电子线路设计与测试

音响放大器设计与调试

P143

几种集成运算放大器的典型参数(P64)

芯片型号₽		μA741(单 ').₽	0P07C₽	NE5532(双)₽	LF347(四).₽	LM324(四)₽
电源↓	双电源₽	±3V~±18V₽	±3V~±18V₽	±3 V∼±20V ₽	±1.5V″±16V∂	±18 V ₽
电压₽	单电源₽	- ₽	- ₽	- ₄	-42	3 V~32V ₽
输入失调电压 V _{io} 。		1. OmV∂	250μ ₩	0. 5mV ₽	5 m V ₽	2mV₽
输入失调电流 /ю₽		20nA∂	8nA∂	10n A ₽	25 <u>p</u> A.	5 <u>n</u> A.
输入偏置电流 /₌₽		80nA∂	±9 <u>n</u> A∂	200nA₽	50 <u>p</u> A.	45nA₽
开环电压增益 A₀心		2×10 ⁶	4×10⁵₽	50×10 ^{sel} (R= 600Ω) e	1×10 ⁶	1×10 [€] ∂
输入电阻 / ⊌◎		2. ΟΜΩ₽	33 ΜΩ₽	0.3 MΩ₽	10 [™] Ω₽	-4
单位增益带宽 <i>B</i> K₽		1MHz√	0.6MHz.	10 MHz⊬ (G=100pF, R= 600 Ω)∉	4 MHz₽	1 M-lz ₽
转换速率 &₽		0. 5 V/μs ₽	0. 3V/μs ₽	9 V/μs₽	13 V/μs₽	-0
共模抑制比 /塩		90 dB₽	120 dB₽	100 dB∂	100 dB₽	85 dB∂
功率消耗₽		60π ₩ ₽	150m₩₽	780 ∰⊮	570m₩₽	1130 m#/-
输入印	电压范围₽	±13 V ₽	±14 V ₽	±电源电压₽	±15 V ₽	-0. 3 √ ″32 √ ₽
说 明₽		通用型₽	低噪声₽	低噪声₽	高風型(JFET)₽	通用型₽

一、实验目的

- □音响放大器的基本组成
- 口音调特性控制方法与实现原理
- □ 了解集成功率放大器内部电路工作原理, 掌握其外围电路的设计与主要性能参数的 测试方法;
- 掌握音响放大器的设计方法与电子线路系统的装调技术---综合运用所学知识,进行小型多级电子线路系统的设计与装调。

设计任务

口 功能要求:

■ 具有话音放大、音调控制、音量控制、卡拉OK 伴唱等功能

口 已知条件:

- 集成功放LM386
- 高阻话筒20kΩ,输出信号5mV
- 集成运放NE5532
- 10Ω/2W负载电阻1只
- 8Ω/4W扬声器1只
- 音源(MP3 or PC)
- 电源电压±9V(双电源)

设计任务

口 技术指标要求:

- 额定功率: P_o≥0.3W (γ<3%)
- 负载阻抗: R_I = 10Ω
- 频率响应: f_L=50Hz, f_H=20kHz
- 输入阻抗: R_i>>20kΩ
- 音调控制特性(选做): 1kHz处增益为0dB、125Hz和8kHz处有±12dB的调节范围, A_{VL}=A_{VH}≥20dB

选做

- 音调调谐电路幅频响应特性调节特性仿真
- 蓝牙音箱(含蓝牙收发部分)
- USB供电音响放大器(含DC-DC变换与电流放大 或功率放大处理)

将磁带放音机输出的音乐信号与话音放大后的声音信号 混合放大。

₩左右,而输 計出阻抗的话 等)

音的多次反射,产生给音响放大器的负载R_L(果,使声音听起来与扬声器)提供一定的输出的深度感和空间立 功率。

1. 话音放大器

- □ 话筒的输出信号一般只有5mV左右,话 筒的输出阻抗有高阻(约20kΩ)、亦有低 输出阻抗的话筒,如20Ω, 200Ω等。
- 话音放大器的作用是不失真地放大声音 信号,其输入阻抗应远大于话筒的输出阻抗。

反相交流放大器(P74)

耦合电容 C_1 、 C_3 可根据交流放大器的下限频率 f_L 来确定,

一般取
$$C1 = C3 = (3 \sim 10) \frac{1}{2\pi R_L f_L}$$

 $A_{\rm VF} = -R_{\rm F}/R_{\rm 1}$

同相交流电压放大器

电容C₁、C₂及C₃为隔直电容

右图是运放同相交 流电压放大器。

$$A_{VF}=1+\frac{R_F}{R_2}$$

电阻 R_1 接地是为了保证输入为零时,放大器的输出直流电位为零

交流放大器的输入电阻

$$R_i = R_1$$
 $(R_1 - 般取几十千欧。)$

耦合电容 C_1 、 C_3 可根据交流放大器的下限频率 f_L 来确定,一般取 $C1 = C3 = (3\sim10) \frac{1}{2\pi R_r f_r}$

反馈支路的隔直电容C,一般取几微法。

自举式交流电压放大器

如图所示是自举式同相交流电压放大器。

反馈电压
$$V_A = \frac{R_2}{R_2 + R_F} V_O$$

因为同相放大器的电压放大 倍数 A_{vF} =1+(R_F/R_2),故

$$V_O = \left(1 + \frac{R_F}{R_2}\right) V_i$$

$$=\frac{R_2+R_F}{R_2}V_B$$

$$V_B = \frac{R_2}{R_2 + R_E} V_O$$
 $fV_A = V_B$

交流信号自同相端B点输入,输出信号经 R_F 反馈至A点

自举式交流电压放大器

R₁两端的电压相等,且相位相同,故称R1为自举电阻。流经R₁的电流可视为零,从而大大提高了交流放大器的输入电阻。输入电阻

$$R_{\rm i} = (R_1 /\!/ r_{\rm id})(1 + A_{\rm VO}F) + R_2 /\!/ R_{\rm F}$$

式中,F为反馈系数, $F=R_2/(R_2+R_F)$, A_{VO} 是运放的开环增益。

2.混合前置放大器

其作用是将磁带放音机输出的音乐信号与 电子混响后的声音信号混合放大。

> ν₁为话筒放大器输出电压 ν₂为放音机输出电压

音调控制器只对低音频与高音频的增益进行提升与衰减,中音频的增益保持OdB不变。因此,音调控制器的电路可由低通滤波器与高通滤波器构成。

音调控制器的电路

由低通滤波器与高通滤波器构成音调控制器

①当 $f < f_0$ 时 分析表明,右图所示 电路是一个一阶有源低 通滤波器, 其增益函数 的表达式为: $\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{RP_{1}//(1/j\omega C_{2}) + R_{2}}{R_{i}}$ $\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{RP_{1} + R_{2}}{R_{1}} \cdot \frac{1 + (j\omega)/\omega_{2}}{1 + (j\omega)/\omega_{1}}$

式中,
$$\omega_1 = 1/(RP_1C_2)$$
 或 $f_{L1} = 1/(2\pi RP_1C_2)$
 $\omega_2 = (RP_1 + R_2)/(RP_1R_2C_2)$ 或 $f_{L2} = (RP_1 + R_2)/(2\pi RP_1R_2C_2)$

①当**f<f₀时**

当ω<<ω₁时 (f

<f_{L1}), C₂可视为开路, 运算放大器的反向路, 运算放大器的反向输入端视为虚地, R₄的影响可以忽略, 此时电压增益

$$A_{\rm VL} = \left(RP_1 + R_2\right) / R_1$$

如果(RP₁+R₂)/R₁=10

①当 $f < f_0$ 时

在 $f=f_{11}$ ($\omega=\omega_1$)时 如果要求f_{L2} = 10f_{L1} 则低通滤波器的增益 函数

$$\vec{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{RP_{1} + R_{2}}{R_{1}} \cdot \frac{1 + (j\omega)/\omega_{2}}{1 + (j\omega)/\omega_{1}}$$

得
$$\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{2}}{R_{1} + RP_{1}} \cdot \frac{1 + 0.1 \text{ j}}{1 + \text{ j}}$$

模 $A_{V1} = (RP_1 + R_2) / \sqrt{2}R_1$

此时电压增益相对A,降3dB。

①当**f<f₀时**

在
$$f=f_{L2}(\omega=\omega_2)$$
时

$$\dot{A}_{V2} = -\frac{RP_1 + R_2}{R_1} \cdot \frac{1 + j}{1 + 10j}$$

模
$$A_{\text{V2}} = -\frac{RP_1 + R_2}{R_1} \cdot \frac{\sqrt{2}}{10} = 0.14A_{\text{VL}}$$

此时电压增益相对A₁下降17dB。

①当**f<fo**时

同理可以得出右 图所示电路的相应 表达式,其增益相 对于中频增益为衰 减量。

$$\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{2}}{R_{1} + RP_{1}//(1/j\omega C_{1})} = \frac{17}{R_{1} + RP_{1}//(1/j\omega C_{1})}$$

$$\Leftrightarrow \omega_{1} = 1/(RP_{1}C_{1}) \qquad \omega_{2} = (RP_{1} + R_{1})/(RP_{1}R_{1}C_{1})$$

$$\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{2}}{R_{1} + RP_{1}} \cdot \frac{1 + (j\omega)/\omega_{1}}{1 + (j\omega)/\omega_{2}}$$

C_1 、 C_2 可视为短路,作为高通滤波器。

音调控制器的高频等效电路如图所示:

将 C_1 、 C_2 视为短路将其转换成三角形连接

$$R_{\rm a} = R_1 + R_4 + \left(R_1 R_4 / R_2 \right)$$
 $R_{\rm b} = R_4 + R_2 + \left(R_4 R_2 / R_1 \right)$
 $R_{\rm c} = R_1 + R_2 + \left(R_2 R_1 / R_4 \right)$

若取
$$R_1 = R_2 = R_4$$
,则
 $R_a = R_b = R_c = 3R_1 = 3R_2 = 3R_4$

RP₂的滑臂在 最左端时,对应于 高频提升最大的情 况,等效电路见右图:

所示电路为一阶有源高 通滤波器, 其增益函数 的表达式为

$$\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{b}}{R_{a}/\!/(R_{3} + 1/j\omega C_{3})}$$

令
$$\omega_3 = 1/[(R_a + R_3)C_3]$$
 或 $f_{H1} = 1/[2\pi(R_a + R_3)C_3]$
 $\omega_4 = 1/(R_3C_3)$ 或 $f_{H2} = 1/(2\pi R_3C_3)$

$$\dot{\mathbf{M}} \dot{A}(\mathbf{j}\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{b}}{R_{a}} \cdot \frac{1 + (\mathbf{j}\omega)/\omega_{3}}{1 + (\mathbf{j}\omega)/\omega_{4}}$$

当f<< f_{H1} (ω < ω 3)时, C_3 视为开路,选择Ra=Rb,则 电压增益 A_{V0} =1(0dB)。

$$\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{b}}{R_{a}} \cdot \frac{1 + (j\omega)/\omega_{3}}{1 + (j\omega)/\omega_{4}}$$

得 $A_{\text{V3}} = \sqrt{2}A_{\text{V0}}$

此时电压增益 A_{V3} 相对于 A_{V0} 提升了3dB。

在f=f_{H2}时,

$$\dot{A}(j\omega) = \frac{\dot{V}_{o}}{\dot{V}_{i}} = -\frac{R_{b}}{R_{a}} \cdot \frac{1 + (j\omega)/\omega_{3}}{1 + (j\omega)/\omega_{4}} = \left(-\frac{R_{b}}{R_{a}} \cdot \frac{1 + 10 \text{ J}}{1 + \text{j}}\right)$$

$$A_{V4} = \frac{10}{\sqrt{2}} A_{V0}$$

此时电压增益A_{V4}相对于A_{V0}提升了17dB。

当
$$f > f_{H2}$$
时, C_3 视为短路,此时电压增益
$$A_{VH} = (R_a + R_3)/R_3$$

②当**f > f**₀时

RP₂的滑臂在 最右端时,对应 于高频衰减最大 的情况,等效电 路见右图:

同理可以得出如图所示 电路的相应表达式,其增益 相对于中频增益为衰减量。

实际应用中

通常先提出对低频区 f_{Lx} 处和高频区 f_{Hx} 处的提升量或衰减量x(dB),再根据下式求转折频率 f_{L2} (或 f_{L1})和 f_{H1} (或 f_{H2}),即

$$f_{L2} = f_{Lx} \cdot 2^{x/6}$$

$$f_{\rm H1} = f_{\rm Hx} / 2^{x/6}$$

4.功率放大器

功率放大器(简称功放)的作用是给音响放大器的负载R₍(扬声器)提供一定的输出功率。当负载一定时,希望:

- □ 输出的功率尽可能大
- 口 输出信号的非线性失真尽可能地小
- □ 效率尽可能高

LM386集成功率放大器

- (1) LM386内部电路
- (2) 应用电路
- (3) LM386N-4主要 性能指标

LM386集成功率放大器

LM386是广泛用于收录音机、对讲机、电视 伴音等系统中的低电压通用型低频集成功放。

R为外接电阻。

1、8开路时, $A_{\rm V} = 20$ (负反馈最强)

1、8交流短路 $A_{\rm V} = 200$ (负反馈最弱)

(2) 应用电路

Amplifier with Gain = 20 Minimum Parts

Amplifier with Gain = 200

(2) 应用电路

(3) LM386N-4主要性能指标

Parameter	Conditions	Min	Тур	Max
电源电压范围(V)		5		18
静态电源电流I _Q	$V_{CC} = 6V, v_{IN} = 0$		4 mA	8
输出功率(P _{OUT})	$V_{CC} = 16V, R_L = 32 \Omega$ THD = 10%	700 mW	1000mW	
电压增益(A _V)	$V_{CC} = 6V, f = 1 \text{ kHz}$		26 dB	
	10 μF from Pin 1 to 8		46 dB	
频带宽(BW)	V _{CC} = 6V, Pins 1 and 8 Open		300 kHz	
输入阻抗(R _{IN})			50 kΩ	

三、设计举例

- □ 例:设计一音响放大器,要求具有音调输出控制、卡拉OK伴唱,对话筒与录音机的输出信号进行扩音。
- □ 已知条件:
 - +V_{CC} = +9V(单电源)
 - 话筒(低阻20Q)的输出电压为5mV
 - 录音机的输出信号电压为100mV
 - 集成功放LM3861只
 - 8Ω/2W负载电阻R_L 1只
 - 8Ω/4W扬声器1只
 - 集成运放NE5532 1只

主要技术指标

- □ 额定功率: P_o≥0.7W(γ < 3%);</p>
- □ 负载阻抗: $R_1 = 8\Omega$;
- □ 截止频率: f_L=40Hz, f_H=10kHz;
- □ 音调控制特性: 1kHz处增益为0dB, 100Hz

和10kHz处有±12dB的调节范围,

- $A_{VL} = A_{VH} \ge 20 \text{dB};$
- □ 话放级输入灵敏度: 5mV;
- □ 输入阻抗: *R*_i>>20Ω。

设计过程(1)

- □ 确定整机电路的级数
- □ 根据各级的功能及技术指标要求分配电压增益
- 口 分别计算各级电路参数,通常从后向前级逐级计算
- □ 根据技术指标要求
- 音响放大器输入为5mV时, $P_0>0.7W$,则输出电压 $V_0>2.4V$ 。总电压增益 $A_{V_5}=V_0/V_i>480倍(54dB)。$

功率放大器设计

功放级的电压增益:

$$A_{V4} \approx \frac{2R_7}{R_5 + R_6 //R} = 31.2$$

音调控制器(含音量控制)设计(1)

音调控制器(含音量控制)设计(2)

- 口 已知 $f_{Lx}=100$ Hz, $f_{Hx}=10$ kHz,x=12dB。
- □ 由式(4.7.16)、(4.7.17)得到转折频率f_{L2}及f_{H1};
 - $f_{L2} = f_{Lx} *2^{x/6} = 400 \text{Hz}, \quad f_{L1} = f_{L2}/10 = 40 \text{Hz}$;
 - $f_{H1} = f_{Hx}/2^{x/6} = 2.5 \text{kHz}$, $f_{H2} = 10 f_{H1} = 25 \text{kHz}$.

由式(4.7.5) 得 A_{VL} =(RP₃₁+R₃₂)/R₃₁≥20dB。其中, R_{31} 、 R_{32} 、 RP_{31} —般取几千欧姆至几百千欧姆。现取 RP_{31} =470k Ω , R_{31} = R_{32} =47k Ω ,则

$$A_{VL} = (RP_{31} + R_{32})/R_{31} = 11(20.8dB)$$

音调控制器(含音量控制)设计(3)

由式(4.7.3)得

$$C_{32} = \frac{1}{2\pi R P_{31} f_{L1}} = 0.008 \mu F$$

取标称值0.01 μ F,即 $C_{31}=C_{32}=0.01\mu$ F。

由式(4.7.9)得

$$R_{34} = R_{31} = R_{32} = 47 \text{k}\Omega$$
 ,则 $R_{a} = 3R_{4} = 141 \text{k}\Omega$

音调控制器(含音量控制)设计(4)

由式(4.7.15)得

$$R_{33} = R_a/10 = 14.1 \text{k}\Omega$$
 取标称值 $13 \text{k}\Omega$ 由式 $(4.7.12)$ 得

$$C_{33} = \frac{1}{2\pi R_{33} f_{H2}} = 490 \text{pF}$$
 取标称值470pF

取 RP_{32} = RP_{31} =470kΩ, RP_{33} =10kΩ, 级间耦合与隔直电容 C_{34} = C_{35} =10μF。

音调控制器(含音量控制)设计

话音放大器与混合前置放大器设计

图中电路由话音放大与混合前置放大电路组成。 A₁组成同相放大器,其放大倍数

$$A_{\text{Vl}} = 1 + R_{12}/R_{11} = 8.5(18.5 \text{dB})$$

整机框图

四.电路安装与调试技术

- (1) 合理布局,分级装调
 - □ 音响放大器是一个小型电路系统,安装 前要对整机线路进行合理布局
 - □ 一般按照电路的顺序一级一级地布线
 - □ 功放级应远离输入级
 - □ 每一级的地线尽量接在一起
 - □ 连线尽可能短,否则很容易产生自激。

(1) 合理布局,分级装调

- □ 安装前应检查元器件的质量
- □ 安装时特别要注意功放块、运算放大器、电解电容等主要器件的引脚和极性,不能接错
- □ 从输入级开始向后级安装,也可以从功放 级开始向前逐级安装。
- □ 安装一级调试一级,安装两级要进行级联调试,直到整机安装与调试完成。

- 电路的调试过程一般是先分级调试,再级联调试,最后进行整机调试与性能指标测试。
- 口 分级调试又分为静态调试与动态调试。

静态调试时,将输入端对地短路,用万用表测该级输出端对地的直流电压。话放、混放、音调电路均由运放组成,若运放是单电源供电,其静态输出直流电压均为 $V_{\rm CC}/2$,功放级的输出(OTL电路)也为 $V_{\rm CC}/2$,且输出电容 $C_{\rm C}$ 两端充电电压也应为 $V_{\rm CC}/2$ 。若是双电源供电,直流电压均为0。

动态调试是指输入端接入规定的信号,用示波器观测该级输出波形,并测量各项性能指标是否满足题目要求,如果相差很大,应检查电路是否接错,元器件数值是否合乎要求,否则是不会出现很大偏差的。

单级电路调试时的技术指标较容易达到,但级联后级间相互影响,可能使单级的技术指标发生很大变化,甚至两级不能进行级联。产生的主要原因:

- 一是布线不太合理,形成级间交叉耦合,应 考虑重新布线;
- 二是级联后各级电流都要流经电源内阻,内阻压降对某一级可能形成正反馈,应接RC去耦滤波电路。R一般取几十欧姆,C一般用几百微法大电容与0.1µF小电容相并联。

由于功放输出信号较大,易对前级产生影响,引起自激。集成块内部电路多极点引起的正反馈易产生高频自激,常见高频自激现象如图所示。

可以加强外部电路的负反馈予以抵消,如功放级①脚与⑤之间接入几百皮法的电容,形成电压并联负反馈,可消除叠加的高频毛刺。

- □ 常见的低频自激现象是电源电流表有规则 地左右摆动,或输出波形上下抖动。
- □ 产生的主要原因是输出信号通过电源及地 线产生了正反馈。可以通过接入RC去耦滤 波电路消除。
- □ 为满足整机电路指标要求,可以适当修改单元电路的技术指标。图4.7.19为设计举例整机实验电路图,与单元电路设计值相比较,有些参数进行了较大的修改。

用8Ω/4W的扬声器代替负载电阻R_L,可进行以下功能试听:

- 话音扩音:将低阻话筒接话音放大器的输入端。应注意,扬声器输出的方向与话筒输入的方向相反,否则扬声器的输出声音经话筒输入后,会产生自激啸叫。讲话时,扬声器传出的声音应清晰,改变音量电位器,可控制声音大小。
- 音乐欣赏:将录音机输出的音乐信号,接入混合前置放大器,改变音调控制级的高低音调控制电位器, 扬声器的输出音调发生明显变化。

用8Ω/4W的扬声器代替负载电阻R_L,可进行以下功能试听:

 卡拉OK伴唱:录音机输出卡拉OK磁带歌曲, 手握话筒伴随歌曲歌唱,适当控制话音放大器 与录音机输出的音量电位器,可以控制歌唱音 量与音乐音量之间的比例,调节混响延时时间 可修饰、改善唱歌的声音。

五。音响放大器主要技术指标及测试方法

额定功率

音响放大器输出失真度小于某一数值 $(\text{如}\gamma\langle 5\%)$ 时的最大功率称为额定功率。其表达式为: $P_0 = V_0^2/R_1$

式中, $R_{\rm L}$ 为额定负载阻抗; $V_{\rm o}$ (有效值)为 $R_{\rm L}$ 两端的最大不失真电压。 $V_{\rm o}$ 常用来选定电源电压 $V_{\rm CC}$ $V_{\rm cc} \geq 2\sqrt{2}V_{\rm o}$

额定功率

测量 P_0 的条件如下:

- 音响放大器的输入信号为频率 f_i =1kHz,电压 V_i =5mV的正弦波。
- 音调控制器的两个电位器RP₃₁、RP₃₂
 置于中间位置,音量控制电位器RP₃₃
 置于最大值。
- 用双踪示波器观测 V_i 及 V_o 的波形,用示波器监测 V_o 的波形失真。

额定功率

测量 P_0 的步骤是:

- 功率放大器的输出端接额定负载电阻 R_{L} (代替扬声器)。
- 逐渐增大输入电压 V_i,直到 V₀的波形刚好不出现削波失真,此时对应的输出电压为最大输出电压。
- 由式4.7.22即可算出额定功率 P_0 。

注意:在最大输出电压测量完成后应迅速减小 / , 否则容易损坏功率放大器。

• 整机效率

$$\eta = P_{\rm o} / P_{\rm C} \times 100\%$$

式中, P_0 为输出的额定功率; P_C 为输出额定功率时所消耗的电源功率。

整机频率响应

- 整机放大电路的电压增益相对于中音频 f_0 (1kHz)的电压增益下降3dB时对应低音频截止频率 f_L 和高音频截止频率 f_H ,称 $f_L \sim f_H$ 为整机电路的频带。
- 测量条件同额定功率,调节RP₃₃使 输出电压约为最大输出电压的50%。

整机频率响应

测量步骤是:

- 音响放大器的输入端接 V_i (等于5mV), RP_{31} 和 RP_{32} 置于中间。
- 使信号发生器的输出频率 f_i 从20Hz至 50kHz变化(保持 V_i =5mV不变)。
- 测出负载电阻 \mathbf{R}_{L} 上对应的输出电压 V_{o} ,可得到 f_{L} 与 f_{H} 的值。

输入阻抗

- 将从音响放大器输入端(话音放大器输入端)看进去的阻抗 R_i 。
- 此处 R_i 较高,建议采用高输入电阻测试图。

输入阻抗

图中R取值尽量与 R_i 接近,用示波器的一个通道始终监视 v_i 波形,另一个通道先后测量开关S闭合和断开时对应的输出电压 v_{oI} 和 v_{o2} ,则输入电阻为:

$$R_i = \frac{V_{o2}}{V_{01} - V_{o2}} \bullet R$$

音调控制特性

输入信号v_i (100mV)从音调控制级输入端的耦合电容加入,输出信号v_o从输出端的耦合电容引出。分别测低音频提升-高音频衰减和低音频衰减-高音频提升这两条曲线。

音调控制特性

测试方法

- 将RP₃₁的滑臂置于最左端(低音频提升),将RP₃₂的滑臂置于最右端(高音频衰减),频率从20Hz至50kHz变化,记下对应电压增益。
- 将RP₃₁的滑臂置于最右端(低音频衰减),将RP₃₂的滑臂置于最左端(高音频提升),频率从20Hz至50kHz变化,记下对应电压增益。
- 最后绘制音调控制特性曲线**,**并标注与 f_{L1} 、 f_{Lx} 、 f_{L2} 、 f_0 (1kHz)、 f_{H1} 、 f_{Hx} 、 f_{H2} 等频率对应的电压增益。

音调控制特性

音调控制特性曲线测量数据

测量频	率点	f_{11}	$f_{ m L1}$	$f_{L_{X}}$	$f_{ m L2}$	$f_{_{ m O}}$	$f_{ m H1}$	f_{H_X}	$f_{ m H2}$	$egin{array}{c} > \ f_{ ext{H2}} \end{array}$
$V_{\rm i} = 1$.00mV	20H z	50H z	125 Hz	500 Hz	1kH z	2kH z	8kH z	10k Hz	50k Hz
低音频提升	$V_{\rm o}/{ m V}$									
高音频衰减	$A_{\rm V}/{ m d}$									
低意	$V_{\rm o}/{ m V}$									
高音 频提 升	$A_{\rm V}/{ m d}$ B									

八.设计任务 P143

口 功能要求:

■ 具有话音放大、音调控制、音量控制等、卡拉 OK伴唱等功能

口 已知条件:

- 集成功放LM386
- 高阻话筒20kΩ,输出信号5mV
- 集成功放NE5532
- 10Ω/2W负载电阻1只
- 8Ω/4W扬声器1只
- 音源 (MP3 or PC)
- 电源电压±9V(双电源)

口 技术指标要求:

- 额定功率: P_o≥0.3W (γ<3%)
- 负载阻抗: R_I = 10Ω
- 频率响应: f_L=50Hz, f_H=20kHz
- 输入阻抗: R_i>>20kΩ
- 音调控制特性: 1kHz处增益为0dB、125Hz和8kHz处有±12dB的调节范围,
 A、I = A、II ≥ 20dB,输入灵敏度5mV。

□ 测量内容

- 测量音调控制特性,填入表**4.7.4**,并绘制音调控制特性 曲线
- 测量频率为1kHz时的输出功率P_o及整机电压增益A_v,绘制1kHz时的整机输入输出波形
- 输入阻抗Ri
- 输出效率

□ 绘制波形

- 1kHz时的各级输入输出波形、整机输入输出波形
- 测试Ri时的Vs和Vi波形
- 整机幅频特性曲线
- 音调控制特性曲线