Отчет по лабораторной работе №1

Операционные системы

Кузьмин Егор Витальевич

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы 3.1 Создание виртуальной машины	7 7 7 7 13
4	Выводы	14
5	Ответы на контрольные вопросы	15
6	Выполнение задания	17
Сп	исок литературы	20

Список иллюстраций

5.1	Работа в терминале	δ
3.2	Установка tmux	8
3.3	Поиск файла	9
3.4	Изменение файла	9
3.5	Перезагрузка виртуальной машины	10
3.6	Запуск терминального мультиплексора	10
3.7	Переключение на роль супер-пользователя	10
3.8	Установка пакета dkms	11
3.9	Установка пакета dkms	11
3.10	Примонтирование диска, установка драйверов	11
	Поиск файла, вход в тс	12
	Редактирование файла	12
	Перезагрузка виртуальной машины	12
	Переключение на роль супер-пользователя, установка pandoc	13
3.15	Установка texlive	13
6.1	Анализ последовательности загрузки системы	17
6.2	Поиск версии ядра	17
6.3	Поиск частоты процессора	18
6.4	Поиск модели процессора	18
6.5	Поиск объема доступной оперативной памяти	18
6.6	Поиск типа обнаруженного гипервизора	18
6.7	Поиск типа файловой системы корневого раздела	19
6.8	Последовательность монтирования файловых систем	19

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков настройки минимально необходимых сервисов для дальнейшей работы.

2 Задание

- 0. Первичное ознакомление с заданием.
- 1. Создание виртуальной машины.
- 2. Установка операционной системы.
- 3. Работа с операционной системой после установки.
- 4. Установка программного обеспечения для создания документации.
- 5. Дополнительные задания.

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

У меня уже был установление VirtualBox и создана виртуальная машина во время выполнения заданий курса прошлого семестра, поэтому данный этап я пропускаю

3.2 Установка операционной системы

По аналогичным причинам я не буду заниматься установкой операционной системы

3.3 Работа с операционной системой после установки

Вхожу в ОС под заданной мной при установке учетной записью, запускаю терминал и переключаюсь на роль супер-пользователя, обновляю все пакеты (рис. 1).

Рис. 3.1: Работа в терминале

Устанавливаю программы для удобства работы в консоли: tmux для открытия нескольких вкладок в одном терминале (рис. 2).

```
[root@fedora ~]# dnf install tmux
Последняя проверка окончания срока действия метаданных: 0:12:45 назад, С6 24 фев
2024 13:33:11.
Пакет tmux-3.3a-3.fc38.x86_64 уже установлен.
Зависимости разрешены.
Нет действий для выполнения.
Выполнено!
[root@fedora -]#
```

Рис. 3.2: Установка tmux

Перемещаюсь в директорию /etc/selinux, открываю mc, ищу нужный файл (рис. 3).

Рис. 3.3: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис 4).

Рис. 3.4: Изменение файла

Перезагружаю виртуальную машину (рис. 5).

Рис. 3.5: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускаю терминальный мультиплексор (рис 6).

Рис. 3.6: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. 7).

Рис. 3.7: Переключение на роль супер-пользователя

Устанавливаю пакет DevelopmentTools (рис. 8).

Рис. 3.8: Установка пакета dkms

Устанавливаю пакет dkms (рис. 9).

Рис. 3.9: Установка пакета dkms

В меню виртуальной машины подключаю образ диска гостевой ОС и примонтирую диск с помощью утилиты mount, устанавливаю драйвера (рис. 11).

```
[rootefedora ~]# mount /dev/sr0 /media
mount: /media: WARNING: source write-protected, mounted read-only.
[rootefedora ~]# /media/VBoxLinuxAdditions.run
Verifying archive integrity... 100% MD5 checksums are OK. All good.
Uncompressing VirtualBox 7.0.10 Guest Additions for Linux 100%
VirtualBox Guest Additions installer
VBoxControl: error: Could not contact the host system. Make sure that you are r
unning this
VBoxControl: error: application inside a VirtualBox guest system, and that you h
ave sufficient
VBoxControl: error: user permissions.
This system appears to have a version of the VirtualBox Guest Additions
already installed. If it is part of the operating system and kept up-to-date,
```

Рис. 3.10: Примонтирование диска, установка драйверов

В очередной раз перезагружаю виртуальную машину

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. 12).

Рис. 3.11: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. 13).

Рис. 3.12: Редактирование файла

Перезагружаю виртуальную машину (рис. 014).

Рис. 3.13: Перезагрузка виртуальной машины

3.4 Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя. Устанавливаю pandoc с помощью утилиты dnf (рис. 15).

Рис. 3.14: Переключение на роль супер-пользователя, установка pandoc

Устанавливаю дистрибутив texlive (рис. 16).

Рис. 3.15: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрел практические навыки по настройке минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение задания

Ввожу в терминале команду dmesg, чтобы проанализировать последовательность загрузки системы (рис. 17).

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию ядра Linux (рис. 18).

```
[root@fedora ~]# dmesg | grep -i "Linux version"
[ 0.000000] Linux version 6.7.5-100.fc38.x86_64 (mockbuild@0d7ece7a3c194d1a89
f416a440d9b970) (gcc (GCC) 13.2.1 20231011 (Red Hat 13.2.1-4), GNU ld version 2.
39-16.fc38) #1 SMP PREEMPT_DYNAMIC Sat Feb 17 17:21:49 UTC 2024
[root@fedora ~]#
```

Рис. 6.2: Поиск версии ядра

Если вводить "Detected Mhz processor", то мне ничего не выведется. Это происходит потому, что запрос не предусматривает дополнительные символы внутри него. В таком случае оставляем одно из ключевых слов и получаем результат (рис. 19).

```
[root@fedora ~]# dmesg | grep -i "processor"
[ 0.000054] tsc: Detected 2400.002 MHz processor
[ 0.225995] smpboot: Total of 1 processors activated (4800.00 BogoMIPS)
[ 0.284299] ACPI: Added _OSI(Processor Device)
[ 0.284301] ACPI: Added _OSI(Processor Aggregator Device)
[root@fedora ~]#
```

Рис. 6.3: Поиск частоты процессора

Аналогично ищу модель процессора (рис. 20).

```
[root@fedora ~]# dmesg | grep -i "CPUO"

[ 0.225458] smpboot: CPU0: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz (family: 0x6, model: 0x4e, stepping: 0x3)

[root@fedora ~]#
```

Рис. 6.4: Поиск модели процессора

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. 21).

```
[root@fedora -]# dmesg | grep -i "Memory"
[ 0.066034] ACPI: Reserving FACP table memory at [mem 0x7fff00f0-0x7fff01e3]
[ 0.066036] ACPI: Reserving FACS table memory at [mem 0x7fff020-0x7fff023f]
[ 0.066037] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
[ 0.066040] ACPI: Reserving FACS table memory at [mem 0x7fff0200-0x7fff023f]
[ 0.066040] ACPI: Reserving APIC table memory at [mem 0x7fff0200-0x7fff023f]
[ 0.066582] Early memory node ranges
[ 0.06582] Early memory node ranges
[ 0.012420] PM: hibernation: Registered nosave memory: [mem 0x00000000-0x0000 Offf]
[ 0.012424] PM: hibernation: Registered nosave memory: [mem 0x000000000-0x0000 Offf]]
```

Рис. 6.5: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. 22).

```
[root@fedora -]# dmesg | grep -1 "Hypervisor detected"

[ 0.000000] Hypervisor detected: KVM

[root@fedora -]#
```

Рис. 6.6: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdisk (рис. 23).

Рис. 6.7: Поиск типа файловой системы корневого раздела

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. 24).

Рис. 6.8: Последовательность монтирования файловых систем

Список литературы

Архитектура компьютеров и ОС/Электронный ресурс