IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

Lecture 17: Memory Management

Agenda

- Recap
- Introduction to Memory Management
 - Early Systems
 - Virtual Memory

Recap

- OS
 - a resource manager
 - a control program
 - an extended/virtualized machine with abstraction
- Common OS Abstractions for HW
 - CPU
 - process and/or thread
 - Memory
 - address space
 - Disks
 - files

Users

Applications

OS

Hardware

Recap

- Memory Hierarchy
 - diverse technologies with tradeoffs
 - latency, capacity, persistency, cost, ...
 - non-volatile memories are revolutionizing the market!
 - A "disruptive" technology

Agenda

- Recap
- Introduction to Memory Management
 - Early Systems
 - Virtual Memory

- Load only one program in memory
 - poor utilization/efficiency

- Multiprogramming
 - Execute each for a while
 - Switch processes between them in memory
 - Increase utilization and efficiency

Physical Memory

- Multiprogramming
 - Memory allocation changes as processes come and leave
 - the shaded regions are unused memory

- Multiprogramming
 - Relocation problem

- Multiprogramming
 - Relocation using a pair of base and limit registers

- Multiprogramming
 - Basic protection via base/limit registers
 - CPU checks every memory address generated in user program to be sure it is between base and limit for that user

Agenda

- Recap
- Introduction to Memory Management
 - Early Systems
 - Virtual Memory

Virtual Memory

- Modern OS provides a virtual memory for each process
 - provides the illusion that each process uses the whole memory itself
 - can handle programs that are too large to fit in physical memory
- Benefits
 - memory efficiency
 - isolation & protection among processes

Address Space

- An abstraction of physical memory for a process
 - the set of all virtual addresses visible to a program
 - hold all info. about a running process
 - consist of different regions
 - stack
 - heap
 - static data
 - code (text)

Address Space

Virtual Address

- Every byte in the address space has a unique virtual address
 - every address in a running program is a virtual address

Address Space

Virtual Address

E.g., virtual address in a program

```
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {

    printf("location of code : %p\n", (void *) main);
    printf("location of heap : %p\n", (void *) malloc(1));
    int x = 3;
    printf("location of stack : %p\n", (void *) &x);

    return x;
}
```

Virtual Address

- E.g., virtual address in a program
 - output on a 64-bit Linux machine

location of code : 0x40057d
location of heap : 0xcf2010

location of stack: 0x7fff9ca45fcc

Address Translation

- Translate virtual address to physical address
- Static address translation
 - Map virtual address to physical address when loading a process into memory
 - Used when processes are fixed and known in advance
 - e.g., many embedded systems
- Dynamic address translation
 - Map virtual address to physical address at runtime

Paging

- Key technique of virtual memory management
 - Divide the address pace of a program into fixed-size small parts
 - called *virtual pages* or *pages*
 - typically 4KB each
 - Divide the physical memory into fixed-size small parts
 - called page frames
 - typically 4KB each
 - Only load necessary (virtual) pages into (physical) page frames

Paging

- E.g.,
 - 64KB Virtual Address Space
 - divided into 16 pages
 - 4KB each page
 - 32KB Physical Memory
 - 8 page frames
 - 4KB each

Agenda

Recap

Questions?

- Introduction to Memory Management
 - Early Systems

Virtual Memory

^{*}acknowledgement: slides include content from "Modern Operating Systems" by A. Tanenbaum, "Operating Systems Concepts" by A. Silberschatz etc., "Operating Systems: Three Easy Pieces" by R. Arpaci-Dusseau etc., and anonymous pictures from internet.