Excitable cells as dynamical systems

Part 2: excitability and bursting

Alexey Brazhe, Moscow State University, Russia

UNIVERSITY OF COPENHAGEN

Excitability, spiking and bursting

Prescott SA, De Koninck Y, Sejnowski TJ (2008) PLoS Comput Biol 4(10): e1000198. doi:10.1371/journal.pcbi.1000198

Hodgkin classification of excitability ($I_{Na,p}+I_{K}$ model)

Hodgkin classification of excitability $(I_{Na,p}+I_K \text{ model})$

Excitability and bistability in $I_{na,p}+I_{\kappa}$ -model near the 4 bifurcations of the resting state

.

Threshold maps for the 4 bifurcations resting → spiking

Responses to short pulses: integrators vs resonators

Implications of subthreshold oscillations: excitation by hyperpolarization

Response to noise

<u>Integrators</u>

- Saddle-node bifurcations from resting state
- Arbitraty low-frequency firing
- Well-defined threshold manifold
- Distinguish between inhibitory and excitatory stimuli
- The higher the frequency of incoming EPSPs, the shorter the spike latency

Resonators

- AH bifurcation
- Fires within specific frequency range
- doesn't have all-or none spikes
- No well-defined threshold manifold
- Can fire in response to inhibitory pulse train
- Increased input frequency can delay spike generation

Slow modulation: forced bursting

Slow modulation: forced bursting (supercritical AH)

Bursting

- Forced bursting
- Intrinsic bursting

(additional slow membrane currents)

- Slow wave: slow subsystem is insensitive to fast and is in oscillatory regime (must be at least 2D)
- Hysteresis loop: bistability of resting and spiking in the fast subsystem

$$\mu \ll 1$$

To stop a burst, either:

- activate outward current (e.g. K+M-current)
- Inactivate inward current (e.g. Ca²⁺ T-current)

•

Classification of bursters by bifurcations involved

bifurcations of limit cycles

	Inches .	bildications of little cycles				
→		saddle-node on invariant circle	saddle homoclinic orbit	supercritical Andronov- Hopf	fold limit cycle	
	saddle-node (fold)	fold/ circle	fold/ homoclinic	fold/ Hopf	fold/ fold cycle	
	saddle-node on invariant circle	circle/ circle	circle/ homoclinic	circle/ Hopf	circle/ fold cycle	
	supercritical Andronov- Hopf	Hopf/ circle	Hopf/ homoclinic	Hopf/ Hopf	Hopf/ fold cycle	
	subcritical Andronov- Hopf	subHopf/ circle	subHopf/ homoclinic	subHopf/ Hopf	subHopf/ fold cycle	

subHopf/fold

Some neurocomputational implications of burster classes: bistability

	SNIC	Saddle homoclinic orbit	Supercritical Andronov- Hopf	Fold limit cycle
Saddle-node (fold)	fold / circle	fold / homoclinic	fold / Hopf	fold / fold cycle
SNIC	circle / circle	circle / homoclinic	circle / Hopf	circle / fold cycle
Supercritical Andronov- Hopf	Hopf / circle	Hopf / homoclinic	Hopf / Hopf	Hopf / fold cycle
Subcritical Andronov- Hopf	subHopf / circle	subHopf / homoclinic	subHopf/ Hopf	subHopf / fold cycle

Some neurocomputational implications of burster classes: frequency modulation within burst

	SNIC	Saddle homoclinic orbit	Supercritical Andronov-Hopf	Fold limit cycle
Saddle-node (fold)	fold / circle	fold / homoclinic	fold / Hopf	fold / fold cycle
SNIC	circle / circle	circle / homoclinic	circle / Hopf	circle / fold cycle
Supercritical Andronov-Hopf	Hopf / circle	Hopf / homoclinic	Hopf / Hopf	Hopf / fold cycle
Subcritical Andronov-Hopf	subHopf / circle	subHopf / homoclinic	subHopf/ Hopf	subHopf / fold cycle

Further reading

- Izhikevich E. Dynamical Systems in Neuroscience: the Geometry of Excitability and Bursting. MIT Press 2007
- Izhikevich E. Neural excitability, spiking and bursting. International journal of bifurcations and chaos. 2000; **10**:6, 1171—1266
- Prescott SA, De Koninck Y, Sejnowski TJ Biophysical Basis for Three Distinct Dynamical Mechanisms of Action Potential Initiation. *PLoS Comput Biol* 2008 **4**(10): e1000198.
- Rinzel J, Huguet G. Nonlinear dynamics of neuronal excitability, oscillations and coincidence detection. Communications on Pure and Applied Mathematics, Vol. LXVI, 1464– 1494 (2013)

Acknowledgements

I would like to acknowledge professional assistance and friendly encouragement from Olga Sosnovtseva (Department of Biomedical Sciences, UCPH Denmark)