Построение эмбеддингов крымскотатарских слов: корпус, модели, валидация

Пеганов Никита

июнь 2025

Аннотация

В работе описан процесс построения корпуса текстов на крымскотатарском языке, очистки, лемматизации и создания семантических эмбеддингов (CBOW и SVD). Ключевая особенность — подробная валидация каждого шага с носителями языка с целью минимизации шума и смешанных слов. Отдельное внимание уделено успешному применению локальной LLM DeepSeek для фильтрации лексики. Ссылка на репозиторий: https://github.com/NikPeg/qt-embeddings

1 Введение

Обработка текстов на языках с низкими ресурсами (например, крымскотатарском) сталкивается с отсутствием инструментов, нечистыми корпусами, смешанным письмом и нехваткой лингвистических ресурсов. Семантические эмбеддинги для такого языка крайне важны: они позволяют автоматизировать задачи классификации, морфоанализа, машинного перевода, а также лингвистических исследований языков народов России.

Особенность нашего проекта — на каждом этапе обработки данные проверялись носителями крымскотатарского языка, чтобы исключить шум, ошибки, заимствования и обеспечить чистоту корпуса. Мы также применили современные нейросетевые инструменты (LLM DeepSeek) — и их результаты дополнительно валидировались носителями.

В перспективе планируется существенно увеличить корпус за счёт автоматического сбора (краулинга) с большего числа сайтов и ресурсов.

1.1 Команда

Пеганов Никита — единственный участник команды, выполнил сбор, обработку данных, построение моделей и написание отчёта. Все этапы предварительно консультировались с носителями языка.

2 Связанные работы

Классические эмбеддинги (Word2Vec CBOW, Skip-Gram [?], FastText [?]) хорошо работают для ресурсных языков, но не применяются напрямую к крымскотатарскому из-за морфологических и орфографических особенностей, шума и смешения с другими языками.

Турецкий лемматизатор Zeyrek [?] был протестирован, но показал низкое качество — высокая доля ошибок из-за различий крымскотатарского и турецкого. Применение локальных LLM (например, DeepSeek [?]) с несколькими вариациями промпта дало высокую точность фильтрации лексики, но требует обязательной ручной валидации носителем.

3 Описание модели

Конвейер обработки представлен на рис. 1 и включает следующие этапы:

- **1. Сбор данных:** Открытые крымскотатарские тексты из интернета, книг, СМИ.
- **2.** Очистка и токенизация: Удаление мета-текста, нормализация орфографии и пунктуации, фильтрация русских/турецких и других фрагментов, разбиение на предложения и токены.
- **3. Лемматизация:** Собственный гибридный лемматизатор: словарь + эвристики для морфологии, сравнение с турецким и LLM-инструментами, ручное подтверждение чистоты.
- **4. Минимизация шума:** На каждом этапе результаты сверялись с носителями языка это многократно уменьшило количество "мусорных"и лишних слов.
- **5.** Применение LLM (DeepSeek): Был развёрнут локальный LLM DeepSeek-R1-Distill-Qwen-32B, к которой применялись различные промпты для определения, является ли слово крымскотатарским. Классификация неоднозначных лексем проводилась с несколькими проходами; итоговые списки подтверждал носитель.
- 6. Построение эмбеддингов: Тренировка эмбеддингов CBOW (gensim), дополнительно SVD по матрице совместных появлений.

4 Корпус данных

Датасет для обучения был собран на основе открытых источников: крымскотатарских сайтов, электронных книг, газет и архивов СМИ. Детализированная статистика по количеству документов, предложений и токенов приведена в таблице 1.

Для автоматизации сбора был разработан и использован отдельный пакет краулеров, исходный код которого доступен по ссылке: https://github. com/NikPeg/qirimtatar-embedding-crawlers. С помощью этого инструмента были загружены и предобработаны данные из различных интернет-источников — от литературы до современных публикаций. Краулеры поддерживают не

Рис. 1: Схема обработки корпуса и построения эмбеддингов.

только парсинг html-страниц, но и обработку документов в форматах DOC, PDF, а также распознавание текстов с изображений при помощи Tesseract OCR. Особое внимание уделялось корректному определению крымскотатарского языка (через Яндекс API) и фильтрации нерелевантных материалов (например, обучение, материалы на русском языке и пр.).

Парсер содержит многопоточные модули для быстрой выгрузки архивов, систему удаления нежелательных водяных знаков (Aspose), а также полноценный конвертер изображений и PDF в текстовый формат с учётом особенностей обработки крымскотатарского письма.

Процесс сбора и предобработки включал:

- автоматизированный сбор текстов с различных источников (сайты, гугл-документы, архивы и пр.);
- извлечение текста из PDF, DOC и изображений (OCR);
- фильтрацию языковых артефактов и удаление мусорных файлов;
- определение языка каждого фрагмента с помощью Яндекс АРІ;

• удаление учебных текстов и материалов на других языках на основе стоп-слов и ручной проверки.

Итоговые наборы документов (более 10 ГБ в сжатом виде) доступны для скачивания по ссылкам, приведённым в README краулер-репозитория (Яндекс.Диск, HTTP, FTP по запросу).

Очищаются:

- Русские, турецкие и любые не-qt-фрагменты
- Нормализация орфографии, пунктуации
- Разметка предложений, токенизация
- Лемматизация и фильтрация всё валидировано носителями языка

Обработано $\sim \! \! 309$ тыс. предложений и более 3 млн токенов, извлечено 8245 лемм.

	Значение
Файлов	123
Предложений	309,334
Токенов	3,157,286
Лемм	8,245
Оценка OoV	<5% (после очистки)

Таблица 1: Статистика корпуса крымскотатарских текстов. После финальной фильтрации доля "мусора"минимальна.

Будущая работа: в перспективе планируется существенное увеличение корпуса за счёт автоматического сбора текстов с сайтов и форумов.

5 Эксперименты

5.1 Метрики

Для оценки применялись:

- Доля корректно лемматизированных и распознанных токенов (по оценке носителей)
- Семантическая связность соседей в эмбеддингах (ручная проверка)
- Сравнение OoV после разных фильтров: Zeyrek, DeepSeek и примитивный baseline

5.2 Экспериментальная настройка

Проводилось:

- Сравнение разных подходов к лемматизации/фильтрации: свой, Zeyrek, DeepSeek
- Тренировка CBOW-эмбеддингов (50 эпох, размер вектора 100, окно 5, мин. частота 3), SVD-эмбеддингов (100 компонент)
- Весь результат этапов валидировался носителями языка особое внимание к самым частотным словам

5.3 Бейслайны

Использовались:

- Примитивная лемматизация и фильтрация
- Турецкий лемматизатор Zeyrek
- LLM DeepSeek для языковой фильтрации
- Случайный/частотный baseline для анализа ошибок

6 Результаты

Чистота корпуса: Валидация на всех этапах сильно снизила шум и количество не-крымскотатарских слов. Правила+словари дали покрытие 25.5% по леммам, Zeyrek — только 2.8%. Осталось ≈14 тыс. нерспознанных токенов (vs 27 тыс. у Zeyrek).

Собственный лемматизатор: В процессе построения корпуса был разработан специализированный лемматизатор, основанный на расширенной версии турецкого лемматизатора Zeyrek с добавлением крымскотатарских словарей, правил и морфологических шаблонов. Данная система показала значительно лучшие результаты по сравнению с турецкой версией и может быть использована как самостоятельный инструмент для обработки текстов на крымскотатарском языке в будущих исследовательских и прикладных залачах.

LLM-фильтрация: Локальный DeepSeek с несколькими итерациями промпта показал отличную точность в фильтрации не-qt-лексики; все сомнительные случаи рассматривались с носителем.

Эмбеддинги: CBOW и SVD хорошо группируют семантически близкие слова (см. табл. 2).

Качественный вывод: Семантика сохраняется: например, соседи слова "халкъ" (народ) — слова о сообществе, у "агъыз" (рот) — части тела и речь.

Запрос	Ближайшие соседи
халкъ (народ)	adam (человек), adalarında (на их островах), arki (задний), aile (семья)
агъыз (рот)	тил (язык), дис (зуб), оз (губа), су (вода), соёк (кость)
уй (дом)	кирешик (вход), бакъча (сад), къапу (ворота), терезе (окно)
къыз (девочка)	эркек (мальчик), анай (мать), бала (ребёнок), апа (сестра)
джан (душа)	юрегь (сердце), севги (любовь), гюль (цветок), энгель (препятствие)
мектеп (школа)	утучы (учитель), дашлар (камни; в контексте "одноклассники"), дарсы (урок)
булмакъ (быть)	олмакъ (становиться), башлашмакъ (начинать), керек (нужно), бармакъ (идти)
анай (мать)	ата (отец), бала (ребёнок), апа (сестра), ахыр (конец), севги (любовь)
яз (лето)	къыш (зима), гюз (осень), бахар (весна), джай (место/лето), ышсыкъ (тепло)
миллет (нация)	халкъ (народ), ватан (родина), дин (вера), тиль (язык), адап (обычай)

Таблица 2: Примеры ближайших соседей для частых слов крымскотатарского языка в эмбеддингах (CBOW). В скобках — русский перевод.

7 Выводы

Построен чистый валидированный корпус крымскотатарских текстов, леммы и эмбеддинги (CBOW, SVD). Все этапы были проверены носителями языка — это позволило значительно сократить шум, уменьшить смешение с другими языками. Локально применён LLM DeepSeek для языкового фильтра с несколькими раундами промпта — и подтверждён носителем как рабочий инструмент.

Корпус, эмбеддинги и лемматизированная лексика пригодны для дальнейших NLP, типологических и лингвистических задач для низкоресурсных языков. В перспективе — расширение корпуса за счёт краулинга, проверка эмбеддингов на реальных downstream-задачах, тиражирование инструментов на другие языки народов России.