КОЭФФИЦИЕНТ СЖИМАЕМОСТИ ГАЗОВ И ГАЗОКОНДЕНСАТНЫХ СМЕСЕЙ: ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ И РАСЧЕТЫ

В.И. Лапшин, А.Н. Волков, И.М. Шафиев (ООО «Газпром ВНИИГАЗ»)

Коэффициент сжимаемости (Z) характеризует отличие реальных газов от идеальных.

Для идеальных газов, в которых отсутствует взаимодействие между молекулами, справедлив закон Клайперона, который обобщает законы Бойля — Мариотта и Гей-Люссака: $(P \cdot V) / T = (P_0 \cdot V_0) / T_0 = R$, где R — универсальная газовая постоянная.

Для реальных газов произведение объема на давление $(P \cdot V)$ при постоянной температуре не является постоянной величиной. С ростом давления это произведение вначале уменьшается до определенного предела, а затем с увеличением давления увеличивается.

При практических расчетах для оценки степени указанных отклонений в уравнение Клайперона вводится поправочный коэффициент (Z) [1, 2, 3]. Уравнение Клайперона – Менделеева с учетом коэффициента сжимаемости имеет вид PV = ZNRT, где P – абсолютное давление; V – объем, занимаемый газом (газоконденсатной смесью) при определенных давлении и температуре; R – универсальная газовая постоянная; N – число молей газа.

Это уравнение можно записать в виде

$$N = \frac{PV}{ZRT}. ag{1}$$

Учитывая, что определение коэффициента сжимаемости проводится без изменения числа молей газа (N_z = const),

$$N_{c} = \frac{P_{0}V_{0}}{Z_{0}RT_{0}},\tag{2}$$

где
$$V_0$$
 – объем газа при P_0 = 0,1013 МПа, м³; T_0 = 293 К; R = 24,01 $\left(\frac{\text{МПа·м³}}{\text{K}}\right)$; Z_0 = 1.

Экспериментальное определение коэффициента сжимаемости газов и газоконденсатных смесей, особенно с высоким содержанием H_2S и CO_2 , рекомендуется проводить на установках типа Magra-PVT, $AC\Phi-PVT$ или дру-

гих большеобъемных установках PVT [2, 4, 5]. Схема соединения технологических узлов установки Magra-PVT для изучения коэффициента сжимаемости газов и газоконденсатных смесей приведена на рис. 1. Для более точного определения объемов газа при различных давлениях рекомендуется проведение специального комплекса тарировочных исследований, которые включают определение объемов камер PVT, а также поправок на их термическое расширение и механическую деформацию.

Проведенные авторами настоящей статьи исследования [4, 5] показали, что наиболее технологичным способом определения коэффициента сжимаемости является сжатие определенного объема газа в камере PVT за счет изменения ее объема нагнетанием ртути или введением поршня.

Определение объемов камер PVT и насосов осуществлялось методом замера объема тарировочной жидкости (ртути) после ее слива из полностью заполненных камер при нормальных условиях: $P_{\kappa am}=0,1013$ МПа; $T_{\kappa am}=293$ K; количество замеров 15. Результаты определения объемов камер PVT и насосов по 15 замерам приведены в табл. 1.

Рис. 1. Схема установки для исследования коэффициента сжимаемости газов и газоконденсатных смесей: 1, 2 — ртутный насос; 3 — датчик объема; 4 — контейнер с газом; 5 — контейнер с конденсатом; 6 — камера *PVT* (0,7 л); 7 — кран высокого давления; 8 — датчик давления и температуры; 9 — камера *PVT* (3,8 л); 10 — сепаратор-термостат; 11 — газовый счетчик

Объем камер PVT и насосов, см 3							
Камеры	PVT	Насосы					
0,7 л	3,8 л	1	2				
705,0	3604,0	489,2	489,2				
<u>+</u> 0,3	<u>+</u> 3,0	<u>+</u> 0,1	<u>+</u> 0,1				

Для расчета истинного объема газа в камерах PVT использовалось следующее выражение:

$$V_{\it c} = V_{\it кам} + \Delta V_{\it кам}(t) + \Delta V_{\it кам}(p) - V_{\it pm}(c) - \Delta V_{\it pm}(t) + \Delta V_{\it pm}(p),$$
 (3) где $V_{\it кам}$ – объем камеры PVT при нормальных условиях; $\Delta V_{\it кам}(t)$ – поправка на термическое расширение камеры PVT ; $\Delta V_{\it kam}(p)$ – поправка на механическую деформацию камеры PVT ; $V_{\it pm}(c)$ – объем закачанной в камеру PVT ртути (по счетчику); $\Delta V_{\it pm}(t)$ – поправка на термическое расширение закачанной в камеру PVT ртути (по счетчику); $\Delta V_{\it pm}(p)$ – поправка на механическую деформацию ртути.

Исходя из уравнения состояния для индивидуальных газов и газовых смесей, коэффициент сжимаемости рассчитывается по формуле

$$Z = \frac{PVT_0}{P_0V_0T}. (4)$$

Определение коэффициента сжимаемости сухих газов начинается с заправки газа в камеру PVT, которая проводится следующим образом. В камеру PVT емкостью 0,7 л (см. рис. 1) из галонного контейнера передавливают газ в объеме, равном 50 или 100 л. Ориентировочно объем газа оценивается по давлению заправки, которое рассчитывается по формуле

$$P_{\scriptscriptstyle 3} = \frac{P_{\scriptscriptstyle 0} Z \, T_{\scriptscriptstyle m} Q_{\scriptscriptstyle c}}{T_{\scriptscriptstyle 0} V_{\scriptscriptstyle KAM}},\tag{5}$$

где P_0 — нормальное давление (0,1013 МПа); T_m — температура термостата, К; Q_ε — объем газа (100 л), загруженного в камеру при T_0 ; T_0 — нормальная температура, 293 К; $V_{\kappa a m}$ — объем камеры (0,7) с учетом поправок согласно формуле (1); Z — коэффициент сжимаемости.

Коэффициент сжимаемости газа при этом определяется ориентировочно – расчетным или экспериментальным путем. Далее в рабочей камере создают необходимую температуру и поэтапно повышают давление до 70–80 МПа. В конце каждого этапа после стабилизации давления опреде-

ляют объем сжатого газа. Объем газа при $P_0 = 0,1013$ МПа и $T_0 = 293$ К замеряют, пропуская газ через термостат и газовый счетчик.

Вычисляют коэффициент сжимаемости при давлении P по формуле $Z = PVT_0/P_0V_0T$, (6)

где V – объем газа при давлении P и температуре T, M^3 ; V_0 – объем газа при $P_0 = 0.1013~\mathrm{M\Pi a}$ и $T_0 = 293~\mathrm{K}$, M^3 .

Для оценки точности определения коэффициентов сжимаемости газа сепарации Карачаганакского НГКМ проведен цикл экспериментов с использованием газовой смеси одного состава. Всего проведено 17 экспериментов, в каждом из которых определялись объем газовой смеси и давление и рассчитывался коэффициент сжимаемости ($T = T_0 = 293 \text{ K}$) (табл. 2). В табл. 2 приведены результаты определения коэффициента сжимаемости газа сепарации Карачаганакского НГКМ (состав газа приведен ниже).

Таблица 2 Результаты определения коэффициента сжимаемости газа сепарации Карачаганакского НГКМ

№ п/п	$P_{0,}$ МПа	V _{0,} л	Объем смеси с поправкой, см ³	Давление в камере, МПа	$Z = \frac{PV}{P_0 V_0}$
1	2	3	4	5	6
1	0,1013	99,387	306,09	29,97	0,9114
2	- // -	- // -	306,04	29,92	0,9112
3	- // -	- // -	306,09	30,02	0,9113
4	- // -	- // -	306,09	29,97	0,9115
5	- // -	- // -	306,14	29,96	0,9113
6	- // -	- // -	306,14	30,03	0,9140
7	- // -	- // -	305,59	29,92	0,9080
8	- // -	- // -	306,04	30,02	0,9110
9	- // -	- // -	306,20	30,02	0,9130
10	- // -	- // -	306,20	30,02	0,9090
11	- // -	- // -	306,14	29,97	0,9110
12	- // -	- // -	306,14	29,92	0,9090
13	- // -	- // -	306,02	29,92	0,9080
14	- // -	- // -	306,14	29,92	0,9080
15	- // -	- // -	306,14	29,99	0,9110
16	- // -	- // -	306,09	29,97	0,9114
17	- // -	- // -	306,14	30,30	0,9115
Среднее	- // -	- // -	$\overline{V} = 306,09$	$\overline{P} = 29,97$	\overline{Z} = 0,9112

Исходя из данных, приведенных в табл. 2, определены значения давления и объема газа сепарации с учетом погрешности измерения:

$$P_{z,c} = \overline{P_{z,c}} + \Delta P = 29,97 \pm 0,05 \,\text{M}\Pi a;$$
 (7)

$$V_{cc} = \overline{V_{cc}} + \Delta V = 306,09 \pm 0,55 \text{ cm}^3.$$
 (8)

Среднее значение коэффициента сжимаемости равно

$$Z = \frac{PV_{z.c}}{P_0 V_0} = \frac{29,97 \cdot 306,09}{0,1013 \cdot 993,87} = 0,9112.$$
 (9)

Коэффициент сжимаемости с учетом среднеквадратичного отклонения равен

$$Z = \overline{Z} + \Delta Z = 0.9112 + 0.0021.$$
 (10)

Относительная погрешность косвенных измерений находилась следующим образом:

$$\overline{\sigma} = \frac{\overline{\sigma_z}}{Z} = \frac{0,0021}{0,9112} = 0,0023;$$
 (11)

$$\overline{d_z} = 0.0023 \cdot 100 \% = 0.23 \%$$
.

Анализ полученных данных позволяет говорить о высокой точности определения коэффициента сжимаемости газов и газовых смесей на установке *Magra-PVT*, т.к. относительная погрешность составляет доли процента.

При определении коэффициента сжимаемости газоконденсатных смесей делаются следующие допущения [2, 6]:

- коэффициент сжимаемости определяется при давлении выше P_{HK} ;
- объем смеси при $P_0 = 0{,}1013~{\rm M}\Pi{\rm a}$ и $T_0 = 293~{\rm K}$ принимается равным сумме объемов сухого газа V_0 и газового эквивалента $V_{z,9}$ ($V_{z,9}$ объем паров, получаемых после испарения жидких углеводородов, растворенных в газе).

Определение коэффициента сжимаемости газоконденсатной смеси начинается с ее рекомбинации в камере PVT (6) (см. рис.1). Основные исследования проводят, используя газоконденсатную смесь в газообразном состоянии. Для этого поэтапно изотермически снижают давление в камере и в конце каждого этапа определяют объем газоконденсатной смеси V_{cm} при давлении P_{cm} . Снижение давления и определение объема исследуемой смеси проводят до достижения давления начала конденсации.

Затем давление в камере (6) снижается до минимально возможного и она охлаждается до комнатной температуры, при этом смесь разделяется на газ и конденсат. Газ пропускается через термостат (10) при T = 293 К и счетчик (11), в котором замеряется объем V_0 . Весь выпавший конденсат собирается в сепараторе и камере, замеряется его объем q_{κ} и определяется плотность ρ_{κ} .

Расчет коэффициента сжимаемости проводится по формуле

$$Z = \frac{P_{cM}V_{cM}T_0}{(P_0V_0 + V_{\kappa})T_{cM}},\tag{12}$$

$$V_{\kappa} = \frac{24,040 \cdot q_{\kappa} \rho_{\kappa} T_{m}}{293 \cdot M_{\kappa}}, \tag{13}$$

где $P_{\scriptscriptstyle CM}$, $V_{\scriptscriptstyle CM}$ – давление, температура и объем смеси в камере; V_0 – объем газа, замеренного счетчиком при P_0 ; $V_{\scriptscriptstyle K}$ – объем паров, получаемых после испарения выпавших жидких углеводородов (конденсата); $q_{\scriptscriptstyle K}$ – количество выпавшего конденсата, см³; $\rho_{\scriptscriptstyle K}$ – плотность конденсата, г/см³; T_m – температура термостата, К; $M_{\scriptscriptstyle K}$ – молярная масса конденсата, г/моль.

Оценка точности разработанной методики проводилась путем сопоставления результатов определения коэффициентов сжимаемости индивидуальных газов (метана, углекислого газа, сероводорода) экспериментальным путем на установке PVT с данными, приведенными в [7, 8] (рис. 2).

Рис. 2. Экспериментальные и эталонные кривые коэффициента сжимаемости для метана (а); углекислого газа (б); сероводорода (в) при температурах: 423 К (1); 383 К (2); 293 К (4):

эталонные; • экспериментальные

Отклонение экспериментальных данных от эталонных практически во всех интервалах давлений и температур не превышает 0,2–1,3 %, что свидетельствует о достаточно высокой точности разработанной методики.

Для выявления влияния углекислого газа на сжимаемость проведены исследования смесей, состоящих из 75 % метана, 25 % углекислого газа (% мол.) и разного содержания C_{5+} при различных давлениях и температурах. Результаты проведенных экспериментов показали, что растворение в метане углекислого газа (рис. 3) существенно изменяет конфигурацию кривых коэффициентов сжимаемости.

Результаты, полученные в ходе экспериментальных работ, позволяют решать задачи, связанные с разработкой, добычей и транспортом газа. Так, например, разработаны графики для определения коэффициентов сжимаемости газов сепарации Астраханского ГКМ и Карачаганакского НГКМ в интервале давлений от 0,1013 до 70.0 МПа и температур от 293 до 383 К [7, 10].

Рис. 3. Экспериментальные зависимости коэффициента сжимаемости газовой (а) и газоконденсатных (б – C_{5+} = 200 г/м³; в – C_{5+} = 800 г/м³) смесей от давления и температуры: 1 – 423 К; 2 – 293 К

Для Астраханского ГКМ графики построены по результатам исследования газа сепарации следующего состава: $H_2S - 24,52$; $CO_2 - 14,68$; $C_1 - 55,43$; $C_2 - 2,63$; $C_3 - 1,09$; $C_4 - 0,56$; $C_{5+} - 0,41$; $N_2 - 0,67$ % мол. (рис. 4). Этот состав газа сепарации близок к среднему составу по месторождению.

Для Карачаганакского НГКМ графики построены по результатам исследования газа сепарации следующего состава: $H_2S - 3,2$; $CO_2 - 6,72$; $C_1 - 80,61$; $C_2 - 5,20$; $C_3 - 2,11$; $C_4 - 0,79$; $C_{5+} - 0,15$; $N_2 - 1,29$ % мол. (рис. 5).

Сопоставление расчетных значений коэффициентов сжимаемости различными методами с экспериментальными данными показало [2, 9], что отклонение в различных интервалах давлений и температур доходит до 27,7 %.

Наиболее близкие к экспериментальным аналитические значения коэффициентов сжимаемости для газа сепарации Астраханского ГКМ получены при использовании:

- метода определения коэффициентов сжимаемости по Вичерту Азизу Кей Брауну в диапазоне давлений 30–70 МПа и температур 293–348 К. Рассчитанные по этому методу значения в среднем завышены на + 5,8 %;
- методов определения коэффициентов сжимаемости по Кей Брауну и Кей Питцеру в диапазоне давлений 50–70 МПа и температур 293–383 К. Отклонение расчетных коэффициентов сжимаемости от экспериментальных колеблется в пределах 0,8–5,4 %.

Из анализа расчетов коэффициентов сжимаемости с помощью уравнения состояния Пенга — Робинсона [2] следует, что при давлениях до 30 МПа с наименьшей погрешностью коэффициенты сжимаемости рассчитываются с помощью вышеупомянутого уравнения. С увеличением давления погрешность расчета возрастает.

Исследование коэффициента сжимаемости газоконденсатных смесей показало, что растворение в метане жидкой фазы (конденсата) приводит к его увеличению (рис. 6).

Так, при растворении 200 г/м 3 углеводородов C_{5+} увеличение коэффициента сжимаемости составляет 2–5 %, при растворении порядка 800 г/м 3 – 17–32 % в зависимости от температуры.

Особый интерес представляют впервые экспериментально определенные коэффициенты сжимаемости реальных газоконденсатных смесей Карачаганакского НГКМ с высоким содержанием конденсата (рис. 7).

Рис. 4. График для определения коэффициента сжимаемости газа сепарации Астраханского ГКМ при различных давлениях и температурах

Рис. 5. График для определения коэффициента сжимаемости газа сепарации Карачаганакского НГКМ при различных давлениях и температурах

Рис. 6. Зависимость коэффициента сжимаемости газоконденсатной смеси от содержания конденсата при различных давлениях и температурах: $1-50~\mathrm{M\Pi a};~2-60~\mathrm{M\Pi a};~3-70~\mathrm{M\Pi a};~4-80~\mathrm{M\Pi a}:~a-293~\mathrm{K};~6-343~\mathrm{K};~\mathrm{B}-383~\mathrm{K}$

Рис. 7. График для определения коэффициентов сжимаемости газоконденсатных смесей Карачаганакского НГКМ

Список литературы

- 1. Гуревич Г.Р. Справочное пособие по расчету фазового состояния и свойств газоконденсатных смесей / Г.Р. Гуревич, А.И. Брусиловский. М.: Недра, 1984.-264 с.
- 2. Гуревич Г.Р. Коэффициенты сжимаемости природных газов с высоким содержанием сероводорода и двуокиси углеводорода / Г.Р. Гуревич, В.И. Лапшин, А.И. Брусиловский, А.П. Желтов // Изв. вузов. Сер. Нефть и газ. − 1989. № 7. С. 61–64.
- 3. Ширковский А.И. Разработка и эксплуатация газовых и газоконденсатных месторождений: учебник для вузов. 2-е изд. М.: Недра, 1987. 309 с.
- 4. Лапшин В.И. Методика и результаты исследования коэффициентов сверхсжимаемости природных газов с высоким содержанием сероводорода и углекислого газа / В.И. Лапшин, А.П. Желтов, Г.Р. Гуревич // Геология нефти и газа. 1989. N = 7. C. 38 = 40.
- 5. Лапшин В.И. Экспериментальное определение коэффициента сверхсжимаемости газовых смесей с высоким содержанием H_2S , CO_2 / В.И. Лапшин, Ю.Ю. Круглов, А.П. Желтов // Экспрес. информ. Сер. Разработка и эксплуатация газовых и газоконденсатных месторождений. $1988. N_2 \cdot 1. C. \cdot 7-12.$
- 6. Лапшин В.И. Природные газы сложного состава. Результаты исследования сверхсжимаемости / В.И. Лапшин // Газовая промышленность. 1991. N = 2. C. 32-33.
- 7. Динков В.А. Расчет коэффициентов сжимаемости углеводородных газов и смесей: справочное пособие / В.А. Динков, З.Т. Галиуллин, А.П. Подкопаев. М.: Недра, 1984. С. 118.
- 8. Катц Д.Л. Руководство по добыче, транспорту и переработке природного газа / Д.Л. Катц, Д. Корнелл, Р. Кобаяши и др. М.: Недра, 1965. 676 с.
- 9. Лапшин В.И. Аналитическое определение коэффициента сверхсжимаемости газов Астраханского месторождения. Совершенствование технологии строительства глубоких разведочных скважин в аномальных условиях Прикаспийской впадины / В.И. Лапшин, В.В. Томилкин, А.П. Желтов; под ред. П.С. Шмелева. Саратов, 1989. С. 121–128.