Regulatory Sequence Analysis

Evaluation of predicted regulatory elements

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Regulatory Sequence Analysis

The impossible choice of the "right" testing set

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Typical evaluation sets

- Different sets of sequences can be used to assess the accuracy of predictions
- Positive control: quantify the capability of the program to detect known regulatory elements
 - Annotated sites (e.g. sites from TRANSFAC) in their original context (the promoter sequences).
 - Annotated sites implanted in other context
 - Biological sequences (random selection).
 - Artificial sequences.
 - Artificial sites implanted in artificial sequences.
- Negative control: quantify the capability of the program to return a negative answer when there are no regulatory elements.
 - Artificial sequences (generated according to a Bernoulli or a Markov model)
 - Biological sequences without common regulation (random selection of genes)

Evaluation sets

Usage	Context	Sites	Pros	Cons
Positive control: evaluation of sensitivity, specificity, accuracy.	Artificial sequences (e.g. generated with a Markov model)	Artificial sites (e.g. generated from a PSSM)	Control on all the parameters (number of sites, motif variations, sequence composition, sequence length). Useful to check theoretical models.	Performances might differ between artificial sets and real conditions
	Artificial sequences	Implanted biological sites	All the "positive" sites (implanted) are known.	Performances mainly reflect the fit between random model of the predictor and of the sequence generator.
	Biological sequences	Biological sites in their context	All the true sites are available for the predictor, even if they are not annotated yet.	Answer can be obtained from databases.
				Programs can be over-fitted because parameters were estimated with the same DB.
				Some real sites can be absent from the annotation -> FFP.
	Biological sequences	Implanted biological sites	All the "positive" sites (implanted) are supposedly known.	The number of implanted sites might differ from natural conditions. Annotation-based: under-estimation (many sites are not annotated).
Negative control: estimation of the rates of false positives.	Artificial sequences	None	Control on the sequence composition (background model).	Performances mainly reflect the fit between random models of predictor and of sequence generator, resp
	Random selection of biological sequences	None	Indicates the rate of false positive in real conditions.	

This table is far from complete, you can add pros and cons as an exercise. We could say that the best set depends on the question to be addressed.

Example: biological sites implanted in foreign biological sequences

- Down et al. (2005). Nucleic Acids Res. 33(5):1445-1453. NestedMICA: sensitive inference of overrepresented motifs in nucleic acid sequences.
- Motifs
 - Jaspar annotations for 4 human transcription factors (HLF,c-Fos, CREB, HFH-1)
- Sequences
 - Random selections of genes, 100 promoters per set.
 - For each factor, different sequences sizes are tested.
- Implanted sites
 - Zero or one occurrence per sequence (zoops).
 - One implant in 50% of the sequences.
- Pattern discovery software
 - NestedMICA (the new program presented in the article)
 - MEME (used with default parameters)

Table 1. Discovery of the HLF motif from sets of 100 synthetic sequences of various lengths

Length	100	150	200	300	400	500	600	700
MEME	y	y		n	n	n	n	n
N'MICA	y	y		y	y	y	y	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Table 2. Discovery of the c-FOS motif from sets of 100 synthetic sequences of various lengths

Length	200	300	400	500	600
MEME	y	y	n	n	n
N'MICA	y	y	y	y	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Table 3. Discovery of the HFH-1 motif from sets of 100 synthetic sequences of various lengths

Length	800	1000	1200	1400	1600
MEME	y	y	y	n	n
N'MICA	y	y	y	n	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Example: biological sites implanted in foreign biological sequences

 Down et al. (2005). Nucleic Acids Res. 33(5):1445-1453. NestedMICA: sensitive inference of overrepresented motifs in nucleic acid sequences.

- Question: criterion to say "yes" or "no"?
 - Visual inspection ?
 - Quantitative criterion ?

Figure 4. (a) The original HLF motif from JASPAR. (b) Results for searching for HLF in a set of 150 base sequences using MEME. (c) MEME with 200 base sequences. (d) NestedMICA with 600 base sequences. (e) NestedMICA with 700 base sequences.

Table 1. Discovery of the HLF motif from sets of 100 synthetic sequences of various lengths

Length	100	150	200	300	400	500	600	700
MEME	y	y	n	n	n	n	n	n
N'MICA	y	y	y	y	y	y	y	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Table 2. Discovery of the c-FOS motif from sets of 100 synthetic sequences of various lengths

Length	200	300	400	500	600
MEME	y	y	n	n	n
N'MICA	y	y	y	y	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Table 3. Discovery of the HFH-1 motif from sets of 100 synthetic sequences of various lengths

Length	800	1000	1200	1400	1600
MEME	y	y	y	n	n
N'MICA	y	y	y	n	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Regulatory Sequence Analysis

Evaluation of pattern matching results

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Annotated sites

- The evaluation of pattern matching relies on a collection of annotated sites (locations on the sequences) considered as the *true* answer.
 - Each site is defined by its starting and ending position (the strand is not considered here).
- The rest of the sequence is considered as a false answer.
 - In typical conditions, a large fraction of the positions are annotated as false.

Comparison between annotated and predicted sites

The annotated and predicted sites are compared.

TP	True Positive	True elements predicted as true.				
FP	False Positive	False elements predicted as true				
TN	True Negative	False elements predicted as false				
FN	False Negative	True elements predicted as false				

Comparison at the nucleotide level

- Annotated and predicted sites can be compared at the nucleotide level.
- Each predicted nucleotide is considered as a match if it falls within an annotated site.

TP	True Positive	True elements predicted as true.
FP	False Positive	False elements predicted as true
TN	True Negative	False elements predicted as false
FN	False Negative	True elements predicted as false

Comparison at the site level

- Annotated and predicted sites can be compared at the site level.
- Each predicted site is considered as a match (as a whole) if it overlaps with an annotated site.
- A threshold can be imposed on the minimal number of overlapping nucleotides in order to consider that a predicted site does or not match an annotated site.

TP	True Positive	True elements predicted as true.
FP	False Positive	False elements predicted as true
TN	True Negative	False elements predicted as false
FN	False Negative	True elements predicted as false

Evaluation of pattern matching results

- Evaluation, at the site level, for pattern matching results in human promoters with an NFkB matrix.
- Statistics
 - Sensitivity
 - Sn=TP/(TP+FN)=(true predictions)/(annotated sites)
 - Positive Predictive Value
 - PPV=TP/(TP+FP)=(true predictions)/(total predictions)
 - Accuracy
 - Acc.a = (Sn + PPV)/2
 - Acc.g = sgrt(Sn * PPV)

Notes

- The predictions were restricted to 500bp, because this is the best annotated interval in the reference database (TRANSPRO).
- This is an illustration only, for one of the best examples.
- NFkB is one of the best annotated factors in TRANSPRO.
- It is not representative of overall performances.
- Predictions give better results for NFkB than for other factors (in preparation).

Positions of human sites annotated in TRANSPRO (relative to TSS).

Patser predictions: NKkB, 500bp upstream of TSS

score

Effect of the matrix and of the background model

Jean Valéry Turatsinze (2005). Graduate thesis.

Regulatory Sequence Analysis

Evaluation of pattern discovery results

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Formats of pattern discovery results (string-based approaches)

Collection of words (can be IUPAC) with a score assigned to each

Word pair	F(W)	Match. Seq.	осс	E(W)	P-value	E-value	sig	Overlaps (discarded)	Rank
CACGTG CACGTG	0.000164	9	13	1.42	4e-09	8.4e-06	5.08	0	1
CCACAG CTGTGG	0.000265	8	11	2.30	3e-05	6.2e-02	1.21	0	2
ACGTGA TCACGT	0.000368	9	13	3.19	3e-05	6.3e-02	1.20	6	3
AACTGT ACAGTT	0.000610	10	17	5.28	3.8e-05	8.0e-02	1.10	0	4
ACTGTG CACAGT	0.000374	9	12	3.24	0.00015	3.0e-01	0.52	0	5
GCTTCC GGAAGC	0.000421	7	12	3.65	0.00042	8.6e-01	0.06	0	6
GCCACA TGTGGC	0.000307	7	10	2.66	0.00045	9.4e-01	0.03	0	7
AGTCAT ATGACT	0.000489	8	13	4.24	0.00046	9.6e-01	0.02	0	8

Collection of words, assembled in several motifs

```
;cluster # 1
                  seed: CACGTG
                                    3 words
                                                length
TCACGT..
            ..ACGTGA
                        1.20
.CACGTG. .CACGTG.
                        5.08
..ACGTGA TCACGT..
                        1.20
                        5.08
                             best consensus
TCACGTGA
           TCACGTGA
;cluster # 2
                                                length 8
                  seed: CCACAG
                                    4 words
GCCACA...
                        0.03
            ...TGTGGC
          ..CTGTGG.
                        1.21
.CCACAG..
..CACAGT.
          .ACTGTG..
                        0.52
...ACAGTT AACTGT...
                        1.10
GCCACAGTT
           AACTGTGGC
                        1.21
                              best consensus
; Isolated patterns: 2
GCTTCC
            GGAAGC
                        0.06
                        0.02
AGTCAT
            ATGACT
```

Formats of pattern discovery results (matrix-based approaches)

Position-specific scoring matrix with the sites used in the alignment

```
MATRIX 1
number of sequences = 5
unadjusted information = 12.264
sample size adjusted information = 28.1942
ln(p-value) = -40.0503 p-value = 4.03996E-18
ln(expected frequency) = -3.91122 expected frequency = 0.0200161
                                0
                                        0
Α
C
G
                                        0
     : 1/546 CACACGTGGG
  1 \mid 1
       : 2/516 CACACGTGGG
 3 | 5 : -3/265 TGCACGTGGC
  4 3 : 4/385 AGCACGTGGG
       : -5/455 CGCACGTGCC
```

Motif comparisons

- How can we compare the results of different pattern discovery programs at the motif level?
- Comparison between annotated binding sites and discovered motifs
 - String against string
 - Matrix against string
- Comparison between annotated PSSM and discovered motifs
 - String against matrix
 - Matrix against matrix

String(s) against string(s)

- The matching score should take into account the following information:
 - number of matching/non-matching positions
 - significance of matches between IUPAC codes
 - C against C (perfect match) a good score
 - C against S should have a lower score
 - C against N should have a null score
 - partial overlaps
 - prior residue frequencies
 - in yeast promoters for example, A against A is more probable than C against C.

Matrix against matrix

- Circumvent the problem
 - String)to-string comparison with
 - Collection of sites used to build the annotated matrix
 - Collection of sites used to build the predicted matrix

Matrix against string(s)

- Collection of sites used to build the matrix against collection of sites
- Consensus from the collection of strings against matrix consensus (1 string to 1 string)
- Build a matrix from the string-based pattern and matrixto-matrix comparison

Regulatory Sequence Analysis

Rates of false positives estimated in different organisms with random gene selections

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Rate of false positive in different organisms

- The analysis of random gene selections allows to evaluate the rate of false positive returned by a pattern discovery program.
- The rate of false positive is good for microbes (bacteria and yeasts), but increases for higher organisms.
- This is likely to result from the higher heterogeneity of genomic sequences in these organisms. We are currently developing more elaborate background models to treat this problem.

oligo-analysis with random gene selections

False discovery rate - patterns per sequence set

Sequence sets with >= 1 selected patterns

False discovery rate in different organisms

False discovery rate - patterns per sequence set

False discovery rate - patterns per sequence set

Sequence sets with >= 1 selected patterns

False positive rate - summary

- In lower organisms (bacteria, yeast), the rate of false positive observed in random selections of promoters follows pretty well the theoretical expectation, as calculated with the binomial distribution.
- This rate of false positive increase spectacularly with promoters of higher organisms (human, mouse). This suggest that words distributions do not follow the binomial distribution.

Regulatory Sequence Analysis

Score distributions in positive and negative control sets

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Negative control

- Randomly generated sequences.
 - Which generating model?
 - Bernoulli (independent succession of nucleotides)
 - Markov chain of order k (the probability of each nucleotide depends on the k preceding ones)
 - Problem
 - This control evaluates the fitting of our program with the chosen random mode
 - This is not always indicative of its behaviour on real biological sequences.

Random gene selection

- Select a random set of genes.
- Retrieve their promoters.
- Apply exactly the same procedure to these promoters as you did for regulons.

Positive control

- Measure the significance of motifs discovered in
 - Annotated regulons (TRANSFAC, RegulonDB).
 - Strength: reliable information
 - Weakness: annotation represents a fraction of publications, which represent a fraction of the real target genes
 - High throughput regulons (Lee et al)
 - Strength: supposed to be exhaustive and homogeneous
 - Weakness: noise

Validation of pattern discovery with yeast regulons

- These figures regroup patterns detected with
 - oligo-analysis
 - dyad-analysis
- Regulons were collected from TRANSFAC and aMAZE.
- All the regulons with ≥5 genes were analyzed.
 - Significant patterns (sig ≥ 2) are detected in 65% of the regulons.
- As a negative control, sets of random genes were analyzed.
 - The rate of false positive follows pretty well the statistical expectation.

Simonis et al. (2004). Bioinformatics 20: 2370-2379.

ROC curve representation

Comparison of significance between regulons and random gene selections

- X axis: 1 specificity
 - Significance in random gene selections
- Y axis: sensitivity
 - Significance in regulons
- The surface below the ROC curve indicates the accuracy of the predictions.

Selected patterns per sequence set

Saccharomyces_cerevisiae - oligo

Homo_sapiens_EnsEMBL - oligo

ROC curve - oligo-analysis

oligo-analysis; Patterns per significance: Saccharomyces_cerevisiae

Patterns discovered in random gene selections

ROC curve - oligo-analysis

oligo-analysis; sequence sets per significance: Saccharomyces_cerevisiae

ROC curve - oligo-analysis

oligo-analysis; Patterns per significance: Escherichia_coli_K12

Patterns discovered in random gene selections

ROC curves - oligo-analysis

oligo-analysis; sequence sets per significance: Escherichia_coli_K12

ROC curves - oligo-analysis

oligo-analysis; Patterns per significance: Homo_sapiens_EnsEMBL

ROC curves - oligo-analysis

oligo-analysis; sequence sets per significance: Homo_sapiens_EnsEMBL

Random gene selections with discovered pattern

Regulatory Sequence Analysis

Using ROC curves to select optimal parameters

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Selection of optimal scoring function

- ROC curves can be used to compare different scoring functions for a given program.
- For consensus (Hertz, 1990, 1999), E-value is the best scoring function.

Selection of optimal parameters

- Having selected the optimal scoring function, the ROC curves can be used to compare other parameter values.
- For consensus, the combination of several matrix widths (6, 8 and 10) gives better results than each width separately.

Selection of optimal scoring function

- ROC curves can be used to compare different scoring functions for a given program.
- For the *MotifSampler* (Thijs, 2000),
 - the Information Content (IC) is drastically better than
 - the Consensus Score (CS) or
 - Log Likelihood (LL).

Selection of optimal parameters

- Having selected the optimal scoring function, the ROC curves can be used to compare other parameter values.
- For the *MotifSampler*, a matrix width of 10 gives weaker results than 6, 8, or the combination of 6,8 and 10.

Selection of optimal scoring function

- For gibbs (Neuwald, 1995) returns quite poor results with yeast regulons.
- Note that this program was developed for the detection of protein motifs.
 - It is thus not optimal for DNA motifs.
- Subsequent versions of the gibbs sampler give better results.

Selection of optimal scoring function

- Oligo-analysis and dyadanalysis give better results together than any of them alone.
- Including 8nt slightly reduces the accuracy.

Using ROC curves to compare methods

- The preceding slides should in no case be used to compare the different methods.
- Indeed, since I developed one of these methods, the comparison is unfair:
 - I may be (consciously or unconsciously) biased by my own interest.
 - Even assuming honesty, I am not so familiar with the parameters of the programs developed by other people than with my own programs.

Regulatory Sequence Analysis

Correctness of the discovered motifs

Jacques van Helden Jacques.van.Helden@ulb.ac.be

Example: biological sites implanted in foreign biological sequences

Down et al. (2005). Nucleic Acids Res. 33(5):1445-1453. NestedMICA: sensitive inference of over-represented motifs in nucleic acid sequences.

Motifs

 Jaspar annotations for 4 human transcription factors (HLF,c-Fos, CREB, HFH-1)

Sequences

- Random selections of genes, 100 promoters per set.
- For each factor, different sequences sizes are tested.

Implanted sites

- Zero or one occurrence per sequence (zoops).
- One implant in 50% of the sequences.

Pattern discovery software

- NestedMICA (the new program presented in the article)
- MEME (used with default parameters)

CCREB

CATCA

CREB

Example: biological sites implanted in foreign biological sequences

Figure 4. (a) The original HLF motif from JASPAR. (b) Results for searching for HLF in a set of 150 base sequences using MEME. (c) MEME with 200 base sequences. (d) NestedMICA with 600 base sequences. (e) NestedMICA with 700 base sequences.

- Down et al. (2005). Nucleic Acids Res. 33(5):1445-1453.
- Questions
 - Which criterion was used here to say "yes" or "no" with matrices?
 - Visual inspection ?
 - Quantitative criterion ?
 - How can we extend this to stringbased pattern discovery?

Table 1. Discovery of the HLF motif from sets of 100 synthetic sequences of various lengths

Length	100	150	200	300	400	500	600	700
MEME	y	y	n	n	n	n	n	n
N'MICA	y	y	y	y	y	y	y	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Table 2. Discovery of the c-FOS motif from sets of 100 synthetic sequences of various lengths

Length	200	300	400	500	600
MEME	y	y	n	n	n
N'MICA	y	y	y	y	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Table 3. Discovery of the HFH-1 motif from sets of 100 synthetic sequences of various lengths

Length	800	1000	1200	1400	1600
MEME	y	y	y	n	n
N'MICA	y	y	y	n	n

^{&#}x27;y' indicates that the correct motif was found, and 'n' indicates failure.

Match table

- We can calculate the number of matches between each annotated binding site (rows) and each discovered pattern (column), and represent it in a table.
- Example
 - HLH set 800 bp fro Down & Hubbard
 - Pattern discovery with oligo-analysis, Markov chain of order 3.

	rank	_	7	က	4	2	9	7	8	6	10	1	12	13	4	15	16	17	18	19	20	21		substif
	sig	2.92	1.78	1.30	1.27	1.16	1.15	0.81	0.77	0.73	0.67	0.63	0.61	0.48	0.45	0.36	0.28	0.21	0.14	0.10	0.07	0.05	atches	one sub
	Annotated \ predicted	cgtaac	acgcaa	cccag	caaagc	ငရုဒ္ဌဒဒ	aaggaa	ggtgac	aaacaa	cccdc	cttggc	ctgtcc	tacgta	atgtaa	tacgca	cgttac	cttagc	ccaagg	aagaaa	cccagg	actcag	ccdcc	Perfect ma	At most or
1	ctTGTTACGCAATCaagggc	6	6	4	4	4	4	4	5	3	4	3	5	4	6	5	4	5	4	4	4	3	3	7
2	caaaGATTACGTAATCgtgc	5	5	3	5	3	4	4	4	3	4	3	6	5	5	4	4	4	4	3	3	3	1	6
3	ccagGGTTACGCAACTcggc	6	6	4	4	4	4	5	4	4	5	3	5	4	6	5	4	5	4	5	5	4	3	10
4	cTATTACGCAATTctaaccgc	5	6	3	4	3	4	4	4	4	3	4	5	4	6	4	4	3	4	3	4	4	2	4
5	cttAGTTACGCAATAattgt	6	່ 6	3	4	3	4	4	4	3	4	3	5	4	6	5	5	4	4	3	5	3	3	7
6	gcGATTGCGCAATAgatcgc	4	5	3	3	3	3	3	3	3	3	3	4	4	5	3	3	3	4	3	3	3	0	2
7	cGGTTGCATAATCaggcgcg	4	5	4	3	4	4	4	4	4	3	3	4	5	5	4	3	3	4	4	5	5	0	5
8	cacaaGATTACATCATAtac	4	4	4	3	2	4	4	4	2	4	3	4	6	3	4	3	4	4	4	3	2	1	1
9	cggcacTGTTACACAACCgt	5	5	3	4	4	3	4	5	3	3	4	4	5	5	5	3	3	3	3	4	3	0	6
10	ggagtaGGTTACATAAGTcg	5	4	3	3	3	4	5	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
11	tctagTGTTACGTGATGttg	6	5	4	3	3	4	4	4	3	3	3	5	5	4	5	4	3	4	3	3	3	1	5
12	gaggGGTTACATCAACcatt	5	4	4	3	4	4	5	4	5	3	3	4	6	3	5	3	3	4	3	3	4	1	5
13	ccgaattCGTTATGTAATGc	5	4	3	4	3	5	3	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
14	tgcaaTGTTCGGTAATAcgc	4	4	3	4	3	4	4	4	3	4	4	4	4	5	4	4	4	3	3	3	3	0	1
15	cGGAGACACCATTatgcaat	4	5	4	3	4	4	5	4	4	3	4	4	5	5	4	3	3	4	3	4	3	0	4
16	aacCATTACGTCTATtatgc	5	5	3	3	2	4	3	4	2	3	3	5	5	4	5	3	3	4	3	3	3	0	5
17	agtaataaCATGTCGCAGTG	4	4	4	4	3	4	4	4	4	4	4	3	5	4	4	3	3	4	4	4	3	0	1
18	acaaaggCGTGTTGCATCAc	4	5	3	5	3	4	4	4	4	4	3	3	5	4	4	4	5	4	4	4	5	0	5
	Perfect matches	4	4	0	0	0	0	0	0	0	0	0	1	4	4	0	0	0	0	0	0	0	17	
	At most one substitution	11	12	0	2	0	1	4	2	1	1	0	9	12	10	9	1	3	0	1	3	2		84

Oligo-analysis "yes" and "no" values

oligo-analysis results

Background model: Markov order of ordre 3, trained on the input sequence

HLF

Length	100	150	200	300	400	500	600	800	900	1000
Match with most signif pattern	У	У	У	У	У	n	У	У	У	У
Rank of first matching pattern	1	1	1	1	1	2	1	1	1	1

c-FOS

no annotated sites in Jaspar (only a matrix)

HFH-1

Length	800	1000	1200	1400	1600	2000
Match with most signif pattern	У	У	У	n	У	n
Rank of first matching pattern	1	1	1	5	1	3

CREB

Length	100	200	300	400	500	600	800
Match with most signif pattern	У	У	У	У	n	n	n
Rank of first matching pattern	1	1	1	1	2	2	2

Table 1. Discovery of the HLF motif from sets of 100 synthetic sequences of various lengths

Length	100	150	200	300	400	500	600	700
MEME	y	y	n	n	n	n	n	n
N'MICA	y	y	y	y	y	y	y	n

'y' indicates that the correct motif was found, and 'n' indicates failure.

Table 2. Discovery of the c-FOS motif from sets of 100 synthetic sequences of various lengths

Length	200	300	400	500	600
MEME	y	y	n	n	n
N'MICA	y	y	y	y	n

'y' indicates that the correct motif was found, and 'n' indicates failure.

Table 3. Discovery of the HFH-1 motif from sets of 100 synthetic sequences of various lengths

Length	800	1000	1200	1400	1600
MEME	y	y	y	n	n
N'MICA	y	y	y	n	n

'y' indicates that the correct motif was found, and 'n' indicates failure.

Analysis of Down's data set with oligo-analysis

- For all the sequence lengths, the motif is selected as significant
- In most conditions, the most significant pattern matches some annotated site(s)
- When this is not the case, the right motif comes very close to the first rank.

Some comments on these results

- The values "yes" and "no" are a bit rough, we could refine them.
- The fact that the motifs corresponding to implanted sites are found so easily suggests that the testing set might be too "simple", by comparison with real cases.

Counting the correct "yes" and "no"

Selectivity

- Fraction of the discovered patterns matching at least one known site.
- Predictive Positive Value: PPV=TP/(TP+FP)=5/21=24%

Sensitivity

- Fraction of the known sites matched by at least one discovered pattern.
- □ Sn=10/18=56%

	rank	1	7	က	4	2	9	7	∞	6	10	7	12	13	14	15	16	17	18	19	20	21	·	substif
	sig	2.92	1.78	1.30	1.27	1.16	1.15	0.81	0.77	0.73	0.67	0.63	0.61	0.48	0.45	0.36	0.28	0.21	0.14	0.10	0.07	0.05	matches	one sul
	Annotated \ predicted	cgtaac	acgcaa	cccag	caaagc	၁စ်စစ်စ်	ıaggaa	ggtgac	ıaacaa	သင်သသသ	cttggc	ctgtcc	tacgta	atgtaa	tacgca	cgttac	cttagc	ccaagg	aagaaa	cccagg	actcag	ccgcc	Perfect m	At most o
1	ctTGTTACGCAATCaagggc	6	6	4	4	<u>ช</u>	<u>ष</u> 4	4	6 5	3	4	3	5	4	6	5	4	5	4	4	4	3	3	7
-	caaaGATTACGTAATCgtgc	5	5	3	5	3	4	4	4	3	4	3	6	5	5	4	4	4	4	3	3	3	1	6
-	ccaqGGTTACGCAACTcqqc	6	6	4	4	4	4	5	4	4	5	3	5	4	6	5	4	5	4	5	5	4	3	10
4	cTATTACGCAATTctaaccgc	5	6	3	4	3	4	4	4	4	3	4	5	4	6	4	4	3	4	3	4	4	2	4
5	cttAGTTACGCAATAattqt	6	6	3	4	3	4	4	4	3	4	3	5	4	6	5	5	4	4	3	5	3	3	7
6	gcGATTGCGCAATAgatcgc	4	5	3	3	3	3	3	3	3	3	3	4	4	5	3	3	3	4	3	3	3	0	2
7	cGGTTGCATAATCaggcgcg	4	5	4	3	4	4	4	4	4	3	3	4	5	5	4	3	3	4	4	5	5	0	5
8	cacaaGATTACATCATAtac	4	4	4	3	2	4	4	4	2	4	3	4	6	3	4	3	4	4	4	3	2	1	1
و	cggcacTGTTACACAACCgt	5	5	3	4	4	3	4	5	3	3	4	4	5	5	5	3	3	3	3	4	3	0	6
10	ggagtaGGTTACATAAGTcg	5	4	3	3	3	4	5	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
11	tctagTGTTACGTGATGttg	6	5	4	3	3	4	4	4	3	3	3	5	5	4	5	4	3	4	3	3	3	1	5
12	gaggGGTTACATCAACcatt	5	4	4	3	4	4	5	4	5	3	3	4	6	3	5	3	3	4	3	3	4	1	5
13	ccgaattCGTTATGTAATGc	5	4	3	4	3	5	3	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
14	tgcaaTGTTCGGTAATAcgc	4	4	3	4	3	4	4	4	3	4	4	4	4	5	4	4	4	3	3	3	3	0	1
15	cGGAGACACCATTatgcaat	4	5	4	3	4	4	5	4	4	3	4	4	5	5	4	3	3	4	3	4	3	0	4
16	aacCATTACGTCTATtatgc	5	5	3	3	2	4	3	4	2	3	3	5	5	4	5	3	3	4	3	3	3	0	5
17	agtaataaCATGTCGCAGTG	4	4	4	4	3	4	4	4	4	4	4	3	5	4	4	3	3	4	4	4	3	0	1
18	acaaaggCGTGTTGCATCAc	4	5	3	5	3	4	4	4	4	4	3	3	5	4	4	4	5	4	4	4	5	0	5
П	Perfect matches	4	4	0	0	0	0	0	0	0	0	0	1	4	4	0	0	0	0	0	0	0	17	
	At most one substitution	11	12	0	2	0	1	4	2	1	1	0	9	12	10	9	1	3	0	1	3	2		84

- These statistics can be calculated for each result and averaged.
- However, they consider all the discovered patterns as equivalent, irrespective of their score (significance, rank).

Sensitivity and PPV

Positive predictive value (discovered patterns)

$$PPV = TPm/(TPm+FPm)$$

- Which fraction of the discovered patterns corresponds to annotated sites?
- Perfect matches: *PPV* = 5/21 = 24%

Sensitivity (sites)

$$Sn = TPs/(TPs+FNs)$$

- Which fraction of the annotated sites is matched by at least one predicted motif?
- Perfect matches: Sn = 10/18 = 56%

At most 1 subst: Sn = 18/18 = 100%

	rank	_	7	ဗ	4	2	9	7	8	6	10	7	12	13	14	15	16	17	18	19	20	21	- w	bstil
	sig	2.92	1.78	1.30	1.27	1.16	1.15	0.81	0.77	0.73	0.67	0.63	0.61	0.48	0.45	0.36	0.28	0.21	0.14	0.10	0.07	0.05	matche	one sub
	Annotated \ predicted	cgtaac	acgcaa	ccccag	caaagc	ငရုရှင်င	aaggaa	ggtgac	aaacaa	၁၆၁၁၁၁	cttggc	ctgtcc	tacgta	atgtaa	tacgca	cgttac	cttagc	ccaagg	aagaaa	cccagg	actcag	ccdcc	Perfect ma	At most o
1	ctTGTTACGCAATCaagggc	6	6	4	4	4	4	4	5	3	4	3	5	4	6	5	4	5	4	4	4	3	3	7
2	caaaGATTACGTAATCgtgc	5	5	3	5	3	4	4	4	3	4	3	6	5	5	4	4	4	4	3	3	3	1	6
3	ccagGGTTACGCAACTcggc	6	6	4	4	4	4	5	4	4	5	3	5	4	6	5	4	5	4	5	5	4	3	10
4	cTATTACGCAATTctaaccgc	5	6	3	4	3	4	4	4	4	3	4	5	4	6	4	4	3	4	3	4	4	2	4
5	cttAGTTACGCAATAattgt	6	6	3	4	3	4	4	4	3	4	3	5	4	6	5	5	4	4	3	5	3	3	7
6	gcGATTGCGCAATAgatcgc	4	5	3	3	3	3	3	3	3	3	3	4	4	5	3	3	3	4	3	3	3	0	2
7	cGGTTGCATAATCaggcgcg	4	5	4	3	4	4	4	4	4	3	3	4	5	5	4	3	3	4	4	5	5	0	5
8	cacaaGATTACATCATAtac	4	4	4	3	2	4	4	4	2	4	3	4	6	3	4	3	4	4	4	3	2	1	1
9	cggcacTGTTACACAACCgt	5	5	3	4	4	3	4	5	3	3	4	4	5	5	5	3	3	3	3	4	3	0	6
10	ggagtaGGTTACATAAGTcg	5	4	3	3	3	4	5	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
11	tctagTGTTACGTGATGttg	6	5	4	3	3	4	4	4	3	3	3	5	5	4	5	4	3	4	3	3	3	1	5
12	gaggGGTTACATCAACcatt	5	4	4	3	4	4	5	4	5	3	3	4	6	3	5	3	3	4	3	3	4	1	5
13	ccgaattCGTTATGTAATGc	5	4	3	4	3	5	3	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
14	tgcaaTGTTCGGTAATAcgc	4	4	3	4	3	4	4	4	3	4	4	4	4	5	4	4	4	3	3	3	3	0	1
15	cGGAGACACCATTatgcaat	4	5	4	3	4	4	5	4	4	3	4	4	5	5	4	3	3	4	3	4	3	0	4
16	aacCATTACGTCTATtatgc	5	5	3	3	2	4	3	4	2	3	3	5	5	4	5	3	3	4	3	3	3	0	5
17	agtaataaCATGTCGCAGTG	4	4	4	4	3	4	4	4	4	4	4	3	5	4	4	3	3	4	4	4	3	0	1
18	acaaaggCGTGTTGCATCAc	4	5	3	5	3	4	4	4	4	4	3	3	5	4	4	4	5	4	4	4	5	0	5
	Perfect matches	4	4	0	0	0	0	0	0	0	0	0	1	4	4	0	0	0	0	0	0	0	17	
	At most one substitution	11	12	0	2	0	1	4	2	1	1	0	9	12	10	9	1	3	0	1	3	2		84

- These statistics can be calculated for each result and averaged.
- However, they consider all the discovered patterns as equivalent, irrespective of their score (significance, rank).

PPV versus significance (pooled motifs)

Figures from Olivier Sand, BioSapiens project

Accuracy

- There is always a trade between sensitivity PPV.
 - Stringent threshold on significance are expected to increase PPV at the cost of sensitivity.
 - Relaxing the threshold increases sensitivity at the cost of PPV.
- We thus need a statistics which captures both sensitivity and PPV: the accuracy.
- The literature contains different definitions of accuracy.

Arithmetic mean between Sensitivity and PPV

$$Acc_a = (Sn + PPV)/2$$

- The arithmetic mean can be misleading for trivial cases
 - Program predicting all possible motifs
 - $Sn \sim 1$; $PPV \sim 0 \Rightarrow Acc_a \sim 0.5$
 - Program predicting a single correct motif but missing all the other ones
 - $Sn \sim 0$; $PPV \sim 1 => Acc_a \sim 0.5$

Geometric mean between Sensitivity and PPV

$$Acc_g = \sqrt{Sn \cdot PPV}$$

- A more reliable statistics is Acc_g , the geometric mean between Sn and PPV
 - Program predicting all the motifs
 - $Sn \sim 1$; $PPV \sim 0 => Acc_a \sim 0.5$
 - Program predicting a single correct motif but missing all the other ones
 - $Sn \sim 0$; $PPV \sim 1 => Acc_a \sim 0.5$
 - □ In the cases where $Sn \sim PPV$, $Acc_a \sim Acc_g$

Sensitivity and PPV

Arithmetic mean

 $Acc_a = (PPV + Sn)/2$

Perfect matches

 $Acc_a = (0.24 + 0.56)/2 = 0.40$

At most 1 subst

 $Acc_a = (0.81 + 1.00)/2 = 0.905$

Geometric mean

 $Acc_a = sqrt(PPV*Sn)$

Perfect matches

Acc_a= sqrt(0.24 * 0.56)= 0.367

At most 1 subst

 $Acc_a = sqrt(081*1.00) = 0.90$

	rank	_	7	က	4	2	9			6	10	7	12	13	4	15	16	17	8	19	20	72		stil
	sig			1.30	1.27	1.16	1.15	0.81	0.77	0.73	0.67	0.63	0.61	0.48	0.45	0.36	0.28	0.21	0.14	0.10	0.07	0.05	matches	one substif
	Amnototod \ muodiotod	gtaac	acgcaa	ccccag	aaagc	3888c	aggaa	gtgac	aaacaa	ငင္သင္သင္သင္သ	ttggc	ctgtcc	acgta	atgtaa	tacgca	cgttac	ttagc	caagg	agaaa	ccagg	actcag	ccdcc	Perfect ma	most
<u> </u>	Annotated \ predicted	ΰ			<u>υ</u>	บ	מ	<u>6</u>			U		<u>+</u>				ט	ט	ಹ	υ				¥
1	ctTGTTACGCAATCaagggc	6	6	4	4	4	4	4	5	3	4	3	5	4	6	5	4	5	4	4	4	3	3	7
2	caaaGATTACGTAATCgtgc	5	5	3	5	3	4	4	4	3	4	3	6	5	5	4	4	4	4	3	3	3	1	6
3	ccagGGTTACGCAACTcggc	6	6	4	4	4	4	5	4	4	5	3	5	4	6	5	4	5	4	5	5	4	3	10
4	cTATTACGCAATTctaaccgc	5	6	3	4	3	4	4	4	4	3	4	5	4	6	4	4	3	4	3	4	4	2	4
5	cttAGTTACGCAATAattgt	6	6	3	4	3	4	4	4	3	4	3	5	4	6	5	5	4	4	3	5	3	3	7
6	gcGATTGCGCAATAgatcgc	4	5	3	3	3	3	3	3	3	3	3	4	4	5	3	3	3	4	3	3	3	0	2
7	cGGTTGCATAATCaggcgcg	4	5	4	3	4	4	4	4	4	3	3	4	5	5	4	3	3	4	4	5	5	0	5
8	cacaaGATTACATCATAtac	4	4	4	3	2	4	4	4	2	4	3	4	6	3	4	3	4	4	4	3	2	1	1
9	cggcacTGTTACACAACCgt	5	5	3	4	4	3	4	5	3	3	4	4	5	5	5	3	3	3	3	4	3	0	6
10	ggagtaGGTTACATAAGTcg	5	4	3	3	3	4	5	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
11	tctagTGTTACGTGATGttg	6	5	4	3	3	4	4	4	3	3	3	5	5	4	5	4	3	4	3	3	3	1	5
12	gaggGGTTACATCAACcatt	5	4	4	3	4	4	5	4	5	3	3	4	6	3	5	3	3	4	3	3	4	1	5
13	ccgaattCGTTATGTAATGc	5	4	3	4	3	5	3	4	3	3	3	5	6	4	5	4	3	4	3	4	3	1	5
14	tgcaaTGTTCGGTAATAcgc	4	4	3	4	3	4	4	4	3	4	4	4	4	5	4	4	4	3	3	3	3	0	1
15	cGGAGACACCATTatgcaat	4	5	4	3	4	4	5	4	4	3	4	4	5	5	4	3	3	4	3	4	3	0	4
16	aacCATTACGTCTATtatgc	5	5	3	3	2	4	3	4	2	3	3	5	5	4	5	3	3	4	3	3	3	0	5
17	agtaataaCATGTCGCAGTG	4	4	4	4	3	4	4	4	4	4	4	3	5	4	4	3	3	4	4	4	3	0	1
18	acaaaggCGTGTTGCATCAc	4	5	3	5	3	4	4	4	4	4	3	3	5	4	4	4	5	4	4	4	5	0	5
	Perfect matches	4	4	0	0	0	0	0	0	0	0	0	1	4	4	0	0	0	0	0	0	0	17	\neg
	At most one substitution	11	12	0	2	0	1	4	2	1	1	0	9	12	10	9	1	3	0	1	3	2		84

Validation with 53 yeast regulons - perfect matches Sand & van Helden, BioSapiens project

					Sitesinas		ş						The state of the	Þ		
		•		nb. 01/19		hed.c					De 40.018.		hed.			
	nb.targer	Ş	<i>s</i> /			Ç	.8	06/10.	.8	06/10.6.3. Max	9,9,9	, ,	to,	De	peno.	D _B
Qr.mo,		~	Xe _W	. <i>isig.</i> 10. 0/10	, se .	ی	°6//0.	,	6,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00		16.0 A		ž. 2.		,	- '9'y'
Ment			40.45	26	- 6		0.200	9	0 220	4 55	- (1	<u> </u>		0.115	9	0.106
MSN4	58 56	3	13.45 14.82	26 30	1	8	0.308	0.333	0.320	11.66	61	1	/	0.115 0.103	0.333 1.000	0.196
MSN2 ZAP1	56 52	1 8	0.57	30 1	1 3	8	0.267 1.000	0.375		13.01 13.47	58 5	1 8	6 5	1.000	1.000	1.000
GCN4	40	18	22.64	9	3 11	1 6	0.667	0.575	0.612		5 8	8	6	0.750	0.444	0.577
TEC1	38	0	0.27	1	NA	0	NA	NA	NA	0.16	2	NA	0	NA	NA	NA
RAP1	32	20	1.67	2	7	1	0.500	0.350	0.418	0.16	1	0	0	0.000	0.000	0.000
GLN3	31	2	21.47	9	1	1	0.111	0.500	0.236	20.32	6	1	1	0.167	0.500	0.289
YAP1	31	2	1.40	3	0	0	0.000	0.000	0.000	0.78	1	0	0	0.000	0.000	0.000
MIG1	26	15	6.27	23	12	7	0.304	0.800	0.493	4.68	34	14	12	0.353	0.933	0.574
UME6	26	4	2.49	6	2	6	1.000	0.500	0.707	1.15	4	2	3	0.750	0.500	0.612
RLM1	25	0	2.36	2	NA	0	NA	NA	NA	0.55	1	NA	0	NA	NA	NA
OAF1	24	0	1.32	4	NA	0	NA	NA	NA	4.89	6	NA	0	NA	NA	NA
HSF1	21	4	7.12	5	2	2	0.400	0.500	0.447	5.70	7	3	6	0.857	0.750	0.802
PHO2	21	5	14.53	6	1	1	0.167	0.200	0.183	13.40	4	1	1	0.250	0.200	0.224
DAL80	19	5	20.13	13	2	4	0.308	0.400	0.351	18.29	10	2	3	0.300	0.400	0.346
INO2	19	3	8.40	7	2	3	0.429	0.667	0.535	6.32	5	3	5	1.000	1.000	1.000
INO4	19	1	8.40	7	0	0	0.000	0.000	0.000	6.32	5	1	2	0.400	1.000	0.632
PIP2	19	1	0.17	1	0	0	0.000	0.000	0.000	5.73	5	1	3	0.600	1.000	0.775
REB1	19	10	2.41	4	7	3	0.750	0.700	0.725	1.26	1	5	1	1.000	0.500	0.707
GCR1	18	11	0.77	2	0	0	0.000	0.000	0.000	1.81	2	0	0	0.000	0.000	0.000
BAS1	17	2	16.07	7	2	3	0.429	1.000	0.655	14.89	5	2	2	0.400	1.000	0.632
CBF1	16	1	9.65	6	1	1	0.167	1.000	0.408	8.10	5	1	1	0.200	1.000	0.447
PDR1	16	9	13.97	13	9	8	0.615	1.000	0.784	16.35	18	9	18	1.000	1.000	1.000
HAP3	15	2	0.64	3	0	0	0.000	0.000	0.000	NA	0	0	0	0.000	0.000	0.000
MIG2	15	0	3.74	12	NA	0	NA	NA	NA	2.24	10	NA	0	NA	NA	NA
MOT3	15	2	1.75	8	0	0	0.000	0.000	0.000	3.58	9	0	0	0.000	0.000	0.000
ROX1	15	25	0.99	2	20	2	1.000	0.800	0.894	0.10	2	0	0	0.000	0.000	0.000
HAP2	14	2	0.42	2	0	0	0.000	0.000	0.000	NA	0	0	0	0.000	0.000	0.000
HAP4	14	1	0.29	3	0	0	0.000	0.000	0.000	NA 0.67	0	0	0	0.000	0.000	0.000
MCM1	14	24	NA 3 OF	0	NA	0	NA 0.667	NA 1 000	NA	0.67	1	0	0	0.000	0.000	0.000
STE12	13	5	3.95	3	5	2	0.667	1.000	0.816	2.59	3	5	2	0.667	1.000	0.816
RTG1	12	1	2.49	3	NA	0	0.000	NA	NA	1.56	6	NA	0_	0.000	NA	NA

Validation with 38 regulons from E.coli - perfect matches

10.0190 137 67 0.489 CRP 104 1.71 0.699 2.93 93 1.000 0.679 1.000 0.824 IHF 38 50 0.74 16 1.000 0.320 0.566 1.44 6 16 0.833 0.320 0.516 FNR 35 0.36 2 19 0.404 0.636 3.35 3 23 1.000 0.489 0.700 25 35 0 0 0.000 0.000 0.000 0 0.000 0.000 0.000 ArcA NA 22 77 5 Lrp 0.49 4 34 1.000 0.442 0.664 2.07 21 1.000 0.273 0.522 FIS 17 58 0.52 0.000 0.000 0.000 NA 0.000 0.000 0.000 PurR 17 16 1.19 6 8 0.833 0.500 0.645 NA 0 0.000 0.000 0.000 15 42 1.46 15 1.000 0.357 0.598 0.12 0.378 NarL 1.000 0.143 0.500 13 0.96 2 0.500 0.500 0.09 0.000 0.000 0.000 Hns 12 10 5 10 1.000 1.000 1.000 1.41 1.000 0.800 FruR 2.89 0.894 13 0.77 1.000 0.462 0.679 0 0.000 0.000 Fur 11 6 NA 0.000 10 11 1.12 3 1.000 0.636 0.798 1.38 2 11 1.000 1.000 LexA 1.000 SoxS 10 0.49 0.000 0.000 0.000 0.000 0.000 0.000 MarA 8 0.29 0 0.000 0.000 0.000 0.45 0.500 0.286 0.378 1 TyrR 8 19 0.98 2 12 1.000 0.632 0.795 2.23 3 9 1.000 0.474 0.688 12 1.000 0.250 ArgR NA 0.000 0.000 0.000 0.24 0.500 CysB NA O 0 0.000 0.000 0.000 NA 0.000 0.000 0.000 7 12 CytR 0.67 NA 0.000 NA NΑ 0.000 0.000 0.000 FlhD 7 1.000 0.250 0.500 1.000 0.250 0.500 0.12 0.62 PhoB 3.64 4 5 1.000 0.556 0.745 2.67 6 1.000 0.667 0.816 ModE 6 0.06 0.000 0.000 0.000 NA 0.000 0.000 0.000 OmpR 6 16 1.23 2 1.000 0.250 0.45 1.000 0.125 0.354 6 0 0.000 0.000 0.000 0.000 0.000 Rob NA 0.000 NA 5 15 1.000 AraC 3.12 2 11 0.733 0.856 1.89 1 11 1.000 0.733 0.856 FhIA 5 3 NA 0.000 NA NΑ 0.72 2 NA 0.000 NA 1.98 NA 2 0.000 OxyR NA O 0.000 0.000 0.000 0.35 NA NA NA 2.06 1.000 1.000 1.000 1.000 1.000 5 TrpR 3.49 4 O 0.000 0.000 0.000 0 0.000 0.000 0.000 CpxR NA NA DnaA 4 11 0.000 0.000 0.000 0.09 1.000 1.000 NA 0 1 11 1.000 0.000 FadR 0.46 1 1.000 0.167 0.408 NA 0 0 0.000 0.000 19 1.000 0.263 0.513 0.15 7 1.000 0.368 GlpR 1.32 0.607 1.000 1.000 1.000 MalT 0.68 3 9 1.000 2.57 0.556 0.745 MetJ 1.34 1 1.000 0.857 0.926 0.10 1.000 0.857 0.926 MIc NA 0 0.000 0.000 0.000 0.09 0.000 0.000 0.000 NagC 0.18 1.000 0.500 0.707 NA 0.000 0.000 0.000 11 2 9 1.000 0.818 0.905 1.12 10 1.000 0.909 0.953 NtrC 2.14 3 1.53 2 NA NA NΑ 0.12 NA NA NA NA DcuR NA DeoR 3 0.92 1 1.000 0.143 0.378 0.14 1 1.000 0.143 0.378 1 1 3 DsdC 0 NA NA NA NΑ NA 0 NA NA NA 3 5 NΑ NA GadW 1.13 NA NA NA 1.03 3 NA NA NA **GntR** 3 0.88 1 3 1.000 0.750 0.866 2.27 .000 .000 .000 3 0.43 0.000 0.000 0.000 0.000 0.000 0.000 MetR 0 NA 0 1 0.333 RcsB 0.34 1 1 1.000 0.577 0.56 0.000 0.000 0.000 Sand & van Helden BioSapiens project

Validation with 93 human regulons - perfect matches sites. matched.origo Sifes. matched. of year 14c. a. 0/190 06,101.90 T00759 Sp1 186 3.63 10 121 0.651 0.825 0.000 0.000 0.000 10 1.000 0.807 T00671 p53 28 36 2.00 22 10 15 0.682 0.278 0.480 0.435 NA 0 0.000 0.000 0.000 0.000 T00133 c-Jun 25 32 0.28 2 0 0.000 0.000 0.000 0.000 NA 0 0 0.000 0.000 0.000 0.000 25 T00590 NF-ka 19 0.46 0.000 0.000 0.000 0.000 0.17 1 0.000 0.000 0.000 0.000 29 T00035 AP-2a 17 2.98 8 6 0.500 0.207 0.353 0.322 0.80 3 1.000 0.207 0.603 0.455 T00167 ATF-2 17 18 0.71 3 1 0.333 0.056 0.194 0.136 NA 0 O 0.000 0.000 0.000 0.000 T00163 CREB 16 26 2.01 1 1 0.250 0.038 0.144 0.098 0.31 1 n 0.000 0.000 0.000 0.000 T00581 C.EBF 16 1.37 NA NA NA NA NA 0 NA NA NA NA NA NA T00368 HNF-: 15 21 0.67 0.048 0.149 0.109 2 0.095 0.548 0.309 1 1 0.250 0.35 1 1.000 T00261 ER-al 13 21 2.29 2 3 1.000 0.143 0.571 0.378 NA 0 0.000 0.000 0.000 0.000 T00594 RelA 13 16 0.32 2 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 NA 18 T00593 NF-ka 12 0.29 1.000 0.111 0.556 0.333 NA 0 0.000 0.000 0.000 0.000 T00874 USF1 12 15 7 0.143 0 0.000 1.13 1 0.067 0.105 0.098 NA 0.000 0.000 0.000 T01609 HIF-1 12 18 1.41 14 0.286 0.278 0.282 0.282 NA 0.000 0.000 0.000 0.000 T02758 HNF-4 12 14 6 0.429 0.548 0.535 0 0.000 0.000 0.000 0.67 6 0.667 NA 0.000 T00105 C.EBF 11 0.54 0 NA 0 NA 13 0.000 T00123 c-Fos 10 2.43 1 0 0 0.000 0.000 0.000 1.07 0.000 0.000 0.000 0.000 T00140 c-Mvc 10 17 0.39 0.000 0.000 0.000 0.000 NA 0 0.000 0.000 0.000 0.000 T00423 IRF-1 21 0.000 0.000 0.000 0.000 0.98 2 0.500 0.095 0.298 0.218 10 1.60 16 1 0.063 0.531 0 T00112 c-Ets-0.52 1 1.000 0.250 NA 0.000 0.000 0.000 0.000 23 2 T00641 POU2 0.20 0.000 0.000 0.000 0.000 1.31 0.000 0.000 0.000 0.000 1 T01345 RXR-a 11 2.55 11 0.455 0.364 0.409 0.407 1.04 8 0.500 0.364 0.432 0.426 T00221 E2F 17 0 0 0.20 1 0 0.000 0.000 0.000 0.000 NA 0.000 0.000 0.000 0.000 7 10 0.258 0.99 0.000 T00113 c-Ets-2.25 0.333 0.200 0.267 0.000 0.000 0.000 T00149 COUP 12 1.52 5 3 0.400 0.250 0.325 0.316 0.30 0.000 0.000 0.000 0.000 T00306 GATA 50 NA 0 0 0.000 0.000 0.000 0.000 NA 0 0 0.000 0.000 0.000 0.000 T00764 SRF 13 75 0.104 503 7.64 0.053 0.154 0.091 12.05 22 0.044 0.308 0.176 0.116 T00915 YY1 11 0.54 1 0 0 0.000 0.000 0.000 0.000 NA 0 0.000 0.000 0.000 0.000 7 0 T01553 MITF 11 0.16 0.000 0.000 0.000 0.000 0.37 2 0.000 0.000 0.000 0.000 T01950 HNF-: 10 2.26 2 0.286 0.200 0.243 0.239 0.83 12 6 0.250 0.600 0.425 0.387 T03828 HNF-4 11 NA 0 0.000 0.000 0.000 NA 0 0.000 0.000 0.000 0.000 0.000 T04759 STAT 7 8 0.86 2 0 0.000 0.000 0.000 0.000 0.30 1 0.000 0.000 0.000 0.000 T00045 COUP 1.94 10 0 0 0.000 0.000 0.000 0.000 0.57 12 0 0.000 0.000 0.000 0.000 T00241 Ear-1 0.54 2 0.000 0.000 0.000 0.34 2 0.500 0.111 0.306 0.236 0.000 6 T00250 Elk-1 10 7.52 52 3 0.077 0.300 0.188 0.152 10.00 394 6 17 0.043 0.600 0.322 0.161 T01542 E2F-1 12 0.167 0.500 0.373 2 3.04 6 0.833 0.66 0.000 0.000 0.000 0.000 T01945 NF-A7 0.25 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 1 0.000 NA T01951 HNF-: 8 0.46 0.125 0.313 0.250 0.000 0.000 0.000 0.000 1 0.500 NA 0 T01978 JunD 0.54 3 1 0.333 0.143 0.238 0.218 0.07 1 0.000 0.000 0.000 0.000 13 9 9 0.620 0 0 T02338_Sp3 0.692 0.624 NA 0.000 0.000 0.000 0.000 1.28 0.556

Synthesis of the (preliminary) results

Note

- For human regulons, the analysis was performed with 2kb upstream sequences, and with the default probabilistic model (binomial distribution)
- We are currently working on alternative models to improve the accuracy of predictions in human.

Organism	Program	PPV	Sn	$A c c_a$	Acc_g
Escherichia coli K12	oligo-analysis	0.804	0.530	0.688	0.656
Saccharomyces cerevisiae	oligo-analysis	0.390	0.489	0.454	0.428
Homo sapiens	oligo-analysis	0.200	0.092	0.153	0.129

Summary

- Separation of pattern discovery and pattern matching problems.
- Importance of the negative control: random selections of genes.
- Comparison at the level of significance.
 - ROC curves
- Comparison at the level of motif accuracy.
 - Matching of

Perspectives

- Human regulons : need for improvement.
 - Test different upstream lengths.
 - Test different statistical models.
- Comparisons with other programs.
 - Define a fair comparison procedure (CASP-like)
 - Developers should be involved in the assessment.
 - Evaluation should be performed by an external committee.
 - Compare the result of each program with annotated binding sites
 - Compare results returned by the different programs.
 - Test "consensus strategies": predict with different programs, and extract the most robust predictions.