Presenter: Xuan Tran

#### Mixture models

- Recall types of clustering methods
  - hard clustering: clusters do not overlap
    - element either belongs to cluster or it does not
  - soft clustering: clusters may overlap
    - stength of association between clusters and instances
- Mixture models
  - probabilistically-grounded way of doing soft clustering
  - each cluster: a generative model (Gaussian or multinomial)
  - parameters (e.g. mean/covariance are unknown)
- Expectation Maximization (EM) algorithm
  - automatically discover all parameters for the K "sources"

#### Mixture models in 1-d

- Observations x<sub>1</sub> ... x<sub>n</sub>
  - K=2 Gaussians with unknown  $\mu$ ,  $\sigma^2$
  - estimation trivial if we know the source of each observation

$$\mu_b = \frac{x_1 + x_2 + \dots + x_{n_b}}{n_b}$$

$$\sigma_b^2 = \frac{(x_n - \mu_b)^2 + \dots + (x_n - \mu_b)^2}{n_b}$$

- If we knew parameters of the Gaussians ( $\mu$ ,  $\sigma^2$ )
  - can guess whether point is more likely to be a or b

$$P(b \mid x_i) = \frac{P(x_i \mid b)P(b)}{P(x_i \mid b)P(b) + P(x_i \mid a)P(a)}$$

$$P(x_i | b) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left\{-\frac{(x_i - \mu_b)^2}{2\sigma_b^2}\right\}$$



How to deal with the data with no label and no Gaussian parameters???



#### Chicken and egg problem

- need  $(\mu_a, \sigma_a^2)$  and  $(\mu_b, \sigma_b^2)$  to guess source of points
- need to know source to estimate ( $\mu_a$ ,  $\sigma_a^2$ ) and ( $\mu_b$ ,  $\sigma_b^2$ )

#### EM algorithm

- start with two randomly placed Gaussians ( $\mu_a$ ,  $\sigma_a^2$ ), ( $\mu_b$ ,  $\sigma_b^2$ )
- E-step: for each point:  $P(b|x_i)$  = does it look like it came from b?
- M-step: adjust  $(\mu_a, \sigma_a^2)$  and  $(\mu_b, \sigma_b^2)$  to fit points assigned to them
  - iterate until convergence



### Gaussian mixture model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

$$ho(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

with  $\pi_k$  the mixing coefficients, where:

$$\sum_{k=1}^K \pi_k = 1$$
 and  $\pi_k \geq 0$   $orall k$ 

- GMM is a density estimator
- GMMs are universal approximators of densities (if you have enough Gaussians). Even diagonal GMMs are universal approximators.
- In general mixture models are very powerful, but harder to optimize

#### The Partition Theorem (Law of Total Probability)

Let  $B_1, \ldots, B_m$  form a partition of  $\Omega$ . Then for any event A,

$$\mathbb{P}(A) = \sum_{i=1}^{m} \mathbb{P}(A \cap B_i) = \sum_{i=1}^{m} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$

Both formulations of the Partition Theorem are very widely used, but especially the conditional formulation  $\sum_{i=1}^{m} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$ .

### Gaussian mixture model (GMM)

• If you fit a Gaussian to data:





• Now, we are trying to fit a GMM (with K=2 in this example):





#### **GMM: Maximum Likelihood**

$$p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

$$=> \ln p(\mathbf{X}|\pi,\mu,\Sigma) = \sum_{n=1}^{N} \ln \left( \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}^{(n)}|\mu_k,\Sigma_k) \right)$$

w.r.t 
$$\Theta = \{\pi_k, \mu_k, \Sigma_k\}$$

- Problems:
  - Singularities: Arbitrarily large likelihood when a Gaussian explains a single point
  - Identifiability: Solution is invariant to permutations
  - Non-convex
- How would you optimize this?
- Can we have a closed form update?
- Don't forget to satisfy the constraints on  $\pi_k$  and  $\Sigma_k$

#### **Latent Variable**

- Our original representation had a hidden (latent) variable z which would represent which Gaussian generated our observation x, with some probability
- Let  $z \sim \text{Categorical}(\boldsymbol{\pi})$  (where  $\pi_k \geq 0$ ,  $\sum_k \pi_k = 1$ )
- Then:

$$p(\mathbf{x}) = \sum_{k=1}^{K} p(\mathbf{x}, z = k)$$

$$= \sum_{k=1}^{K} \underbrace{p(z = k)}_{\pi_k} \underbrace{p(\mathbf{x}|z = k)}_{\mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)}$$

 This breaks a complicated distribution into simple components - the price is the hidden variable.

#### **Back to GMM**

A Gaussian mixture distribution:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

- We had:  $z \sim \text{Categorical}(\pi)$  (where  $\pi_k \geq 0$ ,  $\sum_k \pi_k = 1$ )
- Joint distribution: p(x, z) = p(z)p(x|z)
- Log-likelihood:

$$\ell(\mathbf{X},\Theta) = \sum_{i} \log(P(\mathbf{x}^{(i)};\Theta)) = \sum_{i} \log\left(\sum_{j} P(\mathbf{x}^{(i)},z^{(i)}=j;\Theta)\right)$$

#### **Marginal Probability Mass function of X**

Let X be a discrete random variable with support  $S_1$ , and let Y be a discrete random variable with support  $S_2$ . Let X and Y have the joint probability mass function f(x,y) with support S. Then, the probability mass function of X alone, which is called the **marginal probability mass function of** X, is defined by:

$$f_X(x) = \sum\limits_y f(x,y) = P(X=x), \qquad x \in S_1$$

where, for each x in the support  $S_1$ , the summation is taken over all possible values of y. Similarly, the probability mass function of Y alone, which is called the **marginal probability mass function of** Y, is defined by:

$$f_Y(y) = \sum\limits_x f(x,y) = P(Y=y), \qquad y \in S_2$$

where, for each y in the support  $S_2$ , the summation is taken over all possible values of x.

If you again take a look back at the representation of our joint p.m.f. in tabular form, you might notice that the following holds true:

$$P(X=x,Y=y) = \frac{1}{16} = P(X=x) \cdot P(Y=y) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$

for all  $x \in S_1, y \in S_2$ . When this happens, we say that X and Y are **independent**. A formal definition of the independence of two random variables X and Y follows.

| BLACK (Y)          |   |      |      |      |      | ı                  |
|--------------------|---|------|------|------|------|--------------------|
| f(x,y)             |   | 1    | 2 3  | 4    |      | f <sub>X</sub> (x) |
| 1                  |   | 1/16 | 1/16 | 1/16 | 1/16 | 4/16               |
| RED 2              |   | 1/16 | 1/16 | 1/16 | 1/16 | 4/16               |
| (x) 3              |   | 1/16 | 1/16 | 1/16 | 1/16 | 4/16               |
| 4                  |   | 1/16 | 1/16 | 1/16 | 1/16 | 4/16               |
| f <sub>Y</sub> (y) | - | 4/16 | 4/16 | 4/16 | 4/16 | 1                  |

5 P GOE UF QSPCBCINIZ N BIT CVODUPO PG9
XFTVN CPSFBDI Y UF QSPCBCINIUFTXI FO
Z BOE 5 I BUIT CPSFBDI Y XFTVN
GY GY GY BOEGY

### E Step

ullet Remember that optimizing the likelihood is hard because of the sum inside of the log. Using  $\Theta$  to denote all of our parameters:

$$\ell(\mathbf{X},\Theta) = \sum_{i} \log(P(\mathbf{x}^{(i)};\Theta)) = \sum_{i} \log\left(\sum_{j} P(\mathbf{x}^{(i)},z^{(i)}=j;\Theta)\right)$$

• We can use a common trick in machine learning, introduce a new distribution, q:

$$\ell(\mathbf{X}, \Theta) = \sum_{i} \log \left( \sum_{j} q_{j} \frac{P(\mathbf{x}^{(i)}, z^{(i)} = j; \Theta)}{q_{j}} \right)$$

• Now we can swap them! Jensen's inequality - for concave function (like log)

$$f(\mathbb{E}[x]) = f\left(\sum_{i} p_{i} x_{i}\right) \geq \sum_{i} p_{i} f(x_{i}) = \mathbb{E}[f(x)]$$

### Jensen's Inequality



$$f(\alpha) = \log(\alpha)$$

$$\alpha(z_i) = \frac{P(x_i, z_i; \theta)}{q_i}$$

$$P(z_i = j) = q_i$$

$$f(E[\alpha]) = ?$$
;  $E[f(\alpha)] = ?$ 

$$\mathbb{E}(X) = \sum \mathbb{P}(X = x) \times x.$$

$$\mathbb{E}(X) = \sum_{x} \mathbb{P}(X = x) \times x.$$

$$\mathbb{E}\{g(X)\} = \sum_{x} g(x)\mathbb{P}(X = x).$$

### E Step

Applying Jensen's,

$$\sum_{i} \log \left( \sum_{j} q_{j} \frac{P(\mathbf{x}^{(i)}, z^{(i)} = j; \Theta)}{q_{j}} \right) \geq \sum_{i} \sum_{j} q_{j} \log \left( \frac{P(\mathbf{x}^{(i)}, z^{(i)} = j; \Theta)}{q_{j}} \right)$$

- Maximizing this lower bound will force our likelihood to increase.
- But how do we pick a  $q_i$  that gives a good bound?

### E Step

We got the sum outside but we have an inequality.

$$\ell(\mathbf{X},\Theta) \geq \sum_{i} \sum_{j} q_{j} \log \left( \frac{P(\mathbf{x}^{(i)}, z^{(i)} = j; \Theta)}{q_{j}} \right)$$

- Lets fix the current parameters to  $\Theta^{old}$  and try to find a good  $q_i$
- What happens if we pick  $q_j = p(z^{(i)} = j | x^{(i)}, \Theta^{old})$ ?
  - $P(\mathbf{x}^{(i)}, \mathbf{z}^{(i)}; \Theta) = P(\mathbf{x}^{(i)}; \Theta^{old})$  and the inequality becomes an equality!
- We can now define and optimize

$$Q(\Theta) = \sum_{i} \sum_{j} p(z^{(i)} = j | x^{(i)}, \Theta^{old}) \log \left( P(\mathbf{x}^{(i)}, z^{(i)} = j; \Theta) \right)$$
$$= \mathbb{E}_{P(z^{(i)} | \mathbf{x}^{(i)}, \Theta^{old})} [\log \left( P(\mathbf{x}^{(i)}, z^{(i)}; \Theta) \right)]$$

ullet We ignored the part that doesn't depend on  $\Theta$ 

#### Formula for conditional probability

Definition: Let A and B be two events on a sample space  $\Omega$ . The <u>conditional</u> probability of event B, given event A, is written  $\mathbb{P}(B \mid A)$ , and defined as

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}.$$

Read  $\mathbb{P}(B \mid A)$  as "probability of B, given A", or "probability of B within A".

**Note:**  $\mathbb{P}(B \mid A)$  gives  $\mathbb{P}(B \text{ and } A)$ , from within the set of A's only).  $\mathbb{P}(B \cap A)$  gives  $\mathbb{P}(B \text{ and } A)$ , from the whole sample space  $\Omega$ ).

### M Step

- So, what just happened?
- Conceptually: We don't know  $z^{(i)}$  so we average them given the current model.
- Practically: We define a function  $Q(\Theta) = \mathbb{E}_{P(z^{(i)}|\mathbf{x}^{(i)},\Theta^{old})}[\log (P(\mathbf{x}^{(i)},z^{(i)};\Theta))]$  that lower bounds the desired function and is equal at our current guess.
- If we now optimize  $\Theta$  we will get a better lower bound!

$$\log(P(\mathbf{X}|\Theta^{old})) = Q(\Theta^{old}) \leq Q(\Theta^{new}) \leq \log(P(\mathbf{X}|\Theta^{new}))$$

 We can iterate between expectation step and maximization step and the lower bound will always improve (or we are done)

#### **EM Derivation**



 The EM algorithm involves alternately computing a lower bound on the log likelihood for the current parameter values and then maximizing this bound to obtain the new parameter values.

### **EM Algorithm**

E-step:

Set 
$$q_i = P(z_i = j \mid x_i; \theta)$$

M-step:

$$argmax_{\theta} \sum_{i} \sum_{j} q_{j} \log \left( \frac{P(\mathbf{x}_{i}, \mathbf{z}_{i}; \theta)}{q_{j}} \right) = argmax_{\theta} \sum_{i} \sum_{j} \log \left( P(\mathbf{z}_{i} = \mathbf{j}) \times P(\mathbf{x}_{i} \mid \mathbf{z}_{i} = \mathbf{j}) \right)$$

### **EM Algorithm**



#### EM vs. K-means

- EM for mixtures of Gaussians is just like a soft version of K-means, with fixed priors and covariance
- Instead of hard assignments in the E-step, we do soft assignments based on the softmax of the squared Mahalanobis distance from each point to each cluster.
- Each center moved by weighted means of the data, with weights given by soft assignments
- In K-means, weights are 0 or 1

## THE END