Corrigé du devoir maison 6.

Partie 1 : définition géométrique du nombre d'or

1°) On note L' et ℓ' la longueur et la largeur du 2e rectangle.

Les mesures des côtés de ce rectangle sont ℓ et $L-\ell$.

Or $\ell > \frac{L}{2}$ donc $-\ell < -\frac{L}{2}$ d'où $L - \ell < \frac{L}{2}$ d'où $L - \ell < \ell$. Ainsi, $\ell' = L - \ell$ et $L' = \ell$.

$$\frac{L'}{\ell'} = \frac{\ell}{L - \ell} = \frac{1}{\frac{L}{\ell} - 1} = \frac{1}{\varphi - 1}.$$

$$\text{Or } \frac{L'}{\ell'} = \varphi, \text{ d'où } \varphi = \frac{1}{\varphi - 1} \text{ ie } \varphi(\varphi - 1) = 1.$$

$$\text{On en déduit que : } \varphi^2 - \varphi - 1 = 0.$$

2°) Le trinôme $X^2 - X - 1$ admet pour discriminant $\Delta = 1 + 4 = 5$.

Ses racines sont : $\frac{1-\sqrt{5}}{2}$ et $\frac{1+\sqrt{5}}{2}$. Or $\varphi > 0$ et $\frac{1-\sqrt{5}}{2} < 0$ donc $\left| \varphi = \frac{1+\sqrt{5}}{2} \right|$.

Partie 2: Une suite convergente vers φ

- **3°) a)** On pose, pour tout $n \in \mathbb{N}$, H_n : le réel u_n existe, $u_n > 0$ et $u_n \in \mathbb{Q}$.
 - \star H_0 est vraie.
 - \bigstar Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie.

 $u_n > 0$ donc $u_n \neq 0$ donc u_{n+1} existe.

 $u_{n+1} = 1 + \frac{1}{u_n} > 0$ comme somme de deux réels strictement positifs.

De plus, $u_n \in \mathbb{Q}$ donc $\frac{1}{u_n} \in \mathbb{Q}$ d'où $u_{n+1} = 1 + \frac{1}{u_n} \in \mathbb{Q}$.

(L'ensemble \mathbb{Q} est stable par passage à l'inverse et pour la loi +).

Ainsi, H_{n+1} est vraie.

- **\star** On a montré par récurrence que : pour tout $n \in \mathbb{N}$, u_n existe, $u_n > 0$ et $u_n \in \mathbb{Q}$.
- **b)** Calcul de u_1, u_2, u_3, u_4, u_5 :

$$u_{1} = 1 + \frac{1}{u_{0}} = 1 + \frac{1}{1} = 2 \qquad u_{2} = 1 + \frac{1}{u_{1}} = 1 + \frac{1}{2} = \frac{3}{2} \qquad u_{3} = 1 + \frac{2}{3} = \frac{5}{3}$$

$$u_{4} = 1 + \frac{3}{5} = \frac{8}{5} \qquad u_{5} = 1 + \frac{5}{8} = \frac{13}{8}$$
On a:
$$u_{1} = 2, u_{2} = \frac{3}{2}, u_{3} = \frac{5}{3}, u_{4} = \frac{8}{5}, u_{5} = \frac{13}{8}.$$

Remarque : on a les écritures « étagées » :

$$u_1 = 1 + \frac{1}{1}$$
 $u_2 = 1 + \frac{1}{1 + \frac{1}{1}}$ $u_3 = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}$ etc...

 $\mathbf{4}^{\circ}$) f est dérivable sur \mathbb{R}_{+}^{*} comme somme de fonctions dérivables.

Pour tout
$$x > 0$$
, $f'(x) = -\frac{1}{x^2} < 0$.

f est strictement décroissante sur l'intervalle \mathbb{R}_{+}^{*} .

- **5**°) Soit $n \in \mathbb{N}$, $v_{n+1} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = f \circ f(v_n)$ donc $v_{n+1} = f \circ f(v_n)$
- **6°)** On pose, pour tout $n \in \mathbb{N}$, $H_n : v_n \leq v_{n+1} \leq \varphi$.
 - ★ $u_0 = 1$ et $u_2 = \frac{3}{2}$. On a bien $v_0 \le v_1$.

De plus,
$$\varphi - v_1 = \frac{1 + \sqrt{5}}{2} - \frac{3}{2} = \frac{\sqrt{5} - 2}{2}$$
. Comme $4 < 5$, $2 < \sqrt{5}$ donc $\varphi - v_1 \ge 0$.

Ainsi, H_0 est vraie.

 \bigstar Soit $n\in\mathbb{N}$ fixé. On suppose que H_n est vraie.

$$0 < v_n \le v_{n+1} \le \varphi$$
 et f est décroissante sur \mathbb{R}_+^* donc $f(v_n) \ge f(v_{n+1}) \ge f(\varphi)$.

En réutilisant la décroissance de $f: f(f(v_n)) \leq f(f(v_{n+1})) \leq f(f(\varphi))$.

Or
$$\varphi = 1 + \frac{1}{\varphi}$$
 donc $f(\varphi) = \varphi$ donc $f(f(\varphi)) = \varphi$.

Donc, en utilisant 5, $v_{n+1} \le v_{n+2} \le \varphi$.

Ainsi, H_{n+1} est vraie.

 \bigstar On a montré par récurrence que, pour tout $n \in \mathbb{N}, H_n$ est vraie.

On a montré que la suite (v_n) est croissante et majorée par φ

7°) La suite (v_n) est croissante et majorée donc la suite (v_n) converge vers un réel ℓ .

 $\ell \geq v_0$ puisque la suite (v_n) est croissante. Ainsi $\ell > 0$.

Or on sait que : $\forall n \in \mathbb{N}, v_{n+1} = (f \circ f)(v_n).$

Comme $f \circ f$ est continue en ℓ (car $\ell \in \mathbb{R}_+^*$), d'après un théorème du cours, $\ell = f \circ f(\ell)$.

Ce qui s'écrit successivement :

$$1 + \frac{1}{1 + \frac{1}{\ell}} = \ell$$

$$1 + \frac{\ell}{\ell + 1} = \ell$$

$$\frac{2\ell + 1}{\ell + 1} = \ell$$

$$2\ell + 1 = \ell^2 + \ell$$

$$\ell^2 - \ell - 1 = 0$$

Donc, puisque $\ell > 0, \, \ell = \varphi$ par le calcul fait en question 2.

Ainsi, la suite (v_n) i.e. la suite (u_{2n}) converge vers φ

 $8^{\circ}) \ \forall n \in \mathbb{N}, \ u_{2n+1} = f(u_{2n}).$

 (u_{2n}) converge vers φ et f est continue en φ donc $u_{2n+1} \underset{n \to +\infty}{\longrightarrow} f(\varphi)$.

Or $f(\varphi) = \varphi$ donc la suite (u_{2n+1}) converge vers φ .

9°) La suite des termes d'indices pairs de u et la suite des termes d'indices impairs de u convergent vers une même limite φ .

Ainsi la suite (u_n) converge vers φ .

De plus, pour tout $n \in \mathbb{N}$, $u_{2n} \leq \varphi$ par la question 6.

Donc, par décroissance de $f: f(u_{2n}) \geq f(\varphi)$.

Or $f(\varphi) = \varphi$ et $f(u_{2n}) = u_{2n+1}$ donc $u_{2n+1} \ge \varphi$.

Finalement, pour tout $n \in \mathbb{N}$, $u_{2n} \leq \varphi \leq u_{2n+1}$

Partie 3 : Étude de deux suites d'entiers

- **10°)** Pour tout $n \in \mathbb{N}$, on pose $H_n : p_n \in \mathbb{N}^*$, $q_n \in \mathbb{N}^*$, $u_n = \frac{p_n}{q_n}$.
 - \star H_0 est vraie.
 - \bigstar Soit $n\in\mathbb{N}$ fixé. On suppose que H_n est vraie.

 p_n et q_n sont dans \mathbb{N}^* donc $p_{n+1} = p_n + q_n \in \mathbb{N}^*$ et $q_{n+1} = p_n \in \mathbb{N}^*$.

De plus, $u_{n+1} = 1 + \frac{1}{u_n} = 1 + \frac{q_n}{p_n}$ par H_n .

Donc $u_{n+1} = \frac{p_n + q_n}{p_n} = \frac{p_{n+1}}{q_{n+1}}$ par définition des suites p et q.

Ainsi, H_{n+1} est vraie.

- \bigstar On a montré par récurrence que : $\forall n \in \mathbb{N}, p_n \in \mathbb{N}^*, q_n \in \mathbb{N}^*, u_n = \frac{p_n}{q_n}$.
- 11°) $\forall n \in \mathbb{N}, p_{n+1} p_n = q_n$. Or $q_n \in \mathbb{N}^*$ par la question 10 donc $p_{n+1} p_n > 0$.

Ainsi, la suite (p_n) est croissante.

 $\forall n \in \mathbb{N}^*, q_{n+1} - q_n = p_n - p_{n-1} \ge 0$ par ce qui précède.

De plus, $q_1 - q_0 = p_0 - p_0 = 0$.

Ainsi, la suite (q_n) est croissante.

12°) Soit $n \in \mathbb{N}$.

$$q_{n+2} \ge 2q_n \iff p_{n+1} \ge 2q_n$$

$$\iff p_n + q_n \ge 2q_n$$

$$\iff p_n \ge q_n$$

$$\iff q_{n+1} \ge q_n$$

Or la suite q est croissante donc $q_{n+1} \ge q_n$ d'où $q_{n+2} \ge 2q_n$.

On a montré : $\forall n \in \mathbb{N}, q_{n+2} \geq 2q_n$

- 13°) Pour tout $n \in \mathbb{N}$, on pose $H_n : \alpha_n \leq \frac{1}{2^n}$.
 - \star $\alpha_0 = \frac{1}{q_0 q_1} = 1 \le \frac{1}{2^0}$ donc H_0 est vraie.
 - \bigstar Soit $n\in\mathbb{N}$ fixé. On suppose que H_n est vraie.

$$\alpha_{n+1} = \frac{1}{q_{n+1}q_{n+2}}.$$

Par la question précédente, $q_{n+2} \ge 2q_n$ et les termes sont strictement positifs par la question 10.

Donc $\frac{1}{q_{n+2}} \le \frac{1}{2q_n}$. Comme $\frac{1}{q_{n+1}} > 0$, il vient : $\frac{1}{q_{n+1}q_{n+2}} \le \frac{1}{2q_nq_{n+1}}$.

Ce qui s'écrit : $\alpha_{n+1} \leq \frac{\alpha_n}{2}$ donc, par H_n , $\alpha_{n+1} \leq \frac{1}{2^{n+1}}$. Ainsi, H_{n+1} est vraie.

- \bigstar On a montré par récurrence que : $\forall n \in \mathbb{N}, \ \alpha_n \leq \frac{1}{2^n}$
- 14°) Pour tout $n \in \mathbb{N}$, on pose $H_n : p_{n+1}q_n p_nq_{n+1} = (-1)^n$.
 - ★ $p_0 = q_0 = 1$ donc $p_1 = 2$ et $q_1 = 1$. $p_1q_0 - p_0q_1 = 2 \times 1 - 1 \times 1 = 1 = (-1)^0$ donc H_0 est vraie.
 - \star Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie.

$$p_{n+2}q_{n+1} - p_{n+1}q_{n+2} = (p_{n+1} + q_{n+1})p_n - (p_n + q_n)p_{n+1}$$
 par définition des suites p et q

$$= p_{n+1}p_n + q_{n+1}p_n - p_np_{n+1} - p_{n+1}q_n$$

$$= -(p_{n+1}q_n - p_nq_{n+1})$$

$$= -(-1)^n$$
 par H_n

$$= (-1)^{n+1}$$

Ainsi, H_{n+1} est vraie.

- ***** On a montré par récurrence que : $\forall n \in \mathbb{N}, p_{n+1}q_n p_nq_{n+1} = (-1)^n$.
- **15°)** \star On a vu, par la question 9, que : $\forall p \in \mathbb{N}, u_{2p} \leq \varphi \text{ et } \forall p \in \mathbb{N}, \varphi \leq u_{2p+1}$. Soit $n \in \mathbb{N}$.
 - Si n est pair, il s'écrit n=2p avec $p \in \mathbb{N}$, donc, d'après ci-dessus : $u_n \leq \varphi \leq u_{n+1}$. Donc $0 \leq \varphi - u_n \leq u_{n+1} - u_n$. On en tire que $|u_n - \varphi| = \varphi - u_n$, que $|u_{n+1} - u_n| = u_{n+1} - u_n$ et que $|u_n - \varphi| \leq |u_{n+1} - u_n|$.
 - Si n est impair, il s'écrit n=2p+1 avec $p\in\mathbb{N}$. D'après ci-dessus, $u_{2p+2}\leq \varphi$ et $\varphi\leq u_{2p+1}$, i.e. $u_{n+1}\leq \varphi\leq u_n$. D'où $u_{n+1}-u_n\leq \varphi-u_n\leq 0$ puis $0\leq u_n-\varphi\leq u_n-u_{n+1}$.

On en tire que $|u_n - \varphi| = u_n - \varphi$, que $|u_{n+1} - u_n| = u_n - u_{n+1}$ et que $|u_n - \varphi| \le |u_{n+1} - u_n|$. Finalement, dans les deux cas, $|u_n - \varphi| \le |u_{n+1} - u_n|$.

★ Soit $n \in \mathbb{N}$. $u_{n+1} - u_n = \frac{p_{n+1}}{q_{n+1}} - \frac{p_n}{q_n} = \frac{p_{n+1}q_n - p_nq_{n+1}}{q_nq_{n+1}} = \frac{(-1)^n}{q_nq_{n+1}}$ par la question 14.

Comme la suite q est strictement positive, on en tire $|u_{n+1} - u_n| = \frac{1}{q_n q_{n+1}} = \alpha_n$.

Par la question 13, $\alpha_n \leq \frac{1}{2^n}$ donc $|u_{n+1} - u_n| \leq \frac{1}{2^n}$.

- \bigstar On a montré : $\forall n \in \mathbb{N}, |u_n \varphi| \leq |u_{n+1} u_n| \leq \frac{1}{2^n}$
- **16°)** Soit $n \in \mathbb{N}$. On a $u_n \in \mathbb{Q}$; cherehons à avoir $|u_n \varphi| \leq 10^{-2}$.

Comme $|u_n - \varphi| \le \frac{1}{2^n}$, il <u>suffit</u> que $\frac{1}{2^n} \le 10^{-2}$, i.e. que $100 \le 2^n$ (puisque $2^n > 0$ et 100 > 0).

Comme $2^7=128>100,\,n=7$ convient. Calculons $u_7=\frac{p_7}{q_7}$ à l'aide d'un tableau :

n	0	1	2	3	4	5	6	7
p_n	1	2	3	5	8	13	21	34
q_n	1	1	2	3	5	8	13	21

Ainsi, $u_7 = \frac{34}{21}$ est une approximation rationnelle de φ à 10^{-2} près.