

FACULDADE DE TECNOLOGIA SENAC RIO			
Curso: Análise e Desenvolvimento de Sistemas		Semestre letivo: 2021.2	
Unidade Curricular: Raciocínio Lógico e Matemático		Módulo:	1
Professor: Agnaldo Cieslak		Data:	2021
Competências a serem avaliadas:	Indicadores de Competência:		
Projetar sistemas de informação Orientados a Objetos	Desenvolve o raciocínio lógico e matemático para solução de problemas computacionais;		
Alunos:		Concei	to:

Atividade 3 - Construção de Tabela verdade de proposições complexas

Construa as tabelas verdade das proposições abaixo:

A)

р	q	P ∧ ~ q
V	V	f
V	f	V
f	V	f
f	f	f

B)

р	q	P V ~ q
V	V	V
V	f	V
f	V	f
f	f	V

C)

Α	В	~ p V q
V	V	V
V	f	f
f	V	V
f	f	V

D)

/		
A	В	~ p ^ ~ q
V	V	f
V	f	f
f	V	f
f	f	V

Α	В	~ pV ~ q
V	V	f
V	f	V
f	V	V
f	f	V

F)

Α	В	p∧ (~p∨q)
V	V	V
V	f	f
f	V	f
f	f	f

Dado V(q) e o resultado da proposição complexa, determine o valor de V(p) nas proposições abaixo:

a
$$V(q) = V e V(p \wedge q) = F$$

b $V(q) = F e V(p \vee q) = F$
c $V(q) = F e V(p \rightarrow q) = F$

d
$$V(q) = F \circ V(q \rightarrow p) = V$$

e $V(q) = V \circ V(p \leftrightarrow q) = F$
f $V(q) = F \circ V(q \leftrightarrow p) = V$

A)
$$V(p) = F$$

B)
$$V(p) = F$$

C)
$$V(p) = V$$

D)
$$V(p) = F$$

E)
$$V(p) = F$$

$$F) V(p) = F$$