MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 1 - OCTOBER 2007 SOLUTION KEY**

Round 2

A)
$$b^2 = (11\sqrt{3})^2 - (7\sqrt{7})^2 = 363 - 343 = 20 \Rightarrow b = 2\sqrt{5}$$

B) Let \overline{AB} (drawn $\perp \overline{PC}$) represent the distance between the angle bisectors. Clearly, Δs *PSC* and *RQA* are both isosceles and congruent. Thus, x must be 7 and since AB is the leg in an isosceles right

triangle with hypotenuse 7, $AB = CD = \frac{7\sqrt{2}}{2}$

C) Since $\triangle CDA$ and $\triangle CDB$ have a common altitude and areas in a 3: 4 ratio, their bases must be in a 3: 4 ratio also. Apply the Pythagorean theorem to $\triangle ABC$ or note (CB, CA, AB) = (21, 28, ?) = 7(3, 4, ?)Since the missing number in the triple is 5, AB = 35 \rightarrow AD = 20 and BD = 15

Drop a perpendicular from C to \overline{AB} (Call it \overline{CE} .)

Then (BC)(AC) = (AB)(CE), since each gives twice the area of $\triangle ABC$. Thus, $21(28) = 35(CE) \rightarrow CE = 16.8$

Applying the Pythagorean Theorem to right triangle ACE, $AE = 22.4 \rightarrow DE = 2.4$ and to right triangle *CDE*, $CD^2 = 16.8^2 + 2.4^2 = 288 \implies CD = 12\sqrt{2}$

Alternative: Drop perpendiculars from D to AC and BC. Let AD = 4x and DB = 3x. $AB = 7x = 35 \implies x = 5$, BD = 15, AD = 20Since $\triangle DGB \sim \triangle AFD \sim \triangle ACB \sim 3-4-5$ right triangle, (DG, GB) = (12, 9) and (DF, FA) = (12, 16) and FDGC is a 12 x 12 square! Therefore, $CD = 12\sqrt{2}$.

В