Дифракция Фраунгофера

Козлов Александр Краснощёкова Дарья

17 ноября 2021 г.

1 Формулы для вычисления интенсивности дифракционной картины

Выведем из принципа Гюйгенса—Френеля формулу для интенсивности в зависимости от угла дифракции. Пускай на решётку с периодом d и щелями ширины b падает свет амплитуды E_0 с длиной волны λ . Каждую щель разобьём на бесконечно малые излучатели ширины dx. Разность хода для излучателя с координатой x и для излучателя с координатой x = 0 будет

$$\Delta = x \sin \theta. \tag{1}$$

Что следует из элементарных геометрических соображений (см. рис. 1). Тогда комплексная амплитуда бесконечно малого излучателя с координатой x испытает относительно комплексной амплитуды бесконечно малого излучателя с координатой x=0 сдвиг по фазе на $k\cdot \Delta$, где через k обозначено волновое число. Комплексная амплитуда бесконечно малого излучателя с координатой x будет

$$d\tilde{E}(x) = \frac{E_0}{b} e^{ikx \sin \theta} dx. \tag{2}$$

Интегрируя по всей ширине щели, получаем зависимость комплексной амплитуды одной щели от $\sin \theta$

$$\tilde{E}_1(\sin\theta) = E_0 e^{i\frac{kb\sin\theta}{2}} \operatorname{sinc}\left(\frac{kb\sin\theta}{2}\right).$$
 (3)

Откуда сразу получаем формулу для интенсивности света для одной щели

$$I_1 = \tilde{E}_1 \left(\tilde{E}_1 \right)^* = I_0 \operatorname{sinc}^2 \left(\frac{kb \sin \theta}{2} \right). \tag{4}$$

Что и требовалось проверить.

Рассмотрим случай N щелей. Для m-ой щели имеем (добавится набег фазы)

$$\tilde{E}_m(\sin\theta) = \tilde{E}_1(\sin\theta)e^{ik(m-1)d\sin\theta}.$$
 (5)

Рис. 1: Иллюстрация к вычислению разности хода.

Чтобы получить суммарную амплитуду, нужно просуммировать амплитуды всех щелей. Вычисляем сумму геометрической прогрессии

$$\tilde{E} = \tilde{E}_{1}(\sin \theta) e^{-ikd \sin \theta} \sum_{m=1}^{N} e^{ikmd \sin \theta}$$

$$= \tilde{E}_{1}(\sin \theta) e^{-ikd \sin \theta} \frac{e^{ikd \sin \theta} \left(1 - e^{ikdN \sin \theta}\right)}{1 - e^{ikd \sin \theta}}$$

$$= \tilde{E}_{1}(\sin \theta) e^{i \cdot (\dots)} \frac{\sin \left(\frac{kdN \sin \theta}{2}\right)}{\sin \left(\frac{kd \sin \theta}{2}\right)}.$$
(6)

Отсюда и получаем итоговую формулу для интенсивности дифракционной решётки из N

щелей

$$I_N = I_0 \operatorname{sinc}^2 \left(\frac{kb \sin \theta}{2}\right) \frac{\sin^2 \left(\frac{kdN \sin \theta}{2}\right)}{\sin^2 \left(\frac{kd \sin \theta}{2}\right)}.$$
 (7)

2 Наблюдение дифракционной картины для различных решёток

2.1 Дифракция на одной щели

Были измерены угловые положения дифракционных минимумов. То, как соотносятся результаты измерений с теорией представлено на рисунке 2. Видно, что мы достаточно точно

Рис. 2: Черной кривой обозначен график интенсивности дифракционной картины для одной щели. Пунктиром отмечены результаты измерений угловых положений дифракционных минимумов. Над графиком расписаны характеристики данной дифракционной решётки.

определили положение дифракционных минимумов.

2.2 Дифракция на двух щелях

Были измерены угловые положения дифракционных минимумов. Сравнение результатов измерений с результатами теоретическими приведено на рисунке 3. Видно, что мы нашли положение дифракционных минимумов высоких порядков не самым точным образом.

Рис. 3: Черной кривой обозначен график интенсивности дифракционной картины для двух щелей. Пунктиром отмечены результаты измерений угловых положений дифракционных минимумов. Над графиком расписаны характеристики данной дифракционной решётки.

2.3 Дифракция на пятнадцати щелях

Были измерены угловые положения дифракционных максимумов. Сравнение результатов измерений с результатами теоретическими приведено на рисунке 4. Видно, что мы плохо определили положение максимумов первого порядка.

3 Качественный наблюдения

3.1 Изменение расстояния

Сравним дифракционную картину для двух щелей, разнесённых на разные расстояния. Для двух близких щелей мы наблюдали 5 максимумов, в то время, как для далёких щелей имели возможность узреть 7 дифракционных максимумов. Данный результат хорошо согласуется с теоретической формулой (см. рис. 5).

3.2 Изменение толщины щели

Сравним дифракционные картины для одной щели при разных толщинах щели. Для узкой щели наблюдали толстые максимумы в центре, а для толстой щели наблюдался узкий максимум в центре, что хорошо согласуется с результатами теоретических расчётов (см. рис. 6).

Рис. 4: Черной кривой обозначен график интенсивности дифракционной картины для пятнадцати щелей. Пунктиром отмечены результаты измерений угловых положений дифракционных максимумов. Над графиком расписаны характеристики данной дифракционной решётки.

3.3 Изменение угла падения света на дифракционную решётку

При повороте дифракционной решётки дифракционная картина утолщается, что следует из предыдущих рассуждений (поворот равноценен сжатию щелей).

3.4 Изменение длины волны света

Ранее на дифракционную решетку падал во всех экспериментах красный свет ($\lambda=650$ нм). Заменили его на зелёный ($\lambda=550$ нм). Наблюдали сжатие дифракционной картины. Например, это должно следовать из формулы для положений минимумов дифракционной картины для одной щели толщины b

$$\theta_m = \arcsin\left(\frac{\lambda m}{b}\right),\tag{8}$$

где через m обозначен номер минимума (целое, отличное от нуля число).

3.5 Изменение размеров источника света

При измерении высоты источника дифракционная картина не менялась. При изменении же ширины источника было наблюдаемо следующее поведение дифракционной картины:

0.63 мм – хорошо видно дифракционную картину;

0.70 мм – дифракционную картину видно размыто;

0.55 мм - темно.

Рис. 5: Черной кривой обозначен график интенсивности дифракционной картины для двух щелей. Над графиками расписаны характеристики дифракционных решёток.

Рис. 6: Черной кривой обозначен график интенсивности дифракционной картины для одной щели. Над графиками расписаны характеристики дифракционных решёток.

Из измерений следует, что $\Delta x_{\mathrm{paзm}} = 0.08$ мм и $\Delta x_{\mathrm{темн}} = 0.11$ мм.