CAN Controller Area Network

- sériový komunikační protokol
- vyvinut firmou Bosch
- definuje fyzickou a linkovou vrstvu ISO-OSI modelu
- standardizováno normou ISO 11898
- v současné době dvě varianty CAN2.0A a CAN2.0B

Charakteristické vlastnosti protokolu

- broadcast sběrnice s prioritním rozhodování o přístupu k médiu
- přenosová rychlost do 1Mbit/s
- délka datového pole komunikačního rámce maximálně 8 bytů
- rozsáhlá detekce chyb

CAN - výhody

- vysoká spolehlivost
 - Hammingova vzdálenost 6
- vysoká komunikační rychlost s krátkou dobou odezvy
 - nejkratší doba mezi dvěma zprávami 47us
- nízká cena zařízení
- rozsáhlá podpora výrobců HW
 - plná implementace protokolu na čipu
 - více než 10 firem
 - více než 25 typů čipů implementující CAN
 - bez licenčních poplatků

CAN - oblasti použití

- automatizace výroby
- procesní řízení
- distribuované inteligentní periférie
- automobilový průmysl (BMW, Mercedes-Benz, Renault, Fiat, Volvo)
- robotika, textilní a papírenské stroje
- lékařská technika
- transportní systémy
- zabezpečovací systémy
- informační systémy

CAN v ISO/OSI modelu

Application

Presentation

Session

Transport

Network

Datalink

Physical

Datalink

Logical Link Control

Acceptance Filtering

Overload Notification

Recovery Management

Medium Access Control

Data Encapsulating

/ Decapsulating

Frame Coding

(Stuffing, Destuffing)

Medium Access Management

Error Detecting

Error Signaling

Acknowledgment

Serialization/Deserialization

Physical

Bit Encoding/Decoding

Bit Timing

Synchronization

Driver/Receiver Characteristics

CAN - fyzická vrstva

Physical Signaling (PLS)

- Bit Encoding/Decoding
 - Bit Timing
 - Synchronization

Physical Medium Attachment (PMA)

Transceiver Characteristics

Medium Dependent Interface (MDI)

Cable/Connector

- •kódování/dekódování
- časování
- synchronizace
- •charakteristika transcieveru
- •specifikace konektoru a kabeláže

NRZ kódování

NRZ - Non Return to Zero

- •fyzická vrstva musí podporovat reprezentaci dominantní a recesivní úrovně tak, aby sběrnice fungovala jako "wired AND"
- •není zaručeno, že se v každém bitu nachází náběžná/sestupná hrana

Bit-stuffing (vkládání bitů)

Problém: v případě sekvence bitů stejné polarity neumožňuje NRZ synchronizaci mezi vysílačem a přijímačem

Poměr mezi uživatelskými bity a vloženými bity

• na první pohled se zdá, že je tento poměr 5:1, ale ve skutečnosti (v návaznosti na stavbu rámce / Data Length Code a Control Field) je tento poměr výhodnější

Časování bitů

Sample Point

programovatelné místo vzorkování umožňuje optimalizovat vzorkování v závislosti na délce sběrnice a kvalitě hran

Přenosová rychlost versus délka sběrnice

 s použitím posilovačů sběrnice lze dosáhnout větších vzdáleností než 1km

Praktická délka sběrnice

Bit Rate	Bus Length	Nominal Bit-Time
1 Mbit/s	30 m	1 μs
800 kbit/s	50 m	1,25 μs
500 kbit/s	100 m	2 μs
250 kbit/s	250 m	4 μs
125 kbit/s	500 m	8 μs
62,5 kbit/s	1000 m	20 μs
20 kbit/s	2500 m	50 μs
10 kbit/s	5000 m	100 μs

- délka sběrnice je závislá na následujících faktorech:
 - zpoždění na vedení
 - rozdíly v délce bit-time v závislosti na toleranci oscilátorů
 - úbytku napětí v závislosti na odporech na vedení

(Re)synchronizace

Problém: každý node má svůj vlastní oscilátor ⇒ mezi vysílačem a přijímačem může dojít k fázovému posunu

hrana je očekávána uvnitř Sync_Seg, když se dostaví později uvnitř Prop Seg, pak je prodloužena fáze Phase Seg1 o RJW

(Re)synchronizace

je-li hrana detekována dříve (uvnitř Phase_Seg2 předchozího bit-time) potom přijímač zkrátí Phase_Seg2 maximálně o RJW

Připojení na přenosové médium

- CAN High-Speed (ISO 11898-2) nejdůležitější
- CAN Low-Speed (ISO 11519-1) využíváno pouze jako německý standard pro zemědělské stroje
- Transciever odolný proti chybám (ISO 11898-3) uvnitř automobilů do 125 kbit/s, při chybě
 (například spojení 2 vodičů) přejde z diferenčního
 přenosu na přenos po jednom vodiči
- Existují nestandardizovaná řešení pro optické vlákno a bezdrátový přenos

ISO 11898-2 - zapojení sběrnice

• standard předpokládá topologii blízkou sběrnici ve snaze omezit odrazy na vedení

ISO 11898-2 - realizace nódu

referenční napětí Vref je 0,5 x Vcc

Nominální napětí pro recesivní a dominantní úrovně

Náhradní zapojení transciveru CAN

Elektromagnetická Interference

 díky diferenčnímu charakteru přenosu je CAN necitlivý na elektromagnetické rušení působící shodně na oba vodiče

ISO 11898-2 signály

- Tx a Rx jsou směrové signály (reprezentace orientovanými hranami)
- CAN_H a CAN_L nemají směr
- každý vysílací node čte zpět vysílaný signál, ale mezi vyslaným a přijatým signálem je zpoždění

ISO 11898-3 fault tolerant

V případě neporušeného vedení jde v podstatě o diferenční přenos

- dominantní bit je reprezentován 3,6 V (CAN_H) a 1,4 V(CAN_L)
- resesivní bit reprezentován 0 V (CAN_H) a 5 V(CAN_L)

Zapojení konektorů

9-pin D-Sub: DIN 41652

Pin	Signal	Description
1	-	Reserved
2	CAN_L	CAN_L bus line dominant low
3	CAN_GND	CAN Ground
4	-	Reserved
5	(CAN_SHLD)	Optional CAN Shield
6	GND	Optional Ground
7	CAN_H	CAN_H bus line dominant high
8	-	Reserved
9	(CAN_V+)	Optional CAN external supply

• 9-pinový Sub-D konektor (využívá i CANopen, SDS,...)

CAN - linková vrstva

- Logical link control (LLC)
 - filtrování na příjmu (acceptance filtering)
- Medium Access Control (MAC)
 - přístup na sběrnici
 - detekování a signalizace chyb
 - stavba rámců
 - potvrzování

Filtrování na příjmu

• broadcast komunikace - každá stanice "slyší" všechny rámce, poté se rozhodne zda je přijme

Vzdálený požadavek (remote reguest)

po vyslání požadavku (station1) je jiným nódem (station 2) vyslána odpověď, která může být přijata dalším nódem (station 4)

Přístup na sběrnici

Problém - jestliže chce v danou chvíli zapisovat na sběrnici více nódů (station 1, 2, 3) potom dojde ke kolizi

Řešení - nedestruktivní bitové rozhodování podle priority

....CSMA/DCR (Deterministic Collision Resolution)další název....CSMA/CD+AMP (Arbitration on Message Priority)

Prioritní rozhodování

Komunikační služby

 vyslání datového rámce z jednoho nódu (producenta) do jednoho nebo více nódů (konzumentů)

vyslání žádosti (remote frame) z jednoho nebo více konzumentů,
 ...producent odpoví datovým rámcem

Datový rámec (data frame)

ACKnowledgement - vysílající node vysílá recesivní úroveň. Libovolný nód, který přijal rámec bez chyb, potvrdí příjem rámce vysláním dominantního bitu

Arbitration Field

SRR (Substitute remote request) ...recessive

IDE (Identifier extension) ...tento bit rozhoduje o tom zdali jde o Extended format (recessive) nebo Standard format (dominant)

DLC (Data length code) ...délka dat (0-8 bytů)

r0,r1 ... rezervovány

Generování CRC

$$x^{15} + x^{14} + x^{10} + x^8 + x^7 + x^4 + x^3 + 1$$

chyba CRC je detekována, jestliže vypočítaný výsledek není shodný s CRC sekvencí - v takovém případě je zpráva neplatná a je vyslán chybový rámec pro vyžádání retransmise

Remote rámec

nód může vyžádat data ze zdroje vysláním remote rámce s identifikátorem totožným s datovým rámcem (arbitration field se liší o RTR)

mezi datovým a remote rámcem jsou dva rozdíly:

- •RTR je dominantí u datového a recesivní u remote rámce (v případě současného vyslání obou naráz zvítězí v přístupu na médium datový rámec)
- •remote rámec nemá datové pole

CAN - detekce chyb

- definovány rozdílné chybové rámce
- chyba úrovně signálu (neplatí při prioritním rozhodování)
- detekování CRC chyby
- CRC kód je 15bitový s Hammingovou vzdáleností 6
 - je schopen odhalit 5 chyb v náhodně rozložených bitech (v SOF, Arbitration, Control and Data Field)
 - je schopen odhalit shlukové chyby do délky řetězce 15 bitů
- porušení formátu zprávy
- porušení bit stuffing
- nepotvrzení příjmu zprávy
- Při komunikační rychlosti 1Mbit/s se zatížením sítě 50 procent, doby životnosti zařízení 4000 hodin s průměrnou délkou zpráv 80 bitů je pravděpodobnost neodhalené chyby menší než 10⁻².

Globalizace lokálních chyb

Transmitter	data	data		8 bit	3	
Receiver 1			6 bit			
Receiver 2		6 bit				
bus-level						

Receiver 2 detekuje chybu a oznámí to ostatním nódům zasláním Error Flag.

Při detekci 6.bitu Error Flagu poznají ostatní porušení bit stuffing a vyšlou také Error Flag (dominantní bity).

Po Error delimiteru (8 bitů) a Intermission field, zkouší Transmitter opět vysílat.

Bit stuffing Error

Bit Error

CRC Error

CAN - signalizace chyb

Problém: těžce poškozený nód může zahltit sběrnici signalizací chyby pomocí chybových rámců

- dva čítače chyb
 - při vysílání
 - při příjmu
- definovány chybové stavy zařízení
 - aktivní vysílá, přijímá, může přerušit aktivní vysílání
 - pasivní vysílá, přijímá, nemůže přerušit aktivní vysílání
 - odpojeno nepodílí se na činnosti sběrnice

Stav	hodnota čítače chyb	hodnota čítače chyb
zařízení	při vysílání	při příjmu
aktivní	< 128	< 128
pasivní	>= 127	>= 128
odpojeno	>= 256	-

CAN - podpora výrobců

- CAN podporuje většina firem vyrábějící jednočipové mikroprocesory
- není vázáno licenčními poplatky
- plná implementace protokolu CAN2.0A i CAN2.0B
 - definované HW masky a filtry
 - násobné bufery zpráv
- budiče sběrnic
- samostatné CAN řadiče
 - Intel 82527, Philips 80c200, Siemens 81c90
- integrované řadiče s jednočipovými mikroprocesory
- I/O periférie
- hradlové pole

CAN - příklad zapojení

CAN - protokoly aplikační vrstvy

- CAN implementuje pouze 1 a 2 vrstvu ISO OSI modelu
- V současné době standardizovány protokoly aplikační vrstvy
 - CAL CiA
 - CANopen CiA
 - DeviceNet Allen-Bradley
 - SDS Honeywell
 - CANKingdom Kvaser
- standardizací a podporou protokolu CAN a dalších vrstev se zabývá mezinárodní organizace CiA (CAN in Automation)
- informace: http://www.can-cia.de/