

Politechnika Wrocławska

Wydział Mechaniczny

System lokalizowania obiektów

Interdyscyplinarny Projekt Zespołowy

Emilia Palczyńska 254148

Adrian Grabowiec 243750

Wiktor Szymański 255283

Mateusz Mrozek 255272

Github: https://github.com/WiktorSzymanski1G/Projekt-IPZ

Spis treści:

- 1. Cele i założenia
- 2. Część projektowa
- 3. Część informatyczna
- 4. Dodatkowe rozwinięcia/część elektroniczna
- 5. Podsumowanie

1. Cele i założenia

Poniższa dokumentacja pozwala na samodzielne odtworzenie oraz ulepszenie projektu, kierując krok po kroku przeciętnego użytkownika przez świat lokalizowania obiektów oraz biblioteki OpenCV. Wszelkie dodatkowe informacje zawarte są w naszym githubie.

Zadanie polega na zaprojektowaniu oraz zbudowaniu urządzenia pozwalającego na wyznaczenie pozycji (x,y,z oraz rotacji) danego obiektu (w przykładzie został przyjęty kolor czerwony jako lokalizowanego obiektu), na podstawie odczytu z dwóch kamer oraz przy wykorzystaniu kąta ich triangulacji. Będziemy mogli odczytać położenie obiektu znajdującego się w odległości do około 2 metrów od urządzenia.

Przebieg projektu podzielony na 30 godzin zajęć (na poszczególny etap została przeznaczona wytypowana ilość godzin zajęciowych, pozwalająca dla czytelnika na podobne rozplanowanie czasu pracy).

Program oraz założenia zostały przygotowane pod diody na podczerwień i lokalizowanie kulki z mikrolusterkami, ale został zmodyfikowany pod lokalizowanie kontrastowego elementu w tym wypadku żółtej kulki.

- 1. Zajęcia wprowadzające, wybór projektów.(1)
- 2. Omówienie celów i założeń projektu. Dobranie poszczególnych działów konstrukcji przypadającym konkretnym członkom grupy. (1)
- 3. Zaprojektownie bazy danych. (2)
- 4. Zapoznanie się z literaturą odpowiadającą triangulacji i wyznaczenie kąta pod jakim zostaną umieszczone kamery. (2)
- 5. Wytypowanie listy części niezbędnych do wykonania urządzenia i skompletowanie jej. (1)
- 6. Zapoznanie się z biblioteką pythonanywhere oraz opency. (2)
- 7. Zaprojektowanie obudowy na kamerę w programie NX. (1)
- 8. Odczytanie wymiarów z kamer i poprawki rysunku obudowy. (2)
- 9. Zatwierdzenie obudowy i druk 3D. (1)
- 10. Stworzenie biblioteki pythonanywhere. (2)
- 11. Zaprojektowanie i złożenie części elektronicznej (1)
- 12. Połączenie obudowy z kamerami i elektroniką (1)
- 13. Stworzenie programów odpowiadających za sterowanie układem i strony internetowej. (7)
- 14. Testy i poprawki modelu oraz programu. (2)
- 15. Naniesienie ostatecznych poprawek. (1)
- 16. Utworzenie dokumentacji technicznej projektu. (2)
- 17. Obrona projektu (1)

2. Część projektowa

Została zaprojektowana obudowa na elektronikę praz kamery, aby zachować je pod odpowiednim kątem, tj. 134 stopnie między kamerami i 21 stopni odchylenia od pionu pojedynczej obudowy. Kąt został ustalony na podstawie triangulacji, a reszta dokumentacji dotyczącej tej kwestii znajduje się w załącznikach do projektu. Modele kamer udostępnionych do wykonania zadania to LogitechC285.

Rysunek 1 Model obudowy w programie NX

Dobrane zostały najodpowiedniejsze wymiary zapewniające stabilne utrzymanie się kamer w obudowie i pozwalające na ich stałą pozycje.

Rysunek 2 Szkic z wymiarami obudowy kamery

Rysunek 3 Środek obudowy z wymiarami

3. Część informatyczna

Pisanie programów odbywało się z wykorzystaniem języka Python i biblioteki open CV. Pierwszym krokiem jest identyfikacja kamer i ich przypisanie do zmiennych; ustalamy wielkość obrazu wyświetlanego, a następnie stajemy przed wyborem o kalibracji obrazu lub jej braku. Kalibracja stawia przed nami wartości HSV, jest to 6 wartości pomagających nam w późniejszych krokach w wykrywaniu obiektów w zależności od kolorów. Kiedy określamy że kalibracja będzie wykonywana to przechodzimy do drugiego pliku, polegającego tylko i wyłącznie na kalibracji. Wyświetlane są w nim 3 obrazy i ustalane jest 6 wartości niezbędnych do określenia obrazu HSV. Kolejny krok to przejście do sczytywania obrazu z kamer; obraz jest odwrócony o 180 stopni więc wykorzystujemy odpowiednie funkcje aby go obrócić, główny plik zawiera dwie funkcje realizujące to zadanie. Lokalne układy współrzędnych znajdują się w środkach obiektywów kamer, natomiast globalny układ współrzędnych w środku odległości pomiędzy środkami obiektywów. Pobierane są współrzędne X,Y,Z, a program posiada zabezpieczenia od niepoprawnej odległości (np. gdyby nagle byłby wyświetlane o kilka rzędów większe wartości jednej współrzędnej).

Rysunek 4 Diagram połączeń w projekcje

4. Dodatkowe rozwinięcia /część elektroniczna

Zachęcamy czytelnika do ulepszenia naszego projektu i wychodzimy z pomysłem rozbudowania części elektronicznej w celu skorygowania założeń i odczytywania pozycji z wykorzystaniem kulki z mikrolusterkami i diod na podczerwień.

Niezbędne elementy:

- Arduino UNO
- Diody na podczerwień
- Rezysory 200 Ohm (tolerancja 5%)
- Płytka
- Zasilacz 12V
- Kulka z mikrolusterkami

Początkowe założenia projektu zakładały przygotowanie oświetlenia diodami podczerwonymi obszaru pomiarowego. Została przygotowana płytka ze zlutowanymi częściami jak na poniższym zdjęciu. W założeniu mieliśmy odpalać diody z poziomu strony internetowej/specjalnie przygotowanej aplikacji pozwalającej użytkownikowi na bezpośrednią interakcję z kamerami i automatyczny zapis wyników. Końcowo otrzymaliśmy sprawny układ, bez strony internetowej, po zmianie założeń w trakcie, diody które były niezbędne do podświetlania kulki z mikrolusterkami okazały się zbędne, ponieważ nowy kontrastowy element- na testach czerwona kulka nie potrzebowała takiego kryterium, ale warto rozważyć takie rozwiązanie założonego problemu.

Rysunek 5 Zlutowany układ elektroniczny

5. Podsumowanie

Projekt obejmował stworzenie obudowy, kodu odpowiedzialnego za działanie układu oraz elektroniki. System namierzania obiektów jaki udało nam się stworzyć ma możliwość odczytywania pozycji przedmiotów o kontrastowym kolorze- jego barwa jest definiowana w programie i może być prosto zmieniana. Na potrzeby testów zdefiniowana została czerwona kropka/żółty wieszak. Pozycje są z czytywane z kamer co 10 sekund i wyświetlane w programie w postaci współrzędnych. Praca nad projektem pozwoliła rozwinąć znajomości Druku 3D, języka Python, biblioteki open CV oraz zagłębić się w świecie lokalizowania obiektów. Projekt może być rozwijany/ulepszany przez inne grupy w celach dydaktycznych, udostępniamy wszystkie niezbędne do tego materiały składające się z modeli obudowy na kamery w pliku do edycji w programie NX oraz przeznaczonego już bezpośrednio do druku, materiałów dydaktycznych w skład których wchodzą filmy, artykuły i prace naukowe, na podstawie których ustalaliśmy poszczególne etapy procesu, wszelkie napisane kody, obliczenia w Excelu oraz wszystkie inne niezbędne informacje znajdują się na naszym githubie.

https://github.com/WiktorSzymanski1G/Projekt-IPZ

Rysunek 6 Układ w fazie testowej