Decentralized Multi-Robot Task Allocation and Navigation in Complex Environments (DC-MRTA)

Sharmad Kalpande (22166), Anirudha Patil (22234), Saurabh Shirke (22297), Rushikesh Bhosale (22078)

System Model

- *n* holonomic robots in $W \subset \mathbb{R}^2$
- Each agent A_i has:
 - Position \mathbf{p}_i , velocity \mathbf{v}_i
 - Neighborhood set $\mathcal{N}_i = \{j \mid \|\mathbf{p}_j \mathbf{p}_i\| \le r_{\mathsf{sense}}\}$
- Tasks defined as tuples:

$$\mathcal{T}_i = (\mathbf{o}_i, \mathbf{d}_i, k_i, l_i)$$

where:

- **o**_i: origin (pickup)
- d_i: destination (dropoff)
- k_i : distance to robot
- I_i: task length

Optimization Objective

Primary Objective

Minimize total travel distance:

$$\min \sum_{i=1}^n \|\mathbf{g}_i - \mathbf{p}_i\|$$

where $\mathbf{g}_i \in \{\mathbf{o}_i, \mathbf{d}_i\}$ is current goal

Constraints

$$A_i \cap A_j = \emptyset,$$
 $\forall j \in \mathcal{N}_i$
 $A_i \cap O_k = \emptyset,$ $\forall k \in \{1, ..., m\}$

System Architecture Overview

- High-Level: RL-based task allocator
- Low-Level: ORCA navigation controller
- Coupling: Reward feedback from navigation to allocation

Velocity Obstacle Formulation

VO Definition

$$VO_{i|j}^{\tau} = \{ \mathbf{v} \mid \exists t \in [0, \tau], t\mathbf{v} \in D(\mathbf{p}_j - \mathbf{p}_i, r_i + r_j) \}$$

where:

- τ : time horizon
- $D(\cdot)$: disk of radius $r_i + r_j$

Collision Condition

$$\mathbf{v}_{i}^{opt} - \mathbf{v}_{j}^{opt} \in VO_{i|j}^{ au} \Rightarrow \mathsf{Collision}$$

ORCA Formulation

ORCA Half-Plane

$$ORCA_{i|j}^{\tau} = \left\{ \mathbf{v} \mid \left(\mathbf{v} - \left(\mathbf{v}_{i}^{opt} + \frac{1}{2} \mathbf{u} \right) \right) \cdot \mathbf{n} \geq 0 \right\}$$

where:

- u: minimum avoidance velocity
- **n**: normal to VO boundary

Velocity Selection

$$\mathbf{v}_{i}^{new} = \underset{\mathbf{v} \in ORCA_{i|j}^{\tau}}{\operatorname{argmin}} \|\mathbf{v} - \mathbf{v}_{i}^{pref}\|$$

MDP Formulation

MDP Components

$$\mathcal{M} = (S, A, R, P, \gamma)$$

• State space *S*:

$$S = \{(\mathbf{p}_j, r_j)_{\forall j \in \mathcal{R}}, (\mathbf{o}_i, \mathbf{d}_i, k_i, l_i)_{\forall i \in \mathcal{P}}, j_{sel}\}$$

- Action space A: Task selection
- Reward R: $-\mathsf{Time}(\mathbf{o}_i, \mathbf{p}_i)$

Policy Architecture

Neural Network Policy

$$\pi_{\theta}(a|s) = \operatorname{softmax}(f_{\theta}(s))$$

where f_{θ} is attention-based DNN with:

- Input: Full state S
- Output: Task selection probabilities

Attention Mechanism

$$\mathsf{Attention}(Q,K,V) = \mathsf{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

applied to:

- Q: Current robot query
- K: Task/Robot keys
- V: Task values

Reward Formulation

Decoupled Reward

$$R_{\text{dec}} = egin{cases} 1 & ext{task done} \\ 0 & ext{otherwise} \end{cases}$$

Coupled Reward

$$R_{\mathsf{coup}} = -\mathsf{Time}(\mathbf{o}_i, \mathbf{p}_i) - \lambda c$$

where:

- c: collision penalty
- λ : weighting factor

Performance Metrics

Key Results

Makespan improvement:

$$\frac{T_{\text{baseline}} - T_{\text{ours}}}{T_{\text{baseline}}} = 14\%$$

Collision reduction:

$$\frac{C_{\text{baseline}} - C_{\text{ours}}}{C_{\text{baseline}}} = 40\%$$

Scalability:

Time
$$\sim O(n^{1.2})$$
 for $n \leq 1000$ robots

Visual Results

(a) Initial configuration

(b) Task completion

Figure: 10-robot scenario

Key Equations Summary

Navigation:

$$\mathit{ORCA}_{i|j}^{\tau} = \{\mathbf{v} \mid (\mathbf{v} - \mathbf{v}_i^*) \cdot \mathbf{n} \geq 0\}$$

Task Allocation:

$$\pi_{\theta}(a|s) = \operatorname{softmax}(f_{\theta}(s))$$

Reward:

$$R = -\mathsf{Time}(\mathbf{o}_i, \mathbf{p}_i)$$

Performance:

$$\Delta \textit{T} = 14\%, \Delta \textit{C} = 40\%$$