บทที่ 5 การประมาณค่าในช่วง (Interpolation)

รศ.ดร.วงศ์วิศรุต เชื่องสตุ่ง และ ดร.รัฐพรหม พรหมคำ

สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลธัญบรี

2025

Outline

บทที่ 5 การประมาณค่าในช่วง (Internalation)

- 1.1 บทน้ำ
- 1.2 การประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อยของนิ
- 1.3 การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

Table of Contents

บทที่ 5 การประมาณค่าในช่วง (Interpolation) 1.1 บทนำ 1.2 การประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อยของนิว ตัน (Newton Divided Difference Interpolating Polynomials) 1.3 การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials) 101 (8) (2) (2) (3) 3 (9) Outline บทที่ 5 การประมาณค่าในช่วง (Interpolation) 1.1 บทน้ำ 1.2 การประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อยของนิว ตัน (Newton Divided Difference Interpolating Polynomials) 1.3 การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

บทนำ	
_	
บทน้ำ	
_	
- เอาเฮาเราเรา ริกาจจ	
-	
nารประมาณค่าในช่วง (Interpolation) คือกระบวนการทาง คณิตศาสตร์ที่ใช้ในการสร้างฟังก์ชันหรือสมการที่สามารถประมาณค่า ระหว่างจุดข้อมูลที่ทราบค่าได้ โดยฟังก์ชันหรือเส้นโด้งที่สร้างขึ้นจากการ	
ระหว่างจุดข้อมูลที่ทราบค่าได้ โดยฟังก์ชันหรือเส้นโค้งที่สร้างขึ้นจากการ Interpolation จะต้องผ่านทุกจุดของข้อมูลที่มีอยู่ ซึ่งทำให้สามารถคาด การณ์ค่าหรือหาค่าระหว่างจุดข้อมูลเหล่านั้นได้อย่างแม่นยำ	
การณคาหรอหาคาระหวางจุดขอมูลเหลานนเดอยางแมนยา	

9 19/19 1

การประมาณค่าในช่วงหรือการหาเส้นโค้งในช่วง คือการสร้างสมการพหุนาม ที่ผ่านทุกจุดของข้อมูล รูปทั่วไปของสมการพหุนามอันดับที่ n (Order Polynomial) คือ

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \tag{1.1}$$

สมการพหุนามอันดับที่ n คือสมการ (1.1) เพียงสมการเดียวที่ผ่านจุดข้อมูล ครบทั้ง n+1 จุด

920 \$ (\$) (\$) (B) (B)

บทนำ

ตัวอย่างเช่น กราฟเส้นตรง (สมการพหุนามอันดับที่หนึ่ง) ที่เชื่อมจุดสองจุด ดังรูปที่ 1 2 เป็นต้น

รูปที่ 1: กราฟของสมการพหุนามอันดับที่ 1 ที่เชื่อมจุดสองจุด

บทนำ

กราฟพาราโบลา (สมการพหุนามอันดับที่สอง) ที่เชื่อมจุดสามจุด ดังรูปที่

รูปที่ 2: กราฟของสมการพหุนามอันดับที่ 2 ที่เชื่อมจุดสามจุด

บทนำ

สำหรับบทนี้ จะกล่าวถึงการประมาณค่าในช่วง 2 วิธี ดังนี้

- 2. การประมาณค่าในช่วงเชิงพหุนามของลากรองจ์

ารประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อย เองนิวตัน)	
overna)	
การประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อยของนิว ตัน (Newton Divided Difference Interpolating Polynomials)	
ารประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อย	
องนิวตัน	
การประมาณค่าในช่วงเชิงพหุนามโดยใช้ผลต่างจากการแบ่งย่อยของนิวตัน แบ่งได้ 3 วิธีดังนี้	
 การประมาณค่าเชิงเส้นตรง (Linear Interpolation) การประมาณค่าตัวยสมการพหุนามอันดับสอง (Quadratic Interpolation) 	
mterpotation) 3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)	

การประมาณค่าเชิงเส้นตรง (Linear Interpolation) การประมาณค่าในช่วงเชิงเส้น (Linear Interpolation) เป็นวิธีการ ประมาณค่าในช่วงอย่างง่ายเพื่อจะสร้างสมการเชื่อมจุดสองจุดด้วยสมการ

การบระมาณคาในชางเซงเสน (Linear Interpolation) เบนวธการ ประมาณคำในช่วงอย่างง่ายเพื่อจะสร้างสมการเชื่อมจุดสองจุดตัวยสมการ เส้นตรง แสดงได้ดังรูปที่ 3

รูปที่ 3: กราฟของสมการพหุนามอันดับที่ 1 ที่เชื่อมจุดสองจุด

ব⊟ । ব∰ । বই । বই । ই । ৩৭০

การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

การประมาณค่าในช่วงเชิงเส้นจะพิจารณารูปทั่วไปของสมการเส้นตรง คือ

$$f(x) = a_0 + a_1 x$$

ซึ่งจะพบว่าอันดับสูงสุดของเลขชี้กำลังของสมการ คืออันดับหนึ่ง

1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

การสร้างสมการเส้นตรงจะต้องผ่านจุดทั้งหมด 2 จุด แสดงได้ต่อไปนี้

จากรูป โดยกฎของสามเหลี่ยมคล้าย จะได้

$$\frac{f_1(x) - f(x_0)}{x - x_0} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

ดังนั้น

$$f_1(x)=f(x_0)+\frac{f(x_1)-f(x_0)}{x_1-x_0}(x-x_0) \end{(1.2)}$$
 ซึ่งเรียก (1.2) ว่า

linear-interpolation formula

1011/001/02/12/12/12/12/12/19/09

1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

ตัวอย่างที่ 1.1

กำหนดให้ $f(x) = \ln x$ จงหาค่าประมาณของ $\ln 2$ โดยใช้การประมาณค่าใน ช่วงเจิงเส้น เมื่อ

- 1. กำหนดให้ $\ln 1 = 0, \ln 6 = 1.7917595$
- 2. กำหนดให้ $\ln 1 = 0$, $\ln 4 = 1.3862944$

เมื่อค่าจริงของ $\ln 2 = 0.69314718$

 การประมาณค่าเชิงเส้นตรง (Linear Interpolation) สำหรับกราฟของการประมาณค่า In 2 โดยใช้การประมาณค่าในช่วงเชิงเส้น เปรียบเทียบกับกราฟของฟังก์ชันค่าจริง แสดงดังรูปที่ 4 และ 5

รูปที่ 4: ค่าประมาณของ $\ln 2$ ในกรณีที่ 1 ของตัวอย่างที่ $\ref{1}$?? เมื่อ $\ln 1 = 0, \ln 6 = 1.7917595$

1. การประมาณค่าเชิงเส้นตรง (Linear Interpolation)

รูปที่ 5: ค่าประมาณของ $\ln 2$ ในกรณีที่ 2 ของตัวอย่างที่ ?? เมื่อ $\ln 1 = 0. \ln 4 = 1.3862944$

101 (8) (2) (2) (3) 3 (9)

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

รูปทั่วไปของสมการพหุนามอันดับสอง คือ $f_2(x)=a_0+a_1x+a_2x^2$ ถ้ามีข้อมูล 3 จุด คือ $(x_0,f(x_0)),(x_1,f(x_1)),(x_2,f(x_2))$ จะเขียนแทนเส้น โด้งผ่านจุดทั้ง 3 ด้วยสมการพหุนามอันดับสอง โดย พิจารณาจาก

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$
 (1.3)

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

สังเกตว่าแม้ว่าสมการ (1.3) อาจดูเหมือนจะแตกต่างจากสมการพหุนาม ทั่วไป (1.1) แต่ทั้งสองสมการนี้สมมูลกัน ซึ่งแสดงได้ดังต่อไปนี้

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$=b_0 + b_1x - b_1x_0 + b_2x^2 + b_2x_0x_1 - b_2xx_0 - b_2xx_1$$

= $(b_0 - b_1x_0 + b_2x_0x_1) + (b_1 - b_2x_0 - b_2x_1)x + b_2x^2$

หรือสามารถเขียนอยในรป

$$f_2(x) = a_0 + a_1x + a_2x^2$$

เมื่อ

$$a_0 = b_0 - b_1x_0 + b_2x_0x_1,$$

 $a_1 = b_1 - b_2x_0 - b_2x_1,$

$$a_1 - b_1$$

 $a_2 = b_2$

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

เมื่อทั้ง 3 จุด สอดคล้องกับ
$$f_2(x)=b_0+b_1(x-x_0)+b_2(x-x_0)(x-x_1)$$
 นั่นคือ $f_2(x_0)=f(x_0),\,f_2(x_1)=f(x_1),\,f_2(x)=f(x_2)$

1. เมื่อ $x=x_0$ จากสมการ (1.3) จะได้ $f_2(x_0)=f(x_0)=b_0$ นั่นคือ

$$b_0 = f(x_0) \tag{1.4}$$

2. เมื่อ $x=x_1$ และ $b_0=f(x_0)$ จากสมการ (1.3) จะได้

$$b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \tag{1.5}$$

1011/001/02/12/12/12/12/12/19/09

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

1. แทนค่าสมการ (1.4) และ สมการ (1.5) ในสมการ (1.3) เมื่อ $x=x_2$ จะได้

$$b_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$x_2 - x_0$$
(1.6)

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง

ตัวอย่างที่ 1.2

จงหาค่าประมาณของ $\ln 2$ โดยใช้การประมาณค่าด้วยสมการพหุนามอันดับ สอง เมื่อกำหนดข้อมูล 3 จุด ดังนี้

$$\ln 1 = 0, \ln 4 = 1.386294, \ln 6 = 1.791759$$

เมื่อค่าจริงของ ln 2 = 0.69314718

4 E > 4 E > 4 E > 4 E > 4 E > 90 C

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

รูปที่ 6: การประมาณค่าในช่วงด้วยสมการพหุนามอันดับสองของตัวอย่างที่ 1.2

2. การประมาณค่าด้วยสมการพหุนามอันดับสอง (Quadratic Interpolation)

รูปที่ 7: การเปรียบเทียบการประมาณค่าของ $\ln 2$ ด้วยการประมาณค่าในช่วงด้วย สมการพหุนามอันดับสองและการประมาณค่าในช่วงเชิงเส้น

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน (General Form of Newton's Interpolating Polynomials)

รูปทั่วไปของสมการพหุนามอันดับที่
$$n$$
 ผ่านจุดข้อมูล $n+1$ จุด คือ
$$f_n(x)=b_0+b_1(x-x_0)+b_2(x-x_0)(x-x_1)+\cdots+b_n(x-x_0)(x-x_1)\cdots(x-x_{n-1})$$

 $b_0 = f(x_0)$

$$f_n(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1) + \dots + b_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_n - x_n)$$
(1.

$$b_1 = f[x_1, x_0]$$

 $b_2 = f[x_2, x_1, x_0]$
 \vdots
 $b_n = f[x_n, x_{n-1}, x_{n-2}, ..., x_1, x_0]$

40 + 40 + 42 + 42 + 2 4940

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน

เมื่อ $f[\,\cdot\,\,]$ แทนผลต่างจากการแบ่งย่อยจำกัด (finite divided differences) นั่นคือ

• $f[x_i, x_j]$ คือ ผลต่างจากการแบ่งย่อยอันดับที่ 1 (first finite divided difference) นิยามโดย

$$f[x_i, x_j] = \frac{f(x_i) - f(x_j)}{x_i - x_j}$$

▶ $f[x_i, x_j, x_k]$ คือ ผลต่างจากการแบ่งย่อยอันดับที่ 2 (second finite divided difference) นิยามโดย

$$f[x_i, x_j, x_k] = \frac{f[x_i, x_j] - f[x_j, x_k]}{x_i - x_k}$$

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน

▶ $f(x_n, x_{n-1}, ..., x_1, x_0)$ คือ ผลต่างจากการแบ่งย่อยอันดับที่ n (nth finite divided difference) นิยามโดย

$$f[x_n,x_{n-1},...,x_1,x_0] = \underbrace{f[x_n,x_{n-1},...,x_2,x_1] - f[x_{n-1},x_{n-2},...,x_1,x_0]}_{x_n-x_0}$$

ดังนั้น สูตรการประมาณค่าในช่วงพหุนามอันดับที่ n ของนิวตัน ดังนี้

$$f_n(x) = b_0 + (x - x_0)f[x_1, x_0] + (x - x_0)(x - x_1)f[x_2, x_1, x_0]$$

$$+ \cdots + (x - x_0)(x - x_1) \cdots (x - x_{n-1})f[x_n, x_{n-1}, ..., x_1, x_0]$$
(1.8)

จะเรียกสมการ (1.8) ว่า การประมาณค่าในช่วงเชิงพพุนามโดยใช้ผลค่าง จากการแบ่งย่อยของนิวตัน (Newton's divided-difference interpolating polynomial)

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน

ซึ่งสามารถแสดงผลต่างจากการแบ่งย่อยอันดับต่างๆ ได้ดังตารางต่อไปนี้

i	x_i	$f(x_i)$	ลำดับที่ 1	ลำดับที่ 2	ลำดับที่ 3
0	x_0	$f(x_0)$	$f[x_1, x_0]$	$f[x_2, x_1, x_0]$	$f[x_3, x_2, x_1x_0]$
1	x_1	$f(x_1)$	$f[x_2, x_1]$	$f[x_3, x_2, x_1]$	
2	x_2	$f(x_2)$	$f[x_3, x_2]$		
3	x_3	$f(x_3)$			

ตาราง 1: ผลต่างการแบ่งย่อยอันดับต่างๆ

$\leftarrow \Box \rightarrow$	4 B >	4 20 %	不差点	- 2	99 C

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน

ตัวอย่างที่ 1.3

จากข้อมูลที่กำหนดให้ จงหาค่าของ f(3) โดยใช้การประมาณค่าในช่วงของนิ วตันอับดับที่ 3

x	1	2	5	7
f(x)	2	4	8	10

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน

ตัวอย่างที่ 1.4

จงหาค่าประมาณของ $\ln 2$ โดยใช้การประมาณค่าในช่วงด้วยวิธีนิวตันอันดับ ที่ 3 เมื่อกำหนดข้อมูล 4 จุด ดังนี้

 $\ln 1 = 0, \ln 4 = 1.386294, \ln 5 = 1.609438, \ln 6 = 1.791759$

3. รูปทั่วไปของการประมาณค่าด้วยวิธีนิวตัน

จากรูปที่ 8 จะเห็นได้ว่า ค่าประมาณของ In 2 โดยใช้การประมาณค่าในช่วง ของนิวตันอันดับที่ 3 มีค่าใกล้เคียงกับค่าจริงมากกว่า เมื่อพิจารณาจำนวน จุดข้อมูล 4 จุด

รูปที่ 8: การประมาณค่า ln 2 โดยใช้การประมาณค่าในช่วงของนิวตันอันดับที่ 3

4D> 4B> 4E> 4E> E 990

แบบฝึกหัด

- 1. จากข้อมูลต่อไปนี้ จงประมาณค่าของ $\log 4$ โดยการประมาณค่าในช่วงเชิงเส้นของนิว ตัน
 - 1.1 เมื่อกำหนด log 3 = 0.4771213 และ log 5 = 0.6989700
 - 1.2 เมื่อกำหนด log 3 = 0.4771213 และ log 4.5 = 0.6532125
 - 1.3 จงหาร้อยละของค่าคลาดเคลื่อนสัมพัทธ์ในข้อ 1.1 และ 1.2 พร้อมทั้ง หาร้อยละของค่าคลาดเคลื่อนสัมพัทธ์ (ε_t) เมื่อค่าจริงของ $\log 4 = 0.6020600$
- 2. จากข้อมูลต่อไปนี้ จงประมาณค่าของ $\log 10$ โดยการประมาณค่าในช่วงของนิวตัน อันดับที่ 2 เมื่อกำหนด $\log 8=0.9030900,$ $\log 9=0.9542425$ และ $\log 11=1.0413927$
- จากข้อมูลต่อไปนี้ จงประมาณค่าของ log 10 โดยการประมาณค่าในช่วงของนิวตัน อันดับที่ 3 เมื่อกำหนด log 8 = 0.9030900, log 9 = 0.9542425, log 11 = 1.0413927 และ log 12 = 1.0791812
- 4. กำหนดตารางแสดงค่าของฟังก์ชันตังนี้

x	1.6	2	2.5	3.2	4	4.5
f(x)	2	8	14	15	8	2

จงหาค่าของ ƒ(2.8) โดยใช้การประมาณค่าในช่วงของนิวตันอันดับที่ 5

เฉลยแบบฝึกหัด

- 1. 1.1 0.58804565, $\varepsilon_t = 2.3277\%$ 1.2 0.59451543, $\varepsilon_t = 1.2531\%$
- 2. 1.0003434
- 3. 1.0000449
- 4. 15.5349143

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

การประมาณค่าในช่วงด้วยวิธีลากรองจ์ (Lagrange Interpolating Polynomials)

การประมาณค่าในช่วงด้วยวิธีลากรองจ์

การประมาณค่าในช่วงของลากรองจ์ (Lagrange Interpolating

Polynomials) เป็นการประมาณค่าในช่วงที่ปรับสูตรมาจากการประมาณ ในช่วงค่าด้วยวิธีนิวตัน เพื่อหลีกเลี่ยงการใช้ผลต่างจากการแบ่งย่อย ซึ่ง สามารถเขียนได้ดังนี้

$$f_n(x) = \sum_{i=0}^{n} L_i(x)f(x_i)$$
 (1.9)

เมื่อ

$$L_i(x) = \prod_{\substack{j=0 \\ i \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$
(1.10)

การประมาณค่าในช่วงด้วยวิธีลากรองจ์

ตัวอย่างเช่น พหนนามอันดับที่ 1 :

$$f_1(x) = \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1)$$
 (1.11)

พหนุนามอันดับที่ 2 :

$$f_2(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}f(x_0) + \frac{(x-x_0)(x-x_2)}{(x_1-x_2)}f(x_1) \quad (1.12)$$

$$+ \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}f(x_2)$$

จะสังเกตเห็นว่าแต่ละพจน์ของ $L_i(x)$ จะเป็น 1 เมื่อ $x=x_i$ และมีค่า เท่ากับศูนย์ เมื่อ $x=x_j$ โดยที่ $i\neq j$

100 100 120 120 2 100

การประมาณค่าในช่วงด้วยวิธีลากรองจ์

ตัวอย่างที่ 1.5

จงหาค่าประมาณของ In 2 โดยใช้การประมาณค่าในช่วงของลากรองจ์อันดับ ที่ 1 และ ลากรองจ์อันดับที่ 2 เมื่อกำหนดข้อมูล 3 จุด ดังนี้ In 1 = 0, In 4 = 1.386294, In 6 = 1.791759

ตัวอย่างที่ 1.6

จงหาฟังก์ชันค่าประมาณ $f_2(x)$ โดยใช้การประมาณค่าในช่วงของลากรองจ์ อันดับที่ 2 เมื่อกำหนดข้อมูลดังนี้

x	0	1	2
y	1	3	2

4 m > 4 m >

แบบฝึกหัด

1. กำหนดตารางแสดงค่าของฟังก์ชันตั้งนี้

x	1	2	3	5	7	8
f(x)	3	6	19	99	291	444

จงหาค่าของ f(4) โดยใช้วิธีต่อไปนี้

- 1.1 การประมาณค่าในช่วงของลากรองจ์อันดับที่ 1
 1.2 การประมาณค่าในช่วงของลากรองจ์อันดับที่ 2
 1.3 การประมาณค่าในช่วงของลากรองจ์อันดับที่ 5
- 2. กำหนดตารางแสดงค่าของฟังก์ชันตั้งนี้

x	0	1	3	4	5
f(x)	0	1	81	256	625

จงหาค่าของ f(2) โดยใช้วิธีการประมาณค่าในช่วงของลากรองจ์

 จากแบบฝึกหัดข้อที่ 1 และ 2 จงเขียนภาษาโปรแกรมไพธอน โดยใช้การประมาณค่า ในช่วงของลากรองจ์

ฉลยแบบฝึกหัด	
1. 1.1 59.0	
1.2 45.0 1.3 47.999999 2. 16.0	

100 (B) (B) (B) (B) (D)