Regression and Classification Basics Análisis de datos y su interpretación Master en Big Data y Data Science

José R. Dorronsoro Dpto. de Ingeniería Informática, Escuela Politécnica Superior Universidad Autónoma de Madrid 28049 Madrid, Spain

Antes de empezar ...

- Contenido
 - 1 Introducción al aprendizaje automático
 - 2 Preprocesado de datos
 - 3 Clustering
 - A Redes Neuronales
 - 5 Máquinas de vectores soporte
 - 6 Conjuntos de clasificadores y árboles de decisión
 - Oeep Learning
- Evaluación:
 - Asistencia a clase: 10%
 - Evaluación continua: 50%
 - Examen final: 40%

Outline

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- Basic Classification
 The Classification Model
 Nearest Neighbor Classification
- 6 Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

Modeling Basics

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- 6 Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

What Is Machine Learning (ML)?

- · Lofty definition: make machines learn!!!
 - Have to make "machines" and "learn" more precise
- The machines of ML: mathematical input—output processes that lend themselves to some form of (numerical) parameterization
- The learning process: adjust the machine's parameters until a goal is reached
- New thing: "goal"?
 - · At first sight, get something done
 - Ultimately, to minimize some error measure
- Summing things up: a ML process tries to find a concrete mathematical/algorithmic input—output parameterized transformation that minimizes an error measure by iteratively adjusting the transformation's parameters

Where Lies ML?

- In the middle of a possibly long process chain
- Before ML starts we must
 - Go from raw to organized data: accessing, gathering, cleaning, formatting, ...
 - Go from organized to (potentially) informative data: extracting basic and derived features
- After ML finishes we must perform
 - Outcome evaluation: how good/actionable it is
 - Outcome exploitation: collect, organize, act
 - Individual model maintenance: monitor performance, tune hyper-parameters
 - Modeling life cycle maintenance: discard old models, introduce new ones and communicate our work/results
- ML is in the middle of the global process chain but also in the middle of some subchains

Supervised/Unsupervised Models

- Model types: supervised, unsupervised
- Supervised models:
 - Targets y^p are known and the model tries to predict or estimate them
 - These known targets guide, or supervise, model building
 - · Main emphasis here
- Unsupervised models:
 - There are no predetermined or supervising outputs
 - But nevertheless the model is supposed to learn relations or find structure in the data
 - Sometimes as a first step towards a supervised model

Regression and Classification

- Problems (usually) to be solved by models: regression, classification
- Patterns come in pairs (x, y)
 - x: inputs, predictors, features, independent variables
 - y: target, response, dependent variable; numerical in regression, class labels in classification
- **Regression**: the desired output y is regressed into the inputs x to derive a model $\hat{y} = f(x)$
 - We want $y \simeq \widehat{y}$ so having $y \widehat{y}$ "small" is the natural goal
- Classification: inputs are derived from several classes C_1, \ldots, C_K , to which labels ℓ_k are assigned
 - The model now assigns a label $\ell(x)$ to an input x
 - If x is derived from C_k we want to have $\ell(x) = \ell_k$
 - Here having $\ell(x) \ell_k$ "small" may not make sense

The Boston Housing Problem

- This is a first "toy" problem
- We want to estimate the median of house values over an area from some information about it which we believe relevant
- Features x: several real estate—related variables of Boston areas
 - CRIM: per capita crime rate by town
 - RM: average number of rooms per dwelling
 - NOX: nitric oxides concentration (parts per 10 million)
 - AGE: proportion of owner-occupied units built prior to 1940
 - LSTAT: % lower status of the population
 - ...
- Target y: MEDV, median value of owner-occupied homes in \$1,000's

Wind Energy Forecasting

- This is a second, real regression problem
- We want to estimate the hourly energy production of a wind farm from NWP variables which we believe relevant
- The **features** are the NWP variables
 - U, V surface wind components
 - U, V 100-meter wind components
 - Temperature
 - Pressure
 - ...
- The target is the energy produced during the outgoing hour

The ML Cycle in Wind Energy

- Raw data: historic wind energy production data plus NWP files from weather forecasters
 - · Possibly huge files with special formats
 - We have to extract the relevant NWP information, organize them in a suitable way and pair it with the energy data
- The ML core: whatever set of (non-linear) regression algorithm which you may think useful
- After ML is finished
 - · Collect, organize and save the different model outputs
 - Select one single model output or some combination (more ML) of them as your system's output
 - Compute uncertainty estimates
 - · Combine your outputs with someone's else
 - And keep up the entire process

How to Build Regression Models

- In general we have a sample $S = \{x^p, y^p\}$, $1 \le p \le N$, with x^p the **features** and y^p the **targets**
- We want to build a model $\hat{y} = f(x)$ so that $\hat{y}^p = f(x^p) \simeq y^p$; i.e., we want to **regress** y to the x
- ullet The concrete f is chosen within a certain family ${\cal F}$
 - Examples here: linear regression, multilayer perceptrons (MLPs), SVMs
 - And also: Random Forests (RF), Gradient Boosting (GB), nearest neighbor (NN)
- Natural option to ensure $f(x^p) \simeq y^p$: choose f to minimize the sample mean square error (MSE)

$$\widehat{e}(f) = \widehat{e}_{S}(f) = \frac{1}{2N} \sum_{p=1}^{N} (y^{p} - f(x^{p}))^{2}$$

• Thus, the model we select is $\widehat{f} = \widehat{f}_S = \arg\min_{f \in \mathcal{F}} \widehat{e}_S(f)$

Model Parameterization

- Usually individual models are selected through (ideally optimal) parameter sets
 - The parameters (weights) $W \in R^M$ select a concrete f in \mathcal{F}
- Parametric models have a fixed functional form f(x) = f(x; W)
- Simplest example: linear regression, where M = d and $W = (w_0, w)$

$$f(x; w_0, w) = w_0 + \sum_{j=1}^d w_j x_j = w_0 + w \cdot x$$

- **Semi-parametric** models also use weights but without a predefined functional form; MLPs but also RF or GBR
- Non parametric models do not use weights nor follow any broad functional form; NN models

Model Estimation as Error Minimization

- For a parametric or semiparametric f(x; W) we can write $\widehat{e}_S(f) = \widehat{e}_S(W)$
- The problem to solve becomes

$$\widehat{W}^* = \widehat{W}_{\mathcal{S}}^* = \arg\min_{W} \widehat{e}_{\mathcal{S}} (f(\cdot; W)), \ \text{i.e., } \widehat{e}_{\mathcal{S}} (\widehat{W}^*) \leq \widehat{e}_{\mathcal{S}} (W) \ \forall W$$

• In linear regression

$$\widehat{e}(w_0, w) = \frac{1}{2N} \sum_{p} (y^p - w_0 - w \cdot x^p)^2$$

which ends up in a simple quadratic form

- The regression problem reduces to **minimize** $\widehat{e}_S(W)$
 - Something in principle well understood in mathematical optimization

Regression Basics

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- **6** Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

Regression Assumptions

- **Key assumption**: x and y are related as $y = \phi(x) + n$ where
 - $\phi(x)$ is the **true** underlying function
 - *n* is additive noise with 0 mean and finite variance σ_N^2
- Our sample is just a particular instance of a deeper sample generation process
- Thus x, n are produced by random variables X, N
 - And so is y, given by $Y = \phi(X) + N$
- Moreover, X and N are **independent distributions** with densities q(x), $\nu(n)$
- Thus, X and Y (or X and N) have a joint density

$$p(x, y) = p(x, \phi(x) + n) = q(x) \nu(n) = q(x) \nu(y - \phi(x))$$

The Best Regression Model

• It is easy to see that the best f is simply $f(x) = E_{\nu}[y|x]$, for

$$E_{y}[y|x] = E_{n}[\phi(x) + n] = \int (\phi(x) + n) \nu(n) dn = \phi(x)$$

- Have we finished? In theory yes; in practice, not at all!!!
 - ullet We do not know u and, thus, cannot compute the required integrals
 - If for any x we would have M values y^j , we could try $\widehat{\phi}(x) = \frac{1}{M} \sum_{1}^{M} y^j$
 - But this doesn't happen either
- So we forget about using E[y|x] and get back to get an approximation $f \simeq \phi$ from the sample

Linear Models

• Assuming $x \in R^d$, the basic linear model is

$$f(x) = w_0 + \sum_{1}^{d} w_i x_i = w_0 + w \cdot x$$

- w_0 complicates notation; to drop it we center x and y so that $E[x_i] = E[y] = 0$; then $w_0 = 0$
- Then we are left with the simpler homogeneous model $f(x) = w \cdot x$
- In practice we will always normalize x, for instance to have 0 mean and 1 standard deviation (std) on each feature
 - But not y if we may help it
- But: how do we find w?

1-dimensional Linear Regression (LR)

- Assume that features X and target Y are centered, i.e., have 0
 means
- For 1-dimensional patterns x the LR model then becomes

$$f(x) = w \cdot x$$

• And the error is then the function e(w)

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p=1}^{N} (w \cdot x^p - y^p)^2 = \frac{1}{2N} \sum_{p} (\delta^p)^2$$

- The problem has obviously a minimum w*
- To find it we just solve $\hat{e}'(w) = 0$

Solving
$$\hat{e}'(w) = 0$$

• To compute $\hat{e}'(w)$ we have

$$\hat{e}'(w) = \frac{1}{2N} \sum_{p} x^{p} \delta^{p} = \frac{1}{2N} \sum_{p} (w(x^{p})^{2} - x^{p} y^{p})$$
$$= w \left(\frac{1}{2N} \sum_{p} (x^{p})^{2} \right) - \frac{1}{2N} \sum_{p} x^{p} y^{p}$$

• The optimal w^* solves $\widehat{e}'(w) = 0$ and is given by

$$w^* = \frac{\frac{1}{2N} \sum_{\rho} x^{\rho} y^{\rho}}{\frac{1}{2N} \sum_{\rho} (x^{\rho})^2} = \frac{\frac{1}{2N} X \cdot Y}{\frac{1}{2N} X \cdot X} = \frac{\frac{1}{N} X \cdot Y}{\text{var}(x)}$$

where X and Y denote the N dimensional vectors $(x^1, \ldots, x^N)^t$, $(y^1, \ldots, y^N)^t$

General Linear Regression

- Assume again that X and Y are centered
- The LR model becomes now $f(x) = \sum_{i=1}^{d} w_i x_i = w \cdot x$
- If Y is the N × 1 target vector and we organize the sample S in a N × d data matrix X, the sample mse is given by

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p} (w \cdot x^{p} - y^{p})^{2} = \frac{1}{2N} (Xw - Y)^{t} (Xw - Y)$$
$$= \frac{1}{2N} (w^{t} X^{t} Xw - 2w^{t} X^{t} Y + Y^{t} Y)$$

- Now we have to solve $\nabla \widehat{e}(w) = 0$, i.e., $\frac{\partial \widehat{e}}{\partial w}(w) = 0$
- It is easy to see that

$$\nabla \widehat{e}(w) = \frac{1}{N} X^t X w - \frac{1}{N} X^t Y = \widehat{R} w - \widehat{b}$$

Solving the Linear Equations

• The optimal \widehat{w}^* must verify $\nabla \widehat{e}(\widehat{w}) = \widehat{R} \ \widehat{w} - \widehat{b} = 0$, where

$$\widehat{R} = \frac{1}{N} X^t X, \ \widehat{b} = \frac{1}{N} X^t Y$$

Over the original, non-centered data matrix we have

$$\widehat{R} = \frac{1}{N}(X - \overline{X})^t(X - \overline{X});$$

i.e., \widehat{R} is the sample covariance matrix

- If \widehat{R} is invertible, we just solve the linear system \widehat{R} $\widehat{w} \widehat{b} = 0$
- And obtain the sample-dependent optimal \widehat{w}^* as

$$\widehat{w}^* = \widehat{R}^{-1}\widehat{b} = \left(X^t X\right)^{-1} X^t Y$$

Finding Optimal Models

- For general regression models it may not possible to solve analytically the equation $\nabla \hat{e}(W) = 0$
 - For LR and big data, covariance matrices over large datasets or dimensions may not be computed
 - Numerical methods are needed
- The simplest numerical alternative is gradient descent:
 - Starting from some random W^0 we iteratively compute

$$W^{k+1} = W^k - \rho_k \nabla \widehat{e}(W^k) = W^k - \frac{\rho}{N} \left(X^t X W^k - X^t Y \right)$$

- Component wise: $w_i^{k+1} = w_i^k \rho_k \frac{\partial \hat{e}}{\partial w_i}(W^k)$
- ρ_k is the **learning rate**
- If $W^k o W^*$, then $\nabla \widehat{e}(W^*) = 0$
 - Since our problems have obviously minima, this should be enough

Measuring Model Fit

- First option: **Root Square Error** $RSE = \sqrt{\frac{1}{N} \sum (y^p \widehat{y}^p)^2} = \sqrt{\frac{1}{N} RSS}$
- OK, but how good is this? We must always have a base model to benchmark our results
- Simplest "model": the mean $\overline{y} = \frac{1}{N} \sum_{1}^{N} y^{p}$, with square error

$$\frac{1}{N}\sum (y^p - \overline{y})^2 = \frac{1}{N}TSS = Var(y)$$

We can compare our model against our base computing

$$\frac{RSE^2}{Var(y)} = \frac{\sum (y^p - \widehat{y}^p)^2}{\sum (y^p - \overline{y})^2} = \frac{RSS}{TSS}$$

• The widely used R^2 coefficient is simply $R^2=1-\frac{RSS}{TSS}$

Regularization

- Our regression solution $\widehat{w}^* = (X^t X)^{-1} X^t Y$ won't work if $X^t X$ is not invertible
 - For instance, when some features are correlated
- We could fix this working instead with $X^tX + \alpha I$ for some $\alpha > 0$
- To make this practical, note that $\widehat{w}^* = (X^t X + \alpha I)^{-1} X^t Y$ minimizes

$$e_R(w) = \frac{1}{2N} \sum_{p} (y^p - w \cdot x_p^p)^2 + \frac{\alpha}{2} ||w||^2,$$

- This is the Ridge Regression problem
 - Our first example of regularization, a key technique in Machine Learning
 - · All ML models must be regularized in some way
- Important issue: how to find the right choice for α ?

Takeaways on Linear Regression

- We introduced supervised models
- We have reviewed the essentials of the linear regression model (always the first thing to try)
- We have considered model estimation as a problem on error minimization
- 4 We have seen how to build linear models analytically and numerically
- 5 We have defined how to measure model fit
- 6 We have introduced regularization

Bias, Variance and Cross Validation

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- **6** Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

Sample Dependence

- Important: everything is sample dependent for if we change S we get a different model
- We get sample–dependent weights $\widehat{W} = \widehat{W}_S$ and model $\widehat{f}_S(x) = \widehat{f}(x; \widehat{W}_S)$
- We must control their dependence on the concrete S sample used to build it
- Moreover, we must apply our model on new, unseen samples
- We must have a sample generating procedure that ideally gives homogeneous samples and a robust model building methodology
- Both together should (reasonably) guarantee that, for two S, S',

$$\widehat{f}_S(x) \simeq \widehat{f}_{S'}(x)$$

Sample Bias and Variance

• With several **independent** samples S_1, \ldots, S_M , it is natural to use as our best final model the averages of the $\widehat{f}_{S_m}(x)$ models, i.e.,

$$\frac{1}{M}\sum_{1}^{M}\widehat{f}_{S_m}(x)\simeq E_{S}[\widehat{f}_{S}(x)]=\widehat{f}_{N}(x)$$

- The expectation $E_S[\widehat{f_S}(x)]$ is taken over all possible samples S of size N
- $E_S[\hat{f}_S(x)]$ is our ideally best model
- The **variance** of the $\widehat{f}_S(x)$ estimates is then

$$V_N(x) = E_S \left[(\widehat{f}_S(x) - \widehat{f}_N(x))^2 \right]$$

Bias Versus Variance

Ideally we would like to have a model such that

$$\widehat{f}_N(x) - \phi(x) \simeq 0,$$

i.e., a model with small bias

- This should be achievable with rich, highly flexible models
- Or with essentially no regularization
- But we would also like to have a model such that

$$V_N(x) \simeq 0$$
,

i.e., a model with small **variance** $V_N(x)$

- This should be achievable with simple models with few parameters
- Or with more severe regularization
- But obviously both goals are contradictory to a large extent

The Bias-Variance Tradeoff

• There is thus a **tradeoff** between bias (low for complex models) and variance (low for simple models)

Taken from Hastie et al., p. 38

Evaluating Expected Performance

- It is obvious that before we start applying a model, we should have a reasonably accurate idea of its performance in practice
- I.e., we want to estimate the model's generalization performance
- Estimating the generalization performance **only over the sample** *S* **used for training results in misleading error values**
- The preceding suggests to have M independent subsamples S_m and
 - Compute $\widehat{f}_M(x) = \frac{1}{M} \sum_m \widehat{f}_{S_m}(x) \simeq \widehat{f}_N(x)$
 - Get the error estimate $\hat{e} = \frac{1}{N} \sum_{p} (y^{p} \hat{f}_{M}(x^{p}))^{2}$ over a new, **unseen** sample $S' = \{(x^{p}, y^{p})\}$
- But since usually we only have a single S, we apply Cross Validation (CV) to get our first realistic generalization error estimates

Cross Validation

- In Cross Validation (CV) we
 - Randomly split the sample S in M subsets S_1, \ldots, S_M
 - Work with M folds: pairs (S_m, S_m^c) , with

$$S_m^c = S - S_m = \cup_{i \neq m} S_i$$

- Build M different models using the S_m^c as training subsets
- Compute their errors e_m on the folds' validation subsets S_m
- Use these errors' average as a first estimate of the true model performance
- CV can and must be used in any model building procedure
- Most data science packages have tools to simplify this
- We will also use CV to find an **optimal model hyper–parameter** α in Ridge Regression

Grid Hyper-parameter Selection

- Build M folds: pairs (S_m, S_m^c) and use S_m^c as training and S_m as the validation subsets
- Fix a hyper-parameter range [0, A]
 - $\alpha = 0$: no penalty and, thus, small bias and high variance
 - $\alpha = A$: large penalty and, thus, small variance but high bias
- Select an L+1 point **grid**

$$G = \left\{0, \frac{A}{L}, \frac{2A}{L}, \dots, \frac{\ell A}{L}, \dots, \frac{LA}{L} = A\right\}$$

- At each $\alpha_{\ell} = \frac{\ell}{L} A$, $0 \le \ell \le L$
 - Train M models on the S_m^c using the hyper–parameter α_ℓ
 - Average their M validation errors e_m on the S_m to get the error e(α_ℓ)
 at α_ℓ
- Finally choose the (hopefully) optimal hyper–parameter α^* as

$$\alpha^* = \arg\min_{0 < \ell < L} e(\alpha_\ell)$$

Takeaways on Bias, Variance and CV

- We have stressed that any model estimation is sample-dependent and that this has to be controlled
- We have introduced the bias and variance as the two key components of any model error
- 3 We have discussed bias-variance trade-off
- We have introduced Cross Validation here as a tool to estimate a model's generalization performance
- We have also introduced Cross Validation as a tool to estimate a model's hyper-parameters

Data and Model Analysis

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- **6** Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

And So What?

- Key question: what are models for?
 - First answer: to be used to derive new predictions
 - Better answer: to extract knowledge and to make inference on the underlying problem
- In this light, LR models are simple, perhaps not too powerful, but certainly useful
 - They are the first tool to apply in (almost) any problem analysis
- Some questions are easier to answer for them:
 - Which variables do influence the target and which do not?
 - What are the strongest predictive variables?
 - Are there related/redundant variables?
 - Is the relationship actually linear?

Issues with LR

- Before building any model we must perform a prior data analysis to keep under control important issues:
 - Collinearity: predictor variables that are redundant
 - Outliers: points (x^p, y^p) with a "normal" pattern x but an unlikely target value y^p , or viceversa
 - High-leverage points: points (x^ρ, y^ρ) with an unlikely pattern x^ρ and a reasonable target value y^ρ
- And after a model is built we must check if its results agree with its assumptions
 - Linearity of the response–predictor relationships: if not, the LR will be poor
 - No correlation of error terms, i.e. our basic model assumption does hold
 - No heteroscedasticity, i.e., no non-constant variance of error terms, that varies on several x regions

Detecting and Handling Data Issues

- Before any model is built we must try detect possible data inconsistencies and/or redundancies
- · Feature collinearity: look at least at the correlation matrix
- Analyze feature–target scatterplots; if possible, look also at the two–predictor scatterplots (though there are d(d-1)/2 of them)
- Outliers: will cause (x^p, y^p) to be far from the line fit or the residual to be out of range
 - Can detect them with box plots
- High-leverage points: x^p outside the main x range; harder to spot in multidimensional models
- We consider all this over the Boston Housing dataset

Housing: First Conclusions on the Data

- Collinearity: some predictor variables may be redundant
 - AGE–DIS: proportion of units built prior to 1940 and weighted distances to five employment centres
 - RAD-TAX: accessibility to radial highways and full-value property-tax rate
 - NOX-INDUS
- Outliers: points (x^p, y^p) with a normal pattern x but an unlikely target value y^p
 - 777
- High-leverage points (HLPs): perhaps at variables
 - ZN: proportion of residential land zoned for lots over 25,000 sq.ft.
 - CHAS: 1 if tract bounds Charles river; 0 otherwise
 - B: $1000(Bk 0.63)^2$, with Bk the proportion of blacks by town
 - But have to look at HLPs as D-dimensional points and not features

Detecting and Handling Model Issues

- After the model is built we check whether it supports the basic LR assumptions
- Linearity: a residual plot should not have any structure
- Uncorrelated error terms: residuals do not change rather smoothly
- Error histograms should be symmetric and sharp at 0
- Heteroscedasticity: residual plots do not show a "funnel" like structure
- Always address these possible problems: if not, we may be fooling ourselves with an untenable model
- Let's build LR models over the Boston Housing data

Housing: First Conclusions on the Linear Model

- Recall the first things to look at after LR model building:
 - Linearity of the response-predictor relationships?
 - No correlation of residuals?
 - No heteroscedasticity?
- Linearity of the response-predictor relationships: not bad
 - If perfect fit, y and \hat{y} in diagonal; here in near diagonal
- Correlation of residuals only for large targets
 - Perhaps we should think about two separate models
- No heteroscedasticity, i.e., constant variance of residuals
 - No funnel appears in target-residual representation but there is still a bias
- Build a second model?

Takeaways on Data and Model Analysis

- 1 Before any model building we must analyze and understand our data
- 2 We must understand the assumptions our model implies on the data
 - If they aren't true the model won't be very good
- 3 This must be checked after the model is built
- 4 LR models are simple but their assumptions are of interest to any other model
- S LR are the first models to build, to have a benchmark and to better understand the problem and its data
- 6 And
 - Always tune the hyperparameters for our models
 - Always try out many different models
 - Always explore several feature representations for our data

Basic Classification

- Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 6 Basic Classification The Classification Model Nearest Neighbor Classification
- 6 Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

Regression vs Classification

- Recall that in regression we have numerical continuous targets y and want our predictions \hat{y} to be as close to y as possible
 - Given that there are infinitely many such approximations, closeness is a natural quality criterion
- But in classification we have a finite number of labelled targets for which "selection by closeness" doesn't make sense
- Natural alternative: select the most probable label given the pattern x we have just received
 - The concrete labels used for targets do not matter anymore
 - Model learning should thus be "target" agnostic
 - And good probability estimates should be quite useful
- Let's analyze this in an example

A First Problem: Pima Indian Diabetes

- We want to diagnose whether a person may have diabetes from some clinical measures
- Features x: clinical measures

```
'numPregnant'
```

- 'bloodPress'
- 'massIndex'
- 'age' ...
- Target y: 0 (no diabetes), 1 (diabetes)
- Clear goal but perhaps too radical
- Better: try to estimate the probability P(1|x) of having diabetes depending on the features x we measure

Classification Setup

- We have random patterns ω from M classes, $C_1, \ldots C_M$
- Over each pattern we "measure" d features $x = x(\omega) \in \mathbb{R}^d$
 - x inherits the randomness in ω and becomes a random variable
- A ω has a **prior probability** π_m of belonging to C_m
- Inside each class C_m there is a **conditional class density** f(x|m) that "controls" the appearance of a given x
- The π_m and f(x|m) determine the **posterior probability** P(m|x) that x comes from class C_m
- **Intuition:** we should assign x to the class with the largest P(m|x), that is, work with the classifier

$$\delta(x) = \arg\max_{m} P(m|x)$$

Computing Posterior Probabilities I

- Bayes rule: $P(B|A) = \frac{P(A \cap B)}{P(A)}$
- This requires to work with probabilities, not densities: $P(\lbrace x \rbrace) = P(m \cap \lbrace x \rbrace) = 0$ and

$$P(m|x) = \pi_m \frac{P(m \cap \{x\})}{P(\{x\})} = \pi_m \frac{0}{0} = \dots???$$

But we can use the approximation

$$P(m|x) \simeq P(m|B_{r}(x)) = \frac{P(C_{m} \cap B_{r}(x))}{P(B_{r}(x))} = \frac{P(B_{r}(x)|m)P(C_{m})}{P(B_{r}(x))}$$
$$= \frac{\pi_{m}P(B_{r}(x)|m)}{P(B_{r}(x))} = \pi_{m}\frac{\int_{B_{r}(x)}f(y|m)dy}{\int_{B_{r}(x)}f(z)dz}$$

where we assume that features x are measured independently from classes m

Computing Posterior Probabilities II

• Remember the Fundamental Theorem of Calculus: if $F(x) = \int_{a}^{x} f(y)dy$,

$$\lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_{x_0 - \epsilon}^{x_0 + \epsilon} f(y) dy = \frac{dF}{dx}(x_0) = f(x_0)$$

In d dimensions it becomes

$$g(w) = \lim_{r \to 0} \frac{1}{|B_r(w)|} \int_{B_r(w)} g(z) dz$$

• Putting everything toghether, we arrive

$$P(m|x) = \lim_{r \to 0} P(m|B_r(x)) = \pi_m \lim_{r \to 0} \frac{\int_{B_r(x)} f(y|m) dy}{\int_{B_r(x)} f(z) dz}$$
$$= \pi_m \lim_{r \to 0} \frac{\frac{1}{|B_r(x)|} \int_{B_r(x)} f(y|m) dy}{\frac{1}{|B_r(x)|} \int_{B_r(x)} f(z) dz} = \frac{\pi_m f(x|m)}{f(x)}$$

The Obviously Optimal Classifier

ullet Thus, we should decide according to a **classifier** function δ_B

$$\delta_B(x)$$
 = arg max_m $P(m|x)$ = arg max_m $\frac{\pi_m f(x|m)}{f(x)}$
 = arg max_m $\pi_m f(x|m)$

- With some extra work we can show that this **Bayes Classifier** δ_B defines an optimal solution (in some precise sense) of the classification problem
- But ... This doesn't look too practical for we do not know either π_m or (much harder) f(x|m)

Approximating the Bayes Classifier

- To define δ_B we need to know the prior probabilities π_m and the prior densities f(x|m)
- A reasonable choice for π_m is $\widehat{\pi}_m = \frac{N_m}{N}$, where N_m is the number of patterns of C_m in the sample
- But effective multidimensional density estimates are rather difficult, because of the **curse of dimensionality**
 - Densities generalize histograms
 - Good histograms need accurate counts of elements nearby
 - But in high dimensions there won't be nearby elements!!
- Options:
 - Restrict possible density models: logistic regression
 - Assume no model and apply a Nearest Neighbor (NN) strategy

Nearest Neighbor Classification

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 6 Basic Classification The Classification Model Nearest Neighbor Classification
- **6** Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

The *k*–NN Classifier

- Very simple: at any x consider the subset $N_k(x)$ of its k closest sample points and
 - Let $n_m(x)$ the number of elements of class m in $N_k(x)$
 - Notice that $0 \le n_m(x) \le k$
 - Define $\delta_{kNN}(x) = \arg \max_{m} n_m(x)$
- That is, $\delta_{kNN}(x)$ assigns x to the class that has more patterns in $N_k(x)$
- · We can partially justify this definition from a Bayesian point of view
- Assume that $B_r(x)$ is the smallest ball that contains $N_k(x)$ and consider the approximations
 - $|B_r(x)| f(x|m) \simeq \int_{B_r(x)} f(z|m) dz = P(C_m \cap B_r(x)) \simeq \frac{n_m(x)}{N_m}$
 - Similarly, $|B_r(x)| f(x) \simeq \int_{B_r(x)} f(z) dz = P(B_r(x)) \simeq \frac{k}{N}$
 - And $\pi_m \simeq \frac{N_m}{N}$

k-NN and the Bayes Classifier

We then have

$$P(m|x) = \pi_m \frac{f(x|m)}{f(x)} = \pi_m \frac{|B_r(x)| f(x|m)}{|B_r(x)| f(x)}$$
$$\simeq \frac{N_m}{N} \frac{n_m(x)}{N_m} \frac{1}{\frac{k}{N}} = \frac{n_m(x)}{k}$$

• Therefore δ_{kNN} should be close to δ_B , for

$$\delta_{kNN}(x) = \arg \max_{m} n_{m}(x) = \arg \max_{m} \frac{n_{m}(x)}{k}$$

 $\simeq \arg \max_{m} P(m|x)$

By the Way: k-NN Regression

- Sometimes the relation between features x and targets y doesn't justify a strong model $y = \phi(x) + n$
- *k*–NN Regression relies on a reasonable assumption: **Predictors** that are close should give predictions that are also close
- In k-NN Regression we fix a number k of neighbors to be considered and for an input x set

$$\hat{y} = Y_{kNN}(x) = \frac{1}{k} \sum_{x^{p} \in N_{k}(x)} y^{p}$$

where $N_k(x)$ denotes again the k sample points closest to x

• Weighted variants: for instance,

$$Y_k^w(x) = \frac{1}{C_k(x)} \sum_{x^p \in N_k(x)} \frac{1}{\|x^p - x\|} y^p$$

• $C_k(x) = \sum_{x^p \in N_k(x)} \frac{1}{\|x^p - x\|}$ is a normalizing constant

Some *k*–NN Issues

- Q1: How do we choose k? Using CV, of course
- There are no closed form solution and we have to balance again the bias—variance tradeoff
 - Small variance with large k: if k = N, k-NN regression returns the mean
 - Small bias with small k: if k = 1 a very close point should give a very close prediction
 - But also large variance: the nearest point to x in another sample may have a quite different target (or belong to another class)
- Q2: Is k-NN always meaningful?
- We have to modify our first assumption: Predictors that are close should give predictions that are also close, provided that there are enough of them close by
 - In fact, if x is away from the sample, the average over $N_k(x)$ may be meaningless

The Curse of Dimensionality

- This consideration reflects the curse of dimensionality:
 Even for low dimensions and large samples, the sample space is essentially empty
- Thus, for most problems, there never will be enough close points
- As a consequence, to get k observations we may go too far away from x and the average will not be meaningful
- Therefore, unless we deal with violently non-linear problems, a simple model such as linear or logistic regression (later) may be better than k-NN for moderate dimensions

Logistic Regression (LR)

- Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- 6 Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

Linear Regression for Classification?

- k-NN Classifier is simple but also crude; have to look elsewhere
- Building a regression model with targets some coding of class labels usually doesn't make sense
- But for a binary 0–1 response, it can be shown that the $w_0 + w \cdot x$ obtained using linear regression is in fact an estimate of P(1|x)
 - We may thus fix a threshold δ_0 and decide 0 if $w_0 + w\dot{x} < \delta_0$ and 1 otherwise
 - However, we may end up with probability estimates less than 0 o bigger than 1!!!
- We know that our goal should be to estimate P(j|m); let's try to attain it!

Logistic Regression (LR)

We assume

$$P(1|x) = \frac{1}{1 + e^{-(w_0 + w \cdot x)}}$$

- Then $0 \le P(1|x) \le 1$ for any x
- We then have

$$P(0|x) = 1 - P(1|x) = \frac{e^{-(w_0 + w \cdot x)}}{1 + e^{-(w_0 + w \cdot x)}} = \frac{1}{1 + e^{w_0 + w \cdot x}}$$

- Notice that if $w_0 + w \cdot x = 0$, P(1|x) = P(0|x) = 0.5
- The ratio $\frac{P(1|x)}{P(0|x)} = e^{w_0 + w \cdot x}$ is called the **odds** of x and its log the **log odds** or **logit**
- Thus, the basic assumption in LR is that the logit is a linear function w₀ + w · x of x
- We have the model f(x; w); we need a loss function L(w) to minimize for which we use the sample's likelihood

Sample's Likelihood

- Assume a sample $S = \{(x^p, y^p)\}$, with y^p either 1 or 0
- If the $Y = \{y^p\}$ labels are derived **independently** from a LR model with weights w_0 , w applied to the $X = \{x^p\}$, we have

$$P(Y|X; w_0, w) = \prod_{p=1}^{N} P(y^p|x^p; w_0, w)$$

$$= \left\{ \prod_{y^p=1} P(1|x^p) \right\} \left\{ \prod_{y^p=0} P(0|x^p) \right\}$$

$$= \prod_{p=1}^{N} P(1|x^p)^{y^p} P(0|x^p)^{1-y^p}$$

because

• If
$$y^p = 1$$
, $P(1|x) = P(1|x^p)^{y^p}$ $P(0|x^p)^{1-y^p}$ and
• If $y^p = 0$, $P(0|x) = P(1|x^p)^{y^p}$ $P(0|x^p)^{1-y^p}$

Max Log-Likelihood Estimation

• The log-likelihood of w_0 , w given S is then

$$\ell(w_0, w; S) = \log P(Y|X; w_0, w)$$

$$= \sum_{p} \{y^p \log p(1|x^p) + (1 - y^p) \log p(0|x^p)\}$$

$$= \sum_{p} y^p \log \frac{p(1|x^p)}{p(0|x^p)} + \sum_{p} \log p(0|x^p)$$

$$= \sum_{p} y^p (w_0 + w \cdot x^p) - \sum_{p} \log(1 + e^{w_0 + w \cdot x^p})$$

• We can thus estimate the optimal $\widehat{w}_0^*, \widehat{w}^*$ as

$$\widehat{w}_0^*, \widehat{w}^* = \operatorname{arg\ min}_{w_0, w} - \ell(w_0, w; S)$$

• Extra bonus: $-\ell$ is a convex differentiable function of (w_0, w) and, thus, it is enough to solve $\nabla \ell(w_0, w) = 0$

Newton-Raphson Solution

- However, $\nabla \ell(W) = \nabla \ell(w_0, w) = 0$ doesn't admit a closed form solution but only an iterative, numerical one
- We apply the Newton-Raphson iterative method, here equivalent to the general Newton method for function minimization
- Starting with an initial random W^0 , Newton's iterations are

$$W^{k+1} = W^k + (\mathcal{H}_{\ell}(W^k))^{-1} \nabla \ell(W^k)$$

- $\mathcal{H}_{\ell}(W^k)$ denotes the Hessian of ℓ at W^k , which may or may not be invertible
 - Everything is fine if the W^k are close enough to the optimum W^* but far away things may get tricky
- Just as before, we can add a regularization term $\frac{\alpha}{2}\|W\|^2$ to avoid invertibility problems
- The iterations in Logistic Regression are again typical of many of the model building methods used in Machine Learning

Learning in ML

- The general approach to learning is the following:
 - A **model** f(x; W) is chosen
 - Given a sample $S = \{(x^1, y^1), \dots, (x^N, y^N)\}$, we define a sample dependent loss function

$$L(W) = L(W|S) = L(y^1, ..., y^N, f(x^1; W), ..., f(x^N; W))$$

• L(W) is often minimized from some W^0 by **iterations**

$$W^{k+1} = W^k - \rho_k G(W^k, S)$$

with ρ_k a **learning rate** and G some vectorial function

- When $G(W) = \nabla L(W)$ we have **gradient descent**
- When $G(W) = \mathcal{H}(W)^{-1} \nabla L(W)$ we obtain **Newton's method**
- When the entire sample S is used at each iteration, we speak of batch learning
- When only single patterns (x^p, y^p) or small subsamples are used, we speak of **on–line** or **minibatch learning**
- Several such procedures will appear here in the coming weeks
 Regression and Classification Basics. J.R. Dorronsoro

Measuring Classifier Accuracy

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- **6** Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

True/False Positives/Negatives

- Consider a two class problem with labels y = 0, 1
- We will call patterns with label 1 positive and those with label 0 negative
 - Usually the positive patterns are the interesting ones: sick people, defaulted loans, . . .
- Let $\hat{y} = \hat{y}(x)$ the label predicted at x; we say that x is a
 - True Positive (TP) if $y = \hat{y} = 1$
 - True Negative (TN) if $y = \hat{y} = 0$
 - False Positive (FP) if y = 0 but $\hat{y} = 1$
 - False Negative (FN) if y = 1 but $\hat{y} = 0$
- The standard way of presenting these data is through the confusion matrix

The Confusion Matrix

Standard layout

	Ρ'	N'
	(Predicted)	(Predicted)
P	True Positive	False Negative
(Actual)		
N	False Positive	True Negative
(Actual)		

- Other layouts:
 - Positives (with label 1) at bottom (as done in confusion_matrix of sklearn)
 - Predicted values in rows, real values in columns

Classifier Metrics

- The classifier **accuracy** is $acc = \frac{TP+TN}{N}$
- acc is the first thing to measure but it may not be too significant: if the number N_0 of negatives is $\gg N_1$, the number of positives
 - The classifier $\delta(x) = 0$ will have a high accuracy $N_0/N \simeq 1$
 - But it will also be useless!!
- First variant: Precision, Recall
 - Recall: TP/(TP + FN), i.e., the fraction of positives detected
 - **Precision**: TP/(TP + FP), i.e., the fraction of true alarms issued
- Recall measures how many positive cases we recover, i.e., how effective is our method
- Precision measures the effort we need for that, i.e., its efficiency
- Ideal classifier: high recall, high precision (i.e., effective and efficient!!)

Practical Issues

- 1 Machine Learning Modeling Basics
- 2 Basic Regression
- 3 Bias, Variance and Cross Validation
- 4 Data and Model Analysis
- 5 Basic Classification The Classification Model Nearest Neighbor Classification
- **6** Logistic Regression
- Practical Classification Measuring Classifier Accuracy Practical Issues

What's New from Regression?

- Some things change from regression, some don't
- We should check feature correlations: they will affect most models
- Important: positive and negative-class feature histograms
 - Scatter plots (x_i, y) are usually less informative
- The bias-variance trade-off is subtler in classification
- Accuracy, recall, precision are the usual model quality measures
- We use CV with stratified folds to estimate generalization performance
- We also use CV for hyperparameter estimation, as regularization will also be needed
 - In LR we should minimize $-\ell(w_0, w; S) + \frac{\alpha}{2} ||w||^2$

How to Handle Posterior Probabilities

- If possible, we don't want labels as model outputs but posterior probabilities
- Most models give them as pairs

$$(\widehat{P}(0|x), \widehat{P}(1|x)) = (\widehat{P}(0|x), 1 - \widehat{P}(0|x))$$

- In principle we would decide 1 if $\widehat{P}(1|x) > 0.5$ and viceversa, but this may be too crude
- It may be advisable to set a confidence threshold $\kappa < 0.5$ and decide 1 if $\widehat{P}(1|x) > 1 \kappa$ and 0 if $\widehat{P}(1|x) < \kappa$
- For **imbalanced** problems where $\pi_0 \gg \pi_1$ (usually the interesting ones) we would have $\widehat{P}(1|x) \simeq 0$ for most x
 - In this case we may choose another $\theta <$ 0.5 and suggest 1 if $\widehat{P}(1|x) > \theta$

Takeaways on Basic Classification

- We have introduced the classification problem as one of computing posterior probabilities
- We have found the optimal Bayes classifier and approximated it by k-NN
- 3 We have introduced several measures of classifier performance
- We have introduced Logistic Regression and the numerical minimization of its (minus) log-likelihood
- **5** We have introduced and analyzed some classification metrics
- 6 We have reviewed some practical issues of classification