6.1) Единетвенность разложения на неприводиные множимем

Определение 6.1: Пусть $f \in k[x_1,...,x_n]$. Многосием f наупваетах неприводимии над $k \Leftrightarrow \kappa$ согда $f \notin k$ и f не эвляетах произведением двух неностояниях многосиемов из $k[x_1,...,x_n]$.

Осевидно, что мобой непостянный многочен может быт родожен в произведение непривод-х.

Теорема 6.1: Пусть $f \in k[x_1,...,x_n]$ неприводима над k, т.г. f деми процведение gk, где $g,h \in k[x_1,...,x_n]$. Тогда f демя мого g, мого h.

Dokazare.cofo: Ungykyveň no komreceby неременчета. Sycre многоглена f,g и $h \in k[z]$. Рассмотрим $p=\gcd(f,g)$. Сем $p \in k$, то в ещу неприводимости многоглена f, он может быть записан в виде f=ap, где $a \in k$. В этом смугае f демит g. Сем те $p \in k$, то можено окигать, кто p=1. Погда дле немоторых $A,b \in k[z]$ имеетах равенство Af+bg=1, умножив которых на h, помучим h=h(Af+bg)=Ahf+bgh

те. 7 дешт h. Боза индукции докозана.

Бредположим, что чеорема верка в кольцах многосменов ст n-1 переменной. Сперва докатем учеорждения

(*) Ease $u \in k[x_1,...,x_n]$ renpulsogue a genum reportegence gh, ega $g,h \in k[x_1,...,x_n]$, mo envorcen a genum sure g, sure h.

Due gorganesserba (4) repenueue g u h bluge $g = \sum_{i=0}^{l} a_i x_i^i \quad \text{so } h = \sum_{i=0}^{m} b_i x_i^i,$

где $a_i, b_i \in k[x_2, ..., x_n]$. Многохин и деші $g \Leftrightarrow u$ демі катдай a_i . Анамично для многомина k. Ўредположин, сто и не демі им g, ни k. Уногра сущеобуют значених индексов i, j > 0, m.z. ни a_i не деміга на u, ни b_j не деміга на u. Уного $i_0, j_0 - 3 \pi 0$ намичними индексов с таким свойством. Рассмотрим когранциям три $x_i^{i_0 \cdot j_0}$ в произведении gh:

 $G_{i,*j,*} = (a_0b_{i,*j,*} + a_1b_{i,*j,*-1} + ... + a_{i,*-1}b_{j,*-1}) + a_{i,*}b_{j,*} + (a_{i,*-1}b_{j,*-1} + ... + a_{i,*-j,*-b_{j,*-1}}b_{j,*-1})$. В силу вотбора i_0 многосием и демий кат дос слагаемое в первой скобке, а в силу вотбора j_0 — кат дос слагаемое во возрой скобке. Многосием и не демий им $a_{i,0}$, им $b_{j,0}$, morga по предположению инодукции в иму своей неприводимости и не демий и $a_{i,0}b_{j,0}$. То ест и не деми $G_{i,0}b_{i,0}$, а значит не демей $G_{i,0}b_{i,0}$. По ест и не деми $G_{i,0}b_{i,0}$, а значит не демей $G_{i,0}b_{i,0}$. По учениюе противоречие $G_{i,0}b_{i,0}$ утвертдение (*)

Герегде" и к общему смугаю: пуст f демі g,h, где f,g и $h\in k[x_1,...,x_n]$. Есм f не зовисих от x_2 , то утверждение докозомо. Даме полагаем, что f не является постояниям по x_2 .

баненим, что f остаётся неприводими, если транновай его как элемент кольца $k(x_2,...,x_n)[X_1]$, еде $k(x_2,...,x_n)$ – поле раушональных друшкульй от $x_2,...,x_n$. Desicibusanью, предполоним, что f=RB, где $A,B\in k(x_2,...,x_n)[X_1]$. Вие неприводимости нутно показать, что A им B пульвой отенени по x_1 . Обозначим черку $d\in k[x_1,...,x_n]$ — процредение знаменателей b A n B. Тогда $\tilde{A}:=dA$, $\tilde{B}:=dB$ летаї b $k[x_1,...,x_n]$, а значи b колице $k[x_1,...,x_n]$ $d^2f=\tilde{A}\tilde{B}$.

Samuren d^2 kar noonjbegerne renpubogunsk unomuserei in $k[x_2,...,x_n]$. So ymbepmgernu (*) onn gensi \widetilde{A} um \widetilde{B} . Cokpasub uz b nocnegnen pobencibe, nony um b $k[x_1,...,x_n]$ pabencibo $f=\widetilde{\lambda_1}\,\widetilde{B_1}$.

Tak kak of renpuboque b $k[x_1,...,x_n]$, mo unto A_1 , into B_1 nocrosume. Jamerin, timo unioresimos A_1 , B_1 nongreum us A u B general u gunomente na positivare secuent $k[x_1,...,x_n]$ (regobarens uo, into A, into B he sabucur om x_1 .

Nyer of nempulogum of $h(x_2,...,x_n)[x_1]$, morga cornacuo bage unqueque survoyame feming g um h of $k(x_2,...,x_n)[x_1]$. Due onpegeriennocum bygen orminos, aro g=Af que nenomororo $A\in h(x_2,...,x_n)[x_1]$. Touromax nocuedum palemoido na quamenaïen de suemera A, nonyeme of $k[x_1,...,x_n]$ and $dg=\widetilde{A}f$.

Так как $d \in k[x_2,...,x_n]$, то по (x) катрогії неприводимогії мирхиїєнь d дешії мибо \tilde{A} , мибо f. Последнее невозможно, т.к. f неприводим и положительногії степени по x_2 . Тогда, проводя сокращения b последней ровенсіве, получим, сто f демії д.

Cuegorbue: Pyero $f, g \in k[x_1,...,x_n]$ novomureus un comenque no x_1 .

Torga emororieno f u g unevom obujui emomenteus b $k[x_1,...,x_n]$ novomureus noi comenque no x_1 morga u rous no morga, sorga one unevom obujui unomureus b $k(x_2,...,x_n)[x_1]$

Доказательство: Пуст f,g имеют общий имотичем h b $k[x_1,...,x_n], m.z.$ deg $_x,h>0.$ Тогда у них есть общий имотичем и b большем конце $k(x_2,..,x_n)[x_1].$

Обратию, пуст у f и g еей общий инотичень b $k(x_1,...,x_n)[x_1]$. Тогда дие некоторох \widetilde{f}_1 , $\widetilde{g}_1 \in k(x_2,...,x_n)[x_1]$ тием f = h \widetilde{f}_1 и g = h \widetilde{g}_1 .

Pбозначим герез $d \in h$ $[x_2,...,x_n]$ общий значенатель \tilde{h} , \tilde{f}_1 и \tilde{g}_1 . Тогда $h = d\tilde{h}$, $f_1 = d\tilde{f}_1$, $g_1 = d\tilde{g}_1$

— unovorceror uz $k[x_1,...,x_n]$ u b nouse $k[x_1,...,x_n]$ unevoca poboucoba $d^2f=hf_1$, $d^2g=hg_1$

Teopena 6.2: Kamgorii nenocrosenurii f E k [21,..., 2,] nomer sous npegcichien

Dokayarence bo: (a) My meopeum 61 energyen, and, ease f neupubogus re gener renompais h_i :

(b) Cywysciobasuse paysomenus ocebuguo. Tyet $f = f_1 \dots f_r = g_1 \dots g_3$, 29e f_1 -ore u g_1 -ore respectogue. Ecu r = s, no s cusy (a) f_1 gent $g_{12} \in \{g_1, \dots, g_5\}$, 29e s cusy respectogueous $g_{12} \in k$; $g_2 \in \{g_1, \dots, g_5\} \setminus \{g_4\}$, 29e s cusy respectogueous $g_{12}/f_1 \in k$;

for gener $g_{ir} \in \{g_1,...,g_5\} \setminus \{g_{ir},...,g_{ir}\}$, $2g_i \in g_{ir}$ $g_{ir} \in$

6.2 Результанты

Tyest macococnessor

$$f(x) = a_0 x^{l} + a_1 x^{l-1} + ... + a_l$$

$$g(x) = b_0 x^{m} + b_1 x^{m-1} + ... + b_m$$

из k[x] имеют степень вит, соответствению.

Учвертдение в.1: Многочлена f и д имеют общий множитель гогда и только гогда, когда сущейвует многочлен h в k[x] отепени < l+m-1, к-оти дешти на оба многочлена (инами словами, когда пр-ва многочленов степени l+m-1 демахищию по отделености на f и д, имогот негривиамное пересечение).