$12n_{0045} (K12n_{0045})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -148u^{29} - 963u^{28} + \dots + 32b - 233, -153u^{29} - 960u^{28} + \dots + 32a - 98, u^{30} + 7u^{29} + \dots + 7u + 1 \rangle$$

$$I_2^u = \langle -au + b + a, a^6 + a^5u - a^4u + a^4 + 2a^3 - au + a + 1, u^2 - u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 42 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -148u^{29} - 963u^{28} + \cdots + 32b - 233, \ -153u^{29} - 960u^{28} + \cdots + 32a - 98, \ u^{30} + 7u^{29} + \cdots + 7u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 4.78125u^{29} + 30u^{28} + \dots + 28.9688u + 3.06250 \\ 4.62500u^{29} + 30.0938u^{28} + \dots + 43.3750u + 7.28125 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.90625u^{29} + 11.6875u^{28} + \dots + 5.09375u - 0.750000 \\ 3.56250u^{29} + 23.0313u^{28} + \dots + 33.5625u + 5.46875 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 5.46875u^{29} + 34.7188u^{28} + \dots + 38.6563u + 4.71875 \\ 3.56250u^{29} + 23.0313u^{28} + \dots + 33.5625u + 5.46875 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0312500u^{28} - 0.187500u^{27} + \dots - 2.18750u + 0.968750 \\ 0.0312500u^{29} + 0.218750u^{28} + \dots + 0.218750u + 0.0312500 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.281250u^{29} + 1.71875u^{28} + \dots + 0.531250u + 0.0312500 \\ \frac{9}{32}u^{28} + \frac{27}{16}u^{27} + \dots + 2u + \frac{11}{32} \\ -0.281250u^{29} - 1.65625u^{28} + \dots + 0.843750u + 0.0312500 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{45}{4}u^{29} + \frac{1169}{16}u^{28} + \cdots + 103u + \frac{99}{8}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 3u^{29} + \dots + 3u + 1$
c_2, c_5	$u^{30} + 7u^{29} + \dots + 7u + 1$
c_3	$u^{30} - 7u^{29} + \dots + 123187u + 9881$
c_4, c_8	$u^{30} + u^{29} + \dots + 8192u + 4096$
c_6	$u^{30} + 9u^{29} + \dots + 57u + 17$
c_7, c_{10}	$u^{30} + 3u^{29} + \dots + u + 1$
c_9,c_{12}	$u^{30} - 3u^{29} + \dots - 3u + 1$
c_{11}	$u^{30} + 13u^{29} + \dots - 7u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} + 55y^{29} + \dots + 63y + 1$
c_2, c_5	$y^{30} + 3y^{29} + \dots + 3y + 1$
c_3	$y^{30} + 107y^{29} + \dots + 1844116003y + 97634161$
c_4, c_8	$y^{30} + 65y^{29} + \dots + 161480704y^2 + 16777216$
<i>C</i> ₆	$y^{30} - 9y^{29} + \dots + 2531y + 289$
c_7, c_{10}	$y^{30} - 13y^{29} + \dots + 7y + 1$
c_9,c_{12}	$y^{30} - 53y^{29} + \dots + 7y + 1$
c_{11}	$y^{30} + 11y^{29} + \dots - 89y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.156149 + 0.923590I		
a = 1.55521 - 0.59601I	-2.03388 + 4.90769I	-5.49958 - 7.49846I
b = -0.641878 + 0.220216I		
u = 0.156149 - 0.923590I		
a = 1.55521 + 0.59601I	-2.03388 - 4.90769I	-5.49958 + 7.49846I
b = -0.641878 - 0.220216I		
u = 0.399490 + 0.989549I		
a = -0.655955 + 0.923964I	-0.76957 + 1.31164I	0.008085 - 1.158902I
b = -0.207702 - 0.507122I		
u = 0.399490 - 0.989549I		
a = -0.655955 - 0.923964I	-0.76957 - 1.31164I	0.008085 + 1.158902I
b = -0.207702 + 0.507122I		
u = 0.918172 + 0.122403I		
a = -0.292882 + 0.357499I	2.37348 + 2.46946I	2.98715 - 3.45316I
b = -0.60497 + 1.73623I		
u = 0.918172 - 0.122403I		
a = -0.292882 - 0.357499I	2.37348 - 2.46946I	2.98715 + 3.45316I
b = -0.60497 - 1.73623I		
u = 0.780975 + 0.876399I		
a = -1.049250 - 0.803341I	1.59076 + 0.61155I	0.819771 + 0.666887I
b = -0.003320 - 1.369010I		
u = 0.780975 - 0.876399I		
a = -1.049250 + 0.803341I	1.59076 - 0.61155I	0.819771 - 0.666887I
b = -0.003320 + 1.369010I		
u = 0.362356 + 0.695450I		
a = -0.993697 - 0.057570I	-0.194740 + 1.399730I	-2.02435 - 4.86797I
b = -0.0321747 + 0.0227484I		
u = 0.362356 - 0.695450I		
a = -0.993697 + 0.057570I	-0.194740 - 1.399730I	-2.02435 + 4.86797I
b = -0.0321747 - 0.0227484I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.724731 + 1.015800I		
a = 0.79644 + 1.28595I	1.10886 + 5.31866I	-0.13308 - 5.18400I
b = -1.11851 + 1.13827I		
u = 0.724731 - 1.015800I		
a = 0.79644 - 1.28595I	1.10886 - 5.31866I	-0.13308 + 5.18400I
b = -1.11851 - 1.13827I		
u = -0.624839 + 0.318859I		
a = -1.57129 - 0.30420I	0.78177 - 6.39042I	-0.72567 + 4.22016I
b = -1.44565 + 0.98598I		
u = -0.624839 - 0.318859I		
a = -1.57129 + 0.30420I	0.78177 + 6.39042I	-0.72567 - 4.22016I
b = -1.44565 - 0.98598I		
u = 0.021362 + 0.665268I		
a = 1.74798 + 0.18763I	-2.74789 - 1.44408I	-8.12661 + 0.68826I
b = -0.284692 - 0.540613I		
u = 0.021362 - 0.665268I		
a = 1.74798 - 0.18763I	-2.74789 + 1.44408I	-8.12661 - 0.68826I
b = -0.284692 + 0.540613I		
u = -0.626826 + 0.181498I		
a = 1.68869 + 0.16006I	2.71723 - 1.30741I	2.25892 + 0.04222I
b = 1.59366 - 0.59325I		
u = -0.626826 - 0.181498I		
a = 1.68869 - 0.16006I	2.71723 + 1.30741I	2.25892 - 0.04222I
b = 1.59366 + 0.59325I		
u = -1.03232 + 1.03051I		
a = -1.33615 - 1.25080I	11.18100 - 3.78919I	-2.00000 + 1.99020I
b = -2.95729 + 0.40290I		
u = -1.03232 - 1.03051I		
a = -1.33615 + 1.25080I	11.18100 + 3.78919I	-2.00000 - 1.99020I
b = -2.95729 - 0.40290I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.13894 + 0.98249I		
a = -0.85062 - 1.72090I	16.0192 + 4.0819I	0
b = -4.00129 - 1.44921I		
u = -1.13894 - 0.98249I		
a = -0.85062 + 1.72090I	16.0192 - 4.0819I	0
b = -4.00129 + 1.44921I		
u = -1.00742 + 1.12472I		
a = -1.90712 - 1.30827I	15.4793 - 11.9246I	0. + 6.30873I
b = -3.23563 + 2.16136I		
u = -1.00742 - 1.12472I		
a = -1.90712 + 1.30827I	15.4793 + 11.9246I	0 6.30873I
b = -3.23563 - 2.16136I		
u = -1.12156 + 1.02634I		
a = 1.12316 + 1.72616I	17.7688 - 1.7617I	0
b = 4.29671 + 0.57523I		
u = -1.12156 - 1.02634I		
a = 1.12316 - 1.72616I	17.7688 + 1.7617I	0
b = 4.29671 - 0.57523I		
u = -1.04184 + 1.10803I		
a = 1.74324 + 1.46487I	17.4515 - 6.1631I	0
b = 3.74797 - 1.61674I		
u = -1.04184 - 1.10803I		
a = 1.74324 - 1.46487I	17.4515 + 6.1631I	0
b = 3.74797 + 1.61674I		
u = -0.269490 + 0.299415I		
a = -1.99775 - 0.56157I	-1.76892 + 0.41411I	-5.79951 - 1.41452I
b = -0.605235 + 0.631449I		
u = -0.269490 - 0.299415I		
a = -1.99775 + 0.56157I	-1.76892 - 0.41411I	-5.79951 + 1.41452I
b = -0.605235 - 0.631449I		

II. $I_2^u = \langle -au + b + a, \ a^6 + a^5u - a^4u + a^4 + 2a^3 - au + a + 1, \ u^2 - u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} a \\ au - a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a \\ au - a \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} au \\ au - a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

 $a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$ $a_{12} = \begin{pmatrix} -a^{2}u + a^{2} - 1 \\ a^{2}u \end{pmatrix}$ $a_{7} = \begin{pmatrix} -a^{4} + a^{2}u + 1 \\ -a^{4}u + a^{4} \end{pmatrix}$ $a_{11} = \begin{pmatrix} -a^{4}u - a^{2}u - 1 \\ -a^{4}u + a^{4} \end{pmatrix}$

$$a_{12} = \begin{pmatrix} a^2 u & 1 \\ a^2 u & 1 \end{pmatrix}$$
$$\begin{pmatrix} -a^4 + a^2 u + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -a^4 + a^2 u + 1 \\ -a^4 u + a^4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -a^4u - a^2u - 1\\ -a^4u + a^4 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-a^5u + a^5 4a^4u + 4a^4 2a^3u 5a^2u + 2a^2 4au + 2a 5u 2a^2u + 2a^2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_5	$(u^2 - u + 1)^6$
c_2	$(u^2 + u + 1)^6$
c_4, c_8	u^{12}
c_6, c_{11}	$(u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^2$
c_7, c_9, c_{12}	$(u^6 + u^5 - u^4 - 2u^3 + u + 1)^2$
c_{10}	$(u^6 - u^5 - u^4 + 2u^3 - u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5	$(y^2 + y + 1)^6$
c_4, c_8	y^{12}
c_6, c_{11}	$(y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2$
c_7, c_9, c_{10} c_{12}	$(y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 0.245150 + 1.015700I	1.89061 + 1.10558I	1.81693 - 2.49433I
b = -1.002190 - 0.295542I		
u = 0.500000 + 0.866025I		
a = 0.757043 + 0.720154I	1.89061 + 2.95419I	-0.06995 - 4.17815I
b = -1.002190 + 0.295542I		
u = 0.500000 + 0.866025I		
a = -0.789622 - 0.038604I	-1.89061 + 1.10558I	-7.01188 - 1.87706I
b = 0.428243 - 0.664531I		
u = 0.500000 + 0.866025I		
a = 0.361379 - 0.703135I	-1.89061 + 2.95419I	-3.50232 - 4.35344I
b = 0.428243 + 0.664531I		
u = 0.500000 + 0.866025I		
a = -1.020870 - 0.650692I	-3.66314I	-1.09315 + 2.75648I
b = 1.073950 - 0.558752I		
u = 0.500000 + 0.866025I		
a = -0.053081 - 1.209440I	7.72290I	-4.13964 - 8.90605I
b = 1.073950 + 0.558752I		
u = 0.500000 - 0.866025I		
a = 0.245150 - 1.015700I	1.89061 - 1.10558I	1.81693 + 2.49433I
b = -1.002190 + 0.295542I		
u = 0.500000 - 0.866025I		
a = 0.757043 - 0.720154I	1.89061 - 2.95419I	-0.06995 + 4.17815I
b = -1.002190 - 0.295542I		
u = 0.500000 - 0.866025I		
a = -0.789622 + 0.038604I	-1.89061 - 1.10558I	-7.01188 + 1.87706I
b = 0.428243 + 0.664531I		
u = 0.500000 - 0.866025I		
a = 0.361379 + 0.703135I	-1.89061 - 2.95419I	-3.50232 + 4.35344I
b = 0.428243 - 0.664531I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 - 0.866025I		
a = -1.020870 + 0.650692I	3.66314I	-1.09315 - 2.75648I
b = 1.073950 + 0.558752I		
u = 0.500000 - 0.866025I		
a = -0.053081 + 1.209440I	-7.72290I	-4.13964 + 8.90605I
b = 1.073950 - 0.558752I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 - u + 1)^6)(u^{30} + 3u^{29} + \dots + 3u + 1)$
c_2	$((u^2+u+1)^6)(u^{30}+7u^{29}+\cdots+7u+1)$
<i>c</i> ₃	$((u^2 - u + 1)^6)(u^{30} - 7u^{29} + \dots + 123187u + 9881)$
c_4, c_8	$u^{12}(u^{30} + u^{29} + \dots + 8192u + 4096)$
<i>C</i> ₅	$((u^2 - u + 1)^6)(u^{30} + 7u^{29} + \dots + 7u + 1)$
<i>C</i> ₆	$((u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1)^2)(u^{30} + 9u^{29} + \dots + 57u + 17)$
	$((u^6 + u^5 - u^4 - 2u^3 + u + 1)^2)(u^{30} + 3u^{29} + \dots + u + 1)$
c_9,c_{12}	$((u^6 + u^5 - u^4 - 2u^3 + u + 1)^2)(u^{30} - 3u^{29} + \dots - 3u + 1)$
c_{10}	$((u^6 - u^5 - u^4 + 2u^3 - u + 1)^2)(u^{30} + 3u^{29} + \dots + u + 1)$
c_{11}	$((u6 + 3u5 + 5u4 + 4u3 + 2u2 + u + 1)2)(u30 + 13u29 + \dots - 7u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y^2 + y + 1)^6)(y^{30} + 55y^{29} + \dots + 63y + 1)$
c_2, c_5	$((y^2 + y + 1)^6)(y^{30} + 3y^{29} + \dots + 3y + 1)$
c_3	$((y^2 + y + 1)^6)(y^{30} + 107y^{29} + \dots + 1.84412 \times 10^9y + 9.76342 \times 10^7)$
c_4, c_8	$y^{12}(y^{30} + 65y^{29} + \dots + 1.61481 \times 10^8y^2 + 1.67772 \times 10^7)$
<i>C</i> ₆	$((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2)(y^{30} - 9y^{29} + \dots + 2531y + 289)$
c_7, c_{10}	$((y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2)(y^{30} - 13y^{29} + \dots + 7y + 1)$
c_9, c_{12}	$((y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1)^2)(y^{30} - 53y^{29} + \dots + 7y + 1)$
c_{11}	$((y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1)^2)(y^{30} + 11y^{29} + \dots - 89y + 1)$