

Título do Trabalho de Projecto

Fernando Pessoa *Ricardo Reis*

Licenciatura em Engenharia Informática e de Computadores Projecto e Seminário

Orientadores: *Álvaro de Campos*

Alberto Caeiro, SoftCompany

Apresentação * * Maio de 2015

Sumário

Introdução

O Problema

A Solução

Grande Ideia 1

Grande Ideia 2

Resultados Obtidos

Conclusões Trabalho Futuro Introdução O Problema A Solução Grande Ideia 1 Grande Ideia 2 Resultados Obtidos Conclusões

Introdução

Cenários típicos de manipulação de dados (figura)

Os dados (lista enumerada):

- organizados em n padrões, exemplos ou instâncias
- cada padrão tem d características (dimensionalidade)
- podem ser manipulados com diferentes propósitos/objetivos

O Problema: conceitos

Exemplos de dados de baixa dimensionalidade e com AD (tabela):

- d dimensões, c classes, n padrões
- em baixa dimensionalidade, n > d ou $n \gg d$
- com AD, tipicamente tem-se $d \gg n$

Conjunto	d	С	n	Tipo de Dados Problema		
Car	6	4	1728	Automóveis	Possibilidade de Compra	
Pima	8	2	768	Clínicos	Deteção da Diabetes	
Contraceptive	9	2	1473	Clínicos	Método de Contraceção	
Wine	13	3	178	Químicos	Tipo de Vinho	
Hepatitis	19	2	155	Clínicos	Deteção de Hepatite	
Dermatology	34	6	358	Clínicos	Doença de Pele	
Colon	2000	2	62	Exp. Genética	Deteção de Cancro	
SRBCT	2309	4	83	Exp. Genética	Deteção de Cancro	
TOX-171	5748	4	171	Exp. Genética	Deteção de Cancro	
Example1	9947	2	2000	Texto	Assunto da Notícia	
ORL10P	10304	10	100	Faces	Identificação	
11-Tumors	12553	11	174	Exp. Genética	Deteção de Cancro	
Lung-Cancer	12601	5	203	Exp. Genética	Deteção de Cancro	
Dexter	20000	2	2600	Texto	Assunto da Notícia	
GLI-85	22283	2	85	Exp. Genética	Deteção de Cancro	
Dorothea	1000000	2	1950	Clínicos	Deteção de Composto	

Propostas para Seleção: Complexidade

Em termos de complexidade, tem-se para o RFS

$$C_{RFS} = \underbrace{O(nd)}_{Relevancia} + \underbrace{O(d \log d)}_{Ordenacao}$$

RRFS apresenta a complexidade adicional de calcular as semelhanças entre pares

$$C_{RRFS} = \underbrace{O(nd)}_{Relevancia} + \underbrace{O(d \log d)}_{Ordenacao} + \underbrace{O(nm)}_{Redundancia}$$

- RRFS é mais rápido do que outros filtros (FCBF e MRMR)
- Nalguns casos, RRFS é o mais rápido com menos erro
- CFS é o mais lento (inadequado para dados com AD)
- Medidas MAD e MM adequadas para todos os tipos de dados
- Medida AMGM é mais adequada para dados esparsos

odução O Problema A Solução **Grande Ideia 1** Grande Ideia 2 Resultados Obtidos Conclusões

Representação de Dados

Assim, identifica-se a necessidade de:

- encontrar novas formas de representação dos dados
- representar de forma independente da tarefa a jusante
- facilitar a visualização e análise de dados com AD

As técnicas de **seleção** (*feature selection* - FS) e **discretização** (*feature discretization* - FD) realizam essa representação

Seleção

→ escolha de sub-conjuntos de características adequados

Discretização

- → representações discretas de características numéricas
- ightarrow com informação suficiente para aprendizagem
- → ignora ruído e flutuações irrelevantes

Seleção: Taxonomia e Opções Tomadas

Algoritmos de seleção são categorizados como:

- i) filtros (filters)
- ii) envolvimento (wrapper)
- iii) embebidos (embedded)
- iv) híbridos (hybrid)

Escolha inicial \rightarrow filtros não supervisionados e supervisionados

- Baixa complexidade, eficiência e interpretabilidade
- Independentes da tarefa de mineração de dados
- Alguns filtros existentes são:
 - ineficientes (tempo) em dados com AD¹
 - sensíveis ao problema de elevado d, baixo n^2

¹CFS-Correlation-based Feature Selection, MRMR-Maximum Relevance Minimum Redundancy, RELIEF-Recursive Elimination of Features ²FCBF - Fast Correlation-Based Filter

O algoritmo PS

Dados: X: $n \times d$ matrix, n patterns of a d-dimensional training set. m (< d):, maximum number of features to keep.

 M_S : maximum allowed similarity between pairs of features.

Resultado: FeatKeep: an m'-dimensional array (with $m' \leq m$) containing the indexes of the selected features.

 \widetilde{X} : n imes m' matrix, reduced dimensional training set, with features sorted by decreasing relevance.

- 1: Compute the relevance r_i of each feature X_i , for $i \in \{1, \dots, d\}$, using a dispersion measure (MAD, MM, AMGM, or IQR).
- 2: Sort the features by decreasing order of r_i . Let $i_1, i_2, ..., i_d$ be the resulting permutation of $\{1,...,d\}$ (i.e., $r_{i_1} \geq r_{i_2} \geq ... \geq r_{i_d}$).
- 3: FeatKeep[1] = i_1 ; prev=1; next=2;
- 4: **for** f = 2 to d **do**
- $s = S(X_{i_{\epsilon}}, X_{i_{const}});$
- if $s < M_S$ then 6:
- FeatKeep[next] = i_f ; $X_{next} = X_{i_f}$; prev = i_f ; next = next + 1; 7:
- end if 8:
- 9: **if** next=m **then**
- 10: break; {/* We have m features. Break loop. */} 11:

end if 8 / 12

Avaliação Experimental: Relevância

Algoritmo relevance FS (RFS):

- guarda as características com maior relevância
- relevância medida pela dispersão

Para o caso não supervisionado \rightarrow medidas de *relevância* @*rel*:

- Mean absolute difference $MAD_i = \frac{1}{n} \sum_{i=1}^{n} |X_{ii} \overline{X}_i|$
- Mean-median $MM_i = |\overline{X}_i \text{median}(X_i)|$
- Arithmetic mean geometric mean

$$\mathsf{AMGM}_i = rac{1}{n} \sum_{j=1}^n \mathsf{exp}(X_{ij}) / \left(\mathsf{exp}\left(\sum_{j=1}^n X_{ij}\right)
ight)^{rac{1}{n}}$$

Critério de relevância cumulativa $\sum_{f=1}^{m} r_{i_f} / \sum_{i=1}^{d} r_i = c_m / c_d \ge L$, $L \in [0, 8; 0, 95] \rightarrow \text{escolha do número de características } m \ (< d)$

Propostas para Seleção: Resultados Experimentais

- Classificação supervisionada (SVM linear), validação cruzada (10-fold)
- Percentagem de erro de generalização com filtros supervisionados

	RRFS , $M_S = 0.8$			Filtros Supervisionados ³					Base
Conjunto	MM	FiR	MI	RF	CFS	FCBF	FiR	MRMR	Sem FS
Colon	24.2	22.6	24.2	19.4	25.8	22.6	19.4	21.0	21.0
Lymphoma	2.2	2.2	2.2	2.2	N/A	3.3	2.2	22.8	2.2
Leukemia1	5.6	2.8	6.9	6.9	N/A	5.6	4.2	9.7	5.6
B-Tumor1	13.3	12.2	13.3	11.1	N/A	18.9	11.1	25.6	10.0
Leukemia	2.8	12.5	2.8	2.8	N/A	4.2	4.2	8.3	2.8
Example1	2.3	2.2	2.2	3.7	N/A	6.3	2.1	28.3	2.4
B-Tumor2	34.0	22.0	30.0	22.0	N/A	36.0	24.0	42.0	26.0
P-Tumor	7.8	5.9	4.9	7.8	N/A	9.8	7.8	12.7	8.8
L-Cancer	5.9	6.4	4.9	4.9	N/A	6.4	5.4	11.8	5.9
Dexter	6.7	6.0	7.7	9.3	N/A	15.3	6.7	18.0	6.3
Dorothea	25.0	26.0	25.0	N/A	N/A	N/A	25.0	N/A	25.0

³Mutual Information (MI), RELIEF (RF), Correlation-based Feature Selection (CFS), Fast Correlation-based Filter (FCBF), Fishers Ratio (FiR) e Maximum Relevance Minimum Redundancy (MRMR)

Conclusões

- O projeto consistiu em....
- Atingiu-se uma solução ...
- Os métodos propostos foram avaliados:
 - sobre dados de domínio público
 - comparativamente com métodos existentes em implementações de domínio público
- Os métodos propostos complementam os existentes, podendo ser combinados entre si

Trabalho Futuro

Perspetivam-se as direções de trabalho futuro:

• Melhorar a proposta de ...

• Explorar o afinamento dos parâmetros ...

• .

Slides elaborados em LATEX com o package BEAMER.