

Chapter 5: Network Layer

1 Basics

1. Basics
2. Interconnection networks
3. Switching Technologies
4. Routing
5. Example network protocols: IP, X.25

- The network layer provides the means to transport messages from a source node over an interconnection network (IN) with several intermediate nodes to a destination node
 - major functions in this layer:
 - routing, i.e. the selection of a transport path
 - either *static* (fixed for all packets of a message) or *dynamic* (new path for each packet)
 - detection of overload situations
 - support of a logical addressing scheme
 - famous example: IP

1 Basics (Cont'd)

- A router operates on the network layer:
 - it can act as a junction between two or more networks to realize data transmissions among them
 - it allows the coupling of networks with different transmission media and different data link protocols

2 Interconnection Networks

- each IN can be considered as a graph (V, E) :
 - node set V consists of input/output nodes and internal switches
 - edge set $E \subseteq V \times V$ contains all interconnection links
 - each edge is characterized by a certain data width d and a bit rate $r \Rightarrow$ the resulting data rate is $b = d \cdot r$
 - the degree of a node is the number of incoming and outgoing edges
 - a path defines a way through a graph from an input node i to an output node j
 - the maximum distance between any two nodes in the graph is called diameter (measured in the number of *hops*)
 - the cost c is typically defined as the number of edges in the graph
 - the graph determines the topology of a network

2 Interconnection networks (Cont'd)

- some criteria for the evaluation of INs:
 - transfer rate r_{single} of a single connection link
(often also called "link bandwidth")
 - network throughput r_{total} in a network of c connection links:
$$r_{total} = c \cdot r_{single}$$

(often also called "network bandwidth")
 - average or maximum latency between two network nodes
 - the bisection width w is the minimum number of connections links that must be cut through to divide the network into two subnetworks of approx. equal size
 - the bisection throughput $r_{bisection}$ is the throughput through the bisection cut: $r_{bisection} = w \cdot r_{single}$
(often also called "bisection bandwidth")

Network Layer WS 2006/2007

A. Stey, Universität Innsbruck

Communications technology, WS 2006/2007

A. Stey, Universität Innsbruck

Network Layer
5.5

Network Layer
5.6

2 Interconnection networks (Cont'd)

- an interconnection network is built for connecting a certain number of DTEs (*Data Terminal Equipments*, e.g. telephones or computers)
 - each IN can be realized as
 - a static network: the DTEs are directly coupled by point-to-point interconnection links
 - a broadcast network: all DTEs are connected to a shared transmission medium
 - a dynamic or switched network: the DTEs are connected via switches that allow to realize reconfigurable paths through the network

2.1 Interconnection Networks (Cont'd)

- one simple approach consists in coupling N DTEs by a network with star topology:
 - all DTEs are coupled by point-to-point links to a central node
 - the central node can be
 - 1) a computer (DTE); all connections are realized in the DTE by hard- and software; central node can become a bottleneck
⇒ star network is a static network
 - 2) a hub; each incoming message is broadcasted to all nodes
⇒ star network is a broadcast network
 - 3) a switch: each incoming message is sent only to the destination node; many messages as possible should be switched simultaneously
⇒ star network is a dynamic network

Communications technology, WS 2006/2007
A. Stey, Universität Innsbruck

Network Layer
5.7

Network Layer
5.8

2.1 Static Interconnection Networks

- some topologies for static networks:
 - full mesh: ideal network; each of the N nodes is directly connected to all other nodes, requires $N(N - 1)/2$ links ⇒ impractical
 - partial mesh
 - star
 - tree
 - fat tree
 - grid
 - linear array
 - ring
 - hypercube
- each network of N nodes with static topology can be described by a (in general binary) $N \times N$ interconnection matrix

2.2 Dynamic Interconnection Networks

- Each dynamic interconnection network consists of internal communication links and switches
- there is at least one path from each input i to each output j
- each bidirectional dynamic interconnection network with N ports can be considered as an unidirectional dynamic network with N inputs and N outputs:

Communications technology, WS 2018/2019
A. Seery, Universität Innsbruck

Network layer
§ 29

2.2 Dynamic Interconnection Networks

- the cost of a dynamic network is often defined as the number of binary switches (*crosspoints*)
- dynamic networks can be classified as
 - non-blocking: each connection from a free input i to a free output j can always be realized
 - blocking: a path from a free input i to a free output j can not be realized, if a required internal connection link is already busy
 - rearrangeable: each connection from a free input i to a free output j can be realized by rearranging one or several other already existing paths

Communications technology, WS 2018/2019
A. Seery, Universität Innsbruck

Network layer
§ 19

2.2 Dynamic Interconnection Networks (Crossbar)

- an $N \times N$ crossbar is a single-stage non-blocking dynamic IN architecture, here for $N=4$:
- internal data width w
- trivial routing algorithm
(the destination in the packet header is the index of the crossbar output)
- allows the realization of arbitrary permutations
- (in principle also all broadcast connection patterns are possible!)
- high cost: $O(N^2)$

Symbols:

in ₁	in ₂	in ₃	in ₄	out ₁	out ₂	out ₃	out ₄
in ₁	in ₂	in ₃	in ₄	out ₁	out ₂	out ₃	out ₄
in ₁	in ₂	in ₃	in ₄	out ₁	out ₂	out ₃	out ₄
in ₁	in ₂	in ₃	in ₄	out ₁	out ₂	out ₃	out ₄

Communications technology, WS 2018/2019
A. Seery, Universität Innsbruck

Network layer
§ 33

2.2 Dynamic Interconnection Networks (Clos)

- Idea: The number of switches can be reduced by constructing multi-stage networks of small crossbar switches

- Architecture of a three-stage Clos network:
(Charles Clos, 1953)

- A Clos network is non-blocking, if $q \geq 2n-1$

Communications technology, WS 2018/2019
A. Seery, Universität Innsbruck

Network layer
§ 12

2.2 Dynamic interconnection networks (cont'd)

- Cost of a three-stage Clos network with N inputs/outputs:
 $C_{\text{Clos3}} = 6N^{3/2} - 3N \rightarrow O(N^{3/2})$

- Construction of a five-stage Clos network:

- Cost of a five-stage Clos network:
 $C_{\text{Clos5}} = 16N^{4/3} - 14N + 3N^{2/3} \rightarrow O(N^{4/3})$

Communications technology, WS 2008/2009
A. Stey, Universität Innsbruck

Network layer
§.13

2.2 Dynamic interconnection networks (cont'd)

- Clos networks represent one of the most important dynamic network architectures
 - In practice, Clos networks are realized with bidirectional interconnection links
 - \Rightarrow one-sided Clos network
 - same characteristics as a two-sided unidirectional Clos network (because it can be regarded as two-sided Clos network folded at the middle vertical axis)
 - \cong also non-blocking for $q \geq 2n - 1$

Communications technology, WS 2008/2009
A. Stey, Universität Innsbruck

Network layer
§.14

2.2 Dynamic interconnection networks (cont'd)

- A Clos network with $n = q$ is called a Benes network (named after V. Benes, 1962)
 - It is typically shown in its recursive representation with binary switches ($n = 2$ and $N = 2^k$):

Communications technology, WS 2008/2009
A. Stey, Universität Innsbruck

Network layer
§.15

2.2 Dynamic interconnection networks (cont'd)

- Benes network for $N = 8, n = 2$
 - Benes network is rearrangeable:
 - smallest network that allows the realization of all $N!$ permutations of the N inputs onto the N outputs
 - however a complex graph-theoretic algorithm required for the calculation of the switch positions
 - Cost: $C_{\text{Benes}} = 2N \cdot (2 \log_2 N - 1)$

Communications technology, WS 2008/2009
A. Stey, Universität Innsbruck

Network layer
§.15

2.2 Dynamic Interconnection Networks (cont'd)

- Omega network (Lawrie, 1975):
 - log N switch stages
 - in each stage there are $m = N/k$ crossbars of size $k \times k$
 - the interconnection between two switch stages is either a butterfly (see next slide) or a shuffle function
 - Example: Omega network for $n=8, k=2$, with shuffle σ

Communications technology, WS 2008/2009
A. Steeg, Universität Bochum

2.2 Dynamic Interconnection Networks (cont'd)

- simple routing algorithm (here for $k=2$): bit d_i of the binary destination $d = (d_{0,i}, \dots, d_1, \dots, d_2, \dots, d_N)$ defines, which output must be used along the path in network stage i
- it is a blocking network, but many permutations can be realized
- Example:
 - Omega network for $n=8, k=2$, with butterfly interconnect
 - Omega network for $n=8, k=2$, with arbitrary values of k

Communications technology, WS 2008/2009
A. Steeg, Universität Bochum

Network layer

§.17

Network layer
A. Steeg, Universität Bochum

§.18

Network layer

§.18

3 Switching Technologies

- Circuit Switching:
 - also called connection-oriented network service
 - each communication session consists of three phases:
 - 1) establishment of a continuous and exclusively used physical path between sender and receiver
 - 2) data transfer
 - 3) release of the connection
 - all intermediate nodes work as simple switching elements
 - all data elements use the same path from the sender to the receiver
 - the total transmission time for an m -byte message with a transmission rate of r bits is

$$T_{\text{total}} = T_{\text{setup}} + (k + p) \cdot (T_{\text{transfer}} + \frac{8}{r} \left[\frac{m}{k} + h_1 \right])$$

– used for example in PSTN

Communications technology, WS 2008/2009
A. Steeg, Universität Bochum

3 Switching Technologies (Cont'd)

- Packet Switching:
 - also called connectionless network service
 - each message is split into several packets (typically of a few thousand bits) that contain additional address and control information
 - each packet may take a different route from the sender to the receiver
 - consequently, the packets can have different latency and can arrive in a different order at the receiver node
 - the packets are reassembled at the receiver to the original message
 - If an m byte message is split into p packets, each with a header of h bytes is transmitted at a rate of r bits/s and the overhead for routing each packet in a node is T_{route} , then the total transmission time for a message over a network in k hops is

$$T_{\text{total}} = k \cdot T_{\text{route}} + (k + p) \cdot (T_{\text{transfer}} + \frac{8}{r} \left[\frac{m}{k} + h_1 \right])$$

Network layer
A. Steeg, Universität Bochum

Network layer
A. Steeg, Universität Bochum

§.19