Assignment 7 - Caroline Tang 20115082

Project Info

Github username: carolinetang77 Github repository Date: March 9, 2022

Dragon Phylogeny

New dragons

I added Gible, Goomy, and Appletun from the Pokemon series to the phylogeny. All photos and information were obtained from Bulbapedia.

Gible

Original Gible Art (Source)

Goomy

Original Goomy Art (Source)

Appletun

Original Art (Source)

Creating the phylogeny

Load in all the libraries

```
library(ape)
library(reshape2)
library(ggplot2)
library(ggtree)
```

ggtree v3.2.1 For help: https://yulab-smu.top/treedata-book/

```
##
## If you use ggtree in published research, please cite the most appropriate paper(s):
##
## 1. Guangchuang Yu. Using ggtree to visualize data on tree-like structures. Current Protocols in Bioi:
## 2. Guangchuang Yu, Tommy Tsan-Yuk Lam, Huachen Zhu, Yi Guan. Two methods for mapping and visualizing
## 3. Guangchuang Yu, David Smith, Huachen Zhu, Yi Guan, Tommy Tsan-Yuk Lam. ggtree: an R package for v

##
## Attaching package: 'ggtree'
##
## The following object is masked from 'package:ape':
##
## rotate

library(ggimage)
```

Load in dragon data and trait weights

```
dragonNexus <- read.nexus.data("A7_Tang_Caroline.nex")
weightDat <- read.csv("https://colauttilab.github.io/Data/Weights.csv")</pre>
```

Convert dragon data to weighted traits

```
#separate weights and convert them to a numeric scale (1-35 where A = 10 and Z = 35)
weights <- paste(weightDat$Weight, collapse = "")</pre>
weights <- unlist(strsplit(weights, split = ""))</pre>
numericWeight <- vector(length = length(weights))</pre>
for (i in 1:length(weights)) {
  if (weights[i] %in% LETTERS) {
    numericWeight[i] <- which(LETTERS == weights[i]) + 9</pre>
  } else {
    numericWeight[i] <- as.numeric(weights[i])</pre>
  }
}
#multiply each trait by the weight
wtDragonNexus <- dragonNexus
for (i in 1:length(dragonNexus)) {
  Repweight <- dragonNexus[[i]]==1</pre>
  wtDragonNexus[[i]] <- numericWeight * Repweight</pre>
}
#convert to dataframe
wtDragonDF <- data.frame(matrix(unlist(wtDragonNexus), ncol = length(wtDragonNexus[[1]]), byrow = T))</pre>
row.names(wtDragonDF) <- names(wtDragonNexus)</pre>
```

Calculate Euclidean distances and convert to a matrix

```
wtDragonDist <- dist(wtDragonDF, method = "euclidean")
wtDragonDM <- as.matrix(wtDragonDist)</pre>
```

Create the tree using neighbour joining methods

Create phylogenetic tree, added dragons are highlighted in red

```
ggtree(wtDragoncol, layout = "rectangular") %<+% dragonLabel +
  geom_tree(aes(colour = group)) +
  geom_tiplab(aes(label = lab), size = 1.5) +
  geom_tiplab(aes(image = image), geom = "image", offset = 2, size = 0.1) +
  xlim(0, 70) +
  scale_colour_manual(values = c("black", "red")) +
  theme(legend.position = "none")</pre>
```

