Структура кристалів

Андрій Жугаєвич (azh@lanl.gov) 30 квітня 2012 р.

1	Вст	уп
	1.1	Номенклатура кристалічних структур
	1.2	Задання кристалічної структури
	1.3	Характеристики кристалічних структур
	1.4	Гексагональні щільноупаковані структури
2	Еле	менти квантової хімії
	2.1	Типи зв'язку
	2.2	Ковалентний зв'язок
	2.3	Гібридизація орбіталей
3	При	инципи будови кристалів
	3.1	Основні закономірності будови кристалів
	3.2	Кристали з ковалентним зв'язком
	3.3	Кристали з металічним зв'язком
	3.4	Іонні кристали
	3.5	Молекулярні кристали
4	При	клади кристалічних структур
	4.1	Кристалічні структури одноелементних речовин
Література		

§1. Вступ

1.1. Номенклатура кристалічних структур

В силу нескінченної кількості різних типів кристалічних структур немає і єдиної системи їх позначень. Найпростішим є використання загальноприйнятих назв або npomomunie, наприклад, Си має кубічну гранецентровану гратку, Si — гратку типу алмазу, GaAs — гратку типу сфалериту. Найпоширеніші в природі кристалічні структури описані в системі так званих $cmpy\kappa mypnux$ munie (Strukturbericht). Символ структурного типу складається з типу хімічної формули (A — елементи, B — сполуки виду AB, C — сполуки AB_2 , D — сполуки AnB_m , E-K — складніші сполуки, L — сплави, О — органіка, S — силікати) і порядкового номера для цього типу. Наприклад, структурні типи згаданих вище кристалів такі: Cu — A1, Si — A4, GaAs — B3. Часто використовують так званий cumeon Ilipcona: тип гратки Браве і кількість атомів на елементарну комірку Браве, наприклад, Cu — cF4, Si — cF8, GaAs — cF8, проте сам по собі він дає дуже обмежену інформацію.

1.2. Задання кристалічної структури

Найтривіальнішим способом однозначної специфікації кристалу є задання примітивної комірки і розташування атомів у ній. Інформативнішим є визначення наступного набору: 1) просторова група; 2) незалежні параметри гратки Браве; 3) положення атомів у формі позицій Уайкофа (так званий елементарний фрагмент кристалу). Наприклад,

- Cu Fm $\bar{3}$ m, a = 3.615 A, [Cu (4a)];
- Si Fd $\bar{3}$ m, a=5.431 A, [Si (8a)] (початок відліку в точці інверсії 1);
- GaAs $\overline{F43m}$, $a = 5.653 \,\text{A}$, [Ga (4a), As (4c)].

 $^{^{1}}$ Для деяких груп з неоднозначним вибором елементарної комірки треба фіксувати вибір останньої.