

Tripadvisor Reviews

w/ Natural Language
Processing

Anisha Malhotra Ryan Lewis

Table of contents

OI
Business Problem
& Overview

02 Exploratory Data Analysis **03**

Preprocessing & Vectorizing

04 Modeling

05

Conclusion & Next Steps

01 Business Problem

- Categorize reviews as "poor", "average", and "excellent"
- Helps consumers and business owners get a better understanding of each review sentiment
- Helpful for systems that do not already have preset review or rating system
 - > e.i. Facebook & Instagram

Tripadvisor

- ♦ World's largest travel guidance platform
- Helps travelers plan, book & take trips
- Assists travelers discover where to stay, eat & sleep
- ♦ 884M+ reviews of ~8M businesses globally

Dataset

- Pre-scraped Kaggle dataset
- **♦** 20K+ hotel reviews
- Rating based on 1-5 scale

02 Exploratory Data Analysis

- Due to class imbalance in original data set, we grouped rating scores together
 - > 1 & 2 -- 'poor'
 - > 3 & 4 -- 'average'
 - > 5 -- 'excellent'

Word Clouds

- Shows how common certain words are for each category
 - "best", "nice", "deceptive"

```
reason package rainy deal good rd husband room say city of western wonderful hotel loyal awesome wee affordable night choice western wonderful hotel
```

excellent

```
kimpton late price augus hotel
late price augus hotel
location monaco clean value
loca
```

average

```
par Monaco

horrible

chargegues

seattle

chargegues

seattle

chargegues

seattle

chargegues

seed

chargegues

seed

chargegues

seed

say

location

need

say

nothing

check

nothing
```

poor

NOUN ADV ADJ 0.025 0.15 0.020 0.015 0.010 WORD 1500 10000 0.15 1000 poor average excellent SENT 1500

Violin Plot

- Frequency of nouns, adjectives, verbs are fairly even across all three review types
- Word count, character count and average length of sentences tend to be higher for 'poor' reviews

Preprocessing & Vectorizing

Preprocessing

- > removing punctuation
- > lower-cased words
- > removing stop-words
- assigned part of speech tags
- > lemmatizing words
- tokenized remaining words

♦ TF-IDF Vectorizer

- Better results than Countvectorizer
- \rightarrow Min_df = .05
- \rightarrow Max_df = .90
- uni-grams

04 Modeling

	accuracy score	f1 score
name		
Naive Bayes	0.644060	0.628705
Logistic Regression	0.677238	0.674711
Logistic Regression (PCA)	0.689192	0.687134
Decision Tree	0.558429	0.549373
Decision Tree (PCA)	0.617224	0.613319
Random Forest	0.616248	0.590297
Light GBM	0.686265	0.684575
KNN	0.550622	0.513557

- All models were grid-searched to determine optimal hyperparameters
- **❖** Focused on accuracy score
- **❖** Top model: Logistic Regression with PCA
- Accuracy score: .689
- **♦** F1 score: .687

- Top 3 Models: Logistic Regression with PCA, Logistic Regression, & LightGBM
- Logistic Regression model with PCA did the best at identifying the 'poor' reviews
- 'average' and 'excellent' were relatively similar across the three models

LightGBM

05 Conclusion & Next Steps

Per our business problem, Logistic Regression model with PCA is best model for taking in text data and accurately categorizing the user review sentiment

⋄ Next Steps:

- Utilize deep-learning to create potentially more accurate models
- ➤ Incorporate n-grams
- > Try different preprocessing techniques
- Bring in new unseen data to assess our model performance
- Resample "poor" reviews to even out classes
- > Include exogenous features

Thank you!

- Anisha Malhotra https://github.com/anisha732
- Ryan Lewis https://github.com/rylewww