

Egalisation Travaux Dirigés Signaux et systèmes discrets Filtrage numérique TD2

1 Filtrage RIF et convolution

Sur la figure, x[n] est la séquence d'entrée d'un filtre linéaire invariant discret de réponse impulsionnelle h[n]. Chaque séquence est de longueur finie.

- 1. Déterminer graphiquement la réponse y[n] du filtre.
- 2. Ecrire son équation aux différences.
- 3. Quelle est la longueur de la convolution de 2 séquences finies de longueur M et N?

2 Filtre RII d'ordre 1.

1. Soit la fraction rationnelle $\overline{h}_1(z) = \frac{1}{1-a \cdot z^{-1}}$ Cette fonction de la variable complexe z est la transformée en \mathcal{Z} de 2 séquences, $h_{11}[n]$ causale et $h_{12}[n]$ non causale. Déterminer $h_{11}[n]$ et $h_{12}[n]$ et préciser les domaines de convergence des transformées en \mathcal{Z} associées.

- 2. $h_{11}[n]$ et $h_{12}[n]$ sont les réponses impulsionnelles de 2 filtres RII appelés respectivement F_1 et F_2 . Ecrire les équations aux différences de ces 2 filtres.
- 3. On considère l'équation aux différences du filtre F_1 . Déterminer la formule générale donnant toutes les solutions h[n] de cette équation lorsque l'entrée $x[n] = \delta[n]$. Quelles sont les transformées en Z de ces solutions?
- 4. On suppose |a| < 1. Ecrire l'expression de la réponse en fréquence $\overset{\circ}{h}_1(v)$ du filtre F_1 . Que peut on dire de la réponse en fréquence du filtre F_2 ?
- 5. A.N. : a=0,9. Représenter le diagramme des pôles et des zéros du filtre F_1 .
- 6. On pose $z=e^{+j2\pi\nu}$ et on appelle M l'affixe de z dans le plan complexe d'origine O. Ecrire le module de $\overset{\circ}{h}_1(\nu)$ en fonction de OM et AM, A étant un point du plan que l'on précisera. Même question pour la phase.
- 7. En utilisant la question précédente, pour a=0.9, tracer l'allure du module de la réponse en fréquence $\overset{\circ}{h_1}(\nu)$ sur l'intervalle $0 \leq v \leq 2$. Quelle fonction réalise ce filtre : passe-bas, passe-haut, passe-bande, coupe-bande ? Comment évoluent ces courbes lorsque a varie entre -1 et +1? (envisager a=0,1 et a=-0,9)

3 Filtre RII d'ordre 2.

- 1. Soit la fraction rationnelle $\bar{h}_2(z) = \frac{G}{(1-a\cdot z^{-1})(1-b\cdot z^{-1})}$ dans laquelle |a| < |b| et G > 0. Cette fraction se décompose en éléments simples sous la forme $\bar{h}_2(z) = \frac{G}{a-b} \left[\frac{a}{(1-a\cdot z^{-1})} \frac{b}{(1-b\cdot z^{-1})} \right]$ En déduire toutes les séquences $h_{2i}[n]$ dont $\bar{h}_2(z)$ peut être la transformée en \mathcal{Z} et préciser les domaines de convergence associés. A.N.: a = 0.5; b = -2. Préciser quelle séquence correspond à la réponse impulsionnelle d'un filtre stable
- 2. $a = \rho \cdot e^{j\theta}$; $b = \rho \cdot e^{-j\theta}$. Parmi toutes les séquences $h_{2i}[n]$, on choisit la séquence causale, notée $h_{2c}[n]$ Préciser la condition de stabilité du filtre de réponse impulsionnelle $h_{2c}[n]$ et le domaine de convergence associé pour la transformée en \mathcal{Z} . Ecrire l'équation aux différences du filtre. A.N. : p = 0,95; $\Theta = \pi/4$ A partir du diagramme des pôles et des zéros, dessiner l'allure du module de la réponse en fréquence du

filtre. Quelle fonction réalise-t-il : passe-bas, passe-haut, passe-bande, coupe-bande ?