Introduction to Python for Data Science

Alexis Bogroff

July 13, 2022

Presenter

Alexis Bogroff Lecturer and Mentor on Data Science

- 4 years teaching Data Science, Python, Git, Linux, VBA at ESILV, Sorbonne, Dauphine, UPEC, Openclassrooms
- 1 year Data Scientist/Engineer at Pléiade Asset Management
- Multiple experiences in banks, medium entreprises and startups, in the public and private sector

• Select variables (features) drop others

• Drop constant features

	name	age	time_since_birth	group	country	europe	salary	patrimony	weight	size	comment	voted
0		25.0	25.0	2.0		True	1800.0	3000.0	70.0	175.0	NaN	True
1	ma	36.0	36.0		gb	True	3000.0	7000.0	NaN	180.0	NaN	NaN
2		18.0	18.0		gb	True	1500.0	2000.0	NaN	150.0	NaN	True
3		18.0	18.0			True	1500.0	60000.0	NaN	NaN	NaN	NaN
4		25.0	25.0	2.0		True	1800.0	8000000.0	NaN	NaN	NaN	True
5	pa	38.0	38.0	2.0		True	7500.0	6000.0	NaN	170.0	NaN	NaN
6	pe	40.0	40.0	2.0		True	8000.0	4000.0	90.0	170.0	NaN	True
7	pe	40.0	40.0			True	8000.0	4000.0	90.0	170.0	NaN	True
8		18.0	18.0	NaN	gb	True	NaN	NaN	60.0	NaN	NaN	NaN
9	mp	40.0	40.0	NaN		True	NaN	NaN	NaN	NaN	NaN	NaN
10	ka	NaN	NaN	NaN		True	NaN	NaN	NaN	NaN	NaN	True
11		180.0	NaN		gb	True	4000.0	4000.0	NaN	150.0	NaN	True
12	ko	60.0	60.0	2.0		True	20000.0	7000.0	NaN	180.0	NaN	True

- Select variables (features) drop others
 - Drop constant features

- Select variables (features) drop others
 - Duplicated columns

- Select variables (features) drop others
 - Drop columns full missing values (NA)

- Select variables (features) drop others
 - Excessive NA proportion

- Select variables (features) drop others
 - Excessive NA proportion

- Select variables (features) drop others
 - Excessive correlation between features

```
df no missing values = df.fillna(method='bfill')
  correlation_matrix = df_no_missing_values.corr()
  corr matrix clean = (correlation matrix*100).round(2)
  corr matrix clean
√ 0.9s
                         time_since_birth
                                           group
                                                   salary patrimony
                                                                          size
                                                                                voted
                100.00
                                    79.84
                                           -34.76
                                                     6.83
                                                                -16.18
                                                                        -42.04
                                                                                 NaN
time since birth
                 79.84
                                   100.00
                                                    57.83
                                                               -22.65
                                                                         -3.34
                                                                                 NaN
                                          100.00
                                                                        85.92
         group
                 -34.76
                                                    41.35
                                                                26.56
                                                                                 NaN
         salarv
                  6.83
                                            41.35
                                                   100.00
                                                               -21.23
                                                                         39.17
                                                                                 NaN
                 -16.18
                                   -22.65
                                            26.56
                                                    -21.23
                                                               100.00
                                                                         14.33
                                                                                 NaN
     patrimony
                -42.04
                                    -3.34
                                            85.92
                                                     39.17
                                                                14.33
                                                                        100.00
          size
                                                                                 NaN
         voted
                  NaN
                                     NaN
                                             NaN
                                                     NaN
                                                                 NaN
                                                                          NaN
                                                                                 NaN
```

- Select variables (features) drop others
 - Excessive correlation between features

- Drop poor rows
 - Drop duplicated rows

- Drop poor rows
 - Drop rows with excessing NA proportion

- Drop poor rows
 - Drop rows with excessing NA proportion

- Impute NAs (NaNs, missing values)
 - Missing can be the information


```
# Replace Nan by False (in 'voted' variable only)
df.loc[df['voted'].isna(), 'voted'] = False
```

```
# Check result of NA imputation
df['voted'].value_counts()

✓ 0.6s

True 6
False 3
Name: voted, dtype: int64
```

- Impute NAs (NaNs, missing values)
 - Standard methods
 - Replace by a constant value (mean, median)

```
remaining na rows = df.isna().any(axis=1)
df[remaining_na_rows]
0.6s
                time_since_birth group country
                                                           patrimony
                                                                        size
                                                                              voted
 name
         18.0
                           18.0
                                                   1500.0
                                                             60000.0
                                                                        NaN
                                                                               False
         25.0
                           25.0
                                                   1800.0
                                                           8000000.0
                                                                        NaN
                                                                               True
        180.0
                           NaN
                                                  4000.0
                                                               4000.0
                                                                       150.0
                                                                               True
```

```
# Replace Nan by the mean df['size'].fillna(size_mean)

> 0.5s

0 175.000000
1 180.000000
2 150.000000
3 167.857143
4 167.857143
5 170.000000
6 170.000000
11 150.000000
12 180.000000
12 180.000000
Name: size, dtype: float64
```

- Impute NAs (NaNs, missing values)
 - Standard methods
 - Replace by a the next or previous row value (ffil, bfill)

- Impute NAs (NaNs, missing values)
 - Advanced methods
 - Group values to get precise mean or median

- Impute NAs (NaNs, missing values)
 - Advanced methods
 - Group values to get precise mean or median

- Impute NAs (NaNs, missing values)
 - Advanced methods
 - Interpolate using a model

(dfget	_numeric_data()					
	0.6s						
	age	time_since_birth	group	salary	patrimony	size	voted
	25.0	25.0	2.0	1800.0	3000.0	175.0	True
	36.0	36.0	2.0	3000.0	7000.0	180.0	False
	18.0	18.0	1.0	1500.0	2000.0	150.0	True
	18.0	18.0	1.0	1500.0	60000.0	NaN	False
	25.0	25.0	2.0	1800.0	8000000.0	NaN	True
	38.0	38.0	2.0	7500.0	6000.0	170.0	False
	40.0	40.0	2.0	8000.0	4000.0	170.0	True
	180.0	NaN		4000.0	4000.0	150.0	True
	60.0	60.0	2.0	20000.0	7000.0	180.0	True

- Impute NAs (NaNs, missing values)
 - Advanced methods
 - Interpolate using a model

- Outliers
 - Extreme values too keep
 - Abberations to delete
 - Variables to transform

Data Management

- Merge tables
 - Concatenation on rows
 - Merge on unique key column
 - Outer (indicator)
 - Left
 - Right, inner

Feature Engineering

- Quantitative variables (numbers representing quantities): create groups
- Qualitative variables (categories): one-hot encode
- Filter

Why using vizualizations

- Quick understanding simple patterns (trend line plot, groups scatter plot)
- Better intuition on complex patterns (CNN weights maps)
- Reporting

Graphs types

- Univariate Analysis
 - Histograms (distributions)
 - Line plots (Time series)
 - Lorentz Curve (inegalities)
- Multivariate Analysis
 - Scatter plots
 - Heatmaps
 - Correlations
 - Confusion matrices

Libraries

- Matplotlib (.pyplot)
- Seaborn for nice default graphs
- Plotly (Dash) for interactive graphs