清华大学本科期末考试试题纸 A卷

考试科目:《电子电路与系统基础Ⅱ》 2013.1.13

班号: 学号: 姓名:

满分 108 分,卷面分超过 100 分者按 100 分计。

- 一、填空题(请在试题纸上填空,本题共 57 分。对于数值答案,可以先给出公式表述,后给出数值答案。)
- 1、已知某晶体管的电流增益表达式为 $\beta(j\omega) = \frac{\beta_0}{1+j\omega\tau_0}$,那么该晶体管的特征频率(电流增益带宽积)为 $f_{\tau=}$ ()。
- 2、某 BJT 在集电极电流为 1mA 时,其特征频率 f_{T} =100MHz,其小信号等效电路中 BE 结的微分电容 C_{be} 大约为() pF。
- 3、描述线性时不变动态电路特性的电路方程是微分方程,求解该微分方程时,用到的连续性条件是()和()和()。
- 4、请在下面 6 个 LC 滤波器(图示的二端口网络)下方写出该滤波器类型:低通, 高通、带通、带阻。

- 5、一阶 RC 电路的时间常数 τ =(),一阶 RL 电路的时间常数为 τ =();二阶 RLC 串联谐振回路的品质因数 Q= ();二阶 RLC 并联谐振回路的品质因数 Q= ();二阶 RLC 并联谐振回路的品质因数 Q= ()。
- 6、如果 RLC 串联谐振回路的阻尼系数ξ<<1,对于阶跃激励,电容分压需要 ()时间才能进入稳态 (和稳态解误差小于 1%定义为进入稳态)。

- 7、CMOS 反相器电路的动态功耗很大,在输入电平从低到高变化过程中,反相器功率大多消耗在()器件上,在输入电平从高到低变化过程中,功率大多消耗在()器件上。
- 8、恒压源 V_{so} 在 t=0 时刻被开关接入对初始电压为 V_{0} 的理想电容 C 充电,充电电流为 ()。
- 9、如图 2 所示,这是 D 触发器的 D 输入端波形和 CLK 端时钟波形,请在规定位置(图 2 两虚线之间)画出输出 Q 端的波形。10、一阶 RC 串联电路被恒压源 3.3cos(2πf₀t)(单位伏特)驱动,其中,

图 2 D 触发器波形

R=10k Ω ,C=220pF, f_0 =100kHz,电阻分压表达式为() V,电 容分压表达式为() V,电阻分压加电容分压表达式为 () V。

11、某单端口网络的端口输入电阻恒为 0,端口输入电抗频率特性如图 3 所示,在()频点该网络可等效为 LC 串联谐振电路,在 ()频点该网络可等效为 LC 并联谐振电路。

图 3 某单端口网络输入电抗

12、对于如图 4 所示的两个 LC 正弦波振荡器,请在空位画出其交流等效电路 (保留晶体管符号),在空中填入晶体管组态,和正弦波振荡频率。电路 4a 图中,互感变压器为 2:1 的全耦合变压器,电路 4b 图中,电感抽头在正中间,接直流偏置电压源 V_{CC} 。

15、如图 5a 所示,中间的变压器是全耦合变压器,请在图 5b 左侧虚框内画出从AB 端口看入的等效电路,如果 AB 端口只接匹配电阻,电阻取值为(),该电路的 3dB 频点为(),具有()(低通、高通、带通、带阻)选频特性。如果现在要求在 4MHz 频点上达到最大功率传输匹配,需要在原匹配电路上添加新的匹配元件,请在图 5b 右侧虚框内画上匹配负载,所画元件上均需标明元件值大小。此时电路具有()选频特性,其匹配带宽为() kHz。

图 5a 某电路

图 5b 等效电路与匹配负载

二、(+6 分)如图 6 所示是 BJT 晶体管做有源器件的考毕兹振荡器的负阻等效电路,BJT 的直流偏置电流为 $I_c=1$ mA。其中电容 $C_1=C_2=100$ pF,L=1μH,而 $r_s=5\Omega$ 是电路中所有损耗的折合电阻,等效负阻为 $-r_n=-\frac{g_m}{\omega_0^2C_1C_2}$,其中 g_m 为 BJT 晶体管的等效线性跨导,具有如下特性:

$$g_{m} = \begin{cases} g_{m0} = \frac{I_{C}}{v_{T}} & V_{m} < V_{m0} = 50mV \\ g_{m0} = \frac{V_{m0}}{V_{m}} & V_{m} > V_{m0} = 50mV \end{cases}$$

其中, v_T =26mV 为热电压, V_m 为 BE 端口(C_1 电容两端)电压。请给出振荡器达到平衡后,输出正弦波的频率 f_0 和幅度 V_{mout} (CE 端口, C_2 两端电压)。

清华大学本科期末考试试题纸 A卷

考试科目:《电子电路与系统基础Ⅱ》 2013.1.13

班号: 学号: 姓名:

图 6 考毕兹振荡器负阻等效电路

三、 $(+15\, \%)$ 如图 7a 所示,这是一个张弛振荡器电路。已知两个运放的饱和电压为 $\pm 13V$,两个非线性电阻 R_{N1} 和 R_{N2} 的伏安特性曲线如图 7b、c 所示,图 7a 电路图中 R_{N1} 和 R_{N2} 电阻侧边的箭头为端口电压端口电流关联参考方向。

- (a) 张弛振荡器电路图
- (b) R_{N1}伏安特性曲线
- (c) R_{N2}伏安特性曲线

图 7 某张弛振荡器

(1) 填表,说明每个器件在电路中起的作用是什么。

器件	功能或作用
OPA ₁ +R ₁ +R ₂	OPA ₁ 和 R ₁ 、R ₂ 电阻形成正向施密特触发器,提供张弛振荡需要的
	双稳记忆
R ₃	
R _{N1}	

R _{N2}	
OPA ₂ +C	

- (2) 画出图 7a 中 A 点和 B 点的振荡波形。
- (3) 配合(2) 问所画振荡波形,描述该张弛振荡器的工作原理。
- (4) 计算该振荡器的振荡频率?

四、(+14 分)如图 8 所示电路,已知电容初始储能为 2nJ。t=0 时开关闭合,电容电压的响应为 $v_c(t)=2e^{-5\times 10^6t}\cos\left(30\times 10^6t\right)(V)$,(t≥0),求 R、L、C 具体数值,电感初始储能,和电路 t≥0 进入稳态过程中电阻总共消耗的能量大小。

五、(+10分)请设计一个简单计数器,可以实现如下的循环计数: 01, 11, 10。请按如下流程进行设计: a 画真值表, b 画卡诺图, c 获得组合逻辑表达式, d 画计数器电路图。

六、 $(+6 \, \%)$ 如图 9 所示,三个端点和地端点形成三个端口,1 端口为输入端口,2、3 端口为输出端口,1 端口输入为正弦波,要求 2、3 端口输出正弦波为正交信号。所谓正交信号,即两路正弦信号的幅度相同,相位差 90°,已知输入正弦信号频率为 f_0 =1MHz,请给出你的设计电路,并说明你的设计符合要求。