# Surveying Techniques for Music Recommendation

By: Reed Spratt

### **Presentation - Key Points**

1. Introduce the focus of my research and paper

- 2. Introduce recommender systems and use for music
- 3. Introduce their challenges and evaluation methods

- 4. Discuss recommender system techniques
- 5. Discuss music streaming services and recommendation techniques

### **Research Motivations**

- Combination of Research Interests
  - Machine learning and music (analysis and theory background)

- Lack of Comprehensive Papers on Music Recommendation
  - Many papers discuss individual techniques for music recommendation
  - Very few papers consider recommendation techniques across services

- Base for future research and projects

### **Recommender Systems**

- **Definition:** Machine learning algorithms designed to recommend *Items* to *Users* thought to be desirable by the users.

User behaviour is stored as Transactions.

#### Motivations

- Assist with the information overload problem
- Can benefit the users **and** the service provider

# **Recommender Systems - Approaches**

- Two common approaches:
  - Content-Based (CB)\*
  - Collaborative Filtering (CF)\*

- Many offshoots:
  - Context-based recommenders\*
  - Conversational recommenders\*
  - Constraint-based recommenders
  - Hybrid-models

<sup>\*</sup>Starred items are selected for discussion today.

# **Evaluating Recommendations**

#### Accuracy Measures

- Predicted ratings →
- Predicted usage
- Predicted item rankings

$$RMSE = \sqrt{\frac{1}{|T|} \sum_{(u,i) \in T} (\hat{r}_{ui} - r_{ui})^2}$$

$$\hat{r}_{ui}$$
 = Predicted rating

$$MAE = \sqrt{\frac{1}{|T|} \sum_{(u,i) \in T} |\hat{r}_{ui} - r_{ui}|}$$

 $r_{ui}$  = Actual rating

#### Evaluation Metrics

- Recommender-based i.e. scalability, adaptivity, and confidence
- Recommendation-based i.e. novelty, serendipity, diversity, presentation

### **Evaluation Metrics for Music**

#### Coverage

- How well do recommender systems cover the full library of songs available?

#### Discovery

- **Novelty -** Does the system allow the user to discover new music?
- **Serendipity** Does the system allow the user to discover new *unexpected* music?

#### - Responsiveness

How quickly does the system update its recommendations to user feedback?

# **Item Challenges for Music Recommendation**

#### - Scalability

- Most streaming services feature millions to tens of millions of songs

#### Popularity Bias

- More popular songs may be favoured in recommendation
- Long-Tail problem

#### Cold-Start Recommendation

- How to recommend new items (without ratings)?

### **User Challenges for Music Recommendation**

#### Collecting feedback

Mostly implicit feedback (instead of explicit ratings)

#### Listening contexts

- Location, mood, and intention can vary

#### - Cold-Start recommendation

- How to recommend items to new users?

#### - Repeated recommendation

- Desire to listen to songs again

### **Content-Based Approaches**

- Method: Recommend new items using a learned user profile with previously liked items, and similarity measures for new items based on their 'content'.

#### Three primary steps:

- Preprocessing & Feature Extraction
- User Profile Building
- Item Filtering

- Left diagram features:
  - Objects & Data (blue)
  - Model components (red)
  - Output (yellow)



### **Content-Based Approaches - Music**

#### - Audio Feature Extraction

- Analyze audio visually through spectrograms
- CNNs can highlight specific audio characteristics

#### Text Feature Extraction

- Analyze textual information to determine characteristics
- Ex. lyrics, reviews, blog posts, comments, labels, etc.



**Fig. 1** Spectrogram of an orchestral piece of music.

#### - Measure Similarity

- Compare audio characteristics, genre, user descriptions, etc.

### **Content-Based Approaches - Considerations**

#### Advantages:

- Mitigates cold-start problem for new item recommendation
- Recommendations are easily explained to users

#### - Disadvantages:

- Feature extraction can be difficult
  - Requires domain knowledge
- Lack of diversity in recommendations

#### Playlists you'll love



00s Alternative 50 tracks - 15.155 fans



Soft Pop 50 tracks - 179,531 fans

Fig. 2 Playlists recommended using content-based filtering by song genre.

# **Collaborative-Filtering**

- **Method:** Recommend items to users by considering the preferences/ratings of *other users* similar to the user being recommended to.

- Neighbourhood-based Approaches
  - User-based (Use similar users)
  - Item-based (Use similar items based on user ratings for the items)

- Latent Factor Models
  - Transform items and users to the same space and consider inferred (latent) factors as patterns

# **Collaborative-Filtering - Considerations**

Very popular approach (Netflix Competition)

#### Advantages:

- Good for item discovery
- No domain knowledge needed

#### - Disadvantages:

- Cold-start problem for new items (without ratings)
- Prone to recommendation biases

### **Context for Music Recommenders**

- Context for the Listener
  - When: What time of day is it? What time of year is it?
  - Where: Where is the user listening from?
  - What (Why): Why is the user currently listening to music?
  - Who: Who is the user? (Demographic information)

- Context for the Items
  - What is the song's perceived genre?
  - Who is the musical artist or composer?
  - How do people describe this song?
  - What *mood(s)* does the song portray?

### **Conversational Systems**

#### Conversational Recommender Systems

- Get live feedback from users or specific requests based on listening intention
- Tune recommendations not solely based on prior knowledge about user preferences

#### - Why?

- User may perceive the recommender as being more 'intelligent'
- Listening intention of the user isn't always captured in pre-built playlists

#### Pandora

Dedicated voice assistant technology (more on this later)

### **Music Streaming Services**

- New emerging streaming services through the years
- Many websites offer some form of music recommendation service
- Highlighting a few today:
  - Spotify
  - Last.fm
  - Pandora



**Chart 1:** Most Popular Streaming Services in The United States (2018-2019)

# **Spotify**



- Music and audio streaming service
- Library of over 70 million songs (and counting)
- Founded in 2006, initial launch in 2008

#### Recommendation Features:

- User-tailored playlists i.e. "Discover Weekly", "Daily Mix"
- Artist and genre radio
- Playlists tuned to specific moods and listening contexts

# **Spotify Playlist Selection**



Fig. 3a: Playlists created by Spotify suited to specific genres and contexts



Fig. 3b: User-tailored playlists.



Fig. 3c: Playlists under the sub-category "Cooking"

# **Spotify - Making Recommendations**

- Relies on three primary components:
  - 1. Collaborative-Filtering
  - 2. Content-Based Analysis
  - 3. Natural-Language Processing

- Acquisition of music intelligence platform EchoNest in 2014 to assist content-based analysis

\*Check out Engineering.AtSpotify for more information

### Last.fm



- Music recommendation service and 'social network'
- Former music streaming service
- Founded in 2002

#### Recommendation Features:

- Recommends songs to users in "streams" as personalized playlists
- Integration with streaming services for scrobbling

- Developer API using Last.FM's music database

### **Last.fm - Scrobbling**

- **Scrobbling:** The process of collecting data related to audio streaming by users across various streaming services and some hardware devices.

- Recommendation uses **collaborative filtering** techniques



Fig. 4: Deezer's partners for Scrobbling

### **Pandora**



- Internet radio service with on-demand features
- Relatively small music library (~1 million songs estimated)
- Launched in 2005 for the U.S. and Australia (Now U.S. exclusive)

#### Features:

- User-tailored playlists and "modes"
- Virtual assistant technology
- Collects user feedback
- Leverages context-based information

### **Pandora - Music Genome Project**

- Project used to classify songs according to a set of 450 attributes
  - Attributes were defined and rated by music experts
  - Attributes were rated on a numerical scale

- Unique approach for content-based recommendation

- Example attributes:
  - "Abstract Lyrics", "Blues Influences", "Electric Guitar Solo", "Heavy Syncopation", "Mellow Sounds", "Reggae Feel"

# Pandora - Virtual Assistant Technology

- Allows users to use voice-activated virtual assistant technology for song recommendation
  - Users can make vague music requests
    - "Hey, Pandora: play something happy for cooking."

- Users can give feedback to adjust recommendations in real time
  - "Hey, Pandora: play more like this."



# State of Research & Going Forward

#### - Current Progress:

- In the paper writing and revising stage

#### Next Steps:

- Present techniques as solutions to challenges
- More research for context-based approaches
- Explore integration of other ML domains

#### Looking Ahead:

- Experiment with personal music libraries
- Developer APIs are available

### **Conclusion**

Music recommendation is:

 A key feature of many internet radio and music streaming services

- Getting more sophisticated
  - Leveraging context factors
  - More data collection methods



Chart 2: Worldwide Music Streaming Revenue Growth

### Spotify Users Have Spent Over 2.3 Billion Hours Streaming Discover Weekly Playlists Since 2015

Fig. 6: Spotify Newsroom Headline.

### Images & Charts Used (For Presentation)

#### Images:

[Fig. 1] Image created using Acedemo's Spectrograph program.

[Fig. 2] Images taken from <u>Deezer</u>.

[Fig. 3] Images taken from **Spotify**.

[Fig. 4] Image taken from Last.fm.

[Fig. 5] Image taken from Newsroom Spotify.

#### **Statistics Charts Used:**

[Chart 1] Verto Analytics. (November 13, 2019). Most popular music streaming services in the United States in March 2018 and September 2019, by monthly users (in millions) [Graph]. In Statista. Retrieved November 29, 2021, from <a href="https://www.statista.com/statistics/798125/most-popular-us-music-streaming-services-ranked-by-audience">https://www.statista.com/statistics/798125/most-popular-us-music-streaming-services-ranked-by-audience</a>

[Chart 2] MIDiA Research. (June 1, 2021). Number of music streaming subscribers worldwide from 2015 to 1st quarter 2021 (in millions) [Graph]. In Statista. Retrieved November 29, 2021, from <a href="https://www.statista.com/statistics/669113/number-music-streaming-subscribers/">https://www.statista.com/statistics/669113/number-music-streaming-subscribers/</a>

# Thank You!