Ultra-Low Power PLL for Wake-up Receiver Applications

Specialization Project Progress - 8th Week

Cole Nielsen
Department of Electronic Systems, NTNU
18 October 2019 (Calendar week 42)

Autumn Timeline

Week	ek Dates Tasks		Outcomes	
36	2.9 - 8.9	Review PLL Design	Refreshed Knowledge	
37	7 9.9 - 15.9 Modeling/simulation (set up)		-	
38	8 16.9 - 22.9 Modeling/simulation		TDC/DCO Requirements	
39	9 23.9 - 29.9 Modeling/simulation		Loop Filter/Digital Algorithms	
40	30.9 - 6.10 Modeling/simulation		Loop filter, DCO, TDC, calibration	
41	7.10 - 13.10 Circuit Research		DCO/Divider topologies, Ideal Virtuoso implementation	
42	14.10 - 20.10 Circuit Research		TDC/other topologies	
43	3 21.10 - 27.10 Circuit Implementation		Digital logic (schematic)	
44	28.10 - 3.11	Circuit Implementation	DCO (schematic)	
45	5 4.11 - 10.11 Circuit Implementation		Divider/other (schematic)	
46	in 11.11 - 17.11 Circuit Implementation (TDC)			
47	18.11 - 24.11 Circuit Implementation (TDC)		TDC (schematic)	
48	25.11 - 1.12 Full Circuit testing		Testbenches, find bugs, design fixes	
49	9 2.12 - 8.12 Full Circuit testing		Design Fixes/iteration	
50	0 9.12 - 15.12 –		-	

Legend: Done Current Revised

Timeline Tasks

This week

TDC/Phase detector

- New hybrid architecture using TDC and digital bang-bang phase detector to overcome resolution deficiencies.
- Already talked about topologies two weeks ago.

— Python Simulation:

- Variance of K_{DCO} to analyze stability and effects on start-up.
- Added quantization to loop filter model.
- Added in hybrid TDC and digital bang-bang phase detector.

TDC model limitations

Continuous approximation model

- Have been using continuous approximation of PLL loop to model phase noise dynamics.
- Phase error here is *instantly* available with added quantization noise.
- Reality: Low TDC resolution not manifested accurately.
 - There is latency Phase error must accumalate over many reference cycles until it is large enough to increment TDC by 1 LSB.
- Time to increment 1 LSB for a frequency error Δf is below. E.g. Δf = 50 kHz, M=64, N=150 yields 47 μs latency, or 750 reference cycles at 16 MHz.

$$t = \frac{N}{M \cdot \Delta f} \tag{1}$$

Issue of low TDC resolution

- Low TDC resolution limits ability to track random phase walk (principal phase noise component).
- **TDC steps M** >> **Divider N** for TDC response time to frequency error Δf to be much less than period of Δf . This allows for the frequency error due to phase walk to be corrected before it contributes to the phase noise spectrum.
- If N=150, TDC bits >> 7.2.
 - · This is impractical.
 - Delay line TDC with ca. 150 stages would be problematic.
 - Counter based TDC limited to exactly M=N.

Bang-bang phase detector

- Need a way to incorporate more instantaneous phase feedback, enter the bang-bang phase detector (BB-PD).
 - Bang-bang detector samples every cycle, measuring if the input edge is late or early relative to the clock.
- Basic implementation is a D flip-flop.
- To correct phase error (if small in magnitude):
 - Early input → decrement oscillator frequency
 - $\bullet \quad \text{Late input} \rightarrow \text{incremenent oscillator frequency}$

Hybrid detector

- Combine TDC and bang-bang phase detector to yield better overall phase detector.
 - TDC good for achieving fast lock with large frequency offset.
 - Bang-bang good for steady-state tracking.
- In phase error signal, TDC sets integer part of signal, BB-PD is fractional.
 - Near steady state, TDC signal is 0, so BB-PD dominates.
- Remainder of PLL is same as before.

Example TDC out with low resolution.

- Simulated 2.4 GHz PLL, with 16 MHz reference, 50 kHz bandwidth, 64 TDC steps.
- Does a good job locking from large offset, bad phase error in steady state.
- Noticably no tracking of small phase variations (phase noise) in steady state.

BB-PD with counter-based TDC

- Counter-based TDC has no divider, connect BB-PD direct to DCO output.
- Disable synchronous counter and only use BB-PD near lock to save power?

BB-PD gain selection

- Regardless of phase error magnitude, BB-PD output will be fixed magnitude. How do we set K_{BB}?
 - To achieve maximum resolution (lowest phase noise), K_{BB} should be defined by the minimum time difference resolvable by the BB-PD.
 - If faster settling is need, increase K_{BB}
- Minimum effective temporal resolution of BB-PD is given by set-up and hold time requirements of flip-flop for deterministic output. So for use with a M-step TDC:

$$K_{BB} \ge M \cdot f_{Clk}(t_{SU} + t_h)$$
 (2)

PLL Simulation with BB-PD

Counter based TDC/divider.

Time [s]

 $- f_{clk} = 16$ MHz, N = 150 (2.4 GHz), 48 MHz initial offset, $t_{sl} = t_h = 20 ps$.

Frequency [Hz]

PLL Simulation with BB-PD

Delay line based TDC.

- TDC steps = 64, f_{Clk} = 16 MHz, N = 150 (2.4 GHz), 15 MHz initial offset, $t_{SU} = t_h = 20ps$.

PLL Simulation with BB-PD

Phase noise comparison with and without BB-PD.

- The discrepencies I saw last week between model and simulation were from the phase detector, not a math error.

(a) Without BB-PD.

(b) With BB-PD.

PLL Sim. - Datapath resolution

Comparison of Counter PLL with 6-10 fractional bits.

 — Simulated PLL with various number of fractional bits in fixed point numeric representations. Number of integer bits varies.

(a) 6 Fractional bits.

(b) 8 Fractional bits.

(c) 10 Fractional bits.

PLL Sim. - Datapath resolution

Resolution for fractional part from last week

— Last week came up with this expression based on the difference equation coefficients:

Fractional bits
$$> \lceil -\log_2(a_0 + a_1) \rceil$$
 (3)

 For the configuration tested, 9 bits is the minimum based on the above equation. This seems to be in agreement with the simulation.

Simulation - Variation

KDCO variation.

- Simulated PLL with K_{DCO} subject to variance, where σ_{KDCO} is 20% of nominal K_{DCO} .
- Stable with 50 runs.

Simulation - Variation

KDCO and initial frequency variation.

- Simulated PLL with K_{DCO} subject to variance, where σ_{KDCO} is 20% of nominal K_{DCO} .
- $f_{initial} = f_0 \Delta f$ is subject to variance, where $\sigma_{\Delta f}$ is 1% of nominal f_0 .
- Stable with 50 runs.

Specification (unchanged)

System Performance Targets

Parameter	Value	Unit	Notes	
Frequency	2.4-2.4835	GHz	2.4G ISM Band	
Ref. frequency	16	MHz	Yields 6 channels	
Power	≤ 100	μW		
FSK BER	≤ 1e-2		2FSK with f_{dev} = \pm 250 KHz	
Initial Lock Time	≤ 50	μ S	Upon cold start	
Re-lock Time	≤ 5	μ s Coming out of standby		
Bandwidth	50	kHz	(nominally), tunable	

Additionally: PLL output should support IQ sampling at LO frequency.

Specification (unchanged)

PLL Component Performance Targets

Parameter	Value	Unit	Notes
DCO LSB Resolution	≤ 50	kHz	Determined from quantization noise.
DCO DNL	< 1	LSB	Ensures monotonicity
TDC Resolution	0.95	ns	
TDC Resolution (bits)	6	bits	

Architecture (updated)

Block Diagram

Power Targets

DCO	TDC	Divider	Other	SUM
70 μW	20 μW	10 μW	$<<$ 1 μ W	100 μW

Project Phases

Autumn 2019

- System modeling and simulation.
 - · Learn PLL theory in detail
 - Evaluate feasability of PLL architectures (counter, TDC-based)
 - Determine requirements for TDC/DCO/Divider/logic (bits of resolution, accuracy etc) to meet PLL performance specifications.
 - Determine digital logic for loop filter, validate stability and lock time performance.
- Research ultra-low power circuit topologies to implement system components that will meet determined requirements.
- Translate component-level specifications into schematic-level circuit designs.
 - Try, fail, try again until functional at schematic level.
 - I expect the TDC to be difficult.

Project Phases (continued)

Spring 2020

- Finalize schematic-level design.
- Estabilish thorough tests for PLL performance (automated?) to help in layout.
- Layout of PLL.
 - Design iteration until design specs met.
 - · Probably very time consuming.
- Full characterization/validation of design performance.
 - Comprehensive Corners/Monte-Carlo testing (time consuming??)
 - More design iteration if new issues crop up...
- Thesis paper writing.

References

[1] "Ultra-Low Power Wake-Up Receivers for Wireless Sensor Networks", N. Pletcher, J.M Rabaey, 2008.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-59.html