Object Detection in Images using YOLOv5

This mini project explores object detection using the YOLOv5 model.

Presented By- TechnoGeeks

Kiran Yadav (202410116100102)

Gulsan Kumari (202410116100079)

Dolly Prajapati(202410116100069)

Khushi Kumari (202410116100101)

What is Object Detection?

Key Computer Vision Task

Detects and locates objects in images with bounding boxes.

Object Identification

Determines what objects are present in the scene.

Use Cases

- Self-driving cars
- Security systems
- Medical imaging

SciPy S

statsmodels

Technologies & Libraries

Google Colab

Cloud platform to run Python code seamlessly.

Data set

COCO Dataset (Common

Objects in Context)

Automation Tools

YOLOv5 Toolkit (from Ultralytics) -Official GitHub codebase for the YOLOv5 model.

Python Libraries

- torch: Deep learning framework
- opency: Image processing
- pathlib, os: File management
- IPython.display: Display outputs
- google.colab.files: Image uploads

What is YOLOv5?

Unified Detection Model

Detects objects in one forward pass for real-time speed.

Lightweight & Fast

Efficient architecture making it easy to deploy.

Pretrained on COCO

Recognizes 80+ common objects from a large dataset.

- YOLOv5 breaks the image into grid cells
- Each grid cell is responsible for detecting objects whose center falls in that cell.

YOLOv5 Internal Workflow

1 Image Input
Resized to 640x640 pixels

Feature Extraction

Backbone extracts important features

Feature Enhancement

Neck refines multi-scale feature maps

Prediction Head

Outputs bounding boxes, classes, and confidence

Post-processing

Final Output

5

6

NMS removes overlapping duplicates

Objects detected and labeled on image

YOLOv5 Model Architecture

1 Backbone (CSPDarknet)

- Extracts basic visual features from the input image (like edges, shapes, textures).
- Think of it like a visual scanner that looks at the image and converts it into useful data

2 Neck (PANet)

- Helps the model understand **features at multiple scales** (small, medium, large objects).
- Combines low-level details (edges, colors) with high-level concepts (shapes, objects).

3 Head

Takes the output from the neck and makes predictions:

- Bounding boxes
- Class labels
- Confidence scores

4 Output

Final detections with labels

Project Workflow

OUTPUT

Real-World Applications

Autonomous Vehicles

Pedestrian and obstacle detection for safety

Security Systems

Facial recognition and anomaly detection

Retail Analytics

Counting people and products in stores

Medical Imaging

Identifying conditions from scans automatically

THANK YOU