

Forelesning nr.8 analog elektronikk IN 1080 Mekatronikk

Operasjonsforsterkere

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Dagens temaer

- Måleteknikk
- Ideelle operasjonsforsterkere
- Bruk av opamp'er
- Fysiske vs ideelle opamp'er

Det matematisk-naturvitenskapelige fakultet

Måleteknikk

- Ofte trenger man måle fysiske parametere, f.eks:
 - Temperatur, trykk og strekk (termometer, vekt, væske- og gasstrykk....)
 - Lengde, akselerasjon og hastighet (kollisjonsputer, GPS, smart phones)
 - Miljøanvendelser (Gasskonsentrasjoner, fuktighet)
 - Medisinske anvendelser (blodtrykk, oksygenmetning, blodsukker....)
- I måleteknikk «oversettes» et fysisk fenomen til en elektrisk størrelse som kan måles:
 - Strøm og spenning
 - Impedans (resistans, konduktans og induktans)
- De elektriske størrelsene må måles hurtig og med høy presisjon

Måleteknikk (forts)

Måleteknikk (forts)

- En sensor måler en (endring i) en fysisk parameter som (endring i) resistans, kapasitans eller induktans
- Impedansen konverteres deretter til en spenning
- Spenningen må vanligvis forsterkes siden det er små variasjoner i som måles
- Støy og hurtige variasjoner må som regel filtreres bort

Spenningsforsterker: Opamp

- Operasjonsforsterkeren (opamp) er mye brukt i elektronikk
- En opamp er en spenningsforsterker med to innganger og én utgang

- Inngangene kalles hhv inverterende (-) og ikke-inverterende (+)
- A er forsterkningen eller Gain
- Opamp'er er ferdig designet vi trenger ikke forholde oss til hvordan den ser ut innvendig

Enkel opamp-modell

- Opamp'en er en aktiv enhet som trenger ekstern spenningsforsyning og kalibrering
- Kalibrering brukes for å rette opp små avvik eller variasjoner som en enkelt opamp kan ha
- Vanligvis vises ikke terminalene for spenningsforsyning og kalibrering
- Opamp'en kan brukes til å lage mange andre typer kretser, bla differensielle forsterkere, instrumenteringsforsterkere, spenningsfølgere/bufre, summasjonsforsterkere, inverterende/ikke-inverterende forsterkere, aktive filtre, integrasjons/derivasjonskretser etc etc

Det matematisk-naturvitenskapelige fakultet

Ideell opamp (1)

- En ideell operasjonsforsterker har følgende egenskaper:
 - Inngangsmotstanden R_i = ∞
 - Utgangsmotstanden $R_o = 0$
 - Spenningsforsterkningen $A_{\nu} = \infty$
 - Båndbredden = ∞, dvs alle frekvenser forsterkes like mye uten forvrenging
 - V_{out}=0 når V₊=V₋ uavhengig av størrelsesordenen til V₋
 (uendelig høy Common Mode Rejection Ratio)
 - Samme hvor raskt input endrer seg, vil output følge etter (uendelig høy slew rate)

Det matematisk-naturvitenskapelige fakultet

Ideell opamp (2)

- Av dette kan vi utlede at
 - Inngangsstrømmene i₊=0 og i₋=0
 - Utgangsspenningen V_{out} varierer ikke med lastmotstanden R_I
 - I_{out} bestemmes kun av R_L og V_{out}

Det matematisk-naturvitenskapelige fakultet

Open-loop og closed-loop konfigurasjon

- En opamp kan brukes i open-loop eller i closed-loop
 - Closed-loop betyr at utgangen forbindes med en av inngangene via en tilbakekobling (feedback)
 - Open-loop betyr at opamp'en ikke har tilbakekobling
- To typer tilbakekobling;
 - Negativ: utgangen kobles tilbake til –inngangen
 - •Positiv: utgangen kobles tilbake til +inngangen
- Ofte skaleres tilbakekoblingssignalet ned via en spenningsdeler
- Spenningsforsterkningen uten tilbakekobling kalles «open loop gain» A_{ol}
- Spenningsforsterkningen med tilbakekobling kalles «closed loop gain» A_{cl}
- Negativ tilbakekobling reduserer forsterkningen, dvs A_{ol} >> A_{cl}

Input-kombinasjoner

- Siden opamp'en har to innganger, kan man koble input-signal(er) til på ulike måter:
 - 1) Single-ended mode: Bare én av inngangene kobles til et innsignal mens den andre kobles til en fast spenning (f.eks. jord)
 - 2) Differential mode: Begge inngangene kobles til hvert sitt inngangssignal
 - 3) Common-mode: Ett inngangssignal kobles til begge inngangene samtidig
- Alle input-kombinasjonene kan kombineres med OL og CLkonfigurasjon
 - Men ikke alle kombinasjoner er like mye brukt.

Negativ tilbakekobling

- Uten tilbakekobling (open-loop) vil små variasjoner på inngangen gi store variasjoner på utgangen fordi A_{ol} er svært høy
- Når utgangen kobles på den inverterende inngangen, blir utgangen trukket fra inngangssignalet
- Negativ tilbakekobling fører til at de to input-signalene er i fase, og kun forskjellen i amplitude mellom dem forsterkes
- Positiv tilbakekobling benyttes sjelden fordi små avvik i forsterkeren kan gjøre kretsen ustabil og ikke-lineær
 - Men positiv tilbakekobling kan benyttes i bla oscillatorer for å lage ac-signaler med fast frekvens

Virtuell jord

- For å analysere opamp-kretser med tilbakekobling er begrepet «virtuell jord» nyttig
- Hvis en node ligger på nesten samme spenning som jord (dvs 0 volt) UTEN å være koblet til jord, kan vi se på dette som «virtuell» jord
- NB: Det går INGEN strøm inn/ut av virtuell jord
 - Input-impedansen = ∞ ⇔ I_{in} = 0
- Siden spenningsforsterkningen er gitt av $A = \frac{v_{out}}{v_{in}} \approx \infty$ og V_{out} ikke kan være uendelig, må V_+ - V_- være veldig nær 0

Opamp med negativ feedback

En inverterende forsterker bruker negativ tilbakekobling:

Inverterende forsterker (forts.)

- Ønsker å finne v_{out} som funksjon av v_{in}
- Kirchhoffs spenningslov (KVL) gir at

$$-v_{in} + R_1 i + R_f i + v_{out} = 0$$
 $\Leftrightarrow v_{out} = v_{in} - (R_1 + R_f)i$

Inverterende forsterker (forts.)

- Ved å anta at V_ ligger på virtuell jord (V₊ er koblet til jord) får vi $-v_{in} + R_1 i = 0 \Rightarrow i = \frac{v_{in}}{R_1}$
- Har nå to ligninger med to ukjente og dette gir:

$$v_{out} = -\frac{R_f}{R_i} v_{in}$$

Inverterende forsterker (forts.)

Forsterkningen A_{cl(i)} er gitt av forholdet mellom
 R_f og R_i:

$$A_{cl(i)} = -\frac{R_f}{R_i}$$

- Ser på oppførselen med v_{in} =5sin(3t)mV, R_i =4.7k Ω og R_i =47k Ω
- Dette gir v_{out} = 50sin(3t)mV

Det matematisk-naturvitenskapelige fakultet

Ikke-inverterende forsterker

- Hvis man ikke ønsker invertert utgang, brukes en ikke-inverterende forsterker
- Vi kan nå ikke anta at V_{in} er koblet til virtuell jord, men antar fortsatt at V_{_} ≈ V₊
- Bruker KCL for å finne v_{out} som funksjon av v_{in} :

$$\frac{v_a}{R_1} + \frac{v_a - v_{out}}{R_f} = 0 \quad \land \quad v_b = v_{in} \quad \land$$

$$v_a = v_{in} \quad \Rightarrow \quad v_{out} = (1 + \frac{R_f}{R_1})v_{in}$$

$$A_{cl(ni)} = 1 + \frac{R_f}{R_1}$$

IN 1080 (b) 18

Ikke-inverterende forsterker (forts)

- Ser på oppførselen med v_{in} =5sin(3t)mV, R_1 =4.7k Ω , R_f =47k Ω
- Dette gir v_{out} = 55sin(3t)mV
- Merk forskjellen i A mellom inverterende og ikke-inverterende forsterker.

En inverterende forsterker har A>0, mens en ikke-inverterende har A≥1

Spenningsfølger

 En annen mye brukt konfigurasjon er spenningsfølgeren (buffer)

$$V_{out} = Aol(V_{in} - V_{out}) \Rightarrow \frac{V_{out}}{V_{in}} = \frac{A_{ol}}{A_{ol} + 1} \approx 1$$

når Aol er veldig stor

 Spenningsfølgere brukes bla for å isolere inngangen og utgangen fra hverandre elektrisk slik at de ikke påvirker hverandre

Summasjonsforsterker

- En operasjonsforsterker kan brukes til å legge sammen spenninger og eventuelt skalere dem
- Spenningene legges sammen ved å omdanne dem til strømmer som summeres vha KCL
- Output-spenningen er gitt av

$$\frac{V_{a} - V_{out}}{R_{f}} + \frac{V_{a} - V_{1}}{R} + \frac{V_{a} - V_{2}}{R} + \frac{V_{a} - V_{3}}{R} = 0 \Rightarrow$$

$$V_{out} = -\frac{R_{f}}{R} (V_{1} + V_{2} + V_{3})$$

Gjennomsnittsberegning

 Ved å velge R slik at R=n*R_f vil summasjonskretsen beregne gjennomsnittsspenningen av alle input-spenningene

$$V_{out} = -\frac{R_f}{R} (V_1 + V_2 + V_3) \Rightarrow$$

$$V_{out} = -\frac{R}{R} = \frac{1}{n} (V_1 + V_2 + V_3)$$

Komparatorer

- En komparator sammenligner spenningsnivåene til to inputsignaler
- Komparatoren bruker ikke tilbakekobling
 - Vi vil at liten spenningsforskjell mellom V₊ og V₋ skal gi stort utslag i V_{out}
- Utgangen har enten maksimal eller minimal spenning (dvs metning) avhengig av hvilket inngangssignal som er størst
- Vanlige opamp'er kan brukes som komparator, men vanligere å bruke spesialiserte opamp'er som er raskere

Komparatorer (forts)

 Eksempel på komparator; maks output-spenning er 13v, og V_{ref} = 4.2v

Instrumenteringsforsterker

- Brukes for å forsterke forskjellen mellom to inngangssignaler, dvs uavhengig av common-mode nivå (felles signal)
- Har høy inngangsimpedans (påvirker ikke kildene) og lav utgangsimpedans
- Brukes i kretser hvor det skal måles i omgivelser med mye støy
- Motstanden R_G regulerer forsterkningen

Instrumenteringsforsterker (forts)

Forsterkning av commom/differential mode signaler

• Instrumenteringsforsterker med Wheatstonebro

Fysiske opamp'er

 Med utgangspunkt i den enkle og ideelle opamp-modellen kan vi finne ut hvordan en fysisk opamp oppfører seg

Eksempel på implementasjon (741-type, CMOS)

A CMOS IMPLEMENTATION OF THE uA741 OP AMP

Fysiske opamp'er (forts)

- Tre viktige parametrene som klassifiserer en opamp er:
 - Inngangsresistansen R_i
 - Utgangsresistansen R_o
 - Forsterkningen A
- For en fysisk opamp er R_i typisk MΩ eller større
- Utgangsmotstanden R_o er noen få Ohm
- Forsterkningen (open-loop) er vanligvis fra 10⁵ og større
- Spesialiserte opamp'er kan ha helt andre verdier

Ideell opamp	Fysisk opamp
R _i =∞	R _i ~ MOhm
$R_o=0$	$R_o < 2-3 \text{ Ohm}$
A=∞	A~10 ⁵

Fysiske opamp'er (forts)

- Fra den enkle modellen kan man utlede de to ideelle opampreglene:
 - Det er ingen spenningsforskjell mellom inngangsterminalene
 - Det går ingen strøm inn i inngangsterminalene
- Utgangsspeninngen er gitt av

$$V_{out} = AV_d \implies V_d = \frac{V_{out}}{A}$$

• Hvis A er svært stor, vil derfor v_d bli svært liten, siden v_{out} er begrenset oppad til forsyningsspenningen

Fysiske opamp'er (forts)

- Hvis utgangsmotstanden R_o er større enn 0, vil output-spenningen v_{out} synke når utgangsstrømmen i_{out} øker
- En ideell opamp bør derfor ha $R_o = 0$
- Det viktig at utgangsmotstanden i forhold til lastmotstanden er så liten som mulig slik at det ikke blir spenningsfall som avhenger av utgangsstrømmen

Fysiske opamp'er: Metning (saturation)

- Metning betyr at økning av inngangsspenningen ikke lenger gir økning i utgangsspenningen
- Utgangsspenningen fra en opamp kan ikke overstige forsyningsspenningen (forsterkningen er begrenset i praksis)
- I tillegg har transistorene som driver utgangen i opamp'en et fast spenningsfall som gjør at maks utgangsspenning ligger under maks forsyningsspenning

Fysiske opamp'er: Metning (forts.)

- Når opamp'en er i metning, opererer den utenfor det lineære området.
- Overgangen fra lineært område til metning er ikke nødvendigvis symmetrisk, dvs

$$\left|V_{lin_{sat-}}\right| \neq \left|V_{lin_{sat+}}\right|$$

Den positive og negative metningsspenningen er heller ikke alltid like, dvs

$$\left|V_{max_{sat-}}\right| \neq \left|V_{max_{sat+}}\right|$$

Fysiske opamp'er: Input offset-spenning

- Hvis inngangsterminalene er koblet sammen på en ideell opamp vil v_d=0
 og dermed v_{out}=0
- I praksis er v_{out} ≠ 0 når v_d=0
- Denne effekten kalles for input offsetspenning
- Fysiske opamp'er er utstyrt med to ekstra tilkoblinger slik at offsetspenningen kan justeres til 0

Fysiske opamp'er: Slew rate

- Slew rate er et mål på hvor *raskt* utgangssignalet klarer å endre seg når inngangssignalet endrer seg
- Slew rate måles i volt per sekund på utgangen
- . Ulike opamp'er har ulike slew rates
- Opamp'er som har høy maksimal outputspenning vil typisk ha lav slew-rate
- Slew-rate bestemmer opamp'ens båndbredde, dvs anvendelige frekvensområde

Det matematisk-naturvitenskapelige fakultet

Fysiske opamp'er: Slew rate (forts)

Formen til utgangssignalet begynner å avvike fra inngangssignalet

NB: Ulik tidsskala på de horisontale aksene

(c)

IN 1080

36