## Regularisierung von linearer Regression

Phillip Grafendorfer, Michael Kastner, Raphael Peer

## Daten

## Ames House price Dataset

### Datensatz:

- 1460 Häuser
- 79 erklärende Variablen (numerisch und kategorisch)
- bekannter Übungsdatensatz

Quelle: https://www.kaggle.com/c/house-prices-advanced-regression-techniques

## Fehlende Werte: Übersicht



## Fehlende Werte: Strategie

## Umgang mit fehlenden Werten:

- Bei mehr als 10% Fehlenden Werten: Variable verworfen
- Bei numerischen Variablen: NA durch Median der Variable ersetzt
- Bei kategorischen Variablen: NA als eigene Kategorie (Kategorie 'unbekannt')

### Problem mit validation-set: seltene Factor-levels

### data-frame

einige levels im validation-set aber nicht im trainings-set

unbekannte dummy
Variablen im validation-set

 $\implies$  error

### design-matrix

einige levels in validation-set aber nicht im trainings-set

 $\implies$  dummy variable immer null im trainings set

 $\implies$  Koeffizeint pprox 0

⇒ kein Einfluss

**Standard lineare Regression** 

### Einfaches Model mit allen Variablen



## Interpretierbare Koeffizienten

## Nachteil unstandardisierter Regressionskoeffizienten

- Von den Maßeinheiten für X und Y abhängig
- Daher schlechtere Vergleichbarkeit

Lösung: Standardisierte Koeffizienten

## Beta-Koeffizienten im Vergleich



# Regularisierung

## Problemstellung I



Figure 1: Quelle: kdnuggets.com

- Bias- Variance Tradeoff
- OLS Schätzer ist "unbiased" aber kann große Varianz haben

## Problemstellung II

## Wann tritt große Varianz auf?

- Wenn die Prediktoren hohe Korrelation aufweisen
- Bei vielen Prediktoren. Wenn die Anzahl Prediktoren nahe bei Anzahl der Beobachtungen geht die Varianz gegen unendlich.

## Lösung

## Verringerung der Varianz auf Kosten des Bias



Figure 2: Quelle: researchgate.net

## Ridge Regression

$$L_{ridge}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2 + \lambda \sum_{j=1}^{m} \hat{\beta}_j^2 = ||y - X \hat{\beta}||^2 + \lambda ||\hat{\beta}||^2$$

Die Diskussion dieser Likelihood Funktion liefert für jeden Parameter  $\lambda$  ein set von Schätzern  $\hat{\beta}$ . Falls  $\lambda \Rightarrow 0$ , dann  $\hat{\beta}_{ridge} \Rightarrow \hat{\beta}_{OLS}$  Frage: wie wird der Regularisierungs- Parameter gewählt?

- Crossvalidierung (hier benutzt)
- Minimierung eines weiteren Informationskriteriums (AIC, BCI etc.)

## Ridge Regression: Crossvalidierung



Figure 3: Lambda Tuning

## **Lasso Regression**

$$L_{lasso}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2 + \lambda \sum_{j=1}^{m} |\hat{\beta}_j| = ||y - X \hat{\beta}||^2 + \lambda ||\hat{\beta}||$$

Die Diskussion dieser Likelihood Funktion liefert für jeden Parameter  $\lambda$  ein set von Schätzern  $\hat{\beta}$ . Falls  $\lambda \Rightarrow 0$ , dann  $\hat{\beta}_{lasso} \Rightarrow \hat{\beta}_{OLS}$  Frage: wie wird der Regularisierungs- Parameter gewählt?

- Crossvalidierung (hier benutzt)
- Minimierung eines weiteren Informationskriteriums (AIC, BCI etc.)

## Lasso Regression: Crossvalidierung



Figure 4: Lambda Tuning

## Lasso Regression: Koeffizienten



Figure 5: Lambda Tuning

## Vergleich der Modelle

| Modelle | $R^2$ | MAD   |
|---------|-------|-------|
| OLS     | 0.933 | 20117 |
| Ridge   | 0.903 | 19624 |
| Lasso   | 0.904 | 30010 |

## Fragen und Diskussion

Vielen Dank für eure Aufmerksamkeit!