无线通信实验在线开放课程

主讲人: 吴光 博士

广东省教学质量工程建设项目

LabVIEW 通信编程

(Advanced)

主讲人: 吴光 博士

Email: wug@sustech.edu.cn

Test 1

IF (The input number N is an **even integer**)

IF (The input number N is an **odd integer**)

$$Sum=1+3+5+...+N;$$

Exercise: Test 1

Basic Data Type

Basic Data Type:

Numeric Input

1.23 p

Numeric Output

Boolean Input

String Input

String Output

N	abc	
L	label	IJ

Type	Color	Scalar	1D-Array	2D-Array
Int	Blue			
DBL	Orange			
Boolean	Green			••••••
String	Pink	***************************************	D0000000000000000000000000000000000000	ISSSSSSSSSSSSSSSSSSSSS

Type Mismatch

You have connected two terminals of different types.

The type of the source is double [64-bit real (~15 digit precision)].
The type of the sink is boolean (TRUE or FALSE).

1-Dimension Array

Array

- Multidimensional collections of like data
- Vectors, matrices, array of booleans, etc.

Step 1

Step 2

Step 3

Exercise: Build 1D Array

Exercise: Build 2D Array

Array functions

Cluster

- Collections of unlike data used for conveniently transporting the data from one place to another.
- Similar to the idea of a Struct in C or Matlab.

Exercise: Build a Cluster

Waveform

- t0: Specifies the start time of the waveform.
- dt: Specifies the time interval in seconds between data points in the waveform.
- Y: Specifies the data values of the waveform.

Exercise: Build a Waveform

Waveform functions

Dynamic Data

Dynamic Data

Demo: Blinking LED

Exercise: Blinking LED

Input of Case Selector

(a) Bool Input

(b) Numeric Input


```
IF (Input≤1)
Output1=1;
Elseif (Input>1 && Input≤2)
Output1=2;
Elseif (Input>2 && Input≤3)
Output2=1;
```


Visible Items		
Help		
Examples		
Description and Tip		
Breakpoint •		
Structures Palette		
✓ Auto Grow		
Exclude from Diagram Cleanup		
Conditional Terminal		
Configure Iteration Parallelism		
Replace with While Loop		
Remove For Loop		
Add Shift Register		
Properties		

Introduction to Shift Register

	Left Register	Right Register
i=0	0	0

	Left Register	Right Register
i=1	0	1

	Left Register	Right Register
i=2	1	2

i=3	Left Register	Right Register
	2	3

Initialization of Shift Register

Block Diagram	Firstly	Next
2 N Output	Output = 5	Output = 5
2 N Output	Output = 4	Output = 8

Demo: Shift Register Accumulator

Create a VI to output the sum of numbers from 1 to the number input.

$$Sum(N) = Sum(N - 1) + N$$

Demo: Waveform Display

Demo: Random Noise Display

Demo: Multi-Curve Display

Demo Real Time Display

Demo: XY Graph

Create & Call Sub VI

Create & Call Sub VI

Host computer's IP: **192.168.10.1**

USRP Transmitter

USRP Receiver

Question ?

