How Quorum Sensing Interactions Affect Microbial Population Structures 02712 Final Project

Sid, Neel, Sarah, Deepika, Evan

Carnegie Mellon University

November 20, 2021

Example Section Title 1

▶ the citation file is at ./Documents/citations.bib

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011
 - eldar_2011 is the cite key in the citation file

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011
 - eldar_2011 is the cite key in the citation file
- ▶ here is a citation of the main paper Eldar (2011)

- ▶ the citation file is at ./Documents/citations.bib
 - bibtex foramtted file
 - zotero/mendel/citation websites can produce this format automatically for papers
- here is the syntax @eldar_2011
 - eldar_2011 is the cite key in the citation file
- here is a citation of the main paper Eldar (2011)
- here is a citation of the main paper (Eldar 2011)

Example 2 column slide

Figure 1: HGT Mechanisms

► Transformation:
Incorporation of free-floating
DNA into the genome

Example 2 column slide

Figure 1: HGT Mechanisms

- Transformation: Incorporation of free-floating DNA into the genome
- ► Conjugation: Transfer of DNA through cell-cell connections

Example 2 column slide

Figure 1: HGT Mechanisms

- Transformation: Incorporation of free-floating DNA into the genome
- Conjugation: Transfer of DNA through cell-cell connections
- ► **Transduction:** Transfer of DNA via phage

Haploid population

- Haploid population
- infinite population

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection
 - no sexual reproduction, consider gene transfer step

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection
 - no sexual reproduction, consider gene transfer step
 - Gene transfer is analogous to oblique learning from Fogarty L. 2018

- Haploid population
- infinite population
- ► Each generation we have 1) gene transfer 2) mutation and 3) selection
 - no sexual reproduction, consider gene transfer step
 - Gene transfer is analogous to oblique learning from Fogarty L. 2018
 - ▶ mutation is $r \rightarrow R$ or $R \rightarrow r$

Example Section Title 2

Example Table

Allele		Description
Major	Minor	
R	r	has/does not have resistance gene
Н	h	HGT machinery is expressed/not expressed
С	С	CRISPR-Cas is expressed/not expressed

Table 1: Allele definitions

More complicated table with math

Genotype		Environment		
	E _n	E_b	E _a	
RCH	$1 - 2s_{m}$	$(1+s_p)(1-2s_m)$	$(1+s_p)(1-2s_m)$	
RCh	$1-s_m$	$(1+s_p)(1-s_m)$	$(1+s_p)(1-s_m)$	
RcH	$1-s_m$	$1-s_m$	$(1+s_p)(1-s_m)$	
Rch	1	1	$1+s_p$	
rCH	$1-2s_m$	$(1+s_p)(1-2s_m)$	$1-2s_m$	
rCh	$1-s_m$	$(1+s_p)(1-s_m)$	$1-s_m$	
rcH	$1-s_m$	$1-s_m$	$1-s_m$	
rch	1	1	1	

Table 2: Relative fitness values for each genotype in each environment

▶ g represents each genotype

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - defined for R genotypes (x_R) , for r genotypes subtract the sum

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R) , for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\blacktriangleright \mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. **Selection:** $x'_g = \frac{x_g^s f(g)}{\bar{w}}$

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - ightharpoonup defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. Mutation: $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\blacktriangleright \mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. Selection: $x'_g = \frac{x_g^s f(g)}{\bar{w}}$
 - ightharpoonup f(g) picks the correct fitness modifier from Table 2

- g represents each genotype
- 1. Gene Transfer: $x_g^t = x_g + \sum_{x_R} x_{\neg g} x_R h(x_{\neg g}, x_R)$
 - ▶ if g = RCH then $\neg g = rCH$, same for CH, cH, Ch, ch
 - \triangleright defined for R genotypes (x_R), for r genotypes subtract the sum
 - ▶ h() probability of transfer, increases for each H allele $(g_h, g_H, 2g_H)$
- 2. **Mutation:** $x_g^s = (1 \mu(g))x_g^t + \mu(g)x_{\neg g}^t$
 - $\blacktriangleright \mu(g)$ is $\mu_{r\to R}$ for r genotypes and $\mu_{R\to r}$ for R genotypes
- 3. Selection: $x'_g = \frac{x_g^s f(g)}{\bar{w}}$
 - ightharpoonup f(g) picks the correct fitness modifier from Table 2
 - average fitness $\bar{w} = \sum_{g} x_{g}^{s} f(g)$

Example code block

```
def foo(bar):
    for i in range(69, 420):
        if i == 69 or i == 420:
            print('nice')
        else:
            print(bar)
    return None
```

Slide subsection 1

resistance allele dominates even outside of antibiotic pressure

Slide subsection 2

Slide subsection 1

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

Slide subsection 2

Slide subsection 1

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

Slide subsection 2

explore parameter space and look for empirical justifications

Slide subsection 1

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

Slide subsection 2

- explore parameter space and look for empirical justifications
- model phage population dynamics directly

Slide subsection 1

- resistance allele dominates even outside of antibiotic pressure
- environmental turnover rate significantly affects genotype frequencies

Slide subsection 2

- explore parameter space and look for empirical justifications
- model phage population dynamics directly
- incorporate terms that reflect biological trade-off of HGT/CRISPR

Bibliography I

Aggarwal, Surya D., Hasan Yesilkaya, Suzanne Dawid, and N. Luisa Hiller. 2020. "The Pneumococcal Social Network." *PLOS Pathogens* 16 (10). https://doi.org/10.1371/journal.ppat.1008931.

Calle, M. Luz. 2019. "Statistical Analysis of Metagenomics Data." Genomics & Amp; Informatics 17 (1).

https://doi.org/10.5808/gi.2019.17.1.e6.

Dimitriu, Tatiana, Frances Medaney, Elli Amanatidou, Jessica Forsyth, Richard J. Ellis, and Ben Raymond. 2019. "Negative Frequency Dependent Selection on Plasmid Carriage and Low Fitness Costs Maintain Extended Spectrum Beta-Lactamases in Escherichia Coli." *Scientific Reports* 9 (1). https://doi.org/10.1038/s41598-019-53575-7.

Bibliography II

Eldar, A. 2011. "Social Conflict Drives the Evolutionary Divergence of Quorum Sensing." *Proceedings of the National Academy of Sciences* 108 (33): 13635–40.

https://doi.org/10.1073/pnas.1102923108.

Pérez-Escudero, Alfonso, and Jeff Gore. 2016. "Selection Favors Incompatible Signaling in Bacteria." *Proceedings of the National Academy of Sciences* 113 (8): 1968–70.

https://doi.org/10.1073/pnas.1600174113.

Bibliography III

Pollak, Shaul, Shira Omer-Bendori, Eran Even-Tov, Valeria Lipsman, Tasneem Bareia, Ishay Ben-Zion, and Avigdor Eldar. 2016. "Facultative Cheating Supports the Coexistence of Diverse Quorum-Sensing Alleles." *Proceedings of the National Academy of Sciences* 113 (8): 2152–7. https://doi.org/10.1073/pnas.1520615113.