if the vector field is velocity itself:

$$\frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla u$$

$$\begin{bmatrix} Du/Dt \\ Dv/Dt \\ Dw/Dt \end{bmatrix} = \begin{bmatrix} \partial u/\partial t + \vec{u} \cdot \nabla u \\ \partial v/\partial t + \vec{u} \cdot \nabla v \\ \partial w/\partial t + \vec{u} \cdot \nabla w \end{bmatrix}$$

 Nothing different about this, just that the fluid blobs are moving at the velocity they're carrying.

## **Momentum Equation**

 Replacing the material derivative in the previous Navier Stokes equation

$$\frac{D\vec{u}}{Dt} = \vec{g} - \frac{1}{\rho} \nabla p + \nu \nabla \cdot \nabla \vec{u}$$

with 
$$\frac{D\vec{u}}{Dt} = \frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}$$

Yields the standard form of the Momentum Equation

$$\frac{\partial \vec{u}}{\partial t} = -\vec{u} \cdot \nabla \vec{u} + \vec{g} - \frac{1}{\rho} \nabla p + \nu \nabla \cdot \nabla \vec{u}$$

# The Incompressibility Condition

## Compressibility

- Real fluids are compressible
- Shock waves, sound waves, pistons...
  - Note: liquids change their volume as well as gases, otherwise there would be no sound underwater
- But this is nearly irrelevant for animation
  - Shocks move too fast to normally be seen (easier/better to hack in their effects)
  - Acoustic waves usually have little effect on visible fluid motion \( \)
  - Pistons compressing gas in a cylinder is not of interest

## Incompressibility

- Rather than having to simulate acoustic and shock waves, eliminate them from our model: assume fluid is incompressible
  - Turn stiff system into a constraint, just like rigid bodies!
- If you fix your eyes on any volume of space, volume of fluid in = volume of fluid out:

$$\iint_{\partial\Omega} \vec{u} \cdot \hat{n} = 0$$



## Incompressibility

Intuitively, to be incompressible net flow into/out of a given region is zero (i.e. no sources or sinks)

Integrate the flow across the boundary of a closed

region:



$$\int_{\partial\Omega} \boldsymbol{u} \cdot \boldsymbol{n} = 0$$

## Divergence

Let's use the divergence theorem:

$$\frac{dV}{dt} = \int_{\partial\Omega} \vec{u} \cdot \hat{n} = \iint_{\Omega} \nabla \cdot \vec{u} = 0$$

- So for any region, the integral of  $abla \cdot \vec{u}$  is zero
  - Therefore, for it to be zero everywhere:

$$\nabla \cdot \vec{u} = 0$$

- Incompressible Flow
  - Density stays constant
  - Divergence: Net flow in or out of a volume
  - When divergence = 0, no sources or sinks

# **Inviscid Fluids**

## **Dropping Viscosity**

- In most fluid scenarios, viscosity term is small
- As a result, convenient to drop it from the equations:
  - Zero viscosity: called "inviscid"
  - Inviscid Navier-Stokes = "Euler equations"
- Numerical simulation typically makes errors that resemble physical viscosity, so we have the visual effect of it anyway
  - Called "numerical dissipation"
  - For animation: often numerical dissipation is larger than the true physical viscosity!

### **Aside: Some values of interest**

Air

- Dynamic viscosity of air:  $\mu_{air} \approx 1.8 \times 10^{-5} \ Ns/m^2$
- Density of air:  $\rho_{air} \approx 1.3 \, kg/m^3$
- Water
  - Dynamic viscosity of water:  $\mu_{water} \approx 1.1 \times 10^{-3} \ Ns/m^2$
  - Density of water:  $\rho_{water} \approx 1000 \, kg/m^3$
- The ratio,  $\mu/\rho$  ("kinematic viscosity") is what's important for the motion of the fluid...
  - ... air is 10 times more viscous than water!

## **Inviscid Navier Stokes equations**

a.k.a. the incompressible Euler equations:

$$\frac{\partial \vec{u}}{\partial t} = -\vec{u} \cdot \nabla \vec{u} + \vec{g} - \frac{1}{\rho} \nabla p$$

$$\nabla \cdot \vec{u} = 0$$

# **Boundary Conditions**

## **Boundary Conditions**

- We know what's going on inside the fluid: what about at the surface?
- Three types of surface
  - Solid wall: fluid is adjacent to a solid body
  - Free surface: fluid is adjacent to nothing
     (e.g. water is so much denser than air, might as well forget about the air)
  - Other fluid: possibly discontinuous jump in quantities (density, ...)

# **Boundary Conditions**

- Solid walls in contact with solid
  - Fluid should not be flowing into or out of it
  - So, normal component of velocity should be 0
  - "No-slip" or "free-slip" condition
- Free surfaces
  - Where we stop modeling the fluid
  - Set pressure to 0
  - Don't control velocity in any particular way





### **Solid Wall Boundaries**

No fluid can enter or come out of a solid wall:

$$\vec{u} \cdot \hat{n} = \vec{u}_{solid} \cdot \hat{n}$$

- For common case of  $\vec{u}_{solid} = 0$  :  $\vec{u} \cdot \hat{n} = 0$ 
  - Sometimes called the "no-stick" condition, since we let fluid slip past tangentially
- For viscous fluids, can additionally impose "no-slip" condition:  $\vec{u} = \vec{u}_{solid}$

### **Free Surface**

- Neglecting the other fluid, we model it simply as pressure = constant
  - Since only pressure gradient is important, we can choose the constant to be zero:

$$p = 0$$

# **Numerical Simulation Overview**

## **Eulerian Approach**

- Discretize the domain using finite differences
- Define scalar & vector fields on the grid
- Use the operator splitting technique to solve each term separately





## Lagrangian Approach

- Treat the fluid as discrete particles
- Apply interaction forces (i.e. pressure/viscosity)
   according to certain pre-defined smoothing kernels





## Eulerian vs Lagragian - Tradeoffs

#### Eulerian

- Fast, regular computation
- Easy to represent, e.g. smooth surfaces
- Simulation "trapped" in grid
- Grid causes "numerical dissapation (i.e. diffusion)
- Need to understand Navier-Stokes PDEs

#### Lagrangian

- Conceptually easy (like polygon soup)
- Resolution/domain not limited by grid
- Good particle distribution can be tough
- Finding neighbors can be expensive





## **Splitting**

 We have lots of terms in the momentum equation: a pain to handle them all simultaneously

$$\frac{\partial \vec{u}}{\partial t} = -\vec{u} \cdot \nabla \vec{u} + \vec{g} - \frac{1}{\rho} \nabla p$$

- Instead we split up the equation into its terms, and integrate them one after the other
  - Makes for easier software design too:
     a separate solution module for each term
- First order accurate in time

## A Splitting Example

Say we have a differential equation

$$\frac{dq}{dt} = f(q) + g(q)$$

- We can solve the component parts:
  - SolveF(q, $\Delta$ t) solves  $\frac{dq}{dt} = f(q)$  for time  $\Delta$ t
  - SolveG(q, $\Delta$ t) solves  $\frac{dq}{dt} = g(q)$  for time  $\Delta$ t
- Then put them together to solve the original equation:
  - $q^* = SolveF(q^n, \Delta t)$
  - $q^{n+1} = SolveG(q^*, \Delta t)$

## **The Big Picture**



## **Splitting Momentum**

• We have three terms:  $\frac{\partial \vec{u}}{\partial t} = -\vec{u} \cdot \nabla \vec{u} + \vec{g} - \frac{1}{\rho} \nabla p$ 

First term: **advection** 
$$\frac{\partial \vec{u}}{\partial t} = -\vec{u} \cdot \nabla \vec{u}$$

- Moves the fluid through its velocity field
- Second term: **gravity**  $\frac{\partial \vec{u}}{\partial t} = \vec{g}$
- Final term: **pressure update**  $\frac{\partial \vec{u}}{\partial t} = -\frac{1}{\rho} \nabla p$ 
  - Need to compute pressure to make the fluid incompressible:  $\nabla \cdot \vec{\mu} = 0$

## **Pressure Projection - Derivation**

- Updating velocity using pressure term:  $\frac{\partial \vec{u}}{\partial t} = -\frac{1}{\rho} \nabla p$ 
  - Also requires new velocity satisfy incompressible condition:  $\nabla \cdot \vec{u} = 0$
- Discretize  $\frac{\partial \vec{u}}{\partial t} \cong \frac{\left(\vec{u}_{new} \vec{u}_{old}\right)}{\Delta t} = -\frac{1}{\rho} \nabla p$

rearranging 
$$\vec{u}_{new} = \vec{u}_{old} - \frac{\Delta t}{\rho} \nabla p$$

Plugging  $\vec{u}_{new}$  into  $\nabla \cdot \vec{u}_{new} = 0$  yields

$$\nabla \cdot \left( \vec{u}_{old} - \frac{\Delta t}{\rho} \nabla p \right) = 0$$

## **Pressure Projection**

Implementation:

1) Solve the following linear system on the grid for the pressure p:

$$\nabla \cdot \left( \vec{u}_{old} - \frac{\Delta t}{\rho} \nabla p \right) = 0 \qquad \Longrightarrow \quad \frac{\Delta t}{\rho} \nabla \cdot \nabla p = \nabla \cdot \vec{u}_{old}$$

2) Update grid velocity with:

$$\vec{u}_{new} = \vec{u}_{old} - \frac{\Delta t}{\rho} \nabla p$$

### **Eulerian Approach**

- That's our general strategy in time; what about space?
- We'll begin with a fixed Eulerian Approach
  - Trivial to set up
  - Easy to approximate spatial derivatives
  - Particularly good for the effect of pressure
- Disadvantage: advection doesn't work so well
  - Later: particle methods that fix this

### **Eulerian Grid**

Used to track properties and attributes at fixed points inside the fluid.



### A Simple Grid

- We could put all our fluid variables at the nodes of a regular grid
- But this causes some major problems
- In 1D: incompressibility means:  $\frac{\partial u}{\partial x} = 0$
- Central difference approximation at a grid point:

$$\frac{u_{i+1} - u_{i-1}}{2\Delta x} = 0$$

Note the velocity at the grid point isn't involved!

### A Simple Grid Disaster

The only valid solution to  $\frac{\partial u}{\partial x} = 0$  is u = constant

But our numerical approximation can generate other solutions:



### **Staggered Grids**

- Problem is solved if we don't skip over grid points
- To make it unbiased, we stagger the grid:
  - put velocities halfway between grid points
- In 1D, we estimate divergence at a grid point as:

$$\frac{\partial u}{\partial x}(x_i) \approx \frac{u_{i+\frac{1}{2}} - u_{i-\frac{1}{2}}}{\Delta x}$$

Problem solved!

### Incompressibility

Pressure Projection:  $\frac{\Delta t}{\rho} \nabla \cdot \nabla p = \nabla \cdot \vec{u}_{old}$ 

Discretize with finite differences:



*e.g.,* in 1D:

$$\frac{\Delta t}{\rho} \left( \frac{\frac{p_{i+1} - p_i}{\Delta x} - \frac{p_i - p_{i-1}}{\Delta x}}{\Delta x} \right) = \frac{u_{i+1}^{old} - u_i^{old}}{\Delta x}$$

### The MAC Grid

- From the Marker-and-Cell (MAC) method [Harlow&Welch'65]
- A particular staggering of variables in 2D/3D that works well for incompressible fluids:
  - Grid cell (i,j,k) has pressure p<sub>i,i,k</sub> at its center
  - x-part of velocity u<sub>i+1/2,jk</sub> in middle of x-face between grid cells (i,j,k) and (i+1,j,k)
  - y-part of velocity v<sub>i,j+1/2,k</sub> in middle of y-face
  - z-part of velocity w<sub>i,j,k+1/2</sub> in middle of z-face

# **MAC Grid in 2D**



### The MAC Grid



Figure 3: Two Dimensional MAC Cell



Figure 4: Three Dimensional MAC Cell

$$\frac{\partial w}{\partial x_i} \approx \frac{w_{i+\frac{1}{2}} - w_{i-\frac{1}{2}}}{2\Delta x}$$

### **Eulerian Simulation – Main Loop**



- Particle-Based
  - Simulate fluid as discrete particles





Spherical Particle Hydrodynamics (SPH)

For all particles  $P_i$ :

$$\frac{\partial \vec{V}}{\partial t}_{i} = \vec{A}_{i}^{pressure} + \vec{A}_{i}^{viscosity} + \vec{A}_{i}^{gravity} + \vec{A}_{i}^{external}$$

- $\vec{X}$  Position
- $\vec{V}$  Velocity
- M Mass
- d Density
- $\rho$  Pressure
- $\vec{C} = \langle C_{red}, C_{green}, C_{blue} \rangle$  Color
- $\vec{F}$  Force

- Initialize all particles
- Set t=0
- Choose a  $\Delta t$
- for i from 0 to n

for j from 1 to numparticles

Get list  $L_j$  of neighbors for  $P_j$ 

Calculate  $Density_i$  for  $P_i$  using  $L_i$ 

Calculate  $Pressure_j$  for  $P_j$  using  $L_j$ 

Calculate acceleration  $A_j$  for  $P_j$  using  $Density_j$  and  $Pressure_j$ 

Move  $P_j$  using  $A_j$  and  $\Delta t$  using Euler step

$$t = t + \Delta t$$

- Cleanup all data structures
- Exit

#### Kernel Function

$$\sum_{j \neq i}^{n} M_j W_{R_{ij}}$$

$$W(d) = \frac{1}{\pi^{\frac{3}{2}}h^3} \exp(\frac{r^2}{h^2})$$





#### Finding neighboring particles

- We can divide our simulation space in 2D or 3D grid.
- One must only examine 9 grid cells in the 2D case, or 27 grid cells in the 3D case.
- For any grid cells far enough away, our kernel function will evaluate to 0 and their contributions will not be included on the current particle.
- Each particle can be simulated in a separate thread with relative ease., therefore high performance SPH implementations are done on the GPU.



## What about liquids?



# **Surface Tracker**

Given: liquid surface geometry, velocity field, timestep

Compute: new surface geometry by advection.



### **Surface Tracker**

Ideally:

- Efficient
- Accurate
- Handles merging/splitting (topology changes)
- Conserves volume
- Retains small features
- Smooth surface for rendering
- Provides convenient geometric operations
- Easy to implement...

Very hard (impossible?) to do all of these at once.

### **Surface Tracking Options**

- Marker Particles
- 2. Level sets
- 3. Triangle meshes
- 4. Hybrids (many of these)

# **Particles**



### **Particles**

Perform passive Lagrangian advection on each particle.

For rendering, need to reconstruct a surface.



### **Marker Particles**



- Any cell not containing marker particles (blue dots) is identified as an empty cell.
- Cells with at least one marker particle and at least one common boundary with an empty cell are the interface cells (marked in red).
- Cells accommodating at least one marker particle and surrounded only by other cells containing marker particles are marked as fluid cells.

# **Marker Particles**



### **Level sets**

Each grid point stores signed distance to the surface (inside <= 0, outside > 0).

Surface is interpolated zero isocontour.



### **Level sets**

- A numerical technique for tracking moving surfaces, curves.
- Returns a contour of the field.
- State of the art
- Define implicit surface function:  $\phi(i,j,k)$
- Tri or Bilinear Interpolation can be used to estimate  $\phi(\vec{x})$  between cell centers.
- Surface is taken where  $\phi(\vec{x}) = 0$





# Meshes



[Brochu et al 2010]

### Meshes

Store a triangle mesh.

Advect its vertices, and correct for collisions.



### PIC and FLIP Fluids (Hybrid Methods)

- PIC stands for (Particle-In-Cell)/FLIP stands for (Fluid-Implicit-Particle).
- Is a hybrid method which uses both Lagrangian and Eulerian methods
- Mixes the perspectives of solving the system from a particle point of view and solving the system from a grid point of view (Eulerian).

Why - Easier to solve for forces such as pressure on a uniform grid and track particle attributes such as position and velocity on the particles themselves.

Advantages - Fast simulation speed and acceptable accuracy for visual effects.



### **Hybrid Methods - Particle in Cell (PIC)**

 Particle in Cell (PIC) transfers particle mass and velocities to grid



$$m_i^n = \sum_p w_{ip}^n m_p,$$

$$m_i^n \mathbf{v}_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n,$$



using the neighborhood (kernel) weighting function:  $w_{ip}^n = N(\mathbf{x}_p^n - \mathbf{x}_i)$ 

- Next PIC updates grid velocities using grid-based pressure and force values
- Finally, PIC transfers the updated grid velocities back to the particles



Grid evolution: 
$$\mathbf{v}_i^n \to \tilde{\mathbf{v}}_i^{n+1}$$

$$\mathbf{v}_p^{n+1} = \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1}$$

### **Hybrid Methods - PIC Summary**

Advection handled with particles, but everything else computed on the grid

- Fluid velocity at a grid point are initialized as average of particles in the neighborhood
- Fluid velocity updated on the grid using the nonadvection part of the NS equations
- New particle velocities computed by interpolating updated grid values
- This results in particles moving through space according to the grid velocity field
- A major problem with PIC is that repeatedly averaging and interpolating the fluid variables causes numerical dissipation, which smooth out fluid details and motions.
- ⇒ As a result, it severely dampens rotational motion.



### Hybrid Methods – Fluid Implicit Particle (FLIP)

 Fluid Implicit Particle (FLIP) transfers particle mass and change in velocities to grid



$$m_i^n = \sum_p w_{ip}^n m_p,$$

$$m_i^n \mathbf{v}_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n,$$



using the neighborhood (kernel) weighting function:  $w_{ip}^n = N(\mathbf{x}_p^n - \mathbf{x}_i)$ 

- Next PIC updates grid velocities using grid-based pressure and force values
- Finally, PIC transfers the <u>changes in updated grid velocities</u> back to the particles



Grid evolution: 
$$\mathbf{v}_i^n \to \tilde{\mathbf{v}}_i^{n+1}$$

$$\mathbf{v}_p^{n+1} = \mathbf{v}_p^n + \sum_i w_{ip}^n (\tilde{\mathbf{v}}_i^{n+1} - \mathbf{v}_i^n)$$

### **Hybrid Methods – FLIP Summary**

- Achieved almost total absence of numerical dissipation
  - Makes particles the fundamental representation of the fluid
  - Use the auxiliary grid simply to increment the particle variables according to the change computed on the grid



Develops Noise

# PIC and FLIP Implementation Summary

### Particle and Grid Update Equations

| PIC                                                                                 | FLIP                                                                                                  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $m_i^n = \sum_p w_{ip}^n m_p$                                                       | $m_i^n = \sum_p w_{ip}^n m_p$                                                                         |
|                                                                                     |                                                                                                       |
|                                                                                     | 8                                                                                                     |
| $m_i^n \mathbf{v}_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n$                         | $m_i^n \mathbf{v}_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n$                                           |
| Grid evolution: $\mathbf{v}_i^n \to \tilde{\mathbf{v}}_i^{n+1}$                     | Grid evolution: $\mathbf{v}_i^n \to \tilde{\mathbf{v}}_i^{n+1}$                                       |
| $\mathbf{v}_p^{n+1} = \sum_i w_{ip}^n \tilde{\mathbf{v}}_i^{n+1}$                   | $\mathbf{v}_p^{n+1} = \mathbf{v}_p^n + \sum_i w_{ip}^n (\tilde{\mathbf{v}}_i^{n+1} - \mathbf{v}_i^n)$ |
|                                                                                     |                                                                                                       |
| $\tilde{\mathbf{x}}_i^{n+1} = \mathbf{x}_i^n + \Delta t \tilde{\mathbf{v}}_i^{n+1}$ | $\tilde{\mathbf{x}}_i^{n+1} = \mathbf{x}_i^n + \Delta t \tilde{\mathbf{v}}_i^{n+1}$                   |
| $\mathbf{x}_p^{n+1} = \sum_i w_{ip}^n \tilde{\mathbf{x}}_i^{n+1}$                   | $\mathbf{x}_p^{n+1} = \sum_i w_{ip}^n \tilde{\mathbf{x}}_i^{n+1}$                                     |

### PIC vs FLIP

- PIC(Particle-in-Cell) viscous flows, such as sand
- FLIP(fluid Implicit-Particle) inviscid flows, such as water
- Use weighted average to tune viscosity



#### References

#### Seminal Works

- Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Francis Harlow, Eddie Welch (1965)
- Stable Fluids, Jos Stam (1999)
- Practical Animation of Liquids, Nick Foster, Ronald Fedkiw (2001)
- Animation and Rendering of Complex Water Surfaces, Douglas Enright, Stephen Marschner, Ronald Fedkiw (2002)
- "Real-Time Stable Fluid Dynamics for Games" [Stam, 2003]

#### Other Sources

- Fluid Simulation, Robert Bridson, Matthias Muller (SIGGRAPH 2007 Course 31)
- Real-Time Simulation and Rendering of 3D Fluids, Keenan Crane, Ignacio Llamas, Sarah Tariq (2008, GPU Gems3, chapter30)
- Real-Time Water Rendering, Claes Johanson (Master of Science thesis 2004)
- Real-Time Eulerian Water Simulation Using a Restricted Tall Cell Grid, Nuttapong Chentanez, Matthias Muller (2011)
- Robert Bridson's SIGGRAPH 2007 Fluid Course notes:

http://www.cs.ubc.ca/~rbridson/fluidsimulation/

#### **Additional References**

Fluid Simulation for Computer Graphics - Robert Bridson. 2008

Animating fluid sediment mixture in particle-laden flows | ACM Transactions on Graphics

<u>Microsoft PowerPoint - GDC2008.ppt (ubm-twvideo01.s3.amazonaws.com)</u> Fast Water Simulation using Height Fields

http://plaza.ufl.edu/ebrackear/ MAC Grid Representation

https://cg.informatik.uni-freiburg.de/intern/seminar/gridFluids\_fluid-EulerParticle.pdf MAC Grid Representation

An overview of smoothed particle hydrodynamics for simulating multiphase flow - ScienceDirect SPH

https://abaqus-docs.mit.edu/2017/English/SIMACAEANLRefMap/simaanl-c-sphanalysis.htm SPH

LS\_Models.pptx (drexel.edu) Level Set Surfaces

A multiple marker level-set method for simulation of deformable fluid particles - ScienceDirect Marker Particles