

ECMI Modeling Week 2019 University of Grenoble - Grenoble INP

#### THE TITLE OF THE PROJECT

Instructor (University/Company)

Author1 (home university) Author2 (home university)

... ..

AuthorN (home university)

# Indice

| 1 | A fi | A finite difference approximation for Schrödinger equation |   |  |
|---|------|------------------------------------------------------------|---|--|
|   | 1.1  | Boundary conditions                                        | 4 |  |
|   | 1.2  | Consistency of the scheme                                  | 4 |  |
|   | 1.3  | Stability                                                  | 4 |  |
|   | 1.4  | Order of convergence                                       | 4 |  |
|   |      | Possible improvement: Galerkin approach                    |   |  |

# Capitolo 1

# A finite difference approximation for Schrödinger equation

We discretize our domain  $\Omega = (a, b)$  with N points and the uniform mesh is made by N-1 intervals of length  $h = \frac{b-a}{N-1}$ .

For the sake of simplicity we consider the a-dimensional time independent equation with transparent boundary conditions, in  $\Omega = (0, 1)$ , namely:

$$\varphi''(x) + 2(E - V(x))\varphi(x) = 0$$

and conditions

$$\mathbf{i}k\varphi(0) + \varphi'(0) = 2\mathbf{i}k$$

$$\varphi'(1) = \mathbf{i}k_2\varphi(1)$$

where **i** is the imaginary unit and  $k_2 = \sqrt{k^2 + 2(V(0) - V(1))}, k = \sqrt{2(E - V(0))}.$ 

Here  $V: \mathbb{R} \to \mathbb{R}$  is the potential, which can be assumed to be piecewise constant. With the centered, second order, finite difference approach, the discretized equation becomes

$$\frac{\varphi_{i+1} - 2\varphi_i + \varphi_{i-1}}{h^2} + 2(E - V(x_i))\varphi_i = 0, \quad i = 1, \dots, N$$

We can easily re-write the equation as a linear system using the fact that the part corresponding to the second derivative can be written as a matrix-vector product  $A \cdot \varphi$  where

$$A = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & 0 & 0 & 1 & -2 \end{bmatrix}$$

and the boundary conditions has still to be imposed. The above tridiagonal matrix can be easily generated with the following MatLab command

 $A=toeplitz(sparse([1,1],[1,2],[-2,1]/(h^2),1,m))$ 

Looking at the other term of the equation, one can easily see that the whole equation becomes

$$(A+B)\varphi = \mathbf{0}$$

where  $(B)_{i,j} = 2(E - V(x_i))\delta_i^j$ .

#### 1.1 Boundary conditions

We write the first boundary condition by discretizing the first derivative with a second order approximation, by introducing a *ghost node* (or virtual node)  $x_0 = x_1 - h$ .

$$\mathbf{i}k\varphi(1) + \frac{\varphi_2 - \varphi_0}{2h} = 2\mathbf{i}k$$

Now, we compute  $\varphi_0$  as a function of  $\varphi_1, \varphi_2$ , and we put it into the first line of the discretized system, which is

$$\frac{\varphi_2 - 2\varphi_1 + \varphi_0(\varphi_1, \varphi_2)}{h^2} + 2(E - V(x_1))\varphi_1 = 0$$

This leads to the following first line

$$\varphi_1(\frac{2\mathbf{i}k}{h^2} - \frac{2}{h^2} + 2(E - V(x_1))) + \varphi_2(\frac{2}{h^2}) = \frac{4\mathbf{i}k}{h}$$

This strategy preserves the second order of the numerical scheme. The very same argument applies to the other boundary condition. After these conditions we will end up with a RHS  $\boldsymbol{b}$  which is zero everywhere except for the first component  $\boldsymbol{b}(1) = \frac{4\mathrm{i}k}{\hbar}$ . Finally, the linear system to solve is

$$\frac{1}{h^2}\begin{bmatrix} 2\mathbf{i}k - 2 + 2h^2(E - V(x_1)) & 2 & 0 & 0 & \dots & 0 \\ 1 & -2 & 1 & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & -2 & 1 \\ 0 & \dots & 0 & 0 & 2 & 2h\mathbf{i}k_2 - 2 - 2h^2(E - V(x_m)) \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ \vdots \\ u_{m-1} \\ u_m \end{bmatrix} = \begin{bmatrix} \frac{4\mathbf{i}k}{h} \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$

It's solved by using the default command backslash in MatLab, which can easily handle complex arithmetic.

## 1.2 Consistency of the scheme

In order to show the consistency of the scheme, we insert the analytical solution  $\varphi(x)$  in the numerical scheme.

$$\frac{\varphi(x_{i+1}) - 2\varphi(x_i) + \varphi(x_{i-1})}{h^2} + 2(E - V(x_i)) = 0 \quad i = 2, \dots, N - 1$$

and, assuming  $\varphi \in \mathcal{C}^4$ , we expand in Taylor series about  $x = x_i$ 

$$\varphi''(x_i) + 2(E - V(x_i)) + \varphi^{(4)}(\xi)\frac{h^2}{12} + \mathcal{O}(h^4), \quad \xi \in (x_{i-1}, x_i)$$

and since  $\varphi(x)$  is the analytical solution what remains is just  $\varphi^{(4)}(\xi)\frac{h^2}{12} + \mathcal{O}(h^4), \quad \xi \in (x_{i-1}, x_i)$ 

### 1.3 Stability

## 1.4 Order of convergence

In order to show numerically the order of convergence, we compared the infinity norm of the difference between the analytical solution and the numerical one for a different number of grid points. The constants in the analytical solution has been computed by solving a linear system. As a potential we chose V(x) = 50,  $x \in (0,1)$ . In the following logarithmic scaled plot we can appreciate the right order of convergence



#### 1.5 Possible improvement: Galerkin approach

Since the regularity of  $\varphi$  strongly depends on the regularity of the potential V(x), with a finite difference approach one lose the second order approximation. Indeed, with piece-wise constant potential we have no more second order approximation. This observation leads to a Galerkin approach, requiring the solution  $\varphi(x)$  to be less smooth than before.

Denoting with  $H^1(0,1)$  the Sobolev space  $W^{1,2}(0,1)$ , as usual we take a  $v \in H^1(0,1)$ , multiply the equations by v and integrate by parts.

$$[\varphi'(x)v(x)]_0^1 - \int_0^1 \varphi'(x)v'(x)dx + 2\int_0^1 (E - V(x))\varphi(x)v(x)dx = 0, \quad v \in H^1(0,1)$$

Recalling that we have Robin boundary conditions, then in the weak formulation we will have terms proportional to  $\varphi$ . Using the fact that  $\varphi'(0) = 2\mathbf{i}k - \mathbf{i}k\varphi(0)$  and  $\varphi'(1) = \mathbf{i}k_2\varphi(1)$  then the weak formulation is to find  $u \in H^1(0,1)$  such that the following identity

$$\mathbf{i}k_2\varphi(1)v(1) + \mathbf{i}k\varphi(0)v(0) - 2\mathbf{i}k - \int_0^1 \varphi'v' dx + 2\int_0^1 (E - V(x))\varphi v dx = 2\mathbf{i}k, \quad (\star)$$

holds for every  $v \in H^1(0,1)$ 

In order to solve it, we restrict to a proper finite dimensional subspace  $X_h$  of  $H^1$ , made by piecewise linear functions, i.e.  $X_h = \{w \in H^1(0,1) : w_{|[x_i,x_{i+1}]} \in \mathbb{P}([x_i,x_{i+1}])\}$ . A basis of this space  $X_h$  is given by the "hat functions" w(x) and therefore we have to search for  $\varphi_h \in X_h$  such that  $(\star)$  holds for every  $v \in X_h$ . In particular, we have

$$\varphi_h(x) = \sum_{i=1}^{N} (\varphi_h)_j w_j(x)$$

and the discrete problem is therefore to find  $\varphi_h \in X_h$  s.t.

$$-\int_{0}^{1} \sum_{j} (\varphi_{h})_{j} w_{j}'(x) w_{i}'(x) dx + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) w_{i}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{1} w_{1}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{2}(1) = 2\mathbf{i}k + 2 \int_{0}^{1} (E - V(x)) \sum_{j} (\varphi_{h})_{j} w_{j}(x) dx + \mathbf{i}k(\varphi_{h})_{N} w_{n}^{2}(0) + ik_{2}(\varphi_{h})_{N} w_{n}^{$$

for  $1 \le i \le N$