Proposition 29.17. If $\varphi \colon E \times E \to K$ is a sesquilinear map, and if l_{φ} and r_{φ} are bijective, for every bijective linear map $f \colon E \to E$, then we have

$$\varphi(f(x),f(y))=\varphi(x,y)\quad \textit{for all } x,y\in E \textit{ iff } f^{-1}=f^{*_l}=f^{*_r}.$$

We also have the following facts.

Proposition 29.18. (1) If $\varphi \colon E \times E \to K$ is a sesquilinear map and if l_{φ} is injective, then for every linear map $f \colon E \to E$, if

$$\varphi(f(x), f(y)) = \varphi(x, y) \quad \text{for all } x, y \in E,$$
 (*)

then f is injective.

(2) If E is finite-dimensional and if φ is nondegenerate, then the linear maps $f: E \to E$ satisfying (*) form a group. The inverse of f is given by $f^{-1} = f^*$.

Proof. (1) If f(x) = 0, then

$$\varphi(x,y) = \varphi(f(x), f(y)) = \varphi(0, f(y)) = 0$$
 for all $y \in E$.

Since l_{φ} is injective, we must have x=0, and thus f is injective.

(2) If E is finite-dimensional, since a linear map satisfying (*) is injective, it is a bijection. By Proposition 29.17, we have $f^{-1} = f^*$. We also have

$$\varphi(f(x),f(y))=\varphi((f^*\circ f)(x),y)=\varphi(x,y)=\varphi((f\circ f^*)(x),y)=\varphi(f^*(x),f^*(y)),$$

which shows that f^* satisfies (*). If $\varphi(f(x), f(y)) = \varphi(x, y)$ for all $x, y \in E$ and $\varphi(g(x), g(y)) = \varphi(x, y)$ for all $x, y \in E$, then we have

$$\varphi((g \circ f)(x), (g \circ f)(y)) = \varphi(f(x), f(y)) = \varphi(x, y)$$
 for all $x, y \in E$.

Obviously, the identity map id_E satisfies (*). Therefore, the set of linear maps satisfying (*) is a group.

The above considerations motivate the following definition.

Definition 29.16. Let $\varphi \colon E \times E \to K$ be a sesquilinear map, and assume that E is finite-dimensional and that φ is nondegenerate. A linear map $f \colon E \to E$ is an *isometry* of E (with respect to φ) iff

$$\varphi(f(x), f(y)) = \varphi(x, y)$$
 for all $x, y \in E$.

The set of all isometries of E is a group denoted by $\mathbf{Isom}(\varphi)$.