Machine Learning Midterm Project

Kevin Jeswani, Laiba Shah and Junaid Zafar

Agenda

- Industry Research/Motivation
- Data Problem and Description
- Data Understanding
 - Data Exploration
 - Data Visualization
- Linear Regression
- Machine learning model
 - Approach
 - Ensemble Methods
 - Interpreting Results
- Business Application

Industry Research - Effects of Indoor Air pollution

- Around a third of the global population is affected by harmful household air pollution.
- Household air pollution was responsible for an estimated 3.2 million deaths per year in 2020
- Household air pollution exposure leads to noncommunicable diseases e.g. stroke, COPD, Lung cancer
- Women and children bear the greatest health burden from the indoor pollution
- It is essential to identify these household air pollution factors and expand use of clean fuels and technologies[1]

Industry Research - Effects of Outdoor Air pollution

- The lower the levels of outdoor air pollution affects both long- and short-term.
- Air pollution is still significant since recently in 2019, 99% of the world population was living in places where the WHO air quality guidelines levels were not met.
- Outdoor air pollution in both cities and rural areas was estimated to cause 4.2 million premature deaths worldwide in 2016.
- Some 91% of those premature deaths occurred in low- and middle-income countries, and the greatest number in the WHO South-East Asia and Western Pacific regions.
- Policies and investments supporting cleaner and efficient technologies are key to improving air and life quality across the world. [2]

Industry Research

Other prominent factors

- Unsafe Water
- Unsafe Sanitation
- Handwashing[3]

Number of deaths by risk factor, World, 2019

Total annual number of deaths by risk factor, measured across all age groups and both sexes.

Data Description

- Death rate due to indoor air pollution
- Death rate due to outdoor particulate matter (PM2.5) air pollution
- Death rate due to outdoor ozone air pollution
- Social demographic/Internal factors

- Data cleaning was performed to remove unnecessary column(s)
- Additional data columns were added from OECD and World bank other env. factors
 - Socio-Demographic Index, GDP/capita, Population, WB Income Class
- A challenge was to merge data sets with the corresponding country and year

Country	Year	Deaths_OZone	Deaths_PM2.5	Deaths_Indoor	Deaths_Handwashing	Deaths_Sanitation	Deaths_Water	Deaths_HighTemp	Deaths_LowTemp	GDP_pCapita	Population	Income_Class	SoDI
Afghanistan	1990	387.0	2782.0	34372.0	4825.0	2798.0	3702.0	1085.0	7076.0	11.0	12412311	L	0.187
Afghanistan	1991	376.0	2846.0	35392.0	5127.0	3254.0	4309.0	925.0	7610.0		13299016	L	0.191
Afghanistan	1992	364.0	3031.0	38065.0	5889.0	4042.0	5356.0	908.0	8255.0		14485543	L	0.195
Afghanistan	1993	367.0	3256.0	41154.0	7007.0	5392.0	7152.0	1159.0	8430.0	ST 5	15816601	L	0.196
Afghanistan	1994	387.0	3401.0	43153.0	7421.0	5418.0	7192.0	1398.0	8659.0		17075728	L	0.194
			100	8	8.00	1110	M	2010	9.03	11/2	1	8.2	22.20
Zimbabwe	2015	50.0	2785.0	10435.0	4328.0	2879.0	4336.0	389.0	742.0	1445.069702	13814642	L	0.452
Zimbabwe	2016	58.0	2723.0	10365.0	4295.0	2798.0	4244.0	464.0	762.0	1464.588957	14030338	Ĺ	0.459
Zimbabwe	2017	70.0	2630.0	10257.0	4251.0	2744.0	4193.0	180.0	891.0	1235.189032	14236599	Ľ	0.465
Zimbabwe	2018	69.0	2600.0	10113.0	4153.0	2608.0	4013.0	282.0	767.0	1254.642265	14438812	LM	0.471
Zimbabwe	2019	73.0	2607.0	10019.0	4113.0	2531.0	3914.0	326.0	744.0	1316.740657	14645473	LM	0.476

Visualizations

- Most deaths are due to Indoor Air pollution
- Overall Death Rates due to Air pollution is going down in the world

- 1.00

-0.25

-0.50

-0.75

Heat Maps

Heat Map - Total Air Pollution Deaths in 1990

Map - Difference in Total Air Pollution Deaths in Year 1990 & 2017

Barplots

Linear Regression

Regional, SoDI & National-level

R ² for <u>All</u> Models	Mean	Std
Indoor .	0.89	0.15
PM2.5	0.61	0.34
OZone	0.67	0.31

Machine Learning Model

Machine Learning Model

- Pre-processing: Ordinal label encoding, removing entries with missing feature values, tested the use of feature and target scaling
- Narrowed Target: Air Pollution (Indoor, PM2.5, & OZone) Deaths
- Features: Income_Class (encoded), Population, GDP/Capita, SoDI, Year,
- PyCaret selection: Indoor & PM2.5 =Random Forest; OZone = Extra Tree, 2nd/3rd option Gradient Boosting

XGB, Random Forest and Extra Trees Models

- Max depth = 7
- Number of estimators (trees) = 1000 to 2000
- 65 Train 20 Test 15 Hold-Out (attempt to preserve timeseries, but challenging)
- Cross-Validation with 10-kfolds
- Hold-out Validation
- MAE (less bias for outliers)
- Created ensemble model with voting of RF, ET, XGB

Ensemble Method

Business Applications

- Air pollution can be estimated and concerned organizations can focus on the local political policies to improve life quality in certain countries and regions
- This model can be further trained with population and migration data to assess migration patterns across the world
- This model can be further trained at city level in a country to focus on the industries that are responsible for the highest pollution rate.
- We gathered data on PM2.5 and OZone exposure that could be used to better model those deaths & gain insight.

Conclusions

- Predicting indoor pollution deaths (linearity)
- PM2.5 and OZone deaths are more challenging (non-linear)
- Air pollution deaths are highly dependent on Socio-Demographic Index & moderately dependent on GDP/Capita & Population
- LR is useful for predicting general trends per nation (preserved timeseries) vs. Tree-based Regression (predictions on socio-demographic/economic factors).

Future works:

- Integrate PM2.5/OZone exposure, and other socio-economic predictors
- Explore climate-related risks and historical temperature data
- Look at historical spending on environmental protection
- Polynomial regressions

References

[1] Household air pollution and health, https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health, Data accessed: October 18, 2022

[2] Ambient (outdoor) air pollution, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health, Data accessed: October 18, 2022

[3] Hygiene, https://ourworldindata.org/hygiene, Data accessed: October 18, 2022