1 Einführung

Messungen:

- Beschleunigung Sensor1 und Sensor2 bei 45 Grad
- Beschleunigung Sensor1 und Sensor2 bei 30 Grad
- Beschleunigung Sensor1 und Sensor2 bei 15 Grad
- \bullet Beschleunigung Sensor
1 und Sensor 2 bei 0 Grad
- \bullet Beschleunigung Sensor
1 und Sensor 2 bei -15 Grad
- \bullet Beschleunigung Sensor
1 und Sensor 2 bei -30 Grad
- \bullet Beschleunigung Sensor
1 und Sensor 2 bei -45 Grad
- Winkelgeschwindigkeit Sensor1 und Sensor2 bei 0 rad/sec

2 Aktorik und Sensorik

Der folgenden Abschnitt beschreibt die verwendeten elektrischen Bauteile, um einerseits die benötigten physikalischen Größen zu messen und andererseits die verwendete Aktorik um das Aufspringen und Balancieren der Würfelseite zu ermöglichen.

Die Aufgabe der Sensorik besteht darin die Zustandsgrößen des Systemes zu bestimmen. Hierfür werden zwei GYR-521-Platinen verwendet die jeweils mit einem MPU6050-IC der Firma InvenSense bestückt sind. Diese bieten jeweils einen dreiachsigen Beschleunigungssensor und Gyroskop. Mit Hilfe dieser Messwerte können die Zustandsgrößen φ und $\dot{\varphi}$ berechnet werden. Die Sensoren bieten die zusätzliche Möglichkeit einen variablen Tiefpassfilter zu verwenden um eine erste Glättung der Messwerte durchzuführen. Die Konfiguration und Auswertung der Sensoren erfolgt über eine I^2C -Schnittstelle. Die Justierung und Auswertung der Sensoren wird näher in \ref{C} beschrieben.

Abschnitt 3 zeigt den Einfluss eines Motormomentes auf die Position und Gewschwindigkeit der Würfelseite. Um diese Moment zu erzeugen wird ein bürstenloser DC-Motor der Firma MaxonMotor verwendet (EC 45 flat, 50 Watt). Für das Aufspringen des Würfels ist die maximale Drehzahl des Motors von Bedeutung, die 10000 Umdrehung pro Minute des gewählten Motor reichen hierbei aus um eine ausreichend hohe kinetische Energie der Schwungmasse zu ermöglichen. Die Robustheit der Regelung wird durch das maximale Drehmoment limitiert, welches in diesem Fall bei 83.4 mNm liegt. Die Ansteuerung des Motors erfolgt über den Treiberbaustein ESCON 36/3 EC der ebenfalls von der Firma Maxon Motor vertrieben wird. Dieser ermöglicht die Steuerung des Drehmoments über ein PWM-Signal und die Auswertung der Winkelgeschwindigkeit $\dot{\psi}$ über ein analog Signal.

Mit Hilfe einer mechanischen Bremse kann die Schwungmasse stoßartig zum Stillstand gebracht werden. Dadurch wird die kinetische Energie der Schwungmasse teilweise auf das Gesamtsystem übertragen und ermöglicht somit das Aufspringen. Die Bremsbacken werden über einen Servomotor betätigt, welcher durch ein PWM-Signal kontrolliert.

Zur Ansteuerung der Aktorik und Sensorik wird ein STM32F4Discovery-Board der Firma STMicroelectronics verwendet. Die Programmierung erfolgt über eine, auf Eclipse basierende, Toolkette. Um die Auswertung der Sensordaten und den Entwurf der Regelung zu erleichtern, wird der Quellcode anschließend in Simulink-Blöcke implementiert.

3 Modellierung der Systemdynamik

In dem folgenden Abschnitt werden die Bewegungsgleichungen mit Hilfe des Lagrange Formalismus hergeleitet. Aus diesen Gleichung kann im Anschluss eine Zustandsraumdarstellung aufgestellt werden, welche als Grundlage für den Reglerentwurf dient.

Abbildung 1: Mechanischer Aufbau, Quelle: eigene Darstellung

Der Prototyp besteht aus einem starren Körper der in A auf einer Achse gelagert ist. In B ist eine Schwungmasse über einen Motor mit dem Körper verbunden. Somit verfügt das Gesamtsystem über zwei Freiheitsgrade, welche durch die generalisierten Koordinaten

$$q_1 = \varphi \qquad q_2 = \psi \tag{1}$$

beschrieben werden. Der Winkel φ wird von den Achsen y und y_K eingeschlossen. Der Winkel beschreibt die rotatorische Verschiebung der Schwungmasse zu dem Körper. Die folgenden Größen beschreiben die weiteren physikalischen Gegebenheiten des Systems.

$q_1 = \varphi$	Ausfallwinkel des Körpers
$q_2 = \psi$	Winkel zwischen Schwungmasse und Körper
A	Drehpunkt des Körpers
B	Drehpunkt des Schwungrades
l_{AB}	Abstand zwischen A und B
l_{AC}	Abstand zwischen A und dem Schwerpunkt des Körpers
m_K	Masse des Körpers
m_R	Masse des Schwungrades
J_K^A	Massenträgheitsmoment des Körper um A
$J_K^A \ J_R^B$	Massenträgheitsmoment der Schwungmasse um B
C_{φ}	Dynamischer Reibkoeffizient des Körpers in A
C_{ψ}	Dynamischer Reibkoeffizient des Schwungrades in B
T_{M}	Drehmoment des Motor

Um die Bewegungsgleichungen des Systems zu ermitteln wird der Lagrange Formalismus verwendet. Dieser basiert auf der Lagrange-Funktion L, welche die Differenz der kinetischen Energie T und der potenziellen Energie V des Systems beschreibt.

$$T = \frac{1}{2} [(J_K^A + m_R \cdot l_{AB}^2) \dot{\varphi}^2 + J_B^R (\dot{\varphi} + \dot{\psi})^2]$$
 (2)

$$V = g(m_R \cdot l_{AB} + m_K \cdot l_{AC})cos(\varphi)$$
(3)

$$L = T - V = \frac{1}{2} [(J_K^A + m_R \cdot l_{AB}^2)\dot{\varphi}^2 + J_B^R(\dot{\varphi} + \dot{\psi})^2] - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})\cos(\varphi)$$
(4)

In dem System wirken unterschiedliche Kräfte. Einerseits erzeugt der Motor ein Drehmoment, welches die virtuelle Arbeite δW_M verursacht. Andererseits verrichtet die Gravitation die virtuelle Arbeite δW_G . Zusätzlich muss die, durch die Reibung entstandene, Verlustleistung berücksichtigt werden. In diesem Fall wird die Reibleistung mit den Rayleigh'schen Dissipationsfunktionen D_{φ} und D_{ψ} beschrieben und verrichten die virtuelle Arbeit δW_D .

$$-\delta W_M = T_M \cdot \delta \psi \tag{5}$$

$$-\delta W_G = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) \cdot \delta \varphi \tag{6}$$

$$D_{\varphi} = \frac{1}{2} C_{\varphi} \cdot \dot{\varphi}^2 \tag{7}$$

$$D_{\psi} = \frac{1}{2} C_{\psi} \cdot \dot{\psi}^2 \tag{8}$$

$$D = D_{\varphi} + D_{\psi} = \frac{1}{2} C_{\varphi} \cdot \dot{\varphi}^2 + \frac{1}{2} C_{\psi} \cdot \dot{\psi}^2 \tag{9}$$

$$-\delta W_D = -C_{\varphi} \cdot \dot{\varphi} \cdot \delta \varphi - C_{\psi} \cdot \dot{\psi} \cdot \delta \psi \tag{10}$$

Die Summe der virtuellen Arbeiten, welche von den verschiedenen Kräften verrichtet wird, ergibt die virtuelle Arbeit des Gesamtsystems δW . In dem die verrichtete Arbeit partiell nach den beiden generalisierten Koordinaten φ und ψ differenziert wird, können die beiden generalisierten Kraftkomponenten Q_{φ} und Q_{ψ} berechnet werden.

$$Q_{\varphi} = g(m_K \cdot l_{AC} + m_R \cdot l_{AB}) \sin(\varphi) - C_{\varphi} \cdot \dot{\varphi}$$
(11)

$$Q_{\psi} = T_M - C_{\psi} \cdot \dot{\psi} \tag{12}$$

Bei dem Prototyp handelt es sich um ein nicht konservatives System, da durch die Reibung mechanische Energie verloren geht und der Motor dem System mechanische Energie zuführt. Da die beiden generalisierten Koordinaten φ und ψ voneinander unabhängig sind können aus dem d'Alembert'schen Prinzip zwei Bewegungsgleichungen abgeleitet werden.

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_i} - \frac{\partial T}{\partial q_i} = Q_i \tag{13}$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\varphi}} - \frac{\partial T}{\partial \varphi} = Q_{\varphi} \tag{14}$$

$$(J_K^A + J_R^B + m_R \cdot l_{AB}^2)\ddot{\varphi} + J_R^B \cdot \ddot{\psi} - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})\sin(\varphi) + C_{\psi} \cdot \dot{\psi} = 0$$

$$(15)$$

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{\psi}} - \frac{\partial T}{\partial \psi} + \frac{\partial T}{\partial \dot{\psi}} = Q_{\psi} \tag{16}$$

$$J_R^R \cdot \ddot{\psi} = T_M - C_\psi \cdot \dot{\psi} - J_R^B \cdot \ddot{\varphi} \tag{17}$$

Durch Einsetzen von (17) in (15) ergibt sich die folgende Bewegungsgleichung für die Würfelseite.

$$\ddot{\varphi} = \frac{g(m_R \cdot l_{AB}^2 + m_K \cdot l_{AC})sin(\varphi) - C_{\varphi} \cdot \dot{\varphi} + C_{\psi} \cdot \dot{\psi} - T_M}{J_K^A + m_R \cdot l_{AB}^2}$$
(18)

Die Bewegungsgleichung für die Schwungmasse ergibt sich durch Einsetzen von (18) in (17).

$$\ddot{\psi} = \frac{(J_K^A + m_R \cdot l_{AB}^2 + J_R^B)(T_M - C_\psi \cdot \dot{\psi})}{(J_K^A + m_R \cdot l_{AB}^2)J_R^B} + \frac{C_\varphi \cdot \dot{\varphi} - g(m_R \cdot l_{AB} + m_K \cdot l_{AC})sin(\varphi)}{J_K^A + m_R \cdot l_{AB}^2}$$
(19)

Mit Hilfe der Bewegungsgleichungen kann nun eine Zustandsraumdarstellung aufgestellt werden. Hierfür werden die nichtlinearen Terme entsprechend linearisiert.

$$\mathbf{x} = \begin{pmatrix} \varphi \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} \varphi \\ \dot{\varphi} \\ \dot{\psi} \end{pmatrix} \qquad u = T_M \tag{20}$$

$$\dot{\mathbf{x}} = \mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot u \tag{21}$$

$$\mathbf{y} = \mathbf{C} \cdot \mathbf{x} + \mathbf{D} \cdot u \tag{22}$$

4 Sensorik

Die Aufgabe der verwendeten Sensorik liegt darin die Werte für φ , und $\dot{\varphi}$ zu bestimmen. Hierfür wurden zwei MPU6050 IC's verwendet. Diese verfügen jeweils über einen Beschleunigungssensor und Gyroskop, welche Werte für drei Achsen ausgeben. Die Position und Ausrichtung der Sensoren ist in ?? dargestellt.

Abbildung 2: Position der Sensoren, Quelle: eigene Darstellung

4.1 Winkelschätzung

Die Sensoren keine Wege bzw. Winkel. Somit muss der Winkel φ berechnet werden. Die gemessenen Sensorwerte hängen von r_{S1} bzw. r_{S2} ab, welche den Abstand zwischen den Sensoren und dem Drehpunkt A beschreiben. Zusätzlich beeinflussen neben dem Winkel φ auch dessen beiden Ableitungen $\dot{\varphi}$ und $\ddot{\varphi}$ die Sensorausgabe. Allerdings lassen sich aus den Beschleunigungswerten der beiden Sensoren wie folgt der aktuelle Wert von φ berechnen.

$$\ddot{S}_{i} = \begin{pmatrix} \ddot{x}_{i} \\ \ddot{y}_{i} \\ \ddot{z}_{i} \end{pmatrix} = \begin{pmatrix} r_{Si} \cdot \ddot{\varphi} + \sin(\varphi) \cdot g \\ -r_{Si} \cdot \dot{\varphi}^{2} - \cos(\varphi) \cdot g \\ 0 \end{pmatrix} \qquad i \in [1; 2]$$
 (24)

$$\alpha = \frac{r_{S1}}{r_{S2}} \tag{25}$$

$$\ddot{x}_1 - \alpha \cdot \ddot{x}_2 = g(1 - \alpha)\sin(\varphi) \tag{26}$$

$$\ddot{y}_1 - \alpha \cdot \ddot{y}_2 = -g(1 - \alpha)\cos(\varphi) \tag{27}$$

$$\frac{\ddot{x}_1 - \alpha \cdot \ddot{x}_2}{\ddot{y}_1 - \alpha \cdot \ddot{y}_2} = -tan(\varphi) \tag{28}$$

4.2 Kalibrierung und Justierung

Die Sensoren geben die Beschleunigungs- und Geschwindigkeitswerte als 16 Bit Werte im Zweierkomplement aus. Diese Rohwerte müssen in die mit Hilfe eines Ausgleichspolynoms in die jeweilige SI-Einheit umgerechnet werden.

4.2.1 Umrechnung der Winkelgeschwindigkeiten

In der Ruhelage werden 10000 Geschwindigkeitswerte der Sensoren aufgenommen. Über die Abweichung des Mittelwerts zu dem Sollwert ($\dot{\phi}=0$) wird die konstante Messabweichung ermittelt. Zusätzlich stellt der Hersteller einen Faktor zur Umrechnung der Roh- in SI-Werte. Daraus ergibt sich das folgende Polynom erster Ordnung zur Umrechnung der Gyroskopwerte in Winkelgeschwindigkeiten.

4.2.2 Umrechnung der Beschleunigungswerte

Um das Polynom zur Umrechnung der Beschleunigungswerte zu ermitteln werden sieben Messungen in den fixen Ausfallpositionen $\phi \in [-45, -30, -15, 0, 15, 30, 45]$ durchgeführt. Pro Position werden m=10000 Messwerte aufgenommen. Da in der Ruhelage die Beschleunigung lediglich von dem aktuellen Ausfallwinkel abhängt ist der Sollwert für jede Position bekannt. Somit kann ein Polynom erster Ordnung approximiert werden um Mittelwerte der sieben Positionen in die entsprechenden Beschleunigungswerte umzurechnen.

Modellbildung und Bestimmung der Systemgrößen

Literatur

- [1] Wolfgang Nolting: Grundkurs Theoretische Physik2- Analytische Mechanik
- $[2]\,$ Thomas R. Kane: Dynamics Theory and Applications
- [3] Ottmar Beucher: Signale und Systeme Theorie, Simulation und Anwendung