

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, 5 V, and 15 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Outputs in phase with inputs (IRS2106)
- RoHS compliant

Packages

Description

The IRS2106/IRS21064 are high voltage, high speed power MOSFET and IGBT drivers with independent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic.

Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Deadtime (ns)	Ground Pins	ton/toff (ns)
2106/2301	HIN/LIN		2020	COM	220/200
21064	HIIN/LIIN	no	none	Vss/COM	220/200
2108	HIN/LIN	ves	Internal 540	COM	220/200
21084	TIIIN/LIIN	yes	Programmable 540 - 5000	Vss/COM	220/200
2109/2302	IN/SD ves		Internal 540	COM	750/200
21094	114/30	yes	Programmable 540 - 5000	Vss/COM	730/200
2304	HIN/LIN	yes	Internal 100	COM	160/140

The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High-side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage		-0.3	25	V
V_{LO}	Low-side output voltage		-0.3	V _{CC} + 0.3]
VIN	Logic input voltage		V _{SS} - 0.3	V _{CC} + 0.3	
V _{SS}	Logic ground (IRS21064 only)		V _{CC} - 25	V _{CC} + 0.3	
dVs/dt	Allowable offset supply voltage transient	_	50	V/ns	
		(8 lead PDIP)	_	1.0	
D.	Package power dissipation @ T _A ≤ +25 °C	(8 lead SOIC)	_	0.625	
P_{D}	(14 lead PDIP	(14 lead PDIP)	_	1.6	W
		(14 lead SOIC)	_	1.0	Ī
		(8 lead PDIP)	_	125	
D#h	Thermal register as innetion to embient	(8 lead SOIC)	_	200	
Rth _{JA}	Thermal resistance, junction to ambient	(14 lead PDIP)	_	75	°C/W
		(14 lead SOIC)	_	120	
TJ	Junction temperature		_	150	
Ts	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	Ī

Recommended Operating Conditions

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at a 15 V differential.

Symbol	Definition	Min.	Max.	Units
VB	High-side floating supply absolute voltage	V _S + 10	V _S + 20	
VS	High-side floating supply offset voltage	Note 1	600	
VHO	High-side floating output voltage	Vs	V _B	
Vcc	Low-side and logic fixed supply voltage	10	20	V
V _{LO}	Low-side output voltage	0	Vcc	
V _{IN}	Logic input voltage	V _{SS}	V _{CC}	
Vss	Logic ground (IRS21064 only)	-5	5	
T _A	Ambient temperature	-40	125	°C

Note 1: Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25 °C.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		V _S = 0 V
toff	Turn-off propagation delay	_	200	280		V _S = 0 V or 600 V
MT	Delay matching, HS & LS turn-on/off	_	0	30	ns	
t _r	Turn-on rise time	_	100	220		. Vs = 0 V
tf	Turn-off fall time	_	35	80		.3-0

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM and T_A = 25 °C unless otherwise specified. The V_{IL} , V_{IH} , and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads. The V_O , I_O , and R_{ON} parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.5	_	_		V _{CC} = 10 V to 20 V
V _{IL}	Logic "0" input voltage	I —	_	0.8	V	ACC = 10 A 10 50 A
VoH	High level output voltage, V _{BIAS} - V _O	-	0.05	0.2	V	. I _O = 2 mA
V _{OL}	Low level output voltage, VO	_	0.02	0.1		10 - 2 1117
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600 V
I _{QBS}	Quiescent V _{BS} supply current	20	75	130		V _{IN} = 0 V or 5 V
IQCC	Quiescent V _{CC} supply current	60	120	180		VIV = 0 A 01.2 A
I _{IN+}	Logic "1" input bias current V _{IN} = 5 V	I —	5	20	μΑ	
I _{IN-}	Logic "0" input bias current V _{IN} = 0 V	_	_	5		
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold	0.0	0.9	9.0		
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0	V	
V _{BSUV} -	threshold	/.4	0.2	9.0	,	
VCCUVH	Hysteresis	0.3	0.7			
V _{BSUVH}	Tysteresis	0.3	0.7	_		
lo	Output high short circuit pulsed current	130	290			$V_O = 0 V$,
l _{O+}	Output high short circuit puised current	130	290		mA	PW ≤ 10 μs
I _{O-}	Output low short circuit pulsed current	270	600	_		$V_{O} = 15 \text{ V},$
.0-	Calpation offort offort paroda outfort	2.3				PW ≤ 10 µs

Functional Block Diagrams

Lead Definitions

Symbol	Description
HIN	Logic input for high-side gate driver output (HO), in phase
LIN	Logic input for low-side gate driver output (LO), in phase
VSS	Logic ground (IRS21064 only)
VB	High-side floating supply
НО	High-side gate drive output
Vs	High-side floating supply return
Vcc	Low-side and logic fixed supply
LO	Low-side gate drive output
COM	Low-side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

Figure 4A. Turn-On Propagation Delay vs. Temperature

Figure 4B. Turn-On Propagation Delay vs. Supply Voltage

Figure 5A. Turn-Off Propagation Delay vs. Temperature

Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage

IRS2106/IRS21064(S)PbF

Figure 6A. Turn-On Rise Time vs. Temperature

Figure 6B. Turn-On Rise Time vs. Supply Voltage

Figure 7A. Turn-Off Fall Time vs. Temperature

Figure 7B. Turn-Off Fall Time vs. Supply Voltage

Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input Voltage vs. Supply Voltage

Figure 9A. Logic "0" Input Voltage vs. Temperature

Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

<u>www.irf.com</u>

Figure 10A. High Level Output Voltage vs. Temperature

Figure 10B. High Level Output Voltage vs. Supply Voltage

Figure 11A. Low Level Output Voltage vs. Temperature

Figure 11B. Low Level Output Voltage vs. Supply Voltage

Figure 12A. Offset Supply Leakage Current vs. Temperature

Figure 12B. Offset Supply Leakage Current vs. Supply Voltage

Figure 13A. VBS Supply Current vs. Temperature

Figure 13B. VBS Supply Current vs. Supply Voltage

Figure 14A. Quiescent VCC Supply Current vs. Temperature

Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage

Figure 15A. Logic "1" Input Current vs. Temperature

Figure 15B. Logic "1" Bias Current vs. Supply Voltage

IRS2106/IRS21064(S)PbF

Figure 16A. Logic "0" Input Bias Current vs. Temperature

Figure 16B. Logic "0" Input Bias Current vs. Voltage

Figure 17. V_{CC} Undervoltage Threshold (+) vs. Temperature

Figure 18. V_{CC} Undervoltage Threshold (-) vs. Temperature

<u>www.irf.com</u>

Figure 19. VBS Undervoltage Threshold (+) vs. Temperature

Figure 20. VBS Undervoltage Threshold (-) vs. Temperature

Figure 21A. Output Source Current vs. Temperature

Figure 21B. Output Source Current vs. Supply Voltage

Figure 22A. Output Sink Current vs. Temperature

Figure 22B. Output Sink Currentt vs. Supply Voltage

Figure 23. Maximum V_S Negative Offset vs. Supply Voltage

Figure 24. IRS2106 vs. Frequency (IRFBC20), Rgate=33 Ω , VCC=15 V

Figure 25. IRS2106 vs. Frequency (IRFBC30), $\rm R_{\rm qate} = 22~\Omega,~V_{\rm CC} = 15~V$

Figure 26. IRS2106 vs. Frequency (IRFBC40), $\rm R_{\rm oate} {=} 15~\Omega,~V_{\rm CC} {=} 15~V$

Figure 27. IRS2106 vs. Frequency (IRFPE50), $\rm R_{\rm gate} {=} 10~\Omega,~V_{\rm CC} {=} 15~V$

Figure 28. IRS21064 vs. Frequency (IRFBC20), $\rm R_{\rm qate} = 33~\Omega,~V_{\rm CC} = 15~V$

Figure 29. IRS21064 vs. Frequency (IRFBC30), $\rm R_{\rm oate}$ =22 $\Omega,$ V $_{\rm CC}$ =15 V

Figure 30. IRS21064 vs. Frequency (IRFBC40), $\rm R_{\rm qate}$ =15 $\Omega,\,\rm V_{\rm CC}$ =15 V

Figure 31. IRS21064 vs. Frequency (IRFPE50), $\rm R_{\rm cate} {=} 10~\Omega,~V_{\rm CC} {=} 15~V$

Figure 32. IRS2106S vs. Frequency (IRFBC20), $\rm R_{\rm gate} = 33~\Omega,~V_{\rm CC} = 15~V$

Figure 33. IRS2106S vs. Frequency (IRFBC30), $\rm R_{\rm qate}$ =22 Ω , $\rm V_{\rm CC}$ =15 V

Figure 34. IRS2106S vs. Frequency (IRFBC40), $\rm R_{\rm qate} {=}15~\Omega, \, \rm V_{\rm CC} {=}15~V$

Figure 35. IRS2106S vs. Frequency (IRFPE50), $\rm R_{\rm gate}$ =10 $\Omega, \, \rm V_{\rm CC}$ =15 V

Figure 36. IRS21064S vs. Frequency (IRFBC20), $\rm R_{gate} = 33~\Omega,~V_{CC} = 15~V$

Figure 37. IRS21064S vs. Frequency (IRFBC30), $$R_{\text{gate}}$=22\,\Omega,\,V_{\text{CC}}$=15\,V$

Figure 38. IRS21064S vs. Frequency (IRFBC40), $\rm R_{gate} = 15~\Omega,~V_{\rm CC} = 15~V$

Figure 39. IRS21064S vs. Frequency (IRFPE50), $\rm R_{gate} {=} 10~\Omega, \, \rm V_{CC} {=} 15~V$

IRS2106/IRS21064(S)PbF

Case Outlines

IRS2106/IRS21064(S)PbF

Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN
Metric Imp Min Мах Min 0.311 7.90 0.318 8.10 3.90 4.10 0.153 0.161 11.70 12.30 0.46 0.484 5.45 5.55 0.214 0.218 6.30 6.50 0.248 0.255 5.30 0.200 0.208 1.50 0.059 n/a 1.60 n/a 0.062

REEL	DIMEN	ISIONS	FOR	8SOICI	Ν
					_

	M e	tric	Im p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

IRS2106/IRS21064(S)PbF

Tape & Reel 14-lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN

	M etric		lm p	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	6.40	6.60	0.252	0.260
F	9.40	9.60	0.370	0.378
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 14SOICN

	M e	tric	lm p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.40	n/a	0.881
G	18.50	21.10	0.728	0.830
Н	16.40	18.40	0.645	0.724

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

8-Lead PDIP IRS2106PbF 8-Lead SOIC IRS2106SPbF 8-Lead SOIC Tape & Reel IRS2106STRPbF 14-Lead PDIP IRS21064PbF 14-Lead SOIC IRS21064SPbF 14-Lead SOIC Tape & Reel IRS21064STRPbF

SOIC8 & 14 are MSL2 qualified.

This product has been designed and qualified for the industrial level.

Qualification standards can be found at www.irf.com

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 12/4/2006