PROPER MOTIONS OF STARS IN THE REGION OF THE ORION ASSOCIATION

By

RICHARD SMART

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1993

To my mother, Ms. Jean Smart; my advisor, Heinrich Eichhorn; my computer, elc1; and my friend, Jane Morrison. All of whom in their own way made this dissertation not only possible but also enjoyable. Thank You.

ACKNOWLEDGMENTS

An endeavor of this nature would not have been possible without the support and advice of the many members and institutions that make up the Astrometric Community.

For the use of the Leander McCormick Refractor and for their support and advice during my observations, I would like to thank Phil Ianna and Jon Lingel of the McCormick Observatory. I would also like to thank the graduate students and faculty of the University of Virginia Astronomy Department who made me feel very welcome during my three months of observing.

For the use of the University of Minnesota Automated Plate Scanner and their help in reducing the data, I would like to thank Roberta Humphreys, Steve Odewahn and Pete Thurmes. I appreciate them taking time out of their busy Palomar Plate scanning program.

For providing the Astrographic Catalogue material and the Reference Star material in an easily accessible form in advance of publication, I would like to thank Tom Corbin and Sean Urban from the United States Naval Observatory.

For many useful discussions and helpful advice I would like to thank George Gatewood of the Allegheny Observatory; Bill van Altena, Terry Girard and John Lee of Yale University; and Mario Lattanzi and Larry Taff of the Space Telescope Science Institute.

After six years at the University of Florida there would be no way to include all the people who have helped me both academically and socially. There are some people, however, whom I would especially like to thank: The members of my committee: Ralph Selfridge, Gus Palenik, Humberto Campins and Haywood Smith, who have had great

patience and have all provided me with good advice. All my fellow graduate students, with special recognition of Jaydeep Mukherjee, Caroline Simpson, Sumita Jayaraman, and Ron Drimmel, who have helped in reading and re-reading of my manuscripts.

The bulk of the computing has been carried out on the Northeast Regional Data Centers IBM mainframe under their Research Computing Initiative program. This computing time, and the welcome help of their AIX expert David Nessl, has saved me many hours. This dissertation has been written using *The Publisher* of ArborText Inc, many thanks to Charlie Taylor who provided the basic template.

An extra special thank you goes out to Jane Morrison, my better half, fellow astrometrist, and chief proofreader. She has always had the ability to see the best in every situation and has provided me with a place to which I know I can always go.

Finally, I would like to acknowledge the unlimited patience, support, and help of Heinrich Eichhorn. He has guided me with good advice and inspired me with his enthusiasm and dedication in the many daunting times. Through him I now have a healthy respect for the 'scientific method', and I hope at least a small ability to apply it.

TABLE OF CONTENTS

ACKNOV	VLEDGMENTS
LIST OF	TABLESvii
LIST OF	FIGURES viii
ABSTRA	CT
CHAPTE	RS
Î	INTRODUCTION
	MATHEMATICAL FOUNDATION 10 Traditional Least Squares 10 Generalization of the Traditional Method 12
1	FINDING STELLAR COORDINATES 17 Positions from Single Plates 17 Positions from Overlapping Plates 28 Solution with Unconstrained Parameters 28 Solution with Globally Constrained Parameters 45 Theoretical Plate Modelling Terms 52 Departures from a Gnomonic Projection 54 Typical Models 61
•	OBSERVATIONS 67 Collection of the Observations 67 The First Epoch 67 The Second Epoch 72 The Third Epoch 75 Measuring the Plates 80
]] I	FINDING A MODEL 90 Previous Work 91 Positional Residuals 92 Single Plate Residuals 93 Overlap Residuals 96 Summary 97 Parameter Variation 102 Overlap Variances 114

6	PROPER MOTIONS
	Finding Proper Motions
	Results
	Radial Velocity Criteria
	Future Work
REFER	ENCES
BIOGR	APHICAL SKETCH

LIST OF TABLES

Table		pay	<u>je</u>
1:	San-Fernando Astrographic Plates Data	 . 7	70
2:	Algiers Astrographic Plates Data	 . 7	1
3:	Second Epoch McCormick Observatory Plates Data	 	74
4:	Third Epoch McCormick Observatory Plates Data	 . :	78
5:	Parameter Statistics	 10)7
6:	Final Solution Statistics	 12	21
7:	Least Squares Slopes using WH Criteria.	 1.	30
8:	Least Squares Slopes using Gieseking Criteria.	 13	33
9:	Positions and Proper Motions for Stars Found in at least two Epochs	 1.	38

LIST OF FIGURES

rigui	pag
1:	The Subgroups and Region under Study in the I-Orion Association
2:	Arrangement of Stars
3:	Projection of a Pinhole Camera
4:	Noncoincidence of axes
5:	Origin Shift
6:	Effect of Plate Tilt or Incorrect Tangential Point
7:	Effect of Magnitude and Coma Terms
8:	First Epoch Plate Orientation
9:	Second Epoch Plate Orientation
10:	The Leander McCormick Refractor
11:	Third Epoch Plate Orientation
12:	The Automated Plate Scanner
13:	The APS Scanning Laser
14:	APS Isodensitometric scan
15:	Predicted Positions for Plate 141368x70
16:	The difference between a Grating Image Average and the Primary Image Center
17:	Scan of Plate 141368x70 Low Threshold
18:	Scan of Plate 141368x70 High Threshold
19:	Six-Constant Single Plate Residuals
20:	Six-Constant Single Plate Residuals

21:	Six-Constant Overlap Residuals
22:	Six-Constant Overlap Residuals
23:	Plate Parameter Variation for Epoch 1900
24:	Plate Parameter Variation for Epoch 1956
25:	Plate Parameter Variation for Epoch 1992
26:	Nine-Constant Overlap Variances
27:	Nine-Constant Overlap Variances
28:	Proper Motions Using Just Two Epochs
29:	Proper Motion Plots Final Result
30:	Proper Motions of Reference Stars in our Sample
31:	Differences between these Results and External Catalogues 127
32:	Linear Relations between μ_α and α and μ_δ and δ using WH Membership Criteria
33:	Linear Relations between μ_{α} and α and μ_{δ} and δ using Gieseking Membership Criteria

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

PROPER MOTIONS OF STARS IN THE REGION OF THE ORION ASSOCIATION

By

Richard Smart

December 1993

Chairman: Dr. H. K. Eichhorn Major Department: Astronomy

We present results from a proper motion study of approximately 2000 stars in the Region of the Orion Association Ia and Ib subgroups. Past studies in this region have been restricted for a number of reasons: the large angular size of the association, the lack of computational power and the high observational priority that the forming subgroups Ic and Id have received.

Our observational material spans 100 years, consisting of photographic plates taken in 1955–6 and 1992 at the McCormick Observatory and newly reduced Astrographic Catalogue positions from around 1900. The second and third epoch plates were measured on the University of Minnesota Automated Plate Scanner in two directions with two threshold levels. This provided us with an average of three position estimates per image with an image centering precision of 1–2 microns.

We reduced the measured rectangular coordinates to equatorial coordinates by the overlapping plate technique. This technique takes advantage of the extensive multiple coverage, and uses additional information on magnitude effects obtained from objective grating images.

Х

This study will provide observations that can be used to restrict the theories of stellar association formation, runaway stars, evolutionary ages, pre-stellar gas dynamics and galactic kinematics. Through this work we illustrate the potential power of the overlapping plate technique and its application to wide field astrometry.

CHAPTER 1 INTRODUCTION

This study will make two major contributions to astronomy: act as a working example of the power of using an overlapping plate reduction technique and find the proper motions of stars in the region of the Orion association. These observations can be used to increase our understanding of the dynamics of stellar associations. This chapter will introduce the problem, examine the previous work, and briefly outline the proposed reduction technique and the rationale for using it.

Project Overview

I-Orion, at a distance of 450 pc and with over 50 O and B type stars, is a particularly nearby and rich stellar association. It is centered on B1950 right ascension 5^h30^m and declination -1^o with a total area of approximately 100 square degrees. The largest projected linear diameter of the association is about 100 pc, and it has an estimated total mass of about 7.6×10^6 solar masses.

Many authors (cf. Blaauw, 1964) have noted that the study of association kinematics provides insight into many problems in astronomy: stellar evolution, galactic kinematics, pre-stellar gas dynamics, origins of runaway stars and the search for planetary disks (especially in young associations / clusters). Even though the potential for application in astronomy is rich, few concerted studies of the proper motions in I-Orion have been carried out.

The reason for this lack is probably twofold: First, I-Orion is split into four subgroups, a-d, and within these subgroups the smallest one, Id-Orion, is prioritized for telescope and research time because this subgroup contains very young stars that have just left their formative stages and are thus important for the study of stellar formation and the search for planetary disks. Second, and probably more to the point, the large angular size of the I-Orion association makes it extremely difficult even to obtain accurate relative positions across the entire field.

Previous investigations of the large subgroups, a and b, in the association were therefore, with two exceptions, restricted to spectroscopic and radial velocity studies. The exceptions looked at proper motions found from different catalogue sources that defined the stellar positions at different epochs. The inherent nonhomogeneity of this data — due to its use of many different sources with systematic and accidental errors — has limited the success in determining proper motion, membership, and kinematic ages. Indeed, as discussed later, the two most recent astronomical studies on these subgroups have called for a more accurate proper motion study.

The present investigation will correct the current lack of accurate proper motion studies. We will determine the proper motions of stars in the region outlined on figure 1 almost complete down to 12th magnitude. To attain consistency across the region, we will use a sophisticated overlapping plate reduction technique that reduces the whole region in order to provide positions for all the stars simultaneously, consistent in a least squares sense, at one epoch.

This is only possible now because of the recent rapid growth in fast, large memory computers. The region under study covers part of both subgroup a and b, extends over 30 square degrees and includes more than 2000 stars.

(Starchart taken from the Vehrenberg 1950.0 Atlas Stellarum, Subgroup outlines taken from Blaauw 1988.)

Figure 1: The Subgroups and Region under Study in the I-Orion Association

Previous Research on Associations; Rationale for this Investigation

Ever since the first determination of spectral classifications for bright stars, the existence of loose groups of O and B types stars has been known (Eddington, 1914). In order of increasing distance the groups IC 2602, Scorpio-Centaurus, II-Perseus, I-Orion, I—Lacerta, NGC 7160, NGC 2264, III-Cepheus, I-Cepheus, NGC 1502, NGC 2169 are all within one kiloparsec of the solar neighborhood. Most of these groups stand out conspicuously as bright configurations in the night sky.

Astronomers carried out considerable research to explain the existence of these groups. Kapteyn (1914) studied them when stars were still believed to burn helium. He produced a whole-sky map of their positions. Collinder (1931) originally classified subgroups of these groups as clusters. Dynamical studies by Bok (1934) and Mineur (1939) showed these groups must be unstable. Therefore, by implication the groups must be young.

Ambartsumian is credited with first coining the name 'O associations' for these groups. In 1952 he described them as follows:

O-associations are stellar systems, where the partial density of B2 stars is larger than the average field density of these stars, in such a way that this difference cannot be explained by chance fluctuations; moreover, O or B0 stars are present. The properties of O-associations may be described as follows:

- 1. the linear diameters range between 30 and 200 parsecs;
- 2. the associations contain an open star cluster of type O as nucleus;
- they include, besides O B2 stars, also stars of types later than B2, sometimes even Wolf-Rayet stars, though it is difficult to ascertain the number of faint stars;
- 4. sometimes multiple systems of Trapezium type and star chains may be part of the nuclei;
- 5. hot giants occur also outside the nuclei:
- 6. there are reasons for presuming the O-associations to be unstable systems.

Ambartsumian made extensive investigations of the properties of these associations (cf. Ambartsumian, 1955). He pointed out that the combination of the work of Bok, which showed that associations are not bound by their gravitation, and that associations are roughly spherical in shape, implies that associations must be in a state of expansion. He estimated a typical association age to be $\sim 10^7$ years. This kinematic age agrees well with the evolutionary age of the constituent O and B stars. This work established the existence of O associations as expanding young groups of stars. In 1952 Markarian catalogued O associations and created the International Astronomical Union-recommended nomenclature we use today.

The first direct observational evidence supporting Ambartsumian's hypothesis was by Blaauw (1952), and it was later confirmed by Delhaye and Blaauw (1953). In these studies, the authors used proper motions from meridian–circle catalogues and showed that the ζ Persei association (II-Perseus) was expanding. The expansion age found by this study was 1.3 million years, again agreeing well with the members' evolutionary ages. Blaauw (1964) pointed out that the systematic errors in the catalogues used could mimic the effect of expansion, or even contraction. Therefore, the use of catalogues for measuring an association's expansion is severely limited, because of systematic errors and by the general low sky density.

Fredrick (1956) carried out another investigation of II-Perseus using McCormick and Sproul photographic plates. He reduced the plates using a linear single plate reduction with an averaging of the measured rectangular positions from all the plates exposed at one epoch. The total time base for the study was 38 years. Although the reduction was the best that could be performed with the theoretical and computational

tools available at the time, his choice of a simple model and method is prone to many systematic errors. In using a linear plate model, Fredrick ignored radial terms such as magnitude and coma. These terms, if they physically exist but are not represented in the modelling, can produce an expansion of the association even if one does not exist. However, the result was in reasonable agreement with Blauuw's meridian catalogue study and II-Perseus was confirmed to be in a state of expansion.

This cemented the observational evidence for Ambartsumian's hypothesis of young, expanding associations. The 'discovery' of associations and their expansion stimulated research on these groups. Because of their relative youth and apparent dynamical parameters, studies of them have applications to many other areas of astronomy.

Ambartsumian proposed that associations may contain subgroups. Blaauw's 1953 study on II-Perseus supported this. In 1964 Hardie et al. examined the spectroscopic properties of I-Orion, the results of this study also suggested subgroups. Blauuw in his 1964 review paper outlined the various subgroups of local associations and listed some basic properties of them.

The I-Orion association appeared to have 4 subgroups; figure 1 shows the a and b subgroup boundaries. With a few exceptions, most studies of Orion have been limited to the subgroups c and d (for a review of this research cf. van Altena et al., 1988). We will be looking at the subgroups a and b, which have received very few proper motions studies (a review of the literature shows only two studies: Lesh, 1968, and Gieseking, 1983). The large angular size the subgroups subtend would have made an accurate astrometric reduction at best difficult, and perhaps impossible, before the advent of fast, large memory computers.

There have been some studies that utilized existing catalogues much in the same way Blaauw carried out his original II-Perseus study. One, that specifically addressed the Ia-Orion subgroup, was by Lesh (1968). This study, like Blaauw's, used meridian-circle catalogue data and found an expansion age of $4.5 \times 10^6 \pm 2.3 \times 10^6$ years. Primarily the large size of this error results from the large errors in the proper motions. In addition, since the total number of stars used to derive this age was only 16, the large error also reflects a problem with small sample size. In this study of I-Orion, we will determine uniformly derived proper motions of over 2000 stars. The limiting factor on the precision of the expansion age will be the contamination by non-members.

Another study that incorporated the proper motions of both the a and b subgroups was a membership study of the whole Orion association by Warren and Hessler (1977, 1978). Their study combined all previous photometric, radial velocity, and proper motion measurements and added new photometric data to construct one homogenous set of data. They found expansion ages in good agreement with Lesh's and posed many unresolved questions: What are the defining boundaries of the subgroups? What are the distances of these subgroups? How homogenous is the association? One of the conclusions in this study was that more complete studies of proper motions and radial velocities are needed for the association, especially in the regions of subgroup a and b.

Gieseking (1983) carried out an extensive radial velocity study of Ia-Orion. He concluded that it consists of two groups, one of which may be rotating. Further analysis of Hardie's spectroscopic data supported the two-group hypothesis. Like Warren and Hessler, Giesking also concluded that "it would be interesting to investigate whether

these kinematically distinguished (via radial velocities) groups may be recognized also by their proper motions and available space motions. . . . Unfortunately the proper motions available are by no means adequate." This study will provide the proper motions for that investigation.

Advances in Determining Proper Motions and Positions

Proper motions are the time derivatives of the position components of a star in an inertial reference frame or a frame that is a good approximation to one. The standard method for determining proper motions is to find the position of a particular star at two widely spaced epochs in the same frame of reference. The proper motion is closely approximated by the difference of these positions divided by the epoch difference. As we have seen, previous methods used catalogues to define the stellar positions at two epochs. However, this method will only provide proper motions of limited precision.

A more precise method is to photograph the sky at at least two epochs and compare the positions of the stars. This is essentially the method used by Fredrick in his II-Perseus study. However, as we have pointed out, the model his study used to find equatorial coordinates in the sky's frame of reference from the image's measured rectangular coordinate was too simple to account for the possible effects of a star's magnitude or the telescope's coma on the star's rectangular position. (Work carried out by Eichhorn, 1956, revealed the presence of a large coma term in the McCormick telescope.) He made this simplification because the numerical manipulation required to model magnitude and coma effects would have resulted in too large a problem to handle at that time.

In addition, the Orion region in this study covers an area of approximately 10 McCormick photographic plates. The reduction of a number of non-concentric plates covering a large area will lead to varying degrees of precision across the region. Eichhorn (1960, 1984) developed an improved method called the overlapping plate technique. In this method the observer exposes the region such that all plates overlap with at least one other plate (and usually more). This method assures that there will be stars in common to those plates; and because these plates were exposed at essentially the same epoch, the stars will have virtually identical equatorial coordinates.

All the observations of a stellar position are used in the overlap, and they are all simultaneously reduced. Another advantage to the overlap is that all of the stars act as reference material. The equatorial coordinates of a star are tied onto the celestial coordinate system by the use of reference stars. The overlap method uses the multiple images of the non-reference stars to 'lock' plates together, while the reference stars tie the whole plate system to the sky. This reduction technique, if carefully and competently applied, provides very precise, internally consistent, stellar positions in the equatorial frame from photographic plates.

We then derive the stellar proper motions from a comparison of a star's equatorial position at different epochs. In this study we have positions from three epochs, 1900, 1956 and 1992, allowing a weighted least squares determination of the stellar proper motions.

CHAPTER 2 MATHEMATICAL FOUNDATION

To understand the overlapping plate technique it is necessary to outline the theory of least squares. The overlap is essentially a least squares reduction of stellar equatorial coordinates from measured rectangular coordinates of those stars on photographic plates. This chapter lays the mathematical foundation for the development of this technique.

Traditional Least Squares

Consider a set of observations, x_0 , which we will assume are unbiased, i.e. without systematic errors. The set of their true values, x, will be the sum of x_0 and a vector ϵ of corrections. Following our assumption of unbiased estimates, and assuming a Gaussian distribution, then we can express the distribution function of the errors as

$$\varphi(\varepsilon) = C \exp\left(-\frac{1}{2}\varepsilon^T \sigma^{-1}\varepsilon\right)$$
 (2.1)

where, writing all quantities in vector form, then formally

$$x = x_o + \varepsilon$$
, (2.2)

and σ is the covariance matrix of x_0 (or obviously ϵ).

Assume further that the measurable quantities, x and certain parameters a, are related by p vector relationships

$$f_{\lambda}(a, x) = 0, (\lambda = 1, ..., p)$$
 (2.3)

in vector form: $F_{p\times 1}(a,x)=0$. The equations $f_{\lambda}(a,x)=0$ are the condition equations (sometimes called "observation equations") of the problem.

One can never find the true values of the observed quantities, x, but using the principle of maximum likelihood, we can find an estimate of x that is better than the original x_0 . In this theory we seek to maximize the value of the likelihood function. This occurs when $\varepsilon^T \sigma^{-1} \varepsilon = \text{minimum}$. The relationship (2.3) between the parameters, a, and the target quantities, x, can thus be rewritten in terms of the errors, ϵ , and observations x_0 as

$$F_{n\times 1}(a, x_n + \varepsilon) = 0, \qquad (2.4)$$

and these must be strictly satisfied at the solution.

Traditional least squares assumes that the observations are of the same precision, uncorrelated and that each equation of condition contains only one component of x_0 . Therefore if the variance of any one measurement is σ_{00} , the covariance matrix will be of the form, $\sigma = \sigma_{00}$ I, where I is the identity matrix and

$$\varepsilon^T \sigma^{-1} \varepsilon = \frac{1}{\sigma_{oo}} \sum_{\mu=1}^m \varepsilon_{\mu}^2. \tag{2.5}$$

This is the case in traditional least squares, where the values of $\varepsilon^T \sigma^{-1} \varepsilon$ and $\sum_{\mu=1}^m \varepsilon_\mu^2$ coincide. After linearization one can write the condition equations in the form

$$\sum_{\nu=1}^{n} a_{\mu\nu} a_{\nu} + x_{o\mu} = -\varepsilon_{\mu} \qquad \mu = 1, ..., m$$
 (2.6)

written in matrix / vector form as $Aa + x_o = -\varepsilon$. The parameters, a, occur linearly in the condition equations, and each equation contains exactly one observation. (In general any number of observations may occur in any of the condition equations.) It is

easy to find the normal equations that give estimates of a

$$Aa + x_o = -\varepsilon$$

$$\rightarrow a^T \mathbf{A}^T + x_a^T = -\varepsilon^T \qquad (2.7)$$

$$\rightarrow a^T A^T A a + 2a^T A^T x_0 + x_0^T x_0 = \varepsilon^T \varepsilon$$

(Note: $\epsilon^T \epsilon$ and $a^T A^T x_0$ are numbers and we may transpose any of their terms without changing their values.) Now differentiate with respect to each component of a and set it equal to zero to find the maximum:

$$\frac{d(\varepsilon^T \varepsilon)}{da} = \frac{d(a^T \mathbf{A}^T \mathbf{A} a + 2a^T \mathbf{A}^T x_o + x_o^T x_o)}{da}$$

$$= 2(\mathbf{A}^T \mathbf{A} a + \mathbf{A}^T x_o).$$
(2.8)

If the right hand side of (2.8) is set equal to zero, then the condition becomes $A^TAa = -A^Tx_o$. By rearranging, we get the traditional least squares solution in its simplest form

$$a = -(\mathbf{A}^{T}\mathbf{A})^{-1}\mathbf{A}^{T}x_{o}.$$
 (2.9)

Generalization of the Traditional Method

We can use a more general least squares treatment by dropping some restrictions. Following the procedure of Brown (1955) (see also Jefferys, 1980, 1981; Eichhorn, 1993), we will make use of Laplace multipliers, Λ . At the solution the condition equations, F, equal zero. Therefore the value of $S = \varepsilon^T \sigma^{-1} \varepsilon$ is the same as the value of

$$S^* = \varepsilon^T \sigma^{-1} \varepsilon - 2\Lambda^T F(a, x_o + \varepsilon). \tag{2.10}$$

Therefore the values of S and S* reach their minima at the same values of ϵ and a.

The parameter vector, a, has n components and ϵ has m components, so these two give (m+n) free components. The vector of condition equations, F=0, has p components. Since F is restricted to = 0, there are only (m+n-p) free components. Differentiate S^* w.r.t. the components of ϵ and a, thus

$$\left(\frac{d\mathbf{S}^*}{d\varepsilon}\right) = 2\sigma^{-1}\varepsilon - 2\mathbf{X}^{\mathrm{T}}\mathbf{\Lambda} \tag{2.11}$$

$$\left(\frac{dS^*}{da}\right) = -2A^T\Lambda$$

where we have used the abbreviations

$$\mathbf{X}_{p\times m} = \left(\frac{dF}{d\varepsilon}\right)_{x=x_{s},a=a_{s}} = \begin{pmatrix} \frac{df_{1}}{d\varepsilon_{1}} & \cdots & \frac{df_{n}}{d\varepsilon_{m}} \\ \vdots & \ddots & \vdots \\ \frac{df_{s}}{d\varepsilon_{1}} & \cdots & \frac{df_{s}}{d\varepsilon_{m}} \end{pmatrix}_{x=x_{s},a=a_{s}}$$
(2.12)

and

$$\mathbf{A}_{p \times n} = \left(\frac{dF}{da}\right)_{x = x_{\sigma}, a = a_{\sigma}} = \begin{pmatrix} \frac{df_{1}}{da_{1}} & \cdots & \frac{df_{n}}{da_{n}} \\ \vdots & \ddots & \vdots \\ \frac{df_{p}}{da_{1}} & \cdots & \frac{df_{p}}{da_{n}} \end{pmatrix}_{x = x_{\sigma}, a = a_{\sigma}}$$
(2.13)

At the solution, the following equations must thus be rigorously satisfied; $\sigma^{-1}\varepsilon=\mathbf{X}^{\mathbf{T}}\mathbf{\Lambda} \qquad m \quad \epsilon guations$

$$\mathbf{A}^{\mathrm{T}} \Lambda = 0$$
 n equations (2.14)

$$A = 0$$
 n equations (2.14)

$$F = 0$$
 p equations.

The vector Λ has p unknowns; from (2.14) there are exactly as many unknowns as there are equations.

These equations are rigorous at the solution so A and X must be evaluated at the solution of a and x. These equations are nonlinear and solved by an iterative

procedure (Jefferys, 1981). Assuming some approximate value, a_0 , for a and using as approximations to x the observations, x_0 , we write $a=a_0+\alpha$ and expand F as a Taylor series.

 $a = a_o + \alpha$, $x = x_o + \varepsilon$

Formally,

$$F(x, a) = F(x_0, a_0) + \mathbf{X}_0 \epsilon + \mathbf{A}_0 \alpha + O[2]$$
 (2.15)

where X_0 and A_0 from equations (2.12) and (2.13) and evaluated at x_0 and a_0 . From the first of equations (2.10) we get $\varepsilon = \sigma X^T \Lambda$; insert the expansion of F(x,a)=0:

$$F = 0 = F_o + \mathbf{X}_o \varepsilon + \mathbf{A}_o \alpha$$

 $\rightarrow F_o + \mathbf{X}_o \sigma \mathbf{X}^T \mathbf{A} + \mathbf{A}_o \alpha = 0$
(2.16)

where F_0 = $F(x_0,a_0)$ combine with the second of equations (2.10); $\mathbf{A}^T\mathbf{\Lambda}=0$ so that we may write

$$\begin{pmatrix} \mathbf{X}\sigma\mathbf{X}^{\mathbf{T}} & \mathbf{A} \\ \mathbf{A}^{\mathbf{T}} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{\Lambda} \\ \alpha \end{pmatrix} + \begin{pmatrix} F_o \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \tag{2.17}$$

These are the generalized normal equations. Note that we need Λ to find ϵ , but if $X^T \sigma X$ is nonsingular then we can eliminate Λ and find the corrections to the parameters, α . This may be done as follows:

$$F_{\sigma} + \mathbf{X}\sigma\mathbf{X}^{T}\Lambda + \mathbf{A}\alpha = 0$$

$$\rightarrow (\mathbf{X}\sigma\mathbf{X}^{T})^{-1}F_{\sigma} + \Lambda + (\mathbf{X}\sigma\mathbf{X}^{T})^{-1}\mathbf{A}\alpha = 0. \tag{2.18}$$

Hence

$$\Lambda = -(\mathbf{X}\sigma\mathbf{X}^{\mathrm{T}})^{-1}\mathbf{A}\alpha - (\mathbf{X}\sigma\mathbf{X}^{\mathrm{T}})^{-1}F_{o}$$

$$\rightarrow \Lambda = -\mathbf{W}(\mathbf{A}\alpha + \mathbf{F}_{o})$$
(2.19)

where $W = \left(X \sigma X^T \right)^{-1}$, but since $A^T \Lambda = 0$ we get

$$\mathbf{A^T} \big(\mathbf{X} \boldsymbol{\sigma} \mathbf{X^T} \big)^{-1} \mathbf{A} \boldsymbol{\alpha} = -\mathbf{A^T} \big(\mathbf{X} \boldsymbol{\sigma} \mathbf{X^T} \big)^{-1} \boldsymbol{F_o}$$

(2.20)

$$\rightarrow \alpha = -\left[\mathbf{A^T} \big(\mathbf{X} \boldsymbol{\sigma} \mathbf{X^T}\big)^{-1} \mathbf{A}\right]^{-1} \mathbf{A^T} \big(\mathbf{X} \boldsymbol{\sigma} \mathbf{X^T}\big)^{-1} \mathbf{F_o}$$

This is a more general solution than that of equation (2.9).

The formal errors ϵ of the observations are then given by

$$\varepsilon = \sigma X^{T} \Lambda = -\sigma X^{T} W(A\alpha + F_{o}).$$
 (2.21)

It can be shown (cf. Brown, 1955; Jefferys, 1980, 1981) that (A^TWA) is the covariance matrix of α , so that the square roots of its diagonal terms are the standard deviations of the corresponding components of α .

It is instructive to compare the results of the traditional approach with that of the more general approach. In the simplified case, where we use noncorrelated observations of equal precision and when exactly one observation occurs in each equation, X=I. The corrections to the parameters simplify to $\alpha = -[\mathbf{A^T A}]^{-1}\mathbf{A^T}F_o$. The observation errors also simplify to $\varepsilon = \left\{\mathbf{I} - \mathbf{A}[\mathbf{A^T A}]^{-1}\mathbf{A^T}\right\}F_o$, both of which are traditional least squares solutions, independent of the variances. Also from comparison we can see that the matrix $(\mathbf{X}\sigma\mathbf{X^T})^{-1}$ has the same effect as a weight matrix in the traditional approach.

This matrix, $(X\sigma X^T)^{-1}$, is not always nonsingular, as for example if there are equations in F that have no observations but act as parameter constraints. This will not occur in our problem.

In the general case the usual scheme is to set up iterations as follows:

$$\begin{pmatrix} \mathbf{X}_{\nu} \boldsymbol{\sigma} \mathbf{X}_{\nu}^{\mathbf{T}} & \mathbf{A}_{\nu} \\ \mathbf{A}_{\nu}^{\mathbf{T}} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{A}_{\nu+1} \\ \alpha_{\nu+1} \end{pmatrix} + \begin{pmatrix} F_{\nu} \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$= \boldsymbol{\sigma} \mathbf{X}_{\nu} \mathbf{A}_{\nu+1} \boldsymbol{\epsilon}_{\nu+1}$$

$$= \boldsymbol{\sigma} \mathbf{X}_{\nu} \mathbf{A}_{\nu+1} \boldsymbol{\epsilon}_{\nu+1}$$
(2.22)

where
$$\mathbf{X}_{\nu} = \left(\frac{dF}{dx}\right)_{a = a_{o} + \alpha_{\nu}}$$
 $\mathbf{A} = \left(\frac{dF}{da}\right)_{a = a_{o} + \alpha_{\nu}}$. $x = x_{o} + \varepsilon$ $x = x_{o} + \varepsilon$

This does not always converge, and more sophisticated schemes are usually needed to ensure convergence. For this purpose the important point is that in this scheme the iterations are performed with both the ϵ and the α as variables. We will apply this theory to derive the parameters that define the position of a stellar image on a single photographic plate.

CHAPTER 3 FINDING STELLAR COORDINATES

Now apply the theory of least squares to the determination of equatorial coordinates from the rectangular coordinates of a stellar image on a photographic plate. The first section presents the reduction for single plates, following Eichhorn (1984).

Positions from Single Plates

Consider the data from a single photographic plate. On it, there will be m reference stars and n stars. The position estimates for the reference stars $(\alpha_{\nu e}, \delta_{\nu e})$ are available from some catalogue, with their respective variances, $\rho_{\nu} \cos^2 \delta_{\nu e}$ and σ_{ν} . First make the (reasonably correct) assumption that the $\alpha_{\nu e}$ and $\delta_{\nu e}$ are uncorrelated. The Astrographic Catalogue (or direct measurements from a photographic plate) provides measured rectangular coordinate estimates x_{ν} and y_{ν} . The variances v and ϕ for these coordinate estimates must be obtained somehow.

Let us introduce "standard coordinates," ξ and η , to facilitate the reduction. These are related to the right ascension and declination. The relationship between ξ and η on one hand, and α and δ on the other hand describes the geometry of a gnomonic projection:

$$\begin{pmatrix} \cos \delta \cos(\alpha - \alpha_o) \\ \cos \delta \sin(\alpha - \alpha_o) \\ \sin \delta \end{pmatrix} = \frac{1}{\sqrt{\xi^2 + \eta^2 + 1}} \begin{pmatrix} \cos \delta_o - \eta \sin \delta_o \\ \xi \\ \sin \delta_o + \eta \cos \delta_o \end{pmatrix}$$
(3.1)

or inverted

$$\xi = \frac{\cos \delta \sin (\alpha - \alpha_0)}{\sin \delta \sin \delta_0 + \cos \delta \cos \delta_0 \cos (\alpha - \alpha_0)}$$

$$\eta = \frac{\sin \delta \cos \delta_0 - \cos \delta \sin \delta_0 \cos (\alpha - \alpha_0)}{\sin \delta \sin \delta_0 + \cos \delta \cos \delta_0 \cos (\alpha - \alpha_0)}.$$
(3.2)

Consider the ideal situation where the optics of the telescope provides exactly the same imaging as a pinhole camera. The rectangular coordinates x_{ν} , y_{ν} would thus be related to these standard coordinates ξ , η purely by the focal length and the orientation of the plate in the focal plane. However, a telescope never provides an ideal gnomonic (i.e., pinhole like) projection. The deviations of the telescope's properties from producing an ideal gnomonic projection — these are called aberrations — produce a variety of optical effects that affect the position of a star image. Even if the telescope did produce images exactly in the manner of a pinhole camera, we would still rely on experimental estimates of the telescope's parameters. For example we need the focal length, the location of the plate center and the orientation of the plate with respect to the optical axis. All the deviations and telescope parameters are included in the model and estimated from the observations.

In practice, we assume the relationship between the standard coordinates and the rectangular coordinates of the ν -th star to be of the form

$$\begin{pmatrix} x_{\nu} \\ y_{\nu} \end{pmatrix} = s \begin{pmatrix} \xi_{\nu} \\ \eta_{\nu} \end{pmatrix} + \Xi_{\nu} a$$
 (3.3)

where s is an accurate approximation of the focal length of the telescope, Ξ_{ν} is the model matrix (with two rows), and a is a vector of parameters (the parameter vector).

The values of the parameter vector a can be found from a linearized least squares analysis if $|\Xi_{\nu}a| << |s \binom{\xi_{\nu}}{\nu}|$.

The model matrix, Ξ , and the concomitant parameter vector, a, can take many forms depending on the properties of the telescope. For this example we will use the simple "six-constant model." In this model relationship (3.3) takes the form

$$\begin{pmatrix} x \\ y \end{pmatrix} = s \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi & \eta & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \end{pmatrix},$$
 (3.4)

where each of the parameters a ... c has a physical significance.

Parameters c and c' account for differences between the origins of the measurable rectangular image coordinates (x,y) and the standard coordinates (ξ,η) . a and b' correct the focal length. Rotation of the plate is corrected for by the parameters b and a'. This relationship (3.4) models any effect which produces a linear relationship between (x,y) and (ξ,η) systems.

For this analysis we use a matrix that contains up to 16 independent parameters, but the underlying reduction remains in principle the same. Obviously, larger and more sophisticated models may account for, and correct more, complicated errors.

Use of the relationship (3.3) will render the condition equations for the reference stars to be of the form

$$H = \begin{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} - s \begin{pmatrix} \xi_1(\alpha_1, \delta_1) \\ \eta_1(\alpha_1, \delta_1) \end{pmatrix} - \Xi_1 a \\ \eta_2 \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} - s \begin{pmatrix} \xi_2(\alpha_2, \delta_2) \\ \eta_2(\alpha_2, \delta_2) \end{pmatrix} - \Xi_2 a \\ \vdots & \vdots \\ \begin{pmatrix} x_m \\ y_m \end{pmatrix} - s \begin{pmatrix} \xi_m(\alpha_m, \delta_m) \\ \eta_m(\alpha_m, \delta_m) \end{pmatrix} - \Xi_m a \end{pmatrix} = 0. \quad (3.5)$$

Note that the Ξ_{ν} are matrices of dimension $(2 \times m)$, where m is the number of components of vector a.

In equation (3.5), the $x_1,y_1,...,x_m,y_m$ are the observations, and the $\alpha_1,\delta_1...,\alpha_m,\delta_m$ and the components of the vector a are the unknowns. For linearizing these equations, we need approximate values for the $\alpha_1,...,\delta_m$. An analysis of a single plate only incorporates reference stars (i.e., stars for which estimated α and δ are available). The catalogue position estimates of these reference stars provide the additional condition equations which are necessary to make the system determinate:

$$\begin{pmatrix} (\alpha_{1c} - \alpha_{1}) \cos \delta_{1} \\ \delta_{1c} - \delta_{1} \\ (\alpha_{2c} - \alpha_{2}) \cos \delta_{2} \end{pmatrix}$$

$$G = \begin{cases} \delta_{2c} - \delta_{2} \\ \vdots & \vdots \\ (\alpha_{mc} - \alpha_{m}) \cos \delta_{m} \\ \delta_{mc} - \delta_{m} \end{cases} = 0. \quad (3.6)$$

Here, $\alpha_{\nu e},...,\delta_{\nu e}$ are observations (coordinate estimates from a reference catalogue), while $\alpha_{\nu},...,\delta_{\nu}$ are the same unknowns as in H=0 from (3.5).

We combine all the condition equations into one set:

$$F = \begin{pmatrix} H \\ G \end{pmatrix}$$
 (3.7)

F has the same function as in the previous analysis of the least squares solution. From equation (2.20) the corrections α to the parameters will be given by

$$\alpha = -\left[\mathbf{A}^{T}(\mathbf{X}\sigma\mathbf{X}^{T})^{-1}\mathbf{A}\right]^{-1}\mathbf{A}^{T}(\mathbf{X}\sigma\mathbf{X}^{T})^{-1}F_{o}$$
(3.8)

where the ν -th element of each matrix is $\mathbf{X}=\left(\frac{dF}{dz}\right)_{a=a_o+a_\nu,x=x_o+\epsilon}$, $\mathbf{A}=\left(\frac{dF}{da}\right)_{a=a_o+a_\nu,x=x_o+\epsilon}$, $F_o=F(x_o,a_o)$.

All the equations contain exactly one observation; therefore, we have the (classical) happy circumstance that $X_{\nu} = \left(\frac{dF}{dx}\right) = I$, the identity matrix. Our first assumption that the observations and catalogue coordinates are uncorrelated gives us a covariance matrix of the form

let $\sigma = \begin{pmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{\alpha\alpha} \end{pmatrix}$.

Equation (3.8) then simplifies to

$$\alpha = -[A^T \sigma^{-1} A]^{-1} A^T \sigma^{-1} F_o.$$
 (3.10)

For an initial approximation we take the components of the parameter vector, a, to be zero. Now insert in the left hand side of the condition equations (3.5) the observed pairs x,y, put a=0 and calculate the ξ and η from the catalogued α and δ of the reference stars. The right side will not be equal to zero but a vector d with, we hope, relatively small components: the residual vector. Also let the corrections to the positions be a vector β defined by small position increments ($\cos\delta d\alpha$, $d\delta$). These are one set of unknowns.

Equation (3.8) thus formally becomes $F = \begin{pmatrix} H \\ G \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$, where d is the residual vector.

With $\alpha_{\rm approx} = \alpha_{\rm catalogue}$ and $\delta_{\rm approx} = \delta_{\rm catalogue}$ the residual vector for G will be zero by definition. The corrections, α , to the parameters become $\alpha = \begin{pmatrix} \beta \\ a \end{pmatrix}$, where β is the vector of corrections to the reference star positions, i.e.

$$\begin{pmatrix} \cos \delta_1 d\alpha_1 \\ d\delta_1 \\ \vdots \\ \cos \delta_m d\alpha_m \\ d\delta_m \end{pmatrix}$$
(3.11)

and a is the vector of the plate parameters.

Equation (3.8) now simplifies to

$$\begin{pmatrix} \beta \\ a \end{pmatrix} = -\left[\mathbf{A}^{T}\sigma^{-1}\mathbf{A}\right]^{-1}\mathbf{A}^{T}\sigma^{-1}\begin{pmatrix} d \\ 0 \end{pmatrix}$$

$$\rightarrow \left[\mathbf{A}^{T}\sigma^{-1}\mathbf{A}\right]\begin{pmatrix} \beta \\ a \end{pmatrix} = -\mathbf{A}^{T}\sigma^{-1}\begin{pmatrix} d \\ 0 \end{pmatrix}.$$
(3.12)

First we must investigate the structure of A.

We have defined A as

$$\mathbf{A} = \begin{pmatrix} \frac{dF}{d\alpha} \end{pmatrix} = \begin{pmatrix} \frac{d(H,G)}{d(\beta,a)} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{dH}{d\beta} & \frac{dH}{da} \\ \frac{dG}{d\beta} & \frac{dG}{da} \end{pmatrix} = -\begin{pmatrix} s\mathbf{B} & \mathbf{\Xi} \\ \mathbf{I} & \mathbf{0} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{\Xi}_{\mathbf{1}} \\ \end{pmatrix}$$

where $\mathbf{B} = \begin{pmatrix} \frac{d(\xi_{\nu},\eta_{\nu})}{d(\alpha_{\nu},\delta_{\nu})} \end{pmatrix} \begin{pmatrix} \frac{1}{\cos\delta} & 0 \\ 0 & 1 \end{pmatrix}$ and $\mathbf{\Xi} = \begin{pmatrix} \mathbf{\Xi}_1 \\ \vdots \\ \mathbf{\Xi}_m \end{pmatrix}$.

Consider the terms in equation (3.12)

$$\mathbf{A}^{\mathbf{T}\sigma^{-1}} = -\begin{pmatrix} s\mathbf{B} & \Xi \\ \mathbf{I} & 0 \end{pmatrix}^{\mathbf{T}} \begin{pmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{\alpha\alpha} \end{pmatrix}^{-1}$$

$$= -\begin{pmatrix} s\mathbf{B}^{\mathbf{T}} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \frac{1}{\sigma_{xx}} & 0 \\ 0 & \frac{1}{\sigma_{\alpha\alpha}} \end{pmatrix}$$

$$= -\begin{pmatrix} s\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1} & \sigma_{\alpha\alpha}^{-1} \\ \Xi^{\mathbf{T}}\sigma_{xx}^{-2} & 0 \end{pmatrix}$$
(3.14)

Multiply this by the matrix A:

$$\mathbf{A}^{\mathbf{T}}\sigma^{-1}\mathbf{A} = \begin{pmatrix} s^2\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{B} + \sigma_{\alpha\alpha} & s\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{\Xi} \\ s\mathbf{\Xi}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{B} & \mathbf{\Xi}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{\Xi} \end{pmatrix}. \tag{3.15}$$

Substituting this into equation (3.8), we get

$$(\mathbf{A}^{\mathbf{T}}\sigma^{-1}\mathbf{A}) \begin{pmatrix} \beta \\ a \end{pmatrix} = -\mathbf{A}^{\mathbf{T}}\sigma^{-1} \begin{pmatrix} d \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} s^{2}\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{B} + \sigma_{\alpha\alpha} & s\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{\Xi} \\ s\mathbf{\Xi}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{B} & \mathbf{\Xi}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{\Xi} \end{pmatrix} \begin{pmatrix} \beta \\ a \end{pmatrix} = -\begin{pmatrix} s\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1} & \sigma_{xx}^{-1} \\ \mathbf{\Xi}^{\mathbf{T}}\sigma_{xx}^{-1} & 0 \end{pmatrix} \begin{pmatrix} d \\ 0 \end{pmatrix}$$

$$(3.16)$$

expanding

$$\left(s^2 \mathbf{B^T} \sigma_{xx}^{-1} \mathbf{B} + \sigma_{\alpha\alpha}\right) \beta + s \mathbf{B^T} \sigma_{xx}^{-1} \Xi a = s \mathbf{B^T} \sigma_{xx}^{-1} d$$

$$s\Xi^{T}\sigma_{-}^{-1}B\beta + \Xi^{T}\sigma_{-}^{-1}\Xi a = \Xi^{T}\sigma_{-}^{-1}d.$$

Solve for β ;

$$\beta = (s^{2}B^{T}\sigma_{xx}^{-1}B + \sigma_{\alpha\alpha})^{-1}sB^{T}\sigma_{xx}^{-1}(d - \Xi a) \qquad (3.18)$$

and a

$$s\Xi^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{B}\left(\left(s^{2}\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1}\mathbf{B} + \sigma_{\alpha\alpha}\right)^{-1}s\mathbf{B}^{\mathbf{T}}\sigma_{xx}^{-1}(d - \Xi a)\right) + \Xi^{\mathbf{T}}\sigma_{xx}^{-1}\Xi a$$

$$= \Xi^{\mathbf{T}}\sigma_{-1}^{-1}d$$
(3.19)

whence

$$\Xi^{\mathrm{T}}\left\{\sigma_{xx}^{-1} - s^{2}\sigma_{xx}^{-1}\mathrm{B}\left(s^{2}\mathrm{B}^{\mathrm{T}}\sigma_{xx}^{-1}\mathrm{B} + \sigma_{\alpha\alpha}\right)^{-1}\mathrm{B}^{\mathrm{T}}\sigma_{xx}^{-1}\right\}\Xi a =$$

$$\Xi^{\mathrm{T}}\left\{\sigma_{xx}^{-1} - s^{2}\sigma_{xx}^{-1}\mathrm{B}\left(s^{2}\mathrm{B}^{\mathrm{T}}\sigma_{xx}^{-1}\mathrm{B} + \sigma_{\alpha\alpha}\right)^{-1}\mathrm{B}^{\mathrm{T}}\sigma_{xx}^{-1}\right\}d,$$
(3.20)

so that,

$$\Xi^{T}J\Xi a = \Xi^{T}Jd$$
 or $a = (\Xi^{T}J\Xi)^{-1}\Xi^{T}Jd$ (3.21)

where
$$\mathbf{J} = \sigma_{xx}^{-1} - s^2 \sigma_{xx}^{-1} \mathbf{B} \left(s^2 \mathbf{B}^T \sigma_{xx}^{-1} \mathbf{B} + \sigma_{\alpha\alpha} \right)^{-1} \mathbf{B}^T \sigma_{xx}^{-1}$$
.

This matrix J can be simplified using the matrix inversion lemma

$$\mathbf{J} = \left(\sigma_{\mathbf{x}\mathbf{x}} + \mathbf{B}\sigma_{\alpha\alpha}^{-1}\mathbf{B}^{\mathrm{T}}\right)^{-1} \tag{3.22}$$

which is a block diagonal consisting of (2×2) blocks on the main diagonal. The parameter vector, a, more explicitly is

$$a = \left(\sum_{\nu=1}^{m} \Xi_{\nu}^{\mathbf{T}} \mathbf{J}_{\nu} \Xi_{\nu}\right)^{-1} \sum_{\nu=1}^{m} \Xi_{\nu}^{\mathbf{T}} \mathbf{J}_{\nu} d_{\nu}. \tag{3.23}$$

Now we must find more explicit expressions for the matrix **J**. We could go directly to equation (3.22) but this would entail evaluating **B**. To evaluate **B** from the initial formula is simple but requires first approximations for the spherical coordinates, α, δ . It is better to express the matrix **B** in terms of quantities we already have estimates for, e.g., ξ and η for which first estimates are just $\frac{1}{\delta}x$ and $\frac{1}{\delta}y$. In the case of the astrographic catalogue, estimates of the parameters give very close estimates for the ξ and η in terms of x and y.

Eichhorn (1985) showed if we define the following quantities,

$$R = \sqrt{(1 + \xi^2 + \eta^2)}$$

$$T = \sqrt{\xi^2 + (\cos \delta_o - \eta \sin \delta_o)^2}$$

$$S = (\xi R^2 \sin \delta_o)/T$$

$$U = (\xi R(\sin \delta_o + \eta \cos \delta_o))/T$$

$$V = (R^2(\cos \delta_o - \eta \sin \delta_o))/T$$

$$W = ((\xi^2 R \cos \delta_o)/T) + V/R$$
(3.24)

we may write the matrix $\mathbf{B} = \begin{pmatrix} W & -S \\ U & V \end{pmatrix}$. If one further introduces the quantities

$$Q = -UW\rho + SV\sigma$$

$$Y = U^2 \rho + V^2 \sigma \tag{3.25}$$

$$Z = W^2 \rho + S^2 \sigma$$

where $\rho = \sigma_{\alpha}$ and $\sigma = \sigma_{\delta}$. Then from equation (3.22) ,

$$\mathbf{J} = \frac{1}{\nu \varphi + Y \nu + Z \varphi + R^6 \sigma \rho} \begin{pmatrix} \varphi + Y & Q \\ Q & \nu + Z \end{pmatrix}. \tag{3.26}$$

Finally we can also use the quantities above to simplify the corrections to the positions, β ; again from Eichhorn (1985),

$$\beta = \frac{1}{s(\nu\varphi + R^{\theta}\rho\sigma + Y\nu + Z\varphi)}$$

$$\begin{pmatrix} \rho & 0 \\ 0 & \sigma \end{pmatrix} \begin{bmatrix} \begin{pmatrix} W & U \\ -S & V \end{pmatrix} \begin{pmatrix} \varphi & 0 \\ 0 & \nu \end{pmatrix} + R^{S} \begin{pmatrix} \sigma & 0 \\ 0 & \rho \end{pmatrix} \begin{pmatrix} V & S \\ -U & W \end{pmatrix} \end{bmatrix} (d - \Xi a).$$
(3.27)

Example

This completes, in essence, the theoretical analysis of a single plate. It is helpful to summarize what the steps are in extracting the position estimates from an astrographic plate as in the immediate problem.

Combine the published spherical coordinates of the reference stars (α_c, δ_c) with the published plate center (α_o, δ_o) in the trigonometric relations (3.2) and calculate the standard coordinates (ξ', η') . We use the estimated plate parameters from the AC to find approximate rectangular coordinates (x', y') for the equatorial coordinates of the reference stars. Compare the measured coordinates (x, y) of the AC and, using the magnitude as an independent check, identify the reference stars.

After this process we have measured coordinates (x,y) matched with the reference stars' spherical coordinates, (α_c, δ_c) . Also for each plate we have initial estimates of the center and the parameters. The next step is to find approximate standard coordinates using

$$\begin{pmatrix} \xi' \\ \eta' \end{pmatrix} = \frac{1}{s} \left\{ \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a_3 \\ a_6 \end{pmatrix} \right\}$$
 (3.28)

where the parameters represent any shift of the zero point from the initial estimates. We use these approximate values (ξ', η') for no other purpose than to calculate the matrix

J from equation (3.26) and define the matrix Ξ in equation (3.23). The approximate values (ξ', η') are fully sufficient for these calculations.

Standard coordinate estimates (ξ,η) are found from equation (3.2) using the spherical coordinates of the reference stars with the assumed plate centers. We use these values to calculate the residual vector, d. If we assume an initial value of zero for the parameters, then

$$d = \begin{bmatrix} x_1 - s \cdot \xi_1 \\ y_1 - s \cdot \eta_1 \\ \vdots \\ x_m - s \cdot \xi_m \\ y_m - s \cdot \eta_m \end{bmatrix}$$
(3.29)

and from equation (3.23), for the reference stars on the plate,

$$a = \left(\sum_{\nu=1}^{m} \Xi_{\nu}^{T} J_{\nu} \Xi_{\nu}\right)^{-1} \sum_{\nu=1}^{m} \Xi_{\nu}^{T} J_{\nu} d_{\nu}$$
(3.30)

we find the vector a. As we have assumed initial approximations in the residual vector to be zero, this a will be the actual parameters, except a(3) and a(6) will be corrections to the originally assumed values.

We have found the single plate parameter estimates. Using these we can estimate from the rectangular coordinates (x,y) published in the AC, the standard coordinates of the field stars. These in turn provide spherical coordinates using the inverse of the gnomonic relation. We can now use the overlapping plate technique to improve on these first estimates of the field stars' equatorial coordinates.

Positions from Overlapping Plates

Solution with Unconstrained Parameters

Single plate solutions do not use all the available information. The most important information not used is the constraint that the same star on two plates of the same epoch must have the same set of equatorial coordinates, because a star can only be at one place at one time. In a single plate solution, the data on each plate give independent "best" estimates that can be then averaged to give a "combined best" (even "bester"?) estimate.

This process leads to systematic errors because the available plate parameter estimates are not the true ones (Eichhorn and Williams, 1963). The individual parameter errors generate systematic errors in the star positions calculated with them. This is aggravated by ignoring the above constraint; enforcing more constraints generates more accurate parameters. An overlap solution enforces this constraint, producing more accurate plate parameters, thus inevitably leading to smaller systematic errors in the star positions. The experience of many investigators has shown however that the reduction model (i.e. the matrix Ξ) must be carefully chosen to be the most realistic available.

Assume that there are altogether

- 1. n at least partially overlapping plates, which are numbered $\nu=1,...,n$,
- m stars in the region which are either on more than one plate or a reference star;
 μ is the current star number,
- 3. m_r of the m stars in the region are reference stars,
- 4. The numbers of the reference stars are $\mu_{r_1},...,\mu_{r_{m_r}}$,
- 5. m_{ν} stars on the ν th plate.

The measures (estimated) rectangular coordinates of the μ th star on the ν th plate are $x_{\mu\nu}$, $y_{\mu\nu}$.

The equations of conditions are identical with those in a single plate solution. The first step in the overlap is to find estimates of the spherical coordinates α and δ of the field stars from single plate reductions and average those that appear on more than one plate. This yields the required estimated equatorial coordinates for all stars that are in turn used to calculate the standard coordinates. There must be no loss of significant figures in this process.

It is essential, at this point, to use the same estimates, $\alpha_{\mu o}$, $\delta_{\mu o}$, for calculating the standard coordinates, $\xi_{\mu \nu}$, $\eta_{\mu \nu}$, of each star. For the reference stars, the catalogued estimates, $\alpha_{e\mu}$, $\delta_{e\mu}$, should be used as initial approximations to these stars' equatorial coordinates.

The condition equations, generated by the measurable coordinates x,y for the ν th plate, will therefore be of the form

$$H = \begin{pmatrix} x_{\mu_{\nu_1}\nu} - s\xi_{\mu_{\nu_1}\nu} \\ y_{\mu_{\nu_1}\nu} - s\eta_{\mu_{\nu_1}\nu} \end{pmatrix} - \Xi_{\mu_{\nu_1}\nu} a_{\nu} \\ x_{\mu_{\nu_2}\nu} - s\xi_{\mu_{\nu_2}\nu} \\ y_{\mu_{\nu_2}\nu} - s\eta_{\mu_{\nu_2}\nu} \end{pmatrix} - \Xi_{\mu_{\nu_2}\nu} a_{\nu} \\ \vdots \\ \begin{pmatrix} x_{\mu_{\nu_m}\nu} - s\xi_{\mu_{\nu_m}\nu} \\ y_{\mu_{\nu_m}\nu} - s\eta_{\mu_{\nu_m}\nu} \end{pmatrix} - \Xi_{\mu_{\nu_m}\nu} a_{\nu} \\ y_{\mu_{\nu_m}\nu} - s\eta_{\mu_{\nu_m}\nu} \end{pmatrix} - \Xi_{\mu_{\nu_m}\nu} a_{\nu} \\ \downarrow \nu = 1, \dots, n. \end{cases}$$
(3.31)

Note that equations (3.31) will be satisfied only for the true values of the measurable coordinates x and y and the final estimates for the plate parameters a_{ν} .

In these equations, we have assumed that the (most likely nonconsecutive) numbers of the stars on the ν th plate run from $\mu_{\nu_1},...,\mu_{\nu_{m_{\nu}}}$, which necessitates the complicated indexing. Note that each μ_{ν} is just one natural number; an image of the same star on plates ν and ν' will yield two numbers κ and λ such that $\mu_{\nu_{\kappa}} = \mu_{\nu_{\lambda}}$.

Assign the numbers μ to the stars in some organized fashion, for example in order of increasing right ascension. The stars next to each other are then likely to be measured on plates that overlap one another at least partially. This will be elaborated on in the example given below.

Concerning the reference star condition equations, it is best to write the equations corresponding to G=0 for all reference stars together. Otherwise if we write G after the equations (3.31), it will require an awkward criterion to make sure than the equation G_{μ} =0 is set up only once for each reference star.

The measured coordinates of the stars' images on each plate provide the set of equations

$$H = \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix} = 0. \tag{3.32}$$

The reference stars, that is those that have estimates α_c , δ_c of their spherical coordinates listed in some catalogue, generate, in addition to H=0, the following set of condition equations

$$G = \begin{pmatrix} (\alpha_{c\mu r_1} - \alpha_{\mu r_1}) \cos \delta_{\mu r_1} + \epsilon_{\mu r_1} \\ \delta_{\nu \mu_1} - \delta_{\mu_1} + \epsilon_{\mu r_1} \\ (\alpha_{c\mu r_2} - \alpha_{\mu r_2}) \cos \delta_{\mu r_2} + \epsilon_{\mu r_2} \\ \delta_{\mu r_2} - \delta_{\mu r_2} + \epsilon_{\mu r_2} \\ \vdots \\ (\alpha_{c\mu r_{m_r}} - \alpha_{\mu r_{m_r}}) \cos \delta_{\mu r_{m_r}} + \epsilon_{\mu r_1 r_{m_r}} \end{pmatrix} = 0$$

$$(3.33)$$

$$(3.33)$$

where c is a catalogue value. These equations reflect the previous statement that the numbers of the reference stars are $\mu_{r_1}, ..., \mu_{r_{m_r}}, \mu_{r1}, ..., \mu_{rm}$.

There is an essential difference between equations (3.31) and (3.33). Equation (3.31) holds for the "true" values of the observables, i.e. the rectangular coordinates of the stellar images on the plates. The equations are satisfied rigorously after we have found the "definitive" values (estimates) for the plate parameters a_{ν} .

Equation (3.33) is somewhat different. Instead of observables (the spherical coordinates themselves), we have used their catalogued estimates; the observables are, therefore, also adjustment parameters. To be able to equate (3.33) to zero we need to add corrections ϵ and ξ to the appropriate catalogue estimates. Normally the numbers μ_{tk} , μ_{tk+1} of two "neighboring" reference stars in equations (3.33) will not be consecutive. In typical situations only a few of the stars on each plate will be reference stars, and they will usually not have consecutively ordinal numbers. Again this will be illustrated by the example.

Equations (3.31) and (3.33) combine to form the condition equations; $F = \begin{pmatrix} H \\ G \end{pmatrix} = 0$. Since only one observation occurs in each equation the matrix X (being the Jacobian matrix of the condition equations F = 0, with respect to the observables, x) will be the identity matrix. This simplifies our least squares solution, such that,

$$\mathbf{X} = \left(\frac{\partial F}{\partial \mathbf{x}}\right)_{x=x,a=a} = \mathbf{I}$$
(3.34)

therefore.

$$\mathbf{X}\sigma\mathbf{X}^{T} = \sigma = \begin{pmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{\alpha\alpha} \end{pmatrix}.$$
 (3.35)

From equation (2.20), the correction to the parameters, α , is given by $\alpha = -\left[\mathbf{A}^{\mathrm{T}}(\mathbf{X}\sigma\mathbf{X}^{\mathrm{T}})^{-1}\mathbf{A}\right]^{-1}\mathbf{A}^{\mathrm{T}}(\mathbf{X}\sigma\mathbf{X}^{\mathrm{T}})^{-1}F_{o.}$ When $\mathbf{X} = \mathbf{I}$ this simplifies to, $\alpha = -(\mathbf{A}^{\mathrm{T}}\sigma^{-1}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}\sigma^{-1}F_{o.}$

The next step is to find the matrix $A=\left(\frac{dF}{d\alpha}\right)$, where α are the adjustment parameters. Let β be the corrections to the stars' spherical coordinates and a the plate parameters, thus $\alpha=\begin{pmatrix}\beta\\a\end{pmatrix}$. In this example $|\alpha|<<1$ and if the parameter vector is a=0 then, the values we obtain from equation (2.20), will be the actual parameter values rather than the corrections.

Since A is the Jacobian matrix of the condition equations with respect to the adjustment parameters, we have

$$\mathbf{A} = \begin{pmatrix} \frac{\partial F}{\partial \alpha} \end{pmatrix} = \begin{pmatrix} \frac{\partial (H,G)}{\partial (\beta,a)} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} \frac{\partial H}{\partial \beta} \end{pmatrix} & \begin{pmatrix} \frac{\partial H}{\partial a} \end{pmatrix} \\ \frac{\partial G}{\partial \beta} & \begin{pmatrix} \frac{\partial G}{\partial a} \end{pmatrix} \end{pmatrix}. \tag{3.36}$$

From equation (3.32) we have

$$\frac{\partial H_{\nu}}{\partial \alpha} = \begin{pmatrix} \frac{\partial f_{\alpha}}{\partial \alpha} \\ \frac{\partial f_{\alpha}}{\partial \alpha} \\ \vdots \\ \frac{\partial f_{\alpha}}{\partial \alpha} \end{pmatrix}$$
(3.37)

and for any H_{ν} ,

$$\frac{\partial H_{\nu}}{\partial \alpha} = \left(\frac{\partial H_{\nu}}{\partial \beta}, \frac{\partial H_{\nu}}{\partial a}\right). \tag{3.38}$$

In this equation β is the vector of star parameters, $(\alpha_{\mu}\cos\delta_{\mu},\delta_{\mu})$, and a is the vector of plate parameters, taken one plate after another: $a^T=\left(a_1^T,a_2^T,\ldots,a_2^T\right)$. We consider the condition equations H_{ν} =0 which arise from the measured rectangular coordinates

of the star numbers, $\mu_{\nu 1},...,\mu_{\nu m \nu}$ on the ν th plate. Break down H_{ν} further and write

$$H_{\nu} = \begin{pmatrix} H_1 \\ H_2 \\ \vdots \\ H_n \end{pmatrix}, \tag{3.39}$$

where $H_{\mu_{\nu}\kappa_{\nu}}$ is a vector of dimension (2 × 1).

Since there are altogether m stars, the Jacobian matrix $\frac{\partial H_{\mu\nu_{\mu}}}{\partial \beta}$ is of dimension (2 \times 2m): $\frac{\partial H_{\mu\nu_{\mu}}\nu}{\partial \beta} = (0 \dots 0B_{\mu\nu_{\mu}}\nu 0 \dots 0)$ where the 0 are matrices of dimension (2 \times 2) and $B_{\mu\nu_{\mu}}\nu = \left(\frac{\partial \left(\xi_{\nu_{\mu\nu}}\nu,\eta_{\nu\nu_{\mu}}\nu\right)}{\partial \left(\alpha_{\mu\nu_{\mu}}\nu\cos\delta_{\mu\nu_{\mu}}\nu,\delta_{\nu\nu_{\mu}}\nu\right)}\right)$, are also of dimension (2 \times 2). The reason for the particular structure of $\left(\frac{\partial H_{\mu\nu_{\mu}}\nu}{\partial \beta}\right)$ is that each pair ξ,η depends on only one pair α,δ . We get therefore from "each plate"

$$\frac{\partial H_{\nu}}{\partial \beta} = -s \begin{pmatrix} 0 & \dots & \mathbf{B}_{\mu_{n_1}\nu} & 0 & \dots & 0 & 0 & \dots & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & \mathbf{B}_{\mu_{n_2}\nu} & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 & 0 & \dots & \mathbf{B}_{\mu_{\nu_n}\nu} & \dots & 0 \end{pmatrix} = \mathbf{B}_{\nu}. \quad (3.40)$$

This matrix is of dimension $(2m\nu \times 2m)$. Each line contains exactly one (2×2) matrix that is not a null matrix; and each column at most one (2×2) matrix that is not a null matrix, namely when the an image of the star is measured on the ν th plate. One could say that $\mathbf{B}_{\mu\nu}$ is then, and only then, not a null matrix when $\mu \in \{\mu_{\nu\kappa}\}$, i.e., when the number μ of the star is among those whose images were measured on the ν th plate.

If we introduce
$$\mathbf{B}=\begin{pmatrix}\mathbf{B_1}\\\mathbf{B_2}\\\vdots\\\mathbf{B_n}\end{pmatrix}$$
 then we may write
$$\frac{\partial H}{\partial \beta}=-s\mathbf{B}. \tag{3.41}$$

The matrix B obviously has the dimensions (2 $\sum_{\nu=1}^{n} m_{\nu} \times 2m$.)

If we write $\Xi_{\nu}=\begin{pmatrix}\Xi_{\mu_{\nu1}\nu}\\\Xi_{\mu_{\nu2}\nu}\\\vdots\\\Xi_{\mu_{\nun}\nu}\end{pmatrix}$, which has the dimensions $(2m_{\nu}\times l_{\nu})$ where l_{ν} is the number of components of the vector a_{ν} , then we see from equation (3.31) that $\frac{\partial H_{\alpha}}{\partial a_{\alpha}}=(0\ \dots\ 0\ -\Xi_{\nu}\ 0\ \dots\ 0)$ and

$$\frac{\partial H}{\partial a} = \frac{\partial H_{\nu}}{\partial (a_1, a_2, \dots, a_n)} = \begin{pmatrix} \frac{\partial H_{\nu}}{\partial a_1} & \frac{\partial H_{\nu}}{\partial a_2} & \dots & \frac{\partial H_{\nu}}{\partial a_k} \\ \frac{\partial H_{\nu}}{\partial a_2} & \frac{\partial \partial H_{\nu}}{\partial a_2} & \dots & \frac{\partial H_{\nu}}{\partial a_k} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial H_{\nu}}{\partial a_{\nu}} & \frac{\partial \partial H_{\nu}}{\partial a_{\nu}} & \dots & \frac{\partial H_{\nu}}{\partial a_{\nu}} \\ \end{pmatrix} \begin{pmatrix} \Xi_1 & 0 & \dots & 0 \\ 0 & \Xi_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \Xi_n \end{pmatrix} = -\Xi. \quad (3.42)$$

We further see that

$$\frac{\partial G}{\partial \beta} = \frac{\partial \left(\alpha_{\varepsilon} - \alpha \right) \cos \delta}{\delta_{\varepsilon} - \delta} - \frac{\delta}{\partial (\alpha \cos \delta, \delta)} = -K, \quad (3.43)$$

where K is a matrix of dimension $(2m_r \times 2m)$. It has exactly one I_2 in each double line and at most one I_2 per double column, namely for those star numbers that correspond to reference stars. We see therefore that the structure of K is

$$K = \begin{pmatrix} 0 & \dots & 0 & \mathbf{I}_2 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 & \mathbf{I}_2 & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots \\ 0 & \dots & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 & \mathbf{I}_2 & 0 & \dots & 0 \end{pmatrix}.$$
(3.44)

Since G is independent of the plate parameters we see that $\frac{\partial G}{\partial a} = 0$ and of dimension $(2m_{\tau} \times \sum_{n=1}^{n} p_{\nu})$.

The matrix A contains the same derivatives in an overlap solution as a single plate reduction, but its structure is more complicated for an overlap reduction. Generally, A can be written in the form

$$-A = \begin{pmatrix} sB & \Xi \\ K & 0 \end{pmatrix}$$
(3.45)

which is analogous to its form for a single plate reduction. The deeper structure of A for an overlap reduction deserves close examination, and will be analyzed in the example.

The matrix **B** will be made up of individual blocks of dimension (2×2) , $\mathbf{B}_{\mu\nu}$, at each position where the μ th star appears on the ν th plate. Each plate will generate m_{ν} separate lines; size $2\sum_{j=1}^{n}m_{\nu}\times 2m$.

Consider the normal equations $(A^T\sigma^{-1}A)\alpha = -A^T\sigma^{-1}F_o$ that is to say

$$(\mathbf{A}^{\mathrm{T}}\sigma^{-1}\mathbf{A})\begin{pmatrix} \beta \\ a \end{pmatrix} = -\mathbf{A}^{\mathrm{T}}\sigma^{-1}F_{o}. \tag{3.46}$$

Let us therefore investigate the structure of the term $(A^T\sigma^{-1}A)$. Multiplying out

$$\mathbf{A}^{\mathbf{T}}\sigma^{-1}\mathbf{A} = \begin{pmatrix} s^{2} \sum_{\nu=1}^{\mathbf{n}} \mathbf{B}_{\nu}^{\mathbf{T}}\sigma_{\nu}^{-1}\mathbf{B}_{\nu} + \mathbf{K}^{\mathbf{T}}\sigma_{\alpha\alpha}^{-1}\mathbf{K} & s\mathbf{B}_{\mathbf{I}}^{\mathbf{T}}\sigma_{\mathbf{I}}^{-1}\mathbf{\Xi}_{1} & \dots & s\mathbf{B}_{\mathbf{n}}^{\mathbf{T}}\sigma_{\mathbf{n}}^{-1}\mathbf{\Xi}_{\mathbf{n}} \\ & s\mathbf{\Xi}_{\mathbf{I}}^{\mathbf{T}}\sigma_{\mathbf{I}}^{-1}\mathbf{B}_{1} & \mathbf{\Xi}_{\mathbf{I}}^{\mathbf{T}}\sigma_{\mathbf{I}}^{-1}\mathbf{\Xi}_{1} & \dots & \mathbf{0} \\ & \vdots & & \vdots & & \vdots \\ & s\mathbf{\Xi}_{\mathbf{I}}^{\mathbf{T}}\sigma_{\mathbf{n}}^{-1}\mathbf{B}_{\mathbf{n}} & \mathbf{0} & \dots & \mathbf{\Xi}_{\mathbf{I}}^{\mathbf{T}}\sigma_{\mathbf{n}}^{-1}\mathbf{\Xi}_{\mathbf{n}} \end{pmatrix}$$
(3.47)

$$\mathbf{A^T} \boldsymbol{\sigma^{-1}} \mathbf{A} = \begin{pmatrix} \mathbf{L} & s \mathbf{B^T} \boldsymbol{\sigma_x^{-1}} \boldsymbol{\Xi} \\ s \boldsymbol{\Xi^T} \boldsymbol{\sigma_x^{-1}} \mathbf{B} & \boldsymbol{\Xi^T} \boldsymbol{\sigma_x^{-1}} \boldsymbol{\Xi} \end{pmatrix}$$

with $\mathbf{L} = s^2 \mathbf{B}^{\mathrm{T}} \sigma_{\mathbf{x}}^{-1} \mathbf{B} + \mathbf{K}^{\mathrm{T}} \sigma_{\alpha}^{-1} \mathbf{K}$.

Consider the term $(B^T\sigma_x^{-1}B)$, and the discussion above of the structure of B; on each row there is one line pair for each star, consisting of a (2×2) block, otherwise that row will contain only zeros. On each column there will again be a (2×2) block corresponding to a star that appears on the plate corresponding to the row it appears in. (The diagonal covariance matrix σ will not affect the structure of B^TB .)

The matrix $\mathbf{B}^T\mathbf{B}$ is a multiplication of two matrices of dimension; $(2m \times 2\sum_{\nu=1}^n m_{\nu})$ and $(2\sum_{\nu=1}^n m_{\nu} \times 2m)$, resulting in a $(2m \times 2m)$ matrix. The μ th row and column pair will have an (2×2) block equal to $\sum_{\nu=1}^n \mathbf{B}_{\mu\nu}^T \sigma_{\mathbf{X}\mu\nu}^{-1} \mathbf{B}_{\mu\nu}$.

Consider the product $s\mathbf{B}^T\sigma_{\mathbf{x}}^{-1}\Xi$; again, the covariance matrix will not affect the structure. The individual elements, $s\mathbf{B}_{\nu}^T\sigma_{\mathbf{x}\nu}^{-1}\Xi_{\nu}$, are sparse matrices of dimensions $(2m\times l_{\nu})$. Nonzero elements of the product $s\mathbf{B}^T\sigma_{\mathbf{x}}^{-1}\Xi$, will occur only where the μ th star appears on the ν th plate. Thus the structure of this matrix will be similar to that of \mathbf{B}^T with the ν th column pair replaced by a line of width l_{ν} , i.e. $\mathbf{B}^T\Xi$ is a $(2m\times 2m)$ matrix.

Finally, the product $\Xi^T \sigma_X^{-1}\Xi$ is block diagonal with the individual blocks equal to the products of each plate's model matrices and covariance matrices. This ends the consideration of the left hand side in (3.46).

Consider the right hand side of (3.46). This will be a vector with $2m + \sum_{\nu=1}^{n} l_{\nu}$ components

$$\mathbf{A}^{\mathbf{T}}\sigma^{-1}F = \begin{pmatrix} s \sum_{\nu=1}^{n} \mathbf{B}_{\nu}^{\mathbf{T}}\sigma_{\nu}^{-1}d_{\nu} \\ \Xi_{1}^{\mathbf{T}}\sigma_{1}^{-1}d_{1} \\ \vdots \\ \Xi_{n}^{\mathbf{T}}\sigma_{n}^{-1}d_{n} \end{pmatrix} = \begin{pmatrix} s\mathbf{B}^{\mathbf{T}} \\ \Xi^{\mathbf{T}} \end{pmatrix} \sigma_{\mathbf{x}}^{-1}d. \tag{3.48}$$

We arrive at the solution by first eliminating the star parameters and solving for the plate parameters only. Consider (3.46): $(A^T\sigma^{-1}A)\binom{\beta}{a}=-A^T\sigma^{-1}F_o$. We can substitute $A^T\sigma^{-1}A$ and $A^T\sigma^{-1}F_o$ from equations (3.47) and (3.48) to find that

$$\begin{pmatrix} \mathbf{L} & s\mathbf{B}^{T}\sigma_{\mathbf{x}}^{-1}\mathbf{\Xi} \\ s\mathbf{\Xi}^{T}\sigma_{\mathbf{x}}^{-1}\mathbf{B} & \mathbf{\Xi}^{T}\sigma_{\mathbf{x}}^{-1}\mathbf{\Xi} \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta} \\ \mathbf{a} \end{pmatrix} = \begin{pmatrix} s\mathbf{B}^{T} \\ \mathbf{\Xi}^{T} \end{pmatrix} \sigma_{\mathbf{x}}^{-1}\mathbf{d}, \quad (3.49)$$

or multiplying out

$$\mathbf{L}\beta + s\mathbf{B}^{T}\sigma_{\mathbf{x}}^{-1}\Xi\mathbf{a} = s\mathbf{B}^{T}\sigma_{\mathbf{x}}^{-1}d$$

 $s\Xi^{T}\sigma_{\mathbf{x}}^{-1}\mathbf{B}\beta + \Xi^{T}\sigma_{\mathbf{x}}^{-1}\Xi\mathbf{a} = \Xi^{T}\sigma_{\mathbf{x}}^{-1}d.$

$$(3.50)$$

The first row gives

$$\beta = s \mathbf{L}^{-1} \mathbf{B}^{T} \mathbf{\sigma}_{\mathbf{x}}^{-1} (d - \Xi a)$$
and $\beta = s \left(\delta_{\mu,\mu_{\mathbf{x}}} \sigma_{\mu_{\mathbf{x}}}^{-1} + s^{2} \sum_{\nu=1}^{n} \mathbf{B}_{\mu\nu}^{T} \sigma_{\mu\nu}^{-1} \mathbf{B}_{\mu\nu} \right)^{-1} \sum_{\nu=1}^{n} \mathbf{B}_{\mu\nu}^{T} \sigma_{\mu\nu}^{-1} (d_{\mu\nu} - \Xi_{\mu\nu} a_{\nu}).$
(3.51)

The vector $\beta_{\mu} = (\mathrm{d}\alpha_{\mu}\cos\delta_{\mu}, \,\mathrm{d}\delta_{\mu})^{\mathrm{T}}$ is different from the quantity β_{ν} . The term δ_{μ,μ_n} is a Kronecker symbol which will be equal to zero if the μ th star is not a reference star and equal to one if it is a reference star. The components of the matrix β are the corrections to the star coordinates individually and amount to weighted means of all the frames on which a particular star occurred.

Substituting this into the second row of (3.50) gives

$$s^2 \Xi^T \sigma_{\kappa}^{-1} B L^{-1} B^T \sigma_{\kappa}^{-1} (d - \Xi a) + \Xi^T \sigma_{\kappa}^{-1} \Xi a = \Xi^T \sigma_{\kappa}^{-1} d$$

 $\rightarrow \Xi^T (\sigma_{\kappa}^{-1} - s^2 \sigma_{\kappa}^{-1} B L^{-1} B^T \sigma_{\kappa}^{-1}) (d - \Xi a) = 0$
(3.52)

simplifying

$$a = (\Xi^T J'\Xi)^{-1}\Xi^T J'd \qquad (3.53)$$

where $\mathbf{J}' = \sigma_{\mathbf{x}}^{-1} - s^2 \sigma_{\mathbf{x}}^{-1} \mathbf{B} \mathbf{L}^{-1} \mathbf{B}^T \sigma_{\mathbf{x}}^{-1}$.

The inversion lemma cannot be used on J' because the matrix $K^T\sigma_x^{-1}K$ in L is singular. The matrix J' is not block diagonal but assumes the pattern of B^TB because L is block diagonal. The product $\Xi^TJ'\Xi a$ is 'banded-bordered' and there exist efficient routines to invert it.

It is instructive to examine the form of the Laplace multiplier Λ introduced in equation (2.10). From equation (2.9)

$$\Lambda = -W(A\alpha + F_o)$$
(3.54)

where $\mathbf{W} = \left(\mathbf{X} \sigma \mathbf{X}^T\right)^{-1}.$ In the overlap case

$$X = I$$
 (3.55)

$$W = (X \sigma X^T)^{-1} = \sigma^{-1}$$
.

Substituting this into equation (3.54), we get

$$\Lambda = -\sigma^{-1}(\mathbf{A}\alpha + \mathbf{F_o}) = \sigma^{-1}\mathbf{A}\binom{\beta}{\mathbf{a}} + \sigma^{-1}\mathbf{F_o}, \tag{3.56}$$

and substituting for σ , A and F₀

$$\begin{split} & \Lambda = - \left\{ \begin{pmatrix} \sigma_{xx}^{-1} & 0 \\ 0 & \sigma_{\alpha\alpha}^{-1} \end{pmatrix} \left[- \begin{pmatrix} s\mathbf{B} & \Xi \\ \mathbf{K} & 0 \end{pmatrix} \right] \begin{pmatrix} \beta \\ \alpha \end{pmatrix} + \begin{pmatrix} \sigma_{xx}^{-1} & 0 \\ 0 & \sigma_{\alpha\alpha}^{-1} \end{pmatrix} \begin{pmatrix} d \\ 0 \end{pmatrix} \right\} \\ & \Lambda = \begin{pmatrix} s\sigma_{xx}^{-1}\mathbf{B} & \sigma_{xx}^{-1}\mathbf{E} \\ \sigma_{\alpha\alpha}^{-1}\mathbf{K} & 0 \end{pmatrix} \begin{pmatrix} \beta \\ \alpha \end{pmatrix} - \begin{pmatrix} \sigma_{xx}^{-1}d \\ 0 \end{pmatrix} \\ & \Lambda = \begin{pmatrix} \sigma_{xx}^{-1}(s\mathbf{B}\beta + \Xi a - d) \\ \sigma_{\alpha\alpha}^{-1}\mathbf{K}\beta \end{pmatrix}. \end{split} \tag{3.57}$$

From equation (3.5) the formal errors in the observations are therefore

$$\varepsilon = \sigma \mathbf{X}^{\mathbf{T}} \Lambda = \begin{pmatrix} s \mathbf{B} \beta + \Xi a - d \\ \mathbf{K} \beta \end{pmatrix}. \tag{3.58}$$

Example

Figure 2: Arrangement of Stars

As in the single plate, it is helpful to summarize what the steps are in evaluating the positions using overlapping plates. Because of the complexity here it is helpful to illustrate the method by a discrete example. In appendix two we give a numerical example of two overlapped plates with ten stars using an unconstrained solution. Here, we show the mathematical constructs resulting from a simple two-plate overlap.

Consider a "six constant" overlap of two plates, both having five stars with three of these in common. There is one reference star among the three common stars; each plate has one other reference star. Altogether, only five stars will enter the calculations, because the two isolated stars on the plates, which are not reference stars, must be ignored. We arrange the stars in order of increasing right ascension, thus m=5 and μ =1...5 and n=2 so that, ν =1,2. Figure 2 shows this arrangement of stars.

On plate 1, the stars are $(m_1=4)$; $1_1=1$, $1_2=2$, $1_3=3$, $1_{m_1}=1_4=5$.

On plate 2, the stars are $(m_2=4)$; $2_1=2$, $2_2=3$, $2_3=4$, $2_{m_2}2_{m2}=2_4=5$

There are thus three reference stars ($m_r=3$); $\mu_{r_1}=1$, $\mu_{r_2}=3$, $\mu_{r_{m_0}}=\mu_{r_3}=4$.

In this case the condition equations will be

Here, the residual is $d=\begin{pmatrix} x-s\xi\\y-s\eta\end{pmatrix}$; optionally one would use $d=\begin{pmatrix} x-(a\xi+b\eta+c)\\y-(-b\eta+a\xi+d)\end{pmatrix}$. The first matrices to examine are ${\bf B},{\bf K},\ \Xi$ and σ . The dimension of the matrix ${\bf B}$ is (16×10)

$$B = \begin{pmatrix} B_{11} & 0 & 0 & 0 & 0 \\ 0 & B_{21} & 0 & 0 & 0 \\ 0 & B_{22} & 0 & 0 & 0 \\ 0 & 0 & B_{31} & 0 & 0 \\ 0 & 0 & B_{32} & 0 & 0 \\ 0 & 0 & 0 & B_{42} & 0 \\ 0 & 0 & 0 & 0 & B_{51} \\ 0 & 0 & 0 & 0 & B_{52} \end{pmatrix}.$$

$$(3.60)$$

We find the individual elements in the same way as in the single plate solution. Using (3.24), $B_{\mu\nu} = \frac{d(\xi_{\mu\nu}, \eta_{\mu\nu})}{d(\alpha, \delta)} \begin{pmatrix} \frac{1}{\cos \delta} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} W & -S \\ U & V \end{pmatrix}$ where W,S,U and V are from equation (3.24).

The dimension of the matrix K is (6×10) ; K has the form

$$K = \begin{pmatrix} I_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & I_2 & 0 & 0 \\ 0 & 0 & 0 & I_2 & 0 \end{pmatrix}.$$
(3.61)

The matrix Ξ has dimensions (16 \times 12) and is of the form

$$\Xi^{T} = \begin{pmatrix} \Xi_{11} & \Xi_{21} & 0 & \Xi_{31} & 0 & 0 & \Xi_{51} & 0 \\ 0 & 0 & \Xi_{22} & 0 & \Xi_{32} & \Xi_{42} & 0 & \Xi_{52} \end{pmatrix}$$
 where each $\Xi_{\mu\nu}$ is a (2 × 6) matrix $= \begin{pmatrix} \xi_{\mu\nu} & \eta_{\mu\nu} & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi_{\mu\nu} & \eta_{\mu\nu} & 1 \end{pmatrix}$. (3.62)

The covariance matrix is $\sigma = \begin{pmatrix} \sigma_{xx} & 0 \\ 0 & \sigma_{xx} \end{pmatrix}$ where σ_x is a (16 × 16) matrix and

 σ_{α} is a (6 × 6) matrix:

$$\sigma_{\mathbf{x}} = \begin{pmatrix} \sigma_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sigma_{31} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \sigma_{32} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \sigma_{42} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{51} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \sigma_{52} \end{pmatrix}, \quad \sigma_{\alpha} = \begin{pmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{3} & 0 \\ 0 & 0 & \sigma_{4} \end{pmatrix}. \quad (3.63)$$

In this simple case the matrix A will look as follows:

$$A = \begin{pmatrix} B_{11} & 0 & 0 & 0 & 0 & \Xi_{11} & 0 \\ 0 & B_{21} & 0 & 0 & 0 & \Xi_{21} & 0 \\ 0 & B_{22} & 0 & 0 & 0 & 0 & \Xi_{22} \\ 0 & 0 & B_{31} & 0 & 0 & \Xi_{31} & 0 \\ 0 & 0 & B_{31} & 0 & 0 & \Xi_{31} & 0 \\ 0 & 0 & 0 & B_{42} & 0 & 0 & \Xi_{42} \\ 0 & 0 & 0 & 0 & B_{52} & 0 & \Xi_{42} \\ 0 & 0 & 0 & 0 & B_{52} & 0 & \Xi_{52} \\ I_2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I_2 & 0 & 0 & 0 \end{pmatrix}.$$

$$(3.64)$$

First we find the matrix $\mathbf{L} = s^2 \mathbf{B^T} \sigma_{\mathbf{X}}^{-1} \mathbf{B} + \mathbf{K^T} \sigma_{\alpha}^{-1} \mathbf{K}$. This is a (10 × 10) block diagonal matrix which when inverted has the form

$$\mathbf{L}^{-1} = \operatorname{diag} \begin{pmatrix} (s^{2}\mathbf{B}_{11}^{T}\sigma_{11}^{-1}\mathbf{B}_{11} + \sigma_{1}^{-1})^{-1} \\ s^{-2}(\mathbf{B}_{21}^{T}\sigma_{21}^{-1}\mathbf{B}_{21} + \mathbf{B}_{22}^{T}\sigma_{22}^{-1}\mathbf{B}_{22})^{-1} \\ (s^{2}\mathbf{B}_{31}^{T}\sigma_{31}^{-1}\mathbf{B}_{31} + s^{2}\mathbf{B}_{32}^{T}\sigma_{32}^{-1}\mathbf{B}_{32} + \sigma_{3})^{-1} \\ (s^{2}\mathbf{B}_{42}^{T}\sigma_{42}^{-1}\mathbf{B}_{42} + \sigma_{4})^{-1} \\ s^{-2}(\mathbf{B}_{51}^{T}\sigma_{51}^{-1}\mathbf{B}_{51} + \mathbf{B}_{52}^{T}\sigma_{52}^{-1}\mathbf{B}_{52})^{-1} \end{pmatrix} . \tag{3.65}$$

So that $BL^{-1}B^T =$

substituting into equation (3.53) we get $J' = \sigma_x^{-1} - s^2 \sigma_x^{-1} B L^{-1} B^T \sigma_x^{-1}$ or

where

$$\begin{split} &\sigma_{ab}^{-1} - s^2 \sigma_{ab}^{-1} B_{ab} L_{aa}^{-1} B_{ac}^{-1} \sigma_{ac}^{-1} & \text{if b=c} \\ &J_{abc}' = \\ &s^2 \sigma_{ab}^{-1} B_{ab} L_{aa}^{-1} B_{ac}^{-1} \sigma_{ac}^{-1} & \text{if b=c.} \end{split} \tag{3.68}$$

This is a 'banded bordered' matrix where the diagonal and adlacent elemtns to the diagonal are also filled on those positions that correspond to stars imaged on more than one plate.

The products needed for the overlap solution are

$$\begin{split} \Xi^{\mathbf{T}}\mathbf{J}'\Xi &= \Xi^{\mathbf{T}}(\sigma_{\mathbf{x}}^{-1} - \mathbf{s}^{2}\sigma_{\mathbf{x}}^{-1}\mathbf{B}\mathbf{L}^{-1}\mathbf{B}^{\mathbf{T}}\sigma_{\mathbf{x}}^{-1})\Xi \\ &(12 \times 16)(16 \times 16)(16 \times 12) = (12 \times 12) \\ \Xi^{\mathbf{T}}\mathbf{J}'d &= \Xi^{\mathbf{T}}(\sigma_{\mathbf{x}}^{-1} - \mathbf{s}^{2}\sigma_{\mathbf{x}}^{-1}\mathbf{B}\mathbf{L}^{-1}\mathbf{B}^{\mathbf{T}}\sigma_{\mathbf{x}}^{-1})d \\ &(12 \times 16)(16 \times 16)(16 \times 1) = (12 \times 1) \end{split} \tag{3.69}$$

Substituting from (3.62) and (3.67)

$$\boldsymbol{\Xi}^{\mathrm{T}}\mathbf{J}'\boldsymbol{\Xi} = \boldsymbol{\Xi}^{\mathrm{T}}(\boldsymbol{\sigma}_{\mathsf{x}}^{-1} - \mathbf{s}^2\boldsymbol{\sigma}_{\mathsf{x}}^{-1}\mathbf{B}\mathbf{L}^{-1}\mathbf{B}^{\mathrm{T}}\boldsymbol{\sigma}_{\mathsf{x}}^{-1})\boldsymbol{\Xi} =$$

$$\begin{pmatrix} \Xi_{11}^{T} & \Xi_{21}^{T} & 0 & \Xi_{31}^{T} & 0 & 0 & \Xi_{51}^{T} & 0 \\ 0 & 0 & \Xi_{22}^{T} & 0 & \Xi_{32}^{T} & \Xi_{42}^{T} & 0 & \Xi_{52}^{T} \end{pmatrix}$$

$$=\begin{pmatrix}\Pi_{11}&\Pi_{12}\\\Pi_{21}&\Pi_{22}\end{pmatrix}$$

where

$$\begin{split} \Pi_{11} &= \Xi_{11}^{\mathrm{T}} \mathbf{J}_{11}' \Xi_{11} + \Xi_{21}^{\mathrm{T}} \mathbf{J}_{211}' \Xi_{21} + \Xi_{31}^{\mathrm{T}} \mathbf{J}_{311}' \Xi_{31} + \Xi_{61}^{\mathrm{T}} \mathbf{J}_{611}' \Xi_{61} &= \sum_{\mu\nu} \Xi_{\mu}^{\mathrm{T}} \mathbf{J}_{\mu 11}' \Xi_{\mu 1} \\ \Pi_{12} &= \Xi_{21}^{\mathrm{T}} \mathbf{J}_{211}' \Xi_{22} + \Xi_{31}^{\mathrm{T}} \mathbf{J}_{312}' \Xi_{32} + \Xi_{61}^{\mathrm{T}} \mathbf{J}_{612}' \Xi_{62} &= \sum_{\mu\nu} \Xi_{\mu}^{\mathrm{T}} \mathbf{J}_{\mu 12}' \Xi_{\mu 2} \\ \Pi_{21} &= \Xi_{22}^{\mathrm{T}} \mathbf{J}_{221}' \Xi_{21} + \Xi_{32}^{\mathrm{T}} \mathbf{J}_{321}' \Xi_{31} + \Xi_{62}^{\mathrm{T}} \mathbf{J}_{621}' \Xi_{51} &= \sum_{\mu\nu} \Xi_{\mu}^{\mathrm{T}} \mathbf{J}_{\mu 21}' \Xi_{\mu 1} \\ \Pi_{22} &= \Xi_{22}^{\mathrm{T}} \mathbf{J}_{222}' \Xi_{22} + \Xi_{32}^{\mathrm{T}} \mathbf{J}_{322}' \Xi_{32} + \Xi_{32}^{\mathrm{T}} \mathbf{J}_{422}' \Xi_{42} + \Xi_{63}^{\mathrm{T}} \mathbf{J}_{522}' \Xi_{62} &= \sum_{\mu\nu} \Xi_{\mu}^{\mathrm{T}} \mathbf{J}_{\mu 12}' \Xi_{\mu 2} \end{split}$$

$$(3.71)$$

Also,
$$\Xi^{T}J'd = \left(\sum_{p=1}^{T} \frac{\Xi_{p,1}^{T}J'_{p,p}d_{p\nu}}{\sum_{p=2}^{T}J'_{p,p}d_{p\nu}}\right) =$$

$$\begin{pmatrix}
\Xi_{11}^{T}J'_{111}d_{11} + \Xi_{21}^{T}J'_{211}d_{21} + \Xi_{21}^{T}J'_{212}d_{22} + \Xi_{31}^{T}J'_{311}d_{31} \\
+ \Xi_{31}^{T}J'_{312}d_{32} + \Xi_{51}^{T}J'_{311}d_{51} + \Xi_{61}^{T}J'_{512}d_{52}
\end{pmatrix}.$$

$$(3.72)$$

$$+\Xi_{32}^{T}J'_{221}d_{21} + \Xi_{22}^{T}J'_{222}d_{22} + \Xi_{32}^{T}J'_{321}d_{31} + \Xi_{32}^{T}J'_{322}d_{32}
+ \Xi_{42}^{T}J'_{422}d_{42} + \Xi_{12}^{T}J'_{521}d_{51} + \Xi_{52}^{T}J'_{522}d_{52}
\end{pmatrix}.$$

Finally the parameters are found from $a = (\Xi^T \mathbf{J}'\Xi)^{-1}\Xi^T \mathbf{J}'d$, where $\Xi^T \mathbf{J}'\Xi$ is a (12 \times 12) matrix and $\Xi^T \mathbf{J}'d$ is a 12 element vector. Therefore a is a 12 element vector, i.e. 6 parameters for each plate.

From (3.51) the equatorial coordinate corrections are $\beta = s\mathbf{L}^{-1}\mathbf{B}^{T}\sigma_{\mathbf{x}}^{-1}(d - \Xi a)$

$$= s \begin{pmatrix} t_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & t_{21} & t_{22} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & t_{31} & t_{32} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & t_{42} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & t_{42} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & t_{51} & t_{52} \end{pmatrix} \begin{pmatrix} d_{11} - \Xi_{11}a_{1} \\ d_{21} - \Xi_{21}a_{1} \\ d_{22} - \Xi_{22}a_{2} \\ d_{31} - \Xi_{31}a_{1} \\ d_{32} - \Xi_{32}a_{2} \\ d_{21} - \Xi_{31}a_{1} \\ d_{32} - \Xi_{32}a_{2} \end{pmatrix}$$

$$(3.73)$$

where $\mathbf{t}_{ij} = \mathbf{L}_{ii}^{-1} \mathbf{B}_{ij}^{T} \sigma_{ij}$ therefore:

$$\beta = s \begin{pmatrix} \mathbf{L}_{11} \mathbf{B}_{11}^{\mathsf{T}} \sigma_{11} (d_{11} - \Xi_{11} a_{11}) \\ \mathbf{L}_{22} \mathbf{B}_{21}^{\mathsf{T}} \sigma_{21} (d_{21} - \Xi_{21} a_{21}) + \mathbf{L}_{22} \mathbf{B}_{22}^{\mathsf{T}} \sigma_{22} (d_{22} - \Xi_{22} a_{22}) \\ \mathbf{L}_{33} \mathbf{B}_{31}^{\mathsf{T}} \sigma_{31} (d_{31} - \Xi_{31} a_{31}) + \mathbf{L}_{33} \mathbf{B}_{32}^{\mathsf{T}} \sigma_{32} (d_{32} - \Xi_{32} a_{32}) \\ \mathbf{L}_{42} \mathbf{B}_{42}^{\mathsf{T}} \sigma_{42} (d_{42} - \Xi_{42} a_{42}) \\ \mathbf{L}_{51} \mathbf{B}_{51}^{\mathsf{T}} \sigma_{51} (d_{51} - \Xi_{51} a_{51}) + \mathbf{L}_{52} \mathbf{B}_{23}^{\mathsf{T}} \sigma_{52} (d_{52} - \Xi_{52} a_{52}) \end{pmatrix}$$

$$(3.74)$$

are the ten weighted mean corrections to the star's equatorial coordinates.

Solution with Globally Constrained Parameters

This covers the essence of the theoretical analysis of the overlap solution. In this investigation the number of observations exceeds 30,000 on up to 250 plates per epoch. This many observations and plates will lead to a matrix that is very difficult to invert, purely as a result of the numerical computation loss. An alternative is to use a different method for finding the solution such as Gaussian elimination. However, if we do not invert the matrix of condition equations the covariance matrix, and hence the parameter errors, cannot be examined. This will restrict methods for checking the solution. Techniques need to be examined to reduce the size of the problem without

an appreciable loss in accuracy or flexibility. One method is to restrict the number of the parameters because the matrix of condition equations in the overlap is square with dimension "parameters times plates".

In this investigation we exposed the McCormick plates over a relatively short period, one year for the first epoch and five months for the second epoch. Over this short a period we can assume that certain parameters that characterize telescope properties will remain constant from plate to plate. (This carries the proviso that over the observation period the telescope underwent no major maintenance or repairs, for example a cleaning of the lens.) This allows us to restrict the overlap reduction to finding parameters that do not vary from plate to plate separately from those that do.

The solution changes only in the form of the matrix Ξ . In the general solution, the ν condition equations are

$$H = \begin{pmatrix} x_{\mu_{\nu_{m_{\nu}}\nu}} - s\xi_{\mu_{\nu_{m_{\nu}}\nu}} \\ y_{\mu_{\nu_{m_{\nu}}\nu}} - s\eta_{\mu_{\nu_{m_{\nu}}\nu}} \end{pmatrix} - \Xi_{\mu_{\nu_{m_{\nu}}\nu}} a_{\nu} \end{pmatrix} = 0$$
 (3.75)

where for an eight constant model and the ν th star

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 & \xi^{2} & \xi \eta \\ 0 & 0 & 0 & \xi & \eta & 1 & \xi \eta & \eta^{2} \end{pmatrix} a = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \\ p \\ q \end{pmatrix}. \tag{3.76}$$

Assume the tangential point parameters remain the same across the plates, e.g, p and q remain constant for all plates. In this case the relationships (3.75) will have the form

$$H = \begin{pmatrix} \left(\frac{x_{\mu_{\nu_{m_{\nu}}}\nu} - s\xi_{\mu_{\nu_{m_{\nu}}}\nu}}{y_{\mu_{\nu_{m_{\nu}}}\nu} - s\eta_{\mu_{\nu_{m_{\nu}}}\nu}} \right) - \Xi_{\mu_{\nu_{m_{\nu}}}\nu} a_{\nu} - \Xi_{\mu_{\nu_{m_{\nu}}}\nu}' a' \end{pmatrix} = 0$$

$$(3.77)$$

where for the ν th star

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi & \eta & 1 \end{pmatrix} \quad \Xi' = \begin{pmatrix} \xi^2 & \xi \eta \\ \xi \eta & \eta^2 \end{pmatrix}$$

$$a_{\nu} = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \end{pmatrix} \quad a' = \begin{pmatrix} C_p \\ C_q \end{pmatrix}.$$
(3.78)

Consider the form of the matrix A given by (3.36) the three terms $\frac{\partial H}{\partial \beta}$, $\frac{\partial G}{\partial \beta}$, $\frac{\partial G}{\partial a}$ will remain as given before. The partial derivative of the condition equations H=0 with respect to the plate parameters, $\frac{\partial H}{\partial a}$, will have a different form; in the general case,

$$\frac{\partial H}{\partial a} = \frac{\partial H_{\nu}}{\partial (a_1 a_2 \cdots a_n)} = \begin{pmatrix} \frac{\partial H}{\partial a_1} & \frac{\partial H}{\partial a_2} & \cdots & \frac{\partial H_{\nu}}{\partial a_2} \\ \frac{\partial H}{\partial a_2} & \frac{\partial H}{\partial a_2} & \cdots & \frac{\partial H_{\nu}}{\partial a_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial H}{\partial a_{\nu}} & \frac{\partial \partial H}{\partial a_{\nu}} & \cdots & \frac{\partial H_{\nu}}{\partial a_{\nu}} \end{pmatrix}$$

$$= \begin{pmatrix} \Xi_1 & 0 & \cdots & 0 \\ 0 & \Xi_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \infty & \Xi \end{pmatrix}$$
(3.79)

In the restricted case.

$$\frac{\partial H}{\partial a} = \frac{\partial H}{\partial (a_1 a_2 \cdots a_n a')} = \begin{pmatrix} \frac{\partial H}{\partial a_1} & \frac{\partial H}{\partial a_2} & \cdots & \frac{\partial H}{\partial a_n} & \frac{\partial H}{\partial a'} \\ \frac{\partial H}{\partial a_n} & \frac{\partial H}{\partial a_n} & \cdots & \frac{\partial H}{\partial a_n} & \frac{\partial H}{\partial a'} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \frac{\partial H}{\partial a_n} & \frac{\partial H}{\partial a_n} & \cdots & \frac{\partial H}{\partial a_n} & \frac{\partial H}{\partial a'} \end{pmatrix}$$

$$= \begin{pmatrix} \Xi_1 & 0 & \cdots & 0 & \Xi_1' \\ 0 & \Xi_2 & \cdots & 0 & \Xi_2' \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \Xi_n & \Xi_n' \end{pmatrix}, \quad (3.80)$$

where Ξ and Ξ' are as above.

The form of the development will be the same as in the generalized overlap discussion. The corrections to the reference stars will be given by,

$$\beta = sL^{-1}B^{T}\sigma_{x}^{-1}(d - \Xi a)$$
 (3.81)

and the parameters by

$$a = (\Xi^{T}J'\Xi)^{-1}\Xi^{T}J'd \qquad (3.82)$$

where the matrix Ξ is as in (3.78).

This restricted approach can be applied to many of the parameters. An initial single plate and overlap reduction will be carried out. Those parameters that have a standard deviation smaller than their error will be set constant. Allowing these parameters to vary adds nothing to the solution because they vary less than the noise of the solution, and actually make the solution worse because of computational numerical loss. A still further extension of the overlap would be to stochastically constrain the parameters that follow some known distribution (for example a normal distribution). This was developed by Eichhorn (1978), but it is beyond the scope of this investigation to apply these constraints.

Example

Consider a twelve constant overlap of the two plates, set up as in the unconstrained solution. Make the restriction that the tangential point corrections are the same for both plates. The derivation will proceed as before, with these changes

$$F_{\mu_{\nu}\nu} = \left(\begin{pmatrix} x_{\mu_{\nu}\nu} - s\xi_{\mu_{\nu}\nu} \\ y_{\mu_{\nu}\nu} - s\eta_{\mu_{\nu}\nu} \end{pmatrix} - \Xi_{\mu_{\nu}\nu} a_{\nu} - \Xi'_{\mu_{\nu}\nu} a' \right), \tag{3.83}$$

where the matrix Ξ is a (16 \times 22) matrix of the form

$$\boldsymbol{\Xi}^{\mathrm{T}} = \begin{pmatrix} \Xi_{11}^{\mathrm{T}} & \Xi_{21} & 0 & \Xi_{11}^{\mathrm{T}} & 0 & 0 & \Xi_{11}^{\mathrm{T}} & 0 \\ 0 & 0 & \Xi_{22}^{\mathrm{T}} & 0 & \Xi_{32}^{\mathrm{T}} & \Xi_{42}^{\mathrm{T}} & 0 & \Xi_{52}^{\mathrm{T}} \\ \Xi_{11}^{\mathrm{T}} & \Xi_{21}^{\mathrm{T}} & \Xi_{21}^{\mathrm{T}} & \Xi_{31}^{\mathrm{T}} & \Xi_{32}^{\mathrm{T}} & \Xi_{42}^{\mathrm{T}} & \Xi_{51}^{\mathrm{T}} & \Xi_{52}^{\mathrm{T}} \end{pmatrix}. \tag{3.84}$$

Each $\Xi_{\mu\nu}$ is a (2 \times 10) matrix, thus

$$\Xi_{\mu\nu} = \begin{pmatrix} \xi_{\mu\nu} & \eta_{\mu\nu} & 1 & 0 & 0 & 0 & m_{\mu\nu} - m_o & 0 & m_{\mu\nu} - m_o \xi_{\mu\nu} & \xi_{\mu\nu} \left(\xi_{\mu\nu}^2 + \eta_{\mu\nu}^2 \right) \\ 0 & 0 & 0 & \xi_{\mu\nu} & \eta_{\mu\nu} & 1 & 0 & m_{\mu\nu} - m_o & m_{\mu\nu} - m_o \eta_{\mu\nu} & \eta_{\mu\nu} \left(\xi_{\mu\nu}^2 + \eta_{\mu\nu}^2 \right) \end{pmatrix}. \tag{3.85}$$

 $\Xi'_{\mu\nu}$ is a (2 × 2) matrix given by

$$\Xi'_{\mu\nu} = \begin{pmatrix} \xi^2_{\mu\nu} & \xi_{\mu\nu} \eta_{\mu\nu} \\ \xi_{\mu\nu} \eta_{\mu\nu} & \eta^2_{\mu\nu} \end{pmatrix}. \quad (3.86)$$

From (3.51) the corrections to the stellar coordinates will be

$$\beta = sL^{-1}B^{T}\sigma_{x}^{-1}(d - \Xi a)$$
 (3.87)

where the matrix Ξ is as above and the vector a will be of the form

$$a = \begin{pmatrix} a_1 \\ a_2 \\ a' \end{pmatrix} \quad \text{where} \quad a_{\nu} = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \\ e \\ f \\ g \\ h \end{pmatrix} \qquad a' = \begin{pmatrix} C_p \\ C_q \end{pmatrix}. \tag{3.88}$$

For the parameters $a = \begin{pmatrix} a_1 \\ a_2 \\ a' \end{pmatrix} \rightarrow (22 \times 1) = \begin{pmatrix} (10 \times 1) \\ (10 \times 1) \\ (2 \times 1) \end{pmatrix}$ and given by $(\mathbf{\Xi}^T \mathbf{J}' \mathbf{\Xi})^{-1} \mathbf{\Xi}^T \mathbf{J}' d \rightarrow ((22 \times 16)(16 \times 16)(16 \times 22))^{-1} (22 \times 16)(16 \times 16)(16 \times 1) = (22 \times 1).$

Using J from equation (3.67), we get

$$\begin{pmatrix} \Xi_{11}^{T} & \Xi_{21} & 0 & \Xi_{31}^{T} & 0 & 0 & \Xi_{51}^{T} & 0 \\ 0 & 0 & \Xi_{22}^{T} & 0 & \Xi_{32}^{T} & \Xi_{42}^{T} & 0 & \Xi_{52}^{T} \\ \Xi_{11}^{T} & \Xi_{21}^{T} & \Xi_{32}^{T} & \Xi_{32}^{T} & \Xi_{32}^{T} & \Xi_{32}^{T} & \Xi_{32}^{T} & \Xi_{32}^{T} \end{pmatrix}$$

and

$$\begin{pmatrix} J_{111}''\Xi_{11} & 0 & J_{111}''\Xi_{11}' \\ J_{211}''\Xi_{21} & J_{212}'\Xi_{22} & J_{211}''\Xi_{21}'+J_{212}'\Xi_{22}' \\ J_{221}''\Xi_{21} & J_{222}''\Xi_{22} & J_{221}'\Xi_{21}'+J_{222}'\Xi_{22}' \\ J_{311}''\Xi_{31} & J_{312}''\Xi_{32} & J_{311}'\Xi_{31}'+J_{312}'\Xi_{32}' \\ J_{321}''\Xi_{31} & J_{322}''\Xi_{32} & J_{321}''\Xi_{31}'+J_{322}''\Xi_{32}' \\ 0 & J_{422}''\Xi_{42} & J_{422}''\Xi_{42}' \\ J_{511}''\Xi_{51} & J_{512}''\Xi_{52} & J_{511}''\Xi_{51}'+J_{512}''\Xi_{52}' \\ J_{521}''\Xi_{51} & J_{522}''\Xi_{52} & J_{522}'\Xi_{52}'+J_{521}''\Xi_{51}' \end{pmatrix}$$

$$(3.90)$$

Therefore

$$\boldsymbol{\Xi}^{\mathbf{T}}\mathbf{J}\boldsymbol{\Xi} = \begin{pmatrix} \Pi_{11} & \Pi_{12} & \Pi_{13} \\ \Pi_{21} & \Pi_{22} & \Pi_{23} \\ \Pi_{31} & \Pi_{32} & \Pi_{33} \end{pmatrix} \tag{3.91}$$

where

$$\begin{split} \Pi_{11} &= \Xi_{11}^{\mathrm{T}} J_{111}' \Xi_{11} + \Xi_{21}^{\mathrm{T}} J_{211}' \Xi_{21} + \Xi_{31}^{\mathrm{T}} J_{311}' \Xi_{31} + \Xi_{61}^{\mathrm{T}} J_{511}' \Xi_{61} \\ \Pi_{12} &= \Xi_{11}^{\mathrm{T}} J_{212}' \Xi_{22} + \Xi_{31}^{\mathrm{T}} J_{312}' \Xi_{32} + \Xi_{61}^{\mathrm{T}} J_{512}' \Xi_{52} \\ \Pi_{13} &= \Xi_{11}^{\mathrm{T}} J_{111}' \Xi_{11}' + \Xi_{12}^{\mathrm{T}} J_{211}' \Xi_{21}' + \Xi_{12}^{\mathrm{T}} J_{212}' \Xi_{22}' + \Xi_{31}^{\mathrm{T}} J_{311}' \Xi_{31}' \\ &+ \Xi_{31}^{\mathrm{T}} J_{312}' \Xi_{32}' + \Xi_{61}^{\mathrm{T}} J_{611}' \Xi_{51}' + \Xi_{61}^{\mathrm{T}} J_{612}' \Xi_{62}' \end{split} \tag{3.92}$$

$$\begin{split} \Pi_{21} &= \Xi_{22}^T J_{221} \Xi_{21} + \Xi_{32}^T J_{321} \Xi_{31} + \Xi_{52}^T J_{521} \\ \Pi_{22} &= \Xi_{22}^T J_{222} \Xi_{22} + \Xi_{32}^T J_{322} \Xi_{32} + \Xi_{42}^T J_{422}' \Xi_{42} + \Xi_{52}^T J_{522}' \Xi_{52} \\ \Pi_{23} &= \Xi_{22}^T (J_{221}' \Xi_{21}' + J_{222}' \Xi_{22}) + \Xi_{32}^T (J_{321}' \Xi_{31}' + J_{322}' \Xi_{32}) \\ &+ \Xi_{42}^T (J_{422}' \Xi_{42}) + \Xi_{52}^T (J_{522}' \Xi_{52}' + J_{521}' \Xi_{51}) \end{split}$$

$$(3.93)$$

$$\begin{split} \Pi_{31} &= \Xi_{11}^{T} \{J'_{11}\Xi_{11}\} + \Xi_{21}^{T} (J'_{21}\Xi_{21}) + \Xi_{21}^{T} (J'_{21}\Xi_{21}) + \Xi_{31}^{T} \{J'_{311}\Xi_{31}\} \\ &+ \Xi_{32}^{T} \{J'_{321}\Xi_{31}\} + \Xi_{01}^{T} \{J'_{511}\Xi_{01}\} + \Xi_{02}^{T} (J'_{221}\Xi_{01}) \\ \Pi_{32} &= \Xi_{21}^{T} \{J'_{212}\Xi_{22}\} + \Xi_{21}^{T} \{J'_{222}\Xi_{22}\} + \Xi_{31}^{T} \{J'_{312}\Xi_{32}\} + \Xi_{32}^{T} \{J'_{322}\Xi_{32}\} \\ &+ \Xi_{42}^{T} \{J'_{422}\Xi_{42}\} + \Xi_{51}^{T} \{J'_{512}\Xi_{52}\} + \Xi_{52}^{T} \{J'_{522}\Xi_{52}\} \\ \Pi_{33} &= \Xi_{31}^{T} \{J'_{311}\Xi_{31}' + J'_{312}\Xi_{32}\} + \Xi_{32}^{T} \{J'_{321}\Xi_{31}' + J'_{322}\Xi_{32}\} \\ &+ \Xi_{12}^{T} \{J'_{222}\Xi_{22}\} + \Xi_{11}^{T} \{J'_{211}\Xi_{51}' + J'_{212}\Xi_{22}\} + \Xi_{12}^{T} \{J'_{212}\Xi_{52}\} + J'_{211}\Xi_{51}' + J'_{212}\Xi_{52}\} \end{split}$$

or in summation format

$$\Xi^{T}J'\Xi = \begin{pmatrix} \sum_{\mu\nu} \Xi_{\mu}^{T}J'_{\mu 1}\Xi_{\mu 1} & \sum_{\mu\nu} \Xi_{\mu}^{T}J'_{\mu 2}\Xi_{\mu 1} & \sum_{\mu\nu} \Xi_{\mu\nu}^{T}J'_{\mu\nu 1}\Xi_{\mu\nu'} \\ \sum_{\mu\nu} \Xi_{\mu}^{T}J'_{\mu 1}\Xi_{\mu\nu} & \sum_{\mu\nu} \Xi_{\mu}^{T}J'_{\mu 2}\Xi_{\mu\nu} & \sum_{\mu\nu} \Xi_{\mu\nu}^{T}J'_{\mu\nu 2}\Xi_{\mu\nu'} \\ \sum_{\mu\nu} \Xi_{\mu\nu}^{T}J'_{\mu\nu 1}\Xi_{\mu\nu} & \sum_{\mu\nu} \Xi_{\mu\nu}^{T}J'_{\mu\nu 2}\Xi_{\mu\nu} & \sum_{\mu\nu} \Xi_{\mu\nu}^{T}J'_{\mu\nu 2}\Xi_{\mu\nu'} \end{pmatrix}. \quad (3.95)$$

The term: $\Xi^T J'd$

The term:
$$\Xi^{T}J'd$$

$$=\begin{pmatrix}\Xi_{11}^{T} & \Xi_{21} & 0 & \Xi_{31}^{T} & 0 & 0 & \Xi_{51}^{T} & 0\\ 0 & 0 & \Xi_{22}^{T} & 0 & \Xi_{32}^{T} & \Xi_{42}^{T} & 0 & \Xi_{52}^{T}\\ \Xi_{11}^{T} & \Xi_{21}^{T} & \Xi_{22}^{T} & \Xi_{31}^{T} & \Xi_{32}^{T} & \Xi_{42}^{T} & \Xi_{51}^{T} & \Xi_{32}^{T} \end{pmatrix}\begin{pmatrix}J'_{111}d_{11}\\J'_{211}d_{21}+J'_{212}d_{22}\\J'_{212}d_{21}+J'_{222}d_{22}\\J'_{311}d_{31}+J'_{312}d_{32}\\J'_{321}d_{31}+J'_{322}d_{32}\\J'_{321}d_{31}+J'_{322}d_{32}\\J'_{321}d_{31}+J'_{322}d_{32}\\J'_{321}d_{31}+J'_{322}d_{32}\\J'_{321}d_{31}+J'_{322}d_{32}\end{pmatrix}$$

$$=\begin{pmatrix} \Xi_{11}^{T}J'_{111}d_{11} + \Xi_{21}(J'_{211}d_{21} + J'_{212}d_{22}) + \Xi_{31}^{T}(J'_{311}d_{31} + J'_{312}d_{32}) \\ + \Xi_{51}^{T}(J'_{511}d_{51} + J'_{612}d_{52}) \end{pmatrix}$$

$$= \Xi_{22}^{T}(J'_{221}d_{21} + J'_{222}d_{22}) + \Xi_{22}^{T}(J'_{321}d_{31} + J'_{322}d_{32}) + \Xi_{42}^{T}(J'_{422}d_{42}) \\ + \Xi_{52}^{T}(J'_{521}d_{51} + J'_{522}d_{52}) \end{pmatrix}$$

$$\Xi_{11}^{T}J'_{111}d_{11} + \Xi_{11}^{T}(J'_{211}d_{21} + J'_{212}d_{22}) + \Xi_{12}^{T}(J'_{221}d_{21} + J'_{222}d_{22}) \\ + \Xi_{31}^{T}(J'_{311}d_{31} + J'_{312}d_{32}) + \Xi_{31}^{T}(J'_{321}d_{31} + J'_{322}d_{32}) + \Xi_{42}^{T}(J'_{422}d_{42}) + \Xi_{42}^{T}($$

which can be written as

$$\Xi^{T}\mathbf{J}'d = \begin{pmatrix} \sum \Xi_{\mu}^{T}\mathbf{J}'_{\mu 1\nu} \mathbf{d}_{\mu\nu} \\ \sum \Xi_{\mu 2}^{T}\mathbf{J}'_{\mu 2\nu} \mathbf{d}_{\mu\nu} \\ \sum \Xi_{\nu \nu}^{T}\mathbf{J}'_{\mu \nu\nu} \mathbf{d}_{\mu\nu} \end{pmatrix}. \tag{3.97}$$

With these products we can find the parameters and the corrections to the stellar coordinates.

Theoretical Plate Modelling Terms

In the single and overlap development we use the example of a six constant model. In reality a more sophisticated model is needed to account accurately for the complex image formed by a telescope. This section discusses the various terms and their physical meaning.

Assume that a telescope has the same projection properties as a pinhole camera as shown in figure 3. In this ideal system the measured coordinates (x,y) with origin at the tangential point T would be related to the standard coordinates (ξ,η) by only a factor of the focal length of the telescope. In reality there are many deviations from the ideal situation. Below is a list of some of the more common ones. (This list is not exhaustive.)

- (ξ,η) axes rotated against the (x,y) axes
- · origin of the (x,y) frame not at the tangential point
- till of the (ξ,η) focal plane w.r.t the (x,y) plate plane and noncoincidence of the
 optical axis with the origin of the (ξ,η) coordinate frame
- magnitude and coma effects
- · radial distortion
- · tangential distortion due to components of objective being improperly aligned

Figure 3: Projection of a Pinhole Camera

- different scales on each axis due to different measuring screws, and/or refraction of the atmosphere
- nonorthogonality of the x and y axes
- · guiding errors and developing errors (e.g., emulsion shift)
- · color terms

These deviations are not independent of each other, and thus there is a significant crossover of effects. The second order effects are often negligible and mixed into first order effects. It is useful to discuss the theoretical form of the more important deviations we model in this investigation.

Departures from a Gnomonic Projection

Noncoincidence of axes

The positioning of the photographic plate in the telescope and then within the measuring machine will lead to a rotation of the plate with respect to the frame of reference on the sky. This means the (ξ,η) axis, defining the frame of the sky, will be rotated with respect to the (x,y) axis, defining the frame of the measuring machine. Noncoincidence of axes A rotation of the (ξ,η) frame will correct this:

$$\begin{pmatrix} x \\ y \end{pmatrix} = s \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$
(3.98)

where s is the focal length.

Figure 4: Noncoincidence of axes

Origin shift

In the process of transference from the telescope to the measuring machine there will be, in addition to a plate rotation, a shift in the origin of the (ξ, η) coordinate frame

with respect to the (x,y) frame. If the origin of the (ξ,η) frame in the (x,y) frame is (c,c'), then this can be allowed by a constant subtraction from the (x,y) coordinates. Combining this change into equation (3.98) yields:

$$\begin{pmatrix} x - c \\ y - c' \end{pmatrix} = s \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}.$$
 (3.99)

Figure 5: Origin Shift

Incorrect scale

In an ideal system the (ξ,η) coordinates would be related to the (x,y) coordinates by the focal length; i.e. (x,y)=s (ξ,η) . In practice the actual focal length of the telescope will vary due to temperature changes and everyday use. We therefore treat this as a variable and correct by incorporating a small modification in the direct ξ and η terms.

The relationship between standard and rectangular coordinates now has the form

$$\begin{pmatrix} x - c \\ y - c' \end{pmatrix} = s \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} - \begin{pmatrix} a \\ a' \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}$$
(3.100)

where a and a' are constants.

are

These terms can be combined if we include the cosine and sine terms as constants, then the deviations; noncoincidence, origin shift and scale difference in matrix format

 $\begin{pmatrix} x - c \\ y - c' \end{pmatrix} = s \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix} - \begin{pmatrix} a \\ \alpha' \end{pmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix}$ $\rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s\xi \cos \alpha + s\eta \sin \alpha - a\xi + c \\ -s\xi \sin \alpha + s\eta \cos \alpha - a'\eta + c' \end{pmatrix}$ $= s \begin{pmatrix} (\cos \alpha - \frac{a}{s})\xi + (\sin \alpha)\eta + \frac{c}{s} \\ (\cos \alpha - \frac{a'}{s})\eta - (\sin \alpha)\xi + \frac{c'}{s} \end{pmatrix}$ $\begin{pmatrix} a \\ b \end{pmatrix}$ (3.101)

$$\begin{pmatrix} x \\ y \end{pmatrix} = s \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi & \eta & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \end{pmatrix}$$

where $a = \cos \alpha - \frac{a}{s}$, $b = \sin \alpha$ $c = \frac{c}{s}$, $a' = -\sin \alpha$, $b' = \cos \alpha - \frac{a'}{s}$, and $c' = \frac{c'}{s}$.

This is the six constant model. The rest of this discussion will build on this model; it is therefore important to first say a word about this idea of modelling. From equation (3.101) it would appear that if our projection were only subject to the deviations: non-conjunction of the axis and scale differences, then b=-a'. However this does not happen even in this simple case. This is because the above analysis hides second order effects, and we have made no provisions to account for atmospheric refraction. There will be second order mixing and the reader should be aware that these physical interpretations of the models are only good to the first order. This will be alleviated as we add more terms that are more difficult to model.

If either the photographic plate is tilted with respect to the focal plane or the assumed tangential point is not the same as the intersection of the optical axis with the plate, the differential change in (x,y) with respect to the plate center (α_0,δ_0) is

$$\frac{\partial(x, y)}{\partial(\alpha_0, \delta_0)} = \frac{\partial(x, y)}{\partial(\xi, \eta)} \frac{\partial(\xi, \eta)}{\partial(\alpha_0, \delta_0)}$$

$$\frac{\partial(x, y)}{\partial(\xi, \eta)} = \begin{pmatrix} a & b \\ a' & b' \end{pmatrix}$$

$$\frac{\partial(\xi, \eta)}{\partial(\alpha_0, \delta_0)} = \frac{\partial(\xi, \eta)}{\partial(\Xi, H, Z)} \frac{\partial(\Xi, H, Z)}{\partial(\alpha_0, \delta_0)}.$$
(3.102)

From equation (3.2) we get

$$\xi = \frac{\Xi}{Z}, \quad \eta = \frac{H}{Z}$$

$$-\frac{\partial(\xi, \eta)}{\partial(\Xi, H, Z)} = \frac{1}{Z} \begin{pmatrix} 1 & 0 & -\xi \\ 0 & 1 & -n \end{pmatrix}$$
(3.103)

and

$$\Upsilon = \begin{pmatrix} \Xi \\ H \\ Z \end{pmatrix} = \begin{pmatrix} \cos \delta \sin (\alpha - \alpha_0) \\ \cos \delta_0 \sin \delta - \sin \delta_0 \cos \delta \cos (\alpha - \alpha_0) \\ \sin \delta_0 \sin \delta + \cos \delta_0 \cos \delta \cos (\alpha - \alpha_0) \\ \sin \delta_0 \sin \delta + \cos \delta_0 \cos \delta \cos (\alpha - \alpha_0) \end{pmatrix}$$

$$\frac{\partial (\Xi, H, Z)}{\partial (\alpha_0, \delta_0)} = \begin{pmatrix} -\cos \delta \cos (\alpha - \alpha_0) \\ -\sin \delta_0 \cos \delta \sin (\alpha - \alpha_0) \\ \cos \delta_0 \cos \delta \sin (\alpha - \alpha_0) \\ \cos \delta_0 \cos \delta \sin (\alpha - \alpha_0) \\ \sin \delta_0 \cos \delta - \sin \delta_0 \cos \delta \cos (\alpha - \alpha_0) \end{pmatrix}$$

$$\frac{\partial (\Xi, H, Z)}{\partial (\alpha_0, \delta_0)} = \begin{pmatrix} H \sin \delta_0 - Z \cos \delta_0 \\ -\Xi \sin \delta_0 \\ H \cos \delta_0 \end{pmatrix}$$

$$(3.104)$$

This simplifies to

$$\frac{\partial(\xi, \eta)}{\partial(\alpha_0, \delta_0)} = \frac{\partial(\xi, \eta)}{\partial(\Xi, H, Z)} \frac{\partial(\Xi, H, Z)}{\partial(\alpha_0, \delta_0)}$$

$$= \frac{1}{Z} \begin{pmatrix} 1 & 0 & -\xi \\ 0 & 1 & -\eta \end{pmatrix} \begin{pmatrix} H \sin \delta_0 - Z \cos \delta_0 & 0 \\ -\Xi \sin \delta_0 & Z \\ \Xi \cos \delta_0 & H \end{pmatrix}$$

$$= \begin{pmatrix} \eta \sin \delta_0 - \cos \delta_0 - \xi^2 \cos \delta_0 & -\xi \\ -\xi \sin \delta_0 - \xi \cos \delta_0 & -1 - \eta^2 \end{pmatrix}$$
(3.105)

Figure 6: Effect of Plate Tilt or Incorrect Tangential Point

and finally,

$$\begin{split} \frac{\partial(x,y)}{\partial(\alpha_0,\delta_0)} &= \begin{pmatrix} a & b \\ a' & b' \end{pmatrix} \begin{pmatrix} \eta \sin \delta_0 - \cos \delta_0 - \xi^2 \cos \delta_0 & -\xi \\ -\xi \sin \delta_0 - \xi \eta \cos \delta_0 & -1 - \eta^2 \end{pmatrix} \\ &= \begin{pmatrix} a \left(\eta \sin \delta_0 - \cos \delta_0 - \xi^2 \cos \delta_0 \right) - b \left(-\xi \sin \delta_0 - \xi \eta \cos \delta_0 \right) \\ -a' \xi - b' \left(-1 - \eta^2 \right) \end{pmatrix} \\ &= \begin{pmatrix} -a \cos \delta_0 + \left(b \sin \delta_0 \right) \xi + \left(a \sin \delta_0 \right) \eta + \left(b \cos \delta_0 \right) \xi \eta - \left(a \cos \delta_0 \right) \xi^2 \\ b' - a' \xi + b' \eta^2 \end{pmatrix} \end{split}$$

$$(3.106)$$

(cf. Eichhorn, 1974).

Most models will at a minimum contain the linear six constant model. (If we have an ideal measuring machine then we can use a four constant model if the effects of differential atmospheric refraction are removed beforehand.) The constant term $-a\cos\delta_0$ and the η term $a\sin\delta_0$ in (3.106) can be incorporated in the six constant c' and b parameters respectively. The only new terms that need to be introduced are those that are functions of $\xi\eta,\xi^2$ and η^2 .

These terms, introduced by a tangential point shift, are also those terms that occur in plate (focal plane) tilt. We illustrate this by looking at the geometry. Tilting of the plate causes the coordinate system to have different scales depending on the position in the plate.

The ξ_x,η_x coordinates of the point x will be functions of the ideal (gnomonic) ξ and η respectively, e.g $\xi_x = \xi_x(\xi,\eta)$ and $\eta_x = \eta_x(\xi,\eta)$. So the tilt will add square and cross terms in ξ and η into the model. So we can allow for both these effects by introducing the terms

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} \xi^2 & \xi \eta \\ \xi \eta & \eta^2 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix}$$
(3.107)

where p and q are constants.

Magnitude and coma effects

The stellar magnitude terms and lens coma will cause the image of a star to shift. This is particularly important in studies that use concentric plates as these terms will cause an expansion of the observed region. The reason is simple, a brighter star will cause the centroid found for an image to move out along a radial vector. Figure 7 shows, in a highly exaggerated example, this effect for two stars; the radial vector is pointing down.

The two images should have the same position for their centroid, but because of coma the best fit ellipse in the brighter star is centered further in along the radial vector than that for the dimmer star. We model these effects by including the terms

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} m - \langle m \rangle & 0 & (m - \langle m \rangle)\xi & (m - \langle m \rangle)\xi^2 \\ 0 & m - \langle m \rangle & (m - \langle m \rangle)\eta & (m - \langle m \rangle)\eta^2 \end{pmatrix} \begin{pmatrix} e \\ f \\ g \\ h \end{pmatrix}$$
(3.108)

where e, f, g, and h are constants.

Figure 7: Effect of Magnitude and Coma Terms

Radial distortion

Barrel and pincushion distortion are lens aberrations which produce radial terms. To correct for this distortion a term of the form

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} \xi(\xi^2 + \eta^2) \\ \eta(\xi^2 + \eta^2) \end{pmatrix} (i)$$
 (3.109)

where i is a constant, is included in many models.

This completes the discussion of the more important departures from a gnomonic projection that will affect the position of a star. There are many other possible systematic departures from a gnomonic projection, color terms, magnitude squared terms, radial magnitude terms to list a few. Analysis of the residuals will highlight those terms to include.

Typical Models

Assume the relationship of measured coordinates to standard coordinates is of the form $\begin{pmatrix} x \\ y \end{pmatrix} = s \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \Xi a$, where Ξ is the model matrix and a is the parameter vector. Below we examine the 6, 8, 12, and 16 constant models. Other models are also tested in this study, but the ones listed are good examples of the combinations tried.

The 6 constant model

We have already discussed the 6 constant model and its physical interpretation.

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \xi & \eta & 1 \end{pmatrix}, \quad a = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \end{pmatrix}$$
(3.110)

- c and c' account for differences between the origins of the measurable rectangular image coordinates (x,y) and the standard coordinates (ξ,η).
- a and b' allow for an incorrect focal length and different x and y scales as caused by differential refraction.
- b and a' allow for rotation of the x,y frame vs the ξ,η frame and non-perpendicularity
 of the axes.

The 8 constant model

For the 8 constant model we just add linear terms in the magnitude.

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 & m - \langle m \rangle & 0 \\ 0 & 0 & 0 & \xi & \eta & 1 & 0 & m - \langle m \rangle \end{pmatrix}, \quad a = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \\ e \\ f \end{pmatrix}$$
(3.111)

· e and f allow for magnitude effects

This model is only really important to use as a base for introducing global parameters. It corrects for the major plate-to-plate dependent terms resulting from guiding, scale and plate placement errors. Additional parameters may be considered global, and should be tested for each set of plates for that possibility.

The 12 constant model

If we add in terms to correct for plate tilt, coma and, radial effects we get the 12 constant model as shown in (3.112). In this model the tilt and tangential point

corrections are assumed to have dependencies that mirror in the x and y directions.

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 & \xi^{2} & \xi \eta & m - \langle m \rangle & 0 & (m - \langle m \rangle) \xi & \xi (\xi^{2} + \eta^{2}) \\ 0 & 0 & 0 & \xi & \eta & 1 & \xi \eta & \eta^{2} & 0 & m - \langle m \rangle & (m - \langle m \rangle) \eta & \eta (\xi^{2} + \eta^{2}) \end{pmatrix}$$

$$a = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \\ p \\ q \\ e \\ f \\ g \\ 1 \end{pmatrix}$$
(3.112)

- · p and q allow for tilt and tangential point corrections
- · e and f allow for magnitude effects
- · g corrects for coma, it should have the same coefficient in both x an y
- · h corrects for radial distortion, again the coefficient should be the same.

The 16 constant model

The most sophisticated model usually attempted is the sixteen constant model. Here we allow the tilt and tangential point corrections to have different x and y dependencies

(parameters).

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 & \xi^2 & \xi \eta & \eta^2 & 0 & 0 & 0 & m - \langle m \rangle & 0 & (m - \langle m \rangle) \xi & (\xi^2 + \eta^2) \\ 0 & 0 & 0 & \xi & \eta & 1 & 0 & 0 & 0 & \xi^2 & \xi \eta & \eta^2 & 0 & m - \langle m \rangle & (m - \langle m \rangle) \eta & \eta (\xi^2 + \eta^2) \end{pmatrix}$$

$$& \qquad \qquad \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \\ p \\ q \\ r \\ p' \\ q' \\ r' \\ e \\ f \\ g \end{pmatrix}$$

r, p', q', and r' allow for separate tilt and tangential point corrections.

This model proved to be dominated by the cubic radial term and another form of it replaces this term with a second order magnitude modelling term, $\binom{(m-\langle m \rangle)\xi^2}{(m-\langle m \rangle)\eta^2}(h)$.

(3.113)

Summary of potential model terms

The terms that might be included can be simply split into three categories. Terms that usually require different parameters in the functional forms of the x and y coordinates; terms that may have the same parameter in both the x and y values, but may also be split; and finally terms that usually have the same parameters in x and y, i.e. are radial in nature, and will not usually be split.

Terms that usually have different x and y parameters include all the linear terms in the standard coordinates and the magnitude: ξ , η , and, $(m - \langle m \rangle)$. These are strongly dependent upon the conditions of that particular exposure, e.g. centering of the plate, guiding during exposure, and scale variations (which are in turn dependent on the temperature at the time of exposure). These terms are then usually found for each plate and each coordinate on those plates; it would be unwise to try and globally fit them or constrain them to the same value for both coordinates. Because of their usually small random variation the scale terms, the direct terms in ξ and η , are very good candidates for stochastic constraints because they would usually be assumed to be normally distributed around some mean value.

Model terms that are sometimes different in the x and y parameters and sometimes constrained to the same value for both the coordinates are the second order terms (ξ^2 , η^2 , and $\xi\eta$) and — if they are included — cubic terms (ξ^3 , η^3 $\xi^2\eta$, and, $\eta^2\xi$). These allow for plate tilt, tangential point corrections, some distortion effects and differential atmospheric refraction; they are usually small. If an analysis of their values in a single plate solution shows that they vary widely for the two coordinates, then they can be split. These parameters are very telescope dependent, and providing the telescope undergoes no overhauls during the period of exposure for a set of plates, these parameters will be good candidates for global constraints.

The distortion terms $[\xi(\xi^2+\eta^2)]$ and $\eta(\xi^2+\eta^2)]$ and coma terms $[(m-\langle m\rangle)\xi,$ $(m-\langle m\rangle)\eta,$ $(m-\langle m\rangle)\xi^2,$ $(m-\langle m\rangle)\eta^2,$ and $(m-\langle m\rangle)^2]$ can usually be assumed to be the same in both the x and y coordinate. These terms are mainly related to the lens, and they may be considered either globally constrained, stochastically constrained

or removed in some pre-overlap process. The nature of the actual problem indicates the road to follow.

As will be discussed in the next chapter the use of many parameters may introduce large variances in the possible solution, while leaving out terms introduces the risk of not including effects that may be very important to model. An analysis of parameter variance by Eichhorn and Williams (1963) shows that including unneeded terms will increase the ultimate error of the stellar position by the introduction of errors through the parameter variances.

CHAPTER 4 OBSERVATIONS

We have obtained observations from three epochs. The first epoch (the Astrographic Catalogue, AC) is available in the form of published x and y coordinates. The second and third epochs required measuring of photographic plates on an automatic plate measuring machine. The first two sections in this chapter will discuss the observations, and the last section will discuss the measuring of the plates.

Collection of the Observations

The First Epoch

For the first epoch we used the Astrographic Catalogue (AC). The AC was one of the largest astronomical enterprises ever undertaken. In 1890 twenty-two observatories all over the world started a program to map the sky using a 'standard' astrograph. A standard astrograph is a double telescope whose photographically corrected lens has a plate scale of 1'=1mm. The hope was that by requiring this adherence to a particular instrument and by imposing strict guidelines on the measurements of the stellar image coordinates there would be a consistent map of the whole sky for an epoch around 1900.

The AC has provided an invaluable reference source for astronomers ever since. In particular it provides a long baseline and has a strong corner-in-center overlapping plate pattern. The observation of the sky was finally completed in 1950, and the measuring soon after.

The fruits of the whole enterprise were published in the form of a multi-volume catalogue with plate parameters for a six constant model and the x and y coordinate

and magnitude for each star on that particular plate. The user could then from, the original measurements to determine the stars' equatorial coordinates and possibly further improve upon if then needed. The catalogue has a limiting magnitude between 12–13th magnitude, although with today's measuring devices this magnitude limit could probably be extended.

The United States Naval Observatory is currently entering all the coordinates and attempting to re-reduce the entire catalogue with a block adjustment. The author is in debt to the US Naval Observatory for providing the AC of the Orion region from their database. The reference catalogue used is the Astrographic Catalogue of Reference Stars (ACRS), also provided by the US Naval Observatory; who produced this catalogue solely for the purpose of re-reducing the whole of the Astrographic Catalogue. The density of the ACRS is an average of 8 stars per square degree, so nominally there will be 32 on each Astrographic plate and 8 on each McCormick plate (because of the bright star density in Orion this density is actually higher for this study).

Figure 8 shows the pattern of the San Fernando and Algiers photographic plates.

The three belt stars of Orion are shown for orientation. Note the strong overlapping corner in center pattern. This means that a star's image can be on up to 5 separate plates.

The San Fernando region

We used 19 plates from the San Fernando region. Table 1 summarizes the original AC data. Listed are a running plate number, astrographic catalogue plate number, right ascension in hours, declination in degrees, epoch of Observation and the six parameters given in the AC.

Figure 8: First Epoch Plate Orientation

By examining the epochs of the plates one can see that the majority of them were taken around 1893, and then there is another cluster of observations in 1909. The latter plates only cover stars above 0° declination; this will be drawn upon in the final summary. For now, we shall just note that the San Fernando region was made up of material clustered around two epochs, 1893 and 1909.

The first and fifth parameters, a and e, are quite large and positive; this implies that the focal length of the San Fernando astrograph was approximately 37mm smaller than the standard astrographic focal length of 3437mm.

70
Table 1: San-Fernando Astrographic Plates Data

287 954 956 957 621 135	5.33 5.47 5.27 5.40 5.53 5.20 5.33	2.0 1.0 1.0 1.0	1909.0 1909.0 1894.0	37.62 37.22 37.64	9.69 -12.5 0.80 9.13		-9.94 12.33 -0.87 -9.24	37.17 36.49 36.88 36.44	0.068 036 124 018
287 954 956 957 621 135	5.47 5.27 5.40 5.53 5.20	2.0 1.0 1.0 1.0	1910.0 1909.0 1909.0 1909.0 1894.0	37.62 37.22 37.64 37.20	9.69 -12.5 0.80 9.13	0.028 552 445 0.022	-9.94 12.33 -0.87 -9.24	37.17 36.49 36.88 36.44	0.068 036 124 018
954 956 957 621 135	5.27 5.40 5.53 5.20	1.0 1.0 1.0	1909.0 1909.0 1909.0 1894.0	37.22 37.64 37.20	-12.5 0.80 9.13	552 445 0.022	12.33 -0.87 -9.24	36.49 36.88 36.44	036 124 018
956 957 621 135	5.40 5.53 5.20	1.0 1.0 0.0	1909.0 1909.0 1894.0	37.64 37.20	0.80 9.13	445 0.022	-0.87 -9.24	36.88 36.44	124 018
957 621 135	5.53 5.20	1.0	1909.0 1894.0	37.20	9.13	0.022	-9.24	36.44	018
621 135	5.20	0.0	1894.0						
135				37.45	-8.72	0 454	0 55		
	5.33	0.0	1000 1			0.454	8.75	36.89	-1.35
620			T835.T	38.79	-1.70	948	1.70	38.27	0.179
030	5.47	0.0	1894.0	36.80	6.77	0.242	-6.77	36.28	308
136	5.60	0.0	1892.1	37.66	-13.6	319	13.62	37.11	409
411	5.27	-1.0	1893.1	37.36	-42.6	1.023	42.80	36.77	515
412	5.40	-1.0	1893.1	37.33	4.38	1.455	-4.31	36.77	475
080	5.53	-1.0	1892.0	37.19	-19.5	139	19.56	36.60	0.099
413	5.67	-1.0	1893.1	37.27	-10.4	0.202	10.52	36.68	263
403	5.80	-1.0	1893.1	36.58	-40.7	0.272	40.59	35.99	589
424	5.20	-2.0	1893.1	37.13	-18.2	0.418	18.10	36.54	483
400	5.33	-2.0	1893.0	36.69	7.36	297	-7.36	36.07	1.530
(()	136 411 412 080 413 403 424 400 L08 L61	112 5.40 080 5.53 113 5.67 1403 5.80 1424 5.20 1400 5.33 1408 5.47 1401 5.60	136 5.60 0.0 111 5.27 -1.0 112 5.40 -1.0 113 5.67 -1.0 113 5.67 -1.0 103 5.80 -1.0 104 5.20 -2.0 100 5.33 -2.0 108 5.47 -2.0 101 5.60 -2.0	136 5.60 0.0 1892.1 111 5.27 -1.0 1893.1 125.40 -1.0 1893.1 180 5.53 -1.0 1892.0 113 5.67 -1.0 1893.1 103 5.80 -1.0 1893.1 124 5.20 -2.0 1893.1 100 5.33 -2.0 1893.0 108 5.47 -2.0 1896.0 161 5.60 -2.0 1892.1	136 5.60 0.0 1892.1 37.66 111 5.27 -1.0 1893.1 37.36 112 5.40 -1.0 1893.1 37.33 1080 5.53 -1.0 1892.0 37.19 113 5.67 -1.0 1893.1 37.27 103 5.80 -1.0 1893.1 37.27 104 5.20 -2.0 1893.1 37.13 100 5.33 -2.0 1893.0 36.69 108 5.47 -2.0 1896.0 37.43 161 5.60 -2.0 1892.1 37.84	136 5.60 0.0 1892.1 37.66 -13.6 111 5.27 -1.0 1893.1 37.36 -42.6 112 5.40 -1.0 1893.1 37.33 4.38 1080 5.53 -1.0 1892.0 37.19 -19.5 113 5.67 -1.0 1893.1 37.27 -10.4 103 5.80 -1.0 1893.1 36.58 -40.7 124 5.20 -2.0 1893.1 37.13 -18.2 100 5.33 -2.0 1893.0 36.69 7.36 108 5.47 -2.0 1896.0 37.43 2.36 161 5.60 -2.0 1892.1 37.84 -7.16	136 5.60 0.0 1892.1 37.66 -13.6319 111 5.27 -1.0 1893.1 37.36 -42.6 1.023 112 5.40 -1.0 1893.1 37.33 4.38 1.455 1080 5.53 -1.0 1892.0 37.19 -19.5139 113 5.67 -1.0 1893.1 37.27 -10.4 0.202 103 5.80 -1.0 1893.1 36.58 -40.7 0.272 124 5.20 -2.0 1893.1 37.13 -18.2 0.418 100 5.33 -2.0 1893.0 36.69 7.36297 108 5.47 -2.0 1896.0 37.43 2.36 0.093 161 5.60 -2.0 1895.1 37.84 -7.16289	136 5.60 0.0 1892.1 37.66 -13.6319 13.62 111 5.27 -1.0 1893.1 37.36 -42.6 1.023 42.80 112 5.40 -1.0 1893.1 37.33 4.38 1.455 -4.31 125.40 -1.0 1893.1 37.33 4.38 1.455 -4.31 1808 5.53 -1.0 1892.0 37.19 -19.5139 19.56 113 5.67 -1.0 1893.1 37.27 -10.4 0.202 10.52 103 5.80 -1.0 1893.1 36.58 -40.7 0.272 40.59 1424 5.20 -2.0 1893.1 37.13 -18.2 0.418 18.10 140 5.33 -2.0 1893.0 36.69 7.36297 -7.36 160 5.33 -2.0 1893.0 36.69 7.36297 -7.36 160 5.47 -2.0 1896.0 37.43 2.36 0.093 -2.33 161 5.60 -2.0 1892.1 37.84 -7.16289 7.19	136 5.60 0.0 1892.1 37.66 -13.6319 13.62 37.11 111 5.27 -1.0 1893.1 37.36 -42.6 1.023 42.80 36.77 1112 5.40 -1.0 1893.1 37.33 4.38 1.455 -4.31 36.77 112 5.40 -1.0 1893.1 37.33 4.38 1.455 -4.31 36.76 1080 5.53 -1.0 1892.0 37.19 -19.5139 19.56 36.60 113 5.67 -1.0 1893.1 37.27 -10.4 0.202 10.52 36.68 103 5.60 -1.0 1893.1 37.13 -18.2 0.418 18.10 36.54 100 5.33 -2.0 1893.0 36.69 7.36297 -7.36 36.07 108 5.47 -2.0 1896.0 37.43 2.36 0.093 -2.33 36.84 100 5.34 -2.0 1896.0 37.43 2.36 0.093 -2.33 36.84 161 5.60 -2.0 1895.1 37.84 -7.16289 7.19 37.21

The second and forth parameters, b and d, vary quite widely and are usually the opposite of each other. These represent the rotation terms and this variation is expected if one also takes into account that the third and sixth parameters remain quite small. The San Fernando observers and measurers were very careful to ensure the plate was well centered and reasonably careful to ensure consistent alignment of the plates with respect to the sky.

The Algiers region

From the Algiers observatory we used 12 plates. Table 2 summarizes the original AC data listed in the same format as table 1.

Table 2: Algiers Astrographic Plates Data

#	AC#	$\alpha_{\rm o}$ h	δ_{o}	² Epoch	Six	constant	model	published	with th	ie AC	
20	2450	5.27	-3.0	1896.1	-1.00	2.68	0.608	-2.75	-1.65	0.128	
21	4223	5.40	-3.0	1909.1	-1.10	0.69	0.062	-1.13	-1.68	212	
22	4224	5.53	-3.0	1909.1	-1.03	0.89	0.881	-1.31	-1.89	107	
23	2453	5.67	-3.0	1896.2	-1.13	0.10	0.033	-0.38	-1.96	0.131	
24	1498	5.80	-3.0	1894.0	-1.51	-1.24	0.183	1.34	-2.06	145	
25	1697	5.33	-4.0	1894.2	-1.24	-1.65	0.141	1.48	-1.55	0.004	
26	2451	5.47	-4.0	1896.2	-0.41	-1.06	535	0.72	-1.86	2.729	
27	1716	5.60	-4.0	1894.2	-1.00	-0.96	0.079	0.10	-1.82	036	
28	1728	5.73	-4.0	1894.2	-0.83	-2.71	138	2.30	-0.96	091	
29	2429	5.40	-5.0	1896.1	-0.62	-0.31	2.604	-0.07	-2.13	-1.38	
30	1496	5.53	-5.0	1894.0	-1.48	1.00	0.216	-1.03	-1.99	0.298	
31	1512	5.67	-5.0	1894.0	-1.17	-2.20	0.268	1.82	-1.96	167	

Once again the observations are clustered around two epochs, 1895 and 1909. For this study we must pick one epoch as a mean epoch of observation and ignore the fact that the plates were actually taken at separate epochs. This is not strictly necessary; because we have three epochs of observation, it would be possible to include a proper motion term with each observation. This would however vastly increase the computational work required and the number of free parameters per image. Considering that the literature cites the nominal measuring error of the AC at four microns, the minimum proper motion to be measurable above the measuring error would be 0.02 arcseconds per year. There are very few stars with this high a proper motion, so we

will use the simple approach of assuming the observations to be made at the middle epoch, which for these data is approximately 1900.

The first and fifth parameters, a and e, are small; this implies that the focal length of the Algiers astrograph was close to the standard astrographic focal length of 3437mm.

The second and forth parameters, b and d, do not vary much and also the third and sixth parameters are small. The Algiers observers and measurers were very careful in both centering and orienting the photographic plates during observing and measuring.

The Second Epoch

For the second epoch we used photographic plates exposed by Heinrich Eichhorn at the 26-inch refractor of the Leander Mc Cormick Observatory. This is an exceptional refractor with a long history in parallax determinations and other astrometric research. With a plate scale of 22"/mm it has a much larger plate scale than the standard astrograph giving more precise information per unit area.

During these observations Eichhorn exposed each region four times, rotating the plate once after the second exposure. This was for a number of reasons: more images of each star would reduce the centering error that is inherent in any measuring process; by rotating the plate he nullified the effects of emulsion slip, and any systematic observing errors that depended on the orientation; and finally he ensured that if any particular exposure was subject to a large guiding error there would be other exposures of that region. Figure 9 illustrates the orientation of the 67 regions he choose to observe.

Again note the overlapping pattern: each star will appear in a maximum of four regions, and because of the repeated exposures, each star has the potential to be measured up to 16 times. This gives a strong tie for the overlapping method to exploit.

Figure 9: Second Epoch Plate Orientation

Table 3 summarizes the region data. Listed are running plate number; McCormick Observatory plate number; right ascension in hours; declination in degrees; date; eastern standard time; hour angle; seeing (1=high seeing, 5=low seeing); transmittance or cloud cover (1=very covered, 5=clear); and the temperature of the lens at the end of the exposure.

Table 3: Second Epoch McCormick Observatory Plates Data

#	MC#	$\alpha_{\rm o}$ h	δ°°	Epoch	EST	HA	S	T	Temperature
1	66807	5.66	-3.6	1955.7	09:13	0:40E	4	4	36
2	66810	5.61	-3.7	1955.7	09:39	0:11E	4	4	36
3	66812	5.55	-3.6	1955.7	10:01	0:17W	4	4	36
4	66814	5.55	-3.1	1955.7	10:22	0:36W	4	4	36
5	66816	5.61	-3.1	1955.7	10:45	0:54W	4	4	36
6	66817	5.65	-3.1	1955.7	11:00	1:06W	4	4	36
7	66833	5.40	-3.6	1956.1	08:28	0:56E	5	4	35
8	66835	5.46	-3.6	1956.1	08:48	0:39E	5	4	35
9	66837	5.50	-3.7	1956.1	09:19	0:10E	5	3	35
10	66839	5.50	-3.1	1956.1	09:51	0:22₩	5	3	35
11	66841	5.46	-3.1	1956.1	10:23	0:56W	5	4	35
12	66843	5.71	-3.1	1956.1	10:51	1:09W	5	4	35
13	66853	5.40	-3.1	1956.1	08:27	0:51E	5	4	36
14	66855	5.36	-3.1	1956.1	08:47	0:28E	5	4	36
15	66857	5.35	-2.6	1956.1	09:10	0:05E	5	4	36
16	66863	5.51	-2.6	1956.1	10:19	0:54W	5	4	36
17	66865	5.71	-2.6	1956.1	10:48	1:12W	5	4	36
18	66884	5.26	-2.1	1956.1	07:53	0:56E	4	4	38
19	66886	5.26	-1.6	1956.1	08:01	0:48E	4	4	38
20	66895	5.41	-2.6	1956.1	08:16	0:15E	4	5	44
21	66897	5.46	-2.6	1956.1	08:34	0:00E	4	5	44
22	66899	5.56	-2.7	1956.1	08:55	0:16W	4	5	44
23	66901	5.61	-2.6	1956.1	09:11	0:28W	4	5	44
24	66911	5.31	-2.6	1956.1	07:40	0:40E	5	4	48
25	66913	5.31	-2.1	1956.1	07:58	0:22E	5	4	48
26	66915	5.36	-2.1	1956.1	08:29	0:05W	4	4	48
27	66917	5.40	-2.1	1956.1	08:45	0:18W	4	3	48
28	66919	5.30	-1.6	1956.1	07:05	1:11E	4	4	50
29	66921	5.36	-1.6	1956.1	07:25	0:54E	4	4	50
30	66923	5.40	-1.6	1956.1	07:46	0:36E	4	4	50
31	66925	5.45	-1.6	1956.1	08:07	0:18E	4	4	50
32	66927	5.50	-1.6	1956.1	08:29	0:01W	3	4	50
33	66929	5.55	-1.6	1956.1	08:48	0:17W	3	4	50
34	66932	5.55	-2.1	1956.1	09:12	0:41W	2	3	50
35	66933	5.61	-2.2	1956.1	09:34	0:59W	2	3	50
36	66942	5.24	-1.1	1956.1	06:56	1:06E	5	5	45
37	66944	5.30	-1.1	1956.1	07:13	0:51E	5	5	45
38	66946	5.35	-1.1	1956.1	07:35	0:32E	5	5	45
39	66948	5.41	-1.1	1956.1	07:53	0:17E	5	5	45
40	66957	5.45	-2.1	1956.1	07:26	0:43E	4	5	42

#	MC#	$\alpha_{\rm o}$ h	δ_{o}°	Epoch	EST	HA	S	T	Temperature
41	66959	5.50	-2.1	1956.1	07:44	0:28E	4	5	42
42	66963	5.35	-0.1	1956.1	06:51	0:52E	3	5	52
43	66965	5.41	-0.1	1956.1	07:08	0:38E	5	5	52
44	66967	5.45	-0.1	1956.1	07:28	0:21E	5	5	52
45	66969	5.45	-0.6	1956.1	07:48	0:01E	5	5	52
46	66971	5.51	-1.1	1956.1	08:06	0:17W	5	5	52
47	66976	5.56	-1.1	1956.1	08:51	0:56W	5	5	52
48	66978	5.61	-1.6	1956.1	09:15	1:16W	5	5	52
49	66979	5.36	0.5	1956.1	06:48	0:47E	3	4	44
50	66981	5.41	0.5	1956.1	07:05	0:33E	3	4	44
51	66983	5.45	0.5	1956.1	07:25	0:16E	3	4	44
52	66985	5.51	0.4	1956.1	07:43	0:01E	3	4	44
53	66988	5.55	-0.1	1956.1	08:14	0:27W	3	3	44
54	66990	5.60	-1.2	1956.1	08:36	0:45W	3	3	44
55	66991	5.51	-0.1	1956.1	06:47	0:46E	4	4	42
56	66994	5.51	-0.6	1956.1	07:04	0:29E	4	4	39
57	66996	5.55	-0.6	1956.1	07:29	0:07E	4	4	39
58	66997	5.61	-0.6	1956.1	07:41	0:01W	4	4	39
59	66999	5.65	-1.6	1956.1	08:05	0:08W	4	4	39
60	67001	5.70	-2.2	1956.1	08:32	0:46W	5	4	37
61	67003	5.70	-1.7	1956.1					
62	67005	5.35	-0.6	1956.1					
63	67007	5.41	-0.6	1956.1					
64	67008	5.35	0.9	1956.1					
65	67010	5.41	0.9	1956.1					
66	67012	5.46	0.9	1956.1					
67	67015	5.51	0.9	1956.1					

Figure 10 is a picture of the refractor. The photographic plate holder is shown quite clearly at the base along with the offset guiding mechanism and exposure timer. At the top of the telescope one can see the housing for both the lens cover and the objective grating used in the second and third epochs.

The Third Epoch

For the third epoch we used plates exposed by Richard Smart, again on the 26-inch refractor of the Leander McCormick Observatory. For this epoch we recorded each

Figure 10: The Leander McCormick Refractor

Figure 11: Third Epoch Plate Orientation

chosen region only an average of 3 times on a single plate as opposed to 4. However we covered 97 regions, allowing approximately the same coverage but with greater overlap. Figure 11 illustrates the orientation of the regions chosen.

Both the second and third epoch were observed using a large, 2.5 magnitude objective grating. This meant that most bright (i.e., brighter than 10th magnitude) stars formed up to 5 measurable stellar images. Later on we will discuss how these images were used to control the possible magnitude effects. Table 4 summarizes the region data listed in the same format as the second epoch data.

Table 4: Third Epoch McCormick Observatory Plates Data

#	MC#	$\alpha_{o}h$	δ°°	Epoch	EST	HA	S	Т	Temperature
1	141225	5.28	-1.3	1991.9	12:45	0:25W	2	2	56
2	141227	5.26	-1.2	1991.9	13:14	0:10W	3	2	57
3	141229	5.38	-1.1	1991.9	14:04	0:25E	2	2	57
4	141231	5.65	-1.7	1991.9	14:36	0:50E	2	2	57
5	141247	5.25	-1.5	1991.9	12:31	0:50E	3	5	55
6	141249	5.38	-1.5	1991.9	13:00	0:30E	3	4	55
7	141251	5.46	-1.5	1991.9	13:38	0:05W	3	4	55
8	141253	5.52	-1.5	1991.9	14:05	0:30W	3	3	55
9	141263	5.35	-0.2	1991.9	12:34	0:40W	3	5	33
10	141265	5.41	-0.2	1991.9	13:03	0:20W	3	5	33
11	141267	5.48	-0.2	1991.9	13:34	0:08E	4	5	30
12	141269	5.55	-0.2	1991.9	13:56	0:36E	4	5	31
13	141279	5.28	-0.6	1991.9	12:51	0:20E	4	5	33
14	141281	5.35	-0.6	1991.9	13:18	0:04W	4	5	33
15	141283	5.41	-0.6	1991.9	13:42	0:23W	4	5	33
16	141285	5.48	-0.6	1991.9	14:06	0:45W	4	5	32
17	141341	5.36	0.0	1991.9	11:59	0:06E	3	5	42
18	141342	5.42	0.0	1991.9	12:17	0:10W	3	5	42
19	141343	5.47	0.0	1991.9	12:32	0:21W	3	5	42
20	141344	5.53	0.0	1991.9	13:00	0:45W	2	5	41
21	141345	5.25	-1.8	1991.9	11:10	0:44E	2	4	37
22	141346	5.31	-1.8	1991.9	11:37	0:20E	2	4	37
23	141347	5.36	-1.8	1991.9	11:57	0:03E	2	4	37
24	141348	5.42	-1.7	1991.9	12:13	0:10W	2	4	36
25	141349	5.48	-1.8	1991.9	12:36	0:28W	2	4	36
26	141350	5.54	-1.8	1991.9	12:46	0:36W	2	4	36
27	141351	5.60	-1.7	1991.9	13:04	0:50W	2	4	36
28	141352	5.72	-1.8	1991.9	13:20	0:58W	2	4	36
29	141353	5.34	-2.2	1991.9	11:25	0:30E	4	4	32
30	141354	5.39	-2.1	1991.9	11:42	0:15E	4	4	32
31	141355	5.45	-2.1	1991.9	11:59	0:03E	4	4	32
32	141356	5.51	-2.1	1991.9	12:24	0:16W	4	4	32
33	141357	5.57	-2.1	1991.9	12:47	0:34W	4	4	32
34	141358	5.63	-2.1	1991.9	12:57	0:46W	3	2	32
35	141368	5.26	-2.4	1992.0	11:02	0:40E	2	4	30
36	141369	5.31	-2.4	1992.0	11:29	0:16E	2	4	30
37	141370	5.36	-2.4	1992.0	11:55	0:06W	2	4	30
38	141371	5.42	-2.4	1992.0	12:19	0:28W	2	3	29
39	141372	5.48	-2.4	1992.0	12:36	0:40W	2	3	29
40	141373	5.54	-2.4	1992.0	12:57	0:58W	2	3	29

#	MC#	$\alpha_{\rm o}$ h	$\delta_{\mathrm{o}}{}^{\mathrm{o}}$	Epoch	EST	HA	S	T	Temperature
41	141414	5.28	-2.7	1992.0	09:17	0:37E	3	3	32
42	141415	5.35	-2.7	1992.0	09:34	0:23E	3	3	32
43	141416	5.40	-2.7	1992.0	10:20	0:20W	2	3	31
44	141417	5.46	-2.7	1992.0	10:40	0:36W	2	3	31
45	141418	5.69	-2.7	1992.0	11:02	0:44w	2	3	31
46	141419	5.30	-3.0	1992.0	08:55	0:56E	4	3	25
47	141420	5.37	-3.0	1992.0	09:20	0:34E	4	3	25
48	141421	5.42	-3.0	1992.0	09:39	0:20E	4	3	25
49	141422	5.49	-3.0	1992.0	09:59	0:03E	4	3	25
50	141423	5.54	-3.0	1992.0	10:17	0:11W	3	3	22
51	141424	5.61	-3.0	1992.0	10:34	0:25W	3	3	22
52	141425	5.66	-3.0	1992.0	10:49	0:37W	3	3	22
53	141426	5.72	-3.0	1992.0	11:10	0:55W	3	3	22
54	141429	5.35	-1.0	1992.0	08:54	0:47E	3	3	22
55	141430	5.40	-1.0	1992.0	09:09	0:35E	3	3	22
56	141431	5.28	-1.0	1992.0	09:30	0:09E	4	3	28
57	141432	5.45	-0.9	1992.0	09:48	0:00E	4	3	28
58	141433	5.52	-0.9	1992.0	10:09	0:17W	4	3	28
59	141434	5.57	-0.9	1992.0	10:26	0:31W	4	3	28
60	141435	5.62	-0.9	1992.0	10:35	0:36W	4	3	28
61	141444	5.34	-1.5	1992.1	08:21	0:53E	3	4	34
62	141445	5.36	0.6	1992.1	08:38	0:37E	3	4	34
63	141446	5.42	0.6	1992.1	08:57	0:22E	3	4	34
64	141447	5.48	0.6	1992.1	09:21	0:02W	3	4	32
65	141448	5.45	-0.3	1992.1	09:36	0:16W	3	4	32
66	141449	5.51	-2.7	1992.1	10:00	0:37W	3	4	32
67	141450	5.57	-2.7	1992.1	10:15	0:47W	3	4	32
68	141455	5.34	-3.3	1992.1	08:30	0:36E	3	4	42
69	141456	5.40	~3.3	1992.1	08:46	0:23E	3	4	42
70	141457	5.45	-3.3	1992.1	09:03	0:10E	3	4	41
71	141458	5.51	-3.3	1992.1	09:24	0:09w	3	4	41
72	141459	5.57	-3.3	1992.1	09:38	0:18W	3	4	41
73	141460	5.63	-3.3	1992.1	09:55	0:32W	3	4	41
74	141461	5.60	-2.4	1992.1	10:15	0:54W	3	4	41
75	141471	5.48	-1.2	1992.1	09:20	0:09W	3	3	45
76	141472	5.54	-1.2	1992.1	09:34	0:20W	3	3	45
77	141473	5.60	-1.2	1992.1	09:45	0:27W	3	3	45
78	141474	5.57	-1.5	1992.1	10:00	0:45W	3	3	45
79	141475	5.63	-1.5	1992.1	10:14	0:55W	3	3	45
80	141490	5.39	0.9	1992.1	07:33	0:06E	4	4	44

#	MC#	$\alpha_{\rm o}$ h	δ°°	Epoch	EST	HA	S	T	Temperature
31	141491	5.45	0.9	1992.1	07:48	0:06W	4	4	44
32	141492	5.54	-0.6	1992.1	08:07	0:20W	4	4	44
33	141493	5.60	-0.6	1992.1	08:26	0:35W	4	4	44
34	141494	5.63	-2.7	1992.1	08:38	0:46W	4	4	44
35	141511	5.34	-3.9	1992.2	07:12	0:44w	4	4	62
36	141512	5.40	-3.9	1992.2	07:26	0:55w	4	4	62
37	141513	5.45	-3.9	1992.2	07:35	0:59w	4	4	62
8	141514	5.63	-3.9	1992.2	07:48	1:02W	4	4	62
9	141515	5.72	-2.4	1992.2	08:00	1:07E	4	4	62
0	141522	5.37	-3.6	1992.2	07:17	0:50W	2	4	34
1	141523	5.44	-3.6	1992.2	07:25	1:00W	2	4	34
2	141524	5.64	-3.6	1992.2	07:37	0:55W	2	4	34
3	141525	5.68	-2.1	1992.2	07:42	1:05W	2	4	34

Measuring the Plates

We measured the plates on the University of Minnesota Automated Plate Scanner (APS) at Minneapolis, which was originally designed as a proper motion measuring engine for Luyten's automated proper motion surveys. It has been refitted with modern electronics and is currently being used for digitizing the Palomar Sky Surveys.

The machine is shown in two pictures in figures 12 and 13 (figure 12 shows the overall machine.) It can measure two plates at any one time on the two measuring levels. For measuring the second and third epoch plates we used just the upper level. Figure 13 shows the laser beam that measures the plate density as the whole housing scans across the plate. Inside this housing is an eight sided prism that rotates, with the speed of the rotation setting the scanning speed. It scans out 12mm strips with 12 micron diameter spots in y and simultaneously the strip is moved in x. Thus knowing the speed of rotation, the motion in x, and the density at any point a digitized map of the plate can be made.

Figure 12: The Automated Plate Scanner(Pennington et al., 1993)

Figure 13: The APS Scanning Laser (Pennington et al., 1993)

Figure 14: APS Isodensitometric scan (Pennington et al., 1993)

In addition to differing speeds (and as such differing resolutions) there are three different kinds of scanning modes for the APS: isodensitometric, densitometric and a hybrid of these two modes. For measuring these plates we used the isodensitometric mode. In this mode the diffraction pattern of the laser beam as it scans is focussed on a photodetector. Every time the image attains either a preset or a dynamically set threshold density, the position is read to a precision of 0.366 microns. Therefore each stellar image will have two points for each scan across it, the ingress and egress of the image. Figure 14 shows a typical stellar image scanned in isodensitometric mode with four threshold levels.

An ellipse is fitted to this isodensitometric outline. This best fit ellipse then defines the image and its center defines the position of the image. The final output consists of six parameters for each image: x and y coordinates of the ellipse center, diameter, ellipticity, theta angle (angle of the best fit ellipse's semimajor axis to the x axis), and a value that measured the goodness of fit of the ellipse. For a typical plate there may be 5000 images of which only 1000 were real stellar images or grating images.

This machine is extremely fast and allowed us to measure all the plates twice in

the span of two weeks. For the first scan we only used one level threshold; for the second scan we used two thresholds. So for each plate we have three estimates of the images on that plate.

Each adjacent stripe has a 1mm overlap region. Images in this overlap region that have matching parameters are assumed to be the same image and then used to tie stripes together. This is because the machine would tend to drift by perhaps 2–3 microns between stripes and the use of an overlap allowed a continual mapping of the measuring frame to a fixed frame.

Figure 15 shows the predicted stellar positions for the regions 141368, 141369 and 141370. Each region was exposed three times on the same emulsion. One emulsion was used due to their high cost, it also made the scanning easier as we scanned the whole plate in one 'sweep'. Each plate is filed under the McCormick number of the first exposure.

Each star with a cross is a reference star; they are brighter on average than the field stars. The grating images of the brighter stars (m<10) are used to ensure that any magnitude effects are equally modelled for the whole of the stellar magnitude range. With ideal magnitude-independent imaging, the primary stellar image will be at the average of the first and second order images. Coma and magnitude effects will cause deviations from an exact agreement of the average of the grating images and the primary images. By examining this deviation we can very accurately model the magnitude dependent terms. (There is no better way to do it.)

There are different ways of examining this deviation. In this analysis for every measured objective grating pair we assigned a fictitious star to their average. Figure 16

Figure 16: Predicted Positions for Plate 141368x70

shows an example of a difference that might be expected. The X marks the average of the two first order grating images. At this point we 'create' a fictitious star that has all the same parameters as the primary star except its magnitude is reduced by the grating constant. This is then entered into the overlap as an extra observation and the information contained in its position and magnitude will be enforced by the overlap least-squares reduction.

Figure 16: The difference between a Grating Image Average and the Primary Image Center

This method may increase the variance of the solution, but we feel the possible increase in variance due to extra observations will be outweighed by the potentially stronger overlap and the ability to solve for all the parameters simultaneously.

Figure 17 shows the scan of plate 141368. This shows one drawback of using a diffraction grating. The large ellipses are blended diffraction images that the software has been unable to differentiate. These images were not used in the stellar positions and this results in a minor loss of data. As we have 3–4 exposures of each region, and because a particular star may appear in perhaps 4 regions then the loss of 1 or 2 of its measurements will not greatly affect the final positions.

To find the location of the bright stars that are differentially subject to image blending in the second set of scans (the reverse scans), we used two thresholds. Figure 18 shows the same plate scanned again in the upper threshold. As the figure shows we have lost the dimmer stars and grating images, but the brighter stars have been resolved. This was treated as a separate exposure of the same region, again allowing a strong overlap and actually allowing an independent check of the plate parameters; they should be the same for the second scan.

Summary of Observational Material and Measured Images

To summarize, the observational material basically consists of photographic plates exposed at three epochs. Below are the observation statistics for all three epochs:

First Epoch Plate Information	
Observatory and epoch Number of Regions	San Fernando and Algiers, 1900
Number of Exposures	31
Plate scale of telescope	60"/mm
Average Positional precision	$4\mu\mathrm{m}$
Second Epoch Plate Informati	on
Observatory and epoch	McCormick Observatory, 1956
Number of Regions	67
Number of Exposures	261
Plate scale of telescope	22"/mm
Average Positional precision	$2\mu\mathrm{m}$
Third Epoch Plate Information	n
Observatory and epoch	McCormick Observatory, 1992
Number of Regions	93
Number of Exposures	293
Plate scale of telescope	22"/mm
Average Positional precision	$2\mu\mathrm{m}$

Figure 17: Scan of Plate 141368x70 Low Threshold

CHAPTER 5 FINDING A MODEL

In the discussion on Finding Stellar Coordinates we used as an example the sixconstant model. However, as we also discussed, to account accurately for the complex relationship between the observations (x,y) and the standard coordinates (ξ,η) a greater number of terms is needed. The model will invariably not account for all contributing effects. There comes a point when model improvement will require more effort than the potential improvement in accuracy warrants. Also, applying a complicated model known to be correct but which requires the estimation of a relatively large number of parameters may depress the ultimate accuracy due to generating a large parameter variance, (cf. Eichhorn and Williams, 1963).

For the choice of a model there is no unambiguous technique that will give black and white indications of which parameters to include. The procedure is more of an art than a mathematical reduction. In addition to the numerical tests of significance an understanding of the physical situation aids the analysis significantly.

The discussion will be split into sections: previous studies, position residuals analysis, parameter variation analysis, and solution variances. There will also be a separate discussion of single and overlapping plate solutions, this is important because the noise in the single plate solution may hide some effects and the stronger tie in the overlap may also hide some different effects. These sections are chosen to simplify the discussion. The final choice was based on an examination all of these indicators simultaneously, while trying out different models.

Previous Work

The original publications of the Astrographic Catalogue included the basic sixconstant models. This was because the accuracy required only warranted a six-constant
model and the number of reference stars per-square degree never really allowed a larger
model. Using the ACRS there is an average of 32 reference stars per plate. This
will give us only a parameter-to-observation ratio of two in a 16-constant single plate
solution. This ratio is much higher in the overlap where there are on average 200
images per plate, many of which will act as observations. Therefore for reasonable size
models by using an overlap solution we are no longer limited to a small model and we
can examine what other possible terms may be included.

Previous work on zones of the AC have used simple six-constant models to tenconstant models (Eichhorn and Gatewood, 1967) all the way up to a combination of the six-constant model with twenty constrained constants (Gunther and Kox, 1971). Various investigations have found that AC material contains evidence for magnitude terms, color terms, coma terms and, radial terms.

In this analysis we deal with the Algiers and the San Fernando zone. During the measuring of the Algiers zone no magnitude term was found (Eichhorn and Clary, 1974). In the San Fernando zone the measurements showed no signs of radial distortion, aberration or refraction. (It is worth noting however that high discrepancies, up to 25μ , between rectangular coordinates of the same image were tolerated, and thus these effects could easily be lost in the noise.)

The astrometric properties of the McCormick Refractor were examined by Russell (1976). She examined data from 15 large astrometric telescopes for evidence of

model terms in magnitude, coma, magnitude squared, color, color magnification (color-coordinate product), tilt, refraction (position cross product), distortion and, magnitude-distortion product. The McCormick Telescope showed significant terms in the magnitude, coma, tilt, refraction, and the magnitude-distortion term. When we finalize our model choice we will refer to the previous work to see if they agree with previous investigations.

Positional Residuals

In this section we will analyze the output from six-constant solutions. The objective is to use a very basic model and see what extra terms the position residuals and errors are correlated with. We analyze 21 extra terms by graphing the residuals of our solution vs their value. The 21 extra terms analyzed were

$$(m - \langle m \rangle), (m - \langle m \rangle)^{2}, (m - \langle m \rangle)x, (m - \langle m \rangle)y,$$

$$(m - \langle m \rangle)x^{2}, (m - \langle m \rangle)y^{2}, (m - \langle m \rangle)^{2}x, (m - \langle m \rangle)^{2}y,$$

$$(m - \langle m \rangle)(x^{2} + y^{2}), (m - \langle m \rangle)x(x^{2} + y^{2}),$$

$$(m - \langle m \rangle)y(x^{2} + y^{2}), (m - \langle m \rangle)(xy), xy, x^{2}, y^{2},$$

$$x^{2}y, xy^{2}, (x^{2} + y^{2}), x(x^{2} + y^{2}), y(x^{2} + y^{2}), (x^{2} + y^{2})^{2}.$$
(5.1)

In the analysis of each term we examined a host of various graphs. It would be counter productive to reproduce all of the graphs, examples are reproduced for each technique.

Single Plate Residuals

Consider the results from a single plate solution. For the reference stars the residuals can be found and are of the form

$$\begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} - \left(s \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \Xi a \right) \tag{5.2}$$

where the x, y, ξ and η are the inputted values and the parameter matrix is the result of the reduction. These residuals can then be examined to see which other terms in the stellar parameters may be significant. In figures 19 and 20 we graph the residuals $(\Delta x \text{ and } \Delta y)$ of a six-constant single plate solutions vs the different extra terms listed above. The residuals are for 27 plates of the 1900 epoch material; all plates with over 25 reference stars were included.

The residual on the y axis in each graph is limited to three standard deviations, the dotted line represents two standard deviations. There is a large amount of scatter in the points. This is expected as ideally they would be randomly distributed reflecting the problems in the reference data and measuring process. There may also be some misidentifications in the sample as well which will add to the noise.

A 3rd order polynomial was fitted to the points, for the purpose of examining trends in the curve. Graphs that were similar, both in scale and trend, were noted. For example, if we found a trend in a term that was similar in both the x and y residual then we can assume the parameter for this term, should we include it, would be the same.

From figure 19 we can make the following conclusions: the residuals are correlated with both the m (magnitude) and m^2 quantities, the correlation is stronger and consistent in the Δy , and not as strong or consistent in the Δx . There is no strong evidence for

Figure 19: Six-Constant Single Plate Residuals

Figure 20: Six-Constant Single Plate Residuals

a correlation in the Δx vs mx, my or mx². In the Δy vs mx and my there is evidence for a correlation and only slight evidence in the Δy vs mx².

From figure 20 we can see that the Δx is not consistently correlated in any of the terms, though it may be in the $mx(x^2+y^2)$ term. The Δy shows a strong correlation in my^2 , xm^2 , and ym^2 and a weaker correlation in the $mx(x^2+y^2)$ and $my(x^2+y^2)$ terms.

These correlations imply that the plates suffered from a guiding error and some coma, mainly in the y coordinate. Based on these graphs, for the 1900 model, we should include terms in the x coordinate that fit m, m² and prehaps mx, and in the y coordinate terms that fit m, m², mx, my, xm², and ym². In the actual development we would not do this straight away. First we would examine the corresponding six-constant model overlap residuals (as in the next section), and then if there were still the same correlations we would fit a magnitude term and one or two of the other terms. Then we reexamine the remaining terms and add terms as needed.

Overlap Residuals

In the single plate method because each solution was only dependent on 20–30 reference stars, the solutions could be loose and therefore some of the trends could have been hidden in the noise. In the overlapping plate method the solution is much stronger because of the restriction that a star have the same position from plate to plate. Therefore, even though we are only using a six-plate model some effects, such as radial ones, will be accounted for by the overlap.

For example, the images of a given star at the centers of one plate must have the same position as an image of the same star that may be in the corner on another plate at any give epoch. Any radial effects will be canceled out when we find the mean weighted position. When we find the residual of the position this effect is slightly nullified because we are returning again to single images rather than mean weighted average star positions.

Now we examine the residuals from a six-constant overlap as we did in the single plate example to see if there are any improvements or any other problems highlighted. Figures 21 and 22 show examples of residual graphs for a six-constant overlap of the 1900 material.

In figure 21 we again see the same positive correlation in the m and m² terms, though it is damped slightly. There does however seem to be no correlation the other terms except for the my term which shows a strong parabolic shape; this implies a very real trend.

In figure 22 we see some trends that we had thought were not consistent, like that in the Δx vs $mx(x^2+y^2)$ and $my(x^2+y^2)$ terms and we also see a new similar feature in the xm^2 term. If we decide to fit the $mx(x^2+y^2)$ and $my(x^2+y^2)$ for either Δx or Δy we can keep the same parameters for them as the correlation is identical. The only other correlation is in the Δy vs ym^2 term which repeats the correlation seen in the single plate analysis and should be modelled.

Summary

From this analysis we can highlight those terms we feel important for further analysis. After the more sophisticated model is run, another examination of the residuals may highlight more correlations and these will have to be included. An analysis of the parameter variation in the next section shows how we can highlight parameters that may be correlated but are not significant to the reduction and therefore can be removed.

Figure 21: Six-Constant Overlap Residuals

Figure 22: Six-Constant Overlap Residuals

From our residual analysis we found that all three epochs showed significant first order magnitude effects and so the minimum model would be the eight constant model:

$$\Xi = \begin{pmatrix} \xi & \eta & 1 & 0 & 0 & 0 & m - \langle m \rangle & 0 \\ 0 & 0 & 0 & \xi & \eta & 1 & 0 & m - \langle m \rangle \end{pmatrix}, \quad a = \begin{pmatrix} a \\ b \\ c \\ a' \\ b' \\ c' \\ e \\ f \end{pmatrix}. \tag{5.3}$$

Now for each of the epochs we found different effects and they are discussed separately.

Epoch 1900: An analysis of the residuals showed the terms were correlated mainly with the Δy residual. This Δy varied so strongly in one term the Δx residual is not modelled but the Δy is. A very strong correlation was also found in the first and second order magnitude terms that could possibly be modeled by only two parameters. There is a consistent and similar variation in the $mx(x^2+y^2)$ and $my(x^2+y^2)$ terms indicating they should only be modeled in y and that it may be the $m(x^2+y^2)$ term that needs modelling. We found a similar but opposite (e.g. acting on the opposite residual) in the xy and mxy terms, signifying these can be modeled by only two parameters, similarly in the xy² and $x(x^2+y^2)$ terms. Finally correlations were different in the Δy and Δx vs. (x^2+y^2) , hence two parameters were needed for this one radial term.

After residual analysis we decided to try the eight constant model plus the following eight terms:

$$\begin{array}{ccc} \xi \eta & \left(\xi^2 + \eta^2\right) \xi \eta & \left(m - \langle m \rangle\right)^2 & 0 \\ \left(\xi^2 + \eta^2\right) \xi \eta & \xi \eta & \left(m - \langle m \rangle\right)^2 & \left(m - \langle m \rangle\right) \eta \end{array}$$

(5.4)

$$\begin{array}{ccc} \xi\eta^2 & \xi\left(\xi^2+\eta^2\right) & \left(\xi^2+\eta^2\right) & 0 \\ \xi\left(\xi^2+\eta^2\right) & \xi\eta^2 & 0 & \left(\xi^2+\eta^2\right). \end{array}$$

Epoch 1956: For the 1956 material there was very little evidence for magnitude and tilt terms. The coma and magnitude distortion terms seem to dominate, but even these cause very little variation. After the residual analysis we decided to examine the following terms:

$$\begin{array}{ccc} (m-\langle m \rangle) \xi \left(\xi^2 + \eta^2 \right) & 0 & (m-\langle m \rangle) \eta \left(\xi^2 + \eta^2 \right) & 0 \\ 0 & (m-\langle m \rangle) \xi \left(\xi^2 + \eta^2 \right) & 0 & (m-\langle m \rangle) \eta \left(\xi^2 + \eta^2 \right) \end{array}$$

(5.5)

$$\begin{array}{ccc} (m-\langle m \rangle)^2 \xi & 0 & (m-\langle m \rangle)^2 \left(\xi^2 + \eta^2 \right) \\ 0 & (m-\langle m \rangle)^2 \eta & (m-\langle m \rangle)^2 \left(\xi^2 + \eta^2 \right). \end{array}$$

Epoch 1992: Again dominated by coma and magnitude terms; in this case however the graphs are similar and we have modelled these terms with single parameters. There was some slight slope in the residual plots for the tilt terms and origin-distance squared terms but not very pronounced. After residual analysis we decided to examine the following terms:

$$\begin{array}{ll} (m-\langle m\rangle)\xi\left(\xi^2+\eta^2\right) & (m-\langle m\rangle)\eta\left(\xi^2+\eta^2\right) \\ (m-\langle m\rangle)\eta\left(\xi^2+\eta^2\right) & (m-\langle m\rangle)\xi\left(\xi^2+\eta^2\right) \end{array}$$

(5.6)

$$\begin{array}{ccc} (m-\langle m\rangle)^2\xi & 0 & (m-\langle m\rangle)^2\big(\xi^2+\eta^2\big) \\ 0 & (m-\langle m\rangle)^2\eta & (m-\langle m\rangle)^2\big(\xi^2+\eta^2\big). \end{array}$$

Note that even though the residuals may not imply there is a magnitude term we have included one. This is because the magnitude effect has a strong tie to the particular guiding in an exposure; all the plates were hand guided, and therefore the term is likely to be randomized over the entire plate system. As such it may not show up in this kind of analysis; on the other hand if it is negligible then an analysis of the parameter variation will highlight this.

Two things to note about the models: the astrographic telescopes do not show particular coma or magnitude distortion terms, but do show some radial distortion and tilt terms. The 1956 and 1992 models agree quite well, as one would expect when using the same telescope. They also contains terms in magnitude distortion and coma found by Russell (1976), though there was no strong evidence for tilt terms as she found.

Parameter Variation

Now we have picked the terms we feel are correlated with the residuals and should therefore be modeled. We should now check to make sure all the terms are needed. It would be quite possible for a term to be highly correlated but still have a negligible effect. Removing extra terms is important for two considerations:

- As one increases the number of parameters their variance will also increase. This
 will propagate an error directly into the calculated positions. Eichhorn and Williams
 showed that parameter variance can actually make a correct model give less accuracy
 than a smaller approximate model.
- 2. In the physical process of computation every calculation results in a small round-off error. If we consider a overlap of 30 plates with 12 parameters, then the matrix of normal equations has dimension (360 ×360). If we now include 2 more parameters the dimension increases to (420 × 420). A good rule of thumb is that the inversion of a matrix will require N³ multiplications (where N is the order of the matrix). Therefore, continuing with our example the inclusion of 2 extra parameters

will require $(420^3 - 360^3) = 27,432,000$ extra calculations, nearly half as many multiplications as those needed for the 12 constant model. The loss of accuracy incurred by round off error in the increased computations may well outweigh the potential accuracy increase due to using a better model.

The first examination must be made with the single plate analysis, because including too many terms in the overlap will cause the inversion process to 'blow up' and the matrix will not be invertible. This examination quantifies the graphically based subjective choices made above. It will enable a simplifying of the potential models by highlighting parameters that have negligible effects (even highly correlated ones) and parameters that do not change from plate to plate.

The parameter's mean and standard deviation will indicate how well determined and significant the parameter is. The mean parameter and the largest ξ and η values will provide an upper bound on the term's contribution . For the AC the largest standard coordinate value is ξ,η =0.038 radians and for the McCormick data ξ =0.018 and η =0.013 radians.

The errors of the individual parameters will also be important to examine. These will be given by the square root of the diagonal term of the covariance matrix. In a system of equations represented by $\mathbf{A}a = x_0$ the covariance matrix, \mathbf{C} , is proportional to the inverse of the matrix \mathbf{A} . Referring back to the single plate equation (3.23)

$$a = \left(\sum_{\nu=1}^{m} \Xi_{\nu}^{T} \mathbf{J}_{\nu} \Xi_{\nu}\right)^{-1} \sum_{\nu=1}^{m} \Xi_{\nu}^{T} \mathbf{J}_{\nu} d_{\nu}$$

here the matrix $\left(\sum_{\nu=1}^m \Xi_{\nu}^T J_{\nu} \Xi_{\nu}\right)^{-1}$ is proportional to the covariance matrix.

Finally, terms should be examined to see if they are correlated. To do this we calculate the correlation parameter: $\frac{c_{\nu\mu}}{\sqrt{c_{\nu\nu}.c_{\mu\mu}}}$ where $c_{\nu\mu}$ represents the (μ,ν) term of the covariance matrix.

Table 5 summarizes all these quantities for the single plate solutions using the models outlined in 5.4, 5.5, and 5.6. As in the single plate solution we only use the reference stars, these parameters will not be very well determined, but their general variation will provide information for the removal or constraining of parameters as required. Listed are

#:	Parameter number, 7 and 8 represent first order magnitude terms, the $$

other parameters are as given in equations 5.4, 5.5, and 5.6.

Mean: Mean parameter value, if this is very large it means the parameter

will be dominating the calculation of the whole parameter vector.

 σ : Standard deviation of the parameter value, if this is greater than the

mean value then one must consider if the parameter can be ignored.

Range: Range of the parameter, indicates if there are some aberrant values.

Mean parameter error, this is the square root of the covariance matrix

diagonal term averaged for all the plates.

 σ_{ϵ} : Standard deviation of the error.

Mean ϵ / σ : Ratio of the mean error to the parameter standard deviation. If this

is equal to one then the parameter is varying within its error.

Mean / Mean ε: Ratio of the mean parameter value to the mean error. If this is equal to one then the parameter is within its error, zero.

 σ_{ϵ}/σ : Ratio of error to parameter standard deviation. If this is one, 65% of

the values are within their error the mean value.

Term Mean: The highest value of the model term if you use the mean value of

the parameter.

Term Range: The range of that model term.

We can draw some general conclusions from these quantities, but final judgement should be carried out simultaneously with the graphical representations and with the residual analysis material. The terms to be concerned about are the large parameters. If we included these in the overlap, then they will dominate the covariance matrix and lead to a very unstable solution. If they are only varying within their error then they can be constrained and as such will not effect the covariance matrix as strongly. If they vary too wildly then it may be that, with our data, particular term cannot be realistically modelled.

The terms 9, 10, 11, 12 and 9, 10 respectively in the 1956 and 1992 material vary widely. These model the magnitude distortion terms: $(m-\langle m\rangle)\xi(\xi^2+\eta^2)$ and $(m-\langle m\rangle)\eta(\xi^2+\eta^2)$. These terms being cubic in the standard coordinates are very small, and their parameters have to be corresponding large, but this does cause problems for the inversion process. Since this term is a very system dependent term, e.g. dependent on the optics more than the observing / guiding, it may be physically realistic to constrain it to one parameter for all the plates.

Term 13 in the 1992 material also seems to be very discordant, it has a small value, a reasonably small error and error standard deviation; yet it has a large value standard deviation and very large range. This may have some discordant values that are skewing the overall distribution. The graphical examination also provides information with which to answer some of these concerns.

Graphical Analysis of Parameters

Figures 23, 24, and 25 show the variation of the first eight extra parameters for a the same sample of plates from each epoch. This is a graphical representation of the parameters just discussed. The y axis represents the value of the parameter, and the x axis is a running plate number. The order of the plates corresponds to the date of exposure. On each parameter point, the length of the vertical line represents the formal error, e.g. the square root of the corresponding diagonal term on the covariance matrix. The dotted line represents a two standard deviation level for each parameter. The line through the middle is a best fit horizontal line.

As one can see the size, range and, scatter varies quite a lot. This 'scatter' is quantified by the ratio of the parameter standard deviation to its mean covariance in table 5. This ratio will indicate if a parameter is varying outside its formal error. If this is not the case then, providing the variation is due to random causes, we can assume the variation is within the noise and should either be constrained or dropped completely.

107

Table 5: Parameter Statistics

#	Mean	σ	Range	Mean ϵ	σ_{ϵ}
_			Enoch 1900		
7	-0.00155		0.0104	0.000787	
	-0.00210		0.00869	0.000837	0.000318
9	0.148	15.0	58.0	7.03	2,27
10	11.3	13.7	58.0	7.21	2.33
11	0.000276	0.000755	0.00368	0.000447	0.000335
12	0.0285	0.141	0.788	0.0615	0.0499
13	-28.2	1.21e+03	6.07e+03	576.	137.
14	-490.	1.27e+03	4.97e+03	572.	135.
15	4.58	10.7	42.1	5.11	1.18
16	-8.26	11.4	53.6	5.15	1.18
=		======	Epoch 1956		
		0.00512	0.0522	0.000778	
8	0.000473	0.00427	0.0395	0.000783	
9	1.07e+04	3.21e+04		6.62e+03	6.28e+03
10	-562.	3.40e+04	3.59e+05	6.28e+03	6.45e+03
11	3.72e+03	5.49e+04	6.18e+05	1.10e+04	1.59e+04
12	2.24e+04	6.11e+04	6.51e+05	1.14e+04	1.62e+04
13	0.0307	0.710	6.47	0.146	0.102
14	-0.0540	1.11	9.84	0.220	0.205
15	-1.56	80.1	651.	15.5	15.9
==========		Epoch 1992		=======	
		0.0106	0.112		0.000270
8	0.000319	0.00816	0.0797		0.000271
9	1.44e+04	1.21e+05	2.01e+06		
10		1.22e+05	2.12e+06	3.98e+03	4.15e+03
11	-0.183	2.74	27.2	0.146	0.113
12	-0.202	3.35	33.5	0.213	0.195
13	21.2	302.	4.21e+03	13.2	12.1

108
Table 5: (Continued) Parameter Statistics

	Mean ϵ / σ	Mean / M	ean $\epsilon = \sigma_{\epsilon} / \sigma$	Term Mean	Term Range
==	:=======		Epoch 1900	=======	
7	0.358	1.97	0.130	-0.0186	0.125
8	0.485	2.51		-0.0252	0.104
9	0.468	0.0210		0.000214	0.0838
10	0.526	1.57	0.170	0.0163	0.0837
11	0.592	0.617	0.444	0.0397	0.529
12	0.437	0.463	0.355	0.0130	0.359
13	0.478	0.0489	0.113	-0.00309	0.666
14	0.450	0.857	0.106	-0.0538	0.545
15	0.478	0.897	0.111		0.122
16	0.451	1.60	0.103	-0.0238	0.155
==			Epoch 1956		
7	0.152	0.0922	0.0844	-0.000861	0.626
8	0.184	0.605		0.00568	0.474
9	0.206	1.61	0.195	1.14	36.9
10	0.185	0.0895	0.190	-0.0598	38.3
11	0.201	0.338	0.289	0.286	47.5
12	0.186	1.96		1.72	50.1
13	0.206	0.210	0.143	0.0796	16.8
14	0.199	0.245	0.185	-0.101	18.4
15	0.194	0.101	0.199	-0.111	46.2
==		======	Epoch 1992	=======	
7	0.0631	1.12	0.0256	-0.00894	1.34
8	0.0814	0.480		0.00382	0.957
9	0.0351	3.39	0.0371	1.54	214.
10	0.0326	2.68	0.0340	1.14	226.
11	0.0532	1.26	0.0412	-0.475	70.5
12	0.0634	0.949	0.0581	-0.378	62.7
13	0.0438	1.60	0.0401	1.51	299.

There are circumstances when that will not be the case. For example in the case of the straight magnitude parameters, e and f, these are primarily terms that result from bad guiding. If they are included (e.g. if they are significant) then, because they are very plate / observer dependent, constraining them would not make physical sense. The two terms may not however be significant, if they vary around a mean of zero, and their standard deviation is less than their formal error they can be dropped.

The graphs confirm that the parameters for magnitude distortion can defiantly be constrained for the 1992 epoch (parameters 9 and 10), and probably constrained for the 1956 epoch (parameters 9,10,11,12). More analysis of this nature must be carried out to make a definite decision.

An examination of this nature to find the model is very convoluted. This discussion has shown how we can use the residuals and parameters to indicate which model to use. The whole choice is, as we have said, not black and white. After iterating through tests on parameters and residuals simultaneously we will eventually see a pattern of terms that need to be included. At some point the decision will be made that the potential improvement in precision does not warrant further work on the model. There is one last reduction improvement we can make after this point to improve the solution, this involves analyzing the output variances.

Below are the models we have decided upon for this investigation, for all three epochs we included the basic eight constant model. For epoch 1900 we included as extra terms the following:

$$\begin{aligned} & \left(\xi^2 + \eta^2\right)\xi\eta \quad \left(m - \langle m \rangle\right)^2 & 0 \\ & \xi\eta \quad \left(m - \langle m \rangle\right)^2 \quad \left(m - \langle m \rangle\right)\eta \end{aligned} \tag{5.8}$$

Figure 23: Plate Parameter Variation for Epoch 1900.

Figure 24: Plate Parameter Variation for Epoch 1956.

Figure 25: Plate Parameter Variation for Epoch 1992.

with constrained terms in the following:

$$\begin{pmatrix}
(\xi^2 + \eta^2) & 0 \\
0 & (\xi^2 + \eta^2).
\end{pmatrix}$$
(5.9)

For epoch 1956,

$$(m - \langle m \rangle)^2 \xi \qquad 0$$

$$0 \qquad (m - \langle m \rangle)^2 \eta$$
(5.10)

with constrained terms in the following:

$$(m - \langle m \rangle)\xi(\xi^2 + \eta^2)$$
 0
0 $(m - \langle m \rangle)\eta(\xi^2 + \eta^2)$ (5.11)

Finally for epoch 1992,

$$(m - \langle m \rangle)^2 \xi$$
 0
0 $(m - \langle m \rangle)^2 \eta$ (5.12)

with constrained terms in the following:

$$(m - \langle m \rangle)\xi(\xi^2 + \eta^2) \quad (m - \langle m \rangle)\eta(\xi^2 + \eta^2)$$

$$(m - \langle m \rangle)\eta(\xi^2 + \eta^2) \quad (m - \langle m \rangle)\xi(\xi^2 + \eta^2)$$
(5.13)

Overlap Variances

After the overlap has been carried out the stellar positions will have a error from equation 3.56:

$$\epsilon = (sB\beta + \Xi a - d).$$
 (5.14)

The square of these quantities will provide the variance of the star's position. This variance will still reflect inherent problems in finding stellar positions. As we have discussed the positional precision of a star is related to its magnitude and to its proximity to the center of the plate. The positions of the stars at the extremes in magnitude (brightest, faintest) and plate position (in the corners and edges) will not be determined as precisely as those in the middle of the range / plate. However, after one run we can find how the variance is correlated with the stellar parameters, position and magnitude.

In figure 26 and 27 we plot the variances of a nine-constant fit, that includes both first order magnitude, and origin distance for the AC material. The variances are plotted vs first second and third order magnitude, coordinate and origin distance. We see positive correlations, and can fit a least square polynomial to all the system variances and then re-run the overlap including the predicted variance rather than the constant variance we use in the first run. It is important to return to the original estimates of the stellar equatorial positions; otherwise the variance information is not 'new' information. If we do not return to the original estimates the re-computation will just reconfirm that our input has the predicted variance variation.

This ends the discussion on choosing the model. In all solutions the covariance matrix, correlation matrix, matrix efficiency, and condition number are calculated and checked to make sure the system is still stable.

Figure 26: Nine-Constant Overlap Variances

Figure 27: Nine-Constant Overlap Variances

CHAPTER 6 PROPER MOTIONS

Finding Proper Motions

The proper motion of a star is defined as the time derivative of a star's equatorial coordinate in an (ideally) inertial frame. In this study the nearly inertial frame is provided by the Astrographic Catalogue of Reference Stars using the B1950 (Besselian Date 1950) positions. This means all three epochs are, within the accuracy of the reference material, in the FK4 approximation to an inertial reference frame.

To keep the plate parameters and centers as close as possible to those published when the plates were exposed we precessed, using IAU constants, all the reference material (and by default the inertial frame) to 1900 for the first epoch. After we found first epoch positions we then precessed them back to B1950, the epoch of the reference catalogue and the second and third observations.

The difference in the stellar positions, after this procedure, between the three epochs is due to the proper motion of the respective stars. The relationship of positions (α, δ) at any given date (t), with the stellar positions (α_0, δ_0) and the proper motions (μ) at the date of observation (t_0) , are

$$\alpha = \alpha_o + \mu_\alpha(t - t_o)$$
 $\delta = \delta_o + \mu_\delta(t - t_o)$. (6.1)

Note that the proper motion, μ , has no time suffix; this is because we assume uniform motion and therefore $\mu = \mu_o$.

To obtain the best estimates for the position and proper motion we should find these quantities at the position variance weighted epoch. At this point the position and proper motion estimates are uncoupled and therefore uncorrelated. In this example the three position estimates have a variance ratio of approximately 4:1:1 in 1900:1956:1992 respectively. The variance weighted average epoch is then $(1900+(4*1956)+(4*1992))/9 \approx 1965$.

However, the plates were not all exposed at the same time. It has already been pointed out that the AC material was exposed over a period of 10 years and the second epoch McCormick observations took over a year. In the overlapping plate method we assume that a star on different plates (within the same epoch) has the same position. However, because of the time difference between exposures this will not be the case.

One way to alleviate the problems the above assumption could cause is the following; after the overlap, rather than using the β value to correct the input and get one mean weighted position, actually use the plate parameters to find the position of a star on each plate. The strength of the overlap enters into this estimate of the star's position via the plate parameters. However, the actual star position is no longer confined to just the average for that epoch, it can rather assume the value derived from each plate along with the exposure date of that plate. So if two plates that overlap have a date of exposure difference of ten years, then the star's position will be allowed to reflect this.

There is a more rigorous method. Eichhorn (1993) has derived a method that allows complete generality in the position by introducing the proper motion as an additional parameter at the beginning of the reduction. In this reduction the time difference is most acute in the AC material, which is also the material with the lowest positional precision. The increased computational effort required to incorporate Eichhorn's new method is therefore unwarranted and the above approximate approach is sufficient.

Therefore we find the proper motion from a least squares analysis of all occurrences of a star in every exposure. Following the discussion in chapter two we first set up the condition equations,

$$\mathbf{F} = \begin{pmatrix} \alpha - (\alpha_1 + \mu_{\alpha}(1965 - t_1)) \\ \delta - (\delta_1 + \mu_{\delta}(1965 - t_1)) \\ \alpha - (\alpha_2 + \mu_{\delta}(1965 - t_2)) \\ \delta - (\delta_2 + \mu_{\delta}(1965 - t_2)) \\ \vdots \\ \alpha - (\alpha_n + \mu_{\alpha}(1965 - t_n)) \\ \delta - (\delta_n + \mu_{\delta}(1965 - t_n)) \end{pmatrix} = \begin{pmatrix} \alpha - \alpha_1 + \mu_{\alpha}(t_1 - 1965) \\ \delta - \delta_1 + \mu_{\delta}(t_1 - 1965) \\ \alpha - \alpha_2 + \mu_{\delta}(t_2 - 1965) \\ \vdots \\ \alpha - \delta_n + \mu_{\delta}(t_n - 1965) \\ \delta - \delta_n + \mu_{\delta}(t_n - 1965) \end{pmatrix}$$
(6.2)

where $\alpha, \mu_{\alpha}, \delta$, and μ_{δ} are the target quantities, $\alpha_1, \alpha_2, ...\alpha_n$ and $\delta_1, \delta_2, ...\delta_2$ are the 'observations' from the plate solutions at dates $t_1, t_2, ...t_3$, respectively.

Following equations 2.12 and 2.13, we define the two quantities: $A = (\frac{dF}{da})_{x=x_o,a=a_o}$ and $X = (\frac{dF}{dt})_{x=x_o,a=a_o}$ then the corrections to the parameters α (equation 2.20) are

$$\alpha = -\left[\mathbf{A}^{\mathrm{T}}(\mathbf{X}\sigma\mathbf{X}^{\mathrm{T}})^{-1}\mathbf{A}\right]^{-1}\mathbf{A}^{\mathrm{T}}(\mathbf{X}\sigma\mathbf{X}^{\mathrm{T}})^{-1}\mathbf{F}_{o}. \tag{6.3}$$

As in the overlap we have the simplification that each equation contains only one observation and therefore X = -I. The matrix A is

$$\mathbf{A} = \frac{\partial \mathbf{F}}{\partial(\alpha, \delta, \mu_{\alpha}, \mu_{\delta})} = \begin{pmatrix} 1 & 0 & \tau_{1} & 0 \\ 0 & 1 & 0 & \tau_{1} \\ 1 & 0 & \tau_{2} & 0 \\ 0 & 1 & 0 & \tau_{2} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \tau_{n} & 0 \\ 0 & 1 & 0 & \tau_{n} \end{pmatrix}$$
(6.4)

where τ is the time difference t_i -1965. Assuming a first approximation of zero for the four unknowns, then F_0 is

$$\mathbf{F}_{o} = \begin{pmatrix} -\alpha_{1} \\ -\delta_{1} \\ -\alpha_{2} \\ -\alpha_{2} \\ \vdots \\ -\alpha_{n} \\ -\delta \end{pmatrix}. \tag{6.5}$$

where τ is the time difference t_i -1965. Assuming a first approximation of zero for the four unknowns, then F_0 is

$$\mathbf{F}_{o} = \begin{pmatrix} -\alpha_{1} \\ -\delta_{1} \\ -\alpha_{2} \\ -\delta_{2} \\ \vdots \\ -\alpha_{n} \\ -\delta_{o} \end{pmatrix}. \tag{6.5}$$

The parameters simplify to $\alpha = - \left[{{\bf{A}}^{\rm{T}}} \sigma^{-1} {\bf{A}} \right]^{-1} {{\bf{A}}^{\rm{T}}} \sigma^{-1} F_o$. The first term simplifies to

$$[\mathbf{A}^{\mathrm{T}} \boldsymbol{\sigma}^{-1} \mathbf{A}] = \begin{pmatrix} \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\alpha}^{-1} & 0 & \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\alpha}^{-1} \boldsymbol{\tau} & 0 \\ 0 & \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\delta}^{-1} & 0 & \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\delta}^{-1} \boldsymbol{\tau} \\ \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\alpha}^{-1} \boldsymbol{\tau} & 0 & \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\delta}^{-1} \boldsymbol{\tau} \\ 0 & \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\delta}^{-1} \boldsymbol{\tau} & 0 & \boldsymbol{\Sigma} \boldsymbol{\sigma}_{\delta}^{-1} \boldsymbol{\tau}^2 \end{pmatrix}$$
 (6.6)

where all terms are summed over all observations. This is a (4×4) matrix. The second term simplifies to the (4×1) vector:

$$-\left[\mathbf{A}^{\mathbf{T}}\boldsymbol{\sigma}^{-1}\mathbf{F}_{\mathbf{o}}\right] = \begin{pmatrix} \sum \sigma_{\mathbf{o}}^{-1}\alpha \\ \nabla \sigma_{\mathbf{i}}^{-1}\delta \\ \sum \sigma_{\mathbf{o}}^{-1}\tau\alpha \\ \sum \sigma_{\mathbf{i}}^{s}\tau\delta \end{pmatrix}. \tag{6.7}$$

The parameter errors will be

$$\left(\operatorname{diag}\left[\mathbf{A}^{T}\sigma^{-1}\mathbf{A}\right]^{-1}\right)^{\frac{1}{2}}$$
(6.8)

and the observation errors (residuals) will be $\varepsilon = (\mathbf{F_o} - \mathbf{A}\alpha)$.

Results

Table (9) lists the calculated position and proper motion for the epoch 1965 equinox 1950B. All stars that were found in at least two epochs are included. Of the original 2600 stars from the Astrographic Catalogue Plates 1678 were found in at least one more epoch. The others are predominantly in the edge regions not covered in the McCormick Observations.

From the first epoch there were 6285 observations, from the second epoch there were 35,378 and from the last epoch 33,352. The positional variances were approximately in the ratio 4:1:1 for the 1900:1956:1992 epochs respectively. This is expected if one considers the higher measurement precision and longer focal length in the second and third epochs.

Table (6) lists the mean error and standard deviation of the formal errors in the final solution.

Table 6: Final Solution Statistics

Quantity	Right Ascension	Declination
Position Error Mean, Standard Deviation. "	0.0142, 0.013	0.050, 0.046
Proper Motion Error Mean, Standard Deviation. "/century	0.0058, 0.0035	0.0217, 0.0139

One way to internally check the result is to see how the results of comparing the 1900 material to only one of the other two epochs differs from that of the least squares answer. Figure 28 presents the results of a very simple calculation that takes the difference in the stellar position at the two epochs and extends it out by a factor of 200. The star is at the tail of the proper motion. As one can see if one takes into account the fact that the epoch difference is almost twice as much for the 1900–1992 than the 1900–1956 observations, these graphs are qualitatively the same.

Figure 28: Proper Motions Using Just Two Epochs

Figure 29 shows the least squares solution for proper motions over a 10,000 year period. These also reflect the general pattern seen in the last two graphs. The high proper motion star in the middle of the picture is HD 36443 a 8.6 magnitude G5 star that is not believed to be part of the association.

Note that none of the belt stars are included because they were not measured in the Astrographic Catalogue. The positions for stars as bright as these are very difficult to determine from photographic plates because of the sizes of their images. For informational purposes, their positions are marked by their names: ϵ , δ , and ζ .

In the second graph in figure 29 we show the proper motion diagram of our sample. If the association members had a significant common proper motion, then they would group together in the same portion of the diagram. The mean proper motion of this group would then define the mean proper motion of the association. However, an examination of the diagram shows no such structure. and the membership is not easily obtainable from just the proper motions. After further analysis of the proper motion components, we felt that membership determination using proper motions would require an examination beyond the scope of this dissertation.

Figure 29: Proper Motion Plots Final Result

A good way to judge the accuracy of our results is to compare the positions and proper motions with those of the Astrographic Catalogue of Reference Stars. This is still an internal check because these reference stars were used as our original input. It may however highlight systematics. Figure 30 shows the proper motions of the reference stars in our region taken directly from the ACRS. Again there is good qualitative agreement between this figure and the first graph in figure 29.

Figure 30: Proper Motions of Reference Stars in our Sample

By finding the difference between the reference stars positions and proper motions in 1965 and our calculated positions, we can find the 'residuals' of our results. This can also be done by comparing our results with AGK3U, a updated version of the

AGK3 catalogue. We have 341 stars overlapping with the ACRS and 206 stars with the AGK3U. Figure 31 shows the histograms of the difference between our positions / proper motions and these two catalogues. The curve represents a best fit gaussian.

The striking feature of these plots is that the residual in declination is distributed over two times the range of the right ascension residual. There could be a number of intrinsic reasons for this which may be related to the actual observations and measuring. For example the observations were all hand guided, and the guiding corrections made during an actual exposure were nearly always in right ascension. The McCormick telescope is equatorial mounted telescope, thus if the telescope had an axes alignment problem, then there would be a drift in declination. This may be imperceptible to the observer, but would lead to a systematic guiding error in the declination direction and hence a larger variance in that coordinate. Another possibility for the larger declination residual may be due to the measuring machine. The plates were all placed on the machine so that the x and y coordinates always had the same orientation with respect to the measuring axes. If there was a continual slip in the v direction this would also cause a large variance in the declination because this axis during observation would be aligned with that coordinate. A re-analysis of both observing device / procedure and the measuring device / procedure is needed to distinguish between these and other possibilities.

Figure 31: Differences between these Results and External Catalogues

This ends our discussion of determining the proper motions in Orion. The results, data and programs will be available by anonymous file-transfer-process from astro.ufl.edu. Next we will discuss the use of these proper motions and the options for future work.

Using the Proper Motions

Historically proper motions of associations and clusters have been used to find the expansion age and kinematical properties of the association / cluster. These proper motions need to be included with spectroscopic and radial velocity data to establish membership criteria. Once the members are determined, the expansion age and other astrophysically interesting properties such as the H-R diagram, initial mass function, and kinematical properties can be found.

As stated before, it is beyond the scope of this investigation to examine the membership criteria, but we shall use our data to find what the simple linear expansion age would be assuming the association is expanding. We have adopted the method developed by Blaauw (1952) to determine a linear expansion. He showed that should an expansion exist and provided that; 1) the present dimensions of the group are larger than the original dimensions and 2) all the motions in the group started at the same time and are uniform, then there should be a linear relationship between the component of the proper motion and the corresponding coordinate. One must also allow for perspective contraction or expansion caused by the relative motion of the Sun.

Using this method Lesh (1968) found an expansion age of 4.5 billion years for the northwest region of I-Orion. This examination was based on 16 stars which were not found in our sample. However there have been two other studies (Warren and Hessler, 1977 and Gieseking, 1983) that have found possible members which are within our data set. We will adopt their membership choices and use our proper motion components to investigate the expansion. The Warren and Hessler study used primarily a photometric determination of membership, while the Gieseking study was a radial velocity investigation of highly probably members. We will consider these as studies of the Orion members using spectroscopic and radial velocity criteria, respectively.

Spectroscopic Criteria

There is a sizable amount of spectroscopic information available, however, most of it is concerned with the bright stars. The above mentioned study by Warren and Hessler in 1977 (hereafter WH) collected all the spectroscopic criteria available and combined this with *ubvy* observations to produce a membership ranking for 504 stars in the association, of which 107 overlap with this study. The stars are all ranked on their probability of membership in radial velocity, proper motion and photometric properties as a, b or c. An 'a' represented a high probability of membership, while a 'c' represented a low probability.

In figure 30 we plot the proper motion components vs. their respective coordinates. A variance weighted least squares fit to the data is shown. The first two graphs represent very high probability stars which were classified as 'a' by WHs' membership criteria in all three respects; proper motion, radial velocity, and photometry. If the straight line fit has a positive slope, then this indicates an expansion; while a negative slope indicates a contraction. As one can see, the slopes are not strongly positive, they are either basically flat or negative. The slopes and the standard deviations of the least squares fit are shown

in table 7. None of the slopes are above the standard deviation, so their significance must be questioned. However, should these slopes actually signify true kinematic properties of the association, then in actual fact the association is *contracting*.

It must be noted that this is a very simplified analysis that can be questioned on many different grounds. For example the membership criterion was adopted wholesale from WH; and by using more recent observations, better membership criteria may be possible. We have also not allowed for a distance gradient as proposed by WH, because there was not enough available distance information for this small sample size to make this consideration useful. Also, there is a possibility that galactic rotation might distort the proper motions. All of these considerations were considered outside the scope of this investigation but will be interesting to consider as future projects.

Table 7: Least Squares Slopes using WH Criteria.

Coordinate	Number of stars in sample	Slope deg ⁻¹ year ⁻¹	Standard Deviation
Right Ascension, all criteria =a.	26	-0.0049	0.8881
Declination, all criteria =a.	26	-0.2581	0.7999
Right Ascension, photometric criteria =a.	103	-0.0032	1.1089
Declination, photometric criteria =a.	103	-0.0598	0.7977

Figure 32: Linear Relations between μ_{α} and α and μ_{δ} and δ using WH Membership Criteria

Radial Velocity Criteria

Radial velocities can also be used to determine association membership. However, measuring radial velocities is very time consuming and to date only a handful of the stars in this study had their radial velocities measured. Due to the inherent observational difficulty of measuring radial velocities, these are also predominantly bright stars. If radial velocities from different observatories are used, then an investigation of individual observatory corrections would be required. Therefore, we will adopt the results of Gieseking's (1983) study of 66 of high probability Orion Ib members. Gieseking felt there was a bimodal distribution in the group's radial velocity distribution centered on 4.5km/s (relative velocity).

Of the 66 stars in his study 50 are also in this study. The expansion was again investigated by plotting the proper motion components against their respective coordinates, as shown in figure 33. In these graphs the symbols '+' represent the stars with a velocity below 4.5 km/s and '+' those greater than 4.5 km/s. The three lines represent a least squares best line fit to the stars with velocities less than 4.5 km/s (dotted line), those with velocities greater than 4.5 km/s (dashed line), and all the stars in the sample (solid line). The dashed circles represent the variance of each star's proper motion measurement. The slopes and the standard deviations of the least squares fit are shown in table 8.

Again nothing conclusive can be stated because the standard deviation are greater than the slope of the positions. However there is a consistent expansion in both coordinates and it is possible to calculate an expansion using these slopes.

Because Orion is receding almost directly in the direction of the solar antapex we

can assume that the recession velocity will give an apparent contraction (Blaauw 1952, Lesh 1968) of

$$\frac{\pi}{180} \frac{V_r}{4.74} \frac{1}{r} \tag{6.9}$$

where V_r is the velocity of recession and r is the distance. Using a recession velocity of 20.8 kms⁻¹ and a distance of 400 pc we arrive at a contraction due to recession of 0.019 degrees / century. Using a weight least square slope of all the observations in both coordinates and adding in this recessional term we find an expansion age of 1.22 \times 10⁶ years with a standard deviation of 200%. This is basically consistent with what one would expect but in fact totally inconclusive.

Table 8: Least Squares Slopes using Gieseking Criteria.

Coordinate	Number of stars in sample	Slope deg-1 year-1	Standard Deviation
Right Ascension, all criteria =a.	55	0.468	0.936
Declination, all criteria =a.	55	0.145	0.756
Average of both slopes	55	0.277	0.582

Figure 33: Linear Relations between μ_{α} and α and μ_{δ} and δ using Gieseking Membership Criteria

It appears that using the best currently published membership criteria and a simplified analysis that no conclusive proof of either expansion or contraction can be obtained. This will be discussed again in the section on future work.

Future Work

The proper motions estimates derived in this investigation may be improved with more information, primarily color and additional observations. The models we checked never included color terms because we did not have this information for the field stars. When the Guide Star Catalogue II is available this will change as this catalogue is complete down to 12th magnitude, in combination with the first catalogues will give two color magnitudes. This is obviously not as useful as spectral types but will suffice for testing the material for any color correlations. In addition to providing colors, the two guide star catalogues will provide two extra epoch observations. The estimates will not be as accurate because the guide star has a high error budget and used astrometrically inferior Schmidt plates, but they will still provide valid estimates of the stellar positions.

The reduction procedure used in this investigation can be improved upon. Some of the parameters, notably the focal length, are very strong candidates for stochastic constraints. This will allow for less variance in the final solution. We could also include proper motions from step one. Rather than reducing the three epochs separately one can reduce them simultaneously, the proper motions will then be parameters from that reduction. This will provide for more internally consistent estimates of all the stellar parameters. Finally, the model we have chosen can probably be improved with more investigation. This is always an option but the expected gains are less than those from incorporating one of the improvements above.

This study provides consistent proper motions estimated for a large sample of stars in the region of the Orion association. These need to be investigated in conjunction with all the currently available spectroscopic and radial velocity criteria to determine as large a membership sample as possible which is free from contamination. This sample should then be examined with the methods outlined above, using space velocities, and using proper motions in galactic coordinates. These examinations should be applied to the association as a whole and to the respective subgroups individually. This study has shown that when considering previously determined member, nothing conclusive can be drawn about the expansion or contraction of the association.

Table of Results

Table 9 lists the proper motions and positions for stars found in the Astrographic Catalogue and at least one of the McCormick Epochs. The epoch of the position is 1965 and the equinox is 1950B. Listed are:

- 1. AC # the running number for the star in the 1900 AC plates
- 2. ACRS # the ACRS number if the star is also part of the reference catalogue
- 3. N the number of images found for the star
- 4. m the magnitude from the AC.
- 5. α the right ascension in hours, minutes and seconds
- 6. ϵ_{α} the right ascension position error in seconds
- 7. δ the declination in hours, arcminutes and arcseconds
- 8. ϵ_{δ} the declination position error in seconds
- 9. μ_{α} , the right ascension proper motion in seconds / century
- 10. $\epsilon\mu_{\alpha}$ the right ascension proper motion error in seconds / century
- 11. μ_{δ} the declination proper motion in arcseconds / century
- 12. $\epsilon\mu_{\delta}$ the declination proper motion in arcseconds / century

				T	able	9:	Table 9: Positions and Proper Motions for Stars Found in at least two Epochs.	nd Proper	Mot	ions	s for Stars	Found	n at least tw	o Epochs.		
	ACRS#	Z	E	_			ŏ	ϵ_{α}		9		€8	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon \mu \delta$
	0	r	9.	9.95	5	19	13.93408	.03550	+1	0	40.9671	.0194	058170	0.008584	-0.53104	0.0078
	0	n	10.	10.20	2	19	31.10795	.05371	7	2	37.1623	.2219	0.081102	0.017674	-2.20061	0.0616
	0	2	9.	9.70	2	19	41.79936	.07090	7	2	58.5744	.1648	042841	0.020168	-1.16296	0.0374
	0	e	9	9.85	2	19	46.27236	.03869	7	9	13.3381	.1206	043035	0.007494	-0.62094	0.0368
	48153	6	8	.97	2	19	47.61690	.01832	+1	Н	27.2588	.0604	0.002983	0.011165	-1.41879	0.05350
96	48268	2	9	.50	2	20	30.62946	.03574	7	0	41.3142	.2416	0.004181	0.010572	0.54709	0.06697
	48278	80	7.	00.	2	20	35.12362	.01805	+1	2	36.6548	.1017	017050	0.007497	-0.17023	0.0477
102	48286	10	6	9.23	2	20	37.48538	.02963	+1	2	53.2111	.0886	056481	0.009918	-0.57310	0.0480
106	0	m	10.95	95	2	20	46.64333	.03495	7	2	6.2418	.2004	010492	0.006857	-3.66295	0.08001
108	0	80	8	8.40	S	20	47.85081	.01834	7	0	34.5679	.0697	044325	0.009132	-0.45414	0.0345
116	0	e	10.80	80	2	20	59.12528	.05063	0+	59	19.7747	.1428	223118	0.011895	-3.21683	0.0465
120	0	e	11.30	30	2	21	10.85757	.14878	7	4	13.0041	.2538	0.027294	0.026889	-1.85641	0.05028
126	0	m	10.80	80	2	21	20.67585	.06460	0+	28	49.4437	9660.	0.107896	0.018525	-3.58878	0.02183
	0	4	10.43	43	2	21	56.53044	.03188	7	Н	7.6842	.1344	0.024072	0.008869	-0.36952	0.0410
	48618	9	8	8.97	2	22	28.37906	.03458	7	8	30.6276	.1031	070034	0.013122	-0.63611	0.0300
	0	7	9.	9.50	2	22	37.68600	.03865	7	4	4.4259	.1554	044368	0.008342	-0.37868	0.0330
	0	6	10.01	07	2	22	42.33728	.02421	+1	0	55.2642	.0904	053907	0.004215	-0.84021	0.0226
	0	6	11.03	03	2	22	45.22110	.02645	9	28	29.3114	.1045	068345	0.007751	0.27755	0.0426
	0	16	9.	9.32	S	22	46.26998	.02627	7	m	9.6402	.0984	019243	0.009272	0.19168	0.03290
	0	4	11.03	03	2	22	53.91569	.04992	7	9	8.0598	.1085	0.047747	0.013189	1.02172	0.03609
	0	9	9.	9.93	2	23	32.16350	.02785	7	3	7.1046	.0938	0.005637	0.009999	-0.33212	0.04842
	0	4	10.83	83	S	23	34.08800	.01799	0+	59	46.2554	.1997	0.020815	0.014084	0.80824	0.0471
	48831	10	8	8.37	S	23	41.72820	.03070	7	0	58.7981	.1848	0.016753	0.010589	-0.23118	0.0433
	0	4	10.47	47	S	23	49.15570	.05234	7	Н	19.4355	.2069	0.053085	0.012067	-0.29158	0.0391
	0	m	10.75	75	Ŋ	24	22.77490	.03392	7	4	41.7385	.0924	061851	0.007405	0.29778	0.0249
	0	3	10.70	10	S	24	44.96618	.05353	7	m	33.5582	.2165	037427	0.016466	-0.44204	0.0490
	0	9	8	8.13	2	24	47.24583	.02067	0+	58	35.0280	9860.	051702	0.008308	-0.32725	0.03353
	49082	10	9	6.73	2	25	1.86486	.01964	7	4	0.3772	.1052	047692	0.007888	0.34429	0.0416
	0	4	10.53	53	2	25	10,95558	.03893	0+	69	19.7004	.1380	017377	0.015141	-1.12098	0.0463
	49149	6	9	63	2	25	19.22907	.02241	+1	m	52.1760	.1403	001843	0.009647	-0.24110	0.0432

			1	Cabl	le 9	9	Table 9: (Continued)									
AC#	ACRS#	Z	Е			Ö		εα		9		$g_{\mathfrak{z}}$	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon \mu \delta$
244	49306	23	7.40	5	26	9 9	6.93339	.01818 +	+1 1:	11 16	16,2039	9770.	0.051827	0.015946	-1.76019	0.07868
245	0	21	9.50	5	26	8	.94222	.01454 +	7	9 16	16.1279	.0711	043133	0.002821	0.37934	0.03141
256	49382	43	8.47	2	26	5 31	.30183	.00694 +	7	6 55	55.5800	.0344	0.051574	0,003616	-1.63925	0.01499
261	49411	44	8.60	5	26	6 43	.50786	+ 96900.	7	8 36	36.0923	.0326	006194	0.004160	0.42866	0.01646
310	0	20	10.63	5	26		57.87720	.00721 +	7	3 37	37.4421	.0360	087338	0.003955	-0.10702	0.02453
321	0	46	8.47	5	27		27.84206	+ 71900.	7	4 16	16.9875	.0233	059184	0.004496	-0.27105	0.01907
328	0	20	10.80	5	27		59.07495	.01043 +	+0 5	57 56	56.0610	.0456	-,134613	0.007973	-2,45984	0.03179
331	49669	52	9.40	2	28		6.20351	.00449 +	+1	4 55	55.5307	.0170	016287	0.002973	-0.33424	0.01111
336	49724	48	8.67	5	28		21.12861	.00575 +	7	6 35	35.6099	.0223	0.194601	0.003917	-5.25666	0.01440
343	0	29	9.15	2	28		29,11308	+ 68600.	7	6	4.0150	.0424	047721	0.003926	-0.88455	0.00768
352	0	51	9.00	2	28		55.49470	+ 91600.	Ţ	6	9.8006	9980.	005020	0.005326	-0.76325	0.02964
359	0	44	9.97	2	29		37.08858	.00833 +	7	1 21	21.7016	.0248	0.074595	0.005724	-2.84136	0,01560
360	0	30	9.65	2	29	37.	.57901	+ 87010.	+1 1	15 14	14.3206	.0692	0.039964	0.004661	-0.87868	0.03553
363	0	17	11.10	5	29	9 49.	.99838	+ 97010.	7	2,	5.9998	9680.	0.054650	0.003276	1.17931	0.01518
366	50008	38	8.87	2	29	3 57.	.64954	+ 61600.	+0 5	59 19	19.3547	.0484	0.050079	0.008326	-0.00517	0.04590
370	0	18	10.17	2	30		14.78503	.01002 +	+0 58	58 44	44.5292	.0341	027678	0.005717	-0.97255	0.01850
373	0	18	11.33	2	30	29.	.52906	.01274 +	+0 5	59 28	28.5710	.0368	0.014420	0.007747	-1.91073	0.02249
383	0	18	10.33	2	31	14.	.34948	.01059 +1		4 55	55.6595	.0424	065021	0.006178	-0.89951	0.02884
384	0	44	8.73	2	31	13	9.66120	.00913 +1		0	0.6351	.0337	043809	0.008379	-0.73980	0.02938
388	0	15	9.85	S	31		28.18462	.01340 +1		13 44	44.2710	.0564	050276	0.004724	-0.90168	0.04679
391	0	17	10.65	S	31	e	9.25057	.02276 +1		3 25	25.7021	.0481	030796	0.004633	-0.81440	0.03325
394	0	15	10.20	S	31	. 52.	.46613	.01369 +	+1 10	10 24	24.1720	9050.	136394	0.008926	-0.57845	0.02983
399	0	18	10.87	2	32		17.39397	.01579 +1		0 32	32,2380	.0780	0.007717	0.007500	-0.73139	0.02330
400	0	35	8.45	2	32		17.64017	.01121 +1		9 30	30.0956	.0356	016889	0.007463	-0.60736	0.01886
401	0	18	10.87	2	32		26.06686	.02079 +1		2 44	44.5002	.0507	026430	0.006880	-0.86941	0.02559
209	0	13	9.60	2	19	Н	4.21160	.01451 +	0+	9 54	54.1842	.0709	008436	0.006480	-0.28733	0.04896
510	0	12	11.20	2	19	П	9.23164	.02648 +	0+	4	6.7215	.0591	0.181697	0.012014	-2.56401	0.04062
511	0	2	9.15	2	19	3	9.26701	.02411 +	+0 54	4	5.9597	.1400	098739	0.006689	-0.69237	0.03831
512	0	11	9.25	2	19		41.30256	.02065 +	+0 30		55,4904	.0355	014410	0.011608	-0.51568	0.01472
513	48134	49	8.90	2	19		41.34586	.01259 +	+0 11		48.0731	.0574	0.002636	0.012833	0.56174	0.05568
514	0	6	10.90	2	19	4	3.64541	.02158 +	+0 33	3 45	5,9160	.0746	013271	0.008224	-0.18976	0.05327
515	0	2	9.20	2	19	45	45.68715	.03592 +	+0 56	9	1.3999	.1050	001942	0.010648	-0.71026	0.03072
216	0	6	10.95	2	19		47.96433	.02753 +1	+0 20	0 23	3.8612	.0560	060881	0.008739	-1.15446	0.01661

			I	apl	e 9;	9	Fable 9: (Continued)									
# *	ACRS#	Z	В			ö		ϵ_{α}		9		83	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon\mu\delta$
517	0	11	10.30	2	19		49.49039	.01925 +	0+	7	40.4544	.0710	0.088018	0.015468	-2.12300	0.03536
518	0	14	11.15	S	19		56.72180	+ 77110.	+0 2	23	52.8664	.0310	125358	0.004650	-2.36121	0.01694
519	514189	11	10.70	S	20		0.02231	.02379 +	+0 1	14	37.4075	.0848	0.004361	0.016344	-0.79880	0.06016
520	48198	57	7.57	2	20		9.24185	+ 00900.	0+	2	33.3949	.0242	018098	0.003912	-0.58763	0.01255
521	0	17	10.70	S	20		10.58007	.00940 +	+0 2	29	3.0141	,0261	042526	0.003786	-0.45405	0.00960
522	48205	41	8.75	2	20		10.93718	.00653 +	+0 3	35 2	24.8670	.0215	0.041457	0.002844	-1.14069	0.01062
523	48208	64	8.65	2	20		11.57245	.00493 +	0+	6	46.7732	.0200	0.093368	0.004129	-2.60099	0.01165
524	0	27	11.10	2	20		15.73436	.00953 +	+0 1	10	6.1486	.0248	0.054514	0.004396	0.31758	0.01400
525	0	17	8.60	2	20		18.12514	.01235 +	+0 5	53 1	10.7545	.0461	032316	0.005126	0.88525	0.01731
256	0	11	10.70	2	20	22	22.43469	.01186 +	+0 5	56 1	13.4367	.0351	050596	0.001915	0.04638	0.00749
27	0	18	11.25	2	20		24.47964	.01257 +	+0 3	36	1.3081	.0296	0.098268	0.005454	-1.71029	0.00798
28	0	17	11.20	2	20		27.92381	.01508 +	+0 3	35 3	34.9392	.0576	0.061631	0.005447	0.05601	0.01308
529	48253	41	7.45	S	20		27.74068	.00863 +	+0 2	23 3	34.1966	.0397	024928	0.003664	-0.38985	0.01595
30	0	23	7.80	2	20		29.32118	.01002 +	+0 5	51 5	53.4356	.0484	067036	0.003790	0.47868	0.01880
31	0	21	9.60	2	20		31.08095	.00920 +	+0 3	33 4	48.0401	.0513	084491	0.003396	-3.09946	0.02006
32	0	17	9.45	2	20		37.62007	.01251 +	+0 5	52	1.9337	.0592	047560	0.004747	0.67168	0.02280
33	0	31	10.70	2	20		38.08984	.00944 +	0+	1	18.4880	.0297	123523	0.005095	-3.34065	0.01333
32	0		10.85	2	20		47.27294	+ 38600.	+0 1	1 4	45.4915	.0265	0.014988	0.003933	-1.00016	0.00637
36	48326	39	7.85	2	20		54.43502	.01005 +	+0 3	37	2.3180	.0423	002968	0.003943	0.19263	0.01636
37	0	18	11.30	2	20		54.91830	.01172 +	+0 4	44 2	22.3728	.0329	030249	0.003910	-0.27589	0.01467
38	0	17	11.15	2	21	7	2.30257	.01374 +	+0 1	17 2	25.1702	.0352	0.023786	0.005631	-0.93363	0.01917
39	0	21	11.05	S	21		5.38516	.01742 +	+0 1	2	31.1913	.0465	0.031307	0.006541	-0.00200	0.02130
40	0	30	10.93	2	21	11	11.54830	.00865 +	0+	1 2	27.9824	.0281	027969	0.003131	-0.43370	0.01490
41	48405	29	7.50	S	21	16	16,65837	.01655 +	+0 4	6	3.1370	.0817	009181	0.006097	0.10333	0.02836
42	0		11.15	2	21	18	.84632	.01197 +	+0 3	30 1	17.1463	.0379	030380	0.004266	0.39372	0.01543
43	0	31	10.80	S	21	19	19,63549	.00772 +	0+	e e	30.9811	.0330	121101	0.003267	-0.75220	0.01205
44	0	33	9.75	2	21	24	24.85203	.01323 +	+0 1	10 2	22.6152	.0421	0.006270	0.007586	-0.48527	0.02286
45	0	17	10.65	2	21	27	27,75414	.00835 +	+0 3	4	55.8892	.0379	0.006225	0.002946	-0.72837	0.01366
46	0		11.00	2	21		31,59654	.01355 +	+0 3	8	38.1299	.0287	053554	0.005301	-2.01525	0.00928
47	48442	42	8.50	S	21	34	34.39767	+ 96800	0+	8	49.5903	.0395	038030	0.006295	-0.92257	0.02220
48	0		10.90	2	21	39	.64259	,00792 +	0+	0	11.2017	.0316	0.007078	0.003217	-0.82518	0.01480
49	0	21	9.50	S	21	45	5.15175	+ 17010.	+0 1	4 5	57.3568	.0418	0.020537	0.003195	-0.81319	0.01570
20	0	15	9.25	2	21	49	.00615	+ 70010.	+0 5	20	1.5027	.0431	006507	0.003243	0.16251	0.01610

N #SQLV			-	[ab]	le 9	ŭ,	Table 9: (Continued)			9				į	:	į
ACKS# N m \alpha	E	ш	ö	ŏ	ŏ			ξα		•		93	$\mu\alpha$	$\epsilon \mu \alpha$	η	$\epsilon \mu \varrho$
20 11.25 5 22	20 11.25 5 22	5 22	5 22	22 1.8958	1.8958	8958	4	.01292	9	43	45.1679	.0446	024002	0.004379	-0.09584	0.01936
31 10.97 5 22	31 10.97 5 22	5 22	5 22	22 4.80327	4.80327	80327		.01049	0+	0	28.3493	.0334		0.005481	-1.35604	0.01751
0 33 8.50 5 22 9.14908	33 8.50 5 22	5 22	5 22	22 9.14908	9.14908	14908		.00758 -	0+	40	2.4832	.0385	086713	0.002582	0.76337	0.01433
17 1	17 10.25 5 22	5 22	5 22			40914 .		88600	0+	25	16.4558	.0429	0.020727	0.003900	-0.76240	0.01654
48577 43 7.95 5 22 15.48297 .	43 7.95 5 22	5 22	5 22			48297		00681	0+	43	19.9344	.0253	002164	0.002943	-0.16470	0.01188
0 20 9.17 5 22 19.03845 .	5 22	5 22	5 22			03845 .		00879	0+	30	30.3885	.0356	0.048112	0.002881	-0.81651	0.01098
0 18 10.90 5 22 19.37278 .	10.90 5 22	5 22	5 22	22 19.37278 .	19.37278 .	37278 .		01384 -	0+	28	35.4412	.0462	024724	0.004268	0.57731	0.01996
28 10.50 5 22 22.25484 .	28 10.50 5 22 22.25484 .	5 22 22.25484	5 22 22.25484	22.25484	22.25484			.00934 -	0+	10	33.6869	.0336	022844	0.004348	-0.73583	0.02241
48600 35 8.50 5 22 25.03999 .(8.50 5 22 25.03999 .	5 22 25.03999 .	5 22 25.03999 .	25.03999 .	25.03999 .	•	٠,	- 77700	0+	31	57.3964	.0271	005024	0.003083	-0.08712	0.01207
22 9.97 5 22 25.43689 .	9.97 5 22 25.43689 .	5 22 25.43689 .	5 22 25.43689 .	25.43689 .	25.43689 .		٧.	- 77800	0+	21	24.7844	.0300	0.019259	0.003405	-0.62400	0.01284
20 11.17 5 22 25.99927 .	20 11.17 5 22 25.99927 .	5 22 25.99927 .	5 22 25.99927 .	25.99927 .	25.99927 .		۲,	01605 -	0+	22	14.7706	.0510	013060	0.005785	0.07442	0.01828
32 10.67 5 22 26.78310 .	32 10.67 5 22 26.78310 .	5 22 26.78310 .	5 22 26.78310 .	26.78310 .	26.78310 .		٥.	98800	0+	6	27.2177	.0284	007087	0.004244	-0.51767	0.01424
18 10.87 5 22 28.10152 .	18 10.87 5 22 28.10152 .	5 22 28.10152 .	5 22 28.10152 .	28.10152 .	28.10152 .		٠.	01254 -	0+	9	50.5673	.0406	063362	0.006840	-1.49374	0.02272
32 11.03 5 22 29.64780 .	32 11.03 5 22 29.64780 .	5 22 29.64780 .	5 22 29.64780 .	29.64780 .	29.64780 .		°.	01505 -	0+	11	28.1401	.0735	035645	0.008600	0.88978	0.03535
24 8.53 5 22 32.57910 .	24 8.53 5 22 32.57910 .	5 22 32.57910 .	5 22 32.57910 .	32.57910 .	32.57910 .	•	٥.	01224 -	0+	53	23.2816	.0433	030509	0.004236	0.22125	0.01551
17 10.70 5 22 40.91241 .	17 10.70 5 22 40.91241 .	5 22 40.91241 .	5 22 40.91241 .	40.91241 .	40.91241 .		°.	60600	0+	54	12.2350	.0462	113801	0.002334	1.01023	0.01755
72 8.85 5 22 40.22639 .	8.85 5 22 40.22639	5 22 40.22639 .	5 22 40.22639 .	40.22639	40.22639		°.	.00729 +	0+	7	0.0872	.0249	005681	0.003059	-0.97502	0.01558
33 8.47 5 22 45.26297 .	8.47 5 22 45.26297 .	5 22 45.26297 .	5 22 45.26297 .	45.26297 .	45.26297 .		°.		0+	16	14.9674	.0616	111905	0.006402	-0.74790	0.02952
25 9.45 5 22 59.72662 .	9.45 5 22 59.72662 .	5 22 59.72662 .	5 22 59.72662 .	22 59.72662 .	59.72662 .		ō.	00863 +	0+	17	53.8719	.0443	0.022187	0.003372	-0.04206	0.01365
50 8.20 5 23 1.95389 .	8.20 5 23 1.95389 .	5 23 1.95389 .	5 23 1.95389 .	23 1.95389 .	1.95389 .	٠	٥.		0+	19	11.5513	.0383	0.024079	0.004807	-0.62369	0.02056
5 23 4.92712 .	10.80 5 23 4.92712 .	5 23 4.92712 .	5 23 4.92712 .	23 4.92712 .	4.92712		٥.	01247	0	18	50.9390	.0369	037194	0.007332	-0.49017	0.01153
44 9.45 5 23 9.95330	9.45 5 23 9.95330	5 23 9.95330	5 23 9.95330	9.95330	9.95330		٠.	.00617	0+	40	46.8494	.0290	0.018315	0.002971	1,24925	0.01389
30 5.60 5 23 12.69736	5.60 5 23 12.69736	5 23 12.69736	5 23 12.69736	12.69736	12.69736		٥.	.01163 +	0+	28	38.3076	.0645	041785	0.005871	0.86506	0.02986
37 9.85 5 23 16.11112	5 23 16.11112	5 23 16.11112	5 23 16.11112	16.11112	16.11112		٧.	.00738	0+	45	14.7429	.0304	024546	0.001615	-0.01839	0.01411
65 8.35 5 23 30.05681 .	5 8.35 5 23 30.05681 .	5 23 30.05681 .	5 23 30.05681 .	23 30.05681 .	30.05681		٠.		0+	41	5.6284	.0258	004889	0.002975	0.09013	0.00934
52 9.00 5 23 30.03478 .	2 9.00 5 23 30.03478 .	5 23 30.03478 .	5 23 30.03478 .	23 30.03478 .	30.03478 .	•	°.	6900	0+	38	28.3513	.0301	029286	0.002526	1.30112	0.01104
5 23 30.53863 .	9 10.95 5 23 30.53863 .	5 23 30.53863 .	5 23 30.53863 .	23 30.53863 .	30.53863 .	•	٧.	01514 +	0+	29	46.3818	.0277	004729	0.005858	0.24059	0.00870
0 18 11.30 5 23 30.97558 .0	5 23 30.97558	5 23 30.97558	5 23 30.97558	23 30.97558	30.97558		۰.	.01172 +	9	51	31.3310	.0818	060449	0.004448	-2.02062	0.02927
48796 59 7.40 5 23 31.31151 .0	7.40 5 23 31.31151	5 23 31.31151	5 23 31.31151	23 31.31151	31.31151		٥.	.01204 +	0+	47	29.0287	.0428	011468	0.004528	0.45777	0.01559
48804 54 9.70 5 23 34.45862 .	9.70 5 23 34.45862	5 23 34,45862	5 23 34,45862				٠.	.00787	0+	11	51.1174	.0288	063343	0.004555	-0.06429	0.01641
5 23 38.20855	5 23 38.20855	5 23 38.20855	5 23 38.20855						0+	49	58.8648	.0380		0.001172	-0.77047	0.01178
0 25 11.25 5 23 39.19796 .0	5 23 39.19796	5 23 39.19796	5 23 39.19796				٧.		0+	18	15.4598	.0546		0.005794	-0.97048	0.02139
0 54 8.40 5 23 42.53131 .(.40 5 23 42.53131 .	.40 5 23 42.53131 .	5 23 42.53131	53131	53131	53131	~	.00867	0+	9	43.6791	.0332	028297	0.002431	-0.72629	0.01632

				Tab	ole (9:	Table 9: (Continued)									
#JV	ACRS#	Z	Е			Ö		ęα		9		93	$\mu\alpha$	$\epsilon \mu \alpha$	η	$\epsilon \mu \delta$
584	48841	42	8.85		5 2	3.4	45.40528	.00933	0+	45	24.6936	.0352	-,000324	0.004439	-0.38471	0.01435
585	48848	48	7.50		5 2	3.4	47.75946	.01205	0+	45	21.2470	.0525	019984	0.005578	-0.25758	0.02003
286	0	41	9.25		5 2	3.4	49.33350	.00912 4	9	13	10.6639	.0470	0.095268	0.001519	-0.82284	0.02589
587	48860	35	8.90		5 2	23 5	52.50705	.00743 4	0+	47 4	49.5027	.0338	007324	0.003342	0.13950	0.01337
588	0	22	11.03	3	2	23 5	57.84823	.01900	9	9	25,4357	.0428	039706	0.006307	-0.37517	0.01782
589	48876	47	8.65	5	5 2	23 5	58.58868	.00949 4	0+	29	6.4281	.0448	0.093485	0.003998	0.99620	0.01669
290	0	15	10.95	5	5 2	4	4.07131	.02170 +	0+	47	30.0095	.0870	0.008443	0.003620	-1.44401	0.03058
591	0	37	8.97	7 5	2	4	3.44149	+ 60600.	0+	0	0.2594	.0356	033396	0.003640	-0.27977	0.01548
592	0	23	10.95	5	5 2	24	5.09524	.01200 +	0+	42	31.5633	.0357	0.002139	0.004666	-0.52963	0.01395
593	0	21	11.20	0	2	4	14.71770	.01964 +	0+	25	9.2411	.0641	0.251275	0.006914	-3.11185	0.02399
594	48954	42	7.95	5	2	24 2	20.66671	.01212 +	0+	36	6.4913	.0348	0.045335	0.005394	-1.10336	0.01318
292	0	7	11.20	0	5	4	23,35554	.01944 +	0+	55 1	12.8739	.1449	081135	0.004992	-4.66897	0.05276
969	0	43	8.90	0 5	2	4 2	29.54356	+ 76700.	7 0+	41 4	44.4980	.0346	0.022256	0.002947	0.05734	0.01277
297	0	34	8.80	0 5	5	4 3	31.27116	.00518 +	0+	22	38.5674	.0379	077655	0.002310	0.08436	0.01402
298	0	28	11.15	5	5	4 3	32.47284	.01054 +	-0+	12	33.8812	.0347	047281	0.005489	0.28971	0.02086
599	0	31	9.05	5 5	2	4 3	33.20035	.00805 +	7 0+	45	5.8522	.0302	025787	0.004019	-0.09158	0.01047
009	0	49	8.80	0 5	5	4 3	38.29067	.00724 +	0+	2	8.3535	.0276	022696	0.003052	-0.04030	0.01268
601	0	33	9.00	0 5	5	4 3	39.05824	.00595 +	9	39	38.2683	.0290	0.036849	0.001634	-0.47095	0.01050
602	0	33	8.73	3	5	24 5	50.96233	.02873 +	0+	e,	57.2541	.0830	073602	0.009054	-1.71971	0.02359
603	0	20	11.25	5 5	5	24 5	53.77764	.01262 +	9	24 2	23.6740	.0330	001929	0.005128	-0.38885	0.01210
604	0	26	7.80	0 5	5	4 5	56.70776	.00727 +	0+	12 4	40.4129	.0262	0.060428	0.004083	-0.60828	0.01537
605	0	40	9.00	0 5	2	4 5	9.95824	.00704 +	0+	7	46.7287	.0321	065873	0.003261	-0.81009	0.01520
909	49076	26	7.80	0 5	2	2	1.33793	.01111 +	0+	39	39.6121	.0450	0.059836	0.004091	1.33077	0.01681
209	0	25	10.60	0 5	2	2	5.95978	.01852 +	0+	П	26.2185	.0428	092451	0.005734	0.01166	0.01899
809	0	27	9.40	0 5	5	2	6.54205	+ 95800.	0+	22 4	47.4236	.0482	103167	0.003942	-1.21462	0.01816
609	0	56	11.10	0 5	7	5 1	11.07851	.01454 +	0+	22	1.6668	.0500	034342	0.005671	0.01375	0.01912
019	0	e	10.30	0 5	7	5 1	3.08120	.02610 +	0+	35	4.8842	.1701	0.157289	0.014655	8.05850	0.09779
119	0	34	10.60	0 5	7	5 1	8.49170	.01071 +	7 0+	43	4.7234	.0289	0.021980	0.004372	-0.01718	0.01006
612	0	13	10.00	0 5	7	5 1	9.46297	.05929 +	0+	36	36.4742	.1295	0.217443	0.021401	0.62063	0.03357
613	0	21	9.50	0 5	7	5 2	3.32039	.01918 +	7 0+	48	39.8535	.0705	052165	0.006430	1,28322	0.02591
614	0	30	11.05	5 5	7	5 2	5.66809	.00984 +	0+	24	37,4331	.0325	035525	0.004459	0.06775	0.01411
515	0	39	9.70	0 5	7	5 2	8.63411	+ 98600.	0	e	7,3909	.0396	025670	0.004401	-3.66854	0.02601
919	0	28	9.40	0 5	2	5 3	30.85891	.00616 +	0+	9	18.1342	.0256	054317	0.004249	-1,14916	0.02064

Table 9: (Continued) ACRS# N m α	ш		2	;	2	ξα		9		$\theta_{\mathfrak{Z}}$	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{ℓ}	$\epsilon\mu\delta$
99 7.05 5 25	7.05 5 25 35.48502 .00527	5 25 35.48502 .00527	35.48502 .00527	.00527		9 0	4. (44	49.6798	.0210	060216	0.002643	-0.57817	0.00936
33 10.30 5 25 49.18903 .01077	10.30 5 25 45.8/218 .00918	5 25 49.18903 .01077	49.18903 .01077	.01077		? ?			36.3817	.0234	0.161474	0.004176	-0.73331	0.00840
0 40 10.15 5 25 49.72249 .01154 +0	10.15 5 25 49.72249 .01154	5 25 49.72249 .01154	49.72249 .01154	.01154		9		18	18.4282	.0304	033452	0.004344	-0.84176	0.01369
49259 79 6.00 5 25 52.02077 .00618 -	6.00 5 25 52.02077 .00618	5 25 52.02077 .00618	52.02077 .00618	.00618			0	Н	9.8968	.0298	084807	0.003460	-1,62851	0.01484
99 7.90 5 25 59.53494 .00427	7.90 5 25 59.53494 .00427	5 25 59.53494 .00427	59.53494 .00427	.00427			+0	43	34.9503	.0156	064084	0.002335	-0.06807	0.00716
30 11.05 5 26 3.35566 .01256	11.05 5 26 3.35566 .01256	5 26 3.35566 .01256	3,35566 ,01256	.01256			10+	56	28.2287	.0479	032642	0.004611	-0.12793	0.01771
5 26 16.31435 .00882	11.30 5 26 16.31435 .00882	5 26 16.31435 .00882	16.31435 .00882	.00882			+0	40	39.4794	.0408	0.005726	0.004171	-0.03068	0.01612
32 11.45 5 26 18.80754 .00780	11.45 5 26 18.80754 .00780	5 26 18.80754 .00780	6 18.80754 .00780	.00780			40+	47	23,1512	.0317	024936	0.001920	0.17972	0.01540
41 11.47 5 26 24.18562 .00736	11.47 5 26 24.18562 .00736	5 26 24.18562 .00736	24.18562 .00736	4.18562 .00736			40+	40	34,3745	.0261	0.031348	0.004450	0.95943	0.01395
32 7.70 5 26 26.66117 .01420	7.70 5 26 26.66117 .01420	5 26 26.66117 .01420	26.66117 .01420	.01420			+0	16	5.0521	.0659	0.015797	0.004218	-0.10197	0.02433
40.09933 .00718	7.73 5 26 40.09933 .00718	5 26 40.09933 .00718	40.09933 .00718	.00718			9	0	36.5020	.0271	0.246403	0.004104	-2.11465	0.01954
28 8.80 5 26 43.24169 .01134	8.80 5 26 43.24169 .01134	5 26 43.24169 .01134	43.24169 .01134	.01134			9	26	55.1670	.0437	040350	0.007949	0.59403	0.03678
38 11.35 5 26 42.89497 .01359	11.35 5 26 42.89497 .01359	5 26 42.89497 .01359	42.89497 .01359	.01359			+0+	40	38.4200	.0267	149551	0.007815	0.94367	0.00905
27 11.35 5 26 42.71586 .01450	11.35 5 26 42.71586 .01450	5 26 42.71586 .01450	42.71586 .01450	.01450			9		19.0366	.0580	039377	0.005584	0.03861	0.01848
37 9.70 5 26 55.51853 .00857	9.70 5 26 55.51853 .00857	5 26 55.51853 .00857	6 55.51853 .00857	.00857			+0+	47	6.8444	.0523	085384	0.003915	-4.85175	0.01943
5 27 2.32696 .01204	10.45 5 27 2.32696 .01204	5 27 2.32696 .01204	2.32696 .01204	.01204			+0	16	38.6072	.0361	072563	0.003618	-0.24268	0.01025
23 11.00 5 27 7.81302 .01336	11.00 5 27 7.81302 .01336	5 27 7.81302 .01336	7,81302 ,01336	.81302 .01336			+0	25	57.8387	.0259	040486	0.006372	-1.52094	0.00804
21 10.80 5 27 8.23972 .00894	10.80 5 27 8.23972 .00894	5 27 8.23972 .00894	8.23972 .00894	.00894			10+	22	38.0205	.0268	0.000189	0.002582	-1.14426	0.01322
52 8.80 5 27	8.80 5 27 11.23807 .	5 27 11.23807 .	11.23807 .	٠	.00577		0+	80	17.8464	.0319	110973	0.004347	-1,80685	0.02994
28 11.17 5 27	11.17 5 27 16.09472 .	5 27 16.09472 .	16.09472 .	•	.01131		9	9	12,3894	.0319	030024	0.004373	-0.03632	0.01058
0 21 11.05 5 27 27.47690 .01027	5 27 27.47690 .	5 27 27.47690 .	٠	٠	.01027		9	31	50,5852	.0235	032126	0.003381	-1,32662	0.01033
0 64 8.90 5 27 30.63231 .00500	8.90 5 27 30.63231 .	5 27 30.63231 .	٠	٠	.00500		9	39	4.6383	.0167	036452	0.002060	-2.07861	0.00736
0 33 11.10 5 27 37.41037 .00678	11.10 5 27 37.41037 .00678	5 27 37.41037 .00678	37,41037 .00678	.00678			9	35	51,3530	.0241	053122	0.003200	-1.53692	0.01131
0 29 10.90 5 27 40.50762 .00595	9 10.90 5 27 40.50762 .	5 27 40.50762 .	40.50762 .		.00595		100	54	58.8420	.0248	178102	0.004178	0.00259	0.01098
0 19 10.45 5 27 42.82768 .01087 -	10.45 5 27 42.82768 .01087	5 27 42.82768 .01087	42.82768 .01087	.01087			+0	16	22.2708	.0527	0.008593	0.003788	0.41326	0.02407
0 35 11.00 5 27 48.69342 .00782 -	11.00 5 27 48.69342 .00782	5 27 48.69342 .00782	48.69342 .00782	.00782			+0	46	0.7559	.0238	050469	0.004013	-0.41089	0.01243
0 45 9.05 5 27 49.94811 .00684 +	9.05 5 27 49.94811 .00684	5 27 49.94811 .00684	49.94811 .00684	.00684			0+	34	13.1702	.0254	050052	0.003813	-0.00401	0.01032
5 27 55.18740 .00432	8.75 5 27 55.18740 .00432	5 27 55.18740 .00432	55.18740 .00432	.00432			+0	44	43.9656	.0158	0.178935	0.002432	-1.17184	0.00917
5 27 59.60583 .00743	9.45 5 27 59.60583 .00743	5 27 59.60583 .00743	.00743	.00743			0+	8	26.0308	.0306	016626	0.004357	-0.00417	0.01977
5 28 0.75016 .00405	9.90 5 28 0.75016 .00405	5 28 0.75016 .00405	.00405	.00405			0+	9	39.6485	.0130	074686	0.002266	0.24733	0.00722
9654 46 7.80 5 28 0.54920 .00638 +	7.80 5 28 0.54920 .00638	5 28 0.54920 .00638	.00638	.00638			+0 1	6	42.1407	.0475	067727	0.003034	-0.12489	0.01861
0 47 9.55 5 28 10.93481 .00776 +	.55 5 28 10.93481 .00776	5 28 10.93481 .00776	92200.	92200.			+0 1	6	14.3174	.0452	0.057334	0.002796	-1.71366	0.01814

				-		,										
			-	labl	e 9	۳.	Table 9: (Continued)									
AC#	ACRS#	Z	ш			ŏ		ϵ^{α}		8		83	μ_{α}	$\epsilon \mu \alpha$	η	$\theta \eta \theta$
650	0	47	9.85	5	28	115	5.41350	.00546	0	44	56.2295	.0199	026122	0.002537	-1,75526	0.01150
651	49698	94	7.63	3	28	Н	4.90206	.00462	0	0	30.2286	.0171	0.047634	0.002949	0.40785	0.00941
652	0	23	11.05	5 5	28		20.79780	.01077	0+	15	37,9144	.0360	008715	0.003807	-0.02851	0.01431
653	0	32	9.30	2	28		25,48665	. 86900.	0+	22	21.1063	.0490	012692	0.002462	0.66002	0.01850
654	0	22	10.95	5	. 28		29.62163	.01068	0+	29	48.0834	.0260	-,003882	0.004042	-1.72942	0.00670
655	0	42	9.85	5	28		30.21916	. 80600.	0+	39	17.7709	.0340	086954	0.003679	-0.08477	0.01447
929	0	37	9.82	5	28		30.47032	69600	0+	29	0.5374	.0345	0.263659	0.003747	-1.96871	0.01316
657	0	40	10.90	2	28		35.38584	.00926	0+	35	8.8698	.0307	081770	0.007695	-0.55015	0.02119
658	0	25	10.40	2	28		38.15326	. 69900.	0+	49	34.0304	.0261	0.025258	0.003403	0.15295	0.01189
629	0	30	11.15	5	28		45.16194	.01053	0+	18	10.4510	.0534	0.002351	0.002435	-2.41393	0.02055
099	0	39.	11.05	5	28		56.59323	.00911	0+	35	9.2604	.0213	067749	0.004232	1.16579	0.00907
661	0	46	10.35	.2	29		2.00882	.00753	0+	40	4.5347	.0282	027754	0.003402	1.42432	0.01250
662	0	56	11.10	2	29		3.57873	.01215	0+	10	16.6472	.0478	0.032744	0.002890	-0.08036	0.02495
664	0	27	9.85	.2	29		12.82021	.01582	0	12	32.0503	.0459	016148	0.004211	-3.09411	0.01675
665	0	34	10.53	2	29		19.03523	.01010.	0	Н	22.0594	.0375	059935	0.002747	0.36447	0.01484
999	0	34	11.27	2	29		29.23000	.01053 -	0	7	22.5948	.0329	0.031368	0.004211	-1.44848	0.01234
199	0	38	10.10	2	29		34.86342	.00874	0+	2	30.1201	.0344	020057	0.003404	-0.26321	0.01539
899	0	25	10.95	2	29		35.99760	. 86900.	0+	51	28.2086	.0221	021931	0.003375	1.49268	0.01018
699	0	19	11.00	2	29		35.22417	.01644 -	0+	11	58.8967	.0518	008239	0.006900	0.48203	0.01105
0.29	0	42	9.65	2	29		36.44152	.00594	0+	51	34.1987	.0204	014732	0.002691	0.55059	0.00873
671	0	26	9.55	2	29		38.12589	.00583 -	0+	45	33.3684	.0128	043100	0.002587	1.05783	0.00717
672	0	25	11.15	.2	29		39.69563	.00692 +	0+	52	19.9593	.0197	049778	0.003670	1.32348	0.00859
673	0	11	11.25	2	29		47.52400	.01589	0+	21	28.0195	.0374	000716	0.002836	-0.24439	0.00699
674	0	16	10.50	2	29		56.12037	.01017	9	27	49.5271	.0426	906890	0.003000	-0.49043	0.01606
675	0	20	9.60	2	29		56.25565	.00817	0+	0	55.8140	.0319	0.056009	0.004612	0.31132	0.01705
919	50023	44	7.23	2	30		4.19919	.00683 -	0	н	21.7658	.0317	0.020308	0.004602	-1.55926	0.01912
219	0	25	11.05	2	30		5.50663	.01549 -	0+	0	26.6750	.0500	0.033828	0.004587	-1.01258	0.03938
678	0	16	10.25	2	30		12.17181	.01406	9	56	18.8077	.0311	0.168483	0.005205	2.13184	0.01429
619	0	27	10.60	2	30		17,76985	.01535 +	0+	0	42.5946	.0419	084247	0.006226	-0.01235	0.02246
680	0	18	10.23	2	30		23.44378	.01140	9	13	34.2990	.0417	0.043907	0.002979	1.20408	0,01587
681	0	56	10.53	2	30	34	34.84494	.00735 +	0+	54	27.1002	.0193	0.023129	0.003526	2.39608	0.01039
682	0	49	9.07	2	30	36	36.92530	.00659 4	0+	20	1,4153	.0205	0.005986	0.003143	1.09422	0.00670
683	0	11	10.40	5	30		42.95774	.01316 4	+0	13	11,4586	.0435	0.118792	0.005386	2.78184	0.01500

	$\epsilon \mu \delta$	0.02016	0.04593	0.01348	0.03085	0.02042	0.01936	0.03373	0.01539	0.03883	0.05116	0.02043	0.00788	0.01924	0.03728	0.01837	0.03329	0.05263	0.04445	0.02079	0.02814	0.02113	0.00970	0.01741	0.02580	0.01307	0.01497	0.01116	0.02466	0.02018	0.01670	0.01923	0.02311	0.03047
	hβ	1.82087	-0.79302	0.49891	-0.59950	0.81546	0.50342	-0.26226	1.54997	0.79734	-0.56758	0.59303	-0.92389	0.28017	-0.83962	-1.16209	-0.26855	-0.57622	-1.00043	-0.66647	0.46211	2.34938	0.97933	1.43945	0.11404	-1.24992	1.22978	1.39753	0.67291	1.95542	0.99620	1.25709	3,16659	71017
	$\epsilon \mu \alpha$	0.003849	0.004786	0.003778	0.011561	0.002773	0.003395	0.009607	0.003221	0.012858	0.005886	0.008894	0.007285	0.004669	0.005082	0.009022	0.014891	0.011469	0.007528	0.006562	0.012474	0.004638	0.006084	0.002563	0.005491	0.011159	0.003593	0.005113	0.002849	0.004745	0.005180	0.005851	0.007368	1011100
	$\mu\alpha$	026683	098693	000785	013284	0.009407	0.059668	093569	0.043338	009106	037895	030128	059763	094743	098758	048665	198683	083216	038849	091449	204608	0.078411	0.010615	001756	0.016086	051213	055262	003347	0.006469	0.027290	0.014411	018848	237389	- 050313
	ϵ_{δ}	.0481	.0897	.0306	.0389	.0509	.0473	.0469	.0429	.1234	.0835	.0509	.0358	.0602	.0505	.0541	.1120	.0684	.0615	.0759	.0343	.0583	.0465	.0469	.0784	.0587	.0451	.0485	.0853	0090.	.0645	.0711	.0692	A 100
	3	51,3956	15.0276	5.3430	36,1253	38,8357	2.5487	6.5807	8.3212	1.2664	43.4914	48.8207	20.8170	51,6643.	59.1947	37.5513	6.2448	3.8116	58.6659	15.4990	21.9592	17.7916	36.0711	11.6588	25,1330	33.7486	20.8920	4.7889	29.5325	4.4714	24.6302	57.9144	29.3495	1002 00
	~	119	35	2	53	4	15	44	13	21	22	5	20	22	38	53	44	43	20	37	52	80	11	4	ω	54	4	13	12	4	2	- 2	-	1
	ϵ_{α}	.01384 +0	.02386 +0	.00911 -0	.01471 +0	.01006 +0	.01035 +0	.01718 +0	.01422 +0	.06661 +0	.01977 +0	.01599 +0	.01120 +0	.01732 +0	.01410 +0	.01507 +0	.03254 +0	.01480 +0	.01678 +0	.03171 +0	.01477 +0	.01766 +0	.01950 +0	.00850 +0	.01565 +0	.02322 +0	.01172 +0	0+96/10.	.01215 +0	.01252 +0	.01877 +0	.01927 +0	.02386 +0	04600 ±0
Table 9: (Continued)	α	46.26538	51.57245	32.28025	13.03612	15.01750	15.62488	19.67425	20.80599	21.24113	27.51231	37.05174	37.81238	38.15886	47.34805	52.46131	57.17702	3.08343	11.48984	16.51526	19.36187	19.15928	21.36507	21.51043	27.24808	32.54334	35.10747	44.72079	49.46616	1.06804	50.17199	54.75082	55.48018	3 2076A
le 9:		5 30	30	5 30	5 31	5 31	5 31	31	31	31	31	31	31	31	31	31	31	32	32	32	32	32	32	32	32	32	32	32	32	33	33	33	33	3.4
Tat	ш		7.70	10.25	10.90	10.90	11.05	10.15	9.95	10.20	9.50	11.25 5	9.05	8.40 5	8.95 5	10.95 5	9.85 5	9.65 5	11.35 5	9.10 5	8.20 5	9.95 5	10.35 5	8.43 5	10.83 5	10.95 5	10.37 5	9.40 5	9.30 5	8.07 5	11.10 5	11.45 5	10.57 5	9 75 5
	Z	18	13	36	17	20	17	15	17	00	13		27	13	23	17	17		17]	00	36	18		26	27 1		29 1	14	17	25	19 1	18 1	13 1	ď
	ACRS#	0	50177	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50459	0	0	0	0	0	50624	0	0	0	C
	₩C#	684	685	695	969	697	869	669	700	701	702	703	704	705	904	707	708	709	710	711	712	713	714	715	716	717	718	722	725	728	734	735	736	738

+ 6 6 35,6118 1.1055022174 0.002258 2.00042 + 10 31.8573 0820013113 0.005471 1.33244 + 10 3 4.3414 0622003305 0.005617 1.33244 + 10 3 54.3414 0622003305 0.005617 1.30808 + 10 3 54.3414 0622003805 0.005617 1.30808 + 10 5 2 13.6513 0805 0.04878 0.00878 0.05838 + 10 5 2 13.6513 0805 0.04878 0.00878 - 0.52638 + 10 5 2 13.4529 0.0572 0.010378 - 0.52638 + 10 5 2 13.4529 0.0572 0.010378 0.00878 0.04335 + 10 5 2 13.4529 0.052 0.010378 0.00878 0.04335 + 10 5 2 13.4529 0.052 0.00879 0.04352 + 10 5 2 13.4529 0.052 0.00879 0.05768 0.04352 + 10 5 2 13.4529 0.052 0.00879 0.05768 0.05768 + 10 5 2 13.452 0.052 0.00879 0.015676 0.05768 + 10 5 2 13.452 0.052 0.00879 0.01567 0.05768 + 10 5 2 13.45 0.056 0.00977 0.01561 + 10 5 2 10.0097 0.00977 0.01561 + 10 5 2 10.0097 0.00978 0.00978 0.01561 + 10 5 2 10.0097 0.00978 0.00978 0.01561 + 10 5 2 10.0097 0.00978 0	ACRS# N m	Z	E		ē	le y	೭ ೪	Table 9: (Continued) α	č		0		Es	η	640	377	5113
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	13 11.15 5 34 5.63528 .02	13 11.15 5 34 5.63528	11.15 5 34 5.63528	15 5 34 5.63528	34 5.63528	5.63528	63528	.0205		9		35.6118	.1055	022174	0.005258	2.00042	0.03344
++++++++++++++++++++++++++++++++++++++	20 10.40 5 34	20 10.40 5 34 21.91572 .	10.40 5 34 21.91572 .	5 34 21.91572 .	21.91572 .	21.91572 .	91572 .	.0163		9		31.8573	.0520	013113	0.004541	1.33244	0.01535
++++++++++++++++++++++++++++++++++++++		39 8.20 5 34 25,95937 .	8.20 5 34 25.95937 .	5 34 25,95937 .	34 25.95937 .	25.95937 .	95937 .	.01068		9		Š	.0359	033055	0.003617	1.87701	0.00957
+ 10 5 5 9.9333 0.000 0.040378 0.00037 0.56105 0.00 5513 0.00 5513 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	21 10.88 5 34 27.28478 .	21 10.88 5 34 27.28478 .	10.88 5 34 27.28478 .	5 34 27.28478 .	34 27.28478 .	27.28478 .	٠	.0188		9		54.8414	.0622	005876	0.005780	. 1.30888	0.01404
. 0 5 3 1.6513 0.0805 - 0.080539 0.010378	14 11.50	14 11.50 5 34 27.64516 .	11.50 5 34 27.64516 .	5 34 27.64516 .	34 27.64516 .	27.64516 .	,	.0231		9		59.5933	.0890	0.048758	0.008975	0.56105	0.01824
0.56 22.4924 0.0845 - 0.714639 0.000097 - 0.55330 0.0552 0.013078 0.007049 0.055330 0.0558 - 0.714639 0.005706 0.179195 0.0522 0.14129 0.005706 0.179195 0.05225 0.00525 0.015676 0.179195 0.05225 0.00525 0.005706 0.179195 0.05225 0.00525 0.005505 0.005505 0.05250 0.005505 0		9 10.70 5 13 56.25840 .	10.70 5 13 56.25840 .	5 13 56.25840 .	13 56.25840 .	56.25840 .	•	.048			55	651	.0805	008539	0.010378	-0.20838	0.01672
0.58 22.4324 00856 - 0.75453 0.007049 0.48355 0.007049 0.48355 0.058 0.0	. 23	23 8.55 5 14 2.07161 .	8.55 5 14 2.07161 .	5 14 2.07161 .	14 2.07161 .	2.07161 .	٠	.018			54	20.3157	.0572	0.013078	0.008087	-0.55330	0:02020
0 52 2.424, 0.0845 - 1.154474 0.005706 1.79195 0 6 20 2.42424 0.0769 - 0.072257 0.015418 0 6 20 8.000 0.2729 - 0.06228 0.015676 - 0.30238 0 5 84.5,6129 0.059 - 0.06228 0.015676 - 0.30238 0 6 20 10.5326 0.082 - 0.53337 0.005932 0.54089 0 73 2.1345 0.085 - 0.57248 0.010114 - 0.53143 0 73 2.1345 0.086 - 0.507248 0.010114 - 0.53143 0 73 2.1345 0.086 - 0.507248 0.010114 - 0.53143 0 73 3.1066 0.0549 - 0.05982 0.009178 0.08146 0 47.021 0.054 - 0.04124 0.00677 0.08146 0 48.021 0.054 0.0892 0.009178 0.01144 0 5 11.1729 0.039 0.02982 0.009178 0.01274 0 6 4 11.7129 0.039 0.02982 0.00532 0.01274 0 6 5 11.233 0.050 0.02982 0.003058 0 10.2744 0.020 0.02082 0.00682 0.01274 0 72 26.4675 0.010 0.01999 0.00477 0.01244 0 8 1.7971 0.053 0.0807 0.00235 0.00235 0 12.2566 0.062 0.08712 0.008601 0.02349 0 12.2566 0.062 0.08712 0.008601 0.02349 0 12.2560 0.062 0.08712 0.00235 0.02235 0 12.2560 0.064 0.01715 0.00235 0 12.2560 0.064 0.01715 0.00235 0 12.2560 0.069 0.06147 0.00235 0 12.2661 0.0991 0.085 0.00889 0 12.21 0.00881 0.00477 0 12.2661 0.0991 0.085 0.00888 0 12.21 0.00881 0.00477 0 12.2661 0.0991 0.085 0.00888 0 12.21 0.00881 0.00497 0 12.29684 0 12.20886 0.0088 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2974 0.00881 0.00888 0 12.2988 0.00881 0.00888 0 12.2988 0.00881 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00881 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.298 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.0088 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.2988 0.00888 0 12.29	29	29 7.87 5 14 11.14562 .	7.87 5 14 11.14562 .	5 14 11.14562 .	14 11.14562 .	11.14562 .	14562 .	.019			99	2	.0586	074633	0.007049	0.48355	0.01758
0 10 28. 14129 (1979 - 70757) 0.00548 0.18388 0.00 10 25. 40.00 2729 - 6.60228 0.015676 0.01588 0.0 10.5326 0.06525 0.015676 0.015938 0.0 10.5326 0.05326 0.015676 0.015938 0.0 10.5326 0.05326 0.05332 0.04392 0.05332 0.04393 0.0 10.5326 0.05325 0.05332 0.04393 0.0 10.5326 0.05325 0.05328 0.05328 0.0 10.5326 0.05328 0.0 10.5326 0.0 10.5326 0.0 10.5326 0.0 10.5326 0.0 10.5328 0	12 1	12 10.63 5 14 59.54874 .	10.63 5 14 59.54874 .	5 14 59.54874 .	14 59.54874 .	59.54874 .	. 54874 .	.027			28	22.4924	.0845	151474	0.005706	1.79195	0.02203
0. 40 28. 8000 - 2.7290.60228 0.0.1576 - 0.30238	47341 7 8.35 5 15 10.51232 .01955	7 8.35 5 15 10.51232 .	8.35 5 15 10.51232 .	5 15 10.51232 .	15 10.51232 .	10.51232 .	.51232 .	.019			2	21.4129	.0769	075257	0.005418	0.18388	0.02562
0. 58 45, 6429, 0439, 04392 0.54089 0. 20 10.5326 0825 - 053337 0.005952 0.54089 0. 21345 0885 - 057246 0.101114 - 0.35143 0. 27 3.0660 0549 - 05923 0.009178 1.2312 0. 27 3.0660 0549 - 02923 0.009178 1.2312 0. 27 3.1180 0330 - 0.05660 0.009178 1.02992 0. 27 3.1180 0330 - 0.05660 0.00918 10.02992 0. 25 5.1481 0.037 - 0.02569 0.00358 0.10574 0. 25 5.1481 0.037 - 0.01269 0.00358 0.01274 0. 26 4675 0.001 0.19989 0.003056 0.01274 0. 26 5.056 0.062 - 0.00730 0.004770 0.0214 0. 29 5.056 0.062 - 0.00731 0.004770 0.21449 0. 29 5.056 0.062 - 0.00731 0.004770 0.21469 0. 29 5.056 0.062 - 0.00731 0.00807 0.00807 0. 20 5.008 0.0080 0.00808 0.00807 0.00807 0. 20 5.008 0.00908 0.00808 0.00908 0.00908 0. 20 5.008 0.00908 0.00908 0.00908 0.00908 0. 20 5.008 0.00908 0.00908 0.00908 0.00908	3 11.20	3 11.20 5 15 11.55116 .	11.20 5 15 11.55116 .	5 15 11.55116 .	15 11.55116 .	11.55116 .	.55116 .	.102				28.8000	.2729	060228	0.015676	-0.30238	0.03913
-0.20 10.5326 0.0825 - 0.05337 0.005952 0.43398	0 13 10.87 5 15 19.22314 .02714	13 10.87 5 15 19.22314 .	10.87 5 15 19.22314 .	5 15 19.22314 .	15 19.22314 .	19.22314 .	.22314 .	.027			28	45.6129	:0630	040523	0.004392	-0.54089	0.01721
0.3 37.1345, 0.866 - 0.657248 0.010114	47361 14 8.35 5 15 21.67112 .02658	14 8.35 5 15 21.67112 .	8.35 5 15 21.67112 .	5 15 21.67112 .	15 21.67112 .	21.67112 .	٠	.026				10.5326	.0825	053337	0.005952	0.43938	0.02078
0.2 0.9 47,0221,0564 - 0.04134 0,006777 1,23182 0.0273 0,03146 0.0273 0,03146 0.0273 0,03146 0.0273 0,03146 0.0273 0,03146 0.02146 0.0273 0,03146 0.02147 0.02146 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02147 0.02146 0.02147 0.02	5 11.45 5	5 11.45 5 15 24.49832 .	11.45 5 15 24.49832 .	5 15 24,49832 .	15 24,49832 .	24.49832 .	٠	.0393				32.1345	.0856	057248	0.010114	-0.35143	0.01461
0.47 3.0660, 0.549 - 0.02660 0.004341 0.00146 0.0146 0.0473.117129 0.0339 - 0.02660 0.004341 0.00146 0.0146 0.0441 0.0146 0.0441 0.0441 0.0441 0.0146 0.0146 0.0146 0.0441 0.0146 0.0146 0.0146 0.0146 0.0422 0.0422 0.0422 0.0426 0.0146	5 11.15 5	5 11.15 5 15 36.76221 .	11.15 5 15 36.76221 .	5 15 36.76221 .	15 36.76221 .	36.76221 .	٠	.0348				47.0221	.0564	041234	0.006777	1.23182	0.01040
0.4 75 3.1180 0.330 - 0.02566 0 0.00434 0 0.1050 0.5 4 11.7129 0.533 - 0.02141 0 0.00328 0 0.01561 0.3 5.1481 0.897 - 0.10269 0 0.00392 - 0.0722 0.4 5.2 6.4675 0.0010 0.01999 0 0.00395 0 0.012974 0.2 6.11.2133 0.0012 - 0.00470 0 0.02149 0.2 6.11.213 0.0012 - 0.00470 0 0.02149 0.2 9.556 0.062 - 0.00573 0 0.02470 0 0.21149 0.4 3 3.701 0.631 - 0.6012 0 0.00601 0 0.2168 0.2 12.6 6.6 1 1.0000 0.0000 0 0 0.0000 0.3 12.6 6.0 1.0000 0 0.00000 0 0.0000 0.4 3 0.0000 0.0000 0.0000 0 0.0000 0.5 3 0.0000 0.0000 0 0.0000 0.5 3 0.0000 0.0000 0 0.0000 0.6 3 0.0000 0 0.0000 0 0.0000 0.7 0.0000 0 0.0000 0 0.0000 0.7 0.0000 0 0.0000 0 0.00000 0.7 0.00000 0 0.00000 0 0.00000 0.7 0.7 0.00000 0 0.00000 0.7 0.7 0.000000 0 0.000000 0.7 0.7 0.000000 0 0.00000 0.7 0.7 0.7 0.000000 0.7 0.7 0.7 0.000000 0.7 0.7 0.7 0.000000 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	10.50 5	6 10.50 5 15 40.18036 .	10.50 5 15 40.18036 .	5 15 40.18036 .	15 40.18036 .	40.18036 .	٠	.034			27	3.0660	.0549	059823	0.009178	0.08146	0.01032
-0.541,7129, 05533025141 0,003288 - 0.01561 -0.39 52.1481 0.0873018269 0,005382 - 0.0722 -0.42 26.4675 .0401 0.019999 0.003056 0.12974 -0.30 8.7971 1.6533080130 0.00477 0 .02114 -0.20 11.2133 .0812057805 0.005123 - 0.21459 -0.20 25.5056 .0622087512 0.008601 - 0.4284 -0.48 3.3701 .0621066081 0.003040 0.2768 -0.48 34.5508 .0454013715 0.002354 0.02689 -0.21 25.666 1.400 - 0.75882 0.002535 0.002535 -0.39 36.230 .0508059357 0.002536 0.02526 -0.43 20.8911 .0527 0.061164 0.004907 - 0.02504 -0.55 5.6188 .060004472 0.005641 0.05954 -0.40 3.0991 .0835009994 0.006302 - 1.04903 -0.41 42.4677 .0194067772 0.00538 0.04907 -0.38 31.5650 .0992067772 0.00538 0.04203	19 10.35 5 15 41.78909 .	19 10.35 5 15 41.78909 .	10.35 5 15 41.78909 .	5 15 41.78909 .	15 41.78909 .	41.78909 .	. 60687	.0170				53.1180	.0330	026660	0.004341	0.28992	0.00939
0. 42 25.4481 0.0879 - 0.102859 0.003532 0.07222 0. 42 26.4675 0.0410 0.10999 0.003056 0.07222 0. 50 8.7971 0.653 - 0.80130 0.00477 0.02114 0. 20 8.7971 0.653 - 0.80730 0.00477 0.02114 0. 20 8.5056 0.662 - 0.87512 0.008601 0.02459 0. 20 8.5056 0.662 - 0.87512 0.008601 0.02489 0. 43 8.3070 0.661 - 0.06861 0.00340 0.27688 0. 21 29.6661 0.0591 0.00253 0.00263 0. 21 29.6661 0.0508 0.002635 0.002635 0. 21 29.6661 0.0508 0.002635 0.002635 0. 21 29.6661 0.0509 0.002635 0.002635 0. 41 42.4677 0.0949 0.006302 0.04993 0. 41 42.4677 0.0949 0.006302 0.04993 0. 41 42.4677 0.0949 0.006302 0.02493 0. 41 46.77 0.0949 0.006302 0.02493	38 9.70 5 15	38 9.70 5 15 46.86695 .	9.70 5 15 46.86695 .	5 15 46.86695 .	15 46.86695 .	46.86695 .	٠	.0106				11.7129	.0533	025141	0.003288	-0.01561	0.01822
0. 42 Ca. 6475. 0. 0.011 0. 0.19999 0. 0.03056 0. 0.12974 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	18 10,10 5 15	18 10.10 5 15 47.32146 .	10.10 5 15 47.32146 .	5 15 47.32146 .	15 47.32146 .	47.32146 .	•	.017				52.1481	.0897	018269	0.005832	-0.07222	0.03175
-0.30 8.7971 1.553 - 0.00130 0.00477 0 0.02144 0 0.02143 0.015 - 0.02459 0 0.0223 0.00473 0.02459 0 0.0223 0.0223 0.0212 0.02459 0 0.0223 0.0223 0.02145 0 0.0223 0.022459 0 0.0223 0.0223 0.022459 0 0.02233 0.02232 0.02232 0.02232 0.022	19 10.15 5 1	19 10.15 5 15 47.56872 .	10.15 5 15 47.56872 .	5 15 47.56872 .	15 47.56872 .	47.56872 .	•	.012				26.4675	.0401	0.019989	0.003056	0.12974	0.01166
-0.26 (1).2133 (0.0812 - 0.08705 0.005123 - 0.21459 (0.0202 0.0202 0.02056 0.0622 - 0.087512 0.006601 - 0.42384 (0.0203 0.0202 0	c	3 11.10 5 15 55.84411 .	11.10 5 15 55.84411 .	5 15 55.84411 .	15 55.84411 .	55.84411 .	٠	.031			30	8.7971	.1653	080130	0.004770	0.02114	0.02832
-0.20.20.5056.0652087512 0.006601 -0.42384 0-0.48 34.5070 .0651 -0.06602 0.003040 0.2568 0-0.48 34.5308 .0464 -0.18715 0.005345 0.2568 0-0.39 39.6230 .066805837 0.002535 1.90515 0-0.30 39.6230 .056805837 0.002535 1.90515 0-0.43 20.8911 .0527 0.07582 0.007517 -0.97632 0-0.43 20.8911 .0527 0.061164 0.004907 -0.82507 0-0.40 9.0991 .083500894 0.005302 -1.04903 0-0.41 22.4677 0.094 -0.06302 -1.04903 0-0.41 22.4677 0.094 0.00302 -1.02913 0-0.30 13.5555 0.0922 0.005384 0.00538 -0.12913 0-0.30 13.5555 0.005387 0.005384 0.00538 -0.12913 0-0.30 13.5555 0.005387 0.005384 0.00538 -0.12913 0.00538 0.	10.45 5 16 2.22209 .	6 10.45 5 16 2.22209 .	10.45 5 16 2.22209 .	5 16 2.22209 .	16 2.22209 .	2.22209 .	.22209 .	.024				11.2133	.0812	057805	0.005123	-0.21459	0.02535
0.84 3.7401 0.681 1.065081 0.003044 0.027588 0.0241 0.0241 0.0241 0.0241 0.0241 0.0241 0.0243 0.0244	6 10.70 5 16 3	6 10.70 5 16 3.14095 .	10.70 5 16 3.14095 .	5 16 3.14095 .	3.14095 .	3.14095 .	.14095 .	.028				29,5056	.0692	087512	0.008601	-0.42384	0.01498
-0 48 34,5308 0464013715 0.002535 1.90515 0.0159 -0 30 39,56230 0508058357 0.002607 0.68899 0.0115 -0 21 29,6661 1.400075882 0.007517 - 0.97632 0.0207 -0 43 20,8911 0527 0.061164 0.004907 - 0.82507 0.0136 -0 40 9,0991 0835009894 0.006302 -1.04403 0.0289 -0 41 42,4677 0794067772 0.005481 0.02930 -0 30 13,6323 0807038975 0.004285 -0.129313 0.0289 -0 38 51,5650 0.9922067877 0.010263 -0.24976 0.03243	21 10.90 5 16 3.23291 .	21 10.90 5 16 3.23291 .	10.90 5 16 3.23291 .	5 16 3.23291 .	3.23291 .	3.23291 .	•	.011	61		89	3.3701	.0691	066081	0.003040	0.27688	0.02413
0.015.0.00 0.0.000.0.000.0.000.0.000.0.000.0.000.0.	11.05 5 16 11.79340 .	18 11.05 5 16 11.79340 .	11.05 5 16 11.79340 .	5 16 11.79340 .	11.79340 .	11.79340 .	•	.013			8	34.6308	.0464	013715	0.002535	1.90515	0.01591
-0 21 29.6661 .1400075882 0.007577 -0.97622 0.0207 -04 20.9911 .0527 0.061164 0.040907 -0.582507 0.0136 -0 55 3.6188 0.600044472 0.005641 0.69564 0.0136 -0 40 9.0991 .0835009894 0.005632 -1.04903 0.0288 -0 41 42.4677 .0794067772 0.004285 -0.12913 0.0288 -0 30 13.5632 .0807038975 0.004285 -0.12913 0.0289 -0 38 51.5650 .0992067877 0.010263 -0.24976 0.0388	9	6 10.35 5 16 15.86618 .	10.35 5 16 15.86618 .	5 16 15,86618 .	15,86618 .	15,86618 .	•	.0184				39.6230	.0508	058357	0.002607	0.68899	0.01159
-0 43 20,8911 .0527 0.161164 0.004907 -0.82507 0.0136 -0 55 3.6118 0.0600044472 0.005641 0.65954 0.0156 -0 40 9.0991 .08350099894 0.006302 -1.04403 0.0288 -0 41 42.4677 .0794067772 0.004285 -0.129313 0.0258 -0 30 13.6363 .0807038975 0.005848 1.07420 0.02437 -0 38 5.1.550 .0992067877 0.010263 -0.24476 0.0388	3 1	3 11.25 5 16 20.25603 .	11.25 5 16 20.25603 .	5 16 20.25603 .	16 20.25603 .	20.25603 .	•	.0386				29,6661	.1400	-,075882	00751	-0.97632	0.02077
-0 55 3.618 8.060044472 0.005641 0.059544 0.0156 -0 9.0991 0.0855008994 0.00532 - 1.04993 0.0259 -0 41 42.4677 0.794067772 0.004285 - 0.12913 0.0259 -0 8 3.1.5650 0.0922067877 0.010263 - 0.24476 0.0589	0 14 10.75 5 16 24.61082 .02670	14 10.75 5 16 24.61082 .	10.75 5 16 24.61082 .	5 16 24.61082 .	24.61082 .	24.61082 .	61082 .	.0267			e		.0527	0.061164	0.004907	-0.82507	0.01361
-0 40 9.0991 .0835009894 0.006302 -1.04903 -0.04903 42.4677 0794067772 0.004285 -0.12913 -0.03 13.5536 .08077 -0.38975 0.005848 1.07420 -0.38550 .0992067877 0.010283 -0.24976	0 18 11.07 5 16 27.77425 .02080	18 11.07 5 16 27.77425 .	11.07 5 16 27.77425 .	5 16 27.77425 .	27.77425 .	27.77425 .	77425 .	.020			25	.618	0090.	044472	0.005641	0.69584	.0156
-0 41 42.4677 .0794067772 0.004285 -0.12913 -0 30 13.6363 .0807038975 0.005848 1.07420 -0 38 51.5650 .0992067877 0.010263 -0.24976	0 31 9.90 5 16 44.34013 .01847	31 9.90 5 16 44.34013 .	9.90 5 16 44.34013 .	5 16 44.34013 .	44.34013 .	44.34013 .	.34013 .	.018			0		.0835	009894	0.006302	-1.04903	0.02884
-0 30 13.6363 .0807038975 0.005848 1.07420 -0 38 51.5650 .0992067877 0.010263 -0.24976	0 14 11.10 5 16 56.10704 .01686	14 11.10 5 16 56.10704 .	11.10 5 16 56.10704 .	5 16 56.10704 .	56.10704 .	56.10704 .	•	.016					.0794	067772	0.004285	-0.12913	0.02591
-0 38 51.5650 .0992067877 0.010263 -0.24976 0		6 10.80 5 16 56.78904 .	10.80 5 16 56.78904 .	5 16 56,78904 .	56.78904 .	56.78904 .	. 78904 .	. 022		0		13.6363	.0807	038975	0.005848	1.07420	0.02435
	514045 15 9.05 5 17 0.17494 .02832	15 9.05 5 17 0.17494 .	9.05 5 17 0.17494 .	5 17 0.17494 .	.17494 .	.17494 .	.17494 .	0283					.0992	067877	0.010263	-0.24976	0.03589

8.9289 0.970 0.079237 0.00552 0.010555 0.02249 0.02249 0.0235 0.067 0.007845 0.0235 0.00735 0.007465 0.01157 0.01028 0.0235 0.007 0.00445 0.01157 0.01028 0.0235 0.007 0.00425 0.01157 0.01028 0.0235 0.007 0.00425 0.01157 0.01258 0.0255 0.00746 0.01157 0.00551 0.00551 0.0255 0.0255 0.00749 0.00749 0.00749 0.00784 0.00784 0.0255 0.0	εα δ	ϵ^{α}
8, 2389, 0.970 - 0.70237 0, 0.06552 2, 0.07465 0, 0.05527 0, 0.05252 0, 0.07445 0, 0.05227 0, 0.0525, 0.07445 0, 0.0525 0, 0.07445 0, 0.0525 0, 0.07445 0, 0.0525 0, 0.07445 0, 0.0525 0, 0.0753 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0758 0, 0.0759 0,	42 30	9
2.2.10664 0.499 - 0.05522 0.007405 - 0.55227 0.004456 0.11576 4.4457 0.709 - 0.94237 0.005821 - 0.20758 5.7527 0.005821 - 0.20758 5.7567 0.005821 - 0.20758 5.7567 0.005821 - 0.20758 5.7567 0.005821 - 0.20758 5.7467 0.7073 - 0.20520 0.00733 0.00573 0.00572 0.20520 0.00572 0.0057	17	0
0.0235. 0.079 - 0.05561 0.004456 0.11776 5.7567 0.779 - 0.99423 0.005821 0.02758 5.744 0.779 - 0.09423 0.002846 0.75124 5.244 0.773 - 0.22081 0.003656 1.15745 5.244 0.773 - 0.22081 0.003656 1.15745 5.24.0056 0.875 - 0.22081 0.003656 1.15745 5.24.0056 0.875 - 0.22081 0.003656 1.15745 5.24.0073 - 0.02080 0.003659 0.01861 5.24.0073 - 0.02080 0.005506 0.01861 5.25.5738 0.696 0.001829 0.01225 5.5738 0.696 0.001829 0.01225 5.5738 0.696 0.001829 0.01225 5.50016 0.656 0.001829 0.01225 5.250016 0.656 0.001829 0.01225 5.250016 0.656 0.001829 0.01225 5.250016 0.656 0.001829 0.01225 5.250016 0.656 0.01225 0.00679 0.01225 5.250016 0.656 0.01229 0.01225 5.250016 0.656 0.01225 0.01225 5.250016 0.656 0.01225 0.01225 5.250016 0.656 0.01232 0.01225 5.250016 0.656 0.01232 0.01225 5.250016 0.656 0.01232 0.00253 0.01225 5.250016 0.656 0.01232 0.00253 0.01225 5.250016 0.656 0.01232 0.00253 0.01225 5.250016 0.656 0.01232 0.00253 0.01225 5.250016 0.656 0.01232 0.00431 0.01067 5.250016 0.656 0.01232 0.00253 0.01225 5.250016 0.656 0.01232 0.00431 0.00437 5.250016 0.656 0.014189 5.250017 0.0254 0.00355 0.00435 5.250017 0.00254 0.00355 0.014183 5.250017 0.0254 0.00355 0.01425 5.250017 0.00253 0.00435 0.00437 5.250017 0.00253 0.00435 0.00437 5.250017 0.00253 0.00335 0.011468 5.250017 0.00359 0.00335 0.011468 5.250017 0.00359 0.00335 0.011468 5.250017 0.00359 0.00335 0.011468 5.250017 0.00359 0.00335 0.00337 5.2400 0.017 0.00359 0.00335	32 21	0
46,4457, 0709 - 0.94237 0, 0.02646	25 0	0-
5.7567 0749 - 1.0782 0 0.00546 0 .75124 4 0.75124 0.75124 0.75124 0.773 - 0.05632 0 0.00673 0 1.0574 0.75124 0.75124 0.7512 - 0.05632 0 0.00673 0 1.0574 0.75124 0.751	20 46	0
15. 6393.1 171506252 .0.00553 -0.45994 43.5795 676 -0.202081 0.003356 115745 43.6795 6.05931 0.003356 115745 63.00573 -0.45994 43.521.0955 0.05679 -0.201081 0.004187 0.00865 159.461 0.00573 -0.4594 0.00679 0.004187 0.00865 0.0	40 5	9
5,2414 0.773 - 0.20210 0.003556 1.15745 43.6785 0.676 - 0.31200 0.004487 0.00565 2.30365 0.004487 0.00565 2.30348 0.3055 0.007487 0.00565 2.30348 0.3055 0.0075 0.0075 0.00560 2.30348 0.3055 0.00580 0.00583	17 16	0
78. 67. 67. 67. 67. 67. 67. 67. 67. 67. 67	19 5	0
29. 30.65 (2.087 - 1.27041 0.005666 2.89448 (2.5.7340 2.005 7.120741 0.005666 2.89448 (2.5.7340 2.005 7.005 7.006879 0.07959 29.0705 (0.713 - 0.80356 0.005830 0.07959 29.0705 (0.713 - 0.80356 0.005830 0.07959 20.8716 7.20 20.005 6.059 0.008052 0.05805 0.05805 0.05859 0.	28 43	0
29, 95, 440, 1.2222 0, 1005839 -2, 13115 25, 9705 0731 - 080356 0, 005839 -2, 13115 25, 1738 0599 0, 081138 0, 005832 0-87165 21, 1832 0795 - 0.081138 0, 005823 0-87165 22, 1832 0795 - 0.08682 0, 0.08622 0-0.59803 22, 0916 0556 - 0.52253 0, 006479 0, 0.12525 52, 0559 1034 - 0.2592 0, 0.11429 0, 46291 88, 5411 0308 - 1.15161 0, 004457 0, 32241 88, 5421 0, 008 - 1.15161 0, 004457 0, 0.2624 22, 1999 0, 0276 - 0.12325 0, 0.01639 0, 46291 39, 4211 0, 0707 - 0.04829 0, 0.02544 - 0.14559 21, 8063 0, 0565 - 0.61302 0, 006295 - 0.14183 39, 4211 0, 071 - 0.04538 0, 0.02547 0, 49780 39, 421 0, 071 - 0.04838 0, 0.0254 0, 14755 41, 5521 0, 0324 - 0.03583 1, 0.00556 0, 0.14183 36, 4759 0, 0244 - 0.03149 0, 0.00477 0, 15072 44, 5521 0, 036 0, 045134 0, 0.04555 0, 0.5543 44, 5521 0, 038 0, 045134 0, 0.03563 1, 0.5642 31, 4756 0, 0743 - 0.46712 0, 00752 - 1, 37195 44, 5521 0, 038 0, 045134 0, 0.03379 0, 2.1193 31, 4726 0, 0773 - 0.04512 0, 0.03563 1, 0.04555 0, 0.05453 1 31, 4726 0, 0773 - 0.04512 0, 0.03563 1, 0.01456 0, 0.1166 37, 44, 5521 0, 038 0, 0.04519 0, 0.4158 1 31, 4726 0, 0773 - 0.04512 0, 0.03563 1, 0.01458 1 31, 4736 0, 0777 - 0.05958 0, 0.03379 0, 0.1168 1 31, 4736 0, 0777 0, 0.05528 1 0, 0.01568 1 31, 4736 0, 0777 0, 0.05528 1 0, 0.01568 1 31, 4726 0, 0777 0, 0.05528 1 0, 0.01568 1 31, 4726 0, 0777 0, 0.05528 1 0, 0.01568 1 31, 4726 0, 0777 0, 0.05528 1 0, 0.01568 1 31, 4726 0, 0777 0, 0.05528 1 0, 0.01568 1 31, 4726 0, 0777 0, 0778 0, 07552 1 0, 0.01568 1 31, 4726 0, 0777 0, 07552 1 0, 0.05528 1 0, 0.01568 1 31, 4726 0, 0777 0, 0778 0, 0778 0, 0.01568 1 31, 4726 0, 0777 0, 0778	55 23	-0 5
25. 5738 0.509 0.00136 0.005930 0.79699 21. 8932 0.795 0.06138 0.005923 0.87167 22. 0345 0.509 0.06138 0.006525 0.63963 22. 0345 0.505 0.06286 0.006579 0.5255 22. 0345 0.505 0.05253 0.066479 0.12555 22. 0345 0.039 0.10263 0.00524 0.14659 22. 1895 0.036 0.03635 0.00524 0.14659 22. 1895 0.036 0.03635 0.005254 0.14659 23. 1895 0.027 0.02551 0.005254 0.14659 23. 1805 0.027 0.0253 0.005254 0.14659 23. 1805 0.027 0.02631 0.005254 0.14689 24. 1071 0.02413 0.00525 0.04479 27. 1999 0.027 0.02538 0.00525 0.04886 27. 1999 0.027 0.02338 0.00525 0.04886 28. 7759 0.024 0.01445 0.00447 0.15072 28. 7750 0.224 0.02414 0.00447 0.15072 28. 7750 0.224 0.02414 0.00455 0.05543 28. 7750 0.224 0.02414 0.00455 0.05543 28. 7750 0.224 0.02414 0.00455 0.05543 28. 7750 0.224 0.02414 0.00455 0.015673 28. 7750 0.224 0.02414 0.00455 0.015673 28. 7750 0.224 0.02414 0.00455 0.015673 29. 314726 0.773 0.005258 0.02374 27. 44.521 0.00525 0.005359 27. 44.521 0.00525 0.005359 27. 44.521 0.00525 0.005359 27. 44.521 0.00525 0.005359 27. 44.521 0.005258 0.005359 27. 44.521 0.005258 0.005358 27. 44.521 0.005258	44 59	-0 4
22. 5.738 (1959 - 10818 0, 100823 0, 87167 22. 10323 0, 87167 22. 10316 0, 559 6 0, 559 6 0, 525 5 0, 1008052 0, 105 5 0, 525 5 0, 1008052 0, 105 5 0, 52 0,	21 29	-0 2
22. 1932 - 0.755 - 0.60286 0 . 0.05052 - 0.59803	29 25	-0 2
22. 0.916, 0.556 - 0.05553 0.006479 0.12525 5.0559, 1034 - 0.02592 0.011429 0.12525 5.0559, 1034 - 0.02592 0.011429 0.12525 5.0559 1.00457 0.32241 0.00457 0.32241 0.00457 0.02592 0.011429 0.02525 0.02524 0.02524 0.02525 0.02524 0.02525 0.02524 0.02525 0.	39 21	9
58, 2059, 1004 - 025992 0, 011429 0, 46291 58, 5411 0,308 - 1,11516 1,004457 0,32241 48, 9262 1,448 0,27720 0,012631 0,10669 22,1999 0,276 - 0,1225 0,002534 0,105524 21,8063 0,565 - 0,61302 0,00695 0,14183 39,421 1,771 - 0,24328 0,00295 0,14183 39,421 1,771 - 0,24328 0,00295 0,14183 39,421 1,771 - 0,2433 0,00295 0,14183 36,426 0,171 0,03234 0,003635 0,013287 46,7549 0,227 - 0,43238 0,00295 0,57915 6,1679 0,284 - 0,31019 0,00147 0,15072 46,7549 0,222 - 0,2347 0,000955 0,57915 44,5921 0,380 0,04519 0,00452 0,13795 44,5921 0,380 0,04519 0,003762 1,37195 44,5921 0,380 0,04519 0,003762 1,37195 44,5921 0,380 0,04519 0,003763 0,2193 31,4756 0,283 - 0,2523 0,003558 1,22103 31,4756 0,283 - 0,2753 0,005528 1,27103 31,4756 0,283 - 0,2753 0,005528 1,27103	27 22	+0 2
58.541.030811516 0.00457 0.32241 58.541.0308102720 0.012631 - 0.10669 36.8572 .0286073829 0.005254 - 0.14550 22.1899 .027601252 0.005254 - 0.14550 23.4801 .0771024813 0.010525 - 0.41818 39.4211 .0771024813 0.010525 - 0.41818 36.4389 .027704238 0.002927 - 0.49780 - 0.00505 56.1879 .0284010447 0.00295 - 0.57915 6.1879 .0284018445 0.00455 - 0.15072 44.7521 .030 0.04455 - 0.04552 - 1.37195 44.4521 .030 0.04475 0.004552 - 1.37195 44.4521 .030 0.04475 0.004552 - 1.37195 44.4521 .030 0.04525 0.003569 - 0.2199 37.4426 .0773060886 0.00337 0.21199 37.443 .0608 0.023302199 37.443 .0668079997 0.005528 1.27101	27 52	-0 2
48. 9262. 1448027120 0.012631 - 0.10669 36. 8972 - 0226 - 0.073829 0.005254 - 0.14550 22. 18093 0.0276 - 0.02325 0.004931 0.070752 22. 18063 0.0276 - 0.02325 0.004991 0.070752 39. 4211 0.0714 - 0.024913 0.001406 - 0.13287 17. 1064 0.025 - 0.54012 0.003583 - 1.21754 9.7799 0.0227 - 0.02383 0.002527 - 0.049780 - 0.2757 - 0.049780 - 0.2757 - 0.049780 - 0.2757 - 0.049780 - 0.2757 - 0.045780 - 0.02665 - 0.031019 0.001477 0.15772 40.7549 0.0224 - 0.031019 0.001477 0.15772 44. 5921 0.0390 0.045194 0.004525 - 0.05443 44. 5921 0.0390 0.045194 0.003762 - 1.37195 44. 5921 0.0390 0.045194 0.003769 2 - 1.37195 44. 5921 0.0390 0.045194 0.003769 2 - 1.27191 44. 460 0.172 0.060386 0.003359 0.21199 37. 4640 0.172 0.060386 0.003359 0.21199	19 58	-0 1
25. 1897	2	-0 2
22.1899 COZF - 0.10225 0.004039 0.70725 21.8063 0.555 - 0.61302 0.006295 - 0.14183 39.4211 0.771 - 0.24413 0.001446 - 0.13287 17.1064 0.0725 - 0.14183 39.4211 0.771 - 0.24413 0.001446 - 0.13287 17.1064 0.0725 - 0.03283 17.1063 0.00292 0.02978 0.02978 0.027915 0.0725 0.02978 0.02199 0.02978 0.02978 0.02978 0.02978 0.02978 0.02978 0.02978 0.02199 0.02978 0.02978 0.02978 0.02978 0.02978 0.02978 0.02978 0.02199 0.02978 0.0	9 36	0
22.18063 .0555061302 0.006225 - 0.14183 .39.4211 .0771024813 0.001446 - 0.13287 .17.1064 .0325054812 0.001446 - 1.02754 .05727 - 0.49780 .35.4369 0.0127045338 0.00255 - 0.57915 .6.1679 .0224031019 0.001477 0.15772 .40.7549 .0224031019 0.001477 0.15772 .44.7552 .0244018445 0.00455 - 0.557915 .18.9726 .0744018445 0.00455 - 0.5473 .44.5521 .0380 0.04519 0.003769 2.32103 .77.6490 .0173060386 0.003379 0.21193 .77.6490 .0173060386 0.003379 0.21193 .77.6490 .0173060386 0.003379 0.21193 .77.6490 .0173060386 0.00358 127101	16 22	-0 1
39.421. (1771054013 0.001046 - 0.13287 17.1064 0325 - 0.54012 0.003563 - 1.21754 9.7199 0227 - 0.4238 0.002927 - 0.49780 0.354.859 0.171 0.032934 0.000956 - 0.57915 6.1679 0284 - 0.03103 0.001447 0.15072 0.15072 0.0375 0.0224 0.02347 0.002056 0.15072 0.0375 0.0244 - 0.18445 0.00455 0.0355 0.05545 0.05545 0.03545	27 21	-0 2
17,1064 0.0325 - 0.04012 0.003583 - 1.21754 9.71204 0.0227 - 0.042380 0.002927 - 0.49780 36,4569 0.0214 0.032340 0.000956 - 0.79315 0.0244 - 0.31019 0.001477 0.15672 0.0244 - 0.31019 0.001477 0.15672 0.0244 0.02450 0.0245 0.02	28 39	-0 2
9,7199, 0.2272 - 0,4238 0,002927 - 0,49780 6,1679, 0.284 - 0,303534 0,000965 - 0,57915 6,1679, 0.284 - 0,31019 0,001477 0,15072 40,7549, 0.222 - 0,223147 0,002050 0,17565 28,0750 0.284 - 0,18145 0,004535 - 0,68453 18,9126 0.743 - 0,46712 0,007652 - 1,37195 44,5221 0,380 0,045194 0,003769 2,32103 27,640 0,172 - 0,60396 0,003379 0,21199 44,243 0,668 - 0,79397 0,005528 1,27101		-0 48
36,4469 0111 0,032534 0,000955 -0.57915 6,1679 0284 -031019 0,001477 0,15072 40,7499 0,0222 -023347 0,002066 0,17658 28,775 0,024 -018145 0,00455 -0.85453 118,9126 0,744 -046172 0,00752 1,37115 44,5221 0380 0,045194 0,03762 1,37105 27,6490 0172 -060586 0,00357 0,21199 31,4726 0283 -02253 0,005258 1,27101	5 9	0
6.1679 0.0244 - 0.031019 0.0014477 0.15072 40.7549 0.0222 - 0.02147 0.002060 0.17636 28.0750 0.0244 - 0.01845 0.004555 - 0.056453 16.9126 0.0743 - 0.041512 0.007652 - 1.37195 44.5221 0.309 0.045194 0.003769 0.21193 27.6490 0.172 - 0.060586 0.003367 0.21193 31.4726 0.0283 - 0.027593 0.006454 0.041268 44.2403 0.068 - 0.079997 0.005528 1.27101	2 36	0
40.7549, 0.222 - 0.23147 0.002050 0.17636 28.0750 0.244 - 0.18145 0.004535 - 0.85453 18.9126 0.0743 - 0.46712 0.007632 - 1.37195 44.4521 0.080 0.045249 0.00759 2.22103 27.6490 0.172 - 0.60586 0.00335 0.21199 33.4726 0.033 - 0.02573 0.00649 0.41263 44.2403 0.668 - 0.09538 1.22103	9 1	0
28.0750 0244 - 018145 0.004335 - 0.85543 118.9126 0743 - 046712 0.007632 - 1.37195 44.521 0380 0.045194 0.003769 2.32103 27.6490 0172 - 060586 0.003357 0.21199 31.4726 0.2033 - 0.027573 0.005499 0.44268 44.2403 0668 - 0.79997 0.05528 1.27101	6 40	0-
18.9226 0743 - 046712 0.007632 - 1.37195 44.5921 .0380 0.045194 0.003769 2.32103 27.6490 .0172 .060386 0.003357 0.21199 31.4726 .0283025735 0.006494 0.41263 44.2403 .0668079997 0.005258 1.27101		-0 54
44.2521 .0380 0.045194 0.003769 2.32103 27.6490 .0172060586 0.003357 0.21199 31.4726 .0283022753 0.005449 - 0.41263 44.2403 .0668079997 0.005528 1.27101		-0 12
27.6490 .0172060586 0.003357 0.21199 31.4726 .0283022753 0.005449 -0.41263 44.2403 .0668079997 0.005528 1.27101		-0 11
31.4726 .0283022753 0.005449 -0.41263 44.2403 .0668079997 0.005528 1.27101	59 27	-0 5
44.2403 .0668079997 0.005528 1.27101	2 31	0

ACRS#	z	Ε			α	ϵ_{α}		~	9	93	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon\mu\delta$
0	36	11.00	5	21	19.14552	.00792	0	51	1.4016	.0262	087824	0.004398	-0.96941	0.01733
0	21	11.10	2	21	20.76862	.01143	0	9	29.6520	.0325	035599	0.003244	-0.29117	0.01696
0	m	9.02	2	21	22.31476	.04334	0	7	18.3066	.1044	395603	0.010740	5.63350	0.01609
0	18	11.05	2	21	27.41092	.01691	0	29	12.4218	.0532	146096	0.004955	-0.95889	0.01814
0	22	9.55	2	21	31.72463	.01459	9	36	4.8487	. 0599	126016	0.005061	0.82939	0.02169
0	20	11.30	2	21	34.82093	.01369	9	Н	15.7219	.0443	033748	0.004327	0.07641	0.03217
0	49	9.55	2	21	34.37682	.00712	9	22	59.9024	.0311	108744	0.003048	-0.56995	0.01183
0	19	8.95	2	21	34.76291	.03993	9	6	36.3777	.1288	0.077370	0.007425	-3.09460	0.03087
0	13	11.20	2	21	37,68981	.01503	0	38	14.7093	.1023	072049	0.004710	-0.48673	0.03733
0	09	9.62	2	21	40.32149	.00940	0	17	33.5567	.0255	108010	0.003829	-1,27351	0.01030
0	39	11.15	2	21	43.13484	.00919	0	15	50.3270	.0285	110749	0.003704	-0.98294	0.01187
0	23	11.30	2	21	48.28184	.01469	0	19	45.9491	.0390	0.085778	0.006065	-1.23530	0.01053
0	25	11.20	2	21	50.92553	.01741	0	14	25.3512	.0482	070288	0.005915	-1.38390	0.00823
0		8.95	2	21	55,62335	.00599	0	m	55.0305	. 0177	052902	0.003213	-0.47384	0.01068
48506	30	6.07	2	21	56.23640	.01856	0	26	13.7735	.0932	080091	0.006004	13.10583	0.03428
0		10.10	S	22	3.55552	.02371	0	36	39.0146	.0198	029217	0.008533	-0.45614	0.00460
0		11.00	2	22	7.78717	.00882	0	21	4.8250	.0291	000298	0.004604	0.48957	0.01377
48561	٦	8.20	S	22	12.40997	.00423	0	52	48.5428	.0205	156195	0.001949	-1.68461	0.00865
0	33	10.10	S	22	19.95625	.01021	0	23	31.4241	.0299	078425	0.004047	-1.94025	0.01302
0	29	11.07	S	22	27.25190	.00940	0	23	49.3452	.0419	029677	0.002734	-1.21540	0.01704
0	36	9.90	2	22	29.54517	.01378	0	45	2.2452	.0525	966980.0	0.004492	-3.21472	0.01668
0	45	8.67	2	22	31.95155	.00702	0	39	43.0808	. 9890.	039110	0.001973	-0.87009	0.02485
0	23	10.13	2	22	32,71811	.01271	0	25	15.2517	.0547	083037	0.003714	-0.43415	0.01892
0	18	10.57	2	22	35.39455	.03710	0	7	23.5838	.1118	0.052256	0.009588	-4.00153	0.03772
0	38	10.73	2	22	36.62959	.01530	0	4	55.4749	.0323	053230	0.005557	-1,20419	0.01733
0	11	10.37	2	22	39.64479	.01073	0	33	45.1176	.1041	0.084279	0.002886	-1.29836	0.02318
0	00	10.60	2	22	53,76951	.03435	0	28	33.9542	.1175	053451	0.005430	-0.48332	0.03470
0	7	8.50	2	22	58.10084	.03530	0-	23	45.9830	.0861	041247	0.006150	-0.31128	0.02652
0	4	10.00	2	23	2.43426	.03808	9	32	10.2561	. 8898	032986	0.007665	-0.72001	0.01349
0	7	10.10	2	23	5.87511	.02518	0	31	45.8835	.0719	117098	0.003937	-0.58921	0.02238
0	22	11.05	S	23	13.58298	.01770	0	21	21.6192	.0417	058563	0.006420	-0.54193	0.01721
0	28	10.80	2	23	15.35619	.01202	0	15	23.6968	.0455	063537	0.003283	0.73125	0.01738
C	33	10 15	ď	000	0011171	10000	•		00000					

	$\epsilon \mu \delta$	0.01673	0.00914	0.01772	0.01637	0.01915	0.02081	0.01331	0.01338	0.02057	0.02343	0.00773	0.01456	0.01758	0.01162	0.03369	0.02728	0.03826	0.00776	0.01092	0.01466	0.01520	0.01415	0.02234	0.01588	0,01318	0.00616	0.01157	0.01629	0.01618	0.01734	0.02236	0.04361	0.00857
	μ_{δ}	3.70996	-2.91313	-0.82638	-1,10992	-0.68968	-0.89475	-1.44528	-1.29149	0.49896	1.69284	-0.23922	-0.43669	0.02679	-0.06312	-0.72312	0.22954	-2.34512	-0.33879	-0.62347	-2.05628	-2.08532	-1.82852	-1.56301	0.13586	-0.37616	0.23208	-0.16456	-0.97252	-0.44626	-0.12860	-3.35143	0.94395	-0.55644
	$\epsilon \mu \alpha$	0.006211	0.002747	0.003091	0.004318	0.003373	0.005418	0.003339	0.006111	0.006413	0.006383	0.003036	0.004697	0.001947	0.002740	0.004778	0.006552	0.004155	0.002878	0.002952	0.004541	0.010281	0.005125	0.008252	0.003322	0.004975	0.004051	0.004288	0.003998	0.005627	0.003696	0.009137	0.006425	0.003447
	$\mu\alpha$	0.005092	062267	-,045383	-,032378	0.035249	064005	059839	009314	125742	0.037697	037613	046068	069193	099389	028924	056943	0.001009	046898	051961	-,090290	031886	084844	206734	077938	-,092141	0.013981	078772	094048	096596	040006	023298	-,127655	068264
	83	.0564	.0216	.0373	.0517	.0499	.0352	.0386	.0390	.0556	.0680	.0328	.0352	.0484	.0350	.0919	.0458	.1070	.0179	.0228	.0423	.0441	.0301	.0512	.0312	.0338	.0241	.0278	.0392	.0316	.0460	.0693	.1180	.0377
		33.6418	6.8671	1.0169	32.6691	27.1446	35.3717	26.2739	6.5895	22.4054	23.0611	49.7858	53.9682	23.5647	28.7644	18.0346	8.6363	11.9899	15.8372	54.3802	49.1413	44.8583	25.5959	28.4001	41.1750	44.2522	16.0612	22.3624	35.8250	13.3312	58.5572	17.1033	24.9451	7.5741
	~	15	48	9	31	47	57	19	34	10	m	0	0	17	49	41	9	34	12	Ŋ	24	24	13	12	14	16	Ŋ	20	22	2	80	40	40	15
		0	0	0-	0	0	9	0	9	0	0	9	0	0	0-	0	0-	0-	0-	0-	0-	0-	0	0-	0-	0	0-	0-	0-	0	0-	9	0-	0
_	ϵ_{α}	.02115	.00630	.01012	.01674	.00891	.01212	.01237	.01709	.02052	.02679	.01053	.01297	.01241	.00653	.01374	.02203	.01314	.00645	.00743	.01397	.02827	.01216	.01999	.01206	.01252	.00737	.01145	.01118	.01199	.01111	.02822	.01791	.01096
Table 9: (Continued)	α	18.71118	29.34691	32,12591	33.16494	35,83513	36.18473	39.38669	45.91354	46.49915	53.94773	54,38488	1.99139	2.12442	2.03620	14.81826	16.95601	18.11093	19.56755	25.90198	25.62840	31.70403	33.14833	35.96151	37.32766	39.20666	41.54915	41.96170	49.46627	58,93131	1,75989	1.74599	2,40771	4.60878
e 9:		23	23	23	23	23	23	23	23	23	23	23	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	25	25	25	25
[ab]		5	5	5	2	5	5	5	5	5	2	5	S	2	S	5	5	2	2	S	2	S	5	2	2	S	2	S	Ŋ	2	S	2	Ŋ	S
	ш	10.20	8.20	9.20	10,60	10.05	10.63	10.65	9.05	9.05	10.40	10.90	10.90	11.10	10,35	8.10	11.05	11.15	8.60	8.65	10.35	8.55	10.60	11,15	10.95	10.80	8.55	10.30	10.10	10.95	10.60	10.25	8.05	11.00
	Z	14	73	42	10	25	25	28	16	33	21	31	28	23	31	41	19	6	65	64	19	44	28	20	27	29	69	29	56	29	31	19	47	56
	ACRS#	0	48778	0	0	0		0	0	0	0	0	0	0	0	514355	0	0	0	48966	0	48979	0	0	0	0	0	0	0	0	0	514388	49074	0
	₩.	938	939	940	941	942	943	944	946	947	948	949	950	951	952	953	954	955	926	957	928	959	960	961	962	963	964	965	996	196	968	696	970	971

	$\epsilon \mu \delta$.01887	.01270	.03549	01592	01512	00763	16600	01343	00934	01251	00822	0.01282	0.01001	0.01014	0.01133	0.00830	0.01546	0.01226	0.01330	0.01320	0.01677	0.05494	0.01223	0.00747	0.01505	0.01296	01249	0.01952	0.01958	0.02193	0.01354	10010
	9	0	0	0	0	0	0	0	0	0	0	0	0	0	_	0	_	_	0	0	0	0						0			0	_	
	μ_{δ}	0.21039	-0.08896	-1.53233	-1.51653	-0.89714	-1.02907	1.16749	-0.75410	0.15609	1.36203	0.26569	1.13693	0.26000	0.36823	-0.04569	0.20285	-4.00799	0.82137	-1.73338	-2.79433	-46.21788	0.52925	0.57085	-1.43658	-1.44085	-0.04029	-0.14955	-0.10698	-2.32020	-6.36631	0.34433	10000
	$\epsilon \mu \alpha$	0.006383	0.004318	0.009894	0.004102	0.003411	0.007392	0.002383	0.003514	0.001848	0.001478	0.001991	0.003338	0.004161	0.002669	0.002994	0.002161	0.003876	0.003704	0.003171	0.002172	0.003933	0.019869	0.004503	0.001618	0.004342	0.003604	0.004072	0.005612	0.004457	0.004903	0.004855	
	$\mu\alpha$	050843	111634	154967	067352	088079	069686	094028	012728	012232	066841	093651	-,295611	015170	222838	092022	060521	0.012153	0.020297	0.036832	0.097672	1,130133	058686	0.003160	0.066870	007869	003679	0.054344	003736	040830	0.374740	026096	
	83	.0556	.0310	.0963	.0365	.0386	.0323	.0234	.0221	.0200	.0286	.0168	.0264	.0198	.0245	.0278	.0182	.0267	.0183	.0319	.0272	.0260	.3818	.0270	.0336	.0444	.0279	.0267	.0298	.0452	.0545	.0333	0000
		21.8065	34.9818	30.8893	36.8127	59.2541	8.8659	56.1768	5.1244	42.3397	46.7532	31,7088	45.7168	8.9287	3.4477	32.4362	46.5582	12.0618	30.7020	50.4700	9.4320	2.4575	44.5933	32.3701	43.2688	2.8133	46.5474	16.4352	38.0904	34.2442	24.8857	0.8158	
	8	44	18	26	1	17	28	59	9	29	45	44	33	22	30	38	42	45	12	4	4	4	22	32	23	23	29	41	19	e	20	26	
		0	9	0	9	9	9	9	9	9	9	9	9	0	0	9	0	9	0	0	0+	0+	0	0	0	0	0	0	0	0	0	9	,
_	ęα	.01893	.01010	.02690	.00786	.00839	.02167	.00397	.00669	86900.	.00582	.00351	.00747	.00899	.00586	.00604	.00486	.00571	.00484	.00581	.00788	.00603	.13955	.01039	.00860	.01215	.00741	.00895	.00763	.00928	.01099	.01018	10000
Table 9: (Continued)	α	5.94265	7.37303	7.15733	7.83488	9.81147	13.61445	24.89072	33.57485	35.04389	48.12436	51,89305	56.35108	0.26909	8.38490	19.56826	30.33126	36.37036	41.41520	53.67859	52.76305	10.08617	35.99953	52.09387	57.13175	57.14114	58.28045	0.35833	3.63895	3.86540	8,70301	14.77524	
e 9:		25	25	25	25	25	25	25	25	25	25	25	25	26	26	26	26	26	26	26	27	29	26	26	26	26	56	27	27	27	27	27	1
apl		2	2	2	2	2	2	2	2	S	S	Ŋ	S	S	S	S	S	2	2	2	2	2	S	2	2	2	S	Ω	Ω	5	Ŋ	2	ţ
I	E	10.55	8.75	8.60	8.30	7.00	10.90	7.90	10.05	8.90	9.70	7.35	10.65	10.80	7.55	6.70	8.47	9.93	7.90	7.17	11,15	8.30	10.95	11.00	10.75	10.65	10.80	9.70	11.05	6.70	6.85	10.40	0
	Z	21	52	38	99	80	19	81	49	61	58	90	33	51	95	92	93	65	90	93	33	73	4	23				51	36	67	26	37 1	0
	ACRS#	0	49103	49102	49105	49112	0	49164	0	0	0	49254	0	0	49305	49336	49371	0	49403	49437	0	49874	0								49476	514503	
	AC#	972	973	974	975	916	977	978	979	980	981	982	983	982	986	987	988	989	066	991	992	993	994	995	966	166	866	666	1000	1001	1002		1001

	$\epsilon \mu \delta$	0.01109	0.01381	0.00748	0.01428	0.01398	0.01715	0.02290	0.00369	0.01738	0.00489	0.02340	0.00725	0.00609	0.00792	0.01863	0.01850	0.01284	0.01021	0.01103	0.01515	0.00889	0.01178	0.01328	0.01072	0.01437	0.00665	0.00829	96600.0	0.01361	0.01206	0.01530	90600.0
	μ_{δ}	-1.62680	-1.03437	-0.07807	-0.67341	0.65092	-0.44232	0.19487	-0.20501	0.06068	0.02070	0.19409	0.47156	1.90713	-0.16096	-1.69220	2.37671	-1.15567	0.06233	3.38670	0.63895	0.21624	0.32249	-0.24892	-0.18633	-0.14455	0.98541	0.63846	-1,75815	0.23945	0.61468	0.24100	0.18698
	$\epsilon \mu \alpha$	0.002560	0.004879	0.002060	0.003542	0.003327	0.002140	0.006741	0.003212	0.004849	0.004621	0.005810	0.002342	0.001770	0.002168	0.005524	0.003181	0.004223	0.002646	0.002661	0.004318	0.002558	0.003619	0.003412	0.003559	0.002987	0.001988	0.002840	0.002938	0.003294	0.003685	0.005738	0.004923
	$\mu\alpha$	047498	038778	0.017985	0.164195	0.017749	031816	037085	004254	0.019091	012196	031028	0.017981	0.123377	0.035839	0.076123	0.027235	011401	0.004854	0.007525	0.032217	0.022814	0.034821	0.028170	0.032967	-,009143	0.032929	0.054175	0.251846	0.025779	001660	0.000796	0.012101
	g_{\ni}	.0259	.0291	.0134	.0346	.0324	.0260	.0590	.0180	.0323	.0206	.0646	.0146	.0123	.0173	.0533	.0342	.0384	.0241	.0198	.0341	.0171	.0260	.0264	.0271	.0342	.0161	.0145	.0170	.0310	.0299	.0356	.0294
	9	46.7773	6.2120	17.7023	35.2414	48.3346	13.0078	33.7925	36.5869	50.5537	18.9900	44.6620	28.2246	36.7247	5.0661	22,1237	35.9394	11.7080	37,1673		35.0731	21.8973	8.6895	43.9918	6.8565	39.1397	24.0304	34.7805	42.8243	42.7322	38.5256	11.5432	18.8445
		-0 11	6 0-	-0 18	-0 28	-0 4	-0 28	-0 48	6 0-	-0 30	-0 5	-0 55	-0 27	-0 21	-0 53	-0 54	6 0-	-0 59	-0 24	-0 2	-0 52	-0 10	-0 43	-0 5	-0 56	-0 31	-0 13	-0 31	-1 0	-0 30	-0 27	9 0-	-0 2
	ϵ^{α}	.00605	.00875	.00355	.00981	.00735	.00842	.01813	.00689	.00922	.00729	.01619	.00405	.00287	.00411	.01593	.00914	.01283	.00613	.00637	98600.	.00461	.00793	.00827	.00932	.00867	.00379	.00448	.00595	.00818	.00957	.01262	.01419
(Continued)	σ	19.96401	24.72774	25.14503	26.67231	29.69816	31.92667	32.02379	32.87499	38.83979	42.78212	43.81750	48.05094	56.14422	56,39632	5,60961	10.17542	10.58390	11.93043	12,63890	14.40212	17.93884	23.62940	29.77107	31.11250	44.01835	45.46343	45.58817	53.74324	57.54922	0.93043	5.85893	9.00306
rable 9:	•	27	27	27	27	27	27	27	27	27	27	27	27	27	27	28	28	28	28	28	28	28	28	28	28	28	28	28	28	28	29	29	29
Tab		60 5	25 5	.45 5	15 5	15 5	00 5	25 5	90 5	20 5	35 5	30 5	70 5	55 5	30 5	63 5	45 5	50 5	65 5	75 5	00 5	25 5	35 5	95 5	23 5	00 5	05 5	40 5	93 5	75 5	70 5	05 5	95 5
	Ε	10.60	11.25	01	10.15	11.15	11.00	11.25	10.90	11.20	10.35	8.30	8.70	8.55	8.30	10.63	9.45	9.50	7.65	10.75	11.00	9.25	10.35	10.95	10.23	11.00	9.02	8.40	9.93	10.75	10.70	11.0	10.
	Z	39	31	133	43	32	37	25	39	37	33	45	93	122	82	23	9	35	116	33	27	78	37	51	34	45	109	118	26	49	22	38	35
	ACRS#	0	0	49530	0	0	0	0	0	0	0	49591	0	49641	49639	0	0	0	49684	0	0	0	0	0	0	0	0	49782	0	0	0	0	0
	AC#	1006	1001	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037

N π ¢α β ¢β µα µα µα 24 11.35 5.9 15.04899 0.1521 0.3 23.1851 0.055 0.002445 0.022475 0.022475 0.022475 0.022475 0.022475 0.022475 0.022473 0.022475 0.022475 0.022475 0.022473 0.022473 0.022475 0.022475 0.022475 0.022473 0.022475 0.022473 0.022475 0.022475 0.022475 0.022473 0.022475 <td< th=""><th></th><th></th><th></th><th></th><th>Ta</th><th>ble</th><th>6</th><th>Table 9: (Continued)</th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>					Ta	ble	6	Table 9: (Continued)	_								
0 24 11.35 5 29 15.64264 01056 0 4 22.5523 0557 0.02745 0.02245 0 0.22575 01057 0105 021 0.02445 0 0.22575 01057 0105 021 0.02245 01057 01		ACRS#	Z		_			~	ęα		9		83	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	θη∍
0 23 11.0 5 29 15.6224 0.01096 0 4 42.5523 0.0597 0.027673 0.003761 0.03671 0.02677 0.02775 0.		0	24	11.	35	5		15.04899	.01521	0-	e	23.1851	.0495	050217	0.002135	2.73140	0.02894
0 15 9 10 0 5 29 16.54216 0.0449 0.05 6.3771 0.05771 0.07751 0.07755 0.05761 0.05761 0.05771 0		0	33		80	5		15.64264	.01096	0-	4	42.5523	.0597	036733	0.002445	0.22575	0.02178
0 15 9.00 5 2 2 1.33306 01181 - 0 15 10.3899 0718 - 189903 0.007455 2.60553 0 13 10.055 5 2 2 2.88118 0.10427 0 35 17.3569 03056 0.012138 0.007545 0 0 22271 0 1 1 1.5 5 2 2 2 2.88118 0.1418 - 0 19 11.6869 0477 0.004801 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	23		10	5		16.54216	.01449		45	36.3773	.0457	-,027513	0.003761	0.36770	0.02290
0 31 10.65 5 29 20 21.84194 0.01627 0 35 17.3369 0.03618 0.002438 0.002434 1 0.02494 1		0	15		80	5		21.33306	.01181		51	50.3899	.0718	-,189303	0.007455	2,60353	0.02540
0 48 7.15 5 29 26.98818 0.0418 0.0 9 11.6669 0.0477067441 0.004308 -0.92949 4 9 7.15 5 29 29.96025 0.0283 0.0477067441 0.004308 -0.92949 4 9 7.65 5 29 29.96025 0.0283 0.0574 0.0575 0.003310 0.002655 0.061031 0.02658 0.02659 0.0265		0	31	10.	65		6	21.84194	.01627		35	17.3369	.0386	0.012138	0.005161	0.22471	0.01706
9 9 7 6.5 5 29 9.96025 00.283 - 03 7 24, 6551 0.033 - 0.14417 0.002635 0.086631 10.95 5 29 34.18216 00.1529 0.0 10 10.2499 0.008 - 0.00244 0.002635 0.24399 0.0 1 10.95 5 29 34.18216 0.01529 0.0 10 10.2499 0.008 - 0.00244 0.002635 0.24399 0.0 1 10.97 0.085621 0.002635 0.02439 0.0 1 10.97 0.086631 0.0 1 10.97 0.086631 0.0 1 10.97 0.086631 0.0 1 10.97 0.0 1 10.97 0.0 1 10.97 0.0 1 10.9 1	_	0	48		15		6	26.98818	.01418		19	11.6869	.0477	067441	0.004808	-0.92494	0.01639
49928 9 7 65 5 2 9 30.76643 00576 0 2 75.0648 10.05000244 0 0.050525 0 .86163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	29		85		6	29.96025	.01283	0-	37	24.6951	.0303	014417	0.004308	0.60811	0.01150
0 3110.95 5 29 34,18216 01529 -0 10 10,2499 010 00,2464 0.002246 0.052692 0.24999 017 9 77 9 77 0 5 29 34,18218 01516 01 20 14 120,1418 01017 0.002641 0.002268 0.014566 01 4 11,135 5 29 42,04481 010104 0 53 29,3581 0300 0.047347 0.003262 0.14566 0 24 11,135 5 29 42,04481 010104 0 53 29,3581 0300 0.047347 0.003262 0.07256 0 45 10,145 5 29 48,35284 010124 0 19 46,6425 0.06549 0.003352 0.07256 0 45 11,135 5 29 48,35284 010124 0 19 46,6425 0.06569 0 0.003352 0.07256 0 22 11,137 5 29 48,35284 010124 0 19 46,6425 0.0346 0.003464 0.00354 0.00346 0	_	49928	99	7.	65		6	30.76043	.00576		27	52.0648	.0150	033910	0.002635	0.86163	0.00673
0 71 9.70 5 29 97.57339 00618 0 120.4487 0.197 0.0826217 0.002568 0.65031 0 24 11.13 5 29 42.08485 0.0618 0 12 15.435 0.04747 0.003247 0.003244 0 1.4566 0 14.4566 0 14.113 5 29 42.08485 0.0610 0 5 21.5435 0.044 0.00277 0.005412 0.02579 0 14.566 0	-	0	31	10	95		6	34.18216	.01529		10	10.2499	.0408	000244	0.005092	0.24399	0.01361
0 49 9.87 5 2 42.07811 01004 - 0 53 21.5435 0.044 - 0.00377 0.005312 - 0.02079 0 45 10.45 5 29 42.0486 0.06101 - 0 53 21.5435 0.044 - 0.00277 0.005412 - 0.02079 0 45 10.45 5 29 42.0486 0.06101 - 0 1005412 - 0.005910 0.00392 0 - 0.02079 0 45 10.45 5 29 48.35244 0.0124 - 0 19 38.8714 0.029 - 0.006990 0.00392 0 - 0.02079 0 31.135 5 29 48.3524 0.0124 - 0 19 46.6025 0.0286 - 0.026970 0.00392 0 - 0.02079 0 32 10.70 5 29 48.5622 0.0042 - 0 45 2.9412 0.088 0.038674 0.003067 - 2.54464 0 22 10.13 5 29 5 29 51.92105 0.00842 - 0 52 9.036 5 0.004564 0.003067 - 2.54464 0 22 10.13 5 2 0 51.6993 0.00842 - 0 52 7.4655 0.00464 0.003067 - 2.54464 0 25 10.08 5 29 51.92105 0.00843 - 0 44.310105 0.0364 0.003064 - 0.03087 - 0.04911 0.00354 - 0.03173 0 0 25 10.08 5 29 51.92105 0.00843 - 0 44.310105 0.0355 0.002992 - 0.001101 0 0 25 10.08 5 29 14.92064 0.0095 - 0 2 9 10.4209 0 0.02992 - 0.04911 0.00354 - 0.04912 0 0 37 11.10 5 30 10.52964 0.0095 - 0 2 9 10.4708 0.0295 0.019017 0.00482 1 1.00374 0.00354 0.00354 0.000545 0 0 37 11.10 5 30 10.52964 0.0095 - 0 2 9 10.4708 0.0005 0.019017 0.00482 1 1.00374 0.0005 0.000545	_	0	71	6	20			37.57339	.00618		41	20.4187	.0197	0.082617	0.002968	-0.66301	0.01092
0 45 10.135 5 29 43.04485 0.0601 - 0 53.1.5455 0.060277 0.002677 0.002572 0.07295 0.07295 0.04491 0.0445 0.		0	49	6	87			42.07811	.01004		53	29.3581	.0300	047547	0.003824	0.14566	0.01680
0 45 10.45 5 29 43.5602. 008172 - 0 19 38.8146 0.05896 0.003552 0.07996 0 45 11.25 5 29 48.53224 0.01124 - 0 19 46.6025 0.0266 - 0.027347 0.004229 0.044340 0 32 10.77 5 29 49.60221 0.01024 - 0 45 2.9422 0.0386 0.038674 0.003067 - 2.44440 0 22 10.77 5 29 49.60221 0.01008 - 0 45 2.9422 0.0386 0.038674 0.003067 - 2.44440 0 52 11.17 5 29 51.69995 0.0842 - 0 52 74.665 0.038674 0.003029 - 6.60110 0 52 9.95 5 29 51.09105 0.0842 - 0 52 74.665 0.0364 0.002992 - 3.60110 0 0 52 9.95 5 29 54.0964 0.00995 - 0 2 3.01159 0.0421 - 0.44111 0.003344 1.0177 0 0 0 9 7.50 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	24	11	13		6	42.08485	.01601	0	53	21.5435	.0454	000277	0.005412	-0.20579	0.01693
0 32 10,70 5 29 48.33234 01124 0 19 46.6025 0.2086 - 0.27347 0.004367 - 0.44440 0 22 11.17 5 29 148.3324 0.0184 0 0 45 2 9.212 0.308 0 0.03667 0 0.03067 - 0.54464 0 0 22 11.17 5 29 51.6993 0.0842 - 0 5 27.4665 0.0304 0.004564 0.003567 - 0.03292 - 0.63173 0 0 25 10.85 5 29 51.9205 0.0842 - 0 44 3.0105 0.0398 0.004575 0.003292 - 0.63173 0 0 25 10.85 5 29 51.9205 0.00935 - 0 22 30.1159 0.421 - 0.44111 0.00354 0.00354 0.01170 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	0	45	10.	45		6	43.56082	.00872	0	19	38.8714	.0329	006980	0.003352	0.07296	0.01206
0 22 11.17 5 29 51.60621 0.00842 0 5 2.941. (2018 0.0181874 0.010817 - 2.54464 0 6 2 2 11.17 5 2 9 51.60623 0.00842 0 5 5 27.4665 0.0348 0.0104874 0.010304 0 6 2 317.3 0 6 2 2 9.95 5 29 51.92105 0.00842 0 6 4 4 31.0105 0.036 0.102275 0.002392 - 3.60110 0 5 2 9.95 5 29 51.02105 0.0085 0 0 10.10210 0.0085 0 0 10.10271 0.0085 0 0 10.2094 0 0 10.2103 0.0085 0 0 10.2094 0 10.2095 0 0 10.2094 0 10.2103 0.0085 0 0 10.2094 0 10.2095 0 0 10.2095 0 10.		0	43	11.	35			48.35324	.01124	0	19	46.6025	.0286	027347	0.004429	0.44940	0.01037
0 52 9.95 5 29 51.20105 0.0842 0 5 27.4665 0.034 0.004564 0.002384 -0.63173 0 5 2 9.95 5 29 51.20105 0.0843 0 443.1015 0.0344 0.004564 0.002384 -0.63173 0 5 2 9.95 5 29 51.20105 0.0843 0 443.1015 0.0354 0.002382 -0.60110 0 5 25 10.08 5 29 54.02684 0.00955 -0.02 91.1199 0.0421 0.00354 1.01997 0 5 9 5.25 0.0855 0.002382 0.00358 0 0.0035		0	32	10.	70		6	49.60621	.01008		45	2.9412	.0388	0.038674	0.003067	-2.54464	0.02140
0 25 10.85 5 29 54.09105 0.00843 0.04 43.0105 0.0358 0.10235 0.002992 -3.60110 0.0259		0	22	11.	17			51,69993	.00842	0	55	27.4665	.0304	0.004564	0.003294	-0.63173	0.01802
0 50 9.25 5 30 84.09644 000995 -0 32 30.1159 0.0245 -0 12744111 0.003544 1.01977 0 50 9.25 5 30 8.29944 000995 -0 22 30.1159 0.02454 0.003554 1.01977 0 37 11.10 5 30 10.59944 0.00795 -0 40 10.2103 0.0295 -0.012744 0.003554 0.00355 0 37 11.10 5 30 10.59944 0.00378 -0 44 50.8355 0.019507 0.01960 0.44150 0 35 10.10 5 30 10.57986 0.00378 -0 44 50.8355 0.019507 0.01960 0.44150 0 5 35 10.10 5 30 10.57986 0.0023 -0 21.9666 0.010 -0.77865 0.005645 0.01667 0 0.11667 0 2 3 111.27 5 30 29.07708 0.0622 -0 9 21.966 0.010 -0.771 0.09505 0.005645 0.01667 0 0 2 3 111.27 5 30 29.07708 0.0622 -0 9 21.966 0.010 0.071 0.09505 0.00295 0.04795 0 0 2 3 110.27 5 30 42.8453 0.0150 -0 9 7.661 0.0349 0.03255 0.004932 0.01867 0 0 2 3 110.27 5 30 42.8453 0.0150 -0 9 7.6641 0.099 -0.01034 0.00295 0.02367 0.02867 0 0 10 10 35 5 30 42.8453 0.0430 -0 57 18.0290 0.0395 0.03959 0.02367 0.0296		0	52	6	95		6	51.92105	.00843		44	43.0105	.0385	0.102275	0.002982	-3.60110	0.01389
0 37 11.10 5 30 18.2994 00795 -0 40 10.2103 0.255 -0.112744 0.003558 0.80563 0		0	25	10.	85		6	54.09684	.00995		32	30.1159	.0421	044111	0.003544	1.01977	0.01673
0 37 11.10 5 30 10.59044 0.00085 -0 29 19.4708 0.0306 0.019017 0.004822 1.17031 0.00080 9 7.50 5 30 10.59044 0.00088 -0 29 19.4708 0.0306 0.019017 0.004822 1.17031 0.00080 0.35 10.10 5 30 18.92326 0.00238 -0 92.1.9666 0.0310 -0.73605 0.005645 0.11607 0.035 10.10 5 30 18.92326 0.00228 -0 92.1.9666 0.0310 -0.73605 0.005645 0.11607 0.03111.27 5 30 28.97708 0.0628 -0 65.82460 0.00192 0.000392 0.04459 0.03111.27 5 30 38.27483 0.0150 -0 5 31.8030 0.0714 0.054462 0.004459 0.036745 0		0	20	6	52		30	8.23984	.00795	0-	40	10.2103	.0295	012744	0.003358	0.80363	0.01420
\$00060 97 -505 50 106.78686 0.00378 -0 4 50.8535 0.145 - 0.449827 0.003645 0.01450 0.44150 0.03 10.05 30 106.78686 0.00322 0 9 21.9666 0.0310 -0.73605 0.003645 0.011607 0.3 9.02 9.0778 0.00622 0 9 21.9666 0.0310 -0.73605 0.003565 0.01607 0.0 33 9.07 50 29.0778 0.0628 - 45 59.2488 0.028 0.001320 0.002395 0.047998 0.03110.275 30 0.03.47938 0.0150 0.0 37 1.8641 0.0349 0.003295 0.00239 0.02395 0.03805 0.0190 0.010395 0.03805 0.0190 0.010395 0.03805 0.0190 0.010395 0.03805 0.0190 0.010395 0.03805 0.03805 0.0190 0.010395 0.03805 0.03805 0.0190 0.010395 0.03805 0.038		0	37	11	10		0	10.59044	.01085		29	19.4708	9080.	0.019017	0.004822	1.17031	0.01330
0 53 9.677 5 30 29.7786 0.0052 0 9 21.9666 0.0015.05 0.001565 0.005645 0.01607 0 0 53 9.677 5 30 29.7789 0.0052 0 -45 59.2486 0.0248 0.0248 0.001520 0.002395 0.047558 0 0 3 111.27 5 30 26.33930 0.01440 0 54 31.8930 0.071 0.050462 0.004859 -3.50142 0 0 3 111.27 5 30 36.33930 0.01440 0 54 31.8930 0.071 0.050462 0.004859 -3.50142 0 0 10 0.0155 5 30 42.54831 0.0443 0 0 57 18.0230 0.0349 0 0.03457 0 0 10 0.0155 5 30 45.548184 0.0243 0.0290 0.0395 0.00493 0 0.03875 0 0 10 0.0155 5 30 45.548184 0.0243 0.0290 0.03167 0 0 56 9.85 5 30 49.03901 0.0666 0 2 4.9373 0.0296 0.0199 0.02935 1 1.99911 0.05913 0.00293		20060	66	7	20			16.75868	.00378	0-	44	50.8535	.0145	048927	0.001980	0.44150	0.0076
0 31 11.27 5 30 29,07708 .00628 -0 45 88.2484 .0288 0.001320 0.004559 0.47958 8 0.00718 .006295 0.47958 8 0.03111.27 5 30 36,33930 .01440 -0 5 43 11.8930 .0771 0.050462 0.004659 -3.50142 0.2911.00 5 30 38.2483 .01150 -0 39 7.6641 .0349 0.0715 0.050462 0.004959 -3.50142 0.2911.00 5 30 38.2483 .01150 -0 39 7.6641 .0349 0.0395 0.03955 0.038675 0.79 0.10 0.35 5 30 42.84591 .00430 -0 578 18.0290 .0199 -0.01993 0.02393 0.23167 0.25167 0.2017 0.001090 0.23167 0.2017		0	35	10.	10			18.92326	.01022	0-	6	21.9666	.0310	073605	0.005645	0.11607	0.0146
0 29 11.02 5 30 36.33930 01440 -0 53 31.83930 0171 0.050462 0.004628 -0.36042 0.004632 -0.004932 -0.38675 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004932 0.004933 0.004489 0.004489 0.004488 0.004		0	23	9.				29.07708	.00628	0-	45	58.2848	.0288	0.001520	0.002395	0.47958	0.0124
0 29 11,00 5 30 38.27483 01150 -0 39 7.6461 0349 0.032955 0.004932 -0.38675 0 10 40.55 5 30 42.84591 0.0430 -0 5718.0290 0.1099 -0.10349 0.023167 0 10 10 10.55 5 30 45.848591 0.0430 -0 5718.0290 0.1099 -0.10349 0.02039 0.23167 0 10 10 10.55 5 30 45.848491 0.0656 -0 52 8.9647 0.256 -0.65842 0.001099 1.25663 0 50 48.55 5 30 52.18552 0.00455 -0 49 2.9400 0.199 0.024645 0.003101 1.25654 0.087 64 8.45 5 30 54.28552 0.00455 -0 49 2.9400 0.199 0.024645 0.003101 1.25654 0.087 64 8.45 5 30 54.3852 0.0555 -0 28 29.8842 0.181 -0.38842 0.003101 1.26554 0.087 64 8.45 5 30 54.3855 0.00555 -0 28 29.8842 0.181 -0.38842 0.003101 1.26554 0.09555 -0 28 29.842 0.181 -0.38842 0.003101 1.26554 0.09555 -0 28 29.842 0.181 -0.38842 0.003102 1.47944 0.00555 0.003101 1.26554 0.00555 0.003101 0.00555 0.003101 0.00555 0.005		0	31	11.				36.33930	.01440	0	54	31.8930	.0771	0.050462	0.004859	-3.50142	0.0246
0 76 9.15 5 30 42.84591 .00430 -0 57 18.0290 .010343 0.02039 0.23167 7 18.0290 .010343 0.02039 0.23167 7 18.0290 .010 10 35 5 30 45.66194 .02524 -0 52 8.1564 .2161 0.775690 0.011099 1.25063 0.5167 9 5 5 9 45.66194 .02524 -0 52 8.1564 .2051 0.775690 0.011099 1.25063 0.51767 9 8.25 5 30 49.02901 .00666 -0 22 4.9877 .02987 .0296 .058424 0.002915 1.99911 0.5554 5 0.51852 .00655 -0 22 9.8842 .0198 0.2340 0.002915 1.99911 1.6554 0.59911 0.50911 0.5		0	29	11.				38.27483	.01150		39	7,6461	.0349	0,032955	0.004932	-0.38675	0.0119
0 10 10.35 5 30 45.68164 .05294 -0 52 8.1964 .2161 0.075590 0.011090 1.2565 3 0 65 -9.85 5 30 49.0901 .00666 -0 2.2 4.9897 .0296 -0.058424 0.002915 1.99911 50.17 59 8.25 5 30 52.1852. 0.0405 -0 49 2.9400 .0198 0.024645 0.00310 1.25654 50.187 64 8.45 5 30 54.30259 .00555 -0 28 29.8842 .0181038142 0.003876 1.47944 0 311.00 5 31 1.17960 .00951 -0 35 0.2096 .0398 0.002444 0.00507 -1.43932 50.215 87 84.0 5 31 4.54875 .004436 -0 17 47.9247 .0209 -0.08574 0.003562 2.24821 50.256 67 7.85 5 31 11.78780 .00458 -0 3 44.0394 .0148 -0.00587 0.003852 0.55385 0 55.356 67 7.85 5 31 11.78780 .00458 -0 3 44.0394 .0148 .006287 0.003852 0.55385 0 55.356 67 7.85 5 31 11.78780 .00458 -0 3 44.0394 .0148 .006287 0.003852 0.55385 0 55.356 67 7.85 5 31 11.78780 .00458 -0 3 44.0394 .0148 .006287 0.003852 0.55385 0 55.356 67 7.85 5 31 11.78780 .00458 -0 3 44.0394 .0148 .006287 0.003852 0.55385 0 55.356 67 7.85 67 7.85 67 7.85 67 7.85 67 7.85 67 7.85 7 7.85 67 7.85		0	16	9.	15		0	42.84591	.00430		21	18,0290	.0199	010343	0.002039	0.23167	0.0091
0 56 9.85 5 0 92.0301. 00666 -0 22 4.9837 0.296058424 0.002915 1.99911 0.2055 0.01301 99 8.25 5 30 52.18552 .004056 -0 99 2.9400 .0198 0.024645 0.003101 1.26554 50.077 64 8.45 5 30 54.120559 .00555 -0 28 29.8842 .0181 -0.038442 0.003876 1.47944 0.00555 -0 28 29.8842 .0181 -0.038442 0.003877 1.47944 0.00555 -0 28 29.8842 .0181 -0.03842 0.00587 1.47944 0.00555 0.00387 1.47944 0.00555 0.00387 0.		0	10	10.	35	5	0	45.68184	.05294		52	8.1964	.2161	0.075690	0.011090	1.25063	0.03103
50173 64 8-45 5 30 52.18525. 00405 - 04 9 2.9400. 0198 0.224645 0.033101 1.26554 510.03710 1.26554 510.03710 1.26554 510.03710 1.26554 510.03710 1.26554 510.03710 1.26554 510.03710 1.26554 510.03710 1.27944 510.03710 1.27944 510.03710 1.27944 510.03710 1.27944 510.03710 1.27944 510.03710 1.27944 510.03710 1.27947 510		0	26	9.	35	5	0	49.09301	99900.		22	4.9837	.0296	058424	0.002915	1.99911	0.0178
50187 64 8.45 5 30 54.30259 .00555 -0 28 29.8842 .0181038142 0.003876 1.47944 0.00387 0.005877 0.1.7960 .00951 -0 35 0.2095 .0.398 .0.005434 0.005507 -1.43932 50215 87 8.40 5 31 4.54875 .0445 0.17 3.9474 .0209086574 0.003562 2.24821 50236 67 7.85 5 31 11.76780 .00458 -0 3 44.0934 0.148006287 0.003852 0.95338		50173	66	8	25	5	0	52,18552	.00405		49	2.9400	.0198	0.024645	0.003101	1.26554	0.0124
0 30 11.00 5 31 1.17966 00951 -0 35 0.2096 0398 0.002434 0.005007 -1.43932 850215 87P 8.40 5 31 4.54875 00438 -0 11 43.9427 0.209 -086974 0.003562 2.24821 55236 67 7.68 5 31 11.77890 00458 -0 3 44.0393 0.148 -0.006287 0.003852 0.55336		50187	64	8 .	15	5	0	54.30259	.00555		28	29.8842	.0181	038142	0.003876	1.47944	0.0130
50215 87 8.40 5 31 4.54875 .00436 -0 17 43.9247 .0209086974 0.003562 2.24821 50236 67 7.85 5 31 11.76780 .00458 -0 3 44.0934 .0148006287 0.003852 0.95336		0	30	11.	00	5	31	1.17960	.00951	0-	35	0.2096	.0398	0.002434	0.005007	-1.43932	0.0241
50236 67 7.85 5 31 11.76780 .00458 -0 3 44.0934 .0148006287 0.003852 0.95336		50215	87	8.4	0	5 3	31	4.54875	.00436	0	17	43.9247	.0209	086974	0.003562	2.24821	0.0182
		50236	29	7.8	35	5	17	11.76780	.00458	0-	e	44.0934	.0148	006287	0.003852	0.95336	0.01068

	$\epsilon \mu \delta$	0.01443	0.01267	0.01669	0.02124	0.01049	0.01707	0.01024	0.01819	0.01997	0.02866	0.02085	0.00745	0.02042	0.01052	0.01267	96800.0	0.01384	0.02435	0.02088	0.01043	0.01131	0.01326	0.00735	0.02091	0.00939	0.00814	0.08868	0.00972	0.02512	0.01108	0.01781	0.01059
	μ_{δ}	-0.12313	-3.23684	-0.75860	-0.30491	0.94782	-1.07523	-0.83626	-0.74472	-0.56182	-3.41520	-4.10070	-0.89639	0.12538	-2.45052	-0.58261	-0.18201	-7.77650	-1.45484	0.95029	0.18926	-1.36208	-0.26436	0.20517	-0.84625	3,68985	-1,33993	-0.13152	0.08644	0.12645	-0.15565	-0.91440	-0.42875
	$\epsilon \mu \alpha$	0.003909	0.003780	0.002092	0.007508	0.004598	0.004544	0.003085	0.003366	0.003717	0.005434	0.004240	0.003668	0.004112	0.003796	0.004781	0.003268	0.004104	0.005579	0.005223	0.003090	0.003180	0.003873	0.001950	0.002923	0.002378	0.004499	0.014920	0.003492	0.007192	0.002632	0.003555	0.002398
	$\mu\alpha$	0.030132	020207	068134	028716	0.011162	022605	0.002168	218337	186244	0.025845	053293	0.076160	0.013369	012518	0.087897	0.031577	0.296999	029279	008577	0.019142	024034	0.003926	022139	046715	071916	0.023971	018836	0.046886	000088	022085	0.009468	0.010809
	83	.0248	.0233	.0438	.0296	.0211	.0197	.0146	.0433	9090.	.0391	.0352	.0241	.0268	.0229	.0256	.0114	.0160	.0309	.0316	.0150	.0156	.0190	.0195	.0296	.0189	.0324	.3109	.0258	.0717	.0277	.0297	.0255
	g	35.6951	41.5661	48.0540	54.4790	51.5011	33.6604	13.0357	1.9737	35.7058	45.9441	37.5942	1.9496	16.7023	15.7172	53,9538	44.9029	49.7975	49.8022	40.9379	18,1164	8.2004	5.4301	56.7806	25.2332	9.9289	30.6248	14.3109	53.9046	16,9558	50.6429	4.8867	6.8687
	~	9 0	16	5	46	2	30	18	26	43	40	17	23	45	57	57	47	24	41	2	44	25	58	54	0	59	12	0	38	0	20	18	52
		9	0	9	0	0	0	0	0	0-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0-	0	0	0	0-	0
_	ęα	.00660	.00802	.00933	.01031	.01183	.00546	.00498	.01166	.02130	.01758	.00960	.00822	.00792	.00812	.00827	.00354	.00495	.00978	.00880	.00511	.00405	.00948	.00461	.00634	.00522	.01426	.04845	90100.	.02182	.00556	.00695	.00557
Table 9: (Continued)	8	18.10381	22.79320	26.69252	27.46959	28.63423	29.06599	32.42473	35.19523	35.47799	35.84661	36.84955	40.88757	50.31120	51.57208	51.68769	52.02601	52.97623	54.70880	55.58789	55.67801	0.42811	0.38670	4.23254	13.27465	15.60021	19,43772	22.29245	22,26939	22.90873	27.51330	35.77744	37.75500
.6		31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	32	32	32	32	32	32	32	32	32	32	32	32
able		S		2	2	2	2			2	2	2	2	2	2	2	2	2	2	2	2	2		2		S	S	S	S	2	2	2	2
T	E	8.20	9.40	10.85	11.05	10.15	7.55	8.40	10.40	10.65	10.50	10.70	10.80	10.30	10.57	11.05	8.20	8.70	10.85	7.60	9.45	8.20	11.00	8.50	10.60	7.97	10.25	9.20	9.05	7.00	7.85	7.50	8.45
	Z	78	9 0	36	40	36	96	138	39	25	16	53	26	30	40	39	140	140	35	46	97	144	42	110	43	112	29	10	74	39	101	87	83
	ACRS#	50260	0	0	0	0	50293	50307	0	0	0	0	0	0	0	0	50370	50377	0	50387	0	20396	0			50436	0	514731	0			50515	0
	AC#	1075	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107

	$\epsilon \mu \delta$	0.00900	0.01288	0.01421	0.01566	0.01202	0.01282	0.01483	0.00958	0.01068	0.01580	0.02667	0.00947	0.01708	0.01112	0.03224	0.01764	0.01304	0.02368	0.01270	0.04289	0.01793	0.02262	0.01729	0.09425	0.01302	0.01046	0.01418	0.01379	0.01120	0,01153	0.00881	0.01187	0.00756
	η	-0.90072	0.00135	-1.03838	-0.02336	-0.74900	-1.16770	0.22049	-0.05583	-0.19442	0.32750	-0.55297	0.05658	0.03094	-0.05319	-0.97137	-3.07005	0.07757	2.43874	-1.08290	-1.40656	-1,51474	1.61050	-0.06538	-3.72330	-0.21450	-0.30804	0.29158	0.06129	-0.13852	0.55979	0.23014	0.35923	-0.34431
	$\epsilon \mu \alpha$	0.003219	0.005529	0.003832	0.003440	0.004834	0.005016	0.008442	0.001907	0.006029	0.002665	0.004750	0.003011	0.003191	0.003078	0.008031	0.002517	0.004210	0.004706	0.004439	0.028505	0.007450	0.006569	0.004274	0.019129	0,002978	0.004314	0.002984	0.005994	0.003613	0.003413	0.004765	0.003885	0.003041
	μ_{α}	0.016662	0.008997	0.002117	007251	041728	131161	068210	008121	076600	0.003533	-,067534	0.012354	026552	0.008687	050707	124249	0.032653	146703	145859	172653	0.105758	095698	062003	0.073248	101579	0.040608	007839	084932	097582	0.055537	082604	-,162528	0.023122
	$_{\ell}^{g}$.0255	.0292	.0321	.0332	.0439	.0224	.0317	.0235	.0764	.0419	.0807	.0234	.0422	.0179	.0445	.0440	.0191	.0273	.0295	.0860	.0478	.0397	.0577	.6761	.0291	.0226	.0291	.0568	.0327	.0267	.0446	.0246	.0134
		38.0059	24.3303	0.9472	15.6619	17.6593	8.8932	13.1857	56.5517	44.7418	4.1213	30.4374	12.4862	42.3888	29,8731	47.0782	32,4567	37.8502	31,3371	34.6321	36,5399	25,1343	2,0296	3.9593	7.8258	35,9255	13.8275	13.3215	52.9045	47.3823	24.6131	54.1967	27.3093	53.1061
	~	26	26	46	37	24	30	32	22	9	П	23	Н	44	48	20	20	48	21	26	25	23	20	19	m	28	20	38	21	23	52	19	25	43
		0	0	0	0-	0	0	0	0	0	-1	9	7	0	0	0	0	0-	0	9	0-	0-	0	0	0	9	0	0	0	0	0	0-	0-	0
_	ϵ_{α}	.00722	.01072	.00795	.00950	.00848	.01025	.01218	.00420	.02987	.00686	.01413	.00746	.00979	.00563	.01661	.01188	.00477	.01002	.00672	.05719	.01615	.00941	.01321	.11685	.00867	.00585	.00861	.02046	.01459	.00761	.01556	.00771	.00506
Table 9: (Continued)	α	38.05741	38.83841	39.90434	43.77562	53.32185	58.24434	3.79032	12.34825	13.84886	15.44550	16.01123	16.31678	22.21730	22,68165	24.26229	25.86318	30.75800	32.49902	41.97456	42.14287	43.57281	45.36392	47.68540	52,72891	53.13393	54.57715	56.72597	0.63143	2.87530	5.39028	10.99235	11.72933	24.44912
9.		32	32	32	32	32	32	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	33	34	34	34	34	34	34
app		2	5	5	2	2	2	Ω	Ω	2	S			2	2	Ω	2	S	2	2	2	2	2	2	S	S	2	D	D	2	2	D.	2	Ω
_	ш	11.10	10.87	6.85	10.20	9.45	10.70	9.20	8.30	10.35	7.70	10.40	8.30	10,25	8.70	9.20	10.70	7.65	8.30	9.20	10.30	9.92	8.30	10.35	10.65	10.60	9.92	10,35	10.45	10.95	10.05	10.10		7.10
	Z	39	34	91	31	21	25	21	72	24	81	36	81	25	89	43	56	82	67	51	19	37	63	34	m		09			28	45	27	29	67
	ACRS#	0	514743	50527	0	0	0	0	0	0	50682	0	50683	0	0	514784	0	50731	50737	0	514796	0	50783	0	0	0	0	0	0	0	0	0	50876	50913
	AC#	1108	1109	1110	1111	1112	1113	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1131	1132	1133	1134	1135	1136	1137	1138	1139	1140

	$\epsilon \mu \delta$	0.01190	0.01380	0.00918	0.00813	0.01369	0.01604	0.02115	0.00876	0.04616	0.01034	0.02455	0.01397	0.01788	0.01702	0.01306	0.00864	0.03755	0.02121	0.01646	0.01511	0.01132	0.01302	0.01768	0.01653	0.01487	0.03508	0.01530	0.00889	0.01625	0.02436	0.03006	0.01162	0.02065
	мβ	-0.74733	-1.58678	0.34747	0.94117	-1.37170	-7.56978	-2.48482	-2.66767	-1.90618	-0.22343	-0.13722	0.52142	1.95435	-0.02918	0.41784	-1.76812	-2,57854	-2,44555	0.22372	-0.45801	0.36335	-0.28618	-0.59509	2,55349	2.77280	-0.10040	0.80385	-0.26566	-0.11469	-0.65783	-4.51323	0.71360	0.15188
	$\epsilon \mu \alpha$	0.003692	0.003881	0.003013	0.006773	0.003720	0.004863	0.008949	0.003023	0.009815	0.003700	0.008725	0.003922	0.004520	0.005426	0.004805	0.006908	0.007228	0.014532	0.006419	0.003223	0.002799	0.003586	0.004063	0.003088	0.004335	0.005974	0.002483	0.008961	0.004997	0.005855	0.005671	0.006049	0.007872
	$\mu\alpha$	036739	0.021876	075319	030466	020522	014352	043017	022987	0.001563	104158	0.000225	072565	013737	015392	110847	0.060290	048065	135398	028227	089444	039453	111930	0.180700	007129	000267	036249	033551	075492	114113	028533	0.152427	085958	0.043844
	θ,	.0249	.0250	.0175	.0246	.0264	.0246	.1321	.0169	.1076	.0176	.0993	.0254	.0526	.0655	.0242	.0621	.1749	.0730	.0604	.0337	.0224	.0282	.0315	.0432	.0354	.0958	.0267	.0523	.0347	.0636	9990.	.0417	.0610
	8	54 35.9629	52 35.8463	43 49.9245	27 58.8133	46 42.3064	24 32.9485	7 30.7274	47 27.2041	19 59.9761	51 30.9760	1 38.6502	44 4.2097	59 25.3691	0 17.0941	41 13.7056	4 44.6828	0 34.1805	0 57,9518	12 48.4973	50 24.9833	51 16.3622	42 58.3066	39 1.3913	7 37.7127	7	13 4.2144	19 2.7426	17 23.3482	31 51.6710	11 14.3741	31 13.6567	21 13.4355	2 37.1191
	ϵ_{α}	.00669 -1	.00644 -1	.00517 -1	.01147 -1	.00922 -1	.01092 -1	04493 -1	.00498 -1	02453 -1	.00507 -1	.03653 -1	.00806 -1	0-06910	02073 -1	00799 -1	02792 -1	03958 -1	06096 -1	02020 -1	00964 -1	00469 -1	00749 -1	00726 -1	01067 -1	1- 98600	01855 -1	00814 -1	02052 -1	00768 -1	01791 -1	02106 -1	01587 -1	.02276 -1
Table 9: (Continued)	Ø	4 13.84698	4 24.33657	4 28.48140	4 36.76319	4 40.29100	4 48.87820	4 50.98321	4 48.78373	4 52,84771	4 59.73241	5 6.21991	5 10.09898	5 15.33124	5 24.57274	5 22.35678	5 25.22073	5 25,67636	5 27.81242	5 29.98291	5 33,69587	5 42.81032 .	5 50.23629	5 54.15263	5 56.37802	57.	5 58.99591 .	5 59.94953	6 8.64724 .	6 8.98604	6 18.57333 .	6 19.78462 .	6 24.23809 .	6 29.44272 .
Table	E Z	2 10.47 5 1	0 10.95 5 1	1 8.55 5 1	9 8.60 5 1	2 10.10 5 1	3 8.30 5 1	9 11.15 5 1	8.95 5 1	7 11.05 5 1	1 9,10 5 1		10.65 5 1	10.95 5 1	10.20 5 1	11.15 5 1	10.45 5 1	11.35 5 1	11.45 5 1	10.35 5 1	10.60 5 1	9.85 5 1	10.65 5 1	9.55 5 1	8.90 5 1	8.30 5 1	11.30 5 1	8.70 5 1	10.85 5 1	10.85 5 1	10.35 5 1	11.00 5 1	10.70 5 1	10.95 5 1
	ACRS#	0 32	0 30	0 51	0 29	0 22	47265 53	0	0 61	0 1.	0 54	0 13	0 22	0 25	0 27	0 21	0 19	0 11		0 28	0 30	0 48	0 22	0 41	0 54	47474 84	0 19	0 78	0 25	0 34	0 39	0 17	0 33	0 37
	AC# /	1234	1235	1236	1237	1238	1239	1240	1241	1242	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257		1259	1260	1261	1262	1263	1264	1265	1266

			Ţ	able	. 6	Table 9: (Continued)	_								
AC#	ACRS#	Z	E			ŏ	ϵ_{α}		8		93	$\mu\alpha$	$\epsilon \mu \alpha$	9η .	$\epsilon \mu \delta$
1267	47588	16	7.75	5	16	35.03677	.01183	7	8	59.3666	.0375	-,118144	0.004957	1.21981	0.015
1268	0	94	9.10	2	16	33,82585	.00510	7	52 5	50.1365	.0186	099151	0.003811	0.31388	0.0138
1269	0	17	11.05	S	16	42.60722	.01669	7	1 5	51.2041	. 0857	017852	0.003545	0.07909	0.0170
1270	0	33	10.50	2	16	48.66474	.01009	7	27 4	44.0680	.0336	027656	0.008499	-0.07633	0.030
1271	0	88	8.95	2	16	49.29763	.00828	런	24 4	49.1921	.0196	033564	0.005027	0.61842	0.013
1272	0	23	10.95	2	16	52.85570	.01245	0	58 58	8.8723	.0451	026419	0.004286	0.13841	0.013
1273	0	28	10.05	S	17	1.91424	.01480	-1	2 1.	17.9213	.0618	008438	0.004430	-0.69529	0.0178
1274	0	30	10.15	S	17	2.95591	.02256	7	9 5	52.8678	.0395	045888	0.007590	-3.37080	0.0181
1275	0	30	10.40	S	17	2.97581	.02385	7	9 5	52.7966	.0735	058951	0.008357	-3,42377	0.029
1276	47666	09	5.15	S	17	3.18147	.00812	7	27 4	44.1169	.0345	017012	0.005122	0.71566	0.0188
1277	0	23	10.55	S	17	5.44336	.01882	-1	7	9.6341	.0627	081701	0.005409	0.44006	0.011
1278	47673	70	7.55	S	17	6.32568	.01161	-1	9	31,4153	.0364	045364	0.004641	-1.02907	0.0150
1279	47678	104	8.45	S	17	7.95185	.00588	7	24 23	23.5130	.0158	036105	0.004210	0.49964	0.011
1280	47680	87	8.00	S	17	8.49841	.0000	7	33 5	59.7923	.0193	089021	0.003580	-0.75348	0.0103
1281	0	34	10.90	S	17	9.41569	.01195	7	20 48	48.6568	.0383	033642	0.005082	-0.72148	0.019
1282	0	16	11.00	S	17	10.43084	.02407	런	8 4(40.7643	.1067	044225	0.007702	-0.28974	0.0225
1283	0	33	10.80	S	17	14.10248	.01081	7	20 1.	17.0045	.0380	0.039506	0.006020	1.02727	0.0247
1284	514057	29	10.10	2	17	16.80718	.01791	7	7	3.1816	1220	0.046480	0.006290	0.45026	0.044
1285	0	34	10.20	2	11	23.77975	.01043	7	22 20	20.3075	.0313	0.001157	0.004455	-0.55930	0.019
1286	0	46	9.75	2	17	26.55086	.01014	7	17 32	32,5381	.0362	0.008118	0.004907	-1.27477	0.0149
1287	0	22	9.52	S	17	25.48766	.00712	ન	37 5	59.4673	.0202	046320	0.003163	-0.09164	0.0130
	0	19	10.65	2	17	27.02039	.02344	H	16 41	41.9671	.0833	043938	0.007625	-0.98817	0.0233
	514064	48	8.40	2	17	28.46283	.02081	-1	e	9.6634	.0756	0.026496	0.007963	-0.51318	0.029
1290	0	26	10.60	S	17	33.06844	.01076	7	31 36	36.4723	.0287	037622	0.006371	-0.54207	0.0138
1291	0	41	9.10	S	17	40.73914	.00784	7	31 49	49.4374	.0295	081772	0.001561	0.16391	0.012
1292	0	10	10.85	2	11	46.79907	.03746	d	7 4(40,4556	1088 (0.167918	0.007561	0.02259	0.0333
1293	0	32	9.33	S	11	44.87342	.00935	7	59 56	56.5187	.0362	145733	0.004699	-1.03714	0.016
1294	0	25	10.97	S	17	48.11405	.01288	7	54 49	49.4811	. 0578	073991	0.005962	-1.94509	0.0365
1295	0	25	10.25	S	17	51.13738	.01891	7	28 39	39.5520	.0429 (0.081166	0.005186	-3.02999	0.0185
1296	0	18	11.10	S	17	55,53589	.01623	7	19 10	0.2429	, 0577	0.011643	0.006621	-0.05972	0.0223
1297	0	29	10.30	S	11	55.10323	.00858	루	33 16	6.7747	.0276	0.028111	0.004946	-1.72474	0.0183
1298	0	19	10.90	S	17	56.77702	.01219	7	26 44	4.5486	.0458 -	004758	0.003343	-1.79543	0.0283
1299	0	20	10.75	2	18	2.90565	.01243 -	7	26 50	.8763	.0513 (0.031728	0.005810	0.30898	0.020

	$\epsilon\mu_{\delta}$	0.01357	0.01349	0.02840	0.01419	0.02871	0.01224	0.05043	0.04654	0.01627	0.02243	0.02005	0.01646	0.00982	0.02587	0.01268	0.01531	0.02091	0.02021	0.01086	0.01723	0.01254	0.00990	0.01523	0.01217	0.01107	0.01424	0.00846	0.00770	0.01030	0.01404	0.00873	0.01368	00010
	μ_{δ}	-0.04328	0.15408	-1.85833	-0.39874	-0.37404	-2.82808	-0.66114	-1.26847	-3.12657	-0.25436	-1.39456	-1.56329	-0.81070	-2.00043	-0.33299	-1.85464	0.04985	0.96246	-1.30091	0.01539	-1.08372	0.40131	-3.47308	-1.42752	-3.87928	-0.86871	0.38089	-0.23481	-0.27567	-0.25450	-2.03603	-1.53167	
	$\epsilon \mu \alpha$	0.004764	0.009241	0.006965	0.008678	0.006460	0.002695	0.010553	0.009785	0.004972	0.004296	0.010256	0.004035	0.002661	0.005442	0.003543	0.005425	0.005867	0.005967	0.003915	0.002706	0.003367	0.005516	0.001620	0.003741	0.005151	0.004630	0.003673	0.005065	0.002339	0.004975	0.002185	0.005237	
	$\mu\alpha$	-,188055	005768	0.011085	0.009623	054810	0.041841	036725	046344	0.042663	039429	005052	026358	112973	043424	0.035313	069499	074845	0.068410	0.004187	062463	0.014404	085865	0.082183	041344	0.167254	065924	083787	079836	042360	040879	177413	021120	
	ϵ_{δ}	.0361	.0863	.1531	.0556	.0568	.0250	.1736	.1815	.0457	.0497	.0910	.0306	.0226	.0452	.0286	.0337	.0357	.0753	.0276	.0407	.0307	.0300	.0284	.0238	.0320	.0233	.0213	.0353	.0323	.0396	.0227	.0331	
	6	56.5241	55,6365	34.0727	41.7402	22.8142	59.7945	47.0890	46.4202	17.0687	22.6870	54.2706	59.2531	38.0960	59.0285	39.6639	2.1797	5.0522	44.7904	13.7585	55.9049	3.8880	13.0957	3.0220	43.4234	5.0299	27.4843	10.3482	18.4896	52.9206	31,7965	24.6308	48,5298	
		39	11	15	22	22	28	7	7	31	28	2	27	47	57	35	30	50	10	46	30	40	50	45	48	52	28	33	13	26	55	25	39	
		7	-1	-1	T	-1	7	T	7	T	7	T	T	7	7	7	T	7	7	7	7	7	7	7	7	7	T	7	T	T	7	7	-1	
_	ęα	.01453	.03367	.03911	.02249	.01280	.00890	.04804	.03801	.01677	.01568	.03836	.01058	.00653	.00997	.00562	.01218	.00863	.02215	.00797	.01125	.00854	.01358	.00736	.00815	.00979	.00833	.00879	.01273	.01286	.01249	.00811	.01444	
Fable 9: (Continued	α	1.90533	5.76916	8.02930	12.25671	14.71804	16.15477	22.23246	22.26909	28.11493	33.72032	39.44626	38.76551	40.45697	45.20516	56.47334	4.12702	5.62862	8.53787	9.75457	19.02751	24.95980	26.06206	27.22559	32.16807	37,04135	38.85225	39.01342	40.94203	41.96511	40.68054	43.54747	44.68502	
6		18	18	18	18	18	18	18	18	18	18	18	18	18	18	18	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	19	
aple		2	2	2	2	2	2	2	2	2	S	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	Ŋ	S	S	S	S	S	2	
T	Ε	.45	.30	11.50	11.40	10.80	10.57	11.45	11.45	10.50	11.35	11.20	10.90	9.07	11.10	6.30	11.15	10.95	11.15	10.60	11.25	10.65	10.00	11.25	11.05	10.90	10.45	10.90	10.30	11.25	10.30	10.80	1.20	
		11	10																11						11			10		11	10	10	11	
	Z	17	19	6	17	21	38	8	00	39	22	00	31	57	26	71	30	31	11	30	23	34	38	38	41	27	36	36	30	22	36	28	25	
	ACRS#	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48006	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	AC#	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	

	$\epsilon \mu_{\theta}$	0.01557	0.01295	0.01785	0.01201	0.01164	0.01355	0.00851	0.05843	0.01611	0.01531	0.01235	0.01916	0.02029	0.02207	0.01466	0.02881	0.00848	0.01566	0.02263	0.02309	0.01480	0.01943	0.01750	0.01355	0.01486	0.01476	0.01851	0.01839	0.03046	0.01372	0.00742	0.02930	0.03412
	μ_{δ}	-2,78557 (-0.94845 (-2.03244 (-0.33018 (0.72181 (-1.03743 (-0.37212 (-1.12222 (0.65576 (-0.28075 (-0.55948 (0.84864 (-0.66546 (0.29944 (0.62415 (-0.66541 (0.74903 (-2.51457 (0.17649 (0.66270 (-1.27803 (-0.74388 (-0.84495 (-2.02746 (-0.22684 (-1.04666 (-1.01023 (-0.22839 (-0.50610 (0.59313 (-0.13957 (-1.03797 (
	$\epsilon \mu \alpha$	0.002350	0.004367	0.004837	0.004836	0.003521	0.004114	0.002584	0.029627	0.004739	0.004326	0.004331	0.004192	0.004416	0.007166	0.004902	0.006666	0.002832	0.003410	0.004993	0.004966	0.002922	0.004639	0.002513	0.003865	0.005099	0.002140	0.003354	0.004781	0.004407	0.009049	0.002586	0.002371	0.004212
	$\mu\alpha$	095776	149990	0.020249	022556	120392	028328	098107	020957	001429	037618	040207	058290	080877	030294	058132	027045	110744	097082	065582	109389	052175	011070	084982	0.018347	034779	0.003231	065547	067790	0.004524	048463	063552	051471	- 038967
	$_{\ell}^{\varrho}$.0288	.0249	.0400	.0245	.0266	.0309	.0145	.3743	.0350	.0255	.0322	.0387	.0458	.0354	.0305	.0351	.0260	.0326	.0645	.0340	.0350	.0613	.0376	.0323	.0344	.0249	.0258	.0262	.0360	.0526	.0154	.0347	0409
		48.4895	40.0368	49.5938	10.7452	59.5677	59.5435	12.4293	30.9857	53.3342	8.0909	56.8962	14.1712	36.3225	38.8481	9.4291	45.5360	48.5493	36.0437	54.1754	1.2469	39.9116	1.6255	15.6013	57.2830	34.1411	25.7322	0.2018	2.3993	43.1494	5.8568	8.6557	9.9806	40.0996
	~	1 3	1 5	1 34	9 1	1 17	1 35	1 29	1 22	1 2	1 7	1 9	1 13	1 30	0 1	1 29	1	1 26	1 27	30	0 59	1 40	1 17	1 22	1 16	39	11	58	2	48	8 1	16	58	α
	ϵ^{α}	.00773 -1	.00741 -1	.01078 -1	.00851 -1	.00596 -1	.00928 -1	.00448 -1	.20962 -1	- 19900.	.00697 -1	.00638 -1	.01028 -1	.01276 -1	.01071 -1	.00992 -1	.00950 -1	.00711 -1	.00817 -1	.01505 -1	0-80600.	.00609 -1	.00851 -1	.01039 -1	.00824 -1	- 85600.	.00601 -1	.00763 -0	.00833 -1	.00897 -1	.01159 -1	.00439 -1	.00781 -0	- 0096A -1
Table 9: (Continued)	ŭ	7.60992	11.65589	12.80057	29.81971	30.96806	47.03477	50.86654	54.20982	55.58519	58.51259	58.80664	11.23210	10.51435	14.36319	14.17128	18.81051	26.25824	26.94615	38.33031	46.57861	45.34463	6.15431	9.52549	16.01078	19.88262	25.97083	32.78760	35.48701	32,72472	41.44107	43.29678	56.40469	57 77851
ole 9:	Ĭ	5 20	5 20	5 20	5 20	5 20	5 20	5 20	5 20	5 20	5 20	5 20	5 21	5 21	5 21	5 21	5 21	5 21	5 21	5 21	5 21	5 21	25	5 22	22		5 22	5 22	5 22	5 22	5 22	22	22	22
Tal	ш	10.45	11.05	9.65	11.25	9.40	11,10	7.35	11.25	7.00	9.40	10.90	11.35	11.30	11.10	9.85	11.35	9.10	9.05	11.30	11.05	9.05	11.40	11.50	10.97	10.60	10.47	11.27	11.17	10.83	11.50	8.93	11.10	90 .0
	z	21 1	20 1	32	19 1	33	20 1	. 49	3 1	. 19	51	21 1		22 13	2	33	2	2	7	32 13	7	8 8	Н	2 11	0	S	2	7 11	41 11	0	6 11	116	31 11	35 10
	ACRS#	0					0	48315 5	0	48325 6		0	0	0	0 2	0	0 2	0 5	0 5	0	0 2	0 4	0 4	0 3	0 4		0 5	0 3	0 4	0 5	0 3		0 3	0
	AC#	1333	1334	1335	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

	$\epsilon\mu_{\delta}$	0.02044	0.05050	0.01250	0.02289	0.03456	0.01603	0.02234	0.01464	0.01375	0.02749	0.01694	0.02217	0.01952	0.01117	0.01506	0.01631	0.02754	0.01882	0.03059	0.01242	0.01268	0.01827	0.01527	0.01661	0.01158	0.02012	0.02169	0.00687	0.02300	0.01340	0.01976	0.01417
	hβ	-0.34310	-4.33315	-0.74363	-0.37597	-0.48036	-1.77899	-0.67892	-0.98432	-2.49380	-2.95567	-1.37300	-2,45029	-1.98802	-0.85121	-0.33455	-2,14466	-0.28952	-0.71347	-4.46417	-0.17912	-0.65645	4.94646	0.38067	-0.42902	-0.15465	0.23159	-1.31822	-0.41148	0.32341	0.16971	-0.36061	-0.31438
	$\epsilon \mu \alpha$	0.004498	0.010456	0,003859	0.004046	0.008451	0.007553	0.006931	0.003406	0.004313	0.008478	0.004423	0.005273	0.005591	0.003302	0.004327	0.002138	0.003717	0.004113	0.007076	0.001730	0.006484	0.003757	0.004958	0.003337	0.003359	0.004648	0.004133	0.002787	0.002715	0.003876	0.005488	0.003479
	μ_{α}	-,128680	0.005674	079266	060733	098692	097525	029204	058594	061917	236599	033414	025719	039639	061335	047734	0.079274	051228	076357	119767	045478	035087	159410	0.048585	069030	0.038142	064514	006424	033428	0.087964	008324	0.001107	005776
	83	.0304	.0556	.0322	.0414	.0426	.0392	.0373	.0350	.0313	.0325	.0326	.0433	.0305	.0242	.0268	.0366	.0412	.0373	.2012	.0352	.0311	.0302	.0270	.0283	.0291	.0379	.0362	.0349	.0406	.0285	.0392	.0325
		4.3719	29.5967	9.5393	27.9073	47.6394	31.7571	30,9437	51,6889	24.6639	22.6712	22,9605	4.7966	42,5754	5.6986	17.4722	50.4639	13,6322	55.9664	27.5924	26.7385	22.5336	29.8551	21,3288	31,2271	34.3112	32,6905	41,8638	9.9537	30,7650	34,1546	23.5795	7.5996
	٠.	32	26	16	2	53	32	0	45	35	54	28	57	19	33	7	21	6	14	80	20	33	7	52	24	38	6	38	30	36	47	39	39
		7	-1	7	7	-1	7	-2	-	7	-1	0	7	7	7	T	7	T	7	7	7	7	7	T	T	7	7	7	Ŧ	7	-1	7	-
_	ξα	.00590	.01276	.00770	.01093	.01041	.01083	.01035	.00877	.00818	.00992	.00942	.01022	.00953	.00720	.00603	.01291	.01063	.00871	.03603	.00850	.01077	.00609	.00765	.00510	.00675	.00844	.00983	.00664	.01105	.00777	.00974	.00731
Fable 9: (Continued	α	4.48681	9.05528	10.45373	16,74588	16.19565	31.48814	33.44775	41.19986	7.97789	8.53806	13.23498	14.13565	16,71369	16.91036	18,78362	18.86696	19.42319	25.18569	26.48400	28.60947	29.96716	34.87527	36.69734	37.20862	43.42459	47.23662	47.99433	52.54596	56.35270	3.68893	5.99182	6.52359
9:		23	23	23	23	23	23	23	23	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	25	25	25
able		S	2	2	2	S	2	2	2	2	2	2	2	S	2	2	2	2	2	2	2	2	2	2	2	2	S	S	2	2	S	2	2
Т	E	4.95	10.60	10.45	10.00	8.70	11.35	10.93	10.40	11.00	8.80	11.10	10.53	10.45	8.80	9.02	11.25	10.70	10.20	10.75	10.55	11.15	6.90	9.00	5.90	10.50	10.25	10.75	10.05	11.15	9.50	11.05	9.00
	Z	89	26	37	30	53	23	38	34	34	09	21	31	39	87	09	32	26	41	12	40	27	69	64	73	34	26	30	28	22	51	20	36
	ACRS#	48698	0	0	0	0	0	0	0	0	48896	0	0	0	514356	0	0	0	0	0	0	0	48987	48992	48997	0	49029	0	0	0	0	0	0
	AC#	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398

$\epsilon\mu\delta$	0.01068	0.01468	0.01432	0.00823	0.01430	0.01563	0.01112	0.00906	0.01029	0.01166	0.01201	0.01451	0.01030	0.01282	0.01064	0.00948	0.01059	0.01866	0.00925	0.01940	0.01732	0.02314	0.01776	0.01255	0.01956	0.01088	0.01319	0.01285	0.01830	0.01580	0.02271	0.01124	
μ_{δ}	-0.51396	-1.41908	1.19410	-0.53700	0.31624	-7.37359	-0.66696	-0.66457	-0.17735	0.22316	-0.00726	-0.72297	-0.41011	1.71646	-1,09156	0.06423	-0.16526	0.00201	-0.87786	-0.32052	0.19082	1.02301	-0.90709	-0.26012	0.28528	0.47368	-0.07252	0.66603	-0.03330	-0.22516	-1.40739	0.26236	4.44
$\epsilon\mu\alpha$	0.004320	0.004107	0.003685	0.004649	0.006724	0.003225	0.003197	0.002930	0.003110	0.003691	0.003015	0.004637	0.007090	0.002702	0.003598	0.001524	0.003575	0.006255	0.005348	0.006478	0.003712	0.004692	0.005195	0.002846	0.008377	0.003143	0.005444	0.005891	0.004614	0.004754		0.005032	
μ_{α}	057781	036802	-,032872	0.048997	0.043878	-,212771	030688	030537	016712	006470	016751	0.073594	0.065507	013148	050891	001544	0.076891	045201	0.040878	015289	0.034812	0.056398	0.120779	016989	0.076506	240717	0.038913	0.130992	0.034647	0.021399	033154	0.058381	
93	.0315	.0263	.0266	.0325	.0354	.0344	.0251	.0142	.0153	.0205	.0243	.0341	.0273	.0235	.0239	.0209	.0247	.0289	.0299	.0277	.0458	.0422	.0423	.0187	.0331	.0211	.0305	.0267	.0300	.0387	.0718	.0248	
g	4 41.2287	1 13.1983	15 4.8751	16 30,1124	47 18.8627	42 32.9061	7 59.7841	48 42.6328	58 52,6060	59 13.2124	1 0.9645	31 38.9724	11 42.6603	34 35.4488	4 36.8503	41 10.3124	56 32.4036	50 13.0516	5 27.3375	52 6.3900	25 35.5793	1 48.4677	32 58.9416	47 59.8904	51 7.2003	41 21.4836	36 52,8856	50 6.0276	5 58.6614	0 56,5334	6 2.9789	4 12.9785	
	3 -1 1	6 -1 5	7	7	7	7	9 -1	-	7	7	1 -2	7	7	7	-1 9	7	7	7	-1 1	7	7	2 -1 5	7	7	7	7	7	7	3 -1 4	-1 2	2 -1	4 -1 3	
(α	.00783	.00566	.00580	.00748	.01295	.00618	.00679	.00348	.00506	.00618	.00751	.00941	.00932	.00880	.00646	.00507	.00642	.00749	.01125	.00763	.00737	.00952	.01112	.00430	.01084	.00580	.00844	.01138	.00813	.01116	.01702	.00884	
Table 9: (Continued) α	12,21992	13.07486	16.17518	19,40044	24.86023	34.68671	37.42005	38.77866	41.15157	41.99342	43.40636	49.28339	49.91300	51.94216	56.04865	55.66254	55.92608	58.93471	1.80390	2.34861	7,12019	20.15046	20.60024	23.47130	24.60098	33.63522	41.33052	41.91728	46.13587	46.56667	47.02075	50.75168	
Table 9:	0 5 25	5 5 25	5 5 25	5 5 25	0 5 25	5 5 25	0 5 25	0 5 25	7 5 25	3 5 25	3 5 25	5 5 25	5 5 25	5 5 25	0 5 25	0 5 25	3 5 25	0 5 25	0 5 26	5 5 26	5 5 26	0 5 26	0 5 26	3 5 26	7 5 26	5 26	0 5 26	5 26	7 5 26	5 26	7 5 26	5 5 26	
E	30 9.70	92 6.45	40 9.85	39 8.45	35 11.30	82 6.85	47 9.70	3 7.40	2 7.77	7 8.63	48 9.93	33 11,35	24 10.85	31 11.35	22 11.00	72 9.40	37 10.93	1 11.00	25 10.60	57 10.55	43 10.85	33 11.20	26 11.20	93 8.13	5 11.27	84 8.50	30 10.40	7 8.70	3 10.57	4 11.00	1 10.97	4 10.25	
ACRS#	0	49116 9		0	0	49183 8	0 4	49205 153	49211 102	49215 77		0 3	0 2	0	0 2	0 7	0	0 51		0			0	49345 9	0 25	514463 8		0 5	0 33	0 24	0	0	
AC# A	1401	1402 4	1403	1404	1405	1406 4	1407	1408 4	1409 4	1410 4	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423		1425		1427	1428	1429	1430	1431	1432	

	8 et 18	31 0.01206	87 0.02494	17 0.04457	28 0.03557	44 0.01988	89 0,01592	29 0.01355	91 0.03124	22 0.00369	69 0.01072	73 0.02009	20 0.01334	24 0.01479	22 0.01050	90 0.02226	09 0.01181	24 0.02361	59 0.00914	08 0.00980	0.01019	38 0.01743	60 0.01532	59 0.01543	63 0.01662	72 0.01114	14 0.00945	73 0.00802	70 0.01062	62 0.00949	09 0.01020	50 0.00751	14 0.01033	
	48	-2.51231	-0.51987	5 -2.21617	1 -0.38628	1 -2,46344	0.42789	0.33329	0.18291	1 0.01722	7 -0.02369	1.14373	5 0.63520	9 0.65924	3 1.35422	3 -0.24890	5 -0.31699	4 -2.36924	0.43659	0.68808	9 0.07619	1 -0.32338	3 0.18960	3 -0.55359	7 -0.91763	2 -0.70472	1 -0.30914	3 -0.48473	9 -0.34470	0.17462	4 -0.10309	3 0.28750	4 0.1761	
	$\epsilon \mu \alpha$	0.004071	0.004221	0.011355	0.006554	0.009551	0.003941	0.003960	0.006720	0.003474	0.003307	0.007051	966800.0	0.004129	0.002608	0.006048	0.003206	0.004364	0.002690	0.003991	0.004009	0.004624	0.004803	0.004238	0.004047	_	0.003001	0.002583	0.002749	0.003430	0.003194	0.00509	0.00302	
	$\mu\alpha$	0.082197	0.007558	0.026792	0.146241	004211	3 0.050197	0.073366	029402	016582	012941	0.105031	0.061262	0.190340	0.016938	021350	0.011853	0.036504	0.065266	0.069823	0.020111	-,001441	0.029569	0.039174	0.105289	0.095441	0.022759	0.062120	0.032827	002064	0.034016	0.019724	0.040820	
	83	3 .0604	3 .0703	7 .1260	7 .0983	3 .0579	.035	3 .0238	1980. 6	9610.6	7 .0238	4 .0398	1.0265	5 .0315	1.0211	5 .0629	2 .0285	5 .0674	1610. 1	0.0278	3 .0213	1.0514	0308	0.0359	0420	3 .0239	5 .0175	2 .0198	7 .0249	5 .0133	0.0201	2 .0239	9.0188	
	8	13 37.0883	8 13,2608	7 48.7077	2 52.1697	7 47.9963	33 10.5183	41 45.4113	4 26.0939	4 7.1619	30 27.5727	1 1.7684	37 41.8881	47 14.2486	30 9.3691	3 56.5845	43 22.6822	10 14.0705	33 25.6251	25 5.3650	41 16.3598	3 35.7314	59 5.0010	18 4.8500	13 37.5391	27 17.5313	30 32.8715	40 24.4422	10 54.8337	1 2.9176	27 12.3050	19 54.0222	30 45.8759	
		T	8 -1 1	4 -1	9 -1	6 -1	7	7	6 -1	1 -1	7	9 -2	7	7	7	7 -1	7	T	T	T	7	7 -1	T	7	7	7	7	7	7	6 -2	7	7	7	
_	ϵ^{α}	.01575	.01358	.03214	.02049	.02676	.00913	.00796	.01866	.01071	.00758	.01179	09600.	.00599	.00603	.01697	.00659	.01466	.00593	.00913	.00852	.01477	.01134	.00848	.00977	.00732	.00636	.00547	.00633	.00486	.00695	.00705	.00553	
Table 9: (Continued)	α	1.03983	2.03901	11,55086	12.35222	12.37712	15.23849	17.08773	17.74929	25.24777	25.47170	25.01679	27.87376	32.70103	35.10330	37,67959	39.41129	41.24963	41,77471	50.01215	6.42649	10,16715	26.42018	30.76443	31.60435	34.35129	35.85341	37.44594	47.31275	49.28263	50.94435	51.07886	55,23191	
ole 9:		5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 27	5 28	5 28	5 28	5 28	5 28	5 28	5 28	5 28	5 28	5 28	5 28	5 28	5 28	
Ta	Е	8.70	9.60	6.45	10.55	9.25	10.65	7.50	8.95	8.95	10.20	10.57	9.05	6.55	8.95	8.10	9.95	10.85	00.6	10.35	10.35	10.70	11.00	10.75	9.25	10.85	10,75	10.55	10.80	7.80	10.65	10.75	10.10	
	Z	30	30	56	22 1	19	35 1	84	32	31	40 1	30 1	19	84	80	20	51	32 1	62	35 1	34 1	21 1	34 1	41 1	74		50 1	46 1	38 1	109	51 1	53 1	52 1	
	ACRS#	49451	0	49484	0	49488	0	49499	0	0	0	0	49534	49548	0	49563	0	0	0	0	0	0	0	0	0	0	0	0	0	49789 1	0	0	0	
	AC#	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	

	$\epsilon\mu_{\delta}$	0.00919	0.01131	0.01517	0.00870	0.00923	0.01265	0.01217	0.02133	66600.0	0.01087	0.00702	0.01458	0.01134	0.01815	0.01092	0.00969	0.01122	0.01167	0.01343	0.01490	0.00828	0.01270	0.01048	0.01019	0.01315	0.01185	0.01135	0.01190	0.00981	0.04938	0.01575	7,010.0	0.01008
	911	0.48170 (0.18921 (-0.34311 (0.50202 (0.52770 (2.52692 (0.28460 (0.03658 (0.41867 (0.06985	-0.75079	-0.13085 (-1.22595 (0.44989 (-0.18366 (-0.05444 (-0.12373 (0.11098	-0.07145 (-3.12018 (0.02454	0.27911	0.10892	0.20329	0,41546	0.19378	-0,55527	-0.01845	-0.20954	-0.56116	-0.30794	0.04778	0.30498
	$\epsilon \mu \alpha$	0.003416	0.001549	0.003885	0.002900	0.002138	0.003761	0.003385	0.005015	0.002612	0.002568	0.002956	0.003930	0.003337	0.004781	0.004579	0.003762	0.003032	0.003086	0.004344	0.004787	0.003561	0.004969	0.002556	0.003343	0.003319	0.003147	0.003622	0.002768	0.002567	0.009071	0.003953	0.001678	0.002866
	μα	0.031255	006969	0.035053	0.034188	0.003557	0.004324	0.017071	0.012560	0.063800	0.072465	003680	0.039722	0.039985	006272	0.024554	0.032727	019054	0.030518	0.012974	-,133584	004528	025295	0.001946	0.010178	008275	0.013145	001885	003170	0.028831	0.084795	-,033351	-,009213	007278
	83	.0151	.0221	.0310	.0188	.0180	.0161	.0242	.0467	.0226	.0244	.0213	.0359	.0196	.0336	.0219	.0259	.0193	.0279	.0301	.0347	.0285	.0233	.0208	.0152	.0329	.0271	.0270	.0228	.0207	.3086	.0358	.0252	.0234
		43.0676	48.2099	52,3561	14.2448	42,4424	45.1249	7.2035	57.3758	17.3446	5.2369	49.0622	31.9174	2.7381	5.0069	34.5236	23.6252	52.1749	21.0338	16.9743	36.4576	1.6457	13,3389	41.8431	8.5626	30.4144	55.9903	19.3928	25.2875	8.0515	47.4630	44.3363	37.6998	15.8628
	0	51	26	1	42	6	54	33	41	37	27	41	58	21	11	14	36	30	39	16	m	80	22	15	38	59	48	26	e	55	20	7	30	24
		7	7	7	7	7	7	겉	7	7	7	7	7	루	7	겉	7	\forall	7	7	루	Τ	7	7	7	7	7	7	7	7	7	7	루	7
_	ϵ_{α}	.00465	.00865	.00758	.00527	.00423	.00471	.00782	.01339	.00663	.00563	.00693	.01015	.00639	.00862	.00721	.00799	.00507	.00680	.00816	.00880	.00774	.00757	.00668	.00449	.00718	.00689	.00771	.00691	.00535	.04525	.00718	.00679	.00518
Table 9: (Continued)	α	59.75005	1,82913	2,70537	3.30131	8.07171	11.34560	12,73583	13.66011	14.61847	16.05469	16.53304	17.02014	17.81839	18.89081	20.64518	21.69073	32.05108	33.41892	34,48345	36,65591	36.76087	38,15259	38.59651	41.22342	42.37100	43.07377	47.56089	49.25789	52,10768	52.69961	57.23811	0.29348	1.97860
.6		28	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	29	30	30
aple		5	S	S	2	S	Ŋ	2	2	2	2	S	S	2	S	2	S	S	S	2	2	2	2	S	2	S	2	S	S	S	S	2	2	S
Т	Е	8.25	10.75	11.25	9.90	8.15	8.20	10.65	11,15	8.55	10,55	10.85	10.53	10.80	10.95	10.80	10.90	8.55	8.85	10.95	9.70	10.70	10.85	11.00	7.70	9.57	10.25	10.35	9.90	9.03	11.00	11.10	10.70	. 60
	_		10	11																												11	10	10
	Z	101	51	26	69	119	90	41	32	78	42	39	27	50	40	37	35	78	64	32	45	27	41	36	83	38	32	37	45	54	0	28	38	44
	ACRS#	49821	0	0	0	49852	49866	0	0	0	0	0	0	0	0	0	0	0	49934	0	0	0	0	0	49956	0	0	0	0	0	0	0	0	0
	AC#	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499

	$\epsilon \mu_{\theta}$	0.01383	0.01030	0.01140	0.01923	0.01192	0.01245	0.00745	0.01062	0.03649	0.01136	0.00851	0.00916	0.01589	0.01016	0.01294	0.01331	0.01424	0.01040	0.00934	0.01137	0.01053	0.00812	0.01738	0.00902	0.01221	0.02718	0.00912	0.01334	0.01384	0.01064	0.01113	0.01646
	η	-0.29982	-1.88763	-1.86212	0.04942	-0.31450	-0.24419	-0.21013	-0.07061	1,28593	0.10666	0.15069	-0.24678	0.16711	-0.12705	-0.23618	-0.47165	-0.75328	0.29601	-0.09614	0.04914	-0.14227	0.34883	-0.22472	0.21378	0.05368	-0.75917	-2.57529	-0.57117	0.09418	-0.57524	-0.68083	-0.69209
	$\epsilon \mu \alpha$	0.004897	0.001773	0.003303	0.003560	0.002349	0.004219	0.004373	0.003248	0.007337	0.002295	0.002567	0.003242	0.006048	0.003100	0.004688	0.005611	0.006154	0.002757	0.001440	0.002180	0.003878	0.001984	0,005960	0.003358	0.002879	0.009850	0.003735	0.003366	0.003326	0.004281	0.002787	0.005800
	$\mu\alpha$	0.003317	128060	0.043786	0.013325	0.002232	034372	0.000644	0.041541	024359	002457	0.003138	0.087014	0.020261	087328	007649	066440	152025	0.010531	003202	013294	0.057805	0.013364	0.015296	0.003678	004414	060000	0.082687	0.007759	0.007642	0.033009	064184	096632
	83	.0300	.0372	.0279	.0314	.0253	.0290	.0211	.0236	.0946	.0159	.0183	.0161	.0385	.0178	.0272	.0218	.0514	.0233	.0285	.0266	.0170	.0147	.0356	.0226	.0295	.0741	.0203	.0288	.0330	.0337	.0260	.0393
	5	14.6586	39.4518	30.1780	57.9011	31.7738	29.8537	57.7450	38,6998	35,5086	2.8354	6.7740	14.1852	50,7585	30.8276	35.5431	18,4163	5,1564	36,5350	37.8466	30,6056	14.6589	32.9629	14,1819	49.3187	55.6270	22.8141	47.3211	38.4719	27.4016	36.9386	28.8711	59.9021
	~	-1 1	-1 12	-1 55	-1 5	1 51	-1 35	-1 19	-1 50	-1 37	-1 4	-1 38	-1 22	-1 33	-1 16	-1 18	-1 45	-1 45	-1 57	-0 57	-1 37	-1 45	-1 5	-1 30	-1 5	-1 32	-1 11	-1 14	1 46	-1 37	1 13	1 27	1 27
	ϵ_{α}	- 66700.	.00613 -	- 07700.	- 86700.	.00574 -	- 61600.	- 97500.	.00545 -	.01765 -	- 96800.	- 00479 -	.00492 -	.01881 -	- 00466 -	.00829 -	- 89700.	.01149 -	.00564 -	- 00940	.00725 -	.00527 -	.00373 -	.01014 -	.00637 -	- 86500.	.02633 -	- 62900.	- 87700.	.00651 -	- 95600.	-00626 -	.01028 -
Fable 9: (Continued)	α	2,68250	2.45634	3.19887	6.49063	6.63665	7.19865	9.05474	9.20023	9.47686	13.66171	18.56281	27.98750	28.35253	31.38490	33,85049	33.84257	35.57523	37,22925	32.78168	38.73266	43.67596	52.70944	54.00985	55.52250	56.55385	59.05093	2.06529	3.96700	6.34767	9.33341	9.62490	9.81533
le 9:		30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	32	30	30	30	30	30	30	30	31	31	31	31	31	31
Tab		95 5	10 5	80 5	15 5	55 5	75 5	20 5	55 5	.30 5	15 5	53 5	00 5	33 5	50 5	10 5	33 5	30 5	36 5	35 5	50 5	90 5	90 5	00	90 5	00	5 5	70 5	55 5	00	50 5	0 5	5 5
	Ε	10.95	10.10	9.80	11.15	10.55	10.75	10.20	8.65	4	8.45	8.53	9.00	10.93	7.50	10.40	7.33	5.80	7.86	10.95	10.60	7.90	8.90	11.00	10.90	9.50	4.75	10.70	10.65	8.50	10.60	8.70	11.15
	Z	27	37	22	22	36	34	45	54	31	77	62	82	33	94	45	63	44	75	31	41	87	106		32	46	43				37	72	33
	ACRS#	0	0	0	0	0	0	0	0	50035	50052	0	0	0	50104	0	50111	50116	50127	0	0	50144	50174 1	0	0	0	50202	0	0	0	0	0	0
	AC#	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531

	$\epsilon\mu_{\delta}$	0.01537	0.00457	0.01304	0.01798	0.00884	0.01725	0.01462	0.01657	0.01665	0.01916	0.01855	0.02153	0.01220	0.00828	0.01241	0.01179	0.01058	0.02216	0.00558	0.01072	0.01818	0.01431	0.01342	0.01565	0.01805	0.01691	0.01232	0.01911	0.01029	0.01971	0.01077	0.02482	0.00874
	μ_{δ}	-2.44070	0.08874	0.17857	-0.09625	-2,52957	-0,25733	-0.03361	-2.41599	0.66661	0.64326	0.37034	0.26418	-0.80660	0.32806	0.19426	-0.85911	-0.71846	0.28549	-0.00536	0.22822	0.33347	-1,65548	1.89113	-1.48415	-1,67386	-0.01008	0.57448	0.40563	-0.08257	-0.77438	-0.15404	-0.65418	-0.00771
	$\epsilon \mu \alpha$	0.003497	0.002271	0.002668	0.005562	0.001116	0.004034	0.004133	0.005364	0.003836	0.007129	0.005101	0.004890	0.003207	0.003822	0.003705	0.003085	0.006241	0.004895	0.001688	0.003006	0.004452	0.005118	0.004008	0.006092	0.001817	0.004647	0.003246	0.005051	0.002060	0.004094	0.002564	0.005843	0.002305
	$\mu\alpha$	0.060724	000793	0.017667	0.008580	0.068073	0.003628	0.025644	-,118093	0.005712	0.008998	0.006542	0.013608	0.023415	010208	004973	065124	036717	002254	022727	007508	0.019492	201775	011915	015415	0.079664	046636	046753	028332	011714	027715	011163	023500	047962
	$_{\theta}$.0204	.0234	.0311	.0204	.0381	.0383	.0315	.0449	.0437	.0280	.0358	.0592	.0249	.0220	.0201	.0217	.0320	.0616	.0127	.0266	.0311	.0274	.0324	.0285	.0470	.0475	.0317	.0537	.0323	.0497	.0255	.0653	.0233
		15.2799	7.5832	9.9837	14.8692	51,9664	7.4532	14.0526	10.8104	1.8425	4.9991	49.9266	40.2890	2.1503	50.4768	58.5254	33,4199	52.9824	24.2969	8.4090	23.1910	22.9271	34.8372	7.1647	3,4361	10.0620	17.0609	0.9982	13.3719	39.7246	0.8242	54.0338	14.5819	31.2837
	~	45	35	4	47	48	4	45	30	m	26	54	Н	53	2	2	46	35	59	7	4	80	10	30	8	29	26	26	52	42	26	m	22	21
		7	1	7	1	1	-1	7	7	7	-1	7	-2	-1	7	7	-1	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	1
_	ϵ_{α}	.00587	.00601	.00850	.00561	.00743	.00770	.00951	.01149	.00912	.00889	.00885	.01292	.00770	.00596	.00682	.00551	.01507	.01434	.00399	.00889	.00829	.01479	99600.	.01095	.00672	.01466	.00824	.01321	.00634	.00949	.00607	.01398	.00483
Table 9: (Continued)	ŏ	17.34684	18.12917	29.53770	28.77135	28.99720	31,34984	29.64336	32.03597	37.21380	38.21226	44.23487	47.07833	48.70671	3.53095	3.70193	2.65251	4.02314	8.39678	11.05013	16.17819	17.29480	17.30564	25.08372	26.26460	27.52105	26.29859	32,44426	36.42767	41,38188	43.65826	48.76817	50.79347	53.92755
9.		31	31	31	31	31	31	31	31	31	31	31	31	31	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32	32
Table	ш	8.50 5	9.35 5	11.15 5	6.75 5	10.05 5	5.65 5	9.05 5	7.60 5	10,95 5	6.70 5	10.03 5	10.27 5	8.73 5	10.90 5	10.90 5	8.35 5	11.00 5	9.33 5	9.90 5	10.00 5	11.00 5	10.90 5	10.80 5			10.10 5	8.20 5	10.95 5	8.55 5		30	10,33 5	8.75 5
	Z	81	48	39	93	41	74	22	21	39	70	45	32	73	36	42	90	32	40	88	21	33	51	39	33	49	35	87	31	99	64	84	29	81
	ACRS#	50249	0	0	50288	0	50298	0	50301	0	. 50318	514694	0	514697	0	0	50398	0	0	0	0	0	0	0	0	0	0	0	0	0	50542	20267	0	0
	AC#	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565

				Ta	ble	6	Table 9: (Continued)	_								
AC#	ACRS#	Z	Ε			-	α	ϵ_{α}		9		$g_{\mathfrak{Z}}$	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	θm_{θ}
999	0	70	8.	. 85	2	32	55.02705	.00516	7	4	57.9480	.0183	014023	0.002865	-0.05914	0.00868
267	0		10.0	.05	2	32	54.17010	.01148 -	7	36	22.5303	.0376	099430	0.004364	-0.00847	0.01461
268	50608		80	. 50	2	32	58.61795	.00845	寸	37	45,3391	.0347	141450	0.004023	0.35728	0.01375
269	50614	20	8.	10	S	33	1.28295	- 18600.	7	52	38.3427	.0322	0.024205	0.004731	-0.02128	0.01558
210	0	31	10.	. 20	2	33	4.49085	.01054 -	7	36	24.7783	.0325	016832	0.003989	0.27948	0.01263
571	50628	51	8	.35	2	33	4.16157	.01057	7	48	43.6016	.0460	005811	0.004315	-0.12527	0.01952
572	0	32	10.9	. 95	S	33	12.97658	- 67010.	7	28	26.7184	.0401	048879	0.003320	-0.57804	0.01446
573	0	34	9.87	37	S	33	13.51984	.01241 -	F	57	55.4344	.0524	-,039162	0.003919	0.30121	0.01538
574	0	23	11.00	00	2	33	16,39863	.01489	d	33	44,1183	.0434	-,023766	0.005800	-0.35894	0.01686
575	0	37	10,75	75	2	33	17,38357	- 00739	구	16	0.6749	.0326	030191	0.001321	0.37375	0.01556
216	0	27	10.80	90	5	33	18.66341	.00884 -	d	40	2.2805	.0302	053152	0.003359	-2,12541	0.00961
211	0	25	10.85	35	S	33	19,60490	.01192 -	F	44	12.4603	.0406	-,101121	0.004315	2.32468	0.01519
578	0	33	10.85	32	2	33	20,80351	- 72700.	7	27	11,7520	.0389	046689	0.002527	-0.40165	0.01439
579	0	14	9.95	35	2	33	26.79015	.02804 -	7	10	24.9553	.1244	242964	0.008774	0.14746	0,06215
580	0	64	8.40	0	2	33	27.89674	- 89700.	7	25	43.4380	.0222	0.046704	0.002957	2,38443	0,00903
581	0	42	8.77	17	2		26,98530	- 97600.	7	23	36.8408	.0352	014460	0.002670	0.04396	0.01027
582	50710	67	8.25	22	3	33	27.30632	- 03010.	-	47	36,8845	.0409	011630	0.004694	-0.19134	0.01812
583	0	30	10.15	2	2	33	30.60605	.00854 -	7	45	55.1062	.0389	015624	0.003334	-0.24004	0.01446
584	0		9.90	0	2	33	31,13437	- 27700.	7	33	58.9850	.0511	017226	0.001643	0.34682	0.01924
585	0		10.85		5	33	38.07662	- 01194 -	7	42	12.1293	.0315	-,024831	0.004320	0.04789	0.01308
587	0		8.60		5	33	44.41422	- 78800.	7	33	0.9886	.0316	014689	0.003431	0.38210	0.01305
588	50782	09	7.8		5	33	46.00834	- 00894 -	7	39	56.0436	.0493	009580	0.004194	0.04728	0.01879
589	0		10.77		5	33	45,80144	.01402 -	-2	Н	13,6548	.0587	016461	0,002786	-0.11890	0.01640
290	0	28	10.15		5	33	46.79116	.01614 -	7	52	38.6086	.0477	029149	0.005912	0.27310	0.01499
591	0	22	10.13		5		55.34693	.01345 -	7	57	51,6850	.0471	035703	0.004198	1.11927	0.01163
	50817	37	10.20	-,	5	33	56.40375	.00641 -	7	47	3,7019	.0383	107548	0.004402	0.39396	0.01498
	514813	140	7.95		5	33	59.26695	.00516 -	7	15	59,9035	.0272	0.038150	0.002542	-0.30356	0.01037
594	50825	41	7.40	0	5	33	59.15379	.01575 -	-2	0	49.6514	.0539	0.018141	0.005651	-0.39058	0.01943
595	0	102	9,95	5	5	34	1.73328	.00631 -	7	11	4.0000	.0265	0.019486	0.002513	0.73840	0.01039
296	50854	132	7.3	2	5	34	4.53242	- 00489 -	7	m	28.1729	.0252	-,000673	0.002028	-0.45429	0.00972
1597	0	48	8.70	0	5	34	4.00707	- 01110.	7	59	4.4738	.0661	049945	0.003458	0.09336	0.02136
598	0		10.45	2	5	34	13.21176	- 08800.	H	80	37.8743	.0371	0.110168	0.002558	-2.87477	0.01532
599	0	66	8.3	30 5	5	34	18.65407	- 96500.	7	26	54.5429	.0356	020191	0.002297	0.32376	0.01337

	$\epsilon \eta \delta$	0.01674	0.00754	0.01134	0.00762	0.02473	09600.0	0.01920	0.00735	0.02156	0.01851	0.00997	0.01409	0.01599	0.00842	0.01616	0.01612	0.01650	0.01449	0.01228	0.02223	0.03012	0.00899	0.01947	0.02015	0.02011	0.00939	0.02566	0.02058	0.01747	0.00617	0.02506	0.00971	0.02399
	η	2.88827	0.58086	0.74261	0.72330	-0.87732	0.65617	1.17826	0.85887	1.03002	0.26601	1.82571	0.95361	-0.76445	0.70426	0.58093	-0.06378	0.94684	0.26927	0.31765	0.29749	0.18614	0.05314	1.71551	0.59239	0.14135	-0.11095	-0.05916	-1.70083	0.36534	-0,38037	0.12676	-0.26738	0.01531
	$\epsilon \mu \alpha$	0.004418	0.002012	0.002992	0.003258	0.006456	0.002545	0.004668	0.002958	0.005153	0.004940	0.002941	0.002519	0.004647	0.001886	0.004493	0.002511	0.003974	0.004415	0.004177	0.003769	0.005504	0.002690	0.003788	0.004673	0.008632	0.003223	0.005650	0.004176	0.004052	0.003492	0.005642	0.004551	0.006213
	$\mu\alpha$	0.019977	024417	023077	068114	121423	036686	0.022053	038454	096771	0.010818	047233	033177	054055	024818	072500	115253	058125	0.014454	059160	0.008033	030921	013667	0.017961	204621	038118	024692	137013	0.233245	179073	057394	0.000294	007126	022337
	83	.0462	.0187	.0299	.0227	.0816	.0249	.0512	.0172	.0468	.0468	.0265	.0342	.0415	.0212	.0448	.0430	.0439	.0422	.0314	.0602	.0812	.0251	.0544	.0533	.0664	.0321	.0730	.0552	.0463	.0212	.0717	.0363	.0743
		50.4718	12.9170	53.7166	18.0646	40.7835	7,1997	40.6565	48.7713	1.1488	42.5526	9.5985	3.1497	5.6523	4.2529	51.7200	19.3019	3.0206	13.2688	48.7337	41.6844	49.6790	31,1280	0.1472	9,9292	42.2231	28.8655	59.8314	49,5301	27.8395	33.0435	43.6775	44.5319	29.4278
	0	16	20	27	34	57	39	14	41	48	4	S	27	53	19	36	29	17	53	46	4	11	23	10	5	55	25	11	11	15	33	Н	Н	22
		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	-2	7	7
_	ϵ^{α}	.01185	.00560	.00756	.00847	.03259	.00556	.01220	.00732	.00978	.01081	97700.	.00627	.01266	.00429	.01076	.00683	.01055	.01102	.01044	.01031	.01473	.00668	.01289	.01224	.02382	.00952	.01639	.01071	.01073	.00936	.01735	.01381	.02277
Table 9: (Continued)	σ	22.27596	24.49975	25.25938	27.16378	27.03417	30,60558	33.52083	42.72789	48.74905	57.08941	57.61643	2,72075	6.80380	11.66922	17.27545	20.39142	32.99340	33.41822	36.31133	38.35800	41.35169	49.48727	50.99005	0.20912	59.87429	9.29161	17.91274	22.84251	32.44738	33.26768	34.87016	39.59762	43.47103
e 9:		34	34	34	34	34	34	34	34	34	34	34	35	35	35	35	35	35	35	35	35	35	35	35	36	35	36	36	36	36	36	36	36	36
labl		5		2	5	5	5	2	5	2	2		S	5	5	5	'n	'n	S	5	5	2	S	S	2	2	2	2	S	2	2	S	2	Ŋ
	Ε	10.60	8.63	8.23	9.50	10.57	7.90	11.05	7.20	7.95	11.05	10.40	6.45	10.50	7.80	7.85	10.75	8.50	9.57	7.60	8.70	6.20	9.95	10.65	7.40	11.10	10.50	10.45	8.25	8.35	9.45	7.93	10.75	10.63
	Z	48	80	82	34	15	53	44	78	99	36	41	116	35	121	28	48	62	40	69	44	112	67	44	65	7	35	33	103	80	48	24	22	11
	ACRS#	0	0	0	0	0	50932	0	50974	50998	0		51045	0		51099	0	51147	0	51160	51170	51183	0	0	51248	0	0	514926		51362	0	51367	0	0
	# V	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632

	$\epsilon\mu_{\delta}$	0.00884	0.01523	0.01661	0.00791	0.01411	0.01026	0.01815	0.01486	0.00862	0.01056	0.01799	0.01935	0.01553	0.01688	0.01129	0.01573	0.01132	0.02181	0.01501	0.01711	0.02595	0.02266	0.01166	0.01917	0.02482	0.04543	0.01669	0.01790	0.01973	0.01966	0.01845	0.03045	0.04444
	48	0.00693	-0.96845	-0.05243	-2,53519	-0.21674	-0.06420	0.11334	0.36816	0.12371	0.28660	-1.03560	0.13325	-0.33731	0.14699	-0.82649	-11.16849	-0.02602	-0.47252	0.03747	-4.21067	-0.91396	-0.47233	-1.75778	-0.94543	-0.12759	-0.50270	-0.53557	-0.53283	1.02724	-2.75233	-0.15456	-0.28610	-9.03974
	$\epsilon \mu \alpha$	0.004149	0.003559	0.001624	0.004475	0.007934	0.003146	0.003911	0.004537	0.002424	0.006255	0.004452	0.008410	0.003126	0.003482	0.003301	0.003859	0.004583	0.002403	0.003232	0.004074	0.004130	0.007563	0.003869	0.004048	0.006600	0.009091	0.004245	0.006649	0.003574	0.004408	0.003675	0.007952	0.008685
	$\mu\alpha$	053803	030914	010095	0.081214	048634	045900	026456	003501	040056	024118	0.009037	023633	117131	016060	095122	0.192608	083399	9.009976	062140	072874	205158	0.018702	0.008723	257733	0.037803	116756	032007	069596	0.007449	054627	084197	061844	0.020573
	$_{\ell}^{}$.0273	.0407	.0477	.0440	.0752	.0262	.0504	.0361	.0212	.0582	.0420	.0626	.0414	.0425	.0256	.0395	.0337	.0629	.0401	.0383	.0735	.0541	.0299	.0577	.0815	.1309	.0402	.0501	.0451	.0582	.0519	.1337	.1247
		5.7046	4.0005	59.6584	38.1232	21,6933	14.9597	46.3864	17.6822	14.0823	47.6239	34.8721	9.0862	15.3828	4.2784	18.4965	22.3312	11.1437	19.4485	17.0523	17.9033	24.2744	21.6920	25.1243	6.0362	5.7411	12.9477	54.3083	0.7107	44.4766	0.7406	2,4663	2.1249	15.4204
	9	22	18	12	6	13	37	11	27	24	57	31	57	21	27	44	41	13	10	29	32	19	48	25	12	21	6	31	11	51	m	21	51	42
		7	7	-1	7	-1	-1	7	-1	7	7	7	7	7	7	7	7	7	-1	7	7	7	7	-1	7	7	7	-1	7	7	7	7	7	7
	ϵ_{α}	.01063	.00902	.00611	.01419	.02188	.00785	.01093	.01191	.00628	.01967	.00905	.02593	.00811	.00860	.00653	.00864	.01274	.01056	.00825	.00935	.01327	.01764	.00961	.01273	.02673	.02872	.01066	.01854	.01300	.01910.	.01101	.04125	.02585
Table 9: (Continued)		46.96624	47.14247	49.20444	51.40508	52.13286	53.03966	55.50156	4.09153	5.27612	23.43432	25.13800	25.05615	31:76285	31.89791	31.57950	34.83652	36.88996	41.08499	41.49167	44.21350	54.22073	54.86306	56.53656	10.08840	4.72039	8.22872	4.35526	27.51170	25.90031	44.97703	47.80626	52.65158	4.55316
9:	٥	98	96 4	96	98	98	99	99	12	12	17 2	17 2	17 2	7 3	17 3	17 3	17 3	7 3	37 4	37 4	7 4	7 5	7 5	7 5	8 1	8 1	8 1	8	8	8 2	8 4	8 4	8 5	6
ble		2	S	S	S	2	S	S	S	5	5	5	5	5	5	5	5	5	5	3	5	5	5	2	5	5	5	5 3	5	5	5	5	5	5
Ta	ш	10.80	10.05	10.65	9.65	11.05	8.40	10.35	11.05	8.40	9.63	9.10	6.87	10.65	7.25	8.10	8.30	9.00	11.00	7.15	9.10	11.00	10.60	9.02	10.05	8.38		7.07	8.30	9.03	8.33	8.03	11.05	9.40
	Z	41	41	26	47	21	61	37	32	85	16	63	24	41	6	78	82	39	22	93	65	15	20	40	15	17	11	25	44	34	16	32	10	32
	ACRS#	0	0	0	0	0	0	0	0	0	0	51524	51519	0	51551	51546	51565	0	0	51588	51599	0	0	0	0	0	51704	51720	51736	0	51797	51804	0	51862
	₩ A	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1680	1681

			T	able	.6	Table 9: (Continued)									
AC#	ACRS#	Z.	E			α	ϵ^{α}		9		θ_{\ni}	$\mu\alpha$	$\epsilon \mu \alpha$	911	ϵm_{θ}
1682	0	00	11.20	2	39	10.35178	.03445	H	49	32.7707	.1260 -	072962	0.005024	-1.49316	0.03077
1684	0	10	10.95	2	40	33.04406	.01725	7	34	46.8513	- 6080.	131961	0.009395	-0.32363	0.03971
1685	52181	21	7.85	Ŋ	40	37.44956	.01532	7	38	5.7537	.0683	0.015153	0.006023	-2.74789	0.02068
1686	0	13	10.95	2	41	8.51401	.01405	7	26	46.1057	- 6990.	006772	0.007955	-1.00975	0.03062
1688	0	11	10.50	Ŋ	41	25.12092	.01052	7	26	16.6879	.0650	0.009720	0.004616	-3.23671	0.01658
1689	0	12		2	41	24.96556	.01302	H	38	11.7621	.0385 -	125787	0.006134	-1.11117	0.01922
1690	52469	39	8.25	2	42	1.37506	.00570	7	38	5.3809	.0232 (0.159588	0.004644	-2.96824	0.01411
1691	52470	35	8.75	2	42	3.27021	.00691	7	40	59.7279	.0235 (0.033818	0.004982	1.27762	0.01410
1692	0	5	11.05	Ŋ	42	6.97655	.01624	-2	Н	7.7263	.0863	0.108499	0.005589	-2.79426	0.03005
1693	0	32	8.13	S	42	14.49636	. 00695	7	28	22.0037	.0313 (0.283510	0.004595	1.14905	0.01778
1694	0	0	10.85	S	42	28.46474	.00875	7	38	2.3515	.0382 -	229355	0.003880	-4.09389	0.02020
1695	52661	41	7.70	2	42	56.61968	.00876	宁	38	1.3402	.0264 (0.856706	0.008616	-5.70499	0.02255
1696	52650	39	8.47	2	42	55.96261	.00780	7	55	38.2604	.0270 -	148391	0.004677	-1.48993	0.01731
1697	0	21	9.60	S	43	1.04108	.01130	런	28	48.7094	.0433 -	042777	0.004834	-0.66251	0.02921
1698	0	11	10.40	2	43	40.16661	.01284	구	41	11.3175	- 9650.	103549	0.005836	-1.73536	0.01469
1699	52812	35	8.25	2	43	40.48660	. 00787	구	32	30.3547	.0237 -	034505	0.004955	0.38737	0.01613
1700	0	19	9.80	2	43	42.66996	.01228	ᅻ	31	52.8119	.0455 -	060451	0.006001	0.08051	0.01654
1702	0	e	10.95	2	44	13,25745	.06281	7	35	31.1902	.1986 -	128256	0.009645	-0.02011	0.02838
1703	52944	11	8.50	2	44	22.10341	.02224	구	41	57.1804		063086	0.007198	0.93690	0.02897
1704	52946	8	8.60	2	44	23.05029	.03484	겉	44	12.9459	- 6770.	108084	0.011572	-0.51186	0.01286
1705	0	9	9.85	2	44	31.76164	.03863	7	31	11.9174	.1431 -	070779	0.007193	-0.45150	0.03710
1789	0	17	10.80	Ŋ	14	32.20947	.01415	2	23	17.5169	.0482 (0.014226	0.006551	-3.29478	0.02339
1790	47240	62	7.65	2	14	40.17314	.00476	7	0	56.8665	.0147 (0.038505	0.003299	0.07247	0.00962
1791	47237	10	8.25	2	14	39.05755	.04916	7	37	58.8428	.1226 -	145201	0.011678	1.21912	0.02634
1792	0	17	9.20	2	14	44.55478	.01268	7	16	14.9842	.0562 -	062776	0.007610	2.89751	0.05032
1793	0	7	10.75	2	14	44.43893	.05002	-5	30	49.7029	.2326 -	-,055085	0.008231	-0.73116	0.04179
1794	0	24	9.45	2	14	47.67654	.01218	-5	12	13.5087	.0468 -	070079	0.009312	-0.27244	0.03974
1795	0	7	11,10	2	14	47.98073	.05861	7	33	22.8488	.1679 -	117762	0.010556	-0.98919	0.04028
1796	0	7	10.40	S	14	57.11442	.02967	7	27	48.3745	.1128 -	040793	0.006077	-0.80766	0.02992
1798	0	23	9.75	S	15	12.51040	.01231	7	7	41.0763	.0384 -	209620	0.012170	1.87413	0.03563
1799	0	7	10.40	2	15	14.83018	.03797	7	39	47.4065	.1079 -	077418	0.006782	-1.77177	0.02343
1800	0	37	9.35	2	15	25.08451	.00577	7	0	54.2104	.0187 -	097703	0.001867	-2.25262	0.00949
1802	47364	39	9.20	Ŋ	15	24.77894	.00836	7	19	10.5115	.0322	-,220503	0.008075	0.47339	0.02830

				Lab	le 9	Fable 9: (Continued)	tinued)									
AC#	ACRS#	Z	Ε			ά		ϵ_{α}		9		θ_{\ni}	μ_{α}	$\epsilon \mu \alpha$	η	$\epsilon \mu \delta$
1839	0	21	11.25		5 18	8 51.6	51.60520	.01075	-2	4	34.5730	.0366	0.074382	0.005751	-0.64785	0.01653
1840	47988	35	9.05	5 5	1 8	8 51.7	51.70803	.00880	-2	42	50,5343	.0406	067332	0.007744	-0.34153	0.03880
1841	0	10	10.77	7 5	1 5	9 7.8	.84122	.03816	-2	54	29.3816	.1150	-,084572	0.008430	0.20533	0.02366
1842	48034	47	8.20		5 15	9 8.5	53416	.00958	-2	2	55,7183	.0519	004459	0.004885	0.81198	0.02288
1843	0	43	8.30		5 19	9 8.5	54277	.01361	-2	2	55.6072	9690.	037652	0.005464	-0.21329	0.02696
1844	0	11	10.30		5 19	9 10.1	10.15935	90290.	6	0	36.4269	.1927	-,008299	0.011112	0.06909	0.03124
1845	0	18	11.10	0 5	15	9 10.7	10.78542	.01357	-2	46	41.9124	.0437	020013	0.009978	1.01995	0.02740
1846	0	19	10.90	0 5	1 5	9 11.3	11.33135	.01216	-2	27	29.2683	.0326	065127	0.002472	0.63734	0.01020
1847	0	34	11.10	0 5	1 5	9 24.6	24.67657	.01219	-2	17	20.9679	.0322	067225	0.007357	-0.36132	0.01404
1848	48082	51	6.47		5 19	9 27.9	27.96516	.01194	6	0	40.4737	.0524	-,111067	0.005320	-0.94220	0.02194
1849	0	21	9.20		5 19	9 28.5	28.59710	.00658	-2	28	23.9975	.0316	-,106545	0.001763	-1.45391	0.03061
1850	0	09	9.00	5	٦	9 31.3	31.34353	.00700	-2	39	6.0018	.0207	049544	0.004551	0.99049	0.01594
1851	0	29	10.85	5	1.5	9 31.9	31.99615	.01212	-2	30	20.1057	.0241	147029	0.009582	0.52234	0.01944
1852	0	31	10.95	5	1.5	9 35.2	35.20834	.01253	-2	29	35.3538	.0212	074812	0.005382	-1.22393	0.00636
1853	0	32	10.15	5	1.5	9 37.6	63698	.02060	-2	16	4.0354	.0533	0.094131	0.008111	1.72207	0.02569
1854	0	31	10.75	5 5	15	9 37.7	37.71375	.00887	-2	35	1.1026	.0281	082054	0.006725	-0.23835	0.02221
1855	0	20	11,25	5	1.5	9 43.9	91194	.02020	-5	13	51.0700	.0617	0.095338	0.008960	1.63480	0.03327
1856	0	28	11.05	5	15	9 52.7	52.72771	.00925	-2	7	52.6742	.0445	069253	0.005035	1.37921	0.03503
1857	0	33	10.90	5	15	9 53.9	91040	.00858	7	38	47.6472	.0345	114344	0.002111	0.25594	0.03508
1858	0	37	10.55	5	20	0 0.5	53575	.00815	-2	20	24.0459	.0276	088609	0.005867	-0.20538	0.01895
1859	0	39	11.05	5	20	0 1.4	43607	.00797	-2	7	45.0176	.0310	041073	0.003046	-1.05072	0.01492
1860	0	36	10.50	5	20	2.3	2.30895	.00973	-2	52	57.2251	.0299	065977	966100.0	0.01643	0.02094
1861	0	44	10.90	5	20		2,85142	.00940	7	20	47.7362	.0337	0.044544	0.006229	2.02850	0.03199
1862	0	34	10.65	5	20	3.1	3.14830	.01622	-2	23	42.8333	.0363	052890	0.008876	0.55388	0.00633
1863	0	23	10.55	5	20	13.8	13.85736	.01566	-2	12	23,9911	.0533	-,132911	0.014543	-1.35723	0.04704
1864	48239	47	8.15	5	20		26.54628	.00715	-2	11	45,4324	.0334	0.014367	0.003932	0.52970	0.02511
1865	0	20	11,15	5	20		26.88749	.03055	7	32	4.2140	.0519	0.034495	0.012183	-1,27825	0.03545
1866	0	28	10.67	7 5	20		29.60231	.02236	7	59	11.0120	.0740	-,197768	0.004355	0.66362	0.02753
1867	0	11	9.05	5	2	0 30.2	30,21620	.02778	-2	23	8.9548	.1265	0.001077	0.008075	3,73561	0.02684
1868	48255	39	8.40	5	2	0 30.9	30.98032	.01010	-2	Н	52.4836	.0369	-,014911	0.006596	0.01021	0.02914
1869	48267	72	8.57	5	20	34.5	34.57892	.00725	-2	58	45.8785	.0400	-,303618	0.003490	0.69811	0.01595
1870	0	24	10.65	5	20	35.5	35,56865	.00903	-2	47	12.4391	.0383	130991	0.006799	-2.05575	0.02627
1871	0	18	11.35	5	20	41	.03735	.01425	-2	34	15.5613	.0523	092595	0.007198	0.22138	0.03293

				Tab	le 9	₹.	Table 9: (Continued)										
AC#	ACRS#	Z	E			ŏ		ϵ_{α}		8		θ_{\ni}	μ_{α}	$\epsilon \mu \alpha$	448	$\epsilon\mu_{\delta}$	
1872	0	25	11.25		5 20		42.45171	.01182 -	-2	57 2	21.6148	.0400	024969	0.002716	0.42211	0.02568	
1873	48307	71	8.40	0.0	5 20		50.36317	.01027 -	-2 1	19 2	21.1119	.0339	0.108294	0.010645 -	-10,62092	0.03474	
1874	48310	22	10.20	0.5	5 20		50.58394	.01243 -	-5	2 5	58.9894	.0331	0.027113	0.008444	-0.90002	0.02425	
1875	0	-		55	21		0.84137	.00853 -	-2 2	23 3	33.2009	.0309	027488	0.006972	0.46310	0.02585	
1876	48343	67	8.65	5 5	21		3,67112	- 86500.	-2 5	51	2.9683	.0267	055066	0.005109	-0.01122	0.02430	
1877	0	21	10.75	5.	21		5.23467	.01228 -	-2 3	36 3	39.4249	.0421	146262	0.008348	-1,77610	0.03155	
1878	0	21	10.90	00	21		7.47456	.03053 -	-2	5 1	14.8699	.0804	168505	0.015517	-1.32172	0.05027	
1879	0	20	10.75	5 5	21		7.52013	.01744 -	-2	5 1	14.9023	.0527	085891	806600.0	0.19981	0.02671	
1880	0	13	10.45	5 5	21		7.99832	.02118 -	-2 1	10 5	58,4875	.0330	0.154657	0.018454	-1,43439	0.02257	
1881	0	22	10.55	5 5	21		8.39167	- 02989	-2 2	21	8.9998	.0496	0.112267	0.005776	-0.34937	0.03260	
1882	0	19	11.15	5	21		13,64517	.01406 -	-2 4	47	1.6060	.0508	019936	0.011535	-1.64580	0.04476	
1883	0	26	11.20	0.5	21		15.81240	.01167 -	-2 5	51 3	38.2793	.0679	-,122650	0.009291	0.06693	0.05898	
1884	0	25	10.85	5 5	21		26.93446	- 67010.	2 1	15 2	20,1988	.0314	-,110112	0.006631	-0.61405	0.01679	
1885	0	23	11.03	3 5	21		29.51059	.01290 -	-2 5	55 2	29.6875	.0433	056355	0.007924	-0.79018	0.02824	
1886	0	24	10.30	0 5	21		39.11126	.01296 -	-5	9	4.4934	.0381	257398	0.009804	-2.04377	0.02854	
1887	0	21	10.20	0.5	21		39.96784	.01229 -	-2	34	5.5728	.0339	074770	0.007568	-1.18611	0.02262	
1888	0	17	11.40	0.5	21		40.72930	.01394 -	-2 4	47 5	52.4630	.0505	011429	0.007313	-0.65019	0.03189	
1889	0	22	11.20	0.5	21		42.19473	.01644 -	-2	0	42.0954	.0381	179566	0.008528	-1.18470	0.02822	
1890	0	26	11.43	3 5	21		42.07379	- 01194 -	-2 5	26	8.0090	.0366	060297	0.004724	-0.44178	0.01900	
1891	0	21	10.45	5 5	21		46.01416	.01481 -	-2 5	51 2	20.2511	.0646	065666	0.012801	-1.27333	0.05092	
1892	0	25	11.40	0 5	21		50.43437	- 01299 -	-2 2	26 5	56.5833	.0523	-,115865	0.004242	0.12481	0.03900	
1893	0	28	10.65	5 5	21		51,88181	.01163 -	-2 2	28 3	36.8228	.0374	094048	0.005248	0.24790	0.02296	
1895	0	28	10.30	0 5	21	. 2	58.33495	01040 -	-2	7 1	18.9395	.0321	-,217501	0.007138	-0.94872	0.01427	
9681	48504	92	9.30	0 5	21	25	58.54720	.00574 -	ღ	0 5	58,6023	.0201	039189	0.003645	-0.26529	0.01334	
1897	0	52	9.92	5 5	22		3.70675	- 00928 -	-2 1	15 1	12,9951	.0289	104080	0.004038	-2.61253	0.02081	
8681	0	28	11.05	5 5	22		3.58752	.01428 -	-2 2	25 1	17,3855	.0466	258210	0.008948	-0.68587	0.03322	
6681	0	19	10.40	0 5	22		4.11512	.01185 -	-2	36 5	55.9251	.0350	057163	0.006424	0.83194	0.02706	
1900	0	11	10.85	5 5	22		5.42137	- 02090	-2 3	31	4.0301	.0811	0.049312	0.007237	-4.93286	0.02328	
1061	48539	39	6.35	5	22		9.52970	.00863 -	-2	32 3	31.4592	.0369	074439	0.006413	0.62433	0.03218	
1902	0	39	11.23	3 5	22		13.00248	01118 -	2 4	6	52,2023	.0366	066416	0.006405	-0.22477	0.02808	
1903	0	31	9.30	0 5	22		21.80828	.01512 -	-2 2	27 3	31,3533	.0328	067444	0.007646	0.34380	0.01694	
1904	0	102	9.17	7 5	22	21	. 83774	- 97500.	2 5	d	5.4478	.0275	0.113854	0.005431	0.53828	0.02129	
1905	0	24	10.37	7 5	22	22	.28716	01044 -	-2 4	41 2	22.1823	.0398	041562	0.005262	0.60537	0.02426	

ACRN# N m				I	[ab]	le 9	<u>ي</u>	Table 9: (Continued)									
0 21 110.00 5 22 29,00191 101372 - 22 56,3397 10344 0.1175381 0.007356 0.62184 0.1110.00 5 22 29,00191 101272 - 25 56,3397 10344 0.117580 0.007356 0.62184 0.6091 0.207356 0.20191 101272 0.20191 0.2077 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.005131 0.10797 0.107	AC#	ACRS#	Z				Ö		ϵ_{α}		8		$g_{\mathfrak{z}}$	$\mu\alpha$	$\epsilon \mu \alpha$	$\theta \eta$	θm_{θ}
0 21 110.05 5.2 29,00191 01372 - 2.5 7.6,3997 034 0.117580 0.007563 - 0.78181	90	0	23	10.03	5	22		7.03669					.0332		0.007432	0.81329	0.02339
0 21 10.99 5 22 30.2336 00817 -2 153.5888 0255 -0.572270 0.005010 -1.27994 6869 18 6.775 5 22 30.23368 00817 -3 0 30.7158 0.0256 -0.572270 0.005010 -1.27994 68611 48 8.077 5 22 30.23368 00817 -3 0 30.7158 0.0256 0.04459 0.00444 -0.7977 64 10.85 5 22 30.23368 0.0017 -2 22 35.2131 0.055 0.04451 0.00444 -0.7977 61 1.30 6 1.30	7	0	21	11.00	5	22	2	9.00191							0.007356	0.62884	0.03441
48609 41 0.73 5 22 30.71305 00648 - 2 13.5.588 0.265057227 0.005010 - 1.7994 (4651 48 0.07 5 22 36.2838 0.00817 - 3 0 37.158 0.265 0.04559 0.00446 - 0.79976 (4651 48 0.07 5 22 36.2838 0.00817 - 3 0 55.7158 0.265 0.04559 0.00446 - 0.79976 (4651 48 0.07 5 22 36.28238 0.00817 - 3 0 55.7158 0.265 0.04559 0.005004 - 11.11378 0.28 11.205 5 22 49.37303 0.0049 - 2 35.2133 0.035706983 0.04610 0.00665 - 1.06665 0.00665 0	8	0	21	10.90	5	22		0.88313				15.4867	.0332		0.005563	-0.78181	0.02516
4 8 10 10 5 5 2 3 2 2.2386 0 10107 2 2 9 5.7128 0 333 - 113773 0 105504 - 1.11379 0 4 10 10 20 5 2 2 49.0349 0 10107 2 2 2 95.7128 0 333 - 113773 0 105504 - 1.11379 0 10 10 20 5 2 2 49.0343 0 10107 2 2 2 95.7128 0 333 - 113773 0 100416 1 0 2.2456 0 1 4 1 9.30 5 2 2 49.0343 0 1024 2 2 3 7.211 0 10 20 5 2 - 0.65470 0 10046 1 0 0 24562 0 1 4 1 9.30 5 2 2 49.0343 0 1024 2 2 1 7.3721 0 10 20 5 2 0 0.00461 1 0 0 24562 0 1 0 2 0 2 2 1 1.15 5 2 2 49.90819 0 10024 2 1 3 7.3721 0 10 20 5 2 0 0.00461 1 0 0 2 2 1 1.15 5 2 2 2 9.00819 0 10056 2 2 3 9.352 0 10 2 5 2 0 0.00868 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	60	48609	81	6.73	.5	22		0.71305				33.5888	.0265		0.005101	-1.27994	0.01749
48631 48 8.075 2 36.89723 0.0565 2 25 55.7728 0.33411373 0.05004 - 11.1378 0.0504 0.01055 0.024652 0.024652 0.024652 0.01075 0.05546 0.010461 0.024652 0.02462	0	0	45	10.85	5	22		2.28368		e,		30.7158	.0260		0.004946	91061.0-	0.01821
0 21 11.35 5 22 49.37303 01107 - 2 22 35.2113 0.537 - 0.06993 0.091061 0.2465 0 0 14 19.30 5 22 49.37303 011049 - 2 13 7.3721 0373 - 2.65770 0.008685 - 1.56494 0 0.214 - 2 33 18.6550 0386 - 0.19208 0 0.010651 - 0.09065 0 0.2245	H	48631	48	8.07	5	22		6.89723				55.7028	.0343		.005004	-11.11378	0.03363
0 28 11.35 5 22 49.0844 01214 - 2 33 18.6305 0.0356 - 0.19208 0.01065 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	0	43	10.20	. 5	22		1.12680				35.2113	.0537	069893	0.004161	0.24562	0.03401
0 66 875 5 22 49.37303 01049 - 2 13 7.3721 07373C65770 0.006655 - 1.56494 (0.22445 0.22441 0.22424 0.2242	m.	0	28	11.35	5	22		9.05484			33	18,6305	.0356	019208		-0.09065	0.02909
0 56 8.75 5 22 49.90819 000846 2 3 9.48232 0375 0.05346 0.006767 -0.96111 0 22 11.15 5 22 58.21899 000996 -2 3 9.5322 0375 0.05349 0.006767 -0.96111 0 22 10.65 5 22 58.21890 0.01360 -2 3 0.16.727 0.0424 -1.67425 0.005408 0.01335 0.44 10.00 5 23 1.77953 0.01360 -2 3 0.16.727 0.0424 -1.67425 0.005408 0.01335 0.21094 0.4 10.00 5 23 1.77953 0.00347 0.01268 0.0333 0.010158 0.004978 -0.57741 0.03510.95 5 23 10.99515 0.09977 0.01368 0.0333 0.010158 0.004978 -0.57741 0.03510.95 5 23 10.49575 0.00947 0.00752 0.004978 0.057741 0.03510.95 5 23 11.49477 0.0113 -2 13 50.005 0.0345 0.009476 0.09922 0.09922 0.026112 0.02914 0.00942 0.00942 0.00942 0.026112 0.02914 0.00942 0.00	4	0	41	9.30	5	22		9.37303			13	7,3721	.0373	265770	.00868	-1.56494	0.03297
0 22 10.15 5 22 58.28439 00996 2 3 9.3532 0377 - 0.66540 0.005676 - 0.96111 0 22 10.65 5 22 58.218439 01366 2 3 10.6577 0.424 - 1.67425 0.005408	S.	0	99	8.75	5	22	4	9.90819	.00848 -			14.8233	.0255	0.038346	87900.	-0.52845	0.02360
0 221 0.65 5 23 1.71933 0.01360 - 2 30 16,6727 0.0326 0.039817 0.010550 0.02393 0.044 11.00 5 23 1.71933 0.01427 - 2 51 144.2575 0.0326 0.039817 0.010550 0.03981 0.0333 0.04410 0.05 5 23 1.71933 0.04427 - 2 51 144.2575 0.0325 0.010158 0.004978 - 0.57741 0.04410 0.045 5 23 1.0455 5 23 1.0454 2.0454 0.0346 0.01058 0.01058 0.004978 - 0.57741 0.0452 0.04	9	0	32	11.15	5	22		8.28439	- 96600.	-2	m	9.3632	.0387	069640	0.006767	-0.96111	0.02649
0 44 10.40 5 23 5.72915 .00977 - 3 18.0328 .0332 0.10158 0.04978 - 0.57741	7	0	29	10.65	5	22		8.21830				16.6727	.0424	167425	0.005408	0.81335	0.03559
0 35 10 95 5 23 7.08917 - 35 8.0.0987 - 3 28 0.088 0 0.007056 0 0.05741 1 0.05510 95 5 23 7.089291 0.05742 1 0.05742	80	0	44	11.00	2	23		1.71953				14.5275	.0372	0.039817	0.010550	-0.32094	0.03103
0 35 10.95 5 23 17.8887 0.0564 2 4 59.3927 0.317 - 18547 0.00944 0 - 0.71630 0.8918 0 1.8 5 23 11.7712 0.0956 2 4 59.3927 0.317 - 18547 0.00944 0 - 0.71630 0.318 0 1.8 5 23 11.7472 0.0956 0.317 - 18547 0.00946 0 0.9923 0 0.317 0.517 0.00946 0 0.9923 0 0.317 0.517 0.00946 0 0.9923 0 0.9145 5 23 11.4947 0.0113 2 13 58.806 0.0946 0.09328 0.00936 0 0.9923 0 0.9145 5 23 18.8775 0.0569 2 23 29.845 0.00998 0 0.0998 0 0.0998 0 0.9923 0 0.9924 0 0.9	6	0	44	10.40	2	23		5.02915		6		38.0988	.0333	0.010158	0.004978	-0.57741	0.01824
48719 81 8.15 5 23 11.77702. 00986 - 2 4 59.9297 0.3717 - 185875 0.009440 - 0.71530 0 2 61 1.20 5 23 11.77702. 00986 - 2 4 59.9297 0.3371 - 185875 0.009946 - 0.71530 0 2 61 1.20 5 23 112.49467 0.1113 - 2 13 59.8066 0.334 0.04533 0.009976 - 0.04523 0 2 61 1.20 5 23 118.87275 0.0218 0.060976 0.050976 0.05923 0 11.45 5 23 18.87275 0.0218 0.060976 0.05923 0.060976 0.05923 0.05923 0.060976 0.05923 0.	0	0	32	10.95	5	23		7.88827				47.7516	.0386	0.149647	0.007502	1.81587	0.02417
0 26 11.20 5 23 115.47467 0.1113 - 21 58.8 8.066 0.01537 0.015538 0.009528 0.09523 0.01537 0.01528 0.01537 0.01528 0.0	н	48719	81	8.15	.2	23		1.77702		7		59.9297	.0317	185875	0.009440	-0.71630	0.02605
0 26 11.26 5 23 11.5769 0.0218 - 2 48 45.4204 0.450 0.015537 0.009297 - 0.04523 0.09126 66 7.25 5 22 18.67275 0.01679 - 2 33 29.8460 0.0460 - 0.09328 0.009297 - 0.04523 0.09126 66 7.25 5 22 24.8775 0.04597 - 2 24.1.3222 0.027 0.046095 0.009205 0.03710 0.3114 55 23 29.97844 0.0947 - 3 0 16.1116 0.349 0.016128 0.009298 0.22378 0.13114.55 23 30.64619 0.05673 - 2 312.1071 174 0.020732 0.016614 - 34.9271 0.13114.55 23 37.84059 0.00947 - 3 0 16.1116 0.20732 0.020732 0.016614 - 34.9271 0.2073 0.01614 - 34.9271 0.2073 0.01614 - 34.9271 0.2073 0.02073 0	2	0	38	9.95	.2	23		2.49467				58.8068	.0374	0.042338	0.009786	0.99523	0.03272
0 9 11.45 5 21 18.87275 0.04679 - 23 29.8467 0.466099228 0.099226 0.03710 0.48756 86 7.20 5 23 24.87275 0.05939 - 2 2 2 41.3522 0.207 0.160395 0.06030 2.27455 48774 38 10.20 5 23 24.8726 0.05939 - 2 2 2 41.3522 0.207 0.160395 0.06030 2.27455 48774 38 10.20 5 23 24.8747 0.0947 - 2 0 16.1116 0.349 0.016518 0.005958 0.22378 0.2374 0.09	m	0	26	11.20	2	23		7.53769				45.4204	.0430	0.015037	0.009297	-0.04523	0.03122
48756 (6 7.20 5 23 24,48706 00593 - 2 24 1.3522 (2.077 0.160395 0.006030 3.27455 48745 38 10.20 5 23 29.7434 0.09597 - 2 24 1.3522 (2.077 0.160395 0.006598 0.223748 974 38 10.20 5 23 29.7434 0.09597 - 2 312.107 1.114 6.5 23 30.6489 0.0567 - 2 312.107 1.114 6.05273 0.01614 - 3.4971 0.03 11.50 5 23 36.9437 0.0067 - 2 18 2.1157 0.01614 - 3.4971 0.03 11.50 5 23 37.8658 0.0776 - 2 18 51.1635 0.03 1.05 0.00766 0.03778 0.02139 0.03778 0.02139 0.03778 0.02139 0.0272 0.0272 0.00766 0.020378 0.02139 0.0272 0.0272 0.00766 0.020378 0.02139 0.0272	4	0	6	11.45	.2	23		8.87275				29.8460	.0460	098328	0.009726	0.03710	0.03829
48774 8 310.20 5 23 29,78344 .00947 -3 0 16,1116 .0349 0.016518 0.005958 0.22738 0.23738 10.23 11.45 5 23 30.64819 .00547 -3 0 16,1116 .0349 0.020732 0.016614 -3.49271 0.3 11.40 5 23 30.64819 .005476 -2 19 12,1007 1.734 0.020732 0.016614 -3.49271 0.00 4.00 5 23 31.00 6.3 37.84058 .00776 -2 18 51.6392 0.0218 -2.23312 0.00776 -0.10 6.00 5 0.00 5	2	48756	86	7.20	5	23		4.85706				41.3522	.0207	0.160395	0.006030	3.27455	
0 23 11.56 5 23 36.04819 0.06573 - 2 3 12.1307 1.744 0.02732 0.016514 - 3.49271 0.02 11 15.05 5 23 36.04937 0.09546 - 2 49 38.1323 0.0451088789 0.03378 0.21039 48807 70 8.40 5 23 37.88658 0.0776 - 2 18 51.1695 0.223 0.02378 0.007636 - 0.30878 0.32 0.35 5 23 37.88656 0.01184 - 2 18 51.1647 0.437 0.11849 0.007639 - 0.007639 0.05239 0.32 0.32 5 23 38.18656 0.01184 - 2 18 51.1647 0.0076 0.007689 0.05239 0.01573 0.0076 0.05239 0.01572 0.0076 0.05239 0.01572 0.0076 0.05239 0.01572 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0076 0.0077 0.0076 0.0076 0.0077 0.0076 0	و	48774	38	10.20	5	23		9.78344		e,		16.1116	.0349	0.016518	0.005958	0.22378	0.02183
0 2311.50 5 23 36.9437 00940 - 2 49 38.11023 0.451088789 0.00378 0.21039 4807 70 8.40 5 23 37.84085 0.0776 - 2 18 51.6235 .0281223312 0.007656 - 0.30378 0.51039 0.55 9.55 5 23 37.84085 0.01846 - 2 18 51.1447 0.437 0.118495 0.008975 3.381008 0.0370.35 5 23 38.88566 0.0184 - 2 18 51.1447 0.437 0.118495 0.008975 3.381008 0.05283 0.1111.50 5 23 39.18456 0.07162 - 2 5 9.7447 0.0070 0.077689 0.077052 0.07763 0.077052 0.07763 0.077052 0.07763 0.07763 0.07765 0.0776	7	0	13	11.45	5	23		0.64819		-5		12,1307	.1734	0.020732	0.016614	-3.49271	
48807 70 8.40 5.33 7.84085. 00776 2 18 51.6335. 0281253312 0.007636 -0.30878 0 5 9 5.55 5 23 37.84085. 00716 2 18 51.1347 .0477 .0470 .0114495 0.008975 3 81008 0 2 10.35 5 23 37.84086. 01144 - 2 0.15.499 .0367 0.201680 0.009608 0 .05293 0 1111.50 5 23 39.14345 0.07702 - 2 4 52.4650 0.0770 - 0.0770 - 2 4.047 .0801 0.057869 0.00269 0 .05293 0 15 11.40 5 23 40.57251 .02370 - 2 5 9.7447 .0801 0.057869 0.02397 0.77565 0 15 11.40 5 23 43.11022 .01472 - 2 5 0.7744 .0801 0.057869 0.07297 0.77565 0 16 10.80 5 23 43.21229 .01181 - 2 30 40.3326 .044807590 0.009974 0.77656 0 2 6 10.68 5 23 45.2229 .01181 - 2 30 40.3326 .044807590 0.008948 1.10406 0.008958 0.06625 0 5 9 9.95 5 23 55.23295 0.00773 - 2 55.1.670 .0558 0.0658 0.05682 0 .06662 1.10406	8	0	23	11.50	2	23		5.94337				38.1023	.0451	088789	0.003778	0.21039	0.02529
0 55 9.55 5 23 37,88658 0.0184 - 2 18 51,1447 0.437 0.118495 0.009995 3.81008 0 2 20 10.35 5 23 39,88566 0.0144 - 2 0.015,4949 0.367 0.201680 0.009608 0.05293 0 1111.50 5 23 39,14936 0.02702 - 2 4 52,4699 0.077 0.77487 0.010289 0.01293 0 1111.40 5 23 40,67251 0.02702 - 2 5 9,7047 0.801 0.057869 0.01297 0.77553 0 211.30 5 23 43,11082 0.0472 - 2 5 0.7747 0.801 0.057869 0.01297 0.77553 0 16 10.80 5 23 43,120.29 0.01472 - 2 5 0.7747 0.43 0.0479 0.077869 0.07766 0 16 0.08954 0.01297 0.07869 0 10 0.05789 0.00958 0.00978 0.00978 0.0	0	48807	70	8.40	2	23		7.84085				51,6935	.0281	223312	0.007636	-0.30878	0.02317
0 32 10.35 5 23 39.88566 01144 -2 20 15,4949 0357 0.501680 0.002608 0.05293 0 1111.50 5 23 39.18456 0.2702 -2 4 \$2.4509 0.067 0.074387 0.010269 -0.46054 0 15 11.40 5 23 40.57251 02370 -2 5 9.7447 08010 0.057869 0.012339 0.77553 0 25 23 43.11082 0.0472 -2 5 9.7104 0473 0.123330 0.010239 0.77563 0 16 10 80 5 23 43.21292 0.01412 -2 5 0.7104 0473 0.123330 0.01058 -0.98764 0 16 10 80 5 23 43.21292 0.0181 -2 20 40.3322 0.445 -0.75500 0.00768 -0.98764 0 26 10.63 5 23 45.2229 0.0181 -2 20 40.3322 0.445 -0.75500 0.009944 -1.10406 0.55 9.98764 0 25 0.01685 2 3 5 5.23359 0.0073 -2 5 5 1.6873 0.005682 0.056682	0	0	22	9.55				7.88658	.01184 -			51.1547	.0437	0.118495	0.008975	3.81008	0.03421
0 1111.50 5 23 39.18458 0.02702 2 5 8.2.4659 (6070074879 0.010269 - 0.46054 0.057460 0.05	-	0	32	10.35		2		3.88566	.01144 -			15.4949	.0367	0.201680	0.009608	0.05293	0.02828
0 15 11 40 5 23 40.67251 .02370 - 2 5 9.7047 .0801 0.057869 0.012397 0.77563 0 22 11.30 5 23 43.11082 0.0472 - 2 5 0.7747 .0801 0.057869 0.012397 0.74563 0 16 10.80 5 23 43.11082 0.0477 - 2 5 2 50.7749 .0473 0.12333 0.010577 0.34664 0 26 10.63 5 23 43.21229 0.0181 - 2 30 40.3026 .0438053828 0.00768 - 0.98764 0 26 10.63 5 23 45.03520 0.02363 - 2 56 28.7382 0.045075500 0.008944 - 1.10406 0 2 10.08 5 2 5 5 5.2355 0.0374 - 2 13 2 3.4665 2 0 5 5 9.93 5 23 5 5.2359 0.0073 - 2 5 5 5.4670 .0253 0.168773 0.005462 - 1.80147	2	0	11	11.50				9.18436		-2		52,4509	0670	074387	0.010269	-0.46054	0.02205
0 22 11.30 5 23 43.11082 .01472 - 2 5 20.7104 .0473 0.123330 0.010577 0.34864 0 16 10.80 5 23 443.21229 .01181 - 2 30 40.3026 .0438053828 0.007068 - 0.98764 0 26 11.063 5 23 45.05320 .02263 0.2645075500 0.000948 - 1.10406 0 26 10.68 5 23 55.23520 .02263 - 2 56 28.7382 .0445075500 0.000948 - 1.10406 0 2 0.052 2 53 55.23579 .01374 - 2 12 30.4065 .0636 0.121096 0.000828 0.96682 0.96682 0.96682 0.05680 0.2670 0.168173 0.005462 - 1.80147	3	0	15	11.40			-	0.67251		-2	2	9.7047	.0801	0.057869	0.012397	0.77563	0.05699
0 16 10.80 5 23 43.21229 .01181 -2 30 40.3026 .0438 - 053828 0.007068 -0.98764 0 26 10.63 5 23 45.03520 .02363 -2 56 28.7382 .0445 .075500 0.008944 -1.10406 0 20 10.85 5 23 51.23353 .01374 -2 1.2 30.4065 .0636 0.121906 0.008258 0.96682 0 55 9.93 5 23 58.37379 .01073 -2 55 51.6700 .0263 0.168173 0.005462 -1.80147	4	0	22	11,30			4	3.11082		-5		20.7104	.0473	0.123330	0.010577	0.34864	0.01942
0 26 10 63 5 23 45.03520 .02363 -2 56 28,7382 .0445075500 0.008944 -1.10406 0 0 26 10 63 5 23 51.23353 0.10174 -2.12 30,4465 .0536 0.121996 0.008258 0.056682 0 0 55 9,93 5 23 58,3729 0.101073 -2 55 51.6700 .0253 0.168173 0.005462 -1.80147	S	0	16	10.80			4	3.21229				40.3026	.0438	053828	0.007068	-0.98764	0.01092
0 20 10.85 5 23 51.23353 .01374 -2 12 30.4065 .0636 0.121906 0.008258 0.96682 0 55 9.93 5 23 58.37279 .01073 -2 55 51.6700 .0263 0.168173 0.005462 -1.80147	9	0	56	10,63		2	4	5.03520				28.7382	.0445	075500	0.008944	-1.10406	0.02822
0 55 9.93 5 23 58.37279 .01073 -2 55 51.6700 .0263 0.168173 0.005462 -1.80147	7	0	20	10,85	2	23		1.23353				30.4065	.0636	0.121906	0.008258	0.96682	0.04302
	8	0	52	6.	2	23	Ω	3.37279	.01073 -			51,6700	.0263	0.168173	0.005462	-1.80147	0.01570

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ξ	able	.6 a	Fable 9: (Continued)									
\$ 24 1.5788	z	ч	п		-	×	ϵ_{α}		8		83	$\mu\alpha$	$\epsilon \mu \alpha$	η	$\epsilon \mu \delta$
5 24 5.6613 0.00393 - 2 48 29.6457 0.0501 - 0.024181 0.005684 - 1.1727 0.5 2 4 5.66135 0.0718 - 2 36 13.9468 - 0.02135 0.003982 - 1.0232 - 2 2 8 46.965 0.02429 0.00218 0.003210 - 0.90933 0.5 2 4 9.46672 0.01232 - 2 2 8 46.965 0.0442 0.002210 - 0.90933 0.5 2 4 9.46672 0.01238 - 2 11 9.2680 0.0349 0.003210 - 0.90933 0.5 2 4 9.46672 0.01238 - 2 11 9.2680 0.0349 0.003210 - 0.90933 0.5 2 4 9.46672 0.01238 - 2 11 9.2680 0.0349 0.003210 - 0.90933 0.5 2 4 9.46672 0.01348 - 2 2 56.3701 0.0400 0.00576 - 1.0599 0.00376 - 1.0699 0.00376 - 1.0699 0.00376 - 1.0699 0.00376 - 1.0699 0.00376 0.00376 - 1.0699 0.00376 0.00376 - 1.0699 0.00376 0.003776 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.003776 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.00376 0.003776 0.00376 0.003772 0.00376 0.003776 0.003777 0.00376 0.003777 0.00376 0.003777 0.00376 0.0037	14 11	11	.45	S	24	1.67888	.01175	7	30	40.3757			0.007556	-0.39049	0.04839
5 24 6.70449 0.00718 - 2 28 613.4826 0.00515 0.005156 0.00317 0.05 5 2 4 6.70449 0.00718 - 2 28 613.4826 0.0525 0.00210 - 0.90953 0.05 5 2 4 6.70453 0.0152 0.02210 - 0.90953 0.05 5 2 4 6.70452 0.0223 - 2 11 59.2600 0.044 0.00552 0.00236 0.7013 0.05 5 2 4 9.6672 0.0236 2 - 2 11 59.2600 0.044 0.00552 0.000456 0.00730 0.7014 0.05 5 2 4 19.5252 0.00745 0.00745 0.00740 - 1.7040 0.05 5 2 4 19.5252 0.00745 0.00740 - 1.7040 0.00740 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9	11	.40	S	24	1.56631		-2	48	29.6457			0.006845	-1,71275	0.02241
5 24 6.64135 0.0222 - 2 28 6.5656 0.0442 - 0.049904 0.002310 - 0.90953 0.5 5 2 4 9.62747 0.01316 - 2 3 9 7.8118 0.0338 0.008619 0.003356 0.02356 0.0252 0.020356 0.0252 0.	35 9	σ	.15	S	24	5.70449	.00718	-2	36	13.4826		0.002195	0.003982	0.04337	0.02846
5 24 9.40672 0.01336 - 2.39 7.3118 0.038 0.05832 0.00446 - 1.37724 0.05523 0.00246 - 1.0503 0.05523 0.00144 - 3 2 56.3701 0.034 0.005232 0.00246 - 1.0503 0.05523 0.005232 0.00144 - 3 2 56.3701 0.034 0.05523 0.00528 - 0.60144 0.05523 0.00523 0.00523 0.00144 - 3 2 56.3701 0.034 0.05523 0.00528 - 0.60144 0.05523 0.00524 0.01414 0.05523 0.00528 - 0.60144 0.05523 0.00528 0.01403 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0552 0.00524 0.0052	21 10	10	.20	S	24		.01252	-2	28	46.9696	.0442	049904	0.003210	-0.90953	0.02356
5 24 9.62747 01316 - 2 39 7.0118 0.0338 0.038372 0.00466 - 1.3774 0.5 5 24 19.62323 0.0774 - 2 39 7.0118 0.03528 0.002582 - 0.002882 - 1.3774 0.5 5 24 26.55659 0.01311 - 2 42 7.2293 0.0998 0.007775 0.005776 - 1.78950 0.5 5 24 28.24624 0.007477 0.00746 - 2 4 2 7.2293 0.0988 0.007775 0.005251 2.005280 0.5 5 24 28.24624 0.007477 0.00746 - 2 2 4 7.2293 0.02884 0.000252 0.005251 2.00954 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.005250 0.00526 0.00367 0.001627 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.00318 0.0033 0.003	38 8	8	.95	2	24		.01283	-2	11	39.2600		0.008619	0.005356	0.70103	0.01995
\$2 4 2.5823 0.00744 - 3 2 55.3701 0.0240 0.05525 0.000276 - 0.00144 0.05 2 4 2 2.56558 0.000245 - 0.00144 0.05 2 4 2 2.26558 0.000245 - 0.00024 0.00024 0.00024 0.000276 - 0.000276 - 0.00029 0.05 2 4 2 2.24624 0.01617 - 2 10 0.1567 0.0444 0.001868 0.007977 0.10629 0.05 2 4 33.15099 0.00009 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	20 10		.50	2	24	9.62747	,01316	-2	39	7.8118	.0338	0.038372	0.004468	-1.37724	0.02145
5 24 26.95695 01311 - 2 42 7.2293 01998 0.007775 0.007907 0.10.0699 0.5 24 28.34624 01054 - 2 42 7.2293 01998 0.007775 0.007907 0.10.0699 0.5 24 28.14770 007844 - 2 4 7.3539 0.0557 0.0444 0.01868 0.007907 0.10.0699 0.5 24 28.1470 0.07844 - 2 4 7.3539 0.0558 0.028841 0.005251 2.50954 0.5 24 38.78009 0.0056 - 2 5 2 4 4.8999 0.0888 0.24957 0.018457 - 0.00318 0.0318 0	61 9	01	.53	S	24		.00714	-3	7	56.3701	.0240	0.055295	0.005282	-0.80184	0.01903
\$ 24 28.48624 0.0617 -2 10 0.1567 0.4044 0.051668 0.007907 0.116629 0.5 2 4 32.1707 0.00742 -2 24 7.1329 0.4655 0.002261 0.002251 2.55994 0.5 2 4 33.78009 0.01660 -2 3 2 43.6998 0.838 0.24757 0.014837 -1.82393 0.5 2 4 34.15099 0.00622 -2 57.7624 0.202881 0.00461 -1.78512 0.5 2 4 34.50099 0.00632 -2 57.7624 0.2038 0.004061 -1.78512 0.00532 -2 54.36506 0.00464 0.00467 -2 16 27.3120 0.0766 -0.04886 0.004061 -1.78512 0.00562 -2 54.3656 0.00562 -2 3 4.18445 0.00562 -2 3 4.18445 0.00562 -0.53956 0.5 2 4 4.23226 0.00542 0.00562 -2 3 4.1846 0.00592 0.00592 0.05956 0.00592 0.05956 0.00592 0.0	16 11	Η	1.30	S	24	26.95695	.01311	-2	42	7.2293	.0398	0.007775	0.005776	-1.78950	0.01816
\$2 4 3.17470 0.0054 - 2 2 4 7.3539 0.0455 0.028541 0.00555 2.25954 0.5 5 2 4 33.15059 0.0054 - 2 2 2 4 2.999 0.0584 0.5 24 34.15059 0.0052 - 2 57 47.7524 0.02857 0.011637 - 1.03338 0.5 2 4 34.15059 0.0052 - 2 57 47.7524 0.02857 0.011637 - 1.03338 0.5 2 4 3.15059 0.0052 - 2 57 47.7524 0.02857 0.001637 0.00558 0.00538 0.5 2 4 3.6 60649 0.0018 - 2 3 34.18879 0.00558 0.00563 0.03545 0.05 2 4 4 0.0075 0.0052 0.0078 - 2 3 4 1.8879 0.00558 0.00563 0.03538 0.5 2 4 4 0.0075 0.0052 0.0078 - 2 3 4 1.8879 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03538 0.00552 0.03539 0.00552 0.03538 0.00552 0.03539 0.00552 0.03539 0.00552 0.03539 0.00552 0.03539 0.00552 0.03539 0.00552 0.0352 0.	21 13	\dashv	1.05	S	24	28.24624	.01617	7	10	0.1567	.0444	0.051868	0.007907	0.10629	0.02515
5 24 34.78009 .01660 -2 32 43.9998 0.2818 0.247597 0.018437 -0.018339 0.5 5 24 34.15009 .00652 -2 16 27.71624 0.2838 0.281837 -0.018437 -0.018437 -0.01831 -0.018339 0.5 5 24 36.60028 0.004667 0.04667 0.001661 -1.78512 0.5 24 36.60707 0.00526 -2 16 27.71624 0.00289 0.0004061 -1.78512 0.5 24 41.60286 0.00718 -2 33 41.8849 0.00526 -0.038538 0.13839 0.5 24 44.1286 0.00046 -2 34 41.8976 0.006926 -0.58536 0.006926 -0.006926 -0.006926 0.000929 0.000929 0.0	41		6.10	S	24	28.17470	.00784	-2	24	7.3539	.0455	0.028841	0.005251	2.50954	0.02403
5 24 34.15059, 0.0632 - 2 57 47.764 0.0583 0.081627 0.001615 - 0.09318 0.5 5 2 4 36.67075 0.0052 - 2 57 47.764 0.0058 0.04061 - 1.05518 0.5 5 2 4 36.67075 0.00526 - 2 58 13.4445 0.194 0.117813 0.00563 0.15343 0.5 5 2 4 41.62286 0.01353 0.00528 0.015343 0.05538 0	9 1	Н	0.75	S		33.78009	.01660	7	32	43.8998	.0838	0.247597	0.014837	-1.82393	0.06477
5 24 36.60649 0.01467 - 2 16 27.3120 0.0066 - 0.004066 - 1.78512 0 5 2 4 36.67075 0.0056 - 2 13 24446 0.00406 - 0.004061 - 1.78512 0 5 2 4 41.6526 0.00406 - 0.00406 - 0.00408 0 0.15334 5 2 4 42.31289 0.0046 - 2 33 41.8879 0.0252 - 0.108739 0.006926 - 0.30536 0 5 2 4 42.31289 0.01046 - 2 2 13.21446 0.0130 0.005926 - 0.50536 0 5 2 4 42.31289 0.0046 - 2 15 2.1152 0.0413 0.013248 0.006634 0.05305 0 5 2 4 46.18965 0.0136 - 2 2 5 5.4950 0.03946 0.00720 0.6002 0 5 2 4 46.18965 0.0153 - 2 2 5 5.4950 0.03946 0.00720 0.6002 0 5 2 4 46.18965 0.0061 - 2 2 5 5.1932 0.013113 0.003911 0.05239 0 5 2 4 49.60395 0.0061 - 2 2 5 5.1932 0.013113 0.003971 0.05508 0 5 2 4 49.60395 0.0106 - 2 2 5 5.2952 0.0391 0.03910 0.05508 0 5 2 4 49.60395 0.0106 - 2 2 5 5.2952 0.00391 0.00397 - 5.38670 0 5 2 4 49.60395 0.0106 - 2 2 3 5 5.2952 0.00391 0.00397 - 5.38670 0 5 2 5 5.13383 0.0167 - 2 17 3 5.177 0.027 0.00307 - 5.2020 0	26		8.90	S		34.15059	.00632	7	21	47.7624	.0283	0.081627	0.005161	-0.09318	0.01800
2 4 46.7675 00256 -2 58 13.4445 01949 0.117813 0.00536 -0.38534 0.5 5 24 42.312296 0.00166 -2 33 44.19879 0.0552 0.005926 -0.389536 0.5 5 24 42.312296 0.00166 -2 54 19.1572 0.00539 0.005649 -0.50305 0.5 24 42.312299 0.00166 -2 54 19.1572 0.00539 0.005649 0.05030 0.5 5 24 43.89746 0.00139 -2 15 23.3135 0.00139 0.006720 0.05929 0.006720 0.05929 0.005	11		11.35	S		36.80649	.01467	7	16	27.3120	9940.	034896	0.004061	-1.78512	0.02777
\$ 24 41.82286 .00718 -2 33 41.8879 .0252 -1.08793 0.006526 -0.38536 0.5 2 4 42.31228 0.01046 -2 49.15172 .0453 0.017538 0.006649 -0.50305 0.5 2 4 43.87768 0.01046 -2 5 49.15172 .0453 0.017538 0.006649 -0.50305 0.5 2 4 45.77686 0.01393 -2 15 23.1135 .0411 0.01735 0.006540 0.06892 0.5 2 4 46.77685 0.006340 0.01313 0.006340 0.01393 0.5 2 4 45.77686 0.006540 0.01393 0.006340 0.01393 0.006642 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930 0.01393 0.00930	75		8.67	S		36.67075	.00526	-2	28	13.4445	.0194	0.117813	0.003638	0.15343	0.01404
\$ 24 4.31288 0.101046 -2 54 19.1572 0453 0.017538 0.006649 -0.50305 0 5 2 4 43.99744 0.11139 -2 2.2 56.0455 0.01394 0.01393 0.006649 -0.50305 0 5 2 4 43.99744 0.11139 -2 2.2 56.0455 0.01942 0.006720 0.060720 0.06082 0 5 2 4 46.18955 0.00641 -2 2.2 56.0455 0.0390 0.10495 0.006720 0.05808 0.5 5 2 4 46.18955 0.00611 -2 2 55.1932 0.0138 0.013113 0.003910 0.55508 0 5 2 4 49.60395 0.10611 -2 4 55.233 0.031 0.01313 0.003910 0.55508 0 5 2 4 49.60395 0.10611 -2 4 55.2338 0.031 0.00577 0.00575 0.04210 0.05578 0 5 2 4 55.1178 0.2356 2 2 8 2.2547 0.0577 0.00575 0.009077 -5.5870 0 5 2 4 55.1178 0.2356 2 2 8 2.2927 0.0542 0.00776 0.009077 -5.5228 0 5 2 5 1.33883 0.1167 -2 17.8 2.2745 0.0527 0.009078 0.009077 -5.5228 0 5 2 5 1.33883 0.0076 -2 5 8 35.2927 0.044 0.10235 0.00917 -3.5228 0 5 2 5 5.0008 0.0076 -2 5 8 35.2927 0.034 0.103732 0.00913 0.03930 0.5 5 2 5 11.34010 0.00631 -2 11 9.6936 0.0387 0.03732 0.00913 0.03930 0.5 5 2 5 11.34015 0.00637 -2 11 9.6936 0.0387 0.03732 0.00919 0.03979 0 5 2 5 11.34015 0.0097 -2 2 1 2.244 0.009 0.03979 0 0.23799 0 5 2 5 2 4.50777 0.0065 -2 19 2.2214 0.040 0.03967 0.005782 0.01918 0.007782 0.00779 0.007	46		9.00	S	24	41.62286	.00718	-2	33	41.8879	.0252	108739	0.006926	-0.38536	0.02117
5 24 46.18956 0.0153 - 2 2 55.0450 0.010 0.01226 0.006720 0.066082 0 5 2 4 46.18956 0.01053 - 2 2 55.0450 0.0091 0.0226 0.006720 0.066082 0 5 2 4 46.18955 0.00681 - 2 2 55.0450 0.030 0.01345 0.00930 0.52509 0 5 2 4 46.18955 0.00681 - 2 2 55.1932 0.018 0.013113 0.00930 0.52509 0 5 2 4 48.7667 0.0061 - 2 5 55.0429 0.031 0.08107 0.09565 0.047297 0.06135 0.01056 0.00930 0.52509 0 5 2 4 49.7657 0.0017 0.00355 0.0016 - 2 1 5 5.238 0.031 0.08107 0.00835 0.0767 0.0767 0.0767 0.0017 0.00035 0.0017 0.0035 0.003	32		10.17	S		42.31298	.01046	7	54	19.1572	.0453	0.017538	0.006649	-0.50305	0.02589
2 4 45.7666 01135 - 2 25 56.0450 0.019426 0.005720 0.60082 0 5 2 4 46.7655 0.006720 0.60082 0 5 2 4 46.7655 0.00612 - 2 2 25.1932 0.018 0.013113 0.003901 0.52508 0 5 2 4 46.7625 0.00616 - 2 2 25.1932 0.018 0.013113 0.003901 0.52508 0 5 2 4 49.6035 0.00616 - 2 4 5.2239 0.0139 0.01313 0.003907 - 5.2667 0 5 2 4 49.6035 0.0076 0.009077 - 5.2667 0 5 2 4 49.6039 0.0156 0.009077 - 5.2667 0 5 2 4 5.12118 0.2361 - 2 8 2.745 0.033 0.0076 0.009077 - 5.2667 0 5 2 5 5.25 0.0038 0.0076 0.009077 - 5.267 0 0 5 2 5 5.0008 0.0076 0.009077 - 5.267 0 0 5 2 5 5.0008 0.0076 0.00907 - 5.20 0.00907	25		10.40	S		43.89764	.01193	-2	15	23.1135	.0411	0.012326	0.006340	1.02397	0.02761
5 24 46.18955. 006811 - 2 22 25.1932. 00181 0.013113 0.003910 0.55268 0 5 24 49.60395. 006811 - 2 15 34.179 0.0281 0.065740 0.04210 0.95566 0 5 24 49.60395. 01061 - 2 15 34.179 0.0281 0.015774 0 0.05575 0.47297 0 5 24 49.60395 0.1061 - 2 15 34.179 0.0281 0.011017 0.00535 0.47297 0 5 24 55.12948 0.01232 - 2 0 3.467 0.0833 - 0.091076 0.009077 - 5.58070 0 5 2 5 1.33829 0.01767 - 2 17 35.1717 0.512 - 0.05349 0.007662 - 1.72715 0 5 2 5 1.33829 0.02734 - 2 57 49.6059 0.0572 - 0.00816 - 3.52228 0 5 2 5 0.00816 0.0726 - 2 58 35.2927 0.0434 0.153225 0.00434 2.33424 0 5 2 5 6.07124 0.1062 - 2 7 35.7699 0.0577 0.00816 - 3.52228 0 5 2 5 6.07124 0.1062 - 2 7 35.7699 0.0577 0.00816 - 3.23228 0 5 2 5 14.5001 0.00631 - 2 11 9.6936 0.0237 0.01946 0.005692 - 0.49806 0 5 2 5 17.84015 0.0087 - 2 5 2 4.655 0.0039 - 0.0977 0.00676 - 0.00877 0.0066 0.0087 - 2 5 2 2 4.6577 0.0066 0.0097 - 2 2 2 14.2574 0.0067 0.0077	28		11.10	S		45.77686	.01135	-2	22	56.0450	.0390	0.019426	0.006720	0.68082	0.01813
5 24 49.6627 .00816 -2 15 38.7179 .008174 0.003310 0.99566 0 5 2 4 49.60395 .01061 -2 45.9238 .0381 0.081017 0.003365 0.47279 0 5 2 4 54.20348 .01329 -2 30 3.3467 .0831 0.081017 0.003365 0.47279 0 5 2 45 55.17178 .02364 .01329 -2 30 3.3467 .0831 0.081076 0.009077 -5.38670 0 5 2 4 55.17178 0.2364 -0.01598 0.00056 0.62978 0 5 2 5 4 55.17178 0.2364 -0.01598 0.00026 -1.52175 0 5 2 5 5.6008 .00728 -2 5 3 3.2527 0.00439 0.00766 -1.35228 0 5 2 5 5.6008 .00728 -2 5 3 3.2527 0.00440 0.00569 -1.35228 0 5 2 5 5.6008 .00728 -2 5 3 3.2527 0.00440 0.00569 -0.4980 0 5 2 5 17.84015 0.0087 -2 5 9 2.466 0.03979 0.00597 0.00939 -0.97390 0 5 2 5 17.84015 0.0087 -2 5 9 2.466 0.03967 0.00578 -2 5 9 2.466 0.00569 0.00578 -0.97390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	49		9.60	S	4	46.18965	.00681	-2	22	52,1932	.0318	0.013113	0.003901	0.52508	0.01896
5 24 49,60395, 010611 - 2 4 56,2238 0.3810,081017 0.005565 0.47297 0 5 24 49,60395 0.10614 - 2 8 2.238 0.3447 0.0338 0.03077 - 5,38670 0 5 2 4 5,11718 0.02361 - 2 8 27,8547 0.033 0.0375 0.000977 - 5,38670 0 5 2 5 1,33883 0.0156 - 2 17447 0.033 0.0214 0.007662 0.62978 0 5 2 5 1,3383 0.0274 - 2 7 49,2690 0.0674 - 0.01639 0.007662 0.62978 0 5 2 5 3,41389 0.0274 - 2 7 49,2690 0.0677 - 0.01025 0.008016 - 3,5222 0 5 2 5 5 6,07124 0.0106 - 2 7 53,7699 0.0877 - 0.01332 0.00939 - 0.9399 0 5 2 5 14,5290 0.00631 - 2 11 9,693 0.0278 - 0.00439 - 0.9399 0 5 2 5 11,484015 0.00897 - 2 5 9,5466 0.0310 0.03987 0.00439 - 0.93979 0 5 2 5 10,07127 0.00659 - 2 19 22,2214 0.024 0.03967 0.03979 0 5 2 5 24,5903 0.0097 - 2 2 7,245 0.003 - 0.03967 0.03979 0 5 2 5 2 6,0556 0.0043 0.03979 0.01448 0.00598 - 0.93979 0 5 2 5 2 6,0556 0.00440 - 2 10 2,222 14,0240 0.00591 0.00591 0.02979 0 5 2 5 2 6,0556 0.00440 - 2 10 2,244 0.003 0.03967 0.00598 0.03979 0.014 0.00201 0.00211 0.02592 0 5 2 5 2 2 6,0556 0.00440 - 2 10 2,044 0.0032 0.00201 0.00211 0.02592 0 5 2 5 2 2 6,0556 0.00440 - 2 11 0,244 0.032 0.01248 0.01248 0.01248 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32866 0.32888	45		8.85	S		48.76627	.00816	-2	15	38.7179	.0287	0.085774	0.004210	0.98566	0.01905
5 24 54.2994 0.13299 - 2 30 3.467 0.0533 - 0.007066 0.009077 - 5.3670 0 5 24 55.1118 0.2354 - 2 8 77.8545 0.064 - 0.16349 0.00766 2 0.62978 0 5 25 1.33883 0.1167 - 2 17 35.1717 0.512 - 0.00998 0.00766 2 -1.72175 0 5 25 0.43389 3.01167 - 2 17 35.1717 0.512 - 0.00998 0.00269 - 1.72175 0 5 25 0.0008 0.00724 - 2 57 342.2697 0.0637 - 0.15322 0.000443 2 .3.3424 0 5 25 0.00144 0.10527 0.000443 2 .3.3424 0 5 25 0.00149 0.00076 - 2 57 34.5927 0.0444 0.15322 0.000443 2 .3.3424 0 5 25 0.00149 0.00097 - 2 2 9 5.466 0.0519 0.00592 - 0.49906 0 0 5 25 11.46015 0.0097 - 2 2 9 5.446 0.0357 0.00374 0.00252 - 0.49906 0 5 25 24.09079 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25		10.35	S		49.60395	.01061	-2	4	56.9238	.0381	0.081017	0.006365	0.47297	0.02993
5 24 55.11718 102364 - 2 8 27.8545 0664 - 0.013349 0.007652 0.62978 0 5 2 5 1.33853 0.01167 - 2 113852 0.00762 0.002094 0.007662 0.62978 0 5 2 5 3.41389 0.2074 - 2 57 49.2690 0.087 - 0.00235 0.000016 - 3.52228 0 5 2 5 5.60008 0.0726 - 2 8 35.2927 0.043 0.1525 0.00434 3 0.31424 0 5 2 5 6.0008 0.0726 - 2 8 35.2927 0.043 0.1525 0.00433 9 - 0.97390 0 5 2 5 6.07144 0.0106 - 2 7 53.7699 0.0387 - 0.03731 0.004339 - 0.97390 0 5 2 5 17.8015 0.00897 - 2 8 5.466 0.03573 0.004339 - 0.97390 0 5 2 5 2 4.07378 0.0665 - 2 19 22.2214 0.024 0.005782 - 0.04980 0 5 2 5 2 4.07378 0.00665 - 2 19 22.2214 0.024 0.003578 0.005785 - 0.95799 0 5 2 5 2 4.0578 0.00662 - 2 19 22.2214 0.024 0.003578 0.005785 - 0.95799 0 5 2 5 2 5.0565 0.006792 - 2 19 22.2214 0.024 0.003578 0.005785 - 0.95799 0 5 2 5 2 4.0556 0.005782 - 0.0	6		10.55	S	4	54.22948	.01329	-2	30	3,3467	.0833	080706	0.009077	-5,36870	0.06270
5 25 3.43895 0.0274 - 25 74 35.117 0.6512 - 0.020948 0.00426 - 1.72715 0 5 25 3.43892 0.0274 - 25 74 25.0890 0.0557 - 0.002016 0.008016 - 2.25228 0 5 25 6.07124 0.10166 - 2 78 35.2927 0.0434 0.153225 0.00434 2.33424 0 5 25 6.07124 0.10166 - 2 78.37698 0.237 0.01346 0.005692 - 0.49806 0 5 25 14.5901 0.00531 - 2 11 5.35769 0.0537 0.005692 - 0.49806 0 5 25 14.2901 0.00531 2 11 5.2574 0.00426 1 0.23342 0 5 25 24.0777 0.00665 - 2 19 22.2214 0.0240 0.039670 0.005785 - 0.95799 0 5 25 24.0777 0.00665 - 2 19 22.2214 0.0240 0.039670 0.005785 - 0.95799 0 5 25 29.0556 0.00410 - 2 3 38.8979 0.006782 - 1 0.25233 0 5 25 25 25 25 0.00410 - 2 3 38.8979 0.00788 0.	17		11.15	S		55.11718	.02361	-2	œ	27.8545	.0664	016349	0.007662	0.62978	0.03743
5 25 3.41389 .02214 -2 57 49.2690 .0857010235 0.008116 -3.52228 0 5 25 5.60008 .00726 -2 28 35.2927 .0494 0.153225 0.004434 2.131424 0 5 25 5.00724 .01106 -2 7 53.7698 .0387037351 0.004339 -0.197390 0 5 25 17.40110 .00631 -2 11 9.6936 .0223 0.10446 0.005692 -0.49806 0 5 25 17.4015 .00897 -2 2 5 4466 .0351 0.092374 0.004261 0.23342 0 5 25 24.03787 .00665 -2 19 22.2214 .024 0.039577 0.005785 -0.95799 0 5 25 24.89039 .00987 -2 2 7.2459 .0403062151 0.005785 -0.95799 0 5 25 29.6056 .00640 -2 3 10.5540 .03274 -0.002011 0.005141 0.65923 0 5 25 32.16590 .04101 -2 41 10.5540 .0332117288 0.012180 -3.33866	24		10.70	S		1,33853	.01167	-2	17	35.1717	.0512	020948	0.004269	-1.72175	0.03504
2. S. 5.6008 .00726 — 2 88 35.2827 .0434 0.152225 0.00434 2.31424 0 5 2 5 6.00124 .01106 — 2 7 52.7699 .0337 .03312 0.09393 0.97399 0 5 25 14.2010 .00631 — 2 19 5.636 .0323 0.10946 0.005692 0.49906 0 5 25 17.84015 .006897 — 2 5 5.4466 .03315 0.093474 0.00454 1 0.2342 0 5 2 5 2 4.07379 .00665 — 2 19 22.2214 .0240 .038570 0.005785 — 0.99799 0 5 25 24.09799 0 0 6 2 2 2 2 2.242 0.043 — 0.09201 0.00578	11		10.93	S	25	3.41389	.02274	-2	21	49.2690	.0857	010235	0.008016	-3.52228	0.03483
5 25 6.07124 .01106 -2 7 53.7698 .0387037351 0.004593 -0.97390 0 5 25 14.51901 .00631 -2 11 9.6936 .0252 0.019486 0.005692 -0.49006 0 5 25 11.46105 .00631 -2 11 9.6936 .0253 0.019486 0.005692 -0.49006 0 5 25 17.48105 .00897 -2 59 5.4466 .0351 0.029274 0.004261 0.25342 0 5 25 24.02787 .00665 -2 19 22.2214 .0240 0.039670 0.005785 -0.95799 0 5 25 24.89039 .00987 -2 22 7.2459 .0403062151 0.008002 0.17513 0 5 25 29.60556 .00640 -2 3 97999 0.044 -0.002210 .005541 0.05923 0 5 25 32.16159 0.04140 -2 41 10.5240 .0332117288 0.012180 -3.53866	35		10.50		25	5.60008	.00726	-2	28	35.2927	.0434	0.153225	0.004343	2.31424	0.02774
5 25 14,51901 .00631 - 2 11 9.6936 .0223 0.019466 0.005692 - 0.49806 0 55 25 17.84015 .00897 - 2 9 5.2446 .0351 0.092374 0.004561 0.23342 0 5 25 24.07979 .00665 - 2 19 22.2214 .0240 0.038670 0.005785 - 0.95799 0 5 25 24.89039 .00987 - 2 2 7.2459 .0403062151 0.008002 0.17513 0 5 25 29.60556 .00640 - 2 3 38.89979 .0214009201 0.005141 0.65923 0 5 25 32.16590 .0410 - 2 41 10.5540 .0332117288 0.012180 - 3.33866 0	26		10.90		25	6.07124	.01106	-2	7	53.7698	.0387	-,037351	0.004939	-0.97390	0.02554
25 24 07377 00665 - 219 22.214 0240 0.03570 0.05785 - 0.93792 0 5 25 24 07377 0.06665 - 219 22.214 0240 0.035670 0.0667 - 0.93799 0 5 25 24 07377 0.06667 - 2 2 7.2459 0.0403 - 062151 0.006002 0.17513 0 5 25 29.6956 0.06410 - 2 3 38.8979 0.0244 - 0.09501 0.00501 0.15513 0 5 25 29.6956 0.06410 - 2 3 38.8979 0.03244 - 0.09501 0.005141 0.62923 0 5 25 29.6156 0.04410 - 2 41 10.5240 0.032 - 117288 0.012180 - 3.53866	98		6.50		25	14.51901	.00631	-2	7	9.6936	.0223	0.019486	0.005692	-0.49806	0.01867
5 25 24,02787 ,00665 -2 19 22,2214 ,0240 0.039670 0.005785 -0.95799 0 5 25 24,02787 ,00987 -2 2 7,2459 ,040306215,0.00902 0.171313 0 5 25 29,0655 0.00640 -2 3 34,9999 ,0214009210 ,005141 0.65923 0 5 25 29,0655 0.00640 -2 3 34,9999 ,0214009210 ,005141 0.65923 0 5 25 32,06190 ,01410 -2 41 10.5240 ,0332117288 0.012180 -3.53866 0	39		11.30	S	ß	17.84015	.00897	-2	59	5.4466	.0351	0.092374	0.004261	0.22342	0.01752
5 25 24.89039 .00987 -2 22 7.2459 .0403062111 0.008002 0.17513 0 5 25 29.60556 .00640 -2 3 89999 .0124009201 0.005141 0.62923 0 5 25 29.60556 .00410 -2 41 10.5240 .0332117288 0.0172180 -3.38066 0	87		9.85	S	2	24.02787	.00665	-2	19	22.2214	.0240	0.039670	0.005785	-0.95799	0.02064
.90 5 25 29.60556 .00640 -2 3 38.8979 .0214009201 0.005141 0.62923 0 .35 5 25 32.16190 .01410 -2 41 10.5240 .0332117288 0.012180 -3.53866 0	20		10.70	S	25	24.89039	.00987	-2	22	7.2459	.0403	062151	0.008002	0.17513	0.03846
.35 5 25 32.16190 .01410 -2 41 10.5240 .0332117288 0.012180 -3.53866 0	59		8.90	Ω	25	29.60556	.00640	-2	e	38.8979	.0214	009201	0.005141	0.62923	0.01639
	21 1		11.35	S	25	32.16190	.01410	-2	41	10.5240	.0332	117288	0.012180	-3.53866	0.01799

Table 9: (Continued) N m α εα ε	Table 9: (Continued) m α εα εα δ	Table 9: (Continued) m α εα εα δ	Table 9: (Continued) α	ξα	ξα	ξα	ξα	9		5 0		83	μα	εμα	μ_{δ}	$e\mu_{\delta}$
8.75 5 25	8.75 5 25	8.75 5 25	5 25	25		37.55327		.00812	7	30		.0311	183835	0.008437	-1.57137	0.03310
49ZI8 93 8:90 5 Z5 43:903I9 .007Z8 0 32 11.00 5 25 50.39005 .00809	11.00 5 25 50.390319 .	11.00 5 25 50.390319 .	5 25 50.39005 .	25 50.39005 .			.00728		7 7	33	47.8014	.0201	0.011726	0.007574	0.75412	0.02038
10.40 5 26 2.93272 .	10.40 5 26 2.93272 .	10.40 5 26 2.93272 .	5 26 2.93272 .	26 2.93272 .	2.93272 .		.00982		-2	38		.0334	040025	0.005942	-1.06204	0.02384
81 8.00 5 26 9.79470 .	8.00 5 26 9.79470	8.00 5 26 9.79470	5 26 9.79470	26 9.79470	9.79470		.00700	_	-2	46	23.6560	.0313	093007	0,006760	-2.28776	0.03367
60 9.86 5.26	9.86 5 26 22.86349 .	9.86 5 26 22.86349 .	5 26 22.86349 .	26 22.86349 .	22.86349 .	•	.0068	0	-2	59	24.4304	.0255	0.002505	0.004726	0.01163	0.01273
	25 11.37 5 26 27.07906	11.37 5 26 27.07906	5 26 27,07906	26 27.07906	27.07906	-	.019	10	-2	П	52,3595	.0415	0.159765	0.007975	1.12886	0.02499
60 8.53 5 26 30.15848	60 8.53 5 26 30.15848	8.53 5 26 30.15848	5 26 30.15848	30.15848	30.15848	-	900.	31	-2	7	18,3059	.0268	0.108009	0.004317	-0.34853	0.01384
86 8.17 5 26	8.17 5 26 30.91815	8.17 5 26 30.91815	5 26 30.91815	30.91815	30.91815	•	.009	55	-2	48	53.5732	.0263	242517	0.009127	1.77880	0.02015
62 7.97 5 26 32.42291	7.97 5 26 32.42291	7.97 5 26 32.42291	5 26 32.42291	32.42291	32.42291		.007	82	-2	12	53.5868	.0250	128009	0.005646	-0.67683	0.01601
60 8.40 5 26 36.45981	8.40 5 26 36.45981	8.40 5 26 36.45981	5 26 36,45981	36.45981	36.45981		.012	98	-5	2	57.3758	.0450	0.125488	0.006699	-0.57859	0.02083
42 9.93 5	9.93 5 26 36.72106	9.93 5 26 36.72106	5 26 36.72106	36.72106	36.72106		.019	15	-2	7	54.3696	.0578	0.005897	0.008006	-4.41715	0.02646
0 45	9.87 5 26 39.32281	9.87 5 26 39.32281	5 26 39.32281	39.32281	39.32281	•	.007	51	-7	35	17.1303	.0310	002686	0.005806	-0,66516	0.02733
76 8.17 5	8.17 5 26 49.81476 .	8.17 5 26 49.81476 .	5 26 49.81476 .	6 49.81476 .	6 49.81476 .	•	900.	18	-2	7	50.1162	.0216	0.102078	0.004509	1,08751	0.01382
10.65 5	10.65 5 32 16.90008	10.65 5 32 16.90008	5 32 16.90008	16.90008	16.90008		.016	20	7	53	42.5477	.0653	081041	0.006321	0.63893	0.02425
11.35 5	11.35 5 33 1.89080	11.35 5 33 1.89080	5 33 1.89080	1.89080	1.89080		.015	21	겉	54	27.7321	.0677	051991	0.004268	-0.53287	0.02582
13 11.45 5 33 6.39759	11.45 5 33 6.39759	11.45 5 33 6.39759	5 33 6.39759	6.39759	6.39759		.019	02	7	26	54.8835	.0514	0.016927	0.004144	-0.44809	0.01497
9 11.45 5 33	9 11.45 5 33 57.46251 ,	5 33 57.46251	5 33 57.46251	57.46251	57.46251	•	.025	78	7	26	22,9161	.0898	025749	0.005873	-0.31505	0.02850
17 11.40 5 26	11.40 5 26 52,88562 .	5 26 52.88562 .	5 26 52.88562 .	52,88562	52,88562	•	.017	43	-2	22	19,4017	.0700	026225	0.008964	0.37790	0.06584
11.15 5 26 53.29715	11.15 5 26 53.29715	5 26 53.29715	5 26 53.29715	53.29715	53.29715	•	.024	147	-5	40		.0615	0.174738	0.013064	-0.05161	0.03596
60 9.65 5 26 58,48549	9.65 5 26 58.48549	5 26 58,48549	5 26 58,48549	58.48549	58.48549	48549	.00	99	-5	17		.0251	0.187295	0.007457	1.30596	0.01561
25 10.90 5 27 1.03018 .	10.90 5 27 1.03018	5 27 1.03018	5 27 1.03018	1.03018	1.03018		.011	13	-5	26	57.3951	.0383	0.085529	0.010567	-0.03349	0.03370
10.70 5 27 5.23369	10.70 5 27 5.23369	5 27 5.23369	5 27 5.23369	5.23369	5.23369		.014	08	-5	53	48.7781	.0513	0.018411	0.008506	-1.82476	0.01723
21 10.75 5	10.75 5 27 16.55502 .	5 27 16.55502	5 27 16.55502	16.55502	16.55502		.015	90	-2	11	5.8386	.0519	0.022253	0.006036	1,24937	0.02978
0 31 9.40 5 27	9.40 5 27 19.07595	5 27 19.07595	5 27 19.07595	19.07595	19.07595		.010	192	-7	2	23.2277	.0394	0.107995	0.006669	0.21071	0.01642
97	8.35 5 27 24.36682	5 27 24.36682	5 27 24.36682	24.36682	24.36682		.005	41	-2	17	32.6986	.0203	0.240949	0.004673	2,71210	0.01696
20	10.85 5 27 31.67157	5 27 31.67157	5 27 31.67157	-	-	-	.019	25	-7	11	15,3512	.0651	0.132299	0.010696	1.77188	0.03922
	10.80 5 27 37.25171 .	5 27 37.25171 .	5 27 37.25171 .	37.25171	37.25171	•	.020	82	-2	9	45.2864	.0738	0.321049	0.008561	-1.95768	0.01334
0 36 9.05 5 27 47.33053 .00982	9.05 5 27 47.33053 .	5 27 47.33053 .	5 27 47.33053 .	7 47.33053 .	7 47.33053 .	•	.009	82	-7	4	12.4104	.0450	0.093290	0,003866	0.89285	0.01778
0 58 9.30 5 27 46,65286 .01250	9.30 5 27 46.65286 .	5 27 46.65286 .	5 27 46.65286 .	7 46.65286 .	7 46.65286 .	•	.012	20	-7	50	2.9503	.0268	026083	0.008924	0.40961	0.02330
Н	8.15 5 27 49.41363 .	5 27 49.41363 .	5 27 49.41363 .	.41363 .	.41363 .	.41363 .	.004	20	7	20	38.0421	.0174	0.248038	0.003404	-10.25720	0.01377
0 54 8.70 5 28 0.16490 .01213	8.70 5 28 0.16490 .	5 28 0.16490 .	5 28 0.16490 .				.012	13	7	39	22.0122	.0400	0.193988	0.013151	0.71698	0.04243
0 25 10.00 5 28 4.00969 .01351	5 28 4.00969.	5 28 4.00969.	5 28 4.00969.	•	•	•	.013	17	-2	9	58.5313	.0549	0.083513	0.006087	-1.76804	0.02565

	$\epsilon \mu \delta$	0.02679	0.01523	0.02071	0.01213	0.03130	0.04636	0.04491	0.01077	0.02252	0.00635	0.01732	0.02801	0.04058	0.01670	0.03178	0.02721	0.06822	0.02900	0.06603	0.01067	0.01992	0.01527	0.01574	0.02550	0.01457	0.01952	0.02022	0.01654	0.00702	0.02973	0.01762	0.02201
	η	1.30935	2.34915	-0.61613	-0.05226	-1.01796	-3.95135	-1.69227	-1.10022	2.96552	-1.09168	0.69396	-2.37443	0.36769	0.10760	-0.80923	-1.66129	90968.0-	-0.49095	-0.88115	0.09875	0.65005	-1.18757	-0.52743	-0.00785	-0.48914	-0.34640	-1.34564	-0.51577	-0.08995	-1.48541	-0.05667	-0.19689
	$\epsilon \mu \alpha$	0.008068	0.004529	0.008490	0.002091	0.008222	0.011680	0.008534	0.005610	0.005570	0.008431	0.004761	0.007263	0.009365	0.005639	960600.0	0.007360	0.010580	0.002294	0.022182	0.004200	0.006297	0.005315	0.004399	0.008045	0.006750	0.003538	0.007003	0.004552	0.002636	0.006938	0.005300	0.005263
	$\mu\alpha$	0.068307	0.106948	0.000961	003768	028785	165715	129342	0.010905	163899	100115	022611	081343	005483	0.003839	094434	039933	031967	0.034074	131228	0.013163	087827	034879	-,031832	-,001362	0.009760	021300	0.164466	004261	002030	036411	0.034120	064291
	83	.0451	.0242	.0236	.0244	.0433	.0576	.0554	.0380	.0359	.0292	.0230	.0346	.0727	.0403	.0585	.0447	.0841	.0585	.2937	.0175	.0263	.0316	.0335	.0361	.0300	.0249	.0410	.0346	.0250	.0422	.0325	.0372
		16.9074	11.7476	8.1810	14.3092	42.1292	11.2141	45.3328	4.8263	5.8526	12.6684	3,7118	41.9682	29.1900	53.2410	10.3647	29.0182	53.8609	58.7724	18.5251	17.8166	53.3067	52,6067	8.3293	15.4364	46.1073	48.5861	29.3082	12.4796	54.5220	33.6753	27.6264	52.5066
	~	24	2		4	40	36	18	00	00	49	10	31	17	Н	21	27	51	6	29	4	13	42	43	2	28	19	e	58	2	31	53	2
		7 7			-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2
_	ϵ_{α}	.01311	.00529	.00811	.00672	.01105	.01239	.01599	.01203	.00731	.01211	.00726	.01189	.01529	.01108	.01943	.01358	.01854	.01196	.13777	.00689	.00784	.01014	.00951	.01151	.00976	.00753	.01176	.00849	.00899	.01266	.00961	.01308
Table 9: (Continued)	α	16.83151	18.28754	25.34389	28.48775	34.06395	37.35505	43.28859	49.79849	49.84381	56.63599	57.64792	5.09643	14.54335	19,61652	24.35803	33,16682	39.48688	53.49128	1.12820	10.29639	18.59383	36.06144	40.61066	41.73450	42.63483	49.18385	55.65384	55.61923	57.53338	57.11215	11.65252	15.04083
e 9:		28	28	28	28	28	28	28	28	28	28	28	29	29	29	29	29	29	29	30	30	30	30	30	30	30	30	30	30	30	30	31	31
apl		5 5	5 5	5	2	2	2	2	5	5	2	2	2	5	- 2	- 2	2	2	2	5	2	S	2	2	2	2	2	2	2	2	2	2	2
	Ħ	10.80	7.85	8.40	9.05	10.25	10.85	10.65	8.10	7.70	10.90	8.55	11.30	10.50	10.70	11.30	10.45	11.05	10.55	10.20	8.03	7.33	8.83	9.60	11.10	10.90	.60	8.75	10.47	10.80	10.65	10.70	.70
	z						10		8		10							11		10	80	7	80				00		10	10	10	10	6
	_	33	93	53	57	19	17	38	53	68	51	59	34	20	27	25	23	15	20	c	71	52	43	32	26	22	65	35	36	17	23	34	28
	ACRS#	00	49701	49720	0	0	0	0	0	49791	0	49811	0	0	0	0	0	0	0	0	50036	50061	0	0	0	0	0	0	0	0	0	0	0
	AC#	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2033	2034	2035	2036	2037	2038

				[ab]	e 9:	Table 9: (Continued)	_								
AC#	ACRS#	Z	E			α	ϵ^{α}		9		93	μ_{α}	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon \mu \delta$
2039	0	36	8.90	5	31	18.00211	.01002	-2 2	28	7.6944	.0352	010745	0.005736	-0.02788	0.01003
2040	0	31	10,85	5	31	29.11397	- 01010.	-2 5	52 3	30,3221	.0251	0.136197	0.008114	-4.93641	0.01592
2041	0	39	10.85	5	31	31.39500	- 00947	-2 5	52 2	23.0141	.0287	004404	0.007255	-0.49035	0.00903
2042	0	25	8.80	. 5	31	32,18645	.00652 -	-2 4	42 5	52.9606	.0211	0.192787	0.004091	0.90148	0.01053
043	0	20	11.40	5	31	32.64975	.01481 -	-2 2	28 5	52.0152	.0520	043349	0.007643	0.59639	0.04443
5044	0	34	9.80	. 5	31	33.07960	.01139	-2 1	12 3	33,1803	.0307	0.012280	0.004312	-0.79153	0.01954
045	0	25	10.90	5	31	35.53318	.01383 -	-2 2	25	4.9286	.0677	005003	0.007130	-0.31298	0.02248
046	0	29	11.50	5	31	36,37731	.01565 -	-2	0 4	43.7805	.0547	036175	0.006177	0.13803	0.02101
047	0	23	10.50	2	31	35.90896	.01336 -	2 2	25 4	46.8948	.0379	092210	0.005555	-0.06390	0.02555
048	0	36	9.30	2	31	36.54015	.01190	2 1	9	59.8970	.0432	030003	0.003987	0.21051	0.02099
049	0	23	11.00	2	31	38.90539	.01355 -	-2 3	34 1	14.9196	9680.	078388	0.007720	0.14548	0.02109
020	0	38	9.55	.2	31	43,92525	.01250 -	-2 1	10 4	45.3507	.0327	0.025345	0.005250	0.30509	0.02017
051	0	30	10.05	. 2	31	44.33902	.01077 -	-2 3	m	35.7783	.0481	0.008136	0.006333	-1.11092	0.03902
052	50335	104	6.85	.2	31	44.53147	- 00467	-2 5	54 5	51.8510	.0219	0.108577	0.003754	1.22377	0.01249
053	50350	77	7.85	.2	31	46.64027	- 01700.	-2 2	25	4.7062	.0338	0.019633	0.005153	0.58576	0.01669
054	0		11.10	2	31	48.30444	.01047	-2 2	27 1	14.9469	.0421	120151	0.003687	-1.99026	0.03116
052	0		10.90	2	31	49.72168	- 96800.	-2 5	52 3	34.7037	.0324	010574	0.007320	-0.17084	0.02666
950	0		10.70	2	31	53.17166	.01215 -	-2 2	23 1	14.3812	.0399	0.055985	0.005021	-0.04118	0.01507
057	0		10.35	S.	31	53.76250	- 68800.	-2 4	m	22.9727	.0321	0.020614	0.007137	-0.26507	0.01374
058	0	29	10.00	2	31	58.99651	.01924 -	-2	6 4	41,3366	.0790	074693	0.008541	1,67803	0.02700
029	0	25	10.60	2	32	4.73004	.02749	-5	9 1	10.9464	.0838	061941	0.009871	-0.26284	0.02946
090	0	72	9.60	n S	32	9.47726	.00742 -	-2 3	34 2	24.3854	.0276	0.137139	0.006223	-0.06316	0.02058
190	0	82	8.95	2	32	11.86599	- 01800.	-2 3	31	0.2874	.0293	0.140404	0.007724	0.14588	0.02565
062	0	40	10.75	2	32	14.35928	- 96600.		28 1	12.0589	.0269	0.012782	0.007992	-0.51877	0.01372
063	0	20	10.80	2	32	16.47220	.01085 -	-2 4	49 1	19.8550	.0403	065346	0.003324	-0.22269	0.02129
064	0	42	11,45	2	32	16.58044	- 97800.	-2 4	48	2.5464	.0337	004173	0.004546	0.86682	0.02990
065	0	45	11.25	2	32	21.55226	- 16700.	-2 3	m	32.9769	.0266	0.112851	0.005837	-0.43315	0.02106
990	0	22	10.15	S	32	22.40423	.01210.	-2 2	22 2	21.2194	.0357	053912	0.005372	-0.32047	0.01786
190	0	19	10,95	2	32	23.25655	.02255 -	-2 1	10 4	46.7116	9770.	0.017292	0.005082	-0.16653	0.02313
890	0	41	11.25	S	32	22,74820	- 78700.	2.4	2	21.3948	.0249	0.051135	0.004992	-0.14423	0.01367
690	0	23	10.10	S	32	32.29118	.02034 -	-2 1	4 4	3.9031	.0901	064333	0.003493	0.43989	0.02607
010	0	22	10.45	2	32	34.14078	.02001	-2 4	0 3	37.7435	.0832	0.247633	0.015130	-1.88511	0.07616
071	0	20	10.25	2	32	39.51410	.01939 -	-2 1	4	1.9151	.0946	0.052591	0.003105	-1.18335	0.02672

	9нэ 9п	335 0,03133		_	402 0.03621	_	_	0	0	919 0.01496	717 0.01639	789 0.01499	915 0.02489	572 0.02929	471 0.01423	880 0.01581	375 0.03466	010 0.01379	672 0.02609	649 0.02021	454 0.02539	206 0.02172	434 0.01908	361 0.04372	208 0.01181	689 0.05939	249 0.02581	853 0.01197	978 0.04014	90900.0 069	891 0.00927	631 0.00857	
		48 0.21335	38 -0.18777	00	15 0.79402	4		54 -0.54940		78 -0.5591	86 1.0571	56 -0.57789	20 -1.52915	90 -1.45572	65 -0.25471	16 -0.37880	09 -0.61375	81 -0.39010	40 -0.12672	36 0.39649	88 -0.18454	89 -0.19206	08 0.00434	Ċ	20 -3.01208	1.23689	01 -2.32249	27 1.12853	45 -0.32978	30 -0.84590	31 -1.68891	29 -0.18631	
	$\epsilon \mu \alpha$	56 0.00404	89 0.00493	26 0.00657	48 0.00921	48 0.00308	33 0.008310		23 0.004901	34 0.011778	41 0.004886	20 0.004056	52 0.004820	58 0.008190	76 0.005365	81 0.009116	84 0.008109	02 0.004681	89 0.003440	76 0.003336	75 0.003788	90 0.006189	09 0.004508	68 0.004910	11 0.003920	05 0.006986	54 0.009701	70 0.005127	47 0.005645	51 0.002330	55 0.001231	41 0.003829	
	νη 9;	86025156	45021089	92013726	2030 0.061248		97036033	25 0.182926		83049434	27 0.108841	82068020	50 0.008152	52 0.110258	81 0.175576	74 027481	38055784	64 0.128602	79018689	15 0.224076	17 0.027575	0680 0.013690	60 0.085909	1204 0.091468	22 0.372511	1126118905	14 0.038454	73 0.109670	02031847	01 0.231551	87013855	30 0.237041	0.00.0 0 00.0
		13.9359 .0886	46.0212 .0245	1.1802 .0392		46.5342 .0324	8.6292 .1197	10.4816 .0225	17.7759 .0289	54.7386 .0683	12.4719 .0227	36.7819 .0382	8.4940 .0850	21.0740 .0752	4.8961 .0281	23.7772 .0574	45.0757 .1038	9.1692 .0264	3.5462 .0779	54.1105 .0315	23.8451 .0717	35.8313 .06	47.7274 .0360	25.1037 .12	20.0881 .0222	13.8007 .11	44.7755 .0714	2.0482 .0173	1.0824 .1102	19.7435 .0101	50.6102 .0187	40.0222 .0230	
	9	-2 9 13	-2 24 46	-2 23 1	-2 18 48	-2 41	-2 6	-2 29 10	-2 24 17	-2 9 54	-2 56 12	-2 28 36	-2 12 8	-2 17 21	-2 44 4	-2 18 23	-2 16 45	-2 38 9	-2 3 3	-2 55 54	-2 5 23	-2 7 35	-2 59 47	-2 1 25	-2 33 20	-2 51 13	-2 6 44	-2 47 2	-2 10 1	-2 28 19	-2 30 50	-2 31 40	
cd)	ξα	4 .01539	7 .00537	5 .01093	8 .04417	2 .00936	5 .02986	7 .00640	8 .00951	6 .05225	95900. 9	•	6 .01472	7 .01883	6 .01074	1.02867	5 .02404	9 .00714	9 .01441	17900. 6	3 .01237	9 .02131	9 .01075	9.01226	8 .00612	6 .01326	8 .02684	9 .00582	0 .01754	2 .00378	1 .00640	3 .00743	
Table 9: (Continued)	α	2 42.9732	2 42.83507	32 44.86015	32 47.58148	32 51.17032	3 0.04705	3 5.23727	3 15.56378	3 21.90756	3 21.79596	3 28.85993	3 32.53366	3 42.97177	3 55,14886	4 0.89961	4 11.78295	4 11.50979	4 15,40339	4 15.69089	4 17.86503	4 22.72749	4 22.57169	4 46.96499	4 47.96238	4 50.15526	4 52.05618	5 1.31559	5 5.59850	5 9.56042	5 10.92851	5 14.07143	10000
Table 9		30 5 3	7.80 5 3	S	S	Ŋ	20 5 3	65 5 3	.30 5 3	45 5 3	83 5 3	60 5 3	65 5 3	10 5 3	50 5 3	5	5 3	5 3	5 3	5 3	5 3	5	5 3	5 3	5	5 3	30 5 3	5	5 3	5 3	5 3	30 5 33	
	Z	32 9.30	70 7.	29 11.35	13 10,80	25 11.05	19 10.20	63 8.65	70 8.	7 11.45		\vdash	23 9.65	29 8.10	16 11.50	26 11.10	22 10.85	36 11.20	25 8.23	Н	ω	5 10.80	9 10.38	8	m	Н				24 8.00	3 10.40	N	10000
	ACRS#	0	50532 7		0 1		0 1		50677 7	0		0 2				0 2								50990 1	0			П		Н	0 4	0 4	
	#JW	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2102

	$e \mu \delta$	0.01217	0.01298	0.02672	0.02338	0.01747	0.01860	0.00564	0.01339	0.01931	0.01022	0.02966	0.02114	0.00978	0.01002	0.00770	0.01228	0.01576	0.00849	3 0.01754	5 0.00942	3 0.01146	0.01448	1 0.00939	0.05049	0	0	7 0.02397	0	7 0.01764	2 0.03021		5 0.02068
	MB	-1.68477	-1.31495	0.19292	0.77164	0.94941	0.82676	-0.09046	-0.51765	-0.31730	-0.12327	-0.20605	-0.79179	-0,11215	0.70140	-0.18345	-4.56142	-1.83861	-0.48576	-0.79353	-0.54646	-0.38593	-0.65710	-2,24224	-0.15700	-2.07550	-1.86987	0.10737	-1.09622	-1,08897	-5.12762		-0.78375
	$\epsilon \mu \alpha$	0.004025	0.003777	0.008940	0.003804	0.008037	0.006878	0.004296	0.004325	0.009147	0.005409	0.004414	0.007720	0.002592	0.003774	0.002820	0.004010	0.005206	0.004023	0.005313	0.004051	0.004318	0.007894	0.004078	0.012253		0.012334	0.006537	0.005155	0.009014	0.009021		0.005310
	μ_{α}	0.207380	0.074463	075148	0.053953	0.326371	0.090543		0.245397	-,717081	0.230512	0.032493	0.193283	0.237127	0.296376	0.241689	0.160042	0.276964	0.165421	0.030679	0.104321	0.114586	0.161338	0.181277	084990	_	0.048426	0.057009	0.188248	0.004156	035245		0.013/42
	€8	.0303	.0298	.0739	.0359	.0312	.0346	.0236	.0269	.0452	.0197	.0426	.0513	.0158	.0146	.0144	.0273	.0340	.0237	.0227	.0267	.0290	.0201	.0194	.0761	.0374	.0791	.0380	.0238	.0615	.0928	0000	.0698
		30.1490	40.1115	56.4344	12,3107	36.1834	42.7118	26.7110	55.0096	54.9997	51.7177	40.2745	18,5370	33.5776	11,3916	13.7612	31.5765	51.9712	21.1250	6.1882	27.2641	2.3492	25.0444	29,0210	39,5784	56.8070	12.6843	1.3024	27.7963	45.2730	44.3827	20 2441	T##C . C7
	~	30	17	9	45	58	26	30	35	35	34	20	37	40	28	33	31	43	27	42	24	30	32	54	27		27	21	51	45	19	4.4	ľ
		-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2	-2		-2	-2	-2	-2	-2	C	
_	ϵ_{α}	.01013	.00993	.02503	.00947	.01166	.01230	.00949	.00642	.02482	.00993	.00922	.01472	.00443	.00482	.00519	.00817	.00956	.00869	.00717	.00795	.00737	.00853	.00619	.01689	.00985	.01859	.00866	.00718	.02851	.02605	02064	
Table 9: (Continued)	α	35.63478	43.00034	47.89500	56.96108	59.99361	1.03402	3.58681	3.47413	3.80504	5.76820	8.25292	16.47299	30.82187	38.89361	44.23972	44.80168	5.92835	9.64776	15.54611	28.32199	36.09201	42.24860	42.06610	49.23182	50.47330	56.52582	6.81379	26.09137	26.95840	31,62509	31 73478	0110110
e 9:		35	35	35	35	35	36	36	36	36	36	36	36	36	36	36	36	37	37	37	37	37	37	37	37	37	37	38	38	38	38	38	
[ap]		.5	2	2	5	2	2	5	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
	ш	11.05	9.40	9.90	10.10	11.17	10.47	10.55	8.35	8.05	7.45	10.65	6.75	7.80	8.63	8.30	10.65	9.90	10.70	8.25	10.35	10.65	8.40	9.80	6.90	10.40	9.40	6.15	9.03	9.00	7.37	7.90	
	Z	32	46	27	33	30	28	27	70	55	73	29	45	82	63			45	25	54	25	23	42	67	31	56	24	23	41	14	0	18	
	ACRS#	0	0	0	0	0	0	0	0	514913	514914	0	51301	51350	0	51395	0	0	0	0	0	0	51584	0	51617	0	0	51668	51721	0	51746	51743	
	₩.	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2130	2131	2132	2133	2135	2136	2137	2138	

	$\epsilon \mu_{\theta}$	0.02277	0.02935	0.03036	0.01297	0.01449	0.05515	0.01727	0.04339	0.06296	0.06461	0.02650	0.03630	0.03102	0.04219	0.02579	0.03083	0.03988	0.03068	0.02892	0.02948	0.02351	0.05504	0.01941	0.05330	0.05356	0.02254	0.03626	0.02186	0.01950	0.01328	0.03258	0,01773	
	48	-0.66953	-0.23589	1,42847	-0.96825	-0.07678	0.08271	-2.81541	1.12009	-1.06801	-1.69709	-0.58556	1.07748	-2.64175	-0.00156	-2,11837	-1.71128	-0.62281	-0.50225	-0.94839	-0.25343	0.35299	-0.35476	-0.65464	-1,62543	0.00525	-2,67641	-0.01078	1.74444	1.49481	0.15986	0.60844	-1,31656	
	$\epsilon \mu \alpha$	0.006022	0.011583	0.010345	0.004147	0.003625	0.017748	0.006443	0.010450	0.014447	0.012918	0.008237	0.016394	0.005998	0.014783	0.006464	0.007800	0.012074	0.010716	0.007334	0.007959	0.009624	0.007603	0.004376	0.011547	0.006377	0.015538	0.010248	0.009481	0.006361	0.009719	0.006581	0.011042	
	$\mu\alpha$	040757	039939	0.374962	006974		020773	0.099431	033514	048321	159410	030532	076113	095486	017577		028639	0.010995	029108	072983	-,083924	097440	076174	0.041190	0.068544	0.043955	068749	-,151080	204273	123806	0.082529		058037	
	$_{\ell}^{}$.1099	.0926	.0698	.0294	.0263	.0992	.0236	.1576	.0761	.0655	.0303	.0564	.0324	.0538	.0258	.0460	.1534	.0391	.0457	.0336	.0644	.0719	.0463	.0587	.0641	.1182	.1238	0960.	.0723	.0656	.1570	.0975	
	δ	43.5245		13.4645	19.8110			31.1053	29.7342	49.2130	24.7370	15.4665	45,6825	24.0433	50.3717	55.1445	2.2340	57.0597	16.9011	27,4186	7,3006	3	26,9065	6.0957	48.1473	34.2647	56.7007	8.5450	35,5943	9.4077	43,4083		14,9688	
		-2 39	-2 16	-2 55	-2 49		-2 20	-2 32	-2 10	-2 37	-2 42	-2 30	-2 5	-2 31	-2 21	-2 55	-2 31	-2 17	-2 31	-2 20	-2 46	-2 19	-2 23	-2 29	-2 45	-2 30	-2 13	-2 3	-2 3	-3 33	-3 33	-3 35	-3	
_	ϵ_{α}	.03967	.03371	.01506	.00869	.00726	.02787	.00883	.05137	.02207	.01517	.00837	.02028	.00660	.01523	.00786	.01322	.06349	.01185	.01382	.00902	.02317	.01147	.01394	.01503	.01394	.02448	.04811	.04865	.01890	.02980	.03293	.04234	
Table 9: (Continued)	ŭ	4.84510	7.29334	9.83316	22.34469	55,66049	29.52448	42.16905	54.73335	12.23093	24.43339	33.58462	35.44855	37.99922	45.92202	57.82682	3.48372	19.56335	30,50607	43.36747	47.94750	48.86780	36,60554	38.65111	38.79486	40.16323	45.86804	59.50431	17.01023	46.30752	17.40186	19,26447	22,01375	
e 9:		39	39	39	39	39	40	40	40	41	41	41	41	41	41	41	42	42	42	42	42	42	43	43	43	43	43	43	44	18	19	19	19	
Tabl		0 5	5 5	7 5	5 5	7 5	5	5 5	5	5 5	0 5	5 5	5 5	5 5	5 5	0 5	0 5	0 5	3	3 5	7 5	7 5	5	0 5	0 5	5	0 5	0 5	5	5	5	5	5	
	Е	10.00	7.15	6.87	7.65	9.97	7.85	9.05	9.85	10.65	10.30	8.65	8.25	8,15	8.05	8.80	10.30	10.60	7.53	10.13	8.27	10.67	9.85	10.10	10.70	10.75	10.40	10.10	10.40	9.90	10.20	11.50	10.10	
	Z	7	6	30	31	36	15	46	S	17	17	20	13	45	54	71	18	m	47		47	22	29		17		m	4	4	7	7	e	10	
	ACRS#	0	51869	51880	51925	0	52155	52194	0	0	0	52375	52385	52395	52418	52452	0	0	52562	0	52618	0	0	0	0	0	0	0	0	0	0	0	0	
	AC#	2144	2145	2146	2151	2153	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2167	2168	2169	2170	2171	2175	2176	2177	2178	2179	2180	2182	2229	2231	2232	2233	

	$\theta H \theta$	0.03530	0.03005	0.02451	0.03504	0.01951	0.01482	0.01685	0.02376	0.02127	0.01985	0.01690	0.01614	0.02899	0.02072	0.03428	0.01355	0.00812	0.01114	0.03367	0.01379	0.01616	0.06218	0.05808	0.01546	0.01551	0.05543	0.01656	0.01213	0.08121	0.01557	0.04873	0.05830	0.01607
	μ_{δ}	-0.40461	1.18213	1.66448	-2.59263	0.22045	0.48572	0.38437	-0.08186	-0.68332	-0.37910	0.91753	0.28363	-1.25449	0.92552	-1.18874	0.39997	-0.46872	-0.31789	-0.54661	-0.02398	-0.49847	0.75613	0.20906	0.40252	1.40626	-4,25856	-0.68486	-0.98800	0.63805	1.54989	-3.14412	0.31376	0.44142
	$\epsilon \mu \alpha$	0.008794	0.007765	0.004087	0.005039	0.004702	0.004358	0.006435	0.008454	0.004590	0.005693	0.006211	0.004623	0.004731	0.002753	0.007537	0.002497	0.004933	0.003582	0.004507	0.004281	0.004934	0.019875	0.016920	0.004216	0.005479	0.011555	0.009811	0.003013	0.011495	0.004911	0.012440	0.019730	0.004146
	$\mu\alpha$	0.021234	0.031886	160965	-,003464	023376	085437	004503	0.039408	0.088832	008699	017424	-,066245	0.035779	027268	0.047104	036054	000411	0.050483	040190	0.046886	026772	039982	021813	0.018079	026480	0.058669	0.054650	030765	000529	0.007323	025074	054440	0.014434
	$_{\ell}^{g}$.1141	.1494	.0671	.1012	.0371	.0214	.0313	.0372	.0362	.0373	.0291	.0219	.0855	.0767	.1025	.0253	.0258	.0227	.0931	.0231	.0254	.0914	.0625	.0285	.0396	.0652	.0327	.0236	.0799	.0284	.0540	.0592	.0274
		15,1388	36.9982	57,3138	50.4956	42.2120	51.6462	58.0031	38.3432	33.6972	33.8173	4.3174	41,6292	28.6382	6.3292	12.3141	57.0669	6.0542	22.9107	8.8287	4,7645	22,6236	45.5582	44.5273	54.2949	22.7231	38.4026	4.5416	13,7613	31,5052	47.4304	34.6757	1.0267	5.2990
	40	33	30	25	29	12	8	7	12	22	12	7	7	27	28	34	16	12	19	33	24	m	38	52	29	29	51	4	20	37	32	52	40	27
		-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	9	-3	9	13	-3	-3	13	6	-3	13	-3	-3	-3	-3	-3	13	13
_	ϵ_{α}	.02713	.04851	.00815	.01643	.01021	.00559	.01057	.01206	.00825	.00815	.01040	.00581	.01965	.01855	.02505	.00737	.00871	.00507	.01395	.00675	.00872	.02264	.02203	.00818	.01331	.02356	.01076	.00691	.01796	.00870	.01428	.02131	.00819
Table 9: (Continued)	ø	35.54211	41.71979	49.25697	26.79260	39.87863	49.63028	5,72133	7,99810	15.37151	20.91528	21,69033	23.11753	23.83412	29.90698	33.13268	55.26590	57.91138	58.70269	3.35089	21.22707	23.04884	36.87818	36.67523	51.47336	52.59705	54.20965	55.40850	56.69031	57.35879	2.88496	4.45068	10,72523	11.92662
.6		19	19	19	20	20	20	21	21	21	21	21	21	21	21	21	21	21	21	22	22	22	22	22	22	22	22	22	22	22	23	23	23	23
aple		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	S	2	2	2	S	2	2	S	Ŋ	Ŋ
Н	E	9.90	10.20	10.70	.40	10.70	.80	10.90	.20	9.70	10.50	.50	8.70	10.70	11,00	10.60	9.70	10.40	8.50	9.00	10.40	10.70	11.20	10.20	10.30	11.20	10.00	10.50	10.80	10.40	10.50	8.80	10.80	.40
		6	10	10	6	10	80	10	1	6	10	10	8	10	11	10	0	10	80	6	10	10	1	10	10	Ξ	10	10	10	10	10	8	10	10
	Z	7	7	6	13	25	9	25	25	19	25	25	62	7	7	7	45	25	38	13	33	42	10	12	19	12	12	36	35	12	19	32	13	19
	ACRS#	0	0	0	0	0	48302	0	0	0	0	0	48411	0	0	0	0	0	48502	0	0	0	0	0	0	0	0	0	0	0	0	48691	0	0
	AC#	2235	2238	2241	2244	2245	2246	2251	2254	2256	2257	2258	2259	2260	2263	2264	2266	2267	2268	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284

		:	T	able	6	Table 9: (Continued)									
ACRS# N m		ш			-	ŭ	ϵ_{α}		9		g_{ϑ}	$\mu\alpha$	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon \mu_{\delta}$
0 66 9.30 5	9.30	30			23	19.96924	09900	6-	3	16,2686	.0197	0.027380	0.003763	0.27673	0.01292
27 10.50 5	10.50 5	2	2		23	40.52388	.00583	-3	22 4	45,1697	.0318	000186	0.000946	0.83443	0.01369
8.40 5	8.40 5	2	2	(4	23	46.13670	.00495	-3	7	6.6309	.0174	0.039003	0.004038	-0.48238	0.01193
0 45 9.50 5 2	9.50			0	4	2.64368	.00587	۳, د	30 4	49.3630	.0261	006733	0.003997	1,53215	0.02318
21	9.90 5	Ω	Ω	2	4	7.19945	.01303	-3	46 5	52,9625	.0291	047293	0.009120	0.41050	0.00458
	11.10 5	2	2	2	4	12.89207	.01250	-3	27	1,1146	.0363	018233	0.004278	4.72574	0.01489
0 33 9.60 5 2	09.6			$^{\circ}$	4	13.15395	.00712	-3	37 2	25.1654	.0408	038516	0.001790	-1,23108	0.03397
0 16 11.50 5 2	6 11.50 5	2	5 2	$^{\circ}$	4	14.98828	.01309	-3	28	51.2684	.0297	0.022762	0.008994	0.27488	99600.0
	11.20 5	2	5 2	2	4	15.33853	.00848	-3	34 4	41.2213	.0288	0.051243	0.004809	0.95787	0.01558
0 24 10.80 5 2	10.80 5	2	5 2	2	4	17.02185	.01017	က	7 1	19.5227	.0397	0.009582	0.006091	-0.47824	0.02341
	11.30 5	2	5 2	2	4	19.56665	.00816	-3	27 4	46.3306	.0314	0.050278	0.003688	-2,10067	0.01529
27	9.80 5	2	2	2	4	28.60361	.00594	6	35 5	52.0339	.0298	0.029921	0.002968	1.51026	0.01707
25 10.40 5	10.40 5	2	2	7	24	43.26704	.00872	۳-	6	50.0098	.0324	025835	0.003694	0.52303	0.01858
0 13 11.50 5 2	11.50 5	2	5 2	2	24	43.23153	.01857	6,	38 4	42.5864	.0773	060495	0.011185	-1.51913	0.06759
12 11.30 5	11.30 5	2	5 2	2	24	48.51661	.01413	اء 1	51	59.6571	.0883	048513	0.004674	-1.12938	0.06414
13 10.20 5	10.20 5	2	5 2	7	24	49,47897	.02167	-3	43 1	15.7546	.0724	004291	0.016275	-0.85039	0.03196
2	10.60 5	2	5 2	2	24	57.55076	.01740	-3	40	8.2297	.0979	0.013609	0.013727	-5.34266	0.07392
2	10.50 5	2	5 2	2	24	58.85859	.01539	۳ ا	37 2	23.5781	.0772	001242	0.011636	-1.38938	0.06059
5 2	5 2	5 2	5 2	2		19.81550	96800	<u>۳</u>	80	7.6623	.0367	0.141250	0.004399	2,20280	0.01655
10.50 5	10.50 5	Ω	Ω	2		22.04821	.01259	-3	7	4.3208	.0772	0.093466	0.005940	-1.03585	0.02796
0 81 9.30 5 2	9.30 5	2	2	\sim	25	22.63698	.00447	-3	7	3.8600	.0178	0.026233	0.002119	0.51593	0.01089
9.30 5	9.30 5	2	2	2		24.29668	.08800.	6,	38 1	14.4200	.0599	090488	0.001992	-1.19629	0.05639
11.10 5	11.10 5	2	2	2		37.56065			15 3	39,2805	.0280	0.045410	0.003970	0.91413	0.02143
11,30 5	11,30 5	2	2			37.93648	.01380	-3	50 1	12.9498	.0649	184532	0.003894	-2.87946	0.05695
11.00 5	11.00 5	2	2	2	2	51.71203	.02664	-3	49 1	15.8607	.0810	101156	0.017271	-0.99480	0.04891
61 9.90 5 2	9.90 5 2	.90 5 2	5 2	2	9	0.18756	.00870	-3	3	38.8782	.0219	0.036906	0.004974	0.42098	0.01487
64 9.40 5	9.40 5	.40 5	2	2	26	8.62368	.00504	-3	16 2	29.9628	.0154	0.075484	0.002291	-0.27870	0.00816
16 8.50 5	8.50 5	.50 5	S	2	56	11.71289	.01738	ان د	54 5	57,0697	.0571	0.159493	0.013047	-8.19140	0.05126
0 78 9.20 5 2	9.20 5	.20 5	5		9	12.56556	. 00567	۳	5 1	15,8499	.0178	0.059778	0.003992	-0.56871	0.01237
8 11.50 5	50 5	50 5	ις.		26	16.58535	.02896	6	37 4	48.9727	.0647	127292	0.013977	2.03555	0.03731
12 11.50 5	11.50 5	.50 5	S		26	18.95305	.02451	-3 4	42 3	31.7580	.0646	094283	0.013432	-0.79500	0.03559
0 15 11.50 5 2	11.50 5	.50 5	2		9	20.10300	.01501	-3 1	9	5.0675	.0450	0.265218	0.006172	1.99331	0.01890
0 9 11.30 5 2	11.30 5	.30 5	5 2	2	9	24.35973	.02614	-3	38 5	50.8459	.0653	348572	0.021122	-3.43237	0.03286

	μ_{δ} $\epsilon\mu_{\delta}$	-1.79962 0.01531	0.23022 0.01736	-0.51376 0.03986	-1.19912 0.03137	0.15602 0.01097	-0.28477 0.03255	0.99858 0.03417	-0.22024 0.01877	-0.38833 0.02882	-4.33449 0.01998	-1.40142 0.02012	-0.25872 0.04277	1.25612 0.0079	-0.24671 0.01102	-1.95467 0.02366	-0.57628 0.05500	-0.08104 0.01388	1.32907 0.03161	0.93661 0.01308	-0.64202 0.01295	2.96517 0.02334	2.39620 0.0326	0.36770 0.0577	0.30717 0.0183	_	-11.56757 0.00749	0.30388 0.03173	0.31218 0.00930	0.41961 0.0139	-4.13035 0.0433	-0.29211 0.0187	-0.85550 0.00910
	$\epsilon \mu \alpha$	0.003030	0.005827	0.012675	0.004754	0.003769	0.012558	0.014202	0.007267	0.003225	0.005703	0.004948	0.008577	0.002025	0.013821	0.009365	0.015299	0,003667	0.009004	0.003354	0.003316	0.005577	0.007603	0.013586	0.006439	0.003355	0.001785	0.007274	0.003302	0.005603	0.009593	0.004065	0.004185
	ϵ_{δ} $\mu\alpha$.0325128508	.0309 0.056405	0670076790	.0814250410	.0239 0.026917	.0600078802	.0609078868	.0285000963	.0483075996	.0294174548	.0386 0.039552	.0563045121	.0152096789	.0371055510	.0320031221	.0577086440	.0251040422	.0349248371	.0213088331	.0234109598	.0568114731	.0763175580	.0642130514	.0320019920	.0390057615	.0103544995	.0792036540	.0134125934	.0219048669	0482149971	.0285131299	.0219077277
	ę	20 47.2764 .03	10 56.5539 .03	40 57.5087 .0	29 5.5630 .00	20 26.4244 .03	40 41.2609 .00	49 16.2041 .0	7 24.5614 .03	48 16.7698 .0	23 54.4608 .03	4 9.1490 .03	4 15.4302 .0	20 12.8913 .03	47 59.6275 .03	38 53.6111 .03	46 39,4322 .0	34 5.6965 .03	23 37.1527 .03	31 36.0754 .03	19 24.7278 .03	20 53.6137 .0	3 42.7011 .0	49 32.6374 .0	9 53,9934 .03	37 27,1374 .03	21 29.5921 .0.	58 11.9968 .0'	14 2,1806 .0:	36 28.0064 .03	39 41.7612 .0	0 9.2734 .03	4 5.0682 .03
	ϵ_{α}	.00645 -3 2	.01032 -3 1	.01799 -3 4	.01228 -3 2	.00777 -3 2	.01912 -3 4	.02044 -3 4	.01065 -3	.01559 -3 4	.01196 -3 2	.01082 -3	.01814 -3	.00365 -3 2	.01978 -3 4	.01058 -3 3	.01884 -3 4	.00714 -3 3	.01015 -3 2	.00584 -3 3	.00693 -3 1	.01280 -3 2	.01871 -3 1	.01583 -3 4	.01084 -3	.00973 -3 3	.00269 -3 2	.01922 -3 5	.00438 -3 1	.00872 -3 3	.01365 -3 3	.00979 -3 2	.00895 -3 3
Table 9: (Continued)	α	26 27.04149	26 31.17343	26 43.17683	26 54.02143	26 58.65976	27 1.25330	73.77797	27 10.86681	27 16.91920	27 30.06965	27 41.05656	27 43.31785	27 51.99793	27 53,21318	27 56.50989	28 0.39086	28 8.81568	28 14.36500	28 15.81376	28 16.99076	28 24.55607	28 26.41317	28 27,39018	28 29,18237	28 29.25238	28 33.81821	28 35.54662	28 38.20078	28 38,49422	28 45.45092	8 46.89076	8 56,02096
Table	E N	54 6.20 5 3	29 11.50 5 2	13 11.30 5 2	36 7.10 5 2	33 11.50 5 2	13 11.50 5 2	11 11.00 5 2	27 10.60 5 2	11 10.50 5 2	24 11.50 5 2	18 11.50 5 2	18 11.60 5 2	96 9.20 5 2	20 11.00 5 2	60 9.10 5 2	25 11.00 5 2	35 11.40 5 2	42 11.50 5 2	37 10.90 5 2	33 10.20 5 2	37 11.50 5 2	32 10.20 5 2	23 11.20 5 2	11.50	10.40 5	2		8.80 5	34 11.20 5 2			35 10.70 5 2
	ACRS#	49347	0	0	49426	0	0	0	0	0	0	0	0	49610	0	0	0	0	0	0	0	0	0	0			49742 14	0	49757 10		0		0
	AC#	2321	2322	2323	2324	2325	2326	2327	2328	2329	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2354

			I	Cap	le 9	Table 9: (Continued)	(p								
₩ V	ACRS#	Z	ш			σ	ęα		9		$_{\theta}$	$\mu\alpha$	$\epsilon \mu \alpha$	$h\delta$	θm_{θ}
2356	0	22	11.00	5	29	7.77435	01664	-3	52	10.5095	.0725	008763	0.006403	-0.60531	0.05313
2357	0	80	10,10	5	29	8.58495	. 03863	9	29	11.6665	.1023	104817	0.013464	9.64611	0.04260
2358	0	39	•	5	29	8.95344	1.01358	-3	15	43.5882	.0364	095539	0.005460	1,12602	0.02682
2359	49871	79	7.60	5	29	13.67131	00568	6	15	7,8176	.0210	-,004492	0.004472	-0.82217	0.01726
2360	0	29	10.40	5	29	19.47870	.00933	9	m	50.0533	.0330	0.109439	0.005670	0.47208	0.01808
2361	0	13	10.40	5	29	23.19807	,02061	n	39	16.1287	.0795	052681	0.016541	-1.89868	0.06400
2362	0	31	11.20	5	29	25.42304	.00720	6	23	57,1412	.0247	057493	0.003530	0.20936	0.01138
2363	0	13	10.70	5	29		•	6	38	27.8959	.0497	061345	0.014994	-0.28746	0.02627
2365	0	65	9.50	5	29	32.95368	3 .00540	က	11	59.1841	.0178	0.061784	0.003338	-1.89193	0.01142
2366	0	29	11.10	5	29	34.33532	.00993	6	7	35.0125	.0419	0.018862	0.004537	-3.32416	0.03248
2367	0	30	11.20	5	29	41.36075	0.01349	ñ	23	52.1775	.0304	089746	0.006399	0.36073	0.01336
2368	0	26	11.10	.5	29	42.18900	.01033	က	7	23.1107	.0400	031327	0.006715	0.16085	0.02599
2369	0	25	10.40	5	29	45.04334	67700. 1	۳	17	53.3102	.0301	003943	0.003399	-0.24137	0.01217
2370	0	63	9.00	5	29	47.05704	.00565	3	35	57.0234	.0186	117888	0.003111	0.59317	0.00987
2371	0	12		5		47.67842	.01745	9	53	11.3786	.0709	0.145598	0.011209	-5.03807	0.05981
2372	0	25		5	29	48.79756	.00775	ñ	32	57.9469	.0271	058695	0.003340	-1.66022	0.01015
2373	0	25		5	29	49.82620	.00782	6	18	56.6782	.0282	049338	0.003434	-0.84322	0.01302
2374	0	20	11.50	5	29		01133	6	0	15.3239	.0456	-,058718	0.004974	-0.35819	0.02471
2375	0	22	11.40	5	29	59.24750	.01049	-2	59	40.6855	.0377	0.112471	0.005699	-2.27157	0.02163
2376	0	29	10.40	5	30	6.69059	.01024	-3	4	24.5126	.0367	0.042299	0.007482	-2.20978	0.02687
2377	0	13	11.10	5	30	7.66106	.01891	6	49	21,7995	.0488	095756	0.010026	0.46056	0.03596
2378	0	30	10.10	5	30			6	14	5.8090	.0308	0.000756	0.008102	-0.65009	0.01924
2379	0	56	10.80	5	30		.00882	6	13	37.6535	.0291	0.026563	0.003612	-2.06775	0.01167
2380	0	34	10.70	5	30		.00621		21	40.4213	.0247	0.012854	0.003080	0.29459	0.00908
2381	0	72	8.80	5	30	23.32054	.00578	6	7	10.5153	.0197	0.044248	0.003540	-0.82167	0.01110
2382	0	26	10.70	5	30	25.65545	.00772	6	16	38.7673	.0204	0.167283	0.003395	-0.57154	0.01013
2383	0	26	10.50	2	30		90200. 1	6	16	25.4003	.0282	0.004169	0.003233	-0.42946	0.01222
2384	0	25	11,50	5	30	32,19733	.00938	-2	51	17,9988	.0266	-,002840	906900.0	-1.34303	0.01564
2385	0	14	11.00	- 2	30		.02354	6	40	38.7481	.0587	-,136027	0.021697	0.19788	0.04447
2386	0	26	10.70	5	30	37.13198	89900.	6	16	58.3736	.0217	0.010710	0.003161	-0.15524	0.01174
2387	0	29	11.30	5	30	46.82818	.00928	-3	m	26.1412	.0307	0.104086	0.005105	-1.26436	0.01996
2388	0	20	11.30	5	30	38,80138	.01188	6	27	35.0210	.0375	069712	0.005792	-0.11568	0.01535
2389	0	23	11.20	5	30	38.90026	.01199	-3	32	51.9458	.0427	094143	0.003202	0.66366	0.01609

				Η	app	e 9:	Table 9: (Continued)	_								
#JV	ACRS#	Z		ш			α	ęα		9		93	$\mu\alpha$	$\epsilon \mu \alpha$	η	$\epsilon \mu \delta$
2390	0	33	11	.20	S	30	51.30787	.00635	3	23	25.0850	.0208	007048	0.003402	0.11745	0.00952
2391	0	25		11.20	2	30	52.61563	.01798	6	33	4.9071	.0232	074135	906900.0	-1,55322	0.00672
2392	0	33	10	10.70	2	30	54.34493	.00477	6	20	26.0992	.0216	026497	0.001926	-0.25355	0.01054
2393	50197	83		8.60	2	31	0.53048	.00445	6	8	34.9865	.0124	0.076216	0.002648	-2.09919	0.00739
2394	50214	59		8.40	2	31	8.00518	.00603	6	29	47.6924	.0273	036201	0.004037	-0.59142	0.02116
2395	0	46	6	9.30	2	31	11.38183	.01761	6	33	14.4108	.0317	057664	0.017462	-1,38161	0.02953
2396	0	33	11	11.00	2	31	12.56878	.00747	6	34	47.1427	.0224	0.007612	0.003453	-1,81344	0.01207
2397	0	31	11.	11.40	2	31	20.87085	.00958	-2	28	20.8401	.0411	0.096520	0.005222	-1.63988	0.01970
2398	0	35	10.	10.80	2	31	21.85566	.00574	6	25	52.0088	.0218	065606	0.001552	-0.05776	0.01125
2399	0	39	10,	10.70	S	31	25.04438	.00726	6	11	27.1190	.0294	0.012364	0.004005	0.16018	0.01628
2400	0	69		9.60	S	31	30.64484	.00543	-3	Н	25.5758	.0221	0.024839	0.002566	-0.36141	0.01081
2401	0	9	11.	11.20	S	31	30.73775	.06011	6	39	50.5216	.2021	0.163394	0.017009	-5.13408	0.09571
2402	0	33	10.	10.50	S	31	31.90697	.00809	6	31	47.5295	.0232	0.035338	0.003855	-1.52010	0.01305
2403	0	30	11	11.50	2	31	36.06461	98600.	6	6	2.4071	.0350	0.051785	0.006090	-0.29807	0.01540
2404	0	31	11	11.40	2	31	38.60757	.00889	ñ	13	21.0569	.0383	0.070327	0.006453	0.28235	0.02584
2405	0	99	6	9.60	S	31	40.93130	.00465	-3	16	40.9701	.0147	0.009486	0.002439	-0.28201	0.00872
2406	0	41	8	8.90	S	31	40.59769	96800.	6	28	35,2227	.0309	171055	0.003311	-3,52037	0.01291
2407	0	37	17	11.40	S	31	53.28898	.00709	-3	S	48.4093	.0324	0.070326	0.005061	0.99799	0.01925
2408	0	6	ij.	11.10	2	31	53,18763	.01331	-3	48	0.1974	.0597	107299	0.008015	0.58237	0.05686
2409	0	21	10.	10.80	S	31	53.69207	.00932	6	28	44.8243	.0274	034207	0.004257	2.58020	0.00892
2410	0	43	ij	11.50	2	31	55.06900	.00956	7	27	34.0163	.0296	0.084643	0.006892	-1.12953	0.01420
2411	0	36	11	11.50	2	32	4.05268	.01085	7	28	24.2244	.0428	0.174270	0.007855	-0.10778	0.02732
2412	0	31	11.	11.40	2	32	4.09760	.01144	-3	9	39.7308	.0458	0.087510	0.007654	-0.90054	0.02091
2413	50417	25	φ,	8.90	2	32	11.36454	.01978	6	42	41.2460	.0682	0.125539	0.018187	-0.79816	0.06921
2414	0	6	11.	11.20	2	32	12.49665	.02635	-3	43	52,3076	.0743	072071	0.019241	0.43106	0.05938
2415	0	23	11.	11.50	2	32	26.09144	.01413	6	18	17.7310	.0508	0.057900	0.006630	0.48090	0.02409
2416	0	6	11.	11,30	S	32	33.08315	.03077	6	53	46.7667	.0518	190435	0.017952	0.62697	0.02801
2417	0	17	10.	10.60	Ω	32	36.08900	.00913	6	34	36.96.98	.0268	028395	0.004487	-1,08385	0.01457
2418	50514	25	9.	9.00	2	32	39,72112	.01604	-3	44	30.4239	.1058	058043	0.015693	-3.44730	0.11177
2419	0	42	9.	9.50	2	32	43.85204	.00881	-3	13	55.4597	.0262	0.078378	0.006291	-0.28350	0.01593
2420	0	18	11.	11.50	S	32	51.58177	.01307	-3	0	31.9041	.0413	0.046015	0.008509	1,32568	0.03426
2421	0	17	10.10	10	2	32	59,25626	.01082	6	25	53.7625	.0305	086588	0.006971	-0.36893	0.01524
2422	0	18	11.	.50	2	32	59.97395	.02014	9	7	22.3574	.1139	0.163868	0.008301	0.21077	0.04548

N m α	į			٠	ap	le 9	Table 9: (Continued)	(panu									
0 15 11.00 5 34 14.7070 010095 -3 10 26.2391 0489137288 0.006770 -0.09445 0.1511.00 5 34 15.10593 0.10229 -3 13 42.6550 0.0448 0.005526 0.004977 1.65970 0.1811.00 5 34 15.10593 0.10129 -3 13 5.2059 0412 0.245685 0.006666 -2.03445 0.245685 0.006678 0.245686 0.006678 0.245686 0.006678 0.245686 0.006678 0.26877 0.245686 0.006789 0.245686 0.006789 0.00683 0.00693 0	***	ACRS#	Z				ŭ		ϵ_{α}		9		9∍	$\mu\alpha$	$\epsilon \mu \alpha$	911	$\epsilon \mu \delta$
0 18 11.50 5 34 15.10593 0.10129 -3 13 42.6505 0.0481 0.05656 0.004697 1.6597 0 18 11.50 5 34 15.2121 0.1466 -3 11 35.2069 0.412 0.245865 0.005494 2.64210 0.23 11.50 5 34 17.51861 0.1195 -3 72.7226 0.066 0.167623 0.005494 2.64210 0.23 11.50 5 34 17.51861 0.1195 -3 72.7226 0.066 0.167623 0.005494 2.64210 0.23 11.50 5 34 17.51861 0.1195 -3 72.0324 0.0599 0.167623 0.005494 2.64210 0.23 11.50 5 34 12.94369 0.00815 -3 22.0334 0.051108 0.003170 0.008139 0.08159 0.08159 0.23 11.50 5 34 21.4445 0.00827 -3 22.1356 0.0390 0.05170 0.08129 0.08129 0.09129 0.00812 0.09129 0.09120	~	0	16			c	14	100	.01095			26.2391	.0489	-,137288	0.006170	-0.09145	0.02708
0 18 11.50 5 34 115.2021 1 10.466 - 3 11 35.2069 0.40260 0.405646 - 2.64210 0.20544 1 19.100 5 34 115.2021 0.0055 - 3 2 32.0254 0.299 0.40260 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00544 0.00545	_	0	15			m	15	593	.01029	6		42.6050	.0348	0.095626	0.004977	1.65970	0.01855
0 19 10.60 5 34 17.51861 0.01195 - 3 7 27.2126 0.066 0.142640 0.006349 2 64210 0 2 3 11.50 5 34 18.93600 0.00815 - 3 2 13 2.72354 0.0290 0.142640 0.006389 0.026657 0 0.01120 5 34 18.93600 0.00815 - 3 2 11.7559 0.0340 0.051108 0.000570 0.018109 0 0 3 3 10.50 5 34 21.4445 0.00821 - 3 23.1256 0.0390 0.248640 0.003570 0.018109 0 3 3 10.50 5 34 27.0445 0.00821 - 3 23.1256 0.0390 0.2486440 0.004439 0.039921 0 0 3 3 10.50 5 34 27.07692 0.0216 - 3 47 16.3215 0.0390 0.2486440 0.004439 0.03992 0 0 2 5 10.40 5 34 22.07062 0.0206 - 3 24 15.256 0.0390 0.248640 0.004439 0.03992 0 0 1 0 1 0 10.70 5 34 22.07062 0.0206 - 3 24 15.256 0.0390 0.248640 0.004039 0.03992 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	_	0	18			m	15	121	.01466			35.2069	.0412	0.245685	0.006666	-2.83445	0.01254
0 23 11.50 5 34 18.04139 0.0755 - 3 2 3.0354 0.03670 0.051308 0.061308 0.08159 0.0 23 11.50 5 34 19.04139 0.00155 - 3 2 3 2.0354 0.051108 0 0.003470 0.08109 0.0 23 11.50 5 34 19.04560 0.00162 - 2 1 1.7559 0.0340 0.051108 0 0.003470 0.08109 0.09101 0.09101 0.0910	_	0	19	Н		34	17,518	198	.01195	-3		27.2126	.0668	0.167623	0.005494	2.64210	0.02620
0 23 11.50 5 34 19.98600 00815 -3 21 1.7559 0340 0.051108 0.006820 0.043749 0.3911.50 5 34 21.4345 0.01621 -3 10 45.5230 0.5070 0.008886 0.006820 0.39291 0.3 10.50 5 34 27.07692 0.0297 -3 22.1256 0.0309 0.248640 0.004439 0.99291 0.2 10.00 5 34 22.07685 0.02050 0.0248640 0.03950 0.02921 0.2 10.00 5 34 22.07685 0.02050 0.0248640 0.03950 0.02921 0.00 5 34 22.07865 0.02050 0.0248640 0.03950 0.02921 0.00 5 34 22.0766 0.00063 -3 12.555 0.056 0.018800 0.004071 0.03950 0.2 21 10.00 5 34 36.01566 0.00063 -3 12.555 0.056 0.153460 0.02671 0.03950 0.2 21 10.00 5 34 36.01566 0.00063 -3 12.555 0.056 0.153460 0.02671 0.03950 0.2 21 10.00 5 34 44.0542 0.00063 -3 12.555 0.056 0.153460 0.02671 0.03950 0.2 21 10.00 5 34 44.07766 0.00063 -3 12.555 0.056 0.153460 0.02671 0.03950 0.2 21 10.00 5 34 44.04973 0.0564 -3 2 2 1.00098 0.0276 0.03961 0.000334 0.05621 0.03950 0.2 2 11.00 5 34 44.45473 0.0564 -3 2 2 1.00098 0.0276 0.00098 0.00092 0.000	2	0	23			34	18.043	139	.00755			32,0354	.0299	0.142640	0.006383	0.26857	0.02067
0 20 11.20 5 34 21.4445 004521 - 21 21.2156 0190 0.24846 0.004639 0.97921 0 33 10.50 5 34 27.67445 00827 - 2 21.2156 0190 0.24846 0.004439 0.059921 0 9 10.40 5 34 27.67445 00827 - 2 21.2155 0190 0.24846 0.004439 0.059921 0 10.070 5 34 22.38385 00704 - 2 24 16.3215 0.058 0.02995 0.05992 0 10 10.70 5 34 22.38385 00004 - 2 44 18.3125 0.058 0.058 0.05932 0 0.05992 0 2 6 11.40 5 34 26.0796 0.0004 - 2 44 18.2125 0.058 0.05932 0	m	0	23	П		34		009	.00815		21	1,7559	.0340	0.051108	0.003570	0.08109	0.02162
0 31 0.50 5 34 27.6745 0.00227 3 2 21.155 0.005 0.348464 0.004071 0.039291 0.97921 0.0 25 10.00 5 34 27.07455 0.0016 3 24 716.3715 0.005 0.001071 0.039291 0.0010.70 5 34 29.33385 0.00704 3 24 18.115 0.288 0.101880 0.004071 0.03939 0.0010.70 5 34 29.33385 0.00704 3 21.205 0.001071 0.03939 0.0010.70 5 34 29.33385 0.00707 3 21.205 0.001071 0.03939 0.0010.70 5 34 40.001071 0.03939 0.001071 0.03939 0.02039 0	4	0	20					458	.01621		10	45.5230	.0570	0.008886	0.006820	0.43749	0.02492
0 26 10.40 5 34 29.3385 070746 4 7 16.3315 0756 -030505 0.02396 -0.96315 010 10.70 5 34 29.3385 070744 3 23 44 8.815 0258 0.010180 0.040711 -0.0390 0 10 10.70 5 34 29.3385 070704 3 23 48 8.815 0268 0.10180 0.040711 -0.0390 0 10 10.70 5 34 46.01596 020074 3 22 13.20 5 055 0.138345 0.005924 0.03934 0 22 11.40 5 34 44.07706 00063 3 125.2555 0.05453 0.005932 0.05932 0 22 10.40 5 34 44.5472 0.0048 0427 0.054453 0.005392 0.05932 0 22 10.40 5 34 44.5472 0.0048 0427 0.054453 0.005932 0 0.05932 0 0.05932 0 0.05932 0 0.05932 0 0.05932 0 0.05932 0 0.005932 0 0.005932 0 0.05932 0 0.05932 0 0.00793 0 0.005932 0 0.00793	2	0	33				27.	445	.00827	6	7	32,1256	.0309	0.248464	0.004439	0.97921	0.01969
0 16 10.70 5 34 29.3388 0.00704 - 3 24 418.115 0.00868	9	0	6					692	.02916		47	16.3215	.0758	030505	0.022936	-0.96915	0.05086
0 10 10 10 5 34 36 0.01596 0.02007 -3 54 19.7198 0.2042389487 0.005548 9.49666 0.2 2 11.20 5 34 40.77066 0.00563 -3 12 15.5255 0.0565 0.153405 0.005344 0.058349 0.2 2 11.20 5 34 40.77066 0.00663 -3 12 15.5255 0.0565 0.153405 0.005344 0.058349 0.2 2 11.20 5 34 44.20762 0.1048 -3 25.15990 0.427 0.054430 0.005346 1.05612 0.059210 0.2 2 10.40 5 34 44.55432 0.1048 -3 25.15990 0.22 0.0276 0.030546 1.03054 1.05612 0.059210 0.2 2 10.40 5 34 44.45973 0.1504 -3 25.15990 0.727 0.171529 0.007032 -0.60592 0.1 3 11.50 5 34 44.45973 0.1564 -3 36 26.0758 0.775 -1.771529 0.007032 -0.60592 0.1 2 10.20 5 35 8.61335 0.03582 -3 41 0.1280 0.1277 -1.43346 0.020205 1.02165 0.2 2 10.20 5 35 8.03732 0.0354 -3 36 26.0758 0.0577 0.05723 0.05772 0.05772 0.05	7	0	26				29.	385	.00704			48.8115	.0288	0.101880	0.004071	-0.03590	0.01389
0 25 11.20 5 34 40.77068 0.0063 -3 15.2555 0.55463 0.005344 0.58349 0 22 11.20 5 34 44.5762 0.0048 -3 27 41.0998 0.047 0.56453 0.005944 0.58349 0 22 11.20 5 34 44.5346 0.00594 0.00594 0.027 0.00594 0.00595 0.00594 0.00595 0.00594 0.00594 0.00594 0.00594 0.00594 0.00594 0.00594 0.00594 0.00594 0.00595	6	0	10		-,			969	.02007		54	19.7198	.2042	389487	0.008858	3.49866	0.05587
0 22 10.00 5 34 44.5342 0.01048 -3 27 41.0999 0.0427 0.03046 10.00394 0.139012 0.95910 0.25 0.00394 0.100399 0.100394 0.	0	0	26		-,			890	.00963	6	12	15.2555	.0565	0.153405	0.005744	0.58349	0.01763
0 22 10.40 5 44 44.5943 0.1044 -3 2 53.5990 0.275 0.1030961 0.103034 1.39612 0.0748 0.13113 0.0 5 34 44.41440 0.1509 -3 52 18 18131 0.742 -7.17725 0.010032 0.07073 0.0744 0.13113 0.0 5 34 44.445973 0.10549 -3 52 18 18131 0.742 -7.17759 0.007032 0.06092 0.06092 0.13113 0.0 5 35 18.61335 0.0742 0.1277 -4.434346 0.020205 1.2165 0.0773 0.0772 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0773 0.0772 0.07	П	0	22		-,		4	762	.01048	6		41.0998	.0427	0.054453	0.005392	0.96910	0.02202
0 13 11.50 5 34 44.4314 0 10.1059 -3 52 18.8313 10.422 -1.71159 0 10.07092 -0.60952 1.71159 0 10.07092 -0.60952 1.71159 0 10.07092 -0.60952 1.71159 0 10.07092 -0.60952 1.71159 0 10.07092 -0.60952 1.21665 1.7 1.02095 1.7 1.02095 1.7 1.02095 1.7 1.02095 1.21665 1.7 1.02095 1.21665 1.7 1.02095 1.21665 1.21665 1.21695 1.	2	0	22		-,		44.	432	.01044	6		53.5990	.0276	0.030961	0.003946	1.39612	0.0146
0 13 11.50 5 44 97 497 97 01564 - 3 6 26,0758 - 0775 - 171159 0.070792 - 0.6052 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	0	25		-,			140	.01509	6		18.8131	.0742	177629	0.010823	1.07148	0.05328
0 7 9.20 5 35 8.61335 0.02282 - 34 1 0.1280 1.277143446 0.020205 1.21655 0.216555 0.216555 0.216555 0.216555 0.216555 0.216555 0.216555 0.21655 0.21655 0.21655 0.21655 0.	4	0	13	11.50	-,	'n		973	.01564	က		26.0758	.0759	171159	0.007092	-0.60952	0.04888
0 510.90 5 32 18.97697 0.07189 -3 56 13.5821 0.9977054529 0.007773 0.83712 0.5 11.40 5 35 20.13706 0.05342 -3 39 15.1489 1.1618182237 0.023655 1.44401 0.3 11.60 5 35 38.00399 0.2668 -3 44 18.5249 1.4679 1.618182237 0.003265 1.44401 0.28227 0.023625 1.24201 0.02624 0.072362 0.072239 0.08227 0.023625 0.072239 0.08227 0.02624 0.08227 0.02624 0.08225 0.005274 0.02624 0.08226 0.08227 0.02624 0.09262 0.002626 0.09262	8	0	7	9.20	.,	m	80	335	.03282	E	41	0.1280	.1277	143346	0.020205	1.21665	0.02941
0 311.40 5 35 20.13706 0.0342 - 39 15.1489 16.1482 0.03525 0.004239 0.02227 0.02323 0.02322 0.02323 0.	0	0	S	10.90		m	18.	269	.01789	6		13.5921	.0977	054529	0.007773	0.83712	0.02859
0 26 11.30 5 35 8.00399 .02698 3 44 18.5249 .3467038625 0.0064239 0.82227 0.29 0.181925 0.005876 0.76273 0.34 9 90 5 35 41.39703 .00941 3 16 59.2212 .0299 0.181925 0.005876 0.76273 0.34 9 90 5 35 43.5311 0.1771 3 23 2.1355 .0427 0.080175 0.006174 1.25673 0.005876 0.76273 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.	н	0	m	11.40				904	.05342			15.1489	.1618	182237	0.023625	1.41401	0.05930
0 26 11.30 5 34 41.39703 00941 -3 16 59.2212 0229 0.181925 0.005976 0.76773 0 6 6 9.77 5 35 44.3911 0.1771 -3 23 2.1355 0.4677 0.080175 0.006174 -1.35073 0 6 6 9.77 5 35 44.3681 0.018 -2 12 28.5694 0.054 0.24791 0.006174 -1.35073 0 6 9 9.70 5 35 49.24120 0.00377 -3 45 57.9304 0.0350 0.24791 0.002863 -0.28286 5 1210 5 89 9.30 5 55 49.2420 0.00737 -3 45 57.9304 0.0350 0.24791 0.002863 -0.58286 0 3 0.1140 5 35 59.32695 0.00737 -3 55 7.9305 0.034 0.03505 0.03777 -0.42031 0 3 11.20 5 36 10.70489 0.0566 -3 51 4.033 0.241 0.286932 0.003773 1.41420 0 3 11.20 5 36 22.9299 0.04043 -3 73 54.4977 0.2397 -0.101995 0.02828 -0.26428 0 3 11.00 5 36 22.02928 0.04043 -3 73 54.497 0.239 0.0464 0.03928 0.04428 0.02928 0.04428 0.02928 0.04428 0.02928 0.04428 0.02928 0.04442 0.02928 0.04944 0.02928 0.	m	0	ന					399	.02698			18.5249	.3467	038625	0.004239	0.82227	0.07443
0 66 9.70 5 35 44.39311 0.1771 3 2 2 1.155 5 0.4472 0.08015 0.00264 1 1.15073 0.00265 3 0.02265	*:1 *	0	26			m		703	.00941			59.2212	.0299	0.181925	0.005876	0.76273	0.0128
0 66 9.70 5 35 44,45681 00518 3 21 28,5594 0154 0.447991 0.002563 -0.82826 5120 5 9 9.30 5 35 44,45681 0.00737 -3 34 57,9304 0.0305 0.142515 0.003277 -0.42031 0.30 11.40 5 35 55,2569 0.1021 -3 15 57,9304 0.0305 0.142515 0.003277 -0.42031 0.30 11.40 5 35 56,32869 0.01021 -3 15 52,7666 0.344 0.263899 0.006426 0.500779 0.310.44 0.5 5 58,33882 0.06693 -3 5 13,4933 0.241 0.58672 0.03773 11.4420 0.311.50 5 36 10,74690 0.4649 0.4643 -3 38 58,4957 .2515 -0.52774 0.101943 0.500828 0.50088 0.311.50 5 36 21,90298 0.4043 -3 37 55,4957 .2397 -101995 0.009828 0.084432 0.32 10.00 5 36 46,77209 0.01070 0.315 0.50583 0.310.00 5 36 57,75064 0.7843 -3 48,387.759 0.4649 -0.05979 0.05528 0.30537 0.30537 0.30543 0.315 0.30537 0.30532 0.30537 0.30	ın	0	34	9.90		m	43.	311	.01771		23	2,1355	.0427	0.080175		-1.35073	0.01450
51210 58 9.30 5 25 92420. 00737 - 31 4 57.9304 0.3036 0.42515 0.03277 - 0.42031 0 30 11.40 5 35 59.256 0.0021 - 31 5 52.756 0.344 0.56389 0.006426 0.50070 0 32 10.40 5 35 59.256 0.0021 - 31 5.5766 0.344 0.56389 0.00377 1.14420 0 31.120 5 66 10.74489 0.5646 - 38 81.9663 2.515 - 0.05277 0.03773 1.14420 0 311.20 5 36 10.74489 0.5646 - 38 81.9663 2.515 - 0.05277 0.003773 1.14420 0 311.00 5 30 22.9939 0.4043 - 37 35.4597 2.5397 - 1.01995 0.009828 - 0.64422 0 0 31.00 5 36 22.9298 0.4043 - 37 35.4597 2.6298 0.00441 0.029479 - 0.26288 0 32 10.405 5 46 4720 0.007070 - 3 913.7515 1.40420 0.005927 0.0	G	0	99	9.70		m	44.	581	.00518	6		28.5694	.0154	0.247991		-0.82826	0.0084
0 30 11.40 5 35 55.9265 0.01021 -3 15 52.7666 0.0344 0.563899 0.006426 0.500700 0 32 10.40 5 35 56.9265 0.01021 -3 15 52.7666 0.50070 0 3 11.20 5 36 10.7408 0.05406 -3 8 13.4933 0.0241 0.280232 0.003773 1.4420 0 3 11.50 5 36 10.77489 0.05406 -3 88 58.9663 2515 -0.052674 0.019443 0.050088 0 3 11.50 5 36 22.90299 0.0443 -3 73 75.4557 2.397 -0.101905 0.003928 -0.64432 0 3 11.00 5 36 31.76315 1.14709 -3 49 55.2587 8064 0.001401 0.024799 -0.22288 0 3 2 10.40 5 36 46.7029 0.1070 -3 9 13.6740 0.0279 0.185709 0.005957 0.09543 0 3 11.00 5 36 57.75064 0.7843 -3 48 38.7759 4649 -0.185709 0.00595 0.90543 0 1 10.00 5 35 57.75064 0.7843 -3 48 38.7759 1.695 0.005958 0.00510 0.05702 0 1 10.00 5 37 3.8498 0.1020 -3 35 27.5331 0.0893 -0.63258 0.005116 -0.57021 0 1 11.00 5 37 3.8498 0.1020 -3 33 4.8394 0.0522 -0.702077 0.00452 0.06752	ന	51210	58	9.30	5	35	4	120	.00737			57.9304	.0305	0.142515	0.003277	-0.42031	0.0124
0 311.20 5 36 10.70489 .00689 -3 5 13.4933 .0241 0.280232 0.003773 11.4120 0 311.20 5 36 10.70489 .05406 -3 38 58.9683 .2515052674 0.013043 0.50088 0 311.00 5 36 22.90298 .04043 -3 735.4957 .2597 .101995 0.003828 -0.68425 0 311.00 5 36 31.76315 .14709 -3 9 55.2587 .6064 0.010410 0.024799 -0.56288 0 32 10.40 5 36 46.70205 .01070 -3 9 13.6740 .0279 0.18579 0.005957 0.09543 0 31 0.00 5 36 57.75064 .07843 -3 48 38.7759 .4649035976 0.012706 0.95643 51 1.00 5 37 1.56402 .01320 -3 52.75331 .0933 .003328 0.001216 -0.577021	0	0	30		2	35	55.	692	.01021	-3		52.7666	.0344	0.263899	0.006426	0.50070	0.0243
0 311.20 5 36 10.70489 .04606 - 39 8 8.9.8683 .2515 .052674 0.01943 0.50088 0 311.50 5 36 22.9293	0	0	32	10.40	5	35	58.	382	.00689	en -		13.4933	.0241	0.280232	0.003773	1.41420	0.0145
0 311.50 5 36 22.90299 .04443 - 37 35.4957 - 2397 - ,101905 .0.099288 - 0.84432 0 311.00 5 36 31.76315 .14709 - 3 49 55.2587 .8064 0.001401 0.024799 - 0.26288 0 32 10.40 5 36 46.70209 .01070 - 3 9 13.6740 .0279 0.185709 0.005957 0.09543 0 311.00 5 36 57.75064 .07843 - 3 48 38.7759 4649 - ,038976 0.012706 0.95633 51444 31 6.30 5 37 1.54602 .01320 - 3 3 52.75331 .0893 - ,063228 0.005116 - 0.57021 0 15 11.60 5 37 3.8498 .01203 - 3 3 4.8394 .0522 - ,022077 0.004632 0.06752	_	0	e	11.20		c		189	.05406			58,9683	.2515	052674	0.019443	0.50088	0.0876
0 311.00 5 30 31.76315 14709 -34 9 55.2897 8064 0.001401 0.024799 -0.26288 0 3 210.40 5 36 46.71209 0.01047 -3 9 13.76740 0.279 0.185799 0.035597 0.036437 0 0.036437 0 0.036437 0 0.036437 0 0.036437 0 0.036437 0 0.036437 0 0.03643 0 0.036437 0 0.03643 0 0.	01	0	e	11.50		3	22.	862	.04043	6		35.4957	.2397	101905	0.009828	-0.84432	0.0587
0 32 10.40 5 36 46.70209 .01070 -3 9 13.6740 .0279 0.185709 0.005957 0.90543 0 3 11.00 5 36 57.75064 .07843 -3 48 38.7759 .4649035876 0.02706 0.55068 51444 31 6.30 5 37 1.54602 .01320 -3 35 27.5331 .089306328 0.005116 -0.57021 0 15 11.60 5 37 3.84798 .01203 -3 33 4.8394 .0522022077 0.004622 0.06775		0	m	11.00	2	36	3	315	.14709			55.2587	.8064	0.001401	0.024799	-0.26288	0.1479
0 311.00 5 36 57.75064 .07843 -3 48 38.7759 .4649035976 0.012706 0.95063 51444 31 6.305 57 1.54602 .10320 -3 52.7.5331 .0893063528 0.005116 -0.57021 0 15.11.60 5 37 3.8498 .01203 -3 34 4.8934 .0522022077 0.00452		0	32	10.40	5	36	4	509	.01070	6	6	13.6740	.0279	0.185709	0.005957	0.90543	0.0156
51444 31 6.30 5 37 1.54602 .01320 -3 35 27,5331 .0893063528 0.005116 -0.57021 0 0 15 11.60 5 37 3.87498 .01203 -3 33 4.8934 .0522022077 0.004632 0.06755 0	~	0	m	11.00	5	36	57,750	99	.07843	9		38.7759	.4649	035976	0.012706	0.95063	0.0785
0 15 11.60 5 37 3.87498 .01203 -3 33 4.8934 .0522022077 0.004632 0.06755 0	-	51444	31		5	37	1.546	502	.01320	<u>س</u>	35	27.5331	.0893	063528	0.005116	-0.57021	0.0362
	•	0	15		2	37	3.874	198	.01203	۳ ا	33		.0522	022077	0.004632	0.06755	0.0224

	$\epsilon \mu \delta$	0.07131	0.03034	0.02870	0.03687	0.00923	0.01140	0.01386	0.01507	0.01923	0.02618	0.02791	0.03563	0.07133	0.04298	0.04480	0.01455	0.04159	0.01119	0.05135	0.01672	0.01784	0.01082	0.06125	0.01690	0,02505	0.01644	0.01684	0.05415	0.02013	0.01037	0.02009	0.02949	00 100 0
	μ_{δ}	-0.28344	0.16948	0.26951	-2.20634	0.50584	-0.06032	0.34375	-0.37115	0.31095	0.90168	-5,61900	0.03459	-0.62221	-0.84361	0.16219	-0.62689	-0.44825	-0.10749	-1.31769	-0,35563	-1.79617	0.20541	0.05980	-0.81595	2.42048	-0.12003	-0.99328	-0.48330	-0.88117	-0.64198	0.01519	4.07891	37673 0
	$\epsilon \mu \alpha$	0.028577	0.008405	0.005162	0.006008	0.002218	0.004405	0.002404	0.002021	0.004170	0.006487	0.011236	0.015617	0.010615	0.011763	0.013977	0.004080	0.012902	0.003607	0.010669	0.005943	0.004594	0.003424	0.011175	0.003416	0.007139	0.012893	0.002916	0.011918	0.005272	0.013758	0.005785	0.006990	0 000000
	$\mu\alpha$	232655	0.138519	-,026995	0.320048	0.075446	0.220850	0.006520	072913	-,080506	016432	256650	154330	017495	036373	0.065669	046463	0.226079	098050	0.088348	0.014410	123086	143160	045684	067270	0.213294	0.009419	049914	-,114966	097670	054645	043546	0.119702	800000
	93	.2512	.0860	.0826	.1295	.0189	.0234	.0249	.0363	.0311	.0492	.0701	.1050	.0775	.0499	.1245	.0294	.1229	.0315	0090.	.0312	.0493	.0233	.1023	.0615	.0721	.0221	.0453	.0583	.0890	.0450	.0281	.0734	0 4 4 0
		5.1234	33,1145	36,0115	32.4934	22.9590	0.4912	15,3043	46.8089	8.8792	13.2057	10.8367	50.9204	4.0118	25,1369	42,4979	12,9239	24.9432	8.8707	17.7727	45.9160	10,1857	57.4210	46.8770	52,7395	27.1977	43,3543	44.8395	40.6626	18.1971	39.2045	24.8685	54.4827	2010
	~	37	35	25	0	21	7	10	29	27	29	31	37	52	39	36	26	28	30	45	13	32	30	44	20	5	49	15	20	29	25	13	59	0
		-3	-3	-3	-3	3	-3	-3	3	က	3	3	9	3	3	3	3	9	ဂ	9	-3	9	-3	9	13	3	-3	13	3	-3	-3	-3	-2	9
0	$\omega_{\mathfrak{z}}$.07447	.02260	.01574	.03023	.00428	.00741	.00673	.00746	.00804	.01570	.03100	.02864	.01782	.01516	.03762	.00909	.04368	.01086	.01909	86600.	.01461	.00828	.02808	.01528	.01996	.05636	.01292	.01440	.01900	.02054	96200.	.02064	71717
Table 9: (Continued)	α	12.02722	12.38070	14.09232	17.27785	25.54436	41.93800	42.13378	47.36999	49.96798	53,51823	54.37659	55.49351	28.38582	38.60847	43.15253	54.16741	58.79517	2.09517	6.60449	12.06509	13.85572	19.92250	29.78832	40.58834	43,43073	44.24197	48.46952	50.56350	5.14995	8.02488	22.05454	51.99919	1 50100
6:	٥	37	37	37	37	37	37	37	37	37	37	37	37	38	88	88	88	88	99	39	68	39	. 68	39	68	68	39	39	39	40	40	0	0	-
able		2	2	2	2	2	2	2	2	2	S,	S,	S	ι,	'n	'n	S	S	S	S	S	2	S,	ι,	S	r,	5	'n	5	5	5	5	5	2
Ţ	Ε	.30	10.50	.70	.20	7.40	00.	11.00	.50	7.70	11.20	11.60	. 60	00.	.30	90	11.20	10	10	7.50	9	00	9.50	40	00	9.70	20	00	8.80	09	40	.50	90	06
	=	Ξ.	10.	10.	11.	7.	10.	Ξ.	10.	7.	ä	ij	ä	9	φ,	10.90	Ξ.	11.70	10.70	7.	10.60	11.00	6	11.40	11.00	6	10.20	10.00	φ,	11,60	10.40	6	6	6
	Z	ო	15	13	7	19	49	48	21	26	19	16	6	14	14	4	25	00	15	13	26	15	43	3	12	19	e	13	32	m	11	42	6	27
	ACRS#	0	0	0	0	51517	0	0	0	51615	0	0	0	51728	51767	0	0	0	0	51861	0	0	51914	0	0	0	0	0	52017	0	0	52119	0	0
	AC#	2500	2501	2502	2503	2504	2506	2507	2508	2509	2510	2511	2512	2515	2516	2517	2518	2520	2521	2523	2525	2526	2527	2528	2529	2530	2531	2532	2533	2535	2536	2538	2541	2543

			-	Tat	se s	ä.	Cont	Table 9: (Continued)	_									
AC#	AC# ACRS#	z	E			ö			ϵ_{α}		~	9	€ δ	н	μα	$\epsilon \mu \alpha$	μ_{δ}	$\epsilon \mu \delta$
2554	0	7	10.2	0	5	2 35	5.65	5263	.03199	6	0	33.710	4 .0803	0.031	572 (7 10.20 5 42 35.65263 .03199 -3 0 33.7104 .0803 0.031572 0.013802	-2.76302	0.0464
2556	0	10	10.0	0	5.4	2 43	3.71	1042	.02364	-3	2	55.148	9 .0503	9000 - 8	591 (10 10.00 5 42 43.71042 .02364 -3 5 55.1489 .0503000691 0.010220	1.35493	0.0483
2560	0	6	10.1	0	5.4	3 28	3.64	1793	.02239	-3	14	3.545	6 .0426	5 126	904 (9 10.10 5 43 28.64793 .02239 -3 14 3.5456 .0426126904 0.006628	0.13057	0.0062
2561	0	9	6.6	0	5 4	3,3	7.75	5728	.02659	-3	19	15.281	8 .079	5 -, 183	151	6 9.90 5 43 37.75728 .02659 -3 19 15.2818 .0795183151 0.007677	0.72748	0.0227
2566	0	9	10.3	0	5.44	4	1.78	3693	.02995	-3	22	46.151	3170. 7	9-,169	689	6 10.30 5 44 4.78693 .02995 -3 22 46.1517 .0718169689 0.004641	0.09653	0.0322
2568	52924	28	9.1	0	5 4	4 16	5.61	1372	96800.	-3	16	39,612	2 ,0310	067	543 (52924 28 9.10 5 44 16.61372 .00896 -3 16 39.6122 .0310067543 0.005081	0.69636	0.0289
2570		25	8.5	0	5 4	4 17	7.84	1639	.00978	-3	16	56.150	2 .0385	5079	358	0 25 8.50 5 44 17.84639 .00978 -3 16 56.1502 .0385079858 0.005187	0.54531	0.0370
2574		18	8.6	0	5 4	4 36	5.36	5885	.01943	۳	21	35.877	4 .0538	3 -, 059	330	52992 18 8.60 5 44 36.36885 .01943 -3 21 35.8774 .0538059330 0.018029	-0.35152	0.0480
2576		4	10.4	0	5.44	4 41	1.50	0057	.09045	-3	18	13.521	2 ,1572	-,143	084 (0.015682	0 4 10.40 5 44 41.50057 .09045 -3 18 13.5212 .1572143084 0.015682 -0.79229 0.0304	0.0304

REFERENCES

Ambartsumian, V., Voprosy Kosmogonii, Moscow, 1, 198, 1952.

Ambartsumian, V., Stellar Systems of Positive Total Energy, Observatory, 75, 72, 1955.

Blaauw, A., Proper Motions of the Zeta Persei Association, B.A.N., 11, 433, 1952.

Blaauw, A., The O Associations in the Solar Neighborhood, Ann. Rev. Astr. and Ap, 2, 213, 1964.

Blaauw, A., The OB Run-away Stars from SCO-CEN and Orion Reviewed, Astrofizika, 29, 23-31, 1988.

Bok, B.J., Dynamical Investigations of Clusters in the Solar Neighborhood, Harvard Circ., 384, 1, 1934.

Brown, D.C., A Matrix Treatment of the Theroy of Least Squares., Ballistic Reasearch Laboratories Report., 937, 1, 1955.

Delhaye, J., and A. Blaauw, New Proper Motions in the Zeta Persei Association, B.A.N., 12, 72, 1953.

Eddington, A, Stellar Movements and the Structure of the Universe, 1. Dover, 1914.

Eichhorn, H.K., Accurate Positions of Stars in the Region of the Pleiades, Mem R astr. Soc., 73, 125, 1956.

Eichhorn, H.K., Least-Squares Adjustment with Probabilistic Constraints, Mon. Not. R astr. Soc., 182, 355, 1978.

Eichhorn, H.K., The Direct Use of Spherical Coordinates in Focal Plane Astrometry, AA, 150, 251, 1985.

Eichhorn, H.K., Global Reduction of Catalogues, Cambridge University Press, In press, 1993.

Eichhorn, H.K., and W.G. Clary, Least-Squares Adjustment with Relatively Large Observational Errors, Inaccurate Intial Approximations, or Both, Mon. Not. R astr. Soc., 166, 425, 1974.

Eichhorn, H.K., and G.D. Gatewood, New Plate Constants for the Northern Hyperabad Zone of the Astrographic Catalogue, in part computed by the Plate Overlap Method, AJ, 72, 1191, 1967.

Eichhorn, H.K., and C.A. Williams, On the Systematic Accuracy of Photographic Astrometric Data, AJ, 68, 221, 1963.

Fredrick, L.W, Proper Motions in the Nucleus of the Zeta Persei Association, AJ, 61, 437, 1956.

Gieseking, F., Kinematical Studies of Open Clusters and OB-associations from Relative Radial Velocity Observations. II - The Orion Belt region, AA, 118, 102, 1983. Gunther, A., and H. Kox, Definitive Plate Constants for the Astrographic Catalogue North of +40 Declination, AA, 4, 156, 1970.

Jefferys, W., On the Method of Least Squares, AJ, 85, 177, 1980.

Jefferys, W., On the Method of Least Squares II, AJ, 86, 149, 1981.

Kapteyn, J.C., Helium Stars , ApJ, 40, 43, 1914.

Lesh, J.R., Internal Motions in the Orion Association, ApJ, 152, 905, 1968.

Markarian, H., A Catalogue of O Associations, Proc. Acad. Sci. Armenian SSR, 15, 11, 1952.

Mineur, H., Dynamical Investigations of Clusters, Ann Astrophys, 2, 1, 1939.

Pennington, R.L., R.M. Humphreys, S.C. Odewahn, W. Zumach, and P.M. Thurmes, The Automated Plate Scanner Catalogue of the Palomar Sky Survey. I.Scanning Parameters and Procedures, PASP, 3, 30, 1993.

Russell, J.L., Comparison of the Astrometric Propertites of Large Telescopes, University of Pittsburgh PhD Dissertation, 1976.

van Altena, W.F., J. T. Lee, J.-F. Lee, P. K. Lu, and A. R. Upgren, The Velocity Dispersion of the Orion Nebula Cluster, AJ, 95, 1744, 1988.

Warren, W. H., and J. E. Hesser, A Photometric Study of the Orion OB 1 Association. Photometric Analysis, Ap.J Supp., 34, 115, 1977.

Warren, W. H., and J. E. Hesser, A Photometric Study of the Orion OB 1 Association. III - Subgroup Analyses, ApJ Supp., 36, 497, 1978.

BIOGRAPHICAL SKETCH

Richard Laurence Smart was born in London, England, on the eighteenth of July 1963. He received his high school education from Alperton High School where he graduated in 1982 with two 'A' levels and five 'O' levels. He proceeded to Preston Polytechnic where in 1986 he received a joint honors upper second B.S. degree in mathematics and astronomy.

In 1987 he enrolled at the University of Florida, whereupon he became 'Ricky'. In 1990 he received his M.S. from the University of Florida and entered into the Ph.D. program. He is a member of the American Astronomical Society and a junior fellow of the Royal Astronomical Society.

He has always been very active in local organizations, enjoys a very socially aware political ideology and endeavor's to live up to those beliefs. His interests include flying, volleyball, skiing, reading, scuba diving and soccer. I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Heinrich K. Eichhorn, Chair Professor of Astronomy

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Haywood Smith

Associate Professor of Astronomy

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Humberto Campins

Associate Professor of Astronomy

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Gus Palenik

Professor of Chemistry

This dissertation was submitted to the Graduate Faculty of the Department of Astronomy in the College of Liberal Arts and Sciences and to the Graduate School and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

December 1993		
	Dean, Graduate School	