Reconhecimento de Gestos

Raphael Ramos André Luis Souto Rafaela Sinhoroto

Introdução

Neste trabalho foram comparados dois modelos diferentes para realizar reconhecimento de gestos: redes neurais convolucionais (CNN) e reconhecimento baseado em *shape parameters*.

Foi usado o *Marcel dataset* que consiste em 6 sinais de mão (A, B, C, FIVE, POINT, V) executados por 24 pessoas em três tipos diferentes de *background*.

Marcel Dataset

Primeiro Método - Shape Parameters

Segmentação da mão

Utilizando a técnica de k-means clustering e agrupando os pixels de acordo com a cor no espaço $L^*a^*b^*$

Detecção de orientação

Extração de *features* relevantes

- Centro de Massa
- Detecção de polegar
- Identificação dos dedos

Classificação

- Para classificação, é gerado um vetor de 5 bits que representa o estado dos dedos e dessa forma, representa cada um dos gestos. Cada bit corresponde a um dedo, e tem o valor 0 se dobrado ou 1 se levantado.

Classificação

Exemplo: Gesto com
 os 5 dedos
 levantados é
 representado pelos
 bits [11111]

~17%

É a acurácia obtida ao utilizar o método dos parâmetros de forma para classificar gestos variados em situações não triviais (ex: plano de fundo não uniforme, pessoas utilizando camisas de manga comprida, dor de fundo próxima de cor de pele)

	88 ·	W	C	onfusio	on Mat	rix		
1	16 2.4%	17 2.6%	6 0.9%	27 4.1%	23 3.5%	12 1.8%	0 0.0%	15.8% 84.2%
2	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	NaN% NaN%
3	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	NaN% NaN%
Class	0 0.0%	0 0.0%	1 0.2%	14 2.1%	0 0.0%	0 0.0%	0 0.0%	93.3% 6.7%
Output Class	31 4.7%	41 6.2%	9 1.4%	7 1.1%	44 6.7%	13 2.0%	0 0.0%	30.3% 69.7%
6	1 0.2%	0 0.0%	11 1.7%	4 0.6%	1 0.2%	37 5.6%	0 0.0%	68.5% 31.5%
7	48 7.3%	44 6.7%	85 12.9%	82 12.5%	51 7.8%	33 5.0%	0 0.0%	0.0% 100%
99	16.7% 83.3%	0.0% 100%	0.0% 100%	10.4% 89.6%	37.0% 63.0%	38.9% 61.1%	NaN% NaN%	16.9% 83.1%
	1	2	3	4 Target	5 Class	6	7	

Segundo Método - Redes Neurais Convolucionais (CNN)

- Redes neurais são capazes de fazer predições aprendendo o relacionamento entre características dos seus dados e algumas respostas observadas.
- Em uma CNN cada camada age como um filtro para a detecção de features específicas ou padrões presentes nos dados.
- As primeiras camadas em uma CNN detectam características que podem ser reconhecidas e interpretadas relativamente fácil. Camadas posteriores detectam features mais abstratas e usualmente presentes em muitas das features detectadas por camadas anteriores. A última camada realiza a classificação combinando todas as features detectadas pelas camadas anteriores no dados de input.
- Redes neurais convolucionais profundas alcançaram alta performance e são a base dos resultados do estado da arte para reconhecimento de imagens, detecção de objetos, reconhecimento de faces, reconstrução tridimensional de objetos, reconhecimento de faces, reconhecimento de discurso, entre outros.
- Desnecessidade de engenharia de características!

Primeiro Método - Redes Neurais Convolucionais (CNN)

Primeiro Método - Redes Neurais Convolucionais (CNN)

Pooling Operator - Reduz quantidade de parâmetros e cálculos na rede

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

Funções de ativação lineares são geralmente usadas em output neurons quando o objetivo é regressão em vez de classificação

Redes Neurais Convolucionais (CNN) - Inception

- Importante marco no desenvolvimento de CNN.
- Antes da sua origem (hehe), a maioria das CNNs apenas empilhavam camadas de convolução cada vez mais profundas, em busca de uma melhor performance.
- Em contrapartida, as redes Inception são complexas. Usam vários truques para melhorar performance, tanto em termos de velocidade quanto acurácia.
- Hoje já existem várias versões: Inception v1, Inception v2, Inception v3,
 Inception v4, Inception-ResNet v1, Inception-ResNet v2 e Xception.

Redes Neurais Convolucionais (CNN)

Meme referenciado no primeiro paper da Inception: Going deeper with convolutions.

Redes Neurais Convolucionais (CNN)

Problemas:

- 1. Partes salientes da imagem podem ter variação no tamanho.
- 2. Redes neurais muito profundas tendem a sobreajuste dos dados. Também é difícil passar o gradiente por toda a rede.
- 3. Operação de convolução é cara!

Redes Neurais Convolucionais (CNN)

Fotos de cachorros ocupando áreas diferentes da imagem.

Redes Neurais Convolucionais (CNN) - Inception

Módulo Inception original à esquerda e fatorado a direita. Os autores notaram que uma convolução com kernel de tamanho nxn é 33% mais cara que uma combinação de uma convolução 1xn seguida por uma nx1.

Redes Neurais Convolucionais (CNN) -Inception ResNet V2

	Dropout	Acurácia (Top-1)
Xception-1.0	60%	89.82%
Xception-2.0	80%	91.45%
Inception ResNet V2	80%	91.45%
GoogleNet (artigo)		78.22%
VGG (artigo)		64.19%

Resultados obtidos por mim e pelos autores do artigo Hand Gesture Recognition using Deep Convolutional Neural Networks.

	precision	recall	f1-score	support
A	1.00	0.89	0.94	96
В	0.95	0.88	0.91	102
С	1.00	0.96	0.98	112
Five	0.84	0.86	0.85	134
Point	0.88	1.00	0.94	119
V	0.87	0.89	0.88	95
avg / total	0.92	0.91	0.92	658

Matriz de confusão Xception-1.0 e Xception-2.0, respectivamente.

Matriz de confusão Inception ResNet V2.

Conclusão

- De acordo com os resultados obtidos, conclui-se que o método Shape Parameters não é adequado para reconhecimento de gestos quando as imagens não são feitas em ambiente controlado, ou seja, quando o fundo não é uniforme ou a posição da mão varia com relação a câmera.
- Já o método de Redes Neurais Convolucionais, mostrou resultados satisfatórios.