گزارش پروژه: مشاور هوشمند کسبوکار

پرهام طالبيان

۱۰ فروردین ۱۴۰۴

۱ مرور کلی پروژه

هدف این پروژه توسعه یک مشاور هوشمند کسبوکار با استفاده از تکنیکهای مدرن هوش مصنوعی و مدلهای زبانی بزرگ (LLM) است. این عامل هوشمند به افراد علاقهمند به راهاندازی کسبوکار کمک می کند تا مشاورهای شخصی سازی شده، دقیق و قابل اجرا دریافت کنند.

این مشاور از منابع مختلف داده شامل فایلهای ،Word، PDF تاریخچه گفتگو و جستجوهای وب بهره میبرد و با ترکیب دادههای تخصصی و عمومی، پشتیبانی عملیاتی و قابل اعتماد ارائه میدهد.

۲ اهداف پروژه

- فراهمسازی مشاوره کسبوکار با زبان طبیعی با استفاده از .LLM
 - کمک به ایجاد و اصلاح برنامه کسبوکار.
 - استفاده از منابع متنوع داده (اسناد/ گفتگو/ وب).
 - پیگیری اقدامات و ارائه توصیههای شخصی سازی شده.

۳ ویژگیهای کلیدی

- موتور پاسخگویی به سوالات
- سيستم خواندن اسناد ،Word (PDF تاريخچه گفتگو)
 - یکپارچهسازی جستجوی وب
 - تولید و پیگیری برنامه کسبوکار
 - حافظه عامل و سیستم پیگیری

۴ تکنیکها و معماری هوش مصنوعی

- یکپارچهسازی :LLM مبتنی بر GPT یا مدلهای منبعباز
 - تولید تقویتشده با بازیابی (RAG)
- جستجوی معنایی با استفاده از پایگاهدادههای برداری (مانند ،Chroma) FAISS
 - معماری چندعاملی (اختیاری)

۱.۴ نمای کلی معماری سیستم

۵ مسیر اجرای پروژه

1.۵ فاز ۱: طراحی و برنامهریزی

- تعریف دامنه و پرسونای کاربر
 - شناسایی ویژگیهای اصلی
 - انتخاب ابزارها و فناوریها

۲.۵ فاز ۲: راهاندازی محیط توسعه

- راهاندازی محیط پایتون و نصب وابستگیها
 - اتصال و تست اولیه LLM

۳.۵ فاز ۳: خواندن دادهها و بازیابی اطلاعات

- ساخت ماژول خواندن اسناد PDF و Word
- تولید بردارها و پیادهسازی جستجوی معنایی

۴.۵ فاز ۴: موتور پاسخگویی کسبوکار

- ساخت سیستم پاسخدهی مبتنی بر بازیابی
 - یکپارچهسازی حافظه گفتگو

۵.۵ فاز ۵: تولیدکننده برنامه کسبوکار

- طراحی قالبهای ساختارمند برای پرامپتها
- امکان ویرایش و ذخیرهسازی مرحلهای برنامه

۶.۵ فاز ۶: پیگیری و مدیریت وظایف

- استخراج اقدامات از برنامهها
- ارائه یادآوری و پیگیری پیشرفت

۷.۵ فاز ۷: رابط کاربری

- شروع با رابط ساده Streamlit) یا (S
- افزودن چتبات یا رابط گرافیکی پیشرفته در ادامه

۸.۵ فاز ۸: تست و بهینهسازی

- تست در حوزههای مختلف کسبوکار
- بهینهسازی پرامپتها و کیفیت پاسخها

۹.۵ فاز ۹: استقرار

- استقرار در سرور ابری
- ذخیره جلسات و امکان ورود کاربران

۱۰.۵ فاز ۱۰: مستندسازی و ارائه

- تهیه راهنمای کاربر و ویدیو دمو
- مستندسازی کامل و ارائه پروژه

۶ ساختار نمونه پوشه پروژه

main.py

llm_interface.py

document_reader.py

```
retrieval_engine.py
business_plan_generator.py
memory_manager.py
data/
uploaded_files/
vector_db/
prompts/
business_plan_template.txt
requirements.txt
README.md
```

۷ گزارش قسمت به قسمت پروژه

llminterface.py 1.V

۱.۱.۷ ساختار کلاس

۲.۱.۷ سازنده کلاس

متد __init مقادیر اولیه را میسازد:

- مقدار api_key را دریافت می کند. در صورت عدم ارائه، مقدار آن را از متغیر محیطی دریافت می کند.
 - مدل مورد استفاده را تنظیم کرده و یک نمونه از Together ایجاد می کند.
 - نمونهای از RetrievalEngine برای بازیابی اطلاعات مرتبط ایجاد می شود.

ask متد ۳.۱.۷

این متد برای ارسال پرسش و دریافت پاسخ از مدل به کار می رود:

- وروديها:
- prompt: سوال كاربر
- user id: که دیگر استفاده نمی شود
- ابتدا از RetrievalEngine براى یافتن اطلاعات مرتبط استفاده می شود.
- پرسش همراه با اطلاعات بازیابی شده در یک قالب مشخص ترکیب شده و به مدل ۲ Llama ارسال می شود.
 - پاسخ از API دریافت شده و مقدار نهایی برگشت داده می شود.

۴.۱.۷ حذف مدربت حافظه

در نسخه قبلی این کلاس، یک شیء از نوع MemoryManager برای ذخیره تاریخچه مکالمات استفاده میشد، اما در این نسخه:

- مديريت تاريخچه مكالمات حذف شده است.
- مكالمات گذشته دیگر در ورودی مدل لحاظ نمی شوند.

retrieval-engine.py Y.V

```
    retrieval_engine.py app 
    ★ memory_manager.py app

def __init__(self, n_neighbors=5, algorithm='ball_tree'):
     self.n_neighbors = n_neighbors
      self.algorithm = algorithm
      self.model = None
      self.data = None
def fit(self, data):
      self.data = np.array(data)
      self.model = \verb|NearestNeighbors| (n_neighbors=self.n_neighbors, algorithm=self.algorithm)|
      self.model.fit(self.data)
      query_vector = np.array(query_vector).reshape[1, -1]
distances, indices = self.model.kneighbors(query_vector)
return indices[0], distances[0]
      with open(filename, "wb") as f:
    pickle.dump((self.model, self.data), f)
def load(self, filename="retrieval_model.pkl"):
    with open(filename, "rb") as f:
        self.model, self.data = pickle.load(f)
def search(self, query):
      ".این دادههای مرتبط با پرسش شما هستند" = relevant_data
      return relevant_data
```

1.۲.۷ ساختار کلاس

۲.۲.۷ سازنده کلاس

متد _init_ وظیفه مقداردهی اولیه را بر عهده دارد:

- مقدار n_neighbors تعیین می کند که چند همسایه نزدیک برای هر پرسش جستجو شوند.
 - مقدار algorithm مشخص مى كند كه از چه الگوريتمي براي جستجو استفاده شود.
 - مدل و دادهها در ابتدا مقدار None دارند و هنگام آموزش مقداردهی میشوند.

۳.۲.۷ متد fit

این متد مدل Neighbors Nearest را با دادههای ورودی آموزش می دهد:

- دادههای ورودی به یک آرایه NumPy تبدیل میشوند.
- مدل NearestNeighbors بر اساس مقدار n_n eighbors و الگوریتم تعیین شده مقداردهی اولیه می شود.
 - مدل با دادههای ورودی آموزش میبیند.

۴.۲.۷ متد retrieve

این متد برای دریافت نزدیکترین همسایهها به یک بردار پرسش استفاده میشود:

- ابتدا بردار ورودی به فرمت مناسب تبدیل شده و ابعاد آن تنظیم میشود.
- با استفاده از متد kneighbors، نزدیکترین دادهها و فاصله آنها از بردار ورودی محاسبه میشوند.
 - لیست شاخصهای دادههای نزدیک و فاصله آنها بازگردانده میشود.

۵.۲.۷ متدهای ذخیره و بازیابی مدل

- متد save، مدل و دادههای آن را در یک فایل pickle ذخیره می کند.
- متد load، فایل ذخیرهشده را بارگذاری کرده و مدل را به حالت قبل بازمی گرداند.

search متد ۶.۲.۷

این متد برای جستجوی اطلاعات مرتبط با یک پرسش طراحی شده است. در نسخه فعلی، خروجی آن یک پیام ثابت است:

"این دادههای مرتبط با پرسش شما هستند."

gui-tkinter.py T.V

```
| Particular of Management of Bank
| Particular of Management of
```

شكل ٣: تصوير سوم

شکل ۲: تصویر دوم

شكل ١: تصوير اول

- مقداردهی اولیه Key API برای ارتباط با مدل
- ایجاد اشیای مرتبط با کلاسهای RetrievalEngine ، LLMInterface و BusinessPlanGenerator
- تعریف و نمایش ویجتهای مختلف مانند فیلد ورودی، دکمهها و ScrolledText برای نمایش پاسخها.

save_settings متد ۱.۳.۷

این متد مقدار جدید Key API را از ورودی دریافت کرده و ذخیره میکند. در صورتی که مقدار جدیدی وارد نشده باشد، پیام هشداری نمایش داده می شود.

ask_llm متد ۲.۳.۷

این متد مسئول ارسال پرسش کاربر به مدل زبانی و دریافت پاسخ است:

- بررسی می کند که کاربر سوالی وارد کرده باشد.
- ارسال پرسش به LLMInterface و دریافت پاسخ.
 - نمایش پاسخ در قسمت مربوطه.
- جستجوى اطلاعات مرتبط با استفاده از RetrievalEngine و نمايش آن.
 - تولید طرح کسبوکار بر اساس پاسخ دریافتی و نمایش آن.

۳.۳.۷ متد load_file

این متد امکان بارگذاری محتوای فایل را فراهم می کند:

- بررسی می کند که مسیر فایل وارد شده باشد.
- در صورت ورود مسیر، بررسی می شود که فایل از نوع ،Word PDF یا متن ساده باشد.
- خواندن محتوای فایل با استفاده از DocumentReader و نمایش آن در بخش مربوطه.

۴.۳.۷ متدهای ذخیره خروجی

- download_output: ذخیره پاسخها و طرح کسبوکار در قالب یک فایل متنی.
- download_pdf: توليد خروجي در قالب فايل PDF با استفاده از ReportLab.

gui-streamlit.py F.V

۱.۴.۷ تعریف متغیرها و کلاسها

در ابتدای برنامه، کلاسهای زیر مقداردهی اولیه میشوند:

- LLMInterface: براى ارتباط با مدل زباني.
- RetrievalEngine: برای جستجوی اطلاعات مرتبط.
- BusinessPlanGenerator: برای تولید طرح کسبوکار.
 - DocumentReader: برای خواندن فایل های ورودی.
 - MemoryManager: برای ذخیرهسازی مکالمات کاربر.

۲.۴.۷ نمایش رابط کاربری

رابط کاربری با استفاده از Streamlit پیادهسازی شده است:

- نمایش عنوان برنامه با دستور st.title.
- دریافت پرسش کاربر از طریق st.text_input.
- دکمه ارسال (st.button) برای دریافت پاسخ از مدل.

۳.۴.۷ متد دریافت یاسخ

پس از فشردن دکمه ارسال، مراحل زیر اجرا میشود:

- بررسی میشود که کاربر سوالی وارد کرده باشد.
- در صورت ورود سوال، نمایش پیام در حال پردازش (st.spinner).
 - ارسال پرسش به مدل زبانی و دریافت پاسخ.
 - نمایش پاسخ به کاربر.
 - جستجوی اطلاعات مرتبط و نمایش آن.
 - ذخیره مکالمه در MemoryManager
 - تولید و نمایش طرح کسبوکار.

۴.۴.۷ بارگذاری فایل

امکان بارگذاری فایل از طریق st.file_uploader وجود دارد:

- بررسی نوع فایل ،Word (PDF یا متن ساده).
- پردازش محتوای فایل با استفاده از DocumentReader.
 - نمایش محتوای فایل در خروجی.

Documnet-reader.py **a.v**

read_pdf متد ۱.۵.۷

این متد برای خواندن محتوای فایلهای PDF استفاده می شود:

- فایل PDF در حالت خواندن باینری باز می شود.
- از كلاس PyPDF2.PdfReader براى يردازش فايل استفاده مي شود.
 - متن تمامی صفحات استخراج و در متغیری ذخیره میشود.

read_docx متد ۲.۵.۷

این متد برای پردازش فایلهای Word با فرمت DOCX طراحی شده است:

- فایل با استفاده از docx.Document باز می شود.
- تمامی پاراگرافها خوانده شده و در قالب یک رشته متنی ترکیب میشوند.

read text file متد ۳.۵.۷

این متد برای خواندن فایلهای متنی ساده استفاده میشود:

- فایل در حالت خواندن متنی با رمزگذاری ۱۳۲۰ باز میشود.
 - محتوا به صورت کامل خوانده شده و بازگردانده میشود.

business-plan-manager.py 9.V

1.8.۷ تعریف کلاس

BusinessPlanGenerator شامل دو متد کلیدی است:

۲.۶.۷ متد generate_business_plan

این متد وظیفهی تولید یک طرح کسبوکار بر اساس ایدهی ورودی را دارد. این طرح شامل بخشهای زیر است:

- خلاصه اجرایی: معرفی ایده ی کسبوکار
- تحلیل بازار: تحقیق در مورد بازار و شناسایی مشتریان هدف
- محصول یا خدمات: توسعه ی یک محصول یا خدمت بر اساس ایده ی ارائه شده
 - استراتژی بازاریابی: برنامهریزی برای دسترسی به مشتریان هدف
 - برنامهی مالی: پیشبینیهای مالی شامل هزینهها، درآمد و سود
 - تیم: گردآوری تیمی با مهارتهای مرتبط برای حمایت از ایده

۳.۶.۷ متد display_plan

این متد وظیفهی نمایش طرح کسبوکار تولید شده را بر عهده دارد. این نمایش شامل چاپ تمام بخشهای طرح به همراه محتوای مربوط به آنها در خروجی است.

main.py Y.Y

```
project

memory_manager.py app

main.py app 
main.py app 
main.py app 
main.py 
project

memory_manager.py app

main.py app 
gui_tkin

app > main.py

import sys

app if len(sys.argv) > 1 and sys.argv[1] == "web":

from gui_streamlit import run_streamlit

run_streamlit()

else:

from gui_tkinter import run_tkinter

run_tkinter()
```

۱.۷.۷ ساختار کد

کد با استفاده از ماژول sys بررسی می کند که آیا آرگومان "web" به عنوان ورودی خط فرمان ارسال شده است یا خیر.

- اگر مقدار ورودی برابر "web" باشد، ماژول gui_streamlit بارگذاری شده و تابع ()web اگر مقدار ورودی برابر "web اجرا می شود.
 - در غیر این صورت، ماژول gui_tkinter بارگذاری شده و تابع () run_tkinter اجرا می شود.

۲.۷.۷ مزایا

- قابلیت استفاده از دو رابط کاربری مختلف، بسته به نیاز کاربر
 - امکان اجرای برنامه به صورت تحت وب با Streamlit
 - قابلیت اجرای برنامه به صورت آفلاین با استفاده از Tkinter

۸ ورودی و خروجی

در این قسمت عکس هایی از ورودی و خروجی به همراه فایل ذخیره شده جواب و سوالات ذخیره شده

شکل ۴: نمای کلی برنامه

شکل ۵: فایل خروجی جواب برای دانلود کردن آن

شكل ۶: فايل تاريخچه چت ها