ML Pipeline Preparation

July 14, 2020

1 ML Pipeline Preparation

[nltk_data]

Follow the instructions below to help you create your ML pipeline. ### 1. Import libraries and load data from database. - Import Python libraries - Load dataset from database with read_sql_table - Define feature and target variables X and Y

```
In [1]: # import libraries
        import nltk
        nltk.download('punkt')
        nltk.download('wordnet')
        nltk.download('averaged_perceptron_tagger')
        import plotly
        import numpy as np
        import pandas as pd
        pd.set_option('display.max_columns', 500)
        import sys
        import os
        import re
        from sqlalchemy import create_engine
        import pickle
        from scipy.stats import gmean
        from sklearn.pipeline import Pipeline, FeatureUnion
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.metrics import classification_report, confusion_matrix, fbeta_score, make_s
        from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier, AdaBoos
        from sklearn.feature_extraction.text import TfidfTransformer, CountVectorizer
        from sklearn.multioutput import MultiOutputClassifier
        from sklearn.base import BaseEstimator, TransformerMixin
[nltk_data] Downloading package punkt to /root/nltk_data...
              Unzipping tokenizers/punkt.zip.
[nltk_data] Downloading package wordnet to /root/nltk_data...
```

Unzipping corpora/wordnet.zip.

```
[nltk_data] Downloading package averaged_perceptron_tagger to
                /root/nltk_data...
[nltk_data]
[nltk data]
              Unzipping taggers/averaged_perceptron_tagger.zip.
In [2]: # load data from database
        database_filepath = "./disaster_response_db.db"
        engine = create_engine('sqlite:///' + database_filepath)
        table_name = os.path.basename(database_filepath).replace(".db","") + "_table"
        df = pd.read_sql_table(table_name,engine)
In [3]: # 'child_alone' = Unary column = all Zero values
        # 'related' should be 0,1 but contains 2
        df.describe()
Out [3]:
                         id
                                  related
                                                                  offer
                                                                           aid_related
                                                 request
                                            26216.000000
               26216.00000
                             26216.000000
                                                           26216.000000
                                                                          26216.000000
        count
               15224.82133
                                 0.773650
                                                0.170659
                                                               0.004501
                                                                              0.414251
        mean
                8826.88914
                                                0.376218
        std
                                 0.435276
                                                               0.066940
                                                                              0.492602
        min
                    2.00000
                                 0.000000
                                                0.000000
                                                               0.000000
                                                                              0.000000
        25%
                7446.75000
                                 1.000000
                                                0.000000
                                                               0.00000
                                                                              0.000000
               15662.50000
        50%
                                 1.000000
                                                0.000000
                                                               0.000000
                                                                              0.000000
        75%
               22924.25000
                                 1.000000
                                                0.000000
                                                               0.00000
                                                                              1.000000
               30265.00000
                                 2.000000
                                                1.000000
                                                               1.000000
                                                                              1.000000
        max
               medical_help
                              medical_products
                                                 search_and_rescue
                                                                          security
               26216.000000
                                   26216.000000
                                                       26216.000000
                                                                      26216.000000
        count
                    0.079493
                                       0.050084
                                                           0.027617
                                                                          0.017966
        mean
        std
                    0.270513
                                       0.218122
                                                           0.163875
                                                                          0.132831
        min
                    0.000000
                                       0.000000
                                                           0.00000
                                                                          0.000000
        25%
                    0.000000
                                       0.000000
                                                           0.00000
                                                                          0.000000
        50%
                    0.000000
                                       0.000000
                                                           0.00000
                                                                          0.000000
        75%
                    0.000000
                                       0.000000
                                                           0.000000
                                                                          0.000000
                    1.000000
                                       1.000000
                                                           1.000000
                                                                          1.000000
        max
                   military
                              child_alone
                                                                    food
                                                                               shelter
                                                    water
                26216.000000
                                   26216.0
                                            26216.000000
                                                           26216.000000
                                                                          26216.000000
        count
                    0.032804
                                       0.0
                                                0.063778
                                                               0.111497
                                                                              0.088267
        mean
                                                                              0.283688
                    0.178128
                                       0.0
                                                0.244361
                                                               0.314752
        std
        min
                    0.000000
                                       0.0
                                                0.000000
                                                               0.00000
                                                                              0.000000
        25%
                                       0.0
                    0.000000
                                                0.000000
                                                               0.00000
                                                                              0.000000
        50%
                                       0.0
                    0.000000
                                                0.000000
                                                               0.000000
                                                                              0.000000
                                       0.0
        75%
                    0.000000
                                                0.000000
                                                               0.00000
                                                                              0.00000
                    1.000000
                                       0.0
                                                1.000000
                                                               1.000000
                                                                              1.000000
        max
                                             missing_people
                    clothing
                                      money
                                                                  refugees
                                                                                    death
                26216.000000
                              26216.000000
                                               26216.000000
                                                              26216.000000
                                                                             26216.000000
        count
                    0.015449
                                  0.023039
                                                   0.011367
                                                                  0.033377
                                                                                 0.045545
        mean
```

std	0.123331	0.150031		06011	0.179		0.208500	
min	0.000000	0.000000	0.0	00000	0.000	000	0.000000	
25%	0.000000	0.000000	0.0	00000	0.000	000	0.000000	
50%	0.000000	0.000000	0.0	00000	0.000	000	0.000000	
75%	0.000000	0.000000	0.0	00000	0.000	000	0.000000	
max	1.000000	1.000000	1.0	00000	1.000	000	1.000000	
	other_aid	infrastructur	e_related	tran	.sport	buildi	ngs \	
count	26216.000000	262	16.000000	26216.0	_	6216.000	-	
mean	0.131446		0.065037	0.0	45812	0.050	847	
std	0.337894		0.246595	0.2	09081	0.219	689	
min	0.000000		0.000000		00000	0.000		
25%	0.000000		0.000000		00000	0.000		
50%	0.000000		0.000000		00000	0.000		
75%	0.000000		0.000000		00000	0.000		
max	1.000000		1.000000		00000	1.000		
max	1.000000		1.00000	1.0	00000	1.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	electricity	tools	hospit	ചിര	shop	hie p	_centers \	
count	26216.000000	26216.000000	26216.000		310p 16.00000		3.000000	١.
	0.020293	0.006065	0.010		0.00457		0.000000	
mean	0.020293	0.000003	0.010		0.00457).107927	
std i								
min	0.000000	0.000000	0.000		0.00000		0.000000	
25%	0.000000	0.000000	0.000		0.00000		0.000000	
50%	0.000000	0.000000	0.000		0.00000		0.00000	
75%	0.000000	0.000000	0.000		0.00000		0.00000	
max	1.000000	1.000000	1.000	000	1.00000	0 1	000000	
		_						
	other_infrast		er_related		floods		storm \	
count			216.000000			26216.00		
mean		.043904	0.278341		082202		3187	
std		. 204887	0.448191		274677		90700	
min		.000000	0.000000		000000		0000	
25%		.000000	0.000000		000000		0000	
50%		.000000	0.000000		000000		0000	
75%	0	.000000	1.000000	0.	000000	0.00	0000	
max	1	.000000	1.000000	1.	000000	1.00	0000	
	fire	earthquake			.er_weath		ect_report	
count	26216.000000	26216.000000	26216.000		216.0000		216.000000	
mean	0.010757	0.093645	0.020	217	0.0524	87	0.193584	
std	0.103158	0.291340	0.140	743	0.2230	11	0.395114	
min	0.000000	0.000000	0.000	000	0.0000	00	0.000000	
25%	0.000000	0.000000	0.000	000	0.0000	00	0.000000	
50%	0.000000	0.000000	0.000	000	0.0000	00	0.000000	
75%	0.000000	0.000000	0.000	000	0.0000	00	0.000000	
max	1.000000	1.000000	1.000	000	1.0000	00	1.000000	

In [4]: # 'related' = 2 = 188 rows = assume to be anomaly and remove all

```
df.groupby("related").count()
                    id message original genre request offer aid_related \
Out[4]:
        related
        0
                  6122
                           6122
                                     3395
                                            6122
                                                      6122
                                                             6122
                                                                           6122
        1
                 19906
                          19906
                                     6643
                                          19906
                                                     19906
                                                           19906
                                                                         19906
                   188
                            188
                                      132
                                              188
                                                       188
                                                              188
                                                                           188
                 medical_help medical_products search_and_rescue security \
        related
                         6122
                                            6122
                                                               6122
                                                                         6122
        1
                        19906
                                           19906
                                                              19906
                                                                        19906
        2
                          188
                                             188
                                                                188
                                                                           188
                 military child_alone water
                                                 food shelter clothing money \
        related
                                         6122
        0
                     6122
                                  6122
                                                 6122
                                                          6122
                                                                    6122
                                                                           6122
                    19906
                                 19906
                                       19906
                                               19906
                                                         19906
                                                                   19906
                                                                         19906
        1
                      188
                                   188
                                           188
                                                  188
                                                           188
                                                                     188
                                                                            188
                 missing_people refugees death other_aid infrastructure_related \
        related
        0
                           6122
                                     6122
                                             6122
                                                        6122
                                                                                 6122
        1
                          19906
                                    19906
                                           19906
                                                       19906
                                                                                19906
                            188
                                      188
                                              188
                                                         188
                                                                                  188
                 transport buildings electricity tools hospitals shops \
        related
                      6122
                                 6122
                                               6122
                                                      6122
                                                                 6122
                                                                        6122
                     19906
                                19906
                                              19906
                                                   19906
                                                                19906
                                                                       19906
        1
                       188
                                  188
                                                188
                                                       188
                                                                  188
                                                                         188
                 aid_centers other_infrastructure weather_related floods
        related
        0
                        6122
                                               6122
                                                                6122
                                                                        6122
                                                                                6122
        1
                       19906
                                              19906
                                                               19906
                                                                       19906
                                                                              19906
                         188
                                                188
                                                                 188
                                                                         188
                                                                                188
                  fire earthquake
                                     cold other_weather direct_report
        related
        0
                  6122
                                     6122
                                                     6122
                                                                    6122
                              6122
                 19906
                             19906
                                   19906
                                                    19906
                                                                   19906
                   188
                               188
                                      188
                                                      188
                                                                     188
In [5]: # Dropped all 188 rows
        df = df[df.related != 2]
        df.groupby("related").count()
```

id message original genre request offer aid_related \

Out[5]:

```
medical_help medical_products search_and_rescue security \
                     related
                     0
                                                                  6122
                                                                                                                  6122
                                                                                                                                                                    6122
                                                                                                                                                                                               6122
                                                               19906
                     1
                                                                                                               19906
                                                                                                                                                                  19906
                                                                                                                                                                                            19906
                                                                                                                               food shelter clothing money \
                                             military child_alone water
                     related
                     0
                                                       6122
                                                                                          6122
                                                                                                            6122
                                                                                                                               6122
                                                                                                                                                       6122
                                                                                                                                                                                 6122
                                                                                                                                                                                                    6122
                                                     19906
                                                                                       19906
                                                                                                      19906
                                                                                                                         19906
                                                                                                                                                    19906
                                                                                                                                                                               19906 19906
                     1
                                             missing_people refugees death other_aid infrastructure_related \
                     related
                     0
                                                                       6122
                                                                                                  6122
                                                                                                                    6122
                                                                                                                                                 6122
                                                                                                                                                                                                                 6122
                                                                     19906
                                                                                               19906 19906
                                                                                                                                               19906
                                                                                                                                                                                                               19906
                     1
                                             transport buildings electricity tools hospitals shops \
                     related
                                                          6122
                                                                                       6122
                                                                                                                         6122
                                                                                                                                            6122
                                                                                                                                                                         6122
                                                                                                                                                                                            6122
                     1
                                                       19906
                                                                                     19906
                                                                                                                                       19906
                                                                                                                       19906
                                                                                                                                                                       19906 19906
                                             aid_centers other_infrastructure weather_related floods storm \
                     related
                     0
                                                               6122
                                                                                                                         6122
                                                                                                                                                                       6122
                                                                                                                                                                                            6122
                                                                                                                                                                                                               6122
                                                             19906
                                                                                                                       19906
                                                                                                                                                                    19906
                                                                                                                                                                                         19906
                                                                                                                                                                                                          19906
                     1
                                               fire earthquake
                                                                                                 cold other_weather direct_report
                     related
                                               6122
                                                                               6122
                                                                                                  6122
                                                                                                                                          6122
                                                                                                                                                                                 6122
                     1
                                             19906
                                                                            19906 19906
                                                                                                                                       19906
                                                                                                                                                                               19906
In [6]: # Extract X and y variables from the data for the modelling
                     X = df['message']
                     y = df.iloc[:,4:]
1.0.1 2. Write a tokenization function to process your text data
In [7]: def tokenize(text,url_place_holder_string="urlplaceholder"):
                                # Replace urls with url placeholder string
                               url\_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_0.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-F][0-9a-fA-
                               # Extract urls from the provided text
                               detected_urls = re.findall(url_regex, text)
```

related

19906 19906

```
# Replace url with url placeholder string
            for detected_url in detected_urls:
                text = text.replace(detected_url, url_place_holder_string)
            # Extract the word tokens from the provided text
            tokens = nltk.word_tokenize(text)
            #Lemmanitizer to remove inflectional and derivationally related forms of a word
            lemmatizer = nltk.WordNetLemmatizer()
            # List of clean tokens
            clean_tokens = [lemmatizer.lemmatize(w).lower().strip() for w in tokens]
            return clean tokens
In [8]: # Custom transformer to extract the starting verb of sentence
        class StartingVerbExtractor(BaseEstimator, TransformerMixin):
            Starting Verb Extractor class
            Extract first verb of sentence to convert it into new feature for the ML classifier
            11 11 11
            def starting_verb(self, text):
                sentence_list = nltk.sent_tokenize(text)
                for sentence in sentence_list:
                    pos_tags = nltk.pos_tag(tokenize(sentence))
                    first_word, first_tag = pos_tags[0]
                    if first_tag in ['VB', 'VBP'] or first_word == 'RT':
                        return True
                return False
            def fit(self, X, y=None):
                return self
            def transform(self, X):
                X_tagged = pd.Series(X).apply(self.starting_verb)
                return pd.DataFrame(X_tagged)
```

1.0.2 3. Build a machine learning pipeline

This machine pipeline should take in the message column as input and output classification results on the other 36 categories in the dataset. You may find the MultiOutputClassifier helpful for predicting multiple target variables.

```
('text_pipeline', Pipeline([
                ('count_vectorizer', CountVectorizer(tokenizer=tokenize)),
                ('tfidf_transformer', TfidfTransformer())
            ]))
        ])),
        ('classifier', MultiOutputClassifier(AdaBoostClassifier()))
   ])
pipeline2 = Pipeline([
        ('features', FeatureUnion([
            ('text_pipeline', Pipeline([
                ('count_vectorizer', CountVectorizer(tokenizer=tokenize)),
                ('tfidf_transformer', TfidfTransformer())
            ])),
            ('starting_verb_transformer', StartingVerbExtractor())
        ])),
        ('classifier', MultiOutputClassifier(AdaBoostClassifier()))
    ])
```

1.0.3 4. Train pipeline

- Split data into train and test sets
- Train pipeline

1.0.4 5. Test your model

Report the f1 score, precision and recall for each output category of the dataset. You can do this by iterating through the columns and calling sklearn's classification_report on each.

medical_products	0.73	0.36	0.48	329
search_and_rescue	0.50	0.17	0.25	172
security	0.21	0.04	0.07	120
military	0.58	0.36	0.44	219
child_alone	0.00	0.00	0.00	0
water	0.76	0.67	0.71	381
food	0.80	0.68	0.73	715
shelter	0.78	0.55	0.65	594
clothing	0.77	0.46	0.58	102
money	0.55	0.36	0.44	163
missing_people	0.67	0.25	0.36	64
refugees	0.55	0.22	0.32	224
death	0.71	0.46	0.56	297
other_aid	0.51	0.17	0.26	848
infrastructure_related	0.46	0.07	0.12	455
transport	0.57	0.17	0.27	288
buildings	0.64	0.39	0.48	308
electricity	0.45	0.19	0.26	135
tools	0.00	0.00	0.00	43
hospitals	0.33	0.07	0.12	86
shops	0.00	0.00	0.00	28
${\tt aid_centers}$	0.32	0.07	0.11	86
other_infrastructure	0.33	0.09	0.14	293
${\tt weather_related}$	0.85	0.66	0.74	1805
floods	0.88	0.58	0.70	567
storm	0.74	0.54	0.62	597
fire	0.53	0.32	0.40	60
earthquake	0.89	0.78	0.83	602
cold	0.77	0.32	0.45	136
other_weather	0.44	0.15	0.22	327
direct_report	0.70	0.48	0.57	1233
avg / total	0.73	0.59	0.63	20596

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWateri

In [12]: # Print classification report on training data
print('\n',classification_report(y_train.values, y_prediction_train, target_names=y.col

	precision	recall	f1-score	support
related	0.83	0.95	0.88	14924
request	0.80	0.56	0.66	3375
offer	0.40	0.10	0.15	84
aid_related	0.77	0.61	0.68	8172
${\tt medical_help}$	0.66	0.29	0.40	1568
${ t medical_products}$	0.70	0.35	0.47	984
search_and_rescue	0.64	0.19	0.29	552
security	0.47	0.08	0.13	351
military	0.66	0.38	0.48	641
child_alone	0.00	0.00	0.00	0
water	0.78	0.66	0.72	1291
food	0.82	0.69	0.75	2208
shelter	0.80	0.57	0.67	1720
clothing	0.74	0.46	0.57	303
money	0.65	0.34	0.44	441
missing_people	0.75	0.19	0.31	234
refugees	0.67	0.27	0.39	651
death	0.78	0.47	0.59	897
other_aid	0.58	0.18	0.28	2598
infrastructure_related	0.50	0.09	0.15	1250
transport	0.77	0.27	0.40	913
buildings	0.71	0.42	0.53	1025
electricity	0.72	0.31	0.43	397
tools	0.62	0.09	0.15	116
hospitals	0.44	0.11	0.18	197
shops	0.53	0.09	0.15	92
aid_centers	0.43	0.09	0.14	223
${\tt other_infrastructure}$	0.43	0.11	0.18	858
${\tt weather_related}$	0.87	0.65	0.75	5492
floods	0.88	0.55	0.68	1588
storm	0.76	0.56	0.65	1846
fire	0.74	0.33	0.45	222
earthquake	0.90	0.78	0.83	1853
cold	0.76	0.34	0.47	394
other_weather	0.57	0.19	0.28	1049
direct_report	0.76	0.50	0.60	3842
avg / total	0.77	0.60	0.65	62351

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWa

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWa

1.0.5 6. Improve your model

Use grid search to find better parameters.

```
In [13]: # pipeline1.get_params().keys()
         parameters_grid = {'classifier__estimator__learning_rate': [0.01, 0.02, 0.05],
                       'classifier_estimator_n_estimators': [10, 20, 40]}
         \#parameters\_grid = \{ classifier\_estimator\_n\_estimators : [10, 20, 40] \}
         cv = GridSearchCV(pipeline1, param_grid=parameters_grid, scoring='f1_micro', n_jobs=-1)
         cv.fit(X_train, y_train)
Out[13]: GridSearchCV(cv=None, error_score='raise',
                estimator=Pipeline(memory=None,
              steps=[('features', FeatureUnion(n_jobs=1,
                transformer_list=[('text_pipeline', Pipeline(memory=None,
              steps=[('count_vectorizer', CountVectorizer(analyzer='word', binary=False, decode_
                 dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
                 lowercase...mator=None,
                   learning_rate=1.0, n_estimators=50, random_state=None),
                    n_jobs=1))]),
                fit_params=None, iid=True, n_jobs=-1,
                param_grid={'classifier__estimator__learning_rate': [0.01, 0.02, 0.05], 'classif
                pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',
                scoring='f1_micro', verbose=0)
In [14]: # Get the prediction values from the grid search cross validator
         y_prediction_test = cv.predict(X_test)
         y_prediction_train = cv.predict(X_train)
```

1.0.6 7. Test your model

Show the accuracy, precision, and recall of the tuned model.

Since this project focuses on code quality, process, and pipelines, there is no minimum performance metric needed to pass. However, make sure to fine tune your models for accuracy, precision and recall to make your project stand out - especially for your portfolio!

related	0.77	1.00	0.87	4982
request	0.58	0.38	0.46	1099
offer	0.00	0.00	0.00	34
aid_related	0.81	0.19	0.31	2688
medical_help	0.63	0.13	0.21	516
medical_products	0.72	0.13	0.22	329
search_and_rescue	0.60	0.19	0.29	172
security	0.00	0.00	0.00	120
military	0.51	0.15	0.23	219
child_alone	0.00	0.00	0.00	0
water	0.56	0.82	0.67	381
food	0.77	0.68	0.72	715
shelter	0.86	0.31	0.46	594
clothing	0.74	0.33	0.46	102
money	0.50	0.12	0.20	163
missing_people	0.67	0.31	0.43	64
refugees	0.50	0.01	0.03	224
death	0.78	0.17	0.28	297
other_aid	0.00	0.00	0.00	848
infrastructure_related	0.00	0.00	0.00	455
transport	0.53	0.19	0.28	288
buildings	0.00	0.00	0.00	308
electricity	0.00	0.00	0.00	135
tools	0.00	0.00	0.00	43
hospitals	0.00	0.00	0.00	86
shops	0.00	0.00	0.00	28
${ t aid_centers}$	0.00	0.00	0.00	86
other_infrastructure	0.00	0.00	0.00	293
weather_related	0.91	0.22	0.35	1805
floods	0.94	0.36	0.52	567
storm	0.77	0.28	0.41	597
fire	0.44	0.40	0.42	60
earthquake	0.90	0.65	0.75	602
cold	0.82	0.26	0.40	136
other_weather	0.59	0.11	0.19	327
direct_report	0.60	0.39	0.47	1233
avg / total	0.66	0.44	0.47	20596

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWare Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. /opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWare Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.

In [16]: # Print classification report on training data print('\n',classification_report(y_train.values, y_prediction_train, target_names=y.col

	precision	recall	f1-score	support
related	0.76	1.00	0.87	14924
request	0.62	0.38	0.47	3375
offer	1.00	0.02	0.05	84
aid_related	0.80	0.19	0.31	8172
${ t medical_help}$	0.64	0.11	0.19	1568
medical_products	0.73	0.13	0.21	984
search_and_rescue	0.65	0.19	0.29	552
security	0.00	0.00	0.00	351
military	0.52	0.14	0.22	641
child_alone	0.00	0.00	0.00	0
water	0.58	0.85	0.69	1291
food	0.78	0.68	0.72	2208
shelter	0.84	0.29	0.43	1720
clothing	0.75	0.31	0.44	303
money	0.57	0.17	0.27	441
missing_people	0.68	0.24	0.36	234
refugees	0.83	0.02	0.03	651
death	0.74	0.16	0.27	897
other_aid	0.00	0.00	0.00	2598
infrastructure_related	0.00	0.00	0.00	1250
transport	0.59	0.26	0.37	913
buildings	0.00	0.00	0.00	1025
electricity	0.00	0.00	0.00	397
tools	0.00	0.00	0.00	116
hospitals	0.00	0.00	0.00	197
shops	0.00	0.00	0.00	92
aid_centers	0.00	0.00	0.00	223
other_infrastructure	0.00	0.00	0.00	858
${\tt weather_related}$	0.92	0.22	0.36	5492
floods	0.92	0.33	0.48	1588
storm	0.72	0.25	0.38	1846
fire	0.53	0.41	0.46	222
earthquake	0.90	0.64	0.75	1853
cold	0.64	0.20	0.31	394
other_weather	0.57	0.12	0.21	1049
direct_report	0.64	0.39	0.48	3842
avg / total	0.67	0.44	0.47	62351

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWare
Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWare
Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.

1.0.7 8. Try improving your model further. Here are a few ideas:

- try other machine learning algorithms
- add other features besides the TF-IDF

Print classification report on test data
print(classification_report(y_test.values, y_prediction_test, target_names=y.columns.va

	precision	recall	f1-score	support
related	0.82	0.95	0.88	4938
request	0.77	0.53	0.63	1119
offer	0.14	0.04	0.06	24
${ t aid_related}$	0.76	0.61	0.68	2682
${\tt medical_help}$	0.54	0.25	0.35	502
${ t medical_products}$	0.60	0.33	0.43	311
search_and_rescue	0.69	0.21	0.32	181
security	0.29	0.06	0.09	109
military	0.66	0.32	0.43	209
child_alone	0.00	0.00	0.00	0
water	0.76	0.64	0.69	415
food	0.80	0.69	0.74	731
shelter	0.77	0.53	0.63	576
clothing	0.73	0.45	0.56	97
money	0.59	0.29	0.39	140
${ t missing_people}$	0.36	0.11	0.17	73
refugees	0.63	0.24	0.35	219
death	0.75	0.43	0.55	291
other_aid	0.54	0.14	0.22	855
$infrastructure_related$	0.42	0.10	0.16	427
transport	0.60	0.19	0.29	293

buildings	0.69	0.40	0.50	344
electricity	0.55	0.21	0.30	150
tools	0.50	0.03	0.06	34
hospitals	0.33	0.07	0.11	74
shops	0.17	0.04	0.06	26
aid_centers	0.23	0.10	0.14	72
other_infrastructure	0.34	0.08	0.13	294
${\tt weather_related}$	0.87	0.64	0.74	1818
floods	0.86	0.55	0.67	535
storm	0.75	0.49	0.59	612
fire	0.76	0.33	0.46	80
earthquake	0.89	0.75	0.82	627
cold	0.70	0.30	0.42	125
other_weather	0.42	0.13	0.20	337
direct_report	0.73	0.49	0.59	1273
avg / total	0.74	0.58	0.63	20593

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWare Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples.

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWare Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.

	precision	recall	f1-score	support
related	0.82	0.95	0.88	14968
request	0.80	0.55	0.65	3355
offer	0.40	0.09	0.14	94
aid_related	0.77	0.61	0.68	8178
${\tt medical_help}$	0.66	0.30	0.42	1582
${ t medical_products}$	0.71	0.34	0.46	1002
search_and_rescue	0.66	0.22	0.33	543
security	0.45	0.07	0.12	362
military	0.66	0.38	0.48	651
child_alone	0.00	0.00	0.00	0
water	0.78	0.68	0.73	1257
food	0.81	0.70	0.75	2192

shelter	0.81	0.57	0.66	1738
clothing	0.78	0.48	0.59	308
money	0.62	0.31	0.41	464
missing_people	0.78	0.22	0.34	225
refugees	0.66	0.28	0.39	656
death	0.80	0.48	0.60	903
other_aid	0.56	0.16	0.25	2591
infrastructure_related	0.54	0.11	0.18	1278
transport	0.75	0.24	0.36	908
buildings	0.72	0.43	0.53	989
electricity	0.64	0.25	0.36	382
tools	0.21	0.03	0.06	125
hospitals	0.45	0.15	0.23	209
shops	0.44	0.04	0.08	94
${\tt aid_centers}$	0.49	0.13	0.20	237
${\tt other_infrastructure}$	0.49	0.11	0.19	857
${\tt weather_related}$	0.87	0.66	0.75	5479
floods	0.87	0.58	0.70	1620
storm	0.77	0.52	0.62	1831
fire	0.62	0.31	0.41	202
earthquake	0.89	0.78	0.83	1828
cold	0.75	0.38	0.51	405
other_weather	0.59	0.22	0.32	1039
direct_report	0.76	0.49	0.60	3802
avg / total	0.76	0.60	0.65	62354

/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWateri

1.0.8 9. Export your model as a pickle file

In [19]: m = pickle.dumps('classifier.pkl')

1.0.9 10. Use this notebook to complete train.py

Use the template file attached in the Resources folder to write a script that runs the steps above to create a database and export a model based on a new dataset specified by the user.

In []: