

Unlocking Box Office Success: Predicting Movie Popularity

UCB Data Analytics Bootcamp - Project 4

Group 6:
Gursimran Kaur (Simran)
Jeff Kim
Rose Mary Rios

Project Overview

ETL Highlights

EDA Highlights

Machine Learning Data Preparations

ML - Baseline Models - Performant Model

Machine Optimizations

Objective: This project seeks to predict movie popularity scores by leveraging advanced machine learning models by analyzing a rich dataset of historical movie data.

Data Source: Kaggle's TMDB 5000 Movie, Credits and Oscar Best Picture Movies Datasets

Assumptions:

- Winning or being nominated for Oscars boosts popularity
- Big-name directors and famous actors make movies more popular
- Higher budgets lead to more popular movies
- Popular genres draw more audiences

ETL Highlights

Key Activities:

- ✓ Data Loading: Successfully imported and loaded the necessary datasets into a Pandas dataframe.
- ✓ Feature Selection & Parsing: Identified and extracted relevant features and parsed complex data into structured, Pandas dataframes.
- ✓ Data Cleaning: Thoroughly addressed data quality issues, including handling missing values, outliers, inconsistencies, and duplicates.
- ✓ Data Merging: Combined multiple datasets into a unified dataset for analysis, ensuring data integrity and alignment.
- ✓ Feature Engineering: Created new features or transformed existing ones to improve model performance and capture relevant relationships within the data.
- ✓ Data Formatting: Standardized data formats and ensured consistency across features, making the data suitable for machine learning algorithms.
- ✓ Exporting Cleaned Data: Successfully exported the cleaned and prepared data into a format suitable for further analysis or modeling.

EDA Highlights

EDA Highlights

Key Insights:

- Strong Positive Correlations: Budget, popularity, vote count, and revenue are positively correlated.
- Moderate Positive Correlations: Runtime and revenue have a moderate positive correlation.
- Negative Correlations: Oscar wins don't necessarily correlate strongly with budget or release year.

EDA Highlights

- Award Impacts
- Non-Award Factors:

- Genre Differences
- Genre Outliers

MIData Preparation

Data Preparation for Modeling

- Feature Engineering:
 - Log Transformations to handle skewed data and outliers
 - Interactive Feature: to capture combined relationship (budget x runtime)
 - Label Encoding on categorical features
 - Cyclic Transformation of month and day to represent their circular nature

MIData Preparation

Cyclic Encoding was used to:

- Help the model identify repeating patterns
- Improve prediction accuracy

Model Linear Regression

Updated Features: ['budget_log', 'runtime', 'vote_average', 'month_sin', 'month_cos', 'day_sin', 'day_cos', 'revenue_log', 'budget_runtime_interaction']

Root Mean Squared Error (RMSE): 0.688 4275084348853

R-squared (R²): 0.5066330266530592

Model 2: Random Forest

Root Mean Squared Error (RMSE): 0.6055</mark>005301511441

R-Squared (R²): 0.6183 346814644578

RANDOM FOREST

- Complex Relationships handling
- Feature Importance recognition
- Robustness handling of outlier's noisy data
- Data Versatility with numerical & categorical
- Predictive Power for unseen data

= Ideal for predicting future movie trends!

Optimization One: Feature Engineering

- Log Transformation: on 'vote_count' feature to normalize its distribution
- Interaction Features combining
 'vote_count_log' and 'vote_average' to
 capture the relationship
- Seasonal Feature that flags movies released during the Oscar season, in the fall and winter months

Optimization One Output

Root Mean Squared Error (RMSE): 0.3629928041279302

New R-Squared: 0.8628 329893191401

Optimization Two: One-Hot Encoding

One-hot encoding to 'genres' and 'award' columns Root Mean Squared Error (RMSE): 0.35880964055083064

R-Squared (R²): 0.8659762242238038

Optimized Residual Distribution

- Outliers: few outliers present →
 model struggled to accurately
 predict some data points
- Clustering: significant cluster are close to 0 → predictions are generally accurate

R-squared Results Based on Random Forest Optimization Techniques

1. Baseline Model

- Log Transformations
- Encoding and Cyclical Transformation
- Interaction Terms
- 2. Feature Engineering
- Log Transformation
- Interaction Features
- Seasonal Features (sin/cos)
- 3. One-Hot Encoding
- One-Hot Encoding for Genres and Awards

The visual presentation showcases the progression and impact of each optimization technique on the model's accuracy.

Thank You!

Applause!!