How hot are your ions in Differential Mobility Spectrometry?

Christian Ieritano, Joshua Featherstone, Alexander Haack, Mircea Guna, J. Larry Campbell, W. Scott Hopkins

69th ASMS Conference on Mass Spectrometry and Allied Topics

WOH pm 03:50

Why is ion heating important?

Ion mobility is our eye into the gas-phase structure of ions.

DRIFT TUBE IMS

Direct correlation to ion structure (CCS)

Time dispersive

Ambient pressure (~ 1 bar)

Uniform low \vec{E} (<10 Td)

TRAVELLING WAVE IMS

Empirical relationship with ion structure (CCS)

Time dispersive

Low pressure (0.025 - 3 mbar)

Moving and variable low \vec{E} (> 10 Td)

Why is ion heating important?

Structure of gas-phase ions depend on their thermally accessible conformations.

DRIFT TUBE IMS

$$v_d = KE = K_0 N_0 \left(\frac{E}{N}\right)$$

Thermal velocity <<< drift velocity

$$K = \frac{\sqrt{18\pi}}{16} \sqrt{\frac{1}{m_{ion}} + \frac{1}{m_{gas}}} \frac{ze}{\sqrt{k_b T}} \frac{1}{\Omega} \frac{1}{N}$$

Ion heating insignificant

Mason-Schamp valid

Compact

TRAVELLING WAVE IMS

Elongation increases with wave height

Elongated

Ion heating and its importance to DMS

High field strength (\vec{E} =30 – 180 Td) also leads to ion heating, elongation, and fragmentation

SV induced fragmentation of bradykinin

ACS Partner Journal

pubs.acs.org/jasms

Research Article

How Hot Are Your Ions in Differential Mobility Spectrometry?

Christian Ieritano, Joshua Featherstone, Alexander Haack, Mircea Guna, J. Larry Campbell, and W. Scott Hopkins*

Cite This: J. Am. Soc. Mass Spectrom. 2020, 31, 582-593

Metrics & More

Article Recommendations

Supporting Information

Methods – Modelling dissociation rate

$$k(E) = \frac{G^{\neq}(E - E_0)}{h \cdot N(E)}$$

 G^{\neq} : sum of rovib states of TS at E > E_o

N(E): density of rovib states of GS

TS treated in phase-space limit

JASMS, 2020, 31, 582-593

Methods – Modelling dissociation rate

Thermal rate k(T)

RRKM rate k(E) weighted by a Boltzmann thermal distribution $\rho(E,T)$ at temperature T

$$k(T) = \int_{E_0}^{\infty} k(E) \cdot \rho(E, T)$$

where

$$\rho(E,T) = \frac{\rho(E) \cdot exp(-E/k_b T)}{\int_0^\infty \rho(E) \cdot exp(-E/k_b T) dE}$$

$$k(T) = \int_{E_0}^{\infty} \frac{G^{\ddagger}(E - E_0)}{h} \cdot \frac{exp(-E/kT)}{\int_0^{\infty} \rho(E) \cdot exp(-E/kT) dE} dE$$

JASMS, 2020, 31, 582-593

Methods – Modelling dissociation rate

Survival Yield (SY)

$$P_d(T) = FY(T) = 1 - exp(-k(T) \cdot \tau)$$
 $\tau = \frac{V_{cell}}{Q} = 6.4 \text{ ms}$ $SY = 1 - FY$

Fit SY model to logistic function:

$$SY_{theor} = A_{min} + \frac{(A_{max} - A_{min})}{\left[1 + \left(\frac{x_o}{T_{eff}}\right)^h\right]^s}$$

Experimentally:

Monitor MRM transitions to get SY with post-DMS potentials minimized

$$FY = \frac{A_{F^+/F^+}}{(A_{M^+/M^+}) + (A_{M^+/F^+}) + (A_{F^+/F^+})} = 1 - SY$$

Determining ion temperatures with thermometer ions

p-methoxy benzylpyridinium (BP) is a robust species for gauging ion temperature

$$E_0 = 1.85 \text{ eV}$$

Dissociation observed at all bath gas temperatures

Before onset of dissociation:

$$T_{eff} = T_{gas} + T_{field}$$

$$T_{eff} \approx T_{gas} + \frac{M}{3k_b}v^2 = T_{gas} + \frac{M}{3k_b}(KE)^2$$

$$\downarrow$$

$$T_{eff} \approx a + bx^2$$

Nature of the SV waveform:

SV = 3000 V

Determining ion temperatures with thermometer ions

Other benzylpyridinium derivatives can be used, but require high bath gas temperatures to observe dissociation.

JASMS, 2020, 31, 582-593

759 ± 17 K

Η

2.50

Dependence of T_{eff} on ion structure

Collision frequency (collision cross section)

Density of states (mass-weighted degrees of freedom)

4-fluoro BP

$$\Omega_{N2} = 136 \text{ Å}^2$$
75 DoF
188.1 Da
 $T_{eff} = 736 \text{ K (4400 SV)}$

4-chloro BP

$$\Omega_{\rm N2}$$
 = 141 Å²
75 DoF
204.1 Da
 $T_{\rm eff}$ = 719 K (4400 SV)

JASMS, 2020, 31, 582-593

Two temperature theory predictions of $T_{\it eff}$

Self-consistent evaluation approach (ΔT_{eff} < 10⁻⁴ K) :

$$K = \frac{\sqrt{18\pi}}{16} \sqrt{\frac{1}{m_{ion}} + \frac{1}{m_{gas}}} \frac{ze}{\sqrt{k_b T_{eff}}} \frac{1}{\Omega_{N_2}(T_{eff}) \cdot N}$$

$$T_{eff} = T_{gas} + T_{field} \approx T_{gas} + \frac{M}{3k_b} (KE)^2$$

2T theory suggests ion heating is governed by the amplitude of the high-field portion of the SV waveform

Limitations of self-consistent 2T theory method:

- 1. Field dependency of ion mobility K ($\vec{E} >> 30$ Td)
- 2. Neglecting instantaneous ion velocities ($\nu \leq KE$)
- 3. The possibility of ion heating during the low-field portion of the waveform at high SV

JASMS, 2020, 31, 582-593

SV = 3000 V

Concluding remarks and applications

Summary:

- Ion temperatures reach a maximum of 759 K on the SCIEX SelexION system
- 2. Ion heating correlates linearly with ion structure
- 3. 2T theory yields good estimates of ion temperature using the self-consistent approach

Applications:

ML prediction of physicochemical properties

BP ions as calibrants of SV field

Acknowledgements

PhD Advisory Committee

Prof. W. Scott Hopkins

Prof. Terry B. McMahon

Prof. Scott D. Taylor

Dr. J. Larry Campbell

Collaborators, Resources, and Funding

Hopkins Lab

Dr. Neville Coughlan
Dr. Patrick Carr
Mike Lecours
Dan Rickert
Nour Mashmoushi
Fiorella Heldmaier

Dr. Jeff Crouse Weiqiang Fu Yuting Li Josh Featherstone Ce Zhou