

GRADO EN INGENIERÍA INFORMÁTICA ESPECIALIDAD: COMPUTACIÓN

APRENDIZAJE AUTOMÁTICO

4º Curso

6 de Febrero de 2015

Nombre:			
DNI:			

- 1. (0.5 punto) Tipos de problemas (y breve descripción) que se pueden resolver mediante aprendizaje automático.
- 2. (0.5 punto) Describir el algoritmo de descenso por gradiente.
- 3. (0.5 punto) En qué tipo de problemas es adecuado el uso de la máquina de vector soporte. Explicación del uso de la función Kernel

Origen	Clase	Alimentación	Valor	Situación	Ejemplo
A(frica)	Mamífero	Carnívoro	Alto	Peligro	+
A(frica)	Reptil	Herbívoro	Bajo	Normal	-
A(frica)	Reptil	Herbívoro	Alto	Peligro	+
E(uropa)	Mamífero	Herbívoro	Bajo	Peligro	-
A(frica)	Mamífero	Carnívoro	Normal	Peligro	+

4. Eliminación de candidatos.

- *a*) (1 punto) Describe el algoritmo de eliminación de candidatos y el procedimiento de generalización y especialización de hipótesis.
- b) (1 punto) Ejecútalo para el conjunto de datos de los animales.

5. Algoritmo AQ

a) (1 punto) Escribe el pseudocódigo del algoritmo AQ, explicando su objetivo, funcionamiento y definiendo sus elementos (LEF, selector, complejo y recubrimiento).

- b) (1 punto) Calcular, mediante dicho algoritmo, la primera regla que se puede extraer del conjunto de datos de los animales, considerando como criterio de selección el número de ejemplos cubiertos y luego la longitud de la regla.
- 6. FOIL. Considerese el siguiente problema de programacion logica inductiva:
 - Ejemplos positivos: p(1) p(3) p(5) p(6)
 - Ejemplos negativos: p(2) p(4) p(7) p(8)
 - Conocimiento base: r(8) r(9) q(1,8) q(3,9) q(5,8) q(6,9) q(2,4) q(7,7)
 - *a*) (2 puntos) Extraer la primera regla de este conjunto de datos.

7. Redes neuronales:

- a) (1 punto) Considera un perceptrón con función de activación CUADRÁTICA y pesos $\vec{w}=(0.1,0.2,0.3)$ y un conjunto de entrenamiento $D=\{E1,E2\}$ con E1=<(0.5,0.5),0.3> y E2=<(0.4,0.7),0.2>.
 - Calcula el error cuadrático del perceptrón con pesos \vec{w} sobre el conjunto de entrenamiento D.
 - Calcula en valor del gradiente de la función anterior $\vec{\nabla} E(\vec{w})$ para el vector de pesos \vec{w} .
- b) (1.5 punto) Teniendo la red neuronal siguiente, de función de activación LINEAL($\sigma(x)=x$), tasa de aprendizaje $\mu=0.1$ y los pesos como se indican en el dibujo.
 - Realizar el cálculo hacia delante de la señal, usando como ejemplo $T1 = \{0.6, 0.1, 0, 1\}$
 - Realizar el backpropagation y calcular el cambio de los pesos.

