ROB-GY 6323 reinforcement learning and optimal control for robotics

Lecture 10
Deep Q-learning

Course material

All necessary material will be posted on Brightspace Code will be posted on the Github site of the class

https://github.com/righetti/optlearningcontrol

Discussions/Forum with Slack

Contact ludovic.righetti@nyu.edu Office hours in person Wednesday 3pm to 4pm 370 Jay street - room 801

Course Assistant
Armand Jordana
aj2988@nyu.edu

Office hours Monday Ipm to 2pm
Rogers Hall 515

any other time by appointment only

Tentative schedule (subject to change)

Week		Homework	Project	
I	Intro Lecture I: introduction			
2		Lecture 2: Basics of optimization	L1\A/ 1	
3	Trajectory optimization	Lecture 3: QPs	HW I	
4		Lecture 4: Nonlinear optimal control		
5		Lecture 5: Model-predictive control		
6		Lecture 6: Sampling-based optimal control	LI\A/ 2	
7		Lecture 7: Bellman's principle	HW 2	
8		Lecture 8: Value iteration / policy iteration		
9	Policy optimization	Lecture 9: Q-learning	HW 3	Duois st I
10		Lecture 10: Deep Q learning		Project I
11		Lecture 11:Actor-critic algorithms		
12		Lecture 12: Learning by demonstration		
13		Lecture 13: Monte-Carlo Tree Search	HW 4	
14		Lecture 14: Beyond the class		Project 2
15				

Policy evaluation with sampling I Monte-Carlo methods

Policy evaluation with sampling II TD-learning

Optimal Value function

$$J = \min_{u} g(x, u) + \alpha J(f(x, u))$$

Value Function for Policy $\mu(x): x \to u$

$$J_{\mu}(x) = g(x, \mu(x)) + \alpha J_{\mu}(f(x, \mu(x)))$$

Action-value function $Q(x_t, u_t)$

$$Q(x_t, u_t) = g(x_t, u_t) + \alpha \min_{u} Q(x_{t+1}, u)$$

$$\delta_t = g(x_t, \mu(x_t)) + \alpha J_{\mu}(x_{t+1}) - J_{\mu}(x_t)$$

Temporal difference learning

[Sutton 1988] [Samuel 1959]

TD(0) learning for estimating J_{μ}

Input: policy to be evaluated μ

Choose a step size $\gamma \in [0,1]$

Initialize J_{μ} for all states x

For each episode of length N:

Choose an initial state x_0

Loop for each step of the episode:

Do
$$\mu(x_t)$$

Observe x_{t+1} Compute $g(x_t, \mu(x_t))$

Update
$$J_{\mu}(x_t) \leftarrow J_{\mu}(x_t) + \gamma \delta_t$$

using
$$\delta_t = g(x_t, \mu(x_t)) + \alpha J_{\mu}(x_{t+1}) - J_{\mu}(x_t)$$

How can we improve the policy?

Q-learning: off-policy TD control

[Watkins 1989]

Action-value function $Q(x_t, u_t)$

$$Q(x_t, u_t) = g(x_t, u_t) + \alpha J^*(x_{t+1})$$

 $Q(x_t, u_t)$: cost of doing u_t at state x_t and behaving optimally after

$$J^*(x_t) = \min_u Q(x_{t+1}, u)$$
 Optimal value function

$$\mu^*(x) = \arg\min_{u} Q(x_t, u)$$

Optimal policy

Q-learning: off-policy TD control

[Watkins 1989]

Action-value function $Q(x_t, u_t)$

$$Q(x_t, u_t) = g(x_t, u_t) + \alpha \min_{u} Q(x_{t+1}, u)$$

$$J^*(x_t) = \min_{u} Q(x_{t+1}, u)$$
 Optimal value function

TD-error
$$\delta_t = g(x_t, u_t) + \alpha \min_u Q(x_{t+1}, u) - Q(x_t, u_t)$$

Update
$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \gamma \delta_t$$

Q-learning

$$\delta_t = g(x_t, u_t) + \alpha \min_u Q(x_{t+1}, u) - Q(x_t, u_t)$$

Q(x,u) is stored as a table

	x = 0	x = 0.1	x = 0.2		x = 6.2
u = -5	$Q(x_1, u_1)$			• • •	
u = -4.9				• • •	
				• • •	
	•	•		•	
	·	· ·			
u = 0					
	•	•		•	
	•	•		•	
u = 5				• • •	

The exploration/exploitation trade-off

How do we choose the policy in an episode?

Current optimal guess:
$$u_t = \arg\min_u Q(x_t, u)$$

If we always choose the optimal guess, we might miss better actions/states that we would never try

If we only choose random actions, we might be not be able to get a good guess for Q

E-greedy policy

$$u_t = \begin{cases} \arg\min_u Q(x_t, u) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases}$$

Choose a step size $\gamma \in [0,1]$ and small ϵ

Initialize $Q(\boldsymbol{x},\boldsymbol{u})$ for all states \mathbf{x} and actions \mathbf{u}

For each episode:

Choose an initial state x_0

Loop for each step of the episode:

Choose an action using an ϵ -greedy policy from Q

Observe x_{t+1} Compute $g(x_t, \mu(x_t))$

Update
$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \gamma \delta_t$$

using
$$\delta_t = g(x_t, u_t) + \alpha \min_{u} Q(x_{t+1}, u) - Q(x_t, u_t)$$

Q-learning

[source: https://www.youtube.com/watch?v=YLAWnYAsai8]

Q-learning

Model-free approach to learn optimal policies (value iteration with a twist)

$$Q(x_t, u_t) \leftarrow Q(x_t, u_t) + \gamma \delta_t$$

$$\delta_t = g(x_t, u_t) + \alpha \min_u Q(x_{t+1}, u) - Q(x_t, u_t)$$

Guaranteed to converge at infinity BUT can take a long time!

Need to store Q / discrete actions and states

Need to compute the min of Q (expensive!)

Typical RL problems

Robotics RL problems

Set of actions is discrete
State is discrete (countable)

State is continuous

Action space is continuous

Most methods designed for discrete state/action models do not carry over to continuous state/action models

Q-learning

$$\delta_t = g(x_t, u_t) + \alpha \min_u Q(x_{t+1}, u) - Q(x_t, u_t)$$

Can we get rid of the discrete states and actions and the table?

Q(x,u) is a function - can we approximate it?

		x = 0.1	x = 0.2		x = 6.2
u = -5 $u = -4.9$	$Q(x_1, u_1)$			• • •	
u = -4.9				• • •	
				• • •	
	•	•		•	
	•	•			
u = 0					
	•	•		•	
	•	•		•	
u = 5				• • •	

Function approximation

A quick intro to neural networks

Function approximation / Supervised learning

Given N data point $(x_1, y_1) (x_2, y_2) \cdots (x_N, y_N)$

$$y = \sum_{k=0}^{K} a_k x^k$$
 Find a function that is a linear combination of polynomials of the input x

Minimize the least square error between the output data and the function

$$\min_{a_0 \cdots a_K} \sum_{i=0}^{N-1} (\sum_{k=0}^K a_k x_i^k - y_i)^2$$

Minimize the least square error between the output data and the function

$$\min_{a_0 \cdots a_K} \sum_{i=0}^{N-1} (\sum_{k=0}^K a_k x_i^k - y_i)^2$$

We can write these relations in matrix form by noticing that

$$\sum_{k=0}^{K} a_k x_i^k = \begin{bmatrix} 1 & x_i & x_i^2 & \cdots & x_i^K \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_K \end{bmatrix}$$

We can write these relations in matrix form by noticing that

$$\sum_{k=0}^{K} a_k x_i^k = \begin{bmatrix} 1 & x_i & x_i^2 & \cdots & x_i^K \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_K \end{bmatrix}$$

Using all the data points and the knowledge of the degree K and we can then construct the $N \times K$ matrix

$$X = \begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^K \\ 1 & x_1 & x_1^2 & \cdots & x_1^K \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{N-1} & x_{N-1}^2 & \cdots & x_{N-1}^K \end{bmatrix}$$

and the vector

$$Y = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix} \qquad a = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_K \end{bmatrix}$$

where each row i of X and Y is defined by the sample i from the dataset.

We now have

$$Xa - Y = \begin{bmatrix} \sum_{k=0}^{K} a_k x_0^k - y_0 \\ \sum_{k=0}^{K} a_k x_1^k - y_1 \\ \vdots \\ \sum_{k=0}^{K} a_k x_{N-1}^k - y_{N-1} \end{bmatrix}$$

and the original problem can be written as

$$\min_{a} (Xa - Y)^{T} (Xa - Y)$$

which is equal to

$$\min_{a} a^T X^T X a - 2Y^T X a + Y^2$$

$$\frac{\partial}{\partial a} (a^T X^T X a - 2Y^T X a + Y^2) = 2X^T X a - 2X^T Y = 0$$

$$a = (X^T X)^{-1} X^T Y$$

Function approximation

500 noisy samples $\mathcal{D} = \{(x_0, y_0), (x_1, y_1), \cdots, (x_N, y_N)\}$

from a quadratic function

Nonlinear least-square

$$y = f(x, w)$$
 $\min \sum_{i=0}^{N} (y_i - f(x_i, \omega))^2$

we cannot compute w explicitly as before because the function is not linear in w anymore

=> do gradient descent to minimize the function

$$\omega \leftarrow \omega - \eta \frac{\partial}{\partial \omega} \left(\sum_{i=0}^{N} (y_i - f(x_i, \omega))^2 \right) = \omega + 2\eta \sum_{i=0}^{N} \left((y_i - f(x_i, \omega)) \frac{\partial f}{\partial \omega} \right)$$

$$y = \frac{1}{1 + e^{-wx}}$$
 a sigmoid function

multiple inputs and one output

$$y = \frac{1}{1 + e^{-\sum_k w_k x_k}}$$

 w_k weights (unknown parameters to find or "learn")

multiple inputs and one output

$$y = \frac{1}{1 + e^{-\sum_k w_k x_k}}$$

$$\min_{w} \sum_{n=0}^{N} \left(y_i - \frac{1}{1 + e^{-\sum_k w_k x_{k,i}}} \right)$$

$$\min_{w} \sum_{n=0}^{N} \left(y_i - \frac{1}{1 + e^{-\sum_k w_k x_{k,i}}} \right)$$

Dataset has multidimensional input

$$\mathcal{D} = \{(x_{0,0}, x_{1,0}, \cdots, x_{M,0}, y_0), (x_{0,1}, x_{1,1}, \cdots, x_{M,1}, y_1), \cdots, (x_{0,N}, x_{1,N}, \cdots, x_{M,N}, y_N)\}$$

Gradient descent enables the optimization of the unknown parameters (or neuron weights) w

One layer neural network

Deep neural network

A neural network with many layers

Example of a fully connected deep neural network

Multi-dimensional output

Different activation functions

we can replace the sigmoid by other nonlinear functions, popular ones are

- Rectified Linear Units (ReLU) $y = \max\{0, \sum_{k} w_k x_k\}$
- Softplus $y = \log(1 + e^{\sum_{k}^{\cdot} w_k x_k})$

Different architectures

We can decide:

- How many layers
- How many neurons per layer
- Which activation functions are used
- How layers connect to each other
- etc

Stochastic gradient descent

Usually we cannot do gradient descent using all the data point available in our dataset!

Stochastic gradient descent: randomly select a small number of data points (a mini-batch) and do gradient descent using these points

Libraries to "train" neural networks

O PyTorch

Example

```
In [1]: %matplotlib notebook
   import torch
   import numpy as np
   import matplotlib as mp
   import matplotlib.pylab as plt

In [2]: ## we create the data to learn from
   N = 1000 # number of data points
   x = torch.linspace(-1.5,1.5,steps=N).reshape(N, 1)
   y = x**3 + 0.5*torch.sin(10*x)

plt.figure()
  plt.plot(x.numpy(),y.numpy(), 'x')
  plt.title('The data to fit')
```



```
In [6]:
         # # we create another model with 3 hidden layers
         model = torch.nn.Sequential(
             torch.nn.Linear(D_in, H),
                                                                                           batch_size = 32
             torch.nn.ReLU(),
             torch.nn.Linear(H, H),
             torch.nn.ReLU(),
             torch.nn.Linear(H, H),
             torch.nn.ReLU(),
             torch.nn.Linear(H, D_out),
         # we define the learning rate and select an optimizer
         learning_rate = 1e-3
         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
         # we learn doing 5000 iterations
         for t in range(10000):
             # sample a mini batch
             sample_index = torch.tensor(np.random.choice(N, batch_size))
             # Forward pass: compute predicted y by passing x to the model.
             y_pred = model(x[sample_index])
             # Compute the least-square loss.
             loss = loss_fn(y_pred, y[sample_index])
             # use the optimizer object to zero all of the gradients for the variables it will update,
             # i.e. the weights of the model. Checkout docs of torch.autograd.backward for more details.
             optimizer.zero_grad()
             # compute gradient of the loss with respect to model parameters (backward autodiff)
             loss.backward()
             # call the step function of the optimizer to make one update of the parameters
             optimizer.step()
         y_pred = model(x)
         plt.figure()
         plt.plot(x.numpy(),y.numpy(), 'x')
         plt.plot(x.numpy(), y_pred.detach().numpy(), 'rx')
```

```
# D_in is input dimension;
# H is dimension of the hidden layers; D_out is output dimension.
batch_size = 32
D_in, H, D_out = 1, 64, 1
```


Back to Q-learning

Q-learning with a table cannot work for high-dimensional spaces nor for continuous state/action spaces!

Idea: replace the table with a function approximator (e.g. a neural network) - still assume discrete number of actions

Back to Q-learning

The problem can be written as a least square problem

We can compute the right side of Bellman equation from data collected during one episode

$$y_t = g(x_t, u_t) + \alpha \min_a Q(x_{t+1}, a, w)$$

and then do one step of gradient descent on the weights of the neural network to minimize the TD error

$$\min_{w} ||y_t - Q(x_t, u_t, w)||^2$$

Q-learning with a neural network

Initialize Q(x, u, w) with random weights w

For each episode:

Choose an initial state x_0

Loop for each step of the episode:

Choose an action u_t using an ϵ -greedy policy from Q

Observe the next state x_{t+1}

Compute
$$y_t = g(x_t, u_t) + \alpha \min_{a} Q(x_{t+1}, a, w)$$

Update the weights of the neural network by doing one iteration of stochastic gradient descent

$$\min_{w} ||y_t - Q(x_t, u_t, w)||^2$$

Back to Q-learning

Problem: a direct (naive) approach using solely current episode data tend to be unstable (i.e. it diverges):

- The sequence of observations are correlated
- Small changes in Q can lead to large changes in policy

Back to Q-learning

[Mnih et al., Nature, 2015]

Problem: a direct (naive) approach using solely current episode data tend to be unstable (i.e. it diverges):

- The sequence of observations are correlated
- Small changes in Q can lead to large changes in policy

Solution 1)

Use a "replay" memory of a previous samples from which we randomly sample the next training batch (remove correlations)

Solution 2)

Use 2 Q-networks to avoid correlations due to updates

[Mnih et al., Nature, 2015]

Initialize replay memory D of size NInitialize Q-network with random weights θ Initialize target \hat{Q} function with weights $\theta^-=\theta$

For each episode:

Start from an initial state x_0

Loop for each step t of the episode:

Choose a control action u_t using Q (e.g. ϵ -greedy policy)

Do u_t and observe the next state x_{t+1}

Compute $y_t = g(x_t, u_t) + \alpha \min_a \hat{Q}(x_{t+1}, a, \theta)$! here we use the target network

Store (x_t, u_t, y_t, x_{t+1}) in memory D

Sample minibatch K of transitions (x_k, u_k, y_k, x_{k+1}) from D

Gradient descent on θ to minimize $\sum_{K} ||Q(x_k, u_k, \theta) - y_k||^2$

Every C steps reset the target network by setting $\theta^- = \theta$

[Mnih et al., Nature, 2015]

Pre-processing states of the system

[Mnih et al., Nature, 2015]

Network Architecture

One Q-value per action (multiple outputs)

[Mnih et al., Nature, 2015]

Q-network architecture for Atari game playing - Each output corresponds to one action entry of the Q function

Training

49 games:

- a different Q network is used for each game
- same parameters for learning each game

mini-batches of size 32

 ϵ -greedy with $\epsilon=1$ at the beginning of learning and linearly decreases until $\epsilon=0.1$ after first 1 million frames trained on 50 million frames => 32 days of game experience in total! (the human player was allowed only 2h of training)

replay memory size: I million samples (FIFO)

[Mnih et al., Nature, 2015]

[Mnih et al., Nature, 2015]

Now we can do Q-learning using continuous states and high dimensional inputs!

What about a continuous action space?

What about continuous action space?

Problem: we need to evaluate the min to be able to do Q-learning with a function approximator

$$||Q(x_t, u_t, \theta) - g(x_t, u_t) - \alpha \min_{a} \hat{Q}(x_{t+1}, a, \theta^-)||2|$$

Solution: use another neural network to approximate the min operator (i.e. to approximate the optimal policy)

A primer on actor-critic algorithms Deep Deterministic Policy Gradient

Back to DQN with "policy gradient"

Let $\pi(S_t, \theta^{\pi})$ an approximation of a policy with a NN (weights θ^{π})

Deep Deterministic Policy Gradient (DDC) [Lillicrap et al.

[Lillicrap et al., ICML, 2016]

Policy network (actor) - Q-network (critic) DDPG => Same as DQN + policy network

Policy network

Target \hat{Q} -network

Target policy network

[Lillicrap et al., ICML, 2016]

DDPG

Initialization

Initialize replay memory D of size NInitialize the weights of the action-value Q_{θ} and policy π_{ϕ} networks Set the weights $\theta_{target} = \theta$ and $\phi_{target} = \phi$ of the target networks $Q_{\theta_{target}}$ and $\pi_{\phi_{target}}$

For each episode

Start from an initial state x_0

Loop for each step t of the episode:

Choose $u_t = \pi_{\phi}(x_t) + noise$ (to explore)

Apply u_t and get the next state x_{t+1}

Compute the instantaneous cost $c_t = g(x_t, u_t)$

Store (x_t, u_t, c_t, x_{t+1}) in the replay memory D

Every few iterations update the networks:

Sample minibatch of B elements in replay memory D

Improve Q: gradient descent on θ to minimize $\frac{1}{B} \sum_{i=0}^{B} \left(Q_{\theta}(x_i, u_i) - c_i - \alpha Q_{\theta_{target}}(x_{i+1}, \pi_{\phi_{target}}(x_{i+1})) \right)^2$

Improve policy: gradient descent on ϕ to minimize $\frac{1}{B} \sum_{i=0}^{B} Q_{\theta}(x_i, \pi_{\phi}(x_i))$

Update the target networks: $\frac{\theta_{target} \leftarrow \tau\theta + (1 - \tau)\theta_{target}}{\phi_{target} \leftarrow \tau\phi + (1 - \tau)\phi_{target}}$

DDPG

