东南大学电工电子实验中心 实验报告

课程名称:	模拟电子电路实验	
课程名称:	模拟甩于电路实验	

第五次实验

头	位名	称:	二极'	官	、巴路星	本性能的测	重
院	(}	系):	电气工程学	<u>院</u> 专	业: _1	电气工程及	其自动化
姓		名:		学	号:_	160226	27
实	验	室:	401	实验	组别:		
同组	且人	.员:		_实验	时间:	2024年 4	月 30 日
7匹 5	⇒ ∟	浩		中区	一种 面。		

一、实验目的

- (1) 掌握单级三极管放大电路的工作原理、电路设计、安装和调试;
- (2) 了解三极管各项基本参数的意义、选择器件的注意事项;
- (3) 理解三极管偏置电路的基本概念,掌握静态工作点的调试和测量方法;
- (4) 掌握三极管放大电路输入阻抗、输出阻抗、增益等的基本概念以及测量方法。

二、实验原理

1. 基本概念

三极管放大电路是利用双极型器件或场效应器件的控制特性,将输入小信号线性放大到所需数值的电路。双极型器件有三种基本组态:共发射极电路、共基极电路和共集电极电路,场效应管也有三种基本组态:共源极电路、共栅极电路以及共漏极电路。

三极管放大电路一般需要研究分析两种特性:静态特性和动态特性。静态特性是指三极管放大电路为了正常工作而构建的静态工作点,包括三极管各电极之间的电压、电极中流过的电流。工作点设置是否合适,将影响到放大电路的动态性能指标,甚至会导致放大电路不能工作。动态特性一般包括放大电路的放大倍数、输入电阻、输出电阻、动态范围、频带宽度等,这些特性是衡量一个放大电路性能好坏的重要指标。

双极型三极管有多种分类方式,按制作的材质可以分为: 硅管、锗管; 按结构可分为: NPN 管、PNP 管; 按三极管的功能可以分为: 开关管、功率管、达林顿管、光敏管等; 按三极管的功率大小可以分为: 小功率管、中功率管、大功率管; 按照三极管的工作频率可以分为: 低频管、高频管、超频管; 按三极管的结构工艺可以分为: 合金管、平面管; 按照其封装方式可以分为: 插件三极管、贴片三极管。

不同的三极管有着各自不同的特性及其应用场合,选择合适的三极管是放大电路实现所需要功能的保证,通过查阅对应型号的器件数据手册可以获得所用器件的性能。如本实验选用的 9013 三极管,是以硅材料制作的 NPN 型小功率三极管,其部分参数如表 2-10-1 所示。

表 2-10-1	三极管 9013	器件部分数据表
XX 4 10-1		66 1+ nl) 71 6V 1/5 7V

参数符号	测量条件	参数值	参数意义及设计时应该如何考虑	
BV_{CBO}	$I_{\rm C} = 100 \mu {\rm A}, I_{\rm E} = 0$	40 V		
$\mathrm{B}V_{\mathrm{CEO}}$	$I_{\rm C}=1~{\rm mA}, I_{\rm B}=0$	20 V	一击穿电压,超过这个电压三极管就可 上。 上。 一部被击穿	
$\mathrm{B}V_{\mathrm{EBO}}$	$I_{\rm E} = 100 \mu \rm A, I_{\rm C} = 0$	5 V		
I_{CBO}	$U_{\rm CB} = 25 \text{ V}, I_{\rm E} = 0$	100 nA	集电结反向电流	
I_{EBO}	$U_{\rm EB}=3~{ m V},I_{ m C}=0$	100 nA	发射结反向电流	
h_{FE}	$U_{\rm CE}=1~{ m V},I_{ m C}=50~{ m mA}$	典型值 120 倍	直流电流增益	
$V_{ extsf{CE}}(ext{sat})$	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$	典型值 0.16 V 最大值 0.6 V	集电极一发射极饱和压降	
$V_{\mathtt{BE}}(sat)$	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$	典型值 0.91 V 最大值 1.2 V	基极一发射极饱和压降	
$V_{\mathtt{BE}}(\mathtt{on})$	$U_{\text{CE}} = 1 \text{ V}, I_{\text{C}} = 10 \text{ mA}$	最小值 0.6 V 典型值 0.67 V 最大值 0.7 V	基极一发射极导通电压	

表 2-10-1 表示了三极管 9013 在 25 \mathbb{C} 室温环境下的部分电气特性,完整的数据手册可以扫描二维码查看。

2. 分压式偏置共发射极放大电路工作原理

以 9013 为核心的分压式偏置共发射极放大电路如图 2-10-1 所示。

其中:由Rw和 R_1' 串联构成的电阻 R_1 称为"上偏置电阻", R_2 称为"下偏置电阻", R_1 和 R_2 构成分压式偏置方式,为三极管 T提供静态偏置, R_E 为发射极电阻,和发射极旁路电容 C_E 一起用于稳定电路的静态工作点。信号源电压 u_s ,经过信号源内阻 R_S (由于信号源内阻非常小,

为了测试输入电阻而特地加入 R_S ,模拟信号源内阻,其余情况这个电阻 R_S 一概省略)后成为放大电路的输入信号 u_i ,由输入耦合电容 C_1 将该信号传递给三极管输入端进行放大,由集电极电阻 R_C 将变化的集电极电流转换成变化的电压,通过输出耦合电容 C_2 ,再将变化的电压输出到负载 R_L 上,完成了信号由输入到输出的放大,其中放大的实现是由三极管的控制作用完成的。

即:

$$u_s \xrightarrow{R_s} u_i \xrightarrow{C_1} u_{be} \to i_b \to i_c(\beta i_b) \to i_c R'_L \to u_c \xrightarrow{C_2} u_o$$

三、预习思考

1. 为何实验中的输入信号频率要选取 1kHz?

思考:频率过低时,耦合电容、旁路电容的影响不可忽略;频率较高时,混合 π 模型中的各极寄生电容不可忽略。

四、实验内容

1.实验要求

以图 2-10-1 电路为例,完成静态工作点的测量,动态参数的测量,三极管放大电路输入和输出电阻的测量。

(1) 静态工作点的测量

静态也叫直流工作状态,是指电路在没有外加交流信号,仅有直流电源供的电状态下三极管的电压和电流。一般指三极管的集电极电流 I_C ,集电极一发射极电压 U_{CE} ,基极电流 I_B 和基极一发射极电压 U_{RE} 。在实际应用时,一般以测量 I_C 和 U_{CE} 两个参数为主。

(2) 动态参数的测量

动态也叫交流工作状态,是指三极管在直流工作状态(静态工作点)下,当外加交流信号作用时,测量输出交流信号幅度的大小,输出波形是否出现失真、最大输出幅度等。

(3) 输入和输出电阻的测量

输入电阻反映了一个放大电路对信号源信号的获取能力,针对不同的信号源特性需要设计不同大小的输入电阻。一般而言,针对电压源特性的信号,其等效内阻比较小,所以希望放大电路的输入电阻尽可能大些;而针对电流源特性的信号,其等效内阻比较大,设计的放大电路输入电阻应尽量小些。输出电阻反映了一个放大电路带负载能力的大小,当放大电路以电压源形式输出时,希望放大电路的输出电阻尽可能小,放大后的信号电压能更多地输出在负载上;当放大电路以电流源形式输出时,所设计的放大电路的输出电阻就需要尽可能大。

2.仿真实验

(1) 静态工作点的测量

输入端到地短接,注意去掉 R_S ,用直流电压表测量对应点电压,如下图所示,通过调整上偏置电阻中的 R_W 值,使得发射极电阻 R_E 上的电压值为 1V 左右。

仿真电路原理图如下。

具体仿真测量参数如下。

由 3 个电压表测量值可以得到对应的静态工作点的电压、电流值为:

$$\begin{split} I_{CQ} &= \frac{U_{EQ}}{R_E} = \frac{1.005 V}{1 k \Omega} = 1.005 mA \\ U_{CEQ} &= U_{CQ} - U_{EQ} = 8.997 V - 1.005 V = 7.992 V \\ U_{BEQ} &= U_{BQ} - U_{EQ} = 1.626 V - 1.005 V = 0.621 V \end{split}$$

查看Multisim中 SS9013 三极管的 β = 200,则

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{1.005mA}{200} = 5.025\mu A$$

(2) 放大电路动态参数的测量

输入端加上信号源,用四通道示波器的通道 A 连接信号源,通道 B 连接电路的输入端,通道 C 连接电路的输出端,如图 2-10-3 所示。连接好电路后开始仿真。信号源的设置如图 2-10-4 所示,波形选择正弦波,频率选择 1kHz,不断调整信号源幅度,同时观察示波器的 B 通道,使 u_i 峰峰为 10mV 左右时停止调节,信号源峰值为 6. 6mV。如图 2-10-5 中可以观察到 A 通道 (u_s) 峰峰值为 12. 997mV,示波器 B 通道 (u_i) 峰峰值为 10. 071mV,此时放大电路的输出 (u_o) 如示波器 C 通道所示,其峰峰值为 562. 812mV. 测试过程中观察示波器,确保信号不失真,同时也在示波器上看到,输出信号和输入信号是反相的,验证了三极管共发射极放大电路实现反相放大的特性。

搭接交流电路图仿真图如下。

对应仿真结果如下。(黑-A- u_s ,蓝-B- u_i ,红-C- u_o)

由以上测量参数可以得出: 电路的放大倍数为(以峰峰值数据计算):

$$\dot{A_u} = \frac{U_o}{U_i} = -\frac{565.760 \text{mV}}{10.170 \text{mV}} = -55.63$$

源电压放大倍数为:

$$A_{us}^{\cdot} = \frac{U_o}{U_s} = -\frac{565.760 \text{mV}}{13.109 \text{mV}} = -43.16$$

放大电路的输入电阻为

$$R_i = \frac{U_i}{U_s - U_i} R_s = \frac{10.170 \text{mV}}{13.109 \text{mV} - 10.170 \text{mV}} \times 1 \text{k}\Omega = 3.46 k\Omega$$

为了测量电路的输出电阻,把负载电阻 R_L 开路,测量此时的输出电压(U_o')的峰峰值为 $1110 \mathrm{mV}$,如下图所示。

对应仿真结果如下。(黑-A- u_s , 蓝-B- u_i , 红-C- u_o)

所以可得放大电路的输出电阻为:

$$R_o = \frac{U_o' - U_o}{U_o} R_L = \frac{1110mV - 565.760mV}{565.760mV} \times 3k\Omega = 2.89k\Omega$$

(3) 工作点的改变对电路性能的影响

通过调整上偏置电阻中的 R_W 值,可以得到不同的静态工作点。参照上述类似方式,测量相应的静态工作点的参数以及对应的动态性能指标,分析研究静态工作点对放大电路动态性能的影响。

增大R_W至 75%:

1. 静态工作点的测量

测量电路如图。

由3个电压表测量值可以得到对应的静态工作点的电压、电流值为:

$$\begin{split} I_{CQ} &= \frac{U_{EQ}}{R_E} = \frac{0.628V}{1k\Omega} = 0.628mA \\ U_{CEQ} &= U_{CQ} - U_{EQ} = 10.12V - 0.628V = 9.492V \\ U_{BEQ} &= U_{BQ} - U_{EQ} = 1.237V - 0.628V = 0.609V \end{split}$$

查看Multisim中 SS9013 三极管的β = 200则

$$I_{BQ} = \frac{I_{CQ}}{\beta} = \frac{0.628mA}{200} = 3.14\mu A$$

2. 动态参数的测量

测量电路如图。

对应仿真结果如下。(黑-A- u_s , 蓝-B- u_i , 红-C- u_o)

由以上测量参数可以得出:

电路的放大倍数为(以峰峰值数据计算):

$$\dot{A_u} = \frac{U_o}{U_i} = \frac{-356.764 \text{mV}}{10.105 \text{mV}} = -35.31$$

源电压放大倍数为:

$$A_{us}^{\cdot} = \frac{U_o}{U_s} = \frac{-356.764 \text{mV}}{12.311 \text{mV}} = -28.98$$

放大电路的输入电阻为

$$R_i = \frac{U_i}{U_s - U_i} R_s = \frac{10.105 \text{mV}}{12.311 \text{mV} - 10.105 \text{mV}} \times 1 \text{k}\Omega = 4.58 \text{k}\Omega$$

为了测量电路的输出电阻,把负载电阻 R_L 开路,测量此时的输出电压(U_o')的峰峰值为 705.460mV,如图所示。

对应仿真结果如下。(黑-A- u_s ,蓝-B- u_i ,红-C- u_o)

所以可得放大电路的输出电阻为:

$$R_o = \frac{U_o' - U_o}{U_o} R_L = \frac{705.460 \text{mV} - 356.764 \text{mV}}{356.764 \text{mV}} \times 3 \text{k}\Omega = 2.93 \text{k}\Omega$$

因此, R_W 增大后,静态工作点下移, I_{CQ} 、 I_{BQ} 均减小, $\dot{A_u}$ 、 $\dot{A_{us}}$ 的绝对值均减小,电路放大倍数减小。

通过调整工作点,并适当加大输入信号值,观察输出波形的失真现象,分析研究工作点如果设置的不合理,会导致放大电路输出波形出现何种类型的失真?要消除失真应该如何调整电路的工作点,以及使输出信号达到最大不失真幅度时对应的工作点应该如何设置。

增大信号源输入幅值到 50mVpp。

 R_{W} 减小,静态工作点 Q 偏高,电路出现饱和失真, u_{i} 顶部变形,输出波形底部近似削平:

 R_{W} 增大,静态工作点 Q 偏低,电路出现截止失真, u_{i} 底部变形,输出波形顶部失真:

对上述结果进行分析。由于本实验中的电路是一个分压偏置式电路,调节 R_W 的本质是调节静态工作点的位置。 R_W 增大,三极管基极对地电压降低; R_W 减小,三极管基极对地电压升高。

而本实验电路中的增益部分是一个*共射*接法,其*增益为负值*。因此,若输出波形*顶部*被削平(或被压缩),说明 u_i 底部(即负半波)失真,即产生截止失真;若输出波形底部被削平,说明 u_i 顶部(即正半波)失真,即产生饱和失真。

消除失真:

欲消除失真,我们应当设置**合适的静态工作点**,即:基极电压合适,使得发射结正偏导通;集电极电压合适,使得 cb 间的 PN 结反偏。同时,二者都应留有较大的余量。我们还应选取**合适的信号源电压幅值**,使得**幅值小于所留余量**,而不至于触底或触顶。

最大不失真幅值对应的静态工作点:

欲调节最大不失真幅值对应的静态工作点,从理论上讲,我们应选取处于截止与饱和 正中间的点作为静态工作点。为调节此静态工作点,可以采取逐次逼近的思路。

由于饱和失真容易判断,可以不断调节信号源幅值与 R_W ,使得输出波形恰不出现底部削平。观察此时的正负半波波形对称性,判断是否产生截止失真。直到输出波形恰不出现底部削平,同时正负半波近似对称,此时的静态工作点即为最大不失真幅值对应的静态工作点。

3.电路实验

电路及元器件参数如图 2-10-1 所示, 正确连接后开展实验。

(1) 工作点设置及放大电路基本性能测量

①放大电路的输入不接信号源, 去掉 R_S , 并将输入端接地, 如图 2-10-2 所示。调整 R_W , 使静态集电极电流 $I_{CQ}=1mA$ (一般可以通过测量集电极或发射极电阻两端压降确定), 测量静态时晶体管各个电极的电压值, 将数据记入表 2-10-2 中。

易派测量数据如下。从左到右分别为 I_{cQ} ,b、e、c 极电压。

实验室测量数据如下。从左到右、从上到下分别为 I_{cq} ,b、e、c 极电压。

②去掉输入端的接地线并接入信号源和 R_S ,如图 2-10-3 所示,将信号源 U_S 设置成频率为 1kHz 的正弦信号,调整信号源输出幅度,使放大电路输入端信号 U_i =10mV (峰峰值),测量 U_S 、 U_O 和 U_O' (负载开路时的输出电压)的值并填于表 2-10-2 中。

(黄- u_s , 蓝- u_i)

(黄- u_s , 蓝- u_o)

(黄- u_s , 蓝- u_o')

 $u_i = 10mV$:

此时的 u_s :

u_o : (黄- u_s , 紫- u_o)

 u_o' : (黄- u_s ,紫- u_o')

③重新调整 R_W ,使 I_{CQ} 为 2mA,重复上述测量,将测量结果记入表 2-10-2 中。

黄-us,蓝-ui

黄-us,蓝-uo

黄-us,蓝-uo'

实验室测量数据:

实验室测量数据如下。

 $I_{CQ} = 1mA$:

静态工作点及对应 R_W 值: (从左到右、从上到下分别为 R_W ,b、e、c 极电压)

动态参数::(从上到下分别为 u_i,u_o,u_o')

④根据测量结果可以计算出在不同的静态工作点时,该放大电路的放大倍数 A_u ,源电压放大倍数 A_{us} ,输入电阻 R_i 和输出电阻 R_o ,讨论分析工作点对三极管放大电路动态指标的影响。

输入电阻、输出电阻的测量原理及方法可以参见第1章1.4.3节内容。

静态工作点电流 $I_{\it CQ}/mA$		1	2
U_{BQ}/V		1.613	2.639
输入端接地	U_{CQ}/V	8.80	5.815
	U_{EQ}/V	1.004	2.019
输入信号	U_s/mV (峰峰值)	13.2	14.0
$U_i = 10mV$	U_o/V (峰峰值)	0.504	1.02
(峰峰值)	$U_o{'}/V$ (空载)(峰峰值)	0.968	1.96
	U_{BEQ}	0.609	0.62
	U_{CEQ}	7.796	3.796
	$\dot{A_u} = \frac{U_o}{U_i}$	-50.4	-102
计 算 值	$\dot{A_{us}} = \frac{U_o}{U_s}$	-38.18	-72.86
	$R_i = \frac{U_i}{U_s - U_i} R_s / k\Omega$	3.125	2.5
	$R_o = \frac{U_o' - U_o}{U_o} R_L / k\Omega$	2.762	2.765

上表是以实验室数据为准的。

对结果进行理论分析如下。理论增益为

$$\dot{A}_u = \frac{u_o}{u_i} = \frac{\beta R_L'}{r_{be} + (1 + \beta r_e)}$$

其中, $r_e=\frac{U_T}{I_{CQ}}$ 。因此,当改变静态工作点从而改变 I_{CQ} 时,放大倍数会相应改变。同时,由于 9013 的 r_{be} 较小,一般取 300 Ω ,其相较于分母后项较小。因此,考察 I_{CQ} 变化带来的影响时,可以近似将 r_{be} 忽略不计。即:

$$\dot{A}_u \approx \frac{\beta R_L'}{U_T} \cdot I_{CQ}$$

这意味着放大倍数与 I_{CQ} 是近似成正比的。观察实验数据:

I_{CQ}/mA	1	2
$\dot{A_u} = \frac{U_o}{U_i}$	-50.4	-102
$A_{us}^{\cdot} = \frac{U_o}{U_s}$	-38.18	-77.27

两倍关系近似成立, 这是佐证理论分析的。

输入电阻

$$R_i = r_{be} / / R_1 / / R_2$$

因此 I_{CQ} 变为 2mA 时, R_W 变小, R_1 变小,输入电阻会相应变小。

输出电阻

$$R_o = R_c / / R_L$$

因此理论上输出电阻不变。观察实验数据:

$R_i = \frac{U_i}{U_s - U_i} R_s / k\Omega$	3.125	2.5
$R_o = rac{U_o' - U_o}{U_o} R_L/k\Omega$	2.762	2.765

是佐证理论分析的。

(2) 观察不同的静态工作点对输出波形的影响

①适当加大输人信号幅度,改变 R_W 的阻值,使输出电压波形出现截止失真,画出失真波形,并将测量值记录于表 2-10-3 中。

实验室测量数据如下。

(从左到右、从上到下分别为 R_W , b、e、c 极电压)

②适当加大输人信号幅度,改变 R_W 的阻值,使输出电压波形出现饱和失真,画出失真波形图,并将测量值记录在表 2-10-3 中。

实验室测量数据如下。

(从左到右、从上到下分别为 R_W , b、e、c 极电压)

		截止失真	饱和失真	R _W 变化对失真的影响
201	U_{BQ}/V	1.453	3.488	
测量	U_{CQ}/V	9.12	3.364	R_W 增大,静态工作点
値	U_{EQ}/V	0.895	2.853	Q降低,电路容易出
113.	波形	圆顶波	底部削平的正弦波	现截止失真; R_W
\ <u>1</u>	I_{CQ}/mA	0.895	2.853	减小,静态工作点 Q
计	U_{BEQ}/V	0.558	0.635	升高,电路容易出现
算值	U_{CEQ}/V	8.225	0.511	饱和失真
進	$R_1/k\Omega$	68.3	22.61	

可以看到,波形符合了仿真时的波形:截止失真输出圆顶波,饱和失真输出底部削平的正弦波。

截止失真是静态工作点偏低造成的。截止失真时,b、e 极电压较小,而 c 极电压较高。此时 be 间近乎不导通,这是可以由实验数据佐证的: $U_{BEQ}=0.558V<0.6V$,与其他实验中所得的导通压降(略高于0.6V)有明显差异。

饱和失真是静态工作点偏高造成的。饱和失真时,b、e 极电压较高,而 c 极电压较低。此时 ce 间 PN 结正偏,这是可以由实验数据佐证的: $U_{CEQ}=0.511V < U_{BEQ}=0.635V$ 。

(3) 测量放大电路的最大不失真输出电压

分别调节 R_W 和 U_S ,用示波器观察输出电压 U_o 的波形,使输出波形为最大不失真正弦波(即饱和失真和截止失真几乎同时出现时)。测量此时静态集电极电流 I_{CQ} 和输出电压的峰峰值 U_{OPP} ,将测量结果记录在表 2–10–4 中。

实验室测量数据如下。(从上到下分别为 R_W 、ceb 极电压)

201	U_{BQ}/V	3.011
测量	U_{CQ}/V	4.741
量值	U_{EQ}/V	2.386
Щ	U_{OPP}/mV	40 (输入信号)
S.L.	I_{CQ}/mA	2.386
计算	U_{BEQ}/V	0.625
值	U_{CEQ}/V	2.355
Щ	$R_1/k\Omega$	31.95

仿真部分已经分析过最大不失真电压的理论部分了。对实验结果进行分析。

由于实际很难观察临界点,因此,测量的时候采用的方法是连续旋转信号源输入旋钮,先确定输入信号峰峰值的区间($20\text{mV}^{\sim}60\text{mV}$,这两个端点时失真恰较明显),再取其平均值 40mV 附近仔细观察。最后发现 40mV 是最符合的。

此时, I_{CQ} 略大于 2mA,而 2mA 时是不失真的。 U_{BE} 也没有截止,而波形产生了略微的失真,恰处于临界点。

五、实验总结

本次实验我们研究了三极管放大电路的基本性能测量。不得不说,直到这次实验我才充分见识到,为何模电实验比数电实验更加困难。

这次实验的难点很多。首先是电路数据的精确。本次实验电阻可以像往常一样精确,但电容误差非常明显,标称值为 100μF 的电容实测容值均超过了 110。且大电容很少,这使得电容的参数值无法精确。这次实验对电容要求尚不高,下次实验就很难说了。

其次是波形的读取。由于输入电压太小,无论是易派的示波器还是实验室的示波器都很难准确读取" $u_i = 10mV$ "的静态工作点。

另外,本次实验由于器件问题,前期排查了很久电路而没有发现错误。所以虽然验收完成了,实际上实验的部分留到了12点才完成。