ET3230 Điện tử tương tự I

Bài giảng: Đáp ứng tần số

Nội dung

- 8.1 Đặc tuyến tần số của mạch khuếch đại
- 8.2 Đáp ứng tần số thấp của mạch khuếch đại dùng BJT/FET
- 8.3 Hiệu ứng Miller và ảnh hưởng của điện dung Miller
- 8.2 Đáp ứng tần số cao của mạch khuếch đại dùng BJT/FET
- 8.5 Đáp ứng tần số của mạch khuếch đại nhiều tầng

8.1 Đặc tuyến tần số của mạch khuếch đại

- Đáp ứng tần số của 1 bộ KĐ là khoảng tần số
 - Trong đó bộ KĐ hoạt động với ảnh hưởng của các tụ điện và dung kháng của các linh kiện có thể bỏ qua
 - Khoảng tần số này gọi là dải thông
- Tại các tần số phía trên và phía dưới khoảng "mid-range", dung kháng sẽ ảnh hưởng tới hệ số KĐ của bộ KĐ

8.1 Đặc tuyến tần số của mạch khuếch đại

Đồ bị Bode biểu diễn đáp ứng tần số của

1 bộ KĐ

8.1 Đặc tuyến tần số của mạch khuếch đại

- Dải thông của bộ KĐ được xác định bởi tần số cắt phía trên f_2 và tần số cắt phía dưới f_1 $BW = f_2 f_1$
- Tần số cắt là tần số tại đó hệ số KĐ giảm đi 3dB (0,707 lần)

• Tại các tần số thấp, các tụ điện ghép (C_s, C_c) và tụ điện bypass (C_E) sẽ có các dung kháng => ảnh hưởng tới trở kháng của mạch

ullet Ånh hưởng của tụ $C_{_S}$

$$f_{L_{S}} = \frac{1}{2\pi (R_{S} + R_{i})C_{S}}$$

$$R_{i} = R_{1} \| R_{2} \| \beta r_{e}$$

ullet Ånh hưởng của tụ $\,C_{\scriptscriptstyle C}$

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C}$$

$$R_o = R_C || r_o$$

ullet Ånh hưởng của tụ $\,C_{\scriptscriptstyle E}$

$$f_{L_E} = \frac{1}{2\pi R_e C_S}$$

$$R_{e} = R_{E} \left[\left(\frac{R_{S}^{'}}{\beta} + r_{e} \right) \right]$$

$$R_S' = R_S \| R_1 \| R_2$$

• Xét $C_{\scriptscriptstyle S}$, tính $f_{\scriptscriptstyle L_{\scriptscriptstyle S}}$

$$f_{L_{s}} = \frac{1}{2\pi (R_{s} + R_{i})C_{s}} \quad R_{i} = R_{1} \|R_{2}\|\beta r_{e}$$

• Xét C_C , tính f_{L_C}

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C} \quad R_o = R_C \| r_o \|$$

• Xét $C_{\scriptscriptstyle E}$, tính $f_{\scriptscriptstyle L_{\scriptscriptstyle E}}$

$$f_{L_{E}} = \frac{1}{2\pi R_{e} C_{S}} \qquad R_{e} = R_{E} \left\| \frac{R_{S}^{'}}{\beta} + r_{e} \right\|$$

$$R_{S}^{'} = R_{S} \left\| R_{1} \right\|$$

$$R_{2}^{'} = R_{S} \left\| R_{1} \right\|$$

• Tần số giới hạn dưới là tần số cao nhất trong $f_{L_{\rm S}}, f_{L_{\rm C}}, f_{L_{\rm F}}$

• Xét 3 tụ điện C_G, C_C, C_S

ullet Ånh hưởng của tụ $C_{_G}$

$$f_{L_G} = \frac{1}{2\pi \left(R_{sig} + R_i\right)C_G}$$

$$R_i = R_G$$

ullet Ånh hưởng của tụ $\,C_{_C}\,$

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C}$$

$$R_o = R_D \| r_d$$

ullet Ånh hưởng của tụ $C_{arsigma}$

$$f_{L_E} = \frac{1}{2\pi R_{eq} C_S} \qquad R_e = \frac{R_S}{1 + R(1 + g_m r_d) / (r_d + R_D || R_L)}$$

$$r_d \approx \infty \implies R_{eq} = R_S \left\| \frac{1}{g_m} \right\|$$
Slide 16

• Xét C_G , tính f_{L_G}

$$f_{L_G} = \frac{1}{2\pi \left(R_{sig} + R_i\right)C_G} \qquad R_i = R_G$$

• Xét C_C , tính f_{L_C}

$$f_{L_C} = \frac{1}{2\pi (R_o + R_L)C_C} \quad R_o = R_D \| r_d \|$$

• Xét $C_{\scriptscriptstyle S}$, tính $f_{\scriptscriptstyle L_{\scriptscriptstyle S}}$

$$f_{L_E} = \frac{1}{2\pi R_{eq} C_S}$$

$$R_e = \frac{R_S}{1 + R(1 + g_m r_d) / (r_d + R_D || R_L)}$$

$$r_d \approx \infty \Rightarrow R_{eq} = R_S \frac{1}{g_m}$$
Slide 17

Slide 17

8.4 Hiệu ứng Miller và ảnh hưởng của điện dung Miller

- Đối với các bộ KĐ đảo
 - Điện dung ở cửa vào và cửa ra tăng lên
 - Do điện dung giữa cửa vào và cửa ra của linh kiện
 - Do hệ số KĐ của bộ KĐ

8.4 Hiệu ứng Miller và ảnh hưởng của điện dung Miller

Điện dung Miller đầu vào

$$C_{M_i} = (1 - A_{v})C_{f}$$

 $C_{\scriptscriptstyle f}$: Điện dung hồi tiếp

8.4 Hiệu ứng Miller và ảnh hưởng của điện dung Miller

Điện dung Miller đầu ra

8.4 Đáp ứng tần số cao của mạch KĐ dùng BJT/FET

8.4.1 Đáp ứng tần số cao của mạch KĐ dùng BJT

- Các tụ điện ảnh hưởng tới đáp ứng tần số cao
 - Tụ điện ký sinh của BJT: C_{be}, C_{bc}, C_{ce}
 - Tụ điện nối dây: C_{W_i} , C_{W_a}

8.4.1 Đáp ứng tần số cao của mạch KĐ dùng BJT

$$C_{i} = C_{W_{i}} + C_{be} + C_{M_{i}}$$

$$C_o = C_{Wo} + C_{ce} + C_{M_o}$$

8.4.1 Đáp ứng tần số cao của mạch KĐ

dùng BJT

8.4.2 Đáp ứng tần số cao của mạch KĐ dùng FET

- Các tụ điện ảnh hưởng tới đáp ứng tần số cao
 - Tụ ký sinh của FET: C_{gs}, C_{gd}, C_{ds}
 - Tụ nối dây: C_{W_i} , C_{W_o}

8.4.2 Đáp ứng tần số cao của mạch KĐ dùng FET

$$C_{i} = C_{W_{i}} + C_{gs} + C_{M_{i}}$$

$$C_o = C_{Wo} + C_{ds} + C_{M_o}$$

8.4.1 Đáp ứng tần số cao của mạch KĐ

$$R_{Th_{2}} = R_{D} \| R_{L} \| r_{d}$$

$$+ \left[\frac{1}{2\pi R_{Th_{2}} C_{o}} \right]$$

$$f_{H_{o}} = \frac{1}{2\pi R_{Th_{2}} C_{o}}$$

$$R_{Th_{2}} = R_{D} \| R_{L} \| r_{d}$$

$$C_{o} = C_{Wo} + C_{ds} + C_{M_{o}}$$

$$= C_{Wo} + C_{ds} + \left(1 - \frac{1}{A} \right) C_{gd}$$

Slide 27

8.5 Đáp ứng tần số của mạch KĐ nhiều tầng

- Mỗi 1 tầng KĐ có 1 đáp ứng tần số
- Đầu ra của 1 tầng KĐ sẽ bị ảnh hưởng bởi các điện dung của tầng tiếp theo, đặc biệt khi xác định đáp ứng tần số cao

Tóm tắt

- Đáp ứng tần số thấp, cao của mạch khuếch đại dùng BJT/FET
- Hiệu ứng Miller và ảnh hưởng của điện dung Miller

Bài tập

- Đọc chương 18 (Các mạch hồi tiếp: phần 18.1 đến 18.4) trong tài liệu tham khảo [1]
- Bài tập [1]:
 - Chương 11: 10, 11, 15, 17, 18, 19, 22, 26, 28, 29