

中华人民共和国国家标准

GB/T 32918.2-2016

信息安全技术 SM2 椭圆曲线公钥 密码算法 第2部分:数字签名算法

Information security technology—Public key cryptographic algorithm SM2 based on elliptic curves—Part 2: Digital signature algorithm

2016-08-29 发布 2017-03-01 实施

目 次

削	言		I
引	言		\prod
1	范	围	1
2	规	范性引用文件	1
3	术	语和定义	1
4	符	号和缩略语	1
5	数	字签名算法	2
	5.1	综述	
	5.2	椭圆曲线系统参数	
	5.3	用户密钥对	
	5.4	辅助函数	
	5.5	用户其他信息	3
6	数	字签名的生成算法及流程	3
	6.1	数字签名的生成算法	3
	6.2	数字签名生成算法流程	3
7	数	字签名的验证算法及流程	4
	7.1	数字签名的验证算法	4
	7.2	数字签名验证算法流程	5
附	录	A (资料性附录) 数字签名与验证示例	7
	A.1	综述	7
	A.2	P	
	A. 3	F_{2^m} 上的椭圆曲线数字签名 ····································	8
4	*	が静	1 🔿

前 言

GB/T 32918《信息安全技术 SM2 椭圆曲线公钥密码算法》分为 5 个部分:

- ——第1部分:总则;
- ---第2部分:数字签名算法;
- ---第3部分:密钥交换协议;
- ——第4部分:公钥加密算法;
- ——第5部分:参数定义。

本部分为 GB/T 32918 的第 2 部分。

本部分按照 GB/T 1.1-2009 给出的规则起草。

本部分由国家密码管理局提出。

本部分由全国信息安全标准化技术委员会(SAC/TC 260)归口。

本部分起草单位:北京华大信安科技有限公司、中国人民解放军信息工程大学、中国科学院数据与通信保护研究教育中心。

本部分主要起草人:陈建华、祝跃飞、叶顶峰、胡磊、裴定一、彭国华、张亚娟、张振峰。

引 言

N.Koblitz 和 V.Miller 在 1985 年各自独立地提出将椭圆曲线应用于公钥密码系统。椭圆曲线公钥密码所基于的曲线性质如下:

- ——有限域上椭圆曲线在点加运算下构成有限交换群,且其阶与基域规模相近;
- ——类似于有限域乘法群中的乘幂运算,椭圆曲线多倍点运算构成一个单向函数。

在多倍点运算中,已知多倍点与基点,求解倍数的问题称为椭圆曲线离散对数问题。对于一般椭圆曲线的离散对数问题,目前只存在指数级计算复杂度的求解方法。与大数分解问题及有限域上离散对数问题相比,椭圆曲线离散对数问题的求解难度要大得多。因此,在相同安全程度要求下,椭圆曲线密码较其他公钥密码所需的密钥规模要小得多。

SM2 是国家密码管理局组织制定并提出的椭圆曲线密码算法标准。GB/T 32918 的主要目标如下:

- ——GB/T 32918.1 定义和描述了 SM2 椭圆曲线密码算法的相关概念及数学基础知识,并概述了该部分同其他部分的关系。
- ——GB/T 32918.2 描述了一种基于椭圆曲线的签名算法,即 SM2 签名算法。
- ——GB/T 32918.3 描述了一种基于椭圆曲线的密钥交换协议,即 SM2 密钥交换协议。
- ——GB/T 32918.4 描述了一种基于椭圆曲线的公钥加密算法,即 SM2 加密算法,该算法需使用 GB/T 32905—2016 定义的 SM3 密码杂凑算法。
- ——GB/T 32918.5 给出了 SM2 算法使用的椭圆曲线参数,以及使用椭圆曲线参数进行 SM2 运算的示例结果。

本部分为 GB/T 32918 的第 2 部分,描述了基于椭圆曲线的数字签名算法。

信息安全技术 SM2 椭圆曲线公钥 密码算法 第2部分:数字签名算法

1 范围

GB/T 32918 的本部分规定了 SM2 椭圆曲线公钥密码算法的数字签名算法,包括数字签名生成算法和验证算法,并给出了数字签名与验证示例及其相应的流程。

本部分适用于商用密码应用中的数字签名和验证,可满足多种密码应用中的身份鉴别和数据完整性、真实性的安全需求。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 32918.1—2016 信息安全技术 SM2 椭圆曲线公钥密码算法 第 1 部分: 总则 GB/T 32905—2016 信息安全技术 SM3 密码杂凑算法

3 术语和定义

下列术语和定义适用于本文件。

3.1

消息 message

任意有限长度的比特串。

3.2

签名消息 signed message

由消息以及该消息的签名部分所组成的一组数据项。

3.3

签名密钥 signature key

在数字签名生成过程中由签名者专用的秘密数据项,即签名者的私钥。

3.4

签名生成过程 signature generation process

输入消息、签名密钥和椭圆曲线系统参数,并输出数字签名的过程。

3.5

可辨别标识 distinguishing identifier

可以无歧义辨别某一实体身份的信息。

4 符号和缩略语

下列符号和缩略语适用于本文件。

A,B 使用公钥密码系统的两个用户。

GB/T 32918.2-2016

 d_A 用户A的私钥。

 $E(F_q)$ F_q 上椭圆曲线 E 的所有有理点(包括无穷远点 O)组成的集合。

- e 密码杂凑算法作用于消息 M 的输出值。
- e' 密码杂凑算法作用于消息 M' 的输出值。
- F_a 包含 q 个元素的有限域。
- G 椭圆曲线的一个基点,其阶为素数。
- $H_{v}()$ 消息摘要长度为v 比特的密码杂凑算法。
- ID_A 用户A的可辨别标识。
- M 待签名消息。
- M' 待验证消息。

mod n 模 n 运算。例如,23 mod 7=2。

- n 基点 G 的阶 (n 是 $\sharp E(F_a)$ 的素因子)。
- O 椭圆曲线上的一个特殊点,称为无穷远点或零点,是椭圆曲线加法群的单位元。
- $P_{\rm A}$ 用户 A 的公钥。
- q 有限域 F_q 中元素的数目。
- a,b F_a 中的元素,它们定义 F_a 上的一条椭圆曲线 E。
- $x \parallel y = x$ 与 y 的拼接,其中 x 、y 可以是比特串或字节串。
- Z_A 关于用户 A 的可辨别标识、部分椭圆曲线系统参数和用户 A 公钥的杂凑值。
- (r,s) 发送的签名。
- (r',s') 收到的签名。
- [k]P 椭圆曲线上点 P 的 k 倍点,即, $[k]P = \underbrace{P + P + \dots + P}_{},k$ 是正整数。

版的佳**人**

[x,y] 大于或等于 x 且小于或等于 y 的整数的集合。

5 数字签名算法

5.1 综述

数字签名算法由一个签名者对数据产生数字签名,并由一个验证者验证签名的可靠性。每个签名者有一个公钥和一个私钥,其中私钥用于产生签名,验证者用签名者的公钥验证签名。在签名的生成过程之前,要用密码杂凑算法对 \overline{M} (包含 $Z_{\rm A}$ 和待签消息 M)进行压缩;在验证过程之前,要用密码杂凑算法对 \overline{M} (包含 $Z_{\rm A}$ 和待验证消息 M)进行压缩。

5.2 椭圆曲线系统参数

椭圆曲线系统参数包括有限域 F_q 的规模 q (当 $q=2^m$ 时,还包括元素表示法的标识和约化多项式); 定义椭圆曲线 $E(F_q)$ 的方程的两个元素 a 、b \in F_q ; $E(F_q)$ 上的基点 $G=(x_G,y_G)$ ($G\neq O$),其中 x_G 和 y_G 是 F_q 中的两个元素 ; G 的阶 n 及其他可选项(如 n 的余因子 n 等)。

椭圆曲线系统参数及其验证应符合 GB/T 32918.1-2016 第 5 章的规定。

5.3 用户密钥对

用户 A 的密钥对包括其私钥 d_A 和公钥 $P_A = [d_A]G = (x_A, y_A)$ 。

用户密钥对的生成算法与公钥验证算法应符合 GB/T 32918.1—2016 第 6 章的规定。

5.4 辅助函数

5.4.1 概述

在本部分规定的椭圆曲线数字签名算法中,涉及两类辅助函数,密码杂凑算法与随机数发生器。

5.4.2 密码杂凑算法

本部分规定使用国家密码管理局批准的密码杂凑算法,如 SM3 密码杂凑算法。

5.4.3 随机数发生器

本部分规定使用国家密码管理局批准的随机数发生器。

5.5 用户其他信息

作为签名者的用户 A 具有长度为 $entlen_A$ 比特的可辨别标识 ID_A ,记 $ENTL_A$ 是由整数 $entlen_A$ 转换而成的两个字节,在本部分规定的椭圆曲线数字签名算法中,签名者和验证者都需要用密码杂凑算法求得用户 A 的杂凑值 Z_A 。按 GB/T 32918.1—2016 中 4.2.6 和 4.2.5 给出的方法,将椭圆曲线方程参数 a、b、G 的坐标 x_G 、 y_G 和 P_A 的坐标 x_A 、 y_A 的数据类型转换为比特串, $Z_A = H_{256}$ ($ENTL_A \parallel ID_A \parallel a \parallel b \parallel x_G \parallel y_G \parallel x_A \parallel y_A$)。

6 数字签名的生成算法及流程

6.1 数字签名的生成算法

设待签名的消息为M,为了获取消息M的数字签名(r,s),作为签名者的用户A应实现以下运算步骤:

 $A_1: \mathbb{Z} \overline{M} = Z_A \parallel M;$

 A_2 :计算 $e = H_v(\overline{M})$,按 GB/T 32918.1—2016 中 4.2.4 和 4.2.3 给出的方法将 e 的数据类型转换为整数;

 A_3 :用随机数发生器产生随机数 $k \in [1, n-1]$;

 A_4 : 计算椭圆曲线点 $(x_1,y_1)=[k]G$,按 GB/T 32918.1—2016 中 4.2.8 给出的方法将 x_1 的数据类型转换为整数;

 A_5 : 计算 $r = (e + x_1) \mod n$, 若 r = 0 或 r + k = n 则返回 A_3 ;

 A_6 : 计算 $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n$, 若 s = 0 则返回 A_3 ;

 A_7 :按 GB/T 32918.1—2016 中 4.2.2 给出的细节将 r 、s 的数据类型转换为字节串,消息 M 的签名为(r,s)。

注: 数字签名生成过程的示例参见附录 A。

6.2 数字签名生成算法流程

数字签名生成算法流程见图 1。

图 1 数字签名生成算法流程

7 数字签名的验证算法及流程

7.1 数字签名的验证算法

为了检验收到的消息 M' 及其数字签名(r',s'),作为验证者的用户 B 应实现以下运算步骤:

 B_1 :检验 $r' \in [1, n-1]$ 是否成立,若不成立则验证不通过;

B₂:检验 s' ∈ [1,n-1] 是否成立,若不成立则验证不通过;

4

 B_3 :置 $\overline{M}'=Z_A\parallel M'$;

 B_4 :计算 $e' = H_v(\overline{M}')$,按 GB/T 32918.1—2016 中 4.2.4 和 4.2.3 给出的方法将 e'的数据类型转换为整数;

 B_5 :按 GB/T 32918.1—2016 中 4.2.3 给出的方法将 r'、s'的数据类型转换为整数,计算 t = (r' + s') modn,若 t = 0,则验证不通过;

 B_6 :计算椭圆曲线点 $(x_1',y_1')=[s']G+[t]P_A$;

 B_7 :按 GB/T 32918.1—2016 中 4.2.8 给出的方法将 x_1 '的数据类型转换为整数,计算 $R = (e' + x_1')$ modn,检验 R = r'是否成立,若成立则验证通过;否则验证不通过。

注: 如果 Z_A 不是用户 A 所对应的杂凑值,验证自然通不过。数字签名验证过程的示例参见附录 A。

7.2 数字签名验证算法流程

数字签名验证算法流程见图 2。

图 2 数字签名验证算法流程

附 录 A (资料性附录) 数字签名与验证示例

A.1 综述

本附录选用 GB/T 32905—2016 给出的密码杂凑算法,其输入是长度小于 2^{64} 的消息比特串,输出是长度为 256 比特的杂凑值,记为 H_{256} ()。

本附录中,所有用16进制表示的数,左边为高位,右边为低位。

本附录中,消息采用 GB/T 1988 给出的编码。

设用户 A 的身份是: ALICE123@YAHOO. COM。用 GB/T 1988 给出的编码 *ID*_A: 414C 49434531 32334059 41484F4F 2E434F4D。*ENTL*_A=0090。

A.2 F "上的椭圆曲线数字签名

椭圆曲线方程为: $y^2 = x^3 + ax + b$

示例 1: F_p-256

素数 p:8542D69E 4C044F18 E8B92435 BF6FF7DE 45728391 5C45517D 722EDB8B 08F1DFC3 系数 a:787968B4 FA32C3FD 2417842E 73BBFEFF 2F3C848B 6831D7E0 EC65228B 3937E498 系数 b:63E4C6D3 B23B0C84 9CF84241 484BFE48 F61D59A5 B16BA06E 6E12D1DA 27C5249A 基点 $G=(x_G,y_G)$,其阶记为 n。

坐标 x_G :421DEBD6 1B62EAB6 746434EB C3CC315E 32220B3B ADD50BDC 4C4E6C14 7FEDD43D 坐标 y_G :0680512B CBB42C07 D47349D2 153B70C4 E5D7FDFC BFA36EA1 A85841B9 E46E09A2 阶 n: 8542D69E 4C044F18 E8B92435 BF6FF7DD 29772063 0485628D 5AE74EE7 C32E79B7 待签名的消息 M:message digest

私钥 d_A :128B2FA8 BD433C6C 068C8D80 3DFF7979 2A519A55 171B1B65 0C23661D 15897263 公钥 $P_A = (x_A, y_A)$:

坐标 x_A :0AE4C779 8AA0F119 471BEE11 825BE462 02BB79E2 A5844495 E97C04FF 4DF2548A 坐标 y_A :7C0240F8 8F1CD4E1 6352A73C 17B7F16F 07353E53 A176D684 A9FE0C6B B798E857 杂凑值 $Z_A = H_{255} (ENTL_A \parallel ID_A \parallel a \parallel b \parallel x_G \parallel y_G \parallel x_A \parallel y_A)$ 。

Z_A:F4A38489 E32B45B6 F876E3AC 2168CA39 2362DC8F 23459C1D 1146FC3D BFB7BC9A 签名各步骤中的有关值:

 $\overline{M} = Z_A \parallel M$:

F4A38489 E32B45B6 F876E3AC 2168CA39 2362DC8F 23459C1D 1146FC3D BFB7BC9A 6D657373 61676520 64696765 7374

密码杂凑函数值 $e = H_{256}(\overline{M})$:

B524F552 CD82B8B0 28476E00 5C377FB1 9A87E6FC 682D48BB 5D42E3D9 B9EFFE76 产生随机数 k:6CB28D99 385C175C 94F94E93 4817663F C176D925 DD72B727 260DBAAE 1FB2F96F 计算椭圆曲线点(x₁,y₁)=[k]G:

坐标 x_1 :110FCDA5 7615705D 5E7B9324 AC4B856D 23E6D918 8B2AE477 59514657 CE25D112 坐标 y_1 :1C65D68A 4A08601D F24B431E 0CAB4EBE 084772B3 817E8581 1A8510B2 DF7ECA1A 计算 $r = (e + x_1) \mod n$:40F1EC59 F793D9F4 9E09DCEF 49130D41 94F79FB1 EED2CAA5 5BACDB49 C4E755D1

 $(1+d_{\rm A})^{-1}$:79BFCF30 52C80DA7 B939E0C6 914A18CB B2D96D85 55256E83 122743A7 D4F5F956

GB/T 32918.2-2016

计算 $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n$: 6FC6DAC3 2C5D5CF1 0C77DFB2 0F7C2EB6 67A45787 2FB09EC5 6327A67E C7DEEBE7

消息 M 的签名为(r,s):

值 r:40F1EC59 F793D9F4 9E09DCEF 49130D41 94F79FB1 EED2CAA5 5BACDB49 C4E755D1 值 s:6FC6DAC3 2C5D5CF1 0C77DFB2 0F7C2EB6 67A45787 2FB09EC5 6327A67E C7DEEBE7 验证各步骤中的有关值:

密码杂凑算法值 $e'=H_{256}(\overline{M}')$: B524F552 CD82B8B0 28476E00 5C377FB1 9A87E6FC 682D48BB 5D42E3D9 B9EFFE76

计算 $t = (r' + s') \mod n$;2B75F07E D7ECE7CC C1C8986B 991F441A D324D6D6 19FE06DD 63ED32E0 C997C801

计算椭圆曲线点 $(x'_0, y'_0) = [s']G$:

坐标 x'_0 : 7DEACE5F D121BC38 5A3C6317 249F413D 28C17291 A60DFD83 B835A453 92D22B0A 坐标 y'_0 : 2E49D5E5 279E5FA9 1E71FD8F 693A64A3 C4A94611 15A4FC9D 79F34EDC 8BDDEBD0 计算椭圆曲线点 $(x'_{00}, y'_{00}) = \lceil t \rceil P_A$:

坐标 x'_{00} :1657FA75 BF2ADCDC 3C1F6CF0 5AB7B45E 04D3ACBE 8E4085CF A669CB25 64F17A9F 坐标 y'_{00} :19F0115F 21E16D2F 5C3A485F 8575A128 BBCDDF80 296A62F6 AC2EB842 DD058E50 计算椭圆曲线点 $(x'_1,y'_1)=[s']G+[t]P_A$:

坐标 x_1' : 110FCDA5 7615705D 5E7B9324 AC4B856D 23E6D918 8B2AE477 59514657 CE25D112 坐标 y_1' : 1C65D68A 4A08601D F24B431E 0CAB4EBE 084772B3 817E8581 1A8510B2 DF7ECA1A 计算 $R = (e' + x_1') \mod n$:40F1EC59 F793D9F4 9E09DCEF 49130D41 94F79FB1 EED2CAA5 5BACDB49 C4E755D1

A.3 F_{2m} 上的椭圆曲线数字签名

椭圆曲线方程为: $y^2 + xy = x^3 + ax^2 + b$

示例 2: F_{2m}-257

基域生成多项式:x²⁵⁷+x¹²+1

系数 a:0

系数 b:00 E78BCD09 746C2023 78A7E72B 12BCE002 66B9627E CB0B5A25 367AD1AD 4CC6242B 基点 $G=(x_G,y_G)$,其阶记为 n。

坐标 x_G :00 CDB9CA7F 1E6B0441 F658343F 4B10297C 0EF9B649 1082400A 62E7A748 5735FADD 坐标 y_G :01 3DE74DA6 5951C4D7 6DC89220 D5F7777A 611B1C38 BAE260B1 75951DC8 060C2B3E 阶 n:7FFFFFFF FFFFFFF FFFFFFFF BC972CF7 E6B6F900 945B3C6A 0CF6161D 待签名的消息 M:message digest

私钥 d_A :771EF3DB FF5F1CDC 32B9C572 93047619 1998B2BF 7CB981D7 F5B39202 645F0931 公钥 $P_A = (x_A, y_A)$:

坐标 x_A :01 65961645 281A8626 607B917F 657D7E93 82F1EA5C D931F40F 6627F357 542653B2 坐标 y_A :01 68652213 0D590FB8 DE635D8F CA715CC6 BF3D05BE F3F75DA5 D5434544 48166612 杂凑值 $Z_A = H_{256} \left(ENTL_A \parallel ID_A \parallel a \parallel b \parallel x_G \parallel y_G \parallel x_A \parallel y_A \right)$ 。

Z_A:26352AF8 2EC19F20 7BBC6F94 74E11E90 CE0F7DDA CE03B27F 801817E8 97A81FD5 签名各步骤中的有关值:

 $\overline{M} = Z_A \parallel M$:

26352AF8 2EC19F20 7BBC6F94 74E11E90 CE0F7DDA CE03B27F 801817E8 97A81FD5 6D657373 61676520 64696765 7374

密码杂凑算法值 $e=H_{256}(\overline{M})$: AD673CBD A3114171 29A9EAA5 F9AB1AA1 633AD477 18A84DFD 46C17C6F A0AA3B12

产生随机数 k:36CD79FC 8E24B735 7A8A7B4A 46D454C3 97703D64 98158C60 5399B341 ADA186D6

计算椭圆曲线点 $(x_1,y_1) = \lceil k \rceil G$:

坐标 x_1 :00 3FD87D69 47A15F94 25B32EDD 39381ADF D5E71CD4 BB357E3C 6A6E0397 EEA7CD66 坐标 y_1 :00 80771114 6D73951E 9EB373A6 58214054 B7B56D1D 50B4CD6E B32ED387 A65AA6A2 计算 $r = (e + x_1) \mod n$:6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B

(1+ d_A) $^{-1}$:73AF2954 F951A9DF F5B4C8F7 119DAA1C 230C9BAD E60568D0 5BC3F432 1E1F4260 计算 $s = ((1+d_A)^{-1} \cdot (k-r \cdot d_A)) \mod n$:3124C568 8D95F0A1 0252A9BE D033BEC8 4439DA38 4621B6D6 FAD77F94 B74A9556

消息 M 的签名为(r,s):

值 r:6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B 值 s:3124C568 8D95F0A1 0252A9BE D033BEC8 4439DA38 4621B6D6 FAD77F94 B74A9556 验证各步骤中的有关值:

密码杂凑算法值 $e'=H_{256}(\overline{M'})$: AD673CBD A3114171 29A9EAA5 F9AB1AA1 633AD477 18A84DFD 46C17C6F A0AA3B12

计算 $t = (r' + s') \mod n$: 1E647F8F 784891A6 51AFC342 0316F44A 042D7194 4C91910F 835086C8 2CB07194

计算椭圆曲线点 $(x'_0, y'_0) = [s']G$:

坐标 x_0' : 00 252CF6B6 3A044FCE 553EAA77 3E1E9264 44E0DAA1 0E4B8873 89D11552 EA6418F7 坐标 y_0' : 00 776F3C5D B3A0D312 9EAE44E0 21C28667 92E4264B E1BEEBCA 3B8159DC A382653A 计算椭圆曲线点 (x_0', y_0') = $[t]P_A$:

坐标 x_{00}' :00 07DA3F04 0EFB9C28 1BE107EC C389F56F E76A680B B5FDEE1D D554DC11 EB477C88 坐标 y_{00}' :01 7BA2845D C65945C3 D48926C7 0C953A1A F29CE2E1 9A7EE6B E0269FB4 803CA68B 计算椭圆曲线点 $(x_1',y_1')=[s']G+[t]P_A$:

坐标 x_1' :00 3FD87D69 47A15F94 25B32EDD 39381ADF D5E71CD4 BB357E3C 6A6E0397 EEA7CD66 坐标 y_1' :00 80771114 6D73951E 9EB373A6 58214054 B7B56D1D 50B4CD6E B32ED387 A65AA6A2 计算 $R = (e' + x_1') \bmod n$: 6D3FBA26 EAB2A105 4F5D1983 32E33581 7C8AC453 ED26D339 1CD4439D 825BF25B

参考文献

[1] GB/T 1988—1998 信息技术 信息交换用七位编码字符集

646