

LINCOLN SCHOOL OF ENGINEERING

DATA MODELLING AND SIMULATION

LECTURE 1:

Eigen Vectors & Eigen Values

Ву, Manu H. Nair PhD Student, Space Robotics L-CAS, University of Lincoln

18710796@students.Lincoln.ac.uk mnair@lincoln.ac.uk

UNIVERSITY OF LINCOLN

Linear Transformation

What is a transformation?

Initial Transformation

- Too crowded with arrow representation

as an arrow but as a single point

- **All Lines Remain Lines**
- No curves
- **Fixed Origin**
- Gride lines remain || and evenly spaced

Grid method – Transformation in 2D

Transformation can get messy

UNIVERSITY OF LINCOLN

Numerical Description

 $\Rightarrow \begin{bmatrix} 1 & 3 \\ -2 & 0 \end{bmatrix}$ Where \hat{i} lands Where \hat{j} lands

2x2 Matrix

LINCOLN

TO-DO LIST

1. Where does the linear transformation take vector b?

2. Assume a generalised 2x2 matrix with \hat{i} (components being a and c) and \hat{j} (components b and d). With a vector [x,y], prove its linear transformation results in a 2x1 matrix as below:

$$\begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

Determinant of a Transformation

Factor by which a linear transformation changes any area is called the Determinant of that transformation

TO-DO LIST

- 1. Can determinants be negative? If so what does it mean? How does it affect the area?
- 2. Compute Determinant of the following matrices:
 - A. $\begin{bmatrix} 1 & 9 \\ 3 & 8 \end{bmatrix}$
 - B. $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$
 - $C. \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 3 \end{bmatrix}$
 - D. $\begin{bmatrix} -1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & -1 \end{bmatrix}$

UNIVERSITY OF LINCOLN

Eigen Vectors and Eigen Values

Special Vectors which remains in its own span after transformation

- Remains on x axis
- Any other vector on X-axis gets stretched by a factor of 3
- Factor by which it is stretched, X-axis: $3 = Eigen \ value \ (\lambda)$ of the Eigen Vector (\vec{v})

3D rotation doesn't stretch or squish any vector, so Eigen value remains 1

There exists a non-zero vector v

Eigen Value Buckling – Significance and Practical Application of Eigen Vectors and Values

M. H. Nair, M. C. Rai and M. Poozhiyil, "Design Engineering a Walking Robotic Manipulator for In-Space Assembly Missions", Frontiers in Robotics and AI: Robotic In-Space Servicing, Assembly and Manufacturing, Sep 2022.

https://www.frontiersin.org/articles/10.3389/frobt.2022.995813/abstract

1. Calculating Eigen values and vectors

Substitute Eigen Values to compute Eigen Vectors

2. There could be no Eigen vectors

3. A single Eigen Value can have more than a line full of Eigen Vectors

- Scaling up matrix
- Only Eigen Value = 2
- Every vector in the plane gets to be an Eigen Vector with that Eigen Value

Eigen Values

Example 1. Find the eigenvalues in the system

$$\int_{0}^{\infty} \frac{x + 4y = \lambda x}{2x + 3y = \lambda y}$$

Example 2. Find the eigenvalues of A where
$$A = \begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 3 & 2 & -2 \end{pmatrix}$$

+ TUTORIAL 1
QUESTIONS –
Check Blackboard

Eigen Values + Vectors

Example 1. Find the eigenvectors of AX =
$$\lambda X$$
 where $A = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$ and $X = \begin{pmatrix} X \\ Y \end{pmatrix}$

Example 2. Determine the eigenvectors of
$$\begin{pmatrix} 1 & 2 & 0 \\ -1 & -1 & 1 \\ 3 & 2 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$