Revision notes - ST2132

Ma Hongqiang

November 26, 2018

Contents

1	Review	2
2	Normal Distribution and Some Related Distributions	6
3	Survey Sampling	7
4	Parameter Estimate	8
5	Efficiency and Sufficiency	9
6	Hypothesis Testing	10
7	Comparing Two Samples	11

1 Review

1.1 Probability

Suppose we have a sample space Ω . Then,

- An element of Ω is denoted by ω , i.e., $\omega \in \Omega$.
- A subset S of Ω is called **event**, i.e., $S \subseteq \Omega$.

Definition 1.1 (Probability Measure).

Probability measure on Ω is a function P from subsets of Ω to the real numbers $P:\Omega\supseteq S\mapsto\mathbb{R}$ that satisfies the axioms:

- $P(\Omega) = 1$.
- If $A \subseteq \Omega$, then $P(A) \ge 0$.
- If $A_1, A_2, \ldots, A_n, \ldots$ are mutually disjoint, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$.

More generally, we have the addition law $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ to hold true in all cases.

Theorem 1.1 (Multiplication Principle).

If there are p experiments and the ith experiment has n_i possible outcomes. Then there are a total of $n_1 \times n_2 \times \cdots \times n_p$ possible outcomes for the p experiments.

When we calculate permutation, which is sampling r items from n items and list them in order,

- Sampling with Replacement: n^r ways
- Sampling without Replacement: $n(n-1)\cdots(n-r+1)$ ways

When we calculate combination, which is sampling without replacement r items from n items un-orderly, there are $\frac{n(n-1)\cdots(n-r+1)}{r!} = \binom{n}{r}$ ways.

Theorem 1.2 (Multinomial Coefficient).

The number of ways that n objects can be grouped into r classes with n_i in the i-th class, $i = 1, \ldots, r$, and $\sum_{i=1}^r n_i = n$ is $\binom{n}{n_1, n_2, \ldots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$

Definition 1.2 (Conditional Probability).

Suppose there are two events A and B without a sample space Ω with P(B) > 0. The **conditional probability** of A given B is defined to be $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$

Definition 1.3 (Independence).

Two events A and B are said to be independent events if $P(A \cap B) = P(A)P(B)$.

Theorem 1.3 (Law of Total Probability).

Let B_1, B_2, \ldots, B_n are a partition of Ω , i.e., $\bigcup_{i=1}^n B_i = \Omega$ and $B_i \cap B_j = \emptyset$ for $i \neq j$ with $P(B_i) > 0$ for all i. Then for any event A, we have $P(A) = \sum_{i=1}^n P(A \cap B_i)$

Theorem 1.4 (Bayes' Rule).

Suppose once more that B_1, B_2, \ldots, B_n are a partition of Ω . Then for any event A, we have $P(B_j \mid A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^n P(A|B_i)P(B_i)}$

1.2 Random Variable

Random variable is a function from Ω to the real numbers: $X:\Omega\to\mathbb{R}$

Definition 1.4 (Probability Distribution).

The probability distribution of probability measure on Ω which determines the probabilities of the various values of $X: x_1, x_2, \ldots$, with the following properties

- $p(x_i) = P(X = x_i)$
- $\sum_{i} p(x_i) = 1$

It is called **probability mass function**(pmf) of the random variable X.

as $F(x) = P(X \le x)$, $-\infty < x < \infty$ The odf is non decreasing and satisfies $\lim_{x \to x} F(x) = x$

Cumulative distribution function(cdf) F(x) is defined

The cdf is non-decreasing and satisfies $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$

Definition 1.5 (Discrete and Continuous Random Variables).

A **discrete** random variable is a random variable that can take on only finite or at most a countably infinite number of values.

A **continuous** random variable is a random variable that can take on a continuum of values.

For a continuous random variable X, the role of frequency function is taken by a **density function**(pdf) f(x), which satisfies the following properties:

- f(x) > 0
- \bullet f is piecewise continuous
- $\int_{-\infty}^{\infty} f(x) dx = 1$.

For a continuous random variable X, for any a < b, $P(a < X < b) = \int_a^b f(x) dx$, hence the probability that rv X takes a particular value is 0.

Definition 1.6 (Binomial Distribution). Suppose we have

- *n* trials, each of which has 2 possible outcomes, namely **success** and **failure**
- \bullet Each trial has the same probability of success p
- The n trials are independent.

The binomial random variable $X \sim \text{Bin}(n, p)$ is the total number of successes in the n trials.

The probability distribution is $P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}, \quad k=0,1,\ldots,n$

The Bernoulli distribution is the special case of binomial distribution when n = 1.

Definition 1.7 (Geometric Distribution).

Suppose we have

• Infinite trials, each of which has two possible outcomes, namely success or failure

• Each trial has the same probability of success p

• The trials are independent

Let X be the total number of trials up to and including the first success, then $X \sim \text{Geom}(p)$ has geometric distribution.

The proability distribution is p(k) = P(X = k) = (1 - k) $(p)^{k-1}p, \quad k=0,1,\ldots$

Definition 1.8 (Negative Binomial Distribution). Suppose we have

- The trials are independent
- Each trial has teh same probability of success p.
- Sequence of these trials is performed until there are r successes in all.

Let X be the total number of trials, then $X \sim NB(r, p)$ has negative binomial distribution.

The probability distribution is $P(X = k) = \binom{k-1}{r-1} p^r (1 - k)$ $p)^{k-r}$

The negative binomial distribution is a generalisation of the geometric distribution.

Definition 1.9 (Poisson Distribution).

Random variable $X \sim \text{Poisson}(\lambda)$ follows **Poisson distribution** with parameter $\lambda > 0$ if $P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}$

Theorem 1.5 (Approximation of Binomial using Poisson).

Poisson($\lambda := np$) can be derived as the limit of a binomial distribution Bin(n, p) when n approaches infinity, p approaches 0 with $np = \lambda$.

Definition 1.10 (Uniform Distribution).

Let X be a random variable between a and b where b > a. $X \sim U(a,b)$ follows a uniform distribution if the density

function of X is $f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \leq x \leq b \\ 0, & \text{if } x < a \text{ or } x > b \end{cases}$ Therefore, F(x) = (x-a)/(b-a) on [a,b], 0 on the left of a and

1 on the right of b.

Definition 1.11 (Exponential Distribution).

A random variable $X \sim \text{Exp}(\lambda)$ follows an exponential dis-

tribution if its density function follows $f(x) = \begin{cases} \lambda e^{-\lambda x}, \\ 0 \end{cases}$ where $\lambda > 0$.

The cdf of X is $F(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$

Exponential distribution is a special case of gamma distribution.

Definition 1.12 (Gamma Distribution).

A random variable $X \sim \Gamma(\alpha, \lambda)$ follows an gamma distribution if its density function follows f(x) =

where $\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du$ for x > 0. Here, we denote α as the shape parameter and λ as the scale parameter.

Definition 1.13 (Normal Distribution).

A random variable $X \sim N(\mu, \gamma^2)$ follows a normal distribution if the density function follows $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma}$ Obviously, we have $f(\mu - x) = f(\mu + x)$.

Theorem 1.6 (Distribution of a Function of Variable). Suppose $Y \sim g(X)$ where X admits f_X, F_X as pdf and cdf respectively. To calculate f_Y , we first compute $F_Y(y) =$ $P(Y \le y) = P(g(X) \le y) = P(X \in I)$ where I is a subset of \mathbb{R} . Then take differentiation.

We can easily derive the following result:

Theorem 1.7.

If $X \sim N(\mu, \sigma^2)$, and Y = aX + b, then $Y \sim N(a\mu +$ $b, a^2 \sigma^2$).

If the function g admits nicer properties, we can have the following theorem

Theorem 1.8.

Let X be a continuous rv with density f(x) and let Y =g(X) where g is a differentiable, strictly monotonic function on some interval I. Suppose that f(x) = 0 if X is not in I. Then Y has the density function $f_Y(y) =$ $f_X(g^{-1}(y))|\frac{\mathrm{d}}{\mathrm{d}y}g^{-1}(y)|$ for y such that y=g(x) for some xand $f_Y(y) = 0$ for $y \neq g(x)$ for any x in I.

From the theorem, we have the following results:

Theorem 1.9.

Let Z = F(X), where X admits a cdf F. Then Z has a uniform distribution on [0, 1].

Theorem 1.10.

Let U be uniform on [0,1], and let $X = F^{-1}(U)$. Then the cdf of X is F.

1.3 Joint Distributions

The joint behaviour of 2 random variable X and Y is determined by the cdf $F(x, y) = P(X \le x, Y \le y)$

 $x \ge T$) heorem 1.11. $P(x_1 < X \le x_2, y_1 < Y \le y_2) =$ $T < F_0(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)$

Generally, if X_1, \ldots, X_n are jointly distributed random variable, their joint cdf is $F(x_1, \ldots, x_n) = P(X_1 \le x_1, \ldots, X_n)$ (x_n)

 $\bf Definition~1.14~(Joint~Distribution~of~Discrete~Random~Variable).$

Suppose X_1, \ldots, X_m are discrete random variable defined on same sample space Ω , their joint frequency function p(x,y) is $p(x_1,\ldots,x_m)=P(X=x_1,\ldots,X_m=x_m)$ The marginal frequency function of X_1 is $p_{X_1}(x_1)=\sum \cdots \sum_{x_2,\ldots}$ Higher dimensional marginal frequency function of X_1 and X_2 can be defined in a similar fashion.

Definition 1.15 (Joint Distribution of Continuous Random Suppose that Y = g(X), Variables).

The definition is similar and is omitted. Details can be found in ST2131 Revision Notes.

Definition 1.16 (Independent Random Variables). Random variables X_1, \ldots, X_n are said to be independent

if their joint cdf factors into the product of their marginal cdf's: $F(x_1, \ldots, x_n) = F_{X_1} x_1 \cdots F_{X_n} x_n$ for all x_1, \ldots, x_n .

This definition holds for both continuous and discrete random riables). variables.

If X and X are the following formula X and X are the following following formula X and X are the following following X and X are the following following X and X are the following X are the following X and X are the following X are the following X are the following X and X are the following X are the following X are the following X and X are the following X are the following X and X are the following X are the following X and X are the following X are the following X are the following X and X are the following X and X are the following X are the following X are the following X are the following X

Definition 1.17 (Discrete Case).

X and Y are discrete random variable jointly distributed, If $p_Y(y_j) > 0$, the conditional probability that $X = x_i$, given $Y = y_j$ is $p_{X|Y}(x \mid y) := P(X = x_i \mid Y = y_j) = \frac{P(X=x_i,Y=y_j)}{P(Y=y_j)} = \frac{p_XY(x_i,y_j)}{p_Y(y_j)}$ **Remark**: This probability is defined to be zero if $p_Y(y_j) = 0$.

Theorem 1.12.

 $p_{X|Y}(x \mid y) = p_X(x)$ if X and Y are independent.

Similarly, we define, in the continuous case $f_{Y|X}(y \mid x) = \begin{cases} \frac{f_{XY}(x,y)}{f_X(x)} & \text{if } 0 < f_X(x) < \infty \\ 0 & \text{otherwise} \end{cases}$

Definition 1.18 (Extrema Statistics).

Assumer X_1, \ldots, X_n are independent random variable with common cdf F and density f.

Let U be maximum of X_i and V the minimum.

The cdf of U is $F_U(u) = [F(u)]^n$ and density of U is $f_U(u) = nf(u)[F(u)]^{n-1}$ Similarly, $F_V(v) = 1 - [1 - F(v)]^n$ and density of V is $f_V(v) = nf(v)[1 - F(v)]^{n-1}$

Theorem 1.13 (Order Statistics).

Let $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$. The density of $X_{(k)}$ is $f_k(x) = \frac{n!}{(k-1)!(n-k)!} f(x) F^{k-1}(x) [1 - F(x)]^{n-k}$

1.4 Expected Values

Definition 1.19 (Expected Value).

If X is a discrete random variable with frequency function p(x), the expected value of X, denoted by E(X) is $E(X) = \sum_{i} x_{i} p(x_{i})$ provided that $\sum_{i} |x_{i}| p(x_{i}) < \infty$. If the sum diverges, the expected is undefined.

Similarly, if X is a continuous random variable with density f(x), then $E(X) = \int_{-\infty}^{\infty} x f(x) dx$ provided that $\int |x| f(x) dx$. If the integral diverges, the expectation is undefined.

Theorem 1.14 (Markov Inequality).

If X is a random variable with $P(X \ge 0) = 1$, and for which E(X) exists, then $P(X \ge t) \le \frac{E(X)}{t}$

Theorem 1.15 (Expectation of Function of Variable). Suppose that Y = g(X),

- If X is discrete with frequency function p(x) then $E(Y) = \sum_{x} g(x)p(x)$ provided that $\sum |g(x)|p(x) < \infty$.
- If X is continuous with density function f(x) then $E(Y) = \int_{-\infty}^{\infty} g(x)f(x)dx$ provided that it converges.

Theorem 1.16 (Expectation of Independent Random Variables). If X and Y are independent random variable and g and h are fixed functions, then E[g(X)h(Y)] = E[g(X)]E[h(Y)] provided that the expectations on the right hand side ex-

Theorem 1.17 (Expectation is Linear).

If X_1, \ldots, X_n are jointly distributed random variable with expectation $E(X_i)$ and Y is a linear function of X_i , i.e., $Y = a + \sum_{i=1}^{n} b_i X_i$, then $E(Y) = a + \sum_{i=1}^{n} b_i E(X_i)$

Definition 1.20 (Variance, Standard Deviation).

If X is a random variable with expected value E(X), the variance of X is $Var(X) = E\{[X - E(X)]^2\}$ provided that the expectation exist. The standard deviation of X is the square root of the

variance. We often use σ^2 to denote variance, and σ for standard deviation.

Therefore,

- If X is discrete, then $Var(X) = \sum_{i} (x_i \mu)^2 p(x_i)$.
- If X is continuous, then $Var(X) = \int_{-\infty}^{\infty} (x-\mu)^2 f(x) dx$.

Theorem 1.18 (Properties of Variance).

We have the following:

- 1. If Var(X) exist and Y = a + bX, then $Var(Y) = b^2 Var(X)$.
- 2. The Var(X), if exists, may also be calculated as follows: $\text{Var}(X) = E(X^2) [E(X)]^2$

Theorem 1.19 (Chebyshev's Inequality).

Let X be a random variable with mean μ and variance σ^2 . Then for any t > 0, we have $P(|X - \mu| > t) \le \frac{\sigma^2}{t^2}$ **Definition 1.21** (Model for Measurement Error).

Suppose the true value of the quantity being measured is x_0 , then teh measurement X is modelled as $X = x_0 + \beta + \epsilon$ where β is a constant error called **bias** and ϵ is the random component of the error.

Here, ϵ is an random variable with $E(\epsilon) = 0$ and $Var(\epsilon) =$ σ^2 . Hence, $E(X) = x_0 + \beta$ $Var(X) = \sigma^2 A perfect$ measurement should have $\beta = \epsilon^2 = 0$.

Definition 1.22 (Mean Square Error).

The **mean square error** is defined as MSE = E(X - X) $|x_0|^2$

It is clear that the mean square error for measurement is $\beta^2 + \epsilon^2$.

Definition 1.23 (Convariance).

If X and Y are jointly distributed random variable with means μ_X and μ_Y , respectively, the covariance of X and Y is $cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)]$ provided that the expectation exists.

If X and Y is positively (resp. negatively) associated, the convariance will be positive (resp. negative).

Definition 1.24 (Correlation).

If X and Y are jointly distributed random variable and the variances of both X and Y exists and non-zero, then the **corelation** of X and Y, denoted by ρ is $\rho = \frac{\text{cov}(A, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$

Theorem 1.20 (Properties of Covariance).

 $-1 \le \rho \le 1$. Furthermore, $\rho = \pm 1$ if and only if P(Y =(a + bX) = 1 for some constant a and b.

Definition 1.25 (Conditional Expectation).

Suppose that X and Y are discrete random variable and the conditional frequency function of Y given X = x is $p_{Y|X}(y \mid x)$. The **conditional expectation** of Y given X = x is $E(Y \mid X = x) = \sum_{y} y p_{Y|X}(y \mid x)$ If X, Y are continuous, then $E(h(Y) \mid X = x) = \int h(y) f_{Y|X}(y \mid x) dy$

Theorem 1.21 (Expectation and Variance of Conditional Expectation).

We have $E(Y) = E[E(Y \mid X)]$ and $Var(Y) = Var[E(Y \mid X)]$

Definition 1.26 (Moment Generating Function).

The moment generating function(mgf) of a random variable X is $M(t) = E(e^{tX})$ if the expectation is defined. Therefore,

- In the discrete case, $M(t) = \sum_{x} e^{tx} p(x)$ and
- in the continuous case, $M(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx$

If the mgf exists for t in an open interval containing 0, it uniquely determines the probability distribution.

Theorem 1.23 (Moment Generating Function generates Moment).

Let the rth moment of a random variable to be $E(X^r)$ if the expectation exists. If the mgf exists in an open interval containing 0, then $M^{(r)}(0) = E(X^r)$

Theorem 1.24 (Properties of Moment Generating Function

If X has the mgf $M_X(t)$ and Y = a + bX, then Y has the mgf $M_Y(t) = e^{at} M_X(bt)$.

If X and Y are independent random variable with mgf's M_X and M_Y and Z = X + Y, then $M_Z(t) = M_X(t)M_Y(t)$ on the common interval where both mgf's exist.

1.5Limit Theorems

Theorem 1.25 (Law of Large Numbers).

Let X_1, \ldots, X_i, \ldots be a sequence of independent random variables with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$. Let $\bar{X}_n =$ $\frac{1}{n}\sum_{i=1}^{n}X_{i}$. Then for any $\epsilon>0,\ P(|\bar{X}_{n}-\mu|>\epsilon)\to 0$ as $n\to\infty$

Definition 1.27 (Converge in Probability, Converge Almost Surely).

If a sequence of random variable $\{Z_n\}$ is such that $P(|Z_n |\alpha| > \epsilon$ and $|\alpha| > \epsilon$ and $|\alpha| > \epsilon$ and where $|\alpha|$ is some scalar, then Z_n is said to converge in probability to α .

 Z_n is said to converge almost surely to α if for every $\epsilon > 0, |Z_n - \alpha| > \epsilon$ only a finite number of times with probability 1.

Here, converge almost surely is stronger than converge in probability

Definition 1.28 (Converge in Distribution).

Let X_1, \ldots be a sequence of random variable with cdf F_1, \ldots and let X be a random variable with distribution function F. We say that X_n converges in distribution to X if $\lim_{n\to\infty} F_n(x) = F(x)$ at every point at which F is continuous.

Definition 1.29 (Continuity Theorem).

Let F_n be a squence of cdf with the corresponding mgf M_n . Let F be a cdf with the mgf M. If $M_n(t) \to M(t)$ for all t in an open interval containing zero, then $F_n(x) \to F(x)$ at all continuity points of F.

Theorem 1.26 (Central Limit Theorem).

Let $X_1, X_2...$ be a sequence of independent random variable having mean 0 and variance σ^2 and the common **Theorem 1.22** (Uniqueness of Moment Generating Function) is tribution function F and mgf M defined in a neighbour-

hood of 0. Let $S_n = \sum_{i=1}^n X_i$ Then $\lim_{n\to\infty} P(\frac{S_n}{\sigma\sqrt{n}} \le x) =$ $\Phi(x), -\infty < x < \infty$

2 Normal Distribution and Some Related Distributions

Normal distribution is introduced in section 1.

Theorem 2.1 (Moment Generating Function of Normal Distribution).

Suppose $X \sim N(\mu, \sigma^2)$, then $M_X(t) = e^{\sigma^2 t^2 + \mu t}$

Theorem 2.2 (Symmetry of Normal Distribution).

Suppose the highest point of the Normal Distribution curve is at $x = \mu$, the normal distribution is symmetric about μ . This implies

- If x > 0, the area to the left of μx is the same as the area to the right of $\mu + x$.
- $q_{1-p} = 2\mu q_p$, where $P(X \le q_p) = p$.

An empiricial guide to normal distribution is that

- 68% of the data lies within 1 σ interval around μ .
- 95% lies within 2 σ interval
- 99.7% lies within 3σ interval

We have the following results when concerning linear combination of normal random variables;

Theorem 2.3 (Mean of Normal Random Variables). If X_1, \ldots, X_n are independent normal random variable with $X_i \sim N(\mu, \sigma^2)$, then $\bar{X} = \frac{X_1 + \cdots + X_n}{n} \sim N(\mu, \frac{\sigma^2}{n})$

Theorem 2.4 (Linear Combination of Two Normal Random Variable).

For any real number a and b, if $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$ then $aX + bY \sim N(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$

This result can be easily shown using moment generating function.

 $Z \sim N(0,1)$ is called standard normal variable, whose cdf is denoted by Φ and density by ϕ . If $X \sim N(\mu, \sigma^2)$, then we can normalise $Z = \frac{X - \mu}{\sigma}$

2.1 χ^2 Distribution

Definition 2.1 (χ_1^2 Distribution).

If Z is a standard normal random variable, the distribution of $U=Z^2\sim\chi_1^2$ is called the chi-square distribution with 1 degree of freedom.

More generally,

Definition 2.2 $(\chi_n^2 \text{ Distribution})$.

If U_1, \ldots, U_n are independent chi-square random variable with 1 degree of freedom, he distribution of $V = U_1 + \cdots + U_n \sim \chi_n^2$ is called the chi-square distribution with n

degree of freedom.

 χ_n^2 is a gamma distribution with $\alpha = \frac{n}{2}$ and $\lambda = \frac{1}{2}$. Therefore, density of χ_n^2 is $f(v) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}v^{\frac{n}{2}-1}e^{-\frac{v^2}{2}}$, $v \geq \frac{1}{2}$

0 And its moment generating function $M(t) = (1-2t)^{-\frac{n}{2}}$ From the moment generating function, we can derive that, if $V \sim \chi_n^2$, then E(V) = n Var(V) = 2n

From definition, if U and V are independent and $U \sim \chi_n^2$ and $V \sim \chi_m^2$, then $U + V \sim \chi_{m+n}^2$.

2.2 t distribution

Definition 2.3 (*t* Distribution).

If $Z \sim N(0,1)$ and $U \sim \chi_n^2$ and Z and U are independent, then the distribution of $\frac{Z}{\sqrt{\frac{U}{n}}}$ is called the t distribution with n degrees of freedom.

The density function of the t distribution with n degrees of freedom is $f(t) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})}(1+\frac{t^2}{n})^{-\frac{n+1}{2}}$ From the density, we have f(t) = f(-t), i.e., the t distribution is symmetric about 0.

When the degree of freedom n tends to infinity, the t distribution tends to the standard normal distribution.

2.3 F distribution

Definition 2.4 (F distribution).

Let U and V be independent chi-square random variable with m and n df, respectively. The distribution of $W = \frac{U/m}{V/n}$ is called the F distribution with m and n degree of freedom and is denoted by $F_{m,n}$.

The density function of W is given by

$$f(w) = \frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} (\frac{m}{n})^{\frac{m}{2}-1} (1 + \frac{m}{n}w)^{-\frac{m+n}{2}}$$

For $n > 2$, $E(W)$ exists and equals $\frac{n}{n-2}$.

Let $T \sim t_n$, then $T^2 \sim F_{1,n}$.

2.4 Sample Mean and Variance

Definition 2.5 (Sample Statistics).

Let X_1, \ldots, X_n be a sample of n independent $N(\mu, \sigma^2)$ random variable.

- $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is called the sample mean
- $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is called teh sample variance
- $E(\bar{X}) = \mu$
- $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$.

Moreover, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$.

Theorem 2.5.

The rv \bar{X} and the vector of random variable $(X_1 - \bar{X}, \dots, X_n - Suppose$ we denote the sample members by X_1, \dots, X_n , \bar{X}) are independent. This is proven here.

From the above theorem, we can show that

Theorem 2.6.

 \bar{X} and S^2 are independently distributed.

Theorem 2.7.

The distribution of $\frac{(n-1)S^2}{\sigma^2}$ is the chi-square distribution with n-1 df.

This can be proven by considering $\sum (X_i - \mu)^2 = \sum (X_i - \mu)^2$ $\bar{X} + \bar{X} - \mu$)².

Theorem 2.8. $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$

Survey Sampling 3

Population Parameters

Definition 3.1 (Parameter, Statistic).

A parameter is a numerical summary of the population. It is unknown.

A statistic is a summary of a sample taken from the population. We compute it based on the data in our sample. The statistics can either by descriptive or inferential.

We define the following population parameters.

Definition 3.2 (Population Mean, Total, Variance). Assume the population is of size N, then

- Population mean is $\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$.
- Population total is $\tau = \sum_{i=1}^{N} x_i$.
- Population variance is $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i \mu)^2 =$ $\frac{1}{N}\sum_{i=1}^{N}x_i^2-\mu^2$.

3.2 Simple Random Sampling

Definition 3.3 (Simple Random Sampling).

Suppose we want a sample of size n < N to be collected. Then, a sample is collected via simple random sampling if

- Each element in the population has the same chance of being selected.
- Any set of size n from the population have the same chance of being the sample.
- Note that we also assume the sampling is done without replacement.

Definition 3.4 (Sample Mean, Variance).

where each X_i is a random variable representing *i*th member in the sample.

Sample mean $\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$ is an estimate of μ .

Here \bar{X} is a random variable too, whose distribution is called sampling distribution, which determines how accurately X estimates μ .

Theorem 3.1 (Expectation and Variance of X_i).

Denote the distinct values assumed by the population members by ζ_1, \ldots, ζ_m and denote the number of population members that have the value ζ_j by n_j where $j = 1, \ldots, m$. Then X_i is a discrete random variable with probability mass function $P(X_i = \zeta_j) = \frac{n_j}{N}$ Also, $E(X_i) = \mu \operatorname{Var}(X_i) =$

Theorem 3.2 (Unbaised Estimator of μ).

With sample random sampling, $E(\bar{X}) = \mu$.

Therefore, with simple random sampling, $E(T) = \tau$, where $T = N\bar{X}$.

Theorem 3.3.

For simple random sampling without replacement, $\operatorname{cov}(X_i, X_j) = -\frac{\sigma^2}{N-1}$ if $i \neq j$

Theorem 3.4 (Variance of \bar{X}).

With simple random sampling, $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}(\frac{N-n}{N-1}) =$ $\frac{\sigma^2}{n}(1-\frac{n-1}{N-1})$ For comparison, $Var\bar{X}=\frac{\sigma^2}{n}$ when sampling is done with replacement.

Therefore, we call factor $(1 - \frac{n-1}{N-1})$ finite population correction; we call $\frac{n}{N}$ the sampling fraction.

Therefore, with simple random sampling, $Var(T) = N^2 \frac{\sigma^2}{n} \frac{N-n}{N-1}$

Estimation of σ^2 3.3

Within the variance formula of \bar{X} , there is one unknown, namely σ^2 . Therefore, we would like to estimate $\sigma^2 :=$ $\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \text{ with a function of its sample counterpart } \hat{\sigma}^2 := \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2.$

Theorem 3.5.

With simple random sampling, $E(\hat{\sigma}^2) = \sigma^2(\frac{n-1}{n})\frac{N}{N-1}$

Therefore, an **unbiased estimate** of σ^2 is $\frac{N-1}{(n-1)N} \sum_{i=1}^n (X_i - X_i)^{-1}$ \bar{X})².

Combining, we will have

Theorem 3.6 (Unbiased Estimator of Var(X)). An unbiased estimate of $\operatorname{Var}(\bar{X})$ is $s_{\bar{X}}^2 = \frac{s^2}{n} (1 - \frac{n}{N})$ where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

Similarly, an unbiased estimate of Var(T) is $s_T^2 = N^2 s_{\bar{x}}^2$

3.3.1 Dichotomous Case

In particular, if x_j in the population can only take 1, presence or 0, absence, then we have the special case:

- Population mean $\mu = p$, where p is the porportion of presence.
- Population variance $\sigma^2 = p(1-p)$.
- For a sample of size n, with X_1, \ldots, X_n collected. Then the sample mean \hat{p} is called sample proportion.
- $E(\hat{p}) = p$. Therefore, $\hat{p} := \frac{1}{n} \sum_{i=1}^{n} X_i$ is a unbiased estimate of p.
- $\operatorname{Var}(\hat{p}) = \frac{p(1-p)}{n} (1 \frac{n-1}{N-1}).$

Remark: $s_{\bar{X}}, s_T, s_{\hat{p}}$ are called **estimated standard errors**.

3.4 Summary

	Est.	Var. Est.	Est Var.
μ	$\bar{X} = \frac{1}{n} \sum X_i$	$\sigma_{\bar{X}}^2 = \frac{\sigma^2}{n} (\frac{N-n}{N-1})$	$s_{\bar{X}}^2 = \frac{s^2}{n}(1 - \frac{n}{N})$
p	\hat{p}	$\sigma_{\hat{p}}^2 = \frac{p(1-p)}{n} \left(\frac{N-n}{N-1}\right)$	$s_{\hat{p}}^2 = \frac{\hat{p}(1-\hat{p})}{n-1}(1-\frac{n}{N})$
τ	$T = N\bar{X}$	$\sigma_T^2 = N^2 \sigma_{\bar{X}}^2$	$s_T^2 = N^2 s_{\bar{X}}^2$
σ^2	$(1-\frac{1}{N})s^2$		

3.5 Confidence Interval

Definition 3.5 (Confidence Interval).

A CI for a parameter θ is a random interval, obtained from the sample, that contain θ with some specified probability.

For example, a $100(1-\alpha)\%$ CI for $Z \sim N(0,1)$ is between $(-z(\alpha/2), z(\alpha/2))$ where z is the quantile function.

4 Parameter Estimate

There are two main methods to get parameter estimates, namely methods of moments and method of maximum likelihood.

4.1 Method of Moments

Definition 4.1 (kth moment).

The kth moment of a probability law is defined as $\mu_k = E(X^k)$

Theorem 4.1 (Natural Estimate of μ_k).

If X_1, \ldots, X_n are IID, then the kth sample moment is defined as $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

Theorem 4.2 (Method of Moments).

Suppose random variable X_1, \ldots, X_n has joint distribution $f(x \mid \theta)$ dependent on unknown parameter vector θ . We will use the realisation x_1, \ldots, x_n to estimate θ . We define the **bias** to be $E(\hat{\theta}) - \theta$ and **standard error** to be $\sigma_{\hat{\theta}}$. In method of moments, suppose $\theta = (f_1(\mu_1, \ldots, \mu_m), \ldots, f_k)$ then the method of moments estimates of θ is $\hat{\theta} = (f_1(\hat{\mu}_1, \ldots, \hat{\mu}_m), \ldots, f_k)$

Definition 4.2 (Consistency).

Let $\hat{\theta}_n$ be an estimate of a parameter θ based on a sample of size n. Then $\hat{\beta}_n$ is said to be **consistent** if $\hat{\theta}_n$ converges in probability to θ as n approaches to infinity. That is, for any $\epsilon > 0$, $P(|\hat{\theta}_n - \theta| > \epsilon) \to 0$ as $n \to \infty$

Since the weak law of large number implies the kth sample moment $\hat{\mu_k}$ converges, in probability to the kth population moment μ_k as sample size $n \to \infty$.

Theorem 4.3 (Consistency of MOM Estimator). MOM estimators are consistent.

Remark: Some MOM estimators are unbiased while other biased.

4.2 Method of Maximum Likelihood

Let $\{f(\cdot \mid \theta) : \theta \in \Theta\}$ be an identifiable parametric family, i.e. there are not $\theta_1 \neq \theta_2$ such that $f(\cdot \mid \theta_1) = f(\cdot \mid \theta_2)$. Suppose X_1, \ldots, X_n are IID random variable with density $f(\cdot \mid \theta_0)$ where $\theta_0 \in \Theta$ is an unknown constant, and x_1, \ldots, x_n realizations of X_1, \ldots, X_n . We define **likelihood function** to be $\theta \to L(\theta) = \prod_{i=1}^n f(x_i \mid \theta)$ Then we define the **maximum likelihood estimate** of θ_0 to be the value that maximizes the likelihood over Θ , and is denoted as $\hat{\theta}_0$.

We define

- bias := $E_{\theta_0}(\hat{\theta}_0) = \theta_0$.
- SE = SD($\hat{\theta_0}$)

where the subscript θ_0 measn that E and SD are calculated using the density $f(x \mid \theta_0)$.

Theorem 4.4 (MOM vs MLE Estimate).

We list down the MOM and MLE Estimate for three main families of probability distribution.

Family	Parameter 1	MOM Estimate	MLE Estimate
Poisson	λ	μ_1	\bar{X}
Gamma	α	$\frac{\mu_1^2}{\mu_2 - \mu_1^2}$	no closed form
Normal	μ	μ_1	\bar{X}

Theorem 4.5 (MLE of Multinomial Cell Probability). Suppose an experiment has m possible outcomes E_1, \ldots, E_m with probabilities p_1, \ldots, p_m . Let X_i be the number of times E_i occurs in total n independent runs of the experiment. We say X_1, \ldots, X_m follows a multinomial distribution with total cell count n and cell probabilities $p_1,\ldots,p_m.$

However, $\operatorname{cov}(\overline{X_i}, X_j) = -np_i p_j$, as X_i are not indepen-

The MLE of p_j is $\hat{p}_j = \frac{x_j}{n}$

Large Sample Theory for MLE 4.3

Here, we denote the true value of θ by θ_0 .

Theorem 4.6 (Consistency of MLE).

Under appropriate smoothness conditions on f, the MLE of θ is consistent.

Theorem 4.7 (Fisher Information).

Define $I(\theta)$ by $I(\theta) = \mathbb{E}\{\left[\frac{\partial}{\partial \theta} \log f(X \mid \theta)\right]^2\}$ Under appropriate smoothness conditions on f, $I(\theta)$ may also be expressed as $I(\theta) = -\mathbb{E}\left[\frac{\partial^2}{\partial \theta^2} \log f(X \mid \theta)\right]$

Theorem 4.8 (MLE Asymptotically Unbiased).

Let θ be MLE of θ_0 . Under smoothness conditions on f, the probability distribution of $\sqrt{nI(\theta_0)(\bar{\theta}-\theta_0)}$ tends to a standard normal distribution Z(0,1).

Furthermore, for an IID sample, the asymptotic variance of MLE is $\frac{1}{nI(\theta)}$.

Theorem 4.9 (Confidence Interval for Normal Distribution). The MLE of μ and σ^2 from an IID Normal sample are $\hat{\mu} = \bar{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ Since $\frac{\sqrt{n}(\bar{X}-\mu)}{S} \sim t_{n-1}$, where t_{n-1} denotes the t distribu-

tion with n-1 degrees of freedom and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - X_i)^{-1}$ the t_{n-1} distribution has probability $\frac{\alpha}{2}$, then $P(-t_{n-1}(\alpha/2) \le \text{or pmf's of the form } f(x \mid \theta) = \begin{cases} e^{c(\theta)T(x) + d(\theta) + \tilde{S}(x)}, \\ 0, \end{cases}$ $\frac{\sqrt{n}(\bar{X} - \mu)}{S} \le t_{n-1}(\alpha/2) = 1 - \alpha$ $(\bar{X})^2$, if we use $t_{n-1}(\alpha/2)$ to denote the point beyond which

 $\frac{\sqrt{n}(\bar{X}-\mu)}{\varsigma} \le t_{n-1}(\alpha/2)) = 1 - \alpha$

Therefore, the $100(1-\alpha)\%$ CI for μ is $[\bar{X}-\frac{S}{\sqrt{n}}t_{n-1}(\alpha/2),\bar{X}+$ $\frac{S}{\sqrt{n}}t_{n-1}(\alpha/2)$

For $\hat{\sigma}^2$, we have $\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2$. Let $\chi_{n-1}^2(\alpha)$ denote the point beyond which the χ_{n-1}^2 distribution has probability $\begin{array}{l} \alpha, \text{ then } P(\chi_{n-1}^2(1-\frac{\alpha}{2}) \leq \frac{n\hat{\sigma}^2}{\sigma^2} \leq \chi_{n-1}^2(\frac{\alpha}{2})) = 1 - \alpha \\ \text{Thus, an exact } 100(1-\alpha)\% \text{ CI for } \sigma^2 \text{ is } (\frac{n\hat{\sigma}^2}{\chi_{n-1}^2(\alpha/2)}, \frac{n\hat{\sigma}^2}{\chi_{n-1}^2(1-\alpha/2)}) \end{array}$

Theorem 4.10 (Approximate CI Using Large Sample Theorem).

Since $\sqrt{nI(\hat{\theta})(\hat{\theta}-\theta_0)} \to N(0,1)$ as $n \to \infty$, we have $P(-z(\alpha/2) \le \sqrt{nI(\hat{\theta})}(\hat{\theta} - \theta_0) \le z(\alpha/2)) \approx 1 - \alpha$ Thus, an approximate $100(1-\alpha)\%$ CI for θ_0 is given by $\hat{\theta} \pm$ $z(\alpha/2)\frac{1}{\sqrt{nI(\hat{\theta})}}$

Efficiency and Sufficiency

The mean square error of an estimator $MSE(\hat{\theta}) = E(\hat{\theta} - \theta)$ $(\theta_0)^2 = \operatorname{Var}(\hat{\theta}) + [E(\hat{\theta}) - \theta_0]^2$. If $\hat{\theta}$ is unbiased, then the last term diminishes.

Definition 5.1 (Efficiency).

The joint pmf function of X_1, \ldots, X_m is $f(x_1, \ldots, x_m \mid \text{Given 2 estimators } \hat{\theta} \text{ and } \tilde{\theta}$, the **efficiency** of $\hat{\theta}$ relative to $\tilde{\theta}$ $p_1, \ldots, p_m) = \frac{n!}{\sum_{i=1}^m x_i!} \sum_{i=1}^m p_i^{x_i}$ Marginally, each $X_i \sim \text{Bin}(n, p_i) \text{eff}(\hat{\theta}, \tilde{\theta}) = \frac{\text{Var}(\tilde{\theta})}{\text{Var}(\hat{\theta})}$ If variance cannot be computed exactly, one should use asympototic variance and this efficency is called asymptotic relative efficiency.

Theorem 5.1 (Cramer-Rao Inequality).

Let X_1, \ldots, X_n be IID with density function $f(x \mid \theta)$. Let $T = t(X_1, \ldots, X_n)$ be an unbiased estimate of θ . Then under smoothness assumption on $f(x \mid \theta)$, $Var(T) \geq \frac{1}{nI(\theta)}$

An unbiased estimate whose variance achieves the lower bound is said to be **efficient**. We say MLE is asymptotically efficient.

Definition 5.2 (Sufficiency).

A statistics $T(X_1, \ldots, X_n)$ is said to be sufficient for θ if the conditional distribution of X_1, \ldots, X_n , given T = tdoes not depend on θ for any value of t.

Theorem 5.2 (Factorization Theorem).

A necessary and sufficient condition for the statistic $T(X_1,...$ to be sufficient for a parameter θ is that the joint probability function factors in the form $f(x_1, \ldots, x_n \mid \theta) =$ $g[T(x_1,\ldots,x_n),\theta]h(x_1,\ldots,x_n)$

Theorem 5.3. If T is sufficient for θ , the MLE of θ is a function only of T.

Definition 5.3 (1-parameter Member of Exponential Family).

1-parameter members of the exponential family have pdf's

where the set A does not depend on θ .

The 1-parameter exponential family contains many common probability distribution like

- Binomial distribution with known n
- Poisson distribution
- Gamma distribution
- Normal distribution

Theorem 5.4 (Rao-Blackwell Theorem).

Let $\hat{\theta}$ be an estimator of θ with finite second moment $E(\theta^2) < \infty$ for all θ . Suppose that T is sufficient for θ , and let $\tilde{\theta} = E(\hat{\theta} \mid T)$. Then for all $\theta E(\tilde{\theta} - \theta)^2 \leq E(\hat{\theta} - \theta)^2$. And the inequality is strict unless $\theta = \theta$.

6 Hypothesis Testing

In hypothesis testing, we have two hypotheses:

- First hypothesis is called **null hypothesis** H_0
- Other hypothesis is called **alternative hypothesis** H_A or H_1 .

Here, H_1 is usually taken to be the complement of H_0 but there is no guarantee.

The **decision rule** has typically two possible conclusion:

- Reject H_0
- Do not reject H_0 .

Definition 6.1 (Type I Error).

Rejecting H_0 when it is true is called **type I error**. The probability of type I error is the **significance level** of the test and is usually denoted by α .

Definition 6.2 (Type II Error).

Accepting H_0 when it is false is called **type II error**. The probability of type II error is usually denoted by β . **Power** is $1 - \beta$.

The decision rule is based on a **test statistic**. The set of values of a test statistics that leads to the rejection of H_0 is called the **rejection region**. The set of values that leads to acceptance of H_0 is called the **acceptance region**. The probability distribution of the test statistic when H_0 is true is called the **null distribution**.

Definition 6.3 (Likelihood Ratio).

The likelihood ratio is defined to be the ratio of the two likelihood, one under H_0 and the other under H_1 . Let $f_0(x)$ be pmf of X under H_0 and $f_1(x)$ be pmf of X under H_1 . Then the likelihood ratio is given by $\frac{f_0(x)}{f_1(x)}$

Given X_1, \ldots, X_n IID with density $f(x \mid \theta)$ and density of X under H_0 is f_0 and under H_1 f_1 .

The likelihood ratio of H_0 to H_1 based on X_1, \ldots, X_n is calculated by $\Lambda(\mathbf{x}) = \frac{f_0(x_1)\cdots f_0(x_n)}{f_1(x_1)\cdots f_1(x_n)}$ Note that the smaller ratio means we have more evidence against H_0 . Therefore critical region should contain x with smaller ratio.

Theorem 6.1 (Neyman-Pearson Lemma).

Suppose that H_0 and H_1 are simple hypotheses and that the test rejects H_0 when the likelihood ratio is less than c and the significance level α . Then **any other** test for which the significance level is less than or equal to α has power less than or equal to that of the likelihood ratio test.

Do note Neyman-Pearson Lemma only works when both hypothesis are simple. A hypothesis that *does not* completely specify the probability distribution is called a **composite hypothesis**.

6.1 Significance Level α and p-value

Here, α is the probability of falsely rejecting the null hypothesis. However, hypothesis testing always rejects or do not reject null when there is no need for dichrotomous decision. In this case, p-value can be used.

Definition 6.4 (*p*-value).

Given an sample, p-value is defined to be the smallest significance level at which H_0 would be rejected.

Therefore, the smaller p-value is, the stronger the evidence is against H_0 .

It is advisable to choose the simpler hypothesis to be the null hypothesis; it is also advisable to choose the hypothesis that has graver consequence of rejecting to be the null hypothesis, since we can control the probability of it being falsely rejected.

6.2 Uniformly Most Powerful Test

Suppose we are testing $H_0: \mu = \mu_0$ against $H_1: \mu > \mu_0$, where the alternative hypothesis is **one-sided**, then the likelihood ratio test is the **uniformly most powerful** test.

However, the likelihood ratio test is not uniformly most powerful when $H_1: \mu \neq \mu_0$ is two sided.

6.3 Duality of CI and Hypothesis Tests

Theorem 6.2.

Suppose that for every value θ_0 in Θ there is a test at level α of the hypothesis $H_0: \theta = \theta_0$.

Denote the acceptance region of the test by $A(\theta_0)$. The the set $C(\mathbf{X}) := \{\theta : \mathbf{X} \in A(\theta)\}$ us a $100(1 - \alpha)\%$ confidence region for θ .

Theorem 6.3.

Suppose that $C(\mathbf{X})$ is a $100(1-\alpha)\%$ confidence region for θ .

Then an acceptance region for a test at level α of the hypothesis $H_0: \theta = \theta_0$ is $A(\theta_0) = \{ \boldsymbol{X} \mid \theta_0 \in C(\boldsymbol{X}) \}$

6.4 Generalized Likelihood Ratio Test

Suppose that observations $X = (X_1, \ldots, X_n)$ have a joint density $f(\boldsymbol{x} \mid \theta)$.

Let Ω be the set of all possible values of θ .

Let ω_0 and ω_1 be the subsets of Ω such that they form a partition.

The test is of the form: $H_0: \theta \in \omega_0$ vs $H_1: \theta \in \omega_1$ We define the generalized likelihood ratio test statistic to be $\Lambda^* = \frac{\max_{\theta \in \omega_0}[\operatorname{lik}(\theta)]}{\max_{\theta \in \omega_1}[\operatorname{lik}(\theta)]}$ and small values of Λ^* tend to discredit H_0 .

We define $\Lambda = \frac{\max_{\theta \in \omega_0[\operatorname{lik}(\theta)]}}{\max_{\theta \in \Omega}[\operatorname{lik}(\theta)]} = \min\{\Lambda^*, 1\}$ The generalized likelihood ratio test will reject H_0 if $\Lambda \leq \lambda_0$ where λ_0 is a constant determined by $P(\Lambda \leq \lambda_0 \mid H_0) = \alpha$

Theorem 6.4.

Under smoothness conditions on the probability densities or frequency functions involved, the null distribution of $-2 \log \Lambda$ tends to a **chi-square** distribution with degree of freedom equal to dim Ω – dim ω_0 as sample size n tends to infinity.

We now study LRT for Multinomial distribution. Suppose an experiment can obtain m possible outcomes E_1, \ldots, E_m with probabilities p_1, \ldots, p_m . Let X_i be number of numbers E_i occurs in total n independent runs of the experiemnt. Then X_1, \ldots, X_m follow a multinomial distribution with total cell count n and cell probabilities p_1, \ldots, p_m . Claerly, joint pmf reads

$$f(x_1, \dots, x_m \mid p_1, \dots, p_m) = \frac{n!}{\prod_{i=1}^m x_i!} \prod_{i=1}^m p_i^{x_i}$$

Let us write $\mathbf{p} = (p_1, \dots, p_m)$, and we are interested in testing $H_0: p = p(\theta), \theta \in \omega_0$ where θ is an unknown parameter, against H_1 for any other value of p other than those in H_0 .

The numerator of the likelihood ratio is

$$\max_{p \in \omega_0} \left(\frac{n!}{x_1! \cdots x_m!} p_1(\theta)^{x_1} \cdots p_m(\theta)^{x_m} \right)$$

 $\max_{p \in \omega_0} \left(\frac{n!}{x_1! \cdots x_m!} p_1(\theta)^{x_1} \cdots p_m(\theta)^{x_m} \right)$ where x_i are the observed cell counts in the m cells. This likelihood is maximized by MLE θ .

In the denominator, the probabilities are restricted under Ω , so it is maximized by global MLE $\hat{p_i} = \frac{x_i}{n}$.

Therefore, we have

 $\Lambda = \prod_{i=1}^m \left[\frac{p_i(\hat{\theta})}{\hat{p}_i}\right]^{x_i}$ and $-2\log\Lambda = 2\sum_{i=1}^m O_i\log(\frac{O_i}{E_i})$ where $O_i = n\hat{p}_i, E_i = np_i(\hat{\theta})$ the observed and expected cell counts respectively.

Also, the degree of freedom df = m - 1 - k, where k is the degree of freedom in θ .

The generalized LRT rejects the null hypothesis if $-2 \log \Lambda >$ $\chi^2_{m-k-1}(\alpha)$

Theorem 6.5 (Pearson Chi-square Test).

Another test for multinomial distribution is Pearson Chisquare test, where the test statistic is $X^2 = \sum_{i=1}^m \frac{(O_i - E_i)^2}{E_i} =$ $\sum_{i=1}^{m} \frac{[x_i - np_i(\hat{\theta})]^2}{np_i(\hat{\theta})}$ The test statistics follows $X^2 \sim \chi^2_{m-k-1}$ under H_0 .

Comparing Two Samples

In many experiemets, we have two groups, one as treatment group and one as control group.

7.1Two Normally Distributed Indepedent Sample

Here, we assume observation from control group are independent random variable with a common distribution F.

Observation from treatment group are indepedent of each other and of the controls and have a common distribution

We further assume, X_1, \ldots, X_n are IID $N(\mu_X, \sigma^2)$ and Y_1, \ldots, Y_m are IID $N(\mu_Y, \sigma^2)$.

We want to **test** $H_0: \mu_X = \mu_Y \text{ vs } H_1: \mu_X \neq \mu_Y \text{ We can}$ think of $\mu_X - \mu_Y$ as the effect of treatment.

Theorem 7.1 (Fact).

A natural estimate of $\mu_X - \mu_Y$ is $\bar{X} - \bar{Y}$, and indeed it is the MLE of $\mu_X - \mu_Y$.

If X independent of Y, so

$$\bar{X} - \bar{Y} \sim N(\mu_X, \mu_Y, \sigma^2(\frac{1}{n} + \frac{1}{m}))$$

If σ^2 is known, then we have the test statistics

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim N(0, 1)$$

The $100(1 - \alpha)\%$ CI for $\mu_X - \mu_Y$ will be

$$(\bar{X} - \bar{Y}) \pm z(\frac{\alpha}{2})\sigma\sqrt{\frac{1}{n} + \frac{1}{m}}$$

However, if σ^2 unknown, we need to estimate it via **pooled** sample variance s_n^2 :

$$s_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{m+n-2}$$
where $S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ and $S_Y^2 = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \bar{X})^2$

The estimate standard error of $\bar{X} - \bar{Y}$ is then $s_{\bar{X} - \bar{Y}} =$ $s_p \sqrt{\frac{1}{n} + \frac{1}{m}}$

Theorem 7.2 (Theorem A).

Suppose that X_1, \ldots, X_n are IID $N(\mu_X, \sigma^2)$ and Y_1, \ldots, Y_m are IID $N(\mu_Y, \sigma^2)$ is another independent sample.

The statistic $t = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{s_{\bar{X} - \bar{Y}}}$ follows a t distribution with df = m + n - 2.

Therefore, under the assumptions of Theorem A, a 100(1- α)% cI for $\mu_X - \mu_Y$ is $(\bar{X} - \bar{Y}) \pm t_{m+n-2}(\frac{\alpha}{2}) \times s_{\bar{X} - \bar{Y}}$

Theorem 7.3 (Rejection Region).

Consider the following alternative hypothesis:

- $H_1: \mu_X \neq \mu_Y$
- $H_2: \mu_X > \mu_Y$
- $H_3: \mu_X < \mu_Y$

The null hypothesis is always $H_0: \mu_X = \mu_Y$ and test statistic $t = \frac{\bar{X} - \bar{Y}}{s_{\bar{X} - \bar{Y}}} \sim t_{m+n-2}$.

The rejection region for the 3 alternatives are:

- $H_1: |t| > t_{m+n-2}(\frac{\alpha}{2})$
- $H_2: t > t_{m+n-2}(\alpha)$
- $H_3: t < t_{m+n-2}(\alpha)$.

Alternatively, the test of H_0 against H_1 can be derived as a likelihood ratio test. The unknown parameters are $\theta = (\mu_X, \mu_Y, \sigma).$

Under H_0 , $\theta \in w_0 = \{\mu_X = \mu_Y, 0 < \sigma > \infty\}$ where as under Ω , we have $\mu_X, \mu_Y \in \mathbb{R}$, $\sigma \in \mathbb{R}^+$.

The likelihood for the two sample is

The likelihood for the two sample is
$$\operatorname{lik} = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X_i - \mu_X)^2}{2\sigma^2}} \times \prod_{j=1}^{m} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(Y_j - \mu_Y)^2}{2\sigma^2}} \text{ and log-likelihood is}$$

$$l(\mu_X, \mu_Y, \sigma^2) = -\frac{m+n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \left[\sum_{i=1}^n (X_i - \mu_X)^2 + \sum_{j=1}^m (Y_j \frac{P(\text{reject } H_0 \mid H_0 \text{ is false})}{\text{depends on four factors:}} \mu_Y)^2 \right]$$

Under ω_0 , we have sample of size m+n from a $N(\mu_0, \sigma^2)$ distribution, so MLE of μ_0 and σ_0^2 are

$$\hat{\mu}_0 = \frac{1}{m+n} \left[\sum_{i=1}^n X_i + \sum_{j=1}^m Y_j \right]$$

and
$$\hat{\sigma}_0^2 = \frac{1}{m+n} \left[\sum_{i=1}^n (X_i - \hat{\mu}_0)^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_0)^2 \right]$$

so the maximized log-likelihood is $l(\hat{\mu}_0,\hat{\sigma}_0^2) = -\frac{m+n}{2}\log\hat{\sigma}_0^2 -$

Under
$$\Omega$$
, the MLE is then $\hat{\mu}_X = \bar{X}$, $\hat{\mu}_Y = \bar{Y}$ and $\hat{\sigma}_1^2 = \frac{1}{m+n} \left[\sum_{i=1}^n (X_i - \hat{\mu}_X)^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_Y)^2 \right]$ and maximized log-likelihood is $l(\hat{\mu}_X, \hat{\mu}_Y, \hat{\sigma}_1^2) = -\frac{m+n}{2} \log \hat{\sigma}_1^2 - \frac{m+n}{2}$ and the log of likelihood ratio is thus

and the log of likelihood ratio is thus

$$\log \Lambda = \frac{m+n}{2} \log(\frac{\hat{\sigma}_1^2}{\hat{\sigma}_0^2})$$

The likelihood ratio test rejects for large value of $\log \Lambda$, so then reject for large values of

$$\frac{\hat{\sigma}_1^2}{\hat{\sigma}_2^2} = \frac{\sum_{i=1}^n (X_i - \hat{\mu}_0)^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_0)^2}{\sum_{i=1}^n (Y_i - \bar{Y}_0)^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_0)^2}$$

then reject for large varies of
$$\frac{\hat{\sigma}_1^2}{\hat{\sigma}_0^2} = \frac{\sum_{i=1}^n (X_i - \hat{\mu}_0)^2 + \sum_{j=1}^m (Y_j - \hat{\mu}_0)^2}{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_j - \bar{Y})^2}$$
We, by using $\sum_{i=1}^n (X_i - \hat{\mu}_0)^2 = \sum_{i=1}^n (X_i - \bar{X})^2 + n(\bar{X} - \hat{\mu}_0)^2$, obtain

$$\bar{X} - \hat{\mu}_0 = \frac{m}{m+n}(\bar{X} - \bar{Y}), \quad \bar{Y} - \hat{\mu}_0 = \frac{n}{m+n}(\bar{Y} - \bar{X})$$

So the alternative expression for numerator of ratio is then $\sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{j=1}^{m} (Y_j - \bar{Y})^2 + \frac{mn}{m+n} (\bar{X} - \bar{Y})^2$

Hence the test rejects for large values of

Hence the test rejects for large value
$$1 + \frac{mn}{m+n} \times \frac{(\bar{X} - \bar{Y})^2}{\sum_{i=1}^n (X_i - \bar{X})^2 + \sum_{j=1}^m (Y_j - \bar{Y})^2}$$

or equivalently, the large values of

$$\frac{|\bar{X} - \bar{Y}|}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 + \sum_{j=1}^{m} (Y_j - \bar{Y})^2}}$$

which is |t|. Then the likelihood ratio test is equivalent to t test.

Unequal Variance 7.1.1

In the case of unequal variance, then a natural estimate of $\operatorname{Var}(\bar{X} - \bar{Y})$ is $\frac{S_X^2}{n} + \frac{S_Y^2}{m}$

the appropriate test statistic is then

$$\frac{X-Y}{\sqrt{\frac{S_X^2}{S_X}+\frac{S_Y^2}{S_X}}}$$

The null distribution of this statistic can be closely approxiated by the t distribution with

$$df = \frac{\left(\frac{S_X^2}{n} + \frac{S_Y^2}{m}\right)^2}{\frac{(S_X^2/n)^2}{n-1} + \frac{(S_Y^2/m)^2}{m-1}}$$

Remark: If the underlying distribution are not normal and sample size are large, the use of t distribution or normal distribution is justified by CLT. The probability levels of confidence intervals and hypothesis tests are ap-

proximately valid.

However, if sample size small and distribution not normal, the conclusion may be invalid.

7.2Power

Calculation of power are important because it determines how large sample size should be. Note that power = $P(\text{reject } H_0 \mid H_0 \text{ is false}) \text{ The power of a two-sample } t \text{ test}$

- 1. The larger the real difference $\delta = \mu_X \mu_Y$, the greater the power,
- 2. The lager the significance level α , the more powerful the test.
- 3. The population standard deviation, the smaller σ , the larger the power
- 4. The larger the sample size n and m, the greater the power.

The exact power calculation for t test against alternative hypothesis $H_1: \mu_X - \mu_Y = \delta$ requirees noncentral t. However, one can perform approximate calculation based on normal if sample sizes are reasonably large.

Suppose δ, α, σ are given and sample size n = m, then we have

$$Var(\bar{X} - \bar{Y}) = 2\frac{\sigma^2}{n}$$

The test at level α of $H_0: \mu_X = \mu_Y$ versus $H_1: \mu_X \neq \mu_Y$ is based on test statistic

$$Z = \frac{\bar{X} - \bar{Y}}{\sigma \sqrt{2/n}}$$

and the rejection region for the test is $|Z| > z(\alpha/2)$, or

$$|\bar{X} - \bar{Y}| > z(\alpha/2)\sigma\sqrt{2/n}$$
.

Otherwise, if $\mu_X - \mu_Y = \delta$, then

$$\frac{\bar{X}-\bar{Y}-\delta}{\sigma\sqrt{2/n}} \sim N(0,1)$$

therefore,

power =
$$P[|\bar{X} - \bar{Y}| > z(\alpha/2)\sigma\sqrt{2/n} \mid \mu_X - \mu_Y = \delta]$$

= $1 - \Phi(z(\alpha/2) - \frac{\delta}{\sigma}\sqrt{n/2}) + \Phi(-z(\alpha/2) - \frac{\delta}{\sigma}\sqrt{n/2})$

Typically, as δ moves away from zero, one of these terms dominate.

7.3 Paired Samples

In experiments sample can be paired, which casues sample to be dependent. Denote the pairs as $(X_i, Y_i), i = 1, \ldots, n$. Let X, Y have mean μ_X, μ_Y and variance σ_X^2 adn σ_Y^2 . Therefore, $cov(X_i, Y_i) = \rho \sigma_X \sigma_Y$ where ρ is the correlation coefficient.

We assume that different pairs are independently distributed.

The differences $D_i = X_i - Y_i$ are independent with mean $E(D_i) = \mu_X - \mu_Y$

and variance

population.

 $Var(D_i) = \sigma_X^2 + \sigma_Y^2 - 2\rho\sigma_X\sigma_Y$

If we estimate $\mu_X - \mu_Y$ by $\bar{D} = \bar{X} - \bar{Y}$, then

 $E(D) = \mu_X - \mu_Y$

and

 $\operatorname{Var}(\bar{D}) = \frac{\sigma_X^2 + \sigma_Y^2 - 2\rho\sigma_X\sigma_Y}{\sigma_X^2 + \sigma_Y^2 - 2\rho\sigma_X\sigma_Y}$

The variance will be smaller then independent samples, if $\rho > 0$.

With the additional assumption that the differences are a sample from normal distribution with $E(D_i) = \mu_D$ and $Var(D_i) = \sigma_D^2$, and if σ_D is unknown, inferences will be based on $t = \frac{\bar{D} - \mu_D}{s_{\bar{D}}} \sim t_{n-1}$ Therefore, teh $100(1 - \alpha)\%$ CI for μ_D is $\bar{D} \pm t_{n-1}(\alpha/2)s_{\bar{D}}$

7.4 Nonparametric Method

Nonparametric Statistical Methods 7.4.1

Definition 7.1 (Nonparametric Statistical Methods). Nonparametri statistical methods are inferential methods that do not assume a particular form of distribution for

Let X_1, \ldots, X_n be IID with cdf F, and Y_1, \ldots, Y_m with cdf

Consider null hypothesis: $H_0: F = G$. We are interested whether X are on the whole larger than the Y values or vice-versa.

Theorem 7.4 (Mann-Whitney Test).

A test statistic is calculated in the following way:

- All (n+m) observation are grouped together Z_1, \ldots, Z_{n+m} as pooled sample and we assume the values are distinct. We define Rank(Z) = i if Z is the ith smal**lest** value within the pooled sample.
- Define rank sum scores $R_X = \sum_{i=1}^n \text{Rank}(X_i), R_Y = \sum_{i=1}^n \text{Rank}(X_i)$ $\sum_{i=1}^{m} \operatorname{Rank}(Y_i)$

It is obvious that $R_X + R_Y = \frac{1}{2}(m+n)(m+n+1)$ is fixed. So we should reject either R_X or R_Y is too small or large. We take the smaller sample, suppose of size $n = \min(n, m)$, and compute the sum ranks R from that sample.

Let R' = n(m + n + 1) - R. The Mann-Whitney test statistic is $R^* = \min(R, R')$ and reject H_0 if R^* too small.

7.4.2Signed Rank Test

We define Rank(D) = i if D has the ith smallest absolute value within the sample.

Define W_{+} to be the sum of ranks among all the positive

 D_i and W_{-} the sum of ranks among all negative D_i . We reject H_0 when W_+ is too large or too small.

Note that $W_+ + W_- = \frac{1}{2}n(n+1)$, so we only need to count one of them.

We just take $W := \min(W_+, W_-)$ and check for small critical values from the table.

If 0 are present, they are discarded. If there are ties, then the D_i 's are given an average rank within all the ties, same as Mann-Whitney test.

Both tests are robust to outliers.