

Stateflow® チュートリアル

MathWorks Japan アプリケーションエンジニアリング部

はじめに

• Stateflowの機能、基本操作について、実習を交えながら紹介します。

Let's try and feel Stateflow!

What is Stateflow?

目次

- Stateflow 紹介
 - Stateflowとは
 - Stateflow基本環境
- Stateflow 演習
 - 例題1 フローチャート
 - 例題2 状態遷移図① 基本
 - 例題3 状態遷移図② 時相論理
 - 例題4 状態遷移図③ 階層化
 - 例題5 状態遷移図④ 並列状態
- 補足

MATLAB®とSimulink/Stateflowの関係は?

MATLAB

- 容易なデータ操作
- 簡潔なプログラミング言語
- 豊富な数学関数・ファイルI/O
- 2次元/3次元可視化機能

Simulink

- ブロック線図モデリング
- 豊富なブロックライブラリ ⇒MATLAB上で動作

Stateflow®

■ フローチャート・状態遷移図を 用いたモデリング環境

Stateflowとは

状態遷移図・状態遷移表・フローチャート・真理値表機能を提供

- Simulinkとシームレスに連携(Simulinkが必要)
- 階層化、並列化、関数化、時相論理に対応
- コード生成、モデル検証等各種オプション機能に対応

Stateflowによる色々なロジック表現

◆ 設計に応じて様々なデザインスタイルを活用できます

Stateflowの利点

Stateflow チャート

- ◆ ステート(状態)を持っている
- ◆ ステートや遷移に 処理内容を記述可能

Simulink ブロック

- ◆前回の状態を保持する設計必要
- ◆ Switchブロックなどを用いて 処理内容切り替える必要あり

Stateflow

状態遷移や条件分岐処理の表現が得意

Stateflowデモ紹介: 4速AT車の変速制御

Stateflowの特長

下記のロジック記述やモデリングが得意です

- 複数の動作モードを持つ制御やプラント
- シーケンス制御、スケジューラ
- 監視·自動診断処理
- タイマ・イベントベース処理
- HMI (画面遷移) ロジック

Stateflow ブロック

Stateflow エディタ

Stateflow エディタ オブジェクトパレット

上から順に

- ズーム
- 表示範囲のフィッティング
- ▼ 状態
- 分岐点(コネクティブジャンクション)
- 遷移線(トランジション)
- ・ボックス
- Simulink関数
- グラフィカル関数
- MATLAB関数
- 真理值表
- · ヒストリージャンクション
- 注釈
- イメージ

Stateflow エディタ コンテキストメニュー&プロパティ

エディタ余白を 右クリックで表示

₹v-	- ト: Chart			×	
一般	固定小数点プロパティ	ドキュメンテーション			
名前:	Cha	<u>irt</u>			
マシン:	(75	(マシン) untitled			
アクション	ノ言語: MATLAB	•			
ステート	マシン タイプ: Classic	¥			
更新方	法: 継承 ▼ サンプル時	周:			
☑ ユーザ	f-指定のステート/遷移実行	河原序			
□ チャー	トレベルの関数をエクスポー	+			
□初期	化時に指定されたチャートを	実行 (入力)			
□ チャー	ト起動ごとに出力を初期化				
ロスーバ	パーステップのセマンティクスを	有効にする			
☑可変	サイズの配列をサポート	-		n	
☑ § § オーバーフローで飽和 チャート全体の設定					
□監視	する出力の作成: 子アク	ティビティ		7	
		OK(<u>O</u>) #+	ャンセル(C) ヘルプ(H)	適用(A)	

目次

- Stateflow 紹介
 - Stateflowとは
 - Stateflow基本環境
- Stateflow 演習
 - 例題1 フローチャート
 - 例題2 状態遷移図① 基本
 - 例題3 状態遷移図② 時相論理
 - 例題4 状態遷移図③ 階層化
 - 例題5 状態遷移図④ 並列状態
- 補足

例題1 フローチャート

処理内容

- 入力値:in、出力値:out
- in < 0.5 なら out = -1in > 0.5 なら out = 1それ以外なら out = 0

Sine Wave

例題モデルオープン&Chartブロックの追加

- 1. ex1_flow_chart.slx を開きます。
- 2. StateflowライブラリからChartブロックをモデル内の 適当な位置にドラッグ&ドロップします。

遷移線&分岐点の追加

- 1. オブジェクトパレットから分岐点を追加します。
- 2. 遷移線を追加し、分岐点に接続します。
- 3. Shiftを押しながら分岐点近傍で左クリック、そのままドラッグすると分岐点付きの遷移線を作成できます。

Shiftを押しながらドラッグ

遷移ラベルの編集

- 1. 遷移したい遷移線を左クリックします。
- 2. ? が表示されたら左クリックしてラベルを編集します。
- 3. ラベルを左クリックして位置を変更できます。

遷移ラベル表記法

【条件】{条件アクション}

同一ラベルに両方書くこともできますが、お勧めしません。

- C言語で記述 一部記述が異なる部分アリ(剰余演算子等)
- ラベルが無いと無条件で遷移
- 処理を改行して継続する際は ・・・ (ピリオド3つ)

データの追加

- 1. 下記メニューから入力データ in、出力データ out を追加します。
- 2. 入出力データを作成すると、Chartブロックに入出力端子が表示されます。

定義したデータの確認&削除

- 1. モデルエクスプローラから定義したデータを確認&削除できます。 (データを追加することもできます)
- 2. データプロパティ(入出力順、スコープ、データ型等)を変更できます。

Stateflow データスコープ

スコープ	特徴
入力	Simulinkからの入力
出力	Simulinkへの出力
ローカル	チャート内ローカル変数 階層上位のローカル変数は下位階層でも使用可能
パラメータ	同名のMATLABベースワークスペース値、またはマスクパラメータ値を参照
定数	定数值
データストアメモリ	Data Store Memory

入出力結線&シミュレーション

- 1. in、outを接続してシミュレーションを実行します。
- 2. シミュレーション中にアクティブなパスがハイライト表示されます。

[アニメーション速度の選択] シミュレーション→Stateflowアニメーション→ 低速 (※任意選択)

データを定義せずにシミュレーションを実行したとき

1. エラーダイアログと共に、データを追加するための シンボルウィザードが起動します。

遷移線の評価順序

- 同一の分岐点・状態から複数の遷移線が出ているとき、その評価順序を設定できます。
- 通常、無条件の遷移線(elseに相当するモノ)があれば、それを最後に実行するよう設定します。

フローパターンの利用

1. 下記メニューから典型的な処理(条件分岐、繰り返し)を選んでフローチャートを作成することができます。

状態遷移図例題: ボイラー水温のON/OFF制御

- 水温が 42 ℃ ↓ で ヒーターON:加熱

- 水温が 43 ℃ ↑ で ヒーターOFF: 自然冷却

- 初期水温: 20℃

画像引用元: http://www.yonden-yes.co.jp/jyutaku/els_qanda

例題2 状態遷移図① 基本

処理内容

- ON/OFF状態: ヒータスイッチON/OFF
- OFF状態から開始する。
- 水温が42℃未満だとスイッチON
- 水温が43℃を超えるとスイッチOFF

デフォルト遷移 (最初の状態を指定)

状態アクション

例題モデルオープン&状態・遷移線の追加

- 1. ex2_state_chart.slx を開き、Chartブロックを開きます。
- 2. オブジェクトパレットから状態を追加します。
- 3. 遷移線を追加してデフォルト遷移を定義します。
- 4. 状態近傍で左クリック、そのままドラッグすると遷移線を作成できます。

状態名・状態アクション・遷移ラベルの編集

- 1. 状態内の?を左クリックすると編集できます。
- 2. 1行目が状態名、2行目以降が状態アクションになります。

状態アクション

アクション	略記	特徴
entry	en	状態がアクティブになった時に実行
during	du	状態がアクティブな間に実行
exit	ex	状態が非アクティブな時に実行

状態アクション表記法

■ アクション名: 状態アクション

アクション名と状態アクションの間は改行可能です。

(例) entry: out = 1; (en: out = 1;)、en, du: out = 1;

- アクション名を省略するとentryアクションになります。
- entry と duringで同じ処理を行うときは entry, during: と書けます。

状態アクションの実行タイミング

シミュレーション

- 1. シミュレーションを実行します。
- 2. シミュレーション中にアクティブな状態をハイライト表示します。

42℃~43℃の範囲内に 制御されています

例題3 状態遷移図② 時相論理

処理内容(例題2に仕様追加)

- スィッチOFFからONの切替を行う 際に20秒待つ。
- スィッチONの状態が60秒続くといったんOFFする。 (ヒータの過動作防止)

例題モデルオープン&時相論理の追加

- .. ex3_state_chart_temporal.slx を開き、Chartブロックを開きます。
- 2. 遷移ラベルにafter関数を追加します。

時相論理

関数	内容
after(N, E)	イベントEがN回発生以上のとき真
before(N, E)	イベントEがN回発生以下のとき真
at(N, E)	イベントEがN回発生した時点のみ真
every(N, E)	イベントEがN回発生するごとに真

時相論理表記法

- 関数名(回数,イベント名)
- 時間に関する予約イベントとして sec と tick があります。
 - sec:絶対時間[秒]after(10, sec)で10秒経過したら真
 - tick: チャート駆動回数
 チャートが100ms周期の場合、after(100, tick)で10秒経過したら真

時相論理の実行タイミング

シミュレーション

1. シミュレーションを実行します。

ヒータの連続動作が60秒毎にリセットされています

例題4 状態遷移図③ 階層化

処理内容(例題3に仕様追加)

- 水温が60℃を超えるとヒータを緊急停止する。
- 正常モード(0) と 緊急停止モード(1)を出力する (データ名: mode)。

例題モデルオープン&親状態の追加

- 1. ex4_state_chart_hierarchy.slx を開き、Chartブロックを開きます。
- 2. 状態オブジェクトを追加し、ON/OFF状態全体を囲みます。

全体を囲む

重なるとNG

状態遷移図の作成

右の完成図を参考にして、
 必要なオブジェクトの
 追加・編集を行います。

グループとサブチャート

- 1. 状態内の余白を右クリックして下記メニューを呼び出します。
- 2. [サブチャート]を選択すると、状態遷移図を階層化できます。
- 3. [グループ]を選択すると、グループ化できます。

シミュレーション

1. シミュレーションを実行します。

水温が60℃を超えると ヒータが停止しています

例題5 状態遷移図4 並列状態

処理内容(例題4に仕様追加)

- 水漏れが60秒以上続いたとき、ヒータを緊急停止する。
- 水漏れチェック入力データ: isleaked
- 水漏れ判定モードデータ: modew

並列状態(点線の状態)

ヒータON/OFF制御 水漏れ判定

例題モデルオープン&並列状態の追加

- ex5_state_chart_parallel.slx
 を開き、Chartブロックを開きます。
- 2. 状態オブジェクトを追加し、 既存の状態全体を囲みます。
- 3. もう一つ状態を追加します。
- 4. エディタの余白を右クリックして 下記メニューを呼び出し、 [AND(パラレル)]を選択します。

並列状態を右クリック
→[実行順序]で実行順序を変更できます

並列状態の編集

1. 下の完成図を参考にして、必要なオブジェクトの追加・編集を行います。

シミュレーション

- 1. シミュレーションを実行します。
- 2. シミュレーションが遅い場合は、
 Stateflowエディタを閉じて再度実行してください。
 (アニメーション表示に時間がかかるケースがあるため)

2つの状態が動作しています

水漏れが60秒以上続くと ヒータが停止しています

Stateflow トレーニングサービスのご紹介

- より深くStateflowを学びたい方にお奨めです。お客様サイトでの実施も可能です。
- 自動車分野向け Stateflow 基礎コース

目次

- Stateflow 紹介
 - Stateflowとは
 - Stateflow基本環境
- Stateflow 演習
 - 例題1 フローチャート
 - 例題2 状態遷移図① 基本
 - 例題3 状態遷移図② 時相論理
 - 例題4 状態遷移図③ 階層化
 - 例題5 状態遷移図④ 並列状態
- 補足

状態遷移表

従来の表よりコンパクトに書ける形式を採用

- 状態 + イベント表は**状態遷移行列**と呼んで区別、表示機能を提供
- MATLAB言語で記述 (MATLABチャートと同じ)
- コード生成、モデル検証等各種機能に対応

Stateflowの状態遷移表とは? (1/2)

Stateflowの状態遷移表とは? (2/2)

状態遷移表ブロックの動作メカニズム

- 状態遷移表をMATLABチャートに自動変換して実行。
 - シミュレーション・コード生成には変換されたMATLABチャートを利用
 - R2012bでは表アニメ機能が無いのでチャートアニメで代替

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.