Ekonometria Dynamiczna

Wybrane modele jednowymiarowych szeregów czasowych

mgr Paweł Jamer¹

7 czerwca 2015

Biały szum

Biały szum

Białym szumem nazwiemy szereg czasowy ϵ_t niezależnych zmiennych losowych o tym samym rozkładzie taki, że

$$\mathbb{E}(\epsilon_t) = 0,$$

$$Var(\epsilon_t) = \sigma^2.$$

Biały szum oznaczać będziemy symbolem WN $(0, \sigma^2)$.

Uwaga Bardziej złożone modele szeregów czasowych wykorzystują biały szum do opisu niepewności pomiaru opisywanych przez nie wielkości.

Proces MA

Zdefiniujmy operator

$$\theta(B) = I + \theta_1 B + \ldots + \theta_q B^q,$$

gdzie $q \in \mathbb{Z}_+$.

Proces MA

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem MA (średniej ruchomej) rzędu q, jeżeli spełnia on równanie

$$X_t = \theta(B) \epsilon_t$$

gdzie $\epsilon_t \sim {\sf WN}\left(0,\sigma^2\right)$. Proces MA rzędu q oznaczać będziemy symbolem MA (q).

Właściwości procesu MA

Wartość oczekiwana:

$$\mathbb{E}\left(X_{t}\right)=0.$$

Funkcja autokowariancji:

$$\gamma_{X}(h) = \begin{cases} \left(\sum_{i=0}^{q-|h|} \theta_{i}\theta_{i+|h|}\right) \sigma^{2} & |h| \leq q, \\ 0, & |h| > q. \end{cases}$$

Proces AR

Zdefiniujmy operator

$$\varphi(B) = I - \varphi_1 B - \ldots - \varphi_p B^p,$$

gdzie $p \in \mathbb{Z}_+$.

Proces AR

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem AR (autoregresyjnym) rzędu p, jeżeli spełnia on równanie

$$\varphi(B)X_t=\epsilon_t,$$

gdzie $\epsilon_t \sim \text{WN}\left(0,\sigma^2\right)$. Proces AR rzędu p oznaczać będziemy symbolem AR (p).

Właściwości procesu AR

 Proces spełniający równanie procesu AR(p) jest stacjonarny, gdy pierwiastki wielomianu

$$z^{p} - \sum_{i=1}^{p} \varphi_{i} z^{p-i}$$

leżą wewnątrz okręgu jednostkowego.

Związek procesów AR i MA

Proces AR (1) zapisać możemy w postaci

$$X_t = \varphi X_{t-1} + \epsilon_t,$$

a następnie rozpisać jego prawą stronę do postaci

$$X_t = \varphi^{m+1} X_{t-(m+1)} + \sum_{j=0}^m \varphi^j \epsilon_{t-j},$$

którą po przeprowadzeniu stosownego rozumowania zapisać można jako proces $\mathsf{MA}\left(\infty\right)$:

$$X_t = \sum_{j=0}^{\infty} \varphi^j \epsilon_{t-j}.$$

Wniosek Procesy MA(q) przy odpowiednio dużym q zaczynają upodabniać się do procesu AR(1).

Proces ARMA

Proces ARMA

Słabo stacjonarny szereg czasowy X_t nazwiemy procesem ARMA (p,q), jeżeli spełnia on równanie

$$\varphi(B)X_{t}=\theta(B)\epsilon_{t},$$

gdzie $\epsilon_t \sim WN(0, \sigma^2)$.

Stacjonarność procesów ARMA

TWIERDZENIE

Jeżeli $\varphi(z) \neq 0$ dla |z| = 1, to równanie procesu ARMA (p, q)

$$\varphi(B)X_{t}=\theta(B)\epsilon_{t}$$

posiada jednoznaczne rozwiązanie stacjonarne postaci

$$X_{t} = \sum_{i=-\infty}^{\infty} \psi_{j} \epsilon_{t-j} = \psi(B) \epsilon_{t}.$$

Proces ARIMA

Proces ARIMA

Szereg czasowy X_t nazwiemy procesem ARIMA (p, d, q), jeżeli szereg czasowy $\Delta^d X_t$ jest procesem ARMA (p, q).

Bezpośrednio z powyższej definicji wynika, że proces ARIMA (p, d, q) charakteryzuje następujące równanie:

$$\varphi(B)\left(\Delta^{d}X_{t}\right)=\theta(B)\epsilon_{t}.$$

Pierwiastek jednostkowy

Równanie procesu ARIMA (p, d, q) możemy zapisać jako:

$$\varphi(B)(I-B)^{d} X_{t} = \theta(B) \epsilon_{t},$$

$$\varphi^{*}(B) X_{t} = \theta(B) \epsilon_{t},$$

gdzie

$$\varphi^*(B) = \varphi(B)(I - B)^d.$$

Wniosek Wielomian $\varphi^*(z)$ ma pierwiastek d-krotny w jedynce.

Metody estymacji parametrów $arphi_j$ i $heta_j$

- Równania Yule'a-Walkera
- Algorytm Innowacyjny
- Metoda Warunkowych Najmniejszych Kwadratów
- Estymator Hannana-Riesannena
- M-estymator
- ..

Estymator Hannana-Riesannena (idea)

Rozważamy model postaci

$$X_t = \varphi_1 X_{t-1} + \ldots + \varphi_p X_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q}.$$

Chcemy wyestymować metodą najmniejszych kwadratów parametry $\varphi_1, \varphi_2, \ldots, \varphi_p$ oraz $\theta_1, \theta_2, \ldots, \theta_q$, przy założeniu znanych wartości parametrów p i q.

Problem Wartości białego szumu ϵ_t są nieobserwowalne.

Estymator Hannana-Riesannena (algorytm)

Niech $n \geqslant m \geqslant \max(p, q)$.

- ① Dopasowujemy model AR (m).
- Z dopasowanego modelu estymujemy

$$\hat{\epsilon}_t = X_t - \sum_{j=1}^m \hat{\varphi}_j X_{t-j}$$

dla t = m + 1, m + 2, ..., n.

3 Dopasowujemy model regresji ze zmiennymi objaśniającymi $X_t, X_{t-1}, \ldots, X_{t-p}$ oraz $\hat{\epsilon}_t, \hat{\epsilon}_{t-1}, \ldots, \hat{\epsilon}_{t-q}$ i zmienną objaśnianą X_t .

Dobór parametrów p i q (kryteria informacyjne)

Niech $L_{p,q}$ oznacza wiarogoność modelu ARMA (p,q).

Kryterium informacyjne Akaike (AIC)

$$AIC_{p,q} = -2 \ln L_{p,q} + 2 (p+q+1)$$

Bayesowskie kryterium informacyjne (BIC)

$$BIC_{p,q} = -2 \ln L_{p,q} + (p+q+1) \ln T$$

Dobór parametrów p i q (kryterium FPE)

Rozpatrujemy proces AR(p) postaci

$$X_t - \sum_{j=1}^p \varphi_j X_{t-j} = \epsilon_t,$$

który daje się przedstawić w postaci

$$X_t = \sum_{j=0}^{\infty} c_j \epsilon_{t-j}.$$

Kryterium FPE (Final Prediction Error)

$$\mathsf{FPE}_{p,q} = \arg\min_{0 \leqslant p \leqslant P} \left(\frac{T+p}{T-p} \hat{\sigma}_{NW}^2 \right)$$

Dobór parametrów p i q (wykresy ACF i PACF)

Autokorelacją częściową zmiennych X_t i X_{t-m} nazywamy intuicyjnie taką autokorelację zmiennych X_t i X_{t-m} z której wyeliminowano wpływ zmiennych $X_{t-1}, X_{t-2}, \ldots, X_{t-(m-1)}$.

Dobór parametrów p i q (wykresy ACF i PACF)

W przypadku procesu WN $(0,\sigma^2)$ wartości autokorelacji oraz częściowej autokorelacji powinny mieścić się w przedziale ufności

$$\hat{\rho}_i \pm \frac{z_{1-\alpha/2}}{\sqrt{T}}$$

W przypadku procesu MA (q) wartości autokorelacji przekraczają granice powyższego przedziału ufności. Za rząd procesu MA przyjmujemy q równe autokorelacji o największym indeksie, która wykracza poza granice przedziału ufności.

W przypadku procesu AR (p) wartości autokorelacji częściowej prekraczają granice powyższego przedziału ufności. Za rząd procesu AR przyjmujemy p równe autokorelacji częściowej o największym indeksie, która wykracza poza granice przedziału ufności.

Estymaja korelacji

Estymator kowariancji

$$\hat{\gamma}(h) = \frac{1}{n} \sum_{i=1}^{n-|h|} \left(X_i - \overline{X}_n \right) \left(X_{i+|h|} - \overline{X}_n \right).$$

Estymator korelacji

$$\hat{\rho}(h) = \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}.$$

Testowanie autokorelacji

Chcemy zbadać hipotezę testową:

$$H_0: \sum_{i=1}^h \rho^2(i) = 0.$$

Test Ljunga-Boxa

$$T_{LB} = n(n+2)\sum_{i=1}^{h} \frac{\hat{\rho}^2(i)}{n-i} \to \chi_h^2.$$

Testowanie reszt

Jeżeli model ARMA(p,q) opisany równaniem

$$\varphi(B)X_{t}=\theta(B)\epsilon_{t}$$

dobrze opisuje dane, to reszty ϵ_t powinny być białym szumem.

- 2 Powyższe stwierdzenie testujemy:
 - analizując wykresy ACF oraz PACF,
 - przeprowadzając test Ljunga-Boxa.
- 3 Jeżeli reszty ϵ_t okażą się nie być białym szumem, to dopasowujemy do nich po raz kolejny model ARMA:

$$\varphi'(B)\,\epsilon_t = \theta'(B)\,\eta_t,$$

gdzie η_t powinna być białym szumem.

Model z rozkładem opóźnień DL

Model ze skończonym rozkładem opóźnień

$$Y_t = \alpha + \sum_{i=0}^k \beta_i X_{t-i} + \epsilon_t.$$

Model z nieskończonym rozkładem opóźnień

$$Y_t = \alpha + \sum_{i=0}^{\infty} \beta_i X_{t-i} + \epsilon_t.$$

Nazewnictwo:

- mnożnik krótkookresowy: β_0 ,
- mnożnik długookresowy: $\sum_{i=1}^{\infty} \beta_i$.

Model Koycka

Model Koycka

Modelem Koycka nazywamy model z nieskończonym rozkładem opóźnień w którym

$$\beta_k = \beta_0 \lambda^k$$
,

gdzie
$$\lambda \in (0,1), k = 0, 1, 2, \dots$$

Nazewnictwo:

ullet stopa zaniku rozkładu opóźnień: λ .

Związek modelu Koycka z modelem AR(1)

Niech dany będzie model Koycka postaci:

$$Y_t = \alpha + \sum_{i=0}^{\infty} \beta_0 \lambda^i X_{t-i} + \epsilon_t.$$

Mnożąc powyższy model zapisany dla chwili czasu t-1 przez λ otrzymujemy:

$$\lambda Y_{t-1} = \lambda \alpha + \sum_{i=0}^{\infty} \beta_0 \lambda^{i+1} X_{t-1-i} + \lambda \epsilon_{t-1}.$$

Odjęcie od siebie dwóch przedstawionych postaci modelu daje nam:

$$Y_t - \lambda Y_{t-1} = \alpha (1 - \lambda) + \beta_0 X_t + \epsilon_t - \lambda \epsilon_{t-1}.$$

Co ostatecznie zapisać możemy jako:

$$Y_t = \mu + \lambda Y_{t-1} + \beta_0 X_t + \eta_t.$$

Model autoregresyjny z rozkładem opóźnień ADL

Model autoregresyjny z rozkładem opóźnień

$$Y_{t} = \alpha_{0} + \sum_{i=1}^{m} \alpha_{i} Y_{t-i} + \sum_{i=0}^{k} \beta_{i} X_{t-i} + \epsilon_{t}.$$

Model wyceny aktywów kapitałowych (CAPM)

Zakładamy, że inwestor posiada portfel złożony z *n* papierów wartościowych, których udziały w portfelu opisuje poniższy wektor

$$\mathbf{x}=\left[x_1,x_2,\ldots,x_n\right]'.$$

Niech stopa zwrotu z poszczególnych papierów opisana będzie wektorem losowym

$$\mathbf{R}=\left[R_1,R_2,\ldots,R_n\right]',$$

natomiast stopa zwrotu jaką inwestor mógłby osiągnąć bez ponoszenia ryzyka (np. kupując obligacje rządowe) wartością

Model wyceny aktywów kapitałowych (CAPM)

Niech oczekiwane stopy zwrotu z poszczególnych aktywów opisane będą wektorem wartości oczekiwanych

$$\mu = \mathbb{E}(R)$$
,

natomiast ryzyko inwestycji macierzą wariancji-kowariancji

$$\Sigma = Var(R)$$
.

Inwestor dąży maksymalizacji osiąganego zysku

$$\mathbf{x}'(\mu - r_f \mathbf{1}_n)$$
,

przy jednoczesnej minimalizacji ryzyka inwestycji

$$\min_{x} x' \mathbf{\Sigma} x.$$

Model wyceny aktywów kapitałowych (CAPM)

Oznaczmy zysk z portfela rynkowego (np. WIG) symbolem R_M . Wówczas przy założeniu niezmienności ryzyka w czasie mamy

$$\mathbb{E}\left(R_{i}-r_{f}\right)=\frac{Cov\left(R_{i},R_{M}\right)}{Var\left(R_{M}\right)}\mathbb{E}\left(R_{M}-r_{f}\right).$$

Oznaczmy

$$\beta_{i} = \frac{Cov\left(R_{i}, R_{M}\right)}{Var\left(R_{M}\right)}$$

Model wyceny aktywów kapitałowych

$$R_{i,t} - r_f = \alpha_i + \beta_i (R_{M,t} - r_f) + \epsilon_{i,t}.$$

Uwaga. Im wartość współczynnika β_i jest większa, tym bardziej agresywna jest polityka inwestycyjna inwestora.

Model Famy i Frencha

Chcąc lepiej opisać sytuację rynkową wprowadzamy do modelu CAMP dwa dodatkowe czynniki:

- SMB czynnik uwzględniający wielkość spółki mierzonej kapitalizacją. Konstruowany jako różnica między stopą zwrotu z inwestycji w spółki z dużą kapitalizacją oraz stopą zwrotu z inwestycji w spółki z małą kapitalizacją.
- HML czynnik uwzględniający iloraz wartości księgowej do wartości rynkowej (BV/MV) spółki. Konstruowany jako różnica między stopą zwrotu z inwestycji w spółki o wysokim BV/MV oraz stopy zwrotu z inwestycji w spółki o niskim BV/MV.

Model Famy i Frencha

Model Famy i Frencha

$$R_{i,t} - r_t = \alpha_i + \beta_i^M (R_{M,t} - r_t) + \beta_i^{SMB} SMB_t + \beta_i^{HML} HML_t + \varepsilon_{i,t}.$$

Pytania?

Dziękuję za uwagę!