

STK-IN4300 Statistical Learning Methods in Data Science

Riccardo De Bin

debin@math.uio.no

Outline of the lecture

- Ensemble Learning
 - Introduction
 - Boosting and regularization path
 - The "bet on sparsity" principle
- High-Dimensional Problems: $p \gg N$
 - ullet When p is much larger than N
 - Computational short-cuts when $p\gg N$
 - Supervised Principal Component

STK-IN4300: lecture 12 2/ 43

Ensemble Learning: introduction

With ensemble learning we denote methods which:

- apply base learners to the data;
- combine the results of these learner.

Examples:

- · bagging;
- random forests;
- boosting,
 - in boosting the learners evolves over time.

STK-IN4300: lecture 12 3/ 43

Consider the following algorithm,

Algorithm 16.1 Forward Stagewise Linear Regression.

- 1. Initialize $\check{\alpha}_k = 0, \ k = 1, \dots, K$. Set $\varepsilon > 0$ to some small constant, and M large.
- 2. For m = 1 to M:

(a)
$$(\beta^*, k^*) = \arg\min_{\beta, k} \sum_{i=1}^{N} \left(y_i - \sum_{l=1}^{K} \check{\alpha}_l T_l(x_i) - \beta T_k(x_i) \right)^2$$
.

(b)
$$\check{\alpha}_{k^*} \leftarrow \check{\alpha}_{k^*} + \varepsilon \cdot \operatorname{sign}(\beta^*)$$
.

3. Output $f_M(x) = \sum_{k=1}^K \check{\alpha}_k T_k(x)$.

(note its similarities with the boosting algorithm)

STK-IN4300: lecture 12 4/ 43

In comparison with lasso:

- initialization $(\check{\alpha}_k = 0, k = 1, \dots, K) \longleftrightarrow \lambda = \infty;$
- for small values of M:
 - some $\breve{\alpha}_k$ are not updated \longleftrightarrow coefficients "forced" to be 0;
 - $\quad \bullet \ \breve{\alpha}_k^{[0]} \leqslant \breve{\alpha}_k^{[M]} \leqslant \breve{\alpha}_k^{[\infty]} \longleftrightarrow \mathsf{shrinkage};$
 - M inversely related to λ ;
- for M large enough $(M=\infty \text{ in boosting})$ and K< N, $\check{\alpha}_k^{[M]}=\hat{\alpha}_{LS}\longleftrightarrow \lambda=0$

STK-IN4300: lecture 12 5/ 43

lf

 \bullet all the basis learners T_K are mutually uncorrelated,

then

• for $\varepsilon \to 0$ and $M \to \infty$, such that $\varepsilon M \to t$,

Algorithm 16.1 gives the lasso solutions with $t = \sum_{k} |\alpha_k|$.

In general component-wise boosting and lasso do not provide the same solution:

- in practice, often similar in terms of prediction;
- for ε (ν) \rightarrow 0 boosting (and forward stagewise in general) tends to the path of the least angle regression algorithm;
- lasso can also be seen as a special case of least angle.

STK-IN4300: lecture 12 7/ 43

Consider 1000 Gaussian distributed variables:

- strongly correlated ($\rho = 0.95$) in blocks of 20;
- uncorrelated blocks;
- one variable with effect on the outcome for each block;
- effects generated from a standard Gaussian.

Moreover:

- added Gaussian noise:
- noise-to-signal ratio = 0.72.

STK-IN4300: lecture 12 8/ 43

STK-IN4300: lecture 12 9/ 43

STK-IN4300: lecture 12 10/ 43

We consider:

- L_1 -type of penalty (shrinkage, variable selection);
- L_2 -type of penalty (shrinkage, computationally easy);
- boosting's stagewise forward strategy minimizes something close to a L₁ penalized loss function;
- step-by-step minimization.

Can we characterize situations where one is preferable to the other?

STK-IN4300: lecture 12 11/ 43

Consider the following framework:

- 50 observations;
- 300 independent Gaussian variables.

Three scenarios:

- all 300 variables are relevant;
- only 10 out of 300 variables are relevant;
- 30 out of 300 variables are relevant.

Outcome:

- regression (added standard Gaussian noise);
- classification (from an inverse-logit transformation of the linear predictor)

STK-IN4300: lecture 12 12/43

STK-IN4300: lecture 12 13/43

STK-IN4300: lecture 12 14/43

U (

Ensemble Learning: the "bet on sparsity" principle

STK-IN4300: lecture 12 15/ 43

This means that:

- lasso performs better than ridge in sparse contexts;
- ridge gives better results if there are several relevant variables with small effects;
- anyway, in the dense case, the model does not explain a lot,
 - not enough data to estimate correctly several coefficients;

"use a procedure that does well in sparse problems, since no procedure does well in dense problems"

STK-IN4300: lecture 12 16/ 43

The degree of sparseness depends on:

- the unknown mechanism generating the data;
 - it depends on the number of relevant variables;
- size of the training set;
 - larger sizes allow estimating denser models;
- noise-to-signal ratio;
 - smaller NTR → denser models (same as before);
- size of the dictionary;
 - more base learners, potentially sparser models.

STK-IN4300: lecture 12 17/ 43

The case $p \gg N$ (number of variable much larger than the number of observations):

- very important in current applications,
 - e.g., in a common genetic study, $p \approx 23000$, $N \approx 100$;
- concerns about high variance and overfitting;
- highly regularized approaches are common:
 - lasso:
 - ridge;
 - boosting;
 - elastic-net;

Consider the following example:

- N = 100:
- p variables from standard Gaussians with $\rho = 0.2$,

(i)
$$p = 10$$
 (ii) $p = 100$ (iii) $p = 1000$.

• response from

$$Y = \sum_{j=1}^{p} X_j \beta_j + \sigma \epsilon;$$

- signal to noise ratio $Var[E(Y|X)]/\sigma^2 = 2$;
- true β from a standard Gaussian;

As a consequence, averaging over 100 replications:

•
$$p_0$$
, the number of significant β (i.e., $\beta:|\hat{\beta}/\hat{\text{se}}|>2$)

(i)
$$p_0 = 9$$
 (ii) $p_0 = 33$ (iii) $p_0 = 331$.

Consider 3 values of the penalty λ :

• $\lambda = 0.001$, which corresponds to

(i) d.o.f. =
$$20$$
 (ii) d.o.f. = 99 (iii) d.o.f. = 99 ;

• $\lambda = 100$, which corresponds to

• $\lambda = 1000$, which corresponds to

(i) d.o.f. = 2 (ii) d.o.f. = 7 (iii) d.o.f. =
$$43$$
.

STK-IN4300: lecture 12 20/ 43

STK-IN4300: lecture 12 21/ 43

Remarks:

- with p = 20, ridge regression can find the relevant variables;
 - the covariance matrix can be estimated;
- moderate shrinkage works better in the middle case, in which we can find some non-zero effects;
- with p = 1000, there is no hope to find the relevant variables, and it is better to shrink down everything;
 - no possibility to estimate the covariance matrix.

STK-IN4300: lecture 12 22/ 43

Consider the single-value decomposition of X,

$$X = UDV^{T}$$
$$= RV^{T}$$

Where

- V is a $p \times N$ matrix with orthonormal columns;
- U is a $N \times N$ orthonormal matrix;
- D is a diagonal matrix with elements $d_1 \geqslant d_2 \geqslant \cdots \geqslant d_N \geqslant 0$;
- R is a $N \times N$ with rows r_i .

Theorem (Hastie et al., 2009, page 660): Let $f^*(r_i) = \theta_0 + r_i^T \theta$ and consider the optimization problems:

$$\begin{split} &(\hat{\beta}_0,\hat{\beta}) = \mathrm{argmin}_{\beta_0,\beta \in \mathbb{R}^p} \sum_{i=1}^N L(y_i,\beta_0 + x_i\beta) + \lambda \beta^T \beta; \\ &(\hat{\theta}_0,\hat{\theta}) = \mathrm{argmin}_{\theta_0,\theta \in \mathbb{R}^N} \sum_{i=1}^N L(y_i,\theta_0 + r_i\theta) + \lambda \theta^T \theta. \end{split}$$

Then $\beta_0 = \theta_0$ and $\hat{\beta} = V\hat{\theta}$.

STK-IN4300: lecture 12 24/ 43

Note:

- we can replace the p-dim vectors x_i with the N-dim vectors r_i ;
- same penalization, but with way fewer predictors;
- the N-dimensional solution $\hat{\theta}$ is transformed back to the p-dimensional $\hat{\beta}$ by simple matrix multiplication;
- it only works for linear models;
- it only works for quadratic penalties.
- a $O(p^3)$ problem is reduced to a $O(p^2N)$ problem;
 - relevant for p > N.

STK-IN4300: lecture 12 25/ 43

Example (ridge regression):

Consider the estimate of a ridge regression,

$$\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y.$$

Replacing X with RV^T , we obtain

$$\hat{\beta} = V(R^T R + \lambda I)^{-1} R^T y,$$

i.e.,

$$\hat{\beta} = V\hat{\theta},$$

where

$$\hat{\theta} = (R^T R + \lambda I)^{-1} R^T y.$$

Note:

- it cannot be applied to lasso;
- the short-cut is particularly relevant for finding the best λ via cross-validation;
- ullet it can be shown that one need to construct R only once,
 - ightharpoonup use the same R for each of the CV-folds.

STK-IN4300: lecture 12 27/ 43

Algorithm 18.1 Supervised Principal Components.

- 1. Compute the standardized univariate regression coefficients for the outcome as a function of each feature separately.
- 2. For each value of the threshold θ from the list $0 \le \theta_1 < \theta_2 < \cdots < \theta_K$:
 - (a) Form a reduced data matrix consisting of only those features whose univariate coefficient exceeds θ in absolute value, and compute the first m principal components of this matrix.
 - (b) Use these principal components in a regression model to predict the outcome.
- 3. Pick θ (and m) by cross-validation.

Note:

- in the first step, the variables univariately most associated with the outcome are selected:
 - the measure depends on the nature of the outcome;
 - include all associations larger than a threshold θ ;
 - may include highly correlated variables.
- in step 2, perform PCR on the reduced variable space:
 - use the first m components;
 - assure shrinkage.
- both θ and m must be computed by cross-validation:
 - 2-dimension tuning parameter.

STK-IN4300: lecture 12 29/ 43

Example (survival analysis with microarray data):

- data from Rosenwald et al. (2002);
- input: 7399 gene expressions of 240 patients;
- response: survival time (potentially right censored);
- divided in a training (160 patients) and (80) test set.

STK-IN4300: lecture 12 30/ 43

Survival Function

STK-IN4300: lecture 12 31/ 43

STK-IN4300: lecture 12 32/ 43

STK-IN4300: lecture 12 33/ 43

STK-IN4300: lecture 12 34/ 43

STK-IN4300: lecture 12 35/ 43

High-Dimensional Problems: supervised-PC and latent-variable modelling

Consider a latent-variable model,

$$Y = \beta_0 + \beta_1 U + \epsilon$$

where

$$X_i = \alpha_{0i} + \alpha 1jU + \epsilon_i$$
 if $j \in \mathcal{P}$

- ϵ and ϵ_j have mean 0 and they are independent of the other variables in their respective models;
- X_i are independent of U if $j \notin \mathcal{P}$.

High-Dimensional Problems: supervised-PC and latent-variable modelling

Supervised-PC can be seen as a method to fit this kind of model:

- step 1: identify the $j \in \mathcal{P}$;
 - on average β_1 is not zero only if $\alpha_{1j} \neq 0$;
- step 2a: estimate α_{0i} and α_{1i}
 - natural if $\epsilon_i \sim N(0; \sigma^2)$;
- step 2b: estimate β_0 and β_1 (fit the model).

STK-IN4300: lecture 12 37/ 43

High-Dimensional Problems: supervised-PC and partial least square

Supervised-PC versus partial least square:

- both aim at considering both large variation and correlation with the outcome;
- supervised-PC removes those which are not relevant;
- partial least square downgrades them

 \downarrow

"thresholded PLS":

apply PLS on only the variables selected by supervised-PC.

STK-IN4300: lecture 12 38/ 43

High-Dimensional Problems: supervised-PC and partial least square

Thresholded PLS can be seen as a noisy version of supervised-PC,

first PLS variate,

$$z = \sum_{j \in \mathcal{P}} \langle y, x_j \rangle x_j;$$

supervised principal component direction,

$$u = \frac{1}{d^2} \sum_{j \in \mathcal{P}} \langle y, x_j \rangle x_j.$$

Set $p_1=|\mathcal{P}|.$ It can be shown (Bair & Tibshirani, 2004) that, for $N,p_1,p\to\infty$, s.t. $p_1/N\to0$

$$z = u + O_p(1)$$
$$\hat{u} = u + O_p(\sqrt{p_1/N})$$

where u is the true latent variable.

High-Dimensional Problems: supervised-PC and partial least square

STK-IN4300: lecture 12 40/ 43

High-Dimensional Problems: pre-conditioning

Supervised-PC can also be used to improve lasso performance, through pre-conditioning

- compute \hat{y}_i the supervised-PC prediction for each observation;
- apply lasso using \hat{y}_i instead of y_i as outcome;
 - using all variables, not only those selected by supervised-PC.

The idea is to remove the noise, so lasso is not affected by the large number of noisy variables.

STK-IN4300: lecture 12 41/ 43

High-Dimensional Problems: pre-conditioning

STK-IN4300: lecture 12 42/43

References I

- BAIR, E. & TIBSHIRANI, R. (2004). Semi-supervised methods to predict patient survival from gene expression data. *PLoS Biology* **2**, e108.
- HASTIE, T., TIBSHIRANI, R. & FRIEDMAN, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction (2nd Edition). Springer, New York.
- ROSENWALD, A., WRIGHT, G., CHAN, W. C., CONNORS, J. M., CAMPO, E., FISHER, R. I., GASCOYNE, R. D., MULLER-HERMELINK, H. K., SMELAND, E. B., GILTNANE, J. M. et al. (2002). The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. *New England Journal of Medicine* **346**, 1937–1947.

STK-IN4300: lecture 12 43/ 43