## On Markov chain Monte Carlo methods for sampling self-avoiding walks on the square lattice

#### Carlos Eduardo Marciano

Universidade Federal do Rio de Janeiro

#### Trabalho Final MCMC

cemarciano@poli.ufrj.br https://cemarciano.github.io

## Roadmap

- 1 Introduction
- 2 Definitions
- 3 Generating SAWs
- 4 Computational Results
- 5 Conclusion

Introduction Definitions Generating SAWs Computational Results Conclu

### Motivation

- Linear polymers: high density. Present in most plastics, pipes, nylon fabric... The list goes on!
- Comprised of long chains of basic units called monomers.
- How many configurations exist for an n-monomer chain? How far apart are its endpoints, in average [1]?



Figure 1:
Polyethylene terephthalate
(Creative Commons)

## The Self-Avoiding Walk



Figure 2: A 500-step SAW in the 2D lattice starting at the origin [2].

- The Self-Avoiding Walk (SAW): used in the past few decades to model linear polymers.
- Defined as an ordered set of n+1 sites in  $\mathbb{Z}^d$  where consecutive sites are neighbors and no two sites coincide [1].
- I eads to mathematical problems that are easy enough to state and very hard to solve!

Definitions Generating SAWs

## Basic Definitions (from [3])

#### The set $\mathcal{L}_n$

Set of n-step *SAWs* on the  $\mathcal{L}$  d-dimensional lattice starting at the origin and ending anywhere. For simplicity, let's restrict attention to the square lattice  $\mathbb{Z}^2$ .

roduction **Definitions** Generating SAWs Computational Results Conclusion

## Basic Definitions (from [3])

#### The set $\mathcal{L}_{l}$

Set of n-step *SAWs* on the  $\mathcal{L}$  *d*-dimensional lattice starting at the origin and ending anywhere. For simplicity, let's restrict attention to the square lattice  $\mathbb{Z}^2$ .

#### The value $c_n$

Cardinality of  $\mathcal{L}_n$  (i.e.: number of possible n-step *SAWs* on  $\mathbb{Z}^2$ ).

## Basic Definitions (from [3])

## Mean-square end-to-end distance $<\omega_n^2>$

$$<\omega_n^2>\equiv {1\over c_n}\sum_{x}|x|^2c_n(x)$$
 (i.e. avg. squared Euclidian distance).

### Horseshoe

- SAW 3-element contiguous subsequence whose elements resemble a horseshoe shape.
- Expected value can be of help to some open questions in the theory of percolation.
- Computationally, for each site i = (x, y), just check if  $i 3 \in \{(x 1, y), (x + 1, y), (x, y 1), (x, y + 1)\}.$



Figure 3: A 105-step *SAW* from [1] with its 19 horseshoes highlighted.

Definitions Generating SAWs Computational Results Co

## Roadmap

- 1 Introduction
- 2 Definitions
- 3 Generating SAWs
- 4 Computational Results
- 5 Conclusion

#### Enumeration

■ Simple backtracking algorithm. First node in the backtrack tree has 4 children; all others have 3 or less.

| n  | C <sub>n</sub> | n  | C <sub>n</sub> | n  | C <sub>n</sub>     |
|----|----------------|----|----------------|----|--------------------|
| 1  | 4              | 11 | 120 292        | 21 | 2 408 806 028      |
| 2  | 12             | 12 | 324 932        | 22 | 6 444 560 484      |
| 3  | 36             | 13 | 881 500        | 23 | 17 266 613 812     |
| 4  | 100            | 14 | 2 374 444      | 24 | 46 146 397 316     |
| 5  | 284            | 15 | 6 416 596      | 25 | 123 481 354 908    |
| 6  | 780            | 16 | 17 245 332     | 26 | 329 712 786 220    |
| 7  | 2 172          | 17 | 46 466 676     | 27 | 881 317 491 628    |
| 8  | 5 916          | 18 | 124 658 732    | 28 | 2 351 378 582 244  |
| 9  | 16 268         | 19 | 335 116 620    | 29 | 6 279 396 229 332  |
| 10 | 44 100         | 20 | 897 697 164    | 30 | 16 741 957 935 348 |

Table 1: Values of  $c_n$  on the 2-dimensional square lattice. Adapted from [1] and [4].

 $c_{71} = 4\ 190\ 893\ 020\ 903935\ 054\ 619\ 120\ 005\ 916$ 

 $c_n \sim A \mu^n n^{\gamma-1}$ 

roduction Definitions **Generating SAWs** Computational Results Conclusion

## Sampling Idea 0: Discard if not self-avoiding

■ <u>Problem:</u> Not viable for generating large *SAWs*.



Figure 4: Histogram of SAW length after 10<sup>8</sup> trials. Adapted from [5].

## Sampling Idea 1: Backtracking

■ Iteratively add a site uniformly chosen to a *SAW* over all  $k \in \{1, 2, 3, 4\}$  available next steps. Backtrack if trapped.



Figure 5: Two 6-step SAWs with different probabilities.

■ Problem 1: leads to a non-uniform distribution over  $\mathcal{L}_n$ .

roduction Definitions Generating SAWs Computational Results Conclusion

## Sampling Idea 1: Backtracking

■ <u>Problem 2:</u> Recovering from traps is exponentially difficult as *n* increases, limiting *SAW* lengths.



Figure 6: Average length of SAW after a number of iterations with  $10^5$  trials. Adapted from [5].

- Create a *Markov* chain with c<sub>n</sub> states where each state represents an n-step SAW.
- Choose a site k and apply an orthogonal transformation to all sites after k (e.g.  $90^{\circ}$ rotation; x-axis reflection; etc), leading to another state.
- This approach originates the Pivot Algorithm.



(a) Pivot chosen.



(b) Transformation applied.

Figure 7: Foundations of the Pivot Algorithm.

## The Pivot Algorithm (based on [3])

```
Initialize a self-avoiding walk \omega
for i=1 to num_samples do
    Uniformly choose pivot k \in [0, N-1]
    Uniformly choose transformation T
    Apply T to [k+1, N] sites in \omega
    if new walk \omega' is self-avoiding then
        \omega \leftarrow \omega'
    end
    Count \omega as a sample
end
```

- There are a total of 2<sup>d</sup>.d! orthogonal transf. For d=2:
  - 1 identity (1)
  - $2 \pm 90^{\circ}$  rotations (2)
  - 3  $180^{\circ}$  rotation (1)
  - 4 axis reflections (2)
  - 5 diagonal refl. (2)
- Requires an appropriate data structure in order to achieve efficiency.

n Definitions Generating SAWs **Computational Results** Conclusion

## Roadmap

- 1 Introduction
- 2 Definitions
- 3 Generating SAWs
- 4 Computational Results
- 5 Conclusion

## Implementing the Pivot Algorithm

- A hash table and an array are used to redundantly store all (x,y) pairs of the SAW, and they serve different purposes:
  - 1 The hash table provides collision checking in O(1) for each site in the walk:
  - The array provides random access for each site in the walk.
- $\blacksquare$  As a consequence, each sample is generated in O(n) time.
- Evaluation: mean-square end-to-end distance  $<\omega_n^2>$ obtained after 10<sup>7</sup> samples (thermalization of 10<sup>5</sup>):

| n  | $<\omega_n^2>$ (Madras & Sokal [3]) | $<\omega_n^2>$ (this work) | Enumeration |
|----|-------------------------------------|----------------------------|-------------|
| 15 | $47.2319\pm0.0560$                  | $47.2291 \pm ??$           | 47.2177     |
| 20 | $72.1227\pm0.0940$                  | $72.0767 \pm ??$           | 72.0765     |

## Expected Value of Horseshoes in a SAW

Average number of horseshoes  $< H_n >$  obtained after  $10^6$  samples (thermalization of  $10^4$ ):



| n     | $< H_n >$ | Enum.    |
|-------|-----------|----------|
| 10    | 1.00068   | 0.999546 |
| 15    | 1.54204   | 1.54465  |
| 20    | 2.10965   | -        |
| 40    | 4.26707   | _        |
| 80    | 8.57384   | _        |
| 100   | 10.7461   | _        |
| 1000  | 108.314   | _        |
| 10000 | 1075.28   | -        |
|       |           |          |

Figure 8: Expected value of horseshoes in a SAW.

## Investigating Improvements for the Mixing Time

Generating SAWs

■ Acceptance fraction f of the Pivot Algorithm [3] is estimated to behave as a power law  $f \sim n^{-0.19}$ 

■ What would happen if we used <u>2 pivots</u>?



Figure 9: Choosing 2-pivots.

| n    | 1-Pivot Accept. Frac. | 2-Pivot Accept. Frac. |
|------|-----------------------|-----------------------|
| 10   | 0.660813              | 0.475722              |
| 25   | 0.543953              | 0.322331              |
| 100  | 0.40568               | 0.17971               |
| 250  | 0.33601               | 0.12352               |
| 500  | 0.292144              | 0.092826              |
| 1000 | 0.254208              | 0.070387              |
| 2500 | 0.212067              | 0.049579              |

■ Accept. fraction for 2-pivot roughly estimated as  $f \sim n^{-0.38}$ 

troduction Definitions Generating SAWs Computational Results Conclusion

#### Conclusion

- Markov chain Monte Carlo as a powerful tool to reliably estimate many hard to calculate attributes of SAWs.
- Future work: effective approaches for diminishing the mixing time of the MC.
- Future work: analytically derive expected value of horseshoes  $E[H_n]$ .





Figure 10: *SAWs* with over 10<sup>7</sup> sites

(by Nathan Clisby, from [6])

roduction Definitions Generating SAWs Computational Results Conclusion

### Closure

# Thank you!

Questions & Answers

This presentation is available in PDF format at: https://tinyurl.com/inoc2019-32 [1] SLADE, G., "Self-Avoiding Walks", The Mathematical Intelligencer, v. 16, n. 1, pp. 29–35, 1994

Generating SAWs

- [2] JANSE VAN RENSBURG, E. J., "Monte Carlo methods for the self-avoiding walk", Journal of Physics A: Mathematical and Theoretical, v. 42, n. 32, pp. 1–97, July 2009.
- [3] MADRAS, N., SOKAL, A. D., "The Pivot Algorithm: A Highly Efficient Monte Carlo Method for the Self-Avoiding Walk". Journal of Statistical Physics, v. 50, n. 1/2, pp. 109-186, Jan. 1988.
- JENSEN, I., "Enumeration of self-avoiding walks on the square lattice", Journal of Physics A: [4] General Physics, v. 37, n. 21, pp. 5503-5524, April 2004.
- [5] PRÉA, P., ROUAULT, M., BRUCKER, F., "An optimal algorithm to generate extendable self-avoiding walks in arbitrary dimension", Electronic Notes in Discrete Mathematics, v. 59, pp. 37-50, June 2017.
- [6] CLISBY, N., "Faster simulation of self-avoiding walks promises to untangle knotty problems in polymer science", 2017. Accessed in 12 June 2019. Available at: https://clisby.net/projects/saw\_feature/.