PROBLEM STATEMENT1:

Heart disease can be managed effectively with a combination of lifestyle changes, medicine and, in some cases, surgery. With the right treatment, the symptoms of heart disease can be reduced and the functioning of the heart improved. The predicted results can be used to prevent and thus reduce cost for surgical treatment and other expensive. The overall objective of my work will be to predict accurately with few tests and attributes the presence of heart disease. Attributes considered form the primary basis for tests and give accurate results more or less. Many more input attributes can be taken but our goal is to predict with few attributes and faster efficiency the risk of having heart disease. Decisions are often made based on doctors' intuition and experience rather than on the knowledge rich data hidden in the data set and databases. This practice leads to unwanted biases, errors and excessive medical costs which affects the quality of service provided to patients. Data mining holds great potential for the healthcare industry to enable health systems to systematically use data and analytics to identify inefficiencies and best practices that improve care and reduce costs. According to (Wurz & Takala, 2006) the opportunities to improve care and reduce costs concurrently could apply to as much as 30% of overall healthcare spending. The successful application of data mining in highly visible fields like e-business, marketing and retail has led to its application in other industries and sectors. Among these sectors just discovering is healthcare. The healthcare environment is still "information rich" but "knowledge poor". There is a wealth of data available within the healthcare systems. However, there is a lack of effective analysis tools to discover hidden relationships and trends in the data for African genres.

SOLUTION:

Clinical decisions are often made based on doctor's insight and experience rather than on the knowledge rich data hidden in the dataset. This practice leads to unwanted biases, errors and excessive medical costs which affects the quality of service provided to patients. The proposed system will integrate clinical decision support with computer-based patient records (Data Sets). This will reduce medical errors, enhance patient safety, decrease unwanted practice variation, and improve patient outcome. This suggestion is promising as data modeling and analysis tools, e.g., data mining, have the potential to generate a knowledge rich environment which can help to significantly improve the quality of clinical decisions. There are voluminous records in medical data domain and because of this, it has become necessary to use data mining techniques to help in decision support and prediction in the field of healthcare. Therefore, medical data mining contributes to business intelligence which is useful for diagnosing of disease.

PROBLEM STATEMENT2:

The major challenge in heart disease is its detection. There are instruments available which can predict heart disease but either it are expensive or are not efficient to calculate chance of heart disease in human. Early detection of cardiac diseases can decrease the mortality rate and overall complications. However, it is not possible to monitor patients everyday in all cases accurately and consultation of a patient for 24 hours by a doctor is not available since it requires more sapience, time and expertise. Since we have a good amount of data in today's world, we can use various machine learning algorithms to analyze the data for hidden patterns. The hidden patterns can be used for health diagnosis in medicinal data.

SOLUTION:

The working of the system starts with the collection of data and selecting the important attributes. Then the required data is preprocessed into the required format. The data is then divided into two parts training and testing data. The algorithms are applied and the model is trained using the training data. The accuracy of the system is obtained by testing the system using the testing data. This system is implemented using the following modules. Collection of Dataset Selection of attributes, Data Pre-Processing, Balancing of Data, Disease Prediction.