Contrôle TD – Apprentissage

1h. Documents non autorisés.

Prenez soin de lire l'énoncé avant de commencer. La notation est donnée à titre indicatif.

Exercice:

RID	age	income	student	credit	C_i : buy
1	youth	high	no	fair	C_2 : no
2	youth	high	no	excellent	C_2 : no
3	middle-aged	high	no	fair	C_1 : yes
4	senior	medium	no	fair	C_1 : yes
5	senior	low	yes	fair	C_1 : yes
6	senior	low	yes	excellent	C_2 : no
7	middle-aged	low	yes	excellent	C_1 : yes
8	youth	medium	no	fair	C_2 : no
9	youth	low	yes	fair	C_1 : yes
10	senior	medium	yes	fair	C_1 : yes
11	youth	medium	yes	excellent	C_1 : yes
12	middle-aged	medium	no	excellent	C_1 : yes
13	middle-aged	high	yes	fair	C_1 : yes
14	senior	medium	no	excellent	C_2 : no

Soit le fichier ci-dessus possédant une variable de classe BUY, et découpé en 2 sous-ensembles: D_1 et D_2 . D_1 contient les 10 premiers objets, et D_2 contient les 4 derniers (11 à 14).

D₁ sera l'ensemble d'apprentissage et D₂ sera l'ensemble de validation.

1- 2- 3- 4- 5-	Traduire D_2 au format 'arff' de WEKA; Combien y a-t-il d'attributs pertinents permettant de caractériser la classe BUY; L'ensemble D_2 va être utilisé pour tester le modèle M_1 du k-plus proche voisin Déterminer la classe des 4 objets de D_2 ; Donner la matrice de confusion de M_1 sur D_2 ; A partir de cette matrice de confusion, et après avoir <u>rappelé la formule de calcul</u> :	1 pt 0,5 pt : k-PPV. 3 pts 0,5 pt			
5-	a. Calculer le taux d'erreur apparente de M ₁ ;	1 pt			
	b. Calculer la précision de la classe C ₁ ='yes';	1 pt			
	c. Calculer le rappel de la classe C ₂ ='no';	1 pt			
	d. Calculer la sensibilité de la classe C ₁ ='yes';	1 pt			
	e. Calculer la spécificité de la classe C ₂ ='no';	1 pt			
	f. Calculer le taux de faux positifs de la classe C ₁ ='yes';	1 pt			
	g. Calculer le taux de vrais positifs de la classe C ₂ ='no';	1 pt			
	h. Calculer la précision de M ₁ ;	1 pt			
	i. Calculer le rappel de M ₁ ;	1 pt			
6-	6- On souhaite construire le modèle M ₂ d'arbre de décision en utilisant <i>l'indice d'erreur en classification</i> (voir annexe).				
	a. Construire l'arbre de décision M ₂ sur l'ensemble d'apprentissage D ₁ ;	3 pts			
	b. Donner sa matrice de confusion sur D ₂ ;	1 pt			
7-	Comment peut-on comparer les 2 modèles M_1 et M_2 ;	2 pts			
8-	Bonus : Proposer un algorithme de comparaison.	1 pt			

16/03/16

ANNEXES

La précision pour une classe donnée mesure le taux d'exemples corrects parmi les exemples prédits dans cette classe.

Le *rappel* mesure le taux d'exemples corrects parmi les exemples de la classe.

Le taux de *faux positifs* d'une classe mesure le nombre d'objets positifs parmi ceux n'appartenant pas à la classe.

Le taux de *vrais positifs* d'une classe mesure le nombre d'objets positifs parmi les vrais objets de la classe.

Le taux de *faux négatifs* d'une classe mesure le nombre d'objets négatifs parmi ceux appartenant à la classe.

Le taux de vrais négatifs d'une classe mesure le nombre d'objets négatifs parmi ceux n'appartenant pas à la classe.

La sensibilité est la probabilité qu'un test soit positif si l'objet appartient à la classe.

La *spécificité* est la probabilité qu'un test soit négatif si l'objet n'appartient pas à la classe.

Arbres de décision

p(j / t) est la fréquence relative de la classe j au nœud t.

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^2$$

Indice de Gini pour le nœud t :

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

Indice de Gini pour l'attribut split :

Gain d'information avec l'indice de Gini pour l'attribut split: Gain_{split} = Gini(r) – Gini_{split} Le nœud parent **r** a n objets, et est divisé en k partitions. La partition i possède n_i objets.

$$Entropy(t) = -\sum_{j} p(j \mid t) \log p(j \mid t)$$

Entropie du nœud t:

$$GAIN_{_{split}} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_{_{i}}}{n} Entropy(i)\right)$$

Gain d'information avec l'entropie pour l'attribut *split*:

Le nœud parent **p** a n objets, et est partitionné en k partitions. La partition i possède n_i objets.

Indice d'Erreur en classification au nœud t :
$$Error(t) = 1 - \max_{i} P(i \mid t)$$

Gain d'information avec l'indice d'erreur en classification : $Gain_{split} = Error(r) - Error_{split}$ Le nœud parent \mathbf{r} a n objets, et est partitionné en k partitions. La partition i possède n_i objets.

k-PPV: Proximité (Similarité, Dissimilarité), Distances

- Attribute Dissimilarity Similarity Туре if p = q0 if p = qNominal 1 0 if $p \neq q$ if $p \neq q$ Ordinal (values mapped to integers 0 to n-1, where n is the number of values) Interval or Ratio d = |p - q|
- Common situation is that objects, p and q, have only binary attributes
- Compute similarities using the following quantities M₀₁ = the number of attributes where p was 0 and q was 1 M₁₀ = the number of attributes where p was 1 and q was 0 M₀₀ = the number of attributes where p was 0 and q was 0 M₁₁ = the number of attributes where p was 1 and q was 1
- Simple Matching and Jaccard Coefficients
 SMC = number of matches / number of attributes
 = (M₁₁ + M₀₀) / (M₀₁ + M₁₀ + M₁₁ + M₀₀)
 - J = number of 11 matches / number of not-both-zero attributes values = $(M_{11})/(M_{01} + M_{10} + M_{11})$

$$dist = \left(\sum_{k=1}^{n} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Distance de Minkowski:

où r est un paramètre, n est le nombre de dimensions (attributs) et p_k et q_k sont, respectivement, les $k^{\text{èmes}}$ attributs (composants) des objets p et q.

r = 1: City block (Manhattan, taxicab, L_1 norm) distance. Aussi appelée distance de Hamming pour vecteurs binaires.

r = 2: Distance euclidienne

16/03/16