```
import numpy as np
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
In [2]: df = pd.read_csv('MLR-Feature-Elimination.csv')
         columns_list = df.columns.tolist()
         print(columns_list)
         ['c1', 'c2', 'c26', 'c27', 'c28', 'c29', 'c30', 'c31', 'c32', 'c33', 'c39', 'c13
         9', 'c142', 'c143', 'c155', 'c157', 'c158', 'c160', 'c161', 'c162', 'c163', 'c7', 'c8', 'c9', 'c10', 'c11', 'c12', 'c13', 'c15', 'c16', 'c17', 'c19', 'c20', 'c21',
         'c22', 'c23', 'c34', 'c35', 'c36', 'c52', 'c241']
In [3]: import statsmodels.api as sm
         X = df[['c26', 'c27', 'c28', 'c29', 'c30', 'c31', 'c32', 'c33', 'c39', 'c139', 'c14']
         y = df['c52']
         X = sm.add_constant(X)
         mlr_model = sm.OLS(y, X).fit()
         print(mlr_model.summary())
         y_cap = mlr_model.predict(X)
         e = y - y_cap
         e_squared = e * e
         MSE = (e_squared.sum())/1025
         print('MSE = ', MSE)
```

OLS Regression Results

Dep. Variable:			quared:		0.785
Model:		-	. R-squared:		0.777
Method:	Least Squ	ares F-s	tatistic:		97.27
Date:	Sat, 02 Sep	2023 Pro	b (F-statisti	ic):	1.11e-299
Time:	22:5	8:20 Log	-Likelihood:		-1479.4
No. Observations:		1025 AIC	•		3035.
Df Residuals:		987 BIC	•		3222.
Df Model:		37			
Covariance Type:	nonro	bust			
=======================================		=======	========		=======
coe	f std err	t	P> t	[0.025	0.975]
const -136.488	2 104.748	-1.303	0.193	-342.042	69.065
c26 0.363		7.442		0.268	0.459
c27 -0.191		-0.214		-1.948	1.565
c28 0.226		5.150		0.140	0.313
c29 -0.445		-9.115	0.000	-0.541	-0.349
c30 3.4633		7.568	0.000	2.565	4.361
c31 0.266		7.699	0.000	0.199	0.335
c32 0.178		0.895	0.371	-0.212	0.569
c33 -0.654		-1.412	0.158	-1.564	0.255
c39 12.998		8.845	0.000	10.114	15.882
c139 -0.843		-3.745	0.000	-1.286	-0.402
c142 0.045		0.682	0.495	-0.085	0.176
c143 -0.153		-3.956	0.000	-0.230	-0.077
c155 -0.034		-2.684	0.007	-0.059	-0.009
c157 0.250		6.100	0.000	0.170	0.331
c158 0.283		12.121	0.000	0.238	0.329
c160 0.004		2.206	0.028	0.000	0.008
c161 0.010		9.632	0.000	0.008	0.013
c162 0.002		1.649	0.099	-0.001	0.006
c163 0.008		3.724	0.000	0.004	0.012
c7 0.323		1.108	0.268	-0.250	0.897
c8 -0.446		-3.257	0.001	-0.716	-0.177
c9 -0.686		-9.097	0.000	-0.834	-0.538
c10 8.804	5 1.541	5.715	0.000	5.781	11.828
c11 -0.170		-4.044	0.000	-0.253	-0.088
c12 -0.302		-2.765	0.006	-0.518	-0.088
c13 0.075	7 0.052	1.455	0.146	-0.026	0.178
c15 -0.425	0.058	-7.336	0.000	-0.539	-0.312
c16 -0.504	6 0.103	-4.919	0.000	-0.706	-0.303
c17 -0.079	0.021	-3.707	0.000	-0.121	-0.037
c19 0.382	0.218	1.756	0.079	-0.045	0.809
c20 0.227	0.042	5.449	0.000	0.146	0.310
c21 -0.164	7 0.049	-3.329	0.001	-0.262	-0.068
c22 -0.125	0.036	-3.455	0.001	-0.197	-0.054
c23 -0.330	0.048	-6.848	0.000	-0.425	-0.235
c34 -0.512	3 1.765	-0.290	0.772	-3.976	2.951
c35 6.327		3.917		3.157	9.498
c36 -1.828		-0.020	0.984	-179.197	175.541
=======================================		=======			=======
Omnibus:	40	.476 Dur	bin-Watson:		0.546
Prob(Omnibus):	0	.000 Jar	que-Bera (JB)):	113.185
Skew:	-0	.049 Pro	b(JB):		2.64e-25
Kurtosis:	4	.625 Con	d. No.		3.48e+06
=======================================		=======			=======

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[2] The condition number is large, 3.48e+06. This might indicate that there are

strong multicollinearity or other numerical problems.
MSE = 1.0500374274581643

```
In [4]: #dropping c36
X = df[['c26', 'c27', 'c28', 'c29', 'c30', 'c31', 'c32', 'c33', 'c39', 'c139', 'c14'
y = df['c52']
X = sm.add_constant(X)
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

				201200		
			Regression			
		========		========		
Dep. Vari	able:			squared:		0.785
Model:				j. R-squared	:	0.777
Method:		Least Squ		statistic:		100.1
Date:		Sat, 02 Sep	2023 Pr	ob (F-statis	tic):	1.10e-300
Time:		22:5	60:44 Lc	g-Likelihood	•	-1479.4
No. Obser	vations:		1025 AI	C:		3033.
Df Residu	als:		988 BI	C:		3215.
Df Model:			36			
Covarianc		nonro				
======				======== t P> t		
const	-136.558					
c26	0.363	4 0.049	7.44	7 0.000	0.268	0.459
c27	-0.191	2 0.895	-0.21	4 0.831	-1.947	1.565
c28	0.226	6 0.044	5.15	6 0.000	0.140	0.313
c29	-0.445	3 0.049	-9.12	7 0.000	-0.541	-0.350
c30	3.463	6 0.457	7.57	8 0.000	2.567	4.361
c31	0.266	6 0.035	7.71	8 0.000	0.199	0.334
c32	0.177	9 0.199	0.89	5 0.371	-0.212	0.568
c33	-0.654	2 0.463	-1.41	3 0.158	-1.563	0.254
c39	12.999		8.85		10.117	15.881
c139	-0.843		-3.74		-1.286	-0.402
c142	0.045		0.68		-0.085	0.176
c143	-0.153		-3.95		-0.230	-0.077
c155	-0.034		-2.68		-0.059	-0.009
c157	0.250		6.10		0.170	0.331
c158	0.283		12.12		0.238	0.329
c160	0.004		2.20		0.000	0.008
c161	0.010		9.65		0.008	0.013
c162	0.002		1.65			0.015
c163	0.002		3.72			0.012
c7	0.324		1.11			
c8	-0.446		-3.25		-0.715	-0.178
c9	-0.440		-9.10		-0.834	-0.538
c10	8.805		5.72		5.787	11.825
c11	-0.170		-4.05		-0.253	-0.088
c12	-0.302		-2.76		-0.517	-0.088
c13	0.075		1.45		-0.026	0.178
c15	-0.425		-7.34		-0.539	-0.312
c16	-0.504		-4.92		-0.706	-0.303
c17	-0.079		-3.70		-0.121	-0.037
c19	0.382		1.75		-0.045	0.809
c20	0.228		5.45		0.146	0.310
c21	-0.164		-3.33		-0.262	-0.068
c22	-0.125		-3.45		-0.197	-0.054
c23	-0.330		-6.85		-0.425	-0.236
c34	-0.511	5 1.763	-0.29	0 0.772	-3.972	2.949
- 2 5	c 22c	0 1 64 4	2 04	0 000	2 4 5 2	0 405

6.3269 1.614 3.919 0.000 3.159 ______ 40.480 Durbin-Watson: Omnibus: 0.546 Prob(Omnibus): 0.000 Jarque-Bera (JB): 113.199 Skew: -0.049 Prob(JB): 2.62e-25 4.625 Cond. No. Kurtosis: 3.47e+06 ______

Notes:

c35

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 3.47e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [5]: #dropping c27
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c32', 'c33', 'c39', 'c139', 'c142','c14y = df['c52']
X = sm.add_constant(X)
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

Dep. Variable:

OLS Regression Results

R-squared:

0.785

c52

Dep. Variable.	(32		uareu.		0.765
Model:	OLS	S Adj.	R-squared:		0.777
Method:	Least Squares	F-st	atistic:		103.0
Date:	Sat, 02 Sep 2023	3 Prob	(F-statistic)):	1.10e-301
Time:	22:51:00	D Log-	Likelihood:		-1479.5
No. Observations:	1025	AIC:			3031.
Df Residuals:	989	BIC:			3208.
Df Model:	35	5			
Covariance Type:	nonrobust	-			
=======================================			=========		========
coe	f std err	t	P> t	[0.025	0.975]
const -156.696	3 45.447	-3.448	0.001	-245.880	-67.512
c26 0.363	4 0.049	7.451	0.000	0.268	0.459
c28 0.226	8 0.044	5.166	0.000	0.141	0.313
c29 -0.445	2 0.049	-9.130	0.000	-0.541	-0.349
c30 3.462	4 0.457	7.579	0.000	2.566	4.359
c31 0.266	8 0.035	7.729	0.000	0.199	0.335
c32 0.178	3 0.199	0.897	0.370	-0.212	0.568
c33 -0.655	4 0.463	-1.416	0.157	-1.564	0.253
c39 13.002	4 1.468	8.859	0.000	10.122	15.883
c139 -0.841	2 0.225	-3.744	0.000	-1.282	-0.400
c142 0.044	5 0.066	0.671	0.502	-0.086	0.175
c143 -0.153		-3.959	0.000	-0.230	-0.077
c155 -0.034		-2.682	0.007	-0.059	-0.009
c157 0.250		6.111	0.000	0.170	0.331
c158 0.283		12.154	0.000	0.237	0.329
c160 0.004		2.214	0.027	0.000	0.008
c161 0.010		9.687	0.000	0.008	0.013
c162 0.002		1.657	0.098	-0.001	0.006
c163 0.008		3.722	0.000	0.004	0.012
c7 0.319		1.102	0.271	-0.250	0.890
c8 -0.447		-3.273	0.001	-0.716	-0.179
c9 -0.686		-9.114	0.000	-0.834	-0.539
c10 8.809		5.729	0.000	5.792	11.827
c11 -0.169		-4.055	0.000	-0.252	-0.088
c12 -0.304		-2.787	0.005	-0.518	-0.090
c13 0.075		1.458	0.145	-0.026	0.178
c15 -0.425		-7.349	0.000	-0.539	-0.312
c16 -0.503		-4.920	0.000	-0.704	-0.303
c17 -0.079		-3.718	0.000	-0.121	-0.037
c19 0.380		1.752	0.080	-0.046	0.807
c20 0.227		5.456	0.000	0.146	0.310
c21 -0.165		-3.350	0.001	-0.262	-0.069
c22 -0.125		-3.457	0.001	-0.197	-0.054
c23 -0.329		-6.854	0.000	-0.424	-0.235
c34 -0.518		-0.294	0.769	-3.977	2.940
c35 6.335		3.928	0.000	3.170	9.501
=======================================		======		J.170	
Omnibus:	40.889	- Durh	in-Watson:		0.547
Prob(Omnibus):	0.000		ue-Bera (JB):		115.091
Skew:	-0.056		(JB):		1.02e-25
Kurtosis:	4.639		. No.		1.50e+06
		20114			

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.5e+06. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [6]: #dropping c142
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c32', 'c33', 'c39', 'c139', 'c143','c19
y = df['c52']
X = sm.add_constant(X)
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

Dep. Variable:

OLS Regression Results

c52

R-squared:

0.785

Dep. varia	ore:			uarea:		0.785
Model:			-	R-squared:		0.777
Method:		Least Squa		atistic:		109.4
Date:	9	Sat, 02 Sep 2		(F-statist	ic):	1.32e-303
Time:		22:51	:08 Log-	Likelihood:		-1479.7
No. Observa	ations:	1	.025 AIC:			3027.
Df Residual	ls:		991 BIC:			3195.
Df Model:			33			
Covariance	Type:	nonrob	ust			
========		========	=======	========		========
	coef	std err	t	P> t	[0.025	0.975]
const	-154.0761	45.193	-3.409	0.001	-242.761	-65.391
c26	0.3613	0.049	7.433	0.000	0.266	0.457
c28	0.2423	0.035	6.992	0.000	0.174	0.310
c29	-0.4397	0.048	-9.152	0.000	-0.534	-0.345
c30	3.4233	0.453	7.551	0.000	2.534	4.313
c31	0.2823	0.026	10.957	0.000	0.232	0.333
c32	0.1559	0.196	0.795	0.427	-0.229	0.541
c33	-0.6193	0.459	-1.349	0.178	-1.520	0.282
c39	12.9088	1.459	8.845	0.000	10.045	15.773
c139	-0.8394	0.223	-3.758	0.000	-1.278	-0.401
c143	-0.1476	0.038	-3.738	0.000	-0.222	-0.073
c155		0.038				
	-0.0319		-2.588	0.010	-0.056	-0.008
c157	0.2491	0.040	6.250	0.000	0.171	0.327
c158	0.2808	0.023	12.181	0.000	0.236	0.326
c160	0.0041	0.002	2.276	0.023	0.001	0.008
c161	0.0105	0.001	9.823	0.000	0.008	0.013
c162	0.0028	0.002	1.693	0.091	-0.000	0.006
c163	0.0080	0.002	3.765	0.000	0.004	0.012
c7	0.3284	0.290	1.133	0.258	-0.240	0.897
c8	-0.4400	0.136	-3.235	0.001	-0.707	-0.173
c9	-0.6781	0.074	-9.120	0.000	-0.824	-0.532
c10	8.7586	1.527	5.737	0.000	5.763	11.754
c11	-0.1650	0.041	-3.991	0.000	-0.246	-0.084
c12	-0.3034	0.109	-2.783	0.005	-0.517	-0.089
c13	0.0765	0.052	1.476	0.140	-0.025	0.178
c15	-0.4243	0.058	-7.341	0.000	-0.538	-0.311
c16	-0.4899	0.100	-4.874	0.000	-0.687	-0.293
c17	-0.0816	0.021	-3.880	0.000	-0.123	-0.040
c19	0.3875	0.217	1.787	0.074	-0.038	0.813
c20	0.2240	0.041	5.458	0.000	0.143	0.305
c21	-0.1619	0.049	-3.329	0.001	-0.257	-0.066
c22	-0.1243	0.036	-3.449	0.001	-0.195	-0.054
c23	-0.3229	0.047	-6.873	0.001	-0.415	-0.231
c35	6.3578	1.537	4.136	0.000	3.341	9.374
			4.130			9.5/4
Omnibus:	=	40	558 Durb	in-Watson:		0.546
Prob(Omnibu	15).			ue-Bera (JB)	١.	113.650
Skew:	13).			ие-вега (зв _. (ЗВ):	, .	
						2.09e-25
Kurtosis:		4.	628 Cond	. No.		1.49e+06

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 1.49e+06. This might indicate that there are strong multicollinearity or other numerical problems. MSE = 1.050672497782554

```
In [7]: #dropping c32

X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c
```

```
y = df['c52']
X = sm.add_constant(X)
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

OLS Regression Results

=======	========	========		====	========	=======	========
Dep. Varia	ble:		c52	R-sq	uared:		0.785
Model:					R-squared:		0.778
Method:		Least Squ	uares	F-st	atistic:		112.9
Date:		Sat, 02 Sep	2023	Prob	(F-statistic):	1.69e-304
Time:		22:5	51:20	Log-	Likelihood:		-1480.1
No. Observ	ations:		1025	AIC:			3026.
Df Residua	ıls:		992	BIC:			3189.
Df Model:			32				
Covariance		nonro					
=======	coef				======= P> t		0.975]
const	-121.0921		-6			-156.330	-85.854
c26	0.3582			. 395	0.000	0.263	0.453
c28	0.2395			.948	0.000	0.172	
c29	-0.4366	0.048	-9	.119	0.000	-0.531	-0.343
c30	3.4079	0.453	7	.525	0.000	2.519	4.297
c31	0.2758	0.024	11	. 293	0.000	0.228	0.324
c33	-0.2600	0.083	-3	.139	0.002	-0.423	-0.097
c39	12.9132	1.459	8	.850	0.000	10.050	15.777
c139	-0.8435	0.223	-3	.778	0.000	-1.282	-0.405
c143	-0.1446	0.038	-3	.841	0.000	-0.219	-0.071
c155	-0.0321	0.012	-2	.607	0.009	-0.056	-0.008
c157	0.2497	0.040	6	. 269	0.000	0.172	0.328
c158	0.2835	0.023	12	.440	0.000	0.239	0.328
c160	0.0041	0.002	2	. 305	0.021	0.001	0.008
c161	0.0105	0.001	9	.817	0.000	0.008	0.013
c162	0.0028	0.002	1	.680	0.093	-0.000	0.006
c163	0.0086	0.002	3	.736	0.000	0.004	0.012
c7	0.3649	0.286	1	. 275	0.203	-0.197	0.927
c8	-0.4215	0.134	-3	.146	0.002	-0.684	-0.159
c9	-0.6717	0.074	-9	.089	0.000	-0.817	-0.527
c10	8.8019	1.525	5	.770	0.000	5.809	11.795
c11	-0.1655	0.041	-4	.002	0.000	-0.247	-0.084
c12	-0.3057	0.109	-2	.804	0.005	-0.520	-0.092
c13	0.0738	0.052	1	.426	0.154	-0.028	0.175
c15	-0.4244	0.058	-7	. 343	0.000	-0.538	-0.311
c16	-0.4799	0.100	-4	.813	0.000	-0.676	-0.284
c17	-0.0818	0.021	-3	.890	0.000	-0.123	-0.041
c19	0.3957	0.216		.828	0.068	-0.029	0.821
c20	0.2264			.532	0.000	0.146	0.307
c21	-0.1625			. 342	0.001	-0.258	-0.067
c22	-0.1256			.490	0.001	-0.196	-0.055

______ Omnibus: 47.547 Durbin-Watson: 0.544 Prob(Omnibus): 0.000 Jarque-Bera (JB): 147.399 Skew: Prob(JB): 9.83e-33 -0.071 Kurtosis: 4.852 Cond. No. 5.92e+05 ______

-6.832

4.071

0.000

0.000

-0.408

3.218

-0.226

9.207

0.046

1.526

Notes:

c23

c35

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 5.92e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
MSE = 1.0513431777242574
```

-0.3173

6.2123

```
In [8]: #dropping c7
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c'
y = df['c52']
```

```
X = sm.add_constant(X)
12
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

Dep. Variable:

OLS Regression Results

c52 R-squared:

0.784

Model:			OLS Adj.	R-squared:		0.777
Method:		Least Squa		atistic:		116.4
Date:		Sat, 02 Sep 2	.023 Prob	(F-statist	ic):	3.47e-305
Time:		22:51	:26 Log-	Likelihood:		-1480.9
No. Observa	ations:	1	.025 AIC:			3026.
Df Residual	ls:		993 BIC:			3184.
Df Model:			31			
Covariance		nonrob				
========	coef		t	P> t	[0.025	0.975]
const	-126.1233	17.524		0.000		
c26	0.3694			0.000	0.276	
c28	0.2435		7.089	0.000	0.176	
c29	-0.4457				-0.539	
c30	3.4802		7.743		2.598	
c31	0.2872			0.000	0.243	
c33	-0.2722		-3.306	0.001	-0.434	
c39	13.4486	1.398	9.620	0.000	10.705	16.192
c139	-0.8439	0.223	-3.779	0.000	-1.282	-0.406
c143	-0.1472	0.038	-3.913	0.000	-0.221	-0.073
c155	-0.0364	0.012	-3.062	0.002	-0.060	-0.013
c157	0.2576	0.039	6.541	0.000	0.180	0.335
c158	0.2850	0.023	12.520	0.000	0.240	0.330
c160	0.0040		2.246	0.025	0.001	0.008
c161	0.0105	0.001	9.774	0.000	0.008	0.013
c162	0.0028	0.002	1.684	0.093	-0.000	0.006
c163	0.0079		3.696	0.000	0.004	0.012
c8	-0.4519		-3.426	0.001	-0.711	-0.193
c9	-0.7126		-10.698	0.000	-0.843	-0.582
c10	9.0072		5.936	0.000	6.030	11.985
c11	-0.1647		-3.984	0.000	-0.246	-0.084
c12	-0.3294		-3.067	0.002	-0.540	
c13	0.0762		1.472	0.141	-0.025	0.178
c15	-0.4017		-7.304	0.000	-0.510	-0.294
c16	-0.4728		-4.748	0.000	-0.668	-0.277
c17	-0.0810		-3.852	0.000	-0.122	
c19	0.3925		1.813	0.070	-0.032	0.817
c20	0.2340		5.777	0.000	0.154	0.313
c21	-0.1670		-3.443	0.001	-0.262	-0.072
c22	-0.1252		-3.476	0.001	-0.196	-0.055
c23	-0.3121		-6.744	0.000	-0.403	-0.221
c35	6.4675	1.513	4.274	0.000	3.498	9.437

 Omnibus:
 52.925
 Durbin-Watson:
 0.549

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 175.012

 Skew:
 -0.097
 Prob(JB):
 9.92e-39

 Skew:
 -0.097
 Prob(JB):
 9.92e-39

 Kurtosis:
 5.015
 Cond. No.
 5.78e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.78e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [9]: #dropping c13
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c155', 'c155
```

```
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

OLS Regression Results

			==========
Dep. Variable:	c52	R-squared:	0.784
Model:	OLS	Adj. R-squared:	0.777
Method:	Least Squares	F-statistic:	120.0
Date:	Sat, 02 Sep 2023	Prob (F-statistic):	9.18e-306
Time:	22:51:36	Log-Likelihood:	-1482.0
No. Observations:	1025	AIC:	3026.
Df Residuals:	994	BIC:	3179.
Df Model:	30		
Covariance Type:	nonrobust		

Covariance	e Type: ========	nonrob				
	coef	std err	t	P> t	[0.025	0.975]
const	-127.9672	17.489	-7.317	0.000	-162.287	-93.647
c26	0.3701	0.048	7.761	0.000	0.277	0.464
c28	0.2502	0.034	7.346	0.000	0.183	0.317
c29	-0.4470	0.047	-9.436	0.000	-0.540	-0.354
c30	3.4847	0.450	7.749	0.000	2.602	4.367
c31	0.2939	0.022	13.179	0.000	0.250	0.338
c33	-0.2835	0.082	-3.458	0.001	-0.444	-0.123
c39	14.0710	1.333	10.554	0.000	11.455	16.687
c139	-0.8308	0.223	-3.721	0.000	-1.269	-0.393
c143	-0.1528	0.037	-4.081	0.000	-0.226	-0.079
c155	-0.0386	0.012	-3.274	0.001	-0.062	-0.015
c157	0.2511	0.039	6.413	0.000	0.174	0.328
c158	0.2832	0.023	12.451	0.000	0.239	0.328
c160	0.0040	0.002	2.252	0.025	0.001	0.008
c161	0.0105	0.001	9.753	0.000	0.008	0.013
c162	0.0026	0.002	1.581	0.114	-0.001	0.006
c163	0.0080	0.002	3.760	0.000	0.004	0.012
c8	-0.4393	0.132	-3.336	0.001	-0.698	-0.181
c9	-0.6975	0.066	-10.591	0.000	-0.827	-0.568
c10	9.0999	1.517	5.999	0.000	6.123	12.077
c11	-0.1666	0.041	-4.028	0.000	-0.248	-0.085
c12	-0.2997	0.106	-2.839	0.005	-0.507	-0.093
c15	-0.4263	0.052	-8.128	0.000	-0.529	-0.323
c16	-0.4015	0.087	-4.612	0.000	-0.572	-0.231
c17	-0.0804	0.021	-3.821	0.000	-0.122	-0.039
c19	0.3955	0.217	1.825	0.068	-0.030	0.821
c20	0.2392	0.040	5.926	0.000	0.160	0.318
c21	-0.1653	0.049	-3.407	0.001	-0.261	-0.070
c22	-0.1371	0.035	-3.904	0.000	-0.206	-0.068
c23	-0.2952	0.045	-6.580	0.000	-0.383	-0.207
c35	6.4374 ========	1.514	4.252	0.000	3.466	9.408
Omnibus:			090 Durbir	n-Watson:		0.548
Prob(Omnil	bus):	0.	000 Jarque	e-Bera (JB):		182.954
Skew:		-0.	093 Prob(3	JB):		1.87e-40
Kurtosis:		5.	061 Cond.	No.		5.76e+05

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 5.76e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [10]: #dropping c162
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c39', 'c39', 'c143', 'c155', 'c39', 'c39', 'c39', 'c39', 'c143', 'c155', 'c39', 'c39',
```

```
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

print(MS	oE = ', MSE)					
			Regression			
		:=======			========	
Dep. Vari	abie:			squared:	_	0.783
Model:				j. R-squared	:	0.777
Method:		Least Squ		statistic:		123.9
Date:		Sat, 02 Sep		ob (F-statis	•	2.82e-306
Time:		22:5		g-Likelihood	•	-1483.3
No. Obser			1025 AI			3027.
Df Residu			995 BI	C:		3175.
Df Model:			29			
Covarianc		nonro			=========	
=======	coef			t P> t		0.975]
const	-124.1923		-7.16			-90.168
c26	0.3611					0.454
c28	0.2447		7.21			0.311
c29	-0.4386		-9.30			-0.346
c30	3.3966	0.447	7.60	6 0.000	2.520	4.273
c31	0.2933	0.022	13.14	5 0.000	0.249	0.337
c33	-0.2796	0.082	-3.40	8 0.001	-0.441	-0.119
c39	14.3943	1.319	10.91	7 0.000	11.807	16.982
c139	-0.8292	0.223	-3.71	0.000	-1.268	-0.391
c143	-0.1442	0.037	-3.89	0.000	-0.217	-0.071
c155	-0.0387	0.012	-3.28	3 0.001	-0.062	-0.016
c157	0.2565	0.039	6.57	3 0.000	0.180	0.333
c158	0.2832	0.023	12.44	5 0.000	0.239	0.328
c160	0.0039	0.002	2.17	1 0.030	0.000	0.007
c161	0.0109	0.001	10.63	9 0.000	0.009	0.013
c163	0.0086	0.002	4.08	2 0.000	0.004	0.013
c8	-0.4561	0.131	-3.47	2 0.001	-0.714	-0.198
c9	-0.6991	0.066	-10.60	9 0.000	-0.828	-0.570
c10	8.9883	1.516	5.92	7 0.000	6.013	11.964
c11	-0.1629	0.041	-3.94	2 0.000	-0.244	-0.082
c12	-0.3121	0.105	-2.96	2 0.003	-0.519	-0.105
c15	-0.4319	0.052	-8.24	9 0.000	-0.535	-0.329
c16	-0.4031	L 0.087	-4.62	8 0.000	-0.574	-0.232
c17	-0.0792	0.021	-3.76	4 0.000	-0.121	-0.038
c19	0.3967	0.217	1.82	9 0.068		0.822
c20	0.2357	0.040	5.84	3 0.000	0.157	0.315
c21	-0.1610	0.048	-3.32	0.001	-0.256	-0.066
c22	-0.1381		-3.93			-0.069
c23	-0.3005		-6.71			-0.213
c35	6.4788		4.27			9.452
=======	=======	:=======				
Omnibus:		53	3.166 Du	rbin-Watson:		0.547

Omnibus: 53.166 Durbin-Watson: 0.547
Prob(Omnibus): 0.000 Jarque-Bera (JB): 179.242
Skew: -0.079 Prob(JB): 1.20e-39
Kurtosis: 5.042 Cond. No. 5.63e+05

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 5.63e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [11]: #dropping c19
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c39', 'c39', 'c139', 'c143','c155', 'c39', 'c39', 'c39', 'c143','c155', 'c39', 'c39', 'c39', 'c39', 'c143','c155', 'c39', 'c
```

OLS Regression Results

Dep. Variable:	c52	R-squared:	0.782
Model:	OLS	Adj. R-squared:	0.776
Method:	Least Squares	F-statistic:	127.9
Date:	Sat, 02 Sep 2023	<pre>Prob (F-statistic):</pre>	1.30e-306
Time:	22:51:50	Log-Likelihood:	-1485.0
No. Observations:	1025	AIC:	3028.
Df Residuals:	996	BIC:	3171.
Df Model:	28		
Covariance Type:	nonrobust		
===========	=======================================		==========

=======	=========		:=======	=======	========	========
	coef	std err	t	P> t	[0.025	0.975]
const	-125.8111	17.336	-7.257	0.000	-159.831	-91.791
c26	0.3663	0.047	7.734	0.000	0.273	0.459
c28	0.2515	0.034	7.454	0.000	0.185	0.318
c29	-0.4401	0.047	-9.342	0.000	-0.532	-0.348
c30	3.4022	0.447	7.610	0.000	2.525	4.280
c31	0.2953	0.022	13.236	0.000	0.252	0.339
c33	-0.2699	0.082	-3.293	0.001	-0.431	-0.109
c39	14.6285	1.314	11.134	0.000	12.050	17.207
c139	-0.4288	0.045	-9.546	0.000	-0.517	-0.341
c143	-0.1502	0.037	-4.063	0.000	-0.223	-0.078
c155	-0.0418	0.012	-3.576	0.000	-0.065	-0.019
c157	0.2573	0.039	6.587	0.000	0.181	0.334
c158	0.2832	0.023	12.429	0.000	0.239	0.328
c160	0.0039	0.002	2.152	0.032	0.000	0.007
c161	0.0110	0.001	10.690	0.000	0.009	0.013
c163	0.0087	0.002	4.141	0.000	0.005	0.013
c8	-0.4440	0.131	-3.381	0.001	-0.702	-0.186
c9	-0.6920	0.066	-10.507	0.000	-0.821	-0.563
c10	8.9184	1.518	5.876	0.000	5.940	11.897
c11	-0.1655	0.041	-4.004	0.000	-0.247	-0.084
c12	-0.3099	0.105	-2.939	0.003	-0.517	-0.103
c15	-0.4338	0.052	-8.278	0.000	-0.537	-0.331
c16	-0.4095	0.087	-4.699	0.000	-0.580	-0.238
c17	-0.0800	0.021	-3.797	0.000	-0.121	-0.039
c20	0.2353	0.040	5.827	0.000	0.156	0.315
c21	-0.1557	0.048	-3.213	0.001	-0.251	-0.061
c22	-0.1296	0.035	-3.717	0.000	-0.198	-0.061
c23	-0.3024	0.045	-6.746	0.000	-0.390	-0.214
c35	6.4165	1.516	4.232	0.000	3.441	9.392
	=========			======================================	========	0 546
Omnibus:	huc).			in-Watson:	١.	0.546
Prob(Omni	ous):			ue-Bera (JB)•	178.982
Skew:				(JB):		1.36e-39
Kurtosis:		5.	041 Cond	. No.		5.63e+05

Notes:

- $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.63e+05. This might indicate that there are strong multicollinearity or other numerical problems. MSE = 1.0615776950310878

```
In [12]: #dropping c160
X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c:
y = df['c52']
19
X = sm.add_constant(X)
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
```

```
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

OLS Regression Results

=======================================	=============		
Dep. Variable:	c52	R-squared:	0.781
Model:	OLS	Adj. R-squared:	0.775
Method:	Least Squares	F-statistic:	132.0
Date:	Sat, 02 Sep 2023	<pre>Prob (F-statistic):</pre>	1.11e-306
Time:	22:51:56	Log-Likelihood:	-1487.4
No. Observations:	1025	AIC:	3031.
Df Residuals:	997	BIC:	3169.
Df Model:	27		

Covariance Type: nonrobust

Covariance	e Type:	nonrob	nonrobust 			
	coef	std err	t	P> t	[0.025	0.975]
const	-120.2900	17.177	-7.003	0.000	-153.996	-86.584
c26	0.3648	0.047	7.690	0.000	0.272	0.458
c28	0.2579	0.034	7.659	0.000	0.192	0.324
c29	-0.4436	0.047	-9.406	0.000	-0.536	-0.351
c30	3.3909	0.448	7.571	0.000	2.512	4.270
c31	0.2977	0.022	13.334	0.000	0.254	0.341
c33	-0.2494	0.082	-3.058	0.002	-0.409	-0.089
c39	14.9365	1.308	11.416	0.000	12.369	17.504
c139	-0.4333	0.045	-9.638	0.000	-0.521	-0.345
c143	-0.1567	0.037	-4.245	0.000	-0.229	-0.084
c155	-0.0414	0.012	-3.535	0.000	-0.064	-0.018
c157	0.2718	0.039	7.051	0.000	0.196	0.347
c158	0.2805	0.023	12.305	0.000	0.236	0.325
c161	0.0116	0.001	11.651	0.000	0.010	0.014
c163	0.0091	0.002	4.342	0.000	0.005	0.013
c8	-0.4372	0.132	-3.324	0.001	-0.695	-0.179
c9	-0.6982	0.066	-10.592	0.000	-0.828	-0.569
c10	8.7267	1.518	5.749	0.000	5.748	11.705
c11	-0.1709	0.041	-4.134	0.000	-0.252	-0.090
c12	-0.3186	0.106	-3.018	0.003	-0.526	-0.111
c15	-0.4385	0.052	-8.358	0.000	-0.541	-0.336
c16	-0.4218	0.087	-4.842	0.000	-0.593	-0.251
c17	-0.0742	0.021	-3.546	0.000	-0.115	-0.033
c20	0.2305	0.040	5.707	0.000	0.151	0.310
c21	-0.1491	0.048	-3.077	0.002	-0.244	-0.054
c22	-0.1376	0.035	-3.961	0.000	-0.206	-0.069
c23	-0.2999	0.045	-6.681	0.000	-0.388	-0.212
c35	6.6845	1.514	4.415	0.000	3.714	9.655
Omnibus:		54.	 027 Durbir	 Durbin-Watson:		0.548
Prob(Omnibus):				e-Bera (JB)	:	188.218
Skew:		-0.	049 Prob(3	Prob(JB):		1.35e-41
Kurtosis:			5.097 Cond. No.			3.70e+05
=======		=======	========		========	=======

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 3.7e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [14]: X = df[['c26', 'c28', 'c29', 'c30', 'c31', 'c33', 'c39', 'c139', 'c143','c155', 'c
y = df['c52']
```

```
X = sm.add_constant(X)
mlr_model = sm.OLS(y, X).fit()
print(mlr_model.summary())
y_cap = mlr_model.predict(X)
e = y - y_cap
e_squared = e * e
MSE = (e_squared.sum())/1025
print('MSE = ', MSE)
```

		OLS Re	gression Res	sults		
		========			=======	
Dep. Varia	ple:		c52 R-squa			0.781
Model:			_	R-squared:		0.775
Method:		Least Squa		tistic:		132.0
Date:	S	at, 02 Sep 2		(F-statistio	:):	1.11e-306
Time:		22:52	_	ikelihood:		-1487.4
No. Observ			025 AIC:			3031.
Df Residua	ls:		997 BIC:			3169.
Df Model:	_		27			
Covariance		nonrob				
=======	coef	std err	======== t	P> t	[0.025	0.975]
const	-120.2900	17.177	-7.003	0.000	-153.996	-86.584
c26	0.3648	0.047	7.690	0.000	0.272	0.458
c28	0.2579	0.034	7.659	0.000	0.192	0.324
c29	-0.4436	0.047	-9.406	0.000	-0.536	-0.351
c30	3.3909	0.448	7.571	0.000	2.512	4.270
c31	0.2977	0.022	13.334	0.000	0.254	0.341
c33	-0.2494	0.082	-3.058	0.002	-0.409	-0.089
c39	14.9365	1.308	11.416	0.000	12.369	17.504
c139	-0.4333	0.045	-9.638	0.000	-0.521	-0.345
c143	-0.1567	0.037	-4.245	0.000	-0.229	-0.084
c155	-0.0414	0.012	-3.535	0.000	-0.064	-0.018
c157	0.2718	0.039	7.051	0.000	0.196	0.347
c158	0.2805	0.023	12.305	0.000	0.236	0.325
c161	0.0116	0.001	11.651	0.000	0.010	0.014
c163	0.0091	0.002	4.342	0.000	0.005	0.013
c8	-0.4372	0.132	-3.324	0.001	-0.695	-0.179
c9	-0.6982	0.066	-10.592	0.000	-0.828	-0.569
c10	8.7267	1.518	5.749	0.000	5.748	11.705
c11	-0.1709	0.041	-4.134	0.000	-0.252	-0.090
c12	-0.3186	0.106	-3.018	0.003	-0.526	-0.111
c15	-0.4385	0.052	-8.358	0.000	-0.541	-0.336
c16	-0.4218	0.087	-4.842	0.000	-0.593	-0.251
c17	-0.0742	0.021	-3.546	0.000	-0.115	-0.033
c20	0.2305	0.040	5.707	0.000	0.151	0.310
c21	-0.1491	0.048	-3.077	0.002	-0.244	-0.054
c22	-0.1376	0.035	-3.961	0.000	-0.206	-0.069
c23	-0.2999	0.045	-6.681	0.000	-0.388	-0.212
c35	6.6845	1.514	4.415	0.000	3.714	9.655
=======	========	========	=======	========		=======
Omnibus:				Durbin-Watson:		0.548
Prob(Omnibus):		0.		e-Bera (JB):	:	188.218
Skew:		-0.	049 Prob(3	•		1.35e-41
Curtosis: 5.097 Cond. No. 3.70e+					3.70e+05	

- [1] Standard Errors assume that the covariance matrix of the errors is correctly s pecified.
- [2] The condition number is large, 3.7e+05. This might indicate that there are strong multicollinearity or other numerical problems.

The variables with higher coefficients are more significant to the model.

That is c30, c39, c10 and c35 represent the independent variables which have the most impact on the model. $\frac{1}{2}$

This is also evident from the fact that they have the lowest p values.

In [4]:	
In []:	