Abalone Report

Data exploration, Cleaning, Models and Tests

Melinda Higgins

09/06/2023

Summary Statistics of Abalones' - Dimensional Measurements

A useful R package for making tables is the arsenal package. Learn more at:

- https://cran.r-project.org/web/packages/arsenal/index.html and
- https://mayoverse.github.io/arsenal/.

The key function is tableby(), see the vignette at https://mayoverse.github.io/arsenal/articles/tableby. html.

	Overall (N=4169)
length	
Mean (SD)	0.524 (0.120)
Range	0.075 - 0.815
diameter	
Mean (SD)	$0.408 \; (0.099)$
Range	0.055 - 0.650
height	
Mean (SD)	0.139 (0.039)
Range	0.010 - 0.515

Summary Statistics of Abalones' - Weight Measurements

	Overall (N=4169)
wholeWeight	
Mean (SD)	0.830 (0.490)
Range	0.002 - 2.825
shuckedWeight	
Mean (SD)	0.360 (0.222)
Range	0.001 - 1.488
visceraWeight	
Mean (SD)	$0.181\ (0.110)$
Range	0.000 - 0.760
shellWeight	
Mean (SD)	0.239 (0.139)
Range	0.002 - 1.005

Abalone Dimensional Measurements by Sex - default statistical tests

Now we can add a grouping variable such as comparing these summary statistics between the 3 biological sex groups: Male, Female and Infant.

Notice that the default settings produce a p-value. The arsenal::tableby() function is performing an ANOVA (analysis of variance) for each of these measurements.

				Total	
	F (N=1306)	I $(N=1335)$	M (N=1528)	(N=4169)	p value
length					$< 0.001^{1}$
Mean (SD)	0.579 (0.086)	0.428 (0.109)	$0.561 \ (0.103)$	0.524 (0.120)	
Range	0.275 - 0.815	0.075 - 0.725	0.155 - 0.780	0.075 - 0.815	
diameter					$< 0.001^{1}$
Mean (SD)	0.455 (0.071)	0.327 (0.088)	0.439 (0.084)	0.408 (0.099)	
Range	0.195 - 0.650	0.055 - 0.550	0.110 - 0.630	0.055 - 0.650	
height					$< 0.001^{1}$
Mean (SD)	0.157 (0.030)	$0.108 \; (0.032)$	$0.151 \ (0.035)$	$0.139\ (0.039)$	
Range	0.015 - 0.250	0.010 - 0.220	0.025 - 0.515	0.010 - 0.515	

1. Linear Model ANOVA

Abalone Dimensional Measurements by Sex - change statistical test

Suppose you decide that diameter is skewed and really need non-parametric statistics and the Kruskall-Wallis non-parametric ANOVA test performed. We can customize the statistics - learn more at https://mayoverse.github.io/arsenal/articles/tableby.html#change-summary-statistics-within-the-formula-1 and see more options at https://mayoverse.github.io/arsenal/articles/tableby.html#available-function-options-1.

You'll notice this automatically creates footnotes for each customized statistic in the output table.

				Total	
	F (N=1306)	I (N=1335)	M (N=1528)	(N=4169)	p value
length					<
					0.001^{1}
Mean (SD)	$0.579 \ (0.086)$	$0.428 \; (0.109)$	$0.561 \ (0.103)$	$0.524 \ (0.120)$	
diameter					<
					0.001^2
Median $(Q1, Q3)$	0.465 (0.410,	0.335 (0.270,	0.455 (0.395,	0.425 (0.350,	
	0.505)	0.395)	0.500)	0.480)	
height					<
					0.001^{1}
Mean (SD)	0.157 (0.030)	$0.108 \; (0.032)$	$0.151 \ (0.035)$	$0.139 \ (0.039)$	

^{1.} Linear Model ANOVA

Abalone Weight Measurements by Sex

^{2.} Kruskal-Wallis rank sum test

				Total	
	F (N=1306)	I (N=1335)	M (N=1528)	(N=4169)	p value
wholeWeight					$< 0.001^{1}$
Mean (SD)	1.047(0.430)	0.432(0.286)	0.991 (0.471)	0.830 (0.490)	
Range	0.080 - 2.657	0.002 - 2.050	0.015 - 2.825	0.002 - 2.825	
$\operatorname{shuckedWeight}$					$< 0.001^{1}$
Mean (SD)	0.446 (0.199)	0.191 (0.128)	$0.433 \ (0.223)$	$0.360 \ (0.222)$	
Range	0.031 - 1.488	0.001 - 0.773	0.006 - 1.351	0.001 - 1.488	
visceraWeight					$< 0.001^{1}$
Mean (SD)	$0.231\ (0.098)$	0.092(0.063)	$0.216 \ (0.105)$	$0.181\ (0.110)$	
Range	0.021 - 0.590	0.000 - 0.440	0.003 - 0.760	0.000 - 0.760	
shellWeight					$< 0.001^{1}$
Mean (SD)	0.302(0.126)	0.128 (0.085)	0.282(0.131)	0.239(0.139)	
Range	0.025 - 1.005	0.002 - 0.655	0.005 - 0.897	0.002 - 1.005	

1. Linear Model ANOVA

Plot of Abalone Age by shuckedWeight

Abalone Age by Shucked Weight

Plot of Abalone Age by Shucked Weight - by sex

Create a plot of abalone age by shucked weight in g Show the plot by sex - either add a color by sex or a facet $_{\rm wrap}()$.

Abalone Age by Shucked Weight

Abalone Age by Shucked Weight

Linear Regression - Abalone Age by Shucked Weight (model 1)

Table 6: Regression of Abalone Age by Shucked Weight

term	estimate	std.error	statistic	p.value
(Intercept)	9.243295	0.0861858	107.24850	0
shuckedWeight	6.110826	0.2039592	29.96102	0

Linear Regression - Abalone Age by Shucked Weight, adjusted for sex (model 2)

Table 7: Regression of Abalone Age by Shucked Weight adjusted for Sex

term	estimate	std.error	statistic	p.value
(Intercept)	10.9143080	0.1285277	84.917946	0.0000000
shuckedWeight	3.8482792	0.2295312	16.765820	0.0000000
sexI	-2.2489742	0.1239592	-18.142855	0.0000000
sexM	-0.3749078	0.1057687	-3.544601	0.0003975

Compare Models - piecemeal steps

The change in R2 for the 2 models is 0.0657824 with a p-value of $4.3055706 \times 10^{-76}$.

Compare models - use gtsummary package

Model 1 output

Characteristic	Beta	95% CI	p-value
(Intercept)	9.2	9.1, 9.4	< 0.001
$\operatorname{shuckedWeight}$	6.1	5.7, 6.5	< 0.001

Model 2 output

Characteristic	Beta	95% CI	p-value
(Intercept)	11	11, 11	< 0.001
shuckedWeight	3.8	3.4, 4.3	< 0.001
sex			
F		_	
I	-2.2	-2.5, -2.0	< 0.001
M	-0.37	-0.58, -0.17	< 0.001

Put models side by side

Characteristic	Beta	95% CI	p-value	Beta	95% CI	p-value
(Intercept)	9.2	9.1, 9.4	< 0.001	11	11, 11	< 0.001
shuckedWeight	6.1	5.7, 6.5	< 0.001	3.8	3.4, 4.3	< 0.001
sex						
F					_	
I				-2.2	-2.5, -2.0	< 0.001
M				-0.37	-0.58, -0.17	< 0.001

The stargazer package - works for HTML and PDF

WARNING This does NOT work for WORD documents. However, you can create the HTML output and then "cut-and-paste" the HTML table into WORD.

% Table created by stargazer v.5.2.3 by Marek Hlavac, Social Policy Institute. E-mail: marek.hlavac at gmail.com % Date and time: Wed, Sep 06, 2023 - 9:54:43 PM

Creating APA style tables

This package makes nice output but saves each table in a separate output DOC file. This does work for WORD documents.

To embed the apaTable output inside the Rmarkdown document, we can do the following...

Pull out the key parts of the output object. Make a nice table for the formatted output for apa3 and then add the footnote using inline r code.

Table 11:

	Dependen	nt variable:
	a	ge
	(1)	(2)
shuckedWeight	6.111***	3.848***
	(0.204)	(0.230)
sexI		-2.249***
		(0.124)
sexM		-0.375***
		(0.106)
Constant	9.243***	10.914***
	(0.086)	(0.129)
Observations	4,169	4,169
\mathbb{R}^2	0.177	0.243
Adjusted \mathbb{R}^2	0.177	0.242
Residual Std. Error	2.924 (df = 4167)	2.805 (df = 4165)
F Statistic	$897.663^{***} (df = 1; 4167)$	$445.716^{***} (df = 3; 4165)$
Note:	*	p<0.1; **p<0.05; ***p<0.01

Predictor	b	b_95%_CI	sr2	$sr2_95\%$ _CI	Fit	Difference
(Intercept) shuckedWeight	9.24** 6.11**	[9.07, 9.41] [5.71, 6.51]	.18	[.16, .20]	R2 = .177** 95% CI[.16,.20]	
(Intercept) shuckedWeight sexI sexM	10.91** 3.85** -2.25** -0.37**	[10.66, 11.17] [3.40, 4.30] [-2.49, -2.01] [-0.58, -0.17]	.05 .06 .00	[.04, .06] [.05, .07] [00, .00]	R2 = .243** 95% CI[.22,.26]	Delta R2 = .066** 95% CI[.05, .08]

Note. A significant b-weight indicates the beta-weight and semi-partial correlation are also significant. b represents unstandardized regression weights. beta indicates the standardized regression weights. sr2 represents the semi-partial correlation squared. r represents the zero-order correlation. Square brackets are used to enclose the lower and upper limits of a confidence interval. * indicates p < .05. ** indicates p < .01.

Visualize Regression Coefficients

Here is an example plot of the coefficients from Model 2 (lm2) using the packages from easystats - namely the parameters and see packages.

Learn more at https://easystats.github.io/easystats/.

Here is another example using the sjPlot package. Note: I also had to install/update the associated sjstats package. Learn more at http://www.strengejacke.de/sjPlot/reference/plot_model.html.

Logistic Regression of adult by Shucked Weight and Diameter

NOTE: The adult variable is currently a "character" class variable. So, let's create a 0/1 coded variable. Use parameters package to get model coefficients table.

Parameter	Coefficient	SE	CI	CI_{low}	CI_high	${f z}$	df_error	p
(Intercept)	0.0365486	0.0110825	0.95	0.0200387	0.0657934	_	Inf	0e+00
						10.913014		
shuckedWeight	t 217.0126805	139.5074649	0.95	62.5988462	778.3652734	8.368861	Inf	0e + 00
diameter	540.2870048	637.2057215	0.95	53.9313991	5495.9308663	5.335075	Inf	1e-07

Another option using the gtsummary package.

Characteristic	OR	95% CI	p-value
shuckedWeight	217	62.6, 778	< 0.001
diameter	540	53.9, 5,496	< 0.001

Compute the AUC for the model and plot the ROC curve.

