Name PID

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical and Computer Engineering Department

ECE 65 - Fall 2020

Components and Circuits lab

Final Exam

You should submit your handwritten solutions in a PDF format to Gradescope by Wednesday, 12/16, at 11:00 am (Pacific Time).

Name PID

Problem 1. (5 points)

Find the node voltages and the currents in all branches in the following circuit.

Assume
$$V_{D0} = 0.7 V$$
, $V_{sat} = 0.2 V$, $V_z = 6.2 V$, $\beta = 100$

Show your work.

Name PID

Problem 2. (10 points)

Assume

- $V_{D0} = 0.7 \ V$, $V_{sat} = 0.2 \ V$, and $\beta = 100$, $V_T = 26 \ mV$
- The power supply available is 15 V.
- The output resistance of the signal source is $1 k\Omega (R_{sig} = 1 k\Omega)$ and the load resistance is $1 k\Omega$.
- Capacitors are short in the signal circuit.
- Ignore the early effect in bias and signal circuit calculations.

Design the above amplifier circuit such that

- i. The collector current is 2 mA.
- ii. The Thevenin equivalent resistance at the base is about one tenth of R_E .
- iii. The absolute value of the total gain of the amplifier $(A = \frac{v_o}{v_{sig}})$ is at least 10 V/V.

In your answers, make sure to include

- a) All the resistor values.
- b) All the DC node voltages.
- c) The total gain of the amplifier.
- d) Choose a sinusoidal signal with f = 1 kHz and sketch both v_{sig} and v_o . Make sure that the peak amplitude of v_{π} does not exceed 5 mV and the BJT stays in the active region.

Show your work. This is a design problem, so there are multiple answers for this problem.