Math 215 - Fall 2017

Practice Homework 15 – Assigned November 6th, due November 9th

Note: Remember that you must show your work to get full credit for a problem. For this assignment, please don't forget that you can define a function with a finite domain and codomain using a sagittal diagram. This is one way to create a quick example of a function with required properties.

- 1. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that f and g are both injective functions. Either prove that $g\circ f:A\to C$ is always injective, or provide a counter-example.
- 2. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that f and g are both surjective functions. Either prove that $g\circ f:A\to C$ is always surjective, or provide a counter-example.
- 3. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that f is a surjective function and g is an injective function.
 - (a) Either prove that $g \circ f : A \to C$ is always injective, or provide a counter-example.
 - (b) Either prove that $g \circ f : A \to C$ is always surjective, or provide a counter-example.
- 4. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that f is an injective function and g is a surjective function.
 - (a) Either prove that $g \circ f : A \to C$ is always injective, or provide a counter-example.
 - (b) Either prove that $g \circ f : A \to C$ is always surjective, or provide a counter-example.
- 5. Create functions $f: A \to B$ and $g: B \to C$ such that g is **not** injective, but $g \circ f$ is injective.