International Trade I The Heckscher-Ohlin Model¹

Monika Mrázová

Spring 2025

¹These lecture notes are based on materials from A. Costinot, A. Dixit, R. Feenstra, Feenstra&Taylor, and J. P. Neary.

- Introduction
- Basic setup
- Factor Price Equalization
- 4 Stolper-Samuelson Theorem
- Rybczynski Theorem

- Introduction
- 2 Basic setup
- 3 Factor Price Equalization
- Stolper-Samuelson Theorem
- 5 Rybczynski Theorem

Reading

Heckscher-Ohlin Model

- *F pp. 31-41, 64-71, 83-93
- Jones, R., and P. Neary. "The Positive Theory of International Trade." pp. 14-21
- Jones, .W. (1965), "The Structure of Simple General Equilibrium Model," Journal of Political Economy, 73, 557-572

Spring 2025

4/30

• Introductory level: FT Chs. 4 and 5 or KOM Ch. 5

- Introduction
- 2 Basic setup
- 3 Factor Price Equalization
- Stolper-Samuelson Theorem
- 5 Rybczynski Theorem

Basic environment

- Consider an economy with:
 - ▶ Two goods, g = 1, 2
 - ▶ Two factors with endowments L and K
 - ★ both factors are "mobile", can be employed in both sectors
- Output of good g is given by

$$y_g = f^g(L_g, K_g)$$

where:

• L_g and K_g are the (endogenous) amounts of labor and capital in sector g

Spring 2025

6/30

- f^g is the production function in sector g:
 - ★ positive, increasing, concave
 - ★ homogenous of degree 1 in (L_g, K_g) , i.e. CRS

Dual approach

• $c_q(w,r) \equiv$ unit cost function in sector g

$$c_g(w,r) = \min_{L,K} \{wL + rK | f^g(L,K) \ge 1\}$$

where w and r the price of labor and capital

- $a_{fq}(w,r) \equiv$ unit demand for factor f in the production of good g
- Using the Envelope Theorem, it is easy to check that:

$$a_{Lg}(w,r) = \frac{dc_g(w,r)}{dw} \quad \text{and} \quad a_{Kg}(w,r) = \frac{dc_g(w,r)}{dr}$$

• $A(w,r) \equiv [a_{fa}(w,r)]$: matrix of total factor requirements

Equilibrium conditions: SOE

- Like in RV model, we first look at the case of a SOE
 - ► So no need to look at good market clearing

Profit-maximization:

$$p_g \le w a_{Lg}(w, r) + r a_{Kg}(w, r) \text{ for all } g = 1, 2$$
 (1)

$$p_g = wa_{Lg}(w,r) + ra_{Kg}(w,r)$$
 if g is produced in equilibrium (2)

Factor-market clearing:

$$L = y_1 a_{L1}(w, r) + y_2 a_{L2}(w, r)$$
(3)

$$K = y_1 a_{K1}(w, r) + y_2 a_{K2}(w, r)$$
(4)

- Introduction
- Basic setup
- Factor Price Equalization
- Stolper-Samuelson Theorem
- 5 Rybczynski Theorem

Factor Price Equalization

- Question: Can trade in goods be a (perfect) substitute for trade in factors?
 - First classical result from the HO literature answers: YES
- To establish this result formally, we'll need the following definition:
- Definition: Factor Intensity Reversal (FIR) does not occur if:
 - (i) $a_{L1}(w,r)/a_{K1}(w,r) > a_{L2}(w,r)/a_{K2}(w,r)$ for all (w,r); or
 - (ii) $a_{L1}(w,r)/a_{K1}(w,r) < a_{L2}(w,r)/a_{K2}(w,r)$ for all (w,r).

Factor Price Insensitivity (FPI)

- Lemma: If both goods are produced in equilibrium and FIR does not occur, then factor prices $\omega \equiv (w,r)$ are uniquely determined by good prices $p \equiv (p_1,p_2)$.
- **Proof:** If both goods are produced in equilibrium, then $p=A'(\omega)\omega$. By Gale and Nikaido (1965), this equation admits a unique solution if $a_{fg}(\omega)>0$ for all f,g and $\det[A(\omega)]\neq 0$ for all ω , which is guaranteed by no FIR.

Comments:

- Good prices rather than factor endowments determine factor prices
- In a closed economy, good prices and factor endowments are, of course, related, but not for a small open economy
- Proof already suggests that "dimensionality" will be an issue for FIR

Factor Price Insensitivity (FPI): graphical analysis

Link between no FIR and FPI can be seen graphically:

• If iso-cost curves cross more than once, then FIR must occur

Factor Price Equalization (FPE) Theorem

- The previous lemma directly implies (Samuelson 1949) that:
- FPE Theorem: If two countries produce both goods under free trade with the same technology and FIR does not occur, then they must have the same factor prices.

Comments:

- Trade in goods can be a "perfect substitute" for trade in factors
- Countries with different factor endowments can sustain same factor prices through different allocation of factors across sectors
- ➤ Assumptions for FPE are stronger than for FPI: we need free trade and same technology in the two countries...
- For next results, we'll maintain assumption that both goods are produced in equilibrium, but won't need free trade and same technology

- Introduction
- 2 Basic setup
- 3 Factor Price Equalization
- 4 Stolper-Samuelson Theorem
- 5 Rybczynski Theorem

Stolper-Samuelson (1941) Theorem

- Stolper-Samuelson Theorem: An increase in the relative price of a good will increase the real return to the factor used intensively in that good, and reduce the real return to the other factor.
- **Proof:** W.l.o.g. suppose that (i) $a_{L1}(\omega)/a_{K1}(\omega) > a_{L2}(\omega)/a_{K2}(\omega)$ and (ii) $\hat{p}_2 > \hat{p}_1$. Differentiating the zero-profit condition (2), we get

$$\hat{p}_g = \theta_{Lg}\hat{w} + (1 - \theta_{Lg})\hat{r} \tag{5}$$

where $\theta_{Lg} \equiv w a_{Lg}(\omega)/c_g(\omega)$. Equation (5) implies

$$\hat{w} \geq \hat{p}_1, \hat{p}_2 \geq \hat{r}$$
 or $\hat{r} \geq \hat{p}_1, \hat{p}_2 \geq \hat{w}$

By (i), $\theta_{L2} < \theta_{L1}$. So (ii) requires $\hat{r} > \hat{w}$. Combining the previous inequalities, we get

$$\hat{r} > \hat{p}_2 > \hat{p}_1 > \hat{w}$$

Stolper-Samuelson (1941) Theorem

Comments:

- ▶ The chain of inequalities $\hat{r} > \hat{p}_2 > \hat{p}_1 > \hat{w}$ is referred as a "magnification effect"
- SS predict both winners and losers from change in relative prices
- Like FPI and FPE, SS entirely comes from zero-profit condition (+ no joint production)
- Like FPI and FPE, sharpness of the result hinges on "dimensionality"
- In the empirical literature, people often talk about "Stolper-Samuelson effects" whenever looking at changes in relative factor prices (though changes in relative good prices are rarely observed)

Stolper-Samuelson (1941) Theorem: graphical

analysis

- Like for FPI and FPE, all economic intuition could be gained by looking at the simpler Leontieff case:
 - In the general case, iso-cost curves are not straight lines, but under no FIR, same logic applies

- Introduction
- 2 Basic setup
- 3 Factor Price Equalization
- Stolper-Samuelson Theorem
- 6 Rybczynski Theorem

Rybczynski (1941) Theorem

- Previous results have focused on the implication of zero profit condition, Equation (2), for factor prices
- We now turn our attention to the implication of factor market clearing, Equations (3) and (4), for factor allocation
- Rybczynski Theorem: An increase in factor endowment will increase the output of the industry using it intensively, and decrease the output of the other industry

Rybczynski (1941) Theorem: proof

• **Proof:** W.l.o.g. suppose that (i) $a_{L1}(\omega)/a_{K1}(\omega) > a_{L2}(\omega)/a_{K2}(\omega)$ and (ii) $\hat{K} > \hat{L}$. Differentiating factor-market-clearing conditions (3) and (4), we get

$$\hat{L} = \lambda_{L1}\hat{y}_1 + (1 - \lambda_{L1})\hat{y}_2 \tag{6}$$

$$\hat{K} = \lambda_{K1} \hat{y}_1 + (1 - \lambda_{K1}) \hat{y}_2 \tag{7}$$

where $\lambda_{L1}\equiv a_{L1}(\omega)y_1/L$ and $\lambda_{K1}\equiv a_{K1}(\omega)y_1/K$. Equations (6) and (7) imply

$$\hat{y}_1 \geq \hat{L}, \hat{K} \geq \hat{y}_2$$
 or $\hat{y}_2 \geq \hat{L}, \hat{K} \geq \hat{y}_1$

By (i), $\lambda_{K1} < \lambda_{L1}$. So (ii) requires $\hat{y}_2 > \hat{y}_1$. Combining the previous inequalities, we get

$$\hat{y}_2 > \hat{K} > \hat{L} > \hat{y}_1$$

Rybczynski (1941) Theorem: comments

- Like for FPI and FPE Theorems:
 - (p_1,p_2) is exogenously given \Rightarrow factor prices and factor requirements are not affected by changes in factor endowments
 - Empirically, Rybczynski Theorem suggests that impact of immigration may be very different in closed vs. open economy
- Like for SS Theorem, we have a "magnification effect"
- Like for FPI, FPE, and SS Theorems, sharpness of the result hinges on "dimensionality"

Rybczynski (1941) Theorem: graphical analysis 1

Since good prices are fixed, it is as if we were in Leontieff case

Constructing the Edgeworth Box Diagram

- Isoquant diagram illustrates technology in one sector
- If factor prices are fixed, then least-cost point on any particular isoquant is determined:

$$slope = -MRS = -\frac{W}{R}$$

- Assume that factor prices remain fixed
- With CRS, locus of least-cost points on different isoquants is a straight line from origin (Expansion Path)

Constructing the Edgeworth Box Diagram 2

Expansion path for sector 1

Expansion path for sector 2

Monika Mrázová International Trade Spring 2025 24 / 30

Factor Allocation in the Edgeworth Box

Increase in Home Labor

- Additional labor in the economy is fully employed
- Capital-labor ratio in each industry is unchanged
- Sector 1 (labor-intensive) expands, sector 2 contracts

Rybczynski Theorem - Economic mechanism

- ullet Increase in L puts downward pressure on wage W
- This encourages expansion of L-intensive sector 1
- L-intensive sector draws capital and labor from other sector
- Since factor prices settle at their original level, both sectors end up with the same factor proportions as initially
- Expanding sector grows by more than the economy average

Consequence of Factor Price Insensitivity

If goods prices do not change and a country continues to produce both goods, endowment changes do not affect factor prices

- Factor prices do not change, because factor proportions in both industries stay the same
- The economy can absorb the extra amount of a factor by increasing the output of the industry using that factor intensively and reducing the output of the other industry

Real-world examples

- Black Death in 13th century Europe
- Great Famine in Ireland, 1846-49
- Russian emigration to Israel in 1990's
- Mariel boat lift

Rybczynski (1941) Theorem: graphical analysis 2

 Rybczynski effect can also be illustrated using relative factor supply and relative factor demand:

- Cross-sectoral reallocations are at the core of HO predictions:
 - For relative factor prices to remain constant, aggregate relative demand must go up, which requires expansion capital intensive sector

30 / 30