Section 8.2: Properties of relations

Juan Patricio Carrizales Torres

May 13, 2022

This chapter mentioned three properties of interested for some relation R on a single set A. Since most of these properties involve implications with universal quantifiers, the easiest way to check wether a relation has certain property is by looking for specific examples for which the implication in question is false.

- (a) Reflexive Property: if $x \in A$, then $(x, x) \in R$. (x is related to itself)
- (b) **Symmetric Property:** $\forall x, y \in A$, if x R y, then y R x (x is related to y and viceversa). Note that for the relation R to not be symmetric, it must be true that x R y and $y \mathcal{R} x$. For this to happen, it is necessary that $x \neq y$.
- (c) **Transitive Property:** $\forall x, y, z \in A$, if x R y and y R z, then x R z. Note that for the relation R to not be symmetric, it must be true that x R y, y R z and $x \not R z$. For this to happen, it is necessary that $x \neq y$ and $z \neq y$.

Problem 11. Let $A = \{a, b, c, d\}$ and let

$$R = \{(a,a), (a,b), (a,c), (a,d), (b,b), (b,c), (b,d), (c,c), (c,d), (d,d)\}$$

be a relation on A. Which of the properties reflexive, symmetric and transitive does the relation R possess? Justify your answers.

Solution 11. The relation is reflexive since $\{(a,a),(b,b),(c,c),(d,d)\}\subset R$. Also, it is transitive since $(x,y),(y,z)\in R \implies (x,z)\in R$ for any $x,y,z\in A$ is fulfilled. However, the relation is not symmetric since $(a,b)\in R$ and $(b,a)\not\in R$.

Problem 13. Let $S = \{a, b, c\}$. Then $R = \{(a, b)\}$ is a relation on S. Which of the properties reflexive, symmetric and transitive does the relation R possess? Justify your answers.

Solution 13. The relation S is transitive since the implication $(x,y), (y,z) \in R \implies (x,z) \in R$ for any $x,y,z \in S$ is fulfilled vacuously. However, it is neither reflexive because $(a,a) \notin R$ nor symmetrice since $(a,b) \in R$ but $(b,a) \notin R$.

Problem 14. Let $A = \{a, b, c, d\}$. Give an example (with justification) of a relation R on A that has none of the following properties: reflexive, symmetric, transitive.

Solution 14. Let $R = \{(a,b), (b,c)\}$. The relation R is not reflexive since $(a,a) \notin R$, it is not symmetric because $(a,b) \in R$ and $(b,a) \notin R$ and it is not transitive since $(a,b), (b,c) \in R$ but $(a,c) \notin R$.

Problem 15. A relation R is defined on \mathbb{Z} by a R b if $|a - b| \leq 2$. Which of the properties reflexive, symmetric and transitive does the relation R possess? Justify your answers.

Solution 15. The relation R is reflexive since $|a-a|=0 \le 2$ for any $a \in \mathbb{Z}$ and so a R a. It is symmetric since for any $a, b \in \mathbb{Z}$, if $|a-b| \le 2$, then $|b-a|=|a-b| \le 2$. However, it is not transitive since |3-1|=2 and |1-0|=1 but |3-0|=3>2.

Problem 16. Let $A = \{a, b, c, d\}$. How many relations defined on A are reflexive, symmetric and transitive and contain the ordered pairs (a, b), (b, c), (c, d)?

Solution 16. contenidos...