

Détection de faux billets

Algorithme de classification avec régression logistique

- → 17 faux billets d'euros pour 1 million d'authentiques
 - ◆ Dans la zone euro
 - Niveau historiquement bas, en baisse chaque année
 - ♦ 80% des contrefaçons sont des coupures de 20 et 50€
 - 97% saisis dans la zone euro
- → 30 à 40% émis depuis la France
- → Caractéristiques discriminantes
 - Impression sur coton pur
 - ◆ Impressions en relief
 - Mesures géométriques (adapté au machine learning)

2 types d'erreur de classification

Objectif

Minimiser le nombre de faux billets détectés vrais

Sources : National Geographic Banque centrale européenne

1. Exploration

- → Jeu de données
- → Vrais et faux billets
- → Distributions par authenticité
- → Impact des variables
- → Analyse des corrélations

ACP

- → Objectifs de l'ACP
- → Standardisation
- → Axes d'inertie
- → Covariance
- → Analyse des éboulis
- → Représentation en 2D
- → Cercle des corrélations

3. Clustering

- → K-means
- → Clusters
- → Matrice de confusion

Modélisation

- → Régression linéaire
- → Régression logistique
- → Split des données
- → Classifieur idiot
- → Résultats de la modélisation
- → Contributions au modèle
- → Programme de détection

Exploration

Jeu de données

170 billets, 7 variables

0	True	171.81	104.86	104,95	4.52	2.89 112.83
	diagonal	¹ñeight_left	1 ĥeight_right	*^margin_low	margin_up	207 length
count	170.000000	170.000000	170.000000	170.000000	170.000000	170.000000
mean	171.940588	104.066353	103.928118	4.612118	3.170412	112.570412
std	0.305768	0.298185	0.330980	0.702103	0.236361	0.924448
min	171.040000	103.230000	103.140000	3.540000	2.270000	109.970000
25%	171.730000	103.842500	103.690000	4.050000	3.012500	111.855000
50%	171.945000	104.055000	103.950000	4.450000	3.170000	112.845000
75%	172.137500	104.287500	104.170000	5.127500	3.330000	113.287500
max	173,010000	104,860000	1.04.950000	6,280000	4.,3.680000	_113.980000
169	False	171.96	104.00	103.95	5.63	3.26 110.96

1 variable target (**vrai** ou **faux**)

6 mesures en millimètres

- → Diagonale
- → Hauteur à gauche
- → Hauteur à droite
- → Marge basse
- → Marge haute
- → Longueur

Aucun nettoyage requis

- → Aucune valeur manquante
- → Aucune valeur aberrante (outlier)
- → Aucun doublon

Vrais et faux billets

6

100 vrais billets — 70 contrefaçons

Oversampling inutile

Distribution de chaque variable, par authenticité

- → Fort impact de 2 variables sur l'authenticité
 - longueur
 - marge basse
- → Les autres variables ont peu d'impact

- → Vrais billets plus longs que les faux
- → Marge basse plus courte chez les faux billets

Distributions de *length* et *margin_low*, par authenticité

Matrice des corrélations

Résume les dépendances entre variables

- 0 pas de corrélation1 corrélation positive
- -1 corrélation négative

- Confirmation des fortes corrélations
- Toutes les variables apportent de l'information

ACP

- Réduction des variables à *n* dimensions
- Transformation linéaire
 Préserve les rapports de colinéarité
- Perte d'informations Valeurs obtenues non interprétables
- → Valeurs projetables sur un plan à 2 ou 3 dimensions
 Requis : Préserver le maximum d'information dans les 2 premières composantes

Requis: Preserver le maximum d'information dans les 2 premières composantes **Objectif**: visualiser la ressemblance (variabilité) des individus et la linéarité

→ Sensible à la variance

Standardisation

- Différences d'échelle entre variables
 Poids trop fort de certaines variables sur d'autres
 Contributions inégales à l'ACP
- Objectif: harmoniser les **écarts type**Racine carrée de la variance (moyenne des écarts à la moyenne)
- → Standardisation
 - Moyenne = 0 (centrage autour de cette valeur)
 - Soustraction de la moyenne à toutes les observations
 - ♦ Écart-type = 1
 - Conserve la forme de la distribution
- Adapté aux algorithmes linéaires

 ACP, régression logistique ...

Diagonale

→ **Objectif**: trouver l'axe exprimant le maximum de variance

- ◆ En partant du centroïde
- Conservation du maximum d'information
 (= variance : moyenne des distances au carré l'axe)
- Axes orthogonaux aux précédents Composantes décorrélées
- → Autant d'axes (composantes) que de variables

Covariance

 $\begin{tabular}{ll} \textbf{Axe 7} = 0.37* is_genuine + 0.02* diagonal - 0.11* height_left - 0.12* height_right - 0.41* margin_low - 0.11* margin_up + 0.85* length \\ \end{tabular}$

- → 7 axes (vecteurs propres)

 Combinaisons linéaires de chaque variables avec les autres
- → Classement par somme des valeurs propres

La 1ère composante est celle cumulant le plus de variance

Analyse des éboulis des 2 premières composantes

- → Le maximum d'informations restantes conservé à chaque itération
- → Essentiel de l'information stocké dans les 2 premières composantes

Variance expliquée : 69%

→ PC1 : 47% des données → PC2 : 22% des données

- → Jointure des 2 composantes avec les données
- → Les données sont linéaires
 Les vrais et faux billets forment 2 groupes distincts

Cercle des corrélations

Projection des variables sur le plan factoriel

Cosinus de l'angle entre 2 flèches = coefficient de corrélation entre les 2 variables

- 0°: corrélation positive
- 90°: absence de corrélation
- 180° : corrélation négative

- → Corrélations préservées
- → Bonne inertie
 Longueurs des flèches homogènes et proches de 1
- → Représentation fiable sur les 2 premières dimensions

Clustering

K-means

- \rightarrow Regrouper les billets en K groupes homogènes
- → Classification non supervisée

Postulat : on ne connaît pas les groupes auxquels appartiennent les billets

→ Classification non hiérarchique Méthode des k-moyennes

- 1. Sélectionner le nombre clusters à identifier (K)
- 2. Sélectionner K points aléatoires (clusters initiaux)
- 3. Mesurer la distance euclidienne entre le 1er point et les K clusters
- 4. Assigner le 1er point au cluster le plus proche
- 5. Répéter pour tous les points
- 6. Calculer le centroïde de chaque cluster
- 7. Itérer jusqu'à ce que les centres ne bougent plus

- → Jointure des clusters
- → 2 clusters distincts

 Données linéaires
- Clusters presque identiques aux classes réelles
- → 3 erreurs de classification

Matrice de confusion

Modélisation

→ Calcul d'une variable quantitative d'après d'autres quantitatives

X = variable(s) indépendante(s) explicatives (features, inputs, paramètres) y = variable dépendante expliquée

- → Apprentissage supervisé
 On connaît la valeur réelle de y pour chaque groupe d'explicatives
- Postulat : on peut aligner les points sur une droite Relation linéaire décrivant le mieux la relation entre X et y = f(X) = pente x X + constante (point sur l'ordonnée quand X = 0)
- → Prédit des données continues

- → Quand la variable expliquée est qualitative Nombre limité de valeurs possibles
- Classification supervisée
 Résultat de la variable dépendante déjà connu
- Renvoie probabilités entre 0 et 1

 Probabilité que l'individu appartienne à la classe True

 Probabilité que l'individu appartienne à la classe False
- Transformation logistique sur la fonction de régression linéaire

S = logit (logarithme) sur f(x) Seuil de probabilité fixé généralement à 0.5

Conditions pour de bons résultats

- → Peu de features (risque d'overfitting sinon)
- → Données facilement séparables (par une ligne)
- → Suffisamment d'individus à disposition
- → Pas de valeurs aberrantes
- Données normalisées

train

→ Séparation du dataset en 2 jeux

train: 113 billetstest: 57 billets

→ Séparation de chaque jeu entre X et y

★ X = explicatives (mesures)

- → Base de comparaison avec le futur modèle
- → Prédictions aléatoires
- → Précision très faible

63 % de vrais billets correctement prédits / vrais billets prédits

- Probabilités entre 0 et 1
 Pour chaque classe et chaque billet
- → Comparaison avec y_test
- Aucun faux billet détecté vrai
- → 2 vrais billets détectés faux

Explication de la sortie du modèle

Classement par force de contribution au modèle

Rouge: valeurs les + fortes

Bleu: valeurs les + faibles

Force de contribution de la variable

- → Fonction autonome
- Modèles enregistrées dans un fichier Pickle
 StandardScaler
 ACP
 Régression logistique
- → Fichier CSV en entrée
- → Résultats en tableau
- → Contrôle des clusters sur 2 dimensions

Données en sortie

	Prédiction	Proba	abilité de fau:	x Prot	oabilité de	vrai	id
0	Faux bille	t	0.96289	9	0.03	7101	A_1
1	Faux bille	t	0.99410	2	0.00	5898	A_2
2	Faux bille	t	0.98689	0	0.01	3110	A_3
3	Vrai bille	t	0.05872	2	0.94	1278	A_4
4	Vrai billet		0.004059		0.99	0.995941	
4	172.00	104.56	104.29	4.99	3.38	111.57	м_э
3	172.49	104.55	104.34	4.44	3.03	113.20	A_4
4	171.65	103.63	103.56	3.77	3.16	113.33	A_5

Résumé

- Données d'entraînement adaptées à la régression logistique
 - Variables à la même échelle
 - Individus séparables
 - Pas d'outliers
- → Modèle à 100% de précision sur les vrais billets
 - Aucun faux billet classé comme vrai
 - 2 vrais billets détectés faux