

Álaebra

Inecuaciones

Intensivo UNI 2024 - III

- Resuelva la inecuación $\frac{(n+2)x+1}{2} \ge n + \frac{2x+1}{2}$,
 - tal que $n \in \mathbb{R}^-$.
 - A) ⟨-∞: 21
- B) $[2: +\infty)$
- C) (∞: 21
- D) $[-2:+\infty\rangle$ E) [-2:2]
- Determine la suma de los elementos enteros del conjunto solución de la siguiente inecuación.
 - $-2 < x^2 4x + 1 < 7$
 - A) 12 D) 10
- B) 11
- C) 13
- E) 14
- Determine el complemento del conjunto $M = \{n \in \mathbb{R} / P_{(x)} = nx^2 - (2n+4)x + 4n\}$ presenta raíces reales}
 - A) $\left| -\frac{2}{2}; 2 \right|$
 - B) $\left\langle -\infty; \frac{2}{3} \right\rangle \cup \left\langle 2; +\infty \right\rangle$
 - C) $\left\langle -\infty; -\frac{2}{3} \right\rangle \cup \left\langle 2; +\infty \right\rangle \cup \left\{ 0 \right\}$
 - D) $\left\langle -\infty; -\frac{2}{3} \right\rangle \cup \left[2; +\infty \right\rangle$
 - E) $\langle -\infty; -2] \cup \left[\frac{2}{3}; +\infty \right]$
- Determine todos los valores de x que satisfacen el siguiente sistema.

$$\begin{cases} x((1-\sqrt{2})x+1) \le (x-\sqrt{32})+4 \\ (x+2)^2 \le 7(x+2) \end{cases}$$

- A) $[2; 5] \cup \{-2\}$
- B) [2; 5]

- D) $[-5; -2] \cup [2; 5]$
- E) $[-2:1] \cup \{2\}$
- 5. Si en la inecuación

$$\frac{\lambda x^2 + 2(\lambda + 1)x + 9\lambda + 4}{x^2 - 5x + 10} \le 0$$

se cumple que $\forall x \in \mathbb{R}$, determine la variación de λ

- A) $\left\langle -\infty; -\frac{1}{4} \right\rangle$ B) $\left[-\frac{1}{2}; +\infty \right)$ C) $\left[-\frac{1}{2}; \frac{1}{4} \right]$

- D) $\left[\frac{1}{4}; +\infty\right)$
- E) $\left\langle -\infty; -\frac{1}{2} \right\rangle$
- Resuelva el siguiente sistema.

$$\begin{cases} x < 2x - 1 \le x^2 + 2 \\ -1 - x \le x^2 < 2x \end{cases}$$

- A) $\langle 0; \frac{1}{2} \rangle$ B) $\langle 1; 2 \rangle$
- C) [1; 2]

D) R

- E) Ø
- Resuelva la inecuación $6x^3 x^2 20x + 12 \le 0$.

A)
$$\left[-\frac{2}{3};2\right]$$

B)
$$\langle -\infty; -2 \rangle \cup \left[\frac{2}{3}; \frac{3}{2} \right]$$

C)
$$\langle -\infty; -4 \rangle \cup \left[\frac{1}{3}; \frac{3}{2} \right]$$

D)
$$\langle -\infty; -4] \cup \left[\frac{2}{3}; \frac{3}{2} \right]$$

E)
$$\langle -\infty; -3 \rangle \cup \left[\frac{1}{3}; \frac{3}{2} \right]$$

$$x+1 \le \frac{1}{x+1} < x^2 - x + 1$$

- A) [-2:0]
- B) $\langle -\infty; -2 \rfloor \cup \left\lceil \frac{1}{2}; \frac{3}{2} \right\rceil$
- C) ⟨-∞: -41
- D) ⟨-∞: -21
- E) $\langle -\infty; -3] \cup \left[-2; \frac{1}{2} \right]$
- Resuelva la siguiente inecuación.

$$\frac{(x-2)^2(x+1)^3}{x^2-x+2} \ge \frac{(x-2)^2(x+1)^3}{x-n}; -1 < n < 2$$

- A) [-1:2]
- B) $\langle -2; n \rangle \cup \{2\}$
- C) ⟨-∞: 21
- D) $[-1:n] \cup \{2\}$
- E) $\langle -\infty; -1 \rangle \cup [-2; 2]$
- 10. Resuelva la siguiente inecuación.

$$(20x-80)^3(x^3-8)(x-4) \le 0$$

- A) ⟨-∞: 41
- B) $\langle -\infty; 2 \rangle \cup \{4\}$
- C) $\langle -\infty; 2 \rangle$
- D) [2: 4]
- E) $\langle -\infty; 1 \rangle \cup \{2\}$
- 11. Al resolver la siguiente inecuación se obtiene un conjunto solución unitario.

$$(2x-3)(2x-n) \le (2x-3)(x-2n+6)$$

Calcule el valor de $4n^2 + 2n + 1$.

- A) 81
- B) 72
- C) 91

D) 69

- E) 87
- 12. Determine la suma de valores de λ para que el conjunto solución de la siguiente inecuación sea unitario.

$$2x^2 - \sqrt{5}(\lambda + 1)x + (\lambda + 2) \le 0$$

- A) $-\frac{9}{5}$
- B) $-\frac{7}{4}$ C) $-\frac{2}{5}$
- D) $-\frac{11}{5}$

13. Adriano es un coleccionista de los mundiales de fútbol desde el año 1950. Él tenía cierta cantidad de stickers y compra un álbum para pegarlos. Si él pega 17 stickers en cada página, el álbum es insuficiente; pero, si pega 20 stickers en cada página, por lo menos, dos páginas quedarían vacías. En el cumpleaños de Adriano recibe de regalo un álbum exactamente igual al que tiene, y en cada página de dicho álbum estaban pegados 25 stickers, entonces,

él tendría un total de 1200 stickers. ¿Cuántas

A) 21

B) 35

páginas tiene el álbum?

C) 28

D) 15

- E) 32
- **14.** Resuelve la inecuación $-3x^2+4x-2+x^3>x^3$.
 - A) R
- B) { }
- C) $\mathbb{R} \{2\}$

D) $\mathbb{R} - \{-2\}$

- E) $\mathbb{R} \{1\}$
- 15. Determine la secuencia correcta de verdad (V) o falsedad (F) de las siguientes proposiciones.

I.
$$-x^2+x+3<0 \iff x \in \mathbb{R} - \left[\frac{1-\sqrt{13}}{2}; \frac{1+\sqrt{13}}{2}\right]$$

II. Si
$$x^2 - 3x - 7 < 0$$
; $\forall x \in \langle a; b \rangle \to a^{-1} + b^{-1} = \frac{-3}{7}$

III.
$$x^2 - 2(1 + \sqrt{2})x + 3 + 2\sqrt{2} \le 0 \rightarrow CS = \{x_0\}$$

- A) VFV
- B) VVF
- C) FVF

D) FFF

- E) VVV
- 16. Determine los valores de λ si la siguiente inecuación presenta como conjunto solución

$$x^2 - \lambda x + (\lambda - 1) < 0$$

- A) $\lambda \ge 2$
- B) $\lambda > 2$
- C) λ≤2

D) $\lambda < 2$

- E) $\lambda = 2$
- 17. Al resolver la inecuación $2x^2+mx+18 \le 0$ presenta como conjunto solución $CS = \{\alpha\}$. Determine el menor valor de $\alpha+m$.
 - A) -9
- B) -15
- C) 15

D) 10

E) 14

- 18. Resuelva el siguiente sistema de inecuaciones polinomiales.
 - $2x^3 + 9x^2 + 13x + 21 > 0$ $3x^3 - 8x^2 - 5x - 22 < 0$
 - A) $\left\langle -\frac{21}{22}; \frac{11}{2} \right\rangle$ B) $\left\langle -\frac{11}{2}; \frac{7}{2} \right\rangle$ C) $\left\langle -\frac{7}{2}; \frac{11}{3} \right\rangle$

D) 6

E) $\left\langle -\frac{7}{3}; \frac{11}{2} \right\rangle$

22. Halle el conjunto solución de la siguiente inecuación.

23. Resuelva la inecuación de variable x si a < b < 0.

$$1 + \frac{-15 - 8x}{x^2 + 8x + 15} \le 0$$

- A) $\langle -7; -3 \rangle \cup \{0\}$
- B) $\langle -\infty; -5 \rangle \cup \langle -3; 0 \rangle$
- C) $\langle -5; -2 \rangle \cup \{0\}$
- D) $\langle -5; -3 \rangle \cup \{0\}$
- E) $\langle -5 \cdot -1 \rangle \cup \{0\}$

 $\frac{1}{x} + \frac{1}{a} + \frac{1}{b} < \frac{1}{x + a + b}$

A) $\langle -a-b; -a \rangle \cup \langle -b; 0 \rangle$

C) $\langle -b : -a \rangle \cup \langle -a-b : +\infty \rangle$

D) $\langle a; b \rangle \cup \langle -a-b; +\infty \rangle$ E) $\langle a; b \rangle \cup \langle a+b; +\infty \rangle$

UNI 2022-I

- **19.** Resuelva la signiente inecuación si $a \in \mathbb{R} \{0\}$. $x^{3}+(a-2)x^{2}+(a^{2}-2a)x-2a^{2}<0$
 - A) $\langle 2: +\infty \rangle$
 - B) $\langle -\infty : a \rangle$
 - C) $\langle -\infty : 2a \rangle$
 - D) ⟨-∞: 2⟩
 - E) $\langle 2a: +\infty \rangle$
- **20.** Sean *m*, *n* enteros.
 - $(-x^8 + 2\sqrt{m}x^4 4m)^m (x^5 m^5)^m (x+n)^{n+1} < 0.$

donde el conjunto solución es

doing et conjunto solucion es
$$\langle -\infty; -4 \rangle \cup [5; +\infty \rangle$$
. Halle $2m+n$.

- A) -14
- B) -13
- C) 6
- E) 14

24. Resuelva la siguiente inecuación.

B) $\langle -\infty : 0 \rangle \cup \langle -b : -a \rangle \cup \langle -a-b : +\infty \rangle$

$$\frac{(m+1)x^2 + (4m-8)x - 12m + 12}{(m+1)(5x+12)} < 0; m > 3$$

Indique el conjunto solución.

A)
$$\left\langle -\infty; 6\left(\frac{1-m}{m+1}\right) \right\rangle \cup \left\langle -\frac{12}{5}; 2\right\rangle$$

B)
$$\left\langle 6\left(\frac{1-m}{m+1}\right); -\frac{12}{5}\right\rangle \cup \left\langle 2; +\infty \right\rangle$$

C)
$$\left\langle -\infty; -\frac{12}{5} \right\rangle \cup \left\langle 6\left(\frac{1-m}{1+m}\right); 2 \right\rangle$$

D)
$$\left\langle -\frac{12}{5}; 2 \right\rangle \cup \left\langle 6 \left(\frac{1-m}{1+m} \right); +\infty \right\rangle$$

E)
$$\left\langle 6\left(\frac{1-m}{m+1}\right); +\infty\right\rangle - \left\{-\frac{12}{5}\right\}$$

- D) 3

- 21. Resuelva la siguiente inecuación.

$$\frac{(x-5)^4(x^3-1)}{(3-x)} \le \frac{(x^4+x^2+1)(x-5)^4}{(3-x)}$$

- A) $\langle -5; 3 \rangle \cup \{5\}$
- B) $\langle -9: 3 \rangle \cup \{5\}$
- C) $\langle -\infty; 3 \rangle \cup \{5\}$
- D) $\langle -\infty; 5] \{3\}$
- E) $\langle -\infty; 3 \rangle \{2\}$