Numerical Analysis homework 12: RLC Circult

Due on Tuesday, May 22, 2017

102061149 Fu-En Wang

Introduction 1

For a simple RLC circuit as Figure 1:

Figure 1: RLC circult

The system consists of several ordinary differential equations:

$$\frac{v_1 - V}{R} + i_L = 0 \tag{1}$$

$$\frac{dv_2}{dt} = \frac{i_L}{C} \tag{2}$$

$$\frac{dv_2}{dt} = \frac{i_L}{C} \tag{2}$$

$$\frac{di_L}{dt} = \frac{v_1 - v_2}{L} \tag{3}$$

In this homework, we will implement three algorithm to solve the ODE above.

1.1 Forward Euler

Forward Euler is to model ODE as

$$x(t+h) = x(t) + h * f(t)$$

and the system can be derived as

$$v_1(t+h) = V + Ri_L(t+h) \tag{4}$$

$$v_2(t+h) = v_2(t) + \frac{h}{C}i_L(t)$$
 (5)

$$i_L(t+h) = i_L(t) + \frac{h}{L}(v_1(t) - v_2(t))$$
(6)

1.2 **Backward Euler**

Backward Euler is to model ODE as

$$x(t+h) = x(t) + h * f(t+h)$$

and the system can be derived as

$$v_1(t+h) = V + Ri_L(t+h) \tag{7}$$

$$v_2(t+h) = v_2(t) + \frac{h}{C}i_L(t+h)$$
 (8)

$$i_L(t+h) = i_L(t) + \frac{h}{L}(v_1(t+h) - v_2(t+h))$$
(9)

After some mathematical tricks, $i_L(t+h)$ can be derived as

$$i_L(t+h) = \frac{i_L(t) - \frac{h}{L}v_2(t) + \frac{hV}{L}}{1 + \frac{h^2}{LC} + \frac{hR}{L}}$$
(10)

1.3 Trapezoidal

Trapezoidal is to model ODE as

$$x(t+h) = x(t) + h * \frac{f(t+h) + f(t)}{2}$$

and the system can be derived as

$$v_1(t+h) = V + R \frac{i_L(t+h) + i_L(t)}{2}$$
(11)

$$v_2(t+h) = v_2(t) + \frac{h}{2C}(i_L(t+h) + i_L(t))$$
(12)

$$i_L(t+h) = i_L(t) + \frac{h}{2L}(v_1(t+h) - v_2(t+h) + v_1(t) - v_2(t))$$
(13)

After some mathematical tricks, $i_L(t+h)$ can be derived as

$$i_L(t+h) = \frac{\left(1 - \frac{h^2}{4LC}\right)i_L(t) + \frac{h}{2L}(V + v_1(t) - 2v_2(t))}{1 + \frac{h^2}{4LC} + \frac{hR}{2L}}$$
(14)

2 Implementation

Algorithm 1 Ordinary Differential Equation

t = start **while** $t < end_time$ **do**Compute x(t + h) $t + end_time$

end while

3 Discussion

In this section, we will discuss the result for different h and algorithm.

3.1 Forward Euler

When h = 0.1, Figure 2 shows v1, v2 and i_L for $h \le t \le 10$

Figure 2: Forward Euler(h = 0.1)

For the maximum and minimum value oof v1, v2 and i_L , Table 1 shows the result.

Forward	V1	V2	iL
Max	1.1139	1.19627	0.581654
Min	0.418346	0	-0.113905

Table 1: Max/Min of Forward Euler(h = 0.1)

When h = 0.01, Figure 3 shows v1, v2 and i_L for $h \le t \le 10$

Figure 3: Forward Euler(h = 0.01)

For the maximum and minimum value oof v1, v2 and i_L , Table 2 shows the result.

Forward	V1	V2	iL
Max	1.09125	1.16602	0.549617
Min	0.450383	0	-0.0912488

Table 2: Max/Min of Forward Euler(h = 0.01)

3.2 Backward Euler

When h = 0.1, Figure 4 shows v1, v2 and i_L for $h \le t \le 10$

Figure 4: Backward Euler(h = 0.1)

For the maximum and minimum value of v1, v2 and i_L , Table 3 shows the result.

Backward	V1	V2	iL
Max	1.07026	1.13651	0.515275
Min	0.484725	0	-0.0702564

Table 3: Max/Min of Backward Euler(h = 0.1)

When h = 0.01, Figure 5 shows v1, v2 and i_L for $h \le t \le 10$

Figure 5: Backward Euler(h = 0.01)

For the maximum and minimum value oof v1, v2 and i_L , Table 4 shows the result.

Backward	V1	V2	iL
Max	1.08694	1.16011	0.543012
Min	0.456988	0	-0.0869399

Table 4: Max/Min of Backward Euler(h = 0.01)

3.3 Trapezoidal

When h = 0.1, Figure 6 shows v1, v2 and i_L for $h \leq t \leq 10$

Figure 6: Trapezoidal(h = 0.1)

For the maximum and minimum value oof v1, v2 and i_L , Table 5 shows the result.

Trap	V1	V2	iL
Max	1.08936	1.16346	0.546816
Min	0.453184	0	-0.0893592

Table 5: Max/Min of Trapezoidal(h = 0.1)

When h = 0.01, Figure 7 shows v1, v2 and i_L for $h \le t \le 10$

Figure 7: Trapezoidal(h = 0.01)

For the maximum and minimum value oof v1, v2 and i_L , Table 6 shows the result.

Trap	V1	V2	iL
Max	1.08907	1.16304	0.546298
Min	0.453702	0	-0.0890672

Table 6: Max/Min of Trapezoidal(h = 0.01)

3.4 Comparison

For convenient purpose, I merge the four tables above as Table 7 and 8

Forward	V1	V2	iL
Max	1.1139	1.19627	0.581654
Min	0.418346	0	-0.113905
Backward	V1	V2	iL
Max	1.07026	1.13651	0.515275
Min	0.484725	0	-0.0702564
Trap	V1	V2	iL
Max	1.08936	1.16346	0.546816
Min	0.453184	0	-0.0893592

Table 7: Max/Min(h = 0.1)

Forward	V1	V2	iL
Max	1.09125	1.16602	0.549617
Min	0.450383	0	-0.0912488
Backward	V1	V2	iL
Max	1.08694	1.16011	0.543012
Min	0.456988	0	-0.0869399
Trap	V1	V2	iL
Max	1.08907	1.16304	0.546298
Min	0.453702	0	-0.0890672

Table 8: Max/Min(h = 0.01)

From the two tables, we can find that the value of Trapezoidal is between that of Forward and Backward Euler. Recall from Section 1.3, the formula of Trapezoidal is:

$$x(t+h) = x(t) + h * \frac{f(t+h) + f(t)}{2}$$

The part $\frac{f(t+h)+f(t)}{2}$ is the mean value of that of Forward and Backward. As a result, it seems reasonable we got a value between the two method.