Outline

- Background
- 2 Timed temporal logics
- Metric temporal logic (MTL)
- $oldsymbol{4}$ Translating $MTL_{0,\infty}$ into non-deterministic timed Büchi automata

实时性质

Bounded reachability: *p* will occur within *d* time units.

- 例: 10天之内, 必会下雨
- $\diamond_{[0,d]}p$

- 例: 10天之内, 不会下雨
- $-\square_{[0,d]}\neg p$

实时性质

Bounded reachability: *p* will occur within *d* time units.

- 例: 10天之内, 必会下雨
- ◊[0,*d*]*P*

- 例: 10天之内, 不会下雨
- $-\square_{[0,d]}\neg p$

实时性质

Bounded reachability: *p* will occur within *d* time units.

- 例: 10天之内,必会下雨
- ◊[0,*d*]*p*

- 例: 10天之内,不会下雨
- $-\square_{[0,d]}\neg p$

实时性质

Bounded reachability: *p* will occur within *d* time units.

- 例: 10天之内, 必会下雨
- $\diamond_{[0,d]}p$

- 例: 10天之内, 不会下雨
- $-\Box_{[0,d]}\neg p$

实时性质

Bounded reachability: *p* will occur within *d* time units.

- 例: 10天之内, 必会下雨
- $\diamond_{[0,d]}p$

- 例: 10天之内,不会下雨
- $-\square_{[0,d]}\neg p$

实时性质

Bounded reachability: *p* will occur within *d* time units.

- 例: 10天之内, 必会下雨
- $\diamond_{[0,d]}p$

- 例: 10天之内,不会下雨
- $\square_{[0,d]} \neg p$

实时性质

Bounded response properties:: Every p should be followed by an occurrence of a q, not later than d time units.

- 例:任何时候打110报警,警察将在10分钟内赶到
 - $\Box(p\to \diamondsuit_{[0,d]}q)$

Minimum separation properties: Once an event p happens, it will not happen again within d time units.

- 例:打流感疫苗后,2个月内不能再打
 - $\Box(p\to \widehat{\Box}_{[0,d)}\neg p)$

实时性质

Bounded response properties:: Every p should be followed by an occurrence of a q, not later than d time units.

- 例: 任何时候打110报警,警察将在10分钟内赶到

$$\Box(p\to \Diamond_{[0,d]}q)$$

Minimum separation properties: Once an event p happens, it will not happen again within d time units.

- 例: 打流感疫苗后,2个月内不能再打

$$\square(p o \square_{[0,d)} \neg p)$$

实时性质

Bounded response properties:: Every p should be followed by an occurrence of a q, not later than d time units.

- 例: 任何时候打110报警,警察将在10分钟内赶到

$$\Box(p\to\diamondsuit_{[0,d]}q)$$

Minimum separation properties: Once an event p happens, it will not happen again within d time units.

- 例:打流感疫苗后,2个月内不能再打

$$\square(p o \square_{[0,d)} \neg p)$$

实时性质

Bounded response properties:: Every p should be followed by an occurrence of a q, not later than d time units.

- 例: 任何时候打110报警,警察将在10分钟内赶到

$$\Box(p\to\diamondsuit_{[0,d]}q)$$

Minimum separation properties: Once an event p happens, it will not happen again within d time units.

- 例:打流感疫苗后,2个月内不能再打

$$\Box \big(p \to \widehat\Box_{[0,d)} \neg p\big)$$

实时性质

Bounded response properties:: Every p should be followed by an occurrence of a q, not later than d time units.

- 例: 任何时候打110报警,警察将在10分钟内赶到

$$\Box(p\to \diamondsuit_{[0,d]}q)$$

Minimum separation properties: Once an event p happens, it will not happen again within d time units.

- 例:打流感疫苗后,2个月内不能再打

$$\Box(p\to\widehat\Box_{[0,d)}\neg p)$$

实时性质

Bounded response properties:: Every p should be followed by an occurrence of a q, not later than d time units.

- 例: 任何时候打110报警,警察将在10分钟内赶到

$$\Box(p\to\diamondsuit_{[0,d]}q)$$

Minimum separation properties: Once an event p happens, it will not happen again within d time units.

- 例: 打流感疫苗后, 2个月内不能再打

$$\square \big(p \to \widehat{\square}_{[0,d)} \neg p\big)$$

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p\to \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics:

TCTL (Timed CTL)

$$A\Box(p\to A\diamondsuit_{[0,d]}q)$$

$$A\Box(p\to x.A\Diamond(q\land x\leq d))$$

Interval Temporal Logics:

DC(Duration Calculus),

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p\to \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics:

TCTL (Timed CTL)

$$A\Box(p\to A\Diamond_{[0,d]}q)$$

$$A\Box(p\to x.A\Diamond(q\land x\leq d))$$

Interval Temporal Logics:

DC(Duration Calculus) ,

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p o \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics: TCTL (Timed CTL)

$$A\Box(p\to A\Diamond_{[0,d]}q)$$

$$A\Box(p\to x.A\Diamond(q\land x\leq d))$$

Interval Temporal Logics:

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p o \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics:

TCTL (Timed CTL)

$$A\Box(p\to A\diamondsuit_{[0,d]}q$$

$$A\Box(p \to x.A\Diamond(q \land x \leq d))$$

Interval Temporal Logics:

DC(Duration Calculus),

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p o \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics:

TCTL (Timed CTL)

$$A\Box(p o A\diamondsuit_{[0,d]}q)$$

$$A\Box(p\to x.A\diamondsuit(q\land x\le d))$$

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p o \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics:

TCTL (Timed CTL)

$$A\Box(p o A\Diamond_{[0,d]}q)$$

-

$$A\Box(p\rightarrow x.A\Diamond(q\land x\leq d))$$

Interval Temporal Logics:

Timed Temporal Logics

Linear-Time Temporal Logics:

- MTL (Metric Temporal Logic)

$$\Box(p o \diamondsuit_{[0,d]}q)$$

- TPTL (Timed Propositional Temporal Logic)

$$\Box(p\to x.\Diamond(q\land x\leq d))$$

Branching-Time Temporal Logics:

TCTL (Timed CTL)

$$A\Box(p o A\Diamond_{[0,d]}q)$$

 $A\Box(p\to x.A\Diamond(q\land x\leq d))$

Interval Temporal Logics:

DC(Duration Calculus),

The syntax of TCTL is given by the following grammar:

$$\varphi ::= a \, | \, \neg \varphi \, | \, \varphi_1 \wedge \varphi_2 \, | \, E(\varphi_1 \, \mathsf{U}_I \, \varphi_2) \, | \, A(\varphi_1 \, \mathsf{U}_I \, \varphi_2)$$

where $a \in AP$, and I is an interval of $\mathbb{R}^{\geq 0}$ with integral bounds.

Metric Temporal Logic(MTL), proposed by Ron Koymans in 1990, is a timed extension of LTL.

Action-based MTL: Let Σ be a finite set of actions, the MTL-formulas over Σ are defined by the following grammar.

$$\varphi ::= \mathit{true} \,|\, \mathsf{a} \,|\, \neg \varphi \,|\, \varphi_1 \wedge \varphi_2 \,|\, \mathsf{O}\varphi \,|\, \varphi_1 \,\mathsf{U}_\mathsf{I} \,\varphi_2$$

where $a \in \Sigma$ is an action, $I \subseteq [0, \infty)$ is an open, closed, or half-open interval with endpoints in $\mathbb{N} \cup \{\infty\}$.

Some abbreviations:

$$\varphi R_{I} \phi := \neg(\neg \varphi U_{I} \neg \phi)$$

$$\diamondsuit_{I} \varphi := true U_{I} \varphi$$

$$\Box_{I} \varphi := \neg \diamondsuit_{I} \neg \varphi = false R_{I} \varphi$$

Examples:

```
\begin{array}{l}
\rho \, \mathsf{U}_{[1,5)} \, q, \\
 \diamond_{[3,5]} \, \rho, \, \Box_{(10,25]} \, \rho, \\
 \Box_{[0,1000]} (p \to \diamond_{[5,10]} q) \\
 \Box_{[0,1000]} (p \to \Box_{[0,10]} \neg q) \\
 \Box \diamond_{[0,10]} p
\end{array}
```

(the dual of U_i)

Some abbreviations:

$$\varphi R_{I} \phi := \neg(\neg \varphi U_{I} \neg \phi)$$

$$\diamondsuit_{I} \varphi := true U_{I} \varphi$$

$$\Box_{I} \varphi := \neg \diamondsuit_{I} \neg \varphi = false R_{I} \varphi$$

Examples:

$$p \cup_{[1,5)} q$$
,
 $\diamondsuit_{[3,5]} p$, $\Box_{(10,25]} p$,
 $\Box_{[0,1000]} (p \to \diamondsuit_{[5,10]} q)$
 $\Box_{[0,1000]} (p \to \Box_{[0,10]} \neg q)$
 $\Box\diamondsuit_{[0,10]} p$
 $\Box\varsigma_{[5,0.100]} \diamondsuit_{[3,5]} p$

(the dual of U_I)

Some abbreviations:

$$\varphi R_I \phi := \neg (\neg \varphi U_I \neg \phi)$$

$$\diamondsuit_I \varphi := true U_I \varphi$$

$$\Box_I \varphi := \neg \diamondsuit_I \neg \varphi = false R_I \varphi$$

Examples:

```
\begin{array}{l}
p \, \mathsf{U}_{[1,5)} \, q, \\
\diamondsuit_{[3,5]} \, p, \, \Box_{(10,25]} \, p, \\
\Box_{[0,1000]} (p \to \diamondsuit_{[5,10]} q) \\
\Box_{[0,1000]} (p \to \Box_{[0,10]} \neg q) \\
\Box_{[0,10]} p \\
\Box_{[50,100]} \diamondsuit_{[3,5]} p
\end{array}
```

(the dual of U_I)

Some abbreviations:

$$\varphi R_{I} \phi := \neg(\neg \varphi U_{I} \neg \phi)$$

$$\diamondsuit_{I} \varphi := true U_{I} \varphi$$

$$\Box_{I} \varphi := \neg \diamondsuit_{I} \neg \varphi = false R_{I} \varphi$$

Examples:

$$\begin{array}{l}
p \, \mathsf{U}_{[1,5)} \, q, \\
\diamondsuit_{[3,5]} \, p, \, \Box_{(10,25]} \, p, \\
\Box_{[0,1000]} (p \to \diamondsuit_{[5,10]} q) \\
\Box_{[0,1000]} (p \to \Box_{[0,10]} \neg q) \\
\Box\diamondsuit_{[0,10]} p
\end{array}$$

(the dual of U_l)

Some abbreviations:

$$\varphi R_{I} \phi := \neg (\neg \varphi U_{I} \neg \phi)$$

$$\diamondsuit_{I} \varphi := true U_{I} \varphi$$

$$\Box_{I} \varphi := \neg \diamondsuit_{I} \neg \varphi = false R_{I} \varphi$$

Examples:

$$\rho \cup_{[1,5)} q,$$
 $\diamondsuit_{[3,5]} \rho, \square_{(10,25]} \rho,$
 $\square_{[0,1000]} (\rho \to \diamondsuit_{[5,10]} q)$
 $\square_{[0,1000]} (\rho \to \square_{[0,10]} \neg q)$
 $\square\diamondsuit_{[0,10]} \rho$
 $\square_{[50,100]} \diamondsuit_{[3,5]} \rho$

(the dual of U_l)

Some abbreviations:

$$\varphi R_{I} \phi := \neg(\neg \varphi U_{I} \neg \phi)$$

$$\diamondsuit_{I} \varphi := true U_{I} \varphi$$

$$\Box_{I} \varphi := \neg \diamondsuit_{I} \neg \varphi = false R_{I} \varphi$$

Examples:

$$p \cup_{[1,5)} q,$$
 $\diamondsuit_{[3,5]} p, \Box_{(10,25]} p,$
 $\Box_{[0,1000]} (p \to \diamondsuit_{[5,10]} q)$
 $\Box_{[0,1000]} (p \to \Box_{[0,10]} \neg q)$
 $\Box\diamondsuit_{[0,10]} p$
 $\Box_{[50,100]} \diamondsuit_{[3,5]} p$

(the dual of U_I)

Pointwise semantics for MTL

Let Σ be a set of actions, and $\tau = \langle t_0, t_1, \dots, t_i, \dots \rangle$ be an unbounded nondecreasing sequence of time values $t_i \in \mathbb{R}^{\geq 0}$.

Then $\omega = (a_1, t_1), (a_2, t_2), (a_3, t_3), \ldots$ is called a *timed word* in pointwise semantics, where $a_i \in \Sigma$ for all $i \in \mathbb{N}$.

We can interpret all *MTL*-formulas(including O operator) over such a timed word.

Pointwise semantics for MTL

Definition. Given a timed word $\omega = (a_1, t_1), (a_2, t_2), (a_3, t_3), \ldots$ and a MTL formula φ , then the satisfaction relation $(\omega, i) \models \varphi$ (ω satisfies φ at position i) is defined as follows:

$$(\omega, i) \models a \text{ iff } a = a_i$$

 $(\omega, i) \models O\varphi \text{ iff } (\omega, i + 1) \models \varphi$
...
 $(\omega, i) \models \varphi_1 \cup_I \varphi_2 \text{ iff there exists } j \geq i \text{ such that } (\omega, j) \models \varphi_2,$
 $t_j - t_i \in I, \text{ and } (\omega, k) \models \varphi_1 \text{ for all } k \text{ with } i \leq k < j.$
 $(\omega, i) \models \varphi_1 \cap_I \cap_I \varphi_2 \text{ iff for all } j \geq i \text{ such that } t_j - t_i \in I, \text{ either } (\omega, j) \models \varphi_2, \text{ or there exists } k \text{ with } i \leq k < j \text{ and } (\omega, k) \models \varphi_1.$

Continuous Semantics:

Timed state sequence (TSS): Let P be a finite set of propositions. A timed state sequence $\pi = (I_0, \sigma_0), (I_1, \sigma_1), (I_2, \sigma_2), (I_3, \sigma_3), \ldots$ over P is called timed state sequence if the following coditions are satisfied:

For each $i \ge 0$, σ_i is a subset of P;

 I_0 , I_1 , I_2 , I_3 , ... is an infinite sequence of bounded intervals such that $\bigcup_{i\geq 0}I_i=\mathbb{R}^{\geq 0}$, and for all i>=0, the intervals I_i and I_{i+1} are adjacent.

For example, let $P = \{p, q\}$, then $([0, 2], \{p\})$, $((2, 3), \{p, q\})$, $([3, 3], \{q\})$, $((3, 8.5], \{\})$, $((8.5, 20), \{p\})$, ... is a TSS.

Equivalently, a TSS π can be viewed as a function from $\mathbb{R}^{\geq 0}$ to 2^P , indicating for each time $t \in \mathbb{R}^{\geq 0}$ a subset of P, that is, $\pi(t) \subseteq P$ for all $t \in \mathbb{R}^{\geq 0}$.

Continuous Semantics for MTL

Definition. Given a timed state sequence π and a next-free MTL formula φ , φ holds at time $t \in \mathbb{R}^{\geq 0}$, denoted $(\pi, t) \models \varphi$, can be defined as follows.

```
(\pi,t) \models a \text{ iff } a \in \pi(t);
...
(\pi,t) \models \varphi_1 \mathsf{U}_I \varphi_2 \text{ iff there exists a } t' \geq t \text{ such that } t' - t \in I,
(\pi,t') \models \varphi_2, \text{ and for all reals } t'' \in (t,t'), \text{ we have } (\pi,t'') \models \varphi_1
```

Metric Interval Temporal Logic MITL

MTL is a powerful specification language for timed systems.

Model checking and satisfiability for *MTL*:

Continuous Semantics, infinite run: undecidable

Continuous Semantics, finite run: undecidable

Pointwise Semantics, infinite run: undecidable

Pointwise Semantics, finite run: decidable

Metric Interval Temporal Logic MITL

Metric Interval Temporal Logic(MITL) is proposed by Rajeev Alur, Tomas Feder, Thomas A. Henzinger in 1991.

$$\varphi ::= a \, | \, \neg \varphi \, | \, \varphi_1 \wedge \varphi_2 \, | \, \mathcal{O}\varphi \, | \, \varphi_1 \mathcal{U}_I \varphi_2$$

where I is a non-singular interval with endpoints in $\mathbb{N} \cup \{\infty\}$.

Singular intervals: [d, d], where $d \in \mathbb{N}$

MITL is decidable.

Model checking and satisfiability for MITL:

Continuous Semantics, infinite run: EXPSPACE-complete

Continuous Semantics, finite run: EXPSPACE-complete

Pointwise Semantics, infinite run: EXPSPACE-complete

Pointwise Semantics, finite run: EXPSPACE-complete

Metric temporal logic (MTL)

 $MTL_{0,\infty}$ is a subset of MITL, defined by the following syntax.

$$\varphi ::= a \, | \, \neg \varphi \, | \, \varphi_1 \wedge \varphi_2 \, | \, \mathrm{O}\varphi \, | \, \varphi_1 \mathsf{U}_{\sim d} \varphi_2$$

where $a \in \Sigma$, $d \in \mathbb{N}$, $\sim \in \{<, \leq, >, \geq\}$ and < d, $\leq d$, > d, $\geq d$ denote the intervals [0, d), [0, d], (d, ∞) , $[d, \infty)$ respectively.

Metric temporal logic (MTL) $_{MTL_{0,\infty}}$

Model checking and satisfiability for $MTL_{0,\infty}$:

Continuous Semantics, infinite run: PSPACE-complete

Continuous Semantics, finite run: PSPACE-complete

Pointwise Semantics, infinite run: PSPACE-complete

Pointwise Semantics, finite run: PSPACE-complete