#### Neuron in the brain



### Non-linear classification example: XOR/XNOR

 $\rightarrow$   $x_1$ ,  $x_2$  are binary (0 or 1).



$$y = \underline{x_1 \text{ XOR } x_2}$$

$$\Rightarrow \underline{x_1 \text{ XNOR } x_2}$$

$$\text{NOT } (x_1 \text{ XOR } x_2)$$



## Simple example: AND

$$x_1, x_2 \in \{0, 1\}$$



g(z)

# **Example: OR function**



# $\rightarrow x_1 \text{ AND } x_2$

 $\rightarrow x_1 \text{ OR } x_2$ 

### Negation:





| $x_1$ | $h_{\Theta}(x)$ |
|-------|-----------------|
| 0     | 9(10) 2/1       |
| 1     | 9 (-10) 20      |

$$h_{\Theta}(x) = g(10 - 20x_1)$$

$$\begin{array}{c} \rightarrow \text{(NOT } x_1) \text{ AND (NOT } x_2) \\ & \leftarrow \\ & \leftarrow \\ & \rightarrow \\ & \rightarrow \\ & \rightarrow \\ & \leftarrow \\ & \rightarrow \\ & \leftarrow \\ & \rightarrow \\ & \leftarrow \\ & \leftarrow$$

L



### **Neural Network intuition**



# Solving XOR with a Neural Net

Linear classifiers cannot solve this





```
\sigma(20^*0 + 20^*0 - 10) \approx 0 \sigma(-20^*0 - 20^*0 + 30) \approx 1 \sigma(20^*0 + 20^*1 - 30) \approx 0 \sigma(20^*1 + 20^*1 - 10) \approx 1 \sigma(-20^*1 - 20^*1 + 30) \approx 0 \sigma(20^*1 + 20^*1 - 10) \approx 1 \sigma(-20^*0 - 20^*1 + 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1 \sigma(20^*1 + 20^*1 - 30) \approx 1
```