

Warby Parker Capstone

Learn SQL from Scratch Schuyler Berland - sberland631@gmail.com June 22 2019

Table of Contents

- 1. Warby Parker Background & Funnel Project
- 2. Quiz Funnel
- 3. A/B Testing with Home Try-On Funnel

1. Warby Parker - Background & Funnel Project

Warby Parker - Background & Funnel Project

Company Background: "Warby Parker is a transformative lifestyle brand with a lofty objective: to offer designer eyewear at a revolutionary price while leading the way for socially conscious businesses. Founded in 2010 and named after two characters in an early Jack Kerouac journal, Warby Parker believes in creative thinking, smart design, and doing good in the world. For every pair of eyeglasses and sunglasses sold, a pair is distributed to someone in need." (description source, Codecademy)

Funnel: For my capstone project, the objective was to analyze various marketing funnels used by Warby Parker. I was provided two funnels with the following tables:

- Quiz Funnel:
- survey

2. Home Try-On Funnel:

- quiz
- home_try_on
- purchase

2. Quiz Funnel

Quiz Funnel, Question 1

To help users find their perfect frame, Warby Parker has a <u>Style Quiz</u> that has the following questions:

- "What are you looking for?"
- 2. "What's your fit?"
- "Which shapes do you like?"
- 4. "Which colors do you like?"
- 5. "When was your last eye exam?"

The users' responses are stored in a table called survey.

Select all columns from the first 10 rows. What columns does the table have?

EXPLANATION:

"SELECT *" SELECTS ALL COLUMNS FROM A TABLE.

"FROM SURVEY" SELECTS ALL ROWS AND COLUMNS FROM THE SURVEY TABLE.
"LIMIT 10" LIMITS THE SELECTION TO THE FIRST 10 ROWS OF THE SURVEY TABLE.

THE QUIZ FUNNEL CONTAINS THREE COLUMNS: QUESTION (the survey question), USER_ID & RESPONSE (the selected answer from the user)

QUERY:

SELECT *
FROM survey
LIMIT 10;

question	user_id	response
1. What are you looking for?	005e7f99-d48c-4fce-b605-10506c85asf7	Women's Styles
2. What's your fit?	005e7f99-d48c-4fce-b605-10506c85asf7	Medium
3. Which shapes do you like?	00a556ed-f13e-4c67-8704-27e3573684cd	Round
4. Which colors do you like?	00s556ed-f13e-4c67-8704-27e3573684cd	Two-Tone
1. What are you looking for?	00s556ed-f13e-4c67-8704-27e3573684cd	l'm not sure. Let's skip it.
2. What's your fit?	00a556ed-f13e-4c67-8704-27e3573684cd	Narrow
5. When was your last eye exam?	00s556ed-f13e-4c67-8704-27e3573684cd	<1 Year
3. Which shapes do you like?	00bf9d63-0999-43u3-9e5b-9c372e6890d2	Square
5. When was your last eye exam?	00bf9d63-0999-43u3-9e5b-9c372e6890d2	<1 Year
2. What's your fit?	00bf9d63-0999-43s3-9e5b-9c372e6890d2	Medium

Quiz Funnel, Question 2

QUESTION: Users will "give up" at different points in the survey. Let's analyze how many users move from Question 1 to Question 2, etc.

Create a guiz funnel using the GROUP BY command.

What is the number of responses for each question?

EXPLANATION:

"SELECT QUESTION" SELECTS THE QUESTIONS AND MAKES IT THE FIRST COLUMN OF OUERY.

"COUNT (DISTINCT user_id)" COUNTS THE NUMBER OF USERS WHO REACHED EACH OUESTION.

"GROUP BY QUESTION" GROUPS THE COUNT BY QUESTION, THUS ALLOWING FOR THE RESULTS ON THE RIGHT.

I chose distinct in case a user took the survey twice.

QUERY:

SELECT question, COUNT(DISTINCT user_id) FROM survey GROUP BY question;

question	COUNT(DISTINCT user_id)
1. What are you looking for?	500
2. What's your fit?	475
3. Which shapes do you like?	380
4. Which colors do you like?	361
5. When was your last eye exam?	270

Quiz Funnel, Question 3

Using a spreadsheet program like Excel or Google Sheets, calculate the percentage of users who answer each question.:

Which question(s) of the quiz have a lower completion rates?

What do you think is the reason?

Add this finding to your presentation slides!

QUESTION	USER_ID COUNT	% QUESTION TO QUESTION COMPLETION
1. What are you looking for?	500	
2. What's your fit?	475	95.00%
3. Which shapes do you like?	380	80.00%
4. Which colors do you like?	361	95.00%
5. When was your last eye exam?	270	74.79%

FINDINGS:

THE LOWEST COMPLETION RATES WERE FOR QUESTIONS 3 AND 5.

THIS LIKELY MEANS THE FOLLOWING:

- 1. THOSE COMPLETING THE SURVEY ARE PERHAPS NOT ENTIRELY SURE WHICH SHAPES THEY LIKE. THIS MAY PROVIDE AN OPPORTUNITY TO REPHRASE THE QUESTION AND SUGGEST SHAPES, OR SEND A SURPRISE STYLE TO CLIENTS.
- 2. THOSE COMPLETING THE SURVEY ARE NOT FAMILIAR WITH WHEN THEY LAST RECEIVED AN EYE EXAM. AS THIS HAS THE LOWEST COMPLETION, IT WOULD BE INTERESTING TO TEST IT AS THE FIRST QUESTION (TO SEE IF PEOPLE ARE GETTING BORED BY END OF SURVEY, OR IF PEOPLE ARE FILLING THIS OUT LEAST BECAUSE THEY CANNOT RECALL THE LAST TIME THEY RECEIVED AN EYE EXAM).

3. A/B Testing with Home-Try-On funnel

Warby Parker's purchase funnel is:

Take the Style Quiz \to Home Try-On \to Purchase the Perfect Pair of Glasses During the Home Try-On stage, we will be conducting an A/B Test:

- 50% of the users will get 3 pairs to try on
- 50% of the users will get 5 pairs to try on

Let's find out whether or not users who get more pairs to try on at home will be more likely to make a purchase. The data will be distributed across three tables:

- quiz
- home_try_on
- purchase

Examine the first five rows of each table What are the column names?

THE EXPLANATION FOR THIS IS SIMILAR TO QUESTION ONE, "SELECT *" SELECTS ALL COLUMNS AND ROWS FOR THE TABLE, I ADDED A LIMIT 5 AS ONLY THE FIRST FIVE ROWS ARE TO BE EXAMINED.

THE COLUMN NAMES FOR THE TABLES ARE THE FOLLOWING: QUIZ: USER_ID,STYLE, FIT, SHAPE, COLOR

HOME_TRY_ON: USER_ID, NUMBER_OF_PAIRS, ADDRESS

PURCHASE: USER_ID,PRODUCT_ID, STYLE,_MODEL_NAME,COLOR_PRICE

QUERY:

SELECT *

FROM quiz

LIMIT 5;

SELECT*

FROM home_try_on

LIMIT 5;

SELECT *

FROM purchase

LIMIT 5;

We'd like to create a new table with the following layout:

Each row will represent a single user from the browse table:

If the user has any entries in home_try_on, then is_home_try_on will be 'True'.

number of pairs comes from home try on table

If the user has any entries in is_purchase, then is_purchase will be 'True'.

Use a **LEFT JOIN** to combine the three tables, starting with the top of the funnel (browse) and ending with the bottom of the funnel (purchase). Select only the first 10 rows from this table (otherwise, the query will run really slowly).

user_ id	is_home_try _on	number_of_pa irs	is_purch ase
4e811 8dc	True	3	False
291f1 cca	True	5	False
75122 300	False	NULL	False

EXPLANATION:

I first created a table with 4 columns: user_id, is_home_try_on, number_of_pairs and is_purchase. I renamed table quiz as q, table home_try_on as h and table purchase as p to simplify the query. I did a left join combining all three tables. I started my left join from the quiz table because it keeps all user ids from the quiz table in the final results. For is_home try_on and is_purchase, I created the columns as "IS NOT NULL" because it creates values of 1 and 0, which can be summed later on for conversions.

As the question asked for the results to appear as True or False, and not as 1 or 0, I then had to wrap the query into a WITH statement. I could then create a table using my previous results where 1 = True and 0 = False (using a CASE statement).

I did LIMIT 10 to select only the first 10 rows.

QUERY:

WITH funnel AS (SELECT q.user_id AS user_id, h.user_id IS NOT NULL AS 'is_home_try_onn', h.number_of_pairs AS number_of_pairs, p.user_id IS NOT NULL AS 'is_purchasee' FROM quiz AS 'q'
LEFT JOIN home_try_on AS 'h'
ON q.user_id = h.user_id
LEFT JOIN purchase AS 'p'
ON p.user_id = h.user_id)
SELECT user_id,

CASE

WHEN is_home_try_onn = 0 THEN 'False' ELSE 'True' END AS

'is_home_try_on', number of pairs,

CASE

WHEN is_purchasee = 0 THEN 'False' ELSE 'True' END AS 'is_purchase'

FROM funnel

LIMIT 10:

user_id	is_home_try_on	number_of_pairs	is_purchase
4e8118dc-bb3d-49bf-85fc-ccs8d83232ac	True	3 pairs	False
291f1cca+e507-48be-b063-002b14906468	True	3 pairs	True
75122300-0736-4087-b6d8-c0c5373a1a04	False		False
75bc6ebd-40cd-4e1d-a301-27ddd93b12e2	True	5 pairs	False
ce965c4d-7a2b-4db6-9847-601747fa7812	True	3 pairs	True

Once we have the data in this format, we can analyze it in several ways:

- We can calculate overall conversion rates by aggregating across all rows.
- We can compare conversion from quiz→home_try_on and home_try_on→purchase.
- We can calculate the difference in purchase rates between customers who had 3 number_of_pairs with ones who had 5.
- And more!

We can also use the original tables to calculate things like:

- The most common results of the style quiz.
- The most common types of purchase made.
- And more!

What are some actionable insights for Warby Parker?

EXPLANATION 1: CONVERSION

This query looks at the conversion rates from quiz \rightarrow home try on \rightarrow purchase. I used the query from the last question, except I removed the case statements. The 0 and 1s allow for easy sums to calculate conversions.

I continue to use the WITH statement, and then I create a count column for quiz users and sums for the home try on and purchase users columns. I then divide the sum of home try ons over the count of quiz ids to find the conversion rate for the home try on program. I then divided the sum of purchasing users over the sum of home_try_on users to calculate that conversion rate.

The percent of those who purchase after requesting the home try on is actually very high (66%), so this is quite an impressive number! The % of those interested in the home try on is also very high (75%). I think it would be interesting to later see what percent of those who decline the home try on eventually make a purchase at the store. I think we can work on increasing the % purchase number as well.

FIRST QUERY:

WITH funnel AS (SELECT q.user_id AS user_id,
h.user_id IS NOT NULL AS 'is_home_try_on',
h.number_of_pairs AS number_of_pairs,
p.user_id IS NOT NULL AS 'is_purchase'
FROM quiz AS 'q'
LEFT JOIN home_try_on AS 'h'
ON q.user_id = h.user_id
LEFT JOIN purchase AS 'p'
ON p.user_id = h.user_id)
SELECT COUNT (*) as 'num_quiz', SUM(is_home_try_on) AS 'num_home_try_on',
SUM(is_purchase) as 'num_purchase',
1.0*SUM(is_home_try_on)/COUNT(user_id) AS '%_home_try_on',
1.0*SUM(is_purchase)/SUM(is_home_try_on) AS '%_purchase'
FROM funnel:

num_quiz	num_home _try_on	num_purchase	%_home_try_on	%_purchase
1000	750	495	0.75	0.66

Once we have the data in this format, we can analyze it in several ways:

- We can calculate overall conversion rates by aggregating across all rows.
- We can compare conversion from quiz→home_try_on and home_try_on→purchase.
- We can calculate the difference in purchase rates between customers who had 3 number of pairs with ones who had 5.
- And more!

We can also use the original tables to calculate things like:

- The most common results of the style quiz.
- The most common types of purchase made.
- And more!

What are some actionable insights for Warby Parker?

EXPLANATION 2: DIFFERENCE IN PURCHASE RATES

This query is very similar to the query in the last slide, except that I grouped by the number of pairs from home_try_on. The findings show that those who try on 5 pairs are far more likely to purchase (79%) as opposed to (53%) who try on only 3 pairs.

One experiment may be to test only providing 5 pairs to try on for a month or two. We can analyze if the percentage is still as high, or at least higher than 53%.

SECOND QUERY:

WITH funnel AS (SELECT q.user_id AS user_id,

h.user_id IS NOT NULL AS 'is_home_try_on',

h.number_of_pairs AS number_of_pairs,

p.user_id IS NOT NULL AS 'is_purchase'

FROM quiz AS 'q'

LEFT JOIN home_try_on AS 'h'

ON q.user_id = h.user_id

LEFT JOIN purchase AS 'p'

ON p.user_id = h.user_id)

SELECT number_of_pairs,COUNT(number_of_pairs),

SUM (is_purchase) as 'number_purchase',

1.0 * SUM(is purchase)/COUNT(number of pairs) AS '% purchase'

FROM funnel

GROUP BY number_of_pairs

HAVING number_of_pairs IS NOT NULL;

number_of_ pairs	COUNT(number_of _pairs)	number_purc hase	%_purchase
3 pairs	379	201	0.530343007915567
5 pairs	371	294	0.792452830188679

Once we have the data in this format, we can analyze it in several ways:

- We can calculate overall conversion rates by aggregating across all rows.
- We can compare conversion from quiz→home_try_on and home_try_on→purchase.
- We can calculate the difference in purchase rates between customers who had 3 number_of_pairs with ones who had 5.
- And more!

We can also use the original tables to calculate things like:

- The most common results of the style quiz.
- The most common types of purchase made.
- And more!

What are some actionable insights for Warby Parker?

EXPLANATION 3: QUIZ STYLES & SHAPE

For these queries, I looked at if mens or womens styles were more favored, as well as popular shapes. It appears women's is favored, but not by a large margin. For shapes, rectangular and square were the most popular shapes.

For the query I selected styles first (in order to later GROUP BY styles). I then counted the user_ids, and divided by 1000, as this was the total number of those who took the quiz.

For shapes, I did a simple query with select, count and GROUP BY in order to view the count by style.

THIRD QUERY:

STYLE:SELECT style,

COUNT (DISTINCT user_id) AS 'user_count', 1.0* COUNT(user_id)/1000 AS '% of users'

FROM quiz

GROUP BY style:

SHAPE: SELECT shape,

COUNT (shape)

FROM guiz

GROUP BY shape:

style	user_count	% of users
I'm not sure. Let's skip it.	99	0.099
Men's Styles	432	0.432
Women's Styles	469	0.469

shape	COUNT (shape)
No Preference	97
Rectangular	397
Round	180
Square	326

Once we have the data in this format, we can analyze it in several ways:

- We can calculate overall conversion rates by aggregating across all rows.
- We can compare conversion from quiz→home_try_on and home_try_on→purchase.
- We can calculate the difference in purchase rates between customers who had 3 number_of_pairs with ones who had 5.
- And more!

We can also use the original tables to calculate things like:

- The most common results of the style quiz.
- The most common types of purchase made.
- And more!

What are some actionable insights for Warby Parker?

EXPLANATION 4: PURCHASE PRICE

The middle price point of 95 dollars is the most popular purchase price for a pair of glasses (at 52% of purchases). The premium styles are second, with 39%. Only 8% of clients purchase the 50 dollar price point. One actionable insight may be to expand where we are marketing the \$50 dollar glasses. The current client base is not buying them, are we marketing \$50 glasses to the wrong markets? One action may also be to continue highlighting the premium selection, as it does well, and expand on that line.

FOURTH QUERY: Price: SELECT price. COUNT (user id). 1.0*COUNT(user id)/495 as '% purchase' FROM nurchase GROUP BY price; Shape by Gender: WITH results AS (SELECT user id, REPLACE (style,"",") as styles, fit. shape. color FROM quiz) SELECT color, COUNT (color). 1.0* COUNT (color)/531 FROM results WHERE styles = 'Womens Styles' GROUP BY color ORDER BY 3 DESC:

price	COUNT (user_id)	%_purchase
50	41	0.08282828282828
95	261	0.5272727272727
150	193	0.389898989899