Projektübersicht: Vergleich von Super-Resolution-Methoden

In diesem Projekt werden verschiedene Super-Resolution-Netzwerke (SRCNN-Varianten) mit unterschiedlichen Trainingsmethoden und Skalierungsfaktoren untersucht. Ziel ist es, die Auswirkungen von Netzwerkarchitektur, Trainingsstrategie und Skalierungsfaktor auf die Bildqualität, Trainingsstabilität und Effizienz zu analysieren.

1. Vergleichsebenen

	Beschreibung	Beispielmetriken / Ziele
sverhalten	Wie schnell und stabil das Modell konvergiert.	Loss-Kurven, Zeit pro Epoche, Konvergenzrate
tät	Wie gut das SR-Bild mit dem Original übereinstimmt.	PSNR, SSIM, LPIPS
	Wie ressourcenschonend und schnell das Modell arbeitet.	Parameter, FLOPs, Inference Time, Speicherve
ngsfaktor	Einfluss unterschiedlicher Upscaling-Faktoren auf Qualität und Stabilität.	Vergleich für x2, x3, x4, x6

2. Netzwerkarchitekturen

Drei Varianten des SRCNN-Netzwerks werden eingesetzt, um den Einfluss der Tiefe und Komplexität zu untersuchen:

Modell	Residualblöcke	Channel Attention	Parameter (ca.)	Ziel
SRCNN_low	4	Nein	0.5 Mio	Basis-Modell für einfache SR-Aufgaben
SRCNN_medium	10	Ja (alle 2 Blöcke)	1.2 Mio	Balance zwischen Qualität und Effizienz
SRCNN_high	20	Ja (alle 2 Blöcke)	2.4 Mio	Maximale Detailgenauigkeit, höherer Rechenaufwand

3. Trainingsmethoden

Zur Bewertung der Lernstrategien werden drei unterschiedliche Trainingsansätze verwendet, die sich in ihren Loss-Funktionen und Zielmetriken unterscheiden:

Methode	Loss-Funktion	Ziel	Erwartete Wirkung
L1-Training	L1 Loss (MAE)	Hoher PSNR, stabile Konvergenz	Scharfe, aber teils glatte Bilder
erceptual Training	L1 + 0.01 * Perceptual (VGG)	Bessere Wahrnehmung / Texturen	Realistischere Ergebnisse
versarial Training	L1 + 0.001 * GAN	Realistische Texturen / Wahrnehmungsqualität	Subjektiv hochwertigere SR-Bild

4. Skalierungsfaktoren

Für die Analyse werden vier Skalierungsfaktoren untersucht: x2, x3, x4 und x6. Jeder Faktor repräsentiert eine andere Schwierigkeitsstufe der Rekonstruktion. Kleinere Faktoren (x2) ermöglichen höhere PSNR-Werte, während größere (x6) die Rekonstruktion deutlich erschweren. Der Vergleich zeigt, wie stark Architektur und Trainingsmethode mit zunehmendem Informationsverlust umgehen können.

Faktor	Beschreibung	Typische PSNR-Range	Schwierigkeit
x2	Leichte Vergrößerung, viel Originalinformation erhalten	32-36 dB	Niedrig
х3	Mittlere Vergrößerung, moderate Detailverluste	30-33 dB	Mittel
x4	Stärkere Vergrößerung, feine Strukturen schwerer rekonstruierbar	28–31 dB	Hoch
x6	Sehr starke Vergrößerung, starke Informationsverluste	25–28 dB	Sehr hoch

Ziel des gesamten Vergleichs ist es, ein vollständiges Bild über die Trade-offs zwischen Modellkomplexität, Trainingsmethode, Skalierungsfaktor und resultierender Bildqualität zu gewinnen. So kann bestimmt werden, welches Setup das beste Verhältnis zwischen Qualität, Rechenaufwand und Stabilität bietet.