WIKIPEDIA

简单函数

维基百科,自由的百科全书

简单函数又稱**單純函數**,(英語:simple function),在數學的<u>实分析</u>中是指值域只有有限個值的实函数,類似階梯函數。有些作者要求简单函数是<u>可测</u>的,因為在實際應用上,特別在討論勒貝格積分時,必須是可測函數,要不然積分的定義沒有意義。

一个简单函数的基本例子,是半开区间[1,9)上的<u>取整函数</u>,它唯一的值是 $\{1,2,3,4,5,6,7,8\}$ 。一个更加高级的例子是实直线上的狄利克雷函数,如果x是有理数,则函数的值为1,否则为0。

目录

定义

性质

简单函数的积分

参考文献

定义

嚴格的講,一个简单函数是<u>可测集合的指示函数</u>的有限<u>线性组合</u>。更加精确地,设(X, Σ)为<u>可测空间</u>。设 A_1 ,, A_n $\in \Sigma$ 皆为可测集合,并设 a_1 ,, a_n 皆为实数或复数。简单函数是以下形式的函数:

$$f(x)=\sum_{k=1}^n a_k \mathbf{1}_{A_k}(x).$$

其中 $\mathbf{1}_A$ 代表集合 A 的指示函數。

性质

根据定义,两个简单函数的和、差与积,以及一个简单函数与常数的积也是简单函数,因此可推出所有简单函数在复数域上形成了一个交换代数。

在积分的理论的发展中,以下的结果是很重要的。任何非负的<u>可测函数</u> $f:X\to\mathbb{R}_{\geq 0}$ 都會是單調遞增的非負簡單函數序列的<u>逐點</u>極限。事实上,设 f 为定义在测度空间 (Ω,\mathcal{F},μ) 上的非负可测函数。对于每一个 $n\in\mathbb{N}$,我们把 f 的對應域分成 $2^{2n}+1$ 個區間,其中 2^{2n} 個區間长度为 2^{-n} (除了 $I_{n,2^{2n}}$ 以外,其他區間長度都為 2^{-n})。讓

$$I_{n,k} = \left[rac{k}{2^n}, rac{k+1}{2^n}
ight), \; k = 0, 1, \ldots, 2^{2n} - 1, \;\; orall \mathcal{R} \quad I_{n,2^{2n}} = [2^n, \infty].$$

定义可测集合

$$A_{n,k}=f^{-1}(I_{n,k})$$
,对于 $k=0,1,\ldots,2^{2n}$ 。

則我們定義简单函数 s_n 如下

$$s_n=\sum_{k=0}^{2^{2n}}rac{k}{2^n}\cdot \mathbf{1}_{A_{n,k}}$$

如果對每個 $n \in \mathbb{N}$ 都構造如此的函數 s_n ,則我們得到一組單調遞增的簡單函數序列 $\{s_n\}$,

当 $n \to \infty$ 时,這序列會逐点收敛至 f。

注意如果 ƒ 是有界的,则序列是一致收敛。

這種用簡單函數逼近非負函數 f 的方法,可以用來定義 f 的勒貝格積分,因為相對來講,簡單函數的積分很好計算。 詳情請參閱勒貝格積分。

简单函数的积分

如果一个测度 μ 定义在空间 (X,Σ) 上,則簡單函數 $f(x)=\sum_{k=1}^n a_k 1_{A_k}(x)$ 關於 μ 的勒贝格积分是:

$$\sum_{k=1}^n a_k \mu(A_k),$$

如果所有的加数都是有限的。

参考文献

- J. F. C. Kingman, S. J. Taylor. Introduction to Measure and Probability, 1966, Cambridge.
- S. Lang. Real and Functional Analysis, 1993, Springer-Verlag.
- W. Rudin. Real and Complex Analysis, 1987, McGraw-Hill.
- H. L. Royden. Real Analysis, 1968, Collier Macmillan.

取自"https://zh.wikipedia.org/w/index.php?title=简单函数&oldid=55707792"

本页面最后修订于2019年8月18日 (星期日) 06:15。

本站的全部文字在知识共享署名-相同方式共享3.0协议之条款下提供,附加条款亦可能应用。 (请参阅<u>使用条款</u>) Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。 维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。