Computer Science Center

PLAsTiCC-2018 at Kaggle

Александр Авдюшенко

Задача

Классификация астрономических объектов на 15 классов, одного из которых нет в train (class_99 = неизвестные науке объекты)

Dataset

Количество строк

7.8K – training_set_metadata

1.4M – training_set

3.5M – test_set_metadata

454M – test_set

Обучение 20-30 м

Применение 3-4 ч

FALSE

TRUE

Metadata object_id, координаты, redshift, distmod, target Data

unix_time, flux (brightness) x6

flux_err, detected

#169 solution – wovalur

	private	public	
xgb_lgb_2_blend.csv a month ago by Aleksandr Avdyushenko xgb_lgb_2_blend	1.12522	1.09950	
single_subm_0.656146_2018-11-21-09-33.csv a month ago by Aleksandr Avdyushenko lgb_2_sum_ideas	1.10791	1.08183	
single_subm_0.904055_2018-11-20-05-55.csv a month ago by Aleksandr Avdyushenko lgb_sum_ideas	1.41797	1.38728	
single_subm_0.684427_2018-11-20-04-15.csv a month ago by Aleksandr Avdyushenko xgb_sum_ideas	1.15567	1.13203	
single_predictions.csv a month ago by Aleksandr Avdyushenko lgb_with_time_series	2.06563	1.98198	
single_predictions.csv 2 months ago by Aleksandr Avdyushenko lgb_full	1.79270	1.75516	

	private	public	
single_subm_pred_extragalactic_gen_unk.csv 14 days ago by Aleksandr Avdyushenko pred_1_037_and_extraGal_genUnk	1.03363	1.02195	
single_subm_pred_extragalactic.csv 14 days ago by Aleksandr Avdyushenko pred_1_037_and_extragal	1.04733	1.03429	
single_subm_lgb_genUnknown_extragalactic.csv 14 days ago by Aleksandr Avdyushenko lgb_genUnknown_extragalactic	1.09448	1.07006	
single_subm_lgb_and_gen_unknown.csv 14 days ago by Aleksandr Avdyushenko lgb_and_gen_unknown	1.10202	1.07725	
single_subm_0.652208_2018-12-09-05-14.csv 14 days ago by Aleksandr Avdyushenko lgb_3	1.10568	1.08044	

Submission and Description	Private Score	Public Score	Use for Final Score
025_lgb_1036_075_all_1021.csv 7 days ago by Aleksandr Avdyushenko 025_lgb_1036_075_all_1021	1.02831	1.01663	
single_subm_0.118646_0.872081_2018-12-17-05-26.csv 7 days ago by Aleksandr Avdyushenko 2_lgbm_smote	1.04803	1.03659	

Непроверенные идеи

- catboost
- Istm
- умный blending coof, stacking

В целом очень позитивные впечатления! Тратил примерно 5-10 ч времени в неделю.

Part of #26 solution

Simple RNN baseline (in pytorch), kernel https://www.kaggle.com/johnfarrell/plasticc-2018-emb-gru

Only uses 5 raw series: 'mjd', 'flux', 'flux_err', 'detected', 'passband' (embedding dim is 16) & meta features: 'ddf', 'hostgal_photoz', 'hostgal_photoz_err', 'distmod', 'mwebv'.

The score result is oof0.650/pub0.938/pri0.970 (~ 90 place, bronze).

And it has very low correlation with stats features so stacking works very well with other models using stats features.

Решение	Score	Место
 LightGBM 		
Bayesian approach to removing noise:		
flux = (flux/flux_err**2 + flux_mean/flux_std**2) / (1/flux_err**2 + 1/flux_std **2)		
 adding features based on scaled flux 	0.84070	14
 features to capture the behaviour around the peak 		
• LGBM model inspired by Oliver kernel, feature design and selection, and augmentation		
 magnitudes, peak widths 		
 parametric curve fittings 		
 k-correction 		
• augmented train 10x times using flux variation within normal distribution of the		
corresponding flux_err, similar for photoz value		
 Feature selection: manual approach and eli5 (permutation importance) 	0.82691	13
• 50/50 blend of two LGBM models with slightly modified features and parameters		
Stacking of		
 Igb as in Chia-Ta's kernels with whole series 		
 Igb with features from detected==1 and train for galaxy and ex-galaxy separately 		
 MLP (multilayer perceptron) as in <u>Siddhartha's kernel</u> with same features 	0.80905	8
 RNN feature extraction with attention and pseudo labels 0.95 -> 0.80 		

Решение	Score	Место
NN consisting of 3 components: Meta Encoder - taking as input meta features hostgal photoz, hostgal photoz err, is galactic and summary stats for flux and flux_err as min/max/mean etc. Light Curve Encoder - bidirectional GRU taking as input grouped by day flux, flux_err, detected and time difference (autoencoder on test data) Spectroscopic Redshift Predictor – two fully-connected layers for predicting hostgal specz (on test data too) Outputs of these 3 components are fed into two last fully-connected layers for predicting class probabilities. Augmentations: flux as a Gaussian with standard deviation flux_err, hostgal photoz as a Gaussian with standard deviation hostgal photoz err, randomly dropping observations Top submission is an average of 5 cross-validation runs of 3 neural network variations.	0.80173	6
 Blend of LGB, NN and several stacking models: probing class_99 predict hostgal specz using training set+ test set with hostgalspecz using normal values and log transformed values together on NN Bazin: this is a light curve fit method Log Ensemble: Instead of averaging predictions, I have averaged the logarithm of the predictions because in the end we try to regress the log values 	0.70423	4

Решение	Score	Место
NNs worked much better than LGB models. Final ensemble (stacking) included 9 models, 7 of which were NNs that scored as low as 0.75x individually. The two LGB models were		
much weaker, each scoring about 0.90x, but they did provide a bit of diversity to the		
ensemble Ula ataua la cara a arranga da da da da disa a		
Hostgal <i>specz pseudo-labeling</i>	0.60022	
Flux adjustments Augmentation (a little bit)	0.69933	
(an astronomer studying supernova cosmology)		
 augmented the training set by degrading the well-observed lightcurves in the training 		
set to match the properties of the test set		
 use Gaussian processes to predict the lightcurves 		
• measured 200 features on the raw data and Gaussian process predictions		
 trained a single LGBM model with 5-fold cross-validation 	0.60500	
• lots of different features	0.68503	
 class 99 objects was a weighted average of the predictions for classes 42, 52, 62 and 95 		

«Чуваки усреднили решения топ-5 команд и пробили скор 0.6 на паблике!!» https://www.kaggle.com/c/PLAsTiCC-2018/discussion/75179

We finally reached 0.5x using 1st, 2nd, 3rd, 4th, 5th subs! Reallly Great:)

Submission and Description	Private Score	Public Score	Use for Final Score
last_sub.csv.gz	0.61146	0.59828	
2 minutes ago by mamas			
1st * 0.33 + 2nd * 0.33 + (3rd + 4th + 5th)/3 * 0.33			