Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая Работа

по дисциплине «Математические модели»

Выполнил:Ферапонтов М.В.Группа:гр. 3530904/00104

Проверил: Воскобойников С. П.

Содержание

	1.1	Поста	новка задачи	
	Основная часть			
	2.1 Разностная схема		Разно	стная схема
		2.1.1	На левой границе	
		2.1.2	На правой границе	
			На нижней границе	
		2.1.4	На верхней границе	
		2.1.5	Правый-нижний угол	

1 Вступление

1.1 Постановка задачи

Вариант N. Используя интегро-интерполяционный метод, разработать подпрограмму для моделирования распределения температуры в цилиндре, описываемого математической моделью

$$-\left[\frac{1}{r}\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(k_2(r,z)\frac{\partial u}{\partial v}\right)\right] = f(r,z)$$

$$0 \le c_{11} \le k_1(r, z) \le c_{12}, \quad 0 \le c_{11} \le k_2(r, z) \le c_{22}, \quad 0 \le r \le R, \ 0 \le z \le L$$

С граничными условиями:

$$\begin{aligned} u|_{r=0} &-\text{ограничено} & -k_1 \frac{\partial u}{\partial r}\Big|_{r=R} &= \chi_2 \; u|_{r=R} - \varphi_2(z) \\ k_2 \frac{\partial u}{\partial z}\Big|_{z=0} &= \chi_3 \; u|_{z=0} - \varphi_3(r) & u|_{z=L} &= \varphi_r(r) \\ \chi_2 &\geq 0 & \chi_3 \geq 0 \end{aligned}$$

Матрица алгебраической системы должна храниться в упакованной форме.

2 Основная часть

2.1 Разностная схема

Введем основную сетку:

Введем дополнительную сетку:

$$r_{i-\frac{1}{2}} = \frac{r_i + r_{i-1}}{2} \quad i = 1, \dots, N_r$$

$$z_{j-\frac{1}{2}} = \frac{z_j + z_{j-1}}{2} \quad j = 1, \dots, N_z$$

$$\overline{h}_i = \begin{cases} \frac{h_{i+1}}{2}, & i = 0 \\ \frac{h_{i+h_{i+1}}}{2}, & i = 1, 2, \dots, N_r - 1 \end{cases}$$

$$\overline{h}_j = \begin{cases} \frac{h_{j+1}}{2}, & j = 0 \\ \frac{h_{j} + h_{j+1}}{2}, & j = 1, 2, \dots, N_z - 1 \\ \frac{h_{i}}{2}, & j = N_z \end{cases}$$

Преобразуем наше начальное уравнение

$$-\left[\frac{\partial}{\partial r}\left(rk_1(r,z)\frac{\partial u}{\partial r}\right) + \frac{\partial}{\partial z}\left(rk_2(r,z)\frac{\partial u}{\partial v}\right)\right] = rf(r,z)$$

Проинтегрируем уравнение внутри интервала:

$$-\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \left[\frac{\partial}{\partial r} \left(rk_1(r,z) \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_2(r,z) \frac{\partial u}{\partial v} \right) \right] dr dz = \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} rf(r,z) dr dz$$

Получим:

$$-\left[\int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} rk_1(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i+\frac{1}{2}}} dz - \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} rk_1(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}} dz \right]$$

$$+ \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} rk_2(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}} dr - \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} rk_2(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{r_{j+\frac{1}{2}}} rf(r,z) dr dz$$

Воспользуемся формулами численного дифференцирования:

$$k_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i-\frac{1}{2}}} \approx k_1(r_{i-\frac{1}{2}},z) \frac{v_{i,j} - v_{i-1,j}}{h_i}$$

$$k_2(r,z) \frac{\partial u}{\partial r} \Big|_{z=z_{j-\frac{1}{2}}} \approx k_2(r,z_{j-\frac{1}{2}}) \frac{v_{i,j} - v_{i,j-1}}{h_j}$$

Также воспользуемся формулой средних прямоугольников:

$$\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} r\varphi(r,z)dr = \overline{h}_i r_i \varphi_i$$

$$\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} r\varphi(r,z) dr dz = \overline{h}_i \overline{h}_j r_i \varphi_{i,j}$$

В итоге получаем разностную схему внутри интервала:

$$-\left[\overline{h}_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}}-\overline{h}_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{i}}\right]$$

$$+\overline{h}_{i}r_{i+\frac{1}{2}}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{j+1}}-\overline{h}_{i}r_{i-\frac{1}{2}}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{j}}\right]=\overline{h}_{i}\overline{h}_{j}r_{i}f_{i,j}$$

Теперь найдем значение разностной схемы на углах и границах интервалов

2.1.1 На левой границе

Проинтегрируем наше уравнение в i = 0 и z внутри промежутка

$$-\int_{r_{i}}^{r_{i+\frac{1}{2}}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \left[\frac{\partial}{\partial r} \left(rk_{1}(r,z) \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_{2}(r,z) \frac{\partial u}{\partial v} \right) \right] drdz = \int_{r_{i}}^{r_{i+\frac{1}{2}}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} rf(r,z) drdz$$

Получаем:

$$-\left[\int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} rk_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_{i+\frac{1}{2}}} dz - \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} rk_1(r,z) \frac{\partial u}{\partial r} \Big|_{r=r_i} dz + \int_{r_i}^{r_{i+\frac{1}{2}}} rk_2(r,z) \frac{\partial u}{\partial v} \Big|_{z=z_{j-\frac{1}{2}}} dr - \int_{r_i}^{r_{i+\frac{1}{2}}} rk_2(r,z) \frac{\partial u}{\partial v} \Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int_{r_i}^{r_{i+\frac{1}{2}}} \int_{z_{j-\frac{1}{2}}}^{r} rf(r,z) dr dz$$

Имеем граничное условие:

$$u|_{r=0}$$
 — ограничено, т. е $\left. \frac{\partial u}{\partial r} \right|_{r=0} = 0$

$$\int_{r_i}^{r_{i+\frac{1}{2}}} rfdr \approx f_i \int_{r_i}^{r_{i+\frac{1}{2}}} rdr = f_i \frac{r_{i+\frac{1}{2}}^2}{2} = h_r f_i \frac{r_{i+\frac{1}{2}}}{2}, \quad i = 0, \quad r_i = 0, r_{i+\frac{1}{2}} = \frac{h_r}{2}$$

Получаем разностную схему:

$$-\left[\overline{h}_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}}-0\right.$$

$$\left.+\overline{h}_{i}r_{i+\frac{1}{2}}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{j+1}}-\overline{h}_{i}r_{i-\frac{1}{2}}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{j}}\right]=\overline{h}_{i}\overline{h}_{j}r_{i}f_{i,j}$$

2.1.2 На правой границе

Проинтегрируем наше уравнение в $i=N_x$ и z внутри промежутка

$$-\int_{r_{i-\frac{1}{2}}}^{r_{i}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} \left[\frac{\partial}{\partial r} \left(rk_{1}(r,z) \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_{2}(r,z) \frac{\partial u}{\partial v} \right) \right] drdz = \int_{r_{i-\frac{1}{2}}}^{r_{i}}\int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} rf(r,z) drdz$$

Получаем:

$$-\left[\int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} rk_1(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_i} dz - \int_{z_{i-\frac{1}{2}}}^{z_{i+\frac{1}{2}}} rk_1(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}} dz \right]$$

$$+ \int_{r_{i-\frac{1}{2}}}^{r_i} rk_2(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}} dr - \int_{r_{i-\frac{1}{2}}}^{r_i} rk_2(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j-\frac{1}{2}}} dr \right] = \int_{r_{i-\frac{1}{2}}}^{r_i} \int_{z_{j-\frac{1}{2}}}^{z_{j+\frac{1}{2}}} rf(r,z) dr dz$$

Имеем граничное условие:

$$-k_1 \frac{\partial u}{\partial r}\Big|_{r=R} = \chi_2 |u|_{r=R} - \varphi_2(z)$$

Получаем разностную схему:

$$\begin{split} &-\left[-\overline{h}_{j}(\chi_{2}v_{i}-\varphi_{2}(z))-\overline{h}_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{i}}\right.\\ &+\overline{h}_{i}r_{i+\frac{1}{2}}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{i+1}}-\overline{h}_{i}r_{i-\frac{1}{2}}k_{2}(r_{i},z_{j-\frac{1}{2}})\frac{v_{i,j}-v_{i,j-1}}{h_{i}}\right]=\overline{h}_{i}\overline{h}_{j}r_{i}f_{i,j} \end{split}$$

2.1.3 На нижней границе

Проинтегрируем наше уравнение j=0 и i внутри промежутка

$$-\int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_j}^{z_{j+\frac{1}{2}}} \left[\frac{\partial}{\partial r} \left(rk_1(r,z) \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_2(r,z) \frac{\partial u}{\partial v} \right) \right] dr dz = \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_j}^{z_{j+\frac{1}{2}}} rf(r,z) dr dz$$

Получаем:

$$-\left[\int_{z_{i}}^{z_{i+\frac{1}{2}}} rk_{1}(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i+\frac{1}{2}}} dz - \int_{z_{i}}^{z_{i+\frac{1}{2}}} rk_{1}(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}} dz + \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} rk_{2}(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}} dr - \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} rk_{2}(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j}} dr \right] = \int_{r_{i-\frac{1}{2}}}^{r_{i+\frac{1}{2}}} \int_{z_{j}}^{z_{j+\frac{1}{2}}} rf(r,z) dr dz$$

Имеем граничное условие:

$$k_2 \frac{\partial u}{\partial z}\Big|_{z=0} = \chi_3 u\Big|_{z=0} - \varphi_3(r)$$

Получаем разностную схему:

$$-\left[\overline{h}_{j}r_{i+\frac{1}{2}}k_{1}(r_{i+\frac{1}{2}},z_{j})\frac{v_{i+1,j}-v_{i,j}}{h_{i+1}}-\overline{h}_{j}r_{i-\frac{1}{2}}k_{1}(r_{i-\frac{1}{2}},z_{j})\frac{v_{i,j}-v_{i-1,j}}{h_{i}}\right.$$
$$\left.+\overline{h}_{i}r_{i+\frac{1}{2}}k_{2}(r_{i},z_{j+\frac{1}{2}})\frac{v_{i,j+1}-v_{i,j}}{h_{j+1}}-\overline{h}_{i}(\chi_{3}v_{i}-\varphi_{3}(r))\right]=\overline{h}_{i}\overline{h}_{j}r_{i}f_{i,j}$$

2.1.4 На верхней границе

Имеем граничное условие:

$$u|_{z=L} = \varphi_r(r)$$

2.1.5 Правый-нижний угол

Проинегрируем наше уравнение

$$-\int_{r_{i-\frac{1}{2}}}^{r_{i}}\int_{z_{j}}^{z_{j+\frac{1}{2}}} \left[\frac{\partial}{\partial r} \left(rk_{1}(r,z) \frac{\partial u}{\partial r} \right) + \frac{\partial}{\partial z} \left(rk_{2}(r,z) \frac{\partial u}{\partial v} \right) \right] = \int_{r_{i-\frac{1}{2}}}^{r_{i}}\int_{z_{j}}^{z_{j+\frac{1}{2}}} rf(r,z)$$

Получаем:

$$-\left[\int_{z_{i}}^{z_{i+\frac{1}{2}}} rk_{1}(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i}} dz - \int_{z_{i}}^{z_{i+\frac{1}{2}}} rk_{1}(r,z) \frac{\partial u}{\partial r}\Big|_{r=r_{i-\frac{1}{2}}} dz + \int_{r_{i-\frac{1}{2}}}^{r_{i}} rk_{2}(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j+\frac{1}{2}}} dr - \int_{r_{i-\frac{1}{2}}}^{r_{i}} rk_{2}(r,z) \frac{\partial u}{\partial v}\Big|_{z=z_{j}} dr \right] = \int_{r_{i-\frac{1}{2}}}^{r_{i}} \int_{z_{j}}^{z_{j+\frac{1}{2}}} rf(r,z) dr dz$$

Имеем граничные условия:

$$-k_1 \frac{\partial u}{\partial r}\Big|_{r=R} = \chi_2 |u|_{r=R} - \varphi_2(z)$$

$$k_2 \frac{\partial u}{\partial z}\Big|_{z=0} = \chi_3 |u|_{z=0} - \varphi_3(r)$$

Получаем разностную схему:

$$-\left[-\overline{h}_{j}(\chi_{2} u|_{r=R} - \varphi_{2}(z)) - \overline{h}_{j} r_{i-\frac{1}{2}} k_{1}(r_{i-\frac{1}{2}}, z_{j}) \frac{v_{i,j} - v_{i-1,j}}{h_{i}} + \overline{h}_{i} r_{i+\frac{1}{2}} k_{2}(r_{i}, z_{j+\frac{1}{2}}) \frac{v_{i,j+1} - v_{i,j}}{h_{j+1}} - \overline{h}_{i}(\chi_{3} v_{i} - \varphi_{3}(r))\right] = \overline{h}_{i} \overline{h}_{j} r_{i} f_{i,j}$$

Другие углы нам известны.

3 Заключение