Lecture 10

The Normal Distributions

Text: Chapter 4

STAT 8010 Statistical Methods I September 22, 2020

> Whitney Huang Clemson University

Notes

ERSITY		

Agenda

- **1** Normal Distributions
- Sums of Normal Random Variables
- **3** Normal approximation of Binomial Distribution

Notes				

Probability Density Curve for Normal Random Variable

The Normal Distributions
CLEMS N
Normal Distributions

Notes			

Normal Density Curves

- \bullet The parameter μ determines the center of the distribution
- The parameter σ^2 determines the spread of the distribution
- Also called bell-shaped distribution

The Normal Distributions
CLEMS N
Normal Distributions
10.4

Notes			
-			

Characteristics of Normal Random Variables

Let X be a Normal r.v.

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- \bullet The probability density function (pdf): $\frac{1}{\sqrt{2\pi}\sigma^2}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $E[X] = \mu$
- The variance: $Var(X) = \sigma^2$

No	tes			

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

• Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

- \bullet The cdf of the standard normal, denoted by $\Phi(z),$ can be found from the standard normal table
- The probability $\mathrm{P}(a \leq X \leq b)$ where $X \sim N(\mu, \sigma^2)$ can be computed

$$\begin{split} & \mathsf{P}(a \leq X \leq b) = \mathsf{P}(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}) \\ & = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma}) \end{split}$$

The Normal Distributions
Normal Distributions

Notes			

Standard Normal Table

Notes			

Standard Normal Table Cont'd

Notes			

Standard Normal Table Cont'd

Notes				

Properties of Φ

- $\Phi(0)=.50\Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$
- $\mathbb{P}(Z > z) = 1 \Phi(z) = \Phi(-z)$

The Normal Distributions
Normal Distributions
10.10

The Empirical Rules

The Empirical Rules provide a quick way to approximate certain probabilities for the Normal Distribution as the following table:

Interval	Percentage with interval
$\mu \pm \sigma$	68%
$\mu \pm 2\sigma$	95%
$\mu \pm 3\sigma$	99.7%

1	Notes			
-				
-				
-				
-				

Example

Let us find the following probabilities with respect to \mathbb{Z} :

- ② Z is between −2 and 2 inclusive ○
- Z is less than .5

The Normal Distributions
Normal Distributions

Notes		

Example Cont'd

Solution.

- **3** $P(-2 \le Z \le 2) = \Phi(2) \Phi(-2) = .9772 .0228 = .9544$
- **3** $P(Z < .5) = \Phi(.5) = .6915$

Notes

Example

Suppose a STAT-8020 exam score follows a normal distribution with mean 78 and variance 36. Let X to denote the exam score, answer the following questions:

- What is the probability that a randomly chosen test taker got a score greater than 84?
- Suppose the passing score for this exam is 75. What is the probability that a randomly chosen test taker got a score greater than 84 given that she/he pass the exam?
- Using the empirical rule to find the 84_{th} percentile.

Notes			

Example

Find the following percentile with respect to Z

- 10_{th} percentile
- 55_{th} percentile
- 90_{th} percentile

Notes			

Example Cont'd

Solution.

Q $Z_{10} = -1.28$ Q

② $Z_{55} = 0.13$ ③

> qnorm(0.1)

[1] -1.281552

> qnorm(0.55)
[1] 0.1256613

> qnorm(0.9)

[1] 1.281552

The Normal Distributions
CLEMS
Normal Distributions
10.16

Notes

Example

Let X be Normal with a mean of 20 and a variance of 49. Find the following probabilities and percentile:

- X is between 15 and 23
- 2 X is more than 30
- X is more than 12 knowing it is less than 20
- What is the value that is smaller than 20% of the distribution?

Notes				
				_

Example Cont'd

Solution.

- ② $P(X > 30) = 1 P(X \le 30) = 1 \Phi(\frac{30-20}{7}) = 1 .9236 = .0764$ ①
- $P(X > 12|X < 20) = \frac{P(12 < X < 20)}{P(X < 20)} = \frac{\Phi(0) \Phi(-1.14)}{\Phi(0)} = .7458$ ●

Distributions
CLEMS N
Normal Distributions

Notes			

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

- Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
- This can be applied for any integer n

Notes

Notes

	3 -	

Example

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k=1, 2, and 3 respectively. Find the following distributions:

- $\bigcirc \sum_{i=1}^3 X_i \bigcirc$
- ② $X_1 + 2X_2 3X_3$

Example Cont'd

Solution.

- $X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$

Notes

Normal approximation of Binomial Distribution

- We can use a Normal Distribution to approximate a Binomial Distribution if *n* is large
- Rule of thumb for this approximation to be valid (in this class) is np > 5 and n(1-p) > 5
- If $X \sim \text{Bin}(n,p)$ with np > 5 and n(1-p) > 5 then we can use $X^* \sim \text{N}(\mu = np, \sigma^2 = np(1-p))$ to approximate X
- Notice that Binomial is a discrete distribution but normal is a continuous distribution so that $\mathbb{P}(X^*=x)=0 \ \forall x$
- Continuity correction: we use $\mathbb{P}(x-0.5 \le X^* \le x+0.5)$ to approximate $\mathbb{P}(X=x)$

Notes

Example

Suppose a class has 400 students (to begin with), that each student drops independently of any other student with a probability of .07. Let X be the number of students that finish this course

- Find the probability that X is between 370 and 373 inclusive
- Is an approximation appropriate for the number of students that finish the course?
- If so, what is this distribution and what are the parameter(s)?
- Find the probability that is between 370 and 373 inclusive by using the approximation

10.2

Notes

Notes		