FIT2086 Self-Study/Revision Summary Statistics, Basic Graphs and Revision

Daniel F. Schmidt

Faculty of Information Technology, Monash University

July 22, 2019

□ ト (個) (重) (重) (で

1 / 41

Outline

- Descriptive Statistics
 - Descriptive Statistics
 - Associations Between Variables

Mathematics Revision

·□▶ ◆圖▶ ◆돌▶ ◆돌▶ · 돌 · 쒸٩♡

2 / 41

Outline

- Descriptive Statistics
 - Descriptive Statistics
 - Associations Between Variables

2 Mathematics Revision

3 / 41

Basic Types of Data – Refresher

Categorical-Nominal:

- Discrete numbers of values, no inherent ordering
- E.g., country of birth, sex

Categorical-Ordinal:

- Discrete number of states, but with an ordering
- E.g., Education status, State of disease progression

• Numeric-Discrete:

- Numeric, but the values are enumerable
- e.g., Number of live births, Age (in whole years)

• Numeric-Continuous:

- Numeric, not enumerable (i.e., real numbers)
- E.g., Weight, Height, Distance from CBD

Quantitative vs Qualitative:

Generally, categorical data is qualitative, numeric data is quantitative

(Monash University)

July 22, 2019 4 / 4

Graphical representations – Refresher

- It is often useful to visualise data
 - Can sometimes quickly reveal patterns
 - However, going beyond two dimensions is problematic
- For categorical data, standard visualisations include:
 - Frequency tables
 - Bar graphs
 - Pie charts (not recommended!)
- For numeric data (continuous and discrete), we can use:
 - Histograms
 - Box-and-whisker plots

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Frequency Tables

Age (years)	Number of People
0-9	2,967,425
10-19	2,818,778
20-29	3,231,395
30-39	3,265,526
40-49	3,164,712
50-59	2,977,883
60-69	2,488,396
70-79	1,540,373
+08	947,411

Australian Population by Age (2016 Census)

(Monash University)

6 / 41

Bar charts

Australian population by age (2016 Census)

(Monash University) July 22, 2019 7 / 41

Histograms

- Histograms are a special type of bar chart
 - Bar-charts only applicable to categorical data
- Group numeric data into categories by putting it bins
- If $\mathbf{y} = (y_1, \dots, y_n)$ are our data points, we divide them between K equally spaced bins, i.e.,
 - The number of samples that fall in bin (category) k are

$$v_k = \#\{y_j \in (\min\{\mathbf{y}\} + (k-1)w, \min\{\mathbf{y}\} + kw)\}\$$

where

$$w = \frac{\max\{\mathbf{y}\} - \min\{\mathbf{y}\}}{K}$$

is the width of the bins

 \Longrightarrow plot v_1, \ldots, v_K using bar-chart

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

(Monash University)

Histograms: Example

Histogram with ${\cal K}=20$ bins

9 / 41

Histograms: Example

Histogram with K=50 bins; looks smoother

(Monash University) July 22, 2019 10 / 41

Histograms: Example

Histogram with K=100; starting to look ragged

(Monash University) July 22, 2019 11 / 41

Descriptive Statistics

- Descriptive statistics summarise aspects of the data
- What is a "statistic"?
 - \bullet Let y denote a sample of data
 - ullet Then a statistic is any function $s(\mathbf{y})$ of the data
- Some functions (statistics) more useful than others
 - But all describe properties of the data

(Monash University)

Measures of Centrality

- Let $\mathbf{y} = (y_1, \dots, y_n)$ be a sample of n data points
- The the most common measure of centrality, or averageness, is the arithmetic mean

$$\bar{y} = \frac{1}{n} \sum_{j=1}^{n} y_j$$

- The mode is the most frequently occurring value in the sample
 - Of limited use for continuous numeric data
- Another common measure is the median, med(y)
 - ullet Value such that 50% of samples have values less than $med(\mathbf{y})$
 - Easily found by sorting samples and finding middle sample

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久 ②

Mean vs Median

- The mean uses all the values of the sample
 - Any change to any sample changes the mean
 - The mean can be changed as much as desired by changing just one sample by a large enough amount
- The median uses at most two of the values of the sample
 - Is very resistant to changes to the samples not in the middle
- Example:
 - $\mathbf{y} = (1, 2, 3, 4, 5) \Rightarrow \bar{y} = 3, \mod(\mathbf{y}) = 3$
 - $\mathbf{y} = (1, 2, 3, 4, 50) \Rightarrow \bar{y} = 12, \mod(\mathbf{y}) = 3$

14 / 41

Mean vs Median: Symmetric Distributions

Symmetric distribution of data; mean and median (nearly) the same

(Monash University) July 22, 2019 15 / 41

Mean vs Median: Positively Skewed Data

Positively skewed data; mean greater than median

Mean vs Median: Negatively Skewed Data

Negatively skewed data; mean less than median

Percentiles

- More generally, we can define the percentiles
 - \bullet The p-th percentile is the value, $Q(\mathbf{y},p)$ such that p% of the values of the sample are lower than $Q(\mathbf{y},p)$
- ullet The median is simply the 50th percentile, $Q(\mathbf{y},50)$
- Other important percentiles are the 1st and 3rd quartiles
 - i.e., the 25th and 75th percentiles

18 / 41

Percentiles

(Monash University)

Measures of Spread (1)

- Measures of centrality tell us about the typical value of the sample
- Measures of spread tell us how much the samples differ, on average, from the typical value
- The most straightforward is the range

$$rng(\mathbf{y}) = \max\{\mathbf{y}\} - \min\{\mathbf{y}\}$$

where

- min{y} denotes the minimum value in the sample;
- $\max\{y\}$ denotes the maximum value in the sample.

|ロト 4回ト 4 差ト 4 差ト | 差 | 夕久()

Measures of Spread (2)

The most common measure of spread used is the sample standard deviation

$$s(\mathbf{y}) = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \bar{y})^2}$$

- The sample standard deviation is the arithmetic mean of the squared deviations from the sample mean
 has the same unit as the data
- Like the mean, is sensitive to changes in the sample
- Often, the sample variance

$$v(\mathbf{y}) = s^2(\mathbf{y})$$

is used, as it can be easier to work with

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Measures of Spread: Example

 $rng(\mathbf{y}) = 4.63 \text{ (min}\{\mathbf{y}\} = -2.61, \max\{\mathbf{y}\} = 2.01), s(\mathbf{y}) = 0.5$

(Monash University) July 22, 2019 22 / 41

Measures of Spread: Example

 $rng(\mathbf{y}) = 13.89 \text{ (min}\{\mathbf{y}\} = -7.84, \max\{\mathbf{y}\} = 6.05), s(\mathbf{y}) = 1.5$

(Monash University) July 22, 2019 23 / 41

Visualising Continuous Data: Boxplots

Boxplot graphically captures centrality, spread and skewness in one plot

(Monash University) July 22, 2019 24 / 41

Association Between Two Continuous Variables

- Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ be two numeric variables measured on the same objects
 - ullet We might ask if there is an association between ${f x}$ and ${f y}$
- Pearson correlation measures linear association

$$R(\mathbf{x}, \mathbf{y}) = \frac{\sum_{j=1}^{n} (x_j - \bar{x})(y_j - \bar{y})}{n \, s(\mathbf{x}) s(\mathbf{y})}$$

- Correlation is always between -1 (completely negatively correlated) and 1 (completely positively correlated)
- \bullet A correlation of zero implies there is no linear association \Longrightarrow does not imply no non-linear association
- Remember: correlation \neq causation!

→□▶→□▶→□▶→□▶ □ ♥Q♥

Scatter Plots

- Scatter plots help us visualise relationships between two (usually) numeric variables
 - Plot points, with one variable on x-axis and one on y-axis
- Can be used to visually look for association
- Correlation coefficients are statistics that quantatatively measure the strength of the association between two variables
 - The two can be combined for more information
- Three-variable scatter plots, like almost all three-dimensional plots, should be avoided

26 / 41

Correlation/Scatter Plot Example (1)

 $R \approx 0.44$

27 / 41

Correlation/Scatter Plot Example (2)

$$R = 0.9$$

28 / 41

Correlation/Scatter Plot Example (3)

(Monash University) July 22, 2019 29 / 41

Correlation/Scatter Plot Example (4)

 $R \approx 0.01$ – though clearly associated, as $y = x^2 + \text{noise}$

(Monash University)

Correlation/Scatter Plot Example (5)

 ${\cal R}=0$, though there is a deterministic association between x and y

(Monash University) July 22, 2019 31 / 41

Association Between Categorical and Numeric Variables

- If x is categorical, and y is numeric, how to visualise?
- A standard approach is the side-by-side boxplot
 - Divide the data between categories, then plot boxplots for each group
 - Do the boxplots look different?
- ullet If ${f x}$ and ${f y}$ are both categorical, we can use a side-by-side bargraph instead
 - Are the distributions/bargraphs different between categories?
 - If so, there is a possible association

32 / 41

Example: Categorical and Numeric Variables (1)

Distribution of price similar between suburbs

Example: Categorical and Numeric Variables (2)

Distribution of price varies greatly with number of rooms

Example: Two Categorical Variables (1)

Frequency of cancer does not seem to change with ethnicity; unlikely to be associated

◆ロト ◆問ト ◆ヨト ◆ヨト ヨ のQ○

35 / 41

Example: Two Categorical Variables (2)

Frequency of cancer changes substantially with blood pressure; likely to be strong association

36 / 41

Outline

- Descriptive Statistics
 - Descriptive Statistics
 - Associations Between Variables

Mathematics Revision

37 / 41

Useful Identities (1)

The following logarithmic identities will be useful

$$\log 1 = 0$$

$$\log a b = \log a + \log b$$

$$\log a/b = \log a - \log b$$

$$\log a^b = a \log b$$

The following exponential identities will be useful

$$e^{a}e^{b} = e^{a+b}$$

$$e^{-a} = 1/e^{a}$$

$$(e^{a})^{b} = e^{ab}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕久で

Useful Identities (2)

The following calculus identities will be useful

$$\frac{d}{dx}\left\{x^n\right\} \ = \ nx^{n-1}$$

$$\frac{d}{dx}\left\{\log x\right\} \ = \ \frac{1}{x}$$

$$\frac{d}{dx}\left\{e^x\right\} \ = \ e^x$$
 Linearity:
$$\frac{d}{dx}\left\{a\,f(x)+b\right\} \ = \ a\frac{d}{dx}\left\{f(x)\right\}+b$$
 Product Rule:
$$\frac{d}{dx}\left\{f(x)g(x)\right\} \ = \ g(x)\frac{d}{dx}\left\{f(x)\right\}+f(x)\frac{d}{dx}\left\{g(x)\right\}$$
 Chain Rule:
$$\frac{d}{dx}\left\{f(g(x))\right\} \ = \ \frac{d}{dg(x)}\left\{f(g(x))\right\}\cdot\frac{d}{dx}\left\{g(x)\right\}$$

(Monash University)

July 22, 2019 39 / 41

Useful Identities (3)

ullet If we have a function, f(x,y), of two variables, the partial derivative

$$\frac{\partial f(x,y)}{\partial x}$$

is found by differentiating f(x,y) w.r.t. x treating y as a constant.

• Example:

$$\begin{split} \frac{\partial}{\partial x} \left\{ y \log \left(x^2 y + 1 \right) \right\} &= y \frac{\partial}{\partial x} \left\{ \log \left(x^2 y + 1 \right) \right\} \text{ (linearity)} \\ &= y \cdot \frac{1}{x^2 y + 1} \cdot \frac{\partial}{\partial x} \left\{ x^2 y + 1 \right\} \text{ (chain rule)} \\ &= \frac{2xy^2}{x^2 y + 1} \end{split}$$

◄□▶◀圖▶◀불▶◀불▶ 불 ∽Q҈

Reading/Terms to Revise

- Reading for this week: Chapter 2 of Ross.
- Terms you should know:
 - Histogram;
 - Measures of central tendency: mean, median, mode;
 - Measures of dispersion: standard deviation, variance, range;
 - Percentiles and quartiles;
 - Scatter plot;
 - Correlation coefficient

41 / 41