BTECH

(SEM III) THEORY EXAMINATION 2023-24 DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

0	Attempt all questions in brief.	2 x 7 =	14
Q no.	Question	Marks	C
1.	Determine the greatest lower bound and least upper bound of the set {2, 3, 6}, if they exist, in the Poset (D24, /).	2	0
b.	Express power set of each of these sets. 1) $\{\emptyset, \{\emptyset\}\}$ 2) $\{a, \{a\}\}$	2	1
c.	Investigate whether the function $f(x) = x^2 - 1$ is injective or not for $f: R \rightarrow R$.	2	2
đ.	Express $E(x, y, z) = xy + y^{2}z$ into its complete sum-of-products form.	-	
e.	Construct inverse of the following statement "If I wake up early	2	2
	in the morning, then I will be healthy."	2	3
f.	Show that identity element is unique in a group.		
g.	Compare Euler circuit and Hamiltonian circuit.	2	4
	ramintonian circuit.	2	5

Attempt any three of the following:

Q no.	Question	7 x 3 =	= 21
a.	Construct the Hasse Diagram for (D(C)	Marks	CO
	Construct the Hasse Diagram for $(P(S), \subseteq)$ where $P(S)$ is a power set defined on set $S=\{a, b, c\}$. Determine whether it is a Lattice or not.	7	1
b.	Solve the following Boolean functions using K-map: (i) $F(A,B,C,D) = \sum (m0,m1,m2,m4,m5,m6,m8,m9,m12,m13,m14)$ (ii) $F(A,B,C,D) = \sum (0,2,5,7,8,10,13,15)$	7	2
C.	hypotheses: "It is not sunny this afternoon and it is colder than m yesterday. We will go swimming only if it is sunny. If we do not go we will be home by sunset. conclusion: "We will be home by sure at the same and it is colder than m swimming, then we will take a canoe trip. If we take a canoe trip, then conclusion: "We will be home by sure at the same and it is colder than m	7	3
d.	Let G= {1, -1, i, - i} with the binary operation multiplication be an algebraic structure, where i = 1 then determine whether G is an Abelian group. Also if G is cyclic Group, then determine the generator of G.	7	4
e.	Explain Pigeon hole principle. Describe generalized form of Pigeon hole principle. If 6 colors are to paint 37 homes. Show that at least 7 of there will be of same color.	e 7	1

Subject Code: BCS303

PAPER ID-311571

Roll No:							

SEM III) THEORY EXAMINATION 2023-24 DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS

M.MARKS: 70

CI	E C	CT/	IRE	67
.71	и. (310	٩.

3.	Attempt any one part of the following:	$7 \times 1 =$	= 7
Q no.	Question	Marks	CO
	Let R be a binary relation on the set of all strings of 0 and 1 such that R = {(a,b): a and b have same number of 0's}. Show that whether R is reflexive, symmetric, transitive or a partial order relation.		1
U.	Show that (D42, /) is lattice. Compare the distributive and complemented lattice with example.	7	1

4.	Attempt any one part of the following:		
Q no.	Question	$7 \times 1 =$	= 7
a.	Solve the following Roclean 6	Marks	CO
	Solve the following Boolean function using K-map: $F(A B C) = (1.2.5.7) \text{ and } P(0.4.6)$	7	2
b.	F(A,B,C) = (1,2,5,7) and $D(0,4,6)$ using SOP.		
	If f: $R \rightarrow R$, g: $R \rightarrow R$ and h: $R \rightarrow R$ defined by $f(x) = 3x^2 + 2$, $g(x) = 7x - 5$ and $h(x) = 1/x$. Compute the following composition functions.	7	2
	(i) (fogoh)(x) (ii) (gog)(x) (iii) (goh)(x)		

Attempt any one part of the following: Q no. $7 \times 1 = 7$ Question Test the validity of the following argument. Marks CO a. "If there was a ball game, then traveling was difficult. If they arrived on time, then traveling was not difficult. They arrived on time. Therefore, There was no ball game." Describe ∃ and ∀ Quantifiers with example. "There is someone who got b. an A in the course" convert this sentence into predicate logic using 3 quantifiers. Prove the following argument. All man are mortal. Socrates is a man. Therefore, Socrates is mortal.

6.	Attorned		
Q no.	Attempt any one part of the following:		
	Ouestion	$7 \times 1 =$	= 7
a.	Describe Algebraic structure semigrana	Marks	CO
	Describe Algebraic structure, semigroup, thonoid and group. Also explain the relationship among them.	7	4
b.	Consider group $G = \{1, 2, 3, 4, 5, 6\}$		1
	Consider group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7. (a) Construct the multiplication table of G .	7	4
	(b) Compute 2 ⁻¹ , 3 ⁻¹ , 6 ⁻¹		7
	(c) Compute the set of	1	
	(c) Compute the orders and subgroups generated by 2 and 3.		-
	(d) Is G cyclic?		
	The state of the s		1

7.	Attempt any one part of the following:	
Q no.	Question / x 1	= 7
a.	Compare bipartite and complete graph with example. Draw K _{3,4} and K ₅ .	CO
1	Explain why these two graphs are not planar.	5
b.	Show that $K_{3,3}$ satisfies in equality $ E \le 3 V - 6$, but it is non- 7	+=-
	planar.(V=No. of Vertices, E=No. of Edges, R=No. of Regions)	