An Introduction to Differential Evolution

MIKHAYLOV NIKITA, POLYANSKI MAXIM

 $mikhaylovnikitka@phystech.edu\\polyanskiy.mn@phystech.edu\\https://github.com/nikitamikhaylov/differential-evolution$

December 18, 2018

It is a brief description of one of the most famous genetic algorithms of real optimization - the algorithm of differential evolution (Differential Evolution, DE). For complex problems of optimizing the function of n variables, this algorithm has such good properties that it can often be considered as a ready-made "building block" when solving many problems of identification and pattern recognition. For example it is used in "One pixel attack for fooling deep neural networks" problem.

I. WHY USE DIFFERENTIAL EVOLUTION?

- Global optimisation is necessary in fields such as engineering, statistics and finance
- But many practical problems have objective functions that are nondifferentiable, non-continuous, non-linear, noisy, flat, multi-dimensional or have many local minima, constraints or stochasticity
- Such problems are difficult if not impossible to solve analytically
- DE can be used to find approximate solutions to such problems

II. THE BASICS OF DIFFERENTIAL EVOLUTION

- Stochastic, population-based optimisation algorithm.
- Introduced by Storn and Price in 1996.
- Developed to optimise real parameter, real valued functions.
- General problem formulation is:

For an objective function $f: X \subseteq \mathbb{R}^D \to \mathbb{R}$ where the feasible region $X \neq \emptyset$, the minimisation problem is to find:

$$x^* \in X$$
 such that $f(x^*) \leq f(x) \forall x \in X$ where:
 $f(x^*) \neq -\infty$

Figure 1: General Evolutionary Algorithm Procedure

III. BASIC ALGORITHM

DE is an Evolutionary Algorithm. This class also includes Genetic Algorithms, Evolutionary Strategies and Evolutionary Programming.

• Notation

Suppose we want to optimise a function with D real parameters. We must select the size of the population N (it must be at least 4). The parameter vectors have the form:

$$x_{i,G} = [x_{1,i,G}, x_{2,i,G}, ..., x_{D,i,G}], i = 1, 2, ..., N$$

where G is the generation number.

• Initialisation

Define upper and lower bounds for each parameter:

$$x_j^L \le x_{j,i,1} \le x_j^U$$

Randomly select the initial parameter values uniformly on the intervals $[x_i^L, x_i^U]$

Mutation

Each of the N parameter vectors undergoes mutation, recombination and selection. Mutation expands the search space. For a given parameter vector $x_{i,G}$ randomly select three vectors $x_{r1,G}$, $x_{r2,G}$ and $x_{r3,G}$ such that the indices i, r1, r2 and r3 are distinct. Then add the weighted difference of two of

the vectors to the third. $v_{i,G+1} = x_{r1,G} + F(x_{r2,G} - x_{r3,G})$

The mutation factor F is a constant from [0, 2] and $v_{i,G+1}$ is called the donor vector.

• Recombination

Recombination incorporates successful solutions from the previous generation. The trial vector $u_{i,G+1}$ is developed from the elements of the target vector, $x_{i,G}$, and the elements of the donor vector, $v_{i,G+1}$. Elements of the donor vector enter the trial vector with probability CR.

$$u_{j,i,G+1} = \left\{ \begin{array}{ll} v_{j,i,G+1}, & \text{if } rand_{j,i} \le CR \\ & \text{or } j = I_{rand} \\ x_{j,i,G}, & \text{otherwise} \end{array} \right\}$$

i=1,2,...,N j=1,2,...,D $rand_{j,i}\sim U[0,1],~I_{rand}$ is a random integer from [1,2,...,D] and I_{rand} ensures that $v_{i,G+1}\neq x_{i,G}$

• Selection

The target vector $x_{i,G}$ is compared with the trial vector $v_{i,G+1}$ and the one with the lowest function value is admitted to the next generation

$$u_{i,G+1} = \left\{ \begin{array}{ll} u_{i,G+1}, & \text{if } f(u_{i,G+1}) \le f(x_{i,G}) \\ x_{i,G}, & \text{otherwise} \end{array} \right\}$$

Mutation, recombination and selection continue until some stopping criterion is reached.

IV. EXAMPLES

The functions listed below are some of the common functions used for testing optimization algorithms.

Ackley Function

$$f(\mathbf{x}) = f(x_1, ..., x_n) = -a \exp(-b\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}) - exp(\frac{1}{n}\sum_{i=1}^n cos(cx_i)) + a + e$$

In the above equation, the values a, b, c are constants and are usually chosen as a = 20, b = 0.2 and $c = 2\pi$

This function is continuous, not convex, defined on n-dimensional space, multimodal (Figure 2.). The Ackley function can be defined on any input domain but it is usually evaluated on $x \in [-32, 32]$ for all i = 1, ..., n. It has one global minimum at: $f(x^*) = 0$ at $x^* = (0, ..., 0)$.

Figure 3. shows the Ackley Funciton's convergence with mutation factor F = 0.7 and $rand_{ji} = 0.9$. On Figure 4. there are DE's outputs with different hyperparameters which are found with grid. The $rand_{ji}$ is horizontal axis and mutation factor is vertical axis.

Figure 2: Ackley Function Plot

Figure 3: Ackley Function Convergence

Figure 4: Ackley Function Heatmap

Figure 5: Bartels Conn Function Plot

Figure 6: Bartels Conn Function Convergence

Bartels Conn Function

$$f(x,y) = |x^2 + y^2 + xy| + |\sin(x)| + |\cos(y)|$$

This function is not convex, defined on 2-dimensional space, non-separable, non-differentiable. It can be defined on any input domain but it is usually evaluated on $x \in [-500, 500]$ and $y \in [-500, 500]$. The global minimum $f(x^*) = 1$ is located at $x^* = (0, 0)$.

Figure 6. shows the Bartes Conn's convergence with mutation factor F = 0.7 and $rand_{ji} = 0.9$. After 20 iterations the global optimum was found. On Figure 7. there are DE's outputs with different hyperparameters which are found with grid. The $rand_{ji}$ is horizontal axis and mutation factor is vertical axis.

Xin-She Yang Function

$$f(\mathbf{x}) = f(x_1, ..., x_n) = \sum_{i=1}^n \epsilon_i |x_i|^i$$

Where ϵ is a random number that is drawn uniformly from [0,1]

This function is not convex, defined on n-dimensional space, separable, non-differentiable. The Xin-She Yang Function can be defined on any input domain but it is usually evaluated on $x \in [-5,5]$ for all i = 1,...,n. It has one global minimum at: $f(x^*) = 0$ at $x^* = (0,...,0)$. Figure 9. shows the Bartes Conn's convergence with mu-

Figure 7: Bartels Conn Function Heatmap

tation factor F = 0.7 and $rand_{ji} = 0.9$. After about 20 iterations the global optimum was found. On Figure 10. there are DE's outputs with different hyperparameters which are found with grid. The $rand_{ji}$ is horizontal axis and mutation factor is vertical axis.

In addition, it is recommended to use $F \in [0.4, 1]$ to get better results. Heatmaps also prove this statement.

V. Performance

- There is no proof of convergence for DE
- However it has been shown to be effective on a large range of classic optimisation problems
- In a comparison by Storn and Price in 1997 DE was more efficient than simulated annealing and genetic algorithms
- Ali and Torn (2004) found that DE was both more accurate and more efficient than controlled random search and another genetic algorithm
- In 2004 Lampinen and Storn demonstrated that DE was more accurate than several other optimisation methods including four genetic algorithms, simulated annealing and evolutionary programming

VI. RECENT APPLICATIONS

- Design of digital filters
- Optimisation of strategies for checkers

Figure 8: Xin-She Yang Function Plot

Figure 9: Xin-She Yang Function Convergence

Figure 10: Xin-She Yang Function Heatmap

- Maximisation of profit in a model of a beef property
- Optimisation of fermentation of alcohol

VII. REFERENCES

- Differential Evolution: A Practical Approach to Global Optimization, Price, Kenneth, Storn, Rainer M., Lampinen, Jouni A.
- 2. Differential Evolution: In Search of Solution, Feoktistov, Vitaliy
- Price, K.V. (1999), 'An Introduction to Differential Evolution' in Corne, D., Dorigo, M. and Glover, F. (eds), New Ideas in Optimization, McGrawHill, London
- Storn, R. and Price, K. (1997), 'Differential Evolution A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces', Journal of Global Optimization, 11, pp. 341–359.
- 5. http://www.sfu.ca/ssurjano/ackley.html
- 6. https://en.wikipedia.org/wiki/Test-functions-for-optimization
- Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems, Int. Journal of Mathematical Modelling and Numerical Optimisation, Vol. 4, No. 2, pp. 150–194 (2013), arXiv:1308.4008
- 8. Momin Jamil and Xin-She Yang, A literature survey of benchmark functions for global optimization problems, Int. Journal of Mathematical Modelling and Numerical Optimisation, Vol. 4, No. 2, pp. 150–194 (2013), arXiv:1308.4008
- X. S. Yang, "Test Problems in Optimization," Engineering Optimization: An Introduction with Metaheuristic Applications John Wliey Sons, 2010. [Available Online]: http://arxiv.org/abs/1008.0549