Chapter 2 VC-dimension

Siheng Zhang zhangsiheng@cvte.com

November 5, 2021

This part corresponds to ${f Chapter~2-5}$ in ${f UML},$ and mainly answers the following questions:

 $\bullet\,$ The necessary and sufficient condition of PAC learnability.

•

Contents

1	The VC-dimension	2
	1.1 Shattering	
	1.2 The VC-dimension	
	1.2.1 Examples	2
2	Fundamental theorem of PAC learning	3
3	Effective size of a hypothesis class	3
4	Non-uniform learnability	3
5	Summary	4
6	Exercises and solutions	Δ

1 The VC-dimension

1.1 Shattering

Consider the set of threshold functions over the real line $\mathcal{H} = \{h_a(x) = \mathbb{1}_{[x \leq a]}, a \in \mathbb{R}\}$. Let a^* be the threshold such that $L_{\mathcal{D}}(h^*) = 0$. Let $a_0 < a^* < a_1$ such that:

$$\mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a_0, a^*)] = \mathbb{P}_{x \sim \mathcal{D}_x}[x \in (a^*, a_1)] = \epsilon$$

If $\mathcal{D}_x(-\infty, a^*) \leq \epsilon$, we set $a_0 = -\infty$, and similarly for a_1 .

Given a training set S, let $b_0 = \max\{x : (x,1) \in S\}$ (if no example is positive then $b_0 = -\infty >$, and $b_1 = \min\{x : (x,0) \in S\}$ (if no example is negative then $b_1 = \infty$). Let b_S be the threshold of an ERM hypothesis b_S , which implies $b_S \in (b_0, b_1)$, then we have

$$\mathbb{P}_{S \sim \mathcal{D}^m}[L_{\mathcal{D}}(h_S) < \epsilon] \le \mathbb{P}_{S \sim \mathcal{D}^m}[b_0 < a_0] + \mathbb{P}_{S \sim \mathcal{D}^m}[b_1 > a_1]$$

Each term on the right-side is bounded by $(1-\epsilon)^m \leq e^{-\epsilon m}$. Let $m > \log(2/\delta)/\epsilon$, then the left-side is bounded by δ . As a result, the hypothesis class is PAC-learnable.

The example above shows that: **finiteness is not a necessary condition for learnability**, and hence we turn to the definition of **shattering**, which describes the ability of a hypothesis set to cover the training set.

The definition of VC-dimension is motivated from the No-Free-Lunch theorem: without restricting the hypothesis class, for any learning algorithm, an **adversary** can construct a distribution for which the learning algorithm will perform poorly, while there is another learning algorithm that will succeed on the same distribution. To make any algorithm fail, the **adversary** used the power of choosing a target function from the set of all possible labelling functions.

When considering PAC learnability of a hypothesis class \mathcal{H} , the **adversary** is restricted to constructing distributions for which some hypothesis $h \in \mathcal{H}$ achieves a zero risk. Since we are considering distributions that are concentrated on elements of C, we should study how $h \in \mathcal{H}$ behaves on C.

Definition (Restriction of \mathcal{H} to C): The restriction of \mathcal{H} to C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} . That is,

$$\mathcal{H}_C = \{ (h(c_1), \cdots, h(c_m)) : h \in \mathcal{H} \}$$
 (1)

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Definition (Shattering): A hypothesis class \mathcal{H} shatters a finite set $C \in \mathcal{X}$ if the restriction of \mathcal{H} to C is the set of all functions from C to $\{0,1\}$. That is, $|\mathcal{H}_C| = 2^{|C|}$.

Corollary 1 Let \mathcal{H} be a hypothesis class of functions from \mathcal{X} to $\{0,1\}$. Let m be a training set size. Assume that there exists a set $C \subset \mathcal{X}$ of size 2m that is shattered by \mathcal{H} . Then, for any learning algorithm, A, there exist a distribution \mathcal{D} over $\mathcal{X} \times \{0,1\}$ and a predictor $h \in \mathcal{H}$ such that $L_{\mathcal{D}}(h) = 0$ but with probability of at least 1/7 over the choice of $S \sim \mathcal{D}^m$ we have that $L_{\mathcal{D}}(A(S)) \geq 1/8$.

The corollary shows that whenever if \mathcal{H} shatters some set \mathcal{C} of size 2m, then we cannot learn \mathcal{H} by using m examples. This leads us directly to the definition of the VC dimension.

1.2 The VC-dimension

Definition (VC-dimension): The VC-dimension of a hypothesis class \mathcal{H} , denoted VCdim(\mathcal{H}), is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that \mathcal{H} has infinite VC-dimension.

Theorem 1 If \mathcal{H} is a class of infinite VC-dimension, then \mathcal{H} is not PAC learnable.

1.2.1 Examples

To calculate the VC-dimension for a hypothesis set, we should show that:

- There **exists** a subset of size *d* that can be shattered;
- Every subset of size d+1 can not be shattered.

1 Threshold functions

$$\mathcal{H} = \{ \mathbb{1}_{x < a} : a \in \mathbb{R} \}$$

For an arbitrary set $C = \{c\}$, \mathcal{H} shatters C, therefore $\mathrm{VCdim}(\mathcal{H}) \geq 1$; for an arbitrary set $C = \{c_1, c_2\}$, where $c_1 \leq c_2$, any threshold that assigns 0 to c_1 must assign 0 to c_2 . In other words, not all functions from \mathcal{C} to $\{0,1\}$ are included by \mathcal{H}_C . So, \mathcal{H} does not shatter C.

2 Intervals

$$\mathcal{H} = \{ \mathbb{1}_{x \in (a,b)} : a < b, a, b \in \mathbb{R} \}$$

Denote the set $C = \{c_1, c_2\}$. If we take $a > c_2$ or $b < c_2$, the we have $h_{a,b}(c_1) = 0$, $h_{a,b}(c_2) = 0$; if we take $c_1 < a < c_2 < b$, the we have $h_{a,b}(c_1) = 0$, $h_{a,b}(c_2) = 1$; if we take $a < c_1 < b < c_2$, the we have $h_{a,b}(c_1) = 1$, $h_{a,b}(c_2) = 0$; if we take $a < c_1 < c_2 < b$, then we have $h_{a,b}(c_1) = 1$, $h_{a,b}(c_2) = 1$. Therefore, \mathcal{H}_C is the set of all functions from C to $\{0,1\}^2$.

Take the set $C = \{c_1, c_2, c_3\}$, without loss of generalization, let the labels be (1, 0, 1), therefore \mathcal{H} does no shatter C.

Hence, $VCdim(\mathcal{H}) = 2$.

3 Axis Aligned Rectangles

$$\mathcal{H} = \{ \mathbb{1}_{(a_1 < x_1 < a_2, b_1 < x_2 < b_2)} : a_1 < a_2, b_1 < b_2 \}$$

Any set with 4 points can be shattered. Take the set with 5 points. Suppose that there is 1 point (labelled as 0) surrounded by 4 points (labelled as 1), it cannot be shattered. Hence, $VCdim(\mathcal{H}) = 4$.

4 Finite class

Let \mathcal{H} be a finite class. Then, clearly, for any set C we have $|\mathcal{H}_C| \leq |\mathcal{H}|$ and thus it cannot be shattered if $|\mathcal{H}| < 2^{|C|}$. This implies that $VCdim(\mathcal{H}) < \log_2 |\mathcal{H}|$.

<u>remark1</u>: In the previous examples, the VC-dimension happened to equal the number of parameters defining. This is not always true. See exercise? for detail.

2 Fundamental theorem of PAC learning

Theorem 2 Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function be the 0-1 loss. Then, the following are equivalent:

1. The hypothesis class has uniform convergence property.

$$m_{\mathcal{H}}^{UC}(\epsilon, \delta) = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$$
 (2)

- 2. Any ERM rule is a successful agnostic PAC learner for the hypothesis class.
- 3. The hypothesis class is agnostic PAC learnable.

$$m_{\mathcal{H}}(\epsilon, \delta) = O\left(\frac{d + \log(1/\delta)}{\epsilon^2}\right)$$
 (3)

4. The hypothesis class is PAC learnable.

$$m_{\mathcal{H}}(\epsilon, \delta) = O\left(\frac{d\log(1/\epsilon) + \log(1/\delta)}{\epsilon}\right)$$
 (4)

- 5. Any ERM rule is a successful PAC learner for the hypothesis class.
- 6. The hypothesis class has a finite VC-dimension.

remark1: 1->2->3->4->5->6 are all learned. The leaving part is 6->1, which is solved below.

3 Effective size of a hypothesis class

4 Non-uniform learnability

"non-uniform learnability" allows the sample size to be non-uniform with respect to the different hypotheses with which the learner is competing.

A hypothesis is (ϵ, δ) -competitive with another if

- 5 Summary
- 6 Exercises and solutions

- 1 (a) The hypothesis class is a generalization of rectangle to high-dimensional space and its VCdim is 2k. Consider the set $\{\mathbf{x}_1, \cdots, \mathbf{x}_{2k}\}$, if $i \leq k$, \mathbf{x}_i is a vector in k-dimension space, with all entries to be zero except that its i-th entry to be 1, and otherwise, i.e., i > k, \mathbf{x}_i is a vector with all entries to be zero except that i k-th entry to be -1. Let $(y_1, \cdots, y_{2d}) \in \{0, 1\}^{2k}$, we can choose $a_i = -2$ if $y_{i+k} = 1$, and $a_i = 0$ otherwise, and choose $b_i = 2$ if $y_i = 1$, and $b_i = 0$ otherwise. Then $h_{a_1,b_1,\cdots,a_k,b_k}(x_i) = y_i$ for every $i \in [2k]$, so the set can be shattered. Let C be a set of size at least 2k + 1. We show that C is not shattered. By the pigeonhole principle, there exists an element $\mathbf{x} \in C$, s.t. for every $j \in [k]$, there exists $\mathbf{x}' \in C$ with $x'_j \leq x_j$ and similarly there exists $\mathbf{x}'' \in C$ with $x''_j \leq x_j$. Thus the labelling in which x is negative, and the rest of the elements in C are positive can not be obtained.
 - (b) i. Its VCdim is 1. Consider the set with only one point, obviously we can choose a suitable r to satisfy that $f_r(x_1, x_2) \ge 0$ or < 0. And consider the set with two points, if the point further away from original point with label -1 and that closer from original point is with label +1, then we cannot choose a suitable r to shatter the set.
 - ii. A linear function can fit two points well with no error, so a linear function's (polynomial with degree be 1) VC dimension is 2. As a polynomial with degree k can fit well k+1 points, so can shatter at least k+1 points. However, for any point k+2, a polynomial with degree k can not ensure to shatter it. So the VC dimension is k+1.
 - (c) Firstly, the VC dimension of $H^n_{maj} \leq n$. For a single point set, we can use $h_S(x)$ in which $S = \{1\}$ to shatter it. Without loss of generality, assume that in a set with two points, the x_1 are the same, but the labels are different, so we must use $h_S(x)$ in which $S = \{1,2\}$ to shatter them. Similarly, $h_S(x), S \subset \{1, \dots, n\}$ can shatter at most n points.
- 2 (a) Any set of two points can be shattered by a line. So $VCdim(H) \geq 2$. However, for a line that shatter the former two points, we can select another point that the line assigns a wrong label to it. So there exist some set of 3 points cannot be shattered by a line. So VCdim(H) = 2. Also note that a line that shifts is still a line. So $VCdim(H_{shifts}) = 2$.
 - (b) For any set C with two points x_1, x_2 . We should consider their distance to $\lfloor x_1 \rfloor$ and $\lfloor x_2 \rfloor$ respectively. There are four cases $[>0.5,>0.5], [>0.5,\le 0.5], [\le 0.5,>0.5], [\le 0.5,\le 0.5]$. And for each case, the label set (0,0), (1,0), (0,1), (1,1) can be achieved. So, $VCdim(\{h_{even}\}_{shifts}) \ge 2$. And consider a set with three points, if we choose a s to satisfy that we can assign true label for the former two points, we can adversarially choose the third points with a label that cannot be true. So $VCdim(\{h_{even}\}_{shifts}) = 2$.
 - (c) Consider the hypothesis set $\mathcal{H}_{\theta}(x) = \sin(\theta x)$, then $VCdim(\{h\}_{shifts}) = \infty$.
- 3 (a) Any $(h1 \star h2)(\hat{x}) = h_1(x_1)h_2(x_2) \in H_1 \bigcup H_2$, so $H_1 \times H_2 = H_1 \bigcup H_2$. Using the conclusion in (c), its VC dimension is finite.
 - (b) By definition of uniform convergence, there exists a set S_1 with size $m_1 \geq m_{\mathcal{H}_1}^{UC}(\epsilon_1, \delta_1)$ such that $|L_{S_1}(h_1) L_{\mathcal{D}}(h_1)| < \epsilon_1$, for all $h_1 \in H_1$, and a set S_2 with size $m_2 \geq m_{\mathcal{H}_2}^{UC}(\epsilon_2, \delta_2)$ such that $|L_{S_2}(h_2) L_{\mathcal{D}}(h_2)| < \epsilon_2$, for all $h_2 \in H_2$.

Note that if h_1 and h_2 are both correct, then $h_{1,2}$ is correct, and vice versa. So $L(h_{1,2}) = 1 - (1 - L(h_1))(1 - L(h_2)) = L(h_1) + L(h_2) - L(h_1) * L(h_2)$, no matter true error or empirical error. Consider the set $S = S_1 \bigcup S_2$, it is with size $m \ge m_{\mathcal{H}_1}^{UC}(\epsilon_1, \delta_1) + m_{\mathcal{H}_2}^{UC}(\epsilon_2, \delta_2)$, and hence

$$|L_S(h_{1,2}) - L_{\mathcal{D}}(h_{1,2})| \le |L_S(h_1) - L_{\mathcal{D}}(h_1)| + |L_S(h_2) - L_{\mathcal{D}}(h_2)| + |L_{S_1}(h_1)L_S(h_2) - L_{\mathcal{D}}(h_1)L_{\mathcal{D}}(h_2)|$$

The third term has higher order and can be omitted, and leads to $|L_S(h_{1,2}) - L_D(h_{1,2})| \le \epsilon_1 + \epsilon_2$, and hence enjoy the uniform convergence property.

(c) By definition of the growth function, we have

$$\tau_{\mathcal{H}}(k) \le \sum_{i=1}^{k} \tau_{\mathcal{H}_i}$$

By applying Sauer's lemma on each of the terms, we obtain

$$\tau_{\mathcal{H}}(k) \le \sum_{i=1}^{k} \tau_{\mathcal{H}_i} \le \sum_{i=1}^{k} \sum_{j=0}^{d} C_k^j$$