

Titanic- data analysis

Team 1

Delgado Rios, Leonardo - A00827915 Hure, Marin Joseph - A01762723 Sánchez Pérez, Raúl Andrés - A01367635 Barredez Rios, Carlos Andres - A01653183

Can we determine the key factors influencing survival?

Date: April 15, 1912

Event: Sinking of the Titanic with significant loss of

life.

Dataset: Passenger details including age, fare, class, gender, etc.

Objective: To uncover the underlying social and economic dynamics of the tragedy

Data Science:

A discipline integrating mathematics, statistics, and computer science to interpret, visualize, and extract insights from large volumes of data.

Machine Learning (ML)

A branch of artificial intelligence focused on developing algorithms that allow computers to learn from and make predictions or decisions based on data.

ML Algorithms

K-Nearest Neighbors

Definition: Based on the majority votes of its K closest neighbors.

Advantages: No training phase required and

intuitively simple.

Disadvantages: Computationally expensive and

sensitive to irrelevant features.

Random Forest

Definition: Builds multiple decision trees during training and outputs the class that is the mode of the classes of the individual trees.

Advantages: Handles large datasets with higher dimensionality, provides estimates of feature importance, and prevents overfitting.

Disadvantages: Can be slow in generating predictions due to the number of trees.

Support Vector Machines

Definition: Identifying the optimal hyperplane that

best divides a dataset into classes.

Advantages: Effective in high-dimensional

spaces.

Disadvantages: Not suitable for very large

datasets.

Decision Tree

Definition: A flowchart-like structure where each internal node represents a feature(or attribute), each leaf node represents a class label, and branches represent conjunctions of features leading to class labels.

Advantages: Simple to understand and interpret, requires little data preparation.

Disadvantages: Can easily become complex and prone to overfitting.

Logistic Regression

Definition: A statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome.

Advantages: Works well for linearly separable data.

Disadvantages: Assumes a linear boundary between classes and might not be suitable for non-linear data.

Results

Data Pre-processing

Data Cleaning

Data Transformation

Algorithm Selection

Model Evaluation

Final Predictions

Submis	sion and Description	Public Score (i)
0	SVCPredictions.csv Complete · now	0.78229
0	LogisticRegressionPredictions.csv Complete · 13s ago	0.77033
0	DecisionTreePredictions.csv Complete · 25s ago	0.76315
0	kNNPredictions.csv Complete · 44s ago	0.73205
0	RandomForestPredictions.csv Complete - 1m ago	0.71291

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                 Non-Null Count Dtype
     Column
    PassengerId 891 non-null
                                 int64
                 891 non-null
                                 object
     Name
                 891 non-null
                                 object
     Sex
                                 float64
     Age
                 714 non-null
                                 int64
     Pclass
                 891 non-null
     SibSp
                 891 non-null
                                 int64
                 891 non-null
                                 int64
    Parch
    Ticket
                                 object
                 891 non-null
                                 float64
     Fare
                 891 non-null
                                 object
    Cabin
                 204 non-null
    Embarked
                 889 non-null
                                 object
 11 Survived
                 891 non-null
                                 int64
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

Importance of Data Pre-Processing

- Understanding the structure of our data.
- Find human or computer errors.
- Improves accuracy and reliability of our final model.

-	count	mean	std	min	25%	50%	75%	max
Passengerid	891.0	446.000000	257.353842	1.00	223.5000	446.0000	668.5	891.0000
Age	714.0	29.699118	14.526497	0.42	20.1250	28.0000	38.0	80.0000
Pclass	891.0	2.308642	0.836071	1.00	2.0000	3.0000	3.0	3.0000
SibSp	891.0	0.523008	1.102743	0.00	0.0000	0.0000	1.0	8.0000
Parch	891.0	0.381594	0.806057	0.00	0.0000	0.0000	0.0	6.0000
Fare	891.0	32.204208	49.693429	0.00	7.9104	14.4542	31.0	512.3292
Survived	891.0	0.383838	0.486592	0.00	0.0000	0.0000	1.0	1.0000

Describing our data can help us:

- Identify data types
- Detect missing data
- Detect the presence of outliers
- Analyze distribution
- Assess quality and consistency
- Identify data characteristics

Feature value counts

Class 1: **216** Class 2: **184** Class 3: **491**

Male: **577** Female: **314**

Port S: **644**Port C: **168**Port Q: **77**

Childs: 83 Adults: 808

Class 1: **62.96** % Class 2: **47.28** % Class 3: **24.24** %

Overall Survival

Did: **38.38** %

Did not: **61.62** %

Male: **18.89** % Female: **74.20** %

Port S: **55.35** % Port C: **38.96** % Port Q: **33.69** %

isChild: **59.03** %

PassengerId	0
Name	0
Sex	0
Age	177
Pclass	0
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
Survived	0
dtype: int64	

train_titanic_df.isnull().sum()

Importance of Data Cleaning

Ensures Accuracy:

Data cleaning ensures that the data is free from errors and inaccuracies, reflecting the real-world

Boosts Model Performance:

Clean data leads to better machine learning model performance

Improves Quality:

It enhances data quality for reliable analysis

Age & Embarked

We spotted some missing values on [Age] and [Embarked], we decided to fill these using median (numerical), and mode (categorical) respectively

```
train_titanic_df['Age'].fillna(train_titanic_df['Age'].median(), inplace=True)
train_titanic_df['Embarked'].fillna(train_titanic_df['Embarked'].mode()[0], inplace=True)
```

We chose these methods because they showed the best performance

Thresholds Pclass: (0.50, 4.50)
Potentially Outliers: 0

Thresholds Age: (-6.69, 64.81)
Potentially Outliers: 11

Thresholds SibSp: (-1.50, 2.50)
Potentially Outliers: 46

Thresholds Parch: (0.00, 0.00)
Potentially Outliers: 213

(-26.72, 65.63)
Potentially Outliers:

Importance of Data Transformation

Model Compatibility:

Data transformation makes data compatible with machine learning models that require numerical input

Enhances Predictions:

Effective encoding boosts model accuracy by including crucial categorical data

Enables Wider Applicability:

Data transformation makes the data compatible with a wider range of algorithms and techniques, expanding the potential for analysis

Sex Feature & Drop

We can identify a male or a female by defining isFemale to 1 (True), 'Sex' is dropped in pair with other features

```
# Transforming sex categories into numerical here only to appear in plotting charts.
train_titanic_df["isFemale"] = train_titanic_df.apply(isFemale, axis = 1)

# Drop the features that we are not going to use and review the transformation of Sex.
train_titanic_df = train_titanic_df.drop(["PassengerId", "Name", "Sex", "Ticket", "Cabin"], axis = 1)
train_titanic_df["isFemale"].value_counts()

0 577
1 314
Name: isFemale, dtype: int64
```

Embarked and Pclass feature

- Both Embarked and Pclass were categorical data, in order to be applied to our ML algorithms these needed to become numerical, we used "pd.get_dummies()"
- This function uses **One-hot encoding** a technique that creates new binary columns for each category. Each binary column represents the presence or absence of a specific category for each data point

```
train_titanic_df = pd.get_dummies(train_titanic_df, columns=["Pclass","Embarked"])
```

Pclass_1	Pclass_2	Pclass_3	Embarked_C	Embarked_Q	Embarked_S
0	0	1	0	0	1
1	0	0	1	0	0

Standardization

- For features [Age, SibSp, Parch, Fare], we use a Standard Scaler. This process ensures that the mean of the standardized data is close to 0.
- Standardization is useful for algorithms that are sensitive to the scale of input features, as it brings all features to a common scale it prevents some features from dominating others

$$z=rac{\omega}{\sigma}$$
 $\mu={
m Mean}$

 $\sigma=$ Standard Deviation

```
scaler = StandardScaler()
features = ["Age", "SibSp", "Parch", "Fare"]
train_titanic_df[features] = scaler.fit_transform(train_titanic_df[features])
```


How we are measuring performance?

- Accuracy
- Precision
- Confusion Matrix
- ROC Curve and AUC

PRECISION VS ACCURACY

		Act	tual
		Class1	Class 2
Predicted	Class 1	True	False
		Positive (T_p)	Positive (F_p)
	Class 2	False	True
		Negative (F_n)	Negative (T_n)

Logistic Regression Model

The selected parameters are {}									
The precision on the training set using CV : 0.789									
Binary Precision	Binary Precision score : 0.759493670886076								
Weighted Precisi	on_score	: 0.7983	82726550035	54					
Average_precisio	n_score :	0.64745	61291350099)					
Binary f1_score	: 0.7294	832826747	72						
Weighted f1_scor	e: 0.79	858810497	86554						
pr	ecision	recall	f1-score	support					
0	0.86	0.82	0.84	575					
1	0.70	0.76	0.73	316					
accuracy			0.80	891					
macro avg	0.78	0.79	0.79	891					
weighted avg	0.80	0.80	0.80	891					

----- MEAN -----

Mean_test_score : 0.7890151277383717 Std_test_score : 0.019488362104751616

k-Nearest Neighbours Model

----- MEAN -----

Mean_test_score : 0.7914456091896303 Std_test_score : 0.024318084318998345

Decision Tree Model

The selected parameters are {'max depth': 10} The precision on the training set using CV: 0.818 Binary Precision_score : 0.9565217391304348 Weighted Precision score: 0.9250258163301641 Average_precision_score : 0.8627490259831985 Binary f1 score : 0.8923556942277692 Weighted f1 score: 0.9214206764430246 precision recall f1-score support 0.91 0.94 0.84 0.96 0.89 299 0.92 891 accuracy macro avg 0.91 0.93 0.92 891 weighted avg 0.93 0.92 0.92 891

----- MEAN -----Mean_test_score : 0.7971655891030067

Std test score : 0.027895771286105236

TEST

Random Forest Model

			nac va	uc			
The selected pa The precision of Binary Precision Weighted Precision Average_precision Binary f1_score Weighted f1 sco	on the trai on_score : sion_score ion_score : e : 0.9731	ning set 0.993902 : 0.9801 0.96536 343283582	using CV : 4390243902 4871235423 1430594635	0.817 15	atures': 6,	, 'n_estimat	ors': 4}
_							
t	precision	recall	T1-Score	support			
0	1.00	0.97	0.98	563			
1	0.95	0.99	0.97	328			
accuracy			0.98	891			
macro avg	0.97	0.98	0.98	891			
weighted avg	0.98	0.98	0.98	891			

MEAN --Mean_test_score : 0.7948303098780155

Std_test_score : 0.026129778217375162

TEST

Support Vector Machine Model

TRAIN

The selected parameters are {'degree': 1, 'probability': True} The precision on the training set using CV: 0.822 Binary Precision score : 0.8131147540983606 Weighted Precision score: 0.8294280577836779 Average precision score : 0.6951265119801213 Binary f1 score : 0.7666151468315301 Weighted f1_score : 0.8284440108827827 precision recall f1-score support 0.90 0.84 0.87 586 0.73 0.81 0.77 0.83 accuracy macro avg 0.81 0.83 0.82 weighted avg 0.84

---- MFAN

Mean_test_score : 0.8215491808423827 Std_test_score : 0.012995405474709435

Which model is the chosen one?

- SVC gave the best mean score in the cross validation for the test dataset
- SVC showed the best predictions on Kaggle

Why?

- SVC was better at generalization, this meaning it performed better on unseen data
- SVC had a more robust feature representation making it less sensitive to noise or outliers

Submis	sion and Description	Public Score (1)
0	SVCPredictions.csv Complete · now	0.78229
0	LogisticRegressionPredictions.csv Complete · 13s ago	0.77033
0	DecisionTreePredictions.csv Complete · 25s ago	0.76315
0	kNNPredictions.csv Complete · 44s ago	0.73205
0	RandomForestPredictions.csv Complete · 1m ago	0.71291

Final Predictions

Final thoughts

Final Predictions 32

Project Resources

- GitHub Repository
- Google Drive Repository
- Google Colaboratory

END

