

INF05010 - OTIMIZAÇÃO COMBINATÓRIA

Branch and Bound

André Grahl Pereira Busca Combinatória Heurística e Complexidade: Problemas de Planejamento de Movimentos (Sokoban)

Introdução

Enumeração Completa:

- Através da enumeração exaustiva de todas as soluções admissíveis é possível obter a solução ótima.
- Proibitivo mesmo para problemas pequenos.

Enumeração Implícita:

- Usa um método de busca inteligente que cobre todas as possíveis soluções.
- Avaliando explicitamente apenas um pequeno conjunto de soluções e ignorando (possivelmente) um grande número de soluções de menor qualidade.

Introdução: Divisão e Conquista

Ideia:

- Divisão:
 - Dividir o problema uma série de problemas mais fáceis.
- Conquista:
 - Resolver os problemas mais fáceis e combina-los para resolver o problema original.

Formalmente:

Seja $\{S_1, S_2, ..., S_k\}$ uma decomposição de S, i.e. $S = S_1 \cup S_2 \cup ... \cup S_k$. Se $z^k = \min\{cx : x \in S_k\}, k = 1, ..., K$, então $z = \min_k z^k$.

Introdução: Divisão e Conquista

Exemplo: $S = \{0,1\} = \mathbb{B}^3$

Introdução: Branch and Bound (BnB)

■ Técnica geral para problemas de otimização combinatória.

"Branch and Bound is by far the most widely used tool for solving large scale NP-Hard combinatorial optimization problems." Clausen, 1999.

Branching:

Divisão do problema.

Bounding:

Processo de conquista.

Podas

- A eficiência do método vêm da capacidade de podar soluções parciais.
- Para rejeitar uma solução parcial, é preciso ter certeza que o custo da solução parcial excede o custo de uma solução anteriormente encontrada.
- Assim, limites são calculados para cada solução parcial.

■ Tipo de Podas:

- Caso 1: poda por otimalidade.
- Caso 2: poda por limitante.
- Case 3: poda por inviabilidade.

(Exemplos supondo o calculo de um limite inferior para um problema de minimização)

Poda por Otimalidade

• Solução conhecida é a melhor possível para a subárvore, $\overline{z_i} = \underline{z_i}$.

Em S_1 é conhecida uma solução de custo 20 e ela é ótima, pois custo de qualquer solução de S_1 é ≥ 20 .

Poda por Limitante

• Limite inferior da subárvore $\underline{z_i}$ é maior que o limite superior \overline{z} .

Poda por Inviabilidade

■ Subárvore z_i é inviável.

Mochila 0-1:
$$8x_1 + 5x_2 + 2x_3 \le 10$$

A soma dos pesos em S_4 ultrapassa a capacidade da mochila.

Algoritmo DFBnB

```
Intância: P = min\{c^tx | Ax \le b, x \in \mathbb{Z}_+^n\}.
Saida: Solução inteira ótima.
1. \ \overline{z} \coloneqq \infty
2. S := \{P\}
3. while S \neq \emptyset do
4. N \coloneqq S.pop()
5. for each child N_i of N do
           if z(N_i) < \overline{z} then
              S := S \cup \{N_i\}
    end if
           if is Feasible (N_i) then
               \overline{z} := \min(\overline{z}, z(N_i))
10.
            end if
      end for
13. end while
```

 $\begin{pmatrix} A \end{pmatrix}$

Algoritmo BFBnB

```
Intância: P = \min\{c^t x | Ax \le b, x \in \mathbb{Z}_+^n\}.
Saida: Solução inteira ótima.
1. \overline{z} := \infty
2. Q := \{P\}
3. while Q \neq \emptyset do
4. N \coloneqq Q.pop()
   if isFeasible(N) then
   return N
   end if
    for each child N_i of N do
9.
       if z(N_i) < \overline{z} then
10. Q := Q \cup \{N_i\}
11. end if
12. if is Feasible (N_i) then
             \overline{z} := \min(\overline{z}, z(N_i))
13.
14.
    end if
15.
       end for
16. end while
```

(A)

0 4

<u>z</u>=∞

Ordem de Percurso: DFBnB vs BFBnB

- Arvore completa possui 16 vértices.
- No exemplo, a estratégia de DFBnB gerou 10 nós e a estratégia BFBnB gerou 9 nós .

Deep First:

- Limitantes são encontrados mais rapidamente.
- Uso de memória linear.
- Recalculo de limitantes eficiente (Simplex Dual).
- Custo alto, se solução ótima encontrada tarde.

Best First:

- Minimiza o número de nós explorados.
- Nunca explora nós com limites inferiores maiores que o valor da solução ótima.
- O algoritmo para assim que um nó solução é desempilhado.
- Uso de memória exponencial.
- Necessário calculo completo dos limitantes.

Programação Inteira

- Branching:
 - **=** 5

- Bounding:
 - **.** 3

Programação Inteira

- Branching:
 - Adição de uma restrição.
- Bounding:
 - **•** ?

Programação Inteira

Branching:

Adição de uma restrição.

Bounding:

■ Relaxação linear.

Exemplo: DFBnB usando Programação Linear

max
$$z = 4x_1 - x_2$$

s. a. $7x_1 - 2x_2 \le 1$
 $2x_1 - 2x_2 \le 3$
 $x_2 \le 3$
 $x_1 e \ x_2 inteiros$

- Solução do PL: $x_1^* = \frac{20}{7}$, $x_2^* = 3$
- Limitante Superior: $\bar{z} = \frac{59}{7}$
- Limitante Inferior: $\underline{z} = -\infty$

Branching:

Escolher variável fracionaria x_i^* e fazer:

$$S_1 = S \cap \{x \in \mathbb{R} : x_j \le \lfloor x_j^* \rfloor\}$$

$$S_2 = S \cap \{x \in \mathbb{R} : x_j \ge \lceil x_j^* \rceil\}$$

- x^* não é viável nem S_1 nem em S_2 .
- Limitante superior vai diminuir.

No exemplo:

$$S_1 = S \cap \{x \in \mathbb{R} : x_1 \le 2\}$$

 $S_2 = S \cap \{x \in \mathbb{R} : x_1 \ge 3\}$

 $\underline{\mathbf{z}} = -\infty$

$$S_1: x_1^* = 2, x_2^* = \frac{1}{2}, \bar{z} = \frac{15}{2}$$

 \blacksquare S_2 : podado por inviabilidade.

- $S_4: x_1^* = 2, x_2^* = 1, \bar{z} = 7$
- Solução inteira viável: poda por otimalidade.

- $S_3: x_1^* = 3/2, x_2^* = 0, \bar{z} = 6$
- $\blacksquare S_3$ podado por limitante.

Programação Linear: Branching

Variável Fracionaria:

- Variável mais próxima de 0.5. (Mais fracionaria (Usual))
- Variável com maior impacto na função objetivo.
- Variável com maior custo para se torna inteira.
- Variável com menor índice.

Possivelmente mais complexo e depende-te do problema.

Implementação: Ordem de Exploração

DFBnB:

- Escolha do nó filho a ser explorado tem impacto no algoritmo.
- Preferir nós com melhores limitantes.

BFBnB:

- Regra de desempate para nós com limitante igual tem impacto no algoritmo.
- Exemplo: Preferir soluções primeiro.

Implementação: Heurísticas e Limitantes

• Heurísticas:

 Uso de heurísticas para tentar integralizar soluções e assim obter limitantes mais cedo na busca.

Limitantes:

- Qualidade dos limitantes tem grande impacto na eficiência do algoritmo.
- Limitantes mais eficientes vs custo computacional.

Implementação: Limitantes

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

1	5	2	3
4		6	7
8	9	10	11
12	13	14	15

Implementação: Limitantes

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

1	5	2	3
4		6	7
8	9	10	11
12	13	14	15

■ 24-Puzzle e Distance Manhattan: 65 mil anos.

Implementação: Limitantes

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

1	5	2	3
4		6	7
8	9	10	11
12	13	14	15

- 24-Puzzle e Distance Manhattan: 65 mil anos.
- 24-Puzzle e Pattern Databases: de segundos a algumas horas.

Referências

- Algorithms, S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani.
- Heuristic Search: Theory and Applications, S. Edelkamp, S. Schroedl.
- Notas de Aula, INF05010 Otimização Combinatoria.
- Applied Integer Programming Modeling and Solution, D.S. Chen, R. G. Batson, Y. Dang.
- Slides, Prof. Cid Carvalho de Souza.

Exemplo: TSP

Figura questão 1:

$$x_{1} = 3 \qquad x_{1} \leq 3 \qquad 1 \qquad x_{1} \geq 4$$

$$x_{2} = 3.5$$

$$\overline{z} = 35$$

$$x_{1} = 3 \qquad x_{2} = 3.6$$

$$\overline{z} = 34.5$$

$$x_{2} = 3 \qquad 3$$

$$x_{1} = 1 \qquad x_{2} = 4$$

$$\overline{z} = 32.5$$

$$x_{2} \leq 4 \qquad 5 \qquad x_{2} \geq 5$$

$$x_{1} = 1 \qquad x_{2} \leq 4$$

$$x_{2} \leq 4 \qquad 5 \qquad x_{3} \geq 5$$

$$x_{2} \leq 4 \qquad 5 \qquad x_{4} \leq 5$$

$$x_{5} = 31$$

$$x_{1} = 1 \qquad x_{2} \leq 4$$

$$x_{1} = 1 \qquad x_{3} \leq 5$$

$$x_{2} \leq 4 \qquad 5$$

$$x_{3} = 31$$

$$x_{4} = 1 \qquad x_{5} = 3$$

$$x_{5} = 3$$

$$x_{6} = 3$$

$$x_{1} = 1 \qquad x_{1} \leq 1$$

$$x_{2} = 4 \qquad 5$$

$$x_{3} = 3$$

$$x_{4} = 1 \qquad x_{5} = 3$$

$$x_{5} = 3$$

$$x_{6} = 3$$

$$x_{1} = 1 \qquad x_{1} \leq 1$$

$$x_{2} = 4 \qquad 5$$

$$x_{3} = 3$$

$$x_{4} = 3$$

$$x_{5} = 3$$

$$x_{5} = 3$$

$$x_{6} = 3$$

$$x_{1} = 1 \qquad x_{2} \leq 4$$

$$x_{1} = 1 \qquad x_{2} \leq 4$$

$$x_{2} = 3$$

$$x_{3} = 3$$

$$x_{4} = 3$$

$$x_{5} = 3$$

$$x_{5} = 3$$

$$x_{7} = 3$$

$$x_{8} = 3$$

$$x_{8} = 3$$

$$x_{1} = 3$$

$$x_{2} = 4$$

$$x_{3} = 3$$

$$x_{4} = 3$$

$$x_{5} = 3$$

$$x_{5} = 3$$

$$x_{7} = 3$$

$$x_{8} = 3$$

$$x_{8} = 3$$

$$x_{8} = 3$$

 $x_1 = 3.5$

$$x_{2} = 0$$

$$\overline{z} = 39$$

$$x_{1} = 1$$

$$x_{2} = 1.5$$

$$\overline{z} = 37.5$$

$$x_{2} \le 1$$

$$x_{2} \le 1$$

$$x_{3} = 0$$

$$x_{1} = 0$$

$$x_{2} = 1$$

$$x_{2} = 1$$

$$\overline{z} = 32$$

$$x_{1} = 0$$

$$x_{2} = 3.25$$

$$\overline{z} = 35.75$$

$$x_{2} \le 4$$

$$x_{1} = 0$$

$$x_{2} \le 3$$

$$x_{3} = 0$$

$$x_{4} = 0$$

$$x_{5} = 35.75$$

$$x_{5} = 35.75$$

$$x_{6} = 0$$

$$x_{1} = 0$$

$$x_{1} = 0$$

$$x_{2} = 3$$

$$\overline{z} = 33$$

$$x_{1} \ge 1$$

$$x_{2} \ge 4$$

$$x_{3} = 0$$

$$x_{4} \ge 1$$

$$x_{5} = 0$$

$$x_{5} = 0$$

$$x_{7} = 0$$

$$x_{7} = 0$$

$$x_{8} = 0$$

 $x_1 = 1.86$

