

Itthi Chatnuntawech

Signal Representation

finite-length

sequences

Most practical finite-duration, discrete-time signals can be written as a weighted sum of harmonically related complex exponentials

Time domain

$$\begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}$$

X[k]

$$\begin{array}{ccc}
DFT & X[0] \\
X[1] \\
\vdots \\
X[N-1]
\end{array}$$

Frequency domain

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(\frac{2\pi}{N})kn}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(\frac{2\pi}{N})kn}$$

Oppenheim, Alan V. Discrete-time signal processing. Pearson Education India, 1999. Oppenheim, Alan V., et al. Signals and systems. Vol. 2. Upper Saddle River, NJ: Prentice hall, 1997.

Time domain

$$x[n]$$
 $x[0]$

$$x[1]$$

$$\vdots$$

$$x[N-1]$$

$$DFT \longrightarrow X[0]$$

$$X[0]$$

$$X[1]$$

$$X[0]$$
 $X[1]$
 \vdots
 $X[N-1]$

Frequency domain

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(\frac{2\pi}{N})kn}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(\frac{2\pi}{N})kn}$$

$$=\frac{1}{N}\left(X[0]\right)^{\frac{1}{2}}+$$

Time domain

$$\begin{bmatrix} x[0] \\ x[1] \\ \vdots \\ x[N-1] \end{bmatrix}$$

] X[k]

$$DFT \longleftrightarrow X[0]$$

$$X[1]$$

$$X[N-1]$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(\frac{2\pi}{N})kn}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(\frac{2\pi}{N})kn}$$

$$=\frac{1}{N}\left(X[0]\right)$$

$$+...+ X[N-1]$$

[source]

Time domain

$$x[n]$$

$$x[0]$$

$$x[1]$$

$$x[1]$$

$$\vdots$$

$$x[N-1]$$

$$\begin{array}{c|c}
X[k] \\
DFT & X[0] \\
X[1] \\
& \vdots \\
X[N-1]
\end{array}$$

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j(\frac{2\pi}{N})kn}$$

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j(\frac{2\pi}{N})kn}$$

scipy.fft.fft(x, n=None, axis=-1, norm=None, overwrite_x=False,
workers=None, *, plan=None)

Compute the 1-D discrete Fourier Transform.

This function computes the 1-D *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [1].

Fast Fourier Transform (FFT) - An efficient algorithm that computes the DFT of a signal

Time domain

X[k]

Frequency domain

Time domain

Samples from $x(t) = \sin(2\pi \times 20t)$

Frequency domain

Speaker: Itthi Chatnuntawech

Module: Signal Processing

A Simple Filtering

A Simple Filtering

EEG Preprocessing

AC power line noise

Speaker: Itthi Chatnuntawech

EEG Preprocessing

Brain rhythm frequency bands associated with cognitive processes

Ideal windows Beta -12 30 Hz 12 [12-30 Hz] **Alpha** -12 -8 12 8 Hz [8-12 Hz] **Theta** [4-8 Hz] -8 4 8 Hz Delta [1-4 Hz] Hz Time Vallat R. Compute the average bandpower of an EEG signal (2018) 1 sec

MRI Acquisition and Reconstruction

- · The acquired data are the DFT samples of the object being imaged
- If the sampling rate is high enough, the image can be reconstructed by applying the inverse DFT to the k-space data

