21-740

Functional Analysis II

Fall 2013

Assignment 3

Due on Friday, November 8

- 1. Prove or Disprove: Let X be a Banach space, $\mathcal{D}(A)$, $\mathcal{D}(B) \subset X$, and A: $\mathcal{D}(A) \to X$, $B : \mathcal{D}(B) \to X$ be closed linear operators such that $\mathcal{R}(B) \subset \mathcal{D}(A)$. Then $AB : \mathcal{D}(B) \to X$ is closed.
- 2. Let X, Y be Banach spaces, $\mathcal{D}(A) \subset X$ and $A : \mathcal{D}(A) \to Y$ be a linear operator. Show that A is closable if and only if

$$\forall (x, y) \in \operatorname{cl}(Gr(A)), \quad x = 0 \Rightarrow y = 0.$$

3. Let $p \in [1, \infty)$ be given, put $\mathcal{D}(A) = \mathbb{K}^{(\mathbb{N})}$ and define $A : \mathcal{D}(A) \to X$ by

$$Ax = \left(\sum_{n=1}^{\infty} nx_n, x_2, x_3, x_4, \ldots\right)$$
 for all $x \in \mathcal{D}(A)$.

- (a) Is A closed?
- (b) Is A closable?
- 4. Prove or Disprove: Let X be a Banach space and let $T:[0,\infty)\to \mathcal{L}(X;X)$ be a linear C_0 -semigroup. Then

$$\forall t \in [0, \infty), \ T(t) \neq 0.$$

5. Let X be a Banach space and assume that $T:[0,\infty)\to \mathcal{L}(X;X)$ is a linear C_0 -semigroup with infinitesimal generator A. Let $N\in\mathbb{N}$ be given and construct Banach spaces

$$X_N \hookrightarrow X_{N-1} \hookrightarrow \cdots \hookrightarrow X_1 \hookrightarrow X_0$$

by

$$X_0 = X$$
, $||x||_0 = ||x||$ for all $x \in X_0$,

$$X_1 = \mathcal{D}(A), \quad ||x||_1 = ||x||_0 + ||Ax||_0 \quad \text{for all } x \in X_1,$$

and for all $n \in \{1, 2, \dots, N\}$

$$X_N = \{x \in X_{n-1} : Ax \in X_{n-1}\}, \quad ||x||_n = ||x||_{n-1} + ||Ax||_{n-1} \text{ for all } x \in X_n.$$

(a) Let $n \in \{0, 1, 2, \dots, N\}$ and $x \in X_n$ be given. Show that $T(t)x \in X_n$ for all $t \ge 0$.

(b) Let $x \in X_N$ be given and put

$$u(t) = T(t)x$$
 for all $t \ge 0$.

Show that for each $k \in \{0, 1, 2, \dots, N\}$ we have

$$u \in C^{N-k}([0,\infty); X_k).$$

- 6. Let X be a Banach space and $T:[0,\infty)\to \mathcal{L}(X;X)$ be a linear C_0 -semigroup with infinitesimal generator A. Let $L\in\mathcal{L}(X;X)$ be given. Show that A+L (with domain $\mathcal{D}(A)$) is the infinitesimal generator of a linear C_0 -semigroup.
- 7. Let X be a Banach space and assume that $T:[0,\infty)$ satisfies
 - (i) T(0) = I,
 - (ii) T(s+t) = T(s)T(t) for all $s, t \in [0, \infty)$,
 - (iii) For all $x \in X$ and $x^* \in X^*$ we have $x^*(T(t)x) \to x^*(x)$ as $t \to 0^+$.

Show that T is a linear C_0 -semigroup.

8. Let $X=L^2(\mathbb{R}).$ Put T(0)=I and for t>0 put

$$(T(t)u)(x) = \frac{1}{\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{t}} u(x-y) dy$$
, a.e. $x \in \mathbb{R}$.

Show that T is a linear C_0 -semigroup and find the infinitesimal generator.