Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

the application:
1. (Currently Amended) An exhaust gas control catalyst, comprising:
a porous base material;
a catalyst supporting layer which is formed on a surface of the porous base material
and which supports noble metal and a NO _x storage material; and
a lower layer which is formed at a portion that is in the porous base material and that
is below the catalyst supporting layer, and which supports a NO _x storage material,
wherein a concentration of the NO _x storage material supported by the lower layer is
higher-greater than a concentration of the NO _x storage material which is supported by the
catalyst supporting layer, and
wherein the concentration of the NO _x storage material to be supported by the lower
layer is determined based on a pore volume formed in the lower layer.
2. (Currently Amended) A manufacturing method of manufacturing an exhaust
gas control catalyst, the method comprising:
forming a layer which supports a NO _x storage material in advance in a porous base
material at a surface portion; and
forming a catalyst supporting layer which supports noble metal and a NO _x storage
material on a surface of the lower layer,
wherein a concentration of the NO _x storage material supported by the lower layer is
greater than a concentration of the NO_x storage material which is supported by the catalyst
supporting layer, and
wherein the concentration of the NO _x storage material to be supported by the lower
layer is determined based on a pore volume formed in the lower layer.

- 3. (Canceled)
- 4. (New) The exhaust gas control catalyst according to claim 1, wherein the concentration of the NO_x storage material supported by the lower layer is 10 weight percent or more than the concentration of the NO_x storage material supported by the catalyst supporting layer.
- 5. (New) The exhaust gas control catalyst according to claim 1, wherein the concentration of the NO_x storage material supported by the lower layer is 50 weight percent or more than the concentration of the NO_x storage material supported by the catalyst supporting layer.
- 6. (New) The exhaust gas control catalyst according to claim 1, wherein the concentration of the NO_x storage material supported by the lower layer is 100 weight percent or more than the concentration of the NO_x storage material supported by the catalyst supporting layer.
- 7. (New) The method according to claim 2, wherein the concentration of the NO_x storage material supported by the lower layer is 10 weight percent or more than the concentration of the NO_x storage material supported by the catalyst supporting layer.
- 8. (New) The method according to claim 2, wherein the concentration of the NO_x storage material supported by the lower layer is 50 weight percent or more than the concentration of the NO_x storage material supported by the catalyst supporting layer.
- 9. (New) The method according to claim 2, wherein the concentration of the NO_x storage material supported by the lower layer is 100 weight percent or more than the concentration of the NO_x storage material supported by the catalyst supporting layer.
- 10. (New) The exhaust gas control catalyst according to claim 1, wherein the concentration of the NO_x storage material to be supported by the lower layer is further determined based on a water absorption rate of the lower layer.

11. (New) The method according to claim 2, wherein the concentration of the NO_x storage material to be supported by the lower layer is further determined based on a water absorption rate of the lower layer.