STP08CP05

Low voltage, low current power 8-bit shift register

Datasheet - production data

Features

- Low voltage power supply down to 3 V
- · 8 constant current output channels
- Adjustable output current through external resistor
- Serial data IN/parallel data OUT
- 3.3 V micro driver-able
- Output current: 5-100 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection 2.5 kV HBM, 200 V MM

Description

The STP08CP05 is a monolithic, low voltage, low current, power 8-bit shift register designed for LED panel displays. The STP08CP05 contains an 8-bit serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. In the output stage, eight regulated current sources were designed to provide 5-100 mA constant current to drive the LEDs, the output current setup time is 11 ns (typ), thus improving the system performance.

The STP08CP05 is backward compatible in functionality and footprint with STP8C/L596. Through an external resistor, users can adjust the STP08CP05 output current, controlling in this way the light intensity of LEDs, in addition, user can adjust LED's brightness intensity from 0% to 100% via \overline{OE} pin.

The STP08CP05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, also satisfies the system requirement of high volume data transmission. The 3.3 V of voltage supply is useful for applications that interface with any micro from 3.3 V. Compared with a standard TSSOP package, the TSSOP exposed pad increases heat dissipation capability by a 2.5 factor.

Table 1. Device summary

Order codes	Package	Packaging
STP08CP05B1R	DIP-16	25 parts per tube
STP08CP05MTR	SO-16 (Tape and reel)	2500 parts per reel
STP08CP05TTR	TSSOP16 (Tape and reel)	2500 parts per reel
STP08CP05XTTR	TSSOP16 exposed-pad (Tape and reel)	2500 parts per reel

Contents STP08CP05

Contents

1	Sum	Summary description						
	1.1	Pin connection and description	3					
2	Bloc	k diagram	4					
3	Maxi	mum rating	5					
	3.1	Absolute maximum ratings	5					
	3.2	Thermal data	5					
	3.3	Recommended operating conditions	6					
4	Elect	trical characteristics	7					
5	Swite	ching characteristics	8					
6	Equi	valent circuit and outputs	9					
7	Truth	n table and timing diagram1	11					
	7.1	Truth table1	11					
	7.2	Timing diagram	11					
8	Туріс	cal characteristics1	۱4					
9	Test	circuit1	۱7					
10	Pack	rage mechanical data	19					
11	Pack	kaging mechanical data 2	28					
12	Revi	sion history 3	30					

1 Summary description

Table 2. Typical current accuracy

Output voltage	Current a	Output current	
Output voitage	Between bits	Between ICs	Output current
≥ 1.3 V	± 1.5%	± 3%	20 to 100 mA

1.1 Pin connection and description

Figure 1. Connections diagram

Note: The exposed pad should be electrically connected to a metal land electrically isolated or connected to ground.

Table 3. Pin description

Pin N°	Symbol	Name and function		
1	GND	Ground terminal		
2	SDI	Serial data input terminal		
3	CLK	Clock input terminal		
4	LE	Latch input terminal		
5-12	OUT 0-7	Output terminal		
13	ŌĒ	Output enable input terminal (active low)		
14	SDO	Serial data out terminal		
15	R-EXT	Constant current programming		
16	V _{DD}	5 V supply voltage terminal		

Block diagram STP08CP05

2 Block diagram

Figure 2. Block diagram

STP08CP05 Maximum rating

3 Maximum rating

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. these are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DD}	Supply voltage I _{GND}	0 to 7	V
V _O	Output voltage	-0.5 to 20	V
Io	Output current	100	mA
I _{GND}	GND terminal current	800	mA
f _{CLK}	Clock frequency	50	MHz
T _{OPR}	Operating temperature range	-40 to +125	°C
T _{STG}	Storage temperature range	-55 to +150	°C

3.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	DIP-16	SO-16	TSSOP-16	TSSOP-16 ⁽¹⁾ (exposed pad)	Unit
R _{thJA}	Thermal resistance junction-ambient	90	125	140	37.5	°C/W

^{1.} The exposed-pad should be soldered to the PBC to realize the thermal benefits

Maximum rating STP08CP05

3.3 Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{DD}	Supply voltage		3.0		5.5	V
Vo	Output voltage				20	V
I _O	Output current	OUTn	5		100	mA
I _{OH}	Output current	SERIAL-OUT			+1	mA
I _{OL}	Output current	SERIAL-OUT			-1	mA
V _{IH}	Input voltage		0.7 V _{DD}		V _{DD} +0.3	V
V _{IL}	Input voltage		-0.3		0.3 V _{DD}	V
t _{wLAT}	LE pulse width		20			ns
t _{wCLK}	CLK pulse width		20			ns
t _{wEN}	OE pulse width	V _{DD} = 3.0 to 5.0 V	200			ns
t _{SETUP(D)}	Setup time for DATA	V _{DD} = 3.0 to 3.0 V	7			ns
t _{HOLD(D)}	Hold time for DATA		4			ns
t _{SETUP(L)}	Setup time for LATCH		15			ns
f _{CLK}	Clock frequency	Cascade operation (1)			30	MHz

^{1.} In order to achieve high cascade data transfer, please consider $t_{\rm r}/t_{\rm f}$ timings carefully.

4 Electrical characteristics

 V_{DD} = 3.3 V to 5 V, T = 25 °C, unless otherwise specified.

Table 7. Electrical characteristics

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IH}	Input voltage high level		0.7 V _{DD}		V_{DD}	V
V _{IL}	Input voltage low level		GND		0.3V _{DD}	V
I _{OH}	Output leakage current	V _{OH} = 20 V		0.5	10	μΑ
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA		0.03	0.4	V
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	V _{OH} - V _{DD} =- 0.4 V			V
I _{OL1}		$V_{O} = 0.3 \text{ V}, R_{ext} = 3.9 \text{ k}\Omega$	4.25	5	5.75	
I _{OL2}	Output current	$V_{O} = 0.3 \text{ V, R}_{ext} = 970 \Omega$	19.4	20	20.6	mA
I _{OL3}		$V_{O} = 1.3 \text{ V}, R_{ext} = 190 \Omega$	97	100	103	
Δl _{OL1}	Output current error	$V_O = 0.3 \text{ VR}_{EXT} = 3.9 \text{ k}\Omega$		± 5	± 8	
Δl _{OL2}	between bit	$V_{O} = 0.3 \text{ VR}_{EXT} = 970 \Omega$		± 1.5	± 2.75	%
Δl _{OL3}	(All Output ON)	$V_{O} = 1.3 \text{ VR}_{EXT} = 190 \Omega$		± 1.2	± 2.5	
R _{SIN(up)}	Pull-up resistor		150	300	600	ΚΩ
R _{SIN(down)}	Pull-down resistor		100	200	400	ΚΩ
I _{DD(OFF1)}	Supply current (OEE)	R _{EXT} = 980 OUT 0 to 7 = OFF		4	5	
I _{DD(OFF2)}	Supply current (OFF)	R _{EXT} = 250 OUT 0 to 7 = OFF		11.2	13.5	∞ Λ
I _{DD(ON1)}	Supply ourrent (ON)	R _{EXT} = 980 OUT 0 to 7 = ON		4.5	5	mA
I _{DD(ON2)}	Supply current (ON)	R _{EXT} = 250 OUT 0 to 7 = ON		11.7	13.5	
Thermal	Thermal protection (1)			170		°C

Guaranteed by design (not tested)
 The thermal protection switches OFF only the outputs

5 Switching characteristics

 V_{DD} = 5 V, T = 25 °C, unless otherwise specified.

Table 8. Switching characteristics

Symbol	Parameter	To	est conditions	1	Min	Тур	Max	Unit
	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		35	50	
t _{PLH1}	CLK-OUTn, LE = H, OE = L			$V_{DD} = 5 V$		18	28	ns
	Propagation delay time,			V _{DD} = 3.3 V		48	74	
t _{PLH2}	LE -OUTn, OE = L			$V_{DD} = 5 V$		30	50	ns
	Propagation delay time,			V _{DD} = 3.3 V		55	82	
t _{PLH3}	OE -OUTn, LE = H			$V_{DD} = 5 V$		37	58	ns
touu	Propagation delay time,			V _{DD} = 3.3 V		21	28	ns
t _{PLH}	CLK-SDO			$V_{DD} = 5 V$		17	22	- ns
	Propagation delay time,			$V_{DD} = 3.3 \text{ V}$		11	17	
t _{PHL1}	CLK-OUTn, LE = H, OE = L	$V_{DD} = 3.3 V$ $V_{IL} = GND$		V _{DD} = 5 V		7	11	ns
4	Propagation delay time,	I _O = 20 mA	_	V _{DD} = 3.3 V		24	40	
t _{PHL2}	DE = L	$R_{EXT} = 1 K\Omega$	$R_L = 60 \Omega$	$V_{DD} = 5 V$		21	31	ns
_	Propagation delay time,			V _{DD} = 3.3 V		20	35	
t _{PHL3}	OE -OUTn, LE = H			V _{DD} = 5 V		18	28	ns
+	Propagation delay time,			V _{DD} = 3.3 V		24	32	ns
t _{PHL}	CLK-SDO			$V_{DD} = 5 V$		19	25	113
	Output rise time			$V_{DD} = 3.3 \text{ V}$		26	40	
t _{ON}	10~90% of voltage waveform			V _{DD} = 5 V		11	17	ns
	Output fall time			V _{DD} = 3.3 V		5	10	
t _{OFF}	90~10% of voltage waveform			V _{DD} = 5 V		4	8	ns
t _r	CLK rise time (1)						5000	ns
t _f	CLK fall time (1)						5000	ns

^{1.} In order to achieve high cascade data transfer, please consider tr/tf timings carefully.

8/31 DocID13524 Rev 6

6 Equivalent circuit and outputs

Figure 3. OE terminal

Figure 4. LE terminal

Figure 5. CLK, SDI terminal

Figure 6. SDO terminal

7 Truth table and timing diagram

7.1 Truth table

Table 9. Truth table

Clock	LE	OE	SDI	OUT0 OUT0 OUT7	SDO
_ <u></u>	Н	L	Dn	Dn Dn -5 Dn -7	Dn -7
_ _ _	L	L	Dn + 1	No change	Dn -7
_ _ _	Н	L	Dn + 2	Dn +2 Dn -3 Dn -5	Dn -5
	Х	L	Dn + 3	Dn +2 Dn -3 Dn -5	Dn -5
_ _	Х	Н	Dn + 3	OFF	Dn -5

Note: OUT0 to OUT7 = ON when Dn = H; OUT0 to OUT7 = OFF when Dn = L.

7.2 Timing diagram

Figure 7. Timing diagram

Figure 8. Clock, serial-in, serial-out

Figure 10. Outputs

8 Typical characteristics

Figure 11. Output current-R_{EXT} resistor

Table 10. Output current-R_{EXT} resistor

Output current (mA)	3	5	10	20	50	80	130
Rext (Ω)	6740	3930	1913	963	386	241	124

Maximum output current capabilities setting was 130 mA applying an Rext = 124 Ω

Note:

Table 11. I_{SET} vs drop out voltage (V_{DROP})

Vdd (V)	I set (mA)	Rext (Ω)	Vdrop min (mV)	Vdrop max (mV)	Vdrop AVG (mV)
	3	6470	30.6	31.2	30.93
	5	3930	46.5	52.9	48.63
	10	1910	80.9	100	82.26
3	20	963	150	161	157
	50	386	392	396	394.3
	80	241	636	646	640.3
	100	192	846	850	848
	3	6470	25.6	29	26.96
	5	3930	40.8	41.7	41.16
	10	1910	80.1	105	89.2
5	20	963	153	154	154
	50	386	379	386	382
	80	241	618	626	621
	100	192	825	830	827

Figure 13. Power dissipation vs temperature package

Note: The exposed-pad should be soldered to the PBC to realize the thermal benefits.

STP08CP05 **Test circuit**

Test circuit 9

I_{DD} ↓ V_{DD} OUTO OE $I_{\mathsf{IL}}, I_{\mathsf{IH}}$ CLK LE OUT7 SDI SDO R-EXT GND I_{REF} ↓ CS19790

Figure 15. DC characteristics

Test circuit STP08CP05

Figure 17. Typical application schematic

10 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Table 12. DIP16 mechanical data

Dim	mm		
	Min	Тур	Max
a1	0.51		
В	0.77		1.65
b		0.5	
b1		0.25	
D			20
E		8.5	
е		2.54	
e3		17.78	
F			7.1
I			5.1
L		3.3	
Z			1.27

Figure 18. DIP16 drawing

Table 13. HTSSOP16 exposed pad mechanical data

Dim	mm		
	Min	Тур	Max
А			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09		0.20
D	4.90	5.00	5.10
D1	2.8	3	3.2
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
E2	2.8	3	3.2
е		0.65	
L	0.45	0.60	0.75
L1		1.00	
k	0.00		8.00
aaa			0.10

Figure 19. HTSSOP16 exposed pad drawing

Table 14. HTSSOP16 mechanical data

Dim	mm		
	Min	Тур	Max
А			1.20
A1			0.15
A2	0.80	1.00	1.05
b	0.19		0.30
С	0.09		0.20
D	4.90	5.00	5.10
D1	2.8	3	3.2
E	6.20	6.40	6.60
E1	4.30	4.40	4.50
E2	2.8	3	3.2
е		0.65	
L	0.45	0.60	0.75
L1		1.00	
k	0.00		8.00
aaa			0.10

Figure 20. HTSSOP16 mechanical drawing

Table 15. SO16N dimensions

Dim	mm			
	Min	Тур	Max	
Α			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.31		0.51	
С	0.17		0.25	
D	9.80	9.90	10.00	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
k	0		8°	
ccc			0.10	

Figure 21. Package drawing

Figure 22. Recommended footprint (dimensions are in mm)

11 Packaging mechanical data

Table 16. HTSSOP16 EP tape and reel mechanical data

Dim	mm		
	Min	Тур	Max
А			330
С	12.8		13.2
D	20.2		
N	60		
Т			22.4
Ao	6.7		6.9
Во	5.3		5.5
Ко	1.6		1.8
Po	3.9		4.1
Р	7.9		8.1

28/31 DocID13524 Rev 6

Figure 23. Tape and reel for HTSSOP16 EP

Revision history STP08CP05

12 Revision history

30/31

Table 17. Document revision history

Date	Revision	Changes
23-May-2007	1	First release
28-Jun-2007	2	Updated Table 7 on page 7
12-Mar-2008	3	Updated <i>Table 8 on page 8</i> and added <i>Figure 11</i> and <i>Figure 12 on page 15</i>
07-Aug-2008	4	Updated Section 8: Typical characteristics on page 14
27-Aug-2010	5	Updated Note: on page 3
10-Jul-2013	6	Updated Section 10: Package mechanical data, Figure 3: OE terminal and Figure 4: LE terminal. Added Section 11: Packaging mechanical data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID13524 Rev 6