TC275 Core Overview

User's Manual V2.2 2014-12

KNU

1. TC27x Introduction

1. TC27x Introduction

2. On-Chip System Buses and Bus Bridges

2. On-Chip System Buses and Bus Bridges

• SRI Crossbar (XBar_SRI)

XBar_SRI point to point connection scheme

KNU

3. Memory Maps

- Program Memory Unit (PMU0)
 - 4 MB of Program Flash Memory (PFLASH)
 - Data Flash Memory (DF_EEPROM)
 - User Configuration Blocks (DF_UCB)
 - 32 KB of Boot ROM (BROM)
- CPU0
 - 24 KB of Program Scratch-Pad SRAM (PSPR)
 - 112 KB of Data Scratch-Pad SRAM (DSPR)
 - 8 KB of Program Cache (PCache)
- CPU1 & CPU2
 - 32 KB of Program Scratch-Pad SRAM (PSPR)
 - 120 KB of Data Scratch-Pad SRAM (DSPR)
 - 16 KB of Program Cache (PCache)
 - 8 KB of Data Cache (DCache)
- LMU: 32 KB SRAM (LMURAM)

Address Map of the On Chip Bus System

Segment	Address Ragne	Size	Description
0-4	0000 0000h - 4FFF FFFFh	-	Reserved
5	5000 0000h - 5FFF FFFFh	-	CPU2 Area
6	6000 0000h - 6FFF FFFFh	-	CPU1 Area
	7000 0000h - 7001 BFFFh	112 KB	CPU0 Data Scratch-Pad SRAM (CPU0.DSPR)
7	7010 0000h - 7010 5FFFh	24 KB	CPU0 Program Scratch-Pad SRAM (CPU0.PSPR)
,	7010 6000h - 7010 7FFFh	8 KB	CPU0 Program Cache SRAM (CPU0.PCache)
	701C 0000h - 701C 0BFFh		CPU0 Program Cache TAG SRAM (CPU0.PTAG)
8	8000 0000h - 801F FFFFh	2 MB	Program Flash 0 (PF0)
	8020 0000h - 803F FFFFh	2 MB	Program Flash 1 (PF1)
	8FFF 80000h - 8FFF FFFFh	32 KB	Boot ROM (BROM)
9	9000 0000h - 9000 7FFFh	32 KB	LMU SRAM (LMUSRAM)

Reserved 제외, User's Manual Table 3-2 참조

KNU

4. TC27x BootROM Content

- BOOT_TC27X
 - Startup software (SSW)
 - Software modules implementing additional functions (Bootstrap Loaders)
 - Test Firmware

Startup Software (SSW)

- SSW는 칩이 리셋 된 후 실행되는 첫 번째 소프트웨어임
- SSW는 CPU0에서 실행
 - 다른 CPU는 부팅 동안 Halt-state 유지하다 사용자 SW에 의해 시작됨
 - BootROM의 SSW 시작 주소는 CPU0의 PC 레지스터의 리셋 값임. 이 위치에서 명령어를 가져오며 장치가 시작된 후 실행되는 첫 번째 명령어임
 - 진입점 직후 펌웨어는 테스트 모드를 체크하고, 만약 선택되어 있다면 테스트 펌웨어로 점프가 실행됨
 - 마지막 SSW 명령어는 첫 번째 사용자 코드 명령어로 점프를 수행함. 첫 번째 사용 자 명령어는 사용자가 선택한 스타트업 설정에 따라 다른 위치에서 가져올 수 있음
- SSW는 다음 중 하나 이상에 따라 장치를 초기화하는 절차를 포함함
 - 전용 플래시 위치에 저장된 이전 정보
 - 전용 레지스터/메모리 위치에 특수 비트/필드의 현재 상태
 - SSW 실행을 트리거한 이벤트 유형 (마지막 리셋 이벤트)
 - 외부(구성)핀에 적용된 값 (옵션)

KNU

5. CPU Subsystem

- Key CPU Features
 - 32-bit load store architecture
 - 4 GB address range
 - 16-bit & 32-bit instructions for reduced code size
 - Data types
 - Boolean, integer with saturation, bit array, signed fraction, character, doubleword integers, signed integer, unsigned integer, IEEE-754 single-precision floating point
 - Data formats
 - Bit, byte (8-bit), half-word (16-bit), word (32-bit), double-word (64-bit)
 - Byte and bit addressing
 - Little-endian byte ordering for data, memory and CPU registers
 - Multiply and Accumulate (MAC) instructions: Dual 16x16, 16x32, 32x32
 - Saturation integer arithmetic
 - · Packed data

5. CPU Subsystem

- Key CPU Features
 - Addressing modes
 - Absolute, circular, bit reverse, long + short, base + offset with pre- and postupdate
 - · Instruction types
 - Arithmetic, address arithmetic, comparison, address comparison, logical, MAC, shift, coprocessor, bit logical, branch, bit field, load/store, packed data
 - General Purpose Register Set (GPRS)
 - Sixteen 32-bit data registers (D0 D15)
 - Sixteen 32-bit address registers (A0 A15)
 - Three 32-bit status and program counter registers (PSW, PC, PCXI)
 - Flexible memory protection system providing multiple protection sets with multiple protection ranges per set
 - Temporal protection system allowing time bounded real time operation

KNU

5. CPU Subsystem

- Key CPU Features
 - Most instructions executed in 1 cycle
 - Branch instructions in 1, 2, or 3 cycles (using dynamic branch prediction)
 - Wide memory interface for fast context switch
 - Automatic context save-on-entry and restore-on-exit for: subroutine, interrupt, trap
 - Four memory protection register sets
 - Dual instruction issuing (in parallel into Integer Pipeline and Load/Store Pipeline)
 - Third pipeline for loop instruction only (zero overhead loop)
 - Single precision Floating Point Unit (IEEE-754 Compatible)
 - Dedicated integer divide unit
 - Implementation optimized for performance
 - 16 data protection ranges, 8 code protection ranges

TC1.6P Implementation Overview

• CPU block diagram

KNU

Registers

• Program Status Word Register

PSW Prog	PSW Program Status Word Register (CSFR_Base + FE04 _H)								4 _H)	Reset Value: 0000 0B80 _H					
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
C or FS	V or FI	SV or FV	AV or FZ	SAV or FU	FX	R	М)			
rwh	rwh	rwh	rwh	rwh	rwh	n	W					r			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	s	PF	RS	10)	IS	GW	CDE				CDC			
r	rwh	rv	vh	rv	/h	rwh	rwh	rwh				rwh			

Registers

Address	Data	System		
31 0	31	0 31 0		
A[15] (Implicit Base Address)	D[15] (Implicit Data)	PCXI		
A[14]	D[14]	PSW		
A[13]	D[13]	PC		
A[12]	D[12]			
A[11] (Return Address)	D[11]			
A[10] (Stack Return)	D[10]			
A[9] (Global Address Register)	D[9]			
A[8] (Global Address Register)	D[8]			
A[7]	D[7]			
A[6]	D[6]			
A[5]	D[5]			
A[4]	D[4]			
A[3]	D[3]			
A[2]	D[2]			
A[1] (Global Address Register)	D[1]			
A[0] (Global Address Register)	D[0]	MCA05246		

ACE Lab.

KNU

Supported Data Formats

Alignment Rules

Access type	Access size	Alignment of address in memory
Load, Store Data Register	Byte	Byte (1 _H)
	Half-Word	2 bytes (2 _H)
	Word	2 bytes (2 _H)
	Double-Word	2 bytes (2 _H)
Load, Store Address Register	Word	4 bytes (4 _H)
	Double-Word	4 bytes (4 _H)
SWAP.W, LDMST	Word	4 bytes (4 _H)
ST.T	Byte	Byte (1 _H)
Context Load / Store / Restore / Save	16 x 32-bit registers	64 bytes (40 _H)

KNU

Byte Ordering

Word 5	Byte23	Byte22	Byte21	Byte20	◄ Double-word
Word 4	Byte19	Byte18	Byte17	Byte16	Double-word
Word 3	Byte15	Byte14	Byte13	Byte12	Half-word
Word 2	Byte11	Byte10	Byte9	Byte8	◄ Word
Word 1	Byte7	Byte6	Byte5	Byte4	
Word 0	Byte3	Byte2	Byte1	Byte0	⋖ Byte

Q&A

Thank you for your attention

000000 Architecture and Compiler 000000 for Embedded Systems Lab.

School of Electronics Engineering, KNU ACE Lab. (jcho@knu.ac.kr)

