```
Time series - Li2Co3 zeroes calculations and statistics
In [ ]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
       from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
        import statsmodels.api as sm
       from tabulate import tabulate
       from statsmodels.stats.diagnostic import acorr_ljungbox
       from statsmodels.tsa.stattools import acf
       from google.colab import files
       from sklearn.metrics import mean_squared_error
       P1. Data Preprocess
In [ ]: # Data from 2017-05-10 to 2024-04-19
       li2co3 = pd. read_csv(r'/content/Lithium Carbonate 99%Min China Spot Historical Data (5).csv')
       li2co3['Date'] = pd. to_datetime(li2co3['Date'])
```

```
# The date order need to be inverted (from early to late)
        1i2co3 = 1i2co3. sort values ('Date')
        li2co3. set_index('Date', inplace=True)
        li2co3 = pd. DataFrame(li2co3["Price"])
        li2co3['Price'] = (li2co3['Price']. str. replace(", ", ""). astype(float))
        na_count = 1i2co3['Price'].isna().sum()
        print("Number of missing values:", na_count)
        if na_count > 0:
          li2co3 = li2co3. dropna(subset=['Price'])
         # daily log returns
        li2co3['log ret'] = np. log(li2co3['Price']). diff()
        li2co3 = li2co3. dropna(subset=['log_ret'])
        Number of missing values: 0
In [ ]: 1i2co3. head(10)
Out[ ]:
              Date
        2017-05-11 123000.0 0.000000
        2017-05-12 123000.0 0.000000
         2017-05-15 123000.0 0.000000
        2017-05-16 123000.0 0.000000
         2017-05-17 123000.0 0.000000
        2017-05-18 123000.0 0.000000
         2017-05-19 124000.0 0.008097
        2017-05-22 124000.0 0.000000
         2017-05-23 124000.0 0.000000
        2017-05-24 124000.0 0.000000
In [ ]: 1i2co3. tai1(10)
              Date
         2024-04-08 109500.0 0.027780
         2024-04-09 109500.0 0.000000
         2024-04-10 110500.0 0.009091
         2024-04-11 109500.0 -0.009091
         2024-04-12 109500.0 0.000000
         2024-04-15 109500.0 0.000000
         2024-04-16 109500.0 0.000000
         2024-04-17 109500.0 0.000000
         2024-04-18 109500.0 0.000000
         2024-04-19 109500.0 0.000000
```

P2. Weekly log return series and zero count series

print (Wednesdays. tail (10)) print("Tuesday to Tuesday") print(Tuesdays. tail(10)) print("Monday to Monday") print(Mondays. tail(10))

```
In [ ]: Fridays = pd. DataFrame()
         Thursdays = pd. DataFrame()
        Wednesdays = pd. DataFrame()
        Tuesdays = pd. DataFrame()
        Mondays = pd. DataFrame()
In [ ]: def weekly_returns(data, chosen_day):
            # chosen_day = ['W-MON', 'W-TUE', 'W-WED', 'W-THU', 'W-FRI']
            weekly_log_return = data.groupby(pd.Grouper(freq=chosen_day))['log_ret'].sum()
            weekly_log_return = weekly_log_return.dropna()
            return weekly_log_return
In [ ]: def count_zero(df, chosen_day):
            # chosen_day = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']
            # Create a zero dummy series: 1 if 'log_ret' is zero, 0 otherwise
            data = df.copy()
            data['zero_dummy'] = (data['log_ret'] == 0).astype(int)
            # Compute the sum of past 22 days and past 5 days for zero_dummy
            data['zero_count_22'] = data['zero_dummy'].rolling(window=22).sum()
            data['zero_count_5'] = data['zero_dummy'].rolling(window=5).sum()
            data = data.dropna()
            # Extract chosen day
            data['day_of_week'] = data.index.day_name()
            chosendays_data = data[data['day_of_week'] == chosen_day]
            # Select only the zero count columns and the index for Fridays
            chosendays_data = chosendays_data[['zero_count_22', 'zero_count_5']]
            chosendays_data['zero_count_22'] = chosendays_data['zero_count_22']. astype(int)
            chosendays_data['zero_count_5'] = chosendays_data['zero_count_5'].astype(int)
            return chosendays_data
In [ ]: # Friday to Friday
        Fridays['Log_Return'] = weekly_returns(1i2co3, 'W-FRI')
        Fridays['Zero_Count_22'] = count_zero(1i2co3, 'Friday')['zero_count_22']
        Fridays['Zero_Count_5'] = count_zero(li2co3, 'Friday')['zero_count_5']
        Fridays = Fridays. dropna()
        # Thursday to Thursday
        Thursdays['Log_Return'] = weekly_returns(1i2co3, 'W-THU')
         Thursdays['Zero_Count_22'] = count_zero(li2co3, 'Thursday')['zero_count_22']
         Thursdays['Zero_Count_5'] = count_zero(li2co3, 'Thursday')['zero_count_5']
         Thursdays = Thursdays. dropna()
        # Wednesday to Wednesday
        Wednesdays['Log_Return'] = weekly_returns(1i2co3, 'W-WED')
        Wednesdays['Zero_Count_22'] = count_zero(1i2co3, 'Wednesday')['zero_count_22']
         Wednesdays['Zero_Count_5'] = count_zero(1i2co3, 'Wednesday')['zero_count_5']
         Wednesdays = Wednesdays.dropna()
        # Tuesday to Tuesday
        Tuesdays['Log_Return'] = weekly_returns(1i2co3, 'W-TUE')
         Tuesdays['Zero_Count_22'] = count_zero(li2co3, 'Tuesday')['zero_count_22']
         Tuesdays['Zero_Count_5'] = count_zero(li2co3, 'Tuesday')['zero_count_5']
         Tuesdays = Tuesdays. dropna()
        # Monday to Monday
         Mondays['Log_Return'] = weekly_returns(1i2co3, 'W-MON')
        Mondays['Zero_Count_22'] = count_zero(1i2co3, 'Monday')['zero_count_22']
        Mondays['Zero_Count_5'] = count_zero(li2co3, 'Monday')['zero_count_5']
        Mondays = Mondays.dropna()
In [ ]: print("Friday to Firday")
        print(Fridays. tail(10))
        print("Thursday to Thursday")
        print (Thursdays. tail (10))
        print("Wednesday to Wednesday")
```

```
Friday to Firday
          Log_Return Zero_Count_22 Zero_Count_5
2024-01-26 0.000000
2024-02-02 0.000000
                                         5.0
2024-02-23
           -0.005666
                            20.0
                                         4.0
                            16.0
2024-03-01
            0.092206
                                         1.0
2024-03-08
            0.050516
                            14.0
                                         3.0
2024-03-15
            0.038652
                            10.0
                                         0.0
2024-03-22
            0.028039
                            8.0
                                         2.0
                                         2.0
2024-03-29
           -0.037563
                                         2.0
2024-04-12
           0.027780
2024-04-19 0.000000
                                         5.0
Thursday to Thursday
          Log_Return Zero_Count_22 Zero_Count_5
Date
2024-01-25 0.000000
                                         5.0
2024-02-01 0.000000
                            22.0
                                         5.0
2024-02-22 -0.005666
                                         4.0
2024-02-29 0.071263
                            17.0
                                         2.0
2024-03-07 0.071459
                            14.0
                                         2.0
2024-03-14 0.066691
                            10.0
                                         1.0
2024-03-21 0.000000
                                         1.0
2024-03-28 -0.037563
                                         2.0
2024-04-11 0.027780
                                         1.0
2024-04-18 0.000000
                                         5.0
Wednesday to Wednesday
          Log_Return Zero_Count_22 Zero_Count_5
2024-02-07 0.022858
2024-02-21 -0.005666
                                         4.0
2024-02-28 0.039002
                            18.0
                                         3.0
2024-03-06 0.103720
                            14.0
                                         1.0
2024-03-13 0.057432
                            11.0
                                         2.0
2024-03-20
           0.000000
                                         1.0
2024-03-27 -0.028304
                             5.0
                                         1.0
2024-04-03
           0.018958
                             8.0
                                         3.0
2024-04-10 0.036871
                             7.0
                                         1.0
                            10.0
2024-04-17 -0.009091
                                         4.0
Tuesday to Tuesday
         Log_Return Zero_Count_22 Zero_Count_5
2024-02-06 0.022858
                            21.0
2024-02-20 -0.005666
                                         3.0
2024-02-27 0.016902
                                         4.0
2024-03-05 0.125820
                            14.0
2024-03-12
           0.029128
                            12.0
                                         3.0
2024-03-19
           0.028304
                                         0.0
2024-03-26 -0.018780
2024-04-02
                                         3.0
           0.000000
                                         2.0
2024-04-09
          0.037214
2024-04-16 0.000000
Monday to Monday
          Log_Return Zero_Count_22 Zero_Count_5
Date
                                         4.0
2024-02-05 0.022858
2024-02-19 0.000000
                            21.0
                                         4.0
2024-02-26 -0.005666
                                         4.0
2024-03-04
2024-03-11
           0.029705
2024-03-18
2024-03-25
           0.009346
2024-04-01 -0.028304
                                         3.0
2024-04-08
           0.046737
                                         2.0
2024-04-15 0.000000
```

P3. Summary statistics

```
In [ ]: summary_statistics_Fridays = Fridays.describe().loc[['mean', 'min', 'max', 'std']]
        summary_statistics_Thursdays = Thursdays.describe().loc[['mean', 'min', 'max', 'std']]
        summary_statistics_Wednesdays = Wednesdays.describe().loc[['mean', 'min', 'max', 'std']]
        summary_statistics_Tuesdays = Tuesdays.describe().loc[['mean', 'min', 'max', 'std']]
        summary_statistics_Mondays = Mondays.describe().loc[['mean', 'min', 'max', 'std']]
        print("Friday to Firday")
       print(summary statistics Fridays)
       print("Thursday to Thursday")
       print(summary statistics Thursdays)
       print("Wednesday to Wednesday")
       print(summary_statistics_Wednesdays)
       print("Tuesday to Tuesday")
       print(summary_statistics_Tuesdays)
       print("Monday to Monday")
       print(summary_statistics_Mondays)
       Friday to Firday
             Log_Return Zero_Count_22 Zero_Count_5
             -0.000397
                            15.089783
              -0.152469
                             0.000000
                                           0.000000
               0.267022
                            22.000000
                                          5.000000
                             5.608998
                                          1.584804
              0.044616
        std
        Thursday to Thursday
             Log_Return Zero_Count_22 Zero_Count_5
                            15.096386
             -0.000692
                                          3.418675
              -0.172141
                             0.000000
                                           0.000000
               0.204501
                            22.000000
                                          5.000000
              0.044082
                             5. 556335
                                          1.576646
        Wednesday to Wednesday
             Log_Return Zero_Count_22 Zero_Count_5
             -0.000154
                            15.036145
              -0.190575
                             0.000000
        min
               0.252326
                            22.000000
                                          5.000000
        max
              0.044743
                             5.529806
                                          1.533911
        std
        Tuesday to Tuesday
             Log_Return Zero_Count_22 Zero_Count_5
             -0.000803
                            15.026946
                                          3.410180
                             0.000000
                                           0.000000
              -0.163827
                            22.000000
                                           5.000000
               0.298955
               0.045178
                             5.532529
                                          1.552684
        std
        Monday to Monday
             Log_Return Zero_Count_22 Zero_Count_5
              -0.000810
                            15.090062
                                          3.403727
              -0.171980
                             0.000000
                                           0.000000
               0.293305
                            22.000000
                                           5.000000
       max
                                          1.576221
       std
               0.045656
                             5.598839
```

P4. Autocorrelogram and partial autocorrelogram for daily return

```
In []: # Daily return
fig. axs = plt. subplots(1, 1, figsize=(10, 5))
axs. bar(li2co3 index, li2co3['log_ret'], width=2.5)
plt. axhline(0, linewidth=0.8, color='k')
plt. ylabel('Date')
plt. ylabel('Date')
plt. ylabel('Log Returns')
plt. title('Li2co3 99% Daily Log Return')
plt. show()

# Plot autocorrelation and partial autocorrelation
plot acf(li2co3['log_ret'], lags=20, alpha=0.1, title='Li2co3 99% Autocorrelation for Daily Return')
plot pacf(li2co3['log_ret'], lags=20, alpha=0.1, method='ywm', title='Li2co3 99% Partial Autocorrelation for Daily Return')
```


P5. Autocorrelogram and partial autocorrelogram for weekly return

```
In [ ]: def plot_returns_acf_pacf(df, df_name):
            Plots the log returns, autocorrelation, and partial autocorrelation for a given DataFrame.
             - df: The DataFrame containing the log returns data.
            - df_name: Name of the DataFrame to use in plot titles to indicate the data source. """ \,
            data = df.copy()
            # Plotting the log returns
            fig, axs = plt. subplots(1, 1, figsize=(10, 5))
             axs. bar(data.index, data['Log_Return'], width=2.5)
            plt.axhline(0, linewidth=0.8, color='k')
            plt. xlabel('Date')
            plt.ylabel('Log Returns')
            plt.title(f'Li2CO3 99% {df_name} Weekly Log Return')
            # Plotting the autocorrelation
            fig_acf = plot_acf(data['Log_Return'], lags=20, alpha=0.1, title=f'Autocorrelation for {df_name} Weekly Return')
            # Plotting the partial autocorrelation
            fig_pacf = plot_pacf(data['Log_Return'], lags=20, alpha=0.1, method='ywm', title=f'Partial Autocorrelation for {df_name} Weekly Return')
            plt.show()
```

In []: # Fridays plot_returns_acf_pacf(Fridays, 'Fridays')

In []: # Thursdays plot_returns_acf_pacf(Thursdays, 'Thursdays')

In []: # Wednesdays plot_returns_acf_pacf(Wednesdays, 'Wednesdays')

In []: # Tuesdays
plot_returns_acf_pacf(Tuesdays, 'Tuesdays')

-0.25

-0.50

-0.75

-1.00

15

20

10

P6. Two AR(2) models for daily return

maxlags = 2 for others

```
data = df. copy()
          data['log_ret_lagl'] = data['log_ret']. shift(1)
          data['log_ret_lag2'] = data['log_ret']. shift(2)
          data.dropna(inplace=True)
          # Define the variables and add a constant term for the intercept (alpha)
          X = data[['log_ret_lag1', 'log_ret_lag2']]
          X = sm. add_constant(X) # Adds a constant column to input data set
          Y = data['log ret']
          # Fit the AR(2) model
          model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
          return model
In [ ]: # lags=5 acording to the daily pacf
        daily_return_ar2_model = estimate_ar2_model(li2co3, lags=5)
In [ ]: print(daily_return_ar2_model.summary())
                               OLS Regression Results
        ______
                                log_ret R-squared:
       Model:
                                    OLS Adj. R-squared:
                                                                     0.423
                           Least Squares F-statistic:
                                                                     188.0
       Method:
                         Mon, 03 Jun 2024 Prob (F-statistic):
                                                                   2.62e-74
       Date:
       Time:
                               17:03:54 Log-Likelihood:
                                                                   5540.0
       No. Observations:
                                  1662 AIC:
                                                                 -1.107e+04
       Df Residuals:
                                   1659 BIC:
                                                                 -1.106e+04
       Df Model:
       Covariance Type:
                                    HAC
        ______
                                        z \qquad P > |z|
                       coef std err
                                                           [0.025 	 0.975]
                                                                       0.000
                  -2.075e-05
                               0.000
                                         -0.104
                                                  0.917
                                                            -0.000
        const
        log_ret_lag1 0.5158
                               0.036
                                        14.302
                                                  0.000
                                                            0.445
                                                                      0.586
        0.038
                                        4.933
                                                  0.000
                                                           0.113
                                                                      0.262
        ______
       Omnibus:
                                177.765 Durbin-Watson:
       Prob(Omnibus):
                                  0.000 Jarque-Bera (JB):
                                                                   1463.753
                                                                     0.00
                                  -0.004 Prob(JB):
                                                                      145.
       Kurtosis:
                                  7.598 Cond. No.
       [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 5 lags and without small sample correction
In [ ]: def estimate_ar2_model_with_zero_dummy(df, lags):
          Estimate an AR(2) model for log returns with modifications to account for zero dummies.
           - df: DataFrame containing the log returns 'log_ret'.
           - lags: Number of lags to use for HAC standard errors.
           - model: OLS regression results containing the fitted model.
          data = df. copy()
          data['zero dummy'] = (data['log ret'] == 0). astype(int)
          # Generate lagged return series
          data['log_ret_lagl'] = data['log_ret']. shift(1)
          data['log_ret_lag2'] = data['log_ret']. shift(2)
          # Generate interaction terms
           data['log_ret_lag1_zero'] = data['log_ret_lag1'] * data['zero_dummy']
           data['log_ret_lag2_zero'] = data['log_ret_lag2'] * data['zero_dummy']
           data.dropna(inplace=True)
          # Define the new model with additional interaction terms
          X = data[['zero_dummy', 'log_ret_lag1', 'log_ret_lag2', 'log_ret_lag1_zero', 'log_ret_lag2_zero']]
          X = sm. add constant(X)
          Y = data['log_ret']
          # Fit the AR(2) model
          mode1 = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
          return model
In []: # lags=5 acording to the daily pacf
        daily return ar2 model with zero dummy = estimate ar2 model with zero dummy(li2co3, lags = 5)
In [ ]: | print(daily_return_ar2_model_with_zero_dummy. summary())
                               OLS Regression Results
        ______
       Dep. Variable:
                                log_ret R-squared:
                                                                     0.607
                                                                     0.605
       Model:
                                   OLS Adj. R-squared:
                                                                     442.3
       Method:
                           Least Squares F-statistic:
                         Mon, 03 Jun 2024 Prob (F-statistic):
       Date:
       Time:
                               17:04:00 Log-Likelihood:
       No. Observations:
                                  1662 AIC:
                                                                 -1.170e+04
       Df Residuals:
                                   1656 BIC:
                                                                 -1.167e+04
                                    5
       Df Model:
                                    HAC
       Covariance Type:
        ______
                                                                          0.975]
                           coef std err
                                                z \qquad P > |z|
                                                                [0.025]
                                                                           0.000
                         -0.0010 0.001
                                            -1.594
                                                      0.111
                                                                -0.002
       const
                          0.0010
                                             1.594
                                                                -0.000
                                                                           0.002
                                   0.001
                                                       0.111
       zero_dummy
                          0.6606
                                            14.796
                                                                           0.748
        log_ret_lag1
                                   0.045
                                                       0.000
                                                                 0.573
                          0.3622
                                   0.048
                                             7.575
                                                       0.000
                                                                           0.456
        log_ret_lag2
                                                                 0.268
        log_ret_lagl_zero
                         -0.6606
                                   0.045
                                            -14.796
                                                      0.000
                                                                -0.748
                                                                           -0.573
                         -0.3622
                                                                          -0.268
        log_ret_lag2_zero
                                   0.048
                                            -7.575
                                                                -0.456
       Omnibus:
                                 304.524 Durbin-Watson:
                                                                     1.918
       Prob(Omnibus):
                                  0.000 Jarque-Bera (JB):
                                                                   5065.128
       Skew:
                                  0.339 Prob(JB):
                                                                      0.00
       Kurtosis:
                                 11.526 Cond. No.
       Notes:
       [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 5 lags and without small sample correction
        /usr/local/lib/python3.10/dist-packages/statsmodels/base/model.py:1894: ValueWarning: covariance of constraints does not have full rank. The number of constraints is 5, but rank is 3
        warnings.warn('covariance of constraints does not have full
       P7. Four AR(2) models for returns with zero count series (use Fridays as example)
       Model1: Standard AR(2) model
In [ ]: def estimate_ar2_model(df, lags):
          Estimate a basic AR(2) model for returns.
           - df: DataFrame containing the log returns series under 'Log_Return'.
           - lags: Number of lags to use for HAC standard errors.
           - model: OLS regression results containing the fitted model.
          data = df. copy()
          data['log_ret_lag1'] = data['Log_Return']. shift(1)
          data['log_ret_lag2'] = data['Log_Return']. shift(2)
          data.dropna(inplace=True)
          # Define the variables and add a constant term for the intercept (alpha)
          X = data[['log_ret_lag1', 'log_ret_lag2']]
          X = sm. add_constant(X) # Adds a constant column to input data set
          Y = data['Log Return']
          # Fit the AR(2) model
          model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
          return model
In []: # lags=4 acording to the weekly pacf
        weekly_return_ar2_model = estimate_ar2_model(Fridays, lags=4)
       print(weekly return ar2 model.summary())
                               OLS Regression Results
        ______
       Dep. Variable:
                                                                     0.516
                              Log_Return R-squared:
       Model:
                                    OLS Adj. R-squared:
                                                                     0.513
       Method:
                           Least Squares F-statistic:
                                                                     84.51
                         Mon, 03 Jun 2024 Prob (F-statistic):
                                                                   3.69e-30
       Date:
                                17:04:06 Log-Likelihood:
                                                                     658.66
       Time:
                                    321 AIC:
```

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

[0.025]

-0.004

0.413

0.020

No. Observations: Df Residuals:

Covariance Type:

log_ret_lag1 0.5691

log_ret_lag2 0.1929

Df Model:

const

Omnibus:

Skew:

Prob(Omnibus):

318 BIC:

0.713 Prob(JB):

9.188 Cond. No.

-0.044

7.160

2.188

73.893 Durbin-Watson:

0.000 Jarque-Bera (JB):

 $z \qquad P > |z|$

0.965

0.000

0.029

2 HAC

coef std err

0.002

0.079

0.088

-7.831e-05

-1311.

-1300.

0.975

0.003

0.725

0.366

2.050

41.3

539.301

7.80e-118

```
Model2: AR(2) model using interaction with the weekly zero count series
In [ ]: def estimate_ar2_model_with_weekly_zero(df, lags):
           Estimate an AR(2) model for weekly log returns, incorporating
           weekly zero count series as interaction effect,
           and allowing for specification of lags for HAC standard errors.
           - df: DataFrame containing the weekly log returns under 'Log_Return',
              and the weekly zero count series 'Zero_Count_5'.
           - lags: Maximum number of lags to use for HAC standard errors.
           - model: OLS regression results containing the fitted model with HAC standard errors. """
           data = df. copy()
           # Generate lagged return series
           data['Log_Return_Lag1'] = data['Log_Return']. shift(1)
           data['Log_Return_Lag2'] = data['Log_Return']. shift(2)
           # Generate interaction terms for lagged returns and 'Zero_Count_5'
           data['Log_Return_Lag1_Zero5'] = data['Log_Return_Lag1'] * data['Zero_Count_5']
           data['Log_Return_Lag2_Zero5'] = data['Log_Return_Lag2'] * data['Zero_Count_5']
           # Drop any rows with NaN values that were created by lagging
           data.dropna(inplace=True)
           # Define the model with additional interaction terms
           X = data[['Zero_Count_5', 'Log_Return_Lag1', 'Log_Return_Lag2',
                    'Log_Return_Lag1_Zero5', 'Log_Return_Lag2_Zero5']]
           X = sm. add_constant(X)
           Y = data['Log_Return']
           # Fit the model with HAC standard errors
           model = sm. OLS(Y, X). fit(cov type='HAC', cov kwds={'maxlags': lags})
           return model
In []: # lags=4 acording to the weekly pacf
        ar2_model_with_weekly_zero = estimate_ar2_model_with_weekly_zero(Fridays, lags=4)
        print(ar2_model_with_weekly_zero.summary())
                               OLS Regression Results
        ______
       Dep. Variable: Log_Return R-squared:
                                                                       0.650
        Model:
                              OLS Adj. R-squared:
       Method:
                           Least Squares F-statistic:
                                                                       61.77
                         Mon, 03 Jun 2024 Prob (F-statistic):
                                                                     9.64e-45
       Date:
                             17:04:12 Log-Likelihood:
                                                                      713.29
       Time:
        No. Observations:
                                 321 AIC:
                                                                       -1415.
       Df Residuals:
                                     315 BIC:
                                                                       -1392.
       Df Model:
       Covariance Type:
                                     HAC
        ______
                               coef std err
                                                   z \qquad P > |z|
                                                                      [0.025]
                                                                                 0.975]
                                                                      -0.016
                                                                                 0.013
                             -0.0015 0.007
                                                 -0.202
                                                           0.840
        const
                            6.781e-05 0.002
                                                 0.041 0.967
                                                                      -0.003
                                                                                 0.003
        Zero_Count_5
       Log Return Lag1
                            0. 9768 0. 188
                                                  5.203
                                                           0.000
                                                                      0.609
                                                                                 1.345
                              0.3009 0.179
                                                                      -0.050
                                                  1.680
                                                           0.093
                                                                                 0.652
       Log_Return_Lag2
       Log Return Lag1 Zero5 -0.2143 0.058
                                                 -3.664
                                                           0.000
                                                                      -0.329
                                                                                 -0.100
       Log_Return_Lag2_Zero5 -0.0485 0.047
                                                 -1.022
                                                           0.307
                                                                      -0.141
                                                                                  0.045
        ______
                                   88.859 Durbin-Watson:
        Omnibus:
                                                                       1.738
                                   0.000 Jarque-Bera (JB):
       Prob(Omnibus):
                                                                      614.566
                                   0.938 Prob(JB):
        Skew:
                                                                    3.54e-134
                                   9.514 Cond. No.
       [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction
       Model3: AR(2) model using interaction with the monthly zero count series
In [ ]: def estimate_ar2_model_with_monthly_zero(df, lags):
           Estimate an AR(2) model for weekly log returns, incorporating
           monthly zero count series as interaction effect,
           and allowing for specification of lags for HAC standard errors.
           - df: DataFrame containing the weekly log returns under 'Log_Return',
              and the monthly zero count series 'Zero_Count_22'.
           - lags: Maximum number of lags to use for HAC standard errors.
           - model: OLS regression results containing the fitted model with HAC standard errors.
           data = df. copy()
           # Generate lagged return series
           data['Log_Return_Lag1'] = data['Log_Return']. shift(1)
           data['Log_Return_Lag2'] = data['Log_Return']. shift(2)
           # Generate interaction terms for lagged returns and 'Zero_Count_22'
           data['Log_Return_Lag1_Zero22'] = data['Log_Return_Lag1'] * data['Zero_Count_22']
           data['Log_Return_Lag2_Zero22'] = data['Log_Return_Lag2'] * data['Zero_Count_22']
           # Drop any rows with NaN values that were created by lagging
           data.dropna(inplace=True)
           # Define the model with additional interaction terms
           X = data[['Zero_Count_22', 'Log_Return_Lag1', 'Log_Return_Lag2',
                    'Log_Return_Lag1_Zero22', 'Log_Return_Lag2_Zero22']]
           X = sm. add constant(X)
           Y = data['Log_Return']
           # Fit the model with HAC standard errors
           model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
           return model
        ar2_model_with_monthly_zero = estimate_ar2_model_with_monthly_zero(Fridays, lags=4)
        print(ar2_model_with_monthly_zero.summary())
                                OLS Regression Results
```

In []: # lags=4 acording to the weekly pacf

Dep. Variable:	Log Return	R-squa	red:		0.540	
Model:	OLS		-squared:		0. 533	
Method:	Least Squares				43.84	
	on, 03 Jun 2024		F-statistic)	:	2.99e-34	
Time:	17:04:17		kelihood:		666.79	
No. Observations:	321				-1322.	
Df Residuals:	315	BIC:			-1299.	
Df Model:	5					
Covariance Type:	HAC					
	coef	std err	z	P> z	[0.025	0.975]
const	0.0009	0.008	0.122	0.903	-0.014	0.016
Zero_Count_22	-0.0001	0.000	-0.266	0.790	-0.001	0.001
Log_Return_Lag1	0.9183	0.177	5.179	0.000	0.571	1.266
Log_Return_Lag2	0.0360	0.206	0.175	0.861	-0.368	0.440
Log_Return_Lag1_Zero22	-0.0396	0.013	-3.042	0.002	-0.065	-0.014
Log_Return_Lag2_Zero22	0.0109	0.014	0.766	0.444	-0.017	0.039
Omnibus:	62. 191	 Durbin	=========== -Watson:		1.967	
Prob(Omnibus):	0.000	Jarque	-Bera (JB):		422.402	
Skew:	0.568	Prob(J	B):		1.89e-92	
Kurtosis:	8.504				1.60e+03	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction [2] The condition number is large, 1.6e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Model4: AR(2) model separately using interactions with the short-term illiquidity and long-term illiquidity variable

```
In [ ]: def estimate_ar2_model_separate_illiquidity(df, lags):
            Estimate a complex AR(2) model for log returns, incorporating
            separate interactions with two types of zero counts.
            The formula incorporates separate interactions for different lags
            with different term-length zero count measures.
             - df: DataFrame containing the log returns under 'Log_Return',
                two zero count series 'Zero_Count_5' and 'Zero_Count_22'.
             - lags: Maximum number of lags to use for HAC standard errors.
            - model: OLS regression results containing the fitted model with HAC standard errors.
            data = df.copy()
            # Generate lagged return series
            data['Log Return Lag1'] = data['Log Return']. shift(1)
            data['Log_Return_Lag2'] = data['Log_Return']. shift(2)
            # Generate separate interaction terms for lagged returns and zero counts
            data['Log_Return_Lag1_Zero5'] = data['Log_Return_Lag1'] * data['Zero_Count_5']
            data['Log_Return_Lag2_Zero22'] = data['Log_Return_Lag2'] * data['Zero_Count_22']
            # Drop any rows with NaN values that were created by lagging
            data.dropna(inplace=True)
            # Define the model with additional interaction terms
            X = data[['Zero_Count_5', 'Zero_Count_22', 'Log_Return_Lag1', 'Log_Return_Lag2',
                       'Log_Return_Lag1_Zero5', 'Log_Return_Lag2_Zero22']]
```

```
Y = data['Log_Return']
          # Fit the model with HAC standard errors
          model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
          return model
In [ ]: # lags=4 acording to the weekly pacf
       ar2_model_with_separate_illiquidity = estimate_ar2_model_separate_illiquidity(Fridays, lags=4)
       print(ar2_model_with_separate_illiquidity.summary())
                             OLS Regression Results
       ______
       Dep. Variable:
                                                                  0.665
                            Log_Return R-squared:
                                                                 0.659
       Model:
                                  OLS Adj. R-squared:
                                                                  89.29
       Method:
                          Least Squares F-statistic:
       Date:
                        Mon, 03 Jun 2024 Prob (F-statistic):
                                                                6.64e-65
                             17:04:21 Log-Likelihood:
                                                                 717.72
       No. Observations:
                                 321 AIC:
                                                                 -1421.
      Df Residuals:
                                  314 BIC:
                                                                 -1395.
      Df Model:
                                   6
                                  HAC
       Covariance Type:
       ______
                                                       P > |z|
                                                                 [0.025]
                                                                           0.975
                              coef std err
                            -0.0006
                                     0.006
                                              -0.089
                                                        0.929
                                                                 -0.013
                                                                            0.012
       const
                            0.0010
                                     0.002
                                              0.410
                                                        0.682
                                                                 -0.004
                                                                            0.006
       Zero Count 5
       Zero_Count_22
                            -0.0003
                                     0.001
                                              -0.447
                                                        0.655
                                                                            0.001
                                                                 -0.001
      Log_Return_Lag1
                            1.2167
                                      0.127
                                               9.596
                                                        0.000
                                                                 0.968
                                                                            1.465
                            -0.1038
                                              -0.782
                                                        0.434
                                                                            0.156
      Log Return Lag2
                                      0.133
                                                                 -0.364
      Log_Return_Lag1_Zero5 -0.2886
                                      0.036
                                                        0.000
                                                                           -0.218
                                              -8.052
                                                                 -0.359
                           0.0286
                                                        0.009
                                                                            0.050
      Log_Return_Lag2_Zero22
                                      0.011
                                               2.618
                                                                 0.007
       87.066 Durbin-Watson:
       Omnibus:
       Prob(Omnibus):
                                                                525.799
                                0.000 Jarque-Bera (JB):
                                0.960 Prob(JB):
       Skew:
                                                               6.67e-115
       Kurtosis:
                                8.969 Cond. No.
       Notes:
       [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction
       [2] The condition number is large, 1.27e+03. This might indicate that there are
       strong multicollinearity or other numerical problems.
```

Comparsion among last three models

X = sm. add constant(X)

```
In [ ]: modell_results = ar2_model_with weekly zero
         model2 results = ar2 model with monthly zero
        model3_results = ar2_model_with_separate_illiquidity
        # Create a DataFrame to summarize the fit statistics
         summary stats = pd. DataFrame({
            'Model': ['Model with Weekly Zero', 'Model with Monthly Zero', 'Model with Separate Illiquidity'],
            'R-squared': [modell_results.rsquared, model2_results.rsquared],
            'Adj. R-squared': [modell_results.rsquared_adj, model2_results.rsquared_adj, model3_results.rsquared_adj],
            'AIC': [modell_results.aic, model2_results.aic, model3_results.aic],
            'BIC': [modell_results.bic, model2_results.bic, model3_results.bic],
             'F-statistic': [model1_results.fvalue, model2_results.fvalue, model3_results.fvalue]
        # Print the summary statistics using tabulate
        print(tabulate(summary stats, headers='keys', tablefmt='pretty', showindex=False))
                       Model
                                                              Adj. R-squared
              Model with Weekly Zero
                                         \mid 0.6555624644924585 \mid 0.6500952020240849 \mid -1414.5814877806774 \mid -1391.9528410418973 \mid 61.767219648707986
```

Interpretation

Model with Monthly Zero

R-squared & **Adj. R-squared**: The proportion of the variance in the dependent variable that is predictable from the independent variables. The higher these values, the better the model explains the variability of the response variable. From the table, the *Model with Separate Illiquidity* has both the highest R-squared and the highest Adjusted R-squared, which means it is the best model that explains the highest proportion of variance in the weekly log return series among the last three models.

AIC & **BIC**: Both criteria help in model selection where lower values generally indicate a better model. AIC shows the goodness of fit with a penalty for models with more parameters. The *Model with Separate Illiquidity* has both the lowest AIC and the lowest BIC, which means it is the best model from a complexity-fit trade-off perspective.

F-statistic: Indicates the overall significance of the regression AR(2) model. The higher the F-statistic, which means it is statistically the most significant model in terms of the contribution of the explanatory variables used in the model.

Conclusion

Model with Separate Illiquidity has advantages on all three aspects: explaining the variance in the weekly log return; balance between model complexity and fit; and also, the predictions or inferences.

Besides, Model with Weekly Zero is the second best model, where its variance explaining ability and complexity-fit balance are all very close to the Model with Separate Illiquidity.

 $\mid 0.5398221716814222 \mid 0.5325177617081115 \mid -1321.587709665845 \mid -1298.959062927065 \mid 43.83645709472929$

The conclusion is just for Friday to Friday return series, it might be different for other days.

In []: # Rescale the zero counts to be fractions of their respective periods
 Fridays['Zero Fraction_5'] = Fridays['Zero_Count_5'] / 5

csv_filename = 'Fridays_return_zeros_data.csv'

csv_filename = 'Thursdays_return_zeros_data.csv'

files. download (csv filename)

Fridays. to_csv(csv_filename, index=True, header=True)

Thursdays. to_csv(csv_filename, index=True, header=True)

P8: Rescale zero count series to zero fraction series

```
Fridays['Zero_Fraction_22'] = Fridays['Zero_Count_22'] / 22
        print(Fridays[['Zero_Count_5', 'Zero_Fraction_5', 'Zero_Count_22', 'Zero_Fraction_22']]. head())
        # Double check the range
        print(Fridays[['Zero_Count_5', 'Zero_Fraction_5', 'Zero_Count_22', 'Zero_Fraction_22']]. describe())
                   Zero_Count_5 Zero_Fraction_5 Zero_Count_22 Zero_Fraction_22
        Date
        2017-06-16
                                                                        0.954545
                                                          21.0

      5. 0
      1. 0

      4. 0
      0. 8

      5. 0
      1. 0

      5. 0
      1. 0

                                                                       1.000000
        2017-06-23
                                                          22.0
        2017-06-30
                                                     21.0
                                                                       0.954545
        2017-07-07
                                                        21.0
                                                                       0.954545
                                                                       0.954545
        2017-07-14
                                                         21.0
               Zero_Count_5 Zero_Fraction_5 Zero_Count_22 Zero_Fraction_22
        count 323.000000 323.000000 323.000000
                                                                323.000000
                3.421053
                               0. 684211 15. 089783
        mean
                1.584804
                              0.316961 5.608998
        std
                 0.000000
                                 0.000000 0.000000
                                                                   0.000000
        min
        25%
                 2.000000
                                 0.400000 11.500000
        50%
                 4.000000
                                  0.800000 17.000000
                                                                   0.772727
                 5.000000
                                  1.000000 20.000000
        75%
                                                                   0.909091
                  5.000000
                                  1. 000000 22. 000000
In [ ]: Thursdays['Zero_Fraction_5'] = Thursdays['Zero_Count_5'] / 5
         Thursdays['Zero Fraction 22'] = Thursdays['Zero Count 22'] / 22
        print(Thursdays[['Zero_Count_5', 'Zero_Fraction_5', 'Zero_Count_22', 'Zero_Fraction_22']]. describe())
        Wednesdays['Zero_Fraction_5'] = Wednesdays['Zero_Count_5'] / 5
        Wednesdays['Zero_Fraction_22'] = Wednesdays['Zero_Count_22'] / 22
        print(Wednesdays[['Zero_Count_5', 'Zero_Fraction_5', 'Zero_Count_22', 'Zero_Fraction_22']]. describe())
        Tuesdays['Zero_Fraction_5'] = Tuesdays['Zero_Count_5'] / 5
         Tuesdays['Zero_Fraction_22'] = Tuesdays['Zero_Count_22'] / 22
        print(Tuesdays[['Zero_Count_5', 'Zero_Fraction_5', 'Zero_Count_22', 'Zero_Fraction_22']]. describe())
        Mondays['Zero_Fraction_5'] = Mondays['Zero_Count_5'] / 5
         Mondays['Zero Fraction 22'] = Mondays['Zero Count 22'] / 22
        print(Mondays[['Zero_Count_5', 'Zero_Fraction_5', 'Zero_Count_22', 'Zero_Fraction_22']].describe())
                            Zero Fraction 5
               Zero Count 5
                                             Zero Count 22 Zero Fraction 22
                 332.000000
                                  332.000000
                                                332.000000
                                                                  332.000000
        count
                   3.418675
                                   0.683735
                                                 15.096386
                                                                   0.686199
        mean
                   1.576646
                                   0.315329
                                                 5. 556335
                                                                   0.252561
        std
                                                                   0.000000
                   0.000000
                                   0.000000
                                                 0.000000
        min
        25%
                   2.000000
                                   0.400000
                                                 11.000000
                                                                   0.500000
        50%
                   4.000000
                                   0.800000
                                                 17.000000
                                                                   0.772727
                                                                   0.909091
        75%
                   5.000000
                                   1.000000
                                                 20.000000
                   5.000000
                                   1.000000
                                                 22.000000
                                                                   1.000000
        max
               Zero Count 5 Zero Fraction 5 Zero Count 22 Zero Fraction 22
                 332.000000
                                 332.000000
                                                332.000000
                                                                  332.000000
        count
        mean
                   3.418675
                                   0.683735
                                                 15. 036145
                                                                   0.683461
                   1.533911
                                   0.306782
                                                 5.529806
                                                                   0.251355
        std
                   0.000000
                                   0.000000
                                                 0.000000
                                                                   0.000000
        min
        25%
                   2.000000
                                   0.400000
                                                 11.000000
                                                                   0.500000
        50%
                   4.000000
                                   0.800000
                                                 17.000000
                                                                   0.772727
        75%
                   5.000000
                                   1.000000
                                                 20.000000
                                                                   0.909091
                   5.000000
                                   1.000000
                                                 22.000000
                                                                   1.000000
        max
               Zero Count 5 Zero Fraction 5 Zero Count 22 Zero Fraction 22
                 334.000000
                                 334.000000
                                                334.000000
                                                                  334.000000
        count
                   3.410180
                                   0.682036
                                                 15.026946
                                                                   0.683043
        mear
                                   0.310537
                   1.552684
                                                 5.532529
                                                                   0.251479
        std
                   0.000000
                                   0.000000
                                                 0.000000
                                                                   0.000000
        min
        25%
                   2.000000
                                   0.400000
                                                11.000000
                                                                   0.500000
        50%
                   4.000000
                                   0.800000
                                                 17.000000
                                                                   0.772727
                   5.000000
                                   1.000000
                                                 20.000000
        75%
                                                                   0.909091
                                   1.000000
                                                22.000000
                                                                   1.000000
        max
                   5.000000
               Zero_Count_5 Zero_Fraction_5
                                             Zero_Count_22 Zero_Fraction_22
                 322.000000
                                  322.000000
                                                322.000000
                                                                  322.000000
        count
                   3.403727
                                   0.680745
                                                15.090062
                                                                   0.685912
        mean
                   1.576221
                                   0.315244
                                                 5. 598839
                                                                   0.254493
        std
                   0.000000
                                   0.000000
                                                 0.000000
                                                                   0.000000
        min
        25%
                   2.250000
                                   0.450000
                                                 11.000000
                                                                   0.500000
        50%
                   4.000000
                                   0.800000
                                                 17.000000
                                                                   0.772727
        75%
                   5.000000
                                   1.000000
                                                 20.000000
                                                                   0.909091
                                   1.000000
                   5.000000
                                                 22.000000
                                                                   1.000000
        max
In [ ]: # Fridays
```

```
files. download(csv_filename)

# Wednesdays csv_filename = 'Wednesdays_return_zeros_data.csv'

Wednesdays to csv(csv_filename, index=True, header=True)
files. download(csv_filename)

# Tuesdays
csv_filename = 'Tuesdays_return_zeros_data.csv'
Tuesdays.to_csv(csv_filename, index=True, header=True)
files. download(csv_filename)

# Mondays
csv_filename = 'Wondays_return_zeros_data.csv'
Mondays.to_csv(csv_filename, index=True, header=True)
files. download(csv_filename, index=True, header=True)
files. download(csv_filename, index=True, header=True)
files. download(csv_filename)
```

P9: Ten new models with rescaled zero fraction series

M1: Constant

```
In []: # lags have no meaning, just for uniforming the parameter structure with AR models to perpare for the model summary function, add lags will not affect the result
    def estimate_model_constant(df, lags):
        data = df.copy()
        X = sm.add_constant(pd. Series(1, index=data.index))
        Y = data['Log_Return']
        model = sm.OLS(Y, X).fit()
        return model
```

M2: Constant + z5(t-1)

```
In []: # lags have no meaning, just for uniforming the parameter structure with AR models to perpare for the model summary function, add lags will not affect the result
    def estimate model_constant_z5(df, lags):
        data = df.copy()
        data['Z5_Lag1'] = data['Zero_Fraction_5']. shift(1)
        data. dropna(inplace=True)
        X = sm. add_constant(data['Z5_Lag1']) # Adding a constant
        Y = data['Log_Return']
        model = sm. OLS(Y, X). fit()
        return model
```

M3: Constant + z22(t-1)

```
# lags have no meaning, just for uniforming the parameter structure with AR models to perpare for the model summary function, add lags will not affect the result def estimate_model_constant_z22(df, lags):
    data = df.copy()
    data['Z22_Lag1'] = data['Zero_Fraction_22']. shift(1)
    data. dropna(inplace=True)
    X = sm. add_constant(data['Z22_Lag1'])
    Y = data['Log_Return']
    model = sm. 0.LS(Y, X). fit()
    return model
```

M4: AR(1)

M5: AR(2)

```
def estimate_model_ar2(df, lags):
    data = df.copy()
    data['Log_Return_Lag1'] = data['Log_Return']. shift(1)
    data['Log_Return_Lag2'] = data['Log_Return']. shift(2)
    data. dropna(inplace=True)
    X = sm. add_constant(data[['Log_Return_Lag1', 'Log_Return_Lag2']])
    Y = data['Log_Return']
    model = sm. OLS(Y, X). fit(cov_type='HAC', cov_kwds={'maxlags': lags})
    return model
```

M6: AR(1) with z5(t-1) interaction

```
In []: def estimate_model_arl_z5_interaction(df, lags):
    data = df.copy()
    data['Log_Return_Lag1'] = data['Log_Return'].shift(l)
    data['Z5_Lag1'] = data['Zero_Fraction_5'].shift(l)
    data.dropna(inplace=True)
    data.dropna(inplace=True)
    data['Log_Return_Lag1_Zero5'] = data['Log_Return_Lag1'] * data['Z5_Lag1']
    X = sm. add_constant(data[['Z5_Lag1', 'Log_Return_Lag1, 'Log_Return_Lag
```

M7: AR(1) with z22(t-1) interaction

```
def estimate_model_arl_z22_interaction(df, lags):
    data = df.copy()
    data['Log_Return_Lag1'] = data['Log_Return']. shift(1)
    data['Z22_Lag1'] = data['Zero_Fraction_22']. shift(1)
    data. dropna(inplace=True)
    data['Log_Return_Lag1_Zero22'] = data['Log_Return_Lag1'] * data['Z22_Lag1']
    X = sm. add_constant(data[['Z22_Lag1', 'Log_Return_Lag1_Zero22']])
    Y = data['Log_Return']
    model = sm. OLS(Y, X). fit(cov_type='HAC', cov_kwds=('maxlags': lags))
    return model
```

M8: AR(2) with z5(t-1) interaction

```
In [ ]: def estimate_model_ar2_z5_interaction(df, lags):
            Estimate an AR(2) model for weekly log returns, incorporating
            weekly zero fraction series as interaction effect,
            and allowing for specification of lags for HAC standard errors.
            - df: DataFrame containing the weekly log returns under 'Log_Return',
                and the weekly zero fraction series 'Zero_Fraction_5'.
             - lags: Maximum number of lags to use for HAC standard errors.
            - model: OLS regression results containing the fitted model with HAC standard errors.
            data = df.copy()
            data['Log Return Lagl'] = data['Log Return']. shift(1)
            data['Log Return Lag2'] = data['Log Return']. shift(2)
            data['Z5_Lag1'] = data['Zero_Fraction_5']. shift(1)
            data.dropna(inplace=True)
            data['Log Return Lag1 Zero5'] = data['Log Return Lag1'] * data['Z5 Lag1']
            data['Log_Return_Lag2_Zero5'] = data['Log_Return_Lag2'] * data['Z5_Lag1']
            X = data[['Z5_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2',
                       'Log_Return_Lag1_Zero5', 'Log_Return_Lag2_Zero5']]
            X = sm. add constant(X)
            Y = data['Log_Return']
            model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
            return model
```

M9: AR(2) with z22(t-1) interaction

```
In [ ]: def estimate_model_ar2_z22_interaction(df, lags):
              Estimate an AR(2) model for weekly log returns, incorporating
              monthly zero fraction series as interaction effect,
              and allowing for specification of lags for HAC standard errors.
              - df: DataFrame containing the weekly log returns under 'Log_Return',
                  and the monthly zero fraction series 'Zero_Fraction_22'.
               - lags: Maximum number of lags to use for HAC standard errors.
              Returns:
              - model: OLS regression results containing the fitted model with HAC standard errors. """
              data = df. copy()
              data['Log_Return_Lag1'] = data['Log_Return']. shift(1)
              data['Log_Return_Lag2'] = data['Log_Return']. shift(2)
              data['Z22 Lag1'] = data['Zero Fraction 22']. shift(1)
              data.dropna(inplace=True)
              data['Log_Return_Lag1_Zero22'] = data['Log_Return_Lag1'] * data['Z22_Lag1']
              data['Log_Return_Lag2_Zero22'] = data['Log_Return_Lag2'] * data['Z22_Lag1']
              X = data[['Z22_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2',
                          'Log_Return_Lag1_Zero22', 'Log_Return_Lag2_Zero22']]
              X = sm. add_constant(X)
              Y = data['Log_Return']
              model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
         M10: AR(2) with z5(t-1) interaction for first lag and z22(t-1) for second lag
In [ ]: def estimate_model_ar2_z5_z22_separate_interaction(df, lags):
              Estimate an AR(2) model for weekly log returns, incorporating
              weekly and monthly zero fraction series as interaction effect,
              and allowing for specification of lags for HAC standard errors.
              - df: DataFrame containing the weekly log returns under 'Log_Return',
                  and two zero fraction series 'Zero_Fraction_22' and 'Zero_Fraction_5'.
               - lags: Maximum number of lags to use for HAC standard errors.
              - model: OLS regression results containing the fitted model with HAC standard errors. """
              data = df.copy()
              data['Log_Return_Lag1'] = data['Log_Return']. shift(1)
              data['Log_Return_Lag2'] = data['Log_Return']. shift(2)
              data['Z5_Lag1'] = data['Zero_Fraction_5']. shift(1)
              data['Z22_Lag1'] = data['Zero_Fraction_22']. shift(1)
              data.dropna(inplace=True)
              data['Log_Return_Lag1_Zero5'] = data['Log_Return_Lag1'] * data['Z5_Lag1']
              data['Log_Return_Lag2_Zero22'] = data['Log_Return_Lag2'] * data['Z22_Lag1']
              X = data[['Z5_Lag1', 'Z22_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2',
                          'Log_Return_Lag1_Zero5', 'Log_Return_Lag2_Zero22']]
              X = sm. add_constant(X)
              Y = data['Log_Return']
              model = sm. OLS(Y, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
              return model
In [ ]: # Ten Model functions mapped to their descriptive names
          models = [('Model with Only Constant', estimate_model_constant),
                 ('Model with Weekly Zero', estimate_model_constant_z5),
                 ('Model with Monthly Zero', estimate_model_constant_z22),
                 ('AR(1)', estimate model arl),
                 ('AR(2)', estimate model ar2),
                 ('AR(1) with Weekly Zero Interaction', estimate model arl z5 interaction),
                 ('AR(1) with Monthly Zero Interaction', estimate_model_arl_z22_interaction),
                  ('AR(2) with Weekly Zero Interaction', estimate model ar2 z5 interaction),
                 ('AR(2) with Monthly Zero Interaction', estimate_model_ar2_z22_interaction),
                 ('AR(2) with Separate Weekly and Monthly Zero Interactions', estimate_model_ar2_z5_z22_separate_interaction)]
In [ ]: model_features = {
               'Model with Weekly Zero': ['const', 'Z5_Lag1'],
               'Model with Monthly Zero': ['const', 'Z22_Lag1'],
              'AR(1)': ['const', 'Log_Return_Lag1'],
'AR(2)': ['const', 'Log_Return_Lag1', 'Log_Return_Lag2'],
              'AR(1) with Weekly Zero Interaction': ['const', 'Z5_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag1_Zero5'],
'AR(1) with Monthly Zero Interaction': ['const', 'Z22_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag1_Zero22'],
'AR(2) with Weekly Zero Interaction': ['const', 'Z5_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2', 'Log_Return_Lag1_Zero5', 'Log_Return_Lag2_Zero5'],
'AR(2) with Monthly Zero Interaction': ['const', 'Z22_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2', 'Log_Return_Lag1_Zero22', 'Log_Return_Lag2_Zero22'],
'AR(2) with Monthly Zero Interaction': ['const', 'Z22_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2', 'Log_Return_Lag1_Zero22', 'Log_Return_Lag2_Zero22'],
               'AR(2) with Separate Weekly and Monthly Zero Interactions': ['const', 'Z5_Lag1', 'Z22_Lag1', 'Log_Return_Lag1', 'Log_Return_Lag2', 'Log_Return_Lag1_Zero5', 'Log_Return_Lag2_Zero22']
         P10: Models Summary & Comparsion (Use Fridays as example with maxlag=4)
In [ ]: def autocorrelations_residuals(model):
              residuals = model.resid
              # Compute autocorrelations for the first two lags
```

```
autocorr = acf(residuals, nlags=2, fft=True)
            # Perform Ljung-Box test for three lags
            ljungbox_results = acorr_ljungbox(residuals, lags=[3], return_df=True)
                 'Rho_1': autocorr[1],
                 'Rho_2': autocorr[2],
                 'Ljung-Box Test Statistic': ljungbox_results['lb_stat'].iloc[0],
                 'Ljung-Box P-value': ljungbox_results['lb_pvalue'].iloc[0]
            return results
In [ ]: def models_comparison(df, lags, df_name):
             Analyze and compare multiple regression models on a given DataFrame.
            This function fits nine different models, each incorporating
            different aspects of zero fraction interactions and lags, to a
            specified DataFrame. It evaluates each model's performance using
            Adjusted R-squared, AIC, BIC, and conducts residual diagnostics
            using autocorrelations and the Ljung-Box test.
            Parameters:
             - df: The input DataFrame containing the time series data. The
                DataFrame should include columns for log returns and zero fractions.
             - lags: Maximum number of lags to use for HAC standard errors.
             - df_name: A string that specifies the name of the DataFrame,
                   used to name the output CSV file.
             - model_results_dict: A dictionary containing the fitted models.
            Outputs:
             - Prints a summary table directly to the console, displaying
              key model statistics and parameters' results.
              - Prints detailed summary statistics for each model, providing
              comparable insights into the model fit and residuals.
              - Saves a CSV file named '{df_name}_model_comparison_results.csv'
              containing the detailed summary comparsion results.
            Example of usage:
            Assuming 'Fridays' is a DataFrame suitable for the analysis:
             fridays_models = models_comparison(Fridays, lags=4, df_name='Fridays')
            data = df. copy()
            model_results_dict = {}
            results list = []
             for name, model_func in models:
                model_fit = model_func(df=data, lags=lags)
                model_results_dict[name] = model_fit
                analysis_results = autocorrelations_residuals(model_fit)
                # Prepare a dictionary for each model's results
                model_info = {
                     'Model Name': name,
                     'Adj R^2': model_fit.rsquared_adj,
                     'AIC': model fit.aic,
                     'BIC': model_fit.bic,
                     'Rho_1': analysis_results['Rho_1'],
                     'Rho 2': analysis results['Rho 2'],
                     'Ljung-Box Test Statistic': analysis_results['Ljung-Box Test Statistic'],
                     'Ljung-Box P-value': analysis_results['Ljung-Box P-value']
                results list. append (model info)
            results_df = pd. DataFrame(results list)
            # Save the DataFrame to a CSV file with a dynamic name based on df name
            # files. download is just for google colab, if u use other environments, plz change
            csv_filename = f' {df_name} _model_comparison_results.csv'
            results_df. to_csv(csv_filename, index=True, header=True)
            files. download(csv_filename)
            print(tabulate(results_df, headers='keys', tablefmt='pretty', showindex=False))
            # Print parameter summaries for each model, separated by two blank lines
            for model name, model result in model results dict. items():
                print(f"Parameters for Model: {model name}:")
                print(model result.summary())
                print('\n' * 2)
            return model_results_dict
In [ ]: fridays models = models comparison(Fridays, lags=4, df name='Fridays')
```

Model Name	Adj R^2	AIC	BIC	Rho_1	Rho_2	Ljung-Box Test Statistic	Ljung-Box P-value
Model with Only Constant	2. 220446049250313e-16	-1091. 2087686271934	-1087. 4311163039708	0. 7051491115846917	0.5939695382896838	372.71304911867526	1.7996068972050845e-80
Model with Weekly Zero	0.0006396222829437859	-1086. 0365555375033	-1078. 4874524464144	0.7033701906196563	0.5908909175502778	370. 0266260053934	6.870124334073737e-80
Model with Monthly Zero	0.00043030332805416016	-1085. 9691187576136	-1078. 4200156665247	0.704146496376675	0.5930101123396581	370. 92228693755567	4.395380344949907e-80
AR (1)	0. 4956643744483322	-1306. 2438167084683	-1298. 6947136173794	-0.1356912954248646	0.02417237892107988	29. 881012620618524	1.461922715402241e-06
AR (2)	0. 5128527872241293	-1311. 318225508016	-1300.003902138626	-0.025673654543057242	-0.05067886504282071	17. 42342656969924	0.0005782616530108395
AR(1) with Weekly Zero Interaction	0. 49294967265322254	-1302. 5340415943133	-1287. 4358354121357	-0.13479051264275915	0.02251678901729949	29. 763726221081924	1.5473588401116546e-06
AR(1) with Monthly Zero Interaction	0.49628199580928833	-1304.6572025805049	-1289. 5589963983273	-0.10700004709102476	0.026896555881336548	29. 414772333817737	1.832154994375916e-06
AR(2) with Weekly Zero Interaction	0. 5127447891107964	-1308. 2897461017178	-1285.6610993629376	-0.02327658656985997	-0.06344992042876285	18. 971899628236205	0.00027708098141720073
AR(2) with Monthly Zero Interaction	0.5194093779465099	-1312.7106295895924	-1290.0819828508122	-0.035235679222936384	-0.08749058938374132	23. 101765389640835	3.8457884576106816e-05
AR(2) with Separate Weekly and Monthly Zero Interactions	0. 5131122848344245	-1307. 552609400545	-1281. 1525215386348	-0.0364309638420215	-0.08550912709705655	20. 599383574776333	0.00012749525510854525

Parameters for Model: Model with Only Constant:

	OLS Regression Results										
Dep. Variable:	Log_	Return	 R-sq	uared:		0.000					
Model:		OLS	Adj.	R-squared:		0.000					
Method:	Least S	quares	F−st	atistic:		nan					
Date:	Mon, 03 Ju	ın 2024	Prob	(F-statist	ic):	nan					
Time:	17	:59:04	Log-	Likelihood:		546.60					
No. Observations:		323	AIC:			-1091.					
Df Residuals:		322	BIC:			-1087.					
Df Model:		0									
Covariance Type:	nor	robust									
CO6	ef std ei	r	t	P> t	[0.025	0.975]					
0 -0.000	0.00)2	-0.160	0.873	-0.005	0.004					
Omnibus:		59.871	Durb	in-Watson:		0.590					
Prob(Omnibus):		0.000	Jarq	ue-Bera (JB)):	426.209					
Skew:		0.509	Prob	(JB):		2.82e-93					
Kurtosis:		8. 535	Cond	. No.		1.00					

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Weekly Zero:

		OLS Regr	ession Res	sults 		
Dep. Varial	ole:	Log_Retur	n R-squa	ared:		0.004
Model:		OL	S Adj. I	R-squared:		0.001
Method:		Least Square	s F-sta	tistic:		1.205
Date:	Mo	n, 03 Jun 202	4 Prob	(F-statistic	:):	0.273
Time:		17:59:0	4 Log-Li	ikelihood:		545.02
No. Observa	ations:	32	2 AIC:			-1086.
Df Residual	ls:	32	O BIC:			-1078.
Df Model:			1			
Covariance	Type:	nonrobus	t			
========			=======		:=======	
		std err			[0.025	0.975
const	0.0055				-0.006	0.017
Z5_Lag1	-0.0086	0.008	-1.098	0.273	-0.024	0.007
Omnibus:		======================================	====== 9 Durbin	======= n-Watson:		0.593
Prob(Omnibu	ıs):	0.00	0 Jarque	e-Bera (JB):		400.989
Skew:		0.31	5 Prob(JB):		8.44e-88
Kurtosis:			1 Cond.			4.74

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Monthly Zero: OLS Regression Results

Dep. Variable:		og Return	R-square	 4·	=======	0.004
Model:	L	OLS	Adj. R-s			0.004
Method:	Loac	st Squares				1. 138
Date:		-		statistic):		0. 287
Time:	mon, oc		Log-Like	,		544. 98
No. Observations:		322	AIC:	iiioou.		-1086.
Df Residuals:		320	BIC:			-1078.
Df Model:		1	2101			20,00
Covariance Type:		nonrobust				
					=======	=======
cc	oef sto	lerr	t	P> t	[0.025	0.975]
const 0.00)68 (0. 007 0.	945	0.346	-0.007	0.021
Z22_Lag1 -0.01	.04	-1.	067	0.287	-0.030	0.009
Omnibus:		50.717	====== Durbin-W	======= atson:	=======	0. 592
Prob(Omnibus):		0.000	Jarque-B	era (JB):		395.353
Skew:		0.303	Prob(JB)	:		1.41e-86
Kurtosis:		8.394	Cond. No.			5.86

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: AR(1):

OLS Regression Results

Dep. Variable:	Ι	og_Return	R-squared:		(. 497	
Model:		OLS	Adj. R-squa	red:	(. 496	
Method:	Leas	st Squares	F-statistic	::	1	56. 3	
Date:	Mon, 03	Jun 2024	Prob (F-sta	ıtistic):	1.77	'e-29	
Time:		17:59:04	Log-Likelih	iood:	65	55.12	
No. Observations:		322	AIC:		-1	306.	
Df Residuals:		320	BIC:		-1	299.	
Df Model:		1					
Covariance Type:		HAC					
	coef	std err	Z	P> z	[0.025	0.975]	
const	-0.0001	0.002	-0. 066	0.947	-0.004	0.003	
Log_Return_Lag1	0.7051	0.056	12. 503	0.000	0.595	0.816	
Omnibus:		64. 236	 Durbin-Wats	on:		2. 270	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	356	5. 332	
Skew:	0.671		Prob(JB):		4.20e-78		
Kurtosis:		7.976	Cond. No.		22.4		

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Parameters for Mo	ode1: AR(2):						
		OLS Regress	sion Results				
Dep. Variable:	 L	og_Return	R-squared:		0.516		
Model:		OLS	Adj. R-squa	red:	0). 513	
Method:	Leas	t Squares	F-statistic	::	8	34.51	
Date:	Mon, 03	Jun 2024	Prob (F-sta	ıtistic):	3.69	e-30	
Time:		17:59:04	Log-Likelih	iood:	65	8.66	
No. Observations	:	321	AIC:		-1311.		
Df Residuals:		318	BIC:		-1	300.	
Df Model:		2					
Covariance Type:		HAC					
	coef	std err	Z	P> z	[0.025	0.975]	
const	-7.831e-05	0.002	-0.044	0.965	-0.004	0.003	
Log_Return_Lag1	0.5691	0.079	7.160	0.000	0.413	0.725	
Log_Return_Lag2							
Omnibus:		73. 893	 Durbin-Wats			2.050	
Prob(Omnibus):		0.000	Jarque-Bera	(JB):	539	. 301	
Skew:		0.713	Prob(JB):		7.80e	-118	
Kurtosis:		9.188	Cond. No.		41.3		

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Parameters for Model: AR(1) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Log_Retur OL Least Square Mon, 03 Jun 202 17:59:0 32	28 24 24 22 18	Adj. F-sta Prob			0. 498 0. 493 52. 12 2. 00e-27 655. 27 -1303. -1287.	
============	coef	std	err	Z	P> z	[0.025	0.975]
const Z5_Lag1 Log_Return_Lag1 Log_Return_Lag1_Zero		0	. 008	0. 286 -0. 365 8. 449 0. 096	0.715	-0. 011 -0. 019 0. 537 -0. 514	0.013
Omnibus: Prob(Omnibus): Skew:	60. 87 0. 00 0. 61	00		=========== in-Watson: 1e-Bera (JB): (JB):	======	2. 268 341. 475 7. 07e-75	

7.891 Cond. No. ______

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

OLS Regression Results										
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		OLS ares 2024	Adj. R F-stat Prob (-squared:		0. 501 0. 496 55. 86 4. 97e-29 656. 33 -1305. -1290.				
======================================	coef	=====	====== td err	z	P> ₇	======================================	0. 975]			
_ 9	0. 0007 -0. 0016 0. 7979		0.007 0.009 0.087	0. 101 -0. 185 9. 149	0. 920 0. 853 0. 000	-0. 014 -0. 019 0. 627	0. 015 0. 016 0. 969			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0 0 7	623 939				2. 213 348. 038 2. 66e-76 135.				

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Parameters for Model: AR(2) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable:	Log_Re	turn	R-squ	ared:		0.520	
Model:	<u> </u>	OLS		R-squared:		0.513	
Method:	Least Squ	ares		tistic:		33.76	
Date:	Mon, 03 Jun	2024	Prob	(F-statistic)):	1.40e-27	
Time:	17:5	9:04	Log-L	ikelihood:		660.14	
No. Observations:		321	AIC:			-1308.	
Df Residuals:		315	BIC:			-1286.	
Df Model:		5					
Covariance Type:		HAC					
	coef	sto	err	Z	P> z	[0.025	0.975]
const	0.0016	(0.007	0. 235	0.814	-0.012	0.015
Z5_Lag1	-0.0024	(0.008	-0.305	0.760	-0.018	0.013
Log_Return_Lag1	0.6817	(). 131	5. 185	0.000	0.424	0.939
Log_Return_Lag2	0.0430	(). 197	0.218	0.828	-0.344	0.429
Log_Return_Lag1_Zero5	-0.2924	(). 287	-1.021	0.307	-0.854	0.269
Log_Return_Lag2_Zero5	0.3010	(). 256	1.176	0.240	-0.201	0.803
Omnibus:	65	===== . 819	 Durbi	======= n-Watson:		2.045	
Prob(Omnibus):	0	. 000	Jarqu	e-Bera (JB):		467.017	
Skew:	0	. 606	Prob(JB):		3.88e-102	
Kurtosis:	8	. 783	Cond.	No.		199.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Parameters for Model: AR(2) with Monthly Zero Interaction:

OLS Regression Results										
Time: No. Observations: Df Residuals: Df Model:	0: Least Squar Mon, 03 Jun 20: 17:59: 3:	es F-stat 24 Prob (-squared: istic:							
Covariance Type:	=========		z	======= P> z	[0. 025	0.975]				
const	0.0008		0.105		-0.014	0.016				
Z22_Lag1	-0.0011		-0.119		-0.019	0.017				
Log_Return_Lag1	0.8167		5. 240		0.511	1. 122				
	-0.0901				-0.472	0. 292				
Log_Return_Lag1_Zero2 Log_Return_Lag2_Zero2		0. 233	-2. 227 1. 980		-0. 976 0. 006	-0.062 1.264				
Omnibus:	63. 0	======= 66 Durbin	======================================	=======	2.069					
Prob(Omnibus):	0.0	00 Jarque	-Bera (JB):		406.659					
Skew:	0.6			4.96e-89						
Kurtosis:	8. 3	81 Cond.	No.		239.					

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Parameters for Model: AR(2) with Separate Weekly and Monthly Zero Interactions: OLS Regression Results

=======================================				=======	========	
Dep. Variable:	Log_Retur	n R-squa	red:		0.522	
Model:	OI	LS Adj. R	-squared:		0.513	
Method:	Least Square	es F-stat	istic:		29.40	
Date:	lon, 03 Jun 202	24 Prob (F-statistic):		6.58e-28	
Time:	17:59:0)4 Log-Li	kelihood:		660.78	
No. Observations:	32	21 AIC:			-1308.	
Df Residuals:	31	4 BIC:			-1281.	
Df Model:		6				
Covariance Type:	HA	AC .				
=======================================	coef	std err	Z	P> z	[0.025	0. 975]
const	0.0008	0.008	0.097	0.923	-0. 015	0.016
Z5_Lag1	-0.0038	0.010	-0.372	0.710	-0.024	0.016
Z22_Lag1	0.0028	0.012	0.223	0.824	-0.022	0.027
Log_Return_Lag1	0.6352	0.100	6.377	0.000	0.440	0.830
Log_Return_Lag2	0.0540	0.156	0.346	0.730	-0.252	0.360
Log_Return_Lag1_Zero5	-0.2334	0.276	-0.845	0.398	-0.775	0.308
Log_Return_Lag2_Zero22	0.3948	0.255	1.546	0.122	-0.106	0.895
Omnibus:	71.37	 '9 Durbin			2.072	
Prob(Omnibus):	0.00	00 Jarque	-Bera (JB):		511.792	
Skew:	0.68				7.34e-112	
Kurtosis:	9.03	33 Cond.			204.	

In []: # Example for extracting a stored model

print(fridays_models			o Interaction']	.summary	())	
	OLS Reg	ression R	esults			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Square Mon, 03 Jun 20: 17:59: 3:	LS Adj. es F-sta 24 Prob	R-squared: atistic:		0. 501 0. 496 55. 86 4. 97e-29 656. 33 -1305. -1290.	
	coef	std err	Z	P> z	[0.025	0.975]
const Z22_Lag1 Log_Return_Lag1 Log_Return_Lag1_Zero	0.0007 -0.0016 0.7979 22 -0.2807	0. 009 0. 087 0. 184	-0. 185 9. 149	0.853 0.000	-0. 014 -0. 019 0. 627 -0. 642	0.016
Omnibus: Prob(Omnibus): Skew: Kurtosis:	61. 4 0. 0 0. 6 7. 9	36 Durb 00 Jarqu 23 Prob			2. 213 348. 038 2. 66e-76 135.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Evaluating Model Comparisons

We consider several factors such as the $R^2_{adj'}$ AIC, BIC, autocorrelations (Rho_1 and Rho_2), and results from the Ljung-Box test. We break down each model's performance based on these criteria and determine the best model based on the evidence.

Evaluating Model Performance

- 1. R_{ads}^2 : Higher values indicate that the model explains a higher proportion of the variance in the log return, adjusted for the model **AR(2) with Monthly Zero Interaction**, which has the highest value (0.519), is the winner in this criteria. the model AR(2) with Separate Weekly and Monthly Zero Interactions is the second best model in this criteria with second highest value (0.513)
- 2. AIC and BIC: Lower values of AIC and BIC indicate a better model fit, adjusted for the number of parameters. The model AR(2) with Monthly Zero Interaction has lowest BIC, suggesting they provide strong balances of model fit and complexity. The model AR(2) with Separate Weekly and Monthly Zero Interactions also has closely low AIC and BIC to these two winners.
- 3. **Autocorrelations** (Rho_1 and Rho_2): Ideally, these should be close to zero, indicating that the residuals from the model do not exhibit autocorrelation. Specifically, the Rho_1 of model **AR(2)** with **Weekly Zero Interaction** is closest to zero, where the Rho1 of model AR(2) with Separate Weekly and Monthly Zero Interactions is also close to zero. the Rho2 of model AR(2) with Separate Weekly and Monthly Zero Interactions is still close enough to zero. But both differences to first closest model are tiny, so AR(2) with Separate Weekly and Monthly Zero Interactions can still be acceptable in this criteria.
- 4. Ljung-Box Test: This test checks for autocorrelation in the residuals at multiple lag lengths. A high p-value (close to 1) indicates that there is little evidence to reject the null hypothesis of no serial autocorrelations among residuals. The model AR(2) with Separate Weekly and Monthly Zero Interactions shows the third highest p-value (around 0.000127), but is still too low.

Conclusion

The model AR(2) with Separate Weekly and Monthly Zero Interactions and model AR(2) with Monthly Zero Interaction both balance complexity with performance effectively and manages residuals better than simpler models or those considering fewer interaction terms. They should be chosen for further forecasting assuming these results hold consistently across different dataframes (Eg. Wednesdays). These models' ability to handle interactions provides a comprehensive understanding of the factors influencing log returns, which can be especially valuable in further forecasting where such

^[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

dynamics are often significant.

Robustness work for P10

In []: # Thursdays

thursdays_models = models_comparison(Thursdays, lags=2, df_name='Thursdays')

Model Name	Adj R^2	AIC	BIC	Rho_1	Rho_2	Ljung-Box Test Statistic	Ljung-Box P-value
Model with Only Constant	3.3306690738754696e-16	-1129.6314046367324	-1125. 826269667816	0.7345946179183339	0. 5997278534251737	383. 393733423569	8.749828086232154e-83
Model with Weekly Zero	-0.0015243351787677106	-1123.7250132381773	-1116. 1207764874232	0.7327797490558713	0.5983789793575569	380. 61905623055236	3.490952743252467e-82
Model with Monthly Zero	-9.826455511507959e-05	-1124.1966600474789	-1116. 5924232967247	0.733883153652476	0.5989658994510134	381. 73385775671676	2.002164075177208e-82
AR(1)	0. 5382307541461196	-1379. 9895675709663	-1372. 3853308202122	-0.09593281484946242	0.04771025742450191	4. 922570199686606	0.17755553347138409
AR (2)	0. 5447343740533538	-1378. 5015778982604	-1367. 1042999348788	-0.0038355974340777074	-0.019796150845353307	0. 5311140933125282	0.9120044970665508
AR(1) with Weekly Zero Interaction	0. 5369816932146954	-1377. 1137380806786	-1361.9052645791703	-0.08889427167496415	0.05465040262697347	4. 679437982052594	0.19683247834698503
AR(1) with Monthly Zero Interaction	0. 5361682469072273	-1376. 5327362367798	-1361.3242627352715	-0.08368647486013457	0.04993412616090531	4. 309916299168381	0.22988499813851404
AR(2) with Weekly Zero Interaction	0. 5623701361413097	-1388. 5805650781188	-1365. 7860091513555	-0.011922386047237972	0.017260370733125974	0.19937132616917788	0.9776907233741919
AR(2) with Monthly Zero Interaction	0. 5503206131290315	-1379.617315688911	-1356. 8227597621478	-0.02411845582948623	-0.04455039034174976	1. 388723554182887	0. 708180108850241
AR(2) with Separate Weekly and Monthly Zero Interactions	0.5505979703054391	-1378.84101231318	-1352. 2473637319563	-0.017609125547069608	-0.04974084196507659	1. 1814110684277064	0.7574660705088695

Parameters for Model: Model with Only Constant:

		OLS Reg	gress	ion R	esults		
Dep. Variable:		Log_Reti	ırn	R-sq	 uared:		0.000
Model:		()LS	Adj.	R-squared:		0.000
Method:	I	east Squar	es	F-st	atistic:		nan
Date:	Mon,	03 Jun 20)24	Prob	(F-statistic):		nan
Time:		18:00:	03	Log-	Likelihood:		565.82
No. Observations:		3	332	AIC:			-1130.
Df Residuals:		3	331	BIC:			-1126.
Df Model:			0				
Covariance Type:		nonrobu	ıst				
co	===== ef	std err		t	P> t	[0.025	0.975]
0 -0.00	07	0.002	-0	. 286	0. 775	-0.005	0.004
Omnibus:		44.2	240	Durb	 in-Watson:		 0. 531
Prob(Omnibus):		0.0	000	Jarq	ue-Bera (JB):		237.047
Skew:		0.3	349	Prob	(JB):		3.36e-52
Kurtosis:		7. (080	Cond	. No.		1.00

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Weekly Zero:
OLS Regression Results

		OLS Regr	ression Res	sults 		
Dep. Varial Model: Method: Date: Time: No. Observation of Residual Df Model:	Mo ations:	- -	es F-stat 24 Prob 03 Log-Li 31 AIC:	R-squared: tistic:	:):	0. 002 -0. 002 0. 4977 0. 481 563. 86 -1124. -1116.
Covariance	Type:	nonrobus	_			
========	coef	std err	t	P> t	[0.025	0.975]
	0.0030 -0.0054					
Omnibus: Prob(Omnibu Skew: Kurtosis:	1s):	0.00	7 Prob(e-Bera (JB): JB):		0. 534 225. 323 1. 18e-49 4. 76

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Monthly Zero: OLS Regression Results

Dep. Variable:	L	og Return	R-square	d:		0.003
Model:		OLS	Adj. R-s	quared:		-0.000
Method:	Leas	t Squares	F-statis	tic:		0.9676
Date:	Mon, 03	Jun 2024	Prob (F-		0.326	
Time:		18:00:03	Log-Like	lihood:		564.10
No. Observations:		331	AIC:			-1124.
Df Residuals:		329	BIC:			-1117.
Df Model:		1				
Covariance Type:	1	nonrobust				
co	ef std	err	t	P> t	[0.025	0.975]
const 0.00	58 0.	. 007 0.	825	0.410	-0.008	0.020
Z22_Lag1 -0.00	95 0.	. 010 -0.	984	0.326	-0.028	0.009
Omnibus:		38. 218	 Durbin-W	atson:		0.532
Prob(Omnibus):		0.000	Jarque-B	era (JB):		220.889
Skew:		0.158	Prob(JB)	:		1.08e-48
Kurtosis:		6.989	Cond. No			5.91

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: AR(1):

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Log_Return OLS Least Squares Mon, 03 Jun 2024 18:00:03 331 329 1 HAC		R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	e: utistic):	0.540 0.538 135.6 1.78e-26 691.99 -1380.	
Covariance Type:	coef	:======	 Z	P> z	[0. 025	0.975]
const Log_Return_Lag1	-0.0002	0.002	-0. 117 11. 645	0.907		0.003
Omnibus: Prob(Omnibus): Skew: Kurtosis:		40. 177 0. 000 0. 191 7. 159	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.		240	2. 190 0. 627 0e-53 22. 7

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2):

		OLS Regress	sion Results				
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Leas	OLS t Squares Jun 2024	R-squared: Adj. R-squa F-statistic Prob (F-sta Log-Likelih AIC: BIC:	e: itistic):	0.548 0.545 69.37 7.71e-26 692.25 -1379. -1367.		
	coef	std err	Z	P> z	[0.025	0.975]	
Log_Return_Lag1	0.6384			0.000		0.823	
Omnibus: Prob(Omnibus): Skew: Kurtosis:	0.000 0.192		Durbin-Wats Jarque-Bera Prob(JB): Cond. No.		2.006 316.589 1.79e-69 44.0		

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(1) with Weekly Zero Interaction: OLS Regression Results

=======================================		=====	=====		======	========	
Dep. Variable:	Log Ret	urn	R-sq	uared:	0.541		
Model:		OLS	Adj.	R-squared:		0.537	
Method:	Least Squa	res	F-st	atistic:		49.46	
Date:	Mon, 03 Jun 2	024	Prob	(F-statistic):		2.21e-26	
Time:	18:00	:03	Log-	Likelihood:		692.56	
No. Observations:		331	AIC:			-1377.	
Df Residuals:		327	BIC:			-1362.	
Df Model:		3					
Covariance Type:		HAC					
=======================================		====	====		======	=========	
	coef	std		Z		[0.025	0.975]
const	0.0008	0		0.134		-0.010	0.012
Z5_Lag1	-0.0016	0	. 007	-0.240	0.811	-0.015	0.012
Log_Return_Lag1	0.7751	0	. 088	8.823	0.000	0.603	0.947
Log_Return_Lag1_Zero						-0.655	0.280
 Omnibus:		===== 701		in-Watson:		2. 176	
Prob(Omnibus):	0.	000	Jarq	ue-Bera (JB):		256.558	
Skew:	0.	164	Prob	(JB):		1.95e-56	
Kurtosis:	7.	301	Cond	. No.		142.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

OLS Regression Results ______ Dep. Variable: Log_Return R-squared: 0.536 Model: OLS Adj. R-squared: 50.58 Method: Least Squares F-statistic: Date: Mon, 03 Jun 2024 Prob (F-statistic): 6.99e-2718:00:03 Log-Likelihood: 692.27 Time: 331 AIC: -1377.No. Observations: 327 BIC: -1361. Df Residuals: Df Model: HAC Covariance Type: _____ coef std err Z P > |z|[0.025]0.975]0.0008 0.007 0.113 0.910 -0.0130.015 const Z22_Lag1 -0.00160.008 -0.1860.852 -0.0180.015 Log_Return_Lag1 0.7743 0.114 6.778 0.000 0.550 0.998 Log_Return_Lag1_Zero22 -0.1197 0.224 -0.5340.593 -0.5590.320 _____ 2.166 Omnibus: 40.456 Durbin-Watson: 0.000 Jarque-Bera (JB): 256.931 Prob(Omnibus): Skew: 0.147 Prob(JB): 1.61e-56136. Kurtosis: 7.306 Cond. No.

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable:	Log_Return	R-sq	uared:		0.569	
Model:	0LS	Adj.	R-squared:		0.562	
Method:	Least Squares	F-sta	atistic:		35.24	
Date:	Mon, 03 Jun 2024	Prob	(F-statistic)):	9.34e-29	
Time:	18:00:03	Log-	Likelihood:		700.29	
No. Observations:	330	AIC:			-1389.	
Df Residuals:	324	BIC:			-1366.	
Df Model:	5					
Covariance Type:	HAC					
	coef s	td err	z	P> z	[0.025	0.975
	0.0010	0.000		0.016	0.010	0.01

const	0.0013	0.006	0.232	0.816	-0.010
Z5_Lag1	-0.0020	0.006	-0.313	0.755	-0.015
Log_Return_Lag1	0.9350	0.153	6.116	0.000	0.635
Log_Return_Lag2	-0.2224	0.184	-1.211	0.226	-0.582
Log_Return_Lag1_Zero5	-0.6471	0.290	-2.228	0.026	-1.216
Log_Return_Lag2_Zero5	0.6378	0.228	2. 791	0.005	0.190
Omnibus:	41.071	Durbi	 n-Watson:		2.020
Prob(Omnibus):	0.000) Jarqu	e-Bera (JB):		259.103
Skew:	0.178	Prob(JB):		5.45e-57
Kurtosis:	7.326	Cond.	No.		202.

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

0.012 0.011 1.235 0.137 -0.0781.086

Parameters for Model: AR(2) with Monthly Zero Interaction:

	OLS Regress	sion Results		
Dep. Variable:	Log_Return	R-squared:		0.557
Model:	OLS	Adj. R-squared:		0.550
Method:	Least Squares	F-statistic:		35.01
Date:	Mon, 03 Jun 2024	Prob (F-statistic):		1.35e-28
Time:	18:00:03	Log-Likelihood:		695.81
No. Observations:	330	AIC:		-1380.
Df Residuals:	324	BIC:		-1357.
Df Model:	5			
Covariance Type:	HAC			
	coef st	td err z	P> z	[0.025

Covariance Type:	Н.	AC				
	coef	std err	Z	P> z	[0.025	0.975]
const	0.0008	0.007	0.118	0.906	-0.013	0.015
Z22_Lag1	-0.0011	0.009	-0.124	0.901	-0.018	0.016
Log_Return_Lag1	0.8544	0.225	3.800	0.000	0.414	1.295
Log_Return_Lag2	-0.1476	0.205	-0.721	0.471	-0.549	0.253
Log_Return_Lag1_Zero22	-0.4278	0.341	-1.254	0.210	-1.096	0.241
Log_Return_Lag2_Zero22	0.6352	0.332	1.911	0.056	-0.016	1. 287
Omnibus:	42.8	 40 Durbin	 -Watson:		2.046	
Prob(Omnibus):	0.0	00 Jarque	-Bera (JB):		275.611	
Skew:	0.2	15 Prob(J	B):		1.42e-60	
Kurtosis:	7.4	56 Cond.	No.		255.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Separate Weekly and Monthly Zero Interactions: OLS Regression Results ______

Date: Time: No. Observations: Df Residuals: Df Model:		S Adj. R s F-stat 4 Prob (3 Log-Li 0 AIC: 3 BIC: 6	-squared:	:	0.559 0.551 29.20 6.84e-28 696.42 -1379. -1352.	
Covariance Type:	HA =========	=======	=======================================	 D\	[0.025	0.075]
const			0.084			
Z5_Lag1	-0.0018	0.009	-0.203	0.839	-0.019	0.015
Z22_Lag1	0.0009	0.011	0.083	0.934	-0.021	0.023
Log_Return_Lag1	0.7685	0.135	5.701	0.000	0.504	1.033
Log Return Lag2	-0.0692	0.153	-0.453	0.650	-0.369	0.230
Log_Return_Lag1_Zero5	-0.4289	0.318	-1.348	0.178	-1.052	0.194
Log_Return_Lag2_Zero2						1. 135
Omnibus:	45. 67	====== 7 Durbin	======= -Watson:		2.033	
Prob(Omnibus):	0.00	0 Jarque	-Bera (JB):		299.370	
Skew:	0.27				9.83e-66	
Kurtosis:	7.63				222.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Model Name	Adj R^2	AIC	BIC	Rho_1	Rho_2	Ljung-Box Test Statistic	Ljung-Box P-value
Model with Only Constant	3.3306690738754696e-16	-1119. 750613118897	-1115.9454781499805	0.6901856806523485	0.5499285557504089	322. 735302435179	1.1929501201673566e-69
Model with Weekly Zero	0.0004368016252594975	-1114. 5225316713363	-1106.9182949205822	0. 6866726736508274	0.5443736775616459	316. 5934385593608	2.5477960643187162e-68
Model with Monthly Zero	0.0038472895343881763	-1115.6538275555095	-1108.0495908047553	0.6880407000350561	0.5475280649274151	319.63337470919527	5.599033872173402e-69
AR(1)	0.4748224489524412	-1327.54816838933	-1319.9439316385758	-0. 09646255565409773	0.07713618543293972	5. 192412746328644	0.1582378980095613
AR (2)	0.4835561612904895	-1327. 0716217640604	-1315.6743438006788	-0.0010928707204485918	-0.010150063874339348	0.14188400659053077	0.9863758870967192
AR(1) with Weekly Zero Interaction	0.4752940524181547	-1325. 8638350962042	-1310.655361594696	-0.10196049924721672	0.06908142068319112	5. 132818557273332	0.16232589315664808
AR(1) with Monthly Zero Interaction	0.47373272031542635	-1324. 880363219294	-1309.6718897177857	-0.10622987687680226	0.07417725211380555	5. 692722017173288	0.12755548532932812
AR(2) with Weekly Zero Interaction	0.48444840983854753	-1324. 6837446898273	-1301.889188763064	-0.012274501768083616	-0.0012947042746150601	0. 22864941205736708	0. 9728369303156228
AR(2) with Monthly Zero Interaction	0.4834123944965004	-1324.0212658708258	-1301.2267099440626	-0.010727682128786092	-0.027283820424752706	0. 47393767643844487	0. 9245787273403366
AR(2) with Separate Weekly and Monthly Zero Interactions	0.48211485340423454	-1322. 213519760148	-1295.6198711789243	-0.011206934511727055	-0.024723289355335673	0. 4017086456565259	0.9398893028756881

Parameters for Model: Model with Only Constant:

OLS Regression Results									
Dep. Variable:	 Log_Return	 R-squ	R-squared:						
Model:	OLS	Adj.	R-squared:		0.000				
Method:	Least Squares	F-sta	tistic:		nan				
Date:	Mon, 03 Jun 2024	Prob	(F-statistic)	:	nan				
Time:	18:01:09	Log-L	ikelihood:		560.88				
No. Observations:	332	AIC:			-1120.				
Df Residuals:	331	BIC:			-1116.				
Df Model:	0								
Covariance Type:	nonrobust								
	f std err				0.975]				
	2 0.002				0.005				
Omnibus:	58. 640	Durbi	 n-Watson:		0.620				
Prob(Omnibus):	0.000	Jarqu	e-Bera (JB):		427.180				
Skew:	0.460	Prob(JB):		1.73e-93				
Kurtosis:	8. 480	Cond.	No. =======	-=======	1.00				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Weekly Zero: OLS Regression Results

		ULS Kegi 	ession K	esults		
Dep. Variab	 le:	Log Retui	n R-sq	uared:		0.003
Model:		OI		R-squared:		0.000
Method:		Least Square	es F-st	atistic:		1.144
Date:	M	lon, 03 Jun 202	24 Prob	(F-statistic	e):	0.286
Time:		18:01:	0 Log-	Likelihood:		559.26
No. Observa	tions:	33	B1 AIC:			-1115.
Df Residual:	s:	32	29 BIC:			-1107.
Df Model:			1			
Covariance '	Гуре:	nonrobus	st			
========	=======			========		
	coef	std err	t 	P> t	[0.025	0.975]
const	0.0057	0.006	0.950	0.343	-0.006	0.018
Z5_Lag1	-0.0086	0.008	-1.070	0.286	-0.024	0.007
Omnibus:	========	50. 74	====== 16 Durb	in-Watson:	=======	0.626
Prob(Omnibus	s):	0.00	00 Jarq	ue-Bera (JB)	:	408.354
Skew:		0.26	61 Prob	(JB):		2.12e-89
Kurtosis:		8.41	6 Cond	. No.		4.88
========		=========		========		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Monthly Zero: OLS Regression Results

Dep. Variabl	le:	Log_Retu	rn R-squa	ired:		0.007
Model:		0	LS Adj. F	Adj. R-squared:		
Method:		Least Squar	es F-stat	istic:		2.275
Date:	N	Mon, 03 Jun 20	24 Prob	(F-statistic):	0.132
Time:		18:01:10		kelihood:		559.83
No. Observat	tions:	3	31 AIC:			-1116.
Df Residuals	s:	3.	29 BIC:			-1108.
Df Model:			1			
Covariance 7	Гуре:	nonrobu	st			
=========			========		========	
	coef	std err	t	P> t	[0.025	0.975]
const	0.0099	0.007	1.394	0.164	-0.004	0.024
Z22_Lag1	-0.0148	0.010	-1.508	0.132	-0.034	0.004
Omnibus:		48.0	======= 86 Durbir	 n-Watson:		0.624
Prob (Omnibus	s):	0.0	00 Jarque	e-Bera (JB):		395.855
Skew:		0.1				1.10e-86
Kurtosis:		8. 3	47 Cond.	No.		5.93

Dep. Variable:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: AR(1):

OLS Regression Results

Log_Return R-squared:

Model:		OLS	Adj. R-squa	red.	0.475		
Method:	Leas	st Squares	F-statistic		_	0.18	
Date: Time: No. Observations	Mon, 03	3 Jun 2024 18:01:10 331	Prob (F-sta Log-Likelih AIC:	atistic):	66	4. 63e-19 665. 77 -1328.	
Df Residuals:		329	BIC:		-1	320.	
Df Model:		1					
Covariance Type	:	HAC					
	coef	std err	z	P> z	[0.025	0.975]	
const	-6.678e-05	0.002	-0.039	0.969	-0.003	0.003	
Log_Return_Lag1	0.6903	0.073	9.496	0.000	0.548	0.833	
Omnibus:		50. 930	 Durbin-Wats	son:	2	. 189	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		497.491		
Skew:		0.072	Prob(JB):	Prob(JB):		9.36e-109	
Kurtosis:		9.004	Cond. No.			22.4	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2):

OLS Regression Results _____ Dep. Variable: Log_Return R-squared: 0.484 Model: OLS Adj. R-squared: 49.99 Method: Least Squares F-statistic: Mon, 03 Jun 2024 Prob (F-statistic): Date: 1.14e-19 18:01:10 Log-Likelihood: 666.54 330 AIC: -1327.No. Observations: 327 BIC: -1316.Df Residuals: Df Model: Covariance Type: HAC ______ P > |z|coef std err [0.025]0.975]-4.575e-05const 0.002 -0.026 0.979 -0.0030.003 Log_Return_Lag1 0.5932 0.103 5.740 0.000 Log_Return_Lag2 0.1405 0.094 1.503 0.133 -0.043 0.324 _____

 Omnibus:
 58.291
 Durbin-Watson:
 1.999

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 635.630

 Skew:
 0.244
 Prob(JB):
 9.43e-139

 Kurtosis:
 9.782
 Cond. No.
 40.2

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(1) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Least Squa: Mon, 03 Jun 20 18:01	OLS Adj. res F-st 024 Prob		e):	0. 480 0. 475 32. 58 1. 89e-18 666. 93 -1326. -1311.	
	coef	std err	Z	P> z	[0.025	0.975]
const Z5_Lag1 Log_Return_Lag1 Log_Return_Lag1_Zero	0. 0024 -0. 0033 0. 6328 5 0. 2675	0. 007 0. 008 0. 097 0. 235	0. 358 -0. 420 6. 535 1. 138	0. 720 0. 674 0. 000 0. 255	-0. 011 -0. 019 0. 443 -0. 193	0. 016 0. 012 0. 823 0. 728
Omnibus: Prob(Omnibus):	51.: 0.(in-Watson: ue-Bera (JB):	=======	2. 200 510. 488	

-0.044 Prob(JB):

9.083 Cond. No.

Skew:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

1.41e-111

OLS Regression Results ______ Dep. Variable: Log_Return R-squared: Model: OLS Adj. R-squared: 0.474Method: Least Squares F-statistic: 36.95 Date: Mon, 03 Jun 2024 Prob (F-statistic): 1.38e-20 666.44 18:01:10 Log-Likelihood: Time: 331 AIC: -1325.No. Observations: 327 BIC: -1310.Df Residuals: Df Model: HAC Covariance Type: _____ coef std err Z P > |z|[0.025]0.975]0.0032 0.008 0.390 0.696 -0.0130.019 const Z22_Lag1 -0.00450.010 -0.4530.651 -0.0240.015 Log_Return_Lag1 0.6262 0.129 4.845 0.000 0.373 0.880 Log_Return_Lag1_Zero22 0.1863 0.254 0.733 0.464 -0.3120.685 _____ 2.209 Omnibus: 49.419 Durbin-Watson: 464.173 0.000 Jarque-Bera (JB): Prob(Omnibus): Skew: -0.021 Prob(JB): 1.61e-101 135. Kurtosis: 8.801 Cond. No.

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Weekly Zero Interaction: OLS Regression Results

ULS Regression Results							
Dep. Variable:	Log_Ret	urn	R-sq	uared:		0.492	
Model:		OLS	Adj.	R-squared:		0.484	
Method:	Least Squa	res	F-st	atistic:		23.15	
Date:	Mon, 03 Jun 2	024	Prob	(F-statistic):		6.97e-20	
Time:	18:01	:10	Log-	Likelihood:		668.34	
No. Observations:		330	AIC:			-1325.	
Df Residuals:		324	BIC:			-1302.	
Df Model:		5					
Covariance Type:		HAC					
	coef	std	err	 Z	P> z	[0.025	0.975]
const	0.0022	0.	007	0.306	0.760	-0.012	0.016
Z5_Lag1	-0.0028	0.	008	-0.330	0.741	-0.019	0.014
Log_Return_Lag1	0.6362	0.	206	3.087	0.002	0.232	1.040
Log_Return_Lag2	-0.0038	0.	265	-0.014	0.989	-0.524	0.517
Log_Return_Lag1_Zero	0.0890	0.	313	0.284	0.776	-0.524	0.702

Log_Return_Lag2_Zero5 0.2501 0.330 0.757 0.449 -0.397

54.835 Durbin-Watson:

0.096 Prob(JB):

9.662 Cond. No. ______

0.000 Jarque-Bera (JB):

Kurtosis:

Omnibus:

Skew:

Prob(Omnibus):

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

1.040 0.517 0.702 0.897

2.021

610.773

2.36e-133 215.

Parameters for Model: AR(2) with Monthly Zero Interaction:

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:	Least Squa Mon, 03 Jun 2 18:01	OLS Adj res F-s O24 Pro		c):	0. 491 0. 483 26. 89 9. 72e-23 668. 01 -1324. -1301.		
Covariance Type:]	HAC =======	==========	========		=======	
	coef	std er	r z	P> z	[0.025	0.975]	
const	0.0030	0.00	9 0.351	0.725	-0.014	0.020	
Z22_Lag1	-0.0039	0.01	0 -0.378	0.706	-0.024	0.016	
Log_Return_Lag1	0.5414	0.21	8 2.484	0.013	0.114	0.969	
Log_Return_Lag2	0.0784	0.21	7 0.361	0.718	-0.347	0.504	
Log_Return_Lag1_Zero2	2 0.1605	0.35	8 0.449	0.654	-0.540	0.861	
Log_Return_Lag2_Zero22		0.36	0.540	0.589	-0.511	0.900	
Omnibus:	54.	 167 Dur	bin-Watson:		2.018		
Prob(Omnibus):	0.	000 Jar	Jarque-Bera (JB):		565.428		
Skew:	0.	152 Pro	b(JB):		1.66e-123		
Kurtosis:	9.	405 Con	d. No.		233.		

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Separate Weekly and Monthly Zero Interactions: OLS Regression Results ______

	Log_Return R-squared: OLS Adj. R-squared: Least Squares F-statistic: Mon, 03 Jun 2024 Prob (F-statistic): 18:01:10 Log-Likelihood: 330 AIC: 323 BIC: 6 HAC			0. 492 0. 482 22. 47 4. 03e-22 668. 11 -1322. -1296.		
	coef		 Z			0.975]
const	0.0029		0.329			0.020
Z5_Lag1	-0.0007	0.009	-0.077	0.939	-0.019	0.017
Z22_Lag1	-0.0030	0.012	-0.245	0.807	-0.027	0.021
Log_Return_Lag1	0.5666	0.136	4.181	0.000	0.301	0.832
Log_Return_Lag2	0.0601	0.174	0.346	0.729	-0.280	0.401
Log_Return_Lag1_Zero5	0.1688	0.263	0.642	0.521	-0.347	0.684
Log_Return_Lag2_Zero2					-0.352	0.793
Omnibus:	54. 36				2.019	
Prob(Omnibus):	0.00	0 Jarque	Jarque-Bera (JB):		593.480	
Skew:	0.10	2 Prob(J	Prob(JB):		1.34e-129	
Kurtosis:	9.56	7 Cond.	No.		220.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

In []: # Tuesdays

tuesdays_models = models_comparison(Tuesdays, lags=2, df_name='Tuesdays')

Model Name	Adj R^2	AIC	BIC	Rho_1	Rho_2	Ljung-Box Test Statistic	Ljung-Box P-value
Model with Only Constant	4.440892098500626e-16	-1120.0482104914004	-1116. 2370694984236	0. 6662548458224645	0.5498091033843614	314. 5186833119641	7. 165941752616387e-68
Model with Weekly Zero	-0.0023361244588984142	-1113.9181033525988	-1106. 3018183726379	0.6638863509966867	0.5484560552409659	311. 52807915742983	3.1813629512928694e-67
Model with Monthly Zero	-0.0013050677167152358	-1114. 2608213270487	-1106.6445363470878	0.6649057542551791	0.5489401719970008	312. 5577682727266	1.9042811551799388e-67
AR (1)	0. 44221628864425344	-1309.095199471638	-1301.478914491677	-0.12692869813086013	0.1139968538880168	10. 397345606056946	0.015473677649263303
AR (2)	0.4608973245266801	-1314. 4740652539508	-1303.0586603472013	-0.002327121756879495	-0.010146721029427166	0.04215333467183039	0.9977270952194889
AR(1) with Weekly Zero Interaction	0. 45924533809348944	-1317. 438248004738	-1302. 205678044816	-0.108377596894946	0.11199084546835066	8. 534682158407868	0.03616208959814599
AR(1) with Monthly Zero Interaction	0.4430502109444814	-1307.6116162864646	-1292. 3790463265427	-0.13970115048928833	0.10707789666812177	10. 992685410854715	0.011765494153635555
AR(2) with Weekly Zero Interaction	0.474663823179042	-1320. 1033679704096	-1297. 2725581569107	0.013898330908768757	-0.002095090567061654	0.1023064175528134	0.9915592155562123
AR(2) with Monthly Zero Interaction	0. 46367873783225144	-1313. 2326423223885	-1290. 4018325088896	-0.009458205968811311	-0.031045780700168047	0. 39459295827242463	0.9413571844141486
AR(2) with Separate Weekly and Monthly Zero Interactions	0.4720451434617029	-1317. 4725056977572	-1290. 8365609153418	0.008171376609158726	0.0021736982956762512	0.0645649730698349	0.9957202565371582

Parameters for Model: Model with Only Constant: OLS Regression Results

Log Return	 ı R-sq	 uared:		0.000		
		R-squared:		0.000		
Least Squares	s F-st	atistic:		nan		
Mon, 03 Jun 2024	Prob	(F-statistic)	:	nan		
18:01:27		Likelihood:		561.02		
334	AIC:			-1120.		
333	BIC:			-1116.		
()					
nonrobust	-					
f std err	t	P> t	[0.025	0.975]		
8 0.002	-0.325	0.746	-0.006	0.004		
======================================	====== 5 Durb	======= in-Watson:		0.667		
0.000) Jarq	ue-Bera (JB):		812.466		
0.749	Prob	(JB):		3.76e-177		
10.493	B Cond	. No.		1.00		
	OLS Least Squares Mon, 03 Jun 2024 18:01:27 334 333 (OLS Adj. Least Squares F-st Mon, 03 Jun 2024 Prob 18:01:27 Log- 334 AIC: 333 BIC: 0 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Mon, 03 Jun 2024 Prob (F-statistic) 18:01:27 Log-Likelihood: 334 AIC: 333 BIC: 0 nonrobust	OLS Adj. R-squared: Least Squares F-statistic: Mon, 03 Jun 2024 Prob (F-statistic): 18:01:27 Log-Likelihood: 334 AIC: 333 BIC: 0 nonrobust ===================================		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Weekly Zero:

		OLS Re	gression Res	sults 				
Dep. Varial	 ble:	Log_Ret	urn R-squa	ared:		0.001		
Model:			OLS Adj. I	Adj. R-squared:				
Method:		Least Squa	res F-sta			0.2262		
Date:	Mo	on, 03 Jun 2	024 Prob	(F-statistic	a):	0.635		
Time: No. Observations:		18:01	:27 Log-L:	Log-Likelihood: AIC:				
			333 AIC:					
Df Residua	ls:		331 BIC:			-1106.		
Df Model:			1					
Covariance	Type:	nonrob	ust					
=======			t		[0.025	0.975]		
const	0.0018		0. 299		-0.010	0.014		
Z5_Lag1	-0.0038	0.008	-0.476	0.635	-0.020	0.012		
Omnibus:		 79.	======= 774 Durbii	======= n-Watson:		 0. 672		
Prob(Omnib	us):	0.	000 Jarque	e-Bera (JB):		779.334		
Skew:		0.	658 Prob(TB):		5.88e-170		
Kurtosis:		10.	378 Cond.			4.82		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Monthly Zero: OLS Regression Results

Dep. Variabl	le:	Lo	og_Return	R-squ	nared:		0.002
Model:			0LS	Adj.	R-squared:		-0.001
Method:		Leas	Least Squares		atistic:	0.5673	
Date:		Mon, 03	on, 03 Jun 2024		(F-statistic)	:	0.452
Time:			18:01:27		Likelihood:	559.13	
No. Observat	tions:		333	AIC:	AIC:		-1114.
Df Residuals:			331	BIC:	BIC:		-1107.
Df Model:			1				
Covariance 7	Type:	1	nonrobust				
=======================================	coe	f std	err	t	P> t	[0.025	0.975]
const	0.004	3 0.	007	0. 595	0.552	-0.010	0.018
Z22_Lag1	-0.007	0.	010	-0.753	0.452	-0.027	0.012
Omnibus:			76. 288	Durb:	======== n-Watson:		 0.670
Prob (Omnibus	s):		0.000	Jarqı	ie-Bera (JB):		759.179
Skew:			0.601	Prob	(JB):		1.40e-165
Kurtosis:			10.299	Cond.	No.		5.93

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: AR(1):

OLS Regression Results ______

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Leas	OLS t Squares Jun 2024 18:01:27 333 331 1 HAC	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		0. 444 0. 442 66. 37 7. 73e-15 656. 55 -1309. -1301.	
=======================================	coef	std err	Z	P> z	[0.025	0.975]
const Log_Return_Lag1			-0. 152 8. 147		-0. 004 0. 506	0. 003 0. 827
Omnibus: Prob(Omnibus): Skew: Kurtosis:		68. 206 0. 000 0. 214 11. 840	Durbin-Wats Jarque-Bera Prob(JB): Cond. No.		1086 1.01e	252 . 804 -236 22. 1

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2):

OLS Regression Results ______ Dep. Variable: Log_Return R-squared: Model: 0.461 OLS Adj. R-squared: 42.85 Method: Least Squares F-statistic: Mon, 03 Jun 2024 Prob (F-statistic): Date: 2.89e-17 18:01:27 Log-Likelihood: 660.24 332 AIC: -1314. No. Observations: 329 BIC: -1303.Df Residuals: Df Model: Covariance Type: HAC ______ P > |z|[0.025]0.975]coef std err const -0.00020.002 -0.109 0.913 -0.0040.003 Log_Return_Lag1 0.5389 0.098 5.493 0.000 _____

 Omnibus:
 79.052
 Durbin-Watson:
 2.004

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 1219.009

 Skew:
 0.465
 Prob(JB):
 1.97e-265

 Kurtosis:
 12.341
 Cond. No.
 38.3

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(1) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable:	Log_Ret	urn R-squ	ared:		0.464	
Model:	(OLS Adj.	R-squared:		0.459	
Method:	Least Squa	res F-sta	tistic:		46.91	
Date:	Mon, 03 Jun 2	024 Prob	(F-statistic	:):	2.90e-25	
Time:	18:01	:27 Log-L	ikelihood:		662.72	
No. Observations:		333 AIC:			-1317.	
Df Residuals:	:	329 BIC:			-1302.	
Df Model:		3				
Covariance Type:]	HAC				
=======================================	coef	std err	z	P> z	[0.025	0.975]
const	-0.0002	0.007	-0. 024	0.981	-0.014	0.014
Z5_Lag1	0.0010	0.008	0.120	0.905	-0.015	0.017
Log_Return_Lag1	0.5509	0.124	4.435	0.000	0.307	0.794
Log_Return_Lag1_Zero	5 0.6625	0.370	1.791	0.073	-0.062	1. 387
Omnibus:		======= 294 Durbi	n-Watson:		2. 214	
Prob(Omnibus):	0.	000 Jarqu	e-Bera (JB):		791.103	

0.565 Prob(JB):

10.466 Cond. No. ______

Skew:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

1.64e-172

Dep. Variable: Model:	- -		R-squared: Adj. R-squared:		0.448 0.443	
	Least Squar		atistic:		43.65	
Date:	Mon, 03 Jun 202	24 Prob	(F-statistic)	:	9.05e-24	
Time:	18:01:	27 Log-I	Likelihood:		657.81	
No. Observations:	33	33 AIC:			-1308.	
Df Residuals:	32	29 BIC:			-1292.	
Df Model:		3				
Covariance Type:	H	AC				
=======================================	coef	std err	Z	P> z	[0.025	0.975
const	0.0004	0.008	0.052	0.958	-0.016	0.01
Z22_Lag1	-0.0006	0.010	-0.059	0.953	-0.020	0.019
Log_Return_Lag1	0.5669	0.153	3.715	0.000	0.268	0.866
Log_Return_Lag1_Zero2					-0.244	0.857
Omnibus:	======================================		======= in-Watson:		2. 278	
Prob(Omnibus):	0.00	00 Jarqı	ie-Bera (JB):		957.605	
Skew:	0.33	39 Prob	(JB):		1.14e-208	
Kurtosis:	11. 28	80 Cond.	No.		135.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable:	Log_Ret	turn	R-squ	ared:		0.483	
Model:		OLS	Adj.	R-squared:		0.475	
Method:	Least Squa	ares	F-sta	tistic:		29.69	
Date:	Mon, 03 Jun 2	2024	Prob	(F-statistic):	7.72e-25	
Time:	18:01	1:27	Log-L	ikelihood:		666.05	
No. Observations:		332	AIC:			-1320.	
Df Residuals:		326	BIC:			-1297.	
Df Model:		5					
Covariance Type:		HAC					
	coef	st	====== d err	z	P> z	[0.025	0.975]
const	-7. 368e-05		0.007	-0.011	0.991	-0.013	0.013
Z5_Lag1	0.0009	(0.008	0.109	0.913	-0.015	0.016
Log_Return_Lag1	0.3833	(0.197	1.950	0.051	-0.002	0.769
Log_Return_Lag2	0.2670	(0.223	1.198	0.231	-0.170	0.704
Log_Return_Lag1_Zero5	0.7203	(0.415	1.736	0.083	-0.093	1.534
Log_Return_Lag2_Zero5	-0.1585		0.277	-0.573	0.567	-0.701	0.384
Omnibus:	94.	572	Durbi	 n-Watson:		1.970	
Prob(Omnibus):	0.	000	Jarqu	e-Bera (JB):		965.767	
Skew:	0.	847	Prob(1.93e-210	
Kurtosis:	11.	182	Cond.	-		192.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Monthly Zero Interaction:

Dep. Variable: Model: Method: Date: No. Observations: Df Residuals: Df Model:	Least Squar Ion, 03 Jun 20 18:01:	oLS Adj es F-s 124 Pro		c):	0. 472 0. 464 31. 91 1. 91e-26 662. 62 -1313. -1290.	
Covariance Type:	H	IAC				
	coef	std er	r z	P> z	[0.025	0.975
const	0.0003	0.00	9 0.030	0.976	-0.017	0.01
Z22_Lag1	-2.857e-05	0.01	1 -0.003	0.998	-0.021	0.02
Log_Return_Lag1	0.4130	0.20	2 2.046	0.041	0.017	0.809
Log_Return_Lag2	0.1794	0.16	9 1.064	0.287	-0.151	0.510
Log_Return_Lag1_Zero22	0.3672	0.33	9 1.084	0.278	-0.297	1.03
Log_Return_Lag2_Zero22	0.0781	0.29	6 0.264	0.792	-0.502	0.659
Omnibus:	86.3	70 Dur	bin-Watson:		2.018	
Prob(Omnibus):	0.0	000 Jar	que-Bera (JB)	:	1083.975	
Skew:	0.6	61 Pro	b(JB):		4.15e-236	
Kurtosis:	11.7	53 Con	d. No.		233.	

Notes: [1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Separate Weekly and Monthly Zero Interactions: OLS Regression Results

Model: Method:	Least Squar Mon, 03 Jun 20 18:01:	LS Adj. R es F-stat 24 Prob (27 Log-Li 32 AIC: 25 BIC:	-squared: istic:		0. 482 0. 472 26. 88 5. 56e-26 665. 74 -1317. -1291.	
			z			
const			0.068			
Z5_Lag1	0.0032	0.009	0.362	0.718	-0.014	0.021
Z22_Lag1	-0.0033	0.013	-0.259	0.795	-0.028	0.022
Log_Return_Lag1	0.4456	0.144	3.093	0.002	0.163	0.728
Log_Return_Lag2	0.1631	0.147	1.113	0.266	-0.124	0.450
Log_Return_Lag1_Zero5	0.5968	0.416	1.435	0.151	-0.218	1.412
Log_Return_Lag2_Zero2				0.886	-0.512	0.593
Omnibus:		 47 Durbin			1.982	
Prob(Omnibus):	0.0	00 Jarque	-Bera (JB):		946.813	
Skew:	0.7	62 Prob(J	B):		2.52e-206	
Kurtosis:	11.1	31 Cond.	No.		211.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

+	+ Adj R^2	AIC	+BIC		Rho_2	Ljung-Box Test Statistic	+ Ljung-Box P-value
Model with Only Constant	1.1102230246251565e-16	-1072.9949067216508	-1069. 2203551761063	0.6485785132468169	0.5326556440054085	295. 15763921355324	1.1111279373154317e-63
Model with Weekly Zero	-0.0024909154714884973	-1066. 8643895536563	-1059.3215073073964	0.6465267666177132	0.5308985745446347	292. 6986400399263	3.783768250056632e-63
Model with Monthly Zero	-0.001776650965297888	-1067.0931802800376	-1059.5502980337776	0.6479011354989274	0.5323797096947639	293. 89808110230047	2.081379342285421e-63
AR (1)	0.4188387831233582	-1241.8783715514755	-1234. 3354893052156	-0.125428185903783	0.07747961535798127	14. 154821894854246	0.0027018115793091355
AR (2)	0. 43892848337180257	-1247. 2675692410312	-1235. 96260625365	-0.015422930053294053	-0.034779787506850623	3. 305239746236195	0.3469140351821625
AR(1) with Weekly Zero Interaction	0.432410091283264	-1247. 482165984658	-1232. 396401492138	-0.11802157243230886	0.07510237002044547	11. 99037976299498	0.0074161881314606945
AR(1) with Monthly Zero Interaction	0. 41539348518678243	-1237. 9998804249653	-1222. 9141159324454	-0.12051640776192568	0.07904285025745658	13. 82845963979641	0.0031481955107964615
AR(2) with Weekly Zero Interaction	0. 44619190652084795	-1248. 4800303332695	-1225. 870104358507	-0.020981953443048807	-0.022541411224164705	2. 6736435186448326	0.4447248998754597
AR(2) with Monthly Zero Interaction	0.441039554381889	-1245. 5166746862674	-1222. 9067487115049	-0.033731545683699175	-0.05758742097668787	4. 6694945741200895	0.19766092418126427
AR(2) with Separate Weekly and Monthly Zero Interactions	0.44682382954652655	-1247.86610950278	-1221. 4878625322237	-0.022023988031967683	-0.03511626269765109	3. 1317283942301386	0.37175778240574625

Parameters for Model: Model with Only Constant:

	OLS Regres	sion Res	ults		
Dep. Variable:	Log_Return	R-squa	R-squared:		
Model:	OLS	Adj. R	-squared:		0.000
Method:	Least Squares	F-stat	istic:		nan
Date:	Mon, 03 Jun 2024	Prob (F-statistic):	nan
Time:	18:01:46	Log-Li	kelihood:		537.50
No. Observations:	322	AIC:			-1073.
Df Residuals:	321	BIC:			-1069.
Df Model:	0				
Covariance Type:	nonrobust				
coe	f std err	t	P> t	[0.025	0.975]
0 -0.000	8 0.003 -	0.318	0.750	-0.006	0.004
Omnibus:	72.298	 Durbin	 -Watson:		0.703
Prob(Omnibus):	0.000	Jarque [.]	-Bera (JB):		687.606
Skew:	0.589	Prob(J	Prob(JB):		
Kurtosis:	10.061	Cond.	No.		1.00

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Weekly Zero:

		OLS Reg	ression Res	sults		
Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	Mo ations: as:	Least Squar n, 03 Jun 20 18:01:	DLS Adj. 1 res F-sta 224 Prob 46 Log-L 221 AIC: 319 BIC:	R-squared: tistic:):	0.001 -0.002 0.2049 0.651 535.43 -1067.
========	coef	std err	t	P> t	[0.025	0.975]
	0. 0017 -0. 0037					
Omnibus: Prob(Omnibu Skew: Kurtosis:	ıs) :	0.0 0.5	559 Durbin 000 Jarquo 510 Prob(984 Cond.	e-Bera (JB): JB):		0. 707 666. 207 2. 16e-145 4. 75

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: Model with Monthly Zero: OLS Regression Results

			=======				
Dep. Variab	le:	Log_Retur	•			0.001	
Model:		OL	S Adj. R	-squared:		-0.002	
Method:		Least Square	s F-stat	istic:		0.4325	
Date:	Mc	on, 03 Jun 202	4 Prob (F-statistic	():	0.511	
Time:		18:01:4	6 Log-Li	Log-Likelihood:			
No. Observa	tions:	32	1 AIC:	AIC:			
Df Residual	s:	31	9 BIC:			-1060.	
Df Model:			1				
Covariance	Type:	nonrobus	t				
========	coef	std err	t	P> t	[0.025	0.975]	
const	0.0037	0.007	0. 507	0.613	-0.011	0.018	
Z22_Lag1	-0.0066	0.010	-0.658	0.511	-0.026	0.013	
Omnibus:		65. 54	9 Durbin	 -Watson:		0.704	
Prob(Omnibu	s):	0.00	0 Jarque	-Bera (JB):		652.238	
Skew:		0.46	6 Prob(J	B):		2.34e-142	
Kurtosis:		9.92	1 Cond.	No.		5.88	
	========				========		

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Parameters for Model: AR(1):

OLS Regression Results

Dep. Variable: Model: Method:		Log_Return OLS st Squares	R-squared: Adj. R-squa F-statistic		0. 421 0. 419 91. 99	
Date:		3 Jun 2024	Prob (F-sta	tistic):	2.62	2e-19
Time: No. Observations:		18:01:46 321	Log-Likelih AIC:	lood:	622. 94 -1242.	
Df Residuals: Df Model: Covariance Type:		319 1 HAC	BIC:		-1	234.
=======================================	coef	std err	 Z	P> z	[0. 025	0.975]
const Log Return Lag1			-0.156 9.591		-0. 004 0. 516	0.003 0.781
Omnibus: Prob(Omnibus): Skew: Kurtosis:		81. 877 0. 000 0. 800 9. 738	Durbin-Watson: Jarque-Bera (JB): Prob(JB): Cond. No.		2 641 5. 09e	2. 249 . 468

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Mod	e1: AR(2):						
		OLS Regress	sion Results				
Dep. Variable:	og_Return	R-squared:). 442		
Model:		OLS	Adj. R-squa	red:	C	. 439	
Method:	Leas	t Squares	F-statistic	::	5	3.35	
Date:	Mon, 03	Jun 2024	Prob (F-sta	ıtistic):	1.07	'e-20	
Time:		18:01:46	Log-Likelih	iood:	62	26.63	
No. Observations:		320	AIC:		-1	247.	
Df Residuals:		317	BIC:		-1236.		
Df Model:		2					
Covariance Type:		HAC					
	coef	std err	Z	P> z	[0.025	0.975]	
const	-0.0002	0.002	-0.109	0.913	-0.004	0.003	
Log_Return_Lag1	0.5224	0.077	6.792	0.000	0.372	0.673	
Log_Return_Lag2							
Omnibus:		95.002	======================================		2.030		
Prob(Omnibus):		0.000	Jarque-Bera (JB):		788. 916		
Skew:		0.963	Prob(JB):		4.89€	e-172	
Kurtosis:		10.447	Cond. No.		37.0		

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(1) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable: Model: Method: Date: Time:	Log_Retu C Least Squar Mon, 03 Jun 20 18:01:	OLS Adj. res F-sta O24 Prob	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0. 438 0. 432 37. 17 1. 31e-20 627. 74	
No. Observations:		321 AIC:	ikciinou.		-1247.	
Df Residuals:	3	B17 BIC:			-1232.	
Df Model:		3				
Covariance Type:	H	IAC				
	coef		Z	P> z	[0.025	0.975]
const	4.618e-05	0.007			-0.014	0.014
Z5_Lag1	0.0004	0.009	0.047	0.962	-0.017	0.017
Log_Return_Lag1	0.5515	0.098	5.619	0.000	0.359	0.744
Log_Return_Lag1_Zero5		0.358	1.673	0.094	-0.103	1.300
Omnibus:		=======)21 Durbi		=======	2.232	
Prob(Omnibus):	0.0	000 Jarqu	e-Bera (JB):		557.364	
C1	0.0	007 D 1/	TD)		0 00 100	

9.207 Cond. No. ______

0. 887 Prob(JB): 9. 33e-122

Skew:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

OLS Regression Results								
Dep. Variable:		urn R-			0.421			
Model:		OLS Ad	j. R-squared:		0.415			
Method:	Least Squa	res F-	statistic:		32.88			
Date:	Mon, 03 Jun 2	2024 Pr	ob (F-statist	ic):	1.57e-18			
Time:	18:01	:46 Lo	g-Likelihood:		623.00			
No. Observations:		321 AI	C:		-1238.			
Df Residuals:		317 BI	C:		-1223.			
Df Model:		3						
Covariance Type:		HAC						
=======================================	coef	std e	======================================	P> z	[0.025	0. 975]		
const	0.0005	0.0	0.055	0. 956	-0.016	0.017		
Z22 Lag1	-0.0012	0.0	10 -0.116	0.908	-0.021	0.018		
	0.6688	0.1	28 5. 236	0.000	0.418	0.919		
Log_Return_Lag1_Zero2	-0.0614	0.2	69 -0.228	0.820	-0.590	0.467		
	 79.	704 Du	======== rbin-Watson:	========	2. 239			
Prob(Omnibus):			rque-Bera (JB):	640. 105			
Skew:		761 Pr			1.01e-139			
Kurtosis:			nd. No.		131.			

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Weekly Zero Interaction: OLS Regression Results

Dep. Variable:	Log_Ret		R-squa	ared:		0.455	
Model:		0LS	Adj.	R-squared:		0.446	
Method:	Least Squa			tistic:		23.57	
Date:	Mon, 03 Jun 2			(F-statistic):	4.11e-20	
Time:	18:01	:46	Log-L	ikelihood:		630.24	
No. Observations:		320	AIC:			-1248.	
Df Residuals:		314	BIC:			-1226.	
Df Model:		5					
Covariance Type:		HAC					
	coef	st	====== d err	Z	P> z	[0.025	0.975]
const	-0.0002		0.007	-0 . 027	0.979	-0.014	0.014
Z5_Lag1	0.0008		0.008	0.092	0.927	-0.015	0.017
Log_Return_Lag1	0.4724	(0.122	3.868	0.000	0.233	0.712
Log_Return_Lag2	0.1412		0.176	0.801	0.423	-0.204	0.487
Log_Return_Lag1_Zero5	0.4751		0.346	1.373	0.170	-0.203	1.153
Log_Return_Lag2_Zero5	0.0586		0.225	0.261	0.794	-0.382	0.499
Omnibus:	96 .	832	Durbi	 n-Watson:		2.040	
Prob(Omnibus):	0.	000	Jarqu	e-Bera (JB):		691.602	
Skew:	1.	039	Prob(JB):		6.62e-151	
Kurtosis:	9.	896	Cond.			169.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Monthly Zero Interaction: OLS Regression Results

=======================================		====					
Dep. Variable:	Log_Ret	urn	R-squa	red:		0.450	
Model:		OLS		R-squared:		0.441	
Method:	Least Squa	res	F-stat	istic:		25. 24	
Date:	Mon, 03 Jun 2	024	Prob ((F-statistic):		2.18e-21	
Time:	18:01	:46	Log-Li	kelihood:		628.76	
No. Observations:		320	AIC:			-1246.	
Df Residuals:		314	BIC:			-1223.	
Df Model:		5					
Covariance Type:		HAC					
				Z			0.975]
				0.084			0.018
Z22_Lag1	-0.0009		0.010	-0.087	0.931	-0.021	0.020
Log_Return_Lag1	0.6231		0.182	3.433	0.001	0.267	0.979
Log_Return_Lag2	-0.0047		0.162	-0.029	0.977	-0.323	0.313
Log_Return_Lag1_Zero2	22 -0.1798		0.309	-0.582	0.560	-0.785	0.425
Log_Return_Lag2_Zero2							1.037
Omnibus:				======= -Watson:		2.066	
Prob(Omnibus):	0.	000	Jarque	e-Bera (JB):		768.471	
Skew:	0.	862	Prob(J			1.35e-167	
Kurtosis:		394	Cond.			218.	

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Parameters for Model: AR(2) with Separate Weekly and Monthly Zero Interactions: OLS Regression Results

	Log_Retur OI Least Square Mon, 03 Jun 202 18:01:4 32	Adj. R F-stat Prob (Log-Li AIC: BIC:	-squared:		0. 457 0. 447 22. 41 5. 90e-22 630. 93 -1248. -1221.	
			Z			0.975]
const	0.0009		0.098			0.019
Z5_Lag1	0.0027	0.010	0.274	0.784	-0.016	0.022
Z22_Lag1	-0.0033	0.013	-0.252	0.801	-0.029	0.022
Log_Return_Lag1	0.4799	0.101	4.762	0.000	0.282	0.677
Log_Return_Lag2	0.0802	0.135	0.594	0.553	-0.184	0.345
Log_Return_Lag1_Zero5	0.4399	0.367	1.199	0.230	-0.279	1.159
Log_Return_Lag2_Zero2				0.274	-0.200	0.705
Omnibus:	94.87		 -Watson:		2.042	
Prob(Omnibus):	0.00	00 Jarque	-Bera (JB):		684.064	
Skew:	1.00	9 Prob(J	B):		2.87e-149	
Kurtosis:	9.87	2 Cond.	No.		184.	

Not like Fridays, the mix model AR(2) with Separate Weekly and Monthly Zero Interactions shows high enough Ljung-Box p-values (0.757, 0.940, 0.996, 0.372) based on these four dataframes, supports there not exist serial correlations of residuals.

P11: Plot rolling average of SQUARED residuals of the best model (Use fridays_models as the example)

```
In [83]: def plot_rolling_average_of_squared_residuals(model_results):
             Plots the rolling average of squared residuals for a given model.
              - model_results (RegressionResultsWrapper): The fitted model result.
             - A plot showing the rolling average of squared residuals. """ \left( \frac{1}{2} \right)^{2}
             residuals = model_results.resid
             squared_residuals = residuals ** 2
             rolling_average = squared_residuals.rolling(window=26).mean()
             plt.figure(figsize=(12, 8))
             rolling_average.plot(title='Rolling Average of Squared Residuals of the best model')
             plt. xlabel('Date (weekly time series)')
             plt.ylabel('Rolling Average of Squared Residuals')
             plt. grid(True)
             plt.show()
In [84]: plot_rolling_average_of_squared_residuals(model_results=fridays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'])
```

^[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

The rolling average follows a totally increasing trend, this indicates a rising volatility, but there also exists a sharp decreasing near the end of year 2023.

Robustness work for P11

In [85]: # Thursdays plot_rolling_average_of_squared_residuals(model_results=thursdays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'])

In [86]: # Wednesdays plot_rolling_average_of_squared_residuals(model_results=wednesdays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'])

In [87]: # Tuesdays plot_rolling_average_of_squared_residuals(model_results=tuesdays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'])

In [88]: # Mondays plot_rolling_average_of_squared_residuals(model_results=mondays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'])

P12: Perform Out-of-Sample Forecasting and Compute RMSE (Use Fridays as an example)

```
In [107... def prepare_input_data(df):
              Prepares input data for out-of-sample predictions by creating necessary lagged
              variables and interactions based on the specified models. The function safely
              operates on a copy of the input DataFrame to avoid modifying the original data.
               - df: Original DataFrame containing the columns ['Log_Return',
                   'Zero_Fraction_5', 'Zero_Fraction_22'].
              Returns:
                - input_data: A new DataFrame with original and derived columns
                       necessary for making predictions with all ten models.
              data = df.copy()
              input_data = pd. DataFrame(index=data.index)
              input_data['Log_Return'] = data['Log_Return']
              input_data['Zero_Fraction_5'] = data['Zero_Fraction_5']
              input_data['Zero_Fraction_22'] = data['Zero_Fraction_22']
              # Create lagged features for Log_Return
              input data['Log Return Lag1'] = input data['Log Return']. shift(1)
              input_data['Log_Return_Lag2'] = input_data['Log_Return']. shift(2)
              input data['Z5 Lag1'] = input data['Zero Fraction 5']. shift(1)
              input_data['Z22_Lag1'] = input_data['Zero_Fraction_22']. shift(1)
              # Create interactions for lagged Log_Return with Zero_Fractions
              input_data['Log_Return_Lag1_Zero5'] = input_data['Log_Return_Lag1'] * input_data['Z5_Lag1']
              input_data['Log_Return_Lag1_Zero22'] = input_data['Log_Return_Lag1'] * input_data['Z22_Lag1']
              input_data['Log_Return_Lag2_Zero5'] = input_data['Log_Return_Lag2'] * input_data['Z5_Lag1']
              input_data['Log_Return_Lag2_Zero22'] = input_data['Log_Return_Lag2'] * input_data['Z22_Lag1']
              input data. dropna(inplace=True)
              # Add constant term for regression
              input_data = sm. add_constant(input_data)
              return input data
In [108... def calculate_rmse(errors):
              Calculate the root mean squared error for a list of errors.
              mse = np. mean([e**2 for e in errors])
              return np. sqrt(mse)
In [109... def forecast_and_compute_RMSE(df, lags, df_name):
              Performs out-of-sample forecasting using a list of predefined
              models on an expanding window basis. Starting with the first
              52 observations, this function forecasts the 53rd observation
              and continues expanding the sample one observation at a time,
              re-estimating models and forecasting the next observation.
              The forecast errors are calculated for each model and used to
              compute the Root Mean Squared Error (RMSE) for each model's
              predictions. The results are then ranked by RMSE and saved to
              a csv file.
              Parameters:
              - df: A DataFrame containing the time series data, specifically
                  a column 'Log_Return' which is used for the forecasting.
               - lags: Maximum number of lags to use for HAC standard errors.
               - df_name: A string that specifies the name of the DataFrame,
                    used to name the output CSV file.
               - rmse_df: a DataFrame containing the model names and their
                      corresponding RMSE, sorted by RMSE.
               - Prints a sorted table of the RMSE results for each model.
               - Saves a CSV file named '{df_name}_forecast_rmse_results.csv'
                containing the RMSE results for each model based on input
              dataframe.
              data = df.copy()
              perpared_data = prepare_input_data(data)
              forecast_errors = {name: [] for name, _ in models}
              # Start forecasting from the 53rd observation, using the first 52 observations initially
              for i in range(52, len(perpared_data)):
                  current_sample = perpared_data[['Log_Return', 'Zero_Fraction_5',
                                                                                         'Zero_Fraction_22']].iloc[:i]
                  for name, model_func in models:
                      if name == 'Model with Only Constant': # Special case for constant model
                          forecast = current_sample['Log_Return']. mean()
                      else:
                          features = model features[name]
                          model = model func(current_sample, lags)
                          input_data = perpared_data.iloc[i][features]
                          forecast = model.predict(input data)
                      # Actual return for the next time point (i)
                      actual_return = perpared_data['Log_Return'].iloc[i]
                       forecast_error = actual_return - forecast
                      forecast_errors[name]. append(forecast_error)
              # Compute RMSE for each model
              rmses = {name: calculate_rmse(errors) for name, errors in forecast_errors.items()}
              rmse df = pd. DataFrame(list(rmses.items()), columns=['Model', 'RMSE'])
              rmse_df. sort_values(by='RMSE', inplace=True)
              # Print the RMSE table
              print(tabulate(rmse_df, headers='keys', tablefmt='pretty', showindex=False))
              # Save the RMSE results to CSV
              # files.download is just for google colab, if u use other environments, plz change
              csv_filename = f' {df_name}_forecast_rmse_results.csv'
              rmse_df. to_csv(csv_filename, index=True, header=True)
              files. download(csv_filename)
              return rmse_df
```

The model **AR(2)** wins in RMSE criteria with lowest RMSE. This mix model has acceptably low RMSE (very close to the winner), which signifies high accuracy in predictive performance. It means that the mix model's predictions are, on average, close to the actual observed weekly log return.

Robustness work for P12

AR(2) with Separate Weekly and Monthly Zero Interactions | 0.03428830145726344

0.03319323376216553

0.03347683497575105

0.03405335419043286

0.03424400124657069

0.047601851591042715

0.048056696113039886

0.04812928878062246

0. 034065014359989744 0. 03411353705615823

In [110... fridays_rmse = forecast_and_compute_RMSE(df=Fridays, lags=4, df_name='Fridays')

Mode1

AR(2)

AR(1)

AR(2) with Weekly Zero Interaction

AR(1) with Weekly Zero Interaction

AR(1) with Monthly Zero Interaction AR(2) with Monthly Zero Interaction

Model with Only Constant

Model with Weekly Zero

Model with Monthly Zero

${\tt Model}$	RMSE
AR (1)	 0.031228836428829586
AR (2)	0.03131017690997134
AR(2) with Weekly Zero Interaction	0.03131377832533065
AR(1) with Weekly Zero Interaction	0.031661200730862635
AR(1) with Monthly Zero Interaction	0.03195213191312714
AR(2) with Monthly Zero Interaction	0.03205756605217784
AR(2) with Separate Weekly and Monthly Zero Interactions	0.03208375760971013
Model with Only Constant	0.04684102151231067
Model with Weekly Zero	0.04728509441637568
Model with Monthly Zero	0.04735288128098435

In [112... # Wednesdays

wednesdays_rmse = forecast_and_compute_RMSE(df=Wednesdays, lags=2, df_name='Wednesdays')

Mode1	RMSE
AR (1)	0. 0344754974330957
AR (2)	0.034532832194297196
AR(1) with Weekly Zero Interaction	0.03495969979970849
AR(1) with Monthly Zero Interaction	0.03531270390755053
AR(2) with Weekly Zero Interaction	0.035383770340930286
AR(2) with Monthly Zero Interaction	0.03584111892682286
AR(2) with Separate Weekly and Monthly Zero Interactions	0.03587648812686814
Model with Only Constant	0.047647999920785465
Model with Monthly Zero	0.048032922633657125
Model with Weekly Zero	0.04804314037456729
model with weekly Zelo	+

In [113... # Tuesdays

tuesdays_rmse = forecast_and_compute_RMSE(df=Tuesdays, lags=2, df_name='Tuesdays')

	<u> </u>
Model	RMSE
AR(2) AR(1) AR(1) with Weekly Zero Interaction AR(2) with Weekly Zero Interaction	0. 0363193179205231 0. 03668898286049331 0. 03706180633461377 0. 03721136921820577
AR(2) with Separate Weekly and Monthly Zero Interactions AR(1) with Monthly Zero Interaction	0. 037419351322153495 0. 03750723478198474
AR(2) with Monthly Zero Interaction Model with Only Constant	0. 03768697952584409 0. 048320938820529416
Model with Weekly Zero Model with Monthly Zero	0. 04879089668801973 0. 04882150180841967

In [114... # Mondays

mondays_rmse = forecast_and_compute_RMSE(df=Mondays, lags=2, df_name='Mondays')

+	
Model	RMSE
AR (2) AR (1)	0. 03668184362733399 0. 037050763630292645
AR(1)	0. 037030703030292045
AR(2) with Weekly Zero Interaction	0. 03754236275505407
AR(2) with Separate Weekly and Monthly Zero Interactions	0. 03761768044852644
AR(2) with Monthly Zero Interaction	0.03776959641579725
AR(1) with Monthly Zero Interaction	0.0379527480142736
Model with Only Constant	0.04851899399219849
Model with Monthly Zero	0.04911067061442834
Model with Weekly Zero	0.049170200104615945

The winners in RMSE criteria across different dataframes are AR(2) or AR(1) models, but the mix model also has acceptably low RMSE, which is very close to these two winners.

Source of the weirdly lowh Ljung Box p-values for the Fridays series

In [115... model_test = fridays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'] residuals = model_test.resid ljung_box_results = acorr_ljungbox(residuals, lags=[3], return_df=True) print("Ljung-Box test results for the first three lags:") print(ljung_box_results) Ljung-Box test results for the first three lags: lb_stat lb_pvalue 3 20.599384 0.000127

large 'lb_stat' and low 'lb_pvalue'

Compute the autocorrelations of the residuals at the first three lags

In [116... # Fridays model_test = fridays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'] residuals = model_test.resid autocorrs = acf(residuals, nlags=3, fft=True) print("Autocorrelations at the first three lags:", autocorrs[1:])

print("Fridays' third autocorrelation:", autocorrs[3]) Autocorrelations at the first three lags: [-0.03643096 -0.08550913 0.2336051]

In [117... # Mondays model_test = mondays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'] residuals = model_test.resid autocorrs = acf(residuals, nlags=3, fft=True) print("Autocorrelations at the first three lags:", autocorrs[1:])

print("Mondays' third autocorrelation:", autocorrs[3])

Fridays' third autocorrelation: 0.23360509797963613

Autocorrelations at the first three lags: [-0.02202399 -0.03511626 0.08901346] Mondays' third autocorrelation: 0.08901345731509394

In [118... # Tuesdays

model_test = tuesdays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'] residuals = model_test.resid autocorrs = acf(residuals, nlags=3, fft=True) print("Autocorrelations at the first three lags:", autocorrs[1:]) print("Tuesdays' third autocorrelation:", autocorrs[3])

Autocorrelations at the first three lags: [0.00817138 0.0021737 -0.01097647] Tuesdays' third autocorrelation: -0.010976472633772105

In [119... # Wednesdays

model_test = wednesdays_models['AR(2) with Separate Weekly and Monthly Zero Interactions'] residuals = model_test.resid autocorrs = acf(residuals, nlags=3, fft=True) print("Autocorrelations at the first three lags:", autocorrs[1:])

Autocorrelations at the first three lags: [-0.01120693 -0.02472329 -0.02155822] Wednesdays' third autocorrelation: -0.02155821724733596

- df: The input DataFrame containing the data. It must include the following columns: 'Log_Return',

print("Wednesdays' third autocorrelation:", autocorrs[3])

In [120... # Thursdays

model test = thursdays models['AR(2) with Separate Weekly and Monthly Zero Interactions'] residuals = model test.resid autocorrs = acf(residuals, nlags=3, fft=True) print("Autocorrelations at the first three lags:", autocorrs[1:]) print("Thursdays' third autocorrelation:", autocorrs[3])

Autocorrelations at the first three lags: [-0.01760913 -0.04974084 0.02741009] Thursdays' third autocorrelation: 0.027410086612236765

Comparing Fridays and other four data, it is obivous that the reason for the Ljung-Box test rejecting the null hypothesis of no autocorrelation (0.234) than other four data (0.089, -0.011, -0.022, 0.027), where first two autocorrelations have no significant difference between these five data.

P13: Forecast Graph

def generate_forecast_plot(df, lags, df_name): Generates a plot showing the actual observed returns and the out-of-sample forecasted returns for the given DataFrame using the AR(2) model with separate interactions for zero fractions

Parameters:

'Zero_Fraction_5', and 'Zero_Fraction_22'. - lags: Maximum number of lags to use for HAC standard errors. - df_name: A string that specifies the name of the DataFrame, used to name the plot titles. Returns: - forecasted_series: A series of out-of-sample forecast results - Plot Actual vs Forecasted Weekly Log Return data = df.copy()

perpared_data = prepare_input_data(data) forecasted_returns = [] for i in range(52, len(perpared data)): train_data = perpared_data[['Log_Return', 'Zero_Fraction_5', 'Zero_Fraction_22']].iloc[:i] features = model_features['AR(2) with Separate Weekly and Monthly Zero Interactions'] model = estimate_model_ar2_z5_z22_separate_interaction(train_data, lags) input_data = perpared_data.iloc[i][features]

forecast = model.predict(input data) forecasted_returns. append(forecast[0]) # Adjust the index for forecasted returns forecasted_index = perpared_data.index[52:] forecasted_series = pd. Series(forecasted_returns, index=forecasted_index)

marker_positions = forecasted_index[::12] # Plot the actual vs forecasted returns

```
plt. figure(figsize=(20, 10))
plt. plot (perpared_data. index, perpared_data['Log_Return'], label='Actual Lithium Return', color='blue', linewidth=1.3)
plt. plot (marker positions, perpared data. loc[marker positions, 'Log Return'], 'bo', markersize=5)
plt. plot (marker_positions, forecasted_series, label='Out-of-sample Forecasted Return', color='red', linewidth=1.5)
plt. plot (marker_positions, forecasted_series. loc[marker_positions], 'r'', markersize=7)
plt. axhline(0, color='k', linestyle='--', linewidth=0.8)
plt. ylabel('Weekly Date', fontsize=12)
plt. ylabel('Weekly Log Returns', fontsize=12)
plt. title(f'Actual vs Forecasted Weekly Log Return for (df_name)', fontsize=16)
plt. legend(loc='upper left', fontsize=12)
plt. grid(True, linestyle='--', alpha=0.7)
plt. show()
return forecasted_series
```

In [122... fridays_forecast = generate_forecast_plot(Fridays, lags=4, df_name='Fridays')

In [123... thursdays_forecast = generate_forecast_plot(Thursdays, lags=2, df_name='Thursdays')

In [124... wednesdays_forecast = generate_forecast_plot(Wednesdays, lags=2, df_name='Wednesdays')

To the control of the

New P14: Unbiasedness test of the forecasts

```
In [128... def ex_post_regression(df, forecasted_return, lags):
              Perform an ex-post regression to test the unbiasedness of forecasts.
              - df (Dataframe): A dataframe contains actual returns r(t).
              - forecasted_return (pd. Series): A series of forecasted returns r^(t).
               - lags: Maximum number of lags to use for HAC standard errors.
              - Print a formatted table containing the coefficient, t-statistic, and p-value for the forecasted returns coefficient.
              data = df.copy()
              prepared_data = prepare_input_data(data)
              # Let the index of actual return series match that of forecasted return series
              actual_return = prepared_data['Log_Return'].iloc[52:]
              X = sm. add_constant(forecasted_return)
              model = sm. OLS(actual_return, X).fit(cov_type='HAC', cov_kwds={'maxlags': lags})
              print(model.summary())
              b_coefficient = model.params[0]
              t_statistic = model.tvalues[0]
              p_value = model.pvalues[0]
              results = {
                  'b coefficient': b_coefficient,
                  't-statistic': t_statistic,
                   'p-value': p_value
              table = tabulate(results.items(), headers=['Metric', 'Value'], tablefmt='pretty', showindex=False)
              print(table)
```

In [129... ex_post_regression(df=Fridays, forecasted_return=fridays_forecast, lags=4)

			OLS Re	egress	ion R	esults		
Dep. Var	iable:		Log_Re	 turn	R-sq	 uared:		0.492
Model:				OLS	Adj.	R-squared:		0.490
Method:		L	east Squa	ares	F-st	atistic:		122.2
		Mon,	03 Jun 2	2024	Prob	(F-statistic):		1.21e-23
					Log-	Likelihood:		529.42
No. Obse	rvations:			269	AIC:			-1055.
Df Resid	uals:			267	BIC:			-1048.
Df Model	:			1				
Covarian	ce Type:			HAC				
	со	===== ef	std err		z	P> z	[0.025	0.975]
const	-2.977e-	 05	0.002	-0.	012	0.990	-0.005	0.005
0	0.85	35 	0.077	11.	056	0.000	0.702	1.005
Omnibus:			54 .	471	Durb	in-Watson:		1. 791
Prob (Omn	ibus):		0.	000	Jarq	ue-Bera (JB):		372.352
Skew:			0.	570	Prob	(JB):		1.40e-81
Kurtosis	:		8.	650	Cond	. No.		25.6

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 4 lags and without small sample correction

Metric	Value	
b coefficient	0.8535421296638047	+
t-statistic	11. 055664492292182	
p-value	2.0580710313524815e-28	

Based on the regression analysis, the coefficient of the forecasted returns (b) is 0.854, which is significantly different from 1. The high t-statistic (11.056) and the extremely low p-value (2.06e-28) provide strong statistical evidence that the coefficient b is not equal to 1. Therefore, we reject the null hypothesis that the forecasted returns are unbiased predictors of the actual returns.

Given that the b coefficient is less than 1, this indicates that the forecasted returns systematically overestimate the actual returns. This overestimate the predictive model tends to predict higher returns than what is observed in reality. As a result, the forecasts are not unbiased and exhibit a systematic bias.

OLS Regression Results ______ Dep. Variable: Log_Return R-squared: 0.538 Model: OLS Adj. R-squared: Method: Least Squares F-statistic: 115.7 Mon, 03 Jun 2024 Prob (F-statistic): 9.28e-23 Date: 18:52:59 Log-Likelihood: 565.19 Time: 278 AIC: No. Observations: -1126.Df Residuals: 276 BIC: -1119.Df Model: HAC Covariance Type: _______ $z \qquad P > |z|$ [0.025]0.975coef std err 0.004 -0.00050.002 -0.2190.827 -0.005const 0.081 0.000 0.8721 10.754 0.713 1.031 ______ Omnibus: 32.854 Durbin-Watson: 1.638 Prob(Omnibus): 0.000 Jarque-Bera (JB): 194.346 0.064 Prob(JB): Skew: 6.29e-43 7.094 Cond. No. 25.4 Kurtosis: ______

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Metric	Value	
b coefficient t-statistic p-value	0.8720799141555767 10.754105458742975 5.668129349478561e-27	

Similar results as Friday to Friday

In [131... ex_post_regression(df=Wednesdays, forecasted_return=wednesdays_forecast, lags=2)

OLS Regression Results ______ Dep. Variable: Log_Return R-squared: 0.449 Model: OLS Adj. R-squared: 0.447Method: Least Squares F-statistic: 74.51 Date: Mon, 03 Jun 2024 Prob (F-statistic): 4.88e-16 18:53:02 Log-Likelihood: 535.45 Time: 278 AIC: -1067.No. Observations: 276 BIC: -1060.Df Residuals: Df Model: HAC Covariance Type: ______ $z \qquad P > |z|$ [0.025]0.975coef std err 0.002 -0.0940.925 0.004 const 0.096 8.632 0.000 ______ Omnibus: 51.396 Durbin-Watson: 1.655 Prob(Omnibus): 0.000 Jarque-Bera (JB): 529.231 Skew: 0.282 Prob(JB): 1.20e-115 Kurtosis: 9.736 Cond. No. 26.0 ______

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Metric	Value
b coefficient t-statistic p-value	0.8279232315944781 8.631861350275683 6.0361526891087934e-18

Similar results as Friday to Friday

In [132... ex_post_regression(df=Tuesdays, forecasted_return=tuesdays_forecast, lags=2)

OLS Regression Results Dep. Variable: Log Return R-squared: Model: OLS Adj. R-squared: 0.419 Method: Least Squares F-statistic: 55.40 Mon, 03 Jun 2024 Prob (F-statistic): Date: 1.23e-12 18:53:26 Log-Likelihood: Time: 528.36 280 AIC: -1053.No. Observations: 278 BIC: -1045.Df Residuals: Df Model: HAC Covariance Type: ______ coef std err const -0.00020.002 -0.092-0.0050.004 0.8071 0.108 7.443 0.000 0.595 1.020 _______ Omnibus: 63.265 Durbin-Watson: 1.719 Prob(Omnibus): 0.000 Jarque-Bera (JB): 802.598 0.436 Prob(JB): 5.22e-175 Skew: Kurtosis: 11.248 Cond. No. 25.8

Notes:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Metric		Value	
b coefficient t-statistic p-value		0.8070958437789344 7.4432265528796675 9.82553673773781e-14	-+

Similar results as Friday to Friday

In [133... ex_post_regression(df=Mondays, forecasted_return=mondays_forecast, lags=2)

OLS Regression Results ______ Dep. Variable: Log Return R-squared: 0.410 Model: OLS Adj. R-squared: 0.408 Method: Least Squares F-statistic: 73.91 Mon, 03 Jun 2024 Prob (F-statistic): 7.13e-16 Date: 18:53:29 Log-Likelihood: 502.45 Time: 268 AIC: No. Observations: -1001.Df Residuals: 266 BIC: -993.7Df Model: HAC Covariance Type: ______ $z \qquad P > |z|$ [0.025]0.975]coef std err -0.00020.002 -0.083 0.934 -0.0050.005 0.8348 0.097 8.597 0.000 ______ 66.174 Durbin-Watson: Omnibus: Prob(Omnibus): 0.000 Jarque-Bera (JB): 481.188 Skew: 0.750 Prob(JB): 3.25e-105 9.391 Cond. No.

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 2 lags and without small sample correction

Metric	Value
b coefficient t-statistic p-value +	0.8347515603741322 8.596850736326246 8.193344205106168e-18 +

Similar results as Friday to Friday

New P15: Three MSE Statistics

```
In [142... # Define the critical values from McCracken's Table 4 for pi = 2.0
           mccracken_critical_values = {
             1: {0.01: 3.951, 0.05: 1.518, 0.10: 0.616},
              2: {0.01: 4.250, 0.05: 1.706, 0.10: 0.506},
              3: \{0.01: 4.184, 0.05: 1.612, 0.10: 0.127\},
              4: \{0.01: 4.096, 0.05: 1.029, 0.10: -0.456\},
              5: \{0.01: 3.783, 0.05: 0.459, 0.10: -1.072\},
              6: \{0.01: 3.321, 0.05: -0.109, 0.10: -1.664\},
```

```
In [182... def calculate_statistics(RMSE_df, forecast_series, df_name):
```

Calculate McCracken statistics

df['McCracken Stat'] = T * (mse_mean - df['MSE']) / df['MSE']

```
Calculate the R<sup>2</sup>, Adjusted R<sup>2</sup>, and McCracken statistics for the given RMSE values of different models.
Parameters:
- RMSE_df (pd.DataFrame): A DataFrame containing model names and their corresponding RMSE values.
- forecast_series (pd. Series): A series containing the forecasted return values.
- df_name: A string that specifies the name of the DataFrame, used to name the output CSV file.
- result_df (pd. DataFrame): A DataFrame containing the R<sup>2</sup>, Adjusted R<sup>2</sup>, and McCracken statistics for each model.
Print result_df
- Store the result_df to a CSV file
df = RMSE_df.copy()
df['MSE'] = df['RMSE'] ** 2
mse mean = df.loc[df['Model'] == 'Model with Only Constant', 'MSE'].values[0]
# Calculate R<sup>2</sup> values
df['R^2'] = 1 - (df['MSE'] / mse_mean)
# Calculate Adjusted R<sup>2</sup> values
T = len(forecast_series)
df['k'] = df['Model'].apply(lambda x: len(model_features.get(x, ['const'])))
df['Adj R^2'] = 1 - (1 - df['R^2']) * ((T - df['k']) / (T - 1))
```

```
### dif['k2'] = dif['k'] - 1

### Determine significance using critical values

df' Significance 18'] = df. apply(lambda row: row]'McCracken Stat'] > mccracken_critical_values|row]'k2'|[|0.01|| if row]'k2'] in mccracken_critical_values else False, axis=1)

df' Significance 58'] = df. apply(lambda row: row]'McCracken Stat'] > mccracken_critical_values|row]'k2'|[|0.05|| if row]'k2'] in mccracken_critical_values else False, axis=1)

df' Significance 58'] = df' Significance 18']. apply(lambda x: 'significant' if x else 'not significant')

df' Significance 58'] = df' Significance 58']. apply(lambda x: 'significant' if x else 'not significant')

df' Significance 58'] = df' Significance 58']. apply(lambda x: 'significant' if x else 'not significant')

#### Solvet only the required volumes

result df = df[['Model', 'R'2', 'McCracken Stat', 'Significance 58', 'Sign
```

In [184... fridays_mse_statistics = calculate_statistics(fridays_rmse, fridays_forecast, df_name='Fridays')

+	+	 	 	+	+	
Mode1	R^2	Adj R^2	McCracken Stat	Significance 1%	Significance 5%	Significance 10%
AR (2)	0.5137591556318142	0.5173878186494872	284. 22378429466283	significant	significant	significant
AR (1)	0.5054148290003098	0.5072602960562788	274. 8901442521585	significant	significant	significant
AR(2) with Weekly Zero Interaction	0.48823321093949523	0. 4977810987951017	256. 6300442899527	significant	significant	significant
AR(1) with Weekly Zero Interaction	0.4878826839913033	0. 49361534051378875	256. 27026833717116	significant	significant	significant
AR(1) with Monthly Zero Interaction	0.4864227103935349	0.492171709904055	254.77705448409642	significant	significant	significant
AR(2) with Monthly Zero Interaction	0. 4824869373569941	0. 49214203180928895	250. 7936427462958	significant	significant	significant
AR(2) with Separate Weekly and Monthly Zero Interactions	0.4811470958607106	0. 49276320565487375	249. 4513719668517	significant	significant	significant
Model with Only Constant	0.0	0.0	0.0	not significant	not significant	not significant
Model with Weekly Zero	-0.019201672565752448	-0.015398681250208712	-5.06793705232482	not significant	not significant	not significant
Model with Monthly Zero	-0.02228313487554745	-0.018468645566310338	-5.8635059867753725	not significant	not significant	not significant

In [185... thursdays_mse_statistics = calculate_statistics(thursdays_rmse, thursdays_forecast, df_name='Thursdays')

Mode1	 R^2	 Adj R^2	McCracken Stat	Significance 1%	Significance 5%	Significance 10%
AR (1) AR (2)	0.555513177047838 0.5531946880093286	0.5571178226180624 0.5564207191428352	347. 4403632341645 344. 1949304080883	significant significant	significant	significant
AR(2) with Weekly Zero Interaction	0. 553091895612974	0.5611588289051586	344. 0518206562881	significant	significant significant	significant significant
AR(1) with Weekly Zero Interaction AR(1) with Monthly Zero Interaction	0.5431201052564556 0.5346850932516728	0. 5480682629612593 0. 5397246048771059	330. 4750132330659 319. 4448614653143	significant significant	significant significant	significant significant
AR(2) with Monthly Zero Interaction AR(2) with Separate Weekly and Monthly Zero Interactions	0.5316091783312928 0.5308434996977309	0. 5400638863036522 0. 5410057343613179	315. 52145076111117 314. 55280449250864	significant significant	significant significant	significant significant
Model with Only Constant Model with Weekly Zero	0.0 -0.01905073331557028	0.0 -0.015371849801795623	0.0 -5.197095383560765	not significant not significant		not significant not significant
Model with Monthly Zero	-0. 02197460475834956	-0. 018285165752001564	-5. 977585053853333		-	not significant

In [186... wednesdays_mse_statistics = calculate_statistics(wednesdays_rmse, wednesdays_forecast, df_name='Wednesdays')

Mode1	R^2	Adj R^2	McCracken Stat	Significance 1%	Significance 5%	Significance 10%
AR (1)	0.47648186367937473	0. 47837182085020735	253. 02267278423517	significant	significant	significant
AR (2)	0.4747391334176516	0. 47853163064929316	251. 26082578515528	significant	significant	significant
AR(1) with Weekly Zero Interaction	0.4616731536053529	0. 4675034082594466	238. 41489155121633	significant	significant	significant
AR(1) with Monthly Zero Interaction	0.45074680084813157	0. 45669539145266447	228. 1417947665573	significant	significant	significant
AR(2) with Weekly Zero Interaction	0.44853384410589636	0.45848810684766717	226. 11071836180543	significant	significant	significant
AR(2) with Monthly Zero Interaction	0.43418589681330866	0. 4443991477733572	213. 32744912912398	significant	significant	significant
AR(2) with Separate Weekly and Monthly Zero Interactions	0.43306861770772254	0.4453487198512376	212. 35916635265582	significant	significant	significant
Model with Only Constant	0.0	0.0	0.0	not significant	not significant	not significant
Model with Monthly Zero	-0.016222192154939696	-0.012553519981095107	-4. 437778916744636	not significant	not significant	not significant
Model with Weekly Zero	-0.016654587225026773	-0.01298435405814935	-4. 5541281244744285	not significant	not significant	not significant

In [187... tuesdays_mse_statistics = calculate_statistics(tuesdays_rmse, tuesdays_forecast, df_name='Tuesdays')

Model	R^2	 Adj R^2	+ McCracken Stat	Significance 1%	Significance 5%	Significance 10%
AR (2)	0. 435056988582293	0. 4391067592734593	215. 62521235079745	significant	significant	significant
AR (1)	0. 42349826770477994	0.42556458215745097	205. 68804621841997	significant	significant	significant
AR(1) with Weekly Zero Interaction	0.4117222298251434	0.4180477972463784	195. 96563085627776	significant	significant	significant
AR(2) with Weekly Zero Interaction	0.4069646608288342	0. 417592534290683	192. 14724234028245	significant	significant	significant
AR(2) with Separate Weekly and Monthly Zero Interactions	0.4003169384413602	0.41321334836735246	186. 91330462503035	significant	significant	significant
AR(1) with Monthly Zero Interaction	0.39749678743025463	0.4039753165976713	184.72781249707842	significant	significant	significant
AR(2) with Monthly Zero Interaction	0.3917082359738825	0.4026095220675405	180. 30542670306144	significant	significant	significant
Model with Only Constant	0.0	0.0	0.0	not significant	not significant	not significant
Model with Weekly Zero	-0.019546110973747144	-0.01589182383764043	-5. 367987787646174	not significant	not significant	not significant
Model with Monthly Zero	-0.020825575794964024	-0.01716670276344079	-5.712201340614871	not significant	not significant	not significant
+	L	+	+	+		+

In [188... mondays_mse_statistics = calculate_statistics(mondays_rmse, mondays_forecast, df_name='Mondays')

Model	R^2	Adj R^2	McCracken Stat	Significance 1%	Significance 5%	Significance 10%
AR (2)	0. 42841774781927766	0.4326992628168861	200. 87390043605484	significant	significant	significant
AR (1)	0. 41686279385073877	0.4190468283306985	191. 58309155015925	significant	significant	significant
AR(1) with Weekly Zero Interaction	0.40590081223812435	0. 41257608401072976	183. 10312473178917	significant	significant	significant
AR(2) with Weekly Zero Interaction	0. 40128570360743265	0. 41249758181703133	179.62585696513366	significant	significant	significant
AR(2) with Separate Weekly and Monthly Zero Interactions	0.3988810060745892	0.412389298072913	177.8351885537899	significant	significant	significant
AR(2) with Monthly Zero Interaction	0. 39401606141662493	0. 4053640752477743	174. 2559459686519	significant	significant	significant
AR(1) with Monthly Zero Interaction	0.3881247607201256	0. 3949997634086635	169. 99778581564013	significant	significant	significant
Model with Only Constant	0.0	0.0	0.0	not significant	not significant	not significant
Model with Monthly Zero	-0.024538196082734665	-0.020700974374559644	-6. 418732435078348	not significant	not significant	not significant
Model with Weekly Zero	-0.027023489009053492	-0.023176959087671367	-7.051732635067792	not significant	not significant	not significant