Graves 2013, "Generating Sequences with Recurrent Neural Networks"

Johannes Bausch and Jack Kamm

14 November 2017

Outline

RNN and LSTM

2 Generating text

Generating handwriting

Table of Contents

RNN and LSTM

2 Generating text

Generating handwriting

Input x_t , hidden layers h_t^n , output y_t , generative model $\mathbb{P}(x_{t+1} \mid y_t)$

 $h_t^n = \text{nonlinear link} \circ \text{affine combo of } x_t, h_{t-1}^n, h_t^{n-1}$

$$h_t^n = \mathcal{H}(W_{ih^n} x_t + W_{h^{n-1}h^n} h_t^{n-1} + W_{h^nh^n} h_{t-1}^n + b_h^n)$$

 $y_t = \text{nonlinear link} \circ \text{affine combo of } h_t^n$

$$y_t = \mathcal{Y}(b_y + \sum_{n=1}^N W_{h^n y} h_t^n)$$

Train by maximizing likelihood of generative model:

$$\mathbb{P}(\mathbf{x}) = \prod_{t=1}^T \mathbb{P}(x_t \mid y_{t-1})$$

Compute $\nabla_{\Theta} \log \mathbb{P}_{\Theta}(\mathbf{x})$ by "truncated backpropagation through time"

• i.e., reverse chain-rule + "clip" exploding derivatives

Long short term memory¹

Information passes through a series of "gates"

- $\bullet \ \ \text{``Gate''} = \mathsf{multiplication} \ \mathsf{with} \ \mathsf{sigmoid}$
 - $\sigma = 0 \Rightarrow$ "let nothing thru"
 - \bullet $\sigma=1\Rightarrow$ "let all thru"

 $C_t =$ "cell state" = flows horizontally across LSTM units

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

$$\mathit{f}_t =$$
 "forget gate" $=$ gate to forget information from C_{t-1}

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

 $i_t =$ "input gate" = gate to add information from h_{t-1} and x_t to C_t

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Update C_t using f_t and i_t

$$o_t = \sigma(W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh(C_t)$$

 $o_t=$ "output gate" = gate to output information to cell above/right

Many variations on LSTM exist. Here is the one used in Graves 2013:

Notice the extra "peephole" connections from C to f, i, o

Table of Contents

1 RNN and LSTM

2 Generating text

Generating handwriting

Text Prediction

Basic framework for text prediction $y_t = \mathbb{P}(x_{t+1})$ Per-character vs per-word prediction

Penn Treebank Test Set

Penn Treebank Perplexity? BPC? Regularization schemes

Wikipedia Experiments

- Wikipedia experiments
- karpathy.github.io/2015/05/21/rnn-effectiveness has some nice visualizations for understanding what's going on, e.g. what the inner neurons represent

Table of Contents

1 RNN and LSTM

2 Generating text

Generating handwriting

Handwriting experiments

- Handwriting experiments
- Mixture density outputs
 - Basic framework for real valued outputs
- Figure 10 is cool

Handwriting Synthesis

- Handwriting synthesis
- Input, output sequences have different lengths
- Biased vs unbiased vs primed sampling

Synthesis Network

Figure: $\phi_t(h_t^1)$ = distn over positions; $w_t = \mathbf{c}\phi_t$ = distn over characters