CSE~271-Spring~2001 Return this exam! No calculators!

Exam 1

Name: SSN:

For questions 1-5 assume a word size of 6 bits.

- 1. (2 pt.) Convert 101011_2 to decimal.
 - a) 16
 - b) 24
 - c) 42
 - d) 84
 - e) None of the above.
- 2. (2 pt.) Convert 35_{10} to binary.
 - a) 110101_2
 - b) 010111₂
 - c) 1111111_2
 - d) 100011₂
 - e) None of the above.
- 3. (2 pt.) Convert 35_{16} to binary.
 - a) 011101_2
 - b) 110101₂
 - c) 100011_2
 - d) 101011₂
 - e) None of the above.

4	. (1 pt.) If overflow occurs indicate it, otherwise identify the correct answer: $111010_2 + 011011_2$
	a) 100101 ₂
	b) 110101 ₂
	c) 111111 ₂
	d) 101011 ₂
	e) Overflow occurs.
5	. (1 pt.) If overflow occurs indicate it, otherwise identify the correct answer: $101011_2 + 010011_2$
	a) 011101 ₂
	b) 110101 ₂
	c) 111110_2
	d) 101011 ₂
	e) Overflow occurs.
	For questions 6-8 assume $F(A,B,C,D) = A(B'+C) + A'C'(B+D)$
6	. (2 pt.) What does $F(0,1,0,0)$ equal?
	a) 0
	b) 1
	c) A
	d) A'
	e) Not enough information.
7	. (2 pt.) What does $F(A,1,0,0)$ equal?
	a) 0
	b) 1
	c) A
	d) A'
	e) Not enough information.

- 8. (2 pt.) How many AND gates does it take to realize F as is (do not simplify)?
 - a) 3
 - b) 5
 - c) 7
 - d) 8
 - e) None of the above.
- 9. (3 pt.) What is the symbolic representation of F(A, B, C, D) shown as shown in the figure below?

a)
$$((A'+C')' + D + AB)'B$$

- b) ((A+C)' + D + AB)'B
- c) (A+C+B+AB)'B
- $\mathrm{d}) \ \ (\mathrm{A} + \mathrm{C}' + \mathrm{D} + \mathrm{A}\mathrm{B})'\mathrm{B}$
- e) (A'+C'+D+AB)'B'
- 10. (2 pt.) If F(A,B,C,D)=A'CD+B'CD, what does F' equal?
 - a) AC'D'+BC'D'
 - b) (A'+C+D)(B'+C+D)
 - c) (AC'D')(BC'D')
 - d) (A+C'+D')(B+C'+D')
 - d) (A+C'+D')(B+C'+D')
 - e) None of the above.

11. (1 pt	t.) A logic function who's output equals 1 when any input equals 1,
descri	ibes which elementary logic function?
a) A	AND
b) (OR
c) N	NAND

12. (1 pt.) Which of the following describes a normal design process?

a)	$WS \to TT \to CD \to Sym$
b)	$\mathrm{WS} \to \mathrm{Sym} \to \mathrm{TT} \to \mathrm{CD}$
c)	$\mathrm{WS} \to \mathrm{CD} \to \mathrm{Sym} \to \mathrm{TT}$

d) WS \rightarrow TT \rightarrow Sym \rightarrow CD

e) $WS \rightarrow Kmap \rightarrow CD$

13. (3 pt.) A circuit has two 4 bit inputs, each representing a binary number. The output represents the product of the two inputs. How many bits of output are required in this circuit?

a) 4 b) 6 c) 8

d) NOR e) XOR

d) 16

e) 225

14. (2 pt.) You are working on a kmap and find a legal grouping of 8 1's. When you write the product term for this grouping it contains 4 variables. How many variables does the function have?

a) 4

b) 5

c) 7

d) 8

e) None of the above.

15.	(3 pt.)	Does A	AB'C +	BC +	A'BC'	equal	A'C +	BC +	A'B?	Hint,	the
	answer is	s not c.									

- a) Yes
- b) No
- c) Maybe?
- d) None of the above.
- 16. (1 pt.) Given a function F(A,B,C), what is the maxterm for the input B=1 A=0 and C=1?
 - a) A'BC
 - b) AB'C'
 - c) A + B' + C'
 - d) A' + B + C
 - e) None of the above.
- 17. (2 pt.) How many rows does a truth table of 9 variables have?
 - a) 81
 - b) 256
 - c) 512
 - d) 729
 - e) 1024
- 18. (2 pt.) A cell in a 7 variable kmap is adjacent to how many other cells? Equivalent wording: How many Manhattan neighbors does a cell in a 7 variable kmap have?
 - a) 6
 - b) 7
 - c) 14
 - d) 49
 - e) 128
- 19. **(4 pt.)** Determine the SOP_{min} expression for $F(A,B,C,D)=\Sigma m(4,7,9,10,12,13,14,15)$
 - a) BC'D'+AC'D+BCD+ACD'
 - b) AB+BC'D'+AC'D+BCD+ACD'
 - c) B'C'D'+A'C'D+B'CD+A'CD'
 - d) AB+A'BC'D'+AB'C'D+A'BCD+AB'CD'
 - e) None of the above.

$AB \backslash CD$	00	01	11	10
00				
01				
11				
10				

20. **(4 pt.)** Determine the SOP_{min} expression for F(A,B,C,D)= Σ m(0,1,3,5,8,10,11,14)+ Σ d(4,12,13)

- a) C'D'+A'C'+A'B'D+AB'C+ACD'
- b) A'C'+BC'+AD'B'CD
- c) A'C'+AD'+B'CD
- d) C'+B'CD+ACD'
- e) None of the above.

21. **(4 pt.)** Determine the SOP_{min} expression for F(A,B,C,D)=(A+D')(A'+B'+C)(A'+C'+D')(A'+B+C+D)(A'+B+C'+D)

- a) AD+AC'D+A'B'CD'
- b) A'D'+BCD'+AB'C'D
- c) A'D+BD+AC'D'+AB'C
- d) A'D+ABC'+ACD+AB'C'D'+AB'CD'
- e) None of the above.

22. (3 pt.) Determ	mine the	SOP_{min}	realization	tor	Η.
---------------------------	----------	-------------	-------------	-----	----

_A	В	С	F
0	0	X	X
0	1	1	0
X	1	0	X
1	0	0	1
1	X	1	1

- a) AB'C' + AC
- b) A'B'+BC'
- c) A+B'+C'
- d) C'+AC
- e) None of the above.

$AB \backslash CD$	00	01	11	10
00				
01				
11				
10				

$AB \backslash CD$	00	01	11	10
00				
01				
11				
1.0	II			

_	$AB \backslash CD$	0	0	01	11	10
_	00					
_	01					
	11					
	10					

$A \setminus BC$	00	01	11	10
0				