

MapleT.A. 2010 Matematik 2A hold 4: teori opgaver A

View Details View Grade Help **Quit & Save**

Feedback: Details Report

[PRINT]

2010 Matematik 2A hold 4, teori opgaver A Jens Mohr Mortensen, 6/6/10 at 12:55 PM

Question 1: Score 10/10

Der er givet en $n \times n$ matrix A med den egenskab, at søjlerne i A er lineært afhængige. Markér alle sande udsagn nedenfor.

Choice	Selected	Points
Ligningssystemet $Ax = b$ er konsistent for alle x .	No	
A er diagonaliserbar.	No	
Nul er en egenværdi for $A.$	Yes	+1
A er ikke invertibel.	Yes	+1

Number of available correct choices: 2

Partial Grading Explained

Question 2: Score 10/10

Der er givet en $n \times n$ matrix A, $n \ge 2$, med den egenskab, at der findes et $b \in \mathbb{R}^n$, sådan at ligningssystemet $A\mathbf{x} = \mathbf{b}$ er inkonsistent.

Hvad kan man sige om determinanten det A? Marker det af nedenstående tre udsagn, der er sandt.

Your Answer: $\det A$ er lig nul.

Correct Answer: $\det A$ er lig nul.

Question 3: Score 10/10

Der er givet en 6 \times n matrix A med følgende egenskaber:

1. Nulrummet for A har dimension 2, dvs. dim NulA = 2.

2. Ligningssystemet Ax = b er konsistent for alle b.

Find den værdi af n for hvilken A har begge disse egenskaber.

Skriv svaret som et tal nedenfor, for eksempel

Your Answer: 8

Comment: Svaret er 8.

Question 4: Score 10/10

Der er givet en $n \times n$ matrix A. Markér alle sande udsagne nedenfor.

Choice	Selected	Points
Hvis A kan diagonaliseres, så har A $$ n forskellige egenværdier.	No	

1 of 2

Hvis λ er en egenværdi for A , så findes der en vektor x forskellig fra nulvektoren, således at $Ax = \lambda x$.	Yes	+1
Hvis 0 er en egenværdi for A , så er A ikke invertibel.	Yes	+1
Hvis A er invertibel, så kan A diagonaliseres.	No	

Number of available correct choices: 2

Partial Grading Explained

2 of 2