Rob Schapire

Theory and Applications of Boosting

Example: "How May I Help You?"

[Gorin et al.]

- goal: automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)
 - yes I'd like to place a collect call long distance please (Collect)
 - operator I need to make a call but I need to bill it to my office (ThirdNumber)
 - yes I'd like to place a call on my master card please (CallingCard)
 - I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)
- observation:
 - easy to find "rules of thumb" that are "often" correct
 - e.g.: "IF 'card' occurs in utterance THEN predict 'CallingCard'"
 - hard to find single highly accurate prediction rule

The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to 2nd subset of examples
- obtain 2nd rule of thumb
- repeat T times

Key Details

- how to choose examples on each round?
 - concentrate on "hardest" examples (those most often misclassified by previous rules of thumb)
- how to combine rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb

Boosting

- boosting = general method of converting rough rules of thumb into highly accurate prediction rule
- technically:
 - assume given "weak" learning algorithm that can consistently find classifiers ("rules of thumb") at least slightly better than random, say, accuracy ≥ 55% (in two-class setting) ["weak learning assumption"]
 - given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%

Outline of Tutorial

- basic algorithm and core theory
- fundamental perspectives
- practical extensions
- advanced topics

Preamble: Early History

Strong and Weak Learnability

- boosting's roots are in "PAC" learning model [Valiant '84]
- get random examples from unknown, arbitrary distribution
- strong PAC learning algorithm:
 - for any distribution
 with high probability
 given polynomially many examples (and polynomial time)
 can find classifier with arbitrarily small generalization
 error
- weak PAC learning algorithm
 - same, but generalization error only needs to be slightly better than random guessing $(\frac{1}{2} \gamma)$
- [Kearns & Valiant '88]:
 - does weak learnability imply strong learnability?

If Boosting Possible, Then...

- can use (fairly) wild guesses to produce highly accurate predictions
- if can learn "part way" then can learn "all the way"
- should be able to improve any learning algorithm
- for any learning problem:
 - either can always learn with nearly perfect accuracy
 - or there exist cases where cannot learn even slightly better than random guessing

First Boosting Algorithms

- [Schapire '89]:
 - first provable boosting algorithm
- [Freund '90]:
 - "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
 - first experiments using boosting
 - limited by practical drawbacks
- [Freund & Schapire '95]:
 - introduced "AdaBoost" algorithm
 - strong practical advantages over previous boosting algorithms

Basic Algorithm and Core Theory

- introduction to AdaBoost
- · analysis of training error
- analysis of test error and the margins theory
- experiments and applications

Basic Algorithm and Core Theory

- introduction to AdaBoost
- analysis of training error
- analysis of test error and the margins theory
- experiments and applications

A Formal Description of Boosting

- given training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1, \ldots, m\}$
 - find weak classifier ("rule of thumb")

$$h_t: X \to \{-1, +1\}$$

with error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i]$$

output final/combined classifier H_{final}

- constructing D_t :
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where
$$Z_t = \text{normalization factor}$$
 $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

- final classifier:
 - $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

Toy Example

 $weak\ classifiers = vertical\ or\ horizontal\ half-planes$

Round 1

Round 2

Round 3

Final Classifier

Basic Algorithm and Core Theory

- introduction to AdaBoost
- analysis of training error
- analysis of test error and the margins theory
- experiments and applications

[with Freund]

- Theorem:
 - write ϵ_t as $\frac{1}{2} \gamma_t$ [$\gamma_t =$ "edge"]
 - then

$$\begin{array}{ll} \mathrm{training\ error}(H_{\mathrm{final}}) & \leq & \prod_t \left[2\sqrt{\epsilon_t(1-\epsilon_t)} \right] \\ \\ & = & \prod_t \sqrt{1-4\gamma_t^2} \\ \\ & \leq & \exp\left(-2\sum_t \gamma_t^2 \right) \end{array}$$

- so: if $\forall t: \gamma_t \geq \gamma > 0$ then training error $(H_{\text{final}}) \leq e^{-2\gamma^2 T}$
- AdaBoost is adaptive:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

Proof

- let $F(x) = \sum_{t} \alpha_t h_t(x) \Rightarrow H_{\text{final}}(x) = \text{sign}(F(x))$
- Step 1: unwrapping recurrence:

$$D_{\text{final}}(i) = \frac{1}{m} \frac{\exp\left(-y_i \sum_{t} \alpha_t h_t(x_i)\right)}{\prod_{t} Z_t}$$
$$= \frac{1}{m} \frac{\exp\left(-y_i F(x_i)\right)}{\prod_{t} Z_t}$$

Proof (cont.)

- Step 2: training error $(H_{\text{final}}) \leq \prod Z_t$
- Proof:

training error
$$(H_{\text{final}}) = \frac{1}{m} \sum_{i} \begin{cases} 1 & \text{if } y_i \neq H_{\text{final}}(x_i) \\ 0 & \text{else} \end{cases}$$

$$= \frac{1}{m} \sum_{i} \begin{cases} 1 & \text{if } y_{i}F(x_{i}) \leq 0 \\ 0 & \text{else} \end{cases}$$

$$\leq \frac{1}{m} \sum_{i} \exp(-y_{i}F(x_{i}))$$

$$= \sum_{i}^{r} D_{\text{final}}(i) \prod_{t} Z_{t}$$
$$= \prod_{i}^{r} Z_{t}$$

Proof (cont.)

- Step 3: $Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$
- Proof:

$$Z_t = \sum_{i} D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

$$= \sum_{i: y_i \neq h_t(x_i)} D_t(i) e^{\alpha_t} + \sum_{i: y_i = h_t(x_i)} D_t(i) e^{-\alpha_t}$$

$$= \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t}$$

$$= 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

Basic Algorithm and Core Theory

- introduction to AdaBoost
- analysis of training error
- analysis of test error and the margins theory
- experiments and applications

How Will Test Error Behave? (A First Guess)

expect:

- training error to continue to drop (or reach zero)
- test error to increase when H_{final} becomes "too complex"
 - "Occam's razor"
 - overfitting
 - hard to know when to stop training

Technically...

with high probability:

generalization error
$$\leq$$
 training error + $\tilde{O}\left(\sqrt{\frac{dT}{m}}\right)$

- bound depends on
 - m = # training examples
 - d = "complexity" of weak classifiers
 - *T* = # rounds
- ullet generalization error $= E [{\sf test\ error}]$
- predicts overfitting

Overfitting Can Happen

(boosting "stumps" on heart-disease dataset)

• but often doesn't...

Actual Typical Run

- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

	# rounds			
	5	100	1000	
train error	0.0	0.0	0.0	
test error	8.4	3.3	3.1	

Occam's razor wrongly predicts "simpler" rule is better

A Better Story: The Margins Explanation

[with Freund, Bartlett & Lee]

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- ullet recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
 - = (weighted fraction voting correctly)
 - –(weighted fraction voting incorrectly)

Empirical Evidence: The Margin Distribution

- margin distribution
 - = cumulative distribution of margins of training examples

	# rounds		
	5	100	1000
train error	0.0	0.0	0.0
test error	8.4	3.3	3.1
$\%$ margins ≤ 0.5	7.7	0.0	0.0
minimum margin	0.14	0.52	0.55

Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins ⇒ better bound on generalization error (independent of number of rounds)
 - proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)
 - moreover, larger edges ⇒ larger margins
 - proof idea: similar to training error proof
- so:
 although final classifier is getting larger,
 margins are likely to be increasing,
 so final classifier actually getting close to a simpler classifier,
 driving down the test error

More Technically...

• with high probability, $\forall \theta > 0$:

$$\text{generalization error} \leq \hat{\Pr}[\mathsf{margin} \leq \theta] + \tilde{O}\left(\frac{\sqrt{d/m}}{\theta}\right)$$

$$(\hat{P}r[\]=$$
 empirical probability $)$

- bound depends on
 - m = # training examples
 - d = "complexity" of weak classifiers
 - entire distribution of margins of training examples
- $\Pr[\mathsf{margin} \leq \theta] o 0$ exponentially fast (in \mathcal{T}) if $\epsilon_t < \frac{1}{2} \theta$ ($\forall t$)
 - so: if weak learning assumption holds, then all examples will quickly have "large" margins

Consequences of Margins Theory

- predicts good generalization with no overfitting if:
 - weak classifiers have large edges (implying large margins)
 - weak classifiers not too complex relative to size of training set
- e.g., boosting decision trees resistant to overfitting since trees often have large edges and limited complexity
- overfitting may occur if:
 - small edges (underfitting), or
 - overly complex weak classifiers
- e.g., heart-disease dataset:
 - stumps yield small edges
 - also, small dataset

Improved Boosting with Better Margin-Maximization?

- can design algorithms more effective than AdaBoost at maximizing the minimum margin
- in practice, often perform worse [Breiman]
- why??
- more aggressive margin maximization seems to lead to:
 - more complex weak classifiers (even using same weak learner); or
 - higher minimum margins,
 but margin distributions that are lower overall

[with Reyzin]

Comparison to SVM's

- both AdaBoost and SVM's:
 - work by maximizing "margins"
 - find linear threshold function in high-dimensional space
- differences:
 - margin measured slightly differently (using different norms)
 - SVM's handle high-dimensional space using kernel trick;
 AdaBoost uses weak learner to search over space
 - SVM's maximize minimum margin;
 AdaBoost maximizes margin distribution in a more diffuse sense

Basic Algorithm and Core Theory

- introduction to AdaBoost
- analysis of training error
- analysis of test error and the margins theory
- experiments and applications

Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - → shift in mind set goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - → overfitting
 - weak classifiers too weak $(\gamma_t o 0$ too quickly)
 - → underfitting
 - → low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise

- tested AdaBoost on UCI benchmarks
- used:
 - C4.5 (Quinlan's decision tree algorithm)
 - "decision stumps": very simple rules of thumb that test on single attributes

UCI Results

[Viola & Jones]

- problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image

many clever tricks to make extremely fast and accurate

Application: Human-Computer Spoken Dialogue

[with Rahim, Di Fabbrizio, Dutton, Gupta, Hollister & Riccardi]

- application: automatic "store front" or "help desk" for AT&T Labs' Natural Voices business
- caller can request demo, pricing information, technical support, sales agent, etc.
- interactive dialogue

How It Works

- NLU's job: classify caller utterances into 24 categories (demo, sales rep, pricing info, yes, no, etc.)
- weak classifiers: test for presence of word or phrase

Problem: Labels are Expensive

- for spoken-dialogue task
 - getting examples is cheap
 - getting labels is expensive
 - must be annotated by humans
- how to reduce number of labels needed?

Active Learning

[with Tur & Hakkani-Tür]

- idea:
 - use selective sampling to choose which examples to label
 - focus on least confident examples [Lewis & Gale]
- for boosting, use (absolute) margin as natural confidence measure [Abe & Mamitsuka]

<u>Labeling Scheme</u>

- start with pool of unlabeled examples
- choose (say) 500 examples at random for labeling
- run boosting on all labeled examples
 - get combined classifier F
- pick (say) 250 additional examples from pool for labeling
 - choose examples with minimum |F(x)| (proportional to absolute margin)
- repeat

Results: How-May-I-Help-You?

	first reached		% label
% error	random	active	savings
28	11,000	5,500	50
26	22,000	9,500	57
25	40,000	13,000	68

Results: Letter

first reached		% label
random	active	savings
3,500	1,500	57
9,000	2,750	69
13,000	3,500	73
	3,500 9,000	random active 3,500 1,500 9,000 2,750

Fundamental Perspectives

- game theory
- loss minimization
- an information-geometric view

Fundamental Perspectives

- game theory
- loss minimization
- an information-geometric view

- can view boosting as a game, a formal interaction between booster and weak learner
- on each round t:
 - booster chooses distribution D_t
 - weak learner responds with weak classifier h_t
- game theory: studies interactions between all sorts of "players"

<u>Games</u>

game defined by matrix M:

	Rock	Paper	Scissors
Rock	1/2	1	0
Paper	0	1/2	1
Scissors	1	0	1/2

- row player ("Mindy") chooses row i
- column player ("Max") chooses column j (simultaneously)
- Mindy's goal: minimize her loss M(i,j)
- assume (wlog) all entries in [0,1]

Randomized Play

- usually allow randomized play:
 - Mindy chooses distribution P over rows
 - Max chooses distribution Q over columns (simultaneously)
- Mindy's (expected) loss

$$= \sum_{i,j} \mathbf{P}(i)\mathbf{M}(i,j)\mathbf{Q}(j)$$
$$= \mathbf{P}^{\top}\mathbf{M}\mathbf{Q} \equiv \mathbf{M}(\mathbf{P},\mathbf{Q})$$

- i, j = "pure" strategies
- P, Q = "mixed" strategies
- m = # rows of M
- also write $M(i, \mathbb{Q})$ and $M(\mathbb{P}, j)$ when one side plays pure and other plays mixed

Sequential Play

- say Mindy plays before Max
- if Mindy chooses P then Max will pick Q to maximize M(P, Q) ⇒ loss will be

$$L(\mathbf{P}) \equiv \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q})$$

so Mindy should pick P to minimize L(P)
 ⇒ loss will be

$$\min_{\textbf{P}} \textit{L}(\textbf{P}) = \min_{\textbf{P}} \max_{\textbf{Q}} \textbf{M}(\textbf{P},\textbf{Q})$$

similarly, if Max plays first, loss will be

$$\max_{\boldsymbol{Q}} \min_{\boldsymbol{P}} \boldsymbol{M}(\boldsymbol{P},\boldsymbol{Q})$$

Minmax Theorem

 playing second (with knowledge of other player's move) cannot be worse than playing first, so:

$$\underbrace{\min_{P} \max_{Q} M(P,Q)}_{\text{Mindy plays first}} \geq \underbrace{\max_{Q} \min_{P} M(P,Q)}_{\text{Mindy plays second}}$$

von Neumann's minmax theorem:

$$\min_{\mathbf{P}}\max_{\mathbf{Q}}\mathbf{M}(\mathbf{P},\mathbf{Q})=\max_{\mathbf{Q}}\min_{\mathbf{P}}\mathbf{M}(\mathbf{P},\mathbf{Q})$$

• in words: no advantage to playing second

Optimal Play

minmax theorem:

$$\min_{\mathbf{P}} \max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \max_{\mathbf{Q}} \min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \mathbf{Q}) = \text{value } v \text{ of game}$$

- optimal strategies:
 - $P^* = arg min_P max_Q M(P, Q) = minmax strategy$
 - $\bullet \ \ Q^* = \text{arg max}_{Q} \ \text{min}_{P} \ M(P,Q) = \text{maxmin strategy}$
- in words:
 - Mindy's minmax strategy P* guarantees loss \(\simes v\) (regardless of Max's play)
 - optimal because Max has maxmin strategy \mathbf{Q}^* that can force loss $\geq v$ (regardless of Mindy's play)
- e.g.: in RPS, $P^* = Q^* = uniform$
- solving game = finding minmax/maxmin strategies

Weaknesses of Classical Theory

- seems to fully answer how to play games just compute minmax strategy (e.g., using linear programming)
- weaknesses:
 - game M may be unknown
 - game M may be extremely large
 - opponent may not be fully adversarial
 - may be possible to do better than value v
 - e.g.:

```
Lisa (thinks):
```

Poor predictable Bart, always takes Rock.

Bart (thinks):

Good old Rock, nothing beats that.

Repeated Play

- if only playing once, hopeless to overcome ignorance of game M or opponent
- but if game played repeatedly, may be possible to learn to play well
- goal: play (almost) as well as if knew game and how opponent would play ahead of time

Repeated Play (cont.)

- M unknown
- for t = 1, ..., T:
 - Mindy chooses P_t
 - Max chooses Q_t (possibly depending on P_t)
 - Mindy's loss = $M(P_t, Q_t)$
 - Mindy observes loss $M(i, Q_t)$ of each pure strategy i
- want:

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + [\text{"small amount"}]$$
actual average loss best loss (in hindsight)

Multiplicative-Weights Algorithm (MW)

[with Freund]

- choose $\eta > 0$
- initialize: P_1 = uniform
- on round *t*:

$$\mathbf{P}_{t+1}(i) = \frac{\mathbf{P}_t(i) \exp(-\eta \mathbf{M}(i, \mathbf{Q}_t))}{\text{normalization}}$$

- idea: decrease weight of strategies suffering the most loss
- directly generalizes [Littlestone & Warmuth]
- other algorithms:
 - [Hannan'57]
 - [Blackwell'56]
 - [Foster & Vohra]
 - [Fudenberg & Levine]

Analysis

• Theorem: can choose η so that, for any game ${\bf M}$ with ${\bf m}$ rows, and any opponent,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}_{t}, \mathbf{Q}_{t}) \leq \min_{\mathbf{P}} \frac{1}{T} \sum_{t=1}^{T} \mathbf{M}(\mathbf{P}, \mathbf{Q}_{t}) + \Delta_{T}$$
actual average loss best average loss $(\leq v)$

where
$$\Delta_T = O\left(\sqrt{\frac{\ln m}{T}}\right) \to 0$$

- regret Δ_T is:
 - logarithmic in # rows m
 - independent of # columns
- therefore, can use when working with very large games

- suppose game M played repeatedly
 - Mindy plays using MW
 - on round t, Max chooses best response:

$$\mathbf{Q}_t = \arg\max_{\mathbf{Q}} \mathbf{M}(\mathbf{P}_t, \mathbf{Q})$$

let

$$\overline{\mathbf{P}} = \frac{1}{T} \sum_{t=1}^{I} \mathbf{P}_t, \quad \overline{\mathbf{Q}} = \frac{1}{T} \sum_{t=1}^{I} \mathbf{Q}_t$$

• can prove that $\overline{\mathbf{P}}$ and $\overline{\mathbf{Q}}$ are $\Delta_{\mathcal{T}}$ -approximate minmax and maxmin strategies:

$$\max_{\mathbf{Q}} \mathbf{M}(\overline{\mathbf{P}}, \mathbf{Q}) \leq v + \Delta_T$$

and

$$\min_{\mathbf{P}} \mathbf{M}(\mathbf{P}, \overline{\mathbf{Q}}) \geq v - \Delta_{\mathcal{T}}$$

Boosting as a Game

- Mindy (row player) ↔ booster
- matrix M:
 - row \leftrightarrow training example
 - column ↔ weak classifier
 - $\mathbf{M}(i,j) = \begin{cases} 1 & \text{if } j\text{-th weak classifier correct on } i\text{-th training example} \\ 0 & \text{else} \end{cases}$
 - encodes which weak classifiers correct on which examples
 - huge # of columns one for every possible weak classifier

Boosting and the Minmax Theorem

- γ -weak learning assumption:
 - · for every distribution on examples
 - can find weak classifier with weighted error $\leq rac{1}{2} \gamma$
- equivalent to:

(value of game
$$\mathbf{M}$$
) $\geq \frac{1}{2} + \gamma$

- by minmax theorem, implies that:
 - \exists some weighted majority classifier that correctly classifies all training examples with margin $\geq 2\gamma$
 - further, weights are given by maxmin strategy of game M

Idea for Boosting

- maxmin strategy of M has perfect (training) accuracy and large margins
- find approximately using earlier algorithm for solving a game
 - i.e., apply MW to M
- yields (variant of) AdaBoost

AdaBoost and Game Theory

- summarizing:
 - weak learning assumption implies maxmin strategy for M defines large-margin classifier
 - AdaBoost finds maxmin strategy by applying general algorithm for solving games through repeated play
- consequences:
 - weights on weak classifiers converge to (approximately) maxmin strategy for game M
 - (average) of distributions D_t converges to (approximately) minmax strategy
 - margins and edges connected via minmax theorem
 - explains why AdaBoost maximizes margins
- different instantiation of game-playing algorithm gives online learning algorithms (such as weighted majority algorithm)

Fundamental Perspectives

- game theory
- loss minimization
- an information-geometric view

AdaBoost and Loss Minimization

- many (most?) learning and statistical methods can be viewed as minimizing loss (a.k.a. cost or objective) function measuring fit to data:
 - e.g. least squares regression $\sum_{i} (F(x_i) y_i)^2$
- AdaBoost also minimizes a loss function
- helpful to understand because:
 - clarifies goal of algorithm and useful in proving convergence properties
 - decoupling of algorithm from its objective means:
 - faster algorithms possible for same objective
 - same algorithm may generalize for new learning challenges

What AdaBoost Minimizes

- recall proof of training error bound:
 - training error $(H_{\text{final}}) \leq \prod_{t} Z_{t}$

•
$$Z_t = \epsilon_t e^{\alpha_t} + (1 - \epsilon_t) e^{-\alpha_t} = 2\sqrt{\epsilon_t (1 - \epsilon_t)}$$

- closer look:
 - α_t chosen to minimize Z_t
 - h_t chosen to minimize ϵ_t
 - same as minimizing Z_t (since increasing in ϵ_t on [0, 1/2])
- so: both AdaBoost and weak learner minimize Z_t on round t
 - equivalent to greedily minimizing $\prod_t Z_t$

AdaBoost and Exponential Loss

 so AdaBoost is greedy procedure for minimizing exponential loss

$$\prod_{t} Z_{t} = \frac{1}{m} \sum_{i} \exp(-y_{i} F(x_{i}))$$

where

$$F(x) = \sum_{t} \alpha_t h_t(x)$$

- why exponential loss?
 - intuitively, strongly favors $F(x_i)$ to have same sign as y_i
 - upper bound on training error
 - smooth and convex (but very loose)
- how does AdaBoost minimize it?

[Breiman]

- $\{g_1, \ldots, g_N\}$ = space of all weak classifiers
- then can write $F(x) = \sum_{t} \alpha_t h_t(x) = \sum_{j=1}^{N} \lambda_j g_j(x)$
- want to find $\lambda_1, \ldots, \lambda_N$ to minimize

$$L(\lambda_1,\ldots,\lambda_N) = \sum_j \exp\left(-y_i \sum_j \lambda_j g_j(x_i)\right)$$

- AdaBoost is actually doing coordinate descent on this optimization problem:
 - initially, all $\lambda_j = 0$
 - each round: choose one coordinate λ_j (corresponding to h_t) and update (increment by α_t)
 - choose update causing biggest decrease in loss
- powerful technique for minimizing over huge space of functions

[Mason et al.][Friedman]

want to minimize

$$\mathcal{L}(F) = \mathcal{L}(F(x_1), \dots, F(x_m)) = \sum_{i} \exp(-y_i F(x_i))$$

- say have current estimate F and want to improve
- to do gradient descent, would like update

$$F \leftarrow F - \alpha \nabla_F \mathcal{L}(F)$$

• but update restricted in class of weak classifiers

$$F \leftarrow F + \alpha h_t$$

- so choose h_t "closest" to $-\nabla_F \mathcal{L}(F)$
- equivalent to AdaBoost

Estimating Conditional Probabilities

[Friedman, Hastie & Tibshirani]

- often want to estimate probability that y = +1 given x
- AdaBoost minimizes (empirical version of):

$$\mathrm{E}_{x,y}\left[e^{-yF(x)}\right] = \mathrm{E}_{x}\left[\Pr\left[y = +1|x\right]e^{-F(x)} + \Pr\left[y = -1|x\right]e^{F(x)}\right]$$

where x, y random from true distribution

over all F, minimized when

$$F(x) = \frac{1}{2} \cdot \ln \left(\frac{\Pr[y = +1|x]}{\Pr[y = -1|x]} \right)$$

or

$$\Pr[y = +1|x] = \frac{1}{1 + e^{-2F(x)}}$$

 so, to convert F output by AdaBoost to probability estimate, use same formula

Calibration Curve

- order examples by F value output by AdaBoost
- break into bins of fixed size
- for each bin, plot a point:
 - x-value: average estimated probability of examples in bin
 - y-value: actual fraction of positive examples in bin

A Synthetic Example

- $x \in [-2, +2]$ uniform
- $\Pr[y = +1|x] = 2^{-x^2}$
- m = 500 training examples

- if run AdaBoost with stumps and convert to probabilities, result is poor
 - extreme overfitting

Regularization

AdaBoost minimizes

$$L(\lambda) = \sum_{i} \exp \left(-y_{i} \sum_{j} \lambda_{j} g_{j}(x_{i})\right)$$

- to avoid overfitting, want to constrain λ to make solution "smoother"
- (ℓ_1) regularization:

minimize:
$$L(\lambda)$$
 subject to: $\|\lambda\|_1 \leq B$

or:

minimize:
$$L(\lambda) + \beta ||\lambda||_1$$

- other norms possible
 - ullet ℓ_1 ("lasso") currently popular since encourages sparsity

[Tibshirani]

Regularization Example

Regularization and AdaBoost

- Experiment 1: regularized solution vectors λ plotted as function of B
- Experiment 2: AdaBoost run with α_t fixed to (small) α
 - solution vectors λ plotted as function of αT

- plots are identical!
- can prove under certain (but not all) conditions that results will be the same (as $\alpha \to 0$) [Zhao & Yu]

Regularization and AdaBoost

- suggests stopping AdaBoost early is akin to applying ℓ_1 -regularization
- caveats:
 - does not strictly apply to AdaBoost (only variant)
 - not helpful when boosting run "to convergence" (would correspond to very weak regularization)
- in fact, in limit of vanishingly weak regularization ($B \to \infty$), solution converges to maximum margin solution

[Rosset, Zhu & Hastie]

Benefits of Loss-Minimization View

- immediate generalization to other loss functions and learning problems
 - · e.g. squared error for regression
 - e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates
- helpful connection to regularization
- basis for proving AdaBoost is statistically "consistent"
 - i.e., under right assumptions, converges to best possible classifier [Bartlett & Traskin]

A Note of Caution

- tempting (but incorrect!) to conclude:
 - AdaBoost is just an algorithm for minimizing exponential loss
 - AdaBoost works only because of its loss function
 - more powerful optimization techniques for same loss should work even better
- incorrect because:
 - other algorithms that minimize exponential loss can give very poor generalization performance compared to AdaBoost
- for example...

An Experiment

- data:
 - instances x uniform from $\{-1, +1\}^{10,000}$
 - label y = majority vote of three coordinates
 - weak classifier = single coordinate (or its negation)
 - training set size m = 1000
- algorithms (all provably minimize exponential loss):
 - standard AdaBoost
 - gradient descent on exponential loss
 - AdaBoost, but in which weak classifiers chosen at random
- results:

exp.	% test error [# rounds]								
loss	stand. /	AdaB.	grad. d	esc.	random AdaB.				
10^{-10}	0.0	[94]	40.7	[5]	44.0	[24,464]			
10^{-20}	0.0	[190]	40.8	[9]	41.6	[47,534]			
10^{-40}	0.0	[382]	40.8	[21]	40.9	[94,479]			
10^{-100}	0.0	[956]	40.8	[70]	40.3	[234,654]			

An Experiment (cont.)

- conclusions:
 - not just what is being minimized that matters, but how it is being minimized
 - loss-minimization view has benefits and is fundamental to understanding AdaBoost
 - but is limited in what it says about generalization
- results are consistent with margins theory

Fundamental Perspectives

- game theory
- loss minimization
- an information-geometric view

A Dual Information-Geometric Perspective

- loss minimization focuses on function computed by AdaBoost (i.e., weights on weak classifiers)
- dual view: instead focus on distributions D_t
 (i.e., weights on examples)
- dual perspective combines geometry and information theory
- exposes underlying mathematical structure
- basis for proving convergence

An Iterative-Projection Algorithm

- say want to find point closest to x₀ in set
 \$\mathcal{P}\$ = { intersection of \$N\$ hyperplanes }
- algorithm: [Bregman; Censor & Zenios]
 - start at x₀
 - repeat: pick a hyperplane and project onto it

• if $\mathcal{P} \neq \emptyset$, under general conditions, will converge correctly

AdaBoost is an Iterative-Projection Algorithm

[Kivinen & Warmuth]

- points = distributions D_t over training examples
- distance = relative entropy:

$$\operatorname{RE}(P \parallel Q) = \sum_{i} P(i) \ln \left(\frac{P(i)}{Q(i)} \right)$$

- reference point $\mathbf{x}_0 = \text{uniform distribution}$
- hyperplanes defined by all possible weak classifiers g_j:

$$\sum_{i} D(i)y_{i}g_{j}(x_{i}) = 0 \Leftrightarrow \Pr_{i \sim D} [g_{j}(x_{i}) \neq y_{i}] = \frac{1}{2}$$

intuition: looking for "hardest" distribution

AdaBoost as Iterative Projection (cont.)

- algorithm:
 - start at $D_1 = \text{uniform}$
 - for t = 1, 2, ...:
 - pick hyperplane/weak classifier $h_t \leftrightarrow g_j$
 - $D_{t+1} = \text{(entropy)}$ projection of D_t onto hyperplane $= \arg \min_{D: \sum_i D(i) y_i g_i(x_i) = 0} \operatorname{RE}(D \parallel D_t)$
- claim: equivalent to AdaBoost
- further: choosing h_t with minimum error \equiv choosing farthest hyperplane

Boosting as Maximum Entropy

• corresponding optimization problem:

$$\min_{D \in \mathcal{P}} \operatorname{RE} \left(D \parallel \operatorname{uniform} \right) \leftrightarrow \max_{D \in \mathcal{P}} \operatorname{entropy} (D)$$

where

$$\mathcal{P} = \text{feasible set}$$

$$= \left\{ D : \sum_{i} D(i) y_{i} g_{j}(x_{i}) = 0 \ \forall j \right\}$$

- P ≠ ∅ ⇔ weak learning assumption does not hold
 in this case, D_t → (unique) solution
- if weak learning assumption does hold then
 - P = ∅
 - D_t can never converge
 - dynamics are fascinating but unclear in this case

Visualizing Dynamics

[with Rudin & Daubechies]

- plot one circle for each round t:
 - center at $(D_t(1), D_t(2))$
 - radius $\propto t$ (color also varies with t)

- in all cases examined, appears to converge eventually to cycle
 - open if always true

[with Collins & Singer]

- two distinct cases:
 - weak learning assumption holds
 - $\mathcal{P} = \emptyset$
 - dynamics unclear
 - weak learning assumption does not hold
 - P ≠ ∅
 - can prove convergence of D_t's
- ullet to unify: work instead with unnormalized versions of D_t 's
 - standard AdaBoost: $D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{\text{normalization}}$
 - instead:

$$d_{t+1}(i) = d_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

$$D_{t+1}(i) = \frac{d_{t+1}(i)}{\text{normalization}}$$

algorithm is unchanged

Reformulating AdaBoost as Iterative Projection

- points = nonnegative vectors d_t
- distance = unnormalized relative entropy:

$$ext{RE}\left(\mathbf{p} \parallel \mathbf{q}\right) = \sum_{i} \left[p(i) \ln \left(\frac{p(i)}{q(i)} \right) + q(i) - p(i) \right]$$

- reference point $\mathbf{x}_0 = \mathbf{1}$ (all 1's vector)
- hyperplanes defined by weak classifiers g_j :

$$\sum_{i} d(i)y_i g_j(x_i) = 0$$

 resulting iterative-projection algorithm is again equivalent to AdaBoost

Reformulated Optimization Problem

• optimization problem:

$$\min_{\textbf{d} \in \mathcal{P}} \mathrm{RE} \left(\textbf{d} \ \| \ \textbf{1} \right)$$

where

$$\mathcal{P} = \left\{ \mathbf{d} : \sum_{i} d(i) y_{i} g_{j}(x_{i}) = 0 \ \forall j \right\}$$

• note: feasible set $\mathcal P$ never empty (since $\mathbf 0 \in \mathcal P$)

Exponential Loss as Entropy Optimization

• all vectors \mathbf{d}_t created by AdaBoost have form:

$$d(i) = \exp\left(-y_i \sum_j \lambda_j g_j(x_i)\right)$$

- let $Q = \{$ all vectors **d** of this form $\}$
- can rewrite exponential loss:

$$\inf_{\lambda} \sum_{i} \exp\left(-y_{i} \sum_{j} \lambda_{j} g_{j}(x_{i})\right) = \inf_{\mathbf{d} \in \mathcal{Q}} \sum_{i} d(i)$$

$$= \min_{\mathbf{d} \in \overline{\mathcal{Q}}} \sum_{i} d(i)$$

$$= \min_{\mathbf{d} \in \overline{\mathcal{Q}}} \operatorname{RE}\left(\mathbf{0} \parallel \mathbf{d}\right)$$

• \overline{Q} = closure of Q

- presented two optimization problems:
 - $\min_{d \in \mathcal{P}} RE(d \parallel 1)$
 - $\min_{\mathbf{d} \in \overline{\mathcal{Q}}} \operatorname{RE} (\mathbf{0} \parallel \mathbf{d})$
- which is AdaBoost solving? Both!
- problems have same solution
- moreover: solution given by unique point in $\mathcal{P} \cap \overline{\mathcal{Q}}$
- problems are convex duals of each other

Convergence of AdaBoost

- can use to prove AdaBoost converges to common solution of both problems:
 - can argue that $\mathbf{d}^* = \lim \mathbf{d}_t$ is in \mathcal{P}
 - vectors \mathbf{d}_t are in $\mathcal Q$ always $\Rightarrow \mathbf{d}^* \in \overline{\mathcal Q}$
 - $\mathbf{d}^* \in \mathcal{P} \cap \overline{\mathcal{Q}}$
 - ∴ d* solves both optimization problems
- SO:
 - AdaBoost minimizes exponential loss
 - exactly characterizes limit of unnormalized "distributions"
 - likewise for normalized distributions when weak learning assumption does not hold
- also, provides additional link to logistic regression
 - only need slight change in optimization problem

[with Collins & Singer; Lebannon & Lafferty]

Practical Extensions

- multiclass classification
- ranking problems
- confidence-rated predictions

Practical Extensions

- multiclass classification
- ranking problems
- confidence-rated predictions

[with Freund]

- say $y \in Y$ where |Y| = k
- direct approach (AdaBoost.M1):

$$h_t: X \to Y$$

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$

$$H_{\text{final}}(x) = \arg \max_{y \in Y} \sum_{t: h_t(x) = y} \alpha_t$$

- can prove same bound on error if $\forall t : \epsilon_t \leq 1/2$
 - in practice, not usually a problem for "strong" weak learners (e.g., C4.5)
 - significant problem for "weak" weak learners (e.g., decision stumps)
- instead, reduce to binary

The One-Against-All Approach

- break k-class problem into k binary problems and solve each separately
- say possible labels are $Y = \{\blacksquare, \blacksquare, \blacksquare, \blacksquare\}$

		-		_					
<i>x</i> ₁		X ₁ X ₂ X ₃ X ₄ X ₅	_	<i>x</i> ₁	+	<i>x</i> ₁	_	<i>x</i> ₁	_
<i>x</i> ₂		<i>x</i> ₂	_	<i>x</i> ₂	_	<i>x</i> ₂	+	<i>x</i> ₂	_
<i>X</i> ₃	\Rightarrow	<i>X</i> 3	_	<i>X</i> 3	_	<i>X</i> 3	_	<i>X</i> ₃	+
<i>X</i> ₄		<i>X</i> ₄	_	<i>X</i> ₄	+	<i>X</i> ₄	_	<i>X</i> ₄	_
<i>x</i> ₅		<i>x</i> ₅	+	<i>X</i> ₅	_	<i>X</i> 5	_	<i>X</i> ₅	_

- to classify new example, choose label predicted to be "most" positive
- \Rightarrow "AdaBoost.MH" [with Singer]
- problem: not robust to errors in predictions

Using Output Codes

[with Allwein & Singer][Dietterich & Bakiri]

- reduce to binary using "coding" matrix M
- rows of M ↔ code words

М	1	2	3	4	5
	+	_	+ + - +	_	+
	_	_	+	+	+
	+	+	_	_	_
	+	+	+	+	_

		1		2		3		4		5	
<i>x</i> ₁		<i>x</i> ₁									+
<i>x</i> ₂		<i>x</i> ₂	+	<i>x</i> ₂	+	<i>X</i> ₂	_	<i>x</i> ₂	_	<i>x</i> ₂	_
<i>X</i> ₃	\Rightarrow	<i>x</i> ₃	+	<i>X</i> ₃	+	<i>X</i> 3	+	<i>X</i> ₃	+	<i>X</i> ₃	_
<i>X</i> ₄		<i>x</i> ₄	_	<i>X</i> ₄	_	<i>X</i> ₄	+	<i>X</i> ₄	+	<i>X</i> ₄	+
<i>X</i> 5		<i>X</i> 5	+	<i>X</i> 5	_	<i>X</i> 5	+	<i>X</i> 5	_	<i>X</i> 5	+

• to classify new example, choose "closest" row of M

Output Codes (continued)

- if rows of M far from one another, will be highly robust to errors
- potentially much faster when k (# of classes) large
- disadvantage: binary problems may be unnatural and hard to solve

Practical Extensions

- multiclass classification
- ranking problems
- confidence-rated predictions

Ranking Problems

[with Freund, Iyer & Singer]

- goal: learn to rank objects (e.g., movies, webpages, etc.) from examples
- can reduce to multiple binary questions of form: "is or is not object A preferred to object B?"
- now apply (binary) AdaBoost ⇒ "RankBoost"

Application: Finding Cancer Genes

[Agarwal & Sengupta]

- examples are genes (described by microarray vectors)
- · want to rank genes from most to least relevant to leukemia
- data sizes:
 - 7129 genes total
 - 10 known relevant
 - 157 known irrelevant

Top-Ranked Cancer Genes

	Gene	Summary
1.	KIAA0220	
2.	G-gamma globin	♦
3.	Delta-globin	♦
4.	Brain-expressed HHCPA78 homolog	
5.	Myeloperoxidase	♦
6.	Probable protein disulfide isomerase ER-60 precursor	
7.	NPM1 Nucleophosmin	♦
8.	CD34	♦
9.	Elongation factor-1-beta	×
10.	CD24	♦

- \blacksquare = known therapeutic target
- $\square = \mathsf{potential}$ therapeutic target

D-1----

- ♦ = known marker
- $\lozenge = \mathsf{potential} \; \mathsf{marker}$
- \times = no link found

Practical Extensions

- multiclass classification
- ranking problems
- confidence-rated predictions

"Hard" Predictions Can Slow Learning

• ideally, want weak classifier that says:

$$h(x) = \begin{cases} +1 & \text{if } x \text{ above } L \\ \text{"don't know"} & \text{else} \end{cases}$$

- problem: cannot express using "hard" predictions
- if must predict ± 1 below \emph{L} , will introduce many "bad" predictions
 - need to "clean up" on later rounds
- dramatically increases time to convergence

[with Singer]

- useful to allow weak classifiers to assign confidences to predictions
- formally, allow $h_t: X \to \mathbb{R}$

$$sign(h_t(x)) = prediction$$

 $|h_t(x)| = "confidence"$

use identical update:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))$$

and identical rule for combining weak classifiers

• question: how to choose α_t and h_t on each round

Confidence-Rated Predictions (cont.)

• saw earlier:

training error
$$(H_{\text{final}}) \leq \prod_{t} Z_{t} = \frac{1}{m} \sum_{i} \exp \left(-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})\right)$$

• therefore, on each round t, should choose $\alpha_t h_t$ to minimize:

$$Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))$$

• in many cases (e.g., decision stumps), best confidence-rated weak classifier has simple form that can be found efficiently

Confidence-Rated Predictions Help a Lot

	round firs		
% error	conf.	no conf.	speedup
40	268	16,938	63.2
35	598	65,292	109.2
30	1,888	>80,000	_

Application: Boosting for Text Categorization

[with Singer]

- weak classifiers: very simple weak classifiers that test on simple patterns, namely, (sparse) n-grams
 - find parameter α_t and rule h_t of given form which minimize Z_t
 - use efficiently implemented exhaustive search
- "How may I help you" data:
 - 7844 training examples
 - 1000 test examples
 - categories: AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.

Weak Classifiers

rnd	term	AC	AS	ВС	CC	СО	CM	DM	DI	НО	PP	RA	3N	ΤI	ТС	ОТ
1	collect	I	ī	I	I	1	T	-	ī	I	T	ī	ī	ī	ī	T
		•		•			•		•	•		•	_			
		I	I	T	-	I		-	T	I	I	I	•		I	_
2	card	I	-	•	1	-	-	-	•	-	•	•	T	T	T	•
		-	-	-	T	-	-	-	_	-	-	-	-	_	-	
3	my home	_	•		•	_	-	_		_	-	•			•	•
		_	-	_	_	_	-	-	-	-	_	_	-	_	_	_
4	person ? person			_	_			_	_		I	_	_	_	_	
				•	•			•	ı	•			-			•
		_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
5	code	_	_	_	_	_	_	_	_	_	_	_		_	_	_
		_	_	_	_	-	-	_	_	_	_	_	_	_	_	
6	1	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
		-	-	•	-	_	•	-	-	•	-	-	_	-	_	

More Weak Classifiers

rnd	term	AC	AS	ВС	CC	СО	CM	DM	DI	НО	PP	RA	3N	ΤI	ТС	ОТ
7	time	•	-	-	T		_	-	-	-	T	-	-	1	1	_
		_	_	_	_	_	_	_	_	_	_	_	_	-	•	_
8	wrong number	T	I	1	•	-	I	T	T	•	T	I	•	T	T	T
		-	-	_	-	-	_	_	_	_	_	_	-	_	-	
9	how	-	-	-	•	-	•	T	-	1	T	1	-	-		_
		_	_	_	_	_	_	_	_	-	_	-	_	_	-	
10	call	-	•	_	-	-	-	_	•	_	-	-	-	-	-	_
		_	-	-	_	_	-	-	-	-	-	_	_	_	-	_
11	seven	T	•	-	-	-	-	•	•	•	-	-	-	-	I	-
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
12	trying to	-	-	-	-	•	-	-	-	-	•	•	-	•	I	_
		_	-	-	-	-	-	-	-	-	-	-	-	-	-	
13	and	-	-	-	-	-	-	_	-	-	-	_	-	-	-	_
		-	-	-	-	-	_	_	_	-	-	-	_	_	-	

More Weak Classifiers

rnd	term	AC	AS	ВС	CC	СО	СМ	DM	DI	НО	PP	RA	3N	TI	ТС	ОТ
14	third	T	T	-	T	T	T	•	T	T	•	T	1	T	T	_
		_	-	_	_	_	_	_	-	_	-	_	_	_	_	
15	to	_	-	-	_	_	_	_	_	_	_	_	_	_	-	_
		_	_	-	_	-	_	_	_	_	-	_	T	_	_	
16	for	-	-	-	•	-	-	-	-	-	-	•	•	I	•	-
		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
17	charges	I	-	-	-	1	-	-	-	•	-	-	-	ī	1	•
		_	_	_	_	_	_	_	_	_	_	_	_	_		_
18	dial	_	_	_	_	_	_	_	_		_	_	_	_	_	
											•			-	•	
19	tuet	_	_	_	_	_	_	_	_		_	_	_	_	_	
19	just	-	-	-	-	•	-	-	•	_	-	-	-	-	_	-
		_	_	-	_	_	-	-	-	-	_	_	_	_	-	

Finding Outliers

examples with most weight are often outliers (mislabeled and/or ambiguous)

- I'm trying to make a credit card call (Collect)
- hello (Rate)
- yes I'd like to make a long distance collect call please (CallingCard)
- calling card please (Collect)
- yeah I'd like to use my calling card number (Collect)
- can I get a collect call (CallingCard)
- yes I would like to make a long distant telephone call and have the charges billed to another number (CallingCard DialForMe)
- yeah I can not stand it this morning I did oversea call is so bad (BillingCredit)
- yeah special offers going on for long distance (AttService Rate)
- mister allen please william allen (PersonToPerson)
- yes ma'am I I'm trying to make a long distance call to a non dialable point in san miguel philippines (AttService Other)

Advanced Topics

- optimal accuracy
- optimal efficiency
- boosting in continuous time

Advanced Topics

- optimal accuracy
- optimal efficiency
- boosting in continuous time

- usually, impossible to get perfect accuracy due to intrinsic noise or uncertainty
- Bayes optimal error = best possible error of any classifier
 - usually > 0
- can prove AdaBoost's classifier converges to Bayes optimal if:
 - enough data
 - run for many (but not too many) rounds
 - weak classifiers "sufficiently rich"
- "universally consistent"
- related results: [Jiang], [Lugosi & Vayatis], [Zhang & Yu], ...
- means:
 - AdaBoost can (theoretically) learn "optimally" even in noisy settings
 - but: does not explain why works when run for very many rounds

- can construct data source on which AdaBoost fails miserably with even tiny amount of noise (say, 1%)
 - ullet Bayes optimal error =1% (obtainable by classifier of same form as AdaBoost)
 - AdaBoost provably has error $\geq 50\%$
- holds even if:
 - given unlimited training data
 - use any method for minimizing exponential loss
- also holds:
 - for most other convex losses
 - even if add regularization
 - e.g. applies to SVM's, logistic regression, ...

Boosting and Noise (cont.)

- shows:
 - consistency result can fail badly if weak classifiers "not rich enough"
 - AdaBoost (and lots of other loss-based methods) susceptible to noise
 - · regularization might not help
- how to handle noise?
 - on "real-world" datasets, AdaBoost often works anyway
 - various theoretical algorithms based on "branching programs" (e.g., [Kalai & Servedio], [Long & Servedio])

Advanced Topics

- optimal accuracy
- optimal efficiency
- boosting in continuous time

- for AdaBoost, saw: training error $\leq e^{-2\gamma^2 T}$
- is AdaBoost most efficient boosting algorithm?
 no!
- given T rounds and γ -weak learning assumption, boost-by-majority (BBM) algorithm is provably exactly best possible:

$$\text{training error} \leq \sum_{j=0}^{\lfloor T/2 \rfloor} \binom{T}{j} \left(\tfrac{1}{2} + \gamma \right)^j \left(\tfrac{1}{2} - \gamma \right)^{T-j}$$

(probability of $\leq T/2$ heads in T coin flips if probability of heads $= \frac{1}{2} + \gamma$)

 AdaBoost's training error is like Chernoff approximation of BBM's

Weighting Functions: AdaBoost versus BBM

- both put more weight on harder examples, but BBM "gives up" on very hardest examples
 - may make more robust to noise
- problem: BBM not adaptive
 - need to know γ and T a priori

Advanced Topics

- optimal accuracy
- optimal efficiency
- boosting in continuous time

[Freund]

- idea: let γ get very small so that $\gamma\text{-weak}$ learning assumption eventually satisfied
- need to make T correspondingly large
- if scale "time" to begin at $\tau=0$ and end at $\tau=1$, then each boosting round takes time 1/T
- in limit $T \to \infty$, boosting is happening in continuous time

BrownBoost

- algorithm has sensible limit called "BrownBoost" (due to connection to Brownian motion)
- harder to implement, but potentially more resistant to noise and outliers, e.g.:

dataset	noise	AdaBoost	BrownBoost
	0%	3.7	4.2
letter	10%	10.8	7.0
	20%	15.7	10.5
	0%	4.9	5.2
satimage	10%	12.1	6.2
	20%	21.3	7.4

[Cheamanunkul, Ettinger & Freund]

Conclusions

- from different perspectives, AdaBoost can be interpreted as:
 - a method for boosting the accuracy of a weak learner
 - a procedure for maximizing margins
 - an algorithm for playing repeated games
 - a numerical method for minimizing exponential loss
 - an iterative-projection algorithm based on an information-theoretic geometry
- none is entirely satisfactory by itself, but each useful in its own way
- taken together, create rich theoretical understanding
 - connect boosting to other learning problems and techniques
 - provide foundation for versatile set of methods with many extensions, variations and applications

References

 Robert E. Schapire and Yoav Freund. Boosting: Foundations and Algorithms. MIT Press, 2012.