

U.S. Department of Health & Human Services

Data from 2009-2010 indicates that over 78 million U.S. adults and about 12.5 million (16.9%) children and adolescents are obese

• Recent reports project that by 2030, half of all adults (115 million adults) in the United States will be obese.

 The annual cost of being overweight is \$524 for women and \$432 for men; annual costs for being obese are even higher: \$4,879 for women and \$2,646 for men.

https://www.hhs.gov/fitness/resource-center/facts-and-statistics/index.html

Potential Uses of Machine Learning Models

- Voice assistants (interactive Calorie prediction based on ingredients)
- Diet Apps (diet optimization)
- Food recommendation and automated food classification

What is Open Food Facts?

- It is a non-profit organization that maintains an open international database of products
- They also have data available in a csv format on: <u>Kaggle.com</u>
- Information about ingredients, origins, brands, retailers, categories and nutritional facts

• Quick demo:

https://world.openfoodfacts.org/product/0000020039127/butter-croissants-fresh-easy

Two Problems

1. Regression problem: can we predict energy content of a product if we only know its ingredients, category, and serving size?

2. Classification: can we correctly identify food categories based on nutritional information and serving size?

Energy is measured in kJ

1 Calorie = 4.184 kJ

Regression

- Two countries dominated the dataset: France and the US
- Eventually, the subset from the **US** was selected to narrow down the number of languages used for the ingredients

The target variable is not normally distributed

Non-linear transformations were attempted in the trial stages and not implemented in the final models

They did not lead to improvements in the best models

Energy per 100 g

Features

• 3650 binary features were for ingredient items that appear in the training set (ingredients text, one single string)

distilled vinegar		spice	onion powder	natural flavoring	whole grain oats*	noanut		sugar*	dextrose*	rice*	sunflower oil*	molasses*	maltode
False	False	True	True	False	False	False	False	False	False	False	False	False	False
False	False	False	False	False	False	False	False	False	False	False	False	False	False
False	False	False	False	False	False	False	False	False	False	False	False	False	False

Additional Features

• Serving size (high variation in measurements, e.g. grams, mls, cups, oz, table spoons etc.).

Food categories: dummies for categorical data

Metrics Used

RMSE (root mean square error)

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

MAE (mean absolute error)

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

• R²

Models Attempted

Linear Models:	Training Set Cross Validation	Test Set
----------------------------------	--------------------------------------	-----------------

Ridge Regression: 408.3 kJ 388.21

Lasso Regression: 448.62 kJ 428.78

Elastic Net: 405.91 kJ 387.73

Models Attempted

• Tree Models: Training Set Cross Validation Test Set

Random Forest: 334.76 kJ 320.92 kJ

XGBoost Regression: 326.05 kJ 330.70 kJ

Mean Absolute Error and R²

XGBoost: 179.85 kJ 0.8149

Random Forest: 169.22 kJ 0.8257

Best Result

• RMSE: 320.92 kJ (76 Calories) per 100 g

• MAE: 169.22 kJ (or 40.4 Calories) per 100 g

- * Nutella 2255 kJ per (539 Calories) per 100 g
- * Mixed-berry granola bar 1506 kJ (364 Calories) per 100 g
- * Iced green tea 71 kJ (17 Calories) per 100 g

Errors Analysis

Classifier

Currently, the dataset has 270624 uncategorized food items

 We could use machine learning to classify items based on their nutritional content and serving size

unknown	270624
Sugary snacks	15369
Beverages	13476
Milk and dairy products	10733
Cereals and potatoes	10097
Fish Meat Eggs	9473
Composite foods	7972
Fruits and vegetables	7861
Fat and sauces	7122
Salty snacks	3300

Tree Models Accuracy

Tree Models:	Training Set Cross Validation	Test Set
--------------	--------------------------------------	-----------------

Random Forest: 0.9027 0.87

XGBoost Classifier: 0.903 0.84

Confusion Matrix


```
forest_best.classes_
```

Confusion Matrix with the diagonal zeroed out and normalized rows

Improvements

- Initial categorization might not be precise:
 e.g. fish meat eggs and milk and dairy products were frequently confused by the model
- Other categories often get confused with composite foods

Photography Credits

All photographs used in the PowerPoint were taken by **Marc Bell**