State University of New York at Buffalo

CSE 473/573 Fall 2016 Homework Set #2

Assignment Date: Monday October 10, 2016; Due: Wednesday October 19, 2016 at 3:00PM

Programming languages: Python or MATLAB programming for the following problems is preferred. However, solutions obtained via another programming language is also acceptable. Submit your code and report via UBLearns.

Warning: You are NOT allowed to use library functions for applying convolution or Fourier/inverse Fourier transform. You shall NOT receive credit if you use these library functions directly.

Problem (1) (Fourier Transform) 50%

Pick an $M \times N$ image of your choice and convert it to 8-bit grayscale representation if needed

- (a) Apply Fourier Transform on the image I_0 and display the Fourier Transform image
- (b) Apply Inverse Fourier Transform to the output from (a) to obtain recovered image I_R
- (c) Compute the Mean Square Error (MSE) between the original and the recovered image based on the following:

$$MSE = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} [I_O(i,j) - I_R(i,j)]^2$$

(d) Discuss why or why not the MSE may be non-zero

NOTE: You need to write your own code for this implementation. External libraries on Fourier Transform can only be used for verification. Include all the images and results in your report.

Problem (2) (Laplacian Pyramid) 50%

Pick an $M \times N$ image of your choice and convert it to 8-bit grayscale representation if needed

- (a) Generate 5-Level Laplacian Pyramid and display the images at each level
- (b) Reconstruct the original image from its Laplacian Pyramid
- (c) Compute the MSE between the original and the reconstructed image
- (d) Discuss why or why not the MSE may be non-zero

NOTE: You need to write your own code for this implementation. Report all the images of 5-Level Laplacian Pyramid of your image and the reconstructed image.