## Using Zoom for Lectures

#### Sign in using:

your name

#### Please mute both:

- your video cameras for the entire lecture
- your audio/mics unless asking or answering a question

#### Asking/answering a question, option 1:

- click on Participants
- use the hand icon to raise your hand
- I will call on you and ask you to unmute yourself

#### Asking/answering a question, option 2:

- click on Chat
- type your question, and I will answer it

## Today: Outline

Frequentist vs. Bayesian

Reminder: PS4, due Mar 30 (no late submissions)
 PS4 self score, due Apr 3



# Recap: Maximum Likelihood

for Linear Regression

# So far, we have treated outputs as noiseless

- Defined cost function as "distance to true output"
- An alternate view:
  - data (x,y) are generated by unknown process
  - however, we only observe a noisy version
  - how can we model this uncertainty?

Alternative cost function?

# How to model uncertainty in data?

#### **Hypothesis:**

$$h_{\theta}(x) = \theta^T x$$

 $\theta$ : parameters

$$D = (x^{(i)}, y^{(i)})$$
: data



#### New cost function:

maximize probability of data given model:

$$p((\mathbf{x}^{(i)}, \mathbf{y}^{(i)})|\theta)$$

## **Recall: Cost Function**



#### **Alternative View:**

"Maximum Likelihood"



## Maximum Likelihood: Example

Intuitive example: Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of head (or tail) of my next flip?

Model:

Each flip is a Bernoulli random variable X

X can take only two values: 1 (head), 0 (tail)

$$p(X = 1) = \theta$$
,  $p(X = 0) = 1 - \theta$ 

•  $\theta$  is a parameter to be identified from data

## Maximum Likelihood: Example

• 5 (independent) trials



Likelihood of all 5 observations:

$$p(X_1,...,X_5|\theta) = \theta^3(1-\theta)^2$$

Intuition

ML chooses  $\theta$  such that likelihood is maximized

## Maximum Likelihood: Example

• 5 (independent) trials



Likelihood of all 5 observations:

$$p(X_1,...,X_5|\theta) = \theta^3(1-\theta)^2$$

Solution

$$\theta_{ML} = \frac{3}{(3+2)}$$

Frequentist Approach

i.e. fraction of heads in total number of trials

## Frequentist vs. Bayesian

- What is probability?
  - Related to the frequencies of related events
     Frequentists
  - Related to our own certainty/uncertainty of events
    - **Bayesians**

## Frequentist vs. Bayesian

- Thus we analyze:
  - Variation of data in terms of fixed model parameters

**Frequentists** 

 Variation of beliefs about parameters in terms of fixed observed data

**Bayesians** 



# Bayesian Methods

**CS542** Machine Learning

## Bayesian Methods

- Before, we derived cost functions from maximum likelihood,
   then added regularization terms to these cost functions
- Can we derive regularization directly from probabilistic principles?
- Yes! Use Bayesian methods



# Bayesian Methods

Motivation

# Problem with Maximum Likelihood: Bias

- ML estimates are biased
- Especially a problem for small number of samples, or high input dimensionality
- Suppose we sample 2,3,6 points from the same dataset, use
   ML to fit regression parameters



# Problem with Maximum Likelihood: Overfitting

- ML estimates cannot be used to choose complexity of model
  - E.g. suppose we want to estimate the number of basis functions
  - Choose K=1?
  - Or K=15?







## Bayesian vs. Frequentist

Frequentist: maximize data likelihood

$$p(D|model) = p(D|\theta)$$

**Bayesian:** treat  $\theta$  as random variable, maximize posterior

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$
 Baye's Rule

 $p(D|\theta)$  is the data likelihood,  $p(\theta)$  is the prior over the model parameters

# Bayesian Method

Treat  $\theta$  as random variable, maximize posterior

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

Likelihood  $p(D|\theta)$  is the same as before, as in Maximum Likelihood

**Prior**  $p(\theta)$  is a new distribution we model; specifies which parameters are more likely *a priori*, before seeing any data

p(D) does not depend on  $\theta$ , constant when choosing  $\theta$  with the highest posterior probability



# Prior over Model Parameters

Intuition

## Will he score?





Your estimate of  $\theta = p(score)$ ?

#### Will he score?





- Prior information:
   player= <u>LeBron James</u>
- Your estimate of  $\theta = p(score)$ ?
- Prior  $p(\theta)$  reflects prior knowledge, e.g.,  $\theta \approx 1$

#### **Prior Distribution**

Prior distributions  $p(\theta)$  are probability distributions of model parameters based on some a priori knowledge about the parameters.

Prior distributions are independent of the observed data.

# Coin Toss Example

What is the probability of heads  $(\theta)$ ?



## Beta Prior for θ

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$

## Beta Prior for θ

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$



### **Uninformative Prior**

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$



## Informative Prior

$$P(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{(\alpha - 1)} (1 - \theta)^{(\beta - 1)}$$



# **Coin Toss Experiment**

- n = 10 coin tosses
- y = 4 number of heads



## Likelihood Function for the Data

$$P(y|\theta) = Binomial(n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{(n-y)}$$

### **Prior and Likelihood**

$$P(y|\theta) = Binomial(n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{(n-y)}$$



#### Posterior Distribution

Posterior = Prior × Likelihood  

$$P(\theta|y) = P(\theta)P(y|\theta)$$

$$P(\theta|y) = Beta(\alpha, \beta) \times Binomial(n, \theta)$$

$$= Beta(y + \alpha, n - y + \beta)$$

This is why we chose the Beta distribution as our prior, posterior is also a Beta distribution: conjugate prior.

## Posterior Distribution



#### **Priors**

Example: Brightness of a star

Informative Prior:
 Based on all other stars in the sky

Non-informative Prior
 Make all brightness values equally probable

## Poll 1: Stylus

Will continue to use the stylus

#### Online Teaching Poll 1: Stylus closes in 5 day(s)



### Poll 2: Live

Will continue to give live lectures and post recorded videos

#### Online Teaching Poll 2: Live closes in 5 day(s)



### Poll 3: Communication

- We have increased our daily frequency of replied to Piazza posts
- Link for online zoom office hours: <a href="https://bostonu.zoom.us/j/741468463">https://bostonu.zoom.us/j/741468463</a>
- Same usual schedule
- Waiting room style





### Poll 4: Internet

Will not make the midterm have any multimedia content.

 If you voted that you have internet problems: Please email me immediately to discuss their nature and how BU can help.



Please do respond to polls, it is instrumental for the course in its current online setting

#### Midterm Exam

Date: Wed Apr 8

#### Administering the exam:

- During lecture time
- Open: Video camera + Microphone + Share screen
- Open exam pdf
- Take photos of your solutions on paper
- Submit a pdf of the photos on a google form, just like you submit assignments
- Confirm we received your submission before you leave (through private chat)

#### What do you need?

- Internet + Pen/pencil + Empty sheets of paper (~10)
- New question, new page
- Cell phone to take photos of your solutions at the end for submission

## Class Challenge

Classification of X-rays for COVID-19



PA Chest X-rays of admitted patients. From Left to Right: Healthy, Bacterial, Viral, COVID19.