DreamDiffusion

A Preprint

1 Main

3D gen models can be trained on voxels or point clouds, but data is relatively scarce compared to plentiful 2D images.

2 Introduction

Text-conditioned diffusion models achieve 2D synthesis by learning to reverse a noising process, but they do not directly produce 3D geometry. DreamFusion overcomes this by using a frozen 2D diffusion network as a loss to sculpt a Neural Radiance Field (NeRF) to match a text prompt, without any paired 3D data.

3 Diffusion Models and Score Distillation Sampling

3.1 2D Text-to-Image Diffusion

A diffusion model defines a forward process

$$q(z_t \mid x) = \mathcal{N}(\alpha_t x, \ \sigma_t^2 I),$$

and learns a denoiser ϵ_{ϕ} via

$$\mathcal{L}_{\text{Diff}}(\phi, x) = \mathbb{E}_{t, \epsilon} \left[w(t) \| \epsilon_{\phi}(\alpha_t x + \sigma_t \epsilon; t, y) - \epsilon \|^2 \right]. \tag{1}$$

3.2 Score Distillation Sampling

We wish to optimize generator parameters θ so that $x = g(\theta)$ lies in a high-likelihood region of the diffusion model. Define the SDS loss gradient as

$$\nabla_{\theta} \mathcal{L}_{SDS} = \mathbb{E}_{t,\epsilon} \left[w(t) \left(\hat{\epsilon}_{\phi}(z_t; y, t) - \epsilon \right) \frac{\partial g(\theta)}{\partial \theta} \right], \quad z_t = \alpha_t g(\theta) + \sigma_t \epsilon, \tag{2}$$

omitting the expensive U-Net Jacobian and absorbing constant factors into w(t).

3.3 Sampling in Parameter Space

Existing diffusion sampling operates in pixel space, matching the data the model was trained on. Instead, we parameterize images via a differentiable generator $x = g(\theta)$ (e.g. a NeRF) and seek

$$\theta^* = \arg\min_{a} \mathcal{L}_{\text{Diff}}(\phi, g(\theta)),$$

but found this unstable in practice. By dropping the U-Net Jacobian term, we obtain the practical update of Eq. (2), which follows the learned score function to guide $g(\theta)$ toward regions the diffusion model deems plausible.

4 Neural Rendering of a 3D Model

A NeRF MLP maps each point $\mu \in \mathbb{R}^3$ to density τ and color ρ :

$$(\tau, \rho) = MLP(\mu; \theta).$$

Colors accumulate along rays via

$$C = \sum_{i} w_i c_i, \quad w_i = \alpha_i \prod_{j < i} (1 - \alpha_j), \quad \alpha_i = 1 - \exp(-\tau_i \delta_i),$$

and each sample's shaded color is

$$c_i = \rho_i \circ \left(\ell_\rho \max(0, n_i \cdot \frac{\ell - \mu_i}{\|\ell - \mu_i\|}) + \ell_a\right),$$

with normals $n_i = -\nabla_{\mu} \tau_i / \|\nabla_{\mu} \tau_i\|$.

5 Text-to-3D Optimization

- 1. Initialize $\theta \sim \mathcal{N}(0, I)$.
- 2. Repeat for $k = 1, \ldots, N$:
 - (a) Sample a random camera and lighting.
 - (b) Render $x = g(\theta)$ at low resolution.
 - (c) Draw $t \sim U[0,1], \ \epsilon \sim \mathcal{N}(0,I).$
 - (d) Compute $z_t = \alpha_t x + \sigma_t \epsilon$.
 - (e) Query diffusion model: $\hat{\epsilon} = \epsilon_{\phi}(z_t; y, t)$.
 - (f) Compute gradient $\nabla_{\theta} \mathcal{L}_{SDS}$ via Eq. (2).
 - (g) Update $\theta \leftarrow \theta \eta \nabla_{\theta} \mathcal{L}_{SDS}$.

6 Algorithm (Pseudocode)

Algorithm 1 DreamFusion Optimization Loop

Input: text prompt y, frozen diffusion ϵ_{ϕ} , renderer $g(\theta)$ Initialize $\theta \sim \mathcal{N}(0, I)$ k = 1 N Sample camera pose, light source $x \leftarrow g(\theta)$ $t \sim U(0, 1)$, $\epsilon \sim \mathcal{N}(0, I)$ $z_t \leftarrow \alpha_t x + \sigma_t \epsilon$ $\hat{\epsilon} \leftarrow \epsilon_{\phi}(z_t; y, t)$ $g_{\theta} \leftarrow w(t)$ $(\hat{\epsilon} - \epsilon)$ $\nabla_{\theta} x$ $\theta \leftarrow \theta - \eta g_{\theta}$ return θ

A Appendix A.4: Equivalence to Density Distillation

Here we show that the SDS gradient arises from a weighted KL divergence between the true noising distribution and the diffusion model's predicted distribution. Define

$$\mathcal{L}_{\text{SDS}}(\phi, \theta) \triangleq \mathbb{E}_t \left[\frac{\sigma_t}{\alpha_t} w(t) \operatorname{KL} \left(q(z_t \mid g(\theta); y, t) \parallel p_{\phi}(z_t; y, t) \right) \right].$$

Then one can verify

$$\nabla_{\theta} \mathcal{L}_{\text{SDS}} = \nabla_{\theta} \mathbb{E}_{t,\epsilon} \left[\frac{\sigma_t}{\alpha_t} w(t) \left\langle \nabla_{z_t} \log q(z_t \mid x), \frac{\partial g(\theta)}{\partial \theta} \right\rangle \right],$$

and using the score-matching identity $\nabla_{z_t} \log q(z_t \mid x) = -(\hat{\epsilon}_{\phi}(z_t; y, t) - \epsilon)/\sigma_t$, this yields exactly the practical gradient of Eq. (2) up to constant factors.