

Model Selection and Validation

Machine Learning 2023-24
UML book chapter 11
Slides P. Zanuttigh (derived from F. Vandin slides)

Choosing the Right Model

Validation Set

Idea: divide the training set in 2 parts, use the first to pick an hypothesis, and the second (not used to train) to estimate its true error

Assume we have picked a predictor h (e.g., by ERM rule on \mathcal{H}_d)

- $V = ((x_1, y_1), ..., (x_{m_v}, y_{m_v}))$: set of m_v samples from D not used for training (validation set)
- L_V : loss computed on V (loss in [0,1])

Theorem:

For every $\delta \in (0,1)$, with probability $\geq 1 - \delta$ (over the choice of V), we have:

$$|L_D(h) - L_V(h)| \le \sqrt{\frac{\log\left(\frac{2}{\delta}\right)}{2m_v}}$$

Idea of demonstration: similar to law of large numbers, with more samples average gets closer to expectation

Bounds Comparison

$$L_D(h) \leq L_S(h) + \sqrt{C \frac{1}{\delta}} \qquad L_D(h) \leq L_V(h) + \sqrt{\frac{\log(\frac{2}{\delta})}{2m_v}}$$

$$L_D(h) \le L_V(h) + \sqrt{\frac{\log(\frac{2}{\delta})}{2m_v}}$$

From quantitative version fundamental theroem statistical learning*

With validation set

The bound based on the validation set is more accurate:

- Depends on validation set size, not on the training set size
- Does not depend on VC-dimension
 - \square Why? \rightarrow The validation samples have not been used for training
- Choose final hypotheses by ERM over the validation set

*:
$$m \le C \frac{\frac{d + \log(\frac{1}{\delta})}{\epsilon^2}}{\epsilon^2} \to \epsilon^2 \le C \frac{\frac{d + \log(\frac{1}{\delta})}{m}}{m} \to \epsilon \le \sqrt{C \frac{\frac{d + \log(\frac{1}{\delta})}{m}}{m}}$$

Validation for Model Selection

- Train different algorithms or the same algorithm with different hyper-parameters on the training set obtaining a set of ERM predictors $\mathcal{H}' = \{h_1^{ERM}, h_2^{ERM}, ..., h_r^{ERM}\}$
- lacktriangle Choose the predictor h^* inside \mathcal{H}' that minimizes the error on the validation set
- $\ \square\ \mathcal{H}'$: similar to a finite hypothesis class where the $h_i^{ERM}\in\mathcal{H}$ are not fixed ahead but depend on training set
- □ Theorem message: the validation error is a good approximation of the true error if we do not try too many methods (otherwise going back to the "standard" case and there is risk of overfitting)

Let $\mathcal{H}' = \{h_1^{ERM}, \dots, h_r^{ERM}\}$ be an arbitrary set of predictors and assume that the loss is in [0,1]. Assume that a validation set V of size m_v is sampled independent of \mathcal{H}' . Then, with probability at least $1 - \delta$ over the choice of V we have:

$$\forall h \in \mathcal{H}': |L_D(h) - L_V(h)| \leq \sqrt{\frac{\log(\frac{2|\mathcal{H}|}{\delta})}{2m_v}}$$

Size of output predictor set (not of the hypothesis classes used for training)

Not part of the course

Demonstration

1. Apply previous theorem to each h_i^{ERM} : $\forall h_i^{ERM}$: $P_{bad-valid} \leq \delta$ (*)

2. Repeat for $|\mathcal{H}'|$ times: from union bound (**)

$$P_{bad-valid-all} \leq \sum_{|\mathcal{H}'|} \delta = |\mathcal{H}'| \delta$$

3. To have $P_{bad-valid-all} \leq \delta_{all}$ set $\delta' = \frac{\delta}{|\mathcal{H}'|} \to \delta_{all} = \sum_{|\mathcal{H}'|} \delta' = |\mathcal{H}'| \frac{\delta}{|\mathcal{H}'|}$

$$\forall h \in H : |L_D(h^*) - L_V(h^*)| \le \sqrt{\frac{\log\left(\frac{2}{\delta'}\right)}{2m_V}} = \sqrt{\frac{\log\left(\frac{2|\mathcal{H}'|}{\delta}\right)}{2m_V}}$$

(*)
$$P_{bad-valid} = P\left(|L_D(h) - L_V(h)| > \sqrt{\frac{\log(\frac{2}{\delta})}{2m_v}}\right)$$

(**) Recall union bound: $P(\bigcup_i A_i) \leq \sum_i P(A_i)$

Model Selection Curve

- Empty circles: validation samples
- The fitting is done using only the training samples (full circles)
- Notice how high order polynomial does not fit well over the validation ones (specially on the left and right sides)
- □ The right plot is sometimes called «model selection curve»

Grid Search for Multiple Parameters

image from Tata research center

What if we have one or more parameters with values in \mathbb{R} ?

- 1. Start with a rough grid of values
- 2. Plot the corresponding model-selection curve
- 3. Based on the curve, zoom in to the correct region
- 4. Restart from step 1 with a finer grid
- □ The empirical risk on the validation set is not an estimate of the true risk, in particular if we choose among many models!
- □ Furthermore *grid search does not always find the global optimum* for the set of parameters, but it is a reasonable approximation
- Question: how can we estimate the true risk after model selection?

Train, Validation and Test sets

We have to choose among multiple possible hypotheses set \mathcal{H}_i

Approach \rightarrow split the data in 3 parts:

1. Training set: used to learn the best model h_i^{ERM} inside each class \mathcal{H}_i

- *Validation set*: used to pick one hypothesis h^* from h_1, h_2, \dots
- 3. Test set: used to estimate the true risk $L_D(h^*)$
- □ The estimate from the test set has the guarantees provided by the proposition on estimate of $L_D(h^*)$ for one class
- \Box The test set is not involved in the choice of h^*
- if after using the test set to estimate $L_D(h^*)$ we decide to choose another hypothesis (because we have seen $L_D(h^*)$...) we cannot use the test set again to estimate $L_D(h^*)$!

k-Fold Cross Validation

When data is not plentiful, we cannot afford to drop part of it to build the validation set \rightarrow use k-fold cross validation:

- Partition (training) set of m samples into k folds of size m/k
- 2. For each fold:
 - Train on the union of the other folds
 - Estimate error (for learned hypothesis) on the selected fold
- Estimate of the true error as the average of the estimated errors

Example:

Gesture Recognition

Fig. 11.9 Gestures from the American manual alphabet contained in the experimental dataset

Example:

Gesture Recognition

- □ Dataset: 12 gestures, 14 people, 10 repetitions -> 1680 samples
- Low number of samples -> use k-fold cross-validation
- Maximize Training/Validation diversity (better generalization properties): in this case leave out all the examples from a single person (same person always does the gestures in a very similar way)

Model Selection with Cross Validation

```
k-Fold Cross Validation for Model Selection
input:
      training set S = (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)
      set of parameter values \Theta
      learning algorithm A
      integer k
partition S into S_1, S_2, \ldots, S_{k_-}
foreach \theta \in \Theta
                                                remove i-th fold..
     for i = 1 ... k
           h_{i,\theta} = A(S \setminus S_i; \theta)
     \operatorname{error}(\theta) = \frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i,\theta})
output
                                                     ..and use it for testing
  \theta^* = \operatorname{argmin}_{\theta} [\operatorname{error}(\theta)]
  h_{\theta^{\star}} = A(S; \theta^{\star})
```

- Often cross validation is used for model selection
- ☐ In this case after selecting the model, the final hypothesis is obtained from training on the entire training set

Error Decomposition

Recall:

- $\Box L_D(h^*)$ Approximation error (true error of best hypothesis in \mathcal{H})
- Arr $L_D(h_s) L_D(h^*)$ Estimation error (difference between the true error of best hypothesis in \mathcal{H} and true error of ERM solution)
- $Arr L_S(h_s)$ Training error (empirical error of ERM solution on training set S)
- \Box $L_V(h_S)$ Validation error (error on validation set V of ERM solution)

Decompose error:

Approximation and estimation error (aready discussed)

$$L_D(h_S) = L_D(h^*) + (L_D(h_S) - L_D(h^*))$$

Using train and validation errors

$$L_D(h_S) = (L_D(h_S) - L_V(h_S)) + (L_V(h_S) - L_S(h_S)) + L_S(h_S)$$

When Learning Fails...

Good training/validation errors... but results on test set are bad!

Summary

Some potential steps to follow if learning fails:

- If you have tuned parameters, plot model-selection curve to make sure they are tuned appropriately
- 2. If training error is excessively large consider:
 - \circ enlarge hypothesis class ${\mathcal H}$
 - \circ change hypothesis class ${\cal H}$
 - change feature representation of the data
- If training error is small, use learning curves to understand whether problem is approximation error or estimation error
 - if validation error seems to decrease (the error is large but the two curves get closer):
 - get more data (if possible)
 - otherwise reduce complexity of ${\cal H}$
 - if the validation error remains large:
 - lacktriangle change ${\cal H}$
 - change feature representation of the data