Технологии M2M позволяют собрать и обработать информацию с удаленных объектов и систем (различные проводные и беспроводные датчики) в единый агрегированный поток.

ПРОФИЛЬ

Определение

Технологии M2M — сокращение от «machine-to-machine», что в переводе на русский язык «машина-машина»- технологии, позволяющие обмениваться информацией между машинами в одностороннем и в двухстороннем порядке.

Описание

Технология

Для оказания услуг M2M и управления ими могут использоваться как специализированные базовые сети M2M, создаваемые сервис-провайдерами услуг M2M, так и уже имеющаяся у операторов инфраструктура управления услугами мобильных сетей EDGE/ HSPA/LTE на базе платформы IMS.

Основные элементы архитектуры сетей М2М разделены на три домена:

- домен устройств М2М (домен капиллярной сети);
- сетевой домен (ядро базовой сети М2М);
- домен приложений.

Кроме указанных доменов в состав сети M2M входят соответствующая сеть доступа и транспортная сеть, которые строятся на основе сетей 3GPP и NGN сетей. Взаимодействие различных доменов сети M2M показано на рис.1.

Рис. 1 – Взаимодействие различных доменов сети М2М

Устройства M2M позволяют быстро воспользоваться услугами M2M и функциями доменной сети. Устройство M2M может быть соединено с сетью доступа либо напрямую, либо через локальную сеть M2M и шлюз M2M.

Локальные сети M2M предоставляют соединение между устройствами M2M и шлюзами M2M с использованием PAN-технологий (IEEE 802.15, SRD, UWB, Zigbee, Bluetooth) или локальных сетей (PLC, M-BUS, Wireless M-BUS).

Шлюзы М2М обеспечивают устройствам М2М гарантированное межсетевое взаимодействие и подключение к сети и прикладным доменам. Шлюз М2М может использоваться для различных приложений устройств М2М. Функционально шлюз М2М может быть объединен в одном модуле с устройством или группой устройств М2М.

Сети доступа позволяют домену устройств M2M обеспечивать соединение с ядром сети M2M (базовой сетью). Функциональные возможности сетей доступа M2M базируются на возможностях существующих сетей доступа (xDSL, HFC, PLC, VSAT, GERAN, UTRAN, LTE, W-LAN и WiMAX) и позволяют расширить как перечень услуг, так и их возможности.

Транспортная сеть обеспечивает транспортировку данных между сетевым доменом и доменом приложений. Функциональные возможности транспортных сетей в сетях M2M базируются на возможностях существующих транспортных сетей и так же, как сети доступа, позволяют расширить перечень услуг M2M и их возможности.

Базовая сеть M2M предоставляет функциональные возможности IP-соединения элементов сети M2M, сервисные и сетевые функции управления, межсетевое взаимодействие, роуминг и обеспечивает безопасность сети. Функциональные возможности базовой сети M2M основываются на соответствующих функциональных возможностях существующих базовых сетей 3GPP CN (например, GPRS, EPC), ETSI TISPAN CN.

Инновация

В настоящее время все большее значение приобретает гибкость аппаратной и программной связи с окружением системы. В данный момент на рынке всё с большим интересом и спросом пользуются простые (малогабаритные) и легко встраиваемые М2М-устройства, т. к. помимо достаточно низкой цены, на их базе возможно построить именно ту систему, которая максимально удовлетворяет требованиям и задачам заказчика, не переплачивая при этом за избыточность и невостребованность комплектации.

Мотивация

В свете острой конкуренции на рынке требования, предъявляемые к М2М модулям, становятся все строже. Первостепенное значение приобретает такая совокупность качеств, как высокая надежность, эксплуатационная стабильность изделий, готовность поскольку многие системы И функционируют без участия человека, имеют мобильный характер или располагаются в труднодоступных областях, где полевое обслуживание является затратным труднореализуемым. Необходимо или встраиваемое оборудование с низким энергопотреблением, пригодное для промышленной эксплуатации в широком диапазоне температур.

Растет важность высоких скоростей передачи данных в обоих направлениях. В М2М- системах данные часто генерируются на мобильном устройстве, а затем выгружаются с него. В этом состоит отличие от бытовых систем, где объем загружаемых данных, как правило, гораздо больше, чем передаваемых (асимметричный канал связи). Возросшее значение скоростей передачи данных в профессиональных системах обусловлено тем, что помимо традиционной передачи относительно небольших объемов данных (например, о превышении предельной температуры или о широте и долготе), появляется все больше дополнительных функций, требующих более высокой пропускной способности. Это может быть передача оцифрованных звуковых данных, трансляция цифрового видео в реальном времени, чтение полных температурных профилей за длительный промежуток времени или передача полных файлов журнала за истекший день или неделю.

Барьеры

Основными препятствиями, мешающими более широкому внедрению телематических решений являются высокие затраты и проблемы обеспечения безопасности. Так же ограничениями являются отраслевая специфика и соответствующее законодательство.

Есть и технологические барьеры: неспособность гибко формировать тарифы, производить онлайн-тарификацию, строить иерархию тарифов для распространения через третьи организации.

Бизнес потенциал

По данным Ericsson, к 2017 году объем рынка услуг для организации межмашинного взаимодействия превысит 200 млрд долл. Данный денежный потенциал стимулирует операторов внедрять М2М-технологии и развивать их.

Источники дополнительной информации

- 1. Росляков, А.В., С.В. Ваняшин, Гребешков А.Ю., Интернет вещей: учебное пособие. Самара: ПГУТИ, 2015.-200 с.
- 3. http://www.corp.mts.ru/telematika/services/manager_m2m/