Lecture 2. Computational methods Laplace approximation, Markov Chain Monte Carlo

Why computational methods?

Recall that in our target formula for posterior $p(\theta | x) = \frac{p(\theta)p(x | \theta)}{\int_{\mathbb{R}} p(x)p(\theta | x) dx}$

where θ are our parameters the **integral** below can get **really nasty**!

BUT: this integral is just a constant! Rewrite $p(\theta|x) = \frac{1}{Z}p(x,\theta)$, where Z is just a normalising constant, although possibly varying over a large range.

What to do?

Why computational methods?

Recall that in our target formula for posterior

$$p(\theta | x) = \frac{p(\theta)p(x | \theta)}{\int_{\mathbb{R}} p(x)p(\theta | x) dx}$$

where θ are our parameters the **integral** below can get **really nasty**!

BUT: this integral is just a constant! Rewrite $p(\theta|x) = \frac{1}{Z}p(x,\theta)$, where Z is just a normalising constant, although possibly varying over a large range.

What to do?

Well, a fact of life: lots of things can be approximated with a normal distribution,

so why not!?

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series expansion and Maximum A Posteriori solution (MAP)

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series expansion and Maximum A Posteriori solution (MAP)

$$p(\theta \mid X) = \frac{p(\theta, X)}{p(X)} = \frac{e^{\ln p(\theta, X)}}{\int e^{\ln p(\theta, x)} d\theta}, \text{ concentrate on } \ln p(\theta, X) \text{ as a function of } \theta$$

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series expansion and Maximum A Posteriori solution (MAP)

$$p(\theta \mid X) = \frac{p(\theta, X)}{p(X)} = \frac{e^{\ln p(\theta, X)}}{\int e^{\ln p(\theta, x)} d\theta}, \text{ concentrate on } \ln p(\theta, X) \text{ as a function of } \theta$$

Taylor series up to the 2nd term: $f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^T \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0) \nabla^2 f(\theta_0) (\theta - \theta_0)^T \nabla f(\theta_0)$

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

$$p(\theta \mid X) = \frac{p(\theta, X)}{p(X)} = \frac{e^{\ln p(\theta, X)}}{\int e^{\ln p(\theta, x)} d\theta}, \text{ concentrate on } \ln p(\theta, X) \text{ as a function of } \theta$$

Taylor series up to the 2nd term: $f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^T \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0) \nabla^2 f(\theta_0) (\theta - \theta_0)^T \nabla f(\theta_0)$

Even a crocodile is shorter than this expression!

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

$$p(\theta \mid X) = \frac{p(\theta, X)}{p(X)} = \frac{e^{\ln p(\theta, X)}}{\int e^{\ln p(\theta, x)} d\theta}, \text{ concentrate on } \ln p(\theta, X) \text{ as a function of } \theta$$

Taylor series up to the 2nd term: $f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^T \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0) \nabla^2 f(\theta_0) (\theta - \theta_0)^T \nabla f(\theta_0)$

Even a crocodile is shorter than this expression!

Hence finding a good point (MAP):

$$\theta_0 = \theta_{MAP} = \arg \max_{\theta} p(\theta | X)$$

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

$$p(\theta \mid X) = \frac{p(\theta, X)}{p(X)} = \frac{e^{\ln p(\theta, X)}}{\int e^{\ln p(\theta, x)} d\theta}, \text{ concentrate on } \ln p(\theta, X) \text{ as a function of } \theta$$

Taylor series up to the 2nd term: $f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^T \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0) \nabla^2 f(\theta_0) (\theta - \theta_0)^T \nabla f(\theta_0)$

Even a crocodile is shorter than this expression!

Hence finding a good point (MAP):

$$\theta_0 = \theta_{MAP} = \arg\max_{\theta} p(\theta | X) = \arg\max_{\theta} \frac{p(X, \theta)}{p(X)}$$

The idea: find parameters μ and Σ such that $p(\theta | X) \approx N(\mu, \Sigma)$

Ingredients: Taylor series and Maximum A Posteriori solution (MAP)

$$p(\theta \mid X) = \frac{p(\theta, X)}{p(X)} = \frac{e^{\ln p(\theta, X)}}{\int e^{\ln p(\theta, x)} d\theta}, \text{ concentrate on } \ln p(\theta, X) \text{ as a function of } \theta$$

Taylor series up to the 2nd term: $f(\theta) \approx f(\theta_0) + (\theta - \theta_0)^T \nabla f(\theta_0) + \frac{1}{2} (\theta - \theta_0) \nabla^2 f(\theta_0) (\theta - \theta_0)^T \nabla f(\theta_0)$

Even a crocodile is shorter than this expression!

Hence let us find a good point (MAP):

$$\theta_0 = \theta_{MAP} = \arg\max_{\theta} p(\theta | X) = \arg\max_{\theta} \frac{p(X, \theta)}{p(X)} = \arg\max_{\theta} \ln p(X, \theta)$$

Note, that θ_{MAP} corresponds to **local maximum of the posterior**

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

$$f(\theta) \approx f(\theta_{MAP}) + (\theta - \theta_{MAP})^T \nabla f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T$$

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

$$f(\theta) \approx f(\theta_{MAP}) + (\theta - \theta_{MAP})^T \nabla f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T = f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T$$

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

$$f(\theta) \approx f(\theta_{MAP}) + (\theta - \theta_{MAP})^T \nabla f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T = f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T$$

Now posterior, substitute $f(\theta)$ by $\ln p(X, \theta)$:

$$p(\theta | X) = \frac{e^{\ln p(X,\theta)}}{\int e^{\ln p(X,\theta)} d\theta} \approx$$

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

Now posterior, substitute $f(\theta)$ by $\ln p(X, \theta)$:

$$p(\theta \mid X) = \frac{e^{\ln p(X,\theta)}}{\int e^{\ln p(X,\theta)} d\theta} \approx \frac{p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})}}{\int p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})} d\theta}$$

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

$$f(\theta) \approx f(\theta_{MAP}) + (\theta - \theta_{MAP})^T \nabla f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T = f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T$$

Now posterior, substitute $f(\theta)$ by $\ln p(X, \theta)$:

$$p(\theta \mid X) = \frac{e^{\ln p(X,\theta)}}{\int e^{\ln p(X,\theta)} d\theta} \approx \frac{p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})}}{\int p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})} d\theta}$$

Looks like a Normal distribution!

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

$$f(\theta) \approx f(\theta_{MAP}) + (\theta - \theta_{MAP})^T \nabla f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T = f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T$$

Now posterior, substitute $f(\theta)$ by $\ln p(X, \theta)$:

$$p(\theta \mid X) = \frac{e^{\ln p(X,\theta)}}{\int e^{\ln p(X,\theta)} d\theta} \approx \frac{p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})}}{\int p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})} d\theta}$$
 Looks

Looks like a Normal distribution!

(Pdf of the normal distribution $N(\mu, \Sigma)$ is $p(x, \mu, \Sigma) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$

Note, that θ_{MAP} corresponds to local maximum of the posterior

Hence $\nabla f(\theta_{MAP}) = 0$ and the second term of the "crocodile" conveniently gets zeroed down:

$$f(\theta) \approx f(\theta_{MAP}) + (\theta - \theta_{MAP})^T \nabla f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T = f(\theta_{MAP}) + \frac{1}{2} (\theta - \theta_{MAP}) \nabla^2 f(\theta_{MAP}) (\theta - \theta_{MAP})^T$$

Now posterior, substitute $f(\theta)$ by $\ln p(X, \theta)$:

$$p(\theta \mid X) = \frac{e^{\ln p(X,\theta)}}{\int e^{\ln p(X,\theta)} d\theta} \approx \frac{p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})}}{\int p(X,\theta_{MAP})e^{\frac{1}{2}(\theta - \theta_{MAP})^T \nabla^2 \ln p(X,\theta_{MAP})(\theta - \theta_{MAP})} d\theta}$$

Looks like a Normal distribution!

(Pdf of the normal distribution $N(\mu, \Sigma)$ is $p(x, \mu, \Sigma) = (2\pi)^{-k/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$)

Hence
$$\theta \mid X \sim N(\theta_{MAP}, -(\nabla^2 \ln p(X, \theta_{MAP}))^{-1})$$

1. How to find MAP? Iterative procedure, gradient ascent.

In pymc3 function find_map which we already used in the first Jupyter notebook.

2. How to find Hessian $\nabla^2 \ln p(X, \theta)$?:

In pymc3 function find_hessian

However with the large number of parameters this also becomes too computationally challenging, hence one needs another method

Jupyter notebook 2 Laplace approximation

Monte Carlo integration.

Assume we want to compute
$$E f(\theta | X) = \frac{\int f(\theta)p(\theta)p(X | \theta)d\theta}{\int p(\theta)p(X | \theta)d\theta}$$

where f is some function of parameters θ given the data X.

Monte Carlo integration.

Assume we want to compute
$$E f(\theta | X) = \frac{\int f(\theta)p(\theta)p(X | \theta)d\theta}{\int p(\theta)p(X | \theta)d\theta}$$

where f is some function of parameters θ given the data X.

Monte Carlo integration evaluates this integral by drawing independent samples $\{\theta_t, t = 1, ..., n\}$ from posterior distribution $p(\theta | X)$

Monte Carlo integration.

Assume we want to compute
$$E f(\theta | X) = \frac{\int f(\theta)p(\theta)p(X | \theta)d\theta}{\int p(\theta)p(X | \theta)d\theta}$$

where f is some function of parameters θ given the data X.

Monte Carlo integration evaluates this integral by drawing **independent samples** $\{\theta_t, t=1,...,n\}$ from posterior distribution $p(\theta \mid X)$ and then approximating $E f(\theta \mid X) \approx \frac{1}{n} \sum_{t=1}^n f(\theta_t)$

Monte Carlo integration.

Assume we want to compute
$$E f(\theta | X) = \frac{\int f(\theta)p(\theta)p(X | \theta)d\theta}{\int p(\theta)p(X | \theta)d\theta}$$

where f is some function of parameters θ given the data X.

Monte Carlo integration evaluates this integral by drawing **independent samples** $\{\theta_t, t=1,...,n\}$ from posterior distribution $p(\theta \mid X)$ and then approximating $E f(\theta \mid X) \approx \frac{1}{n} \sum_{t=1}^{n} f(\theta_t)$

(law of large numbers)

However:

1. $p(\theta | X)$ can be non-standard, and hence sampling independently from it would not be feasible.

However:

- 1. $p(\theta | X)$ can be non-standard, and hence sampling independently from it would not be feasible.
- 2. Good news: $\{\theta_t\}$ does not necessarily need to be independent. One of the ways of tackling the above problem is to

However:

- 1. $p(\theta | X)$ can be non-standard, and hence sampling independently from it would not be feasible.
- 2. Good news: $\{\theta_t\}$ does not necessarily need to be independent. One of the ways of tackling the above problem is to do it through a Markov chain having $p(\theta|X)$ as its stationary distribution.

This is called Markov chain Monte Carlo.

Markov chain. Suppose we generate a sequence of random variables $\{\theta_0, \theta_1, \dots\}$.

Markov chain. Suppose we generate a sequence of random variables $\{\theta_0, \theta_1, \dots\}$.

Each time $t \ge 0$ the next state θ_{t+1} is sampled from a distribution $P(\theta_{t+1} | \theta_t)$, which depends **only on** the current state of the chain θ_t and does not depend on its history $\{\theta_0, \dots \theta_{t-1}\}$.

Markov chain. Suppose we generate a sequence of random variables $\{\theta_0, \theta_1, \dots\}$.

Each time $t \ge 0$ the next state θ_{t+1} is sampled from a distribution $P(\theta_{t+1} | \theta_t)$, which depends **only on** the current state of the chain θ_t and does not depend on its history $\{\theta_0, \dots \theta_{t-1}\}$.

Subject to certain conditions the chain will gradually "forget" its initial state θ_0 and the distribution $P(\theta_t | \theta_0)$ will not depend on t or θ_0 and converge to a unique stationary distribution

Markov chain. Suppose we generate a sequence of random variables $\{\theta_0, \theta_1, \dots\}$.

Each time $t \ge 0$ the next state θ_{t+1} is sampled from a distribution $P(\theta_{t+1} | \theta_t)$, which depends **only on** the current state of the chain θ_t and does not depend on its history $\{\theta_0, \dots \theta_{t-1}\}$.

Subject to certain conditions the chain will gradually "forget" its initial state θ_0 and the distribution $P(\theta_t | \theta_0)$ will not depend on t or θ_0 and converge to a unique stationary distribution

Hence, after sufficiently long <u>burn-in</u> of m iterations points of $\{\theta_t, t = m + 1, ..., n\}$ will be samples from the stationary distribution and the desired integral can be re-written as

Markov chain. Suppose we generate a sequence of random variables $\{\theta_0, \theta_1, \dots\}$.

Each time $t \ge 0$ the next state θ_{t+1} is sampled from a distribution $P(\theta_{t+1} | \theta_t)$, which depends **only on** the current state of the chain θ_t and does not depend on its history $\{\theta_0, \dots \theta_{t-1}\}$.

Subject to certain conditions the chain will gradually "forget" its initial state θ_0 and the distribution $P(\theta_t | \theta_0)$ will not depend on t or θ_0 and converge to a unique stationary distribution

Hence, after **sufficiently long burn-in** of m iterations points of $\{\theta_t, t = m + 1, ..., n\}$ will be samples from the stationary distribution and the desired integral can be re-written as

$$E f(\theta | X) \approx \frac{1}{n-m} \sum_{t=m+1}^{n} f(\theta_t)$$

Markov chain. Suppose we generate a sequence of random variables $\{\theta_0, \theta_1, \dots\}$.

Each time $t \ge 0$ the next state θ_{t+1} is sampled from a distribution $P(\theta_{t+1} | \theta_t)$, which depends **only on** the current state of the chain θ_t and does not depend on its history $\{\theta_0, \dots \theta_{t-1}\}$.

Subject to certain conditions the chain will gradually "forget" its initial state θ_0 and the distribution $P(\theta_t | \theta_0)$ will not depend on t or θ_0 and converge to a unique stationary distribution

Hence, after sufficiently long <u>burn-in</u> of m iterations points of $\{\theta_t, t = m + 1, ..., n\}$ will be samples from the stationary distribution and the desired integral can be re-written as

$$E f(\theta \mid X) \approx \frac{1}{n-m} \sum_{t=m+1}^{n} f(\theta_t)$$

Important: We can construct an MCMC algorithm which will have $p(\theta \mid X)$ as the stationary distribution!

Metropolis-Hastings sampler

At each time t the next state θ_{t+1} is chosen by first sampling a candidate Y from a **proposal** distribution $q(. | \theta_t)$ which **depends only on the current state** θ_t (or not even that)

Metropolis-Hastings sampler

At each time t the next state θ_{t+1} is chosen by first sampling a candidate Y from a **proposal** distribution $q(. | \theta_t)$ which **depends only on the current state** θ_t (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability $\alpha(\theta_t, Y)$, where $\alpha(\theta, Y) = \min\left(1, \frac{p(Y)p(X|Y)q(\theta|Y)}{p(\theta)p(X|\theta)q(Y|\theta)}\right)$.

Metropolis-Hastings sampler

At each time t the next state θ_{t+1} is chosen by first sampling a candidate Y from a **proposal** distribution $q(\cdot \mid \theta_t)$ which **depends only on the current state** θ_t (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability $\alpha(\theta_t, Y)$, where $\alpha(\theta, Y) = \min\left(1, \frac{p(Y)p(X|Y)q(\theta|Y)}{p(\theta)p(X|\theta)q(Y|\theta)}\right)$.

Now denote $\pi(\theta) = p(\theta | X)$

At each time t the next state θ_{t+1} is chosen by first sampling a candidate Y from a **proposal** distribution $q(\cdot \mid \theta_t)$ which **depends only on the current state** θ_t (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability $\alpha(\theta_t, Y)$, where $\alpha(\theta, Y) = \min\left(1, \frac{p(Y)p(X|Y)q(\theta|Y)}{n(\theta)n(X|\theta)a(Y|\theta)}\right)$.

Now denote $\pi(\theta) = p(\theta | X)$

$$P(\theta_{t+1} | \theta_t) = q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
(1)

At each time t the next state θ_{t+1} is chosen by first sampling a candidate Y from a **proposal** distribution $q(\cdot \mid \theta_t)$ which **depends only on the current state** θ_t (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability $\alpha(\theta_t, Y)$, where $\alpha(\theta, Y) = \min\left(1, \frac{p(Y)p(X|Y)q(\theta|Y)}{p(\theta)p(X|\theta)q(Y|\theta)}\right)$.

Now denote $\pi(\theta) = p(\theta | X)$

$$P(\theta_{t+1} | \theta_t) = q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
 acceptance of candidate $Y = \theta_{t+1}$

At each time t the next state θ_{t+1} is chosen by first sampling a candidate Y from a **proposal** distribution $q(. | \theta_t)$ which **depends only on the current state** θ_t (or not even that)

Candidate Y is then accepted to be the next state of the chain with probability $\alpha(\theta_t, Y)$,

where
$$\alpha(\theta, Y) = \min\left(1, \frac{p(Y)p(X|Y)q(\theta|Y)}{p(\theta)p(X|\theta)q(Y|\theta)}\right)$$
.

Now denote $\pi(\theta) = p(\theta | X)$

$$P(\theta_{t+1} | \theta_t) = q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
(1)

acceptance of candidate $Y = \theta_{t+1}$

rejection of all possible candidates Y

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

$$\pi(\theta_t) P(\theta_{t+1} | \theta_t) = \pi(\theta_t) q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + \pi(\theta_t) I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
(3)

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

$$\pi(\theta_t) P(\theta_{t+1} | \theta_t) = \pi(\theta_t) q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + \pi(\theta_t) I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
(3)

$$\pi(\theta_{t+1})P(\theta_t \mid \theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t \mid \theta_{t+1})\alpha(\theta_{t+1}, \theta_t) + \pi(\theta_{t+1})I(\theta_{t+1} = \theta_t)[1 - \int q(Y \mid \theta_{t+1})\alpha(\theta_{t+1}, Y)dY]$$
(4)

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

$$\pi(\theta_t)P(\theta_{t+1}|\theta_t) = \pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) + \pi(\theta_t)I(\theta_{t+1} = \theta_t)[1 - \int q(Y|\theta_t)\alpha(\theta_t,Y)dY]$$
(3)

$$\pi(\theta_{t+1})P(\theta_t | \theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t | \theta_{t+1})\alpha(\theta_{t+1}, \theta_t) + \pi(\theta_{t+1})I(\theta_{t+1} = \theta_t)[1 - \int q(Y | \theta_{t+1})\alpha(\theta_{t+1}, Y)dY]$$
(4)

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality $\theta_t = \theta_{t+1}$, therefore

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

$$\pi(\theta_t)P(\theta_{t+1}|\theta_t) = \pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) + \pi(\theta_t)I(\theta_{t+1} = \theta_t)[1 - \int q(Y|\theta_t)\alpha(\theta_t,Y)dY]$$
(3)

$$\pi(\theta_{t+1})P(\theta_t | \theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t | \theta_{t+1})\alpha(\theta_{t+1}, \theta_t) + \pi(\theta_{t+1})I(\theta_{t+1} = \theta_t)[1 - \int q(Y | \theta_{t+1})\alpha(\theta_{t+1}, Y)dY]$$
(4)

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality $\theta_t = \theta_{t+1}$, therefore

 $\pi(\theta_t)P(\theta_{t+1} \mid \theta_t) = \pi(\theta_{t+1})P(\theta_t \mid \theta_{t+1})$. Let us integrate both sides with respect to θ_t

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1}|\theta_t)\alpha(\theta_t,\theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t|\theta_{t+1})\alpha(\theta_{t+1},\theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

$$\pi(\theta_t) P(\theta_{t+1} | \theta_t) = \pi(\theta_t) q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + \pi(\theta_t) I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
(3)

$$\pi(\theta_{t+1})P(\theta_t | \theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t | \theta_{t+1})\alpha(\theta_{t+1}, \theta_t) + \pi(\theta_{t+1})I(\theta_{t+1} = \theta_t)[1 - \int q(Y | \theta_{t+1})\alpha(\theta_{t+1}, Y)dY]$$
(4)

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality $\theta_t = \theta_{t+1}$, therefore $\pi(\theta_t)P(\theta_{t+1}\,|\,\theta_t) = \pi(\theta_{t+1})P(\theta_t\,|\,\theta_{t+1})$. Let us integrate both sides with respect to θ_t

$$\int \pi(\theta_t) P(\theta_{t+1} \mid \theta_t) d\theta_t = \pi(\theta_{t+1}) \quad \text{Meaning: if } \theta_t \text{ is from the distribution } \pi(.), \text{ then } \theta_{t+1} \text{ will be also.}$$

Recall
$$\alpha(\theta, Y) = \min\left(1, \frac{\pi(Y)q(\theta \mid Y)}{\pi(\theta)q(Y \mid \theta)}\right)$$
, and hence

$$\pi(\theta_t)q(\theta_{t+1} \mid \theta_t)\alpha(\theta_t, \theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t \mid \theta_{t+1})\alpha(\theta_{t+1}, \theta_t)$$
(2)

Hint: one of the α s in the equality above is equal to 1. Moreover, multiply (1) by $\pi(\theta_t)$

$$\pi(\theta_t) P(\theta_{t+1} | \theta_t) = \pi(\theta_t) q(\theta_{t+1} | \theta_t) \alpha(\theta_t, \theta_{t+1}) + \pi(\theta_t) I(\theta_{t+1} = \theta_t) [1 - \int q(Y | \theta_t) \alpha(\theta_t, Y) dY]$$
(3)

$$\pi(\theta_{t+1})P(\theta_t | \theta_{t+1}) = \pi(\theta_{t+1})q(\theta_t | \theta_{t+1})\alpha(\theta_{t+1}, \theta_t) + \pi(\theta_{t+1})I(\theta_{t+1} = \theta_t)[1 - \int q(Y | \theta_{t+1})\alpha(\theta_{t+1}, Y)dY]$$
(4)

The first terms on the left-hand side of (3) and (4) are equal by (2), and the second ones by equality $\theta_t = \theta_{t+1}$, therefore

$$\pi(\theta_t)P(\theta_{t+1} \mid \theta_t) = \pi(\theta_{t+1})P(\theta_t \mid \theta_{t+1})$$
. Let us integrate both sides with respect to θ_t

$$\pi(\theta_t)P(\theta_{t+1}\,|\,\theta_t)d\theta_t=\pi(\theta_{t+1})$$
 Meaning: if θ_t is from the distribution $\pi(\,.\,)$, then θ_{t+1} will be also.

Hence, once sample from stationary has been obtained, all subsequent samples are going to be from it. This means MCMC has <u>converged</u>. The period before convergence is called <u>burn-in</u>

Metropolis-Hastings: how it works in practice

- 1. Start at current position *X*.
- 2. Propose moving to a **new position** Y using proposal q(Y|X)
- 3. Accept/Reject the new position based on the position's adherence to the data and prior distributions using $\alpha(X,Y)$
 - If you accept: Move to the new position Y. Return to Step 1.
 - Else: Do not move to new position, stay at X. Return to Step 1.
- 4. After a large number of iterations, return all accepted positions.

The natural question: what should be the proposal distribution $q(Y | \theta)$?

The natural question: what should be the proposal distribution $q(Y \mid \theta)$?

1. The rate of convergence to the stationary distribution depends on it! And hence the **compute time**.

The natural question: what should be the proposal distribution $q(Y | \theta)$?

- 1. The rate of convergence to the stationary distribution depends on it! And hence the **compute time**.
- 2. Even if the chain converged it may **mix** slowly (move around the states). And hence one needs to **run it for longer** to obtain **reliable estimates**.

The natural question: what should be the proposal distribution $q(Y | \theta)$?

- 1. The rate of convergence to the stationary distribution depends on it! And hence the **compute time**.
- 2. Even if the chain converged it may **mix** slowly (move around the states). And hence one needs to **run it for longer** to obtain **reliable estimates**.
- 3. Proposal has to **explore the space efficiently**, sometimes it requires to perform experimentation and craftsmanship to construct a good one.

Jupyter notebook 2

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Example: $Y \sim N(\theta_t, s)$, where N is a normal distribution and s is the custom standard deviation

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Example: $Y \sim N(\theta_t, s)$, where N is a normal distribution and s is the custom standard deviation

Important property: acceptance rate - how frequently the proposal gets accepted. Ideally should be 0.2-0.4

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Example: $Y \sim N(\theta_t, s)$, where N is a normal distribution and s is the custom standard deviation

Important property: acceptance rate - how frequently the proposal gets accepted. Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Example: $Y \sim N(\theta_t, s)$, where N is a normal distribution and s is the custom standard deviation

Important property: acceptance rate - how frequently the proposal gets accepted. Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

1. Acceptance **too high** -> chain mixes slowly. Acceptance **too low** -> chain stops moving.

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Example: $Y \sim N(\theta_t, s)$, where N is a normal distribution and s is the custom standard deviation

Important property: acceptance rate - how frequently the proposal gets accepted. Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

- 1. Acceptance **too high** -> chain mixes slowly. Acceptance **too low** -> chain stops moving.
- 2. The larger the variance of the proposal is the lower the acceptance rate is.

Most typical one: random walk, $q(Y|\theta) = q(|Y - \theta|)$.

Example: $Y \sim N(\theta_t, s)$, where N is a normal distribution and s is the custom standard deviation

Important property: acceptance rate - how frequently the proposal gets accepted. Ideally should be 0.2-0.4

This can be tuned during the burn-in period. In general:

- 1. Acceptance **too high** -> chain mixes slowly. Acceptance **too low** -> chain stops moving.
- 2. The larger the variance of the proposal is the lower the acceptance rate is.
- 3. This can be used during burn-in to reach the desired acceptance rate.

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Acceptance probability will then be $\alpha(\theta_{-i}, \theta_i, Y_i) = \min\left(1, \frac{\pi(Y_i \mid \theta_{-i})q(\theta_i \mid Y_i, \theta_{-i})}{\pi(\theta_i \mid \theta_{-i})q(Y_i \mid \theta_i, \theta_{-i})}\right)$

Gibbs sampler: $q(Y_i | \theta_i, \theta_{-i}) = \pi(Y_i | \theta_{-i})$. Acceptance probability in this case is always equals to 1!

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Acceptance probability will then be $\alpha(\theta_{-i}, \theta_i, Y_i) = \min\left(1, \frac{\pi(Y_i \mid \theta_{-i})q(\theta_i \mid Y_i, \theta_{-i})}{\pi(\theta_i \mid \theta_{-i})q(Y_i \mid \theta_i, \theta_{-i})}\right)$

Gibbs sampler: $q(Y_i | \theta_i, \theta_{-i}) = \pi(Y_i | \theta_{-i})$. Acceptance probability in this case is always equals to 1!

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Acceptance probability will then be $\alpha(\theta_{-i}, \theta_i, Y_i) = \min\left(1, \frac{\pi(Y_i \mid \theta_{-i})q(\theta_i \mid Y_i, \theta_{-i})}{\pi(\theta_i \mid \theta_{-i})q(Y_i \mid \theta_i, \theta_{-i})}\right)$

Gibbs sampler: $q(Y_i | \theta_i, \theta_{-i}) = \pi(Y_i | \theta_{-i})$. Acceptance probability in this case is always equals to 1!

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Instead of updating θ *en bloc* it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Acceptance probability will then be $\alpha(\theta_{-i}, \theta_i, Y_i) = \min \left(1, \frac{\pi(Y_i \mid \theta_{-i})q(\theta_i \mid Y_i, \theta_{-i})}{\pi(\theta_i \mid \theta_{-i})q(Y_i \mid \theta_i, \theta_{-i})} \right)$

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Acceptance probability will then be $\alpha(\theta_{-i}, \theta_i, Y_i) = \min \left(1, \frac{\pi(Y_i \mid \theta_{-i}) q(\theta_i \mid Y_i, \theta_{-i})}{\pi(\theta_i \mid \theta_{-i}) q(Y_i \mid \theta_i, \theta_{-i})} \right)$

Gibbs sampler: $q(Y_i | \theta_i, \theta_{-i}) = \pi(Y_i | \theta_{-i})$. Acceptance probability in this case is always equals to 1!

Instead of updating θ en bloc it is often more convenient and computationally efficient to divide θ into components $\{\theta_1...\theta_h\}$ and update them one by one.

This means that instead of $q(Y|\theta)$ we will have $q(Y_i|\theta_{-i},\theta_i)$, where $\theta_{-i} = \{\theta_1...\theta_{i-1},\theta_{i+1}...\theta_h\}$.

Acceptance probability will then be $\alpha(\theta_{-i}, \theta_i, Y_i) = \min\left(1, \frac{\pi(Y_i \mid \theta_{-i})q(\theta_i \mid Y_i, \theta_{-i})}{\pi(\theta_i \mid \theta_{-i})q(Y_i \mid \theta_i, \theta_{-i})}\right)$

Gibbs sampler: $q(Y_i | \theta_i, \theta_{-i}) = \pi(Y_i | \theta_{-i})$. Acceptance probability in this case is always equals to 1!

Gibbs sampling scheme

Assume we have data $X \sim p(X | \theta_1, \theta_2)$

- 1. Randomly initialize $\theta_1^{(0)}$ and sample $\theta_2^{(0)} \sim p(\theta_2 \mid X, \theta_1^{(0)})$
- 2. For step t = 1, ..., T
 - (a) Sample $\theta_1^{(t)} \sim p(\theta_1 | X, \theta_2^{t-1})$
 - (b) Sample $\theta_2^{(t)} \sim p(\theta_2 | X, \theta_1^{t-1})$