

Conceitos Fundamentais da Imagem Digital Aquisição, Amostragem e Quantização

V Vasconcelos

Processamento de Imagem Médica

Imagens_Digitais

Córnea: refracta os raios de luz que entram nos olhos, protecção à estrutura interna do olho.

Íris: Regula a quantidade de luz que entra nos nossos olhos, através da pupila que é uma abertura central da íris, através da qual a luz passa.

Cristalino: é uma lente natural do olho e sua função é auxiliar na focagem da imagem sobre a retina.

Retina: é a membrana fina que preenche a parede interna e posterior do olho, que recebe a luz focada pelo cristalino. Contém fotoreceptores (mais de 100 milhões) que transformam a luz em impulsos eléctricos, que são transmitidos ao nervo óptico que os transporta ao centro de processamento do cérebro.

O olho humano como uma câmara...

Processamento de Imagem Médica

Imagens_Digitais

Formação da imagem na retina

FIGURE 2.3
Graphical
representation of
the eye looking at
a palm tree. Point
C is the optical
center of the lens.

A imagem da árvore é formada na retina com

15/100=h/17 mm → h=2,55 mm

Processamento de Imagem Médica

2

Imagem Retirada da Referência [1].

Imagens Digitais

Formação da imagem no olho humano. Nem só a intensidade conta...

FIGURE 2.7 (a) An example

showing that perceived brightness is not a simple function of intensity. The relative vertical positions between the two profiles in (b) have no special significance; they were chosen for clarity.

Formação da imagem no olho humano. Nem só a intensidade conta...

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Processamento de Imagem Médica

Imagens Digitais

Exemplo de Formação da imagem digital

a b c d e

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Imagem Retirada da Referência [1].

Amostragem e Quantização

Processamento de Imagem Médica

Amostragem

7

Imagem Retirada da Referência [1].

Imagens Digitais

499 x 355

A mesma imagem; Diferentes amostragens

250 x 178

125 x 89

Imagem Retirada da Referência [3].

Processamento de Imagem Médica

🦚 Imagens Digitais

A - Imagem Original

A mesma imagem; Diferentes amostragens Mantendo a mesma dimensão

2 x tamanho do píxel de A

A mesma imagem;
Diferentes amostragens
Mantendo a mesma dimensão

Baixa Resolução Espacial – "píxelização"

4 x tamanho do píxel de A

8 x tamanho do píxel de A

Processamento de Imagem Médica

11

Imagens Digitais

16 x tamanho do píxel de A

A mesma imagem; Diferentes amostragens Mantendo a mesma dimensão

32 x tamanho do píxel de A

Imagem Original; 256 níveis

A mesma imagem ; Diferentes Gamas de Níveis de Cinzento

16 níveis

Processamento de Imagem Médica

13

Magens Digitais

4 níveis

A mesma imagem; Diferentes Gamas de intensidade

2 níveis

Poucos Níveis de Cinzento – Contornos Falsos

Relações entre píxeis: Vizinhança

$$N4(p) = \{ (x-1,y); (x+1,y); (x,y-1); (x, y+1) \}$$

$$N_D(p) = \{ (x-1,y-1); (x+1,y-1); (x-1,y-1); (x+1,y+1) \}$$

E nas fronteiras da imagem?

Processamento de Imagem Médica

15

Conectividade

O conceito de **conectividade** entre píxeis é um conceito fundamental que simplifica a definição de conceitos basilares em imagem digital, tal como fronteiras e regiões.

Existe **conectividade** entre dois píxeis **p** e **q** se:

1- eles são adjacentes (por exemplo vizinhos-4)

Ε

2 - o seu nível de cinzento respeita um critério específico de similaridade (por exemplo possuírem o mesmo nível de cinzento).

Relações entre píxeis: Adjacência

Consideremos V o conjunto de níveis de intensidade para definir Adjacência. No caso de uma imagem binária V={1}, quando se analisa a adjacência dos píxeis com valor 1.

No caso de uma imagem de níveis de cinzento, V contém tipicamente uma gama de valores. Se L=256 V pode ser qualquer subconjunto dos 256 níveis.

Processamento de Imagem Médica

17

Relações entre píxeis: Adjacência

Consideremos 3 tipos de adjacência:

- •Adjacência 4: p e q com valores de V possuem adjacência 4 se q se encontrar em N4(p) (adjacente por borda).
- •Adjacência 8: p e q com valores de V possuem adjacência 8 se q se encontrar em N8(p) (adjacente por vértice).

Relações entre píxeis: Adjacência

•Adjacência – m: (Adjacência mista) p e q possuem adjacência m se:

** **q** encontra-se em N4(p),

ou

** ${f q}$ se encontrar em ND(p) ${\it E}$ o conjunto $N_4(p) \cap N_4(q)$ não possui píxeis cujos valores estejam em V.

Processamento de Imagem Médica

19

Adjacência

 $V = \{1\}$

0	1 ∢	·- > 1	0
1<	<mark>×</mark>	0	1
0	0	1∢)

Adjacência - 4

Adjacência - 8

Adjacência - m

Caminho Digital

O caminho digital entre dois píxeis $p(x_0,y_0)$ e $q(x_n,y_n)$ é a sequência de pixels distintos com coordenadas

$$(x_0, y_0), (x_1, y_1), (x_2, y_2), ..., (x_n, y_n) \rightarrow pixeis adjacentes$$

Se $(x_0, y_0) = (x_n, y_n)$ o caminho diz-se fechado.

Podemos definir um caminho recorrendo à adjacência-4; adjacência-8 e adjacência-m.

Processamento de Imagem Médica

21

Macência Adjacência

Imagem a) - arranjo de pixels V={1}

Imagem b) – pixels adjacentes do pixel central usando adjacência - 8

Imagem c) – pixels adjacentes do pixel central usando adjacência – m; menor ambiguidade na construção de um caminho digital.

Relações entre píxeis: Conectividade

Conectividade é um conceito que é usado para estabelecer fronteiras de objetos e regiões de uma imagem.

- Seja S um subconjunto de píxeis na imagem. Dois píxeis estão ligados em S se existe um caminho (path) entre eles constituído apenas por píxeis de S.
- Para qualquer píxel de S, o conjunto de píxeis que estão ligados em S designa-se por componente ligado de S. Se S só tem um componente ligado então S é um conjunto ligado.

Processamento de Imagem Médica

23

Regiões da Imagem

- •R será considerada uma região da imagem, se R for um conjunto ligado. A sua fronteira, borda ou contorno é o conjunto de píxeis de R que tem pelo menos um vizinho que não pertencente a R. É um caminho fechado.
- •Duas regiões da imagem R1 e R2 são adjacentes se a união das duas forma um conjunto ligado.

 $\left\{
 \begin{array}{ccc}
 1 & 1 & 1 \\
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 0 & 1 & 0 \\
 1 & 1 & 1 \\
 1 & 1 & 1
 \end{array}
 \right\} R_{i}$

A região R1 e R2 são adjacentes se for considerada

Adjacência – 8 ou

Adjacência – m.

()	()	()	()	()	()	()	0
0	1	1	()	()	0	1	0
0	1	1	()	()	()	1	0
0	1	$\langle \hat{1} \rangle$	1	()	()	1	0
		1			()	1	0
0	0	0	0	0	0	0	0

O píxel delimitado faz parte da fronteira se for considerada a vizinhança -8, mas não se for considerada a vizinhança - 4.

Processamento de Imagem Médica

25

Distâncias

A distância entre píxeis é uma medida muito utilizada em muitos algoritmos.

D é uma função distância ou métrica se

•D(p,q)
$$\geq$$
 0 (D(p,q) = 0 se e só se p = q)

$$\bullet D(p,q) = D(q,p)$$

•D(p,z)
$$\leq$$
 D(p,q) + D(q,z)

Consideremos os píxeis p=(x,y), q=(s,t) e z=(u,v)

Distância Euclideana

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

Distância City-Block (Distância D4)

$$D_{cb}(p,q) = |x-s| + |y-t|$$

$$D_{ch}(p,q) \leq 2$$
 "diamantes" centrados no píxel p

Os píxeis com D4=1 são os 4-vizinhos do píxel p

		2		
	2	1	2	
2	1	0_	_ 1	2
	2	1	2	
		2		

Processamento de Imagem Médica

27

Distâncias

Distância Chessboard (Distância D8):

$$D_{ch}(p,q) = \max\{|x-s|, |y-t|\}$$

$$D_{ch}(p,q) \le 2$$

"quadrados" centrados no píxel p

2	2	2	2	/2
2—	- 1	1	1	2
2	1	0	1	2
2	1	1	1	2
2	2	2	2	2

Os píxeis com D8=1 são os 8-vizinhos do píxel p

Referências Bibliográficas

- R. C. Gonzalez, R. E. Woods, Digital image processing, Pearson/Prentice Hall, 1. 3rd Edition, 2008.
- R. C. Gonzalez, R. E. Woods, S. L. Eddins, Digital image processing using 2. Matlab, Gatesmark Publishing, 2nd Ed, 2009.
- 3. G. Dougherty, Digital Image Processing for Medical Applications, Cambridge University Press, 2009.
- 4. L. G. Shapiro, G. C. Stockman, Computer Vision, Prentice Hall, 2001.
- K. Najarian, R. Splinter, Biomedical Signal and Image Processing, CRC Press, 5. 2005.

Processamento de Imagem Médica

29