Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6 Работа с системой компьютерной вёрстки T_EX Вариант 81

 $\begin{array}{c} \textit{Выполнила:} \\ \textit{Абдуллаева София Улугбековна} \\ \textit{Группа P3108} \end{array}$

 $\begin{tabular}{ll} $\Pi posepuna: \\ \begin{tabular}{ll} $\operatorname{Foctpukoba}$ Дарья Константиновна \\ \end{tabular}$

Решения задач M436-M440; Ф448; Ф450-Ф452

M436. Дано 20 чисел a_1 , a_2 , ..., a_{10} , b_1 , b_2 , ..., b_{10} . Докажите, что множество из 100 чисел (необязательно различных) $a_1 + b_1$, $a_1 + b_2$, ..., $a_{10} + b_{10}$ можно разбить на 10 подмножеств, по 10 чисел в каждом, так, чтобы сумма чисел в каждом подмножестве была одной и той же.

Запишем наши 100 чисел чисел в квадратную таблицу так, как изображено на рисунке 1; на пересечении i-й строки и j-го столбца поставим число a_i+b_j . Образуем теперь 10 подмножеств так, как показано на рисунке 2 (на рисунке клетки-числа, относящиеся к одному и тому же подмножеству, обозначены одной и той же цифрой). Легко видеть, что в каждом столбце (и каждой строке) есть представители всех подмножеств, так что индексы i и j чисел a_i+b_j , входящих в каждое из подмножеств, принимают все значения от 1 до 10 (ровно по одному разу). Поэтому сумма чисел в каждом из подмножеств одна и та же: $a_1+a_2+\cdots+a_{10}+b_1+b_2+\cdots+b_{10}$.

С. Берколайко

	b_1	b_2	b_3		b_{10}	
a_1	$a_1 + b_1$				$a_1 + b_{10}$	
a_2	$a_2 + b_1$	$a_2 + b_2$	$a_2 + b_3$		$a_2 + b_{10}$	
:	i	÷	i	:::	÷	
a_{10}	$a_{10} + b_1$	$a_{10} + b_2$	$a_{10} + b_3$		$a_{10} + b_{10}$	

1	2	3	4	5	6	7	8	9	10
10	1	2	3	4	5	6	7	8	9
9	10	1	2	3	4	5	6	7	8
8	9	10	1	2	3	4	5	6	7
7	8	9	10	1	2	3	4	5	6
6	7	8	9	10	1	2	3	4	5
5	6	7	8	9	10	1	2	3	4
4	5	6	7	8	9	10	1	2	3
3	4	5	6	7	8	9	10	1	2
2	3	4	5	6	7	8	9	10	1

Рис. 1.

Рис. 2.

М437. Докажите, что нечетное число, являющееся произведением п различных простых множителей, можно представить в виде разности квадратов двух натруальных чисел ровно 2^{n-1} различными способами.

Представлению нечетного числа а в виде разности двух квадратов $a=x^2-y^2$ соответствует его разложение в произведение двух множителей a=(x-y)(x+y). Это соответствие взаимно однозначно: по каждому разложению a=rq (где r<q) из системы уравнений x-y=r, x+y=q однозначно определяются x=(r+q)/2 и y=(q-r)/2 (поскольку а нечетно, оба множителя r и q тоже нечетны). Выясним, сколькими способами можно разложить число $a=p_1p_2\dots p_n$, где p_1,p_2,\dots,p_n различные простые множители, в произведение двух натуральных чисел: a=rq. Из n множителей p_1,\dots,p_n можно 2^n способами выбрать некоторое (в частности, пустое) подмножество - произведение этих множителей даст r, а произведение остальных - q (пустое подмножество соответствует единице). Таким образом, всех представителей a=rq существует 2^n , а таких, в которых r< q, - вдвое меньше: 2^{n-1} .

О. Гончарик, С. Сергей

М438. В данный сегмент вписысываются всевозможные пары касающихся окружностей. Для каждой пары окружностей

через точку каасания про-

Докажем, что все эти прямые проходят через точку M - середину дуги сегмента, дополняющего данный сегмент до круга. Обозначим границу этого круга через γ (рис 3).

Через K обозначим точку пересечения диаметра MN окружности γ с хордой AB данного сегмента. Пусть γ_1 и

 $ede a_1, a_2, \ldots, a_n$ - deŭcmeuтельные, k_1, k_2, \ldots, k_n - натуральные числа) имеет не более п положиетльных корней.

в) Докажите, что уравнение $ax^{k}(x+1)^{p} + bx^{l}(x+1)^{q} +$ $+cx^m(x+1)^r = 1$ (где а, b, с - действительные,

k, l, m, p, q, r - натуральные числа) имеет не более 14 положительных корней.

Рис. 5.

части уравнения
$$(l')$$
 на $(-\overline{a}_n x^k n^{-1})$, получим уравнение $b_1 x^{k_1 - k_n} + b_2 x^{k_2 - k_n} + \cdots + b_{n-1} x^{k_{n-1} - k_n} = 1$ (2)

(имеющее более n-1 положительных корней). Продиффернцировав обе части уравнения (2), получим уравнение $\bar{b}_1 x^{k_1-k_n-1} + \bar{b}_2 x^{k_2-\bar{k}_n-1} + \dots + \bar{b}_{n-1} x^{k_{n-1}-k_n-1} = 0,$

$$+\bar{b}_{n-1}x^{k_{n-1}-k_n-1} = 0, (2')$$

имеющее более n-2 положительных корней. Поделив обе части (2') на $(-\overline{b}_{n-1}x^{k_{n-1}-k_n-1})$, получим уравнение $c_1x^{k_1-k_{n-1}}+c_2x^{k_2-k_{n-1}}+\cdots+c_{n-2}x^{k_{n-2}-k_{n-1}}=0$, (3) имеющее более n-2 положительных корней.

Проделав указанные действия n-1 раз, мы придем к уравнению

$$\alpha x^m = 1, (m = k_1 - k_2),$$

которое, в силу сделанного предположения относительно уравнения (1), должно иметь более одного положительного корня. Но это невозможно; значит, исходное уравнение (1) не может иметь более n положительных корней. Утверждение задачи б) доказано.

Перейдем к задаче в). Нам понадобится следующий факт. Пусть $P_m(x)$ - многочлен от х степени m. Тогда производная выражения $x^k(x+$ $(x^{k-1})^p P_m(x)$ имеет вид $x^{k-1}(x+1)^{p-1} P_{m+1}(x)$, где $P_{m+1}(x)$ - многочлен от x степени x^{k-1}

(к и р - любые действительные числа). Действительно,

$$(x^{k}(x+1)^{p}P_{m}(x))' = kx^{k-1}(x+1)^{p}P_{m}(x) + + px^{k}(x+1)^{p-1}P_{m}(x) + x^{k}(x+1)^{p}P'_{m}(x) = = x^{k-1}(x+1)^{p-1}(k(x+1)P_{m}(x) + pxP_{m}(x) + + x(x+1)P'_{m}(x)) = x^{k-1}(x+1)^{p-1}P_{m+1}(x)$$