AD-752 558

V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION. VOLUME II. APPLICATION OF PREDICTION METHODS

Peter T. Wooler, et al

Northrop Corporation

Prepared for:

Air Force Flight Dynamics Laboratory

January 1972

DISTRIBUTED BY:

V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION

Volume II. Application of Prediction Methods

P.T. Wooler H.C. Kao M.F. Schwendemann H.R. Wasson H. Ziegler

Northrop Corporation Aircraft Division

TECHNICAL REPORT AFFDL-TR-72-26, Volume II
January 1972

Approved for public release, distribution unlimited.

Reproductible
NATIONAL TECHNICAL
INFORMATION SERVICE

11 1972

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

DOCUMENT CONTROL DATA - R & D (Security classification of title, body of sharmed and indexing amountation must be on cred when the overall report is classified) 1 ORIGINATING ACTIVITY (Congresses auchier) Northrop Corporation Aircraft Division Hawthorne, California 2 REPORT VIVLE V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION - Volume II 4 DESCRIPTIVE NOTES (Type of report and inclusive detect) Final Report - 1 May 1969 to 31 January 1972 5 AUTHORIS) (First mass, middle initial, lest name) Peter T. Wooler Hsiao C. Kao Myles F. Schwendemann 6 REPORT DATE January 1972 7 TOTAL NO. OF PAGES John NO. OF REPS January 1972 8 CONTRACT OR GRANT NO. F33615-69-C-1602 A PROJECT NO. 698 BT 6 Task No. 698 BT 01 60 OTHER REPORT NOISI (Arry other numbers that may be easigned this report) 7 TO DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY . CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433	Unclassified		
Security classification of title, body of abstract and indusing amendation must be not one when the constituting of the classified of the control of the classified of the control of the control of the classified of the control of the control of the classified of the control of the control of the classified of the control of the cont	Security Classification		70
ORIGINATING ACTIVITY (Composed auction) Aircraft Division Aircraft Division Hawthorne, California REPORT VIVIE V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION— Volume II DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - 1 May 1969 to 31 January 1972 LAUTHORIS! (First masse, middle initial, less masse) Peter T. Wooler Histo C. Kao Myles F. Schwendemann REPORT DATE January 1972 LOUNDACT OR GRANT NO. F33615-69-C-1602 A. PROJECT NO. 698 BT C. Task No. 698 BT 01 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY HOTES 12. SPONSORING MILITARY CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			
Northrop Corporation Aircraft Division Hawthorne, California REPORT VIVE V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION - Volume II	(Security classification of title, body of abstract and indexing		
Aircraft Division Hawthorne, California PREPORT TITLE V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION - Volume II DESCRIPTIVE NOTES (Type of report and inchastre deces) Final Report - 1 May 1969 to 31 January 1972 AUTHORIS (First name, middle initial, last name) Peter T. Wooler Hoiso C. Kao Myles F. Schwendemann REPORT DATE January 1972 Se. CONTRACT OR GRANT NO. F33615-69-C-1602 PROJECT NO. 698 BT Task No. 698 BT 01 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 10 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11 SUPPLEMENTARY NOTES 12 SPONSORING MILITARY CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			
Hawthorne, California ***REPORT VITE** V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION - Volume II ***DESCRIPTIVE NOTES (Type of report and buchosive detec) Final Report - 1 May 1969 to 31 January 1972 ***DUTHORIS (Plear name, middle initial, lest name) Peter T. Wooler Howard R. Wasson Henry Ziegler Howard R. Wasson Henry Ziegler ***PROPERT DATE** January 1972 ***DESCRIPTION OF PAGES 75, NO. OF REFS		Une	classified
V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION - Volume II DESCRIPTIVE NOTES (Type of report and inclinaire dates) Final Report - 1 May 1969 to 31 January 1972 DEAUTHORISI) (First remove, middle individe individe latital, last name) Peter T. Wooler Howard R. Wasson Henry Ziegler Howard R. Wasson Henry Ziegler Howard R. Wasson Henry Ziegler January 1972 DEAUTHACT OR GRANT NO. F33615-69-C-1602 DEAUTHACT NO. OF PAGES TABLET OR GRANT NO. F33615-69-C-1602 DEAUTHACT OR GRANT NO. F34615-69-C-1602 DEAUTHACT		28. GROUP	
V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION - Volume II - Descriptive notes (Type of report and inclinative dates) Final Report - 1 May 1969 to 31 January 1972 - AUTHORISI (First name, middle initial, less name) Peter T. Wooler Howard R. Wasson Henry Ziegler Myles F. Schwendemann - Report Date January 1972 - CONTRACT OR GRAPT NO. F33615-69-C-1602 - PROJECT NO. 698 BT - Task No. 698 BT 01 - Task No. 698 BT 01 - AFFDL-TR-72-26, Volume II - OISTAISUTION STATEMENT Approved for public release; distribution unlimited. - II SUPPLEMENTARY NOTES - ASSYRACT - Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			
Volume II 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - 1 May 1969 to 31 January 1972 5. AUTHORIS! (First name, middle initial, lest name) Peter T. Wooler Howard R. Wasson Hsiao C. Kao Henry Ziegler Myles F. Schwendemann 6. REPORT DATE January 1972 70. TOTAL NO. OF PAGES JANUARY 1972 80. CONTRACT OR GRANT NO. F33615-69-C-1602 8. PROJECT NO. 698 BT 6. Task No. 698 BT 01 80. OTHER REPORT NOIS! (Any other numbers that may be seeliged this report) 4. AFFDL-TR-72-26, Volume II 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY. CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 5. ABSTRACY Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	S REPORT TITLE		
Volume II 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Report - 1 May 1969 to 31 January 1972 5. AUTHORIS! (First name, middle initial, lest name) Peter T. Wooler Howard R. Wasson Hsiao C. Kao Henry Ziegler Myles F. Schwendemann 6. REPORT DATE January 1972 70. TOTAL NO. OF PAGES JANUARY 1972 80. CONTRACT OR GRANT NO. F33615-69-C-1602 8. PROJECT NO. 698 BT 6. Task No. 698 BT 01 80. OTHER REPORT NOIS! (Any other numbers that may be seeliged this report) 4. AFFDL-TR-72-26, Volume II 10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY. CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 5. ABSTRACY Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	V/STOL A!RCRAFT AERODYNAMIC PRE	DICTION METHODS IN	VESTIGATION -
**DESCRIPTIVE NOTES (Type of report and inclinative dates) Final Report - 1 May 1969 to 31 January 1972 **AUTHORIS) (First name, middle initial, last name) Peter T. Wooler HSIAO C. KAO Myles F. Schwendemann **REPORT OATE January 1972 **AUTHAL NO. OF PAGES JANUARY 1972 **AUTHAL			,
Final Report - 1 May 1969 to 31 January 1972 8. AUTHORIS: (First reases, middle Initial, last name) Peter T. Wooler Hsiao C. Kao Myles F. Schwendemann 9. REPORT OATE January 1972 10. CONTRACT OR GRANT NO. F33615-69-C-1602 10. PROJECT NO. 698 BT 11. Task No. 698 BT 01 12. SPONSORING MILITARY TOTAL MOTES 13. SPONSORING MILITARY TOTAL MOTES 14. SUPPLEMENTARY NOTES 15. ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	Aoidine II		
Peter T. Wooler Hsiao C. Kao Myles F. Schwendemann - REPORT DATE January 1972 - CONTRACT OR GRANT NO. F33615-69-C-1602 - PROCET NO. 698 BT - Task No. 698 BT 01 - Task No.	4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
Peter T. Wooler Hsiao C. Kao Myles F. Schwendemann - REPORT DATE January 1972 - CONTRACT OR GRANT NO. F33615-69-C-1602 - PROCET NO. 698 BT - Task No. 698 BT 01 - Task No.	Final Report - 1 May 1969 to 31 January 197	2	
Henry Ziegler Myles F. Schwendemann Myles F	S. AU THOR(S) (Piret name, middle initial, last name)		
Myles F. Schwendemann PREPORT DATE January 1972 CONTRACT OR GRANT NO. F33615-69-C-1602 DE PROJECT NO. 698 BT C. Task No. 698 BT 01 C. Task No. 698 BT 01 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 10 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 13. ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	Peter T. Wooler	Howard R. Wasson	
Myles F. Schwendemann Myles All Schwendemann Myles All Schwender Report Numbers Myles F. Schwendemann Myles F. Schwendemann Myles All Schwendemann Myles F. Schwendemann Myles All Schwendemann Myles	Hsiao C. Kao	Henry Ziegler	
January 1972 5. CONTRACT OR GRANT NO. F33615-69-C-1602 5. PROJECT NO. 698 BT 6. Task No. 698 BT 01 5. OTHER REPORT NOISI (Any other numbers that may be seeigned this report) AFFDL-TR-72-26, Volume II 10 DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 13. ASSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	Myles F. Schwendemann	22-11-3 23-8-02	
Se. CONTRACT OR GRANT NO. F33615-69-C-1602 DOR 72-9, Volume II Se. ORIGINATOR'S REPORT NUMBER(S) NOR 72-9, Volume II Se. OTHER REPORT NO(S) (Any other numbers that may be seeigned this report) A FFDL-TR-72-26, Volume II TO DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY OCTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	6. REPORT DATE	74, TOTAL NO. OF PAGES	75, NO. OF REFS
Se. CONTRACT OR GRANT NO. F33615-69-C-1602 DOR 72-9, Volume II Se. ORIGINATOR'S REPORT NUMBER(S) NOR 72-9, Volume II Se. OTHER REPORT NO(S) (Ainy other numbers that may be seelened this report) A FFDL-TR-72-26, Volume II TO DISTRIBUTION STATEMENT Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY OCTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	January 1972	228 248	11
NOR 72-9, Volume II 698 BT c. Task No. 698 BT 01 b. Other report nois (Any other numbers that may be seeled this report) AFFDL-TR-72-26, Volume II Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	SA. CONTRACT OR GRANT NO.		MBER(S)
698 BT c. Task No. 698 BT 01 bb. Other report noisi (Any other numbers that may be seelened this report) AFFDL-TR-72-26, Volume II Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	F33615-69-C-1602		
AFFDL-TR-72-26, Volume II Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	A. PROJECT NO.	NOR 72-9, Volu	me II
AFFDL-TR-72-26, Volume II Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	698 BT		
AFFDL-TR-72-26, Volume II Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	c. Task No. 698 BT 01	Sh. OTHER REPORT NO(S) (Any	other numbers that may be easiened
Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY OF CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,		this report)	
Approved for public release; distribution unlimited. 11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY OF CTIVITY Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 ABSTRACT Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	۵.	AFFDL-TR-72-26	ο. Volume Π
Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Abstract Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	10 DISTRIBUTION STATEMENT		, , , , , , , , , , , , , , , , , , , ,
Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Abstract Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			
Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	Approved for public release; distribution unli	imited.	
Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			
Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	II. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY . CT	TIVITY
Wright-Patterson Air Force Base Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,		1	
Ohio 45433 Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			
Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,			roice base
Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-far,	A ABSTRACT	10110 40400	
stability and control derivatives and force and moment coefficients of lift-jet, lift-far,		l for use in predicting th	ne static and dynamic
and vectored thrust V/STOL aircraft in the hover and transition flight regimes. The	atability and control derivatives and force and	d moment coefficients of	f lift-jet. lift-far.
and vectored thrust v/510L afferate in the mover and transition inght regimes. The	and rectand throat W/CTOI sineseft in the h	over and transition fligh	nt regimes The
methods take into account the strong power effects, large variations ir angle of attack			

and sideslip, and changes in aircraft geometry that are associated with high disk loaded V/STOL aircraft operating in the aforementioned flight regimes. The aircraft configurations studied have a conventional wing, fuselage and empennage. The prediction methods are suitable for use by design personnel during the preliminary design and evaluation of V/STOL aircraft of the type previously mentioned.

This report consists of four volumes. The prediction methods are applied to a number of V/STOL configurations in this volume. The theoretical development of the prediction methods may be found in Volume I. Details of the computer programs associated with the prediction methods are given in Volume III. The results of a literature survey are presented in Volume IV.

> Details of illustrations in this document may be better studied on microfiche

DD FORM 1473

and the second of the second o

Unclassified

12-

Security Classification

Unclassified

Security Classification LINK . KEY WORDS ROLE ROLE ROLE WT wT V/STOL Aircraft XV-5A V/STOL Stability and Control Aerodynamic Characteristics (Subsonic) Forces (Normal Force, Lift, Side Force) Moments (Pitching, Rolling, Yawing) **Rotary Derivatives** V/STOL Aerodynamics Nonlinear Aerodynamics Wing Stall Separated Flows V/STOL Transitional Flight **Engine Wake Effects** Jet Exhaust Fields Jet interference Effects Jet in Cross Flow Jet Path Multiple Jets Jet Interaction **Power Effects** Engine Inlet Effects **Vortices** Computer Programs

Unclassified
Security Classification

V/STOL AIRCRAFT AERODYNAMIC PREDICTION METHODS INVESTIGATION

Volume II Application of Prediction Methods

P.T. Wooler H.C. Kao M.F. Schwendemann H.R. Wasson H. Ziegler

Approved for public release, distribution unlimited.

FOREWORD

This report summarizes the work accomplished by the Aircraft Division of Northrop Corporation, Hawthorne, California for the Air Force Flight Dynamics Laboratory, AFSC, Wright Patterson Air Force Base, Ohio, and USAF Contract No. F33615-69-C-1602 (Project 698 BT). This document constitutes the Final Report under the contract.

This work was accomplished during the period 1 May 1969 to 31 January 1972, and this report was released by the authors in January 1972. The Air Force Project Engineers were Mr. Robert Nicholson and Mr. Henry W. Woolard of the Control Criteria Branch, Flight Control Division, AFFDL. Their assistance in monitoring the work and providing data is greatly appreciated.

The authors gratefully acknowledge the assistance and cooperation of NASA Langley Research Center personnel during the wind tunnel model testing in the NASA Langley V/STOL tunnel.

Special recognition is due Mr. Richard J. Margason of NASA Langley Research Center who, besides being actively involved in the testing at Langley, has made valuable contributions to other areas of the investigation.

Various people at Northrop's Aircraft Division contributed to the investigation, particularly the following persons in the areas designated:

Lynn B. Fricke	Devel	oped empirical	methods	for the	wing.	Was Te	st
----------------	-------	----------------	---------	---------	-------	--------	----

Engineer for the wind tunnel testing of the component

model.

Hsiao C. Kac Developed the transformation method for estimating

power effects on wings and fuselages. Developed the

empirical method for the body.

Myles F. Schwendemann Developed the method for estimating engine inlet effects.

Provided prediction method wind tunnel testing interface

for the configuration model. Participated in the hover

analysis.

Martin F. Silady Assembled the V/STOL bibliography and was responsible

for the literature survey.

Howard R. Wasson Developed the method for mapping general sections.

Developed the nonlinear body prediction method. Assisted

with the development of the perturbation method.

Peter T. Wooler Directed the technical effort and developed the nonlinear

wing prediction method.

Henry Ziegler Developed the jet flow field prediction method. Per-

formed the analysis of wing power effects employing

lifting surface theory.

Contributions have also been made by U.A.G. Brynjestad to this study in a number of areas, particularly the literature search and perturbation method development; by M.S. Cahn in the development of the method for mapping general sections and perturbation method development; by members of the Northrop Aerosciences Laboratories in respect to model design, fabrication, testing and data reduction — especially T. Comerinsky, F. W. Peitzman, E. G. Kontos and W. S. Ramos.

This report contains no classified information.

the first of the state of the second second

This technical report has been reviewed and is approved.

Chief, Control Criteria Branch

Flight Control Division

Air Force Flight Dynamics Laboratory

ABSTRACT

Analytical engineering methods are developed for use in predicting the static and dynamic stability and control derivatives and force and moment coefficients of lift-jet, lift-fan, and vectored thrust V/STOL aircraft in the hover and transition flight regimes. The methods take into account the strong power effects, large variations in angle of attack and sideslip, and changes in aircraft geometry that are associated with high disk loaded V/STOL aircraft operating in the aforementioned flight regimes. The aircraft configurations studied have a conventional wing, fuselage and empenage. The prediction methods are suitable for use by design personnel during the preliminary design and evaluation of V/STOL aircraft of the type previously mentioned.

This report consists of four volumes. The prediction methods are applied to a number of V/STOL configurations in this volume. The theoretical development of the prediction methods may be found in Volume I. Details of the computer programs associated with the prediction methods are given in Volume III. The results of a literature survey are presented in Volume IV.

Preceding page blank

TABLE OF CONTENTS

ection			Page
I	IN	TRODUCTION	1
	1.	PURPOSE	1
	2.	SCO PE	1
	3.	TECHNICAL APPROACH	2
	4.	ORGANIZATION OF VOLUME II	2
II	РО	WER EFFECTS ON THE WING	4
	1.	SAMPLE PROBLEM	5
	2.	APPLICATION OF MAPPING METHOD TO THE WING	7
	3.	APPLICATION OF JET FLOW FIELD THEORY TO WING	19
		a. Transformation Method	19
		(1) Sample Problem Computation	19
		(a) Input for Sample Problem	20
		(b) Output for Sample Problem	22
		(2) Applicability and Limitations	30
		b. Lifting Surface Theory	31
		(1) Sample Problem Computation	32
		(a) Sput for Sample Problem	32
		(b) Output for Cample Problem	34
		(2) Applicability and Limitations	36
	4.	APPLICATION OF TRANSFORMATION METHOD TO WING	36
		a. Inputs to Transformation Method for Sample Problem	3 6
		b. Outputs from Transformation Method for Sample Problem	3 8
		c. Method Applicability and Limit utions	52
	5.	APPLICATION OF LIFTING SURFACE THEORY TO WING	58
		a. Sample Problem Computation	58
		(1) Input for Sample Problem	59
		(2) Output for Sample Problem	64
		b. Applicability and Limitations	64
		c. Additional Calculations and Comparison with Test Data	67

Preceding page blank

TABLE OF CONTENTS (Continued)

Section			Page
m	PO	WER EFFECTS ON THE FUSELAGE	76
	1.	SAMPLE PROBLEM	76
	2.	APPLICATION OF THE MAPPING METHOD	77
	3.	APPLICATION OF JET FLOW FIELD THEORY TO FUSELAGE.	87
		a. Sample Problem Computation	87
		(1) Input for Sample Problem	88
		(2) Output for Sample Problem	90
		b. Applicability and Limitations	93
	4.	APPLICATION OF TRANSFORMATION METHOD TO FUSELAGE	98
		a. Inputs to Transformation Method for Sample Problem	98
		b. Outputs from Transformation Method for Sample Problem	98
		c. Method Applicability and Limitations	123
ľV	PO	WER EFFECTS ON CONTROL SURFACES	124
	1.	SAMPLE PROBLEM	124
	2.	APPLICATION OF JET FLOW FIELD PROGRAM TO	
		CONTROL SURFACES	125
	3.	CALCULATION OF POWER INDUCED FORCES AND MOMENTS	
		ON CONTROL SURFACES	125
v	AP	PLICATION OF INLET METHOD	128
	1.	SELECTION OF PARAMETERS	130
		a. Inlet Method	130
		b. Fan Flow Model	131
	2.	EXAMPLES OF APPLICATION	131
		a. Fan Flow Calculations	132
			132
		c. I all ill I usciage	133
		d. Fan-in-Wing	134
VI	NO	NLINEAR BODY AERODYNAMICS	145
	1.	SAMPLE PROBLEM	145
		in the state of th	145
		5. Body bodot piton for from mout 1 ozoo and 1101 tello 12 og 1	147
		c. Modification of Mapping Function for Body Aerody amics	
		Program	148

TABLE OF CONTENTS (Continued)

Section			Page
		d. Simplified Handbook Method for Obtaining Coefficients	150
		e. Viscous Cross Flow Input	150
	2.	SAMPLE COMPUTATIONS FOR TEST BODY	152
		a. Sample Inputs for Force and Moment Program	152
		b. Sample Outputs from Force and Moment Program	159
	3.	COMPARISON WITH TEST DATA	161
VII	NO	NLINEAR WING AERODYNAMICS	166
	1.	SAMPLE PROBLEM	166
		a. Determination of Section Parameters	167
		b. Inputs to Nonlinear Wing Aerodynamics Program for	
		Sample Problem	167
		c. Outputs to Nonlinear Wing Aerodynamics Program for	
		Sample Problem	170
		d. Method Applicability and Limitations	170
	2.	COMPARISON WITH TEST DATA	171
APPEN	DIX	I - WIND TUNNEL TESTING OF V/STOL CONFIGURATION MODEL	175
	1.	MODEL AND APPARATUS	175
	2.	TEST PROCEDURE	176
		a. Balance Calibration and Corrections	176
		b. Calibration of Engine Simulators	177
		c. Wall Corrections	178
		d. Test Parameters	178
		e. Test Program	179
	3.	RESULTS	180
		a. Presentation of Results	180
		b. Selection of Unpowered Baseline Data	180
		II - BALANCE CORRECTIONS AND CALIBRATION	220
APPEN	DIX :	III - EFFECT OF FORWARD SPEED ON EJECTOR JET	
		ENGINE SIMULATORS	222
APPENI	DIX :	IV - NORMAL FORCE AND PITCHING MOMENT IN THE LIFT	
		JET WAKE	225
REFERI	ENC	ES	228

LIST OF ILLUSTRATIONS

Figure		Page
1	Mapping Program Input Data for Sample Problem (Wing)	8
2	Mapping Program Output Data for Sample Problem (Wing)	10
3	Comparison of Original and Mapped Airfoil	15
4	Coordinate System for Typical Wing	19
5	Jet Flow Field Program Input Data for Sample Problem (Wing; Transformation Method)	21
6a	Input Parameters for Sample Problem	23
6b	Jet Centerline for Sample Proolem	23
6c	Induced Velocity Components at Station $Y = 0 \dots \dots \dots$	24
6d	Induced Velocity Components at Station Y = 20.125	25
7	Jet Flow Field Program Punched Output for Sample Problem (Wing; Transformation Method)	26
8	Control Points on Wing for Sample Problem	32
9	Jet Flow Field Program Input Data for Sample Problem (Wing; Lifting Surface Theory)	33
10	Induced Velocity Components at Control Points	35
11	Jet Flow Field Program Punched Output for Sample Problem (Wing; Lifting Surface Theory)	35
12	Transformation Method Program Input Data for Sample Problem (Wing)	37
13	Partial List of Input Data for Sample Wing	40
14	Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Wing Sections	41
15	Power Effect Pressure Coefficients on Sample Wing After Application of Segment Method	43
16	Power-Effect Pressure Coefficients on Sample Wing After Residual Source and Sink Modification	44
17	Power-Effect Pressure Coefficients on Sample Wing After One Iteration	45
18	Power-Effect Pressure Coefficients on Sample Wing After Residual Source and Sink Modification (Second Time)	46
19	Power-Effect Pressure Coefficients on Sample Wing After Two Iterations	47

Figure		Page
20	Forces and Moments on Sample Wing by Transformation Method	48
21a	Power-Effect Pressure Coefficients on Sample Wing at Station	49
21b	Y = 5.04, $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet Power-Effect Pressure Coefficients on Sample Wing at Station Y = 7.7925, $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	50
21c	Power-Effect Pressure Coefficients on Sample Wing at Stations $Y = 10.545$ and $Y = 16.05$, $U_{\infty}/U_{i} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	51
22	Power-Effect Lift for Wing with Lift Jet	53
23	Configurations Tested at Northrop	54
24	Power-Effect Pressure Coefficients on Northrop Wing at Station Y = 2.0, $U_{\infty}/U_{i} = 0.1$, $\alpha = \beta = 0^{\circ}$, Two Midspan Jets at X/C = 0.5 and 0.8	55
25	Power-Effect Pressure Coefficients on Northrop Wing at Station Y = 2.0, $U_j/U_j = 0.1$, $\alpha = \beta = 0^{\circ}$, Two Midspan Jets at $X/C = 0.2$ and $0.5.1$	56
26	Downwash Control Points on Wing	59
27	Lifting Surface Theory Program Input Data for Sample Problem	60
28	Lifting Surface Theory Program Printed Output for Sample Problem	65
29a	Interference Lift for Vectored Thrust, Forward Position, 90° Deflection Angle	69
29b	Interference Lift for Vectored Thrust, Forward Position, 45° Deflection Angle	70
29c	Lift for Vectored Thrust, Forward Position, 90° Deflection Angle	71
29d	Interference Lift for Vectored Thrust, Aft Position, 90° Deflection Angle	72
29e	Interference Lift for Vectored Thrust, Aft Position, 45° Deflection Angle	73
29f	Induced Lift Versus Angle of Attack, Lift Jet $(U_{\infty}/U_{jo} = .20)$	74
29g	Induced Lift Versus Angle of Attack, Vectored Thrust, Forward Position, 90° Deflection Angle $(U_{\infty}/U_{jo} = .20)$	75
30	Station 264, 25 of Test Model Fuselage	78

Figure		Page
31	Inputs to Mapping Program for Section at Station 264.25	79
32	Output of Mapping Function Program at Test Fuselage Station 264.25	81
33	Mapping of Fuselage at Station 264.25	85
34	Jet Flow Field Program Input Data for Sample Problem (Fuselage)	89
35 a	Input Parameters for Sample Problem	91
35b	Jet Centerline for Sample Problem	91
35c	Induced Velocity Components at Stations 23.7 and 497	92
36	Jet Flow Field Program Punched Output for Sample Problem (Fuselage)	94
37	Transformation Method Program Input Data for Sample Problem (Fuselage)	99
38	Partial List of Input Data for Sample Fuselage	101
39	Correspondence Between Angular Increments of Mapping Circles and Cartesian Coordinates of Fuselage Sections	102
40	Power-Effect Pressure Coefficients on Sample Fuselage After Application of Segment Method	106
41	Power-Effect Pressure Coefficients on Sample Fuselage After One Iteration	109
42	Forces and Moments on Sample Fuselage by Transformation Method	112
43a	Power-Effect Pressure Coefficients on Sample Fuselage at Stations $X = 73.0$ and $X = 118.0$, $U_{\alpha}/U_{\beta} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	113
43b	Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 185.5, $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	114
43c	Power-Effect Pressure Coefficients on Sample Fuselage at Station X = 264.25, $U_{\alpha}/U_{i} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	115
43d	Power-Effect Pressure Coefficients on Sample Fuselage at Station $X = 343.0$, $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet	116
44a	Power-Effect Pressure Coefficients on Fuselage at Stations $X = 73.0$ and $X = 118.0$, $U_{\infty}/U_{j} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	117

Figure		Page
44 b	Power-Effect Pressure Coefficient on Fuselage at Station $X = 185.5$, $U_{\infty}/U_{i} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	118
44c	Power-Effect Pressure Coefficients on Fuselage at Stations $X = 264.25$ and $X = 343.0$, $U_{\alpha}/U_{\beta} = 0.2$, $\alpha = 0^{\circ}$, $\beta = 10^{\circ}$, Lift Jet	119
45	Power-Effect Lift for Fuselage Alone with Lift Jet	120
46a	Power-Effect Pressure Coefficients on Northrop Body at Stations $X = 8.1$ and $X = 8.9$, $U_{\alpha}/U_{\beta} = 0.1$, $\alpha = \beta = 0^{\circ}$, Center Jet at $X = 10.0$	121
46b	Power-Effect Pressure Coefficients on Northrop Body at Stations X = 11.1 and X = 11.9, $U_{\alpha}/U_{\beta} = 0.1$, $\alpha = \beta = 0^{\circ}$, Center Jet at X = 10.0	122
47	Lift Jet Power Induced Downwash at Rake Location	126
48	Lift Jet Power Induced Sidewash at Rake Location	127
49	Fan-in-Nacelle Configuration	133
50	Fan Flow Parameters	137
51	Fan-in-Nacelle, Inlet Leading	138
52	Fan-in-Nacelle, Inlet Trailing	139
53	Fan-in-Fuselage, Propulsion Parameters	140
54	Fan-in-Fuselage	141
55	1/6-Scale XV-5A, Fan-in-Wing, Lift Force	142
56	1/6-Scale XV-5A, Fan-in-Wing, Drag Force	143
57	1/6-Scale XV-5A, Fan-in-Wing, Pitching Moment	144
58	Sign Convention for Body Aerodynamic Coefficients	146
59	Change of Mapping Function for Body Aerodynamics Program	149
60	Nonlinear Body Aerodynamics Program Input Data for Sample Body	154
61	Nonlinear Body Aerodynamics Program Output for Sample Problem	160
62	Theory and Test Conditions of C_N and C_m for Wind Tunnel Test Model Fusclage	162
63	Theory and Test Comparison of C _y and C _n for Wind Tunnel Test Model Fuselage	163

Figure		Page
64	Computed C_{N_q} and C_{m_q} for Wind Tunnel Test Model Fuselage	164
65	Computed C_{y_r} and C_{n_r} for Wind Tunnel Test Model Fuselage	165
66	Wing Planform with Lifting Lines and Downwash Control Line Shown	166
67	Nonlinear Wing Aerodynamics Program Input Data for Sample Problem	169
68	Sample Outputs for Nonlinear Wing Aerodynamics Program	172
69	Wing Calculations for an Aspect Ratio 6 Wing	173
	APPENDIX ILLUSTRATIONS	
I-1	Model General Arrangement	192
I-2	Wing-Body-Nacelle with Tail Flow Angularity Rake, Powered by Small Forward Nozzles	193
I-3	Wing-Body-Nacelle-Tail with Flap, Powered by Aft Small Nozzles	194
I-4	Wing-Body-Tail, Powered by Lift Jet	195
I-5 a	Ejector Operating Characteristics Forward Small Nozzles	196
I-5 b	Ejector Operating Characteristics Aft Small Nozzles	197
I-5 c	Ejector Operating Characteristics Aft Large Nozzles	198
I-6	Typical Exit Profiles Along Longitudinal Nozzle Centerline	199
I-7	Circumferential Fuselage Pressure Ports	200
I-8	Nacelle Centerline Pressure Ports	202
I-9	Air Supply Sting - Balance Assembly	203
I-10	Effect of Model Height, $\alpha = 6^{\circ}$	204
I-11	Effect of Free Flow Through Inlet on Model Aerodynamic Loads	205
I-12	Inlet Weight Flow for Unpowered Ejector	206
1-13	Thrust Due to Free Flow Inlet	207
I-14	Effect of Open Inlet on Power Model Loads	208

APPENDIX ILLUSTRATIONS (Cont'd)

Figure		Page
I-15	Unpowered Aerodynamic Coefficients	209
I-16	Effect of Free Flow Through Inlet on Wing Pressure Loading	210
I-17	Effect of Free Flow Through Inlet on Section Pressure Loading	211
I-18	Effect of Free Flow Through Inlet on Fuselage Pressures	212
I-19	Effect of Free Flow Through Inlet on Nacelle Centerline Pressures	215
I-20	Free Flow Inlet Effect on Lower Fuselage Centerline Pressures	216
I-21	Effect of Free Flow Through Inlet on Downwash at the Tail Flow Angularity Rake	217
I-22	Free Flow Inlet Effect on Lower Fuselage Centerline Pressures	218
1-23	Effect of Open Inlet on Lower Fuselage Centerline Pressures with Forward and Aft Nozzles	219
III-1	Effect of Forward Speed on Inlet Flow from Bellmouth Measurements	224
IV-1	Jet Wake Contributions to Fuselage Lift	226
IV-2	Jet Wake Contributions to Fuselage Pitching Moment	227

LIST OF SYMBOLS

SECTION V

$\mathbf{A_f}$	fan flow area
č	mean aerodynamic chord
$\mathbf{c}_{\mathbf{D_o}}$	drag coefficient at $\alpha = 0$ deg, D/QS
$c_{\mathbf{p}_{\mathbf{o}}}^{\mathbf{o}}$	slipstream drag coefficient at α = 0 deg, $D/q^8A_{ ext{f}}$
$^{\mathrm{C}}\mathrm{D}^{\mathrm{S}}_{\mathrm{CB}}$	fan centerbody drag area
$\mathbf{c}_{\mathbf{F}}$	fan thrust coefficient, T _f /QS
$^{\mathrm{C}}_{\mathrm{L_{o}}}$	lift coefficient at α = 0 deg, L/QS
$\mathbf{c_{s}^{L_{o}}}$	slipstream lift coefficient at $\alpha = 0 \deg$, $L/q^8 A_f$
C _m	pitching moment coefficient at $\alpha = 0$ deg, M/QS \bar{c}
C _m ⁸	slipstream pitching moment coefficient at $\alpha = 0$ deg, $M/q^8A_fD_f$
$\mathbf{c_t}$	fan pressure rise coefficient, $\Delta P/\frac{1}{2} \rho U_t^2$
D	drag force
$\mathbf{D_f}$	effective fan diameter, $\sqrt{4A_{\rm f}/\pi}$
$\mathtt{D}_{\mathbf{L}}$	inlet lip lift force
K	ratio of freestream component of velocity at fan entrance to freestream
	velocity
L	lift force
$^{ m L}_{ m L}$	inlet lip lift force
$\mathtt{L}_{\mathbf{s}}$	inlet surface lift force
M	pitching meanant
$^{ ext{M}}_{L}$	inlet lip rolling moment

M_{ls} inlet surface rolling moment inlet lip pitching moment inlet surface pitching moment slipstream dynamic pressure, Q + T_0/A_f Q freestream dynamic pressure radius R₁ inlet "lip" radius S ving area or reference area T_f thrust of fan rotor To total static lift υ_f fan flow velocity corresponding to $\mathbf{A}_{\mathbf{f}}$ Ujt static fan flow velocity $\mathbf{U_t}$ fan tip speed U freestream velocity angle of attack angle of sideslip inlet dynamic head recovery factor θ reference angle in plane of inlet surface

APPENDIX I

A _j	total area of operating nozzles
b	wing span
c	local chord
č	wing mean aerodynamic chord
$^{\rm C}{}_{ m D}$	drag coefficient, D/QS
c^{Γ}	lift coefficient, L/QS
C _M	moment coefficient, M/QSc
C _p	pressure coefficient. (P-P∞)/Q

$\mathbf{c}_{\mathbf{T}}$	thrust coefficient, T/QS
מ	drag force, jet diameter
D_{e}	effective jet diameter, $\sqrt{4A_j/\pi}$
FS	fuselage station
h	height above tunnel floor. measured to center of lift jet exit
L	lift force
$\mathbf{L_f}$	fuselage reference length, 50 inches
My	pitching moment
P	pressure
Pep	ejector primary nozzle plenum pressure
Po	ambient pressure
P _T	total pressure
Q	freestream dynamic pressure, $\frac{1}{2}\rho_{\infty}$ U _{∞} 2
r	radius
R _j	jet radius
s	wing area
T	total thrust
T'	thrust of one nozzle
U	velocity
v/v _j	effective velocity ratio, $\sqrt{2A_jQ/T}$
$\mathbf{v}_{\mathbf{p}}$	ejector primary nozzle weight flow
* ₈	ejector secondary (inlet) weight flow
WL	waterline
WS	wing station (butt line)
x	distance aft of wing leading edge
X	distance aft of longitudinal reference
Y	lateral distance
Z	vertical distance
α	angle of attack
δ	deflection,
	ratio of pressure to standard pressure
€	downwash angle
λ	ratio of specific heats
е	ratio of temperature to standard temperature
ρ	density

Subscripts:

Y

j jet
F flap
H borizontal

V vertical

frees⁺ream condition

side force

APPENDIX II

A axial force

FBAL matrix of loads measured by balance

FC matrix of corrected loads exerted on model

K matrix of balance-sting correction coefficients

Mx rolling moment

My pitching moment

Mz yawing moment

N normal force

APPENDIX III

 $egin{array}{lll} {\bf A}_{f j} & {
m jet\ exit\ area} \ & {
m Greestream\ dynamic\ pressure} \ & {
m Trust} \ & {
m Trust} \ & {
m Trust} \ & {
m thrust\ under\ static\ conditions} \ & {
m U}_{f j} & {
m jet\ exit\ velocity\ under\ static\ conditions} \ & {
m V/V}_{f j} & {
m effective\ velocity\ ratio} \ & {
m v}_{f S} & {
m ejector\ secondary\ (inlet)\ weight\ flow} \ & {
m \delta}_{f j} & {
m jet\ deflection\ angle} \ & {
m density} \ & {
m thrust\ area} \ & {
m thrust\ under\ static\ conditions} \ & {
m thrust\ under\ static\ under\ und$

SECTION I

INTRODUCTION

This volume is the second of three volumes treating V/STOL Aerodynamic prediction methods. This volume is directed toward presenting applications of the methods developed during the study program. These applications represent the complete prediction techniques developed except for empirical methods for treating power effects on wings and bodies which are presented in Volume I.

1. PURPOSE

The purpose of this volume is to demonstrate the use of the prediction methods in computing the aerodynamic coefficients and derivatives of V/STOL aircraft. To accomplish this purpose example problems are worked out using the prediction techniques. The accuracy of the methods can be assessed by comparing the predicted aerodynamic coefficients against test results. Limitations of the methods are described and the necessary assumptions and simplifications which must be made are pointed out. It should be possible for the user to evaluate the described methods and to assess their limitations for use in his problems by examining the included sample problems.

2. SCOPE

The methods which are applied in this volume represent the theoretical prediction techniques which have been developed during the study contract. The one theoretical thechnique which is not presented is the vortex tracking method which is not applied to a given example problem since the method was not operable. Also not included in this volume are the empirical methods for treating wing or body. These methods are treated completely in Volume I.

In presenting samples of the use of the method the specific nature of the chosen problem often does not demonstrate the full capability of the methods being employed. To further demonstrate the method capabilities it is frequently pointed out where the methods are more general and where different problems can be treated by the same methods.

3. TECHNICAL APPROACH

The method of demonstrating the application of the individual methods which was adopted for this volume was to select a sample problem and to apply the methods to this problem where applicable. The details involved in using each method are explained by presenting a complete treatment of the sample problem. Where computer programs are involved complete inputs, outputs and comparison of results with experiments are presented. Where computer programs are not involved the equations used are presented and comparison with experiment is presented.

Sample problems have been chosen where test data is available for comparison with theoretical results. This permits the accuracy of the prediction techniques to be evaluated and permits a better understanding of the difficulties to be encountered in predicting the aerodynamics of V/STOL aircraft.

4. ORGANIZATION OF VOLUME II

The main body of Volume II is devoted to sample problems treating V/STOL aircraft configurations. The treatment is divided into sections considering the power induced effects and the power off effects.

Section II presents two methods of treating power effects on the wing of a V/STOL configuration. Each of these methods has certain advantages for the user and both will be useful in treating power induced effects on wings.

Section. III presents the method of predicting power induced effects on the fuselage and illustrates the accuracy which can be obtained.

Section IV demonstrates the use of the prediction methods in obtaining downwash and sidewash effects at the empennage location and illustrates how these results can be used to estimate power effects on the tail surfaces.

Section V presents the method applicable to predicting the power effects of the inlets. Comparisons are made with test data to illustrate the accuracy of the method.

Sections VI and VII present the methods for treating the unpowered effects of nonlinear body and wing aerodynamics. Section VI presents the nonlinear body method and shows comparisons with test data. Section VII presents similar comparisons for wing aerodynamics.

Four appendices are added to this volume to complete the documentation of work performed under the contract. The first three appendices describe the wind tunnel test program undertaken during the study. This description is presented in this volume to permit the details of the test program and model description to be available to the user. This is desirable since much of the test data used for comparison with the prediction method came from the test program. A method for estimating normal force and pitching moment in the lift jet wake region is presented in Appendix IV.

SECTION II

POWER EFFECTS ON THE WING

There are two alternative procedures for computing the power induced effects on the wing. The first of these combines the mapping method, the jet flow field program and the transformation method. In this method the mapping program is used to describe the wing, the jet program calculates volocities induced by the jet at the wing surface and the transformation method calculates pressures, forces and moments induced by the jet on the wing.

In the second procedure the jet program is used in conjunction with the lifting surface theory to predict power induced wing effects. The jet program computes a downwash field at the wing plane which gives an effective camber distribution for the wing. The lifting surface theory then ctilizes this camber distribution to compute lift and pitching moment on the wing. This method does not give the pressure distribution about the wing but is simpler and easier to use than the first method.

The following subsections will describe the use of both of these methods as applied to a given wing. The use of the methods will be described in detail so that a complete understanding of the methods can be obtained.

1. SAMPLE PROBLEM

To demonstrate the method of predicting the power induced aerodynamic effects on a wing, a sample problem is given. This problem is for a single jet in the presence of an isolated wing. The wing of the samile problem is the one tested in the configuration wind tunnel test program discussed in Appendix I.

Wing Description:

Root chord:

10.733 inches

Tip chord:

5.367 inch as

Semispan:

20.125 inches

Leading Edge sweep: 9.76 degrees

Section: NACA 63A010 at all wing stations

Section coordinates:

x (Percent c)	z (Percent c)
0	0
0.25	0.555
0.5	0.816
0.75	0.983
1, 25	1.250
2.5	1.737
5.0	2.412
7.5	2.917
10	3,324
15	3.950
20	4.400
25	4.714
30	4.913
35	4.995

x (Percent c)	z (Percent c)
40	4.968
45	4.837
50	4.613
55	4.311
60	3.943
65	3.517
70	3.044
75	2,545
80	2.040
85	1.535
90	1.030
95	0.525
100	0.021

Leading Edge radius 0.742 percent c

Jet location and description:

A sketch of the coordinate system defining the jet location relative to the wing is shown below.

For the sample problem:

$$x_j = .6$$
 inches $y_j = 0$ $z_j = -6.635$ inches (positive upward)

Jet diameter $d_j = 2.25$ inches

The jet exhausts into the mainstream along the negative z-direction, that is perpendicular to the wing planform.

Velocity ratio
$$\frac{U_{\infty}}{U_{J_0}} = .2$$

Wing attitude:

Angle of attack
$$\alpha = 0$$
 degrees
Sideslip angle $\beta = 0$ degrees

2. APPLICATION OF MAPPING METHOD TO THE WING $_{\scriptscriptstyle S}$

about propular account of this included and ordered account account of the accoun

In the sample problem all the wing sections are geometrically similar so that it is only necessary to map a single section and then to scale the coefficients to provide a mapping for different spanwise stations. Figure 1 shows the inputs to the mapping program used to obtain the initial mapping.

The first card lists in order the number of coordinates being input, the number of corners (and pseudo-corners) being input, the number of terms to be taken in the expansion for the potential and the mapping, and a zero to indicate that the section being mapped is symmetrical about the x-axis.

Cards 2 through 5 give the x-coordinates selected as input points starting at the section trailing edge and proceeding around to the nose. Cards 6 through 9 are the z-coordinates of the airfoil at the same points. Since the section is symmetrical only the upper half plane coordinates are input.

Card number 10 specifies that the airfoil is to be shifted .5 units in the negative x-direction. This is necessary since to obtain the mapping it is necessary that the airfoil be centered with respect to the origin to some degree. It is not necessary to center the section exactly but it should be centered somewhere near the centroid of area.

Card 11 specifies which input points are corner points. This card indicates that the first input point (the trailing edge) is a corner point. The second number, the zero, indicates that the second corner is a pseudo-corner; that is, is not a true corner but merely indicates a region of large curvature. This second number refers to the nose of the airfoil.

Card 12 specifies the x and z coordinates of the first corner and the angle turned through at the corner in radians.

Card 13 similarly describes the second corner specifying the location of the center of the leading edge radius and specifying that a corner of π radians is turned. This angle turned is only an approximation; it is not necessary to specify the angle exactly.

Card 14 specifies parameters needed to tell the program how to write out the mapped section with the corners included. The first two numbers are the x- and z-coordinates of the initial point to be mapped, in this case the leading edge point. The third and fourth numbers specify the first and last points to be mapped specified as angular distances around the mapping circle. In the the sample section the mapping is to start at the nose (180 degrees) and proceed around the lower surface until just

55 .95 .95 .35 .35 .55 .0026 .0026		6,	.85		.75	7.	59.
0. 0. <td< th=""><th></th><th>5</th><th></th><th>- 1 1. P. L</th><th>. 35</th><th></th><th></th></td<>		5		- 1 1. P. L	. 35		
5 0.0103 .01535 .0204 .02595 .03099 1 .09613 .09837 .09968 .09995 .08917 2 .99097 .02917 .02912 .01737 .0125	1	7.7	. 075	.05.	. 025	.0125	9200
5 .010.3 .01535 .0204 .02595 .03099 1 .09613 .09837 .09968 .09995 .09913 5 0. 03329 .02917 .02412 .01737 .0125 .	l	2		1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	***************************************		
7 .04613 .04837 .04968 .04995 .04917 5 0.03324 .02917 .02412 .01737 .0125 2.94047 .2.94047	1		.01535	. 0204	. 02595	. 03044	1
5 0. 03324 .02917 .02412 .01737 .0125 . 2.99097 3.19759	04377	. 04613	.04837	89650	. 04995	27650]
	0395	. 03329	. 02917	.02412	.01737	. 0125	4
2.94047	25500	2			**********	***	
2.94047	4		,	*****		4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	
2.94097	•	Ĭ	• • • • • •				******
3.14159	- \	2.90002					
	q	3.14759	3 4 9 4 4 4 4 4		*** * * * * * * * * * * * * * * * * * *		

FIGURE 1. MAPPING PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing)

ahead of the trailing edge (355 degrees). The last number specifies that mapped points are to be obtained at increments about 5 degrees apart. In this example, it was necessary to choose these parameters to avoid specifying the trailing edge as one of the end points. This is because the trailing edge is a corner and a corner point cannot be specified as one of the end points.

Card 15 specifies the necessary parameters needed to map out points on the section with the corners removed. This card specifies that 37 points are to be printed out with a spacing increment of 5 degrees about the mapping circle and that the mapping is to start at $\theta = 0$ degrees on the mapping circle.

The outputs of the mapping functions for the inputs of Figure 1 are shown in Figure 2. The first page of outputs, Figure 2(a), relates to the computations made in calculating the potential and the point-to-point correspondence between points on the section and points on the mapping circle.

The first two columns represent x- and y-coordinates of the input points with the x-coordinate shifted by the incremental value of ΔX input (in this case, -.5). The third column represents the distance, R, from the new origin to the point on the section. The fourth column gives the computed perimeter, S, of the section from the positive real axis to the point in question. The fifth column gives the velocity, V, calculated due to the unit vortex about the body. The velocities written out for corner points are meaningless. ALPHA is the angle of the section slope at each point as calculated in the program. OMEGA specifies the angular distance in degrees around the section measured about the new origin. THETA is the predicted angular distance of the points around the mapping circle in degrees.

The second page of printouts, Figure 2(b), represents the results obtained by computing the derivative of the mapping function with the corners contained explicitly and integrating the resulting expression numerically. The location of the first point was specified as explained above (this point is not printed out). The three columns give the x-coordinate, the y-coordinate and the angle around the mapping circle θ for a series of points as specified by the parameters specified in the input cards. The degree to which these points agree with the original section represents the degree of accuracy obtained by using the mapping method.

The third page of outputs, Figure 2(c), represents the results of multiplying out factors representing any corner singularities and integrating the resulting expression analytically.

CCMPUTATIONS FOR S AND ALPHA VERSUS THETA.

	20	~	20	7 0	~	~	%	%	70	%	60	60	60	60	60	6	60	6	60	S	60	õ	03	S
₹	061	375	918	7618E 4003E	106	610	864	752	619	159	900	238	908	619	366	297	826	450	264	649	53	336	574	8
THET	ONE	. 4	•	v o	۲.	Ť	8		•	Ċ	7	₹	~	~	~	~	7	7	∹	~	~		7	-
	88	:5	5	35	70	0	02	0	03	င်	03	03	03	60	03	03	ő	0	03	õ	C)	60	60	03
4	~ ~	200	5	127E 540E	96	5	89	8	3	58	90	2	3	ŝ	2	2	9	93	8	Š	8	S	36	8
UMEGA	0 %	.25	.38		.13	.21	64.	6.	=	. 15	۶.	• 16	91.	. 17	. 17	.17	. 17	- 17	-11	-11	. 17	. 17	- 17	. 18
J	E 60	n m	en (m m	60	æ	m	~	m	m	~	m	m	Ē	m	~	m	m	~	m	m	~	m	m
	4 KV 0	2 G	3	E CO	26	26	2 E	e E	.	96	쁘	96	ñ	ш О	9	3£	Ë	5.E	36	e G	36	4	9	9
AL PHA	1742			7	~	2	_	2	2	_	2	8	8	8	8	8	5	5	Ξ	2	2	\vec{z}	2	2
Ą	000	ö	Ö	00	0	0	ċ	ċ	ċ	ċ	ö	0	0	0	0	0	0	0	0	0	0	0	0	0
	_				0	0						0	0	0	0	0	C	0	0		0	0	0	0
	900	454	635	2869 1695	901	395	643	645	728	647	C38	752	546	832	873	334	114	567	641	241	311	990	839	21
>	0 4	. ~	2	4	~	Ň	~	۲	7	7.	۲	٦	~	2.	~	m	'n	4.	•	8	<u>.</u>	∹	~	7
	56	38	8	00	ဗ	00	8	8	8	00	8	00	၀	00	00	00	00	90	8	00	8	0	0	0
	25	7 2	30	29E 54E	2	95	08	17	22	24	54	25	29	39	59	96	32	83	5	91	83	3	5	18
S	0.00	.15	• 20		. 35	.40	•45	.50	.55	99.	•65	.70	• 75	.80	.85	• 50	.92	• 95	.97	66.	9	.10	01.	•
	000																							
	CE 0C						1		•															
	200	503	900	512 023	540	074	601	613	956	116	581	059	544	032	522	013	260	506	753	876	956	950	975	000
αx	0.00	• •	•	0.0		•	•	•	•	•	•	•	•	•	•	0.4	•	4.0	•	0.4	•	0.4	0.4	0.5
				70-							4	- 1				- 1						-05	-02	
	SOCE	S E	40CE	450E-	70E	3CE	10E	30E	70 E		141	913CE		111		111	70E	111	70E	OOE	OCE	OCE		
>	.0.	51.5	. 20	0.25	35.	• 39	.43	16491	. 48	4	7	4	4	4	m	•33	• 29	.24	1.	.12	.98	.81	0.55	•
	00	00	0	00	0	0	_		_	0	0	0	0	0	0	ပ	0	0	0	00	O	0	0	0
	ш ш		LU C	OC	, u,	n.	0E-		0E-	Æ	ų	90	9 E	O.E.	30	O E	O.F.	90	0 E	0 E	9 E	9 E	90	0 E
· ×	5000C	O 161	C	2500	Š	00	9	O	5000	c	1500	0	S	0	500	8	4250	4500	S	4875	4925	4950	4975	2000
1	00		•	ن د	, ,			•	0	•	٠	٠	•	•	0	0-	٠	•	•	0-	•	0	0-	0

(a) COMPUTATIONS FOR S AND ALPHA VERSUS THETA

FIGURE 2. MAPPING PROGRAM OUTPUT DATA FOR SAMPLE PROBLEM (WINK)

SECTIFIN MAPPING BY NUMERICAL INTEGRATION.

FULL FULL FULL FULL FULL FULL FULL FULL	.32289E C	.33161E O	.34C34E C	.34907E 0	.35779E C	.36652F C	.37525E 0	.38397E 0	.39276E C	.40143E C	41015E 0	.41888F C	.42760E 0	.43633E 0	.445C6E C	.45378E C	.46251E C	.47124E 0	.47796E 0	448865E 0	.45742E 0	.50614E C	.51487E C	.52360E C	.53232E 0	.54105F C	0.54978E C1	.5585CE C	.56723E 0	.57596E 0	.58468E 0	.59341E C	.60214E 0	.61086E 0	.e1959F 0
>-	C.52736E-0	0-350201-0	0.14651E-C	0-1873CE-0	0.22711F-C	0.26798F-C	0-30974E-0	0-35001E-0	C.38570E-0	0.41505E-C	0.43853E-C	0.45818E-0	0-47569E-0	0-359055-0	C.5005CE-0	0.5C156E-C	0.49165E-0	0-41144E-0	0.44415E-0	C-41385E-0	0-38353F-0	C.35278E-0	0-320836-0	0-396587°0	C.24839E-0	0-356012-0	-0.174916-01	0-14414E-C	0-111996-0	0-36295-0	0-361021-0	0-466436-0	C. 29018E-0	C.12800E-0	0.305136-0
×	.16133E-0	.657236-0	.151475-0	-27545F-C	-43776E-0	+63415F-0	. 46139E-0	.11154E 0	.13945E C	.16536E 0	0 361202*	.238C5F 0	.27523F 0	-31378E 0	.35323E 0	0 37EF 6.	.43420F 0	.47584F C	.51824E 0	.561CRE 0	.6C331E 0	.64583F 0	.6866AF 0	.72614E 0	. 764C9F O	.90C41F 0	0.83477F 0C	.86667E 0	. 49557E 0	.92164E 0	.943CSE 0	.9614RE 0	0 37837P.	0 373736	.94472E 0

(b) SECTION MAPPING BY NUMERICAL INTEGRATION

FIGURE 2. (Continued)

RACTUS OF MAPPING CIRCLE = 0.26916E 00

COEFFICIENTS.
ŭ
PARTS
XEAL

C.6C815F-C1	0.757796-03	0.69368E-04	C.6C815F-C1 0.75779E-03 0.69368E-04 C.12786F-06 -0.23231E-06 0.15404E-C6 0.11822E-07	0.15404E-C6	0.118226-07
-0-46527F-10	-0-44527F-10 -0.4495CF-C9				

IMACINARY PARTS OF COEFFICIENTS.

	0.0	
	0.0	
	0.0	
	0.0	
ı	o • 0	o•0
,	0.0	0.0

0.0

(c) COEFFICIENTS OF MAPPING FUNCTION

MAPPING OF SECTION WITH CCRNERS REMOVED.

>	•	8303.	. CO14	.0031	.0045	.0066	0600.	.0117	.0147	.0179	.0213	.0247	.0281	.0316	.0351	.0386	.C418	. C447	. C471	.0487	1643.	4650.	2543*	.0480	.0462	.0439	.0411	.0391	.0347	0310	.0272	.0231	. C188	.0144	2500	25500	0000.
×	.5054	.5072	.5006	1684.	.4748	.4560	.4136	.4079	3792	.3477	.3137	.2774	.2391	1503	.1582	.1162	.0738	.0314	.0108	.0526	6660.	.1343	.1738	.2120	.2488	.2439	.3169	.3477	.3760	C.4015	0.4240	.4432	26570	4716	44805	88564.0-	2125,

(d) MAPPING OF SECTION WITH CORNERS REMOVED

Military operation of the control of

FIGURE 2. (Concluded)

First, the radius of the mapping circle is printed out as computed. Next, the coefficients of the mapping function are written out – first the real parts a_n — then the imaginary parts b_n . The mapping function is written in the form

$$Z = \zeta + \frac{a_1 + ib_1}{\zeta} + \frac{a_2 + ib_2}{\zeta^2} + \cdots + \frac{a_n + ib_n}{\zeta^n}$$

The coefficients are written out in order a_1 , a_2 , a_3 a_n and for this particular case, all the imaginary parts of the coefficients are zero since the section is symmetrical.

Page four, Figure 2(d), prints out the x- and y-coordinates obtained with the analytically integrated mapping function. It is not possible to obtain the location of the body directly by this method of computation; i.e., the constant term in the above mapping is missing. This prevents the location of the section being mapped from being specified. This is readily remedied by plotting the original section and the mapped section and the displacement required to obtain a good fit between the two sections represents the constant term of the mapping.

Figure 3 shows a comparison between the mapped output and the original input section, the lower surface also being shown since the section is symmetrical and the mapping retains the property of symmetry.

To obtain coefficients for the wing of the sample problem it is necessary to change the coefficients to account for the size of the actual wing. The coefficients of Figure 2 are based on a unit chord and the mapping for this section can be written:

$$\frac{Z}{c} = \zeta_1 + \overline{a}_0' + \frac{\overline{a}_1'}{\zeta_1} + \dots + \frac{\overline{a}_q'}{\zeta_q'}$$
(1)

where

motarementarian includence of a constitute and include the section of the section

$$a' = .60815 \times 10^{-1}$$

$$a'_{2} = .75779 \times 10^{-3}$$

$$a'_{3} = .69368 \times 10^{-4}$$

$$a'_{4} = .12786 \times 10^{-6}$$

$$a'_{5} = -.23231 \times 10^{-6}$$

$$a'_{6} = 15404 \times 10^{-6}$$

FIGURE 3. COMPARISON OF ORIGINAL AND MAPPED AIRFOIL

$$a'_7 = .11822 \times 10^{-7}$$
 $a'_8 = -.46527 \times 10^{-10}$
 $a'_9 = -.44950 \times 10^{-9}$

and

$$\zeta_1 = r_c' e^{i\theta}$$
 $r_c' = .26916$

a' has not been determined and it is best to leave this coefficient undefined until the coefficients have been ratioed up to true size.

It is desired to reexpress Equation (1) in the form:

$$Z = \zeta + \partial_0 + \frac{\partial_1}{\zeta} + \dots + \frac{\partial_q}{\zeta^q}$$
 (2)

where the coefficients a_0 , a_1 , a_2 , a_9 reflect the true wing dimensions at given stations along the wing. Rewriting Equation (1) in the form

$$Z = \zeta + d_0 + \frac{a_1}{\zeta} + \dots + \frac{a_q}{\zeta^q}$$

and equating $c_1 \zeta_1$ to ζ we obtain

$$Z = \zeta + ca'_0 + \frac{c^2a'_1}{\zeta} + \frac{c^3a'_2}{\zeta^2} + \dots + \frac{c^{10}a'_9}{\zeta^9}$$

so that it can be shown that

$$a_n = c^{n+1} a'_n$$
 $n = 1, 2, \dots, 9$

The radius of the new mapping circle defined by $\xi = r_c e^{i\theta}$ is now $r_c = cr'_c$

To obtain the coefficient a it is sufficient to note that from the first and last numbers of the last page of Figure 2, the mapping without the constant coefficient maps the section about a chordwise point of .4891, so that for the origin of the wing located at the

nose of the root chord and a leading edge sweep of 9.76 degrees, the coefficient $\mathbf{a}_{_{\rm O}}$ can be found as

$$a_0 = .4891c + y \cdot tan 9.76 degrees,$$

where
$$c = c_r - (c_r - c_t) y/b/2$$

For use in the transformation method, it is also necessary to define $\frac{dr}{dy}$ for the wing. This can be done by noting that

$$r_c = .26916 c$$

$$\frac{d\mathbf{r}_{\mathbf{c}}}{d\mathbf{y}} = .26916 \frac{d\mathbf{c}}{d\mathbf{y}}$$

K is now possible to compute all of the numbers needed for the transformation method.

These numbers are tabulated in Table 1.

TABLE I. COEFFICIENTS FOR WING OF SAMPLE PROBLEM

-9.1189	-4.8006	-2.3934	-1.0602	43705	18457	056366	0089134
087942	049365	026385	012680	0057112	0026290	-, 00090399	00017191
2.0819	1.2461	.71404	.37224	.18320	.091926	.035590	.0081385
2.5274	1.6130	16066.	.56041	.39137	.16483	.071852	. 019759
35514	24166	15916	097650	057378	034208	016790	-,0055521
.018211	.013214	. 0093299	.0062097	. 0039869	. 0025909	.0014318	.00056937
. 92054	.71218	. 53911	.38925	.27307	.19343	.12036	.057555
. 93694	. 77289	.62724	.49130	.37661	. 29079	.20372	.11715
7,0057	6, 1520	5.3613	4.5556	3.8157	3.2114	2.5332	1.7518
5.2495	5, 3533	5.4592	5.5735	5.6880	5. 7903	5.9174	6.0867
0.0	071767	071767	071767	071767	-, 071767	-,071767	071767
2.8839	2.7094	2.5272	2.3296	2.1320	1,9559	1.7372	1.4446
٠	3.5	5.04	7.7925	10.545	13.00	16.050	20.125
	0.0 5.2495 7.0057 .93694 .92054 .01821135514 2.5274 2.0819087942	2.8839 0.0 5.2495 7.0057 .93694 .92054 .018211 35514 2.5274 2.0819 087942 2.7094 071767 5.3533 6.1620 .77289 .71218 .013214 24166 1.6130 1.2461 049365	2.8839 0.0 5.2495 7.0057 .93694 .92054 .018211 35514 2.5274 2.0819 087942 2.7094 071767 5.3533 6.1620 .77289 .71218 .013214 24166 1.6130 1.2461 049365 2.5772 071767 5.4592 6.3613 .62724 .53911 .0093289 15916 .99091 .71404 026385	2.8839 0.0 5.2495 7.0057 .93694 .92054 .018211 24166 1.6130 1.2461 049365 2.7094 071767 5.3533 6.1620 .77289 .71218 .013214 24166 1.6130 1.2461 049365 2.5272 071767 5.4592 5.3613 .62724 .53911 .0093259 15916 .99091 .71404 026385 2.3296 017767 5.5735 4.5556 .49130 .38925 .0062097 097650 .56041 .37224 012680	2. 68 39 0.0 5. 2495 7,0057 .92054 .018211 35514 2.5274 2.0819 087942 2. 7094 071767 5. 3533 6. 1620 .77289 .71218 .013214 24166 1.6130 1.2461 049365 2. 5272 071767 5. 4592 6. 3613 .62724 .53911 .0093299 15916 .99091 .71404 026385 2. 3236 071767 5. 5735 4.5556 .49130 .38925 .0062097 097650 .56041 .37224 012680 2. 1320 071767 5. 6880 3.8157 .37661 .27307 .0039869 057378 .39137 .18320 0677112	2. 88 39 0.0 5. 2495 7.0057 93694 92054 .018211 35514 2.5274 2.0819 087942 2. 7094 071767 5. 4592 6. 1620 .77289 .71218 .013214 24166 1.c1630 1.2461 049365 2. 5272 071767 5. 4592 6. 3613 .62724 .53911 .0093289 15916 .99091 .71404 046385 2. 3236 071767 5. 5735 4. 5556 .49130 .38925 .0062097 097650 .56041 .37224 012680 2. 1320 071767 5. 6880 3. 8157 .37651 .27307 .0039869 057378 .39137 .18320 0057112 1. 9559 071767 5. 7903 3. 2114 .25079 .19343 .0025909 034208 .16483 .091926 0026290	2. 88 + 39 0.0 5. 2495 7.0057 93694 92054 .018211 35514 2.5274 2.0819 087342 087342 2. 7094 071767 5. 3533 6. 1620 .77289 .71218 .013214 24166 1.6130 1.2461 049365 049365 2. 5272 071767 5. 4592 5. 3613 .62724 .53911 .0093299 15916 .99091 .71404 026385 026385 2. 3236 071767 5. 6880 3.8157 .37861 .27307 .0039869 057378 .37137 .18320 0056290 057378 .30137 .18320 0056290 034208 034208 034208 034208 034208 0026290 00090399 00090399 00090399 00090399 00090399 00090399 00090399 00090399 00090399 000090399 00090399 000000399 000000399 000000000000000000000000000000000000

3. APPLICATION OF JET FLOW FIELD THEORY TO WING

a. Transformation Liethod

The purpose of the Jet Flow Field theory, when used in conjunction with the Transformation Method, is to predict jet-induced velocity components at those control points on the wing at which the Transformation Method requires them to evaluate power effects. This is accomplished by executing the Jet Flow Field computer program to generate the required data for the Transformation Method in the form of punched data cards. To insure compatibility with the Transformation Method, the control points on the wing are specified by utilizing the mapping coefficients for the wing cross sections obtained by the procedure described in Section II.2. The punched output is generated in a manner to provide a continuous block of input data to the Transformation Method computer program. Both of the above features will be described in greater detail in the discussion below.

(1) Sample Problem Computation

For the sample problem being considered, the Jet Flow Field program is now used to compute the jet-induced velocities at the eight spanwise stations on the wing described in Section II.2. Figure 4(a) shows a sketch of the wing and the location of the jet with respect to the input/output coordinate system. Figure 4(b) defines the jet exhaust angles ϕ and ψ . It should be noted that the input/output coordinate system shown below differs from the general coordinate system utilized in Section II, Volume I.

FIGURE 4. COORDINATE SYSTEM FOR TYPICAL WING

(a) Input for Sample Problem

The input cards required for the sample problem are tabulated in Figure 5.

Card 1 lists three control indices. The first one, MULT = 1, indicates that a single jet configuration is being treated. The second one, IGEØM = 1, specifies that control points on wing cross sections will be generated, utilizing the mapping coefficients obtained in Section II. 2. The third control index, IPUNCH = 1, generates the punched output for the Transformation Method program.

Card 2 specifies angle of attack $\alpha = 0$, and angle of sideslip $\beta = 0$.

Card 3 controls the number of steps and the step size in the numerical integration of the equations of motion for the jet path. For the sample problem, 90 steps with a step size of 0.4 jet exit diameters are chosen.

Cards 4 and 5 contain information about the jet. The jet location in the coordinate system of Figure 4 is X = 0.6, Y = 0., Z = -6.63. The jet exhaust angles ϕ and ψ , defined in Figure 4(b) are 180 and 0 degrees respectively. The jet exit diameter, $d_0 = 2.25$ and the velocity ratio $U_{\infty}/U_{i_0} = 0.2$.

Card 6 may be left blank for computations revolving a single jet. For a multiplejet configuration it would be used to control the geometry of the jet resulting from the intersection of two other jets.

The remaining input cards provide data to generate the control points at which jet-induced velocities are to be evaluated. These control points are generated by utilizing the mapping coefficients and mapping radii obtained in Section II.2 for the eight wing stations of the sample problem. The number of control points generated at each spanwise station is governed by the input variable NTHT, which is the number of increments $\Delta \theta$ into which the mapping circle is to be divided in the Transformation Method computer program.

Card 7 specifies that NTHT, the number of control points at each spanwise station or the number of $\Delta\theta$ increments around the mapping circle is 36, and that the number of spanwise stations NS =8. It also defines the number of terms used in the mapping expansion of Section II.2, NCØEF = 11, and through the control index IRECT = 1 indicates that the wing is nonrectangular.

Cards 8-12 provide the data from which the wing cross section at the first spanwise station can be generated by the computer program. Card 8 specifies the location of the station, Y=0, the mapping circle radius R=2.8889 and the rate of

=	1 1	1		1	-	00	00	90	1	7	1	7	1		0.0	00	00
]] [• •		1	0.00000€ 00 0.70057€ 01 0.00000€ 00	0.00000£ 00 0.18211£-01 0.00000£ 00	J	1	1	1	1	1	1 :	0.00000£ 00 0.17578£ 01 0.00000£ 00	0. 00000E 00 0.56937E-05 0. 00000E 00	<u>ب</u> نیا
7]] .	2.5	1 1	• 1	1	00	00	200	1	1	1	1	1	1 -	20.	20.	20
3	11		1 1		1	201	201	207	1	1	1	1	1	;	701	701	200
1	1 1				1	Ö	0	0	1	1	1	1	1	1	0	70	0
]	1 1	i 1	1 1	1	4	0	0	0	4	1	1	1	1		Q	0	0
7 ::	11		1 4	†		7	7	7		1	1	1	1	4	77	W.	2
11.	1 1	1 1	1 1		1	5		7	1	1	1	1.	1	1 7	7		7=3
ਰ ਹ	11.	1 1	1 1	1	1	27	7	6	- 	1	1	1	1		18.	17.	35
1	1 .	72	1 1	1	4	2	2	8	1	1	1	1	1	;	2	6	3
<u> </u>	1 1	17	1 1	- }	1	7	7	7	4	1	† †	1	-		1	56	80
7	1 1	1 1	1 1	1	1	9	0	0	i	1	1	1	1 .		0	0	0
4 .			1 1	, +-		00	00	0.00000 00 0.20819 £ 01 0.00000 €	ठ	1	1	1			2	ठ	2
]	1 1	1	1 1	4	1		w	u)	0. 000006 00	1:	4	1	4	Ì	u	4	4
**.			1 1	1	1	00	00	00	20	į	1	1	1 .	1	20.	20	201
		0	3	3	1	00	00	00	0		ł	4	1	{	00	00	9
, i	1	180.	- ,	-	-	0	0	0	0	4 .	1	;	1	! 1 	0	0	0
• 1	1			1		1	0	0	0	1	٠	•	1		0	0	0
			•	•	-	70	0.920596 00	67	07	ļ		•	;	6.7	.0. 60867£ 01		6
			. !	1	1	W	<u>.</u>	4	W	1:	1		1 :	7.7	W	F	É
님 :		63	;]	4	*	95	54	4.	6		1	1		07	57	55	59
-	· •	-6.63		4	. 0.	29	20	5.2]	1		0	80	15	97
1 .			1 4	1	:	3	0	7	6	1	;		1	-0.071767	9	5	7
:1 :	· · ·	-	1 1	-	į	1	<u>o</u> ,	0.000006 00 0.252746 01	16 00-0.97189E 01	·	4.	·	; ;	-	0	16 00 0.57555E-01	1E 00 0.13759E-01 0.00000E 00 0.81385E-02 0.00000E 00
`• •	• • •	1	1 1	7	*	0	06 00	00	0	e ^e	1			ا احد	00 3	00	00
	4 -	1	, i	1	888	العا	36	2		•	1	4	1 1	961	76		F
		•	, , ,		8	20.5	00	20	20,	•		:	4 4	4	20.0	20.	00
,	0	0	' ;	1	2.86	200	200	207	9	-	1	1	;	1.4	200	200	200
	1		1 1	•	j.	0.000.0	0.0000). N	0.0000	1	•]	i	• •	•	0.0000	0.0000	0.0000
1		+	++	65]	- }	•	<u>~</u>	<u>~</u>	1	4	į .	1 4		,	- 1	
	•	1	i	8		•	0	ŏ	0	٠	•		1 1	1	07	00	Ö
•	•		7		•	OE	36	9	26				;	5.5	30	SE	7
7	6	6. 0	* * *	9	•	00	0	<u>.</u>	441				4 4 9	1	000	77	25
	00	i,	78	W	0	0.	93	55	2	1	15		• •	20.125	0.	1	55
	•		,	,	٠.	0. 10000E	0.956996	0.555746	O. 87992E				• •	4	O. 10000E	D.11715E	0. 55521E-02
<u>`</u>	(0)(0)	\bigcirc			1	1		1		<u></u>			٠.	(E)		((4)	(a)

FIGURE 5. JET FLOW FIELD PROGRAM INPUT DATA FOR SAMPLE PRUBLEM (Wing; Transformation Method)

change of R with Y, DRDY = 0. Cards 9-12 list the real and imaginary parts of the coefficients to be used in the mapping expansion. Cards 13-47 are similar data blocks for the spanwise stations Y = 2.5, 5.04, 7.7925, 10.545, 13., 16.05 and 20.125. The data in cards 8-47 are taken from the Table I in Section II.2.

Note: The rate of change of the mapping circle radius with spanwise distance, DRDY, is not required for any of the computations performed by the Jet Flow Field program. It will, however, be required by the Transformation Method program and is read as part of the input that it may be punched out in the proper sequence in the data package to be provided to the Transformation Method program.

(b) Output for Sample Problem

For the problem being considered both printed and punched outputs are obtained.

Printed Output:

Figure 6(a) shows the first page of printed output. The jet configuration being treated is identified both by appropriate heading and by other pertinent input information. Input controlling the numerical integration procedure is also displayed. Figure 6(b) shows the location of the computed jet centerline. The nondimensionalized jet speed U_i/U_{io} and the nondimensionalized major diameter of the ellipse representing the cross section of the jet, d/do are also printed out. These properties are printed out at each integration interval. Output shown in Figure 6(b) shows only the initial portion of the printed output generated for this example. The centerline was computed to Z = 87.63, which represents integration of the jet equations over the range Z = 90 x 0.4 x 2.25 = 81. The variables XCOORD and DIA show a monotonic increase over this region, while UJ = $U_j/U_{j_0} \approx$.2 as the mean jet speed approaches the freestream speed U... Figure 6(c) shows the printout for the jetinduced velocity components at the first spanwise station specified, Y = 0. The coordinates of the 36 control points at the station are identified. The induced velocity components U, V, W all nondimensionalized by U, are printed out for each control point. Figure 6(d) shows the output for the last station considered in the sample problem, Y = 20.125. Similar printouts are obtained for the other intermediate stations specified as part of the input.

*** SINGLE JET CONFIGURATION *** PSI UVUJÇ **XJET** YJET ZJFT PHI -6.6300 180.0000 0.6000 0.0 0.0 0.2000 ANGLE OF ATTACK = 0.0 ANGLE OF SIDESLIP = 0.C NUMBER OF STEPS IN INTEGRATION = 90 INTEGRATION INTERVAL = C.40 JET EXIT DIAMETERS

FIGURE 6(a). INPUT PARAMETERS FOR SAMPLE PROBLEM

TOTAL CONTROL OF THE PARTY OF T

**	SINGLE JE	1 CENTER	LINF *	*
****	******	******	*****	****
XCOORD	YCOGRD	ZCOORD	UJ	DIA
0.60	0.0	-6.63	1.000	1.00
0.61	0.0	-7.53		
0.64	0.0	-8.43		1.45
0.71	0.0	-9.33		1.90
0.83	0.0	-10.23		
1.01 1.27	0.0	-11.13		2.93 3.23
	0.0	-12.03		
1.62 2.06	0.0 0.0	-12.93 -13.83		
2.61	0.0	-14.73		
3.28	0.0	-15.63	-	4.60
4.09	0.0	-16.53		
5.06	0.0	-17.43		
6.21	0.0	-18.33		
7.56	0.0	-19-23		
9.15	0.0	-20.13		
11.02	0.0	-21.03	0.333	7.03
13.21	0.0	-21.93	0.321	7.47
15.78	0.0	-22.83	0.311	7.92
16.78	0.0	-23.73	0.301	8.38
22.29	0.0	-24.63		
26.39	C.0	-25.53		-
31.10	0.0	-26.43		
36.78	0.0	-27.33		
43.34	0.0	-28.23		
51.00	0.0	-29.13	U. 26 I	11.47

FIGURE 6(b). JET CENTERLINE FOR SAMPLE PROBLEM

		******	**********	******	
x	٧	Z	U	٧	¥
10.717	0.9	0.0	0.11367E-01	0.0	-0.47648F-01
10.623	0.0	0.020	0.11582E-01	0.0	-0.47592F-01
10.346	0.0	0.050	0.122205-01	0.0	-0.47586F-01
9.904	0.0	0.097	0.13282E-01	0.0	-0.47535E-01
9.319	0.0	0.159	0.14771E-01	0.0	-0.47360E-01
8.616	0.0	0.229	0.16691E-01	0.0	-0.46985E-01
7.817	0.0	0.302	0.19044F-01	0.0	-0.46294E-01
6.948	0.0	0.377	0.21786F-01	0.0	-0.451216-01
6.043	0.0	0.449	0.24798E-01	0.0	-0.43336F-01
5.133	0.0	0.506	0.27913E-01	0.0	-0.40918E-01
4.242	0.0	0.533	0.3C975F-01	0.0	-0.37918E-01
3.394	0.0	0.529	0.33823E-01	0.0	-0.34394E-01
2.578	0.0	0.496	0.36272E-01	0.0	-0.30461E-01
1.847	0.0	0.442	0.38173F-01	0.0	-0.26360E-01
1.214	0.0	0.373	0.39493F-01	0.0	-0.22435F-01
0.699	0.0	0.292	0.40340E-01	0.0	-0.19039E-01
0.321	0.0	0.203	0.40931E-01	0.0	-0.16461F-01
0.092	0.0	0.105	0.41508E-01	0.0	-0.14885E-C1
0.015	0.0	-0.000	0.42236F-01	0.0	-0.14410F-01
0.092	0.0	-0.105	0.43145E-01	0.0	-0.15127E-01
0.321	0.0	-0.203	0.44135E-01	0.0	-0.17164E-01
0.699	0.0	-C.292	0.44971E-01	0.0	-0.20619E-01
1.214	0.0	-0.373	Ò•45273E−01	0.0	-0.25421E-01
1-847	0.0	-0.442	0.44584E-01	0.0	-0.31202E-01
2.578	0.0	-0.496	0.42576F-01	J.0	-0.37266E-01
3.384	0.0	-0.529	0.39?80E-01	0.0	-0.42753E-01
4.242	0.0	-0.533	0.35097E-01	0.0	-C.46970E-01
5.133	0.0	-0.506	0.30601E-01	0.0	-0.49642F-01
6.043	0.0	-0.449	0.26276E-01	0.0	-0.509298-01
6.948	0.0	-0.377	0.22435F-01	0.0	-C.51223E-01
7.817	0.0	-0.302	0.1922UF-01	0.0	-0.5091RF-01
8.616	0.0	-0.229	0.16644E-01	0.0	-0.50293F-01
9.319	0.0	-0.159	0.14654F-01	0.0	-0.49538F-C1
9.904	0.0	-0.097	0.13177F-01	0.0	-0.48809E-01
10.346	0.0	-0.050	0.121546-01	0.0	-0.492238-01
10.623	0.0	-0.020	0.11553E-01	0.0	-0.478391-01

FIGURE 6(c). INDUCED VELOCITY COMPONENTS AT STATION Y = 0.

		******	**********	********										
X	Y	Z	U	V	w									
8.821	20.125	0.0	0.11150F-01	-0.13150F-01	-0.43097F-02									
8.774	20.125	0.010	0.111o3E-01	-0.13115E-01	-0.42903E-02									
8.635	20.125	0∡025	0.11206E-01	-0.13024E-01	-0.42270E-02									
8.414	20.125	0.049	0.11273E-01	-0.12878E-01	-0.41249E-02									
8.122	20.125	0.079	0.11357E-01	-0.12682E-01	-0.39885F-02									
7.770	20.125	0.114	0.11454E-01	-0.12443E-01	-0.38213E-02									
7.370	20.125	0.151	0.1155dE-01	-0-12167E-01	+0.36273E-02									
6.936	20.125	0.189	0-11661F-01	-0.11862E-01	-0.34126E-02									
6.483	20.125	0.225	0.11758E-01	-0.115388-01	-0.318495-02									
6.029 20.125 0.253 0.11847F-01 -0.11211E-01 -0.29503F-0 5.583 20.125 0.267 0.11929E-01 -0.10892E-01 -0.27121E-0														
5.583														
5.583														
5.154 20.125 0.264 0.12004E-01 -0.10588E-01 -0.24743E-02 4.751 20.125 0.243 0.12070E-01 -0.10303E-01 -0.22434E-02														
5.154 20.125 0.264 0.12004E-01 -0.10588E-01 -0.24743E-02 4.751 20.125 0.248 0.12070E-01 -0.10303E-01 -0.22434E-02 4.385 20.125 0.271 0.12127E-01 -0.10046E-01 -0.20272E-02														
4.069	20.125	0.186	0.12174E-01	-0.98250F-02	-0.18339E-02									
3.811	20.125	0.146	0.12214F-01	-0.96477E-02	-0.16705E-02									
3.62?	20.125	0.101	0.12249F-01	-0.95225E-02	-0.154298-02									
3.508	20.125	0.052	0.12280F-01	-0.94554E-02	-0.145416-02									
3.469	20.125	-0.000	0.12311E-01	-0.94487F-02	-0.14057E-02									
3.508	20.125	-0.057	0.123396-01	-0.95020E-02	-0.139956-02									
3.622	20.125	-0.101	0.123626-01	-0.961455-02	-0.14375E-02									
3.811	20.125	-0.146	0.12377E-01	-0.97845E-02	-0.15195F-02									
4.059	20.125	-0.186	0.12383E-01	-0.10007F-01	-0.16427E-02									
4.385	20.125	-0.221	0.12374E-01	-0.10273F-01	-0.18025F-02									
4.751	20.125	-0.248	0.12347E-01	-0.10571F-01	-0.19943E-02									
5.154	20.125	-0.264	0.122995-01	-0-10489F-01	-0.22176E-02									
5.533	20.125	-0.267	0.122256-01	-0.11212F-01	-0.24522F-02									
6.029	20.125	-0.253	0.12126F-01	-0.11531E-01	-0.27081F-02									
6.493	20.125	-0.275	0.12004E-01	-0.11836F-01	-0.29737E-02									
6.936	20.125	-0.189	0.11965E-01	-0.12123F-01	-0.32386E-02									
7.370	20.125	-0.151	0.11719E-01	-0.12385E+01	-0.34905E-02									
7.770	20.125	-0.114	0.11574F-01	-0.126148-01	-0.37198F-02									
8.122	20.125	-0.079	0.11440E-01	-0.12804E-01	-0.39191E-02									
8.414	20.125	-0.049	0.113225-01	-0.12954E-01	-0.40830E-02									
8.635	20.125	-0.025	0.11231F-01	-0.13064E-01	-0.42056F-02									
8.774	20.125	-0.010	0-11173E-01	-0.13131E-01	-0.42819E-02									

FIGURE 6(d). INDUCED VELOCITY COMPONENTS AT STATION Y = 20.125

```
2.888900
                                                                             1
    0.0
                            0.0
0.10000E 01 0.0
                         9.52495E 01 0.0
                                                  0.70057E 01 0.0
                                                                                 1
0-93694E 00 0-0
                         0-92054E 00 0-0
                                                  0-18211E-01 C-0
                                                                                 2
                                                  0.20819E 01 0.0
-0.35514E 00 0.0
                         0.25274E 01 0.0
                                                                                 3
-0.87942E-01 0.0
                        -0.91189E 01 0-0
0.11362E-01 0.11582E-01 0.12220E-01 0.13282E-01 0.14771E-01 0.16691E-01 U
0.19044E-01 0.21786E-01 0.24798E-01 0.27913E-01 0.30975E-01 0.33823E-01 U
0.36272E-01 0.38173E-01 0.39493E-01 0.40340E-01 0.40931E-01 0.41508E-01 U
0.42236E-01 0.43145E-01 0.44135E-01 0.44971E-01 0.45273E-01 0.44584E-01 U
                                                                                 5
0.42576E-01 0.39280E-01 0.35099E-01 0.30601E-01 0.26276E-01 0.22435E-01 U
0.19220E-01 0.16644E-01 0.14654E-01 0.13177E-01 0.12154E-01 0.11553E-01 U
                                                                                 6
0.0
             0.0
                         0.0
                                     0.0
                                                  0-0
                                                              0-9
                                                                           V
                                                                                 1
0-0
             0-0
                         0.0
                                     0.0
                                                  0.0
                                                              0.0
                                                                                 Z
                                                                                 3
 0.0
             0.0
                         0.0
                                     0.0
                                                  0.0
                                                              0.0
0.0
             0.0
                         0.0
                                     0.0
                                                  0.0
                                                              0.0
                                                                                 5
0.0
             0.0
                         0.0
                                     0.0
                                                  0.0
                                                              0.0
                                                              0.G
0.0
             0.0
                         0.0
                                     0.0
                                                  0.0
-0.47648E-01-0.47592E-01-0.47586E-01-0.47535E-01-0.47360E-01-0.46985E-01 W
-0.46294E-01-0.45121E-01-0.43336E-01-0.40918E-01-0.37918E-01-0.34394E-01 W
-0.30461E-01-0.26360E-01-0.22435E-01-0.19039E-01-0.16461E-01-0.14885E-01 W
-0.14410E-01-0.15127E-01-0.17164E-01-0.20619E 01-0.25421E-01-0.31202E-01 W
-0.37266E-01-0.42753E-01-0.46970E-01-0.49642E-01-0.50929E-01-0.51223E-01 W
-0.50918E-01-0.50293E-01-0.49538E-01-0.48809E-01-0.48223E-01-0.47839E-01 W
                                                                                 6
    2.500000
                2.709399
                           -0.071767
 0.10000E 01 0.0
                         0.53533E 01 0.0
                                                  0.61620E 01 0.0
                                                                              2
                                                                                 ı
                                                  0.13214E-01 0.0
                                                                                 2
 0.77289E 00 0.0
                         0.71218E 00 0.0
-0.24166E 00 0.0
                         0.16130E 01 0.0
                                                  0.12461E 01 0.0
                                                                                 3
-0.49365E-01 0.0
                        -0.48006E 01 0.0
 0.12325E-01 0.12530E-01 0.13133E-01 0.14131E-01 0.15516E-01 0.17283E-01 U
                                                                                 1
 0.19419E-01 0.21872E-01 0.24526E-01 0.27241E-01 0.29896E-01 0.32376E-01 U
 0.34548E-01 0.36300E-01 0.37600E-01 0.38516E-01 0.39194E-01 0.39805E-01 U
 0.40465E-01 0.41184E-01 0.41866E-01 0.42329E-01 0.42304E-01 0.41493E-01 U
                                                                                 5
 0.39697E-01 0.36945E-01 0.33499E-01 0.29741E-01 0.26035E-01 0.22652E-01 U
 0.19746E-01 0.17366E-01 0.15494E-01 0.14084E-01 0.13098E-01 0.12514E-01 U
-0.95974E-02-0.95911E-02-0.96194E-02-0.96592E-02-0.96937E-02-0.97102E-02 V
                                                                                 1
-0.96874E-02-0.95914E-02-0.93949E-02-0.90961E-02-0.87079E-02-0.82380E-02 V
                                                                                 2
-0.76951E-02-0.71089E-02-0.65313E-02-0.60244E-02-0.56478E-02-0.54480E-02 V
                                                                                 3
-0.54534E-02-0.56833E-02-0.61559E-02-0.68779E-02-0.78195E-02-0.88918E-02 V
                                                                                 5
-0.99505E-02-0.10833E-01-0.11412E-01-0.11648E-01-0.11591E-01-0.11345E-01 V
-0.11011E-01-0.10654E-01-0.10314E-01-0.10021E-01-0.98005E-02-0.96614E-02 V
                                                                                 6
-0.45398E-01-0.45330E-01+0.45268E-01+0.45131E-01-0.44851E-01-0.44363E-01 W
                                                                                 1
   +35/6E-UI-U.42363E-UI-U.40639E-01-0.38415E-01-0.35756E-01-0.32725E-01 W
                                                                                 2
-0.29415E-01-0.26011E-01-0.22772E-01-0.19971E-01-0.17849E-01-0.16573E-01 W
                                                                                 3
-0.16235E-01-0.16907E-01-0.18663E-01-0.21537E-01-0.25428E-01-0.30030E-01 W
                                                                                 4
-0.34843E-01-0.39282E-01-0.42857E-01-0.45330E-01-0.46750E-01-0.47357E-01 W
-0.47420E-01-0.47150E-01-0.46706E-01-0.46225E-01-0.45819E-01-0.45545E-01 W
```

FIGURE 7. JET FLOW FIELD PROGRAM PUNCHED OUTPUT FOR SAMPLE PROBLEM (Wing; Transformation Method)

```
5-040000
             2-527200
                       -0-071767
                                                                 3
                     0.54592E 01 0.0
0-10000F 01 0-0
                                          0.53613E 01 0.0
0.62724E 00 0.0
                     0.53911E 00 0.0
                                          0.93299E- 02 0.0
-0.15916E 00 0.0
                     0.99091E 00 0.0
                                          0-71404E 00 0-0
-0-26385E-01 0-0
                    -0.23934E 01 0.0
0.13806E-01 0.13983E-01 0.14512E-01 0.15378E-01 0.16561E-01 0.18039E-01 U
0.1978[E-0] 0.21724E-0] 0.23762E-0] 0.25790E-0] 0.27730E-0] 0.29518E-0] U
9.31070E-01 0.32354E-01 0.33332E-01 0.34055E-01 0.34607E-01 0.35093E-01 U
                                                                 3
0.35573E-01 0.36045E-01 0.36446E-01 0.36669E-01 0.36568E-01 0.35985E-01 U
0.34803E-01 0.33009E-01 0.30704E-01 0.28074E-01 0.25341E-01 0.22713E-01 U
                                                                    5
0.20349E-01 0.18335E-01 0.16697E-01 0.15430E-01 0.14528E-01 0.13987E-01 U
-0.1&585E-01-0.16284E-01-0.15837E-01-0.15259E-01-0.14582E-01-0.13829E-01 V
-0-13017E-01-0-12186E-01-0-11397E-01-0-10721E-01-0-10232E-01-0-99864E-02 V
-0-10018E-01-0-10343E-01-0-10975E-01-0-11908E-01-0-13102E-01-0-14458E-01 V
-3-15833E-C1-0-17960E-01-0-17994E-01-0-18556E-01-0-18758E-01-0-18690E-01 V
-0.18454E-01-0.18131E-01-0.17777E-01-0.17448E-01-0.17188E-01-0.17019E-01 V
-0.39000E-01-0.38916E-01-0.38763E-01-0.38484E-01-0.38033E-01-0.37366E-01 W
-0.14854E-01-0.15309E-01-0.16493E-01-0.18408E-01-0.20981E-01-0.24937E-01 W
-0.27316E-01-0.30509E-01-0.33327E-01-0.35578E-01-0.37210E-01-0.38288E-01 W
                                                                    5
3
   7.792500
             2-329599
                       -0.071767
0-10000E 01 0-0
                     0.55735E 01 0.0
                                          0.45556E 01 0.0
                                                                    1
0.49130E 00 0.0
                     0.38925E 00 0.0
                                          0.62097E-02 0.0
                                                                    2
-0.97650E-01 0.0
                     0.56041E 00 0.0
                                          0.37224E 00 0.0
                                                                    3
                    -0.10602E 01 0.0
-0-12680E-01 0-0
0-15026E-01 0-15160E-01 0-15570E-01 0-16231E-01 0-17116E-01 0-18193E-01 U
0-19426E-01 0-20754E-01 0-22100E-01 0-23398E-01 0-24612E-01 0-25712E-01 U
                                                                    2
0-26666E-01 0-27450E-01 0-28062E-01 0-28529E-01 0-28896E-01 0-29214E-01 U
0.29516E-01 0.29796E-01 0.30020E-01 0.30133E-01 0.30069E-01 0.29748E-01 U
0-29105E-01 0-28116E-01 0-26800E-01 0-25227E-01 0-23500E-01 0-21748E-01 U
                                                                    5
0.20089E-01 0.18610E-01 0.17357E-01 0.16356E-01 0.15626E-01 0.15181E-01 U
                                                                    6
-0.19733E-01-0.19219E-01-0.18571E-01-0.17821E-01-0.17014E-01-0.16175E-01 V
                                                                    3
-0-15324E-01-0-14497E-01-0-13741E-01-0-13113E-01-0-12668E-01-0-12449E-01 V
-0.17603E-01-0.18787E-01-0.19803E-01-0.20572E-01-0.21073E-01-0.2134GE-01 V
                                                                    5
-0.21430E-01-0.21390E-01-0.21268E-01-0.21114E-01-0.20976E-01-0.20877E-01 V
                                                                    6
-0.29937E-01-0.29848E-01-0.29637E-01-0.29274E-01-0.28738E-01-0.28013E-01 W
-0.27073E-01-0.25901E-01-0.24508E-01-0.22944E-01-0.21267E-01-0.19524E-01 W
                                                                    2
-0.17769E-01-0.16078E-01-0.14541F-01-0.13247E-01-0.12276E-01-0.11685E-01 W
                                                                    2
-0.11500E-01-0.117-0E-01-0.12418E-01-0.13532E-01-0.15040E-01-0.16861E-01 W
-0.18875E-01-0.20941E-01-0.22915E-01-0.24681E-01-0.26174E-01-0.27374E-01 W
                                                                    5
-0.28291E-01-0.28951E-01-0.29394E-01-0.29676E-01-0.29845E-01-0.29931E-01 W
                                                                    6
```

FIGURE 7. (Continued)

```
10.544999
              2.132000
                       -0.071767
0-19000E 01 0-C
                     0-56880E 01 G-0
                                           0.38157E 01 0.0
                                                                     1
0.37661E 00 0.0
                     0-27307E 90 0-0
                                           0.39869E-02 0.0
                                                                     2
                                                                     3
-0.57378E-01 0.0
                     0.30137E CO 0.0
                                           0.18320E 00 0.0
-0.57112E-02 0.0
                     -0.43705E 30 0.0
0-18154E-01 0-18975E-01 C-19784E-01 0-20547E-01 0-21249E-01 0-21879E-01 U
0-22425E-01 0-22875E-01 0-23232E-01 0-23510E-01 0-23733E-01 0-23926E-01 U
0-24110E-01 0-24276E-01 0-24405E-01 0-24474E-01 0-24447E-01 0-24288E-01 U
0-23940E-01 0-23443E-01 0-22735E-01 0-21855E-01 0-20850E-01 0-19786E-01 U
9-18738E-01 0-17767E-01 0-16916E-01 0-16216E-01 0-15695E-01 0-15371E-01 U
1
-0-1<del>9596E-01-</del>0-19002E-01-0-18313E-01-0-17565E-01-0-16796E-01-0-16029E-01 V
                                                                     2
~0.15281E~01~0.14578E~01~0.13953E~01~0.13443E~01~0.13085E~01~0.12908E~01
                                                                     3
-0-12927E-01-0-13146E-01-0-13564E-01-0-14174E-01-0-14954E-01-0-15861E-91
-0.16834E-01-0.17805E-01-0.18700E-01-0.19463E-01-0.20067E-01-0.20518E-01
-0-21226E-01-0-21149E-01-0.20942E-01-().20597E-01-0.20111E-01-0.19481E-01      W
2
-0-12132E-01-0-11037E-01-0-10055E-01-0-92333E-02-0-86148E-02-0-82271E-02 M
-0.80838E-02-0.81932E-02-0.85626E-02-0.91900E-02-0.10054E-01-0.11115E-01 w
                                                                     5
-0.12319E-01-0.13599E-01-0.14889E-01-0.16126E-01-0.17268E-01-0.18278E-01 W
-0-19136E-01-0-19829E-01-U-20363E-01-0-20756E-01-0-21026<del>E-</del>01-0-21182E-01 w
  13.000000
              1.955899
                       -0.971767
0-10000E 01 0-0
                                                                     1
                     9-57903E 01 0-0
                                           0.32114E 01 0.0
0.29079E 00 0.0
                     0-14343E 00 0-0
                                           0-25909E-02 0.0
                                                                     2
                     0.16483E 00 0.0
-0-34208E-01 0-0
                                           0-91926E-01 0-0
                                                                     3
-0-26290F-02 0-0
                     -0.18457E 00 0.0
0.14669E-01 0.14728E-01 0.14914E-01 0.15209E-01 0.15591E-01 0.16039E-01 U
                                                                     1
0-16531E-01 0-17036E-01 0-17525E-01 0-17980E-01 0-18394E-01 0-18767E-01 U
                                                                     2
0.19089E-01 0.19357E-01 0.19572E-01 0.19743E-01 0.19883E-01 0.20006E-01 U
                                                                     3
 0-20121E-01 0-20225E-01 0-20307E-01 0-20353E-01 0-20346E-01 0-20265E-01
 0.20089E-01 0.19804E-01 0.19404E-01 0.18894E-01 0.18296E-01 0.17645E-01
                                                                     5
 0.16987E-01 0.16363E-01 0.15802E-01 0.15331E 01 0.14975E-01 0.14751E-01
                                                                   6
                                                                     6
-0.19649E-01-0.19590E-01-0.19455E-01-0.19232E-01-0.18920E-01-0.18523E-01
                                                                     1
-0-18041E-01-0-17479E-01-0-16853E-01-0-16195E-01-0-15535E-01-0-14890E-01
                                                                     2
-0-14275E-01-0-13706E-01-0-13208E-01-0-12806E-01-0-12524E-01-0-12382E-01
                                                                     3
-0.12390E-01-0.12548E-01-0.12854E-01-0.13305E-01-0.13885E-01-0.14565E-01
-0.15307E-01-0.16067E-01-0.16796E-01-0.17457E-01-0.18028E-01-0.18504E-01
                                                                     5
-0-18887E-0:-0-19177E-01-0-19381E-01-0-19517E-01-0-19603E-01-0-19649E-01
                                                                     6
-0-14866E-01-0-14806E-01-0-14635E-01-0-14354E-01-0-13966E-01-0-13476E-01
                                                                     2
3
-0-55912E-02-0-56383E-02-0-53493E-02-0-62230E-02-0-67473E-02-0-74004E-02 W
~0.81541E~02-0.89752E-02-0.98287E-02-0.10682F-01-0.11508E-01-0.12277E-01 W
-0.12963E-01-0.13548E-01-0.14024E-01-0.14393E-01-0.14657E-01-0.14815E-01 W
```

FIGURE 7. (Continued)

```
1.737200
               -0.071767
 -10000E 01 0-0
              0.59174E 01 C.O
                            0.25332€ 01 0.0
                                              1
0.20372E 00 0.0
              0.12036E 00 0.0
                            0.14310E-02 0.0
                                              2
              0-71852E-01 0-0
-0.16790E-01 0.0
                            0-35590E-01 0-0
                                              3
<del>-0.90399E-0</del>3 0.0
              -0.56366E-01 0.0
0.13312E-01 0.13343E-01 0.13447E-01 0.13609E-01 0.13817E-01 0.1405@E-01 U
4.14318E-01 0.1458!E-01 6.14831E-01 0.15062E-01 0.15272E-01 0.15461E-01 U
6.15626E-01 0.15765E-01 0.15878E-01 0.15970E-01 0.16047E-01 0.16116E-01 U
                                            7
0.14622E-01 0.14280E-01 0.13966E-61 0.13698E-01 0.13491E-01 0.13361E-01 U
-0.15481E-0?-0.15023E-01-0.14527E-01-0.14017E-01-0.13515E-01-0.13032E-01 v
-0-15971E-01-0-16268E-01-0-16502E-01-0-16677E-01-0-16800E-01-0-16872E-01
-0.77638E-92-0.73361E-02-0.68762E-02-0.63986E-02-0.59139E-02-0.54313E-02 w
                                             7
-0.49637E-02-0.45272E-02-0.41384E-02-0.38128E-02-0.35628E-02-0.33961E-02 w
                                              3
20.125000
         1.444599
               -0.071767
0.10000E 01 0.0
              0.60867E 01 0.0
                            0-17518E 01 0-0
0.11715E 00 0.0
              0.57555E-01 0.0
                            0.56937E-03 0.0
                                              2
-0-55321E-02 0.0
              0.19759E-01 0.0
                            0-81385E-02 0-0
-0-17191E-03 0.0
             -0.89134E-02 0.0
0.11150E-01 0.11163E-01 0.11206E-01 0.11273E-01 0.11357E-01 0.11454E-01 U
                                              1
0-11558E-01 0-11661E-01 0-11758E-01 0-11847E-C1 0-11929E-01 0-12704E-01 U
                                              2
0.12070E-01 0.12127E-01 0.12174E-01 0.12214E-01 0.12245E-01 0.12280E-01 U
                                              3
0.12311E-01 0.12339E-01 0.12362E-01 0.12377E-01 0.12383E-01 0.12374E-01 U
0-12347E-01 0-12299E-01 0-12225E-01 0-12126E-01 0-12004E-01 0-11865E-01 U
0-11719E-01 0-11574E-01 0-11440E-01 0-11322E-01 0-11231E-01 0-11173E-01 U
2
-0.10303E-01-0.10046E-01-0.98250E-02-0.96477E-02-0.95225E-02-0.94554E-02
5
6
-0.362735-Q2-0.34126E-02-0.31849E-02-0.29503E-02-0.27121E-02-0.24743E-02 w
-0.22434E-02-0.20272E-02-0.18339E-02-0.16705E-02-0.15429E-02-0.14541E-02 W
                                             3
8
-0.19943E-02-0.22126E-02-0.24522E-02-0.27081E-02-0.29737E-02-0.32386E-02
                                              5
```

FIGURE 7. (Concluded)

Punched Output:

The punched card output for the sample problem is shown in tabulated form in Figure 7. The output data block for the first spanwise station is identified. The first card lists the spanwise station Y = 0, the mapping radius R = 2.8889 and the rate of change of R with Y, DRDY = 0. The next four cards list the real and imaginary parts of the coefficients used in the mapping expansion. Cards 6 - 11 list the induced velocity components in the X direction for each of the 36 control points at Y = 0. The induced velocity components in the Y-direction are listed on cards 12 - 17 and cards 18 - 23 specify induced velocity components in the Z-direction. Data blocks of this type, each consisting of 23 cards, follow for each of the other 7 spanwise stations specified as part of the input. The punched output is identified in columns 73 - 80. The spanwise station number is shown in columns 75 - 77. Sequence numbers for each station appear in columns 78 - 80. The letters U, V, W in column 74 identify the velocity components listed on the data cards.

Note: From the tabulations of Figure 7 it is apparent that the first five cards of the data generated for each spanwise station represent an exact duplication of input cards described previously. They are generated as part of the punched output so that a more complete data package for the Transformation Method program may be obtained and additional card handling circumvented.

(2) Applicability and Limitations

The Jet Flow Field program may be utilized to evaluate the induced flow field at given control points due to one, two or three exhausting jets. For a single jet the initial jet exhaust direction, specified by ϕ and ψ , and the freestream direction, specified by α and β are arbitrary. For a two-jet configuration the jet exits must both lie in the same XY plane and the jet exhaust planes, defined by the freestream vector and the initial jet exhaust vectors, must be parallel. The same restrictions apply to a three-jet configuration. Additionally, three-jet configurations must be colinear and negative angle-of-attack cases cannot be treated. More complex configurations, as shown below, may be treated by reduction to two- or three-jet type configurations, as indicated, and adding the induced velocities at each control point due to configurations (a) and (b).

Extensive comparisons between computations and experimental data have been made for velocity ratios $0.10 < U_{\infty}/U_{jo} < 0.30$ and the Jet Flow Field program may be considered most applicable in this range of velocity ratios.

The choice of the variables governing the numerical integration for the jet path is related to the velocity ratio of the problem being considered. For $U_{\infty}/U_{jo} < 0.125$ integration in the direction normal to the freestream over an extent of at least 30 jet exit diameters has been found desirable. As U_{∞}/U_{jo} increases this may be decreased, as the jet penetrates less at the higher velocity ratios. For the above range of velocity ratios an integration step size of ≤ 0.5 jet exit diameters has been found satisfactory.

Control points at which jet-induced velocity components are to be evaluated may not lie within the jet itself, as the Jet Flow Field theory is not valid in this region.

Generally, control points positioned less than 2 jet exit diameters from the center of the jet exit should be avoided, to avoid distortion in the computed velocity distributions.

b. Lifting Surface Theory

The purpose of the Jet Flow Field theory, when used in conjunction with the Lifting Surface theory, is to predict jet-induced downwash distributions on the wing to be utilized by the Lifting Surface theory in evaluating power effects. This is accomplished by executing the Jet Flow Field computer program to generate required input data for the Lifting Surface program in the form of punched data cards. These data cards will then constitute the downwash matrix [W], which forms part of the input for the Lifting Surface program described in Section II.5.

It should be noted that the manner in which the Jet Flow field program is utilized to provide date for the Lifting Surface program is almost identical to its application in

conjunction with the Transformation Method described in Section II. 3. a. The discussion below will treat in detail only those areas of input and output which differ from Section II. 3.a.

(1) Sample Problem Computation

For the sample problem being considered, the Jet Flow Field program is now used to compute jet-induced downwash distributions at 10 spanwise stations on the wing. Figure 8 shows details of the planform of the wing and indicates the network of control points to be utilized in the computations.

FIGURE 8. CONTROL POINTS ON WING FOR SAMPLE PROBLEM

The wing is treated as a planar surface, Z = 0. Each spanwise station has 10 control points spaced evenly between 0.05 and 0.95 of the local chord. The spanwise stations are distributed evenly between 0.05 and 0.95 of the semi-span.

(a) Input for Sample Problem

The input cards required for the sample problem are tabulated in Figure 9.

Card 1 again lists the three control indices. IGEØM = 3 indicates that the coordinates of all control points will be provided directly as part of the input. The other two indices remain unchanged from Section II. 3. a. The punched output generated will, of course, now be suitable for use with the Lifting Surface program.

Card 2 remains unchanged from Section II. 3. a.

PILLEGE TRESPERSION	2.			600.	60 0.	60 0.	60. 0.	60. 0.		**************************************			90.	40. 0.	40 0.	40. 0.
	0.	4 1		7.0060	7.0060	1.0060	7.0060	1.0060		4 -4-4-4-4-4-4-4	1 1		19.1140	19.1140	19.11.90	19.1140
	180.		****************	1.7923	3,8347	5.9271	8.0195	10.1119					4.1327	5.2603	6.3879	7.5155
	-6.63		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0	O	0.		4 9, 4 4 2 4 2			20.	0.	0	0.
	0.			7.0060	7.0060	7.0060	7.0060	7.0060	1		***		19.1140	-	7	1
m.	50	LANK	1.0	1969.0	2.7885	4.8809	6, 9733	9.0657	1 1 1	4 4 4 4 4	1 1	1	3.5689	4.6965	5.8241	6.9517

Someth Charles and State of the State of the

FIGURE 9. JET FLOW FIELD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing; Lifting Surface Theory)

Card 3 controls the number of steps and the step size in the numerical integration of the equations of motion for the jet path. For this case, the number of steps has been cut down to 50, as computations in Section II.3. a showed that after a penetration of 20 jet exit diameters into the crossflow, the nondimensionalized jet speed $U_j/U_{jo} = 0.202$, i.e., the jet has virtually slowed to the speed of the crossflow and further contributions to the jet-induced velocities will be negligible.

Cards 4-6 see Section II. 3. a.

Card 7 lists the number of spanwise control stations, NS = 10 and specifies that the number of control points at each station NC = 10.

Cards 8-57 list the coordinates for the control points of the grid shown schematically in Figure 8. The coordinates for each control point appear in the order X, Y, Z. Control points are listed from leading edge to trailing edge for each spanwise station, with the spanwise stations appearing in a root-to-tip sequence. The total number of control points is NC x NS. The listing is continuous, i.e., no new record is required for the first control point at each spanwise station.

(b) Output for Sample Problem

Both printed and punched outputs are obtained.

Printed Output:

The initial part of the printout dealing with configuration identification and jet centerline printout will be identical to that shown in Figures 6(a) and 6(b) of Section II.3. The centerline computations are now carried out to Z = 51.63 consistent with the 50 integration steps specified. Figure 10 shows a portion of the printout for the jet-induced velocity components at the control points specified as part of the input. The control points are listed in the order in which they were read in. All three velocity components are printed out, although only the downway h component W needed in conjunction with the Lifting Surface theory.

Punched Output :

The punched output for the sample problem is shown in tabulated form in Figure 11. The data block for the first spanwise station is identified. The cards list the downwash component -W, nondimensionalized by U_{∞} , for each control point at the first spanwise station in a leading to trailing edge

	***	NDUCED V	ELOCITIES AT CON	ITROL POINTS ***	
X	Y '	2	U	٧	W
0.696	1.006	0.0	0.42185E-0f*	-0.25052E-02	-0.19470E-01
1.742	1.006	0.0	0.41069E-01	-0.31934E-02	'0 • 27364E-01
2.788	1.006	0.0	0.38306E-01	·0.37568E-02	-0.34289E-01
3.835	1.006	0.0	0.34488E-01	-0.41490E-02	-0.39742E-01
4.881	1.006	0.0	0.30233E-01	-0.43711E-02	-0.43625E-01
5.927	1.003	0.0	0.26004E-01	-0.44536E-02	-0.46118E-01
6.973	1.006	0.0	0.22069E-01	-0.44349E-02	-0.47507E-01
8.019	1.006	0.0	0.18547E-01	-0.43495E-02	-0.48074E-01
9.066	1.006	0.0	0.15463E-01	-0.42236E-02	-0.48055E-01
10.112	1 • 00ó	0.0	0.12797E-01	-0.40755E-02	-0.47630E-01
1.015	3.018	0.0	0.39548E-01	-0.73734E-02	-0.19404E-01
2.008	3.018	0.0	0.38348E-01	-0.89783E-02	-0.25778E-0
3.000	3.018	0.0	0.35964E-01	-0.10302E-01	-0.31410E-01
3.993	3.018	0.0	0.32795E-01	-0.11266E-01	-0.35995E-01
4.986	3.018	0.0	0.29248E-01	-0.11869E-01	~0.39455E-01
5.978	.3.018	0.0	0.25651E-01	-0.12161E-01	-0.41875E-01
6.971	3.018	0.0	0.22215E-01	-0.12211E-01	-0.43418E-01
7.963	3.018	0.0	0.19056E-Q1	-0.12087E-01	-0.44267E-01
8.956	3.018	0.0	0.16219E-01	-0.11845E-01	-0.44586E-01
9.949	3.018	0.0	0.13710E-01	-0.11529E-01	-0.44514E-01

FIGURE 10. INDUCED VELOCITY COMPONENTS AT CONTROL POINTS

```
0.1946997E-01 0.2736357E-01 0.3428907E-01 0.3974187E-01 0.4362537E-01
0.4611834E-01 0.4750663E-01 0.48C7373E-01 0.4805501E-01 0.4763948E-01
0.1940424E-01 0.2577788E-01 0.3140971E-01 0.3599505E-01 0.3945525E-01
0.4187481E-01 0.4341806E-01 0.4426672E-01 0.4458629E-01 0.4451389E-01
C.1722910E-01 0.2192676E-01 0.2618271E-01 0.2982682E-01 0.3278734E-01
0.3507354E-01 0.3674650E-01 0.3789202E-01 0.3860138E-01 Q.3896004E-01
0.1413587E-01 0.1745/14E-01 0.2054700E-01 0.2331698E-01 0.2571272E-01
0.2771608E-01 0.2933651E-01 0.3060186E-01 0.3155021E-01 0.3222350E-01
0.1101770E-01 0.1332559E-01 0.1552317E-01 0.1756243E-01 0.1940951E-01
0.2104460E-01 0.2246060E-01 0.2366059E-01 0.2465511E-01 0.2545955E-01
0.8287247E-02 0.9881828E-02 0.1142634E-01 0.1289609E-01 0.1427143E-01
0.1553807E-01 0.1668714E-01 0.1771446E-01 0.1862001E-01 0.1940690E-01
0.6058868E-02 0.7158797E-02 0.8237526E-02 0.9282477E-02 0.1028281E-01
0.1122979E-01 0.1211669E-01 0.1293890E-01 0.1369373E-01 0.1438010E-01
0.4310101E-02 0.5068891E-02 0.5819704E-02 0.6556150E-02 0.7272489E-02
0.2969740E-02 0.3493453E-02 0.4014853E-02 0.4530825E-02 0.5038351E-02
0.5534708E-02 0.6017454E-02 0.6484497E-02 0.6934032E-02 0.7364653E-02
0.19579276-02 G.23193876-02 O.2680826E-02 O.3040665E-02 O.3397372E-02
0.3749519E-02 0.4095748E-02 0.4434913E-02 0.4765924E-02 0.5087804E-02
```

FIGURE 11. JET FLOW FIELD PROGRAM PUNCHED OUTPUT
FOR SAMPLE PROBLEM
(Wing; Lifting Surface Theory)

sequence. The sign of W is changed to provide compatibility with the Lifting Surface theory where downwash is conventionally considered to be positive. Similar data blocks are generated for the other 9 spanwise stations. Each spanwise station starts on a new record.

(2) Applicability and Limitations

erscheibereistigenstelleren ertensky frederingen treesteller "blogstelleren en

the second distribution of the second second

See discussion in Section II. 3. a.

Additionally, since the punched output variable -W serves as an approximation to the tangent of the downwash angle when it is utilized as input to the Lifting Surface program, the application of the Jet Flow Field program must be restricted to small angles of attack.

4. APPLICATION OF TRANSFORMATION METHOD TO WING

The transformation method uses the jet-induced velocity components at a number of stations on the wing to determine wing power effects in the form of surface pressure distributions and integrated force and moment. The transformation method requires that the mapping function for each of the wing sections is known. The jet induced velocity components are determined using the jet flow field program described in Volume 7. The mapping function is determined using the techniques developed in Section III of Volume I.

The generation of the coefficients of the mapping function for the sample problem has been described in Section II. 2. A description of the application of the jet flow field program to the sample problem has been given in Section II. 3. The punched card output of the jet flow field program is compatible with the transformation method and includes the mapping coefficients and jet induced velocity components for each of the wing sections. To complete the input to the transformation method program various flow indices must also be specified. Most of these indices have already been defined in the preceding section.

a. Inputs to Transformation Method for Sample Problem

Shown in Figure 12 are the input data for this sample problem in which the punched outputs from the jet flow field program constitute the major portion. However, to activate the computation two cards must precede this basic input block. There may be none, two or three cards following this block, depending on the specified options.

FIGURE 12. TRANSFORMATION METHOD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Wing)

Card 1 lists in order the classification index (1 specifies a wing), the modification index (1 denotes the option of three-dimensional modification being exercised), the number of iterations, the number of layers for distributing residual sources and sinks, the power index (0 indicates the power effect), the configuration index (1 refers to a nonrectangular wing), and the force index (1 indicates forces and moments to be computed).

Card 2 lists in order the number of stations, the number of pairs of the mapping coefficients, the number of coefficients in the Fourier series expansion, the computation index, the number of angular increments on the mapping circle, the free-stream to the jet velocity ratio, the angle of attack in degrees, and the sideslip angle in degrees.

Cards 3 through 186 contain the punched output data provided by the jet flow field program, which include the y coordinate, the mapping coefficients, and the induced velocity components for stations No. 1 through No. 8. There are 23 cards for each station.

Card 187 lists in order the option index (0 denotes no average value used for the station next to the exhausting jet) and the station number where the jet is located.

Card 188 lists the number of stations on which the downwash modification is to be applied.

Card 189 lists in order the number of jets, the jet exit diameter, X coordinate of the moment center, Z coordinate of the moment center, and the reference length for making the computed moments dimensionless.

b. Outputs from Transformation Method for Sample Problem

Figure 13 lists directly or indirectly a portion of the input data on Card 1 through Card 186.

Figure 14 establishes the correspondence between the angular increments of the mapping circle and their corresponding locations on the wing section at every station. The first column states the angular increments in degrees.

Figure 15 gives the pressure distributions in coefficient form $(p-p_{\infty})_{q_{\infty}}$, at every station after completion of the segment method. These coefficients are tabulated against the angular increments. To obtain the actual location, reference must be made to the previous figure. The second and the third lines in this table list the radius of the mapping circle (RB) and the gradient of this radius in y-direction (DRDY).

Figure 16 lists the pressure distributions at various sections after imposing the residual sources and sinks in the network. Columns 7, 8, 9 in this table remain the same as those in Figure 15, since the flow properties near the wingtip are not modified.

Figure 17 lists the pressure distributions after completion of a three-dimensional modification of one iteration.

Figures 18 and 19 show printout of the pressure coefficients after imposing the residual sources and sinks for the second time and the completion of a three-dimensional modification of two iterations.

Figure 20 lists the parameters used in the three-dimensional modification and in the force and moment computations, originally read in as input data on Cards 187, 188, and 189. Also tabulated are the computed forces (normalized to the thrust) and moments (normalized by the thrust and reference length) on this wing after two iterations.

Figures 21(a) through 21(c) show the comparison between the computed pressure coefficients and wind tunnel test data at stations y = 5.04", 7.2925", 10.545", and 16.0".

MING COMPUTATION

JPTIONS SPECIFICO FOR THIS RIM ARE

ITEMATION ~ 8 MODIFICATION JIMENSIONAL 1. THREE

POWFK EFFECT ONLY 2. .. AT WOLL DATA.

481A*

SECHETRY STATION.

0.16691E-01 0.33823E-01 0.41508E-01 0.44584E-01 0.22435E-01 000 I FURCE. 0.14771E-01 0.37775C-01 0.40931E-01 0.45273C-01 0.26276F-01 0.730570F 01 0.182110F-01 0.204190F 01 I RECT = 0.0 0.13287E-01 0.27913E-01 0.40340E-01 0.44971E-01 0.30601E-31 MTHET. 16 DERIV. 0000 S *A*,*** FDA STATION 1 0.524950E 01 3, 7.926540E 00 F 7.926540E 01 7.926540E 01 0.0 0.12220E-01 0.24798E-01 0.39493E-01 0.44135E-01 0.35099E-01 NSVA 1 BETA 0 NCITATS TA +U+ NFUUR 20 0.115426-01 0.217966-01 0.331776-01 0.431456-01 0.392306-01 COFFICIENTS • 6 01 0.0 0.0 E 00 0.0 E 00 0.0 E-01 0.0 AL ZHA: = ; VELUCITY CUMPONENT 0.0 002.0 0.936940E 00 -7.355140E 00 0.11362E-01 0.19044E-01 0.36272E-01 0.422365-01 0.42576E-01 -0.8794196-01

-0.46985E-01 -0.14885E-01 -0.14885E-01 -0.31202E-01 -0.51223E-01 000000 -0.47360E-01 -0.37418E-01 -0.16461E-01 -0.25421E-01 -0.50329E-01 -0.49223E-01 600000 -0.40918E-01 -0.14039E-01 -0.20619E-01 -0.49642E-01 -0.47535E-01 000000 -0.43336-01 -0.224356-01 -0.171646-01 -0.469706-01 -0.47586E-01 00000 AT STATICA STATION -0.47892F-01 -0.45121E-01 -0.26360E-01 -0.15127E-01 -0.4273E-01 7 * > * 00000 CONFONENT といるからい -3.46294E-01 -0.30461E-01 -7.14410E-01 -0.37266E-01 -0.4754BE-31 VELOCITY VELOCITY 0000 0 0

		1117	0	161185-	40605F-	763386-	1280BE	1 844 BE	243696	304346	362436	407806	43018E	42639E	4000¢E	356556	3004BE	235536	163466	843586-	307306-	84357E-	16346E	235934	300486	356558	4000¢E	42637E	4 30 L BE	40 780E	362436	304346	24365E	184486	124046	-0.783376-	406056-	161186-
•																																						
,		,																																		و 10		
		×	0.99827	0.99066	0.968328	0.93266	0.88554	0.82886	0.764376	0.69428	0.62130E	0.547976	0.47607	0.40691E	0.34196E	0.28301	0.231916	0.19038	0.15990	0.14144	0.13528	0.14144	0.15990	0.19038E	0.23141	0.2830lE	0.34195E	0.40491	0.47601	0.34797E	0.62130	0.69428	0.76437	0.82886	0.88554	0.93265E	0.96832	0.99066
4	2.04	(117	0.0	0.174776-01	0.440346-01	0.349616-01	0.13892E 00	0.20010E 00	0.26428E 00	0.33012t 00	0.39313E 00	0.44236E 00	0.46664E 00	0.46253E 00	0.43396E 00	0.386776 00	0.325946 00	0.25549E 00	0.17732E 00	0.915076-01	0.343346-06	-0.915076-01	-0.17732E 00	-0.25549E 30	-0.32594E 00	-0.34677E 00		-0.46252E 00	-0.4664E 00	-0.44236E 00	. 39313E	.33012E	6428E	.23010E	. 1 3892E	-34962E-	.44034E-	-0.17477E-01
,			0.10242E 02	0.10160E 92	0.99176E 01	0.95306F 01	0.90196E 01	0.84046F 01	0.77050E 01	0.69447E 01	0.61529E 01	0.53574E 01	0.45774E 01	0.382716 01	0.31225E 01	0.24831E 01	0.19287F 01	0.14782E 01	0.11476E 01	0.94/24E 00	0.480476	0.94724E	0.11476	0.14792E	0.19287E	0.24831E	9.31225E	0.38271	0.45774F	C.53574E	0.61529E	0.69447E	0.77050E	0.84046E	396104-0	0.9530hE 01	391 166.0	0.101606 02
FOR WING GEOMETRY	04.		•	0.187534-31	-47240F-	-91130E-	0.148946 00	.214596	w	.35400E	0.42155E 30	.47433E	.50035E	.49594E		91451E	w	27395E	0.190136 00	0.981186-01	0.35742E-06	-0.49117E-01	-0.190136 00	-0.27395E 00	-0.34949E 00	-3.41471E 00	-0.46531E 20	-0.49594E 00	-0.50035E 00	-0.47433E JO	-0.42155E 00	-0.35400E no	-0.29341E 30	-0.21459E 00	-0.14899E 00	-0.91130E-01	-0.47240E-01	-0.187536-01
<u>"</u>	2 .				0.101336	0.971 d2E	0.41 703E	0.85110E	0. 7761 0E	0.694596	0.60970E	0.52442E	0.44080E	0.36036E	0.28432E	0.21626E	3.15683E	0.1C853E	0.73091E	0.516136	0.4444BE	0.51613E	0.73091E	0.108536	0.15693E	0.21626E	0.28482E	0.36036F	0.44080E	0.52442E	C. 609 70E	0.69459E	0.77610E	0.851106	0.91703E	0.97182E 01	0.101336	0.103736
•	0*0	(1)7	c • c	0.199836-01	3	.97133	.159825	.22876E	. 3021 3E	.37739E	0.44942E 00	.50570E	.53345E	.528756	460065.	.44215F	.372618	. 292076	. 20270E	0.10461E 00	0.38107E-06	-0.13461F 00	-0.202 roe 10	0.292076	-0.37261E 00	0.44215E	360965	.52875E	-0.53345E 00	.50570	.44942F	377396	0.302136	-0.22876E 10	J.15882E		0.5r346E	0.199836
	"		.19717E	.10623F	.10346E	.44036E	.93194E	.96164E	.78168E	. 694 76E	.60425E	.51331E	.42415.	39839E	.25184E	0.18474F 01	0.12137E 01	3.69870E 00	0.32982E 00	0.91803E-01	0.15412E-01	0.918026-01	0.32082E 00	0.69B70E 00	0.12137E 01	0.13474E 01	.25784F	0.33439€ 01	0.424155 01	.51331E	3524C9*	.69476E	.73168E	.86164E	.93194F	133	.13346£	.10623F
	1	THETA	0.0	17.00	20.10	30.00	40.00	50.00	00.09	70.00	80.03	90.00	100.00	110.00	1.20.05	130.09	140.00	150.00	169.30	170.00	187.30	199.00	207.02	210.00	220.00	230,00	240.00	250.00	260.33	70.00	290.00	290.00	300.30	310.00	320.00	330.10	340.03	350.30

FIGURE 14. CORRESPONDENCE BETWEEN ANGULAR INCREMENTS OF MAPPING CIRCLES AND CARTESIAN COORDINATES OF WING SECTIONS

Caller STAM

### 19-54 11 11 11 11 11 11 11					-05	õ			0	8	0	0	C	0	0	0	0	0	0	8	0		Ċ	0	0	0	0		0	0	0	Э (9	> <	o o			
THAT X XIII) Ye 10.5% THE FOR WING GEOMETRY THE A XIII) YE 10.5% THE A X			_		176.	74.	3	36.1	*	940	716	736	39	746	346	966	360	326	940	3	986	55	F	366	340	126	ğ	90	36		3	2	7 5		,	ż	7	. AE.
THAT X XIII) Ye 10.5% THE FOR WING GEOMETRY THE A XIII) YE 10.5% THE A X			7 1 7	0	666	251	46.5	462	+ = =	151	1 9 6	224	252	266	264	24.0	221	98	941	5	523	290	328	101	4	186	22.	~	0	992	252				100	603	251	666
THAT X XIII) Ye 10.5% THE FOR WING GEOMETRY THE A XIII) YE 10.5% THE A X				ö	ó	ó	ċ	ö	ö	ċ	ċ	ó	ö	ö	ċ	ó	ó	ö	ö	ö	ò	ö	ö	ö	ė	ċ	ċ	o o	ė	ė	ė	5	9 6	•		0	ò	ċ
THAT A XIII)		20.																																				
TABLE FOR WING GEOWERN THE A XIII T		*																																		_		
TABLE FOR WING GEOWERN THE A XIII T			=	620	773	635	¥ 4	121	770	370	935	483	028	585	153	33	365	990	911	229	205	694	504	622	8113	90	3.05	751	2	285	920		7 6	9 6		4:4	635	73
TABLE FOR WING CECUFETY Y= 13.00 Y= 10.54 Y= 13.00 Y= 10.54 Y= 13.00 Y= 13.00 Y= 10.54 Y= 13.00 Y= 13.00 Y= 10.54 Y= 10.54 Y= 13.00 Y= 10.54 Y			×	0.6	•		0		.0	0.0	9.	9	9			4:		4.	3	9		:	·.	3	 	4.0	4.	4.	•	•	0		5 0			0.3		9.0
TABLE FOR WING GEOWERN THE A X(II) C. 213.02 THE A X(II) C. 213.03 THE A X(II) C. 213.04 THE A X(II) C. 213.05 THE A X(II) C. 213.05 THE A X(II) C. 213.05 THE A X(II) THE					_	_	_																														-4	_
TABLE FOR WING GEGMETRY THE TABLE FOR WING GEGMETRY THE TABLE THE TABLE FOR WING GEGMETRY THE TABLE TH					6-0	6-0		•																								٥ د د	יי עע	9 0	9	0-0	Ē-0	6-0
TABLE FOR WING GEOWETKY Y= 13.05			=		2029			-	1761	3173	5693	7031	41.9	2083	900	836	2885	2 5	7566	161	5913	P 162	2913	1617	7566	2 20	265	98 90		80	24.5		, ,	7 4 4		***	9620	6.03
TABLE FOR WING GEUMFIRY Y= 10.54 X(11) X(ئ	7	0.0			Š.0	3	_	-	~	~	ĕ.	°°		2.0	2.0	~0			9.0	2.0	9.0	7.0	70		~	~								•	•	•
TABLE FOR WING GEOMETRY Y= 10.54 X(1)		16.0																													1	•			•	•	•	•
THETA X(1) Y= 10.54 L(11) X(11) X		-			и.	w			J							ı	ш															.,					٠.,	
THETA X(1) Y= 10.54 L(11) X(11) X			=	053	486	8.20	160	647	420	612	385	443	2.4	113	955	115	716	906	608	537	159	200	159	537	803	904	116	2	45.		2 :	•		2 6 4	644	150	20	•
THALE FOR WING GEOWETRY *** 10.54** *** 10.54** *** 10.54** *** 11.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** ** 10.50** *** 10.50** *** 10.50** *** 10.50** *** 10.50** **			×	•	•	8	Ď	•	٦.	٦.	٠	٥	·.	ď.	٠.	•	٣.							•	•	•	•	\$	•	•	ξ.	•	•		8		æ	S.
THETA X(11) THETA	¥ X			Ĭ	Ū	Ĭ																																_
THETA X(11) THETA	EC.4E				-01	-01	<u>-:</u>	30	00	8	8	8	6	200	ვ	8	3	00	<u>က</u>	၀ 	?	-26	-	2	8	00	00	8	86	00	ဂ က	0 6	3 6	3 6	20	-10	-07	?
THETA X(11) THETA	წ ა		2		5178	9626	7298	1481	4838	\$206	545	4226	2326	111	793	5836	9316	224E	1728	7226	9156	747E	315	722E	771E	45.F	9316	583	66.	-	2326	7	100	7	468	7236	3628	5176
THETA X(11) THETA	Z		7		.13	. 34	٠.	•	٦.	•		•						•	٦.	•	7	• 5 2	č.	-	6:	• 25	\$	E.				•	•	•		·	٠.	-:
THETA X(11) THETA	Ş	3.03		0	0	5	0	0	0	0	0	С	0	0	0	0	0	0	C	0	0	0	٩	Ŷ	f	Ŷ	Ŷ	ξ,	P	0	ָרָי נ	֚֚֚֝֟֜֜֝֜֝֜֝֝֝֟֝ <u>֚</u>	? ?	1	9	P	Ŷ	Ŷ
THE TA X 1113 10.00 1		-																																				
THETA X(11) 10.20 10.21 10.20 10.4492E 10.21 20.20 20.4492E 20.20 20.4941E 20.20 20.4941E 20.20 20.4941E 20.20 20.49441E 20.20 20.49	ΓAθ	>	-	323E	34E	360 t	9 1 4 E	58E	3669	388	900	175	1.56	37.35	175 F	3185	369E	3 79E	392E	33E	388	. 66F	193E	33E	326L	3.74E	36 9F	318F	. ZE	, אבי	156	200	2 4 4 4	000	5 8E	14E	360	34E
THETA X(11) 10.20 10.21 10.20 10.4492E 10.21 20.20 20.4492E 20.20 20.4941E 20.20 20.4941E 20.20 20.4941E 20.20 20.49441E 20.20 20.49			X	346	96.	.924	. 894	. 854	.80	. 75	.644	.632	.571	. 51(.452	396.	346	30	.270	.24	.25	• 554	.22.	.245	,230	306	.348	366	45	2.5		9			854	.84	, 924	.94
THETA X(11) 10.00 10.00 10.00 2.4492E 01 2.104746 2.000 2.44492E 01 2.117176 2.000 2.44492E 01 2.174746 2.000 2.44492E 01 2.27292E 2.000 2.4441E 01 2.174946 2.000 2.27295E 01 2.27292E 2.000 2.27292E 2.000 2.0000 2.00000 2.00000000				د																																		
THETA X(11) 10.00 10.00 10.00 2.4492E 01 2.104746 2.000 2.44492E 01 2.117176 2.000 2.44492E 01 2.174746 2.000 2.44492E 01 2.27292E 2.000 2.4441E 01 2.174946 2.000 2.27295E 01 2.27292E 2.000 2.27292E 2.000 2.0000 2.00000 2.00000000					ç	-01	-0	8	0	00	00	3	0	၀၀	00	8	8	00	00	0	- 0	9	-2	00	ö	00	00	č.	200	00	0 0	3 6		200	0	-31	-01	-01
THETA X(1) 10.00 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.0000 20.000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.00000 20.0000 20.00000 20.00000 20.00000 20.000000 20.00000			_		36F	₹ €	53E	175	78E	92E	146E	62£	.1 SE	€ 3E	16E	0.75	26E	95E	52E	385 ₁	92E	302	92F	5.8E	32¢	95F	76 E	0.76	16E	6 3t	155	270	400	7.27	175	54F	335	305
THETA X(1) 10.00 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.0000 20.000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.0000 20.0000 20.0000 20.0000 20.0000 20.0000 20.00000 20.00000 20.0000 20.00000 20.00000 20.00000 20.000000 20.00000			1 } ?	ς.	141	371	.716	.117	168	272	, 279	331	.373	343	390	.366	326	,774	517	149	.771	231	.77	5 7 7 .	.215	7.7	326	366	3.40	5.0		100	A 1.	277		716	.,	_
7 HETA		.54		o	ń	o	ç	Ö	Ö	Š	ċ	ŏ	c	Ö	ċ	Ö	ċ	ò	Č	Ċ	ċ	ó	Ġ	0	Š	ć	Ġ	o i	Ö	0	Ç	> (, О	0	C	Ö
7 HETA				-	5	7	č	0	70	10	õ	0	70	5	5	₹,	5	5	ត	5	1 0	ក	70	;	-	0	ö	7										10
		×	_	2	36	~	æ	9	æ	27E	12E	33E	31 Z	915	116	67E	72E	396	95Ē	90E	E S	375	16E	39C	9.5E	96E	72 E	67E	<u>.</u>	4	~ (Λ.		J A		23E	97F	36E
# 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			×	912	745	446	912	369	817	758	769	627	550	-4	v	371	317	273	232	205	188	181	188	235					•		260	70	4 7 6	7 1 2	698	912	756	965
000 000 000 000 000 000 000 000 000				ċ	Ċ	ċ	ċ	Ċ	·	Ċ	Ċ	Ċ	Ċ	ċ	ċ	ċ	Ċ	ċ	0	0	ċ	ċ	Ċ	c	ċ	ċ	ċ	ċ	٠	٠	٠	•	•	•		•	•	•
000 000 000 000 000 000 000 000 000			4	0	6	CC	00	S	00	č.	60	9	00	co	ç	၁၁	င္ပ	00	00	00	င္ပ	စ္ပ	S	Ş	OC.	00	00	co i	ر د ر	00	6	2 6	2 6	3 6	2 0	00	င	ç,
			T.	c	10	3	30	$^{\circ}$	O	$^{\circ}$		87.	90	000	10	120.	30.	*05	50.	9	20	8	99	.00	10.	.50	30.	.040	5.	2	20	2 2	2 6	2 5	2 5	130.0	3	50

PRESSURE COFFFICIENTS AT AING. SEGAENT METHOD.

Y= 20.13	RB= 1.44		-0.57606E-02	-7-74695-01	-0.218276-01	10-366676-0-	-0.202426-01	-0-195756-0-	-0-18875F-01	-0-182426-01	-9.17712F-01	-0.17058E-01	-0-160846-01	-0-1464BF-01	-0.12738E-01	-0.10191E-01	-9.65044E-02	-0.40003E-03	C.10574E-01	0.335366-01	-3.15496F-02	-5.700716-01	-0.58231E-01	-0-3946E-01	-0.454146-01	-0.42815E-01	-3.411126-01	-0.39798E-01	-0.344326-01	-0.36700E-01	-0.346576-01	-0.32646E-01	-0.31035E-01	-3.29494E-31	-3.27924E-01	-0.26311E-01	-0.24923E-01	-0.238986-01
			-0-13706E-02	-0.28223E-01	-0.251235-01	-0.231836-01	-0.215556-01	-0.20001E-01	-0.18418E-01	-0.16897E-01	-0.153646-01	-0.135996-01	-0.113486-01	-0.440226-02	-0.46040E-02	0.513636-03	0.80258E-02	0.20211E-01	0.42986E-01	0.864486-01	-0.12162E-01	-0.14165E 00	-0.12830E 00	-0.88056E-01	-0.77086E-01	-0. 70590E-01	-0.661756-01	-0.62693E-01	-0.54305E-01	-0.55463E-01	-0.51237E-01	-0.472386-01	-0.43754E-01	-0.4051 BE-01	-0.373256-01	-0.34161E-01	-0.31367E-01	-0.28962E-01
	-0.07	,	-0.86181E-02	-0.31210E-01	-0.26463E-01	-0.23324E-01	-0.20585E-01	-0.17989E-01	·				•								-0.34-67E-01			-0.13477E 00	-0.11549E 00	-0.10393E 00	-3.95920E-01	-0.89470E-01	-0.83258E-01	-0.76488E-01	-0.642A1E-01	-0.62523E-01	-0.56591E-01	-0.51127E-01	-0.45373E-01	-0.40400E-01	-0.363176-01	-0.322046-01
Y= 10.54	-0.07		-0.9 SOZE-02	-0.324306-01	-0.26036E-01	-0.21621E-01	-3.17710E-01	-0.14000E-01	-0.10268E-01	-0.65192E-02	-3.25148E-02	0.215746-02	0.758516-02	0.142136-01	0.226196-01	0.340596-01	0.510466-01	0.747836-01	0.124766 00	0.21875E 00	-0.7366ZE-01	-C-34350E 00	-0.24314E 00	-0.13858E 00	-0.15945E 0G	-0.14182E 00	-0.12939E 00	-0.11+17E 00	-0.10929E 00	-0.9H727E-01	-C.87756E-01	-0.77548E-01	-0.68625E-01	-0.60526E-01	-C.52429E-01	-0.45768E-01	-0.39470E-01	-0.31491E-01
Y* 1.79	, o, o		70-429014-05	-3.31566E-01	-0.23J47E-01	10-3121210-	-0-11691E-01	-7.6496JE-32	-0.12594F-02	0.411156-02	0.995426-02	0.167935-01	3.245476-21	0.334256-01	0.45538F-01	3.614965-01	0.852606-01	7.12432E 33	0.194436 33	D. JOBALE DO	-5.17021E 00	-0.51331E 30						-0.16148E 00	-0.14565E 00	-3.12460E 30	-0.11133C 30	-0.4565BE-01	-0.421316-01	-0.701836-01	-3.59327E-01	-3.494056-01	-0.407e9t-0;	-0.323046-01
Ye 5.04	-0.01		-0. 6114 (E-02	-0.274596-01	-0.17694E-01	· 0.10229ē-01	-0.313634-02	0.334456-02	0.101446-01	0.172756-01	0.251412-01	0.343346-01	0.447126-01	0.54859E-01	0. 771 1 76 - 91	0.92854£-01	0.123746 30	0.17394E 00	0.26391E 00	0.395616 00	-0.312366 00				-0.30429£ 00				-0.18554E 00	-0.15926t 00	-0.1336CF 0C	-0.111Cst 00	-0.42119t-01	-0.75936E-01	-0.61855E-01	-0.493256-01	-0.385546-01	-0.276246-01
Y* 2.50	10.01			-0.22421c-01	-0-11716E-91	-0-35914E-02	0.41669E-02	0.118036-01	J. 1965 8E-01	0.280706-01	n. 37496E-01	10-356-47.0	0.637256-01	0.749616-01	10-35124-01	C. IIBSIF 00	0.152596 00	0.210526 00	0.31336£ 00	0.45774E OO		-0.442146 00							-0.216416 90				-0.955376-01	-C. 76435E-01	-0.601366-01	-0.46025E-01	- 3388EE -	-0.213096-61
V	. 0.0		-0.276235-02	-). LB448F-01	-0.75620E-32	9.53746E-93	0.83716E-02	0.161635-01	0.242176-01	0.129366-01	0.427496-01	0.542126-01	10-316999.0	0.81560F-01	•													-				-0.12028F 90	10-361646.0-	-0.744246-01	-0.57163E-01	-0.42422E-01	. 29842E-	-9.16212E-01
	THETA DROY		0.0	19.03	21,03	30.00	40.03	50.30	40.00	70.00	80.19	60.06	100.001	110.00	120.03	139.30	140.00	150.00	160.00	170.30	180.00	190.10	200.00	210.00	220.03	230.10	240.33	250.00	260.33	270.00	280.10	290.00	100.00	310.00	320.00	330.00	340.00	359.00

POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER APPLICATION OF SEGMENT METHOD FIGURE 15.

PRESSURE CUEFFICIENTS AT MING AFTER RESIDUAL SOURCE/SINK MUDIFICATION.

74 20.13 28 1.44 0807 : 0.07	10.57n06F-02	-0.218276-01	. 20242E-	0.195798-01	-0.18875E-01	-0.17712E-01	-0.170586-01	-0.140646-01	-0-146486-01	10 - 20 - 20 - 0 - 0 - 0 - 0 - 0 - 0 - 0	50-3446-0-	-0.00001E-33	3.105745-01	0.335365-01	-0.154966-02	-0.70071F-01	-0.562316-01	10-3446440-	-0.454146-01	-0.428156-01	-0.411126-01	-0.34748F-01	. 18432F-	.36700E-	. 34657F-	-0.32696E-01	-0.310355-01	-0.24446-01	-0.279246-01	-36116-	-0.249236-01	-0.2384RE-01
Y* 16.05 Rd* 1.74	-0.73706E-02 -0.2823E-01	-0.251236-01	-0.2155E-01	-0.200016-01	-0.18418E-01	-0.153846-01	-0.13599E-01	-0.113485-01	-0.840226-02	20-20-00-0-0-	0.80258E-02	0.202116-01	0.429866-01	0.864486-01	-0.121626-01	-0.14165E 00	-0.10830E 00	-0.880%6E-01	-0.77086E-01	-0. 70590E-01	-0.66175E-01	-0.626936-01	-0.593056-01	-0.554636-01	-0.512376-01	-0.472345-01	-0.43754E-01	-0.40514F-01	-0.379256-0i	-0.34161E-01	-0.11367E-01	-0.289626-01
Y= 13.00 RB= 1.96 URDY= -0.07	-0.861816-02	-0.26463E-01	-0.20585E-01	-0.179896-01	-0.153716-01	-0.10094E-01		•		0.134826-0		0.473866-01			•				-0.11549E 00	-0.10393E OO	-0.95920E-01	-0.89470E-01	-0.83258E-01	-0.76488E-01	-0.692dlE-01	-0.625235-01	.56591E~	-0.51127E-01	-0.458736-01	-0.40d00E-01	-0.363175-01	-0.32704E-01
Y# 10.54 RB# 2.13 DRDY# -0.67	-0.93678E-02 -0.37276E-01	-0.25562E-01	-0.16754E-01	-0.12677E-01	-0.84874E-02	0.513936-03	0.598146-02	0.122695-01	0.199046-01	0.42735-01	0.606926-01	0.909826-01	0.14647E 00	0.24074F 00		-0.37312E 00			-0.170 34E 00	-0.15062E 00			-0.11434E 00	-0.10278F 00	-0.40862E-01	-0./3887E-01	-0.703195-01	-0.61731E-01	-0.536906-01	-0.46196F-01	-0.31597E-01	-0.33224E-01
7# 7.79 RB# 2.33 DKUY# -0.07	-0.95267E-02 -0.31015E-01	-0.225106-01	-0.11053E-01	-0.57449E-02	-0.350446-03	J.11336E-01	0.184586-01	0.26541E-01	0.361316-01	0.481737-01	0.64407E-01	7.12458E 30			-3.17981E 00				-0.22971E 00		-0.18170E 00			-0.130326 00	-0.11262E JO	-0.965766-01	-0.827475-01	-0.70547E-01	-0.57488F-01	-0.44345E-01	-0.405386-01	-0.317776-01
Y= 5.04 RB= 2.53 DRDY= -0.07	-0.83852E-92 -0.27074E-01	-0.173865-01	-0.40910E-02	n.20528F-02	0.82308E-02 0.146/7F-01	0.216618-01	0.29860E-01	0.390/4E-01	0.50010E-01	10-11111010000	0.111446 00	0.15820E 00	0.24284E 00	0.37372E 00	-0.26952E 00											-0.107965 00	-0.89785E-01	-0.74268F-01	-0.606U4E-01	-0.48415E-01	-0.37845E-01	-0.271506-01
Y= 2.50 KB= 2.71 URDY= -0.07	-0.57341E-02 -0.22714E-01	-0.12703E-01 -0.55061F-02	0.11617E-02	0.74443E-02	0.13654E-01	0.271046-01	0.353236-01	0.445246-01	0.55512E-01	0.04071E-01	0.113836 00	9.147738 00		3928 yE				-0.38876E 00					-0.1972CF 00			-0.11006E 00	-0.84311E-01	-0.72190E-01	-0.57449E-01	-0 3.1 /E-01	.33455E	-0.21461E-01
Y= 0.0 RB= 2.89 DRDY= 0.0	-0.150446-02	-0.116556-01	3.20437E-02	0.803576-02	0.138416-01	0.76240E-01	0.337636-01	0.42152F-01	7.527446-01	0.60367E-01	0.11179E 00				-0.25552E 00								-0.20066E 00			11C585E	-0.84279E-01	-0.669675-01	-0.52463E-31	-0.401395-01	-0.30000E-0-	-0.19418E-01
THETA	10.33	20.00	40.00	50.30	50.00	80.00	60.06	100.00	110.00	60.021	140.00	150.00	160.03	173.30	180.00	00.06	200.002	210.73	223.00	237.00	240.00	250.10	260.00	277.00	280.70	240.00	300.00	310.00	320.00	310,30	40.33	350.30

FIGURE 16. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER RESIDUAL SOURCE AND SINK MODIFICATION

ITERATION. PRESSURE COEFFICIENTS AT WING, CAU OF THREE DIMENSIONAL MODIFICATION OF

and the first of the second of

	Y= 20.13 RB= 1.44 DRDY= -0.07	-0.57606E-02	-0.21827E-01	-C.20927E-01	-v.202426-01	-0.19575E-03	-7.188795-01	-0.192126-01		-0.16084E-01	-0.14648F-01	-0.12738E-01	-0.10191E-01	-3.650446-02	-0.60003E-03	0.105746-01	0.335366-01	-0.15496E-02	-0-100018-01	-0.58731E-01	10-4464-01	-0.43414E-01	10-36132-0-	-0.41116-51 -0.40116-51	10 386 30 T	-0.35700E-01	-0.34657E-01	-0.326965-01	-0.31935E-01	-0.294945-01	-9.27924E-01	-0.26311E-01	-0.24923E-01	-0.238986-01
	Y= 16.05 RB= 1.74 DRDY= -0.07 DR	-0.73706E-02	-0.25123E-01	-0.231835-01	-0.215556-01	-0.20001E-01	-0.18418E-01	-0-15386-01	-0.13599E-01	-0.113486-01	-0.84022E-02	-0.46040E-02	0.513836-03	0.80258E-02	0.202116-01	0.42986 .01	0.864486-01	-0.12162E-01		-0. 10830E 00	-0.88056E-01	-0.77086E-01	-0. 10390E.GI	-0.661 (35-01	-0.593056-01	-0.55463E-3L	-0.51237E-01	-0.47238E-01	-0.43754F-01	-0.40518E-01	-0.37325E-01	-0.34161E-01	-0.313676-01	-0.28962E-01
	Y= 13.00 RB= 1.96 DRDY= -0.07 DR	-0.86181E-02	-0.26463E-01	-0.23324E-01	-0.20585E-01	-0.17989E-01	-0-15371E-01	-0.12/8/E-01	-0.69402E-02	-0.31721E-02	0.15376E-02	0.75482E-02	0.156976-01	0.277456-01	0.47386E-01	0.83784E-01	0.14985E 00	-0.36667E-01	-0.23365E 00				-0.10393E 00	-0.95420E-01	20 - 20 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	-0.76488E-01	-0.69281E-01	-0.62523E-01	-0.56591E-01	-0.51127E-01	-0.45873E-01	-0.40600E-01	-0.36317E-01	-0.32204E-G1
	Y= 17.54 Rd= 7.13 DRUY= -0.07 DI	-0.93742E-02	-0.255156-01	-0.20860E-01	-0.16621E-01	-0.12498E-01	-0.82590E-02	-0-38886E-07	0.64127E-02	0.12741E-01	0.20429E-01	0.23976E-01	0.42825E-01	0.617501-01			0.24361E 00			-0.2664E 00	-0.20464E 00		-0.15163E 00	-0.13753E 00	00 3000000	-0.10323E 00	-0.91230E-01	-0.801626-01	-0.705546-01	-0.618d5E-01	-0.538256-01	-0.46288E-01	-0.39644E-01	-0.33222E-01
	Y= 7.73 Rb= 2.33 ORDY= -0.07 DI	-0.93214E-02	-0.5335F-01	-0-18192E-01	-0.13351E-01	-0.83411E-02	-0.43024E-02	0.305666-03	0-11039F-01	0.175196-01	0.253356-01	0.352386-01	0.487395-01	0.69175E-01	0.10279€ 30	0.16489E 30			-0.44781E 00	-0.31472E 00	-0.24428£ 00			-0.167356 00	134305 00	-0-12235E 30			-0.78637E-01	-0.67356E-01	-0.5712df-01	-0.47806E-01	-0.39705E-01	-0.31825E-01
ACE OTHERSTONAL	Y= 5.04 N9= 2.53 RUY= -0.07 01	-0.79456E-02	-0.26978E-UL	-0-13584E-01	-0.86693E-02	-0.40871E-02	0.394505-03	0.48743E-02	0.15039F-02	0.212216-01	0.286286-01	0.38233E-01	0.51676E-01	0. 724 715-01	0.10742F 30	0.17316£ 00	0.28521E 00	-0.15198£ 00			-0.28324E 00				-0-11934E 00	-0-13810F 00		٠,	-0.815996-01	-0.679155-01	-0.55908E-01	-0.45276E-01	-C. 36191E-01	-0.27246E-01
PRESSURE COEFFICIENTS AT MING, END OF THREE UTMENSIONAL MODIFICATION OF	Y= 2.50 RB= 2.71 ORUY= -0.01 D	-0.507206-02	-0.22572E-01	- 0-1004 »F-01	-0.55752E-02	-0-15934F-02	0.21134E-02	0.57077F-02	0.135775-02	0.182146-01	9.2398 35-01	0.318735-01	0.431325-01	2.61310ē-01	0.92752F-01	0.15340£ 00				-C. \$6194F 00	-0.29495E 00			-0.21515E 00		00 361601.0-		- 1	-772526-01	-0.629265-01	-0.50537E-71	-0.79922F-01	-0.31020E-01	-0.22 (00E-01
COEFFICIENTS AT	Y= 0.0 RB= 2.89 CROY= 0.0	-0.791906-03	-9.21177E-01	-0.45504F-07	-0.54948E-02	-0-316705-0-	3.926366-03	0.37043F-02	0.616975-02	0-12646[-0]	0.169706-01	3.228946-01	0.31911E-01	3.470366-01	0.73748E-01	0.12700E 30	0.225706 00		-0.43301F 00		-7.28358E 00	-0.25670E 00				-0-16810E 10		- 1	-0-708165-01	-0.55526E-01	-0-44748E-01	0.344835-01	-0.27291E-01	-0.19577E-01
PRESSURE	THETA C	0.0	10.00	00.05	40.33	50.00	,0.0v	10.00	80.00	00.00	110.00	120.00	130.00	140.00	150,00	169.33	170.00	180.33	00.061	200.30	210.00	227.39	230,30	240.00	250.00	260.00	00000	200.00	500.00	00.004	323.00	330.00	00103	350.00

FIGURE 17. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER ONE ITERATION

POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER RESIDUAL SOURCE AND SINK MODIFICATION (Second Time) FIGURE 18.

Y= 20.13 Rd= 1.44 DRDY= -0.07	0.234.99E-01 0.234.99E-01 0.279.27E-01 0.207.47E-01 0.187.25E-01	-0.24923E-01 -0.23898F-01
Y= 16.05 R8= 1.74 DRDY= -0.07	-0.73706E-02 -0.28228E-01 -0.231838E-01 -0.231838E-01 -0.21555E-01 -0.1536E-01 -0.1536E-01 -0.1536E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.1336E-01 -0.5138E-01 -0.5136E-01 -0.5136E-01 -0.5136E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01 -0.5546E-01	-0.31367E-01 -0.31367E-01 -0.78962E-01
Y= 13.00 R6= 1.96 DADY= -0.07	-0.86181E-02-0.31210E-01-0.2346F-01-0.2346F-01-0.17999E-01-0.012787E-01-0.12787E-01-0.12787E-01-0.12787E-01-0.12787E-01-0.12784E-01-0.1278	-0.40800E-01 -0.36317E-01 -0.32204E-01
Y= 10.54 R8= 2.13 DKDY= -0.07	-0.92755E-02 -0.3225E-01 -0.21644E-01 -0.21644E-01 -0.13958E-01 -0.13958E-01 -0.13958E-01 -0.32574E-02 -0.37574E-02 -0.37574E-02 -0.37574E-02 -0.37574E-02 -0.37574E-02 -0.37574E-02 -0.37574E-02 -0.37574E-03 -0.37574E-03 -0.37574E-03 -0.37574E-03 -0.375754E-03 -0.37576E-03	-0.45286E-01 -0.33979E-01 -0.32476E-01
Y= 7.74 KR= 2.33 DROY= -0.07	0.39440F-02-0-30256E-01-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-10310E-01-0-0-0-10310E-01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	-0.44445-01 -0.400396-01 -0.31236E-01
Y= 5.04 AB= 2.53 URDY= -0.07	-0. 25912E-01 -0. 16973E-01 -0. 16973E-01 -0. 16973E-01 -0. 62186F-03 -0. 62186F-03 -0. 17345E-01 -0. 25120E-01 -0. 25120E-01	-0.46868E-01 -0.36464E-01 -0.25951E-01
Y= 2.50 R3= 2.71 DKDY= -0.07	-0.54176E-01 -0.12612E-01 -0.15572E-02 0.15572E-02 0.15572E-02 0.11565E-01 0.2311E-01 0.39214F-01 0.39214F-01 0.49200E-01 0.49200E-01 0.49200E-01 0.49266F-01 0.49266E-01 0.49266E-01 0.4926E-01 0.4926E-01 0.4926E-01 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00 0.27276E-00	-0.43695E -0.32698E-01 -0.21317E-01
Y= 0.0 A3= 2.49 DRDY= 0.0	-0.17328E-02 -0.46211E-01 -0.15212E-02 -0.46210E-02 -0.472060E-04 -0.472060E-04 -0.48138E-01	-0.42205E-01 -0.33486E-01 -0.74633E-(.
THETA	20000000000000000000000000000000000000	330.30 346.33 350.33

PRESSURE COEFFICIENTS AT AING ATTER RESIGNAL SOURCE/SINK MODIFICATION.

FIGURE 19. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AFTER TWO ITERATIONS

Y# 20.13 RH# 1.44 DRDY# -0.07	-0.57606E-02 -0.21469E-01 -0.21427E-01	-5.20976-01 -0.209426-01 -0.198756-01	-0.188/5F-01 -0.18747F-01 -0.17712E-01 -0.17058F-01	-0.12738E-01 -0.12738E-01 -0.10191E-01 -0.65044E-02	0.33536E-01 -0.15496E-02 -0.70071E-01 -0.58231E-01	-0.49946-01 -0.49416-01 -0.49415-01 -0.41112-01 -0.39798-01 -0.38432-01	-0.34657E-01 -0.37696E-01 -0.21694E-01 -0.27694E-01 -0.26311E-01 -0.26311E-01
Y* 16.05 RB: 1.74 URDY: -0.07 DR:	-0.73706E-02 -0.28223E-01 -0.25123E-01	-0.231636-01 -0.215556-01 -0.200016-01	-0, 18418E-01 -0, 16897E-01 -0, 15384E-01 -0, 13599E-01	-0.840226-02 -0.460406-02 0.513836-03 0.802586-02 0.202116-01	0.42986E-01 0.86448E-01 -0.12162E-01 -0.14165E 00 -0.10830E 00	-0.88056E-01 -0.77086F-01 -0.70590E-01 -0.66175E-01 -0.59305E-01 -0.55463E-01	-0.51237F-01 -0.47238E-01 -0.40518E-01 -0.40518E-01 -0.37325E-01 -0.34161E-01 -0.34161E-01
Y= 13.00 RB= 1.96 ORDY= -0.07 DA	-0.86181E-02 -0.31216E-01 -0.26463E-01	-0.23324E-01 -0.20585E-01 -0.17989E-01	-0.15371E-01 -0.12787E-01 -0.10094E-01 -0.69402E-02	0.15376E-02 0.75482E-02 0.15697E-01 0.27745E-01 0.47386E-01	0.83784E-01 0.14985E 00 -0.36667E-01 -0.23305E 00 -0.17063E 00	-0.13477E 00 -0.11549E 00 -0.10393E 00 -0.95920E-01 -0.83758E-01 -0.76488E-01	-0.69281E-01 -0.62529E-01 -0.56591E-01 -0.51127E-01 -0.45873E-01 -0.40800E-01 -0.36317E-01
Y= 10.54 RB= 2.13 DRDY= -0.07 DF	-0,93680E-02 -0.32431E-01 -0.25832E-01	-0.21442E-01 -0.17441E-01 :0.13546E-01	-0.95376E-02 -0.54099E-02 -0.94533E-03 0.42519E-02 0.10213E-01	0.17354E-01 0.25270E-01 9.34265E-01 0.55973E-01 0.84813E-01		-0.19603E 00 -0.16538E 00 -0.14691E 00 -0.1237E 00 -0.1122E 00 -0.10095E 00	-0.89276E-01 -0.78494E-01 -0.606405E-01 -0.52606E-01 -0.55494E-01 -0.34084E-01
Y= 1.73 RB= 2.33 DRUY= -0.07 DI	-0.92046E-02 -0.30207E-01 -0.22896E-01	-0.17407E-01 -0.13405E-01 -0.91654E-02	-0.497446-32 -0.803016-33 0.352776-32 0.875106-02 0.145416-01	0.21664F-01 0.30749E-01 0.43317E-01 0.62349E-01 0.94064E-01	0.152996 00 0.254246 00 -0.114546 00 -0.423436 00 -0.300436 00	-3.23464E 30 -0.19974E 00 -0.17834E 30 -0.16263F 00 -0.14844E 03 -0.11979E 00	-0.10419E 0) -0.89876E-01 -0.7755E-01 -0.66450E-01 -0.56423E-01 -0.47275F-01 -0.31285E-01
Y= 5.04 K9= 2.53 DRDY= -0.07 DI	-0.78013E-02 -0.25726E-01 -0.13463E-01	-0.13546E-01 -0.90834E-02 -0.49704E-02	-0.10043E-02 0.288 0E-02 0.69516E-02 0.11657E-01 0.16939E-01	0.23442F-01 0.32013F-01 0.4'176F-01 0.6 221F-01 0.95514F-01	0.15690E 00 0.26406F 00 -0.13082E 00 -0.46802E 00 -0.33840E 00	-0.26974E 00 -0.23306E 00 -0.20979E 00 -0.19134E 00 -0.17351E 00 -0.13457E 00	-0.11343E 00 -0.95038E-01 -0.65198E-01 -0.65486E-01 -0.54486E-01 -0.44013E-01 -0.34958E-01
Y* 2.50 RH= 7.71 DRUY= -0.07 D	-0.52336F-02 -0.21761E-01 -0.14833E-01	-0.10179E-01 -0.60560E-02 -0.24179E-02	7.922346-03 0.407916-02 0.723756-02 0.108726-01	0.20063E-01 0.27192E-01 0.37660E-01 0.54692E-01	0.14218F C0 0.24702E O6 -7.12018F O9 -0.46241E N0 -3.34640E O0	-0.25078E 00 -0.25078E 00 -0.2288PE 00 -0.1875E 00 -0.18389E 00	-0.113866 00 -0.929718-01 -0.759528-01 -0.619358-01 -0.34418-01 -0.394508-01 -0.394508-01
Y= C.0 48= 2.99 DPOY= 0.0	-0.13501F-02 -0.76055E-01 -0.17897E-01	-0.12060E-01 -0.74496F-02 -0.38285E-02	-0.86047E-03 0.16713E-02 0.39384E-02 0.64407E-02	0.12912E-01 0.18499F-01 0.27C88E-01 0.41639F-01	0.11830° 00 0.21264F 00 -0.40508E-01 -0.40508E 00 -1.31552E 00		-0.10870E 00 -0.46572E-01 -0.56438E-01 -0.45736E-01 -0.37076E-01 -0.36778E-01
THETA D	20.00	30.00 40.00 50.00	60.00 70.00 80.00 90.00	110.00	150.00 170.00 190.00 190.00	230.00 230.00 240.00 240.00 250.00 261.00	286.00 280.00 320.00 820.00 830.00 830.00 830.00 830.00 830.00

PRESSURE COEFFICIENTS AT AING, END OF THREE DIMENSIONAL MUDIFICATION OF

47

8.350 REFFRENCE LENGTH= 0.0 PARAMETERS USED IN 30 MJDIFICATION OF WING COMPUTATION IDIS* 4 NBDOL* O MEXIT* 1 MOD* PANAMETERS IN FIRCE/MIMENT COMPUTATION 1JET OF DIAMETER= 2.250 XGS 10.718 2CGs

FORCES AND MOMENTS

X-FORCE Y-FORCE Z-FORCE -0.599E-02 0.0 -0.213E 00

PITCHING 404ENT COMPUTED ABOUT AXIS THRU C.G.= -0.176E 00
YAWING MOMENI COMPUTED ABOUT AXIS THRU C.G.= 0.0
ROLLING MOMENI COMPUTED ABOUT AXIS THRU C.G.= 0.0

END UF WING COMPUTATION

FIGURE 20. FORCES AND MOMENTS ON SAMPLE WING BY TRANSFORMATION METHOD

FIGURE 21a. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AT STATION Y = 5.04

 $U_{\infty}/U_{j}=0.2$, $\alpha=\beta=0^{\circ}$, Lift Jet

FIGURE 21b. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AT STATION Y = 7.7925"

 $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{\circ}$, Lift Jet

50

POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE WING AT STATIONS Y = 10.545 AND Y = 16.05 FIGURE 21c.

 $U_{\infty}/U_{j}=0.2$, $\alpha=\beta=0^{0}$, Lift Jet

Comparison of forces for sample problem with wind tunnel test date of Appendix I is shown in Figure 22, together with further calculations and test data. The calculated power-induced lift follows the trend of the test data. The calculated values show a greater loss in lift than the test data. This is consistent with the surface pressure results shown in Figure 21. The reasons for these differences are not known at the present time.

c. Method Applicability and Limitations

This method is generally applicable to power effects on the wing. In addition to the present configuration, fairly extensive calculations on a rectangular wing of aspect ratio equal to 3 with a modified NACA 65-010 section have also been performed (Figure 23(b)). The jet (or jets) was (were) situated at the midspan of the wing and exhausted directly from the lower surface. But the chordwise location of the jet was allowed to vary (three positions: 20 percent, 50 percent and 80 percent of the chord length from the leading edge) and the number of the jets could be one or two. Most of those calculations have been compared with the wind tunnel test data which were obtained at Northrop prior to the present study. Some of these comparisons are shown in Figures 24 and 25.

When the jet exhausts directly from the wing surface, the induced velocity distribution generally shows large and abrupt changes across the jet station. If two iterations are planned these iterations should be smoothed out. Otherwise, the computed results following the second iteration may exhibit unacceptable oscillations. If the calculation is limited to one iteration no smoothing was found to be necessary. Since the lift jet did not exhaust directly from the wing surface in this sample problem, the input data was not smoothed, even though two iterations were computed.

Under the present scheme all the vertical velocity components at any given station, regardless of the chordwise position, are reduced equally to a magnitude of one third of the lifting line downwash value (see pages 101-102 of Volume I for details), Since the aforementioned procedure is somewhat arbitrary some limitations on the method presumably exist. For flow conditions radically different from the present one, the approach given here may have to be modified.

The present method, even when the three-dimensional modification is used, does not include all the three-dimensional effects. The method is, in effect, a quasitwo-dimensional one. Like the widely used quasi-one-dimensional approximation for diffusers and nozzles, its applicability is not as restricted as it may appear. In every example considered, the agreement between calculation and test data is fairly satisfactory. Because of the quasi-two-dimensional nature, however, computations beyond two

The second of the properties of the second o

FIGURE 22. POWER-EFFECT LIFT FOR WING WITH LIFT JET

FIGURE 23. CONFIGURATIONS TESTED AT NORTHOP

FIGURE 24. POWER-EFFECT PRESSURE COEFFICIENTS ON NORTHROP WING AT STATION Y = 2.0"

WING AT STATION Y = 2.0" $U_{\infty}/U_j=0.1, \ \alpha=\beta=0^{\rm o}, \ {\rm Two\ Midspan\ Jets\ at\ X/C=0.5\ and\ 0.8}$

 $U_{\infty}/U_{j}=0.1$, $\alpha=\beta=0^{o}$, Two Midspan Jets at X/C = 0.2 and 0.5

56

iterations may not be warranted. In practice, one iteration is what is usually needed. Two iterations have, nevertheless, been carried out in some selected problems and also in the sample problem here. This is more for demonstration purpose than for utility.

and a separate of same and second and sade of the second o

The present computer program is, in a formal sense, capable of treating both power-on and power-off problems. However, for the power-off case, the wing tips exert a much larger influence upon the flow property than in the case when power effects are being calculated. This important three-dimensional effect has not been adequately accounted for by the present method and the calculations from it are likely to be less accurate. Therefore, the lifting surface theory is recommended under such circumstances.

5. APPLICATION OF LIFTING SURFACE THEORY TO WING

Lifting Surface theory may be utilized to determine the load distribution and aerodynamic coefficients for a given arbitrary planform and specified downwash distribution. The Lifting Surface computer program evaluates power effects on the wing by considering a known, jet-induced downwash distribution.

There are three main components to the program which may be used together in one continuous operation or independently. The downwash control point matrix [D] is generated in the first part of the program, its least squares inverse $[D]^{\Psi}$ is generated in the second part of the program. The pressure distribution produced by the specified downwash matrix [W] is computed by the third component of the program. The downwash control point matrix and its inverse depend only on the planform, the location of the downwash control points and the number of terms in the loading series. Both matrices are independent of the downwash distribution. Once the inverse is computed it forms an input to the third component of the program, where the pressure distribution is computed. Thus $[D]^{\Psi}$ may be retained in punched card form and then used as input for computing the pressure distribution due to specified downwash distributions. The inverse need not be recomputed as long as the planform, location of downwash control points and the size of the pressure loading series remain unchanged.

The Lifting Surface program is a modified version of the computer program for designing and analyzing subsonic lifting surfaces documented in Reference 12. The design options have been eliminated. The capability to calculate pressure distributions produced by a specified cambered surface has also been deleted.

a. Sample Problem Computation

For the sample problem being considered the Lifting Surface program is now used to determine the load distribution and aerodynamic coefficients on the wing, produced by the jet-induced downwash computed in Section II.3.

Figure 26 shows details of the planform of the wing and indicates the location of downwash control points. Figure 26 is identical to Figure 8 of Section II.3, except that all dimensions are now based on a semi-span of unity.

FIGURE 26. DOWNWASH CONTROL POINTS ON WING

(1) Input for Sample Problem

The production of the producti

The input cards required for the sample problem are shown in Figure 27. Since all three main components of the program, discussed in detail above, are being executed in one continuous operation, some duplication of input data occurs.

Card 1 lists two control indices, specifying which of the three major components of the program are to be executed. The combination of ISTART = 1, ISTOP = 3 will execute all three major components. Consequently, the program will start by computing the downwash control matrix [D], will find the inverse $[D]^{\Psi}$ and will compute the load distribution and aerodynamic coefficients.

Card 2 is a title card.

Card 3 lists the number of spanwise stations on semispan where downwash control points are to be located, NS = 10. It specifies the number of spanwise modes to be used in the pressure loading series, M = 6 and the number of chordwise modes, N = 8. The input control index NEED = 1 indicates that the first chordwise mode, i.e., $\cot \theta/2$ mode, is to be used in the computations. The number of leading and trailing edge flaps are specified with NFLAP = 0. The next two integers are print and punch controls for the downwash control matrix [D]. With NPR = 0, NPU = 0, no printed or punched output on [D] will be generated. The print control NAY = 0 specifies that no intermediate print is to be generated during the computation of [D]. The number of leading edge discontinuities 1: pecified as NØLED = 2, and the number of trailing edge discontinuities, NØTED = 2, is indicated.

FIGURE 27. LIFTING SURFACE THEORY PROGRAM INPUT DATA FOR SAMPLE PROBLEM

; ;		-	•	· · · · · · ·	•	† :			1-4-1	4	** **	*
Ö	6	0	1.00	9	~	5	010	٥/	1	(1	4	
_	7	~	٥		7	1		3				•
. 2.	. 2667	0		Ö								
50	. 75		.25	.35	•	T.5.	35	9	5	52	.85	.95
2	.25		.388	525.		80	.95	1	80	4 4 1 4	1 1 1	4
	•		:	* * % * * * * * * * * * * * * * * * * *	4	•	•	•		4 ***		
	3	•	•	* · · · · · · · · · · · · · · · · · · ·	•		:	;	***************************************	4 4 4 4	, , , ,	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
533.	.2669	-			1 1		The second control of	4 4		1 1		
	:	-	•	:		1		1	1	1	4	
10/0	0 10 10 10 10 10 10 10 10 10 10 10 10 10	200	10/10/		4 .	1 1						
i					, ,		4					
	**, .	-	•		:			4	**	1		
la contraction	TAN SEAWY	<u>2</u>			<u> </u>		THE PARTY OF THE P	• • • • • • •	7 7 1	-	r	
AS T	AS L'INCHED OUTPUT IN SE	TPU	IT IN SEC	CTION II. 3. b		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4	•	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 .		
		•			1	•	i	1		1		
•	- - -	4	1	4. 4. A sectodar 44	!					4		4
	• •	•			1 4 4	1 4 7 4 4 3	4.4.4		1		1	

Company of the second of the s

FIGURE 27. (Concluded)

Card 4 indicates that the chord rise locations of the downwash control points must be specified through input cards at each spanwise station by listing SPACE = 0. It also lists the Mach number, FMACH = 0., and defines the root-semichord F = .2667.

Cards 5 and 6 list the spanwise locations of the downwash control points.

Card 7 may be left blank for a wing with no leading or trailing edge flaps.

Card 8 specifies the tangents of the sweepback angles of the leading edges of the geometric regions.

Card 9 specifies the tangents of the sweepback angles of the trailing edges of the geometric regions.

Card 10 lists the spanwise locations of the leading edge discontinuities.

Card 11 lists the spanwise locations of the trailing edge discontinuities.

Card 12 specifies the number of downwash control points at each spanwise station.

Cards 13 - 22 list the chordwise locations of the downwash control points at each spanwise station (in percent of local chord).

This completes the input required for the first main component of the program, which computes the downwash control point matrix [D].

Card 23 is a title card for the next main component of the program.

Card 24 lists the number of rows in the downwash control point matrix or the number of control points contained in [D], NRØW = 100. It specifies the number of columns in [D], NCØL = 36. This is the product of the chordwise and spanwise pressure modes. The control index NREAD = 0 indicates that the second main component of the program is being executed in a continuous operation and hence [D] will be read from a scratch tape, rather than input cards. With NPR = 0, NPU = 0, no printed or punched output will be obtained for $[D]^{\psi}$, the inverse of the downwash control point matrix. The print control NAY = 0 specifies that no intermediate print is to be generated during the computation of $[D]^{\psi}$.

This completes the input for the second main component of the program, which inverts the downwash control point matrix [D] to obtain $[D]^{\psi}$.

Card 25 is a title card for the third main component of the program which computes the load distribution and aerodynamic coefficients for a specified downwash matrix.

Card 26 lists the number of chordwise modes used in the pressure loading series, N = 6, and the number of spanwise modes, M = 6. It specifies the number of spanwise stations where downwash control points are located, NS = 10, and specifies the number of rows in the downwash control point matrix, NRØW = 100. It specifies the number of spanwise stations where the chordwise pressure loading distribution is to be calculated, NETA = 6. It lists the number of wing discontinuities, NDISC = 2 and the number of leading and trailing edge flaps, NFLAP = 0. The intermediate print control is again NAY = 0. It also specifies the number of chardwise points at which the pressure loading is to be computed, NPSI = 10.

Card 27 lists the number of angles of attack to be treated, NALFA = 1. It also specifies the number of EPSLN's to be read later, NEPSLN = 1. The input control NEED = 1 indicates that the first chordwise mode, i.e., the cot $\theta/2$ mode, is to be used in the computations. The control index NREAD1 = 0 again indicates a continuous operation and thus [D] will be read from a scratch tape rather than from input cards. The next control integer, NREAD2 = 1 indicates that the downwash matrix [W] is read from input cards. The number of downwash distributions to be analyzed is specified with NW = 1.

Card 28 specifies the root semi-chord, F = .2667. It indicates that the chord-wise locations of the downwash control points are specified through input cards at each spanwise station by listing SPACE = 0. It lists the spanwise location of the edge of the fuselage, YF = 0. It indicates how the points at which the pressure loading is calculated are located chordwise, by giving the chordwise spacing DPSI = .1.

Card 29 lists the spanwise coordinates of the downwash control point stations.

Card 30 specifies the spanwise locations where the pressure loading is to be computed.

Card 31 lists the angle of incidence between the centerline of the fuselage and wing root chord in degrees, EPSLN = 0.

Card 32 specifies the angle of attack in degrees, ALFA = 0.

Card 33 may be left blank for a wing with no leading or trailing edge flaps.

Card 34 specifies the chord at each spanwise discontinuity.

Card 35 gives the location of each spanwise discontinuity.

Card 36 lists the distance from root leading edge to the leading edge at each spanwise discontinuity.

Card 37 specifies the number of downwash control points at each spanwise station.

Cards 38 - 57 specify the tangent of the downwash angle at every control point. Cards 38 - 57 are the downwash matrix [W] generated in Section II.3 and shown in tabulated form in Figure 11 of Section II.3.

(2) Output for Sample Problem

With the choice of the punch controls described above, only printed output is obtained.

Figure 28(a) shows a composite of the printout generated by the first main component of the program (CHAIN 1, 8) which computes the downwash control point matrix.

Figure 28(b) shows the printout generated by the second main component of the program (CHAIN 6, 8) which inverts the downwash control point matrix [D]. The determinant of the unit matrix is printed out as a check on numerical accuracy.

Figure 28(c) shows the output from the third main component of the program: (CHAIN 7, 8) which calculates the pressure loading and aerodynamic coefficients.

Geometric parameters of the wing are shown in Figure 28(c) and are all identified. Aerodynamic coefficients and the pressure loading calculated at the spanwise stations specified are shown in Figure 28(c). Again all computed variables are identified.

b. Applicability and Limitations

The program is applicable to continuous surfaces of arbitrary planform and no interference effects such as slots, ground effects, large dihedral angles or end plates are included. The program does contain provisions for body effects.

Downwash control points must not be located at or near the leading edge, since the cotangent elements of [D] would become excessively large and dominate the solution for the pressure coefficient matrix [A]. Due to the computing techniques utilized, downwash control points must not be located at discontinuities in the planform and at flap hinge lines.

CHAIN (1,8)

CALCULATION OF DOWNGASH CONTROL POINT MATRIX FOR SAMPLE PROBLEM

NO. OF SPANNISE MODES . 5

NO. OF CHURDWISE MODES - 6

NO. OF FLAP MODES . O

COTANGENT MODE, NEED . 1

POSITION OF FLAP 1 = 0.0

		100	DOWNWAS	H CONTROL	STAICS	MACH NO.=0.0
DOWNWASH	CONTROL	POINTS	1 7	3 10	Y= 0.49999	397E-U1
DOWNWASH	CONTROL	POINTS	11 T	0 20	Y= U.14999	998E 00
DOWNWASH	CONTROL	POINTS	21 T	0 30	Y= 0.25000	000E 00
DOWNWASH	CONTROL	POINTS	31 T	ე 4ე	Y= 0.34999	995E 30
DOWNWASH	CUNTROL	POINTS	41 T	ე	Y= 0.44999	999E 00
DOWNWASH	CONTROL	POINTS	51 T	C 50	Y= 0.54999	195E 00
DOWNWASH	CONTROL	POINTS	61 T	70	Y= 0.54999	198E 30
DOWNWASH	CONTROL	POINTS	71 T	J PO	Y= 0.75000	SOJE ON
DOWNWASH	CONTROL	POINTS	81 T	0 40	Y= 0.64999	490E JU
DOWNWASH	CONTROL	POINTS	91 T	J 100	Y= 0.94994	344E 00

FIGURE 28(a). LIFTING SURFACE THEORY PROGRAM PRINTED OUTPUT I OR SAMPL® PROBLEM

CHAIN (5.6)

INVERT DOWNWASH CONTRUL POINT MATRIX FOR SAMPLE PROBLEM

DETERMINANT OF UNIT MATRIX = 0.100000000 01

FIGURE 28(b). (Continued)

CHAIN (7.4)

CALCULATION OF PRESSURE LOADING DISTRIBUTION FOR SAWLE PROBLEM

NO 300Y

GEOMETRIC PANAMETERS

AVERAGE CHORD, CAVE = 0.400130

MEAN AERODYNAMIC CHORD, CUAR = C.414341

LOCATION OF 1/4 CBAR, XBAR = 0.18J132

SPANWISE LUCATION OF CHAR. YEAR = 0.444514

RESULTS FUR ALFA= 0.0 , AND EPSIL'IN= 0.0 DEGREES

LIFT COEFFICIENT, CL = -0.11013

MOMENT COFFFICIENT, CM = -0.00069

INDUCED DRAG COEFFICIENT, COT # J.03095

PRESSURE LOADING DISTALBUTION, PR

SPAN =	0.1000	0.2500	3.3880	0.5250	3.4003	0.9500	
FRACTION	ł						
OF CHOKE							
0.1000	-0.2422	-0.2231	-0.1915	-0.1576	-9.0431	-0.0501	
0.2000	-0.1884	-C.1703	-0.1437	-0.1185	-0.0547	-0.0327	
0.3000	-0.1639	-0.1499	-0.1285	-0.1073	-0.0505	-0.0275	
0.4000	-0.1360	-0.1262	-0.1098	-0.0922	-0.2520	-0.0231	
0.5000	-0.1072	-0.1013	-0.0496	-0.0755	-0.0419	-0.0190	
0.5000	-0.0534	-0.0811	-0.0737	-0.0529	-0.0350	-0.0162	
0.7000	-0.0659	-0.0667	-0.0630	-0.0549	-0.0319	-0.0147	
0.8 000	-0.0493	-0.0526	-0.051/	-0.0461	-0.0292	~0.0129	
0.9000	-0.0772	-0.0301	-2.0307	-0.0279	-0.0167	-0.0084	
1.0000	-0.0000	-0.0000	-0.0000	-0.0000	0.0000	-0.0000	
		LOCAL SI	EMICHOPO. (C/2			
	0.2533	0.2333	0.2150	0.1967	0.1401	0.1431	
		CL C/CA	/ E				
	-0.1841	-0.1645	-0.1355	-0.1051	-0.9508	-9.0221	
		C4 C**2	CAVE CHAR				
	-0.0132	-0.0352	0.0008	0.0044	0.0050	0.0028	
		CO+C/CA	ve .				
	0.0029	0.0017	0.0009	0.0003	-0.0000	-0.0000	

FIGURE 28(c). (Concluded)

c. Additional Calculations and Comparison with Test Data

Once the inverse of the downwash control point matrix has been obtained for a particular wing planform, it is a relatively easy task to obtain the power induced aerodynamics for a range of downwash distribution corresponding to different power conditions. Figures 29a through 29g show calculations for the test model, described in Appendix I, compared with test data for a number of power configurations, velocity ratios and angles of attack.

The interference lift for the vectored thrust, forward position, 90° nozzle deflection angle is shown in Figure 29a for a range of velocity ratios. The wing calculations show that, for all velocity ratios, the induced lift L_i (lift with power on minus lift with power off) is less than for the static case that is, $U_{\infty}=0$. In contrast the test data for wing plus body indicate that there is a lift augmentation at the higher velocity ratios. For nozzle deflection angles of 45° (Figure 29b), although there is now no positive jet interference lift at the higher velocity ratios, the induced lift from the test data is nearly constant for $.3 \le U_{\infty}/U_{j_0} \le .5$, whereas the calculations indicate the induced lift decreases as the velocity ratio increases.

For both the above cases the induced lift was determined from the test data using the inlet plugged as the unpowered case. With the inlet open the mainstream flow through the ejector produces a "power" effect which can be quite large as indicated in Appendix I.

The body alone lift, with power on, for the vectored thrust, forward position, 90° nozzle deflection angle is shown in Figure 29c. Since this configuration was not tested with the inlets plugged, it is not possible to determine the induced lift. However, due to model symmetry, it is reasonable to assume that the power off plugged inlet lift will be quite small and so that the induced lift graph for the body alone configuration will be very similar to Figure 29c.

The positive lift arises due to power induced uploads on the nacelles and body ahead of the jet exits. If this lift increment is subtracted from the wing-body test data, we get very good agreement with the wing calculations.

Figures 29d and 29e show comparisons between the calculations and test data for the aft nozzle positions with two vectoring angles. For the aft position the body alone power effects are expected to be smaller than for the forward position due to the jet exhausts being farther removed from the nacelles. The agreement between test and calculations is seen to be extremely good for all velocity ratios.

Figure 29f shows calculations of the induced lift on the wing with the lift jet operating at a velocity ratio of .20 for a range of α . For $\alpha \leq 8^{\circ}$, Li/ $_{T}$ and hence

 C_{Li} (induced lift coefficient), is effectively independent of α . For larger α the calculated induced lift is still approximately constant whereas the test data shows a sudden increase in induced lift. This is due to a change in the stalling characteristics for the wing, deduced from the pressure measurements, brought about by the jet induced flow field producing a downwash over the wing for this particular jet arrangement and velocity ratio.

A STATE OF THE STA

This result identifies an area in which care must be taken in using the prediction methods. It has been assumed that one can calculate power effects and add these to the unpowered aerodynamics of the vehicle. This procedure of superposition appears to be justified for the linear range of α , but must not be used for nonlinear α . Instead, these two effects must be considered together for nonlinear α . It is possible that the induced flow field due to the power could be included in the nonlinear wing aerodynamics procedure presented in Section VII of Volume I but this has not been studied under the present investigation.

Similar observations may be made for the vectored thrust configuration. Calculations and test data are shown in Figure 29g.

Calculations of pitching moment due to power effects show that there is a nose up pitching moment for body alone, the magnitude of which does not change noticeably with the addition of the wing. This result is in agreement with the calculations.

FIGURE 29a. INTERFERENCE LIFT FOR VECTORED THRUST, FORWARD POSITION, 90° DEFLECTION ANGLE, $\alpha = \beta = 0$

FIGURE 29b. INTERFERENCE LIFT FOR VECTORED THRUST, FORWARD POSITION, 45° DEFLECTION ANGLE, $\alpha = \beta = 0$

FIGURE 29c. LIFT FOR VECTORED THRUST, FORWARD POSITION, 90° DEFLECTION ANGLE, $\alpha = \beta = 0$

FIGURE 29d. INTERFERENCE LIFT FOR VECTORED THRUST, AFT POSITION, 90° DEFLECTION ANGLE, $\alpha = \beta = 0$

FIGURE 29e. INTERFERENCE LIFT FOR VECTORED THRUST, AFT POSITION, 45° DEFLECTION ANGLE, $\alpha = \beta = 0$

FIGURE 29f. INDUCED LIFT VERSUS ANGLE OF ATTACK, LIFT JET $(U_{\infty}/U_{jo}=.20)$, $\beta=0$

FIGURE 29g. INDUCED LIFT VERSUS ANGLE OF ATTACK, VECTORED THRUST, FORWARD POSITION, 90° DEFLECTION ANGLE $(U_{\infty}/U_{jo} = .20), \beta = 0$

SECTION III

POWER EFFECTS ON THE FUSELAGE

The calculation of the jet induced loads on a fuselage is accomplished by using the transformation method with the disturbance velocities at the surface of the body calculated by the jet program. To use the transformation method, it is necessary to map the body at different body stations. This section describes the application of these methods to the calculation of fuselage loads.

1. SAMPLE PROBLEM

To demonstrate the application of the methods, the fuselage of the wind tunnel test model which was tested during this investigation will be used. This fuselage is described in Appendix I of this volume. A sketch of the model fuselage with coordinate system is shown below.

The power and flight conditions which must be specified to complete the problem description are as follows:

Jet location (single jet issuing from the fuselage):

$$X_j$$
 = 208 inches
$$Y_j = 0$$

$$Z_j = -30.8 \text{ inches}$$
 Flight Conditions:
$$\text{Jet diameter} = 22.5 \text{ inches}$$

$$\alpha = 0$$

$$\text{Jet velocity ratio } \frac{U_\infty}{U_{io}} = 0.2$$
 $\beta = 0$

All the above dimensions are ten times wind tunnel model dimensions, as will be the case throughout this section.

Jet inclination angles:

the state of the second second second second second second

The jet will be taken to be exhausting along the negative Z direction for the sample problem.

2. APPLICATION OF THE MAPPING METHOD

A complete description of the fuselage will not be given here since this is not necessary to describe the application of the mapping method. Instead, a complete treatment of one section of the body will be given, this being sufficient to demonstrate application of the method.

Figure 29 shows the section of the wind tunnel test model body at station 264.25 together with terminology for mapping into a circle. This section has been rotated 90° counterclockwise so that the axis of symmetry is along the X-axis with the bottom of the section cutting the positive X-axis. This coordinate system is not related to the original fuselage coordinate system but is in the terminology used in the mapping program. This location of the section is the proper one for the mapping method, and the mapping coefficients obtained with this orientation are in the correct form for the transformation method. Figure 30 shows the inputs to the mapping computer program required to obtain a mapping of this section.

The first card contains four integers. The first of these number specifies the number of points specified about the section. The second number s, ecifies the number of corners around the section (for a symmetrical section this would represent the number of pairs of corners except for corners on the X-axis), which for this section is

The second and the second second

FIGURE 30. STATION 264.25 OF TEST MODEL FUSFLAGE

29.3	29.3	29.3	29.3	29.3	29.3	29.3 29.3 29.212 27.956	27.956
5.656		20.041	17.076	14.085	11.09	20.041 17.076 14.085 11.09 8.0952 5.1004	. 5.100
2.1055		1	-6.8791	-9.8739	-72.869	8842 -6.8791 -9.8739 -12.869 -15.863 -18.858	-18.858
-21.847	1	-27.761	-30.617	-33.291	-35.620	-27.761 -30.617 -33.291 -35.620 -37.446 -38.744	-39.744
-39.609		-40.485	-40.652	-40.7	1	485 -40.652 -40.7	1
0	2.995	5.9899	8.9848	11.98	19.975	9899 8.9848 11.98 14.975 17.964 20.648	20.648
22.557	23.784	24.535	24.945	25.096	25.1	535 29.945 25.096 25.1 25.1	25.1
25.7	25.7		25.1	25.7	25.1	25.7	25.098
24.874	24.535	23,963	23.069	27.719	19.839	963 23.069 21.719 19.839 17.468 74.770	14.770
11.904	8.9611	5.9845	9895 2.9994 0.	0	4	4	1 1 1
0.0							
20 X		2 2					

FIGURE 31. INPUTS TO MAPPING PROGRAM FOR SECTION AT STATION 264.25

zero. The third number represents the number of terms in the expansions for the potential and for the mapping function. The last number on this card specifies that the section being mapped is symmetrical.

Cards 2 through 6 specify the X-coordinates of the (in this case) 37 points being taken about the section starting on the positive X-axis and ending on the negative X-axis. Cards 7 through 11 specify the Y-coordinates of these same points on the section.

Since there are no corners to be specified on this section, the next number (on card 12) specifies what shift is desired to translate the body along the X-axis. In this case there is no need to shift the section location as it is sufficiently well centered.

the design of the and where the contest and the second transfer of the second of the second second of the second o

Card 13 specifies inputs needed to specify parameters for the numerical integration of the mapping function obtained. The first two numbers specify the X- and Y- locations of the initial point of the mapping.

The next three numbers specify the angular rarge (about the mapping circle) of points to be obtained on the section, and the approximate spacings to be obtained. In this case it is specified that points from 0° to 180° around the mapping circle are to be calculated and are at an interval size of 5°.

Card 14 specifies a similar set of parameters for the analytically integrated mapping. It specifies that 37 points are to be obtained with a spacing of 5° of theta and that the points are to start at $\theta = 0^{\circ}$.

Figure 31 shows the output of the mapping program. These outputs have been described in Section II.2 and so will not be further explained here.

Figure 32 shows a plot of the mapping as obtained by analytical integration. A comparison of Figure 32 and Figure 29 shows that the mapped section must be shifted 4.42 inches in the negative X direction to give the best fit. This, then, is the value of the constant term in the mapping.

The complete tabulation of coefficients for the wind tunnel test model body with canopy off are shown in Table II. The values of dr_c/dx , the rate of change of the mapping circle radius with body station, have been obtained by graphical differentiation of r_c plotted versus x. In addition to the coefficients tabulated in Table II, the initial mapping coefficient a_1 , required as input to the jet program, is equal to 1.0 for all the fuselage stations.

COMPUTATIONS FOR S AND ALPHA VERSUS THETA.

the second secon

			01	0.1	20	02	02	20	02		02	ال ا	20	02	20	20	02	92	02	02	02	02	03	03	03	03	03	03	e 0	60	03	03	03	03	60	03	60	E 0
			56	Ę,	36	4	2E	36	7	E	90	96	4	46	96	Š	9	2E	3	C1	4	S S	4	4	9E	2 E	2E	9	ш	ال	2E	86	9	#	75	ZE.	ш	90
	T.	ာ	00	0	25	76	3	96		Ž.		70	22	~	13	49	8 7	27	42	ø	33	\sim	00	*	80	1127	1	23	53	35	-	47	53	58	40		4	
	THET			•		•				•	•				•	•								•		•	•	•	•	٠					•			•
			0	95	05	02	02	25	70	02	??	70	20	02	20	02	05	02	02	70	33	03	03	60	03	23	33	93	03	50	5	03	03		03	03	33	03
			65	ŝ	43	33	7	3	S	7	37	57	03	6	62	24	2	03	69	95	32	47	14	53	6	53	33	20	3	87	83	66	~	~	-	585	ro	O.
	UMEGA	0	2 0	;;	.170	22	270	315	364	21.0	460	507	550	909	661	721	785	852	879	987	105	111	111	122	126	131	135	133	143	146	150	2	15	16	9	.171	17	17
	ō																																			o		
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	Ċ	0	€ 03	0	0
	⋖	000	000	000	000	3000	423	152	987	923	147	914	487	893	440	91.	011	166	003	666	000	000	000	025	195	481	848	392	191	241	595	879	59	7	85	•	9	90
	1 PHA	6.	•	٠.	γ,	•	•	6	~	٦.	7	٦.	∹	7	٦.	7	7	7	~	~	٦.	٠٦	٦.	٦.	~	. 18	٦.	٦.	۲,	٠,		.2	Ň	.2		0.26		• 2
	•																																			010		
		T.	T.	ů,	T	ů	ű,	L	L	7	L	ı,	₽	T	L	f	å	Ţ,	ı,	ı,	L	T	L	L	Ŧ	'n	i.	ů.	L	ı.	T	L	Ţ	Ŧ	L	3E-0	Ţ	i.
		.5	9	58	9	19	90	99	7472	66	19	16	22	50	40	98	46	3	=	14	88	28	44	~	37	8682	31	Ĉ,	90	80	48	0	58	86	8	0843	03	Ь. С.
	>	4	?	٤,	2	۳.	Ę,	4	٣,	٠,		3	ď,	5	~	2	.2	~	~	2.	.2	~	.2	٧.	2	•2	٠,	Ġ		ń	4	ŵ	۳,	٣,	۴	3	Ę,	Ş
			70	01	70	02	02	20	70	02	02	02	02	70	20	02	02	20	02	02	02	C2	20	20	02	70	02	02	02	05	02	02	20	02	20	03	o,	g
			~	366	20	0	S	σ	369	4	_	•	~	ø	~	•	0	2	~	S	0	S	0	4	•	84E	Q.	4	0	Ø	8	~	S	~	S	85E	Ω	5
	S	0	ው	98	3D	13	64	3	60	39	69	66	5	59	8	19	49	39	~	39	39	ç.	59	58	88	718	48	8	8	38	99	98	28	58	88	7	90	0.4
		Ö	ċ	ć	ငံ	ં	ပ်		c		င်	ċ	•	ပံ	ċ	ં	ċ	ċ	ó	ó	ဂ	ဂ	ં	ံ	•	ċ	ċ	ċ	ċ	ċ	ં	ċ	ò	ċ	Ç,	ပ်	ċ	ċ
!		C.	0	0	0	0	0	0	0	0	0	ပ	0	0	0	0	0	0	0	C	Ç	0	0	0	0	0	0	()	0	0	0	0	0	0	၁	05	0	0
		8	53	8	47	5	9	93	•	2	43	80	29	78	41	73	.3	88	91	66	26	72	C	92	53	106E	C 5	73	32	49	72	20	64	3	47	25E	62	8
	α	6.7	Q.	5	0	31	~	34	34	34	\sim	31	30	28	~	26	25	52	2	25	92	56	Ø	5	~	33	•	ğ	33	O.	0	41	7	7	~	4	0	
:		0																							_	0	C	0		_						о		0
•			ш	o u	о ш	m O	E.	O W	m O	ш	ш	iii	<u>п</u>	ш Ш	0	.п С	ш	ш С	O Li	m O	O Li	Ш	Ш	O W	О Ш	ш О	D)	0	о ш	о ш	ပ u	о ш	0	O W	O W	€ 01	<u>о</u>	
•			951	8 99	848	086	975	964	649	557	784	535	945	960	100	001	100	907	100	301	100	100	00.1	00.1	049	874	535	963	004	417	839	408	770	406	611	8 +5	446	
•	>	•	٠,	•		~	~	~	٠,		.2	~	2.	.2	5.	~	7.	7	٠,	٧,	. 2	~	٧.	7.	7	0.24	٧.	~	. 2	٧.	٦.	~	7	~	8	0.39	۶,	•
																																				95 (
		3 E	e E	E E	0 E	'n.	æ	E S	E S	5	3 E	9	E S	S.E.	Ð.	2	w +	u.	m	2 E	Ξ	F	ä	å.	3E	Ä	m m	w w	7 E	ų.	E E	m	ш	w	u	u,	w	w
:		930	930	930	930	930	930	921	795	506	243	900	707	408	109	960	001	105	893	884	379	873	286	586	385	184	485	176	90	329	562	447	87	ŝ	0	0485	00	٠.
) : !	×	•	•	٠	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	•	•	٠	ċ		ċ	3	ċ	ď	ċ	ċ	٠	•	• ز		ċ		•	4.0-	•	•
•																				•	1	'	•	1	1	ı	,	1	•	•	1	•	•	'	1	٠	•	•

OUTPUT OF MAPPING FUNCTION PROGRAM AT TEST FUSELAGE STATION 264.25 FIGURE 32.

SECTION MAPPING BY NUMERICAL INTEGRATION.

- u	.84908E-0	.16982E 0	.25472E 0	.33963E O	.42454E 0	.50945E 0	.59436E 0	.67926E 0	.76417E 0	.84908E 0	.93399E O	·10189E 0	.11038E 0	.11887E 0	.12736E 0	.13585E G	.14434E 0	.15283E 0	.16132E 0	.16982E 0	.17831F 0	.18680E 0	.: + > > 2 × > C + 1 ·	.20378E 0	.21227E 0	.22076E 0	.22925E 0	.23774E 0	.24623E 0	.25472E 0	.26321E U	.27170f 0	.28020£ 0	.2886 JE 0	7.8	.30567E 0	.31416E 0
>	.36200E 0	.70875E 0	.10282E 0.	.13133E O.	.15626E 0.	.17731E 0.	.19635E D	.21216E 0	.22534E 0	.23586E 0	.24364E 0.	.24876E 0	.25153E 0.	.25250E 0	.25233E 0	.25169E 0	.25109E 0.	.25082E 0,	.25094E 0	.25130E 0	.25160E O.	.25141E 0	.25020E 0.	.24742E 0.	.24253E 0	.23512E 0	.22494E 0	,21196E O.	.19633E 0.	.17828E 0	.15807E 0	.13585E O	.111173E O.	.85806€ J	0.58260E 01	.29467E 0	.10836E-0
>4	.29352E 0	.294775 0	.29596E 0	.29600E 0	.29391E 0	.28895E 0	.28077E 0	.26934E 0	.25475E O	.23707E 0	.21620E 0	.19196E C	.16414E 0	.13270E O.	.97872E 0	.60171E 0	.20378E 0	0.20582E 0	0.61745E 0	0.10220E 0	0.141126 0	0.17782E 0	0.21179E C	0.24269E 0	.27041E 0	(1.29503F 0	C.31676E 0	0.33589E 0	0.35261E C	0.36704E 0	0.37917E O	0.38896E 0	.39643E O	0-10173E 0	0.405	.40701E 0	0.43760E 0

FIGURE 32. (Continued)

MADIUS OF MAPPING CIPCLE = 0.33317E 02

PEAL PARTS OF COEFFICIENTS.

0.: \$1.05E 03 -0.80102E 03 -7.11475E 06 -0.54775E 06 0.17340E 07 -0.11485E 09 -0.70960E 13

-0.605825 11 -0.20872E 13

IMAGINARY PARTS OF COEFFICIENTS.

0.0 0.0 0.0 0.0 0.0 0.0

0.0

0.0

(Continued)

FIGURE 32.

Section of the second

TION WITH CORNERS	0	1611.	7.2733		3.4282	2.9449	8,1103	9.9635	1.5321	2.3233	3.8300	4.5483	4.9930	5.2065	5.2540	5.2099	5.1406	5.0922	5.0847	5.1131	5.1517	5.1594	5.0838	4.8653	0555-5	3.7690	2.8071	1.5480	0.0036	8.1985	6.1598	3.9072	1.4524	.8050	• 9844	.0235	•000•
MAPPING OF SECT	3.7406	3.7953	3.9258	34.04285	4-0306	3.7817	3.2224	2.3213	1.0780	9.5036	7.6013	5.3580	2.7508	9.7618	6.3955	2.6887	8.7103	.5533	.3212	3.8829	7.9648	1.8431	5.4531	18.7499	21.7124	24.3424	26.6601	8.6941	30.4701	32.0021	33.2915	4.3344	35.1316	5.6973	6.0610	.2587	6.3208

REMOVED.

The state of the s

military that the property of the second of

FIGURE 33. MAPPING OF FUSELAGE AT STATION 264.25

のでは、これのでは、これではないできない。 アンフィー

TABLE II. COLFFICIENTS OF MAPPING FOR FUSELAGE

a ₉	38224 × 107	. 59975 x 10 ⁹	$.17429 \times 10^{11}$.11100 x 10 ¹²	.33738 x 1C ¹²	25037 x 10 ¹²	97576 x 10 ¹²	10264 × 10 ¹³	-24533×10^{13}	. 20872 x 10 ¹³	.46619 x 10	$.45817 \times 10^{12}$,23796 x 10 ¹²	. 31622 x 10 ¹¹	,22970 × 10 ¹⁰	.11027 x 10 ⁷
. a 8	, 21969 x 10 ⁶	19394 x 10	89304 x 10 ⁹	53246 x 10	27246 x 10 ¹¹	-,66089 x 10 ¹¹	79340 x 10 ¹¹	48035 x 10 ¹¹	27398 x 10 ¹¹	60582 x 101	.79756 × 10 ¹⁰	.19634 x 10 ¹¹	.13366 x 10 ¹⁰	96070 x 10 ⁸	54266 x 10 ⁸	.90360 × 10 ³
a	.40889 x 10 ⁵	49521 x 10 ⁷	11093 x 10 ⁹	-, 42390 × 10 ⁹	12650 x 10 ¹⁰	37311 x 10 ¹⁰	57747 x 10 ¹⁰	55082 × 10 ¹⁰	50994 x 10 ¹⁰	70960 x 10 ¹⁰	36282 x 10 ¹⁹	18358 x 10 ¹⁰	93720 × 10 ⁹	24462 x 10 ⁹	20739 x 10 ⁸	34590 x 10 ⁵
a ₆	21603 x 10 ⁵	.11580 x 10 ⁶	.47368 x 10 ⁷	.19652 x 10 ⁸	.28524 x 10 ⁸	38244 x 10 ⁸	11108 x 10 ⁹	97966 x 10 ⁸	50522 x 10 ⁸	-, 11485 x 10 ⁹	-,48139 x 10 ⁸	18782 x 1	.57690 × 19 ⁷	,37599 x 10	. 42978 x 10 ⁶	, 16588 x 10 ⁴
a S	.14727 x 10 ²	43500×10^{5}	, 38924 x 10 ⁶	.6398C x 10 ⁶	52265 × 10 ⁶	-, 48116 x 10 ⁶	.98070 x 10 ⁵	.17509 x 10 ⁷	$^{*}_{\circ}29750 \times 10^{7}$.17340 x 10 ⁷	. 40955 x 10 ⁷	.29437 × 10 ⁷	. 15000 x 10	.43107 × 10 ⁶	.79269 x 10 ⁵	.76206 x 10 ³
a ₄	.69240 × 10 ³	17548 x 10 ⁴	45148 x 10 ⁵	12042 x 10 ⁶	24410 x 10 ⁶	-, 45438 x 10 ⁶	55979 x 10 ⁶	66067 x 10 ⁶	61693 × 10 ⁶	54775 x 10 ⁶	18956 × 10 ⁶	13665 x 10 ⁶	13019 × 10 ⁶	69219×10^{5}	15568 \ 10 ⁵	32360 x 10 ³
c,	17220 x 10 ³	63894 x 10 ³	-, 40341 x 10 ⁴	10198 x 10 ⁵	23602 × 10 ⁵	47881 \ 10 ⁵	72717 x 10 ⁵	10515 x 10 ⁶	13530 × 10 ⁶	11475 x 10°	62063 x 10 ⁵	-, 41363 × 10 ⁵	24758 x 10 ⁵	14122 x 10 ⁵	30498 x 10 ⁴	11905 × 10 ³
. a 2	45764 x 10 ¹	35365 x 10 ²	3189 x 10 ³	-, 62289 × 10 ³	RM554 x 10 ³	-, 10054 × 10 ⁴	98524 x 10 ³	~1241 x 10 ⁴	-, 13119 x 10 ⁴	80102 x 10 ³	14940 × 103	\$ 11392 × 10 ³	.27331 × 10 ³	.13394 x 10 ³	. 80204 x 10 ²	.86401 × 10 ¹
a ₁	.71436 x 101	$.25764 \times 10^{2}$.81113 x 10 ²	.12664 x 10 ³	.17304 x 10 ³	.19999 \ 103	.19745 x 10 ³	$.18519 \times 10^{3}$.17811 \$ 103	.16565 × 10 ³	.12156 x 10 ³	. 19946 1102	.475×3 × 10²	$.25525 \times 10^{2}$	$.24497 \times 10^{2}$.13116 x 10 ²
a ₀	7.5008	5.77.4	1.9762	-, 45742	-2,7841	-3.53	-3,4023	-3.1494	-3.4023	. 1. 43	-7.44 5	-9, 1064	-11. 4762	-14.6391	-17.6552	-21.2522
dr _c dx	.285	.254	.176	.142	.1155	720.	. 054	2.	3,	63	0503	0635	074	135	150	206
r c	10,2633	15 0898	292.17	25, 1398	2>,3436	30.77 43	31.9933	33.0565	.3.976	33.317	31.0699	25.5153	27.5112	23, 7772	17 5799	٠.213
FUS	1. (S)	7	5	6.5	1	143.5	14.3.5	155.5	2.1.5	1.64, 25		,4°	374	411	3,	197

3. APPLICATION OF JET FLOW FIELD THEORY TO FUSELAGE

The purpose of the Jet Flow Field theory, when used in conjunction with the Transformation Method, is to predict jet-induced velocity components at the control points on the fuselage required by the Transformation Method to evaluate power effects. This is accomplished by executing the Jet Flow Field program to generate required data for the Transformation Method in the form of punched data cards. To insure compatibility with the Transformation Method, the control points on the fuselage where induced velocity components are to be computed are specified by utilizing the mapping coefficients for the fuselage cross sections obtained in Section III.2. The punched output is generated in a manner providing a continuous block of input data to the Transformation Method computer program. Both of the above points will be described in greater detail in the discussion of the sample problem computations.

It should also be noted that the application of the Jet Flow Field program to provide data to the Transformation Method program for the computation of power effects on the fuselage, differs only slightly from its application to computing power effects on the wing, discussed in Section II.3. Consequently, much of the discussion below will parallel that of Section II.3.

a. Sample Problem Computation

the foreign to be a made a considered to the considered and a considered to the constant of th

For the sample problem being considered, the Jet Flow Field program is now used to compute the jet-induced velocities at the 16 fuselage stations described in Section III. 2. A sketch of the fuselage and the location of the jet with respect to the input/output coordinate system is shown below. The jet exhaust angles ϕ and ψ are also defined.

(1) Input for Sample Problem

The input cards required for the sample problem are tabulated in Figure 34.

Card 1 lists three control indices. The first one, MULT = 1, indicates that a single jet configuration is being treated. The second one, IGEØM = 2, specifies that control points on fuselage cross sections will be generated utilizing the mapping coefficients obtained. The third control index, IPUNCH = 1, generates the punched output for the Transformation Method program.

Card 2 specifies angle of attack, $\alpha = 0$ and angle of sideslip, $\beta = 0$.

Card 3 controls the number of steps and the step size in the numerical integration of the equations of motion for the jet path. For the sample problem, 90 steps with a step size of .4 (jet exit diameters) are chosen.

Cards 4 and 5 contain information about the jet. The jet location, in the coordinate system of Figure 33, is X = 208., Y = 0, Z = -30.8. The jet exhaust angles ϕ and ψ , defined in Figure 33(b), are 180 and 0 degrees, respectively. The jet exit diameter, $d_0 = 22.5$ and the velocity ratio, $U_{\infty}/U_{10} = .2$.

Card 6 may be left blank for single jet computations. For a multiple-jet configuration it would be used to control the geometry of the jet resulting from the intersection of two other jets.

The remaining input cards provide data to generate the control points at which jet-induced velocities are to be evaluated. These control points, in order to insure compatibility with the Transformation Method, are generated by utilizing the mapping coefficients and mapping circle radii obtained for the 16 fuselage stations of the sample problem. The number of control points generated at each fuselage station is governed by the input variable, NTHT, which is the number of increments $\Delta\theta$ into which the mapping circle (or mapping semicircle if only half the fuselage is to be mapped at each station) is to be divided in the Transformation Method computer program. Since the flow is symmetric ($\beta = 0$), computations will be carried out for only half the body. Consequently, the number of control points at each fuselage station will be NTHT + 1.

Card 7 specifies that NTHT, the number of equal increments $\Delta\theta$ into which the mapping semicircle is divided, is 18, which will generate 19 control points at each fuselage station. It defines the number of fuselage stations NS = 16. It also defines the number of terms used in the mapping expansion, NCOEF = 11, and through the control index NSYM = 0 indicates that computations are to be effected for only half the fuselage at each station.

et i l'aloi d'aloi d'ele l'aloi d'ele l'aloi d'aloi d'ele l'aloi d'ele l'aloi d'ele l'aloi d'ele l'aloi d'ele l El 1 l'aloi d'ele l'aloi d'ele l'aloi d'ele d'ele l'aloi d'ele l'ele l'aloi d'ele l'ele l'ele l'ele l'ele l'el		-30.8 780.		0.10000E 01 0.78008E 01 0.71436E 01-0.48764E 01-0.17220E 03 0.69240E 03 0.14727E 02-0.21603E 05 0.40889E 06 0.21.69E 06-0.38224E 07		206	0.100006.01-0.612526.02.0.131166.02.0.809016.01-0.119056.03-0.329606.03 0.762006.03.0.165886.09-0.345906.05.0.903606.03.0.110276.07
	9.0	208.	179	0.10000E 01 0.78008E 01 0.14727E 02-0.21603E 05		497.	0.10000E 01-0.61656E 04-0

FIGURE 34. JET FLOW FIELD PROGRAM INPUT DATA FOR SAMPLE PROBLEM (Fuselage)

The data in cards 8-55 are taken from Table II, which is determined in Section III.2.

Cards H-10 provide the data from which the fuselage cross section at the first station can be generated by the computer program. Card 8 specifies the location of the station, X = 23.7, the mapping circle radius R = 10.2633, and the rate of change of R with X, DRDX = .285.

Cards 9 and 10 list the real parts of the coefficients to be used in the mapping expansion (thus only symmetrical fuselages may be treated).

Cards 11-55 are similar data blocks for fuselage stations X = 41., 73., 94., 118., 143.5, 163.5, 185.5, 221.5, 264.5, 316., 343., 374., 411., 450., and 497.

Note: The rate of change of the mapping circle radius with distance along the fuselage, DRDX, is not required for any of the computations performed by the Jet Flow Field program. It will, however, be required by the Transformation Method program, and is read as part of the input so that it may be punched out in the proper sequence in the data package to be provided to the Transformation Method program.

(2) Output for Sample Problem

For the sample problem being considered, both printed and punched outputs are obtained.

Printed Output

Figure 35(a) shows the first page of printout. The jet configuration being treated is identified both by appropriate heading and by printout of pertinent input information. Input controlling the numerical integration procedure is also displayed. Figure 35(b) shows a partial printout of computed jet centerline information. The coordinates of the jet centerline are identified. The nondimensionalized jet speed U_j/U_{j0} and the nondimensionalized major diameter of the ellipse representing the cross section of the jet, d/do, are also printed out. These properties are printed out at each integration interval as specified on card 3 of the input. The variables XCOORD and DIA show a monotonic increase over this region, while $U_J = U_j/U_{j0}$. Ponce the jet speed U_j approaches the freestream speed U_∞ . Figure 25(c) shows the printout for the jet-induced velocity components at the first fuselage station specified, X = 23.7. The coordinates of the 19 control points at the station are identified. For this symmetric flow sample problem, only the positive half of the fuselage station is generated. The induced

*** SINGLE JET CONFIGURATION *** **XJET** YJET LJET PSI 0/UJ0 PHI -30.8000 180.6000 0.0 208.0000 0.0 0.2000 ANGLE OF ATTACK = 0.0 ANGLE OF SIDESLIF = NUMBER OF STEPS IN INTEGRATION = 90 INTEGRATION INTERVAL = 0.40 JET EXIT DIAMETERS

FIGURE 35(a). INPUT PARAMETERS FOR SAMPLE PROBLEM

The regarding of the december of the state o

** S	INGLE JE1	CENTERL	INE **	
*****	******	*******	*****	3 ***
xcooro	YCOORD	ZCONRO	υJ	DIA
208.00	0.0	-30.80		
208.10	0.0	-39.80	0.948	1.18
208.44	0.0	-48.80		
209.10	0.0	-57.80	0.833	1.90
210.26	0.0	-66.80	0.760	2.64
212.10	0.0	-75.80		
214.71	0.0	- 84, 80	0.626	3.23
218.18	0.0	-93.80		
222.60	0.0	-102-80	0.528	3.88
228.11	0.0	-111.80		
234-83	0.0	-120.80	0.456	4.60
242.92	0.0	-129.80	0.427	4.98
252.59	0.0	-138.80	0.402	5.37
264.06	0.0	-147.80	0.381	5.7/
277.60	0.0	-156.80	0.363	6.18
293.52	0.0	-165.80	0.347	6.60
312.22	0.0	-174.80	0.333	7.03
334.13	0.0	-183.80	0.321	7.47
359.77	0.0	-192.80	0.311	7.92
399.78	0.0	-201-80	0.301	8.38
424.86	0.0	-210.80	0.293	8.86
465.87	0.0	-219.80	0.285	9.34
513.81	0.0	-228.80		
569.84	0.0	-237.80	0.272	10.37
635.36	0.0	-246.80		
711.98	0.0	-255.80	0.261	

FIGURE 35(b). JET CENTERLINE FOR SAMPLE PROBLEM

			CED VELOCITIES		
x	*	Z	U	V	1
23.700	0.0	-18.601	-0.44731E-04	0.0	0.93589E-02
23.700	1.731	-18.452	-0.29299E-04	0.74342E-0+	0.93522E-02
23.700	3.392	-18.003	0.17127E-04	0.14471E-03	0.93320E-02
23-700	4.929	-17.252	0.93755E-04	0.20799E-03	0.929826-02
23.700	6.300	-16.217	0.19770E-03 0.32468E-03	0.261816-03	0.92517E-02
23.700 23.700	7.462 8.375	-14.928 -13.417	0.47016E-03	0.30423E-93 0.33389E-93	0.91937E-02 0.91253E-02
23.700	9.013	-11.720	0.62943E-03	0.35036E-03	0.90481E-02
23.700	9.359	-9.875	0.797688-03	0.35398E-03	0.89638E-02
23.700	9.414	-7.930	0.97076E-03	0.34585E-03	0.88739E-02
23.700	9.211	-5.925	0.11440E-02	0.328326-03	0.87802E-C2
23.700	8.797	-3.952	0.13102E-32	0.304276-03	0.86867E-02
23.700	3.190	-2.130	0.145938-02	0.275446-03	0.85993E-02
23.700	7.363	-0.557	0.15857E-02	0.24165E-03	0.85234E-G2
23.700	6- 282	0.728	G.16860E-92	0.20212E-03	0.84616E-02
23.700	4.954	1.724	0.17521E-02	U.15697E-03	0.84140E-02
23.700	3.424	2.435	0.18155E-02	0.107316-03	0.53802E-02
23.700	1.751	2.860	0.18469E-02	0.54512E-04	0.836028-02
23.700	-0-000	3.000	0.18572E-02	-0.10974E-08	0.93536E-02
		*** [HO	UCED VELOCITIES	ON BODY ***	
		*****	**********	•••••	
x	Y	Z	U	у	w
	0.0	11.592	-0.35669E-02	0.0	-0.36283E-01
497.0 00					
497.000 497.000	1.248	11.710	-0.38559E-32	-0.32777E-03	-0.362496-01
	1.248 2.428	12.065	-0.38229E-02	-0.32777E-03 -0.63462E-03	-0.36249E-01 -0.36148E-01
497.000					
497.000 497.000 497.006 497.000	2.428 3.472 4.344	12.065 12.672 13.559	-0.38229E-U2 -0.37675E-02 -0.36882E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02	-0.36148E-01
497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048	12.065 12.672 13.559 14.731	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01
497.000 497.000 497.006 497.000 497.000	2.428 3.472 4.344 5.048 5.593	12.065 12.672 13.559 14.731 16.153	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01
497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977	12.065 12.672 13.559 14.731 16.153 17.783	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01
497.000 497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977 6.220	12.065 12.672 13.559 14.731 16.153 17.783 19.576	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02 -0.31835E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01
497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02 -0.31835E-02 -0.30356E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14813E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01
497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14813E-02 -0.14592E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33738E-01
497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02 -0.27713E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14813E-02 -0.14592E-02 -0.14038E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33738E-01 -0.33306E-01 -0.32923E-01
497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283 5.925	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923 26.387	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02 -0.27713E-02 -0.26646E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14638E-02 -0.14038E-02 -0.13014E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33738E-01 -0.32923E-01 -0.32593E-01
497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283 5.925 5.323	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923 26.387 27.673	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02 -0.27713E-02 -0.26646E-02 -0.25732E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14638E-02 -0.14038E-02 -0.13014E-02 -0.11519E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35624E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33738E-01 -0.32923E-01 -0.32593E-01
497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283 5.925 5.323 4.520	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923 26.387 27.673 28.773	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02 -0.27713E-02 -0.26646E-02 -0.25732E-02 -0.24969E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14813E-02 -0.14813E-02 -0.14038E-02 -0.13014E-02 -0.1519E-02 -0.96575E-03	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33736E-01 -0.32923E-01 -0.32593E-01 -0.32310E-01 -0.32074E-01
497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283 5.925 5.323	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923 26.387 27.673 28.773 29.651	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02 -0.27713E-02 -0.26646E-02 -0.25732E-02 -0.24969E-02 -0.24371E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14638E-02 -0.14038E-02 -0.13014E-02 -0.11519E-02	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33736E-01 -0.32923E-01 -0.32593E-01 -0.32593E-01 -0.32074E-01 -0.31889E-01
497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000 497-000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283 5.925 5.323 4.520 3.553	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923 26.387 27.673 28.773	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.31835E-02 -0.30356E-02 -0.28954E-02 -0.27713E-02 -0.26646E-02 -0.25732E-02 -0.24969E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14813E-02 -0.1493E-02 -0.14038E-02 -0.13014E-02 -0.11519E-02 -0.96575E-03 -0.75149E-03	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33736E-01 -0.32923E-01 -0.32593E-01 -0.32310E-01 -0.32074E-01
497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000 497.000	2.428 3.472 4.344 5.048 5.593 5.977 6.220 6.361 6.404 6.283 5.925 5.323 4.520 3.553 2.448	12.065 12.672 13.559 14.731 16.153 17.783 19.576 21.449 23.268 24.923 26.387 27.673 28.773 29.651 30.287	-0.38229E-U2 -0.37675E-02 -0.36882E-02 -0.35858E-02 -0.34644E-02 -0.33283E-02 -0.31835E-02 -0.28456E-02 -0.27713E-02 -0.26646E-02 -0.25732E-02 -0.24969E-02 -0.24371E-02 -0.23945E-02	-0.63462E-03 -0.90060E-03 -0.11144E-02 -0.12762E-02 -0.13892E-02 -0.14552E-02 -0.14815E-02 -0.14638E-02 -0.14038E-02 -0.11519E-02 -0.96575E-03 -0.75149E-03 -0.51400E-03	-0.36148E-01 -0.35979E-01 -0.35736E-01 -0.35424E-01 -0.35053E-01 -0.34638E-01 -0.34193E-01 -0.33736E-01 -0.32923E-01 -0.32593E-01 -0.32593E-01 -0.32074E-01 -0.31889E-01 -0.31757E-01

This is a star of the content of the

FIGURE 35(c). INDUCED VELOCITY COMPONENTS AT STATIONS 23,7 AND 497.

velocity components U, V, W, all nondimensionalized by U_X , are printed out for each control point. Figure 35(c) also shows the printout for the last fuselage station considered in this problem, X = 497. Similar printouts are obtained for the other intermediate stations specified as part of the input.

Punched Cutput

and the particular of the type of the temperature and the second to the second temperature and temp

The punched output for the sample problem is shown in tabulated form in Figure 36. The output data block for the first fuselage station is identified. The first card lists the fuselage station X = 23.7, the mapping radius R = 10.2633 and the rate of change of R with X, DRDX = .285. The next two cards list the real parts of the coefficients used in the mapping expansion. Cards 4-7 list the induced velocity components in the X-direction for each of the 19 control points at fuselage station X = 23.7. The induced velocity components in the Y-direction are listed on cards 8-11 and cards 12-15 specify the induced velocity components in the Z-direction. Datablocks of this type, each consisting of 15 cards, follow for each of the other 15 fuselage stations specified as part of the input. The punched output is identified in columns 73-80. The fuselage station number is shown in columns 75-77. Sequence numbers for each station appear in columns 78-80. The letters U, V, W and column 74 identify the velocity components listed on the data cards.

Note: From the tabulations of Figure 36 it is apparent that the first three data cards of 'be data generated for each fuselage station represent an exact cuplication of input cards described previously. They are generated as part of the punched output so that a more complete data block for the Transformation Method program may be obtained without additional card handling.

b. Applicability and Limitations

See discussion on applicability and limitations in Section II. 3.

```
23.699997
               10.263390
                            0.285000
 0.1000(E 01 0.7800ME 01 0.71436E 01-0.48764E 01-0.17270E 03 0.69240E 03
                                                                               1
                                                                               2
 C.14727E 02-0.21603F 05 0.40089E 05 0.21967E 06-0.38224F C7
1
 6.4701rE-03 6.62943E-63 0.79768E-03 0.97076F-03 0.11446E-02 0.13167E-02 U
                                                                               2
                                                                                3
 0.14594E-C2 0.15857E-C2 0.1686GE-C2 G.17621F-O2 U.18155F-O2 0.18469E-C2 U
                                                                            1
 J.18572E-02
             C. 14342E-04 U.14471E-03 U.20799E-03 U.24181E-03 U.30423E-C3 V
                                                                                ١
                                                                            1
 5.0
9.13389E-03 0.35038E-03 0.35398F-03 0.34585E-03 0.32932E-03 0.36427E-03
                                                                                2
U.27744E-03 0.24165E-03 0.20212E-03 0.15697E-03 0.10731E-03 0.54512E-04
                                                                                3
-11-10774E-68
                                                                                1
0.435876-02 0.43522F-02 0.43370E-02 0.97982E-02 0.92517E-02 0.91937E-02 W
                                                                                2
U. 71253E-02 U. 70481E-02 0.89638E-02 U. 48739E-02 U. 47407E-02 U. 86867E-02 W
                                                                            1
                                                                                3
U. H5193F-02 U. K5234E-02 U. 84616F-02 C. 8414GE-02 U. 83402E-02 0.83602F-02
                                                                             1
                                                                             1
                                                                                4
0.035358-02
               15.059800
                            0.254000
  41.0.0000
                                                                                ١
0.10000E 01 0.57774E 01 0.25264E 02-0.33365E 02-0.63394E 63-0.1754HE 04
                                                                                2
0.43500E 05 U.1198CE 06-0.49521E 07-0.19394E 08 0.59775C 09
ı
0.48(13E-03 0.79205E-03 0.11252E-07 0.14664E-07 U.17903F-02 0.20779E-02 U
U-2377/E-U2 0.25442E-C7 U.2725HE-D2 0.78671E-U7 U.2908CE-G7 U.303C1E-07 U
                                                                                .
C. 36515E-02
             0.14 781E-03 0.28705E-03 0.46918E-03 0.50:12E-03 0.58116E-03
                                                                                1
0.0
U. 12597F-03 U. 14146E-03 J.63142E-03 D.10475E-03 D.56769E-03 U.529U9F-03
                                                                                2
 0.46022E-03 0.39073F-03 0.31642E-03 0.23445E-03 0.15013E-04 0.74843E-04
                                                                          v
                                                                             2
                                                                                3
-U. 10764E-CB
0.11468E-01 0.11453E-01 0.11410E-01 0.11334E-01 0.11742E-01 0.11110F-C1 W
0.10973E-01 0.10406E-01 0.10621E-01 0.10416E-01 0.1079E-01 0.10014E-01 W
                                                                                2
 J. 18364E-02 U. 16748E-07 U.45338E-UZ U.44203F-07 J.43377E-72 J.47851E-02
                                                                             2
                                                                                4
 J. 1267.1E-02
                            0.176000
   73.00000
               21.726196
                                                                                1
0.1000LE 01 0.147520 01 0.011136 02-0.318906 03-0.403416 04-0.451486 05
 3. 1H1246 C6 0.4736AF 07-0.110736 04-0.49304F UV 0.17429E 11
                                                                                t
 5.16374E-02-0.15594E-07-0.13281E-07-0.94636E-03-0.47474E-03 0.20477E-03 U
 0.1176/E-03 C.16704E-02 U.24970E-02 C.32030F-02 0.59333E-02 0.45679E-02 U
                                                                             3
                                                                                2
 U. 10117E-02 0.747771-02 1.57397E-02 0.60434E-02 0.62200E-02 0.63265E-02 U
                                                                             1
                                                                                3
 L.6 $ 21E-02
             6.47357F-63 6.86763F-63 6.11214E-02 0.13467E-02 0.14784E-C2 V
                                                                                i
 0.15179E-02 G.14755F-02 G.13758E-02 C.12495E-07 Q.11143E-02 Q.4701FE-01 V
                                                                                ١
 0.-145,E-03 6.55472E-01 J.50269E-61 6.3631AF-01 0.71447E-63 0.11479E-63
                                                                             3
                                                                                4
-0.345928-06
 0.17343E-C1 0.17302F-01 0.17182E-01 0.16982E-01 0.16703E-01 0.16346E-01 M
                                                                                1
 0.15717E-01 0.15412E-01 0.14831E-71 0.14194E-01 0.13571E-01 0.12457E-01 H
                                                                                2
                                                                                3
 0.12464F-01 C.11992E-01 U.11571E-G1 C.11727E-C1 U.1U174E-C1 U.1U817F-01
                                                                             3
                                                                                4
 0.1076 St.-C1
               15.139785
   14.000:00
                            0.142399
 J. LOROUF 01-0.45742E 00 0.17664E 03-0.67289E 03-0.10198F 05-0.12042E 06
                                                                                ı
 0.03486E 06 C.14652C 08-0.42340E 07-0.53746E 10 0.11107E 17
                                                                                2
- J. 25/62E-02-0.23707E-G2-U.19674F-02-C.13/36F-02-0.19/83E-03 U.69221F-03 U
                                                                                1
 U.190646-02 0.319426-02 0.449916-02 0.571286-02 0.672496-02 J.751C6F-02 U
                                                                                2
 U. d1224E-02 G.AN1U9E-02 O. H9363E-02 O.92524E-02 O.44256E-02 O.93250E-02 U
                                                                                3
                                                                                4
 0.4959(8-62
             U. m72U7K-03 0.15487E-02 0.21073F-07 0.24447E-02 0.262C6E-02
                                                                                1
 6.0
 U.25434E-02 C.24171E-02 S.21496E-02 C.18798E-02 O.15835E-02 O.13181E-02
                                                                                2
 0.10564E-02 0.51036E-03 0.59748E-03 0.41921E-03 0.26530E-03 0.12766E-03 V
                                                                                3
-U-52671E-68
 0.2363/E-01 0.2356CE-01 0.23322E-01 0.22927F-01 0.22374F-01 7.21677E-01
                                                                                i
 3.20H3CE-01 0.19H3GF-01 0.18676E-01 0.17433E-01 0.16230E-01 0.15157E-01 W
                                                                                2
 0.14204E-01 0.13353F-01 0.12610E-01 0.17025E-01 0.11610E-01 0.11356E-01
 C.11269E-01
```

FIGURE 36. JET FLOW FIELD PROGRAM PUNCHED OUTPUT FOR SAMPLE PROBLEM (Fuselage)

```
118.000000
              28.343547
                            0.113500
 U.1000CE U1-0.27841E 01 0.17304E 03-0.88554E 03-0.23602E 05-0.2441CE 06
                                                                                1
 0.52264E 06 0.28524F 08-0.12650E 10-0.27246E 11 0.33738E 12
-0.3627%E-02-0.13715E-02-0.25885E-02-0.12652E-02 0.53032E-03 0.26146E-02 U
 3.4816/E-02 0.70119E-02 C.40d68C-02 C.10838E-01 U.12125E-U1 U.12488E-U1 U
 0.13557E-01 0.13734E-01 0.14161E-01 0.14285E-01 0.14344E-01 0.14376E-01 U
 J. 14385E-61
             0.18667F-02 0.34320E-02 0.45124E-02 0.50735E-02 0.51665E-02 V
                                                                                1
 0.0
 0.4865/E-02 0.42722E-02 0.35423E-02 0.28371E-02 0.2234CE-02 0.17250E-02 V
 J.12871E-02 0.42349F-03 0.64212E-03 C.42908E-03 0.76071E-03 U.12162E-03 V
                                                                                3
-0.00669E-CA
 0.35500E-01 0.35318E-01 0.34773E-01 0.33559E-01 0.3257/E-01 0.30963E-01 m
 U.29061E-01 0.26761E-01 U.2436/E-01 U.21770E-01 U.19369E-01 0.1732HE-01 W
 0.15607E-C1 0.14135E-01 0.12934E-01 0.12043F-01 0.11432E-01 0.11660E-01 W
                                                                             5
                                                                                3
 0.10431E-01
                                                                             6
  143.500000
               30-764297
                            0.071600
                                                                                1
 0.10000F 01-0.35530E 01 0.19999E 03-0.10054E 04-0.474a1E 05-0.45438F 06
                                                                             Ŀ
-u.48116E 06-0.38244E 08-0.37311E 10-0.66689E 11-0.25037E 12
-0.51658E-02-0.45729E-02-0.27456E-02 0.36324E-03 0.44463E-02 0.88012E-02 U
                                                                                1
 U.12881E-01 0.16485E-01 U.19386[-C1 C.21302F-01 0.22242E-01 0.225C9E-01 U
                                                                                2
                                                                             6
 U.2241AE-01 0.22159F-01 U.21854E-01 U.71573E-01 0.71356E-01 0.21222E-01 U
 0.21176E-C1
                                                                             b
             0.54082E-02 0.90235E-02 0.11812E-01 0.12449E-01 0.11833E-01 V
                                                                                1
 9.0
                                                                             6
 U.10319F-01 0.52673E-02 0.61336E-02 0.43165F-02 0.29537E-02 U.19802E-02 V
 0.12902E-02 C.H0821E-03 0.48372E-03 0.27492E-03 0.14384E-03 0.60530E-04 V
                                                                                3
-0.19024C-C5
                                                                             6
 0.60778E-01 0.59572E-01 0.58074E-01 0.55569F-01 0.52380E-01 0.47857E-01 W
                                                                                1
 U.43142E-01 0.37719E-01 0.322653-01 0.267345-01 0.212876-01 0.18237E-01 4
                                                                             6
                                                                                2
 0.15373E-01 0.13187E-01 0.11550E-01 0.10380E-01 0.96024E-02 0.91580E-02 W
                                                                             ь
 0.90127E-02
                                                                                4
  163.500000
               11.993286
                            0.054000
 0.1000% 01-0.34623E 01 0.19745E 03-0.98524E 03-0.72717E 05-0.55979E 06
                                                                              1
 0.9807CE 05-0.11108E 07-0.57747E 10-0.79346E 11-0.97574E 12
-J. 17011E-02-0.52508F-02 0.40610E-03 0.89661E-02 0.17500E-01 0.25021E-01 U
                                                                                1
 0.30747E-01 0.34635E-01 0.36611E-01 0.36678E-01 0.35455E-61 0.33766E-C1 U
 0.32136E-01 0.10766E-01 0.29687E-01 0.78879F-01 0.283333E-01 0.2803CF-01 U
                                                                             7
 L.274350-01
                                                                             7
             0.15283E-01 0.25505E-01 0.29494E-01 0.28666E-01 0.24923E-01 V
 0.0
                                                                             7
                                                                                1
 C.19723E-01 0.14085E-01 0.90177E-02 0.526115-02 0.28535E-02 0.141555-02 V
                                                                             7
 U.59207F-03 U.13225F-03-U.4888FF-04-U.1823UF-03-0.1676F-03-0.98536F-U4 V
                                                                             7
 0.74411E-CH
 0.10149E 00 0.99479E-01 0.94320E-01 G.P7100E-01 0.7828FE-01 0.68594E-01 W
                                                                                1
 0.58611E-01 0.48239E-01 0.3768/E-01 0.28150E-01 0.20680E-01 U.15376E-01 F
                                                                                2
 C-1176CE-01 0.43U19E-02 0.76105E-02 0.64535F-02 0.57121E-02 0.53119E-02 w
 U-51483E-02
  145.500000
               33.056488
                            0.040000
 C-1000'E 01-0.31494E 01 0.18814F 03-0.12441E 04-0.10515E 06-0.66067E C6
 U.17509E 07-U.77466E 0M-0.55UMZE 10-0.48035F 11-0.10264E 13
-0.46774f-Cl-0.11666E-Ol 0.43733E-Ol 0.76264F-Ol 0.70342E-Ol 0.93574E-Ol U
                                                                                1
 0.70661E-01 0.33775E-01 0.74253E-01 0.61990E-01 0.55741E-01 0.485C2E-01 U
 0.43/44E-01 0.40495E-01 2.38290.-01 0.36A16E-01 0.3571"E-01 0.35456E-01 U
                                                                             8
                                                                                3
 U. 353260-C1
                                                                                4
                                                                             R
             U.66061E-01 U.10887E 00 C.75773E-01 U.73747E-01 0.52446E-01
                                                                                1
 C. 13674E-C1 0.18480E-01 3.79745E-02 0.21466F-02-0.55754F-03-0.16695F-07 V
                                                                                2
-0.20364E-02-0.20321E-02-0.181>2E-02-0.14670F-02-0.10314E-02-0.53451E-03 V
                                                                                3
 U.17985E-67
 0.25421E 00 0.77664E 00 0.17805E 00 0.13894F 00 0.16774E 00 0.86314E-01 w
                                                                                1
 0.65963E-01 0.46682E-01 0.79528E-01 0.16548E-01 0.41983E-02 0.32824F-02 N
                                                                                2
 0.43971E-03-0.12560C-02-0.23242E-02-0.30174C-02-0.34468E-02-0.36735E-02
                                                                             ß
                                                                                3
                                                                                4
-0. 1742 hE-02
```

FIGURE 30. (Continued)

```
221.5:0000
              53.976395
                          C.6011060
0.1050 % 01-0.34023F 01 0.17811E 03-0.13119F 04-0.13>30F 06-0.6165% 06
                                                                           1
 2.24753E C7-C. 30522E 08-0.50994E 10-G.27399E 11-G.24583E 13
 :.1893-E 05-(.11113E-91 C.14261E 0C C.17738E CD 9:17187E 0C 0.15512F 00
 G.13494E 00 9.11325E 00 0.42290E-01 0.74725E-01 0.6153CE-01 0.52540E-01 U
 ₩-4653[E-v1 C-42688E-01 C-40251E-01 N-38727E-01 W-57485E-01 G-5754E-C1 W
 6-51474F -- 11
           -0.31484E 07-0.28674E GO-C.21581E GO-C.16163E GO-C.121C9F CC
                                                                           1
-9.37205E-01-9.58280F-51-9.37u28E-G1-9.24G11E-01-j.16584E-01-j.12511E-01
~9-99345E-92-5-d0717E-02~9-547#5E-02~0-4946#E-92~0-3491FE-02-9-175825-02
 J.£3002E-07
-C./6-1/E GC-C.>5826E 90-9.33054E 90-0.22026E GG-0.16483E 00-9.13319E 90 w
-C.||1077E_00-G.||4958F-91-0.|76170E-01-G.|54321E-01-0.43333E-C|-9.|36241E-01-#
 -0-26515E-01
                         -0.030000
  254.2°CC03
              33.316985
                                                                       10
 5-1000 F C1-0.44290E 91 0.16565E 03-0.80102F 03-0.11475E 06-0.54775E 05
C-17343E 07-G-11485E 99-W-79960E 10-0.60587E 11-3.20277E 13
                                                                       10
                                                                           2
~2.1319!E-C1-0.11062E-01-C.56679E-G2 0.13507E-02 0.3504EE-02 0.147C6E-01 U
 c.19665E-01 6.23458E-01 0.26108F-01 6.27473E-01 6.27629E-01 0.27072F-01 U 10
 J-26284E-01 0-25546F-01 G-24946E-01 7-24599E-91 G-24215E-01 0-24976F-91 U 10
C-24J34E-01
           -0.26718E-01-0.46978E-01-0.58125F-01-C.6111CE-01-C.58112F-01 V 10
                                                                           1
+G-51032E-01-0-41761E-01-0-32529E-01-0-24993E-01-0-19544E-01-0-157566-01
-6.13-04E-G1-3.10767E-01-3.56918F-02-C.66440E-02-7.45622F-02-0.23537E-32 V 10
 0. £1961E-C7
-C-1763E CO-0-17578E CO-0-16805E CO-0-15698E CO-0-14406E CO-0-13078E CC # 10
-C.11767E 00-C.10416F 00-5.90142E-01-C.76846E-01-0.65699E-01-0.573C6E-01 w 10
-0.51505E-01-0.47756E-01-9.45420E-01-0.44020E-01-0.43315E-01-0.43105F-01 w 10
-0.43292E-CL
                                                                      W 10
  316-000000
              31.059885
                         -0.050300
 0.10000E 01-0.74475E 01 0.12155E 93-0.14940E 03-0.62063E 05-0.18956E 06
                                                                           1
 0.40y85E 07-6.48139F 08-0.36282F 10 0.19756F 10 0.46619E 11
                                                                       1 i
                                                                           2
~0.97733E-02-9.93924E-02-0.82796E-02-0.h53U2E-02-0.43245E-02-0.19135E-02 U 11
 0.48C52E-03 C.27504F-02 J.48486E-02 D.66741E-02 U.50734E-02 D.7U62CE-02 U 11
 0.46554E-92 C.49466E-02 C.1C188E-01 0.10290E-01 0.10333E-01 0.10342E-01 U 11
 C.10341E-G1
           -0.42478E-0z-0.15257E-01-0.20242E-01-0.23027E-01-0.23846E-01 V 11
                                                                           1
-3-23-56E-01-0-21080E-01-0-1E490E-01-0-15916E-01-0-13749F-01-0-11997E-01 V 11
-0.1C446E-01-0.d8937E-02-0.72u65E-07-0.55767f-^?-0.f8191E-02-0.19564E-02 v 11
0.68995E-C7
-C-91484E-01-C-/5491E-01-0-69345E-01-0-63267F-01-0-57763E-01-0-533/1E-01 w 11
-0.50016E-01-0.47718E-01-J.46129E-01-J.45073E-01-J.44469E-J1-J.44217E-J1 w 1;
                                                                     W 11
-0.44153E-01
 343.000000
              29.515289
                         -0.063500
                                                                       17
0.10000E 01-0.94064E 01 0.89946E 02 0.11392E 03-0.41363E 05-0.13665E 06
                                                                       12
                                                                           1
0.29437E 07-0.18782E 08-0.18358E 10 0.19634E 11 0.45817E 12
-0.87337E-02-0.848532-02-0.77818E-02-0.67046E-02-0.53241E-02-0.37312E-02 U 12
                                                                           1
-0.20634E-02-0.43540F-03 0.11069E-02 0.25149E-02 0.36914E-02 0.45658E-02 U 12
                                                                           2
0.51596E-02 0.55513E-02 0.58110E-02 0.59755E-02 0.60660E-02 0.61055E-02 U 12
0.61157E-02
                                                                     U 12
0.0
           -0.53084E-G2-0.10011E-V1-0.13592E-01-0.15802E-01-0.16736E-01
                                                                           1
-0.16648E-01-0.15770E-01-0.14371E-01-0.12825E-01-0.11431E-01-0.10218E-01 V 12
0.56991E-07
-0.84367E-01-0.84305E-01-0.82705E-01-0.80231E-01-0.77008E-01-0.73190E-01 W 12
                                                                           1
-0.69036E-01-0.64776E-01-0.60475E-01-0.56227E-01-0.52341E-01-0.49162E-01 W 12
-0.46790E-01-0.45079E-01-0.43847E-01-0.43007E-01-0.42509E-01-0.42273E-01 W 12
                                                                           3
-0-42208E-01
```

FIGURE 36. (Continued)

```
374_000000
             27.511200
                         -0.074000
                                                                      13
 0-10000E 01-0-11876E 02 0-47583E 02 0.27331E 03-0-24758E 05-0-13019E 66
                                                                      14
0-15000E 07 0.57690E 07-0.93720E 09 0.13366E 10 0.23796E 12
                                                                          2
-0.74791E-0Z-0.73363E-02-0.69Z24E-02-0.62661E-0Z-0.53993E-0¿-0.43770E-0Z U 13
-0-32797E-02-0.21715E-02-0.1GE68E-GZ-0.75036E-04 0.78717E-03 0.14511E-02 U 13
                                                                          2
 0-19323E-02 0-22798E-02 0-25302E-02 0-26988E-02 0-27994E-02 G-285C8E-02 U 13
                                                                          3
 0-28666E-02
                                                                    U 13
           -0.35475E-02-0.67314E-02-0.92490E-02-0.10953E-01-0.11873E-01 V 13
0.0
                                                                          1
-0.76843E-^?-\_66130E-02-0.54367E-02-0.41850E-02-0.28538E-02-0.14478E-02 V 13
                                                                          3
0-49305E-07
                                                                      13
-0.58241E-01-0.55294F-01-0.52301E-01-0.49376E-01-0.46748E-01-0.44616E-01 W 13
                                                                          2
-0.42997E-01-0.41778E+01-0.40867E-01-0.40235E-01-0.39850E-01-0.39649E-01 W 13
                                                                          3
                                                                          4
-0-39587E-01
                                                                      13
 411.000000
                                                                      14
              23.677185
                         -0.135000
 0-10006E 01-0-14639E 02 0-25525E 02 0-13394E 03-0-14122E 05-0-69219E 05
                                                                      14
 0.43107E 06 0.37599E 07-C.24462E 09-0.96070E 36 0.31622E 11
                                                                      14
                                                                          2
-0.61602E-02-0.60934F-02-0.58935E-02-0.55605E-02-0.50993E-02-0.45301E-02 U 14
                                                                          1
-0.38266E-02-0.31999E-02-0.24978E-02-0.18218E-02-0.12260E-02-0.74554E-03 U 14
                                                                          2
-0.37829E-03-0.10029E-03 0.10727E-03 0.25195E-03 0.34119E-03 0.38726E-03 U 14
                                                                          3
 0-40127F-03
           -0.22508E-02-0.42863E-02-0.59365E-02-0.71171E-02-0.783C1E-02 V
0-0
                                                                      14
                                                                          1
-0.81212E-02-0.80595E-02-0.77556E-02-0.73417E-02-0.68921E-02-0.63861E-02 V 14
                                                                          2
-0.57664E-G2-0.50152E-02-0.41590E-02-0.32221E-02-0.22084E-02-0 11250E-02 V 14
                                                                          3
0-41558E-07
-0-55335E-01-0-55154E-01-0-54611E-01-0-53713E-01-0-52474E-01-G-50944E-01 w
                                                                      14
                                                                          1
14
                                                                          2
-C.39109E-01-0.38241E-01-0.37585E-01-0.37124E-01-0.36939E-01-0.36693E-01 w
-0-36649F-01
 450.000C00
              17-579895
                         -0-185000
                                                                      15
 0-10000E 01-0-17655E 02 0.24497E 02 0.80204E 02-0.30498E 04-0.1556@E 05
                                                                          1
0.79269E 05 0.42978E 06-0.20739E 08-0.54266E 08 0.22970E 10
                                                                          2
-0.50665E-02-0.50323E-02-0.49296E-02-0.47563E-02-0.45123E-02-0.42061E-02 U
                                                                          1
-0-38549E-02-0-34739E-02-0-30757E-02-0-26824E-02-0-23256E-02-0-20268E-02 U 15
                                                                          2
-0-17850E-02-0-15886E-02-0-14319E-02-0-13150E-02-0-12358E-02-0-11895E-02 U 15
                                                                          3
~0_11740E-02
                                                                          ť,
0.0
           -0.11399E-02-0.21879E-02-0.30684E-02-0.37438E-02-0.42133E-02 V 15
                                                                          ١
-0-44870E-02-0-45798E-02-0-45331E-02-0-44080E-02-0-42341E-02-0-39872E-02 V 15
                                                                          2
-0-36328E-02-0-31724E-02-0-26342E-02-0-20373E-02-0-13888E-02-0-70277E-03 V 15
 0-2403CE-07
-0.45345E-01-0.45247E-01-0.44951E-01-0.44455E-01-0.42758E-01-0.42884E-01 w 15
-0-41880E-01-0-40786E-01-0-39635E-01-0-38486E-01-0-37432E-01-0-36540E-01 w 15
                                                                          2
-0.35814E-01-0.35221E-01-0.34746E-01-0.34391E-01-0.34150E-01-0.34009E-01 w 15
                                                                          3
-0-33962E-01
                                                                      15
 497.000000
              8-212999
                        -0.206000
                                                                      16
0.10000E 01-0.21252E 02 0.13116E 02 0.80401E 01-0.11905E 03-0.32960E 03
                                                                      16
                                                                          1
0-76206E 03 0-16588E 04-0-34593E 05 0-90360E 03 0-11027E 07
                                                                      16
                                                                          2
-0.38669E-02-0.38559E-02-0.38229E-02-0.37675E-02-0.36882E-02-0.35858E-02 U 16
                                                                          1
-0.34644E-02-0.33268E-0?-0.31835E-02-0.30356E-02-0.28954E-02-0.27713E-02 U 16
                                                                          2
-0.26646E-02-0.25732E-02-0.24969E-02-0.24371E-02-0.23945E-02-0.23687E-02 U 16
                                                                          3
-0-23600E-02
0.0
           1
-0.13892E-02-0.14552E-02-0.14815E-02-0.14813E-02-0.14592E-02-0.14038E-02 V 16
                                                                          2
-0.13014E-02-0.11519E-02-0.96575E-03-0.75149E-03-0.51400E-03-0.26051E-03 V 16
                                                                          3
0-91033E-08
                                                                          4
                                                                     V 16
-0-36283E-01-0-36249E-01-0-36148E-01-0-35979E-01-0-35736E-01-0-35424E-01 w
                                                                          ı
-0.35053E-01-0.34638E-01-0.34193E-01-0.33738F-01-0.33306E-01-0.32923E-01 w 16
                                                                          2
-0.32593E-01-0.32310E-01-0.32074E-01-0.31889E-01-0.31757E-01-0.31677E-01 w 16
                                                                          3
-0.31650E-01
```

FIGURE 36. (Concluded)

4. APPLICATION OF TRANSFORMATION METHOD TO FUSELAGE

This section bears close resemblance to the discussion in Section II.4 of "Application of Transformation Method to Wing." A finite wing is also a three-dimensional body but it has a distinctive property of generating lift in a uniform stream. Thus, by ignoring a part of the computer program which is concerned with circulation, the power effects on a fuselage are calculated in a manner similar to that for a wing.

a. Inputs to Transformation Method for Sample Problem

All the input data for this sample problem are shown in Figure 37. The punched outputs from the jet flow field program again make up the major portion of the input. Two cards must also precede this basic input block to specify various flow indices, and none, two or four cards may follow this block, depending on the options.

Card 1 and Card 2 denote the same number of flow indices as those on Cards 1 and 2 in the previous section on application to a wing. The meaning of each input is also the same, except that the numer 1 quantities of the following indices are different. The classification index (IGECM) is now equal to 2 to denote a fuselage, the number of iterations (JSTOP) is 1, the number of stations (NSTA) is 16, the computation index (NSYM) is 0 to indicate the existence of a plane of symmetry, and the number of angular increments from 0 to π (MTHET) is 18.

Cards 3 through 242 contain the punched output data furnished by the jet flow field program, which include the X coordinate, the mapping coefficients, and the induced velocity components for stations 1 through 16. There are 15 cards for every station.

Card 243 specifies the station number immediately preceding the exhausting jet.

Card 244 refers to the X coordinate of the fuselage tail.

Card 245 lists in order the number of jets, the jet exit diameter, X coordinate of the center of gravity, and the reference length for nondimensionalizing computed moments.

Card 246 denotes in order the Y coordinate of the nose, Z coordinate of the nose; X coordinate, Y coordinate and Z coordinate of the tail.

U. Outputs from Transformation Method for Sample Problem

The second second

Figure 38 lists directly a portion of the input data on cards 1 through 242.

23.69 23.69	00 0 18 0.2 0. 9997 10.263300 coted Outouts From Jet Flaw F	0.285000 w Field Program	263300 0.285000 From Jet Field Program		
	0.263300 rs From Jet File	0.285000 w Field Program			
Puzched Duton	ts from Jet Ela	w Field Program			
	4 4 4 4 4 4	;			

(41) -0.325936-01-0.323106-01-0.320746-01-0.318896-01-0.3/2576-01-0.3/6716-01	0.323106-01-0	7. 320746-01	-0.5188XE-01	-0.3727E-01	-0.31611E-0
(42) -0.37650E-01	T				
5/7.0	1 4 6 6	7 60			*****
(4) 11, 66.2	-10.	517.	0.	24.	

meronomics of any contest from the second of the following of the followin

FIGURE 37. TRANSFORMATION MELHON TROGRAM INPUT DATA FOR SAMPLE PROBLEM (Fuselage)

Figure 39 establishes the correspondence between the angular increments of the mapping circle and their corresponding geometric locations at every fuselage station. The first column gives the angular increments in degrees.

Figure 40 shows the pressure coefficient distribution at each station after application of the segment method. Since these coefficients are tabulated against angular increments only, cross reference to Figure 39 is needed in order to establish pressure distributions in the physical plane.

de de la desta de la proposición de la

Figure 41 is also a table for the pressure distribution similar to the one in Figure 40 but after the three-dimensional modification has been introduced.

Figure 42 gives the parameters used in the three-dimensional modification and in the computation of forces and moments, originally read in as input data on Cards 243 through 246. The computed forces (normalized to the thrust) and moments (normalized by the thrust and reference length) on the fuselage after one iteration are also tabulated in the same figure.

Some of the computed results of this sample problem have been compared with the available wind tunnel test data and are shown in Figures 43(a) through 43(d). The power-effect pressure distributions in these figures are representative for fuselages with a lift jet in a uniform flow. The typical feature of this class may be described as follows: The power effect in the fore part of the fuselage is generally very small, as seen in Figure 43(a). As we approach the lift jet, there is a small region in the front where the power effect is positive (Figure 43(b)). The negative power effect then decreases rapidly and its magnitude becomes very large in the immediate neighborhood of the jet but tapers off to a constant level in the distance of one or two jet diameters. This constant level of power effect is in general quite high and prevails over the entire back part of the fuselage (Figures 43(c) and 43(d)). Thus, it contributes a naior portion of the forces and moments. The origin of this effect is due mostly to the wake formed behind the lift jet. Its prediction lies beyond the scope of the present method. Consequently, the discrepancy between the calculation and the test data in this region is large.

When the sideslip angle is not zero, the jet wake region does not completely enfold the back portion of the fuselage. The comparison between the prediction and the test becomes more favorable as may be seen in Figures 44(a) to 44(c).

Further calculations and wind tunnel test data are compared in Figures 45 and 46. The body referred to in Figure 46 is the one tested at Northrop prior to the present contract (see Figure 23 in Section II. 4).

SUDY COMPUTATION

THE PARTY OF THE P

OPTIONS SPECIFIED FOR THIS RUN ARE

1. THREE DIMENSIONAL MODIFICATION OF 1 ITERATION

2. POWER EFFECT ONLY

INPUT DATA

~		0.692400E 03	0.32468E-03 0.13102E-02 0.18469E-02	U.30423E-03 O.30427E-03 O.54512E-04	0.91937E-02 U.86867E-02 O.83602E-02	
IRECT= 1 IFORCE=	0.285000	-0.172200E 03 -0.382240E 37	0.19770E-03 0.11440E-02 0.18155E-02	0.26181E-03 0.32832E-03 0.10731E-03	0.92517E-02 0.87802E-02 0.83802E-02	0.254000
NSYM# O MIMET# 18 [A BETA# 0.0	DERIV* 0.2	-0.487640E 01 0.219690E 06	0.93755E-04 0.97076E-03 0.17521E-U2	0.20799E-03 0.34585E-03 0.15697E-03	0.92982E-02 0.88739E-02 0.84140E-02	DERIV= 0.5
	E 10.263350	STATION 1 0.714360E 01 0.408890E 05	1710N 1 0-1/127E-04 0-79768E-03 0-16860E-02	0.100 1 0.14471E-03 0.35398E-03 0.20212E-03	1110N 1 6.93320E-02 0.89638E-02 0.84616E-02	5= 15.089800
NSTA= 16 N= 11 NFOUR= 20 UJ= 0.200 ALPHA= 0.0	23.699997 RADIUS=	GECMETRY COEFFICIENT *A* FOR 0.100000E 01 0.7800A0E 01 0.147270E 02 -0.216030E 05	VELOCITY COMPONENT *U* AT STATION -0.44711E-04 -0.29299E-04 0.1 0.47016E-03 0.62943E-03 0.7 0.14598E-02 0.15857E-02 0.1	VELOCITY COMPONENT *V* AT STATION 0.0 0.74342E-04 0.1 0.33389E-03 0.35038E-03 0.3 0.24165E-03 0.2 0.10974E-08	VELOCITY COMPONENT *W* AT STATION 0.93528-02 0.93522E-02 0.91253E-02 0.90491E-02 0.85234E-02 0.85336E-02	41.CC3000 RADIUS=
NSTA= 16 UJ= 0.200	STATION 2 23.	GEOMETRY COEFF 0.100000E 01 0.147270E 02	VELOCITY COMPO -0.44731E-04 0.47016E-03 0.14598E-02 0.18572E-02	VELDCITY COMPO 0.0 0.33389E-03 0.27546E-03 -0.10976E-08	VELDCITY COMPO 0.93589E-02 0.91253E-02 0.8593E-02 0.83536E-02	STATION= 41.

FIGURE 39. CORRESPONDENCE BETWEEN ANGULAR INCREMENTS OF MAPPING CIRCLES AND CARTESIAN COORDINATES OF FUSELAGE SECTIONS

			22	8	8	0	20	0	0	95																					5	20	05	20	0	0	20	20
	94.00	711	-0.27860t	7600	6776	-0.25276	984	-0.19876E	-0.15982E	-0.11298E	-0.58934E	-0.115476	0.55073E	0.10667E	0.15421E	0.19855E	0.23804E	0.26997E	0.29321E	0.30762E	0.31260E	0.30762E	0.29321E	0.26997E	0.238046	0.1985SE	0.15421E	0.10667E	0.55073E	-0-11947E	-0.58934E	-0.11298E	-0.15982E	-0.19876E	58622	~	26776	-0.27600E
																														0				20	0	05	5	5
	*	\(\ \ \	0.0	0.42943E	0.82859E	0.117416	0.14553E	0.16697E	0.181436	0.18917E	0.19220E	0.19302E	0.19134E	0.18401E	0.16901E	0.14784E	0.12314E	0.956.97E	0.65371E	0.33016E	0.11900E	-0.33016E	-0.65371E	-0.95697E	-0.123146	-0.14784F	-7.16901E	-0-1C401E	•	-	~	-0.18917E		٦.	-0.14553E	117	. 82	-0.429435
			0	8	05	70	02	8	2	20	50	5	5	5 0	8	70	70	70	0	70	70	02	05	20	0	70	6	5	?	5	5	70	20	20	20	7	20	20
	73.00	7(1)		•	.25152	2372	7	٦.	-0.15592E	-0.11657E	.71713	•	•	0.66608E	•	•	.17619	.20317	0.22317E	0.23562E	0.23989E	0.23562E	0.22317E	.20317	.17619	.14338	0.10654E	.66608	9109		-0.71713E	-0.11657E	2655	18923	7	7	•	-0.25973E
				<u></u>	5	02	20	02	05	20	70	0	20	8	70	8	02	7 0	៊ី								~	70	05	20	20	8	02	20	05	70	7	6
	*	\(I)	0.0	0.36290E	۲.	0.10086E	7	₹		.16968	.17354	.17454	0.17266E	٠	•15269	0.133846	0.11124E	•	0.5845/	0.29489E	0.10631E-	-0.29489E	-0.58456E	-0.85964E	-0.11124E	-0.13384E	-0.15269E	-0.16589E	-0.17266E		.17	∹	ø	-146	.12648	10086	-0.70475E	-0.36290E
HE T			02	20	6	70	20	70	20	02	0	5	5	0	5	5	0	៰	5	02	6	02	70	.	5	3	5	õ	0	:	5	0	%	~	20	02	20	20
FOR FUSELAGE GEOMETRY	00.	(1)2	•	-0.21992E	-0.21318E	~	∹	∹	•	-0.11863E	٠	•	-0.27953E	0.71674E-	٠		•	0.87795E	۲,	•	0.11021E		•	0.87795E	•	0.505628	.2685	•	-0.27953E	-0.58727E		∹	∹	-0.16725E	7	•	2131	-0.21992E
TABLE FOR F	14 =X	Y(I)	0.0		.48337E		.89361E	0.10549E 02	0-11794E 02	w	.13018E	.13131E	.12993E	2510E	.11587E		-86160E		0.459146 01				-0.45914E 01	3691 1 9	3C919	26E	1587E	2510E	2993E	3131E	13018E	12509E	1794E	1 0549E	89361E	-0.70168E 01	48337E	-0.24615E 01
			70	75	20	0	9	20	02	0	7 0	70	5	5	5	00	00	50	50	10	5	70	5	6	8	8	5	70	0	0	ือ	õ	70	70	20	05	70	20
	23.70	(1)2	1860						-0-13417E				-0.59251E						0.24354E					22					-0.59251E							-0.17252E	8	<u> </u>
				5																	ş	7 0	ត	ಕ	5	5	6	5	7 0	5	៰	5	5	5	70	5	5	ธ
	×	Y(1)	0.0	0.17307E	0.33915E	0.49291E	0.63004E	0.74621E	0.83752E	0.90129E	0.93588E	0.94143E	0.92113E	0.879725	0.81901E	0.73626E	0.62817E	0.49539E	0.342416	0.17507E	0.63475E-	-0.17507E	-0.34241E	-0.49539F	-0.62817E	-0.73626E	-0.81901E	-0.87912E	-0.92113E	-0.94143E	-0.93568E	-0.901298	-0.83752E	-0.74621E	•63	-0.49291E	•	-0.17307E
		THETA	•	10.00	20.00	30.00	00.00	50.00	00.09	70.00	80.00	90.00	100.00	110.00	120.00	130.00	140.00	150.00	160-00	170.00	180.00	199.00	200.00	210.00	220.00	230.00	240.00	250-00	260.00	270.00	280.00	290.00	300.00€	310.00	320.00	330.00	•	350.00

The second of th

<u>~</u>	
AGE	
FUSELAGE	
200	
TABLE	
7	

		70	20	20	70	~	70	~ 0	20	5	5	~	~	20	70	02	70	~	~	20	20	20	70	70	8	8	~	~	-	5	8	~	70	8	02	%	20
	_	-	381	90	8	99	36	¥	3	Ä	30	96	36	76	3	Ä	90	76	==	36	4	 	90	#	3	2	3		9	¥	2	¥6	36	<u>=</u>	8	8	36
	2(1)	Ξ	3093	31020	30280	28236	24793	19904	13851	38448E	18228	107881	182791	24627E	29783E	338696	36980	39117 E	40311E	40663E	40311E	36117 E	16980	338696	29783	24627E	18279E	10788E	2552	28441	13521	19904E	247931	2823B(30280	310201	90
0		ö	-0-3(ö	Ģ	ö	ö	ģ	ှ	ö	•		5	•	•	ö	ò	ó	•	0	ö	Ö	•	0	ò	2.0	•	3	6	ċ	-0-	ċ	ö	ò	ô	Ģ	ģ
X=185.50		•								~	~	~	~	~	~	64	~	~	_		س	~	~	~	~	~	~	~	~	٠	N	~			~	~	_
X	•										-	E 02						E 02								E 02		E 02				E 02		•	Ö	0	
	_		585	272	921	223	23347E	382E	582E	24420E	24302E	24289E	24 101	23310E	.21570E	.1877SE	640	565	7	940	717	565	640	115	220	m	4101E	289E	302E	4420E	\$82E	m	347F	12236	7921E	2726	285
	×	0:	0.71582E	:13	.17	0.212236	0.23	2	2	0.24	0.24		•	. 23	-21	:18	0. I 5049F	0.10565E	. 54	0.19940E-	0.54717E	-0.10565E		0.18775E	0.21570	~	0.24	-245	₹	•	•	0.24	N	~	-	•	7
		Ü	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ö	0	0	0	1	ĭ	ř	٢	ĭ	ĭ	ř	o	٢	î	-0.2	ř	ĭ	ř	٢	٢	°
				0	~	80	05	0	02			02	0	0	0	05	0	0	0	0	0							0	5						0		0
	_	76E	26E	396	18E	15E	4.9E	2 7E	46E	50023E	29427E	388	362	369	9128E	5.7E	72E	3902E	40387E	40826E	40387E	9022E	32199	3357E	2 B E	23469E	178296	386	9427E	0023E	23465	•	3448	150	9718E	0796E	10826E
	2 (1	30676	30826		29718	27215		1852	0.12346	50	294	1073	17829	N	N		36672	390		60		•	366	m	2912	234	178	-	~	8	123	1852	2	N	~	m	308
20		ė	9	ô	ę	ė	9	ဝှ	ė	9	o	•	ċ	ċ	ċ	ċ	ċ	•	ċ	•	ċ	ċ	ċ	ċ	ċ	ò	o	0	ċ	0	9	ŗ	ę	ę	o	ô	o
X=163.50			5	05	05	02	02	02	8	02	20	05	02	02	02	02	20	10	៰	40	5	01	02	02	02	20	70	0	05	70	70	20	20	02	7	70	ة
×	: _		H	96	3 E	516	14E	4	36	5 1E	. BE	36	36	7.6	9	32E	¥E	ω 90 10 10 10 10 10 10 10 10 10 10 10 10 10	3E	-31	36	96E	4 E	3.E	70E	7E	38 E	36	. BE	<u>.</u>	36	448	14E	51E	52E	961	w * 1
	7	_	+1199.	•12119E	16252E	193	.21614E	22944E	23413E	2345	2345BE	23443E	-2309BE	22077E	20170E	1.17362E	1378	-96006E	.49443E	.17981E	*49443E	980	13784E	.17362E	.20170E	.22077E	.2309BE	23443E	2349	23451E	234	550	.216146	. 193	162	12119E	661
		0.0	•	•	٠	•	0	•	•	•	•	0.2	0	o	0	•	•	ċ	•	•	9	-0.96006E	-0-1	0	•	ö	ö				9	-0.2	ô	0	ö	-0-	•
		~	02	~	~	2	~	2	~	=	10	2	2	2	~	~	~	~	2	~			~	~	2	70	~	~			~	~	20	~	20	~	~
				ш			w	ш		ш																				_	-				ш	¥	36
	(1)7	3020E	30238E	29963	8667E	26049E	5972	17435	1472E	0695	0352E	0339E	17017E	22979E	8220E	2652E	6156E	8673E	91610	0700E	0191E	38673E	4156E	265	825	297	101	033	035	0694	11472E	7435	2265	6049E	8667E	29963	3023
Ç		.0	9	9.5	0.5	9.5	0.5		9	4.0		0		0.2	0.2	0.3	9.3	0.3	4.0		4.			0,3	0.2	0.22979E	•	:	9	4.0	٥.	-	, 0,	~	٠	٠ <u>٠</u>	•
X=143.50		•										05				2	2	_	_	•	õ					20				•	2	' ''	~	٠	,	- 70	'
×	•																			٠		w							141		w	w					ш
	Y(1)		60031	1082	4991E	8001E	0265E	21674E	2269	2428E	2504E	2438E	21880E	0570E	8492E	5746E	24.15	85823E	438398	.15883E	1839	5823	2415	5746	8492E	05 70E	21880E	243BE	2504	2428	2269	1674	9920	BOOLE	4991E	1082	903
	>	0.0	9.6	0.11082E	0	-	0.2	2.0		0.2		2.0	0.2	0.2	3.0		0.12+15E	9.8	4.0		0.438396	0.85823	0.12415E	0.15746	0.10	2.0		~	~	~	0.2	2.0	0.2	9.1	_	-	•
																					•	١	1	•	1	•	١	١	•	1	١	ł	'	'	'	1	'
		05			95			20		10	10	0				8		20								05				6					05		
	2	1086	923E	2256	7158	39614	686E	37 4 5c	847E	547E	804E	3480	680€	160E	206E	5926	1526	1545E	110E	.658E	3011	545E	1052E	592E	206 E	160E	9065	39.46	3046	54.76	8476	2476	586	1961	715E	2258	9536
	7 (-0.29	•		.^	.24	.20	~	100	.45	-21	. 87	¥	.20	.25	. 29	.33	.35	.37	.37	.37	.35	. 33(• 29	.25	0.20	.14	-87	.21	.45	2	• 16	.20	-0.24	-0.26	• 28	• 28
X=118.00	2	P	0	9	٩	٩	٩	°	°	٩	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	Ŷ	0	٩	9	0	٩	9	9
~	:		6	0	02	70	20	0	0	0	0	6	0	70	70	02	70	5	5	0	ة	7 0	02	02	70	70	70	0	20	70	0	02	70	05	05	70	0
Ä	` _		73E	66 E	53E	3.9E	83E	42E	45E	311	59E	33E	12E	75E	916	97E	370	516	35E	99E	35E	51E	320	916	91E	75E	12E	33E	36E	77E	45E	€2E	836	38E	53E	999	73€
	7	0	504	928	133	163	185	200	20 T	209	210	209	202	186	164	138	601	747	377	135	377	747	109	138	164	186	202	503	210	209	207	2007	185	163	133	958	504
		0.0	•	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ċ	ò	·	ċ	·	ċ	ċ	ċ	·	ċ	0	0	0	ô	ô	9	9	o o	9	o	ė,	ö	ó	÷	-0.13353E 02	ô	-0.5041
		_	0	00	8	00	00	00	00	8	0	00	00	0	00	00	0	စ္က	2	2	2	0	2	00	8	ć	20	ဥ	8	0	2	0	2	9	00	00	
	THET	0	100	20.0	30.	40.	50.	60.0	70.0	80.	8	8	10.	20.	30.(40.4	50.	60.	70.0	80.	90.0	8	10.0	20.02	30.0	40.00	50.	90.	70.0	30.0	90.0	80	01	20.0	30.00	0,0	50.

7 A B E

righted and as

			? 0	~	~ 0	~	≈	~	?	? 0	~	~	~	~	õ	~	~	~	~	~	~	~ 0	~	≈	~	~	~	2	~	~	~	~	~	~	~	~	~~
		<u>-</u>	592E	Š	•	6726	•	7316	2	78.75	3765	214448 02	1	2 26	30.50	17.76	7738	52.8	202	376	100	1756	2076	1316	7735	12	10.76	м.	3	L	37.5	7036	1936	2	-	►.	7106
	0	~	=	=	-	2	2	-		0.17	61.0	0.21		\$. O	o	o. ≥7.	0.267	~	0.302	-	. 30 8	0. 304	0.302	6.24	0. 2077	~ ~			2	~	2	_	-	_	0.139	-	
	X-497.00		_		-	_	,,,,,	_	-4	_	_	_		_			_	444			•	_			. ب	. بد	_	-				_	_		_	.	
	*			***	ш	9.0	w		•	ñ	w	w	ų	w		***	0	<u>ه</u> .	о 	0	?	0	0	0	0	0	0	0	0	0	0	0	.	O :	O	0	00
		<u> </u>	_	*	24277	2	;	840	£ 03	9977	62196	6360	64036	2 8 2	5925	53234	4520	155281	2447	12460	42044	12460	2447	1555	452021	5253	2925	9 2 8 5	6403	6360	62.9	5977	•	3	4	;	24277
			0.0	•	0	ò	ò	o		ö	•	0	ö	· •	ö	ó	0	0	ö	•	•	0	0	0	ċ	ó.	0	0	ò	ô	ô	0	o	0	4	•	99
			3	8	<u>.</u>	.	៰	-	5	2 0	? 0	? 0	2 0	~	70										2 0				~	~ 0	~	%	ត ö	ត ០	5	-	5 5 5
		_	3716		4	~	S	177E	2	827E	Ş	3960	395E	4917E	723E	101716	347E	380E	3436	745E	36 3E	1450	143E	36606	247E	716	723E	7. 7E	695E	9860	3696	8226	946	~	5	2	348E.
	_	~	0.88	. 6	2.	₽:	• 26	5	۶.	9	=	7	~	~	?	8	. 32	ξ.	ξ.	.35	.35	Š	.35	.33	. 32	Š.	2	2	~	=	<u>.</u>	7	2.		2	2;	0.40
	*450.00		ĭ	ı	•																																' '
	×			w	w	5E 01	ш	ш	36 03	1E 0		4E 02		ū	ш	ū	ш	w	w	S	6-9		***		w								uı		••.	ш (100 100 100 100
				087	1	•	90	12408	•	•	513	555	3	S	443	299	105	87140	013	10692	=	10692	0183	17140	105	~	•	•	γ.	5524	r	4641	37	~	067	2	30877
>		_	0.0	ě.	o	•	•			•		•	•		•	0.1	0.1	0	9.0	0.3	•	-0-3	-0.6	9.0	-0-1	-0-	-0-1	-0-	•	9.1	•	•	-0-	-0-1	-0	0	000
GEOMETRY			0	.	; 0	10	،	0	<u>.</u>	50	0	0	05	02	2 0	? 0									05										70		55
		<u>-</u>	1041E	9022E	477E	\sim	125E	ø	•	3658E	36500	1236	•	331E	\$	2	846E	869 E	395Z	8048E	83046	804BE	256E	869E	846E	1220E	8054E	316	8 7 E	5120E	3660	\$ 8E	19896	2926E	0425E	06	477E
FUSELAGE	_		٠.	.89	. 82	۲.	š	.22	-1	0.53	5	.15	0.19	۲.	?	0.312	0.338	.35	0.37	٠.	٣.	۳.	.37	• 35	•	ŗ.	~	~	-	∹	∹	Š	∹	~	ç	٠,	28.
	1.00		ĭ	'			?																											1	9	•	99
FOR	X-411			u,	61.1	ш	ш		ш			E 02					ш		ш		1				F 02	ш.	.		113	ш	w			ш	.	.	9
TABLE		3	_	4495	6	230	25	17583	45	ê	2		2	1162	36900	8166	35	233	5862	1117	6017E	4111	5862	2336E	5555	916	8	_		-	2	0383	92	728	526	230	4958
2		_	0.0	0.4	0.8		•	•		0.5	•	0.2	•	٠					•	٠,	٦.	٧.	۳.	7	-0.1		-0.2		•	-0.5	٠	٠	٠	٠	•	•	B • 0
			02	02	70	02	0	70	៰	5	10	05	20	20	02	70	02	0	70	02	05	20	05	05	20	05	05	~	~	0	៰	0	៰	៰	20	05	20
		_	3706	3860	151E	712E	3411	900E	376	44E	01E	474E	40E	164E	23E	310	312	390	364	504E	196	940	364	990	31Z	316	23E	64E	40E	34E	01E	44E	97E	90e	¥ .	125	251E 098E
	_	7	0.16	-19	0.15	0.13	0.113	2.800	386	2.101	.659	21.6	.182	0.23	1.27	314	346	369	38.	396	366.0	396	386	369	0.345	.314	1.271	.233	.182	1.124	1.655	. 101	.385	800	. 113	. 137	0.152
	X=374.00		ĭ																															•	•	١.	٠.
	×							₹ 0.	SE 0.) W	, e	9	ў. 9	E	E 0	E 0.	E 0.	, e	<u>.</u>	ñ 0	E-04) 0	9	, E	E 02	О	E 02										
		(I) A	0	.5053	978316	0.13907E	1729	0.199696	1961	3269	340	66 96	454	4201	15667	0818	7821	4132	8259	0390	8280	0390	8255	4132	7821	0818	2991	-0.24201E	-0.24549E	4392	3995	-0.23269E	.21965E	36966	7293	3907	97831 50530
			0	0	0	•	•	•	ó	0.5	0	0	0.2	0	0.2	0.5	0.0	0	0	0.5	•	-7.5	-0-	-0-	-0.17821E	0	-0-2	-0-	-0-2	-0.24392E	-0-2	-0-2	-0-2	-0-1	-0.17293E	2	-0.97
		HE1 A	0.0	00.01	00.	00.	00.	20.00												70.00								00		0	0	00	00	0			000
		Ī	ó	0	20,	30,	0,4	50,	60	20	80	90,	100	100	120	130	140.	150,	160.	170,	180	190,	200	210.	220.00	230.	240.	5 20	9	2 70.	280	290.	300	310.	320.00	330	350,

FIGURE 40. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE
AFTER APPLICATION OF SEGMENT METHOD

	A STANCE OF CORD	10-31416-01	. 782126-02	10-120411	10-161414-01	10-9270401	1.715911-01	1. 739861-01	3. 75477E-01	10-316712	10-100194-01	3. 73071E-01	1.493076-01	10-3896-01	10-150027-01	10-21+101.	. 566 988-01	10-160626.	10-11-01	. 246536-01	1.546576-01	10-160645	10-144965	10-114409.	10-350029-01	10-149764.	10-140641	. 710716-01	. 7610A8-01	10-110111-01	10-344-01	10-344662	10-119614-01	10-852 649	10-101114-01	10-140041-01	3. 78206F-02
	SAC AC																																				
	AT .OF THE COLORO	0-103036-01	0. 8404 7E-02	0.171156-02	-0.460566-02	-0.169436-01	-0. 20114E-0:	-0.316346-01	-0.36510E-01	-0.410768-01	~U-348844.0-	10-1:16664-0-	10-146294 "0-	-0.456656-01	-0.451796-01	-0.44426-01	-0.43744:01	-0.432306:01	-0.42912E-01	-0.42403E-01	-0.429126-01	-0.432306-01	-0.437536-01	-0.4442E-01	10-441 164-0-	-0.45865E-01	-0.462946-01	10-116054°C-	-0.44346-01	-0.41014-0-	-0.36510E-01	-0.316346-0	-0.261146-01	-0-184681-0-	-0.960526-02	0.171116-02	0.840468-02
	X=113.00 RR= 20.34	0.724186-02	0-650688-0	0.413556-0	0-136406-0	-0.4303:6-0	-0.842295-0	-0.121746-0	-0.157786-0		-0.22691E-0	-0.25173E-0	-0.26792E-0	-0.27774E-0	-0.28399E-0	-0.28767E-0	-0.289336-0																				
	X 94.00 RB 25.14 DRDX 0.14	0.50061E-02																											•	1	1	1	1	1	0.17013E-02		
SECMENT METHOD.	X* 73.00 RB= 21.73 DRDX= 0.18	0.32725E-02	0.30695E-02	0.24582E-02	0.14618E-02	0.196446-03	-0.11879E-02	-0.25997E-02	-0.40246E-02	-0.55214E-02	-0.70369E-02	-0.84245E-02	-0.95675E-02											-0.117946-01	-0.11191E-01	. 0.10459E-01	-0.956756-02	-0.84245E-02	-0.70369F-02	-0.55214E-02	-0.40246E-02	-0.25997E-02	-0.118795-02	0.196456-03	0.146188-02	0.245821-02	0.406955-02
FUSELAGE,	x= 41.00 RB= 15.09 ORDX= 0.25	0.11067E-02	0.10216E-02	0.77425E-03	0.382435-03	-0.122516-03	-0.701196-03	-0-132146-02	-0.19406E-02	-0.256796-02	-0.32258E-02	-0.38725E-02	-0.44421E-02	-0.49020E-02	-0.528291-02	-0.55979F-02	-0.58303E-02	-0.59874E-02	-0.60812E-02	-0.51129F-02	-0.60812E-02	-0.59874E-02	-0.58303E-02	-0.559796-02	-0.52829E-02	-0.49020E-02	-0.44421E-02	-0.38725E-02	-0.32258E-02	-0.256795-02	-0.19406E-02	-0.13214E-02	-0.70119E-03	-0.12251E-03	0.38242E-03	C. 17424E-03	0.10216F-02
PRESSURE CHEFFICIENTS AT	X# 23.70 RB# 10.26 DROX# 0.28	0.89460E-04	0.46660E-04	-0-80734E-0+	-0.28591E-03	-0.551986-03	-0.86098E-03	-0.11922E-02	-0.15294E-02	-0.18628E-02	-0.21881E-02	-0.25108E-02	-0.28273E-02	-0.31166E-02	-0.33463E-02	-0.35013E-02	-0.36015E-02	-0.36670E-02	-0.37054E-02	-0.37181E-02	-0.37054E-02	-0.36670E-02	-0.36015E-02	-0.35013E-02	-0.33463E-02	-0.31166E-02	-0.28273E-02	-0.25108E-02	-0.21881E-02	-0.18628E-02	-0.15294E-02	-0.11922E-02	-0.86099E-03	-U.55198E-03	-0.28592E-03	-0.80735E-04	0.46657F-04
PRESSURE	THETA D	0.0	10.00	20.00	30.39	40.00	50.00	60.00	10.00	80.00	90.00	100.00	110.00	120.00	130.00	00.091	150.00	160.00	, 70.00	180.00	190.00	200.00	210.00	220.00	230.00	240.00	250.00	260.00	2.0.00	289.00	290.00	300.00	10.00	320.00	3 40.00	340.00	350.00

ed of the local word has been proportional and continued agent facility bearing been also better recomment for any known explanation proportion and the expension of the expensi

00	0.122924-0	0. 4646 76-02	#0- #4##09 · O	0.210356-02	#0-214467.01	10.144.44.01	-0.75574F-03	-0-136536-05	*0-34545**O-	KO-3K5647.C.	-0.34348-0-	.0.323416-02	*O-#+!#C* .O.	-0-104 40E-03	**************************************	*0-34644 °0:	:0- #04 70E-03		.0.11114-02	20-30-44-1-0:	だい こうしゅうしゅう	20-45-64 .C:	.0.10100.00	*O : 345646 *O:	.0. \$444.0:	**************************************	.0. 755 705-01	:0.74446-03	.0. 140056.0:	#0-#144K# 10:	0-310148-05	C-91489-C	C. 464466 . C.	0-104411-0
X 1 2 4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.144026:01	C	0	0	0 (0	0	C	C	0	0	C	C	0	0	0	0	O	0	0	0	C	0	O	0	0	0	0	0	0	C		
X*343.00 RB# 24.55 DROX* -0.06	0.173916-01	33914	いイフト	1 556	30.00		1499E	20 30E	16095	3439E	54376	3764	1554	39066	297 Z	2779	3492	3775	7626	15065	15545	3764E	14376	3480E	36095	-0.17030E-01	404	ツインへへ	14028	1.70	37 6 10	18278	0.961756-02	55 L 4E
X#315.00 #8# \$1.07 DKDX# -0.05	0.194516-01																																	
X	0.267046-01	-0.27928E-01	-0.10586E 00	-0.15176E 00	-0.13420E 00	-0.750605-01	-0.681516-01	-0.65334E-01	-0.633836-01	-0.612796-01	-0.594086-01	-0.57072E-01	-0.53825E-01	-0.513146-01	-0.49613E-01	-0.4886CE-01	-0.486576-01	-0.48860E-01	-0.49613E-01	-0.51314E-31											-0.151 /5E CO	-0.10585E UO	-0.279336-01	0,14283:-01
FUSELAGE, SEGME X:221.50 RS# 33.98 RDX# 0.00	0.34268E 00	-0.10174E 01	-0.11534F 01	-0.10004E 01	-0.63370E 00	-0.34193E 00 -0.27483E 00	-0.210436 00	-0.16411E 00	-0.13400E 00	-0.11360E 00	-0.10065E 00	-0.92714E-01	-0.85089E-01	-0.80946E-01	-0.17705E-01	-0.76656E-01	-0.76358E-01	-0.76657E-01	-0.17706E-01	10-304608-0-	-0.850845-01	-C. 92709E-01	-0.10066E 00	-0.11361E 00	-0.13400E 00	-0.16412E 00	-0.21042E 00	-0.27482E UO	0.391956	-0.63368E 00	0.10002E 9	-0.11532E 01	0.10174E	-0.45442E 00
EDEFFICIENTS X#185.50 RB# 33.06 30X# 0.04	0.91351E-01 -0.13480F-01	-0.18973E 00		966 9	-0.25572E 00	-0.21084E 00 -0.18160F 00	-0.15668E 00	-0.13339£ 00	-0.11418E 00	-0.49791E-01	-0.89729E-01	-0.82901E-01	-0.78179E-01	-0.75076E-01	-0.73136E-01	-0.72177E-01	-0.71904E-01	-0.72177E-01	-0.73136E-01	-0.750765-01	-0.781796-01	-0.82901E-01	-0.89729E-01	-0.99791E-01		-0.13340F 00	2668E	59E		3	.31498E	-0.31238E 00		-0.134936-01
PRESSURE THETA D	0.0	20.00	30.00	00.04	50-00	20.00	80.00	90.06	100.00	110.00	1.20.00	130.00	140.00	150.00	160.00	179.00	180.00	193.00	200.00	210.00	220.00	730.00	240.00	250.00	260.00	270.00	280.00	290.00	\$00.00	310.00	120.00	330.00	٥.	350.00

T METHOD.	
SEGMENT	
FUSELAGE.	
4	
COEFFICIENTS	
PRESSURE	

and the second of the second o

20 00 00 00 00 00 00 00 00 00 00 00 00 0					
x#497.00 Rd# 3.21 OROX# -0.21	.74562E-0 .6:084E-0	.45956-0 .45956-0 .38326-0 .341676-0	295306-0 224736-0 236786-0 270926-0 317126-0 371676-0	226-00-00-00-00-00-00-00-00-00-00-00-00-00	
X#450.00 R3# 17.5R DRDX# -0.18	.10107E-0 .97202E-0 .84870E-0	.2920E-0 .2920E-0 .21971E-0 .19841E-0 .18518E-0	. 50350F-0 . 30925E-0 . 32121E-0 . 28413E-0 . 940.4E-0 . 15546E-0	.22682F-0 .23466F-0 .22642E-0 .20157F-0 .15547E-0 .94049E-0	3426- 3426- 3426- 3426- 3426- 3426- 3426- 3456- 3456- 3656-
THETA	0000			000000000000000000000000000000000000000	

ITERATION. PRESSURE COFFFICIENTS AT FUSELAGE, THREE DIMENSIONAL MODIFICATION OF 1

	00	? 6	88	8	0	8	8	000	8	8	ē	10:	5	5	0	-	50-	5	50-	ō	50-	70-	5	50-	50-	8	8	8	90	8	8	80	8	Ē	3
220	261078		0.4	Ģ	=======================================	3	-	3	35.	33	3	1000	3	17.0	57.	30	3	3	===	30	5	3.5	7:2	2	3	3	3	3	Ē	3	Ξ	3	30	Ę	Ş
3.0	2		3	Ž	=	2	=	=	=	Ξ	Ĕ	Ē	:		7	. 3	8	Ę	5	Ĕ	7	3	:	=	Ĕ	Ξ	=	=	፥	:	. 25	ž	Ę	ž	Ž
x & x & x	Ģ	9		ç	?	P	î	°	°	?	Ŷ	Ŷ	P	Ŷ	ç	Ŷ	°	?	?	Ŷ	?	9	Ŷ	Ŷ	Ŷ	Ŷ	ç	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ŷ	Ş	Ý
	86	36	8	2	8	8	8	8	ē	ē	ē	ē	ö	ö	ö	õ	?	~0-	≈	٠	ë	é	ē	٠ •	ē	ė	ģ	8	8	8	8	န	8	ö	8
	166720	2	3	73	Ç	10.2	=======================================	2	Ė	Ė	Ė	Ė	Ė	į	į	Ė	÷		i	÷	į	į	Ë	į	Ė	į	ġ	Ľ	Ξ	2	Š	ĭ	3	2	ž
250	:		3	3	3	=	Ξ	=	?	2	35	5	٤	2	=	5	į	ij	:	į	-	=======================================	200	₹. *	35	2	ž	=	=	=	Š	3	5	3	
X & X C X C	9		ç	ò	Ģ	ė	ò	ģ	ė	ċ	ċ	ó!	ģ	ė	ċ	ċ	ċ	ċ	ģ	ė	ç	ę	?	ģ	ċ	ċ	ė	ė	ė	ċ	ę	ę	ė	ė	ė
01-	. 558306-01			_	_	~	~	~	~	~	$\bar{}$	10-112	~	~	10-320	10-165	306-01	416-01	306-01	396-01	026-01	10-160	10-166	264-01	10-161	10-110	10-316	10-116	156-01	10-346	10-100	236-01	114-01	10-11	326-01
==0	25		980	3	312	313	367	532	~	\$3	36	=	:	22	=	2	5	7	3	173	=	2	:	=	į	Š	204	535	367	Ę	200	5	Š	Š	0
OAO X	0.0		ġ	ė	ç	ė	ò	ċ	ç	ċ	o	o	ė	Ģ	ė	ċ	ċ	°	ė	ċ	ė	ċ	ċ	ė	÷	ċ	ċ	ċ	ė	ė	ċ	ė	Ģ	ę	ģ
	9		ē	ē	ē	õ	ē	ē	õ	ទុ	ē	ő	ទុ	ទុ	ē	ē	ő	ő	ş	ទុ	ē	ទុ	ē	ē	õ	ş	ő	ē	50	õ	ş	ē	ő	õ	ő
844	230098-01	1		906	946	704	23.5	100	365	126	90	362	3,4	90	901	215	636	909	6) E.	2	2	9	37.6	į	ġ	200	Ž	196	Š	200	¥	ė	3		ù E
94.0	23009		7	2.36	263	272	276	273	2	236	3	22	23	=	=	178	172	170	172	178	187	5	23	228	3	256	260	273	2,2	272	263	23	ž	23	23
×ex	9	Ç	ç	Ģ	ç	ŗ	ģ	ģ	Ŷ	ò	Ŷ	ŗ	ŗ	ė	ŗ	ė	ė	ŗ	ċ	Ŷ	Ŷ	ė	ဝှ	ċ	ė	ė	ọ	o	ė	o	ė	ę	ė	Ŷ	ç
Š																																			
ı	9E-01	9	Ŷ																										az s	24 .	244	-	-	5	-0 -0
73.00 21.73	~ 0	4 4	2.5	921	949	53218	906	359	19	\$	Š	7	5	261	223	959	782	720	782	959	8 28	\$61	219	1 12	ŝ	648	19	359	8	2	\$	8	23	Ş	Ş
220	21.0	::			*	2.15	3.15		÷:	÷.	; ;	÷	::		.13	<u>*</u> :	<u>*</u> :	<u>*</u>	===	*::	::5	. 13	::5	÷:	::	?: ?	÷:	÷ 10		::2	: :	::2	.13	? 5	21.
0 8 8 8 8 8	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	'	•	•	•	,	•	•	•	•	•	•	1	•	٠	•	•	Ÿ	i
	0	0	6	-03	-03	-05	-05	?0	-05	20-	~ 0-	-05	-05	~ 0-	-05	~ 0	~ 0-	70	~0-	-05	20-	~ 0-	~ 0-	-05	-05	70-	-05	-05	-05	~ 0-	ç	ç	ç	ç	
000	110675	2 6	24.36	2 S 1 E	1196	2 1 4E	106	579E	2 5 8 E	7.25E	1 216	20E	354E	3796	103E	374E) 1 2 E	1296	1126	374E	303E	366	362 6	20E	12 1	72SE	586	379E	390¢	34.2	196	326	42E	, 24E	3
320																																			
A A A A A A A A A A A A A A A A A A A	o c	· c	0	٥	°	•	•	•	•	•	•	•	•	•	•	1	•	ç	Ŷ	٩	î	٩	î	Ŷ	Ŷ	Ŷ	ç	٩	၀	î	î	Ŷ	0	0	Ó
	0 3	0		-03	-03	-05	-05	-05	-05	-05	-05	~0-	ô	ö	-05	<u>-</u> 0	-05	-05	-07	-05	-05	-05	-05	-05	-05	~ 0-	-05	-05	-02	-05	-03	-63	6	E-04	40
23.70 10.26 0.28	96 OE	0734F	9 1 E	986	3860	322E	94F	28E	18 1E	08E	736	.66E	638	136	156	306	540	31E	54E	70E	156	136	636	36E	13E	986	9.6	28€	946	22E	99F	986	92E-		~
	0.89460E		~	-55198E-	.88	-0.11922E-02	-0-1>294F-02	.186	.216	.25	. 282	. 31	. 334	.350	. 360	. 366	.376	.37	.376	.366	.366	.350	.334	.31	. 282	.251	. 216	1.86	. 152	. 119	. 860	.55198E-Q	-0.2859	•	466
X. RB. DROX.		•																															P	0	Ö
THETA	0.0	20.02	30.00	40.00	80	60.00	00.	00.0	90.00	00.	10.05	8	80.	8	00.	00.	00.	00.	00.	80.	င္ပ	00.	80.	00.	00.	8	00.	00.	00.	00.	8	20.00	8	00.	•
Ξ	0 5	2	2 8	9	Ş	9	2	8	8	001	2	120	1 30	-04	150.	160.	1 70.0	180	061	200	210	220	230	240.00	2 50	260	2 70	280	290	300.00	310	320	330.00	340	350

FIGURE 41. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AFTER ONE ITERATION

I TERATION. PRESSURE COEFFICIENTS AT FUSELAGE, THREE DIMENSIONAL MODIFICATION OF 1

00	10.201010		-11/17	1111	141014-	-318651	-357551	-3656	-94001	-10001	- 20404		- 3000	141706-	-101251	157316-	-100661	-149041	- 20001				-2000	1300~	1 30404	10000		-391551		193014-	-310141	-214501	426706-	264436=	- 99 2 68 7
AN 244.00 DRDX 27.41	0-44234-0		304726-	0-100E2.	. 1 86 976-0	-100326-	0-101191.	. 1 5 3 6 6 6 - 0	0-179661.		クーシャルクのじゅ	. 747304-0	0-216010.		0-116661.	0-167616.	. 930738-0		. 430734-0	0-367616.	0-11616	0-16086-	0-12/610.	. 747; 16-0	0-12-61-0	0-2:- 117	0-149661.	. 193676-0	0-369191.	. 166236-0	.186971-0	0-166827	- 304726-	. 381498-0	0-145484.
90 .01 .X0 X0	10-401008-0		0.234278-01	0.472716-02	20-36482 O	0.540706-02	0.70003E-02	0. 100 100 -02	20-15-216-0	20-816664 O	20-3486E-03	20 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	20-148341-0	20.20000000000000000000000000000000000	0- 30000 -0	20-341244-0	0.447276-02	0 - 20 P C - 0 C	40-164-04-0	20-391294 · O	20 - 22 00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.2668E-02	0.163366-02	0-10128E-05	20-3020x 00	*O-ESS\$**O	. 712667-0	. 700846-0	. 70012E-0	.540726-0	. 520516-0	. 472846-0	. 23424E-0	. 360666-0	-164336-
X 4 3 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.255458-01	1754E-0	93276	3696	5776	74736	7367	11256-0	32536-0	49246-0	30296	0-30040	ついいだん	6574E-0	47625-0	99196-0	36466-0	9925E-0	36466-0	0.699276-03	57436-0	65726-0	2219E-0	0-19090	19316-0	4426E-0	32536-0	11246-0	73450	74716	57766	36976	53278	37696	1791
KO.442 RACE BE. W. 47		0.22737E 0	366406	0.41400	0.363246 0	27139E 0	20301E 0	152516 0	112446 0	;	6			0-121994-0	35775E-0	20182E-0	471556-0	54631E-0	47155E-0		787686-0		•	0.17739	0.561416-0	. 807456-0	.11244E 0	.182816	0.20301E 0	0.27338E 0	.163236 0	0 365414.	. 366366 .	.273736 0	.22737E 0
X=221.50 RB= 33.98 DADK= 0.00	0.580346	20838E-	: -	- 57880E-	135465	13453E	.11470E	1083SE	1:950E	. 13588E	.19726E	179696	. 19241E	193406	186946	.18491E	18418E	184396	104186	, 18491c	1 do 95 E	193416	. 19242E	.17967E	.15726E	. 13589E	. 1 1957E	. 10936E	11470E	134516	135466	.578856-		0.28402E	0.2077fE-
X 185.50 AB 33.06 COXX 0.04	0.322	0.255237	0.348066	-0.20845E	-0.316746	-0.250736	-0.18377E	-0.16150E	-0.16686E	-0.18525E	-0.21002E	-0.23408E	-0.24398E	-0.23529E	-0.22118E	-0.210216	-0.20474E	-0.20336E	-0.20474E	-0.21021E	-0.22118E	-0.23529E	-0.24398E	408E	2100ZE	26E	.1668SE	305191	. 18376E	25072E	.31674E			.15787E	•••
THETA	0.0	10.00	30.00	40.00	50.00	60.00	70.00	80.00	90.00	100.00	110.00	120.00	130.00	140.00	150.00	160.00	170.00	180.00	190.00	200.00	210.00	220.00	230.00	24.0.03	20.00	260.00	2 70.00	280.00	2 90 00	00.00	10.0	320.00	330.00	_	150.00

FIGURE 41. (Continued)

FIGURE 41. (Concluded)

	X=450.00	# # #	X=497.00) (
THETA	ORDX.	DROX	-0.21	SROX-		
0.0	0.10107F-		511184E -112			
1, .00	0.972026-02		0.146625-02			
20.00			.470E E-02			
30.00			.55687E-02			
40.00	0.43027 :-		. 45956E-02			
50.00	0.29291E-		. 40956E-02			
60.00	0.219716-		. 18320E-02			
70.00	0.19941E-		.37167E-02			
00.73	0.18518E-		.36355E-02			
90.00	0.13705E-		. 34009E-02			
00.001	-303C3C0		. 295 JOE-02			
110.00	-0.30925E-03		. 247936-02			
120.00	-0.321216-03		. 238 78E-02			
130.09	0.284135-		. 27092E-02			
00.041	0.9404E-03		. 317126-02			
150.03			.37167E-02			
00.091	0.201566-		.42363E-02			
1 70.00	0.22682E-		-45896E-02			
180.00	0.23466E-		.47142E-02			
00.061	0.22682E-		. 4589CE-02			
200.00	U. 20157E-		. 423636-02			
210.00	0.15547E-02		.37167E-02			
220.00	0.94049E-		.317126-02			
230.00	0.284246-03		. 27092E-02			
240.00	-0.321136-03		.23878E-02			
250.00	-0.309396-03		. 24792E-02			
260.00	0.50342E-03		. 295306-02			
270.00	0.137046-02		.34009E-02			
280.00	U.18518E-		. 36355E-02			
290.00	0.198426-		-37167E-02			
300.00	0.21971E-02		.383205-02			
310.00	0.29291E-02		.409566-02			
320.00			0.459576-02			
330.00	0.641536-02		0.556816-02			
140.00	•		. 470.3E-02			

PARAMETERS USED IN FORCE AND MOMENT COMPUTATION 1JET OF DIAMETER 22.500 KCG* 238.200 REFERENCE LENGTHS 83.500 COORDINATES OF TAIL X* 917.000 Y* 0.0 Z* 24.500 IDIS- 4 NJET. . LENGTH OF FUSELAGE. 517.000 PARAMETERS USED IN 30 MODIFICATION OF FUSELAGE COMPUTATION

FORCES AND MOMENTS

x-FORCE Y-FORCF 2-FORCE C-114E-02 0.552E-06 -0.122E-01

PITCHING MOMENT COMPUTED ABOUT AXIS THRU C.G.* 0.585E-03 YAMING MOMENT COMPUTED ABOUT AXIS THRU C.G.* 0.973E-07

***END OF BOOY COMPUTATION**

FIGURE 43a. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AT STATIONS X = 73.0 AND X = 118.0 $U_{\infty}/U_{j} = 0.2$, $\alpha = \beta = 0^{0}$, Lift Jet

and the second of the second s

FIGURE 43b. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AT STATION X = 185.5

$$U_{\infty}/U_{j}=0.2$$
, $\alpha=\beta=0^{0}$, Lift Jet

FIGURE 43c. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUSELAGE AT STATION X = 264.25

$$U_{\infty}/U_{j}=0.2$$
, $\alpha=\beta=0^{\circ}$, Lift Jet

△ Test Data
Segment Method
3-D Modification

The relationship between ρ and fuselage station geometry is given in Figure 39.

FIGURE 43d. POWER-EFFECT PRESSURE COEFFICIENTS ON SAMPLE FUGURE 43d. 0

$$U_{\infty}/U_{j}=0.2, \ \alpha=\beta=0^{0}, \ Lift \ Jet$$

The relationship between θ and fuselage station geometry is given in Figure 39.

FIGURE 44a. POWER-EFFECT FRESSURE COEFFICIENTS ON FUSELAGE AT STATIONS X = 73.0 AND X = 118.0

$$U_{\infty}/U_{j}=0.2$$
, $\alpha=0^{0}$, $\beta=10^{0}$, Lift Jet

FIGURE 44b. POWER-EFFECT PRESSURE COEFFICIENT ON FUSELAGE AT STATION X = 185.5

 $U_{\infty}/U_{j} = 0.2, \quad \alpha = 0^{0}, \quad \beta = 10^{0}, \text{ Lift Jet}$

and the first and the second of the second o

FIGURE 45. POWER-EFFECT LIFT FOR FUSELAGE ALONE WITH LIFT JET

The state of the s

The state of the s

FIGURE 46a. POWER-EFFECT PRESSURE COEFFICIENTS ON NORTHROP BODY AT STATIONS X = 8.1 AND X = 8.9 $U_{\infty}/U_{i}=0.1$, $\alpha=\beta=0^{0}$, Center Jet at X=10.0

the angle of the transmission of the second second second second to second the second by the second section of

POWER-EFFECT PRESSURE COEFFICIENTS ON NORTHROP BODY AT STATIONS X = 11.1 AND X = 11.9 $U_{\infty}/U_{j}=0.1$, $\alpha=\beta=0^{\circ}$, Center Jet at X = 10.0 FIGURE 46b.

c. Method Applicability and Limitations

As pointed out in the beginning of this section, the method for predicting power effect on a fuselage is very similar to that of a wing. However, for the sample problems considered in this Volume, there are two differences between fuselage and wing computations. The first one is the formation of a wake behind the exhausting jet which engulfs a large portion of the fuselage and is a fundamental problem. The second difference is computational, and may be briefly described as follows: The induced velocities usually undergo very large changes across the jet, as discussed previously. These are most noticeable in the mainstream direction, which is also the longitudinal direction of a fuselage without sideslip. When we invoke numerical differentiations in the longitudinal direction to determine the strength of the residual sources and sinks, these large variations generally magnify the intensity of the sources and sinks and may cause erratic behavior in the final results. This irregularity usually gets worse when higher iterations are carried out, even though some smoothing of the input data is applied. For this reason, two iterations were not performed. To compare the case of a wing, we notice that the largest variation in the induced velocities exists in the mainstream direction and does not traverse any of the wing stations. In addition, the computational procedure automatically smooths out some of the large variations in the mainstream direction by integration for the "boundary functions" (see Volume I, Section IV, for details) and the subsequent expansion in a Fourier series.

Since the power effect on a fuselage, disregarding the wake, contributes only a fraction to the total power-effect forces and moments, some uncertainty in prediction may be tolerable. Based on this assumption, the segment method is useful since it includes some of the three-dimensional effects that are already present in the jet flow field and gives fairly reasonable results in most cases.

As in the case for a wing, the present computer program is also capable of treating the power-on and power-off problems in a formal sense. However, the three-dimensional effects due to the nose and the tail of the fuselage are not included.

In the examples calculated so far, no smoothing procedure was used for the input data.

SECTION IV

POWER EFFECTS ON CONTROL SURFACES

To predict the aerodynamics of a V/STOL aircraft it is necessary to be able to predict the effects of power on the horizontal and vertical tail surfaces. This power effect can be attributed primarily to an induced flow angle at the tail location. Having a method of predicting the power induced flow angle it is then possible to estimate the aerodynamic forces and moments induced on the tail surfaces by the exiting jet. This section will describe how to obtain the jet induced flow angles at the location of the tail surfaces.

1. SAMPLE PROBLEM

Attribut himosophise edition production of the consistence of the best of the section of the book attributed at the section of the section of

The sample problem to demonstrate the calculation of the downwash at the tail will be the wind tunnel test model described in Appendix I, with the lift jet operating. The jet parameters and the flight conditions are the same as specified in Section III, except that here three values of U_{∞}/U_{10} will be considered .1, .2, and .3.

Power induced downwash and sideslip will be computed at the test rake location:

x = 44.23 inches

y = -6.75 inches

Dimensions in model scale

z = .9, 2.9, 4.9, 6.9, 8.9, 10.9, 12.9 inches

2. APPLICATION OF JET FLOW FIELD PROGRAM TO CONTROL SURFACES

The use of the jet flow field program consists of specifying the points at which jet induced velocity components are to be computed, details of jet location and the flight variables. A description of sample input and output for the jet flow field program has been given in Section II.3. The application of the jet flow field program to the tail problem differs only in the location of the control points.

In this example the down—ash and sidewash angles will be computed at the rake location instead of the vertical or horizontal tail location since test data exists for the rake location.

Figures 47 and 48 show a comparison of power induced downwash and sidewash obtained by the jet program and compared with wind tunnel test data for the body alone with the rake attached. The theory will not account for the presence of a body or a wing so it must be assumed that these components can be ignored in calculating the power induced angles. The agreement shown in the figure can be considered satisfactory considering the scatter in the test data.

3. CALCULATION OF POWER INDUCED FORCES AND MOMENTS ON CONTROL SURFACES

To calculate the incremental force and moments induced on the tail it is necessary to estimate the C_{L_α} of the surface in the presence of the fuselage (and other tail panels) and the cent.oid of the panel load. These values may be estimated by empirical methods such as are to be found in DATCOM. When these values are known, the jet induced downwash and sid wash can be used to estimate an incremental angle of attack or side-slip on the surface in question. From these values it is possible to estimate power induced forces and moments on the tail surfaces. Some estimates of this nature have been made for the wind tunnel test model of this study but the accuracy with which the incremental forces and moments can be measured from the test data precludes any conclusions as to method accuracy. The comparisons made do show, however, that such estimates are of the right order of magnitude.

FIGURE 47. LIFT JET POWER INDUCED DOWNWASH AT RAKE LOCATION

Theory

0

△ Test

LIFT JET POWER INDUCED SIDEWASH AT RAKE LOCATION FIGURE 48.

SECTION V

APPLICATION OF INLET METHOD

The method of force and moment estimation for normal inlets described in Volume I, Section V, consists of three parts. The inlet induced forces are two parts, lip forces which act in the immediate vicinity of the inlet, and surface forces which act at greater distances. The third part consists of a description of the net thrust of the propulsive device causing the inlet flow. An approximation for a lift fan has been derived, but data obtained from test could be used in place of the model.

The inlet method may be applied to a wide variety of configurations. This versatility is a direct result of the empirical nature of the model. Because of this empirical nature, some comment is required on selection of the parameters used in the equations summarized below.

$$\binom{\text{inlet } +}{\text{net fan thrus}c} = \binom{\text{inlet lip}}{\text{forces}} + \binom{\text{surface}}{\text{forces}} + \binom{\text{net fan}}{\text{forces}}$$

Lip Forces:

$$L_{L} = /\frac{2}{2} A_{f} \left[U_{f}^{2} (1 - A_{f} / 4\pi R_{i}^{2}) + U_{\infty}^{2} (\eta - k^{2}) \right]$$

$$D_{L} = \rho A_{f} U_{f} U_{\infty}$$

$$M_{gL} = -\rho A_{f} U_{f} U_{\infty} (R_{i} / 2) \sin \beta$$

$$M_{mL} = \rho A_{f} U_{f} U_{\infty} (R_{i} / 2) \cos \beta$$

Surface Forces:

$$L_{s} = \sqrt{2} U_{\omega} U_{f} \frac{A_{f}}{\pi} \left[\cos \beta \int_{\ln |R|}^{2\pi} \frac{r}{R_{i}} |\cos \theta d\theta + \sin \beta \int_{-R_{i}}^{2\pi} |\sin \theta d\theta \right]$$

$$+ \sqrt{4} U_{f}^{2} \left(\frac{A_{f}}{2\pi R_{i}} \right)^{2} \int_{-L_{i}}^{2\pi} \left[1 - (R_{i}/r)^{2} \right] d\theta$$

$$M_{ms} = \int_{2}^{2} U_{\omega} U_{f} \frac{A_{f} R_{I}}{\pi} \left[\cos \beta \int_{0}^{2\pi} \left[(r/R_{I}) \cdot I \right] \cos^{2}\theta \, d\theta \right] + \sin \beta \int_{0}^{2\pi} \left[(r/R_{I}) - I \right] \cos \theta \sin \theta \, d\theta$$

$$+ \int_{2}^{2} U_{f}^{2} \frac{(A_{f}/2\pi)^{2}}{R_{I}} \int_{0}^{2\pi} (I - R_{I}/r) \cos \theta \, d\theta$$

$$M_{RS} \stackrel{?}{/2} U_{\omega} U_{f} \frac{A_{f} R_{I}}{\pi} \left[\cos \beta \int_{0}^{2\pi} (1-r/R_{I}) \cos \theta \sin \theta d\theta + \sin \beta \int_{0}^{2\pi} (1-r/R_{I}) \sin^{2}\theta d\theta \right] + \frac{2}{\sqrt{2}} U_{f}^{2} \frac{(A_{f}/2\pi)^{2}}{R_{I}} \int_{0}^{2\pi} \left[(R_{I}/r) - 1 \right] \sin \theta d\theta$$

Fan Flow and Force:

$$U_{f} = \left[\left(C_{t} U_{t}^{2} + \left(\gamma - K^{2} \right) U_{\infty}^{2} \right) / \left(1 + C_{0} S_{CB} / A_{f} \right) \right]^{0.5}$$

$$T_{f} = \frac{1}{2} A_{f} \frac{C_{t}}{1 + C_{0} S_{cB} / A_{f}} V_{t}^{2} - \frac{1}{2} (\gamma - K^{2}) \frac{C_{0} S_{cB}}{1 + C_{0} S_{cB} / A_{f}} V_{\infty}^{2}$$

Summation:

$$L = L_L + L_S + T_S$$

$$D = D_L$$

$$M_R = M_{RL} + M_{RS}$$

$$M_m = M_{mL} + M_{mS}$$

1. SELECTION OF PARAMETERS

a. Inlet Method

In the application of the inlet method, judgement must be used in determining the boundaries of the surface upon which the inlet is assumed to have an effect. The magnitude of the pitching moment due to forward velocity as well as the magnitude and sign of the static moment is a direct function of the size and distribution of the effective area. In simple cases such as the presence of an inlet in the surface of a rectangular wing, it is obvious that the entire surface should be considered in the calculations. In more complicated situations it is presently thought that the area considered for each inlet be defined by a radius measured from the centroid of the inlet to the nearest edge of the body or the nearest barrier to flow, such as a sharp corner. Lift forces are concentrated in the immediate vicinity of the inlet and are not so greatly affected by the definition of the effective area.

The radius R_1 , used to separate the area on which "lip" forces act from the area on which "surface" forces act, is completely arbitrary. The value of R_1 does not affect the final result of the calculation which contains the sum of "lip" and "surface" forces. In a particular calculation it may be convenient to make R_1 correspond to the

actual inlet size or to make R_1 a larger value and minimize the value of the surface force integrals.

Although the integrals appearing in the surface force equations are easily adapted to machine computation, graphical integration or a finite summation using a worksheet such as that shown in Table 3 has been found to be satisfactory. Because the forces are concentrated in the immediate vicinity of the inlet, large angular increments may often be used with little loss in accuracy. For configurations with more than one inlet, the present procedure is to superimpose the effects of the individual inlets without consideration of interaction between inlets.

b. Fan Flow Model

In application of the fan flow model, values of the parameters η and K must be selected. These parameters appear only in the combination η -K² and this combined parameter should be in the range ± 1 .

For deep inlets K may be assumed to be zero. For very thin inlets the value of K will approach unity. Reference (2) shows that K = 0.7 for a relatively deep far-inwing installation.

The dynamic head recovery factor η varies from near unity for deep inlets ⁽³⁾ to zero for thin inlets ⁽⁴⁾. Even for deep inlets, the value of η will fall quite rapidly with forward speed if no flow turning device is present.

The parameter C_t is obtained by fitting static thrust versus RPM curves for a particular fan after values have been selected for η -K² and C_DS_{CB} .

2. EXAMPLES OF APPLICATION

The analytical models are applied to several configurations and indicate characteristics consistent with the data. It is not possible to completely verify the analysis as it is not presently possible to separate the effect of the propulsive wake, present in the data, from the effect of the inlet flow, and it is not yet possible to calculate the exit effect with complete confidence for these configurations. No sample calculations are shown because of the relative simplicity of the model, but the selection of the empirical parameters is indicated.

Although a large amount of data is available for both lift-jet and lift-fan configurations, only lift fan data is considered. Lift-jet inlet effects are relatively small due to the lower mass flows and this may result in inlet force variations of the

same order as data scatter ⁽⁵⁾. The amount of usable data available is further reduced by the presence of a high degree of wind tunnel wall interference in some tests.

The methods have been applied to four configurations:

- 1. fan-in-nacelle (6)
- 2. fan-in-fuselage (3)
- 3. fan-in-wing (4)
- 4. 1/6-scale XV5A⁽⁷⁾

a. Fan Flow Calculations

n der tyre generalisesse megas beeggeness temenesises participation interest sensitivities to another sensitivities

Reference (3) and Reference (4) have been used to substantiate the propulsion model. The static thrust versus RPM curves were fitted for both the fan-in-fuselage and fan-in-wing configurations. Using the value of $C_{\rm t}$ so obtained, fan flow versus forward velocity was calculated and '< compared to experimental values in Figure 50. Both curves are reasonably well predicted.

It should be noted that in matching the static thrust curve, the parameter actually obtained is the combination ($C_t/1 + C_D S_{CB}/A_f$), not C_t . Therefore, variation of the value of $C_D S_{CB}$ does not affect the static values produced by the equations but only varies the apparent value of C_t and the effects of translational velocity through the parameter combination (η -K²/1 + $C_D S_{CB}/A_f$). Thus, it may be possible to fit data while using values for individual parameters which are in error.

b. Fan-in-Nacelle

The fan-in-nacelle model of Reference (6) is indicated in Figure 49. The twelve inch fan was electrically driven and was not equipped with inlet devices or exit vanes to aid in turning the flow. The model was reversed in the wind tunnel and the fan was tested in both leading and trailing positions.

The results yielded by the empirical model are shown in Figures 51 and 52; no exit effects are included in the calculated curves, which include inlet effect, net fan thrust, and unpowered aerodynamics. Available data for similar inlets indicate that the dynamic head recovery factor can be expected to decrease rapidly as free stream velocity increases from the static conditions. Therefore, curves for both total loss and complete recovery are shown. The parameter K was assumed to be zero.

FIGURE 49. FAN-IN-NACELLE CONFIGURATION

The method reflects the change in flow direction as seen in the lift data. Lift forces are reasonably well predicted by assuming high recovery at low speeds and low recovery at high speeds. Drag is also well predicted. The lack of accuracy in the moment prediction may be due to uncertainties in the unpowered aerodynamics, exit effects not included in the predictions, or errors in the selection of the propulsion parameters. Increased fan flow rates would improve overall correlation, but arbitrary changes in propulsion parameters would yield little additional information.

c. Fan-in-Fuselage

The full-scale fan-in-fuselage model of Reference (3) was a shoulder wing configuration of aspect ratio five. The single fan was mounted vertically in the fuselage with the fan axis passing through the wing quarter chord and moment center. A single semicircular vane was placed behind the leading edge of the inlet to improve pressure recovery and inhibit separation. Only tail-off, flap-retracted data are considered.

In the application of the empirical method, the depth of the inlet led to the assumption that the flow is axial to the fan; data shows that pressure recovery of the inlet is nearly complete. Therefore, the parameter $\eta - K^2$ is assumed to be unity.

The diameter of the assumed circular inlet was chosen to contain the intersection of the actual inlet and the fuselage. The projected planform of the wing-body was used in calculating induced surface forces. Inlet sealed data was used to represent power-off terms.

The results of the calculations and data are shown in Figures 53 and 54. Figure 53 compares fan flow rate and fan rotor thrust. Figure 54 shows lift, drag and moment coefficients. It can be seen that drag is best predicted and pitching moment least well predicted. This may, however, be due to the lack of fan exit effects in the analytical predictions.

NASA TN-D-2560 identifies the presence of wind tunnel wall interference in this test and noting that uncorrected data is presented here, removal of the interference would be expected to improve lift correlation. The effect on the moment correlation is not known.

d. Fan-in-Wing

The second state of the second second

Calculations were also made for the one-sixth scale model of the XV-5A reported in Reference (7). The configuration of the test model was gear down, flaps down, and tail off. The model moment center is ahead of the far axis.

In the application of the model, the parameter $\eta - K^2$ is assumed to be zero. The assumed inlet size closely matches that of the actual inlets which are nearly circular. Each fan is assumed to produce induced forces only on the wing panel in which it is mounted. Data obtained with inlet and exit sealed are used to predict power-off effects.

The results are presented in Figures 55, 56 and 57. The empirical prediction is presented both with and without power-off aerodynamics. Fan exit effects present in the test are not included in the empirical predictions. The forces and moments for this test were nondimensionalized by the use of the "slipstream" dynamic pressure q⁸, where:

$$q^s = 0.5 \rho_{\infty} U_{\infty}^2 + L_0 A_F$$

L_o = static lift at constant RPM

$$A_{F} = total fan area$$

Again, arag force is best predicted and moment least well predicted. The addition of exit effects to the prediction should improve the moment correlation and may improve the lift prediction. The use of exit open, power-off data would improve the moment prediction at the expense of lift prediction, due to disturbance of flow on the lower wing surface.

erranden en vermeng gegenderekten opten kommen gegenden en en det steken beforete et en geben en te kommen en

TABLE 3
INLET-SURFACE FORCE AND MOMENT CALCULATIONS

 $M_{\rm ms} = 0.5 \rho U_{\infty} U_{\rm f} \frac{A_{\rm f}R}{4} I$ ($\Sigma M_{\Delta} \Theta \cos \beta + \Sigma M_{\Delta} \Theta \sin \beta$) $+0.5 \rho U_{\rm f}^2 R_{\rm I}^{-1} (A_{\rm f}/2\pi)^2 \Sigma M_{\Delta} A \Theta$ $M_1 = -0.5 \rho U_{\infty} U_f \frac{A_f R}{\pi} I$ ($\Sigma L_f \Delta \theta \cos \beta + \Sigma L_f \Delta \theta \sin \beta$) $-0.5 \rho U_f^2 R_1^{-1} (A_f / 2\pi)^2 \Sigma L_f \Delta^3 \theta$ $L_{s}=0.5\rho U_{\infty}U_{f}^{\frac{A}{2}}f(\Sigma F_{1}\Delta\theta cos\beta+\Sigma F_{f}\Delta\theta sin\beta)-0.25(A_{f}/2\pi R_{1})\rho_{0f}^{2}\Sigma F_{3}\Delta\theta$

FIGURE 50. FAN FLOW PARAMETERS

FIGURE 51. FAN-IN-NACELLE, INLUT LEADING

FIGURE 52. FAN-IN-NACELLE, INLET TRAILING

FIGURE 53. FAN-IN-FUSELAGE, PROPULSION PARAMETERS

to the gibbles the east back a decreap activities placements by consisting this properties and activities

FIGURE 54. FAN-IN-FUSELAGE

FIGURE 55. 1/6-SCALE XV-5A, FAN-IN-WING, LIFT FORCE

your stable cape say an experience show superposites are set of the section of the control of th

FIGURE 56. 1/6-SCALE XV-5A, FAN-IN-WING, DRAG FORCE

FIGURE 57. 1/6-SCALE XV-5A, FAN-IN-WING, PITCHING MOMENT

SECTION VI

NONLINEAR BODY AERODYNAMICS

The body aerodynamics are computed by combining slender body theory with viscous crossflow effects to obtain nonlinear coefficients at high angles of attack and sideslip. The method, described in Volume I, has been programmed for the computer with the linear and the viscous components of the aerodynamic coefficients printed out separately. The computer program requires that the mapping of the body cross sections be known. This mapping is obtainable by means of the mapping method described in Sections II and III. A simplified method of obtaining inputs to the computer program is also described which permits more ready calculation of body aerodynamics by bypassing the mapping of the body cross sections.

1. SAMPLE PROBLEM

To illustrate the use of the nonlinear body aerodynamics program the wind tunnel test model body described in Appendix I will be used. The aerodynamic coefficients and rotary derivatives will be calculated for this body through an angle of attack and angle of sideslip range.

a. Description of Body Coordinate System

The axis system used to describe the body is shown in Figure 58. The coordinates are body axes with the x-axis aligned along the body. The exact location of the x-axis is chosen to permit the body cross sections to be obtained in planes perpendicular to this axis. The exact location of the origin is not restricted to be at the body nose but may be chosen to suit the user. The axis system chosen consists of a right hand system with the x-axis directed aft, the y-axis to the right and the z-axis upward.

The flight conditions for the static coefficients are specified as a resultant angle of attack α and a roll angle φ . The resultant angle of attack is the angle between the freestream direction and the x-axis and is always defined as positive. The roll angle is then specified as the angle between the freestream component in the y-z plane and the body vertical plane (x-z plane) as shown in Figure 58.

SIGN CONVENTION FOR BODY AERODYNAMIC COEFFICIENTS FIGURE 58.

Of the rotary velocities p is not considered of importance for a body and so is not included in the computation. The rotary components q and r are specified in body with q as a vector in the direction of the positive y-axis and r as a vector in the direction of the negative z axis. This convention was chosen to be consistent with the terminology of Reference 8.

A reference length $\mathbf{1_r}$ reference area $\mathbf{S_r}$ and a center of gravity location $\mathbf{x_{cg}}$ are specified. All of the force coefficients are based on the same reference area. Pitching, yawing and rolling moment coefficients are defined on the reference area and the reference length specified. This differs from the conventional way of defining the moments. The reference point about which the moments are taken is the specified center of gravity location which is located on the x-axis. The effects of including rotary velocities assume that the center of rotations of q and r are at $\mathbf{x_{cg}}$.

The force and moment coefficients are in body axes as shown in Figure 58, C_N positive along the positive z-axis, C_m positive for a moment pitching the nose up. C_y is positive in the positive y direction and C_n positive for a nose right moment. Rolling moment coefficient C_1 is defined positive counterclockwise the moment being specified about the x-axis. No attempt has been made to incorporate the axial force coefficient as the method used is not suitable for that purpose.

b. Body Description for Nonlinear Force and Moment Program

To use the computer program for aerodynamic coefficients the body must be described for a series of sections taken perpendicular to the x-axis. It is not necessary to take the sections chosen at equal intervals but the spacing should be relatively uniform with more sections being taken in regions where the cross sectional parameters are changing rapidly.

The section inputs include both the geometrical variables S and dS/dx and the coefficients of the mapping function and their derivatives. It is therefore necessary to know the mapping of each of the sections being inputed. Although it is necessary to include mapping coefficients, the nature of the slender body theory is such that only the first few coefficients are of primary significance. For this reason it is possible to approximate the coefficients of the mapping function and still retain reasonable accuracy. Therefore, methods are presented for obtaining the mapping coefficients accurately and an easier approximate method which retains the more significant coefficients.

The coefficients as obtained by the mapping program must be modified before they are suitable for use with the nonlinear body aerodynamics program and the method of modification will be described. The simplified method of obtaining coefficients for the mapping function will also be described and a complete set of inputs to the program will be given for this simplified method.

c. Modification of Mapping Function for Body Aerodynamics Program

Equation (1) of Section II is not in the proper form for use with the body aerodynamics program. When this equation is rewritten to include the constant term, i.e., to locate the section

$$Z = \zeta + \partial_0 + ib_0 + \frac{\partial_1 + ib_1}{\zeta} + \frac{\partial_2 + ib_2}{\zeta^2} + \dots + \frac{\partial_n + ib_n}{\zeta^n}$$
(3)

the section is rotated as shown in Figure 59(a). For the body aerodynamics program the tion is rotated as shown in Figure 59(b) and the mapping is commenced at a different point on the section. In addition, instead of basing the mapping on a circle of radius r_c , two mapping is rewritten to base the new mapping on the unit circle coordinate $\sigma = e^{i\theta}$. We final form of the mapping is then:

$$Z = r_{c}\sigma + c_{o} + id_{o} + \frac{c_{1} + id_{1}}{\sigma} + \frac{c_{z} + id_{z}}{\sigma^{2}} + \dots + \frac{c_{n} + id_{n}}{\sigma^{n}}$$

$$\tag{4}$$

where these coefficients are related to the coefficients of Equation (3) by the relation

$$c_n + id_n = \frac{(-i)^{n+1}}{r_c^n} (a_n + ib_n)$$
 (5)

For a symmetrical shape this reduces to the relation

$$Z = r_{c}\sigma - ia_{0} - \frac{a_{1}}{r_{c}\sigma} + \frac{ia_{2}}{r_{c}^{2}\sigma^{2}} + \frac{a_{3}}{r_{c}^{3}\sigma^{3}} - \frac{ia_{4}}{r_{c}^{4}\sigma^{4}} - \cdots$$

$$= r_{c}\sigma + id_{0} + \frac{c_{1}}{\sigma} + \frac{id_{2}}{\sigma^{2}} + \frac{c_{3}}{\sigma^{3}} + \frac{id_{4}}{\sigma^{4}} + \cdots$$
(6)

a. Original Mapping Relation

b. Final Mapping Relation

FIGURE 59. CHANGE OF MAPPING FUNCTION FOR BODY AERODYNAMICS PROGRAM

d. Simplified Handbook Method for Obtaining Coefficients

Since it is desired to use the body aerodynamics program for preliminary design type work it is, where possible, desirable to avoid the complexity of obtaining the mapping function. It is possible to do this for the usual fuselage shapes encountered and still retain sufficient accuracy for preliminary design purposes.

The actual fuselage is replaced by an equivalent body in which the sections are replaced by equivalent ellipses keeping the same body camber. This replaces the mapping of Equation (6) above with the truncated mapping

$$Z = r_c \sigma + i d_0 + \frac{c_1}{\sigma} \tag{7}$$

This expression retains the most critical terms in the mapping as far as obtaining the body aerodynamics and it is possible to approximate the three coefficients \mathbf{r}_c , \mathbf{d}_0 and \mathbf{c}_1 .

Defining a to be half of the maximum vertical dimension of the true cross section and b to be half the maximum lateral dimension of the section, it is possible to approximate r_c and c_1 by the expressions

$$r_{\rm C} = \frac{a_{\rm f} b_{\rm c}}{2} \tag{8}$$

$$c_1 = \frac{b-a}{2} \tag{9}$$

the results being reasonably accurate for fuselages which do not depart too far from the elliptical. The coefficient d_{Ω} can be replaced by the centroid of the sectional area.

The remainder of the inputs required for the slender body portion of the computer program are quantities which can be obtained directly from the body geometry, such as the cross sectional areas and its derivative with respect to x.

e. Viscous Cross Flow Input

The computer program also requires that a cross flow drag coefficient be input for both the components of flow in the vertical plane and the lateral plane.

The viscous crossflow terms can be obtained by using the drag coefficients of an infinite two-dimensional elliptical cylinder at each body station, the character of the ellipse changing according to the maximum dimensions of the body as described above.

These drag coefficients can be obtained using the drag coefficient given in Reference 9 for two dimensional subcritical ellipses and given by

$$C_{D} = .015 \left(1 + \frac{c}{t} \right) + 1.1 \frac{t}{c} \tag{10}$$

where t = maximum dimension perpendicular to crossflow

lands plantik and apply a commission in the constant of the constant is a constant of the cons

c = maximum dimension parallel to crossflow

A coefficient is computed for a crossflow velocity component in the vertical direction in one case and a second coefficient is computed for a crossflow component in the lateral plane. These two coefficients are then multiplied by the maximum dimensions perpendicular to the flow direction for the input parameters.

2. SAMPLE COMPUTATIONS FOR TEST BODY

Table IV shows a set of computations for r_c and c_1 for the wind tunnel test model of this study. The computations are straightforward involving no difficulties. The major inconvenience in developing the inputs for the program is in obtaining S and the derivatives of each of the coefficients with respect to body station. There is no conceptual difficulty involved but the required integration for the body cross sectional area and the centroid location and the graphical differentiations needed to obtain dS/dx, dr_c/dx , dd_o/dx and dc_1/dx is tedious. If necessary, computer programs can be written to do the necessary integration and differentiations but such programs are not included here.

a. Sample Inputs for Force and Moment Program

Figure 60 shows a sample set of inputs for the body aerodynamics program. The data are for the wind tunnel test model body of this study contract with the canopy off.

Card 1 specifies the maximum number of mapping coefficients for any section input (maximum of 12) and the number of stations for which section data is input (maximum of 40).

Cards 2-4 give the station locations of the input sections, maximum of 40. The remainder of the cards must be in units consistent with these numbers. The stations input must not include the nose location nor the tail section if these stations have zero area and mapping circle radius.

Cards 5-7 contain the radii of the mapping circle at the input stations.

Cards 8-10 give the values of $\frac{dr_c}{dx}$ for the same stations.

Cards 11-13 are the cross sectional areas S of the sections.

Cards 14-16 are the values of dS/dx.

Cards 17-19 give the values of the side viscous crossflow drag coefficient per unit length times the maximum vertical dimension at the section.

Cards 20-22 give the vertical viscous crossflow drag coefficient times the maximum lateral section dimension.

Cards 23-76 consist of sets of three cards for each of the input sections (in this case 18 sets). The first card of this set contains two numbers. The first of these specifies the number of mapping coefficients of the given section. If the number specified is zero, the program uses the number given on Card 1. The number given

TABLE IV. COMPUTATIONS FOR WIND TUNNEL TEST MODEL

x	y/2	z-	z ·	r _c	c _i
7.25	4.25	-14.1	-5,6	4.25	0
23.7	9.2	-18.7	3.1	10.03	∽. 85
41.0	13.1	-22.2	11.0	14.85	-1.75
73.0	17.4	-26.25	24.0	21.2625	-3.8625
94.0	19.25	-27.95	31.35	24.45	-5.2
118.0	21.0	-29.2	37.75	27.2375	-6.2375
143.5	22.45	-30.2	40.7	28.95	-6.5
163.5	23.45	-30.55	40.7	29.5375	-6.0875
185.5	24.3	-30.8	40.7	30.025	-5.725
221.5	25.05	-30.6	40.7	30.35	-5.3
264.25	25.1	-29.3	40.7	30.05	-4.95
316.0	24.8	-25.0	40.7	28.825	-4.025
343.0	24.6	-21.5	40.4	27.775	-3.175
374.0	24.45	-16.3	39.75	26.2375	-1.7875
411.0	21.5	-9.1	38.3	22.6	-1.10
450.0	15.6	85	35.95	17.0	-1.4
497.0	6.4	11.6	30.8	8.0	-1.6
512.0	3.545	16, 11	27.5	4.62	-1.075

				000000	- 10000 -
****		*******************			d o
. 37350E O.	. 70250E OT	.171.20 E 02	. 236006. 02	. 26800E 02	. 27000E 02
272206. 02	. 275.50E. 02	.275.00E. 02	. 26650E 02	. 25750£ 02	. 246206 02
. 23030E 01	. 21150E 02	. 1909GE 02	.143805 02	. 10100E 02	.46600E OT
12080E OZ	. 20870 E .OZ	- 40020E 02	51500E 0Z	. 670006. 02	. 57300E. 02
71.50.0E. O.	. 741.00.E. 02	. 77550E 02	778.00£ 02	. 77500E 02	. 76050E 02
.72800E 02	.64500E 02	. 54660E 02	. 36150E 02	. 23750 £ 02	.92450E 01
77.000£ . 01	14000E 0Z	22000E 02	194005.02	126.006. 02	70600E 02
98000E . O.	56000E OI	.7 \$000E OI	85000£ 01	. 12300E. 02	. 15500E 12
. 190,005. 02	.21.700£ 02	.236006 02	. 229.00E 02	19.700£ 02	02
. 593006. 02	. 20.2.10.E. 03	. 960015 03	. 17938£ 04	.23517E 04	. 267955 04
. 29404E 04	. 331.04E 04	.39037£ 09	. 32438 € 04	.30352E 04	. 280206. 09
. 238996 04	. 18927£ 04	. 143.28 6. 04	.705416 03	.3291,66 03	. 56700€ 02
23000E .00	27.500£ 00 -	766.00E.00	11900E DO	670,00 E-01	450 206-01
30000E - 01	12000E-01	.00000E 00	. 120006-07	240.00.E-01	.47000E-01
92000E-01	. /3300E .00	. 167006 00	.24500E 00	.31500E 00	. 42000E 00
. 46200E DI	. 80000E OT	17000E DZ	. 22,600£ 02	26238£ 02	. 277.75E 02
. 28825E 02	.300506	. 30350E 02	.30.025E. 02	.29538£ 02	. 28950E 02
.27238.6.02	.294506.02	.212636.02	. 14850E 02	. 100 50£ 02	. 42500E OT
. 57200E DE	. 49.700E D3	. 45000€ 03	.411,006, 03	.37400 £ 03	.34300E 03
37.6.006. 03	. 269256 03	. 227.50£ 03	. 185506 03	. 163506. 03	.14350€ 03
1.18006.03	. 94000E 02	730005. 02	.4:000E 02	.23700£ 02	. 72500E QT

FIGURE 60. NONLINEAR BODY AERODYNAMICS PROGRAM INPUT DATA FOR SAMPLE PROBLEM

00602	70000E-02 20900E-01	.18811E 00 52000E 01	. 11 450£ 00 700,00£-01		
		6250. 6237. 5500. 6500. 60875	5200 6250 5300 5500 6500 60875		-35416E D1 57250E 01
60875		709006 00 - 6250 298956 01 - 6237 850006-01 - 33000	18811E 00 - 5200 10900E 01 - 6250 29895E 01 - 6237 85000E-01 - 33000		0
.65000	0	10900E 00 - 62500 29895E 01 - 62371 85000E-01 - 33000	18811£ 00 - 5200 10900£ 00 - 6250 0 29895£ 01 - 6237 85000£-01 - 3300		350.70E. 01
.65000	75070£ 01 65000	29895E 01	188116.00 109006.00 0		33000
5300c 6500c 6087s	85000E-01 - 33000 55070E 01 - 65000 7500E-01 - 65000	00			248956 01
62374 33000 65000	298956 01 - 62374 850006-01 - 33000 750706 01 - 65000				00
5200 5200 5200 5500 6500 6500	71	00		**************************************	212266 01 3862
5862 7000 5200 6250 3300 6500 60875	21266 01 - 3862 714506 00 - 7000 788116 00 - 5200 709006 00 - 6250 0 298956 01 - 6237 298956 01 - 6237 215006-01 - 6500 215006-01 - 6500	21226£ 01 3862 11450£ 00 7000	21226£ 01 3862		114006 00 - 5550
. 17400£ 00 5550 0 0 21226£ 01 5862 0 0 7000 0 0 5200 24895£ 01 6250 0 0 6500 0 0 5200 0 0 5200 0 0 5200 0 0 6250 0 0 6500 0 0 6500 0 0 6500 0 0 6500 0 0 0 0 6500 0 0 0 0 6500 0 0 0 0 6500 0 0 0 0 0 6500 0 0 0 0 0 0 6500 0 0 0 0 0 0 0 0 6500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 17400£ 00 5550 0 0 2126£ 01 5862 . 17450£ 00 7000 . 18811£ 00 5200 0 0 5200 . 24895£ 01 62500 0 0 33000 0 0 55000	0 0 0 - 5550 21226E 01 - 5862	0 0 0 - 5550 21226E 01 - 5862		58050€ 01 1750
0 0 0 - 7750 	01 01 	0 0 0 	0 0 0 - 1750 58050£ 01 1750 0 0 5550		ō
- 58050€ 00 - 5180 - 58050€ 01 - 7750 - 71226€ 01 - 5550 - 71226€ 01 - 5200 - 71450€ 00 - 5200 - 7881 € 00 - 5200 - 29895€ 01 - 6250 - 25006 - 15006-01 - 65000 - 35786€ 01 - 65000	\$1250 € 00 \$180 \$8050 € 01 750 0 0 0 5550 0 0 0 5266 0 0 0 5200 \$1226 € 01 5862 0 0 0 5200 \$1226 € 01 5200 0 0 5200 \$2885 € 01 6250 0 0 5200 0 0 0 0 0 5200 0 0 0 0 0 5200 0 0 0 0 0 0 0 5200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	123506 00 5180 0	123506 00 - 5180 - 580506 01 - 1750 0 0 0 - 5550		0 0

FIGURE 60. (Continued)

38426E 01 53000E 01	. 47329£ 01 49500£ 01 . 42000£-07 . 90000£-02	75	9.6	77	? ~ 0 0	7.7	. 212765 02 760005 07 . 670005-07 200005-02

FIGURE 60. (Continued)

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

FIGURE 60. (Concluded)

must not exceed the number on the first card. The second number specifies whether or not the section under consideration is symmetrical or not. If the section is symmetrical, the number 0 is input; otherwise 1. The axis of symmetry is assumed to be the vertical plane.

The second card for each set specifies the coefficients of the mapping function. For a symmetrical section the coefficients input follow the order d_0 , c_1 , d_2 , c_3 , d_4 , c_5 , ... since the other coefficients are zero. For an unsymmetrical section the coefficients are specified in the order c_0 , d_0 , c_1 , d_1 , c_2 , d_2 , ... up to the maximum number of pairs specified. The subscript 0 specifies the second coefficient (or coefficient pair), the subscript 1 the third coefficient, etc.

The remaining cards specify the flight conditions under which the coefficients are to be found. Card 77 is a comment card and can contain any pertinent information desired.

Card 78 specifies four numbers: reference length, 1_r , reference area S_r , center of gravity (and moment center) location x_{cg} and the incremental step size along the body at which computations are made. The program assumes linearity between the incremental steps here specified so that a reasonably large number of steps are required along the body.

The 79th card specifies, respectively, the number of angles of attack to be computed (maximum of 18), the number of roll angles (maximum of 9), number of pitching velocities (maximum of 9) and number of yawing velocities (maximum of 9).

Cards 80 and 81 specify the angle of attack at which the coefficients are to be evaluated. These angles are in degrees.

Card 82 specifies the roll angles which are to be computed, also in degrees.

Card 83 specifies the desired values of pitching velocity inputs. The number inputed represents $q1_{r'2U\infty}$ (dimensionless).

Similarly Card 84 specifies yawing velocity inputs specified as $r1_{r}/_{2U_{\infty}}$ (dimensionless).

This completes the input cards needed to compute the nonlinear body aero-dynamics. Cards are added or subtracted as necessary to input all the specified data. That is, enough cards are used to input the numbers required and no blank cards are to be inputed. As an example, the number of stations here specified is 18 which

requires 3 cards to specify each of the first set of parameters. More of less cards would be used depending on the number of stations specified.

b. Sample Outputs from Force and Moment Program

The Wilder wind the Many retreating to the production of the contract of the c

Figure 61 shows the output from the computer program for the inputs listed in Figure 60. The first line written out in the information input on the comment card.

The second line lists the flight conditions PHI (φ) , $Q\left(\frac{q1_r}{2U_\infty}\right)$, and $R\left(\frac{r1_r}{2U_\infty}\right)$ for which the coefficients are calculated.

After this are tabulated the five coefficients $\mathbf{C_n}$, $\mathbf{C_m}$, $\mathbf{C_v}$, $\mathbf{C_n}$ and $\mathbf{C_1}$ in that order as functions of angle of attack. The coefficients as written out are separated into a potential component (obtained by slender body theory) and a viscous component (using viscous crossflow). To obtain the coefficient these two components must be added together. The program does not calculate a viscous component to the rolling moment so this is printed out as zero.

When more than one set of flight conditions (other than α) are input this tabulation is repeated.

V/STOL JEST	V/STOL JEST MCDEL DATA. 12/2/70.			•		
0.0 =1Hq	Q# 0.0 R# 0.0					
ALPHA 0.0	POTENTIAL VISCOUS	CN 3.4009E-04 0.0	CM -2.2614F-02	> 0 0 0	300 *	0.07
2.0000	POTENTIAL VISCOUS	2.6681F-04 2.5936E-03	1.2029F-52 -9.2671E-04	00	00	00
10.0000	POTENTIAL VISCOUS	1.9059E-04 1.0296E-02	4.5463E-02 -3.6787E-03	00	000	00
15.0000	POTENTIAL VISCOUS	1.1375E-04 2.2872F-02	7.8157E-02 -8.1723E-03	c o • o	00	00
20.0000	POTENTIAL VISCOUS	3.8622E-05 3.9941E-02	1.07636-01	000	00.0	000
25.0000	POTENTIAL VISCOUS	-3.2516E-05 6.0983E-02	1.3349E-01 -2.1790E-02	0.0	00	000
30.0000	POTENTIAL VISCOUS	-9.7499E-05	1.5496E-01 -3.0499E-02	000	٠٠ ٥٥	00
35,0000	POTFNTIAL VISCOUS	-1.5+35E-04 1.1233E-01	1.71376-01 -4.0136E-02	0 0 0 0	∪°0 ∪°0	ن ن ن
40.0000	PCTENTIAL VISCOUS	-2.0135E-04 1.4107E-01	1.8223E-C1 -5.0406E-02	00.0	00	0 U
45.0000	PCTENTIAL VISCOUS	-2.3766E-04 1.7072E-01	1.8720E-01 -6.0999E-02	00.0	00.00	0 0

FIGURE 61. NONLINEAR BODY AERODYNAMICS PROGRAM OUTPUT DATA FOR SAMPLE PROBLEM

3. COMPARISON WITH TEST DATA

Figure 62 shows the comparison between theory and test for normal force coefficient $\mathbf{C_N}$ and pitching moment coefficient, $\mathbf{C_m}$ at zero sideslip. The theoretically predicted values of $\mathbf{C_N}$ are somewhat low. In particular, the predicted lift curve slope at zero angle of attack is predicted to be zero while the test results show a finite value. The value of $\mathbf{C_N}$ at zero angle of attack is also in error. The agreement obtained for the pitching moment can be considered to be good.

Figure 63 shows a comparison between test and theoretical side force C_y and yawing moment C_n . The theoretical side force tends to be somewhat low, and the agreement in yawing moment is somewhat worse than the pitching moment agreement.

The computer program does not calculate the derivatives but it is possible to compute two sets of coefficients at different values of a parameter and obtain the derivative by dividing the difference of the coefficients by the incremental change in the parameter.

Figures 64 and 65 show samples of rotary derivatives obtained using the computer program. No test data is available with which to compare the theoretical results, so it is not possible to predict what accuracy is obtained by the theoretical method.

THEORY AND TEST CONDITIONS OF C_N AND C_m FOR WIND TUNNEL TEST MODEL FUSELAGE FIGURE 62.

FIGURE 63. THEORY AND TEST COMPARISON OF C, AND C, FOR WIND TUNNEL TEST MODEL FUSELAGE

FIGURE 64. COMPUTED CN AND C FOR WIND TUNNEL TEST MODEL FUSELAGE

SECTION VII

NONLINEAR WING AERODYNAMICS

The method used for predicting the nonlinear aerodynamics of wings is that described in Section VII of Volume I. This method has been programmed for the computer and essentially converts the known section characteristics for the wing into finite wing characteristics. First the wing section characteristics have to be identified from available test data. This information is then used to obtain the positions and relative strengths of the two lifting lines. The wing planform and flight condition are included with the section model into the computer program to enable the wing aerodynamics to be determined.

1. SAMPLE PROBLEM

To illustrate the use of the nonlinear wing aerodynamics program the wing for the wind tunnel test model, described in Appendix I, will be used.

The wing planform is shown in Figure 66 with the axes system, lifting lines (discussed later) and downwash control line indicated. The wing employed a NACA 63A010 section.

FIGURE 66. WING PLANFORM WITH LIFTING LINES AND DOWNWASH CONTROL LINE SHOWN

The axis system chosen is a right hand system with the x-axis directed aft and the z-axis directed upwards. The flight conditions for the sample problem will be $\alpha = 14^{\circ}$ and 16°, $\beta = 0^{\circ}$ with the rotary variables p, q, r all equal to zero.

a. Determination of Section Parameters

The separation characteristics of airfoil sections are a function of the Reynolds Number, R, the flow tending to separate at a lower value of α , for lower values of R. The unpowered runs in the tests described in Appendix I were at a Reynolds Number/foot = 1.3×10^6 . No data could be found for the test model wing section (NACA 63A010) for Reynolds Numbers as low as the test value. However, data for section NACA 64₁-012, with a similar section geometry, for the required values of R has been determined in Reference 10 and is tabulated in Table V.

The drag coefficient for the airfoil at α = 90° is taken to be 2.08 (value for NACA 0012 airfoil) with the line of action passing through the chord center. The leading lifting line, in the mathematical model for the airfoil section, is positioned at the quarter chord position ($C_{m_1/4}$ = 0 in linear α range). The downwash control point is taken to be at .75 chord. The aft lifting line is now chosen to give a good fit to the section pixning moment while satisfying the boundary condition of no flow through the section at the downwash control station and providing an exact duplication of the section normal force. In this case, by taking the aft lifting line to be located at .70 of the chord, a satisfactory representation to the section characteristics is possible as shown in Table V. The weighting function W_t (weighting of circulation between leading and aft lifting lines) is also shown in Table V. The value of W_t is needed for α = 0 and this is determined by extrapolation of the values for larger α .

b. Inputs to Nonlinear Wing Aerodynamics Program for Sample Problem
A sample set of inputs for the nonlinear wing aerodynamics program is shown in Figure 67.

Card 1 specifies the initial value of wing angle of attack α , angle of sideslip β , and the step size in α all in degrees.

Card 2 provides wing planform information in the form of the y-coordinates (relative to the wing root chord), of the wing root and tip chords, wing taper ratio, and the tangent of the leading edge sweep angle.

Card 3 gives in order, the rolling, pitching and yawing velocities.

Card 4 contains the reference length (relative to the wing root chord), the x-

TABLE V. SECTION DATA FOR AIRFOIL SECTION NACA 641 -012

	TEST		LIFT	ING LINE MET	HOD
α	C _N	C _{m 1/4}	c _N	C _{m 1/4}	w _t
0	0	0.0	0.	0.	Indet.
2	0.18	0.0	0.18	0.003	0.974
4	0.36	0.0	0.36	-0.007	0.972
6	0.54	0.0	0.54	-0.013	0.970
7	0.63	-0.004	0.63	-0.016	0.969
8	0.71	-0.008	0.71	-0.020	0.967
9	0.78	-0.010	0.78	-0.025	0.962
10	0.83	-0.015	0.83	-0.032	0.953
12	0.83	-0.060	0.83	-0.051	0.914
14	0.68	-0.095	0.68	-0.079	0.807

74.0 0.0 0.0 2.08 2.08 2.08 0.075 0.075 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.2								
0.0 1.875 0.5 0.1714 0.0 0.0 0.0 2.08 0.0 0.0 2.08 0.05 0.05 2.08 0.05 1.313 0.075 0.375 0.75 0.075 0.375 0.75 0.25 0.0154 0.25 0.0154 0.075 0.0159 0.00 4.0 0.0 4.584 8.0 9.0 12.0 4.0 0.974 0.972 0.976 0.972 0.976 0.972 0.976 0.967 0.976 0.967	D 19.0		2.0					
0.0 0.0 0.718 0.0 2.08 0.0 2.08 0.0 2.08 0.0 2.08 0.75 0.075 1.313 1.688 1.875 0.075 0.75 0.25 0.035 0.75 1.313 1.688 1.875 0.25 0.154 0.75 1.313 1.588 1.875 0.75 1.313 1.588 1.875 0.75 1.313 1.588 1.875 0.75 1.313 1.588 1.875 0.75 1.313 1.588 1.875 0.75 1.313 1.588 1.875 0.75 1.313 1.588 1.875 0.75 1.313 1.50 4.0 0.75 0.968 1.20 4.0 0.972 0.972 0.962 0.967 0.962 0.966 0.962 0.966		أحام	0.5	0.1714	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 . 4	4	, , ,
2.08 0.5 2.08 0.5 2.08 0.5 2.08 0.5 2.08 1.513 0.075 0.75 1.313 1.688 1.875 0.075 0.75 0.075 1.513 1.688 1.875 0.25 0.0139 0.75 1.531 4.584 4.584 8.00 9.0 1.20 4.584 8.0 9.0 1.60 0.974 0.914 0.972 0.916 0.967 0.916 0.967		0.0	0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • • •	1		.,
2.08 0.5 6 5 6 5 7 0.375 0.075 0.75 1.313 1.688 1.688 1.875 0.25 0.375 0.75 1.313 0.75 1.313 0.75 1.313 0.75 1.313 0.75 1.313 1.588 1.875 0.75 1.391 4.584 8.0 0.0 2.0 4.0 6.0 0.914 0.972 0.914 0.967 0.914 0.967 0.916 0.967	① 0.778	0.0	0.0	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -		1	1	
6 5 0 0 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0.75 0 0		0.5			4 4 1 1 1 1			7 7 7 7
0.075 0.375 0.75 1.313 1.688 1.875 0.075 0.375 0.75 1.313 1.688 1.875 0.075 0.01054 0.015 1.313 1.688 1.875 0.75 -0.0139 7.391 4.584 8.0 9.0 0.0 2.0 4.0 6.0 7.0 8.0 9.0 12.0 14.0 0.972 0.970 0.969 0.967 0.962		5	4 1 1 1 1		4 . m 4 . m 4 . m			
0.075 0.375 0.75 1.313 1.688 1.875 0.075 0.375 0.75 1.313 1.688 1.875 0.25 0.0954 0.75 1.313 1.688 1.688 0.75 -0.0139 1.313 1.688 1.688 0.75 -0.0283 13.98 1.391 4.584 8.0 9.0 0.0 2.0 4.0 6.0 7.0 8.0 9.0 12.0 14.0 0.972 0.970 0.967 0.967 0.962	3	2		1	. !			1 1-4
0.075 0.375 0.75 1.313 1.688 1.875 0.075 0.375 0.75 1.313 1.688 1.875 0.25 0.1054 0.1054 0.1339 4.38 4.584 4.584 0.75 -0.0283 13.98 7.391 4.584 8.0 9.0 0.0 2.0 4.0 6.0 7.0 8.0 9.0 12.0 14.0 0.972 0.970 0.967 0.967 0.962	<u>o</u>			· · · · · · · · · · · · · · · · · · ·				
0.25 0.1054 0.25 0.1054 0.75 1.313 1.688 0.75 -0.0139 0.75 -0.0283 6.818 8.422 15 4.0 6.818 8.422 4.0 6.0 7.2.0 7.0 14.0 6.0 0.974 0.972 0.914 0.807	9 0.075	0.375	0.75	1.313	1.688	1.875		. • • • • •
0.25 0.1054 0.70 -0.0/39 0.75 -0.0/39 6.818 8.422 7.398 7.391 4.60 7.0 3.0 4.0 6.0 7.0 7.0 8.0 7.0 9.974 0.974 0.972 0.914 0.967		0.375	0.75	1.313	7.688	2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	2 to 10 contracts to 10 contra	1
0.70 -0.0/39 0.75 -0.0283 6.818 8.422 7.391 4.584 8.0 9.0 7.2.0 4.0 6.818 8.422 7.391 4.584 7.0 8.0 7.0 8.0 7.2.0 8.0 7.2.0 8.0 7.2.0 8.0 7.0 9.962 7.0 9.962		0.1054	•	•	:	1		4
6.818 8.422 13.98 7.391 4.584 6.818 8.422 13.98 7.391 4.584 0.0 2.0 4.0 6.0 7.0 8.0 9.0 12.0 14.0 0.974 0.972 0.970 0.967 0.962 0.914 0.807 0.972 0.970 0.967 0.962	<u>;</u>	-0.0739		· · · · · · · · · · · · · · · · · · ·		1		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
6.818 8.422 13.98 7.391 4.584 8.0 9.0 1 0.0 2.0 4.0 6.0 7.0 8.0 9.0 1 72.0 14.0 0.974 0.972 0.970 0.969 0.967 0.962	ţ	-0.0283					7	4 4
0.0 2.0 4.0 6.0 7.0 8.0 9.0 1 i2.0 14.0 0.974 0.972 0.970 0.969 0.967 0.962		8.422	13.98	7.397	4.584			1
0.976 0.974 0.972 0.970 0.969 0.967 0.962 0.914 0.807	1	2.0	4.0	6.0	7.0	8.0		0.0
0.976 0.974 0.972 0.970 0.969 0.967 0.962	1	14.0	1		→	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		1.4.4.4.4.4
0.914 0.807		0.974	0.972	0.970	0.969	0.967	_	0.953
	0.974	0.807					•	1

FIGURE 67. NONLINEAR WING AERODYNAMICS PROGRAM INPUT DATA FOR SAMPLE PROBLEM

and z- coordinates of the center of gravity location.

Card 5 contains the wing section normal force coefficient for $\alpha = 90^{\circ}$ and the x-coordinate of the intersection of its line of action with the airfoil chord.

Card 6 gives the number of circulation and downwash control points.

Card 7 specities the number of angle of attacks to be computed and the number of iterations for each α .

Card 8 indicates whether the wing loading is symmetrical about the x-axis, in this case NSYM = 0 indicating symmetry. (NSYM = 1 indicates asymmetrical loading.)

Cards 9 and 10 list the y-coordinates of the circulation control points and downwash control points.

Cards 11, 12 and 13 specify the x-coordinates (relative to chord) and the tangents of the sweep angles for the leading lifting line, the aft lifting line and the line connecting the downwash control points.

Card 14 contains the effective angles of attack for the downwash control point stations. In this case the values have been determined from the previous calculations for $\alpha = 12^{\circ}$.

Cards 15 and 16 list the values of α in degrees at which the circulation weighting function is tabulated.

Cards 17 and 18 contain the tabulated values of the circulation weighting function determined in this case from Table V.

c. Outputs to Nonlinear Wing Aerodynamics Program for Sample Problem

Figure :8 shows the output from the computer program for the input listed in Figure 67. The flight condition is shown in the form of values for α , ? and p, q, r. The spanwise loading and effective angle of attack at the spanwise stations are shown next. The normal force coefficient and the moments about the y- and x-axes follow. This output, excepting the flight condition variables, is repeated for the number of iterations on α (in this case 2).

This set of output is then repeated for the number of α 's input to the program which in this case is two.

d. Method Applicability and Limitations

The method, as presently programmed, is restricted to straight tapered wings. Because the approach uses lifting lines the method is really applicable to large aspect ratio wings and the accuracy of the predictions will not be as good for lower aspect ratio wings. Flaps may be accounted for by changing the

sectio characteristics for the wing. Calculations of the finite wing aerodynamic characteristics depend on a knowledge of the section characteristics so that in some cases this may be a limitation on the method. The method is programmed to calculate the effects of sideslip and the rotary derivatives although no significant attempt has been made to validate these options.

In typical calculations two iterations are used in the linear range of α and five iterations for nonlinear α . Estimates of the effective angle of attack are determined from previous computations at lower values of α . The initial calculations have usually started with $\alpha = 4^{\circ}$ and effective alpha equal to 2° .

2. COMPARISON WITH TEST DATA

The calculations shown in Figure 68 are for the test model described in Appendix I. The test data for these conditions for comparison were

$$\alpha = 14^{\circ} : C_{N} = .708$$
 , $C_{MY} = .365$
 $\alpha = 16^{\circ} : C_{N} = .665$, $C_{MY} = .375$

Further calculations for an aspect ratio 6 wing are shown in Figure 69 compared with the test data of NASA TM 2-27-29A.

2 = 0.0	•	Q = 0.0	R = 6.6		
	8PANWIS	E LOADING A	nd effectiv	/3 ALPHA	
Span	.04	. 20	. 40	. 70	. 90
Loading			. 5523	. 5131	. 349
Effective Alpha	. 1506	. 1537	. 2444	.1474	. 107
Normal force co	efficient, C	N = .73009			
Moment coefficie	ent about Y-	axis, C _{MY} = .	35045		
Moment coefficie					
			ND EFFECTIV	'E ALPIIA	
Spen	.04	. 20	.40	. 70	. 90
Loading			. 5513		. 354
Effective Alpha			. 2444	. 1514	. 109
Normal force co				=	
Moment coefficie	ent about Y- ent about X-	-axis, C _{MY} = . -axis, C _{MX} = .	00000		
Moment coefficie Moment coefficie Results for	ent about Y- ent about X- r Alpha = 16	exis, C _{MY} = . exis, C _{MX} = .	00000 k = 0.0000 Degr	rees	
Moment coefficie	ent about Y- ent about X- r Alpha = 16	axis, C _{MY} = . axis, C _{MX} = . constant of the constant of th	00000 k = 0.0000 Degr R = 0.0		
Moment coefficie Moment coefficie Results for P = 0.9	ent about Y- ent about X- r Alpha = 16	eaxis, C _{MY} = eaxis, C _{MX} = eaxis, C _{MX} = eaxis, C _{MX} = eaxis, C _{MX} = eaxis, C _{MY} = eaxis, C _{MX}	00000 k = 0.0000 Degi R = 0.0	VE ALPHA	
Moment coefficie Moment coefficie Results for P = 0.9	ent about Y- ent about X- r Alpha = 16 SPANWIS .04	axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MY} = axis, C _{MX}	00000 k = 0.0000 Degr R = 0.0 AND EFFFOT: 40	VE ALPHA .70	. 90
Moment coefficie Moment coefficie Results for P = 0.0 Span Loading	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905	axis, C _{MY} = . axis, C _{MX} = . 6.000, and Beta 2 = 0.0 ELOADING A . 20 . 7586	00000 R = 0.0000 Degr R = 0.0 AND EFFFCT:0 .40 .5307	VE ALPHA . 70 . 5479	. 3951
Moment coefficie Results for P = 0.9 Span Loading Effective Alpha	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882	axis, C _{MY} = axis, C _{MX} = 6.000, and Beta 2 = 0.0 E LOADING A . 20 . 7586 . 1790	00000 k = 0.0000 Degr R = 0.0 AND EFFFOT: 40	VE ALPHA .70	. 3951
Moment coefficie Results for P = 0.9 Span Loading Effective Alpha Normal force coefficies	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, C	-axis, C _{MY} =axis, C _{MX} =axis, C _{MX} =axis, C _{MX} =axis, C _{MY}	00000 k = 0.0000 Degr R = 0.0 AND EFFFCTION .40 .5307 .2793	VE ALPHA . 70 . 5479	. 3951
Moment coefficie Results for P = 0.9 Span Loading Effective Alpha Normal force coefficie Moment coefficie	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, C ent about Y-	axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MY} = axis, C _{MY} = axis, C _{MY} = axis, C _{MY} =	00000 R = 0.0 AND EFFFCT: .40 .5307 .2793	VE ALPHA . 70 . 5479	. 395
Moment coefficie Moment coefficie Results for P = 0.9	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, C ent about Y-	axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MY} = axis, C _{MY} = axis, C _{MY} = axis, C _{MY} =	00000 R = 0.0 AND EFFFCT: .40 .5307 .2793	VE ALPHA . 70 . 5479	. 3951
Moment coefficie Results for P = 0.9 Span Loading Effective Alpha Normal force coefficie Moment coefficie	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, C ent about Y- ent about Y-	axis, C _{MY} = axis, C _{MX} =	00000 R = 0.0 AND EFFFCT: .40 .5307 .2793	VE ALPHA .70 .5479 .1735	. 3951
Moment coefficie Results for P = 0.9 Span Loading Effective Alpha Normal force coefficie Moment coefficie	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, C ent about Y- ent about Y-	axis, C _{MY} = 3.000, and Beta 2 = 0.0 3E LOADING A	0C000 k = 0.0000 Degr R = 0.0 AND EFFCTIV .40 .5307 .2793 38258 00000	VE ALPHA .70 .5479 .1735	. 3951
Moment coefficie Results for P = 0.0 Span Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, Contabout Y- ent about Y- ent about X-	axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} = axis, C _{MY} = axis, C _{MX} = axis, C _{MX} = axis, C _{MX} =	0C000 k = 0.0000 Degr R = 0.0 AND EFFCTIV .40 .5307 .2793 38258 00000	VE ALPHA .70 .5479 .1735	. 3951 . 1214 . 90
Moment coefficie Results for P = 0.0 Span Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie Span	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, Cont about Y- ent about Y- ent about X- SPANWIS .04	axis, C _{MY} = axis, C _{MX} = E LOADING A axis, C _{MX} = E LOADING A 20	00000 E = 0.0000 Degr R = 0.0 AND EFFCTIV .40 .5307 .2793 38258 00000	VE ALPHA . 70 . 5479 . 1735	. 3951 . 1214 . 90
Moment coefficie Results for P = 0.0 Span Loading Effective Alpha Normal force coefficie Moment coefficie Span Loading Effective Alpha	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, C ent about Y- ent about Y- sPANWIS .04 .8875 .1983	axis, C _{MY} = axis, C _{MX} = E LOADING A 20 7549 1791	0C000 L = 0.0000 Degr R = 0.0 AND EFFFCT10 .40 .5307 .2793 38258 00000 AND EFFECTIV .40 .5298	VE ALPHA . 70 . 5479 . 1735	. 3951 . 1214 . 90
Moment coefficie Moment coefficie Results for P = 0.0 Span Loading Effective Alpha Normal force coe Moment coefficie Moment coefficie Span Loading	ent about Y- ent about X- r Alpha = 16 SPANWIS .04 .8905 .1882 efficient, Cont about Y- ent about Y- sPANWIS .04 .8875 .1983 pefficient, C	axis, C _{MY} = axis, C _{MX} = E LOADING A 20 7549 1791	0C000 R = 0.0000 Degr R = 0.0 AND EFFFCTR .40 .5307 .2793 38258 00000 AND EFFECTIV .40 .5298 .2793	VE ALPHA . 70 . 5479 . 1735	. 3951 . 1214

FIGURE 68. SAMPLE OUTPUTS FOR NONLINEAR WING AERODYNAMICS PROCRAM

FIGURE 69. WING CALCULATIONS FOR AN ASPECT RATIO 6 WING

APPENDIX I

WIND TUNNEL TESTING OF V/STOL CONFIGURATION MODEL

A model was constructed and tested to supplement the analytical investigative and gain further data for use in validation and improvement of the analytical prediction techniques. The model was configured to resemble a feasible military aircraft but was designed to operate with jets of varied number and location to allow a variety of data to be generated. The test contributes new data because of extensive pressure instrumentation present on the model. These data facilitate identification of the sources of the various induced loads measured during the test.

1. MODEL AND AFPARATUS

The model is a shoulder wing configuration equipped with an external airfoil flap and a stabilator mounted on the vertical tail above the fuselage. Two vectored thrust engines are contained in large nacelles mounted beneath the wing adjacent to the fuselage; a single lift engine is mounted within the body and forward of the vectored exits. The general arrangement of the model is shown in the three view drawing of Figure I-1 and the photographs of Figures I-2, I-3, and I-4. Detailed geometrical data are given in Table I-I.

The vectored thrust engines were simulated by ejector type jet engine simulators. Two 3.67-inch diameter nozzles were tested at two longitudinal positions (11 and 111 percent \bar{c}) at nominal deflections of 0, 45, or 90 degrees at the forward location, and 45 or 90 degrees at the aft location. Larger 4.5-inch diameter nozzles were tested in the aft position at a nominal deflection of 90 degrees. Plugs were used to seal the inlets when rolet flow was not desired.

Typical operating curves for the ejectors are shown in Figure I-5. The design of the ejector nozzles produced a relatively nonuniform jet velocity profile, shown in Figure I-6.

Preceding page blank

The lift jet was simulated by a convergent nozzle supplied through a perforated plate. The exit diameter was 2.25 inches. No inlet simulation was provided. The lift jet possessed a relatively uniform exit profile, shown in Figure I-S.

Details of jet exit location and point of application of resultant forces are shown in Table I-II in terms of location along the mean aerodynamic chord and distance below the wing plane.

The engine simulators were driven by cold dry air supplied through a common plenum fed by a flexible metal tube passing through the sting.

Model forces and moments were recorded using a six-component internal balance.

Two hundred and sixty-four pressure taps are present on the left half of the model. They are placed in four groups: a wing pattern, a lower fuselage pattern, a circumferential pattern at five fuselage stations, a nacelle centerline pattern. Lower fuselage and wing pressure patterns are described in Tables I-III and I-IV. Circumferential fuselage and nacelle centerline patterns are shown in Figures I-7 and I-8.

A seven-probe flow angularity rake was sometimes mounted at the tail station in place of the empennage. Its general arrangement may be seen in Figure I-2.

Testing was performed in the NASA Langley V/STOL tunnel which has a test section of 14 X 22 feet.

2. TEST PROCEDURE

Testing of the model was performed in two phases: calibration of balance and engine simulators, and aerodynamic testing within the wind tunnel.

a. Balance Calibration and Corrections

The testing of a powered model requires additional balance calibration and correction beyond that routinely performed during unpowered testing. The air supply balance arrangement used during this test is indicated schematically in Figure I-9.

Although the air supply line is designed to be highly flexible and cause minimum interference with force measurements, corrections must be applied to balance measurements to reflect that portion of the total load which is carried by the line. A series of known loads was applied to the balance-air supply line assembly, and the resultant balance measurements were used to obtain a matrix of linear correction coefficients.

Pressurization of the system caused forces to be exerted on the model by the flexible supply line. These forces were measured and calibrated with the plenum realed and no nongravitational loads applied to the model. The calibrated forces have been removed from final force data.

The final form of the corrections is shown below. The momentum input due to the supply mass flow was found to be negligible.

$$\widetilde{\mathbf{F}}_{cor} = \widetilde{\mathbf{K}} \ \widetilde{\mathbf{F}}_{bal} - \widetilde{\mathbf{F}}_{p}(\mathbf{P}_{sup})$$

where

 \widetilde{F}_{cor} , a 6x1 matrix of applied loads

 \widetilde{K} , a 6x6 matrix of correction coefficients

 \widetilde{F}_{hal} , a 6x1 matrix of loads measured by balance

 $\widetilde{F}_p(P_{sup})$, a 6x1 matrix of loads applied by the air supply line, calibrated agains, supply pressure

Additional details concerning the magnitude and accuracy of the corrections may be found in Appendix II.

b. Calibration of Engine Simulators

Each engine simulator-nozzle combination was tested individually to determine direct thrust force and moment applied to the model. The same air supply-balance assembly used during tunnel tests was used for this calibration. A calibrated bell-mouth was used to monitor ejector inlet flow. A limited survey was made of nozzle exit profiles to determine their basic character.

These tests were performed with the units mounted on the bare model plenum to minimize static interference effects by reducing surface area near the exits. Some small interference is of necessity present in the data because of the physical proximity of the external portions of the nozzles and drive system.

Lift jet thrust was calibrated on the basis of total pressure within the nozzle. Ejectors were calibrated as a function of primary nozzle plenum pressure. No corrections were made to ejector calibrations due to forward speed present in the tunner. Error due to this approximation is examined in Appendix III.

c. Wall Corrections

CAP interpretation to include a new content of the state of a state of the state of

No corrections were made to the data for possible wall effects. The dimensions of the 14 X 22 foot test section are quite large in comparison to basic model dimensions, and computations, made prior to the test using Heyson's method (11), indicated that wall interference effects would be within the accuracy of the data acquistion system. However, the pitch mechanism used during the test was not capable of maintaining the model at a fixed position within the test section, causing the model to be nearer the floor at the lowest angle of attack tested. An investigation was made to determine if the ground effect of the floor, the nearest surface, was causing any significant effect on the model. The wing-body-nacelle-tail was equipped with the large exits, pitched to a 6 degree angle, and tested at various forward speeds at different heights. An effect was observed a the lowest forward speed tested but not at higher speeds nor statically (see Figure I-10). The minimum raidel height during normal testing was 42 inches. The nondimensionalized minimum neight shown below indicates that the large exits will show the most severe interference at lower angles of attack and low forward speed. The order of magnitude may by two to three percent of total load.

Nozzle	Lift Jet	Small Vector	Large Vector
h/D	13.7	11.4	9.3

d. Test Parameters

The testing of powered models creates a requirement for a parameter relating propulsive and aerodynamic forces. The effective velocity ratio as used in this series of tests is the square root of the ratio of freestream unit momentum flux to mean jet unit momentum flux. It is obtained from the following expression:

$$V/V_{J} = \left[\frac{\rho_{\infty} U_{\infty}^{2}}{\rho_{J} U_{J}^{2}}\right]^{0.5} = \left[\frac{Q}{T/2A_{J}}\right]^{0.5}$$

Another parameter, a relative measure of propulsive and acrodynamic forces, is the thrust coefficient - the ratio of thrust to the product of freestream dynamic pressure and wing area.

$$C_{\tau} = T/QS$$

The two parameters are related in the manner shown below.

$$V/V_{J} = \left[\frac{2A_{J}/5}{C_{T}}\right]^{0.5}$$

The effective velocity ratio is used as the prime parameter of this report because it is less related to the geometry of the particular configuration being considered, and it better describes the state of the highly deflected jet.

e. Test Program

The model was constructed such that nacelles, lift engine, wing, and empennage could be mounted on the fuselage in any combination. Complete model buildups were performed for the wing-body-nacelle-tail configuration powered by the two ejectors in the forward position, and for the wing-body-tail powered by the lift jet. Emphasis was placed on the wing-body nacelle powered by the two ejectors with nozzles in the forward or aft position, and the wing-body without nacelles powered by the lift jet.

A standard series of runs was used throughout the test although not all configurations were tested at all conditions. The series, shown in Table I-V, consists of an unpowered angle-of-attack variation, followed by angle-of-attack variation at several velocity ratios, and velocity ratio variation at fixed angles of attack. A similar pattern was adopted for runs involving sideslip. Both force and pressure data were recorded for most runs.

The range of variables tested included angle-of-attack variations of 0 to 20 degrees, angles of sideslip from 0 to ± 12 degrees, and velocity ratios of 0 to .3 for lift jet powered configurations and 0 to .5 for ejector powered configurations. Very limited testing was performed at combined angles of attack and sideslip. Testing was accomplished at dynamic pressures of 0 to 71 psf, resulting in Reynolds numbers of up to 1.5x10⁶ per foot.

Dynamic pressure and thrust combinations used to achieve these velocity ratios are listed in Table I-VI. Because of tunnel velocity limits, higher velocity ratios were obtained with the use of reduced thrust. Note that these are nominal values. In general, actual thrust levels were slightly lower than those shown.

A summary of configurations tested is given in Table J-VII.

3. Results

as multiple ship and become appropriate the medical properties of the content will be a secretary by the content of the conten

The results of this test are presented in various sections of this report in support of the development and verification of analytical prediction techniques. Complete results will be published in two NASA Technical Memorandums at a later date.

a. Presentation of Results

The force data recorded during the test are presented in several forms:

- (1) Body axis aerodynamic coefficients.
- (2) Stability axis aerodynamic coefficients.
- (3) Forces and moments nondimensionalized by thrust.
- (4) Forces and moments with direct thrust effects removed, nondimensionalized by thrust.
- (5) Forces and moments with direct thrust effects removed, nondimensionalized by dynamic pressure.

In the reduction of aerodynamic coefficients, forces were nondimensionalized by the product of freestream dynamic pressure and wing area. Longitudinal moments were nondimensionalized by the product of freestream dynamic pressure, wing area, and wing mean aerodynamic chord length; lateral moments were nondimensionalized by the product of freestream dynamic pressure, wing area, and wing span.

In the reduction of thrust coefficients, forces were nondimensionalized by the total calibrated thrust of all nozzles operating. Moments were nondimensionalized by the product of total thrust and an effective diameter. The effective diameter is defined as the diameter of a circle equivalent in area to the sum of the exit areas of the operating nozzles.

Thrust removed coefficients were obtained by removing the forces and moments of the operating engine simulators, as determined during static calibration, from the balance measured loads prior to nondimensionalization.

b. Selection of Unpowered Baseline Data

Analysis of the vectored thrust configuration tests has revealed that significant differences exist in unpowered data taken with the ejector inlets open and closed. These differences exceed those directly attributable to vectoring or freestream flow through the undriven ejectors. When these data are used to obtain an interference effect due to jet operation, two significantly different answers result, dependent on which "unpowered" coefficient is used in the calculations.

$$\begin{bmatrix} interference \\ effect \end{bmatrix} = \begin{bmatrix} total \\ load \end{bmatrix} - \begin{bmatrix} direct \\ thrust \\ aerodynamics \end{bmatrix}$$

The effect of the open versus the closed inlet on the power off longitudinal aerodynamic coefficients is shown in Figure I-11 as a function of nozzle deflection angle. Opening of the inlet produces a lift increment of 0.216 with the forward small nozzles deflected 90 degrees. The portion of this increment attributable to momentum change of the free flow passing through the ejectors and nozzles may be found using Figures 1-12 and I-13. The unpowered inlet weight flow is found to be 0.46 lbs/sec/ejector producing an estimated vertical force of 2.43 lbs. This is equivalent to a lift coefficient of only 0.018. Thus, the large part of the inlet lift increment cannot be attributed to flow-through momentum, but must be due to interference with the external aerodynances.

Powered lift data, nondimensionalized by thrust and shown in Figure I-14, do not reflect the significant differences caused by the open inlet in the unpowered data. The difference in powered lift is seen to remain approximately constant at various velocity ratios and, in general, it is small in comparison to the lift loss equivalent to the aerodynamic coefficient increment obtained from power off data. In contrast, the change in inlet mass flow ratio produced by opening the inlet is greater for the powered case than for the unpowered case.

Further examination of the impowered data, as presented in Figure I-15, indicates that the longitudinal coefficients of the inlet open configurations are functions of nozzle deflection angle while those of the inlet closed configuration are not. This observation in combination with the lack of difference in powered data suggests that the unaccounted inlet increment may be due to the exit interactions of the inlet mass flow as opposed to the variation of the inlet condition per se. This conclusion must be considered tentative, however, because the inlet mass flow ratio as well as the exhaust exit angle are varied by nozzle deflection. An examination of the pressure data for this configuration will give more insight to the cause of the open inlet effect on power off data.

Wing pressure differentials are shown for both inlet conditions in Figure I-16. Opening of the inlets causes a pressure change similar to that produced by a positive angle of attack. Examination of both upper and lower surface pressures at WS 10.55,

Figure I-17, indicates that the effect is present on both surfaces, confirming that opening of the index a positive angle of attack change of one to two degrees across the wing, and that the effect is not limited to one of the surfaces.

Pressure distributions about the six fuselage stations are shown in Figure I-18. The data are shown as a locus of pressure normals about the local fuselage contour. Lines within the section indicate positive pressures; lines outside the section indicate negative pressures. At interior corners of the body some data have been eliminated for clarity. The effects of the open inlet on fuselage pressures are noted below.

At the most forward station FG 7.3, the pressure change is similar to that which would be produced by a positive angle of attack of approximately two degrees. Changes occur on both upper and lower surfaces.

In front of the nacelles at FS 11.8, pressure changes on the fuselage sides are dominated by apparent changes in nacelle blockage.

This et plant with the terms with the second of the second

Lower fuselage and nacelle pressures are made more positive in front of the nozzles at stations 11.8 and 19.65. Upper surface pressures are not affected at these stations.

Aft of the nozzles and nacelles at F3 26.425, opening of the inlets induces a more negative pressure on the lower fuselage sides; other areas are not strongly affected. No data are available on the upper surface of the fuselage at this station.

At FS 34.30, a more negative pressure is induced about the section due to opening of inlets.

Upper nacelle centerline pressures, shown in Figure I-19, are unaffected except in the vicinity of the inlet lip. Lower surface pressures are made more positive in the vicinity of the exit.

Lower fuselage centerline data, Figure I-20, indicate that opening of the inlets creates more positive pressures ahead of the exit and more negative pressures aft of the exit.

Data from the tail flow angularity rake indicate increased downwash when the inlets are open, Figure I-21.

In summary, opening of the inlets produces:

THE PARTY OF THE P

- (1) An induced positive angle of at ack on the wing.
- (2) An induced positive angle of awark at the nose.
- (3) Positive pressure increments on the lower fuselage and nacelle ahead of the exits.
- (4) Negative pressure increments aft of the exits.
- (5) Little effect on upper fuselage pressures.
- (6) Increased downwash at the tail station,

These flow changes are consistent with those associated with jet exit interference effects at high velocity ratios and tend to confirm the initial observation that the "inlet" effect is largely caused by the exit of the inlet flow.

Further confirmation can be gained by observation of lower fuselage centerline pressures for the configuration equipped with the large aft nozzles. It can be seen in Figure I-22 that the largest effect of the open inlet occurs in the vicinity of the exit not the inlet. If the differential lower centerline pressures due to the opening of the inlet are plotted against distance from the exit as in Figure I-23, it is seen that data for the forward small 90 degree nozzle and the aft large 90 degree nozzle show a surprisingly strong correlation.

It is concluded that the proper unpowered data for the vectored thrust configurations are that taken with the inlets closed. Data taken with the inlets open, though the model was unpowered in the sense that no drive pressure was supplied to the ejectors, are in fact power on data at a very high velocity ratio, $V/V_j = 2.9$ for the small forward 90 degree nozzle which has been discussed.

TABLE I-I. MODEL PROPERTIES AND DIMENSIONS

Wing:

Span, b	40.25 in
Area (projected), S	324.00 in^2
Mean aerodynamic chord, \overline{c}	8.35 in
Location of 25% \bar{c}	
F.S	23.83 in
W.L	3.555 in
B. L	± 8.94 in
Taper ratio, λ	0.50
Aspect ratio, AR	5.00
Airfoil section	63A010
Leading edge sweep, Λ_{LE}	9.76 deg
Quarter chord sweep, $\Lambda_{\mathbf{C/A}}^{\mathbf{DE}}$	5.96 deg
Horizontal Tail:	C
norizontal fail:	
Span, b _H	22.40 in 2
Area (projected), S _H	110.72 in 2
Mean aerodynamic chord, \overline{c}_{H}	5.14 in
Location of 25% $\overline{\mathbf{c}}_{\mathbf{H}}$	
F. S	44.22 in
W.L	6.62 in
B. L	5.00 in
Taper ratio, A H	.50
Aspect ratio, AR _H	4.50
Airfoil section	63A008
Leading edge sweep, $\Lambda_{LE_{\mathbf{H}}}$	13.40 deg
Quarter chord sweep $\Lambda_{c_{H/4}}^{EEH}$	8.86 deg
Vertical Tail:	
Span (centerline), b _V	11.00 in
Span (exposed), b _{ve}	9.00 in
Area (exposed), S _V	71.10 in 2
Mean aerodynamic chord (exposed), \vec{c}_V	8.66 in
v	

TABLE I-L. MODEL PROPERTIES AND DIMENSIONS (CONTINUED)

	Location 25% $\bar{c}_{_{\mathbf{V}}}$			
	F.S		43.93 in	
	W.I,			
	B. L			l
	Taper ratio (exposed), λv			
	Aspect ratio (exposed), AR _v	• • • • • • • • • • •	4.56	
	Airfoil section		63A008	
	Leading edge sweep, $\Lambda_{\mathbf{LE_{v}}}$		42.9 deg	5
	Quarter chord sweep, $\Lambda_{c_{v/4}}$		34.0 deg	5
Tion.	⁶ v/4		_	
Flap:				
	Span, b _F	• • • • • • • • • • • •	0.65 w	ing span
	Chord, o _F		0.25 lo	cal wing
	•		ch	ord
	Deflection, $\delta_{\mathbf{F}}$	• • • • • • • • • • • • • • • • • • • •	45.0 deg	5
	Airfoil Section		FLAP ORDI	WATES
		X/C		1
		/	Y _U /C	y₂/c
		.0125	.9350 .0544	0350
		.025C	.0650	0194 0150
		.0500	.0788	-0094
		.0750	.0888	0063
		.1000	.0950	0013
		.1500 .2000	.1069	0003
		.3000	.1138 .1169	0
		.4000	.1138	0
		.5000	.1050	0
		.6000	.0913	0
		.7000 .8000	.0738 .0525	0
		.9000	.0525 .0281	0
		.9500	.0150	0
		1.0000	.0013	0
	Overalan		0.04	
	Overlap			
	Gap	• • • • • • • • • • • •	0.02 c	
Location o	of moment enter:			
	F.S		23,82 in	
	W.L.,		0.00 in	
	B. L		0.00 in	

TABLE I-II. JET EXIT LOCATION

THE PROPERTY OF THE PROPERTY O

		1						
Line of Force	Q/29	2.949	877.	.929	1.410	106.	1.410	1.244
Line o	۷×/ و	-,135	890*	.040	.172	1.057	1.160	191'1
True	degreés	90.13	-1,16	40.14	85.15	39.09	85.01	85.46
Geometric Center	Q/2V	2.949	.743	.938	1.410	.938	1.410	1.244
Geometri	2 /X√	112	890.	.036	.122	1.041	1.127	1.127
l	Y/(b/2)	000	±.251	+.251	±.251	±.251	±.251	±.251
Nominal Deflection	degrees	06	0	45	06	45	06	06
4.7.7.4	Position	l		Forward		4	Ait	Aft
Diameter	in. (cm)	2.25 (5.72)	20 6	(9,32)	,	3.67	(9.32)	4.5 (11.43)

Note: ΔX — Distance aft of leading edge of mean Lot odynamic chord ΔZ — Distance below wing D — Nozzle diameter

	e,	2.00 (5.04)			130				147	150	153	156	159
	But! Line	1.25 (3,13)			129				146	149	152	155	158
ers	B	0	ខ	ಡ	128	131	ಡ	144	145 ^b	148	151	154	157
Port Numbers	Station	сш	18.542	29.972	38.545	44.260	47.117	49.975	52.832	55.690	58.547	61.404	64.262
ЪС	Fuselage	in.	7.300	11.800	15,175	17.425	18.550	19.675	20.800	21.925	23.050	24.175	25.300
	×	r.	.1460	,2360	.3035	.3485	.3710	.3935	.4160	,4385	.4610	,4835	.5069

	Po	Port Numbers	97.6		
×	Fuselage	Station	Ø	Butt Line	0
11	fn.	шo	0	1.25 (3.18)	2.00
.5285	26,425	67,120	B		
.5510	•	œ.	175	174	175
.5715	•	o.i	~		
.5960		ĸ.	~		
.6135	30.925	78.550	178	1.79	180
.6410	•	ä	8		
.6635	•	4	182	183	184
.6860	•	Ë	æ		-
.7085	35.426	œ.	196		
.7310	36.550	92.837	197		
.7535	37.675	3.1	198		

Note: a - See Figure I.7. b - Not present when lift jet is mounted.

TABLE I-III. LOCATION OF PRESSURE PORTS ON LOWER FUSEI, AGR

TABLE I-IV. WING PRESSURE PORTS

M			Port 1	lumbers	
Chord	Surface		Spanwise Lo	cation Y/(b/2)	
%		0.25*	.39	.52	.80
0.0		1	24	47	70
1.0	U	2	25		
1.0	L	13	36		
1.5	υ			48	
1.5	L			59	
2.5	ប	3	26	49	71
2,0	U	14	37	60	81
5.0	ប	4	27	50	72
3.0	L	15	38	62	82
10.0	ប	5	28	51	73
10.0	L	16	39	€2	83
15.0	U	6	29	52	74
10.0	L	17	40	63	84
25.0	ប	7	30	53	75
20.0	L	18	41	64	85
40.0	ប	8	31	54	76
10,0	L	19	42	65	86
55.0	ប	9	32	55	77
50,0	L	20	43	66	87
70.0	U	10	33	56	78
	L	21	44	67	88
85.0	U	11	34	57	79
50,0	L	22	45	68	85
95.0	U	12	35	58	80
	L	23	46	69	90

Note: U — Upper Surface L — Lower Surface * — Nacelle Centerline

TABLE I-V. RUN SEQUENCE

Velocity	Angle of Attack	Angle of Sideslip
Ratio	Degrees	Degrees
Unpowered	0 to 20	0
0.3	0 to 20	0
0.2	0 to 20	0
0.1	0 to 20	0
0 to 0.3/0.5	0	0
0 to 0.3/0.5	10	0
Unpowered	0	-12 to 12
0.3	0	-12 to 12
0.2	0	-12 to 12
0.1	0	-J2 to 12
0 to 0.3/0.5	0	-8
0 to 0.3/0.5	0	8

The state of the s

TABLE I-VL TEST CONDITIONS

EJECTORS 3.67-inch D Nozzles

EJECTORS LIFT JET
4.5-inch D Nozzles 2.25-inch D Nozzle

HIGH THRUST

	100
W	THRUST

Q psf	T
psf	-
	Ъ
0.00	90
2.86	80
6.43	80
11.40	80
17.86	80
25.70	80
15.60	80
8.00	80
1.40	80
	2.86 6.43 11.40 17.86 25.70 15.60 88.00

v/v _j	Q	T
	pel	Ιb
0.00	0.00	177
0.10	4.00	177
0.20	16.00	177
0.30	36.00	177
0.39	60.00	177

v/v _j	Q	T
	psi	lb
0.00	0.00	80
0.10	14.49	80
0.15	32.60	80
0.20	57.96	80
0.20	26.67	37
0.25	41.66	37
0.30	60.00	37

LIFT JET WITH EJECTORS, 3.67-inch D Nozzles

	TOTAL	,	EJE	CTOR	LIFT JE		'JET
v/v _j	Q	Т	v/v _j	Т	V/	v/v _j	
	psf	lb		lb			lь
0.00	0.00	188	0.00	140	0.	00	48
0.09	4.76	188	0.10	1 4 u	O.	07	48
0.14	10.71	188	0.15	140	0.	11	48
0.19	19.05	188	0.20	140	0.	15	48
0.24	29.76	188	0.20	140	0.	19	48
0.28	42.86	188	0.30	140	0.	22	48
0.38	00.00	143	0.40	110	0.	32	32.5
0.50	60.00	84.2	0.50	70.5	0.	49	13.7

	VEHICLE CONFIGURATION				
POWER CONFIGURATION	Ворү	BODY-WING	BODY-WING-TAIL	AVIA-ONIM-AGOR	Body-Wing-Tail & Flap
LIFT JET	AB	AB	AŦ		
FOR VECTOR DEF 90° 45° 90°	AB	A A TA	A A ABT	A A	A
AFT VECTOR DEF 0° 45° 90°		A AB		A	A
AFT VECTOR 4.5" 90°		A			
LIFT & FOR VECTOR DEF 90°		AB			
LIFT JET & AFT VECTOR DEP 90°		AB			

note: A - longitudinal data

F - lateral data

T - stabilator effectiveness

TABLE I-VII. TEST PROGRAM SUMMARY

FIGURE 1-1. MODEL GENERAL ARRANGEMENT

With the ball and the second

FIGURE 1-2. WING-BODY-NACELLE WITH TAIL FLOW ANGULARITY RAKE, POWERED BY SMALL FORWARD NOZZLES

FIGURE 1-3. WING-BODY-NACELLE TAIL WITH FLAP, POWERED BY AFT SMALL NOZZLES

FIGURE 1-4. WING-BODY-TAIL, POWERED BY LIT JET

「一般のできない」、「日本のでは、日本ので

FIGURE I-5. EJECTOR OPERATING CHARACTERISTICS a. FORWARD SMALL NOZZLES

FIGURE I-5 (cont.) EJECTOR OPERATING CHARACTERISTICS b. AFT SMALL NOZZLES

West or and the second second

FIGURE I-5 (concluded). EJECTOR OPERATING CHARACTERISTICS c.AFT LARGE NOZZLES

FIGURE I-6. TYPICAL EXIT PROFILES ALONG LONGITUDINAL NOZZLE CENTERLINE

FIGURE I-7. CIRCUMFERENTIAL FUSELAGE PRESSURE PORTS

FS 18.55

FS 19.675

FIGURE I-7 (concluded)

estable of the substitute and the companion of the control of the

FIGURE 1-8. NACELLE CENTERLINE PRESSURE PORTS

FIGURE 1-9. AIR SUPPLY STING - BALANCE ASSEMBLY

FIGURE I-10. EFFECT OF MODEL HEIGHT, $\alpha = 6^{\circ}$

FIGURE I-11. EFFECT OF FREE FLOW THROUGH INLET ON MODEL AERODYNAMIC LOADS AT α = 0 DEG. WING-BODY-NACELLE WITH SMALL NOZZLES

FIGURE I-12. INLET WEIGHT FLOW FOR UNPOWERED EJECTOR SMALL NOZZLES

lh/sec/Ejector

* Both ejectors -Uniform exit flow is assumed

FIGURE I-13. THRUST DUE TO FREE FLOW INLET SMALL NOZZLES

FIGURE I-14. EFFECT OF OPEN INLET ON POWER MODEL LOADS WING-BODY-NACELLE, SMALL FORWARD NOZZLES DEFLECTED 90 DEG.

FIGURE I-15. UNPOWERED AERODYNAMIC COEFFICIENTS WING-BODY-NACELLE, SMALL NOZZLES $\alpha = 0$

FIGURE I-16. EFFECT OF FREE FLOW THROUGH INLET ON WING PRESSURE LOADING

FIGURE 1-17. EFFECT OF FREE FLOW THROUGH INLET ON SECTION PRESSURE LOADINGS

FIGURE 1-18. EFFECT OF FREE FLOW THROUGH INLET ON FUSELAGE PRESSURES WING-BODY-NACELLE, FORWARD SMALL NOZZLES, $\delta_{j} = 90^{\circ}$

FIGURE 1-18 (cont.)

FIGURE I-18 (concluded)

FIGURE I-19. EFFECT OF FREE FLOW THROUGH INLET ON NACELLE CENTERLINE PRESSURES

in a good to the professional and a construction of the second professional professional professional professional and the second professional professional and the second professional professional and the second professional a

FIGURE 1-20. FREE FLOW INLET EFFECT ON LOWER FUSELAGE CENTERLINE PRESSURES

Wing Body Nacelle, Forward Small Nozzles, $\delta_i = 90^{\circ}$

FIGURE I-21, EFFECT OF FREE FLOW THROUGH INLET ON DOWNWASH AT THE TAIL FLOW ANGULARITY RAKE

FIGURE 1-22. FREE FLOW INLET EFFECT ON LOWER FUSELAGE CENTERLINE PRESSURES

APPENCIX II

BALANCE CORRECTIONS AND CALIBRATION

Calibration of the basic balance was performed by NASA-Langley using well established procedures. The effects of tile air supply line, which spanned the balance, were determined by loading of the balance both with and without the airline using the same series of loads. A matrix of correction coefficients was then derived which caused the corrected airline-on loads to match the measured airline-off or applied loads. The loads were applied through the use of a complex device utilizing a system of weight pans, fulcrums, and levers. The resulting correction factors are shown below. The 6 x 6 matrix indicated in Appendix I is shown here as two 3 x 3 matrices as longitudinal and lateral components were not found to interact.

$$\left\{ \begin{array}{c} \text{Corrected} \\ \text{Loads} \end{array} \right\} = \left\{ \begin{array}{c} \text{Correction} \\ \text{Matrix} \end{array} \right\} \quad \left\{ \begin{array}{c} \text{Measured Loads} \\ \text{Airline-On} \end{array} \right\}$$

$$\left| \begin{array}{c} \text{N} \\ \text{A} \\ \text{M} \\ \text{J} \end{array} \right| = \left| \begin{array}{c} 1.0 & 0 & -.0021 \\ -.0019 & 1.002 & -.0014 \\ .056 & -.0115 & 1.107 \end{array} \right| \quad \left| \begin{array}{c} \text{N} \\ \text{A} \\ \text{M} \\ \text{J} \end{array} \right|$$

$$\left| \begin{array}{c} \text{M}_{\text{X}} \\ \text{M}_{\text{Z}} \\ \text{Y} \end{array} \right| = \left| \begin{array}{c} 1.025 & -.0181 & 0 \\ -.0592 & 1.085 & 0 \\ .0008 & -.0014 & .9960 \end{array} \right| \quad \left| \begin{array}{c} \text{M}_{\text{X}} \\ \text{M} \\ \text{Z} \\ \text{Y} \end{array} \right|$$

$$\left| \begin{array}{c} \text{Bal} \end{array} \right|$$

Because of initial difficulties in obtaining the longitudinal corrections shown above, a second loading of normal force and pitching moment was made with the use of a bar and moving weight pan. This resulted in a different set of longitudinal corrections. Interactions due to axial force were taken from the previous loading.

This matrix differs significantly from the original in the calibration of corrected axial force and pitching moment. The pitching moment difference would cause normal forces to appear approximately . 2 inch farther forward if the second matrix is used in preference to the first. The use of the second matrix would also indicate increased drag with positive normal force and decreased drag with positive pitching moment when compared with data reduced by the first matrix.

The second matrix has been used to reduce the data presented in this report because more experience was available with the method of loading. In addition, the second matrix gave better results on the position of a small test weight and it indicated that the lift jet center of pressure, which was not constant, approached the geometric center of the exit at higher thrusts as opposed to moving away. However, the results of these checks were not conclusive. The matrix below indicates the final matrix of correction coefficients \tilde{K} .

$$\widetilde{K} = \begin{bmatrix} .9945 & 0 & -.00198 & 0 & 0 & 0 \\ .01167 & 1.002 & -.00316 & 0 & 0 & 0 \\ .27 & 6 & 1.109 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.025 & -.0181 & 0 \\ 0 & 0 & 0 & -.0592 & 1.085 & 0 \\ 0 & 0 & 0 & .0008 & -.0014 & .9960 \end{bmatrix}$$

The matrix shown below will convert the longitudinal data presented in this report to the form it would have had if the original corrections were used.

$$\begin{bmatrix} N \\ A \\ M_y \end{bmatrix} = \begin{bmatrix} 1.0055 & 0 & -.0001 \\ -.0142 & 1.000 & .0016 \\ -.213 & -.0115 & .9975 \end{bmatrix} \begin{bmatrix} N \\ A \\ M_y \end{bmatrix} C_1$$

Nominal accuracy of the basic balance is indicated below.

and the state of the

Component	N	Α	Y	M _x	М _у	Mz
Accuracy — lb or inlb	±2.5	±1.0	±1,5	±5	±15	±10

APPENDEX III

EFFECT OF FORWARD SPEED ON EJECTOR JET ENGINE SIMULATORS

In order to investigate the effect of forward speed on the thrust of the ejector jet engine simulators, the bellmouth used during static calibration was attached to the ejector unit mounted in the test section. The inlet mass flow variation with forward speed was then determined. The effect of forward speed on inlet mass flow is shown in Figure III-1. The changes shown are small, less than six percent, and may reflect changes in the effective area of the bellmouth which was calibrated under static conditions.

erapid madeline in the process of a livertest and a speak manager and interference must be a contract and a surprise and a sur

If the thrust of the ejectors is assumed to vary with the square of the total mass flow, the change in thrust may be computed.

$$\frac{T}{T_0} = \frac{(\rho A_j U_j) U_j}{(\rho A_j U_j) U_{j_0}} = \frac{\dot{w}^2}{\dot{w}_0^2}$$

The computed change in thrust due to forward speed is shown below. The maximum thrust change occurs at the highest forward speed.

Nozzle	T _O , lb	T Max	Q, psf
Small Forward δ _j = 90°	136	1.026	0 - 60
	105	1.026	0 - 60
	80	1.059	0 - 70
	60	1.061	0 - 60
Large Aft ðj = 90°	178	1.001	0 - 60

A greater change occurs at lower thrust levels because of the larger ratio of secondary to primary flow.

The maximum thrust errors are of a magnitude less than twice the nominal accuracy of the normal force beam, and the maximum pitching moment errors are of the same relative magnitude. Correction for the errors would be significant only at the higher velocity ratios tested. At maximum dynamic pressures correction would result in a three percent reduction in velocity ratio and a six percent reduction in thrust nondimensionalized data. As the majority of data show a positive slope at high velocity ratios, the effect is minimized, because the corrected datum tends to move along the established curve.

The state of the s

FIGURE III-1. EFFECT OF FORWARD SPEED ON INLET FLOW FROM BELLMOUTH MEASUREMENTS

APPENDIX IV

NORMAL FORCE AND PITCHING MOMENT IN THE LIFT JET WAKE

The jet model includes no mechanism which will account for the wake region behind the jet. Consequently, calculations utilizing the jet flow field program are not in good agreement with test data in this region. As indicated in Section III the wake region contributes the major part of the loads on the fuselage so that it is desirable to have some method for estimating the integrated force and pitching moment for this region.

To enable estimates of the fuselage loads in the wake behind the lift jet to be made, it has been assumed that the difference between test data and calculations in this region is the same as the difference between test data and calculations for the component model of Reference 99.

Thus, for example, if the fuselage is at zero degrees angle of attack and sideslip, the wake contribution to the interference lift, ΔL_i , is given by

$$\frac{\Delta L_i}{T} = \frac{2}{\pi} \left(\frac{U_{o}}{U_{jo}} \right)^2 \iint_{VAKE} \left(\left(C_P \right)_{test} - \left(C_P \right)_{caeculation} \right) \frac{\delta_{WAKE}}{d_o^2}$$

in which T is the jet thrust. This double integral has been evaluated for a range of position along the test fuselage and is shown in Figure IV-1.

The ware contributions to pitching moment may be determined in a similar manner. The results, for the three velocity ratios .125, .2, .3 are shown in Figure IV-2. The moment axis has been taken through the center of the jet.

In Section III adjustments to the calculations have been made to account for the jet wake effect. The jet wake contributions were obtained from Figure IV-1 for a wake length of 13.5 jet diameters.

FIGURE IV-1. JET WAKE CONTRIBUTIONS TO FUSELAGE LIFT

dely using also de a designative and experience and propositions and second and and an experience of the control of the

FIGURE IV-2. JET WAKE CONTRIBUTIONS TO FUSELAGE PITCHING MOMENT

REFERENCES

- 1. Danek, G. L., "Body Jet Interference Lift Data," NRL-A-769, Northrop Memo No. 3744-67-33, Northrop Corporation, Norair Division, 1967.
- 2. Gregory, N., Raymer, W. G., Love, E. M., "The Effect of Forward Speed on the Inlet Flow Distribution and Performance of a Lifting Fan Installed in a Wing," Aeronautical Research Council, R&M 3388, June 1962.
- 3. Aoyagi, K., Hickey, D. H., Desavigny, R. A., "Aerodynamic Characteristics of a Large-Scale Model with a High Disk-Loading Lifting Fan Mounted in the Fuselage," NASA TN D-775, October 1961.
- 4. Hickey, P. H., Hall, L. P., "Aerodynamic Characteristics of a Large Scale Model with Two High Disk-Loading Fans Mounted in the Wing," NASA TN D-1650, February 1963.
- 5. Margason, R. J., Gentry, G. L., "Aerodynamic Characteristics of a Five-Jet VTOL Configuration in the Transition Speed Range," NASA TN D-4812, October 1968.
- 6. Trebble, W. J. G., Williams, J., "Exploratory Wind Tunnel Investigations On a Bluff Body Containing a Lifting Fan," Aeronautical Research Council CP 597, 1962.
- 7. Anon, "Wind Tunnel Test Report, Lift-Fan Powered Scale Model," G. E. Report No. 137, November 1963.
- 8. Sacks, A. H., "Aerodynamic Forces, Moments, and Stability Derivatives for Slender Bodies of General Cross Section," NACA TN 3283, November 1954.
- 9. Hoerner, S. F., Fluid Dynamic Drag, 1958.
- 10. Loftin, L. K., Jr., and Smith, H. A., "Aerodynamic Characteristics of 15 NACA Airfoil Sections at Seven Reynolds Numbers from 0.7×10^6 to 9.0×10^6 ," NACA TN 1945, October 1949.
- 11. Heyson, H. H., "Use of Superposition in Digital Computer to Obtain Wind Tunnel Interference Factors for Arbitrary Configurations, with Particular Reference to V/STOL Models," NASA-TR-R-302, February 1967.
- 12. Stevens, J. R., McDonald J. W., "Subsonic Lifting Surface Design and Analysis Procedure", Northrop Report NOR 64-196, April 1964.