VLSI Physical Design: From Graph Partitioning to Timing Closure

Chapter 3 – Chip Planning

Original Authors:

Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu

Chapter 3 – Chip Planning

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
- 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
- 3.6 Pin Assignment
- 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

Example

Given: Three blocks with the following potential widths and heights

Block A:
$$w = 1$$
, $h = 4$ or $w = 4$, $h = 1$ or $w = 2$, $h = 2$

Block B:
$$w = 1$$
, $h = 2$ or $w = 2$, $h = 1$

Block C:
$$w = 1$$
, $h = 3$ or $w = 3$, $h = 1$

Task: Floorplan with minimum total area enclosed

Example

Given: Three blocks with the following potential widths and heights

Block A:
$$w = 1$$
, $h = 4$ or $w = 4$, $h = 1$ or $w = 2$, $h = 2$

Block B: w = 1, h = 2 or w = 2, h = 1

Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Example

Given: Three blocks with the following potential widths and heights

Block A:
$$w = 1$$
, $h = 4$ or $w = 4$, $h = 1$ or $w = 2$, $h = 2$

Block *B*: w = 1, h = 2 or w = 2, h = 1

Block C: w = 1, h = 3 or w = 3, h = 1

Task: Floorplan with minimum total area enclosed

Solution:

Aspect ratios

Block A with w = 2, h = 2; Block B with w = 2, h = 1; Block C with w = 1, h = 3

This floorplan has a global bounding box with minimum possible area (9 square units).

3.2 Optimization Goals in Floorplanning

- Area and shape of the global bounding box
 - Global bounding box of a floorplan is the minimum axis-aligned rectangle that contains all floorplan blocks.
 - Area of the global bounding box represents the area of the top-level floorplan
 - Minimizing the area involves finding (x,y) locations, as well as shapes, of the individual blocks.
- Total wirelength
 - Long connections between blocks may increase signal propagation delays in the design.
- Combination of area area(F) and total wirelength L(F) of floorplan F
 - Minimize $\alpha \cdot area(F) + (1 \alpha) \cdot L(F)$ where the parameter $0 \le \alpha \le 1$ gives the relative importance between area(F) and L(F)
- Signal delays
 - Static timing analysis is used to identify the interconnects that lie on critical paths.

- A rectangular dissection is a division of the chip area into a set of *blocks* or non-overlapping rectangles.
- A slicing floorplan is a rectangular dissection
 - Obtained by repeatedly dividing each rectangle, starting with the entire chip area, into two smaller rectangles
 - Horizontal or vertical cut line.
- A slicing tree or slicing floorplan tree is a binary tree with k leaves and k 1 internal nodes
 - Each leaf represents a block
 - Each internal node represents a horizontal or vertical cut line.

Slicing floorplan and two possible corresponding slicing trees

Polish expression

- Bottom up: V → * and H → *
- Length 2n-1 (n = Number of leaves of the slicing tree)

Non-slicing floorplans (wheels)

Floorplan tree: Tree that represents a hierarchical floorplan

- Horizontal division
 (objects to the top and bottom)

 Vertical division
 (objects to the left and right)
- Wheel (4 objects cycled around a center object)

- In a vertical constraint graph (VCG), node weights represent the heights of the corresponding blocks.
 - Two nodes v_i and v_j , with corresponding blocks m_i and m_j , are connected with a directed edge from v_i to v_j if m_i is below m_j .
- In a horizontal constraint graph (HCG), node weights represent the widths
 of the corresponding blocks.
 - Two nodes v_i and v_j , with corresponding blocks m_i and m_j , are connected with a directed edge from v_i to v_i if m_i is to the left of m_i .
- The longest path(s) in the VCG / HCG correspond(s) to the minimum vertical / horizontal floorplan span required to pack the blocks (floorplan height / width).
- A constraint-graph pair is a floorplan representation that consists of two directed graphs – vertical constraint graph and horizontal constraint graph – which capture the relations between block positions.

Constraint graphs

Horizontal Constraint Graph

Sequence pair

- Two permutations represent geometric relations between every pair of blocks
- Example: (ABDCE, CBAED)

Horizontal and vertical relations between blocks A and B:

$$(\dots A \dots B \dots, \dots A \dots B \dots) \rightarrow A$$
 is left of B
 $(\dots A \dots B \dots, \dots B \dots A \dots) \rightarrow A$ is above B
 $(\dots B \dots A \dots, \dots A \dots B \dots) \rightarrow A$ is below B
 $(\dots B \dots A \dots, \dots B \dots A \dots) \rightarrow A$ is right of B

3.4 Floorplan Representations

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- → 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
 - 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
 - 3.6 Pin Assignment
 - 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

3.4.1 Floorplan to a Constraint-Graph Pair

- Create nodes for every block
- In addition, create a source node and a sink one

3.4.1 Floorplan to a Constraint-Graph Pair

- Create nodes for every block.
- In addition, create a source node and a sink one.
- Add a directed edge (A,B) if Block A is below/left of Block B. (HCG)

3.4.1 Floorplan to a Constraint-Graph Pair

- Create nodes for every block.
- In addition, create a source node and a sink one.
- Add a directed edge (A,B) if Block A is below/left of Block B. (HCG)
- Remove the redundant edges that can be derived from other edges by transitivity.

3.4.2 Floorplan to a Sequence Pair

- Given two blocks A and B with
 - Locations: $A = (x_A, y_A)$ and $B = (x_B, y_B)$
 - Dimensions: $A = (w_A, h_A)$ and $B = (w_B, h_B)$
- If $x_A + w_A \le x_B$ and $!(y_A + h_A \le y_B)$ or $y_B + h_B \le y_A$, then A is **left of** B
- If $y_A + h_A \le y_B$ and $!(x_A + w_A \le x_B)$ or $x_B + w_B \le x_A$, then A is **below** B

$$S_+ :< acdbe >$$

$$S_{-} :< cdaeb >$$

- Start with the bottom left corner.
- Define a weighted sequence as a sequence of blocks based on width
 - Each block B has its own width w(B)
- Old (traditional) algorithm: find the longest path through edges $(O(n^2))$
- Newer approach: find the longest common subsequence (LCS)
 - Given two weighted sequences S_1 and S_2 , the $LCS(S_1, S_2)$ is the longest sequence found in both S_1 and S_2
 - The length of $LCS(S_1, S_2)$ is the sum of weights
- For block placement:
 - $LCS(S_+, S_-)$ returns the x-coordinates of all blocks
 - $LCS(S_+^R, S_-)$ returns the y-coordinates of all blocks (S_+^R) is the reverse of S_+
 - The length of $LCS(S_+, S_-)$ and $LCS(S_+^R, S_-)$ is the width and height, respectively

```
Algorithm: Longest Common Subsequence (LCS)
       sequences S_1 and S_2, weights of n blocks weights
Input:
Output: positions of each block positions, total span L
1. for (i = 1 \text{ to } n)
                                                            // initialization
2. block\_order[S_2[i]] = i
3.
     lengths[i] = 0
4. for (i = 1 \text{ to } n)
5. block = S_1[i]
                                                            // current block
    index = block order[block]
    positions[block] = lengths[index]
7.
                                                            // compute block position
8.
     t span = positions[block] + weights[block]
                                                            // finds length of sequence
                                                            // from beginning to block
9.
     for (j = index to n)
                                                             // update total length
10.
         if (t span > lengths[i]) lengths[i] = t span
11.
          else break
12. L = lengths[n]
                                                             // total length is stored here
```

Example:
$$S_1 = \langle acdbe \rangle$$
, $S_2 = \langle cdaeb \rangle$, widths[a b c d e] = [8 4 4 4 4], heights[a b c d e] = [4 2 5 5 6]

Find *x*-coordinates – go by S_1 's order:

```
Initial:
                   block order[a b c d e] = [3 5 1 2 4],
                                                        lengths = [0 0 0 0 0]
Iteration 1 - block = a, index = 3:
   positions[a] = lengths[3] = 0,  t span = 8,
                                                        lengths = [0 0 8 8 8]
Iteration 2 – block = c, index = 1:
                                                        lengths = [4 4 8 8 8]
   positions[c] = lengths[1] = 0,
                                      t span = 4,
Iteration 3 - block = d, index = 2:
   positions[d] = lengths[2] = 4
                                      t span = 8,
                                                        lengths = [4 8 8 8 8]
Iteration 4 – block = b, index = 5:
                                      t span = 12, lengths = [4 8 8 8 12]
   positions[b] = lengths[5] = 8.
Iteration 5 – block = e, index = 4:
                                      t span = 12, lengths = [4 8 8 12 12]
   positions[e] = lengths[4] = 8,
positions[a b c d e] = [0 8 0 4 8].
                                      total width = lengths[n = 5] = 12
```

Example:
$$S_1 = \langle acdbe \rangle$$
, $S_2 = \langle cdaeb \rangle$, widths[a b c d e] = [8 4 4 4 4], heights[a b c d e] = [4 2 5 5 6]

Find *y*-coordinates – go by S_1^R 's order:

```
Initial:
                   block order[a b c d e] = [3 5 1 2 4],
                                                          lengths = [0\ 0\ 0\ 0\ 0]
Iteration 1 - block = e, index = 4:
   positions[e] = lengths[4] = 0, t span = 6,
                                                          lengths = [0 0 0 6 6]
Iteration 2 – block = b, index = 5:
                                       t span = 9,
                                                          lengths = [0 0 0 6 9]
   positions[b] = lengths[5] = 6,
Iteration 3 - block = d, index = 2:
   positions[d] = lengths[2] = 0,
                                       t span = 5,
                                                          lengths = [0 5 5 6 9]
Iteration 4 - block = c, index = 1:
                                                          lengths = [5 5 5 6 9]
   positions[c] = lengths[1] = 0
                                       t span = 5,
Iteration 5 – block = a, index = 3:
                                       t span = 9,
                                                         lengths = [5 5 9 9 9]
   positions[a] = lengths[3] = 5
positions[a b c d e] = [5 6 0 0 0].
                                       total height = lengths[n = 5] = 9
```

3.5 Floorplanning Algorithms

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
- 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
 - 3.6 Pin Assignment
 - 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

3.5 Floorplanning Algorithms

Common Goals

 To minimize the total length of interconnect, subject to an upper bound on the floorplan area

or

To simultaneously optimize both wire length and area

Shape functions

$$h * w \ge A$$

Block with minimum width and height restrictions

Shape functions

Discrete (h,w) values

Hard library block

3.5.1 Floorplan Sizing

Corner points

3.5.1 Floorplan Sizing

Algorithm

This algorithm finds the **minimum floorplan area** for a given slicing floorplan in polynomial time. For non-slicing floorplans, the problem is NP-hard.

- Construct the shape functions of all individual blocks
- Bottom up: Determine the shape function of the top-level floorplan from the shape functions of the individual blocks
- Top down: From the corner point that corresponds to the minimum top-level floorplan area, trace back to each block's shape function to find that block's dimensions and location.

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 1: Construct the shape functions of the blocks

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (vertical)

Step 2: Determine the shape function of the top-level floorplan (horizontal)

Minimimum top-level floorplan with horizontal composition

Step 3: Find the individual blocks' dimensions and locations

Horizontal composition

Step 3: Find the individual blocks' dimensions and locations

Horizontal composition

Step 3: Find the individual blocks' dimensions and locations

3.5.2 Cluster Growth

- Iteratively add blocks to the cluster until all blocks are assigned
- Only the different orientations of the blocks instead of the shape / aspect ratio are taken into account
- Linear ordering to minimize total wirelength of connections between blocks

3.5.2 Cluster Growth – Linear Ordering

- New nets have no pins on any block from the partially-constructed ordering
- Terminating nets have no other incident blocks that are unplaced
- Continuing nets have at least one pin on a block from the partially-constructed ordering and at least one pin on an unordered block

3.5.2 Cluster Growth – Linear Ordering

Gain of each block m is calculated:

 $Gain_m = (Number of terminating nets of m) - (New nets of m)$

The block with the maximum gain is selected to be placed next

3.5.2 Cluster Growth – Linear Ordering (Example)

Given:

Netlist with five blocks A, B, C, D, E and six nets

$$N_1 = \{A, B\}$$

$$N_2 = \{A, D\}$$

$$N_3 = \{A, C, E\}$$

$$N_4 = \{B, D\}$$

$$N_5 = \{C, D, E\}$$

$$N_6 = \{D, E\}$$

Initial block: A

Task: Linear ordering with minimum netlength

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3	-	-3	1

Initial block

 $Gain_A$ = (Number of terminating nets of A) – (New nets of A)

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3		-3	
1	В	N_4	N_1	0	
	С	N_5	<u></u>	<u>-</u>	N_3
	D	N_4, N_5, N_6	N_2	-2	
	E	N_4, N_5, N_6 N_5, N_6		-2	N_3

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3	1	-3	
1	B C D E	$N_4 \ N_5 \ N_4, N_5, N_6 \ N_5, N_6$	N ₁ N ₂ 	0 -1 -2 -2	 N ₃ N ₃
2	C D E	$N_{5} \\ N_{5}, N_{6} \\ N_{5}, N_{6}$	 N ₂ ,N ₄ 	102	N ₃ N ₃

Iteration #	Block	New Nets	Terminating Nets	Gain	Continuing Nets
0	A	N_1, N_2, N_3		-3	
1	B C D	$N_4 N_5 N_6$	N ₁ N ₂	0 -1 -2	 N ₃
	E	N_4, N_5, N_6 N_5, N_6		-2	N_3
2	C D E	N_{5} N_{5}, N_{6} N_{5}, N_{6}	 N ₂ ,N ₄ 	-1 0 -2	N ₃ N ₃
3	OE		 N ₆	0 1	$N_3, N_5 N_3, N_5$
4	С		N_3, N_5	2	

3.5.2 Cluster Growth – Linear Ordering (Example)

3.5.2 Cluster Growth – Algorithm

```
Input: set of all blocks M, cost function COutput: optimized floorplan F based on C
```

```
F = \emptyset
order = LINEAR\_ORDERING(M) // generate linear ordering

for (i = 1 \text{ to } |order|)
curr\_block = order[i]
ADD\_TO\_FLOORPLAN(F,curr\_block,C) // find location and orientation
// of curr\_block that causes
// smallest increase based on
// C while obeying constraints
```

3.5.2 Cluster Growth

Analysis

- The objective is to minimize the total wirelength of connections blocks
- Though this produces mediocre solutions, the algorithm is easy to implement and fast.
- Can be used to find the initial floorplan solutions for iterative algorithms such as simulated annealing.

Introduction

- Simulated Annealing (SA) algorithms are iterative in nature.
- Begins with an initial (arbitrary) solution and seeks to incrementally improve the objective function.
- During each iteration, a local neighborhood of the current solution is considered. A new candidate solution is formed by a small perturbation of the current solution.
- Unlike greedy algorithms, SA algorithms can accept candidate solutions with higher cost.

What is annealing?

- Definition (from material science): controlled cooling process of high-temperature materials to modify their properties.
- Cooling changes material structure from being highly randomized (chaotic) to being structured (stable).
- The way that atoms settle in low-temperature state is probabilistic in nature.
- Slower cooling has a higher probability of achieving a perfect lattice with minimum-energy
 - Cooling process occurs in steps
 - Atoms need enough time to try different structures
 - Sometimes, atoms may move across larger distances and create (intermediate) higher-energy states
 - Probability of the accepting higher-energy states decreases with temperature

Simulated Annealing

- Generate an initial solution S_{init}, and evaluate its cost.
- Generate a new solution S_{new} by performing a random walk
- S_{new} is accepted or rejected based on the temperature T
 - Higher T means a higher probability to accept S_{new} if $COST(S_{new}) > COST(S_{init})$
 - T slowly decreases to form the final solution
- Boltzmann acceptance criterion, where r is a random number [0,1)

$$e^{\frac{COST(S_{init}) - COST(S_{new})}{T}} > r$$

Simulated Annealing

- Generate an initial solution and evaluate its cost
- Generate a new solution by performing a random walk
- Solution is accepted or rejected based on a temperature parameter T
- Higher T indicates higher probability to accept a solution with higher cost
- T slowly decreases to form the finalized solution.
- Boltzmann acceptance criterion:

$$e^{-\frac{cost(curr_{sol}) - cost(next_{sol})}{T}} > r \\ \\ \frac{curr_{sol} : current \ solution}{next_{soi} : new \ solution \ after \ perturbation}}{T : current \ temperature} \\ \\ r : random \ number \ between \textit{[0,1)} \ from \ normal \ distr.}$$

3.5.3 Simulated Annealing – Algorithm

2011 Springer Verla

3.5.3 Simulated Annealing – Algorithm

```
Input:
          initial solution init sol
Output: optimized new solution curr_sol
T = T_0
                                                        // initialization
i = 0
curr sol = init sol
curr cost = COST(curr sol)
while (T > T_{min})
  while (stopping criterion is not met)
   i = i + 1
   (a_i,b_i) = SELECT_PAIR(curr\_sol)
                                                        // select two objects to perturb
   trial sol = TRY MOVE(a_i,b_i)
                                                        // try small local change
   trial cost = COST(trial sol)
   \triangle cost = trial \ cost - curr \ cost
   if (\triangle cost < 0)
                                                        // if there is improvement,
                                                        // update the cost and
              curr cost = trial cost
              curr sol = MOVE(a_i, b_i)
                                                        // execute the move
   else
              r = RANDOM(0,1)
                                                       // random number [0,1]
              if (r < e^{-\triangle cost/T})
                                                       // if it meets threshold,
                  curr cost = trial cost
                                                       // update the cost and
                  curr\_sol = MOVE(a_i,b_i)
                                                       // execute the move
   T = \alpha \cdot T
                                                        // 0 < \alpha < 1, T reduction
```

3.6 Pin Assignment

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
- 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
- → 3.6 Pin Assignment
 - 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

3.6 Pin Assignment

During pin assignment, all nets (signals) are assigned to unique pin locations such that the overall design performance is optimized.

3.6 Pin Assignment – Example

(2) Determine the points

(2) Determine the points

(3) Determine initial mapping

(3) Determine initial mapping and (4) optimize the mapping (complete rotation)

(3) Determine initial mapping and (4) optimize the mapping (complete rotation)

(4) Best mapping (shortest Euclidean distance)

(4) Best mapping

Pin assignment to an external block B

Pin assignment to two external blocks A and B

- 3.1 Introduction to Floorplanning
- 3.2 Optimization Goals in Floorplanning
- 3.3 Terminology
- 3.4 Floorplan Representations
 - 3.4.1 Floorplan to a Constraint-Graph Pair
 - 3.4.2 Floorplan to a Sequence Pair
 - 3.4.3 Sequence Pair to a Floorplan
- 3.5 Floorplanning Algorithms
 - 3.5.1 Floorplan Sizing
 - 3.5.2 Cluster Growth
 - 3.5.3 Simulated Annealing
 - 3.5.4 Integrated Floorplanning Algorithms
- 3.6 Pin Assignment
- → 3.7 Power and Ground Routing
 - 3.7.1 Design of a Power-Ground Distribution Network
 - 3.7.2 Planar Routing
 - 3.7.3 Mesh Routing

Power-ground distribution for a chip floorplan

Power and ground rings per block or abutted blocks

Trunks connect rings to each other or to top-level power ring

Planar routing

Hamiltonian path

Planar routing

Step 1: Planarize the topology of the nets

As both power and ground nets must be routed on one layer,
 the design should be split using the Hamiltonian path

Step 2: Layer assignment

Net segments are assigned to appropriate routing layers

Step 3: Determining the widths of the net segments

 A segment's width is determined from the sum of the currents from all the cells to which it connects

Planar routing

Adjusting widths of the segments with regard to their current loads

Mesh routing

Step 1: Creating a ring

 A ring is constructed to surround the entire core area of the chip, and possibly individual blocks.

Step 2: Connecting I/O pads to the ring

Step 3: Creating a mesh

A power mesh consists of a set of stripes at defined pitches on two or more layers

Step 4: Creating Metal1 rails

Power mesh consists of a set of stripes at defined pitches on two or more layers

Step 5: Connecting the Metal1 rails to the mesh

Mesh routing

Summary of Chapter 3 – Objectives and Terminology

- Traditional floorplanning
 - Assumes area estimates for top-level circuit modules
 - Determines shapes and locations of circuit modules
 - Minimizes chip area and length of global interconnect
- Additional aspects
 - Assigning/placing I/O pads
 - Defining channels between blocks for routing and buffering
 - Design of power and ground networks
 - Estimation and optimization of chip timing and routing congestion
- Fixed-outline floorplanning
 - Chip size is fixed, focus on interconnect optimization
 - Can be applied to individual chip partitions (hierarchically)
- Structure and types of floorplans
 - Slicing versus non-slicing, the wheels
 - Hierarchical
 - Packed
 - Zero-deadspace

Summary of Chapter 3 – Data Structures for Floorplanning

- Slicing trees and Polish expressions
 - Evaluating a floorplan represented by a Polish expression
- Horizontal and vertical constraint graphs
 - A data structure to capture (non-slicing) floorplans
 - Longest paths determine floorplan dimensions
- Sequence pair
 - An array-based data structure that captures the information
 - contained in H+V constraint graphs
 - Makes constraint graphs unnecessary in practice
- Floorplan sizing
 - Shape-function arithmetic
 - An algorithm for slicing floorplans

Summary of Chapter 3 – Algorithms for Floorplanning

- Cluster growth
 - Simple, fast and intuitive
 - Not competitive in practice
- Simulated annealing
 - Stochastic optimization with hill-climbing
 - Many details required for high-quality implementation (e.g., temperature schedule)
 - Difficult to debug, fairly slow
 - Competitive in practice
- Pin assignment
 - Peripheral I/Os versus area-array I/Os
 - Given "ideal locations", project them onto perimeter and shift around, while preserving initial ordering
- Power and ground routing
 - Planar routing in channels between blocks
 - Can form rings around blocks to increase current supplied and to improve reliability
 - Mesh routing