

Kalray kv3 V2 VLIW Core Optimization Guide

Kalray S.A.

171 pages

This document and the information therein are the exclusive property of Kalray SA.

Kalray kv3 V2 VLIW Core Optimization Guide

Kalray S.A.¹

¹ info@kalray.eu

Abstract: This document provides some details of the MPPA[®] architecture, primarily addressed to assembly language programmers and compiler writers

Keywords:

Contents

1	Introduction						
2	Synt	tax Conve	entions	5			
3	Exe	cution Un	nit Ports and Latencies	6			
	3.1	Micro-A	Architecture Overview	. 6			
	3.2	Consequ	uences on the Execution Flow	. 7			
	3.3		on Pipeline Particularities				
		3.3.1	Shared Double Read Port				
		3.3.2	E3 Write-After-Write Stall	. 11			
		3.3.3	get Instruction Bundling	. 11			
		3.3.4	Integer Carry Management	. 11			
		3.3.5	IEEE-754 Flags and Rounding Mode				
4	LSU	Instruct	tions Latencies	14			
	4.1	Load Ins	structions	. 15			
		4.1.1	Cached Load Instructions	. 15			
		4.1.2	Uncached Load Instructions	. 17			
	4.2	Store Ins	structions	. 19			
		4.2.1	Cached Store Instructions	. 19			
		4.2.2	Uncached Store Instructions	. 20			
	4.3	Atomic	Instructions	. 20			
	4.4	Data Ca	che Maintenance Instructions	. 21			
	4.5	Special 1	LSU Instructions	. 21			
	4.6	Instructi	ion Cache Maintenance Instructions	. 22			
5	BCU	J Instruc t	tion Particularities	23			
	5.1	Branche	······································	. 23			
	5.2	Pipeline	Flushes	. 23			
	5.3	Re-Fetcl	hes	. 24			

6		etch Buffer Effects L1I cache Line Crossing Penalty	
7	Inst	ruction Constraints 2	29
		7.0.1 Instruction Bundling Constraints	<u> 2</u> 9
		7.0.2 Instruction Scheduling Constraints	
8	Deta	illed operands read/write stages tables for instructions	32
	8.1	ALU instructions	33
	8.2	MAU instructions	98
	8.3	LSU instructions	22
	8.4	BCU instructions	
9	Inst	ructions index 15	55

1 Introduction

This document details the Kalray kv3 VLIW core pipeline implementation. The information concerns the Kalray kv3 hardware implementation of the application cores (PE) and management core (RM) of the compute clusters in the Kalray MPPA®-80 Coolidge processor.

KETD:

It should be considered as an addendum to the *Kalray kv3 VLIW Core Architecture Reference Manual* and is primarily addressed to assembly language programmers and compiler writers. As such, it contains detailed instruction scheduling information, as well as explanations about some particularities/irregularities of the kv3 VLIW core implementation and how to exploit/work-around them.

2 Syntax Conventions

The following syntax conventions apply to this document:

Convention	Definition
mat blue	a simple (32-bit) read action/data
bright blue	a double (64-bit) read action/data
mat red	simple (32-bit) result data is ready
bright red	double (64-bit) result data is ready
mat green	a simple (32-bit) write-back action/data
bright green	a double (64-bit) write-back action/data
ALU	the ALU execution unit
ALU	an instruction of the kind "ALU"
add	the add instruction (inside text)

3 Execution Unit Ports and Latencies

3.1 Micro-Architecture Overview

From an instruction/data dispatch point of view, the kv3 VLIW core features 5 primary execution units (EXUs):

- 2 ALUs
- 1 MAU
- 1 LSU
- 1 BCU

Each of them makes use of some read and write register-file ports to retrieve and store data they process. The implementation of the kv3 VLIW core features 4 simple read ports, 6 double read port, 2 simple write ports, 2 double write ports and 1 special double write port. Table 1 shows, for each EXU, which ports are used at every stage of the pipeline, as well as the stage at which the results are ready, with the following conventions:

RPS i Read Port Simple number i (read 32 bits register from the register file)
RPD i Read Port Double number i (read 64 bits register pair from the register file)
WPS i Write Port Simple number i (commit 32 bits in a general register)
WPD i Write Port Double number i (commit 64 bits in a general register pair)
WPDS Write Port Double Special (commit 32 bits in system function register)
Ready Simple Result is ready and made available for bypass to read ports
Ready Double Result is ready and made available for bypass to read ports

Instructions executing on a particular EXU do not have to use all the EXU read/write ports thoroughly, e.g. a mulwdl (executing on the MAU) will only use one half of WPD 0 as it outputs only 32 bits. Furthermore, some instruction variants use immediate operands. Although these operands are read by the EXUs through their read port, they do not involve any register-file reading and cannot lead to any kind of inter instruction dependence, thus having no effect on the pipeline flow (make is probably the best example of such instructions as it only has one immediate read operand).

It is also important to distinguish the EXUs and the instructions they execute. Basically, an 'EXU' executes 'EXU' kind instructions, i.e. ALUs execute ALU instructions, LSU executes LSU instructions and so on. However, most EXUs have the extra capacity to execute other kinds of instructions in addition to their "native" kind. More specifically:

- ALUs can execute ALU instructions + some (simple) FPU instructions
- MAU can execute MAU instructions + the other (complex) FPU instructions + some ("light")
 ALU instructions

- LSU can execute LSU instructions + some ("tiny") ALU instructions
- BCU can only execute BCU instructions

Thus, floating point instructions, listed as "FPU Instructions" in the *Kalray kv3 VLIW Core Architecture Reference Manual*, are split into two categories: those that are implemented in the ALUs execution units and those that are implemented in the FPU part of the MAU execution unit. These instructions share the read/write ports of the ALUs or those of the MAU according to their category.

The MAU and LSU units respectively comprise a LIGHT ALU and a TINY ALU execution path that use their host's read and write ports and support different subsets of the ALU instructions. Namely, the double LIGHT ALU contained in the MAU can handle any ALU (D) _TINY or ALU (D) _LITE instruction (in the sense of the Reservation classes documented in the architecture manual) while the DOUBLE TINY ALU can only execute ALU (D) _TINY instructions. Of course, ALU instructions sent to one of these double LIGHT/TINY ALUs execute with the same low latency as guaranteed by the main ALU units. Hence their result is ready at E1 as apparent in the table, which is earlier than a typical MAU/LSU instruction. Similarly, FPU instructions executing in the MAU exhibit a longer latency than typical MAU instructions.

In Table 1, these different cases are expressed as MAU/MAU, MAU/FPU and MAU/ALU EXUs. Idem for LSU/LSU and LSU/ALU. No distinction has been made between ALU/ALU and ALU/FPU as it makes no difference from a read/write date point of view.

Another feature of the kv3 VLIW core is that the two 32-bits main ALUs can be combined to process 64 bits ALU instructions. In this case, all the read and write ports of the two ALUs are available to the instruction with the same read/write stages and latencies as indicated for the two separate ALUs.

3.2 Consequences on the Execution Flow

Once an instruction has entered the Ready stage of the EXU it is executing on, or has flowed further down the pipeline, its result may be bypassed to other instructions upstream that need to read it. Before this stage, the result is not available and data-dependent upstream instructions will have to wait (stall). In the particular case of MAU/FPU instructions, the result is ready at E4 and may be bypassed at that cycle, just before being written-back (the Ready was not put in the table for "graphical" reasons only but it should be considered there).

Using Table 1, we may determine the number of stall cycles that will take place between two data-dependent instructions following each other in the pipeline in the general case. Such wait cycles are called RAW (for Read-After-Write) stalls and constitute one of the possible causes of stalls in the kv3 VLIW core pipeline.

For instance, two data-dependent ALU instructions may follow each other without any stall cycle (be they executed on main ALUs or on a double LIGHT/TINY ALU). Indeed, when the first one reaches E1, its result is ready and may be directly bypassed to the read port (RPS i or RPD i) used by the second one at RR. If these two ALU instructions are alone in their respective

EXU	ID	RR	E1	E2	E3	E4
		RPS 0				
ALU0		RPS 1				
			Ready		WPS 0	
		RPS 2				
ALU1		RPS 3				
			Ready		WPS 1	
		RPD 0				
MAU/MAU		RPD 1				
			RPD 2			
				Ready		WPD 0
		RPD 0				
MAU/FPU		RPD 1				
		RPD 2				
						WPD 0
		RPD 0				
MAU/ALU		RPD 1				
			Ready			WPD 0
		RPD 3				
LSU/LSU		RPD 4				
			RPD 2			
				Ready	WPD 1	
		RPD 3				
LSU/ALU		RPD 4				
			Ready		WPD 1	
BCU	RPD 5					
					WPDS	

Table 1: EXUs read/write ports and latencies

bundle, then the execution of the second bundle may follow that of the first one without any stall. For example:

On the other hand, a branch instruction reading a GPR (a register of the general-purpose register file) needs it at stage ID (through RPD 5). If this GPR is the target of a MAU instruction of the preceding bundle, then the branch instruction (and of course the potential other instructions of its bundle) will spend 2 cycles stalling at ID while the MAU bundle progresses in the pipeline. When the latter reaches E2, the result of the MAU instruction is ready, bypassed to the branch instruction still waiting at ID (through RPD 5) and the branch bundle resumes execution. At this point in time, stages RR and E1 contain no valid bundles (they are "bubbles" or "holes" in the pipeline), which reflects the fact that we lost two cycles waiting on the RAW dependency.

To compute the number of stall cycles a particular bundle incurs, all the instructions composing it must be analyzed and checked for RAW stalls with respect to all the bundles that are downstream in the pipeline. This is in fact how the hardware proceeds, stalling a bundle as long as necessary at ID, RR or E1 when it needs to read an operand that is not yet available.

Of course, these stall cycles depend on exactly which operands are used by the concerned instructions and on their sizes. Only true data dependencies trigger stalls. So for example:

But:

KETD:

In the example above, although WBDP 0 (that is a double write port) is dedicated to the write back of the MAU results in the register file, the ffma instruction only uses its top half as it writes only \$r33 that is 32-bit register (and not a register pair). As a result, \$r32 is not seen as targeted by the first bundle in the scoreboard and no RAW stall occurs.

The tables in Section 8 describe exactly which operands of what size are read/written at every stage of the pipeline for all the instructions of the instruction set.

3.3 Instruction Pipeline Particularities

Looking at Table 1, several particularities appear that will help explain some irregularities/constraints of the kv3 VLIW core pipeline.

3.3.1 Shared Double Read Port

First, RPD 2 is shared between the MAU and the LSU. As a result, LSU instructions that use this port (mostly stores) cannot be bundled with MAU/* instructions that use it too, as expressed in bundling Rule 9 of Section 7. The instructions using this shared port normally belong to a reservation class of type MAU_ACC* or LSU_ACC*, as stated in Section 9. However, due to a hardware bug in the kv3 VLIW core implementation, no MAU/FPU at all can be bundled with a LSU instruction using this port. As a result, the only MAU/* instructions that can be bundled with a store/acws* are plain MAU/MAU instructions, excluding all mad*/msb* "MAC" instructions.

Then we see that RPD 2 is marked as used at E1 by MAU/MAU and LSU/LSU, but RR for MAU/FPU. In fact, the real register-file read happens at RR, which allows to give its input data as early as possible to the FPU part of the MAU that has a lot of long processing to do. So if a MAU/FPU instruction has a RAW dependency on this port with respect to an other instruction downstream in the pipeline, it will stall at RR until the downstream instruction releases its result. As for MAU/MAU instructions and LSU/LSU instructions, they make no use of this port before the end of the E1 stage. As a result, in the same scenario they would not be stalled at RR but progress to E1 instead. Once at E1, the situation is re-examined and stalls or bypasses may happen according to the availability of the needed operand at that time. Thus, at the cost of additional hardware and complexity, this mechanism brings a kind of "virtual" E1 double port that is in fact RPD 2 at RR plus bypasses/stalls at E1. The fact that this double port acts as if it were as a E1 port for MAU/MAUs instruction and LSU/LSU instructions reduces the possibilities of RAW stall, and, in particular, allows to process data-dependent MAC operations at the rate of one per cycle, the E2 result of one being bypassed to the accumulator port of the following at E1.

3.3.2 E3 Write-After-Write Stall

It is also apparent in Table 1 that the write-back port used by the MAU (WPD 0) commits the outputs of this unit in the register-file at the end of E4, be the instruction an MAU/MAU, MAU/FPU or MAU/ALU, whereas all the other write-back ports commit at E3. This has one side effect: if an instruction executing in the MAU is followed on the next cycle by an instruction executing on an other unit (say on an ALU) and they both want to write the same register, then there is a write-after-write conflict (WAW) because they will both want to write the same register at the same time. The hardware deals with it by simply ignoring (squashing) the result of the MAU/MAU instruction, only performing the write-back of the instruction in the ALU without any stalls (contrary to the k1a implementation of the core). A subsequent instruction depending (RAW) on the result of the ALU instruction will be un-stalled, as usual, as soon as the ALU instruction reaches E1 (as if the MAU instruction had not been there at all).

In the kv3 VLIW core implementation, the only case when a WAW pseudo-dependency will generate a stall is when an instruction (I) wants to write a GPR (R), that is also targeted by a previously issued streaming load, that is itself still outstanding in the memory system. In this particular case, (I) will be stalled at E3 until the streaming load comes back and commits its result in the register file. Of course, this should not be very common as it requires that no instruction between the streaming load and (I), including (I) itself, reads (R) (otherwise the instruction in question) will classically stall at F, RR or E1 in RAW.

3.3.3 get Instruction Bundling

The write-back port of the BCU, WPDS, addresses system function registers (SFRs) such as PS, CS, MMC (see the *Kalray kv3 VLIW Core Architecture Reference Manual* for the full list of them) but it is not a regular write-back port, inasmuch as it cannot target GPRs of the register file.

As a result, the few BCU instructions that need to commit a result in the register file use an indirect path, going through the LIGHT ALU of the MAU to gain access to regular write-back port WPD 0. These instructions are:

• get,iget

Hence, when one of these instructions is issued in a bundle, both the BCU and the MAU are reserved and cannot be used by other instructions of the bundle. Moreover, only 2 tiny ALU instructions may be issued in the bundle (that will necessarily execute on ALU0 and ALU1). This is because a third one would be sent to the MAU by the dispatch logic that has no knowledge of the magic that turns a BCU get instruction into a MAU instruction in the middle of the pipeline, thus leading to an architecturally undefined result with two instructions trying to execute on the MAU at the same time. However, a regular LSU instruction is allowed in the bundle. These constraints are expressed in bundling Rule 5 of Section 7.

3.3.4 Integer Carry Management

There is one integer carry available in the kv3 VLIW core. It is read and written by ALU addc, addcd, sbfc and sbfcd instructions and by MAU madsucwd and maduucwd in-

structions; and read only by ALU addci, addcid, sbfci and sbfcid instructions and by MAU madsuciwd and maduuciwd instructions.

As apparent in the tables of Section 8, ALU instructions read it at RR and make it available for bypass (Ready) at E1, and MAU instructions read it at E1 and make it Ready at E2. In particular, this means, for example, that two consecutive addc instructions may execute without stalling, the first one bypassing its output carry to the input of the second one as below:

```
addc $r20 = $r0, $r2
;;
addc $r21 = $r20, $r3 ## no stall: $r20 and the carry are bypassed from E1 to RR
;;
```

The integer carry corresponds to bit 0 of CS (CS.IC) and this is where it is written back at the end of stage E3. set and hfxb instructions targeting CS.IC make their result available for bypass at E1 so that an ALU or MAU instruction needing to read the carry does not stall after them, as stated by Rule 15 of Section 7. Rule 3 of the same Section details bundling constraints related to the carry.

The CS register also holds a carry counter in its bits [31:16]. This is a special hardware counter that auto-increments itself each time a bundle containing an instruction that outputs a carry at 1 reaches E3. Thus it is read-modified-written atomically at E3 and cannot occasion any stalls for "normal" (i.e non BCU) instructions.

3.3.5 IEEE-754 Flags and Rounding Mode

IEEE-754 Flags Some MAU/FPU and some ALU/FPU instructions (see the architectural manual for the list of them) may raise one or more of the 5 IEEE-754 floating point flags:

- invalid operation
- division by zero
- overflow
- underflow
- inexact

These flags are written at E4 in the related bit of the CS register, where they are sticky, i.e. the hardware never clears them (only a software instruction such as set or hfxb can bring them back to zero once they have been raised).

It is valid to bundle together a MAU/FPU instruction and a ALU/FPU instruction that may both raise one or more of these flags. In this case, the flags output by the two execution units are ORed together by pairs at E4 before being written back into the related CS bits.

In any case, the modification of CS is done in an atomic read-modify-write manner at E4 and cannot cause any pipeline stall (except for get, hfx and trapa/o instructions coming after a

FPU instruction that could touch these flags).

Instructions that modify these flags are subject to bundling Rule 4 of Section 7.

Rounding Mode Some MAU/FPU instructions (see the architectural manual for the list of them) use the RM (Rounding Mode) field of the CS register to apply one or the other rounding type. This field is considered as pseudo-static in the hardware, meaning that no dependency check at all is performed on it: the pipeline will never bypass it nor stall because of it. It is the responsibility of the software to ensure that this field is set to the correct value before issuing any concerned FPU instruction to the pipeline. One way to do this is to have a barrier instruction follow the instruction that changes the value of CS.RM, as stated in Rule 13 of Section 7.

4 LSU Instructions Latencies

This section covers the latencies of LSU instructions executing on the processing (PE) and management (RM) cores of the "compute clusters". The behavior of memory accesses in the quad-RMs of IO-clusters is not the same and will not be detailed in this document, however the main differences can be listed as:

- misalignment is not supported in IO-clusters
- typical load hits return at E3 in IO-clusters (instead of E2 in compute clusters)
- accesses to the SMEM have a longer latency (+2 cycles) in the IO-cluster
- of course accesses to the DDR memory have a much longer latency than accesses to the SMEM

Moreover, it should be noted that all the access latencies (the time that an access takes to return its result to the core) and all the cache busy latencies (the time during which the L1 Data cache is busy and does not grant any access, e.g. after a miss) given in this section are subject to conflicts/arbitration in the memory system (including conflicts between L1 I cache and L1 D cache of the same core) as soon as accesses are not strictly restricted to the core data cache. As a result, and not taking into account maintenance instructions:

- only hits latencies of load instruction are guaranteed
- all misses and uncached accesses, as well as all store instructions, deal with the memory system and/or with the internal state of the write buffer so there is no guarantee on their latency / cache busy time

The cycle figures given for accesses dealing with the memory system correspond to best execution times, when no conflict whatsoever happens and the road to/from the SMEM is free.

In the compute clusters, RMs and PEs access the memory using either cached or uncached accesses. The compute cluster kv3 VLIW core data cache characteristics are as follows:

- cache size: 16KB = 4KB per way * 4 ways
- line size: 64 Bytes
- cached accesses follow a write-through write-around policy with stores going to the SMEM through a write-buffer
- the write buffer contains 8 64-bit words, is fully associative, allows recombination and uses a true LRU eviction policy
- it always tries to keep 1 word free (out of 8), meaning that it will spontaneously try to evict the LRU word when full

4.1 Load Instructions

4.1.1 Cached Load Instructions

Hits In the compute cluster implementation of the kv3 VLIW core, regular cached load accesses that hit make their result available for bypass at the end of stage E2. Thus, reading a load result in the following bundle will result in a 1 cycle stall if the consumer EXU is an ALU, 2 if it is a BCU, 0 if it is a LSU using the result as store data, etc. as may easily be computed using Table 1 of Section 3.

```
lw $r0 = 0[$r20] ## hits
;;
add $r5 = $r0, $r2 ## stalls 1 cycle at RR then $r0 is bypassed from E2 to RR
;;

lw $r0 = 0[$r20] ## hits
;;
cb.eqz $r0, some_label ## stalls 2 cycles at ID then $r0 is bypassed from E2 to ID
;;

lw $r0 = 0[$r20] ## hits
;;
sw 10[$r5] = $r0 ## no stalls: $r0 is directly bypassed from E1 to RR
;;
```

Misses On a load miss, the data cache (L1D cache) performs a line refill and will not accept any request before its completion. A typical refill lasts 17 cycles as the SMEM is 10 cycles away and the L1D cache lines are 64 bytes wide (=>8*64 bits transfers for a refill burst =>10 cycles to get the first 64-bit word + 7 cycles to get the 7 remaining words). This means that in the example code below:

```
lw $r0 = 0[$r20]  ## misses
;;
sd 10[$r5] = $r6r7 ## stalls 17 cycles at E1 as L1D cache is busy
;;
```

the store will stall 17 cycles at E1 and be granted by the L1D cache on the 18th cycle.

In addition to memory system delays, another cause is susceptible to make that figure rise: the miss in L1D cache / hit in write buffer scenario. This happens when a load misses in the cache but the write buffer contains data that belong to the cache line where the load missed. In such a situation, there is a danger of inconsistency as the L1D cache could refill data from the memory system that are not up to date. To prevent such troubles and keep the hardware simple, the whole write buffer (that is 8 x 64 bits words) is flushed to the SMEM first, and then the refill sequence is performed. As a result, the busy time of the cache will be increased by 1 to 8 cycles (according to the actual filling rate of the write buffer), thus reaching 18 to 25 cycles instead of 17.

The hardware implementation uses a critical-word-first scheme that allows to bring back first the words requested by the core from the memory system during refills. Hence, in the above example, the load word instruction will receive its result (at E3 where it has been waiting for it during the miss), commit it in the register file and exit the pipeline before the store is released,

because the loaded data are forwarded by the data cache to the core before the end of the refill. In this particular case, it does not have any interesting effect on the core execution flow as the store will remain stalled at E1 until the end of the refill, blocking the rest of the pipeline upstream anyway. However, critical-word-first is interesting if the result of the load is needed (e.g.) for computation and no other access is made to the L1D cache for some cycles:

```
lw $r0 = 0[$r20] ## misses
;;
add $r5 = $r0, $r2 ## stalls 11 cycles at RR then $r0 is bypassed from E3 to RR
;;
xor $r5 = $r5, $r30 ## any instructions but loads/stores
sbf $r50 = $r40, 35
mulwdl $r24 = $r51, $r8
;;
add $r50 = $r50, 3 ## any instructions but loads/stores
;;
nop ## any instructions but loads/stores
;;
lw.add.x1 $r28 = $r29[$r31] ## granted by the D$ at E1 with no stall
;;
```

As precised above, in the kv3 VLIW core implementation, a L1D cache refill is 64 bytes wide and the SMEM memory system typically answers it in 8 consecutive 64 bits words, so the L1D cache is likely to grant again 7 cycles after it transmitted the critical-word to the core. This means that:

- the pure load miss penalty is 10 cycles (= execution latency of 11 cycles), to which we must add the usual (hit case) number of RAW dependency stall cycles: 1 for ALUs, 2 for BCU, etc. as seen in the hits subsection.
- the L1D cache is unavailable for an extra 7 cycles after the critical-word return, hence a total of 17 stall cycles (= execution latency of 18) if we wanted to access it directly after the load, as in the first example of this subsection.

In the code above, the add \$r5 = \$r0, \$r2 will stall 10 + 1 = 11 cycles at RR. The 1 w.add. x1 \$r28 = \$r29[\$r31] will proceed without additional stalls, though it is only 6 bundles further than the instruction that uses the critical-word (add \$r5 = \$r0, \$r2), because the add has waited at RR (and not E1), thus giving the load an extra cycle to go to E1.

Misalignment Penalties The kv3 VLIW core supports data misalignment, that is a load or a store instruction may target an object whose address is not a multiple of its size, like a 1d at an address that does not end in 0x0 or 0x8, such as 0x10004 for example. The hardware will execute such accesses correctly but they may incur latency penalties.

As mentioned previously, a L1D cache line width is 64 bytes. As long as a load does not overlap two lines, there is no penalty except if it misses and overlaps 2 64 bits words. In this particular case, the load penalty goes from 10 to 11 as the critical-word-first logic must wait for

two 64 bits words before forwarding the result to the core.

If a load overlaps two lines, as would, for example, a lw at address 0x2003e, then the data cache breaks the access in two, performs each half-access in turn (that can hit or miss independently) and finally concatenates the two half results as needed before presenting the data back to the core. The fact that the access is split in two always adds one cycle to the execution time of the load. Another additional cycle is needed to concatenate the two half results if the second half access hits (if it misses, this cycle is present anyway to help achieve a good timing on data returning from the memory so we do not count it as extra).

We may now compute the latencies of misaligned loads that cross L1D cache lines in the four possible hit/miss configurations:

1st half	2nd half	1st half	2nd half	add. misal.	total exec	total use	total L1D
status	status	latency	latency	penalty	latency	penalty	cache busy
hit	hit	1	1	1	3	2	2
hit	miss	1	11	0	12	11	18
miss	hit	18	1	1	20	19	19
miss	miss	18	11	0	29	28	35

where *total exec latency* represents the total number of cycles taken to execute the load, *total use penalty* represents the number of cycles an instruction immediately following the load and needing the load result at E1 (i.e. with no extra RAW stall) would spend stalling at this stage (so total use penalty = total exec latency - 1) and *total L1D cache busy* represents the number of cycles an instruction immediately following the load and wanting to access the L1D cache at E1 would spend stalling at this stage.

Note that the latency of a first half miss is considered to be 18 (instead of 11 for a regular load miss) because the 2nd half access cannot start as long as the L1D cache is busy refilling the line in which the 1st half missed. By comparison, a regular access (not crossing L1D cache lines) would be represented as such:

access	access	add. misal.	total exec	total use	total L1D
status	latency	penalty	latency	penalty	cache busy
hit	1	0	1	0	0
miss (regular)	11	0	11	10	17
miss (ovlp 2 x 64-bit)	11	1	12	11	18

4.1.2 Uncached Load Instructions

In the kv3 VLIW core, uncached loads come in two flavors: blocking and non-blocking (streaming). A load may be uncached either because the data cache is turned off (PS.DCE = 0), or because it is an explicit uncached instruction (such as lwu) or because the MMU decided it was uncached (MMU off and address in the peripheral space, or MMU on and address in an

uncached/device page). Streaming is enabled for uncached loads when PS.USE = 1, as defined in the *Kalray kv3 VLIW Core Architecture Reference Manual*.

On one hand, blocking uncached loads stop the core execution by stalling the load bundle at E3 in wait for its answer. On the other hand, streaming uncached loads (also simply known as "streaming loads" since only uncached loads may be streaming) allow the core to continue executing as soon as the load has successfully departed to the SMEM and as long as the pipeline is not stalled by a RAW dependency on the result of the load. The loaded data will then be committed in the register file asynchronously to the core instructions flow.

The typical execution latency of an uncached blocking load is 10 cycles (1 cycle at E1 + 1 cycle at E2 + 8 cycles stalled at E3), which is equivalent to 9 cycles of *total use penalty* as defined in the previous section, and 9 cycles of *total L1D cache busy*. This is one cycle better than the execution latency of a miss because, as the hardware does not have any hit/miss check to perform, the access departs to the memory system one cycle earlier.

These figures must typically be increased by one if the access spans two 64 bits words.

As for the streaming loads, they also typically exhibit a latency of 10 cycles, equivalent to 9 cycles of *total use penalty*. However, they do not keep the cache busy (once they have been sent to the memory system), so other accesses can be "streamed" to the SMEM through it (cached and uncached blocking accesses can of course be performed too). Below is the table summarizing this information in the usual format:

access	access	add. misal.	total exec	total use	total L1D
type	latency	penalty	latency	penalty	cache busy
uncached blocking	10	0	10	9	9
uncached blocking ovlp	10	1	11	10	10
uncached streaming	10	0	1	9	0
uncached streaming ovlp	10	1	1	10	2

Of course, the meaning of *access latency* is a little different for streaming loads: what it really means here is the typical number of cycles until the result of the streaming load is available. Once again, contrary to blocking loads, streaming loads will not stall the pipeline once they have gone out of the L1D cache unless they are the source of a RAW dependency stall (in which case they typically produce *total use penalty* cycles. The fact that they do not block the pipeline is reflected by the value of 1 for *total exec latency*.

Streaming loads *access latency* is subject to the same increments as blocking loads *access latency* with respect to misalignment. In addition, a misaligned streaming load will cause the L1D cache to appear busy during 2 cycles (*total L1D cache busy* = 2) instead of 0.

In the kv3 VLIW core implementation, the FIFOs holding target GPRs and formatting information about the outstanding streaming loads are sized so that they can absorb the exact number of loads that match the number of cycles needed to access the SMEM (total outstanding capacity

= 10). This provides the benefit that, with a responsive SMEM, streaming loads can be emitted continuously, at the rhythm of one per cycle without any stalls of the core (provided that the consumers have been scheduled far enough to avoid RAW stalls: 10 bundles further than the load they depend on for E1 readers, 11 bundles for RR readers (e.g. ALU instructions)). So with a good scheduling, the kv3 VLIW core is able to issue one streaming load double (8 bytes) every cycle without stalling.

4.2 Store Instructions

4.2.1 Cached Store Instructions

For cached stores, the hardware implements a write-through write-around policy where cached stores always go to the memory system through the write-buffer, and also update the cache itself if they hit in it (in case a store misses in the cache, the latter is left untouched and only the write-buffer is updated, which is the definition of a write-through write-around policy).

We should also mention that stores are posted: this means that, once they have been granted by the L1D cache at E1, their bundle will not be stalled as an effect of the store execution in the cache (contrary to cached loads that may stall their bundle, and the pipeline, when they miss). Thus their execution latency is always 1. However, they may make the L1D cache busy, depending on the state of the write-buffer, and that will stall the pipeline should the core want to access the cache.

Regardless of the hit/miss status of a cached store in the cache (that will only change the fact that the cache itself is updated with the store data or not), three different cases can happen:

- when a well-aligned cached store hits in the write buffer (that is it recombines with data already present in the write buffer) there is no penalty and *total L1D cache busy* equals 0.
- When a well-aligned cached store misses in the write buffer but there is free room left in the latter, there is no penalty and *total L1D cache busy* equals 0.
- When a well-aligned cached store misses in the write buffer and there is no room left in it, the write buffer will try to evict one of its data (the LRU) to the memory system to free a slot for the newcomer. As long as it does not succeed, the cache will be considered busy, refusing to grant any new access. This situation can last from 1 to many cycles according to the availability of the memory system. However, this should typically not happen too often as the write buffer always tries to have at least one free slot at any given time.

Misalignment Penalties If a cached store is misaligned but does not overlap 2 64 bits words, there is no misalignment penalty whatsoever.

If it overlaps 2 64 bits words, then there is a misalignment penalty due to the fact that the write buffer is organized as a (write only) fully associative cache of 8 64 bits words. Hence it cannot handle a 64 bits words overlapping access in one cycle. Consequently, the store will be

cut in two halves that will be handled separately in the write buffer. This will always generate one cycle of *L1D cache busy* that should be added to the cycles of *L1D cache busy* generated by each half access, according to its hit/miss status in the write-buffer, as described above.

4.2.2 Uncached Store Instructions

Just as for the loads, uncached stores come in two flavors: blocking and streaming.

Unlike any other kinds of stores, uncached blocking stores are not posted, that is the instruction will wait at E3 until the "store done" notification comes back from the memory system. This allows to get precise traps in case of memory errors (such as DSECCERROR, DDECCERROR or DSYSERROR). Consequently, an uncached blocking store exhibits the same timing characteristics as an uncached blocking load: a typical execution latency of 10 cycles (1 cycle at E1 + 1 cycle at E2 + 8 cycles stalled at E3) and 9 cycles of *total L1D cache busy*.

These figures must typically be increased by one if the access spans two 64 bits words.

Streaming stores, on the other hand, are posted so they do not block the core execution (unless they are not immediately granted by the memory system once at E2 in the L1D cache), neither do they typically keep the L1D cache busy.

However, as for streaming loads, their *total L1D cache busy* is increased by 2 (so going from 0 to 2) if the access spans two 64 bits words.

Contrary to streaming loads, streaming stores do not need to be pushed into any FIFO so their number is virtually unlimited, that is the core has the ability to send as many streaming stores as wanted to the memory system without stalling (unless the SMEM itself stops granting requests).

access	access	add. misal.	total exec	total L1D
type	latency	penalty	latency	cache busy
uncached blocking	10	0	10	9
uncached blocking ovlp	10	1	11	10
uncached streaming	1	0	1	0
uncached streaming ovlp	1	1	1	2

4.3 Atomic Instructions

There are two variants of each atomic memory access instructions in the kv3 VLIW core ISA: cached and uncached. Cached atomic instructions are acws, afda and aldc. Uncached atomic instructions are acwsu, afdau and aldcu. One important peculiarity to note about acws, afda and aldc is that they do not obey to the cache policy dictated by the MMU: these instructions will always be cached whatever the cache policy found in the TLB entry that maps the virtual page they belong to. (As usual for *U instructions, acwsu, afdau and aldcu also ignore the MMU cache policy directive and are always uncached).

From a latency point of view, the uncached atomic instructions can be thought of as blocking uncached loads that would need one extra cycle to come back, giving a typical execution latency of 11 cycles (1 cycle at E1 + 1 cycle at E2 + 9 cycles stalled at E3), equivalent to 10 cycles of total use penalty, and 10 cycles of total L1D cache busy.

As for cached atomic instructions, they deliver their result to the core with the same latency as a cached load (incurring the same hit/miss *total use penalty*) but their *total L1D cache busy* is that of a cached load plus that of a cached store plus one.

4.4 Data Cache Maintenance Instructions

dinval invalidates all the lines of the L1D cache, which is instantaneous in the hardware implementation as the valid bits are in registers. Its execution latency is 1 and its *total L1D cache busy* time is 0.

dinvall invalidates the concerned line if the provided address hits in the cache else does nothing. For the same reason as dinval, this instruction has an execution latency of 1 and a *total L1D cache busy* of 0.

dtouchl acts as a cached load that would not commit anything in the core's register file. It can be used to pre-heat some addresses in the cache. It has no *total use penalty* (since it does not bring back any data to the core itself) but it does exhibit the *total L1D cache busy* time of a well aligned cached load.

wpurge orders to purge the write buffer (i.e.: flush its content to the memory system and invalidate all the words). It is posted so its execution latency is 1. Its *total L1D cache busy* time can be anything between 0 and a lot of cycles according to the write buffer content and the memory system responsiveness, but 7 should be fairly typical.

4.5 Special LSU Instructions

Two LSU instructions cannot be categorized as loads nor stores nor maintenance instructions: dzerol and fence.

dzerol acts as 8 consecutive sd instructions, filling a L1D cache line entirely with zeros. When uncached:

- it is always considered streaming (even if PS.USE = 0)
- it will typically stall the core pipeline at E3 for 7 cycles
- it will have a total L1D cache busy time of 8 cycles

When cached, it is posted (so will not directly stall the core) but typically exhibit a *total L1D* cache busy of 7 (according to the write buffer state; the write buffer will always split the access in 8)

fence is an instruction that stalls at E1 until there are no more data accesses "in flight" in the memory system, i.e. all ongoing accesses must have terminated and their acknowledgment

must have been received by the L1D cache before fence can progress to E2 and let another instruction enter E1. It can be used after a wpurge instruction, or after a sdu instruction for example to make sure that the memory has been updated before executing other LSU instructions. Its execution latency is entirely dependent on the dynamic context of the memory system at the point of its entrance at E1.

4.6 Instruction Cache Maintenance Instructions

iinval invalidates all the icache lines instantaneously (execution latency: 1 cycle, total L1D cache busy: 0)

iinvall invalidates one icache set instantaneously (execution latency: 1 cycle, total L1D cache busy: 0)

5 BCU Instruction Particularities

5.1 Branches

Branch instructions are divided in two categories: those that branch at ID and those that branch at RR.

The instructions that branch at ID incur a 1-cycle branch penalty because the PFB is flushed and a new request to the L1I cache is made at the branch address (if everything goes well, a new bundle will be ready to execute 2 cycles later). They are:

- break
- call
- aoto
- ret
- rfe
- scall
- trap*
- loopgtz under certain conditions
- loopnez under certain conditions

loopnez and loopgtz branch at ID if the hardware loop start condition is not fulfilled: the loop body must then be skipped, hence the branch.

The instructions that branch at RR incur a 2-cycles branch penalty because the PFB is flushed and a new request to the L1I cache is made at the branch address plus the ID stage is canceled. They are:

- cb
- icall
- igoto

5.2 Pipeline Flushes

Some BCU instructions need to have a clean pipeline downstream to start executing. They will stall at ID stage until there is no valid bundle left at RR, E1, E2, E3 and E4 (though there might still be pending streaming loads in the streaming loads FIFO). Such instructions may remain stalled at ID as little as 0 cycle (if the pipeline is already free in front of them), or as long as several hundred cycles (e.g. if the pipeline is full of unlucky load misses that are going to be unfavorably arbitrated in the memory system). However, long stalls coming from load misses

were going to happen and block the pipeline anyway so it is not really fair to count them in this manner. For a typical case, these instructions are responsible for an extra 5 cycles stall (the time that the bundle that is at RR when they first enter ID executes and leaves the pipeline). These 5 cycles of stall come in addition to the potential branch penalty of the instruction, as is the case for rfe for example. These instructions are:

- writetlb
- readtlb
- probetlb
- indexjtlb
- indexltlb
- barrier
- idle*
- break
- rfe
- scall
- trap*
- hfx*/set on PS
- loop*

In addition, idle* and barrier instructions wait until:

- L1I cache / memory system traffic is over;
- L1D cache / memory system traffic is over;
- and the streaming load FIFO is empty.

Furthermore, scall and loop* cannot stall 0 cycle, they always stall at least 1 cycle at ID (for hardware optimization reasons).

5.3 Re-Fetches

Some BCU instructions trigger a refetch behind them: that is they branch to the next PC, which has the effect of flushing the PFB and causes an additional 1 cycle stall. This is the case of:

- barrier
- writetlb

- invalitlb
- hfx*/set on PS
- loop* under certain conditions

Hardware loop instructions (loop*) trigger a refetch when their loop body (pcoff17 = LE loop* PC, as defined in the *Kalray kv3 VLIW Core Architecture Reference Manual*) is strictly smaller than 64 bytes (because the PFB might have fetched ahead beyond the loop end as it was not yet aware that we were in a hardware loop).

6 Prefetch Buffer Effects

The prefetch buffer (PFB) is the unit that is in charge of fetching the code in the instruction cache (L1I cache) and presenting the syllables to the pipeline at the output of its FIFOs. The ID stage, using the data from the PFB FIFOs will in turn form the bundles, dispatch the instructions to the decoders of the related EXUs and perform part of the instruction decoding. If ID is not stalled and a valid bundle could be formed, then the corresponding code syllables will be popped out of the PFB FIFO and the bundle will progress to RR on the next clock edge.

The PFB has no conscience of what a bundle is (or what instructions are) and its requests to the L1I cache do not have any correlation with bundle borders. Simplifying a little, its interface with the L1I cache consists of a simple request/grant \rightarrow answer protocol plus address and data signals.

In the first phase of this protocol, the PFB asks for 128bits of data at a 32-bit aligned address (these "data" are code in fact but, from the PFB point of view, it really looks like raw data). When the L1I cache grants the request (handshake), the PFB can present a new request, either continuing sequentially (so that address 2 = address 1 + 16 bytes) or branching to a new address, for example on order of the BCU.

In the second phase, the L1I cache answers in one or several cycles, indicating each time which parts of its return data bus are valid (1 valid bit per 32-bit word). The PFB must accept the data coming back. As a matter of fact, it will push every valid 32-bit word sent by the L1I cache into one of its 4 FIFOs (according to their alignment).

The PFB features 4 32-bit wide / 3 stages deep FIFOs that hold the code syllables before they are popped out and progress down the pipeline as a bundle. In the nominal case where the L1I cache hits and no L1I cache line is crossed, the PFB receives the full 128-bit of data it asked for on the cycle following the request (valid bits = 0xf). If the bundles are 16-byte wide (= 128 bits = 4 * 32 bits = 4 * 1-syllable instructions), the PFB will ask 128 bits per cycle to the L1I cache (L1I cache stage1), receive 128 bits per cycle from it and push them into its FIFOs (L1I cache stage2), and the pipeline will pop 128 bits per cycle out of the FIFOs. Thus we reach a steady state with a throughput of 4 * 32-bit syllables of code fetched by cycle. This nominal case is illustrated in the figure below where each cross represents a 32 bits syllable

L1I cache st 1	L1I cache st 2	PFB FIFC	PFB FIFOs		RR
(handshake)	(answer)				
	X		X		
request 4	x push 4		X	pop 4	
\Longrightarrow	$x \implies$		X	\Longrightarrow	
	X		X		

6.1 L1I cache Line Crossing Penalty

When the kv3 VLIW core branches, the PFB FIFOs are flushed (because the PFB usually fetched some code ahead of time in a linear progression and this code is not wanted anymore) and a new 128 bits request is made to the L1I cache at the branch address. This address is 32 bits aligned but it does not have to be 128 bits (16 bytes) aligned. As a result, if the branch address is not 16-byte aligned, given that the PFB fetches 16 bytes at a time, an L1I cache line is going to be crossed sooner or later, meaning the 16 bytes requested by the PFB will overlap a L1I cache line border.

When this happens (and it is bound to happen quite quickly in the absence of a second branch as L1I cache lines are 64-byte wide), the L1I cache will only return the 32 bits syllables that reside in the same line as the start address of the request. For example if the PFB requests 128 bits starting at address 0x10034 and the L1I cache hits, then the L1I cache will answer at the next cycle with valid bits at 0xe, indicating that it could only provide 32-bits syllables lying at 0x10034, 0x10038 and 0x1003C, the remaining one being beyond the L1I cache line border. It is then the responsibility of the PFB to issue a new request starting at the beginning of the new line (0x10040 in our example).

The PFB request address (distinct from the PC) thus realigns itself on 128-bits and the situation is back to normal, however there was a cycle during which we only retrieved 96 bits instead of the usual 128 bits. So we "lost the occasion" to fetch one syllable. This loss can go up to 3 syllables in case the branch is made to an address ending in 0xc. This could in turn lead to a bubble in the pipeline if we were not capable to feed it with code (starvation).

The following series of figure illustrates the case where a ID branch (such as a call) is made to the address 0x23C. Here is an example of code that leads to such a situation:

```
make $r0 = 0xa
sw 0[$r12] = $r34
call my_func  ## branch at ID
;;
my_func:  ## this is a 4 syllables bundle
add $r0 = $r0, $r1
xor $r3 = $r4, $r5
sbf $r40 = $r34, $r38
lw $r32 = 0[$r2]
;;
```

State of the L1I cache/PFB at cycle 0 (cycle of the branch): PFB FIFOs are flushed, 4 syllables are requested to the L1I cache at 0x23C.

L1I cache	L1I cache st 2	PFB FIFOs	ID	RR
st 1				
(handshake)	(answer)			
request 4	X	X	pop 1	
@ 0x23C	* flush!	X	\implies	
\Longrightarrow	x ⇒	X	call!	make
	*	X		sw

State of the L1I cache/PFB at cycle 1: the L1I cache only gives us 1 syllable back, ID wants

to pop 4 sy	llables but	0 are a	vailable, so) ID	is starved.
-------------	-------------	---------	--------------	------	-------------

L1I cache st 1	L1I cache st 2	PFB FIFOs		ID	RR
(handshake)	(answer)				
request 4					
@ 0x240	push 1			starved	
\Longrightarrow	\implies				call
	X				

State of the L1I cache/PFB at cycle 2: the PFB FIFOs contain only 1 syllable but ID wants to pop 4, so ID is starved, bubble at RR.

L1I cache st 1	L1I cache st 2	PFB FIFOs ID		RR	
(handshake)	(answer)				
request 4	X				
@ 0x250	x push 4			starved	
\Longrightarrow	$x \implies $				bubble
	x		X		

State of the L1I cache/PFB at cycle 3: the PFB FIFOs contain 5 syllables. ID can finally execute and 4 syllables will be popped out of the PFB FIFOs at the end of the cycle.

L1I cache st 1	L1I cache st 2	PF	PFB FIFOs ID			RR
(handshake)	(answer)					
request 4	X			X	pop 4	
@ 0x260	x push 4			X	\Longrightarrow	
\Longrightarrow	$x \Longrightarrow$			X		bubble
	X		X	X		

With this sequence, we have created 2 holes in the pipeline instead of one usually for ID branches. The L1I cache line crossing penalty made us waste one cycle (indeed we could have resumed execution at cycle 2 if we had been able to fetch 4 syllables as usual instead of one).

6.2 Optimization Rules

Always align the beginning (that is the first bundle of the loop body, not the loop* instruction) of your hardware loops on a 16-byte boundary: if there are no branches inside the loop body, this will prevent a fetch request from overlapping two L1I cache lines, thus avoiding the L1I cache line crossing penalties. This is not hard to do and may gain a fair amount of cycles, depending on the size of the loop body and the bundling inside it.

7 Instruction Constraints

7.0.1 Instruction Bundling Constraints

Rule 1 Two data dependent instructions may not be scheduled within a single bundle.

Rule 2 Two instructions of the same bundle must not target the same architectural resource, otherwise the update value of this resource is unpredictable.

Rule 3 (Specialization of Rule 2) An ALU instruction that produces a carry must not be bundled with a SET or WFXL instruction on CS.

Rule 4 (Specialization of Rule 2) An ALU or MAU instruction that produces an IEEE 754 floating point flag must not be bundled with a SET or WFX* instruction on CS.

Rule 5 If a GET, IGET or WAITIT instruction is issued within a bundle, then the BCU and the tiny ALU unit inside the MAU are used. As a consequence:

- No MAU instruction is allowed in this bundle
- Only 2 tiny ALU instructions may be used in this bundle (one on each ALU).

This rule is implicit and covered by the instruction reservation tables.

7.0.2 Instruction Scheduling Constraints

Rule 6 – Mandatory PC must not be the target of a hfx* or a set instruction, else a TRAP.OPCODE is generated. A simple branch may be used to modify the PC if needed.

Rule 7 – Mandatory The following instructions may only be issued alone in the bundle:

- RFE
- SCALL
- AWAIT
- SLEEP
- STOP
- BARRIER
- LOOPDO
- TLBREAD
- TLBWRITE

- TLBIINVAL
- TLBDINVAL
- TLBPROBE
- SET/WFXL on PS/MMC/*OW

Rule 8 – Mandatory LS, LE and LC must not be modified within the hardware loop.

Rule 9 – Mandatory The instructions that enable or disable hardware loops must not be used inside the corresponding loop.

Rule 10 – Mandatory To avoid any semantic ambiguity and simplify the design of the hardware, branching instructions, including those triggering implicit refetches, are not allowed at a hardware loop last bundle (generates OPCODE traps). Those are:

- CALL
- ICALL
- CB
- GOTO
- IGOTO
- RET
- RFE
- SCALL
- BARRIER
- LOOPDO
- TLBREAD
- TLBWRITE
- TLBIINVAL
- TLBDINVAL
- TLBPROBE
- SET/WFXL on PS

Rule 11 – Mandatory In order to ensure a correct behavior while executing an hardware loop, a re-fetch must be generated after a set instruction involving LS, LE or LC registers. This re-fetch can be done through a BARRIER instruction, but also through the RFE or RET instructions.

Rule 12 – Mandatory Similarly, a refetch has to be generated after an IINVAL* instruction. This re-fetch can be done through a BARRIER instruction, but also through the RFE or RET instructions.

Rule 13 – Mandatory After changing the value of the rounding mode (RM) field of CS, a BARRIER instruction must be issued before any MAU/FPU instruction, to guarantee that these instructions will see the new value of RM.

Rule 14 – Mandatory Similarly, after changing the value of PMC, a BARRIER is needed before a GET instruction on the concerned registers among PM0, PM1, PM2 and PM3, to make sure that the correct value will be read.

Rule 15 – Performance For hardware simplicity, there are no bypasses on system function registers. Then, in case of RAW dependency, the core will stall until the write completion. However, two specific cases are optimized:

- A RET instruction after a RA update will be executed seeing immediately the new RA value, without stalls.
- An instruction which involves the carry flag after a CS update will be executed seeing immediately the new carry value, without stalls.

8 Detailed operands read/write stages tables for instructions

The tables of this section show at which stage the (register) read operands of an instruction are read and at which stage its results are ready. The immediate operands, having no effect whatso-ever on the pipeline flow (except taking the place of a register operand that could have stalled), are only mentionned in the syntax of the instruction but not in the pipeline part of the tables. The color code used respects the syntax conventions defined in section 2. In particular:

```
(rd) regP the simple (32b) register regZ is read
(rd) regP the double (64b) register regP (a.k.a. pair P) is read
(w) regW the simple (32b) result that will be written back into regW is ready for bypass
(wd) regM the double (64b) result data that will be written back into regM is ready for bypass
```

All the instructions of the instruction set have been grouped in four tables, according to the kind of EXU they execute on. Inside each table, instructions are sorted alphabetically. Section 9 contains an alphabetical index of all the instructions, mentionning their associated EXU (as well as simplified reservation class) and linking to their description in the following tables.

When an alu instruction is sent to a double LIGHT/TINY ALU unit, it exhibits exactly the same behaviour as if it were executed on a big ALU.

Compared to the architecture manual, some names have been shortened (e.g. register \rightarrow reg, systemPS \rightarrow PS, etc.) and some complicated immediate names have been simplified (e.g. upper22L_lower10 \rightarrow imm32) for the sake of readability.

8.1 ALU instructions

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
abdbo regW = regZ, regY		(r) regY				
			(w) regW			
abdbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
abdd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
abdd regW = regZ, regY		(r) regY				
			(w) regW			
abdd $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
abdd regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
abdd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdhq regW = regZ, regY		(r) regY				
			(w) regW			
abdhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdsbo regW = regZ, regY		(r) regY				
		() -8-	(w) regW			
abdsbo regW = regZ, upper27_lower5splat32		(r) regZ				
		(=)==82	(w) regW			

(9
7	<u>Š</u>
2	Ź
21 0	<u>-</u>
4	<

S KALRAY

KETD:

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
abdsd regW = regZ, regY		(r) regY				
			(w) regW			
abdsd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdshq regW = regZ, regY		(r) regY				
			(w) regW			
abdshq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdsw regW = regZ, regY		(r) regY				
			(w) regW			
abdsw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
abdswp regW = regZ, regY		(r) regY				
			(w) regW			
abdswp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdubo regW = regZ, regY		(r) regY				
			(w) regW			
abdubo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdud $regW = regZ$, $regY$		(r) regY				
			(w) regW			

<u>⊼</u>	
ロスク	
~	

Instruction	ID	RR	E1	E2	E3	E4
abdud regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abduhq regW = regZ, regY		(r) regY				
			(w) regW			
abduhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abduw $regW = regZ$, $regY$		(r) regY				
			(w) regW			
abduw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
abduwp regW = regZ, regY		(r) regY				
			(w) regW			
abduwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
abdw regW = regZ, regY		(r) regY				
			(w) regW			
abdw $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
abdw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
abdwp regW = regZ, regY		(r) regY				
			(w) regW			
abdwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

©2025
Kalray

KETD:

Instruction	ID	RR	E1	E2	E3	E4
absbo $regW = regZ$		(r) regZ				
			(w) regW			
absd regW = regZ		(r) regZ				
			(w) regW			
abshq regW = regZ		(r) regZ				
			(w) regW			
abssbo regW = regZ		(r) regZ				
			(w) regW			
abssd regW = regZ		(r) regZ				
			(w) regW			
absshq regW = regZ		(r) regZ				
			(w) regW			
abssw regW = regZ		(r) regZ				
			(w) regW			
absswp regW = regZ		(r) regZ				
			(w) regW			
absw regW = regZ		(r) regZ				
			(w) regW			
abswp regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
addbo $regW = regZ$, $regY$		(r) regY				
			(w) regW			
addbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

X	
~	

Instruction	ID	RR	E1	E2	E3	E4
		(r) CS				
		(r) regZ				
addcd regW = regZ, regY		(r) regY				
			(w) CS			
			(w) regW			
		(r) CS				
addcd regW = regZ, upper27_lower5		(r) regZ				
			(w) CS			
			(w) regW			
		(r) CS				
		(r) regZ				
addcd.i regW = regZ, regY		(r) regY				
			(w) CS			
			(w) regW			
		(r) CS				
addcd. $i \text{ regW} = \text{regZ}$, upper27_lower5		(r) regZ				
			(w) CS			
			(w) regW			
addd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
addd regW = regZ, regY		(r) regY				
			(w) regW			
addd $regW = regZ$, s10		(r) regZ				
			(w) regW			
addd regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
addd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
addhq regW = regZ, regY		(r) regY				
			(w) regW			
addhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
addrbod regW = regZ		(r) regZ				
			(w) regW			
addrhqd regW = regZ		(r) regZ				
			(w) regW			
addrwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
addsbo $regW = regZ$, $regY$		(r) regY				
		(-)8-	(w) regW			
addsbo regW = regZ, upper27_lower5splat32		(r) regZ	(11)			
		(-)8-	(w) regW			
		(r) regZ	(,			
addsd regW = regZ, regY		(r) regY				
		(-)8-	(w) regW			
addsd regW = regZ, upper27_lower5splat32		(r) regZ	(,)			
added reg // rega, appera / are were spring a		(1) 1082	(w) regW			
		(r) regZ	(")198"			
addshq regW = regZ, regY		(r) regY				
addsiiq 165 ;; = 1652, 165 i		(1) 10g 1	(w) regW			
addshq regW = regZ, upper27_lower5splat32		(r) regZ	(w) leg w			
addsing 106 ii = 10g2, apper27_10wer35piat32		(1) TUBL	(w) regW			
		(r) regZ	(W) ICG W			
addsw regW = regZ, regY		(r) regY				
audsw 10g W - 10gZ, 10g I		(1) 10g 1	(w) ragW			

(w) regW

X ≥	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Instruction	ID	RR	E1	E2	E3	E4
addsw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addswp regW = regZ, regY		(r) regY				
			(w) regW			
addswp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
addurbod regW = regZ		(r) regZ				
			(w) regW			
addurhqd regW = regZ		(r) regZ				
			(w) regW			
addurwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
addusbo $regW = regZ$, $regY$		(r) regY				
			(w) regW			
addusbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addusd regW = regZ, regY		(r) regY				
			(w) regW			
addusd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addushq regW = regZ, regY		(r) regY				
			(w) regW			
addushq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
addusw $regW = regZ$, $regY$		(r) regY				
			(w) regW			
addusw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
adduswp regW = regZ, regY		(r) regY				
			(w) regW			
adduswp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
adduwd $regW = regZ$, $regY$		(r) regY				
			(w) regW			
adduwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addw regW = regZ, regY		(r) regY				
			(w) regW			
addw $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
addw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
addwd regW = regZ, regY		(r) regY				
			(w) regW			
addwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			

▼	
L'3/	
~	

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regZ				
addwp regW = regZ, regY		(r) regY				
			(w) regW			
addwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx 16bo regW = regZ, regY		(r) regY				
			(w) regW			
$addx16bo regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			
		(r) regZ				
addx 16d regW = regZ, regY		(r) regY				
			(w) regW			
addx16d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx16hq regW = regZ, regY		(r) regY				
			(w) regW			
$addx16hq regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			
		(r) regZ				
addx16uwd regW = regZ, regY		(r) regY				
			(w) regW			
$addx16uwd regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
addx16w regW = regZ, regY		(r) regY				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
addx16w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx16wd regW = regZ, regY		(r) regY				
			(w) regW			
addx16wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx16wp regW = regZ, regY		(r) regY				
			(w) regW			
addx16wp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx2bo regW = regZ, regY		(r) regY				
			(w) regW			
addx2bo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx2d regW = regZ, regY		(r) regY				
			(w) regW			
addx2d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx2hq regW = regZ, regY		(r) regY				
			(w) regW			
addx2hq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

入	
I I	
2	

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regZ				
addx2uwd regW = regZ, regY		(r) regY				
			(w) regW			
$addx2uwd regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
addx2w regW = regZ, regY		(r) regY				
			(w) regW			
addx2w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx2wd regW = regZ, regY		(r) regY				
			(w) regW			
addx2wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx2wp regW = regZ, regY		(r) regY				
			(w) regW			
addx2wp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
11 22 1 W 7 V		(r) regZ				
addx32d regW = regZ, regY		(r) regY	() W			
11 22 1 W 77 27 1 7 1 22		() 7	(w) regW			
$addx32d regW = regZ$, upper27_lower5splat32		(r) regZ	() # W/			
		(1)7	(w) regW			
11 22 1 W 7 V		(r) regZ				
addx32uwd regW = regZ, regY		(r) regY	(vv) magVV			
			(w) regW			

(O) N	
025	
Kalr	
<u>a</u>	

Instruction	ID	RR	E1	E2	Е3	E4
addx32uwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx32w regW = regZ, regY		(r) regY				
			(w) regW			
addx32w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx32wd regW = regZ, regY		(r) regY				
			(w) regW			
addx32wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx4bo regW = regZ, regY		(r) regY				
			(w) regW			
addx4bo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx4d regW = regZ, regY		(r) regY				
			(w) regW			
addx4d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx4hq regW = regZ, regY		(r) regY				
			(w) regW			
addx4hq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

X
77
7

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
addx4uwd regW = regZ, regY		(r) regY				
			(w) regW			
addx4uwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx4w regW = regZ, regY		(r) regY				
			(w) regW			
$addx4w regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
addx4wd regW = regZ, regY		(r) regY				
		() 5	(w) regW			
addx4wd regW = regZ, upper27_lower5		(r) regZ				
		() 7	(w) regW			
		(r) regZ				
addx4wp regW = regZ, regY		(r) regY	() W			
11 A W 7 07 1 7 1 20		() 7	(w) regW			
addx4wp regW = regZ, upper27_lower5splat32		(r) regZ	() no -W/			
		(1) 11 7	(w) regW			
addy64d magW = mag7, magV		(r) regZ				
addx64d regW = regZ, regY		(r) regY	(vv) magVV			
addy64d magW = mag7, ymmag27, layyau5amlat22		(1) 110 7	(w) regW			
$addx64d regW = regZ$, upper27_lower5splat32		(r) regZ	(w) rogW			
		(v) 227	(w) regW			
addy64uuyd ragW = rag7 ragV		(r) regZ				
addx64uwd regW = regZ, regY		(r) regY	(w) regW			
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
addx64uwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx64w regW = regZ, regY		(r) regY				
			(w) regW			
addx64w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx64wd regW = regZ, regY		(r) regY				
			(w) regW			
addx64wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
addx8bo regW = regZ, regY		(r) regY				
			(w) regW			
addx8bo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx8d regW = regZ, regY		(r) regY				
			(w) regW			
addx8d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
addx8hq regW = regZ, regY		(r) regY				
			(w) regW			
addx8hq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

<u>て</u>	
Z Z	
X	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
addx8uwd regW = regZ, regY		(r) regY				
			(w) regW			
$addx8uwd regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
addx8w regW = regZ, regY		(r) regY				
			(w) regW			
$addx8w regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
addx8wd regW = regZ, regY		(r) regY				
			(w) regW			
$addx8wd regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
addx8wp regW = regZ, regY		(r) regY				
			(w) regW			
$addx8wp regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			
andd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
andd $regW = regZ$, $regY$		(r) regY				
			(w) regW			
andd $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
andd regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
andd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
andnd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
andnd $regW = regZ$, $regY$		(r) regY				
			(w) regW			
andnd $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
andnd regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
andnd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
and $mw = mw $		(r) regY				
			(w) regW			
andnw $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
andnw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
andrbod $regW = regZ$		(r) regZ				
			(w) regW			
andrhqd $regW = regZ$		(r) regZ				
			(w) regW			
andrwpd $regW = regZ$		(r) regZ				
			(w) regW			
		(r) regZ				
andw $regW = regZ$, $regY$		(r) regY				
			(w) regW			

T	
<u> </u>	
N N	

Instruction	ID	RR	E1	E2	E3	E4
andw $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
andw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
avgbo regW = regZ, regY		(r) regY				
			(w) regW			
avgbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avghq regW = regZ, regY		(r) regY				
			(w) regW			
avghq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgrbo regW = regZ, regY		(r) regY				
			(w) regW			
avgrbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgrhq regW = regZ, regY		(r) regY				
			(w) regW			
avgrhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgrubo regW = regZ, regY		(r) regY				
			(w) regW			
avgrubo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
avgruhq regW = regZ, regY		(r) regY				
			(w) regW			
avgruhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgruw regW = regZ, regY		(r) regY				
			(w) regW			
avgruw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
avgruwp regW = regZ, regY		(r) regY				
			(w) regW			
avgruwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgrw regW = regZ, regY		(r) regY				
			(w) regW			
avgrw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
avgrwp regW = regZ, regY		(r) regY				
			(w) regW			
avgrwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgubo regW = regZ, regY		(r) regY				
			(w) regW			

Ç
<u>></u>
R

Instruction	ID	RR	E1	E2	Е3	E4
avgubo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avguhq regW = regZ, regY		(r) regY				
			(w) regW			
avguhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avguw regW = regZ, regY		(r) regY				
			(w) regW			
avguw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
avguwp regW = regZ, regY		(r) regY				
			(w) regW			
avguwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
avgw regW = regZ, regY		(r) regY				
			(w) regW			
$avgw regW = regZ$, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
avgwp regW = regZ, regY		(r) regY				
			(w) regW			
avgwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
cbsd regW = regZ		(r) regZ		<u> </u>		
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
cbsw regW = regZ		(r) regZ				
			(w) regW			
cbswp regW = regZ		(r) regZ				
			(w) regW			
clrf regW = regZ, stopbit2_stopbit4, startbit		(r) regZ				
			(w) regW			
clsd regW = regZ		(r) regZ				
			(w) regW			
clsw regW = regZ		(r) regZ				
			(w) regW			
clswp regW = regZ		(r) regZ				
			(w) regW			
clzd regW = regZ		(r) regZ				
			(w) regW			
clzw regW = regZ		(r) regZ				
			(w) regW			
clzwp regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
cmovebosimdcond reg Z ? reg $W = reg Y$		(r) regY				
			(w) regW			
cmovebosimdcond regZ? regW = upper27_lower5splat32		(r) regZ				
			(w) regW			
cmovedscalarcond regZ? regW = extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
cmovedscalarcond reg Z ? reg W = reg Y		(r) regY				
			(w) regW			

大 >	
~	

Instruction	ID	RR	E1	E2	E3	E4
cmovedscalarcond regZ? regW = s10		(r) regZ				
			(w) regW			
cmovedscalarcond regZ? regW = upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
cmovehqsimdcond $regZ$? $regW = regY$		(r) regY				
			(w) regW			
cmovehqsimdcond regZ? regW = upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
cmovewpsimdcond reg \mathbb{Z} ? reg \mathbb{W} = reg \mathbb{Y}		(r) regY				
			(w) regW			
cmovewpsimdcond regZ? regW = upper27_lower5splat32		(r) regZ				
			(w) regW			
compdcomp regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
compdcomp regW = regZ, regY		(r) regY				
			(w) regW			
compdcomp regW = regZ, s10		(r) regZ				
			(w) regW			
$compdcomp regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
		(r) regZ				
compnbocomp regW = regZ, regY		(r) regY				
			(w) regW			
compnbocomp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
compndcomp regW = regZ, regY		(r) regY				
			(w) regW			
compndcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
compnhqcomp regW = regZ, regY		(r) regY				
			(w) regW			
compnhqcomp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
compnwcomp regW = regZ, regY		(r) regY				
			(w) regW			
compnwcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
compnwpcomp regW = regZ, regY		(r) regY				
W 7 07 1 00			(w) regW			
compnwpcomp regW = regZ, upper27_lower5splat32		(r) regZ	() W			
			(w) regW			
1 W 7 V		(r) regZ				
compuwdcomp regW = regZ, regY		(r) regY	() W/			
1 W 7 27 1 5		(2)7	(w) regW			
compuwdcomp regW = regZ, upper27_lower5		(r) regZ	(111) # = = 111			
		(11) 112 117	(w) regW			
computation regW = regV		(r) regZ				
compwcomp regW = regZ, regY		(r) regY	(w) rogW			
			(w) regW			

X ≥	
L R R	
<	

Instruction	ID	RR	E1	E2	Е3	E4
compwcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
compwdcomp regW = regZ, regY		(r) regY				
			(w) regW			
compwdcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
copyd regW = regZ		(r) regZ				
			(w) regW			
copyw regW = regZ		(r) regZ				
			(w) regW			
ctzd regW = regZ		(r) regZ				
			(w) regW			
ctzw regW = regZ		(r) regZ				
			(w) regW			
ctzwp regW = regZ		(r) regZ				
			(w) regW			
eord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
eord regW = regZ, regY		(r) regY				
			(w) regW			
eord regW = regZ, s10		(r) regZ				
			(w) regW			
eord regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
eord regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

(O)	
20	
25	
<u>X</u>	
<u>a`</u>	
<u>a</u>	
_	

Instruction	ID	RR	E1	E2	E3	E4
eorrbod regW = regZ		(r) regZ				
			(w) regW			
eorrhqd regW = regZ		(r) regZ				
			(w) regW			
eorrwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
eorw regW = regZ, regY		(r) regY				
			(w) regW			
eorw regW = regZ, s10		(r) regZ				
			(w) regW			
eorw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
extfs regW = regZ, stopbit2_stopbit4, startbit		(r) regZ				
			(w) regW			
extfz regW = regZ, stopbit2_stopbit4, startbit		(r) regZ				
			(w) regW			
fabsd regW = regZ		(r) regZ				
			(w) regW			
fabshq regW = regZ		(r) regZ				
			(w) regW			
fabsw $regW = regZ$		(r) regZ				
			(w) regW			
fabswp regW = regZ		(r) regZ				
			(w) regW			
fcdivdsilent2 regW = regP		(rd) regP				
			(w) regW			(w) CS
fcdivwsilent2 regW = regP		(rd) regP				
			(w) regW			(w) CS

T	
R	

Instruction	ID	RR	E 1	E2	E3	E4
fcdivwpsilent2 regW = regP		(rd) regP				
			(w) regW			(w) CS
		(r) regZ				
fcompdfloatcomp regW = regZ, regY		(r) regY				
			(w) regW			
fcompdfloatcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
fcompndfloatcomp regW = $regZ$, $regY$		(r) regY				
			(w) regW			
fcompndfloatcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
fcompnhqfloatcomp regW = regZ, regY		(r) regY				
			(w) regW			
fcompnhqfloatcomp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
fcompnwfloatcomp regW = regZ, regY		(r) regY				
			(w) regW			
fcompnwfloatcomp regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
fcompnwpfloatcomp regW = regZ, regY		(r) regY				
			(w) regW			
fcompnwpfloatcomp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

(0)
$\tilde{\aleph}$
025
Kal
ray

fcompwfloatcomp regW = regZ, regY fcompwfloatcomp regW = regZ, upper27_lower5	(r) regZ (r) regY			
	(r) regY			
fcompwfloatcomp regW = regZ, upper27_lower5				
fcompwfloatcomp regW = regZ, upper27_lower5		(w) regW		
	(r) regZ			
		(w) regW		
	(r) regZ			
fmaxd regW = regZ, regY	(r) regY	() W		
		(w) regW		
Constanting William W.	(r) regZ			
fmaxhq regW = regZ, regY	(r) regY	()W/		
	(1) 11 7	(w) regW		
f.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(r) regZ			
fmaxw regW = regZ, regY	(r) regY	(w) ragW		
	(r) regZ	(w) regW		
fmaxwp regW = regZ, regY	(r) regY			
imaxwp icg w = icgz, icg i	(I) ICg I	(w) regW		
	(r) regZ	(w) leg w		
fmind regW = regZ, regY	(r) regY			
1000, 1001	(1) 108 1	(w) regW		
	(r) regZ	(11)		
fminhq regW = regZ, regY	(r) regY			
		(w) regW		
	(r) regZ			
fminw regW = regZ, regY	(r) regY			
		(w) regW		
	(r) regZ			
fminwp regW = regZ, regY	(r) regY			
		(w) regW		

X ≥	
NAY	
	<u> </u>

Instruction	ID	RR	E1	E2	E3	E4
		(r) CS				
fnarrowdwrounding2silent2 regW = regZ		(r) regZ				
			(w) regW			(w) CS
		(r) CS				
fnarrowdwprounding2silent2 regW = regP		(rd) regP				
			(w) regW			(w) CS
		(r) CS				
fnarrowwhrounding2silent2 regW = regZ		(r) regZ				
			(w) regW			(w) CS
		(r) CS				
fnarrowwhqrounding2silent2 regW = regP		(rd) regP				
			(w) regW			(w) CS
fnegd regW = regZ		(r) regZ				
			(w) regW			
fneghq regW = regZ		(r) regZ				
			(w) regW			
fnegw regW = regZ		(r) regZ				
			(w) regW			
fnegwp regW = regZ		(r) regZ				
			(w) regW			
		(r) CS				
frecwrounding2silent2 regW = regZ		(r) regZ				
						(w) CS
		(r) CS				
frsrwrounding2silent2 regW = regZ		(r) regZ				
						(w) CS
fsdivdsilent2 regW = regP		(rd) regP				
			(w) regW			(w) CS

Instruction	ID	RR	E1	E2	E3	E4
fsdivwsilent2 regW = regP		(rd) regP				
			(w) regW			(w) CS
fsdivwpsilent2 regW = regP		(rd) regP				
			(w) regW			(w) CS
fsrecdsilent2 regW = regZ		(r) regZ				
			(w) regW			(w) CS
fsrecwsilent2 regW = regZ		(r) regZ				
			(w) regW			(w) CS
fsrecwpsilent2 regW = regZ		(r) regZ				
			(w) regW			(w) CS
fsrsrd regW = regZ		(r) regZ				
			(w) regW			
fsrsrw regW = regZ		(r) regZ				
C W 77			(w) regW			
fsrsrwp regW = regZ		(r) regZ	()			
for ideally well and a series of		(1) 11 -7	(w) regW			
fwidenlhwsilent2 $regW = regZ$		(r) regZ	(vv) magVV			(m) CC
fwidenlhwpsilent2 regW = regZ		(*) ****7	(w) regW			(w) CS
		(r) regZ	(w) regW			(w) CS
fwidenlwdsilent2 regW = regZ		(r) regZ	(W) leg W			(w) CS
1 widefilwdshefitz feg w = fegz		(I) ICgZ	(w) regW			(w) CS
fwidenmhwsilent2 reg $W = regZ$		(r) regZ	(W) ICG W			(w) C5
1 widemini wsheni 2 reg w = reg z		(I) ICGZ	(w) regW			(w) CS
fwidenmhwpsilent2 regW = regZ		(r) regZ	(,108,11			() 65
Time Tog.		(1)1082	(w) regW			(w) CS
fwidenmwdsilent2 regW = regZ		(r) regZ	(,-58			() 55
108		(1) 1082	(w) regW			(w) CS
			(/6/		1	(, 22

入	
I I	
2	

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regW				
insf regW = regZ, stopbit2_stopbit4, startbit		(r) regZ				
			(w) regW			
iord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
iord regW = regZ, regY		(r) regY				
			(w) regW			
iord regW = regZ, s10		(r) regZ				
			(w) regW			
$iord regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
$iord regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
iornd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
iornd regW = regZ, regY		(r) regY				
			(w) regW			
iornd $regW = regZ$, s10		(r) regZ				
			(w) regW			
iornd regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
iornd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
iornw regW = regZ, regY		(r) regY				
			(w) regW			

iomw regW = regZ, upper27.lower10	Instruction	ID	RR	E1	E2	E3	E4
iornw regW = regZ, upper27-lower10 iorrbod regW = regZ iorrhqd regW = regZ iorrhqd regW = regZ iorrwpd regW = regZ iorrwpd regW = regZ iorw regW = regZ, regY iorw regW = regZ, s10 iorw regW = regZ, upper27-lower10 iorw regW = regZ, upper27-lower10 iorw regW = regZ, regY iorw regW = regZ, regY iorw regW = regZ, upper27-lower10 iorw regW = regZ, regY iorw regW = regZ, regY iorw regW = regZ, upper27-lower10 iorw regW = regZ, regY iorw regW = regZ, regY iorw regW = regZ, regY iory regZ	iornw reg $W = regZ$, s10		(r) regZ				
iorrbod regW = regZ				(w) regW			
iorrhod regW = regZ iorrhod regW = regZ iorrwpd regW = regZ iorw regW = regZ, regY iorw regW = regZ, s10 iorw regW = regZ, upper27-lower10 iorw regW = regZ, regY iorw regW = regZ, regY iorw regW = regZ, upper27-lower10 iorw regW = regZ, regY iorw regW = regZ, regY iorw regW = regZ, upper27-lower10 iorw regW = regZ, regY iorw regZ iorw	iornw regW = regZ, upper27_lower10		(r) regZ				
iorrhqd regW = regZ (r) regZ (w) regW iorrwpd regW = regZ (r) regZ (w) regW iorw regW = regZ, regY (r) regZ (w) regW iorw regW = regZ, s10 (r) regZ (w) regW iorw regW = regZ, upper27_lower10 (r) regZ (w) regW iorw regW = regZ, regY (r) regZ (w) regW iorw regW = regZ, regY (r) regZ (r) regZ (r) regZ (r) regZ (r) regY (w) regW landw regW = regZ, regY (r) regZ (r) regZ (r) regZ (r) regZ (w) regW landw regW = regZ, regY (r) regZ (r) regZ (w) regW landw regW = regZ, regY (r) regZ				(w) regW			
iorrhqd regW = regZ	iorrbod regW = regZ		(r) regZ				
(w) regW				(w) regW			
iorrwpd regW = regZ (r) regZ (w) regW iorw regW = regZ, regY (r) regZ (r) regZ (r) regZ (w) regW iorw regW = regZ, s10 (r) regZ (w) regW iorw regW = regZ, upper27_lower10 (r) regZ (w) regW iorw regW = regZ, regY (r) regZ	iorrhqd regW = regZ		(r) regZ				
(w) regW regZ (r) regY (w) regW				(w) regW			
iorw regW = regZ, regY	iorrwpd regW = regZ		(r) regZ				
iorw regW = regZ, regY				(w) regW			
(w) regW			(r) regZ				
iorw regW = regZ, s10 (r) regZ (w) regW iorw regW = regZ, upper27_lower10 (r) regZ (w) regW (r) regZ (w) regW (r) regZ (r) regY (w) regW landw regW = regZ, regY (r) regZ (r) regZ (r) regY (w) regW landw regW = regZ, regY (r) regZ (r) regY	iorw regW = regZ, regY		(r) regY				
(w) regW				(w) regW			
iorw regW = regZ, upper27_lower10 (r) regZ (w) regW (r) regZ (r) regY (w) regW landw regW = regZ, regY (r) regZ (r) regZ (r) regZ (r) regY (w) regW landw regW = regZ, upper27_lower5 (r) regZ (r) regZ (r) regZ (w) regW liord regW = regZ, regY (r) regZ	iorw regW = regZ, s10		(r) regZ				
landd regW = regZ, regY (r) regZ (r) regY (w) regW landw regW = regZ, regY (r) regZ (r) regZ (r) regZ (w) regW landw regW = regZ, upper27_lower5 (r) regZ (w) regW liord regW = regZ, regY				(w) regW			
landd regW = regZ, regY (r) regZ (r) regZ (w) regW landw regW = regZ, regY (r) regZ (r) regY (w) regW landw regW = regZ, upper27_lower5 (r) regZ (w) regW liord regW = regZ, regY	$iorw regW = regZ$, upper27_lower10		(r) regZ				
landd regW = regZ, regY (r) regY (w) regW landw regW = regZ, regY (r) regZ (r) regY (w) regW landw regW = regZ, upper27_lower5 (r) regZ (w) regW liord regW = regZ, regY				(w) regW			
(w) regW (r) regZ (r) regY (w) regW landw regW = regZ, regY (r) regZ (w) regW landw regW = regZ, upper27_lower5 (r) regZ (w) regW liord regW = regZ, regY (r) regZ (r) regY			_				
$landw regW = regZ, regY$ $landw regW = regZ, upper27_lower5$ $(r) regZ$ $(w) regW$ $(r) regZ$ $(w) regW$ $liord regW = regZ, regY$ $(r) regZ$ $(r) regZ$ $(r) regZ$ $(r) regZ$ $(r) regY$	landd regW = regZ, regY		(r) regY				
landw regW = regZ, regY (r) regY (w) regW landw regW = regZ, upper27_lower5 (r) regZ (w) regW (r) regZ (r) regZ (r) regZ (r) regZ (r) regY				(w) regW			
(w) regW							
landw regW = regZ, upper27_lower5 (r) regZ (w) regW liord regW = regZ, regY (r) regZ (r) regZ (r) regZ	landw regW = regZ, regY		(r) regY				
				(w) regW			
liord regW = regZ, regY $ (r) regZ $ $ (r) regY $	$landw regW = regZ, upper27_lower5$		(r) regZ				
liord regW = regZ, regY (r) regY				(w) regW			
			_				
(w) regW	liord regW = regZ, regY		(r) regY				
				(w) regW			

<u>て</u>	
コレ	
R	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
liorw regW = regZ, regY		(r) regY				
			(w) regW			
liorw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
lnandd regW = regZ, regY		(r) regY				
			(w) regW			
		(r) regZ				
lnandw regW = regZ, regY		(r) regY				
			(w) regW			
lnandw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
lniord regW = regZ, regY		(r) regY				
			(w) regW			
		(r) regZ				
Iniorw regW = regZ, regY		(r) regY				
			(w) regW			
lniorw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
lnord regW = regZ, regY		(r) regY				
			(w) regW			
		(r) regZ				
lnorw regW = regZ, regY		(r) regY				
			(w) regW			
lnorw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			

\bigcirc	
$\tilde{\aleph}$	
8	
5	
S C	
둜	
Æ	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
lord regW = regZ, regY		(r) regY				
			(w) regW			
		(r) regZ				
lorw regW = regZ, regY		(r) regY				
			(w) regW			
lorw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
make regW = extend27_upper27_lower10			(w) regW			
make regW = extend6_upper27_lower10			(w) regW			
make $regW = s16$			(w) regW			
		(r) regZ				
maxbo regW = regZ, regY		(r) regY				
			(w) regW			
maxbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
maxd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
maxd regW = regZ, regY		(r) regY				
			(w) regW			
maxd regW = regZ, s10		(r) regZ				
			(w) regW			
maxd regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
$maxd regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			

O	
KAL	
RAY	

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regZ				
maxhq regW = regZ, regY		(r) regY				
			(w) regW			
maxhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
maxrbod regW = regZ		(r) regZ				
			(w) regW			
maxrhqd regW = regZ		(r) regZ				
			(w) regW			
maxrwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
maxubo regW = regZ, regY		(r) regY				
			(w) regW			
maxubo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
$maxud regW = regZ$, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
maxud regW = regZ, regY		(r) regY				
			(w) regW			
maxud regW = regZ, s10		(r) regZ				
			(w) regW			
$maxud regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
$maxud regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			

(O)	
20	
25	
Kal	
ray	

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regZ				
maxuhq regW = regZ, regY		(r) regY				
			(w) regW			
maxuhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
maxurbod regW = regZ		(r) regZ				
			(w) regW			
maxurhqd regW = regZ		(r) regZ				
			(w) regW			
maxurwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
maxuw regW = regZ, regY		(r) regY				
			(w) regW			
maxuw regW = regZ, s10		(r) regZ				
W 7 27 10			(w) regW			
$maxuw regW = regZ, upper27_lower10$		(r) regZ	W W			
			(w) regW			
W W W		(r) regZ				
maxuwp regW = regZ, regY		(r) regY	()			
mayuuun raaW - raa7 unnar?7 layyar5anlat??		(r) rog7	(w) regW			
maxuwp regW = regZ, upper27_lower5splat32		(r) regZ	(w) regW			
		(r) rog7	(w) regW			
maxw regW = regZ, regY		(r) regZ (r) regY				
111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(1) 10g 1	(w) regW			
maxw regW = regZ, s10		(r) regZ	(w) icg vv			
maxw 10g w = 10g2, 510		(1) 1052	(w) regW			
			(W)105 W			

X
RAY

Instruction	ID	RR	E1	E2	Е3	E4
maxw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
maxwp regW = regZ, regY		(r) regY				
			(w) regW			
maxwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
minbo regW = regZ, regY		(r) regY				
			(w) regW			
minbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
mind regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
mind $regW = regZ$, $regY$		(r) regY				
			(w) regW			
mind $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
mind $regW = regZ$, upper27_lower10		(r) regZ				
			(w) regW			
mind regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
minhq regW = regZ, regY		(r) regY				
			(w) regW			
minhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

(0)
\widecheck{N}
0
12
~
<u>⋒</u>
₩
aj
_

Instruction	ID	RR	E1	E2	E3	E4
minrbod regW = regZ		(r) regZ				
			(w) regW			
minrhqd regW = regZ		(r) regZ				
			(w) regW			
minrwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
minubo regW = regZ, regY		(r) regY				
			(w) regW			
minubo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
minud regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
minud regW = regZ, regY		(r) regY				
			(w) regW			
minud $regW = regZ$, s10		(r) regZ	() W			
		() 7	(w) regW			
minud regW = regZ, upper27_lower10		(r) regZ	() W			
win 1 W 7 27 1 5 1 22		(1)7	(w) regW			
minud regW = regZ, upper27_lower5splat32		(r) regZ	()W			
		(2) 22.27	(w) regW			
winds a W and Z and V		(r) regZ				
minuhq regW = regZ, regY		(r) regY	(m) #20W			
minuhq regW = regZ, upper27_lower5splat32		(r) rag7	(w) regW			
minunq reg w = regz, upperz / nower spratsz		(r) regZ	(W) regW			
minushed rocW = roc7		(r) rog7	(w) regW			
minurbod regW = regZ		(r) regZ	(W) regW			
			(w) regW			

O	
X	
-RAY	

Instruction	ID	RR	E1	E2	Е3	E4
minurhqd regW = regZ		(r) regZ				
			(w) regW			
minurwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
minuw regW = regZ, regY		(r) regY				
			(w) regW			
minuw $regW = regZ$, s10		(r) regZ				
			(w) regW			
minuw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
minuwp regW = regZ, regY		(r) regY				
			(w) regW			
minuwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
minw regW = regZ, regY		(r) regY				
			(w) regW			
minw regW = regZ, s10		(r) regZ				
			(w) regW			
minw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
minwp regW = regZ, regY		(r) regY				
			(w) regW			
minwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
nandd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
nandd $regW = regZ$, $regY$		(r) regY				
			(w) regW			
nandd $regW = regZ$, s10		(r) regZ				
			(w) regW			
nandd $regW = regZ$, upper27_lower10		(r) regZ				
			(w) regW			
nandd $regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
nandw regW = regZ, regY		(r) regY				
			(w) regW			
nandw $regW = regZ$, s10		(r) regZ				
			(w) regW			
nandw $regW = regZ$, upper27_lower10		(r) regZ				
			(w) regW			
negbo regW = regZ		(r) regZ				
			(w) regW			
negd regW = regZ		(r) regZ				
			(w) regW			
neghq regW = regZ		(r) regZ				
			(w) regW			
negsbo regW = regZ		(r) regZ				
			(w) regW			
negsd regW = regZ		(r) regZ				
			(w) regW			

X ≥	
NAY.	

Instruction	ID	RR	E1	E2	E3	E4
negshq regW = regZ		(r) regZ				
			(w) regW			
negsw regW = regZ		(r) regZ				
			(w) regW			
negswp regW = regZ		(r) regZ				
			(w) regW			
negw regW = regZ		(r) regZ				
			(w) regW			
negwp regW = regZ		(r) regZ				
			(w) regW			
neord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
neord regW = regZ, regY		(r) regY				
			(w) regW			
neord regW = regZ, s10		(r) regZ				
			(w) regW			
neord regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
neord regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
neorw regW = regZ, regY		(r) regY				
			(w) regW			
neorw $regW = regZ$, $s10$		(r) regZ	\top			
			(w) regW			
neorw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
niord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
niord regW = regZ, regY		(r) regY				
			(w) regW			
niord regW = regZ, s10		(r) regZ				
			(w) regW			
$niord regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
$niord regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
niorw regW = regZ, regY		(r) regY				
			(w) regW			
niorw regW = regZ, s10		(r) regZ				
			(w) regW			
$niorw regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
nop						
nord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
nord regW = regZ, regY		(r) regY				
			(w) regW			
nord regW = regZ, s10		(r) regZ				
			(w) regW			
$nord regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			

入	
I I	
2	

Instruction	ID	RR	E1	E2	E3	E4
nord regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
norw regW = regZ, regY		(r) regY				
			(w) regW			
norw $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
norw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
notd regW = regZ		(r) regZ				
			(w) regW			
notw regW = regZ		(r) regZ				
			(w) regW			
nxord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
nxord regW = regZ, regY		(r) regY				
			(w) regW			
nxord regW = regZ, s10		(r) regZ				
			(w) regW			
$nxord regW = regZ$, upper27_lower10		(r) regZ				
			(w) regW			
nxord regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
nxorw regW = regZ, regY		(r) regY				
			(w) regW			
nxorw regW = regZ, s10		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	Е3	E4
nxorw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
ord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
ord regW = regZ, regY		(r) regY				
			(w) regW			
ord regW = regZ, s10		(r) regZ				
			(w) regW			
ord $regW = regZ$, upper27_lower10		(r) regZ				
			(w) regW			
ord regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
ornd $regW = regZ$, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
ornd regW = regZ, regY		(r) regY				
			(w) regW			
ornd $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
ornd $regW = regZ$, upper27_lower10		(r) regZ				
			(w) regW			
ornd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
ornw $regW = regZ$, $regY$		(r) regY				
			(w) regW			
ornw $regW = regZ$, s10		(r) regZ				
			(w) regW			

X ≥	
_ Z ≥	

Instruction	ID	RR	E1	E2	E3	E4
ornw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
orrbod regW = regZ		(r) regZ				
			(w) regW			
orrhqd regW = regZ		(r) regZ				
			(w) regW			
orrwpd $regW = regZ$		(r) regZ				
-			(w) regW			
		(r) regZ				
orw $regW = regZ$, $regY$		(r) regY				
			(w) regW			
orw regW = regZ, $s10$		(r) regZ				
			(w) regW			
orw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
pcrel regW = extend27_upper27_lower10			(w) regW			
pcrel regW = extend6_upper27_lower10			(w) regW			
pcrel regW = s16			(w) regW			
		(r) regZ				
rolw regW = regZ, regY		(r) regY				
			(w) regW			
rolw regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
rolwps regW = regZ, regY		(r) regY				
			(w) regW			
rolwps regW = regZ, u6		(r) regZ				
			(w) regW			

	ID	RR	E1	E2	E3	E4
		(r) regZ				
rorw regW = regZ, regY		(r) regY				
			(w) regW			
rorw regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
rorwps regW = regZ, regY		(r) regY				
			(w) regW			
rorwps regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
sbfbo regW = regZ, regY		(r) regY				
			(w) regW			
sbfbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) CS				
		(r) regZ				
sbfcd regW = regZ, regY		(r) regY				
			(w) CS			
			(w) regW			
		(r) CS				
sbfcd regW = regZ, upper27_lower5		(r) regZ				
			(w) CS			
			(w) regW			
		(r) regZ		(r) CS		
sbfcd.i regW = regZ, regY		(r) regY				
			(w) CS			
			(w) regW			

天	
L N	
2	

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regZ		(r) CS		
$sbfcd.i regW = regZ, upper27_lower5$			(w) CS			
			(w) regW			
sbfd regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
sbfd regW = regZ, regY		(r) regY				
			(w) regW			
sbfd regW = regZ, s10		(r) regZ				
			(w) regW			
$sbfd regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
$sbfd regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfhq regW = regZ, regY		(r) regY				
			(w) regW			
$sbfhq regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfsbo regW = regZ, regY		(r) regY				
			(w) regW			
$sbfsbo regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfsd regW = regZ, regY		(r) regY				
			(w) regW			
sbfsd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

_ ろ	
ソロコ	
2	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
sbfshq regW = regZ, regY		(r) regY				
			(w) regW			
sbfshq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfsw regW = regZ, regY		(r) regY				
			(w) regW			
sbfsw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfswp regW = regZ, regY		(r) regY				
			(w) regW			
sbfswp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfusbo regW = regZ, regY		(r) regY				
			(w) regW			
sbfusbo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfusd regW = regZ, regY		(r) regY				
			(w) regW			
sbfusd regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfushq regW = regZ, regY		(r) regY				
			(w) regW			
			· · · · · · · · · · · · · · · · · · ·			

人	
Z	
R	

Instruction	ID	RR	E1	E2	E3	E4
sbfushq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfusw regW = regZ, regY		(r) regY				
			(w) regW			
sbfusw regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfuswp regW = regZ, regY		(r) regY				
			(w) regW			
sbfuswp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfuwd regW = regZ, regY		(r) regY				
			(w) regW			
sbfuwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfw regW = regZ, regY		(r) regY				
			(w) regW			
sbfw regW = regZ, s10		(r) regZ				
			(w) regW			
sbfw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
sbfwd regW = regZ, regY		(r) regY				
			(w) regW			
sbfwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
sbfwp regW = regZ, regY		(r) regY				
			(w) regW			
sbfwp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx16bo regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx16bo regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx16d regW = regZ, regY		(r) regY				
18.461 W. 7. 07.1 5.1.00			(w) regW			
sbfx16d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
10.40 W 7 W		(r) regZ				
sbfx16hq regW = regZ, regY		(r) regY	W W			
16 161 W 77 07 1 5 1 00			(w) regW			
$sbfx16hq regW = regZ$, upper27_lower5splat32		(r) regZ	() W			
			(w) regW			
16.16 1 W 7 V		(r) regZ				
sbfx16uwd regW = regZ, regY		(r) regY	()			
16.16.1.W727.15		(3)7	(w) regW			
$sbfx16uwd regW = regZ$, upper27_lower5		(r) regZ	()			
		(2) 22 27	(w) regW			
shfulfu magW = magV		(r) regZ				
sbfx16w regW = regZ, regY		(r) regY	(w) rogW			
			(w) regW			

X ≥	
NAY	
	<u> </u>

Instruction	ID	RR	E1	E2	E3	E4
sbfx16w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx16wd regW = regZ, regY		(r) regY				
			(w) regW			
sbfx16wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx16wp regW = regZ, regY		(r) regY				
			(w) regW			
sbfx16wp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx2bo regW = regZ, regY		(r) regY				
			(w) regW			
sbfx2bo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx2d regW = regZ, regY		(r) regY				
			(w) regW			
sbfx2d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx2hq regW = regZ, regY		(r) regY				
			(w) regW			
sbfx2hq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
sbfx2uwd regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx2uwd regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx2w regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx2w regW = regZ$, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx2wd regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx2wd regW = regZ$, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx2wp regW = regZ, regY		(r) regY				
			(w) regW			
sbfx2wp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx32d regW = regZ, regY		(r) regY				
			(w) regW			
sbfx32d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx32uwd regW = regZ, regY		(r) regY				
			(w) regW			

X ≥	
Z Z Y	

Instruction	ID	RR	E1	E2	E3	E4
sbfx32uwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx32w regW = regZ, regY		(r) regY				
			(w) regW			
sbfx32w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx32wd regW = regZ, regY		(r) regY				
			(w) regW			
sbfx32wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx4bo regW = regZ, regY		(r) regY				
			(w) regW			
sbfx4bo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx4d regW = regZ, regY		(r) regY				
			(w) regW			
sbfx4d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx4hq regW = regZ, regY		(r) regY				
			(w) regW			
sbfx4hq regW = regZ, upper27_lower5splat32		(r) regZ		· · · · · ·		
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
sbfx4uwd regW = regZ, regY		(r) regY				
			(w) regW			
sbfx4uwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx4w regW = regZ, regY		(r) regY				
			(w) regW			
sbfx4w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx4wd regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx4wd regW = regZ$, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx4wp regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx4wp regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx64d regW = regZ, regY		(r) regY				
		<u> </u>	(w) regW			
sbfx64d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx64uwd regW = regZ, regY		(r) regY				
			(w) regW			

<u>></u>
R

Instruction	ID	RR	E1	E2	E3	E4
sbfx64uwd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx64w regW = regZ, regY		(r) regY				
			(w) regW			
sbfx64w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx64wd regW = regZ, regY		(r) regY				
			(w) regW			
sbfx64wd regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx8bo regW = regZ, regY		(r) regY				
			(w) regW			
sbfx8bo regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx8d regW = regZ, regY		(r) regY				
			(w) regW			
sbfx8d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx8hq regW = regZ, regY		(r) regY				
			(w) regW			
sbfx8hq regW = regZ, upper27_lower5splat32		(r) regZ		· · · · · ·		
			(w) regW			

	KALRAY
	KETD:

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
sbfx8uwd regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx8uwd regW = regZ, upper27_lower5$		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx8w regW = regZ, regY		(r) regY				
			(w) regW			
sbfx8w regW = regZ, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx8wd regW = regZ, regY		(r) regY				
			(w) regW			
$sbfx8wd regW = regZ$, upper27_lower5		(r) regZ				
			(w) regW			
		(r) regZ				
sbfx8wp regW = regZ, regY		(r) regY				
			(w) regW			
sbfx8wp regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
sbmm8 regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
sbmm8 regW = regZ, regY		(r) regY				
			(w) regW			
sbmm8 $regW = regZ$, $s10$		(r) regZ				
			(w) regW			
sbmm8 regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			

X
X

Instruction	ID	RR	E1	E2	E3	E4
sbmm8 regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
sbmm8d regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
sbmm8d regW = regZ, regY		(r) regY				
			(w) regW			
sbmm8d regW = regZ, s10		(r) regZ				
			(w) regW			
$sbmm8d regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
$sbmm8d regW = regZ$, upper27_lower5splat32		(r) regZ				
			(w) regW			
sbmmt8 regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
sbmmt8 regW = regZ, regY		(r) regY				
			(w) regW			
sbmmt8 $regW = regZ$, s10		(r) regZ				
			(w) regW			
sbmmt8 regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
sbmmt8 regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
sbmmt8d regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
sbmmt8d regW = regZ, regY		(r) regY				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
sbmmt8d regW = regZ, $s10$		(r) regZ				
			(w) regW			
sbmmt8d regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
sbmmt8d regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
sllbos $regW = regZ$, $regY$		(r) regY				
			(w) regW			
sllbos $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slld $regW = regZ$, $regY$		(r) regY				
			(w) regW			
slld $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
sllhqs regW = regZ, regY		(r) regY				
			(w) regW			
sllhqs $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
sllw $regW = regZ$, $regY$		(r) regY				
			(w) regW			
sllw $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ		<u> </u>		
sllwps $regW = regZ$, $regY$		(r) regY				
			(w) regW			
·			•			

<u>⊼</u>	
L 	
X	

Instruction	ID	RR	E1	E2	E3	E4
sllwps $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slsbos $regW = regZ$, $regY$		(r) regY				
			(w) regW			
slsbos $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slsd regW = regZ, regY		(r) regY				
			(w) regW			
slsd $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slshqs regW = regZ, regY		(r) regY				
			(w) regW			
slshqs regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slsw $regW = regZ$, $regY$		(r) regY				
			(w) regW			
slsw $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slswps $regW = regZ$, $regY$		(r) regY				
			(w) regW			
slswps $regW = regZ$, u6		(r) regZ				
			(w) regW			

©20
025
Kalra
\leq

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
slusbos $regW = regZ$, $regY$		(r) regY				
			(w) regW			
slusbos $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
slusd regW = regZ, regY		(r) regY				
1 1 W 7 6			(w) regW			
slusd $regW = regZ$, u6		(r) regZ	W/			
			(w) regW			
		(r) regZ				
slushqs $regW = regZ$, $regY$		(r) regY	(vv) magVV			
alvahaa maaW = maa7 yy6		(n) no o 7	(w) regW			
slushqs $regW = regZ$, u6		(r) regZ	(w) ragW			
		(r) regZ	(w) regW			
slusw regW = regZ, regY		(r) regY				
sidsw reg w = regz, reg r		(I) leg I	(w) regW			
slusw regW = regZ, u6		(r) regZ	(w) leg (
1622, 40		(1) 1052	(w) regW			
		(r) regZ	()			
sluswps regW = regZ, regY		(r) regY				
			(w) regW			
sluswps regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srabos regW = regZ, regY		(r) regY				
			(w) regW			
	1	1				

X	
L 3/	
7	

Instruction	ID	RR	E1	E2	Е3	E4
srabos regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srad regW = regZ, regY		(r) regY				
			(w) regW			
srad regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srahqs regW = regZ, regY		(r) regY				
			(w) regW			
srahqs regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
sraw regW = regZ, regY		(r) regY				
			(w) regW			
sraw regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srawps regW = regZ, regY		(r) regY				
			(w) regW			
srawps regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srlbos regW = regZ, regY		(r) regY				
			(w) regW			
srlbos regW = regZ, u6		(r) regZ				
			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
srld regW = regZ, regY		(r) regY				
			(w) regW			
srld regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srlhqs regW = regZ, regY		(r) regY				
			(w) regW			
srlhqs regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srlw regW = regZ, regY		(r) regY				
			(w) regW			
srlw regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srlwps regW = regZ, regY		(r) regY				
			(w) regW			
srlwps regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srsbos regW = regZ, regY		(r) regY				
			(w) regW			
srsbos regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
$\operatorname{srsd}\operatorname{reg}W=\operatorname{reg}Z,\operatorname{reg}Y$		(r) regY				
			(w) regW			

∑
R

Instruction	ID	RR	E1	E2	E3	E4
srsd regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srshqs regW = regZ, regY		(r) regY				
			(w) regW			
srshqs regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srsw regW = regZ, regY		(r) regY				
			(w) regW			
srsw regW = regZ, u6		(r) regZ				
			(w) regW			
		(r) regZ				
srswps regW = regZ, regY		(r) regY				
			(w) regW			
srswps $regW = regZ$, u6		(r) regZ				
			(w) regW			
		(r) regZ				
stsud regW = regZ, regY		(r) regY				
			(w) regW			
stsud regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			
		(r) regZ				
stsuhq regW = regZ, regY		(r) regY				
			(w) regW			
stsuhq regW = regZ, upper27_lower5splat32		(r) regZ				
			(w) regW			

\bigcirc	
\widecheck{o}	
8	
က	
$\overline{}$	
<u>a</u>	
a	
<	

stsuw regW = regZ, regY stsuw regW = regZ, upper27-lower5 stsuwp regW = regZ, regY stsuwp regW = regZ, regY stsuwp regW = regZ, upper27-lower5splat32 sxbd regW = regZ s	Instruction	ID	RR	E1	E2	E3	E4
stsuw regW = regZ, upper27_lower5 (r) regZ (w) regW stsuwp regW = regZ, regY (r) regZ (w) regW stsuwp regW = regZ, upper27_lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxhd regW = regZ (r) regZ (w) regW sxlbup regW = regZ (r) regZ (w) regW sxlbup regW = regZ (r) regZ (w) regW sxmbup regW = regZ (r) regZ (w) regW sxmbup regW = regZ (r) regZ (w) regW sxmbup regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW			(r) regZ				
stsuw regW = regZ, upper27.lower5 (r) regZ (w) regW stsuwp regW = regZ, regY (r) regZ (w) regW stsuwp regW = regZ, upper27.lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxlbnq regW = regZ (r) regZ (w) regW sxlbnq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW	stsuw regW = regZ, regY		(r) regY				
stsuwp regW = regZ, regY (r) regZ (r) regY (w) regW stsuwp regW = regZ, upper27_lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxlbq regW = regZ (r) regZ (w) regW sxmbq regW = regZ (r) regZ (w) regW sxmbq regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW				(w) regW			
stsuwp regW = regZ, regY (r) regY (w) regW stsuwp regW = regZ, upper27.lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxhd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbq regW = regZ (r) regZ (w) regW sxmbq regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW	stsuw regW = regZ, upper27_lower5		(r) regZ				
stsuwp regW = regZ, regY (r) regY (w) regW stsuwp regW = regZ, upper27-lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbvp regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW xmovetd regAt = regZ (r) regZ (w) CS				(w) regW			
stsuwp regW = regZ, upper27.lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxlbtq regW = regZ (r) regZ (w) regW sxlbtq regW = regZ (r) regZ (w) regW sxlbtq regW = regZ (r) regZ (w) regW sxmbtq regW = regZ (r) regZ (w) regW sxmbtq regW = regZ (r) regZ (w) regW sxmbtq regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW xmovetd regAt = regZ (r) regZ (w) CS			(r) regZ				
stsuwp regW = regZ, upper27_lower5splat32 (r) regZ (w) regW sxbd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmby regW = regZ (r) regZ (w) regW	stsuwp regW = regZ, regY		(r) regY				
sxbd regW = regZ (r) regZ (w) regW sxhd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW				(w) regW			
sxbd regW = regZ sxhd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmby regW = regZ (r) regZ (w) regW sxmby regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW	stsuwp regW = regZ, upper27_lower5splat32		(r) regZ				
sxhd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxmd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW				(w) regW			
sxhd regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW	sxbd regW = regZ		(r) regZ				
sxlbhq regW = regZ (r) regZ (w) regW sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW				(w) regW			
sxlbhq regW = regZ (r) regZ (w) regW sxlbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW	sxhd regW = regZ		(r) regZ				
sxlhwp regW = regZ (r) regZ sxmbhq regW = regZ (r) regZ sxmhwp regW = regZ (w) regW sxwd regW = regZ (v) regZ (w) regW (v) regZ (v) regZ (v) regZ				(w) regW			
sxlhwp regW = regZ (r) regZ (w) regW sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW (r) regZ (w) regW	sxlbhq regW = regZ		(r) regZ				
sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW xmovetd regAt = regZ (r) regZ (w) CS				(w) regW			
sxmbhq regW = regZ (r) regZ (w) regW sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW (r) regZ (w) regW (r) regZ (w) regW	sxlhwp regW = regZ		(r) regZ				
sxmhwp regW = regZ (r) regZ sxwd regW = regZ (w) regW sxwd regW = regZ (r) regZ (w) regW (v) regZ (w) regW (v) regZ (v) regZ (v) regZ (v) regZ (v) CS				(w) regW			
sxmhwp regW = regZ (r) regZ (w) regW sxwd regW = regZ (r) regZ (w) regW (r) regZ (w) regW (r) regZ (w) cS	sxmbhq regW = regZ		(r) regZ				
sxwd regW = regZ (r) regZ (w) regW xmovetd regAt = regZ (w) CS				(w) regW			
sxwd regW = regZ $(r) regZ $ $(w) regW $ $xmovetd regAt = regZ $ $(w) CS$	sxmhwp regW = regZ		(r) regZ				
				(w) regW			
xmovetd $regAt = regZ$ (w) CS	sxwd regW = regZ		(r) regZ				
xmovetd regAt = regZ (w) CS				(w) regW			
			(r) regZ				
(w) regAt	xmovetd regAt = regZ			(w) CS			
(") 252				(w) regAt			

X ≥	
Z Z Z	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
xmovetd regAx = regZ			(w) CS			
			(w) regAx			
		(r) regZ				
xmovetd regAy = regZ			(w) CS			
			(w) regAy			
		(r) regZ				
xmovetd regAz = regZ			(w) CS			
			(w) regAz			
		(r) regZ				
xmovetq regAE = regZ, regY		(r) regY				
			(w) CS			
			(w) regAE			
		(r) regZ				
xmovetq regAO = regZ, regY		(r) regY				
			(w) CS			
			(w) regAO			
xord regW = regZ, extend27_upper27_lower10		(r) regZ				
			(w) regW			
		(r) regZ				
xord regW = regZ, regY		(r) regY				
			(w) regW			
xord regW = regZ, s10		(r) regZ				
			(w) regW			
$xord regW = regZ, upper27_lower10$		(r) regZ				
			(w) regW			
$xord regW = regZ, upper27_lower5splat32$		(r) regZ				
			(w) regW			

\bigcirc
$\tilde{\aleph}$
2
5
\sim
꽄
a

Instruction	ID	RR	E1	E2	Е3	E4
xorrbod regW = regZ		(r) regZ				
			(w) regW			
xorrhqd regW = regZ		(r) regZ				
			(w) regW			
xorrwpd regW = regZ		(r) regZ				
			(w) regW			
		(r) regZ				
xorw regW = regZ, regY		(r) regY				
			(w) regW			
xorw regW = regZ, s10		(r) regZ				
			(w) regW			
xorw regW = regZ, upper27_lower10		(r) regZ				
			(w) regW			
xrecvorchannel regA			(w) CS	(w) regA		
xsendoschannel regC		(r) regC				
			(w) CS			
xsendrecvoschannelrchannel regC, regA		(r) regC				
			(w) CS	(w) regA		
xsplatdo regA = extend27_upper27_lower10			(w) CS			
			(w) regA			
xsplatdo regA = extend6_upper27_lower10			(w) CS			
			(w) regA			
xsplatdo regA = s16			(w) CS			
			(w) regA			
zxbd regW = regZ		(r) regZ			<u></u>	
			(w) regW			
zxhd regW = regZ		(r) regZ				
			(w) regW			

\(\)	l
17/	
X	1

Instruction	ID	RR	E1	E2	E3	E4
zxlbhq regW = regZ		(r) regZ				
			(w) regW			
zxlhwp regW = regZ		(r) regZ				
			(w) regW			
zxmbhq regW = regZ		(r) regZ				
			(w) regW			
zxmhwp regW = regZ		(r) regZ				
			(w) regW			
zxwd regW = regZ		(r) regZ				
			(w) regW			

8.2 MAU instructions

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regZ				
cmuldt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
cmulghxdt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
cmulglxdt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
cmulgmxdt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
cmulxdt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ				
copyq regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(r) regW			
crcbellw regW = regZ, regY		(r) regY				
				(w) regW		
crcbellw regW = regZ, upper27_lower5		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(r) regW			
crcbelmw regW = regZ, regY		(r) regY				
				(w) regW		

天	
IJ	
2	

Instruction ID	RR	E 1	E2	Е3	E4
crcbelmw regW = regZ, upper27_lower5	(r) regZ	(r) regW			
			(w) regW		
	(r) regZ	(r) regW			
crclellw regW = regZ, regY	(r) regY				
			(w) regW		
crclellw regW = regZ, upper27_lower5	(r) regZ	(r) regW			
			(w) regW		
	(r) regZ	(r) regW			
crclelmw regW = regZ, regY	(r) regY				
			(w) regW		
crclelmw regW = regZ, upper27_lower5	(r) regZ	(r) regW			
			(w) regW		
	(r) regZ				
dot2suwd regW = regZ, regY	(r) regY				
			(w) regW		
	(rd) regP				
dot2suwdp regM = regP, regO	(rd) regO				
			(wd) regM		
	(r) regZ				
dot2uwd regW = regZ, regY	(r) regY				
			(w) regW		
	(rd) regP				
dot2uwdp regM = regP, regO	(rd) regO				
			(wd) regM		
	(r) regZ				
dot2w regW = regZ, regY	(r) regY				
			(w) regW		

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
dot2wd regW = regZ, regY		(r) regY				
				(w) regW		
		(rd) regP				
dot2wdp regM = regP, regO		(rd) regO				
				(wd) regM		
		(rd) regP				
dot2wzp regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ				
fadddroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(rd) regP				
fadddcroundingsilent $regM = regP$, $regO$		(rd) regO				
						(wd) regM
		(rd) regP				
fadddc.croundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(rd) regP				
fadddproundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(rd) regP				
faddhoroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ				
faddhqroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW

K	
2	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
faddwroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(r) regZ				
faddwcroundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(r) regZ				
faddwc.croundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(rd) regP				
faddwcproundingsilent $regM = regP$, $regO$		(rd) regO				
						(wd) regM
		(rd) regP				
faddwcp.croundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ				
faddwproundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(rd) regP				
faddwqroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ				
fdot2wroundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(r) regZ				
fdot2wdroundingsilent regW = regZ, regY		(r) regY				
						(w) regW

Instruction	ID	RR	E1	E2	Е3	E4
		(rd) regP				
fdot2wdproundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(rd) regP				
fdot2wzproundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regW				
ffdmaswroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(r) regW				
ffdmaswproundingsilent regW = regP, regO		(rd) regP				
		(rd) regO				
						(w) regW
		(rd) regM				
ffdmaswqroundingsilent regM = regR, regQ		(r) regR				
		(r) regQ				
						(wd) regM
		(r) regZ				
ffdmawroundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(rd) regP				
ffdmawproundingsilent regW = regP, regO		(rd) regO				
						(w) regW
		(r) regR				
ffdmawqroundingsilent regM = regR, regQ		(r) regQ				
						(wd) regM

X	
7	
R	

Instruction	ID	RR	E 1	E2	E3	E4
		(r) regW				
ffdmdawroundingsilent $regW = regZ$, $regY$		(r) regZ				
		(r) regY				
						(w) regW
		(r) regW				
ffdmdawproundingsilent regW = regP, regO		(rd) regP				
		(rd) regO				
						(w) regW
		(rd) regM				
ffdmdawqroundingsilent regM = regR, regQ		(r) regR				
		(r) regQ				
						(wd) regM
		(r) regW				
ffdmdswroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(r) regW				
ffdmdswproundingsilent regW = regP, regO		(rd) regP				
		(rd) regO				
						(w) regW
		(rd) regM				
ffdmdswqroundingsilent regM = regR, regQ		(r) regR				
		(r) regQ				
						(wd) regM
		(r) regW				
ffdmsawroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW

(w) regW

Instruction	ID	RR	E1	E2	E3	E4
		(r) regW				
ffdmsawproundingsilent regW = regP, regO		(rd) regP				
		(rd) regO				
						(w) regW
		(rd) regM				
ffdmsawqroundingsilent regM = regR, regQ		(r) regR				
		(r) regQ				
						(wd) regM
		(r) regZ				
ffdmswroundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(rd) regP				
ffdmswproundingsilent regW = regP, regO		(rd) regO				
						(w) regW
		(r) regR				
ffdmswqroundingsilent regM = regR, regQ		(r) regQ				
						(wd) regM
		(r) regW				
ffmadroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmahoroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(r) regW	<u> </u>			
ffmahqroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
		1				() 337

X	
7	
R	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regW				
ffmahwroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmahwqroundingsilent regM = regZ, regY		(r) regZ				
		(r) regY				
						(wd) regM
		(r) regW				
ffmawroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(r) regW				
ffmawcconjugateroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmawcpconjugateroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(r) regW				
ffmawdroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmawdproundingsilent regM = regZ, regY		(r) regZ				
		(r) regY				
						(wd) regM

Instruction	ID	RR	E1	E2	Е3	E4
		(r) regW				
ffmawproundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmawqroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(r) regW				
ffmsdroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmshoroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(r) regW				
ffmshqroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(r) regW				
ffmshwroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmshwqroundingsilent regM = regZ, regY		(r) regZ				
		(r) regY				
						(wd) regM

Instruction	ID	RR	E 1	E2	Е3	E4
		(r) regW				
ffmswroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(r) regW				
$ffmswcconjugateroundingsilent\ regW = regZ,\ regY$		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmswcpconjugateroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(r) regW				
ffmswdroundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmswdproundingsilent regM = regZ, regY		(r) regZ				
		(r) regY				
						(wd) regM
		(r) regW				
ffmswproundingsilent regW = regZ, regY		(r) regZ				
		(r) regY				
						(w) regW
		(rd) regM				
ffmswqroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM

Instruction	ID	RR	E1	E2	E3	E4
fixeddroundingsilent regW = regZ, u6		(r) regZ				
						(w) regW
fixedudroundingsilent regW = $regZ$, u6		(r) regZ				() W
fiveduremental acident reaW = rea7 v6		(*) *** *7				(w) regW
fixeduwroundingsilent regW = regZ, u6		(r) regZ				(w) regW
fixeduwproundingsilent $regW = regZ$, u6		(r) regZ				(W) Teg (
						(w) regW
fixedwroundingsilent regW = regZ, u6		(r) regZ				
						(w) regW
fixedwproundingsilent regW = regZ, u6		(r) regZ				
0 1 1 1 1 W 7 6		() 7				(w) regW
floatdroundingsilent regW = regZ, u6		(r) regZ				(w) regW
floatudroundingsilent regW = regZ, u6		(r) regZ				(W) leg W
		(-)8-				(w) regW
floatuwroundingsilent regW = regZ, u6		(r) regZ				_
						(w) regW
floatuwproundingsilent reg $W = regZ$, u6		(r) regZ				
						(w) regW
floatwroundingsilent $regW = regZ$, u6		(r) regZ				(w) rogW
floatwproundingsilent regW = regZ, u6		(r) regZ				(w) regW
noutriproducing shell reg w = 10g2, uo		(1) 1052				(w) regW
		(r) regZ				
fmm212wroundingsilent regM = regZ, regY		(r) regY				
						(wd) regM

天	
77	
2	

Instruction	ID	RR	E1	E2	E3	E4
		(rd) regP				
fmm222wmultransm_multranslroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(rd) regM				
fmma212wroundingsilent regM = regZ, regY		(r) regZ				
		(r) regY				
						(wd) regM
		(rd) regM				
fmma222wmultransm_multranslroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(rd) regM				
fmms212wroundingsilent reg $M = regZ$, reg Y		(r) regZ				
		(r) regY				
						(wd) regM
		(rd) regM				
fmms222wmultransm_multranslroundingsilent regM = regP, regO		(rd) regP				
		(rd) regO				
						(wd) regM
		(r) regZ				
fmuldroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(rd) regP				
fmulhoroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ				
fmulhqroundingsilent regW = regZ, regY		(r) regY				
						(w) regW

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
fmulhwroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(r) regZ				
fmulhwqroundingsilent regM = regZ, regY		(r) regY				
						(wd) regM
		(r) regZ				
fmulwroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(r) regZ				
fmulwcconjugateroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(rd) regP				
fmulwcpconjugateroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ				
fmulwdroundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(r) regZ				
fmulwdproundingsilent $regM = regZ$, $regY$		(r) regY				
						(wd) regM
		(r) regZ				
fmulwproundingsilent $regW = regZ$, $regY$		(r) regY				
						(w) regW
		(rd) regP				
fmulwqroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM

X
7
R

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
fsbfdroundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(rd) regP				
fsbfdcroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(rd) regP				
fsbfdc.croundingsilent regM = regP, regO		(rd) regO				(1) M
		(1) D				(wd) regM
C1Class of Carlot and March David		(rd) regP				
fsbfdproundingsilent regM = regP, regO		(rd) regO				(d) M
		(nd) m = D				(wd) regM
fsbfhoroundingsilent regM = regP, regO		(rd) regP				
isomoroundingshent regivi = regr, rego		(rd) regO				(wd) regM
		(r) regZ				(wd) legivi
fsbfhqroundingsilent regW = regZ, regY		(r) regY				
isomqroundingshent reg w = regz, reg r		(1) leg 1				(w) regW
		(r) regZ				(W) ICE W
fsbfwroundingsilent regW = regZ, regY		(r) regY				
isorwioanamgsient reg (* 1652, reg i		(1) 108 1				(w) regW
		(r) regZ				(1) 10811
fsbfwcroundingsilent regW = regZ, regY		(r) regY				
6						(w) regW
		(r) regZ				
fsbfwc.croundingsilent regW = regZ, regY		(r) regY				
						(w) regW
				1	1	, , ,

X	
L L	
R	

Instruction	ID	RR	E1	E2	E3	E4
		(rd) regP				
fsbfwcproundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(rd) regP				
fsbfwcp.croundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ				
fsbfwproundingsilent regW = regZ, regY		(r) regY				
						(w) regW
		(rd) regP				
fsbfwqroundingsilent regM = regP, regO		(rd) regO				
						(wd) regM
		(r) regZ	(r) regW			
maddd regW = regZ, regY		(r) regY				
				(w) regW		
maddd regW = regZ, upper27_lower5splat32		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
madddt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(r) regW			
maddhq regW = regZ, regY		(r) regY				
				(w) regW		
maddhq regW = regZ, upper27_lower5splat32		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
maddhwq regM = regZ, regY		(r) regY				
				(wd) regM		

X	
7	

Instruction	ID	RR	E1	E2	Е3	E4
		(rd) regP	(rd) regM			
maddmwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ	(rd) regM			
maddsudt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
maddsuhwq regM = regZ, regY		(r) regY				
				(wd) regM		
		(rd) regP	(rd) regM			
maddsumwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ	(r) regW			
maddsuwd regW = regZ, regY		(r) regY				
				(w) regW		
maddsuwd regW = regZ, upper27_lower5		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
maddsuwdp regM = regZ, regY		(r) regY				
				(wd) regM		
maddsuwdp regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(rd) regM			
maddudt regM = regZ, regY		(r) regY				
			/ D ==	(wd) regM		
		(r) regZ	(rd) regM			
madduhwq regM = regZ, regY		(r) regY				
				(wd) regM		

Instruction	ID	RR	E 1	E2	Е3	E4
		(rd) regP	(rd) regM			
maddumwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ	(r) regW			
madduwd regW = regZ, regY		(r) regY				
				(w) regW		
madduwd regW = regZ, upper27_lower5		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
madduwdp regM = regZ, regY		(r) regY				
				(wd) regM		
madduwdp regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(rd) regM			
madduzdt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(r) regW			
maddw regW = regZ, regY		(r) regY				
				(w) regW		
$maddw regW = regZ, upper27_lower5$		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(r) regW			
maddwd regW = regZ, regY		(r) regY				
				(w) regW		
$maddwd regW = regZ, upper27_lower5$		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
maddwdp regM = regZ, regY		(r) regY				
		1	1	/ 1\ 3 /f		

(wd) regM

X ≥	
Z Z Z	

Instruction	ID	RR	E 1	E2	E3	E4
maddwdp regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(r) regW			
maddwp regW = regZ, regY		(r) regY				
				(w) regW		
maddwp regW = regZ, upper27_lower5splat32		(r) regZ	(r) regW			
				(w) regW		
		(rd) regP	(rd) regM			
maddwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ				
mm212w reg M = reg Z, reg Y		(r) regY				
				(wd) regM		
mm212w regM = regZ, upper27_lower5splat32		(r) regZ				
				(wd) regM		
		(r) regZ	(rd) regM			
mma212w regM = regZ, regY		(r) regY				
				(wd) regM		
mma212w regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(rd) regM			
mms212w regM = regZ, regY		(r) regY				
				(wd) regM		
mms212w regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(r) regW			
msbfd regW = regZ, regY		(r) regY				
				(w) regW		

Instruction	ID	RR	E1	E2	Е3	E4
msbfd regW = regZ, upper27_lower5splat32		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
msbfdt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(r) regW			
msbfhq regW = regZ, regY		(r) regY				
				(w) regW		
msbfhq regW = regZ, upper27_lower5splat32		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
msbfhwq regM = regZ, regY		(r) regY				
				(wd) regM		
		(rd) regP	(rd) regM			
msbfmwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ	(rd) regM			
msbfsudt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
msbfsuhwq regM = regZ, regY		(r) regY				
				(wd) regM		
		(rd) regP	(rd) regM			
msbfsumwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ	(r) regW			
msbfsuwd regW = regZ, regY		(r) regY				
				(w) regW		

ζ
R

Instruction	ID	RR	E1	E2	E3	E4
msbfsuwd regW = regZ, upper27_lower5		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
msbfsuwdp regM = regZ, regY		(r) regY				
				(wd) regM		
msbfsuwdp regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(rd) regM			
msbfudt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ	(rd) regM			
msbfuhwq regM = regZ, regY		(r) regY				
				(wd) regM		
		(rd) regP	(rd) regM			
msbfumwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ	(r) regW			
msbfuwd regW = regZ, regY		(r) regY				
				(w) regW		
msbfuwd regW = regZ, upper27_lower5		(r) regZ	(r) regW			
				(w) regW		
		(r) regZ	(rd) regM			
msbfuwdp regM = regZ, regY		(r) regY				
				(wd) regM		
msbfuwdp regM = regZ, upper27_lower5splat32		(r) regZ	(rd) regM			
				(wd) regM		
		(r) regZ	(rd) regM			
msbfuzdt regM = regZ, regY		(r) regY				
				(wd) regM		

Instruction ID	RR	E 1	E2	E3	E4
	(r) regZ	(r) regW			
msbfw regW = regZ, regY	(r) regY				
			(w) regW		
msbfw regW = regZ, upper27_lower5	(r) regZ	(r) regW			
			(w) regW		
	(r) regZ	(r) regW			
msbfwd regW = regZ, regY	(r) regY				
			(w) regW		
msbfwd regW = regZ, upper27_lower5	(r) regZ	(r) regW			
			(w) regW		
	(r) regZ	(rd) regM			
msbfwdp regM = regZ, regY	(r) regY				
			(wd) regM		
msbfwdp regM = regZ, upper27_lower5splat32	(r) regZ	(rd) regM			
			(wd) regM		
	(r) regZ	(r) regW			
msbfwp regW = regZ, regY	(r) regY				
			(w) regW		
msbfwp regW = regZ, upper27_lower5splat32	(r) regZ	(r) regW			
			(w) regW		
	(rd) regP	(rd) regM			
msbfwq regM = regP, regO	(rd) regO				
			(wd) regM		
	(r) regZ				
muld regW = regZ, regY	(r) regY				
			(w) regW		
muld regW = regZ, upper27_lower5splat32	(r) regZ				
			(w) regW		

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
muldt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ				
mulhq regW = regZ, regY		(r) regY				
				(w) regW		
mulhq regW = regZ, upper27_lower5splat32		(r) regZ				
				(w) regW		
		(r) regZ				
mulhwq regM = regZ, regY		(r) regY				
				(wd) regM		
		(rd) regP				
mulmwq regM = regP, regO		(rd) regO		(1) 1/4		
		() 7		(wd) regM		
1 t W 7 V		(r) regZ				
mulsudt regM = regZ, regY		(r) regY		(1) 14		
		(1) 11 7		(wd) regM		
mulauhura nagM = nag7 nagV		(r) regZ				
mulsuhwq regM = regZ, regY		(r) regY		(wd) ragM		
		(rd) ragD		(wd) regM		
mulsumwq regM = regP, regO		(rd) regP (rd) regO				
mulsumwq regivi – regi, rego		(Iu) lego		(wd) regM		
		(r) regZ		(wa) regivi		
mulsuwd regW = regZ, regY		(r) regY				
1000.0000		(1)1081		(w) regW		
mulsuwd regW = regZ, upper27_lower5		(r) regZ		(,8		
		(-)8-		(w) regW		
				(11) 8 11		

Instruction	ID	RR	E 1	E2	E3	E4
		(r) regZ				
mulsuwdp regM = regZ, regY		(r) regY				
				(wd) regM		
mulsuwdp regM = regZ, upper27_lower5splat32		(r) regZ				
				(wd) regM		
		(r) regZ				
muludt regM = regZ, regY		(r) regY				
				(wd) regM		
		(r) regZ				
muluhwq regM = regZ, regY		(r) regY				
				(wd) regM		
		(rd) regP				
mulumwq regM = regP, regO		(rd) regO				
				(wd) regM		
		(r) regZ				
muluwd regW = regZ, regY		(r) regY				
				(w) regW		
$muluwd regW = regZ, upper27_lower5$		(r) regZ				
				(w) regW		
		(r) regZ				
muluwdp regM = regZ, regY		(r) regY				
				(wd) regM		
muluwdp regM = regZ, upper27_lower5splat32		(r) regZ				
				(wd) regM		
		(r) regZ				
mulw regW = regZ, regY		(r) regY				
				(w) regW		
$mulw regW = regZ, upper27_lower5$		(r) regZ				
				(w) regW		

Instruction

mulwd regW = regZ, regY

		(w) regW	
mulwd regW = regZ, upper27_lower5	(r) regZ		
		(w) regW	
	(r) regZ		
mulwdp regM = regZ, regY	(r) regY		
		(wd) regM	
nulwdp regM = regZ, upper27_lower5splat32	(r) regZ		
		(wd) regM	
	(r) regZ		
nulwp regW = regZ, regY	(r) regY		
		(w) regW	
nulwp regW = regZ, upper27_lower5splat32	(r) regZ		
		(w) regW	
	(rd) regP		
mulwq regM = regP, regO	(rd) regO		
		(wd) regM	

RR

(r) regZ

(r) regY

E1

ID

E2

E3

E4

8.3 LSU instructions

In the table below, an "E11" column has been added to show when the results of uncached loads are available for the typical case if streaming is activated. If streaming is not activated, then uncached loads are blocking and will stall at E3 (and the upstream stages of the pipeline with them) for 7 cycles (typical), see section 4.1.2 for more details.

Instruction	ID	RR	E1	E2	E3	E4	E 11
acswapdboolcascoherency regW, extend27_offset27[regZ] = regO		(r) regZ	(rd) regO				
acswapdboolcascoherency regW, offset27[regZ] = regO		(r) regZ	(rd) regO				
acswapdboolcascoherency regW, [regZ] = regO		(r) regZ	(rd) regO				
acswapqboolcascoherency regM, extend27_offset27[regZ] = regQ		(r) regZ	(r) regQ				
acswapqboolcascoherency regM, offset27[regZ] = regQ		(r) regZ	(r) regQ				XETD :
acswapqboolcascoherency regM, [regZ] = regQ		(r) regZ	(r) regQ				
acswapwboolcascoherency regW, extend27_offset27[regZ] = regO		(r) regZ	(rd) regO				
acswapwboolcascoherency regW, offset27[regZ] = regO		(r) regZ	(rd) regO				
acswapwboolcascoherency regW, [regZ] = regO		(r) regZ	(rd) regO				
aladddcoherency extend27_offset27[regZ] = regT		(r) regZ	(r) regT				
aladddcoherency offset27[regZ] = regT		(r) regZ	(r) regT				
aladddcoherency [regZ] = regT		(r) regZ	(r) regT				
					1	1	

Instruction	ID	RR	E1	E2	E3	E4	5	E11
aladdwcoherency extend27_offset27[regZ] = regT		(r) regZ	(r) regT					*
aladdwcoherency offset27[regZ] = regT		(r) regZ	(r) regT				(
aladdwcoherency [regZ] = regT		(r) regZ	(r) regT				2	
alclrdcoherency regW = extend27_offset27[regZ]		(r) regZ			(w) regW			
alclrdcoherency regW = offset27[regZ]		(r) regZ			(w) regW		200	5' D
alclrdcoherency $regW = [regZ]$		(r) regZ			(w) regW			
alclrwcoherency regW = extend27 $_$ offset27[regZ]		(r) regZ			(w) regW			
alclrwcoherency $regW = offset27[regZ]$		(r) regZ			(w) regW			
alclrwcoherency $regW = [regZ]$		(r) regZ			(w) regW			
aldcoherency regW = extend27_offset27[regZ]		(r) regZ			(w) regW			
aldcoherency $regW = offset27[regZ]$		(r) regZ			(w) regW			
aldcoherency $regW = [regZ]$		(r) regZ			(w) regW		4	
alwcoherency regW = extend27_offset27[regZ]		(r) regZ			(w) regW		7	
alwcoherency $regW = offset27[regZ]$		(r) regZ			(w) regW			

Instruction	ID	RR	E1	E2	E3	E4	 E11
alwcoherency $regW = [regZ]$		(r) regZ					1
					(w) regW		4
asdcoherency extend27 $_{\text{o}}$ offset27[regZ] = regT		(r) regZ	(r) regT				71
asdcoherency offset27[regZ] = regT		(r) regZ	(r) regT				2
asdcoherency $[regZ] = regT$		(r) regZ	(r) regT				
aswcoherency extend27_offset27[reg Z] = reg T		(r) regZ	(r) regT				
aswcoherency offset $27[regZ] = regT$		(r) regZ	(r) regT				
aswcoherency $[regZ] = regT$		(r) regZ	(r) regT				
copyo regN = regR		(r) regR					
					(w) regN		
dlinval							
dflushldoscale regY[regZ]		(r) regY					
		(r) regZ					
dflushl extend27_upper27_lower10[regZ]		(r) regZ					A
dflushl s10[regZ]		(r) regZ					#
dflushl upper27_lower10[regZ]		(r) regZ					
dflushswcachelev regY, regZ		(r) regY					
		(r) regZ					
dinvalldoscale regY[regZ]		(r) regY					
		(r) regZ					
dinvall extend27_upper27_lower10[regZ]		(r) regZ					
dinvall s10[regZ]		(r) regZ					
dinvall upper27_lower10[regZ]		(r) regZ					
dinvalswcachelev regY, regZ		(r) regY					
		(r) regZ					
dpurgeldoscale regY[regZ]		(r) regY					
		(r) regZ					
dpurgel extend27_upper27_lower10[regZ]		(r) regZ					
dpurgel s10[regZ]		(r) regZ					

Instruction	ID	RR	E 1	E2	E3	E4	5	≰ E11
dpurgel upper27_lower10[regZ]		(r) regZ						*
dpurgeswcachelev regY, regZ		(r) regY					C <u>C</u>	
		(r) regZ						
dtouchldoscale regY[regZ]		(r) regY					7	1
		(r) regZ						<u>.</u>
dtouchl extend27_upper27_lower10[regZ]		(r) regZ					במו	3
dtouchl s10[regZ]		(r) regZ					Zanoi	
dtouchl upper27_lower10[regZ]		(r) regZ					2	₽
fenceaccesses							2	<u>.</u>
i1inval								
i1invalsdoscale regY[regZ]		(r) regY						
		(r) regZ						
i1invals extend27_upper27_lower10[regZ]		(r) regZ						
i1invals s10[regZ]		(r) regZ						
i1invals upper27_lower10[regZ]		(r) regZ						
		(r) regY						
lbs variant doscale regW = regY[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
lbsvariantlsucond regY? regW = extend27_offset27[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
lbsvariantlsucond regY? $regW = offset27[regZ]$		(r) regZ						
					(w) regW			
		(r) regY						
lbsvariantlsucond $regY$? $regW = [regZ]$		(r) regZ					7	S
					(w) regW			>
lbsvariant regW = extend27_upper27_lower10[regZ]		(r) regZ					ĺ	†
					(w) regW			1

Instruction	ID	RR	E1	E2	E3	E4	•••	E11
lbsvariant regW = $s10[regZ]$		(r) regZ						
					(w) regW			
lbsvariant regW = upper27_lower10[regZ]		(r) regZ						
					(w) regW			7
		(r) regY						3
lbzvariantdoscale regW = regY[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
lbzvariantlsucond regY? regW = extend27_offset27[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
lbzvariantlsucond regY? regW = offset27[regZ]		(r) regZ						
					(w) regW			
		(r) regY						ATT P.
lbzvariantlsucond regY? regW = [regZ]		(r) regZ						3
					(w) regW			.7
lbzvariant regW = extend27_upper27_lower10[regZ]		(r) regZ						
					(w) regW			
lbzvariant regW = s10[regZ]		(r) regZ						
					(w) regW			
lbzvariant regW = upper27_lower10[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
Idvariant doscale regW = regY[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
ldvariantlsucond regY? regW = extend27_offset27[regZ]		(r) regZ						
					(w) regW			

Instruction	ID	RR	E1	E2	E3	E4	≰	E11
		(r) regY						
ldvariantlsucond regY? regW = offset27[regZ]		(r) regZ					.IW Core	
					(w) regW			
		(r) regY					<u>9</u>	
Idvariant Is u cond reg Y? reg W = [reg Z]		(r) regZ					<u> </u>	
					(w) regW		Optimization	
ldvariant regW = extend27_upper27_lower10[regZ]		(r) regZ					on	
					(w) regW		Guide	
Idvariant regW = s10[regZ]		(r) regZ					i d e	
					(w) regW			
$ldvariant regW = upper27_lower10[regZ]$		(r) regZ						
					(w) regW			
		(r) regY						
lhs variant doscale regW = regY[regZ]		(r) regZ						
					(w) regW			
		(r) regY						
$lhs variant lsucond reg Y? reg W = extend 27_offset 27[reg Z]$		(r) regZ						
					(w) regW			
		(r) regY						
lhs variant sucond reg Y? reg W = offset 27[reg Z]		(r) regZ						
					(w) regW			
		(r) regY						
lhs variant ls u cond reg Y? reg W = [reg Z]		(r) regZ						
					(w) regW			<u> </u>
lhsvariant regW = extend27_upper27_lower10[regZ]		(r) regZ						
					(w) regW		一	
lhsvariant regW = s10[regZ]		(r) regZ					5	
					(w) regW			

Instruction	ID	RR	E1	E2	E3	E4	 E11
$lhsvariant regW = upper27_lower10[regZ]$		(r) regZ					\$
					(w) regW		
		(r) regY					J
lhzvariantdoscale regW = regY[regZ]		(r) regZ					\$
					(w) regW		
		(r) regY					
$lhzvariantlsucond regY? regW = extend27_offset27[regZ]$		(r) regZ					
					(w) regW		
II		(r) regY					
lhzvariantlsucond regY? regW = offset27[regZ]		(r) regZ			, W		
		(a)			(w) regW		
llaryoniantlayaand maaV? maaW = [maa7]		(r) regY					
lhzvariantlsucond regY? regW = [regZ]		(r) regZ			(w) regW		_
lhzvariant regW = extend27_upper27_lower10[regZ]		(r) regZ			(w) leg w		# D
mizvariant reg w = extend27_upper27_nowerro[reg2]		(I) legz			(w) regW		. ф
lhzvariant regW = s10[regZ]		(r) regZ			(w) leg (
					(w) regW		
lhzvariant regW = upper27_lower10[regZ]		(r) regZ					
					(w) regW		
		(r) regY					
lovariantdoscale regN = $regY[regZ]$		(r) regZ					
					(w) regN		
		(r) regY	(r) regN				
lovariantlsomask regY? regN = extend27_offset27[regZ]		(r) regZ					
					(w) regN		
		(r) regY	(r) regN				
lovariantlsomask $regY$? $regN = offset27[regZ]$		(r) regZ					
					(w) regN		

Instruction	ID	RR	E1	E2	E3	E4	<	E11
		(r) regY	(r) regN					
lovariantlsomask regY? regN = $[regZ]$		(r) regZ					2	5
					(w) regN		α α	
		(r) regY					5	}
lovariantlsucond regY? regN = extend27_offset27[regZ]		(r) regZ						
					(w) regN		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		(r) regY					C	-
lovariantlsucond regY? regN = offset27[regZ]		(r) regZ						
					(w) regN		Guide	-
		(r) regY					-	
lovariantlsucond regY? regN = $[regZ]$		(r) regZ						
					(w) regN			
lovariant regN = extend27_upper27_lower10[regZ]		(r) regZ						
					(w) regN			
lovariant regN = $s10[regZ]$		(r) regZ						
					(w) regN			
lovariant regN = upper27_lower10[regZ]		(r) regZ						
					(w) regN			
		(r) regY						
lqvariantdoscale regM = regY[regZ]		(r) regZ						
					(wd) regM			
		(r) regY						
lqvariantlsucond regY? regM = extend27_offset27[regZ]		(r) regZ						
					(wd) regM			
		(r) regY						
lqvariantlsucond regY? regM = offset27[regZ]		(r) regZ					7	
					(wd) regM			

Instruction	ID	RR	E1	E2	E3	E4	•••	E	11
		(r) regY							
lqvariantlsucond regY? regM = [regZ]		(r) regZ						#	
					(wd) regM			-	
lqvariant regM = extend27_upper27_lower10[regZ]		(r) regZ						ζ	
					(wd) regM				
lqvariant regM = s10[regZ]		(r) regZ							
					(wd) regM				
$lqvariant regM = upper27_lower10[regZ]$		(r) regZ							
					(wd) regM				
		(r) regY							
lws variant doscale regW = regY[regZ]		(r) regZ							
					(w) regW				
		(r) regY							
lwsvariantlsucond regY? $regW = extend27_offset27[regZ]$		(r) regZ						杰	
					(w) regW				
		(r) regY						Ţ	
lwsvariantlsucond regY? $regW = offset27[regZ]$		(r) regZ							
					(w) regW				
		(r) regY							
lwsvariantlsucond regY? $regW = [regZ]$		(r) regZ							
					(w) regW				
lwsvariant regW = extend27_upper27_lower10[regZ]		(r) regZ							
					(w) regW				
lwsvariant $regW = s10[regZ]$		(r) regZ							
					(w) regW				
$lwsvariant regW = upper27_lower10[regZ]$		(r) regZ							
					(w) regW				

Instruction	ID	RR	E1	E2	E3	E4	≰	E11
		(r) regY					*	
lwzvariantdoscale regW = regY[regZ]		(r) regZ					IW Core	
					(w) regW			
		(r) regY						
$lwzvariantlsucond regY? regW = extend27_offset27[regZ]$		(r) regZ]	
					(w) regW		Optimization Guide	
		(r) regY					9	
lwzvariantlsucond regY? regW = offset27[regZ]		(r) regZ					<u></u>	
					(w) regW		id id	
		(r) regY						
lwzvariantlsucond regY? regW = [regZ]		(r) regZ						
					(w) regW			
lwzvariant regW = extend27_upper27_lower10[regZ]		(r) regZ						
					(w) regW			
lwzvariant regW = s10[regZ]		(r) regZ						
					(w) regW			
lwzvariant regW = upper27_lower10[regZ]		(r) regZ						
					(w) regW			
sbdoscale regY[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sb extend27_upper27_lower10[regZ] = regT		(r) regZ	(r) regT					
sblsucond regY? extend27_offset27[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sblsucond regY? offset27[reg Z] = reg T		(r) regY	(r) regT					
		(r) regZ						
sblsucond regY? $[regZ] = regT$		(r) regY	(r) regT				大	1 1
		(r) regZ						`
sb s10[regZ] = regT		(r) regZ	(r) regT					ı
sb upper27_lower10[regZ] = regT		(r) regZ	(r) regT				,	<u> </u>

Instruction	ID	RR	E1	E2	E3	E4		E11
sddoscale regY[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sd extend27_upper27_lower10[regZ] = regT		(r) regZ	(r) regT					1
sdlsucond regY? extend27_offset27[regZ] = regT		(r) regY	(r) regT					
		(r) regZ					1 2	
sdlsucond regY? offset27[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sdlsucond regY? [regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sd s10[regZ] = regT		(r) regZ	(r) regT					
sd upper27_lower10[regZ] = regT		(r) regZ	(r) regT					
shdoscale regY[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sh extend27_upper27_lower10[regZ] = regT		(r) regZ	(r) regT				-	*
shlsucond regY? extend27_offset27[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						Ī
shlsucond regY? offset27[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
shlsucond $regY$? $[regZ] = regT$		(r) regY	(r) regT					
		(r) regZ						
sh s10[regZ] = regT		(r) regZ	(r) regT					
sh upper 27 _lower 10 [reg Z] = reg T		(r) regZ	(r) regT					
sodoscale regY[regZ] = regV		(r) regY	(r) regV					
		(r) regZ						
so extend27_upper27_lower10[regZ] = regV		(r) regZ	(r) regV					
solsomask regY? extend27_offset27[regZ] = regV		(r) regY	(r) regV					
		(r) regZ						
solsomask regY? offset27[regZ] = regV		(r) regY	(r) regV					
		(r) regZ						

Instruction	ID	RR	E1	E2	E3	E4	≩	E11
solsomask regY? [regZ] = regV		(r) regY	(r) regV				¥	
		(r) regZ					d d	
solsucond regY? extend27_offset27[regZ] = regV		(r) regY	(r) regV				re	
		(r) regZ					9	
solsucond regY? offset27[regZ] = regV		(r) regY	(r) regV					
		(r) regZ					Optimization	
solsucond regY? $[regZ] = regV$		(r) regY	(r) regV				ion	
		(r) regZ					G G	
so $s10[regZ] = regV$		(r) regZ	(r) regV				ide	
so upper27_lower10[regZ] = regV		(r) regZ	(r) regV					
sqdoscale regY[regZ] = regU		(r) regY	(rd) regU					
		(r) regZ						
sq extend27_upper27_lower10[regZ] = regU		(r) regZ	(rd) regU					
sqlsucond regY? extend27_offset27[regZ] = regU		(r) regY	(rd) regU					
		(r) regZ						
sqlsucond regY? offset $27[regZ] = regU$		(r) regY	(rd) regU					
		(r) regZ						
sqlsucond regY? [regZ] = regU		(r) regY	(rd) regU					
		(r) regZ						
sq s10[regZ] = regU		(r) regZ	(rd) regU					
sq upper27_lower10[regZ] = regU		(r) regZ	(rd) regU					
swdoscale regY[regZ] = regT		(r) regY	(r) regT					
		(r) regZ						
sw extend27_upper27_lower10[regZ] = regT		(r) regZ	(r) regT					
swlsucond regY? extend27_offset27[regZ] = regT		(r) regY	(r) regT					
		(r) regZ					大	
swlsucond regY? offset27[regZ] = regT		(r) regY	(r) regT				\$	
		(r) regZ						

Instruction	ID	RR	E1	E2	E3	E4		E11
swlsucond regY? $[regZ] = regT$		(r) regY	(r) regT					
		(r) regZ						
sw $s10[regZ] = regT$		(r) regZ	(r) regT					
sw upper 27 _lower $10[regZ] = regT$		(r) regZ	(r) regT					
		(r) regY	(r) regGq					
		(r) regZ	(r) regGq					•
			(r) regGq					
xlovariantdoscaleqindex regGq = regY[regZ]			(r) regGq					
					(w) regGq			
					(w) regGq			
					(w) regGq			
					(w) regGq			
		(r) regY						
xlovariantdoscale reg $G = regY[regZ]$		(r) regZ					<u> </u>	ì
					(w) regG			
		(r) regY	(r) regGq				1	
		(r) regZ	(r) regGq					
			(r) regGq					
xlovariantlsumaskqindex regY? regGq = extend27_offset27[regZ]			(r) regGq					
					(w) regGq			
					(w) regGq			
					(w) regGq			
					(w) regGq			

							Kal
							ray k
							Kalray kv3 V2 VIIIW Core Optimization Guide
Instruction	ID	RR	E1	E2	Е3	E4	≰ E11
		(r) regY	(r) regGq				
		(r) regZ	(r) regGq				C ₀
			(r) regGq				l e
xlovariantlsumaskqindex regY? regGq = offset27[regZ]			(r) regGq				Эpt
					(w) regGq		
					(w) regGq		zati
					(w) regGq		on
					(w) regGq		
		(r) regY	(r) regGq				i d e
		(r) regZ	(r) regGq				
			(r) regGq				
xlovariantlsumaskqindex regY? regGq = [regZ]			(r) regGq				
					(w) regGq		
					(w) regGq		
					(w) regGq		
		() X 7	() G		(w) regGq		
1 VO C 107 C 27		(r) regY	(r) regG				
xlovariantlsumask regY? reg G = extend27_offset27[reg Z]		(r) regZ					
		() 37	() G		(w) regG		
		(r) regY	(r) regG				
xlovariantlsumask $regY$? $regG = offset27[regZ]$		(r) regZ					
		() **	()		(w) regG		
		(r) regY	(r) regG				
xlovariantlsumask regY? regG = [regZ]		(r) regZ					
					(w) regG		

Instruction	ID	RR	E1	E2	E3	E4		E11
		(r) regZ	(r) regGq					
			(r) regGq					[
			(r) regGq				-	
xlovariantqindex regGq = extend27_upper27_lower10[regZ]			(r) regGq					
					(w) regGq		1 2	
					(w) regGq			
					(w) regGq			
					(w) regGq			
		(r) regZ	(r) regGq					
			(r) regGq					
			(r) regGq					
xlovariantqindex $regGq = s10[regZ]$			(r) regGq					
					(w) regGq			
					(w) regGq		1	<u> </u>
					(w) regGq		7]
		() 7	()		(w) regGq			
		(r) regZ	(r) regGq					
			(r) regGq					
1			(r) regGq					
$xlovariantqindex regGq = upper27_lower10[regZ]$			(r) regGq		()			
					(w) regGq			
					(w) regGq			
					(w) regGq			
xlovariant regG = extend27_upper27_lower10[regZ]		(r) regZ			(w) regGq			
Alovariant lego = $extenu2/$ _upper2/_lower10[reg2]		(1) regz			(w) reac			
xlovariant $regG = s10[regZ]$		(r) regZ			(w) regG			
Alovariant rego – Stolitegej		(1) legZ			(w) regG			
xlovariant regG = upper27_lower10[regZ]		(r) regZ			(w) legg			
Alovariant rego – upper27_nower ro[reg2]		(1) TUBE			(w) regG			
					(w) lego) T

							Kalray kv
Instruction	ID	RR	E 1	E2	E3	E4	≰ E11
xplbvariant regGg, regY = extend27_offset27[regZ]		(r) regY (r) regZ	(r) regGg		(m) ma C =		LIW Can
xplbvariant regGg, regY = offset27[regZ]		(r) regY (r) regZ	(r) regGg		(w) regGg		e Optimiz
xplbvariant regGg, regY = $[regZ]$		(r) regY (r) regZ	(r) regGg		(w) regGg		Kalray kv3 V2 Vt.IW Core Optimization Guide
xplbvariant regGh, regY = extend27_offset27[regZ]		(r) regY (r) regZ	(r) regGh		(w) regGg		
xplbvariant regGh, regY = offset27[regZ]		(r) regY (r) regZ	(r) regGh		(w) regGh		
xplbvariant regGh, regY = $[regZ]$		(r) regY (r) regZ	(r) regGh		(w) regGh		
xplbvariant regGi, regY = extend27_offset27[regZ]		(r) regY (r) regZ	(r) regGi		(w) regGi		
xplbvariant regGi, regY = offset27[regZ]		(r) regY (r) regZ	(r) regGi		(w) regGi		
xplbvariant regGi, regY = [regZ]		(r) regY (r) regZ	(r) regGi		(w) regGi		*

Instruction	ID	RR	E1	E2	E3	E4	 E11
		(r) regY	(r) regGj				
xplbvariant regGj, regY = extend27_offset27[regZ]		(r) regZ					4
					(w) regGj		<u> </u>
		(r) regY	(r) regGj				2
xplbvariant regGj, regY = offset27[regZ]		(r) regZ					
					(w) regGj		
		(r) regY	(r) regGj				
xplbvariant regGj, regY = [regZ]		(r) regZ					
					(w) regGj		
xplbvariant regGk, regY = extend27_offset27[regZ]		(r) regY	(r) regGk				
		(r) regZ					
					(w) regGk		
		(r) regY	(r) regGk				
xplbvariant regGk, regY = offset27[regZ]		(r) regZ					\pm
					(w) regGk		*
		(r) regY	(r) regGk				.9
xplbvariant regGk, regY = [regZ]		(r) regZ					
					(w) regGk		
		(r) regY	(r) regGl				
xplbvariant regGl, regY = extend27_offset27[regZ]		(r) regZ					
					(w) regGl		
		(r) regY	(r) regGl				
xplbvariant regGl, regY = offset27[regZ]		(r) regZ					
					(w) regGl		
		(r) regY	(r) regGl				
xplbvariant regGl, regY = $[regZ]$		(r) regZ					
					(w) regGl		

Instruction	ID	RR	E1	E2	E3	E4	5	E 11
		(r) regY	(r) regGg					₹
xpldvariant regGg, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGg			\$
		(r) regY	(r) regGg				Commission	₽
xpldvariant regGg, regY = offset27[regZ]		(r) regZ						<u> </u>
					(w) regGg		70	3
		(r) regY	(r) regGg					
xpldvariant regGg, regY = [regZ]		(r) regZ					2	₽
					(w) regGg			1 .
		(r) regY	(r) regGh					
xpldvariant regGh, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGh					
xpldvariant regGh, regY = offset27[regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGh					
xpldvariant regGh, regY = [regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGi					
xpldvariant regGi, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGi			
		(r) regY	(r) regGi					
xpldvariant regGi, regY = offset27[regZ]		(r) regZ						
					(w) regGi			
		(r) regY	(r) regGi					-
xpldvariant regGi, regY = [regZ]		(r) regZ					7	t
					(w) regGi			1

Instruction	ID	RR	E1	E2	E3	E4	 E11
		(r) regY	(r) regGj				
xpldvariant regGj, regY = extend27_offset27[regZ]		(r) regZ					4
					(w) regGj		<u> </u>
		(r) regY	(r) regGj				2
xpldvariant regGj, regY = offset27[regZ]		(r) regZ					
					(w) regGj		
		(r) regY	(r) regGj				
xpldvariant regGj, regY = [regZ]		(r) regZ					
					(w) regGj		
xpldvariant regGk, regY = extend27_offset27[regZ]		(r) regY	(r) regGk				
		(r) regZ					
					(w) regGk		
		(r) regY	(r) regGk				
xpldvariant regGk, regY = offset27[regZ]		(r) regZ					\pm
					(w) regGk		*
		(r) regY	(r) regGk				.9
xpldvariant regGk, regY = [regZ]		(r) regZ					
					(w) regGk		
		(r) regY	(r) regGl				
xpldvariant regGl, regY = extend27_offset27[regZ]		(r) regZ					
					(w) regGl		
		(r) regY	(r) regGl				
xpldvariant regGl, regY = offset27[regZ]		(r) regZ					
					(w) regGl		
		(r) regY	(r) regGl				
xpldvariant regGl, regY = [regZ]		(r) regZ					
					(w) regGl		

Instruction	ID	RR	E1	E2	E3	E4		E11
		(r) regY	(r) regGg				W	
xplhvariant regGg, regY = extend27_offset27[regZ]		(r) regZ					.IW Core	
					(w) regGg			
		(r) regY	(r) regGg				Optimization Guide	
xplhvariant regGg, regY = offset27[regZ]		(r) regZ					<u> </u>	
					(w) regGg		zat	
		(r) regY	(r) regGg				l g	
xplhvariant regGg, regY = [regZ]		(r) regZ					g	
					(w) regGg		d d	
		(r) regY	(r) regGh					
xplhvariant regGh, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGh					
xplhvariant regGh, regY = offset27[regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGh					
xplhvariant regGh, regY = [regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGi					
xplhvariant regGi, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGi			
		(r) regY	(r) regGi					
xplhvariant regGi, regY = offset27[regZ]		(r) regZ						
					(w) regGi			
		(r) regY	(r) regGi					
xplhvariant regGi, regY = [regZ]		(r) regZ					+	
					(w) regGi			

Instruction	ID	RR	E1	E2	E3	E4	•••	E11
		(r) regY	(r) regGj					
xplhvariant regGj, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGj			<u> </u>
		(r) regY	(r) regGj					₹
xplhvariant regGj, regY = offset27[regZ]		(r) regZ						
					(w) regGj			
		(r) regY	(r) regGj					
xplhvariant regGj, regY = [regZ]		(r) regZ						
					(w) regGj			
xplhvariant regGk, regY = extend27_offset27[regZ]		(r) regY	(r) regGk					
		(r) regZ						
					(w) regGk			
		(r) regY	(r) regGk					
xplhvariant regGk, regY = offset27[regZ]		(r) regZ						*
					(w) regGk			*
		(r) regY	(r) regGk					.9
xplhvariant regGk, regY = [regZ]		(r) regZ						
					(w) regGk			
		(r) regY	(r) regGl					
xplhvariant regGl, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGl			
		(r) regY	(r) regGl					
xplhvariant regGl, regY = offset27[regZ]		(r) regZ						
					(w) regGl			
		(r) regY	(r) regGl			<u> </u>		
xplhvariant regGl, regY = [regZ]		(r) regZ						
					(w) regGl			

Instruction	ID RR	E1	E2	E3	E4	\$ E11
	(r) reg	(r) regGg				.!IW Core
$xplovariant regGg, regY = extend27_offset27[regZ]$	(r) reg	Z				l d
				(w) regGg) Te
	(r) reg	(r) regGg				Optimization Guide
xplovariant regGg, regY = offset27[regZ]	(r) rega					<u></u>
				(w) regGg		zat
	(r) reg	(r) regGg				i on
xplovariant regGg, regY = [regZ]	(r) reg					<u></u>
				(w) regGg		nide .
	(r) reg	(r) regGh				
$xplovariant regGh, regY = extend27_offset27[regZ]$	(r) reg					
				(w) regGh		
	(r) reg	(r) regGh				
xplovariant regGh, regY = offset27[regZ]	(r) rega					
				(w) regGh		
	(r) reg	(r) regGh				
xplovariant regGh, regY = [regZ]	(r) rega					
				(w) regGh		
	(r) reg	(r) regGi				
xplovariant regGi, regY = extend27_offset27[regZ]	(r) rega					
				(w) regGi		
	(r) reg	(r) regGi				
xplovariant regGi, regY = offset27[regZ]	(r) rega					
				(w) regGi		
	(r) reg	(r) regGi				
xplovariant regGi, regY = [regZ]	(r) rega					*
				(w) regGi		

Instruction	ID	RR	E1	E2	E3	E4	 E11
		(r) regY	(r) regGj				1
xplovariant regGj, regY = extend27_offset27[regZ]		(r) regZ					
					(w) regGj		NI
		(r) regY	(r) regGj				
xplovariant regGj, regY = offset27[regZ]		(r) regZ					
					(w) regGj		
		(r) regY	(r) regGj				
xplovariant regGj, regY = $[regZ]$		(r) regZ					
					(w) regGj		
		(r) regY	(r) regGk				
xplovariant regGk, regY = extend27_offset27[regZ]		(r) regZ					
					(w) regGk		
		(r) regY	(r) regGk				
xplovariant regGk, regY = offset27[regZ]		(r) regZ					*
					(w) regGk		
		(r) regY	(r) regGk				
xplovariant regGk, regY = [regZ]		(r) regZ					
					(w) regGk		
		(r) regY	(r) regGl				
xplovariant regGl, regY = extend27_offset27[regZ]		(r) regZ					
					(w) regGl		
		(r) regY	(r) regGl				
xplovariant regGl, regY = offset27[regZ]		(r) regZ					
					(w) regGl		
		(r) regY	(r) regGl				
xplovariant regGl, regY = $[regZ]$		(r) regZ					
					(w) regGl		

Instruction	ID	RR	E1	E2	E3	E4		E11
	(r) regY	(r) regGg				.IW Core	
$xplqvariant regGg, regY = extend27_offset27[regZ]$		r) regZ					l g	
					(w) regGg) Tre	
		r) regY	(r) regGg				Optimization Guide	
xplqvariant regGg, regY = offset27[regZ]		r) regZ						
					(w) regGg		zat	
		r) regY	(r) regGg				i on	
xplqvariant regGg, regY = [regZ]		r) regZ					<u>ф</u>	
					(w) regGg		ide	
	(r) regY	(r) regGh					
xplqvariant regGh, regY = extend27_offset27[regZ]		r) regZ						
					(w) regGh			
	(r) regY	(r) regGh					
xplqvariant regGh, regY = offset27[regZ]		r) regZ						
					(w) regGh			
	(r) regY	(r) regGh					
xplqvariant regGh, regY = [regZ]		r) regZ						
					(w) regGh			
	(r) regY	(r) regGi					
xplqvariant regGi, regY = extend27_offset27[regZ]		r) regZ						
					(w) regGi			
		r) regY	(r) regGi					
xplqvariant regGi, regY = offset27[regZ]		r) regZ						
					(w) regGi			
	(r) regY	(r) regGi					
xplqvariant regGi, regY = [regZ]		r) regZ					+	
					(w) regGi			

Instruction	ID	RR	E1	E2	E3	E4	•••	E11
		(r) regY	(r) regGj					\mathbf{S}
$xplqvariant regGj, regY = extend27_offset27[regZ]$		(r) regZ						#
					(w) regGj			
		(r) regY	(r) regGj					No.
xplqvariant regGj, regY = offset27[regZ]		(r) regZ						5
					(w) regGj			
		(r) regY	(r) regGj					
plqvariant regGj, regY = [regZ]		(r) regZ						
					(w) regGj			
		(r) regY	(r) regGk					
xplqvariant regGk, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGk			
		(r) regY	(r) regGk					
xplqvariant regGk, regY = offset27[regZ]		(r) regZ						杰
					(w) regGk			<u>*</u>
		(r) regY	(r) regGk					
xplqvariant regGk, regY = [regZ]		(r) regZ						
					(w) regGk			
		(r) regY	(r) regGl					
$xplqvariant regGl, regY = extend27_offset27[regZ]$		(r) regZ						
					(w) regGl			
		(r) regY	(r) regGl					
xplqvariant regGl, regY = offset27[regZ]		(r) regZ						
					(w) regGl			
		(r) regY	(r) regGl					
xplqvariant regGl, regY = [regZ]		(r) regZ						
					(w) regGl			

Instruction	ID	RR	E1	E2	E3	E4	5	E11
		(r) regY	(r) regGg					
xplwvariant regGg, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGg			
		(r) regY	(r) regGg				TAN COLE ODILLITZATION GOIDE	
xplwvariant regGg, regY = offset27[regZ]		(r) regZ						
					(w) regGg			
		(r) regY	(r) regGg					
xplwvariant regGg, regY = [regZ]		(r) regZ						
					(w) regGg			
		(r) regY	(r) regGh					
xplwvariant regGh, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGh					
xplwvariant regGh, regY = offset27[regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGh					
xplwvariant regGh, regY = [regZ]		(r) regZ						
					(w) regGh			
		(r) regY	(r) regGi					
xplwvariant regGi, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGi			
		(r) regY	(r) regGi					
xplwvariant regGi, regY = offset27[regZ]		(r) regZ						
					(w) regGi			
		(r) regY	(r) regGi					
xplwvariant regGi, regY = [regZ]		(r) regZ					_	
					(w) regGi			

Instruction	ID	RR	E1	E2	E3	E4	•••	E 11
		(r) regY	(r) regGj					2
xplwvariant regGj, regY = extend27_offset27[regZ]		(r) regZ						4
					(w) regGj			
		(r) regY	(r) regGj					\$
xplwvariant regGj, regY = offset27[regZ]		(r) regZ						5
					(w) regGj			
		(r) regY	(r) regGj					
xplwvariant regGj, regY = [regZ]		(r) regZ						
					(w) regGj			
		(r) regY	(r) regGk					
$xplwvariant regGk, regY = extend27_offset27[regZ]$		(r) regZ						
					(w) regGk			
xplwvariant regGk, regY = offset27[regZ]		(r) regY	(r) regGk					
		(r) regZ						*
					(w) regGk			*
		(r) regY	(r) regGk					.]
xplwvariant regGk, regY = [regZ]		(r) regZ						
					(w) regGk			
		(r) regY	(r) regGl					
xplwvariant regGl, regY = extend27_offset27[regZ]		(r) regZ						
					(w) regGl			
		(r) regY	(r) regGl					
xplwvariant regGl, regY = offset27[regZ]		(r) regZ						
					(w) regGl			
		(r) regY	(r) regGl					
xplwvariant regGl, regY = [regZ]		(r) regZ						
					(w) regGl			
xsodoscale regY[regZ] = regE		(r) regY	(r) regE					
		(r) regZ						

Instruction	ID	RR	E1	E2	E3	E4	≰	E11
xso extend27_upper27_lower10[regZ] = regE		(r) regZ	(r) regE				¥	
xsolsumask regY? extend27_offset27[regZ] = regE		(r) regY	(r) regE				g	
		(r) regZ) Te	
xsolsumask regY? offset27[regZ] = regE		(r) regY	(r) regE				9	
		(r) regZ					<u></u>	
xsolsumask regY? [regZ] = regE		(r) regY	(r) regE				zat	
		(r) regZ					i on	
xso s10[regZ] = regE		(r) regZ	(r) regE				<u>D</u>	
xso upper27_lower10[regZ] = regE		(r) regZ	(r) regE				ide	

8.4 BCU instructions

Instruction	ID	RR	E1	E2	E3	E4
await						
barrier						
break brknumber						
call pcrel27						
cbbranchcond regZ? pcrel17	(r) regZ					
errop						
get regZ = sysS2		(r) sysS2				
			(w) regZ			
get regZ = sysS3		(r) sysS3				
			(w) regZ			
goto pcrel27						
icall regZ	(r) regZ					
iget regZ	(r) regZ					
			(w) regZ			
igoto regZ	(r) regZ					
loopdo regZ, pcrel17	(r) regZ					
ret						
rfe						
		(r) regZ				
rswap regZ = sysAlone		(r)				
		sysAlone				
			(w) regZ			
			(w)			
			sysAlone			

KETD:

O	
X	
-RAY	

Instruction	ID	RR	E1	E2	E3	E4
		(r) regZ				
rswap regZ = sysS3		(r) sysS3				
			(w) regZ			
			(w) sysS3			
		(r) regZ				
rswap regZ = sysS4		(r) sysS4				
			(w) regZ			
			(w) sysS4			
scall regZ	(r) regZ					
scall sysnumber						
set sysAlone = regZ	(r) regZ					
					(w)	
					sysAlone	
set RA = regZ	(r) regZ					
	() 7				(w) RA	
set sysT3 = regZ	(r) regZ					
	() 7				(w) sysT3	
set sysT4 = regZ	(r) regZ				() TA	
1					(w) sysT4	
sleep						
stop	() 7					
syncgroup regZ	(r) regZ					
tlbdinval						
tlbiinval						
tlbprobe						
tlbread						
tlbwrite						
waitit regZ	(r) regZ					
		(w) regZ				

Instruction	ID	RR	E 1	E2	E3	E4
wfxl sysAlone, regZ	(r) regZ					
						(w)
						sysAlone
wfxl sysT2, regZ	(r) regZ					
						(w) sysT2
wfxl sysT4, regZ	(r) regZ					() TD4
C 41 7	() 7					(w) sysT4
wfxm sysAlone, regZ	(r) regZ					
						(w) sysAlone
wfxm sysT2, regZ	(r) regZ					SysAtolic
wixiii sys12, icg2	(I) legz					(w) sysT2
wfxm sysT4, regZ	(r) regZ					(W) 5J512
wixin syst i, leg2	(1) 1052					(w) sysT4
		(r) regCg				() = 3 = 1
xaccesso regN = regCg, regZ		(r) regZ				
			(w) CS		(w) regN	
		(r) regCh				
xaccesso regN = regCh, regZ		(r) regZ				
			(w) CS		(w) regN	
		(r) regCi				
xaccesso regN = regCi, regZ		(r) regZ				
			(w) CS		(w) regN	
		(r) regCj				
xaccesso regN = regCj, regZ		(r) regZ				
			(w) CS		(w) regN	
		(r) regCk				
xaccesso regN = regCk, regZ		(r) regZ	() 66			
			(w) CS		(w) regN	

X	
~	

Instruction	ID	RR	E 1	E2	E3	E4
		(r) regCl				
xaccesso regN = regCl, regZ		(r) regZ				
			(w) CS		(w) regN	
		(r) regCg				
xaligno regA = regCg, regZ		(r) regZ				
			(w) CS		(w) regA	
		(r) regCh				
xaligno regA = regCh, regZ		(r) regZ				
			(w) CS		(w) regA	
		(r) regCi				
xaligno regA = regCi, regZ		(r) regZ				
			(w) CS		(w) regA	
		(r) regCj				
xaligno regA = regCj, regZ		(r) regZ				
			(w) CS		(w) regA	
		(r) regCk				
xaligno regA = regCk, regZ		(r) regZ				
			(w) CS		(w) regA	
		(r) regCl				
xaligno regA = regCl, regZ		(r) regZ				
			(w) CS		(w) regA	
xcopyo regA = regC		(r) regC				
			(w) CS		(w) regA	
		(r) regC				
xfscaleworoundingsilent regA = regC, regZ		(r) regZ				
						(w) regA
xmovefd regW = regCc_qselectC		(r)				
		regCc_qsele	ctC			
			(w) CS		(w) regW	

Instruction	ID	RR	E1	E2	E3	E4
xmovefo regN = regC		(r) regC				
			(w) CS		(w) regN	
xmovefq regM = regCb_hselectC		(r)				
		regCb_hsele	ctC			
			(w) CS		(wd) regM	

9 Instructions index

This section is an alphabetical index of all the instructions, giving, for each of them, its associated EXU (i.e. the EXU on which this instruction executes), the (simplified) reservation class it belongs to and linking to its operands'stages description in the relevant table of section 8.

The reservation classes that are used here are the real ones (as defined in the Instruction Reservation Tables of the architecture manual) except that the last part of the names (like ".X") have been trimmed as it relates solely to the presence or the absence of immediate extensions, whereas our table only deals with mnemonics, not complete formats, so it would not make sense. These pieces of reservation information are very interesting in that they tell us:

information	reservation pattern
alu instruction is supported in double TINY ALU unit	TINY
instruction uses the shared double read port RPD2	*_ACC_*
instruction uses the carry	*_ODD_*
instruction must be issued alone in their bundle	ALL

These point have to be taken into account to form correct bundles when writing assembly. Of course, the bundling of instructions is further constrained by the issue ressource (8 syllables maximum per bundle) as detailed in the Instruction Reservation Tables section of the architecture manual.

Mnemonic	Execution Unit	Reservation
abdbo	ALU	ALU_TINY
abdd	ALU	ALU_TINY
abdhq	ALU	ALU_TINY
abdsbo	ALU	ALU_TINY
abdsd	ALU	ALU_TINY
abdshq	ALU	ALU_TINY
abdsw	ALU	ALU_TINY
abdswp	ALU	ALU_TINY
abdubo	ALU	ALU_TINY
abdud	ALU	ALU_TINY
abduhq	ALU	ALU_TINY
abduw	ALU	ALU_TINY
abduwp	ALU	ALU_TINY
abdw	ALU	ALU_TINY
abdwp	ALU	ALU_TINY
absbo	ALU	ALU_TINY
absd	ALU	ALU_TINY
abshq	ALU	ALU_TINY
abssbo	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
abssd	ALU	ALU_TINY
absshq	ALU	ALU_TINY
abssw	ALU	ALU_TINY
absswp	ALU	ALU_TINY
absw	ALU	ALU_TINY
abswp	ALU	ALU_TINY
acswapd	LSU	LSU_AUXR_AUXW
acswapq	LSU	LSU_AUXR_AUXW
acswapw	LSU	LSU_AUXR_AUXW
addbo	ALU	ALU_TINY
addcd	ALU	ALU_FULL
addcd.i	ALU	ALU_FULL
addd	ALU	ALU_TINY
addhq	ALU	ALU_TINY
addrbod	ALU	ALU_LITE
addrhqd	ALU	ALU_LITE
addrwpd	ALU	ALU_LITE
addsbo	ALU	ALU_TINY
addsd	ALU	ALU_TINY
addshq	ALU	ALU_TINY
addsw	ALU	ALU_TINY
addswp	ALU	ALU_TINY
addurbod	ALU	ALU_LITE
addurhqd	ALU	ALU_LITE
addurwpd	ALU	ALU_LITE
addusbo	ALU	ALU_TINY
addusd	ALU	ALU_TINY
addushq	ALU	ALU_TINY
addusw	ALU	ALU_TINY
adduswp	ALU	ALU_TINY
adduwd	ALU	ALU_TINY
addw	ALU	ALU_TINY
addwd	ALU	ALU_TINY
addwp	ALU	ALU_TINY
addx16bo	ALU	ALU_TINY
addx16d	ALU	ALU_TINY
addx16hq	ALU	ALU_TINY
addx16uwd	ALU	ALU_TINY
addx16w	ALU	ALU_TINY
addx16wd	ALU	ALU_TINY
addx16wp	ALU	ALU_TINY
addx2bo	ALU	ALU_TINY
addx2d	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
addx2hq	ALU	ALU_TINY
addx2uwd	ALU	ALU_TINY
addx2w	ALU	ALU_TINY
addx2wd	ALU	ALU_TINY
addx2wp	ALU	ALU_TINY
addx32d	ALU	ALU_TINY
addx32uwd	ALU	ALU_TINY
addx32w	ALU	ALU_TINY
addx32wd	ALU	ALU_TINY
addx4bo	ALU	ALU_TINY
addx4d	ALU	ALU_TINY
addx4hq	ALU	ALU_TINY
addx4uwd	ALU	ALU_TINY
addx4w	ALU	ALU_TINY
addx4wd	ALU	ALU_TINY
addx4wp	ALU	ALU_TINY
addx64d	ALU	ALU_TINY
addx64uwd	ALU	ALU_TINY
addx64w	ALU	ALU_TINY
addx64wd	ALU	ALU_TINY
addx8bo	ALU	ALU_TINY
addx8d	ALU	ALU_TINY
addx8hq	ALU	ALU_TINY
addx8uwd	ALU	ALU_TINY
addx8w	ALU	ALU_TINY
addx8wd	ALU	ALU_TINY
addx8wp	ALU	ALU_TINY
aladdd	LSU	LSU_AUXR_AUXW
aladdw	LSU	LSU_AUXR_AUXW
alclrd	LSU	LSU_AUXW
alclrw	LSU	LSU_AUXW
ald	LSU	LSU_AUXW
alw	LSU	LSU_AUXW
andd	ALU	ALU_TINY
andnd	ALU	ALU_TINY
andnw	ALU	ALU_TINY
andrbod	ALU	ALU_TINY
andrhqd	ALU	ALU_TINY
andrwpd	ALU	ALU_TINY
andw	ALU	ALU_TINY
asd	LSU	LSU_AUXR
asw	LSU	LSU_AUXR
avgbo	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
avghq	ALU	ALU_TINY
avgrbo	ALU	ALU_TINY
avgrhq	ALU	ALU_TINY
avgrubo	ALU	ALU_TINY
avgruhq	ALU	ALU_TINY
avgruw	ALU	ALU_TINY
avgruwp	ALU	ALU_TINY
avgrw	ALU	ALU_TINY
avgrwp	ALU	ALU_TINY
avgubo	ALU	ALU_TINY
avguhq	ALU	ALU_TINY
avguw	ALU	ALU_TINY
avguwp	ALU	ALU_TINY
avgw	ALU	ALU_TINY
avgwp	ALU	ALU_TINY
await	BCU	ALL
barrier	BCU	ALL
break	BCU	ALL
call	BCU	BCU
cb	BCU	BCU
cbsd	ALU	ALU_LITE
cbsw	ALU	ALU_LITE
cbswp	ALU	ALU_LITE
clrf	ALU	ALU_TINY
clsd	ALU	ALU_LITE
clsw	ALU	ALU_LITE
clswp	ALU	ALU_LITE
clzd	ALU	ALU_LITE
clzw	ALU	ALU_LITE
clzwp	ALU	ALU_LITE
cmovebo	ALU	ALU_TINY
cmoved	ALU	ALU_TINY
cmovehq	ALU	ALU_TINY
cmovewp	ALU	ALU_TINY
cmuldt	MAU	MAU
cmulghxdt	MAU	MAU_AUXR
cmulglxdt	MAU	MAU_AUXR
cmulgmxdt	MAU	MAU_AUXR
cmulxdt	MAU	MAU_AUXR
compd	ALU	ALU_TINY
compnbo	ALU	ALU_TINY
compnd	ALU	ALU_TINY
compnhq	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
compnw	ALU	ALU_TINY
•	ALU	ALU_TINY
compnwp compuwd	ALU	ALU_TINY
-	ALU	ALU_TINY
compw	ALU	ALU_TINY
compwd copyd	ALU	ALU_TINY
	LSU	LSU_AUXR_AUXW
copyo	MAU	MAU
copyq	ALU	ALU_TINY
copyw	_	MAU_AUXR
crcbellw	MAU	
crcbelmw	MAU	MAU_AUXR
crclellw	MAU	MAU_AUXR
crclelmw	MAU	MAU_AUXR
ctzd	ALU	ALU_LITE
ctzw	ALU	ALU_LITE
ctzwp	ALU	ALU_LITE
d1inval	LSU	LSU
dflushl	LSU	LSU
dflushsw	LSU	LSU
dinvall	LSU	LSU
dinvalsw	LSU	LSU
dot2suwd	MAU	MAU
dot2suwdp	MAU	MAU
dot2uwd	MAU	MAU
dot2uwdp	MAU	MAU
dot2w	MAU	MAU
dot2wd	MAU	MAU
dot2wdp	MAU	MAU
dot2wzp	MAU	MAU
dpurgel	LSU	LSU
dpurgesw	LSU	LSU
dtouchl	LSU	LSU
eord	ALU	ALU_TINY
eorrbod	ALU	ALU_TINY
eorrhqd	ALU	ALU_TINY
eorrwpd	ALU	ALU_TINY
eorw	ALU	ALU_TINY
errop	BCU	ALL
extfs	ALU	ALU_TINY
extfz	ALU	ALU_TINY
fabsd	ALU	ALU_TINY
fabshq	ALU	ALU_TINY
fabsw	ALU	ALU_TINY
	=	- · -

Mnemonic	Execution Unit	Reservation
fabswp	ALU	ALU_TINY
faddd	MAU	MAU
fadddc	MAU	MAU
fadddc.c	MAU	MAU
fadddp	MAU	MAU
faddho	MAU	MAU
faddhq	MAU	MAU
faddw	MAU	MAU
faddwc	MAU	MAU
faddwc.c	MAU	MAU
faddwcp	MAU	MAU
faddwcp.c	MAU	MAU
faddwp	MAU	MAU
faddwq	MAU	MAU
fcdivd	ALU	ALU_LITE
fcdivw	ALU	ALU_LITE
fcdivwp	ALU	ALU_LITE
fcompd	ALU	ALU_TINY
fcompnd	ALU	ALU_TINY
fcompnhq	ALU	ALU_TINY
fcompnw	ALU	ALU_TINY
fcompnwp	ALU	ALU_TINY
fcompw	ALU	ALU_TINY
fdot2w	MAU	MAU
fdot2wd	MAU	MAU
fdot2wdp	MAU	MAU
fdot2wzp	MAU	MAU
fence	LSU	LSU
ffdmasw	MAU	MAU_AUXR
ffdmaswp	MAU	MAU_AUXR
ffdmaswq	MAU	MAU_AUXR
ffdmaw	MAU	MAU
ffdmawp	MAU	MAU
ffdmawq	MAU	MAU
ffdmdaw	MAU	MAU_AUXR
ffdmdawp	MAU	MAU_AUXR
ffdmdawq	MAU	MAU_AUXR
ffdmdsw	MAU	MAU_AUXR
ffdmdswp	MAU	MAU_AUXR
ffdmdswq	MAU	MAU_AUXR
ffdmsaw	MAU	MAU_AUXR
ffdmsawp	MAU	MAU_AUXR
ffdmsawq	MAU	MAU_AUXR

N.T	E	D 42
Mnemonic	Execution Unit	Reservation
ffdmsw	MAU	MAU
ffdmswp	MAU	MAU
ffdmswq	MAU	MAU
ffmad	MAU	MAU_AUXR
ffmaho	MAU	MAU_AUXR
ffmahq	MAU	MAU_AUXR
ffmahw	MAU	MAU_AUXR
ffmahwq	MAU	MAU_AUXR
ffmaw	MAU	MAU_AUXR
ffmawc	MAU	MAU_AUXR
ffmawcp	MAU	MAU_AUXR
ffmawd	MAU	MAU_AUXR
ffmawdp	MAU	MAU_AUXR
ffmawp	MAU	MAU_AUXR
ffmawq	MAU	MAU_AUXR
ffmsd	MAU	MAU_AUXR
ffmsho	MAU	MAU_AUXR
ffmshq	MAU	MAU_AUXR
ffmshw	MAU	MAU_AUXR
ffmshwq	MAU	MAU_AUXR
ffmsw	MAU	MAU_AUXR
ffmswc	MAU	MAU_AUXR
ffmswcp	MAU	MAU_AUXR
ffmswd	MAU	MAU_AUXR
ffmswdp	MAU	MAU_AUXR
ffmswp	MAU	MAU_AUXR
ffmswq	MAU	MAU_AUXR
fixedd	MAU	MAU
fixedud	MAU	MAU
fixeduw	MAU	MAU
fixeduwp	MAU	MAU
fixedw	MAU	MAU
fixedwp	MAU	MAU
floatd	MAU	MAU
floatud	MAU	MAU
floatuw	MAU	MAU
floatuwp	MAU	MAU
floatw	MAU	MAU
floatwp	MAU	MAU
fmaxd	ALU	ALU_TINY
fmaxhq	ALU	ALU_TINY
fmaxw	ALU	ALU_TINY
fmaxwp	ALU	ALU_TINY
1111axwp	1 LLU	11LU_11111

Mnemonic	Execution Unit	Reservation
fmind	ALU	ALU_TINY
fminhq	ALU	ALU_TINY
fminw	ALU	ALU_TINY
fminwp	ALU	ALU_TINY
fmm212w	MAU	MAU
fmm222w	MAU	MAU
fmma212w	MAU	MAU_AUXR
fmma222w	MAU	MAU_AUXR
fmms212w	MAU	MAU_AUXR
fmms222w	MAU	MAU_AUXR
fmuld	MAU	MAU
fmulho	MAU	MAU
fmulhq	MAU	MAU
fmulhw	MAU	MAU
fmulhwq	MAU	MAU
fmulw	MAU	MAU
fmulwc	MAU	MAU
fmulwcp	MAU	MAU
fmulwd	MAU	MAU
fmulwdp	MAU	MAU
fmulwp	MAU	MAU
fmulwq	MAU	MAU
fnarrowdw	ALU	ALU_FULL
fnarrowdwp	ALU	ALU_FULL
fnarrowwh	ALU	ALU_LITE
fnarrowwhq	ALU	ALU_LITE
fnegd	ALU	ALU_TINY
fneghq	ALU	ALU_TINY
fnegw	ALU	ALU_TINY
fnegwp	ALU	ALU_TINY
frecw	ALU	ALU_FULL
frsrw	ALU	ALU_FULL
fsbfd	MAU	MAU
fsbfdc	MAU	MAU
fsbfdc.c	MAU	MAU
fsbfdp	MAU	MAU
fsbfho	MAU	MAU
fsbfhq	MAU	MAU
fsbfw	MAU	MAU
fsbfwc	MAU	MAU
fsbfwc.c	MAU	MAU
fsbfwcp	MAU	MAU
fsbfwcp.c	MAU	MAU

Mnemonic	Execution Unit	Reservation
fsbfwp	MAU	MAU
fsbfwq	MAU	MAU
fsdivd	ALU	ALU_LITE
fsdivw	ALU	ALU_LITE
fsdivwp	ALU	ALU_LITE
fsrecd	ALU	ALU_LITE
fsrecw	ALU	ALU_LITE
fsrecwp	ALU	ALU_LITE
fsrsrd	ALU	ALU_LITE
fsrsrw	ALU	ALU_LITE
fsrsrwp	ALU	ALU_LITE
fwidenlhw	ALU	ALU_LITE
fwidenlhwp	ALU	ALU_LITE
fwidenlwd	ALU	ALU_LITE
fwidenmhw	ALU	ALU_LITE
fwidenmhwp	ALU	ALU_LITE
fwidenmwd	ALU	ALU_LITE
get	BCU	BCU_TINY_TINY_MAU_XNOP
goto	BCU	BCU
ilinval	LSU	LSU
ilinvals	LSU	LSU
icall	BCU	BCU
iget	BCU	BCU_TINY_TINY_MAU_XNOP
igoto	BCU	BCU
insf	ALU	ALU_TINY
iord	ALU	ALU_TINY
iornd	ALU	ALU_TINY
iornw	ALU	ALU_TINY
iorrbod	ALU	ALU_TINY
iorrhqd	ALU	ALU_TINY
iorrwpd	ALU	ALU_TINY
iorw	ALU	ALU_TINY
landd	ALU	ALU_LITE
landw	ALU	ALU_LITE
lbs	LSU	LSU_AUXW
lbz	LSU	LSU_AUXW
ld	LSU	LSU_AUXW
lhs	LSU	LSU_AUXW
lhz	LSU	LSU_AUXW
liord	ALU	ALU_LITE
liorw	ALU	ALU_LITE
lnandd	ALU	ALU_LITE
lnandw	ALU	ALU_LITE

Mnemonic	Execution Unit	Reservation
lniord	ALU	ALU_LITE
lniorw	ALU	ALU_LITE
lnord	ALU	ALU_LITE
lnorw	ALU	ALU_LITE
lo	LSU	LSU_AUXW
loopdo	BCU	ALL
lord	ALU	ALU_LITE
lorw	ALU	ALU_LITE
lq	LSU	LSU_AUXW
lws	LSU	LSU_AUXW
lwz	LSU	LSU_AUXW
maddd	MAU	MAU_AUXR
madddt	MAU	MAU_AUXR
maddhq	MAU	MAU_AUXR
maddhwq	MAU	MAU_AUXR
maddmwq	MAU	MAU_AUXR
maddsudt	MAU	MAU_AUXR
maddsuhwq	MAU	MAU_AUXR
maddsumwq	MAU	MAU_AUXR
maddsuwd	MAU	MAU_AUXR
maddsuwdp	MAU	MAU_AUXR
maddudt	MAU	MAU_AUXR
madduhwq	MAU	MAU_AUXR
maddumwq	MAU	MAU_AUXR
madduwd	MAU	MAU_AUXR
madduwdp	MAU	MAU_AUXR
madduzdt	MAU	MAU_AUXR
maddw	MAU	MAU_AUXR
maddwd	MAU	MAU_AUXR
maddwdp	MAU	MAU_AUXR
maddwp	MAU	MAU_AUXR
maddwq	MAU	MAU_AUXR
make	ALU	ALU_TINY
maxbo	ALU	ALU_TINY
maxd	ALU	ALU_TINY
maxhq	ALU	ALU_TINY
maxrbod	ALU	ALU_LITE
maxrhqd	ALU	ALU_LITE
maxrwpd	ALU	ALU_LITE
maxubo	ALU	ALU_TINY
maxud	ALU	ALU_TINY
maxuhq	ALU	ALU_TINY
maxurbod	ALU	ALU_LITE

Mnemonic	Execution Unit	Reservation
maxurhqd	ALU	ALU_LITE
maxurwpd	ALU	ALU_LITE
maxuw	ALU	ALU_TINY
maxuwp	ALU	ALU_TINY
maxw	ALU	ALU_TINY
maxwp	ALU	ALU_TINY
minbo	ALU	ALU_TINY
mind	ALU	ALU_TINY
minhq	ALU	ALU_TINY
minrbod	ALU	ALU_LITE
minrhqd	ALU	ALU_LITE
minrwpd	ALU	ALU_LITE
minubo	ALU	ALU_TINY
minud	ALU	ALU_TINY
minuhq	ALU	ALU_TINY
minurbod	ALU	ALU_LITE
minurhqd	ALU	ALU_LITE
minurwpd	ALU	ALU_LITE
minuw	ALU	ALU_TINY
minuwp	ALU	ALU_TINY
minw	ALU	ALU_TINY
minwp	ALU	ALU_TINY
mm212w	MAU	MAU
mma212w	MAU	MAU_AUXR
mms212w	MAU	MAU_AUXR
msbfd	MAU	MAU_AUXR
msbfdt	MAU	MAU_AUXR
msbfhq	MAU	MAU_AUXR
msbfhwq	MAU	MAU_AUXR
msbfmwq	MAU	MAU_AUXR
msbfsudt	MAU	MAU_AUXR
msbfsuhwq	MAU	MAU_AUXR
msbfsumwq	MAU	MAU_AUXR
msbfsuwd	MAU	MAU_AUXR
msbfsuwdp	MAU	MAU_AUXR
msbfudt	MAU	MAU_AUXR
msbfuhwq	MAU	MAU_AUXR
msbfumwq	MAU	MAU_AUXR
msbfuwd	MAU	MAU_AUXR
msbfuwdp	MAU	MAU_AUXR
msbfuzdt	MAU	MAU_AUXR
msbfw	MAU	MAU_AUXR
msbfwd	MAU	MAU_AUXR

Mnemonic	Execution Unit	Reservation
msbfwdp	MAU	MAU_AUXR
msbfwp	MAU	MAU_AUXR
msbfwq	MAU	MAU_AUXR
muld	MAU	MAU
muldt	MAU	MAU
mulhq	MAU	MAU
mulhwq	MAU	MAU
mulmwq	MAU	MAU
mulsudt	MAU	MAU
mulsuhwq	MAU	MAU
mulsumwq	MAU	MAU
mulsuwd	MAU	MAU
mulsuwdp	MAU	MAU
muludt	MAU	MAU
muluhwq	MAU	MAU
mulumwq	MAU	MAU
muluwd	MAU	MAU
muluwdp	MAU	MAU
mulw	MAU	MAU
mulwd	MAU	MAU
mulwdp	MAU	MAU
mulwp	MAU	MAU
mulwq	MAU	MAU
nandd	ALU	ALU_TINY
nandw	ALU	ALU_TINY
negbo	ALU	ALU_TINY
negd	ALU	ALU_TINY
neghq	ALU	ALU_TINY
negsbo	ALU	ALU_TINY
negsd	ALU	ALU_TINY
negshq	ALU	ALU_TINY
negsw	ALU	ALU_TINY
negswp	ALU	ALU_TINY
negw	ALU	ALU_TINY
negwp	ALU	ALU_TINY
neord	ALU	ALU_TINY
neorw	ALU	ALU_TINY
niord	ALU	ALU_TINY
niorw	ALU	ALU_TINY
nop	ALU	ALU_NOP
nord	ALU	ALU_TINY
norw	ALU	ALU_TINY
notd	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
notw	ALU	ALU_TINY
nxord	ALU	ALU_TINY
nxorw	ALU	ALU_TINY
ord	ALU	ALU_TINY
ornd	ALU	ALU_TINY
ornw	ALU	ALU_TINY
orrbod	ALU	ALU_TINY
orrhqd	ALU	ALU_TINY
orrwpd	ALU	ALU_TINY
orw	ALU	ALU_TINY
pcrel	ALU	ALU_FULL
ret	BCU	BCU
rfe	BCU	ALL
rolw	ALU	ALU_LITE
rolwps	ALU	ALU_LITE
rorw	ALU	ALU_LITE
rorwps	ALU	ALU_LITE
rswap	BCU	BCU_TINY_TINY_MAU_XNOP
sb	LSU	LSU_AUXR
sbfbo	ALU	ALU_TINY
sbfcd	ALU	ALU_FULL
sbfcd.i	ALU	ALU_FULL
sbfd	ALU	ALU_TINY
sbfhq	ALU	ALU_TINY
sbfsbo	ALU	ALU_TINY
sbfsd	ALU	ALU_TINY
sbfshq	ALU	ALU_TINY
sbfsw	ALU	ALU_TINY
sbfswp	ALU	ALU_TINY
sbfusbo	ALU	ALU_TINY
sbfusd	ALU	ALU_TINY
sbfushq	ALU	ALU_TINY
sbfusw	ALU	ALU_TINY
sbfuswp	ALU	ALU_TINY
sbfuwd	ALU	ALU_TINY
sbfw	ALU	ALU_TINY
sbfwd	ALU	ALU_TINY
sbfwp	ALU	ALU_TINY
sbfx16bo	ALU	ALU_TINY
sbfx16d	ALU	ALU_TINY
sbfx16hq	ALU	ALU_TINY
sbfx16uwd	ALU	ALU_TINY
sbfx16w	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
sbfx16wd	ALU	ALU_TINY
sbfx16wp	ALU	ALU_TINY
sbfx2bo	ALU	ALU_TINY
sbfx2d	ALU	ALU_TINY
sbfx2hq	ALU	ALU_TINY
sbfx2uwd	ALU	ALU_TINY
sbfx2w	ALU	ALU_TINY
sbfx2wd	ALU	ALU_TINY
sbfx2wp	ALU	ALU_TINY
sbfx32d	ALU	ALU_TINY
sbfx32uwd	ALU	ALU_TINY
sbfx32w	ALU	ALU_TINY
sbfx32wd	ALU	ALU_TINY
sbfx4bo	ALU	ALU_TINY
sbfx4d	ALU	ALU_TINY
sbfx4hq	ALU	ALU_TINY
sbfx4uwd	ALU	ALU_TINY
sbfx4w	ALU	ALU_TINY
sbfx4wd	ALU	ALU_TINY
sbfx4wp	ALU	ALU_TINY
sbfx64d	ALU	$ALU_{-}TINY$
sbfx64uwd	ALU	ALU_TINY
sbfx64w	ALU	ALU_TINY
sbfx64wd	ALU	ALU_TINY
sbfx8bo	ALU	$ALU_{-}TINY$
sbfx8d	ALU	ALU_TINY
sbfx8hq	ALU	ALU_TINY
sbfx8uwd	ALU	ALU_TINY
sbfx8w	ALU	ALU_TINY
sbfx8wd	ALU	ALU_TINY
sbfx8wp	ALU	ALU_TINY
sbmm8	ALU	ALU_TINY
sbmm8d	ALU	ALU_TINY
sbmmt8	ALU	ALU_TINY
sbmmt8d	ALU	ALU_TINY
scall	BCU	ALL
sd	LSU	LSU_AUXR
set	BCU	BCU
sh	LSU	LSU_AUXR
sleep	BCU	ALL
sllbos	ALU	ALU_TINY
slld	ALU	ALU_TINY
sllhqs	ALU	ALU_TINY

Mnemonic	Execution Unit	Reservation
sllw	ALU	ALU_TINY
sllwps	ALU	ALU_TINY
slsbos	ALU	ALU_LITE
slsd	ALU	ALU_LITE
slshqs	ALU	ALU_LITE
slsw	ALU	ALU_LITE
slswps	ALU	ALU_LITE
slusbos	ALU	ALU_LITE
slusd	ALU	ALU_LITE
slushqs	ALU	ALU_LITE
slusw	ALU	ALU_LITE
sluswps	ALU	ALU_LITE
SO	LSU	LSU_AUXR
sq	LSU	LSU_AUXR
srabos	ALU	ALU_TINY
srad	ALU	ALU_TINY
srahqs	ALU	ALU_TINY
sraw	ALU	ALU_TINY
srawps	ALU	ALU_TINY
srlbos	ALU	ALU_TINY
srld	ALU	$ALU_{-}TINY$
srlhqs	ALU	ALU_TINY
srlw	ALU	ALU_TINY
srlwps	ALU	ALU_TINY
srsbos	ALU	ALU_LITE
srsd	ALU	ALU_LITE
srshqs	ALU	ALU_LITE
srsw	ALU	ALU_LITE
srswps	ALU	ALU_LITE
stop	BCU	ALL
stsud	ALU	ALU_TINY
stsuhq	ALU	ALU_TINY
stsuw	ALU	ALU_TINY
stsuwp	ALU	ALU_TINY
SW	LSU	LSU_AUXR
sxbd	ALU	ALU_TINY
sxhd	ALU	ALU_TINY
sxlbhq	ALU	ALU_TINY
sxlhwp	ALU	ALU_TINY
sxmbhq	ALU	ALU_TINY
sxmhwp	ALU	ALU_TINY
sxwd	ALU	ALU_TINY
syncgroup	BCU	BCU

Mnemonic	Execution Unit	Reservation
tlbdinval	BCU	ALL
tlbiinval	BCU	ALL
tlbprobe	BCU	ALL
tlbread	BCU	ALL
tlbwrite	BCU	ALL
waitit	BCU	BCU_TINY_TINY_MAU_XNOP
wfxl	BCU	BCU
wfxm	BCU	BCU
xaccesso	BCU	BCU_TINY_AUXW_CRRP
xaligno	BCU	BCU_CRRP_CRWL_CRWH
xandno	EXT	EXT
xando	EXT	EXT
xclampwo	EXT	EXT
хсоруо	BCU	BCU_CRRP_CRWL_CRWH
хсоруу	EXT	EXT
хсорух	EXT	EXT
xeoro	EXT	EXT
xffma44hw	EXT	EXT
xfmaxhx	EXT	EXT
xfminhx	EXT	EXT
xfmma484hw	EXT	EXT
xfnarrow44wh	EXT	EXT
xfscalewo	BCU	BCU_CRRP_CRWL_CRWH
xiorno	EXT	EXT
xioro	EXT	EXT
xlo	LSU	LSU
xmadd44bw0	EXT	EXT
xmadd44bw1	EXT	EXT
xmaddifwo	EXT	EXT
xmaddsu44bw0	EXT	EXT
xmaddsu44bw1	EXT	EXT
xmaddu44bw0	EXT	EXT
xmaddu44bw1	EXT	EXT
xmma4164bw	EXT	EXT
xmma484bw	EXT	EXT
xmmasu4164bw	EXT	EXT
xmmasu484bw	EXT	EXT
xmmau4164bw	EXT	EXT
xmmau484bw	EXT	EXT
xmmaus4164bw	EXT	EXT
xmmaus484bw	EXT	EXT
xmovefd	BCU	BCU_TINY_AUXW_CRRP
xmovefo	BCU	BCU_TINY_AUXW_CRRP

Mnemonic	Execution Unit	Reservation
xmovefq	BCU	BCU_TINY_AUXW_CRRP
xmovetd	ALU	ALU_TINY_CRWH
xmovetq	ALU	ALU_TINY_CRWH
xmsbfifwo	EXT	EXT
xmt44d	EXT	EXT
xnando	EXT	EXT
xneoro	EXT	EXT
xnioro	EXT	EXT
xnoro	EXT	EXT
xnxoro	EXT	EXT
xord	ALU	ALU_TINY
xorno	EXT	EXT
xoro	EXT	EXT
xorrbod	ALU	ALU_TINY
xorrhqd	ALU	ALU_TINY
xorrwpd	ALU	ALU_TINY
xorw	ALU	ALU_TINY
xplb	LSU	LSU
xpld	LSU	LSU
xplh	LSU	LSU
xplo	LSU	LSU
xplq	LSU	LSU
xplw	LSU	LSU
xrecvo	ALU	ALU_TINY_CRWL_CRWH
xsbmm8dq	EXT	EXT
xsbmmt8dq	EXT	EXT
xsendo	ALU	ALU_TINY_CRRP
xsendrecvo	ALU	ALU_TINY_CRRP_CRWL_CRWH
XSO	LSU	LSU_CRRP
xsplatdo	ALU	ALU_TINY_CRWL_CRWH
xsplatov	EXT	EXT
xsplatox	EXT	EXT
xsx48bw	EXT	EXT
xtrunc48wb	EXT	EXT
xxoro	EXT	EXT
xzx48bw	EXT	EXT
zxbd	ALU	ALU_TINY
zxhd	ALU	ALU_TINY
zxlbhq	ALU	ALU_TINY
zxlhwp	ALU	ALU_TINY
zxmbhq	ALU	ALU_TINY
zxmhwp	ALU	ALU_TINY
zxwd	ALU	ALU_TINY