

Eksamen

16.11.2021

REA3024 Matematikk R2

Nynorsk

Eksamensin	formasjon
Eksamenstid	5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal leverast inn seinast etter 5 timar.
Hjelpemiddel	Del 1: Skrivesaker, passar, linjal og vinkelmålar (På del 1 er det ikkje tillate å bruke datamaskin.) Del 2: Etter tre timar er alle hjelpemiddel tillatne, bortsett frå opent Internett og andre verktøy som kan brukast til kommunikasjon. Når du bruker nettbaserte hjelpemiddel under eksamen, har du ikkje lov til å kommunisere med andre. Samskriving, chat og
	andre måtar å utveksle informasjon med andre på er ikkje tillatne.
Informasjon om oppgåva	Del 1 har 8 oppgåver. Del 2 har 4 oppgåver. Der oppgåveteksten ikkje seier noko anna, kan du fritt velje
	framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil ein alternativ metode kunne gi låg/noko utteljing. Poeng i del 1 og del 2 er berre rettleiande i vurderinga. Bruk av digitale verktøy som grafteiknar og CAS skal dokumenterast.
Kjelder	Alle grafar og figurar: Utdanningsdirektoratet
Informasjon om vurderinga	Sjå eksamensrettleiinga med kjenneteikn på måloppnåing til sentralt gitt skriftleg eksamen. Eksamensrettleiinga finn du på Utdanningsdirektoratets nettsider.

Eksamen REA3024 Side 2 av 20

Oppgåve 1 (4 poeng)

Deriver funksjonane

a)
$$f(x) = \frac{1}{6} \cdot \cos(2x)$$

b)
$$g(x) = \sin^2(x^2 + 2)$$

Oppgåve 2 (6 poeng)

Bestem integrala

a)
$$\int_{-\pi}^{\pi} \sin x \, dx$$

b)
$$\int \frac{x}{x^2 - 9} dx$$

c)
$$\int_{0}^{\ln 2} x \cdot e^{2x} dx$$

Oppgåve 3 (3 poeng)

Vi har gitt differensiallikninga

$$2y \cdot y' = \cos x$$

Bestem den løysinga som oppfyller y(0) = 2.

Eksamen REA3024 Side 3 av 20

Oppgåve 4 (4 poeng)

Under har vi teikna grafen til ein funksjon f for $x \in [-1, 4]$.

Funksjonen g er gitt ved

$$g(x) = f'(x)$$
, $D_q = [-1, 4]$

- a) Bruk grafen til å bestemme $\int_{-1}^{1} g(x) dx$.
- b) Bestem a og b slik at $\int_a^b g(x) dx$ blir minst mogleg. Grunngi svaret.

Oppgåve 5 (4 poeng)

Funksjonen f er gitt ved

$$f(x) = 2\sin\left(\frac{\pi}{2}x - \pi\right) + 1$$
 , $D_f = \langle 0, 10 \rangle$

- a) Bestem nullpunkta til f.
- b) Gjer utrekningane som trengst, og bruk desse til å skissere grafen til f.

Eksamen REA3024 Side 4 av 20

Oppgåve 6 (8 poeng)

Vi har gitt tre punkt A(2,1,0), B(0,1,-2) og C(-3,2,1).

- a) Bestem \overrightarrow{AB} og \overrightarrow{AC} .
- b) Vis at $\overrightarrow{AB} \times \overrightarrow{AC}$ er parallell med $\overrightarrow{n} = [1, 6, -1]$.
- c) Bestem ei likning for planet α som punkta A, B og C ligg i.

Punktet $T(2+t, t^2+4, 1+t)$ dannar saman med A, B og C pyramiden ABCT.

- d) Bestem volumet av pyramiden når t = 2.
- e) Bestem *t* slik at volumet blir $\frac{26}{3}$.

Oppgåve 7 (5 poeng)

Vi har gitt den uendelege geometriske rekkja

$$S(x) = 2 + \ln x + \frac{(\ln x)^2}{2} + \frac{(\ln x)^3}{4} + \cdots$$

- a) Bestem konvergensområdet til rekkja.
- b) Bestem S(e).
- c) Lag ei uendeleg geometrisk rekkje som har konvergensområde $\langle 2,4 \rangle$.

Oppgåve 8 (2 poeng)

Vi har gitt differensiallikninga

$$y' + \frac{1}{x} \cdot y = 1$$

Ei av løysingane til differensiallikninga har eit punkt P på grafen der tangenten er gitt ved y = -x - 6.

Bestem koordinatane til P.

Eksamen REA3024 Side 5 av 20

Oppgåve 1 (6 poeng)

Tabellen under viser utgåande datatrafikk frå eit nettselskap for nokre utvalde timar i løpet av eit døgn.

Time etter midnatt	2	4	6	8	10	12	14	16	18	20	22	24
Utgåande GB per time	402	251	167	286	310	460	532	711	827	908	789	692

a) Bruk regresjon til å bestemme ein trigonometrisk funksjon som passar godt med informasjonen i tabellen.

Eit anna nettselskap meiner at funksjonen f gitt ved

$$f(x) = 820 + 510 \cdot \sin(0.26x + 3.2)$$
, $D_f = [0.24]$

er ein god modell for deira utgåande datatrafikk per time gjennom eit døgn. Her er *x* talet på timar etter midnatt.

- b) Når voks datatrafikken til dette nettselskapet fortast, ifølgje modellen f?
- c) Bruk modellen f til å bestemme den totale utgåande datatrafikken frå nettselskapet i løpet av eit døgn.

Eksamen REA3024 Side 6 av 20

Oppgåve 2 (6 poeng)

For å kunne føreseie korleis ein pandemi kan utvikle seg, er R-talet viktig. Dette talet seier kor mange personer ein smitta person i gjennomsnitt vil smitte vidare.

I resten av denne oppgåva tar vi utgangspunkt i sjukdommen covid-19. Vi går ut ifrå at smitteperioden er 1 veke. Dersom R-talet er 1,2, så vil 100 personar som har covid-19-smitte, smitte $100 \cdot 1,2 = 120$ nye personar i løpet av ei veke. Etter éi veke vil det vere 220 personar som har eller har hatt sjukdommen, sidan

$$100+100\cdot 1,2=100+120=220$$

Den neste veka vil dei 120 som blei smitta veka før, smitte $120 \cdot 1,2 = 100 \cdot 1,2^2$ nye personar.

Til ein by som ikkje har covid-19-smitte, kjem det 20 personar som er smitta. Dette blir ikkje oppdaga, så *R*-talet held seg konstant i mange veker.

a) Forklar at talet på personar som har eller har hatt covid-19 etter *n* veker, kan uttrykkjast med den geometriske rekkja

$$20+20\cdot R+20\cdot R^2+\cdots+20\cdot R^n$$

Gå ut ifrå at R = 1,7 i denne byen.

b) Kor mange personar vil det vere som har eller har hatt covid-19 i denne byen i løpet av dei 8 første vekene?

Det tar 8 veker før styresmaktene i byen rekk å setje inn tiltak.

c) Kva må R-talet vere etter at tiltaka er sette inn, for at det samla talet på folk som har hatt eller får covid-19-smitte i denne byen, ikkje skal komme over 10 000?

Eksamen REA3024 Side 7 av 20

Oppgåve 3 (6 poeng)

Ei kuleflate K har sentrum S(-1,3,4) og radius r. Ei linje ℓ går gjennom punkta A(-4,0,0) og B(2,0,8).

- a) Bestem skjeringspunkta mellom kuleflata og linja når r = 5.
- b) Bruk CAS til å bestemme den minste verdien av r som gjer at det er skjeringspunkt mellom linja ℓ og kuleflata K.

Planet α er bestemt av punktet C(0,1,0) og dei to skjeringspunkta du fann i oppgåve a.

c) Bestem ei likning for planet α .

No skal du gå ut ifrå at $r \ge 5$.

d) Grunngi at likninga for planet α er uavhengig av kva radius r vi valde for kuleflata K i oppgåve a.

Eksamen REA3024 Side 8 av 20

Oppgåve 4 (6 poeng)

Ein dieseltank inneheld 400 liter vanleg diesel. Eigaren vil byte ut dieselen med biodiesel. Samtidig som dieselen blir tappa ut, blir det derfor etterfylt med ei like stor mengd biodiesel. Denne blandar seg godt med dieselen i tanken. Det som blir tappa ut, vil derfor bli ei blanding av vanleg diesel og biodiesel.

La B(x) vere mengda biodiesel på tanken etter at vi har tappa ut x liter.

a) Forklar at differensiallikninga

$$B'(x) = 1 - 0,0025 \cdot B(x)$$

kan brukast til å bestemme mengda biodiesel på tanken etter at det er tappa ut x liter.

b) Kor mange liter må tappast ut før halvparten av den vanlege dieselen er bytt ut med biodiesel?

Ein dieseltank inneheld *V* liter vanleg diesel. Vi lar *m* vere talet på liter du må tappe ut og etterfylle med biodiesel for at halvparten av den vanlege dieselen skal bli bytt ut med biodiesel.

c) Vis at $m = \ln 2 \cdot V$.

Eksamen REA3024 Side 9 av 20

Bokmål

Eksamensinf	ormasjon						
Eksamenstid	5 timer: Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.						
Hjelpemidler	Del 1: Skrivesaker, passer, linjal og vinkelmåler. (På del 1 er det ikke tillatt å bruke datamaskin.)						
	Del 2: Etter tre timer er alle hjelpemidler tillatt, bortsett fra åpent Internett og andre verktøy som kan brukes til kommunikasjon.						
	Når du bruker nettbaserte hjelpemidler under eksamen, har du ikke lov til å kommunisere med andre. Samskriving, chat og andre måter å utveksle informasjon med andre på er ikke tillatt.						
Informasjon om oppgaven	Del 1 har 8 oppgaver. Del 2 har 4 oppgaver.						
орруши.	Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Dersom oppgaven krever en bestemt løsningsmetode, kan en alternativ metode gi lav/noe uttelling. Poeng i del 1 og del 2 er bare veiledende i vurderingen.						
	Bruk av digitale verktøy som graftegner og CAS skal dokumenteres.						
Kilder	Alle grafer og figurer: Utdanningsdirektoratet						
Informasjon om vurderingen	Se eksamensveiledningen med kjennetegn på måloppnåelse til sentralt gitt skriftlig eksamen. Eksamensveiledningen finner du på Utdanningsdirektoratets nettsider.						

Eksamen REA3024 Side 10 av 20

Oppgave 1 (4 poeng)

Deriver funksjonene

a)
$$f(x) = \frac{1}{6} \cdot \cos(2x)$$

b)
$$g(x) = \sin^2(x^2 + 2)$$

Oppgave 2 (6 poeng)

Bestem integralene

a)
$$\int_{-\pi}^{\pi} \sin x \, dx$$

b)
$$\int \frac{x}{x^2 - 9} dx$$

c)
$$\int_{0}^{\ln 2} x \cdot e^{2x} dx$$

Oppgave 3 (3 poeng)

Vi har gitt differensiallikningen

$$2y \cdot y' = \cos x$$

Bestem den løsningen som oppfyller y(0) = 2.

Eksamen REA3024 Side 11 av 20

Oppgave 4 (4 poeng)

Nedenfor har vi tegnet grafen til en funksjon f for $x \in [-1, 4]$.

Funksjonen g er gitt ved

$$g(x) = f'(x)$$
, $D_q = [-1, 4]$

- a) Bruk grafen til å bestemme $\int_{-1}^{1} g(x) dx$.
- b) Bestem a og b slik at $\int_a^b g(x) dx$ blir minst mulig. Begrunn svaret.

Oppgave 5 (4 poeng)

Funksjonen f er gitt ved

$$f(x) = 2\sin\left(\frac{\pi}{2}x - \pi\right) + 1$$
 , $D_f = \langle 0, 10 \rangle$

- a) Bestem nullpunktene til f.
- b) Gjør nødvendige beregninger og bruk disse til å skissere grafen til f.

Eksamen REA3024 Side 12 av 20

Oppgave 6 (8 poeng)

Vi har gitt tre punkter A(2,1,0), B(0,1,-2) og C(-3,2,1).

- a) Bestem \overrightarrow{AB} og \overrightarrow{AC} .
- b) Vis at $\overrightarrow{AB} \times \overrightarrow{AC}$ er parallell med $\overrightarrow{n} = [1, 6, -1]$.
- c) Bestem en likning for planet α som punktene A, B og C ligger i.

Punktet $T(2+t, t^2+4, 1+t)$ danner sammen med A, B og C pyramiden ABCT.

- d) Bestem volumet av pyramiden når t = 2.
- e) Bestem t slik at volumet blir $\frac{26}{3}$.

Oppgave 7 (5 poeng)

Vi har gitt den uendelige geometriske rekken

$$S(x) = 2 + \ln x + \frac{(\ln x)^2}{2} + \frac{(\ln x)^3}{4} + \cdots$$

- a) Bestem rekkens konvergensområde.
- b) Bestem S(e).
- c) Lag en uendelig geometrisk rekke som har konvergensområde $\langle 2, 4 \rangle$.

Oppgave 8 (2 poeng)

Vi har gitt differensiallikningen

$$y' + \frac{1}{x} \cdot y = 1$$

En av løsningene til differensiallikningen har et punkt P på grafen der tangenten i P er gitt ved y = -x - 6.

Bestem koordinatene til P.

Eksamen REA3024 Side 13 av 20

Oppgave 1 (6 poeng)

Tabellen nedenfor viser utgående datatrafikk fra et nettselskap for noen utvalgte timer i løpet av et døgn.

Time etter midnatt	2	4	6	8	10	12	14	16	18	20	22	24
Utgående GB per time	402	251	167	286	310	460	532	711	827	908	789	692

a) Bruk regresjon til å bestemme en trigonometrisk funksjon som passer godt med informasjonen i tabellen.

Et annet nettselskap mener at funksjonen f gitt ved

$$f(x) = 820 + 510 \cdot \sin(0.26x + 3.2)$$
, $D_f = [0.24]$

er en god modell for deres utgående datatrafikk per time gjennom et døgn. Her er *x* antall timer etter midnatt.

- b) Når økte datatrafikken til dette nettselskapet raskest ifølge modellen f?
- c) Bruk modellen *f* til å bestemme den totale utgående datatrafikken fra nettselskapet i løpet av et døgn.

Eksamen REA3024 Side 14 av 20

Oppgave 2 (6 poeng)

For å kunne forutsi hvordan en pandemi kan utvikle seg, er R-tallet viktig. Dette tallet sier hvor mange personer en smittet person i gjennomsnitt vil smitte videre.

I resten av denne oppgaven tar vi utgangspunkt i sykdommen covid-19. Vi går ut fra at smitteperioden er 1 uke. Dersom R-tallet er 1,2, så vil 100 personer som har covid-19-smitte, smitte $100 \cdot 1,2 = 120$ nye personer i løpet av en uke. Etter én uke vil det være 220 personer som har eller har hatt sykdommen, siden

$$100+100\cdot 12=100+120=220$$

Den neste uken vil de 120 som ble smittet uken før, smitte $120 \cdot 1,2 = 100 \cdot 1,2^2$ nye personer.

Til en by som ikke har covid-19-smitte, kommer det 20 personer som er smittet. Dette blir ikke oppdaget, så *R*-tallet holder seg konstant i mange uker.

a) Forklar at antallet som har eller har hatt covid-19 etter *n* uker, kan beskrives med den geometriske rekken

$$20 + 20 \cdot R + 20 \cdot R^2 + \cdots + 20 \cdot R^n$$

Anta at R = 1,7 i denne byen.

b) Hvor mange personer vil det være som har eller har hatt covid-19 i denne byen i løpet av de 8 første ukene?

Det tar 8 uker før myndighetene i byen rekker å sette inn tiltak.

c) Hva må R-tallet være etter at tiltakene er satt inn, for at det totale antallet som har hatt eller får covid-19-smitte i denne byen, ikke skal overstige 10 000?

Eksamen REA3024 Side 15 av 20

Oppgave 3 (6 poeng)

En kuleflate K har sentrum S(-1,3,4) og radius r. En linje ℓ går gjennom punktene A(-4,0,0) og B(2,0,8).

- a) Bestem skjæringspunktene mellom kuleflaten og linjen når r = 5.
- b) Bruk CAS til å bestemme den minste verdien av r som gjør at det er skjæringspunkt mellom linjen ℓ og kuleflaten K.

Planet α er bestemt av punktet C(0,1,0) og de to skjæringspunktene du fant i oppgave a.

c) Bestem en likning for planet α .

Anta nå at $r \ge 5$.

d) Begrunn at likningen for planet α er uavhengig av hvilken radius r vi valgte for kuleflaten K i oppgave a.

Eksamen REA3024 Side 16 av 20

Oppgave 4 (6 poeng)

En dieseltank inneholder 400 liter vanlig diesel. Eieren ønsker å bytte ut dieselen med biodiesel. Samtidig som dieselen tappes ut, etterfylles det derfor med en like stor mengde biodiesel. Denne blandes godt med dieselen i tanken. Det som tappes ut, vil derfor bli en blanding av vanlig diesel og biodiesel.

La B(x) være mengden biodiesel på tanken etter at vi har tappet ut x liter.

a) Forklar at differensiallikningen

$$B'(x) = 1 - 0,0025 \cdot B(x)$$

kan brukes til å bestemme mengden biodiesel på tanken etter at det er tappet ut x liter.

b) Hvor mange liter må tappes ut før halvparten av den vanlige dieselen er byttet ut med biodiesel?

En dieseltank inneholder *V* liter vanlig diesel. Vi lar *m* være antall liter du må tappe ut og etterfylle med biodiesel for at halvparten av den vanlige dieselen skal bli byttet ut med biodiesel.

c) Vis at $m = \ln 2 \cdot V$.

Eksamen REA3024 Side 17 av 20

Blank side

Eksamen REA3024 Side 18 av 20

Blank side

Eksamen REA3024 Side 19 av 20

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGÅVA:

- Start med å lese oppgåveinstruksen godt.
- Hugs å føre opp kjeldene i svaret ditt dersom du bruker kjelder.
- Les gjennom det du har skrive, før du leverer.
- Bruk tida. Det er lurt å drikke og ete undervegs.

Lykke til!

TIPS TIL DEG SOM AKKURAT HAR FÅTT EKSAMENSOPPGAVEN:

- Start med å lese oppgaveinstruksen godt.
- Husk å føre opp kildene i svaret ditt hvis du bruker kilder.
- Les gjennom det du har skrevet, før du leverer.
- Bruk tiden. Det er lurt å drikke og spise underveis.

Lykke til!