Übungsblatt 10 zur Algebra I

Abgabe bis 24. Juni 2013, 17:00 Uhr

Aufgabe 1. Weitere Anwendungen der Gradformel

a) Sei z eine algebraische Zahl und seien $x, y \in \mathbb{Q}(z)$. Zeige, dass

$$[\mathbb{Q}(z):\mathbb{Q}(x)]\cdot[\mathbb{Q}(x):\mathbb{Q}]=[\mathbb{Q}(z):\mathbb{Q}(y)]\cdot[\mathbb{Q}(y):\mathbb{Q}],$$

und gib ein Diagramm zur Veranschaulichung an.

- b) Sei a eine algebraische Zahl und $y \in \mathbb{Q}(a)$. Sei f ein normiertes Polynom mit Koeffizienten aus $\mathbb{Q}(y)$, das über $\mathbb{Q}(y)$ auch irreduzibel ist. Sei der Grad von f mindestens 2 und teilerfremd zu $\deg_{\mathbb{Q}(y)} x$. Zeige, dass keine Zahl aus $\mathbb{Q}(a)$ Nullstelle von f sein kann.
- c) Beweise oder widerlege: Sei z ein primitives Element zu algebraischen Zahlen x, y. Dann ist $\deg_{\mathbb{Q}} z$ ein Teiler von $\deg_{\mathbb{Q}} x \cdot \deg_{\mathbb{Q}} y$.

Aufgabe 2. Galoissche Konjugierte

- a) Finde zwei algebraische Zahlen, die nicht zueinander galoissch konjugiert sind.
- b) Wie viele galoissch Konjugierte hat die Zahl $\sqrt[4]{3}$?
- c) Seien p und q zwei verschiedene Primzahlen. Finde alle galoissch Konjugierten von $\sqrt{p} + \sqrt{q}$.
- d) Seien x, y, z algebraische Zahlen, sodass x zu y und y zu z galoissch konjugiert ist. Zeige, dass dann auch x galoissch konjugiert zu z ist.
- e) Sei t eine algebraische Zahl. Zeige, dass die Summe von t mit all seinen galoisschen Konjugierten eine rationale Zahl ist. Wie steht es mit dem Produkt?

Aufgabe 3. Eine konkrete Galoisgruppe

Bestimme die Galoisgruppe der vier Nullstellen des Polynoms $X^4 + 1$.

Aufgabe 4. Polynome sind blind für galoissch Konjugierte

- a) Zeige, dass zwei algebraische Zahlen t und t' genau dann zueinander konjugiert sind, wenn jedes Polynom mit rationalen Koeffizienten, welches t als Nullstelle hat, auch t' als Nullstelle hat.
- b) Seien t und t' zueinander konjugierte algebraische Zahlen und f ein Polynom mit rationalen Koeffizienten. Zeige, dass dann auch x := f(t) und x' := f(t') zueinander konjugiert sind.

Aufgabe 5. Gegenbeispiele

Zeige an jeweils einem Beispiel, dass

a) Hilfssatz 4.3 auf Seite 118

b) Proposition 4.4 auf Seite 119

falsch werden, wenn man von den dort vorkommenden Zahlen x_1, \ldots, x_n nicht voraussetzt, dass sie die gesamten Lösungen (mit Vielfachheiten) einer Polynomgleichung mit rationalen Koeffizienten sind, sondern stattdessen beliebige algebraische Zahlen erlaubt.