5.4.2 磁盘格式化

硬盘由一叠铝的、合金的或玻璃的盘片组成,直径为5.25英寸或3.5英寸(在笔记本电脑上甚至更小)。 在每个盘片上沉积着薄薄的可磁化的金属氧化物。在制造出来之后,磁盘上不存在任何信息。

在磁盘能够使用之前,每个盘片必须经受由软件完成的低级格式化 (low-level format)。该格式包含一系列同心的磁道,每个磁道包含若于数目的扇区,扇区间存在短的间隙。一个扇区的格式如图5-25所示。

前导码以一定的位模式开始,位模式使硬件得以识别扇区的开始。前导码还包含柱面与扇区号以及某些其他信息。数据部分的大小是由低级格式化程序决定的,大多数磁盘使用512字节的扇区。ECC域包含冗余信息,可以用来恢复读错误。该域的大小和内容随生产商的不同而不同,它取决于设计者为了更高的可靠性愿意放弃多少磁盘空间以及控制器能够处理的ECC编码有多复杂。16字节的ECC域并不是罕见的。此外,所有硬盘都分配有某些数目的备用扇区,用来取代具有制造瑕疵的扇区。

在设置低级格式时,每个磁道上第0扇区的位置与前一个磁道存在偏移。这一偏移称为柱面斜进 (cylinder skew),这样做是为了改进性能,想法是让磁盘在一次连续的操作中读取多个磁道而不丢失数据。观察图5-19a就可以明白问题的本质。假设一个读请求需要最内侧磁道上从第0扇区开始的18个扇区,磁盘旋转一周可以读取前16个扇区,但是为了得到第17个扇区,则需要一次寻道操作以便磁头向外移动一个磁道。到磁头移

图5-25 一个磁盘扇区

图5-26 柱面斜进示意图

动了一个磁道时,第0扇区已经转过了磁头,所以需要旋转一整周才能等到它再次经过磁头。通过图 5-26所示的将扇区偏移即可消除这一问题。

柱面斜进量取决于驱动器的几何规格。例如,一个10 000rpm的驱动器每6ms旋转一周,如果一个磁道包含300个扇区,那么每20μs就有一个新扇区在磁头下通过。如果磁道到磁道的寻道时间是800μs,那么在寻道期间将有40个扇区通过,所以柱面斜进应该是40个扇区而不是图5-26中的三个扇区。值得一提的是,像柱面斜进一样也存在着磁头斜进(head skew),但是磁头斜进不是非常大。

低级格式化的结果是磁盘容量减少,减少的量取决于前导码、扇区间间隙和ECC的大小以及保留的备用扇区的数目。通常格式化的容量比未格式化的容量低20%。备用扇区不计入格式化的容量,所以一种给定类型的所有磁盘在出厂时具有完全相同的容量,与它们实际具有多少坏扇区无关(如果坏扇区的数目超出了备用扇区的数目,则该驱动器是不合格的,不会出厂)。

关于磁盘容量存在着相当大的混淆,这是因为某些制造商广告宣传的是未格式化的容量,从而使他们的驱动器看起来比实际的容量要大。例如,考虑一个未格式化容量为200×10°字节的驱动器,它或许是作为200GB的磁盘销售的。然而,格式化之后,也许只有170×10°字节可用于存放数据。使这一混淆进一步加剧的是操作系统可能将这一容量报告为158GB,而不是170GB,因为软件把IGB看作是2°0(1073741824)字节,而不是10°(1000000000)字节。

在数据通信世界里, $IGbps意味着1\ 000\ 000\ 000位/秒$,因为前缀G(吉)确实表示 10^9 (毕竟一千米是1000米,而不是1024米),所以使事情更加糟糕。只有在关于内存和磁盘的大小的情况下,kilo(千)、mega(兆)、giga(吉)和tera(太)才分别表示 2^{10} 、 2^{20} 、 2^{30} 和 2^{40} 。