(5) NO 6	=0 () No c = 0	@ a,b,d,ab,ad		
Some	= 0 (6 1b = 0.5	Some c = 0.5	bc, cd = 0.5	Name:	
	b = 1	only $c=1$	C = 1 Quiz	ID: a section or time:	9+11
		Stat/Math 390, W	Vinter, Test 2, Feb	. 17, 2012; Ma	rzban
CLOS	ED everything.				heck front page and back page.
	: SHOW answer		k answers on these page es; NO CREDIT FOR C		LAIN. ER WITHOUT EXPLANATIO
Points 1 2.34		to have a normal distr determine their values		ers μ and σ . Whi	ch one of the following
	a) 50^{th} percen		ntile (c) 1^{st} and 5^t	h percentiles	d) None of the above lve for 2 unknowns.
1 2.51, Semple (Test 1, a	2. For which of a) Normal	of the following distribu b) Uniform	tions can the idea of a c) Expon	qq plot be used t	o test the distribution? (d) All of the above.
1 3.45		one of the following one dard deviation b) sa	-		d) none of the above
1 3,16		for which of the follow		tween	here are no clusters or (e) All of the above
<u>3.</u> ★		etween them (multiple		penalty)	a finite, nonzero slope.) depends on the slope
0	is collected. Let $r_{yx_2} = 0.8$, and found adequate a) On the average b) On the average of the large I e) None of the	et r_{uv} denote the correlated $r_{x_1x_2} = 0.2$. The OLS et (i.e., $R^2 = 0.9$). Then rage, height increases by rage, height increases by rage, 90% of the variable R^2 implies that overfitting above.	stion coefficient between S-based regression most in (multiple answers por 1, 2, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	on u and v . It is form the del $y = 0.1 + 0.3$ and increase in we have a counted for by a counted for by a counted. Out fifting the counted for the counter fitting the counter for the c	eight. Interaction eight. No interpretation for re weight and arm-length. y => large R2, but versa.
(7.86+	+7.505) 7. The 95% lo	wer confidence bound f	or a population propo	rtion is 0.2. Then	n, with 95% confidence,
0	a) is lower tha	n 0.2 b) ex	ceeds 0.1	e) exceeds 0.2	\rightarrow d) exceeds 0.3
1 7-11	a) 95% of sam b) We can be	ple means will be betweep 95% confident that the	ed to be (10,12). Thereen 10 and 12. within true mean is less than	which one of the which one of the which one of the which one of the which of the w	vith 95% Confidence le following is correct? not x. 2 sided, not 1-sided.
	d) We can be e) None of the	Ols will be (10,12). Confident that (10) above.	,12) is the true CI.	CI = Sta	such thing;
/	sampling distr a) mean is No	ibution of the sample (rmal b) prop		ible, with penalty	nple size is large? The y) rd deviation is Normal.
/ a,	c, ab, bc, al	c = 0.5 . $ac = 1$	/		

3,37c or lest 13 (R2)

10. In a regression problem, the model $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$ is employed. The data contains 15 cases, the sample standard deviation of the y is 21, and the typical deviation of the data from the fitted surface is 7. Compute R^2 (in terms of numbers, not symbols.)

$$R^{2} = \frac{SSeqR}{SST} = 1 - \frac{SSE}{SST} \} \Longrightarrow R^{2} = 1 - \frac{[n - (n+1)] Se^{2}}{(n-1) Sf^{2}}$$

$$Se^{2} = \frac{SSE}{n - (n+1)}$$

$$= 1 - (\frac{15 - 6}{15 - 1})(\frac{7}{21})^{2}$$

$$Sf^{2} = \frac{1}{11} SST$$

$$= 1 - \frac{9}{11} - \frac{1}{9} = \frac{13}{111}$$

11. In a hw you took random samples of size 10 and showed that if the sample mean of the 10 numbers is used as a prediction for each of the 10 numbers, then SSE is minimum. Here, you will prove that result, quite generally. Suppose you are given y_i , i = 1, 2, ..., n, and use a constant α as a prediction for each of the y_i . a) Write down the expression for SSE in terms of y_i and α . b) Then differentiate that expression with respect to α , and find the critical value of α which makes the derivative of SSE zero. Show work.

a)
$$SSE = \sum_{i=1}^{n} (\gamma_i - \alpha)^2$$

b)
$$\frac{d}{d\alpha}$$
 $SSE = \underbrace{\underbrace{S}}_{i} \frac{d}{d\alpha} (Y_{i} - \alpha)^{2} = -\underbrace{\underbrace{S}}_{i} 2 (Y_{i} - \alpha) = -2 (\underbrace{\underbrace{S}}_{i} Y_{i} - \underbrace{\underbrace{S}}_{i} \alpha)$

$$= -2n \left(\underbrace{+}_{i} \underbrace{\underbrace{Y}_{i} - \alpha} \right) = -2n \left(\underbrace{Y} - \alpha \right)$$

$$= 0 \implies \widehat{\alpha} = \underbrace{Y}$$

2(3)

Suppose the lifetime (x) of batteries has a Normal distribution with mean of 8 and std dev of 1. Let T denote the total lifetime of four batteries in a randomly selected package. Find the numerical value of T_0 for which prob $(T \ge T_0) = 0.95$. Show work!

$$0.95 = \text{prob}(T) = \text{prob}(n \times T) = \text{prob}(x \times T_0) = \text{prob}(x \times$$

13.) Starting from a self-evident fact, derive the formula for a 91% upper confidence bound for a population mean. Make sure the z^* in your answer has a numerical value. Show work.

Self-evident fact:
$$prob(Z7?) = .91$$
 -1.34 (Table I)
 $rac{x-\mu x}{\sigma_x \mu x} > -1.34 = .91$