ELL 701 - Mathematical Methods in Capture

Aug 2016

- (compared as x = 1) and $x \mid_{\infty}$ for vector x = (-4, 2, -1, -3)
- The (2.2) element form a vector space. If yes, give a basis and the characteristic form a vector space.
- A linear transferred one is represented with respect to the second

$$\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$

Since the lowest is shifted to the vectors $n_1 = [-1/2]^T$ and $r_2 = [1-1]$. Find the west transfernishman matrix. (You can leave the solutions so product of matrices form, without the need of actually computing the product)

(a) the condimens of p(t) = 2 + 3t with respect the basis $(p_1, p_2) = (t + 1, t + 1)$ is this basis orthogonal with respect to the inner-product defined as

$$< p_1, p_2> = \int_{-1}^1 p_1(t) p_2(t) dt$$

3+2

- A simple series circuit has three resistances r_1, r_2 and r_3 , excited by a single voltage source V. Let $(v_1 \ v_2 \ v_3)$ be respectively the voltage drops across the resistances, (with obviously $(v_1 + v_2 + v_3) = V$). Show that $v = [v_4 \ v_4]$ lies in a vector space that is one-dimentinal?
- to Imagine a linear transformation that reflects every vector on the x-y plane (which serves as a mirror).
 - (a) the a matrix representation P of the above operator, with respect to the standard basis.
 - (b) Verily that this matrix has the strange property that $P^2 = I$.

 What can be the physical significance of this relationship?

$$3+2=5$$