## Two Basic Factions

Sinusoidal Functions;

Exponential Functions.

### **Sinusoidal Functions**

A sinusoid function is a mathematical function that describes a smooth periodic oscillation.

$$y(t) = A\sin(\omega t + \varphi)$$

A: amplitude

 $\omega$ : angular frequency, rad/sec

 $\omega = 2\pi f$  f: frequency, Hz

 $\varphi$ : phase, radians, where in its cycle the oscillation is at t = 0.







### **Sinusoidal Functions**

#### Some special values of the sin and cos functions:

1. 
$$\theta = 2n\pi$$
,  $\sin \theta = 0$ ,  $\cos \theta = 1$   $n = 1, 2, 3, ...$ 

2. 
$$\theta = (2n-1)\pi$$
,  $\sin \theta = 0$ ,  $\cos \theta = -1$ 

3. 
$$\theta = \frac{(2n-1)\pi}{2}$$
,  $\sin \theta = (-1)^{n-1}$ ,  $\cos \theta = 0$ 





## Frequency and Period of Sinusoidal Function

How to find frequency and period for a give sinusoid function?

$$y(t) = A\sin(\omega t + \varphi)$$

 $\omega$ : angular frequency, rad/sec

Frequency: 
$$f = \frac{\omega}{2\pi}$$

Frequency: 
$$f = \frac{\omega}{2\pi}$$
 Period:  $T = \frac{1}{f} = \frac{2\pi}{\omega}$ 

Examples:  $y(t) = 10\sin(50t+10)$  What is its period?

$$\omega = 50 \ rad \ / \sec \qquad f = \frac{\omega}{2\pi} = \frac{25}{\pi} Hz$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega} = \frac{\pi}{25} \sec$$

## Frequency and Period of Sinusoidal Function

Example 2:  $x(t) = \sin^2(20\pi t + 5)$  What is its period and frequency?

$$x(t) = \frac{1}{2}[1 - \cos 2(20\pi t + 5)] = \frac{1}{2} - \frac{1}{2}\cos(40\pi t + 10)$$

$$\omega = 40\pi \, rad \, / \sec$$

$$f = \frac{\omega}{2\pi} = \frac{40\pi}{2\pi} = 20 \, Hz$$

$$T = \frac{1}{f} = \frac{1}{20} \sec$$

# Exponential Function $e^{st}$

One of the most important functions in this class is the exponential signal  $e^{st}$ , where s is complex in general, given by:

$$s = \sigma + j\omega$$

Therefore:

$$e^{st} = e^{(\sigma + j\omega)t} = e^{\sigma t}e^{j\omega t} = e^{\sigma t}(\cos \omega t + j\sin \omega t)$$

For the conjugate of s ( $s^* = \sigma - j\omega$ ):

$$e^{s^*t} = e^{(\sigma - j\omega)t} = e^{\sigma t}e^{-j\omega t} = e^{\sigma t}(\cos\omega t - j\sin\omega t)$$

Moreover:

$$e^{\sigma t}\cos\omega t = \frac{1}{2}(e^{st} + e^{s^*t})$$

$$e^{\sigma t}\sin \omega t = \frac{1}{2i}(e^{st} - e^{s^*t})$$

# Exponential Function $e^{st}$

#### Some special cases of the exponential function:

1. A constant 
$$k = ke^{0t}$$
  $(s = 0)$ 

2. A monotonic exponential 
$$e^{\sigma t}$$
  $(s = \sigma)$ 

3. A sinusoid function 
$$\cos \omega t$$
  $(s = \pm j\omega)$ 

4. An exponentially varying sinusoid function

$$e^{\sigma t}\cos\omega t$$
  $(s = \sigma \pm j\omega)$ 

# Exponential Function $e^{st}$



### **Euler's Formulas**

#### Euler's formula states that, for any real number x,

$$e^{ix} = \cos x + i \sin x$$
  $e^{-ix} = \cos x - i \sin x$ 

$$e^{-ix} = \cos x - i \sin x$$

$$\cos x = \frac{1}{2} [e^{ix} + e^{-ix}]$$

$$\cos x = \frac{1}{2} [e^{ix} + e^{-ix}] \qquad \sin x = \frac{1}{2i} [e^{ix} - e^{-ix}]$$

$$z = r(\cos\theta + i\sin\theta)$$

$$\Rightarrow z = re^{i\theta}$$

## **Exponential Function**

Example 1: Given exponential function  $x(t) = je^{(5-j10\pi)t}$ 

(1) Find the real part and imaginary part of the function.

$$x(t) = je^{5t}e^{-j10\pi t} = je^{5t}[\cos(10\pi t) - j\sin(10\pi t)]$$
$$= e^{5t}[j\cos(10\pi t) + \sin(10\pi t)]$$

Re[
$$x(t)$$
] =  $e^{5t} \sin(10\pi t)$  Im[ $x(t)$ ] =  $e^{5t} \cos(10\pi t)$ 

(2) Find the frequency f of the function.

$$\omega = 10\pi \, rad \, / \sec$$
 
$$f = \frac{\omega}{2\pi} = \frac{10\pi}{2\pi} = 5 \, Hz$$