

SEQUENCE LISTING

<110> CHANG, Y-H VETRO, J.A. MICKA, W.S.

<120> Dominant Negative Variants of Methionine Aminopeptidase
2 ("MetAP2") and Clinical Uses Therefor

<130> 16153-8007

<140>

<141>

<160> 26

<170> PatentIn Ver. 2.0

<210> 1

<211> 71

<212> PRT

<213> Human polylysine

<400> 1

Lys Lys Lys Arg Arg Lys Lys Lys Ser Lys Gly Pro Ser Ala Ala 1 5 10 15

Gly Glu Glu Pro Asp Lys Glu Ser Gly Ala Ser Val Asp Glu Val 20 25 30

Ala Arg Gln Leu Glu Arg Ser Ala Leu Glu Asp Lys Glu Arg Asp Glu 35 40 45

Asp Asp Glu Asp Gly Asp Gly Asp Gly Asp Gly Ala Thr Gly Lys 50 55 60

Lys Lys Lys Lys Lys Lys
65 70

<210> 2

<211> 71

<212> PRT

<213> Mouse polylysine

<400> 2

Lys Lys Lys Arg Arg Lys Lys Lys Gly Lys Gly Ala Val Ser Ala 1 5 10 15

Val Gln Gln Glu Leu Asp Lys Glu Ser Gly Ala Leu Val Asp Glu Val 20 25 30

Ala Lys Gln Leu Glu Ser Gln Ala Leu Glu Glu Lys Glu Arg Asp Asp 35 40 45

Asp Asp Glu Asp Gly Asp Gly Asp Ala Asp Gly Ala Thr Gly Lys Lys 50 55 60

Lys Lys Lys Lys Lys Lys 65 70

<210> 3

<211> 57

<212> PRT

<213> Saccharomyces polylysine

38162.doc

```
<400> 3
Thr Asp Ala Glu Ile Glu Asn Ser Pro Ala Ser Asp Leu Lys Glu Leu
Asn Leu Glu Asn Glu Gly Val Glu Gln Gln Asp Gln Ala Lys Ala Asp
Glu Ser Asp Pro Val Glu Ser Lys Lys Lys Asn Lys Lys Lys Lys
Lys Lys Lys Ser Asn Val Lys Lys Ile
<210> 4
<211> 35
<212> DNA
<213> Synthetic oligonucleotide
                                                               35
caaccattgt gctgcagctt tcacacccaa tgcag
<210> 5
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
     oligonucleotide
<400> 5
                                                               35
ctgcattggg tgtgaaagct gcagcacaat ggttg
<210> 6
<211> 478
<212> PRT
<213> Human dnvMetAP2
<220>
                 wf = The
<221> SITE
<222> (219)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (231)
<223> May be any amino acid, except His
<220>
<221> SITE
 <222> (251)
 <223> May be any naturally occurring amino acid
<220>
 <221> SITE
<220>
 <221> SITE
              wf=Leu
 <222> (328)
 <223> May be any naturally occurring amino acid
 <220>
```

```
<221> SITE
              2:H=7w
<222> (331)
<223> May be any naturally occurring amino acid
<222> (338).. (339) wt = Ile ... His
<223> May be any naturally occurring amino acid
<220>
                   wt =GW
<221> SITE
<222> (364)
<223> May be any naturally occurring amino acid
<220>
                  wt=Tyr
<221> SITE
 <222> (444)
 <223> May be any naturally occurring amino acid
<220>
                wt = Lev
 <221> SITE
 <222> (447)
 <223> May be any naturally occurring amino acid
                 wt = 610
 <221> SITE
 <222> (459)
 <223> May be any naturally occurring amino acid
 Met Ala Gly Val Glu Glu Val Ala Ala Ser Gly Ser His Leu Asn Gly
 Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Ala Ala Ser Thr Ala Glu
 Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Ser Lys Gly Pro
 Ser Ala Ala Gly Glu Gln Glu Pro Asp Lys Glu Ser Gly Ala Ser Val
 Asp Glu Val Ala Arg Gln Leu Glu Arg Ser Ala Leu Glu Asp Lys Glu
 Arg Asp Glu Asp Glu Asp Gly Asp Gly Asp Gly Asp Gly Ala Thr
 Gly Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln
 Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val
 Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg
 Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln
 Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His
 Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr
                                185
```

Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 195 200 205

Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Xaa Prc Thr Gly Cys Ser 210 215 220

Leu Asn Asn Cys Ala Ala Xaa Tyr Thr Pro Asn Ala Gly Asp Thr Thr 225 230 235 240

Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Xaa Phe Gly Thr His Ile
245 250 255

Ser Gly Arg Ile Ile Xaa Cys Ala Phe Thr Val Thr Phe Asn Pro Lys 260 265 270

Tyr Asp Thr Leu Leu Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 275 280 285

Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile 290 295 300

Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr 305 310 315 320

Gln Val Lys Pro Ile Arg Asn Xaa Asn Gly Xaa Ser Ile Gly Gln Tyr 325 330 335

Arg Xaa Xaa Ala Gly Lys Thr Val Pro Ile Val Lys Gly Gly Glu Ala 340 345 350

Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Xaa Thr Phe Gly Ser 355 360 365

Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 370 380

Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys 385 390 395 400

His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys 405 410 415

Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu 420 425 430

Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Xaa Pro Pro Xaa Cys 435 440 445

Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Xaa His Thr Ile Leu Leu 450 455 460

Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr 465 470 475

<210> 7

<211> 478

<212> PRT

<213> Mouse MetAP2

<220>

<221> SITE

<222> (219)

<223> May be any naturally occurring amino acid

<220>

```
<221> SITE
<222> (231)
<223> May be any amino acid, except His
<220>
<221> SITE
<222> (251)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (262)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (328)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (331)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (338)..(339)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (364)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (444)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (447)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (459)
<223> May be any naturally occurring amino acid
<400> 7
Met Ala Gly Val Glu Gln Ala Ala Ser Phe Gly Gly His Leu Asn Gly
Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Thr Ser Ser Thr Ala Glu
              20
Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Gly Lys Gly Ala
Val Ser Ala Val Gln Gln Glu Leu Asp Lys Glu Ser Gly Ala Leu Val
Asp Glu Val Ala Lys Gln Leu Glu Ser Gln Ala Leu Glu Glu Lys Glu
```

Arg Asp Asp Asp Glu Asp Gly Asp Gly Asp Ala Asp Gly Ala Thr 85 Gly Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 200 Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Xaa Pro Thr Gly Cys Ser Leu Asn Asn Cys Ala Ala Xaa Tyr Thr Pro Asn Ala Gly Asp Thr Thr Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Xaa Phe Gly Thr His Ile 250 Ser Gly Arg Ile Ile Xaa Cys Ala Phe Thr Val Thr Phe Asn Pro Lys Tyr Asp Ile Leu Leu Thr Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 280 Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr 310 Gln Val Lys Pro Ile Arg Asn Xaa Asn Gly Xaa Ser Ile Gly Pro Tyr Arg Xaa Xaa Ala Gly Lys Thr Val Pro Ile Val Lys Gly Gly Glu Ala Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Xaa Thr Phe Gly Ser 360 Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 380 Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys

Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu .

425

420

```
Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Xaa Pro Pro Xaa Cys
                            440
        435
Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Xaa His Thr Ile Leu Leu
                                             460
                        455
    450
Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr
                    470
                                         475
<210> 8
<211> 421
<212> PRT
<213> Yeast MetAP2
<220>
<221> SITE
<222> (162)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (174)
<223> May be any amino acid, except His
<220>
<221> SITE
<222> (194)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (205)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (271)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
 <222> (274)
<223> May be any naturally occurring amino acid
<220>
 <221> SITE
 <222> (281)..(282)
 <223> May be any naturally occurring amino acid
 <220>
 <221> SITE
 <222> (307)
 <223> May be any naturally occurring amino acid
 <220>
 <221> SITE
 <222> (387)
 <223> May be any naturally occurring amino acid
 <220>
 <221> SITE
 <222> (390)
 <223> May be any naturally occurring amino acid
 <220>
```

<221> SITE <222> (402)

<223> May be any naturally occurring amino acid

<400> 8

Met Thr Asp Ala Glu Ile Glu Asn Ser Pro Ala Ser Asp Leu Lys Glu

1 5 10 15

Leu Asn Leu Glu Asn Glu Gly Val Glu Gln Gln Asp Gln Ala Lys Ala 20 25 30

Asp Glu Ser Asp Pro Val Glu Ser Lys Lys Lys Lys Asn Lys Lys 35 40 45

Lys Lys Lys Ser Asn Val Lys Lys Ile Glu Leu Leu Phe Pro Asp 50 60

Gly Lys Tyr Pro Glu Gly Ala Trp Met Asp Tyr His Gln Asp Phe Asn 65 70 75 80

Leu Gln Arg Thr Thr Asp Glu Glu Ser Arg Tyr Leu Lys Arg Asp Leu 85 90 95

Glu Arg Ala Glu His Trp Asn Asp Val Arg Lys Gly Ala Glu Ile His 100 105 110

Arg Arg Val Arg Arg Ala Ile Lys Asp Arg Ile Val Pro Gly Met Lys 115 120 125

Leu Met Asp Ile Ala Asp Met Ile Glu Asn Thr Thr Arg Lys Tyr Thr 130 135 140

Gly Ala Glu Asn Leu Leu Ala Met Glu Asp Pro Lys Ser Gln Gly Ile 145 150 155 160

Gly Xaa Pro Thr Gly Leu Ser Leu Asn His Cys Ala Ala Xaa Phe Thr 165 170 175

Pro Asn Ala Gly Asp Lys Thr Val Leu Lys Tyr Glu Asp Val Met Lys 180 185 190

Val Xaa Tyr Gly Val Gln Val Asn Gly Asn Ile Ile Xaa Ser Ala Phe 195 200 205

Thr Val Ser Phe Asp Pro Gln Tyr Asp Asn Leu Leu Ala Ala Val Lys 210 215 220

Asp Ala Thr Tyr Thr Gly Ile Lys Glu Ala Gly Ile Asp Val Arg Leu 225 230 235 240

Thr Asp Ile Gly Glu Ala Ile Gln Glu Val Met Glu Ser Tyr Glu Val 245 250 255

Glu Ile Asn Gly Glu Thr Tyr Gln Val Lys Pro Cys Arg Asn Xaa Cys 260 265 270

Gly Xaa Ser Ile Ala Pro Tyr Arg Xaa Xaa Gly Gly Lys Ser Val Pro 275 280 285

Ile Val Lys Asn Gly Asp Thr Thr Lys Met Glu Glu Glu Glu His Phe

Ala Ile Xaa Thr Phe Gly Ser Thr Gly Arg Gly Tyr Val Thr Ala Gly 305 310 315

_ .: .

```
Gly Glu Val Ser His Tyr Ala Arg Ser Ala Glu Asp His Gln Val Met
                325
Pro Thr Leu Asp Ser Ala Lys Asn Leu Leu Lys Thr Ile Asp Arg Asn
Phe Gly Thr Leu Pro Phe Cys Arg Arg Tyr Leu Asp Arg Leu Gly Gln
                            360
Glu Lys Tyr Leu Phe Ala Leu Asn Asn Leu Val Arg His Gly Leu Val
                        375
Gln Asp Xaa Pro Pro Xaa Asn Asp Ile Pro Gly Ser Tyr Thr Ala Gln
                                         395
                    390
Phe Xaa His Thr Ile Leu Leu His Ala His Lys Lys Glu Val Val Ser
                                     410
                405
Lys Gly Asp Asp Tyr
            420
<210> 9
<211> 1437
<212> DNA
<213> Human variant MetAP2
<220>
<221> misc feature
<222> (693)
<223> Any nucleotide
<400> 9
atggcgggcg tggaggaggt agcggcctcc gggagccacc tgaatggcga cctggatcca 60
gacgacaggg aagaaggagc tgcctctacg gctgaggaag cagccaagaa aaaaagacga 120
aagaagaaga agagcaaagg gccttctgca gcaggggaac aggaacctga taaagaatca 180
ggagcctcag tggatgaagt agcaagacag ttggaaagat cagcattgga agataaagaa 240
agagatgaag atgatgaaga tggagatggc gatggagatg gagcaactgg aaagaagaag 300
aaaaagaaga agaagaagag aggaccaaaa gttcaaacag accctccctc agttccaata 360
tgtgacctgt atcctaatgg tgtatttccc aaaggacaag aatgcgaata cccacccaca 420
caagatgggc gaacagctgc ttggagaact acaagtgaag aaaagaaagc attagatcag 480
gcaagtgaag agatttggaa tgattttcga gaagctgcag aagcacatcg acaagttaga 540
aaatacgtaa tgagctggat caagcctggg atgacaatga tagaaatctg tgaaaagttg 600
gaagactgtt cacgcaagtt aataaaagag aatggattaa atgcaggcct ggcatttcct 660
actggatgtt ctctcaataa ttgtgctgcc gcntatactc ccaatgccgg tgacacaaca 720
gtattacagt atgatgacat ctgtaaaata gactttggaa cacatataag tggtaggatt 780
attgactgtg cttttactgt cacttttaat cccaaatatg atacgttatt aaaagctgta 840
 aaagatgcta ctaacactgg aataaagtgt gctggaattg atgttcgtct gtgtgatgtt 900
 ggtgaggcca tccaagaagt tatggagtcc tatgaagttg aaatagatgg gaagacatat 960
 caagtgaaac caatccgtaa tctaaatgga cattcaattg ggcaatatag aatacatgct 1020
 ggaaaaacag tgccgattgt gaaaggaggg gaggcaacaa gaatggagga aggagaagta 1080
 tatgcaattg aaacctttgg tagtacagga aaaggtgttg ttcatgatga tatggaatgt 1140
 tcacattaca tgaaaaattt tgatgttgga catgtgccaa taaggcttcc aagaacaaaa 1200
 cacttgttaa atgtcatcaa tgaaaacttt ggaacccttg ccttctgccg cagatggctg 1260
 gatcgcttgg gagaaagtaa atacttgatg gctctgaaga atctgtgtga cttgggcatt 1320
 gtagatccat atccaccatt atgtgacatt aaaggatcat atacagcgca atttgaacat 1380
 accatectgt tgcgtccaac atgtaaagaa gttgtcagca gaggagatga ctattaa
                                                                   1437
 <210> 10
 <211> 1437
 <212> DNA
 <213> Mouse variant MetAP2
 <220>
 <221> misc_feature
 <222> (693)
```

<223> Any nucleotide

```
<400> 10
atggcgggcg tggagcaggc agcgtccttc gggggccacc tgaatggcga cctggatcca 60
gacgacaggg aagagggaac ctccagcacg gccgaggaag ccgccaagaa gaaaagacgg 120
aagaagaaga agggcaaagg ggctgtgtca gcagtgcaac aagaacttga taaagaatcc 180
ggagcettgg tggatgaagt agcaaaacag etggagagee aagcaetgga ggagaaggag 240
agagatgacg acgatgaaga tggagatggt gatgctgatg gtgcaactgg gaagaagaag 300
aaaaagaaga agaagaagag aggaccaaaa gttcaaacag accctccctc agttccaata 360
tgtgacctgt atcctaatgg tgtatttccc aaaggacaag agtgtgaata cccacccaca 420
caagatgggc ggacagctgc ttggagaacc acaagtgagg aaaaaaaggc cctagaccag 480
gccagtgagg agatctggaa cgacttccga gaagctgcgg aggcacatcg gcaagttagg 540
aaatatgtca tgagctggat caagcctggg atgacgatga tagaaatctg tgagaagttg 600
gaagactgtt cccgaaagct aataaaggaa aatgggttaa atgcaggcct ggcgttcccc 660
actgggtgtt ctctcaacaa ctgtgctgcc gcntacactc ccaatgctgg tgacacgaca 720
gtcttgcagt atgatgacat ctgtaagata gactttggaa cacatataag tggtagaata 780
atcgattgtg cttttactgt tacttttaat cccaaatatg acatactatt aacagctgta 840
aaggatgcca ctaatactgg aataaagtgt gctgggattg acgttcgtct ctgcgatgtc 900
ggtgaggcca ttcaagaagt tatggaatcc tatgaagtag aaatagatgg gaagacatac 960
caagtgaaac ccatacgtaa cttaaatgga cattcaattg ggccatatag aattcacgct 1020
ggaaaaacgg tgcccattgt gaaaggaggg gaagctacaa gaatggagga aggagaggtg 1080
tatgccattg agacctttgg gagcacgggg aagggcgtgg ttcatgacga catggaatgt 1140
tcacactaca tgaaaaattt tgatgtgggg cacgtgccaa taaggcttcc aagaacaaaa 1200
cacttgttaa atgtcatcaa cgaaaacttc ggtacccttg ccttctgccg aaggtggctg 1260
gatcgcttgg gagaaagtaa atacttaatg gctctgaaga atctgtgtga cttgggcatt 1320
gtagatccat acccaccact gtgtgacatt aaagggtcat atacagcaca gtttgaacac 1380
actatactgt tgcgtccaac ctgtaaagaa gttgtcagca gaggagatga ctattaa
<210> 11
<211> 1308
<212> DNA
<213> Yeast MetAP2 variant
<220>
<221> misc feature
<222> (522)
<223> Any nucleotide
<400> 11
atgacagacg ctgaaataga aaattcccct gcttctgatt taaaagaatt gaatttggag 60
aatgaaggcg ttgaacagca agaccaggca aaagctgacg agtcagaccc agtagaaagc 120
aaaaagaaga agaacaagaa aaagaagaag aagaaaagca atgtgaagaa gattgaatta 180
ctgtttccag atggaaagta cccagaaggt gcgtggatgg actatcatca agatttcaat 240
ctgcaaagaa ccacggatga agaatcacgt tatttgaaaa gggatctgga aagggccgaa 300
cattggaatg atgtcagaaa gggtgctgag atacatcgtc gtgtgagaag ggccatcaag 360
gacagaatcg ttcctgggat gaagttaatg gatatcgctg acatgatcga aaatactaca 420
agaaagtata caggtgccga aaatttatta gcgatggagg atcccaaatc tcaaggtatt 480
gggtttccaa cgggtctctc tctcaaccat tgtgctgcag cnttcacacc caatgcaggc 540
gacaaaaccg ttctgaaata cgaagacgtg atgaaggtag attatggtgt gcaggtaaac 600
 ggtaacatca ttgattctgc ctttactgtt tcctttgatc cacaatacga taacctgcta 660
 gccgctgtaa aggacgctac ttacacgggt attaaagaag cgggtatcga tgtgagatta 720
 accgacatcg gtgaagccat ccaagaagtt atggaatcct acgaagtgga aatcaatggt 780
 gagacttacc aggttaaacc ttgtcgtaat ctatgtggcc acagtatcgc accatatcgt 840
 atccacggcg gtaaatccgt tcccatcgtc aaaaatgggg acactacaaa aatggaggaa 900
 ggtgagcact ttgccattga aacttttggt tctactggta gaggttatgt tactgccggt 960
 ggggaagttt ctcattatgc cagatctgct gaagaccatc aggtaatgcc cacgttagac 1020
 agcgccaaga acttgttaaa aacgatagac cgcaactttg ggactttacc gttctgtcgc 1080
 cgatacctag acagacttgg ccaagagaaa tacttatttg cgttgaataa cttggttaga 1140
 cacggtttag tacaggatta tccaccattg aacgatatcc ccggatccta cactgcacaa 1200
 ttcgaacaca ccatcttgtt gcatgctcac aaaaaggaag tcgtttcgaa aggtgatgac 1260
                                                                   1308
 tactgaggta aaatgcgctt tcaaatggcc tcctcactag gtatatga
 <210> 12
 <211> 478
 <212> PRT
```

38162.doc

<213> Human MetAP2

<400> 12 Met Ala Gly Val Glu Glu Val Ala Ala Ser Gly Ser His Leu Asn Gly Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Ala Ala Ser Thr Ala Glu Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Ser Lys Gly Pro Ser Ala Ala Gly Glu Gln Glu Pro Asp Lys Glu Ser Gly Ala Ser Val Asp Glu Val Ala Arg Gln Leu Glu Arg Ser Ala Leu Glu Asp Lys Glu Arg Asp Glu Asp Glu Asp Gly Asp Gly Asp Gly Asp Gly Ala Thr Gly Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln 150 155 Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His 170 Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr 185 Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 200 Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Phe Pro Thr Gly Cys Ser 215 Leu Asn Asn Cys Ala Ala His Tyr Thr Pro Asn Ala Gly Asp Thr Thr 230 235 Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Asp Phe Gly Thr His Ile Ser Gly Arg Ile Ile Asp Cys Ala Phe Thr Val Thr Phe Asn Pro Lys 265 Tyr Asp Thr Leu Leu Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile 295 Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr Gln Val Lys Pro Ile Arg Asn Leu Asn Gly His Ser Ile Gly Gln Tyr

330

Arg Ile His Ala Gly Lys Thr Val Pro Ile Val Lys Gly Gly Glu Ala , , 340 \$345\$

Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Glu Thr Phe Gly Ser 355 360 365

Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 370 380

Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys 385 390 395 400

His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys
405 410 415

Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Tyr Pro Pro Leu Cys
435
440
445

Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Glu His Thr Ile Leu Leu 450 455 460

Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr 465 470 475

<210> 13

<211> 478

<212> PRT

<213> Mouse MetAP2

<400> 13

Met Ala Gly Val Glu Gln Ala Ala Ser Phe Gly Gly His Leu Asn Gly

1 10 15

Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Thr Ser Ser Thr Ala Glu 20 25 30

Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Gly Lys Gly Ala 35 40 45

Val Ser Ala Val Gln Gln Glu Leu Asp Lys Glu Ser Gly Ala Leu Val 50 55 60

Asp Glu Val Ala Lys Gln Leu Glu Ser Gln Ala Leu Glu Glu Lys Glu 65 70 75 80

Arg Asp Asp Asp Glu Asp Gly Asp Gly Asp Ala Asp Gly Ala Thr 85 90 95

Gly Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Lys Val Gln 100 105 110

Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val 115 120 125

Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg 130 135 140

Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln 145 150 155 160

Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His 165 170 175 Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr 180 185 190

Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 195 200 205

Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Phe Pro Thr Gly Cys Ser 210 215 . 220

Leu Asn Asn Cys Ala Ala His Tyr Thr Pro Asn Ala Gly Asp Thr Thr 225 230 235 240

Ser Gly Arg Ile Ile Asp Cys Ala Phe Thr Val Thr Phe Asn Pro Lys 260 265 270

Tyr Asp Ile Leu Leu Thr Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 275 280 285

Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile 290 295 300

Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr 305 310 315 320

Gln Val Lys Pro Ile Arg Asn Leu Asn Gly His Ser Ile Gly Pro Tyr \$325\$ \$330 \$335

Arg Ile His Ala Gly Lys Thr Val Pro Ile Val Lys Gly Glu Ala 340 345 350

Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Glu Thr Phe Gly Ser 355 360 365

Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 370 375 380

Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys 385 390 395

His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys
405
410
415

Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu 420 425 430

Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Tyr Pro Pro Leu Cys 435 440 445

Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Glu His Thr Ile Leu Leu 450 455 460

Arg Pro Thr Cys Lys Glu Val Val Ser Arg Gly Asp Asp Tyr 465 470 475

<210> 14

<211> 437

<212> PRT

<213> Yeast MetAP2

<400> 14

Met Thr Asp Ala Glu Ile Glu Asn Ser Pro Ala Ser Asp Leu Lys Glu
1 5 10 15

Leu Asn Leu Glu Asn Glu Gly Val Glu Gln Gln Asp Gln Ala Lys Ala 20 25 30

Asp Glu Ser Asp Pro Val Glu Ser Lys Lys Lys Lys Asn Lys Lys 35 40 45

Lys Lys Lys Ser Asn Val Lys Lys Ile Glu Leu Leu Phe Pro Asp 50 55 60

Gly Lys Tyr Pro Glu Gly Ala Trp Met Asp Tyr His Gln Asp Phe Asn 65 70 75 80

Leu Gln Arg Thr Thr Asp Glu Glu Ser Arg Tyr Leu Lys Arg Asp Leu 85 90 95

Glu Arg Ala Glu His Trp Asn Asp Val Arg Lys Gly Ala Glu Ile His 100 \$105\$

Arg Arg Val Arg Arg Ala Ile Lys Asp Arg Ile Val Pro Gly Met Lys 115 120 125

Leu Met Asp Ile Ala Asp Met Ile Glu Asn Thr Thr Arg Lys Tyr Thr 130 135 140

Gly Ala Glu Asn Leu Leu Ala Met Glu Asp Pro Lys Ser Gln Gly Ile 145 150 155 160

Pro Asn Ala Gly Asp Lys Thr Val Leu Lys Tyr Glu Asp Val Met Lys 180 185 190

Val Asp Tyr Gly Val Gln Val Asn Gly Asn Ile Ile Asp Ser Ala Phe 195 200 205

Thr Val Ser Phe Asp Pro Gln Tyr Asp Asn Leu Leu Ala Ala Val Lys 210 215 220

Asp Ala Thr Tyr Thr Gly Ile Lys Glu Ala Gly Ile Asp Val Arg Leu 225 230 235 240

Thr Asp Ile Gly Glu Ala Ile Gln Glu Val Met Glu Ser Tyr Glu Val 245 250 255

Glu Ile Asn Gly Glu Thr Tyr Gln Val Lys Pro Cys Arg Asn Leu Cys 260 265 270

Gly His Ser Ile Ala Pro Tyr Arg Ile His Gly Gly Lys Ser Val Pro 275 280 285

Ile Val Lys Asn Gly Asp Thr Thr Lys Met Glu Glu Glu Glu His Phe 290 295 300

Ala Ile Glu Thr Phe Gly Ser Thr Gly Arg Gly Tyr Val Thr Ala Gly 305 310 315 320

Gly Glu Val Ser His Tyr Ala Arg Ser Ala Glu Asp His Gln Val Met 325 330 335

Pro Thr Leu Asp Ser Ala Lys Asn Leu Leu Lys Thr Ile Asp Arg Asn 340 345 350

```
Phe Gly Thr Leu Pro Phe Cys Arg Arg Tyr Leu Asp Arg Leu Gly Gln
                            360
Glu Lys Tyr Leu Phe Ala Leu Asn Asn Leu Val Arg His Gly Leu Val
Gln Asp Tyr Pro Pro Leu Asn Asp Ile Pro Gly Ser Tyr Thr Ala Gln
Phe Glu His Thr Ile Leu Leu His Ala His Lys Lys Glu Val Val Ser
                405
Lys Gly Asp Asp Tyr Gly Lys Met Arg Phe Gln Met Ala Ser Ser Leu
                                425
Gly Ile Ile Leu Leu
        435
<210> 15
<211> 71
<212> PRT
<213> Rat polylysine
<400> 15
Lys Lys Lys Arg Arg Lys Lys Lys Gly Lys Gly Ala Val Ser Ala
Gly Gln Gln Glu Leu Asp Lys Glu Ser Gly Thr Ser Val Asp Glu Val
Ala Lys Gln Leu Glu Arg Gln Ala Leu Glu Glu Lys Glu Lys Asp Asp
Asp Asp Glu Asp Gly Asp Gly Asp Gly Ala Ala Gly Lys Lys
Lys Lys Lys Lys Lys Lys
<210> 16
<211> 480
<212> PRT
<213> Rat dnvMetAP2
<220>
<221> SITE
<222> (219)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (231)
<223> May be any amino acid, except His
<220>
<221> SITE
<222> (251)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (262)
<223> May be any naturally occurring amino acid
```

- ÷.

```
<220>
<221> SITE
<222> (328)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (331)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (338)..(339)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (364)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (444)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (447)
<223> May be any naturally occurring amino acid
<220>
<221> SITE
<222> (459)
<223> May be any naturally occurring amino acid
Met Ala Gly Val Glu Glu Ala Ser Ser Phe Gly Gly His Leu Asn Arg
Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Thr Ser Ser Thr Ala Glu
Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Gly Lys Gly Ala
                             40
Val Ser Ala Gly Gln Gln Glu Leu Asp Lys Glu Ser Gly Thr Ser Val
Asp Glu Val Ala Lys Gln Leu Glu Arg Gln Ala Leu Glu Glu Lys Glu
Lys Asp Asp Asp Glu Asp Gly Asp Gly Asp Gly Asp Gly Ala Ala
Gly Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Arg Val Gln
Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val
        115
Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg
Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln
                    150
                                        155
```

Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His 165 170 175

Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr 180 185 190

Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 195 200 205

Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Xaa Pro Thr Gly Cys Ser 210 215 220

Leu Asn Asn Cys Ala Ala Xaa Tyr Thr Pro Asn Ala Gly Asp Thr Thr 225 230 235 240

Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Xaa Phe Gly Thr His Ile 245 250 255

Ser Gly Arg Ile Ile Xaa Cys Ala Phe Thr Val Thr Phe Asn Pro Lys 260 265 270

Tyr Asp Ile Leu Leu Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 275 280 285

Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile 290 295 300

Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr 305 310 315 320

Gln Val Lys Pro Ile Arg Asn Xaa Asn Gly Xaa Ser Ile Gly Pro Tyr 325 330 335

Arg Xaa Xaa Ala Gly Lys Thr Val Pro Ile Val Lys Gly Glu Ala 340 345 350

Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Xaa Thr Phe Gly Ser 355 360 365

Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 370 380

Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys 385 390 395 400

His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys 405 410 415

Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu 420 425 430

Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Xaa Pro Pro Xaa Cys 435 440 445

Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Xaa His Thr Ile Leu Cys 450 455 460

Ala Gln Pro Val Lys Leu Ser Ala Glu Glu Met Thr Ile Lys Thr 465 470 475 480

<210> 17 <211> 480 <212> PRT <213> Rat MetAP2

<400> 17

Met Ala Gly Val Glu Glu Ala Ser Ser Phe Gly Gly His Leu Asn Arg

1 5 10 15

Asp Leu Asp Pro Asp Asp Arg Glu Glu Gly Thr Ser Ser Thr Ala Glu 20 25 30

Glu Ala Ala Lys Lys Lys Arg Arg Lys Lys Lys Gly Lys Gly.Ala
35 40 45

Val Ser Ala Gly Gln Gln Glu Leu Asp Lys Glu Ser Gly Thr Ser Val 50 55

Asp Glu Val Ala Lys Gln Leu Glu Arg Gln Ala Leu Glu Glu Lys Glu 65 70 75 80

Lys Asp Asp Asp Glu Asp Gly Asp Gly Asp Gly Ala Ala 85 90 95

Gly Lys Lys Lys Lys Lys Lys Lys Lys Arg Gly Pro Arg Val Gln 100 105

Thr Asp Pro Pro Ser Val Pro Ile Cys Asp Leu Tyr Pro Asn Gly Val 115 120 125.

Phe Pro Lys Gly Gln Glu Cys Glu Tyr Pro Pro Thr Gln Asp Gly Arg 130 135 140

Thr Ala Ala Trp Arg Thr Thr Ser Glu Glu Lys Lys Ala Leu Asp Gln 145 150 155 160

Ala Ser Glu Glu Ile Trp Asn Asp Phe Arg Glu Ala Ala Glu Ala His 165 170 175

Arg Gln Val Arg Lys Tyr Val Met Ser Trp Ile Lys Pro Gly Met Thr 180 185 190

Met Ile Glu Ile Cys Glu Lys Leu Glu Asp Cys Ser Arg Lys Leu Ile 195 200 205

Lys Glu Asn Gly Leu Asn Ala Gly Leu Ala Phe Pro Thr Gly Cys Ser 210 215 220

Leu Asn Asn Cys Ala Ala His Tyr Thr Pro Asn Ala Gly Asp Thr Thr 225 230 235 240

Val Leu Gln Tyr Asp Asp Ile Cys Lys Ile Asp Phe Gly Thr His Ile 245 250 255

Ser Gly Arg Ile Ile Asp Cys Ala Phe Thr Val Thr Phe Asn Pro Lys 260 265 270

Tyr Asp Ile Leu Leu Lys Ala Val Lys Asp Ala Thr Asn Thr Gly Ile 275 280 285

Lys Cys Ala Gly Ile Asp Val Arg Leu Cys Asp Val Gly Glu Ala Ile 290 295 300

Gln Glu Val Met Glu Ser Tyr Glu Val Glu Ile Asp Gly Lys Thr Tyr 305 310 315 320

Gln Val Lys Pro Ile Arg Asn Leu Asn Gly His Ser Ile Gly Pro Tyr 325 330 335

Arg Ile His Ala Gly Lys Thr Val Pro Ile Val Lys Gly Gly Glu Ala 345 Thr Arg Met Glu Glu Gly Glu Val Tyr Ala Ile Glu Thr Phe Gly Ser 360 Thr Gly Lys Gly Val Val His Asp Asp Met Glu Cys Ser His Tyr Met 375 Lys Asn Phe Asp Val Gly His Val Pro Ile Arg Leu Pro Arg Thr Lys 395 His Leu Leu Asn Val Ile Asn Glu Asn Phe Gly Thr Leu Ala Phe Cys 405 Arg Arg Trp Leu Asp Arg Leu Gly Glu Ser Lys Tyr Leu Met Ala Leu 420 425 Lys Asn Leu Cys Asp Leu Gly Ile Val Asp Pro Tyr Pro Pro Leu Cys Asp Ile Lys Gly Ser Tyr Thr Ala Gln Phe Glu His Thr Ile Leu Cys 455

Ala Gln Pro Val Lys Lys Leu Ser Ala Glu Glu Met Thr Ile Lys Thr

475

480

```
<210> 18
<211> 1944
<212> DNA
<213> Rat MetAP2 variant
<220>
<221> misc_feature
<222> (779)
<223> Any nucleotide
ggtgaagaag gagcgggccc tcgccgctcg ttctcgctcc ctctttctct ctcttctt 60
ctctctctt ttccctctcg ggcaacatgg cgggcgtgga agaggcatcg tctttcgggg 120
gccacctgaa tcgcgacctg gatccagacg acagggaaga gggaacctcc agcacggccg 180
aggaagccgc caagaagaaa agacggaaga agaagaaggg caaaggggct gtgtcagcag 240
ggcaacaaga acttgataaa gaatcgggaa cctcagtgga cgaagtagca aaacagttgg 300
agagacaagc actggaggag aaagagaaag atgatgacga tgaagatgga gatggtgatg 360
gtgatggtgc agctgggaag aagaagaaaa agaagaagaa gaagagagga ccaagagttc 420
aaacagaccc tccctcagtt ccaatatgtg acctgtatcc taatggtgta tttcccaaag 480
gacaagagtg tgaataccca cccacccaag atgggcggac agctgcttgg agaaccacaa 540
gtgaagagaa aaaggcgcta gaccaggcta gtgaggagat ttggaacgac ttccgagaag 600
ctgccgaagc acaccggcaa gttaggaaat acgtcatgag ctggatcaag cctgggatga 660
caatgataga aatatgtgag aagttggaag actgttcccg aaagctcata aaggagaatg 720
ggttaaatgc aggcctggcc tttcccactg ggtgttctct caacaactgt gctgcagcnt 780
acactcccaa tgctggtgac acgacagtct tacagtacga cgacatctgt aagatcgact 840
ttggaacgca tataagtggt agaataattg attgtgcttt tactgttact tttaatccca 900
aatatgacat attattaaaa gctgtaaaag atgccaccaa tactggaata aagtgtgcgg 960
ggattgacgt ccgtctctgt gatgtcggcg aggccattca agaagttatg gagtcctatg 1020
aagtggaaat agatgggaag acctaccaag tgaaacccat acgtaactta aatggacatt 1080
caattgggcc atatagaatt catgctggaa aaacagtgcc cattgtgaaa ggaggggaag 1140
ctacaaggat ggaggaagga gaggtgtatg ccattgagac ctttggtagc acagggaagg 1200
```

gcgtggttca tgacgatatg gaatgttcac actacatgaa aaattttgat gtgggacacg 1260 tgccaataag gcttccaaga acaaaacact tgttgaatgt catcaatgaa aactttggta 1320 cccttgcctt ctgccgaagg tggctggatc gcttgggaga aagtaaatac ttaatggctc 1380

```
tgaagaacct gtgtgacttg ggcattgtag atccatatcc accactctgt gacattaaag 1440
gatcatacac agcacagttt gaacatacca tactctgcgc ccaacctgta aagaagttgt 1500
cagcagagga gatgactatt aaaacttagt ccaaagccaa ctcaacgtct ttattttcta 1560
agctttgttg gaacacatta taccacaagt aatttgcaac atgtctgttt taacagtgga 1620
cctgtgtaat gccgttatcc atgtttaaag gagtttgatc aaagccaaac tgtctacatg 1680
taattaacca aggaaaaggc tttcaagact ttactgttaa ctgtttctcc cgtctaggaa 1740
atgctgtact gctcactagt taggaattac ttaaacgttt tgttttgaag acctaagaga 1800
tgctttttgg atatttatat tgccatattc ttacttggat gctttgaatg actacataca 1860
tecagttetg cacetatgee etetggtatt getttttaac etteetggaa tecatttet 1920
aaaaaataaa gacattttca gatc
<210> 19
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      transit peptide
<400> 19
Gly Arg Lys Lys Arg Arg Gln Arg
<210> 20
<211> 40
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      oligonucleotide
<400> 20
gcgcaagctt atgattgaat tactgtttcc agatggaaag
                                                                   40
<210> 21
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      oligonucleotide
<400> 21
gcgcctcgag tcagtagtca tcacctttcg aaacg
                                                                   35
<210> 22
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide
<400> 22
Cys Lys Glu Val Val Ser Lys Gly Asp Asp Tyr
<210> 23
<211> 9
<212> PRT
```

38162.doc

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
<400> 23
Tyr Pro Tyr Asp Val Pro Asp Tyr Ala
<210> 24
<211> 4
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      peptide
<400> 24
Met Gly Met Met
 1
<210> 25
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      oligonucleotide
<400> 25
cacactcgac cgcgatgtac tactactact actactacta ctactacggg ccagatatac 60
gcg
                                                                   63
<210> 26
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: synthetic
      oligonucleotide
<400> 26
cacagaattc cccgcatccc cagcatgcct gctattg
                                                                   37
```