

X4 数据手册

目录

1	产	品概述	1
	1.1	产品特性	1
	1.2	应用场景	1
	1.3	安装及尺寸	2
2	规	格参数	2
	2.1	性能参数	2
	2.2	电气参数	3
	2.3	接口定义	3
	2.4	数据通信	4
	2.5	电机控制	4
	2.6	光学特性	4
	2.7	极坐标系定义	5
	2.8	其他参数	5
3	开	发及支持	5
4	修	T.	. 6

1 产品概述

YDLIDAR X4 激光雷达是深圳玩智商科技有限公司(EAI)研发的一款 360 度二维测距产品(以下简称: X4)。本产品基于三角测距原理,并配以相关光学、电学、算法设计,实现高频高精度的距离测量,在测距的同时,机械结构 360 度旋转,不断获取角度信息,从而实现了 360 度扫描测距,输出扫描环境的点云数据。

1.1 产品特性

- ▶ 360 度全方位扫描测距
- ▶ 测距误差小,测距稳定性好,精度高
- ▶ 测距范围广
- ▶ 抗环境光干扰能力强
- ▶ 功耗低,体积小,性能稳定,寿命长
- ▶ 激光功率满足 Class I 级别的激光器安全标准
- ▶ 电机转速可调,扫描频率为 6Hz~12Hz
- ▶ 高速测距,测距频率可达 5KHz

1.2 应用场景

- ▶ 机器人导航及避障
- ▶ 机器人 ROS 教学、研究
- ▶ 区域安防
- ▶ 环境扫描及 3D 重建
- ▶ 家用服务机器人/扫地机器人的导航及避障

1.3 安装及尺寸

图 1 YDLIDAR X4 安装及机械尺寸

2 规格参数

2.1 性能参数

表 1 YDLIDAR X4 性能参数

项目	最小值	典型值	最大值	单位	备注
测距频率	/	5000	/	Hz	每秒测距 5000 次
扫描频率	6	/	12	Hz	PWM 或电压调速
测距范围	0.12	/	10	m	室内环境,80%反射率 物体
扫描角度	/	0-360	/	Deg	/
绝对误差	/	2	/	cm	测距≤1m时
相对误差	/	3.5%	/	/	1m<测距≤6m 时
俯仰角	0. 25	1	1. 75	Deg	/
角度分辨率	0.43 (6Hz)	0.50 (7Hz)	0.86 (12Hz)	Deg	不同扫描频率

注1: 为工厂FQC标准值, 80%反射率材质物体。

注 2: 相对误差(均值)表征雷达测量的准确度,相对误差(均值)=(平均测量距离-实际距离)/实际 距离*100%,样本数量: 100pcs。

注 3: 激光雷达是精密设备,在使用过程中需要注意防护,在高低温或者强烈振动的使用场景中,相对误差的参数指标会相对更大一些,有可能会超过典型值。

2.2 电气参数

表 2 YDLIDAR X4 电气参数

项目	最小值	典型值	最大值	单位	备注
供电电压	4.8	5	5. 2	V	过高会损坏设备 过低影响性能甚至无法测距
供电电流	1000	/	/	mA	给雷达供电的电源需要满足的 驱动能力
工作电流	/	350	500	mA	系统工作,电机旋转 转速 7Hz

2.3 接口定义

X4 对外提供了 PH2. 0-8P 母座接口,该接口有系统供电、数据通信和电机控制的功能接口。

图 2 YDLIDAR X4 物理接口

表 3 YDLIDAR X4 接口定义说明

管脚	类型	描述	默认值	范围	备注
VCC	供电	供电电压正极	5V	4. 8V-5. 2V	/
Tx	输出	系统串口输出	/	/	数据流: 雷达→外设
Rx	输入	系统串口输入	/	/	数据流:外设→雷达
GND	供电	供电电压负极	OV	OV	/
M_EN	输入	电机使能控制端	3. 3V	0V-3.3V	高电平使能
DEV_EN	输入	测距使能控制端	3. 3V	0V-3.3V	高电平使能
M_SCTR	输入	电机转速控制端	1.8V	0V-3.3V	电压调速或 PWM 调速
NC	/	预留管脚	/	/	/

2.4 数据通信

X4 采用 3. 3V 电平的串口(UART)进行通信,用户可通过产品上的物理接口,连接外部系统和本产品,并按照系统的通信协议进行通讯来实时获取扫描的点云数据、设备信息、设备状态,并可设置设备工作模式等。其通信参数如下表:

表 4 YDLIDAR X4 串口规格

项目	最小值	典型值	最大值	单位	备注
波特率	/	128000	/	bps	8 位数据位,1 位停止位,无 校验
信号高电平	2.4	3. 3	3. 5	V	/
信号低电平	0	0	0.6	V	/

2.5 电机控制

X4 自带电机调速功能的电机驱动器,外设可通过接口中的 M_EN 和 M_SCTR 两个管脚输入控制信号来对 X4 的电机进行控制。M_EN 为电机的使能信号,高电平使能; M_SCTR 为电机速度控制信号,可电压调速,也可以 PWM 波调试,电压越低/PWM 占空比越小,电机转速越高,0V/占空比为 0% 时速度最大。

如: M EN 为高电平, M SCTR 输入电压为 OV, 电机以最高转速旋转。

其中,对M_SCTR的PWM信号有如下要求:

表 5 YDLIDAR X4 电机 PWM 信号规格

项目	最小值	典型值	最大值	单位	备注
PWM 频率	/	10	/	KHz	PWM 为方波信号
占空比范围	50%	85%	100%	/	占空比越小转速越快

2.6 光学特性

X4 采用的红外点状脉冲式激光器,满足 FDA Class I 激光安全标准。在系统工作时,激光器和光学镜头来完成激光信号的发射和接收,以此实现高频测距。为确保系统测距的性能,请确保 X4 的激光器和光学镜头保持洁净。激光器光学参数如下:

表 6 YDLIDAR X4 激光器光学参数

项目	最小值	典型值	最大值	単位	备注
激光器波长	775	793	800	nm	红外波段
FDA			A Class	I	

2.7 极坐标系定义

为了方便二次开发,X4 内部定义了极坐标系。系统极坐标以 X4 的旋转核心的中心为极点,规定角度顺时针为正,零位角位于 X4 电机 的正前方,由于雷达个体差异,会有±3°的偏差,如图所示:

图 3 YDLIDAR X4 极坐标系定义

2.8 其他参数

项目	最小值	典型值	最大值	单位	备注
工作温度	0	20	40	${\mathbb C}$	无凝露
存储温度	-10	/	60	$^{\circ}$	带包装
光照环境	0	550	2000	Lux	仅作参考
重量	/	180	/	g	裸机重量

表 7 YDLIDAR X4 其他参数

3 开发及支持

X4 提供了丰富的硬件和软件接口,可以实现对系统的电机使能控制、转速控制,测距核心的使能控制和输出控制。在此基础上,用户可以实现对 X4 的功耗控制和扫描控制。同时,还开放了产品的 3D 模型,并为用户提供了 windows 下的图形调试客户端、以及相应的 SDK 开发包和 Ros 开发包,用户可从官方网站下载

http://www.ydlidar.cn/cn.

为了方便用户开发,还提供了 X4 的开发手册、SDK 开发手册和 Ros 使用手册,请一并于**官网**下载。

4 修订

日期	版本	修订内容
2018-06-20	1.0	初撰
2021-11-15	1.1	修正更新电气参数,串口规格;增加俯仰角