Wiktor Kuchta

4/6

Załóżmy, że $\operatorname{char}(K) = p > 0$ oraz $W(X) \in K[X]$ jest nierozkładalny i nierozdzielczy.

Wielomian W ma pewien pierwiastek wielokrotny $a \in \hat{K}$. Wielomian minimalny a nad K dzieli W, ale skoro W jest nierozdzielczy, to jest równy W. Skoro a jest pierwiastkiem wielokrotnym, to W'(a) = 0. Wielomian W' jest stopnia niższego niż wielomian minimalny W, więc W = 0. Jeśli $W(X) = \sum_{i=0}^{n} k_i X^i$, to $W'(X) = \sum_{i=1}^{n-1} i k_i X^{i-1}$. Zatem dla każdego i mamy $i k_i = 0$, więc $k_i = 0$ lub i dzieli p. Wynika stąd, że $W \in K[X^p]$.

4/7

Załóżmy, że char(K) = p > 0.

Załóżmy, że $K(a^p) \subsetneq K(a)$. Wtedy $x^p - a^p = (x - a)^p$ jest nierozkładalny nad $K(a^p)$, bo jego czynniki są postaci $(x - a)^k$, co da się wyrazić w $K(a^p)$ tylko dla k = p. Zatem jest to wielomian minimalny a nad $K(a^p)$ i a jest nierozdzielczy nad $K(a^p)$, więc też nad K.

Kontraponując, jeśli $a \in \hat{K}$ jest rozdzielczy nad K, to $K(a) = K(a^p)$.

4/8

Wiemy z wykładu, że jeśli a jest radykalny nad ciałem charakterystyki p>0, to istnieje najmniejsze n takie, że a^{p^n} należy do tego ciała.

Stopień a nad K wynosi co najwyżej p^n , bo $X^{p^n} - a^{p^n} \in K[X]$.

Skoro $\operatorname{sep}_{K(a)}(K) \cap \operatorname{rad}_{K(a)}(K) = K$ i $\operatorname{rad}_{K(a)}(K) = K(a)$, to $\operatorname{sep}_{K(a)}(K) = K$.

Wiemy z wykładu, że skoro $[K(a):K]<\infty$, to $[K(A):\sup_{K(a)}(K)]=[K(a):K]$ wynosi p^k dla pewnego k. Z radykalności, $W_a(X)=(X-a)^{p^k}=X^{p^k}-a^{p^k}\in K[X]$, więc $a^{p^k}\in K$ i k=n. Zatem $\deg(a/K)=p^n$.

Jeśli rozszerzenie $K \subset L$ jest skończone radykalne, to $L = K(a_1, \ldots, a_l)$ dla pewnych a_i . Możemy L otrzymać jako ciąg rozszerzeń K o jeden element radykalny:

$$L = K(a_1, \ldots, a_l) \supset K(a_1, \ldots, a_{l-1}) \supset \ldots \supset K(a_1) \supset K,$$

gdzie wszystkie stopnie są potęgą p, więc się mnożą do potęgi p równej [L:K].