Bragg Grating Week 3

OBJECTIVES

- Verify the gratting results changes with diferent parameters
- Verify how the length impact the gratting.

CONSTANT VALUES 0.45NM GUIDE

Using Lambda = 1550nm and 25nm FWHM

Using FDE solver on an straight 0.22um tall, 0.45um thickness waveguide, we can get the constants we need to start projecting the gratting.

Neff = 2.27;

Ng = 4.60;

Grating Period = 341.41nm. (Theoretical Value)

CONSTANT VALUES

Mode

CALCULATING THE NUMBER OF PERIODS

Used value:

N = 82

Theoretical results:

rmax = 1

L = 40.97um

 $\Delta Neff = 0.1$

ΔW X ΔNEFF

Finding the ΔW to be used on the gratting

With $\triangle Neff = 0.1$ we have: $\triangle W = 10.53$ nm

DESIGN

Lumerical mode

THEORETICAL GRAPHICS

N = 120 (FWHM = 15nm)

Using ΔW = 24nm (Experimental Value)

y = 2.197x + 793.392 (nm)

For LambdaB = 1550nm Grating Period = 344.377nm

Final Result 0.45nm Guide (N = 82)

 $\lambda B = 1550.01 \text{nm} (0.0006\% \text{ Error})$

FWHM = 25.025nm (0.1% Error)

N VARIATION

Final Result 0.45nm Guide (N = 150)

FWHM = 22.4645nm

N VARIATION

Final Result 0.45nm Guide (N = 250)

FWHM = 21.444nm

CONSTANT VALUES 0.6NM GUIDE

Using Lambda = 1550nm and 25nm FWHM

Using FDE solver on an straight 0.22um tall, 0.6um thickness waveguide, we can get the constants we need to start projecting the gratting.

Neff = 2.53;

Ng = 4.20;

Grating Period = 341.41nm. (Theoretical Value)

CALCULATING THE NUMBER OF PERIODS

Used value:

N = 130

Theoretical results:

rmax = 1

L = 39.82um

 $\Delta Neff = 0.09$

ΔW X ΔNEFF

Finding the ΔW to be used on the gratting

With $\triangle Neff = 0.09$ we have: $\triangle W = 21.05$ nm

THEORETICAL GRAPHICS

N = 130 (FWHM = 15nm)

FWHM = 12.5425nm

 $\lambda B = 1546.19 nm$

DELTAW X FWHM

Experimental Points

As we can see the FWHM values are very hard to predict on an 0.6nm and can be only obtained by simulations. Therefore this guide is dificult to be implemented

Using ΔW = 24nm (Experimental Value)

y = 2.818x + 655.810 (nm)

For LambdaB = 1550nm Grating Period = 317.3210nm

Final Result 0.45nm Guide (N = 100)

 $\lambda B = 1549.73$ nm (0.17% Error)

FWHM = 25.2851nm (1.14% Error)

CONCLUSION

As we can see, when we increase the number of periods the filter noise increase as well.

The 0.45nm grating is more predictble and therefore it may be better than the 0.6nm grating due to an more linear variation of FWHM.