Practical examples of writing programs and proving theorems in Idris.

Donovan Crichton

January 2020

Preliminaries

Propositional Logic

- Concerned with statements of verifiable facts.
- Used daily by programmers when reasoning about Boolean values.

Symbol	Meaning	Example	
T, F	True, False	Boolean values.	
p, q, r,	Propositions	Let $p = $ "It is raining."	
_	Negation (Not)	$\neg p$	
\wedge	Conjunction (And)	$p \wedge q$	
V	Disjunction (Or)	$p \lor q$	
\rightarrow	Implication (If)	ho o q	
\leftrightarrow	Bi Implication (Iff)	$p \leftrightarrow q$	
=	Equivalence	$ ho \equiv q$	
Т	Tautology	$p \vee \neg p \equiv \top$	
	Contradiction	$p \wedge eg p \equiv ot$	

Definitions of Connectives

Conjunction (And)

р	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Disjunction (Or)

<u> </u>				
р	q	$p \lor q$		
Т	Т	Т		
T	F	T		
F	Т	T		
F	F	F		

Negation (Not)

ι.

Implication (If)

		()	
p	q	$p \rightarrow q$	
Т	Т	Т	
Т	F	F	
F	Т	T	
F	F	Т	

Bi Implication (Iff)

	•	
р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Logical Equivalence

p	q	$p \equiv q$	
T	Т	Т	
T	F	F	
F	Т	F	
F	F	Т	

Proof Techniques

By Exhaustion

Idea: Prove by enumerating all possible cases.

Prove: $(\neg p \lor q) \leftrightarrow (p \rightarrow q)$.

			1) (1	• • • • • • • • • • • • • • • • • • • •	
p	q	$\neg p$	$\neg p \lor q$	p o q	$(\lnot p \lor q) \leftrightarrow (p o q)$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	T
F	Т	Т	Т	Т	T
F	F	Т	Т	Т	Т

Proof Techniques

By Appeal to Lemma

Idea: Introduce pre-proven smaller proofs (called a Lemma) to prove a larger proof.

- ▶ Lemma 1. $p \lor \neg p \equiv \top$.
- ▶ Lemma 2. $(p \equiv q) \equiv (p \leftrightarrow q)$.

Prove:
$$(p \leftrightarrow q) \lor \neg (p \equiv q) \leftrightarrow \top$$
.

$$(p \leftrightarrow q) \lor \neg (p \equiv q) \leftrightarrow \top$$

 $(p \equiv q) \lor \neg (p \equiv q) \equiv \top$

$$\top \equiv \top$$

Premise.

Lemma 2.

Lemma 1.

First Order (or Predicate) Logic

Extends propositional logic from reasoning about propositions to reasoning about sets.

Symbol	Meaning	Example	
X, Y, Z,	Set Variables	Let $Y = \{2, 3, 4\}$.	
<i>x</i> , <i>y</i> , <i>z</i> ,	Member Variables	Let $z=2$.	
P(x), Q(y),	Predicate Variables	Let $Q(y) = y > 1$.	
$\forall x \in X, P(x)$	Universal Quantifier	$\forall y \in Y, Q(y)$	
$\exists x \in X, P(x)$	Existential Quantifier	$\exists z \in Y, z = 2$	

Proof Techniques

Induction

- Allows us to prove that a property P(x) holds $\forall x \in X$. Provided X is well-founded.
- Informally well-founded means "no infinite decreasing chains".

Prove:
$$\forall n \in \mathbb{N} (\exists y \in \mathbb{N}, y = n + 1)$$

$$y=0+1$$
 Base Case. $n=0$ $=1$

$$y = (k+1)+1$$
 Inductive Step. $n = k+1$
= $k+2$

Why should I care?

- ► Types are just sets with flavour!
- **▶ Bool** = { *True*, *False*}
- ▶ Int = $\{-\infty, ..., -2, -1, 0, 1, 2, 3, ..., \infty\}$
- Mixing of flavours is not allowed!
- ► { True, -2," Hello", 1} Can really only be said to be a "thing" flavoured set.

Propositions as Types. Proofs as Programs

- ► The Curry-Howard-Lambeck correspondence is well known amongst Haskell programmers for the correspondence between categories and programming.
- ▶ The correspondence with logic is less often discussed.
- ► Holds for any language that is based on a typed lambda calculus.

Idea: A type is a proposition.

What is Truth?

Propositional Logic and Predicate Logic consider truth to be the Boolean value "True". These logics also have a notion of vacuous truth.

р	q	p o q	
Т	Т	T	
Т	F	F	
F	Т	Т	
F	F	Т	

In Predicate Logic: $\forall x \in \{\}P(x)$ is also true.

- ▶ If a type is a proposition, what does it mean for it to be true?
- A type is true iff it is inhabited with a value.

Curry-Howard in Idris

Logic Term	Logic Symbol	Idris Symbol	Idris Type
Implication	$p\Rightarrowq$	p -> q	Arrow
Conjunction	p ∧ q	(p, q)	Pair (Product)
Disjunction	p∨q	Either p q	Enum (Sum)
Negation	¬ p	p -> Void	Void Type
IFF/Eq	$p \Leftrightarrow q, p \equiv q$	(p -> q, q -> p)	Pair Arrows
Universal	∀ x. P x	р -> Туре	П Туре
Existential	∃ x. P x	(x ** P x)	Σ Type
=	=	p = q	Type Equality
Т	True	()	Unit Type
\perp	False	Void	Uninhabited

Natural Numbers

Let $\mathbb N$ denote the set of natural numbers where:

- 1. Zero (0) is a natural number.
- 2. If k is a natural number, then the successor of k is also a natural number.

```
data Nat : Type where
  Z : Nat
  S : (k : Nat) -> Nat
```

- Nat : Type is the type constructor.
- **S** and **K** are the value constructors.

The equality GADT

```
data (=) : (x : A) \rightarrow (y : B) \rightarrow Type where Refl : x = x
```

- Data type to represent constructive equality.
- Allows intenstional (sic) equality, not extensional equality.

Proving commutativity on addition in Idris

```
(+) : Nat -> Nat -> Nat
Z + y = Z
(S k) + y = S (k + y)
\forall x, y \in \mathbb{N}.x + y = y + x
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative x y = ?what \frac{x,y:Nat}{what:x+v=v+x}
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative Z y = ?t1 \frac{x,y:Nat}{t1:v=v+7}
plusIsCommutative (S k) y = ?t2 \frac{x,y:Nat}{t?:S(k+v)=v+(S,k)}
```

Introducing Lemmas in Idris

```
lemma1 : (x : Nat) \rightarrow x = x + Z
lemma1 Z = ?lemhole1 \frac{1}{Iemhole1:Z=Z}
lemma1 (S k) = ?lemhole2
lemma1 : (x : Nat) \rightarrow x = x + Z
lemma1 X = Refl
lemma1 (S k) = ?lemhole2 \frac{k:Nat}{lemhole2:S k=S(k+Z)}
lemma1 : (x : Nat) \rightarrow x = x + Z
lemma1 7 = Refl
lemma1 (S k) =
  let rec = lemma1 k
  in ?lemhole2 \frac{k:Nat}{lemhole2:S} \frac{k=k+Z}{k-S}
```

The rewrite rule

replaces one side of an equality in the goal, with an equality sharing the same side given as an argument.

```
\frac{k:Nat\ rec:k=k+Z}{lemhole2:S\ k=S\ (k+Z)}
lemma1 : (x : Nat) -> x = x + 7.
lemma1 Z = Refl
lemma1 (S k) =
  let rec = lemma1 k
  in rewrite rec in ?lemhole2
  k:Nat rec:k=k+Z rewrite\_rule:k=k+Z
       lemhole2:S(k+Z)=S(k+Z)
lemma1 : (x : Nat) \rightarrow x = x + Z
lemma1 Z = Refl
lemma1 (S k) =
  let rec = lemma1 k
  in rewrite rec in Refl
```

Back to our original proof attempt!

```
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative Z y = ?t1 \frac{x,y:Nat}{t!:v=v+7}
plusIsCommutative (S k) y = ?t2 \frac{x,y:Nat}{t2:S(k+v)=v+(S k)}
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative Z y = lemma1 y
plusIsCommutative (S k) y = ?t2 \frac{x,y:Nat}{t2:S(k+v)=v+(S k)}
lemma2 : (x, y : Nat) -> S (k + y) = y + (S k)
lemma2 Z y = ?lemhole1 \frac{y:Nat}{lemhole1:S \ v=S \ v}
lemma2 (S k) y = ?lemhole2 \frac{k,y:Nat}{lemhole2:S(S(k+y))=S(k+(Sy))}
```

Completing the second lemma.

```
lemma2 : (x, y : Nat) -> S (k + y) = y + (S k)
lemma2 Z y = Refl
lemma2 (S k) y = ?lemhole2 \frac{k,y:Nat}{lemhole2:S(S(k+v))=S(k+(S,v))}
lemma2 : (x, y : Nat) -> S (k + y) = y + (S k)
lemma2 Z y = Refl
lemma2 (S k) y =
  let rec = lemma2 k y
  in ?lemhole2 \frac{k,y:Nat \ rec:S(k+y)=k+Sy}{lemhole2:S(S(k+y))=S(k+(Sy))}
lemma2 : (x, y : Nat) -> S (k + y) = y + (S k)
lemma2 Z y = Refl
lemma2 (S k) y =
  let rec = lemma2 k y
  in rewrite rec in ?lemhole2
  k,y:Nat rec:S(k+y)=k+Sy rewrite\_rule:S(k+y)=k+Sy
            lemhole2:S(k+(S y))=S(k+(S y))
```

Our completed proof

```
lemma1 : (x : Nat) \rightarrow x = x + Z
lemma1 7 = Refl
lemma1 (S k) =
  let rec = lemma1 k
  in rewrite rec in Refl
lemma2 : (x, y : Nat) -> S (k + y) = y + (S k)
lemma2 Z y = Refl
lemma2 (S k) y =
  let rec = lemma2 k y
  in rewrite rec in Refl
plusIsCommutative : (x, y : Nat) \rightarrow x + y = y + x
plusIsCommutative Z y = lemma1 y
plusIsCommutative (S k) y =
  let rec = plusIsCommutative k y
  in rewrite rec in lemma2 y k
```

Theorem Proving in Anger

Given a random number, return a 'random' element of a given list.

```
randElem : (n : Nat) -> (xs : List a) -> a
randElem x xs = index (mod n (length xs)) xs

When checking argument ok to function index
Can't find v/ of type InBounds (mod n (length xs)) xs
Lets check out the index function then...
```

```
index : (n : Nat) -> (xs : List a) ->
{auto ok : InBounds n xs} -> a
```

ldris tries to automatically generate a value of the InBounds n xs type.

Propositions as (actual) Types

Over 100 lines of lemmas later...

```
data InBounds : (k : Nat) -> (xs : List a) -> Type where
  InFirst : InBounds 0 (x :: xs)
  InLater : InBounds k xs -> InBounds (S k) (x :: xs)
data LTE: (n: Nat) -> (m: Nat) -> Type where
 LTEZero : LTE Z m
 LTESucc : LTE n m -> LTE (S n) (S m)
data NonEmpty : (xs : List a) -> Type where
 IsNonEmpty : NonEmpty (x :: xs)
randElem : (n : Nat) -> (xs : List a) -> a
randElem x xs = index (mod n (length xs)) xs
```

Why are we doing this again?

Clearly proving these theorems is a lot of work just to get an index function working properly!

- ► A stronger guarantee of functional correctness than unit testing.
- Proofs only need to be written once, and can be quite general.
- Proofs are usually erased at compile-time in Idris unless they're explicitly needed at run-time.
- Mission critical, safety critical, or financial critical systems.
- How about those laws?...

A correct definition of Functor

Correct List Implementations

```
implementation GeorgeFunctor List where
  gmap f [] = []
  gmap f (x :: xs) = f x :: gmap f xs
 gIdentLaw [] = Refl
  gIdentLaw (x :: xs) =
   let prf = gIdentLaw (x :: xs)
    in rewrite prf in Refl
 gCompLaw [] g h = Refl
  gCompLaw (x :: xs) g h =
   let prf = gCompLaw (x :: xs) g h
    in rewrite prf in Refl
```

Just to make sure it wasn't a fluke...

```
implementation GeorgeFunctor Maybe where
  gmap f Nothing = Nothing
  gmap f (Just x) = Just (f x)

gIdentLaw Nothing = Refl
  gIdentLaw (Just x) = Refl

gCompLaw Nothing g f = Refl
  gCompLaw (Just x) g f = Refl
```

In Summary...

- We can directly map proofs in mathematical logic to proofs in dependently typed functional languages.
- We can write correct definitions of category theoretic concepts such as function, monad, applicative etc.
- Writing proofs can be arduous at first, until you build up the intuition.
- Proving things gives us the strongest guarantee of correctness possible.
- More research needs to be undertaken regarding proofs around monads, particularly the IO monad.