HOLIDAY ASSESSMENTS S.6 APPLIED MATHEMATICS

TIME: 3 HOURS

SECTION A (40 MARKS)

Attempt all questions in this section

- 1. Two events A and B are such that P(A) = 0.7, $P(A^1nB^1) = P(A^1UB^1) = 0.2$. Find;
 - (a) P(A)
 - (b) $P(A^{1}/B)$
- 2. Forces of magnitude 4N, 3N, 6N, 5N and 8N act along the lines AB, BC, CD, DA and AC respectively of a square ABCD. The direction of the forces are indicated by the order of the letters. Find the magnitude and direction of the resultant force.
- 3. Use the trapezium rule with six coordinates to evaluate $\int_{0}^{\frac{\pi}{3}} e^{x} \cos x \, dx$; correct to 3 decimal places.
- 4. Given that $A = \frac{1}{2}$ bc $\sin \theta$. Find the maximum error in A if;

b = 4.25, C= 7.2 and θ = 121°.

5. The table below shows the expenditure in (Ush) of a student in 2009 and 2010.

Item	Expenditure		Weight
	2009	2010	
Eats	50,000	80,000	8
Airtime	10,000	30,000	2
Pocket money	45,000	100,000	5
Scholastics 51,000		90,000	10
Club T-shirts	10,000	25,000	1

Using 2009 as the base year, calculate the average weighted price index correct to two decimal places.

- 6. Two events are neither independent nor mutually exclusive such that $P(A) = \frac{1}{3}$, $P(B) = \frac{2}{9}$, P(A/B) = 0.5 Find:
 - (I) $P(A^1nB^1)$
 - (II) $P(B/A^1)$
- 7. Show graphically that the equation $x^3 2x 5 = 0$ has one real root. State the root of this equation correct to one decimal place.
- 8. Given the mean, median and standard deviation of the following values

SECTION B (60 MARKS)

Answer any five questions in this section. All questions carry equal marks.

9. The probability density function f a continuous random variable x is given by;

The probability density function
$$f(x) = \int \frac{kx(1-x^2)}{0}$$
; $0 \le x \le 1$; otherwise

Find the;

- (a) Value of K.
- (b) Mode for distribution
- (c) Cumulative distribution function and use it to determine;
 - (i) The standard deviation
 - (ii) $P(0.1 \le x \le 0.6)$
- 10. (a) Abel, Bob and Charles applied for the same job in a certain company. The probability that Abel will take the job is $\frac{3}{4}$. The probability that Bob will take it is $\frac{1}{2}$, while the probability that Charles won't take it is $\frac{1}{3}$. What is the probability that;
- (i) none of them takes the job?
- (ii) one of them will take the job?
- (b) Two events A and B are independent. Give that $P(AnB^1) = \frac{1}{4}$ and $P(A/B) = \frac{1}{6}$ find
 - (i) P(A)
 - (ii) P(B)
 - (iii) P(AnB)
 - (iv) $P(AUB)^1$
- 11. (a) Show that the Newton Raphson's iterative formula for finding the natural

logarithm of a number N is given by;

$$X_{n+1} = \frac{e^{xn}(xn-1) + N}{e^{xn}} forn = 0,1,2....$$

- (b) Draw a flow chart that reads the initial approximation X_0 and N computes and prints N and its logarithm after three iterations and gives the logarithm correct to three decimal places. Hence perform a dry run for 1n 14 taking $X_0 = 2.5$.
- 12. The table below shows the distribution of the heights of S.6 students in a certain school to the nearest cm.

Height (cm)	Number of students
150 –	3
155 –	7
160 –	10
165 –	15
170 –	25
175 –	12
180 –	6
185 - 190	2

- (a) Calculate;
 - (i) Mean
 - (ii) Median
 - (iii) Standard deviation
- (b) Plot a cumulative frequency curve for the data above and use it to estimate;
 - (i) The range of the heights in the middle 60% of the distribution.
 - (ii) The quartile range.
- 13. (a) Three students A, B, and C aim at a particular target the probability that A hits the target is $\frac{2}{3}$ and the corresponding probabilities for B and C are $\frac{5}{6}$ and $\frac{3}{4}$ respectively. Find the probability that the target is nil.
 - (b) Discrete random variable X has a probability function given by;

$$f(x) = \int \alpha x + \beta \quad ; \quad 1x1 \le 2$$

$$f(x) = \int \alpha x + \beta \quad ; \quad x = 3$$

$$0 \quad ; \quad elsewhere$$

- (i) The values of α and β .
- (ii) The most likely value of X.
- (iii) $P(-1 \le x \le 2/x \ge 1)$
- 14. (a) The table below shows values of a standard normal variable Z and their corresponding probabilities.

Z	1.852	1.960	2.014	2.441
I(Z)	0.4860	0.4750	0.4780	0.4927

- (i) I (2.521) correct to 4 decimal places.
- (ii) I⁻¹ (0.4661) correct to 3 decimal places.
- (b) Show graphically that the equation $4 \tan x + 4 4 = 0$ has two roots in the interval $-\frac{\pi}{2}$ and $\frac{3\pi}{2}$. Hence state the roots.

END