Comparison of optimization results submitted for the CEC 2017 Competition of Single Objective Numerical Optimization methods based on empirical runtime distributions

Dariusz Jagodzinski and Jaroslaw Arabas d.jagodzinski@elka.pw.edu.pl jarabas@elka.pw.edu.pl

January 8, 2018

Table of contents

 CEC 2017 Competition of Single Objective Numerical Optimization methods
 Evaluation criteria
 Results recording

Performance Measures Empirical runtime distributions Example

3 Results

CEC'2017 Competition conditions at a glance

Test functions are minimization problems defined as following:

min
$$F_P(x)$$
, $x = [x_1, x_2, ..., x_D]^D$

D: Dimension = 10,30,50,100 **P:** Problem Number = 1,...,30 **Search range** = $[-100,100]^D$ **Budget:** f-evals = $10000 \cdot D$ **Initialization:** Uniform random initialization within the search range. Random seed is based on time.

Global Optimum: $F_P(x^*) = 100 \cdot P$

Recording results for CEC'2017

Function error value is defined as:

$$ERR_P = F_P(x^{best}) - F_P(x^*)$$

The accuracy of finding the optimum is 10^{-8} :

$$ERR_P \le 10^{-8} \implies ERR_P = 0$$

Tuning search method parameters for each problem or dimension is **not allowed.**

Number of runs: For each problem and each dimension, 51 independent runs of the method.

Progress reporting: For each run, record the smallest-so-far error after exceeding (0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) $\cdot Budget_D$.

ECDF empirical runtime distributions

Runlength-based target quality indicator corresponds to the function P value to be reached, and is defined as:

$$I_P^t = F_P(x^*) + \Delta I_P^t$$
 $F_P(x^{best}) \leq \Delta I_P^t \leq F_P(x^{worst})$ $rac{\Delta I_P^{t+1}}{\Delta I_P^t} = 10^{0.2} \; , \; t \in T_P$

The ratio between two neighboring ΔI_P target precision values is $10^{0.2}$. The largest ΔI_P value is the error value chosen such that the worst algorithm reaches the first budget step. Smallest ΔI_P value is related to the best algorithm error value on the last budget step.

Budget steps: 14 moments on which error values are reported

ECDF performance assessment: • Link

ECDF empirical runtime distributions

ECDF plot displays the proportion of problems solved within a specified budget, where the budget is given on the x-axis. The y-axis shows the fraction of target quality indicators which have been reached. The fraction is defined as:

$$P_P(b) = rac{\sum_{t=1}^{|T_P|} [ERR_P(b) \le I_P^t]}{|T_P|} \;,\; b \in \{1,..,14\}$$

The $P_P(b)$ ratio can be considered as **probability of achieving** success for a given budget b.

ECDF plot example

Proportion of function + larger pairs s

Convergence curve for a single run, with 14 budget steps on which error values have been reported.

ECDF plot aggregated for 51 runs, for a single problem.

Interpretation of the ECDF curve: About 90 percent of the error levels were achieved within budget of $10^2 \cdot D$ function evaluations.

CEC2017 Function 6 RB IPOP CMA ES RB IPOP CMA ES jso LSHADE SPACMA LSHADE SPACMA FROwith CMAR - FROwithCMAR IDEbestNsize IDEbestNsize PPSO PPSO MM OF MM OF DYYPO DYYPO TLBO-FL TLBO-FL MOS-CEC2012 MOS-CEC2012 MOS-CEC2013 MOS-SQC02011 MOS CEC2013 MOS-SOC02011 log10 of (f-evels / dimension) log10 of (f-evals / dimension) - RB_IPOP_CMA_ES RB_IPOP_CMA_ES LSHADE_SPACMA EBOwithCMAR LSHADE_SPACMA EBOwithCMAR IDEbestNsize IDEbestNsize PPSO PPSO MM OED MM OED DYYPO DYYPO TLBO-FL TLBO-FL MOS-CEC2012 MOS-CEC2012 MOS-SOCO2011 MOS-CEC2013 MOS-SOCO2011 2 S D = 1002 52

log10 of (f-evals / dimension)

CEC2017 Function 9 RB IPOP CMA ES RB IPOP CMA ES ISO L'SHADE SPACMA LSHADE SPACMA EBOWINGMAR FROWITH CMAR IDEbes(Nsize IDÉbestNsize PPSO PPSO MM DED MM OFD DYYPO DYYPO TLBO-FL TLBO-FL MOS-CEC2012 MOS-CEC2012 MOS-CEC2013 MOS-SOCO2011 MOS-CEC2013 MOS-SOCO201 D = 30log10 of (f-evals / dimension) log10 of (f-evels / dimension) gamestones tones tones t RB_IPOP_CMA_ES RB_IPOP_CMA_ES - ISO LSHADE_SPACMA LSHADE_SPACMA EBOwithCMAR **EBOwithCMAR** IDEbestNsize IDEbestNsize PPSO PPSO MM OED MM OED DYYPO DYYPO TLBO-FL TLBO-FL MOS-CEC2012 MOS-CEC2012 MOS-CEC2013 MOS-CEC2013 MOS-SOC02011 MOS-SOCO2011 9.0 D = 100log10 of (f-evals / dimension)

