CO326: Industrial Networks Lab 04- PID Control

E/17/297

PART I: Open-Loop Step Response


```
>> partl_open_loop
>> stepinfo(P_motor)

ans =

    RiseTime: 1.1351
    SettlingTime: 2.0652
    SettlingMin: 0.0899
    SettlingMax: 0.0998
        Overshoot: 0
        Undershoot: 0
        Peak: 0.0998
        PeakTime: 3.6758
```

>>

Table 1: Open-loop step response

Input (Amplitude)	Output (Amplitude)	Rise Time (s)	Overshoot (Amplitude)	Settling Time (s)	Steady-state Error (Amplitude)
1.000	0.0999	1.1351	0	2.0652	0.9001

By observing the plot we can see that output has converged to 0.1 amplitude. There is a large steady state error of 0.9 Rise time and settling times are 1.14s,2s respectively.

PART II: Open-Loop Step Response

1. Proportional Control

 $K_p = 50$


```
>> part2_close_loop
```

>> stepinfo(sys_cl)

ans =

RiseTime: 0.1585 SettlingTime: 0.5317 SettlingMin: 0.7619 SettlingMax: 0.9397 Overshoot: 12.7859

Undershoot: 0

Peak: 0.9397 PeakTime: 0.3454

>>

 $K_p = 100$

- >> part2_close_loop
- >> stepinfo(sys_cl)

RiseTime: 0.0993

SettlingTime: 0.5669

SettlingMin: 0.8526

SettlingMax: 1.1355

Overshoot: 24.9143

Undershoot: 0

Peak: 1.1355

PeakTime: 0.2303

>> |

 $K_p = 200$


```
>> part2_close_loop
```

>> stepinfo(sys_cl)

ans =

RiseTime: 0.0641

SettlingTime: 0.6591 SettlingMin: 0.8133

SettlingMax: 1.3162

Overshoot: 38.2111

Undershoot: 0

Peak: 1.3162

PeakTime: 0.1612

Table 2: Step response with Proportional control

Gain	Rise Time	Overshoot	Settling Time	Steady-state
				Error
$K_p = 50$	0.1585	0.9397-0.833=0.1067	0.5317	1-0.833=0.167
$K_p = 100$	0.0993	1.1355-0.909=0.2265	0.5669	1-0.909=0.091

$K_p = 200$	0.0641	1.3162-0.952=0.3642	0.6591	1-0.952=0.048
-------------	--------	---------------------	--------	---------------

We can observe that when we increase the K_p value the steady-state amplitude settles near to the desired output of 1. Rise time has decreased while overshoot and settling time increased with the increase of K_p value. So we can conclude that we can't achieve low overshoot and the fast converging rate at the same time by increasing K_p value.

2. Proportional -Integral Control

$K_{\rm i} = 50$


```
>> Proportional_Integral_Control
>> stepinfo(sys_cl)

ans =

    RiseTime: 0.1831
    SettlingTime: 1.7516
    SettlingMin: 0.9005
    SettlingMax: 1.0559
        Overshoot: 5.5898
    Undershoot: 0
        Peak: 1.0559
        PeakTime: 0.3571
```

>>

$K_{i} = 100$


```
>> Proportional_Integral_Control
>> stepinfo(sys_cl)

ans =

    RiseTime: 0.1639
    SettlingTime: 0.8079
    SettlingMin: 0.9314
    SettlingMax: 1.1628
```

Overshoot: 16.2775

Undershoot: 0

Peak: 1.1628 PeakTime: 0.3592

>>

$K_{i} = 200$


```
>> Proportional_Integral_Control
>> stepinfo(sys_cl)

ans =

    RiseTime: 0.1416
    SettlingTime: 1.1424
    SettlingMin: 0.9269
    SettlingMax: 1.3454
    Overshoot: 34.5385
    Undershoot: 0
        Peak: 1.3454
    PeakTime: 0.3514
```

>>

Table 3: Step response with Proportional-Integral control

Gain	Rise Time	Overshoot	Settling Time	Steady-state
				Error
$K_p = 50$	0.1831	1.0559-0.999=0.0569	1.7516	0.001
$K_{\rm i} = 50$				
$K_p = 50$	0.1639	1.1628-1=0.1628	0.8079	0
$K_{\rm i} = 100$				
$K_p = 50$	0.1416	1.3454-1=0.3454	1.1424	0
$K_{\rm i} = 200$				

We can achieve the desired output of 1 by increasing K_i value. Overshoot is increasing and rise time is decreasing with the increasing of K_i value. Settling time first decreases and then again increase with the K_i value. We can see that by using Proportional-Integral control the steady state error has eliminated.

3. Proportional -Derivative Control

 $K_{\rm d} = 0.1$

- >> Proportional_Derivative_Control
- >> stepinfo(sys_cl)

RiseTime: 0.1602 SettlingTime: 0.5318 SettlingMin: 0.7520 SettlingMax: 0.9346 Overshoot: 12.1676

Undershoot: 0

Peak: 0.9346 PeakTime: 0.3397

>>

 $\underline{K_{d}} = 1$

- >> Proportional_Derivative_Control
- >> stepinfo(sys_cl)

RiseTime: 0.1730 SettlingTime: 0.5265

SettlingMin: 0.7548 SettlingMax: 0.8963 Overshoot: 7.5713

Undershoot: 0

Peak: 0.8963 PeakTime: 0.3487

>>

 $\underline{K_{\rm d}}$ = 10

>> Proportional_Derivative_Control

>> stepinfo(sys_cl)

ans =

RiseTime: 0.1391 SettlingTime: 0.4746 SettlingMin: 0.7518 SettlingMax: 0.8332

Overshoot: 0 Undershoot: 0

> Peak: 0.8332 PeakTime: 2.0611

>>

Table 4: Step response with Proportional-Derivative control

Gain	Rise Time	Overshoot	Settling Time	Steady-state
				Error
$K_p = 50$	0.1602	0.9346-0.833=0.1016	0.5318	1-0.833=0.167
$K_{\rm d} = 0.1$				
$K_p = 50$	0.1730	0.8963-0.833=0.0633	0.5265	1-0.833=0.167

$K_{d} = 1$				
$K_p = 50$	0.1391	0.8332-0.833=0.0002	0.4746	1-0.833=0.167
$K_{\rm d} = 10$				

We can't_achieve desired output of 1 by increasing $K_{\rm d}$ value. Steady-state error remain fixed for some value. Overshoot and rise time has decreased with the increase of $K_{\rm d}$ value.

4. Proportional-Integral-Derivative Control

Table 5: Step response with Proportional-Integral-Derivative control

Gain	Rise Time	Overshoot	Settling Time	Steady-state
				Error
K_p	Decrease	Increase	Decrease	Decrease
Ki	Decrease	Increase	Decrease	Decrease
K_{d}	Decrease	Remain fixed	Decrease	Decrease

PID Controller Design

Design a PID controller to satisfy the below criteria.

For a 1-rad/s step reference,

- Settling time less than 2 seconds
- Overshoot less than 5%
- Steady-state error less than 1%

RiseTime: 0.1324

SettlingTime: 0.2570

SettlingMin: 0.9010

SettlingMax: 1.0103 Overshoot: 1.0281

Undershoot: 0

Peak: 1.0103

PeakTime: 0.5932

Input	1
Output	1
K_p	100
Ki	200
K_{d}	10
Rise Time	0.1324
Overshoot	1.0103-1=0.0103
Settling Time	0.2570
Steady-state Error	0