

MONASH INFORMATION TECHNOLOGY

Week 2 - Database Design I Conceptual Modelling

Workshop 2022 Semester 2

Please obtain a copy of the drone case study for this workshop from the week 2 "Workshop Resources"

The Database Design Life Cycle

Requirements Definition

- Identify and analyse user views.
- A 'user view' may be a report to be produced or a particular type of transaction that should be supported.
- Corresponds to the external level of the ANSI/SPARC architecture.
- Output is a statement of specifications which describes the user views' particular requirements and constraints.

Different views of the underlying data

activities
Workload requirements
Learning resources

Teaching approach
Active learning

Assessment
Workshop Exercises

Assignment 16: Normalisation and Logical Database Design

https://handbook.monash.edu/2021/units/FIT9132?year=202

Learning outcomes

Teaching approach

Student

Show Subject | Special Consideration | Update Details | Section Insert Activity Groups: Applied
ALLOCATION ADJUSTMENT) FIT9132 CL S2 ON-CAMPUS:INTRO TO DATABASES 343 127 337 Applied references: Seats Provided Functions ALLOCATION ADJUSTMENT) Mon 12:00 14:00 CL Exh-20.Woodside 106 -120 50 Delete | Edit | List | * Constraint | Context | Email 01_OnCampus nrolments: Delete | Edit | List | * Constraint | Context | Email 02_OnCampus CL 120 references: Mon 10:00 12:00 CL_Exh-20.Woodside_306 -Delete | Edit | List | * Constraint | Context | Email 03_OnCampus CL Tue 10:00 12:00 CL Exh-20.Woodside G05 -Seats Provided: Delete | Edit | List | * Constraint | Context | Email 04_OnlineRealTime CL Tue 17:00 19:00 Online, Melbourne Varning: Not enough seats provided Delete | Edit | List | * Constraint | Context | Email 05_OnCampus CL Mon 18:00 20:00 CL Exh-20 Woodside 104 -120 Delete | Edit | List | * Constraint | Context | Email 06_OnlineRealTime CL Tue 16:00 18:00 Online, Melbourne 120 ALLOCATION ADJUSTMENT) Delete | Edit | List | * Constraint | Context | Email 07_OnlineRealTime CL Tue 14:00 16:00 Online, Melbourne nrolments: Delete | Edit | List | * Constraint | Context | Email 08_OnlineRealTime CL Wed 14:00 16:00 Online, Melbourne -120 30 0 30 17 references: 333 Seats Provided 400

FIT9132 CL S2 ON-CAMPUS, INTRO TO DATABASES

Staff & Student

Expand all

Expand all

Admin

Learning outcomes

On successful completion of this unit, you should be able to:

1. Explain the motivations behind the development of database management syste...

2. Describe the underlying theoretical basis of the relational database model and a

Evaluate several design options and construct a database design;

Develop a database based on a sound database design;

ER Modeling

- ER (Entity-Relationship) model developed by Peter Chen in 1976 to aid database design.
- Used for conceptual model (ERD).
- ER diagrams give a visual indication of the design.
- Basic components:
 - Entity
 - Attribute
 - Relationship

Conceptual Design

- Develop the enterprise data model.
- Independent of all physical implementation considerations (the type of database to be used).
- In development try to minimise redundancy within provided scenario however must not add anything outside scenario
- Various design methodologies may be employed such as UML, ER (Entity-Relationship) Modelling and Semantic Modelling.
- ER consists of ENTITIES and RELATIONSHIPS between entities
 - -An ENTITY will have attributes (things we wish to record), one or more of which will identify an entity instance (called the KEY)

ERD - Notation

Chen

Information
Engineering/James
Martin/Crows foot
* This is what we will
be using

Conceptual Level (ER Model)

Q1 Based on your pre workshop examination of the Monash Software Case Study - what entities and keys did you identify?

Case study: https://lms.monash.edu/mod/resource/view.php?id=10628502

List the entity in capitals followed by the key attribute - for example:

CUSTOMER, custno

Vote up or down any values with are already present

Conceptual Level (Monash Software Entities)

TRAINING

Key training_code

TEAM

Key team_no

EMPLOYEE

Key emp_no

FAMILY_MEMBER
Key

Logical Design

- Develop a data model which targets a particular database type (e.g. relational, hierarchical, network, object-oriented, noSQL).
- Independent of any implementation details which are specific to any particular vendors DBMS package.
- Normalisation technique (see week 4) is used to test the correctness of a relational logical model.

Logical Level (Logical Model - Relational)

Assignment 1B

Q2. Is the diagram shown below a valid *Conceptual Model*?

Be prepared to justify your answer with why you chose this option

- A. Yes
- B. No
- C. Depends on how it is implemented in the database

Physical Design

- Develop a strategy for the physical implementation of the logical data model.
- Choose appropriate storage structures, indexes, file organisations and access methods which will most efficiently support the user requirements (not part of unit).
- Physical design phase is dependent on the particular DBMS in use.

Physical Level – Starting point

```
Oracle Database 12c
                             Relational_1
                                                                 Generate
 8 CREATE TABLE customer (
                       NUMBER(7) NOT NULL,
         custno
 10
         custname
                       VARCHAR2(50) NOT NULL,
 11
         custaddress VARCHAR2(50) NOT NULL,
 12
         custphone
                       CHAR (10)
13
     );
14
     COMMENT ON COLUMN customer custno IS
16
         'Customer number';
17
     COMMENT ON COLUMN customer.custname IS
19
         'Customer name';
 20
     COMMENT ON COLUMN customer.custaddress IS
 22
         'Customer address';
 23
     COMMENT ON COLUMN customer.custphone IS
 25
         'Customer phone number';
26
     ALTER TABLE customer ADD CONSTRAINT customer pk PRIMARY KEY ( custno );
 28
 29 CREATE TABLE order_product (
         orderno
                         NUMBER(7) NOT NULL,
 31
         prodno
                     NUMBER(7) NOT NULL,
 32
         op gtvordered NUMBER(3) NOT NULL,
 33
         op lineprice NUMBER(8, 2) NOT NULL
 34
```

The database schema

Important rule for Conceptual Modelling

- All that is described in the brief has been included and all that has been included was described in the brief
 - Every entity, attribute and relationship described in the brief has been included, and
 - Must not add entities, attributes and relationships which are not included as part of the brief, and
- In a real life scenario if there are concerns about features of the brief, discuss with client
 - For assignments:
 - your client will be the ed forum
 - may make assumptions provided they do not violate this rule

CONNECTIVITY/CARDINALITY

For Crows Foot notation specific cardinalities are not shown as above eg. (1,4), instead cardinality is depicted via min and max using standard symbols (Inside symbol = min, outside symbol = max)

Note this is not an acceptable form of a conceptual model in Crow's Foot notation (relationship lines must not join)

Weak vs Strong Entity

- Strong entity
 - Has a key which may be defined without reference to other entities.
 - For example EMPLOYEE entity.
- Weak entity
 - Has a key which requires the existence of one or more other entities.
 - For example FAMILY entity need to include the key of employee to create a suitable key for family
- Database designer often determines whether an entity can be described as weak based on business rules
 - customer pays monthly account
 - Key: cust_no, date_paid, or
 - Invented Key: payment no (surrogate not at conceptual level)

Weak vs Strong Entity

Note the Crow's Foot model shown here has been modified from the text version

Q3. The client indicates that a CLASS is identified by a combination of the the prof_id and the assigned class number for the professor (1st class, 2nd class, 3rd class etc):

				CLASS
prof_i	d, class_no,	class_day,	PROFESSOR	KEY prof_id
1,	1,	Tue	KEY prof_id	KEY class_no
1,	2,	Tue	prof_name	class_day class time
1,	3,	Wed		class_time
2,	1,	Thu		
2.	2.	Tue		

This business rule is captured in the provided diagram. Pick the correct statement for this diagram.

- A. Both entities are strong entities
- B. PROFESSOR is a strong entity, CLASS is a weak entity
- C. CLASS is a strong entity, PROFESSOR is a weak entity
- D. Both entities are weak entities

Identifying vs Non-Identifying Relationship

Identifying

 Identifier of A is part of identifier of B.

- Shown with solid line
- ENROLMENT STUDENT
 Enrolment key includes student id,
 which is an identifier of student.

Non-identifying

 Identifier of A is NOT part of identifier of B.

- Shown with broken line
- Department no (identifier of department) is not part of Employee's identifier.

Q4. The client indicates that a professor may teach several classes, but some professors do not have any assigned classes. Each class is taken by only one professor. Note that in this diagram, each class has a unique class id (class_id). Pick the most appropriate relationship for this business rule.

Types of Attributes

- Simple
 - Cannot be subdivided
 - Age, sex, marital statusvs
- Composite
 - Can be subdivided into additional attributes
 - Address into street, city, zip

- Single-valued
 - Can have only a single value
 - Person has one social security number

VS

- Multi-valued
 - Can have many values
 - Person may have several college degrees

Types of Attributes continue

- Derived
 - Can be derived with algorithm
 - Age can be derived from date of birth

- Attribute classification is driven by your Client requirements
 - Phone Number?

Q5. The HiFlying case study indicates "HiFlying establishes a drone hire rate as a cost per hour for customers to rent this particular drone (rates per hour are often changed over the life of the drone, as it ages, although they are only interested in recording the current cost per hour for the drone). "

Note that although the hire rate may change over the life of the drone, it is not directly related to the hours flown.

What type of attribute is the drone hire rate?

- A. Simple
- B. Composite
- C. Single-valued
- D. Multi-valued
- E. Derived

Multivalued Attribute

- An attribute that has a list of values.
- For example:
 - Car colour may consist of body colour, trim colour, bumper colour.
- Crow's foot notation does not support multivalued attributes. Values are listed as a separate attribute.

Resolving Multivalued Attributes

Note the Crow's Foot model shown here has been modified from the text version

Associative (or Composite) Entity

Associative (or Composite) Entity

Q6 Show all attributes for the three entities and add KEYS:

Associative or Composite Entities

Q7. STEP 1: List ALL entities and their key attribute/s which exist in the DRONE case study:

https://lms.monash.edu/mod/resource/view.php?id=10628515

For example:

Drones

HiFlying Drones

HiFlying Drones is a company which rents drones out to customers.

The company purchases a range of different types of drones in order to meet their customers' requirements. Each type of drone they purchase is assigned a drang type code (a.g. DUA) as the identifier for this type

To keep track of the drones they purchase, HiFlying identifies each drone with 4 drone id. When a new drone is added to the system the type of the drone, the date it wa nurchased and the purchase price are recorded in addition, HiFlying establishe in the asia cost per hour arone ti ter, changed over the ...

HiFlying Drones - Step 1 Identify Main Entities

Q8. STEP 2: Identify the relationships which exist between these entities (remember to add an appropriate verb):

Q9. Since a customer makes a rental, should the database designer include a relationship between RENTAL and CUSTOMER?

- A. Yes, it is an important relationship to capture
- B. No, it is redundant information
- C. It depends on the client's requirements

HiFlying Drones - Step 2 Identify Relationships

Q10. Step 3 Add Non-Key Attributes

HiFlying Drones - Step 3 Add Non-Key Attributes - Final Model

Conceptual Model (Monash Software)

You have completed

Step 1 identify entities and keys
 of the modelling process for Monash Software

After the workshop please proceed and complete:

- Step 2 Identify Relationships, and
- Step 3 Add all non key attributes

A video will be provided showing the full process at the start of next week.

