

Sull
A10

What is Claimed is:

1. A method for generating a one-way function dependent on a one-way function H and a unique value d, comprising the steps of:
 - holding a function generation unique value s;
 - creating a value generation unique value u from the function generation unique value s and the unique value d; and
 - creating a one-way function value X(M) of a message M by applying the one-way function H to the value generation unique value u and the message M.
2. The method for generating a one-way function according to claim 1, wherein the value generation unique value u is calculated by applying a one-way function G to the function generation unique value s and the unique value d.
3. The method for generating a one-way function according to claim 1, wherein the value generation unique value u is calculated by applying an encryption function E of a symmetric key to the function generation unique value s and the unique value d.
4. The method for generating a one-way function according to claim 1, wherein the one-way function value X(M) of the message M is calculated by applying the one-way function H and an encryption function D of a symmetric key to the value generation unique value u and

AD

the message M.

5. A device for generating one-way function values that calculates a one-way function X dependent on a unique value d, comprising:

means for inputting the unique value d;
means for inputting a message M;
means for holding a function generation unique value s;

means for creating a value generation unique value u from the function generation unique value s and the unique value d; and

means for creating a one-way function value X(M) of the message M by applying a one-way function H to the value generation unique value u and the message M.

6. The device for generating one-way function values according to claim 5, wherein the process of calculating the value generation unique value u and the one-way function value X(M) is difficult to observe from the outside.

7. A proving device for performing processing based on a private key dependent on a message M, comprising:

means for inputting the message M;
means for holding a value generation unique value u;
means for creating a one-way function value X(M) of the message M by applying a one-way function H to the

AD

value generation unique value u and the message M; and means for performing processing based on the private key X(M),

wherein the value generation unique value u is created from a function generation unique value s and a unique value d.

8. The proving device according to claim 7, wherein the calculation process in processing based on the value generation unique value u and the private key X(M) is difficult to observe from the outside.

9. The proving device according to claim 7, wherein the proving device is configured as a small portable operation device such as a smart card.

10. The proving device according to claim 7, wherein the proving device is configured as a module inside a CPU of the device.

11. The proving device according to claim 7, wherein the means for performing processing based on the private key comprises:

means for inputting a challenge c;
means for calculating a response r from the challenge c and the private key X(M); and
means for outputting the response r.

12. The proving device according to claim 7, wherein the means for performing processing based on a private key comprises:

means for inputting a challenge c;

QD

means for generating a random number k;
means for calculating a response r from the random number k, the challenge c, and the private key X(M); and means for outputting the response r.

13. The proving device according to claim 7, wherein the means for performing processing based on a private key comprises:

means for generating a random number k;
means for calculating a commitment w from the random number k;
means for inputting a challenge c;
means for calculating the response r from the random number k, the challenge c, and the private key X(M); and
means for outputting the response r.

14. The proving device according to claim 7, wherein the means for performing processing based on a private key comprises:

means for generating a random number k;
means for calculating a commitment w from the random number k;
means for outputting the commitment w;
means for inputting a challenge c;
means for calculating a response r from the random number k, the commitment w, the challenge c, and the private key X(M); and
means for outputting the response r.

AO

15. The proving device according to claim 7,
wherein the means for performing processing based on a
private key performs multiplications and power
operations of multiplicative groups on a finite field.

16. The proving device according to claim 7,
wherein the means for performing processing based on a
private key performs additions and scalar
multiplication operations of elliptic curves on a finite
field.

17. The proving device according to claim 7,
wherein the means for performing processing based on a
private key performs multiplicative residue operations
and power residue operations modulo n, where n is a
composite number that is difficult to factorize.

18. The proving device according to claim 7,
wherein the message M includes use conditions and the
means for inputting messages rejects message input if
the use conditions included in the message M are not
satisfied.

19. The proving device according to claim 7,
wherein the message M includes private key processing
parameters, and the means for performing processing
based on a private key performs processing based on the
private key processing parameters included in the
message M.

20. A device for issuing a proving instrument T
in accordance with a unique value d, comprising:

AC

means for inputting the unique value d;
means for holding a function generation unique
value s;
means for creating a value generation unique value
u from the function generation unique value s and the
unique value d; and
means for writing the value generation unique
value u to the proving instrument T,

wherein the proving instrument T holds the value
generation unique value u, and upon input of a message
M, creates a one-way function value X(M) of the message
M by applying a one-way function H to the value generation
unique value u and the message M to perform processing
based on the private key X(M).

21. An authentication method by which a right
issuer issues rights to right recipients in association
with a message M and a right verifier verifies the rights
of the right recipients,

wherein the right issuer creates a value
generation unique value u from a function generation
unique value s and a unique value d corresponding to the
right recipients; calculates a one-way function value
X(M) of the message M by applying a one-way function H
to the value generation unique value u and the message
M; and issues a certificate C to prove a public key y
paired with the private key X(M) to the right recipients,

wherein the right recipients present the

AO

certificate C to the right verifier; calculate a one-way function value $X(M)$ of the message M by applying the one-way function H to the value generation unique value u and the message M; and perform processing based on the private key $X(M)$, and

wherein the right verifier verifies the certificate C and verifies the processing based on the private key $X(M)$ of the right recipients with a public key y proved by the certificate C.

22. The authentication method according to claim 21, wherein an identifier aid indicating an authentication type is included in the certificate C issued by the right issuer and the right verifier succeeds in verifying the certificate C only when the authentication identifier aid included in the certificate C matches the type of authentication to be performed.

23. The authentication method according to claim 21, wherein use conditions are included in the certificate C issued by the right issuer and the right verifier succeeds in verifying the certificate C only when the use conditions included in the certificate C are satisfied.

24. A certificate issuing device for issuing a certificate C in accordance with a unique value d and a message M, comprising:

means for inputting the unique value;

AD

means for inputting the message M;
means for holding a function generation unique value s;
means for creating a value generation unique value u from the function generation unique value s and the unique value d;
means for creating a one-way function value X(M) of the message M by applying a one-way function H to the value generation unique value u and the message M;
means for creating a public key y paired with the private key X(M); and
means for issuing a certificate C to prove the public key y.

25. An authentication device for performing authentication in accordance with a message M, comprising:

means for inputting the message M;
means for holding a value generation unique value u;
means for creating a one-way function value X(M) of the message M by applying a one-way function H to the value generation unique value u and the message M;
means for performing processing based on the private key X(M);
means for holding a certificate C to prove a public key y paired with the private key X(M);
means for verifying the certificate C; and

means for verifying processing based on the private key with the public key y ,

wherein the value generation unique value u is created from the function generation unique value s and the unique value d .

26. An authentication method by which a right issuer issues rights to right recipients in association with a message M and a right verifier verifies the rights of the right recipients,

wherein the right issuer creates a value generation unique value u from a function generation unique value s and a unique value d corresponding to the right recipients; calculates a one-way function value $X(M)$ of the message M by applying a one-way function H to the value generation unique value u and the message M ; and issues an access ticket t determined from a private key x and the one-way function value $X(M)$ to the right recipients,

wherein the right recipients calculate a one-way function value $X(M)$ of the message M by applying the one-way function H to the value generation unique value u and the message M ; perform processing based on the private key $X(M)$; and convert the processing based on the private key $X(M)$ to processing based on the private key x by the access ticket t , and

wherein the right verifier verifies the processing based on the private key $X(M)$ of the right

ACD

recipients with a public key y paired with the private key x .

27. The authentication method according to claim 21, wherein an identifier aid indicating an authentication type is included in the message M .

28. An access ticket issuing device for issuing an access ticket in accordance with a unique value d and a message M , comprising:

means for inputting the unique value d ;

means for inputting the message M ;

means for holding a function generation unique value s ;

means for creating a value generation unique value u from the function generation unique value s and the unique value d ;

means for creating a one-way function value $X(M)$ of the message M by applying a one-way function H to the value generation unique value u and the message M ;

means for creating the access ticket t from the private key x and the one-way function value $X(M)$; and

means for issuing the access ticket t .

29. The access ticket issuing device according to claim 28, wherein the access ticket t is calculated as a difference $(x - X(M))$ between the private key x and the one-way function value $X(M)$.

30. The access ticket issuing device according

ALD

to claim 28, wherein the access ticket t is calculated as a quotient $x/X(M)$ between the private key x and the one-way function value X(M).

31. The access ticket generation device according to claim 28, wherein the value generation unique value u is (u_1, \dots, u_m) and the one-way function value X(M) is generated from bit concatenation $(u_1|M) | \dots | H(u_m)$ of the value of the one-way function H and has a desired bit length.

32. The access ticket generation device according to claim 31, wherein the value generation unique value (u_1, \dots, u_m) is found from $u_j = G(s_j|d)$ obtained by applying a one-way function G to the function generation unique value s (s_1, \dots, s_m) .

33. An authentication device for performing authentication in accordance with a message M, comprising:

means for inputting the message M;

means for holding a value generation unique value u;

means for creating a one-way function value X(M) of the message M by applying a one-way function H to the value generation unique value u and the message M;

means for performing processing based on the private key X(M);

means for holding an access ticket t determined from a private key x and the one-way function value X(M);

AC

means for converting the processing based on the private key $x(M)$ to processing based on the private key x by the access ticket t ;

means for holding a public key y paired with the private key x ; and

means for verifying the processing based on the private key with the public key y ,

wherein the value generation unique value u is created from the function generation unique value s and the unique value d .

34. The authentication device according to claim 33, wherein the means for converting the processing based on the private key comprises means for updating a challenge c with the access ticket t .

35. The authentication device according to claim 33, wherein the means for converting the processing based on the private key comprises means for updating a response r with the access ticket t .

36. The authentication device according to claim 33, wherein the means for converting the processing based on the private key comprises means for updating a response r with the access ticket t and a challenge c .

37. The authentication device according to claim 33, wherein the means for converting the processing based on the private key comprises means for updating a challenge c with a commitment w and means for updating a response r with the access ticket t and the challenge

AO

c.

38. The authentication device according to claim
33, wherein the means for converting the processing based
on the private key comprises means for updating a
challenge c with the access ticket t and a commitment
 w , and means for updating a response r with the commitment
 w .