Optimizavimo metodai. Paskaitų konspektas

Rimantas Grigutis

11 paskaita. Tiesinis programavimas. Simplekso metodas. Sveikatiesis programavimas. Šakų ir ribų metodas

Pavyzdys 11.1. TPU sprendimo simplekso metodu Maple pagalba pavyzdys.

Rasti funkcijos

$$f(x) = 3x - 4y$$

maksimumą, jei galimų sprendinių aibės apribojimai yra

$$6x + 6y \le 36$$

 $4x + 8y \le 32$
 $x > 0, y > 0$.

Sprendžiame Maple pagalba:

>
$$with(simplex);$$

> $cnsts := \{6 * x + 6 * y <= 36, 4 * x + 8 * y <= 32\};$
> $obj := 3 * x - 4 * y;$
> $maximize(obj, cnstunion \{x >= 0, y >= 0\});$
 $\{y = 0, x = 6\}$

Sveikatiesis TPU

Rasti funkcijos

$$f\left(x\right) = \sum_{j=1}^{n} c_j x_j$$

maksimumą, jei galimų sprendinių aibės apribojimai yra

$$\begin{split} \sum_{j=1}^n a_{ij} x_j &\geq b_i, & i = 1, ..., m; \\ x_j &\geq 0, \text{sveikieji}, & j = 1, ..., n. \end{split}$$

Sprendimo strategija

Jei sprendžiant TPU-(r) be sveikareikšmiškumo salygos

$$f(x) = \sum_{j=1}^{n} c_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i, \qquad i = 1, ..., m;$$
$$x_j \ge 0, \qquad j = 1, ..., n.x_j$$

gaunamas nesveikareikšmis sprendinys $\mathbf{x}^* = (x_1^*,...,x_k^*,...,x_n^*)$ ir skaičiaus x_k^* trupmeninė dalis $\{x_k^*\}$ yra didžiausia iš visų skaičių $x_1^*,...,x_n^*$ trupmeninių dalių $\{x_1^*\},...,\{x_n^*\}$

$$\{x_k^*\} = \max\{\{x_1^*\}, ..., \{x_n^*\}\},\$$

tai TPU-(r) skaidomas į du uždavinius TPU-(2r) ir TPU-(2r+1): TPU-(2r)

$$f(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i, \qquad i = 1, ..., m;$$
$$x_k \le [x_k]$$
$$x_j \ge 0, \qquad j = 1, ..., n.$$

TPU-(2r)

$$f(x) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i, \qquad i = 1, ..., m;$$
$$x_k \ge [x_k] + 1$$
$$x_j \ge 0, \qquad j = 1, ..., n.$$

Toliau sprendžiami šie uždaviniai ir jei sprendiniai vėl nesveikareikšmiai, tai vėl skaidyti į du uždavinius. Taip elgtis tol, kol arba negausime sveikareikšmio sprendinio, arba visi nauji uždaviniai bus nesuderinami.

Algoritmas.

Apibrėžiame TPU-0

$$f(\mathbf{x}) = \sum_{j=1}^{n} c_j x_j$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i, \qquad i = 1, ..., m;$$
$$x_j \ge 0 \qquad j = 1, ..., n$$

Žingsnis 1. Parenkamas labai mažas neigiamas skaičius M<0 ir priskiriame F:=M

Žingsnis 2. Priskiriame $\mathbf{x}^* := (-1, ..., -1)$.

 $\check{Z}ingsnis\ 3.$ Apibrėžiama sprendžiamų uždavinių aibė $S:=\{\text{TPU-0}\}$.

Žingsnis 4. Sprendžiame visus uždavinius iš S be sveikareikšmiškumo reikalavimo.

Žingsnis 5. Jei visų uždavinių sprendiniai yra nesveikareikšmiai, tai pereiti prie Žingsnio 6.

Jei tarp išspręstų uždavinių sprendinių yra sveikareikšmiai $\mathbf{x}^{*i_1}, ..., \mathbf{x}^{*i_t}$, tai parenkamas toks \mathbf{x}^{*i} , kad $f(\mathbf{x}^{*i}) = \max_{1 \leq j \leq t} f(\mathbf{x}^{*i_j})$ ir

jei $f(\mathbf{x}^{*i}) \leq F$, tai pereiti prie Žingsnio 6; jei $f(\mathbf{x}^{*i}) \geq F$, tai priskirti $\mathbf{x}^* := \mathbf{x}^{*i}$ ir $F := f(\mathbf{x}^{*i})$ ir pereiti prie Žingsnio 6.

Žingsnis 6. Iš S išbraukiame visus TPU-j, kurių sprendiniai \mathbf{x}^{*j} tenkina nelygybę $f(\mathbf{x}^{*j}) \leq F$.

Žingsnis 7. Jei $S=\emptyset$, tai baigti algoritmą ir pereiti prie Žingsnio 8; Jei $S\neq\emptyset$, tai visus uždaviniusTPU-(r) iš S pakeičiame jų skaidiniais TPU-(2r) ir TPU-(2r+1) ir pereiti prie Žingsnio 4.

Žingsnis 8. Sveikareikšmis TPU sprendinys yra \mathbf{x}^* ir $f(\mathbf{x}^*) = M$. Jei $\mathbf{x}^* := (-1, ..., -1)$, tai sprendžiamas uždavinys neturi sveikareikšmio sprendinio.

Pavyzdys 11.2