Convexity Theorem and Integrable Systems

Mikhail Tikhonov

November 30, 2020

University of Virginia

Introduction and required definitions

Exponential map

Let G be a Lie group. By a one-parameter subgroup of G we mean homorphism $\mathbb{R} \to G$.

$$\mathsf{hom}_{\mathsf{Lie}}(\mathbb{R}, G) \ni \theta \mapsto \left. \frac{d}{dt} \right|_{0} \theta(t) \in T_{e}G$$

We define the Lie group exponential map to be:

$$T_eG \ni X \mapsto \exp X = \theta(1) \in G$$
,

where θ is the one-parameter subgroup of G corresponding to X.

1

Exponential map

Proposition

The exponential map is smooth and natural, i.e.

where $\phi \in \text{hom}(G, G')$.

Moreover if $X \in T_eG$ then $\exp(t+s)X = (\exp tX) \cdot (\exp sX)$ for all $t, s \in \mathbb{R}$, where \cdot stands for Lie group product.

2

Riemannian analogue of exponential map

Let (M, g) be a riemannian manifold and let $p \in M$ be a point of M. The riemannian exponential map starting at p is defined by:

$$T_pM \ni X \mapsto \exp_p X = \gamma_X(1) \in M$$

where γ_X is the unique geodesic starting at p with tangent vector X

Proposition

The exponential map is smooth and natural, i.e.

Normal coordinates

Proposition

There exist U and V open neighborhoods respectively of $o \in T_pM$ and $p \in M$, s.t. $\exp_p : U \to V$ is a diffeomorphism. Futhermore if we fix an orthonormal basis of T_pM we obtain an isomorphism F with \mathbb{R}^n , combined with \exp^{-1} gives normal cooridnate chart.

Proposition

Let G be a Lie group equipped with bi-invariant riemannian metric. Then the Lie group exponential map is precisely the reimannian exponential map starting at the identity.

Morse theory

Let $f:M\to\mathbb{R}$ be a Morse-Bott function on a compact riemannian manifold whose critical submanifolds have all index and coindex different from one. The the level sets of f are connected.

Convexity theorem

Convexity theorem

Let (M, w) be a compact connected symplectic manifold, and let \mathbb{T}^m be an m-torus. Suppose that $\psi: \mathbb{T}^m \to \operatorname{Sympl}(M, w)$ is a hamiltonian action with moment map $\mu: M \to \mathbb{R}^m$. Then:

- 1. the levels of μ are connected
- 2. the image of μ is convex
- 3. the image of μ is convex hull of the images of the fixed points of the action