

SEMITRANS® 3

IGBT4 Modules

SKM400GB12E4

Features

- IGBT4 = 4. generation medium fast trench IGBT (Infineon)
- CAL4 = Soft switching 4. generation CAL-diode
- Isolated copper baseplate using DBC technology (Direct Bonded Copper)
- · Increased power cycling capability
- With integrated gate resistor
- For higher switching frequenzies up to 12kHz
- UL recognized, file no. E63532

Typical Applications*

- AC inverter drives
- UPS

Remarks

- · Case temperature limited to $T_c = 125^{\circ}C$ max.
- Recommended T_{op} = -40 ... +150°C
- · Product reliability results valid for $T_i = 150$ °C

Characteristics									
Symbol	Conditions	min.	typ.	max.	Unit				
IGBT			•			•			
V _{CE(sat)}	I _C = 400 A	T _j = 25 °C		1.80	2.05	V			
	V _{GE} = 15 V chiplevel	T _j = 150 °C		2.20	2.40	V			
V _{CE0}	chiplevel	T _j = 25 °C		8.0	0.9	V			
		T _j = 150 °C		0.7	8.0	V			
r _{CE}	V _{GE} = 15 V chiplevel	T _j = 25 °C		2.50	2.88	mΩ			
		T _j = 150 °C		3.75	4.00	mΩ			
$V_{GE(th)}$	$V_{GE}=V_{CE}$, $I_C=15.2$ mA		5	5.8	6.5	V			
I _{CES}	V _{GE} = 0 V V _{CE} = 1200 V	T _j = 25 °C			5	mA			
		T _j = 150 °C				mA			
C _{ies}	V _{CE} = 25 V V _{GE} = 0 V	f = 1 MHz		24.6		nF			
C _{oes}		f = 1 MHz		1.62		nF			
C _{res}		f = 1 MHz		1.38		nF			
Q_G	V _{GE} = - 8 V+ 15 V			2260		nC			
R _{Gint}	T _j = 25 °C			1.9		Ω			
t _{d(on)}	$\begin{array}{l} V_{CC} = 600 \ V \\ I_{C} = 400 \ A \\ V_{GE} = \pm 15 \ V \\ R_{G \ on} = 1 \ \Omega \\ R_{G \ off} = 1 \ \Omega \\ di/dt_{on} = 9700 \ A/\mu s \\ di/dt_{off} = 4300 \ A/\mu s \end{array}$	T _j = 150 °C		242		ns			
t _r		T _j = 150 °C		47		ns			
E _{on}		T _j = 150 °C		33		mJ			
t _{d(off)}		T _j = 150 °C		580		ns			
t _f		T _j = 150 °C		101		ns			
E _{off}		T _j = 150 °C		56		mJ			
R _{th(j-c)}	per IGBT			0.072	K/W				

IGBT4 Modules

SKM400GB12E4

Features

• IGBT4 = 4. generation medium fast trench IGBT (Infineon)

• CAL4 = Soft switching 4. generation CAL-diode

• Isolated copper baseplate using DBC technology (Direct Bonded Copper)

• Increased power cycling capability

• With integrated gate resistor

• For higher switching frequenzies up to 12kHz

• UL recognized, file no. E63532

Typical Applications*

· AC inverter drives

• UPS

Remarks

· Case temperature limited to $T_c = 125$ °C max.

• Recommended $T_{op} = -40 \dots +150$ °C

• Product reliability results valid for $T_i = 150$ °C

Characteristics										
Symbol	Conditions	min.	typ.	max.	Unit					
Inverse d	iode	•			•					
$V_F = V_{EC}$	I _F = 400 A	T _j = 25 °C		2.20	2.52	٧				
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.15	2.47	V				
V _{F0}	chiplevel	T _j = 25 °C		1.3	1.5	V				
		T _j = 150 °C		0.9	1.1	V				
r _F	chiplevel	T _j = 25 °C		2.3	2.5	mΩ				
		T _j = 150 °C		3.1	3.4	mΩ				
I _{RRM}	$I_F = 400 \text{ A}$ $di/dt_{off} = 8800 \text{ A/}\mu\text{s}$ $V_{GE} = \pm 15 \text{ V}$ $V_{CC} = 600 \text{ V}$	T _j = 150 °C		450		Α				
Q _{rr}		T _j = 150 °C		68		μC				
E _{rr}		T _j = 150 °C		30.5		mJ				
R _{th(j-c)}	per diode				0.14	K/W				
Module										
L _{CE}				15	20	nΗ				
R _{CC'+EE'}	terminal-chip	T _C = 25 °C		0.25		mΩ				
		T _C = 125 °C		0.5		mΩ				
R _{th(c-s)}	per module			0.02	0.038	K/W				
Ms	to heat sink M6		3		5	Nm				
Mt		to terminals M6	2.5		5	Nm				
						Nm				
w					325	g				

Fig. 1: Typ. output characteristic, inclusive $R_{\text{CC}'\text{+ EE'}}$

Fig. 2: Rated current vs. temperature $I_C = f(T_C)$

Fig. 3: Typ. turn-on /-off energy = $f(I_C)$

Fig. 4: Typ. turn-on /-off energy = $f(R_G)$

Fig. 5: Typ. transfer characteristic

Fig. 6: Typ. gate charge characteristic

800

2

T_i = 25 ℃

3

[V]

Fig. 11: CAL diode peak reverse recovery current

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.