第5章 触发器

Flip-Flop (FF)

- §5.1 电平触发的触发器 Level Triggered FF
- §5.2 脉冲触发的触发器 Pulse Triggered FF
- §5.3 边沿触发的触发器 Edge Triggered FF
- §5.6 触发器的典型应用 Typical Application of FF

第5章 触发器 Flip-Flop (FF)

信息的处理/存储 --- 记忆元件/电路

> 时序逻辑电路

基本单元: 触发器

输出: 当前输入及过去的输出,

具有记忆功能

过去的状态如何保存? → 触发器

触发器定义:

能储存一位二进制信息的基本单元。记忆元件

触发器特点:

- ① 双稳态: 1和0
- ② 置 1, 置 0
- ③ 输入信号消失后,实现状态保持

重点1

工作原理

重点2 记忆性

§5.1 电平触发的触发器 Level Triggered FF

§ 5.1.1 与非门构成的基本RS-FF

- · 电路结构是各种触发器中最简单的一种,同时也 是其他复杂电路结构的一个组成部分
- · 通常将这类简单结构的触发器成为锁存器(Latch)

两个与非门交叉耦合

1. 电路

注意:
$$\left\{ \begin{array}{l} \overline{S} \rightarrow Q \\ \overline{R} \rightarrow \overline{Q} \end{array} \right.$$

输入: \overline{S} Set 置位端 \overline{R} Reset 复位端

输出:
$$Q=1$$
, $\overline{Q}=0$ "1" 态 $Q=0$, $\overline{Q}=1$ "0" 态

定义: 触发器的状态为 Q

2. 工作原理 (State ~ Input)

①
$$\overline{S} = 0, \overline{R} = 1$$
 \longrightarrow Set ($\Xi 1$)

 \triangleright 如果 \overline{S} 转成 1, 因为 $\overline{Q} = 0$, G_1 锁住, $\underline{Q} = 1$

$$\bar{S} = \bar{R} = 1$$
 FF保持原状态: No-Change (NC)

<u>记忆</u> 功能

②
$$\overline{S} = 1, \overline{R} = 0$$
 \longrightarrow Reset ($\Xi 0$)

 \rightarrow 如果 \overline{R} 转换成 1, 因为 Q=0, G_2 锁住, $\overline{Q}=1$

$$\bar{S} = \bar{R} = 1$$
 保持 $Q = 0$

<u>记忆</u> 功能

$$\overline{S} = \overline{R} = 0$$

- > 强制为高电平, $\overline{Q} = Q = 1$
- \rightarrow 当 \overline{S} , \overline{R} 同时从0变到1输出取决于与非门的延迟时间 t_{pd} :

$$\begin{cases} t_{pd1} < t_{pd2} \text{ (G}_1 \ \text{快) } Q = 0 \\ t_{pd1} > t_{pd2} \text{ (G}_2 \ \text{快) } Q = 1 \end{cases}$$

无法确定 \overline{S} 、 \overline{R} 同时从0变到1时,最终稳定状态为0还是1,即不定状态。

输入信号满足约束条件: $\overline{S} + \overline{R} = 1$

2. 基本 RS-FF特点

真值表

$\overline{\overline{S}}$	\overline{R}	$Q \overline{Q}$	功能
0	0	1 1	不定状态
0	1	1 0	Set (置1)
1	0	0 1	Reset (置0)
1	1	NC NC	保持

- (1) 输出互补: 在稳定状态下两个输出端的状态必须是互补关系。
- (2) <u>记忆性</u>: 触发器的状态不仅与输入信号有关,而且与触发器的原状态有关。
- (3) <u>不确定性</u>:由于输入条件限制,使用较少,但是其他各类复杂触发器的基础。
- (4) 状态转换时刻由R、S确定,没有统一的控制信号(时钟,CLK)控制触发器的转换时刻,因此是<u>异步时序电路</u>。

3. RS-FF的功能描述

状态和变量

 Q^{n+1} 下一时刻稳定状态 Q^n 目前的稳定状态 输入变量 (对RS-FF为 \overline{S} \overline{R})

描述逻辑关系 的方法包括:

状态转移真值表(状态表) Truth Table

状态方程(特征方程) State/Characteristics Table

状态转移图和激励表 State Diagram and Transition Table

波形图(时序图)Waveform (Timing Diagram)

基本 RS-FF功能描述

(1) 状态表

真值表

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	0	0	Φ
0	0	1	Ф
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

(2) 状态方程 (特征方程)

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	0	0	Φ
0	0	1	Φ
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

状态方程 (特征方程)

$$\begin{cases} Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n \\ \overline{S} + \overline{R} = 1 \end{cases}$$

注意:将 \overline{R} 和 \overline{S} 看作整体输入信号

符号上面的横线表示低电平有效

不同时为0

(2) 状态方程 (特征方程)

\overline{R}	\overline{S}	Q^n	Q^{n+1}
0	0	0	Ф
0	0	1	$egin{array}{c} \Phi \ \Phi \ 0 \end{array}$
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

状态方程 (特征方程)

$$\begin{cases} Q^{n+1} = \overline{\overline{S}} + \overline{R}Q^n \\ \overline{S} + \overline{R} = 1 \end{cases}$$

注意:将 \overline{R} 和 \overline{S} 看作整体输入信号

符号上面的横线表示低电平有效

不同时为0

(3) 状态图与激励表

组合电路:真值表 - 输入与输出关系

时序电路:状态图-状态转换及转换条件

状态<mark>图</mark> 用图形表示输出状态转换的条件和规律

激励表

列出已知状态转换和所需要的输入条件的表称为激励表。激励表是以现态 Q^n 和次态 Q^{n+1} 为变量,以对应的输入 \overline{R} \overline{S} 为函数的关系表。

\overline{R}	\overline{S}	Q^n	<i>Q</i> ⁿ⁺¹ Ф Ф 0
0	0	0	🤊 Ф
0	0 .	1	Φ
0	1	0	0
0	1	1	0
1	0	0	1
1,	0	1	1
1	1	0	0
1	1	1	1

表示在什么样的激励下, 能够使得现态 Q^n 转换到 次态 Q^{n+1} 。

$$Q^n \longrightarrow Q^{n+1}$$

基本 RS-FF激励表

输出车	转	FF 输入	
$Q^n ightarrow$	Q^{n+1}	\overline{R}	\overline{S}
0	0	Ф	1
0	1	1	0
1	0	0	1
1	1	1	Φ

(4) 时序图 (波形图)

$V \longrightarrow t$

输出波形要对应输入波形

对应输入画出基本RS - FF输出波形

(初始状态 Q=0)

	S	R	
$\bar{S} \ \bar{R} \ \ Q \ \bar{Q} \ $		FF 状态	
0 0 0 1 1 0 1 1	1 1 1 0 0 1 NC NO	$SR 0 \rightarrow 1$ 不定 Set (1) $S \neq \overline{R}$ Reset (0) $Q = \overline{R}$ C 保持	

&

§5.1.2 时钟 FF (同步 FF)

Gated FF (Synchronous FF)

- 在数字系统中,为协调各部分动作,需要某些 FF在同一时刻动作
- 引入一同步信号, 使这些 FF 只有在同步信号 到达时才按输入信号改变状态
- 同步信号被称时钟脉冲信号

- · 时钟触发器 (Gated-Latch) 的状态只允许在时钟脉 冲*CLK*=1时发生改变。
- · 从触发方式上,时钟触发器和基本RS触发器都属于 电平触发的触发器(Level Triggered Latch)。

CLK 信号: Clock

CLK 为周期性矩形脉冲波形

1. 时钟 RS-FF (Gated RS-FF)

在基本RS-FF加 G_3 、 G_4 ,只有当 CLK=1, G_3 和 G_4 开门。 当CLK=0, G_3 和 G_4 锁住。

定义:

 Q^n CLK 到来之前 — 原状态 Q^{n+1} CLK 到来之后 — 新状态,次态

对每一个CLK,都有 Q^n , Q^{n+1}

时钟 RS-FF真值表

S	R	Q ⁿ	Q^{n+1}	描述
0	0	0	0	S=R=0
0	0	1	1	$\mathcal{Q}^{n+1}=Q^n$
0	1	0	0	
0	1	1	0	R≠S
1	0	0	1	$Q^{n+1}=S$
1	0	1	1	
1	1	0	φ	R=S=1,
1	1	1	φ	$Q=Q=1$ $S R 1 \rightarrow 0 \varphi$

$$\bullet S=R=0$$
 FF 保持 $Q^{n+1}=Q^n$

$$S=0, R=1$$
 $G_3=1, G_4=0$
 $Q^{n+1}=0$

$$\bullet S=1, R=0$$
 $G_3=0, G_4=1$
 $Q^{n+1}=1$

$$\bullet S=1, R=1, Q=\overline{Q}=1,$$

S和 R 1 \rightarrow 0, Q 不确定

输出与输入之间关系

同步RS-FF特征方程

$$\begin{cases} Q^{n+1} = S + \overline{R}Q^n \\ S \cdot R = 0 \end{cases}$$
 (不同时为1)

缺点:

不确定状态

CLK R

2. 时钟D-FF (Gated D-FF)

符号

在 S 和 R 之间加一个非门, 使 $S \neq R$

S=D, $R=\bar{D}$ 无状态不定

工作原理:

CLK =0, FF 保持

CLK =1, FF 工作

$$\begin{cases} D=1, (S=1, R=0) & Q^{n+1}=1 \\ D=0, (S=0, R=1) & Q^{n+1}=0 \end{cases}$$

同步 D-FF 状态方程:

$$Q^{n+1} = D$$

3. 时钟 JK-FF (Gated JK-FF)

加两条反馈线到输入端

$$S = J\overline{Q}^n$$
, $R = KQ^n$

 Q, \overline{Q} 不同时为1, R S不同时 $1 \rightarrow 0$, 无状态不定

两输入: *J*, *K CLK* = 0, FF 保持 *CLK* = 1, FF 工作

JKQ ⁿ	Q^{n+1}	描述
0 0 0	0] <i>J=K</i> =0
0 0 1	1	$\int Q^{n+1} = Q^n$
0 1 0	0)
0 1 1	0	<i>J≠K</i>
1 0 0	1	$\left \int Q^{n+1} = J \right $
1 0 1	1	J
1 1 0	1	<i>J=K</i> =1_
1 1 1	0	$\int Q^{n+1} = \bar{Q}^n$

JK-FF 特征方程

从 RS-FF推导:

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}Q^{n}$$

$$= J\overline{Q}^{n} + \overline{K}Q^{n}$$

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

状态表

J	K	$Q^{\rm n}$	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0 &

JK-FF 激励表

输出转换	FF!	输入
$Q^n \rightarrow Q^{n+1}$	\mathcal{J}	K
0 0	0	Φ
0 1	1	Φ
1.0	Φ	1
1	Φ	0

JK-FF状态图

4. 时钟T-FF

$$J = K = T$$

$$Q \mid \overline{Q}$$

$$J \mid CLK \mid K$$

$$T \mid CLK$$

T-FF状态方程:

$$Q^{n+1} = T\overline{Q}^n + \overline{T}Q^n = T \oplus Q^n$$

$$\begin{cases} T = 0, \ Q^{n+1} = Q^n \ \text{保持} \end{cases}$$

$$T = 1, \ Q^{n+1} = \overline{Q}^n \ \text{翻转}$$