

Ultra Low Noise, High PSRR, 250mA LDO

FEATURES

- > Ultra-Low Noise for RF Application
- Ultra-Fast Response in Line/Load Transient
- > Quick Start-Up (Typically 100uS)
- Low Quiescent Current: 36uA
- Less than 0.1uA Standby Current When Shutdown
- ➤ Low Dropout Voltage: 120mV @ 100mA
- ➤ Wide Operating Voltage Ranges : 2.5V to 6V
- > TTL-Logic-Controlled Shutdown Input
- > Low Temperature Coefficient
- Current Limiting Protection
- Only 1uF Output Capacitor Required
- ➤ High Power Supply Rejection Ratio
- ➤ ROHS Compliant and 100% Lead (Pb)-Free
- Custom Voltage Available
- Custom Options for CE Logic and Build-in Pull-up/down Available

APPLLICATIONS

- CDMA/GSM Cellular Handsets
- Battery-Powered Equipment
- Laptop, Palmtops, Notebook Computers
- ➤ Hand-Held Instruments
- PCMCIA Cards
- Portable Information Appliances

DESCRIPTION

The FT531xx is designed for portable RF and wireless applications with demanding performance and space requirements. The FT531xx performance is optimized for battery powered systems to deliver ultra low noise and low quiescent current. Regulator ground current increases only slightly in dropout, further prolonging the battery life.

The FT531xx also works with low-ESR ceramic capacitors, reducing the amount of board space necessary for power applications, critical in hand-held wireless devices. The FT531xx consumes less than 0.1uA in shutdown mode and has fast turn-on time less than 100uS. The other features include low dropout voltage, high output accuracy, current limiting protection, and high ripple rejection ratio. The FT531xx is available in the 5-lead of SOT-23-5(L), SC-70 and the 3-lead of SOT-23-3(L), SOT-89-3(L), SOT-23 packages.

TYPICAL APPLICATION CIRCUIT

Typical Application Circuit

ABSOLUTE MAXIMUM RATINGS

Supply Input Voltage	6V
• Power Dissipation, PD@ TA=27 °C	
SOT-23-5(L)	400mW
SOT-23-3(L)	400mW
SOT-89-3(L)	600mW
SC-70	300mW
SOT-23	250mW
Package Thermal Resistance	
SOT-23-5(L)	250°C/W
SOT-23-3(L)	250°C/W
SOT-89-3(L)	170°C/W
SC-70	330°C/W
SOT-23	380°C/W
Lead Temperature (Soldering, 10sec.)	260°C
Storage Temperature Range	
• ESD Susceptibility	
HBM(Human Body Mode)	4kV
MM(Machine Mode)	200V

^{*} Stresses exceed those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at conditions beyond those listed in the specification is not guaranteed. Prolonged exposure to extreme conditions may affect device reliability or functionality.

PIN CONFIGURATION

TERMINAL FUNCTION

Pin Name	Pin Function
EN	Chip Enable (Active High). No Pull-Down Resistor Build-in For package SOT-23-3(L) ,SOT-89-3(L) and SOT-23, the EN is internally connected to VIN
VIN	Power Input Voltage
VOUT	Output Voltage
NC	No Connection
GND	Ground

ORDERING INFORMATION

FT531①②

DESIGNATOR	SYMBOL	OUTPUT VOLTAGE
	A	1.2V
	В	1.3V
	С	1.5V
	D	1.8V
	E	2.5V
1	F	2.7V
	G	2.8V
	Н	2.85V
	I	3.0V
	J	3.3V
	K	3.6V
	L	4.2V

DESIGNATOR	SYMBOL	PIN CONFIGURATION	PACKAGE TYPE
	a	SOT-23-5A	
	b	SOT-23-5B	SOT-23-5(L)
	c	SOT-23-5C	
	d	SC-70A	
2	e	SC-70B	SC-70 / SOT-353
	f	SC-70C	
	g	SOT-23-3A	SOT-23-3(L)
	h	SOT-23A	SOT-23
	i	SOT-89-3A	SOT-89-3(L)

MARKING RULE

① Represent Product Series

SYMBOL	PRODUCT SERIES		
6	FT531xx		

② Represent Output Voltage and operating temperature range G represent the output voltage is 2.8V, operating temperature is $-40\,^{\circ}\text{C} \sim 85\,^{\circ}\text{C}$. 345 For internal reference.

BLOCK DIAGRAM

www.fremontmicro.com Page 5 of 23 DS531-A8

ELECTRICAL CHARACTERISTICS

Vout=1.2V; En=Vin=2.5V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
	Imax	Vin=2.5V	250	300		mA
Current Limiter	Ishort	Vin=2.5V		20		mA
Line Regulations	△Vline	2.5V~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		400		mV
Supply Current	Iq	Vin=2.5V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/℃
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		30		uVrms
Ripple	PSRR@1k	Vin=2.5VDC+1Vp-pAC,		72		1D
Rejection Rate	PSRR@10k	Iout=30mA		60		dB
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=1.3V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		380		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		30		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=1.5V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Linner	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		300		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle { m NO}}$	10Hz~100kHz		30		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=1.8V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		200		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		30		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=2.5V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		140		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=2.7V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		130		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=2.8V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		120		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN THESHOID	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=2.85V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Linner	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		120		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle { m NO}}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN Threshold	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=3.0V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		120		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN Threshold	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=3.3V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		120		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN Threshold	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Vout=3.6V; En=Vin=(Vout+1)V; Cout=1uF unless otherwise noted

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Voltage Accuracy	Vout	Iout=1mA	-2		+2	%
Current Limiter	Imax	Vin=Vout+1V	250	300		mA
Current Limiter	Ishort	Vin=Vout+1V		20		mA
Line Regulations	△Vline	(Vout+1.0V)~6V		0.01	0.3	%/V
Load Regulation	\triangle Vload	1mA≤Iout≤100mA		10		mV
Dropout Voltage	Vdrop	Iout=100mA		120		mV
Supply Current	Iq	Vin=(Vout+1)V,Iout=0mA		36		uA
Standby Current	Istby	Shut down		0.01	1	uA
Temperature Coefficient	\triangle Vout/ (\triangle Temp* Vout)	Iout=30mA -40°C≤Temp≤85°C		100		ppm/°C
Output Noise Voltage	$e_{\scriptscriptstyle m NO}$	10Hz~100kHz		40		uVrms
Ripple	PSRR@1k	Vin=Vout+1VDC+1Vp-pAC		72		dB
Rejection Rate	PSRR@10k	Iout=30mA		60		ав
EN Input Bias Current	Ien			0	100	nA
EN Threshold	VL				0.3	V
EN Threshold	VH		1.2		6	V

^{*} Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Fremont Micro Devices

TYPICAL PERFORMANCE CHARACTERISTICS FT531I

Vin=4.0V, Vout=3.0V, Co=1uF, temp=27°C unless otherwise noted

Fremont Micro Devices

FT531xx

PAKAGING INFORMATION

SOT-23-5L

Sumbol	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.356	0.559	0.014	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
e	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-5 Surface Mount Package

SOT-23-3L

C. mh a l	Dimensions Ir	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

SOT-89-3L

Cumbal	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550 REF.		0.06	REF.	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP.		0.060 TYP.		
e1	3.000 TYP.		0.118 TYP.		
	0.900	1 200	0.035	0.047	

Fremont Micro Devices

SC-70

NOTE:

- 1. All dimensions are in inches/(millimeters)
 2. Dimensions are inclusive of plating
 3. Dimensions are exclusive of mold flash & metal burn

 A All enceifications comply
- All specifications comply to EIAJ SC70

SYMBOL	MIN	MAX
е	0.026BSC	/(0.65 BSC)
D	0.071/(1.80)	0.067/(2.20)
b	0.006/(0.15)	0.012/(0.30)
E	0.045/(1.15)	0.053/(1.35)
HE	0.071(1.80)	0.094(2.40)
Q1	0.004/(0.10)	0.016/(0.40)
A2	0.031/(0.80)	0.039/(1.00)
A1	0.000/(0.00)	0.004/(0.10)
Α	0.031/(0.80)	0.043/(1.10)
С	0.004/(0.10)	0.007/(0.18)
L	0.004/(0.10)	0.012/(0.30)

SOT-23

Sumah al	Dimensions In Millimeters		Dimension	s In Inches
Symbol	Min	Max	Min	Max
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.300	0.500	0.012	0.020
С	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
е	0.950TYP		0.037TYP	
e1	1.800	2.000	0.071	0.079
L	0.550	REF	0.022REF	
L1	0.300	0.500	0.012	0.020
θ	0°	8°	0°	8°