94

Test #1: EE 253 Electronics I FS13

September 13, 2013

40

1) Multiple Choice Questions (40 points, no partial credits)

1.1) How many valence electrons do acceptor impurity atoms have, which are doped into Silicon?

a) 3; b) 4; c) 5; d) 6

1.2) What is a doping process?

- a) A process to break covalent bonds;
- b) A process to cause avalanche;
- c) A process to improve carrier concentrations;
- d) A process to create holes

1.3) The built-in voltage in a stand-alone PN junction is initially caused by

a) Drift; b) Diffusion; c) Breakdown; d) Doping

_____1.4) Two diodes that have different turn-on voltage values are in parallel to form a current divider. Which of the following model could be used as a diode model, but is NOT suitable to analyze the current distribution between the two diodes in this case?

1.5) Thermal voltage V_T is approximately

- a) 26 mV @ 300K; b) 26 mV @ any temperature;
- c) 26 mV @ 300°F; d) 26 mV @ 300°C

Which of the following LED is on? Assume $V_{\gamma LED}=2V$, $r_{fLED}=20\Omega$ for LEDs, and $V_{\gamma}=0.7V$, $r_f=0$ for all other diodes. Suppose the minimum LED current is 0.1 mA, and the maximum is 50 mA.

- 1 Trans

ナーシャ

Ux= 1-,02

1.8)

A diode is biased in the "ON" region, V_{γ} is unknown, and $r_f = 2\Omega$. The voltage across the diode (V_D) is 1 V when the current flowing through it (I_D) is 10 mA. If I_D changes to 20mA, what is V_D now?

a) 1.04 V; b) 1.0 V; c) 0.98 V; d) 1.02 V

For a reverse-biased PN junction (not biased in the breakdown region),

- a) its depletion region is narrowed;
- b) there's a leakage current which is often extremely small
- c) current increases with voltage exponentially;
- d) it can be modeled with a voltage source and a forward resistance

34

2) In the following diode circuit,

a) (20 points): if $V_{PS} = 1.0 \text{ V}$, $V_{\gamma} = 0.7 \text{ V}$ and $r_f = 0 \Omega$, what are the diode current I_D , the diode voltage V_D , and the dissipated power P_D in the diode?

The state of the s

b) (20 points): if $V_{PS} = 6.6 \text{ V}$, $V_{\gamma} = 0.7 \text{ V}$ and $r_f = 2 \Omega$, what are the diode current I_D , the diode voltage V_D , and the dissipated power P_D in the diode?

$$V_{PS} = R_{1} \left(\frac{1}{16} + \frac{V_{0}}{R_{D}} \right) + V_{0}$$

$$V_{0} = V_{8} + \frac{1}{10} C_{4} = .7 + 2I_{0}$$

$$6.6 = 100 \left(\frac{1}{100} \right) + .7 + 2I_{0}$$

$$6.6 = 100 I_{0} + .7 + 2I_{0} + .7 + 2I_{0}$$

$$5.2 = 104 I_{0}$$

$$V_{0} = S_{0} A$$

$$V_{0} = V_{8} + 2I_{0} = .7 + 2(.05)$$

$$V_{0} = .8 V$$

20

3) (20 points) Design a circuit using diodes and resistors to produce the following I_I - V_I characteristics, where I_I and V_I are the input current and voltage to the overall circuit. Use the ideal diode model with $V_{\gamma} = 0.7$ V and $r_f = 0$. Please calculate resistor values.

