$11n_{100} (K11n_{100})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 3u^{20} + 3u^{19} + \dots + 4b + 4, \ -2u^{21} - 4u^{20} + \dots + 4a - 8, \ u^{22} + 2u^{21} + \dots + u + 2 \rangle \\ I_2^u &= \langle u^5 + u^3 + b + u - 1, \ -u^5 - u^4 - u^3 - u^2 + a - 2u - 1, \ u^6 + u^4 + 2u^2 + 1 \rangle \\ I_3^u &= \langle b + a - u + 1, \ a^2 - au + 2a + 1, \ u^2 - u + 1 \rangle \\ I_4^u &= \langle b + u - 2, \ a - u, \ u^2 - u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle 3u^{20} + 3u^{19} + \dots + 4b + 4, -2u^{21} - 4u^{20} + \dots + 4a - 8, u^{22} + 2u^{21} + \dots + u + 2 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{2}u^{21} + u^{20} + \dots + \frac{5}{4}u + 2 \\ -\frac{3}{4}u^{20} - \frac{3}{4}u^{19} + \dots + \frac{3}{2}u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{4}u^{21} + u^{19} + \dots + \frac{1}{4}u - 1 \\ -\frac{3}{4}u^{21} - u^{20} + \dots + \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{4}u^{21} + u^{19} + \dots + \frac{1}{4}u - 1 \\ -\frac{1}{4}u^{21} - \frac{3}{4}u^{19} + \dots + \frac{3}{2}u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{4}u^{18} + \frac{3}{4}u^{16} + \dots + \frac{1}{2}u + \frac{1}{2} \\ -\frac{1}{4}u^{18} - \frac{3}{4}u^{16} + \dots - \frac{3}{4}u^{2} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{6} - u^{4} - 2u^{2} - 1 \\ u^{6} + u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -2u^{21} - 4u^{20} - 8u^{19} - 12u^{18} - 18u^{17} - 30u^{16} - 32u^{15} - 46u^{14} - 36u^{13} - 54u^{12} - 44u^{11} - 64u^{10} - 38u^9 - 42u^8 - 26u^7 - 46u^6 - 24u^5 - 18u^4 + 10u^3 + 6u^2 + 8u - 6$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{22} - u^{21} + \dots + 4u + 1$
c_2	$u^{22} + 3u^{21} + \dots + 24u + 1$
c_3, c_6, c_7	$u^{22} - u^{21} + \dots + 10u + 1$
c_4, c_{10}	$u^{22} - 2u^{21} + \dots - u + 2$
c_8, c_9, c_{11}	$u^{22} - 8u^{21} + \dots - 19u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{22} + 3y^{21} + \dots + 24y + 1$
c_2	$y^{22} + 39y^{21} + \dots + 112y + 1$
c_3, c_6, c_7	$y^{22} + 31y^{21} + \dots + 56y + 1$
c_4,c_{10}	$y^{22} + 8y^{21} + \dots + 19y + 4$
c_8, c_9, c_{11}	$y^{22} + 12y^{21} + \dots + 623y + 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.100185 + 1.004210I		
a = 0.599236 + 0.939946I	3.57528 - 1.09357I	5.97662 + 1.94696I
b = -0.636317 - 0.511584I		
u = -0.100185 - 1.004210I		
a = 0.599236 - 0.939946I	3.57528 + 1.09357I	5.97662 - 1.94696I
b = -0.636317 + 0.511584I		
u = -0.871760 + 0.414642I		
a = -0.620508 - 0.603007I	7.32664 + 1.36370I	-0.05052 - 1.94758I
b = 0.833056 - 0.720277I		
u = -0.871760 - 0.414642I		
a = -0.620508 + 0.603007I	7.32664 - 1.36370I	-0.05052 + 1.94758I
b = 0.833056 + 0.720277I		
u = 0.898472 + 0.557159I		
a = 1.76169 + 0.04754I	6.44298 + 5.66281I	-0.84387 - 2.45088I
b = -1.32483 - 1.39331I		
u = 0.898472 - 0.557159I		
a = 1.76169 - 0.04754I	6.44298 - 5.66281I	-0.84387 + 2.45088I
b = -1.32483 + 1.39331I		
u = -0.665247 + 0.564550I		
a = 1.49996 - 0.51683I	-0.94737 - 2.13228I	-3.49508 + 3.26961I
b = -0.16586 + 1.42901I $u = -0.665247 - 0.564550I$		
	0.04505 + 0.100007	0.40500 0.000017
a = 1.49996 + 0.51683I	-0.94737 + 2.13228I	-3.49508 - 3.26961I
$\frac{b = -0.16586 - 1.42901I}{u = -0.733981 + 0.868553I}$		
a = -0.753981 + 0.808333I $a = -0.907314 - 0.753290I$	-4.65093 + 2.79195I	-9.45575 - 3.06805I
	-4.00095 + 2.791951	-9.49979 - 5.008091
b = 0.983819 + 0.049852I $u = -0.733981 - 0.868553I$		
a = -0.753981 - 0.8083931 $a = -0.907314 + 0.753290I$	$\begin{bmatrix} -4.65093 - 2.79195I \end{bmatrix}$	-9.45575 + 3.06805I
	-4.00090 - 2.791901	-9.49979 ± 9.000091
b = 0.983819 - 0.049852I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.765248 + 0.888811I		
a = -0.797359 + 0.717329I	-1.42494 - 2.89189I	2.45935 + 2.97630I
b = 1.52476 + 0.32014I		
u = 0.765248 - 0.888811I		
a = -0.797359 - 0.717329I	-1.42494 + 2.89189I	2.45935 - 2.97630I
b = 1.52476 - 0.32014I		
u = -0.616205 + 1.023520I		
a = -0.42505 + 1.35805I	0.39802 + 7.14623I	-0.40139 - 7.68801I
b = -1.31664 - 1.90123I		
u = -0.616205 - 1.023520I		
a = -0.42505 - 1.35805I	0.39802 - 7.14623I	-0.40139 + 7.68801I
b = -1.31664 + 1.90123I		
u = -0.057721 + 1.217230I		
a = 0.180750 - 1.262320I	13.19150 + 3.89903I	4.72901 - 2.42961I
b = -0.541329 + 0.344642I		
u = -0.057721 - 1.217230I		
a = 0.180750 + 1.262320I	13.19150 - 3.89903I	4.72901 + 2.42961I
b = -0.541329 - 0.344642I		
u = -0.623287 + 1.124510I		
a = -0.138066 - 0.552037I	9.48603 + 4.13683I	2.53393 - 2.55439I
b = 1.74630 + 0.37098I		
u = -0.623287 - 1.124510I		
a = -0.138066 + 0.552037I	9.48603 - 4.13683I	2.53393 + 2.55439I
b = 1.74630 - 0.37098I		
u = 0.700819 + 1.100120I		
a = 0.07522 - 1.65631I	8.10703 - 11.57360I	0.88963 + 6.62056I
b = -2.18014 + 1.42172I		
u = 0.700819 - 1.100120I		
a = 0.07522 + 1.65631I	8.10703 + 11.57360I	0.88963 - 6.62056I
b = -2.18014 - 1.42172I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.303847 + 0.375828I		
a =	0.521447 + 0.925816I	-0.380875 - 1.140110I	-4.34193 + 6.22750I
b =	0.577176 + 0.274527I		
u =	0.303847 - 0.375828I		
a =	0.521447 - 0.925816I	-0.380875 + 1.140110I	-4.34193 - 6.22750I
b =	0.577176 - 0.274527I		

$$II. \\ I_2^u = \langle u^5 + u^3 + b + u - 1, \ -u^5 - u^4 - u^3 - u^2 + a - 2u - 1, \ u^6 + u^4 + 2u^2 + 1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5} + u^{4} + u^{3} + u^{2} + 2u + 1 \\ -u^{5} - u^{3} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{4} - 1 \\ u^{5} + u^{3} - u^{2} + 2u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - 1 \\ u^{5} + u^{4} + u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{4} - 1 \\ u^{5} + u^{4} + u^{3} + 2u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0 \\ u^{4} + u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^4 + 4u^2 + 4$

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_5 \ c_6, c_7$	$(u^2+1)^3$
c_2	$(u+1)^6$
c_4, c_{10}	$u^6 + u^4 + 2u^2 + 1$
c_8,c_9	$(u^3 + u^2 + 2u + 1)^2$
c_{11}	$(u^3 - u^2 + 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_6, c_7$	$(y+1)^6$
c_2	$(y-1)^6$
c_4, c_{10}	$(y^3 + y^2 + 2y + 1)^2$
c_8, c_9, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.744862 + 0.877439I		
a = -1.43972 + 1.40722I	-3.02413 - 2.82812I	-3.50976 + 2.97945I
b = 2.30714 + 0.21508I		
u = 0.744862 - 0.877439I		
a = -1.43972 - 1.40722I	-3.02413 + 2.82812I	-3.50976 - 2.97945I
b = 2.30714 - 0.21508I		
u = -0.744862 + 0.877439I		
a = -0.315159 - 0.082503I	-3.02413 + 2.82812I	-3.50976 - 2.97945I
b = -0.307141 + 0.215080I		
u = -0.744862 - 0.877439I		
a = -0.315159 + 0.082503I	-3.02413 - 2.82812I	-3.50976 + 2.97945I
b = -0.307141 - 0.215080I		
u = 0.754878I		
a = 0.75488 + 1.32472I	1.11345	3.01950
b = 1.000000 - 0.569840I		
u = -0.754878I		
a = 0.75488 - 1.32472I	1.11345	3.01950
b = 1.000000 + 0.569840I		

III.
$$I_3^u = \langle b+a-u+1, \ a^2-au+2a+1, \ u^2-u+1 \rangle$$

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a \\ -a+u-1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u-1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -uu+a-u+1 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -au+a-u+1 \\ au+u-1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ au-2a+u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u 2

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_5 \ c_6, c_7$	$u^4 - u^3 + 2u^2 - 2u + 1$
c_2	$u^4 + 3u^3 + 2u^2 + 1$
c_4, c_{10}	$(u^2+u+1)^2$
c_8, c_9, c_{11}	$(u^2 - u + 1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_3, c_5 \ c_6, c_7$	$y^4 + 3y^3 + 2y^2 + 1$
c_2	$y^4 - 5y^3 + 6y^2 + 4y + 1$
$c_4, c_8, c_9 \\ c_{10}, c_{11}$	$(y^2 + y + 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = -0.378256 - 0.440597I	-2.02988I	0. + 3.46410I
b = -0.121744 + 1.306620I		
u = 0.500000 + 0.866025I		
a = -1.12174 + 1.30662I	-2.02988I	0. + 3.46410I
b = 0.621744 - 0.440597I		
u = 0.500000 - 0.866025I		
a = -0.378256 + 0.440597I	2.02988I	0 3.46410I
b = -0.121744 - 1.306620I		
u = 0.500000 - 0.866025I		
a = -1.12174 - 1.30662I	2.02988I	0 3.46410I
b = 0.621744 + 0.440597I		

IV.
$$I_4^u=\langle b+u-2,\ a-u,\ u^2-u+1\rangle$$

a) Are colorings
$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u \\ -u+2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ u-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 2u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ u+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ -u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u 2

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_{10}	$u^2 + u + 1$
c_8, c_9, c_{11}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}	$y^2 + y + 1$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 0.500000 + 0.866025I	-2.02988I	0. + 3.46410I
b = 1.50000 - 0.86603I		
u = 0.500000 - 0.866025I		
a = 0.500000 - 0.866025I	2.02988I	0 3.46410I
b = 1.50000 + 0.86603I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_5	$((u^{2}+1)^{3})(u^{2}+u+1)(u^{4}-u^{3}+\cdots-2u+1)(u^{22}-u^{21}+\cdots+4u+1)$
c_2	$((u+1)^6)(u^2+u+1)(u^4+3u^3+2u^2+1)(u^{22}+3u^{21}+\cdots+24u+1)$
c_3, c_6, c_7	$((u^{2}+1)^{3})(u^{2}+u+1)(u^{4}-u^{3}+\cdots-2u+1)(u^{22}-u^{21}+\cdots+10u+1)$
c_4, c_{10}	$((u^2 + u + 1)^3)(u^6 + u^4 + 2u^2 + 1)(u^{22} - 2u^{21} + \dots - u + 2)$
c_8,c_9	$((u^{2} - u + 1)^{3})(u^{3} + u^{2} + 2u + 1)^{2}(u^{22} - 8u^{21} + \dots - 19u + 4)$
c_{11}	$((u^2 - u + 1)^3)(u^3 - u^2 + 2u - 1)^2(u^{22} - 8u^{21} + \dots - 19u + 4)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$((y+1)^6)(y^2+y+1)(y^4+3y^3+2y^2+1)(y^{22}+3y^{21}+\cdots+24y+1)$
c_2	$(y-1)^{6}(y^{2}+y+1)(y^{4}-5y^{3}+6y^{2}+4y+1)$ $\cdot (y^{22}+39y^{21}+\cdots+112y+1)$
c_3, c_6, c_7	$((y+1)^6)(y^2+y+1)(y^4+3y^3+2y^2+1)(y^{22}+31y^{21}+\cdots+56y+1)$
c_4, c_{10}	$((y^2 + y + 1)^3)(y^3 + y^2 + 2y + 1)^2(y^{22} + 8y^{21} + \dots + 19y + 4)$
c_8, c_9, c_{11}	$((y^2 + y + 1)^3)(y^3 + 3y^2 + 2y - 1)^2(y^{22} + 12y^{21} + \dots + 623y + 16)$