Лекции ИУ7. Методы Вычислений. Семестр 2

Власов П. А.*

12 февраля 2016 г.

Содержание

1	Одномерная оптимизация			2	
	1.1 Основные понятия одномерной оптимизации		ные понятия одномерной оптимизации	2	
		1.1.1	Минимум функции	2	
		1.1.2	Унимодальные функции	2	
		1.1.3	Выпуклые функции	3	
		1.1.4	Липшицевы функции	4	

Основные понятия

Типовая задача оптимизации имеет следующий вид

$$\begin{cases} f\left(x\right) \to min \\ x \in G \end{cases} \tag{1}$$

Замечание:

- 1. Если требуется задачу максимизации, то обычно вместо функции f(x) рассматривают функцию g(x) = -f(x) и решают задачу минимизации для G.
- 2. В прошлом семестре мы рассматривали задачу (1) для:
 - (a) случая, когда G конечно или счетно
 - (b) случая, когда f линейна, а G выпуклый многоугольник в пространстве \mathbb{R}^n . (B этом случае задачу (1) называют задачей исследования операций)
- 3. В этом семестре будем рассматривать задачу (1) для
 - (а) произвольной (не обязательно скалярной) функции f и
 - (b) для произвольного множества $G \subseteq \mathbb{R}^n$.

Используется следующая терминология:

Φ ункция f	Mножество G	Название задачи
$f:G o\mathbb{R}$	$[a;b] \subset \mathbb{R}$	Задача одномерной оптимизации
$f:G\to\mathbb{R}$	$G = \mathbb{R}^n, n \geqslant 2$	Задача многомерной безусловной оптимизации
$f:G\to\mathbb{R}$	$G \subset \mathbb{R}^n, n \geqslant 2$	Задача многомерной условной оптимизации
$f:G\to\mathbb{R}^m, m\geqslant 2$	$G \subseteq \mathbb{R}^n$	Задача многокритериальной оптимизации

^{*}Законспектировано Абакумкиным А. В.

1. Одномерная оптимизация

$$\begin{cases} f(x) \to \min \\ x \in [a; b] \end{cases} \tag{2}$$

1.1. Основные понятия одномерной оптимизации

1.1.1. Минимум функции

Пусть $f: G \to \mathbb{R}^n, G \subseteq \mathbb{R}$

<u>Определение:</u> Точка $x^* \in G$ называется точкой глобального минимума функции f на множестве $\forall x \in G \quad f(x^*) \leq f(x)$.

При этом число f^* называется $\mathit{минимум}$ (глобальным) функции f на G и обозначается $f^* = \min_{x \in G} f(x)$.

Замечание: Обозначим *множество всех точек глобальных* минимумов f на G, как

$$G^* = \left\{ x^* \in G : f\left(x^*\right) = \min_{x \in G} f\left(x\right) \right\}$$

<u>Определение:</u> Точка $\tilde{x} \in G$ называется *точкой локального минимума* функции на множестве G, если

$$\exists \varepsilon > 0 \quad \forall x \in u_{\varepsilon}(\tilde{x}) \cap G \quad f(x) \leqslant f(x),$$

где $u_{\varepsilon}(\tilde{x}) = \{x : |\tilde{x} - x| < \varepsilon\}$.

Замечание:

- 1. Точка глобального минимума является точкой локального минимума. Обратное неверное.
- 2. Задача (2) имеет решение тогда и только тогда, когда $G^* \neq 0$
- 3. Согласно теореме Вейерштрасса, всякая функция, непрерывная на замкнутом ограниченном множестве, достигает на этом множестве своих inf и sup (которые являются в этом случае минимум и максимумом этой функции на этом множестве).

Таким образом задача (2) всегда имеет решение в случае непрерывной функции f.

1.1.2. Унимодальные функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: f называется унимодальной на отрезке [a;b], если $\exists a_1,b_1 \in \mathbb{R}$:

- 1. $a \leqslant a_1 \leqslant b_1 \leqslant b$
- 2. Если $a < a_1$, то f монотонно убывает на $[a; a_1]$
- 3. Если $b_1 < b$, то f монотонно возрастает на $[b_1; b]$.
- 4. $\forall \tilde{x} \in [a_1; b_1]$ $f(\tilde{x}) = \min_{x \in G} f(x)$

Свойства унимодальных функций

- $1^{\rm o}$ Каждая точка локального минимума унимодальной функции является одновременно точкой её глобального минимума.
- **2**° Если f унимодально на [a;b], то f унимодально и на любом отрезке $[a_1,b_1]\subset [a;b]$.
- **3**° Пусть:
 - 1. f унимодальна на отрезке [a;b]

Рис. 1:

2.
$$a \le x_1 < x_2 \le b$$

3.
$$x^*$$
— точка минимума функции f .

Тогда

1. Если
$$f(x_1) \leqslant f(x_2)$$
, то $x^* \in [a; x_2]$

2. Если
$$f(x_1) > f(x_2)$$
, то $x^* \in [x_1; b]$

1.1.3. Выпуклые функции

Пусть $f:[a;b] \to \mathbb{R}$

Определение: Функция f называется выпуклой, если

$$\forall \forall x_1, x_2 \in [a; b] \quad \forall \alpha \in [0; 1]$$

$$f(\alpha x_1 + (1 - \alpha)x_2) \leqslant \alpha f(x_1) + (1 - \alpha)f(x_2)$$
(3)

Замечание:

- 1. Неравенство (3) означает, что для любой хорды графика функции f(x), которая соединяет точки $(x_1, f(x_1))$ и $(x_2, f(x_2))$, график функции f(x) на отрезке, соединяющий x_1 и x_2 , лежит не выше этой хорды.
- 2. В классическом математическом анализе такие функции называются выпуклыми вниз. Функции, которые в классическом математическом анализе являются выпуклыми вверх, мы не будем считать выпуклыми (так как они не удовлетворяют нашему определению). Эта «дискриминация» связана с тем, что в дальнейшем будем рассматривать только задачу минимизации.

Свойства выпуклых функций

Через $C^{(k)}\left[a;b\right]$ будем обозначать функции, которые непрерывны на отрезке $\left[a;b\right]$ и имеют на $\left[a;b\right]$ непрерывные производные до порядка k включительно.

1° Пусть $f \in C^{(1)}[a;b]$

Тогда f выпукла тогда и только тогда, когда f'(x) не убывает на [a;b]

 $\mathbf{2}^{\mathbf{o}}$ Пусть $f \in C^{(2)}[a;b]$, тогда f выпукла на $[a;b] \Leftrightarrow f''(x) \geqslant 0, \quad x \in [a;b]$

3° Пусть $f \in C^{(3)}[a;b]$, тогда f выпукла $\Leftrightarrow \forall x_0 \in [a;b]$ касательная к графику функции f(x) в точке x_0 лежит не выше графика f(x).

 $4^{\rm o}$ Пусть

- 1. $f \in C^{(1)}[a;b]$
- 2. f выпукла на [a;b]
- 3. $f'(x^*) = 0$, $x^* \in [a; b]$

Тогда x^* — точка глобального минимума $f(x), x \in [a;b]$.

5°
$$C[a;b] = C^0[a;b]$$

Пусть

- 1. $f \in C[a; b]$
- $2. \, f$ выпукло на [a;b]

Тогда f унимодальна на [a;b]

Замечание:

- 1. Многие методы минимизации разработанны для унимодальных функций. При этом эти методы хорошо сходятся, если f выпукла.
- 2. На практике проверку выпуклости целевой функции осуществляют не с помощью использования определения, а с использованием свойств 1-3 или физических соображений.

1.1.4. Липшицевы функции

Пусть $f:[a;b] \to \mathbb{R}$

<u>Определение:</u> Говорят, что f удовлетворяет на отрезке [a;b] удовлетворяет условию Липшица (является липшицевой), если

$$\exists L \geqslant 0 \quad \forall \forall x_1, x_2 \in [a; b]$$

$$|f(x_1) - f(x_2)| \leq L \cdot |x_1 - x_2|$$

При этом L называется константой Липшица для f на [a;b].

Замечание: Для дифференцируемой на [a;b] функции условие Липшица означает, что для любой точки $\tilde{x} \in [a;b]$ угловой коэффициент касательной к графику f(x) в этой точке по абсолютной величине не превосходит L.

$$\forall \tilde{x} \quad |\operatorname{tg}\alpha\left(\tilde{x}\right)| \leqslant L$$

Свойства липшицевых функции

 ${f 1}^{
m o}$ Если f удовлетворяет условию Липшеца с констанотой L, то f удовлетворяет условию и с любой константой $L_1>L.$

 ${f 2}^{f o}$ Если f липшицева на [a;b], то f является липшицевой и на любом отрезке $[a_1,b_1]\subseteq [a,b].$

 ${f 3}^{f o}$ Если $f\in C^{(1)}\left[a;b
ight],$ то

1. f липшицева на [a; b]

2. константа Липшица для f на [a;b] может быть выбрана

$$L = \max_{x \in [a,b]} |f'(x)|.$$

4^о Пусть

1. $x_0 < x_1 < \dots < x_n$

2. f является липшицевой на $[x_{i-1},x_i]$ с константой $L_i,\,i=\overline{1;n}.$

Тогда f является липшицвой на $[x_0;x_n]$ с константой

$$L = \max_{i=\overline{1;n}} L_i.$$

 ${f 5}^{f o}$ Если f липшицева на [a;b], то она непрерывна на [a;b].

Пример:

1. $f(x) = \sin x$ является липшицевой на любом отрезке [a;b], так как она непрерывно дифференцируема на [a;b]

2. $f(x) = \sqrt{x}$ не является липшицевой на [0;a], a>0. Если бы f была липшицевой, то угловые коэффициенты касательных к графику были бы ограничены некоторой константой. Для \sqrt{x} на [0;a] это не так.