

Введение в экономико-математическое моделирование

Лекция 10. Многокритериальные задачи

канд. физ.-матем. наук, доцент Д. В. Чупраков usr10381@vyatsu.ru

And (2 (m+1/4) + 1/4)

Структура лекции

- 11 Проблема нескольких критериев
- 2 Каноническая двукритериальная задача оптимизации
- 3 Множество Парето
- 4 Метод ограничений
- 5 Метод идеальной точки
- 6 Резюме и источники

Проблемы многокритериальной оптимизации

- 1. Проблема нормализации критериев, то есть приведение критериев к единому масштабу измерения.
- 2. Проблема выбора принципа оптимальности, то есть установление, в каком смысле оптимальное решение лучше всех остальных решений.
- 3. Проблема учета приоритетов критериев, возникающая в тех случаях, когда из экономического смысла критериев ясно, что некоторые из них имеют приоритет над другими.
- 4. Проблема выбора метода вычисления оптимума задачи.

Многокритериальная задача может не иметь оптимального решения.

Задача многокритериальной оптимизации

- ▶ Имеется область допустимых планов.
- Есть несколько целевых функций.
- Целевые функции не могут быть совмещены в одну.

Требуется найти точку области допустимых решений, в которой достигается максимум (или минимум) всех целевых функций.

Важно: В оптимальном плане многокритериальной задачи каждый критерий в отдельности может не достигать своего оптимума.

Каноническая двукритериальная задача оптимизации

Каждый из критериев максимизируется:

$$F_1(x_1, x_2) \rightarrow \max, \qquad F_2(x_1, x_2) \rightarrow \max$$

 Область допустимых планов задана системой ограничений в форме нестрогих неравенств.

$$\begin{cases} h_1(x_1, x_2) \leqslant b_1 \\ h_2(x_1, x_2) \leqslant b_2 \\ & \cdots \\ h_n(x_1, x_2) \leqslant b_n \end{cases}$$

Сведение задачи к канонической форме

Задача может быть поставлена по разному:

$$ightharpoonup F_1(x_1, x_2) \rightarrow \max, \qquad F_2(x_1, x_2) \rightarrow \max$$

$$ightharpoonup F_1(x_1, x_2) \rightarrow \min, \qquad F_2(x_1, x_2) \rightarrow \max$$

$$ightharpoonup F_1(x_1, x_2) \rightarrow \min, \qquad F_2(x_1, x_2) \rightarrow \min$$

Сведение задачи к канонической форме

Задача может быть поставлена по разному:

$$ightharpoonup F_1(x_1, x_2) o \max, \qquad F_2(x_1, x_2) o \max$$

$$ightharpoonup F_1(x_1, x_2)
ightharpoonup \min, \qquad F_2(x_1, x_2)
ightharpoonup \max$$

$$ightharpoonup F_1(x_1, x_2) \rightarrow \min, \qquad F_2(x_1, x_2) \rightarrow \min$$

$$F(x_1, x_2) \rightarrow \min \iff G(x_1, x_2) = -F(x_1, x_2) \rightarrow \max$$

Если критерий минимизируется, то нужно умножить его на -1.

Типы точек системы ограничений

- ▶ A внутренняя точка;
- ▶ В вершинная точка;
- ► *C*, *D* граничные точки.

Оптимальность по Парето

Лучший план по Парето

Определеине

План $A(x_1,x_2)$ лучше плана $B(y_1,y_2)$ по Парето $(A\succcurlyeq Y)$, если

$$F_1(x_1, x_2) \geqslant F_1(y_1, y_2), \qquad F_2(x_1, x_2) \geqslant F_2(y_1, y_2)$$

"Всякое изменение, которое никому не приносит убытков, а некоторым людям приносит пользу (по их собственной оценке), является улучшением"

> Вильфредо Парето (15 июля 1848— 20 августа 1923) итальянский инженер, экономист и социолог

План A — Парето-оптимальный решение, если не существует такого плана B, что $B \succcurlyeq A$ по Парето.

Множество Парето — множество всех Парето-оптимальных решений задачи.

Итак, множество Парето — это множество допустимых планов в задаче многокритериальной оптимизации, для которых не существует другого допустимого плана, имеющей по всем критериям не худшие оценки и хотя бы по одному критерию — лучшие.

Приближенно построить множество Парето для следующей задачи двухкритериальной оптимизации:

$$F_1 = (x-2)^2 + (y-1)^2 \to \max$$

$$F_2 = -(x-5)^2 - (y-5)^2 \to \min$$

$$D_X: \begin{cases} 0 \le x \le 5 \\ 1 \le y \le 5 \end{cases}$$

Пример

Приближенно построить множество Парето для следующей задачи двухкритериальной оптимизации:

$$F_1 = (x-2)^2 + (y-1)^2 \to \max$$

$$F_2 = -(x-5)^2 - (y-5)^2 \to \min$$

$$D_X: \begin{cases} 0 \leqslant x \leqslant 5 \\ 1 \leqslant y \leqslant 5 \end{cases}$$

Преобразуем задачу:

$$G_1 = F_1 = (x - 2)^2 + (y - 1)^2 \to \max$$

 $G_2 = -F_2 = (x - 5)^2 + (y - 5)^2 \to \max$ $D_X : \begin{cases} 0 \le x \le 5 \\ 1 \le y \le 5 \end{cases}$

Пример. Сетка.

Покроем множество допустимых значений сеткой с шагом 1:

Пример. Вычисление критериев в узлах

y x	0	1	2	3	4	5
1	4 41	1 32	0 25	1 20	4 17	9 16
2	5 34	2 25	1 18	2 13	5 10	10 9
3	8 29	5 20	4 13	5 8	8 5	13 4
4	13 26	10 17	9 10	10 5	13 2	18 1
5	20 25	17 16	16 9	17 4	20 1	25 0

- ightharpoonup сверху слева $G_1 = (x-2)^2 + (y-1)^2$
- ightharpoonup снизу справа $G_2 = (x-5)^2 + (y-5)^2$

Пример. Множество достижимых значений G

Множество Парето

Алгоритм построения множества Парето

Пусть дана задача с двумя переменными и двумя критериями

- 1. Построить систему ограничений.
- 2. Выбрать шаг сетки и отметить узлы этой сетки, лежащие внутри области допустимых планов.
- 3. Посчитать значение критериев F_1 , F_2 в каждом узле. Отметить соответствующие точки в системе координат OF_1F_2 .
- 4. Для задачи минимума отметить все точки такие, что ниже и левее них нет точек, соответствующих другим узлам сетки.
- 5. Для задачи максимума отметить все точки такие, что выше и праее них нет точек, соответствующих другим узлам сетки.
- 6. Соединить последовательно отмеченные точки.
- 7. Выделить соответствующие узлы сетки и соединить их в той же последовательности. Это и есть приближенная граница Парето.

Определеине

Идеальной точкой называют план, в котором все критерии достигают своих оптимальных значений.

- ► Если эта точка принадлежит достижимому множеству *G*, то множество Парето состоит только из этой точки.
- ► Если идеальная точка не принадлежит *G* нужно найти точку множества Парето, наиболее близкую к идеальной.

Пример решения двухкритериальной ЗЛП

Найти значения переменных, при которых функции

$$F_1 = 2x_1 + x_2 + 1, F_2 = x_1 - x_2 + 5$$

достигают максимальных значений, если x_1, x_2 удовлетворяют системе ограничений

$$\begin{cases} x_1 + 2x_2 \leqslant 8, \\ 0 \leqslant x_1 \leqslant 6, \\ 0 \leqslant x_2 \leqslant 3. \end{cases}$$

Построение системы ограниченнй

- ▶ Построим достижимое множество G в пространстве признаков F_1 , F_2
- ► Каждой точке (*x*₁, *x*₂) из области ограничений поставим в соответствие точку *F*₁, *F*₂ по правилу:

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 + 1 \\ x_1 - x_2 + 5 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$

▶ в силу линейности проводимых преобразований многоугольник OABCD в многоугольник O'A'B'C'D':

$$O'(1;5)$$
, $A'(4;2)$, $B'(8;4)$, $C'(14;10)$, $D'(13;11)$.

Множество достижимых значений G

Множество достижимых значений G

Множество достижимых значений G

Задача поиска ближайшей точки

Найдем точку V', принадлежащую границе Парето и удаленную на наименьшее расстояние от идеальной точки U':

- $V'(f_1, f_2) \in D'C'$
- $|V'U'| = \sqrt{(f_1 f_{1u})^2 + (f_2 f_{2u})^2} \rightarrow \min$

Вычисление ближайшей точки I

- ightharpoonup Обозначим $x = f_1$, $y = f_2$.
- ▶ Заметим, что $x \in [13, 14]$, $y \in [10, 11]$.
- ▶ Построим прямую C'D': y = kx по точкам C'(14, 10) и D'(13, 11):

$$\begin{cases} 10 = k14 + b \\ 11 = k13 + b \end{cases} \Longleftrightarrow \begin{cases} k = -1 \\ b = 24 \end{cases} \Longleftrightarrow C'D' \colon y = -x + 24$$

▶ Рассмотрим целевую функцию — квадрат расстояния до U'(14, 11):

$$\Phi(X, y) = (x - 14)^2 + (y - 11)^2$$

ightharpoonup Подставим y = -x + 24 из ограничения:

$$\Phi(x) = (x-14)^2 + (-x+24-11)^2 = (x-14)^2 + (13-x)^2 \to \min$$

Вычисление ближайшей точки II

▶ Вычислим производную

$$\Phi'(x) = 2(x - 14) - 2(13 - x) = 4x - 54$$

Найдем стационарные точки

$$\Phi'(x) = 0,$$

 $4x - 54 = 0,$
 $x = 13.5 \in [13, 14]$

- ▶ Убеждаемся, что x = 13.5 точка минимима.
- ▶ Вычисляем координаты точки V':

$$\begin{cases} x = 13.5 \\ y = -13.5 + 24 = 10.5 \end{cases}$$

Вычисление ближайшей точки III

ightharpoonup Итак, оптимальные значения критериев $F_1=13.5$, $F_2=10.5$.

Вычисление оптимального плана

Вспомним, что

$$F_1 = 2x_1 + x_2 + 1, F_2 = x_1 - x_2 + 5$$

ightharpoonup Подставим в критерии $F_1=13.5$, $F_2=10.5$.

$$\begin{cases} 13.5 = 2x_1 + x_2 + 1 \\ 10.5 = x_1 - x_2 + 5 \end{cases}$$

Решаем систему и получаем оптимальный план:

$$x_1 = 6, \qquad x_2 = 0.5$$

Построение системы ограниченнй

- ► CD граница Парето
- **▶** *V*(6, 0.5) оптимальный план.

Алгоритм решения двухкритериальной ЗЛП I

Пусть дана задача линейного программирования с двумя переменными x_1, x_2 и двумя ограничениями F_1, F_2 .

- 1. Построить многоугольник допустимых планов в системе Ox_1x_2 . Обозначить его вершины.
- 2. Вычислить значения критериев (F_1, F_2) в каждой вершине многоугольника допустимых планов. Построить эти точки в системе OF_1F_2 .
- 3. В системе OF_1F_2 построить многоугольник достижимых значений критерия, соединив те точки, прообразы которых были соединены в системе Ox_1x_2 .
- 4. Построить границу Парето значений критериев.

Алгоритм решения двухкритериальной ЗЛП II

- 5. Найти идеальную точку U'. Её координаты максимальные возможные значения каждой из переменных.
- 6. Найти точку $V'(F_1^*, F_2^*)$ ближайшую к идеальной на границе Парето. Для этого минимизировать квадрат расстояния между U' и V'. Это оптимальные значения критериев для двухкритериальной задачи.
- 7. Подставить F_1^* , F_2^* в функции критериев и найти оптимальный план, решив систему линейных уравнений.
- 8. Отметить оптимальный план на множестве ограничений.

Резюме

Теперь вы знаете:

- 1. Понятие многокритериальной задачи.
- 2. Понятие границы Парето.
- 3. Метод идеальной точки.

Вы должны цметь:

- Применять метод сетки для приближенного нахождения границы Парето.
- Приводить многокритериальную задачу к каноническому виду.
- Решать многокритериальные задачи линейного программирования методом идеальной точки.

- Очень рекомендуется посмотреть лекции А. В. Ряттель по этой теме.
- ► Все материалы по курсу здесь: https://cloud.mail.ru/public/48BX/47oESuaQQ