Kapitel 4: Grundlagen intelligenter Systeme





## Teilgebiete der "Künstlichen Intelligenz"





# Suchverfahren, Beispiel Schiebepuzzle





## Vollständiger Suchbaum



### Tiefensuche





### Breitensuche





# A und A\* - Algorithmus

#### A – Algorithmus:

$$f(n) = g(n) + h(n)$$

g(n): Anzahl der bisher erfolgten Schritte

h(n): Geschätzte Anzahl der noch erforderlichen Schritte bis zum Zielknoten

f(n): Bewertungsfunktion

A\* – Algorithmus:

$$0 \le h(n) \le h^*(n)$$

 $h^*(n)$  Exakte Kosten bis zum Zielknoten

Hier: Anzahl der noch falsch platzierten Plättchen

Der A\*-Algorithmus findet den optimalen (d.h. kürzesten) Pfad



### Heuristische Suche



# Aufwand der verschiedenen Suchverfahren

|              | Tiefensuche | Breitensuche | heuristische<br>Suche |
|--------------|-------------|--------------|-----------------------|
| Anzahl       |             |              |                       |
| durchlaufene | 14          | 16           | 6                     |
| Knoten       |             |              |                       |



# Logik und Theorembeweisen

- ✓ Wichtiges Grundlagengebiet der KI-Forschung
- ✓ Grundlage der meisten regelbasierten KI-Verfahren
- ✓ Algorithmische Darstellung von Intelligenz und Wissen in Maschinen
- ✓ Maschinelle Verarbeitung logischer Schlüsse
- ✓ Wichtigste Teilgebiete: Aussagenlogik, Prädikatenlogik, logisches Schließen (Theorembeweisen)





# Aussagenlogik

Verschiedene elementare Verknüpfungen:

UND (Konjunktion) Symbol: •

ODER (Disjunktion) Symbol: +

NICHT (Negation) Symbol: ¬

#### Zwei Aussagen:

 $\mathbf{A_1} = \text{,}\mathbf{Otto}$ wird krank",  $\mathbf{A_2} = \text{,}\mathbf{der}$  Arzt verschreibt Otto eine Medizin."

UND-Verknüpfung erhält unterschiedlichen Sinn, je nachdem ob man bildet:

$$B = A_1 \cdot A_2 \qquad \text{oder} \quad B = A_2 \cdot A_1$$

# Erfüllbarkeit logischer Aussagen

Erfüllbarkeit diverser Aussagen:

A B 
$$A \cdot (\neg B)$$
 A  $\Longrightarrow B \equiv \neg A + B$ 

1 1 0 1

1 0 0

0 1

0 1

0 1

1 0

1

# Prädikatenlogik

#### Einfache Prädikate und Argumente:

- -Vater (Hans)
- Besitzer (Mann, Auto)
- Verheiratet (x,y)

#### Beispiele aus dem Bereich der natürlichen Sprache:

- 1. "Der Mann besitzt ein Auto."  $\longrightarrow$  Besitzer(Mann, Auto)
- 2. "Hans und Klara sind verheiratet." Verheiratet (Hans, Klara)
- 3. "Hans ist mit Klara verheiratet und besitzt ein Auto."
  - $\longrightarrow \underbrace{\text{Verheiratet(Hans, Klara)}}_{\text{Aussage }A} \cdot \underbrace{\text{Besitzer(Hans, Auto)}}_{\text{Aussage }B}$
  - → A · B entspricht Formel in der Aussagenlogik





### Grundelemente der Prädikatenlogik

- Prädikaten und Funktionen, z. B. Verheiratet(x, y), Vater(x)
- Konstanten, z. B. Vater(Hans)
- Variablen, z. B. Besitzer(x, y)
- Funktionen, z. B. f(x, y)
- Negation  $\neg$ , z. B.  $\neg$ A
- Disjunktion + (ODER-Verknüpfung)
- Konjunktion · (UND-Verknüpfung)
- Existenz-Quantor  $\exists$ , z. B.  $(\exists x) \text{Vater}(x)$
- All-Quantor  $\forall$ , z. B.  $(\forall x)$ Vater(x)
- Implikation  $\Longrightarrow$ , z. B. Mensch $(x) \Longrightarrow Vater(x)$
- Äquivalenz  $\Leftrightarrow$ , z. B. Mensch $(x) \Leftrightarrow Vater(x)$





# Komplexere Beispiele für Prädikatenlogik

Mit den jetzt vorhandenen Grundregeln können komplexere Sachverhalte formuliert werden, z.B.:

- 1. "In jeder Stadt gibt es einen Bürgermeister."  $(\forall x) \{ \text{Stadt}(x) \Longrightarrow (\exists y) [\text{Mensch}(y) \cdot \text{Bürgermeister}(x,y)] \}$
- 2. "Für jede ableitbare Funktion existiert eine ableitbare Umkehrfunktion."  $(\forall x) \{ \text{Funktion}(x) \cdot \text{ableitbar}(x) \Leftrightarrow (\exists y) [\text{Umkehrfunktion}(x,y) \cdot \text{ableitbar}(y)] \}$

## Überprüfen von Theoremen mit Prädikatenlogik

### Fakten:

- "Jeder der lesen kann ist gebildet.": L ⇒ G
- "Delphine sind nicht gebildet.": D ⇒ ¬G
- 3. "Es gibt intelligente Delphine.": D · I

### Überprüfen des Theorems:

"Es gibt Intelligente, die nicht lesen können.":  $I \cdot (\neg L)$ 

## Wahrheitstabelle

| Nr.       | ${ m L}$ | $\mathbf{G}$ | D | I | $L \Longrightarrow G$ | $D \Longrightarrow \neg G$ | $\mathrm{D}\cdot\mathrm{I}$ | $\mathrm{I}\!\cdot\!(\neg\mathrm{L})$ | $\mathrm{D}\cdot\mathrm{L}$ |
|-----------|----------|--------------|---|---|-----------------------|----------------------------|-----------------------------|---------------------------------------|-----------------------------|
| 0         | 0        | 0            | 0 | 0 | 1                     | 1                          | 0                           | 0                                     | 0                           |
| 1         | 0        | 0            | 0 | 1 | 1                     | 1                          | 0                           | 1                                     | 0                           |
| ${f 2}$   | 0        | 0            | 1 | 0 | 1                     | 1                          | 0                           | 0                                     | 0                           |
|           |          |              |   |   |                       |                            |                             |                                       |                             |
| 4         | 0        | 1            | 0 | 0 | 1                     | 1                          | 0                           | 0                                     | 0                           |
| <b>5</b>  | 0        | 1            | 0 | 1 | 1                     | 1                          | 0                           | 1                                     | 0                           |
| 6         | 0        | 1            | 1 | 0 | 1                     | 0                          | 0                           | 0                                     | 0                           |
| 7         | 0        | 1            | 1 | 1 | 1                     | 0                          | 1                           | 1                                     | 0                           |
| 8         | 1        | 0            | 0 | 0 | 0                     | 1                          | 0                           | 0                                     | 0                           |
| 9         | 1        | 0            | 0 | 1 | 0                     | 1                          | 0                           | 0                                     | 0                           |
| <b>10</b> | 1        | 0            | 1 | 0 | 0                     | 1                          | 0                           | 0                                     | 1                           |
| 11        | 1        | 0            | 1 | 1 | 0                     | 1                          | 1                           | 0                                     | 1                           |
| 12        | 1        | 1            | 0 | 0 | 1                     | 1                          | 0                           | 0                                     | 0                           |
| <b>13</b> | 1        | 1            | 0 | 1 | 1                     | 1                          | 0                           | 0                                     | 0                           |
| 14        | 1        | 1            | 1 | 0 | 1                     | 0                          | 0                           | 0                                     | 1                           |
| <b>15</b> | 1        | 1            | 1 | 1 | 1                     | 0                          | 1                           | 0                                     | 1                           |

# Überprüfung einer weiteren Behauptung

Überprüfung der Aussage:

"Delphine können lesen" → D • L

✓ D • L ist wahr für die Fälle 10, 11, 14 und 15

✓ aber für keinen dieser Fälle sind alle Fakten
 1 – 3 auch war

→ D • L ist nicht erfüllbar

## Umformregeln der Prädikatenlogik

- **1.** Doppelte Negation  $\neg \neg A \equiv A$
- **2.** Idempotenz  $A + A \equiv A$  und  $A \cdot A \equiv A$
- 3. Kommutativität  $A \cdot B \equiv B \cdot A$  und  $A + B \equiv B + A$
- 4. Assoziativität  $A \cdot (B \cdot C) \equiv (A \cdot B) \cdot C$  und  $A + (B + C) \equiv (A + B) + C$
- 5. Distributvität  $A+(B\cdot C)\equiv (A+B)\cdot (A+C)$  und  $A\cdot (B+C)\equiv (A\cdot B)+(A\cdot C)$
- **6.** De Morgan  $\neg(A \cdot B) \equiv \neg A + \neg B$  und  $\neg(A + B) \equiv \neg A \cdot \neg B$
- 7. Kontrapositiv  $A \Longrightarrow B \equiv \neg B \Longrightarrow \neg A$

## Umformregeln der Prädikatenlogik

8. 
$$A \Longrightarrow B \equiv \neg A + B$$

9. 
$$A \Leftrightarrow B \equiv (A \Longrightarrow B) \cdot (B \Longrightarrow A) \equiv (A \cdot B) + (\neg A \cdot \neg B)$$

**10.** 
$$\neg(\forall x)A(x) \equiv (\exists x)(\neg A(x))$$

**11.** 
$$\neg(\exists x)A(x) \equiv (\forall x)(\neg A(x))$$

**12.** 
$$(\forall x)(\mathbf{A}(x) \cdot \mathbf{B}(x)) \equiv (\forall x)\mathbf{A}(x) \cdot (\forall y)\mathbf{B}(y)$$

13. 
$$(\exists x)(A(x) + B(x)) \equiv (\exists x)A(x) + (\exists y)B(y)$$

# Umformung auf Standardform

#### Aufgestelltes Axiom:

$$(\forall x) \{ A(x) \Longrightarrow \{ (\forall y) [A(y) \Longrightarrow A(f(x,y))] \cdot (\neg(\forall y) [B(x,y) \Longrightarrow A(y)]) \} \}.$$

Kann umgeformt werden in eine von den 2 möglichen Standardformen:

#### **Konjunktive Normalform:**

$$(A_1 + A_2 + ...) \cdot (B_1 + B_2 + ...) \cdot ... \cdot (X_1 + X_2 + ...) \cdot ...$$

Disjunktive Normalform:

$$(A_1 \cdot A_2 \cdot \ldots) + (B_1 \cdot B_2 \cdot \ldots) + \ldots + (X_1 \cdot X_2 \cdot \ldots) + \ldots$$

# Regeln: Umformung auf Standardform

**Regel 1** Eliminierung aller Äquivalenzen  $\rightarrow$  Umformregel 9

Regel 2 Eliminierung aller Implikationen → Umformregel 8

$$(\forall x) \{ \neg A(x) + \{ (\forall y) [ \neg A(y) + A(f(x,y)) ] \cdot (\neg (\forall y) [ \neg B(x,y) + A(y) ]) \} \}$$

- **Regel 3** Einziehung der Negation nach innen  $\longrightarrow$  Umformregeln 6, 10 und 11  $(\forall x) \{ \neg A(x) + \{ (\forall y) [ \neg A(y) + A(f(x,y)) ] \cdot (\exists y) [ B(x,y) \cdot (\neg A(y)) ] \} \}$
- Regel 4 Einführung neuer Variablen für jeden Quantifizierer

$$(\forall x) \{ \neg A(x) + \{ (\forall y) [ \neg A(y) + A(f(x,y)) ] \cdot (\exists w) [B(x,w) \cdot (\neg A(w))] \} \}$$

Regel 5 Eliminierung aller Existenz-Quantoren

**Beispiel** 
$$(\forall x) \{ (\forall y) [(\exists z) A(z)] \} \equiv (\forall x) \{ (\forall y) A(g(x,y)) \}$$

Dabei wurde gesetzt:

$$z = g(x, y)$$
 g: Skolem-Funktion

In diesem Fall beschreibt g(x, y) eine bestimmte Größe z, die eine Funktion von x und y ist.

$$(\forall x) \{ \neg A(x) + \{ (\forall y) [ \neg A(y) + A(f(x,y)) ] \cdot [B(x,g(x)) \cdot (\neg A(g(x)))] \} \}$$





# Regeln: Umformung auf Standardform

**Regel 6** Ausklammerung der All-Quantoren und Wegfall dieser Quantoren  $\{\neg A(x) + \{ [\neg A(y) + A(f(x,y))] \cdot [B(x,g(x)) \cdot (\neg A(g(x)))] \} \}$ 

Regel 7 Anwendung des Distributiv<br/>gesetzes zur Transformation in konjunktive Normalform <br/>  $\to$  Umformregel 5

$$[\neg A(x) + (\neg A(y)) + A(f(x,y))] \cdot [\neg A(x) + B(x,g(x))] \cdot [\neg A(x) + (\neg A(g(x)))]$$

Regel 8 Eliminierung der UND-Verknüpfungen durch Auflistung der Klauseln

$$\neg A(x) + (\neg A(y)) + A(f(x,y))$$
 Klausel (1)

$$\neg A(x) + B(x, g(x))$$
 Klausel (2)

$$\neg A(x) + (\neg A(g(x)))$$
 Klausel (2)

Regel 9 Einführung getrennter Variablen für jede Klausel

$$\neg A(x) + (\neg A(y)) + A(f(x,y))$$
 (1)

$$\neg A(u) + B(u, g(u))] \tag{2}$$

$$\neg A(v) + (\neg A(g(v))) \tag{3}$$



### Resolutionsverfahren

#### Grundform:

$$\mathbf{A}_1 + \mathbf{A}_2 + \ldots + \mathbf{A}_n + \mathbf{P}$$
  
$$\mathbf{B}_1 + \mathbf{B}_2 + \ldots + \mathbf{B}_n + \neg \mathbf{P}$$

#### Resolvente:

$$A_1 + A_2 + ... + A_n + B_1 + B_2 + ... + B_n \equiv R$$

#### Sonderfälle:

1. A
$$A \Longrightarrow B \equiv \neg A + B$$
2.  $A + B$ 

$$\neg A + B \qquad R \equiv B + B \equiv B.$$

$$\neg A + B$$
  $R \equiv B + B \equiv B$   
3. A  $\neg A$   $R \equiv NIL$ 

4. 
$$A \Longrightarrow B \equiv \neg A + B$$
  
 $B \Longrightarrow C \equiv \neg B + C$   $R \equiv \neg A + C \equiv A \Longrightarrow C$ 

### Theorembeweisen

#### Gegeben:

Satz (Set)  $S = \{S_1, S_2, \dots, S_n\}$  von n existierenden Axiomen (Fakten oder Behauptungen).

T ist ein zu beweisendes Theorem.

<u>Theorembeweis:</u> Bilden des erweiterten Sets S\* =  $\{S_1, S_2, \dots, S_n, \neg T\}$  und Anwendung des Resolutionsverfahrens auf die Klauseln in S\* bis zur Erzeugung der leeren Klausel.

Erklärung: Wenn T war ist und aus S folgt, dann machen alle Belegungen, die S wahr machen, auch T wahr. Keine dieser Konfigurationen macht dann ¬T wahr, daher kann keine dieser Konfigurationen S\* = S • ¬T wahr machen. Daher ist S\* unerfüllbar und Resolution muss zu leerer Klausel führen.

### Beispiel für Theorembeweis mit Resolution

Aus Behauptungen für intelligente Delphine:

S:

 $L \rightarrow G$ 

(1)

 $D \rightarrow \neg G$ 

(2)

 $D \cdot I$ 

(3)

T:

 $I \cdot (\neg L)$ 

(4)

Umformung:

(aus 1)  $\neg L + G$ 

(5)

(aus 2)

 $\neg D + \neg G$ 

(6)

(aus 3)

D

(7)

(aus 3)

(8)

 $\neg T$ :

 $\neg I + L$ 

(9)

Resolutionsprozess:

(aus 8+9):

 $\longrightarrow$  L

(10)

(aus 10+5):

(11)

(aus 11+6):

(12)

(aus 12+7):

ightarrow NIL

# Wissensrepräsentation

- ✓ notwendig, um das Wissen strukturiert darzustellen und zu formulieren
- ✓ um das Wissen über komplexe Systeme nachvollziehbar darstellen zu können, benötigt man ein bestimmtes Darstellungsschema
- ✓ Wissensrepräsentation notwendig, um umfangreiches Spezialwissen eines Experten schematisch zu extrahieren und strukturiert darzustellen
- ✓ mit Hilfe des Repräsentationsmechanismus kann das Wissen interpretierbar gemacht werden
- ✓ mit einem geeigneten Inferenzmechanismus (gehört nicht zur Wissensrepräsentation!) kann das gespeicherte Wissen verarbeitet werden
- ✓ Populärste Methoden der Wissensrepräsentation:
  - Prädikatenlogik
  - Produktionsregeln
  - Semantische Netze
  - Rahmen





# Prädikatenlogik zur Wissensrepräsentation

- ✓ Prädikatenlogik ist die grundlegende Art zur Darstellung von Wissen
- ✓ alle anderen Wissensrepräsentationen bauen praktisch implizit auf der Prädikatenlogik auf
- ✓ Aufteilung des Wissens in Fakten und Regeln möglich
- ✓ durch Umformung in konjunktive Normalform ergibt sich standardisierte Form des Wissens
- ✓ das auf diese Weise dargestellte Wissen kann mit Hilfe des Resolutionsverfahrens abgearbeitet werden
- ✓ das bedeutet, der hier verwendete Inferenzmechanismus ist die Resolution
- ✓ Nachteile:
  - Formulierung des Wissens aufwändig und unnatürlich, entspricht nicht der Umgangsform
  - Umformung in Normalform notwendig





## Produktionsregeln

- ✓ verwenden Schreibweise der Prädikatenlogik
- ✓ Hauptunterschiede zur klassischer Prädikatenlogik:
  - ➤ keine Umformung in konjunktive Normalform, Wenn-Dann-Regelstrukturen bleiben erhalten
  - verwendet als Inferenzmechanismus nicht Resolution, sondern Vorwärts- und Rückwärtsverkettung
  - ➤ Inferenz in der Prädikatenlogik bestimmt den Wahrheitswert eines Theorems
  - ➤ Inferenz bei Produktionsregeln impliziert aus dem Wenn-Teil einer Regel den Dann-Teil (bei Vorwärtsverkettung)
- ✓ grundlegende Struktur von Produktionsregeln:
  - Fakten (wie in Prädikatenlogik)
  - Wenn-Dann-Regeln (wie in Prädikatenlogik vor der Umformung)



# Beispiel für Produktionsregeln

Wissensbasiertes System für Unterstützung beim Autokauf:

```
Regel 1: GP \cdot D \cdot 3T + Tu \cdot 5T \Rightarrow Golf
```

Regel 2: 
$$HP \cdot L \cdot S \Rightarrow Mercedes$$

Regel 3: 
$$GS \cdot W \Rightarrow D$$

Regel 4: 
$$4T \cdot G \Rightarrow L$$

Fakten: 
$$3T, GS, W, GP$$



### Regelwerk und Fakten



### Semantische Netze



## Beziehung Prädikatenlogik ↔ semant. Netze

# Darstellung eines Computers als Frame







### Vergleich zw. Frame und semantischem Netz

#### Frame-Name

| Slot-Name-1 | Slot-Eintrag-1 |  |
|-------------|----------------|--|
| Slot-Name-2 | Slot-Eintrag-2 |  |
|             |                |  |
| •           | •              |  |

Slot-Name-2 Slot-Eintrag-2

Slot-Name-2 Slot-Eintrag-2

Frame-Name



### Frame-Abgleich

Frage lautet hier: Welche Blumen mit gelber Farbe gibt es?

7

| Bezeichnung | Blume          |  |
|-------------|----------------|--|
| Farbe       | Aktuell {gelb} |  |

gesucht wird hier nach dem Frame-Namen

Antwort wird gefunden durch Suche nach den Namen von Frames, welche die gewünschte Wissensstruktur erfüllen

