Department of Statistics and Data Science at SUSTech

MAT7035: Computational Statistics

Tutorial 6: Optimization (III): General MM Algorithms

F. The MM Algorithms

F.1 Definition

(b) Assume that $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ minorizes $\ell(\boldsymbol{\theta}|Y_{\text{obs}})$ at $\boldsymbol{\theta}^{(t)}$, i.e.,

$$Q(m{ heta}(m{ heta}^{(t)}) \;\; \leqslant \;\; \ell(m{ heta}|Y_{
m obs}), \quad orall m{ heta}, \; m{ heta}^{(t)} \in m{\Theta} \quad ext{and}$$

$$Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) = \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}).$$

- (b) If we could find such a real value function $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ depending on $\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)} \in \boldsymbol{\Theta}$, where $\boldsymbol{\theta}^{(t)}$ denotes the t-th approximation of the MLE $\hat{\boldsymbol{\theta}}$,
- (c) then by maximizing $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ instead of the target log-likelihood function $\ell(\boldsymbol{\theta}|Y_{\text{obs}})$, we obtain the maximizer of $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ as

$$\boldsymbol{\theta}^{(t+1)} = \arg\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q(\boldsymbol{\theta} | \boldsymbol{\theta}^{(t)}). \tag{6.1}$$

F.2 The ascent property of the MM algorithm

(a) Let $\boldsymbol{\theta}^{(t+1)}$ be defined in (6.1), then we have

$$\ell(\boldsymbol{\theta}^{(t+1)}|Y_{\text{obs}}) \geqslant Q(\boldsymbol{\theta}^{(t+1)}|\boldsymbol{\theta}^{(t)}) \geqslant Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) = \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}).$$

- (b) An increase in $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ forces an increase in $\ell(\boldsymbol{\theta}|Y_{\text{obs}})$.
- (c) This ascent property guarantees a monotone convergence of an MM algorithm.

G. The Quadratic Lower-Bound (QLB) Algorithm

G.1 Definition

- (a) The QLB algorithm is a special case of MM algorithms and can be used to find the MLE $\hat{\boldsymbol{\theta}}$.
- (b) The key for the QLB algorithm is to find a positive definite matrix $\mathbf{B} > 0$ not depending on $\boldsymbol{\theta}$ such that

$$\nabla^2 \ell(\boldsymbol{\theta}|Y_{\text{obs}}) + \boldsymbol{B} \geqslant 0 \quad \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}.$$

(c) The minorizing function is defined by

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) - \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \boldsymbol{B} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)}).$$

(d) Let

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} Q(\boldsymbol{\theta} | \boldsymbol{\theta}^{(t)}).$$

(e) To maximize $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$, we let

$$\begin{split} \nabla Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) &= \nabla \Big[\ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\top} \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) \\ &- \frac{1}{2}(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\top} \boldsymbol{B}(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)}) \Big] \\ &= \nabla \big[\ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}})\big] + \nabla \big[(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\top} \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}})\big] \\ &- \frac{1}{2} \nabla \big[(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\top} \boldsymbol{B}(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})\big] \\ &= \mathbf{0} + \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) - \frac{1}{2} \big[2\boldsymbol{B}(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})\big] \\ &= \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) - \boldsymbol{B}(\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)}) = \mathbf{0}, \end{split}$$

and obtain

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \boldsymbol{B}^{-1} \nabla \ell(\boldsymbol{\theta}^{(t)} | Y_{\text{obs}}).$$

G.2 Proving that $Q(\theta|\theta^{(t)})$ minorizes $\ell(\theta|Y_{\text{obs}})$ at $\theta^{(t)}$

We only need to prove that

Proof: By the second-order Taylor's expansion of $\ell(\boldsymbol{\theta}|Y_{\text{obs}})$ in a neighborhood of $\boldsymbol{\theta}^{(t)}$, we have

$$\begin{split} \ell(\boldsymbol{\theta}|Y_{\mathrm{obs}}) &= \ell(\boldsymbol{\theta}^{(t)}|Y_{\mathrm{obs}}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\mathrm{obs}}) \\ &+ \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \nabla^2 \ell(\boldsymbol{\theta}^*|Y_{\mathrm{obs}}) (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)}) \\ &\geqslant \ell(\boldsymbol{\theta}^{(t)}|Y_{\mathrm{obs}}) + (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} \nabla \ell(\boldsymbol{\theta}^{(t)}|Y_{\mathrm{obs}}) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\mathsf{T}} (-\boldsymbol{B}) (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)}) \\ &= Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}), \end{split}$$

for all $\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)} \in \boldsymbol{\Theta}$ and some point $\boldsymbol{\theta}^*$ between $\boldsymbol{\theta}$ and $\boldsymbol{\theta}^{(t)}$. Let $\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}$, we obtain $Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) = \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}})$. Therefore, $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ minorizes $\ell(\boldsymbol{\theta}|Y_{\text{obs}})$ at $\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}$.

H. EM Algorithm is a Special Case of MM Algorithms

For any EM algorithm, let

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \int_{\mathbb{Z}} \ell(\boldsymbol{\theta}|Y_{\text{obs}}, \boldsymbol{z}) \times f(\boldsymbol{z}|Y_{\text{obs}}, \boldsymbol{\theta}^{(t)}) \, \mathrm{d}\boldsymbol{z}.$$

Define

$$Q^*(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) + \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) - Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$$

as the surrogate function of an MM algorithm. We can prove

(a)
$$Q^*(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$$
 minorizes $\ell(\boldsymbol{\theta}|Y_{\text{obs}})$ at $\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}$.

(b) Maxmizing $Q^*(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ with respect to $\boldsymbol{\theta}$ is equivalent to maxmizing $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$.

Proof: (a) When proving the ascent property of an EM algorithm, we obtain the result for all $\boldsymbol{\theta}$ and $\boldsymbol{\theta}^{(t)}$,

$$\ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) - Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) \leqslant \ell(\boldsymbol{\theta}|Y_{\text{obs}}) - Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$$

and $\ell(\boldsymbol{\theta}|Y_{\text{obs}}) - Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)})$ attains its minimum at $\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)} \in \boldsymbol{\Theta}$. Then

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) + \ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}}) - Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)}) \leqslant \ell(\boldsymbol{\theta}|Y_{\text{obs}}),$$

i.e., $Q^*(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) \leqslant \ell(\boldsymbol{\theta}|Y_{\text{obs}})$ for any $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and they are equal when $\boldsymbol{\theta} = \boldsymbol{\theta}^{(t)}$.

(b) Note that
$$\ell(\boldsymbol{\theta}^{(t)}|Y_{\text{obs}})$$
 and $Q(\boldsymbol{\theta}^{(t)}|\boldsymbol{\theta}^{(t)})$ are independent of $\boldsymbol{\theta}$.

Example T6.1 (Logistic regression). Let $Y_{\text{obs}} = \{y_i\}_{i=1}^m$ and consider the following logistic regression

$$y_i \stackrel{\text{ind}}{\sim} \text{Binomial}(n_i, p_i),$$

$$\operatorname{logit}(p_i) = \operatorname{log}\left(\frac{p_i}{1-p_i}\right) = \boldsymbol{x}_{(i)}^{\top}\boldsymbol{\theta}, \quad 1 \leqslant i \leqslant m,$$

where y_i denotes the number of subjects with positive response in the *i*-th group with n_i trials, p_i the probability of a subject in the *i*-th group with positive response, $\boldsymbol{x}_{(i)}$ covariates vector, and $\boldsymbol{\theta}_{q\times 1}$ unknown parameters. Use the QLB algorithm to find the MLE of $\boldsymbol{\theta}$.

<u>Hint</u>: Define a positive definite matrix B > 0 and set $\theta^{(t+1)} = \theta^{(t)} + B^{-1}\nabla \ell(\theta^{(t)}|Y_{\text{obs}})$.

Solution: The log-likelihood function of θ is

$$\ell(\boldsymbol{\theta}|Y_{\text{obs}}) = \sum_{i=1}^{m} \log \binom{n_i}{y_i} + \sum_{i=1}^{m} [y_i \log(p_i)] + \sum_{i=1}^{m} [(n_i - y_i) \log(1 - p_i)],$$

where

$$p_i = \frac{\exp[\boldsymbol{x}_{(i)}^\top \boldsymbol{\theta}]}{1 + \exp[\boldsymbol{x}_{(i)}^\top \boldsymbol{\theta}]}.$$

Then the score vector is

$$\nabla \ell(\boldsymbol{\theta}|Y_{\text{obs}}) = \sum_{i=1}^{m} (y_i - n_i p_i) \boldsymbol{x}_{(i)}$$

and the observed information matrix $I(\theta|Y_{\text{obs}})$ is

$$-\nabla^2 \ell(\boldsymbol{\theta}|Y_{\text{obs}}) = \sum_{i=1}^m n_i p_i (1 - p_i) \boldsymbol{x}_{(i)} \boldsymbol{x}_{(i)}^{\top}.$$

Let

$$egin{array}{lcl} oldsymbol{X} &=& (oldsymbol{x}_{(1)},\ldots,oldsymbol{x}_{(m)})^{ op}, \ oldsymbol{y} &=& (y_1,\ldots,y_m)^{ op}, \ oldsymbol{N} &=& \operatorname{diag}(n_1,\ldots,n_m), \ oldsymbol{p} &=& (p_1,\ldots,p_m)^{ op}, \quad p_i = rac{\exp[oldsymbol{x}_{(i)}^{ op}oldsymbol{ heta}]}{1+\exp[oldsymbol{x}_{(i)}^{ op}oldsymbol{ heta}]} \ oldsymbol{P} &=& \operatorname{diag}(p_1(1-p_1),\ldots,p_m(1-p_m)). \end{array}$$

Then

$$abla \ell(\boldsymbol{\theta}|Y_{\mathrm{obs}}) = \boldsymbol{X}^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{N}\boldsymbol{p}) \quad \text{and} \quad -\nabla^{2}\ell(\boldsymbol{\theta}|Y_{\mathrm{obs}}) = \boldsymbol{X}^{\mathsf{T}}\boldsymbol{N}\boldsymbol{P}\boldsymbol{X}.$$

Note that $p_i(1-p_i) = -(p_i - \frac{1}{2})^2 + \frac{1}{4} \leqslant \frac{1}{4}$, then

$$-\nabla^2 \ell(\boldsymbol{\theta}|Y_{\text{obs}}) = \sum_{i=1}^m n_i p_i (1-p_i) \boldsymbol{x}_{(i)} \boldsymbol{x}_{(i)}^{\top} \leqslant \frac{1}{4} \sum_{i=1}^m n_i \boldsymbol{x}_{(i)} \boldsymbol{x}_{(i)}^{\top}.$$

Define $\boldsymbol{B} = \frac{1}{4} \sum_{i=1}^{m} n_i \boldsymbol{x}_{(i)} \boldsymbol{x}_{(i)}^{\top} = \frac{1}{4} \boldsymbol{X}^{\top} \boldsymbol{N} \boldsymbol{X}$ so that $\nabla^2 \ell(\boldsymbol{\theta} | Y_{\text{obs}}) + \boldsymbol{B} \geqslant 0, \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}$. Therefore, we obtain

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + 4(\boldsymbol{X}^{\top} \boldsymbol{N} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} (\boldsymbol{y} - \boldsymbol{N} \boldsymbol{p}^{(t)}),$$

where

$$p_i^{(t)} = \frac{\exp[\boldsymbol{x}_{(i)}^{\!\top}\boldsymbol{\theta}^{(t)}]}{1 + \exp[\boldsymbol{x}_{(i)}^{\!\top}\boldsymbol{\theta}^{(t)}]}$$

is the *i*-th component of $p^{(t)}$ and $1 \leqslant i \leqslant m$.