UNIVERSIDADE FEDERAL DA PARAÍBA - UFPB CENTRO DE INFORMÁTICA - CI DEPARTAMENTO DE COMPUTAÇÃO CIENTÍFICA - DCC DISCIPLINA: Métodos Matemáticos I

Aluno(a):

Lista de Exercícios Séries Numéricas - Testes de Convergência.

01. (Livro do Marivaldo, Ex. 2.8D, pg 64) Teste a convergência da série pelo teste da razão ou teste da raiz. Se ambos não funcionem, tente um dos outros testes dados em aula. Caso a mesma seja convergente, use seu programa e obtenha uma estimativa da soma da série pelo valor da soma parcial S_k de tal forma que $|S_k - S_{k-1}| \leq 10^{-3}$. Dê respostas com seis casas decimais, se possível.

(a)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{n^2}{n!}$ (c) $\sum_{n=1}^{\infty} \frac{(2^n + 3^n)^{1/n}}{n}$

(d)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
 (e) $\sum_{n=1}^{\infty} \frac{3n}{\sqrt{n^3+1}}$ (f) $\sum_{n=1}^{\infty} \frac{(-1)^n cos(n)}{n^2}$ (use radianos!)

(g)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+2}$$
 (h) $\sum_{n=1}^{\infty} n! \left(\frac{2}{n}\right)^n$ (I) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+2)}$.

02. (Livro do Marivaldo, Ex. 2.4B, pg. 50)

Em cada caso verifique se a função f(x) que estende o termo geral da série satisfaz as hipóteses do teste da integral e em seguida determine se a série é convergente ou não. Em caso de convergência, use o seu programa e obtenha S_{49} ; em seguida estime o erro entre a soma da série e o valor da soma parcial S₄₉. Sugestão. Use algum software algébrico para calcular as integrais envolvidas.

(a)
$$\sum_{n=3}^{\infty} \frac{3}{n(\ln(n))^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{(2n+3)^2}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+3)^2}$$

(c)
$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$

(e)
$$\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2n^2}{n^3+1}$$
 (e) $\sum_{n=2}^{\infty} \frac{1}{n^2-1}$ (f) $\sum_{n=1}^{\infty} \frac{\operatorname{arct}(n)}{n^2+1}$.

- 03. Em cada caso determine a quantidade mínima \mathbf{k} de termos que devem ser somados para aproximar a soma da série com um erro não superior à tolerância $\epsilon = 10^{-4}$. Em seguida use o seu programa e obtenha o valor de S_k , fornecendo a resposta com 5 (cinco) casas decimais.

 - (a) $\sum_{n=3}^{\infty} \frac{3}{n^4}$ (b) $\sum_{n=2}^{\infty} \frac{1}{3n^5}$ (c) $\sum_{n=4}^{\infty} \frac{2}{n^3}$

- (d) $\sum_{n=2}^{\infty} \frac{1}{4n^{3/2}}$ (e) $\sum_{n=2}^{\infty} \frac{2}{n^{4/3}}$ (f) $\sum_{n=2}^{\infty} \frac{1}{2n^{5/3}}$.
- 04. (Livro do Marivaldo, Ex. 2.4A, pg 50) Use os testes da Comparação ou da Comparação no Limite para determinar se a série é convergente. Caso a série seja convergente, use o seu programa e obtenha uma estimativa da soma da série pelo valor da soma parcial S_k tal que $|S_k - S_{k-1}| < 10^{-3}$. Dê respostas com seis casas decimais, se possível.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n^4 + n^2 + 1}$ (b) $\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n}$ (c) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$ (d) $\sum_{n=1}^{\infty} \frac{2 + \cos(n)}{n^2}$

- (e) $\sum_{n=1}^{\infty} \frac{arctg(n)}{n}$ (f) $\sum_{n=1}^{\infty} \frac{ln(n)}{n^3}$ (g) $\sum_{n=1}^{\infty} \frac{n+5}{n \cdot 2^n}$ (h) $\sum_{n=1}^{\infty} ln(1+1/2^n)$.

Referências.

- [1] Marivaldo P. Matos (2020); Séries e Equações Diferenciais. http://www.mpmatos.com.br/Serie_EDO/Series_EDO_2020.pdf
- [2] Earl Swokowski (1995); Cálculo com Geometria Analítica, vol 2.
- [3] G. B. Thomas et al. (2012) Cálculo, vol 2.