Evolution: VolP

- Introduction
 - les différents réseaux, objectifs de la VoIP, sur Intranet, Internet, les standards
- H323
 - Les composants, protocoles et versions
- SIP
 - Présentation, comparaison H323, architecture
- Architecture MGCP
 - Le contrôleur de passerelles sur IP
- L'avenir

Introduction

Aujourd'hui les réseaux voix et données sont séparés:

- Les réseaux de données:
 - la transmission en mode paquet (IP) est généralisée
- Les réseaux voix:
 - Une transmission basée sur la commutation de circuit. Canal à 64 Kbit/s

Introduction: les réseaux de données

- Les premiers réseaux de données basés sur des circuits dédiés loués
- Les liaisons RNIS établies à la demande et facturées à la durée de connexion
- Des connexions permanentes facturées à l'utilisation: X25,Frame Relay, ATM…

- Les réseaux de données sont basées sur la commutation de paquets:
 - Dans les années 80 avec des protocoles propriétaires: IBM_SNA, DECnet, standard international X25
 - Aujourd'hui IP est généralisé

Introduction: les réseaux voix

- Les premiers circuits numériques datent des années 60
 - Les réseaux sont basées sur des circuits commutés: canal de 64 Kbit/s

- Les réseaux voix utilisent:
 - Connexion RTC pour communiquer avec les autres postes téléphoniques du monde
 - Des liaisons spécialisées ou VPN pour l'interconnexion des PBX

Introduction: les objectifs

- La VoIP consiste à intégrer la voix et les données dans un même réseau:
 - L'intégration dans un même réseau pourra réaliser des économies
 - Le choix des réseaux de données car ils sont plus optimales (par la technique transfert de paquets)

Introduction: les objectifs

- les risques de la VoIP:
 - Un réseau unique et en cas de panne les conséquences sont donc plus importantes.
 - La fiabilité des réseaux de données est généralement plus faible que celles des réseaux voix.
- Les solutions de VolP:
 - Intégration sur Intranet
 - Intégration sur Internet

Introduction: VoIP sur Intranet

- Interconnexion de PBX
 - Les premiers réseaux IP consiste à interconnecter les PBX par les intranets

- Deux approches des constructeurs:
 - Ajouter au PBX existant une interface VolP
 - Les IP PBX qui sont des passerelles et une alternative au PBX

Introduction: VoIP sur Intranet

- Les « IP Phone »
 - Terminal téléphonique autonome connecté au Lan
 - Standard 802.3af

Introduction: VoIP sur Intranet

- Les standards VolP:
 - Les standards proviennent de deux origines:
 - UIT:
 - H323 qui définit une architecture pour une conférence multimédia sur un réseau de paquet.
 - IETF:
 - SIP (Session Initiation Protocol)
 - Plus simple mais il existe peu de produit

Ex: Netmeeting, CUSee me, Quicknet Switchboard, Sun's show me, X-lite.

Introduction: VoIP sur Internet

- Le but est d'utiliser Internet pour contourner la partie coûteuse de l'appel.
- La VoIP sur Internet est plus difficile que sur Intranet.
 - Ex: Net2Phone
 - Nécessite une base de données reliant le numéro de téléphone et le serveur.

Introduction: VoIP sur Internet

- Utilisation d'un fournisseur de service de téléphonie Internet ITSP
 - net2phone; ISPhone, Glocalnet
 - Les ITSP utilisent leur propre réseau IP pour contourner le RTC

H323

- Les composants d'une architecture H323
 - Zone = ensemble de terminaux, de passerelles et d'unités de contrôle multipoint géré par un Gatekeeper
 - Terminal = point d'extrémité
 - Gateway = passerelle reliant des équipements non H323
 - Multipoint Control Unit (MCU) permet des conférences Multidirectionnels
 - Gatekeeper = contrôle et gère sa zone (contrôle d'admission, résolution d'adresse et supervision)

Architecture H323

Les protocoles:

R	TELNET	Т	H	H.225		Audio: G.711, G.722,
5	FTP	1	2			G.723.1, G.728, G.729,
٧	SMTP	2	4	Q	R	MPEG,
P	НΠЪ	0	5	9	A	Vidéo: H.261, H.263,
	174			3	S	MPEG,
				1		RTP / RTCP
	TCP				UDP	
IP						
IEEE 802.2 / 802.3 / 802.11 / MPLS /						
LAN IEEE 802.3 / 802.11 /SDH / DWDM /						

H323

- Les protocoles
 - H225:
 - Mise en paquet des flux multimédia
 - Utilisation de RTP Real-Time Transport Protocol pour synchroniser les données
 - La voix et les autres contenues de l'appel sont transportés par RTP
 - Utilisation de RTCP Real-Time Transport Control Protocol pour fournir des informations sur le délai et la qualité de la transmission
 - RAS: transport des informations Registration, Admission et Status pour la connexion des appels et les communications avec le Gatekeeper
 - H245:
 - Protocole de contrôle pour les communications multimédia
 - Échange des capacités entre les terminaux: négociation des codecs
 - T120:
 - Protocole de transmission de données pour une conférence multimédia
 - Signaux Audio: utilsation de codec codeur/decodeur
 - Par défaut G711 (64 Kbit/s); G722,G723,G728,G729,MPEG1 Audio
 - Signaux Video:
 - H261 QCIF (Quater Common Intermédiate Format) 144 lignes * 176 pixels
 - H263 4CIF (576 * 704); 16CIF (1152*1048)

H323

- Les versions de H323
 - 1996 Version 1
 - 1998 Version 2
 - Ajout mise en attente, transfert et renvoi d'appels + sécurité
 - 1999 Version 3
 - N'a pas vu le jour
 - 2000 Version 4
 - Conforme aux recommandations H248 (MEGACO)

SIP: Session Initiation Protocol

- L'IETF a développé en concurrence avec l'IUT des protocoles pour la voix:
 - Les protocoles de conférence:
 - SIP: Session Initiation Protocol
 - SDP: Session Description Protocol
 - MGCP: Media Gateway Control Protocol
 - GLP: Gateway Location Protocol
 - Les protocoles temps-réels
 - RTP _ RTCP
 - Mécanismes de QoS
 - RSVP _ IntServ _ DiffServ

SIP: comparaison H323

- H323 issu de l'IUT est orienté LAN et les entreprises
- SIP est issu des protocoles INTERNET
 - s'adresse au WAN
 - réutilise les éléments d'Internet comme url, dns...
 - le texte est en clair: format web
 - La signalisation SIP est définie à partir de requêtes et réponses fondée sur http 1.1 (RFC 2068)

SIP: architecture

MGCP/MEGACO/H248

- Le protocole MGCP sert à l'échange de message de signalisation entre un contrôleur de passerelles de médias et des passerelles réparties dans un réseau IP
- Fin 98 création du MEGACO Working Group:
 - Pour définir les protocoles MGCP Media Gateway to Media Controlers Protocols
 - Une évolution de MGCP a donné MEGACO/H248 (Media Gateway Control protocol) élaboré par l'IUT et l'IETF

MGCP/MEGACO/H248

- Le Media Gateway Controler:
 - Similaire à un
 Gatekeeper controlant
 l'accès à une Gateway
 - Enlever le contrôle de la signalisation de la Media Gateway et la mettre dans un Media Gateway Controler (ou Softswitch)
 - Ce controleur pilotera de multiple Media Gateway

MGCP/MEGACO/H248

Communication du RTC vers SIP

GW de signalisation

Le protocole MEGACO

- •Suite au message d'établissement IAM (Initial Address Message) du protocole SS7:
 - •Le contrôleur de passerelles ordonne l'ouverture d'une connexion avec les messages **CRCX** (Create Connection)
 - •Transmet le message IAM vers sa destination
 - •L'ouverture de connexion est confirmée avec les messages ACK (Acknowledge)
- •Le message MDCX (Modify Connection) permet de transmettre à la passerelle de gauche le numéro de port UDP choisi par la passerelle de droite.
- •Les messages **ACM** (address Complete) et **ANM** (Answer Message) du SS7 permettent d'indiquer de bout en bout que la sonnerie retentit puis l'appelé a répondu.
- •La libération de la connexion est effectuée au moyen des messages DLCX (Delete Connection) et ACK, pour le protocole MGCP
 - •REL (Release) et RLC (Release Complete) pour le SS7

L'avenir

- La volP débute
 - Utilisé par quelques précurseurs
 - Fondé sur la réduction des coûts
- L'introduction à grande échelle sera lente
 - Les économies sont réduites par la baisse des prix du RTC
 - Déploiement graduel des Gateways d'interconnexion
- Opportunité pour de nouveaux services
 - Implémentation facilitée
 - Possibilités d'intégration