Chips e Barramentos de CPU

Ronaldo Luiz Alonso

- Todas as CPUs modernas estão contidas em um único chip.
- O chip de CPU possui pinos que interagem com o meio externo (memória e dispositivos de E/S). Os pinos podem ser de:
 - Dados
 - Endereço
 - Controle
- Tais pinos são conectados à pinos similares na memória ou em dispositivos de E/S.

- Exemplo: para buscar uma instrução a CPU coloca o endereço de memória de onde começa a instrução nos pinos de endereço.
- Ela ativa então uma ou mais linhas de controle informando à memória que ela quer ler uma palavra.
- A memória responde colocando a palavra nos pinos de dados da CPU e ativando um sinal que informa o que acabou de fazer.
- Quando percebe esse sinal a CPU lê a palavra a partir dos pinos de dados para um registrador interno.

- A instrução pode requisitar a leitura ou escrita da palavra de dados, neste caso, todo o processo é repetido para a palavra adicional.
- O desempenho da CPU é medido pelo número de pinos de endereço e de dados.
 - Uma CPU com m pinos de endereço, pode endereçar 2ⁿ localizações de memória.
 - Valores comuns de m são 16,20,32 e 64.

- Uma CPU com 8 pinos de dados, executará 4 operações para ler uma palavra de 32 bits. Já uma CPU com 32 pinos de dados, irá ler essa palavra em uma única operação.
- O chip com 32 pinos de dados é, portanto, mais rápido.

- Os pinos de controle regulam a temporização de palavras que vem da CPU ou que vão para ela.
- Todas as CPUs tem pinos para alimentação e terra, além de pinos para o sinal de clock.

- Os pinos de controle são divididos em:
 - Controle de barramento.
 - Interrupções.
 - Arbitragem de barramento.
 - Sinalização de co-processador.
 - Estado do processador.

Diagrama Típico de um Microprocessador

Processador Pentium III

- Os pinos de interrupção são entradas que vem dos dispositivos de E/S para a CPU.
- Exemplo:
 - Quando pressinamos uma tecla em um teclado, o código de varredura da tecla vai para um registrador interno do teclado. O controlador de teclado, gera uma interrupção na CPU (ativa o pino INT). A CPU para a execução do programa que está rodando e chama a rotina de tratamento de interrupção. Esta rotina irá ler o código de varredura da tecla digitada.

- Outro exemplo: Uma grande parte das CPUs pode pedir para um dispositivo fazer alguma coisa. Por exemplo: pode pedir para um disco ler um setor para a memória. Após esse pedido a CPU vai fazer outra coisa, como por exemplo continuar a execução do programa corrente enquanto o dispositivo, em paralelo, está executando o pedido.
- Ao terminar a leitura, o controlador do dispositivo, gera uma interrupção na CPU. A rotina de interrupção é então chamada para tratar a interrupção.
- Algumas CPUs tem um pino para reconhecer o sinal de interrupção (INTACK).

- Os pinos de arbitragem de barramento, são necessários para disciplinar o tráfego nos barramentos, para impedir que dois dispositivos tentem usá-lo ao mesmo tempo (barramentos de dados e endereço).
- Do ponto de vista da arbitragem, a CPU é um dispositivo que tem que requisitar o barramento, como qualquer outro.

- Algumas CPUs (antigas) são projetadas para funcionar com co-processadores (que realizam operações com pontos flutuantes) e processadores gráficos.
- Há portanto, nestas CPUs, pinos especiais dedicados a fazer e a aceitar requisições.

Barramentos

- Barramento é um caminho elétrico comum entre vários dispositivos.
- Podem ser internos ou externos à CPU.
- Os primeiros PCs tinham somente um barramento externo, denominado barramento de sistema.
- Este barramento possuía conectores com intervalos regulares para ligação com memória e placas de E/S.

Barramentos

Organização Básica de um Computador

Barramentos

- Geralmente representados por setas largas ou por uma seta fina cortada com um número indicando a quantidade de bits.
- O conjunto de regras às quais os dispositivos devem obedecer para ter acesso ao barramento, constituem o protocolo de barramento.
- Além disso, existem várias especificações mecânicas e elétricas para o barramento.

Exemplos de Barramentos

- ISA (industry standard architecture), PCI (peripheral connect interface), EISA (extended ISA), USB (universal serial bus), SCSI (usado em discos rígidos), VME (usado em equipamentos de laboratório de física).
- Alguns equipamentos são ativos e podem iniciar transferências usando o barramento, enquanto outros são passivos e esperam requisições.
- Os ativos, denominamos mestres e os passivos escravos.

Mestres e Escravos

- Quando a CPU quer ler um setor de disco para memória, ela programa o controlador de disco e ordena para que ele faça a leitura. A CPU é o mestre e o controlador o escravo.
- O controlador de disco, logo em seguida, age como mestre ao transferir as palavras lidas do disco para a memória.
- Em nenhuma circunstância a memória pode ser mestre.

Mestres e Escravos

Master	Slave	Example		
CPU	Memory	Fetching instructions and data		
CPU	I/O device	Initiating data transfer		
CPU	Coprocessor	CPU handing instruction off to coprocessor		
I/O	Memory	DMA (Direct Memory Access)		
Coprocessor	CPU	Coprocessor fetching operands from CPU		

Pinos da CPU

Pinos do Barramento

 Assim como os pinos da CPU, os pinos do barramento podem ser de dados, de endereço e de controle. Porém não existe necessariamente um mapeamento um para um entre os pinos da CPU e os pinos do barramento.

Largura do Barramento

- É a quantidade de linhas que o barramento possui.
- Define o número de bytes em que a CPU opera.
- O barramento EISA (extended ISA) do 386, criado por razões de compatibilidade, é muito mais confuso do que se tivesse 32 bits desde o início do projeto.

Crescimento do Barramento de Endereços com o tempo

Aumento do fluxo de dados

- O aumento no fluxo de dados em um barramento pode ser conseguido:
 - Aumentando-se a largura do barramento.
 - Diminuindo o tempo de transferência de dados e fazendo-se mais transferências.
- O aumento no número de pinos, pode ser reduzido por uma técnica denominada multiplexação.

Pinagem do Pentium II

Clock do Barramento

- Barramento síncrono: possui uma linha comandada por um oscilador de cristal. Todas as atividades do barramento demoram um múltiplo inteiro do ciclo, denominado ciclo de barramento.
- Barramento assíncrono: não tem relógio mestre. Ciclos de barramento podem ter qualquer largura requerida.

Barramento Síncrono

- Neste exemplo:
 - Frequência: 100 Mhz
 - Período: 10 ns.
 - Tempo de leitura de memória: 15 ns.
 - Tempo de subida ou descida do sinal: 1ns.
 - Com esses dados, para ler uma palavra devemos usar 3 ciclos de barramento.

Símbolo	Parâmetro	Mín.	Máx.	Unidade
TAD	Atraso de saída do endereço		4	nsec
T _{MI} _	Endereço estável antes de MREQ	2		nsec
T _M	Atraso de MREQ desde a borda descendente de Ф em T1		3	nsec
TRL	Atraso de RD desde a borda descendente de Φ em T1		3	nsec
Tos	Tempo de ajuste dos dados antes da borda descendente de Φ	2		nsec
Тмн	Atraso de MREQ desde a borda descendente de Φ em T3		3	nsec
TRH	Atraso de RD desde a borda descendente de Φ em T3		3	nsec
TOH	Tempo de sustentação dos dados desde a negação de RD	0		nsec

Barramentos Assíncronos

- Nos barramentos síncronos o tempo do ciclo de barramento é sempre múltiplo do período de clock.
- Ainda que a CPU possa concluir o ciclo de barramento em 3,1 períodos de relógio, o ciclo de barramento irá demorar 4 períodos de clock.

Barramentos Assíncronos

- Outro problema de barramentos síncronos é que uma definido o protocolo de barramento e construídas placas de E/S para ele, é difícil aproveitar futuros avanços da tecnologia.
- Se um barramento síncrono tiver uma coleção de heterogênea de dispositivos, uns mais rápidos e outros mais lentos, o protocolo de barramento precisa ser ajustado para o mais lento. Ou seja, os mais rápidos não podem usar todo o seu potencial.

Barramentos Assíncronos

- MSYN é ativado.
- SSYN é ativado em resposta a MSYN.
- MSYN é negado em resposta a SSYN.
- SSYN é negado em resposta à negação de MSYN.

