Задача А. Алгоритм Витерби мягкого декодирования линейных блоковых кодов

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать кодер линейного блокового кода и его декодер на основе алгоритма Витерби. Исходными данными являются длина n, размерность k и порождающая матрица G двоичного линейного блокового кода.

Формат входных данных

файл input.txt должен начинаться следующим образом:

n k G

Далее должны быть представлены команды.

Формат выходных данных

Первой строкой в файле output.txt должна быть последовательность $|V_i|$, $0 \le i \le n$, где $|V_i|$ — число узлов в решетке на ярусе i. Далее должны быть приведены результаты выполнения команд. Моделирование следует производить для случая канала с двоичной амплитудно-импульсной модуляцией и аддитивным белым гауссовским шумом. Под уровнем шума следует понимать отношение сигнал/шум на бит, выраженное в децибелах.

input.txt	output.txt
8 4	1 2 4 8 4 8 4 2 1
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0	0 0 0 0 0 0 0
1 1 0 0 1 1 0 0	2.56E-2
1 0 1 0 1 0 1 0	9.31E-3
Encode 1 0 0 0	
Decode -1.0 1.0 1 1 1 1 1.5	
Simulate 3 100000 100	
Simulate 4 100000 100	

Задача В. Алгоритм Витерби мягкого декодирования сверточных кодов

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать несистематический кодер сверточного кода со скоростью 1/2 и его декодер на основе алгоритма Витерби. После обработки заданной информационной последовательности кодер должен быть переведен в нулевое состояние путем принудительной подачи на его вход K нулевых битов, где K — длина кодового ограничения. Моделирование следует производить для случая канала с двоичной амплитудно-импульсной модуляцией и аддитивным белым гауссовским шумом. Под уровнем шума следует понимать отношение сигнал/шум на бит, выраженное в децибелах.

Формат входных данных

Первая строка в файле input.txt имеет вид ${\tt GO}$ ${\tt GI}$ ${\tt k}$

Здесь G0, G1 — порождающие многочлены кода, представленные в виде битовых масок в восьмеричной системе счисления, k — число кодируемых информационных символов (в десятичной системе счисления).

Формат выходных данных

Первая строка выходного файла должна содержать минимальное расстояние полученного блокового кода. Далее в выходном файле должны быть приведены результаты выполнения команд. Моделирование следует производить для случая канала с двоичной амплитудно-импульсной модуляцией и аддитивным белым гауссовским шумом. Под уровнем шума следует понимать отношение сигнал/шум на бит, выраженное в децибелах.

Задача С. Алгоритм Сугиямы декодирования двоичных кодов Гоппы

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать процедуру построения проверочной матрицы двоичного кода Гоппы длины $n=2^m$, его систематическое кодирование и декодирование в метрике Хемминга. Для решения ключевого уравнения следует использовать алгоритм Сугиямы (расширенный алгоритм Евклида).

Под уровнем шума следует понимать вероятность ошибки на бит в двоичном симметричном канале. В качестве локаторов кода при длиной 2^m следует рассматривать все элементы конечного поля в последовательности $0, \alpha^0, \alpha^1, \alpha^2, \alpha^3, \dots, \alpha^{2^m-2}$. Для кодов длиной 2^m-1 следует исключить нулевой локатор. Гарантируется, что многочлен Гоппы свободен от квадратов и не имеет корней в $GF(2^m)$.

При построении порождающей матрицы кода в систематическом виде следует обеспечить размещение единичной матрицы в позициях с наименьшими возможными номерами.

Формат входных данных

В первой строке файла содержится длина кода 2^m или $2^m - 1$, примитивный многочлен поля $GF(2^m)$ (представленный в виде битовой маски в десятичной систем счисления) и степень многочлена Гоппы. Во второй строке выписаны коэффициенты многочлена Гоппы начиная с нулевого в виде чисел в десятичной системе счисления, двоичное представление которых соответствует их разложению по стандартному базису $GF(2^m)$. Далее следуют команды.

Формат выходных данных

В первой строке выходного файла должна быть выписана размерность кода. Далее должны быть приведены результаты выполнения команд

input.txt	output.txt	
32 37 2	22	
1 1 1	100000000000000000000	0 0 0 0 1 1 0
Encode 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01000000000 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0
Decode 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.63630648050 0 1 1 0 1 1 1 1 1	
Simulate 0.1 100000 100		

Задача D. Алгоритм Берлекэмпа-Месси декодирования двоичных кодов Гоппы

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать процедуру построения проверочной матрицы двоичного кода Гоппы длины $n=2^m$, его систематическое кодирование и декодирование в метрике Хемминга. Для решения ключевого уравнения следует использовать алгоритм Берлекэмпа-Месси. Под уровнем шума следует понимать вероятность ошибки на бит в двоичном симметричном канале. В качестве локаторов кода при длиной 2^m следует рассматривать все элементы конечного поля в последовательности $0, \alpha^0, \alpha^1, \alpha^2, \alpha^3, \ldots, \alpha^{2^m-2}$. Для кодов длиной 2^m-1 следует исключить нулевой локатор. Гарантируется, что многочлен Гоппы свободен от квадратов и не имеет корней в $GF(2^m)$.

Формат входных данных

В первой строке файла содержится длина кода 2^m или $2^m - 1$, примитивный многочлен поля $GF(2^m)$ (представленный в виде битовой маски в десятичной систем счисления) и степень многочлена Гоппы. Во второй строке выписаны коэффициенты многочлена Гоппы начиная с нулевого в виде чисел в десятичной системе счисления, двоичное представление которых соответствует их разложению по стандартному базису $GF(2^m)$. Далее следуют команды.

Формат выходных данных

В первой строке выходного файла должна быть выписана размерность кода. При построении порождающей матрицы кода в систематическом виде следует обеспечить размещение единичной матрицы в позициях с наименьшими возможными номерами.

input.txt	output.txt	
32 37 2	22	
1 1 1	10000000000000000000000	0 0 0 0 1 1 0
Encode 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	010000000000 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 1 1 0
Decode 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0.63630648050 0 1 1 0 1 1 1 1 1	
Simulate 0.1 100000 100		

Задача Е. Последовательное декодирование полярных кодов

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 1024 мегабайта

Необходимо реализовать процедуру построения полярных кодов для случая двоичного стирающего канала, их несистематическое кодирование, моделирование передачи и декодирование с помощью последовательного алгоритма. При реализации следует полагать максимальное число путей равным D=kL, где k — размерность кода, L — максимальное число проходов через одну фазу.

равным $D=\kappa L$, где κ — размерность кода, Σ — Кодирование должно осуществляться как $c=u\begin{pmatrix}1&0\\1&1\end{pmatrix}^{\otimes m}$, где $u_i=0, i\in\mathcal{F},\,\mathcal{F}$ — множество номеров замороженных символов. Прочие элементы вектора u представляют собой последовательно выбираемые элементы кодируемого информационного вектора. Моделирование следует производить для случая канала с двоичной амплитудно-импульсной модуляцией и аддитивным белым гауссовским шумом. Под уровнем шума следует понимать отношение сигнал/шум на бит, выраженное в лепибелах.

Формат входных данных

Входной файл на первой строке содержит длину кода 2^m , размерность k, целевую вероятность стирания в двоичном стирающем канале и размер списка в декодере Тала-Варди. Далее идут строки с командами.

Формат выходных данных

Первая строка выходного файла должна содержать список номеров замороженных символов (нумерация с 0), выписанных в порядке возрастания. Далее должны быть представлены результаты выполнения команд

0 0 0
. 1 1

Задача F. Алгоритм Сугиямы декодирования двоичных кодов Рида-Соломона

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать процедуру построения примитивного кода Рида-Соломона в узком смысле над $GF(2^m)$, его систематическое кодирование и декодирование в метрике Хемминга с помощью расширенного алгоритма Евклида. Под уровнем шума следует понимать вероятность ошибки на символ в 2^m -ичном симметричном канале. Ненулевые символы вектора ошибки должны принимать значения из $GF(2^m) \setminus \{0\}$ с одинаковой вероятностью.

Формат входных данных

Файл input.txt должен содержать в первой строке длину кода $n=2^m-1$, примитивный многочлен поля $GF(2^m)$ (представленный в виде битовой маски в десятичной систем счисления) и конструктивное расстояние. Далее должны быть представлены команды.

Формат выходных данных

В первой строке выходного файла должна быть приведена размерность полученного кода k. Далее должен быть приведен порождающий многочлен кода $g(x) = \sum_{i=0}^{n-k} g_i x^i$ в виде последовательности его коэффициентов $g_0, g_1, \ldots, g_{n-k}$. Каждый коэффициент должен быть представлен в виде числа в десятичной системе счисления, двоичное представление которого соответствует его разложению по стандартному базису $GF(2^m)$. Далее должны быть представлены результаты выполнения команд.

input.txt	output.txt
7 11 3	5
Encode 1 0 0 0 0	3 6 1
Decode 3 6 1 0 0 0 1	3 6 1 0 0 0 0
Simulate 0.1 100000 100	3 6 1 0 0 0 0
	0.15

Задача G. Алгоритм Берлекэмпа-Месси декодирования кодов Рида-Соломона

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать процедуру построения примитивного кода Рида-Соломона в узком смысле над $GF(2^m)$, его систематическое кодирование и декодирование в метрике Хемминга с помощью алгоритма Берлекэмпа-Месси. Под уровнем шума следует понимать вероятность ошибки на символ в 2^m -ичном симметричном канале. Ненулевые символы вектора ошибки должны принимать значения из $GF(2^m) \setminus \{0\}$ с одинаковой вероятностью.

Формат входных данных

Файл input.txt должен содержать в первой строке длину кода $n=2^m-1$, примитивный многочлен поля $GF(2^m)$ (представленный в виде битовой маски в десятичной систем счисления) и конструктивное расстояние. Далее должны быть представлены команды.

Формат выходных данных

В первой строке выходного файла должна быть приведена размерность полученного кода k. Далее должен быть приведен порождающий многочлен кода $g(x) = \sum_{i=0}^{n-k} g_i x^i$ в виде последовательности его коэффициентов $g_0, g_1, \ldots, g_{n-k}$. Каждый коэффициент должен быть представлен в виде числа в десятичной системе счисления, двоичное представление которого соответствует его разложению по стандартному базису $GF(2^m)$. Далее должны быть представлены результаты выполнения команд.

input.txt	output.txt
7 11 3	5
Encode 1 0 0 0 0	3 6 1
Decode 3 6 1 0 0 0 1	3 6 1 0 0 0 0
Simulate 0.1 100000 100	3 6 1 0 0 0 0
	0.15

Задача Н. Списочное декодирование полярных кодов

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Тала-Варди, необходимо выбирать наиболее вероятное кодовое слово.

Необходимо реализовать процедуру построения полярных кодов для случая двоичного стирающего канала, их несистематическое кодирование, моделирование передачи и декодирование с помощью min-sum версии алгоритма Тала-Варди. Кодирование должно осуществляться как $c=u\begin{pmatrix}1&0\\1&1\end{pmatrix}^{\otimes m}$, где $u_i=0, i\in\mathcal{F},\,\mathcal{F}$ — множество номеров замороженных символов. Прочие элементы вектора u представляют собой последовательно выбираемые элементы кодируемого информационного вектора. Моделирование следует производить для случая канала с двоичной амплитудно-импульсной модуляцией и аддитивным белым гауссовским шумом. Под уровнем шума следует понимать отношение сигнал/шум на бит, выраженное в децибелах. Из списка, формируемого декодером

Формат входных данных

Входной файл на первой строке содержит длину кода 2^m , размерность k, целевую вероятность стирания в двоичном стирающем канале и размер списка в декодере Тала-Варди. Далее идут строки с командами.

Формат выходных данных

Первая строка выходного файла должна содержать список номеров замороженных символов (нумерация с 0), выписанных в порядке возрастания. На последующих строках должны быть приведены результаты выполнения команд

input.txt	output.txt
8 4 0.5 16	0 1 2 4
Encode 1 0 0 0	
Decode -0.5 1 1 1 -1 -1 -1 -1	1 1 1 1 0 0 0 0
Simulate 3 100000 100	0 0 0 0 1 1 1 1
Simulate 4 100000 100	2.56E-2
	9.31E-3

Задача І. Алгоритм Сугиямы (Евклида) декодирования двоичных кодов БЧХ

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать процедуру построения двоичного примитивного кода БЧХ в узком смысле, его систематическое кодирование и декодирование в метрике Хемминга с помощью расширенного алгоритма Евклида.

Формат входных данных

Файл input.txt должен содержать в первой строке длину кода $n = 2^m - 1$, примитивный многочлен поля $GF(2^m)$ (представленный в виде битовой маски в десятичной систем счисления) и конструктивное расстояние. Далее должны быть представлены команды. Под уровнем шума следует понимать вероятность ошибки на бит в двоичном симметричном канале.

Формат выходных данных

В первой строке выходного файла должна быть приведена размерность полученного кода k. На следующей строке должен быть приведен порождающий многочлен кода $g(x) = \sum_{i=0}^{n-k} g_i x^i$ в виде последовательности его коэффициентов $g_0, g_1, \ldots, g_{n-k}$. Далее должны быть представлены результаты выполнения команд.

output.txt
4
1 1 0 1
1 1 0 1 0 0 0
1 1 0 1 0 0 0
0.15

Задача Ј. Алгоритм Берлекэмпа-Месси декодирования двоичных кодов БЧХ

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 256 мегабайт

Необходимо реализовать процедуру построения двоичного примитивного кода БЧХ в узком смысле, его систематическое кодирование и декодирование в метрике Хемминга с помощью алгоритма Берлекэмпа-Месси.

Формат входных данных

Файл input.txt должен содержать в первой строке длину кода $n=2^m-1$, примитивный многочлен поля $GF(2^m)$ (представленный в виде битовой маски в десятичной систем счисления) и конструктивное расстояние. Далее должны быть представлены команды. Под уровнем шума следует понимать вероятность ошибки на бит в двоичном симметричном канале.

Формат выходных данных

В первой строке выходного файла должна быть приведена размерность полученного кода k. На следующей строке должен быть приведен порождающий многочлен кода $g(x) = \sum_{i=0}^{n-k} g_i x^i$ в виде последовательности его коэффициентов $g_0, g_1, \ldots, g_{n-k}$. Далее должны быть представлены результаты выполнения команд.

output.txt
4
1 1 0 1
1 1 0 1 0 0 0
1 1 0 1 0 0 0
0.15

Задача К. Алгоритм рекурсивного мягкого декодирования по решеткам

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 1024 мегабайта

Необходимо реализовать кодер линейного блокового кода и его декодер на основе алгоритма Фудзивары-Ямамото-Касами-Линя (включая процедуру поиска оптимального секционирования).

Моделирование следует производить для случая канала с двоичной амплитудно-импульсной модуляцией и аддитивным белым гауссовским шумом. Под уровнем шума следует понимать отношение сигнал/шум на бит, выраженное в децибелах.

Формат входных данных

Исходными данными являются длина n, размерность k и порождающая матрица G двоичного линейного блокового кода. Таким образом, файл input.txt должен начинаться следующим образом: n k

Формат выходных данных

В первой строке выходного файла должно быть указано число операций сложения и сравнения, выполняемых декодером. В последующих строках должны быть приведены результаты выполнения команд.

input.txt	output.txt
8 4	23
1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0	0 0 0 0 0 0 0
1 1 0 0 1 1 0 0	2.56E-2
1 0 1 0 1 0 1 0	
Encode 1 0 0 0	
Decode -1.0 1.0 1 1 1 1 1.5	
Simulate 3 100000 100	

Задача L. Алгоритм box-and-match декодирования линейных блоковых кодов

Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 15 секунд
Ограничение по памяти: 1024 мегабайта

Необходимо реализовать кодер линейного блокового кода и его декодер на основе алгоритма box&match. Исходными данными являются длина n, размерность k и порождающая матрица G двоичного линейного блокового кода, а также параметры алгоритма "порядок переработки" (reprocessing order) t и длина контрольной полосы (control band) s.

Формат входных данных

файл input.txt должен начинаться следующим образом:

n k G

t s

Далее в файле представлены команды.

Формат выходных данных

В выходном файле должны быть приведены результаты выполнения команд.

input.txt	output.txt
8 4	1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1	0 0 0 0 0 0 0
1 1 1 1 0 0 0 0	4.4E-4
1 1 0 0 1 1 0 0	
10101010	
1 2	
Encode 1 0 0 0	
Decode -1.0 1.0 1 1 1 1 1.5	
Simulate 6 100000 100	