CSE221 Data Structures Lecture 18: Binary Search Trees and AVL Trees

Antoine Vigneron antoine@unist.ac.kr

Ulsan National Institute of Science and Technology

November 17, 2021

- Introduction
- 2 Dictionaries
- Binary search trees
- Searching in a BST
- Operations
 5
- 6 AVL Trees
- Update operations

Introduction

- Final exam is on Wednesday 15 December, 20:00–22:00.
- Assignment 3 is due on Thursday next week.
- Reference for this lecture: Textbook Chapter 9.5, 10.1 and 10.2.

- A dictionary ADT stores key-value pairs (k, v) called *entries*.
- The keys stored in a dictionary are *not* necessarily unique.
- So a dictionary can store two entries (k, v) and (k, v').
- This is the main difference with a map, in which keys are unique.
- Dictionary operations are the same as for maps, except for the differences below:
 - **put**(k, v) is replaced with **insert**(k, v) which inserts a new entry with key k. It does *not* overwrite a previous entry (k, v') if there was one.
 - find(k) returns an iterator referring to an entry (k, v) if there is (at least) one in the dictionary.
 - ▶ **findAll**(k) returns a pair of iterators (b, e), such that all the entries with key value k lie in the range [b, e).
 - ► erase(k) Remove from D an arbitrary entry with key equal to k.

• How to insert a new pair (28, v)?

• Insert it before the first such pair.

- We can implement a dictionary ADT using a hash table with separate chaining.
- As shown in the previous slide, we make sure that all the entries with the same key k are contiguous, by inserting any new entry (k, v) at the position before the first such entry.
- Then all operations take O(1) expected time, except for findAll which take time O(1+s) where s is the number of items that are found.
- We will now present *binary search trees*, which allow us to perform in $O(\log n)$ time any ordered map or dictionary operation.

Binary Search Trees

- A binary search tree (BST)is a full binary tree, i.e. each internal node has exactly 2 children.
- Each internal node records an entry (k, x). We only represent k in the figures.

Binary Search Trees

- For any node v storing (k, x):
 - ▶ All the keys in the left subtree are $\leq k$.
 - ▶ All the keys in the right subtree are $\geq k$.

Binary Search Trees

- What is the *inorder* traversal of this tree? Answer:
 - \Box 17 \Box 28 \Box 29 \Box 32 \Box 44 \Box 54 \Box 65 \Box 76 \Box 80 \Box 82 \Box 88 \Box 97 \Box

Proposition

In the inorder traversal of a BST, the keys appear in non-decreasing order. Leaves and internal nodes alternate in this sequence.

Searching in a BST

- Nodes visited during the execution of find(76).
- The search was successful: We return the node containing 76.

Searching in a BST

- Nodes visited during the execution of find(25).
- The search was unsuccessful: We return the leaf node corresponding to the position of 25 in the inorder traversal.

Searching in a BST

```
Pseudocode

procedure TreeSearch(k, v)

if T.isLeaf(v) then

return v

if k < key(v) then

return TreeSearch(k, T.left(v))

if k > key(v) then

return TreeSearch(k, T.right(v))

return V
```

Searching in a BST: Analysis

- So find(k) takes time O(h), where h is the height of the tree.
- It can also be shown that findAll(k) takes O(h + s) where s is the number of nodes that it returns.

• We assume that we have a function **insertAtLeaf**(v, e) that expands a leaf into a subtree consisting of one internal node storing e and two leaves.

• Inserting 78: We first find the position to insert.

• Inserting 78.

Pseudocode

```
procedure TREEINSERT(k, x, v)

w \leftarrow \text{TREESEARCH}(k, v)

if T.isInternal(w) then

return TREEINSERT(k, x, T.left(w))

T.insertAtLeaf(w, (k, x))
```


• removeAboveLeaf(v): Remove a leaf node v and its parent, replacing v's parent with v's sibling.

- We now show how to perform the operation erase(k), which delete a node with key k if there is one.
- We first perform a search to find a node w with key k.
- If at least one child of w is a leaf, we perform the operation from previous slide and we are done.
- Otherwise, we do as shown in the next slides:

- Find the two nodes x and y that follow w in an inorder traversal.
- y is the leftmost internal node in the right subtree of w. It can be found by starting from the right child of w, and then following the left children.
- x is a leaf and y is its parent.

• Move entry of *y* into *w*.

Remove x and y by doing removeAboveLeaf(x).

Performance of a Binary Search Tree

- size and empty take O(1) time.
- find, insert and erase take O(h) time.

- When T is a *complete* binary tree, we have $h = \lceil \log(n+1) \rceil$. This is the best case, the last three operations take $O(\log n)$ time.
- In the worst case, the internal nodes form a path, and h = n.
- We will now introduce *AVL trees*, which do not have this problem: Their worst-case height is $O(\log n)$.

AVL Trees

An AVL tree

A BST that satisfies the property below is called an AVL Tree.

Height-Balance Property

For every internal node v of T, the heights of the children of v differ by at most 1.

It follows that a subtree of an AVL tree is also an AVL tree.

AVL Trees

Proposition

The height of h an AVL tree satisfies $h = O(\log n)$.

• We now prove this proposition. Let n(h) denote the *minimum* number of nodes for an AVL tree with n internal nodes.

AVL Trees

- Then n(h) = n(h-1) + n(h-2) + 1.
- Base cases: n(1) = 1 and n(2) = 2.
- This is related to the Fibonacci sequence defined by $f_h = f_{h-1} + f(h-2)$, f(1) = 1 and f(2) = 1.
- From your calculus course,

$$f(h) = \Theta(\varphi^h)$$
 where $\varphi = (1 + \sqrt{5})/2 \approx 1.618$

- We have $n(h) \geqslant f(h)$ for all h, so $n(h) = \Omega(\varphi^h)$.
- It follows that $n(h) \ge C\varphi^h$ for some constant C.
- Hence $\log n \geqslant \log(n(h)) \geqslant h \log(\varphi) + \log C$.
- Conclusion: $\log n = \Omega(h)$, which means that $h = O(\log n)$.

AVL tree before insertion.

• Inserting 54. The tree is no longer an AVL tree. We need to fix it.

• z is the lowest node in the insertion path that is unbalanced.

• The tree is now an AVL tree.

- We first insert a node w in the same way as we did for ordinary BSTs.
- If the tree is still AVL, we are done. Otherwise, restructure the tree:
- Let z the first node on the path from w to the root that is unbalanced (i.e. heights of the two subtrees differ by at least 2).
- Let y be the child of z along this path, and x the child of y.
- Let $\{a, b, c\} = \{x, y, z\}$ such that a < b < c in the inorder traversal.
- We partition the subtree rooted at z into nodes a, b, c and subtrees T_i such that T_0 , a, T_1 , b, T_2 , c, T_3 appear in this order in the inorder traversal.
- Replace the subtree rooted at z with a subtree rooted at b, where a
 and c are the left and right child of b, respectively, and the T_i's are
 the subtrees rooted at the children of a and b.

- After applying one of the 4 rebalancing operations above, all the AVL tree properties are restored.
- Same approach for deletion: First delete the node as we would do in an ordinary BST.
- Then rebalance the subtree rooted at z by performing one of the 4 operations above.
- Problem: The tree may become unbalanced at the parent of z. (See example in next slides.)
- So we rebalance at this parent node.
- We may have to do it at each node on the path from z to the root.
- It means $\Theta(\log n)$ restructuring operations in the worst case.

An AVI tree.

• After deleting 9, the tree is no longer AVL (at 5).

• After a single rotation. The tree is still not AVL (at 10).

• After a double rotation, it is an AVL tree.

AVL Tree Performance

- O(1) time for empty, size.
- $O(\log n)$ time in the worst case for find, insert and erase because we perform at most one operation in constant time per level, and the height is $O(\log n)$.