Instruction Scheduling & Programming Modern Processors (I)

Hung-Wei Tseng

Recap: Three pipeline hazards

- Structural hazards resource conflicts cannot support simultaneous execution of instructions in the pipeline
- Control hazards the PC can be changed by an instruction in the pipeline
- Data hazards an instruction depending on a the result that's not yet generated or propagated when the instruction needs that

Recap: addressing hazards

- Structural hazards
 - Stall
 - Modify hardware design
- Control hazards
 - Stall
 - Static prediction
 - Dynamic prediction
- Data Hazards
 - Stall
 - Data forwarding
 - Dynamic instruction scheduling

Recap: Data "forwarding"

Super Scalar

Superscalar

- Since we have many functional units now, we should fetch/decode more instructions each cycle so that we can have more instructions to issue!
- Super-scalar: fetch/decode/issue more than one instruction each cycle
 - Fetch width: how many instructions can the processor fetch/decode each cycle
 - Issue width: how many instructions can the processor issue each cycle
- The theoretical CPI should now be

1

min(issue width, fetch width, decode width)

If we loop many times (assume perfect predictor)

1	movl	(%rdi), %ecx		IF	ID	M1/ALU/BR	M2	М3	. M4	WB
2	addq	\$4, %rdi	1	(1) (2)			E	veryti	ning v	ve need
3	addl	%ecx, %eax	2	(3)(4)	(1) (2)		fo	r (4)	is rea	dy here
4	cmpq	%rdx, %rdi	3	(5)(6)	(3)(4)	(1)(2)		Wh	y can'	't we
		•	4	(5)(6)	(3)(4)	7	(1)(2)	ρy	ecute	it?
5	jne	.L3	5	(5)(6)	(3)(4)			(1)(2)	Coate	, 16.
6	movl	(%rdi), %ecx	6	(5)(6)	(3)(4)				(1)(2)	
7	addq	\$4, %rdi	7	(7)(8)	(5)(6)	(3)(4)				(1)(2)
8	addl	•	8	(9)(10)	(7)(8)	(5)(6)	(3)(4)			
		%ecx, %eax	9	(9)(10)	(8)	(7)	(5)(6)	(3)(4)		
9	cmpq	%rdx, %rdi	10	(9)(10)	(8)	A	(7)	(5)(6)	(3)(4)	
10	jne	.L3	11	(9)(10)	(8)			(7)	(5)(6)	(3)(4)
(11)	movl	(%rdi), %ecx	12	(11)(12)	(9)(10)	(8)			(7)	(5)(6)
	addq	\$4, %rdi	13	(11)(12)	(15)	(9)	(8)			(7)
_	-	•	14		(11) (12)	(10)	(9)	(8)		
13	addl	%ecx, %eax Wh	y ₁ ca	n't I sta	rt	(11) (12)	(10)	(9)	(8)	
14	cmpq	%rdx, %rdi loadi	ing	(6) & (1'	1)?		(11)(12)	(10)	(9)	(8)
(15)	ine	.L3	17					(11)	(10)	(9)

False dependencies

- We are still limited by false dependencies
- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction overwrites the source of an earlier one
 - 2 and 1, 6 and 3, 7 and 4, 7 and 6
 - WAW (Write After Write): a later instruction overwrites the output of an earlier

one

• 6 and 1

Recap: Limitations of Compiler Optimizations

- If the hardware (e.g., pipeline changes), the same compiler optimization may not be that helpful
- The compiler can only optimize on static instructions, but cannot optimize dynamic instructions
- Compilers are limited by the registers an ISA provides

Outline

- Out-of-order, Dynamic instruction scheduling
- Programming on Modern Processor

Register renaming + speculative execution

K. C. Yeager, "The Mips R10000 superscalar microprocessor," in IEEE Micro, vol. 16, no. 2, pp. 28-41, April 1996.

Recap: False dependencies

- We are still limited by false dependencies
- They are not "true" dependencies because they don't have an arrow in data dependency graph
 - WAR (Write After Read): a later instruction overwrites the source of an earlier one
 - 2 and 1, 6 and 3, 7 and 4, 7 and 6

one

WAW (Write After Write): a later instruction overwrites the output of an earlier

We need to give each output a new

(%rdi), %ecx

What if we can use more registers...

```
(%rdi), %ecx
          (%rdi), %ecx
① movl
                               ① movl
                                          $4, %rdi, %t0
② addq
          $4, %rdi
                               ② addq
3 addl
          %ecx, %eax
                               3 addl
                                          %ecx, %eax, %t1
          %rdx, %rdi
                                          %rdx, %t0
@ cmpq
                               @ cmpq
⑤ jne
                               ⑤ jne
          .L3
                                         .L3
                                          (%t0), %t2
          (%rdi), %ecx

    movl

  movl

g addg
          $4, %rdi
                               ② addq
                                          $4, %t0, %t3
          %ecx, %eax

® addl

  addl
                                          %t1, %t2, %t4
          %rdx, %rdi
                                          %rdx, %t3

    cmpq

© cmpq
10 jne
          .L3
                               10 jne
                                          .L3
```

All false dependencies are gone!!!

Speculative Execution

- Exceptions (e.g. divided by 0, page fault) may occur anytime
 - A later instruction cannot write back its own result otherwise the architectural states won't be correct
- Hardware can schedule instruction across branch instructions with the help of branch prediction
 - Fetch instructions according to the branch prediction
 - However, branch predictor can never be perfect
- Execute instructions across branches
 - Speculative execution: execute an instruction before the processor know if we need to execute or not
 - Execute an instruction all operands are ready (the values of depending physical registers are generated)
 - Store results in **reorder buffer** before the processor knows if the instruction is going to be executed or not.

Register renaming

16

ecx

rdi

rdx

P2

P3

P4

P5

P7

P8

P9

P10

					7						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	BR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4		(5)(6)	(3)(4)	(1)				(2)			
5											
6											
7											
8											
9											
10											
11											

	Physical Register
eax	
есх	P1
rdi	P2
rdx	
	17

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6			
P2	0		1	P7			
Р3				P8			
Р4				P9			
P5				P10			

	IF	ID	REN
1	(1) (2)		
2	(3)(4)	(1) (2)	
3	(5)(6)	(3)(4)	(1) (2)
4	(7)(8)	(5)(6)	(3)(4)
5	(9)(10)	(7)(8)	(3)(5)(6)
6			
7			
8			
9			
10			
11			
	Phy	sical Reg	gister
eax	(
ec	(P1	
rdi		P2	
rdx		P4	

18

(2)				
(4)	(1)		(2)	
5)(6)		(1)	(4)	(2)
			(4) is now	
			executing before	
			(3)!	

Value In use

1

1

1

Valid

P6

P7

P8

P9

P10

Value In use

Valid

P1

P2

P3

P4

P5

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11)	movl	(%rdi), %ecx
12	addq	\$4, %rdi
_	addl	%ecx, %eax
	cmpq	%rdx, %rdi
15)	ine	, L3

					•						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7											
8											
9											
10											
11											

	Physical Register
eax	P6
есх	P1
rdi	P5
rdx	P4
	19

	Valid	Value	In use		Valid	Value	In use
P1	0		1	P6	0		1
P2	1		1	P7			
Р3	0		1	P8			
P4	0		1	P9			
P5	0		1	P10			

1	movl	(%rdi), $%ecx \rightarrow P1$
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
(5)	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx
12	addq	\$4, %rdi
13	addl	%ecx, %eax
14	cmpq	%rdx, %rdi
15	jne	.L3

				4
	IF	ID	REN	M
1	(1) (2)			
2	(3)(4)	(1) (2)		
3	(5)(6)	(3)(4)	(1) (2)	
4	(7)(8)	(5)(6)	(3)(4)	(1)
5	(9)(10)	(7)(8)	(3)(5)(6)	
6	(11)(12)	(9)(10)	(3)(7)(8)	(6
7	(13)(14)	(11)(12)	(3)(8)(9) (10)	
8				
9				
10				
11				
	Phy	rsical Reg	jister	
eax		P6		

(1)			((2)				
	(1)		((4)			(2	2)
(6)		(1)				(5)	(2)	(4)
	(6)		(1)	(7)			(2)(4	.)(5)
		Valid	Value	In use		Valid	Value	In use
	P1	0		1	P6	0		1
	D2	1		4	D7			

ROB

	Physical Register
eax	P6
есх	P1
rdi	P5
rdx	P4
	20

	valiu	value	in use		valiu	value	m use
P1	0		1	P6	0		1
P2	1		1	P7			
Р3	0		1	P8			
Р4	0		1	P9			
P5	0		1	P10			

(2)

(4)

(7)

(3)

(1)

(6)

(1)

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax → p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	$(%rdi), %ecx \rightarrow P7$
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax
14	cmpq	%rdx, %rdi
	•	

.L3

jne

				4	•					
	IF	ID	REN	Mi	M2					
1	(1) (2)									
2	(3)(4)	(1) (2)								
3	(5)(6)	(3)(4)	(1) (2)							
4	(7)(8)	(5)(6)	(3)(4)	(1)						
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)					
6	(11) (12)	(9)(10)	(3)(7)(8)	(6)						
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)					
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)							
9										
10										
11										
	Physical Register									

Physical Register							
eax	Р6						
есх	P7						
rdi	P8						
rdx	P4						
	21						

	Valid	Value	In use		Valid	Value	In use
P1	1		1	P6	0		1
P2	1		1	P7	0		1
Р3	0		1	P8	0		1
P4	0		1	P9			
P5	1		1	P10			

ROB

(2)

(2)(4)

(2)(4)(5)

(1)(2)(4)(5)

(5)

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
3	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
	•	

.L3

jne

	IF	ID	REN	
1	(1) (2)			
2	(3)(4)	(1) (2)		
3	(5)(6)	(3)(4)	(1) (2)	
4	(7)(8)	(5)(6)	(3)(4)	(
5	(9)(10)	(7)(8)	(3)(5)(6)	
6	(11)(12)	(9)(10)	(3)(7)(8)	(
7	(13)(14)	(11)(12)	(3)(8)(9) (10)	
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)	
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(
10				
11				
10	(17) (18)	(15)(16)	(8)(10)(12)	

	(1)				(2)			
)		(1)			(4)			(2)
)	(6)		(1)				(5)	(2)(4)
)		(6)		(1)	(7)			(2)(4)(5)
)			(6)		(3)			(1)(2)(4)(5) (7)
)	(11)			(6)	(9)			(3)(4)(5)(7)

ROB

Physical Register							
eax	P9						
есх	P7						
rdi	Р8						
rdx	P4						
	22						

	Valid	Value	In use		Valid	Value	In use
P1	1		0	P6	0		1
P2	1		0	P7	0		1
P3	1		1	P8	0		1
P4	0		1	P9	0		1
P5	1		1	P10			

1	movl	$(%rdi), %ecx \rightarrow P1$
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
(5)	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
(11)	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

			4
IF	ID	REN	ľ
1 (1) (2	2)		
2 (3)(4	4) (1) (2)		
3 (5)(6	6) (3)(4)	(1) (2)	
4 (7)(8	3) (5)(6)	(3)(4)	
5 (9)(1	0) (7)(8)	(3)(5)(6)	
6 (11)(1	2) (9)(10)	(3)(7)(8)	(
7 (13)(1	4) (11)(12)	(3)(8)(9)	
8 (15)(1	6) (13)(14)	(0)(0)(40)	
9 (17)(1	8) (15)(16)	(0) (10) (10)	(
10 (19)(2	0) (17)(18)	(12)(13)(14) (15)(16)	
11			
-	Obveigal Pa	giotor	

	Mĭ	M2	М3	M4	ALU	MUL	BR	ROB
)								
)	(1)				(2)			
5)		(1)			(4)			(2)
3)	(6)		(1)				(5)	(2)(4)
)		(6)		(1)	(7)			(2)(4)(5)
))			(6)		(3)			(1)(2)(4)(5) (7)
2)	(11)			(6)	(9)			-(2)(4)(5)(7)
1)		(11)			(8)		(10)	(6)(7)(9)

	Physical Register
eax	P9
есх	P7
rdi	P8
rdx	P4
	23

	Valid	Value	In use		Valid	Value	In use
P1	1		0	P6	0		1
P2	1		0	P7	0		1
Р3	1		0	P8	0		1
P4	0		1	P9	0		1
P5	1		1	P10	0		1

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
3	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14)	cmpq	%rdx, %rdi
15	jne	.L3

			IF		ID		REN	
	1	(1	l) (2)				
	2	(3	3)(4)	(1) (2))		
	3	(!	5)(6)	(3)(4))	(1) (2)	
	4	(7	7)(8)	(5)(6)	(3)(4)	
	5	(9)(10))	(7)(8))	(3)(5)(6))
	6	(1	1) (12	2)	(9)(10))	(3)(7)(8)	
	7	(1	3)(14	4)	(11)(12	2)	(3)(8)(9) (10)	
	8	(1	5)(16	5)	(13)(14	1)	(8)(9)(10) (11)(12)	
ı	9	(1	7) (18	3)	(15)(16	5)	(8)(10)(12) (13)(14)	
	10	(19	9)(20	D)	(17)(18	3)	(12)(13)(14 (15)(16))
	11				(19)(20))	(13)(14)(15 (16)(17)(18	
			Р	hy	sical Re	eg	ister	
е	ax				P6			
e	СХ				P1			
	rdi				P5			
r	dx				P4			

24

	IF .	ID	REN	Mĭ	M2	M3	M4	ALU	MUL	BR	RO	В
(1	l) (2)											
(3	3)(4)	(1) (2)										
(!	5)(6)	(3)(4)	(1) (2)									
(7	7)(8)	(5)(6)	(3)(4)	(1)				(2)				
(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)	
(1	1) (12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4	4)
(1:	3)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)	(5)
(1	5)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			(1)(2)(4 (7)	l)(5)
(1	7) (18)	(15)(16)	(8) (10) (12) (13) (14)	(11)			(6)	(9)			-(2)(4)(5)(7)
(1	9)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	-(6)(7)	(9)
		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)	(10)
	Phy	rsical Reg	jister			Valid	Valu	ue In use)	Valid	Value	In us
		P6			P1	1		9	P6	1		1

P3

P4

P7

P8

P9

P10

0

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

					7						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11) (12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(</u> 4)(5) (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13											
14											
15											

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
	cmpq	%rdx, %rdi
15	jne	.L3

					7						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(</u> 4)(5) (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10) (19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
1′		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12	2		(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13	3		(17)(18) (19)(20)		(16)			(13)		(15)	(11)(12)(14)
14	1										
1	5										

1	movl	(%rdi), %ecx → P1
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	(%rdi), %ecx → P4
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → p7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
	cmpq	%rdx, %rdi
15	jne	.L3

	IF	ID	REN	Mi	M2	M3	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(4)(5)</u> (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13			(17)(18) (19)(20)		(16)			(13)		(15)	(11)(12)(14)
14						(16)		(17)			(13)(14)(15)
15											

1	movl	$(%rdi), %ecx \rightarrow P1$
2	addq	\$4, %rdi→ P2
3	addl	%ecx, %eax→ p3
4	cmpq	%rdx, %rdi
5	jne	.L3
6	movl	$(%rdi), %ecx \rightarrow P4$
7	addq	\$4, %rdi → P5
8	addl	%ecx, %eax → P6
9	cmpq	%rdx, %rdi
10	jne	.L3
11	movl	(%rdi), %ecx → P7
12	addq	\$4, %rdi → P8
13	addl	%ecx, %eax <mark>→ P9</mark>
14	cmpq	%rdx, %rdi
15	jne	.L3

					•						
	IF	ID	REN	Mi	M2	МЗ	M4	ALU	MUL	ЬR	ROB
1	(1) (2)										
2	(3)(4)	(1) (2)									
3	(5)(6)	(3)(4)	(1) (2)								
4	(7)(8)	(5)(6)	(3)(4)	(1)				(2)			
5	(9)(10)	(7)(8)	(3)(5)(6)		(1)			(4)			(2)
6	(11)(12)	(9)(10)	(3)(7)(8)	(6)		(1)				(5)	(2)(4)
7	(13)(14)	(11)(12)	(3)(8)(9) (10)		(6)		(1)	(7)			(2)(4)(5)
8	(15)(16)	(13)(14)	(8)(9)(10) (11)(12)			(6)		(3)			<u>(1)(2)(</u> 4)(5) (7)
9	(17)(18)	(15)(16)	(8)(10)(12) (13)(14)	(11)			(6)	(9)			(3)(4)(5)(7)
10	(19)(20)	(17)(18)	(12)(13)(14) (15)(16)		(11)			(8)		(10)	(6)(7)(9)
11		(19)(20)	(13)(14)(15) (16)(17)(18)			(11)		(12)			(8)(9)(10)
12			(13)(15)(17)(18) (19)(20)	(16)			(11)	(14)			(12)
13			(17)(18) (19)(20)		(16)			(13)		(15)	(11)(12) (14)
14						(16)		(17)			(12)(14)(15)
15		۷0					(16)	(19)			(17)

Through data flow graph analysis

BR

What about "linked list"

 Assume the current PC is already at instruction (1) and this linked list has only three nodes. This processor can fetch and issue 2 instructions per cycle, with exactly the same register renaming hardware and pipeline as we showed previously.
 Which of the following C state of the code snippet determines the performance?

```
A.do {
B.     number_of_nodes++;
C.     current = current->next;
D.} while ( current != NULL );
```

LinkedList

What about "linked list"

Performance determined by the critical path

4 cycles each iteration

4 instructions per iteration

$$CPI = \frac{4}{4} = 1$$

```
do {
    number_of_nodes++;
    current = current->next;
} while ( current != NULL );

① .L3: movq 8(%rdi), %rdi
② addl $1, %eax
③ testq %rdi, %rdi
④ jne .L3
```


The pipelines of Modern Processors

Intel Skylake

Recap: Intel Skylake

Figure 4. Skylake core block diagram.

Intel Alder Lake MinCPI = -7-issue memory pipeline 5-issue ALU pipeline MinINTInst. CPI = -New I-TLB + I-Cache Predict Performance MSROM µop Cache Decode DOD Queue $\times 86 \, \text{Core}$ MinMEMInst. CPI = -Allocate / Rename / Move Elimination / Zero Idiom A Step Function in CPU Architecture Performance For the Next Decade of Compute MinBRInst.CPI = -A significant IPC boost at high power efficiency ALU ALU ALU ALU AGU Wider Deeper Smarter LEA LEA LEA LEA Store Data Shift Load STA Load STA **JMP** IDIV Better supports large data set and large code footprint applications 48KB Data Cache **FMA** FMA52 ALU ALU Enhanced power management improves frequency and power **XMA** 1.25MB/2MB ML Cache Machine Learning Technology: Intel® AMX – Tile Multiplication FADD FADD All in a tailored scalable architecture to serve the full range of Laptops to Desktops to Data Centers intel. Architecture Day 2021 50

AMD Zen 3 (RyZen 5000 Series)

Summary: Characteristics of modern processor architectures

- Multiple-issue pipelines with multiple functional units available
 - Multiple ALUs
 - Multiple Load/store units
 - Dynamic OoO scheduling to reorder instructions whenever possible
- Cache
- Branch predictors

Performance Programming on Modern Processors

Demo: Popcount

- The population count (or popcount) of a specific value is the number of set bits (i.e., bits in 1s) in that value.
- Applications
 - Parity bits in error correction/detection code
 - Cryptography
 - Sparse matrix
 - Molecular Fingerprinting
 - Implementation of some succinct data structures like bit vectors and wavelet trees.

Demo: pop count

• Given a 64-bit integer number, find the number of 1s in its binary representation.

• Example 1:

Input: 9487

Output: 7

Explanation: 9487's binary

representation is

Ob10010100001111

```
int main(int argc, char *argv[]) {
     uint64_t key = 0xdeadbeef;
     int count = 1000000000;
     uint64_t sum = 0;
     for (int i=0; i < count; i++)
         sum += popcount(RandLFSR(key));
     printf("Result: %lu\n", sum);
     return sum;
```

Five implementations

Which of the following implementations will perform the best on modern pipeline

processors?

```
inline int popcount(uint64_t x){
  int c=0;
  while(x) {
      c += x & 1;
      x = x >> 1;
    }
  return c;
}
```

```
inline int popcount(uint64_t x) {
    int c = 0;
    int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    while(x) {
        c += table[(x & 0xF)];
        x = x >> 4;
    }
    return c;
}
```

```
inline int popcount(uint64_t x) {
    int c = 0;
    int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    for (uint64_t i = 0; i < 16; i++)
    {
        c += table[(x & 0xF)];
        x = x >> 4;
    }
    return c;
}
```

```
inline int popcount(uint64_t x) {
     int c = 0;
     for (uint64_t i = 0; i < 16; i++)
         switch((x \& 0xF))
             case 1: c+=1; break;
             case 2: c+=1; break;
             case 3: c+=2; break;
             case 4: c+=1; break;
             case 5: c+=2; break;
             case 6: c+=2; break;
             case 7: c+=3; break;
             case 8: c+=1; break;
             case 9: c+=2; break;
             case 10: c+=2; break;
             case 11: c+=3; break;
             case 12: c+=2; break;
             case 13: c+=3; break;
             case 14: c+=3; break;
             case 15: c+=4; break;
             default: break;
         x = x \gg 4;
     return c;
```

Five implementations

Which of the following implementations will perform the best on modern pipeline

processors?

```
inline int popcount(uint64_t x){
  int c=0;
  while(x) {
      c += x & 1;
      x = x >> 1;
    }
  return c;
}
```

```
inline int popcount(uint64_t x) {
    int c = 0;
    int table[16] = {0, 1, 1, 2, 1,
2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    while(x) {
        c += table[(x & 0xF)];
        x = x >> 4;
    }
    return c;
}
```

```
inline int popcount(uint64_t x) {
  int c = 0;
  while(x) {
    c += x & 1;
    x = x >> 1;
    c += x & 1;
    x = x >> 1;
    c += x & 1;
    x = x >> 1;
    c += x & 1;
    x = x >> 1;
    c += x & 1;
    x = x >> 1;
    c += x & 1;
    x = x >> 1;
    c += x & 1;
    x = x >> 1;
}
```

```
fline int popcount(uint64_t x) {
    int c = 0;
    int table[16] = {0, 1, 1, 2, 1,
    2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
    for (uint64_t i = 0; i < 16; i++)
    {
        c += table[(x & 0xF)];
        x = x >> 4;
    }
    return c;
}
```

```
inline int popcount(uint64 t x) {
     int c = 0:
     for (uint64 t i = 0; i < 16; i++)
         switch((x \& 0xF))
             case 1: c+=1; break;
             case 2: c+=1; break;
             case 3: c+=2; break;
             case 4: c+=1; break;
             case 5: c+=2; break;
             case 6: c+=2; break;
             case 7: c+=3; break;
             case 8: c+=1; break;
             case 9: c+=2; break;
             case 10: c+=2; break;
             case 11: c+=3; break;
             case 12: c+=2; break;
             case 13: c+=3; break;
             case 14: c+=3; break;
             case 15: c+=4; break;
             default: break;
         x = x \gg 4;
     return c;
```

Announcements

- Assignment #3 due Friday
- Reading Quiz due next Monday
- iEval
 - Submit by 6/9 and take a screenshot of your submission
 - Submit your screen screenshot in gradescope it counts as a "full-credit" notebook assignment (technically help to drop two of your lowest notebook assignments)

Computer Science & Engineering

203

