CS747 Assignment 2

Manas Vashistha 17D070064

November 13, 2020

Task 1

- 1. The origin is assumed to be on the top left of the grid. X-axis is horizontally right and y-axis is vertically downwards.
- 2. States are numbered in column major order, total states = $n_rows \times n_cols$.
- 3. Actions are [0, 1, 2, 3] for [N, E, S, W] in baseline case and [0, 1, 2, 3, 4, 5, 6, 7] for [N, NE, E, SE, S, SW, W, NW] for King's moves. Reward for every transition is -1.
- 4. If a perimeter wall is encountered, the agent moves to the adjacent cell of the wall.

0	7	14	21	28	35	42	49	56	63
1	8	15	22	29	36	43	50	57	64
2	9	16	23	30	37	44	51	58	65
3	10	17	24	31	38	45	52	59	66
4	11	18	25	32	39	46	53	60	67
5	12	19	26	33	40	47	54	61	68
6	13	20	27	34	41	48	55	62	69

Task 2

- 1. Q(s, a) is initialized with zeros for all s and a.
- 2. A valid action is chosen randomly with ϵ probability and the optimal action is chosen with probability 1ϵ .
- 3. While choosing the optimal action, any one of the actions having the same maximum value is chosen randomly.
- 4. The update rule is given as $\hat{Q}^{t+1}(s^t, a^t) \leftarrow \hat{Q}^t(s^t, a^t) + \alpha[r^t + \gamma \hat{Q}^t(s^{t+1}, a^{t+1}) \hat{Q}^t(s^t, a^t)]$. This rule is used for SARSA(0) agent with $\alpha = 0.5, \ \gamma = 1$.

Figure 1: SARSA(0), Baseline(4) moves, Non-Stochastic

Task 3

Figure 2: SARSA(0), Kings(8) moves, Non-Stochastic

Task 4

1. After taking an action, Y-coordinate is increased, decreased by 1 or remains unchanged with probability 1/3 each.

Figure 3: SARSA(0), Kings(8) moves, Stochastic

Task 5

- 1. The same parameters ($\alpha = 0.5, \ \gamma = 1$) are used for all the cases.
- 2. Update for Expected SARSA: $\hat{Q}^{t+1}(s^t,\ a^t) \leftarrow \hat{Q}^t(s^t,\ a^t) + \alpha[r^t + \gamma \sum_{a \in A} \pi^t(s^{t+1},\ a) \hat{Q}^t(s^{t+1},\ a) \hat{Q}^t(s^t,\ a^t)].$
- 3. Update for Q-Learning: $\hat{Q}^{t+1}(s^t,\ a^t) \leftarrow \hat{Q}^t(s^t,\ a^t) + \alpha[r^t + \gamma \max_{a \in A} \hat{Q}^t(s^{t+1},\ a) \hat{Q}^t(s^t,\ a^t)].$

Figure 4: SARSA(0), Expected SARSA, Q-Learning, Baseline Case 4-moves, Non-Stochastic

Observations

- 1. All the curves have increasing slope which represents that the final state is achieved in less time steps as we progress.
- 2. The slope for Expected SARSA and Q-Learning is higher than that of SARSA signifying that they achieve the goal more quickly than SARSA. The order is Q-Learning > Expected SARSA > SARSA where the greater implies quick achievement of the goal.
- 3. The number of expected moves in non-stochastic kings case is less than the number of expected moves in baseline case while this number is larger in the stochastic kings case.
- 4. In the non-stochastic kings case as we have more valid actions we can find a shorter path and hence less expected moves.
- 5. While in the stochastic case, a longer path is followed due to randomness as compared to the non-stochastic kings case and base line case.