

Performance

Solutions pour étudiants Exercices Architecture des ordinateurs

1 | Benchmark du processeur & Performance

1.1 Les quelles des propositions suivantes sont correctes ?

Three statements are true one is false.

per/benchmark-01

1.2 Qu'est-ce que le débit (throughput)?

One statement is true and three are false.

per/benchmark-02

1.3 Qu'est-ce que le SPEC?

One statement is true and three are false.

per/benchmark-03

1.4 Quel est l'objectif du Benchmark EEMBC?

One statement is correct and three are false

per/benchmark-04

1.5 Lequel des éléments suivants est une mesure de l'efficacité énergétique ?

One statement is correct and three are false.

per/benchmark-05

1.6 La consommation d'énergie et les performances par watt sont toutes deux importantes pour un système embarqué.

50/50 change. Think.

per/benchmark-06

1.7 Performances du processeur

- a) $30\mu s$
- b) $2 \frac{\text{cycles}}{\text{instruction}}$ c) $5 \frac{\text{cycles}}{\text{instruction}}$
- d) $292 \mu s$
- e) Processor B is 1.29 times faster than processor A.

per/performance-01

1.8 Performances du processeur

- a) $\rm CPI_{Avg_A} = 3.775 \frac{cycle}{instr} \ \& \ CPI_{Avg_A} = 2.52 \frac{cycle}{instr}$
- b) Computer B is 1.35 times faster than Computer A.
- c) 2.69GHz

per/performance-02

1.9 Performances du processeur

Execution_time = 8.75ms

per/performance-03

1.10 Performances du processeur

Variant 2

per/performance-04

1.11 Performances du processeur

- a) CPU_A is better when
 - a) $w_{p_1} > 90.\overline{90}\%$
 - b) $\hat{w_{p_2}} < 9.\overline{09}\%$
- b) CPU_B is better when
 - a) $w_{p_1} > 90\%$
 - b) $w_{p_2} < 10\%$
- c) CPU_C is better when
 - a) $w_{p_1} > 50\%$
 - b) $w_{p_2} < 50\%$

per/performance-05

1.12 Performances du processeur

Central-Processing-Unit (CPU) A is the fastest!

per/performance-06

1.13 Performances du processeur

La fréquence d'horloge du processeur est de 2 GHz.

4.65

per/performance-07

1.14 Quelle est la meilleure mesure pour comparer les performances?

One statement is true the others are false.

per/performance-08

1.15 Performances du processeur

 $T = 3.2\overline{3}\mathrm{ms}$

per/performance-09

1.16 Loi d'amdahl

S=5.263%

per/amdahls-law-01

1.17 Loi d'amdahl

 $f = 66.\overline{6}\%$

per/amdahls-law-02

1.18 Loi d'amdahl

Optimization A is 1.28 times better than Optimization B.

per/amdahls-law-03