Contents

Condition for coloumb's law	1
Structures satisfying the condition of applicability of coloumb's law	1
Couloumb's law	1
Value of k	2
Relative Permitivitty	2
Analysis of relative permitivitty	3
Physical Meaning of Permitivitty	3
Electrostatic Shielding	3
Cases of sphere.	3
Partial Medium	4

Condition for coloumb's law

- The coloumb's law is valid under following considerations :
 - The **charges** are *stationary* .
 - The **charges** in consideration are point charges.
 - * The **radius** is negligible compared to the distance of *separation*

Structures satisfying the condition of applicability of coloumb's law

- Coloumb's law is satisfied by conducting spheres.
 - Charge is distributed at the conducting sphere.
 - This **charge** appears to originate from the *center* of the **spheres**.
 - The **charge** at the center behaves as a **point** charge.

Couloumb's law

• The expression for **coloumb's** law is given by:

$$F = k \frac{q_1 q_2}{r^2}$$

- In CGS system:
 - * k = 1
- In MKS system:

*
$$k = 9 \times 10^9$$

Value of k

• The term k is expressed as:

$$k = \frac{1}{4\pi\epsilon_0}$$

- ϵ_0 = $8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$
- The term ϵ_0 is the **permittivitty** of **free space** .
- The **electrostatic force** in *air* and *vacuum* are equal.
- · Air is not considered as a medium.
- **Electrostatic force** at medium of ϵ is given by:

$$F_{medium} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$$

Relative Permitivitty

• Relative Permitivitty expresses the *number* of times the **permitivitty** of a *medium* is greater than that of **air**.

$$\epsilon_r = \frac{\epsilon}{\epsilon_0}$$

· Relative Permitivitty is also termed as dielectric constant.

$$F_{medium} = \frac{q_1 q_2}{4\pi \epsilon r^2}$$
$$F_{medium} = \frac{q_1 q_2}{4\pi \epsilon_r \times \epsilon_0 r^2}$$

• The force in a medium of **relative** permitivitty ϵ_r is given by:

$$F_{medium} = \frac{F_{air}}{\epsilon_r}$$

Analysis of relative permitivitty

• The value of **relative permitivitty** only lies in between:

$$1 < \epsilon_r \le \infty$$

• The value of **relative permitivitty** of metals is **infinity** .

Physical Meaning of Permitivitty

- Current is opposed by a conductor maintained at a constant p.d. .
- This opposition is called resistance.
- Electric Force set up by an electric field is opposed by medium .
- The **greater** the permittivity the **less** lines of electric force can pass through the **medium**

Electrostatic Shielding

- Metals having infinite relative permittivity completely block electrostatic force.
- This effect is called electrostatic shielding.

Cases of sphere.

• If **two** spheres of same charges are *considered*:

$$F < k \frac{q_1 q_2}{r^2}$$

• If **two** spheres of opposite charges are *considered*:

$$F > k \frac{q_1 q_2}{r^2}$$

- These cases **charges** are not present exactly at the **center**.
- · Change in magnitude of radius is seen.

Partial Medium

ullet The **electrostatic** force experienced at a partial medium of thickness t is:

$$F_{p.medium} = \frac{q_1 q_2}{4\pi\epsilon_0[(r-t) + \sqrt{\epsilon_r} \times t]^2}$$