Active Refinement of Clone Anomaly Reports

MD 輪講

修士課程1年 楊 嘉晨

大阪大学大学院コンピュータサイエンス専攻楠本研究室

2012年7月4日(火)

Active Refinement of Clone Anomaly Reports

- ICSE 2012
- Similarity and Classification

Lucia, David Lo, Lingxiao Jiang, and Aditya Budi

Singapore Management University

背景

Introduction

コードクローンはソフトウェア保守に対して悪い影響

不具合 (anomaly)があるコードクローンに バグを含む可能性が高い

バグが含む不具合があるクローンを 正解 (True Positive)

バグがない不具合があるクローンを 誤検出 (False Positive)

既存研究:クローンに基づく不具合検出

Related Researches: Clone-based Anomaly Detection

クローン間の識別子 (Identifier) の不一致

E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, ``Do code clones matter?" in Proceedings of the 31st International Conference on Software Engineering. IEEE Computer Society, 2009, pp. 485–495.

クローン周りのコード片の差異^(?)

L. Jiang, Z. Su, and E. Chiu, ``Context-based detection of clone-related bugs," in ESEC/FSE, vol. 2007, 2007.

正解の例

Example of True Positive

Linux-2.6.19 から見つけたクローン

```
fs/sysfs/inode.c
```

```
219 struct dentry * dentry = sd->s_dentry;
220
221 if (dentry) {
         /* the following parts are detected as clones */
222
223
        spin lock(&dcache lock);
224
        spin lock(&dentry—>d lock):
225
        if (!( d_unhashed(dentry) && dentry -> d_inode)) {
226
            dget locked(dentry);
227
            d drop(dentry);
228
            spin unlock(&dentry->d lock):
229
            spin_unlock(&dcache lock);
230
```

drivers/infiniband/hw/ipath/ipath_fs.c

Type-2 クローン

誤検出の例

Example of False Positive

fs/nfsd/nfs3xdr.c

```
423 if (!( p = decode_fh(p, &args—>fh))
424 | |!(p=decode_filename(p,&args—>name,&args—>len))
425 | !!(p=decode_sattr3(p,&args—>attrs)))
return 0;
```

drivers/hwmon/lm87.c

fs/nfsd/nfsxdr.c

```
344 if (!( p = decode_fh(p, &args -> ffh))
345 ||!(p=decode_fh(p,&args -> tfh))
346 ||!(p=decode_filename(p,&args -> tname,&args -> tlen)))
return 0;
```

drivers/hwmon/gl520sm.c

```
615 if ((err = device_create_file(&new_client—>dev,
616 &dev_attr_in4_input))
617 || (err = device_create_file(&new_client—>dev,
618 &dev_attr_in4_min))
619 || (err = device_create_file(&new_client—>dev,
620 &dev_attr_in4_max)))
621 goto exit_remove_files;
```

不具合があるクローンの誤検出率

False Positives in Anomaly Clones

L. Jiang, Z. Su, and E. Chiu, ``Context-based detection of clone-related bugs," in ESEC/FSE, vol. 2007, 2007.

不具合があるクローンの誤検出率 II

False Positives in Anomaly Clones II

商用ソフトウェア(?)

M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, ``Scalable and systematic detection of buggy inconsistencies in source code," in ACM Sigplan Notices, vol. 45, no. 10. ACM, 2010, pp. 175--190.

コードクローンの四つの象限

4 Quadrants of Code Clone Group

		一貫性	
		Inconsistent	Consistant
可変性	厳格 (Rigid)	✓	
	柔軟 (Flexible)	✓	

クローンに基づく不具合検出

Clone-based Anomaly Detection

L. Jiang, G. Misherghi, Z. Su, and S. Glondu, ``Deckard: Scalable and accurate tree-based detection of code clones," in Proceedings of the 29th international conference on Software Engineering. IEEE Computer Society, 2007, pp. 96--105.

従来のクローンレポート静的洗練法

Static Refinement of Clone Report in Other Researches

ID	内容	Bug?
1	AAA	?
2	BBB	?
3	CCC	Χ
4	DDD	?
5	EEE	?
6	FFF	?
7	III	Χ
	•••	

ID	内容	Bug?
1	AAA	\checkmark
2	BBB	Χ
4	DDD	\checkmark
5	EEE	Χ
6	FFF	Χ
•••	•••	

クローンレポートの動的洗練法

Dynamic Refinement of Clone Report

ID	内容	Bug?
1	AAA	
2	BBB	
3	CCC	
4	DDD	
5	EEE	
6	FFF	
7	III	
		•••

TD		D 3
ID	内容	Bug?
1	AAA	\checkmark
2	BBB	Χ
7	III	90%
5	EEE	70%
3	CCC	50%
6	FFF	30%
4	DDD	10%
•••	•••	•••

動的洗練法の流れ

Active Refinement Process

洗練エンジンの流れ

Process of Refinement Engine

