Mardi 4 novembre 2014; Durée: 13h30 à 15h20 Aucune documentation permise; aucune calculatrice permise

Problème 1 (35 points sur 100)

En sachant que $\,e^{-\pi t^2} \Longleftrightarrow e^{-\omega^2/4\pi}\,$, pour $\,f\left(t\right) = e^{-\pi t^2}$,

- A. (13 points) trouvez la transformée de Fourier de f(t+2) et tracez le spectre d'amplitude et le spectre de phase
- B. (12 points) trouvez la transformée de Fourier de $\cos(\omega_0 t) f(t)$ et tracez le spectre d'amplitude et le spectre de phase
- C. (10 points) trouvez la transformée de Fourier de $t \cdot f(t)$

Problème 2 (30 points sur 100)

A. (25 points) Trouvez la transformée de Fourier de la fonction suivante

B. (5 points) Quelle est le taux de décroissance de la transformée de Fourier de f(t)?

Problème 3 (35 points sur 100)

A. (20 points) Trouvez la transformée de Fourier de la fonction périodique suivante.

- B. (5 points) Pour $-2.5\pi < \omega < 2.5\pi$, tracez le spectre d'amplitude et le spectre de phase.
- C. (5 points) Est-ce que f(t) est un signal de puissance ou d'énergie?
- D. (5 points) Quelle est la valeur DC du signal f(t)?

	$x = \pi/4$	$x = \pi/2$	$x = 3\pi/4$	$x = \pi$	$x = 5\pi/4$	$x = 3\pi/2$	$x = 7\pi/4$	$x = 2\pi$
sin x	$1/\sqrt{2}$	1	$1/\sqrt{2}$	0	$-1/\sqrt{2}$	-1	$-1/\sqrt{2}$	0

Examen Partiel

Fonction	Transformée de Fourier			
f(t)	$F(\omega)$			
F(t)	$2\pi f(-\omega)$			
f(t+a)	$e^{ja\omega}F(\omega)$			
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$			
$e^{jbt}f(t)$	$F(\omega - b)$			
$t^n f(t)$	$(j)^n \frac{d^n}{d\omega^n} F(\omega)$			
$\frac{d^n}{dt^n}f(t)$	$\left(j\omega\right)^nF(\omega)$			
$\operatorname{Rect}(t/\tau)$ (1)	$ au\operatorname{Sa}\left(\omega au/2 ight)$			
$\operatorname{Tri}(t/\tau)$ (2)	$ au \operatorname{Sa}^2\left(\omega au/2\right)$			
$\delta(t)$	1			
1	2πδ(ω)			
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$			
U(<i>t</i>)	$1/j\omega + \pi\delta(\omega)$			
Sgn(t)	$2/j\omega$			
$\delta_{T_0}(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_0)$	$\omega_0 \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$			
$e^{-eta t} \mathrm{U}(t)$	$\frac{1}{\beta + j\omega}$			
$e^{-eta t }$	$\frac{2\beta}{\beta^2 + \omega^2}$			

rectangle de hauteur un, centré $_2$ Tri $\left(\frac{t-t_0}{\tau}\right)$ sur $t=t_0$, et de $longueur \ \tau.$

$$_{2} \operatorname{Tri}\left(\frac{t-t_{0}}{\tau}\right)$$

triangle de hauteur un, centré sur $t=t_0$, avec un base de longueur 2τ .

Examen Partiel

Formules

$$\int e^{ax} \quad dx = \frac{1}{a} e^{ax}$$

$$\int xe^{ax} \quad dx = \left(\frac{x}{a} - \frac{1}{a^2}\right)e^{ax}$$

$$\int x^2 e^{ax} \quad dx = \left(\frac{x^2}{a} - \frac{2x}{a^2} + \frac{2}{a^3}\right)e^{ax}$$

$$\int e^{bx} \sin ax \quad dx = \frac{1}{a^2 + b^2} e^{bx} \left(b \sin ax - a \cos ax\right)$$

$$\int e^{bx} \cos ax \quad dx = \frac{1}{a^2 + b^2} e^{bx} \left(a \sin ax + b \cos ax\right)$$

$$\int x \cos ax \quad dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax$$

$$\cos \theta = \sin(\pi/2 - \theta)$$

$$e^{inx} = (-1)^n \qquad x_0 \sum_{n = -\infty}^{\infty} \delta(x - nx_0) = \sum_{n = -\infty}^{\infty} e^{-i2\pi nx/x_0}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2j}$$
aux points de discontinuité :

$$e^{jx} = \cos x + j\sin x$$

$$f'(a) = \left[\lim_{t \to a^{+}} f(t) - \lim_{t \to a^{-}} f(t)\right] \delta(t - a)$$