Evolutionary Computation for Multi-objective Optimization

Shengxiang Yang

Centre for Computational Intelligence School of Computer Science and Informatics De Montfort University, United Kingdom Email: syang@dmu.ac.uk http://www.tech.dmu.ac.uk/~syang

Outline of the Lecture

- Multi-objective optimization: Basic concepts
- Performance assessment and test problems
- Evolutionary computation approaches for multi-objective optimization
- Summary

Introduction to Multi-objective Optimization

Decision-making: Buying a car > Features

- - Two or more conflicting objectives
 - There is no single optimal solution
 - Multiple trade-off optimal solutions exist and all such optimal solutions are important
- Any more examples?

Multi-objective Optimization Problems (MOPs)

MOPs can be modeled as follows:

$$Min/Max \ F(x) = (f_1(x), f_2(x), ..., f_m(x))$$

Subject to $g_j(x) \ge 0, h_k(x) = 0, x^L \le x \le x^U$

- MOPs involve
 - Finding vectors of decision variables

$$x = (x_1, x_2, \dots, x_n) \in S,$$

where S is the decision space or solution space

Subject to certain constraints

$$x \in F$$
, $F \subseteq S$, F contains feasible solutions

Simultaneously optimizing $m \ (m \ge 2)$ performance criteria expressed as a vector of (often conflicting) objective functions (objective space)

Dominance, Pareto Optimal Set and Front

- Solution x dominates y iff
 - x is no worse than y in all objectives
 - x is better than y in at least one objective
- Example:
 - A dominates B, A doesn't dominate C
- Pareto optimal set (POS) or Pareto set (PS): the set of all non-dominated solutions in the decision space
- Pareto optimal front (POF) or Pareto front (PF): The image of the POS in the objective space

Pareto Optimal Front (POF)

- POF: Depend on the type of objectives
- Always on the boundary of feasible regions

Some Terminologies

- Ideal point (z*):
 - Lower bound on the POS
- Utopian point (z**):
 - Non-existent point
- \triangleright Nadir point (z^{nad}):
 - Upper bound on the POS
- Worst point (W):
 - Upper bound on the objective space
- Normalization: $f_i^{ ext{norm}} = \frac{f_i z_i^*}{z_i^{ ext{nad}} z_i}$

Single Objective vs Multi-objective Optimization

- Single objective:
 - Single optimum or multiple optima with the same objective value
- Multi-objective:
 - A set of non-dominated optima (Pareto optimal set)
 - Two spaces (decision and objective spaces) instead of one

Classical Multi-objective Optimization Methods

Construct a weightedsum of objectives and

$$F(x) = \sum_{i=1}^{M} w_i f_i(x)$$

Feasible objective space \angle Pareto-optimal front

Advantages: Simple and adequate when a reliable relative preference vector w is known

Classical Multi-objective Optimization Methods

> Limitations:

- Need to know a reliable relative preference vector w: Difficult to estimate it without a-priori knowledge
- The trade-off solution is sensitive to w
- Able to obtain only one solution at a time. Need multiple runs to obtain multiple solutions
- Unable to find some Pareto-optimal solutions (those in non-convex regions)

Ideal Multi-objective Optimization Methods

Advantages:

- More methodical practical and less subjective
- Can obtain a set of trade-off solutions in one run
- High-level information can be used to compare trade-off solutions to choose one for usage

Challenge:

 Difficult to obtain all the trade-off optimal solutions

Evolutionary Multi-objective Optimization (EMO)

- > Advantages of evolutionary algorithms (EAs) for MOPs:
 - Low requirements on the problem characteristics
 - Easy to integrate heuristic knowledge if available
 - Easy to use (usually inexpensive to develop)
 - User-interaction possible
 - Capable to obtain a set of optimal solutions

Three Goals in EMO

Usually, extensity and uniformity are combined and called diversity

Performance Assessment

Assess Pareto front approximations obtained by stochastic search algorithms

- ➤ **Convergence**: GD [Velduizen and Lamont, 1998], Convergence Measure [Deb and Jain, 2002], Coverage [Zitzler and Thiele, 1999], Dominance Ranking [Knowles et al, 2006]
- Diversity (both extensity and uniformity): Δ Metric [Deb et al, 2002], Sigma Diversity Metric [Mostaghim and Teich, 2005], Diversity Measure [Deb and Jain, 2002], DCI [Li et al, 2014]
- Extensity: Maximum Spread [Zitzler et al, 2000; Goh and Tan, 2007], Overall Pareto Spread [Wu and Azarm, 2001], Spread Assessment [Li and Zheng, 2009]
- Uniformity: Spacing [Schott, 1995], Uniform Distribution [Tan et al, 2002], Entropy Measure [Farhang-Mehr and Azarm, 2003]
- Comprehensive Assessment (both convergence and diversity): Hypervolume [Zitzler and Thiele, 1999], ε-indicator [Zitzler et al, 2003], IGD [Bosman and Thierens, 2003], G-Metric [Lizarraga et al, 2008], Average Hausdorff Distance [Schutze, 2012], IGD+ [Ishibuchi et al, 2014], PCI [Li et al, 2015]

Hypervolume (HV) [Zitzler & Thiele, 1999]

HV calculates the volume of the objective space dominated by an approximation set and bounded by a reference point

- Good theoretical properties, Pareto dominance compliant, no need of a reference set
- Heavy computational cost, need of a reference point, preferring the knee and boundary solutions to welldistributed solutions

HV Prefers Boundary Solutions: Example

Reference point	MOEA/D	IBEA
(1.0, 1.0, 1.0)	4.1413E-1	4.1525E–1
(1.1, 1.1, 1.1)	7.4484E–1	7.4596E-1
(1.2, 1.2, 1.2)	1.1418E+0	1.1430E+0
(1.4, 1.4, 1.4)	2.1578E+0	2.1590E+0
(1.7, 1.7, 1.7)	4.3268E+0	4.3280E+0
(2.0, 2.0, 2.0)	7.4138E+0	7.4150E+0
(2.5, 2.5, 2.5)	1.5039E+1	1.5040E+1
(3.0, 3.0, 3.0)	2.6414E+1	2.6415E+1

Two Pareto optimal sets on DTLZ2 are obtained by MOEA/D and IBEA.

HV results of the two sets under different reference points.

Inverted Generational Distance

IGD calculates the average Euclidean distance from each point in a reference set to its closest solution in an approximation set

$$IGD(PF^*, PF) = \frac{\sum_{p \in PF} d(p, PF^*)}{|PF|}$$

- PF is a reference set from the true POF, PF* is an approximate POF
- Quadratic time complexity, no need of parameter settings
- Need a reference set (as a substitution of the Pareto front)

A practical method of constructing a reference set is to use the non-dominated solutions of all the tested approximation sets

Multi-objective Test Problems

- Continuous functions: SCH [Veldhuizen, 1999], ZDT [Zitzler et al, 2000], DTLZ [Deb et al, 2005], WFG [Huband et al, 2006], UF [Zhang et al, 2009], Distance Minimization Problem [Köppen and Yoshida, 2007; Ishibuchi et al, 2010], Rectangle [Li et al, 2014]
- ➤ **Combinatorial functions**: Knapsack [Zitzler and Thiele, 1999], TSP [Corne and Knowles, 2007], MNK-Landscapes [Aguirre and Tanaka, 2004]

Problem	m	d	Properties	Problem	m	d	Properties	Problem	m	d	Properties		
SCHI	2	1	Convex	WFG7	2	22	Concave, Biased	UF2	2	30	Convex, Complex PS		
SCH2	2	1	Discontinuous	WFG8	2	22	Concave, Nonseparable, Biased	UF3	2	30	Convex, Complex PS		
KUR	2	3	Discontinuous	WFG9	2	22	Concave, Nonseparable, Deceptive, Biased	UF4	2	30	Concave, Complex PS		
ZDT1	2	30	Convex	VNT1	3	2	Convex	UF5	2	30	Linear, Discrete, Complex PS		
ZDT2	2	30	Concave	VNT2	3	2	Mixed	UF6	2	30	Linear, Discontinuous, Complex P		
ZDT3	2	30	Discontinuous	VNT3	3	2	Mixed, Degenerate	UF7	2	30	Linear, Complex PS		
ZDT4	2	10	Convex, Multimodal	DTLZ1	3	7	Linear, Multimodal	UF8	3	30	Concave, Complex PS		
ZDT6	2	10	Concave, Multimodal, Biased	DTLZ2	3	12	Concave	UF9	3	30	Linear, Discontinuous, Complex PS		
WFG1	2	22	Mixed, Biased	DTLZ3	3	12	Concave, Multimodal	UF10	3	30	Concave, Complex PS		
WFG2	2	22	Convex, Discontinuous, Nonseparable	DTLZ4	3	12	Concave, Biased	DTLZ2(4)	4	13	Concave		
WFG3	2	22	Linear, Degenerate, Nonseparable	DTLZ5	3	12	Concave, Degenerate	DTLZ2(6)	6	15	Concave		
WFG4	2	22	Concave, Multimodal	DTLZ6	3	12	Concave, Degenerate, Biased	DTLZ2(10)	10	19	Concave		
WFG5	2	22	Concave, Deceptive	DTLZ7	3	22	Mixed, Discontinuous, Multimodal	DTLZ5(2,10)	10	19	Concave, Degenerate		
WFG6	2	22	Concave, Nonseparable	UFI	2	30	Convex, Complex PS	DTLZ5(3,10)	10	19	Concave, Degenerate		

Properties of some continuous problems, where m and d denote the number of objective and decision variables, respectively

Zitzler-Deb-Thiele (ZDT) Test Problems

- Pareto-optimal front is controllable and known
- Two-objective problems:

Min.
$$f_1(\mathbf{x}) = f_1(\mathbf{x}_I),$$

Min. $f_2(\mathbf{x}) = g(\mathbf{x}_{II})h(f_1, g).$

Choose f₁(), g() and h() functions to introduce different features and difficulties

ZDT Test Problems (ZDT1 and ZDT2)

ZDT Test Problems (ZDT3 and ZDT4)

ZDT Test Problems (ZDT5 and ZDT6)

ZDT5 $f_1 = 1 + u(x_1), \ g = \sum_{i=2}^{11} v(u(x_i))$ $v = \begin{cases} 2 + u(x_i) & \text{if } u(x_i) < 5, \\ 1 & \text{if } u(x_i) = 5, \end{cases}$ $h = 1/f_1(\mathbf{x})$

MOPs with Complex PFs

In real-world applications & scientific research, many MOPs have complex PFs

Disconnectivity

Extreme convexity

Disconnectivity

EMO Framework vs Single Objective EAs

- EMO framework includes an extra fitness assignment step
- Fitness assignment: Modify the fitness calculation
 - Emphasize non-dominated solutions for convergence
 - Emphasize less-crowded solutions for diversity

EMO Algorithm Frameworks

- > Pareto-based (domination-based) algorithms
 - NSGA-II [Deb et al, 2002], SPEA2 [Zitzler et al, 2001], PAES [Knowles and Corne, 2000]
- Indicator-based algorithms
 - ▶ IBEA [Zitzler and Kunzli, 2004], SMS-EMOA [Beume et al, 2007]
- > Decomposition-based algorithms
 - MOEA/D [Zhang and Li, 2007], MSOPS [Hughes, 2003]

Pareto-based Algorithms

Pareto-based algorithm = Pareto-based selection + diversity maintenance

- An MOP is optimized by simultaneously optimizing all objectives
- > Fitness assignment is based on Pareto dominance principle
- An explicit diversity preservation scheme is necessary
- Examples: NSGA-II, SPEA2, PAES

Pareto-based Selection Criterion

- Dominance rank: By how many individuals is an individual dominated?
 - MOGA [Goldberg, 1989], NPGA [Horn et al, 1994]
- Dominance count: How many individuals does an individual dominate?
 - SPEA [Zitzler and Thiele, 1999], SPEA2 [Zitzler et al, 2001]
- Dominance depth: At which nondominated front is an individual located?
 - NSGA [Srinivas and Deb, 1994], NSGA-II [Deb et al, 2002]

Diversity Maintenance

Niching Technique

 Calculate the distance function of an individual to others in its niche [Horn et al, 1994; Fonseca and Fleming, 1995]

K-th Nearest Neighbor

 Calculate the distance of an individual to its k-th nearest neighbor [Zitzler et al, 2001]

Grid Crowding Degree

▶ Count the number of individuals in a box [Knowles and Corne, 2000, Corne et al, 2001, Knowles and Corne, 2003]

Niching technique

K-th nearest neighbor

Grid crowding degree

Elitist Non-dominated Sorting GA (NSGA-II)

- Non-dominated solutions are emphasized for converging to POF
- > Elites are preserved for a fast and reliable convergence to POF
- Solutions of larger crowding distance (CD) are emphasized for maintaining diversity
- Use crowded tournament selection for mating

NSGA-II: Crowding Distance (CD)

- > Sort solutions regarding each objective
- Compute CD based on the distance of a solution to its neighbours in each objective

$$CD(i) = \frac{d_1(i)}{f_{1,\max} - f_{1,\min}} + \dots + \frac{d_m(i)}{f_{m,\max} - f_{m,\min}}$$

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 6(2): 182-197, 2002

Indicator-based Algorithms

Utilize a performance indicator, e.g., hypervolume (HV), to measure the fitness of solutions

- > An MOP is optimized by simultaneously optimizing all objectives
- > High selection pressure towards Pareto front
- Examples:
 - ▶ IBEA [Zitzler and Kunzli, 2004]; SMS-EMOA [Beume et al, 2007]; HypE [Bader and Zitzler 2011]
- > Hard to maintain uniformity of solutions

Decomposition-based Algorithms

Decompose an MOP into a set of scalar subproblems and solve them collaboratively: MOEA/D [Zhang and Li, 2007]

- MOEA/D [Zhang and Li, 2007]
 - Optimize all subproblems simultaneously by an EA
 - Use best solutions of neighbor subproblems for mating
 - Keep the best solution for each subproblem
 - Update information of neighbor subproblems
 - Use external archive for non-dominated solutions
- Many subsequent variants and enhancements

Q. Zhang and H. Li. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans on Evolutionary Computation, 11(6): 712-731, 2007

MOEA/D: Decomposition Methods

Weighted Sum (WS)

min
$$g^{ws}(x|w,z^*) = \sum_{i=1}^{m} (w_i|f_i(x) - z_i^*|)$$

s.t. $x \in \Omega_x$.

Tchebycheff (TCH)

$$\min \quad g^{te}(x|w,z^*) = \max_{1 \le i \le m} \left(\frac{1}{w_i} |f_i(x) - z_i^*| \right)$$
s.t. $x \in \Omega_x$,

z* is the ideal reference point

Penalty Boundary Intersection (PBI)

min
$$g^{pbi}(x|w,z^*) = d_1 + \theta d_2$$

s.t. $x \in \Omega_x$,

$$d_1 = \frac{\|(f(x) - z^*)^T w\|}{\|w\|},$$

$$d_2 = ||f(x) - (z^* + d_1 \frac{w}{||w||})||.$$

 θ is a user-defined penalty factor.

Illustration of three scalarizing functions on weight vector w, where dashed lines are contour lines

Weighted Sum Decomposition Illustration

$$\lambda^{1} = (1,0),$$
 $g(x,\lambda^{1}) = 1 \times f_{1} + 0 \times f_{2}$
 $\lambda^{2} = (0.9, 0.1)$ $g(x,\lambda^{2}) = 0.9 \times f_{1} + 0.1 \times f_{2}$
 \vdots
 $\lambda^{11} = (0,1)$ $g(x,\lambda^{11}) = 0 \times f_{1} + 1 \times f_{2}$

Weight vectors and corresponding weighted sum sub-problems

MOEA/D: Pseudo-code

MOEA/D with PBI Decomposition

Step 1: Initialization

- Step 1.1 Neighborhood: Determine the T closest weight vectors to each weight vector
- Step 1.2 Initial Population randomly generated
- Step 1.3 Function Evaluation
- **Step 1.4** Reference point (*z*) Initialization

Step 2: Update

For i = 1, ..., N, do

- Step 2.1 Reproduction: Offpsring generation via local mating using genetic operators
- Step 2.2 Repair: Offspring repair using heuristics
- Step 2.3 Function Evaluation: Offspring
- Step 2.4 Update of Reference point (z): Offspring is used to update z
- Step 2.5 Replacement: If offspring is a better solution that the existing solutions to neighboring subproblems, then they are replaced by the offspring

Step 3: Stopping Criteria

If termination criterion is satisfied, then obtain approximation to PO the PF else go to **Step 2**

MOEA/D: Empirical Results

Work perfectly on some problems

But struggle on some other problems

Two open issues:

- 1. MOEA/D loses diversity due to duplicate solutions when optimizing disconnected MOPs
- 2. MOEA/D cannot obtain uniformly distributed solutions if the PF is extremely shaped

New Scalarizing Functions - MSF

A. Multiplicative Scalarizing Function (MSF)

$$g^{msf}(x|w,z^*) = \frac{\left[\max\limits_{1 \leq i \leq m} \left(\frac{1}{w_i}|f_i(x) - z_i^*|\right)\right]^{1+\alpha}}{\left[\min\limits_{1 \leq i \leq m} \left(\frac{1}{w_i}|f_i(x) - z_i^*|\right)\right]^{\alpha}}$$

Where α is a parameter controlling the geometry of contour lines When $\alpha = 0$, MSF degenerates to TCH.

Fig. 3: Contour lines of MSF with different α values.

New Scalarizing Functions - MSF

Theorem 1: In bi-objective optimization, the maximum size of improvement region enclosed by MSF at contour value c is equal to

$$\Delta_c = \frac{w_1 w_2 c^2}{2\alpha + 1}$$

Improvement region (shaded area) of MSF.

Two observations:

- ✓ Subproblems with different weight vectors have different size of improvement regions
- \checkmark The improvement size for subproblems can be adjusted via α in MSF, whereas this is not possible in existing scalarizing functions.

New Scalarizing Functions - PSF

B. Penalty-based Scalarizing Function (PSF)

Inspired by the idea of PBI that controls diversity by penalizing solutions far from a weight vector, we modify the weighted Chebycheff function in the following way:

$$g^{psf}(x|w,z^*) = \max_{1 \le i \le m} \left(\frac{1}{w_i} |f_i(x) - z_i^*| \right) + \alpha d$$
 (10)

$$d = \frac{\sqrt{\|f(x) - z^*\|^2 \|w\|^2 - \|(f(x) - z^*)^T w\|^2}}{\|w\|}$$
(11)

Fig. 6: Contour lines of PSF with different α values

Where α is a parameter controlling the geometry of contour lines. When $\alpha=0$, MSF degenerates to TCH.

New Scalarizing Functions - PSF

Efficient MOEA/D with MSF/PSF

Efficient MOEA/D:

✓ Adaptive scalarizing strategy

$$\alpha = \beta (1 - \frac{gen}{MaxGen}) \Big\{ m \min_{1 \le i \le m} (w_i) \Big\}$$

- ✓ Mating selection in neighbourhood.
- ✓ Solution replacement in most suitable subproblems

```
Choose a scalarizing function SF for MOEA/D;
qen \leftarrow 1;
while gen \leq MaxGen do
    Update \alpha for the selected SF according to Eq. (15);
    for i \leftarrow 1 to N do
        Randomly select indexes r_1 and r_2 from B(i);
        Apply genetic operators on individuals x^{r_1}, x^{r_2}
          to produce a new solution y;
        Evaluate the objective vector of y, and update z^*;
        Find the T most suitable subproblems for y:
          S = \{s_1, s_2, \dots, s_T\};
        c \leftarrow 0:
        for j \leftarrow 0 to T do
            if x \prec_{SF} x^{s_j} then
                 x^j \leftarrow y \text{ and } c \leftarrow c+1;
             end
            if c \geq n_r then
                 break;
             end
    Update z^{nad} using P, gen \leftarrow gen + 1;
```

S. Jiang and S. Yang. Scalarizing functions in decomposition-based multiobjective evolutionary algorithms. IEEE Trans. on Evolutionary Computation, 22(2): 296-313, 2018

Efficient MOEA/D: Experimental Results

Efficient MOEA/D: Experimental Results

TABLE II: Best, median, and worst HVD values obtained by different algorithms

Prob.	MSF*	PSF*	TCH	ACD	AGR	DU	STM	M2M	PICEA-g	NSGA-III
	1.39E-02	1.43E-02	7.66E-02	1.59E-02	2.73E-02	1.53E-02	1.32E-02	2.48E-02	5.81E-01	1.64E-02
MOP1	1.43E-02	1.46E-02	5.46E-01 [‡]	1.61E-02 [‡]	2.91E-02 [‡]	1.58E-02 [‡]	6.80E-02 [‡]	2.70E-02 [‡]	5.97E-01 [‡]	1.71E-02 [‡]
	1.50E-02	1.49E-02	5.82E-01	1.64E-02	3.56E-02	1.69E-02	5.39E-01	2.88E-02	6.08E-01	3.95E-02
	6.30E-03	6.48E-03	1.48E-01	6.90E-03	1.02E-02	8.39E-03	6.42E-03	1.76E-02	2.85E-01	8.97E-03
MOP2	6.39E-03	6.55E-03	2.22E-01 [‡]	8.29E-03 [‡]	1.82E-02 [‡]	8.64E-03 [‡]	6.78E-03	1.91E-02 [‡]	3.12E-01 [‡]	9.79E-03 [‡]
	6.53E-03	8.36E-03	3.33E-01	9.51E-03	2.64E-01	1.20E-02	1.84E-01	1.36E-01	3.33E-01	9.81E-02
Ø.	6.08E-03	6.29E-03	2.15E-01	6.13E-03	1.03E-02	8.12E-03	2.15E-01	1.26E-02	2.15E-01	9.38E-03
MOP3	6.76E-03	6.80E-03	3.48E-01 [‡]	$7.16E-03^{\dagger}$	1.24E-02 [‡]	8.69E-03 [‡]	2.15E-01 [‡]	1.53E-02 [‡]	2.15E-01	2.10E-01 [‡]
	7.94E-03	1.45E-02	4.15E-01	1.03E-02	1.55E-01	3.19E-02	2.82E-01	1.88E-02	2.82E-01	2.15E-01
-	3.45E-03	6.48E-03	2.78E-01	7.21E-03	4.35E-03	4.26E-03	3.06E-03	8.72E-03	3.57E-01	5.60E-03
MOP4	9.45E-03	9.57E-03	3.12E-01 [‡]	1.33E-02 [‡]	1.31E-02	1.02E-02	2.29E-01	1.48E-02 [‡]	3.77E-01°	2.58E-01 [‡]
	2.10E-02	1.54E-02	3.48E-01	2.82E-02	1.25E-01	1.33E-02	2.45E-01	2.47E-02	3.96E-01	2.87E-01
	1.38E-02	1.45E-02	4.72E-01	1.70E-02	2.73E-02	2.33E-02	2.94E-02	2.92E-02	3.13E-01	2.50E-02
MOP5	1.63E-02	1.60E-02	4.72E-01 [‡]	1.77E-02	3.12E-02 [‡]	$2.46E-02^{\ddagger}$	3.13E-01 [‡]	3.55E-02 [‡]	4.72E-01 [‡]	$3.14E-02^{\ddagger}$
	2.09E-02	1.87E-02	4.72E-01	1.88E-02	4.63E-02	3.95E-02	3.13E-01	5.45E-02	4.72E-01	3.34E-01
2/4	5.15E-02	5.25E-02	2.46E-01	1.20E-01	9.28E-02	6.23E-02	5.77E-02	1.53E-01	2.40E-01	6.56E-02
MOP6	5.25E-02	5.31E-02	3.47E-01 [‡]	2.17E-01 [‡]	2.00E-01 [‡]	7.66E-02 [‡]	1.83E-01 [‡]	1.91E-01 [‡]	3.38E-01 [‡]	1.74E-01 [‡]
	6.32E-02	6.50E-02	3.47E-01	3.47E-01	2.91E-01	1.20E-01	2.46E-01	2.96E-01	3.39E-01	2.00E-01
	9.58E-02	1.08E-01	2.60E-01	1.70E-01	1.58E-01	9.67E-02	1.58E-01	1.63E-01	2.66E-01	1.77E-01
MOP7	1.03E-01	1.11E-01	2.72E-01 [‡]	2.62E-01 [‡]	2.65E-01 [‡]	1.13E-01	2.55E-01 [‡]	2.14E-01 [‡]	2.66E-01 [‡]	1.81E-01 [‡]
	1.60E-01	2.10E-01	2.72E-01	2.98E-01	2.72E-01	1.88E-01	2.72E-01	1.20E+00	2.67E-01	2.87E-01
,	4.44E-02	4.38E-02	8.65E-02	6.59E-02	6.94E-02	9.25E-02	5.62E-02	2.63E-01	4.75E-01	5.31E-02
MOP8	5.81E-02	5.46E-02	2.02E-01 [‡]	1.16E-01 [‡]	1.01E-01 [‡]	1.01E-01 [‡]	6.88E-02 [‡]	4.29E-01 [‡]	6.11E-01 [‡]	5.74E-02
10	9.58E-02	1.09E-01	3.81E-01	1.54E-01	1.52E-01	1.71E-01	3.15E-01	7.30E-01	7.28E-01	6.24E-02
0.5	9.25E-02	8.05E-02	1.59E-01	1.32E-01	1.04E-01	9.71E-02	1.58E-01	2.05E-01	1.70E-01	1.76E-01
MOP9	1.01E-01	1.03E-01	6.15E-01 [‡]	3.96E-01 [‡]	1.72E-01 [‡]	1.03E-01 [‡]	1.59E-01 [‡]	2.48E-01 [‡]	6.08E-01 [‡]	1.79E-01 [‡]
	1.71E-01	3.25E-01	6.76E-01	6.20E-01	3.58E-01	2.23E-01	4.78E-01	4.63E-01	6.76E-01	1.81E-01

[†] and \diamond indicates MSF* and PSF* significantly outperform the corresponding algorithm, respectively.

- Efficient MOEA/D generally works better than all the compared algorithms
- > Decomposition-based algorithms obtain better results than dominance-based ones
- Some many-objective optimizers like DU, PICEA-g and NSGA-III are not effective in multiobjective optimization

[‡] indicates both MSF* and PSF* significantly outperform the corresponding algorithm.

Summary

- > EC for MOPs has received great attention over several decades
 - Many MOEAs developed
- > Still active and needs more research
 - More efficient algorithms
 - More real-world applications
 - Theoretical analysis
 - Many-objective optimization (>3 objectives)

