

2006—2007 学年第二学期 《大学物理 (2-1) 》 期末试卷

专业班级 _	
姓 名	
学 号	
, <u> </u>	甘力は帰れ中で
开课系室_	基础物理系
考试日期	2007年7月9日

	1	1		Ξ	总分		
题 号			21	22	23	24	
得分							
阅卷人							
复核人							

2006—2007 学年第二学期

《大学物理(2-1)》期末试卷

答 题 纸

一、选择题(共 30 分) (请将答案填在相应的空格内)

题号	1	2	3	4	5	6	7	8	9	10
答案										

二、填空题(共30分) (请将答案填在相应的空格内)

11,		12,		
13、	14、_			
15、			` .	
16、			` .	
17、			_18、	_
19、	2	20、		

注意:选择题和填空题答案要填写在答题纸上!填写在其它地方, 答案无效! 计算题在各题空白处答题。

一、选择题(共30分)

1、(本题 3 分) (0508)

质点沿半径为R的圆周作匀速率运动,每T秒转一圈。在2T时间间隔中,其平均速度 大小与平均速率大小分别为

- A) 2R/T , 2R/T. B) 0 , 2R/T

- C) 0, 0
- D) $2R/T \cdot 0$
- 2、(本题 3 分) (0344)

站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过电梯内的一个无摩擦 的定滑轮而处于"平衡"状态。由此,他断定电梯作加速运动,其加速度为

- A) 大小为 g, 方向向上. B) 大小为 g, 方向向下.
- C) 大小为 $\frac{1}{2}g$, 方向向上. D) 大小为 $\frac{1}{2}g$, 方向向下.
- 3、(本题3分)(0197)

一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统, 当此人在盘上随意走动时, 若忽略轴的摩擦, 此系统

- A) 动量守恒.
- B) 机械能守恒.
- C) 对转轴的角动量守恒,
- D) 动量、机械能和角动量都守恒.
- E) 动量、机械能和角动量都不守恒.
- 4、(本题3分)(4595)

关于热功转换和热量传递过程,有下面一些叙述:

- (1) 功可以完全变为热量,而热量不能完全变为功;
- (2) 一切热机的效率都只能够小于1;
- (3) 热量不能从低温物体向高温物体传递;
- (4) 热量从高温物体向低温物体传递是不可逆的. 以上这些叙述
- A) 只有(2)、(4)正确.
- B) 只有(2)、(3) 、(4)正确.
- C) 只有(1)、(3)、(4)正确. D) 全部正确.

5、(本题3分)(5541)

设某种气体的分子速率分布函数为f(v),则速率在 v_1 — v_2 区间内的分子的平均速率为

- A) $\int_{v_1}^{v_2} v f(v) dv$.
- B) $v \int_{v_1}^{v_2} v f(v) dv$.
- C) $\int_{v_1}^{v_2} v f(v) dv / \int_{v_1}^{v_2} f(v) dv.$
- D) $\int_{\nu_1}^{\nu_2} f(\nu) d\nu / \int_0^{\infty} f(\nu) d\nu$.

6、(本题 3 分) (3067)

一平面简谐波的表达式为 $y = 0.1\cos(3\pi t - \pi x + \pi)$

- A) O点的振幅为-0.1 m.
- B) 波长为3 m.
- C) a、b 两点间相位差为 $\frac{1}{2}\pi$.
- D) 波速为 9 m/s.

7、(本题 3 分) (3288)

当机械波在媒质中传播时,一媒质质元的最大变形量发生在

- A) 媒质质元离开其平衡位置最大位移处.
- B) 媒质质元在其平衡位置处.
- C) 媒质质元离开其平衡位置($\sqrt{2}A/2$)处(A 是振动振幅).
- D) 媒质质元离开其平衡位置 $\frac{1}{2}A$ 处(A 是振动振幅).

8、(本题 3 分) (3369)

三个偏振片 P_1 , P_2 与 P_3 堆叠在一起, P_1 与 P_3 的偏振化方向相互垂直, P_2 与 P_1 的偏振化方向间的夹角为 30° . 强度为 I_0 的自然光垂直入射于偏振片 P_1 ,并依次透过偏振片 P_1 、 P_2 与 P_3 ,则通过三个偏振片后的光强为

- A) $I_0/4$.
- B) $3 I_0 / 8$.
- C) $3I_0 / 32$.
- D) $I_0/16$.

9、(本题 3 分) (4169)

在某地发生两件事,静止位于该地的甲测得时间间隔为 4 s,若相对于甲作匀速直线运动的乙测得时间间隔为 5 s,则乙相对于甲的运动速度是(c 表示真空中光速)

- A) (4/5) c. B) (1/5) c.
- C) (2/5) c.
- D) (3/5) c.
- 10、(本题 3 分) (4725)

把一个静止质量为 m_0 的粒子,由静止加速到 v = 0.6c (c 为真空中光速)需作的功等于

- A) $0.18m_0c^2$.
- B) $0.25 m_0 c^2$.
- C) $0.36m_0c^2$. D) $1.25 m_0c^2$.

二、填空题(共30分)

- 11、(本题 3 分) (0005)
 - 一质点作半径为 0.1 m 的圆周运动,其角位置的运动学方程为:

$$\theta = \frac{\pi}{4} + \frac{1}{2}t^2 \qquad (SI)$$

则其切向加速度为 a_t = ______

12、(本题 3 分) (0150)

质量为 20 kg、边长为 1.0 m 的均匀立方物体, 放在水平地面 上. 有一拉力F作用在该物体一顶边的中点,且与包含该顶边的物 体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若要使该 立方体翻转 90° , 则拉力 F 不能小于

13、(本题 3 分) (0733)

一质点在二恒力共同作用下,位移为 $\Delta \vec{r} = 3\vec{i} + 8\vec{j}$ (SI); 在此过程中,动能增量为 24 J, 已知其中一恒力 $\vec{F}_1 = 12\vec{i} - 3\vec{j}$ (SI),则另一恒力所作的功为 .

14、(本题 3 分) (3093)

如图所示,波源 S_1 和 S_2 发出的波在 P 点相遇, P 点距波源 S_1 和 S_2 的距离分别为 3λ 和 $10\lambda/3$, λ 为两列波在介质中的波长,若 P点的合振幅总是极大值,则两波在P点的振动频率_____,波 源 S_1 的相位比 S_2 的相位领先______.

15、(本题 3 分)(3033)

一简谐振动用余弦函数表示,其振动曲线如图所示, 则此简谐振动的三个特征量为

16、(本题 3 分) (4087)

不规则地搅拌盛于绝热容器中的液体,液体温度在升高,若将液体看作系统,则:

- (1) 外界传给系统的热量_____零;
- (2) 外界对系统作的功 零;
- (3) 系统的内能的增量 零; (填大于、等于、小于)

17、(本题3分)(4318)

右图为一理想气体几种状态变化过程的 p-V 图,其中 MT 为等温线,MQ 为绝热线,在 AM、BM、CM 三种准静态过程中:

- (1) 温度升高的是____过程;
- (2) 气体吸热的是 过程.

18、(本题 3 分) (3712)

在迈克耳孙干涉仪的一条光路中,插入一块折射率为n,厚度为d的透明薄片.插入这块薄片使这条光路的光程改变了_____.

19、(本题 3 分) (3233)

一束自然光从空气投射到玻璃表面上(空气折射率为 1),当折射角为 30°时,反射光是完全偏振光,则此玻璃板的折射率等于

20、(本题 3 分) (5616)

一列高速火车以速度 u 驶过车站时,固定在站台上的两只机械手在车厢上同时划出两个痕迹,静止在站台上的观察者同时测出两痕迹之间的距离为 1 m,则火车上的观察者应测出这两个痕迹之间的距离为 .

三、计算题(共40分)

21、(本题 10 分) (0560)

一轻绳跨过两个质量均为 m、半径均为 r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为 m 和 2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为 $\frac{1}{2}mr^2$.将由两个定滑轮以及质量为 m 和 2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.

22、(本题 10 分) (5200)

已知波长为 λ 的平面简谐波沿x轴负方向传播. $x = \lambda/4$ 处质点的振动方程为

$$y = A\cos\frac{2\pi}{\lambda} \cdot ut \quad (SI)$$

- 1) 写出该平面简谐波的表达式...
- 2) 画出 t = T 时刻的波形图.

23、(本题 10 分) (3220)

波长 $\lambda = 600 \text{ nm} (1 \text{nm} = 10^{-9} \text{m})$ 的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为 30° ,且第三级是缺级.

- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 a 等于多少?
- (3) 在选定了上述(a+b)和 a 之后,求在衍射角 $-\frac{1}{2}\pi < \varphi < \frac{1}{2}\pi$ 范围内可能观察到的全部主极大的级次.

24、(本题 10 分) (4112)

汽缸内有 2 mol 氦气,初始温度为 27℃,体积为 20 L (升),先将氦气等压膨胀,直至体积加倍,然后绝热膨涨,直至回复初温为止.把氦气视为理想气体.试求:

- (1) 在 p-V 图上大致画出气体的状态变化过程.
- (2) 在这过程中氦气吸热多少?
- (3) 氦气的内能变化多少?
- (4) 氦气所作的总功是多少? (普适气体常量 $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$)