Teorema da Função Inversa

Seja $F: \Omega \to \mathbb{R}^n$, com Ω aberto em \mathbb{R}^n , de classe C^* e p em Ω tal que $\mathcal{F}(P)$ é inversivel.

Então, existem um aberto X contendo P, um aberto Y contendo F(P), e uma função $G: Y \to X$ de classe G' exitisfazendo F(G(Y)) = Y para todo Y em Y e G(F(X)) = X, para todo X em X.

Ainda mais:

Teorema da Função Implicata

Seign Fram $C^1(\Omega_1 | R^m)$, $\Omega_1 \subseteq R^n \times m$ aberto, a verja $(\alpha_1 b) \in \Omega_2$ tal que $F(a_1b) = 0$ a $2F(a_1b)$ is inversivel. Entato, existem conjuntos abertos $X \subseteq R^n$ a $Y \subseteq R^m$ os quan contem a a b respectivamente de modo que:

- . For $\in X$, exists um anico f(x) = y em Y tal que F(x, f(x) = 0
- $f \in C_{*}(X,Y) : f(a) = b \cdot a$

$$\int f(x) = -\left[\frac{\partial F}{\partial y}(x, f(x))\right]^{-1} \cdot \left[\frac{\partial F}{\partial x}(x, f(x))\right]$$
Para todo x am X

Terrema de Weierstrass

Toda função a valores seais, continua, definida em um compacto admite máscimo e uninimo em K.

Teorema de Méte de des multiplicadores de lagrange Seja F: IRn+m > IR diferenciavel e g = (92,..., gm) $\in C'(R^{n+m}, \mathbb{R}^m).$

s (0,...,0) ^{L}g 39 atnoq an local etnomertoe stimbs 7 s 2 consmin metrice sature 1 L 1 saf $\{mg_1,..., LgV\}$ atnopres o 21..., Im tais que

 $\Delta E(b) = y7\Delta^{37}(b) + \dots + y^{m}\Delta^{3m}(b)$