

R4.A.12 – Automates et Langages

TD 2 : langages rationnels et expressions régulières

Les exercices ou questions marqués d'une ou plusieurs étoiles sont plus difficiles et/ou théoriques et peuvent être omis. Cependant ils sont intéressants pour l'étudiant e souhaitant aller plus loin et restent faisables au niveau IUT.

Exercice 1: (Échauffement)

1. Soit un alphabet $\Sigma = \{a, b, c\}$. Donnez en extension si possible ou à défaut la liste des mots de longueur au plus 3 des langages dénotés par les expressions régulières suivantes.

— ∅	— ∅*
$-\varepsilon$	$ (b(abc ca)(cc a \varepsilon)a(a b)) abb a$
$-a^*$	ab^*ca^*
$-b\varepsilon\varepsilon b\varepsilon a\varepsilon$	$ (a b c ab bc)^*$
$-\varepsilon^*$	$ (ab b cc)^*a^+b^*$

- 2. Démontrez que $(a^*b^*)^* = (a|b)^*$
- 3. Démontrez que $(a^*b)^*|(b^*a)^* = (a|b)^*$.
- 4. Soit un langage L sur Σ . Montrez que si on peut décrire L par une expression régulière alors on peut décrire L par une infinité d'expressions régulières différentes.

Exercice 2 : (Opérations ensemblistes sur les expressions régulières)

On considère les expressions régulières suivantes définies sur l'alphabet $\Sigma = \{a,b\}$: $L_1 = a^*(ba)^*b^*$; $L_2 = b^*a^*$; $L_3 = ((ab|ba)^*b)|aa^*b^*$

- 1. Donnez tous les mots \mathbf{w} de $L_1,\,L_2$ et L_3 vérifiant $|\mathbf{w}|\leq 2$
- 2. Donnez une expression régulière dénotant $\overline{L_2}$ et $L_1 \cap L_2$
- 3. Montrez que $\Sigma^* \setminus (L_1 \cup L_2 \cup L_3) \neq \emptyset$
- 4. Que pouvez-vous dire du cardinal de $L_2\Delta L_3$? Justifiez bien votre réponse.

Exercice 3 : (Écriture scientifique des nombres)

- 1. Sur l'alphabet {0,1}, donner une expression régulière décrivant exactement les nombres binaires entiers pairs. Même question en interdisant les 0 non significatifs.
- Sur l'alphabet que vous jugez adapté, donner une expression régulière aussi précise que possible décrivant exactement les nombres écrits en format scientifique.

Exercice 4: (Dates)

Sur l'alphabet que vous jugez adapté, donner une expression régulière aussi précise que possible décrivant exactement les dates (on précisera un format).

Exercice 5: * (Préfixes réguliers)

Montrer que la classe des langages réguliers est close par préfixe, c'est-à-dire que pour tout langage

L décrit par une expression régulière e, le langage Pref(L) peut-être décrit par une expression régulière.

Exercice 6: (Synthèse)

Soit l'alphabet $\Sigma = \{a, b, c\}.$

- 1. Quels langages dénotent les expressions régulières sur Σ qui suivent : a, abb, ab|c, ab^* , $(a|b)^*$.
- 2. Soit $L=(a|b)^*c^*|(b|c)^*a^*|(a|c)^*b^*$. Donnez tous les mots de longueur inférieure ou égale à 2 appartenant à L. A-t-on $\Sigma^*\subset L$ ou $\Sigma^*\subset L^*$? Que peut-on dire de $\operatorname{Card}(L)$, $\operatorname{Card}(\overline{L})$ et $\operatorname{Card}(L^*)$? Déterminez par une expression régulière $L\cap a^*b^*c^*$ et $L\setminus a^*$.
- 3. Donnez une expression régulière décrivant les langages des mots sur Σ ci-dessous :
 - (a) les mots contenant la chaîne « aba » au moins une fois
 - (b) les mots de longueur au moins 3 qui se terminent par « c »
 - (c) les mots qui commencent et se terminent par le même symbole
 - (d) les mots comportant un nombre pair de « a »
 - (e) les mots comportant nécessairement un symbole « a » en début et fin de mot ; et tel que s'il y a un « b » il est immédiatement suivi d'au moins 2 « c »