Middleware Architectures 1

Lecture 2: Service Oriented Architecture

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • http://vitvar.com

Czech Technical University in Prague

Faculty of Information Technologies • Software and Web Engineering • http://vitvar.com/courses/mdw

Modified: Sun Oct 18 2020, 21:56:46 Humla v0.3

Overview

- Service Definition
- Integrating Applications
- Enterprise Service Bus
- Microservices Architecture

Basic Entities

Agent

- software or hardware that sends/receives messages
- concrete implementation of a service

• Service interface

- abstract set of functionality and behavior
- two different agents may realize the same service

Provider

- owner (person or organization) that provides an agent realizing a service
- also called a service provider

Requester

- a person or organization that wishes to make use of a provider's service
- uses a requester's agent to exchange messages with provider's agent

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 3 -

Interaction of Entities

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Service

- Difficult to agree on one definition
- Business definition
 - A service realizes an effect that brings a business value to a service consumer
 → for example, to pay for and deliver a book
- Conceptual definition
 - service characteristics
 - → encapsulation, reusability, loose coupling, contracting, abstraction, discoverability, composability
- Logical definition
 - service interface, description and implementation
 - message-oriented and resource-oriented
- Architectural definition
 - business service (also application service)
 - → external, exposed functionality of an application
 - infrastructure service
 - → internal/technical, supports processing of requests

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 5 -

Interface, Description and Implementation

Terminology clarification

- service ~ service interface + service implementation
- WSDL service ~ service description in WSDL language
- SOAP service ~ a service interface is possible to access through SOAP protocol; there is a WSDL description usually available too.
- REST/RESTful service ~ service interface that conforms to REST architectural style and HTTP protocol
- Microservice ~ a set of services that realize an app's capability

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Service Interface

- Service interface components
 - Data
 - → Data model definition used by the service
 - → for example, input and output messages, representation of resources
 - Functions
 - → operations and input and output data used by operations
 - Process
 - → public process: how to consume the service's functionality
 - Technical
 - → security, usage aspects (SLA-Service Level Agreement)
 - \rightarrow other technical details such as IP addresses, ports, protocols, etc.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

-7-

Public Process

- A state diagram
 - operation of a service defines a **state transition** between two states.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Service Characteristics

- 9 -

Overview

- Service Definition
- **Integrating Applications**
- Enterprise Service Bus
- Microservices Architecture

Integration and Interoperability

Integration

- A process of connecting applications so that they can exchange and share capabilities, that is information and functionalities.
- Includes methodological approaches as well as technologies

Interoperability

- Ability of two or more applications to understand each other
- Interoperability levels
 - → Data syntax/structure and semantics
 - → Functions/Processes syntax and semantics
 - \rightarrow Technical aspects protocols, network addresses, etc.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

_ 11 _

Service Oriented Architecture

SOA supports two core business strategies

- Growing top-line revenue
 - → Enterprise reacts quickly to requirements from the market
 - → Business processes can be reconfigured rather than reimplemented
- Improving bottom-line profit
 - → Saving development costs by resuing existing services

Pre-integrated solutions

- Out-of-the-box applications and integration solutions among them

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

– 12 -

One-to-One Service Integration

- Direct integration of applications
 - Multiple protocols problem, multiple vendor problem
 - Replication of integration functionalities such as interoperability solutions

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 13 -

Many-to-Many Service Integration

- Enterprise Service Bus central integration technology
 - Realizes so called Service Oriented Architecture (SOA)
 - Contains various integration components such as process server, mediators, messaging middleware, identity management, etc.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

_ 14 -

Integration Approaches Overview http App Client A Client B Client C Server A REST, Service-oriented integration (M:N) SOAP, http http Application A integrates with application B RPC, ... and D through a middleware process REST SOAP RPC, App App Server B Server C SOAP, RPC, .. SQL Service-oriented integration (1:1) Application B integrates with application C directly by using services. SQL Database App Client D Server D Data-oriented integration SQL Application D integrates with application B through database B. **Database**

Data-oriented Integration

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

• Third-party database access

- Application D accesses a database of application B directly by using SQL and a knowledge of database B structure and constraints
- In the past: monolithic and two-tier client/server architectures
- Today: ETL (Extract, Transform, Load) technologies

Problems

- App D must understand complex structures and constraints
 - → Data very complex, includes structure and integrity constraints
 - → Functions/processes hidden in integrity constraints
 - → Technical access mechanisms can vary

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

– 16 -

Service-oriented Integration

- Integration at the application layer
 - Application exposes services that other applications consume
 - Services hide implementation details but only define interfaces for integration

Problems

- Can become unmanageable if not properly designed
- Interoperability
 - → Data limited to input and output messages only
 - → Functions/processes limited to semantics of services
 - → Technical access mechanisms can vary

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

_ 17 -

Integration and Types of Data

- Real-time data Web services
 - Service-oriented integration
 - online, realtime communication between a client and a service
 - Usually small data and small amount of service invocation in a process
- Bulk data ETL
 - Data-oriented integration
 - processing of large amount of data in batches
 - Sometimes required for reconciliation across apps
 - → when real-time integration fails and there is poor error handling
- SOA provides both Web service and ETL capabilities

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

_ 18

Overview

- Service Definition
- Integrating Applications
- Enterprise Service Bus
- Microservices Architecture

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 19 -

Enterprise Service Bus

- ESB is a central intermediary in SOA
 - Types of services: shared and infrastructure
 - Types of processes: Technical and Business
- ESB Application
 - Application running on an application server
 - Exposes functionality via Web service interface
 - $Allows \ to \ communicate \ with \ various \ messaging \ protocols$
- Integration Patterns
 - Technical-level interoperability message broker
 - Location transparency
 - Dynamic routing
 - Data transformations mediator
 - Session pooling
 - Message enrichment

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

– 20 –

Service Types

ESB services

- shared services created for particular domain
- infrastructure services support integration and interoperability

- 21

Connectivity Services

Purpose

- Adapters for various back-end technologies
- Connectivity to legacy applications
- No business logic, Usually stateless, ESB internal

Example

- Database adapters
 - \rightarrow SQL statement:
 - 1 | SELECT ID, NAME FROM CUSTOMERS C
 - 2 WHERE C.REVENUE > :revenue

Revenue – *input parameter*

 ${\tt ID}$, ${\tt NAME}-structure\ of\ output\ message$

- → Expose the SQL statement as a connectivity service
- Example implementation: JCA adapters

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Entity Services

Purpose

- Expose services on top of one or more entities in a database
- Do not add any specific logic to entities' operations
 - \rightarrow Provide CRUD operations only
- May be used to facilitate a Common Data Model
 - \rightarrow Business entities entities of CDM
 - → Business objects instances of business entities
 - → Business Entity Service manipulations for business entities
- No business logic, usually stateless, ESB internal

Example

- Two entities in a database: CUSTOMERS, ADDRESS (1:N)
- Business entity CUSTOMER

- Operarions: read, write

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 23 -

Business Services

Purpose

- Business/integration logic, can be stateful or stateless
- Atomic business activities
 - → direct mapping to back-end application services
- Can be "imported" in ESB to be used in a business process
- Can be exposed by ESB and add values in terms of business/integration logic or technical processing

Example

- Data transformation
 - → Back-end application service exposed in CDM language
- Message enrichment
 - \rightarrow Adds information to content from other sources
- Monitoring
 - \rightarrow Every invocation of the service logged
 - → Monitoring of business metrics
 - → Number of orders, total revenue per customer

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

– 24 -

Business Processes

Purpose

- Business/integration logic, usually stateful
- Complex processes involving invocations of multiple business services at various back-end applications
- Handles transformations from various data formats of back-end applications
- Handles **key-mapping**
 - → Business entities exist in multiple systems
 - → Each back-end application maintains its own ID for corresponding business objects
- Usually implemented in a process language such as BPMN or BPEL

Example

- Order processing
 - → Get customer information from the CRM system
 - \rightarrow Add line items to OMS
 - \rightarrow Close order

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 25 -

Overview

- Service Definition
- Integrating Applications
- Enterprise Service Bus
 - Integration Patterns
- Microservices Architecture

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

– 26 –

Integration Patterns

- Applied in implementation of business services and processes
 - Usually a combination of more patterns
- Technical patterns
 - Deals with technical aspects of service communication
 - Message broker technical-level interoperability
 - Location transparency
 - Session pooling
- Business patterns
 - Deals with business aspects (message content) of service communication
 - Dynamic routing
 - Data transformations mediator
 - Message enrichment

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

_ 27 _

Message Broker

- Message broker
 - ESB can mix and match transports both standard and proprietary

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Location Transparency

Location transparency

- ESB can hide changes in location of services
- Such changes will not affect clients
- Can also be used for load balancing for multiple service instances

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 29

Session Pooling

• Session Pooling

- ESB can maintain a pool of connections (session tokens) to a back-end app when creating a new connection is expensive
- A single session token can be reused by multiple instances of business processes

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Dynamic Routing

• Dynamic routing

- ESB exposes a service that routes to various back-end services based on message contents.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 31 -

Message Enrichment

• Message enrichmenet

- Enriches a message before invoking back-end application service.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

_ 32 -

Data Transformation

- Data transformation phases:
 - Definition of mapping and execution of mappings
- Definition of mappings (design-time)
 - A mapping associates one data structure to another data structure and defines a conversion between them.
 - Mapping languages
 - \rightarrow graphical for design that translates to XSLT, XQuery
 - → Sometimes implemented in 3rd gen. languages (e.g., Java)
- Execution of mappings (runtime)
 - application of mappings to instance data
- CDM terminology
 - Application Business Message back-end app format
 - Enterprise Business Message CDM format

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 33 -

Key Mapping

- What is key mapping
 - Key = identifier of en entity in a back-end application
 - Key Mapping = a mapping of an ID of an entity in one system to an ID of the same entity in another system.
 - Key mapping is realized using universal IDs (UID)
- Example
 - A customer MOON exists in CRM and OMS systems
 - In CRM system, MOON has an CRM-ID=AB1
 - In OMS system, MOON has an CRM-ID=45A
 - Key mappig allows to map the CRM-ID AB1 to the OMS-ID 45A
 - Key mapping is a table

CRM-ID → UID → OMS-ID

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Key Mapping Example

Overview

- Service Definition
- Integrating Applications
- Enterprise Service Bus
- Microservices Architecture

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 36 -

The Scale Cube

- Three-dimensional scalability model
 - X-Axis scaling requests across multiple instances
 - Y-Axis scaling decomposes an application into micro-services
 - *Z-Axis scaling requests across "data partitioned" instances*

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 37 -

Overview

- Emerging software architecture
 - monolithic vs. decoupled applications
 - applications as independenly deployable services

A monolithic application puts all its functionality into a single process...

A microservices architecture puts each element of functionality into a separate service...

... and scales by replicating the monolith on multiple servers

... and scales by distributing these services across servers, replicating as needed.

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

– 38 –

Major Characteristics

- Loosely coupled
 - Integrated using well-defined interfaces
- Technology-agnostic protocols
 - HTTP, they use REST architecture
- Independently deployable and easy to replace
 - A change in small part requires to redeploy only that part
- Organized around capabilities
 - such as accounting, billing, recommendation, etc.
- Impplemented using different technologies
 - polyglot programming languages, databases
- Owned by a small team

Lecture 2: Service Oriented Architecture, CTU Winter Semester 2020/2021, @TomasVitvar

- 39 -