INF721

2023/2

Aprendizado em Redes Neurais Profundas

A2: Aprendizado de Máquina

Logística

Avisos

▶ Aula A1 - Introdução publicada no site [slides, vídeo]

Última aula

- Organização da disciplina
- Visão geral de aprendizado de máquina redes neurais

Plano de Aula

- Aprendizado de Máquina
- ► Tipos de Aprendizado
- ▶ Tipos de Dados
- Espaço de hipóteses
- Generalização

Computação Clássica x Aprendizado de Máquina

Funções programadas explicitamente

Funções encontradas a partir de dados

Inteligência Artificial x Aprendizado de Máquina

Aprendizado de Máquina

Construção de agentes que melhoram o seu desempenho com novas experiências

Tipos de Aprendizado

O tipo de aprendizado é definido pelo tipo de experiência (i.e., dados) observada pelo agente.

Aprendizado Supervisionado

Quando todos os exemplos do conjunto de dados são pares (x_i, y_i) , chamamos o problema de **Aprendizado Supervisionado**.

Formalmente:

$$D = \{(x_1, y_1), ..., (x_N, y_N)\} \subseteq \mathbb{R}^d \times C$$
, onde:

- $\triangleright x_i$ é o vetor de características do i-ésimo exemplo
- $ightharpoonup y_i$ é o rótulo do i-ésimo exemplo
- $lackbox{} \mathbb{R}^d$ é o espaço de características
- igwedge C é o espaço de classes

Exemplos de Aprendizado Supervisionado

Classificação de Imagens de Gatos e Cachorros

$$D = \{$$

$$, y_1 = 1),$$

$$, y_2 = 1),$$

$$, y_3 = 0),$$

$$,y_{4}=0)$$

- $\blacktriangleright x_i$: vetor com os pixels da imagem achatada
- y_i : gato (1) ou cachorro (0)
- $\rightarrow d \sim 100.000 10M$
- $C = \{0, 1\}$

Exemplos de Aprendizado Supervisionado

Classificação de Imagens de Dígitos Escritos Manualmente

$$D = \{ (x_1 = 0), y_1 = 0),$$

 $\blacktriangleright x_i$: vetor com os pixels da imagem achatada

$$(x_2 = 1),$$

 $\triangleright y_i$: o valor do dígito da imagem

$$(x_3 = 5, y_3 = 5),$$

 $d \sim 100.000 - 10M$

$$(x_4 = \{ (x_4 = 8) \}$$

 $ightharpoonup C = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Exemplos de Aprendizado Supervisionado

Previsão de Preços de Imóveis

$$D = \{$$

$$(x_1 = [72, Centro, 2], y_1 = 252,000),$$

 $x_i : [tamanho (m^2), bairro, número de quartos]$

$$(x_2 = [54, Centro, 1], y_2 = 349,999),$$

$$\rightarrow y_i$$
: preço do imóvel

$$(x_3 = [72, Clélia, 3], y_3 = 380,250),$$

$$d = 3$$

$$C = \mathbb{R}$$

$$(x_4 = [182, Ramos, 4], y_4 = 640,900)$$

Aprendizado Supervisionado

Classificação

Quando o espaço de classes C é conjunto finito de rótulos, chamamos o problema de **Classificação**.

Classificação Binária

- Apenas dois rótulos possíveis: C = {0, 1}
- Exemplo: Classificação de Imagens de Gatos e Cachorros

Classificação Multiclasse

- ▶ N > 2 rótulos possíveis: $C = \{0, 1, 2, ..., N\}$
- Exemplo: Classificação de Imagens de Dígitos Escritos Manualmente

Aprendizado Supervisionado

Regressão

Quando o espaço de classes C é um conjunto infinito de números, chamamos o problema de **Regressão**.

Outros exemplos:

- Previsão de temperatura
- Previsão da nota de INF110 baseado no ENEM
- Regressão de caixa delimitadora

Aprendizado Não-supervisionado

Quando todos os exemplos do conjunto de dados são apenas vetores $x_{i'}$ sem rótulos, chamamos o problema de Aprendizado Não-supervisionado.

Formalmente:

$$D = \{x_1, x_2, \dots, x_N\} \subseteq \mathbb{R}^d$$
, onde:

- $\blacktriangleright x_i$ é o vetor de características do i-ésimo exemplo
- $\blacktriangleright \mathbb{R}^d$ é o espaço de características

Exemplos de Aprendizado Não-supervisionado

Agrupamento

Agrupar os exemplos do conjunto de dados baseado em similaridade

Exemplos de Aprendizado Não-supervisionado

Redução de Dimensionalidade

Reduzir a dimensionalidade d dos exemplos do conjunto de dados

Exemplos de Aprendizado Não-supervisionado

Geração de Dados

Inferir a distruibuição que gerou os dados do conjunto de dados

$$P(x_n | x_{n-1}, x_{n-2}, \dots, x_1)$$

Modelo de linguagem

Aprendizado por Reforço

Aprender uma função $\pi(s) = a$ que prevê a ação a que um agente deve tomar no estado s, maximizando as recompensas recebidas pelo ambiente.

Agente

- Observa uma estado st no tempo t
- Produz uma ação at no tempo t

Ambiente

- ▶ Retorna uma recompensa r_{t+1}
- Gera o próximo estado st+1

Tipos de Dados

Estruturados (tabulares)

Tamanho	Bairro	# de quartos	•••	Preço
72	Centro	2		
54	Centro	1		
•••	•••	•••		•••
72	Clélia	3		

Idade	Estado	Ad Id	•••	Click
72	MG	93242		1
54	SP	93287		0
•••	•••	•••		•••
72	RJ	71244		1

Não-estruturados (não-tabulares)

Você vai na aula de INF721 hoje?

Texto

Imagens

Aprendizado Supervisionado

Aprendizado Supervisionado

O objetivo de aprendizado supervisionado é aprender uma função h(x)=y a partir de dados

Função
$$h(x) = y$$

Espaço de Hipóteses

Para encontrar uma função, um algoritmo de aprendizado supervisionado precisa assumir uma *hipótese* sobre os dados para definir um espaço de funções H.

Reta $h(x) = w_1 x + w_0$

Senoide $h(x) = w_1 x + sin(w_0 x)$

Polinômio de grau 12 $h(x) = \sum_{i=0}^{12} w_i x^i$

Espaço de Hipóteses

Qual é a melhor hipótese?

Reta $h(x) = w_1 x + w_0$

Senoide $h(x) = w_1 x + sin(w_0 x)$

Polinômio de grau 12 $h(x) = \sum_{i=0}^{12} w_i x^i$

Para medir a qualidade de uma hipótese, temos que avaliar o seu desempenho em dados desconhecidos, ou seja, que não vimos durante o treinamento. Assim, dividimos o conjunto de dados em 3 conjuntos disjuntos:

1. Conjunto de Treinamento

- Utilizado para ajustar uma hipótese aos dados
- Exemplo: os pesos w de uma rede neural

2. Conjunto de Validação

- Utilizado para definir os híper-parâmetros da hipótese
- Exemplo: o número de camadas de uma rede neural

3. Conjunto de Teste

- Utilizado para avaliar o desempenho de um modelo
- Exemplo: a acurácia de uma rede neural de classicação

A melhor hipótese é aquela que melhor **generaliza** aos dados de teste, evitando tanto subajuste (*underfitting*), quanto sobreajuste (*overfitting*)

Subajuste (underfitting)

Quando a hipótese se ajusta pouco aos dados de treinamento, aprensentando baixo desempenho de previsão tanto no conjunto de treinamento quanto no de teste.

Sobreajuste (overfitting)

Quando a hipótese se ajusta muito aos dados de treinamento, aprensentando alto desempenho de previsão no conjunto de treinamento, mas baixo no conjunto de teste.

Ajuste Adequado

Quando a hipótese se ajusta bem aos dados de treinamento, aprensentando alto desempenho de previsão tanto no conjunto de treinamento quanto no de teste.

Algoritmos de Aprendizado Supervisionado

Cada algoritmo de aprendizado supervisionado assume uma *hipótese* diferente sobre os dados para definir um espaço de funções H.

- Regressão Linear
- Regressão Logística
- Arvores de Decisão
- ► K-Nearest Neighbors (KNN)
- Naive Bayes
- Suport Vector Machines (SVMs)
- Redes Neurais

Próxima aula

A3: Regressão Logística

Regressão Logística como uma rede neural para problemas linearmente separáveis.

