

ugdSECOND SEMESTER 2020-21 COURSE HANDOUT

Date: 15.01.2021

In addition to part I (General Handout for all courses appended to the Time table) this portion gives further specific details regarding the course.

Course No : CHEM F430

Course Title : Atmospheric Chemistry
Instructor-in-Charge : Shamik Chakraborty

- 1. Course Description: Measures of atmospheric compositions, Atmospheric pressure, Models to explain variation in concentration of chemical species in atmosphere, Atmospheric transport, Continuity equation to provide quantitative measures about the variation of concentration of various chemical species in atmosphere, Geochemical cycles, Photochemistry, the Green House Effect, Aerosols, Chemical Kinetics, Stratospheric ozone, Oxidation in troposphere, Ozone air pollution, Acid rain.
- **2. Scope and Objective of the Course:** The fundamental concepts of Atmospheric Chemistry would be provided in this course in a systematic and organized manner. Simple principles of mathematics, physics, and chemistry would be employed to describe a complex system, such as, atmosphere. The complexity of the system would be reduced logically to develop various models. The fundamental knowledge of atmospheric chemistry, along with the description of experiments that lead to the current status would be discussed in this course. Atmospheric chemistry is mostly an observational science. Some of those concepts would also be introduced in this course.
- **3. Text Books**: "Introduction to Atmospheric Chemistry", Daniel J Jacob, Princeton University Press, Princeton, New Jersey, 1999.
- **4. Reference Books: RB-1:** "Atmospheric Chemistry and Physics: From Air Pollution to Climate Change" John H. Seinfeld and Spyros N. Pandis, John Wiley & Sons, Inc., Hoboken, New Jersey, 2016.
- **RB-2:** "Atmospheric Thermodynamics", Gerald R. North and Tatiana L. Erukhimova, Cambridge University Press, New York, 2009.
- **5. Learning Outcome of the Course:** After completion of the course students are expected to:
 - Predict the fate of molecules and radicals in atmosphere.
 - Qualitatively explain and quantitatively calculate photolysis rate constant.
 - Explain basic principles of greenhouse effect.
 - Qualitatively explain production and destruction of ozone.
 - Predict degradation pathways of natural and anthropogenic trace gases.

6. Course Plan:

Module No.	Lecture Session	Reference	Learning outcomes	
1: Atmospheric	L1.1: Mixing ratio, Number density,	TB-1 1.1- 1.3	Recognize parameters,	
parameters	Partial pressure	such as, composition,		
Purum	L1.2: Measurement: mass of atmosphere,	TB-1 2.1– 2.5	temperature, pressure, to	
	vertical profile of pressure, Barometric		describe atmosphere	
	law, Sea-Breeze circulation		1	
2: Atmospheric	L2.1 – L2.2: One-box model, concept of	TB-1 3.1 –3.3	Implement simple models	
models	life time, mass balance equation, Multi-		to determine change in	
	box model, Puff model		atmospheric parameters	
	L2.3 – L2.5: Geostrophic flow, general	TB-1 4.1 –4.4		
	circulation, vertical transport, latent heat			
	release from cloud formation, turbulance			
	L2.6 – L2.7: Eulerian form and	TB-1 5.1– 5.2		
	Lagrangian form	Class		
2.01	121 127 0 1 1 1 1 6	discussion		
3: Chemistry in	L3.1 – L3.5: Geochemical cycling of	TB-1 6.1– 6.5	Comprehensive	
atmosphere	elements, early evolution of atmosphere, nitrogen cycle, oxygen cycle, carbon cycle	Class discussion	understanding of chemical	
	introgen cycle, oxygen cycle, carbon cycle	uiscussioii	processes undergoes in atmosphere	
	L3.6 – L3.10: Factors affecting light flux,	RB-1 4.1–	atmosphere	
	Quantitative spectroscopy, Rates of	4.10		
	photolysis, photodissociation			
	L3.11 – L3.13: Radiation, effective	TB-1 7.1–7.6		
	temperature of earth, absorption of			
	radiation by atmosphere, radiative forcing,			
	water vapor and cloud feedback, optical			
	depth			
	L3.13 – L3.15: Sources and sinks of	TB-1 8.1– 8.2		
	aerosols, radiative effects: scattering,			
	visibility reduction, perturbation to climate			
	L16 – L19: Rate expressions for gas-phase	TB-1 9.1– 9.4		
	reactions, bimolecular reactions, three			
	body reactions, reverse reactions, chemical			
	equilibrium, photolysis, radical assisted			
4: Ozone in	reaction chain L4.1 – L4.4: Chapman mechanism,	TB-1 10.1–	Mechanism towards	
atmosphere	catalytic loss cycles (HO _x , NO _x , ClO _x),	10.1	formation and destruction	
aunospiicie	Polar ozone loss: mechanism, PSC	10.4	of ozone	
	formation, ozone holes		OI OLOIIO	
	L4.5 – L4.7: Hydroxyl radical, global	TB-1 11.1–		
	budgets of CO & CH ₄ , Cycling of HOx	11.6		
	and production of ozone, global budget of			
	nitrogen oxides and tropospheric ozone,			
	anthropogenic influence on ozone and OH			

5: Pollution in atmosphere	L5.1 – L5.3: Air pollution and ozone, ozone formation and control strategies, ozone production efficiency.	TB-2 12.1 – 12.3	Ozone air pollution and acid rain
	L5.4 – L5.5: Chemical composition of precipitation, sources of acids: sulfur chemistry, effects of acid rain, emission trends	TB-2 13.1 – 13.4	

6. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of component (Close Book/ Open Book)
Mid-Semester Test	90 Min.	30	<test_1></test_1>	Close book & open book
Comprehensive	120 Min.	40	<test_c></test_c>	Close book & open book
Examination				
* Continuous	-	30		Close book & open book
evaluation				

- 7. Chamber Consultation Hour: Will be declared in the class
- **8. Notices:** Will be displayed in Nalanda/Google Class Room
- 9. Make-up Policy: According to general guideline of the institute.
- **10. Note** (**if any**): Atmospheric chemistry is an observational science. An effort will be made to present experimental data in the lectures. Advanced topics will be provided for short project in the area of atmospheric chemistry and physics.

Instructor-in-charge Course No. CHEM F430