

Norwegian University of Science and Technology Institutt for matematiske fag

MA0301 Elementary discrete mathematics Spring 2017

Exercise set 7

1 Homework Set 7

1 Grimaldi's book (5. ed., Exercises 3.1): solve Ex. 6

Consider the following six subsets of \mathbb{Z} .

$$A = \{2m + 1 \mid m \in \mathbb{Z}\}$$

$$B = \{2n+3 \mid n \in \mathbb{Z}\}$$

$$C = \{2p - 3 \mid p \in \mathbb{Z}\}\$$

$$D = \{3r + 1 \mid r \in \mathbb{Z}\}$$

$$E = \{3s + 2 \mid s \in \mathbb{Z}\}\$$

$$F = \{3t - 2 \mid t \in \mathbb{Z}\}$$

Which of the following statements are true and which are false?

a)
$$A = B$$

b)
$$A = C$$

c)
$$B = C$$

d)
$$D = E$$

e)
$$D = F$$

f)
$$E = F$$

[2] Grimaldi's book (5. ed., Exercises 3.2): solve Ex. 13

Prove or disprove each of the following for sets $A, B \subseteq \mathcal{U}$.

a)
$$\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$$

b)
$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$$

3 Grimaldi's book (5. ed., Exercises 5.1): solve Ex. 2

If $A = \{1, 2, 3\}$, and $B = \{2, 4, 5\}$, give examples of (a) three nonempty relations from A to B; (b) three nonempty relations on A.

4 Grimaldi's book (5. ed., Exercises 5.1): solve Ex. 3

For A, B as in Exercise 2, determine the following: (a) $|A \times B|$; (b) the number of relations from A to B; (c) the number of relations on A; (d) the number of relations from A to B that contain (1,2) and (1,5); (e) the number of relations from A to B that contain exactly five ordered pairs; and (f) the number of relations on A that contain at least seven elements.

- 5 Grimaldi's book (5. ed., Exercises 5.1): solve Ex. 7
 - a) If $A = \{1, 2, 3, 4, 5\}$ and $B = \{w, x, y, z\}$, how many elements are there in $\mathcal{P}(A \times B)$?
 - b) Generalize the result in part (a)
- 6 Grimaldi's book (5. ed., Exercises 5.2): solve Ex. 1

Determine whether or not each of the following relations is a function. If a relation is a function, find its range.

- a) $\{(x,y) \in \mathbb{Z} \mid x,y \in \mathbb{Z}, y = x^2 + 7\}$, a relation from \mathbb{Z} to \mathbb{Z} .
- b) $\{(x,y) \in \mathbb{R} \mid x,y \in \mathbb{R}, y^2 = x\}$, a relation from \mathbb{R} to \mathbb{R} .
- c) $\{(x,y) \in \mathbb{R} \mid x,y \in \mathbb{R}, y = 3x + 1\}$, a relation from \mathbb{R} to \mathbb{R} .
- d) $\{(x,y) \in \mathbb{Q} \mid x,y \in \mathbb{Q}, x^2 + y^2 = 1\}$, a relation from \mathbb{Q} to \mathbb{Q} .
- e) \mathcal{R} is a relation from A to B where |A| = 5, |B| = 6, and $|\mathcal{R}| = 6$.
- 7 Grimaldi's book (5. ed., Exercises 5.2): solve **Ex. 5**

Let $A, B, C \subseteq \mathbb{R}^2$ where $A = \{(x, y) \mid y = 2x + 1\}, B = \{(x, y) \mid y = 3x\}, \text{ and } C = \{(x, y) \mid y = x - y = 7\}.$ Determine each of the following:

- a) $A \cap B$
- b) $B \cap C$
- c) $\overline{\overline{A} \cup \overline{C}}$
- d) $\overline{B} \cup \overline{C}$
- 8 Grimaldi's book (5. ed., Exercises 5.2): solve Ex. 15 c), d), f)

For each of the following functions, determine whether it is one-to-one and determine its range.

c)
$$f: \mathbb{Z} \to \mathbb{Z}, f(x) = x^3 - x$$

- d) $f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$
- f) $f:[0,\pi]\to\mathbb{R}, f(x)=\sin x$
- 9 Grimaldi's book (5. ed., Exercises 5.3): solve Ex. 2 b), d), f)

For each of the following functions $f: \mathbb{Z} \to \mathbb{Z}$, determine whether the function is one-to-one and whether it is onto. If the function is not onto, determine the range $f(\mathbb{Z})$.

- b) f(x) = 2x 3
- d) $f(x) = x^2$
- f) $f(x) = x^3$
- 10 Grimaldi's book (5. ed., Exercises 5.3): solve Ex. 3 b), d), f)

For each of the following functions $g: \mathbb{R} \to \mathbb{R}$, determine whether the function is one-to-one and whether it is onto. If the function is not onto, determine the range $g(\mathbb{R})$.

- b) f(x) = 2x 3
- d) $f(x) = x^2$
- f) $f(x) = x^3$
- 11 Grimaldi's book (5. ed., Exercises 5.6): solve Ex. 5

If \mathcal{U} is a given universe with (fixed) $S, T \in \mathcal{U}$, define $g : \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ by $g(A) = T \cap (S \cup A)$ for $A \subseteq \mathcal{U}$. Prove that $g^2 = g$.

12 Grimaldi's book (5. ed., Exercises 5.6): solve Ex. 10 b), d)

For each of the following functions $f: \mathbb{R} \to \mathbb{R}$, determine whether f is invertible, and, if so, determine f^{-1} .

- b) $f : \{(x,y) \mid ax + by = c, b \neq 0\}$
- d) $f: \{(x,y) \mid y = x^4 + x\}$
- 13 Grimaldi's book (5. ed., Exercises 5.6): solve Ex. 14 b), c), f)

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. For each of the following subsets B of \mathbb{R} , find $f^{-1}(B)$.

b) $B = \{-1, 0, 1\}$

- c) B = [0, 1]
- f) $B = (0,1] \cup (4,9)$