A Step-Back

A Step-Back

Chapter 3

- Strings
- Regular expressions
- Tokens
- Transition diagrams
- •Finite Automata

Now What?

Chapter 4

- •Grammars
- Derivations
- Parse-trees
- Top-down parsing (LL)
- Bottom-up paring (LR, SLR, LALR)

We Need Some Tools

- To help in semantic analysis
- To help in intermediate code generation
- Two such tools
 - Semantic rules (Syntax-Directed Definitions)

```
PRODUCTION SEMANTIC RULE E \rightarrow E_1 + T E.code = E_1.code \parallel T.code \parallel '+'
```

- Semantic actions (Syntax Directed Translations)

```
E \rightarrow E_1 + T \{ \text{ print } '+' \}
```

Syntax-Directed Definitions

- Context-free grammar
- With attributes and rules to calculate the attributes

PRODUCTION $E \to E_1 + T$

SEMANTIC RULE $E.code = E_1.code \parallel T.code \parallel '+'$

Two Types of Attributes

SDD involving only synthesized attributes is called *S-attributed*

Synthesized Attributes

Attribute of the node is defined in terms of:

- Attribute values at children of the node
- Attribute value at node itself

Two Types of Attributes

Inherited Attributes

Attribute of the node is defined in terms of:

- Attribute values at parent of the node
- Attribute values at siblings
- Attribute value at node itself

	PRODUCTION	SEMANTIC RULES
1)	$L \to E \mathbf{n}$	L.val = E.val
2)	$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
3)	$E \to T$	E.val = T.val
4)	$T \rightarrow T_1 * F$	$T.val = T_1.val \times F.val$
5)	$T \to F$	T.val = F.val
6)	$F \rightarrow (E)$	F.val = E.val
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

A parse tree showing the values of its attributes is called *annotated parse tree*.

Give the annotated parse tree of (3+4)*(5+6)n

	PRODUCTION	SEMANTIC RULES
1)	$L \to E \mathbf{n}$	L.val = E.val
2)	$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$
3)	$E \to T$	E.val = T.val
4)	$T \rightarrow T_1 * F$	$T.val = T_1.val \times F.val$
5)	$T \to F$	T.val = F.val
6)	$F \rightarrow (E)$	F.val = E.val
7)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.\mathbf{lexval}$

When Are Inherited Attributes Useful?

PRODUCTION

- 1) $T \rightarrow F T'$
- 2) $T' \rightarrow *FT'_1$
- 3) $T' \rightarrow \epsilon$
- 4) $F \rightarrow \mathbf{digit}$

	PRODUCTION	SEMANTIC RULES
1)	$D \to T L$	L.inh = T.type
2)	$T o \mathbf{int}$	T.type = integer
3)	$T o \mathbf{float}$	T.type = float
4)	$L \to L_1$, id	$L_1.inh = L.inh$
		$addType(\mathbf{id}.entry, L.inh)$
5)	$L o \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$

Give annotated parse-trees for: int a, b, c

Evaluation Orders of SDDs

- Annotated parse tree shows attribute values
- Dependency graph helps us determine how those values are computed

Topological Order

S-Attributed Definitions

- · Every attribute is synthesized
- We can evaluate its attribute in any bottom-up order of the nodes of the parse tree

(e.g. postorder traversal -> LR parser).

L-Attributed Definitions

- Dependency graph edges can only go from left to right
 - i.e. use attributes from above or from the left

	PRODUCTION	SEMANTIC RULES
1)	$D \to T L$	L.inh = T.type
2)	$T o \mathbf{int}$	T.type = integer
3)	$T o \mathbf{float}$	T.type = float
4)	$L \to L_1$, id	$L_1.inh = L.inh$
		$addType(\mathbf{id}.entry, L.inh)$
5)	$L \to \mathbf{id}$	$addType(\mathbf{id}.entry, L.inh)$

Syntax-Directed Translations

- Context-free grammar
- Can implement SDDs
- Program fragments embedded within production bodies
 - called semantic rules
 - Can appear anywhere within the production body
- Steps are usually as follows
 - Build parse tree
 - perform actions as you traverse left-to-right, depth-first (preorder)

```
\begin{array}{ccccc} L & \rightarrow & E \ \mathbf{n} & \{ \ \operatorname{print}(E.val); \ \} \\ E & \rightarrow & E_1 + T & \{ \ E.val = E_1.val + T.val; \ \} \\ E & \rightarrow & T & \{ \ E.val = T.val; \ \} \\ T & \rightarrow & T_1 * F & \{ \ T.val = T_1.val \times F.val; \ \} \\ T & \rightarrow & F & \{ \ T.val = F.val; \ \} \\ F & \rightarrow & (E) & \{ \ F.val = E.val; \ \} \\ F & \rightarrow & \mathbf{digit} & \{ \ F.val = \mathbf{digit}.lexval; \ \} \end{array}
```

Implementing L-Attributed SDDs

- L-attributed definitions can be used in many translation applications
- · Several methods of implementation
 - Build parse tree and annotate
 - Build parse tree, add actions, execute in preorder
 - Recursive descent

Recursive Descent

- Function A for each nonterminal A
- Arguments of A are inherited attributes of nonterminal A
- Return value of A is the collection of synthesized attributes of A

```
For that rule we want to generate labels: L1: C
L2: S1
S \rightarrow \textbf{while} (C) S_1 \qquad L1 = new();
L2 = new();
S_1.next = L1;
C.false = S.next;
C.true = L2;
S.code = \textbf{label} \parallel L1 \parallel C.code \parallel \textbf{label} \parallel L2 \parallel S_1.code
```

```
For that rule we want to generate labels:
S \to \mathbf{while} (C) S_1
                         L1: C
                         L2: S1
 string S(label next) {
       string Scode, Ccode; /* local variables holding code fragments */
       label L1, L2; /* the local labels */
       if ( current input == token while ) {
              advance input;
              check '(') is next on the input, and advance;
              L1 = new();
              L2 = new();
              Ccode = C(next, L2);
              check ')' is next on the input, and advance;
              Scode = S(L1);
              return("label" ||L1|| Ccode || "label" ||L2|| Scode);
       else /* other statement types */
 }
```

 $S \to \mathbf{while} (C) S_1$

For that rule we want to generate labels:

L1: C L2: S1

```
string S(\text{label } next) {
    string Scode, Ccode; /* local variables holding code fragment label L1, L2; /* the local labels */
    if ( current input == token while ) {
        advance input;
        check '(' is next on the input, and advance;
        L1 = new();
        L2 = new();
        Ccode = C(next, L2);
        check ')' is next on the input, and advance;
        Scode = S(L1);
        return("label" || L1 || Ccode || "label" || L2 || Scode
}
else /* other statement types */
}
```

```
void S(label\ next) {
    label L1,\ L2;\ /* the local labels */
    if ( current input == token while ) {
        advance input;
        check '(' is next on the input, and advance;
        L1 = new();
        L2 = new();
        print("label",\ L1);
        C(next,\ L2);
        check ')' is next on the input, and advance;
        print("label",\ L2);
        S(L1);
    }
    else /* other statement types */
}
```