Topología

Semana 2: Conjuntos cerrados, puntos límite y espacios de Hausdorff

Lunes 23 de septiembre de 2019

11. Muestre que el producto de dos espacios de Hausdorff es Hausdorff.

Demostración. Sean X y Y dos espacios de Hausdorff. Tomemos dos puntos $(x_1,y_1),(x_2,y_2)$ distintos de $X\times Y$. Entonces, $x_1\neq x_2$ o $y_1\neq y_2$. Supongamos, sin pérdida de generalidad, que $x_1\neq x_2$. Puesto que X es Hausdorff, podemos elegir entornos disjuntos $U_1,U_2\subseteq X$ de x_1 y x_2 , respectivamente. Entonces, $U_1\times Y$ y (x_2,y_2) son entornos de (x_1,y_1) y $U_2\times Y$, respectivamente, en la topología producto sobre $X\times Y$. Además,

$$(U_1 \times Y) \cap (U_2 \times Y) = (U_1 \cap U_2) \times Y = \emptyset,$$

con lo que queda demostrada la proposición.

13. Muestre que X es Hausdorff si y solo si la diagonal

$$\Delta = \{(x, x) \mid x \in X\}$$

es cerrada en $X \times X$.

Demostración. (\Leftarrow) Supongamos que Δ es cerrada en $X \times X$. Entonces,

$$(X \times X) \setminus \Delta = \{(x, y) \in X \times X \mid x \neq y\}$$

es abierto en $X \times X$. Esto implica que para cualesquiera $x, y \in X$ tales que $x \neq y$, existen abiertos $U, V \subseteq X$ tales que

$$(x,y) \in U \times V \subseteq (X \times X) \setminus \Delta.$$

De lo anterior se observa que no puede existir un elemento en $U \cap V$. Así, para x y y de X distintos, hemos construido entornos disjuntos. Se sigue que X es Hausdorff.

(⇒) Ahora supongamos que X es Hausdorff. Mostramos que $(X \times X) \setminus \Delta$ es abierto. Si $(x,y) \in (X \times X) \setminus \Delta$, deducimos que $x \neq y$ y que existen entornos disjuntos U,V de x y y, respectivamente. Notamos que $(U \times V) \cap \Delta = \emptyset$, de forma que

$$(x,y) \in U \times V \subseteq (X \times X) \setminus \Delta.$$

Así, para cada punto en $(X \times X) \setminus \Delta$ podemos encontrar un elemento básico dentro de este conjunto que lo contiene, de lo que se sique que $(X \times X) \setminus \Delta$ es abierto.