CALCUL DIFFÉRENTIEL

Dans tout ce chapitre,

- E, F, G désignent des R-espaces vectoriels de dimensions finies;
- \mathcal{U} et \mathcal{V} désignent des **ouverts** respectifs de E et F.

1 Différentiabilité

1.1 Dérivabilité selon un vecteur

Définition 1.1 Dérivée selon un vecteur

Soient $f: \mathcal{U} \to F$, $a \in \mathcal{U}$ et $v \in E$. On dit que f est **dérivable en** a **selon le vecteur** v si l'application $\varphi_{a,v}: t \mapsto f(a+tv)$ est dérivable en 0. Dans ce cas, on appelle **dérivée de** f **en** a **selon le vecteur** v le vecteur $\varphi'_{a,v}(0)$, que l'on note $D_v f(a)$.

Remarque. Si on note $(f_1, ..., f_n)$ les coordonnées de $f: \mathcal{U} \to F$ dans une base $(\mathbf{f}_1, ..., \mathbf{f}_n)$ de F (i.e. $f_i = \mathbf{f}_i^* \circ g$), alors f est dérivable en a selon le vecteur v si et seulement si les f_i le sont. De plus,

$$D_{v}f(a) = \sum_{i=1}^{n} D_{v}f_{i}(a)\mathbf{f}_{i}$$

Exemple 1.1

L'application $f:(x,y)\in\mathbb{R}^2\mapsto(x^2+y^2,2xy)$ est dérivable en tout point $(a,b)\in\mathbb{R}^2$ selon tout vecteur $(u,v)\in\mathbb{R}^2$ et

$$D_{(u,v)}f(a,b) = 2(au+bv,av+bu)$$

Définition 1.2 Dérivées partielles dans une base

Soient $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de $\mathbf{E}, f \colon \mathcal{U} \to \mathbf{F}$ et $a \in \mathcal{U}$. On appelle **dérivées partielles** de f dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ les applications $\mathbf{D}_{\mathbf{e}_j} f$ si elles sont définies. On les note $\frac{\partial f}{\partial x_j}$ ou $\partial_j f$.

Remarque. Si $E = \mathbb{R}^p$ et qu'on ne précise pas la base dans laquelle on considère les dérivées partielles, c'est qu'on considère implicitement la base canonique de \mathbb{R}^p .

REMARQUE. Si on note $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de E et (f_1, \dots, f_n) les coordonnées de $f : \mathcal{U} \to F$ dans une base $(\mathbf{f}_1, \dots, \mathbf{f}_n)$ de F (i.e. $f_i = \mathbf{f}_i^* \circ g$), alors g admet des dérivées partielles en a dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ si et seulement si c'est également le cas pour les f_i . De plus,

$$\forall j \in [1, p], \ \partial_j f(a) = \sum_{i=1}^n \partial_j f_i(a) \mathbf{f}_i$$

1

Remarque. Si $E = \mathbb{R}^2$, les variables d'une application $f : \mathbb{R}^2 \to F$ sont notées plus volontiers x et y que x_1 et x_2 . Les dérivées partielles dans la base canonique de \mathbb{R}^2 seront alors notées $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ plutôt que $\frac{\partial f}{\partial x_1}$ et $\frac{\partial f}{\partial x_2}$ ou $\partial_1 f$ et $\partial_2 f$. De même, si $E = \mathbb{R}^3$, les dérivées partielles dans la base canonique seront plutôt notées $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ et $\frac{\partial f}{\partial z}$.

Méthode | Calculer des dérivées partielles

Lorsque $E = \mathbb{R}^p$ et $F = \mathbb{R}^n$, il est très aisé de calculer des dérivées partielles dans la base canonique. Il suffit de dériver chaque composante de la fonction par rapport à une variable les autres étant fixées.

Autrement dit, $\frac{\partial f}{\partial x_i}$ est la dérivée de l'application $x_j \mapsto f(x_1, \dots, x_n)$.

Exemple 1.2

L'application $f:(x,y)\in\mathbb{R}^2\mapsto(x^2+y^2,2xy)$ admet des dérivées partielles dans la base canonique de \mathbb{R}^2 en tout point $(a,b) \in \mathbb{R}^2$ et

$$\frac{\partial f}{\partial x}(a,b) = 2(a,b)$$
 et $\frac{\partial f}{\partial y}(a,b) = 2(b,a)$

Exemple 1.3

On pose $\mathcal{U} = \{(x, y, z) \in \mathbb{R}^3, x + y^2 > 0\}$. L'application $f: (x, y, z) \in \mathcal{U} \mapsto (\ln(x + y^2), e^{xz})$ admet des dérivées

$$\frac{\partial f}{\partial x}(x,y,z) = \left(\frac{1}{x+y^2}, ze^{xz}\right) \qquad \qquad \frac{\partial f}{\partial y}(x,y,z) = \left(\frac{2y}{x+y^2}, 0\right) \qquad \qquad \frac{\partial f}{\partial z}(x,y,z) = (0,xe^{xz})$$

Exemple 1.4

Les applications π_i : $(x_1,\ldots,x_p)\in\mathbb{R}^p\mapsto x_i$ admettent des dérivées partielles en tout point de \mathbb{R}^p et

$$\frac{\partial \pi_i}{\partial x_j}(x_1, \dots, x_p) = \delta_{i,j}$$

ATTENTION! Une fonction peut admettre des dérivées partielles sans être continue.

Exemple 1.5

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{xy}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f admet des dérivées partielles en tout point de \mathbb{R}^2 mais n'est pas continue en (0,0).

• Par opérations, f admet clairement des dérivées partielles en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. De plus,

$$\forall x \in \mathbb{R}^*, \ \frac{f(x,0) - f(0,0)}{x - 0} = 0$$
 et $\forall y \in \mathbb{R}^*, \ \frac{f(0,y) - f(0,0)}{y - 0} = 0$

donc
$$\frac{\partial f}{\partial x}(0,0)$$
 et $\frac{\partial f}{\partial y}(0,0)$ existent et $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$.

• Par contre, f n'est pas continue en (0,0) puisque, par exemple,

$$\forall t \in \mathbb{R}^*, \ f(t,t) = \frac{1}{2}$$

Ainsi $(t,t) \xrightarrow[t\to 0]{} (0,0)$ mais $f(t,t) \xrightarrow[t\to 0]{} \frac{1}{2} \neq f(0,0)$.

ATTENTION! Une fonction peut même admettre des dérivées directionnelles selon tout vecteur sans être continue.

Exemple 1.6

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{xy^2}{x^2 + y^4} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f admet des dérivées directionnelles selon tout vecteur en tout point de \mathbb{R}^2 mais n'est pas continue en (0,0).

• Par opérations, f admet clairement des dérivées directionnelles selon tout vecteur en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. Soit u = (h,k) un vecteur non nul de \mathbb{R}^2 . Alors

$$\forall t \in \mathbb{R}^*, \ \frac{f(tu) - f(0,0)}{t} = \frac{hk^2}{h^2 + t^2k^4} \xrightarrow[t \to 0]{} \begin{cases} \frac{k^2}{h} & \text{si } k \neq 0 \\ 0 & \text{si } k = 0 \end{cases}$$

Donc f admet bien une dérivée directionnelle selon le vecteur u en (0,0).

• Par contre, f n'est pas continue en (0,0) puisque, par exemple,

$$\forall t \in \mathbb{R}^*, \ f(t^2, t) = \frac{1}{2}$$

Ainsi $(t^2, t) \xrightarrow[t \to 0]{} (0, 0)$ mais $f(t^2, t) \xrightarrow[t \to 0]{} \frac{1}{2} \neq f(0, 0)$.

1.2 Différentiabilité

Notation 1.1 Négligeabilité

Soit $f: \mathcal{U} \to F$. On suppose que $0_E \in \mathcal{U}$. Ecrire que f(h) = o(h) signifie que $\lim_{h \to 0_E} \frac{f(h)}{\|h\|} = 0_F$.

Remarque. Les normes que l'on choisit sur E et F n'importent pas car toutes les normes sur un espace de dimension finie sont équivalentes.

Définition 1.3 Développement limité à l'ordre 1

Soit $f: \mathcal{U} \to F$. Une écriture du type

$$f(a+h) = c + L(h) + o(h)$$

avec $c \in F$ et $L \in \mathcal{L}(E, F)$ s'appelle un **développement limité** de f à l'ordre 1 en a. Si un tel développement limité existe, il est unique i.e. le vecteur c et l'application linéaire L sont uniques.

REMARQUE. Ceci signifie que

$$\lim_{h\to 0_{\mathrm{E}}}\frac{f(a+h)-c-\mathrm{L}(h)}{\|h\|}=0_{\mathrm{F}}$$

Définition 1.4 Différentiabilité en un point

Soit $f: \mathcal{U} \to F$. On dit que f est **différentiable** en $a \in \mathcal{U}$ si f admet un développement limité à l'ordre 1 en a. Dans ce cas, il existe une unique application linéaire $L \in \mathcal{L}(E, F)$ telle que

$$f(a+h) = f(a) + L(h) + o(h)$$

Cette application linéaire s'appelle la **différentielle** de f en a et se note df(a).

REMARQUE. La différentielle de f en a est également appelée l'application linéaire tangente à f en a.

REMARQUE. Par souci de lisibilité, l'image d'un vecteur v par la différentielle de f en a se notera $df(a) \cdot v$ plutôt que df(a)(v).

Proposition 1.1

Si on note $(f_1, ..., f_n)$ les coordonnées de $f: \mathcal{U} \to F$ dans une base $(\mathbf{f}_1, ..., \mathbf{f}_n)$ de F (i.e. $f_i = \mathbf{f}_i^* \circ g$), alors f différentiable en a si et seulement si les f_i le sont. De plus,

$$\forall v \in E, \ df(a) \cdot v = \sum_{i=1}^{n} (df_i(a) \cdot v) \mathbf{f}_i$$

Exemple 1.7

Soit $f:(x,y) \in \mathbb{R}^2 \mapsto (x^2 + y^2, 2xy)$ Soit $(a,b) \in \mathbb{R}^2$.

$$\forall (h,k) \in \mathbb{R}^2, \ f((a,b)+(h,k)) = f(a,b) + 2(ah+bk,bh+ak) + (h^2+k^2,2hk)$$

L'application

L:
$$\begin{cases} \mathbb{R}^2 & \longrightarrow \mathbb{R}^2 \\ (h,k) & \longmapsto 2(ah+bk,bh+ak) \end{cases}$$

est bien linéaire et

$$(h^2 + k^2, 2hk) = o((h,k))$$

En effet, si l'on munit \mathbb{R}^2 de la norme définie par ||(u,v)|| = |u| + |v|

$$||(h^2 + k^2, 2hk)|| = (|h| + |k|)^2 = ||(h, k)||^2$$

de sorte que

$$\frac{\|(h^2 + k^2, 2hk)\|}{\|(h, k)\|} = \|(h, k)\| \underset{(h, k) \to (0, 0)}{\longrightarrow} 0$$

On en déduit que f est différentiable en (a,b) et que df(a,b) est l'endomorphisme $(h,k) \in \mathbb{R}^2 \mapsto 2(ah+bk,bh+ak)$.

Exemple 1.8 Différentielle de l'inversion matricielle

On considère l'application $f: M \in GL_n(\mathbb{R}) \mapsto M^{-1}$. On va montrer que f est différentiable sur $GL_n(\mathbb{R})$ et calculer sa différentielle.

Soit $M \in GL_n(\mathbb{R})$. Comme $GL_n(\mathbb{R})$ est ouvert, il existe un voisinage \mathcal{V} de 0 tel que M+H est inversible pour tout $H \in \mathcal{V}$. Remarquons maintenant que

$$f(M+H) - f(M) = (M+H)^{-1} - M^{-1} = (M+H)^{-1}(I_n - (M+H)M^{-1}) = -(M+H)^{-1}HM^{-1}$$

puis

$$\begin{split} f(\mathbf{M} + \mathbf{H}) - f(\mathbf{M}) + \mathbf{M}^{-1}\mathbf{H}\mathbf{M}^{-1} &= \mathbf{M}^{-1}\mathbf{H}\mathbf{M}^{-1} - (\mathbf{M} + \mathbf{H})^{-1}\mathbf{H}\mathbf{M}^{-1} \\ &= (\mathbf{M} + \mathbf{H})^{-1}((\mathbf{M} + \mathbf{H})\mathbf{M}^{-1} - \mathbf{I}_n)\mathbf{H}\mathbf{M}^{-1} \\ &= f(\mathbf{M} + \mathbf{H})(\mathbf{H}\mathbf{M}^{-1})^2 \end{split}$$

On munit $\mathcal{M}_n(\mathbb{R})$ d'une norme d'algèbre $\|\cdot\|$ de sorte que

$$||f(M + H)(HM^{-1})^2|| \le ||f(M + H)|| ||M^{-1}||^2 ||H||^2$$

puis pour $H \in \mathcal{V} \setminus \{0\}$,

$$\frac{\|f(\mathbf{M} + \mathbf{H})(\mathbf{H}\mathbf{M}^{-1})^2\|}{\|\mathbf{H}\|} \le \|f(\mathbf{M} + \mathbf{H})\| \|\mathbf{M}^{-1}\|^2 \|\mathbf{H}\|$$

f est continue sur $GL_n(\mathbb{R})^a$ donc $\lim_{H\to 0} f(M+H) = f(M)$ puis $\lim_{H\to 0} \|f(M+H)\| = \|f(M)\|$. On en déduit que

$$\lim_{H \to 0} \frac{\|f(M + H)(HM^{-1})^2\|}{\|H\|} = 0$$

ou encore

$$f(M + H)(HM^{-1})^2 = o(H)$$

Finalement,

$$f(M + H) = f(M) - M^{-1}HM^{-1} + o(H)$$

L'application $H \mapsto -M^{-1}HM^{-1}$ est clairement linéaire : f est donc différentiable en M et df(M) est l'application $H \mapsto -M^{-1}HM^{-1}$.

Proposition 1.2

Si $f: \mathcal{U} \to F$ est **différentiable** en $a \in \mathcal{U}$, alors

- f est continue en a;
- f admet des dérivées en a selon tout vecteur $v \in E$;
- $\forall v \in E$, $df(a) \cdot v = D_v f(a)$.

^aClassique : utiliser la formule de la comatrice.

Définition 1.5 Différentiabilité sur un ouvert

Soit $f: \mathcal{U} \to F$. On dit que f est **différentiable** sur \mathcal{U} si f est différentiable en tout point de \mathcal{U} . L'application

$$\mathrm{d}f: \left\{ \begin{array}{ccc} \mathcal{U} & \longrightarrow & \mathcal{L}(\mathrm{E},\mathrm{F}) \\ a & \longmapsto & \mathrm{d}f(a) \end{array} \right.$$

s'appelle la **différentielle** de f sur \mathcal{U} .

Proposition 1.3 Cas particuliers

Soit $f: \mathcal{U} \to F$.

- Si f est constante sur \mathcal{U} , alors f est différentiable sur \mathcal{U} et df est nulle sur \mathcal{U} .
- Si f est la restriction à \mathcal{U} d'une **application linéaire** de E dans F, alors f est différentiable sur \mathcal{U} et pour tout $a \in \mathcal{U}$, df(a) = f.
- Si \mathcal{U} est un intervalle ouvert de $E = \mathbb{R}$, alors f est différentiable en $a \in \mathcal{U}$ si et seulement si f est dérivable en a et, dans ce cas, $f'(a) = \mathrm{d} f(a) \cdot 1$ ou encore $\mathrm{d} f(a) \cdot h = f'(a)h$ pour tout $h \in \mathbb{R}$.

Exemple 1.9

Les applications π_i : $(x_1, \dots, x_p) \in \mathbb{R}^p \mapsto x_i$ sont différentiables sur \mathbb{R}^p et $d\pi_i = \pi_i$.

1.3 Lien avec les dérivées partielles

Proposition 1.4 Lien entre différentielle et dérivées partielles

Soient $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de E et $f: \mathcal{U} \to F$. Si f est **différentiable** en a, alors f admet des **dérivées partielles** en a dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ et

$$\forall v \in E, \ df(a) \cdot v = \sum_{j=1}^{p} \partial_{j} f(a) \mathbf{e}_{j}^{*}(v)$$

ou plus simplement

$$\mathrm{d}f(a) = \sum_{j=1}^{p} \partial_{j} f(a) \mathbf{e}_{j}^{*}$$

Remarque. On en déduit un lien entre les dérivées directionnelles et les dérivées partielles si la fonction est **différentiable**. En effet

$$\forall v \in E, \ D_v f(a) = df(a) \cdot v = \sum_{j=1}^p \partial_j f(a) \mathbf{e}_j^*(v)$$

Remarque. Dans le cas où $E = \mathbb{R}^n$, les formes linéaires $(x_1, \dots, x_n) \in \mathbb{R}^n \mapsto x_i$ sont souvent notées dx_i . Dans ce cas, on peut écrire pour $f : \mathcal{U} \mapsto F$ différentiable en $a \in \mathcal{U}$,

$$df(a) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a) dx_i$$

Exemple 1.10

Soit $f:(x,y) \in \mathbb{R}^2 \mapsto (x^2 + y^2, 2xy)$ Soit $(a,b) \in \mathbb{R}^2$. On a vu que

$$\frac{\partial f}{\partial x}(a, b) = 2(a, b)$$
 et $\frac{\partial f}{\partial y}(a, b) = 2(b, a)$

Comme f est différentiable sur \mathbb{R}^2 ,

$$df(a,b) \cdot (h,k) = 2h(a,b) + 2k(b,a) = 2(ah + bk, bh + ak)$$

ATTENTION! Une fonction peut-être continue et admettre des dérivées selon tout vecteur sans pour autant être différentiable.

Exemple 1.11

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f admet des dérivées partielles en tout point de \mathbb{R}^2 mais n'est pas différentiable en (0,0).

• Par opérations, f est clairement continue sur $\mathbb{R}^2 \setminus \{(0,0)\}$. Par ailleurs, on a classiquement $|xy| \leq \frac{1}{2}(x^2 + y^2)$ donc

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \ |f(x,y)| \le \frac{1}{2}|y|$$

On en déduit que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$$

donc f est continue en (0,0).

• Par opérations, f admet clairement des dérivées directionnelles selon tout vecteur en tout point de $\mathbb{R}^2 \setminus \{(0,0)\}$. Soit u = (h,k) un vecteur non nul de \mathbb{R}^2 . Alors

$$\forall t \in \mathbb{R}^*, \ \frac{f(tu) - f(0,0)}{t} = f(h,k) = f(u)$$

Ainsi f admet une dérivée en (0,0) selon le vecteur u et $D_u f(0,0) = f(u)$.

• Si f était différentiable en (0,0), alors on aurait

$$\forall u = (h, k) \in \mathbb{R}^2, \ \mathrm{D}_u f(0, 0) = h \frac{\partial f}{\partial x}(0, 0) + k \frac{\partial f}{\partial y}(0, 0) = h \mathrm{D}_{(1, 0)} f(0, 0) + k \mathrm{D}_{(0, 1)} f(0, 0) = 0$$

Mais, par exemple, $D_{(1,1)}f(0,0) = \frac{1}{2} \neq (0,0)$.

Proposition 1.5 Matrice d'une différentielle dans un couple de bases

Soient $\mathcal{E} = (\mathbf{e}_1, \dots, \mathbf{e}_p)$ une base de E, $\mathcal{F} = (\mathbf{f}_1, \dots, \mathbf{f}_n)$ une base de F et $f : \mathcal{U} \to F$. Notons (f_1, \dots, f_n) les coordonnées de f dans la base $(\mathbf{f}_1, \dots, \mathbf{f}_n)$ (i.e. $f_i = \mathbf{f}_i^* \circ g$).

Si f est différentiable en $a \in \mathcal{U}$, alors la matrice de df(a) dans les bases \mathcal{E} et \mathcal{F} est $(\partial_j f_i(a))_{1 \le i \le n}$.

Définition 1.6 Matrice jacobienne

Supposons $E = \mathbb{R}^n$ et $F = \mathbb{R}^p$. Si $f : \mathcal{U} \to \mathbb{R}^n$ est différentiable en a, la matrice de df(a) dans les bases canoniques de \mathbb{R}^p et \mathbb{R}^n s'appelle la **matrice jacobienne** de f en a.

Exemple 1.12

L'application $f:(x,y) \in \mathbb{R}^2 \mapsto (x^2+y^2,xy)$ est différentiable sur \mathbb{R}^2 . Sa matrice jacobienne en un point $(a,b) \in \mathbb{R}^2$ est $\begin{pmatrix} 2a & 2b \\ b & a \end{pmatrix}$.

Exemple 1.13

On pose $\mathcal{U} = \{(x, y, z) \in \mathbb{R}^3, \ x + y^2 > 0\}$. L'application $f: (x, y, z) \in \mathcal{U} \mapsto (\ln(x + y^2), e^{xz})$ est différentiable sur \mathcal{U} . Sa matrice jacobienne en un point $(x, y, z) \in \mathcal{U}$ est $\begin{pmatrix} \frac{1}{x + y^2} & \frac{2y}{x + y^2} & 0 \\ ze^{xz} & 0 & xe^{xz} \end{pmatrix}$.

1.4 Gradient d'une fonction numérique

Dans ce paragraphe, $F = \mathbb{R}$.

Définition 1.7 Gradient

On suppose que E est un espace euclidien. Soit $f:\mathcal{U}\to\mathbb{R}$. Si f est différentiable en $a\in\mathcal{U}$, on appelle **gradient** de f en a, l'unique vecteur $\nabla f(a)$ de E tel que

$$\forall v \in E, \ df(a) \cdot v = \langle \nabla f(a), v \rangle$$

Remarque. On peut toujours munir un \mathbb{R} -espace vectoriel de dimension finie d'une structure d'espace euclidien. En effet, si $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ est une base de \mathbb{E} , l'application

$$(x, y) \in E^2 \mapsto \sum_{k=1}^p \mathbf{e}_k^*(x) \mathbf{e}_k^*(y)$$

est un produit scalaire. De plus, $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ est alors une base orthonormale pour ce produit scalaire.

Exemple 1.14 Gradient du carré de la norme

Soit E un espace euclidien. Posons $f: x \in E \mapsto ||x||^2$. Fixons $a \in E$.

$$\forall h \in E$$
, $f(a+h) = f(a) + 2\langle a, h \rangle + ||h||^2$

donc

$$f(a+h) = f(a) + 2\langle a, h \rangle + o(h)$$

Ainsi f est différentiable en a et $\nabla f(a) = 2a$.

Proposition 1.6 Coordonnées du gradient dans une base orthonormale

On suppose que E est un espace euclidien. Soit $f:\mathcal{U}\to\mathbb{R}$ différentiable en $a\in\mathcal{U}$. Les coordonnées de $\nabla f(a)$ dans une base orthonormale $(\mathbf{e}_1,\ldots,\mathbf{e}_p)$ de E sont les dérivées partielles de f dans cette base :

$$\nabla f(a) = \sum_{j=1}^{p} \partial_j f(a) \mathbf{e}_j$$

Remarque. Si $E = \mathbb{R}^p$ est muni de son produit scalaire usuel, la base canonique est orthonormale. Par conséquent, si $f: \mathcal{U} \to \mathbb{R}$ est différentiable en $a \in \mathcal{U}$, alors

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_j}(a)\right)_{1 \le j \le n}$$

Interprétation géométrique du gradient

Si $\nabla f(a) \neq 0_E$, $\nabla f(a)$ est colinéaire et de même sens que le vecteur unitaire selon lequel la dérivée de f en a est maximale. Il suffit en effet de remarquer que pour tout vecteur v unitaire

$$D_{v}f(a) = \langle \nabla f(a), v \rangle \le ||\nabla f(a)|| ||v|| = ||\nabla f(a)||$$

avec égalité si et seulement si v et $\nabla f(a)$ sont colinéaires et de même sens (inégalité de Cauchy-Schwarz et cas d'égalité).

Exemple 1.15

Considérons l'application $f:(x,y) \in \mathbb{R}^2 \mapsto x^2 + y^2$. f est différentiable sur \mathbb{R}^2 car polynomiale. On munit \mathbb{R}^2 de son produit scalaire usuel de sorte que la base canonique de \mathbb{R}^2 est orthonormale. Alors

$$\nabla f(x,y) = \left(\frac{\partial f}{\partial x}(x,y), \frac{\partial f}{\partial y}(x,y)\right) = (2x,2y)$$

On peut retrouver la différentielle de f.

$$\forall (h,k) \in \mathbb{R}^2, \ df(x,y) \cdot (h,k) = \langle \nabla f(x,y), (h,k) \rangle = 2(xh+yk)$$

Exemple 1.16 Gradient et différentielle du déterminant

On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire usuel $(A, B) \mapsto \operatorname{tr}(A^T B)$ et on considère l'application det : $M \in \mathcal{M}_n(\mathbb{R}) \mapsto \operatorname{det}(M)$. Cette application est différentiable sur $\mathcal{M}_n(\mathbb{R})$ car polynomiale en les coefficients de la matrice. Fixons $M \in \mathcal{M}_n(\mathbb{R})$ ainsi que $j \in [1, n]$. En développant le $\operatorname{det}(M)$ par rapport à sa $j^{\text{ème}}$ colonne, on obtient

$$\det(\mathbf{M}) = \sum_{i=1}^{n} \mathbf{M}_{i,j} \operatorname{com}(\mathbf{M})_{i,j}$$

Comme chacun des coefficients $com(M)_{i,j}$ pour $i \in [[1,n]]$ est indépendant des coefficients $M_{1,j}, \dots, M_{n,j}$, on en déduit notamment que

$$\forall (i, j) \in [[1, n]]^2, \ \partial_{(i,j)} \det(M) = com(M)_{i,j}$$

où les $\partial_{(i,j)}$ det désignent les dérivées partielles de det dans la base canonique $(E_{i,j})_{1 \leq i,j \leq n}$ de $\mathcal{M}_n(\mathbb{R})$. Comme cette base est orthonormée,

$$\nabla \det(\mathbf{M}) = \sum_{1 \le i, j \le n} \operatorname{com}(\mathbf{M})_{i, j} \mathbf{E}_{i, j} = \operatorname{com}(\mathbf{M})$$

On peut alors retrouver la différentielle du déterminant :

$$\forall H \in \mathcal{M}_n(\mathbb{R}), \ d(\det)(M) \cdot H = \langle \nabla \det(M), H \rangle = tr(com(M)^T H)$$

2 Opérations sur les fonctions différentiables

Proposition 2.1 Combinaison linéaire

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{U} \to F$. Si f et g sont différentiables en $a \in \mathcal{U}$, alors pour tout $(\lambda, \mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est différentiable en a et $d(\lambda f + \mu g)(a) = \lambda df(a) + \mu dg(a)$.

Proposition 2.2

Soient F_1, \ldots, F_p des \mathbb{R} -espaces vectoriels de dimensions finies, f_1, \ldots, f_p des applications de \mathcal{U} à valeurs respectivement dans F_1, \ldots, F_p et $M: \prod_{i=1}^p F_i \mapsto G$ une application multilinéaire. Si f_1, \ldots, f_p sont différentiables en $a \in \mathcal{U}$, alors $M(f_1, \ldots, f_p)$ est différentiable en a et

$$d(M(f_1, ..., f_p))(a) = M(df_1(a), f_2(a), ..., f_p(a)) + M(f_1(a), df_2(a), ..., f_p(a)) + ... + M(f_1(a), ..., f_{p-1}(a), df_p(a))$$

REMARQUE. De manière plus claire,

$$\forall h \in E, \ d(M(f_1, ..., f_p))(a) \cdot h = M(df_1(a) \cdot h, f_2(a), ..., f_p(a)) + ... + M(f_1(a), ..., f_{p-1}(a), df_p(a) \cdot h)$$

Exemple 2.1

Soit f un endomorphisme d'un espace euclidien E. Posons $\varphi(x) = \langle f(x), x \rangle$ pour tout $x \in E$. Comme f et Id_E sont différentiables sur E en tant qu'applications linéaires, φ est également différentiable sur E car le produit scalaire est bilinéaire. De plus, $\mathrm{d}f(x) = f$ et $\mathrm{d}\mathrm{Id}_E(x) = \mathrm{Id}_E$ pour tout $x \in E$ de sorte que

$$\forall (x,h) \in E^2, \ d\varphi(x) \cdot h = \langle f(h), x \rangle + \langle f(x), h \rangle$$

Proposition 2.3 Composition

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{V} \to G$ telles que $f(\mathcal{U}) \subset \mathcal{V}$. Si f est différentiable en $a \in \mathcal{U}$ et g est différentiable en f(a), alors $g \circ f$ est différentiable en a et $d(g \circ f)(a) = dg(f(a)) \circ df(a)$.

REMARQUE. Soient \mathcal{E} une base de E, \mathcal{F} une base de F et \mathcal{G} une base de G. Si A est la matrice de df(a) dans les bases de \mathcal{E} et \mathcal{F} et B est la matrice de dg(f(a)) dans les bases \mathcal{E} et \mathcal{G} , alors BA est la matrice de $d(g \circ f)(a)$ dans les bases \mathcal{E} et \mathcal{G} .

Corollaire 2.1 Dérivée le long d'un arc

Soient I un intervalle de \mathbb{R} , $\gamma: I \to E$ et $f: \mathcal{U} \to F$ telles que $\gamma(I) \subset \mathcal{U}$. Si γ est dérivable en $t \in I$ et f est différentiable en $\gamma(t)$, alors $f \circ \gamma$ est dérivable en t et $(f \circ \gamma)'(t) = \mathrm{d}f(\gamma(t)) \cdot \gamma'(t)$.

Exemple 2.2 Dérivée le long d'une droite

Si $\gamma(t) = x + th$, alors $(f \circ \gamma)'(t) = df(\gamma(t)) \cdot h = D_h f(\gamma(t))$.

Exemple 2.3

Si $E = \mathbb{R}^p$ et $\gamma = (x_1, \dots, x_p)$, alors

$$(f \circ \gamma)'(t) = \sum_{i=1}^{p} x_j'(t) \frac{\partial f}{\partial x_j}(\gamma(t))$$

Corollaire 2.2 Dérivées partielles d'une composée

Soient $f: \mathcal{U} \to \mathrm{F}\,\mathrm{et}\,g: \mathcal{V} \to \mathrm{G}\,\mathrm{telles}\,\mathrm{que}\,f(\mathcal{U}) \subset \mathcal{V}.$ On note $\frac{\partial f}{\partial x_j}$ les dérivées partielles de f dans une base $(\mathbf{e}_1,\dots,\mathbf{e}_p)$ de

E et $\frac{\partial g}{\partial y_i}$ les dérivées partielles de g dans une base $(\mathbf{f}_1, \dots, \mathbf{f}_n)$ de F. Si f est différentiable en $a \in \mathcal{U}$ et si g est différentiable en f(a), alors $g \circ f$ admet des dérivées partielles en a dans la base $(\mathbf{e}_1, \dots, \mathbf{e}_p)$ et

$$\forall j \in \llbracket 1, p \rrbracket, \ \partial_j(g \circ f)(a) = \sum_{i=1}^n \partial_i g(f(a)) \partial_j f_i(a)$$

où (f_1,\ldots,f_n) désignent les coordonnées de f dans la base $(\mathbf{f}_1,\ldots,\mathbf{f}_n)$ (i.e. $f_i=\mathbf{f}_i^*\circ f$).

Méthode Règle de la chaîne

Soient x_1, \ldots, x_n sont des fonctions différentiables sur un ouvert \mathcal{U} de \mathbb{R}^m à valeurs dans \mathbb{R} et f est une fonction différentiable sur un ouvert \mathcal{V} de \mathbb{R}^n . On suppose de plus que $(x_1, \ldots, x_n)(\mathcal{U}) \subset \mathcal{V}$. Alors

$$\forall j \in \llbracket 1,m \rrbracket, \ \frac{\partial f}{\partial u_j}(u_1,\ldots,u_m) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_1(u_1,\ldots,u_m),\ldots,x_n(u_1,\ldots,u_m)) \frac{\partial x_i}{\partial u_j}(u_1,\ldots,u_m)$$

où on considère les dérivées partielles dans les bases canoniques de \mathbb{R}^m et \mathbb{R}^n .

Par abus de notation, on pourra tout simplement écrire

$$\forall j \in [1, m], \ \frac{\partial f}{\partial u_j} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \frac{\partial x_i}{\partial u_j}$$

à condition de bien comprendre ce que l'on manipule.

Exemple 2.4 Coordonnées polaires

Soit f différentiable sur \mathbb{R}^2 . On pose

$$\forall (r, \theta) \in \mathbb{R}^2, \ g(r, \theta) = f(x(r, \theta), y(r, \theta))$$

avec

$$x(r, \theta) = r \cos \theta$$
 et $y(\theta) = r \sin \theta$

D'après la règle de la chaîne :

$$\begin{split} \frac{\partial g}{\partial r}(r,\theta) &= \frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta))\frac{\partial x}{\partial r}(r,\theta) + \frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta))\frac{\partial y}{\partial r}(r,\theta) \\ &= \cos\theta\frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta)) + \sin\theta\frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta)) \\ \frac{\partial g}{\partial \theta}(r,\theta) &= \frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta))\frac{\partial x}{\partial \theta}(r,\theta) + \frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta))\frac{\partial y}{\partial \theta}(r,\theta) \\ &= -r\sin\theta\frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta)) + r\cos\theta\frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta)) \end{split}$$

Inversement, pour $r \neq 0$,

$$\begin{split} \frac{\partial f}{\partial x}(x(r,\theta),y(r,\theta)) &= \cos\theta \frac{\partial g}{\partial r}(r,\theta) - \frac{\sin\theta}{r} \frac{\partial g}{\partial \theta}(r,\theta) \\ \frac{\partial f}{\partial y}(x(r,\theta),y(r,\theta)) &= \sin\theta \frac{\partial g}{\partial r}(r,\theta) + \frac{\cos\theta}{r} \frac{\partial g}{\partial \theta}(r,\theta) \end{split}$$

Exemple 2.5 Gradient en coordonnées polaires

Soit f différentiable sur \mathbb{R}^2 . On pose

$$\forall (r, \theta) \in \mathbb{R}^2, \ g(r, \theta) = f(x(r, \theta), y(r, \theta))$$

avec

$$x(r, \theta) = r \cos \theta$$
 et $y(\theta) = r \sin \theta$

On a montré précédemment que, pour $r \neq 0$,

$$\frac{\partial g}{\partial r}(r,\theta) = \cos\theta \frac{\partial f}{\partial x}(x(r,\theta), y(r,\theta)) + \sin\theta \frac{\partial f}{\partial y}(x(r,\theta), y(r,\theta))$$
$$\frac{1}{r} \frac{\partial g}{\partial \theta}(r,\theta) = -\sin\theta \frac{\partial f}{\partial x}(x(r,\theta), y(r,\theta)) + \cos\theta \frac{\partial f}{\partial y}(x(r,\theta), y(r,\theta))$$

En notant R la matrice de rotation d'angle θ , on a donc

$$\begin{pmatrix} \frac{\partial g}{\partial r}(r,\theta) \\ \frac{1}{r} \frac{\partial g}{\partial \theta}(r,\theta) \end{pmatrix} = \mathbf{R}^{-1} \nabla f(x(r,\theta), y(r,\theta))$$

Ainsi en posant

$$\mathbf{u}_{\theta} = (\cos \theta, \sin \theta)$$
 et $\mathbf{v}_{\theta} = (-\sin \theta, \cos \theta)$

les coordonnées de $\nabla f(x(r,\theta),y(r,\theta))$ dans la base orthonormé $(\mathbf{u}_{\theta},\mathbf{v}_{\theta})$ sont

$$\left(\frac{\partial g}{\partial r}(r,\theta), \frac{1}{r}\frac{\partial g}{\partial \theta}(r,\theta)\right)$$

3 Applications de classe C^k

3.1 Applications de classe \mathcal{C}^1

Définition 3.1 Application de classe C^1

Soit $f: \mathcal{U} \to F$. On dit que f est de classe \mathcal{C}^1 sur \mathcal{U} si elle est différentiable sur \mathcal{U} et si df est continue sur \mathcal{U} .

Théorème 3.1 Classe \mathcal{C}^1 et dérivées partielles

Soit $f: \mathcal{U} \to F$. Alors f est de classe \mathcal{C}^1 sur \mathcal{U} si et seulement si

- f admet des dérivées partielles (dans une certaine base de E) en tout point de \mathcal{U} ;
- ces dérivées partielles sont continues sur \mathcal{U} .

ATTENTION! Une fonction peut-être différentiable sans qu'elle soit de classe \mathcal{C}^1 . Notamment, les dérivées partielles d'une application différentiable ne sont pas nécessairement continues.

Exemple 3.1

Considérons la fonction

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{x^2 + y^2}\right) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Alors f est différentiable en (0,0) mais ses dérivées partielles n'y sont pas continues.

• Si l'on munit \mathbb{R}^2 de la norme euclidienne,

$$\forall (x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}, \ f(x,y) = \|(x,y)\|^2 \sin\left(\frac{1}{\|(x,y)\|^2}\right)$$

Comme sin est bornée, il est clair que f(x, y) = o((x, y)). Ainsi f est bien différentiable en (0, 0) et df(0, 0) est nulle.

• Tout d'abord, pour tout $(x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\},\$

$$\frac{\partial f}{\partial x}(x,y) = 2x \sin\left(\frac{1}{x^2 + y^2}\right) - \frac{2x}{x^2 + y^2} \cos\left(\frac{1}{x^2 + y^2}\right)$$
$$\frac{\partial f}{\partial y}(x,y) = 2y \sin\left(\frac{1}{x^2 + y^2}\right) - \frac{2y}{x^2 + y^2} \cos\left(\frac{1}{x^2 + y^2}\right)$$

De plus,

$$\frac{f(x,0) - f(0,0)}{x - 0} = x \sin\left(\frac{1}{x^2}\right) \xrightarrow[x \to 0]{} 0$$
$$\frac{f(0,y) - f(0,0)}{y - 0} = y \sin\left(\frac{1}{y^2}\right) \xrightarrow[y \to 0]{} 0$$

Donc $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Pourtant,

$$\forall x \in \mathbb{R}^*, \ \frac{\partial f}{\partial x}(x,0) = 2x \sin\left(\frac{1}{x^2}\right) - \frac{2}{x} \cos\left(\frac{1}{x^2}\right)$$
$$\forall y \in \mathbb{R}^*, \ \frac{\partial f}{\partial x}(0,y) = 2y \sin\left(\frac{1}{v^2}\right) - \frac{2}{v} \cos\left(\frac{1}{v^2}\right)$$

donc $x \mapsto \frac{\partial f}{\partial x}(x,0)$ et $y \mapsto \frac{\partial f}{\partial y}(0,y)$ n'admettent pas de limite en 0 car la fonction $t \mapsto t \sin(1/t^2)$ admet une limite nulle en 0 mais la fonction $t \mapsto \frac{1}{t} \cos(1/t^2)$ n'admet pas de limite en 0. Ainsi $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ n'admettent pas de limite en (0,0). A fortiori, elles n'y sont pas continues.

Proposition 3.1 Intégrale curviligne

Soient $f: \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^1 sur \mathcal{U} et $\gamma: [0,1] \to \mathcal{U}$ de classe \mathcal{C}^1 sur [0,1]. Alors

$$f(\gamma(1)) - f(\gamma(0)) = \int_0^1 df(\gamma(t)) \cdot \gamma'(t) dt$$

Corollaire 3.1 Applications constantes

On suppose \mathcal{U} connexe par arcs. Soit $f: \mathcal{U} \to F$ de classe \mathcal{C}^1 sur \mathcal{U} . Alors f est constante sur \mathcal{U} si et seulement si df est nulle sur \mathcal{U} .

3.2 Applications de classe C^k $(k \ge 1)$

On peut définir des dérivées partielles de dérivées partielles.

Définition 3.2 Dérivées partielles d'ordre k

Soit $f: \mathcal{U} \to F$. On appelle **dérivée partielle d'ordre** k dans une base de E une dérivée partielle de la forme

$$\frac{\partial}{\partial x_{j_k}} \left(\frac{\partial}{\partial x_{j_{k-1}}} \left(\cdots \left(\frac{\partial f}{\partial x_{j_1}} \right) \right) \right) = \partial_{j_k} \left(\partial_{j_{k-1}} \left(\cdots \left(\partial_{j_1} f \right) \right) \right)$$

que l'on notera plus simplement

$$\frac{\partial^k f}{\partial x_{j_k} \partial x_{j_{k-1}} \cdots \partial x_{j_1}} = \partial_{j_k} \partial_{j_{k-1}} \partial_{j_1} f$$

Remarque. A priori, l'ordre des indices compte. Dans la définition, on dérive d'abord par rapport à la $j_1^{\text{ème}}$ coordonnée, puis par rapport à la $j_2^{\text{ème}}$ coordonnée, ..., et enfin par rapport à la $j_k^{\text{ème}}$ coordonnée.

Remarque. $\partial_i(\partial_i f)$ se note plus simplement $\partial_i^2 f$. De manière générale, $\partial_i^k f = \partial_i(\partial_i(...(\partial_i f)))$ (k dérivées partielles).

Remarque. $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right)$ se note plus simplement $\frac{\partial^2 f}{\partial x_i^2}$. De manière générale, $\frac{\partial^k f}{\partial x_i^k} = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_i} \left(\dots \left(\frac{\partial f}{\partial x_i} \right) \right) \right) (k$ dérivées partielles).

Exemple 3.2

Soit $f:(x,y)\mapsto xy^3\ln(x^2+y)$ définie sur l'ouvert $\mathcal{U}=\{(x,y)\in\mathbb{R}^2,\ x^2+y>0\}$. Alors f admet des dérivées partielles dans la base canonique en tout point de \mathcal{U} et

$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial f}{\partial x}(x,y) = y^3 \ln(x^2 + y) + \frac{2x^2y^3}{x^2 + y}$$
$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial f}{\partial y}(x,y) = 3xy^2 \ln(x^2 + y) + \frac{xy^3}{x^2 + y}$$

Ces dérivées partielles admettent elles-mêmes des dérivées partielles en tout point de \mathcal{U} et pour tout $(x,y) \in \mathcal{U}$,

$$\begin{split} \frac{\partial^2 f}{\partial x^2}(x,y) &= \frac{6xy^3}{x^2 + y} - \frac{4x^3y^3}{(x^2 + y)^2} \\ \frac{\partial^2 f}{\partial y \partial x}(x,y) &= \frac{6x^2y^2}{x^2 + y} - \frac{2x^2y^3}{(x^2 + y)^2} + 3y^2 \ln(x^2 + y) + \frac{y^3}{x^2 + y} \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) &= \frac{6x^2y^2}{x^2 + y} - \frac{2x^2y^3}{(x^2 + y)^2} + 3y^2 \ln(x^2 + y) + \frac{y^3}{x^2 + y} \\ \frac{\partial^2 f}{\partial y^2}(x,y) &= 6xy \ln(x^2 + y) + \frac{6xy^2}{x^2 + y} - \frac{xy^3}{(x^2 + y)^2} \end{split}$$

On constate notamment que $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$, ce qui n'est pas évident a priori même si ce n'est pas le fruit du hasard...

Définition 3.3 Applications de classe C^k

Soit $f: \mathcal{U} \to F$. On dit que f est de classe \mathcal{C}^k ($k \in \mathbb{N}^*$) sur \mathcal{U} si toutes ses dérivées partielles d'ordre k existent et sont continues sur \mathcal{U} .

On dit que f est de classe \mathcal{C}^{∞} sur \mathcal{U} si elle est de classe \mathcal{C}^k pour tout $k \in \mathbb{N}^*$.

Exemple 3.3

Toute application polynomiale sur \mathbb{R}^n est de classe \mathcal{C}^{∞} sur \mathbb{R}^n .

Théorème 3.2 Schwarz

Soit $f: \mathcal{U} \to F$ de classe \mathcal{C}^2 sur \mathcal{U} . Alors

$$\forall (i,j) \in [[1,p]]^2, \ \partial_i \partial_j f = \partial_j \partial_i f$$

ATTENTION! L'hypothèse que f est de classe \mathcal{C}^2 est primordiale.

Exemple 3.4

Soit en effet

$$f: (x,y) \in \mathbb{R}^2 \mapsto \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Tout d'abord, $\frac{\partial f}{\partial x}$ existe en $(x, y) \neq (0, 0)$ par opérations et en (0, 0) (taux d'accroissement). De plus

$$\frac{\partial f}{\partial x}(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \quad \text{si } (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = 0$$

Comme f(x,y) = -f(y,x), $\frac{\partial f}{\partial y}$ existe également en tout point $(x,y) \in \mathbb{R}^2$ et

$$\frac{\partial f}{\partial y}(x,y) = -\frac{\partial f}{\partial x}(y,x) = -\frac{x(y^4 + 4x^2y^2 - x^4)}{(x^2 + y^2)^2} \quad \text{si } (x,y) \neq (0,0)$$

$$\frac{\partial f}{\partial y}(0,0) = -\frac{\partial f}{\partial x}(0,0) = 0$$

A l'aide de taux d'acroissement, on montre que $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ et $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ existent et que

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{y \to 0} \frac{\frac{\partial f}{\partial x}(0,y) - \frac{\partial f}{\partial x}(0,0)}{y - 0} = -1$$
$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{x \to 0} \frac{\frac{\partial f}{\partial y}(x,0) - \frac{\partial f}{\partial y}(0,0)}{x - 0} = 1$$

Ainsi

$$\frac{\partial^2 f}{\partial v \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial v}(0,0)$$

Le théorème de Schwarz permet en particulier d'affirmer que f n'est pas de classe \mathcal{C}^2 sur \mathbb{R}^2 .

Opérateurs différentiels

Hormis le gradient, on peut définir d'autres opérateurs différentiels.

• Si $f = (f_1, ..., f_n)$ est un **champ de vecteurs** différentiable, autrement dit une application différentiable de \mathbb{R}^n dans \mathbb{R}^n , on peut définir sa **divergence** :

$$\mathbf{div}\,f=\sum_{i=1}^n\partial_if_i$$

Par exemple, si $\vec{E} = (E_x, E_y, E_z)$ est un champ électrique,

$$\mathbf{div}\,\vec{\mathbf{E}} = \frac{\partial \mathbf{E}_x}{\partial x} + \frac{\partial \mathbf{E}_y}{\partial y} + \frac{\partial \mathbf{E}_z}{\partial z}$$

• Si $f = (f_x, f_y, f_z)$ est un champ de vecteurs différentiable de \mathbb{R}^3 dans \mathbb{R}^3 , on peut définir son **rotationnel** :

$$\mathbf{rot}\,f = \left(\frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}\right)$$

• Si f une application de \mathbb{R}^n dans \mathbb{R} de classe \mathcal{C}^2 , on peut définir son laplacien :

$$\Delta f = \sum_{i=1}^{n} \partial_i^2 f$$

Par exemple, si $V = (V_x, V_y, V_z)$ est un potentiel,

$$\Delta V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial z^2}$$

Exercice 3.1

1. Soit f une application de classe \mathcal{C}^2 de \mathbb{R}^n dans \mathbb{R} . Montrer que

$$\mathbf{div}(\nabla f) = \Delta f$$

2. Soit f une application de classe \mathcal{C}^2 de \mathbb{R}^3 dans \mathbb{R} . Montrer que

$$\mathbf{rot}(\nabla f) = 0$$

3. Soit $f = (f_x, f_y, f_z)$ une application de classe \mathcal{C}^2 de \mathbb{R}^3 dans \mathbb{R}^3 . Montrer que

$$\mathbf{rot}(\mathbf{rot}\,f) = \nabla\!(\mathbf{div}\,f) - \Delta f_{x} - \Delta f_{y} - \Delta f_{z}$$

3.3 Opérations

Proposition 3.2 Combinaison linéaire

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{U} \to F$. Si f et g sont de classe \mathcal{C}^k sur \mathcal{U} , alors pour tout $(\lambda, \mu) \in \mathbb{R}^2$, $\lambda f + \mu g$ est de classe \mathcal{C}^k sur \mathcal{U} .

Proposition 3.3

Soient F_1, \ldots, F_p des \mathbb{R} -espaces vectoriels de dimensions finies, f_1, \ldots, f_p des applications de \mathcal{U} à valeurs respectivement dans F_1, \ldots, F_p et $M: \prod_{i=1}^p F_i \mapsto G$ une application multilinéaire. Si f_1, \ldots, f_p sont de classe \mathcal{C}^k sur \mathcal{U} , alors $M(f_1, \ldots, f_p)$ est de classe \mathcal{C}^k sur \mathcal{U} .

Proposition 3.4 Composition

Soient $f: \mathcal{U} \to F$ et $g: \mathcal{V} \to G$ telles que $f(\mathcal{U}) \subset \mathcal{V}$. Si f est de classe \mathcal{C}^k sur \mathcal{U} et g est de classe \mathcal{C}^k sur \mathcal{V} , alors $g \circ f$ est de classe \mathcal{C}^k sur \mathcal{U} .

4 Tangence et orthogonalité

4.1 Vecteurs tangents

Définition 4.1 Vecteur tangent à une partie

Soient X une partie de E et \in X. On dit que $v \in$ E est **tangent** à X en x s'il existe $\varepsilon > 0$ et un arc γ : $]-\varepsilon, \varepsilon[\to X$ dérivable en 0 tel que $\gamma(0) = x$ et $\gamma'(0) = v$.

Notation 4.1

On note T_xX l'ensemble des vecteurs tangents à X en x.

Remarque. Si $x \in \mathring{X}$, alors tout vecteur est tangent à X en x i.e. $T_xX = E$. Soit $v \in E$. Comme $x \in X$, il existe r > 0 tel que $B(x,r) \subset X$. Posons $\varepsilon = \frac{r}{\|v\| + 1}$. Alors γ : $] - \varepsilon$, $\varepsilon [\mapsto x + tv$ est bien à valeurs dans $B(x,r) \subset X$, $\gamma(0) = x$ et $\gamma'(0) = v$.

Exemple 4.1 Vecteurs tangents à la sphère unité

On suppose que E est un espace euclidien. Soit $S = \{x \in E, ||x|| = 1\}$. Donnons-nous $x \in S$. Soit v un vecteur tangent à S en x. Alors il existe γ : $]-\varepsilon$, $\varepsilon[\to S$ dérivable en 0 tel que $\gamma(0) = x$ et $\gamma'(0) = v$. L'application $\varphi = ||\gamma||^2 = \langle \gamma, \gamma \rangle$ est donc constante égale à 1. Par bilinéarité du produit scalaire, φ est dérivable en 0 et

$$0 = \varphi'(0) = 2\langle \gamma'(0), \gamma(0) \rangle = \langle v, x \rangle$$

Ainsi $v \in \text{vect}(x)^{\perp}$.

Réciproquement soit $v \in \text{vect}(x)^{\perp}$.

• Posons $\varepsilon = \frac{\|x\|}{\|v\| + 1}$. Alors,

$$\forall t \in]-\varepsilon, \varepsilon[, \ \|x+tv\| \ge \|x\|-|t|\|v\| > |x|-\varepsilon\|v\| = \frac{\|x\|}{\|v\|+1} \ge 0$$

donc γ : $t \mapsto \frac{x + tv}{\|x + tv\|}$ est bien défini sur $] - \varepsilon, \varepsilon[$ à valeurs dans S.

- Comme ||x|| = 1, $\gamma(0) = x$.
- Comme ||x|| = 1 et $\langle x, v \rangle = 0$, $||x + tv|| = \sqrt{1 + t^2 ||v||^2}$. L'application φ : $t \mapsto x + tv$ est dérivable en 0 et $\varphi'(0) = v$ et l'application ψ : $t \mapsto \frac{1}{\sqrt{1 + t^2 ||v||^2}}$ est également dérivable en 0 et $\psi'(0) = 0$. Par opérations, γ est dérivable en 0 et

$$\gamma'(0) = \varphi(0)\psi'(0) + \varphi'(0)\psi(0) = v$$

Ainsi v est bien tangent à S en x.

Par double inclusion, $T_xS = \text{vect}(x)^{\perp}$.

Remarque. De manière générale, si $x \in S(a, r)$ (sphère de centre a et de rayon r), $T_xS(a, r) = \text{vect}(x - a)^{\perp}$.

Proposition 4.1 Cas du graphe d'une fonction de \mathbb{R}^2 dans \mathbb{R}

Soit Ω un ouvert de \mathbb{R}^2 et $f:\Omega\to\mathbb{R}$ différentiable sur Ω . Notons X le graphe de f, c'est-à-dire

$$X = \{(x, y, f(x, y)), (x, y) \in \Omega\} \subset \mathbb{R}^3$$

Alors pour tout $a \in \Omega$, les vecteurs tangents à X en a sont les vecteurs $(v, df(a) \cdot v) = (v, D_v f(a))$ où $v \in E$.

Remarque. Notamment, $\left(1,0,\frac{\partial f}{\partial x}(a)\right)$ et $\left(0,1,\frac{\partial f}{\partial y}(a)\right)$ sont des vecteurs tangents à X en a.

Plan tangent

Soit Ω un ouvert de \mathbb{R}^2 et $f: \Omega \to \mathbb{R}$ différentiable sur Ω . L'ensemble des vecteurs tangents en $(x_0, y_0, f(x_0, y_0))$ (avec $(x_0, y_0) \in \Omega$) au graphe de f est le plan vectoriel

$$P = \text{vect}\left(\left(1, 0, \frac{\partial f}{\partial x}(x_0, y_0)\right), \left(0, 1, \frac{\partial f}{\partial y}(x_0, y_0)\right)\right)$$

On appelle **plan affine tangent** en $(x_0, y_0, f(x_0, y_0))$ au graphe de f le plan affine $\mathcal{P} = (x_0, y_0, z_0) + P$. On obtient une équation cartésienne de \mathcal{P} de la manière suivante :

$$\begin{split} (x,y,z) &\in \mathcal{P} \iff (x,y,z) - (x_0,y_0,z_0) \in \operatorname{vect}\left(\left(1,0,\frac{\partial f}{\partial x}(x_0,y_0)\right),\left(0,1,\frac{\partial f}{\partial y}(x_0,y_0)\right)\right) \\ &\iff \begin{vmatrix} x-x_0 & 1 & 0 \\ y-y_0 & 0 & 1 \\ z-f(x_0,y_0) & \frac{\partial f}{\partial x}(x_0,y_0) & \frac{\partial f}{\partial y}(x_0,y_0) \end{vmatrix} = 0 \\ &\iff z = f(x_0,y_0) + (x-x_0)\frac{\partial f}{\partial x}(x_0,y_0) + (y-y_0)\frac{\partial f}{\partial y}(x_0,y_0) \end{split}$$

On peut également remarquer que \mathcal{P} est le plan passant par (x_0, y_0, z_0) et de vecteur normal $\left(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), -1\right)$.

Remarque. On notera l'extrême similitude de cette équation avec l'équation de la tangente au graphe d'une fonction dérivable $f: \mathbb{R} \to \mathbb{R}$ en un point $(x_0, f(x_0))$, à savoir

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Exemple 4.2

Soit $f:(x,y)\in\mathbb{R}^2\to x^2+y^2$. Le plan affine tangent au graphe de f en $(x_0,y_0,f(x_0,y_0))$ admet pour équation

$$z = x_0^2 + y_0^2 + 2x_0(x - x_0) + 2y_0(y - y_0)$$

4.2 Lignes de niveau

Définition 4.2 Ligne de niveau

Soit $g: \mathcal{U} \to \mathbb{R}$. On appelle ligne de niveau $k \in \mathbb{R}$ de f l'ensemble

$$E_k = \{x \in \mathcal{U}, \ f(x) = k\}$$

Exemple 4.3

Lignes de niveau de $(x, y) \mapsto xy$

Proposition 4.2 Vecteurs tangents à une ligne de niveau

Soient g: $\mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^1 , X une ligne de niveau de g et $x \in X$ tel que $dg(x) \neq 0$. Alors $T_x X = \text{Ker } dg(x)$.

Proposition 4.3 Gradient et ligne de niveau

On suppose E euclidien. Soient $g: \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^1 , X une ligne de niveau de g et $x \in X$ tel que $\nabla g(x) \neq 0$. Alors $T_x X = \text{vect}(\nabla g(x))^{\perp}$.

Exemple 4.4 Plan tangent à une surface de \mathbb{R}^3

Si X est une surface de \mathbb{R}^3 d'équation cartésienne g(x, y, z) = 0 i.e.

$$X = \{(x, y, z) \in \mathcal{U}, g(x, y, z) = 0\}$$

alors le plan affine tangent à X en (x_0, y_0, z_0) est

$$(x_0, y_0, z_0) + \text{vect}(\nabla g(x_0, y_0, z_0))^{\perp} = (x_0, y_0, z_0) + \text{vect}\left(\frac{\partial g}{\partial x}(x_0, y_0, z_0), \frac{\partial g}{\partial y}(x_0, y_0, z_0), \frac{\partial g}{\partial z}(x_0, y_0, z_0)\right)^{\perp}$$

Il a donc pour équation

$$\frac{\partial g}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial g}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial g}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0$$

REMARQUE. Notamment X est le graphe d'une application $f: \mathbb{R}^2 \to \mathbb{R}$, alors X est la ligne de niveau 0 de l'application $g: (x, y, z) \mapsto f(x, y) - z$. On en déduit que le plan affine tangent à X en un point $(x_0, y_0, f(x_0, y_0))$ est le plan passant

par ce point et de vecteur normal

$$\boldsymbol{\nabla} g(\boldsymbol{x}_0, \boldsymbol{y}_0, f(\boldsymbol{x}_0, \boldsymbol{y}_0)) = \left(\frac{\partial g}{\partial \boldsymbol{x}}(\boldsymbol{x}_0, \boldsymbol{y}_0, f(\boldsymbol{x}_0, \boldsymbol{y}_0)), \frac{\partial g}{\partial \boldsymbol{y}}(\boldsymbol{x}_0, \boldsymbol{y}_0, f(\boldsymbol{x}_0, \boldsymbol{y}_0)), \frac{\partial g}{\partial \boldsymbol{z}}(\boldsymbol{x}_0, \boldsymbol{y}_0, f(\boldsymbol{x}_0, \boldsymbol{y}_0)) \right) = \left(\frac{\partial f}{\partial \boldsymbol{x}}(\boldsymbol{x}_0, \boldsymbol{y}_0), \frac{\partial f}{\partial \boldsymbol{y}}(\boldsymbol{x}_0, \boldsymbol{y}_0), -1 \right)$$

5 Optimisation des fonctions numériques

Dans tout ce paragraphe, $F = \mathbb{R}$.

5.1 Point critique

Définition 5.1 Point critique

Soit $f: \mathcal{U} \to \mathbb{R}$. Si f est différentiable en $a \in \mathcal{U}$, on dit que a est un **point critique** de f si $df(a) = 0_{E^*}$.

Remarque. a est un point critique de f si et seulement si toutes les dérivées partielles de f en a sont nulles.

Remarque. Si E est un espace euclidien (on peut toujours le supposer), a est un point critique de f si et seulement si $\nabla f(a) = 0_E$.

Exemple 5.1

Soit $f:(x,y)\in\mathbb{R}^2\mapsto x^2+y^2$. Puisque $\nabla f(x,y)=2(x,y)$, l'unique point critique de f est (0,0).

Rappel Extremum local

On dit que $f: D \to \mathbb{R}$ admet un **maximum local** en $a \in D$ s'il existe $\varepsilon > 0$ tel que

- $B(a, \varepsilon) \subset D$;
- $\forall x \in B(a, \varepsilon), f(x) \le f(a).$

On dit que $f: D \to \mathbb{R}$ admet un **minimum local** en $a \in D$ s'il existe $\varepsilon > 0$ tel que

- $B(a, \varepsilon) \subset D$;
- $\forall x \in B(a, \varepsilon), f(x) \ge f(a).$

Si D est **ouvert**, il existe toujours $\varepsilon > 0$ tel que B $(a, \varepsilon) \subset D$. De manière générale, on ne parle d'extremum local en $a \in D$ que si *a* est un point **intérieur** à D.

Proposition 5.1 Condition nécessaire d'existence d'un extremum local

Soit $f: \mathcal{U} \to \mathbb{R}$ différentiable en $a \in \mathcal{U}$. Si f est différentiable en a et admet un **extremum local** en a, alors a est un **point critique** de f.

ATTENTION! La réciproque est fausse. Considérons $f:(x,y) \in \mathbb{R}^2 \mapsto x^2 - y^2$. Alors f est différentiable sur \mathbb{R}^2 et

$$\forall (x, y) \in \mathbb{R}^2, \ \nabla f(x, y) = 2(x, -y)$$

Ainsi (0,0) est bien l'unique point critique de f. Cepdendant

$$\forall \varepsilon > 0, \ f(\varepsilon, 0) = \varepsilon^2 > 0 = f(0, 0)$$

donc f n'admet pas de maximum local en (0,0) et

$$\forall \varepsilon > 0, \ f(0, \varepsilon) = -\varepsilon^2 < 0 = f(0, 0)$$

donc f n'admet pas non plus de minimum local en (0,0).

La fonction f n'admet donc pas d'extrema locaux sur \mathbb{R}^2 (et donc pas non plus d'extrema globaux) comme la représentation graphique suivante permet de s'en convaincre.

Méthode Recherche d'extrema globaux

Soit D une partie de E (non nécessairement ouverte). Les extrema globaux d'une fonction f à valeurs réelles sur un domaine D sont

- soit atteints sur D \ D;
- soit atteints sur Ď, auquel cas ce sont des extrema locaux et donc **nécessairement** atteints en des points critiques de f.

Exemple 5.2

On recherche les extrema globaux de $f \mapsto xy(1-x-y)$ sur

$$D = \{(x, y) \in \mathbb{R}^2, \ x \ge 0, \ y \ge 0, \ x + y \le 1\}$$

- ullet Tout d'abord, D est compact et f est continue donc f admet bien un minimum global et un maximum global sur D.
- On remarque d'abord que f est nulle sur la frontière de D (puisqu'alors x = 0, y = 0 ou x + y = 1). De plus, f est clairement positive sur D donc $\min_{D} f = 0$ et ce minimum est atteint en tout point de D.
- Recherchons les points critiques de f sur $\check{\mathrm{D}}$. On résout le système

$$\begin{cases} \frac{\partial f}{\partial x}(x, y) = 0\\ \frac{\partial f}{\partial y}(x, y) = 0 \end{cases}$$

qui équivaut à

$$\begin{cases} y(1 - 2x - y) = 0\\ x(1 - x - 2y) = 0 \end{cases}$$

Puisque l'on se situe sur la frontière de D, x > 0 et y > 0 donc le système équivaut à

$$\begin{cases} 1 - 2x - y = 0 \\ 1 - x - 2y = 0 \end{cases}$$

dont l'unique solution est (1/3, 1/3) qui appartient bien à D. Comme f(1/3, 1/3) > 0, le maximum de f ne peut être atteint sur la frontière de D. Ce maximum global est donc un maximum local qui ne peut être atteint qu'en l'unique point critique (1/3, 1/3) de f sur \mathring{D} . On en déduit que $\max_{D} f = f(1/3, 1/3) = 1/27$.

5.2 Optimisation sous contrainte

Proposition 5.2

Soient $f: \mathcal{U} \to \mathbb{R}$ et $X \subset \mathcal{U}$. Si la restriction de f à X admet un extremum local en $x \in X$ et si f est différentiable en x, alors df(x) est nulle sur T_xX .

Théorème 5.1 Extrema liés

Soient $f: \mathcal{U} \to \mathbb{R}$ et $g: \mathcal{U} \to \mathbb{R}$ de classe \mathcal{C}^1 . On pose $X = g^{-1}(\{0\})$. Si la restriction de f à X admet un extremum local en $x \in X$ et $dg(x) \neq 0$, alors df(x) est colinéaire à dg(x).

Remarque. Si E est un espace euclidien, alors la condition « df(x) colinéaire à dg(x)» équivaut à la condition « $\nabla f(x)$ colinéaire à $\nabla g(x)$ ».

Méthode Extrema locaux sous contrainte

Pour déterminer les extrema locaux d'une fonction f soumis à la contrainte g(x) = 0, on résout le système

$$\begin{cases} \nabla f(x) = \lambda \nabla g(x) \\ g(x) = 0 \end{cases}$$

sous réserve que $\nabla f(x) \neq 0$.

Exemple 5.3

Soit $f:(x,y,z) \in \mathbb{R}^3 \mapsto x^2 + y^2 + z^2$ et P le plan d'équation x + 2y + 3z = 7. Dans la suite, on munit \mathbb{R}^3 de sa structure euclidienne canonique. On souhaite déterminer le minimum éventuel de f sur P.

Justifions déjà l'existence de ce minimum. Remarquons déjà que $P = g^{-1}(\{0\})$ avec $g : (x, y, z) \in \mathbb{R}^3 \mapsto x + 2y + 3z - 1$. Notamment P est fermé car g est continue. Posons $K = [-7, 7]^3$. Il est clair que K est compact donc $K \cap P$ est fermé comme intersection d'un compact et d'un fermé. Ainsi f admet un minimum sur $K \cap P$. De plus, pour $(x, y, z) \in \mathbb{R}^3 \setminus K$, f(x, y, z) > f(7, 0, 0) et $(7, 0, 0) \in P$. Ceci justifie que le minimum de f sur $K \cap P$ est bien le minimum de f sur f is restriction de f à f admet donc un minimum en f is f admet donc un minimum en f is f in f

f est bien de classe \mathcal{C}^1 sur \mathbb{R}^3 et pour tout $(x,y,z)\in\mathbb{R}^3$, $\nabla f(x,y,z)=2(x,y,z)$. g est également de classe \mathcal{C}^1 sur \mathbb{R}^3 et pour tout $(x,y,z)\in\mathbb{R}^3$, $\nabla g(x,y,z)=(1,2,3)\neq(0,0,0)$. D'après le théorème des extrema liés, $\nabla f(a,b,c)$ est colinéaire à $\nabla g(a,b,c)$ i.e. il existe $\lambda\in\mathbb{R}$ tel que $(a,b,c)=\lambda(1,2,3)$. Mais comme $(a,b,c)\in\mathbb{P}$, a+2b+3c=7 i.e. $\lambda=\frac{1}{2}$. Ainsi

le minimum de la restriction de f à P est atteint en $\frac{1}{2}(1,2,3)$: il vaut $f\left(\frac{1}{2},1,\frac{3}{2}\right)=\frac{7}{2}$.

Exemple 5.4

Soit f un endomorphisme symétrique d'un espace euclidien E. On pose φ : $x \in E \mapsto \langle f(x), x \rangle$. On a déjà montré que φ était de classe \mathcal{C}^1 sur E est que $\nabla f(x) = 2f(x)$ pour tout $x \in E$.

La sphère unité S de E est compacte et f est continue donc la restriction de f à S admet un maximum en un point $u \in S$. Remarquons que $S = g^{-1}(\{0\})$ avec $g : x \in E \mapsto \|x\|^2 - 1$. De plus, g est de classe \mathcal{C}^1 sur E et pour tout $x \in E$, dg(x) = 2x. Notamment, g ne s'annule pas sur S.

D'après le théorème des extrema liés, df(u) est colinéaire à dg(u) i.e. f(u) est colinéaire à u:u est donc un vecteur propre de f. On peut alors prouver le théorème spectral par récurrence sur la dimension de E.

5.3 Hessienne

Définition 5.2 Matrice hessienne

Soient \mathcal{U} un ouvert de \mathbb{R}^n et $f: \mathcal{U} \to \mathbb{R}$ une application de classe \mathcal{C}^2 . On appelle **matrice hessienne** de f au point $x \in \mathcal{U}$ la matrice

 $H_f(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{1 \le i, j \le n}$

Remarque. En vertu du théorème de Schwarz, la matrice hessienne est une matrice **symétrique réelle**. Notamment, le théorème spectral permet d'affirmer qu'elle est orthodiagonalisable.

Proposition 5.3 Formule de Taylor-Young à l'ordre 2

Soient \mathcal{U} un ouvert de \mathbb{R}^n , $f:\mathcal{U}\to\mathbb{R}$ une application de classe \mathcal{C}^2 et $x\in\mathcal{U}$. Alors

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle H_f(x) \cdot h, h \rangle + o(\|h\|^2)$$

Remarque. On munit implicitement \mathbb{R}^n de sa structure euclidienne canonique et on identifie $H_f(x)$ à l'endomorphisme de \mathbb{R}^n qui lui est canoniquement associé.

Remarque. En identifiant les vecteurs de \mathbb{R}^n aux matrices colonnes de $\mathcal{M}_{n,1}(\mathbb{R})$, le développement limité à l'ordre 2 peut également s'écrire :

$$f(x+h) \underset{h\to 0}{=} f(x) + \nabla f(x)^{\mathsf{T}} h + \frac{1}{2} h^{\mathsf{T}} \mathbf{H}_f(x) h + o\left(\|h\|^2\right)$$

Proposition 5.4 Condition nécessaire pour un extremum local

Soient \mathcal{U} un ouvert de \mathbb{R}^n et $f: \mathcal{U} \to \mathbb{R}$ une application de classe \mathcal{C}^2 . Si f admet un **extremum local** en $x \in \mathcal{U}$, alors x est un **point critique** de f. De plus,

- si f admet un **minimum local** en x, alors $H_f(x) \in \mathcal{S}_n^+(\mathbb{R})$;
- si f admet un **maximum local** en x, alors $-H_f(x) \in \mathcal{S}_n^+(\mathbb{R})$.

Remarque. Dans le cas n = 2, si x est un point critique de f tel que $\det(H_f(x)) < 0$, f ne peut admettre un extremum local en x car $H_f(x)$ possède alors deux valeurs propres non nulles de signes opposés.

Proposition 5.5 Condition suffisante pour un extremum local

Soient \mathcal{U} un ouvert de \mathbb{R}^n , $f: \mathcal{U} \to \mathbb{R}$ une application de classe \mathcal{C}^2 et $x \in \mathcal{U}$.

- Si x est un point critique de f et si $H_f(x) \in \mathcal{S}_n^{++}(\mathbb{R})$, alors f admet un **minimum local strict** en x.
- Si x est un point critique de f et si $-H_f(x) \in \mathcal{S}_n^{++}(\mathbb{R})$, alors f admet un **maximum local strict** en x.

Remarque. Dire que f admet un **minimum local strict** en x, signifie qu'il existe $\varepsilon > 0$ tel que

$$\forall h \in B(0,\varepsilon) \setminus \{0\}, \ f(x+h) > f(x)$$

Dire que f admet un **maximum local strict** en x, signifie qu'il existe $\varepsilon > 0$ tel que

$$\forall h \in B(0, \varepsilon) \setminus \{0\}, \ f(x+h) < f(x)$$

Exercice 5.1

Soit $A \in \mathcal{S}_2(\mathbb{R})$. Montrer que $A \in \mathcal{S}_2^{++}(\mathbb{R})$ si et seulement si $\det(A) > 0$ et $\operatorname{tr}(A) > 0$.

Remarque. Dans le cas n = 2,

$$H_f(x) \in \mathcal{S}_2^{++}(\mathbb{R}) \iff \left(\det(H_f(x)) > 0 \text{ et tr}(H_f(x)) > 0\right)$$

 $-H_f(x) \in \mathcal{S}_2^{++}(\mathbb{R}) \iff \left(\det(H_f(x)) > 0 \text{ et tr}(H_f(x)) < 0\right)$

Méthode Recherche d'extrema locaux

Pour déterminer les extrema locaux d'une application f sur un ouvert, on peut procéder de la manière suivante.

- 1. On recherche les points critiques de f.
- 2. Pour chaque point critique a, on considère la matrice hessienne $H_f(a)$:
 - si $H_f(a)$ ne possède que des valeurs propres strictement positives, f admet un minimum local en a;
 - si $H_f(a)$ ne possède que des valeurs propres strictement négatives, f admet un maximum local en a;
 - si $H_f(a)$ possède des valeurs propres strictement positives et des valeurs propres strictement négatives, f n'admet pas d'extremum local en a.
- 3. Si $H_f(a)$ ne possède que des valeurs propres de même signe dont la valeur propre nulle, on étudie le signe de f(x)-f(a) pour x au voisinage de a. Pour simplifier, on pose généralement u=x-a et on étudie le signe de f(a+u)-f(a) pour u au voisinage de 0_E.

MP Dumont d'Urville © Laurent Garcin

Exemple 5.5

Soit $f:(x,y) \in \mathbb{R}^2 \mapsto 2x^3 - 6xy + 3y^2$. f est clairement de classe \mathcal{C}^2 sur \mathbb{R}^2 car polynomiale.

Les points critiques de f sont les solutions du système $\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}$ i.e. $\begin{cases} 6x^2 - 6y = 0\\ -6x + 6y = 0 \end{cases}$. On en déduit que les points

critiques de f sont (0,0) et (1,1).

De manière générale, $H_f(x, y) = (12x -6 -6 6)$.

Notamment, $H_f(0,0) = \begin{pmatrix} 0 & -6 \\ -6 & 6 \end{pmatrix}$. Alors $\det(H_f(0,0)) = -36 < 0$ donc $H_f(0,0)$ admet deux valeurs propres non nulles de signes opposés. Ainsi $H_f(0,0) \notin \mathcal{S}_2^+(\mathbb{R})$ et $-H_f(0,0) \notin \mathcal{S}_2^+(\mathbb{R})$. Par conséquent, f n'admet pas d'extremum

local en (0,0).

Par ailleurs, $H_f(1,1) = \begin{pmatrix} 12 & -6 \\ -6 & 6 \end{pmatrix}$ donc $\det(H_f(0,0)) = 36 > 0$ et $\operatorname{tr}(H_f(0,0)) = 18 > 0$. On en déduit que $H_f(0,0) \in H_f(0,0)$

 $\mathcal{S}_2^{++}(\mathbb{R})$. Ainsi f admet un minimum local strict en (1,1).

Le tracé des lignes de niveau de f permet sans doute de mieux comprendre la situation.

MP Dumont d'Urville © Laurent Garcin

Exemple 5.6

Soit $f:(x,y)\in\mathbb{R}^2\mapsto 2(x-y)^2-x^4-y^4$. f est clairement de classe \mathcal{C}^2 sur \mathbb{R}^2 car polynomiale.

Les points critiques de f sont les solutions du système $\begin{cases} \frac{\partial f}{\partial x}(x,y) = 0\\ \frac{\partial f}{\partial y}(x,y) = 0 \end{cases}$ i.e. $\begin{cases} 4(x-y) - 4x^3 = 0\\ 4(y-x) - 4y^3 = 0 \end{cases}$. On prouve sans trop de

peine que les points critiques sont $(\sqrt{2}, -sqrt2), (-\sqrt{2}, \sqrt{2})$ et (0,0). De manière générale, $H_f(x,y) = \begin{pmatrix} 4-12x^2 & -4 \\ -4 & 4-12y^2 \end{pmatrix}$.

Notamment $H_f(\sqrt{2}, -sqrt2) = H_f(-\sqrt{2}, \sqrt{2}) = \begin{pmatrix} -20 & -4 \\ -4 & -20 \end{pmatrix} = M$. Alors tr(M) = -4 < 0 et det(M) = 384 > 0.

Ainsi $-M \in \mathcal{S}_2^{++}(\mathbb{R})$ et f admet des maxima locaux (et même globaux) en $(\sqrt{2}, -sqrt2)$ et $(-\sqrt{2}, \sqrt{2})$.

Par contre, $H_f(0,0) = \begin{pmatrix} 4 & -4 \\ -4 & 4 \end{pmatrix}$ de sorte que $Sp(H_f(0,0)) = \{0,8\}$. On ne peut pas conclure directement. Néanmoins,

on remarque que $f(t,t) = -2t^4 < 0 = f(0,0)$ pour $t \in \mathbb{R}^*$ et $f(t,-t) = 8t^2 - 2t^4 = 2t^2(4-t^2) > 0 = f(0,0)$ pour $t \in]-2,0[\cup]0,2[$. Ainsi f n'admet pas d'extremum local en (0,0).

Le tracé des lignes de niveau de f permet de mieux comprendre la situation.

6 Equations aux dérivées partielles

Equations aux dérivées partielles

On appelle **équation aux dérivées partielles** ou, de manière abrégée, EDP une équation dont l'inconnue est une fonction de deux variables (ou plus) faisant intervenir les dérivées partielles de cette fonction. Citons quelques exemples classiques en physique.

- $\left[\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}\right]$ est une EDP d'inconnue y(x,t). On l'appelle l' **équation des ondes** à une dimension ou encore **équation des cordes vibrantes**. La fonction y(x,t) représente la position verticale du point d'abscisse x d'une corde vibrante à l'instant t par rapport à sa position au repos.
- $\left[\frac{\partial^2 T}{\partial t^2} = \alpha \frac{\partial T}{\partial x}\right]$ est une EDP d'inconnue T(x, t). On l'appelle **équation de la chaleur**. La fonction T(x, t) représente la température au point d'abscisse x à l'instant T dans un milieu unidimensionnel dans lequel la chaleur se propage par conduction.

Résoudre une EDP sur un ouvert U signifie rechercher toutes les fonctions de classe \mathcal{C}^1 sur U (si l'EDP ne fait intervenir que des dérivées partielles premières) ou de classe \mathcal{C}^2 sur U (si l'EDP fait intervenir des dérivées partielles secondes) vérifiant l'équation.

Exemple 6.1

- Les solutions sur \mathbb{R}^2 de $\frac{\partial f}{\partial x} = 0$ sont les fonctions $(x,y) \mapsto C(y)$ où C est une fonction de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} .
- Les solutions sur \mathbb{R}^2 de $\frac{\partial f}{\partial y} = xy$ sont les fonctions $(x,y) \mapsto \frac{1}{2}xy^2 + C(x)$ où C est une fonction de classe \mathcal{C}^1 de \mathbb{R} dans \mathbb{R} .

Exemple 6.2

Les solutions sur \mathbb{R}^2 de $\frac{\partial^2 f}{\partial x \partial y} = 0$ sont les fonctions $(x, y) \mapsto C(x) + D(y)$ où C et D sont des fonctions de classe \mathcal{C}^2 de \mathbb{R} dans \mathbb{R} .

On peut résoudre certaines EDP par changement de variables.

Exemple 6.3

Pour résoudre sur \mathbb{R}^2 l'EDP $2\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = 0$, on procéde au changement de variables $\begin{cases} u = x + y \\ v = x + 2y \end{cases}$.

Ce système équivaut à $\begin{cases} x = 2u - v \\ y = v - u \end{cases}$. Posons alors g(u, v) = f(2u - v, v - u) pour $(u, v) \in \mathbb{R}^2$ de sorte que f(x, y) = g(x + y, x + 2y) pour $(x, y) \in \mathbb{R}^2$. Ainsi, par abus de notation,

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v} \qquad \qquad \frac{\partial f}{\partial y} = \frac{\partial g}{\partial u} + 2\frac{\partial g}{\partial v}$$

L'EDP initiale équivaut donc à $\frac{\partial g}{\partial u} = 0$. Les solutions de cette EDP sont les fonctions $g: (u,v) \in \mathbb{R}^2 \mapsto C(v)$ où C est une application de classe \mathcal{C}^1 . On en déduit que les solutions de l'EDP initiale sont les fonctions $f: (x,y) \in \mathbb{R}^2 \mapsto C(x+2y)$ où C est une application de classe \mathcal{C}^1 .

Résolution de l'équation des ondes à une dimension

On cherche à résoudre sur \mathbb{R}^2 l'EDP $\boxed{\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}}$ (avec $c \neq 0$). Pour cela, on procède au changement de variable

 $\begin{cases} u = x - ct \\ v = x + ct \end{cases}$ i.e. on cherche donc y de classe \mathcal{C}^2 sous la forme y(x,t) = g(u,v) = g(x-ct,x+ct). Les expressions des dérivées partielles premières s'obtiennent par composition :

$$\frac{\partial y}{\partial x} = \frac{\partial u}{\partial x} \frac{\partial g}{\partial u} + \frac{\partial v}{\partial x} \frac{\partial g}{\partial v} = \frac{\partial g}{\partial u} + \frac{\partial g}{\partial v}$$
$$\frac{\partial y}{\partial t} = \frac{\partial u}{\partial t} \frac{\partial g}{\partial u} + \frac{\partial v}{\partial t} \frac{\partial g}{\partial v} = -c \frac{\partial g}{\partial u} + c \frac{\partial g}{\partial v}$$

On en déduit les dérivées partielles secondes (on utilise le théorème de Schwarz) :

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial u}{\partial x} \frac{\partial^2 g}{\partial u^2} + \frac{\partial v}{\partial x} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial u}{\partial x} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial v}{\partial x} \frac{\partial^2 g}{\partial v^2} = \frac{\partial^2 g}{\partial u^2} + 2 \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial^2 g}{\partial v^2}$$

$$\frac{\partial^2 y}{\partial t^2} = -c \left(\frac{\partial u}{\partial t} \frac{\partial^2 g}{\partial u^2} + \frac{\partial v}{\partial t} \frac{\partial^2 g}{\partial u \partial v} \right) + c \left(\frac{\partial u}{\partial t} \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial v}{\partial t} \frac{\partial^2 g}{\partial u^2} \right) = c^2 \left(\frac{\partial^2 g}{\partial u^2} + 2 \frac{\partial^2 g}{\partial u \partial v} + \frac{\partial^2 g}{\partial v^2} \right)$$

L'équation initiale équivaut donc à $\frac{\partial^2 g}{\partial u \partial v} = 0$. On a vu précédemment que les solutions de cette EDP étaient les fonctions $(u, v) \mapsto C(u) + D(v)$ avec C, D de classe C^2 sur \mathbb{R} . Les solutions de l'EDP initiale sont donc les fonctions $(x, y) \mapsto C(x - ct) + D(x + ct)$ avec C, D de classe C^2 . Les deux termes correspondent à des ondes se propageant avec la même célérité mais en sens inverse.