Napredne metode digitalne obrade signala – međuispit 24.11.2014.

- 1. Zaustavio policajac Heisenberga zbog prebrze vožnje i upita ga: "Znate li kojom ste brzinom vozili?" Heisenberg odgovori: "Ne, ali točno znam gdje sam."
 - a) Objasnite Heisenbergov odgovor na primjeru STFT.
 - b) Zadan je svevremenski signal $x(t)=e^{-3t}$ i vremenski otvor $g(t)=\delta(t)$. Odredite STFT $X(\tau,\omega)$ zadanog signala i njegovu amplitudnu karakteristiku.
 - c) U kojoj domeni zadani signal ima bolju rezoluciju?
- 2. Kontinuirana valićna transformacija.
 - a) Objasnite razlike u razlučivosti u T-F ravnini za CWT i STFT.
 - b) Usporedite wavelet funkciju kod CWT u slučaju kada se mijenja skala, s umnoškom g(t-τ)e^{-jωt} kod STFT kad se mijenja frekvencija, dok je sve ostalo konstantno.
 - c) Navedite izraz za oktavnu diskretno wavelet funkciju $\psi_{m,k}(t)$, te koje su njene prednosti.
- 3. Zadan je filtarski slog sa dva pojasa bez decimacije. Filtri prvog pojasa su $H_0(z)=3+z^{-1}+3z^{-2}$ i $H_1(z)=1-3z^{-1}+z^{-2}$.
 - a) Koristeći energetski otvor preslikavanja (pomoću DTFT-a skicirajte energetski raspon) odredite je li moguća potpuna rekonstrukcija koristeći ovakav filtarski slog. Objasnite.
 - b) Odredite rekonstrukcijske filtre $F_0(z)$ i $F_1(z)$ koji imaju dva uzorka impulsnog odziva, a koji omogućavaju potpunu rekonstrukciju uz kašnjenje L=3.
- 4. Za zadani diskretni signal $x(n)=\{1,-4,\underline{5},-4,1\}$ odredite spektar $X(e^{j\omega})$, te odredite i skicirajte decimirani (s faktorom 2) signal v[n] i spektar $V(e^{j\omega})$, te interpolirani (s faktorom 2) signal u[n] i spektar $U(e^{j\omega})$. Objasnite je li došlo do pojave aliasinga?
- 5. Poznati su impulsni odzivi filtara filtarskog sloga prikazanoga slikom (filtarski slog s dva pojasa i decimacijom...).

```
h_0(n)=\{\underline{4},1\}, h_1(n)=\{\underline{2},-2\},
```

$$f_0(n) = \{2,3\}, f_1(n) = \{3,-2\}.$$

Impulsni odziv ulaznog signala je $x(n)=\{3,-2\}$.

- a) Odredite analizirajuću modulacijsku matricu zadanoga filtarskog sloga.
- b) Koristeći analizirajuću modulacijsku matricu, odredite impulsni odziv rekostruiranog signala $x_r(n)$.
- c) Kako glasi uvjet potpune rekonstrukcije, a kako uvjet poništenja aliasinga?
- d) Da li je zadovoljen uvjet potpune rekonstrukcije i uvjet poništenja aliasinga?