Hidden Markov Chains

Marco Julio, Nicolás, Sebastián and César

October 14, 2019

Index

Continuous-state Hidden Markov Models

Continuous-state Hidden Markov Models

In many problems often hidden parameters of interest are continuous.

Figure: GPS object tracking; hidden parameters: position + velocity

Continuous-state Hidden Markov Models

- Ideas developed for discrete case can be generalized to aboard problems with hidden continuous parameters of interest.
- We call these Continuous-state Hidden Markov Models (CS-HMM), also named as state-space models or dynamical systems.
- Let's focus on a particular subset of CS-HMM: linear Gaussian state-space model (LGSSM).

Linear Gaussian state-space model (LGSSM)

Hidden states: (X_0, \ldots, X_T) continuous r.v. taking values in \mathbb{R}^{d_x} **Observations:** (Y_1, \ldots, Y_T) continuous r.v. taking values in \mathbb{R}^{d_y}

 $(X_0,\ldots,X_T,Y_1,\ldots,Y_T)$ is LGSSM if has two components such as:

- **state model:** X_t is a linear transformation of X_{t-1} plus a linear combination of Gaussian noise.
- **observation model:** Y_t is a linear transformation of X_t plus Gaussian noise.

Linear Gaussian state-space model (LGSSM)

Definition (LGSSM - State model)

$$X_t = F_t X_{t-1} + G_t V_t \text{ for } t = 1, \dots, T \text{ State model}$$
 (1)

- $X_t \in \mathbb{R}^{d_{\mathsf{x}}}$ hidden state at time t,
- $F_t \in \mathbb{R}^{d_x \times d_x}$ transition state matrix at time t,
- $G_t \in \mathbb{R}^{d_x \times d_v}$ noise transfer matrix,
- $V_t \in \mathbb{R}^{d_v}$ state noise matrix, $V_t \sim \mathcal{N}(0, Q_t)$.

Linear Gaussian state-space model (LGSSM)

Definition (Observation model)

$$Y_t = H_t X_t + W_t \text{ for } t = 1, ..., T$$
 Observation model (2)

- $Y_t \in \mathbb{R}^{d_y}$ observation at time t,
- $H_t \in \mathbb{R}^{d_x \times d_x}$ observation matrix at time t,
- $W_t \in \mathbb{R}^{d_v}$ observation noise, $W_t \sim \mathcal{N}(0, R_t)$.

Definition (Other conditions)

- $X_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$,
- $V_t \sim \mathcal{N}(0, Q_t), W_t \sim \mathcal{N}(0, R_t)$, for $t = 1, \dots T$,
- $X_0, V_1, \ldots V_T, W_1, \ldots W_T$ are independent.

LGSSM and parametrization of joint pdf

As in discrete case, joint pdf of hidden variables and observation can be described as:

$$p(X_{0:T}, Y_{1:T}) = \prod_{t=1}^{T} p(y_t|x_t) \cdot p(x_{t-1}|x_t)$$
 (3)

Using LGSSM structure and properties of multivariate normal distributions it can be shown that if $G_tQ_TG_T \in \mathbb{R}^{d_x \times d_x}$ has full rank then:

$$p(y_t|x_t) = \mathcal{N}(H_t x_t, R_t) \tag{4}$$

$$p(x_t|x_{t-1}) = \mathcal{N}(F_t x_{t-1}, G_t Q_T G_T)$$
 (5)

Inference in dynamic LGSSM

Let's consider the following inference problem:

P1: Given observations up to time t find $Y_1 = y_1, \ldots, Y_t = y_t$, find joint pdf $p(x_t|y_{1:t})$.

P2: Given all observations $Y_1 = y_1, ..., Y_T = y_T$, find joint pdf $p(x_t|y_{1:T})$

Both can be solve by **sequentially computation of means and covariance matrices of conditionally distributions**: 1) P1 is called **Kallman filter**, and in 2) P2 is named **Kallman smoother**.

Inference LGSSM - Kallman filter

P1: Determine $p(x_t|y_{1:t})$ of the hidden state X_t given t observations $y_{1:t}$.

$$\mu_{t|t-1} := E[X_t|Y_{1:t} = y_{1:t-1}] \tag{6}$$

$$\mu_{t|t} := E[X_t|Y_{1:t} = y_{1:t}] \tag{7}$$

$$\Sigma_{t|t-1} := E[(X_t - \mu_{t|t-1})(X_t - \mu_{t|t-1})^T | Y_{1:t} = y_{1:t-1}]$$
 (8)

$$\Sigma_{t|t} := E[(X_t - \mu_{t|t})(X_t - \mu_{t|t})^T | Y_{1:t} = y_{1:t}]$$
 (9)

Kallman filter ideas - Prediction

Structure of LGSSM implies $p(x_t|y_{1:t-1}) = \mathcal{N}(\mu_{t|t-1}, \Sigma_{t|t-1})$ and the existence of recursive rules:

Prediction $(\mu_{t-1|t-1} \to \mu_{t|t-1})$ and $(\Sigma_{t-1|t-1} \to \Sigma_{t|t-1})$:

- $\bullet \ \mu_{t|t-1} = F_t \mu_{t-1|t-1},$

Kallman filter ideas - Update/correction

Again, structure of LGSSM implies $p(x_t|y_{1:t}) = \mathcal{N}(\mu_{t|t}, \Sigma_{t|t})$ and following recursion rule:

Update/correction $(\mu_{t|t-1} \to \mu_{t|t})$ and $(\Sigma_{t|t-1} \to \Sigma_{t|t})$:

$$\bullet \ \mu_{t|t} = \mu_{t|t-1} + K_t \nu_t,$$

•
$$\Sigma_{t|t-1} = (I - K_t H_t) \Sigma_{t-1|t-1}$$

Where
$$\nu_t = y_t - \hat{y}_t$$
, $\hat{y}_t = E[Y_t | Y_{1:t-1} = y_{1:t-1}] = H_t \mu_{t|t-1}$
 $K_t = \Sigma_{t|t-1} H^T S_t^{-1}$,
 $S_t = E[(Y_t - \hat{y}_t)(Y_t - \hat{y}_t)^T | Y_{1:t-1} = y_{1:t-1}] = H_t \Sigma_{t|t-1} H_t^T + R_t$

 K_t is called **Kallman gain**

Kallman filter ideas

Recursive strategy of Kallman filter

 $p(x_t|y_{1:t})$ can be determined estimating parameters for $s \in \mathbb{N}$ of:

•
$$p(x_s|y_{1:s-1}) = \mathcal{N}(\mu_{s|s-1}, \Sigma_{s|s-1})$$

as follows:

$$\begin{split} & (\mu_0, \Sigma_0) \xrightarrow{\mathsf{Predict.}} (\mu_{1|0}, \Sigma_{1|0}) \xrightarrow{\mathsf{Update}} \dots \\ & \dots \xrightarrow{\mathsf{Predict.}} (\mu_{t-1|t-1}, \Sigma_{t-1|t-1}) \xrightarrow{\mathsf{Update}} \\ & (\mu_{t|t-1}, \Sigma_{t|t-1}) \xrightarrow{\mathsf{Predict.}} (\mu_{t|t}, \Sigma_{t|t}) \to \dots \end{split}$$

Inference LGSSM - Kallman Smoother

P2: Determine $p(x_t|y_{1:T})$ of the hidden state X_t given all the observations $y_{1:T}$.

$$\mu_{t|T} := E[X_t|Y_{1:T} = y_{1:T}] \tag{10}$$

$$\Sigma_{t|T} := E[(X_t - \mu_{t|T})(X_t - \mu_{t|T})^T | Y_{1:T} = t_{1:T}]$$
 (11)

Kallman Smoother ideas

Structure of LGSSM implies $p(x_t|y_{1:T}) = \mathcal{N}(\mu_{t|T}, \Sigma_{t|T})$ and the existence of recursive rules:

Backward recursion:

- $\bullet \ \mu_{t|T} = \mu_{t|t} + J_t(\mu_{t+1|T} \mu_{t+1|t}),$
- $\bullet \ \Sigma_{t|T} = \Sigma_{t|t} + J_t(\Sigma_{t+1|T} \Sigma_{t+1|t})J_t^T$

Where $J_t = \sum_{t|t} F_{t+1}^T \sum_{t+1|t}^{-1}$, is called **Backwards Kallman gain**.

Recursive strategy of Kallman Smoother

 $p(x_t|y_{1:T})$ can be determined estimating parameters as follows:

- Compute $(\mu_{t|t}, \Sigma_{t|t})$ and $(\mu_{t+1|t}, \Sigma_{t+1|t})$ for $t, t+1 \leq T$ using Kallman filter.
- Use backward recursion until obtain $(\mu_{t|T}, \Sigma_{t|T})$.