# Introduction (SNLP tutorial)

Vilém Zouhar, Awantee Deshpande, Julius Steuer

April 21, 2021

#### Overview

- Hello
- Topics (15 minutes)
- Requirements
- Materials
- Assignments
- Homework
- Zipf's Law (30 minutes)
- QA

## Hello

Who am I?

Who are you?



# **Topics**

Task: Pick one not yet taken + why do you find it interesting.

- Language properties, Zipf's Law, basic statistical formalism
- Entropy, basic information theory (Shannon's game, entropy-based quantities, code lengths)
- Language modelling, back-off models (interpolation, discounting)
- Text classification, basic algorithms (kNN, decision trees, SVM, ...)
- Word sense disambiguation, basic algorithms (dictionary-, translation-, collocation-based)
- Information retrieval, latent semantic analysis, singular value decomposition
- Machine translation, word alignment, beamsearch
- POS tagging, named entity recognition
- sequence labeling (hidden markov chains / models, conditional random fields)

## Requirements

## Tutorial Requirements (exam admission)

- 70% of mandatory points (~10 assignments, 10 points each)
- Tutorial points only for exam admission (no final grade influence)

#### **Tutorial Bonus Points**

- ~2pts for extra excercises in the assignments
- 1pt for participating and talking in an tutorial
- Presenting a solution to an excercise (~5 points)
- Presentable excercises are marked in the assignment sheet
- Let individual tutors known if you wish to present (first come first serve)
- Every group can present at most once, about 10 to 15 minutes

## Final Project

- 25% of the final grade
- Details TBD

#### Transfer from last year

- Possible
- Do project and exam

#### What's available

- Lectures by prof. Klakow (recorded)
- Tutorials
- Corrected homework
- Consultations
- Only in specific cases
- By default no email and no chat
- Better ask during the lecture / tutorials
- Public forum (please use Piazza)
- Ask questions
- Other students will also benefit from the answers
- You can answer someone else's issue

## Assignments

- Mandatory groups of 2
- Usually 3 excerises per one assignment
- Can't be changed later (very special exceptions)
- Jupyter notebook templates
- Assignment + solution in the same notebook
- Can use Google Collab or local runtime
- Only one submission per group
- Submit through Teams

# Dates / Times

- Lecture: Fridays 8:30-10:00
- Tutorials:
- Awantee: TODO
- Julius: TODO
- ▶ Vilém: TODO
- Assignments
- Release (usually) Friday 23:59
- Deadline (next) Friday 23:59 (also in Teams)
- Exam: (TBD) 30. Jul.

#### **Tutorial Content**

- Review of the topic (per demand)
- Presentation of the past assignment
- Troubleshooting current assignment

#### Current Homework

- Notebook instructions
- Stick breaking
- Zipf's law on words
- Bonus: Zipf's law on characters

# Languages

## Language

 $L\subseteq \Sigma^*$  (all possible substrings by elements of alphabet  $\Sigma)$ 

$$ullet$$
  $\Sigma_1 = \{a,b,\ldots,z,\ddot{u},\ddot{a},\ddot{o}\}$ 

• 
$$\Sigma_2 = \{A,G,C,T\}$$

• 
$$\Sigma_3 = \{ \text{def,True,:,print,...} \}$$

• 
$$\Sigma_4 = \{ \text{SELECT}, \text{INSERT}, \text{DROP}, \dots \}$$

• 
$$\Sigma_5 = \{\text{hallo,ja,nein,...}\}$$

• 
$$\Sigma_6 = \{+,-,=,1,2,3...\}$$

• 
$$\Sigma_7 = \{+,-,=,1,2,3...\}$$

$$\bullet$$
  $L_7 = \{+,-,-,1,2,3...\}$ 

• 'Oberfläche' 
$$\in L_1$$
 (German words)

• '..GATTCCAATCAG' 
$$\in L_2$$
 (DNA)

• 'while True: 
$$f()' \in L_3$$
 (Python)

• 'SELECT \* FROM tbl;' 
$$\in L_4$$
 (SQL)

$$ullet$$
 'Wie geht's dir?'  $\in \mathcal{L}_5$  (German)

• '4=5' 
$$\in L_6$$
 (arithmetics)

• '1=2+=3333=' 
$$\in L_7$$
 (????)

Usually defined by the alphabet and production rules (Automata and Grammar).

# Zipf's Law

- Sort words/entries by frequency f(x)
- r(x) = position in the sorted list
- Then  $f(x) \propto \frac{1}{r(x)^{\gamma}}$  ( $\gamma$  parameter)
- Most common entry m.
- Then  $f(x) = \frac{f(m)}{r(x)^{\gamma}}$

| Rank | Frequency | Predicted ( $\gamma=$ 0.7) |
|------|-----------|----------------------------|
| 4    | 606       | $1507/4^{0.7} = 571$       |
| 5    | 490       | $1507/5^{0.7} = 488$       |
|      |           | 0.7                        |
| 11   | 261       | $1507/11^{0.7} = 281$      |
| 12   | 252       | $1507/12^{0.7} = 264$      |

| Rank | Word [3] | Frequency |
|------|----------|-----------|
| 1    | the      | 1507      |
| 2    | and      | 714       |
| 3    | to       | 703       |
| 4    | а        | 606       |
| 5    | of       | 490       |
| 6    | she      | 484       |
| 7    | said     | 416       |
| 8    | it       | 346       |
| 9    | in       | 345       |
| 10   | was      | 328       |
| 11   | 1        | 261       |
| 12   | you      | 252       |
| 13   | as       | 237       |
| 14   | Alice    | 221       |

# Zipf's Law



Figure 1: log-log plot of Zipf's Law applied to natural languages [4]

We are plotting: 
$$\log\left(\frac{C}{\exp(x)^{\gamma}}\right) \\ \log(C) - \gamma \log \exp(x) \\ \log(C) - \gamma x$$

# Zipf's Law Notes

- Works beyond natural languages
- DNA subsequences of fixed lengths
- Code (programming languages)
- Population of cities (frequency is city population) [5]

| Rank | City                | Population |
|------|---------------------|------------|
| 1    | New York, N.Y.      | 8,491,079  |
| 2    | Los Angeles, Calif. | 3,928,864  |
| 3    | Chicago, III.       | 2,722,389  |
| 4    | Houston, Tex.       | 2,239,558  |
| 5    | Philadelphia, Pa.   | 1,560,297  |
| 6    | Phoenix, Ariz.      | 1,537,058  |
| 7    | San Antonio, Tex.   | 1,436,697  |
| 8    | San Diego, Calif.   | 1,381,069  |
| 9    | Dallas, Tex.        | 1,381,069  |

#### Resources

- UdS SNLP Class: https://teaching.lsv.uni-saarland.de/snlp/
- ② Tutorial repository for these slides: https://github.com/zouharvi/uds-snlp-tutorial
- Piazza: https://piazza.com/uni-saarland.de/spring2021/snlp