Signal Processing Techniques for Interpolation in Graph Structured Data

Reporter: Feng Zhao
Department of Electronic Engineering

April 23, 2018

An example of recommendation system

- ► Five movies
- ► a 5 × 5 similarity matrix
- ▶ a user rating on movie 1,2,5
- predict his rating on movie 3,4

kNN Method to predict user rating on movies

- predict on movie 3
- ► suppose k=2
- movie 2 and 5 are more similar to 3 than 1
- predicted rating on movie 3: $\frac{1.2\times4+0.8\times2}{1.2+0.8}$

issues of kNN

- discard mutual information between movie 1,2,5
- predict rating 3,4 respectively
- jointly prediction with all information used will improve the accuracy but also increase the complexity.

Problem Reformulation

- ightharpoonup f(1), f(2), f(5) are known
- ightharpoonup interpolate f(3), f(4)
- $f = [f(1), f(2), f(3), f(4), f(5)]^T$
- $f = f(1)\Theta_1 + f(2)\Theta_2 + f(5)\Theta_5$

What is the space spanned by $\Theta_1, \Theta_2, \Theta_5$

band limited graph signal reconstruction

Nyquist Shannon sampling theorem

If a continuous signal is band-limited, it can be reconstructed by discrete sampling without loss.

Pesenson, Isaac

If a graph signal is band-limited, it is uniquely determined by their values on some sets of vertices.

Reconstruction from basis

Critial Frequency

If the graph signal is band-limited, its spectrum decomposition has only components less than critical frequency ω_5^* .

$$\mathbf{f} = \sum_{i} x_{i} \mathbf{v}_{i} \tag{1}$$

where \mathbf{v}_i is the eigenvector with eigenvalues less than ω_S^* .

Least Square

f known only partially, least square techinque can be used to solve x_i

Numerical Results

Dataset

- Student body test data with 488 records and 37 features.
- Use other features(excluding age) to predict the gender
- ▶ 80% training set, 20% test set, 5 fold cross validation

Algorithm

- ▶ Linear Discrimant Analysis with average error rate at 0.4%
- ► **Graph Interpolation** with average error rate at 3%

Problems for Graph Interpolation

- Edge weight from data features
- ► Heuristic critical frequency

Acknowledgement

Thanks for listening