Statistical Learning and Machine Learning Lecture 12 - Linear Models for Regression 2

October 6, 2021

Course overview and where do we stand

Objectives of the lecture

- Linear models for regression
 - Review of least squares approach
 - Sequential updates of weight vector in least squares
 - Multiple inputs
 - Bayesian linear regression

Goal of Regression

- The goal of regression is to predict the value of one or more continuous target variables t given the value of a D-dimensional vector x of input variables.
- Supervised learning: Training data consisting of N observations $\{x_n\}$ for n = 1, ..., N along with target values $\{t_n\}$ are available.
- Output: A function y(x) whose values for new inputs x constitute the predictions t.

Linear Basis Function Models

Two ways to define linear models:

Linear w.r.t. to both input x and parameters w

$$y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots, + w_D x_D = w_0 + \sum_{j=1}^D w_j x_j = \mathbf{w}^T \mathbf{x}$$

where $\mathbf{x} = (x_0, x_1, \dots, x_D)^T$ and $x_0 = 1$ in the final form.

• Non-linear functions $\phi_j(\cdot), j=1,\ldots,M-1$ (basis functions) w.r.t. to the input, with $\phi_0(\mathbf{x})=1$

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

where $\phi = (\phi_0, \dots, \phi_{M-1})^T$ and $\mathbf{w} = (w_0, \dots, w_{M-1})^T$.

Examples

Linear basis function in both \boldsymbol{w} and \boldsymbol{x}

$$\phi_j(\mathbf{x}) = x_j$$
, for $j = 1, \dots, D$

with $\phi_0(\mathbf{x}) = 1$.

In vector form, we get

$$\phi(\mathbf{x}) = (\phi_0, \dots, \phi_{M-1})^T = \mathbf{x}$$

where M-1=D. In this case, the output function becomes

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

Example basis functions

Polynomial basis function:

$$\phi_j(x) = x^j$$

Example basis functions

Radial basis function:

$$\phi_j(x) = exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

Example basis functions

Sigmoidal basis function:

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where $\sigma(a) = 1/(1 + exp(-a))$.

Least Squares

- Goal: Given a set of i.i.d. data points $\mathcal{D} = \{x_1, \dots, x_N\}$ and the corresponding t_n , $n = 1, \dots, N$, we want to estimate the parameters \boldsymbol{w} of the regression model.
- Which model?

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x})$$

Least Squares

 Cost function to be minimized: Sum of the squares of the individual errors:

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(\mathbf{x}_n, \mathbf{w}) - t_n \right)^2 = \frac{1}{2} \sum_{n=1}^{N} \left(\mathbf{w}^T \phi(\mathbf{x}_n) - t_n \right)^2$$

• Minimization: By setting $\frac{\partial E_D(w)}{\partial w} = 0$:

$$\mathbf{w} = (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

where $\Phi \in \mathbb{R}^{N \times M}$ is formed by using the vectors $\phi(\mathbf{x}_n)$ as rows and $\mathbf{t} = [t_1, \dots, t_N]^T$.

Linear Regression: Sequential updates

We obtain a sequential (or *on-line*) learning algorithm for updating w by applying stochastic gradient descent (SGD):

• If the error function has the form $E(\mathbf{w}) = \sum_n E_n(\mathbf{w})$ then:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

where τ denotes the iteration number, η is a learning rate parameter and ∇ is the gradient operator.

For the least-squares error case:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta \left(t_n - \mathbf{w}^{(\tau)T} \phi(\mathbf{x}_n) \right) \phi(\mathbf{x}_n).$$

The value of η needs to be chosen appropriately to ensure convergence of the algorithm.

Linear Regression: Sequential updates

A more effective sequential learning algorithm for updating \boldsymbol{w} is based on the Newton-Raphson iterative optimization scheme, which uses a local quadratic approximation of the log-likelihood function:

$$oldsymbol{w}^{(au+1)} = oldsymbol{w}^{(au)} - oldsymbol{H}^{-1}
abla E_n(oldsymbol{w})$$

where \boldsymbol{H} is the Hessian matrix having elements $H_{ij} = \frac{\partial^2 E_n(\boldsymbol{w})}{\partial w_i \partial w_j}$.

$$\nabla E_n(\mathbf{w}) = \sum_{n=1}^N (\mathbf{w}^T \phi(\mathbf{x}_n) - t_n) \phi(\mathbf{x}_n) = \Phi^T \Phi \mathbf{w} - \Phi^T \mathbf{t}$$
$$\mathbf{H} = \nabla \nabla E_n(\mathbf{w}) = \sum_{n=1}^N \phi_n \phi_n^T = \Phi^T \Phi$$

Linear Regression: Sequential updates

Because $E_n(\mathbf{w})$ is a quadratic function, the Newton-Raphson method gives the exact solution in one step if applied on the entire data set.

The update takes the form:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - (\Phi^T \Phi)^{-1} (\Phi^T \Phi \mathbf{w}^{(\tau)} - \Phi^T \mathbf{t})$$
$$= (\Phi^T \Phi)^{-1} \Phi^T \mathbf{t}$$

Linear Regression: Multiple outputs

When we want to regress to multiple target values $t_n \in \mathbb{R}^K$:

$$\mathbf{y}(\mathbf{x}_n, \mathbf{W}) = \mathbf{W}^T \phi(\mathbf{x}_n)$$

where $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K] \in \mathbb{R}^{M \times K}$.

When the targets are multi-dimensional random variables t, we need to estimate $p(t|x, W, \beta)$. We will consider the case:

$$p(t|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(t|\mathbf{W}^T \phi(\mathbf{x}), \beta^{-1} \mathbf{I}).$$

Linear Regression: Multiple outputs

Given a set of i.i.d. data points $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$ and the corresponding target vectors $\mathbf{T} \in \mathbb{R}^{N \times K}$, having as its n-th row the target vector \mathbf{t}_n .

The log-likelihood function is given by:

$$\ln p(\boldsymbol{T}|\boldsymbol{X}, \boldsymbol{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\boldsymbol{t}_{n}|\boldsymbol{W}^{T} \phi(\boldsymbol{x}), \beta^{-1} \boldsymbol{I})$$
$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \|\boldsymbol{t}_{n} - \boldsymbol{W}^{T} \phi(\boldsymbol{x})\|^{2}.$$

Setting $\frac{\partial \ln p(T|X,W,\beta)}{\partial W} = 0$:

$$\boldsymbol{W}_{MI} = \Phi^{\dagger} \boldsymbol{T}.$$

Bayesian Linear Regression

We consider the model parameters \boldsymbol{w} as parameters drawn by a distribution $p(\boldsymbol{w})$ (we assume β is known).

The likelihood function p(t|w) is an exponential of quadratic function of w:

$$p(\boldsymbol{t}|\boldsymbol{w},\beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|\boldsymbol{w}^T \boldsymbol{\phi}(\boldsymbol{x}), \beta^{-1}).$$

The corresponding conjugate prior has the form:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$

Bayesian Linear Regression

Reminder: posterior \propto likelihood \times prior

The posterior distribution is:

$$p(\boldsymbol{w}|\boldsymbol{t}) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_N, \boldsymbol{S}_N)$$

where

$$\mathbf{m}_N = \mathbf{S}_N(\mathbf{S}_0^{-1}\mathbf{m}_0 + \beta \Phi^T \mathbf{t})$$

 $\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \Phi^T \Phi.$

Cases:

- If $S_0 = \alpha^{-1} I$ with $\alpha \to 0$, then $m_N \to w_{ML}$
- If N = 0 then p(w|t) becomes p(w)

Bayesian Linear Regression

When
$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|0, \alpha^{-1}\mathbf{I})$$
:

$$m_N = \beta S_N \Phi^T t$$

 $S_N^{-1} = \alpha I + \beta \Phi^T \Phi$

and

$$\ln p(\boldsymbol{w}|\boldsymbol{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \left(t_n - \boldsymbol{w}^T \phi(\boldsymbol{x}_n) \right)^2 - \frac{\alpha}{2} \boldsymbol{w}^T \boldsymbol{w} + \text{const.}$$

Maximization of the posterior distribution w.r.t. ${\it w}$ is equivalent to the minimization of the sum-of-squares error with an additional quadratic regularization term with regularization term $\lambda=\alpha/\beta$.

Bayesian Linear Regression: Predictive distribution

In practice, we want to make predictions of t for new values of x:

$$p(t|\boldsymbol{t}, \alpha, \beta) = \int p(t|\boldsymbol{w}, \beta)p(\boldsymbol{w}|\boldsymbol{t}, \alpha, \beta)d\boldsymbol{w}$$

- Conditional distribution: $p(t|\mathbf{w},\beta) = \mathcal{N}(t|y(\mathbf{x},\mathbf{w}),\beta^{-1})$
- Posterior: $p(\boldsymbol{w}|\boldsymbol{t},\alpha,\beta) = \mathcal{N}(\boldsymbol{w}|\boldsymbol{m}_N,\boldsymbol{S}_N)$

The result is a Gaussian:

$$p(t|\mathbf{x}, \mathbf{t}, \alpha, \beta) = \mathcal{N}(t|\mathbf{m}_N^T \phi(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where: $\sigma_N^2(\mathbf{x}) = \beta^{-1} + \phi(\mathbf{x})^T \mathbf{S}_N \phi(\mathbf{x})$.

Bayesian Linear Regression: Predictive distribution

Bayesian Linear Regression: Predictive distribution

