Def I.1, σ -Algebra, messbarer Raum

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Ein Mengensystem $A \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Satz I.2

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Def. I.3

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Def. I.4

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s=\infty$ und $\forall r\in\mathbb{R}:s_k\in(r,\infty]$ für k hinreichend groß
- (iii) $s=-\infty$ und $orall r\in\mathbb{R}:s_k\in[-\infty,r)$ für k hinreichend groß
- $(s_k)\subseteq\mathbb{R}$ ist genau dann in $\mathbb{\bar{R}}$ konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm\infty$ divergiert.

Def. I.5, Maßraum

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu: \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}$, $i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad \qquad (\sigma\text{-Additivität})$

Das Tripel (X, A, μ) heißt **Maßraum**.

Bem.:

(i) Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

(ii) Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \le \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Def. I.6

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -**endlich**, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$. Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Satz I.7 (Stetigkeitseig. von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1\subseteq A_2\subseteq A_3\subseteq ...$$
 folgt: $\mu(\bigcup_{i\in\mathbb{N}}A_i)=\lim_{i o\infty}\mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}}A_i)\leq \sum_{i\in\mathbb{N}}\mu(A_i)$$

Bemerkungen zu Satz I.7

- (1) (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- (2) Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden. Begründung:

$$\begin{aligned} &A_k=k, k+1, ... \subseteq \mathbb{N} \\ & \mathit{card}(A_k) = \infty \ \forall k \in \mathbb{N} \\ & \mathsf{Aber:} \ \mathit{card}(\bigcap_{i \in \mathbb{N}} A_i) = \mathit{card}(\emptyset) = 0 \end{aligned}$$

Def. I.8

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A\in\mathcal{A}$ mit $\mu(A)=0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt **vollständig**, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0 \implies N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.: Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen

Zu Def. I.8: Vervollstandigung

```
\bar{\mu} ist wohldefiniert: A \cup N = B \cup P mit A, B \in \mathcal{A}, \ P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0 : P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \leq \mu(B) + \mu(C) = \mu(B) Symm \implies \mu(A) = \mu(B) \bar{\mu} heißt Vervollständigung von \mu
```

Satz I.9

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Satz I.10

 (X,\mathcal{A},μ) Maßraum und $(X,\bar{\mathcal{A}}_{\mu},\bar{\mu})$ sei Vervollständigung. Ferner sei (X,\mathcal{B},ν) ein vollständiger Maßraum mit $\mathcal{A}\subseteq\mathcal{B}$ und $\mu=\nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu}\subseteq\mathcal{B}$ und $\bar{\mu}=\nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Def. I.11

 $(X,\mathcal{A}),(Y,\mathcal{C})$ messbare Räume. Eine Abbildung $f:X\to Y$ heißt $\mathcal{A}-\mathcal{C}$ —messbar, falls $f^{-1}(\mathcal{C})\subseteq\mathcal{A}$ Falls \mathcal{A},\mathcal{C} klar sind, bezeichnen wir f einfach als messbar

Lemma I.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f: X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar

borel-messbar (Zu Lemma I.12)

```
Jede stetige Abbildung f: \mathbb{R}^n \to \mathbb{R}^n ist \mathbb{B}^n-messbar (man sagt: f ist borel-messbar). Denn \mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\}) und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)
```

Def. I.13

(X, A) messbarer Raum und $D \in A$.

Eine Funktion $f:D\to \bar{\mathbb{R}}$ heißt numerische Funktion.

Lemma I.14

- (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f : D \to \mathbb{R}$. Dann sind folgende Aussagen äquivalent:
 - (i) f ist \mathcal{A} - \mathbb{B}^1 -messbar
- (ii) $\forall \ \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$
- (iii) $\{f \leq s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (v) $\{f \geq s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- In (iii) (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.:

$$\{f \geq s\} = \bigcap_{\substack{q \in \mathbb{Q} \\ s > q}} \{f > q\}$$

Lemma I.15

```
Sei (X, \mathcal{A}) ein messbarer Raum, D \in \mathcal{A} und f, g : D \to \mathbb{R} \mathcal{A}-messbar. Dann sind die Mengen \{f < g\} := \{x \in D : f(x) < g(x)\} und \{f \leq g\} := \{x \in D : f(x) \leq g(x)\} Elemente aus \mathcal{A}.
```

Satz I.16

 (X,\mathcal{A}) messbarer Raum, $D\in\mathcal{A}$ und $f_k:D\to\bar{\mathbb{R}}$ Folge von \mathcal{A} -messbaren Funktionen.

Dann sind auch folgende Funktionen \mathcal{A} -messbar:

 $\inf_{k\in\mathbb{N}} f_k, \ \sup_{k\in\mathbb{N}} f_k, \ \liminf_{k\to\infty} f_k, \ \limsup_{k\to\infty} f_k$

Satz I.17

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$, $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ \max(f,g), \ \min(f,g), \ |f|, \ fg, \ rac{f}{g}$$

auf ihren Definitionsbereichen, die in ${\mathcal A}$ liegen ${\mathcal A}$ -messbar.

Def I.18

```
(X,\mathcal{A},\mu) Maßraum. Eine auf D\in\mathcal{A} definierte Funktion f:D\to \bar{\mathbb{R}} heißt \mu-messbar (auf X), wenn \mu(X\setminus D)=0 und f \mathcal{A}|_{\mathcal{D}}-messbar ist. (\mathcal{A}|_D:=\{A\cap D|A\in\mathcal{A}\}, siehe Blatt 1)
```

μ -fast überall

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr **für** μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört.

Zum Beispiel bedeutet für Funktionen $f,g:X\to\mathbb{R}$ die Aussage " $f(x)\leq g(x)$ für μ -fast alle $x\in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x\in X\setminus N$ gilt: $f(x)\leq g(x)$.

Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D \in \mathcal{A}$ definiert ist und $\mu(X \setminus D) = 0$.

Ziel: Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Lemma I.19

 (X,\mathcal{A},μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \widetilde{f} mit $\widetilde{f}=f$ μ -fast überall μ -messbar.

Satz I.20

 (X,\mathcal{A},μ) vollständiger Maßraum und seien $f_k,k\in\mathbb{N}$, μ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Satz I.21 (Egorov)

 (X,\mathcal{A},μ) Maßraum, $D\in\mathcal{A}$ Menge mit $\mu(D)<\infty$ und f_n,f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n\to f$ μ -fast überall. Dann existiert $\forall \epsilon>0$ eine Menge $B\in\mathcal{A}$ mit $B\subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Äußere Maße

Sei X eine Menge. Eine Funktion $\mu: \mathcal{P}(X) \to [0, \infty]$ mit $\mu(\emptyset) = 0$ heißt **äußeres Maß** auf X, falls gilt:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \implies \mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i)$$

- (i) Die Begriffe σ -additiv, σ -subadditiv, σ -endlich, endlich, monoton sowie Nullmenge und μ -fast überall werden wie für Maße definiert. (Man ersetze überall $\mathcal A$ durch $\mathcal P(X)$)
- (ii) Ein äußeres Maß ist monoton, σ -subadditiv und insbesondere endlich subadditiv

(d.h.
$$A \subseteq \bigcup_{i=1}^n A_i \implies \mu(A) \leq \sum_{i=1}^n \mu(A_i)$$
)

messbare Menge

Sei μ äußeres Maß auf X. Die Menge $A \subseteq X$ heißt μ -messbar, falls $\forall S \subseteq X$ gilt:

$$\mu(S) \ge \mu(S \cap A) + \mu(S \setminus A).$$

Das System aller μ -messbaren Mengen wird mit $\mathcal{M}(\mu)$ bezeichnet.

Da $S = (S \cap A) \cup (S \setminus A)$ folgt aus Def. II.1:

$$\mu(S) \leq \mu(S \cap A) + \mu(S \setminus A)$$

d.h.: A messbar $\Leftrightarrow \mu(S \cap A) + \mu(S \setminus A) \ \forall S \subseteq X$

μ als äußeres Maß

Dann ist μ ein äußeres Maß.

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

4□ > 4♠ > 4 ₺ > 4 ₺ > ₺

(inf $\emptyset = \infty$)

Einschränkung

Sei $\mu:\mathcal{P}(X)\to [0,\infty]$ äußeres Maß auf X. Für $M\subseteq X$ gegeben erhält man durch $\mu\llcorner M:\mathcal{P}(X)\to [0,\infty], \mu\llcorner M(A):=\mu(A\cap M)$ ein äußeres Maß $\mu\llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen.

Es gilt:

 $A \mu$ -messbar $\implies A \mu \sqcup M$ -messbar

Satz II.5

 μ äußeres Maß auf X. Dann gilt:

$$\textit{N μ-Nullmenge} \implies \textit{N μ-messbar}$$
 $\textit{N}_k, k \in \mathbb{N}, \mu$ -Nullmengen $\implies \bigcup_{k \in \mathbb{N}} \textit{N}_k \ \mu$ -Nullmenge

 $\mathcal{M}(\mu)$ enthält alle Nullmengen $N\subseteq X$ und damit auch deren Komplemente (siehe Satz II.7). Es kann sein, dass keine anderen Mengen μ -messbar sind.

Lemma II.6

Seien $A_i \in \mathcal{M}(\mu)$, i=1,...,k, paarweiße disjunkt und μ äußeres Maß. Dann gilt $\forall S \subseteq X$:

$$\mu(S \cap \bigcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(S \cap A_i)$$

Satz II.7

Sei $\mu: \mathcal{P}(X) \to [0,\infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Lemma II.8

 μ äußeres Maß, $A_i \in \mathcal{M}(\mu), i \in \mathbb{N}$. Dann gelten:

- i) Aus $A_1\subseteq ...\subseteq A_i\subseteq A_{i+1}\subseteq ...$ folgt $\mu(\bigcup_{i\in\mathbb{N}}A_i)=\lim_{i\to\infty}\mu(A_i)$
- ii) Aus $A_1 \supseteq ... \supseteq A_i \supseteq A_{i+1} \supseteq ...$ mit $\mu(A_1) < \infty$ folgt $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

Def. II.9 / X-stabil

Ein Mengensystem $A \subseteq \mathcal{P}(X)$ heißt \bigcup -stabil (bzw. \bigcap -stabil), wenn $A \cup B \in \mathcal{A}$ (bzw. $A \cap B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$) $\forall A, B \in \mathcal{A}$ gilt.

U-stabil impliziert Stabilität bzgl. endlicher Vereinigung. Ebenso ∩-stabil.

Def. II.10 / Ring / Algebra

Ein Mengensystem $\mathcal{R} \subset \mathcal{P}(X)$ heißt **Ring** über X, falls:

- i) $\emptyset \in \mathcal{R}$
- ii) $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$
- iii) $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$

 \mathcal{R} heißt **Algebra**, falls zusätzlich $X \in \mathcal{R}$.

Für $A, B \in \mathcal{R}$ gilt: $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ Ringe sind \bigcup -stabil, \bigcap -stabil, \setminus -stabil

Def. II.11 (Im Aufschrieb II.10) / Prämaß

Sei $\mathcal{R}\subseteq\mathcal{P}(X)$ Ring. Eine Funktion $\lambda:\mathcal{R}\to[0,\infty]$ heißt **Prämaß** auf \mathcal{R} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{R}, i \in \mathbb{N}$, paarweiße disjunkt mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, Nullmenge und fast-überall werden wie für Maße definiert.

Def. II.12 (Im Aufschrieb II.11) / Fortsetzung

 λ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Ein äußeres Maß μ auf X (bzw. ein Maß auf \mathcal{A}) heißt **Fortsetzung** von λ , falls gilt:

- i) $\mu|_{\mathcal{R}} = \lambda$, d.h. $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$
- ii) $\mathcal{R} \subseteq \mathcal{M}(\mu)$ (bzw. $\mathcal{R} \subset \mathcal{A}$), d.h. alle $A \in \mathcal{R}$ sind μ -messbar

induziertes äußeres Maß / Caratheodory-Fortsetzung

Lemma II.14 (Im Aufschrieb II.13)

 $\lambda:\mathcal{R} \to [0,\infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu:\mathcal{P}(X) \to [0,\infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ . μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Sei $\lambda:\mathcal{R}\to[0,\infty]$ Prämaß auf Ring $\mathcal{R}\subseteq\mathcal{P}(X)$. Dann ex. ein Maß μ auf $\sigma(\mathcal{R})$ mit $\mu=\lambda$ auf \mathcal{R} . Diese Fortsetzung ist eindeutig, falls λ σ -endlich ist.

Regularität der Caratheodory-Fortsetzung / i.A. II.15

```
Sei \mu Caratheodory-Fortsetzung des Prämaßes \lambda: \mathcal{R} \to [0,\infty] auf Ring \mathcal{R} über X. Dann ex. \forall D \subseteq X ein E \in \sigma(\mathcal{R}) mit E \supseteq D und \mu(E) = \mu(D). (\mu ist "reguläres "äußeres Maß)
```

Satz II.17 (i.A. II.16)

Sei λ ein σ -endliches Prämaß auf Ring $\mathcal R$ über X und sei $\mu:\mathcal P(X)\to [0,\infty]$ die Caratheodory-Fortsetzung von λ . Dann ist $\mu|_{\mathcal M(\mu)}$ die Vervollständigung von $\mu|_{\sigma(\mathcal R)}$ und $\mathcal M(\mu)$ ist die vervollständigte σ -Algebra von $\overline{\sigma(\mathbb R)}_{\mu|_{\sigma(\mathbb R)}}$.

D.h. $\overline{\sigma(\mathbb{R})}_{\mu|\sigma(\mathbb{R})}=\mathcal{M}(\mu)$. Insbesondere ex. genau eine Fortsetzung von $\lambda:\mathcal{R}\to [0,\infty]$ zu einem vollständigen Maß auf $\mathcal{M}(\mu)$.

Lemma II.18 (i.A. II.17)

 $\lambda: \mathcal{R} \to [0,\infty]$ σ -endliches Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$ mit Caratheodory-Fortsetzung μ . $D \subseteq X$ ist genau dann μ -messbar, wenn eine der folgenden Bedingungen gilt:

- i) $\exists E \in \sigma(\mathcal{R})$ mit $E \supseteq D$ und $\mu(E \setminus D) = 0$
- ii) $\exists C \in \sigma(\mathcal{R}) \text{ mit } C \subseteq D \text{ und } \mu(D \setminus C) = 0$

Def. II.19 / Halbring

Ein Mengensystem $Q \subseteq \mathcal{P}(X)$ heißt **Halbring** über X, falls:

- i) $\emptyset \in \mathcal{Q}$
- ii) $P, Q \in \mathcal{Q} \implies P \cap Q \in \mathcal{Q}$
- iii) $P,Q\in\mathcal{Q}\implies P\setminus Q=\bigcup\limits_{i=1}^kP_i$ mit endlich vielen paarweise disjunkten $P_i\in\mathcal{Q}$

Bemerkung: Intervall / Quader

Satz II.20 (i.A. II.19)

 $\ensuremath{\mathcal{I}}$ ist ein Halbring.

Satz II.21 (i.A. II.20)

Für i = 1, ..., n sei Q_i Halbring über X_i . Dann ist $Q := \{P_1 \times ... \times P_n \mid P_i \in Q_i\}$ ein Halbring über $X_1 \times ... \times X_n$.

Satz II.22 (i.A. II.21)

 Q^n ist ein Halbring.

Satz II.23 (i.A. II.22)

 $\mathcal Q$ Halbring über X und $\mathcal F$ sei das System aller endlichen Vereinigungen $F=\bigcup\limits_{i=1}^k P_i$ von Mengen $P_I\in\mathcal Q$. Dann ist $\mathcal F$ der von $\mathcal Q$ erzeugte Ring.

Figuren

$$\mathcal{Q} := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$$

 \implies erzeugter Ring \mathcal{F} : Ring der endlichen Teilmengen von X .

Lemma II.24 (i.A. II.23)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. $\Longrightarrow \sigma(\mathcal Q) = \sigma(\mathcal F)$

Lemma II.25 (i.A. II.24)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Zu jedem $F\in\mathcal F$ existieren paarweise disjunkte $P_1,...,P_k\in\mathcal Q$ mit $F=\bigcup_{i=1}^k P_i$

Def. II.26 (i.A. II.25) / Inhalt

Sei $Q \subseteq \mathcal{P}(X)$ Halbring. Eine Funktion $\lambda: Q \to [0, \infty]$ heißt Inhalt auf Q, falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{Q}$ paarweiße disjunkt mit $\bigcup\limits_{i=1}^n A_i \in \mathcal{Q}$ gilt:

$$\lambda(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \lambda(A_i)$$

 λ heißt **Prämaß** auf \mathcal{Q} , falls λ σ -additiv auf \mathcal{Q} ist.

D.h. für $A_i \in \mathcal{Q}$ paarweiße disjunkt $(i \in \mathbb{N})$ mit

$$\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{Q}:\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

Satz II.27 (i.A. II.26)

 λ Inhalt auf Halbring $\mathcal Q$ und $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Dann ex. genau ein Inhalt $\bar\lambda:\mathcal F\to [0,\infty]$ mit $\bar\lambda(\mathcal Q)=\lambda(\mathcal Q)\ \forall \mathcal Q\in\mathcal Q.$

Lemma II.28 (i.A. II.27)

 λ Inhalt auf Halbring \mathcal{Q} über X $\implies \lambda$ ist monoton und subadditiv

Satz II.29 (i.A. II.28)

 $vol^n(.)$ ist ein Inhalt auf Q^n

Satz II.30 (i.A. II.29)

 $\lambda:\mathcal{Q} \to [0,\infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$, \mathcal{R} der von \mathcal{Q} erzeugte Ring und $\bar{\lambda}:\mathcal{R} \to [0,\infty]$ der eindeutig bestimmte Inhalt auf \mathcal{R} mit $\bar{\lambda}|_{\mathcal{Q}} = \lambda$ (Satz II.27 / i.A. II.26), so ist $\bar{\lambda}$ ein Prämaß auf \mathcal{R} .

Satz II.31 ((i.A. II.30))

 $\lambda:\mathcal{Q}\to[0,\infty]$ Prämaß auf Halbring $\mathcal{Q}\subseteq\mathcal{P}(X)$. Sei $\mu:\mathcal{P}(X)\to[0,\infty]$ das in Satz II.3 aus \mathcal{Q} konstruierte äußere Maß, d.h. $\forall E\subseteq X$ ist:

$$\mu(E) = \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{Q}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ .

Satz II.32 ((i.A. II.31))

Für einen Inhalt λ auf Ring \mathcal{R} und $A_i \in \mathcal{R}, i \in \mathbb{N}$, betrachte:

- i) λ ist Prämaß auf ${\cal R}$
- ii) Für $A_i \subseteq A_{i+1} \subseteq ...$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\lim_{n\to\infty}\lambda(A_n)$$

iii) Für $A_i\supseteq A_{i+1}\supseteq ...$ mit $\lambda(A_1)<\infty$ und $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{R}$ gilt:

$$\lambda(\bigcap_{i\in\mathbb{N}}A_i)=\lim_{n\to\infty}\lambda(A_n)$$

iv) Für $A_i \supseteq A_{i+1} \supseteq ...$ mit $\lambda(A_1) < \infty$ und $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$ gilt:

$$\lim_{i\to\infty}\lambda(A_i)=0$$

 $\mathsf{Dann}\;\mathsf{gilt}\!:\;\mathsf{i})\Leftrightarrow\mathsf{ii})\;\Longrightarrow\;\mathsf{iv})$

Ist λ endlich, d.h. $\lambda(A) < \infty \ \forall A \in \mathcal{R}$, dann sind i) - iv) äquivalent.

Lemma III.1

Der elementargeometrische Inhalt $vol^n: \mathcal{Q}^n \to [0,\infty]$ ist ein Prämaß auf dem Halbring \mathcal{Q}^n im \mathbb{R}^n

Def. III.2 / n-dim (äußere) Lebesgue-Maß

Das **n-dimensionale äußere Lebesgue-Maß** einer Menge $E \subseteq \mathbb{R}^n$ ist definiert durch

$$\lambda^n(E) := \inf\{\sum_{k \in \mathbb{N}} vol^n(Q_k) \mid Q_k \in \mathcal{Q}^n, E \subseteq \bigcup_{k \in \mathbb{N}} Q_k\}$$

 $\lambda^n|_{\mathcal{M}(\lambda^n)}$ ist das **n-dimensionale Lebesguemaß**.

Bemerkung:

Bem nach Satz II.31 (i.A. II.30) $\implies \lambda^n$ regulär und vollständig auf $\mathcal{M}(\lambda^n)$

Lemma III.3

Betrachte für $k \in \mathbb{N}_0$ die Würfelfamilie $\mathcal{W}_k = \{Q_{k,m} := 2^{-k}(m+[0,1]^n) \mid m \in \mathbb{R}^n\}$ und definiere für $E \subseteq \mathbb{R}^n$ die Mengen

$$F_k(E) := \bigcup \{Q \in \mathcal{W}_k \mid Q \subseteq E\} \ F^k(E) := \bigcup \{Q \in \mathcal{W}_k \mid Q \cap E \neq \emptyset\}$$

Dann gilt:

- i) $F_k(E)$ und $F^k(E)$ sind abgeschlossene Vereinigungen von abzählbar vielen kompakten Quadern mit paarweise disjunktem Inneren.
- ii) $F_1(E) \subseteq F_2(E) \subseteq ... \subseteq E \subseteq ... \subseteq F^2(E) \subseteq F^1(E)$
- iii) $F_k(E) \supseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) > s^{-k}\sqrt{n}\}$ $F^k(E) \subseteq \{x \in \mathbb{R}^n \mid dist(x, \mathbb{R}^n \setminus E) \leq s^{-k}\sqrt{n}\}$
- iv) $\mathring{E} \subseteq \bigcup_{k \in \mathbb{N}} F_k(E) \subseteq E$, $\bar{E} \supseteq \bigcap_{k \in \mathbb{N}} F^k(E) \supseteq E$

Lemma III.4

Die Borelmengen \mathcal{B}^n sind die vom Halbring \mathcal{Q}^n der Quader, dem Ring \mathcal{F}^n der Figuren, und dem System \mathcal{C}^n der abgeschlossenen Mengen des \mathbb{R}^n erzeugten σ -Algebra, d.h.

$$\sigma(\mathcal{Q}^n) = \mathcal{B}^n = \sigma(\mathcal{Q}^n) = \sigma(\mathcal{F}^n) = \sigma(\mathcal{C}^n)$$

Satz III.5

Für λ^n gilt:

- i) Alle Borelmengen sind Lebesgue-messbar
- ii) Zu $E \subseteq \mathbb{R}^n \exists$ Borelmenge $B \supseteq E$ mit $\lambda^n(B) = \lambda^n(E)$
- iii) $\lambda^n(K) < \infty \ \forall K \subseteq \mathbb{R}^n \ \mathsf{kompakt}$

Lemma III.6

Für $E \subseteq \mathbb{R}^n$ beliebig gilt:

- i) $\lambda^n(E) = \inf\{\lambda^n(U) \mid U \text{ offen }, U \supset E\}$
- ii) $\lambda^n(E) = \inf\{\lambda^n(K) \mid K \text{ kompakt }, K \subset E\}$, falls $E \lambda^n$ -messbar

Satz III.7

 $D\subseteq\mathbb{R}^n$ ist genau dann λ^n -messbar, wenn eine der beiden Bedingungen gilt:

- i) \exists Borlemenge $E \supset D$ mit $\lambda^n(E \setminus D) = 0$
- ii) \exists Borlemenge $C \subset D$ mit $\lambda^n(D \setminus C) = 0$

Es kann $E = \bigcap_{i \in \mathbb{N}} U_i$ mit U_i offen und $C = \bigcup_{j \in \mathbb{N}} A_j$ mit A_j abgeschlossen gewählt werden.

Satz III.8 (Satz von Lusin)

Sei $A\subseteq\mathbb{R}^n$ offen mit $\lambda^n(A)<\infty$ und sei f λ^n -messbar auf A mit Werten in \mathbb{R} . Dann existiert $\forall \epsilon>0$ ein $K=K_\epsilon\subseteq A$ kompakt, mit:

- i) $\lambda^n(A \setminus K) < \epsilon$
- ii) $f|_k$ ist stetig

Def. III.9 / Borelmaß

in äußeres Maß μ auf \mathbb{R}^n heißt **Borelmaß**, falls gilt:

- i) Alle Borelmengen sind μ -messbar
- ii) $\mu(K) < \infty \ \forall K \subseteq \mathbb{R}^n \ \mathsf{kompakt}$

translationsinvariant

 λ^n ist Borelmaß nach Satz III.5. Ein äußeres Maß μ auf \mathbb{R}^n heißt **translationsinvariant**, falls $\mu(E+a)=\mu(E)\ \forall E\subset\mathbb{R}^n, a\in\mathbb{R}^n$ mit $E+a:=\{x+a\mid x\in E\}$ Bemerke: $vol^n:\mathcal{Q}^n\to[0,\infty]$ ist translationsinvariant $\Longrightarrow\lambda^n$ ist translationsinvariant.

Lemma III.10

Ist μ translations invariantes Borelmaß auf \mathbb{R}^n , so ist jede Koordinaten-Hyperebene $H:=\{x\in\mathbb{R}^n\mid x_i=c\}(i=1,...,n)$ eine μ -Nullmenge.

Satz III.11

Sei μ translationsinvariantes Borelmaß auf \mathbb{R}^n . Dann gilt mit $\theta := \mu([0,1]^n)$:

$$\mu(E) = \theta \lambda^n(E) \quad \forall \ \lambda^n$$
-messbaren $E \subseteq \mathbb{R}^n$

Lemma III.12

 $U\subseteq \mathbb{R}^n$ offen, $f:U\to \mathbb{R}^n$ lipschitz-stetig mit Konstante Λ bzgl. $||.||_{\infty}.$ Dann gilt:

$$\lambda^n(f(E)) \le \Lambda^n \lambda^n(E) \quad \forall E \subseteq U$$

Satz III.13

 $U \subseteq \mathbb{R}^n$ offen und $f \in C^1(U, \mathbb{R}^n)$. Dann gilt:

- i) $N \subseteq U \lambda^n$ -Nullmenge $\implies f(N) \lambda^n$ -Nullmenge
- ii) $E \subseteq U \lambda^n$ -messbar $\implies f(E) \lambda^n$ -messbar

Satz III.14

Sei $S \in O(\mathbb{R}^n)$ und $a \in \mathbb{R}^n$, dann gilt:

$$\lambda^n(S(E) + a) = \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Lemma III.15 (Polarzerlegung)

 $orall S\in GL(\mathbb{R}^n)$ \exists Diagonalmatrix Λ mit Einträgen $\lambda_i>0, i=1,...,n$ und $T_1,T_2\in O(\mathbb{R}^n)$, sodass $S=T_1\Lambda T_2$

Satz III.16 (Lineare Transformationsformel)

Für eine lineare Abbildung $S: \mathbb{R}^n \to \mathbb{R}^n$ gilt:

$$\lambda^n(S(E)) = |det(S)| \ \lambda^n(E) \quad \forall E \subseteq \mathbb{R}^n$$

Def. IV.1 / μ -Treppenfunktion / einfach

X Menge, μ äußeres Maß. Eine funktion $\zeta:X\to\mathbb{R}$ heißt μ -Treppenfunktion, wenn sie μ -messbar ist und nur eindlich viele Funktionswerte annimmt.

Die Menge $\mathcal{T}(\mu)$ der μ -Treppenfunktionen ist ein \mathbb{R} -Vektorraum. Wir setzen

$$\mathcal{T}^+(\mu) = \{ \zeta \in \mathcal{T}(\mu) \mid \zeta \ge 0 \}$$

Lemma IV.2

Das Integral $I: \mathcal{T}^+(\mu) \to [0,\infty]$ ist durch (\star) wohldefiniert. Für $\zeta, \phi \in \mathcal{T}^+(\mu)$ und $\alpha, \beta \in [0,\infty)$ gilt:

- i) $I(\alpha \zeta + \beta \psi) = \alpha I(\zeta) + \beta I(\psi)$
- ii) $\zeta \leq \psi \implies I(\zeta) \leq I(\psi)$

Def. IV.3 (Lebesgue-Integral) / Unterfunktion

Für $f: X \to [0, \infty]$ μ -messbar, setze

$$\int f d\mu = \sup\{I(\zeta) \mid \zeta \in \mathcal{T}^+(\mu), \zeta \leq f\}$$

 ζ heißt **Unterfunktion** von f.

Ist $f: X \to [-\infty, \infty]$ μ -messbar und sind die Integrale von f^{\pm} nicht beide unendlich, so setzen wir

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu \ \in [-\infty, \infty]$$

Bemerkung:

Für $f \ge 0$ sind beide Schritte kompatibel, denn dann gilt $f = f^+$ und $f^- = 0$

Lemma IV.4

Für
$$f \in \mathcal{T}^+(\mu)$$
 gilt: $\int f d\mu = \mathit{I}(f)$

Def. IV.5 / integrierbar

 $f:X \to \bar{\mathbb{R}}$ heißt **integrierbar** bzgl. μ , wenn sie μ -messbar ist und wenn gilt:

$$\int f d\mu \in \mathbb{R} \Leftrightarrow \int f^+ d\mu + \int f^- d\mu < \infty$$

Satz IV.6

```
f,g:X \to \mathbb{\bar{R}} \mu-messbar. Ist f \leq g \mu-fast überall und \int f^- d\mu < \infty, so existieren beide Integrale und es ist: \int f d\mu \leq \int g d\mu "\geq" gilt entsprechend wenn f^+ d\mu < \infty
```

Bemerkung:

$$f,g:X o ar{\mathbb{R}},\ f\ \mu$$
-messbar und $g=f\ \mu$ -fast überall $\stackrel{\mathsf{Kapitel\ II}}{\Longrightarrow} g$ μ -messbar Satz IV.6 $\implies \int g^\pm d\mu = \int f^\pm d\mu \implies \int f d\mu = \int g\ d\mu$

Lemma IV.7 (Tschebyscheff-Ungleichung)

Für $f:X \to [0,\infty]$ μ -messbar mit $\int f d\mu < \infty$ gilt:

$$\mu(\lbrace f \geq s \rbrace) \leq \begin{cases} \frac{1}{s} \cdot \int f d\mu & \text{ für } s \in (0, \infty) \\ 0 & \text{ für } s = \infty \end{cases}$$

Lemma IV.8

Sei $f:X o \bar{\mathbb{R}}$ μ -messbar.

- i) ist $\int f d\mu < \infty \implies \{f = \infty\}$ ist $\mu ext{-NullImenge}$
- ii) ist $f \geq 0$ und $\int f d\mu = 0 \implies \{f > 0\}$ ist μ -Nullmenge

Satz IV.9

Zu $f: X \to [0, \infty]$ μ -messbar gibt es eine Folge $f_k \in \mathcal{T}^+(\mu)$ mit $f_0 \le f_1 \le \dots$ und $\lim_{k \to \infty} f_k(x) = f(x) \ \forall x \in X$.

Satz IV.10 (Monotonie Konvergenz / Beppo-Levi)

Seien $f_k: X \to [0, \infty]$ μ -messbar mit $f_1 \le f_2 \le ...$ und $f: X \to [0, \infty]$ mit $f(x) := \lim_{k \to \infty} f_k(x)$. Dann gilt:

$$\int f d\mu = \lim_{k \to \infty} \int f_k \ d\mu$$

Satz IV.11

 $f,g:X o \bar{\mathbb{R}}$ integrierbar bzgl. μ , so ist auch $\alpha f+\beta g$ integrierbar $orall lpha,eta\in\mathbb{R}$ und es gilt:

$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$$

Def. IV.12 / auf E integrierbar

Sei μ ein äußeres Maß auf X und $E\subseteq X$ sei μ -messbar. Dann setzen wir, falls das rechte Integral existiert

$$\int\limits_{E} \mathit{fd}\mu = \int \mathit{f}\,\chi_{E} \mathit{d}\mu$$

f heißt **auf** E integrierbar, wenn $f\chi_E$ integrierbar ist.

Bemerkung:

Wegen $(f\chi_E)^\pm=f^\pm\chi_E\leq f^\pm$ existiert das Integral von f über E auf jeden Fall dann, wenn $\in fd\mu$ existiert. (Speziell für $f\geq 0$)

Satz IV.13

Sei $f: X \to \overline{\mathbb{R}}$ μ -messbar. Dann gelten:

- i) f integrierbar $\Leftrightarrow |f|$ integrierbar
- ii) Es gilt: $|\int f d\mu| \le \int |f| d\mu$, falls das Integral von f existiert
- iii) Ist $g:X \to [0,\infty]$ μ -messbar mit $|f| \le g$ μ -fast überall und $\int g d\mu < \infty$, so ist f integrierbar

Satz V.1 (Lemma von Fatou)

 $f_k: X \to [0,\infty]$ Folge von μ -messbaren Funktionen. Für $f: X \to \bar{\mathbb{R}}, f(x) = \liminf_{k \to \infty} f_k(x)$ gilt: $\int f d\mu \leq \liminf_{k \to \infty} \int f_k d\mu$

Satz V.2 (Dominierte Konvergenz bzw. Satz von Lebesgue)

```
f_1, f_2, \ldots Folge von \mu-messbare Funktionen und f(x) = \lim_{k \to \infty} f_k(x) für \mu-fast alle x \in X. Es gebe eine integrierbare Funktion g: X \to [0, \infty] mit \sup_{k \in \mathbb{N}} |f_k(x)| \le g(x) für \mu-fast alle x. Fann ist f integrierbar und \int f d\mu = \lim_{k \to \infty} \int f_k d\mu. Es gilt sogar ||f_k \cdot f||_{L^1(y)} := \int |f_k - f| d\mu \to 0
```

Riemann-integrierbar

Vergleich Riemann-∫ mit Lebesgue-∫ Sei I = [a, b] kompaktes Intervall, $f : I \to \mathbb{R}$ beschränkt. Unterteilungspunkte $a = x_0 \le ... \le x_N = b \to Zerlegung Z von I$ mit Teilintervallen $I_i = [x_{i-1}, x_i]$ $\bar{S}_Z(f) = \sum_{j=1}^N (\sup_{I_j} f)(x_j - x_{j-1}), \quad \underline{S}_Z(f) = \sum_{i=1}^N (\inf_{I_i} f)(x_j - x_{j-1})$ Für Zerlegungen Z_1, Z_2 mit Verfeinerung $Z_1 \cup Z_2$ $\implies \underline{S}_{Z_1}(f) \leq \underline{S}_{Z_1 \cup Z_2}(f) \leq \overline{S}_{Z_1 \cup Z_2}(f) \leq \overline{S}_{Z_2}(f)$ f heißt **Riemann-integrierbar** mit Integral $\tilde{\int} f(x)dx = S$, falls gilt: $\sup_{Z} \underline{S}_{Z}(f) = \inf_{Z} \overline{S}_{Z}(f) = S$

Satz V.3

 $f:I o\mathbb{R}$ beschränkt auf kompaktem Intervall I=[a,b]. Dann gilt:

f Riemann-integrierbar $\Leftrightarrow \lambda^1(\{x \in I \mid f \text{ ist nicht stetig in } x\}) = 0$ In diesem Fall ist f auch Lebesgue-integrierbar und die Integrale stimmen überein.

Satz V.4

X metrischer Raum, μ Maß auf Y und $f: X \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. $\mu \ \forall x \in X$.

Betrachte $F: X \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Sei $f(\cdot,y)$ stetig in $x_0 \in X$ für μ -fast alle $y \in Y$. Weiter gebe es eine μ -integrierbare Funktion $g:Y \to [0,\infty]$, so dass für alle $x \in X$ gilt: $|f(x,y)| \leq g(y) \ \forall y \in Y \setminus N_X$ mit einer μ -Nullmenge N_X .

Dann ist F stetig in x_0 .

Satz V.5

Sei $I \subseteq \mathbb{R}$ offenes Intervall, μ Maß auf Y und $f: I \times Y \to \mathbb{R}$ mit $f(x,\cdot)$ integrierbar bzgl. μ für alle $x \in I$. Setze $F: U \to \mathbb{R}$, $F(x) = \int f(x,y) d\mu(y)$ Es sei $f(\cdot,y)$ in x_0 differenzierbar für μ -fast alle $y \in Y$ und es existiere $g: Y \to [0,\infty]$ μ -integrierbar mit

$$\frac{|f(x,y)-f(x_0,y)|}{|x-x_0|} \le g(y) \ \forall x \in I \ \forall y \in Y \setminus N_x$$

mit einer μ -Nullmenge N_x . Dann folgt:

$$F'(x_0) = \int \frac{\partial f}{\partial x}(x_0, y) d\mu(y)$$

Lemma V.6

 $\mathcal{U} \subseteq \mathbb{R}^n$ offen, μ Maß auf Y und $f: \mathcal{U} \times Y \to \mathbb{R}$ mit f integrierbar bzgl. $\mu \ \forall x \in \mathcal{U}$. Betrachte $F: \mathcal{U} \to \mathbb{R}, F(x) = \int f(x,y) d\mu(y)$ Es gebe eine μ -Nullmenge $N \subseteq Y$, so dass $\forall y \in Y \setminus N$ gilt:

$$f(\cdot,y) \in C^1(\mathcal{U})$$
 und $|D_x f(x,y)| \leq g(y)$ mit $g: Y \to [0,\infty]$ integries

$$\implies F \in C^1(\mathcal{U}) \text{ und } \forall x \in \mathcal{U} \text{ gilt:}$$

$$\frac{\partial F}{\partial x_i}(x) = \int \frac{\partial f}{\partial x_i}(x, y) d\mu(y)$$

Def. V.7 / $(L^p$ -Norm) / L^p -Raum

Für μ -messbares $f:X \to \bar{\mathbb{R}}$ und $1 \leq p \leq \infty$ setzen wir

$$||f||_{L^p(\mu)} := \begin{cases} (\int |f|^p d\mu)^{1/p} & \text{, für } 1 \leq p < \infty \\ \inf\{s > 0 \mid \mu(\{|f| > s\}) = 0\} & \text{, für } p = \infty \end{cases}$$

auf $\mathcal{L}^p(\mu) = \{f: X \to \overline{\mathbb{R}} \mid f\mu - \text{messbar}, ||f||_{L^p(\mu)} < \infty\}$ Betrachte Äquivalenzrelation $f \sim g \Leftrightarrow f(x) = g(x)$ für μ -fast alle $x \in X$, und definiere den L^p -Raum durch $\mathcal{L}^p(\mu)/_{\sim}$.

Def. V.8 / Fortsetzung

Für $E\subseteq X$ messbar und $f:E\to \bar{\mathbb{R}}$ sei $f_0:X\to \bar{\mathbb{R}}$ die **Fortsetzung** mit $f_0(x)=0\ \forall x\in X\setminus E$. Wir setzen dann

$$\mathcal{L}^p(E) := \{ f : E \to \bar{\mathbb{R}} \mid f_0 \in \mathcal{L}^p(\mu) \}$$

und
$$L^p(E,\mu) := \mathcal{L}^p(E)/_{\sim}$$
.

Proposition V.9

Für $1 \leq p \leq \infty$ ist $(L^p(\mu), ||\cdot||_{L^p(\mu)})$ ein normierter Vektorraum. Insbesondere gelten für $\lambda \in \mathbb{R}$ und $f, g \in L^p(\mu)$:

- i) $||f||_{L^p}=0 \implies f=0$ μ -fast überall
- ii) $f \in L^p(\mu), \lambda \in \mathbb{R} \implies \lambda f \in L^p(\mu), ||\lambda f||_{L^p} = |\lambda| ||f||_{L^p}$
- iii) $f,g \in L^p(\mu) \Longrightarrow f+g \in L^p(\mu)$ und $||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Lemma V.10 (Youngsche Ungleichung)

Für
$$1 < p, q < \infty$$
 mit $\frac{1}{p} + \frac{1}{q} = 1$ und $x, y \ge 0$ gilt: $xy \le \frac{x^p}{p} + \frac{y^q}{q}$

Satz V.11 (Höldersche Ungleichung)

Für
$$\mu$$
-messbare $f,g:X \to \mathbb{R}$ gilt: $|\int fgd\mu| \leq ||f||_{L^p}||g||_{L^p}$, falls $1 \leq p,q \leq \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$

Satz V.12 (Minkowski-Ungleichung)

Für
$$f,g \in L^p(\mu)$$
 mit $1 \le p \le \infty$ gilt: $||f+g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Lemma V.13

Sei
$$1 \leq p < \infty$$
 und $f_k = \sum\limits_{j=1}^k u_j$ mit $u_j \in L^p(\mu)$. Falls

$$\sum_{j=1}^{n} ||u_j||_{L^p} < \infty$$
, so gelten:

- i) $\exists \mu$ -Nullmenge N: $f(x) = \lim_{k \to \infty} f_k(x) \ \forall x \in X \setminus N$ ex.
- ii) mit f:=0 auf gilt $f\in L^p(\mu)$
- iii) $||f f_k||_{L^p} \to 0 \text{ mit } k \to \infty$