

Basic Crypto

Axel Nilsson

RSA

- Randomly select two large prime numbers p and q
- Calculate N = p * q
- Calculate phi(N) = (p-1) * (q-1)
- Select e such that p-1 and q-1 are relatively prime to e. Same as if phi(N) and e are relatively prime
- Calculate d from ed = 1 (mod phi(N))
- Encryption: m^e = c (mod N)
- Decryption: c^d = m (mod N)

CRT - Chinese remainder theorem

- x = a1 (mod m1) x = ak (mod mk)
- Construct m = m1*m2*...*mk
- Define: z1 = m/m1 ... zk = m/mk
- Calculate y1 = z1^-1 (mod m1) ... yk = zk^-1 (mod mk)
- X = a1*y1*z1 + + ak*yk*zk (mod m)

Me: Why is there exist integer a such that a = 5 (mod 17) and a = 8 (mod 21)

My teacher:

End of the boring, let's solve some challs!

- Some tips for tools that can be useful
 - pow(a, b, m) = a^b mod m
 - long_to_bytes from Crypto.Util.number
 - sagemath
 - o http://factordb.com/

