Некоторые ранговые критерии

Понятие ранга

Пусть X_1,\ldots,X_n — выборка из распределения с.в. $\xi\in\mathbb{R}$.

 $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$ — вариационный ряд.

Определение 1.1

Рангом R_i наблюдения X_i называется номер этого наблюдения в вариационном ряду.

Пример 1.1

Например, пусть есть выборка:

 X_i : 3, 0, -1, 2, 1 Соответствующие ранги:

 R_i : 5, 2, 1, 4, 3

В системе \mathbb{R} ранги наблюдений выборки $\mathbf{X} = (X_1, \dots, X_n)$ находятся обращением к функции $rank(\mathbf{X})$

Определение 1.2

Пусть R_1, \ldots, R_n – ранги элементов выборки X_1, \ldots, X_n . Статистика, являющаяся функцией рангов

$$\phi_n = \phi(R_1, \ldots, R_n)$$

называется ранговой статистикой.

Определение 1.3

Критерии, основанные на ранговых статистиках, называют ранговыми критериями

Основные преимущества ранговых критериев в том, что:

- их распределения не зависят от распределений исходных наблюдений (distribution free criterions);
- Их применение, как правило, не предполагает конечности моментов у наблюдаемых величин.

Ранговый критерий независимости Спирмена

Имеется n наблюдений $(X_1, Y_1), \ldots, (X_n, Y_n)$ двумерной случайной величины (ξ_1, ξ_2) .

Гипотеза H_0 состоит в том, что величины ξ_1 и ξ_2 — независимые. Обозначим через R_i ранги наблюдений X_i в выборке X_1, \ldots, X_n , а через S_i — ранги наблюдений Y_i в выборке Y_1, \ldots, Y_n .

Если наблюдения X_i не зависят от Y_i , то и ранги этих наблюдений не зависят друг от друга. Критерий Спирмена основан на выборочном коэффициенте корреляции для выборки $(R_1, S_1), \ldots, (R_n, S_n)$ рангов:

$$\rho_{S} = \frac{\sum_{i=1}^{n} \left[(R_{i} - \overline{R})(S_{i} - \overline{S}) \right]}{\sqrt{\sum_{i=1}^{n} (R_{i} - \overline{R})^{2} \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}}},$$
(1)

где

$$\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_i = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Очевидно, что также $\overline{S} = \frac{n+1}{2}$

Кроме того, мы аналогично имеем

$$\sum_{i=1}^{n} (R_i - \overline{R})^2 = \sum_{i=1}^{n} (S_i - \overline{S})^2 = \frac{n(n^2 - 1)}{12}.$$

В результате подстановки в формулу (1) приходим к выражению:

$$\rho_{S} = 1 - \frac{6}{n(n^2 - 1)} \sum_{i=1}^{n} (R_i - S_i)^2.$$
 (2)

Поскольку ho_S — это выборочный коэффициент корреляции, то $-1 \le
ho_S \le 1$.

Заметим, что если для всех i $R_i=S_i$ (т.е., полное совпадение рангов, означающее положительную монотонную зависимость), то $\rho_S=1$. Если же $R_i=n-S_i+1$ (полная противоположность рангов, то есть монотонная отрицательная зависимость), то $\rho_S=-1$.

При справедливости гипотезы о независимости мы имеем

$$\mathsf{E}\rho_{\mathcal{S}}=0,\qquad \mathsf{D}\rho_{\mathcal{S}}\cong \frac{1}{n-1}$$

Распределение статистики Спирмена не зависит от распределений с.в. ξ_1 и ξ_2 , его квантили табулированы для $n \leq 20$ и используются для проверки гипотезы независимости.

При n>20 проверку гипотезы основывают на факте асимптотической нормальности распределения $ho_{S}.$

Теорема 1.1

Если гипотеза независимости H_0 верна, то

$$P(\sqrt{n}\,\rho_S < z) \longrightarrow_{n\to\infty} \Phi(z)$$

Из теоремы вытекает следующий алгоритм проверки гипотезы H_0 :

- 1. назначается уровень значимости α ;
- 2. находится квантиль стандартного нормального закона:

$$z_{\alpha} = \Phi^{-1}(1 - \alpha/2);$$

- 3. вычисляются ранги и значение статистики Спирмена $ho_{\mathcal{S}}$;
- 4. если $\sqrt{n} |\rho_S| > z_\alpha$, то гипотеза H_0 отвергается.

Ранговый критерий однородности Уилкоксона

Имеются две выборки вещественнозначных наблюдений:

$$X_1, \ldots, X_n \sim F_1(x),$$

 $Y_1, \ldots, Y_m \sim F_2(x)$

Требуется проверить гипотезу однородности, т.е. то, что эти данные из одного и того же распределения:

$$H_0: F_1(x) \equiv F_2(x)$$

Составим объединенную выборку $X_1, \ldots, X_n, Y_1, \ldots, Y_m$, затем упорядочим значения:

$$Z_{(1)} \leq Z_{(2)} \leq \cdots \leq Z_{(n+m)}$$

Пусть R_1, R_2, \ldots, R_n обозначают ранги величин X_1, \ldots, X_n в объединенном вариационном ряду.

Рассмотрим статистику

$$T_{n,m}=R_1+R_2+\cdots+R_n,$$

равную сумме номеров мест, которые занимают элементы первой выборки в объединенном вариационном ряду. Можно показать, что если гипотеза однородности H_0 верна, то

$$\mathsf{E} T_{n,m} = \frac{n}{2} (n+m+1), \qquad \mathsf{D} T_{n,m} = \frac{m \, n \, (m+n+1)}{12}.$$

Распределение статистики Уилкоксона (Манна—Уитни) не зависит от распределений F_1 и F_2 и табулировано при $m+n\leq 50$, $\min(m,n)\geq 5$. При бо́льших значениях объемов выборок используют предельное распределение. А именно: рассмотрим нормированную статистику:

$$T_{n,m}^0 = \frac{T_{n,m} - \mathsf{E} T_{n,m}}{\sqrt{\mathsf{D} T_{n,m}}} = \frac{T_{n,m} - \frac{n}{2}(n+m+1)}{\sqrt{\frac{m n}{12}(m+n+1)}}.$$

Асимптотический вариант критерия Уилкоксона-Манна-Уитни основан на следующем факте.

Теорема 1.2

Если гипотеза однородности Н₀ верна, то

$$P(T_{n,m}^0 < z) \longrightarrow_{m, n \to \infty} \Phi(z)$$

Из теоремы вытекает следующий алгоритм проверки гипотезы H_0 :

- 1. назначается уровень значимости α ;
- 2. находится квантиль стандартного нормального закона:

$$z_{\alpha} = \Phi^{-1}(1 - \alpha/2);$$

- 3. вычисляются ранги R_i в объединенной выборке и значение статистики $T_{n,m}$;
- 4. если $\left|T_{n,m}^0\right|=\left|\frac{T_{n,m-\frac{n}{2}}(n+m+1)}{\sqrt{\frac{mn}{12}(m+n+1)}}\right|>z_{\alpha}$, то гипотеза однородности H_0 отвергается.

- 1. Смоделировать выборку $(X_1,Y_1),\ldots,(X_n,Y_n)$ «наблюдений » независимых X и Y. Проверить независимость по критерию Спирмена. Предусмотреть зависимость (например, сделать часть элементов выборки Y-ков функциями от соответствующих X). Проверить гипотезу о независимости.
- 2. Смоделировать две выборки X_1,\ldots,X_n и Y_1,\ldots,Y_m , вначале из одного и того же распределения. Проверить однородность с помощью критерия Уилкоксона.
- Затем смоделировать неоднородность (например, заменить в одной из выборок часть данных на данные из другого распределения). Проверить гипотезу об однородности.