Dimostrazioni e ricorsione

Tabella dei contenuti

roprietà
Funzioni ricorsive e non
Insiemi di proposizioni
Principio di induzione su $PROP$
Dimostrazione
Funzioni notevoli
Insieme delle sottoproposizioni
Rango di una proposizione
Teorema di ricorsione primitiva

Proprietà

Sia A un insieme e P un suo sottoinsieme: l'elemento $a \in A$ soddisfa la proprietà P se e solamente se $a \in P$. In altre parole una proprietà è l'insieme degli elementi che rispettano una determinata condizione.

Per esempio, una proprietà su $\mathbb N$ potrebbe essere: $P=\{n\mid n\in\mathbb N, n>0\}$ dove $P\subseteq\mathbb N$, infatti:

- $1 \in P$ infatti P(1) vale
- $0 \notin P$ perciò P(0) non vale.

Per dimostrare una proprietà su tutte le proposizioni, necessitiamo di una definizione dell'insieme che le contiene.

Funzioni ricorsive e non

Siano A, B due insiemi e $f \subseteq A \times B$, f viene chiamata funzione se e solamente se per ogni elemento del dominio A, esiste ed è unico un elemento del codominio B, tale che la coppia (a, b) appartenga ad f, cioè:

$$\forall a \in A, \ \exists! \ b \in B, \ (a,b) \in f \tag{1}$$

Per cui si scrive:

- f(a) = b quando $(a, b) \in f$
- $f: A \to B$ quando $f \subseteq A \times B$

 $Nota\ bene$

Una funzione è definita in modo ricorsivo se è definita dal valore sui propri elementi.

Per esempio una funzione ricorsiva può essere quella che ad ogni proposizione, assegna il numero delle sue parentesi, definita come:

$$\pi: PROP \to \mathbb{N}$$

I valori che assume sono:

- $\pi(\alpha) = 0 \text{ per } \alpha \in AT$
- $\pi(\neg \alpha) = 2 + \pi(\alpha)$

$$\left. \begin{array}{l}
\pi(\alpha \wedge \beta) \\
\bullet \quad \pi(\alpha \vee \beta) \\
\pi(\alpha \to \beta)
\end{array} \right\} = 2 + \pi(\alpha) + \pi(\beta)$$

Insiemi di proposizioni

Viene chiamato PROP il più piccolo insieme X di stringhe, tale che:

- 1. $\bot \in PROP$
- 2. $p \in PROP$ per p simbolo proposizionale

3. Se
$$\alpha, \beta \in PROP$$
 allora:
$$\begin{cases} (\alpha \land \beta) \\ (\alpha \lor \beta) \\ (\neg \alpha) \\ (\alpha \to \beta) \end{cases} \in PROP$$

Viene invece chiamato AT l'insieme delle proposizioni atomiche, cioè quelle che non possono essere semplificate ulteriormente. Per questo possiamo affermare che $AT \subset PROP$.

Principio di induzione su PROP

Per poter determinare se una proprietà vale per tutte le proposizioni, si utilizza il seguente principio di induzione sull'insieme PROP. Siano $P \subseteq PROP$ e α, β due proposizioni qualsiasi, possiamo affermare che $\forall \phi \in PROP$ vale $P(\phi)$ se e solamente se:

- 1. Vale $P(\alpha)$ per $\alpha \in AT$
- 2. Ipotizzando valga $P(\alpha)$, allora vale anche $P(\neg \alpha)$

3. Ipotizzando valgano
$$P(\alpha), P(\beta)$$
, allora valgono anche
$$\begin{cases} (\alpha \wedge \beta) \\ (\alpha \vee \beta) \\ (\alpha \rightarrow \beta) \end{cases}$$

 $Nota\ bene$

Se la proprietà $P \subseteq PROP$ vale **per ogni** elemento di PROP, allora significa che P è PROP stesso.

Dimostrazione

Vogliamo dimostrare che ogni proposizione, possiede un numero pari di parentesi, in altre parole $\forall \alpha \in PROP, P(\alpha) \iff \pi(\alpha)$ è pari.

Utilizzando il principio di induzione, applicato all'insieme PROP:

1. $P(\alpha)$ vale per $\alpha \in AT$?

$$\alpha \in AT \implies \pi(\alpha) = 0$$

2. Ipotizzando che valga $P(\alpha)$, allora vale anche $P(\neg \alpha)$?

$$\pi(\neg \alpha) = 2 + \pi(\alpha) = 2$$

3. Ipotizzando che valgano $P(\alpha), P(\beta)$, allora valgono anche $P(\alpha \land \beta), P(\alpha \lor \beta)$ e $P(\alpha \to \beta)$?

$$\left. \begin{array}{l} P(\alpha \wedge \beta) \\ P(\alpha \vee \beta) \\ P(\alpha \to \beta) \end{array} \right\} = 2 + \pi(\alpha) + \pi(\beta) = 2$$

Conclusione: $\forall \phi \in PROP, \ \pi(\phi)$ è pari quindi $\forall \phi \in PROP, \ P(\phi)$ è verificata.

Funzioni notevoli

Alcune funzioni sono indispensabili per poter definire determinati concetti.

Insieme delle sottoproposizioni

La funzione ricorsiva Sub associa ad ogni proposizione, l'insieme delle proposizioni che la compongono, cioè Sub : $PROP \rightarrow 2^{PROP}$. I valori che assume Sub sono:

•
$$Sub(\phi) = {\phi} per \phi \in AT$$

•
$$\operatorname{Sub}(\neg \phi) = \{(\neg \phi)\} \cup \operatorname{Sub}(\phi)$$

$$\left. \begin{array}{l} \operatorname{Sub}(\alpha \wedge \beta) \\ \operatorname{Sub}(\alpha \vee \beta) \\ \operatorname{Sub}(\alpha \to \beta) \end{array} \right\} = \left\{ \phi * \psi \right\} \cup \operatorname{Sub}(\phi) \cup \operatorname{Sub}(\psi)$$

dove * è un connettivo tra $\{\land, \lor, \rightarrow\}$.

 $Nota\ bene$

L'insieme 2^A si chiama *Insieme potenza* o delle parti di A.

Rango di una proposizione

La funzione ricorsiva r
 associa ad ogni proposizione il proprio rango o complessità, cio
è r: $PROP \to \mathbb{N}$. I valori che assume sono:

•
$$r(\phi) = 0 \text{ per } \phi \in AT$$

•
$$r(\neg \phi) = 1 + r(\phi)$$

$$\left. \begin{array}{c} \mathbf{r}(\alpha \wedge \beta) \\ \mathbf{r}(\alpha \vee \beta) \\ \mathbf{r}(\alpha \rightarrow \beta) \end{array} \right\} = 1 + \max(\mathbf{r}(\phi), \mathbf{r}(\psi))$$

Teorema di ricorsione primitiva

Siano $A \subseteq PROP$ un insieme e * un connettivo tra $\{\land, \lor, \rightarrow\}$. Supponendo di avere delle funzioni come le seguenti:

$$H_{at}: AT \to A$$

$$H_{\neg}: A \to A$$

$$H_*: A \times A \to A$$
 (2)

Esiste ed è unica una funzione $F: PROP \rightarrow A$ tale che:

$$F(\phi) = H_{at}(\phi) \text{ per } \phi \in AT$$

$$F(\neg \phi) = H_{\neg}(F(\phi))$$

$$F(\phi * \psi) = H_{*}(F(\phi), F(\psi))$$
(3)