

Protocole de communication

RS232 (5AA)

Disponible pour firmwares:

URM - V10

URF - V10

URL - V05

URI - V02

Tous droits réservés- Ce document est la propriété exclusive de STid. Aucune partie de ce document ne peut être reproduite ou transmise sous n'importe quelle forme ou par n'importe quels moyens sans le consentement écrit de STid. STid se réserve le droit de modifier le présent document sans avertissement dans le but d'améliorer le produit.

Table des matières

l.	INTRODUCTION	
II.	INTERFACE SERIE	
III.	STRUCTURE DU MESSAGE	
3.1.	Empaquetage	3
3.2.		
IV.	COMMANDES	
4.1.		
	Set_RFSettings	
	Reset_RFSettings	
	Set_RFSettings_Saved	
	Get_RFSettings	
	Get_HealthParameters	. 10
	Autonomous_Start	. 11
	Autonomous_Stop	. 11
	Autonomous_Output	. 12
	SetOptoOutputParam	. 14
	ChangeRegulation	. 15
	GetInfos	
	SetBaudRate	. 17
	Set485Address	. 17
	Set RF Param	
	Retrieve RF Params	
4.2.	EPC1 Gen2	
	Inventory	
	Kill	
	Lock	
	Read	
	Write	
	Inventory_With_Report	_
V.	CODES ERREURS	
5.1.		
5.2.		
VI.	INTEGRATION DES MODULES UHF	
VII.	REVISIONS	

I. Introduction

Ce document a pour but de permettre la mise en œuvre des produits *STid* utilisant les protocoles de communication *5AA* (liaison série RS232).

Ce document décrit les commandes disponibles des lecteurs permettant l'exploitation des puces EPC1 Gen2.

II. Interface série

Vitesse de transmission	115200 bauds			
Mode	Asynchrone			
Nombre de bits	8			
Mode de transmission	LSb first			
Bit de stop	1			

III. Structure du message

3.1. Empaquetage

#02	Len	CTRL			Commande	CRC
Start Of Frame (SOF)	Longueur de « Commande »	@		Mode	Commande à transmettre	CCITT 16 bits CRC
0x02	« Commande »	Adr	232/ 485			
1 octet	2 octets	7 bits	1 bits	8 bits	N octets	2 octets

- ➤ Len → Détermine la longueur de la commande à envoyer (deux octets)
- CTRL → Mot de deux octets englobant un octet définissant le mode de communication (message en clair, chiffré, signé etc....) et un octet définissant le type de liaison série utilisée (RS485 ou RS232).
 - CTRL Mode → Détermine le mode de communication (un octet).
 - 00h → Mode non sécurisé message transmis en clair.
 - o 04h → Mode Réservé
 - CTRL @ → Détermine le type de liaison série utilisée (RS232 ou RS485) (bit 0) ainsi que l'adresse du lecteur si liaison RS485 (bit 7 à bit 1).

b7 – b1	ь0
Adresse du lecteur	Liaison série
RS485	utilisée

- o b0 → « 0 » RS232 | « 1 » RS485
- o b7 b1 → « 1111 111 » à « 0000 000 »
- CRC → CRC-16-CCITT [Len...Commande] [Polynôme « x¹⁶ + x¹² + x⁵ + 1 » 0x1021]; Valeur Initiale 0xFFFF

Exemple de protocoles utilisant ce CRC → X.25, V.41, CDMA, Bluetooth, PPP, IrDA, BACnet

3.2. Commande non sécurisée

Commande Host Non sécurisée

	CMD		Reserved	L _{out}	Data _{out}
RFU	Туре	Code	AAh 55h	Longueur des données que le host envoi	Données envoyées par le host
1 octet	1 octet	2 octets	2 octets	2 octets	L _{out} octets

En mode non sécurisé, l'indicateur CTRL Mode est égal à 00h 00h et la partie « Commande » est:

- ➤ CMD → Mot de quatre octets englobant deux octets déterminant le type de commande (EPC1 Gen2) et deux octets définissant le code de la commande à transmettre.
 - Type → Détermine le type de commande (deux octets)
 - o 00h 00h → Commande lecteur
 - o 00h 08h → Commande EPC1 Gen2
 - Code → Détermine le code commande à transmettre au lecteur (deux octets)
- ➤ Reserved → AAh 55h (deux octets).
- ▶ L_{out} → Détermine la taille des données envoyées par le host (deux octets).
- ➤ Data_{out} → Représente les données envoyées par le host (dans le cas d'une écriture par exemple) (L_{out} octets).
 - Réponse lecteur non sécurisée

ACK	L _{in}	Data _{in}	Status	
Code commande	Longueur des données que le host va recevoir	Données envoyées par le lecteur	Туре	Code
2 octets	2 octets	L _{in} octets	1 octet	1 octet

- ➤ ACK → Acquittement de début de trame, égal au code commande envoyé par le host.
- L_{in} → Détermine la taille des données que le host va recevoir (deux octets).
- Datain Données envoyées par le lecteur en réponse à la commande du host (Lin octets).
- Status → Mot de deux octets représentant le type de statut (lecteur, EPC1 Gen2) et le code de résultat de la commande.
 - RFU → 00h
 - Type → Détermine le type de commande (un octet)
 - o 00h → Commande lecteur
 - 08h → Commande puce RFid
 - Code → Détermine le code de la commande à transmettre au lecteur (un octet).
 - Trame complète envoyée par le host

#02	Len	CTRL	CMD	Reserved	L _{out}	Data _{out}	CRC
1 octet	2 octets	2 octets	4 octets	2 octets	2 octets	L _{out} octets	2 octets

• Trame complète envoyée par le lecteur

#02	Len	CTRL	ACK	L _{in}	Data _{in}	Status	CRC
1 octet	2 octets	2 octets	2 octets	2 octets	L _{in} octets	2 octets	2 octets

IV. Commandes

Lecteur

Pour ce type de commande, l'octet Type qui précède le Code commande est à 00h.

Set_RFSettings

Description

Cette commande permet de paramétrer les cycles de lecture effectués lors des commandes *Inventory*. Les paramètres ne sont pas sauvegardés en EEProm, ceux-ci seront réinitialisés lorsque le lecteur redémarrera.

Format

Host: 00h 00h 00h 21h AAh 55H 00h 40h A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_{10} A_{11} A_{12} A_{13} A_{14} A_{15}

Lecteur: 00h 21h 00h 00h 00h 00h

Paramètres

Code commande: 00h 21h

2 Octets

Lin: 00h 00h

2 Octets

00h 40h Lout:

2 Octets

Mot de 4 octets déterminant la configuration d'un port logique. Celui est défini par sa A_n : 4 Octets

durée d'activation lors d'une commande Inventory, de sa puissance et du numéro

d'antenne qu'il représente. [$A_0 \le A_n \le A_{15}$]

2 Octets	b15 - b4	b3 - b0
ScanDelay	PowerAnt	AntNb

ScanDelay mot de 2 octets spécifiant la durée d'activation du port logique lors d'une commande Inventory par tranche de 10 ms. [00h 00h \leq ScanDelay \leq FFh FFh] soit [0 ms \leq ScanDelay \leq 655350 ms] Si **ScanDelay =** 00h 00h, le port logique sera alors désactivé.

Þ PowerAntNb mot de 2 octets spécifiant la puissance et le numéro d'antenne physique attribuée au port logique.

> Les 12 bits de poids fort (**b15 – b4**) déterminent la puissance utilisée (**PowerAnt**) sur l'antenne.

Les 4 bits de poids faible (b3 - b0) représentent le numéro de l'antenne physique associée au port logique A_n . [0 \leq AntNb \leq 3]

[0E6h ≤ PowerAnt ≤ 136h] soit [23 dBm ≤ PowerAnt ≤ 31 dBm] → URF

[003h ≤ PowerAnt ≤ 082h] soit [3 dBm ≤ PowerAnt ≤ 13 dBm] → URL

Remarques

Il est nécessaire de transmettre les 64 octets de paramétrages des ports logiques même si ceux-ci ne sont pas exploités. Afin de désactiver un port logique, il est nécessaire de forcer le paramètre ScanDelay à 00h 00h (les paramètres PowerAnt et AntNb seront donc ignorés).

Une antenne physique peut être attribuée sur plusieurs ports logiques avec des délais d'activation et des puissances différents.

Les ports logiques sont attribués par ordre croissant dans la trame **SetRFSettings** (A₀, A₁, ...A_n et A₁₅).

Si plusieurs ports logiques sont actifs, le lecteur les interrogera par ordre croissant (A₀, A₁, ...A_n et A₁₅).

Par défaut la durée **ScanDelay** d'une commande *Inventory* d'un module *URL* est de 100 ms, d'un module *URM* est de 500 ms et de 650 ms sur un module *URF*. Seul le port logique **A**₀ est actif avec l'antenne 0 associée (puissance émise sur le module *URF* **30 dBm** soit **12Ch** et **13 dBm** soit **082h** pour le module *URL*).

Dans le cadre d'une utilisation avec un module *URM,* le paramètre de puissance RF ne peut être modifié. La puissance émise sur l'antenne est donc fixe. Dans ce cas, un octet et demi du paramètre **PowerAnt** n'est pas pris en compte

Exemple:

Module URM:

Dans ce cas de figure, seul le port logique **A**₀ est configuré (en bleu souligné) avec comme paramètre d'activation lors d'une commande **Inventory** de 2560 ms. La puissance émise étant fixe et le module n'ayant qu'une seule antenne (N°0), le paramètre **PowerAnt** n'est donc pas pris en compte.

Note:

Dans le cadre d'une utilisation d'un module URM, il n'est pas nécessaire de configurer les seize ports logiques hormis A_0 . La configuration des ports A_1 à A_{15} peut être utilisée en revanche pour établir des temps d'*Inventory* différents.

Exemple:

Module URF:

00h 00h 00h 21h AAh 55H 00h 40h 01h 00h 0Eh 60h 01h 00h 11h 01h 50h 00h 0Fh 82h 00h 0Ah 1Bh 13h 0Ah 0Bh 12h 00h 99h 00h 0Dh 01h 01h 30h 0Fh 12h 09h 76h 0Eh 83h 00h 3Fh 0Fh 50h 0Ah 02h 11h 10h 04h 00h 12h A1h D0h 21h 0Eh 01h 99h 00h 1Ah 02h 00h 04h 0Eh 62h 00h 80h 10h 03h 00h FFh 0Eh 93h

ScanDelay _{A0} PowerAntNb _{A0}	:	01h 00h 0Eh 60h
ScanDelay _{A1} PowerAntNb _{A1}	:	01h 00h 11h 01h
ScanDelay _{A2} PowerAntNb _{A2}	:	50h 00h 0Fh 82h
ScanDelay _{A3} PowerAntNb _{A3}	:	01h 0Ah 1Bh 13h
ScanDelay _{A4} PowerAntNb _{A4}	:	0Ah 0Bh 12h 00h
ScanDelay _{A5} PowerAntNb _{A5}	: :	00h 99h 0Dh 01h
ScanDelay _{A6} PowerAntNb _{A6}	: :	01h 30h 0Fh 12h
ScanDelay _{A7} PowerAntNb _{A7}	: :	09h 76h 0Eh 83h
ScanDelay _{A8} PowerAntNb _{A8}	: :	00h 3Fh 0Fh 50h
ScanDelay _{A9} PowerAntNb _{A9}	: :	0Ah 02h 11h 10h
ScanDelay _{A10} PowerAntNb _{A10}	:	04h 00h 12h A1h

EPC1 Gen2®

 ScanDelay_{A12}
 :
 99h 00h

 PowerAntNb_{A12}
 :
 1Ah 02h

 ScanDelay_{A13}
 :
 00h 04h

 PowerAntNb_{A13}
 :
 0Eh 62h

ScanDelay_{A14} : 00h 80h **PowerAntNb**_{A14} : 10h 03h

ScanDelay_{A15}: 00h FFh
PowerAntNb_{A15}: 0Eh 93h

Reset_RFSettings

Description

Cette commande permet de réinitialiser les paramètres par défauts des cycles de lecture effectués lors des commandes *Inventory*. Ces informations seront sauvegardées en EEProm.

Format

Host: 00h 00h 00h 23h AAh 55H 00h 00h

Lecteur: 00h 23h 00h 00h 00h 00h

Paramètres

Code commande: 00h 23h

2 Octets

L_{in}: 00h 00h

2 Octets

L_{out}: 00h 00h

2 Octets

Remarques

Il est nécessaire de redémarrer le lecteur afin que cette commande soit prise en compte.

Set_RFSettings_Saved

Description

Cette commande permet de paramétrer les cycles de lecture effectués lors des commandes *Inventory*. Ces informations seront sauvegardées en EEProm.

Format

00h 00h 00h 22h AAh 55H 00h 40h A_0 A_1 A_2 A_3 A_4 A_5 A_6 A_7 A_8 A_9 A_{10} A_{11} A_{12} A_{13} A_{14} A_{15} Host:

00h 22h 00h 00h 00h 00h Lecteur:

Paramètres

Code commande : 00h 22h

2 Octets

00h 00h L_{in}:

2 Octets

Lout: 00h 40h

2 Octets

Mot de 4 octets déterminant la configuration d'un port logique. Celui est défini par sa A_n : 4 Octets

durée d'activation lors d'une commande *Inventory*, de sa puissance et du numéro

d'antenne qu'il représente. [$A_0 \le A_n \le A_{15}$]

2 Octets	b15 - b4	b3 - b0
ScanDelay	PowerAnt	AntNb

ScanDelay mot de 2 octets spécifiant la durée d'activation du port logique lors d'une commande Inventory par tranche de 10 ms. [00h 00h ≤ ScanDelay ≤ FFh FFh] soit [0 ms ≤ ScanDelay ≤ 655350 ms] Si **ScanDelay** = 00h 00h, le port logique sera alors désactivé.

PowerAntNb mot de 2 octets spécifiant la puissance et le numéro d'antenne physique attribuée au port logique.

Les 12 bits de poids fort (b15 – b4) déterminent la puissance utilisée (PowerAnt) sur l'antenne. [0E6h ≤ PowerAnt ≤ 12Ch] soit [20 dBm ≤ PowerAnt ≤ 30 dBm] Les 4 bits de poids faible (b3 – b0) représentent le numéro de l'antenne physique associée au port logique A_n. [0 ≤ AntNb ≤ 3]

Remarques

Cette fonction est identique à SetRFSettings. Seul le code commande change (CF commande SetRFSettings pages 7-8).

Get_RFSettings

Description

Cette commande permet de récupérer les paramètres de configuration RF des seize ports logiques du lecteur.

Format

00h 00h 00h 20h AAh 55h 00h 00h Host:

Lecteur: 00h 20h 00h 40h A₀ A₁ A₂ A₃ A₄ A₅ A₆ A₇ A₈ A₉ A₁₀ A₁₁ A₁₂ A₁₃ A₁₄ A₁₅ 00h 00h

Paramètres

Code commande: 00h 20h

2 Octets

00h 40h Lin:

2 Octets

Lout: 00h 00h

2 Octets

 \boldsymbol{A}_{n} : Mot de 4 octets déterminant la configuration d'un port logique. Celui est défini par sa 4 Octets

durée d'activation lors d'une commande *Inventory*, de sa puissance et du numéro

d'antenne qu'il représente. [$A_0 \le A_n \le A_{15}$]

2 Octets	b15 - b4	b3 - b0
ScanDelay	PowerAnt	AntNb

ScanDelay mot de 2 octets spécifiant la durée d'activation du port logique lors d'une commande *Inventory* par tranche de 10 ms. [00h 00h \leq ScanDelay \leq FFh FFh] soit [0 ms \leq ScanDelay \leq 655350 ms] Si **ScanDelay =** 00h 00h, le port logique est alors désactivé.

PowerAntNb mot de 2 octets spécifiant la puissance et le numéro d'antenne physique attribuée au port logique.

Les 12 bits de poids fort (b15 – b4) déterminent la puissance utilisée (PowerAnt) sur l'antenne. [0E6h ≤ PowerAnt ≤ 12Ch] soit [20 dBm ≤ PowerAnt ≤ 30 dBm]

Les 4 bits de poids faible (b3 - b0) représentent le numéro de l'antenne

physique associée au port logique A_n. [0 ≤ AntNb ≤ 3]

Exemple:

Module URF:

00h 00h 00h 20h AAh 55h 00h 40h 00h 04h 0Eh 62h 96h 00h 11h 03h 5Ah 28h 12h C0h 00h 00h 00h 00h 00h 00h

00h 04h ScanDelay_{A0} PowerAntNbA0 : 0Eh 62h ScanDelay_{A1} 96h 00h 11h 03h PowerAntNb_{A1} : ScanDelay_{A2} 5Ah 28h PowerAntNb_{A2}: 12h C0h

Get_HealthParameters

Description

Cette commande permet de récupérer les paramètres vitaux du module URF.

Format

Host: 00h 00h 00h 24h AAh 55h 00h 00h

Lecteur: 00h 24h 00h 06h Tune₀ Tune₁ Tune₂ Tune₃ TempCore TempPA 00h 00h

<u>Paramètres</u>

Code commande: 00h 24h

2 Octets

L_{in}: 00h 06h

2 Octets

L_{out}: 00h 00h

2 Octets

Tune₀₋₃: Octet représentant l'état actuel de l'accord de l'antenne physique.

1 Octet
Tune₀ correspondant à l'antenne 0 jusqu'à Tune₃ pour l'antenne 3.

> 00h ≤ Tune₀₋₃ ≤ 64h Mauvaise antenne ou antenne non connectée.

 \triangleright 64h ≤ Tune₀₋₃ ≤ A0h Antenne ou connexion médiocre.

A0h ≤ Tune₀₋₃ ≤ FFh Antenne correctement connectée et de bonne qualité.

TempCore: Octet représentant la température du cœur du lecteur en °C.

1 Octet

TempPA: Octet représentant la température de l'amplificateur de puissance du lecteur en °C.

1 Octet

Remarques

L'octet Tune₀₋₃ est une image du ROS de l'antenne.

Cette commande n'est pas disponible sur les modules URM et URL.

Autonomous_Start

Description

Cette commande permet de démarrer le mode autonome du lecteur. Dans ce mode le lecteur ne lira uniquement que les numéros *EPC* et ne répondra qu'à la commande *Autonomous_Stop*.

Format

Host: 00h 00h 00h 10h AAh 55h 00h 00h

Lecteur: 00h 10h 00h 00h 00h

Paramètres

Code commande: 00h 10h

2 Octets

L_{in}: 00h 00h

2 Octets

Lout: 00h 00h

2 Octets

Remarques

Le format de la trame est défini par la fonction Autonomous_Output.

Le lecteur redémarrera automatiquement après réception de cette commande.

Autonomous_Stop

Description

Cette commande permet d'arrêter le mode autonome du lecteur. Celle-ci est la seule commande que le lecteur acceptera dans le mode autonome.

Format

Host: 00h 00h 00h 11h AAh 55h 00h 00h

Lecteur: 00h 11h 00h 00h 00h 00h

<u>Paramètres</u>

Code commande: 00h 11h

2 Octets

L_{in}: 00h 00h

2 Octets

L_{out}: 00h 00h

2 Octets

Remarques

Le lecteur redémarrera automatiquement après réception de cette commande.

Autonomous_Output

Description

Cette commande permet de configurer le format de la trame du lecteur dans le mode autonome.

Format

Host: 00h 00h 00h 12h AAh 55h 00h 03h OutConf ReadConf Len

Lecteur: 00h 12h 00h 00h 00h

Paramètres

Code commande: 00h 12h

2 Octets

L_{in}: 00h 00h

2 Octets

L_{out}: 00h 03h

2 Octets

OutConf: Octet permettant de définir le format de la trame série.

1 Octet

b7	b6	b5	b4	b3	b2	b1	b0
Port logique	NoLeadingZeros	ASCII	MSB/LSB	Hexa / Déc.	LRC	CR/LF	STX/ETX
0 Pas de port logique remonté par le lecteur	0 NoLeadingZeros désactivé	0 désactive le mode ASCII	0 MSB First	0 Hexadécimal	0 LRC désactivé	0 CR / LF désactivé	0 STX / ETX désactivé
1 Port logique remonté par le lecteur	1 NoLeadingZeros activé	1 Active le mode ASCII	1 LSB First	1 Décimal	1 LRC activé	1 CR/LF activé	1 STX / ETX activé

ReadConf: Octet permettant de définir le format de la trame série.

1 Octet

b7	b6	b5	b4	b3	b2	b1	b0
EPC	TID	RFU	RFU	N _{WORD3}	N _{WORD2}	N _{WORD1}	N _{WORD0}
0 Lecture d'EPC demandée 1 Lecture d'EPC non demandée	0 Lecture de TID non demandée 1 Lecture de TID demandée	х	х				

- ➢ Bit 7 − EPC : Active / désactive la lecture de l'EPC en mode autonome.
- ➤ Bit 6 TID : Active / désactive la lecture du TID en mode autonome.
- ➢ Bit 5 Bit 4 RFU : Non utilisé. « 0 » ou « 1 ».
- Bit 3 Bit 0 N_{WORD3-0}: Représente la longueur en mots de deux octets du TID à lire -1. [0xx0... 0xxF] +1. N_{WORD3-0max} = F. TID_{remonté max} = (F + 1) x2 soit 32 octets de TID

Len:
1 Octet

Octet représentant la longueur (en octets) de l'*EPC/TID* à recevoir. Si la longueur demandée est supérieure à celle de l'*EPC* courant, le lecteur rajoute alors en poids fort (MSB) des zéros jusqu'à la taille désirée. Inversement si la longueur demandée est inférieure à la longueur de l'*EPC/TID* réellement lu, alors le lecteur tronque les bits de poids fort. Si l'option *NoLeadingZeros* est activée, il se peut que la taille désirée ne soit pas respectée.

[01h ... 07h] en décimal et [01h ... 0Ah] en hexadécimal.

Remarques

- ✓ Le LRC est calculé sur les informations suivantes : EPC (XOR) Port Logique
- ✓ En décimal, la taille est limitée à 7 octets.
- \checkmark CR+LF = (0Dh+0Ah)
- ✓ Le mode ASCII impacte uniquement les données EPC, Port Logique ainsi que les zéros de données. La longueur des données est alors doublée.
- ✓ L'information Port Logique remontée ne concerne que le premier Port Logique ayant lu l'EPC.
- ✓ Pour une lecture de l'EPC et du TID, le lecteur retournera deux trames. La première pour l'EPC et la seconde pour le TID. Les modalités de sortie sont fixées par l'octet OutConf.
- ✓ II est important de connaître la taille du TID à lire sur les puces EPC1GEN2. Si le paramètre **N**WORD est plus grand que la taille du TID à lire, le lecteur retournera l'erreur **08h 02h** correspondant à une erreur EPC1GEN2 (Voir Chapitre 1.5.2 Codes erreurs EPC1 Gen2 pour plus d'informations).

Trame de sortie pour la lecture d'un EPC et/ou TID:

STX	Port logique	EPC/TID	LRC	CR	LF	ETX
02h	1 à 2 octets	Len octets	1 octet	0Dh	0Ah	03h

Différents modes possibles :

Mode 1

Utilisé lorsque ReadConf = 0b00xxxxxx.

Dans ce mode, qui ne concerne que le code EPC, la remontée des codes EPC de plusieurs tags dans le champ à l'issus d'un scan est possible. Dans ce cas le délai entre deux codes EPC sur la liaison série est d'environ 1ms.

Mode 2

ReadConf = 0b01xxxxx ReadConf = 0b11xxxxx ReadConf = 0b10xxxxx

Second mode utilisé. Dans celui-ci, un seul tag est remonté par séquence RF. Si deux tags sont présents il faudra **au moins** deux séquences pour remonter les codes relatifs à ces deux scans.

Exemple de comportement suivant les modes 1 ou 2 avec un lecteur configuré avec 3 ports logiques:

	Placement des tags	scan port 0	Fin du scan port 0	scan port 1	Fin du scan port 1	scan port 2	Fin du scan port 2
	1 tag présent devant chaque port logique.						3 codes EPC remontés
Mode 1	Tag présent sur 0 et 1.						2 codes EPC remontés
	2 tags présents devant le port logique 1.						2 codes EPC remontés
Mode 2	1 tag présent devant chaque port logique.		Code(s) du tag 0 remonté		Code(s) du tag 1 remonté		Code(s) du tag 2 remonté
	1 tag présent devant les ports logiques 0 et 1 et pas de tag sur le porte logique 2.		Code(s) du tag 0 remonté		Code(s) du tag 1 remonté		
	2 tags présents devant le port logique 1.		Code(s) de 1 des 2 tags remonté(s)				

SetOptoOutputParam

Description

Cette commande permet d'activer sur les modules *URL* une sortie optocouplée (broche *Output*) qui changera d'état à l'issue de la commande *Inventory* ayant détectée un ou plusieurs tags. L'état passera de « 1 » à « 0 ».

Format

Host: 00h 00h 00h 25h AAh 55h 00h 01h Delay

Lecteur: 00h 25h 00h 00h 00h

Paramètres

Code commande: 00h 25h

2 Octets

L_{in}: 00h 00h

2 Octets

Lout: 00h 01h

2 Octets

Delay : Octet spécifiant la durée de l'état bas (x 10ms). La valeur 00h désactive la sortie.

1 Octet

Remarques

Cette fonction est également disponible en mode autonome. Elle doit être configurée au préalable en mode normal.

Broche Output du module URL (Pin 6 du connecteur J1 - se reporter à la documentation NI0268A0x).

Cette commande n'est pas disponible sur les modules URM et URF.

Le module *URL* ne répondra pas aux requêtes durant l'activation de la sortie *Output*. Il est possible que l'utilisation de cette fonction réduise la fluidité des échanges selon les temps d'activation de la sortie et du délai de l'*Inventory*.

Si la sortie est activée, le fonctionnement sera de la forme suivante :

ChangeRegulation

Description

Cette commande permet de changer la régulation du lecteur respectée par le lecteur (fréquences et protocole s de fonctionnement imposés par cette régulation).

Format

Host: 00h 00h 00h 26h AAh 55h 00h 01h Reg

Lecteur: 00h 26h 00h 00h 00h 00h

Paramètres

Code commande: 00h 26h

2 Octets

L_{in}: 00h 00h

2 Octets

L_{out}: 00h 01h

2 Octets

Reg: Octet déterminant la régulation et le reset à imposer au lecteur. Déterminé tel que :

1 Octet

Le quartet de poids fort représente le redémarrage automatique du lecteur.

- 0000_b Pas de redémarrage du lecteur après réception de la commande.
- 0001_b Redémarrage du lecteur après réception de la commande.
- Le quartet de poids faible représente la régulation imposée au lecteur.
 - 0000_b FCC
 - 0001_b ETSI

Remarques

Pour prendre en compte une modification de la régulation le lecteur doit être redémarré.

Tous les modules (*URL*, *URM* et *URF*) implémentent cette fonction. Cependant, seul le module URL (référence URL-Wx1-A-U04-5AA ou URL-Wx1-B-U04-5AA) dispose d'une architecture mixte ETSI & FCC. Un module n'étant pas doté de cette architecture donnera des résultats médiocres dans une régulation différente de celle prévue initialement.

Cette fonction écrit des paramètres en EEPROM. Il est donc fortement déconseillé de s'en servir continuellement afin de changer de régulation lors d'échanges RF. Cette commande doit être seulement utilisée pour ajuster la régulation du lecteur à celle en vigueur dans le pays d'installation.

GetInfos

Description

Cette commande permet de récupérer les valeurs des paramètres du lecteur.

Format

Host: 00h 00h 00h 08h AAh 55h 00h 00h

Lecteur: 00h 08h 00h 05h Version Baudrate AddressRS485 Day Month 00h 00h

<u>Paramètres</u>

Code commande: 00h 08h

2 Octets

L_{in}: 00h 05h

2 Octets

L_{out}: 00h 00h

2 Octets

Version: Octet indiquant l'indice software du lecteur.

1 Octet

Baudrate: Octet indiquant la vitesse de communication utilisée par le lecteur.

1 Octet [00h ... 04h].

O0h 9600 bauds
 O1h 19600 bauds
 O2h 38400 bauds
 O3h 57600 bauds
 O4h 115200 bauds

AddressRS485: Octet indiquant l'adresse actuelle du lecteur RS485.

1 Octet

Day : Information codée sur 1 octet représentant le jour de compilation du firmware.

1 Octet

Month: Information codée sur 1 octet représentant le mois de compilation du firmware.

1 Octet

SetBaudRate

Description

Cette commande permet de changer la vitesse de communication série des lecteurs.

Format

Host: 00h 00h 00h 05h AAh 55h 00h 01h Baudrate

Lecteur: 00h 05h 00h 00h 00h

Paramètres

Code commande: 00h 05h

2 Octets

L_{in}: 00h 00h

2 Octets

Lout: 00h 01h

2 Octets

Baudrate : Octet indiquant la vitesse à laquelle le lecteur doit fonctionner.

1 Octet [00h; 04h]

O0h 9600 bauds
 O1h 19600 bauds
 O2h 38400 bauds
 O3h 57600 bauds
 O4h 115200 bauds

Remarques

Si la valeur de l'octet Baudrate est supérieure à 04h, la vitesse de communication sera fixée à 9600 bauds.

Set485Address

Description

Cette commande permet de changer l'adresse RS485 des lecteurs.

Format

Host: 00h 00h 00h 06h AAh 55h 00h 01h Address

Lecteur: 00h 06h 00h 00h 00h 00h

Paramètres

Code commande: 00h 06h

2 Octets

Lin: 00h 00h

2 Octets

Lout: 00h 01h

2 Octets

Adress : Octet déterminant la valeur de l'adresse du lecteur à changer.

1 Octets Valeur comprise entre [0 ... 127] soit [00h ... 7Fh].

Remarques

Cette commande n'est valable que pour les lecteurs type RS485. Le bit « 0 » de l'octet « CTRL-@ » devra donc être forcé à « 1 ». La valeur 00h permet au lecteur de répondre à toutes les requêtes quelque soit l'adresse définie dans celle-ci. C'est l'adresse de diffusion globale.

Set RF Param

Description

Cette commande permet de modifier certains paramètres du protocole ISO18000-6C.

Format

Host: 00h 00h 00h 27h AAh 55h 00h 07h NV/V Address Data

Lecteur: 00h 05h 00h 00h 00h

Paramètres

Code commande: 00h 27h

2 Octets

L_{in}: 00h 00h

2 Octets

Lout: 00h 07h

2 Octets

NV/V: Octet permettant la sauvegarde en EEPROM ou non de la valeur de Data.

1 Octet [00h; 01h]

> 00h La valeur **Data** sera effacée à l'arrêt du lecteur. Valeur par défaut restaurée.

> 01h La valeur **Data** sera conservée à l'arrêt du lecteur.

Address: 00h 01h. Représente le paramètre Q.

2 Octets

• Le paramètre Q est un paramètre essentiel pour l'anticollision. Il détermine l'ampleur de la population de tags « détectables » lors de chaque round d'*Inventory* (un *Inventory* étant composé de plusieurs rounds).

Plus le paramètre Q est petit, plus vite sera parcouru l'algorithme d'anticollision.

S'il est certain qu'un seul tag sera présent devant l'antenne, il sera efficace de

choisir une valeur Q = 0 ou 1.

Data: Valeur du paramètre à modifier représenté par la valeur **Address**.

4 Octets Q = [00h 00h 00h 00h 00h 00h 00h 0Fh]. Par défaut 00h 00h 00h 07h.

Remarques

Si pour une application donnée, l'utilisateur connait à priori le nombre de tags présent devant une antenne lors d'un *Inventory*, celui peut alors adapter l'anticollision afin d'accélérer la vitesse de lecture.

Toute variation d'un paramètre RF par le biais de cette commande en mode non volatile (**NV/N** = 00h) sera conservée après le changement de la régulation par la commande **ChangeRegulation**.

Attention, si la population de tags utilisés est trop grande pour la valeur du paramètre Q, de nombreuses collisions se produiront rendant le processus long voire aveugle pour certains tags de cette population.

Le lecteur utilise le paramètre Q de façon différente selon les opérations demandées et l'algorithme choisi. Celui-ci n'est pris en compte que pour les opérations suivantes.

- Read. Lock. Kill et Write.
- En mode Autonomous Mode 2 uniquement.

Cette valeur ne sera donc **pas** prise en compte pour la commande *Inventory* et pour le mode 1 de *l'Autonomous*.

Il est recommandé de se référer à la norme **ISO_IEC_FDIS_18000-6C** pour plus d'information sur l'utilisation du paramètre *Q*.

La valeur Q peut être ajustée en fonction de la population de tag avec la formule suivante : 2^Q – 1.

Certains paramètres modifiant le protocole ISO18000-6C seront implémentés dans le futur.

Retrieve_RF_Params

Description

Cette commande permet de retrouver **tous** les paramètres RF qui ont pu être changés par une ou plusieurs commandes **Set_RF_Params** (**NV/V** = 00h). **Tous** ces paramètres retrouvent leur valeur par défaut.

Format

Host: 00h 00h 00h 28h AAh 55h 00h 00h

Lecteur: 00h 05h 00h 00h 00h 00h

Paramètres

Code commande: 00h 28h

2 Octets

L_{in}: 00h 00h

2 Octets

Lout: 00h 00h

2 Octets

EPC1 Gen2 4.2.

Pour ce type de commande, l'octet Type qui précède le Code commande est à 08h.

Inventory

Description

Cette commande retourne la totalité des puces EPC1 Gen2 détectées par le lecteur lors d'un cycle de lecture.

Format

Host: 00h 08h 00h 01h AAh 55h 00h 00h

00h 01h L_{in} NbTags [EPCLen EPC AntID NbRead] ^{nbTags} 08h 00h Lecteur:

<u>Paramètres</u>

Code commande : 00h 01h

2 Octets

Valeur variable en fonction de la longueur des codes EPC1 Gen2 ainsi que du nombre Lin:

total de tags lus. NbTags + ([EPCLen + EPC + AntID + NbRead] x NbTags) 2 Octets

Lout: 00h 00h

2 Octets

Cet octet indique le nombre d'identifiants EPC1 Gen2 différents détectés par le lecteur. NbTags:

1 Octet [00h ... F7h]. 247 tags détectés maximum.

EPCLen: Octet déterminant la longueur (en octets) de l'identifiant EPC1 Gen2 qui suit.

1 Octet Seuls les identifiants de 96 bits seront détectés.

EPC: Identifiant EPC1 Gen2 du tag lu. Sa taille dépendant de la valeur EPCLen.

EPCLen Octets

AntID: Représente le numéro du premier port logique sur lequel l'identifiant EPC1 Gen2 a 1 Octet

été détecté. Par adéquation, un port logique représente une antenne (voir commandes

SetRFSettings et GetRFSettings)

NbRead: Cet octet représente le nombre de lecture d'un tag EPC1 Gen2 sur la totalité des ports

2 Octets logiques par commande Inventory.

Remarques

Les paramètres [EPCLen EPC AntID NbRead] sont transmis autant de fois qu'il y a de tags EPC1 Gen2 lus (NbTags). Si aucun tag n'est détecté, ces paramètres ne seront pas transmis. Seul l'octet NbTags sera inclus dans la trame avec pour valeur 00h.

Exemple:

00h 01h 00h 1Fh 02h 0Ch E7h CDh 52h 46h E9h C3h A8h 4Ch 5Dh 32h 61h 86h 01h 0Ah 0Ch BDh 69h 88h 64h 43h 48h D2h EEh 43h 1Eh F4h 13h 0Bh F0h 08h 00h

Lin: 1Fh (31 octets) 02h NbTags: (2 tags lus)

(Id de l'identifiant sur 12 octets) EPCLen₁: 0Ch EPC₁: E7h CDh 52h 46h E9h C3h A8h 4Ch 5Dh 32h 61h 86h AntID₁: (Identifiant détecté sur le port logique 1) 01h

NbRead₁: 00h 0Ah (Identifiant lu 10 fois)

EPCLen2: 0Ch (Id de l'identifiant sur 12 octets) BDh 69h 88h 64h 43h 48h D2h EEh 43h 1Eh F4h 13h EPC₂: AntID2: 0Bh (Identifiant détecté sur le port logique 11)

NbRead₂: 00h F0h (Identifiant lu 240 fois)

Il est également possible d'activer la commande *Inventory* en appliquant un état haut sur l'entrée *Input* du module VRL (Pin 2 du connecteur J1 – se reporter à la documentation NI0268A0x pour l'utilisation de cette fonction).

Kil

Description

Commande permettant de désactiver irrémédiablement le tag identifié en fonction d'un masque (Mask).

Format

Host: 00h 08h 00h 04h AAh 55H Lout MaskBank MaskLen MaskOffset Mask PWD Recom LogicalPort

Lecteur: 00h 04h 00h 00h 08h 00h

Paramètres

Code commande: 00h 04h

2 Octets

L_{in}: 00h 00h

2 Octets

L_{out}: Valeur variable en fonction de la longueur du masque (Mask) [09h + MaskLen].

2 Octets

MaskBank: 01h (RFU i.e. Bank EPC).

1 Octet

MaskLen: Longueur du masque EPC en octets [00h ... 1Eh].

1 Octet

MaskOffset: Décalage dans le masque en octets par rapport à la Bank EPC [04h ... 21h].

1 Octet

Mask: Correspond au masque EPC permettant au lecteur de sélectionner le(s) tag(s).

MaskLen Octets

PWD: Mot de 4 octets représentant le mot de passe Kill Password MSB first.

4 Octets

Recom: RFU = 00h

1 Octets

LogicalPort: Octet représentant le port logique sur lequel le lecteur tentera de désactiver le tag.

1 Octet [00h ... 0Fh]

Remarques

Cette action est irréversible. Un tag désactivé devient inutilisable.

Le lecteur utilisera les paramètres d'antenne et de puissance associés au port logique en fonction des paramètres par défauts ou définis par les commandes **Set_RFSettings** ou **Set_RFSettings_Saved**. Le paramètre de temps est quant à lui figé.

Si le port logique utilisé dans la commande n'est pas attribué, le lecteur remontera l'erreur 00h 02h.

Il est nécessaire que le Kill Password soit différent de 00h 00h 00h 00h dans la Bank Reserved afin de pouvoir utiliser la commande Kill.

Il est important d'indiquer le mot de passe **PWD** (par défaut 00h 00h 00h 00h) même si la Bank n'est pas sécurisée. Dans le cas où celui-ci est différent de 00h 00h 00h 00h <u>et</u> que la Bank n'est pas sécurisée, il est possible d'utiliser la valeur par défaut ou la valeur réelle.

Lock

Description

Cette commande permet de verrouiller en écriture un tag en fonction d'un masque (Mask).

Format

Host: 00h 08h 00h 05h AAh 55H Lout MaskBank MaskLen MaskOffset Mask PayLoadMask PayLoadAction PWD LogicalPort

Lecteur: 00h 05h 00h 00h 08h 00h

Paramètres

Code commande :

00h 05h

2 Octets

L_{in}:

00h 00h

2 Octets

L_{out}:

Valeur variable en fonction de la longueur du masque (Mask) [0Ch + MaskLen].

2 Octets

MaskBank:

01h (RFU i.e. Bank EPC).

1 Octet

MaskLen:

Longueur du masque EPC en octets [00h ... 1Eh].

1 Octet

MaskOffset:

Décalage dans le masque en octets par rapport à la Bank EPC [04h ... 21h].

1 Octet

Mask:

Correspond au masque EPC permettant au lecteur de sélectionner le(s) tag(s).

MaskLen Octets

PayLoadMask: 2 Octets

Mot de 2 octets représentant un masque validant ou invalidant les actions de verrouillage définies par le **PayLoadAction**. Ces deux octets sont calculés de la façon suivante :

b15 - b10	b9 - b8	b7 - b6	b5 - b4	b3 - b2	b1 - b0
000000	Kill	Access	EPC	TID	User

Avec les paramètres suivants:

[bit_x − bit_x] → 00 Bits du PayLoadAction correspondants non pris en compte.

[bit_x − bit_x] → 11 Bits du PayLoadAction correspondents pris en compte.

PayLoadAction:

Mot de 2 octets définissant les actions de verrouillage sur le tag sélectionné.

2 Octets Ces deux octets sont calculés de la façon suivante :

b15 - b10	b9 - b8	b7 - b6	b5 - b4	b3 - b2	b1 - b0
000000	Kill	Access	EPC	TID	User

Il est possible de verrouiller de 4 façons les Banks User, TID et EPC.

- [bit_x − bit_x] → 00 → Writeable → La Bank peut être écrite avec/sans mot de passe.
- \triangleright [bit_x − bit_x] → 01 → AlwaysWriteable → La Bank est toujours Writeable.
- [bit_x − bit_x] → 10 → SecuredWriteable → L'écriture sur la Bank nécessite un mot de passe.
- \triangleright [bit_x bit_x] \rightarrow 11 \rightarrow AlwaysNOTWriteable \rightarrow La Bank ne peut plus être écrite.

Et 4 autres pour la Bank *Reserved* contenant les mots de passe *Access Password* et *Kill Password*:

[bit_x - bit_x] → 00 → Accessible → Le mot de passe est accessible (lecture et écriture) avec/sans mot de passe.

[bit_x − bit_x] → 01 → AlwaysAccessible → Le mot de passe est toujours
 Accessible.

[bit_x − bit_x] → 10 → SecuredAccessible → L'accès au mot de passe nécessite un mot de passe.

[bit_x − bit_x] → 11 → AlwaysNOTAccessible → Le mot de passe n'est plus accessible.

PWD:

Mot de 4 octets représentant le mot de passe Access Password MSB first.

4 Octets

LogicalPort: Octet représentant le port logique sur lequel le lecteur tentera d'effectuer l'opération

1 Octet sur le tag. [00h ... 0Fh]

Remarques

Les actions AlwaysNOTAccessible, AlwaysAccessible, AlwaysWriteable, AlwaysNOTWriteable sont irréversibles et ne peuvent être modifiées par une autre commande **Lock**.

Il est important d'indiquer le mot de passe **PWD** (par défaut 00h 00h 00h 00h) même si la Bank n'est pas sécurisée. Dans le cas où celui-ci est différent de 00h 00h 00h 00h <u>et</u> que la Bank n'est pas sécurisée, il est possible d'utiliser la valeur par défaut ou la valeur réelle.

Le lecteur utilisera les paramètres d'antenne et de puissance associés au port logique en fonction des paramètres par défaut ou définis par les commandes **Set_RFSettings** ou **Set_RFSettings_Saved**. Le paramètre de temps est quant à lui figé.

Si le port logique utilisé dans la commande n'est pas attribué, le lecteur remontera l'erreur 00h 02h.

Exemple:

00h 08h 00h 05h AAh 55h 00h 15h 01h 09h 04h 00h 11h 22h 33h 44h 55h 66h 77h 88h 00h C3h 00h C2h 00h 00h 00h 00h.

MaskBank: 01h (RFU i.e. Bank EPC).

MaskLen:9 octetsMaskOffset:4 octets

Mask: 00h 11h 22h 33h 44h 55h 66h 77h 88h

PWD: 00h 00h 00h 00h LogicalPort: Port logique 0.

PayLoadMask: C3h

000000	0 - 0	1 - 1	0- 0	0 - 0	1 - 1
000000	Kill	Access	EPC	TID	User

PayLoadAction: C2h

b15 - b10	b9 - b8	1 - 1	0 -0	0 -0	1 - 0
000000	Kill	Access	EPC	TID	User

Bank EPC: Pas de changement

Bank TID: Pas de changement

Bank User: SecuredAccessible

Kill Password : Pas de changement

Access Password : AlwaysNOTAccessible

Read

Description

Commande permettant la lecture de données dans une BankID d'un tag en fonction d'un masque (Mask).

Format

Host: 00h 08h 00h 02h AAh 55h Lout MaskBank MaskLen MaskOffset Mask BankID BankOffset Len PWD LogicalPort

Lecteur: 00h 02h L_{in} MatchNb Data_{Len} 08h 00h

Paramètres

Code commande: 00h 02h

2 Octets

 L_{in} : [01h+Len]

2 Octets

L_{out}: Valeur variable en fonction de la longueur du masque. [0Bh+MaskLen] ou [0Ch+MaskLen]

2 Octets

MaskBank: 01h (RFU i.e. Bank EPC).

1 Octet

MaskLen: Longueur du masque EPC en octets [00h ... 1Eh].

1 Octet

MaskOffset: Décalage dans le masque en octets par rapport à la Bank EPC [04h ... 21h].

1 Octet

Mask: Correspond au masque EPC permettant au lecteur de sélectionner le(s) tag(s).

MaskLen Octets

BankID: Octet représentant la Bank devant être lue.

1 Octet

00h Bank Reserved01h Bank EPC02h Bank TID

O3h Bank User Memory

BankOffset: Décalage en mots de 2 octets des données **Data** dans la BankID [00h 00h ... FFh FFh].

1 ou 2 Octets

Len: Longueur des données **Data** exprimées en mots de deux octets devant être lues.

1 Octet [00h ... 20h].

PWD: Mot de 4 octets représentant le mot de passe Access Password permettant la lecture.

4 Octets MSB first.

LogicalPort: Octet représentant le port logique sur lequel le lecteur tentera la lecture. [00h ... 0Fh]

1 Octet

MatchNb: Nombre de tags dont l'EPC correspond au masque définit

1 Octet

Data: Valeur correspondante aux données lues dans la Bank.

Len Octets

EPC1 Gen2®

Remarques

Le masque (Mask) n'est effectif uniquement sur la Bank EPC du tag (d'où MaskBank = RFU = 01h).

Si l'octet **MatchNb** est supérieur à 01h alors les données **Data** remontées par le lecteur seront celles du dernier tag lu.

Il est important d'indiquer le mot de passe **PWD** (par défaut 00h 00h 00h 00h) même si la Bank n'est pas sécurisée. Dans le cas où celui-ci est différent de 00h 00h 00h 00h <u>et</u> que la Bank n'est pas sécurisée, il est possible d'utiliser la valeur par défaut ou la valeur réelle.

Si aucun tag n'est présent, le code erreur **08h 07h** sera remonté par le lecteur.

Le lecteur utilisera les paramètres d'antenne et de puissance associés au port logique en fonction des paramètres par défaut ou définis par les commandes **Set_RFSettings** ou **Set_RFSettings_Saved**. Le paramètre de temps est quant à lui figé.

Si le port logique utilisé dans la commande n'est pas attribué, le lecteur remontera l'erreur 00h 02h.

La syntaxe de la commande *Read* a changé. Il est possible d'ajouter un octet supplémentaire pour l'information **BankOffset**. Cependant, les anciennes versions de commandes n'incluant qu'un octet pour l'information **BankOffset** seront toujours prises en compte par le lecteur.

Write

Description

Commande permettant l'écriture de données dans une BankID d'un tag en fonction d'un masque (Mask).

Format

Host: 00h 08h 00h 03h AAh 55h Lout MaskBank MaskLen MaskOffset Mask BankID BankOffset Len Data PWD LogicalPort

Lecteur: 00h 03h 00h 00h 08h 00h

Paramètres

Code commande: 00h 03h

2 Octets

L_{in}: 00h 00h

2 Octets

Lout: Valeur variable en fonction de la longueur du masque (Mask) et de la valeur à écrire

2 Octets [0Bh + MaskLen + (2*Len)] ou [0Ch + MaskLen + (2*Len)].

MaskBank: 01h (RFU i.e. Bank EPC).

1 Octet

MaskLen: Longueur du masque EPC en octets [00h ... 1Eh].

1 Octet

MaskOffset: Décalage dans le masque en octets par rapport à la Bank EPC [04h ... 21h].

1 Octet

Mask: Correspond au masque EPC permettant au lecteur de sélectionner le(s) tag(s).

MaskLen Octets

BankID: Octet représentant la Bank devant être écrite.

1 Octet

> 00h Bank Reserved

> 01h Bank EPC > 02h Bank TID

O3h Bank User Memory

BankOffset: Décalage en mots de 2 octets des données Data dans la BankID [00h 00h ... FFh FFh].

1 ou 2 Octets

Len: Longueur des données Data exprimées en mots de deux octets devant être écrites.

1 Octet [01h...20h]. La valeur maximale étant 32 mots de deux octets.

PWD: Mot de 4 octets représentant le mot de passe **Access Password** permettant l'écriture.

4 Octets MSB first.

LogicalPort: Octet représentant le port logique sur lequel le lecteur tentera l'écriture. [00h ... 0Fh]

1 Octet

Data: Valeur correspondante aux données à écrire dans la Bank.

Len Octets

EPC1 Gen2®

Remarques

Le masque (Mask) n'est effectif uniquement sur la Bank EPC du tag (d'où MaskBank = RFU = 01h).

Il est important d'indiquer le mot de passe **PWD** (par défaut 00h 00h 00h 00h) même si la Bank n'est pas sécurisée. Dans le cas où celui-ci est différent de 00h 00h 00h 00h <u>et</u> que la Bank n'est pas sécurisée, il est possible d'utiliser la valeur par défaut ou la valeur réelle.

Le lecteur utilisera les paramètres d'antenne et de puissance associés au port logique en fonction des paramètres par défauts ou définis par les commandes **Set_RFSettings** ou **Set_RFSettings_Saved**. Le paramètre de temps est quant à lui figé.

Si le port logique utilisé dans la commande n'est pas attribué, le lecteur remontera l'erreur 00h 02h.

La syntaxe de la commande *Read* a changé. Il est possible d'ajouter un octet supplémentaire pour l'information **BankOffset**. Cependant, les anciennes versions de commandes n'incluant qu'un octet pour l'information **BankOffset** seront toujours prises en compte par le lecteur.

Exemple:

00h 08h 00h 03h AAh 55h 00h 17h 01h 09h 04h 00h 11h 22h 33h 44h 55h 66h 77h 88h 03h 00h 00h 01h 00h 11h AAh BBh CCh DDh 00h

MaskBank: 01h (RFU i.e. Bank EPC)

MaskLen: 9 octets

MaskOffset: 4 octets

Mask: 00h 11h 22h 33h 44h 55h 66h 77h 88h

Bank User Memory

BankOffset: 0 octets

Len: Figé à 01h.

PWD: AAh BBh CCh DDh

LogicalPort: Port logique 0

Data: 00h 11h

Inventory_With_Report

Description

Cette commande retourne la totalité des puces EPC1 Gen2 détectées par le lecteur lors d'un cycle de lecture.

Format

00h 08h 00h 11h AAh 55h 00h 04h PARAM1 PARAM2 PARAM3 PARAM4 Host:

00h 11h L_{in} NbTags [EPCLen EPC AntID NbRead RSSI] ^{nbTags} 08h 00h Lecteur:

Paramètres

00h 11h Code commande :

2 Octets

Valeur variable en fonction de la longueur des codes EPC1 Gen2 ainsi que du nombre L_{in}:

2 Octets total de tags lus. NbTags + ([EPCLen + EPC + AntID + NbRead +RSSI] x NbTags)

00h 00h Lout:

2 Octets

Cet octet indique le nombre d'identifiants EPC1 Gen2 différents détectés par le lecteur. NbTags:

[00h ... F7h]. 247 tags détectés maximum. 1 Octet

EPCLen: Octet déterminant la longueur (en octets) de l'identifiant EPC1 Gen2 qui suit.

Seuls les identifiants de 96 bits seront détectés. 1 Octet

EPC: Identifiant EPC1 Gen2 du tag lu. Sa taille dépendant de la valeur EPCLen.

EPCLen Octets

AntID: Représente le numéro du premier port logique sur lequel l'identifiant EPC1 Gen2 a 1 Octet

été détecté. Par adéquation, un port logique représente une antenne (voir commandes

SetRFSettings et GetRFSettings)

NbRead: Cet octet représente le nombre de lecture d'un tag EPC1 Gen2 sur la totalité des ports

2 Octets logiques par commande Inventory.

PARAM1: Cet octet représente l'activation de certaines remontées d'informations.

1 Octet

01h RSSI

PARAM2: 00h. RFU

1 Octet

PARAM3: 00h. RFU

1 Octet

PARAM4: 00h. RFU

1 Octet

RSSI: Cet octet représente l'information RSSI du tag lu.

1 Octet [00h ... FFh]

Remarques

Les paramètres [EPCLen EPC AntID NbRead RSSI] sont transmis autant de fois qu'il y a de tags EPC1 Gen2 lus (NbTags). Si aucun tag n'est détecté, ces paramètres ne seront pas transmis. Seul l'octet NbTags sera inclus dans la trame avec pour valeur 00h.

L'information RSSI (Received Signal Strength Indication) représente l'amplitude de la réponse du tag lu par le lecteur.

Si un tag est lu plusieurs fois, l'information RSSI remontée sera celle la plus faible détectée au cours des lectures.

V. Codes erreurs

5.1. Codes erreurs lecteurs

Le statut retourné sera donc pour cette famille de la forme 00h Code. Les codes d'erreurs sont indiqués en hexadécimal.

Code	Erreur	Résolution
00h	OK (Pas d'erreur)	
02h	Mauvais paramètre de donnée	Mauvais paramètre ou mauvais déchiffrement. Vérifier les paramètres.
03h	Erreur de CRC sur la trame	Problème de bruit sur la liaison. Mauvaise communication série.
04h	Mauvaise longueur de trame reçue	Problème de bruit sur la liaison. Mauvaise communication série.
07h	Mauvais code de commande	Vérifier la commande
08h	Mauvais type de commande	Vérifier le type de commande
20h	Problème hardware du lecteur UHF	Problème lié à la qualité ou la connexion d'antenne ou température interne du lecteur (cœur ou amplificateur de puissance) trop élevée.
D1h	Problème non récurrent	
D2h	Problème non récurrent	
D3h	Problème matériel	Analyse nécessaire

5.2. Codes erreurs EPC1 Gen2

Le statut retourné sera donc pour cette famille de la forme 08h Code. Les codes d'erreurs sont indiqués en hexadécimal.

Code	Erreur	Résolution
00h	OK (Pas d'erreur)	
01h	Autre erreur retournée par la puce différente de 03h, 04h et 0Bh.	Retenter l'opération.
02h	Mauvais paramètre de puce.	Vérifier les paramètres de la commande liés à la puce.
03h	Adressage mémoire refusé	L'adresse mémoire saisie doit être hors de la mémoire disponible sur le tag.
04h	Mémoire verrouillée	L'accès est refusé car la mémoire est verrouillée. Changer de zone ou déverrouiller la mémoire.
07h	Erreur RF	Pas de tag détecté ou le masque de détection est trop restrictif. Approcher le tag ou modifier le masque.
08h	Erreur RF lors d'une commande Lock ou mauvaise valeur de mot de passe pour tag verrouillé	Une opération de <i>Lock</i> sur un tag sécurisé (mot de passe différent de 0000) a été tentée avec un mot de passe égal à 0000. Changer ce mot de passe.
0Bh	Puissance insuffisante	La puissance actuelle du lecteur ne permet pas de finir l'opération en cours. Augmenter la puissance ou rapprocher le tag.
0Fh	Mauvais mot de passe	Le mot de passe saisit ne permet pas l'accès.
11h	Erreur identique 01h lors d'une vérification après commande Write .	Erreur de vérification
14h	Erreur identique 04h lors d'une vérification après commande Write .	Erreur lors de la vérification de l'opération en cours sur la mémoire verrouillée.

EPC1 Gen2®

17h	Erreur identique 07h lors d'une vérification après commande Write .	Erreur de vérification de l'opération RF en cours. Approcher le tag ou modifier le masque.
1Bh	Erreur identique 0Bh lors d'une vérification après commande Write .	Erreur lors de la vérification de l'opération en cours à cause d'une puissance insuffisante.

VI. Intégration des modules UHF.

Le tableau ci-dessous représente les références des produits STid intégrant les modules URL, URM et URF.

URM
UR1-W42-E-U04-5AA
UR1-W43-E-U04-7AA
UR1-W52-E-U04-5AA
UR1-W53-E-U04-7AA

URF			
URC-W42-E-U04-5AA			
URC-W43-E-U04-7AA			
URC-W52-E-U04-5AA			
URC-W53-E-U04-7AA			
URD-W42-E-U04-5AA			
URD-W43-E-U04-7AA			
URD-W44-E-U04-5AA			
URD-W45-E-U04-5AA			
URD-W48-E-U04-5AA			
URD-W52-E-U04-5AA			
URD-W53-E-U04-7AA			
URD-W54-E-U04-5AA			
URD-W55-E-U04-5AA			
URD-W58-E-U04-5AA			

VII. Révisions

Date	Version	Description
13/08/2009	1.0	Version initiale du document
02/12/2009	1.1	Modification de la commande Get_RFSettings
16/12/2009	1.2	Ajout des commandes Set_RFSettings_Saved; Set_RFSettings_Defaults
05/03/2010	1.3.0	Ajout des commandes Read , Write , Kill , Lock . Modification de la structure document. Ajout des codes erreurs. Modification des codes commande Reset_RFSettings , Get_RFSettings , Set_RFSettings et Set_RFSettings_Saved . La commande Set_RFSettings_Defaults devient Reset_RFSettings .
25/06/2010	1.4	Modification de la structure document. Précision sur l'utilisation du mot de passe PWD pour les Banks non sécurisées sur les commandes Kill , Lock , Read et Write .
19/07/2010	1.5	Précision apportée sur la commande Inventory si aucun tag n'est détecté.
29/07/2010	1.6	Modification de l'octet RECOM sur la commande Kill (01h devient 00h).
29/10/2010	1.7	Ajout de la commande Get_HealthParameters , des codes erreurs 20h & 21h et implémentation du module URL. Ajout du paragraphe § VI
25/01/2011	1.8	Ajout des commandes SetOptoOutputParam et ChangeRegulation . Modification de la commande Inventory sur l'état de l'entrée Input.
09/03/2011	1.9	Modification de la commande Autonomous_Output (b7 de l'octet OutConf sert désormais à activer/désactiver le numéro du port logique remonté) Modification de la trame de sortie en mode autonome. Le lecteur peut remonter désormais le numéro de port logique e mode autonome.
25/03/2011	1.10	Modification des informations PowerAnt et ScanDelay dans la commande Set_RFSettings.
01/07/2011	1.11	Suppression de l'octet Conf dans la commande Autonomous_Output. Remplacé par 00h.
01/09/2011	2.0	Ajout des commandes GetInfos , SetBaudRate , Set485Address et Inventory_Report . Modification des syntaxes des commandes Read et Write . La valeur FFh pour l'octet LogicalPort dans les commandes Read et Write permet d'essayer l'opération d'écriture ou de lecture sur tous les ports actifs.
15/05/2012	2.1	Ajout de la lecture TID en mode autonomous. Modification de la commande Autonmous_Output . Ajout des commandes Set_RF_Params et Retrieve_RF_Params . Il est possible désormais d'écrire avec la fonction Write une donnée de 32 octets.