PROJECT OBJECTIVE:

Chronic Kidney Disease (CKD) is a major medical problem and can be cured if treated in the early stages. Usually, people are not aware that medical tests we take for different purposes could contain valuable information concerning kidney diseases. Consequently, attributes of various medical tests are investigated to distinguish which attributes may contain helpful information about the disease. The information says that it helps us to measure the severity of the problem and we make use of such information to build a machine learning model that predicts Chronic Kidney Disease

Chronic Kidney Disease prediction is one of the most important issues in healthcare analytics. The most interesting and challenging tasks in day-to-day life is prediction in medical field. 10% of the population worldwide is affected by chronic kidney disease (CKD), and millions die each year because they do not have access to affordable treatment. Chronic kidney Disease can be cured, if treated in the early stages. The main aim of this project is to predict whether the patient have chronic kidney disease or not, in more accurate and faster way based on certain diagnostic measurements like Blood Pressure (Bp), Albumin(Al).

LITERATURE SURVEY

S.No	PAPER TITLE	ALGORITHM / TECHNIQUE USED	DESCRIPTION
1.	Learning Classifier for Predicting	Classification, Decision tree classifier, Random	This proposed system detects chronic kidney disease using machine learning; They have attained an accuracy of 100% in decision tree classifier, 95.12% in random forest and 98.82% in logistic regression.

2.	Statistical and Data Mining Aspects on Kidney Stones: A Systematic Review and Meta- analysis	Random Forest, Support vector machine, Logistic and NN	They predicted good accuracy with Classification tree and Random Forest (93%) followed by Support Vector Machines (SVM) (91.98%). Logistic and NN has also shown good accuracy results with zero relative absolute error and 100% correctly classified
3.	Prediction of chronic kidney disease (CKD) using Data Science	Support Vector Machine, Random Forest, XGBoost, Logistic Regression, Neural networks	results. This proposed research work is primarily focused on finding the best classification algorithm which can be used for the diagnosis of CKD based on the classification report.
4.	using Machine Learning	and Support Vector	This study proposes the use of machine learning techniques for CKD such as Ant Colony Optimization (ACO) technique and Support Vector Machine (SVM) classifier. Final output predicts whether the person is having CKD or not by using minimum number of features.

			The 14 different
			properties
			are analysed and linked
			to
			chronic kidney disorder
			victims and foretold
	A Neural Network based		accuracy for a machine
5.		Artificial Neural Network	learning algorithm
	Predicting Chronic Kidney	algorithms	named
	Diseases		Artificial Neural Network.
			After analysing the
			outcomes, it is
			recognized
			that the algorithm gives
			correctness of 96
			A machine learning
			approach for diagnosing
			CKD was proposed in this
			study. An ensemble
		Logistic regression,	model
	A Machine Learning		that combines logistic
	Methodology for	*	regression and random
6.	Diagnosing Chronic	,	forest with the aid of
	Kidney Disease		perceptron was utilized
	Marie, Bisease	and Feed Forward	and
			it was able to attain an
			average accuracy of
			99.83%
			after ten times of
			simulation

EMPATHY MAP

PROBLEM STATEMENT:

Chronic Kidney Disease is very common, but less than 1 in 10 people with CKD ever require dialysis (artificial kidney treatment) or a kidney transplant. Someone with CKD is at increased risk of heart attack or stroke, especially if they smoke or are overweight. A simple detection technique using machine learning is introduced to detect and predict the disease at an early stage, so that treatment is done at right time without any complexity.

IDEATION

PROPOSED SOLUTION

S. No.	Parameter	Description
1.	Problem Statement (Problem to	Early Detection of Chronic Kidney Disease
	be solved)	using Machine Learning.
2.	Idea / Solution description	Early detection and cure of Chronic Kidney
		Disease(CKD) is extremely desirable as it
		can lead to the prevention of unwanted
		consequences. Machine learning methods
		are used to predict the various stages
		ofCKD
		using the dataset obtained from the medical
		records of affected people.
3.	Novelty / Uniqueness	Specifically, we have used the Random
		Forest and J48 algorithms to obtain a
		sustainable and practicable model to detect
		various stages of CKD with comprehensive
		medical accuracy.

4.	Social Impact /	As the Chronic Kidney Diseases (CKD) is a
	Customer Satisfaction	silent disease, as most sufferers have no
		symptoms until kidney function drops. Our
		project can be a huge game changer in a
		medical field by helping doctors to predict
		the
		CKD in a early stage and to the lives of
		thousands of people.
5.	Business Model (Revenue Model)	This application is recommended to
		patients in low cost with subscription
		basis.
6.	Scalability of the Solution	Machine-learning methods can be
		employed to better analyse nanomaterials
		and nanoscale biological materials, and aid
		in the effort to find new materials and the
		best routes to design nanomaterials
		optimally.

PROBLEM SOLUTION FIT

CUSTOMER JOURNEY MAP

SOLUTION ARCHITECTURE

USER STORIES

User Type	Functional	User Story	User Story / Task	Acceptance criteria	Priori
	Requirement	Number			
	(Epic)				
Customer	Login	USN-1	As a user, I can login for the application by	I can access my account	High
(Web User)			entering my email	/ dashboard	

		USN-2	As a user, I will login, confirmation email once I	I can receive	High
			have registered	confirmation email	
		USN-3	As a user, I can login for the application through	I can login and access the	Mediu
			Mobile number	application	
	Dashboard	USN-4	As a user, I need to enter my Details	I can get information as	High
				per details	
	Dashboard	USN-5	As a user, I need to enter my Test Details	I can get result based on	High
				test details	
Administrator	Services	USN-6	As a admin I need to provide valid result	I can get a result	High
		USN-7	As a admin I need to provide valid/useful	I can get suggestions	Mediu
			Suggestions		
	Mass Data Process	USN-8	As a admin need to collect all the details and	I can use it for later period	High
			information		
		USN-9	As a admin I need to store all the details and	I can use it for later period	High
			information		
Hospital	Login	USN-10	As a admin I need to login and access details of	I can use for it further next	High
Administrator			customers	step process	
	Dashboard	USN-11	As a admin I need to proceed the details with case	I can use for further next step	High
			head	process	
					-

FUNCTIONAL REQUIREMENTS

FR NO	Functional Requirement (Epic)	Sub Requirement (Story/Sub- Task)
1	User Registration	User should make registration through the login page
2	User Confirmation	User make sure to confirm the login through sms or mail
3	User Requirements	Create an account,recalculate data using a certain algorithm, and perform other

		actions.
4	Business Requirements	An Application allowing patient to identify Chronic kidney disease in around the time of 15 minutes.
5	User Authentication	Make the user to validate credentials through Password
6	User Authorization	Once the server receives a request with authorization, it can verify your credentials and grant youraccess to the resources.

Non-functional Requirements:

FR	Non-	Description
No.	Functional	
	Requirement	

NFR-1 Usability	 Preventing loss of kidney disease. Delaying oravoiding progression to kidney failure.
NFR-2 Security	 Encrypt your data. Focus the hosting service measure Avoid security misconfigurations.
NFR-3 Reliability	Result should be 99.99% accurate.
NFR-4 Performance	Compare the data with symptoms to give results.
NFR-5 Availability	It access at any time.
NFR-6 Scalability	 Memory utilization. CPU usage. Networkinput/output. Disk input/output.

DATA FLOW DIAGRAM

TECHNOLOGY ARCHITECTURE

MILESTONE ACTIVITY

Activity number	Activity name	Detailed activity description	Assigned to

	Preparation Phase	1. Access the resources (courses) in project dashboard 2. Access the guided project workspace 3. Create GitHub account & collaborate with Project Repository in project workspace 4. Set-up the Laptop / Computers based on the prerequisites for each technology track	
2	Ideation Phase		
2.1	Literature survey	Literature survey on the selected project & Information Gathering	G.V.Arun
2.2	Define a problem statement	Prepare the list of problem statements to understand the user needs	M.Gokul shyam
2.3	Empathy Map	Preparation of Empathy Map Canvas to capture the user Pains & Gains	Jeyrenga rajendiran
2.4	Brainstorm & idea prioritization	List the ideas by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance	

PROJECT DESIGN PHASE I

Activity number	Activity name	Detailed activity description	Assigned to
3.1	Proposed Solution	Preparation of proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution	M.Gokul shyam
3.2	Problem Solution Fit	Prepared problem is analysed and make effective solutions for the problem	Muthalagu
3.3	Solution Architecture	Prepare an architecture for solution	G.V.Arun

PROJECT DESIGN PHASE II

Activity number	Activity name	Detailed activity description	Assigned to
4.1	Requirement	Prepare the	M.Gokul shyam
	Analysis	Functional	
		Requirement and	
		Non- Functional	
		Document	

4.2	Customer Journey	Preparation of	Jeyrenga rajendiran
		customer journey	
		maps to	
		understand the	
		user interactions &	
		experiences with	
		the application	
		(entry to exit)	
	1	1	
4.3	Data Flow	Prepare a Data	Muthalagu
	Diagrams	Flow Diagram for	
		Project use level0	
		(Industry	
		Standard)	
4.4	Technology	Prepare	G.V.Arun
	Architecture	Technology	
		Architecture of the	
		solution	

PROJECT PLANNING PHASE

Activity number	Activity name	Detailed activity description	Assigned to
5.1	Milestones & Tasks	Prepare Milestone & Activity List	M.Gokul shyam
5.2	Sprint Schedules	Prepare Sprint Delivery Plan	M.Gokul shyam

PROJECT DEVELOPMENT PHASE

Activity number	Activity name	Detailed activity description	Assigned to
6.1	Coding & Solutioning	Sprint-1 Delivery: Develop the Code, Test and push it to GitHub.	Muthalagu
6.2	Acceptance Testing	Sprint-2 Delivery: Develop the Code, Test and push it to GitHub. Sprint-3 Delivery: Develop the Code,	M.Gokul shyam G.V.Arun

		Test and push it to GitHub.	
6.3	Performance Testing	ı	Muthalgu Jeyrenga rajendiran

Sprint	Functional Requirement (Epic)	User Story Numb er	User Story / Task	Story Poin ts	Priority	Team Members
Sprint-1	Registration	USN-1	New user enters into the System. He/ She can register into the Application by entering user details such as username	2	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran

			and mobile number			
Sprint-2	User Verification	USN-2	The user will receive OTP through SMS.	3	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint-1	Login	USN-3	After Successful registration the user can Log into the application by entering the registered Username and Password	2	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Member
Sprint -1		USN-4	CAPTCHA will be provided to reduce the network traffic.	2	Medium	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -2	Dashboard	USN-5	User can get into the Dashboard only when the Verification Successful. After the user can access the displayed information in the Dashboard	3	Medium	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -3	Data collection	USN-6	Diagnosed result data will be entered by the user.	2	Medium	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran

Sprint -4	Prediction result	USN-7	By the collected data the trained model will predict and display the result.	2	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -4		USN-8	Based on the result the suggestion varies.	2	Low	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -1	Dataset Collection	USN-9	Chronic Kidney Disease dataset identification	2	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint -1	Clean the Dataset	USN-10	The dataset had to be cleaned. Cleaning process includes removing null values, Replacing missing values, segregation of test and train data	3	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -2	Train ML Model in IBM	USN-11	The model will be trained in IBM.	4	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -3	Model Testing	USN-12	The model will be tested using the test data	3	High	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -3	Integration	USN-13	HTML file and python Code Integration	2	Medium	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran

Sprint -4	Deployment	USN-14	The model will be deployed in Cloud	3	Medium	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran
Sprint -4	Further Clarification	USN-15	The problems which are faced by the user while using the application can be clarified	2	Medium	M.Gokul shyam G.V.Arun S.Muthalagu Jeyrengarajendiran

Project Tracker, Velocity & Burndown Chart

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint -1	11	6 Days	24 Oct 2022	29 Oct 2022	11	19 Nov 2022
Sprint -2	10	6 Days	31 Oct 2022	05 Nov 2022	10	05 Nov 2022
Sprint -3	7	6 Days	07 Nov 2022	12 Nov 2022	7	12 Nov 2022
Sprint -4	9	6 Days	14 Nov 2022	19 Nov 2022	9	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day). Sprint 1 AV = Sprint duration/velocity = 11/6 = 1.83 Sprint 2 AV = Sprint duration/velocity = 10/6 = 1.67 Sprint 3 AV = Sprint duration/velocity = 7/6= 1.16 Sprint 4 AV = Sprint duration/velocity = 9/6 = 1.5

SPRINT 1

https://github.com/IBM-EPBL/IBM-Project-31385-

1660199997/blob/36b161209c66ca0b300b7be7af5f9107068834ee/Project%20Devlopment% 20Phase/Sprint%201/chronic%20kidney%20disease-%20cleaning%20the%20dataset.ipynb

SPRINT 2

https://github.com/IBM-EPBL/IBM-Project-31385-1660199997/blob/36b161209c66ca0b300b7be7af5f9107068834ee/Project%20Devlopment% 20Phase/Sprint%202/Model%20Building.ipynb

SPRINT 3

https://github.com/IBM-EPBL/IBM-Project-31385-1660199997/blob/36b161209c66ca0b300b7be7af5f9107068834ee/Project%20Devlopment% 20Phase/Sprint%203/Local%20Deployment.ipynb

SPRINT 4

https://github.com/IBM-EPBL/IBM-Project-31385-1660199997/blob/36b161209c66ca0b300b7be7af5f9107068834ee/Project%20Devlopment% 20Phase/Sprint%204/Flask%20Connectivity.ipynb

CONCLUSION

Consequently, the indirect agreement with the objectives of the project, the CRISP-DM methodology was adapted to the context of the problem so that the different logically organized stages were taken; data collection, pre-processing, learning, evaluation, and selection, which allowed the construction of a model capable of classifying the possibility of a diagnosis of CKD with an accuracy of 93%. As evidenced in the results, the decision forests algorithm has obtained quite optimal results, where

predictions of 93% have been obtained. Data preparation is a fundamental step in the process and the absolute precision of the model is directly dependent on this phase. Thanks to the models, we can see how changing the characteristics affects the search for the target value with a simple change of column selection or improvements in the data. The innovation of this work results from the design adjusted to the environment of the health system in Iraq and the pathology of the CKD in our country, with a methodology adapted to the case study and a production architecture proposal for the model with Microsoft Azure tools of form that allows satisfying in the future the scalability of the solution. Furthermore, this methodology could apply to clinical data of other diseases and pathologies inaccurate medical diagnoses. The development of this project allowed the author to acquire more excellent knowledge through both practical and theoretical work about current techniques for the development of machine learning.

GITHUB LINK:https://github.com/IBM-EPBL/IBM-Project-31385-1660199997