Linear Programming

STATISTICS 186

Last week?

- Some more of Linear Programming
- Touched on the extreme point method
- Realised that there are cases that more than one optimal solution exists

Today?

Shadow Prices

Shadow Prices

- First need to know what a scare resource is
- Scarce Resource definition
 - A resource which limits a production process
- Shadow Price definition for a scarce resource:
 - The marginal contribution that the resource makes to profit OR in other words
 - Amount that profit increases if one additional unit of the resource was made available
- Will discuss two methods of calculating the shadow price of a scarce resource

Revisiting Example 1

- In example 1 scarce resource was capacity of machine and finishing time (used in finding optimal solution)
- Remember constraint equations
 - $6A + 12B \le 1200$ (Machine)
 - $10A + 6B \le 1200$ (Finishing)
- Now asked to calculate shadow price of Machine time

Method 1

APPLY DEFINITION DIRECTLY

Steps

- 1. State the critical constraints
- 2. Obtain the original optimal profit
- 3. Obtain the optimal profit by adding one additional unit of resource
- 4. Subtract the two quantities to determine shadow price
- 5. Provide interpretation

Step 1 – State the Critical Constraints

- $6A + 12B \le 1200$ (Machine)
- $10A + 6B \le 1200$ (Finishing)

Step 2 – Obtain the Original Optimal Profit

- When calculating shadow prices the number of units should **NOT** be rounded
- Therefore must recalculate profit
 - Optimal solution for example 1 (unrounded)
 - A = 85.714
 - $^{\circ}$ B = 57.143
 - Hence profit
 - P = 2(85.714) + 2.5(57.1429) = 314.2859

Step 3 – Obtain the new optimal profit by adding one additional unit of resource

- \circ 6A + 12B \leq 1200 + 1 (Machine)
- \circ 10*A* + 6*B* \leq 1200 (Finishing)
- Hence new constraint equations becomes
 - $6A + 12B \le 1201$ (Machine)
 - $10A + 6B \le 1200$ (Finishing)

Step 3 – Obtain the new optimal profit by adding one additional unit of resource

- Following all steps to find an optimal solution we obtain solutions
 - *A* = 85.6429
 - B = 57.2619
- New optimal contribution of
 - P = 2(85.6429) + 2.5(57.2619) = 314.4406

Step 4 – Subtract the two quantities to determine shadow price

- \circ 314.4406 314.2859 = 0.1547
- Shadow price for machine time = R0.1547 per minute
- For an exercise work out that the shadow price for the finishing time is = R0.1071 per minute

Step 5 - Interpretation

- Shadow Price definition for a scarce resource:
 - Amount that profit increases if one additional unit of the resource was made available
- Hence definition
- Machine time
 - For every additional minute of machine time, optimal profit will increase by R0.1547
- Finishing time
 - \circ For every additional minute of finishing time, optimal profit will increase by R0.1071

Method 2

PREFERABLE

Example 1

 Saw that the optimal solution was found where the following two constraint lines intersected

$$6A + 12B \le 1200 \ (Machine)$$

 $10A + 6B \le 1200 \ (Finishing)$

Above two equations are called critical constraints

Method 2: Step 1 – Set Up Table

- Set up table
 - First rows will be constraint equations
 - Last row will be objective function
 - First column will be first product
 - Second column will be second product
 - Third column will be a third product

Step 1

$$6A + 12B \le 1200 (Machine)$$

 $10A + 6B \le 1200 (Finishing)$
 $P = 2A + 2.5B$

	Product A	Product B	Limit
Machine time	6	12	1200
Finishing time	10	6	1200
Contribution	2	2.5	

Step 2 – Obtain shadow price equations

Use columns of Product A and Product B to create the following equations

	Product A	Product B	Limit
Machine time	6	12	1200
Finishing time	10	6	1200
Contribution	2	2.5	

• Equations:

$$6M + 10F = 2$$

$$12M + 6F = 2.5$$

Step 3 – Solve Shadow Equation

- M = R0.1548 per minute
- \circ F = R0.1071 per minute
- Remember definition of shadow prices
 - Amount that profit increases if one additional unit of the resource was made available
 - Here the additional resource was time
- If we compare units of shadow equations we see

Step 3 – Solve Shadow Equation

If we compare units of shadow equations, we see

$$6M + 10F = 2$$
Min/unit Min/unit R/unit

- Since left hand side is equal to right hand side it agrees per definition of shadow prices
- Note that since raw material was not a critical constraint the shadow price is zero

Application of Shadow Prices

- Say as a business you receive a special offer?
 - Good for business since you obtain a bulk order which you can profit from
 - Need to be smart about situation
 - Shadow prices can be used to calculate the minimum selling price that needs to be quoted
- Will see how through an example

Example 1 - Revisted

- Saw amount that achieved maximum profit was
 - 85 units of A
 - 57 units of B
- Now the company receives a special order of 100 units of another product C

Example 1 - Revisited

- Following resources are used to produce 100 units
 - Raw material 90kg
 - Machine time 200 minutes
 - Finishing time 140 minutes
- Cost of resources are
 - Raw material R10/kg
 - Machine time R5/minute
 - Finishing time R10/minute
- Question now
 - Lowest selling price for special offer?

Step 1 – Work out cost price for new product

- Important to distinguish shadow prices and cost of machine and finishing time
 - Shadow prices deals with change in profit per unit
 - Already takes costs into account
 - Costs given calculated as the sum of labour, electricity involved in operating the machinery
 - Does not involve profits

Step 1 – Work out cost price for new product

- Cost price can be calculated as
 - $90 \times 10 = 900 Raw Material$
 - \circ 200 \times 5 = 1000 Machine time
 - $140 \times 10 = 1400$ Finishing time
 - Total cost = 900 + 1000 + 1400 = R3300
- However this is not minimum amount
 - Since now there will be less resources for product A and B
 - Need to add the loss in contributions
 - For this we use shadow prices

Step 2 – Calculate loss resulting from fewer contributions from other products

- Raw Material
- Only used to produce product B
- Produce 57 units in optimal solution
- Requires 3 kg per unit
- Constraint was $3B \le 270$ hence material available is 270kg
- Raw material used to produce $B = 3 \times 57 = 171 \text{kg}$
- Leaves us 99kg for product C
- Since only need 90kg for product C does not cause loss of contribution

Step 2 – Calculate loss resulting from fewer contributions from other products

- Machine time and Finishing time
- Already know that these are scarce resources
- Shadow prices
 - M = R0.1548 per minute
 - F = R0.1071 per minute
- Now every minute lost to produce product C will result in a loss not profit

Step 2 – Calculate loss resulting from fewer contributions from other products

- Need 200 minutes machine and 140 minutes finishing hence loss in contribution
 - \circ 200 × *R*0.1548 = *R*30.96
 - \circ R140 × R0.1071 = R14.99
- Hence lowest selling price for producing 100 units of product C

Manufacturing Cost	R3300
Loss in contribution:	
- Machine time	R30.96
- Finishing time	R14.99
Total Cost	R3345.95

But wait another method...

FOR STEP 2

Alternative method

- Use linear programming by considering new set of constraints
 - Obtained by subtracting resources required for product C
 - New constrain equations becomes
 - \circ 6A + 12B \leq 1200 200 \Rightarrow 6A + 12B \leq 1000

 - \circ 3*B* \leq 270 90 \Rightarrow 3*B* \leq 180
- Optimal profit obtained is then subtracted from original optimal profit
- Must always use decimals when calculating contribution (Only difference)

Further Remarks on Alternate Method

- If new opportunity or special offer affects a material that is not scarce
 - Example if product C required 150kg of raw material but on 99kg left over after catering for product A and B
 - Then not enough left to produce C
- Calculating loss in contribution must be using alternative method

Summary

- Tackled the idea of shadow prices
- Used it in an application of a special offer of a new product
 - Used methods to determine minimum selling price of special offer