ゼミノート #5

Categorical Part of Descent Theory, and Stacks

七条彰紀

2018年11月28日

今回のノートで一貫して用いる記号と記法を定める.

 \mathbf{C} :: site, π : $\mathcal{F} \to \mathbf{C}$:: fibered category を考える^{†1}.

記法を定める. $U \in \mathbf{C}, \mathcal{U} = \{\phi_i : U_i \to U\}_{i \in I} \in \text{Cov}(U)$ について,

$$U_{ij} := U_i \times_U U_j, \quad U_{ijk} := U_i \times_U U_j \times_U U_k \quad (i, j, k \in I)$$

と書くことにする. また、添字 a,b=i or j or k について、fiber product からの射影を

$$\operatorname{pr}_a : U_{ij}(\text{ or } U_{ijk}) \to U_a, \quad \operatorname{pr}_{a,b} : U_{ijk} \to U_{ab}$$

とする. さらに $\operatorname{pr}_i:U_{ij}\to U_i$ による pullback を $(-)|_{U_{ij}}$ などと書く.

1 The Category of Descent Data

1.1 Definition

定義 1.1 (F(U), [2] 4.2.4, [1] Def4.2)

圏 $\mathcal{F}(\mathcal{U})$ を次のように定める.

Object.

- $\xi_i \in \mathcal{F}(U_i)$ なる対象の class $\{\xi_i\}_{i \in I}$ と,
- $\mathcal{F}(U_{ij})$ 中の同型 $\sigma_{ij} \colon \xi_j|_{U_{ij}} \to \xi_i|_{U_{ij}}$ の class $\{\sigma_{ij}\}_{i,j\in I}$

の組 $(\{\xi_i\}, \{\sigma_{ij}\})$ であって,以下で述べる cocycle condition を満たすもの.このような組を object with descent data と呼ぶ^{†2}.

Arrow.

射 $\{\alpha_i\}: (\{\xi_i\}, \{\sigma_{ij}\}) \to (\{\eta_i\}, \{\tau_{ij}\})$ とは, $\mathcal{F}(U_i)$ の射 $\alpha_i: \xi_i \to \eta_i$ の class であって, σ_{ij}, τ_{ij} と整合的であるもの.すなわち,任意の $i, j \in I$ について以下の図式が可換であるもの.

$$\begin{array}{ccc} \xi_{j}|_{U_{ij}} \xrightarrow{\alpha_{j}|_{U_{ij}}} \eta_{j}|_{U_{ij}} \\ \\ \sigma_{ij} \downarrow & & \downarrow \tau_{ij} \\ \\ \xi_{i}|_{U_{ij}} \xrightarrow{\alpha_{i}|_{U_{ij}}} \eta_{i}|_{U_{ij}} \end{array}$$

^{†1} ほとんど fiber of π しか扱わないので、psuedo-functor $\mathbf{C} \to \mathbf{Cat}$ をとっても構わない.

 $^{^{\}dagger 2}$ 同型の class $\{\sigma_{ij}\}$ が descent data と呼ばれる.

■cocycle condition 組 $(\{\xi_i\}, \{\sigma_{ij}\})$ が cocycle condition を満たすとは、任意の $i, j, k \in I$ について以下 が成り立つということ.

$$\sigma_{ik}|_{U_{ijk}} = (\sigma_{ij}|_{U_{ijk}}) \circ (\sigma_{jk}|_{U_{ijk}}).$$

図式でかけば、圏 $\mathcal{F}(U_{ijk})$ における以下の図式が可換であることと同値.

注意 1.2

この定義に於いて fiber products :: U_{ij}, U_{ijk} を暗黙のうちに選択している。たが、どのように選択しても得られる圏は同型に成る。 U_{ij}, U_{ijk} の選択も込めて $(\{\xi_i\}, \{\xi_{ij}\}, \{\xi_{ijk}\})$ を $F(\mathcal{U})$ の対象とする定義の仕方も有るが、ここでは述べない。詳細は [1] Remark 4.3 にある。

定義 1.3 ([1] p.72)

 $\xi \in \mathcal{F}(U), \mathcal{U} = \{\phi_i : U_i \to U\} \in \text{Cov}(U)$ について、 $\mathcal{F}(\mathcal{U})$ の元を以下のデータに対応させる:

- $\xi_i := \phi_i^* \xi \mathcal{O} \text{ class } \{\xi_i\}_{i \in I}.$
- $\xi_i|_{U_{ij}}$ \succeq $\xi_j|_{U_{ij}}$ \acute{m} , \ddot{m}

$$\phi_i \circ \operatorname{pr}_i = \phi_j \circ \operatorname{pr}_j \colon U_{ij} \to U$$

による ξ の pullback であることから得られる標準的同型の class $\{\sigma_{ji}\colon \xi_j|_{U_{ij}} o \xi_i|_{U_{ij}}\}_{i,j}.$

このデータをまとめて $(\{\phi_i^*\xi\}, \text{cano})$ などと書く.この対応を $\epsilon_{\mathcal{U}}: \mathcal{F}(U) \to \mathcal{F}(\mathcal{U})$ と書く. $\mathcal{F}(U)$ の射 $\xi \to \eta$ から, ϕ_i に沿った pullback によって $(\{\phi_i^*\xi\}, \text{cano}) \to (\{\phi_i^*\eta\}, \text{cano})$ が得られるので,対応 $\epsilon_{\mathcal{U}}$ は関手である.

1.2 Example

例 **1.4** ([2], 4.2.1)

一つの射から成る cover :: $\mathcal{U} = \{f \colon V \to U\}$ について $\mathcal{F}(\mathcal{U})$ を考えてみる. この圏の対象は,

- 対象 $E \in \mathcal{F}(V)$
- $\mathcal{F}(V \times_U V)$ の中の同型射 $\sigma\colon \operatorname{pr}_1^* E \to \operatorname{pr}_2^* E$

の組である.

例 1.5

2 Stack / Prestack

2.1 Definition

定義 2.1 (Prestack, Stack)

関手 $\epsilon_{\mathcal{U}}$: $\mathcal{F}(U) \to \mathcal{F}(\mathcal{U})$ を用いて以下のように定義する.

- (i) 任意の $U \in \mathbf{C}$, $\mathcal{U} \in \mathrm{Cov}(U)$ について $\epsilon_{\mathcal{U}}$:: fully faithfull である時, \mathcal{F} : $\mathbf{C} \to \mathbf{Cat}$ は prestack である, という.
- (ii) 任意の $U \in \mathbf{C}, \mathcal{U} \in \mathrm{Cov}(U)$ について $\epsilon_{\mathcal{U}}$:: equivalence である時, $\mathcal{F}: \mathbf{C} \to \mathbf{Cat}$ は stack である, という.

定義 2.2

関手 $\epsilon_{\mathcal{U}}$: $\mathcal{F}(U) \to \mathcal{F}(\mathcal{U})$ を用いて以下のように定義する.

- (i) $\epsilon_{\mathcal{U}}$:: equivalence となる \mathcal{U} を of effective descent for \mathcal{F} と呼ぶ.
- (ii) $\epsilon_{\mathcal{U}}$ の像と同型である $\mathcal{F}(\mathcal{U})$ の対象を, effective という.

注意 2.3

prestack の定義は以下のように言い換えられる: 任意の $U \in \mathbf{C}$, $\mathcal{U} = \{\phi_i \colon U_i \to U\} \in \mathrm{Cov}(U)$ をとる. descent data $(\{\xi_i\}, \{\sigma_{ij}\}), (\{\eta_i\}, \{\tau_{ij}\}) \in \mathcal{F}(\mathcal{U})$ について, $\xi_i \cong \phi_i^* \xi, \eta_i \cong \phi_i^* \eta$ となる $\xi, \eta \in \mathcal{F}(U)$ が存在すると仮定する. $\{\alpha_i\} \colon (\{\xi_i\}, \{\sigma_{ij}\}) \to (\{\eta_i\}, \{\tau_{ij}\})$ (すなわち条件を満たす射の class $\{\alpha_i \colon \xi_i \to \eta_i\}$)について, $\mathcal{F}(U)$ の射 $\alpha \colon \xi \to \eta$ が一意に存在し, $\alpha_i = \phi^* \alpha$ となる.

標語的に言えば「射の貼り合わせが一意に存在する psuedo-functor」となる.

2.2 Example

2.3 Proposition

命題 2.4 ([1] Prop4.9)

- (i) separated sheaf of sets is a prestack.
- (ii) sheaf of sets is a stack.

(証明). \mathbf{C} :: site, \mathcal{F} : $\mathbf{C}^{op} \to \mathbf{Sets}$:: presheaf とする. $U \in \mathbf{C}, \mathcal{U} = \{U_i \to U\} \in \mathrm{Cov}(U)$ を任意に取る. 今,圏 $\mathcal{F}(U)$, $\mathcal{F}(U)$ は集合(離散圏)である. なので関手 $\epsilon_{\mathcal{U}}$: $\mathcal{F}(U) \to \mathcal{F}(U)$ は<u>写像</u>である. さらに射 σ_{ij} も恒等射しかないから, $\mathcal{F}(U)$ の対象は,任意の i,j について $\xi_i|_{U_{ij}} = \xi_j|_{U_{ij}}$ を満たす $\xi_i \in \mathcal{F}(U_i)$ の族 $\{\xi_i\}_i$ であると考えて良い.このセミナーノートの session3 の記号を用いれば, $\mathcal{F}(U) = H^0(\mathcal{U},\mathcal{F})$ ということに成る.

二つのデータ $\{\xi_i\}$, $\{\eta_i\}$ の間の射もやはり恒等射しかないから、「関手 $\epsilon_{\mathcal{U}}$ が fully faithful である」という仮定は「写像 $\epsilon_{\mathcal{U}}$ が単射である」と言い換えられる.これはすなわち, \mathcal{F} が separated presheaf であるということである.

「関手 $\epsilon_{\mathcal{U}}$ が essentially surjective である」という仮定は「写像 $\epsilon_{\mathcal{U}}$ が全射である」と言い換えられるから.

 $\epsilon_{\mathcal{U}}$ が equivalence であることは $\mathcal{F}(\mathcal{U}) = H^0(\mathcal{U}, \mathcal{F})$ と $\mathcal{F}(\mathcal{U})$ の間に全単射が存在するということである.これはすなわち, $\mathcal{F}(\mathcal{U})$ が sheaf であるということである.

参考文献

- [1] Notes on grothendieck topologies, fibered categories and descent theory (version of october 2, 2008).
- [2] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.