Business Analytics 2020 Fall

To the Top of League of Legend

--- LOL Match Prediction and Champion Clustering

Annan Chen ac4619
Jiepeng Lian jl5521
Jing Xiao jx2422
Qingyuan Ren qr2130
Zezuan Zhang zz2705

Contents

Introduction

About League of Legend

League of Legends is a PC-side MOBA game popular all over the world. Players can accumulate levels and money by killing monsters, minions and opponent heroes in the game, and finally winning the game by destroying the enemy base.

About LOL Business Market

There are mass user base and rich business chains, including worldwide professional competitions and regional leagues (LCS, LEC, LCK, LPL, etc.). The winners of the competition could receive up to millions of dollar award. Various betting companies or live stream activities closely following the detailed results of each competition. The outstanding team and players could attract various advertisement endorsement and commercial activities.

About our research plan

Originally all 152 champions are in 6 categories: Tank, Mage, Marksman, Assassin, Fighter and Support. In this project, we want to dig deeper into clustering champions based on their performance in a professional match, and provide valuable insights by suggesting champions selection and predicting games results at an early stage.

Data Description and Preprocessing

The datasets (https://oracleselixir.com/tools/downloads) we used include in-game features for all professional games during 2014 to 2020. More specifically, we pick all professional match data in 2020 because of timeliness - the game and champions might change after updates and new versions.

This dataset contains 77424 rows with 105 columns. Each 12 rows indicates 1 match (10 player-level data & 2 team-level data). We also do several data preprocessing steps to make the data more structural as desired (separating team level and champions level data, removing collinear and non-numerical features, combining each two team-level observations to one row . After data preprocessing we come to 6369 rows with 102 columns. We would use team-level dataset for predicting results, and use champion-level dataset for clustering.

Observations	N = 77,424	Features (k=105)
6,452 games	Individual level: Blue sides players (5 in each game, N = 32,260)	Champion selected, game result kills/deaths/assists, gold difference, experience, creep
in 2020 professional	Individual level: Red sides players (5 in each game, N = 32,260)	score, vision score, etc
matches	Team level integrated performance (2 in each game, N = 12,904)	5 banned champions, game result team kills/deaths/assist, gold, experience, etc

Data Description and Preprocessing

Figure: Champion pick rate (Who is popular?)

Figure: Champion ban rate (Who is threatening?)

Data Description and Preprocessing

Figure: The overall performance difference between win and loss team

Champions Clustering

Purpose: Using player level data, clustering the champions for further prediction.

Step 1 Aggregate mean performance of players for each champion

Grouping by champion and getting the mean of every feature, we got the 54 features for each champion.

Step 2 Calculating mean "win" and "loss" performance for each champion

Split the whole data into the "win" and "loss" part to see how these champions performed in win or loss games. Thus, we got total 108(54 x 2) features for each champion and did PCA based on this dataset.

Step 3 Decomposing the features using the PCA method

Letting the cumulative proportion of variance explained go over 90%, we chose 4 principle components, and the final cumulative var explained is 94.05%. We have loadings of the four factors as shown in next page.

Champions Clustering

Result: Four feature factors

dama	ige	Econo experi	•	Win-lo		enem	ny
damage tochamp ions	0.653	tochamp ions_	0.506	tochamp ions	0.532	earnedg old_	0.527
damage tochamp ions_	0.521	earnedg old	0.325	damage tochamp ions_	0.465	earnedg old	0.486
totalgold	0.188	totalgold	0.295	totalgold –	0.311	xpat15	0.227
goldspe nt	0.146	opp_xpa t15	0.258	goldspe nt_	0.300	xpat15_	0.227
totalgold –	0.142	xpat15_	0.256	earnedg old_	0.295	opp_gol dat15	0.224
opp_gol dat15_	0.142	xpat15	0.255	opp_xpa t15	0.202	opp_gol dat15_	0.213
opp_xpa t15_	0.141	opp_xpa t15_	0.243	opp_xpa t15_	0.185	opp_gol dat10	0.178
opp_gol dat15	0.130	damage tochamp ions	0.238	xpat15	0.145	opp_xpa t15	0.170
opp_xpa t15	0.130	goldspe nt	0.233	opp_xpa t10	0.133	opp_xpa t15_	0.159
goldspe nt_	0.129	opp_xpa t10	0.191	xpat15_	0.133	opp_gol dat10_	0.148

Results: Clustering result when k = 20

Cluster 0	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	Cluster 6
'Senna' 'Twitch' 'Jinx' 'Taliyah' 'Vayne'	'Karma' 'Lux' 'Nunu & Willump' 'Volibear' 'Xin Zhao' 'Bard' 'Blitzcrank' 'Morgana' 'Soraka'	'Fiora' 'Irelia' 'Twisted Fate' 'Jax' 'Riven' 'Tistana' 'Tryndamere' 'Camille' 'Aatrox'	'Jayce' 'Quinn' 'Corki' 'Zoe' 'Vladimir' 'Syndra' 'Rumble' 'LeBlanc' "Vel'Koz" 'Viktor' 'Swain'	'Thresh' 'Trundle' 'Skarner' 'Lulu' 'Jarvan IV' 'Taric' 'Leona' 'Tahm Kench'	'Sejuani' 'Pyke' 'Lee Sin' "Rek'Sai"	'Lucian' 'Dr. Mundo' 'Talon' 'Akali' 'Ekko' 'Aurelion Sol' 'Diana' 'Yorick' 'Cassiopeia' 'Sylas' 'Ahri' 'Ryze' 'Qiyana' 'Orianna' "Cho'Gath"
Cluster 7	Cluster 8	Cluster 9	Cluster 10	Cluster 11	Cluster 12	Cluster 13
'Sivir' 'Varus' 'Caitlyn' 'Aphelios'	'Malphite' 'Mordekaiser' 'Gnar' 'Neeko' 'Yuumi' 'Singed' 'Lissandra' 'Fiddlesticks' 'Zilean' 'Kennen' 'Maokai' 'Malzahar'	'Zyra' 'Karthus' 'Xerath' 'Heimerdinger' 'Ziggs' 'Illaoi'	'Sion' 'Urgot' 'Kled' 'Shen' 'Ornn' 'Renekton' 'Galio' 'Poppy' 'Wukong' 'Darius' 'Sett'	'Draven' 'Miss Fortune' 'Ashe' 'Jhin' "Kai'Sa" 'Kalista' 'Xayah'	'Janna' 'Vi' 'Anivia' 'Sona'	'Garen'
Cluster 14	Cluster 15	Cluster 16	Cluster 17	Cluster 18	Cluster 19	Cluster 20
'Gangplank' 'Evelynn' 'Azir' 'Lillia' 'Zed' 'Kayle'	'Nocturne' 'Olaf' 'Fizz' 'Zac' 'Yasuo' 'Hecarim' 'Pantheon'	'Veigar' 'Kassadin'	"Kha'Zix" 'Graves' 'Nidalee' 'Gragas' 'Kayn' 'Elise' 'Kindred'	"Kog'Maw" 'Shyvana' 'Ezreal'	'Alistar' 'Rakan' 'Ivern' 'Braum' 'Nami' 'Nautilus'	'Master Yi' 'Rengar' 'Amumu' 'Brand' 'Katarina' 'Shaco' 'Teemo' 'Warwick' 'Rammus' 'Annie'

Game Result Prediction

Game Result Prediction Based on In-game Features

Methods: logistic regression with LASSO, decision tree, KNN, random forest, SVM, neural network

Train: Validation: Test Set = 0.6:0.2:0.2

	Logistic with Lasso penalty	Decision Trees	SVM	KNN	Random Forest	Neural Network
Accuracy in Test set	98.81%	98.18%	99.13%	96.86%	99.06%	98.74%

The overall accuracy based on in-game features is very high! Why?

It is not surprising to see such a high prediction accuracy since some features are collected at the end of the game, which have already indicated which team would win.

"snowballing" effect: For example, one feature that shows up huge in both logistic regression and tree-based models is the earned gold per minute. During a game, a team with advantage would try to keep the enemy team away from minions and objects, preventing them from obtaining money and buffs. The team that falls behind is typically getting more and more difficult to come back behind.

Game Result Prediction

Game Result Prediction Based on Champions Clustering

Methods: logistic regression with LASSO, KNN, random forest, SVM, neural network

Train: Validation: Test Set = 0.6: 0.2: 0.2

	Logistic with Lasso penalty	SVM	KNN	Random Forest	Neural Network
Accuracy in Test set	53.74%	51.85%	52.79%	54.17%	56.17%

The overall accuracy based on champions clustering is better than random guessing (50%)

Apply the clusters we found using PCA to form features and create new predicting models. Using the results of the clustering algorithm, we create a one-hot 21 length vector for every champion. For each team we sum its vectors, then we concatenate two vectors of the matching teams. Using the 42-length vectors as input, we get the following result.

Further improvement: finding better cluster numbers and applying weights to the features in clustering, etc.

Recommendation and Insight

Topic 1: Recommendation on Resource Allocation

Tower and Inhibitor is always the focus, don't forget the goal is to destroy the opposed base.

Tower

Inhibitor

Gold Per Minute

The importance of dragon is larger than baron

Dragon

Baron

Figure: Feature importance obtained from the Random Forest model

Recommendation and Insight

Topic 2: Recommendation on Pick Strategy

For the blue side and red side, if the opponent chooses a champion from one cluster, how can the team maximize the chance of winning by picking the natural enemy from another (or same) cluster?

Figure: Combination of the top 5 winning rates for each side (441 possibilities in total)

44	
Small of Figure	
401	
100	
12 15 A A S. S. S. V. J.	
May of the	١
COMMUNICATION OF THE PROPERTY	

Blue Side Pick Cluster	Red Side Pick Cluster	Winning Rate (Blue)
0	14	61.7%
19	0	60.8%
2	0	60.7%

Cluster 0: 'Senna' 'Twitch' 'Jinx' 'Vayne' 'Taliyah'

ADC (Attack Damage Carry) JNG

Cluster 14: 'Kayle' 'Gangplank' 'Lillia' 'Evelynn' 'Zed' 'Azir'

Cluster 2: 'Fiora' 'Irelia 'Jax' 'Riven' 'Tryndamere' 'Camille' 'Aatrox' 'Tristana' 'Twisted Fate'

ADC/MID (Marksman/Mage)

Thanks for your time

Annan Chen ac4619
Jiepeng Lian jl5521
Jing Xiao jx2422
Qingyuan Ren qr2130
Zezuan Zhang zz2705

