AFRL-ML-WP-TR-1998-4134

PROCEEDINGS OF THE 1997 USAF AIRCRAFT STRUCTURAL INTEGRITY PROGRAM CONFERENCE

VOLUME II

ASIP

Gary K. Waggoner AFRL/Materials and Manufacturing Directorate Wright-Patterson AFB, Ohio John W. Lincoln ASC/Deputy for Engineering Wright-Patterson AFB, Ohio James L. Rudd AFRL/Air Vehicles Directorate Wright-Patterson AFB, Ohio

USAF Aircraft Structural Integrity Program Conference Hyatt Regency San Antonio San Antonio, Texas

AUGUST 1998

FINAL REPORT FOR PERIOD 2-4 DECEMBER 1997

Approved for public release; distribution unlimited

MATERIALS AND MANUFACTURING DIRECTORATE AIR FORCE RESEARCH LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT-PATTERSON AFB OH 45433-7734 19980929 090

NOTICE

When government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility or any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASC/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

GARY K. WAGGONER

Chief

Systems Support Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify AFRL/MLS Bldg 652, 2179 Twelfth St Ste 1, Wright-Patterson AFB, Ohio 45433-7718 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave bla	ank) 2. REPORT DATE	3. REPORT TYPE AND	DATES COVERED
	August 1998	Final	, 2-4 December 1997
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Proceedings of the 1997 USAF	Aircraft Structural Integrity Pro	gram Conference,	PE 62102F
Volume II			PR 4349
		,	ГА ТЕ
6. AUTHOR(S)			WU CA
1-Gary K. Waggoner, AFRL/MI	LS, Compiler & Editor; 2-John	W. Lincoln, ASC/ENF;	,, o ch
and 3-James L. Rudd, AFRL/VA	AS, Editors		
•	,		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
1-Materials & Manufacturing D	irectorate and 3-Air Vehicles D	irectorate, Air Force	REPORT NUMBER
Research Laboratory; 2-Aeronau			
of the Air Force Materiel Comm			
of the first of occurrence commi	idio, might i decorson i ii b o i	1 15 155	
9. SPONSORING/MONITORING A	GENCY NAME(S) AND ADDRESS(E	S) .	10. SPONSORING/MONITORING
Materials & Manufacturing I	Directorate		AGENCY REPORT NUMBER
Air Force Research Laborator			
Air Force Materiel Command			AFRL-ML-WP-TR-1998-4134
Wright-Patterson Air Force B			
POC: Gary K. Waggoner, AF			
11. SUPPLEMENTARY NOTES	10,1120,70, 200 2202		
THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER			
See AFRL-ML-WP-TR-1998-	-4133 for Volume I		
12a. DISTRIBUTION AVAILABILITY	STATEMENT	· · · · · · · · · · · · · · · · · · ·	12b. DISTRIBUTION CODE
Approved for public release; dis			indicated from Cope
Approved for public release, dis	dibution is diffinited.	·	
13. ABSTRACT (Maximum 200 wo	vrdel	L	
		al Integrity Program Con	ference held at the Hyatt Regency
<u>-</u>	~		sored by the Aeronautical Systems
		-	· · · · · · · · · · · · · · · · · · ·
<u> </u>			nd Materials and Manufacturing
			rcraft Structural Integrity Branch
(SA-ALC/LADD). This confere	-		
communicate with each other an	nd to exchange views on how to	improve the structural int	egrity of military weapon systems.
Sessions were primarily focused	on analysis and testing, engine	structural integrity, struct	tural materials and inspections,
structural repair, and force mana	agement. This year, as in previous	ous years, our friends fron	n outside the U.S. borders provided
			cipated this conference will include
their contributions in the agenda			1
mon commonder in the agono	, 0		
*			
14. SUBJECT TERMS			15. NUMBER OF PAGES
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC. OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT
		1	
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	SAR

VOLUME II

SESSION VII - FATIGUE AND CRACK GROWTH	
Damage Tolerance Characterization of Thick, Wrought Aluminum Products With and Without Stress Relief: Focus on Toughness and Crack Growth Characteristics to Capture Advances in Forging Stress Relief Technology	575
The Effect of Prior Corrosion Damage on the Short Crack Growth Rates of Two Aluminum Alloys	601
Short and Long Fatigue Cracks: Analysis and Implications to Life Prediction	619
SESSION VIII - FATIGUE AND CRACK GROWTH	
Fretting as a Fatigue Crack Nucleation Mechanism - A Close-up View	651
An Evaluation of Empirical and Analytical Models for Predicting Fatigue Crack Propagation Load Interaction Effects	665
A New Concept to Describe Load Interaction Effects in Fatigue Crack Propagation	689
Determining Flight Loads and Crack Growth Rates from Failed Aircraft Structural Components	715
Full-Scale Testing of Fuselage Panels Obtained from Retired Aircraft	731
SESSION IX - ANALYTICAL METHODS	
Evaluation of Progressive Fracture in Woven and Non-woven Composite Panels	747
New Generation Design and Analysis Procedures for Bonded Composite Repairs	771
Assessment of Analysis Methodologies for Predicting Fatigue Crack Growth and Residual Strength of Aging Aircraft	801
Corrosion and Widespread Fatigue Damage of Critical Aircraft Structure	843
SESSION X - ANALYTICAL METHODS	
Modeling Fastened Structural Connections Using Finite Elements	891
Development of Smart Aircraft Bolts	913
Preliminary Design with Damage Tolerance Constraints Using ASTROS	943

<u>LUNCH PRESENTATION</u>
B-1B Bomber Horizontal Stabilizer Substructure Failures
SESSION XI - DYNAMICS
Development of Dynamic Models for the B-1B Horizontal Stabilizer to Predict Responses for Engine Takeoff Noise
Recent Technology Enhancements in the Helicopter Structural Integrity Computer Program 1029 D. Friend and T. Christian
SESSION XII - FORCE MANAGEMENT
Detecting High Cycle Fatigue with User Defined Regime Recognition
The ABCs of NDE Development and Transition for Aging Aircraft
C-17A Individual Aircraft Tracking Program
The C-141 Electronic Flight Usage Log (AFTO 451)
FAA MSR/LSR Flight Inspection Fleet Aircraft Structural Integrity Program
ATTENDANCE LIST

SESSION VII FATIGUE AND CRACK GROWTH

Chairman - J. Gallagher
Air Force Research Laboratory

Damage Tolerance Characterization of Thick, Wrought Aluminum Products with and without Stress Relief:

to Capture Advances in Forging Stress Relief Technology Focus on Toughness and Crack Growth Characteristics

R. J. Bucci⁽¹⁾, R. W. Bush⁽¹⁾ and G. W. Kuhlman⁽²⁾

Aluminum Company of America (1) Alcoa Technical Center, Alcoa Center, PA 15069

(2) Alcoa Forging Division, Cleveland, OH 44105

The 1997 USAF Aircraft Structural Integrity Program Conference December 2-4, 1997 San Antonio, TX

Abstract

for many airframe structural components embodying a heavy/thin cross-section mix. In recent efforts to lower their steps, less shimming, reduced flow times) and operation (root cause fix to unanticipated stress corrosion problems). Heat treated, high strength aluminum alloy die-forgings have traditionally been a preferred starting stock material perception that forgings are less predictable than plate in their performance, prompted development of new Alcoa forging stress relief improvement offers significant cost saving potential in both manufacturing (fewer machining quench technology, that when effectively combined with cold compressive stress relief, yields much improved forging machining performance with residual stress levels on par with those of stretched plate. The resulting warpage/distortion behavior in contrast to that of machined plate. This, coupled with an almost universal costs, manufacturers have become increasingly critical of forging's sometimes excessive machining

non-conservative property inflation. Consequently, advance of promising new forging stress relief technology has been impeded by the illusion that stress relieved forging toughness and crack growth properties are inferior to the erroneously skew experimental toughness and crack growth property measurements. Evidence is presented that deep-slotted fracture mechanics type specimens, excised from forgings without stress relief, commonly display Residual stress, when present, increases data scatter and, as extensively illustrated in this work, can also erroneously skewed property values historically associated with non-stress relieved forgings.

property characterization is also presented so that advances in forging residual stress relief technology can be more routinely qualified and exploited. The effect of residual stress on transfer between coupon and full component test presented with validation examples. A recommended method to remove residual stress bias from forging fracture The paper describes cause, distribution and effects of quenching induced residual stress on damage tolerance assessment of safe-crack growth forged parts. Guidelines to minimize property test/evaluation problems are results is also discussed

Advantage of net shape parts (minimal machining, favorable buy to fly ratio)

Thoroughly wrought microstructure (imparts superior fatigue resistance)

Multi-directional mechanical work (improves property balance - all directions)

Contour-following grain flow (improves corrosion and crack growth resistance)

• Manufacturers are increasingly challenging forging use.

Adverse machining cost impact of residual stress induced warpage problem

Recent advances in thick plate quality/performance offer attractive alternative

Almost universal perception that forgings are less predictable than plate

Forgings have not stood idle.

· Advances in lead/flow times

- Breakthrough developments in residual stress relieval

- Concurrent engineering methods

 Residual stress complexities in DADT characterization are presently impeding advanced forging technology approval.

Thermal quench residual stresses are typically compressive at the surface and tension in the interior.

Residual stress distribution of Al 7075 cylinder quenched in cold water spray

residual stress magnitude and range. Quench rate can appreciably impact

In general, the faster the quench, the greater the residual stress.

Effect of quench water temperature on 7XXX Al forging residual stress

Advanced stress relief technology is now commercialized to alleviate forging machining distortion and fit-up related SCC problems.

Contrast in machining performance of aluminum 7050-T74xx die-forging Alcoa quench, water quench, compressive stress relief in finish dies

demonstrated aluminum forging residual stress levels on par with those of stretched plate. Coupling new Alcoa quench technology with cold compression stress relief has

Compression Stress Relief (2 methods)

- Restrike in cold finish die (-Txx54)
- Involves nominal 1% mechanical stretch with no reshaping process
- Avoids additional die cost
- Cold work with separate die (-Txx52)
- Involves compression and some reshaping to achieve 1 to 5% permanent set
- Achieves tighter dimensional tolerance
- Allows tailored/more complete stress relief

Illustration of mechanical stretch associated with cold restrike

Thick/shaped product evaluations demand caution to when residual stresses are involved.

- Test coupons removed from unfully stress relieved parts contain residual stress.
- Coupon isolation partially relieves the original stress, and redistributes the profile of that
- While residual stress magnitude within the excised coupon is smaller than that of its host, the potential for testing error can still be significant.
- Residual stress induced testing bias confounds material comparison.
- When bias occurs, the test result is often inflated (i.e., exaggerates material capability).
- Statistical data pooling, however, may yield overly conservative property allowables because of
- Review of the literature reveals the problem is widespread.
- The problem has far-reaching implications on DADT approvals for a number of promising cost-saving technologies.
- New stress relief tempers (e.g., -T7454 & -T7452).
- Net & near net shapes (e.g., forgings, extrusions, castings, spray form).
- Monolithic structure (next generation air vehicles).
- Forging retrofit in older aircraft (e.g., replace 7075 & 7079-T6 with new 7xxx-T7x).

damage tolerance property testing has been a recurrent problem for years. Residual stress induced bias in

- Inaccurate R&D conclusions (lost time & resources).
- Failed scale-up efforts (unfulfilled promise of initial coupon results)
- Wasted time and effort in certification and process surveillance testing.
- Inconsistencies that kill promising technologies at early stage.
- Corrupted data bases (potential for non-conservatism).
- Current industry test standards/specifications do not adequately address the effect.
- Compact specimens generally exhibit the greatest problem, though other specimen types are not immune.
- Sensitivity to the problem will grow in the drive for increasingly integral structure.

Crack initiates where stress normal to crack plane is tensile (high FCGR)

Crack initiates where stress normal to crack plane is compressive (slow FCGR)

Effect of specimen type on FCGR measurement from non-stress relieved 7xxx AI extruded rod.

misleading without proper interpretation. partially stress relieved product can be Fracture toughness test results from

Interaction of internal stress state and specimen size on fracture toughness measurements from comparable 4-in. thick 7050-T74 hand forged billets, one stress relieved and the other not

Typical quench residual stress profile for a rectangular section

Excessive crack front curvature is often a cue that residual stress bias is present.

Broken fracture toughness specimen halves

Effect of through-thickness internal stress distribution (normal to the notch plane) on fracture toughness specimen precrack shape. Residual stress inducedbending can measurably impact
crack tip stress intensity factor.

(c) Clamping moment developed after machining crack starter slot.

Portrayal of crack tip clamping associated with residual stress distribution aligned parallel to a compact specimen notch plane.

Classical LEFM similitude breaks down when residual stress is appreciable & ignored. Coupon Part

$K = \sigma_{appl}(\pi a)^{1/2} Y(a/W) + \sigma_{resid} f(a, a/W)$

Y, f = geometric functions, W = part, specimen size

Conpon	small	large	large
Part	large	small	small
	$\sigma_{ m appl}$	g	$\sigma_{ m resid}/\sigma_{ m appl}$

Residual stress induced bias is magnified in the coupon test.

The potential for residual stress bias is detectable from warning signs.

Fracture toughness

- · Machining distortion in specimen preparation.
- Excessive crack front curvature.
- Unusually high loads or number of cycles required for precracking.
- Nonlinear load-COD trace (elastic portion of test record).
- Property shift with change in specimen configuration.

Fatigue crack growth

- Similar to fracture toughness test, but more subtle.
- Small thickness to width ratios may negate crack curvature, giving the test a valid appearance.
- Significant crack closure effect.
- Because the applied stress magnitudes are typically less, potential for artifactual data are greater in FCG testing than in toughness testing.

A simplified correction practice has been devised for Kic testing.

$$\Delta \delta = \delta 1 - \delta 2$$

Measure the specimen height before and after machining the crack starter notch.

Kic test residual stress correction schematic

** UCON = polyalkylene glycol quench Effect of quench process on 7050-T74 hand forging (1.5") fracture toughness measurements with and without correction for residual stress bias

New quench technology and better reduce the residual stress effect. test methods are available to

- new Alcoa proprietary quench (APQ) reduces residual stress bias in raw test result. Contrast of 7050-T74 hand forging corrected and uncorrected KQ values show that
- After correction, the 7050-T74 toughness (KQ) values agree with valid Kic values obtained from compression stress relieved 7050-T7452 product.

Effect of temper and test method on S-L fracture toughness of 7050-T74X hand forging

	7050	7050-T74*	7050-T7452**
Quench media	KQ uncorrected (ksi√in)	KQ corrected (ksi√in)	Kic valid (ksi√in)
140F water	37.5	28.9	25.6
140F APQ	30.2	24.9	25.5
160F APQ	27.4	25.3	25.5

^{**} Quench, compression stress relieve & age * Quench & age,

A protocol to purge residual stress bias from FCGR data has been established.

(Bucci, ASTM STP 743, 1981 & Bush et. al., ASTM STP 1189, 1993)

FCGR data from two incompletely stress relieved 7050-T7452 forgings

(S-L orientation, R = 0.33, high humidity air)

suspect FCGR data is derivable from the raw load-COD traces. Closure-based correction of

Pop = crack opening load attributed to crack closure effect (Elber).

FCG occurs for P ≥ Pop

- (a) Residual stress free (M = 0).
- (b) Pop increase with residual stress induced clamping moment, M.

Crack opening displacement (v)

Effect of residual stress on load-COD trace

Residual stress bias can be deduced from decay in closure load with crack advance.

Load-COD traces from FCG tests of high strength Al product evaluated in a non-stress relieved (top) and stress relieved (bottom) condition.

Alloy 7050 plate and forging display similar FCGR behaviors when the residual stress effect is purged

Closure corrected FCGR data for 7050-T745X plate and non-stress relieved forgings (S-L orientation, R = 0.33, high humidity air)

Suspect FCGR data on varied products is readily found in the open literature. ΔK (MPa√m)

Grade A/B D357-T6 Casting

5xxx Al Alloy Butt Weld Joint

Conclusions/recommendations

- Understanding of heat treat induced residual stress cause/effects presented so advances in aluminum forging & residual stress on toughness & crack growth characterizations has been relief technology can be more routinely applied.
- The lessons learned have broader implications.
- A variety of aluminum product technologies can be affected (e.g., forgings, castings, extrusions, rapid solidification (powder metal) products, MMCs, weldments, ...).
- Individual test values can be inflated, historical data sets skewed, and scatter increased.
- The problem is widespread, but largely underappreciated.
- Guidelines have been presented to minimize the testing problems.
- Warning signs and validity checks for residual stress bias.
- Residual stress bias correction practices.
- Compact specimens exacerbate the problem; when in doubt, use center crack specimens.
- The intensified drive for parts consolidation warrants insertion into industry design and product specification practices.
- Stronger advocacy for standards upgrading & component validations
- Purge/replace contaminated data sets (various industry design handbooks).
- Treat with sense of urgency to improve quality of decisions and reduce waste.

The Effect of Prior Corrosion Damage on the Short Crack Growth Rates of Two Aluminum Alloys

Ms. Amy M.H. Taylor* TexSEM Laboratories, Inc. 392 East 12300 South, Suite H Draper, Utah 84020

Dr. David W. Hoeppner, P.E. Department of Mechanical Engineering University of Utah Salt Lake City, Utah 84112

Abstract

A study was performed using two aluminum alloys, 2024-T351 and 7075-T651, subjected to prior corrosion and then fatigue. The resulting crack nucleation and the "short" fatigue crack growth were observed using an "in-situ" scanning electron microscope. This unique machine allowed visual observation of a crack on the surface of the material during fatigue cycling at high magnifications. Baseline tests without corrosion were conducted to compare the "short" fatigue crack growth rates with those of prior corroded specimens.

Four tests were conducted. One specimen was subjected to corrosion prior to fatigue and one specimen was run as a baseline fatigue test for each of the two aluminum alloys. Specimens were pitted in 3.5% salt water for 28 hours. It was hypothesized that the prior corrosion would accelerate the fatigue crack growth rate in the "short" crack region and that cracks would form from discontinuities on the surface, such as corrosion pits.

Based on the results, it was found that prior corrosion does influence the fatigue crack growth rate and that the two materials exhibit different crack growth behavior. The specimens subjected to prior corrosion exhibited accelerated crack growth rates compared to the baseline tests.

The 7075 specimens had faster crack growth rates than the 2024 specimens. The baseline tests and the prior corroded 2024 specimen displayed crack growth rates that increased, then decreased, then increased again as ΔK increased. The 7075 specimens did not show a dramatic drop-off in crack growth rate as seen in the 2024 tests.

This work is unique in that combining prior corrosion and short crack behavior has not been greatly researched. These are relatively new fields of research but they are important because they model real-world behavior of materials. Further work should be conducted in this area to statistically substantiate the results presented here.

Introduction

Research at Battelle has found that corrosion costs the United States 300 billion dollars annually, one third of which is avoidable [1]. Corrosion acting with fatigue is a major maintenance concern in the aircraft industry. As the aircraft fleet ages, these time dependent failure modes are becoming even greater concerns. In a recent survey performed by the authors and their colleagues, corrosion and/or fretting were found to be a contributing factor in at least 687 incidents and accidents from 1974 to 1994 in military and commercial aircraft in the United States [2].

Often aircraft are left to sit while not in service at which time corrosion may occur. Because inspections are currently based on flight hours and not calendar hours, the corrosion may not be discovered until the aircraft has been put into service. During this time, however, cracks may have nucleated from the corrosion damage, which can grow during subsequent flight of the aircraft. These cracks are cause for alarm as they may not be discovered before they have become critical.

Because of this, prior corrosion damage, such as pitting damage, is cause for concern in aviation safety.

"Short" fatigue crack growth added to prior corrosion damage may lead to reduced component lifetime. It has been shown in the past two decades that "short" crack growth rates vary from long crack growth rates in that "short" cracks grow faster below the threshold stress intensity value. Therefore, life predictions according to long crack growth data may be unconservative when a crack is in the "short" crack region. Because of this the effort in "short" crack research has been increased but little has been done concerning prior corrosion damage in the "short" crack regime. Coupled together, prior corrosion and "short" crack growth may reduce the expected lifetime or time/cycles between inspection intervals of an aircraft significantly.

Prior Corrosion

Much research has been done on simultaneous corrosion and fatigue damage and it has been found that corrosion accelerates the rate of fatigue and failure. However, often the corrosion and fatigue act sequentially. When an aircraft is in flight it experiences cyclic loading. When it is on the ground, moisture builds up on the aircraft. As an aircraft sits (and when it is in the air), the corrosion process takes place. Thus, the sequential action of these time dependent failure modes may produce different results than the simultaneous action.

It has been found that pit characteristics vary according to loading, environment, and material [3]. When comparing the sizes and shapes of pits formed in 7075-T6 from zero load, sustained load, and fatigue load, Lorie Grimes

found that the corrosion pits formed by the fatigue load were larger than the others and that they were more spread across the surface. Therefore, it can be seen that the expected fatigue lives due to each will vary from each other.

Du, Chiang, Kagwade, and Clayton found that when aluminum alloy 2024-T3 was fatigued and then exposed to a corrosive solution and then fatigued again that the fatigue life was greater than had the material been corroded and then fatigued [4].

Short Cracks

The idea that the behavior of "short" cracks varies from long cracks did not occur until the mid 1970s. All work on crack growth was done assuming long crack behavior. Scientists discovered that in the short crack region a crack exhibits characteristics which are not valid using linear elastic fracture mechanics (LEFM). Over the past decade it has been realized that short crack growth may change the estimated life of a component. Short cracks may make the estimated life non-conservative. Therefore, it is necessary to analyze the behavior of short cracks in order to learn their effects on crack propagation rates and how to take these potential effects into account.

To distinguish between a long and short crack would perhaps simply be to say where LEFM is valid and where it is not, respectively. R.O. Ritchie and S. Suresh have discussed the types of short cracks and what mechanisms lead to accelerated short crack growth [5]. They relate crack driving force, local plasticity, microstructure, crack shape, crack extension, premature crack closure, and local crack tip environment to the differences between long and short crack growth. A

crack may be short or small on several bases but there is no quantitative value that is yet agreed upon to say when a crack is short and when it is long. According to Ritchie and Suresh, a crack may be short with respect to the microstructure, the section size (physically short), or the scale of local plasticity [6]. Physically short cracks were observed in this study where the difference in minimum and maximum stress intensity factors below the threshold value.

The Combination of Aluminum, Prior Corrosion, and Short Crack Growth

A crack spends much of its life in the nucleation and formation stages where crack growth begins in the short crack region. To understand crack behavior, short crack studies need to be performed to prevent unexpected failure. It is obvious that much more study needs to be done involving the synergistic effects of corrosion and crack formation and propagation on common aircraft materials, such as 2024-T3 and 7075-T6 aluminum alloys.

Test Methodology

Test Apparatus

The fatigue tests were conducted in an electro-hydraulic servo-controlled 25 kN "in-situ" fatigue machine coupled with MTS components. This machine is unique in that the specimen is attached in the grips inside a scanning electron microscope (SEM). Thus, the specimen may be monitored at high magnifications while the fatigue load is applied and cracks may be identified as they form and grow.

Specimen Description

Because of their widespread use in aircraft, which are susceptible to both fatigue loading and corrosion pitting, 2024-T3 and 7075-T6 aluminum alloys were studied. The material was obtained in rod form (0.500 in OD) from Affiliated Metals. A groove was machined into the rectangular cross-section of the specimens to act as a point of stress concentration. This was done to ensure crack growth on the side of the specimen facing the SEM column. It was found that the stress concentration factor in the groove was 1.409 according to [7]. Two baseline specimens, one of each material, were tested without the prior corrosion. These tests were compared with the two specimens run with the prior corrosion to determine if there was a change in short crack growth rate due to the prior corrosion.

Pits were introduced to the surface prior to the fatigue loading. This was done to model prior corrosion damage on structures. The specimens were covered with paraffin wax all over to protect the metal except for the small region of the machined groove where the pitting would take place. The specimens were pitted in a 2 liter bath of 3.5% NaCl and distilled water at 25°C for 28 hours. The specimens were rinsed with distilled water and acetone and tested immediately after being corroded.

Test Conditions

Fatigue tests were conducted at a frequency of 10 Hz. The R value (P_{min}/P_{max}) used was 0.3. Using a spreadsheet and an initial crack length of 0.01

mm, the load was calculated iteratively to obtain a value of ΔK around 1.0. The solution of ΔK , the change in stress intensity factor, was derived for a part-circular crack in a simple stress field on the surface of the material. From A.C. Pickard's solution for a part-circular crack, for this experiment ΔK becomes:

$$\Delta K = M_{\rm G} M_{\rm B} M_{\rm S} \frac{2}{\pi} \Delta \sigma \sqrt{\pi c}$$

where:

K = stress intensity, $M_G = general correction factor,$ $M_B = back$ -face correction factor, $M_S = side$ -face correction factor,

 $\Delta \sigma$ = change in stress,

c = 1/2 crack length.

The experimental matrix is shown in the following table.

Table 1. Experimental Matrix and Testing Loads

Specimen	Pre-crack Load, kN (%S _{tv})	Test Load, kN (%S _{tv})
X1-2024	2.90 (85%)	2.90 (85%)
P4-2024	2.39 (70%)	2.39 (70%)
P2-7075	3.84 (75%)	3.07 (60%)
P3-7075	3.07 (60%)	3.07 (60%)

A.K. Vasudevan and S. Suresh found the value of ΔK_{th} for alloys 2024-T3 and 7075-T6 exposed to a corrosive environment [85]. For 2024-T3, $\Delta K_{th} = 3.2$ MPa \sqrt{m} and for 7075-T6, $\Delta K_{th} = 2.1$ MPa \sqrt{m} .

Crack Growth Readings

Crack growth was measured using photographs taken with the SEM. A micron marker is given on a photograph. This allows the length of a crack to be found by measuring the crack at a known magnification and multiplying it by the micron marker value. For example, at 1000x magnification, 1 cm equals 10 mm. A crack that measured 3 cm on a photograph would actually be 30 µm long.

To find a crack initially, the surface was monitored every 5,000 cycles. Once a crack had formed and was detected, measurements were taken when crack growth was visible on the SEM. The specimen was loaded as crack readings were taken so that the crack would be visible. Crack readings were taken until a crack length of 1-2 mm was measured at which point long crack growth behavior would take over.

Discussion of Results

Baseline Test Results

The first test was specimen X1-2024. Many crack-like features were visible on the surface of this specimen but were aligned in the direction of loading and after numerous cycles did not appear to be growing. The first crack detected was 48 μm long. Six more cracks were found and data were also taken on those.

The second test was P2-7075. The surface of this specimen contained more discontinuities than the 2024 specimen. It had a cleaner surface in that it was freer

of polishing residue. The first crack was detected at a length of $27 \,\mu m$. Eight more cracks were discovered and all but one propagated.

For each of the specimens, the multiple cracks formed at constituent particles (inclusions and intrinsic discontinuities) on the surface that appeared to have been filled with polishing compound that did not rinse off in the acetone bath. The cracks grew from one constituent particle to another. The line of the crack growth was not always normal to the direction of loading.

These two specimens displayed similar fatigue crack growth data. The crack growth rate increased, decreased, and then tended to increase again. This is common behavior for short crack data. Crack #1 on specimen X1-2024 displays typical crack growth data for this specimen, shown in the da/dN versus ΔK plot in Figure 1. The initial ΔK was 2.64 MPa \sqrt{m} . The data are bunched around a crack growth rate of 1.00E-13. It sharply decreases and then sharply increases.

Figure 2 shows a low initial ΔK of 2.01 MPa√m of crack #2 on specimen P2-7075. The decrease in crack growth rate is not as dramatic on the 7075 specimen as on the 2024 specimen. But P2-7075 does display the same increase, decrease, and slight increase again.

The crack growth rates of the two baseline tests were similar. It appears as though the 7075 specimen had a marginally increased crack growth rate compared to the 2024. The values of ΔK were lower on P2-7075 as would be expected because the ΔK_{th} value of 7075 is lower than 2024.

Figure 1. da/dN versus ΔK for X1-2024, Crack #1.

Figure 2. da/dN versus ΔK for P2-7075, Crack #2.

Prior Corroded Test Results

The prior corroded surfaces of the two aluminum alloys showed damage in the form of pits with some exfoliation of the surface before testing began. Figure 3 shows the damage on the surface of specimen P3-7075. Two specimens, one of each material, were tested with the prior corrosion damage.

A crack of $62 \,\mu m$ was first detected on specimen P4-2024. Four additional cracks were monitored on the surface. This specimen was highly damaged due to corrosion, more so than the 7075 specimen. Multiple pits were bunched together and large areas of exfoliation were present.

The last specimen, P3-7075, was tested at loads that were too high to keep the ΔK low enough to remain in the short crack region. The first crack detected on this specimen was 160 μ m long at a ΔK of 7.40 MPa \sqrt{m} . A shorter crack was found that was 64 μ m and a ΔK of 4.61 MPa \sqrt{m} . Five cracks were monitored on this specimen.

The surfaces of the prior corroded specimens were more difficult to scan because of the corrosion induced damage on them. While scanning the surface it was difficult to determine exactly what was a crack. Mudcracking was visible on both specimens. This made it difficult to know if a crack was growing through the material or whether it was a layer of material peeled from the surface that was cracked.

Specimen P4-2024 displayed similar crack growth behavior as the two baseline tests but with an increased crack growth rate. The increase, decrease, and

Figure 3. Damage on the surface of specimen P3-7075 before fatigue load was applied.

then increase was present in the crack growth data. The da/dN versus ΔK plot for crack #1 is shown in Figure 4. The initial ΔK was 2.48 MPa \sqrt{m} .

The data for crack #1 on specimen P3-7075 are given in Figure 5. This plot shows how the crack growth rate for the cracks on this specimen increased but did not decrease as seen in the other tests. The crack growth rates for this specimen were faster than the baseline tests and the prior corroded P4-2024 test. This may be caused by the increased initial value of ΔK .

Overall, the 7075 specimens had a faster short crack growth rate than the 2024 specimens. The prior corrosion did increase the fatigue crack growth rate in comparison to the baseline tests. The damage from the prior corrosion provided areas of higher stress concentration and reduced area from which cracks formed. It was more difficult to examine the surfaces of these specimens due to the damage as would be the case in the field when inspecting components subjected to corrosive conditions.

Fractography

Visual examination of the fracture surfaces showed that crack growth took place only on the top face of the specimen as was desired. The shape of the fatigue region of the crack was not truly half-penny shaped. This may have an effect on the validity of the stress intensity factor solution.

A fractographic analysis verified that crack nucleation occurred at constituent particles on the base specimens and from pits on the prior corroded specimens. This is most likely due to the increased stress concentration factor at

Figure 4. da/dN versus ΔK for P4-2024, Crack #1.

Figure 5. da/dN versus ΔK for P3-7075, Crack #1.

these points and, on the pitted specimens, the reduction in area may also be a factor. Figure 6 shows a crack nucleation site on specimen P4-2024. The radial marks point back to the point of origin of the crack. Other cracks on the surface are also visible on the surface which did not cause failure.

Figure 7 shows striation-like markings on specimen X1-2024. Striation marks were difficult to find on these specimens because of the small fatigue region. However, they were present on both types of aluminum. A secondary crack is visible in Figure 8 from specimen P3-7075. Cleavage characteristics in the fatigue region are also shown on this figure. The fast fracture region shows ductile dimples.

Because testing was conducted inside of an SEM considerable fractographic characteristics were observed during testing. Fractography of the fracture surface did confirm the sites of crack nucleation at pits and constituent particles and showed the shape of the fatigue region.

Conclusions

Based on the results presented, the following conclusions were drawn:

- The prior corrosion did have an effect on the short crack fatigue crack growth rate. It was increased from the base tests.
- 2. The 7075 specimens had faster crack growth rates than the 2024 specimens. The baseline tests and the prior corroded 2024 specimen displayed crack growth rates that increased, then decreased, then increased again as ΔK

Figure 6. Nucleation site and surface damage and cracks in specimen P4-2024.

Figure 7. Possible striation marks in specimen X1-2024.

Figure 8. Secondary crack and ductile dimples on the fracture surface of specimen P3-7075.

- increased. The base test of 7075 material did not show as dramatic a drop-off in crack growth rate as the 2024 tests. The prior corroded 7075 specimen data increased but did not decrease as the other specimen did.
- 3. The damage on the surface of the prior corroded specimens was in the form of corrosion pits and exfoliation. This made it more difficult to scan the surface of the material. The pitting and exfoliation made it harder to distinguish cracks from mudcracking.
- 4. Results from one test at each test condition are not conclusive statistically.

 They give an idea of the behavior but should be backed up by subsequent tests that are statistically planned.
- 5. The method of crack measuring provided a good estimate of what was taking place.

Acknowledgments

The authors wish to thank all of the past and present members of the Quality and Integrity Design Engineering Center at the University of Utah for their assistance and ideas.

References

- [1] Battelle, "Economic Effects of Metallic Corrosion in the United States: A 1995 Update," (1995), p.3.
- [2] D.W. Hoeppner, Lorie Grimes, Amy Hoeppner, Jim Ledesma, Tom Mills, and Akbar Shah, "Corrosion and Fretting as Critical Aviation Safety Issues: Case Studies, Facts, and Figures from US Aircraft Accidents and Incidents," ICAF 95: Estimation Enhancement and Control of Aircraft Fatigue Performance, vol. 1 (West Midlands: EMAS, 1995), pg.87-109.

- [3] Lorie R. Grimes, "A Comparative Study of Corrosion Pit Morphology in 7075-T6 Aluminum Alloy" (Masters thesis, University of Utah, 1995), p.87.
- [4] M.L. Du, F.P. Chiang, S.V. Kagwade, and C.R. Clayton, "Synergism between Corrosion and Fatigue of AL2024-T3 Alloy," <u>Structural Integrity in Aging Aircraft</u>, vol. 47 (1995), p.1.
- [5] R.O. Ritchie and S. Suresh, "Mechanics and Physics of the Growth of Short Cracks," <u>Behavior of Short Cracks in Airframe Components</u> (Toronto: AGARD, 1983), p.1-1.
- [6] Ibid., p.1-1.
- [7] Warren C. Young, <u>Roark's Formulas for Stress and Strain</u> (New York: McGraw Hill, Inc., 1989), p.730.
- [8] A.K. Vasudevan and S. Suresh, "Influence of Corrosion Deposits on Near-Threshold Fatigue Crack Growth in 2XXX and 7XXX Series Aluminum Alloys," Metallurgical Transactions A, vol. 13A (December, 1982), pg.2271-2280.

SHORT & LONG FATIGUE CRACKS: Analysis and Implications to Life Prediction

A. K. Vasudévan Materials Division, ONR-332 Office of Naval Research Arlington, Virginia K. Sadananda Materials Technology, Code-6323 Naval Research Labs, Washington, D. C.

USAF ASIP Conference San Antonio, Texas 3 Dec 1997

Outline

- Background
- TWO Parametric description of Damage
 - Examples
- Extension of the Concepts
 - Short Cracks
 - Overloads
- Role of Kmax
- **Implications**
 - Sensors
- Life Prediction

Crack Growth Rate Equation with Two Parameters

For constant crack growth rate, C, in terms of ΔK vs. Kmax The equation reduces to:

$$da/dn=C=(\Delta K-\Delta K^*_{th})^n$$
. $(K_{max}-K^*_{max})^m$

Which reduces to:

$$\Delta K = \Delta K_{th} + \{C/(K_{max} - K^*_{max})^{m}\}^{1/n} - 3$$

For simplicity, taking C in the range of (0.25-1) and n≈1, the above equation reduces to:

as K_{max} approaches infinity, ΔK approaches ΔK* _{th} as K_{max} approaches K*_{max}, ΔK approaches infinity

SHORT CRACK GROWTH IN 7075 ALLOY

Nucleation to short to long crack

DAMAGE SPECIFIEM CRACK NECLEATION TO CRACK GROWTH

EXAMPLES OF INTERNAL STRESSES THAT AFFECT FATIGUE LIFE \bullet ΔK is normally less affected by σ_{int} EXTRÚSIONS • Kmax = Kmax ± Kint INCLUSIONS • $K_{int} = f[\sigma_{int} \sqrt{I}]$ 700 VOIDS, SLIP BAND STRESSES THËRMAL CORROSION OVERLOAD NaCl, Hydrogen NOTCH ÓVERLOAD PZS ^σint

TWO METHODS OF ESTIMATING INTERNAL STRESSES

Fig. 5. Internal stress contribution from overload on crack growth

639

SUMMARY-1

- Analytical framework presented for short & long fatigue cracks using the two-parameter approach
- Long crack growth represents the fundamental material behavior: ∆K*th and K*max
- Short crack behavior arises due to the presence of the internal stresses: notch-tip stresses, residual stresses etc
- crack arrests when Ktotal < K*max and growth occurs when Ktotal > K*max
- short crack anamoly arises due to: not including the two thresholds & relevant internal stresses
- Overload retardations are due to the perturbations in the Kmax due to internal stresses
- Considerations of Kmax as a driving force parameter is essenstial to the description of fatigue damage

FATIGUE DAMAGE ANALYSIS

ISSUES

- How to relate the sensor's information to fatigue life prediction?
- Challenges:
- where to put the sensors? location? hidden parts?
- calibration with simulated cracks?
- need unambiguous interpretation of sensor signals in service operations
- how to convert sensor's data to damage without much ambiguity

Conclusions

- Analytical methods to predict fatigue life must include: ΔK, Kmax and Kint parameters
- All deviations from steady state crack growth can be accounted by the presence of the internal stresses intruduced during service
- Understanding and quantifying the role of internal stresses is fundamental to the development of a reliable LPM
- Crack Nucleation--->Short Crack--->Long Crack--->Final Failure Integrated models for fatigue damage connecting:

Fatigue Articles by A. K. Vasudevan & K Sadananda (1992-present)

- Reconsideration of Fatigue Crack Closure, A. K. Vasudevan, K. Sadananda & N. Louat, Scripta Metall. et Mater., vol. 27, 1673, 1992.
- A Theoretical Analysis of Fatigue Crack Closure, N. Louat, K. Sadananda, M. S. Duesbery & A. K. Vasudevan, Metall. Trans., vol 24A, 2225,1993. \ddot{c}
- Two Critical Stress Intensities for Threshold Fatigue Crack Propagation, A. K. Vasudevan, K. Sadananda & N. Louat, Scripta Metall. et Mater., vol. 28, 65,1993.
- Fatigue Crack Growth in Metal Matrix Composites, A. K. Vasudevan & K. Sadananda, Scripta Metall. et Mater., vol.28, 837, 1993.
- Vasudevan, K. Sadananda & N. Louat, in Fatigue '93, Eds. J. P. Bailon & J. I. Dickson, Montreal, Canada, vol.I, p. Critical Evaluation of Crack Closure and Related Phenomena: I Background and Experimental Results, A. K. Š
- Critical Evaluation of Crack Closure and Related Phenomena: II Theoretical Evaluation, K. Sadananda, N. Louat & A. K. Vasudevan, in Fatigue '93, Eds. J. P. Bailon & J. I. Dickson, Montreal, Canada, vol. I, p.571, 1993. 6
- Development of New Concepts for Fatigue Crack Thresholds, K. Sadananda & A. K. Vasudevan, NRL Review 93., p.161, 1993.
- Sadananda & A. K. Vasudevan, in Aspects of High Temeprature Deformation & Fracture of Crystalline Materials, Critical Evaluation of Crack Closure and The Driving Force for High Temperature Fatigue Crack Growth, K. JIMIS-7 Proc., Eds. Y. Hasoi et al, Nagoya, Japan, p. 551, 1993, ∞
- A Study of Crack Closure, Fatigue Crack Threshold & Related Phenomena, A. K. Vasudevan, K. Sadananda & N. Louat, Matls. Sc & Engg., vol.A188, p.1, 1994.(invited review) 9.
- Experiments-Models-Applications, ECF-10, Eds. K-H. Schwalbe & C. Berger, EMAS Publs., vol.2, p.1461, 1994. A new Interpretation for Fatigue Crack Propagation, A. K. Vasudevan & K. Sadananda, in Strutural Integrity 10.
- Canonical Theory of Fatigue Crack Growth, K. Sadananda & A. K. Vasudevan, in Strutural Integrity: Experiments-Models-Applications, ECF-10, Eds. K-H. Schwalbe & C. Berger, EMAS Publs., vol.2, p.1309, 1994.

Fatigue Articles (contd)

- Conference on Aluminum Alloys, Eds. T. H. Sanders, Jr & E. A. Starke, Jr, vol.3, p.227, 1994, (invited review). Fatigue Crack Growth in Aluminum-Base Alloys, A. K. Vasudevan & K. Sadananda, in 4th International
- Analysis of Fatigue Crack Closure & Thresholds, K. Sadananda & A. K. Vasudevan, ASTM Fracture Mechanics 25th volume, ASTM STP - 1220, p.484, 1995. 13.
- Classification of Fatigue Crack Growth Behavior, A. K. Vasudevan & K. Sadananda, Metallurgical . & Materials. Transaction. vol.26A, p.1221,1995. 14.
- Fatigue Crack Growth in Ceramics & Composites, K. Sadananda & A. K. Vasudevan, 19th Annual Conf. on Advanced Ceramic Materials, & Structures, ACS Proc., p. 181,1995. 15.
- New Concepts Applied to Fatigue Crack Growth in Composites, K. Sadananda & A. K. Vasudevan, COMPOSITES '95: Recent Advances in Japan & USA, CCM-VII, p. 569,1995. 16.
- Fatigue Crack Growth Bevavior in Titanium Aluminides, K. Sadananda & A. K. Vasudevan, Materials Science & Engg., vol. A192/193, p.490,1995. 17.
- Fatigue Crack Growth Behavior of Composites, A. K. Vasudevan & K. Sadananda, Metallurgical & Materials Fransactions. A, vol. 26A, p. 3199, 1995. <u>8</u>
- The Controlling Parameters of Fatigue Crack Growth Behavior in Al-Li 8090 Alloy, C. A. Green, T. L. Holtz, K. Sadananda & A. K. Vasudevan, Micromechanics of Advanced Materials, Edtrs. S. N. G. Chu et al., p.127, 19.
- Dislocation-Crack Interactions & their Relevance to Fatigue Crack Growth, K. Sadananda, A. K. Vasudevan & N. Louat, Micromechanics of Advanced Materials, Edtrs. S. N. G. Chu et al., p.147, 1995. 20.
- 21. A Unified Framework for Fatigue Crack Growth, K. Sadananda & A. K. Vasudevan, FATIGUE '96 Conference, Berlin, Eds. G. Lutjering & N. Nowack, Vol. 1, p. 375, 1996.
- Fatigue Crack Growth in Advanced Materials, A. K. Vasudevan & K. Sadananda, FATIGUE '96 Conference, Berlin, Eds. G. Lutjering & N. Nowack, Vol. 1, p. 473, 1996. 22.

Fatigue Articles (contd.)

- Fatigue Crack Growth in Advanced Materials, A. K. Vasudevan & K. Sadananda, FATIGUE '96 Conference, Berlin, Eds. G. Lutjering & N. Nowack, Vol. 1, p. 473, 1996.
- Short Fatigue Crack Growth Behavior, K. Sadananda, & A. K. Vasudevan, ASTM-STP 27th Symposium on Fatigue & Fracture Mechanics, 1997, in press.
- High Temperature Fatigue Crack Growth, K. Sadananda & A. K. Vasudevan, Int. Journal of Fatigue, 1997, in 24.
- Short Fatigue Cracks Implications & Applications, K. Sadananda & A. K. Vasudevan, Int. Journal of Fatigue, 1997, in press. 25.
- Role of Grain size & Precipitates on Long Fatigue Cracks, A. K. Vasudevan & K. Sadananda, Int. Journal of Fatigue, 1997, in press. 26.
- 27. Short Fatigue Crack Growth Phenomena, International Materials Review [invted review], 1997, in preparation
- Role of Environment on Fatigue Crack Propagation, A. K. Vasudevan & K. Sadananda, TriCity Corrosion Conference Proceedings, in press, 1998.
- 29. Role of Kmax on Fatigue Crack Growth, K. Sadanandan, A. K. Vasudevan, S. Biner & K. Jata; Paul Paris Symposium TMS Proceedings, in press, 1998.

NOTE: The proceedings of the First International Fatigue Conference held at Cape Cod, in Sept. 1997 will be published in the International Journal of Fatigue, to be published by Elsevier, London, Dec 1997-Jan1998.

FATIGUE DAMAGE IN STRUCTURAL MATERIALS Second International Conference on

Organized by

A. K. Vasudevan, Office of Naval Research

J. T. Cammett, Naval Aviation Depot

T. Nicholas, Airforce Labs.

K. Jata, Airforce Labs.

Topics: Crack Initiation & Crack Growth

- microstructure & environmental effects

variable amplitude/service loading

- mechanisms, models & applications

Jan 15, 1998) Date & Place: August 31-September 4, 1998 4- (Abstracts done by Hyannis, Cape Cod, Mass., USA

Foundation, New York:212-705-7836(phone); 212-705-7441(FAX); For details contact: Ms. Barbara Hickernell, Engineering engfnd@aol.com; & www.engfnd.org

SESSION VIII FATIGUE CRACK AND GROWTH

Chairman - E. Davidson
Aeronautical Systems Center

Fretting As a Fatigue Crack Nucleation Mechanism A Close-up View

Dr. Charles B. Elliott III*, P.E.
Dr. David W. Hoeppner, P.E.
Quality and Integrity Design Engineering Center
Department of Mechanical Engineering
University of Utah
Salt Lake City, Utah 84112-9208

Abstract

Personnel in the Quality and Integrity Design Engineering Center (QIDEC) at the University of Utah, investigated the fatigue characteristics of 8090 T7 and 7075 T7351 aluminum alloys under fretting conditions in air and vacuum environments. The purpose of this investigation was to provide insights into the effects of corrosion, specifically oxidation in air, on the fretting fatigue process. As a result of this investigation, it is concluded that crack nucleation and early propagation are influenced by material, environment, and local conditions in the area of relatively great damage where the crack is formed. It is recommended that where the effects of fretting fatigue are an issue, the local conditions that influence the fretting fatigue process should be investigated. Understanding these conditions for the materials being investigated may help in developing procedures for alleviating the effects of fretting fatigue.

Introduction

Life reduction due to fretting is having significant impact on Air Force systems. It is a major factor causing the high cycle fatigue problems currently being investigated by the Air Force. This paper discusses some of the factors that influence fretting and the fretting fatigue process.

ASTM defines fretting as "a wear phenomenon occurring between two surfaces having oscillatory relative motion of small amplitude." In air the process includes oxidation of the wear debris which is trapped between the two surfaces. When fatigue loading is present the combined fretting fatigue process can result in a reduction in fatigue life of more than an order of magnitude compared to fatigue without fretting.

The fretting fatigue test system used in this experimentation was developed within QIDEC to enable testing either in air or a scanning electron microscope (SEM) vacuum environment. This allows investigation of fretted surfaces of specimens tested in the SEM without the SEM vacuum being broken. Therefore, fretting fatigue damage of specimens tested in the SEM can be considered as resulting from wear only, whereas damage from tests in air results from the concurrent wear and oxidation mechanisms. A top-view picture of the fretting fatigue load frame is shown in Figure 1, and the load frame mounted in the SEM is shown in Figure 2. Additional information concerning the test system is in references 2 and 3.

The experimentation was conducted to develop cycles-to-failure fretting fatigue data for the 8090 T7 and 7075 T7351 aluminum alloys under various conditions in air and vacuum environments and to gain insights into the effects of corrosion on the fretting fatigue process. To address the second objective, that of gaining insights, fractographic investigations were conducted of specimens that had failed during testing. Additionally, tests of eighteen specimens were stopped prior to failure so that the fretted surfaces could be investigated in the SEM and the specimens could be sectioned for metallographic investigation to gain insights into the crack nucleation process. This paper focuses on the SEM, metallographic, and fractographic investigations. The cycles-to-failure data are summarized in this

paper to enable the reader to put the pictographic results in perspective. They are reported in reference 2 and in the paper submitted for publication as noted in references 4.

Figure 1. A top-view picture of the fretting fatigue load frame. The vertical plate in the center acts as the SEM lid. The part to the left of this plate fits into the SEM.

Figure 2. The fretting fatigue load frame mounted in the SEM.

Results of the Investigation

The cycles-to-failure data from this program are summarized in Table 1 for each material. As expected, cycles-to-failure decrease when the wear mechanism of fretting in a vacuum is added to fatigue, with a further decrease when the testing is conducted in air so that oxidation also is a factor. Note the influence of the materials. For the 8090-T7 alloy the wear mechanism is relatively important compared to the corrosion mechanism. However, for the 7075-T7351 alloy the corrosion mechanism is dominant in reducing cycles-to-failure and the overall reduction is greater.

Table 1. Material Average Cycles-to-failure Date

Conditions of testing	8090-T7	7075-T7351
Fatigue without fretting	1,759,527	2,537,695
Fretting fatigue in a vacuum	403,223	2,377,757
(assumed wear only)		
Fretting fatigue in air	341,980	106,706
(oxidation and wear)		

An example of the fretted surface of a specimen tested in air is shown in Figure 3. Prior to testing, the surfaces of this and all other specimens were sanded and polished with the final polish being 1 micron diamond compound. The direction of the fatigue loading in all SEM pictures of fretted surfaces is towards the upper right corner of the picture. The fretting fatigue cracks run generally perpendicular to the direction of fatigue loading from upper left to lower right in SEM pictures of fretted surfaces. This fretted surface is characteristic of the surfaces of all specimens tested. Numerous areas where relatively great damage has occurred can be seen in the upper right portion of the fretting pattern. These are the areas where cracks tended to nucleate. Most of the fretted surface pictures which follow will be of such areas of relatively great damage.

Figure 4 shows a crack that has nucleated in and propagated through the fretted surface of a specimen. Although generally perpendicular to the direction of

fatigue loading, locally the crack propagated along the contour of the heavy fretting so that at each point along its path it tended to circle the dominant local area of relatively great damage. The influence of local fretting conditions on crack nucleation and early propagation was apparent throughout the investigation.

Figure 3. An example of the surface of a specimen tested in air. The fretted area is shown in the center of the picture. The direction of fatigue loading is towards the upper right corner of the picture. (17x magnification)

Figures 5 and 6 show two 8090 specimens tested under identical conditions and for the same number of cycles except that the specimen in Figure 5 was tested in the SEM vacuum and the specimen in Figure 6 was tested in air. The effects of adhesive wear and smearing are apparent for the specimen in Figure 5, but the damage is less severe than that of the specimen in Figure 6. The smearing was a characteristic of specimens tested in the SEM for both materials. The more severe damage was characteristic of specimens tested in air for both materials. A crack is propagating through the damaged area on the surface of the specimen in Figure 6. Figure 7 shows a cross section through this area with the specimen material on the bottom of the picture. Cracks to the left and right are growing towards each other and might be expected to enlarge the pit as opposed to

propagating to failure. One branch of a crack on the left side of the picture appears to have started to grow into the material.

Figure 4. The fretted surface of a specimen showing a meandering crack that at any point is generally circling the dominant local area of relatively great damage. (150x magnification)

Figure 5. The fretted surface of an 8090 specimen which was tested in a vacuum. The effects of adhesive wear and smearing are apparent, but the damage is less severe than that seen on specimens tested in air such as the specimen in Figure 6. (150x magnification)

Figure 6. A crack propagating from a pit on the surface of an 8090 specimen which was tested in air. A cross section through this area of damage is shown in Figure 7. (470x magnification)

Figure 7. A cross section through the damaged area shown in Figure 6. Cracks to the left and right are growing towards each other. One branch of a crack on the left side appears to have started to grow into the material. (490x magnification)

Figure 8 shows the fretted surface of a 7075 specimen tested in air. Cracking can be seen in each of the more severe areas of damage in this picture. In each case the cracking is oriented towards the center of the localized damage. Figure 9 shows a cross section through an area of damage on this specimen. As with the 8090, specimen, cracks to the left and right are growing towards each other and might be expected to enlarge the pits. However, for the 7075 material the cracking is closer to the surface of the specimen.

Figure 8. The fretted surface of a 7075 specimen. Three regions of localized damage can be seen. Each has cracks that are oriented towards the center of the localized damage. (270x magnification)

Figures 10 and 11 show cross sections of the fretted surfaces of an 8090 and a 7075 specimen respectively. These specimens were cut so that their long axes were across the thickness of the rolled plates of material. This meant that the fatigue loading would tend to cause crack propagation along the grain direction near the center axis of the plate of material. The tendency for the cracks to connect causing pits or troughs is evident for the 8090 material in Figure 10 as it was for both materials in the previous figures where specimens were cut with long axes parallel to the surfaces of the plates of material. However the crack in the 7075

material is oriented along the grain direction and propagating directly into the material. That this would cause more rapid propagation to failure in the 7075 material was reflected in the test parameters. During the pretest it was determined that the 7075 specimen life at the planned fatigue loading would not provide sufficient cycles-to-failure to allow meaningful test results. Therefore the fatigue loading on the through-the-thickness 7075 specimens was reduced.

Figure 9. A cross section through a damaged area shown in Figure 8. Cracks from the surface tend to join, but in regions closer to the surface than was observed with 8090 specimens such as shown in Figure 7. (990x magnification)

The bottom half of Figure 12 shows the fracture surface of an 8090 specimen tested in air. A nucleation site and several levels of cracks can be seen at the center of the picture. These are further from the viewer than the features at the very bottom of the picture. It is as if the viewer is looking at the nucleation site from the top of a cliff. The fracture surface of the 7075 specimen shown in the bottom half of Figure 13 has more features but less relief and fewer facets than the 8090 specimen in Figure 12. Again, this would indicate that different localized mechanisms of crack nucleation and early propagation are involved for different materials.

Figure 10. Cross section through a damaged area on the surface of a through-thethickness 8090 specimen. The tendency of cracks to connect causing pits or troughs is evident. (990x magnification)

Figure 11. Cross section through a damaged area on the surface of a through-the-thickness 7075 specimen. The tendency of cracks to connect causing pits or troughs is <u>not</u> evident. Instead, the crack is oriented to the grain direction and propagating directly into the material. (470x magnification)

Figure 12. The fracture surface of an 8090 specimen showing a nucleation site and several levels of cracking. These are further from the viewer than the features at the bottom of the picture. It is as if the viewer is looking at the nucleation site from the top of a cliff. (71x magnification)

Figure 13. A partial pit can be seen on the fracture surface of a 7075 specimen which has more features, but less relief and fewer facets than the fracture surface of 8090 specimens such as that in Figure 12. (78x magnification)

Conclusions

Based on the fretting surface, metallographic, and fractographic investigations conducted in this research program, it is concluded that:

- Areas of relatively great damage on a fretted surface can be caused by adhesive wear.
- These areas have more severe damage if corrosive mechanisms also are active.
- Cracks nucleate at or near surfaces of areas of relatively great damage and propagate within and from these areas.
- For specimens tested in air, these cracks can join other cracks or return to the surface, forming pits or troughs and debris, or propagate into the material.
- Cracks also propagate into the material from the bottoms of the pits and troughs.
- Crack nucleation and early propagation are influenced by material, environment, and local conditions in the area of relatively great damage where the crack is formed.

Recommendations

Where the effects of fretting fatigue are an issue, the local conditions that influence the fretting fatigue process should be investigated. Understanding these conditions for the materials being investigated may help in developing procedures for alleviating the effects of fretting fatigue.

Acknowledgment

The author's are grateful to Alcoa for providing the 8090 alloy used in this research.

References

- 1. Compilation of ASTM Standard Definitions, 6th Edition, ASTM, Philadelphia, PA, 1986.
- 2. Elliott, C. B. III, Fretting of 8090 and 7075 Aluminum Alloys under Interrupted Fatigue Loading Conditions in Air and Vacuum Environments, dissertation, University of Utah, 1993.
- 3. Elliott, C. B. III and Hoeppner, D. W., "A Fretting Fatigue System Useable in a Scanning Electron Microscope," *Fretting Fatigue*, ESIS 18 (edited by R. B. Waterhouse and T. C. Lindley) 1994, Mechanical Engineering Publications, London, pp. 211-217.
- 4. Elliott, C. B. III and Hoeppner, D. W., The Importance of Wear and Corrosion Failure Mechanisms on the Fretting Fatigue Behavior of Two Aluminum Alloys," Submitted for publication to *Wear*.

An Evaluation of Empirical and Analytical Models for Predicting Fatigue Crack Propagation Load Interaction Effects

by

K. Walker

(Senior Professional Officer)

DSTO, AERONAUTICAL AND MARITIME RESEARCH LABORATORY
Airframes and Engines Division
506 Lorimer St, Fishermens Bend, Victoria, Australia, 3207.
Ph: (61 3) 9626 7961 Fax: (61 3) 9626 7089
email: Kevin.Walker@dsto.defence.gov.au

1. INTRODUCTION

The development and evaluation of models to predict fatigue crack growth in metallic structures under spectrum loading is a topic which has received a great deal of attention in the last 20 years. References 1 to 9 detail some of the studies which have been undertaken. There are a large number of computer programs incorporating various models for predicting fatigue crack growth. The author is aware of at least 12 (Broek, Cracks, Cracks IV, Cracks 84, MODGROW, AFGROW, CORPUS, ONERA, PREFFAS, FASTRAN, STRIPY, CG90). The various programs and models fall into one of two categories as follows:

- a. <u>Empirical</u>. Empirical models employ various techniques for modelling the baseline constant amplitude crack growth rate data (eg tabular inputs which are then subject to interpolation/extrapolation, and equations such as Forman or Walker which fit a curve to the measured data). Empirical load interaction models with "calibration" constants are then used to account for effects such as retardation and therefore match a prediction with observed or measured behaviour.
- b. <u>Analytical</u>. Some models utilise the crack closure theory to explain the R-ratio and load interaction effects and apply this to the prediction. A certain degree of empiricism still exists, however the method by which the R-ratio and load interaction effects are accounted for is based on a more scientific theory than simply curve fitting observed behaviour or incorporating an otherwise meaningless constant which can be adjusted to give a desired result.

The aim of the work presented in this paper was to assess the performance of the empirical models compared with the analytical closure model approach. Test data was available for relatively simple centre crack specimens machined from 7075-T651 Aluminium Alloy plate material (Reference 10). The specimens were pre-cracked and then subjected to a simplified variable amplitude fighter aircraft load spectrum. The peak load in the baseline spectrum (equal to a cg acceleration of $N_z = 7.5$ g) was approximately 28% of the yield stress of the material. The spectrum was altered to simulate placard flight restrictions which may be imposed to conserve the fatigue life

of an aircraft. The restrictions (at 6.5 g and 5 g, see Figures 2 and 3) and an artificial peak load increase (to 8.5 g, see Figure 3) resulted in significant changes to the crack growth life which would not be predicted by a model which does not account for load interaction effects.

2. SPECIMEN TESTING

Colon and the Colon Colon Manager Manager Colon Colon

The State SWING STATE OF THE STATE S

The specimen test results used in this work were obtained from Reference 10. The specimens were machined from 7075-T651 Aluminium Alloy. The geometry used was a fixed end, centre crack specimen as shown in Figure 1 below.

Figure 1. Fixed End Centre Crack 7075-T651 Specimen

A central slot was machined into the specimens using Electrical Discharge Machining (EDM) and they were then subjected to constant amplitude pre-cracking until a crack length of 0.15 inch (a=0.15 inch, 2a=0.30 inch) was reached. The final maximum load during pre-cracking was 3,000 pounds. The spectrum loading applied later was such that this load level was exceeded in the first 10 cycles. Residual effects from pre-cracking were therefore not anticipated.

The specimens were subjected to four variations of a simplified Mirage fighter aircraft spectrum;

- (i) the unmodified Mirage spectrum,
- (ii) clipped at 6.5 g,

- (iii) clipped at 5 g, and
- (iv) with the 7.5 g peak (which occurs once in a 100 flight, 66.6 hour block) increased to 8.5 g.

All loading variables other than the spectrum itself were kept constant throughout the tests in order to isolate the effect of spectrum modification. A scaling factor of remote stress per g of 2.5 ksi per g was used. The spectrum is detailed in Figure 2 and 3, and Tables 1 and 2 below.

Figure 2. Representative Segments From the Unmodified and 6.5 g Limit Spectra

ALCONOMINATION OF PROGRAMMENT OF STREET OF THE STREET OF T

Figure 3. Representative Segments From the 5 g Limit and 8.5g Peak Spectra

						STEP				
Flight	Spectra	1	2	3	4	5	6	7	8	9
A'	Unmodified	10 cycles +3/+1	5 cycles +4/+0 5	2 cycles +5/0	1 cycle +6.5/-1.5	1 cycle +7.5 /-2.5	1 cycle +6.5/-1.5	2 cycles	4 cycles	10 cycle
Α'	6.5 g Limit	10 cycles +3/+1	5 cycles +4/+0 5	2 cycles +5/0	1 cycle +6.5/-1.5	1 cycle +6.5 /-2.5	1 cycle +6.5/-1.5	+5/0 2 cycles +5/0	+4/+0.5 4 cycles +4/+0.5	+3/+1 10 cycle
Α'	5 g Limit	10 cycles +3/+1	5 cycles +4/+0 5	2 cycles +5/0	1 cycle +5/-1.5	l cycle +5 /-2.5	1 cycle +5/-1.5	2 cycles +5/0	4 cycles +4/+0.5	+3/+1 10 cycle +3/+1
Α'	8.5 g Peak	10 cycles +3/+1	5 cycles +4/+0 5	2 cycles +5/0	1 cycle +6.5/-1.5	1 cycle +8.5 /-2.5	1 cycle +6.5/-1.5	2 cycles +5/0	4 cycles +4/+0.5	10 cycle -3/+1
A	Unmodified 6.5 g Limit 8.5 g Peak	10 cycles +3/+1	5 cycles +4/+0 5	2 cycles +5/0	2 cycles +6.5/-1.5	2 cycles +5/0	2 cycles +4/0.5	5 cycles +3/+1	-	-3/-1
Α	5 g Limit	10 cycles +3/+1	5 cycles +4/+0 5	2 cycles +5/0	2 cycles +5/-1 5	2 cycles +5/0	2 cycles +4/0.5	5 cycles +3/+1	-	-
В	ALL	5 cycles +3/+1	5 cycles +4/+0 5	9 cycles +5/0	4 cycles +4/+0.5	5 cycles +3/+1	- 1470.5	-3/-1	-	•
С	ALL	5 cycles +3/+1	1 cycle +4/+0 5	5 cycles +3/+1	-	-	-	-	-	-

Table 1. Flight Segment Spectra

313	美2禁	433 0	**4 **;	495 €	7 .6 −	§ 7 %;	ુ-8₹	×:9:-	- 10	美田芸	第120	到3点	14.	15.
В	С	С	В	С	С	С	Α	С	С	В	В	Α	С	C
316	2173	%18 *	19≵	#20	21	- 22	₹23	24.	*25%	26	27	⊉28⊜	29.	30
С	В	A	С	В	· B	В	Α	С	С	С	Α	Α	С	С
312	32	33.	-34-	35	ં36∵	~ 37	. 38	39.	40.	41	42.	-43	: 44	45
В	В	В	С	В	Α	В	C	C	В	Α	A'	В	С	С
.46	. 47. x	.48	49.	50∗	. 51	્52	53	54	÷55,-	્56≥	· 57	58 8	୍:59	60.
Α	Α	В	В	С	С	В	С	С	В	С	В	В	С	С
61 .	ુ62 _~	_63_	. 64	ૅ65	: 66	67	68	-69	∴70°	:71 _±	72	73	74	75×,
С	Α	В	Α	С	С	С	В	Α	В	В	В	С	В	С
76	<i>277</i>	.78	- 79 ₹	80	. 81:-	. 82 .	83.	84	∹85≟	86,	87	≱88 ⊱	÷89≲	. 90
С	Α	В	С	В	Α	В	С	С	В	Α	Α	В	С	С
101%	≝92 <i>‡</i>	.93	£94 ₈	4.9 5%	.96	.97	98∜	99	100			新新		
В	С	С	В	В	С	В	С	Α	С	-	•	•	-	-

Table 2. Sequence of Flight Segments in a Block Representing 100 Flights, 66.6 Hours (1989 cycles)

Three specimens were subjected to the unmodified spectrum, two specimens to the 6.5 g limit spectrum, three specimens to the 5 g limit spectrum and one specimen to the 8.5 g limit spectrum. All specimens were tested to failure which occurred at a half crack length a of between 0.5 and 0.6 inch. The crack growth curves are plotted in Figure 4 below. There is very little scatter in the results where several tests were performed under the same spectrum. It is therefore considered reasonable to conclude that the differences in crack growth rate can be attributed solely to the differences in the load spectra.

Figure 4. Experimental Crack Growth Results for Four Mirage Spectra Variations (Reference 10)

The crack growth results clearly demonstrated the load interaction effects expected under spectrum loading. When the peak load was clipped at 6.5 g, there was a loss of retardation effect and the crack growth life was shorter. Clipping at 5 g led to an even shorter life. Increasing the peak load from 7.5 to 8.5 g (a load which occurs once per block of 1989 cycles) doubled the life. These results were therefore able to be used to assess the adequacy of the various models to predict the load interaction effects.

3. PREDICTIVE MODELS

The predictive models examined here can be classified either as empirical (CRACKS84, Broek, AFGROW) or based on the analytical closure model (FASTRAN II). A description of the significant features of each is presented in this section.

3.1 CRACKS84

A program called CRACKS84 was used in the Reference 10 work. The results are reproduced here for comparison purposes. CRACKS84 was based on a program called CRACKGRO and was obtained from the USAF and modified to run on a Gould 9080 computer running a UNIX operating system. CRACKS84 is based on the standard Linear Elastic Fracture Mechanics (LEFM) approach to fatigue crack propagation. The code includes stress intensity factor solutions for various geometries, several different crack growth rate models and several load interaction effect models. Reference 10 gives full details on the program and how it was applied in this case. The load interaction models used were none, Basic Willenborg, Generalised Willenborg and Willenborg/Chang.

3.2 Broek

A suite of software has been developed by Dr D. Broek from FractuREsearch Inc in the USA (Reference 11). The software also utilises the LEFM approach. The retardation models examined were none, Willenborg, Calibrated Wheeler and Calibrated Broek. The software is windows based and runs on a PC.

3.3 AFGROW

AFGROW is a fatigue crack growth software package developed by the US Air Force at Wright Patterson Air Force Base, OHIO, USA (Reference 12). AFGROW is a workstation based, graphically interactive computer program for simulation of fatigue crack growth in common structural geometries subject to spectrum loading. It is designed to run either on a PC under Windows 95, or under a UNIX operating system. For the current work the PC Windows 95 version was used. The program uses the LEFM approach and the retardation models examined were none, Willenborg, Wheeler and Closure.

3.4 FASTRAN II

FASTRAN II is a PC based life prediction code based on the crack closure concept and is used to predict crack length against cycles from a specified initial crack size to failure for many common crack configurations found in structural components. The model is based on plasticity induced fatigue crack closure and is used to calculate the stress level at which the crack tip becomes fully open during cyclic loading (Reference 13), leading to the concept of an effective applied stress intensity range (Δ Keff). The model is expected to provide a more accurate measure of the crack growth rate for a spectrum loading situation.

4. INPUT DATA

. .

4.1 Common Inputs

The inputs which were common to all programs were as follows:

- a. Specimen Width = 1.5 inch
- b. Specimen Thickness = 0.2 inch
- c. Initial Crack Length, $a_i = 0.15$ inch
- d. Final Crack Length, a_f = 0.60 inch
- e. Specimen Geometry: Finite width centre crack sheet
- f. Material: 7075-T651 Aluminium Alloy
- g. Loading: Uniaxial Tension
- h. Spectra: Expressed in terms of "g" with a scale of 2.5 ksi per g
- i. Material Yield Strength, $\sigma_{vs} = 67 \text{ ksi}$
- j. Plane Strain Fracture Toughness, $K_{IC} = 35ksi\sqrt{inch}$

4.2 CRACKS 84

4.2.1 Crack Growth Rate Data

As detailed in Reference 10, the crack growth rate data was modelled using the Walker equation as follows:

$$\frac{da}{dN} = C_a \left[\left(1 - R \right)^{m-1} \Delta K \right]^n \text{ for } R \ge 0.0$$

$$\frac{da}{dN} = C_a [(1+R^2)^q K_{\text{max}}]^n \text{ for } R < 0.0$$

Where:

The Property of the State of th

$$\frac{da}{dN}$$
 = Crack growth rate

 ΔK = Stress intensity factor range

 K_{max} = Maximum stress intensity in the cycle

 $C_a, m, n, q =$ material constants

As detailed in Reference 10, the available material data (Reference 15) was modelled with three straight line segments with C_a and n values as follows (inch and ksi units):

$$C_{a1} = 4.9329 \times 10^{-10}$$

$$n_1 = 4.4533$$

$$C_{a2} = 2.4379 \times 10^{-8}$$

$$n_2 = 2.60$$

$$C_{a3} = 7.3126 \times 10^{-12}$$

$$n_3 = 5.1766$$

A value of m = 0.6 was determined.

A "typical" value of q = 1.0 was used.

A value of threshold stress intensity range, ΔK_{TH} , of $2.5ksi\sqrt{inch}$ was used. CRACKS 84 included an option to allow ΔK_{TH} to change as a function of stress ratio, R. This option was not used, ie ΔK_{TH} was kept constant. This had no impact on the prediction in any case since the smallest ΔK cycles even at the starting crack length exceeded $2.5ksi\sqrt{inch}$.

Positive and negative stress ratio limits, ie values of R above and below which stress ratio is presumed not to have an effect on crack growth rate were required to be input. "Typical values" of +0.75 and -0.99 were used.

4.2.2 Load Interaction Model Input Data

The load interaction models used in CRACKS 84 (Basic Willenborg, Generalised Willenborg and Willenborg/Chang) are all influenced by the size of the plastic zone which is calculated as follows:

$$r_{v} = \frac{1}{\gamma \pi} \left[\frac{K_{\text{max}}}{\sigma_{ys}} \right]^{2}$$

Where:

 $r_v = \text{radius of plastic zone}$

 K_{max} = maximum stress intensity due to the current load

 σ_{vs} = material yield stress

 $\gamma = 2$ for plane stress, 6 for plane strain

For a through crack case, CRACKS 84 assumes plane stress conditions.

The Generalised Willenborg model introduced another parameter known as the overload shut-off ratio, R_{so} . A typical value of 2.3 was used.

4.3 BROEK

4.3.1 Crack Growth Rate Data

The Broek software includes a Walker equation option for modelling the crack growth rate data, but it does not allow the user to input the equation in several "regions" each with a different slope (n) and intercept (C) value. It also does not incorporate a threshold in the equation. There is, however, the option of a tabular input where the crack growth rate for a range of R ratios is input as a function of ΔK . The Mirage spectra consisted of sub blocks of constant amplitude cycles which covered a limited range of R ratios. There were eight R ratios in total, ie R = -0.500, -0.385, -0.333, -0.300, -0.294, 0, 0.125 and 0.333. The Broek software could only accommodate a maximum of six R ratios in the table, so the data at R = -0.333 and R = -0.294 were left out. It was considered that the results would not be significantly affected since there was data at fairly close R ratios in the table. The table was adjusted so that an extremely small crack growth rate corresponded to ΔK levels below the threshold

value of $2.5ksi\sqrt{inch}$, thus modelling the threshold behaviour in a similar fashion to CRACKS 84. The Walker equation representation of the crack growth rate relation is shown for selected R ratios in Figure 5.

Figure 5. Walker Equation Model of Crack Growth Rate Data for 7075-T651

4.4 AFGROW

- 1941年 | 1984年

4.4.1 Crack Growth Rate Data

AFGROW was able to accept up to 5 straight line segments for the Walker equation, so the three sets of slope and intercept (n and C) as per CRACKS 84 were used. AFGROW does not request a value of the parameter "q" (see Section 4.2.1). The program deals with negative R ratio data by using the "Harter T Method" (Reference 12). It does prompt for positive and negative stress ratio limits. Although +0.75 and -0.99 were used with CRACKS 84. AFGROW only allows up to +1.0 and -0.5 on the negative side. Because the lowest R ratio in the Mirage spectra was -0.5, it was considered reasonable to set the negative limit at -0.5 and this should give a consistent result with the CRACKS 84 predictions. The positive limit was set at 0.75 as per CRACKS 84.

4.5 FASTRAN II

4.5.1 Crack Growth Rate Data

The FASTRAN II approach requires that you obtain the effective stress intensity range, $\Delta K_{\rm eff}$, as a function of crack growth rate for the material of interest. Newman (Reference 13) has developed a computer program to process raw data using a given constraint factor, α , to produce the $\Delta K_{\rm eff}$ data. Data was available from Reference

14 for 7075-T6 material. This data is plotted along with the Walker equation data at R=0 and R=0.75 in Figure 6 below. The Newman data was considered to be consistent with the other data and was used to perform the predictive runs with FASTRAN II. Some modification was made to the constraint factor, α , and this is discussed in Section 5.6.

Figure 6. Comparison of Newman's 7075-T6 data with Walker Equation Data

5. RESULTS

 \mathcal{N}^2

5.1 No Retardation

The first case to be considered was a prediction without any retardation effects being considered. This does not apply to FASTRAN II because it can only be run with load interaction effects being considered. The results are summarised in Table 3 below:

Spectrum	Experimental	Predictive Model					
	Result	CRACKS 84	BROEK	AFGROW			
Unmodified	85,630	48,552	49,422	48,746			
6.5 g	71,714	48,945	49,473	48,887			
5.0 g	44,006	52,402	52,426	52,431			
8.5 g	178,965	46,567	49,365	48,592			

Table 3. Comparison of Experimental and Predicted Crack Growth Lives (in cycles) from a_i = 0.15 inch to Failure (approximately a = 0.6 inch) with No Retardation Modelling.

These results are considered to be reasonably consistent. They have been obtained by essentially using the same material data, albeit converted into a different format to suit each particular program. In each model, the predicted life is increased slightly for the 6.5 g and 5.0 g spectra, and reduced for the 8.5 g spectrum (compared to the unmodified spectrum). This is expected because the retardation effects are not predicted.

5.2 Willenborg Retardation Model

(1979) 11、10歳 17歳 株 10km 11になるので

on attended the Charlest State of Theory of the charles and

The results when the Willenborg retardation model was selected are shown in Table 4 below. In the case of CRACKS 84 there are three variations of the Willenborg model.

Spectrum	Experimental		CRACKS 8	Broek	AFGROW	
	Result	Basic Willenborg	Generalised Willenborg	Willenborg / Chang		
Unmodified	85,630	90,323	66,457	64,334	99,969	75,329
6.5 g	71,714	80,377	63,876	64,335	100,242	75,655
5.0 g	44,006	64,715	56,482	57,855	114,721	58,832
8.5 g	178,965	122,144	76,400	66,450	99,885	76,402

Table 4. Comparison of Experimental and Predicted Crack Growth Lives (Cycles) from $a_i = 0.15$ inch to Failure (approximately a = 0.6 inch) Using the Willenborg Retardation Model

5.2.1 CRACKS 84, Basic Willenborg

For the unmodified spectrum, the prediction with this retardation model (90,323 cycles) has increased significantly from the no retardation case (48,552 cycles) to be much closer to the experimental result (85,630 cycles). Relative to that result, the model predicts a shorter life for the 6.5 g spectrum and a shorter life again for the 5 g spectrum. A longer life is predicted for the 8.5 g spectrum. The absolute values of the predictions are not accurate, but the trend follows the same pattern as the experimental results.

5.2.2 CRACKS 84, Generalised Willenborg

The trends here are similar to the Basic Willenborg model.

5.2.3 CRACKS 84, Willenborg / Chang

Once again, the trends are in the expected direction but the absolute values of the predictions vary. The Basic Willenborg model appears to have given a better result in this case than either the Generalised Willenborg or the Willenborg/Chang model.

5.2.4 Broek, Willenborg

44

As per the CRACKS 84 predictions, the unmodified spectrum result has increased significantly (49,422 to 99,969 cycles). Relative to this, the predicted lives at 6.5 g and 5 g have <u>increased</u> which is opposite to the experimental results and contradicts the trends observed with CRACKS 84. The predicted life at 8.5 g has <u>decreased</u> which is also the opposite of what would be expected. The author has raised concerns about these results with Dr Broek at FractuREsearch Inc in the USA.

5.2.5 AFGROW, Willenborg

As per the previous observations, the unmodified spectrum result has increased significantly (from 48,746 to 75,329 cycles). Relative to this, the 6.5 g spectrum result is a slightly longer life which is <u>not</u> in the expected direction. The 5 g result is shorter than the unmodified spectrum and the 8.5 g result is longer. Both of these have moved in the expected direction.

5.3 Wheeler Retardation Model

The results for the Wheeler retardation model are shown in Table 5 below:

Spectrum	Experimental	Wheeler Model				
	Result	Broek m = 0.835	AFGROW m = 0.86			
Unmodified	85.630	85,546	85,274			
6.5 g	71,714	80,789	80,313			
5 g	44.006	61,043	61,477			
8.5 g	178,965	104,193	105,436			

Table 5. Comparison of Experimental and Predicted Crack Growth Lives (Cycles) from $a_i = 0.15$ inch to Failure (approximately a = 0.6 inch) Using the Wheeler Retardation Model

In this case the trends are in the expected direction for both sets of software and the results are consistent with each other. The calibration parameters of m = 0.835 and 0.86 for Broek and AFGROW respectively were obtained by getting a "match" for the unmodified spectrum.

5.4 Broek Retardation Model

The Broek retardation model was calibrated to the Unmodified Spectrum results and the predictions are shown in Table 6 below:

Spectrum	Experimental Result	Broek Model Factor = 1.3
Unmodified	85,630	87,860
6.5 g	71,714	79,257
5 g	44,006	50,432
8.5 g	178,965	206,477

Table 6. Comparison of Experimental and Predicted Crack Growth Lives (Cycles) from $a_i = 0.15$ inch to Failure (approximately a = 0.6 inch) Using the Broek Retardation Model

A full plot of these crack growth predictions compared with the experimental data are shown in Figures 7 to 10 below.

Figure 7. Unmodified Spectrum, Broek Retardation Model (Calibration Factor = 1.3), Experimental Data and Prediction

27

- ;

Figure 8. 6.5 g Limit Spectrum, Broek Retardation Model (Calibration Factor = 1.3), Experimental Data and Prediction

Figure 9. 5 g Limit Spectrum, Broek Retardation Model (Calibration Factor = 1.3), Experimental Data and Prediction

Figure 10. 8.5 g Limit Spectrum, Broek Retardation Model (Calibration Factor = 1.3), Experimental Data and Prediction

5.5 Closure Model (AFGROW)

::

Extra Section 1

AFGROW included a "Closure Retardation Model" option, but it appears to be significantly different to the analytical model used in FASTRAN II. The model relies on the user inputting the Crack Opening Load Ratio (OLR) at R=0. For the results

presented here the default value of OLR = 0.15 was used. The results are shown in Table 7 below:

Spectrum	Experimental Result	AFGROW Closure Model OLR (R=0) = 0.15
Unmodified	85,630	45,792
6.5 g	71,714	45,342
5 g	44,006	46,508
8.5 g	178,965	47,716

Table 7. Comparison of Experimental and Predicted Crack Growth Lives (Cycles) from $a_i = 0.15$ inch to Failure (approximately a = 0.6 inch) Using the AFGROW Closure Retardation Model

5.6 FASTRAN II

The crack growth rate data used with the FASTRAN II program (see Sect 4.5.1) was obtained from centre crack specimens of 2.3 mm thickness. The specimens tested under the Mirage spectra were 5 mm thick and this would have a significant effect on the constraint factor, α . The constraint factor in the "constraint loss" regime (Reference 14) was adjusted until FASTRAN II gave the correct prediction for the unmodified spectrum. This was essentially a "calibration" of the da/dN vs ΔK_{eff} data. The "calibrated" data was then used to predict the crack growth under the other spectra. The α conditions necessary were as follows:

da/dN < 2.76×10^{-5} inches per cycle, $\alpha = 1.8$

 $da/dN > 2.76 \times 10^{-4}$ inches per cycle, $\alpha = 1.57$

For intermediate rates, α was varied linearly with the logarithm of crack growth rate (Reference 13).

The crack growth predictions obtained are shown in Table 8 below:

多年第一年

Spectrum	Experimental Result	FASTRAN II Prediction
Unmodified	85,630	85,080
6.5 g	71,714	73,182
5 g	44,006	46,276
8.5 g	178,965	201,092

Table 8. Comparison of Experimental and Predicted Crack Growth Lives (Cycles) from a_i = 0.15 inch to Failure (approximately a = 0.6 inch) Using FASTRAN II with α = 1.57 in the constraint loss regime

The full plot of the crack growth predictions for FASTRAN II compared with the experimental data are shown in Figures 11 to 14 below.

Figure 11. Unmodified Spectrum, FASTRAN II, Experimental Data and Prediction

Figure 12. 6.5 g Limit Spectrum, FASTRAN II, Experimental Data and Prediction

Figure 13. 5 g Limit Spectrum, FASTRAN II, Experimental Data and Prediction

:11

Figure 14. 8.5 g Limit Spectrum, FASTRAN II, Experimental Data and Prediction

6. DISCUSSION AND CONCLUSIONS

ALL LOSS MANY LANGUES AND ALL CONTROLS OF THE PARTY OF TH

A range of fatigue crack growth prediction models and a range of software packages have been evaluated for their ability to deal with load sequence effects for long fatigue crack test data. The test data utilised clearly demonstrated a load sequence interaction effect. Observations/ comments are as follows:

- a. The empirical models all gave similar results for the no retardation case. As expected, the spectrum changes did not alter the predictions greatly.
- b. The Willenborg model produced inconsistent and illogical results in the Broek and AFGROW packages, and more sensible results with CRACKS 84. There appear to be many variations with the Willenborg model, and the reason for the inconsistencies could only be ascertained by examining the source code for the various programs. The result of this study will be conveyed to the authors of the Broek software and AFGROW because these programs are currently in use. CRACKS 84 is obsolete, and it is not (to the author's knowledge) being actively used.
- c. AFGROW and Broek gave reasonably consistent results for the Wheeler retardation model. The model correctly predicted the direction in which the crack growth would change with a spectrum change, but the ratio of predicted lives was not well predicted.
- d. The calibrated Broek retardation model gave good results when you examine the final life tables (Table 6). However the plots (Figures 7 to 10) show that the total curve is not always well modelled. The prediction for the 8.5 g peak load case

(Figure 10) in particular exhibits some unusual bumps. These bumps appear to be more pronounced when the spectrum contains higher peak loads. The prediction for the 5 g case is a smooth curve with little indication of bumps. The bumps are not a phenomenon which occur in the experimental results.

- e. The AFGROW closure model did not give good results. The 5 g result goes against the expected trend, and the magnitude of the variation in growth life compared with the unmodified spectrum is significantly less than observed in all cases. Further investigation is required.
- f. FASTRAN II produced the best predictions (see Figures 11 to 14). An encouraging aspect to this is that there is a physical explanation to the "calibration" process which took place. The baseline crack growth data had been obtained from thinner (2.3 mm) specimens. The thicker specimens used in the Mirage spectrum testing would be expected to have a higher constraint level. Having calibrated the model to the unmodified spectrum, very good predictions were obtained for the other spectra.

The results of this exercise demonstrate the superior performance of Newman's analytical crack closure model for predicting fatigue crack growth under spectrum loading. This is consistent with the findings in References 5 and 6. The empirical nature of the other models leads to inconsistent and illogical results. These results are for a relatively simple 2-D crack configuration and the models would not be expected to perform any better for a more complex geometry or more complicated loading. There also appears to be inconsistency in how the models have been coded into the software, particularly for the Willenborg retardation model.

The disadvantage with the FASTRAN II approach is the issue of the baseline crack growth rate data. However, this exercise has shown that as observed by Newman (References 13 and 14), data from high R-ratios can be used to approximate the da/dN vs $\Delta K_{\rm eff}$ relation (see Figure 6). The constraint factor, α , can be used as a calibration factor. It is not, however, simply an empirical or arbitrary calibration. The constraint factor needs to be adjusted to reflect the level of constraint present in the particular case being analysed when compared to the constant amplitude test data. There will always be some degree of compromise inherent in this because the constraint varies along any crack front (ie whether it is a through crack or a part through crack). The analytical crack closure model is considered to be the best option for predicting fatigue crack growth under spectrum loading.

7. ACKNOWLEDGEMENTS

The author wishes to thank Mr Brendan Murtagh from AMRL for his assistance throughout this work, and Messers Jim Newman and Dave Dawicke at NASA Langley for advice and assistance with running the FASTRAN II program. Thanks also to Dr Francis Rose and Dr Chun Wang from AMRL for their technical advice, assistance and review.

REFERENCES

CONSTRUCTION CONTRACTOR

- Finney, J. M. and Machin, A.S., "A Test of Some Fatigue Crack Growth Prediction Models"
- 2. Schijve, Jaap, "Prediction Methods for Fatigue Crack Growth in Aircraft Material". Fracture Mechanics: Twelfth Conference, ASTM STP 700, American Society for Testing and Materials, 1980, pp 3-34.
- 3. Chang, J.B., and Engle, R.M., "Improved Damage Tolerance Analysis Methodology", Journal of Aircraft, Vol 21, No 9, September 1984, pp 722-730.
- 4. Newman, J. C., "A Crack Closure Model for Predicting Fatigue Crack Growth Under Aircraft Spectrum Loading", ASTM STP 748, American Society for Testing and Materials, 1981.
- Salvetti, A., Lazzeri, L., and Pieracci, A., "An Assessment of Fatigue Crack Growth Prediction Models for Aerospace Structures", AGARD Report 797, Sept 1993.
- Lazzeri, L., Pieracci, A. and Salvetti, A., "An evaluation of Fatigue Crack Growth Prediction Methods Used in Aircraft Design", Proceedings of the 18 th ICAF Symposium, pp 615-645 EMAS publ. 1995.
- Wang, G.S., and Blom, A.F., "A Strip Model for Fatigue Crack Growth Predictions Under General Load Conditions", Engineering Fracture Mechanics, Vol 40, No 3, pp 507-533, 1991.
- 8. Ball, D.L., "Non-Linear Fatigue Crack Growth Analysis for Problems with Small Scale Yielding", presented at 1993 USAF Structural Integrity Program Conference, San Antonio TX, 30 November 1993.
- 9. Ball, D.L., "Proposed Integration of Notch-Strain and Fatigue Crack Growth Analyses", Journal of Aircraft, Vol 27, No 3, April 1990, pages 358-367.
- Walker, K., "The Effect on Fatigue Crack Growth Under Spectrum Loading of an Imposed Placard "G" Limit", Masters Thesis, Purdue University, December 1987.
- 11. Broek, D., "Software for Practical Fracture Mechanics and Damage Tolerance Analysis", Windows Version, 1995
- 12. Kirshnan, S., Boyd, K.L. and Harter, J.A., "Structural Integrity Analysis and Verification of Aircraft Structures", AFGROW Users Manual, Version 3.0.4, August 1995.
- 13. Newman, J. C., "FASTRAN II A Fatigue Crack Growth Structural Analysis Program", NASA Technical Memorandum 104159, February 1992.

- 14. Newman, J., Phillips, E., and Swain, M.H., "Fatigue Life prediction Methodology Using Small Crack Theory", NASA Technical Memorandum 110307, January 1997.
- 15. "Damage Tolerant Design Handbook A Compilation of Fracture and Crack Growth Rate Data for High Strength Alloys", MCIC-HB-01R, University of Dayton Research Institute, and Materials Laboratory, Air Force Wright Aeronautical Laboratories, Wright Patterson Air Force Base, December 1983.

Air Force Research Laboratory - Materials and Manufacturing Directorate

A New Concept to Describe Load Interaction Effects in Fatigue Crack Propagation

M. Lang

Air Force Research Laboratory (AFRL/MLLN), Wright-Patterson AFB, OH 45433-7817 NRC -associate

The 1997 USAF Aircraft Structural Integrity Program
Conference,
2-4 Dec. 1997, San Antonio, Texas.

The ΔK_{eff} -Concept

Crack Propagation Load Measurement Method (CPLM)

CPLM

\[\sqrt{\text{vas/vas/vas/}}
-/ \quad \text{Kul}

K_{max,BL}

 $K_{\text{max,OL}}$

×

$R_{\rm BL}$	Kmax,OL	ďЬ
	[MPa√m]	[MPa]
	19	0; -92.5, -185;
		-231, -277; -314
	23	0, -92.5, -185
0.1		-231, -277
	28	-25; -80; -130,
		-185
	~	-231, -277
	32	6.5; -92.5;
		-185;-277
0.33	27.6	-92.5, -231
0.47	31.5	-92.5, -231
89.0	32.3	-92.5, -231
8.0	32	-92.5
		-231

CCT-specimens, W=160mm, B=8mm

0.5; 2; 4; 8 1; 4; 10 1; 2.5; 7; 11 1; 7; 13 2.5; 13; 16 [MPa√m] 1.5; 16; 24 1; 4; 5 1; 4.5 1; 5 1; 13; 21 Kmax, OL [MPa/m] 22.8 27.6 24 31.5 24.7 32.3 19 23 28 27 32 \mathbf{R}_{BL} 0.33 0.680.47 **0.8** 0.1

CT-specimens, W=50mm, B=10mm

6

$R_{\rm BL}$	\mathbf{K}_{ul}
	[MPa/m]
0.33	
0.47	2
89.0	0.6, 7
8.0	1, 6
CT-snecimens	mens
W=50mm	n. B=10mm

0.1

CCT-specimens, W=160mm, B=8mm

-139

0.33

-139

0.68

0.8

-139

 $R_{\rm BL}$

CA- tension/compression

							117175 T7251	M /4/ J-1/ J-1	CCT-specimens,	W=160mm,	B=8mm
σ_p [MPa]	-92.5	-139	-185	-46	-139	-92.5	-139	-185	-92.5	-46	-139
\mathbf{K}_{max} [MPa $\sqrt{\text{m}}$]	10			15		19			23	28	

Multiple OL/CL

\mathbf{R}_{BL}	Kmax, OL	g	OL/CL
	[MPa√m]	[MPa]	-cycles, [Noc]
0.1	23	-92.5	3; 5; 10; 20; 100
0.33	27.6	-92.5	3; 5; 10; 20; 100
0.47	31.5	-92.5	3; 5; 10; 20; 100
89.0	32.3	-92.5	3; 5; 10; 20; 100

Al 7475-T7351 CCT-specimens, W=160mm, B=8mm

 $K_{PR,C} = (0.453 + 0.34 \cdot UR + 0.134 \cdot UR^2 + 0.07 \cdot UR^3) \cdot K_{\text{max}}$

 $K_{PR,C} = g(UR) \cdot K_{\max}$

 $K_{PR,OL} = (0.322 + 0.58 \cdot UR + 0.241 \cdot UR^2 - 0.18 \cdot UR^3) \cdot K_{\text{max},OL}$ [-0.7 < UR < 1]

$$K_{PR,OL} = h(UR) \cdot K_{\max,OL}$$

The Three Possible Types of Cycles

Map of Possible Crack Propagation Conditions

Multiple Overloads R_{BL}=0.1

PRED:
$$K_{PR} = \frac{21.7}{MPa\sqrt{m}}$$

PRED: $K_{PR} = 19.6$ MPa \sqrt{m}

PRED: $K_{PR} = 14.9$ MPa \sqrt{m}

 $K_{PR} = \frac{12.0}{MPa\sqrt{m}}$

PRED:

PRED: $K_{PR} = 11.0 \text{ MPa/m}$

Air Force Research Laboratory - Materials and Manufacturing Directorate

SUMMARY

- The bases of a FCG- model were presented which is the result of an experimental study using Al 7475-T7351.
- The critical parameter, the crack propagation stress intensity factor, K_{PR}, was determined after different loading sequences using the CPLM - method (\(\Delta K_{eff}\)). The experimental results were described by basically three equations.

1)
$$K_{PR,C} = g(UR) \cdot K_{\text{max}}$$

2)
$$K_{PR,OL} = h(UR) \cdot K_{\max,OL}$$

3)
$$K_{PR, mOL} = i(UR, N_{OL}) \cdot K_{max, OL}$$

- A twofold concept is used where the influence of crack closure and residual compressive stresses in front of the crack tip are treated separately.
- An arbitrary loading spectrum consists only those three types of cycles. The model determines K_{PR} and the respective crack growth increment cycle by cycle for arbitrary The FCG-model is based on the map of the three possible crack propagation conditions. loading sequences.

DETERMINING FLIGHT LOADS AND CRACK GROWTH RATES STATION COMPONENTS FAI FO ARCRAFI

Dr. Donald A. Shockey

715

Takao Kobayashi, Charles G. Schmidt, and Richard W. Klopp SRI International, Menlo Park, CA 94025

and

Dr. Thomas H. Flournoy

Federal Aviation Administration Technical Center Atlantic City, NJ 08405

== Poulter Laboratory (

DETERMINING FLIGHT LOADS AND CRACK GROWTH RATES FROM FAILED AIRCRAFT STRUCTURAL COMPONENTS

Donald A. Shockey, Takao Kobayashi, Charles G. Schmidt, and Richard W. Klopp SRI International, Menlo Park, CA 94025 and

Thomas H. Flournoy
Federal Aviation Administration
Technical Center, Atlantic City, NJ 08405

SUMMARY—The possibility of deducing load spectrum parameters from fatigue failure surfaces is explored by applying innovative, three-dimensional topographic characterization and analysis techniques to failure surfaces in aluminum sheet. Precise, high-resolution elevation maps of fracture surfaces were obtained using confocal optics scanning laser microscopy. Elevation power spectral density curves resulting from a fast Fourier transform of the elevation data appear sensitive to stress intensity range and environment. A conjugate fracture surface matching procedure, FRASTA, can detect and may provide a way to quantify overloads.

Poulter Laboratory

Gray-scale Images and Perspective Views of Topography of Conjugate Fracture Surfaces Produced Under Low and High ∆K Fatigue Conditions

CPM-5082-78

Fast Fourier Transform Power Spectra for Conjugate Fatigue Failure Surfaces Produced Under High and Low AK **Loading Conditions**

CAM-5082-81

EPSD Curves for Two Specimens Tested Under Identical Conditions

Power Curves for Fatigue Surfaces Produced in Air and Vacuum

CAM-5082-82

Peak Stress Intensity Versus Crack Length for Fatigue Experiment Showing Overloads

A Series of Plan Views of a Crack Front at Increasing Topograph Displacements

(White areas indicate separated material; black areas indicate intact material)

CAM-5048-84

Fracture Progression Curve Relation to Overloads Shown

Poulter Laboratory

CONCLUSIONS

- Important but previously unobtainable information regarding the conditions that produced fatigue failures can likely be obtained from fracture surfaces.
- Keys to extracting this information are a fast and accurate method for characterizing fracture surface topography and a threedimensional analysis of the data.
- ◆ Fourier analyses to fracture surfaces may provide the basis for a library of reference curves useful in determining the load spectrum and environment conditions that caused a service failure.

CONCLUSIONS (concluded)

- ◆ Comparison of conjugate fracture surface topographs may indicate and quantify details of the overload spectrum experienced by a component that failed in fatigue.
- ♦ Shapes of striations may be quantifiable by stereoscopy or COSLM and provide a means to determine maximum and minimum values of the cyclic load spectrum.
- These expectations should be explored to seek advances in failure analysis technology.

Full-Scale Testing of Fuselage Panels Obtained from Retired Aircraft

D.Y. Jeong, ^{1*} S.J. Kokkins, ^{2*} T.H. Flournoy, ³ J.V. Canha, ¹ G.W. Neat, ¹ and D.E. Nieser ⁴

¹ U.S. Department of Transportation Research and Special Programs Administration John A. Volpe National Transportation Systems Center Cambridge, MA 02142

> ² Foster-Miller, Inc. Waltham, MA 02154

³ U.S. Department of Transportation Federal Aviation Administration William J. Hughes Technical Center Atlantic City, NJ 08405

> ⁴ U.S. Air Force OC-ALC/LACRA Tinker AFB, OK 73145

ABSTRACT. Under the joint sponsorship of the U.S. Department of Transportation and the U.S. Air Force, Foster-Miller, Inc. is carrying out a research program to conduct fatigue and residual strength testing of full-scale, curved, stiffened, fuselage sections from retired Boeing 707 and C/KC-135 aircraft. This program also includes non-destructive inspection to detect the presence of any cracking or corrosion damage prior to panel testing. The specific objectives of this program are: (1) to demonstrate the feasibility of performing realistic cyclic testing of fuselage structures removed from actual aircraft; and (2) to perform full-scale tests to determine fatigue and residual strength of fuselage panels with lap splices. This paper will report on the status of the work-in-progress.

1.0 BACKGROUND

In support of the Federal Aviation Administration William J. Hughes Technical Center's (FAA/WJHTC) National Aging Aircraft Program, a facility to test full-scale fuselage panels was designed and built by Foster-Miller, Inc. (FMI) in the late 1980s [1] under contract to the John A. Volpe National Transportation Systems

^{*} Presenters at the 1997 USAF Aircraft Structural Integrity Program (ASIP) Conference.

Center (Volpe Center). This facility, referred to as the FAA Aging Aircraft Test Fixture (Figure 1), has been used to examine the fatigue and residual strength of fuselage panels containing widespread fatigue damage (WFD) in lap splices [2]. A unique feature of this fixture is that it employs water rather than air as a pressurization medium to create biaxial loading. Whiffle-tree systems are used to distribute force uniformly across the ends of the test panel. Hydraulic cylinders at one end of the panel provide this pulling force. A series of turnbuckles anchor the panel on the sides which incorporate specially-designed elastic restraints to provide proper loading of both skins and circumferential frames. An inflatable seal closes the gap between the panel and the tub to prevent leakage.

Figure 1. FAA Aging Aircraft Test Fixture.

Prior to 1997, only laboratory panels with structural details resembling a Boeing 737 (B-737) airplane had been used at the Aging Aircraft Test Facility. Validation of the laboratory panels was achieved when strain data collected from the panels agreed reasonably well with strain data collected during a ground-pressurization test of an actual B-737 airplane [3].

The U.S. Department of Transportation (U.S. DOT) and the U.S. Air Force (USAF) are now collaborating on a joint research program to examine the fatigue and static strength of fuselage panels obtained from disassembly of retired aircraft. Specifically, panels have been obtained from retired Boeing 707 (B-707) and

C/KC-135 aircraft. In other words, panels from actual aircraft are being used in this on-going program which comprises two parts. The first part involves non-destructive inspection (NDI) characterization of the panels to detect any type of damage (i.e., fatigue cracking and/or corrosion) prior to testing. The second part entails a testing program to evaluate the fatigue and residual strength of the panels.

This paper will describe the work in-progress on this research program. To date, NDI evaluations have been completed on four aircraft panels (two B-707 panels and two C/KC-135 panels), and testing has been completed on two B-707 panels.

2.0 DESCRIPTION AND USAGE HISTORY OF AIRCRAFT PANELS

The FAA Aging Aircraft Test Facility accommodates panels that are 120 inches in length and 68 inches along the circumference with a constant radius of curvature of 75 inches. This radius may vary over a limited range, but due to the modular design of the fixture, substitution of certain components can be made to accommodate a wide range of radii from commuter to wide-body types of aircraft. In the current test program, panels with limited structural interaction with windows, doors, and other design details were preferred. Because of these restrictions, fuselage panels were taken from the crown area of various retired airplanes. Table 1 gives a brief description of the fuselage panels collected for the present test program to date. Structural variations among the panels are noted in the table as well.

Table 1. Summary of Panel Descriptions.

Panel No.	USAF ID No.	Type A/C	Stringer Pitch	Body Stations	Stringer-Skin Connection	Skin Thickness	Remarks
1	CZ186	B-707	9.5 in.	BS540 to BS600 Port Side	Spot welds and rivets at frames	0.046 in. to 0.047 in.	Tear strap width is 3 in. Stringer-frame ties at all stringers.
2	CZ186	B-707	9.5 in.	BS1080 to BS1240 Port Side	Continuous rivets only	0.062 in. to 0.064 in.	Tear strap width is 3 in. Less than half of stringer-frames crossings had ties, but were removed before testing.
3	CA029	C-135	9.0 in.	BS980 to BS1140 Port Side	Spot welds and rivets at frames	0.068 in. to 0.070 in.	No tear straps. No stringer-frame ties.
4	CA029	C-135	9.0 in.	BS440 to BS680 Port Side	Spot welds and rivets at frames	0.048 in. to 0.049 in.	No tear straps. No stringer-frame ties.

NOTE: The fuselage radius is 74 inches for both the B-707 and C/KC-135 aircraft.

Two panels were obtained from a B-707 airplane that had accumulated 22,071 flight cycles during 77,742 flight hours of in-service usage between January 1967 and October 1990. Although both panels were taken from the same airplane, the skin thicknesses were nominally different. A panel taken from the crown area forward of the wing between Body Stations BS540 and BS600 had a skin thickness of 0.046 to 0.047 inch, including coatings. A panel taken from the crown area aft of the wing between Body Stations BS1080 and BS1240 had a skin thickness between 0.062 and 0.064 inch. Other structural differences were observed in these two fuselage sections in addition to the difference in skin thickness. For example, in the forward section of the fuselage, the stringers were attached to the skins via spot welds. In the aft section, the stringers were attached to the skin by riveting. Crossings of the frames and the stringers were reinforced with tie clips in the forward-section panel. In the aft section, ties were located at less than half of the stringer-frames crossings when the panel was delivered to the test facility. Before testing, however, the stringer-frame ties were removed from the aft-section panel to ensure uniform load transfer. Also, variations in stringer cross-section are evident, even within the same runs in a given panel.

Two panels were obtained from a C/KC-135 airplane that accumulated 2,792 flight cycles during 14,267 flight hours between February 1958 and July 1992. As in the case of the B-707 airplane, the two panels from the same C/KC-135 airplane had different skin thicknesses. A panel taken forward of the wing between Body Stations BS440 and BS680 had a nominal skin thickness of 0.048 and 0.049 inch. A panel taken aft of the wing between Body Stations BS940 and BS1140 had a nominal skin thickness of 0.068 and 0.070 inch. Riveting of the lap joints in the C/KC-135 fuselage panels did not employ the commercial-type machined countersink on the skin (as used in the B-707 lap joints). Rather, after positioning and drilling of the rivet holes, the two skins were dimpled together in a countersink die, producing a cone-shaped engagement at every rivet hole, after which a flush-head rivet was installed.

3.0 PANEL PREPARATION

The aircraft sections removed from the retired airplanes required some modifications to accommodate the test fixture. These modifications included:

- sizing the test area of the panel to ensure a longitudinal lap joint near the center
- cleaning and degreasing the panels
- stripping paint at the lap joints and edges for instrumentation
- removing stringers at locations where the panel is attached to the fixture

- cutting skin edges and frame ends to final size
- installing doubler strips on each side of the panel (three layers per side)
- removing of stringer-frame ties (in the second B-707 panel only)
- reinforcing the frame ends
- drilling loading holes

During the panel preparations it was discovered that the longitudinal lap splices were not bonded with an adhesive. However, it was found that a zinc chromate primer was applied to both faying surfaces, and was probably wet when the panel skins were joined. This primer dried in place, and in many, but not all, places connected the upper and lower skins in the overlap.

4.0 NON-DESTRUCTIVE INSPECTION (NDI) OF FUSELAGE PANELS

The B-707 and C/KC-135 panels were inspected with five different NDI techniques to detect for prior damage:¹

- Thermal Wave Imaging (Wayne State University)
- Magneto-Optic Imaging (PRI Instrumentation)
- D-Sight (National Research Council Canada)
- Pulsed Eddy Current (Iowa State University)
- Ultrasound via "dripless bubbler" technique (Iowa State University)

A description of these various NDI techniques is beyond the scope of this paper, but specific details of these methods can be found in the open literature [4-8].

No evidence of fatigue cracking was found in any of the fuselage panels. In most areas, the NDI surveys found little, if any corrosion in these panels (which, as noted previously, were taken from aircraft over 30 years old). However, in Panel #2 (the thicker of the two B-707 panels which was taken from an aft crown section), a few areas of hidden lap joint corrosion in the range of 10 to 20% thickness loss were suggested by two NDI methods: pulsed eddy current and ultrasound. The effects of this will be determined during the testing of the panel. Also, in all cases, post-test dismantling of the joints will provide direct viewing of these internal joint surfaces.

¹ Affiliations of the technical staff performing the various NDI techniques are listed in parentheses

^{2 &}quot;Dripless bubbler" essentially refers to a captured water column that incorporates a water vacuum return system.

5.0 CORRELATION OF STRAIN GAGE DATA WITH ANALYSIS

Strain gage measurements were taken at various locations on a B-707 panel to ensure proper loading. Figure 2 shows a schematic of the strain gage layout for the instrumented B-707 panel. The panel was instrumented with ten gages, located mostly along the vertical centerline (midway) between frames. All but two gages were oriented to measure strains in the circumferential (hoop) direction. The other two gages measured strains in the longitudinal (axial) direction.

Finite element (FE) analyses based on large deformation theory were conducted by the Volpe Center as part of the present research program. The development of the finite element model for the B-707 fuselage panel was facilitated based upon previous experience in analyzing strain fields in a B-737 fuselage [3]. Moreover, the FE model developed for the B-737 fuselage panel was modified to examine the B-707 panels in the present study.

Figure 2. Schematic of strain gage layout for B-707 test panel.

The actual strains measured from the B-707 panel at an internal pressure of 9.5 psi are compared with the strains calculated from the finite element model at the same pressure level in Table 2. The strain level in the lap joint area could not be calculated accurately with the present model without mesh refinement. Otherwise, the calculated strains are within 20% of the actual strains.

Table 3 lists hoop and longitudinal stresses calculated at the gage locations by the FE model. From elementary strength of materials considerations of a pressurized thin-walled cylinder, the theoretical ratio between the longitudinal stress and the hoop stress is equal to one-half. In Table 3, the ratio is slightly less than the theoretical value, but the FE results are reasonable because the fuselage structure is stiffened. Also, in the previous study for the B-737 aircraft [3], the FE analysis calculated longitudinal-to-hoop stress ratios between 0.475 and 0.503. The theoretical hoop stress for a thin-walled cylinder with radius (74 inches) and skin thickness (0.040 inch) equal to that of a B-707 pressurized to 9.5 psi is equal to 17.6 ksi. The FE results for hoop and longitudinal stresses at the midbay locations in the B-707 panel are about 77% and 72% of the thin-walled cylinder approximation, respectively.

Table 2. Measured and Calculated Strains in B-707 Panel at 9.5 psi.

Gage		Strains		Gage
No.	Actual	FE	% diff.	Location (a)
1(b)	157	224	-42.7%	. 15
2	1404	1119	20.3%	15.5
3	956	1102	15.3%	2.5
4	1533	(c)	-	0
5	1161	1082	6.8%	2
6	1281	1113	13.1%	4
7	1297	1114	14.1%	6
8	1176	1118	4.8%	13.5
9 (b)	195	224	-14.9%	14
10 (d)	893	940	-5.3%	13.5

NOTES:

- (a) All gage locations are in inches relative to gage number 4 which was placed 1.5 inches from the bottom edge of the lap splice. All but one gage is mounted midway between frames.
- (b) This gage measures strain in the longitudinal (or axial) direction. All but two gages are oriented to measure hoop (or circumferential) strains.
- (c) The present finite element model requires mesh refinement to calculate accurate strains in the lap joint area.
- (d) This gage is mounted above a frame. All other gages are mounted midway between frames.

Table 3. Calculated Stresses in B-707 Panel at 9.5 psi.

Gage		FE Calculations for Stresses	
No. (a)	σ _ε (ksi)	σ _θ (ksi)	$\sigma_{z}/\sigma_{\theta}$
1	6.46	13.7	0.472
2	6.47	13.7	0.473
3	6.50	13.6	0.481
4	(b)	-	•
5	6.24	13.2	0.472
6	6.40	13.6	0.470
7	6.43	13.6	0.472
8	6.49	13.7	0.472
9	6.45	13.7	0.472
10	4.97	11.4	0.437

NOTES:

- (a) Refer to Table 2 for specific location of strain gages.
- (b) The present finite element model requires mesh refinement to calculate accurate strains in the lap joint area.

6.0 FATIGUE AND RESIDUAL STRENGTH TESTING OF B-707 PANELS

To date, testing has been completed on two B-707 panels. During the fatigue tests on both panels, the pressure was cycled between 1 and 9.5 psi³ at a rate of 720 cycles per hour. Fatigue crack growth was monitored with a 10x microscope at roughly 1,000-cycle intervals after initial cracking was observed. This visual method had been performed in previous fatigue tests conducted by FMI. Moreover, MSD-type cracks emanating 0.050 inch from the rivet head have been successfully detected using this method in laboratory panels which were made from bare, smooth aluminum. In the actual B-707 aircraft, multiple layers of paint made visual detection of initial cracking difficult⁴. Visual detection of cracking was enhanced when the panel was slightly pressurized which opened the cracks. Furthermore, the panel pressurization was considered safe since water was used for the internal loading. Initially, the panel paint surface had been left intact on the panel, but after the first visible sign of cracking, the surface of the panel was stripped and cleaned to increase the likelihood of finding additional cracks.

6.1 Panel #1

The first B-707 panel was taken from the crown area, forward of the wing between Body Stations BS540 and BS600E.

6.1.1 Fatigue Test

The significant events in the fatigue test conducted on the first B-707 panel are summarized as follows:

- The first visible sign of fatigue cracking was observed after 36,000 cycles in the fixture⁵.
- First linkup of adjacent MSD-type⁶ cracks occurred after 47,500 cycles in the fixture.

The use of water as a pressurization medium requires tension-to-tension cycling. The corresponding pressure range in the fatigue test was 8.5 psi which is approximately equal to the nominal operating pressure of 8.6 psi for the B707 aircraft.

⁴ Eddy current-based NDI methods can be used for crack detection if the exact point of crack formation is desired during such testing.

The cycle counts reported in this section are the number of cycles accumulated in the test fixture. A representative value for the fatigue life of the panel can be obtained by adding the number of cycles accumulated during in-service usage to the number of cycles accumulated in the fixture. The B-707 panels accumulated 22,071 cycles during in-service usage.

- All cracking occurred in the upper row of rivets in a bay characterized as having "light" corrosion by D-sight.
- Fatigue cycling was stopped after 48,616 cycles in the fixture, at which time successive linkup of MSD cracks⁷ had created a single isolated crack with an overall length of 14.5 inches.

Figure 3 shows the crack growth data obtained from the first B-707 panel test. The visible crack length is the distance measured from the edge of the rivet hole to the crack tip. The number of cycles are those accumulated while the panel was in the test fixture. Rivets were numbered consecutively across the panel. The letters "L" and "R" refer to the left and right sides of the rivets. The figure indicates that initial cracking occurred at Rivets 14 and 15 which are roughly midbay between frames (rivet spacing in this row was 1 inch with frames at 20-inch intervals).

Figure 3. Crack growth in upper rivet row of B-707 panel.

⁶ MSD is an acronym for multiple-site damage, and is a source of widespread fatigue damage (WFD) characterized by the simultaneous presence of fatigue cracks in the same structural element.

It was possible for cycling to take place even with relative long cracks because the panel was sealed internally with a soft rubber dam to minimize leakage without artificially restraining the edges of the skin.

6.1.2 Residual Strength Test

A 14.5-inch lead crack with MSD-type cracks was created as a result of the fatigue testing (Figure 4). When the panel was pressurized to 0.5 psi, the crack surfaces were separated by about 0.25 inches due to bulging in the lap skins. With a starting pressure of 0.5 psi, the pressure was slowly increased at a rate of 0.2 psi per second until panel failure⁸ occurred at 13.0 psi. At the failure pressure, the crack tip closest to the aft end turned along the tear strap. The other crack tip apparently began to curve along the tear strap. Moreover, the failure resulting from this test would have been considered a "controlled" depressurization in an actual aircraft.

Figure 4. One-bay crack created by successive linkups of MSD cracks.

6.2 Panel #2

The second B-707 panel (Panel #2) was taken from the same airplane as Panel #1. Panel #2 was cut out of a section aft of the wing, and had a greater skin thickness than Panel #1. The structural differences between the two panels were described previously in Section 2.0.

6.2.1 Fatigue Test

Fatigue testing is now continuing past 100,000 cycles with no visible signs of fatigue damage.

In this context, "failure" means that the damage (i.e., cracking) in the panel was such that hydraulic pressure could not be maintained to continue testing.

6.2.2 Residual Strength Test

Depending on the results of the fatigue testing, a residual strength test may be conducted on this thicker panel.

7.0 ESTIMATION OF WFD THRESHOLD FOR B-707 PANELS

The onset of widespread fatigue damage (WFD) was estimated for the B-707 aircraft by applying a methodology developed during previous research in the Aging Aircraft Research Program [9]. This methodology requires an analysis tool to determine the residual strength of the fuselage structure with WFD and fatigue crack growth data from tests.

In the present study, the residual strength of B-707 panels was examined using a compatibility displacement (CD) analysis. Plastic collapse of ligaments between adjacent cracks was assumed as a failure criterion for linkup of MSD-type cracks. The CD analysis, however, relies on the knowledge of a bulging factor to predict the residual strength in a curved stiffened panel. A bulging factor for a one-bay crack in a B-707 panel was back-calculated from the results of the residual strength test. The bulging factor for the one-bay crack was then modified to account for a two-bay crack in the WFD threshold estimates. The CD analysis also relies on the knowledge of rivet flexibility. Two values for the rivet flexibility were assumed in the CD analysis to estimate upper and lower bounds of residual strength. The lower bound estimate represents a panel without adhesive bonding. The upper bound estimate represents a panel with infinitely stiff rivets. Based on the CD analysis, the corresponding critical MSD-crack lengths were found to be 0.09 and 0.15 inch.

The most rapid crack growth rate observed in the fatigue test was used to estimate the number of cycles for an MSD-type crack to grow to the critical length. Based on the data shown in Figure 3, the MSD-crack lengths of 0.09 and 0.15 inch correspond to 31,400 and 37,600 cycles in the test fixture, respectively. Adjusting these values to account for the difference in the stress ratio⁹, the number of cycles to reach 0.09 and 0.15 inch are 35,100 cycles and 42,000 cycles. Adding the number of cycles from in-service usage, the WFD threshold is estimated to be between 57,800 and 64,100 cycles.

The test fixture applies stress cycles with non-zero minimum stress. The ratio of minimum stress to maximum stress is roughly equal to 0.1. In an actual aircraft, the minimum stress, and therefore the stress ratio, is zero.

When this methodology was previously applied for the B-737, the WFD threshold was estimated to be between 32,300 to 43,500 cycles [9]. These estimates, however, were based upon fatigue testing on a completely debonded lap-splice panel which may have resulted in conservative estimates of the WFD threshold. The main structural difference between the B-707 and the B-737 aircraft is the skin thickness (thinner thickness in the B-737, 0.036 versus 0.040 inch).

8.0 CONCLUSIONS AND FUTURE WORK

Although the joint FAA/USAF research program is on-going, the following conclusions can be stated:

- Fatigue and residual strength testing of two fuselage panels from actual aircraft have been successfully completed using the FAA Aging Aircraft Test Fixture.
- Based on testing and analysis, the onset of widespread fatigue damage (WFD)
 in a B-707 panel with 0.040 inch skin thickness is estimated to be between
 58,000 and 64,000 cycles.

Future work in this program will include the following:

- Fatigue and residual strength tests will be performed on panels obtained from retired C/KC-135 airplanes. Such tests would be the first to be performed on panels with the dimpled lap joint construction at the Aging Aircraft Test Facilpanels with the dimpled lap joint construction at the Aging Aircraft Test Facilpanels. In terms of fatigue and static strength, the dimpled joint is expected to be stronger than the conventionally-riveted joint without bonding because the rivers and the engaged skins should act together without any relative motion between them. It is expected that the strength of the dimpled joint would be comparable to that of a conventionally-riveted and well-bonded joint. However, the formation of WFD in the dimpled joint is expected to be different due to the lack of a knife edge from the machined countersink and the presence of a turned-down lip at the hole from the dimple.
 - The lap splices in the test panels will be disassembled after residual strength testing to verify the NDI measurements.

This research program is expected to be completed by December 1998, at which time additional results will be reported to the research community.

REFERENCES

- [1] Samavedam, G., and D. Hoadley: 1994. "Fracture and Fatigue Strength Evaluation of Multiple Site Damaged Aircraft Fuselages-Curved Panel Testing and Analysis." Final Report: DOT/FAA/CT-94/10.
- [2] Samavedam, G., D. Hoadley, and D. Thomson: 1993. "Full-Scale Testing and Analysis of Curved Aircraft Fuselage Panels." Final Report: DOT/FAA/CT-93/78.
- [3] Jeong, D.Y., D.P. Roach, J.V. Canha, J.C. Brewer, and T.H. Flournoy: 1995. "Strain Fields in Boeing 737 Fuselage Lap Splices: Field and Laboratory Measurements with Analytical Correlations." Final Report: DOT/FAA/CT-95/25.
- [4] Favro, L.D., T. Ahmed, X. Han, L. Wang, X. Wang, P.K. Kuo, and R.L. Thomas: 1996. "Thermal wave imaging of disbonding and corrosion on aircraft." Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15. Edited by: D.O. Thompson and D.E. Chimenti. New York: Plenum Press, pp. 1747-1753.
- [5] Fitzpatrick, G.L., D.K. Thome, R.L. Skaugset, and W.C.L. Shih: 1996. "Magneto-optic eddy current imaging of subsurface corrosion and fatigue cracks in aging aircraft." Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15. Edited by: D.O. Thompson and D.E. Chimenti. New York: Plenum Press, pp. 1159-1166.
- [6] Komorowski, J.P., S. Krishnakumar, R.W. Gould, N.C. Bellinger, F. Karpala, and O.L. Hageniers: 1996. "Double pass retroreflection for corrosion detection in aircraft structures," *Material Evaluation* 54, pp. 80-86.
- [7] Bieber, J.A., S.K. Shaligram, J.H. Rose, and J.C. Moulder: 1997. "Timegating of pulsed eddy current signals for defect characterization and discrimination in aircraft lap-joints," *Review of Progress in Quantitative Nondestructive Evaluation, Vol. 16.* Edited by: D.O. Thompson and D.E. Chimenti. New York: Plenum Press, pp. 1915-1921.
- [8] Patton, T.C. and D.K. Hsu: 1995. "Field demonstration of the dripless bubbler ultrasonic scanner," Review of Progress in Quantitative Nondestructive

- Evaluation, Vol. 14. Edited by: D.O. Thompson and D.E. Chimenti. New York: Plenum Press, pp. 2269-2276.
- [9] Jeong, D.Y. and P. Tong: 1997. "The onset of multiple site damage and widespread fatigue damage in aging airplanes," *Proceedings of the 1996 USAF Structural Integrity Program Conference, Vol. II*, USAF Report No. WL-TR-4055, pp.729-749.

SESSION IX ANALYTICAL METHODS

Chairman - C. Harris NASA Langley

Evaluation of Progressive Fracture in Woven and Non-woven Composite Panels

Clarkson University, Potsdam, New York 13699-5710 Levon Minnetyan and Ryan A. Lund

Christos C. Chamis and Pascal K. Gotsis National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio 44135 Presented at the 1997 USAF Aircraft Structural Integrity San Antonio, Texas, December 2-4, 1997 Program Conference

OUTLINE

- Background
- Computational simulation method
- Damage evolution and damage energy
- Graphite/epoxy woven and non-woven composites
- Damage progression under tension and compression
- Effect of in-plane shear on damage progression
- Response to short beam flexure
- Conclusions

OBJECTIVES:

- Review briefly progressive fracture concepts and respective computer code - CODSTRAN.
- Describe its application to woven fabric composites.
- Present typical results with comparisons from non-woven composites.

CODSTRAN SIMULATION CYCLE

PLY MICROSTRESSES

PLY MICROSTRESSES THROUGH COMPOSITE STRESS PROGRESSIVE DECOMPOSITION

Ply (Lamina) Fracture Modes Tracked by CODSTRAN

Intra and Inter Ply

Interply Layer (Matrix) Fracture Modes Tracked by CODSTRAN

Scissoring Effect

CODSTRAN LOAD INCREMENTATION

DAMAGE ENERGY COMPUTATION

- Damage energy is the sum of discharged strain energies computed on the basis of the exhausted composite failure modes.
- If a failure mode is associated with the stress component σ_i , and the strain energy density associated with σ_i is $(\sigma_i)^2/(2E_i)$, the damage energy contribution of that failure mode is $V_d(\sigma_i)^2/(2E_i)$,

the local damage volume that is computed as the tributary area of the where σ_i is the failure stress, E_i is the elastic modulus, and V_d is damaged node multiplied by the thickness of the damaged ply.

- The summation of all local damage energies is the damage energy of the
- A sudden increase of the structural damage energy with a small increase in loading indicates that a damage propagation stage has been entered.
- volume. The structural damage volume also increases at the damage ullet The sum of all local damage volumes V_d is recorded as the total damage propagation stage.

AS-4 Graphite Fiber Properties:

Number of fibers per end = 10000

Fiber diameter = 0.3 mills

Fiber density = 0.063lb/in³

Longitudinal normal modulus = 33 MSI Transverse normal modulus = 2.0 MSI

Poisson's ratio $(v_{12}) = 0.20$

Poisson's ratio $(v_{23}) = 0.25$

Shear modulus $(G_{12}) = 2.0 MSI$

Shear modulus $(G_{23}) = 1.0 \text{ MSI}$

Longitudinal thermal expansion coefficient = -5.5 μ in/in/ $^{\circ}$ F Transverse thermal expansion coefficient = -0.56 μ in/in/ $^{\circ}$ F

Longitudinal heat conductivity = 580 BTU-in/hr/in²/°F

Transverse heat conductivity = 58 BTU-in/hr/in²/°F

Heat capacity = 0.17 BTU/lb/°F

Tensile strength = 540ksi Compressive strength = 486 ksi

HMHS Epoxy Matrix Properties:

Matrix density = 0.0457 lb/in^3

Normal modulus = 0.62 MSI

Poisson's ratio = 0.34

Coefficient of thermal expansion = 40 µin/in/°F

Heat conductivity = 1.25 BTU-in/hr/in 2 /°F

Heat capacity = 0.25 BTU/lb/°F

Tensile strength = 12.3 ksi

Compressive strength = 61.3 ksi

Shear strength = 21.4 ksi

Allowable tensile strain = 0.02

Allowable compressive strain = 0.05

Allowable shear strain = 0.04

Allowable torsional strain = 0.04

Void conductivity = $0.225 \text{ BTU-in/hr/in}^2/^{\circ}\text{F}$

Glass transition temperature = 420°F

COMPOSITES SUBJECTED TO TENSION AND SHEAR PROGRESSION FOR WOVEN AND NON-WOVEN STRESS-STRAIN RELATIONS AND DAMAGE $(N_x/N_{xy}=20)$

AS-4/3501-6 Graphite/Epoxy; V_f =0.64

■●■Woven Composite

Composite thickness=0.2 in.

Woven: 16 layers of plain-weave preforms

Non-woven: 32 plies $[0/90]_{16s}$

COMPOSITES SUBJECTED TO TENSION AND SHEAR PROGRESSION FOR WOVEN AND NON-WOVEN STRESS-STRAIN RELATIONS AND DAMAGE - woven $(\mathrm{N}_x/\mathrm{N}_{xy}{=}10)$

AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in.

Woven: 16 layers of plain-weave preforms Non-woven: 32 plies $[0/90]_{16s}$

 \mathbf{N}_{xy}

140

120

90

40

20

Stress xx (ksi)

Damage

 N_{xy}

COMPOSITES SUBJECTED TO TENSION AND SHEAR PROGRESSION FOR WOVEN AND NON-WOVEN STRESS-STRAIN RELATIONS AND DAMAGE $(N_x/N_{xy}=5)$

AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in.

── Woven Composite
── Laminate composite

Woven: 16 layers of plain-weave preforms

Non-woven: $32 \text{ plies } [0/90]_{16s}$

Stress xx (ksi)

TENSION WITH SHEAR LOADING

Structural fracture of woven an non-woven composite panels subjected to tension and shear were evaluated:

- The average tensile strength of woven composites is 37 percent lower than that of non-woven composites.
- The stiffness of woven composites is 14 percent lower than that of non-woven composites.
- Damage initiation, growth, and propagation stages are commenced at lower loads for woven composites.
- ullet Structural fracture occurs suddenly with the failure of 0° fibers for both woven and non-woven composites.
- As the shear component of the load is increased the ultimate strength is decreased for both woven and non-woven composites.

COMPOSITES SUBJECTED TO COMPRESSION AND PROGRESSION FOR WOVEN AND NON-WOVEN STRESS-STRAIN RELATIONS AND DAMAGE SHEAR $(N_x/N_{xy}=10)$

--- Woven Composite
--- Laminate Composite

0.009

0.008

AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in.

Woven: 16 layers of plain-weave preforms Non-woven: 32 plies $[0/90]_{16s}$

(ni/ni) xx nistt2 0.00.0 0.000.0 0.000.0 0.000.0

0.002

0.001

100

8

8

40

8

0.000

COMPOSITES SUBJECTED TO COMPRESSION AND PROGRESSION FOR WOVEN AND NON-WOVEN STRESS-STRAIN RELATIONS AND DAMAGE SHEAR $(N_x/N_{xy}=5)$

AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in. Woven: 16 layers of plain-weave preforms Non-woven: 32 plies $[0/90]_{16s}$

COMPRESSION WITH SHEAR LOADING

Structural fracture of woven an non-woven composite panels subjected to compression and shear were evaluated:

- The average compressive strength of woven composites was 22 percent lower than that of non-woven composites.
- The stiffness of woven composites was 16 percent lower than that of non-woven composites.
- The damage initiation stage was initiated at a lower load for woven composites.
- the compressive failure of 0° plies for both woven and non-• After damage initiation was completed there was no damage growth stage. Structural fracture occurred suddenly with woven composites.
- As the shear component of the load was increased the ultimate strength was decreased for both woven and non-woven composites.
- Increasing the shear component of loading increased the difference between the strengths of woven and non-woven composites.

COMPRESSIVE STRENGTHS OF WOVEN AND EFFECT OF SHEAR ON THE TENSILE AND NON-WOVEN COMPOSITES

AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in. Woven: 16 layers of plain-weave preforms Non-woven: 32 plies $[0/90]_{16s}$

SHORT SPAN FLEXURAL LOADING OF WOVEN AND NON-WOVEN COMPOSITES

- A short simply supported and centrally loaded beam with 1.5 in. span, and 1.25 in. width was investigated.
- Non-woven and layer-to-layer angle interlock woven composite beams were simulated.

AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in. Woven: 3-D angle interlock preform Non-woven: 32 plies $[0/90]_{16s}$

SHORT SPAN FLEXURAL RESPONSE OF WOVEN AND NON-WOVEN COMPOSITES

---- Nonwoven **→**Woven

> AS-4/3501-6 Graphite/Epoxy; V_f =0.64 Composite thickness=0.2 in.

Woven: 3-D angle interlock preform

Non-woven: 32 plies $[0/90]_{16s}$

TRANSVERSE LOADING OF BEAM

Structural fracture of woven an non-woven composite simply supported beams subjected to central loading was investigated:

- The flexural strength of the woven composite was approximately twice the flexural strength of the non-woven com-
- Both woven and non-woven composites began damage initiation by transverse tensile fractures of the 90° plies under the same loading. However, damage growth was more pronounced and abrupt for the non-woven composite.
- After damage initiation, the apparent stiffness of the woven composite was significantly higher than the stiffness of the non-woven composite.
- Deflections at failure were approximately the same for both woven and non-woven composites.
- The damage energy increased much more rapidly for the non-woven composite.

CONCLUSIONS

- 1. Progressive damage and fracture of woven and non-woven composites has been simulated under tensile and compressive loads with the presence of shear.
- 2. Non-woven composite panels are stronger than woven composite panels when subjected to tension or compression with shear.
- 3. Non-woven composite panels are stiffer than woven composite panels when subjected to tension or compression with shear.
- sitive to the presence and magnitude of in-plane shear 4. Both woven and non-woven cross-ply composites are sen-

CONCLUSIONS (CONTINUED)

- 5. Under compressive loading, the magnitude of in-plane shear stresses affects the woven composites more significantly compared to the effects on non-woven composites.
- 6. Non-woven composite panels are weaker than 3-D woven composite panels when subjected to short beam flexure.
- ven composite panels when subjected to short beam flex-7. Non-woven composite panels are less stiff than 3-D wo-

Next Generation Design and Analysis Procedures for Bonded Composite Repairs

HIROSHI KAWAI KEVIN G. O'SULLIVAN PADRAIC E. O'DONOGHUE D. SCOTT PIPKINS

Knowledge Systems, Inc., 81 East Main Street, Forsyth, GA 31029-1828, e-mail: ksi@mylink.net

J.H. PARK SATYA N. ATLURI

Georgia Institute of Technology, Computational Modeling Center, Rm. 225 French Bldg., Atlanta, GA 30332-0356

Abstract: An efficient and accurate computational methodology and associated software (PC-Rep) for the analysis and design of bonded composite repairs is described. PC-Rep runs on personal computers including laptops and features a convenient graphical user interface. The software can be used to compute a variety of parameters important in repair design such as patched stress intensity factors and crack growth life. These parameters can be used to determine residual strength, inspection intervals and remaining structural life. Comparisons with standard reference solutions are carried out to validate the software. Parametric studies typical of repair design are presented.

1. INTRODUCTION

Infrastructure the world over is aging. This infrastructure includes buildings, bridges, roads, pipelines, and aircraft. As it ages there is growing concern about the structural integrity of much of this infrastructure. Economic and market forces have forced industry and government agencies to utilize many of the structures which make up the infrastructure well beyond their original design lives. For example, in 1988, 22% of Boeing 727's were operating beyond their original design life. This percentage has continued to increase since that time.

There are essentially two ways of dealing with the aging infrastructure problem. The first is to retire existing infrastructure and replace it. The second is to repair the existing infrastructure. While the first solution is perhaps more desirable, it is not always viable from an economic perspective. Thus, it is imperative that strategies to repair aging infrastructure be developed. By doing so, the service lives of the infrastructure can be extended beyond that for which it was originally designed.

A promising infrastructure repair technique is the use of adhesively bonded composite repairs. Bonded composite repairs offer an economical means of repairing cracked or damaged structure which does not drastically increase the weight of the structure. Adhesively bonded composite repairs have many advantages over mechanically fastened repairs such as: (i) new stress concentrations are not introduced into the repaired structure due to rivet holes; (ii) the repair patches are readily formed into complex

shapes; (iii) high stiffness to weight and strength to weight ratios of the patch; and (iv) high corrosion and fatigue resistance of the composite. This repair technique has been primarily used in the area of military aviation. However, it is equally well suited for use in commercial aviation as well as the repair of civil infrastructure such as buildings and bridges.

In order to properly design an adhesively bonded composite repair of a structure, many factors must be considered. These include:

- global stiffening of the structure due to the high stiffness of the composite patch;
- the effect of size, shape, thickness (including taper) and material properties of the composite patch on the crack-tip stress intensity factors, skin and patch stresses, adhesive shear strain, and peel stresses;
- the effect of the material properties of the adhesive on the crack-tip stress intensity factors, skin and patch stresses, adhesive shear strain, and peel stresses;
- the effect of thermal cycling on the composite repair; and
- the effect of disbonds on the performance of the composite repair.

This paper describes an efficient and accurate computational methodology and associated software (PC-Rep) for the analysis and design of bonded composite repairs. It builds on the work of Park, Ogiso and Atluri (1992); and Nagaswamy, Pipkins and Atluri (1996). PC-Rep runs on personal computers including laptops and features a convenient graphical user interface. The software can be used to compute a variety of parameters important in repair design such as patched stress intensity factors and crack growth life. These parameters can be used to determine residual strength, inspection intervals and remaining structural life.

2. ANALYSIS OF REPAIRS

There are several methods for the analysis of patched cracks. They can be broadly classified as either analytical or numerical. A review of these methods can be found in Nagaswamy, Pipkins and Atluri (1996). In this paper the focus will be on the usability of these methods in a maintenance environment. The repair design requirements in this environment are conflicting; fast turnaround (minutes) yet accurate. From the structural design point of view, accuracy usually means utilizing a numerical method such as the finite element method. However, finite element analyses (FEA) may not always be done quickly in a maintenance environment for several reasons. These include: lack of personnel knowledgeable in FEA; the unavailability of FEA software (pre and post processors and solver) due to cost; and the unavailability of computer hardware needed for FEA. As a result of one or more of these reasons, traditional FEA software is not typically of great interest to maintenance organizations.

In recognition of this fact, several pieces of software featuring easy to use graphical user interfaces (GUI), fast solution times, and minimal hardware requirements have come into use in recent years. These include CalcuRep, RAPID and PC-Rep. CalcuRep and PC-Rep are applicable to bonded composite repairs while RAPID is for mechanical doubler

type repairs. CalcuRep [Fredell (1994)] is based on the analytical approach of Rose (1981). RAPID, developed by the Federal Aviation Administration (FAA), is also based on an analytical approach wherein displacement compatibility is enforced between the repair, structure and mechanical fasteners. PC-Rep, developed by Knowledge Systems, Inc., has an outstanding feature which distinguishes it from these two codes. The analysis performed by PC-Rep is based upon the finite element method. However, PC-Rep relieves the user of the tedium often associated with finite element analysis. This is so because of the automated state-of-the-art meshing and computational fracture mechanics algorithms that have been implemented in PC-Rep. Thus, the user can enjoy the benefits of finite elements (i.e. arbitrary geometries and unsurpassed accuracy, etc.) without having to worry about any details of finite element analysis.

The analysis carried out by PC-Rep is based on the Finite Element Alternating Method (FEAM) [Atluri(1997)]. Because the repaired structure is not homogeneous, the FEAM must be used in a two stage analysis [Nagaswamy, Pipkins and Atluri (1996)]. The stages are as follows.

- 1. Evaluation of the stresses exerted by the adhesive and patch on the base sheet, using a coarse mesh.
- 2. The stresses obtained from stage 1 are applied as body forces on the base sheet, and the Finite Element Alternating Method is used to find the stress intensity factor.

In stage 1, a traditional finite element methodology is used to deduce the stresses exerted by the patch. As the crack tip is not meshed for the singularity, a coarse mesh is sufficient for this purpose. The sheet and the patch are modeled with eight noded 2D elements. The adhesive is modeled by shear elements as in Jones and Callinan (1981).

Stage 2 consists of an analysis using the 2D Finite Element Alternating Method [Atluri (1997)]. The FEAM is based upon superposition as illustrated in Figure 2.1. In the FEAM, the stresses in the uncracked body are first analyzed, by a traditional finite element method, for the given system of external loading. To model the crack, the tractions at the locations of the crack in an otherwise uncracked body must be erased. To erase the crack face stresses, the tractions found by the finite element solution are reversed. As is often the case, analytical solutions exist for cracks subjected to arbitrary crack face stresses but for infinite bodies. In the present 2D problem a solution is used in which the crack face tractions are given in terms of Chebyschev polynomials. Therefore, if these solutions are to be used for erasing crack face stresses, the residual stresses at the finite body extent in the infinite body have to be erased. This is done by reversing the residual stresses applied to the finite uncracked body. This results in residual tractions on the crack face. To erase these, the analytical solution is used again. This is repeated until convergence is achieved. Convergence is achieved when the stress intensity factors for each analytical iteration become small. The final stress intensity factor is the sum of all the stress intensity factors.

Summarizing, the steps in the 2D Finite Element Alternating Method are:

- 1. Solve for the uncracked finite body under given loads by traditional finite element method.
- 2. Compute the stresses at the crack location from step 1.
- 3. To reverse the above found stresses, use a least-squares approximation to fit the stresses to Chebyschev polynomials.
- 4. Use the above solution and find the stresses at the boundaries of the finite body.
- 5. Sum the Chebyschev coefficients to find the stress intensity factors for this iteration.
- 6. If the stress intensity factor for this iteration is small, then convergence is obtained.
- 7. If convergence is not obtained, apply the reversed residual stresses on the finite body boundaries and use the traditional finite element method to solve for the displacements and go to step 2.

The solution of the finite size body with a crack is then obtained by summing the results (i.e. displacements, stress intensity factors, etc.) from all iterations.

3. PC-REP

The finite element based analysis technology described in the previous section has been combined with a graphical, menu driven front end and an automatic mesh generator and ported onto a personal computer. This computer package, referred to as PC-Rep, is extremely robust and is capable of fast and accurate calculation of various parameters relating to bonded patch repair. A schematic of a typical patched crack configuration is illustrated in Figure 3.1

3.1. Features

At present this robust package has many attractive features including:

- Convenient Graphical User Interface (GUI)
- Physically Based Inputs
- Automated Analysis and Mesh Generation
- Finite Element Kernel
- Rectangular Metal Skins
- Adhesively Bonded Metal or Composite Patches; Centrally Located on Skin
- One Straight Crack Centrally Located under the Patch
- Remote Uniform Loading Normal to Crack
- Partial Disbond/No Disbond
- Stress Intensity Factor Calculation
- Fatigue Lifetime Determinations
- Adhesive Shear Stress Computation
- Material Property Database
- Patch Shape; Rectangular, Octagonal, Elliptical
- Patch Taper

- Crack Size; Can Extend Beyond Patch
- Stiffeners; Broken, Unbroken
- Residual Stresses from Curing
- Thermal Cycling due to Temperature Differential Between Ground and Cruise

Perhaps the most significant feature of PC-Rep is that all inputs to the program are actual physical quantities as distinct from finite element related data. Based on these physical data, such as patch size, stiffener dimensions, adhesive properties, a pre-processor will automatically generate the optimum finite element mesh and the relevant boundary conditions. This greatly simplifies the usage of PC-Rep.

Another major advantage of PC-Rep is that it allows the user a considerable level of complexity with respect to the design and analysis of bonded patches. Despite this complexity, PC-Rep executes extremely quickly on a personal computer; a matter of minutes. This efficiency is achieved through the use of the finite element alternating method. Some of these features are very important when it comes to the design of patches for aircraft components. Broken/unbroken stiffeners can interact significantly with the crack growth process. Residual stresses and thermal stresses play an important role in the growth of a crack. Patch taper, along with disbond must always be considered. All of these features are captured within a standard PC-Rep analysis. Many of these will be illustrated in Section 4.

3.2. Graphical User Interface

The PC-Rep package consists of three parts; (a) a GUI, (b) a finite element kernel and (c) an automatic mesh generator. The GUI is written in tcl/tk while the mesh generator and the kernel are written in FORTRAN. All user interaction takes place through the GUI. The user does not have to be concerned with the mesh generation or other finite element related details.

The GUI uses a convenient point and click system that allows the user to select various options such as patch configuration, stiffener type, etc. and to specify the appropriate inputs. Figure 3.2 illustrates a typical screen that the user can generate. The right hand side contains buttons that can be used to activate the different options. The left hand side of Figure 3.2 contains a schematic diagram of the patch configuration that is being prepared for analysis. This allows the user to view each update that is made to the analysis model.

When the user selects a particular option from the buttons on the right hand side, a new screen appears that allows the user to input, in a tabular manner, various quantities relevant to that option. For example, Figure 3.3 illustrates the table that appears when the *Patch* option is selected. The user can select from a range of different patch materials, including composites and metals, or else can input the material properties directly. The user can also select the patch shape (rectangular, tapered, octagonal or elliptical) along with the patch dimensions using this screen.

Using the Analysis Control option, the user can select the type of analysis that is desired. This can be the direct calculation of the stress intensity factors for the patched crack or else it can be the calculation of the fatigue life of the component, based on the Forman fatigue relationship. Once the analysis is complete, the user can utilize the post-processing options to view the most significant results. These include plots of the stress intensity factor or the fatigue life (number of load cycles) versus the crack length. The user can also examine important quantities such as the maximum shear stress in the adhesive for different patch configurations.

4. ANALYSIS AND RESULTS

The PC-Rep code is used here to analyze a wide variety of patched aircraft configurations.

4.1. Validation Problems

To validate the PC-Rep analyses, comparisons were made with three results from the literature.

4.1.1. Rose's Solution

A number of comparisons were made with the solutions developed by Rose (1982). Here, a rectangular patch was placed over a rectangular plate and a crack is centrally located underneath the patch. The relevant geometrical and material property data are given in Table 4.1. In this table, t_s is the skin thickness, E_s is the elastic modulus of the skin, v_s is the Poisson ratio of the skin, E_x is the stiffness of the patch parallel to the crack (x direction), E_y is the stiffness of the patch perpendicular to the crack (y direction), G_{xy} is the shear modulus of the patch, v_{yx} is the Poisson ratio of the patch, E_x is the shear modulus of the adhesive and E_x is the thickness of the adhesive.

For the Rose solution, the plate and patch are infinitely wide but the width of the plate and the patch are taken as 200 mm in the PC-Rep calculation. A uniform unit normal traction (1 MPa) is applied to the base plate in the direction normal to the crack. There are no stiffeners or disbonds included in this calculation. The computed stress intensity factors are presented in Table 4.2 for a range of different values of the patch thickness. It can be seen that there is excellent agreement between the two sets of results.

While the results in Table 4.2 are in very good agreement, it is important to point out a number of differences that exist between the two approaches.

(a) The Rose (1982) solution is applicable when the patched plate is of infinite width but PC-Rep considers the case of a finite plate. When the patch width is less than the plate width, the PC-Rep results will, not surprisingly, be higher than the Rose solution.

To minimize this effect, the width of the plate is selected to be much larger than the length of the crack

(b) The Rose solution assumes the flexibility of the adhesive layer to be

$$F = \frac{t_a}{G_a} \tag{6.1}$$

However, PC-Rep uses the Jones and Callinan (1981) approach where the adhesive layer flexibility is modified by considering the effects of shear deformation of the patch and the base plate. In this case,

$$F = \frac{t_a}{G_a} + \frac{3}{8} \frac{t_s}{G_s} + \frac{3}{8} \frac{t_p}{G_p} \tag{6.2}$$

This effect is more pronounced as the thickness of the patch increases and is also significant when the width of the patch is less than the width of the plate.

4.1.2. Experimental Data

Comparisons were also made with the experimental data of Denney (1995). Table 4.3 contains the appropriate material property and geometrical data and in this instance, the width of the patch is considerably less than the width of the plate (t_p is the thickness of the patch). The maximum and minimum remote uniform stresses are σ_{max} and σ_{min} respectively. The shear modulus of the adhesive was taken as 21.5 MPa for the purpose of these calculations [Chow and Atluri (1997)]. This shear modulus is consistent with the operating stress in the adhesive rather than the initial elastic value of 405MPa. The results, showing crack length as a function of the number of load cycles, are presented in Figure 4.1 and the excellent agreement between the experimental and computed results is obvious.

4.1.3. Other Comparisons

Comparisons have also been made with the results obtained by Park, Ogiso and Atluri (1992). The configuration analyzed in this reference is given in Table 4.4 and the comparison of computed stress intensity factor are given in Table 4.5. The lower results in [Park, Ogiso and Atluri (1992)] are likely due to the fact that the patch is of infinite width.

4.2. Stress Intensity Factor Variation

For the parameters in Table 4.4, a typical plot of the stress intensity factor as a function of crack length is given in Figure 4.2. The patch thickness is taken as 0.6 mm and the applied load is 100 MPa. As can be seen, the stress intensity tends to level off as the crack length approaches the edge of the patch. After the crack extends beyond the patch, the stress intensity factor increases dramatically. These trends are typical of the stress intensity factor behavior that is observed for patched cracks.

4.3. Effect of Stiffeners on Crack Growth

PC-Rep can also be used to consider the influence of stiffeners on crack growth. In the first example, two horizontal and two vertical stiffeners are included. This configuration is illustrated schematically in Figure 4.3 and the stiffeners are symmetrical with respect to the crack. The skin, patch and adhesive geometric and material properties are the same as in Table 4.3. All stiffeners are identical and have a cross section area of 80 mm². The horizontal stiffeners are 75 mm from the crack and the vertical stiffeners are 50 mm from the crack center. Figure 4.4 illustrates the computed fatigue lifetimes in the presence of stiffeners. It can be seen that this lifetime is much greater than the case where there are no stiffeners. The effect of the vertical stiffeners is to retard the stress intensity factor increase as the crack approaches the stiffener.

The second example illustrates the effect of a broken stiffener. Here a single vertical stiffener bisects the crack and in one instance the stiffener is broken and in the second it is unbroken. These results are shown in Figure 4.5. As expected, the computed lifetime is much greater when the stiffener is unbroken. These examples illustrate how easy it is to include the important effects of stiffeners in a bonded patch analysis.

4.4. Effects of Patch Size and Shape

Given the flexibility of PC-Rep, it is relatively easy to conduct several parametric studies relating to the size, shape and properties of bonded composite patches. A selection of these results now follows. In each case, the base problem is that described in Table 4.3. There are no stiffeners or disbond and the effect of thermal stresses has been ignored.

4.4.1. Patch Shape

Three different patch shapes are considered; rectangular, octagonal and elliptical. The overall width and height of each patch is the same. For the octagonal patch, the corner cut-outs are all 10 mm in height and 10 mm in width. The fatigue lifetimes are presented in Figure 4.6 and it can be seen that there is not a great deal of difference in the results. The maximum adhesive stresses were also relatively similar in each case.

4.4.2. Patch Thickness

The patch thickness is varied to investigate the effect on both the stress intensity factor and also the maximum adhesive shear stress. As expected, the stress intensity factor shows a steady decrease as the thickness is increased and this is illustrated in Figure 4.7. Interestingly, the adhesive stress exhibits a minimum with the stresses rising for very thick patches and also very thin patches. This result is shown in Figure 4.8.

4.4.3. Taper

The effect of tapering is very important as it can help to reduce the magnitude of the maximum adhesive shear stress. In this example, the taper width, W_t , and height, H_t , are taken as 5 mm and 8 mm respectively and the thickness of the patch at the edge of the taper is 0.15 mm. Figure 4.9 compares the computed maximum adhesive shear stress with and without taper. The taper has the effect of reducing this maximum stress by up to 15%. However, for very thin patches, the maximum stress does not reduce dramatically. This suggests that the maximum stress in this instance is at the edge of the crack. It was also observed that the stress intensity factors were also not dramatically affected by the taper.

4.4.4. Vertical Height of Patch

Figure 4.10 shows the variation in the stress intensity factor as the patch height is increased. The general trend is for the stress intensity factor to decrease moderately with height. The maximum adhesive shear stress also exhibits a moderate increase with increasing patch height.

4.4.5. Horizontal Width of Patch

As expected, the stress intensity factor increases as the patch width decreases. This result is illustrated in Figure 4.11. The maximum adhesive shear stress demonstrates a similar trend.

4.5. Residual Stresses and Temperature

As discussed earlier, it is very important to consider the effects of temperature when designing a bonded composite patch due to the residual stresses set up during the curing process and due the thermal stresses set up during the ground-air-ground cycle because of the thermal property mismatch. In this example, the curing temperature is taken as 120°C, the room temperature as 20°C, the maximum ground temperature as 50°C and the minimum ground temperature as -50°C. All other parameters are as in Table 4.3 with the addition of horizontal and vertical stiffeners that are 75 mm and 50 mm from the crack center respectively (cross-section area 80 mm²) and with the adhesive stiffness at 21.5 MPa.

The effect of these thermal stresses is to increase the stress intensity factor. This is reflected in reduced fatigue lifetimes. This is illustrated in Figure 4.12 where four separate results are presented:

- no residual or thermal stresses
- residual stresses only
- thermal stresses only
- residual and thermal stresses

This result shows the relative importance of including each of these effects.

5. DISCUSSION

This paper clearly demonstrates the importance of new generation software tools that utilize enhanced automation to obtain accurate solutions to highly complex problems. PC-Rep is distinguished from PC based repair codes as the analysis is performed by software that is based upon the finite element method. However, PC-Rep relieves the user of the tedium often associated with finite element analysis. This is so because of the automated state-of-the-art meshing and computational fracture mechanics algorithms that have been implemented in PC-Rep. Thus, it is possible to enjoy the benefits of finite elements (i.e. arbitrary geometries and unsurpassed accuracy, etc.) without having to worry about any details of finite element analysis.

The examples presented in this paper illustrate the feasibility of a personal computer based design procedure for bonded composite repair of aircraft structures. It was easy to consider many significant features such as residual curing stresses, disbond, taper and stiffeners. PC-Rep can be viewed as the new generation design/analysis tool that merges an easy to use GUI with a powerful, yet efficient computational kernel.

REFERENCES

- Atluri, S.N., 1997, Structural Integrity and Durability, Tech Science Press, Forsyth.
- Chow, W.T. and Atluri, S.N., 1997, "Composite patch repairs of cracked metal structures: effects of adhesive nonlinearity, thermal cycling and debonding," accepted for publication in *AIAA Journal*.
- Denney, J., 1995, Fatigue Response of Cracked Aluminum Panel with Partially Bonded Composite Patch, Masters Thesis, Air Force Institute of Technology.
- Fredell, R.S., 1994, Damage Tolerant Repair Techniques for Pressurized Aircraft Fuselages, Ph.D. Dissertation, Delft University of Technology.
- Jones, R. and Callinan, R.J., 1981, "A design study in crack patching," Fibre Science and Technology 14, 99-111.
- Nagaswamy, V., Pipkins, D.S., and Atluri, S.N., 1996, "A FEAM based methodology for analyzing composite patch repairs of metallic structures," *Computer Modeling and Simulation in Engineering* 1, 263-288.
- Park, J.H., Ogiso, T., and Atluri, S.N., 1992, "Analysis of cracks in aging aircraft structures with and without composite patch repairs," *Computational Mechanics* 10, 169-201.

Rose, L.R.F., 1981, "An application of the inclusion analogy for bonded reinforcements," *International J. of Solids and Structures* 17, 127-171.

Rose, L.R.F., 1982, "A cracked plate repaired by bonded reinforcements," *International Journal of Fracture* 18, 135-144.

Tables

$2W_s = 200 \text{ mm}$; $2H_s = 635 \text{ mm}$; $t_s = 2.9 \text{ mm}$	
$2W_p = 200 \text{ mm}; 2H_p = 152 \text{ mm}$	•
$E_s = 73,000 \text{ MPa}; v_s = 0.33$	
$E_x = 25,400 \text{ MPa}$; $E_y = 208,000 \text{ MPa}$; $G_{xy} = 7,240 \text{ MPa}$; $V_{yx} = 0.168$	
$G_a = 965 \text{ MPa}; t_a = 0.102 \text{ mm}$	
2a = 38.1 mm	

Table 4.1 Geometrical and Material Property Data used in Comparison with Rose (1982)

Patch Thickness (mm)	PC-Rep Stress Intensity Factor (MPa mm ^{1/2})	Rose Stress Intensity Factor (MPa mm ^{1/2})		
0.1	3.04	3.16		
0.2	2.40	2.46		
0.3	2.03	2.07		
0.4	1.78	1.80		
0.5	1.59	1.61		
0.6	1.45	1.45		
0.7	1.33	1.33		
0.8	1.23	1.22		
0.9	1.14	1.13		
1.0	1.07	1.06		

Table 4.2 Computed Stress Intensity Factor Variation with Patch Thickness

$2W_s = 152 \text{ mm}$; $2H_s = 508 \text{ mm}$; $t_s = 1.0 \text{ mm}$	
$2W_p = 50 \text{ mm}$; $2H_p = 56 \text{ mm}$; $t_p = 0.381 \text{ mm}$	
$E_s = 72,400 \text{ MPa}; v_s = 0.33$	
$E_x = 25,000 \text{ MPa}$; $E_v = 210,000 \text{ MPa}$; $G_{xy} = 20,500 \text{ MPa}$; $V_{yx} = 0.168$	
$G_a = 405 \text{ MPa}; t_a = 0.127 \text{ mm}$	
$\sigma_{\text{max}} = 120 \text{ MPa}; \ \sigma_{\text{min}} = 12 \text{ MPa}; \ R = 0.1$	

Table 4.3 Geometrical and Material Property Data used in Comparison with Denney (1995)

$2W_s = 152 \text{ mm}$; $2H_s = 508 \text{ mm}$; $t_s = 2.0 \text{ mm}$	-
$2W_p = 50 \text{ mm}; 2H_p = 80 \text{ mm}$	
$E_s = 72,400 \text{ MPa}; v_s = 0.32$	
$E_x = 26,250 \text{ MPa}$; $E_y = 210,000 \text{ MPa}$; $G_{xy} = 75,000 \text{ MPa}$; $V_{yx} = 0.16$	
$G_a = 965 \text{ MPa}; t_a = 0.102 \text{ mm}$	
$\sigma = 1 \text{ MPa}$	
2a = 20 mm	

Table 4.4 Geometrical and Material Property Data used in Comparison with Park, Ogiso and Atluri (1992)

Patch Thickness (mm)	PC-Rep Stress Intensity Factor (MPa mm ^{1/2})	Park et al. Stress Intensity Factor (MPa mm ^{1/2})
0.1	2.88	2.80
0.2	2.39	2.19
0.4	1.89	1.68
0.6	1.60	1.35
0.8	1.40	1.18
1.0	1.25	1.01

Table 4.5 Computed Stress Intensity Factor Variation with Patch Thickness

Figures

List of Figure Captions

Figure 2.1	Problems Superimposed in 2D Finite Element Alternating Method
Figure 3.1	Schematic of Patched Crack with Disbond and Taper (no Stiffeners)
Figure 3.2	Typical PC-Rep Working Screen
Figure 3.3	PC-Rep Patch Data Input
Figure 4.1	Comparison of Computed Lifetimes with Experimental Data [Denney (1995)]
Figure 4.2	Stress Intensity Factor Variation with Crack Length
Figure 4.3	Schematic of Patched Region Showing Stiffener Locations
Figure 4.4	Typical Variation of Computed Lifetime Variation with Crack Length
Figure 4.5	Illustration of Decreased Lifetime in Presence of Broken Stiffener
Figure 4.6	Effect of Patch Shape on Lifetime of Patched Crack
Figure 4.7	Stress Intensity Factor Variation with Patch Thickness
Figure 4.8	Maximum Adhesive Shear Stress Variation with Patch Thickness
Figure 4.9	Illustration of Reduced Maximum Adhesive Shear Stress Due to Taper
Figure 4.10	Stress Intensity Factor Variation with Patch Height
Figure 4.11	Stress Intensity Factor Variation with Patch Width
Figure 4.12	Influence of Residual and Thermal Stresses on Fatigue Lifetimes

Figure 2.1

Figure 3.1

Figure 3.2

	ara alama		distribution of	200. y 200. s 44	2
⊕ Boron/Epoxy C G	iraphite/Epoxy	1. GLAHE 1.	AI2024-T3	C Al7075-T6	C othe
Young's mo	odulus(yy) 2100	0.00	MPa		
Young's modulus(xx, zz) 25000.0		MPa			
Poisson's ratio 0.168					
shear modulus(xy) 20700.0		MPa			
thermal expansion coefficient(yy) 4.5e-6		/C			
hermal expansion coefficie	nt(xx, zz) 20.0	∍ -6	_/c		
	geor	netry, analysis con	ditions		
width	50.0	ា៣			
height	56.0	mm			
thickness	0.4	mm			
taper width (rectangle)	5.0	mm			
taper height (rectangle)	8.0	mm			
aper thickness (rectangle)	0.15	,mm			
comer width (octagonal)	10.0	mm			
corner height (octagonal)	10.0	mm			
1948/47 E66 #94	(& 4 s L 1 / 1 H)		Octagonal	A SECTION OF SECTION	

Figure 3.3

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Assessment of Analysis Methodologies For Predicting Fatigue Crack Growth And Residual Strength of Aging Aircraft

F. W. Brust, R. E. Kurth (Battelle)

Presentation Outline

- Kurth/FAA Program Directors C. Bigelow/J. FAA/Air Force Program (Battelle PM R. Brief Summary of PWFD Program Bakuckas)
- Deterministic Enabling Methodologies
- •AGILE/STAGS/FEAM Overview

AGILE/STAGS Definition

FEAM - What is it?

- Validation (ABAQUS/ANSYS)
- Program Status
- •Current & Future Efforts

Grack Interactions **Intrattor** Chaldk

FEAM

ABAQUS

Probabilistic चित्रशीताङ्य

FASCAL FORMISORIA PROFI

लगालञ्जा

RAPIO

Repett Modelling

MASGRO

Single dominan

erack growth

Selds

Automated Global-Intermediate-Local Evaluation (AGILE) - STAGS - FEAM

Global Mode Intermediate Mode reometry Modeler Mesh Generator Post Process STAGS

Local Model

EPFEAM

FEAN

Directions logy

Avirallysis

Typical Input AGILE(Fuselage Lap Joint)

ntervals r Intervals	ng's Modulus sson's Ratio		SS	# Shear Clip Outside Offset from Frame-Stringer Line	inimum Z) aximum Z)	# Intermediate Model Maximum Element Size Your Market Sector Name Flere
# Number Of Frame Intervals # Number Of Stringer Intervals # Fuselage Radius	# Frame Material Young's Modulus # Frame Material Poisson's Ratio	# Stringer Thickness # Stringer Height	# Tear Strap Thickness	# Shear Clip Outside	# Crack Location (Minimum Z) # Crack Location (Maximum Z)	# Intermediate Mode
5 8 75.0	1.05E7 0.32	0.04	0.04	0.1	26.0	ize 1.0
FS_nFRIntervals FS_nSTIntervals FS_radius	FR_E	ST_t ST_r0	TS_t	SC_r0	CR_minZ CR_maxZ	IM_maxElementSiz

Variable Lap Joint Parameters

- Number of Frames/Stringers
 - Loading
- •Material Properties
 - Thickness
 - •Spacing
- •Width of Joint
- •Rivet Spacing
- •Rivet Diameter
 - Model Sizes
- Radius
- Crack Sizes, Numbers, And Location

The Method Is Very Old:

- Original Work By Smith, Kobayashi, et al, More Than 20 Years Ago
- Improved Analytical Solution (VNA Solution) Great Improvements Recently With An and Numerical Methods
- The Method May Now Be Used In the Non-Linear Regime

Sokolnikoff (1956) Kantorovich and Krylov (1964)

R₁ Infinite Body Solution R₂ Finite Body (Finite Element Region

Finite Element Alternating Method

Today's State-of-the-Art Numerical Fracture Analysis Tool

Crack Mesh Needed for Each Crack and Location Stiffness Matrix Reduced Each Time Mesh Development Complicated)

1430 Elements: 6828 Nodes

Countersunk Rivet Hole SIF Calculation FEAM Alternating Method

- Mesh of Un-cracked Geometry
- Stiffness Matrix Reduced ONCE Cracks Placed Anywhere
- Mesh Development From Any CAD
 Package (No Special Crack Tip Meshing Needed)

44 Elements: 330 Nodes

Type: Your Market
Sector Name Here

Elastic Problems

- Kobayashi et al (circa 1970)
- Vijayakumar and Atluri (1981)
- Nishioka and Atluri (1983)
- Atluri (1986)
- Rajiyah and Atluri (1989)
- Chen and Atluri (1990)
- Etc.

Battelle Experience

Stonesifer, Brust, and Leis (1992 Large OD Cylinders)
Brust and Leis (1992 - Creep)
Stonesifer, Brust, and Leis (1993 Interacting Mixed Mode

Aircraft Structures

Nishioka and Atluri (1983b)
Atluri and Tong (1991)
Park and Atluri (1992, 1993)
Park, Sing, Pyo, and Atluri (1993)
Etc.

2D Elastic-Plastic Case

Nikishkov and Atluri (1993)
Park, Sing, Pyo, and Atluri (1993)
Wang, Brust, and Atluri (1997 Series of Three Papers)

Static Crack Elastic-Plastic Comparison for MSD-4

Residual Strength Predictions - EPFEAM

Options: K (Plastic Zone Correction), J, T*, CTOA : R-Curve Need

NIST Test Comparisons: 10 MSD Tests

Practure Under WED Conditions in Aireraff Structures: Alternating Method (BPRBAM) and the Prediction of PAA Report Series (Also Published in Computational Parts I, III, IIIP by L. Wang, F. W. Brust, S. N. Atluri Documentations "The Blastic-Plastic Finite Blement **Meditantes**) CTOA Documented in NASA Langley Reports (Newman)

MSD-4 - FAA report

Derivation of epsilon for MSD-4 analysis

MSD-4 Load Predictions

MSD-4 Load Predictions - with CTOA

Plastic zone size at a=8.0" - ABAQUS

Crack

Original crack locations

Plastic zone size - EPFEAM

Deterministic Assessment/Validation

- Seven example problems Validated To Date
- Lap Splice Case Partial Two-Bay Crack With MSD
- Ran comparison between AGILE (STAGS, FEAM) and ABAQUS
- Validation With ANSYS and ABAQUS With Battelle T* USER Routines

Deterministic Assessment/Validation

Example 3

- Fuselage Radius = 75 in
- 5 frame intervals at 20 inch spacing
- 8 stringer intervals at 10 inch spacing
- half width of lap joint = 1.5 inches
- 20 inch lead crack with two MSD cracks at the rivet hole ahead of the crack
- Pressure = 8.5 psi

Global Model - Example 3

Intermediate Model - Example 3

Understructure

Deterministic Assessment/Validation

Equivalent Von-Mises Stress

Deterministic Assessment/Validation Local Model

Deterministic Assessment/Validation Local Model - ABAQUS Contour

300HH. 22540. 15000 Y-Normal Stress Contour Plate Top Y Normal Stress Deforme d(0.022); Total Translation

Deterministic Assessment/Validation -ocal Model - Y-Stress at Crack Plane

FEAM/ABAQUS K Comparison

	ABAQUS"	FEAM
Crack tip 1 (main)	59.1 ksi-in ^{0.5}	58.8 ksi-in ^{0.5}
Greek tip 2 (MSD)	34.8 ksi-in ^{0.5}	39.5 ksi-in ^{0.5}
Crack tip 3 (MSD)	33.2 ksi-in ^{0.5}	38.6 ksi-in ^{0.5}
*- The calculated J-integral fro The J-integral WAS path ind	from ABAQUS for the MSD cracks was NOT path Independent. Independent for the main crack	s was NOT path Independent.

Fatigue and Fracture: Plans and Goals

Purpose: Review, Choose, and Coordinate the Integration of the (1) Stress Analysis, (2) Fatigue, and (3) Fracture Methods and Codes Which Will Be Part of the PWFD Code.

Thermediate 4 Local Global (1) Stress Analysis

STAGS - Shells, Plates, Beams, Shear Intermediate Fasteners

Elements

Skin MSD - TWC Frames/Stringers/etc. - SC, TWC

Continuum 2-D, 3-D Solid

Global

Fatigue and Fracture: Plans and Goals

(2) Fatigue: NASGRO or FLAGRO

(3) Fracture Codes & Parameters: BEM (FLAGRO) FEAM,

RPFEAM

Residual

K Based (FEAM)

K Based (FEAIV)

- Plastic Zone Estimate (FEAM)

RG (FAD) FEAM, EPFEAN, (To Obtain K, J)

(Definition of Limit Load?)

- J-Integral (EPFEAM)

T*-Integral

· CTOA (EPPEAINI)

Global/Intermediate Model

Two Bay Crack Example

Two Bay Crack Example

AGILE - Intermediate Model

Damage Mechanisms

- Fatigue: AFGRO, NASGRO, Forman
- Corrosion: Local impacts and Patches
- Fatigue impact
- Stress impact
- Repair
- Fracture
- Link-up
- Residual strength

Probabilistic Analysis

Relative impacts

- Loadings
- Material properties
- Initial damage
- Corrosion
- Includes uncertainty as design variable
- Critical to repair
- Risk management

Flight Hours

Deterministic Program Status

•AGILE/STAGS - Automatic Mesh Development Physical Parameter Input Validation -7 Cases to Date (ABAQUS/ANSYS)

Residual Strength (T*, etc.) •FEAM Validated - Elastic/Plastic

Significant Manpower Time Savings Significant Computer Time Savings • Enabling Technologies:

Automation Critical For Probabilistic Analysis

CORROSION AND WIDESPREAD FATIGUE CRITICAL AIRCRAFT STRUCTURE DAMAGE OF

Sponsor: WL/FIBEC Contractor: UDRI Contract Number: F09603-95-D-0175 Start: 11 July 1996 End: 30 Dec 1997

- D. Tritsch, University of Dayton Research Institute, Dayton, OH
- D. Groner, Air Force Research Laboratory, WPAFB, OH

USAF Aircraft Structural Integrity Program Conference 4 December 1997, San Antonio, TX

OVERVIEW

• INTRODUCTION

APPROACH

DATA COLLECTED

DATA REVIEW & QUERIES

• RESULTS

• CONCLUSIONS

SUMMARY & RECOMMENDATIONS

INTRODUCTION / BACKGROUND

Corrosion and Structural Integrity Program Plan - AFRLVABE

Other

• KC-135

• P-3

INTRODUCTION / BACKGROUND

Objective

Establish the extent of corrosion damage and widespread fatigue damage (WFD) which may exist on specified USAF aircraft.

Intent of Project

- Create Database of damage and repair records due to corrosion and fatigue
- Show usefulness of database to ID PSE's with corrosion and fatigue damage
 - Setup framework/process for data collection and evaluation

Approach

Gather data from repair orders for C-5A/B Aircraft

- Assemble and review the data from C/KC-135, C-130, E-8C (707), & C-5A/B
 - Identify damage tolerant critical locations which may be affected
- Identify other effected elements which could contribute to failure

INTRODUCTION / BACKGROUND

Selected Aircraft:

- C/KC-135 Stratotanker
- E-8C Joint STARS
- C-9A/C Nightingale
 - C-130 Hercules
- C-5A/B Galaxy

1990 Tota	Corrosion (\$ 80.3 N	\$ 115.7 N	\$ 95.3 N	\$ 57.6 N	
Aircraft		B-52	C-130	C-135	C-141	-

Aircraft not selected:

- Fighters
 - B-52
- C-141

APPROACH

- Collect & review data
- setup database per aircraft
- Query database to ID relevant details and features
- Query database to ID specific items
- Damage type, part type, part/damage location
- Cross tab to ID DADTA points and other added info.
- ID similarities and differences between databases
- Covering 1 fleet and across fleets

DATA COLLECTED

C/KC-135 Stratotanker

- OACIS Over & Above Centralized Information System
- Boeing Reports on EC-135H 61-0291 Disassembly and Hidden Corrosion Program

E-8C Joint STARS

- OACIS Over & Above Centralized Information System
- Northrop-Grumman Report on Corrosion and Fatigue Study of (2) JSTARS Aircraft

C-9A/C Nightingale

OACIS - Over & Above Centralized Information System

C-130 Hercules

- AFMC Form 202
- OACIS Over & Above Centralized Information System
- AIRS Records from AFTO Form 58, Corrosion and Structural Repair Tracking
- REMIS Reliability and Maintainability Information System
- ARINC Reports on Extent of Corrosion Damage on Critical Structural Components of C-130 Aircraft

C-5A/B Galaxy

- SA-ALC Engineering disposition records

DATA COLLECTED

C/KC-135 Stratotanker

OACIS - 279 Tail #'s, Oct. 1990 - Jul 1996, 5883 Records

291 Disassembly - 1 Tail #, 1992, 3331 records on damage type and location, 1099 records on part and damage description, (Typical of post PDM hidden corrosion)

E-8C Joint STARS

OACIS - 8 Tail #'s, Jan 1992 - Sep 1996, 33442 records

Northrop-Grumman O&A - 2 Tail #'s, 1996, 1536 records

C-9A/C Nightingale

OACIS - 61 Tail #'s, Aug 1990 - Aug 1996, 12950 records

C-130 Hercules

AFMC202 - 127 Tail #'s, , 1003 records

OACIS - 101 Tail #'s, , 8065 records

AIRS - 116 Tail #'s, , 3769 records

REMIS - 447 Tail #'s, , 2922 records

ARINC - 875 WUC's, 451 DADTA vs WUC points, 241 component descriptions

C-5A/B Galaxy

SA-ALC - 124 Tail #'s, 1988 - 1996, 4302 records

DATA COLLECTED

OACIS
Record number
Work Request Num.
Date Reported
Work Unit Code
How Mal Code
Action Taken Code
Discovered Date
Work Area Code
Work Zone Code
Discrepancy Descrip.
Corrective Action Code
Tail Number

	AFMC202	C5 SA-ALC
number	Date	Record Number
quest Num.	Control Number	Date in
ported	Part Noun	Date
it Code	NSN	EAR_NO
Code	Part Number	SER_NO
aken Code	Added Drawings/Notes	Description
ed Date	Serial/Tail Number	Status
ea Code	Planner	Remarks
ne Code	Deficiency description	Part_NO
ncy Descrip.	Location description	DWG_TO_NO
re Action Code	Solution	Work_SPEC
her	Damage Classification	FS
	Engineer	Area
-		Repair instructions
		Engineer
	•	

DATA REVIEW

- No Details on corrosion quantity or description
- OACIS and AFMC202 best able to ID corroded or cracked parts
- Not intended to contain the data used in a DADTA evaluation
- Can identify PSE's with corrosion or cracking which need further consideration of their structural integrity and R&M capabilities

Goal: ID part type, damage type, and damage/part location

Familiarity with database

Part - descriptions, noun, type, number, ...

Damage - descriptions, Hal Mal Codes, discrepancy, classif., ...

Location - descriptions, STA/WL/BL, zone, area, ...

Other relevant data - WUC, DADTA Pts., Tail #, dates, MDS, ...

Query by defect type - corrosion or cracking

Cross-Tab by Part type, Location, WUC, year, Tail #, etc. ...

ID similarities and differences between databases for a fleet

C-130 OACIS, Count Records by How Mal Code

Sum		8065
⊟How Mai Code	Description	CountOfRecord *
299	Corroded Severe	5109
170	Corroded Mild/Moderate	2035
0	TO LA PROPERTY BENEFIT OF THE PROPERTY OF THE	258
799		66
190	Cracked	88
105	Loose, damaged, or missing hardware	08
804	a de la composition della comp	80
710	Bearing failure	entrebuses in the contract formula constitution of the contract of the contrac
800		51
553	Does not meet specifications	40

C-130 OACIS, Count Records by Work Area where How Mal Code = 667, 170, or 190

Work Area

C-130 OACIS, Count Records by Work Unit Code where How Mal Code = 667, 170, or 190

סיים של אונין המספות אפון המספות אינין הוא האונין האלו וואם זי אינין האלו האלו האלו האלו האלו האלו האלו האלו	With Disciepancy 16xt		ומו ככתב - ככו, ווכ, כו	000
Sum	641	1641	31	2313
.Discrepency.w/	10/2h	#	190°	
skin	529	857	14	1430
beam	43	414	13	470
longeron	30	241	က	274
frame	∞	106		114
stringer	_	23		25

C-130 OACIS, Count Records by Work Area and with Discrepancy Text like "?" where How Mal Code = 667, 170, or 190

1692	Sum	403	242	206	194	190	119	88	108	48	33	32	29	7
24	stringer.		5		12	က	က							
65	fiame			15		16			8	26				7
207	lugijejajijoji			61	13	13		88				32	-	
417	ູ່ ທຸກສອດ). "		164		169					22	33		29	
979	skin	403	73	129		158	116		100					
Sum	Monk/Aner	Blank	6	2	10	19	3	14	5	11	7	13	9	

RESULTS

Only Sums > 17 plotted S KC-135 OACIS, Count Records by Work Area where How Mal Code = 667, 170, or 190 ಶಿ ς2 6/8/ ď۵ c}/0 જ્ 4 و ₹ 1200 1000 800 009 0 400 200

Count of Records

Work Area

RESULTS

KC-135 OACIS, Count Records by Work Unit Code where How Mal Code = 667, 170, or 190

KC-135 OACIS, Count Records with Discrepancy Text like "?" where How Mal Code = 667, 170, or 190

KC-135 OACIS, Count Records with Discrepancy Text like "?" and by Work Area where How Mal Code = 667, 170, or 190

H/M Count of Records

	sum	711	561	508	276	249	92	81	39
)		51	26	<u>0</u>	22	44	The state of the s	The second secon	West District Control of the Control
	J. 70½/	9/	23		18	11		7	
) ; ;	// <u>//</u> 99	584	512	482	236	188	84	26	31
		12	To the control and abstraction of a separation of the control of t	The control of the co	19	18	22	Section 1. The Control and American Annual Control and American Control	6/12
	enov Wife								

skin

E-8C OACIS, Count Records by Work Area, whe	How Mal Code = 667, 170, or 190
E-8C OACIS, Count Records by Tail #, where How	Mal Code = 667, 170, or 190

			Ñ					
257			901	167	100	15	157	13
7598 21038	ode	ecords	1,70%	2296	8249	1153	138	256
7598	How Mal Code	Count of Records	V	2172	2546	732	359	294
딾			lojik-Aitear 😘 🥴	90;	202	223	21	215
29193 Sum			Sum MA	9502 8206	7364 8202	3702 8223	2527 8221	2509 8215
222			S	26	40		119	
21038	Code	Records	1. 0ZD	8743	6773	1620	1153	794
7598	How Mal	Count of F	067.	203	551	1962	me most or present	1612
Sum			MIRCRAFILIDIN	P1	P2	P6	P5	P4
			Tail Number	19622	19295	19442	19293	19296
				8	67			

E-8C OACIS, Count Records by Work Zone, where Work Area = 8206 and How Mal Code = 667, 170, or 190

How Mal Code ■ 190 170 图 667 * 1-5 2-1 Only Sums > 146 24 44 4 4-3 2-5 1-1 5-1 6-1 1-2 3-2 1.3 ۲ 6-2 6-2 9 5-2 3-3 5 5 6-3 800 200 1200 1000 900 0 400 Count of Records

Work Zone

E-8C OACIS, Count Records by Work Area, with Discrepancy Text like *skin* and where How Mal Code = 667, 170, or 190

Sum

Count of Records How Mal Code

4118

33

3366

719

Work Area	# 1 <u>7</u> 98	170 AN	190	Sum
		1410	12	1733
i nou s sept iminational variation for CCCs. A color state where we have the color of the color	215		5	1725
÷	97	151	2	250
A CAMPA BANKAN AND AND AND AND AND AND AND AND AND A	3		TO STATE AND	98
8215.	17	65	、	85
8270	4	24		28

E-8C OACIS, Count Records with Discrepancy Text like *?* and where How Mal Code = 667, 170, or 190

Sum

6917 How Mal Code 3069

154 10140

Count of Records

Discrepency w/		0/1	1900	Sum
skin	719	3366	33	4118
rib	371	1076	7	1454
frame	524	621	20	1165
beam	309	765	∞	1082
stringer	276	760	14	1050
angle	831	116	71	1018
bulk	39	213	_	253

												_	
												60	
<u></u>												2	
√rea whe												20	
by Work /												80	
C-9A/B OACIS, Count Records by Work Area where How Mal Code = 667, 170, or 190												02	Work Area
IS, Count le = 667,									[03	
A/B OAC												04	
C-9 How												90	
												5	
												02	
	2000	4500	4000	3500	3000	of Rec 2500	Cour	1500	1000	200	0		

■ 190■ 170■ 667

H/M Code

Tail Number

Text Like *skin* C-9A/B OACIS, Count Records with Discrepancy Text Like *?* where How Mal Code = 667, 170, or 190	30 2943 S	H/M Code	Records Count of Records	77.0 77.0 Sum Discrepency.w/m 687 . 77.0 Sum		147 149 floor 15 740 15	246 1 247 frame 19 384 4 407	188 3 200 beam 22	809 9 834 bulk 4 27 1	222 3 227 stringer 2 12	26 26	142	1	20 1	3	2	3	4 1 6	18 24	3
A/B OACIS, Count		H/M	Cour	spencyw/r				-		- -	-									
	_ഗ				1017 skin	149 floor	247 frame	200 beam	834 bulk	227 string	56	147	29	24	က	2	က	9	24	က
Text Like '	;		"			7	9	* * * * * * * * * * * * * * * * * * * *			9	4	1	0	3	2	3	1	8	2
	285		ecords	021	66	14	24	18	80	22	7	14	2	2						
pancy 367 1	; ; ~ ~		α	17032	ı	į	<u> </u>	<u> </u>	-	1	,		:	<u>.</u>	1	ŧ	5	:		<u> </u>
C-9A/B OACIS, Count Records with Discrepancy Text Like *skin* and by Work Area where How Mal Code = 667, 170, or 190	26	H/M Code	Count of Records	1.299	11	2	And the designation of the designation of the state of th	6	16	2		8	2	E	The state of the s	a a victor of the second of the control of the cont	The state of the s		9	

C-9A/B OACIS, Count Records with Discrepancy Text Like *skin* where Work Area = 05 or 01 and where How Mal Code = 667, 170, or 190

H/M Code

535

542

121 119 66 35 32 31 28 23 20 20

	Count	Count of Records	
WWollk. Aliesi	Work Zone	0/1/10 · · · · · · · · · · · · · · · · · · ·	Sum Sum
		1 118	2
MONEY WAS CARD BLIVE AND MARKET A TO THE PERSON WHEN A	 double of the second decorption of week to the second decorption of the second deco	-	and the late of the state of th
Masse		and the second s	T. C.
AND ANAMOMENTAL STATE OF THE ST	20	35	
And and screening of the conditions of the condi	70	32	
Committee Commit	00	31	Coupons of the fact of the second of the sec
s maniglaci maccios i Cultipatricate anactos (2001, 2012) control de defenda loculos con trol da anactorica de defenda de control de desperando de desperan		26	
adda とようなものである。とは、人となる。というなどはなっている。 1980年 - 1980年 -	makater ada kanangsakangsamma danakangsakangsakangsakangsakangsakangsakangsakangsakangsakangsakangsakangsakang	23	
en els recomments e actor en character en els executadas en els recomments en en comments en els en els recomments els els els en els recomments els els els els els els els els els el	*	21	
other propriets in the propriets of the	90		

C-130 OACIS, Count Records with Discrepancy Text Like *?* where How Mal Code = 667, 170, or 190

Count of Records

Sum

C-130 OACIS, Count Records by Work Area with Discrepancy Text Like *?* where How Mal Code = 667, 170, or 190

Count of Records

Sum

Only Top 5 W/A's for each part type shown

1457 C-130 OACIS, Count Records by Major Section for Work Unit Codes with DADTA Points and where How Mal Code = 667, 170, or 190 Sum

Count of Records

Center Wing	220	184	တ	763
Outer Wing	512	86	21	619
Fuselage	28	<u></u>	-	99
Nacelle A		2		က
Nacelle D		2		ന
Nacelle C		no. necessaries not		_

C-130 OACIS, Count Records by Work Unit Codes with DADTA Points where How Mal Code = 667, 170, or 190

	Codilit of 1 toods as		20.00	
A TOUGHANDIONO PIOPOLICION AND THE PROPERTY OF	1061- 021- 299	170	190	Sum
CM-9	131	12	2	145
OW-3	126	3	2	133
CW-10	124	4	2	130
CW-11	124	4	2	130
CW-8	44	Φ	_	53
OW-52	44	_	2	47
OW-36	42		2	45
OW-25	40	4		44
OW-45	40	-	THE COMMENT CONTRACTOR	41
CW-12	37		_	38

1143 283 31 1457 Count of Records

C130 AIRS, Part1, Zone, 667&170, Ct Rec

Zone ■ 13 ■ 51 ■ 31 ■ 32 ■ 42 □ 33 Only the top ten Part1 and Zone in. 1600 1400 1200 800 1000 200 0 9 400 Count of Records

Part 1

C130 AIRS, Loc, Part1=Panel, 667&170, Ct Rec

C130 AIRS, Loc, Part1=Longeron, 667&170, Ct Rec

C-5 ALC, Count Records by Defect Code (CN or CK) and Work Area Description with Discrepancy Text like *Beam* C-5 ALC, Count Records by Discrepancy Text with *?* where Defect Code = Corrosion or Crack

Descrepency w/

beam

Sum CK Sum CN

695

514

181

Sum

5 151

Damage Code

\$ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		Sulli 4E6 CIV		
		く <u>)</u> 001		40
7	146	148 CK		20
92	29	105 CK		
16	85	101 CK	NLG	
63	36	99 CK		
က	54	57 CK		6
10	19	29 CN		4
		<u> </u>		7

CONCLUSIONS

- Have an assembled database and process to ID PSE's with corrosion and cracking
- USAF standardized data recording systems are sufficient to ID PSE's with corrosion and fatigue damage
- No details in Std database indicating multiple cracks or WFD
- PSE's can be related to DADTA points with extra data entry Data representing the entire fleet provides best trends
- Supplemental data gathering is valuable for further substantiation, insight, and data
- Northrop-Grumman Evaluation Corr type and WFD (Y/N)
- Boeing -0291 disassembly Corr. Depth and extent of "missed" corr.
- Corrosion & Cracking Record counts for PSE's > those for **DADTA's**

CONCLUSIONS

C/KC-135, E-8C, C-9A/C, and C-130:

Corrosion Record Counts > Cracking Record Counts

Corrosion - skins

KC-135: skins @ fuselage A/R (Ext.)

E-8C: skins on lower fuselage, aft cargo, BS 960 - 1440

C-9A/C: wing skins, fuselage below floor

C-130: wing skins

C-5A/B:

Cracking Record Counts > Corrosion Record Counts

Cracking - Fuselage beams & frames

Corrosion - Horizontal Stabilizer

Further consideration needed to:

verify trends

- evaluate the impact to structural integrity

SUMMARY & RECOMMENDATIONS

* Continue to collect and evaluate corrosion and cracking trends ID emerging R&M issues

ID emerging safety issues

Payoff for R&M in identifying and evaluating corroded PSE's ID corroded parts, quantify damage, and evaluate impact to structural integrity

* Adherence to data entry process standards

Install smart data entry - Tail #, MDS, WUC, zone, area, damage codes Create standard work zones and areas within a MDS for transports

SESSION X ANALYTICAL METHODS

Chairman - F. Bartlett U.S. Army

The 1997 USAF Aircraft Structural Integrity Program Conference San Antonio, Texas, 2-4 December 1997

Modeling Fastened Structural Connections Using Finite Elements

Ricardo L. Actis and Barna A. Szabo

Engineering Software Research and Development, Inc. 7750 Clayton Road, Suite 204
St. Louis, Missouri 63117
phone: 314-645-1423, fax: 314-645-1649
e-mail: ricardo@esrd.esrd.com

Topic Area: Structural Analysis

ABSTRACT

Proper models of fastened structural connections must include all the significant effects that influence their performance. Inherent nonlinear effects make the numerical treatment of these models very cumbersome and far from the reach of non-specialists in finite element analysis. To overcome this difficulty, we have developed a unique capability within our p-version FEA software Stress Check¹ which provides for the computation of the structural and the strength responses of fastened structural connections. The implementation accounts for the following:

- Partial contact between fastener and plate
- Fastener shear stiffness
- Material and geometric nonlinearities
- Interference fitting
- Initial clearance between fastener and plates

It is assumed that the effects of bending are negligible and that there is no friction between the contact surfaces. In other words, all dominant effects in shear connections are accounted for in a single analysis tool.

A unique library feature of Stress Check allows for the creation of handbook-like problem definitions for fastened structural connections parameterized by topological description, material properties and loadings. The output data, such as forces acting on fasteners, stress distributions, estimates of the size of plastic zones, etc. can be produced automatically in tabular or graphical formats. Combined with Stress Check's easy to use handbook framework, this capability provides a unique tool for analyzing structural joints in a reliable and effective way.

Solutions of high quality and reliability can be produced in a reasonably short time by persons who need not have been trained in the use of finite elements. This is because advanced nonlinear finite element analysis procedures are available from the simple handbook-like interface. This feature delivers important benefits: The ability to standardize the analysis of fastened structural connections on the basis of the most advanced FEA procedures available today, while substantially reducing time and costs of design and analysis computations. This feature also allows the computation of stress intensity factors for cracks following repair by fastened doubler plates.

^{1.} Stress Check is a trademark of Engineering Software Research and Development, Inc.

1997 USAF Aircraft Structural Integrity Program 2-4 December 1997 - San Antonio, Texas

Johnnections Using Finite Elements Modeling Fastened Structural

Ricardo L. Actis and Barna A. Szabo

Engineering Software Research and Development, Inc.

St. Louis, Missouri

erview

Introduction

Fastener modeling in Stress Check Requirements for an analysis tool

Example problems:

- Neat fit and initial clearance fasteners
- plate doubler
- cold-working of attachment lug

Summary and conclusions

Todaction

Full analysis of fastened connections requires consideration of:

- Three-dimensional effects
- Friction, contact and fastener stiffness
- Clearance and interference fitting
- Material and geometric nonlinearities

problem tractable by numerical methods dealizations are required to make the

Tequirements for an Analysis Tool

Easy to use and flexibility in problem definition:

- topology, materials and boundary conditions
- neat, interference or clearance fit fasteners
- crack from fastener holes or broken fasteners

Account for major nonlinear effects:

- contact and material nonlinearities
- Provide structural and strength responses:
- fastener loads and localized stresses

Fastener Modeling in Stress Check

Main features of the implementation:

- p-version FEA with handbook style interface
- partial contact between fastener and plate
- accounts for shear stiffness of fasteners
- geometric and material nonlinearities
- neat fit, interference fitting or initial clearance

Restrictive assumptions:

- The effects of bending are negligible
- No friction between the contact surfaces

Fastener Modeling in Stress Check

Fastener element: Distributed spring with a 2 DOF rigid core

planar body with typical mesh detail

distributed spring

$$K_n = \frac{2E}{D(1+\nu)(1-2\nu)}$$

rigid core

ESRD, Inc.

Example Problems

Hole with neat fit fasteners

Hole with initial clearance fasteners

Plate doubler with six fasteners Cold working of attachment lug

O_{max} Compression Floles with Neat Fit Fasteners Omax Tension ESRD, Inc.

Hole with Neat Fit Fastener

		K_t (ten	sion)	K_t (tension) K_t (compression)	ression)
Fastener	Plate	Ref.* SC	\mathbf{SC}	Ref.*	\mathbf{SC}
Steel	Steel	2.595	2.60	1.905	1.75
Steel	Titanium	2.493	2.50	1.716	1.58
Steel	Aluminum	2.425 2.43	2.43	1.600	1.52
			en de la companya de	ilianere e sociamentationalities de saturdamente de montrales en sectionalities en sectionalities de sectional	

Factors for Holes with Clearance Fit Fasteners, MDA April 1976. (*) W. T. Fujimoto, Tensile and Compressive Stress Concentration

ESRD, Inc.

Cold Working of Attachment Lug

Fastener element simulates mandrel

Nonlinear analysis using deformation theory of plasticity Residual stresses computed by superposition Results include residuals, elastic-plastic and combined stresses due to residuals and external loading

ESRD, Inc.

ID = NSOL_R Rm = 1 Fnc. = S2 Max = 54327e+f3 Min = -1.6543e+65 \$.4327e+03 Elastic-Plastic and Residual Stresses 1.375 1.625 1.875 Residuals 1.125 Plastic Zone ESRD, Inc. 1.3931e+(5 1.25426+65 4.425724+02

Pric. = S1 Max = 1.1732e+65 Min. = -1.1455e+05 1,1732e+f5 2.481e+64 With Residuals Stresses Due to the Bearing Load 1.875 1.625 1.375 1.125 0.875 1200003 110000 100001 00006 80000 70000 .00009 20000 Without Residuals 1.875 1.625 1.375 1 se 200002 150000 50000 100001 Max = 1.0720e+65 Min = -1.3310e+64 ESRD, Inc. 2.07336+05 9.70084+04 5.25\$1e+E4 3,6817e+64 1,4113e+65 1.1907e+65

Summary and Conclusions

Advanced FEA technology can be made accessible to design engineers through proper implementation

Structural and strength responses can be obtained with a single model

Most significant effects in shear connections are accounted for

ESRD, Inc.

ISSET, Warner Robins ALC

Thompson, Strain Monitor Systems

Robins Air Force Base

Smairt Aircraft Bolt: Problem Definition

TRIP Steels: What and Why?

SBIR Program Description

Phase | Results

Phase II Challenges

Conclusions and Acknowledgments

Strain Monitor Systems

Robins Air Force Base

- High-Strength Bolts
- Require Periodic Inspection
- Wing, Engine, & Empennage Attachments
- Cause Damage When Removed
- Scoring of Fittings
- Fatigue Crack Initiation Points

Robins Air Force Base

Inspect Bolt While Installed

Better Inspection Method

Bettler Bolt

Develop "Smart" Bolt

- Detect Damage While Installed

- Monitor Damage Accumulation During Service

SBIR Project Initiated

– Focused on "Smart" Material Approach

Passive, Self-Diagnostic Mechanism

Robins Air Force Base

ansformation included lasticity Steels

High-Strength and High-Toughness Steels Developed in 1960's at U. C. Berkeley Profs. Earl R. Parker and Victor F. Zackay

Goal Was to Compete with High-Strength, Low-Alloy Steels (AISI 4340 and 4140)

Strain-Induced Phase Transformation Responsible for Exceptional Mechanical Properties

Robins Air Force Base

って

Steels for MS21250-12 and -14 Phase It Identify Candidate TRI Applications

Three Alloy Compositions Identiffed Larger Heats Fabricated

Mechanical Testing
Fabrication Testing
Design Optimization
Prototyge Field Testing

Robins Air Force Base

Alloy Compositions, wt %

RT-1: Fe-8,0NI-9.0Cr-2,0Mn-0.25C

PT-2; Fe-8.0Ni-9.0Cr-2.0Mn-0.30C

RT-6: Fe-9.0NI-13.0Cr-2.0Mn-3.0Mo-0.20C

Acceptance Based on Strength Characteristics Ductility, and MS21250 Specified Ultimate Yield and Ultimate Tensile Strengths),

Load

Robins Air Force Base

D D D

Plastic Straining Triggers a Solld-

BCT depending on Carbon Content) Austenite (FCC) to Martensite (BCC or State Phase Transformation

Austenite - Non-Ferromagnetic

Marriensite - Ferromagnetic

Inherent Damage all officials of earty.

Robins Air Force Base

Trainsformation Occurs Wilhin Austenticto-Marienstie Phase desite Deformenton Regime

Used as an Indicator of Installation Extent of Transformation Could Be Stresses Below Yield Point

Useful for Elastile Stress Monitoring

Passive Detection Mechanism

Robins Air Force Base

Degree of Ferromagnethe Outloud Increases as Extent of Deformenton Increases

Dislocation Mechanism Independent of Localing Seenarie

Responds Only to Increases in Peak Applied Strain Can Detect Elastile, Yielding, and Plastic Deformation Ideal for Passive Detection and Monitoring of Damage Accumulation During Service

Robins Air Force Base

でも

Strain Monitor Systems

100µm

Robins Air Force Base

923

Properties

Robins Air Force Base

Four Smart Bolt Designs Evaluated

Evaluation Ortieriar.

Fabrication Cost

Passive Operation Mode During Service

Interrogated During Routine Maintenance Inspections Installation Similar to Conventiona

Bolts

Strain Monitor Systems

Robins Air Force Base

926

Strain Monitor Systems Single Groove Dual-Groove External Coil sheath threads secondary groove Not to Scale primary groove shank Robins Air Force Base to junction xoq w/Recess Central Single-Groove Hole

One Extra Fabrication Step

Produced a High Noise Leve Ferromagnatic Interference

Signal Output Irragu

Design Abenneloned

Robins Air Force Base

Externally Wound Datestion Colls

Stress-Concentration Grooves In Shank

- Strong Signal Output
- Costly and Culmbersome
 - Design Abandoned

Robins Air Force Base

Single Groove Below Bolt Head

Detection Electronics Mounted in Bolt Head Weight-Reduction Cavity

Externally Wound Groove Coil

Groove Formed During Thread Rolling

No Extra Fabrication Step

Electronics Mount = One Extra Manufacturing Step

Robins Air Force Base

Single Shank Siress-Concentration Groove Weight Cavity Recess to Move Detection Electronics Closer to Groove Region

Groove Formed During Thread Rolling

Cavity Recess Introduced During Head

Forging

Improved Signal Output Strength

Robins Air Force Base

Robins Air Force Base

Subscale Bolt Tested in Tensio External Coil Signal Output:

Robins Air Force Base

1. Thread Fracture
2. Threads Stripped
3. Groove Fracture Failure Modes:

Robins Air Force Base

Robins Air Force Base

TRIP Steel Warm Rolling (at 450°C) Required to Meet Yield Strength Specifications

Lead Forging Generally Parformed at Higher Temperatures

Robins Air Force Base

Robins Air Force Base

Simart Boll Fabrication Plan

Forge Alloy to Round Rod Form

Anneal to Obtain Equiaxed Microstructure

Warm Rolling to Desired Diameter

High Performance Alloys, Inc.

Tipton, IN 46072-0040

Rotary Forging Capability

Specialty: Small Lots and High Performance Materials Slice to Length for Bolt Manufacturing

Robins Air Force Base

Strain Monitor Systems

TIRIL Steels Offier Potential for Aircreif Fastener Applications

Passive Montitoring Approach to Save Bolt Inspection Time and Money

Further Mechanical Testing Required to Identifity Optimium Approach □ Cost Target = Wildespread Application

Robins Air Force Base

Strain Monitor Systems

The authors extend appreciation to the USAF and WPAFB for funding the SBIR Program "Development of a Structural Health Monttoring System" through contract no. F096550-96-C-0682.

the program by the USAFAdministrative We also appreciate the attention given to Officer, Lt. Bill Brasch.

Robins Air Force Base

Strain Monitor Systems

Damage Tolerance Constraints Preliminary Design with Using ASTROS

Knowledge Systems, Inc.

D. Pipkins

P. O'Donoghue

H. Kawai

Georgia Tech S.N. Atluri

Presentation Outline

- ASTROS Introduction
- Integration of a Damage Tolerance Module with ASTROS
- Applications

Structural Optimization

- Minimize an objective function (i.e. weight or cost)
- Enforce constraints (i.e. strength, flutter, displacement, etc.)

ASTROS (Automated STRuctural Optimization System)

- Supports both preliminary design and design modifications that occur later in the product life cycle
- aerospace structural designs in significantly optimization techniques to deliver superior Combines finite element modeling and reduced times
- Finite element modeling based on NASTRAN

Final

Preliminary Design Challenges

- Aerodynamic configuration, materials and design conditions defined
- Determine the structural configuration that multiple engineering disciplines impose satisfying the multiple constraints that provides and optimal structure while

ASTROS v13 Constraints

- Tsai-Wu Stress Criteria
- Von-Mises Stress
- Stiffness (Deflection)
- Natural Frequency
- Flutter
- Laminate Composition
- · Panel and Beam Buckling
- Aeroelastic Lift and Control Effectiveness

ASTROS Design Variables

- Plate Elements: Thickness
- Beam Elements: Cross-Sectional Area
- design realistic from a manufacturing point Design variable linking keeps optimal of view:
- element grouping for constant thickness structure
- shape function for tapered (thickness) structure

Integration of Damage Tolerance Module with ASTROS

DT Module Capabilities

- models applicable to metallic and composite The module will consist of local damage structure
- Fatigue spectrum generation in terms of **ASTROS** load cases
- Minimal impact on ASTROS input data file preparation

Local Analysis: Metallic Structure

- Damage in the form of through cracks and surface flaws, including Widespread Fatigue Damage
- Main objective is to calculate a parameter which characterizes the crack-tip fields
- Linear Elastic Fracture Mechanics: K
- Use parameter to predict residual strength and life

Local Analysis: Composite Structure

- Damage in the form of delamination
- Two objectives:
- calculate energy release rate
- calculate buckling load with delamination present
- Predict residual strength

Fatigue Spectrum Generation

ASTROS Interface

- Approach taken is to use a globalintermediate-local analysis
- element model, which in preliminary design The user constructs only the global finite may be very crude (i.e. smeared stiffener properties, no account of fasteners, etc.)
- Intermediate and local model generation is carried out automatically by an automated geometry modeler and mesh generator

Modeler and Mesh Generator Automated Geometry

- in the global model bulk data file (ASTROS defined by a few additional bulk data cards The intermediate and local models are input is similar to NASTRAN)
- The automated geometry modeler and mesh generator then takes this data and generates intermediate and local meshes sufficient to carry out damage modeling.

Intermediate Model

Local Model

Application to IAS Fuselage

through cracks and surface flaws change Study how stress intensity factors of with design variables.

Global Model

Design Parameter Set

of Typical Interest in Preliminary Design Problem Dependent Key Design Variables

(number of frames, stringers) Topological Parameters

Dimensional Parameters (frame, stringer interval, crack

length)

Geometrical Properties

(thickness, beam section area)

• Material Properties

(Young's modulus)

Boundary Conditions

Body Forces

(displacement, load) (pressure)

962

Problem Description

IAS Intermediate Model

Skin Elements: Thickness Linking

Thickness Linking Frame Elements:

Stringer Elements: Thickness Linking

IAS Local Model

IAS Intermediate Model: Deformed Shape

IAS Intermediate Model:

Hoop Stress

IAS Intermediate Model: Axial Stress

Thickness (Through Crack) Design Parameter: Skin

Thickness (Surface Flaw) Design Parameter: Skin

Theta (0)

973

LUNCH PRESENTATION J. Morgan Oklahoma City Air Logistics Center

B-1B BOMBER HORIZONTAL STABILIZER SUBSTRUCTURE FAILURES

Prepared By: John Morgan, Aerospace Engineer

Structural Engineering Section

B-1B System Support

USAF

INTRODUCTION

In May of 1993, a B-1B aircraft sustained a lightning strike to its left horizontal stabilizer. In an attempt to identify any possible damage, the stabilizer was X-rayed at various locations. Some of these X-rays identified cracks in the substructure that could not be the result of a lightning strike. These cracks later proved to be a part of a larger fleetwide problem with the B-1B aircraft that has only now been fully understood.

In an attempt to understand and control the problem, the US Air Force formed a team of engineering experts from its own ranks and that of the prime contractor, Boeing North American (BNA). This team was responsible for monitoring the status of the fleet's structural integrity, identifying the cause of the problem and developing a structural enhancement to correct the problem. The USAF is currently in the process of implementing the structural enhancement.

The purpose of this paper is to provide an overview of the process that this team used to deal with the horizontal stabilizer problem.

PHYSICAL DESCRIPTION

To fully understand the problem with the B-1B horizontal stabilizers, knowledge of the stabilizer structure is required.

The stabilizers are a symmetric airfoil approximately 20 feet long (see figure 1). The width tapers from 16 feet at the root to 5 feet at the tip. Each stabilizer is mounted on the aircraft via spindles that protrudes from the side of the aircraft. The stabilizers can be rotated symmetrically or asymmetrically about these spindles to control both the pitch and roll of the aircraft.

The stabilizer itself consists of a main structural box, which is the part that is failing and composite fairings which are attached to the leading edge, trailing edge and tip of this box.

As shown in figure 2, the main structural box is composed of relatively thick(0.125 in. to 0.470 in) one piece aluminum upper and lower skins attached to a thin egg crate type substructure. The substructure, as shown in figure 3, is comprised of spars (running in the spanwise direction) and riblines (running in the chordwise direction).

The front and rear spars are machined aluminum I-beams. Integral flanges are machined into the spars for attachment of the riblines. The intermediate spars are titanium I-beam weldments, however, the webs are not flat, but have a sinusoidal shape. These spars are commonly referred to as Sine Wave Beams(SWBs). This configuration provides increased strength at reduced weight when compared to a conventional beam. At three foot intervals the spar web flattens out to provide an attach point for the riblines. The SWB spars are continuous from inboard to outboard and range up to 20 feet in length. Typical thicknesses are 0.012 in. for the web and 0.020 in. for the cap

The riblines are composed of formed aluminum rib segments that are fitted in between the spars. These rib segments are of a two piece design: (1) A rib web with a top, bottom and forward attachment flange, and (2) an aft clip. This design provides only fore and aft adjustment, and would therefore require shimming on installation. Thickness for the ribs varies from 0.040 to 0.125 in.

FIGURE 1: Relative size and shape of the horizontal stabilizers to the B-1B aircraft.

Figure 2. B-13 Havizontal Stabilizer

In all, the design of the stabilizer provides both a strong and lightweight structure. As stated before, the stabilizers have the strength to pitch or roll a 477,000 lb aircraft, however, they only weighs 1655 pounds each.

FAILURE BACKGROUND

After the initial discovery of the damage in the lightning strike stabilizer, the stabilizer was subjected to a detailed inspection The first finding was that 65 percent of the fasteners attaching the top skin to the substructure were loose or missing in the area where the initial damage was discovered. The stabilizer was partially disassembled by removing the upper skin to further investigate the problem. The subsequent visual inspection identified several interesting anomalies (see figure 4). First, the damage, although widespread was limited to the outboard two thirds (2/3) of the main structural box. The damage itself took several different forms:

- Cracks in rib segments
- Cracks in the SWB spars
- Cracks in the integral flanges on the front and rear spars
- Loose or failed substructure-to-substructure fasteners
- Degraded corrosion coating on aluminum structure

Lastly, the inspection revealed gaps between the skins and the substructure that substantially exceeded the original production drawing tolerances of 0.010 in.. These excessive gaps were caused by three different phenomena

- Lack of shimming to level adjacent parts
- Premature hardening of sealant applied to the weld bead that resulted in standing off the skin
- Severe weld distortion of the SWB caps

As a result of the inspection of this stabilizer, the engineering team turned its attention to determining the extent of the problem in the B-1B fleet.

FIGURE 4 (Sheet 1 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

FIGURE 4 (Sheet, 2 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

FIGURE 4 (Sheet 3 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

FIGURE 4 (Sheet: 4 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

FIGURE 4 (Sheet 5 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

HGURE 4 (Sheet 6 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

FIGURE 4 (Sheet 7 of 7): Inspection of the 'Lightning Strike' Horizontal Stabilizer.

INSPECTION

The engineering team had three initial goals to achieve with the inspection program. The first was to take care of any fleetwide problem with loose or missing skin fasteners. This was accomplished with a one-time inspection through the fleet for the loose or missing fasteners. Any problems encountered were corrected in conjunction with this inspection.

The second goal was to determine the extent of substructure damage in the fleet. To accomplish this, the team developed a borescope and X-ray inspection procedure to identify the damage in the substructure. Inspection of a sampling of the aircraft soon proved that the problem was fleetwide, therefore, a fleetwide inspection was issued. This inspection showed that practically all stabilizers had some form of substructure damage, and, in a large majority of the cases the damage was substantial (see figure 5).

The third goal was to assess the structural integrity of any stabilizer exhibiting damage and make a recommendation for removal from service or reinspection intervals. This was done by modifying the NASTRAN finite element model to reflect the actual damage, processing for internal loads and routing this data through automated stress analysis programs for the stabilizer structure to determine if acceptable residual strength remained.

The reliability of the substructure inspection has proven to be less than desirable. Visual inspections of some stabilizers disassembled for repair, have shown that less than half of the damage noted during the borescope/X-ray inspections was actually there. In addition, significant damage was found that had not been detected in the borescope/X-ray inspections. Contributing to the low reliability is the size of the inspection: 115 square feet of X-ray film and 200+ borescope locations for each stabilizer. However, the borescope/X-ray inspection remains the only viable technique for inspecting the stabilizer substructure.

Jacob C

APPENDED.

17. 21. 42.

TK ES

1000

B-1B H.S.-Damaged Spar XHS40 67.286 Segment Count

quantities reflect the number of stabilizers in the fleet that contain damage in a particular SWB Spar. Quantities shown on the outside periphery of the diagram and centered over

FIGURE 5 (Sheet 2 of 2): Quantifying the substructure damage in the fleet. The

the ribline locations reflect damage in integeral flanges. Based on 195 stabilizers.

SAFETY OF FLIGHT ISSUE

An assessment of safety of flight issues regarding an inflight failure of a horizontal stabilizer was aided by a 1992 midair collision between a B-1B and a KC-135 tanker during a midair refueling. The B-1B lost the outboard 2/3 of the left hand horizontal. This damage is consistent with that which would be expected due to failure precipitated by the substructure damage. The B-1B pilot reported no loss in flight control or increase in workload and the aircraft landed safely without further mishap. The B-1B flight simulator was used to evaluate the aircraft/pilot response to an inflight stabilizer failure during critical high workload tasks. These findings confirmed that the aircraft was controllable and the loss of the aircraft was not probable.

FAILURE INVESTIGATION

Metallurgical

The first step the team took in investigating the failures was to evaluate failed samples from the lightning strike stabilizer. The metallurgical results showed the failure mode to be high cycle fatigue with the presence of a high mean stress – cycle counts consistent with a high frequency event.

Review of Original Development and Testing

With the metallurgical results in mind, the team began reviewing the process used in the original design development and testing of the stabilizer.

The stabilizer design strength had been verified by completing a full scale ultimate load static test and a three life, flight by flight fatigue test with no significant failures. A ground and flight test program investigated the actual loads environment of the aircraft

including the engine acoustic loading on the empennage, loads envelope and actual maneuver and gust spectra loads. No surprises were found during this test program.

The review obviously keyed on environmental aspects that could affect the fatigue life. There were no apparent problems found with the process, however, several interesting facts were noted. First, during wind tunnel testing of the aircraft, a vortex was found that originated high on the forward fuselage and passed under the stabilizer. This vortex was determined to be quite powerful and under certain conditions could significantly impact the loading on the stabilizer. Secondly, due to the size of the stabilizers and the high levels of the engine acoustic noise, no full scale test could be performed to verify the acoustic fatigue life of the stabilizer. Since the design process assumed that the primary type of response would be a high frequency panel type response, test boxes were used that attempted to replicate the various "cells" of the stabilizer structure. Thirdly, some early acoustic test boxes failed prematurely during life cycle testing. The cause was determined to out-of-tolerance assembly gaps similar to those found in the lightning strike stabilizer.

Interim Repair

The on going inspection of stabilizers resulted in a significant number being withdrawn from service due to unacceptable levels of damage. With no spares available, this was having an impact on the readiness of the B-1B fleet. With the information concerning the premature failures in the original acoustic test boxes and the results from the inspections, a preliminary conclusion was reached that at least one cause of the substructure failures were assembly anomalies. Therefore, an interim repair was developed and implemented that would correct the assembly anomalies and replace any damaged substructure. It was recognized that the repair might not be the final solution to the problem, but that it would maintain the serviceability of the fleet, until further investigation and testing could validate this cause.

Verification of the Cause of Failure

With the pressure off to take care of the immediate stabilizer problem, efforts turned to investigating and verifying the causes of failure. The first steps in this process were: (1) verify the response of the stabilizer to input loads, and (2) verify the source and magnitude of cyclic loads on the stabilizer.

Dynamic Response: To verify the response of the stabilizer to dynamic input loads, software tools and hardware capabilities unavailable during the original development of the stabilizers, were used. These tools allowed detailed Finite Element Models (FEMs) to be developed that could determine the dynamic response of the structure to specified inputs.

The first use of these models were used to determine the natural frequencies and associated mode shapes of the stabilizer. The results were surprising because they showed the response of the stabilizer in the neighborhood of 200 Hz(where the engine acoustic spectrum has a peak) consisted of complex mode shapes with the shapes dependent on the overall geometry of the stabilizer acting like a trapazoidal plate with the skins vibrating in unison. As previously stated, the acoustic test box for the stabilizer assumed that individual panel modes (bounded by ribs and spars) would be the primary driver for the stabilizer response.

Ground and Flight Test: The purpose of the ground and flight tests were to investigate any unaccounted for load conditions for the stabilizers and to verify the source, magnitude and response characteristics of the critical cyclic loads on the stabilizer. To accomplish this data was collected from an instrumented stabilizer in all ground and flight regimes that might contribute to the stabilizer loading. No significant unaccounted for load conditions were found during this test program. Although the test verified that the acoustic noise of the engines during full afterburner use during the take-off roll was

the most critical condition, the most interesting result was the verification that the stabilizer responded to the acoustic input as predicted by the dynamic model.

Dynamic Modeling

With the discovery of this new acoustic response mode, emphasis was put into improving the accuracy of the dynamic model. It was felt that this model could be used to quickly and efficiently model both the current configuration and new configurations of the stabilizer. Otherwise, the team would have to resort to slow and expensive laboratory tests.

Improvement of the dynamic model consisted of refinements of the mesh and changes to modern, higher order elements that would more accurately model the complex motion of the stabilizer and the interaction between the various components. Simulation of the acoustic environment and coupling of those loads to the refined NASTRAN model was performed by SDRC who supplies an I-DEAS module for performing vibro-acoustic analysis (see figure 6). A standard NASTRAN frequency analysis was performed with the results being compared with data from ground runup tests. In comparison with test results, the model was able to accurately model the acoustic input from the engines and the response of the stabilizer (see figure 7).

Fatigue Analysis

The dynamic model allowed the team to determine the stress within the substructure during acoustic excitement. With this information, the team could finally perform a fatigue analysis of the substructure. This analysis provided disheartening news to the team. Acoustics alone could not have caused the failures seen in the stabilizer. Therefore, the team was forced to look for other contributing factors.

during a ground test (one location only).

997

The team did not have to look far. A high enough residual stress in the substructure, due to attempting to pull out gaps during assembly, could cause fatigue failure when loaded by the acoustic noise (see figure 8). A few analytical models and verification tests, proved that this was the case. In fact, at certain locations pulling out gaps well within the tolerances provided on the engineering drawings would provide sufficient residual stressed to cause a fatigue failure It should be noted that once the contribution of the residual stresses were appreciated, the stabilizer was analyzed for the flight load spectrum and found to have more than adequate life.

Failure Investigation Summary

The final determination of the investigating team was that the vast majority of the damage noted in the substructure was due to a combination of high residual stress and acoustics. The high residual stresses were due to pulling out assembly gaps during fastener installation.

Cure for the Problem

The team had two options for curing the problem of the substructure failures: (1) Lower the residual stress, (2) Lower the cyclic stress. Improvements in design, fabrication of the SWBs and assembly techniques have been shown to significantly reduce substructure gaps, but sufficient residual stresses can be reached by pulling out allowable assembly gaps. The team quickly agreed that reducing this stress was not the sole solution to the problem. Therefore, the only option available was to lower the cyclic stress in conjunction with controlling the residual stresses. This could be achieved by stiffening the substructure. The interim repair arbitrarily stiffened the riblines, however, stopped short of changing the spars. The final repair that was developed, included stiffening the sparlines. This repair has been proven analytically to solve the problem. Currently, the team is testing a prototype of the repair to verify the analytical findings. Plans have been enacted to implement the final repair beginning in the year 2000.

FIGURE 8 (Sheet 1 of 2): Predicted life of one rib segment in the original production stabilizer. The improved repair lowers the cyclic stress in the rib, therefore, provides significant improvement in life.

Spar Segment #24710 Fatigue Life Prediction, External Acoustics RANDOM S-N CURVES, TI-6AL-4V, Kt = 1.5, FTU = 134 ksi, FTY = 126 ksi

FIGURE 8 (Sheet 2 of 2): Predicted life of one segment of a SWB spar in the original production stabilizer. The improved repair lowers the cyclic stress in the segment, therefore, provides significant improvement in life.

SUMMARY

The substructure failure of the B-1B horizontal stabilizers provided a challenging and interesting problem for the investigating team. In addition, it provided some important lessons learned. For one, the failures showed the possible effect of using such contrasting structure (ie. thin substructure beneath relatively thick skins). Also, the failures show how residual stresses occurring from common assembly processes can cause problems. Therefore, these stresses need to be dealt with during design and the development of the manufacturing/assembly plan Lastly, the use of an important new engineering tool was demonstrated during the failure investigation. This tool is the capability of new software to accurately model acoustic sources and the dynamic responses of complex structure.

SESSION XI DYNAMICS

Chairman - M. Basehore William J. Hughes Technical Center, FAA

Development of Dynamic Models for the B-1B Horizontal Stabilizer to Predict Responses for Engine **Takeoff Noise**

Joseph S. Rosenthal
Team Leader B-1B ASIP
Boeing North American
Seal Beach, California 90740-7644

Background/Introduction

- Loose or missing fasteners found early in service life
- Inspection of horizontal hit by lightning (1993)
- Numerous cracks in substructure
- Improper fit up during assembly
- Inspection of operational fleet horizontal stabilizers
- X-ray and boroscope methods
- Damage was endemic to fleet
- Cracks were not always in same locations
- Crack length increased with increasing flight hours
- Metallographic examination showed high cycle fatigue

Background/Introduction Cont'd

- Horizontal designed for high cycle vibratory stresses
- Exposed to high engine noise during takeoff
- Considerable analysis and testing during development
- Full scale development included fatigue (3 lives) and ultimate static load
- Recent effort (March 1994 to July 1996) included additional testing and analysis
- Testing to indicate if acoustic environment changed during takeoff or if in-flight conditions significant
- Test responses to correlate with analysis results
- Analysis objectives
- Predict responses close to those measured during test
- » Identify damage mechanism(s)
- Develop analytic acoustic environment independent of structural models **^**

B-1B External Aircraft Configuration

B-1B Horizontal Stabilizer Structural Breakdown

Horizontal Rib Configuration and Representative Damage

Representative Spar Damage Horizontal Stabilizer

Analysis Overview

- Structural dynamic models
- NASTRAN
- MECHANICA, P-element
- Acoustic forcing function response analyses
- Internal acoustics, stand alone rib and spar models
- External acoustics, full horizontal stabilizer model
 - » Low frequency 0 to 80 Hz
- » High Freqency 80 to 400 Hz
- Available comparative ground and flight test data
- Data from two ground runup tests and one flight test External and internal acoustic measurements
- External accelerometers
- Limited number of internal strain gages

Significant Results From Test Data

- Highest response in 80 to 400 Hz frequency range
- Top and bottom surfaces moved together in phase
- Stabilizer responded like a thick plate rather than as a series of small panels
- In-flight responses below takeoff

Low Frequency Analysis

- Account for rigid body and fuselage bending and torsion
- Frequency range 0 to 80 Hz
- **NASTRAN static FEM was used**
- Deflection data determined from flight test data
- Data from 7 accelerometers recorded in velocity mode

Accelerometer data integrated to get displacements

- **Enforced Displacements applied to FEM**
- Resulting stresses compared to static design loads
- Stress values low compared to design
- Method presented some draw backs
- Displacements are a function of actual structure
- Method results in high stresses at enforced points

Internal Acoustic Analyses

- Internal environment results from transmission of external environment mainly through bottom skin
- Detail rib and spar stand alone models generated
- Rib analysis
- Fundamental frequency is 518 Hz.
- Maximum stress indicated almost infinite life I
- Shell elements

Internal Acoustic Analyses Cont'd

- Spar internal acoustic analysis
- Shell elements
- Fundamental frequency 1100 Hz
- Stresses not large enough to cause cracks

High Frequency Models and Analyses

- Initial NASTRAN FEM (derived from static model)
- Skins are triangular bending elements
- Ribs were shear elements only
- Spars were shear elements with shear modulus reduced 20% to simulate reduced shear stiffness of sine wave beams

Pressure Time History Analysis

Used actual pressures from transducers on lower surface

- Assumed same pressure on area surrounding each transducer
- Accounts for some phasing and correlation on surface
- Transient dynamic analysis performed to determine accelerations
- Accelerations compared to test results
- » Responses over predicted
- » Peaks and valleys didn't match

Coupled Acoustic/Structural Model Analysis

- Boeing North American using I-DeasTM software
- Supplied by Structural Dynamics Research Corporation SDRC of Milford, Ohio
- Separate module, VIBRO-ACOUSTICS performed coupled analysis
- Services of SDRC San Diego office obtained
- Simulate acoustic environment
- » Correlate environment with measured
- » Run coupled analysis to obtain responses
- » Correlate responses with test data
- VIBRO-ACOUSTICS module
- » Developed in France by STRACO
- » Acoustic field is modeled by boundary element model
- » Determines acoustic and elasto-acoustic modes

Predicted Vs Measured Acoustic

Engine Acoustic Noise Model

- Initially tried to model acoustic field to represent mixing region of exhaust and surrounding air
- Acoustic spectra generated for points where pressure transducers were located during ground tests
- Differences exceeded BNA criteria of \pm 2 dB in the 80 to 400 Hz
- Finally ten monopole sources were laid out in a grid two meters below stabilizer
- Sources were assumed to be independent & random
- Spectra for bottom surface were within \pm 2 dB
- Spectra for top surface exceeded ± 2 dB
- Method not as accurate for diffraction on top surface
- Measured top surface levels 10 dB below bottom
- Therefor accurate top surface modeling not required

Predicted vs Measured Acceleration Levels

SDRC response analysis results

Enhanced NASTRAN Model

- Grids were made 3 times finer in all directions
- Redefined mesh and included fairing structure
- Skins modeled as bending plates
- Membrane elements used for rib sections
- Spars are flat bending elements with reduced shear and bending modulus to simulate SWBs
- Leading, trailing and tip fairings
- Fiberglass face sheets
- Core modeled as solid elements with equivalent properties

Enhanced NASTRAN Model Cont'd

Densities adjusted for wt., cg and moments of inertia

Support stiffnesses simulated at bearing and actuator attachements

BNA Response Analysis

- SDRC acoustic pressure data used
- Duplicated SDRC acceleration calculations
- Determined stresses using 96 Mesh enhanced model
- Stresses correlated with limited available ground test data
- Correlation felt to be good
- Methodology used to compare repair concepts with each other and production baseline
- Analytically determined and measured rms stresses were low, < 2
- Would not by themselves cause cracking for 107 108 cycles
- Combined with high fit up stresses, account for damage S/N curves shift down for concurrent static load

Predicted Vs Measured Stress Spectra

Aft segment 211 rib

Conclusions

- Analysis methods and models were developed which identified the cause of the cracking in B-1B Horizontal Stabilizers
- For this complex problem three different methods were required to investigate the range of possible causes
- Low frequency region 0 80 Hz with full stabilizer model
- Internal acoustics with stand alone models l
- High frequency, 80 400 Hz with full stabilizer model
- Actual ground test data was required to correlate the results
- The complex acoustic field can be modeled as a set of simple
- The measured and calculated stresses were not large enough to cause cracking without the presence of high static prestresses
- Reducing both the oscillatory and fit up stresses should allow the repaired horizontal stabilizers to meet their remaining life requirements

STRUCTURAL INTEGRITY COMPUTER PROGRAM ENHANCEMENTS in the HELICOPTER RECENT TECHNOLOGY

Structural Integrity Computer Program

AVIATION PROGRESS

► COMMONLY PROGRESS MEANS FLYING

Faster

Farther

Higher (or Lower for Helo's)

With More Agility

Less Detectably

- Seeing / Learning More With More Payload

- In Any Weather

PROGRESS ALSO MEANS FLYING

Safer

More Often

Cheaper

With Less Maintenance

For Many More Years to Come

WR-ALC HSIP GOALS

HELICOPTER STRUCTURAL INTEGRITY PROGRAM

- **ENHANCE AIRCRAFT SAFETY**
- **IMPROVE MAINTENANCE PROCEDURES**
- INCREASE MISSION CAPABILITY
- ●LOWER LIFE CYCLE COST

Note: Enhanced Structural Integrity can be a Force Multiplier

Structural Integrity Computer Program

HELO'S ARE DIFFERENT

"Spinning Scrap Metal in Close Formation Flight" "Flying Fatigue Machines"

RAPID FATIGUE CYCLE ACCUMULATION

- Power Level Cycles, PLUS
- 3 to 50 Hz on Airframe, Controls and Dynamic Components
- Less Importance of Pressure / Gust Cycles
- INCREASED MANEUVER FREEDOM
- HIGH STEADY LOADS / R-RATIOS
- Centrifugal Force
- VARIABLE AMPLITUDE LOADING
- Ratio of Steady to Applied Stress Highly Scattered
- COMPLEX ROTATING COMPONENTS GEOMETRIES

HELICOPTER FORCE MANAGEMENT

TRADITIONAL SAFE-LIFE METHODOLOGY

Rotating Sys, Fixed Controls and Engine / Drive Components

MANY PARTS NOT MANAGEABLE by DTA

Relatively Rapid Crack Growth

Visual Inspection Intervals < 50 hrs Not Viable, Even for Most Accessible Components

SMALL CRACK MODELS CRITICAL

Significant Fatigue Crack Growth Occurs Between Initiation and NDI Detectable Crack Size

INPUTS ACCURACY CRITICAL

- Usage Spectrums
- Damaging Loads
- Material Properties / SN Curves

Structural Integrity Computer Program

SICP PURPOSE --FORCE MANAGEMENT

DETERMINE

- Safe-Life (Empirical S-N Curve) AND FCG by DTA
- Examine Both Facets to Enhance Total Useful FIt Time

ALLOW for CHANGES in

- Usage, Loads, Initial Crack Size, Geometry, Material

STAND ALONE or CONNECTIVITY

- Individual Helicopter Tracking Program
- Logistics Tie-in

| Research ||Instittute FORCE MANAGEMENT (Concluded) SICP PURPOSE --

FLEXIBLE

- Core System Usable for Any Helicopter
- ALLOW MODULE GROWTH
 - USER FRIENDLY, SHORT COMPUTATIONAL TIME

INCREASE SAFETY

INCREASE AVAILABILITY REDUCE MAINTENANCE

SICP HERITAGE

► SIKORSKY DEVELOPED DTA CODE ('84)

- Core Routines Completed
- SIKORSKY DELIVERED DTA CODE ('89)
- Rainflow Cycle-Counting Routines Added
- Geometry Definitions No Longer Hard Wired
- ▶ HELO SIFS MODELS DEVELOPED (1994)
- A Joint Sik & GTRI Effort
- GTRI CODE IMPROVEMENTS (1996)
- General Clean-Up / Increase Flexibility / Repair
- Added Crack Initiation (Empirical S-N Curve) for Dyn Comp
- 1994 SMFT Strain Survey Data Added

Note: all Above Contract Sponsored by WR-ALC

SICP TODAY

CODED SPECIFICALLY for MH-53J (SLEP/SBO)

- Mature Aircraft (1960's Technology)
- NOT Designed for Damage Tolerance

EXTENSIVE SIMFT LOADS DATA BASE

- 4 GW's, 2+ CG's, 3 Nr's, 2+ Hd's
- Approximately 100 Productive Fit Test Hrs
- High Alt IGE, Slope Landings, & In-flt Refueling
- Tail Rotor Strain Survey

► COMPONENT GEOMETRIES for KNOWN "HOT SPOTS"

Structural Integrity Computer Program

SICP TODAY (Concluded)

STRESS INTENSITY FACTOR MODELS

Unpressurized, Untorqued Hollow Cylinders — Helicopter-Specific Component Research:

FLEXIBLE USAGE SPECTRUM

1039

80 Regimes, 32 Prorates (GW, CG, Hd, Nr)

■ MULTI-RECORD LOADS AVERAGED

SACGAP CRACK GROWTH CODE

SICP TOMORROW

IMPLEMENT SHORT CRACK MODEL

Necessary for Helicopter (High Cycle) Loading

INCORPORATE TOP-OF-SCATTER OPTION

- Original Code Not Intended for Empirical S-N Curve Safe-Life
- Currently Averages All Available Data for Specific Maneuver/Prorate
- Allow Industry Standard Approach to be used for Crack Initiation

■ MODIFY REGIME SUBSTITUTION ALGORITHM

Intelligent Choice of Replacement Maneuver for Missing Data

EXPAND USAGE SPECTRUM GENERATOR

- Common Error Trapping (Force Total Usage = 100% ...)
- Will Allow User to Control Where Adjustments are Made
- Eliminate Time Allocated to Unachievable Regimes

SICP TOMORROW (Concluded)

INTEGRATE NASGRO FCG CODE

Modify SICP Output to Provide NASGRO Input File

PROVIDE LOADS PREDICTION

- "Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics" -- CAMRAD II
- Multibody Dynamics, Non-Linear FEs, Structural Dynamics, Rotorcraft Aeromechanics
- Calculate Performance, Loads, Vibration, Response, Stability
- Simulate Missing Maneuvers
- NASTRAN Aircraft and Local, Static and Dynamic Models

RECOMMENDATIONS

- ENHANCE CRACK GROWTH MODEL VALIDITY thru CRACK PROPAGATION TESTING of COMPLEX HELO CONTROL SYS PARTS
- After Crack Initiation Measure Propagation as Policy

1042

- TECHNIQUES at FIELD LEVEL MAINTENANCE CONSIDER NEED for IMPROVED INSPECTION
- **DUPLICATE SICP for H-60 SERIES**
- Potential Use for Over 1500 Helo's
- STUDY POTENTIAL of SICP USE with HUMS DATA

SESSION XII FORCE MANAGEMENT

Chairman - *J. Turner* San Antonio Air Logistics Center Detecting High Cycle Fatigue with User Defined Regime Recognition

John A. Cicero, Ph.D.
Senior Software Engineer
Systems & Electronics, Inc.
190 Gordon Street
Elk Grove Village, IL 60007-1120
Tel: (630) 829-6556

FAX: (630) 829-6551 E-mail: jcicero@ben.edu

Introduction

Systems & Electronics, Inc. (SEI) has developed a system that detects high cycle fatigue through user defined regime recognition. The system includes an airborne recorder and a ground-based PC. The airborne recorder records aircraft parameters such as airspeed, altitude, Nz, angular acceleration, etc. This data is compressed and then stored in an electronic (FLASH) memory module. At the end of a flight (or series of flights) the memory module is downloaded into a PC. A decompression algorithm is used to expand the compressed data into time-contiguous data. This time-contiguous data is then processed by a flight condition code processor program. This program is used to identify flight maneuvers that cause fatigue.

Classifying the Maneuvers

What makes this system unique is that the user can classify a specific maneuver by its individual parameter ranges. For example, assume that the user defines an Angle Of Bank 50 Degree Left Turn @ 0.4Vh as one in which:

0.35% < airspeed (%Vh) < 0.45% 95% < rotor RPM < 115%

```
20% < engine torques < 110%
0.5g < Nz < 3g
-60 degrees < Roll Attitude < -6 degrees
-45 degrees < Pitch Attitude < 45 degrees
20 % < Latitudinal Stick Position < 100%
20 % < Longitudinal Stick Position < 100%
20 % < Rudder Stick Position < 100%
-500 feet/min < Rate of Climb < 500 feet/min
```

Using the flight condition code processor program shown in Figure 1, the user can create a new flight condition code or modify an existing flight condition code. For each input parameter the user selects whether or not the input is used to classify the current flight condition code. If it is selected, the user must determine the lower and upper limits of this input parameter. For any given flight condition code the user can also specify that the following additional flight information be logged:

- 1) the parameter value at the start of the maneuver,
- 2) the parameter value at the end of the maneuver,
- 3) the maximum parameter value during the maneuver, and
- 4) the minimum parameter value during the maneuver.

The user can also specify discrete event information such as a takeoff and a landing. The flight condition code processor can be configured to first look for a takeoff before it will recognize a landing. After a takeoff occurs, the flight condition code processor can be configured to look for a landing before it will recognize another takeoff.

The Flight Condition Code Processor Output

Once all of the flight condition codes have been entered, the user can select the run option from the flight condition code processor menu. There are essentially two sets of input data to the flight condition recognition program. One set is the decompressed time-contiguous flight data from the flight recorder. The other set is the user specified flight condition codes described above. After the data is run through the flight condition code processor the following output sets will be generated:

Figure 1. The flight condition code processor.

The first output is a flight profile. When the flight processor encounters recorded data within the parameter limits (that were determined by the user) it will report the following information:

- 1) a unique flight condition name (i.e., Angle Of Bank 50 Degree Left Turn @ 0.4Vh),
- 2) the time duration of the flight condition (i.e., 10 seconds),
- 3) any coincident peak/valley parameter data that occurred during the condition (i.e., If Nz was chosen as a coincident peak/valley parameter, the report might contain the following results: Nz valley = 0.8 g's and Nz peak = 2.6 g's),
- 4) any coincident parameter data recorded at the start of the flight maneuver, (i.e., If Rate of Climb is chosen as a coincident parameter at the start of the flight maneuver, the report might contain the following results: Rate of Climb Entering = -300 feet/minute), and

Figure 2. A histogram illustrating the amount of time spent in various maneuvers.

Maneuver

5) any coincident parameter data recorded at the end of the flight maneuver. (i.e., If Rate of Climb is chosen as a coincident parameter at the end of the flight maneuver, the report might contain the following results: Rate of Climb Leaving = -250 feet/minute).

The second output from the flight condition code processor describes the amount of time spent in each maneuver. These results can be placed into a spreadsheet to

generate a histogram of the amount of time spent in the most frequently occurring flight maneuvers. For example, the histogram in Figure 2 shows that the aircraft spent a total of 300 seconds in Straight & Level Flight @ 0.8Vh.If the user is not satisfied with the results from the system, the user can modify the classification of flight conditions, and then rerun the existing data through the flight condition code processor to obtain a new set of results. It is important to note that the aircraft does not have to be flown again to rerun the flight data through the fine-tuned flight condition code processor.

Neural Network Generated Loads

In another version of the system the recorded data is run through neural network algorithms developed by the Navy to obtain predicted loads at various points on the aircraft. This data is also compressed, stored in an electronic memory module, downloaded into a PC, and then expanded for processing. This data is then run through the flight condition recognition algorithms described above. These algorithms can identify load conditions (in addition to flight conditions) that cause fatigue.

The output of the load information is displayed by a viewer. The viewer (Shown in Figure 3.) allows the user to graphically compare flight loads with input parameters at various times during the flight. Each of these graphs are time stamped and flight condition code stamped so that the user can see what type of loads occur during a particular flight.

Conclusion

SEI has developed a set of tools that can detect high cycle fatigue through the following steps:

- 1.) Display load profiles at various points on the aircraft during an entire maneuver.
- 2.) Provide Peak/Valley parameter and load values for each maneuver during a flight.
- 3.) Display the amount of time spent in each maneuver during the entire flight.

4.) Examine the load conditions at various points on the aircraft during the entire flight.

Figure 3. The load viewer tool.

BOEING

The ABCs of NDE Development and Transition for Aging Aircraft

and Donald J. Hagemaier, NDE Sr. Technical Fellow Nondestructive Evaluation Engineering by Dwight S. Wilson, NDE Manager The BoeingCompany--Long Beach

Things to Cover

- DAC Aging Fleet Statistics -

- Inspections Relating to DAC Fleet -

- New Technology -

But Mostly

- Process Process -

Introduction

Model	Active	High Time	Produced
DC-3	≈ 1000/1500	90,000 FH 60 Years	10,654
DC-4	≈ 100/200	75,000 FH 50 Years	1,244
DC-6	≈ 200/300	60,000 FH 48 Years	704
DC-7	≈ 25/50	50,000 FH 42 Years	338
Model	Active	High Time	Design
DC-8	300	47,810 LDGS 89,520 FH 37.25 Years	25,000 LDGS 50,000 FH 20 Years
DC-9	864	103,642 LDGS 85,964 FH 30.5 Years	40,000 LDGS 30,000 FH 20 Years
DC-10	415	39,027 LDGS 97,793 FH 25.5 Years	42,000 LDGS 60,000 FH 20 Years

Terminology

- Design Service Life
- Extended Service Life
- Continued Airworthiness
- Economic Service Life

Research vs Application/Transition

- Customer Controlled Budgets
- Compressed Research Time
- A Fleet in Need
- Concentration on Specifics

Where the Requirements Come From

- Early Days
- Maintenance Review Board
- Maintenance Significant Item (MSI)
- Structurally Significant Item (SSI)
- FAA AC91-56

	Typical Wing SSIs	'ing SSIs	
Slats	Structurally Significant Items Typical for Wing (Left and Right Sides)	inificant Items or Wing ght Sides)	Slats
- Slat Assembly - - Slat Tracks and Link Assembly - - Slat Track Supports -	•		- Slat Assembly - - Slat Tracks and Link Assembly - - Slat Track Supports -
Left Outer Wing	Center Wing	Wing	Right Outer Wing
 Bulkheads and Ribs - Front Spar - Inboard Trailing Edge - Lower Panel Installation - Rear Spar - Upper Panel Installation - 	- Center Wing Box Bulkhead Center Wing Box Structure Outboard to Center Wing Joint Center Wing Front Spar Underwing Pressure Bulkhead Center Wing Rear Spar -	ox Bulkhead - ox Structure - Iter Wing Joint - Front Spar - sure Bulkhead - Rear Spar -	- Bulkheads and Ribs Front Spar Inboard Trailing Edge Lower Panel Installation Rear Spar -
Spoilers			Spoilers
- Number One Flight Spoiler - - Outboard (No. 2 thru No. 5) -			- Number One Flight Spoiler - - Outboard (No. 2 thru No. 5) -
Flaps and Vanes	Ailerons	Ailerons	Flaps and Vanes
Inboard Flap/Vane Assy -Outboard Flap/Vane Assy -	- Inboard Assy - - Outboard Assy -	- Inboard Assy - - Outboard Assy -	Inboard Flap/Vane Assy -Outboard Flap/Vane Assy -

NDE Methods Used for SID

Primary	07	cation of	PSEs by	Location of PSEs by ATA Chapter	er	Method
Method	Doors	Fuselage	Pylons	Empennage	Wings	Totals
HFFT		83	5	91	64	168
LFET		40		7	61	108
UT		8	14	L	8	37
RT		29	3	4	19	55
MT	5			1		7
PT						
VT		21	2	1	8	33
Others		5	1			7
Alternat		cation of	PSEs by	ocation of PSEs by ATA Chanter	er	Method
Method	Doors	Fuselage	Pylons	Empennage	Wings	Totals
HFET		13			108	121
LFET		9			6	15
UT	1		1	3	2	7
RT		15	2	3	2	22
MT						
PT		2			2	4
VT	4	52		9	41	103
Others		1			3	4

Primary Methods as % of Total

Industry Steering Committee (ISC)

- Review and Selection of Candidates
- Review of Operator Maintenance
- Development of Supplemental Program
- Establishment of Fatigue Life Thresholds
- Development of Reporting System

Principle Structural Element (PSE)

A PSE is a damage tolerant SSI which is further defined as, "structure whose failure, if it remained undetected, could result in catastrophic failure of the aircraft."

Damage Tolerance Analysis

using methodology which included data from sources margins of safety, full-scale airplane and component Damage-tolerance analysis is performed for each PSE such as lg stress, limit stress, fail-safe and fatigue fatigue tests, service experience, drawings, inspection documents, and interviews.

NDE Inspection Development Process

- Fatigue and Fracture Package
- Drawing Review
- Reference Standard Design
- Determination of Detectable Flaw Size
- Preliminary Procedure
- On-Aircraft Verification
- Final Documentation and Concurrence

Multiple Load Path Crack Growth Curve

Inspect Forward Lower Wing Skin, Aft Lower Wing Skin, And Stringer 17 At Shaded Fastener Locations

LIFT OFF

Longitudinal Splice at Longeron 5

Longitudinal Splice at Longeron 5 **Eddy Current C-Scan Imaging**

DC-10 Crown Skin Splice

Aging Aircraft

Supplemental Inspection Document (SID)

Complete

DC-3 DC-6 DC-8 DC-9 DC-10

In-Work

MD-80

Standardization

- 1. General
- 2. X-Ray
- 3. Gamma Ray
- 4. Ultrasonic
- 5. Sonic
- 6. Eddy Current
- 7. Magnetic Particle

- 8. Penetrant
- 9. Visual/Optical
- *10. Physical/Mechanical
- *11. Chemical
- *12. Leak Testing *13. Thermal
- *14. Laser or Light Energy

(Sherography)

*Proposed

New Technology

Mobile AUtomated Scanner (MAUS)

- Ultrasonic Pulse-Echo
- Eddy Current
- Ultrasonic Resonance
- Mechanical Impedance Analysis (MIA)
- Pitch/Catch (Sondicator)
- Tap Test

Eddy Current Scanning

DC-10 Crown Skin Splices (2)

X-Ray 110 Hours Preparation

100 Hours X-Ray

98 Exposures

2-3 Day Downtime

6-8 Hours (Overnight) Eddy Current

Savings 95% in Labor Hours

10 Aircraft = \$1,000,000.00**Dollars**

NDE Inspection Development Process

• Fatigue and Fracture Package

Drawing Review

Reference Standard Design

Determination of Detectable Flaw Size

Preliminary Procedure

On-Aircraft Verification

Final Documentation and Concurrence

C-17A INDIVIDUAL AIRCRAFT TRACKING PROGRAM

Rick Selder
C-17 Loads and Dynamics
The Boeing Company
USAF Airlift and Tanker Programs

Ko-Wei Liu C-17 Durability and Damage Tolerance The Boeing Company USAF Airlift and Tanker Programs

1997 USAF Structural Integrity Program Conference, San Antonio, TX, Dec. 2-4

CEBEING.

The C-17A Individual Aircraft Tracking Program (IATP) is being developed as part of the C-17 full scale engineering development program. IATP computer system programming is nearly complete with full operational capability expected by mid 1998. The IATP system is being developed by the USAF Airlift and Tanker Programs business unit of the Boeing Company in Long Beach, California.

Outline

- Benefit of IATP
- IATP approach
- Improvements over past IATPs
- Data processing flow
- SFDR flight recorded parameters
- Flight data editing
- Stress spectra generation
- Control point selection
- · Gap filling missing data
- Future Damage Projection
- Content of output IAT data report
- Computer system characteristics

SLIDE 2

Cerence.

Benefit of IATP

Minimize maintenance:

Inspection of critical areas are defined for

each aircraft based on its individual damage assessment.

Efficient fleet management: Modifications are scheduled and aircraft

base rotations and retirements are based

on actual aircraft usage.

Extended service life:

Appropriate inspections and efficient fleet management will maximize the service life

of each aircraft.

Better field support:

IATP data used to help identify parameters

that attribute to problems found in the field.

(BOEING

Today, the cost of buying and maintaining military aircraft is very high. Therefore, there is a great need to extend the service life of aircraft as long as possible but without jeopardizing safety due to long term structural degradation of the airframe as a result of application of repeated loads. An IATP which gives the ability to track the structural status of individual aircraft is the primary tool to assure a long service life without risk. The main benefits are described as follows:

Minimize maintenance: The structural status of each aircraft is used to define critical areas and inspection intervals for each aircraft based on its individual damage assessment. This will minimize required maintenance without jeopardizing aircraft safety.

Efficient fleet management: Modifications for each aircraft can be scheduled based on its unique structural assessment. Also, decisions on rotating aircraft between bases or retiring aircraft can be based on actual usage statistics.

Extended service life: Performing inspection at appropriate intervals and efficient management of the fleet will maximize the service life of each aircraft.

Better field support: The IATP system gives valuable flight data that can be used to help solve problems found in the field. For example, if a problem was found to be associated with an incident that occurred during a specific flight, IATP flight data can be evaluated to find the circumstances surrounding the incident.

IATP Approach

- Record aircraft CG Nz cycles and associated flight parameters for each flight of every aircraft.
- Apply analytic methods to recorded data to generate flight-by-flight, cycle-by-cycle stress spectra at selected airframe control points.
- Calculate damage based on cycle-by-cycle crack growth analysis at each control point.
- Compile usage statistics by aircraft, duty base, and fleet.

SLIDE 4

(BOEING

The purpose of an IATP system is to calculate damage at selected airframe locations in order to determine differences in aircraft usage and to adjust inspection intervals of critical areas of the airframe. To accomplish this, the approach used for the C-17 starts by recording aircraft vertical acceleration (Nz) cycles and associated flight parameters for each flight of every aircraft. Analytical methods are then applied to calculate flight-by-flight, cycle-by-cycle stress spectra at selected airframe locations (control points). Damage at each control point is then calculated based on cycle-by-cycle crack growth analysis. In addition, usage statistics are compiled for each aircraft, by duty base, and for the C-17 fleet as a whole.

- Eliminate dependency on the use of strain gauges.
 - Past experience shows that strain gauges are prone to faults.
 - Production strain gauges expensive to install and maintain.
 - □ Gives flexibility in choosing or changing control points.
- Damage determined directly from recorded flight profiles rather than assumed to be equivalent to the damage from the closest matching design mission type.
- Reduces flight crew work load: Uses a Standard Flight Data Recorder (SFDR) eliminating the need for flight logs.
- Spectra generation methods are as rigorous and detailed as that used for design analysis of the C-17 airframe.

SLIDE 5

PEDEING.

The C-17 IATP has many improvements over IATPs used in the past. These improvements are described as follows:

- •Control point stress spectra generation does not depend on the use of strain gauges. Production strain gauges are expensive to install and maintain and past experience shows that they are prone to faults. Also, eliminating the need to locate a gauge at each control point location gives greater flexibility in choosing or changing control points.
- •Some past IATPs obtain the damage due to a given flight by assuming this damage is equivalent to that given by the closest matching design mission type. The C-17 IATP determines damage due to a given flight directly from its recorded flight profile parameters.
- •All flight data needed by the C-17 IATP is recorded by a Standard Flight Data Recorder (SFDR). This eliminates the need to collect flight log data thus reducing the work load of the flight crew.
- The SFDR records 28 separate flight parameters allowing for the generation of flight profiles as detailed as the design mission profiles used for design analysis of the C-17 airframe. This then allows for a rigorous generation of stress spectra.

The goal of IATP is to collect and process 100% of operational flight data for every aircraft in the C-17 fleet. Flight data is recorded by use of a digital Standard Flight Data Recorder (SFDR), produced by Smiths Industries, installed on each aircraft.

Data collection starts by downloading compressed flight data from the SFDR onto floppy diskettes by the AMC maintenance crews. The data is then sent to the Oklahoma City Air Logistics Center (OC-ALC) where it is uploaded and archived onto an IBM mainframe computer. Then, before data can be processed by the IATP system, it is decompressed by use of decompression software supplied by Smiths Industry.

The first step of the IATP process is to edit the flight data which includes reformatting data into separate flights, parameter editing, and segment identification. Flights containing erroneous data that cannot be corrected are discarded. Once complete the resulting flight profiles and Nz sequences are stored into a database. In addition to SFDR data, maintenance records and horizontal stabilizer and duty assignments are entered into the database by the user. All valid flights are then processed through a spectra generation program to produce control point stress spectra.

Once all stress spectra have been generated for all fights in a given report period, they are processed through a damage program to calculate damage at each control point. Damage for missing flights is calculated using a gap filling process. In addition, usage statistics are compiled for the report period and accumulated with all previous periods. These usage statistics and damage results are then output as the IAT data report.

The IATP system also provides a backup utility to archive edited flight data and to delete no longer needed data following report generation.

Four types of data are recorded by the SFDR. These are data tag, event, time tracked, and peak/valley time history parameters. Data tag parameters give information on the flight as a whole and are recorded once at the beginning of each flight. Event parameters identify a change in aircraft configuration and are recorded when a change in configuration occurs. Time tracked parameters change steadily with time and are recorded whenever their value changes by a predetermined increment (gate value). Peak/valley time history parameters are cyclic in nature and are processed by an onboard algorithm which finds and records peak/valley cycles outside a predetermined threshold.

Flight Data Editing

- · Reformatting:
 - Divide data into individual flights.
 - Check continuity of aircraft serial and flight numbers, airframe time, and flight date against previously processed flights.
- Individual Parameter Editing:
 - Check if parameter value is within an acceptable range.
 - Check if rate of change of value is within an acceptable slope.
 - Check if parameter was recorded at predetermined increments (gate value)
 - Check if event parameter (flaps deploy, gear extend, etc.) cycles within an acceptable time span.

SLIDE 8

Flight data editing is accomplished in four steps described as follows:

Reformatting:

One download of SFDR data contains several flights. This step divides the data into the separate flights then checks the continuity of aircraft serial and flight numbers, airframe time, and date against the same data for previously processed flights.

<u>Individual parameter editing</u>:

Each parameter is checked to assure that its value is within an acceptable range and its change in value is within an acceptable slope. Also, the parameter value is checked if it was recorded at the predetermined increment (gate value). (example: gross weight is checked to assure it is recorded in 640 lb. increments.) For event parameters, a check is made to assure that the event cycle time is within an acceptable time span. (example: flaps deploy within 30 sec.)

Flight Data Editing

- Parameter Comparison Checks:
 - Compare parameters against each other for conflicts.
- Flight Profile Generation:
 - Divide flight into identifiable segments (ascent, cruise, air-drop, etc.)
 - Check segment sequence for logical flow.
 - □ Find special event segments. (example: Touch & Go)
 - Categorize flight as one of 35 design mission types. (Provided to give usage information, not used in damage calculation)
- Note: Methods incorporate experience gained as a result of processing over 4,000 flights of actual SFDR data.

SLIDE 9

Parameters comparison checks:

Parameters are compared against each other to find any conflicts. (example: Landing gear extended above a placard speed of 250 knots)

Flight profile generation:

The time history of recorded flight parameters is divided into identifiable segments and then the value of each parameter within the time span of the segment is averaged. The exception is peak/valley time history parameters for which all values recorded within a segment are retained. The resulting profile of flight segments is then checked to assure that the segments are sequenced in a logical flow. Also, the profile segments are surveyed to find combinations that make up special event segments. For example, the combination of a landing impact, followed by a landing roll, take-off run, then take-off rotation is identified as a touch and go segment. Once the flight profile is generated it is categorized as one of 35 design mission types by matching its flight characteristics to that of the design mission types.

It should be noted that the above described data editing methods were not developed solely on a preconceived idea of the nature of flight recorded data, but rather incorporate the experience gained and are proven out as a result of processing over 4000 flights of actual SFDR recorded data.

Flight Data Editing										
Flight	Profil	اه								
A/C	FLT	A IFRAME	TIME	,	DATE	BASE	GMT			
930603	137	375.250	379.12		50814	KADW	1601 194	47		
DUR	SEGME	NT	PALT	RALT	IAS	GH	FW	CG EPR	WSPD	FLAP
594.250	FULL S		240.	0.	9.	503249.	174481.	36.2 1.0177	0.00	8.00
2.000	TAXI		240.	O.	0.	502080.	173600.	36.3 1.4336	18.00	18.25
29.000	TAKEOF	F RUN	240.	Θ.	₽.	502880.	173600.	36.3 1.4336	77.79	18.25
0.000	TAKE O	FF ROTATION	240.	0.	148.	502080.	173600.	36.3 1.4336	128.00	18.25
79.000	ASCENT		1831.	826.	187.	502080.	173600.	36.3 1.4336	8.00	18.25
18.000	ASCENT		2028.	1956.	246.	502080.	173690.	36.3 1.4336	0.00	0.00
1632.000	ASCENT		18549.	18531.	299.	493516.	165059.	36.3 1.2363	8.00	0.00
2134.000	CRUISE		27902.			480627.			0.00	
358.000	ASCENT							36.3 1.3029	8.00	0.00
7209.000	CRUISE					452072.		36.3 1.2682	0.00	
1090.000	CRUISE					429336.		36.3 1.2556	8.00	
460.000	DESCEN	T	21469.			425857.		36.3 0.8463	0.00	0.00
301.000	CRUISE		13811.			424868.		36.3 1.0199	0.00	
68.000	DESCEN	T	12602.			424090.		36.3 0.9697	6.60	
45.000	DESCEN		10433.			424000.		36.3 0.9688	8.00	0.00
17.000	DESCEN	T	9 569.			424000.		36.3 0.9688		18.50
30.000	LANDIN	G APPROACH	8950.			424000.		36.3 0.9688		18.50
140.000	LANDIN	G APPROACH	7547.			423771.		36.3 1.1388		38.25
0.000	LANDIN	G IMPACT	6296.	۵.		423360.		36.5 1.1797		
21.000	LANDIN	G ROLL OUT	6296.	0.		423360.		36.5 1.1015	64.18	
4.000	TAXI		6296.	₽.		423360.		36.5 1.0781		38.25
185.750	FULL S	TOP	6296.	Ð.	0.	423360.	94880.	36.5 1.0163	0.80	0.00

The above is a generated flight profile for one actual flight. The first record gives information on the flight as a whole with each of the following records describing each segment. Given are the segment duration and type followed by the averaged segment parameters. The peak/valley time history Nz cycles associated with each segment are stored in a separate unformatted file.

Stress Spectra Generation

- Find gust encounters: Separate out gust Nz cycles and time in gust (T_o) by use of the following criteria.
 - Time between successive Nz peaks and valleys less than 1.0 sec.
 - Time between recorded threshold crossings (±0.1g) less than 5.0 sec. Average Nz peak/valleys time difference for gust encounter must remain less than 1.0 sec.
 - Remaining Nz's assumed to be due to symmetric maneuvers.
- Symmetric maneuvers
 - Obtain flight parameter to control point stress transfer coefficients by performance of a regression analysis.
 - Apply transfer coefficients to flight segment parameters to obtain stress versus Nz in terms of slope (F) and intercept (P).
 - Convert flight segment maneuver Nz cycles to stress cycles: $\sigma = P + Nz \times F$

SLIDE 11

Ceneine.

For each flight profile segment control point stress cycles due to loading events occurring within the segment are determined using that segment's parameters and associated Nz cycles. The loading events include symmetric maneuvers, atmospheric turbulence, dynamic taxi, landing impact, and take-off rotation.

During flight segments both symmetric maneuver and atmospheric turbulence (gust encounter) occur. The gust encounters are found by applying the following criteria to the recorded Nz cycles to separate out gust Nz cycles and time in gust (T_g) :

- 1. The gust encounter begins when the time between successive Nz peaks and valleys is less than 1.0 sec.
- 2. The encounter continues if the above remains true or if the time between recorded threshold crossing is less than 5.0 sec. and the average Nz peak/valley time difference remains less than 1.0 sec.

Note: the 5.0 sec criteria is used to allow for reasonable continuation of a gust encounter despite dropped data values due to the recording threshold of ± 0.1 g.

All Nz's that do not meet the above criteria are assumed to be due to symmetric maneuvers.

Symmetric maneuvers:

For each maneuver Nz value, control point stress is calculated using the following linear relationship:

$$\sigma = P + Nz \times F$$

Stress Spectra Generation

- Atmospheric turbulence
 - Select one of 60 PSD gust cases by matching on flight segment parameters.
 - □ Use gust case analytic stress response (\overline{A}, N_o) and segment time in gust (T_g) to generate a random sequence of delta stress $(\Delta \sigma)$ cycles by application of Monte Carlo methods.
 - Add 1.0g stress, calculated using maneuver stress equation, to Δσ cycles.
 - Future enhancements:
 - Evaluate C.G. Nz to distinguish between non-storm and storm turbulence. (currently an analytic distribution is assumed)
 - Evaluate L/ESS strain gage data to develop a relationship between C.G. Nz/Nx and stress response.

SLIDE 12

(Legeing

Symmetric maneuvers (cont.):

The intercept (P) and slope (F) of this equation were determined by applying stress transfer coefficients, determined by performance of a regression analysis, to the flight segment parameters.

Atmospheric turbulence:

The first step in determining stress cycle for atmospheric turbulence is to select one of 60 PSD gust cases by performing a best match of flight segment to gust case parameters. Then from the chosen gust cases analytic stress response (\overline{A}, N_o) and the flight segments time in gust (T_g) generate a random sequence of delta stress $(\Delta \sigma)$ cycles by application of Monte Carlo methods. To these $\Delta \sigma$ cycles add a 1.0g stress calculated using the maneuver stress equation.

In order to utilize recorded data to determine the gust intensity in addition to the time in gust encounters, enhanced methods will be developed. First, an effort will be made to develop a method to evaluate C.G. Nz to distinguish between storm and non-storm turbulence (currently an analytic distribution is assumed). Following this, when a sufficient database of L/ESS strain gauge data is available, it will be evaluated to develop a C.G. Nz and additional Nx (lateral load factor) to stress relationship.

Stress Spectra Generation

- Dynamic taxi
 - Select one of 25 dynamic taxi cases by matching on taxi segment parameters.
 - Use taxi case analytic stress response (\overline{A}, N_o) and segment duration (T) to generate a random sequence of delta stress $(\Delta\sigma)$ cycles by application of Monte Carlo methods.
 - Add 1.0g stress, determined by application of regression transfer coefficients to taxi segment parameters, to $\Delta\sigma$ cycles.
 - Future enhancements:
 - Evaluate C.G. Nz to distinguish between prepared and semi prepared airfields. (currently all airfields assumed to be prepared)
 - Evaluate L/ESS strain gage data to development a relationship between C.G. Nz and control point stress response.

SLIDE 13

C BOEING

Dynamic taxi:

The first step in determining stress cycles for dynamic taxi is to select one of 25 dynamic taxi cases by performing a best match of taxi segment to taxi case parameters. Then from the chosen taxi cases analytic stress response (\overline{A} , N_o) and the taxi segments duration (T) generate delta stress ($\Delta \sigma$) cycles by application of Monte Carlo methods. To these $\Delta \sigma$ cycles add a 1.0g stress determined by application of stress transfer coefficients, determined by regression analysis, to taxi segment parameters.

In order to utilize recorded data to determine the runway roughness enhanced methods will be developed. First, an effort will be made to develop a method to evaluate C.G. Nz to distinguish between prepared and semi-prepared airfields (currently all airfields are assumed to be prepared). Following this, when a sufficient database of L/ESS strain gauge data is available, it will be evaluated to develop a C.G. Nz to stress relationship.

Stress Spectra Generation

- Landing impact
 - Use the highest Nz occurring during landing impact and along with landing GW analytically convert to aircraft sink speed.
 - Using sink speed and weight (GW, FW, or PW) match to one of 15 landing impact conditions.
 - Ratio landing condition analytic stress sequence to match segment sink speed and weight.
- Take-off rotation
 - Assume the elevator deflection required to rotate the aircraft is the same as used for analysis.
 - Apply regression transfer coefficients to assumed elevator deflection and flight segment parameters to obtain stress during rotation.

SLIDE 14

(LEDEINE

Landing impact:

Control point stress sequences due to landing impact are generated as a function of weight (gross weight, fuel weight, or payload weight) and aircraft sink speed using the following procedure:

- 1. The highest recorded Nz occurring during the landing impact along with the landing gross weight is converted to aircraft sink speed.
- 2. One of 15 landing impact conditions is chosen by performing a best match of sink speed and weight. The weight used is dependent on control point location (example: for wing control points, fuel weight is used).
- 3. The chosen landing conditions stress sequence is ratioed to match the segment sink speed and weight.

Take-off rotation:

Control point stresses that occur during take-off rotation are determined as a function of elevator defection and associated flight segment parameters. The elevator deflection used was assumed to be the same as that used for analysis. Regression stress transfer coefficients were applied to the assumed elevator deflection and flight segment parameters to obtain stress during rotation.

Control Point Selection

Damage Tracking

- Nine control points throughout the airframe were selected to monitor the structural status of each individual aircraft.
- The control points were selected on each major component to track the crack growth life based upon individual aircraft usage.
- Stress intensity solutions for each control point are in tabular form and damage calculation is based on one dimensional (crack length) cycleby-cycle crack growth analysis to minimize computing time.
- Life at any location on the airplane can be correlated to one of the control points based upon the ratio of the analytical life provided the two locations have the same loading characteristics.

5) IDE 15

Centing.

The continual assessment of the in-service structural integrity of the individual airplanes will be based on damage calculated for each of the control points selected throughout the airframe. Control points were selected on each major component to monitor the change of each damage driving parameter (gust, maneuver, cabin pressure, and etc) and their impact on the life of the component as usage varies. Location of control points selected on each airframe component was based on knowledge gained from the life assessment effort and during full-scale engineering development. Damage accumulation is based on cycle-by-cycle crack growth at each control points. The stress intensity solution for each control point is stored in tabular form and crack growth analyses are performed in the length direction only to minimize the computing time. Structural life at any location on the airplane can be derived from one of the existing control points based upon the ratio of the analytical life of the two locations. This is valid provided the spectra at the two locations have the same loading characteristics for the same mission event.

Control Point Selection

- AF1 Aft Fus Canted Bhd Cap
- AF2 Aft Fus Pressure Bhd
- CF1 Long #1 at Wing Rear Spar
- HS1 H.S. Front Spar
- P1 Inb'd Pylon Stub
- VS1 V.S. Front Spar
- WF1 Wing/Fus Trapezoidal Pnl
- W1 Lwr Wing Skin @ Xw 429
- W2 Wing Upr Skin @ Xw 165

SLIDE 16

0	BBEING
- X.×	

CPID	LOCATION / DESCRIPTION	DAMAGE DRIVING PARMETERS
AF1	Aft Fuselage, Canted Front Spar, Panel Close to Longeron #3 @ Y _f = 1582.90	Lateral Gust & Maneuver Loads
AF2	Aft Fuselage, Pressure Bulkhead @ (X46.9 and Z304 Aft Cap) $Y_f = 1797.55$	Pressure
CF1	Center Fuselage; Longeron #1 (intercostal rib) Wing rear Spar @ Y _f 851.60	Gust & Maneuver Loads
HS1	Horizontal Stabilizer; Front spar Upper Cap @ X _{hfs} = 126.87	Gust & Maneuver Loads
P1	Inboard Pylon-Stub, Inboard Upper Cap at Hole 'A19' @ Y _{in} = 263.14	Gust Loads
VS1	Vertical Stabilizer; Front Spar Skin Flange @ Z _{vle} = 613.00	Lateral Gust & Maneuver Loads
WF1	Wing/Fuselage, Rear Trapezoidal Panel Upper Inner Doubler at Edge @ Y_f = 892.00 (X_w = 116.0)	Gust & Maneuver Loads
W1	Lower Wing Basic Structure, Skin @ $X_w = 429.00$ and Stringer #50	Gust & Maneuver Loads
W2	Upper Wing Basic Structure, Skin @ X _w =165.00 and Stringer #20	Taxi Loads

A gap in the flight data being processed may be caused by various factors such as: malfunctioning equipment, exceeding memory capacity, bad data rejected during the EDITING process. The amount of crack growth for the gap period is determined by factoring the baseline or analytical crack growth curve based on the design usage for each respective control point by the recent usage or history of the individual airplane. The procedure used is summarized as follows:

- 1. The edited flight data is assessed by the damage calculation program and the gap in recorded usage is identified in terms of the number of hours unaccounted for. This is T_{gap} . The total flight hours from initial delivery to the end of the last recorded flight is $(N_n)_{IATP}$.
- 2. From the appropriate baseline curve, determine the time required for the crack to reach the size at the end of the last recorded flight (a_n) , from the initial size. This is $(N_n)_{BL}$
- 3. The equivalent of T_{gap} on the baseline, $(T_{gap})_{BL}$, is determined as follows:

$$(T_{gap})_{BL} = T_{gap} \times \frac{(N_n)_{BL}}{(N_n)_{IATP}}$$

- 4. The baseline curve is entered at a_n , and is followed for a time interval equal to $(T_{gap})_{BL}$. The increment of growth due to the unlogged hours of usage.
- 5. The crack size at the end of the unlogged period is given by:

$$a_{n+1} = a_n + \Delta a_{gap}$$

The procedure presented above applies to all control points. By using the ratio of $(N_n)_{BL}$ to $(N_n)_{LATP}$, the difference between the baseline usage and IATP usage is compensated to some extent.

Projection of the time for a crack to reach its limiting size is made for each of the nine control points on each airplane in the force. The procedure is based on the assumption that the relationship between the recorded usage and the design usage crack growth curve, in terms of the ratio between flight hours to reach the same crack size, will remain constant out to limiting crack size, a_L . The procedure to be used to project the time to reach, a_L from a given crack size, a_n and time, $(N_n)_{LATP}$, is as follows:

- 1. The baseline curve is used to determine the time to reach a_n from the initial crack size based on baseline usage. This is $(N_n)_{RL}$.
- 2. The baseline curve is used to determine the time to reach the limiting crack size, a_L . This is $(N_L)_{BL}$.
- 3. The projected time to reach the limiting crack size is found from:

$$(N_L)_{LATP} = (N_L)_{BL} \times \frac{(N_n)_{LATP}}{(N_n)_{BL}}$$

IAT Data Report

- Fleet usage leaders (Airframe time, flights, landings, etc.).
- Usage by aircraft, duty base, and fleet.
- Time spent in segment (ascent, cruise, air-drop, etc.).
- Mission type usage distributions.
- Take-off and landing gross weight, fuel weight, and cargo weight distributions.
- Air drop cargo weight distribution.
- Fleet structural status: Fleet leading current and projected damage tolerance and durability life at the control points.
- Individual aircraft structural status: Current and projected damage tolerance and durability life at the control points for each aircraft.
- Data capture rate
- Duty base and horizontal tail assignment dates.

Note: All data compiled for the current report period and cumulative.

SLIDE 19

Cerence.

The output of IATP is the IAT Data Report which typically is generated on a semi-annual basis. This report contains two types of information: one being usage statistics and the other being aircraft structural status. Usage statistics give information such as airframe time, number of flights and landings, etc. This information is given by aircraft, duty base, fleet, and fleet leaders (aircraft with most flights, landings, etc.). Information is also given in terms of time spent in the different segment types and a distribution of flights over the 35 design mission types. In addition, take-off and landing gross weight, fuel weight, and cargo weight distributions as well as air-drop cargo weight distribution are given.

Aircraft structural status is given as current and projected damage tolerance and durability life at the control points. This information is given for each aircraft and also summarized by the fleet leading aircraft (aircraft with largest damage).

In order to disposition the success of collecting and processing SFDR data capture rates are given in terms of flight hours processed over flight hours flown. Also given are a history for each aircraft of duty base and horizontal stabilizer assignment dates.

The above information is compiled for the current report period and cumulative.

- Platform: IBM mainframe computer
- Source code written in FORTRAN
- System runs interactively or as a batch process depending on the operations being performed.
- Employs a DB2 relational database for ease of data processing and managing.
- Incorporates utilities to permanently backup processed flight data to tape in order to relieve on-line storage requirements.
- User interface in the form of pull down menus and panels for ease of operation and user data entry.

SLIDE 20

CEDEING.

The IATP system resides on an IBM main frame computer and is composed of 12 separate FORTRAN programs that perform the various data processing functions. This system runs interactively for those functions requiring extensive user interaction, or as a batch process for those functions requiring a large amount of data processing time. The system employs a DB2 relational database for storing and retrieving processed flight data and user input data. A relational database allows for efficient data storage and ease of data retrieval and manipulation without extensive coding. The system includes a utility to permanently backup processed flight data to tape in order to relieve on-line storage requirements. The user interface is in the form of pull down menus and panels. This allows for ease of system operations and user data entry without extensive knowledge of mainframe computer operations.

THE C-141 ELECTRONIC FLIGHT USAGE LOG (AFTO 451)

Presented At The 1997 Aircraft Structural Integrity Program (ASIP) Conference, San Antonio, Texas

2-4 December 1997

Heather P. Roland Lockheed Martin Marietta, Georgia

TSgt Alfred G. Taus Altus AFB Altus, Oklahoma

Background

C-141 Force is in its remaining 20% of service life.

the & repair activity on Inspection increase.

Usage reporting (timeliness & accuracy) becoming increasingly important. Safety concerns expressed due to lateness of AFTO 451 usage form submittals.

Background

Altus AFB assigned aircraft experience the most severe usage. Quarterly tracking no longer adequate.

Altus aircraft use up remaining service life two times faster than the rest of the force. Weekly tracking runs required to insure safety.

Purpose

process of tracking aircraft usage and The Electronic AFTO 451 Program was developed to streamline provide near real time usage data. This was accomplished by producing a Microsoft Access database to record flight data.

U.S. Air Force C-141B Starlifter

AFTO 451 Forms Old - Bubble Sheet

New - Altus Form

FINAL LANDING OF TIME GR WTS FLEE WT SEE SEE

FUEL

å

•

TOTAL LOGS

Standard Missions at Altus, AFB

Standard Mission Identifiers

Mission Description

(AIRDROP)

SKE: AD1A

AD2A AD3A AD4A AD5A AD1B AD2B AD3B

AD4B

AD5B AD1C

AD2C

VFR:

One Lift

One Lift)ne Lift SKE/VFR:

SINGLE SHIP SINGLE SHIP

VFR:

SKE:

SKE/VFR:

SINGLE SHIP:

SINGLE SHIP

VFR:

SKE:

SKE/VFR:

One Lifts
Two Lifts
Two Lifts
Two Lifts
Two Lifts
Two Lifts
Two Lifts
Three Lifts

Advantages of the New Altus Form 1

Flight engineers no longer have complete the tedious bubble sheet.

Standard Mission identifiers greatly reduce the amount of entry time. • All information from the forms are entered daily into the Electronic AFTO 451 program for quick turnaround.

The Electronic AFTO 451 Main Menu

Data Entry Screen

TG/SG LANDING SEQUENCES	START T&G: S&G AWLS SSR	SERIES 1 0.00 0 0 T C		SEMES 4 UUU U U	START. WACH. ALT. FW. DCW. T.		0.00 0.00 0.00	0:00 0:00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 000	0	0	0.00 0.00 0.00	0:00 0 0 0 00:00	EXI	
# PAGE 1 ± 0F 1 ±	RS CUMULATIVE			TOTAL LDGS:	5 295	SEGMENT 1 0 *	. – SEGMENT 20 📲	SEGMENT 4 0	SEGMENT 50	SEGMENT 6 0 *	SEGMENT 7 0 ±	SEGMENT 8 0	SEGMENT 9 0	SEGMENT 100 ±	NEXT	
ILFOI AIRCRAFT SERIAL NO:	DAY: 21 € ICAO IDENTIFIERS	MONTH: JUL 🛨 FROM:	FINAL	TAKEOFF LANDING				The state of the s	SQDN: WING:	STANDARD MISSION:		· · · · · · · · · · · · · · · · · · ·				

Selecting a Standard Mission

	PAGE 4 OF 1 TG/SG LANDING SEQUENCES	CUMULATIVE START T&G S&G AWLS SSR	41363 SERIES 1	65: 12279 SERIES 3 0.00 0	3	SEG: START: MACH. ALT. FW. ACW: T.	1.1 0 0. 00 0.0 0 1.1 1	r 2 0			SEGMENT 6 0 ± 0.00 0.00 0 0 0 0		8 0 0 0.0 0 0		SEGMENT 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NEXT	
AUFTITION/15#L	AIRCRAFT SERIAL NO: 640610 1	FICAG IDENT	MONTH: 0C + ROM: KLIS YEAR: 7 TO: KLIS	FINAL	LANEUFF LANUING TIME- 1925 NEXT DAY:		000 No.	SSR: AMLS:	NAME: A. TAUS	SQDN: 57AS WING: 97AMW	STANDARD MISSION:	AD1B	CONSECUTIVE LIFTS	TIME: PA:	LIFT 2 20.55 48		

Standard Mission Entry

40610 4 PAGE 1 4 OF 2 4 TG/SG LANDING SEQUENCES	E Place Weil. X START TEG SEG AWLS SSR			37AMW SEGMENT 5 0 1 0.00 0.0 0 0 0 0 0	SEGMENT 6 0 ★ 0.00 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	SEGMENT 8 0 * 0.00 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	SEGMENT 10 0	NEXT
AIRCRAFT SERIAL NO: 6406	DAY: 23 * ICAO IDE MONTH: OCT * FROM: To:	INITIAL FINA	TIME: 19:25 NEXT GW: 219 TIME: FW: 66 FW:	SQDN: 57AS WING: 57AMW	STANDARD MISSION:	CONSECUTIVE LIFTS	LIFT 2 20:55 48	

Cargo Drop Weight

Main Menu

Export File

Electronic Data Transfer

Advantages

- Eliminated problems which resulted from scanning the bubble sheet through an OPSCAN reader.
- bent up pages
- stray pencil marks
- incorrectly marked sheets
- Number of correctly completed forms increased by a factor of 2.5.
- accounted for in tracking within a week of actual flight date. Flight data

Additional Benefits

 Standard Mission Identifiers provide quick and easy data entry.

that are otherwise overlooked on the Includes checks for obvious mistakes bubble sheet.

-invalid aircraft serial numbers -missing information

Future Plans

Implement the Electronic AFTO 451 at all bases.

Advance the Electronic AFTO 451 to the World Wide Web.

FAA MSR/LSR Flight Inspection Fleet Aircraft Structural Integrity Program

Mr. James M. Marks Jr.
Mr. James J. Abel
Raytheon E-Systems
Greenville Division
P.O. Box 6056 Greenville, Texas 75403-6056

ABSTRACT

Raytheon E-Systems has developed and implemented a comprehensive Aircraft Structural Integrity Program (ASIP) that aims to ensure the long-term structural integrity and continued airworthiness of a broad portion of the Federal Aviation Administration (FAA) Flight Inspection Fleet of aircraft. Specifically, six Learjet Model 60 and three Canadair Challenger CL601-3R aircraft are modified by Raytheon E-Systems to perform the Flight Inspection role for the FAA. Flight Inspection mission profiles are characterized by routine operation below 2000 feet MSL (mean sea level). This low level, structurally harsh environment contrasts significantly with typical corporate jet operational environments. The Flight Inspection usage has a notable impact on the loading spectra experienced by the aircraft structure due to the routine operation in the low-level gust environment, and, as a result, an appreciable impact on the service life of the aircraft.

The ASIP is based on a tailored implementation of the requirements of the U.S. Air Force MIL-STD-1530 approach. The ASIP task elements consist of a Durability and Damage Tolerance Assessment (DADTA), an Individual Aircraft Tracking Program (IATP), a Loads/Environment Spectra Survey (L/ESS), and a Fleet Structural Maintenance Plan (FSMP). The interrelationship, implementation and functional responsibilities of each ASIP task element are identified and distinguished in an ASIP Master Plan. This paper focuses on the development and integration of the IATP as well as the relationship of the IATP with the other ASIP task elements.

INTRODUCTION

The objective of the IATP for the FAA Flight Inspection Fleet is to provide a method for collecting, processing, and analyzing data from various sensors installed onboard each aircraft in order to predict crack growth at potentially critical areas on each airframe. The Durability and Damage Tolerance Analysis (DADTA) for both aircraft types [1] [2] identifies these critical areas as well as the corresponding predicted crack growth expected in service, predicated upon an assumed initial baseline loading spectrum. Crack growth calculations using measured flight data are then compared to the baseline crack growth calculations contained in the DADTA. The results are used to project the scheduling of inspection and/or maintenance activities identified in the Fleet Structural Maintenance Plan (FSMP) for both the Leariet Model 60 and the Canadair Challenger CL601-3R. Prudent fleet management decisions may then be formed based upon actual in-service usage, some of which may include: accelerating or delaying inspections and/or maintenance actions, re-assigning aircraft from one base to another in order to evenly distribute mild and harsh usage environments. and re-evaluation of the DADTA based on the measured flight load spectrum after a significant amount of flight data is collected.

CURRENT AIRCRAFT IN THE IATP

The IATP is designed to track all Learjet Model 60 and Canadair Challenger CL601-3R aircraft in the Flight Inspection Fleet. The Learjet Model 60 performs the Medium Size/ Medium Range (MSR) flight inspection role for the FAA. The Canadair Challenger CL601-3R performs the Large Size/ Long Range (LSR) flight inspection role for the FAA. These aircraft differ in size, manufacturer, fracture analysis methodology, flight recorder parameters, and original certification basis. A depiction of each aircraft is shown in Figures 1 and 2, respectively.

The Learjet Model 60 aircraft has a maximum gross takeoff weight of 23,500 pounds with a maximum operating altitude of 51,000 feet. The Learjet Model 60 is certified to Amendment 23 of FAR Part 25.571 [3] using fatigue and static fail-safe methodologies. Learjet, however, performed a fracture mechanics based damage tolerance analysis of the modified Model 60 MSR Flight Inspection aircraft using assumed baseline load spectra for the planned flight inspection operating environment.

The Canadair Challenger CL601-3R aircraft has a maximum gross takeoff weight of 45,100 pounds with a maximum operating altitude of 41,000 feet. The CL601-3R is certified to Amendment 45 of FAR 25.571 [3] as a "damage"

tolerant" aircraft using fracture mechanics based damage tolerance analysis methodologies. In addition, Canadair re-evaluated the structural integrity of the CL601-3R to account for the unique load spectra encountered in the flight inspection environment.

FLIGHT DATA RECORDER

The Flight Data Recorder (FDR) system is installed on each aircraft in the fleet. The FDR system is comprised of eight major line replaceable units (LRUs): a Signal Acquisition Unit (SAU), a Data Transfer Interface Unit (DTIU), a Data Transfer Module (DTM), a Crash Survivable Memory Unit (CSMU), a Flight Data Panel (FDP), an Engine Signal Data Converter (ESDC, LSR aircraft only), a Flight Data Recorder Interface Unit (FDRIU), and a triaxial accelerometer. In addition, eight strain sensors are permanently bonded to each MSR airframe and ten strain sensors are permanently bonded to each LSR airframe. The FDR system diagram is shown in Figure 3. The strain sensor locations for both the MSR and LSR aircraft are shown in Figures 4 and 5, respectively.

The SAU, DTIU, DTM, CSMU, and FDP are supplied by Smiths Industries. The ESDC and FDRIU for the LSR aircraft are supplied by ICE Corporation. The FDRIU for the MSR aircraft is supplied by Learjet. The accelerometer is supplied by Magnetek Transducer Products. The strain sensors are supplied by Columbia Research Labs, Inc.

All aircraft signals monitored by the FDR system interface with the SAU, which processes the data using its internal Operational Flight Program (OFP) and then stores it into the two separate non-volatile memory devices: the CSMU and the DTM. The CSMU is permanently mounted in each aircraft's tail section and is to be retrieved in the event of a mishap. Flight data required by FAR Part 135 Appendix B are stored in the CSMU. The DTM, which is inserted into the face of the DTIU (much like a cassette cartridge) is used to periodically transfer the stored engine and structural data from the aircraft to a ground-based computer system for processing and analysis.

The SAU also receives user input data from the FDP. These data are entered by the crew during preflight and include such parameters as fuel weight, gross weight, center of gravity, date, mission base, etc. The FDP also provides a built-in test (BIT) button and fault annunciators, as well as memory capacity indications that signal DTM memory at 80% (or greater) and 100% full.

The DTIU provides a receptacle for the DTM and transfers the data to the DTM for download. It is also used for uploading the OFP and aircraft specific configuration data from the ground-based sources. The DTIU also contains a display and operator interface used for upload/download commands, as well as for displaying system status messages.

The ESDC unit (LSR aircraft only) converts existing analog engine signals ITT, N1, and N2 (from both engines) into ARINC 429 high speed digital data format. ITT, N1, and N2 engine signals are digitized to ARINC 429 digital data format because these three parameters require the highest accuracy and are the most significant contributors in the engine trend analysis. The Engine Signal Data Converter Unit digitizes, combines, and transmits the ITT, N1, and N2 data to the Flight Data Recorder system on two separate ARINC 429 data bus channels (left engine and right engine data channels). The ESDC incorporates BIT features that allow fault isolation to the LRU level.

The FDRIU is essentially a relay box that converts discrete signals from various parts of the aircraft into a format that is acceptable to the SAU. The SAU accepts mostly open/28VDC type discrete signals and only a few open/ground type discrete signals; whereas, the aircraft provides mainly open/ground type discrete signals. The primary function of the FDRIU, therefore, is to convert a number of discrete signals from open/ground format to open/28VDC format. The FDRIU also provides diode isolation between the monitored aircraft signals and the SAU. The FDRIU incorporates BIT features that allow fault isolation to the LRU level.

The accelerometer provides three-axis acceleration data to the SAU and is used in determining airframe structural loads due to maneuvers, gusts, and ground events. The strain sensors are permanently installed (bonded) at critical locations throughout the airframe for measuring and recording structural strains. The strain sensors provide their signal data to the SAU. These data are used to track and maintain a structural loading history of the airframe.

Stored engine and structural data are periodically downloaded from the aircraft to a ground-based computer system via the DTM for processing and analysis. The computer system is called the Ground Replay and Display Unit (GRDU) and is supplied by Smiths Industries. It consists of an IBM type personal computer (PC) with an internal DTM interface card, and an external Data Transfer Module Receptacle (DTMR). The GRDU contains several software programs used for engine trending and structural analysis, including the Smiths Industries Operational Ground Program (OGP) and various analysis programs. Engine performance trend analysis for the LSR aircraft is accomplished by processing the

downloaded engine data with a General Electric supplied software program named CF34 RJ TREND VERSION 4.0 (RJ stands for Regional Jet; this program is normally used for trend analysis of the CF34 type variant engines on the Regional Jet Challenger aircraft, but is also applicable to the CF34 engines on the CL601-3R). Engine performance trend analysis for the MSR aircraft is accomplished by processing the downloaded engine data with a Pratt & Whitney supplied software program named ECTM IV. Structural Integrity data analysis is performed on a Hewlett Packard workstation using software supplied by Raytheon E-Systems as part of the Individual Aircraft Tracking Program (IATP).

The GRDU can also be used as a Direct Parameter Display (DPD) by connecting it to the FDR system via an aircraft mounted test connector and a test cable. The test connector is called the Ground Replay Equipment (GRE) connector, and it is installed inside the auxiliary equipment rack. The test cable is called the Ground Replay Equipment (GRE) cable. The DPD allows individual parameters to be monitored real time, but the FDR system cannot record data when in DPD mode. In addition, a laptop computer DPD is available to monitor parameters real time in lieu of using the GRDU.

TRACKING ANALYSIS METHODOLOGY

Raw flight recorder data are downloaded periodically (approximately every two weeks or thirty flight hours) from each aircraft in the Flight Inspection Fleet. The data are transmitted via modem to the FAA Flight Inspection Office in Oklahoma City, OK, from the various field bases located throughout the United States and abroad. The data are then forwarded to Raytheon E-Systems in Greenville, TX, via the internet for subsequent processing in the IATP.

The Raytheon E-Systems IATP software reads, stores, and processes raw flight recorder data that have been downloaded and processed on the GRDU using the Smiths Industries supplied Cartridge Ground Program (CGP) software. The processed decompressed data files (ddf) are transferred from the GRDU to a Hewlett Packard (HP) workstation. The Raytheon E-Systems IATP software resides on this HP workstation.

The IATP software reads and stores each ddf in a database. These data form the Loads/Environment Spectra Survey (L/ESS). The L/ESS database contains the structural loading history for all critical areas on each aircraft in the fleet as recorded by each aircraft's individual FDR. The IATP software utilizes these data to perform crack growth analyses at these critical locations.

The IATP reads and interprets the FDR BIT file. The BIT file indicates the fault status of various FDR parameters. The results are displayed on the screen and are also stored in a separate file that may be accessed later by the user. Those parameters critical for crack growth algorithms are highlighted. Also, all FDP entered parameters, strain sensors and accelerations are verified for plausibility by determining if the data exceed certain predetermined maximum and minimum values. Raytheon E-Systems furnishes a monthly report to the FAA customer detailing any BIT faults detected by the IATP. This information is used to investigate and correct potential hardware or software problems associated with the FDR.

The IATP software utilizes an object-oriented architecture with a fully integrated graphical user interface. One significant advantage realized from the object-oriented software architecture is the ability to add new aircraft types, beyond the Learjet Model 60 and Canadair Challenger CL601-3R, with no modification to the essential software code. The graphical user interface enables the software to be user-friendly and dynamic.

IATP FATIGUE CRACK GROWTH

The IATP fatigue crack growth methodologies are based on the Learjet Model 60 MSR Service Life Analysis [1] and the Canadair Challenger CL601-3R LSR DADTA [2]. The theoretical growth of cracks at each control point, from an assumed initial rogue flaw in the aircraft structure, is determined utilizing the applied stress spectrum as collected by each flight data recorder. A cycle-by-cycle analysis approach is utilized such that a full accounting of sequenced peak and valley stress data are incorporated. The IATP utilizes a standard cycle counting method known as Rain Flow Counting. This stress spectrum cycle counting method ensures that the largest delta stress cycles (σ_{max} - σ_{min}) are not neglected in the analysis. Control point locations for both the MSR and LSR aircraft are shown in Figures 6 and 7, respectively.

Stress spectra are determined in two distinct manners. The primary method is to use data from the strain sensors installed onboard each aircraft. The secondary alternative is to calculate the stress spectra based upon other parameters collected by the FDR such as acceleration (g's), aircraft weight, airspeed and altitude. The IATP will use the secondary method only when the necessary strain sensor data are not available on a control point-by-control point, decompressed data file-by-decompressed data file basis. Transfer functions are established that define specific relationships between strain sensor values and/or various combinations of other parameters collected by the FDR in order to determine the appropriate values of

stress at each control point location. In addition, if the FDR data are completely or partially unusable, a gap-filling technique is employed by the IATP. This is accomplished by copying portions of decompressed data files from previously flown missions in an attempt to create data that are representative in terms of flight hours, landings, and pressure cycles.

The fatigue crack growth analysis involves the modeling of various structural control points on the Learjet Model 60 and Canadair Challenger CL601-3R. Each control point model consists of a crack growth system with one-dimensional and two-dimensional crack growth combined to achieve a multi-phase crack growth capability. Each crack growth model includes the relevant material properties, stress intensity solution, and crack growth retardation model. Crack growth involves an incremental growth (Δa) per stress cycle (ΔN). Material properties are included in the form of da/dN data. These data are a function of applied stress spectrum (σ_{max} and σ_{min}) and environment. Control point geometry effects are included through the use of a factor, β , such that the stress intensity, K, is given by:

$$K = \beta \sigma \sqrt{\pi a}$$
 (Eqn. 1)

Crack growth is retarded when an enlarged plastic zone is developed at the crack tip due to an overload. The crack growth retardation model incorporated in the IATP is the industry-accepted Generalized Willenborg Retardation Model.

INSPECTION INTERVALS

Inspection intervals for each control point are based upon a linear function of time with respect to structural failure of the control point. Initial as well as recurring inspection intervals are determined by each aircraft manufacturer. The IATP includes a comparison of calculated crack growth based on actual usage versus predicted crack growth in terms of crack length versus flight time. Criteria are implemented in the IATP to adjust inspection intervals when crack growth based on actual usage deviates from predicted crack growth.

Figure 8 depicts the initial inspection interval adjustment criterion. Let t_{ip} be the time corresponding to the predicted initial inspection. Let t_a be the time corresponding to the current crack length based on actual usage. Let t_p be the time at which the predicted crack growth curve would yield the same crack length corresponding to the crack growth curve based on actual usage. Therefore, the adjusted initial inspection time (t_{ia}) as a function of predicted initial inspection time is:

$$t_{ia} = (t_a/t_p) * t_{ip}$$
 (Eqn. 2)

The delta time to next inspection, Δt_i , is therefore defined as:

$$\Delta t_i = t_{ia} - t_a \qquad (Eqn. 3)$$

Figure 9 depicts the recurring inspection interval adjustment criterion. This criterion is identical to the initial inspection adjustment criterion except that the times t_a , t_p , t_{ia} , and t_{ip} are referred to the time of last inspection rather than time zero.

When actual crack growth deviates sufficiently, a significant change in usage is reported by the IATP. This occurs when there is a 10% reduction in the predicted inspection time interval ($t_{ia}/t_{ip} < 0.90$).

The IATP also has the ability to adjust the actual usage crack growth curve to account for inspection and maintenance results. This is depicted in Figure 9. The crack length is adjusted to the maximum non-detected length if no crack is found during inspection. Theoretically, the crack length could also be set to the length discovered during inspection; however, in practice, all cracks found during inspection will likely be repaired.

INSPECTION/MAINTENANCE SCHEDULING

Semi-annually the IATP data are compiled and reported to the FAA customer along with appropriate discussion and recommendations. Each semi-annual report relates the structural integrity status of the Flight Inspection Fleet. For example, the following information, at a minimum, is included in each semi-annual report: crack growth curve and stress exceedance curve for each control point for each aircraft for the current reporting period as well as accumulated totals, remaining hours to inspection or maintenance for each control point for each aircraft, a listing of the inspections and maintenance actions required during the following two calendar years for each aircraft; flight hours, landings, and pressure cycles grouped by individual aircraft and by aircraft type (MSR or LSR) for the current reporting period as well as accumulated totals, and a stress exceedance curve for each control point grouped by aircraft type (MSR or LSR).

Detailed inspections and maintenance procedures are included in the FSMP or maintenance manuals for each aircraft type. The inspection intervals are based upon the DADTA performed by each aircraft manufacturer using assumed initial baseline load spectra. The IATP semi-annual reports will convey any applicable

recommendations relative to inspection interval adjustment due to actual usage. This is of particular importance to safety in that each aircraft may experience a more severe loading in service than originally anticipated.

A link among the FAA customer, the FAA maintenance infrastructure, and Raytheon E-Systems is vital in order to ensure that inspection/maintenance results are incorporated into the IATP. This link ensures that inspection/maintenance information flows freely among the three entities. Each entity performs a function that affects the overall execution of the ASIP for the Flight Inspection Fleet.

Inspection/maintenance actions are dependent upon the projected usage of the fleet considering design mission profiles and the stress spectra that result from these missions. These baseline stress histories will either be validated by the IATP or indicate that an update is required. If the latter is found to be true, the DADTA will be re-evaluated with more accurate stress spectra from the L/ESS. This may then result in changes to the inspection intervals found in the FSMP for each control point.

CONCLUSION

As the FAA Flight Inspection MSR and LSR aircraft accumulate flight hours in a structurally harsh low-level environment, the IATP system will provide detailed inspection and maintenance recommendations to the FAA operator. Concurrently, the L/ESS data contained in the IATP will further define the loading spectrum unique to the operation of the MSR and LSR aircraft in the flight inspection environment. The careful application of results from the IATP will no doubt increase aircraft safety and reduce overall maintenance costs.

ACKNOWLEDGMENTS

The author is indebted to the FAA Structural Advisory Group (SAG) that was formed specifically for the FAA Flight Inspection Fleet ASIP. The FAA SAG is comprised of nationally recognized experts in the field of damage tolerance/fracture mechanics. Several key members of the FAA SAG include: Mr. Charles Tiffany, Dr. John Lincoln, Mr. Thomas Swift, and Mr. Leonard Wright. The FAA SAG provided valuable technical advice and guidance to Raytheon E-Systems, Learjet, and Canadair in the development and implementation of the FAA Flight Inspection Fleet ASIP.

The author also acknowledges the technical accomplishments of both Learjet and Canadair. Each was instrumental in the development of the FAA Flight

Inspection Fleet ASIP. The author is also indebted to several key Raytheon E-Systems personnel including: Mr. Richard Sayler, Mr. Robert Bishop, and Mr. Timothy Kelley. Finally, the author recognizes the efforts of the FAA personnel associated with the FAA Flight Inspection Program at the FAA Aircraft Maintenance and Engineering Division in Oklahoma City, OK.

REFERENCES

- [1] Bombardier Learjet Report No. 50 SN85-6, Rev. B, Model 60 FIAS Service Life Analysis, December, 1996.
- [2] Bombardier Canadair Report No. RAS 601-916, Rev. A, <u>DADT Analysis for Inspection Aircraft</u>, October, 1995.
- [3] Federal Aviation Regulations Part 25, <u>Airworthiness Standards: Transport Category Airplanes</u>, February, 1965, as amended by Amendments 25-1 through 25-73.

DEFINITIONS, ACRONYMS, ABBREVIATIONS

ARINC	Aeronautical Radio Incorporated
ASIP	Aircraft Structural Integrity Program
BIT	Built-in Test
CGP	Cartridge Ground Program
CSMU	
DADTA	Durability and Damage Tolerance Analysis
DDF	Decompressed Data File
DPD	Direct Parameter Display
DTIU	Data Transfer Interface Unit
DTM	Data Transfer Module
DTMR	Data Transfer Module Receptacle
ESDC	Engine Signal Data Converter
FAA	Federal Aviation Administration
FDP	Flight Data Panel
FDR	Flight Data Recorder
FDRIU	Flight Data Recorder Interface Unit
FSMP	Fleet Structural Maintenance Plan
GRDU	Ground Replay and Display Unit
GRE	Ground Replay Equipment
HP	Hewlett Packard
IATP	Individual Aircraft Tracking Program
ITT	Interturbine Temperature
L/ESS	Loads/ Environment Spectra Survey
LSR	Large Size/ Long Range (Canadair CL601-3R)
LRU	Line Replaceable Unit
MSL	Mean Sea Level
MSR	Medium Size/ Medium Range (Lear Model 60)
N1	Engine Fan Speed
N2	Engine Core Speed
OFP	Operational Flight Program
OGP	Operational Ground Program
PC	Personal Computer
SAG	Structural Advisory Group
SAU	Signal Acquisition Unit

Figure 1
Learjet Model 60 MSR Flight Inspection Aircraft

Figure 2
Canadair Challenger CL601-3R LSR Flight Inspection Aircraft

Figure 3
Flight Data Recorder System Diagram

Figure 4

FAA Flight Inspection (MSR) Learjet Model 60

Flight Data Recorder Strain Sensor Locations

Figure 5

FAA Flight Inspection (LSR) Challenger CL601-3R

Flight Data Recorder Strain Sensor Locations

Figure 6

FAA Flight Inspection (MSR) Learjet Model 60

DADTA Control Point Locations

Figure 7

FAA Flight Inspection (LSR) Challenger CL601-3R

DADTA Control Point Locations

Figure 8
Initial Inspection Adjustment Criterion

Figure 9
Recurring Inspection Adjustment Criterion

MR JOHN ACH USAF AFRL/VA 2790 D ST RM 504 BLDG 65 8-0510 WRIGHT-PATTERSON AFB OH 45433-7402 x:(210)-522-5122 PH:(937)-255-6104 Fax:(937)-656-4999	MAJOR YUZI AIHARA AIR STATT OFF/JASDF 9-7-45 AKASAKA MINATO-KU TOKYO JAPAN 184-0001	MR BRETT ANDERSON BOEING COMMERCIAL AIRPLANE GRP B4 P0 B0X 7730 M/S K31-19 :0670-1547 WICHITA KS 67277-0001 ix:(301)-342-9404 PH:(316)-526-8725	.ATA MR ADAR AZANCOT ELECTRONIC INDUSTRIES LTD PO BOX 2059 73145-3317 HERZLIYA B 46120-0001 108 Fax:(405)-738-3992	## TECH ORG FAA DEPT OF TRANS ### MC AAR 433 BLDG 210 ### MILL J HUGHES TECH CTR ### AUSTRALIA-3001 ### AUSTRALIA-3001 P##:(609)-485-4784 Fax:(609)-485-4569	CH CNTR USAF *L AIRPORT 6236 COURTSIDE DR NORCROSS GA 30092-0001
MR H NORMAN ABRAMSON SOUTHWEST RES INST 6220 CULEBRA RD PO DRAWER 28510 S056 SAN ANTONIO TX 78228-0510 PH:(210)-522-2207 Fax:(210)-522-5122	MS DONG AHN DAEWOO HEAVY IND LTD 10S 24 SEONGJU-DONG CHANGWOON 91360-0001 KYUNSANGNOM-DO KOREA Fax:(805)-373-4810	MR PHU AN NAVAIRSYSCOM BLDG 2187 STE 2320-B4 AIR 4.3.3.4 4 PATUXENT RIVER MD 20670-1547 (770)-494-2028 PH:(301)-429-3261 Fax:(301)-342-9404	MR ALBERT ARRIC TINKER AFB 4750 STAFF DR TINKER AFB OK PH:(405)-736-50	DR ALAN BAKER DEFENSE SCIENCE 506 CORIMER ST PO BOX 4331 MELBOURNE VICTOR	DR MIKE BASEHORE FAA-W J HUGHES TEI ATLANTIC CITY INT ATLANTIC CITY NJ
MR JAMES ABEL RAYTHEON E-SYST INC FM1570 MAJORS FIELD M/S CBN 192 GREEENVILLE TX 75403-6056 676-4126 PH:(903)-457-7708 Fax:(903)-457-4888	DR ROBERT ADDISON ROCKWELL INTL CORI 1049 CAMINO DOS R PO BOX 1085 THOUSAND OAKS CA PH:(805)-373-4251	MR ROBERT ALLEN LOCKHEED AERO SYS CO M/S 0484 DEPT 73-51 86 S COBB DR 926-9142 MARIETTA GA 30063-0484 PH:(770)-494-3972 Fax:(770)-494-2028	MR CHARLES ANNIS PRATT & WHITNEY M/S 707-22 PO BOX 109600 W PALM BEACH FL 33410-9600 PH:(561)-796-6565 Fax:(561)-796-7454	MS DEBORAH BAILEY USAF 2145 MONAHAN WAY WPAFB OH 45433-7017 -255-3740 PH:(937)-255-6053 Fax:(937)-656-4410	MR FELTON BARTLETT US ARMY LANGLEY RES CNTR M/S 266
Mr RICHARD ABBOTT RAYTHEON AIRCRAFT CO MS 90B7 PO BOX 85 WICHITA KA 67201-0001 PH:(316)-676-7840 Fax:(316)-676-4126	DR RICARDO ACTIS ESRD INC 7750 CLAYTON RD STE 204 ST LOUIS MO 63117-1342 PH:(314)-645-1423 Fax:(314)-645-1649	MR RUSSELL ALFORD USAF WR-ALC/LJLEA 270 OCMULGEE CT ROBINS AFB GA 31098-1646 1H:(912)-926-9146 Fax:(912)-926-9142	MR MICHAEL ANDERSON BOEING CO 00000-0001 PH:(206)-662-3062	MR ROBERT BADER CONSULTANT 1613 KINGSWAY DR XENIA OH 45385-9589 PH:(937)-255-0193 Fax:(937)-255-3740	MR DALE BALL LOCKHEED FT WORTH CO M/S 2275 LOCKHED BLVD

DR THEODOR BEIER BOEING PHANTOM WORKS DEPT 341N M/S \$102-2147 PO BOX 516 ST LOUIS MO 63166-0516 ST LOUIS MO 63164-0516 B-9515 PH:(314)-232-0634 Fax:(314)-234-8915	MR ROBERT BERNSTEIN MAT TECH INC 11661 SAN VICENTE BLVD STE 707 LOS ANGELES CA 90049-0001 5-4188 PH:(310)-208-5589 Fax:(310)-473-5177	DR CATHERINE BIGELOW FEDERAL AVIATION ADMIN WILLIAM J HUGHES TECH CNTR AAR-430 BLDG 210 ATLANTIC CITY INTL NJ 08405-0001 PH:(609)-485-6662 Fax:(609)-485-4569 DR ANDERS BLOM AERONAUTICAL RESEARCH INST OF SWEDE PO BOX 11021 BROMMA SWEDEN S-161 11-0001	MR CRAIG BROOKS APES INC 3542 OXFORD AVE ST LOUIS MO 63143-0001 PH:(314)-644-6040 Fax:(314)-644-0229	DR ROBERT BUCC! ALCOA TECH CTR 100 TECHNICAL DR ALCOA CTR PA 15069-0001 -3457 PH:(412)-337-2671 Fax:(412)-337-5436
MR WILLIAM BECKER MTS SYSTS CORP 26500 W AGOURA RD M/S 202 CALABASAS CA 91302-5000 PH:(818)-878-9515	MR GUNNAR BERG USAF 3001 STAFF DR STE 1AG110 TINKER AFB OK 73145-3018 PH:(405)-736-3853 Fax:(405)-736-4188	FIT LT STEPHEN BEVERLEY ROYAL AIR FORCE RAF ST ATHAN SOUTH GLAMORGAN UK CF62 4WA-0001 MR NEIL BLAYLOCK SOUTHWEST RES INST BLDG 53 DIV 06 PO DRAWER 28510 SAN ANTONIO TX 78228-0510 PH:(210)-522-3238 Fax:(210)-522-5606	MR HENRY BRODMAN GULFSTREAM AEROSPACE M/S D-04 132 DUTCH ISLAND DR SAVANNAH GA 31406-0001 PH:(912)-965-4897 Fax:(912)-965-4812	DR FREDERICK BRUST BATTELLE 505 KING AVE COLUMBUS OH 43201-2693 PH:(614)-424-5034 Fax:(614)-424-3457
MR YVES BEAUVAIS BOMBARDIER INC MONTREAL INTL AIRPORT CARGO RD A-4 MIRABEL QUEBEC CANADA J7N-1C7 PH:(514)-476-4414 Fax:(514)-476-4451	DR ALAN BERENS UNIV OF DAYTON RES INST 300 COLLEGE PARK AVE DAYTON OH 45469-0120 PH:(937)-229-4475 Fax:(937)-229-3712	MR REMMER BERTRAM GERMAN AIR FORCE HEIDERSTR 245 M/S PF 903500 COLOGNE, GERMANY 51140-0001 COLOGNE, GERMANY 51140-0001 MR EDWARD BITTEL ROYAL AIR FORCE ROOM W114 SWALES PAVILION M/S RAF WYTON HUNTINGDON UK PE172DL-0001	MR ART BRAUN MTS SYSTEMS CORP AERO STRUCT & MATLS GRP 14000 TECH DR MS/231 EDEN PRAIRIE MN 55344-0001 PH:(612)-937-4045 Fax:(612)-937-4515	MR ALBERT BRUETSCH USAF 5020 DUDLEY BLVD MCCLELLAN AFB CA 95652-1391 PH:(916)-643-5300 Fax:(916)-643-1405
MR SCOTT BAYS BOEING 3801 S OLIVER MS K84-40 WICHITA KS 67277-0001 PH:(316)-523-1311 Fax:(316)-526-4214	MR ROBERT BELL LOCKHEED MARTIN AERO SYS DEPT 73-22 ZONE 0160 86 S COBB DR MARIETTA GA 30063-0160 PH:(770)-494-5600 Fax:(770)-494-9610	MR HENRY BERRY BERRY ENGINEERING INC 11712 C JEFFERSON AVE NEWPORT NEWS VA 23606-0001 PH:(757)-596-4146 Fax:(757)-596-4146 MR RONALD BIRDSEYE LOCKHEED MARTIN AERO SYSTS 8B S COBB DR M/S 0160 MARIETTA GA 30063-0001 PH:(770)-494-3100 Fax:(770)-494-9610	MR KEVIN BOYD US AIR FORCE 2790 D ST RM 504 WPAFB OH 45433-7402 PH:(937)-255-0434 Fax:(937)-476-7379	MR ABRAHAM BROT ISRAEL AIRCRAFT INDUSTRIES DEPT 4441 BEN-GURION INTL AIRPORT ISRAEL

MR WILLIAM BUCKEY	MR STEVEN BULLOCK	MR JEFFREY BUNCH	DR O HAL BURNSIDE
US AIR FORCE	LOCKHEED MARTIN SKUNK WORKS	NORTHROP GRUMMAN CORP	SOUTHWEST RES INST
2100 MONAHAN WAY	BLDG 611-2 DEPT 72-16	8900 E WASHINGTON BLVD	6220 CULEBRA RD
FLIGHT TRAINING SPO	1011 LOCKHEED WAY	M/S 6J80/UB	SAN ANTONIO TX 78238-5166
WRIGHT-PATTERSON AFB OH 45433-7014	PALMDALE CA 93599-7216	PICO RIVERA CA 90660-0001	PH:(210)-522-2332 Fax:(210)-522-3042
РН:(937)-255-7076 Fax:(937)-255-8516	РН:(805)-572-7808 Fax:(805)-572-7515	PH:(562)-948-8685	
MR BERND BURZYNSKI	DR LAWRENCE BUTKUS	MR STEPHEN CALLARY	DR JOHN CAMMETT
GERMAN AIR FORCE	USAF ASC/EN	CELERIS AEROSPACE CANADA INC	NAVAL AVIATION DEPOT
HEIDESTR 245	2530 100P RD WEST	255 CENTRUM RI VD	PSC BOX 8021
M/S PF 902500	WRIGHT-PATTERSON AFB OH 45431-7101	ORLEANS ONTARIO	CHERRY POINT NC 28533-0021
COLOGNE GERMANY 51140-0001	DH-(037)-255-7138 Fax-(037)-656-6546	CANADA K1F 3V8-0001	
		PH:(613)-837-1161 Fax:(613)-834-6420	
MR DAVID CAMPBELL	MR JOSEPH CARDINAL	MR JOSEPH CARLOS	MR ANDERS CARLSSON
LOCKHEED MARTIN AERO SYSTS	SOUTHWEST RES INST	SIKORSKY AIRCRAFT	SAAB AB
86 S COBB DR	6220 CULEBRA RD	6900 MAIN ST, MS S313A2	LINKOPING SWEDEN SE-58188-0001
M/S 0580	SAN ANTONIO TX 78238-5166	· STRATFORD CT 06497-0001	
MARIETTA GA 30063-0001	PH:(210)-522-3323 Fax:(210)-522-3042	PH:(203)-386-5214 Fax:(203)-386-7496	
PH:(770)-494-1128 Fax:(720)-494-8478			
MR DOUGLAS CARMODY	DR CHRISTOS CHAMIS	MR PAUL CHAPMAN	MR JEAN CHAREST
NORTHROP GRUMMAN	NASA LEWIS RES CTR	LEARJET	BOMBARDIER INC
2000 NASA BLVD	21000 BROOKPARK RD	ONE LEARJET WAY	10000 CARGO A-4 STREET
M/S H11-223	7-64 S/M	M/S 29	MONTREAL INTNATL AIRPORT
MELBOURNE FL 32902-0001	CLEVELAND OH 44135-3191	WICHITA KS 67277-7707	MIRABEL QUEBEC CANAD J7N 1H3-0001
РН:(407)-726-7821 Fax:(407)-951-6115	PH:(216)-433-3252 Fax:(216)-433-5802	PH:(316)-946-6367 Fax:(316)-946-2990	PH:(514)-476-4168 Fax:(514)-476-4451
MR CHUN CHEN	MR FRED CHILD	DR JAYCEE CHUNG	MR JOHN CICERO
MCDONNELL DOUGLAS AEROSPACE W	LOCKHEED MARTIN AERO SYS	RAYTHEON E-SYSTEMS	SYS & ELECTRONICS INC
M/S C071-0034	M/S D59-10 ZONE 0050	CBN 204 MAJORS FIELD/FM1570	190 GORDON ST
2401 E WARDLOS RD	86 S COBB DR	PO BOX 6056	ELK GROVE VILLAGE IL 60007-0001
LONG BEACH CA 90807-0001	MARIETTA GA 30063-0617	GREENVILLE TX 75403-6056	
РН:(562)-593-2385 Fax:(562)-982-7367	PH:(770)-494-5430 Fax:(770)-494-5104	PH:(903)-457-5096 Fax:(903)-408-8793	
MR AL CLARK	DR ALLAN CLAUER	MR JOSEPH COCHRAN	MR ELIAS COLLAS
OC-ALC/LHR	LSP TECHNOLOGIES	LOCKHEED AERO SYS CO	US AIR FORCE
3001 STAFF DR	6145 B SCHERERS PL	DEPT 73-25 ZONE 0160	SA-ALC/LADD BLDG 823
STE 2AH191	DUBLIN OH 43016-1272	86 S COBB DR	514 SHOP LN STE 2
TINKER AFB OK 73145-3021	PH:(614)-718-3000 Fax:(614)-718-3007	MARIETTA GA 30063-0160	KELLY AFB TX 78241-6434
PH:(405)-736-5643 Fax:(405)-736-2717		PH:(770)-494-2166 Fax:(770)-494-9610	PH:(210)-925-4525 Fax:(210)-925-1416

MR DALE COLTER	MR THOMAS COOPER	MR DAI F COPF	MP DOLIGITAC CORNOR
USAF	LINTVERSAL TECHNOLOGY CORP	BOFING DEF & COACE CDD	ISAE ACCIEN
2543 HOLLEY CT	1270 N FAIRFIELD RD	PO BOX 7730	2530 LOOP RD WEST
NAVARRE FL 32566-0001	DAYTON OH 45432-2600	M/S K8681	WRIGHT-PATTERSON AFB OH 45433-7101
PH:(904)-939-5379 Fax:(904)-884-4983	PH:(937)-426-8530 Fax:(937)-426-8755	WICHITA KS 67277-7730	PH:(937)-255-8375 Fax:(937)-476-4546
		PH:(316)-526-9873 Fax:(316)-523-3130	
MR LAWRENCE CORNWELL	MR WILLIAM CORWIN	MR SCOTT COTE	MR THOMAS COURBE
US COAST GUARD	OAK RIDGE NATL LAB	NAVAL AIR WARFARE CTR	FRENCH MINISTRY OF DEFENCE
265 OCMULGEE CT	PO BOX 2008	22195 ELMER RD	DEPT STPA
M/S LBCG	MS 6161	UNIT 4	26 BLVD VICTOR
ROBINS AFB GA 31098-1647	OAK RIDGE TN 37831-6161	PATUXENT RIVER MD 20670-0001	PARIS FRANCE 00460 ARMEES-0001
PH:(912)-926-2018 Fax:(912)-752-8209	PH:(423)-574-4648 Fax:(423)-574-4066	PH:(301)-757-0514	٠.
MR BRITT COVINGTON	MR WILLIAM COWIE	MR BRADFORD COWLES	DR JOE COX
AIR FORCE SAFETY CTR	GE AIRCRAFT ENGINES	PRATT & WHITNEY	ART1/DYNCORP
9700 G AVE SE	M/D Q105	MS 707-22	ONE RIDGMAR CENTRE
STE 250C	ONE NEUMANN WAY	PO BOX 109600	6500 WEST FREEWAY
	EVENDALE OH 45215-6301	WEST PALM BEACH FL 33410-9600	FORT WORTH TX 76116-2187
O H:(505)-846-0990 Fax:(505)-846-6826	PH:(513)-243-1133	PH:(561)-796-6554 Fax:(561)-796-6443	PH:(817)-732-4481 Fax:(817)-737-1605
DR MATTHEW CREAGER	MR JAMES CRONKHITE	MR WIEDE CUTSHALL	MR JAMES DALY
STRUCTURAL INTEGRITY ENGRG	BELL HELLICOPTER TEXTRON INC	ADSI	METAL IMPROVEMENT CO
STE 200	600 E HURST BLVD	351 E RAMSEY	10 FOREST AVE
9560 TOPANGA CANYON BLVD	HURST TX 76052-0001	SAN ANTONIO TX 78216-0001	PARAMUS NJ 07652-0001
CHATSWORTH CA 91311-0001	PH:(817)-280-5597 Fax:(817)-280-4933	PH:(210)-979-7698 Fax:(210)-979-7698	PH:(201)-843-7800 Fax:(201)-843-3460
PH:(818)-718-2195 Fax:(818)-718-2212			
MR FRANK DANIELS	MR EDWARD DAVIDSON	MR JOHN DAVIES	DR GUY DAVIS
BOEING NORTH AMERICAN	USAF ASC/ENFS	BOMBARDIER INC	DACCO SCI INC
MAIL CODE AD60	2530 LOOP RD WEST	MONTREAL INTL AIRPORT	10260 OLD COLUMBIA RD
12214 LAKEWOOD BLVD	WRIGHT PATTERSON AFB OH 45433-0001	10000 CARGO ST A-4	COLUMBIA MD 21046-0001
DOWNEY CA 90242-2693	PH:(937)-255-8596	MIRABEL QUEBEC CANADA J7N-1H3	PH:(410)-381-9475 Fax:(410)-381-9643
PH:(562)-922-5126 Fax:(562)-922-1292		PH:(514)-476-4352 Fax:(514)-476-4207	
DR DAVID DAWICKE	MR TIM DEMPSEY	MR CLAUDE DESROCHERS	MR JOSE DIAZ ALONSO
NASA LANGLEY RES CTR	MTS SYST CORP	MARTEC LIMITED	SPANISH AIR FORCE
M/S 188E	250 S STEMMONS	STE 400	AV AVIACION SIN
HAMPTON VA 23681-0091	LEWISVILLE TX 75067-0001	1888 BRUNSWICK ST	MADRID SPAIN 28044-0001
PH:(757)-864-3477 Fax:(757)-864-8911	PH:(972)-221-2713 Fax:(972)-221-4315	HALIFAX NOVA SCOTIA CANADA B3J-3J8 PH:(902)-425-5101 Fax:(902)-421-1923	

2LT NATHANIEL DIEDRICH USAF AFRL/MLLP BLDG 655 2230 TENTH SI SIE 1 WRIGHT-PATTERSON AFB OH 45433-7817 PH:(937)-255-9796 Fax:(937)-255-9804 MR MIKE DUBBERLY FATIGUE TECH INC 6250 TERRAPIN DR MANASSAS VA 22111-3807 PH:(703)-791-3634 Fax:(703)-791-5467 MR RANDAL EDWARDS	DR B BORO DJORDJEVIC MR ALAN DOBYNS THE JOHNS HOPKINS UNIV SIKORSKY AIRCRAFT CNDE/MARYLAND HALL 102 SIKORSKY AIRCRAFT 3400 N CHARLES ST STRATFORD CT 06497-0001 BALTIMORE MD 21218-0001 PH:(203)-386-3818 Fax:(2) PH:(410)-516-5215 Fax:(410)-516-5293 DR VERONIQUE DUBOIS MR JONATHAN DUBKE SWISS AIRCRAFT & SYS CO SA-ALC/LADD SYS MGMT & FATIGUE ENGRG 404 GREIG ST BLDG 179 PO BOX 301 KELLY AFB TX 78241-5944 EMMEN SWITZERLAND 6032 PH:(210)-925-4525 Fax:(210)-925-1416 MR MICHAEL ELLIOTT	MR ALAN DOBYNS SIKORSKY AIRCRAFT M/S S314A STRATFORD CT 06497-0001 PH:(203)-386-3818 Fax:(203)-386-3717 PH:(203)-386-3618 Fax:(203)-386-3717 PH:(203)-386-3618 Fax:(203)-386-3717 PH:(203)-386-3618 Fax:(203)-386-3717 PH:(203)-386-3818 Fax:(203)-386-3817 PH:(203)-386-3818 Fax:(203)-386-3817 PH:(203)-386-3818 Fax:(203)-386-3817 PH:(203)-386-3818 Fax:(203)-386-3817 PH:(203)-386-3818 Fax:(203)-3817 PH:(203)-386-3817 PH:(203)-386-3817 PH:(203)-3817 PH:(203)-3817 PH:(203)-3817 PH:(203)-3817 PH:(203)-3817 PH:(203)-3817 PH:(203)-3817	DR PAUL DOMAS GE AIRCRAFT ENGINES PO BOX 156301 ONE NEUMANN WAY M/S K105 CINCINNATI OH 45215-6301 PH:(513)-243-4894 Fax:(513)-243-4888 MR ROBERT EASTIN FAA 3960 PARAMOUNT ST LAKEWOOD CA 90712-4137 PH:(562)-627-5205 Fax:(562)-627-5210 MR WILLIAM ELLIOTT
	EC S DR 84112-9208 Fax:(801)-585-9826 DMIN	MR MICHAEL ELLIOTT USAF 5022 BAILEY LOOP MCCLELLAN AFB CA 95652-1369 PH:(916)-643-0372 Fax:(916)-643-0361 MS HELEN ENG USAF ASC/ENFS 2530 LOOP ROAD WEST WRICHT-PATTERSON AFB OH 45433-7101 PH:(927)-255-6464 Fax:(927)-656-4546	MR WILLIAM ELLIOTT USAF WR-ALC/TIED 420 SECOND ST STE 122 ROBINS AFB GA 31098-1637 PH:(912)-926-9835 Fax:(912)-926-1743 MR TERRY ERCOLANI CESSNA AIRCRAFT CO 1 CESSNA BLVD M/S W7-6 UICHITA KS 47277-7704
	.05)-954-8713 Fax:(405)-954-9532 IVIN EVANS	MR RICHARD EVERETT US ARMY VEHICLE STRUCTURES DIR M/S 188E 2 W REID ST HAMPTON VA 23681-0001	PH:(316)-941-8421 Fax:(316)-941-7395 MR TIMOTHY FALLON NAVAIR 48110 SHAW RD BLDG 2187 STE 2320A PATUXENT RIVER MD 20670-1906 PH:(301)-342-9325 Fax:(301)-342-9402
	USAF 3001 STAFF DR M/S 188E STE 2AB 85A TINKER AFB OK 73145-0001 HAMPTON VA 23 PH:(405)-736-7264 Fax:(405)-736-5598 PH:(804)-864-3	PH:(804)-864-3459 Fax:(804)-864-8911	MR JAY FIEBIG WR ALL/TIEDO 420 SECOND ST STE 100 ROBINS AFB GA 31098-1640 PH:(912)-926-4228 FAX:(912)-926-1640

MR SCOTT FIELDS	VE INTE NAMOG GR	ND IAV ETCUED	
		יא לאו רוסמות	ak sona reog
BUEING CO	BOEING	SOUTHWEST RES INST	BOEING
M/S 1022147	PO BOX 3707	6220 CULEBRA RD	PO BOX 516
PO BOX 516	SEATTLE WA 98124-2207	PO DRAWER 28510	M/SS111-1221
ST LOUIS MO 63166-0001	PH:(253)-657-0470 Fax:(253)-657-3736	SAN ANTONIO TX 78238-5166	ST LOUIS MO 63166-0001
PH:(314)-234-0032 Fax:(314)-234-8915		PH:(210)-522-2028 Fax:(210)-684-4822	
MS LEONA FLORES	DR THOMAS FLOURNOY	MR TIMOTHY FOLAND	MP LAMES FOLCE
ABDA INC	FAA		ייי באינים בייים ביים בייים בייים בייים בייים בייים בייים בייים בייים בייים בי
		NOK : MKUMAN	
SU40 PRESIDENIIAL DR		PO BOX 9650	BLDG 652 STE 1
STE 201	ATLANTIC CITY NJ 08405-0001	M/S H11-223	2179 TWELTH ST
FAIRBORN OH 45324-0001	PH:(609)-485-5327 Fax:(609)-485-4569	MELBOURNE FL 32902-9650	WRIGHT-PATTERSON AFB OH 45433-7718
РН:(937)-427-2229 Fax:(937)-427-1937		PH:(407)-951-6893 Fax:(407)-951-6048	PH:(937)-255-7484 Fax:(937)-476-4419
MR GEORGE FOO	MR SYLVAIN FORGUES	MR ROYCE FORMAN	MR DONALD FORNEY
SINGAPORE AEROSPACE	BOMBARDIER INC	NASA JOHNSON SPACE CTR	INIVERSAL TECH CORP
540 AIRPORT RD	10000 CARGO A-4 ST	2101 NASA RD ONE	1270 N FAIDFIFID RD
PAXA LEBAR	MONTREAL INTL AIRPORT	ZHV S/M	0092-22757 NO NOTAN
SINGAPORE 539938-0001	MIRABEL QUEBEC CANADA JZN-1H3	HOUSTON TX 72058-0001	DH. (027)-424-8530 500-(027)-424-7753
		PH:(281)-483-8926 Fax:(281)-244-2319	0011-03h-(104)-(407)-450-03h (104)-1103
2		100 tt 2 (100) tt 2 (100) tt 2 (100)	
MR SCOTT FORTH	MS ANDREA FOTIAS	MS CHERYL FRANCIS	MR RONALD FRANCIS
UNITED TECH RES CTR	SMITHS INDUSTRIES	NAVAL AVIATION DEPOT	NAVAL AIR SYSTS COMD
411 SILVER LANE	4141 EASTERN AVE	CODE 342	STE 5
M/S 129-73	M/S 119	PSC BOX 8021	6255 LAKE GRAY BLVD
EAST HARTFORD CT 06108-0001	GRAND RAPIDS MI 49518-0001	CHERRY POINT NC 28533-0021	JACKSONVILLE FL 32244-0001
PH:(860)-610-7883 Fax:(860)-610-7526	PH:(616)-241-8678 Fax:(616)-241-7965		
MR JOBST FRANK	MAJ ROBERT FREDELL	MR CARL FRENCH	MR DOUGLAS FRIEND
GERMAN MOD	HQ USAFA/DFEM	BOEING DEF & SPC GRP	GEORGIA TECH RES INST
AMC PO BOX 33668	STE 6H2	2601 LIBERTY PKWY	7220 RICHARDSON RD
WRIGHT-PATTERSON AFB OH 45433-0668	2354 FAIRCHILD DR	RM-00	BLDG 2-150
PH:(937)-255-6660 Fax:(937)-255-7260	US AIR FORCE ACADEMY CO 80840-6240	MIDWEST CITY OK 73110-0001	SMYRNA GA 30080-0001
	PH:(719)-333-4393 Fax:(719)-333-2944	PH:(405)-739-1410 Fax:(405)-739-1416	PH:(770)-528-7924 Fax:(770)-528-3271
DR JOSEPH GALLAGHER	MR HAROLD GAY	MR WILLIAM GEESE	MR MICHAEL GEORGE
USAF AFRL/XPZ	NAVAL AVIATION DEPOT	USAF	LOCKHEED MARTIN AERO
2130 EIGHTH ST	PSC 8021	1912 MONAHAN WAY	103 CHESAPEAKE PARK PLAZA
WPAFB OH 45433-7542	MCAS CHERRY POINT	WRIGHT-PATTERSON AFB OH 45433-7205	W/S 40
PH:(937)-255-4269 Fax:(937)-656-4646	CHERRY POINT NC 28533-0021	PH:(937)-656-5652 Fax:(937)-656-4896	BALTIMORE MD 21220-0001
	PH:(919)-466-8517 Fax:(919)-466-8517		PH:(410)-682-2144 Fax:(410)-682-0531

BLACKSBURG VA 24060-0001 PH:(540)-953-4269 Fax:(540)-951-0760 CAPT DAN GRONER USAF 2145 MONAHAN WAY WPAFB OH 45433-7017 PH:(937)-255-5664 Fax:(937)-656-7723
CAPT DAN GRONER USAF 2145 MONAHAN WAY WPAFB OH 45433-7017 PH:(937)-255-5664 Fax: MR ANDERS GUSTAVSSON SWEDISH DEF MATL ADMIN S-115 88 STOCKHOLM S

MR RICHARD HADCOCK	MR DONALD HAGEMAIER	MR DENNIS HAGER	MAJ ROTEM HALEVI
RNH ASSOCIATES INC	BOEING	USAF	ISRAFIT ATR FORCE
6 SUE CIRCLE	MS C071-0013	2179 TWELFTH ST	ADIR STREET #22
HUNTINGTON NY 11743-1979	2401 E WARDLOW RD	WRIGHT-PATTERSON AFB OH 45433-7718	RASH HAAIN ISRAEL-0001
PH:(516)-271-7037 Fax:(516)-271-7137	LONG BEACH CA 90807-0001	PH:(937)-255-3370 Fax:(937)-476-7844	
	PH:(562)-593-7304 Fax:(562)-593-8092		
MR STEPHEN HALL	MR JOHN HAMM	MR WILLIAM HAMMOND	MR DAVID HARPER
CELERIS AERO CANADA INC	NORTHROP GRUMMAN	BOEING DEF & SPACE GRP	US AIR FORCE HQ AFSC/SEF
255 CENTRUM BLVD	9314 W JEFFERSON ST	M/S K86-81	9700 AVE G SE
STE 300	M/S 94-01	PO BOX 7730	KIRTLAND AFB NM 87185-5670
ORLEANS ONTARIO CANADA K1E-3V8	DALLAS TX 75211-0001	WICHITA KS 67277-7730	PH:(505)-846-0996 Fax:(505)-846-6826
PH:(613)-837-1161 Fax:(613)-834-6420	PH:(972)-266-2046 Fax:(972)-266-4404	PH:(316)-526-3297 Fax:(316)-523-2972	
MR JAMES HARPER	DR CHARLES HARRIS	MR JAMES HARRISON	MAJ KARL HART
USAF WR-ALC/LBRA	NASA LANGLEY RES CTR	METAL IMPROVEMENT CO INC	USAF HQ AMC/LGXR
265 OCMULGEE CT	M/S 188M	1618 S IDA	402 SCOTT DR UNIT 2A2
ROBINS AFB GA 31098-1647	HAMPTON VA 23681-0001	WICHITA KS 67211-0001	SCOTT AFB 1L 62225-5308
PH:(912)-926-7980 Fax:(912)-926-2211	PH:(757)-864-3447 Fax:(757)-864-7729	PH:(316)-267-8201 Fax:(316)-267-5735	PH:(618)-256-6698 Fax:(618)-256-2009
44			
MR JAMES HARTER	MR ROBERT HARTLEY	MR BRETT HAUBER	DR D ROBERT HAY
USAF WL/FIBEC	US AIR FORCE	USAF	TEKTREND INTL INC
BLDG 45	OC/ALC	BLDG 125	2113A ST REGIS BLVD
2790 D STREET RM 504	7851 SECOND ST STE 128	2335 SEVENTH ST STE 6	DOLLARD-DES-ORMEAUX
WRIGHT-PATTERSON AFB OH 45433-7402	OKLAHOMA CITY OK 73145-9145	WRIGHT-PATTERSON AFB OH 45433-7809	QUEBEC H9B 2M9-0001
PH:(937)-255-6104 Fax:(937)-656-4999	PH:(405)-736-3236 Fax:(405)-736-3086	PH:(937)-255-5059 Fax:(937)-255-6210	PH:(514)-421-1417 Fax:(514)-421-1487
MR RICHARD HAZARD	MR MARO HEIMERDINGER	MR MICHAEL HEINER	DR MARKUS HEINIMANN
BOEING	NORTHROP GRUMMAN	US AIR FORCE 00-ALC/LFIT	CESSNA AIRCRAFT CO
16172 CHIPPER LANE	DEPT 9B70/W8	6089 WARDLEIGH RD	PO BOX 7704
HUNTINGTON BEACH CA 92649-0001	ONE HORNET WAY	HILL AFB UT 84056-5838	WICHITA KS 67277-7704
PH:(562)-982-6320 Fax:(562)-496-6480	EL SEGUNDO CA 90245-2804	PH:(801)-777-9318 Fax:(801)-773-9782	PH:(316)-941-7157 Fax:(316)-941-5985
	PH:(310)-332-0543 Fax:(310)-332-9160		
MR JAMES HELBLING	MR KURT HELLBOM	MR DAVID HEMPE	MR MICHAEL HENGST
NORTHROP GRUMMAN	SAAB A8	FAA HEADQUARTERS	GERMAN AIR FORCE
M/S 9870/89	LINKOPING SWEDEN SE-581 88-0001	WASHINGTON DC 00000-0001	HEIDESTR 246
ONE NORTHROP AVE		PH:(202)-267-8807 Fax:(202)-267-5340	M/S PF 902500
EL SEGUNDO CA 90245-2804			COLOGNE, GERMANY 51140-0001
PH:(310)-332-6004 Fax:(310)-331-6648			

MR GEORGE HOLDERBY US AIR FORCE WL/FIB 2130 EIGHTH ST STE 1 WRIGHT-PATTERSON AFB OH 45433-7542 PH:(937)-255-5006 Fax:(937)-255-3740	DANIELE HOVINGTON BOMBARDIER INC MONTREAL INTL ARPT 10000 CARGO A-4 ST 32 MIRABEL QUEBEC CANADA J7N-1H3 999 PH:(514)-476-4620 Fax:(514)-476-4651	MR JACOB HUFFMAN USCG USCG ARSC BLDG 78 ELIZABETH CITY NC 27909-0001 482 PH:(919)-335-6123 Fax:(919)-335-6463	MR WILLIAM IRBY LOCKHEED MARTIN AERO SYS M/S 0303 DEPT 73-71 86 S COBB DR MARIETTA GA 30063-0303 345 PH:(770)-494-2873 Fax:(770)-494-7738	DR CRAIG JONES SANDIA NATL LABS PO BOX 5800 M/S 0615 ALBUQUERQUE NM 87185-0615 119 PH:(505)-843-8722 Fax:(505)-843-8760	MR MASAMI KAGEYAMA JAPAN DEFENSE AGY 3RD RESEARCH CTR 1-2-10 SAKAE-CHO TACHIKANA TOKYO JAPAN-190
DR PAUL HOFFMAN NAVAIRSYSCOM BLDG 2187 STE 2340 UNIT 5 48110 SHAW RD PATUXENT RIVER MD 20670-1906 PH:(301)-342-9361 Fax:(301)-342-9404	DR PETER HOVEY USAF BLDG 65 2790 D ST RM 504 WRIGHT-PATTERSON AFB OH 45433-7402 PH:(937)-255-6104 Fax:(937)-656-4999	MR ROGER HOWELL USAF 6064 DOGWOOD AVE HILL AFB UT 84056-0001 PH:(801)-777-0535 Fax:(801)-777-9482	MR JOHN INGRAM LOCKHEED MARTIN 86 S COBB DR M/S 0648 MARIETTA GA 30063-0001 PH:(770)-494-8172 Fax:(770)-494-8345	MR RONALD JOHNSON RAYTHEON E-SYSTS FM 1570 MAJORS FIELD M/S CBN 176 GREENVILLE TX 75403-0001 PH:(903)-457-5690 Fax:(903)-457-4119	MR KIM JUHALA FINNISH AF DEPOT PO BOX 210 TAMPERE FINLAND 33101-0001
MR H J TEN HOEVE NLR PO BOX 153 EMMELOORD NETHERLANDS 8300 AD-0001	MR YOSHIYUKI HOTEI MITSUBISHI HEAVY IND LTD 1 TOYOBA TOYOYOMA-CHO NISHIKASUGAI-GUN AICHI-KEN 480-02 JAPAN-0001	MR DAVID HOWELL OAK RIDGE NATL LAB PO BOX 2009 M/S 8050 OAK RIDGE TN 37831-8050 PH:(423)-576-8283 Fax:(423)-574-0740	MR LEX HUTCHESON SVERDRUP TECH INC 4538 CENTERVIEW DR SUITE 130 SAN ANTONIO TX 78228-0001 PH:(210)-733-3383 Fax:(210)-733-3389	DR DAVID JEONG US DEPT OF TRANS M/S DTS-76 KENDALL SQ CAMBRIDGE MA 02142-1093 PH:(617)-494-3654 Fax:(617)-494-3066	MR VICTOR JUAREZ DAMAGE TOLERANT STRUCTURES ENGRS PO BOX 460873 SAN ANTONIO TX 78246-0001 PH:(210)-863-8347 Fax:(210)-490-6726
DR DAVID HOEPPNER UNIV OF UTAH 50 S CENTRAL CAMPUS DR RM 2202 SALT LAKE CITY UT 84112-0001 PH:(801)-581-3851 Fax:(801)-585-5889	MR JOSEPH HOLTON LOCKHEED MARTIN AERONAUTICAL SYS CO M/S 30063-0199 86 S COBB DR MARIETTA GA 30063-0199 PH:(770)-494-2885 Fax:(770)-494-9617	MRT MICHAEL HOWARD ARINC. 2551 RIVA RD M/S 1-203 ANNAPOLIS MD 21401-0001 PH:(410)-266-4725 Fax:(410)-572-3171	MR TROY HULLANDER NAVAL AVIATION DEPOT 48110 SHAW RD UNIT 5 BLDG 2187 STE 2350 PATUXENT RIVER MD 20670-1906 PH:(301)-342-9370 Fax:(301)-342-9412	MR RANDY JANSEN US AIR FORCE WR-ALC/TIEDD 420 ZND ST/STE 100 ROBINS AFB GA 31098-1640 PH:(912)-926-4228 Fax:(912)-926-1743	LTCOL JOHN JOOSTEN ROYAL NETHERLANDS AF BINCKHORSTLAAN 135 PO BOX 20703 THE HAGUE HOLLAND 2500ES-0001

DR JINSEONG KIM LYNNTECH, INC 7610 EASTMARK DR STE 105 COLLEGE STATION TX 77840-0001 PH:(409)-693-0017 Fax:(409)-764-7479 PH:(409)-693-0017 Fax:(409)-764-7479 MR STEPH MITSUBISHI HVY IND LTD 10 OYE-CHO MINATO-KU MALTHAM MAGOYA JAPAN 455-0001 PH:(781) PH:(781) MR KOSTAS KRIATSIOTIS BATTELLE PO BOX 23 COLUMBUS SCHIMATARI-VIOTIAS GREECE 32-009 PH:(614) MAJ MARCEL LAMBRICHS MR MASH MARKU	AL-CHO TOKOYO 188-0001 TOKOYO 188-0001 TOKOYO 188-0001 4-4878 Fax:(770)-494-8174 4-4878 Fax:(770)-494-8174 4-4265 Fax:(771)-890-3489 4-4265 Fax:(781)-890-3489 4-7151 Fax:(614)-424-3457 E ANG ES LAB	MR DAVE KELLY US AIR FORCE SA-ALC/LADD 514 SHOP LN/STE 2 KELLY AFB TX 78241-6420 PH:(210)-925-4525 Fax:(210)-925-9940 PH:(210)-925-4525 Fax:(210)-925-9940 PH:(912)-926-3284 Fax:(912)-926-6619 PH:(937)-255-4843 Fax:(937)-255-1522 CAPT JEAN-FRANCOIS LECLERC CANADIAN ARMED FORCES	MR ALAN KERR ARTI 1 RIDGMAR CENTRE 6500 W FREEWAY FT WORTH TX 76116-2187 PH:(817)-737-1656 Fax:(817)-737-1605 MR PHILLIP KLOOS MTS SYSTEMS CORP M/S 231 14000 TECHNOLOGY DR EDEN PRARIE MN 55344-2290 PH:(612)-937-4854 Fax:(612)-937-4515 MS JULIE KRAMER NASA JOHNSON SPACE CTR MC ES23 2101 NASA RD HOUSTON TX 77058-0001 PH:(281)-483-8866 Fax:(281)-483-3789 COL HANK LAAKMAN BOEING DEFENSE & SPACE GRP 2601 LIBERTY PKWY MS RM-00 MIDWEST CITY OK 73130-0001 PH:(405)-739-1407 Fax:(405)-739-1416 LT COL ENRIQUE LEGORBURU SPANISH AIR FORCE
10TH STRE BLDG 655 2500ESA-0001 WPAFB OH PH:(937)-	ET RM 032 45433-7817 255-5007 Fax:(937)-656-4840	MGEN GEORGE R PEARKES BLDG OTTAWA ONTARIO CANADA K1A OK2-0001 PH:(613)-991-9541 Fax:(613)-998-6922	MAESTRANZA AEREA DE MADRID AVDA.AVIACION S/N 28044 MADRID SPAIN-0001
MR KAI NAVAII BLDG 3 00000-0001 48110 PATUXI	MR KALMEN LEIKACH NAVAIRSYSCOM BLDG 2187 STE 2340A 48110 SHAW RD UNIT 5 PATUXENT RIVER MD 20670-1906 LONG BEACH PH:(301)-342-9362 Fax:(301)-342-9402 PH:(562)-49	DR CHARLIE LIAO BOEING CO 3855 LAKEWOOD BLVD M/S D801-45 LONG BEACH CA 90846-0001 PH:(562)-497-6587 Fax:(562)-982-7955	DR DAVID LIGHT BRITISH AEROSPACE NEWFILTON HOUSE BRISTOL BS997AR-0001

DR JOHN LINCOLN	LT JASON LINDSEY	MILA LITTLE	MR KO-VET LTU
LISAF ASC/FN	USAF FSC/1S1P	CANADIAN NATIONE	THE BOETUS COMPANY
8LDG 560	75 VANDENBERG DR	MAJOR-GENERAL GEORGE R PEARKES BLDG	M/S C052/0660
2530 LOOP RD W	HANSCOM AFB MA 01731-0001	OTTOWA	2401 E WARDLOW ROAD
WRIGHT-PATTERSON AFB OH 45433-7101	PH:(617)-377-9683 Fax:(617)-377-4292	ONTARIO CANADA K1A OK2-0001	LONG BEACH CA 90807-5309
РН:(937)-255-5312 Fax:(937)-656-4546		PH:(613)-993-5566 Fax:(613)-998-6922	PH:(310)-982-5422 Fax:(310)-982-5164
MAJ RICHARD LOCKWOOD	MR AUDGEIR LUNDE	MR JOSEPH LUZAR	MR JAMES MALINAK
US AIR FORCE	ROYAL NORWEGIAN AF MATL CMD	BOEING PROD SUPPORT DIV	BOEING DEF & SPC GRP
1725 JEFFERSON DAVIS HWY	M/S DFIS	M/S K86-81	STE 400
M/S STE 1003	PO BOX 10	PO BOX 7730	2600 PARAMOUNT PL
ARLINGTON VA 22202-4102	N2007 KJELLER NORWAY 00000-0001	WICHITA KS 67277-7730	FAIRBORN OH 45324-6765
РН:(703)-607-3509 Fax:(403)-602-5387		PH:(316)-523-5408 Fax:(316)-523-3130	PH:(937)-427-1767 Fax:(937)-427-5255
MR CHRIS MANDERS	MR SCOTT MANGRUM	DR S MANNAVA	MS STACY MANOLAKAS
RAYTHEON E-SYSTEMS	USAF WR-ALC/LREA	GENERAL ELECTRIC CO	BOEING
M/S 1134	750 3RD ST	10270 ST RITA LN	M/S 4X-53
7500 MAEHR RD	ROBINS AFB GA 31098-0001	M/S Q20	4062 172ND PL SE
WACO TX 76705-0001	PH:(912)-926-3466 Fax:(912)-929-5320	EVENDALE OH 45215-0001	BELLEVUE WA 98008-0001
PH:(254)-867-4051 Fax:(254)-867-2115		PH:(513)-552-2191	PH:(425)-393-0804
MR STEPHEN MARINSHAW	MR JAMES MARKS	MR PERRY MARTIN	MR MICHAEL MATTHEWS
DYNCORP	RAYTHEON E-SYSTS	NTS	DELTA AIRLINES
6500 WEST FREEWAY	PO BOX 6056	PO BOX 857	PO BOX 20706
FT WORTH TX 76116-2187	M/S 151	NORTH HIGHLANDS CA 95660-0001	DEPT 578
PH:(817)-737-1584 Fax:(817)-737-1605	GREENVILLE TX 75403-0001	PH:(916)-779-3110 Fax:(916)-779-3115	ATLANTA GA 30320-6001
	РН:(903)-457-6529 Fax:(903)-457-5611		PH:(404)-714-1460 Fax:(404)-714-1168
DR GEORGE MATZKANIN	CAPT V SCOTT MAY	MR JAMES MAZZA	DR R CRAIG MCCLUNG
NTIAC TRI	USAF	USAF	SOUTHWEST RES INST
415 CRYSTAL CREEK DR	2130 EIGHTH ST STE 1	2179 TWELFTH ST STE 1	MATLL & STRUCTS DIV
AUSTIN TX 78746-4725	WRIGHT-PATTERSON AFB OH 45433-7542	WRIGHT-PATTERSON AFB OH 45433-7718	PO DRAWER 28510
PH:(512)-263-2106 Fax:(512)-263-3530	PH:(937)-255-5664 Fax:(937)-656-7723	РН:(937)-255-7778 Fax:(937)-656-4419	SAN ANTONIO TX 78228-0510
			PH:(210)-522-2422 Fax:(210)-522-5122
MR CHARLES MCDONALD	MR PETE MCKEIGHAN	MR FRASER MCMASTER	CAPT GREGORY MCNEW
USAF CCM	SOUTHWEST RES INST	SOUTHWEST RES INST	JOINT STARS PRGM OFF
100 TURNBERRY COVE N	6220 CULEBRA RD	6220 CULEBRA RD	75 VANDENBERG DR
NICEVILLE FL 32587-0001	SAN ANTONIO TX 78228-0001	SAN ANTONIO TX 78238-5166	HANSCOM AFB MA 01731-2119
PH:(904)-897-7051 Fax:(904)-897-7051	PH:(210)-522-3617 Fax:(210)-522-5122	PH:(210)-522-2576 Fax:(210)-522-5122	PH:(781)-377-6838 Fax:(781)-277-2119

ייט ווחש דמדמסמ מע	1 CAB INCEDI MINEI TO	AS ILIMNITED MIT	DR THOMAS MILLS
MK KOBEKI MELLYN	LCUK JOSEPH MIMELIC	UN JENNITER MILLER	
ELECTRODYNAMICS INC	US COAST GUARD	NAVAIRSYSCOM	USAF WL/FIBE
1200 HICKS RD	ARSC ENGINEERING	48110 SHAW ROAD	2790 D ST
ROLLING MEADOWS IL 60008-0001	USCG/ARSC/ENGDIV/BLDG 78	M/S 5	BLDG 65 RM 504
PH:(847)-259-0740 Fax:(847)-255-3827	ELIZABETH CITY NC 27909-0001	PATUXENT RIVER MD 20670-1906	WRIGHT-PATTERSON AFB OH 45433-7402
	PH:(919)-335-6837 Fax:(919)-335-6463	PH:(301)-342-8099 Fax:(301)-342-9402	PH:(937)-255-6104 Fax:(937)-656-4999
MP GERALD MINTS	MR EFRAIN MIRON	MR GEOFFREY MITCHELL	MR W CRAIG MITCHELL
MACTORNA UTGOM CATEGOR	SPANISH AID EODUE	ARING RES CORP	USAF
MAC ANAL DEDI 220	MARCIDANZA AEDEA DE MADRID	6205 S SOONER RD	6089 WARDLEIGH RD
4,00 AUTION PLAN		OKI & HOW & CITY OK 73135-0001	HILL AFR LIT 84056-5838
12214 LANEWOUD BLVD DOLINEY CA 90242-2693	28044 MADRID SPAIN-0001	_	PH:(801)-777-9859 Fax:(801)-773-7620
PH:(562)-922-3358 Fax:(562)-922-2523			
MR LORIS MOLENT	MR ROBERT MOORE	MR JOHN MORGAN	MR JOSEPH MOSHER
DEF SCI & TECH ORG	USAF ASC/ENFS	US AIR FORCE	USAF ASC/SMA
506 LORIMER ST	2530 LOOP ROAD WEST	OC-ALC/LABEF STE 2AB85A	2145 MONAHAN WAY
M/S AFD AMRL FISHERMANS BEND	WRIGHT-PATTERSON AFB OH 45433-7101	3001 STAFF DR	WRIGHT-PATTERSON AFB OH 45433-7017
VICTORIA AUST	PH: (937)-255-8515 Fax: (937)-656-4546	TINKER AFB OK 73145-3006	PH:(937)-255-6053 Fax:(937)-255-7757
1148		PH:(405)-736-7264 Fax:(405)-736-5598	
DR RICHARD MULLER	LT COL MASATO NAKAO	MR GEORGE NEAT	MR DAVID NEFF
HQ USAFA/DFEM	ASD/JASDF	US DOT/VOLPE CTR	RAYTHEON E-SYSTS
STE 6H2	9-7-45 AKASAKA	KENDALL SQUARE	7500 MAEHR RD
2354 FAIRCHILD DR	MINATO-KLI	M/S DTS-74	M/S 1134
US AIR FORCE ACADEMY CO 80840-6241	TOKYO JAPAN 184-0001	CAMBRIDGE MA 02142-1093	WACO TX 76715-4580
PH:(719)-333-2531 Fax:(719)-333-2944		PH:(617)-494-2679 Fax:(617)-494-3096	PH:(254)-867-4070 Fax:(254)-867-2115
MR ROGER NESJE	MS CATHY NGUYEN-QUOC	MR ED NICHOLS	MR DANIEL O'NEILL
ROYAL NORWEGIAN AF	CANADAIR/BOMBARDIER	NORTHROP GRUMMAN	BOEING CO
MATERIAL COMMAND	DEPT 771	M/S 49L-66	PO BOX 3707
PO BOX 10	400 COTE VERTE WEST	9314 W JEFFERSON	M/S 4X-56
KJELLER NORWAY N2007-0001	DORVAL QUEBEC CANADA H4S-1Y9	DALLAS TX 75211-0001	SEATTLE WA 98124-2207
	PH:(514)-855-7548 Fax:(514)-855-8201	PH:(972)-266-3612 Fax:(972)-266-2407	PH:(425)-393-2133 Fax:(425)-393-7044
MR ROBERT ODIAN	MR MITSUGI OHKI	MR TORU OHTA	MR MATS-OLOF OLSSON
STRUCTURAL INTEGRITY ENGRG	MITSUBISHI HEAVY IND LTD	JAPAN AIR SELF DEF FORCE	FMV
9560 TOPANGA CYN	NISHIKASUGAI-GUN	NAKA-KANYUCHI	S-111588
M/S 200	AICHI-KEN 480-02	KAKAMIYAHARA-CITY	STOCKHOLM SWEDEN 00000-0001
CHATSWORTH CA 91311-0001	JAPAN 00000-0001	GIFU PREF JAPAN 504-0001	
РН:(818)-718-2195 Fax:(818)-718-2212			

MR THOMAS OOLE USAF ASC/ENFS 2530 LOOP ROAD WEST WRIGHT-PATTERSON AFB OH 45433-7101 PH:(937)-255-6609 Fax:(937)-656-4546	MR DONALD OPLINGER FAA W.J. HUGHES TECH CNTR AAR-431 ATLANTIC CITY AIRPORT ATLANTIC CITY NJ 08405-0001 PH:(609)-485-4914 Fax:(609)-485-4004	MR TAKASHI OTA JAPAN DEFENSE AGENCY 4100 INTERNATIONAL PLAZA #302 FORT WORTH TX 76109-0001 PH:(817)-762-2665 Fax:(817)-763-8398	CAPT YASUO OTANI JAPAN DEFENSE AGY NAKA-KANYUCHICTR KAKAMIGAHARA CITY GIFU-PREF JAPAN 504-0001
DR ARUN PASRICHA NORTHROP GRUMMAN CORP MILITARY AIR SYS DIV ONE HORNET WAY EL SEGUNDO CA 90245-0001 PH:(310)-332-2122 Fax:(310)-332-9160	MR HEIMO PATYNEN FINAVITEC OY 35600 HALLI FINLAND 00000-0001	MR MICHAEL PAULK AF NDI PROGRAM OFFICE 485 QUENTIN ROOSEVELD RD STE 7 KELLY AFB TX 78241-5442 PH:(210)-925-6408 Fax:(210)-925-2726	DR RIGO PEREZ BOEING CO PO BOX 516 M/S \$102 2147 ST LOUIS MO 63166-0001 PH:(314)-234-0656 Fax:(314)-234-8915
MR MARTIN PETERS USAF OO-ALC/LFSS 6080 GUM LANE HILL AFB UT 84056-5825 PH:(801)-775-4318 Fax:(801)-777-3928	MR DONALD PETTIT LOCKHEED MARTIN AERO SYS 73-51 TEST LAB M/S 0484 86 S COBB DR MARIETTA GA 30063-0484 PH:(770)-494-5313 Fax:(770)-494-2028	MR PAUL PIPER USAF SA-ALC/LFES 485 QUENTIN ROOSEVELT RD BLDG 1712 SAN ANTONIO TX 78241-6425 PH:(210)-925-4284 Fax:(210)-925-3129	DR DANIEL PIPKINS KNOWLEDGE SYS INC 81 EAST MAIN ST FORSYTH GA 31029-0001 PH:(912)-994-4051 Fax:(912)-994-8800
WNG COMM MICHAEL POBOG-JAWOROWSKI NEW ZEALAND EMBASSY 37 OBSERVATORY CIRCLE NW WASHINGTON DC 20008-0001 PH:(202)-328-4806 Fax:(202)-265-9238	MR PETER POOLE DEFENSE RESEARCH AGENCY DRA X34 BD GUI4 6TD FARNBOROUGH HANTS UK GU140LX-0001	MR JONATHAN POPE NAVAIR 23220 BENT TREE LANE CALIFORNIA MD 20619-0001 PH:(301)-342-9328 Fax:(301)-342-9404	MR BRAD PREVALLET LOCKHEED MARTIN/FT WORTH PO BOX 738 M/S 2846 FT WORTH TX 76101-0001 PH:(817)-763-2517 Fax:(817)-777-2115
MR ADARSH PUN NORTHROP GRUMMAN M/S 9870/W8 ONE NORNET WAY EL SEGUNDO CA 90505-0001 PH:(310)-332-4200 Fax:(310)-332-4160	MR KURT RABIDEAU USAF SA-ALC/LADD 404 GREIG ST BLDG 179 KELLY AFB TX 78241-5944	CHANTAL RAJOTTE BOMBARDIER INC. MONTREAL INTL ARPT 10000 CARGO A-4 ST MIRABEL QUEBEC CANADA J7N-1H3 PH:(514)-476-4395 Fax:(514)-476-4451	CAPT THOMAS RAMSEY US AIR FORCE OC ALC/LACRA STE ZAC489 3001 STAFF DR TINKER AFB OK 73071-0001 PH:(405)-736-3832 Fax:(405)-736-5604
MR JEFFREY REGISTER NORTHWEST AIRLINES MPLS/ST PAUL INTL AIRPORT M/S C8840 5101 NORTHWEST DR ST PAUL MN 55111-0001 PH:(612)-726-7274 Fax:(612)-726-6714	MR LEONARD REID FATIGUE TECH INC 100 ANDOVER PARK W SEATTLE WA 98188-2868 PH:(206)-246-2010 Fax:(206)-244-9886	MR MICHAEL REID GULFSTREAM AEROSPACE M/S D-04 PO BOX 2206 SAVANNAH GA 31402-2206 PH:(912)-965-4268 Fax:(912)-965-4812	MR WALTER REIMANN 8220 WELLINGTON NECK FRANKTOWN VA 23354-0001 PH:(757)-442-6377 Fax:(757)-442-6377

MR JASON SCOTT CAE AVIATION LTD PO BOX 9864 EDMONTON INT'L APT EDMONTON AB CANADA TGE 4R3-0001 PH:(403)-890-6616 Fax:(403)-890-6543	MR JEFFERY SERMERSHEIM BOEING CO MC 51063511 PO BOX 516 ST LOUIS MO 63166-0516 PH:(314)-234-4641 Fax:(314)-777-1045	MR MICHAEL SHOCKEY USAF 2145 MONAHAN WAY WRIGHT-PATTERSON AFB OH 45433-7017 PH:(937)-255-6053 Fax:(937)-656-4410 MR JODI SIRMANS LOCKHEED AERO SYS CO 86 SOUTH COBB DR M/S D7371 20303 MARIETTA GA 30063-0303 PH:(770)-494-7697 Fax:(770)-494-7738 MR WILLIAM SPARKS 31220 POST OAK TRAIL FAIR OAKS RANCH TX 78015-0510 PH:(830)-981-8725	MR HUGO STEIN USAF SA-ALC/LFE 485 QUENTIN ROOSEVELT RD KELLY AFB TX 78241-6425 PH:(210)-925-6311 Fax:(210)-925-0097
MR WILLIAM SCHWEINBERG US AIR FORCE 420 SECOND ST WR-ALC ALC/TIEDD ROBINS AFB GA 31098-0001 PH:(912)-926-4228 Fax:(912)-926-1743	MR RICK SELDER THE BOEING COMPANY 2401 E WARDLOW RD M/S C052-0660 LONG BEACH CA 90207-4418 PH:(562)-982-5392 Fax:(562)-982-5164	DR DONALD SHOCKEY SRI INTL M/S AA277 333 RAVENSWOOD AVE MENLO PARK CA 94025-3493 PH:(650)-859-2587 Fax:(650)-859-2260 DR PAVEL SINDELAR FFA AERO RES INST OF SWEDEN BOX 11021 S-161-11 BROWMA SWEDEN WR TIMOTHY SORENSEN USAF OO-ALC/LFSS 6080 GUM LANE HILL AFB UT 84056-5825 PH:(801)-777-9601 Fax:(801)-777-3928	MR CHRISTOPH STAHN GERMAN AIR FORCE HEIDESTR 245 M/S PF 902500 COLOGNE, GERMANY 51140-0001
CAPT TIMOTHY SCHULTEIS USAF KELLY AFB TX 00000-0001 PH:(210)-925-4525	MR IAN SEARLE BOEING ISDS M/S 82-97 20403 68TH S 18-28 BLDG KENT WA 98032-0001 PH:(253)-773-4946	MR WILLIAM SHEPPARD NORTHROP GRUMMAN CORP ONE HORNET WAYE M/S 9871/63 EL SEGUNDO CA 90250-0001 PH:(310)-332-9635 Fax:(310)-332-0583 MR DAVID SIMPSON NATL RES COUNCIL OF CANADA INST FOR AERO RES MONTREAL RD OTTAWA ONTARIO CANADA K1A-0R6 PH:(613)-993-0899 Fax:(613)-952-7136 MR JOHN SLYE US AIR FORCE ASC/YTJ BLDG 56 2100 MONAHAN WAY WRIGHT-PATTERSON AFB OH 45433-7014 PH:(937)-255-9306 Fax:(937)-255-8516	MR DIRK-JAN SPIEKHOUT NATL AEROSPACE LAB VOORSTERWEG M/S 31 MARKNESSE NETHERLAND 8316PR-0001
DR JOEL SCHUBBE USAF AFRL/VASS 2145 FIFTH ST STE 2 BLDG 24C WRIGHT-PATTERSON AFB OH 45433-7006 PH:(937)-255-5200 Fax:(937)-255-6684	MR PAUL SCREEN ROYAL AIR FORCE RAF WADDINGTON ENGLAND LN5 9NB	LT DARREN SEXTON ROYAL AUSTRALIAN AIR FORCE 1195 CAMDEN COURT WARNER ROBINS GA 31088-0001 PH:(912)-926-4226 Fax:(912)-926-1743 PH:(912)-926-4226 Fax:(912)-926-1743 PH:(912)-926-4226 Fax:(912)-926-1743 PH:(912)-926-4226 Fax:(912)-926-1743 PH:(816)-426-6941 Fax:(816)-426-2169 PH:(254)-867-4282 Fax:(254)-867-4106	MR CHRISTOPHER SPENCER BEL HELICOPTER TEXTRON PO BOX 482 FT WORTH TX 76101-0001 PH:(817)-280-5732 Fax:(817)-280-6320

	777.1		
MK BKIAN SIELLT	MK JAMES SULLIVAN	UK KEDA LAUKUS	MK LAKKI LAKKANI
RAYTHEON E-SYST INC	LOCKHEED MARTIN	BMW ROLLS RR	US AIR FORCE
FM 1570 MAJORS FIELD	PO BOX 748	ESCHWENWEG 11	OC-ALC/TILOF
MS CBN 192	M/S 4272	M/S ED-3	7851 2ND ST/RM 107
GREENVILLE TX 75403-0001	FT WORTH TX 76101-0001	DAHLEWITZ GERMANY D-15827-0001	TINKER AFB OK 73145-9145
PH:(903)-457-7345 Fax:(903)-457-5605	PH:(817)-763-3528 Fax:(817)-777-7722		PH:(405)-736-5424 Fax:(405)-736-3086
MR ROBERT TASHIRO	DR RACHAEL TAY	MS AMY TAYLOR	MR ROBERT TEMUCIN
NORTHROP GRUMMAN CORP	SINGAPORT TECH AERO	TEXSEM LABS INC	NAVAL AVIATION DEPOT
8900 E WASHINGTON BLVD	540 AIRPORT RD	3545 E APOLLO DR	PSC BOX 8021
M/S 6J80/UB	PAYA LEBAR	SALT LAKE CITY UT 84124-0001	CODE 4.3.3
PICO RIVERA CA 90660-0001	SINGAPORE 539938-0001	-	CHERRY POINT NC 28533-0001
PH:(562)-942-5287 Fax:(562)-948-8146			PH:(919)-464-7332 Fax:(919)-464-8326
MR DAVE THOMAS	MR GIBBY THOMAS	MR LARRY THOMPSON	MR CHARLES TIFFANY
ROYAL AIR FORCE	FEDERAL EXPRESS	STRAIN MONITOR SYSTEMS	4160 VIA DEL CUCULIN
RAF ST ATHAN	3131 DEMOCRAT ROAD	1425 RUSS BLVD	TUCSON AZ 85718-3321
SOUTH GLAMORGAN UK CE62 4WA-0001	M/S 5413	STE 1-112C	
	MEMPHIS TN 38118-0001	SAN DIEGO CA 92101-0001	
11	PH:(901)-224-4807 Fax:(901)-224-4819	PH:(619)-702-7002 Fax:(619)-702-3122	
52			
MR PAUL TOIVONEN	DR DUNG DUC TRAN	MR DOUGLAS TRITSCH	MR BILLY TRUSSEL
BOEING	TRANSPORT CANADA	UNIV DAYTON RES INST	WR-ALC/LFEFS
\$111-1221	300 SPARKS PLACE	STRUCTURAL INTEGRITY	296 COCHRAN ST
PO BOX 516	TOWER C 2ND FLR AARDG	300 COLLEGE PK	ROBINS AFB GA 31098-1622
ST LOUIS MO 63166-0516	OTTAWA ONTARIO CANADA K1A-ON5	DAYTON OH 45469-0120	PH:(912)-926-5482 Fax:(912)-926-5463
PH:(314)-234-4912 Fax:(314)-232-1394	PH:(613)-952-4325 Fax:(613)-996-9178	PH:(937)-229-4417 Fax:(937)-229-3712	
DR ERIC TUEGEL	MR JIMMY TURNER	MR MICHAEL TYSON	MR DIMITRIOS TZIMIS
APES INC	US AIR FORCE	LOCKHEED-MARTIN AERO	HELLEXIC AEROSPACE INDUSTRY S.A.
3542 OXFORD AVE	SA-ALC/LADD	D/73-76 ZONE 0160	PO BOX 23
ST LOUIS MO 63143-0001	404 GREIG ST	86 S COBB DR	TANAGRA
PH:(341)-644-6040 Fax:(314)-649-0229	KELLY AFB TX 78241-0001	MARIETTA GA 30063-0001	SCHIMATARI-VIOTIAS GREECE 32-009
	PH:(210)-925-4525 Fax:(210)-925-1416	PH:(770)-494-1869 Fax:(770)-494-9610	
MR MICHAEL URBAN .	MR JOHN VAN DOREN	MR DOUGLAS VAN OTTERLOO	MR WILLIAM VAN SICKLE
SIKORSKY AIRCRAFT	SIGNATURE CTRL SYSTS	LOCKHEED MARTIN AERO SYS	BOEING DEF & SP GROUP/PSD
6900 MAIN ST	4071 S ELIOT ST	DEPT 73-51 ZONE 0484	M/S K84-40
M/S \$328A7	ENGLEWOOD CA 80110-0001	86 S COBB DR	PO BOX 7730
STRATFORD CT 06494-9129	PH:(303)-783-0500 Fax:(303)-783-0800	MARIETTA GA 30063-2028	WICHITA KS 67277-7730
PH:(203)-386-7159 Fax:(203)-386-6708		PH:(770)-494-3232 Fax:(770)-494-2028	PH:(316)-523-1326 Fax:(316)-526-4214

HR MAKOTO VEMURA JAPAN DEFENCE AGENCY 1-2-10 SAKAE-CHO TACHIKAWA-CITY 22217-5560 TOKYO JAPAN 190 00000-0001 3181 Fax:(703)-696-0934	MR JOHN VIEGER SINO SWEARINGEN AIR CO SYS INC 1770 SKYPLACE FB OH 45433-7142 SAN ANTONIO TX 78216-0001 Fax:(937)-255-3207 PH:(210)-258-8658 Fax:(210)-258-3953	MR THOMAS WADE US COAST GUARD HQ 2100 2ND ST SW M/S G-SEA-12 MASHINGTON DC 20593-0001 Fax:(937)-656-4420 PH:(202)-267-2816 Fax:(202)-267-4135	MS SHEILA WALL USAF ASC/ENFS 2530 LOOP ROAD WEST FISHERMANS BEND WRIGHT-PATTERSON AFB OH 45433-7101 WRIGHT-PATTERSON AFB OH 45433-7101 PH:(937)-255-7304 Fax:(937)-656-4546 IS MR RON WEEDON ROYAL AIR FORCE RAF ST ATHAN SOUTH GLAMORGAN UK CF52 4WA-0001 33 Fax:(210)-522-4506	DR WILLIAM WHITE USAF WR-ALC/TIE 420 ZND ST ST 100 ROBINS AFB GA 31098-1640 PH:(912)-926-0540 Fax:(912)-926-7420 PH:(562)-922-3609 Fax:(562)-922-3728
DR A VASUDEVAN OFF OF NAVAL F CODE 332 800 N QUINCY 9 ARLINGTON VA PH:(703)-696-8	MR CHRIS VICKERS USAF ASC/YC (AV/AF) 2590 LOOP RD WEST WRIGHT-PATTERSON AFB OH 45433-7142 PH:(937)-255-1034 Fax:(937)-255-3207	MR MICHAEL WADDELL USAF WL/MTPN 2977 P STREET BLDG 653 STE 6 WRIGHT-PATTERSON AFB OH 45433-7739) PH:(937)-255-7277 Fax:(937)-656-4420	MR KEVIN WALKER DEF SCI & TECH OF 506 LORIMER ST M/S AED AMRLEND VICTORIA AUSTRP PH: Fax: ()- MR GREGORY WATTIS SOUTHWEST RES INS 6220 CULEBRA RD M/S DIV 04 SAN ANTONIO TX 7 PH:(210)-522-2333	
MR SCOTT VANDERSALL USAF C-130 TCG 265 OCMULGEZ CT RAFB GA 31098-1647 PH:(912)-926-9881 Fax:(912)-328-1647	MR STEPHAN VERHOEVEN USAFA 2354 FAIRCHILD DR RM 2J2A USAFA CO 80840-0001 PH:(819)-333-2944	LT COL MARINUS VOS ROYAL NETHERLANDS AIR FORCE OO-ALC/LFA-NE 6061 GUM LN HILL AFB UT 84056-0001 PH:(801)-777-7741 Fax:(801)-773-7250	MR RAYMOND WALDBUSSER US AIR FORCE WR-ALC/LBRA 265 OCMULGEE CT ROBINS AFB GA 31098-1647 PH:(912)-926-9602 Fax:(912)-926-2211 MR CHARLES WARREN ALCOA 101 TECHNICAL DR M/S A-DE ALCOA CTR PA 15069-0001 PH:(412)-337-5417 Fax:(412)-337-4075	MR TOMMY WHITE US NAVY NORTH ISLAND PO BOX 357058 SAN DIEGO CA 92135-7058 PH:(619)-545-4765
MR DANA VANA BOEING EAST MARGINAL WAY M/S 41-14 SEATTLE WA 98124-0001 PH:(206)-655-6475 Fax:(206)-655-0315	DR CHANDRASEKARAN VENKATESAN UNIVERSITY OF UTAH 50 S CENTRAL CAMPUS DR RM 2202, MEB SALT LAKE CITY UT 84112-0001 PH:(801)-581-4025	DR AD VLOT UT DELFT PO BOX 5058 2600 GB DELFT NETHERLANDS	MR GARY WAGGONER USAF BLDG 652 STE 1 2179 TWELFTH ST WRIGHT-PATTERSON AFB OH 45433-7718 PH:(937)-255-4651 Fax:(937)-476-4419 MR DOUG WALLING NADEP AV-8B IN SERVICE SUPPORT TEAM PSC 8021 MCAS CHERRY POINT NC 28533-0021 PH:(919)-466-8517 Fax:(919)-466-8502	MR GREG WEITZ LOCKHEED MARTIN M/S D/73-25 Z0160 86 S COBB DR MARIETTA GA 30063-0001 PH:(770)-494-6990 Fax:(770)-494-8478

MR RICHARD WOLF	MR ARCHIE WOODS	DR HSING YEH	MR GREGORY YOUNG
BOEING PROD SUPPORT DIV	USAF ASC/ENFS	USAF ASC/ENFS	ROYAL AUSTRALIAN AIR FORCE
M/S K86-92	BLDG 206	BLDG 125	NATL RES COUNCIL
PO BOX 7730	2530 LOOP RD W	2530 LOOP RD W	BLDG M-14 MONTREAL RD
WICHITA KS 67277-7730	WRIGHT-PATTERSON AFB OH 45433-7101	WRIGHT-PATTERSON AFB OH 45433-7101	OTTAWA ONTARIO CANADA K1M-1G7
PH:(316)-526-8220 Fax:(316)-523-2972	РН:(937)-255-6583 Fax:(937)-656-4546	PH:(937)-255-8547 Fax:(937)-656-4546	РН:(613)-990-5019 Fax:(613)-952-7136
MR JESS YOUNG	DR MASOOD ZAIDI	MR DAVID ZAVITZ	MR MICHAEL ZEIGLER
OGDEN ALC/LACM	BOEING	BOMBARDIER INC CANADAIR	USAF WL/VASE
7278 4TH ST	2401 E WARDLOW RD	796 - F/A-18 ENGR	BLDG 45
HILL AFB UT 84056-5205	MS C071-0013	10000 CARGO RD A-4	2790 D ST RM 504
PH:(801)-777-5262 Fax:(801)-777-9482	LONG BEACH CA 90807-4418	MIRABEL QUEBEC CANADA J7N-1H3	WRIGHT-PATTERSON AFB OH 45433-7402
	PH:(562)-593-9569 Fax:(562)-593-8092	PH:(514)-476-4597 Fax:(514)-476-4416	PH:(937)-255-6104 Fax:(937)-656-4999
MR MIRKO ZGELA	MR BOB ZIMMERMAN	MR ERIC ZIMMERMAN	
MARTEC LTD	BOEING	NAVAIR	
221 FREEMAN RD	2401 E WARDLOW (C078-0209)	48110 SHAW RD	
STE 150	LONG BEACH CA 90807-0001	· M/S 5	

HULL QUEBEC CANADA J8Z 2A8-0001 PH:(819)-595-3526 Fax:(819)-595-1739

PATUXENT RIVER MD 20670-1906 PH:(301)-342-9324 Fax:(301)-342-9402

PH:(562)-593-1124 Fax:(562)-982-7367