

第一章 发动机

第一节 概 述

BYD371QA 具有升功率大、油耗低、噪声小、污染低、结构紧凑等特点。在各种工况下,BYD371QA 发动机均可在最佳状态下工作,可以保证其配载的整车具有可靠的安全性、舒适的驾驶性、最佳的经济性和完美的环保性能。

1.1 主要技术参数

BYD371QA 型发动机的主要技术参数见下表:

TUR 至及初机的主安仅不参数光	T.		
参型数号	BYD371QA		
型式	三缸 、直列 、水冷 、双顶置凸轮轴、12 气门 、四冲程 、闭环电控燃油喷射发动机		
标定功率	50kw (6000r/min)		
最大扭矩/转速	90N•m (4000r/min~4500 r/min)		
最低燃油耗	≤250+10 g/kw • h		
缸径×行程	$71 \text{mm} \times 84 \text{mm}$		
发动机排量	0. 998L		
压缩比	10.5: 1		
气门结构	同步链条驱动,双顶置凸轮轴、12气门		
燃烧室形式	球型		
燃料种类	车用 93#无铅汽油(GB17930-1999)		
怠速稳定速度	(840 ± 50) r/min		
气缸压缩压力	(1.2~1.6) MPa (400r/min)		
供油方式	电控多点顺序燃油喷射		
喷油压力(喷油器前后压 差)	(390~400) kpa		
点火顺序	1—2—3		
点火正时	上止点前 8°~ 12°		
润滑方式	压力、飞溅复合式		
机油	SG级 10W-30(北方春、夏、秋季和南方各季用)		
ΛГАЩ	SG 级 5W-30 (北方冬季用) (GB 11121)		
尾气排放系统	三元催化转换器		
机油压力	300 kPa \sim 490kPa (3000 r/min \pm 50r/min)		
发动机质量	76Kg		
外形尺寸(长×宽×高)	$(525\times575\times720)$ mm		
工况排放	欧 IV		

2.2 维修技术数据

项目	标 准
----	-----

		<i></i>
	气缸直径	$\Phi 71^{+0.02}_{0} \mathrm{mm}$
	气缸圆柱度	0. 008mm
气缸体	气缸体顶面平面度	100: 0.03
	气缸垂直度	Ф 0. 04
	气缸压缩压力	(1.2~1.6) MPa/ (400r/min)
	活塞裙部直径	Ф71 ^{-0.025} _{-0.045} mm(印前)
活塞	活塞销孔直径	Ф18 ^{+0.011} _{+0.005 mm}
	活塞与气缸配合间隙	0.0351~0.055mm
活塞销	活塞销直径	$\Phi18^{-0.002}_{-0.005}~{ m mm}$
.,,,,	与活塞配合间隙	0.007~0.016mm
	—————————————————————————————————————	0.20∼0.35mm
活塞环	第二道气环	0. 35~0. 5mm
开口间隙	油环合件	0.20~0.70mm
	第一道气环	0.03~0.07mm
活塞环侧	隙 第二道气环	0.02~0.06mm
	油环	0.02∼0.17mm
	允许扭曲极限	0.05mm (每 100mm 长)
	允许弯曲极限	0.05mm (每 100mm 长)
连杆	连杆小头孔直径	$\Phi 18^{-0.016}_{-0.029}$ mm
	活塞销与连杆 过盈配合量	0. 011∼0. 027mm
	主轴颈直径	Ф44 _{-0.018 mm}
الح بالد	连杆轴颈直径	Ф40 _{-0.018 mm}
曲轴	轴颈圆柱度	0. 007mm
	曲轴径向圆跳动	0.03mm
	连杆大头轴向间隙	0. 1∼0. 27mm
	曲轴止推间隙	0.02~0.16mm
	飞轮轴向圆跳动	0. 1mm
	气缸盖下平面的平面度	0.05mm
气缸盖	歧管接合面平面度	0.05mm
「 山上 <u>面</u>	气缸盖凸轮轴孔直径	$\Phi 23^{+0.021}_{}$ mm
	气缸盖螺栓长度	122mm
F1 - 4.4 - 1.1	凸轮轴各轴颈直径	$\Phi 23^{-0.040}_{-0.053}$ mm
凸轮轴	凸轮轴颈圆柱度	0.004mm
	凸轮轴颈与轴孔间隙	0.040~0.074mm

	进气凸轮轴轴向间隙	0.1∼0.175mm
	排气凸轮轴轴向间隙	0. 1∼0. 171mm
	进气门直径	27.5 ± 0.125 mm
	排气门直径	23.6 ± 0.125 mm
	气门杆直径	进气门: Φ5 ^{-0.020} mm 排气门: Φ5 ^{-0.030} mm
气门系统	气门导管内径	$\Phi5^{+0.03}_{+0.01}\mathrm{mm}$
	气门杆与气门导管间隙	进气门: 0.03~0.065 mm; 排气门: 0.040~0.075 mm
	 气门弹簧的自由长度	51. 6mm
	门开舆门自田区区	
	进、排气门间隙(冷态)	进气门:0.19 mm 排气门:0.32 mm
调温器开始打开的温度和全开温度		82±2℃,全开 95℃
火花塞的型号及间隙		BYD371QA-3707020, 1.0mm∼1.2mm
	发电机皮带张紧变形量	98N·m, 按下 (7~8) mm

1.3 BYD371QA/QB 发动机拧紧力矩表

· · · · · · · · · · · · · · · · · · ·	紧固部位或零件	螺栓规格	每台个数	紧固力矩(N•m)
1	主轴承盖螺栓	M10×1.5 六角头螺栓	8	60
2	曲轴后端盖	M6×16 六角法兰面螺栓	5	10
3	飞轮螺栓	M10×1.25 六角头螺栓	6	75
4	迷宫盖板	M8×16 六角法兰面螺栓	8	25
5	爆震传感器	M8×30 六角法兰面螺栓	1	20
6	机油压力报警器		1	15
7	连杆螺栓	M8×0.75 梅花头螺栓	6	第一次: 15 第二次: +85°~95°
8	气缸盖螺栓	M9×1.5 内六角花	8	第一次: 32 第二次: +175° ~ 185°
9	螺堵	内六角	1	25
10	凸轮轴承盖 I	M8×45 六角法兰面螺栓	3	15
11	凸轮轴承盖Ⅱ	M6×35 六角法兰面螺栓	12	12
12	凸轮轴链轮	凸轮轴链轮螺栓组合件	2	45
13	链条导向板	M6×12 六角法兰面螺栓	2	10
14	链条张紧板	链条张紧板螺栓	1	20
15	链条张紧器	M6×25 六角法兰面螺栓	2	10
16	机油泵总成	M8×45 六角法兰面螺栓	2	25
		M8×80 六角法兰面螺栓	1	25
		M10×1.25×40 六角法兰面 螺栓	2	40
		M10×1.25×70 六角法兰面 螺栓	6	40
17	曲轴位置传感器	M6×16 六角法兰面螺栓	1	8

	BIDAGIO	人列加		10初十年
18	水泵	M8×20 六角法兰面螺栓	2	25
		M8×45 六角法兰面螺栓	1	25
		M8×50 六角法兰面螺栓	2	25
19	机油收集器	M6×25 六角法兰面螺栓	3	8
	油底壳	M8×16 六角法兰面螺栓	9	25
		M6×12 六角法兰面螺栓	6	10
20	机油滤清器座	M8×80 六角法兰面螺栓	3	25
21	机油尺导管	M6×12 六角法兰面螺栓	1	10
22	线束卡箍支板 I (机油泵)	M6×12 六角法兰面螺栓	1	10
23	水泵进水管	M8×16 六角法兰面螺栓	1	25
		M8 螺母	2	30
24	进气歧管	M8×35 六角法兰面螺栓	2	25
		M8 螺母	2	25
25	进气歧管支板	M8×16 六角法兰面螺栓	2	25
26	油轨	M8×20 六角法兰面螺栓	2	25
27	进气温度压力传 感器	ST5.5×19A 自攻螺钉	1	5
28	节气门	M6×16 六角法兰面螺栓	3	10
29	油门拉索支架	M6×12 六角法兰面螺栓	2	10
30	排气歧管	M8×16 六角法兰面螺栓	2	30
		M8 螺母	2	30
31	排气歧管隔热罩 I	M6×12 六角法兰面螺栓	2	10
32	排气歧管支板	M8×16 六角法兰面螺栓	1	25
		M8 螺母	1	25
33	前氧传感器		1	45
34	调温器盖	M6×30 六角法兰面螺栓	2	8
35	凸轮轴相位传感 器	M6×16 六角法兰面螺栓	1	8
36	水温传感器		1	15
37	气缸盖罩	M6×60 六角法兰面螺栓	2	8
			13	8
38	线卡 I	M6×12 六角法兰面螺栓	1	8
39	线卡II	M6×12 六角法兰面螺栓	1	10
40	线卡Ⅲ	M6×12 六角法兰面螺栓	1	10
41	火花塞	M14×1.25	3	25
42	点火线圈	M6×25 六角法兰面螺栓	3	10
43	线卡支板(进气歧 管)	M6×12 六角法兰面螺栓	1	10
44	碳罐控制阀支架	M6×12 六角法兰面螺栓	1	10
45	曲轴皮带轮	曲轴皮带轮螺栓	1	150
46	水泵皮带轮	M6×12 六角法兰面螺栓	4	15
47	发电机支板焊合	M8×20 六角法兰面螺栓	1	25
	1	· ·	1	

	件			
48	发电机调节架焊 合件	M8×20 六角法兰面螺栓	1	25
49	发电机	M10×1.25×70 六角法兰面 螺栓	1	45
50	线束卡箍支板 II (发电机)	M6×12 六角法兰面螺栓	1	10
51	离合器盖总成	M8×16 六角法兰面螺栓	6	25
52	变速器	M12×1.25×45 六角法兰面 螺栓	5	65
53	变速器盖板	M10×1.25×12 六角法兰面 螺栓	3	25
54	起动机	M10×1.25×60 六角法兰面 螺栓	2	40
55	线卡支架(起动 机)	M6×12 六角法兰面螺栓	1	10
56	螺塞 M12×1.25		1	35
57	内六角锥形螺塞 NPT3/8		1	25
58	机油泵盖	M6×25 六角法兰面螺栓	6	10
		M6×14 十字沉头螺钉	2	8
59	气缸盖(进气歧 管)	双头螺柱 AM8-M8×30-8.8	2	10
60	气缸盖(排气歧 管)	双头螺柱 M8	2	10
61	气缸盖(水泵进水 管)	双头螺柱 M8	2	10

第二节 驱动皮带

2.1 驱动皮带的拆卸安装

- 2.1.1 先松开螺栓 A;
- 2.1.1 再松开螺栓 B;
- 2.1.1 最后松开螺栓 C, 松开发电机, 拆下正时皮带。

安装时,先装上皮带,稍微拧紧螺栓 B,再旋转螺栓 C,调整皮带张紧度,再拧紧螺栓 B,力矩 $25\,\mathrm{N^{\bullet}m}$,最后拧紧螺栓 A,力矩 $45\,\mathrm{N^{\bullet}m}$ 。

安装好后,注意检查皮带有没有错齿情况(如下图),再启动发动机5分钟,检查皮带的张紧度。

2.2 皮带检查

2.2.1 驱动皮带的外观检查

先检查外观,如果磨损严重,则应该更换皮带。

2.2.2 驱动皮带的变形量检查

注意:汽车熄火或发动机停止转动 30 分钟后,检查皮带变形量。

在两个皮带轮中(图中箭头所标位置)加适当的压力 98N,如果变形量超出极限值,则调整至 7~8mm。

曲轴皮带轮

2.2.3 驱动皮带张紧力检查

注意:可以用变形量检查取代张紧力检查,检查 应在发动机冷却后进行。

2.3 驱动皮带调整

先松开螺栓 A,再松开螺栓 B,转动螺栓 C 来调整皮带的张紧度,调整好后拧紧螺栓 B,再拧紧螺栓 A

注意:

如果更换新的驱动皮带或运行不超过 5 分钟的驱动皮带,按新件的标准量调整。

驱动皮带变形量	新 (mm/98N)	旧(mm/98N)
发电机+水泵	7~8	9~11

如果运行超过5分钟的驱动皮带按旧件的标准量

调整。

检查皮带的张紧力和变形量,如果不符合要求, 再重复调整,直到符合要求。

第三节 气门间隙的检查和调整

3.1 气门间隙检查

- 3.1.1 确认发动机已冷却;
- 3.1.2 拆下空气滤清器盖;
- 3.1.3 拆下点火线圈;
- 3.1.4 拆下气缸盖罩;
- 3.1.5 顺时针旋转曲轴皮带轮,让凸轮轴的正时标记对着正上方;

3.1.6 测量气门间隙;

用塞尺检查下图的8个气门间隙,并记录好数据, 以备后用。

3.1.7 再将曲轴旋转 360 度,用塞尺检查下图所示的其余 4 个气门间隙,并纪录好数据以备后用;

提醒:塞尺应该从中间(即火花塞一侧)插入气门间隙中测量。

气门间隙的数值如下表:

进气门: 0.19±0.04 mm

排气门: 0.32±0.04 mm

如果测量数值符合要求,则继续下面步骤;如不符合,则进入第二部分**气门间隙调整**。

3.1.8 装好气缸盖罩;

先在缸盖和正时罩的结合面上涂上密封胶,如下 图所示:

按照下图的顺序安装气缸盖罩, 力矩是8 N·m。

3.1.9 安装点火线圈; 拧紧力矩: 10 N·m

3.2.3 顺时针转动曲轴大约 90 度,防止拆卸凸轮轴的时候,活塞和气门发生碰撞;

3.1.10 装好空气滤清器盖。

3.2.4 卸下正时罩壳上的内六角锥形螺塞;

3.2 气门间隙调整

本程序适合所有需要调整间隙的气门。

3.2.1 确认是否需要调整气门间隙,转动曲轴皮带轮,对好标记;

3.2.2 检查两根凸轮轴链轮上记号是否都对着 正上方,并且对着链条上的有色链片;如果没有对准, 再转动曲轴一圈,直到对准;

3.2.5 用扳手固定进气凸轮轴上的六角方块,松 开进气凸轮轴链轮上的螺栓;

3.2.6 卸下内六角锥形螺塞,从其孔内伸入螺丝刀,顺时针拨动张紧器的锁片,让它解锁并保持这个位置不要松开;

提示: 如果锁片拨不动,用扳手稍微转动凸轮轴 上的六角方块,这样可以使锁片松动。

3.2.7 用扳手转动凸轮轴上的六角方块, 顺时针 转动凸轮轴, 让链条把张紧器的柱塞压进去;

3.2.8 拿出螺丝刀,再用专用工具穿过张紧器锁片的小孔,并固定;

注意:在拿出螺丝刀,插入专用工具时,不能让凸轮轴上的扳手松开,以防张紧器的柱塞又弹出。

完成上述步骤是为了柱塞压回去,为了下面取出链条做好准备,如果没有成功,请从第6步开始重复。

3.2.9 卸下排气凸轮轴链轮上的螺栓,取下排气链轮;

3.2.10 按照下图顺序卸下螺栓,取出凸轮轴承盖:

注意:取出凸轮轴承盖 I 时,可以把进气凸轮轴往发动机前段移动一小段距离,就可以方便取出。

3.2.11 取下凸轮轴;

注意:用一根绳子或者其他工具固定好链条,防

止其掉入正时罩内。

- 3.2.12 取出要更换的挺柱;
- 3.2.13 用千分尺测量挺柱的厚度;

3.2.14 计算新的挺柱厚度,使气门间隙在规定范围内,计算方法如下:

进气门间隙 A=B+ (C-0.19 mm) 排气门间隙 A=B+ (C-0.32 mm)

A	新的挺柱厚度
В	要换下的挺柱厚度
С	测量的气门间隙值

举例:

测量的气门间隙值=0.39 mm 0.39 mm-0.19 mm=0.20 mm (测量的间隙值-标准的间隙值=间隙值的 偏差)

要换下的挺柱厚度 = 5.25 mm

0.20 mm + 5.25 mm = 5.45 mm

(间隙的偏差 + 相应要换下的挺柱厚度 = 换上的挺柱厚度)

所以,选择最靠近 5.45mm 的挺柱使用,因为是奇数,所以选择大一号的挺柱:46号挺柱。

注意: 尽量依据计算出的数据,来挑选最靠近的挺柱。挺柱厚度从 5.00mm-5.60mm 分为了 31 组,每一组厚度相差 0.02mm。

分组号	厚度(mm)	分组号	厚度(mm)	分组号	厚度(mm)
00	5. 00	20	5. 20	40	5. 40
02	5. 02	22	5. 22	42	5. 42
04	5. 04	24	5. 24	44	5. 44
06	5. 06	26	5. 26	46	5. 46
08	5. 08	28	5. 28	48	5. 48
10	5. 00	30	5. 30	50	5. 50
12	5. 12	32	5. 32	52	5. 52
14	5. 14	34	5. 34	54	5. 54
16	5. 16	36	5. 36	56	5. 56
18	5. 18	38	5. 38	58	5. 58
				60	5. 60

- 3.2.15 装上挺柱;
- 3.2.16 装好凸轮轴;
- 3.2.16.1 和拆卸时一样,让曲轴皮带轮在正时位置顺时针再转90度,如果拆卸后曲轴没有转动过,则此步骤可以省略;
- 3.2.16.2 在凸轮轴上、缸盖的凸轮轴轴颈和挺柱的顶部涂上机油;
- 3.2.16.3 和拆卸时的顺序相反,先安装进气凸轮轴,链轮上的标记要和链条上左边的有色标记对齐;

3.2.16.4 按照下图的位置,安装好凸轮轴;

3.2.16.5 按照下图的螺栓拧紧顺序,装好凸轮

轴轴承盖;

注意让轴承盖上的箭头朝向前端。 拧紧力矩: 凸轮轴轴承盖 I: 15 N•m 凸轮轴轴承盖 II: 12 N•m

3.2.16.6 装好凸轮轴链轮; 用工具拧紧排气凸轮轴链轮螺栓,力矩:45 N•m。

3.2.16.7 用扳手顺时针转动进气凸轮轴,张紧左侧的链条,此时把链条套上排气链轮,并使链轮上的标记和链条上的有色标记对齐;

注意:如果标记无法对齐,请用扳手顺时针转动排气凸轮轴,使之对齐。

3.2.16.8 拿开张紧器上的专用工具,拧紧六角 头锥形螺堵;

拧紧力矩: 15 N·m。

3.2.16.9 曲轴皮带轮逆时针转回原位置,即皮带轮的标记对齐正时指针,检查凸轮轴链轮的标记是否正对上方,并且都已经对齐链条上的蓝色标记。

以上步骤也必须保证曲轴链轮和链条始终啮合 在一起。也可以按照第四节的方法拆下前罩壳进行凸 轮轴的拆装。

3.2.17 再次确定气门间隙。

第四节 正时链条

4.1 正时链条的拆卸

4.1.1 拆下下图的螺栓 A 和螺栓 B, 卸下发电机, 拆下多楔带;

4.1.2 按照下图顺序拆下水泵进水软管;

4.1.3 拆下缸盖罩;

4.1.4 拆下曲轴皮带轮;

- 4.1.5 拆下油底壳;
- 4.1.6 拆下机油收集器;
- 4.1.7 拆下下图中所示螺栓,卸下正时罩体,取下主油道上的密封圈:

4.1.8 将锁片按顺时针方向拨动,同时按下柱塞,松开张紧板;

4.1.9 按紧柱塞的同时,把专用工具插入锁片中的小孔,锁定柱塞,不让其弹出;

4.1.10 卸下张紧板的螺栓,取出张紧板,取下 正时链条;

4.1.11 卸下曲轴链轮,注意取下曲轴上的半圆键。

4.2 正时链条的安装

按拆卸相反的顺序安装,应注意以下几点: 4.2.1 安装链条前,和拆卸一样,把专用工具插

入张紧器锁片的小孔,锁定柱塞不让其弹出;

4.2.2 按图所示安装正时链条,正时链条上着色链面朝向外侧,不得反装。把凸轮轴链轮的正时记号对着正上方,并且要把着色的链片分别对准进排气凸轮轴链轮的正时记号,还要将着色的链片对准曲轴链轮上的正时记号;

4.2.3 稍微转动进气凸轮轴,使右边链条张紧,确认链条两侧在导向板和张紧板安装位置,然后取下插入锁片小孔的专用工具,检查张紧器是否自动弹出,压紧张紧板;

4.2.4 相关拧紧力矩数据如下: 导向板螺栓: 10 N•m 张紧板螺栓: 20 N•m

张紧器螺栓: 10 N·m

第五节 火花塞和压缩压力检查

警告:发动机处于热机状态时,机油温度非常高, 在拆卸和安装部件时,小心不要被灼伤。

5.1 火花塞的拆卸/安装

5.1.1 先卸下点火线圈的螺栓,取下点火线圈;

5.1.2 用专用扳手卸下火花塞;

5.1.3 安装顺序和拆卸相反,安装火花塞力矩是 25 N•m,点火线圈力矩是 10 N•m。

5.2 火花塞的检查

5.2.1 用欧姆表,测量如图所示的电阻,检查电阻是否大于 $10~M\Omega$:

如果电阻小于 $10~M\Omega$,则进入第 7~个步骤。

注意: 如果没有欧姆表,则进行以下检查。两种方法选其中一个。

5.2.2 把发动机快速提高到 4000 转/分,运行 5 分钟;

5.2.3 卸下火花塞;

5.2.4 观察火花塞电极;

如果电极上是干的,则说明火花塞正常;如果电极上是潮湿的,则继续进行以下步骤。

5.2.5 检查火花塞上螺纹和绝缘体上是否有损

伤,如果有,请更换火花塞;

推荐的火花塞型号: BYD371QA-3707020

5.2.6 检查火花塞电极间隙:

允许的火花塞电极的间隙是 1.3 mm, 如果超过此数值,则更换火花塞;

而新的火花塞电极间隙要求在 1.0~1.2mm。

注意:如果要调整新的火花塞电极间隙,必须调整侧电极的根部,不能调整侧电极的顶部;而且旧的火花塞是不允许调整的。

5.2.7 清洗火花塞。 如果火花塞有积碳,则用火花塞清洁器清洗。

注意:如果火花塞表面沾有机油,则先用汽油洗干净,然后才能用清洁器。

5.3 压缩压力的检查

- 5.3.1 确定蓄电池已充足电;
- 5.3.2 热机至正常工作温度;
- 5.3.3 熄火并让发动机冷却 10 分钟;
- 5.3.4 按"油路安全检查步骤", 拆下燃油泵继 电器;
 - 5.3.5 断开点火线圈连接器;
 - 5.3.6 拆下火花塞;
 - 5.3.7 在1号缸火花塞孔内接上压力表;
 - 5.3.8 将油门踏板踩到底并启动发动机;
 - 5.3.9 启动发动机并记录气压表最大读数;
- 5.3.10 按上面方法检查每一个气缸压力,如果 一缸或多缸内压力过低,或气缸之间的压差超出规定 太大,则向内滴几滴发动机机油并重新检查压力:

- 5.3.11 如果压缩力升高,则活塞、活塞环、气缸壁可能磨损,需大修;
- 5.3.12 如相邻气缸压力低,说明气缸垫可能已破坏或气缸盖已变形,需要大修:
- 5.3.13 如压缩压力仍很低,说明气门可能卡住或密封面接触不严,需进行大修。

项目	压缩压力 MPa(≥400r/min)
标准值	1.2~1.6
最小极限	1.0
气缸间的压力差	0. 15
最大极限	0.15

- 5.3.14 拿开压力表;
- 5.3.15 装上火花塞,拧紧力矩。

第六节 发动机

6.1 发动机的分解

6.1.1 拆下气缸盖罩组件

按照图示的顺序卸下 13 个螺栓和 2 个螺母,连 同缸盖罩密封圈一同取下气缸盖罩,然后从缸盖罩上 取下密封圈。

6.1.2 卸下机油滤清器

卸下机油滤清器座上的 3 个螺栓,取下机油滤清器和密封圈。

6.1.3 卸下多楔带

- 6.1.3.1 先松开螺栓 A;
- 6.1.3.2 再松开螺栓 B:

6.1.3.3 最后松开螺栓 C,松开发电机,拆下正时皮带。

曲轴皮带轮

6.1.4 卸下发电机

拧下上图中的螺栓 B 和螺栓 A, 卸下发电机。

6.1.5 卸下水泵

拧下水泵上的5个螺栓,取下水泵。

6.1.6 对准正时记号

顺时针旋转曲轴皮带轮,将正时记号对准正时指针。再检查凸轮轴正时记号是否对着正上方,如果不是,再旋转曲轴皮带轮一周,让凸轮轴记号对准正上方。

6.1.7 卸下油底壳

卸下油底壳上的 15 个螺栓,用工具分开油底壳和缸体结合面。

注意不要划伤油底壳边缘。

6.1.8 卸下机油收集器

卸下机油收集器上的3个螺栓,并一同取下机油收集器密封圈。

6.1.9 卸下曲轴皮带轮

先用专用工具固定好曲轴皮带轮,卸下曲轴皮带

轮上的螺栓。

6.1.10 卸下正时罩体

拆下下图中所示螺栓,用螺丝刀小心撬开正时罩 壳,取下主油道上的密封圈。

注意不要划伤正时罩的结合面。

6.1.11 卸下张紧板和链条

6.1.11.1 把锁片按顺时针方向拨动,同时按下柱塞,松开张紧板;

6.1.11.2 按紧柱塞的同时,把专用工具插入锁片中的小孔,锁定柱塞,不让其弹出;

6.1.11.3 卸下张紧板螺栓,取出张紧板,取下正时链条。

6.1.12 卸下曲轴链轮,注意取下曲轴上的半圆键;

6.1.13 临时装上皮带轮螺栓, 顺时针旋转曲轴约 90 度;

这是为了防止在以后的步骤中,由于转动凸轮轴 而产生的活塞和气门干涉。

6.1.14 卸下凸轮轴链轮

用扳手固定凸轮轴,卸下凸轮轴链轮螺栓,拆下链轮。

6.1.15 卸下凸轮轴

按照下图顺序拆卸凸轮轴轴承盖螺栓, 然后卸下 凸轮轴。

6.1.16 卸下挺柱

注意: 卸下挺柱前, 要记录好每个挺柱上的标记。

6.1.17 下气缸盖

6.1.17.1 按照下图的顺序,分几次拧松螺栓;

6.1.17.2 然后卸下气缸盖和气缸垫。

6.1.18 卸下气门

6.1.18.1 用专用工具卸下气门弹簧、气门弹簧 上座和气门锁夹;

6.1.18.2 依次取出气门;

6.1.18.3 然后用尖嘴钳夹出气门油封;

6.1.18.4 取出气门弹簧下座。

6.1.19 清除缸盖表面杂质

用刀片刮干净缸盖表面的密封胶等杂质。

注意:

- 1) 操作时必须带防护眼镜;
- 2) 小心不要划伤缸盖表面;
- 3) 不要让杂质掉入缸盖水套中。

6.1.20、用直尺规和塞尺,检验缸盖下图中3个 表面的平面度;

允许的最大间隙是 0.05mm。如果超过此数值,则需更换缸盖。

6.1.21 拆下迷宫盖板上 8 个螺栓,取下迷宫盖板;

6.1.22 曲轴后端盖;

6.1.22.1 卸下曲轴后端盖上的 5 个螺栓, 取下曲轴后端盖:

6.1.22.2 用螺丝刀卸下曲轴后端盖上的油封。

6.1.23 连杆大头轴颈轴向间隙

用塞尺检查连杆大头轴颈轴向间隙。

标准的间隙值为 $0.1\sim0.27$ mm,允许的最大间隙为 0.35mm。

6.1.24 卸下连杆;

6.1.24.1 卸下连杆盖上2个螺栓,取下连杆盖和连杆瓦;

6.1.24.2 推动活塞、连杆和连杆上轴瓦,使其 穿过缸体,从缸体上面取出;

6.1.24.3 依次取出其它两缸的活塞连杆。

6.1.25 检查曲轴轴向间隙

用一个螺丝刀往一个方向撬曲轴,然后用塞尺插入曲轴的轴向间隙,测量曲轴轴向间隙。

标准间隙是: 0.02~0.16mm

允许最大间隙: 0.30mm

如果间隙大于上述数值,则更换止推片,如果更 换止推片后,测量的间隙还是大于上述数值,则更换 曲轴。

6.1.26 卸下活塞环

用个活塞环撑涨器,取下两道气环和一道油环。

6.1.27 卸下活塞销

用专用工具卸下活塞销,并按照顺序放好活塞、活塞环、活塞销、连杆和连杆瓦。

6.2 发动机的检查

6.2.1 用刀片刮干净油底壳密封面上的胶;

6.2.2 检查正时链条:

观察正时链条是否磨损严重或者有裂纹出现,如果发现,请更换链条,并检测相应的链轮。

6.2.3 检查凸轮轴链轮;

检查凸轮轴链轮是否有磨损或者损坏,如果发现,更换凸轮轴链轮。

6.2.4 检查曲轴链轮;

检查曲轴链轮是否有磨损或者损坏,如果发现, 更换曲轴链轮。

6.2.5 检查链条导向板和链条张紧板:

检查链条导向板和链条张紧板的磨损程度,如果 磨损大于 0.5mm,则必须更换。

6.2.6 检查张紧器:

用手按张紧器的柱塞,如果不能按下,说明张紧 器工作正常:

顺时针旋转张紧器的锁片,并用手按住,再用另一只手按下张紧器柱塞,如果能按下并自动弹出,则说明工作正常;

如果不能正常工作,则必须更换张紧器。

6.2.7 检查凸轮轴

6.2.7.1 测量凸轮轴第三轴颈的圆跳动;

用 2 块 V 形块和千分表测量凸轮轴的第三轴颈。 允许的最大跳动为 0.03mm, 如果超出此数值, 则 更换凸轮轴。

注意: 圆跳动实际上是表盘上读数的一半。

6.2.7.2 测量凸轮轴的桃尖的尺寸:

用千分尺,测量桃尖的高度。如果桃尖高度没有 达到允许的高度,则更换凸轮轴。

	进气凸轮轴(mm)	排气凸轮轴(mm)
标准高度	41. 385-41. 615	40. 895-41. 125
允许高度	41. 44	40.87

6.2.7.3 测量凸轮轴的轴向间隙;

安装好凸轮轴,前后移动凸轮轴,用千分表测量 其轴向间隙。

标准进气凸轮轴轴向间隙是 0.1~0.171mm:排气

凸轮轴轴向间隙是 $0.1\sim0.175$ mm。 允许最大间隙是 0.24mm。

如果测量的间隙超过允许的最大间隙,则检查凸 轮轴和凸轮轴轴承盖,如果凸轮轴轴承盖磨损,则更 换缸盖,如果是凸轮轴止推面磨损,则更换凸轮轴。

6.2.8 清洁气门;

用刷子除掉气门上的积碳。

注意:操作时必须带好防护眼镜。

6.2.9 检查气门弹簧;

检查气门弹簧的垂直度,用直角尺如图示测量, 最大间隙 1.5mm,如果超过此数值,则更换气门弹簧。

用游标卡尺测量气门弹簧的自由高度,标准高度 是 51.6mm。

6.2.10 检查气门;

6.2.10.1 用游标卡尺测量气门的总高,如果高度低于下表中的数值,则更换气门。

1 1 10 1 113%	く匠が入れていい。
	高度
进气门	88.39 mm
排气门	89.11 mm

6.2.10.2 用千分尺测量气门尾部的直径,如果直径低于 $3.9 \sim 4.5 mm$,则更换气门。

6.2.10.3 用游标卡尺测量气门头部边缘的厚度,如果厚度低于下列要求数值,则更换气门。

标准厚度	允许最小厚度

进气门	1.05~1.45 mm	0.7 mm
排气门	1.10~1.50 mm	O. 7 IIIII

6.2.10.4 用游标卡尺测量气门头部的直径,如 不符合下表的数值,则更换气门。

	直径
进气门	$27.35{\sim}27.65$ mm
排气门	$23.45{\sim}23.75 \text{ mm}$

6.2.11 检查气门和气门座圈;

6.2.11.1 在气门的密封面上涂上颜料(普鲁士 蓝或者其它);

- 6.2.11.2 把气门装上缸盖按在气门座圈上,注 意不要旋转;
- 6.2.11.3 检查气门密封面上的颜料是否 360 度 均匀分布,如果不是,则更换气门;
- 6.2.11.4 在新气门上涂上颜料,进行上述操作, 检查气门座圈上的颜料是否 360 度均匀分布,如果不 是,则须修复座圈。

6.2.12 修复气门座圈;

6.2.12.1 用 45 度的刮刀,重新修整气门座圈, 使得座圈密封面的宽度达到要求:

进气门	1.20~1.70 mm
排气门	$1.11 \sim 1.61 \text{ mm}$

注意:修整前,先确定气门座圈的中心位置。

逐渐地减少使用的力量,以免破坏座圈密封面的 表面质量。

- 6.2.12.2 检查气门座圈密封面的位置,让气门的密封面位于座圈密封面的中间位置;
- 6.2.12.3 用 70 度和 20 度的刮刀, 修整 45 度密 封面的宽度和位置, 让气门完全和其密封, 并保证密 封面的宽度;

6.2.12.4 加入研磨剂,用手工研磨气门和气门 座。

6.2.13 检查气缸盖螺栓;

用游标卡尺测量气缸盖螺栓的长度。

最大长度是 123.5 mm。如果超过这个长度,则要更换气缸盖螺栓。

6.2.14 清洁气缸体;

用一块油石或者类似的工具,清理缸体上和正时罩、缸盖、油底壳以及迷宫盖板的结合面。

注意:操作时,必须佩戴防护眼镜; 不要划伤缸体表面; 不要让任何杂质掉入缸体水套中。

6.2.15 检查缸体表面平面度:

用直尺规和塞尺,如下图所示检查缸体上表面的平面度。可以塞进去的塞尺为 0.05mm,如果超过此数值,则更换缸体。

6.2.16 检查气缸内径;

6.2.16.1 用气动量仪在按下图位置测量气缸直径,在 AB 两个深度,分别横向和纵向测量一次,一共测量 4 个位置。

标准尺寸是 71.000~71.013mm, 最大允许尺寸为 71.013mm。

计算出 4 次测量的平均值,如果平均值超过上述数值,则更换缸体。

6.2.16.2 在下图所示位置测量气缸直径,计算 气缸的椭圆度和锥度。

最大的允许椭圆度和锥度是 0.02mm。

计算方法: 椭圆度= A - B 或者 a - b 锥度= A - a 或者 B - b

6.2.17 清洁活塞;

用一个旧的活塞环或者类似工具,清理活塞上的积碳。

注意:操作时,必须佩戴防护眼镜; 不要划伤活塞表面。

6.2.18 检查活塞:

测量活塞的外径,如图示的位置,垂直于活塞销, 离活塞底部 10mm 的位置测量。

标准尺寸是 70.97~70.99 mm, 允许最小尺寸为 70.96mm, 如果测量结果小于上述值, 更换活塞。

6.2.19 检查活塞气缸间隙;

6.2.19.1 用气缸横向直径减去活塞直径

标准间隙: 0.080 ~0.103 mm

最大间隙: 0.103 mm

6.2.19.2 如果计算出的数值大于上述值,则更 换活塞:

活塞选配:查看缸体下平面上表示缸筒直径的一 组数字(有三个数字组成)

1: 代表对应缸筒直径为 $\Phi71_{+0.01}^{+0.02}$ mm,

选装顶部有红色标记的活塞,裙部尺寸为 $\Phi71^{-0.025}_{-0.035}$ mm;

2: 代表对应缸筒直径为 Φ 71 $_0^{+0.01}$ mm

选装顶部有蓝色标记的活塞,裙部尺寸为 $\Phi 71^{-0.035}_{-0.045}$ mm。

例如: 缸体底面标识为"121",那么表示 1、2、3 缸分别选装红色、蓝色、红色的活塞。

6.2.19.3 如果更换活塞后,计算的数值还大于 上述值,有必要更换缸体。

注意:在气缸上部,有一个活塞环往复运动形成的微小台阶,所以必须在磨损最严重的地方测量气缸直径,即微小台阶的下部。

6.2.20 检查活塞环槽间隙;

把一个新的活塞环塞入活塞环槽中,用塞尺检查 活塞环槽中的间隙。

	标准间隙
第一道气环	0.03~ 0.07 mm
第二道气环	0.02~0.06 mm
油环	0.020~0.175 mm

如果测量的间隙大于上述数值,则更换活塞。

6.2.21 测量活塞环的缺口间隙;

6.2.21.1 用活塞把一个活塞环推入气缸 45mm, 并把活塞取出;

6.2.21.2 用塞尺,测量活塞环缺口的间隙。

	标准缺口间隙	允许的最大间 隙
第一道气环	$0.20\sim 0.35$ mm	0.79 mm
第二道气环	0.35~0.50 mm	0.75 mm
油环	0.20~0.70 mm	0.69 mm

如果测量的数值大于上述的最大间隙,则更换活塞环。

如果更换新的活塞环后,测量的数值仍然超过最 大间隙,则更换缸体。

6.2.22 检查曲轴;

6.2.22.1 测量主轴颈的圆跳动;

用 2 块 V 形块和千分表测量曲轴的主轴颈。

允许的最大跳动为 0.03mm,如果超出此数值,则更换曲轴。

注意:圆跳动实际上是表盘上读数的一半。

6.2.22.2 在下图所示的位置,用千分尺测量每个主轴颈的直径;

6. 2. 22. 2. 1 标准尺寸是 43. 982~44. 000 mm,如果测量的尺寸小于上述数值,则更换曲轴。

6.2.22.2.2 检查主轴颈的椭圆度和锥度;

允许最大椭圆度和锥度是 0.03mm。

椭圆度和锥度的计算:

椭圆度: A - B 或 a - b

锥度: A - a 或 B - b

如果计算的结果大于上述数值,则更换曲轴。

6.2.22.3 在下图所示的位置,用千分尺测量每个连杆轴颈的直径;

6.2.22.3.1 标准尺寸是 $39.982\sim40.000$ mm, 如果测量的尺寸小于上述数值,则更换曲轴。

6.2.22.3.2 检查连杆轴颈的椭圆度和锥度; 允许最大椭圆度和锥度是 0.03mm。

椭圆度和锥度的计算:

椭圆度:A-B 或 a - b

锥度: A-a 或 B-b

如果计算的结果大于上述数值,则更换曲轴。

6.2.23 检查曲轴止推片;

用千分尺测量止推片的厚度。

标准厚度: 1.87~1.90mm

如果测量结果和上述数值不符,则更换止推片。

6.2.24 检查连杆;

6.2.24.1 如图所示,用气动量仪测量连杆大头的内径。

标准的内径: 43.000~43.024mm,如果测量结果超过此数值,则更换连杆。

6.2.24.2 用千分尺测量连杆瓦的厚度,标准厚度为1.486~1.502mm,如果测量结果和上述数值不符,则更换连杆瓦。

计算连杆瓦的公式为: X=7-A-B

X	连杆瓦分组号
A	连杆轴颈分组号
В	连杆大头孔分组号

X 共分 5 组,1-5,A 在曲轴的平衡重上,由三个数字组成,B 在连杆体的侧面中缝处。

6.2.25 检查连杆螺栓;

用游标卡尺测量连杆螺栓光杆部分的直径。

最小直径: 6.4mm

如果测量结果小于此数值,则更换连杆螺栓。

6.3 发动机的安装

6.3.1 安装连杆活塞;

6.3.1.1 缓慢加热连杆至80~90°C;

6.3.1.2 将机油涂在连杆小头、活塞销孔和活塞销上:

6.3.1.3 将连杆、连杆盖和活塞上的装配标记朝 向一个方向装配;

6.3.1.4 用专用工具,把活塞销压入连杆;

6.3.1.5 检查连杆是否可以自由摆动。

6.3.2 安装活塞环;

6.3.2.1 先安装油环;

6.3.2.2 再安装第二道和第一道气环;

气环横截面

注意: 区分第一和第二道气环的横截面; 必须要让气环的标记朝上。

6.3.2.3 调整活塞环缺口的位置,如下图所示:

装活塞环时各环开口方向示意图

6.3.3 安装曲轴主轴承瓦片;

6.3.3.1 安装主轴下瓦到主轴承盖上,注意将瓦片上的定位唇对齐轴承盖上的锁定缺口;

选装主轴瓦:

计算主轴瓦的公式为: X=7-A-B

X	主轴瓦分组号
A	主轴颈分组号
В	主轴承孔分组号

X 共分 5 组, 1-5, A 在曲轴的平衡重上,由四 个数字组成, B 在缸体的底面, 同样由四个数字组成。 6.3.3.2 安装主轴上瓦到主轴承座上,注意要将瓦片 上的油孔对齐主轴承座上的油孔。

注意:不要让机油等杂物掉进瓦片背面。

6.3.4 安装曲轴;

6.3.4.1 将2片止推片装入第三档主轴承座上, 并把止推片上的油槽面向外侧;

6.3.4.2 将润滑油涂在主轴上瓦的内表面上,然 后装上曲轴;

将主轴下瓦涂上润滑油,并将轴承盖上的箭头对 着发动机前端,按照数字安装好轴承盖;

6.3.4.3 在螺栓上涂上少量润滑油,按照下图的 顺序,分 2-3 次拧紧主轴承盖螺栓; 力矩: 59 N·m

检查曲轴是否可以自由转动。

6.3.5 安装连杆瓦:

将连杆瓦的分别安装在连杆和连杆盖上,并分别 注意对齐好瓦片的定位缺口。

注意:不要让润滑油等杂物掉入瓦片的背面。

6.3.6 安装连杆;

6.3.6.1 将润滑油涂在下图的几个摩擦表面:

6.3.6.2 把活塞上的标记对着发动机前端,用活塞环压紧器将活塞压入缸体;

6.3.6.3 将连杆盖瓦片上涂上润滑油,把装配标记朝向前端,安装连杆盖;

注意: 不要调换连杆和连杆盖;

不要让装配标记装错方向,以免连杆盖销 不能正确装配。

6.3.6.4 在连杆螺栓和连杆盖螺栓孔上涂少量 润滑油,然后分 $2\sim3$ 步交替拧紧连杆螺栓,力 矩为 $15N\bullet m$ 。

6.3.6.5 在发动机前端方向上,用记号笔在连杆螺栓上画上记号;

6.3.6.6 重新拧紧连杆螺栓, 顺时针旋转螺栓 90 度;

6.3.6.7 检查曲轴是否可以自由转动。

6.3.7 安装曲轴后油封:

6.3.7.1 取一个新的油封,在唇部涂上润滑油; 6.3.7.2 用专用工具把油封压入后端盖,油封高 出后端盖不得超过 0.5mm,油封上表面距后端盖 的深度不得超过 1mm;

6.3.7.3 在下图所示位置涂上密封胶,直径为 3~4mm:

注意: 在涂上胶后 3 分钟内必须安装好后端盖。 6.3.7.4 安装后端盖上的 5 个螺栓,力矩为 10 N^{\bullet} m。

6.3.8 安装迷宫盖板;

6.3.8.1 分别清理迷宫盖板和缸体的密封面; 6.3.8.2 下图所示位置涂上密封胶,宽度为3~4mm;

6.3.8.3 照下图的顺序拧紧 8 个螺栓, 安装好迷宫盖板, 力矩为 25 N•m。

6.3.9 安装气门;

6.3.9.1 放入气门弹簧下座, 共12个;

6.3.9.2 更换新的气门油封,在上面涂上润滑油;

6.3.9.3 用专用工具,把气门油封压在气门导管上;

6.3.9.4 检查油封是否安装到位,测量下图所示的高度;

6.3.9.5 在气门的尾部到 30mm 的气门杆上涂上 润滑油:

6.3.9.6 安装气门、气门弹簧和气门弹簧上座;

6.3.9.7 用专用工具压缩气门弹簧,在气门的尾端安装好气门锁夹;

6.3.9.8 用尖冲头轻轻敲打气门尾部,使其配合得更加良好;

6.3.9.9 在图示的位置涂上润滑油。

6.3.10 安装气缸盖;

6.3.10.1 在缸体上表面放置一块新的气缸垫, 将缸盖缓慢的放在缸体上,注意要轻轻的放下,不要 损坏气缸垫;

6.3.10.2 在气缸盖螺栓上涂上润滑油; 6.3.10.3 按照下图的顺序拧紧气缸盖螺栓,力 矩为 32 N•m。

6.3.10.4 在发动机前端方向上,用记号笔在气缸盖螺栓上画上记号;

6.3.10.5 重新拧紧气缸盖螺栓, 顺时针旋转螺栓 180 度;

6.3.11 安装挺柱;

6.3.11.1 在挺柱周围涂上润滑油;

6.3.11.2 将挺柱放入缸盖内;

6.3.11.3 检查挺柱在缸盖内是否可以自由转动。

6.3.12 安装凸轮轴;

6.3.12.1 将第一缸转到上止点后再顺时针旋转 曲轴约90度,以防后面的操作使活塞和气门干 涉;

6.3.12.2 在图示位置涂抹润滑油;

6.3.12.3 如图所示安装凸轮轴,使得凸轮桃尖 不要顶开气门;

6.3.12.4 按照下图的螺栓拧紧顺序,装好凸轮 轴轴承盖;

拧紧力矩: 凸轮轴轴承盖 I: 15 N•m 凸轮轴轴承盖 II: 12 N•m

注意: 让轴承盖上的箭头朝向前端; 轴承盖必须按照图示的位置安装。 6.3.12.5 安装好凸轮轴链轮;

6.3.12.6 用扳手固定好凸轮轴,再用力矩扳手 拧紧凸轮轴链轮螺栓,力矩: 45 N•m;

6.3.12.7 检查气门间隙;

参照**第一章第三节**。

6.3.13 安装链条;

6.3.13.1 将半圆键放入曲轴的键槽中;

6.3.13.2 将曲轴链轮上的槽对准半圆键,装上曲轴;

6.3.13.3 安装好链条导向板; 导向板螺栓拧紧力矩: 10 N•m

6.3.13.4 按图所示安装正时链条,正时链条上着色链面朝向外侧,不得反装。并且要把蓝色的链片分别对准进排气凸轮轴链轮的正时记号,还要将黑色的链片对准曲轴链轮上的正时记号;

6.3.13.5 安装链条张紧板;

拧紧力矩: 20 N•m

6.3.13.6 缓慢逆时针转动进气凸轮轴,使得张 紧板一侧松弛,(7)然后安装张紧器;

拧紧力矩: 10 N·m

注意: 张紧器要保持拆卸时状态,即专用工具还插在锁片中,如果工具已经取出,安装前先插入专用工具。

6.3.13.8 取出张紧器上的工具,转动曲轴2周,检查张紧器是否工作良好;

注意:转动2周后,让凸轮轴链轮上的标记正对上方。

6.3.14 安装正时罩;

6.3.14.1 在曲轴前油封上涂上润滑油; 6.3.14.2 轻轻敲打油封,让其上表面最高不得 高于正时罩表面 0.5mm,最深不得低于 1mm;

6.3.14.3 在发动机前端的缸体缸盖结合面上,涂上密封胶,宽度在4.5-5.5mm之间;

6.3.14.4 正时罩的密封面上涂平面密封胶,宽度和位置图示要求操作;

6.3.14.5 正时罩螺栓的安装,按照下图顺序操作;

按照图示的顺序安装螺栓,并按照下面的数据拧 紧:

拧紧力矩: 螺栓 9、10、和螺栓 11 为 25 N•m 其他螺栓: 40 N•m

6.3.14.6 清理多余的密封胶。

6.3.15 安装水泵;

6.3.15.1 先拧紧图示的螺栓,注意垫片的安装 方向,不能装反。

拧紧力矩: 30 N•m

6.3.15.2 安装好进水软管,如图示位置安装传动式软管卡箍。

然后拧紧下方的螺栓。

拧紧力矩: 25 N·m

6.3.15.3 安装水泵时,注意按照下图的螺栓安装顺序。

拧紧力矩: 25 N·m

6.3.15.4 安装水泵连接盘时,用专用工具固定位置,然后拧紧螺栓。

拧紧力矩: 15 N·m

6.3.15.5 安装完成后,注意检查有没有漏水现象。

6.3.16 安装曲轴皮带轮;

用工具固定好皮带轮,拧紧皮带轮螺栓,力矩: $150~N^{\bullet}m$ 。

6.3.17 安装机油收集器;

6.3.17.1 安装一个新的机油收集器垫圈;

6.3.17.2 安装机油收集器,拧紧螺栓,力矩为10 N•m。

6.3.18 安装油底壳;

6.3.18.1 在油底壳螺栓孔内侧周边上加注连续的密封胶,并使端部重叠。并按照下图的宽度涂胶,虚线部分 5mm,实线部分 3-4mm。图中左上角标识处的六角法兰面螺栓 M6×12 在安装时需要在螺纹中部涂一圈厌氧型管螺纹密封胶,胶体覆盖 2~3 扣螺纹。

6.3.18.2 按照下图的顺序安装螺栓;

6.3.18.3 其他螺栓,可以任意顺序拧紧。 油底壳的螺丝力矩按下图拧紧。

力矩: 螺栓 A 为 25 N m

螺栓 B 为 10 N•m

6.3.19 安装机油滤清器;

6.3.19.1 安装机油滤清器座垫圈到正时罩上, 然后安装机油滤清器座;

6.3.19.2 拧紧机油滤清器座上3个螺栓,力矩是:25N•m。

6.3.20 安装多楔带;

6.3.20.1 先装上多楔带;

6.3.20.2 再安装发电机。

先装上皮带,稍微拧紧螺栓 B,再旋转螺栓 C,调整皮带张紧度,再拧紧螺栓 B,力矩 35N•m,最后拧紧螺栓 A,力矩 50 N•m。

- 6.3.21 安装缸盖罩。
- 6.3.21.1 将气缸盖罩垫圈装入缸盖罩的垫圈槽中;
- 6.3.21.2 先在缸盖和正时罩的结合面上涂上密封胶,如下图所示;

6.3.21.3 按照下图的顺序安装气缸盖罩,力矩 是 $8~N^{\bullet}m$ 。

