## \*\*\* Applied Machine Learning Fundamentals \*\*\* Decision Theory

Daniel Wehner

SAPSE

August 22, 2019





#### Agenda August 22, 2019

Bayesian Decision Theory Introduction Class Conditional Probabilities Class Priors Bayes' Theorem Bayes' Optimal Classifier

2 Naïve Bayes Classifier Assumptions and Algorithm An Example Laplace Smoothing

- Risk Minimization
- 4 Wrap-Up Summary

Lecture Overview

Self-Test Questions

Recommended Literature and further Reading

## Section: Bayesian Decision Theory



#### Statistical Methods

- Statistical methods assume that the process that 'generates' the data is governed by the rules of probability
- The data is understood to be a set of random samples from some underlying probability distribution
- This is the reason for the name statistical machine learning

The basic assumption about how the data is generated is always there, even if you don't see a single probability distribution!

#### Running Example: Optical Character Recognition (OCR)





Goal: Classify a new letter so that the probability of a wrong classification is minimized



#### Class Conditional Probabilities

- First concept: Class conditional probabilities
- Probability of x given a specific class  $\mathcal{C}_k$  is formally written as:

$$p(\mathbf{x}|\mathcal{C}_k) \in [0,1] \tag{1}$$

•  $x \in \mathbb{R}^m$  is a feature vector, e.g. # black pixels, height-width ratio, ...



### Class Conditional Probabilities (Ctd.)





If x = 15 we would predict class a since p(15|a) > p(15|b).

If x = 25 we would output class b since p(25|b) > p(25|a).

### Class Conditional Probabilities (Ctd.)



- Which class should be chosen now?
- The conditional probabilities are the same...





#### Class Prior Probabilities

- Second concept: Class priors
- ullet The prior probability of a data point belonging to a particular class  ${\mathcal C}$

$$C_1 \equiv a$$
  $p(C_1) = 0.75$   
 $C_2 \equiv b$   $p(C_2) = 0.25$ 

• By definition:

How would you decide now?

- $0 \leqslant p(\mathcal{C}_k) \leqslant 1$ ,  $\forall k$
- The sum of all probabilities equals one:  $\sum_{k=1}^{|\mathcal{C}|} p(\mathcal{C}_k) = 1$
- The class prior is equivalent to a prior belief in the class label

#### How to get the Prior Probabilities?

#### Count Count's advice:

Simply count the number of instances in each class!

But don't count apples!



#### Bayes' Theorem

- What we actually want to compute:  $P(\mathcal{C}_k|\mathbf{x}) \Rightarrow \text{Posterior probability}$
- We can compute it by applying Bayes' theorem
- This is one of the most important formulas (!!!)

Class posterior
$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k) \cdot p(\mathcal{C}_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_k) \cdot p(\mathcal{C}_k)}{\sum_{j=1}^{|\mathcal{C}|} p(\mathbf{x}|\mathcal{C}_j) \cdot p(\mathcal{C}_j)}$$
(2)
Normalization term

#### Calculation of the Posterior Probability

- By applying Bayes' theorem we can compute the posterior
- Simply plug and into Bayes' theorem
  - Class prior probabilities
  - 2 Class conditional probabilities

We get the final decision boundary



#### Error Minimization



$$\begin{split} p(\textit{error}) &= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1) \\ &= \overbrace{\int_{\mathcal{R}_1} p(x|\mathcal{C}_2) \cdot p(\mathcal{C}_2) \, \mathrm{d}x}_{\text{Resont area}} + \\ &= \underbrace{\int_{\mathcal{R}_2} p(x|\mathcal{C}_1) \cdot p(\mathcal{C}_1) \, \mathrm{d}x}_{\text{blue area}} \end{split}$$

#### Bayes' Optimal Classifier

- Decision rule:
  - Decide  $C_1$  if  $p(C_1|\mathbf{x}) > p(C_2|\mathbf{x})$
  - This is equivalent to: (we don't need the normalization)

$$p(\mathbf{x}|\mathcal{C}_1) \cdot p(\mathcal{C}_1) > p(\mathbf{x}|\mathcal{C}_2) \cdot p(\mathcal{C}_2) \tag{3}$$

Which is in turn equivalent to:

$$\frac{p(\mathbf{x}|\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)} > \frac{p(\mathcal{C}_2)}{p(\mathcal{C}_1)} \tag{4}$$

A classifier obeying this rule is called Bayes' Optimal Classifier



#### Section: Naïve Bayes Classifier



#### A naïve Assumption

• We want to compute  $p(\mathcal{C}_k|x)$ . Recall Bayes' theorem:

Our first classification algorithm!

$$P(\mathcal{C}_k|\mathbf{x}) = \frac{P(\mathbf{x}|\mathcal{C}_k) \cdot P(\mathcal{C}_k)}{P(\mathbf{x})}$$
 (5)

- Assumptions:
  - All  $x_i \in \mathbf{x}$  are pairwise conditionally independent ( $\Rightarrow$  na\(\)ive

$$p(\mathbf{x}|\mathcal{C}_k) = p(x_1|\mathcal{C}_k) \cdot p(x_2|\mathcal{C}_k, x_1) \cdot p(x_3|\mathcal{C}_k, x_1, x_2) \cdot \dots = \prod_{i=1}^m p(x_i|\mathcal{C}_k)$$
 (6)

• p(x) is constant w.r.t. class label  $\Rightarrow$  It is omitted

#### How to get the most probable Class?

- Given:
  - New instance  $\mathbf{x} = \langle x_1, x_2, \dots, x_m \rangle$  to be classified
  - Finite set of  $\ell$  classes  $\{\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_{\ell}\}$
  - Labeled training data (⇒ supervised learning)
- Wanted: Most probable class  $C_{MAP}$  (maximum aposteriori) for x:

$$\mathcal{C}_{MAP} = \underset{\mathcal{C}_k \in \{\mathcal{C}_1, \dots, \mathcal{C}_\ell\}}{\text{arg max}} \widehat{p}(\mathcal{C}_k | \mathbf{x})$$
(7)

$$\widehat{p}$$
 denotes an approximated probability

$$= \underset{\mathcal{C}_k \in \{\mathcal{C}_1, \dots, \mathcal{C}_\ell\}}{\text{arg max}} \widehat{p}(\mathcal{C}_k) \prod_{j=1}^m \widehat{p}(x_j | \mathcal{C}_k)$$
(8)

#### How to get the most probable Class? (Ctd.)





### Example Data Set

| Outlook  | Temperature | Humidity | Wind   | PlayGolf |
|----------|-------------|----------|--------|----------|
| sunny    | hot         | high     | weak   | no       |
| sunny    | hot         | high     | strong | no       |
| overcast | hot         | high     | weak   | yes      |
| rainy    | mild        | high     | weak   | yes      |
| rainy    | cool        | normal   | weak   | yes      |
| rainy    | cool        | normal   | strong | no       |
| overcast | cool        | normal   | strong | yes      |
| sunny    | mild        | high     | weak   | no       |
| sunny    | cool        | normal   | weak   | yes      |
| rainy    | mild        | normal   | weak   | yes      |
| sunny    | mild        | normal   | strong | yes      |
| overcast | mild        | high     | strong | yes      |
| overcast | hot         | normal   | weak   | yes      |
| rainy    | mild        | high     | strong | no       |
| sunny    | cool        | high     | strong | ???      |

#### How to estimate the Probabilities?

- How to estimate the probabilities  $\widehat{p}(\mathcal{C}_k)$  and  $\widehat{p}(x_j|\mathcal{C}_k)$  ?
- Solution: Simply count the occurrences



$$\widehat{p}(\mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\}}{n}$$
(9)

$$\widehat{p}(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{x_j^{(i)} = v \land y^{(i)} = \mathcal{C}_k\}}{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\}}$$
(10)

•  $\mathbb{1}\{bool\}$  is the indicator function (returns 1 if bool is true, 0 otherwise. E. g.:  $\mathbb{1}\{1+1=2\}=1$ ,  $\mathbb{1}\{3=2\}=0$ )

#### Let's compute some Probabilities

- New instance  $\mathbf{x} = \langle sunny, cool, high, strong \rangle$
- What is its class?
- Let's compute some of the probabilities needed:

$$\widehat{p}(\textit{Golf} = \textit{yes}) = ^{9}/_{14} = 0.64$$
 
$$\widehat{p}(\textit{Golf} = \textit{no}) = ^{5}/_{14} = 0.36$$
 
$$\widehat{p}(\textit{Outlook} = \textit{sunny}|\textit{Golf} = \textit{yes}) = ^{2}/_{9} = 0.22$$
 
$$\widehat{p}(\textit{Outlook} = \textit{sunny}|\textit{Golf} = \textit{no}) = ^{3}/_{5} = 0.60$$

#### Class Prediction

$$\widehat{p}(\mathit{yes}|x) = \widehat{p}(\mathit{sunny}|\mathit{yes}) \cdot \widehat{p}(\mathit{cool}|\mathit{yes}) \cdot \widehat{p}(\mathit{high}|\mathit{yes}) \cdot \widehat{p}(\mathit{strong}|\mathit{yes}) \cdot \widehat{p}(\mathit{yes})$$

$$= \mathbf{0.0053}$$

$$\widehat{p}(\mathit{no}|x) = \widehat{p}(\mathit{sunny}|\mathit{no}) \cdot \widehat{p}(\mathit{cool}|\mathit{no}) \cdot \widehat{p}(\mathit{high}|\mathit{no}) \cdot \widehat{p}(\mathit{strong}|\mathit{no}) \cdot \widehat{p}(\mathit{no})$$

$$= \mathbf{0.0206}$$

Classification:  $C_{MAP} = no$  (No golf today...)

#### Scaling the Output

- But wait! These probabilities don't sum up to one!?!?
  - This is because we dropped the normalization term p(x)
  - Scaling can fix this:

$$\widehat{p}(yes|\mathbf{x})_{norm} = \frac{0.0053}{0.0053 + 0.0206} = \mathbf{0.205}$$

$$\widehat{p}(no|\mathbf{x})_{norm} = \frac{0.0206}{0.0053 + 0.0206} = \mathbf{0.795}$$

Scaling does not change the prediction

#### Laplace Smoothing

- **Problem:** A feature value  $v^*$  in the test data not seen during training
- $\widehat{p}(v^*|\mathcal{C}_k) = 0$ : The whole product becomes zero...
- Solution: Laplace smoothing

$$\widehat{\rho}(\mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\} + 1}{n + \ell}$$
(11)

$$\widehat{p}(x_j = v | \mathcal{C}_k) = \frac{\sum_{i=1}^n \mathbb{1}\{x_j^{(i)} = v \land y^{(i)} = \mathcal{C}_k\} + 1}{\sum_{i=1}^n \mathbb{1}\{y^{(i)} = \mathcal{C}_k\} + \ell}$$
(12)

# Section: Risk Minimization



#### Error != Risk

- So far, we have tried to minimize the misclassification rate
- Nevertheless, there are cases where not every misclassification is equally bad
- Some classical examples:
  - Smoke detector
    - If there is a fire, we must make sure to detect it
    - If there is not, an occasional false alarm may be acceptable
  - Medical diagnosis
    - If the patient is sick, we have to detect the disease
    - If they are healthy, it can be okay to classify them as sick (order further tests)

#### Section: Wrap-Up



Bayesian Decision Theory Naïve Bayes Classifier Risk Minimization Wrap-Up Summary Lecture Overview Self-Test Questions Recommended Literature and further Readin

#### Summary

#### Lecture Overview

Unit I: Machine Learning Introduction

#### Self-Test Questions

### Recommended Literature and further Reading

#### Thank you very much for the attention!

Topic: \*\*\* Applied Machine Learning Fundamentals \*\*\* Decision Theory

**Date:** August 22, 2019

#### Contact:

Daniel Wehner (D062271)

SAPSE

daniel.wehner@sap.com

Do you have any questions?

