

데이터수집과관리 프로젝트 결과 발표

Steam 플랫폼 데이터 기반 게임 시장 수요 분석

2024. 06. 13. 프리조 | 정수용, 윤종인, 이준학

게임데이터 목차 분석 및 예측

게임데이터 보석 및예측

프로젝트 개요

게임데이터 무적 분석 및 예측

- Steam 플랫폼에서 제공하는 게임 관련 데이터 분석을 통해 게임을 추천하는 모 델을 개발한다.
- 게임 개발사 및 배급사가 시장 수요를 정확히 파악하고 소비자들에게 개인 취향에 맞는 게임을 효율적으로 찾을 수 있도록 돕는다.

게임데이터 병성 및 예측 비경

1. Steam

- 세계 최대 규모의 전자 소프트웨어 유통망
- 다양한 장르의 게임과 방대한 사용자 데이터 를 보유

2. Steam Games Dataset

- Kaggle에 있는 Steam API를 통해 수집된 데 이터 셋
- 게임 데이터 85,000개
- 판매량, 사용자 리뷰, 플레이 타임, 장르 등

연구 및 프로젝트의 필요

 사용자 리뷰 뿐만 아니라 게임 장르, 지원 언어, 긍정적 및 부정적 평가 등을 포함한 다양한 데이터를 활용하여 게임의 판매량 을 예측하고 장르별 게임을 추천하는 모델을 개발하여 게이의 이기도를 더 정확하게

개발하여 게임의 인기도를 더 정확하게 예측하고 사용자에게 개인화된 게임 추천을 제공하여 사용자와 개발자에게 유용한 인사이트를 제공할 것이다.

팀원 역할 및 진행 스케 줄

주요 내용	일정(주차)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
주제 선정																
데이터 수집																
데이터 전처리																
데이터 모델링																
데이터 시각화																

정수용(팀장): 프로젝트 총괄, 데이터 전처리

윤종인(팀원): 데이터 수집, 데이터 모델링

이준학(팀원): 데이터 시각화

게임데이터 보석 및예측

분석

게임데이터 전처리분석 및 예측 전처리

사용이 어려운 Feature 제거

필요 없음	정형화가 어려움	결측치가 매우 많음
Header Image Website Support url Support Email Metacritic url Screenshots Movie	About the game Reviews Notes	User score (25) Score rank (20)

- 1. 게임 소유자 수 비율
 - 범주형 데이터
 - 대부분 0 20000
 - 데이터 분포가 급격히 감소
 - 매우 불균형한 데이터
 - 몇몇 게임이 매우 높은 소유자를 가지는 반면, 대다수는 상대적으로 소유자가 적다.
 - 판매량의 지표가 되는 Owners를 대신할 다른 Feature가 있을 것이다.

- 2. 리뷰 수와 소유자 수의 상관관계
 - 대부분의 범주에 속하는 사례가 매우 적어 분석의 신뢰성을 저하시킬 수 있다.
 - 이를 해결하기 위해 판매 수와 상관관계 가 높은 리뷰 수를 이용

2. 리뷰 수와 소유자 수의 상관관계

- Positive + Negative로 전체 평가 수(Reivew Count) 열 추가
 - Positive: 긍정 평가 수
 - Negative: 부정 평가 수
- 소유자 수 상관관계 분석 결과
 - Postive: 0.67
 - Negative: 0.65
 - Review Count: 0.69
- Review Count의 상관 관계수가 약 0.7로 높은 상관 관계

Positive -	0.67
Negative -	0.65
Review Count -	0.69

2.1. 판매량

• 리뷰 수를 판매량의 지표로 사용하기로 하였다.

3.1. 가격 그룹 별 빈도수

- 가격 그룹별 판매량을 분석하기 위해 가격 그 룹별 빈도수를 확인했다.
- 가격과 판매량을 알아보기 전에 먼저 가격 그룹별 빈도수를 확인했더니 0~10달러인 그룹이
 지배적이다.

3.2. 가격 그룹 별 판매량

- 0~10달러인 그룹의 상위 25%만 반영하고 가격 그룹별 판매량의 평균을 분석했다.
- 소비자들은 0 ~ 60달러까지는 가격을 크게 신경쓰지 않는다. 하지만 60달러를 초과하면 판매량이 급감한다.

4.1. 멀티플레이 지원 여부 별 분포도

- 멀티플레이 기능이 있으면 커뮤니티가 형성되는 등 플레이어들의 관심을 끌어 판매량에 영향을 미친다고 생각했다.
- 판매량의 멀티플레이 지원 여부 별 분포도를 분석해보니 지원하는 게임이 70%이상이므로 대부분의 게임이 멀티플레이를 지원한다.

경상국립대학교 Gyeongsang National University

Average Review Count by Multiplayer Support

4.2. 멀티플레이 지원 여부 별 상위 40% 판매량

- 멀티플레이 지원 여부 별로 상위 40%씩 균일 하게 잘라서 판매량을 분석했다.
- 멀티플레이 비지원 게임의 판매량:
 16.0%
- 멀티플레이 지원 게임의 판매량: 84.0%
- 멀티플레이 기능이 없는 것보다 있는 것이 판매량이 압도적으로 높았다.

5.1. 업적수 그룹 별 빈도수

- 업적수가 높아질수록 사용자들은 컨텐츠가 많다고 인식하여 판매량이 높을 것이라고 가정하고 업적수 그룹 별 빈도수를 분석하였다.
- 업적수의 빈도수가 낮은 순으로 빈도수가 높았다.

5.2. 업적수 별 판매량

- 업적수가 늘어날수록 판매량이 점진적으로 늘어난다.
- 업적수가 100개 이상일 때, 가장 많은 판매량을
 기록했다.

6.1. 지원 언어 빈도수 상위 10개

- 지원 언어 별 판매량을 분석하기 위해 지원 언어 어 빈도수 별로 상위 10개를 시각화 하였다.
- 영어를 지원하는 경우가 19.71%로 가장 많았다.

6.2. 지원 언어 별 판매량

- 영어만 상위 25%를 추출하고 나머지 그룹들의 판매량 평균을 계산하였다.
- 판매량은 영어(19.71%), 포르투갈어, 한국어, 이탈리아어, 일본어, 스페인어, 러시아어, 프랑스어, 독일어, 중국어 순서로 가장 많았다.
- 영어를 지원하는 경우가 19.71%로 가장 많았다.

7.1. 장르 별 빈도수

- 장르 별 판매량을 분석하기 위해 장르 별 빈도 수를 분석하였다.
- 장르 별 빈도수를 상위 10개를 뽑아 시각화하였더니 'indie' 장르가 24.4% 빈도수가 가장높았다.

7.2. 장르 별 판매량

- 'indie' 장르의 상위 50%만 추출하고 나머지 장르의 판매량 평균을 계산하였다.
- 'MMO(Massively Multiplayer Online)' 장르가 빈도수에서는 꼴찌였는데 판매량에선 1등이었 다.

8. 판매량과 feature

- · 게임 제작 전 판매량(리뷰 수), 소유자 수를 예 측할 수 있다고 가정했다.
 - 게임의 장르, 게임 구동 환경 등이 게임 구매 또는 리뷰 작성에 영향을 미칠 것이라고 생각.

8.1. 판매량과 feature 분석을 위한 전처리

- Feature Selection
 - 소유자 수 및 판매량에 직접적인 영향을 미치거나, 게임 제작 계획 시 결정할 수 없는 요소(최고 동시접속자 수, 긍정적 평가, 부정적 평가 등)에 대해 Feature 제거 후 분석
- 삭제한 Feature
 - 출시일, 최고 동시접속자 수, 긍정적 평가, 부정적 평가, 게임 추천 수, 평균 플레이 시 간, 개발사 및 배급사

8.2. 판매량과 feature 분석 및 결과

- Random Forest를 이용해 변수 중요도 평가
- 대체로 모든 Feature가 판매량 및 리뷰 수에 낮은 상관관계를 보인다.
 - 상관계수 0.15 이하
- 따라서 판매량(리뷰 수), 소유자 수를 예측하는 모델 구축은 어려움.

8.2. 판매량과 feature 분석 및 결과

- 그래프를 보았을 때 눈에 띄는 요소가 있음.
 - 업적수 (Achievements)
- 게임 판매량(리뷰 수), 소유자 수에서 상대적으로 높은 중요도를 보임.
 - 약 0.09, 0.15로 1순위
- 게임 구매 시 업적수는 게임 구매 및 리뷰 작성 에 적지 않은 영향을 미친다.

Tag - Tag

- 9. 태그와 태그 간의 상관관계
 - 태그
 - 게임에 적절하다고 생각하는 카테고리를 사용자가 분류 한 것

Tag - Tag

- 9. 태그와 태그 간의 상관관계
 - 태그들끼리의 상관관계가 있을 것이라고 가정했다.

대부분 게임은 특정한 장르(예: RPG, FPS)와 테마(예: 판타지, 공상과학)를 공유하고 이런 요소들은 자연스럽게 함께 나타나는 경향이 있음.

■ 예) 판타지 테마는 종종 RPG 장르와 연결 공상과학 테마는 FPS 장르와 자주 연결

9.1. 태그와 태그 간의 상관관계 분석 및 결과

• 특성 간 상관관계를 네트워크 관계도로 시각화한다.

상관관계 강도에 따라 노드를 연결하고 간격을 결정한다.

Feature 와 Feature	상관계수
2D와 Pixel Graphics	0.863
4 Player Local과 Local Multiplayer	0.795
4X와 Hex Grid	0.801
4X와 Turn-Based Strategy	0.749
Action과 Co-op	0.831
Action과 First Person	0.853
Action과 Multiplayer	0.893
Action과 Shooter	0.863

- 9.1. 태그와 태그 간의 상관관계 분석 및 결과
 - 태그 간 상관관계가 0.7 이상인 경우 head를 살펴본다.
 - Action과 다른 태그의 관계가 많음
 - Action과 관련 및 파생된 태그가 많을 것이다.
 - 이와 같은 상관관계를 이용해 게임 추천 모델을
 만들어본다.

게임데이터 보석 및예측

모델링

모델링

ApplD	Name	action	action_rpg	action_adv	addictive	adventure	agriculture a	liens
10	Counter-S	2681	0	0	0	0	0	.0
20	Team Fort	208	0	0	0	15	0	0
30	Day of De	99	0	0	0	0	0	0
40	Deathmat	85	0	0	0	0	0	0
50	Half-Life:	211	0	0	0	87	0	122
60	Ricochet	108	0	0	0	0	0	0
70	Half-Life	766	0	0	0	306	0	424
80	Counter-S	377	0	0	0	40	0	0
130	Half-Life:	187	0	0	0	66	0	103
220	Half-Life 2	1761	0	0	0	937	0	555
240	Counter-S	1785	0	0	0	0	0	0
280	Half-Life:	186	0	0	0	68	0	108
300	Day of De	224	0	0	0	0	0	0
320	Half-Life 2	199	0	0	0	14	0	0
340	Half-Life a	208	0	0	0	67	0	69
360	Half-Life I	101	0	0	0	0	0	0
380	Half-Life 2	354	0	0	0	165	0	156
400	Portal	674	0	0	0	377	0	0
420	Half-Life 2	444	0	0	0	206	0	202
440	Team Fort	8188	0	0	0	0	0	0
500	Left 4 Dea	633	0	0	0	184	0	0
550	Left 4 Dea	2804	0	0	0	896	0	0
570	Dota 2	5168	1664	0	0	0	0	0
620	Portal 2	1225	0	0	0	1644	0	0
630	Allen Swa	505	0	0	0	90	0	378
730	Counter-S	12973	0	0	0	0	0	0
6007	B B II I	- 0				- 0	25	

1. 데이터 셋

- 사용자들이 게임에 붙인 태그 데이터
- 태그에 대한 빈도수를 크롤링하여 데이터 셋을 확보
- 태그 빈도가 수치형으로 표현됨
- 게임 추천 모델을 설계하기에 적합

모델링


```
Normalized Tag Data Sample
                                       2d 2d fighter 360 video
                 1990s
                           2.5d
                                                                       3d \
0 12.799760 77.659506 -0.054102 -0.094166 -0.044547 -0.014073 -0.052744
            9.737427 -0.054102 -0.094166
                                            -0.044547 -0.014073 -0.052744
   -0.029548 -0.044455 -0.054102 -0.094166
                                           -0.044547 -0.014073 -0.052744
   -0.029548 -0.044455 -0.054102 -0.094166 -0.044547 -0.014073 -0.052744
  -0.029548 10.564065 -0.054102 -0.094166 -0.044547 -0.014073 -0.052744
  3d platformer 3d vision 4 player local ... warhammer 40k \
      -0.056544 -0.038616
                                 -0.057471 ...
                                                    -0.033268
      -0.056544 -0.038616
                                -0.057471 ...
                                                    -0.033268
      -0.056544 -0.038616
                                -0.057471 ...
                                                   -0.033268
      -0.056544 -0.038616
                                -0.057471 ...
                                                    -0.033268
      -0.056544 -0.038616
                                 -0.057471 ...
                                                    -0.033268
  web publishing werewolves western word game world war i world war ii \
       -0.043102 -0.022867 -0.028896 <u>-0.026508</u>
                                                    -0.022218
                                                                  -0.042029
       -0.043102 -0.022867 -0.028896 -0.026508
                                                    -0.022218
                                                                  -0.042029
       -0.043102 -0.022867 -0.028896 -0.026508
                                                    0.590845
                                                                  3.404246
       -0.043102
                   -0.022867 -0.028896 -0.026508
                                                    -0.022218
                                                                  -0.042029
        -0.043102 -0.022867 -0.028896 -0.026508
                                                    -0.022218
                                                                  -0.042029
  wrestling zombies e sports
  -0.025062 -0.041819 6.779347
   -0.025062 -0.041819 -0.014138
   -0.025062 -0.041819 -0.014138
   -0.025062 -0.041819 -0.014138
   -0.025062 -0.041819 -0.014138
```

2. 전처리

- 태그 데이터 정규화
 - 태그 값은 빈도수를 나타냄.
 - 학습을 위해 빈도수 값 정규화
- 태그 벡터화
 - 게임 태그를 벡터로 변환
 - 게임 간 유사성 계산에 유용함

게임 데이터 | 분석 및 예측 |

모델링


```
import
# 태그 데이터 벡터화
tag columns = data.columns[2:]
tag data = data[tag columns].astype( ).agg(' '.join, axis=1)
# TF-IDF 벡터화
vectorizer =
tfidf matrix = vectorizer.fit transform(tag data)
# 코사인 유사도 계산
cosine sim = cosine similarity(tfidf matrix, tfidf matrix)
# 추천 함수
   idx = data.index[data['Name'] == game_name].tolist()[0]
                           (cosine sim[idx]))
   sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
   sim_scores = sim_scores[1:11] # 상위 10개 추천
   game indices = [i[0] for i in sim scores]
   return data['Name'].iloc[game_indices]
# 몌시 게임 추천
recommended_games = recommend_games('Counter-Strike: Global Offensive')
print(recommended games)
```

2. 추천 시스템 설계

- 협업 필터링 (Collaborative Filtering)
 - 사용자와 항목 간 상호작용 데이터를 기반으로 추천
- 사용자 기반 협업 필터링
 - 유사한 취향을 가진 사용자가 선호하는 게임 추천
- 아이템 기반 협업 필터링
 - 유사한 특성을 가진 게임 추천

모델링


```
import
# 태그 데이터 벡터화
tag columns = data.columns[2:]
tag data = data[tag columns].astype( ).agg(' '.join, axis=1)
# TF-IDF 벡터화
vectorizer =
tfidf matrix = vectorizer.fit transform(tag data)
# 코사인 유사도 계산
cosine sim = cosine similarity(tfidf matrix, tfidf matrix)
# 추천 함수
   idx = data.index[data['Name'] == game_name].tolist()[0]
   sim scores = [ist(ommetata(cosine sim[idx]))
   sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
   sim scores = sim scores[1:11] # 상위 10개 추천
   game indices = [i[0] for i in sim scores]
   return data['Name'].iloc[game_indices]
# 몌시 게임 추천
recommended_games = recommend_games('Counter-Strike: Global Offensive')
print(recommended games)
```

- 2. 추천 시스템 설계
 - 게임 태그 벡터화 (TF-IDF)
 - 코사인 유사도로 유사한 게임 추천
 - 벡터 방향이 완전히 동일할 경우 1
 - 1에 가까울 경우 유사도가 높다.

모델링


```
import
# 태그 데이터 벡터화
tag_columns = data.columns[2:]
tag data = data[tag columns].astype( ).agg(' '.join, axis=1)
# TF-IDF 벡터화
vectorizer =
tfidf matrix = vectorizer.fit transform(tag data)
# 코사인 유사도 계산
cosine sim = cosine similarity(tfidf matrix, tfidf matrix)
# 추천 함수
   idx = data.index[data['Name'] == game_name].tolist()[0]
   sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
   sim_scores = sim_scores[1:11] # 상위 10개 추천
   game indices = [i[0] for i in sim scores]
   return data['Name'].iloc[game_indices]
# 폐시 게임 추천
recommended_games = recommend_games('Counter-Strike: Global Offensive')
print(recommended games)
```

3. TF-IDF 모델 결과 한계

- 해석이 가능할 정도의 간단한 모델을 구현할 수 있었음.
- 일부 관련 없는 게임을 추천하는 경우가 있음
- 태그 간의 상관관계를 학습하지 않아 낮은 성능을 보이는 것으로 보임

모델링

	0	1	2	3	4	5	Λ.	
0	0.000000	0.000000	62.025379	0.000000	114.039665	0.000000)	
1	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000)	
2	1.653300	1.464302	3.636649	17.305664	6.612454	18.020454	¥:	
3	10.714424	25.503443	0.000000	38.663921	0.038289	47.374169	5	
4	0.000000	47.524311	15.276979	0.000000	22.086117	0.000000	9	
	6	7	8	9		54	55	Ñ
0	0.000000	0.000000	0.000000	230.547287	0.00	0000 251.	.030899	
1	0.000000	0.221083	19.347893	37.335075	0.00	0000 35.	981030	
2	21.186541	7.089534	26.332651	7.597995	15.65	0640 15.	587583	
3	41.054882	0.000000	48.074509	5.546671	36.83	1913 12.	671486	
4	0.000000	16.701242	18.171078	41.328613	0.00	0000 34.	.152683	
	56	57	58	59	60	61	L \	
0	0.000000	163.558655	0.000000	0.000000	0.000000	0.000000	3	
1	0.000000	24.526339	17.430275	0.000000	0.000000	0.000000)	
2	9.177119	16.919405	26.712786	10.078756	15.742235	22.067097	7	
3	8.118855	10.324480	10.852064	28.191288	41.150150	20.067602	2	
4	17.688955	38.514629	47.070747	0.000000	0.000000	0.000000	9	
	62	63						
0	0.000000	0.000000						
1	0.000000	0.000000						
2	15.107454	18,576069						
3	40.133358	0.553476						
4	0.000000	0.000000						

4. 모델 변경

- 오토인코더 방식
 - 태그 데이터를 인코더와 디코더로 구성된
 오토인코더 모델에 학습
 - 인코더 중간 층에서 저차원 임베딩 벡터 추출
 - 임베딩 벡터 간 코사인 유사도로 유사한 게임 검색

모델링

	0	1	2	3	4	5	Α.	
3	0.000000	0.000000	62.025379	0.000000	114.039665	0.00000	9	
l	0.000000	0.000000	0.000000	0.000000	0.000000	0.00000	ð	
2	1.653300	1.464302	3.636649	17.305664	6.612454	18.02045	4	
3	10.714424	25.503443	0.000000	38.663921	0.038289	47.37416	5	
1	0.000000	47.524311	15.276979	0.000000	22.086117	0.00000	9	
	6	7	8	9		54	55	3
3	0.000000	0.000000	0.000000	230.547287	0.00	0000 251	.030899	
l	0.000000	0.221083	19.347893	37.335075	0.00	0000 35	.981030	
2	21.186541	7.089534	26.332651	7.597995	15.65	0640 15	.587583	
3	41.054882	0.000000	48.074509	5.546671	36.83	1913 12	.671486	
1	0.000000	16.701242	18.171078	41.328613	0.00	0000 34	.152683	
	56	57	58	59	60	6	1 \	
9	0.000000	163.558655	0.000000	0.000000	0.000000	0.00000	Ð	
l	0.000000	24.526339	17.430275	0.000000	0.000000	0.00000	a	
2	9.177119	16.919405	26.712786	10.078756	15.742235	22.06709	7	
3	8.118855	10.324480	10.852064	28.191288	41.150150	20.06760	2	
ļ	17.688955	38.514629	47.070747	0.000000	0.000000	0.00000	9	
	62	63						
3	0.000000	0.000000						
ı	0.000000	0.000000						
2	15.107454	18,576069						
3	40.133358	0.553476						
ı	0.000000	0.000000						

4. 모델 변경

- 오토인코더 방식
 - 장점: 태그 간 관계를 학습해 정교한 추천 가능
 - 비선형 활성 함수를 사용해 기존 선형 학습법에 비해 성능 향상
 - 빈도수 뿐만 아니라 태그 간 비선형적 관계를 학습해 특성 반영

모델링

5. 추천 시스템 평가

- 성능 비교 방법
 - 상위 추천 결과 중 실제로 사용자가 선호 한 게임의 비율을 확인해야 함
- 그러나 데이터 셋에 사용자 별 평가 데이터가 없음
 - 주관적인 평가가 필요함
 - 추천 결과의 직관적인 비교를 통해 성능 평가
- 대표 게임 2개에 대해 출력된 결과로
 어떤 모델이 더 나은 추천을 제공하는지 평가

모델링

- 5.1. 추천 시스템 평가: CS:GO
 - TF-IDF
 - 태그와 유사함
 - 고전 게임 추천
 - 대부분 2004년 이전
 - 오토인코더
 - 태그와 유사함
 - 최신 게임 추천
 - 대부분 2013년 이후
 - 게임의 중요 요소인 전략을 요하는 게임이 많이 추천됨

모델링

5.2. 추천 시스템 평가: BATTLEGROUNDS

- TF-IDF
 - 주요 태그와 유사하지 않음
 - 특정 태그에 치중됨
 - 생존, 시뮬레이션 슈팅, 전략 중 하나
- 오토인코더
 - 태그와 유사함
 - 생존, 배틀로얄
 - 게임의 중요 요소인 배틀로얄을 요하는 게임이 많이 추천됨

게임데이터 모델링

6. 추천 시스템 결론

- TF-IDF 벡터화된 데이터 히스토그램
 - 대부분의 값이 0에 가까운 것을 보여줌.
 - 데이터가 매우 희소하게 분포함.
- 오토인코더 벡터화된 데이터 히스토그램
 - 값이 0에서 멀리 떨어진 데이터 포인트가 더 많아, 태그 간의 상관관계를 더 잘 반영 함.
 - 데이터가 더 균일하게 분포함.

게임데이터 모델링

6. 추천 시스템 결론

- 오토인코더 모델
 - 비선형적 관계를 학습하여
 더 정교한 임베딩을 제공해 추천 시스템
 성능 향상에 유리함
- TF-IDF 모델
 - 간단하고 빠름
 - 태그 간 상관관계를 다소 반영하지 못해 성능이 다소 떨어짐

게임데이터 보석 및예측

결과

게임데이터 결론

- 게임 가격이 20달러가 넘어가면 사람들이 잘 안 사려고 한다.
- 2. 멀티플레이를 지원하면 커뮤니티가 형성되는 등 플레이어들의 관심을 끌어 판매량에 영향을 미친 다.
- 3. 지원 언어 빈도수와 판매량은 다르다. 최적의 지원 언어를 선정하려면 판매량 순위를 기준으로 해야한다.
- 4. 게임 업적수는 게임 구매 및 리뷰 작성에 적지 않은 영향을 미친다.
- 5. 게임 태그 데이터를 이용해 오토인코더 기반 게임 추천 시스템을 개발할 수 있었다.

게임 데이터

- 1. 출시일에 따른 가격 추세 분석
- 2. 게임 구매 데이터를 이용해 협업 필터링 을 이용한 게임 추천 시스템을 개발