Package 'surveyPrev'

April 10, 2024

```
Type Package
Title Mapping the Prevalence of Binary Indicators using Survey Data in
     Small Areas
Version 1.0.0
Description Provides a pipeline to perform small area estimation and prevalence mapping of bi-
     nary indicators using health and demographic survey data, de-
     scribed in Fuglstad et al. (2022) <doi:10.48550/arXiv.2110.09576> and Wake-
     field et al. (2020) <doi:10.1111/insr.12400>.
URL https://github.com/richardli/surveyPrev
BugReports https://github.com/richardli/surveyPrev/issues
Depends R (>= 3.5)
License GPL (>= 2)
Imports survey, stats, ggplot2, rdhs, SUMMER, dplyr, labelled,
     sjlabelled, naniar, raster, sp, spdep, stringr, tidyverse,
     data.table, sf, matrixStats
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Additional_repositories https://inla.r-inla-download.org/R/testing/
Suggests INLA, knitr, rmarkdown, R.rsp, kableExtra, geodata,
     patchwork, tidyr
VignetteBuilder R.rsp, knitr
NeedsCompilation no
Config/build/clean-inst-doc FALSE
Author Qianyu Dong [cre, aut],
     Zehang R Li [aut],
     Yunhan Wu [aut],
     Andrea Boskovic [aut],
     Jon Wakefield [aut]
Maintainer Qianyu Dong <qdong14@ucsc.edu>
```

44

Index

Repository CRAN

Date/Publication 2024-04-10 19:50:02 UTC

${\sf R}$ topics documented:

adminInfo	 3
aggPopulation	4
aggSurveyWeight	 5
ch_allvac_either	7
ch_diar_ors_rhf	 8
ch_meas_either	 8
ch_novac_either	 9
ch_pent1_either	 10
ch_pent3_either	 11
clusterInfo	11
clusterModel	12
directEST	14
fhModel	16
fp_cruse_mod	17
fp_unmet_tot	18
getDHSdata	19
getDHSgeo	20
getDHSindicator	21
getUR	22
get_api_table	24
hv_hiv_pos	25
intervalPlot	26
ml_hhaccess	27
NMR	28
nt_ch_any_anem	29
nt_ch_stunt	30
nt_ch_wast	31
nt_ebf	32
nt_wm_any_anem	33
nt_wm_thin	34
ph_sani_basic	35
ph_sani_improve	36
rh_anc_4vs	37
rh_del_pvskill	37
scatterPlot	38
surveyPrevIndicators	40
watersource_adj	41
ZambiaAdm1	41
ZambiaAdm2	42
ZambiaPopWomen	 42

adminInfo 3

|--|

Description

This function get admin information including name, character, population and unban/rural proportion.

Usage

```
adminInfo(
  poly.adm,
  by.adm,
  admin,
  by.adm.upper = NULL,
  agg.pop = NULL,
  proportion = NULL
)
```

Arguments

by.adm the column name of column for Admin names for desired output Admin level, can be such as "NAME_1" or "NAME_2". admin desired admin level for the output, can be 1 or 2. by.adm.upper the column name of column for Admin names for upper level of your desired output Admin level when admin=2, can be "NAME_1" when by.adm="NAME_2' agg.pop data frame of aggregated population from aggPopulation function. It should have two columns: "admin2.name.full" and "population". proportion data frame of urban/rural proportions. For admin1, is should have two columns: "admin1.name" and "urban". For admin2, it should have three columns: "admin1.name", "admin2.name", and "urban", in order to avoid issues merging datasets with duplicated admin2 names.	poly.adm	spatial polygons dataframe for Admin levels such as Admin 1 or Admin 2. This object can be either an sp::SpatialPolygonsDataFrame object or an sf object.
by.adm.upper the column name of column for Admin names for upper level of your desired output Admin level when admin=2, can be "NAME_1" when by.adm="NAME_2' agg.pop data frame of aggregated population from aggPopulation function. It should have two columns: "admin2.name.full" and "population". proportion data frame of urban/rural proportions. For admin1, is should have two columns: "admin1.name" and "urban". For admin2, it should have three columns: "admin1.name", "admin2.name", and "urban", in order to avoid issues merging	by.adm	•
output Admin level when admin=2, can be "NAME_1" when by.adm="NAME_2' agg.pop data frame of aggregated population from aggPopulation function. It should have two columns: "admin2.name.full" and "population". proportion data frame of urban/rural proportions. For admin1, is should have two columns: "admin1.name" and "urban". For admin2, it should have three columns: "ad- min1.name", "admin2.name", and "urban", in order to avoid issues merging	admin	desired admin level for the output, can be 1 or 2.
have two columns: "admin2.name.full" and "population". proportion data frame of urban/rural proportions. For admin1, is should have two columns: "admin1.name" and "urban". For admin2, it should have three columns: "admin1.name", "admin2.name", and "urban", in order to avoid issues merging	by.adm.upper	the column name of column for Admin names for upper level of your desired output Admin level when admin=2, can be "NAME_1" when by adm="NAME_2".
"admin1.name" and "urban". For admin2, it should have three columns: "admin1.name", "admin2.name", and "urban", in order to avoid issues merging	agg.pop	66 6 1 1
	proportion	"admin1.name" and "urban". For admin2, it should have three columns: "admin1.name", "admin2.name", and "urban", in order to avoid issues merging

Value

This function returns the 1. dataframe that contains admin 1 and admin 2 information and coordinates for each cluster and 2. Adjacency matrix.

Author(s)

Qianyu Dong

4 aggPopulation

Examples

```
# For sp::SpatialPolygonsDataFrame object
data(ZambiaAdm1)
class(ZambiaAdm1)
info <- adminInfo(poly.adm=ZambiaAdm1, admin = 1, by.adm="NAME_1")</pre>
data(ZambiaAdm2)
class(ZambiaAdm2)
info2 <- adminInfo(poly.adm=ZambiaAdm2, admin = 2,by.adm="NAME_2",by.adm.upper="NAME_1")</pre>
# For sf object
geo.sf <- sf::st_as_sf(ZambiaAdm1)</pre>
info <- adminInfo(poly.adm=geo.sf, admin = 1,by.adm="NAME_1")</pre>
# To include the population information
data(ZambiaPopWomen)
info <- adminInfo(poly.adm = ZambiaAdm1,</pre>
                   admin = 1,by.adm="NAME_1",
                   agg.pop = ZambiaPopWomen$admin1_pop,
                   proportion = ZambiaPopWomen$admin1_urban )
```

aggPopulation

Get population information

Description

This function aggregate population to particular admin levels

Usage

```
aggPopulation(tiff, fact = 10, poly.adm, by.adm, by.adm.upper = NULL)
```

Arguments

tiff	spatial raster of population estimates.
fact	factor to aggregate pixels. Default to be 10, i.e., the population estimates will

be saved on 1km by 1km grids if the input is 100m by 100m tiff. Larger values of aggregation factor improves the computation speed, but can introduce more

errors when the regions defined by the polygon are small in size.

poly.adm spatial polygons dataframe.

by . adm the column name of column for Admin names for desired output Admin level,

can be such as "NAME_1" or "NAME_2".

by .adm. upper the column name of column for Admin names for upper level of your desired

output Admin level when admin=2, can be "NAME_1" when by.adm="NAME_2".

aggSurveyWeight 5

Value

This function returns the dataset that contain district name and population for given tiff files and polygons of admin level

Author(s)

Qianyu Dong

Examples

```
## Not run:
library(raster)
\# Download and find total population in age group 0 to 12 months
pre <- "https://data.worldpop.org/GIS/AgeSex_structures/"</pre>
f <- paste0(pre, "Global_2000_2020/2018/ZMB/zmb_f_0_2018.tif")</pre>
m <- paste0(pre, "Global_2000_2020/2018/ZMB/zmb_m_0_2018.tif")</pre>
pop_f_0 <- raster(f)</pre>
pop_m_0 <- raster(m)</pre>
pop_raster <- pop_f_0 + pop_m_0
# admin1 population
agg.pop1 <- aggPopulation(</pre>
  tiff = pop_raster,
  poly.adm = ZambiaAdm1,
  by.adm = "NAME_1")
# admin2 population
agg.pop2 <- aggPopulation(
  tiff = ZambiaPopWomen_raster,
  poly.adm = ZambiaAdm2,
  by.adm = "NAME_2",
  by.adm.upper="NAME_1")
## End(Not run)
```

aggSurveyWeight

Get survey weight by admin levels

Description

This function aggregate survey weight to particular admin levels

6 aggSurveyWeight

Usage

```
aggSurveyWeight(
  data,
  cluster.info,
  admin,
  poly.adm = NULL,
  by.adm = NULL,
  by.adm.upper = NULL)
```

Arguments

data dataframe that contains the indicator of interests, output of getDHSindicator

function

cluster.info list that contains admin 1 and admin 2 information and coordinates for each

cluster, output of clusterinfo function

admin desired admin level for aggregation

poly.adm spatial polygons dataframe

by adm the column name of column for Admin names for desired output Admin level,

can be such as "NAME_1" or "NAME_2".

by adm. upper the column name of column for Admin names for upper level of your desired

output Admin level when admin=2, can be "NAME_1" when by.adm="NAME_2".

Value

This function returns the dataset that contain admin name and survey weight.

Author(s)

Qianyu Dong

```
## Not run:

# admin1 population

year <- 2018
country <- "Zambia"
indicator="nmr"

geo <- getDHSgeo(country = country, year = year)
dhsData <- getDHSdata(country = country, indicator=indicator, year = year)
data<- getDHSindicator(dhsData, indicator = indicator)

poly.adm1=ZambiaAdm1
poly.adm2=ZambiaAdm2

cluster.info<-clusterInfo(geo=geo, poly.adm1=poly.adm1, poly.adm2=poly.adm2,</pre>
```

ch_allvac_either 7

ch_allvac_either

CH_VACS_C_BAS Children with all 8 basic vaccinations (age 12-23) "All basic vaccinations according to either source"

Description

CH_VACS_C_BAS Children with all 8 basic vaccinations (age 12-23) "All basic vaccinations according to either source"

Usage

```
ch_allvac_either(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

8 ch_meas_either

ch_diar_ors_rhf

CH_DIAT_C_ORT KR Diarrhea treatment (Children under five with diarrhea treated with either ORS or RHF)

Description

CH_DIAT_C_ORT KR Diarrhea treatment (Children under five with diarrhea treated with either ORS or RHF)

Usage

```
ch_diar_ors_rhf(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

ch_meas_either

CH_VACC_C_MSL MCV: Measles Measles vaccination received Percentage of children (age 12-23) ch_meas_either CH_VAC.do KR "Measles vaccination according to either source"

Description

CH_VACC_C_MSL MCV: Measles Measles vaccination received Percentage of children (age 12-23) ch_meas_either CH_VAC.do KR "Measles vaccination according to either source"

ch_novac_either 9

Usage

```
ch_meas_either(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

ch_novac_either

CH_VACS_C_NON KR Children with no vaccinations (age 12-23)

Description

```
CH_VACS_C_NON KR Children with no vaccinations (age 12-23)
```

Usage

```
ch_novac_either(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

10 ch_pent1_either

Author(s)

Qianyu Dong

Examples

ch_pent1_either

CH_VACC_C_DP1 KR Percentage of children (age 12-23) Pentavalent 1rd dose vaccination according to either source"

Description

CH_VACC_C_DP1 KR Percentage of children (age 12-23) Pentavalent 1rd dose vaccination according to either source"

Usage

```
ch_pent1_either(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

ch_pent3_either

Description

CH_VACC_C_DP3 DPT3 KR Percentage of children (age 12-23) Pentavalent 3rd dose vaccination according to either source"

Usage

```
ch_pent3_either(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

clusterInfo

Get cluster information

Description

This function add admin 1 and admin2 information to a paticular DHS survey.

Usage

```
clusterInfo(geo, poly.adm1, poly.adm2, by.adm1 = "NAME_1", by.adm2 = "NAME_2")
```

12 clusterModel

Arguments

geo	spatial point dataframe
poly.adm1	spatial polygons dataframe for admin 1
poly.adm2	spatial polygons dataframe for admin 2 or other lower admin level.
by.adm1	the column name of column for Admin names for admin 1
by.adm2	the column name of column for Admin names for admin 2 or other lower admin level.

Value

This function returns the dataset that contains admin 1 and admin 2 information and coordinates for each cluster.

Author(s)

Qianyu Dong

Examples

clusterModel

Calculate cluster model estimates using beta binomial model

Description

This function calculate smoothed direct estimates at given admin level.

Usage

```
clusterModel(
  data,
  cluster.info,
  admin.info,
  admin,
  CI = 0.95,
  model = c("bym2", "iid"),
  stratification = FALSE,
  aggregation = FALSE,
```

clusterModel 13

```
overdisp.mean = 0,
overdisp.prec = 0.4
)
```

Arguments

data frame that contains the indicator of interests, output of getDHSindicator

function

cluster.info dataframe that contains admin 1 and admin 2 information and coordinates for

each cluster.

admin.info dataframe that contains population and urban/rural proportion at specific admin

level

admin level for the model

CI Credible interval to be used. Default to 0.95.

model smoothing model used in the random effect. Options are independent ("iid") or

spatial ("bym2").

stratification whether or not to include urban/rural stratum.

aggregation whether or not report aggregation results.

overdisp.mean prior mean for logit(d), where d is the intracluster correlation.

overdisp.prec prior precision for logit(d), where d is the intracluster correlation.

Value

This function returns the dataset that contain district name and population for given tiff files and polygons of admin level,

Author(s)

Qianyu Dong

14 directEST

```
agg.pop =ZambiaPopWomen$admin1_pop,
                        proportion = ZambiaPopWomen$admin1_urban)
cl_res_ad1 <- clusterModel(data=data,</pre>
                  cluster.info = cluster.info,
                  admin.info = admin.info1,
                  stratification = FALSE,
                  model = "bym2",
                  admin = 1,
                  aggregation = TRUE,
                  CI = 0.95)
cl_res_ad1$res.admin1
# compare with the DHS direct estimates
dhs_table <- get_api_table(country = "ZM",</pre>
                            survey = "ZM2018DHS",
                            indicator = "RH_ANCN_W_N4P",
                            simplify = TRUE)
subset(dhs_table, ByVariableLabel == "Five years preceding the survey")
## End(Not run)
```

directEST

Calculate direct estimates

Description

This function calculate direct estimates at given admin level.

Usage

```
directEST(
  data,
  cluster.info,
  admin,
  strata = "all",
  CI = 0.95,
  weight = c("population", "survey")[1],
  admin.info = NULL,
  aggregation = FALSE,
  ...
)
```

Arguments

data

dataframe that contains the indicator of interests, output of getDHSindicator function

directEST 15

cluster.info list contains data and wrong points. data contains admin 1 and admin 2 infor-

mation and coordinates for each cluster. wrong points. contains cluster id for cluster without coordinates or admin 1 information. Output of getDHSindicator

function

admin level for the model.

strata use only urban or rural data, only for national level model

CI Credible interval to be used. Default to 0.95.

weight the weight used for aggregating result, "population" or "survey"

admin.info list contains data and mat, data contains population and urban/rural proportion

at specific admin level and mat is the adjacency matrix, output of adminInfo

function

aggregation whether or not report aggregation results.

... Additional arguments passed on to the 'smoothSurvey' function

Value

This function returns the dataset that contain district name and population for given tiff files and polygons of admin level,

Author(s)

Qianyu Dong

```
## Not run:
geo <- getDHSgeo(country = "Zambia", year = 2018)</pre>
data(ZambiaAdm1)
data(ZambiaAdm2)
data(ZambiaPopWomen)
cluster.info<-clusterInfo(geo=geo, poly.adm1=poly.adm1, poly.adm2=poly.adm2,
by.adm1 = "NAME_1", by.adm2 = "NAME_2")
dhsData <- getDHSdata(country = "Zambia",</pre>
                                  indicator = "ancvisit4+",
                                  year = 2018)
data <- getDHSindicator(dhsData, indicator = "ancvisit4+")</pre>
res_ad1 <- directEST(data = data,
                   cluster.info = cluster.info,
                   admin = 1,
                   aggregation = FALSE)
res_ad1
# compare with the DHS direct estimates
dhs_table <- get_api_table(country = "ZM",</pre>
                            survey = "ZM2018DHS",
                            indicator = "RH_ANCN_W_N4P",
                            simplify = TRUE)
subset(dhs_table, ByVariableLabel == "Five years preceding the survey")
```

16 fhModel

```
## End(Not run)
```

fhModel

Calculate smoothed direct estimates

Description

This function calculate smoothed direct estimates at given admin level.

Usage

```
fhModel(
  data,
  cluster.info,
  admin.info = NULL,
  admin,
  CI = 0.95,
  model = c("bym2", "iid"),
  aggregation = FALSE
)
```

Arguments

data	dataframe that contains the indicator of interests, output of getDHSindicator function
cluster.info	list contains data and wrong.points. data contains admin 1 and admin 2 information and coordinates for each cluster. wrong.points. contains cluster id for cluster without coordinates or admin 1 information. Output of getDHSindicator function
admin.info	list contains data and mat, data contains population and urban/rural proportion at specific admin level and mat is the adjacency matrix, output of adminInfo function
admin	admin level for the model
CI	Credible interval to be used. Default to 0.95.
model	smoothing model used in the random effect. Options are independent ("iid") or spatial ("bym2").

Value

aggregation

This function returns the dataset that contain district name and population for given tiff files and polygons of admin level,

whether or not report aggregation results.

fp_cruse_mod 17

Author(s)

Qianyu Dong

Examples

```
geo <- getDHSgeo(country = "Zambia", year = 2018)</pre>
data(ZambiaAdm1)
data(ZambiaAdm2)
data(ZambiaPopWomen)
cluster.info <- clusterInfo(geo = geo,</pre>
                              poly.adm1 = ZambiaAdm1,
                              poly.adm2 = ZambiaAdm2)
dhsData <- getDHSdata(country = "Zambia",</pre>
                                   indicator = "ancvisit4+",
                                   year = 2018)
data <- getDHSindicator(dhsData, indicator = "ancvisit4+")</pre>
admin.info1 <- adminInfo(poly.adm = ZambiaAdm1,</pre>
                         admin = 1,
                         agg.pop =ZambiaPopWomen$admin1_pop,
                         proportion = ZambiaPopWomen$admin1_urban)
smth_res_ad1 <- fhModel(data,</pre>
                        cluster.info = cluster.info,
                        admin.info = admin.info1,
                        admin = 1,
                        model = "bym2",
                        aggregation = F)
smth_res_ad1
## End(Not run)
```

fp_cruse_mod

FP_CUSM_W_MOD IRdata Modern contraceptive prevalence rate (Married women currently using any modern method of contraception)

Description

FP_CUSM_W_MOD IRdata Modern contraceptive prevalence rate (Married women currently using any modern method of contraception)

Usage

```
fp_cruse_mod(Rdata)
```

fp_unmet_tot

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

 fp_unmet_tot

FP_NADA_W_UNT #unmet_family IRdata women with an unmet need for family planning for spacing and limiting

Description

FP_NADA_W_UNT #unmet_family IRdata women with an unmet need for family planning for spacing and limiting

Usage

```
fp_unmet_tot(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

getDHSdata 19

Examples

getDHSdata

Download DHS survey data

Description

This function downloads DHS data for a particular country and survey.

Usage

```
getDHSdata(country, indicator = NULL, Recode = NULL, year)
```

Arguments

country Country name.

indicator Indicator of interests. Current list of supported indicators include: "womanane-

mia", "ancvisit4+", "stunting", "wasting", "DPT3".

Recode Types of dhs Recode

year Year the survey conducted.

Value

This function returns the survey dataset that contains the indicator.

Author(s)

Qianyu Dong

20 getDHSgeo

```
year = 2018)
names(dhsData)
## End(Not run)
```

getDHSgeo

Download DHS geo data

Description

This function downloads cluster's coordinate data for country and survey.

Usage

```
getDHSgeo(country, year)
```

Arguments

country

Country name.

year

Year the survey conducted.

Value

The function returns a spatial point dataset with coordinates for each cluster based on the chosen survey and year.

Author(s)

Qianyu Dong

```
## Not run:
geo <- getDHSgeo(country = "Zambia", year = 2018)
## End(Not run)</pre>
```

getDHSindicator 21

getDHSindicator	Process DHS data
getDHSindicator	Process DHS

Description

This function processes DHS data from getDHSdata function.

Usage

```
getDHSindicator(Rdata, indicator = NULL, FUN = NULL)
```

Arguments

Rdata Result from getDHSdata function, the raw DHS survry data from get_datasets.

indicator Indicator of interests.

FUN a function to process the DHS data into a binary indicator if not using one of the

implemented indicators. See surveyPrev::AN_ANEM_W_ANY for an example function to obtain the indicator for women classified as having any anemia.

Value

The function returns processed survey data that contains the indicator of interests.

Author(s)

Qianyu Dong

```
## Not run:
dhsData1 <- getDHSdata(country = "Zambia",</pre>
                                   indicator = "ancvisit4+",
                                   year = 2018)
data1 <- getDHSindicator(dhsData1, indicator = "ancvisit4+")</pre>
# User-specified function to process the data
# For example see the internal function surveyPrev::AN_ANEM_W_ANY
dhsData2 <- getDHSdata(country = "Zambia",</pre>
                                   indicator = NULL,
                                   year = 2018)
data2 <- getDHSindicator(dhsData2, indicator = NULL,</pre>
                          FUN = surveyPrev::AN_ANEM_W_ANY)
# which should be identical to the following
dhsData3 <- getDHSdata(country = "Zambia",</pre>
                                   indicator = "womananemia",
                                   year = 2018)
data3 <- getDHSindicator(dhsData3, indicator = "womananemia")</pre>
```

22 getUR

```
## End(Not run)
```

getUR

Function to threshold population raster to obtain urban/rural fractions by Admin1 and Admin2 areas

Description

This function computes the urban proportion at a given survey year. It requires two population raster files and urban population fraction by admin 1 area from the census. The census year overall population raster is used to partition the grids into urban and rural pixels, based on the urban population fractions in a given area at the census year. The thresholding process is performed by first sorting the pixels from high to low population density, and find a threshold such that the fraction of population above this threshold matches the urban population fraction from the census. This step defines the urbanicity of each pixel. In the second step, for any given year's raster for a specific (sub-)population (e.g., specific age groups), we aggregate the population in the urban pixels defined in the previous step to compute urban proportion for the (sub-)population, within both admin1 and admin2 regions.

Usage

```
getUR(
  tiff.census,
  tiff.survey,
  prop.census,
  fact = 10,
  poly.adm1,
  poly.adm2,
  varname1,
  varname2
)
```

Arguments

tiff.census

spatial raster of population estimates at the census year when the sampling frame is based, for the whole population.

tiff.survey prop.census spatial raster of population estimates at the survey year, for the target population.

a data frame with two columns: 'admin1' column correspond to the admin 1 names in the 'poly.adm1' file. And 'frac' column specifying the proportion of population in each admin 1 area during the census year. See examples for detail.

fact

factor to aggregate pixels from tiff.survey to tiff.census. For example, if tiff.census is a population raster at 1km by 1km resolution and tiff.survey is a raster at 100m by 100m resolution, then fact should be set to 10. Currently we only support fact > 1. Default is 10.

getUR 23

```
poly.adm1 spatial polygons data frame for admin 1
poly.adm2 spatial polygons data frame for admin 2
varname1 column name of district name in the admin 1 spatial polygon data frame
varname2 column name of district name in the admin 2 spatial polygon data frame
```

Value

a list of two data frames for admin 1 and admin 2 urban ratios

```
## Not run:
# -----#
# Here we consider the example of computing urban/rural fraction for
# Zambia 2018 DHS for the sub-population of children under 1 years old.
# This survey is based on sampling frame from the 2010 Zambia Census.
# -----#
# From Table A1 of Zambia 2013-2014 DHS final report, we can obtain the fraction of
   urban population by Admin 1 areas in the 2010 survey.
# Notice that in the appendix of the 2018 DHS final report,
   only distribution of household is reported and not population size by urbanicity.
# When the table is not provided in the DHS report, you need to find it from
   the census website directly.
# Please note that the admin1 column needs to match the admin 1 names in the
   Admin 1 spatial polygon file exactly.
   For example, here we change "Northwestern" to "North-Western"
urban.frac <- data.frame(</pre>
admin1 = c('Central', 'Copperbelt', 'Eastern',
   'Luapula', 'Lusaka', 'Muchinga',
'North-Western', 'Northern', 'Southern', 'Western'),
frac = c(0.2513, 0.809, 0.1252,
0.1963, 0.8456, 0.1714,
0.2172, 0.1826, 0.2448, 0.1474))
# The corresponding census year population tiff can be found at:
# https://data.worldpop.org/GIS/Population/Global_2000_2020_1km_UNadj/
# The code below downloads the file from the internet directly
# You can also download the file directly and read into R
link1="https://data.worldpop.org/GIS/Population/Global_2000_2020_1km_UNadj/"
file1="2010/ZMB/zmb_ppp_2010_1km_Aggregated_UNadj.tif"
tempfile1 = tempfile()
download.file(paste0(link1, file1), destfile = tempfile1,
method = "libcurl", mode="wb")
library(raster)
tiff1 <- raster(tempfile1)</pre>
# https://hub.worldpop.org/geodata/summary?id=16429
# Here we compute population fractions for 0-1 year old population.
```

24 get_api_table

```
# The from the same link below
link2="https://data.worldpop.org/GIS/AgeSex_structures/Global_2000_2020/"
# The two files are for female and male population respectively,
file2f="2018/ZMB/zmb_f_0_2018.tif"
file2m="2018/ZMB/zmb_f_0_2018.tif"
# Since the two files are very large, we recommend downloading them
   mannually and then load them into R.
tiff2f <- raster("zmb_f_0_2018.tif")</pre>
tiff2m <- raster("zmb_m_0_2018.tif")</pre>
tiff2 <- tiff2f + tiff2m
frac <- getUR(tiff.census = tiff1, tiff.survey = tiff2,</pre>
 prop.census = urban.frac, fact = 10,
 poly.adm1 = ZambiaAdm1, poly.adm2 = ZambiaAdm2,
 varname1 = "NAME_1", varname2 = "NAME_2")
library(SUMMER)
mapPlot(frac$admin1.ur, geo = ZambiaAdm1,
   by.data = "admin1.name", by.geo = "NAME_1", variable = "urban")
mapPlot(frac$admin2.ur, geo = ZambiaAdm2,
   by.data = "admin2.name", by.geo = "NAME_2", variable = "urban")
# Compare with the proportion of Women 14-49 years old in the built-in data
# These two plots should be similar but not identical
# since the population is different
mapPlot(ZambiaPopWomen$admin2_urban, geo = ZambiaAdm2,
   by.data = "admin2.name", by.geo = "NAME_2", variable = "urban")
## End(Not run)
```

get_api_table

Function to obtain subnational estimates from DHS API

Description

Function to obtain subnational estimates from DHS API

Usage

```
get_api_table(country, survey, indicator, simplify = TRUE)
```

Arguments

country	A character string of keys at: https://api.dhsprogram.com/rest/dhs/countries?returnFields=CountryName,l
survey	A character string of keys at: https://api.dhsprogram.com/rest/dhs/surveys?returnFields=SurveyId,Survey
indicator	A character string of keys at: https://api.dhsprogram.com/rest/dhs/indicators?returnFields=IndicatorId,Lal
simplify	if TRUE only the value and region index is returned.

hv_hiv_pos 25

Value

a data frame of the DHS indicator estimates

Examples

hv_hiv_pos

HA_HIVP_W_HIV hv_hiv_pos "HIV positive test result"

Description

```
HA_HIVP_W_HIV hv_hiv_pos "HIV positive test result"
```

Usage

```
hv_hiv_pos(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

26 intervalPlot

Examples

intervalPlot

Get scatter plot for any two model results

Description

This function return scatter plot at admin 1 level for any two model results

Usage

```
intervalPlot(admin = 0, compare = FALSE, model = NULL, group = FALSE)
```

Arguments

admin level of plot

compare plot for compare multiple plot or not model list of model results using surveyPrev

group plot by group or not

Value

This function returns the dataset that contain district name and population for given tiff files and polygons of admin level.

Author(s)

Qianyu Dong

ml_hhaccess 27

```
dhsData <- getDHSdata(country = "Zambia",</pre>
                                   indicator = "ancvisit4+",
                                  year = 2018)
data <- getDHSindicator(dhsData, indicator = "ancvisit4+")</pre>
admin.info2 <- adminInfo(poly.adm = ZambiaAdm2,</pre>
                         admin = 2,
                         agg.pop =ZambiaPopWomen$admin2_pop,
                         proportion = ZambiaPopWomen$admin2_urban)
cl_res_ad2_unstrat <- clusterModel(data = data,</pre>
                   cluster.info = cluster.info,
                   admin.info = admin.info2,
                   stratification = FALSE,
                   model = "bym2",
                   admin = 2,
                   aggregation = TRUE,
                   CI = 0.95)
head(cl_res_ad2_unstrat$res.admin2)
head(cl_res_ad2_unstrat$agg.admin1)
plots <- intervalPlot(cl_res_ad2_unstrat)</pre>
plots[["Central"]]
cl_res_ad2 <- clusterModel(data = data,</pre>
                   cluster.info = cluster.info,
                   admin.info = admin.info2,
                   stratification = TRUE,
                   model = "bym2",
                   admin = 2,
                   aggregation = TRUE,
                   CI = 0.95)
head(cl_res_ad2$res.admin2)
head(cl_res_ad2$agg.admin1)
plots <- intervalPlot(cl_res_ad2)</pre>
plots[["Central"]]
library(patchwork)
wrap_plots(plots, ncol = 5)
## End(Not run)
```

ml_hhaccess

ML_ITNA_P_ACC Households with at least one insecticide-treated mosquito net (ITN) for every two persons who stayed in the household the previous night Persons with access to an insecticide-treated mosquito net (ITN) ML_NETS_HH.do HR Households with >1 ITN per 2 household members Percentage of households with at least one ITN for every 2 persons who stayed in the household last night

28 NMR

Description

ML_ITNA_P_ACC Households with at least one insecticide-treated mosquito net (ITN) for every two persons who stayed in the household the previous night Persons with access to an insecticide-treated mosquito net (ITN) ML_NETS_HH.do HR Households with >1 ITN per 2 household members Percentage of households with at least one ITN for every 2 persons who stayed in the household last night

Usage

```
ml_hhaccess(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

NMR

CM_ECMR_C_NNR nmr CM_ECMR_C_NNR BR (not from dhs github) Neonatal mortality rate !!!!!!

Description

CM_ECMR_C_NNR nmr CM_ECMR_C_NNR BR (not from dhs github) Neonatal mortality rate !!!!!!

Usage

```
NMR(Rdata)
```

nt_ch_any_anem 29

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

nt_ch_any_anem

CN_ANMC_C_ANY Children with any anemia "Any anemia - child 6-59 months" PR NT_CH_NUT.do Children under five with any anemia

Description

CN_ANMC_C_ANY Children with any anemia "Any anemia - child 6-59 months" PR NT_CH_NUT.do Children under five with any anemia

Usage

```
nt_ch_any_anem(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

nt_ch_stunt

Examples

nt_ch_stunt

CN_NUTS_C_HA2 stunting Children stunted NT_CH_NUT.do PR "Stunted child under 5 years" Stunting rate (Prevalence of stunted (HAZ < -2) children under five (0-59 months)) Percentage of children under age five stunted (below -2 standard deviations of height-for-age according to the WHO standard).

Description

CN_NUTS_C_HA2 stunting Children stunted NT_CH_NUT.do PR "Stunted child under 5 years" Stunting rate (Prevalence of stunted (HAZ < -2) children under five (0-59 months)) Percentage of children under age five stunted (below -2 standard deviations of height-for-age according to the WHO standard).

Usage

```
nt_ch_stunt(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

nt_ch_wast 31

```
FUN = surveyPrev::nt_ch_stunt)
```

End(Not run)

nt_ch_wast

CN_NUTS_C_WH2 wasting Children wasted NT_CH_NUT.do PR "Wasted child under 5 years" Wasting rate (Prevalence of wasted (HAZ < -2) children under five (0-59 months)) Percentage of children under age five with a weight-for-height z-score (WHZ) more than two standard deviations below the median WHO growth standards.

Description

CN_NUTS_C_WH2 wasting Children wasted NT_CH_NUT.do PR "Wasted child under 5 years" Wasting rate (Prevalence of wasted (HAZ < -2) children under five (0-59 months)) Percentage of children under age five with a weight-for-height z-score (WHZ) more than two standard deviations below the median WHO growth standards.

Usage

```
nt_ch_wast(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

nt_ebf

nt_ebf

CN_BRFS_C_EXB Children exclusively breastfed NT_IYCF.do KR "Exclusively breastfed - last-born under 6 months" Children exclusively breastfed (Prevalence of exclusive breastfeeding of children under six months of age)

Description

CN_BRFS_C_EXB Children exclusively breastfed NT_IYCF.do KR "Exclusively breastfed - last-born under 6 months" Children exclusively breastfed (Prevalence of exclusive breastfeeding of children under six months of age)

Usage

```
nt_ebf(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

nt_wm_any_anem 33

nt_wm_any_anem

AN_ANEM_W_ANY womananemia nt_wm_any_anem "Any anemia - women" NT_WM_NUT.do Percentage of women aged 15-49 classified as having any anemia

Description

AN_ANEM_W_ANY womananemia nt_wm_any_anem "Any anemia - women" NT_WM_NUT.do Percentage of women aged 15-49 classified as having any anemia

Usage

```
nt_wm_any_anem(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

nt_wm_thin

nt_wm_thin

AN_NUTS_W_THN Women who are thin according to BMI (<18.5)

NT_WM_NUT.do "Thin BMI - women" IR !!!!!!! Underweight

(Prevalence of underweight (BMI < 18.5) women of reproductive age)

Description

AN_NUTS_W_THN Women who are thin according to BMI (<18.5) NT_WM_NUT.do "Thin BMI - women" IR !!!!!!!!! Underweight (Prevalence of underweight (BMI <18.5) women of reproductive age)

Usage

```
nt_wm_thin(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

ph_sani_basic 35

ph_sani_basic

WS_TLET_P_BAS Population with access to a basic sanitation service WS_TLET_P_BAS in DHS API PH_SANI.do PR ph_sani_basic "Basic sanitation facility"

Description

WS_TLET_P_BAS Population with access to a basic sanitation service WS_TLET_P_BAS in DHS API PH_SANI.do PR ph_sani_basic "Basic sanitation facility"

Usage

```
ph_sani_basic(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

ph_sani_improve

ph_sani_improve

WS_TLET_H_IMP Percentage of households using an improved sanitation facility PH_SANI.do PR ph_sani_improve "Access to improved sanitation" country-specific

Description

WS_TLET_H_IMP Percentage of households using an improved sanitation facility PH_SANI.do PR ph_sani_improve "Access to improved sanitation" country-specific

Usage

```
ph_sani_improve(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

rh_anc_4vs 37

rh_anc_4vs

RH_ANCN_W_N4P ancvisit4+ RH_ANCN_W_N4P IR Antenatal visits for pregnancy: 4+ visits

Description

RH_ANCN_W_N4P ancvisit4+ RH_ANCN_W_N4P IR Antenatal visits for pregnancy: 4+ visits

Usage

```
rh_anc_4vs(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

rh_del_pvskill

RH_DELA_C_SKP IR or BR Assistance during delivery from a skilled provider

Description

RH_DELA_C_SKP IR or BR Assistance during delivery from a skilled provider

Usage

```
rh_del_pvskill(Rdata)
```

38 scatterPlot

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

scatterPlot

Get scatter plot for any two model results

Description

This function return scatter plot at admin 1 level for any two model results

Usage

```
scatterPlot(
  res1,
  value1,
  res2,
  value2,
  label1,
  label2,
  by.res1,
  by.res2,
  title
)
```

scatterPlot 39

Arguments

res1	model result 1 using surveyPrev
value1	value1
res2	model result 2 using surveyPrev
value2	value2
label1	label for x axis
label2	label for y axis
by.res1	by.res1
by.res2	by.res2
title	title

Value

This function returns the dataset that contain district name and population for given tiff files and polygons of admin level

Author(s)

Qianyu Dong

```
geo <- getDHSgeo(country = "Zambia", year = 2018)</pre>
data(ZambiaAdm1)
data(ZambiaAdm2)
data(ZambiaPopWomen)
cluster.info <- clusterInfo(geo = geo,</pre>
                              poly.adm1 = ZambiaAdm1,
                              poly.adm2 = ZambiaAdm2)
dhsData <- getDHSdata(country = "Zambia",</pre>
                                   indicator = "ancvisit4+",
                                   year = 2018)
data <- getDHSindicator(dhsData, indicator = "ancvisit4+")</pre>
admin.info1 <- adminInfo(poly.adm = ZambiaAdm1,</pre>
                          admin = 1,
                         agg.pop =ZambiaPopWomen$admin1_pop,
                         proportion = ZambiaPopWomen$admin1_urban)
smth_res_ad1 <- fhModel(data,</pre>
                         cluster.info = cluster.info,
                         admin.info = admin.info1,
                         admin = 1,
                        model = "bym2",
                         aggregation = F)
admin.info2 <- adminInfo(poly.adm = ZambiaAdm2,</pre>
```

40 surveyPrevIndicators

```
admin = 2,
                        agg.pop =ZambiaPopWomen$admin2_pop,
                        proportion = ZambiaPopWomen$admin2_urban)
cl_res_ad2 <- clusterModel(data = data,</pre>
                  cluster.info = cluster.info,
                  admin.info = admin.info2,
                  stratification = FALSE,
                  model = "bym2",
                  admin = 2,
                  aggregation = TRUE,
                  CI = 0.95)
scatterPlot(
     res1 = smth_res_ad1,
     res2 = cl_res_ad2$agg.admin1,
     value1 = "value",
     value2 = "value",
     by.res1 = "admin1.name",
     by.res2 = "admin1.name",
     title = "Aggregated cluster model v.s. FayHerriot",
     label1 = "FayHerriot",
     label2 = "Aggregated cluster model")
## End(Not run)
```

surveyPrevIndicators Table of built-in indicators.

Description

A data frame of indicators currently implemented in the package

Usage

```
data(surveyPrevIndicators)
```

Format

An object of class data. frame with 22 rows and 4 columns.

watersource_adj 41

watersource_adj $WS_SRCE_P_BAS$ Population using a basic water source $PH_WATER.do\ ph_wtr_basic\ "Basic\ water\ service"\ PR$

Description

WS_SRCE_P_BAS Population using a basic water source PH_WATER.do ph_wtr_basic "Basic water service" PR

Usage

```
watersource_adj(Rdata)
```

Arguments

Rdata

data.frame from survryPrev::getDHSdata

Value

A partially processed data.frame that will be used in survryPrev::getDHSindicator. The whole function can be used as a parameter in survryPrev::getDHSindicator

Author(s)

Qianyu Dong

Examples

ZambiaAdm1

Admin 1 Polygon Map for Zambia.

Description

A SpatialPolygonsDataFrame corresponding to Zambia's admin-1 regions. The dataset is downloaded from GADM (https://gadm.org/data.html) version 4.1.

42 ZambiaPopWomen

Usage

```
data(ZambiaAdm1)
```

Format

An object of class SpatialPolygonsDataFrame with 10 rows and 11 columns.

ZambiaAdm2

Admin 2 Polygon Map for Zambia.

Description

A SpatialPolygonsDataFrame corresponding to Zambia's admin-2 regions. The dataset is downloaded from GADM (https://gadm.org/data.html) version 4.1.

Usage

data(ZambiaAdm2)

Format

An object of class SpatialPolygonsDataFrame with 115 rows and 13 columns.

ZambiaPopWomen

Population estimates for Women of age 15 to 49 in Zambia in 2018.

Description

A list of three objects

- raster A 100m by 100m raster file for the population estimates for women of age 15 to 49 in Zambia in 2018
- admin1_urban A data frame specifying the proportion of urban population (as defined by those living in regions designated as urban in the previous census) for Women of age 15 to 49 in Zambia in 2018, in each admin1 region.
- admin2_urban A data frame specifying the proportion of urban population (as defined by those living in regions designated as urban in the previous census) for Women of age 15 to 49 in Zambia in 2018, in each admin2 region. The corresponding admin1 region name is also included.

The dataset is downloaded from WorldPop (https://hub.worldpop.org/geodata/summary?id=16429) and post processed.

Usage

data(ZambiaPopWomen)

ZambiaPopWomen 43

Format

An object of class list of length 4.

Index

* datasets	nt_ebf, 32
surveyPrevIndicators, 40	nt_wm_any_anem, 33
ZambiaAdm1,41	nt_wm_thin, 34
ZambiaAdm2, 42	
ZambiaPopWomen, 42	ph_sani_basic, 35 ph_sani_improve, 36
adminInfo, 3	
aggPopulation, 4	rh_anc_4vs, 37
aggSurveyWeight,5	rh_del_pvskill,37
ch_allvac_either,7	scatterPlot, 38
ch_diar_ors_rhf, 8	surveyPrevIndicators, 40
ch_meas_either, 8	watercourse adi 41
ch_novac_either, 9	watersource_adj,41
ch_pent1_either, 10	ZambiaAdm1,41
ch_pent3_either, 11	ZambiaAdm2, 42
clusterInfo, 11	ZambiaPopWomen, 42
clusterModel, 12	Zambiai opnomen, 42
directEST, 14	
fhModel, 16	
fp_cruse_mod, 17	
fp_unmet_tot, 18	
get_api_table, 24 getDHSdata, 19 getDHSgeo, 20 getDHSindicator, 21 getUR, 22	
hv_hiv_pos, 25	
intervalPlot, 26	
ml_hhaccess, 27	
NMR, 28	
nt_ch_any_anem, 29	
nt_ch_stunt, 30	
nt ch wast 31	