COMP6237 Data Mining

Semantic Spaces

Jonathon Hare jsh2@ecs.soton.ac.uk

Introduction

- Distributional Semantics
- Latent Semantic Analysis
- Mining across feature domains
 - Cross-Language LSA
 - Multimodal LSA

Mining Distributional Semantics

Problem statement I: relating words and texts

- Thus far when analysing text we've built BOW models that assume independence of terms
- How could we measure the similarity of words?
 - if we know which words are similar could we use this to improve measurements between documents?

Distributional semantics

- Distributional Hypothesis:
 - words that are close in meaning will occur in similar pieces of text
- Exploit this to uncover hidden meaning
 - Latent Semantics Analysis
 - Topic Modelling

Concept Spaces/Semantic Spaces

- Consider a term-document matrix which described occurrences of terms in documents
 - Clearly going to be sparse
 - Could be weighted (c.f. TF-IDF)

- LSA works by making a low-rank approximation under the following assumptions:
 - The original term-document matrix is noisy
 - anecdotal instances of terms are to be eliminated.
 - the approximated matrix is de-noised
 - The original term-document matrix is overly sparse relative to the "true" term-document matrix
 - We want to capture synonymy

Truncated Singular Value Decomposition Recap

Truncated SVD considers only the **largest** r singular values (and corresponding left & right vectors)

Each column corresponds to an eigenvector of MM¹ (i.e. proportional to covariance or correlation of the terms)

These are the "concepts"

Each row corresponds to an eigenvector of M^TM (i.e. proportional to covariance or correlation of the documents)

These are the "concepts"

Each row corresponds to an r dimensional vector that describes a term as a vector of weights with respect to the r concepts

Each column corresponds to an r dimensional vector that describes a term as a vector of weights with respect to the r concepts

Important Note

The term-concepts and the document-concepts are not the same - they have the same dimensionality, but represent different spaces

They are intrinsically linked though, and it is possible to project one into the other

What exactly is a concept?

A linear combination of terms (or documents).

Not necessarily "comprehensible" e.g. 1.3452 * car - 0.2828 * bottle

Making comparisons

- See how related documents j and q are in the low-dimensional space by comparing the vectors $\Sigma_r \mathbf{d}_j$ and $\Sigma_r \mathbf{d}_i$ where \mathbf{d}_i corresponds to the i-th column of V_r^T
 - Typically by cosine similarity
- Ditto with terms *i* and *p* by comparing the vectors $\Sigma_r \mathbf{t}_i$ and $\Sigma_r \mathbf{t}_p$ where d_i corresponds to the *i*-th row of U_r .
- Documents and term vector representations can be clustered using traditional clustering algorithms like kmeans using similarity measures like cosine.

Latent Semantic Indexing

- Given a query, view this as a mini document, and compare it to your documents in the low-dimensional space.
 - Given a query vector \mathbf{q} with dimensionality equal to the number of terms, project it into the document space: $\mathbf{q}' = \Sigma_{r}^{-1} U_{r}^{\mathsf{T}} \mathbf{q}$
 - Then compare $\Sigma_r \mathbf{q}$ against the low-dimensional document vectors $\Sigma_r \mathbf{d}_i$

Limitations of LSA 1

The resulting dimensions might be difficult to interpret.

- For instance, in
 {(car), (truck), (flower)} → {(1.3452 * car + 0.2828 * truck), (flower)}
 the
 (1.3452 * car + 0.2828 * truck)
 component could be interpreted as "vehicle".
- However, it is very likely that cases close to
 {(car), (bottle), (flower)} → {(1.3452 * car + 0.2828 * bottle), (flower)}
 will occur.
- This leads to results which can be justified on the mathematical level, but have no interpretable meaning in natural language.

Limitations of LSA 2

Polysemy isn't captured

- "The Chair of the Board" versus "the chair maker"
- The vector representation of chair becomes an average of all the word's different meanings in the corpus

Word order is ignored

(n-grams to the rescue?)

· The probabilistic model of LSA does not match observed data

 LSA assumes that words and documents form a joint Gaussian model (ergodic hypothesis), while a Poisson distribution has been observed.

Problem Statement II: cross-lingual search

- Can think of scenarios where we might want to perform a search in one language (e.g. English) and match against documents in another (e.g. French)
 - Could index translated versions of the documents, but
 - automatic translation still has problems
 - manual translation might be expensive
 - What about other approaches?

Embedding across languages

Cross-Language LSI

- Use a bilingual (or multilingual) training corpus to build a single term-document matrix
 - each document vector contains terms from the original language and its translation(s)

	CAT	KITTEN	FELINE	FELINO	GATO	GATITO	
doc1	1	0	0	0	1	0	
doc2	1	1	1	1	1	1	

Cross-Language LSI

- Decompose with SVD as per standard LSI
- Perform queries by projecting into the lower dimensional space as before
 - but just use one language and set the rest to 0

```
CAT KITTEN FELINE FELINO GATO GATITO ... query 1 0 0 1 0 ...
```

 Obviously this still has a problem in the sense that all the indexed documents needed translation...

Cross-Language LSI

- ...But, in the same way you construct queries from a single language, you can create representations for new documents
 - and then append these new vectors to the V matrix so they can be searched
 - The lower dimensional document vectors for unilingual documents should incorporate the multilingual synonymy captured from the training data

Multimodal LSI

- Thus far, we've only considered BOWs from natural language
 - But there isn't anything in the mathematics of LSI that prevents us from applying it to any form of vector that records the compositions of occurrences in a document (or more generally a unit)

compositions

Problem Statement III: semantic image search

- Consider the problem of searching for images
 - Most of the time we want to search with words (matching against metadata)
 - But not all images have text associated with them...

Image Representation

Conceptual Overview

- Basic idea: Create a large multidimensional space in which images, keywords (or other metadata) and visual terms can be placed.
- In the training stage learn how keywords are related to visual terms and images.
 - Place related visual terms, images and keywords close-together within the space.
- In the projection stage unannotated images can be placed in the space based upon the visual terms they contain.
 - The placement should be such that they lie near keywords that describe them.

Applications of the lower dimensional space

- Finding images (both annotated and unannotated) by similar words.
- Finding images (both annotated and unannotated) by semantically similar images.
- Determining likely words for an image.
- Examining word->word and word->visual-term relationships.
 - Segmenting an image.

Searching by Keyword

Searching by Image

Suggesting Keywords

Other applications

- Language modelling
- Command-based speech recognition
- Spam filtering
- Pronunciation modelling
- TTS unit selection
- •

Summary

- LSA is a powerful application of truncated SVD
- But it has a few potential problems
 - Polysemy
 - Highly abstract concepts
 - •
- In practical applications it has had some success
 - But there are newer techniques...