CS&SS 321 - Data Science and Statistics for Social Sciences

Module III - Introduction to causal inference and linear models

Ramses Llobet

Module III

- ► This module introduces and reviews the topic of causation in science.
 - randomization.
 - ► applied causal inference.
 - causal modeling (module IV).
- It also introduces the linear regression model and the method of least squares (LS).

The statistics war of the late XXth century

The statistics war of the XXIth century

► Causal inferences requires a model outside of the statistical model.

Causes in, causes out

- ▶ Why do experiments work? When do they work?
- ► What if treatment is imperfect assigned?
- ► Should you *control* for anything? Everything?

Answers depend upon **causal assumptions** (\rightarrow) .

► An **assumption** is a premise or supposition that is accepted *without direct evidence*, often forming the basis for reasoning or an argument.

Causes in, causes out

- Causal assumptions requires causal knowledge of social systems.
- ► For example, where *X* represents **rain** and *Y* represents **puddles**.
 - ▶ What **causal assumption** (\rightarrow) you find more reasonable?

(i)
$$X \leftarrow Y$$

(ii)
$$X \rightarrow Y$$

Causal design

- ▶ **Step 1**: sketch a (scientific) casual model: $X \rightarrow Y$.
 - Causes in: assumptions reflect background knowledge (theory and literature review).
- ► Step 2: use the model to design data collection and statistical procedures.
- ► **Step 3**: use statistical analyses to **hypothesis test** and report results.
 - Causes out: test assumptions' implications about the causal mechanism.

Causal design: intervention

- ▶ In causal inference, an intervention is a deliberate and controlled manipulation of one or more variables in a system to assess their causal impact on the outcome of interest.
 - Example: Pouring a bucket of water on the floor creates a puddle; does rain follow?
- ► We formalize this via the **potential outcomes** framework.

Treatment indicator: $T_i \in \{0,1\}$, where i refers respondents.

- **▶** (1) example:
 - $ightharpoonup T_i = 0$ indicates no membership in a union.
 - $ightharpoonup T_i = 1$ indicates membership in a union.
- ► (2) example:
 - $ightharpoonup T_i = 0$ indicates no daughters.
 - ► $T_i = 1$ indicates having daughters.

Outcome: Y_i

- ▶ (1) example: redistribution attitudes (gincdif).
- ▶ (2) example: pro-feminist attitudes (progressive.vote).

- ▶ Consider the treatments' (T) causal mechanisms (\rightarrow) that drives the outcome (Y).
 - Why does labor union membership increase support for redistribution?
 - ▶ Why does having a daughter increase pro-feminist attitudes?

Potential outcomes $Y_i(0)$, $Y_i(1)$, where:

- **►** (1) example:
 - $ightharpoonup Y_i(0)$ represents redistribution attitudes without membership.
 - $ightharpoonup Y_i(1)$ represents redistribution attitudes with membership.
- ► (2) example:
 - $ightharpoonup Y_i(0)$ represents pro-feminist attitudes without daughters.
 - $ightharpoonup Y_i(1)$ represents pro-feminist attitudes with daughters.

The **fundamental problem of causality**, we cannot observe two outcomes at the same time:

individual treatment effect =
$$Y_{Ramses}(1) - Y_{Ramses}(0)$$
 (1)

Instead, we **estimate** effects by taking the differences in means between **treatment**, $\bar{Y}(1)$, and **control**, $\bar{Y}(0)$, groups.

average treatment effect =
$$\bar{Y}(1) - \bar{Y}(0)$$
 (2)

However, we can identify ATE if, and only if, the treatment D has been **randomly assigned** to each respondent i. Formally,

$$T_i \perp (Y_i(0), Y_i(1)) \tag{3}$$

- ► Think about random assignment as flipping a coin.
 - ▶ In **expectation** (as $n \to \infty$), a fair coin has a probability of 0.5 to show tails (0) or heads (1).
 - ▶ By definition, a random event has a probability of 0.5.

▶ What if, in expectation, a coin has a probability of 0.7 ?

► Is labor union membership a random occurrence?

▶ Is having a girl (instead of a boy) a random occurrence?

- ► **Selection bias**: Self-selection and unbalanced factors introduce bias in our statistical estimations.
 - Self-selection: Left-wing individuals are more likely to become labor union activists.
 - Unbalanced factors: Labor union members may systematically differ from non-union members in terms of factors such as occupation and income.

In observational studies, unconditional treatment effects are unlikely due to the influence of confounding factors, both observed and unobserved.

► However, sometimes we can assume **conditional random effects**.

$$T_i \perp (Y_i(0), Y_i(1)) | X_i. \tag{4}$$

- ► Let's work a short coding example.
- ► Open the file unions_sweden.Rmd, we will do only the **first** section.
- ► We will finish the remaining section next week.

From previous model: Data Generating Process

► Two very useful pieces of information from a DGP are its **mean** and **standard deviation**.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{N} X_i$$
; $S = \sqrt{\frac{1}{N} \sum_{i=1}^{n} (X_i - \bar{X})^2}$

where

- $ightharpoonup \bar{X}$ represents the sample mean.
- ► *N* is the number of **observations** in the sample.
- $ightharpoonup X_i$ represents **values** from a variable in the sample.
- ► *S* represents the **sample standard deviation**.

Standard devitation and variance

- ► The **standard deviation** and **variance** are both measures of the spread of a distribution.
 - ▶ To estimate the variance (S^2) , we simply take the **square** of the standard deviation (S).

$$S^{2} = \left(\sqrt{\frac{1}{N}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}}\right)^{2}$$

$$S^{2} = \frac{1}{N}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}$$

- ► S^2 is the **sample** variance.
- ► Q: Why choose the standard deviation over the variance to report **summary statistics**?

Mean and variance

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{n} X_i \quad ; \quad S^2 = \frac{1}{N} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- ▶ The sample mean (\bar{X}) describes the location (the center) of the data (distribution).
- ▶ The **sample variance** (S^2) measures the variability in the data (*distribution*).
 - ► The variance describes the **average deviation** in a distribution.

DGP vs. sample

We distinguish between the **Data Generating Process** (DGP) and the data **sample**.

- ▶ DGP or *population* is a **theoretical** concept describing how observed/sampled data is generated.
 - ▶ It follows a **distribution**, typically depicted as the *TRUE* (!?).
 - lts parameters, mean (μ) and variance (σ^2) , are **fixed**.
- ► The sample is an **empirical** construct, representing realizations/occurrences of a data process.
 - ► Sample data maps into **distributions** of *random variables*.
 - ▶ Its parameters, mean (\bar{X}) and variance (S^2) , are **random**.

Note: we use the sample to infer (approach) the underlying *TRUE* of a DGP.

DGP vs. sample

- ▶ The **expectation** E[.] of a random variable X, denoted as E[X], is a useful measure of central tendency of the DGP.
 - ► The expectation is also called the **expected value** or **mean**.
 - In the case of the normal distribution, the expectation is the first **central moment** and is denoted as μ .
- ► In general, a natural estimator of the expectation is the sample mean.

$$\mu = E[X] = \bar{X} = \frac{1}{n} \sum_{i=1}^{N} X_i$$

- We have a sample of UW students' grades.
- What may be a good candidate to estimate the mean of this population?

$$E[grades] = ?$$

- We have a sample of UW students' grades.
- What may be a good candidate to estimate the mean of this population?

$$E[grades] = 81$$

- ► However, is the distribution the same for all the departments?
- We can compare the grade distribution for these different sub-populations.
 - ► Group A
 - ► Group B
 - Group C
 - ► Group D

- We can condition the random variable grades on on a fixed value (x) of the variable group.
- ➤ We call this the conditional mean (or conditional expectation).

$$E[grades | group = x]$$

► For example, take the conditional mean of groups A and D.

$$E[grades \mid group = A] = 78$$

$$E[grades | group = D] = 84$$

► The values 78 and 84 are the mean grades in the subpopulations of groups A and D.

$$E[grades | group = D] - E[grades | group = A] = 84 - 78 = 6$$

- ► However, it is important to note that we **cannot** attribute **causality** or interpretation to these differences.
- ► Conditioning helps **describe variation**, but by themselves are neither a **model** nor an **explanation**.

Best predictor

- ▶ In statistics, our focus is on predicting quantities of interest.
- Prediction is the closest best guess for a quantity, considering all sample realizations.
- ► The **prediction error** is the distance of each data point from our best guess.
- Hence, the best predictor, θ, minimizes the prediction error
 (e) as much as possible.

$$MSE: E[(Y_i - \theta)^2]$$

- ► A measure of prediction error magnitude is the expectation of its square, also called **Mean Squared Error**.
 - ightharpoonup Note: The notation θ is arbitrary and, in this context, denotes the best predictor.

What is your **best guess** (θ) that **minimizes** the prediction error (MSE)?

N_i	Y_i	θ	$Y_i - \theta$	error
1	5			
2	7			
3	8			
4	9			
5	12			

$$MSE = E[(Y_i - \theta)^2]$$

N_i	Yi	θ	$Y_i - \theta$	error
1	5	5.5		
2	7	5.5		
3	8	5.5		
4	9	5.5		
5	12	5.5		

$$MSE = E[(Y_i - 5.5)^2]$$

N_i	Yi	θ	$Y_i - \theta$	error
1	5	5.5	5- <mark>5.5</mark>	
2	7	5.5	7-5.5	
3	8	5.5	8-5.5	
4	9	5.5	9-5.5	
5	12	5.5	12-5.5	

$$MSE = E[(Y_i - 5.5)^2]$$

N_i	Y_i	θ	$Y_i - \theta$	error
1	5	5.5	5-5.5	-0.5
2	7	5.5	7-5.5	1.5
3	8	5.5	8-5.5	2.5
4	9	5.5	9-5.5	3.5
5	12	5.5	12-5.5	6.5

$$MSE_1 = \frac{1}{5}(-0.5 + 1.5 + 2.5 + 3.5 + 6.5)^2$$

N_i	Y_i	θ	$Y_i - \theta$	error
1	5	5.5	5-5.5	-0.5
2	7	5.5	7-5.5	1.5
3	8	5.5	8-5.5	2.5
4	9	5.5	9-5.5	3.5
5	12	5.5	12-5.5	6.5

$$\begin{aligned} \textit{MSE}_1 &= \frac{1}{5} (-0.5 + 1.5 + 2.5 + 3.5 + 6.5)^2 \\ &= \frac{(13.5)^2}{5} = \frac{182.25}{5} = \textbf{36.45} \end{aligned}$$

Prediction error: second guess

N_i	Yi	θ	$Y_i - \theta$	error
1	5	9.2	5-9.2	
2	7	9.2	7-9.2	
3	8	9.2	8-9.2	
4	9	9.2	9-9.2	
5	12	9.2	12-9.2	

$$MSE_2 = E[(Y_i - 9.2)^2]$$

Prediction error: second guess

N_i	Y_i	θ	$Y_i - \theta$	result
1	5	9.2	5-9.2	-4.2
2	7	9.2	7-9.2	-2.2
3	8	9.2	8-9.2	-1.2
4	9	9.2	9-9.2	-0.2
5	12	9.2	12-9.2	2.8

$$MSE_2 = \frac{1}{5}(-4.2 + -2.2 + -1.2 + -0.2 + 2.8)^2$$

Prediction error: second guess

N_i	Y_i	θ	$Y_i - \theta$	result
1	5	9.2	5-9.2	-4.2
2	7	9.2	7-9.2	-2.2
3	8	9.2	8-9.2	-1.2
4	9	9.2	9-9.2	-0.2
5	12	9.2	12-9.2	2.8

$$MSE_2 = \frac{1}{5}(-4.2 - 2.2 - 1.2 - 0.2 + 2.8)^2$$

= $\frac{(-5)^2}{5} = \frac{25}{5} = 5$

Best predictor and prediction error

- ▶ Two best guesses are provided: $\theta_1 = 5.5$ and $\theta_2 = 9.2$.
- ► From these best guesses, two measures of prediction error are retrieved: $MSE_1 = 36.45$ and $MSE_2 = 5$.
- ► The best predictor minimizes prediction error given the data.
 - ▶ Which was the **best predictor**, θ_1 or θ_2 ?
 - ▶ It's evident that $MSE_1 > MSE_2$.
 - ► Therefore, 9.2 better predicts this DGP than 5.5.

Best predictor and conditional means

- ► Let's work a short coding example.
- ▶ Open the file BestGuess.Rmd, and complete all the exercises.

Linear model: intercept only

A special case of the regression model is when there are no regressors

$$Y = \mu + e$$

In the **intercept only model**, we find out that the best predictor is $\mu!$

Hence, the best predictor of an unconditional distribution is its **mean**. We can show this by computing the MSE:

MSE :
$$E[(Y - \theta)^2] = E[(Y - \mu)^2]$$