Restitution du cours

- 1- Donner la définition du polynôme caractéristique et énoncer la caractérisation de la diagonalisabilité par le polynôme caractéristique et la dimension des sous-espaces propres.
- 2 Donner la définition d'un endomorphisme trigonalisable et exprimer la trace et le déterminant d'une matrice trigonalisable $M \in \mathcal{M}_n(\mathbb{R})$ en fonction de ses valeurs propres.
- 3 Donner la définition du spectre d'une matrice $M \in \mathcal{M}_n(\mathbb{R})$ et énoncer la caractérisation de la diagonalisabilité par les polynômes annulateurs.

Questions de cours

1 - Soient u un endomorphisme d'un espace vectoriel E et P un polynôme annulateur de u.

Montrer que toute valeur propre de u est une racine de P.

- 2 Montrer que toute matrice carrée à coefficients complexes admet au moins une valeur propre.
- 3 Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice admettant une unique valeur propre λ . Montrer que M est diagonalisable si, et seulement si, $M = \lambda I_n$.

Exercices axés sur le calcul

Soit $A = \frac{1}{2} \begin{pmatrix} 3 & -4 \\ 2 & -3 \end{pmatrix}$.

- 1 Déterminer les valeurs propres de A.
- 2 Préciser une matrice P telle que $D = P^{-1}AP$ soit diagonale.
- 3 Préciser la limite de la suite $(A^n)_{n\in\mathbb{N}}$.

Exercice 2:

On considère trois suites réelles $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ vérifiant :

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} &= \frac{1}{2}x_n + \frac{1}{4}y_n + \frac{1}{4}z_n \\ y_{n+1} &= \frac{1}{4}x_n + \frac{1}{2}y_n + \frac{1}{4}z_n \\ z_{n+1} &= \frac{1}{4}x_n + \frac{1}{4}y_n + \frac{1}{2}z_n \end{cases}$$

Pour tout
$$n \in \mathbb{N}$$
, on pose $X_n = \begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$.

1 - Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que pour tout $n \in \mathbb{N}$, on ait $X_{n+1} = AX_n$ et en déduire :

$$\forall n \in \mathbb{N}, \ X_n = A^n X_0$$

2 - Vérifier que si l'on pose $P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & 0 & -1 \end{pmatrix}$, alors $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ 1 & 1 & -2 \end{pmatrix}$ et que

la matrice $D = P^{-1}AP$ est diagonale.

- 3 Pour tout $n \in \mathbb{N}$, expliciter A^n en fonction de P, D, P^{-1} et n.
- 4 En déduire que les trois suites $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ et $(z_n)_{n\in\mathbb{N}}$ sont convergentes et préciser leurs limites en fonction de x_0 , y_0 et z_0 .

Soit $A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ -1 & 0 & 0 \end{pmatrix}$.

- 1 Monter que A est diagonalisable, préciser ses valeurs propres et la dimension des sous-espaces propres.
- 2 Soit $M \in \mathcal{M}_3(\mathbb{R})$ commutant avec A.

En utilisant les sous-espaces propres de A, montrer que M est diagonalisable dans une même base que A.

3 - Montrer que si $B^2 = A$, alors B commute avec A et en déduire le nombre de matrices $B \in \mathcal{M}_3(\mathbb{R})$ telles que $B^2 = A$.

Exercice 4:

- Exercice 4:

 1 La matrice $A = \begin{pmatrix} 14 & 18 & 18 \\ -6 & -7 & -9 \\ -2 & -3 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ est-elle diagonalisable? Trigonalisable?

 2 Montrer que la matrice A est semblable à la matrice $T = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ et expliciter une matrice inversible P telle que $A = PTP^{-1}$.

Exercices axés sur le raisonnement

Soient $A = \begin{pmatrix} -1 & 0 & 1\\ \frac{1}{2} & -\frac{1}{2} & 0\\ -\frac{1}{4} & -\frac{1}{4} & -\frac{3}{2} \end{pmatrix}$ et $T = \begin{pmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 0 & 0 & -1 \end{pmatrix}$.

- 2 Montrer que A et T sont semblables.
- 3 En déduire le polynôme caractéristique de A.

Exercice 6:

Soit $A \in \mathcal{M}_n(\mathbb{C})$.

On définit par blocs les matrices de $\mathcal{M}_{2n}(\mathbb{C})$ suivantes :

$$B = \frac{1}{2} \begin{pmatrix} A & A \\ A & A \end{pmatrix} \text{ et } P = \begin{pmatrix} I_n & I_n \\ I_n & I_n \end{pmatrix}$$

- 1 Calculer P^2 . En déduire que P est inversible et préciser P^{-1} .
- 2 Préciser $B' = P^{-1}BP$.
- 3 Montrer que $Sp(B) = Sp(A) \cup \{0\}.$
- 4 Pour $\lambda \in \operatorname{Sp}(B)$, préciser dim (Ker $(B' \lambda I_{2n})$) en fonction de dim (Ker $(A \lambda I_n)$).
- 5 En déduire que B est diagonalisable si, et seulement si, A l'est.

Exercice γ :

Soient $n \in \mathbb{N} \setminus \{0; 1\}$ et $f \in \mathcal{L}(\mathbb{R}^n)$ de rang 1.

- 1 Justifier que 0 est valeur propre de f et préciser la dimension de $E_0(f)$. En déduire que f est trigonalisable.
- 2 En déduire que f est diagonalisable si, et seulement si, $\text{Tr}(f) \neq 0$.
- 3 Montrer que $f^2 = \text{Tr}(f)f$ (on discutera les cas suivant la valeur de Tr(f)).