# Trust Region Policy Optimization (TRPO) Original Paper by Schulman et al. [2017]

Matthew Vandergrift

Robot Learning Seminar Presentation

March 2025

#### Motivation



#### Motivation





#### Motivation



### **Existing Solutions**

- Reinforce
- Basic Actor-Critic Algorithms
- Natural Policy Gradients
- Derivative Free Methods: cross-entropy method, covariance matrix adaptation.

#### Once again, ... RL

"RL is computational framework for learning from interaction" Sutton and Barto [2018]. The agent interacts with an environment with the goal of maximizing expected return. Let us denote expected return for a particular policy by  $\eta(\pi)$ .

Recall the advantage function  $A_{\pi}(s, a)$  defined as,

$$A_{\pi}(s,a) = Q_{\pi}(s,a) - V_{\pi}(s)$$

This function tells us how "good" taking action is compared to what we would have done otherwise.

### Policy Improvement via Advantage

Since policies are just collections of actions, we can use advantage function to evaluate them. Let  $\pi$  and  $\pi'$  be two different policies. Equation 1 gives a way to write the performance of  $\pi'$  using the performance of  $\pi$  and the advantage function.

$$\eta(\pi') = \eta(\pi) + \sum_{s} \mu_{\pi'}(s) \sum_{a} \pi'(a|s) A_{\pi}(s, a).$$
(1)

Proof in appendix

At first glance we have a solution!

#### Algorithm The Perfect RL Algorithm

**Require:**  $\pi$  and  $\eta(\pi)$ 

1: 
$$\max_{\pi'} (\eta(\pi) + \sum_{s} \mu_{\pi'}(s) \sum_{a} \pi'(a|s) A_{\pi}(s, a))$$

This doesn't work because we have a dependence on the policy distribution which is not something we have access to when considering  $\pi'$ .

# Dealing with $\mu_{\pi'}$

- Let's use  $\mu_{\pi}$  instead of  $\mu_{\pi'}$
- Define  $L_{\pi}(\pi') = \eta(\pi) + \sum_{s} \mu_{\pi}(s) \sum_{a} \pi'(a|s) A_{\pi}(s,a)$
- Assume  $\pi$  is a parameterized by weights  $\theta$ .
- Gives us a local first order approximation,  $\nabla_{\theta} L_{\pi_{\theta_0}}(\theta_{\theta})|_{\theta=\theta_0} = \nabla_{\theta} \eta_{\pi_{\theta_0}}(\theta_{\theta})|_{\theta=\theta_0}$
- If we take **small** steps in  $\theta$  then we can use our 'Perfect RL algorithm'.

#### What is a small step?

A Major Contribution of the Paper is the following bound,

#### $\mathsf{Theorem}$

Let 
$$D_{KL}^{max}(\pi,\pi'):=\max_s D_{KL}\left(\pi(*|S)||\pi'(*|s)\right)$$
. We then have that,  $\eta(\pi')\geq L_{\pi}(\pi')-CD_{KL}^{max}(\pi,\pi')$  where  $C=\frac{4\epsilon\gamma}{(1-\gamma)^2}$ 

This means we can bound the improvement between any-two policies based on their KL divergence. This means if we optimize within a certain KL distance we can *guarantee improvement*.

#### A More Perfect RL Algorithm

#### Algorithm 1 Policy iteration algorithm guaranteeing nondecreasing expected return $\eta$

```
Initialize \pi_0.

for i=0,1,2,\ldots until convergence do

Compute all advantage values A_{\pi_i}(s,a).

Solve the constrained optimization problem

\pi_{i+1} = \arg\max_{\pi} \left[ L_{\pi_i}(\pi) - CD_{\mathrm{KL}}^{\mathrm{max}}(\pi_i,\pi) \right]
```

$$\begin{aligned} \pi_{i+1} &= \underset{\pi}{\operatorname{arg \; max}} \left[ L_{\pi_i}(\pi) - CD_{\mathrm{KL}}\left(\pi_i, \pi\right) \right] \\ & \text{where } C = 4\epsilon \gamma/(1-\gamma)^2 \\ & \text{and } L_{\pi_i}(\pi) = \eta(\pi_i) + \sum_s \rho_{\pi_i}(s) \sum_a \pi(a|s) A_{\pi_i}(s, a) \end{aligned}$$

end for

The constraint is not computable due to  $\max_s f(s)$ .



#### Make RL in Practice

- Computable constraint
- Cheap cost function
- Cheap constrained optimization solver

#### Computable Constraint

We want to make our constrained optimization solvable.

- Get rid of max KL constraint over the whole state space.
- Define 'Average' KL,  $ar{D}_{\mathit{KL}} := \mathbb{E}_{s \sim \mu_{\pi_{ heta}}} \left[ D_{\mathit{KL}} \left( \pi_{ heta}(*|S) || \pi_{ heta_{old}}(*|s) \right) \right]$
- Estimate this Expectation using roll-outs under the policy.

This gives us,

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\theta_{old}, \theta) \leq \delta$ 

### Cheap Cost Function

We want to make  $L_{\theta_{old}}(\theta)$  fast to compute.

$$L_{\theta_{old}}(\theta) = \sum_{s} \mu_{\pi_{\theta_{old}}} \sum_{a} \pi_{\theta}(a|s) A_{\theta_{old}}(s,a) \ \ (\text{Definition of } L)$$

We replace the sums by an expectation, and A with estimator  $\hat{A}$ 

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \pi_{ heta}(a|s) \ \hline \pi_{ heta_{old}}(a|s) \end{array} \cdot \hat{A}_{ heta_{old}}(s,a) \end{aligned} \end{aligned}$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

Actual Taylor expansion Lies invented by mathematicians to feel superior to physicists 
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 \dots$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

References

$$\max_{ heta} L_{ heta_{old}}( heta)$$
 subject to  $ar{D}_{ extit{KL}}\left(\pi_{ heta_{old}}, \pi_{ heta}
ight) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$

$$\max_{\theta} L_{\theta_{old}}(\theta) \text{ subject to } \bar{D}_{KL}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$$
 First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$
  
$$L_{\theta_{old}}(\theta) \approx 0 + g^{T}(\theta - \theta_{old})$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{KL}(\pi_{\theta_{old}}, \pi_{\theta}) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$
  
$$L_{\theta_{old}}(\theta) \approx 0 + g^{T}(\theta - \theta_{old})$$

Let 
$$\Delta \theta = (\theta - \theta_{old})$$

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

First Order of Taylor Expansion to  $L_{\theta_{old}}(\theta)$ 

$$L_{\theta_{old}}(\theta) \approx L_{\theta_{old}}(\theta_{old}) + g^{T}(\theta - \theta_{old})$$
  
$$L_{\theta_{old}}(\theta) \approx 0 + g^{T}(\theta - \theta_{old})$$

Let 
$$\Delta \theta = (\theta - \theta_{old})$$

$$L_{\theta_{old}}(\theta) \approx g^T \Delta \theta$$

 $\max_{\theta} L_{\theta_{old}}(\theta)$  subject to  $ar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

Second Order of Taylor Expansion of Contraint

References

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to  $\bar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

Second Order of Taylor Expansion of Contraint

$$ar{D}_{ extit{KL}}\left(\pi_{ heta_{ extit{old}}}, \pi_{ heta}
ight) pprox ar{D}_{ extit{KL}}\left(\pi_{ heta_{ extit{old}}}, \pi_{ heta_{ extit{old}}}
ight) + 
abla_{ heta} \hat{D}_{ extit{KL}}( extit{pi}_{ extit{old}} || \pi_{ heta})|_{ heta_{ extit{old}}}$$

only 
$$< 5 - > \bar{D}_{\mathsf{KL}} \left( \pi_{\theta_{\mathsf{old}}}, \pi_{\theta} \right) pprox rac{1}{2} \Delta \theta^{\mathsf{T}} \mathsf{H} \Delta \theta$$

 $\max_{\theta} L_{\theta_{old}}(\theta)$  subject to  $ar{D}_{\mathit{KL}}\left(\pi_{\theta_{old}}, \pi_{\theta}\right) \leq \delta$ 

Second Order of Taylor Expansion of Contraint

References

We now have a new constrained optimization problem,

$$\begin{aligned} & \operatorname{argmax}_{\theta} \ g^{T} \Delta \theta \\ & \operatorname{subject to} \ \frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta \end{aligned}$$

Now since it's a nice quadratic/convex contrainst we can solve,

$$\theta = \theta_{old} + \sqrt{\frac{2\delta}{g^t H^{-1}g}} H^{-1}g.$$

skin derivation

$$\operatorname{argmax}_{\theta} g^{T} \Delta \theta$$
 subject to  $\frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta$ 

$$\operatorname{argmax}_{\theta} g^{T} \Delta \theta$$
 subject to  $\frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta$ 

$$L = g^{\mathsf{T}} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{\mathsf{T}} H(\theta - \theta_{old}) - \delta \right)$$

$$\operatorname{argmax}_{\theta} g^T \Delta \theta$$
 subject to  $\frac{1}{2} \Delta \theta^T H \Delta \theta \leq \delta$ 

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H(\theta - \theta_{old}) - \delta \right)$$
$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$\operatorname{argmax}_{\theta} g^{T} \Delta \theta$$
 subject to  $\frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta$ 

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H (\theta - \theta_{old}) - \delta \right)$$

$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$\Delta \theta = -\frac{2}{\lambda} H^{-1} g$$

$$\operatorname{argmax}_{\theta} g^{T} \Delta \theta$$
 subject to  $\frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta$ 

Use Lagrangian to solve the constrained optimization

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H(\theta - \theta_{old}) - \delta \right)$$
$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$
$$\Delta \theta = -\frac{2}{\lambda} H^{-1} g$$

This looks like SGD, set  $\alpha = -\frac{2}{3}$ 

$$\operatorname{argmax}_{\theta} g^{T} \Delta \theta$$
 subject to  $\frac{1}{2} \Delta \theta^{T} H \Delta \theta \leq \delta$ 

Use Lagrangian to solve the constrained optimization

$$L = g^{T} \Delta \theta + \lambda \left( \frac{1}{2} (\theta - \theta_{old})^{T} H(\theta - \theta_{old}) - \delta \right)$$

$$\nabla_{\theta} L = 0 \implies g^{T} + \frac{\lambda}{2} H \Delta \theta = 0$$

$$\Delta \theta = -\frac{2}{\lambda} H^{-1} g$$

This looks like SGD, set  $\alpha = -\frac{2}{\lambda}$ 

$$\Delta\theta = \alpha H^{-1}g$$

We have  $\Delta\theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

We have  $\Delta\theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^T H \Delta\theta = \delta$$

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta \theta^T H \Delta \theta = \delta$$
$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^{T}H\Delta\theta = \delta$$
$$\frac{1}{2}\alpha H^{-1}g^{T}H\alpha H^{-1}g = \delta$$

Now we simply re-arrange

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^{T}H\Delta\theta = \delta$$
$$\frac{1}{2}\alpha H^{-1}g^{T}H\alpha H^{-1}g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^{T}H\Delta\theta = \delta$$
$$\frac{1}{2}\alpha H^{-1}g^{T}H\alpha H^{-1}g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$
$$\alpha = \sqrt{\frac{2\delta}{g^t H g}}$$

We have  $\Delta \theta = \alpha H^{-1} g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta \theta^T H \Delta \theta = \delta$$
$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$
$$\alpha = \sqrt{\frac{2\delta}{g^t H g}}$$

Subbing this into  $\Delta \theta = \theta - \theta_{old} = \alpha H^{-1}g$  we get

We have  $\Delta \theta = \alpha H^{-1}g$ , and we solve for  $\alpha$  by setting contraint  $= \delta$ 

$$\frac{1}{2}\Delta\theta^T H \Delta\theta = \delta$$
$$\frac{1}{2}\alpha H^{-1} g^T H \alpha H^{-1} g = \delta$$

Now we simply re-arrange

$$\alpha^2 g^T H g = 2\delta$$
$$\alpha = \sqrt{\frac{2\delta}{g^t H g}}$$

Subbing this into  $\Delta\theta = \theta - \theta_{old} = \alpha H^{-1}g$  we get

$$\theta = \theta_{old} + \sqrt{\frac{2\delta}{g^T H g}} H^{-1} g$$



 $H^{-1}g$ 

# An Introduction to the Conjugate Gradient Method Without the Agonizing Pain Edition $1\frac{1}{4}$

Jonathan Richard Shewchuk August 4, 1994

### Line Search

Our approximations have gone back to bite us. We need to check that our ubdpates don't exceed our *actual* constraint using a line search.

### Trust Region Policy Optimization

#### Algorithm 3 Trust Region Policy Optimization

Input: initial policy parameters  $\theta_0$ 

for k = 0, 1, 2, ... do

Collect set of trajectories  $\mathcal{D}_k$  on policy  $\pi_k = \pi(\theta_k)$ 

Estimate advantages  $\hat{A}^{\pi_k}_t$  using any advantage estimation algorithm

Form sample estimates for

- policy gradient  $\hat{g}_k$  (using advantage estimates)
- ullet and KL-divergence Hessian-vector product function  $f(v)=\hat{H}_k v$

Use CG with  $n_{cg}$  iterations to obtain  $x_k pprox \hat{H}_k^{-1} \hat{g}_k$ 

Estimate proposed step  $\Delta_k pprox \sqrt{\frac{2\delta}{x_k^T \hat{H}_k x_k}} x_k$ 

Perform backtracking line search with exponential decay to obtain final update

$$\theta_{k+1} = \theta_k + \alpha^j \Delta_k$$

end for

### Experimental Results in TRPO Paper



Figure 4. Learning curves for locomotion tasks, averaged across five runs of each algorithm with random initializations. Note that for the hopper and walker, a score of -1 is achievable without any forward velocity, indicating a policy that simply learned balanced standing, but not walking.

## External TRPO Robotics Applications

Mahmood et al. [2018] wrote a paper bencmarking policy gradient algorithms for robotics, including TRPO.

- "TRPO achieving near-best final learning performance in all tasks."
- "Among these algorithms, the final performance of TRPO was never substantially worse compared to the best in each task."
- "TRPO's performance was the least sensitive to hyper-parameter variations with the smallest interquartile range on both tasks."

### Next Steps

- The Chosen Path
  - Clipping
  - Hyperparameter tuning
- Other Approaches:
  - ullet More precise approximations o no more line search
  - $\bullet$  Assumptions about policy structure  $\to$  tighter bound
  - $\bullet$  Assumptions about function approximator  $\to$  better notation of small step

## Critiques of the Paper

- They leave out critical implementation details [Henderson et al., 2019].
- They compare 'Vine' and 'Path', and Vine is a different problem formulation



# Thank you for listening

Robots following TRPO Policies

### References

- Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep reinforcement learning that matters, 2019. URL https://arxiv.org/abs/1709.06560.
- A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra. Benchmarking reinforcement learning algorithms on real-world robots, 2018. URL https://arxiv.org/abs/1809.07731.
- John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region policy optimization, 2017. URL https://arxiv.org/abs/1502.05477.
- Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning:* An Introduction. A Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249.