Math 143 Set 12

- **1.** Do the following operations on the vectors $\mathbf{u} = \langle 3, 1, 2 \rangle$, $\mathbf{v} = \langle 2, 0, -1 \rangle$, and $\mathbf{w} = \langle 1, 1, 1 \rangle$:
 - a. Find the cross products $\mathbf{u} \times \mathbf{v}$ and $\mathbf{v} \times \mathbf{u}$.
 - b. $|{\bf u} \times (2{\bf v} {\bf w})|$.
 - c. Find two unit vectors in a direction orthogonal to both \mathbf{u} and \mathbf{v} .
- **2.** Find the cross product of $\langle t, t^2, t^3 \rangle$ and $\langle 1, 2t, 3t^2 \rangle$ and show that it is orthogonal to both vectors.
- **3.** Find all vectors \mathbf{u} and \mathbf{v} such that

$$|\mathbf{u} \times \mathbf{v}| = \mathbf{u} \cdot \mathbf{v}.$$

- **4.** Let **u**, **v**, **w** be vectors. Which of these operations make sense?
 - a. $(\mathbf{u} \cdot \mathbf{v}) \cdot \mathbf{w}$
 - b. $(\mathbf{u} \cdot \mathbf{v})\mathbf{w}$
 - c. $(\mathbf{u} \cdot \mathbf{v})|\mathbf{w}|$
 - d. $(\mathbf{u} \cdot \mathbf{v}) + \mathbf{w}$
 - e. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w}$
 - f. $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$
 - g. $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$
 - h. $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$
- **5.** Show, for any vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^3 , $(\mathbf{v} \times \mathbf{u}) \cdot \mathbf{u} = \mathbf{0}$.
- **6.** Find the vector **v** depicted here:

7. The vector \mathbf{v} below is a unit vector and the vector \mathbf{w} is in the direction of $\langle -1,3 \rangle$. What is \mathbf{w} ?

