

Dr. Esther Daniel Asso. Prof, Department of CSE

Course Objectives

- understand the key concepts of data science and its applications
- gain in-depth knowledge on statistical and machine learning techniques
- implement simple applications and analyze the results using relevant tools

Course Outcomes

- remember the key concepts of data science, data characteristics, its applications and the toolkit used by data scientists
- recall the mathematical concepts for descriptive and statistical analysis of the given dataset
- discuss on the principle operation of various supervised and unsupervised machine learning techniques
- select appropriate mathematical machine learning techniques for solving real world problems.
- apply the relevant techniques for implementing solutions to solve real world problems
- access the performance of prediction, classification and recommendation of machine learning techniques

Syllabus

Module 1: Basics of Data Science

Introduction to Data science: Applications of data science - Properties of Data: Exploring various dataset in different repositories - Tool Boxes for Data Scientist

Module 2: Understanding Data

Working with Data: Import, Select, Filter, Manipulate, sort, group, rearrange, rank and analyze the data for missing data values. Data visualization: Plot various plots for the given dataset

Module 3: Statistical Inference

Descriptive statistics, Exploratory Data Analysis: Calculate the mean, median, variance and standard deviation for the given small and large dataset, analyze the correlation between the variables in the dataset, Estimation, Hypothesis Testing: Formulate Null and Alternative hypothesis for real world use cases

Syllabus

Module 4: Supervised Learning

Introduction to machine learning, Types of machine learning, Linear, Multiple, Logistic and Polynomial Regression: Applications in transport, gaming and banking. KNN, Decision Trees: Applications in precision farming and smart building, calculate the performance metrics of regression and classification techniques.

Module 5: Unsupervised Learning

Clustering, Similarity and Distance measure, K means clustering: sentiment analysis. Agglomerative Clustering: gene expression data analysis, Graph based clustering techniques: smart city application

Module 6: Recommender System

Content Based Filtering, Collaborative Filtering: Developing a retail recommendation system, Hybrid Recommenders: Hotel recommendation system - Evaluating Recommenders

Text Books

- Laura Igual, Santi Seguí, "Introduction to Data Science: A Python Approach to Concepts, Techniques and Applications", Springer, 1st ed. 2017 Edition, ISBN 978-3-319-50016-4e-ISBN 978-3-319-50017-1.
- Steven S. Skiena, "The Data Science Design Manual", Springer, 1st ed. 2017, ISBN 978-3-319-55443-3.

Reference Books/links:

- Steven Cooper, "Data Science from Scratch: The #1 Data Science Guide for Everything A Data Scientist Needs to Know: Python, Linear Algebra, Statistics, Coding, Applications, Neural Networks, and Decision Tree", 2018, ISBN-10: 1723141208, ISBN-13: 978-1723141201.
- Cathy O'Neil and Rachel Schutt, "Doing Data Science, Straight Talk from The Frontline". O'Reilly, 2014. ISBN: 978-1-449-35865-5.
- Sinan Ozdemir, "Principles of Data Science", Packt Publishing Limited, 2016 ISBN 10: 9781785887918, ISBN 13: 978-1785887918
- V. K. Jain, "Data Science and Analytics", Khanna Publishing First edition, 2018, ISBN 10: 9789386173676, ISBN 13: 978-9386173676.
- Jake VanderPlas, "Python Data Science Handbook: Essential Tools for Working with Data", Shroff/O'Reilly,2016, ISBN-10: 9352134915, ISBN-13: 978-9352134915
- Peter Morgan, "Data Science from Scratch with Python: Step-By-Step Guide", Createspace Independent Publishing Platform, 2nd edition, 2018, ISBN-10: 1726020681, ISBN-13: 978-1726020688.

DATA & Types of DATA

DATA GROWTH

1 exabyte (EB) = 1,000,000,000,000,000,000 bytes

One zettabyte is equal to 1, 000 exabytes or 1, 000, 000, 000, 000, 000, 000 bytes

Volume of data created, captured, copied, and consumed worldwide

The volume of data generated, consumed, copied, and stored is projected to exceed 180 zettabytes by 2025

(credit Roy Williams, Center for Advanced Computing Research at the California Institute of Technology).

- Kilo- means 1,000; a Kilobyte is one thousand bytes.
- Mega- means 1,000,000; a Megabyte is a million bytes.
- Giga- means 1,000,000,000; a Gigabyte is a billion bytes.
- Tera- means 1,000,000,000,000; a Terabyte is a trillion bytes.
- Peta- means 1,000,000,000,000,000; a Petabyte is 1,000 Terabytes.
- Exa- means 1,000,000,000,000,000,000; an Exabyte is 1,000 Petabytes.
- Zetta- means 1,000,000,000,000,000,000,000; a Zettabyte is 1,000 Exabytes.
- Yotta- means 1,000,000,000,000,000,000,000,000; a Yottabyte is 1,000 Zettabytes.

Examples of Data Volumes

Unit	Value	Example
Kilobytes (KB)	1,000 bytes	a paragraph of a text document
Megabytes (MB)	1,000 Kilobytes	a small novel
Gigabytes (GB)	1,000 Megabytes	Beethoven's 5th Symphony
Terabytes (TB)	1,000 Gigabytes	all the X-rays in a large hospital
Petabytes (PB)	1,000 Terabytes	half the contents of all US academic research libraries
Exabytes (EB)	1,000 Petabytes	about one fifth of the words people have ever spoken
Zettabytes (ZB)	1,000 Exabytes	as much information as there are grains of sand on all the world's beaches
Yottabytes (YB)	1,000 Zettabytes	as much information as there are atoms in 7,000 human bodies

Data We Create Online in 60 Seconds

A DAY IN DATA

The exponential growth of data is undisputed, but the numbers behind this explosion - fuelled by internet of things and the use of connected devices - are hard to comprehend, particularly when looked at in the context of one day

> 320bn emails to be sent

each day by 2021

every day

Facebook, including

350m photos

hours of video

DEMYSTIFIYING DATA UNITS

From the more familiar 'bit' or 'megabyte', larger units of measurement are more frequently being used to explain the masses of data

Unit	Value	Size
B 14	Owt	1/8 of a byte
B byte	8 tolts.	1 byte
KE klobyte	1,000 bytes	1,000 bytes
MB megabyte	1,000 ^f bytes	1,000,000 bytes
GB gigsbyte	1.000° bytes	1,000,000,000 bytes
TB terabyte	1,000" bytes	1,000,000.000.000 tytes
PB petabyte	1,000° bytes	1,000,000,000,000,000 bytes
EB exabyte	1,000° bytes	1,000,000,000,000,000,000 bytes
ZB settabyte	1,000' bytes	1,000,000,000,000,000,000,000 bytes
Will and statements	1 DOOR to bear	1,000,000,000,000,000,000,000,000,000

100m watch time

306bn emails to be sent each day by 2020 3.9bn

of data produced by a connected car

ACCUMULATED DIGITAL UNIVERSE OF DATA

5bn Searches made a day Searches made 3.5bn a day from Google

463EB

of data will be created every day by 2025.

shared on Instagram

Structured data

Database, CRM, ERP

Unstructured data

Text, audio, videos

Structured Data

0.103	0.176	0.387	0.300	0.379	
0.333	0.384	0.564	0.587	0.857	
0.421	0.309	0.654	0.729	0.228	
0.266	0.750	1,056	0.936	0.911	
0.225	0.326	0.643	0.337	0.721	
0.187	0.586	0.529	0.340	0.829	
0.153	0.485	0.560	0.428	0.628	

I need a room full of mirrors so I can be surrounded by winners.

10/31/14, 1:05 AM

21.6K RETWEETS 16.1K FAVORITES

...

.@DaveinOsaka moved to Osaka and is exploring his city, one broadcast at a time #TravelTuesday

8:49 PM - 17 May 2016

140

Donald J. Trump 📀 @realDonaldTrump

Me me

Me me

280

This is so deep 😂 😂

Structured Data

Unstructured Data

80%

Can be displayed in rows, columns and relational databases

XY 1 2 A A1 A2 B B1 B2 C C1 C2 D D1 D2

Numbers, dates and strings

0,1,2, 3,4,5, 6,7,8, UST 4,2025 VZ, D,E F+G-H,

20%

•••

Estimated 20% of enterprise data (Gartner)

Requires less storage

Easier to manage and protect with legacy solutions

Cannot be displayed in rows, columns and relational databases

Images, audio, video, word processing files, e-mails, spreadsheets

Estimated 80% of enterprise data (Gartner)

Requires more storage

More difficult to manage and protect with legacy solutions

Categorical vs Quantitative Data

Categorical Data

- Deals with descriptions.
- Data can be observed but not measured.
- Colors, textures, smells, tastes, appearance, beauty, etc.
- Categorical → Description

Quantitative Data

- Deals with numbers.
- Data which can be measured.
- Length, height, area,
 volume, weight, speed, time,
 cost, age, etc.
- Quantitative → Quantity

Examples

Quantitative Data ("Numerical")

- Height of 1st graders
- Weight of sumo wrestlers
- Duration of red lights
- Age of Olympians
- · Distance of planets
- Money in 401k plans
- Temperature of coffee (200 F)

Qualitative Data

- ("Categorical")
- Happiness ratingGender
- · Pass/Fail
- · Eye Color
- Interview transcript
- Categories of plants
- Descriptive temperature of coffee ("very hot"

Nama	Tuna	Λ	Fyamulas
Name	Туре	Appearance	Examples
Discrete	Numeric	Integers	pairs of shoes, books owned, children
Continuous	Numeric	Decimals	Time spent, speed, weight
Nominal	Categorical	Words no order	Race, shoe color, car type
Ordinal	Categorical	Words with order	Education, happiness

Changes in 11 Systems

A new style of IT emerging

Every 60 seconds

98,000+ tweets

695,000 status updates

11million instant messages

698,445 Google searches

168 million+ emails sent

1,820TB of data created

217 new mobile web users

Big Data challenges

DATA CHALLENGES

Volume, Velocity, Variety, Veracity, Data discovery

PROCESSING CHALLENGES

Data collection Resolving similarities Modification of data Data analysis Output representation

BIG DATA

MANAGEMENT CHALLENGES

Data privacy
Data security
Governence and
ethical issues

DATA SCIENCE

Why Data Science?

- We hear a lot about how artificial intelligence and machine learning are going to change the world and how the Internet of Things will make everyone's life easier.
- But in reality, the one thing that underpins all of these **revolutionary** technologies is "data".
- In a world that is approaching a digital space, organizations deal with an immeasurable amount of structured and unstructured data every day. This data can be collected from various possible sources, out of which the most common sources are the self-directed interviews, surveys, observations, and experiments.
- The data can also be collected from other sources such as research done by various researchers, online surveys, various government organizations, social media accounts, etc.
- Well, this data is known as Big Data.

Data Science-Definition

Scientific Methods

- <u>Data Science</u> is a "detailed study of the flow of information from the colossal amounts of data present in an organization. Data Science can be simply defined as the process of analyzing data for making a decision/marketing decision".
 - Involves obtaining meaningful insights from new and unstructured data which can be processed through analytical, programming and business skills.
 - Deals with nature of data, types of data, visualizing, analyzing, modeling, Machine Learning and Neural Network etc.
 - It brings together a lot of skills like Machine learning, Statistics, Mathematics and business domain knowledge.

Way of Data Science...

Statistics

Data Mining

Predictive Analysis

Data Science

Example

• Let's consider an **example**, suppose you have decided to buy electronic items for your home online. So you will have to take a sequence of decisions for buying the items.

Selection of Website

Data Scientist

• A Data Scientist is a professional who collects and organizes the data and then analyzes it for meaningful and actionable insights by using various statistical approaches.

• The job of a Data Scientist requires knowledge of **math**, **science**, **statistics**, and **computer**.

SCOPE OF DATA SCIENCE

Data Scientist Job Postings

1.5 MILLION

Career Opportunities for managers capable of reaping actionable insights from big data

Top Industries:

Big Data Developer

Companies that hire Big Data Hadoop Architect -

TCS doubles pay for fresh hires with new-age skills

Offers 1,000 New Recruits ₹6.5L Instead Of Usual ₹3.5L

Avik Das & Shilpa Phadnis Tow

Bengaluru: Tata Consoltuncy Services (TCS) has offered about 1,000 freshers. with new-age digital skills almost double the salary it normally offers those coming out of campuses.

While the entry level salary of Indian engineers in the IT industry has been stuck at about Rs 1.5 lakh per annum for the past decade, TCS is offering those with ry of about Rs 6.5 lakh.

candidates was based on the a chance to write another ir clearing a test focused on test for the digital talent pool. new digital areas. From this and if they clear and go throyear, candidates who per- ugh the interview, then they form exceedingly well in its will get into the digital pool online National Qualifier and their compensation will Test (NQT), about which TOL be differentiated," Ajoy reported recently, will also. Mukberjee, executive VP. get an opportunity to take a shot at that examination.

TCS, one of the biggest recruiters from Indian engi-

neering colleges, usually visits its accredited colleges to conduct a test followed by an interview. This process is godigital skills a starting sala-ing to be largely replaced by the NQT. "People who have The selection of these done well in the NQT will get and head of global human resources, told TOI. The test involves programming with a higher degree of difficulty

compared to the NQT. The test is longer and requires

good coding skills. TCS's move shows the lengths to which companies are ready to go to hire good taless. Employees armed with skills in the fields of machine learning. Al., data analysis are getting better appraisals. across levels. Such specialists are few and in much demand Arecent report by Linkedlin said machine learning engineer, application development analyst, back-end developer, full-stack engineer and data scientist constitute the top five jobs in India.

with demand for them growing by 43, 32, 23, 18 and 14 times respectively in the last five years. Companies often have to spend significantly on training employees to acquire such skills.

TCS's NQT launched this year, has enabled it to reach out to a far larger student talent base, as also complete the recruitment process in 3-4 weeks, compared to the 3-4 months it took under the traditional process.

Mukherjee would not comment on the number of people who would be hired. this year as part of the digital pool, saying that the process is still on, but added that the numbers would be nearly the same or higher compared to the 1,000 it did in the last academic year.

Apart from this process. TCS also does select hiring from the IFFs and NITs, whereit offers compensation packs ges that are even higher.

HIGH DEMAND, SOARING SALARIES

So what's a data scientist?

Generally speaking, practitioners are expected to know statistical analysis, predictive modelling and programming

According to TeamLease. India is staring at a shortage of 200,000 analytics professionals over the next 3 years

Data scientists with 5 years' experience get more than Rs 75 lakh per annum as compared to Rs 8-15 lakh for CAs and Rs 5-8 lakh for engineers with the same work experience

Why Learn Data Science?

Important Data Scientist Job Roles

- Data Scientist
- Data Engineer
- Data Analyst
- Statistician
- Data Architect
- Data Admin
- Business Analyst
- Data/Analytics Manager

 Manages enormous amounts of data to come up with compelling business visions by using various tools, techniques, methodologies, algorithms, etc.

• working with large amounts of data. He develops, constructs, tests, and maintains architectures like large scale processing system and databases.

Data Science Components

Statistics:

Statistics is the most critical unit in Data science. It is the method or science of collecting and analyzing numerical data in large quantities to get useful insights.

Visualization:

Visualization technique helps you to access huge amounts of data in easy to understand and digestible visuals.

Data Science Components

Machine Learning:

Machine Learning explores the building and study of algorithms which learn to make predictions about unforeseen/future data.

Deep Learning:

Deep Learning method is new machine learning research where the algorithm selects the analysis model to follow.

Machine Learning

Deep Learning

Advantages and Disadvantages

Applications of Data science

Internet Search:

 Google search use Data science technology to search a specific result within a fraction of a second

Recommendation Systems:

• To create a recommendation system. Example, "suggested friends" on Facebook or suggested videos" on YouTube, everything is done with the help of Data Science.

Image & Speech Recognition:

• Speech recognizes system like Siri, Google assistant, Alexa runs on the technique of Data science. Moreover, Facebook recognizes your friend when you upload a photo with them, with the help of Data Science.

Applications of Data science

Gaming world:

• EA Sports, Sony, Nintendo, are using Data science technology. This enhances your gaming experience. Games are now developed using Machine Learning technique. It can update itself when you move to higher levels.

Online Price Comparison:

• PriceRunner, Junglee, Shopzilla work on the Data science mechanism. Here, data is fetched from the relevant websites using APIs.

Applications of Data Science

Data Science Life Cycle

ntelliPaat

Data Science Life Cycle

Communication

 Communicating findings to stakeholders and decision makers

Data Discovery

 Searching for different sources of data and capturing structured and unstructured data

DATA SCIENCE

Data Preparation

Converting data into a common format

Getting Things in Action

 Gathering information and deriving outcomes based on business requirements

Mathematical Models

Using variables and equations to establish relationships

Discovery:

- Discovery step involves acquiring data from all the identified internal & external sources which helps you to answer the business question.
- The data can be:
 - Logs from webservers
 - Data gathered from social media
 - Census datasets
 - Data streamed from online sources using APIs

Data Preparation:

- Data can have lots of inconsistencies like missing value, blank columns, incorrect data format which needs to be cleaned.
- Need to process, explore, and condition data before modeling.
- The cleaner the data, the better are the predictions.

Model Planning:

- This stage will help to determine the method and technique to draw the relation between input variables.
- Planning for a model is performed by using different statistical formulas and visualization tools. SQL analysis services, R, and SAS/ACCESS are some of the tools used for this purpose

Model Building:

- In this step, the actual model building process starts.
- Here, Data scientist distributes datasets for training and testing. Techniques like association, classification, and clustering are applied to the training data set. The model once prepared is tested against the "testing" dataset.

Operationalize:

In this stage, you deliver the final baselined model with reports, code, and technical documents. Model is deployed into a real-time production environment after thorough testing.

Communicate Results:

In this stage, the key findings are communicated to all stakeholders. This helps you to decide if the results of the project are a success or a failure based on the inputs from the model.

PROGRAMMING

Top 3 programming languages popular among data scientists

(percent of respondents)

Data Source: Business Broadway

Python Toolbox

NumPy:

- introduces objects for multidimensional arrays and matrices, as well as functions that allow to easily perform advanced mathematical and statistical operations on those objects
- provides vectorization of mathematical operations on arrays and matrices which significantly improves the performance
- many other python libraries are built on NumPy

Link: http://www.numpy.org/

SciPy:

 collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics, Signal processing and more

part of SciPy Stack

built on NumPy

Link: https://www.scipy.org/scipylib/

Pandas:

- adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)
- provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.
- allows handling missing data

Link: http://pandas.pydata.org/

SciKit-Learn:

 provides machine learning algorithms: classification, regression, clustering, model validation etc.

built on NumPy, SciPy and matplotlib

Link: http://scikit-learn.org/

matplotlib:

- python 2D plotting library which produces publication quality figures in a variety of hardcopy formats
- a set of functionalities similar to those of MATLAB
- line plots, scatter plots, barcharts, histograms, pie charts etc.
- relatively low-level; some effort needed to create advanced visualization

Link: https://matplotlib.org/

Bar Graph

Histogram

Scatter Plot

Area Plot

Pie Plot

Seaborn:

- based on matplotlib
- provides high level interface for drawing attractive statistical graphics
- Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Seaborn Plots

Advantages of Python

- Provides good ecosystem of libraries that are robust and varied
- Tight knit integration with big data frameworks like Hadoop, Spark etc
- Supports both object oriented and functional programming paradigms
- Python is reasonably fast to prototype
- Provides support for reading files from local, databases and cloud

Who invented Python?

Guido Van Rossum

Where was it invented?

National Research Institute for Mathematics and computer science

In Which Country?

Netherland

What is the current version of Python?

3.11

Integrated development environment (IDE)

- Software application consisting of a cohesive unit of tools required for development
- Designed to simplify software development
- Utilities provided by IDEs include tools for managing, compiling, deploying and debugging software

Features of IDE

- IDE should centralize three key tools that form the crux of software development
 - Source code editor
 - Compiler
 - Debugger
- Additional features
 - Syntax and error highlighting
 - Code completion
 - Version control

Commonly used IDEs

- Spyder
- PyCharm
- Jupyter Notebook
- Atom

