An Event-B Specification of

SquareRoot

This Event-B system is based on a model that appeared in the book: System Modelling & Design Using Event-B by Ken Robinson.

This project implements an integer square root algorithm. The algorithm performs a binary search of a value x such that $x^*x = input$, ie x will become the square root.

1	CONTEXT SquareRootDefinition	2 2
	1.1 SQRT	2
2	CONTEXT Theories	3
3	MACHINE SquareRoot	4
	3.1 input input_valid result_valid	4
	$3.2 \text{setInput}(v) \dots \dots \dots \dots \dots \dots \dots \dots \dots$	4
	3.3 SquareRoot	4
	3.4 getResult(out_result)	5
4	REFINEMENT SquareRoot_R1_AddIncrementalImprovements d	6
	4.1 high low	6
	4.2 setInput extends setInput	6
	4.3 SquareRoot refines SquareRoot	7
	4.4 Improve(h l)	7
5	REFINEMENT SquareRoot_R2_WithImproveLowerOrUpper 🛕	8
	5.1	8
	5.2 ImproveLowerBound(m) refines Improve	8
	5.3 ImproveUpperBound(m) refines Improve	8
6	REFINEMENT SquareRoot_R3_AddDivisionToFindM	9
	6.1	9
	6.2 ImproveLowerBound(m) refines ImproveLowerBound	9
	6.3 ImproveUpperBound(m) refines ImproveUpperBound	9
7	REFINEMENT SquareRoot_R4_WithMiddleInVariable	10
	7.1 mid	10
	7.2 $\operatorname{setInput}(v)$ refines $\operatorname{setInput}$	10
	7.3 ImproveLowerBound refines ImproveLowerBound	10
	7.4 ImproveUpperBound refines ImproveUpperBound	11

1

This is the mathematical definition of the function SQRT.

EXTENDS Theories

CONSTANTS

1.1

```
SQRT
```

END

```
AXIOMS
  axm1:
                  \mathrm{SQRT} \in \mathbb{N} \to \mathbb{N}
                 \forall m, n \cdot m \in \mathbb{N} \land n \in \mathbb{N} \Rightarrow (m = \operatorname{SQRT}(n) \Leftrightarrow m * m \leq n \land (m + 1) * (m + 1) > n)
  axm2:
THEOREM
  \mathtt{thm1}\colon \quad \forall n \cdot n \in \mathbb{N} \Rightarrow \mathrm{SQRT}(n) * \mathrm{SQRT}(n) \leq n \wedge (\mathrm{SQRT}(n) + 1) * (\mathrm{SQRT}(n) + 1) > n
  thm2: \forall n \cdot n \in \mathbb{N} \Rightarrow n = SQRT(n * n)
```

Helpful theorems when proving the square root algorithm.

AXIOMS

 $\mathtt{axm1} \colon \quad \forall n \cdot n \in \mathbb{N} \Rightarrow \left(\exists m \cdot m \in \mathbb{N} \land \left(n = \frac{2}{m} * m \lor n = \frac{2}{m} * m + 1\right)\right) \quad \text{Every natural number is either even or odd.}$

THEOREM

thm2: $\forall n \cdot n \in \mathbb{N} \Rightarrow n < (n+1)*(n+1)$ Every natural number is less than the square of its successor.

thm3: $\forall m, n \cdot m \in \mathbb{N} \land n \in \mathbb{N} \land n > m \Rightarrow (m+n) \div 2 < n$ The mean of any pair of unequal natural numbers is less than the larger of the pair.

thm4: $\forall m, n \cdot m \in \mathbb{N} \land n \in \mathbb{N} \land n > m \Rightarrow (m+n) \div 2 \geq m$ The mean of any pair of natural numbers is greater than or equal to the smaller of the pair.

END

We first define the sequence: setInput,SquareRoot,getResult. The value calculated is entirely desribed using the mathematical description.

SEES SquareRootDefinition

```
3.1
VARIABLES
  input
                  The value to calculate the square root for.
  input\_valid
                 True when a number has been supplied
  result
                  This is the calculated result
  result\_valid
                 True when result = sqrt(num)
INVARIANTS
  inv 1:
            input \in \mathbb{N}
 inv 2:
             input\_valid \in BOOL
            result \in \mathbb{N}
 inv_3:
            result\_valid \in BOOL
  inv_4:
             input\_valid = TRUE \land result\_valid = TRUE \Rightarrow result = SQRT(input)
  inv_5:
EVENT INITIALISATION
THEN
 act_1:
            input := 0
            input\_valid := FALSE
 act_2:
            result := 0
 act 3:
 act 4:
            result\_valid := FALSE
END
                                                                                                                    3.2
EVENT setInput
ANY
  v
WHERE
            v \in \mathbb{N}
  grd_1:
             input\_valid = FALSE
 grd_2:
 grd_3:
            result\_valid = FALSE
THEN
 act_1:
             input := v
             input \ valid := TRUE
 act_2:
END
                                                                                                                    3.3
EVENT SquareRoot
WHERE
             input\_valid = TRUE
  grd_1:
 grd_2:
             result\_valid = FALSE
THEN
  act_1:
             result := SQRT(input)
                     alternative
                                              to
                                                      specify
                                                                          non-deterministic
                                                                                                    assignment:
             \operatorname{sqrt} : | (\operatorname{sqrt}' \in \mathbb{N} \wedge \operatorname{sqrt}' * \operatorname{sqrt}' \leq \operatorname{num} \wedge \operatorname{num} < (\operatorname{sqrt}' + 1) * (\operatorname{sqrt}' + 1))
            result\_valid := TRUE
 act_2:
END
```

```
EVENT getResult

ANY

out_result

WHERE

grd_1: result_valid = TRUE

grd_2: out_result = result

END
```

3.4

4.1

Add a lower and upper bound of the correct answer. Each improvement will narrow the bounds until, eventually, we have a single number as the answer.

▲ Improve/vrt/VAR

REFINES SquareRoot SEES SquareRootDefinition

VARIABLES

low When improving we have a lower bound of the correct answer.

high And an upper bound of the correct answer.

INVARIANTS

```
inv1_1:
            low \in \mathbb{N}
inv12:
            high \in \mathbb{N}
inv13:
            low + 1 \le high
inv1_4:
            low * low \le input
inv15:
            input < high * high
inv16:
            low < high
theorem
           thm1_1:
            low + 1 \neq high \Rightarrow low < (low + high) \div 2
theorem
            thm1_2:
            (low + high) \div 2 < high
theorem
            thm1_3:
            high - low > 0
theorem
            thm1_4:
            high - low \in \mathbb{N}
```

VARIANTS

high - low

The variant guarantees that the span must decrease in each step. Eventually the span will be zero and a number has been found.

EVENT INITIALISATION EXTENDS INITIALISATION

THEN

```
init1_1: low := 0
init1_2: high := 1
```

END

EVENT setInput

4.2

When num is set, we specify that a lower and upper bound is magically selected in some way, that enables the improvement step to work. We do not yet know, how this performed.

EXTENDS setInput

```
THEN
```

```
\begin{array}{ll} \texttt{act1\_1:} & low: | \ low' \in \mathbb{N} \land low' * low' \leq v \\ \texttt{act1\_2:} & high: | \ high' \in \mathbb{N} \land v < high' * high' \\ \texttt{END} \end{array}
```

EVENT SquareRoot

We detect the terminating case, when low+1=high, then $low = \sqrt{num}$

REFINES SquareRoot

CONVERGENT EVENT Improve

END

4.4

4.3

The improve event magically selects an l and h, that are an improvement on the existing bounds. We do not know how this is done, but we specify the result here.

5 10(a) 2(h)

5.3

We now split the improve event into improveLowerBound and improveUpperBound.

▲ ImproveLowerBound/grd1_5/GRD

▲ ImproveUpperBound/grd1_5/GRD

REFINES SquareRoot_R1_AddIncrementalImprovements SEES SquareRootDefinition

```
5.1
VARIABLES
```

```
5.2
EVENT ImproveLowerBound
REFINES Improve
ANY
 m
WHERE
 grd2_1: low + 1 \neq high
 grd2_2: m \in \mathbb{N}
```

```
grd2_4: m*m \le input m is a better lower bound!
WITH
 1: l=m
```

```
h: h = high
THEN
 act2_1: low := m
```

EVENT ImproveUpperBound

grd2_3: $low < m \land m < high$

REFINES Improve

ANY

END

m

WHERE

```
grd2_1: low + 1 \neq high
 grd2_2: m \in \mathbb{N}
 grd2_3: low < m \land m < high
 grd2_4: m*m > input m is a better upper bound!
WITH
 1: l = low
h: h = m
```

 $act2_1: high := m$ END

THEN

6

6.2

6.3

We now pick a suitable middle value by dividing by 2.

 ${\tt REFINES}\ SquareRoot_R2_WithImproveLowerOrUpper$ ${\tt SEES} \ {\tt SquareRootDefinition}$

```
6.1
VARIABLES
```

```
EVENT ImproveLowerBound
REFINES ImproveLowerBound
{\tt ANY}
 m
WHERE
 grd3_1: low + 1 \neq high
 grd3_2: m = (low + high) \div 2
 grd3_3: m*m \le input m is a better lower bound!
THEN
 act3_1: low := m
END
EVENT ImproveUpperBound
REFINES ImproveUpperBound
ANY
 m
```

THEN

WHERE

grd3_1: $low + 1 \neq high$ grd3_2: $m = (low + high) \div 2$ grd3_3: m*m > input

act3_1: high := m m is a better upper bound! END

7

We now store the middle value in a variable.

WITH

m: THEN m = mid mid is a better value for low

 $\label{eq:refines} \begin{array}{l} {\rm ReFINES~SquareRoot_R3_AddDivisionToFindM} \\ {\rm SEES~SquareRootDefinition} \end{array}$

```
7.1
VARIABLES
 mid Track each middle value to find next bound.,
INVARIANTS
 inv1: mid = (low + high) \div 2
 inv2:
         mid \in \mathbb{N}
EVENT INITIALISATION
THEN
            input := 0
 init4_1:
 init4_2:
            input \ valid := FALSE
 init4_3:
           low := 0
 init4_4: mid := 0
 init4_5:
            high := 1
 init4_6:
            result := 0
            result\_valid := FALSE
 init4_7:
END
EVENT setInput
                                                                                            7.2
REFINES setInput
ANY
 v
WHERE
 grd4_1: v \in \mathbb{N}
 grd4_2: input_valid = FALSE
 grd4_3: result_valid = FALSE
THEN
 init4_0: input := v
 init4_1: low := 0
 init4_2: high := v + 1
 init4_3: mid := (v+1) \div 2
            input\_valid := TRUE
 init4_4:
END
                                                                                            7.3
EVENT ImproveLowerBound
REFINES ImproveLowerBound
WHERE
 grd4_1: low + 1 \neq high
 grd4_2: mid * mid \leq input
```

```
getResult, 5
high, 6
Improve, 7, 8
ImproveLowerBound, \, 8\text{--}10
ImproveUpperBound, 8, 9, 11
INITIALISATION, 4, 6, 10
input, 4
input\_valid,\,4
low, 6
mid, 10
result, 4
result\_valid, 4
setInput, 4, 6, 10
SquareRoot,\,4,\,6,\,7
Square Root\_R1\_Add Incremental Improvements,
         6, 8
SquareRoot\_R2\_WithImproveLowerOrUpper,\ 8,
```

SquareRoot_R3_AddDivisionToFindM, 9, 10 SquareRoot_R4_WithMiddleInVariable, 10

 $SquareRootDefinition,\,2,\,4,\,6,\,8–10$

Theories, 2, 3