Proyecto IA - UTFSM 2015

Balanced Academic Curriculum Problem

Genetic Algorithm & Simulated Annealing + Greedy

Felipe Carmona

Juan Pablo Escalona

Balanced Academic Curriculum Problem

?

4:3	8:1	12:1	16:3	21:4	24:2
3:4	7:3	11:2	15:4	19:3	23:1
2:3	6:4	10:4	14:2	18:2	22:3
1:2	5:2	9:3	13:3	17:1	20:4
1	2	3	4	5	6

1. Min/Max cursos por periodo

2. Min/Max créditos por periodo

3. Prerrequisitos

Representación de una matriz

$$x_{ij} = \begin{cases} 1 & \text{si ramo } i \text{ es asignado al periodo } j \\ 0 & \text{en otro caso} \end{cases}$$

$$\forall i \in \{1, ..., m\}, j \in \{1, ..., n\}$$

Espacio de búsqueda

 2^{nm}

SA + Greedy

Representación en un arreglo

 x_i : periodo del ramo i

$$\forall i \in \{1, ..., m\}, x_i \in \{1, ..., n\}$$

Espacio de búsqueda:

 n^m

SA + Greedy

$$bacp8$$

$$n = 8m = 46$$

$$2^{nm} = 2^{368}$$

$$n^m = 8^{46} = 2^{138}$$

SA + Greedy

bacp10
$$n = 10m = 42$$

$$2^{nm} = 2^{420}$$

$$n^m = 10^{42} \approx 2^{139.524}$$

SA + Greedy

bac p12
$$n = 12m = 66$$

$$2^{nm} = 2^{792}$$

$$n^m = 12^{66} \approx 2^{236.608}$$

SA + Greedy

- Función de evaluación /
 Criterio de parada
- Tamaño de población
- Probabilidad de cruzamiento
- Probabilidad de mutación

Variación Parámetros

Variación Parámetros

Refinación de parámetros

SA + Greedy

- Tasa de disminución de la temperatura (alpha)
- Número de iteraciones locales (n_iters)
- Temperatura mínima (t_min)

Exactitud variando alpha

Tiempo variando alpha

Exactitud variando n_iters

Tiempo variando n_iters

Exactitud variando t_min

Tiempo variando t_min

Resultados SA + Greedy

Instancia	Tiempo Promedio	Carga Promedio	Exactitud
bacp8	0.4413 [s]	17.0000 [crédito]	100.0000%
bacp10	0.4064 [s]	14.0500 [crédito]	99.6441 %
bacp12	0.9057 [s]	18.0000 [crédito]	100.0000%

Valores promedios de SA + Greedy sobre bacp8, bacp10 y bacp12 luego de 100 repeticiones

Resultados AG

Instancia	Tiempo Promedio	Carga Promedio	Exactitud
bacp8	29.24 [s]	19.35 [crédito]	87.8553 %
bacp10	118.89 [s]	18.35 [crédito]	76.2943%
bacp12	204.06 [s]	19.9 [crédito]	90.4522%

Valores promedios de AG sobre bacp8, bacp10 y bacp12 luego de 15 repeticiones

	bacp8	bacp10	bacp12
Castro y Manzano (2001) [1]			
lp_solve	1459.73 [s]	1626.84 [s] (no óptimo)	∞
HINCH ET AL. (2002) [4]			
ILP	3.45 [s]	4.23 [s]	131.30 [s]
CLP_1	58.52 [s]	∞	∞
CLP_2	45.10 [s]	∞	∞
$ILP+CLP_2$	0.81 [s]	8.44 [s]	3.05 [s]
$CP_1 + CLP_2$	0.29 [s]	0.59 [s]	1.09 [s]
Lambert et al. (2006) [6]			
GA+CP	15.05 [s]	34.84 [s]	35.20 [s]
Di Gaspero y Schaerf (2008) [3]			
Simulated Annealing	0.0042 [s]	0.0429 [s]	0.1764 [s]
Tabu Search	0.0023 [s]	0.0046 [s]	0.0459 [s]
Dynamic Tabu Search	0.0026 [s]	0.0060 [s]	0.0843 [s]
Rubio et al. (2013) [8]			
Best Worst Ant System	1.25 [s]	1.25 [s]	6.37 [s]

Conclusiones

El Espacio de búsqueda

Los resultados dependen mucho de la representación y el espacio de búsqueda

Dificultad Algoritmo

La complejidad de un algoritmo no determina el hecho de encontrar mejores o peores soluciones

Algoritmo adecuado

Simulated Annealing + greedy es más rápido y eficiente al encontrar soluciones buenas