CS 241 - Homework 2 - Arnav Kucheriya

Exercise 1.2:

Question 1: Determine if each sentence is a proposition and write its negation

1. 2 + 5 = 19

Proposition: Yes

• Negation: $2+5 \neq 19$

2.6 + 9 = 15

Proposition: Yes

• Negation: $6+9 \neq 15$

3. x + 9 = 15

Proposition: No (contains variable x)

4. $\pi = 3.14$

Proposition: Yes

• Negation: $\pi \neq 3.14$

Q13 - 16: Coin Flip Proposition:

13. "Ten heads were obtained"

Negation: "Fewer than ten heads were obtained"

14. "Some heads were obtained"

Negation: "No heads were obtained"

15. "Some heads and some tails were obtained"

Negation: "Only heads or only tails were obtained"

16. "At least one head was obtained"

Negation: "No heads were obtained"

Q20:

Given: p = false, q = true, r = false

Evaluate: $\neg p \land (q \land r)$

Solution:

• $\neg p = \text{true}$

- $q \wedge r = \text{false}$
- $true \wedge false = false$

Q26:

Truth table for $p \land \neg p$:

p	$\neg p$	$p \wedge \neg p$
Т	F	F
F	Т	F

This is a **contradiction**.

Exercise 1.3:

Q30: $(p \wedge r) \leftrightarrow r$

Given: p is true, q is false, r unknown

Result: **True** (regardless of r)

Q31: $(q \wedge r) \leftrightarrow r$

Given: q is false, r unknown

Result: Unknown

Q54: $\neg q \rightarrow (r \land p)$

Given: q is false, p is true, r unknown

Result: Unknown

Q68: $P \rightarrow Q$ equivalence

•
$$P o Q \equiv \neg P \lor Q$$

Q70: Compound Implication

$$ullet P
ightarrow (q
ightarrow r) \equiv P
ightarrow r$$

Q73-76:

- 73. "Pat will use the treadmill or lift weights"
 - Original: $P \lor Q$

• Negation: $\neg P \land \neg Q$

• Answer: "Pat will neither use the treadmill nor lift weights."

74. "Dale is smart and funny"

• Original: $P \wedge Q$

• Negation: $\neg P \lor \neg Q$

• Answer: "Dale is not smart or Dale is not funny."

75. "Shirley will either take the bus or catch a ride"

 $\bullet \ \, \text{Original:} \, P \vee Q$

• Negation: $\neg P \land \neg Q$

• Answer: "Shirley will neither take the bus nor catch a ride to school."

76. "Red pepper and onions are required for chili"

• Original: $P \wedge Q$

• Negation: $\neg P \lor \neg Q$

 Answer: "Red pepper is not required to make chili, or onions are not required to make chili."

Part 2:

Sets and Venn Diagrams:

Sets

Standard Venn diagrams:

1. De Morgan's Laws for 3 Variables

De Morgan's Laws are:

•
$$\neg (A \cup B \cup C) = \neg A \cap \neg B \cap \neg C$$

•
$$\neg (A \cap B \cap C) = \neg A \cup \neg B \cup \neg C$$

2. 2-Set Venn Diagram

a)
$$\{t|(t\in A)\land (t\in B)\}$$

• Represents $A \cap B$ (region 3)

b)
$$\{t|(t\in A)\vee(t\in B)\}$$

• Represents $A \cup B$ (regions 2, 3, and 4)

c)
$$\{t|(t\in U)\wedge (\lnot(t\in A))\}$$

• Represents U - A (regions **1 and 4**)

Divisors and Modulo

1. Evaluating Divisibility Expressions

- $4 \mid 7 \rightarrow \mathsf{False}$
- $4 \mid 12 \rightarrow \mathsf{True}$
- $4 \mid -12 \rightarrow \mathsf{True}$
- $12 \nmid 4 \rightarrow \mathsf{True}$
- $0 \mid 12 \rightarrow \mathsf{False}$
- $12 \mid 0 \rightarrow \mathsf{True}$

2. Finding q, r such that n = dq + r, where $0 \le r < d$

•
$$28 = 7(4) + 0 \rightarrow q = 4, r = 0$$

•
$$-28 = 7(-4) + 0 \rightarrow q = -4, r = 0$$

•
$$31 = 7(4) + 3 \rightarrow q = 4, r = 3$$

•
$$-31 = 7(-5) + 4 \rightarrow q = -5, r = 4$$

•
$$0 = 6(0) + 0 \rightarrow q = 0, r = 0$$

•
$$5 = 6(0) + 5 \rightarrow q = 0, r = 5$$

•
$$-5 = 6(-1) + 1 \rightarrow q = -1, r = 1$$

•
$$-10 = 6(-2) + 2 \rightarrow q = -2, r = 2$$

3. Modulo Calculations

• $7 \mod 5 = 2$

- $-7 \mod 5 = 3$
- $3 \mod 5 = 3$
- $-3 \mod 5 = 2$
- $0 \mod 5 = 0$
- $0 \mod 3 = 0$
- $48 \mod 12 = 0$
- $48 \mod 11 = 4$
- $-48 \mod 11 = 7$

4. True/False Statements

- $6 \mid 42 \rightarrow \mathsf{True}, q = 7$
- $6 \mid 40 \rightarrow \mathsf{False}$
- $39 \mod 8 = 7 \rightarrow \mathsf{True}$
- $41 \mod 10 = 3 \rightarrow \mathsf{True}$
- $41 \mod 13 = 2 \rightarrow \mathsf{True}$

Propositional Logic Problems

1. Truth Table for $(p \lor q) \lor r$ and $p \lor (q \lor r)$

p	q	r	$(p\vee q)$	$(p \vee q) \vee r$	$(q\vee r)$	$p\vee (q\vee r)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	Т
F	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
F	F	Т	F	Т	Т	Т
F	F	F	F	F	F	F

Answer: Yes, \vee is associative as $(p \vee q) \vee r = p \vee (q \vee r)$ for all values.

2. Commutativity of \lor

Yes, \vee is commutative because $p \vee q = q \vee p$ for all values of p and q.

3. Truth Table for $(p \wedge q) \wedge r$ and $p \wedge (q \wedge r)$

p	q	r	$(p \wedge q)$	$(p \wedge q) \wedge r$	$(q\wedge r)$	$p \wedge (q \wedge r)$
Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F
Т	F	Т	F	F	F	F
Т	F	F	F	F	F	F
F	Т	Т	F	F	Т	F
F	Т	F	F	F	F	F
F	F	Т	F	F	F	F
F	F	F	F	F	F	F

Answer: Yes, ∧ is associative.

4. Commutativity of ∧

Yes, \wedge is commutative because $p \wedge q = q \wedge p$ for all values.

5-6. Properties of Implication (\rightarrow)

• Not commutative: p o q
eq q o p

• Not associative: (p
ightarrow q)
ightarrow r
eq p
ightarrow (q
ightarrow r)

7-9. XOR (⊕) Properties

Given truth table shows XOR and biconditional operations.

XOR (⊕):

• Is commutative: $p \oplus q = q \oplus p$

• Is not associative: $(p \oplus q) \oplus r \neq p \oplus (q \oplus r)$

10. Logical Equivalence for XOR

$$p \oplus q \equiv (p \vee q) \wedge \neg (p \wedge q)$$

11-12. Biconditional (↔) Properties

• Is associative: $(p \leftrightarrow q) \leftrightarrow r = p \leftrightarrow (q \leftrightarrow r)$

• Is commutative: $p \leftrightarrow q = q \leftrightarrow p$

13. Logical Equivalence for Biconditional

$$p \leftrightarrow q \equiv (p \wedge q) \lor (\lnot p \wedge \lnot q)$$

14. Boolean Functions

For n boolean arguments:

- Number of different inputs: 2^n
- Number of different functions: 2^{2^n}