Homework 4

Submission Deadline: March 31, 2017 11:59 PM

Instructions:

- i) Submit on Blackboard before the mentioned deadline.
- ii) No collaboration is allowed for any problems.
- iii) The points allotted for each problem is noted alongside.
- iv) You can use any software to draw the graphs.
- v) For MATLAB problems, submit both code as well as required figure on Blackboard.
 - 1. Chapter 12 Problem 10 (15points) HINT:

Here $y_r(t)$ is a DSB-SC signal and $y_d(t)$ is the demodulated signal. Plot the frequency domain representation of $y_d(t)$ to get $y_f(t)$ and calculate the signal power.

- 2. Consider a message signal $x(t) = 3sinc^2(4t)$. This message signal is used to modulated carrier signal $c(t) = 3cos(800X10^3\pi t)$ to form a DSB-TC signal. Find and plot the modulated DSB-TC signal in both frequency and time domain. (15 points)
- 3. Consider a message signal $x(t) = 2cos(3000\pi t)$ is modulating a carrier signal $c(t) = cos(3X10^6\pi t)$ using
 - i) Phase Modulation, $k_p = 0.001 \, radian/Volt$
 - ii) Frequency Modulation, $k_f = 2\pi X 10^5 Hz/Volt$

In both cases, find and plot the modulated output signal in both time and frequency domain. (20 points)

MATLAB Problem

4. Using MATLAB, find the DSB-SC, DSB-TC and FM signals for carrier signal $c(t) = \cos(2X10^6\pi t)$ for message signal x(t) which is periodic with period 4 and defined over a period as,

$$x(t) = \begin{cases} 0,0 < t \le 10\mu s \\ 1,10\mu s < t \le 20\mu s \\ 2,20\mu s < t \le 30\mu s \\ 3,30\mu s < t \le 40\mu s \end{cases}$$

Choose for FM $k_f = 2\pi X 10^5 \, Hz/Volt$, and for DSB-TC $m = 0.5, \mathrm{K}{=}1.$

Plot the time domain and frequency domain plots for

- i) Message signal
- ii) DSB-SC
- iii) DSB-TC
- iv) FM

Plot the time domain plots for 4 periods i.e. $160 \mu s$.

Use MATLAB's fft function to find the frequency plot.

Submit relevant codes and plots. (10+10+15+15 points)