ממ"ך 11

```
Note: I'll be using e.g. \neg(A \cup B) to represent the complement of (A \cup B) (My editor doesn't support superscript or overline)
```

2

ב

Prove: if $P(A) \vee P(B) = P(C)$, then $(C=A) \vee (C=B)$

I'll be proving: $(C\subseteq A \land A\subseteq C) \lor (C\subseteq B \land B\subseteq C)$ Since it's equivalent to $(C=A) \lor (C=B)$

First: proof that C⊆A v C⊆B

 $C \in P(C)$ // power set definition $P(C) = P(A) \lor P(B) \Rightarrow C \in (P(A) \lor P(B))$ $C \in P(A) \lor C \in P(B)$ $C \subseteq A \lor C \subseteq B$

Second: proof that $A\subseteq C$ \vee $B\subseteq C$

 $A \in P(A)$ $P(A) \subseteq P(A) \cup P(B)$ // union definition $A \in P(A) \cup P(B)$ Given $P(C) = P(A) \cup P(B) \Rightarrow A \in P(C)$ $A \subseteq C$ $B \in P(B)$ $P(B) \subseteq P(A) \cup P(B)$ // union definition $B \in P(A) \cup P(B)$ Given $P(C) = P(A) \cup P(B) \Rightarrow B \in P(C)$ $B \subseteq C$

we conclude that: $C\subseteq A \lor C\subseteq B \land A\subseteq C \land B\subseteq C$ Therefore $(C=A) \lor (C=B)$