Apuntes de análisis de variable compleja

2023

Apuntes de las clases de Análisis de variable compleja dadas por Juan Matías Sepulcre Martínez y transcritos a LATEX por Víctor Mira Ramírez durante el curso 2023-2024 del grado en Física de la Universidad de Alicante.

Índice

Japitulo 1	El cuerpo de los números complejos	Página 3
1.1	Definiciones básicas	3
1.2	Analiticidad	5
1.3	Algunas funciones elementales	5
	Función exponencial — $5 \bullet$ Función logarítmica — $6 \bullet$ Función potencia — $7 \bullet$ Funciones trigonométricas — $7 \bullet$	
Capítulo 2	Tudo ma dida comunicia	Dárina 0
	Integración compleja	Página 9
2.1	Preliminares topológicos	9
2.2	Integración sobre caminos	9

Capítulo 1

El cuerpo de los números complejos

1.1 Definiciones básicas

Definición 1.1.1: Número complejo

Un **número complejo** z es un par ordenado de números reales a, b escrito como z = (a, b) en coordenadas cartesianas. Existe una notación equivalente, la forma binómica: z = a + ib siendo i = (0, 1).

El conjunto de los número complejos se denota por: $C := \{(a, b) : a, b \in \mathbb{R}\}$

🛉 Comentario: 🖠

Siempre que a = 0 sea un número imaginario puro, y b = 0 sea un número real.

Definición 1.1.2: Conjugado

Llamamos conjugado de un número complejo al número denotado $\bar{z} = a - ib$, siendo z = a + ib. Geométricamente, podemos decir que el eje real actúa de 'espejo' del número en el plano.

Comentario:

Llamamos \mathbb{C} al cuerpo de los numeros complejos. \mathbb{C} es un cuerpo conmutativo, pero no totalmente ordenado. En cambio, cualquier ecuación algebraica tiene solución en los complejos. De todas formas, el teorema fundamental del álgebra nos asegura que tendrá n soluciones en los complejos

Comentario:

Cuando los coeficientes de una ecuación algebraica son reales, las soluciones complejas vienen por pares.

Teorema 1.1.1 Operaciones elementales

SUMA
$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

RESTA
$$(a + bi) - (c + di) = (a - c) + (b - d)i$$

PRODUCTO
$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$
 (teniendo en cuenta que $i^2 = -1$)

$$\mathbf{DIVISI\acute{O}N} \qquad \frac{a+bi}{c+di} \ = \ \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} \ = \ \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i \qquad \text{(multiplicando por el conjugado)}$$

Comentario:

El elemento unidad es 1 + 0i y el elemento inverso es $\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$. Para que un número complejo tenga elemento inverso, debe ser distinto de cero. El producto de un número complejo por su elemento inverso es la unidad.

Definición 1.1.3: Componentes de los complejos

Llamamos **módulo** del número complejo z = a + bi a la cantidad $|\sqrt{a^2 + b^2}|$ denotada |z|

Llamamos **argumento** del número complejo z = a + bi al ángulo que forma el semieje positivo de abcisas con la recta que contiene el vector (a,b). Se denota Arg $z=\alpha$ y se expresa en radianes.

$$\alpha = \arctan\left(\frac{b}{a}\right) \text{ si } a \neq 0$$

Definición 1.1.4: Módulo

Llamamos **módulo** de un número complejo z = a + bi, y lo denotamos |z|, a la cantidad

$$|z| = \sqrt{a^2 + b^2}$$

Definición 1.1.5: Argumento

Llamamos **argumento** de un número complejo z = a + bi al ángula que forma el semieje positivo de abcisas con la recta que contiene al vector. El argumento de z se representa por $Arg(z) = \alpha$, y se expresa normalmente en radianes.

$$\alpha = \arctan \frac{b}{a}, \sin a \neq 0$$

$$\alpha = \frac{\pi}{2}, \sin a = 0, b > 0$$

$$\alpha = \frac{3\pi}{2}, \text{si} a = 0, b < 0$$

Si el ángulo se encuentra en el intervalo $[-\pi,\pi)$ lo llamaremos argumento principal.

Comentario:

lol

Comentario:

forma exponencial: el desarrollo en serie de la exponencial es: $e^x = \sum_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$ si introducimos un número complejo en la exponencial: $e^{iy} = 1 + (iy) + \frac{(iy)^2}{2} + \frac{(iy)^3}{3!} + \dots$ Si analizamos el valor de i^n en función de n, entonces vemos como la exponencial compleja queda ahora como: $e^{iy} = 1 + iy - \frac{y^2}{2} - \frac{iy^3}{3!} + \frac{y^4}{4!} + \dots = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!}\right) = \cos(y) + i\sin(y)$

$$e^z = e^x e^{iy} = e^x (\cos(y) + i\sin(y)) \cot z = x + iy$$

1.2 Analiticidad

Definición 1.2.1: Función armónica conjugada

Sea $u: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}$ una función armónica en un abierto de $\mathcal{D} \subset \mathbb{R}^2$ diremos que $v: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}$ es una **función armónica conjugada** de u en \mathcal{D} si v es armónica en \mathcal{D} y satisfacen las condiciones de *Cauchy-Riemann*, (o equivalentemente la función f(x+iy) = u(x,y) + iv(x,y) es holomorfa en $\{x+iy \in \mathbb{C}: (x,y) \in \mathcal{D}\}$)

Comentario:

Una función armónica es aquella que satisface la ecuación de Laplace.

Teorema 1.2.1

Sea $u(x,y) \colon \mathcal{D} \to \mathbb{R}$ es una función armónica de \mathcal{D} y consideramos v una región rectangular contenida en \mathcal{D} . Entonces existe una conjugada armónica de u(x,y) en v.

1.3 Algunas funciones elementales

1.3.1. Función exponencial

Definición 1.3.1

$$f(z) = e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$$

Teorema 1.3.1

1.
$$e^z \neq 0 \quad \forall z \in \mathbb{C}$$

2.
$$|e^z| = e^{Re(z)}$$
 $z \in \mathbb{C}$

3.
$$arg(e^z) = \{Im(z) + 2\pi k, k \in \mathbb{Z}\}$$
 $\forall z \in \mathbb{C}$

$$4. \ \overline{(e^z)} = e^{\bar{z}} \qquad z \in \mathbb{C}$$

5.
$$e^x = 1 \Leftrightarrow x = 0$$
 $x \in \mathbb{R}$ $e^z = 1 \Leftrightarrow z = 2\pi ki$ $z \in \mathbb{C}$

6.
$$\lim_{x\to\infty} e^x = \infty$$
 $x \in \mathbb{R}$ $\nexists \lim_{|z|\to\infty} e^z = \infty$ $x \in \mathbb{R}$

7. e^x es entera (derivable en todo punto de \mathbb{C}) $(e^z)'=e^z$

8.
$$e^{z+\omega} = e^z \cdot e^{\omega}, \quad z, w \in \mathbb{C}$$

 $(e^z)^n = e^{nz}, \quad n \in \mathbb{N}, z \in \mathbb{C}$

Ejemplo 1.3.1
$$(e^{iz} - e^{-iz} = 4i)$$

 $e^{iz} - e^{-iz} = 4i \iff e^{iz} - e^{-iz} - 4i = 0 \iff e^{2iz} - 4ie^{iz} - 1 = 0$

Si
$$\omega = e^{iz} \Longrightarrow \boxed{\omega^2 - 4i\omega - 1 = 0}$$

$$w = \frac{4i \pm \sqrt{-16 + 4}}{2} = \frac{4i \pm \sqrt{-12}}{2} = 2i \pm \sqrt{3} = 2 \pm \sqrt{3}i \Longrightarrow \boxed{e^{iz} = (2 \pm \sqrt{3})i}$$

1.3.2. Función logarítmica

Definición 1.3.2

Se introduce por la necesidad de solucionar ecuaciones como la anterior.

$$x = e^y \iff y = \log x, \qquad x \ 0, y \in \mathbb{R}$$

Sea $z \in \mathbb{C} - 0$, definimos el logaritmo principal de z, y lo denotamos por log z, como

$$\log z = \ln|z| + i \cdot Arg(z)$$

Vemos que $e^{\log z}=e^{\log|z|+Arg(z)}=e^{\ln|z|}e^{Arg(z)}=|z|e^{Arg(z)}=z$

El conjunto de todos los logaritmos de z será:

$$\log z = \{\ln|z| + i\left(Arg(z) + 2\pi k\right), k \in \mathbb{Z}\}\$$

Ejemplo 1.3.2

- 1. Si $z = x > 0 \Rightarrow \log z = \ln|z| + i \cdot Arg(z) = \ln x$ $\log z = \{\ln x + 2\pi k i, k \in \mathbb{Z}\}\$
- 2. Si $z = -x > 0 \Rightarrow \log z = \ln x i \cdot (-\pi)$ (argumento de z) $\log z = \{ \ln x + -(\pi + 2\pi k), k \in \mathbb{Z} \}$
- 3. Si z = ix, $x > 0 \Rightarrow \log z = \ln x + i\frac{\pi}{2}$ $\log z = \left\{ \ln x + i \left(\frac{\pi}{2} + 2\pi k \right), k \in \mathbb{Z} \right\}$

🛉 Comentario: 🛊

Retomando la ecuación del ejemplo anterior,

$$e^{iz} = (2 \pm \sqrt{3})i = \begin{cases} (2 + \sqrt{3}i) \leftrightarrow iz = \log(2 + \sqrt{3})i \leftrightarrow z = \left(\frac{\pi}{2} + 2\pi k\right) - i\ln(2 + \sqrt{3}) \\ (2 - \sqrt{3}i) \leftrightarrow iz = \log(2 - \sqrt{3})i \leftrightarrow z = \left(\frac{\pi}{2} + 2\pi k\right) - i\ln(2 - \sqrt{3}) \end{cases}, k \in \mathbb{Z}$$

Teorema 1.3.2 Propiedades

- 1. Log z es holomorfa en $\mathbb{C} [-\infty, 0] \implies$ de hecho, no es continua en $(-\infty, 0]$
- 2. $\log_{\theta_0} = z$ es holomorfa en $\mathbb{C} \{z \in \mathbb{C}, \arg(z) = \theta_0\}$
- 3. $e^{\log_{\theta_0} z} = z$, $\forall z \in \mathbb{C}, \arg(z) = \theta_0 \text{ y } (\log_{\theta_0})' = \frac{1}{z}$
- 4. $\log_{\theta_0} e^z = z$ $\forall z = x + iy, \theta_0 \le y \le \theta_0 + 2\pi z = x + iy, e^z = e^x e^{iy} \implies \log_{\theta_0} e^z = z$ cuando $y \in [\theta_0, \theta_0 + 2\pi]$

Definición 1.3.3

Sea $\theta_0 \in \mathbb{R}$, tomamos $z \neq 0$, $z = re^{i\theta}$, r > 0, $\theta_0 <= \theta = \theta_0 + 2\pi$ y entonces $\log_{\theta_0} z = \ln|z| + i\theta$

Si
$$\theta_0 = -\pi \implies \log_{\theta_0} z = Log z$$

$$\begin{array}{l} \text{Si } \theta_0 = -\pi \implies \log_{\theta_0} z = Logz \\ \text{Si } \theta_0 = 0 \implies \log_0 z = \ln|z| + i\theta, \qquad 0 <= \theta < 2\pi \end{array}$$

1.3.3. Función potencia

Definición 1.3.4: Potencia de exponente arbitrario

Sea $z \in \mathbb{C} \setminus 0$ y $\alpha \in \mathbb{C}$, tomamos por definición z^{α} , llamada potencia de exponente arbitrario como el conjunto de todos los valores dados por:

$$z^{\alpha} = e^{\alpha \log z} \tag{1.1}$$

Dohde $\log z$ representa el conjunto de todos los logaritmos de z.

Definición 1.3.5: Función exponencial general

Sea $a \in \mathbb{C} \setminus 0$, tomaremos por definición a^z , llamada función exponencial general como el conjunto de todos los valores dados por:

$$a^z = \exp(z \log a) \tag{1.2}$$

Donde $\log a$ es el conjunto de todos los logaritmos de a.

Ejemplo 1.3.3

- $\bullet \ (-2)^{\frac{1}{2}} = e^{\frac{1}{2}\log(-2)} = e^{\frac{1}{2}(\ln 2 + i(\pi + 2\pi k))}, \ \text{con} \ k \in \mathbb{Z} \ (\text{tomando la primera definición}, \ z = -2 \ \text{y} \ \alpha = \frac{1}{2})$
- $2^i = e^{i\log(2)} = e^{i(\ln 2 + 2\pi ki)} = e^{-2\pi k} e^{i\ln 2} = e^{-2\pi k(\cos(\ln 2) + i\sin(\ln 2))} \text{ con } k \in \mathbb{Z}$
- $(-1)^{\frac{1}{\pi}} = e^{\frac{1}{\pi}\log(-1)} = e^{\frac{1}{\pi}(\pi + 2\pi k)i} = e^{i} \cdot e^{2ki} = e^{(2k+1)i}, \text{ con } k \in \mathbb{Z}$

Ejemplo 1.3.4 (Potencia de exponente entero)

Sea $\alpha \in \mathbb{Z}$, entonces $f(z) = z^{\alpha} = e^{\alpha \log z} = e^{\alpha (\ln|z| + i(Arg(2) + 2\pi k))} = e^{\alpha \ln|z|} \cdot e^{i\alpha Arg(z)} \cdot e^{i\alpha 2\pi k} = |z|^{\alpha} \cdot e^{i\alpha Arg(2)}$ función univaluada

Comentario:

Cuando tomemos k = 0 en la función logarítmica, entonces obtenemos la denominada rama principal.

Ejemplo 1.3.5 (Función multiforme/aplicación multivaluada)

 $f(z)=z^{\frac{1}{2}}$ con $z\in\mathbb{C}\setminus 0$ Tomando $z=re^{i\theta}$ con r>0 y $-\pi\leqslant\theta<\pi$ La llamada rama principal de $z^{\frac{1}{2}}$ es $f_1(z)=e^{\frac{1}{2}(\ln(r)+i\theta)}=\sqrt{r}\cdot e^{\frac{\theta}{2}}i$ Otra rama con el ξ ?. $\arg(z)=\pi$ viene dada por $-f_1(z)=f_2(z)=\sqrt{r}\cdot e^{\frac{\theta+2\pi}{2}i}$

Si
$$k=2 \to e^{\frac{1}{2}(\ln r + i(\theta + 4\pi))} = \sqrt{r} \cdot e^{\frac{i\theta}{2}} \cdot e^{2\pi i} = f_1(z)$$

1.3.4. Funciones trigonométricas

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \quad \text{con } z \in \mathbb{C}$$

$$\sin z = \frac{e^{iz} - e^{-iZ}}{2i} \quad \text{con } z \in \mathbb{C}$$

$$\tan z = \frac{\sin z}{\cos z} = \frac{1}{i} \frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} = \frac{1}{i} \frac{e^{2iz} - 1}{e^{2iz} + 1} \text{ es holomorfa en } \mathbb{C} \text{ excepto en } \cos z = 0 \Leftrightarrow z = \frac{\pi}{2} + \pi k \text{ con } k \in \mathbb{Z}$$

$$\cot z = \frac{\cos z}{\sin z} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}} = i \frac{e^{2iz} + 1}{e^{2iz} - 1} \sec z = \frac{1}{\cos z} \csc z = \frac{1}{\sin z}$$
Hiperbólicas
$$\cosh z = \frac{e^z + e^{-z}}{2} \sinh z = \frac{e^z - e^{-z}}{2} \tanh z = \frac{\sinh}{\cosh} = \frac{e^z - e^{-z}}{e^z + e^{-z}} = \frac{e^{2z} - 1}{e^{2z} + 1}$$

Teorema 1.3.3 Propiedades

1.
$$\overline{\cos z} = \cos \overline{z}$$

2.
$$\overline{\sin z} = \sin \bar{z}$$

3.
$$\cos z = 0 \Leftrightarrow z = (2\pi + 1)\frac{\pi}{2}, n \in \mathbb{Z}$$

4.
$$\sin z = 0 \Leftrightarrow z = n\pi, n \in \mathbb{Z}$$

5.
$$\sinh z = 0 \Leftrightarrow z = n\pi i, n \in \mathbb{Z}$$

6.
$$\cosh z = 0 \Leftrightarrow z = (2\pi + 1)\frac{\pi}{2}i, nin\mathbb{Z}$$

7.
$$\sinh(z) = -i\sin(iz)$$

8.
$$\cosh(z) = \cos(iz)$$

Comentario:

Comparación con el caso real:

$$\bullet e^z = \sum_{n=0}^\infty \frac{z^n}{n!}$$

$$\bullet \sin z = \sum_{n=0} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

$$\cosh z = \sum_{n=0} \frac{(-1)^n z^{2n}}{(2n)!}$$

$$\bullet \cosh z = \sum_{n=0} \frac{z^{2n}}{(2n)!}$$

Capítulo 2

Integración compleja

2.1 Preliminares topológicos

Definición 2.1.1: Entorno perforado

Llamamos entorno perforado de un punto $z_0 \in \mathbb{C}$ a un abierto de la forma $\{z \in \mathbb{C}: 0 < |z - z_0| < \epsilon\}$, con $\epsilon > 0$

Definición 2.1.2: Tipos de conjuntos

- Diremos que dos conjuntos A y B de \mathbb{C} están **espaciados** si $\overline{A} \cap B = A \cap \overline{B} = \emptyset$ Siendo \overline{A} la clausura, la adherencia de A.
- Diremos que un conjunto del plano es conexo si no puede ser escrito como unión de dos subconjuntos no vaciós y separados.
- Diremos que un conjunto $P \in \mathbb{C}$ es **poligonalmente conexo** si cada par de puntos de P pueden ser unidos mediante una poligonal contenida en P. (una ponigonal es una unión finita de segmentos).
- Un conjunto $E \in \mathbb{C}$ es **estrellado** si existe un punto $a \in E$ tal que $[a,z] \subset E$ $\forall z \in E$
- Un conjunto $C \in \mathbb{C}$ es **convexo** si $[z, w] \subset C$ $\forall z, w \in C$ (cualquier segmento formado por puntos del conjunto está dentro del conjunto).
 - Nota: Sea $U \in \mathbb{C}$ un conjunto abierto, entonces U es conexo si y sólo si es poligonalmente conexo.
- Llamamos simplemente conexo al conjunto $S \subset \mathbb{C}$ del cual cada curva cerrada simple (sin autointersecciones) en S puede contraerse dentro del conjunto hasta ser un punto (no tiene agujeros).

2.2 Integración sobre caminos

Definición 2.2.1: Curva

Llamamos **curva** a una aplicación continua $\gamma: [a,b] \to \mathbb{C}$ con a < b, tal que a un número real $t \in [a,b]$ le corresponde un número complejo $\gamma(t) = x(t) + iy(t)$ donde x(t) e y(t) son funciones reales y continuas.

- La traza o trayectoria de la curva $\gamma([a,b]) = \{\gamma(t): a \leq t \leq b\}$ será representado por γ^*
- Diremos que la curva es **cerrada** cuando $\gamma(a) = \gamma(b)$

Definición 2.2.2: Camino

Una curva $\gamma \colon [a,b] \to \mathbb{C}$ es **diferenciable** cuando γ es derivable en todo punto de [a,b]. Una curva $\gamma \colon [a,b] \to \mathbb{C}$ es **suave** si es diferiencable (o de clase $C^1([a,b])$), si γ es derivable en [a,b] y su derivada es continua. Llamamos **camino** a una curva suave a trozos (diferenciable con continuidad a trozos).

Comentario:

Los casos de curvas rectificables (aquellas curvas parametrizadas por $\gamma(t)=x(t)+iy(t)$), con $t\in[a,b]$, para las que existe:

$$\sup \left\{ \sum_{j=1}^{n} \sqrt{(x(t_j) - x(t_{j-1}))^2 + (y(t_j) - y(t_{j-1}))^2} \right\}$$

Con P en el conjunto de posibles particiones de [a, b]. En estos casos, la longitud de la curva se calcula como:

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| \ dt = \int_{a}^{b} \sqrt{(x'(t)^{2} + y'(t)^{2})} \ dt$$

Definición 2.2.3: Integral compleja

Sea $\gamma \colon [a,b] \to \mathbb{C}$ un camino y f una función continua en $\gamma^* \in \mathbb{C}$, definimos la **integral conmpleja** de f a lo largo γ por:

$$\int_{\gamma} f(z) \ dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \ dt$$

Nota: Cuando no se diga nada, se supondra que el sentido de recorrido sobre un camino cerrado será el antihorario.

Ejemplo 2.2.1 $(\int_{\gamma} \bar{z} dz$, donde γ^* es el segmento [1+i, 2+4i])

$$\gamma(t) = (1-t)(1+i) + t \cdot (2+4i) \Longrightarrow \gamma'(t) = -(1+i) + 2 + 4i = 1 + 3i \quad \text{con } t \in [0,1].$$

Si separamos en parte real y imaginaria nos queda:

$$\gamma(t) = 1 + t + i(1 + 3t) \Longrightarrow \int_{\gamma} \bar{z} \, dz = \int_{0}^{1} (1 + t - i(1 + 3t))(1 + 3i) \, dt = \int_{0}^{1} (1 + t - i(1 + 3t) + 3i + 3it + 3 + 9t) \, dt = \int_{0}^{1} (4 + 10t + 2i) \, dt = \left[(4 + 2i)t + 5t^{2} \right]_{0}^{1} = 4 + 2i + 5 = 9 + 2i$$

Ejemplo 2.2.2 $(\int_{\mathcal{V}} \bar{z} \ dz$, donde γ_2 es el trozo de parábola que une 1+i con 2+4i)

$$\gamma(t) = t + it^2 \Longrightarrow \gamma'(t) = 1 + 2it \text{ con } t \in [1, 2] \Longrightarrow$$

$$f(\gamma_2(t)) = t - it^2 \Longrightarrow \int_{\gamma_2} \bar{z} \ dz = \int_1^2 (t - it^2) (1 + 2it) \ dt = 9 + \frac{7}{3}i$$