	Measurement System Page No.:			
oy -	tutorial 2 Dhananjay Joshi youva			
	example 1			
	A 100 MA meter movement with an			
	internal resistance of 8002 is			
	used in 0-100 mA ammeter.			
	find the value of the required			
	shunt resistance.			
	Here,			
	Rsh = Im. Rm			
	1sh			
	-6			
£	$sh = 100 \times 10^{-6} \times 800$			
	100×10 ³ -100×10 ⁶			
	Reha evintuist			
	Rsh: $8 \times 10^{4} \times 10^{5}$ 100×10^{3} [1-1×10 ³]			
	100X10 L 1 - 1X10 J			
	Rsh = 8 x 10 ⁻²			
	$\frac{8 \times 10^{-2}}{100 \times 10^{-3} \times 0.999}$			
	, , , , , , ,			
	Rsh = 8×10-2			
	0.99			
7				
	R8b = 8-080 × 10-2			
	= 0.808 m 0			

Page No.:	Vouv
Date:	No.

example 2

A PMMC instrument gives full scale deflection reading 25 mA when a potential difference across its terminal is 75 mV. show how it can be used (a) as an ammeter for the range of 0-100 A (b) as a voltmeter for the range of 0-750 V. Also find the multiplying factor of shunt & voltage amplification.

Instrument resistance Rm =

Potential drop across terminals.

 $\frac{75 \times 10^{-3}}{25 \times 10^{-3}} = 3.72.$

a] current to be measured I: 100 mA.

Multiplying power of shunt Im:

T		
1		
١	KVUOV	
١		
- 1		

100 4000 25×10³

shunt resistance required for fun scale deflection, 100 A:

Rsh = Rm = 3 m-1 3999

7.5 × 10-4.

Rsh= 0.75 ms2

b] Voltage to be measured V= 750V

Rse: V - Rm = 750 -3 29.99
Im 20×103

Voltage application: 450 10000

Page No.:	
Date:	Aonny

43. A moving coil instrument gives a fsb. of 10 mA & potential difference across its terminal is 200 mV.

cal. O shunt resistance for FSD corresponding to 200 A (b) series. resistance for full reading consumption to 2000 V.

Ans: -

Instrumen resistance Rm.

potential drop across terminal instrument current.

100×10⁻³, 10 sq.

as shunt resistance required for 4SD corresponding is 200A.

Rsh: $\frac{1}{1}$ $\frac{100/200}{200}$ Im $\frac{100\times10^3}{100\times10^3}$

-5.00025 x 10t s.

Avuoy

Page No.:

Date:

A series resistance required for for corresponding to 2000V

Rse 2 V _ Pm = 1000 - 10 Im 10x103

2 99.99052

A Moving coil instrument having internal 5052 indicate fsb with a (current of 10 mA) How can it be made 10 work 05 1)

a voltmeter to read 100 v

on full scale deflection

2) on anmeter of 1A on full scale

internal resistance = 50 st current flowing through the instrument fsp 1 m = 10 m A = 0.01 A

Page No.:

Date:

Re series resistance required to measure Ree V - Rm Im. = 100 - 50 0.01 = 9950 52 (ii) should required to measure 1A cursent 0.5050 A 50 Psh = fm 1 -1 1 -1 0.01 100 A moving coil instrument has a resistance of 22 & it leads upto 0.5 250 V when a resistance of 5000 2 is connected in series with it find the Eurrent language ofher instrument when it is used as ammeter with the coil connected across a shunt resistance of 2 million

4

Ans :-

Resistance of the instrument coil
252 current flowing through the
instrument for
fsD

In: full scale reading

P + series resistance

2 + 25000 0 0 4 9 9 8 A

current through shunt resistance

Ish. Im Rm 49.98×10^{-3}

= 49.98

current range of instrument:

Page No.:

Date:

γουνλ

Ans:- Resistance of the instrument coil

22 current flowing through the

instrument for

FSD

In: full scale reading

R + series resistance

250

2+ 35000

= 0.04998 A

shunt resistance Rsh = 2x103 st

current through shunt resistance

Ish = Im Rm = 49.98 × 10³

Rs 2× 10⁻³

= 49.98

current range of instrument:

Page No.:

Date:

	Deflection	Rs.
	current.	
		Rm
	$=$ $Im + I$ \rightarrow	Im
	= 0.04998+49.98	a. 1 ·)
	= 50 A.	
Q. 6	6 A moving coil am	meter gives
<u> </u>	FCD with 15 mA& ha	s a resistance
	of sor calculated th	e resistance
	to be calculated i	n as parallel
	to enable the insta	ument to read.
	upto 1 A b) seri	es to enable
	it to read up to	LO V
	instrument r	esistance Rm=
	552	-2,
		15 m A = 15 × 10 ² A
	current to be measur	ed 1A.

١	Kvucy	
١		

Page No.:

Date:

shunt	resig	stance	40	be	
Conne	eted	ìn	Para	llel	,

 $PSh = \frac{Rm}{1 - 1} = 0.076142$ $\frac{1}{2m} = \frac{1}{15 \times 10^{-3}}$

voltage to be measured velov

series resistance required

Rsez V - Rm Im

 $\frac{10}{1.5 \times 10^{-3}}$

= 661.667 Q.