Analysis of non–small cell lung cancer histopathology images using deep learning

Saman Farahmand 10/12/2018

Project Goal

Developing a deep learning model to predict patients diagnosed with tumors from microscopic images of tissue biopsies and genomic biomarkers (TCGA)

Introduction

- Hematoxylin and Eosin stained biopsy slides
- Widely used stain in medical diagnosis and is often the gold standard by pathologist
- Large whole-slide images are generated by digitizing H&E-stained glass slides

Introduction

Slides are used to train a ConvNet to predict patient outcome

Inception ConvNet Architecture

- Best performance in the ImageNet
- Inception modules
- Mixture of convolutions of the current layer
- Let the model pick what's best
- Allowing the model to recover both local feature via smaller convolutions and high abstracted features with larger convolutions

Training & Classification

- Training Strategies:
 - Transfer learning on inception v3
 - Use a pre-trained model architecture and weights to save time
 - Over 14 million images contain over 20 thousand categories
 - Fine-tune the parameters of the last layer of the network on the data via back propagation
 - Training the entire inception v3 network
- Different Classifiers:
 - Normal vs Tumor
 - LUAD vs LUSC
 - Normal vs LUAD vs LUSC
 - Mutations: STK11,EGFR, SETBP1, TP53, FAT1, KRAS, KEAP1, LRP1B, FAT4, NF1
 - Trying to determine the association between histology and genomic heterogeneity

Data and Strategy

Data and Strategy

Data and Strategy

	Training	Validation	Testing	
Normal	132,185 / 332	28,403 / 53	28,741 / 74	
Primary tumor	556,449 / 825	121,094 / 181	121,059 / 170	

	Training	Validation	Testing		
LUAD	255,975 / 403	55,721 / 85	55,210 / 79		
LUSC	300,474 / 422	65,373 / 96	65,849 / 91		

Gene										
mutated	TP53	LRP1B	KRAS	KEAP1	FAT4	STK11	EGFR	FAT1	NF1	SETBP1
%Patients	50	34	28	18	16	15	12	11	11	11

Pre-processing

AUC 3 Classes. Normal vs LUAD vs LUSC (Average Probabilities)

AUC Mutations - Average Probablities

AUC Mutations - Percentage Classified

Future Works

- Try to improve the mutation-based classifier by addressing the unbalanced data
 - Replacing cross-entropy loss function with a weighted cross-entropy loss function
- Try to use this pipeline on breast cancer tumors to find spatial features of slides
 - Considering SNVs

Thank you