SONG MOOD ANALYSIS

HELLO

Devin Monsen Andi Cameron Zach Ellsworth Jamee Jenkins

TABLE OF CONTENT

0

01

THE QUESTION

Presented by Andi Cameron

02

ETL & DATABASE

Presented by Jamee Jenkins

03

PREPROCESSING & MACHINE LEARNING

Presented by Devin Monsen

04

VISUALIZATION

Presented by Zach Ellsworth

INTRODUCTION

Music can greatly alter the mood of the listener. It can help hype up a crowd at a party, or soothe as you wait on hold or in an elevator. Music triggers emotional responses whether positive or negative

THE QUESTION

Andi Cameron

PURPOSE

MUSIC

As connoisseurs of the music industry, we recognize the vast range of emotional release that music can induce.

0

The purpose of this study is to examine the language of music and attempt to anticipate the effects on a listener.

QUESTIONS TO ANALYZE

ATTRIBUTES

How can rhythm, loudness, or other attributes of a song prompt an emotional response?

IMPORTANCE

Which attributes are most important in determining the emotional resonance of a song?

PATTERNS

Is there a pattern of attributes that could affect individuals similarly?

RESOURCES/TECHNOLOGIES

SOURCE DATA

Kaggle: Spotify 1.2M+ Songs with track features

Obtained through the Spotify API

ANALYSIS

Jupyter Notebook Python

DATABASE MANAGEMENT

pgAdmin/postgreSQL
Python
VS Code
SQLAlchemy
Quick DBD for ERD development

STORAGE

GitHub

VISUALIZATIONS

Google Slides
Javascript
Flask
Python
VS Code

DATA PREPROCESSING

Python pgAdmin/postgreSQL

REVIEWING THE DATASET

DANCEABILITY

The higher the value, the easier it is to dance to the song

LOUDNESS

The higher the value, the louder the song

TEMPO

The higher the value, the faster the song is played

REVIEWING THE DATASET CONT

ENERGY

The higher the value, the more energetic the song

VALENCE

The higher the value, the more positive mood of the song

ACOUSTICNESS •

A higher value would indicate acoustic instruments and a lower value would indicate electronic instruments

id character varying (22)	danceability double precision	energy double precision	double precision	valence double precision	tempo double precision	acousticness double precision	â
7ImeHLHBe4nmXzuXc0H	0.47	0.978	-5.399	0.503	117.906		0.0261
1wsRitfRRtWyEapl0q22o8	0.599	0.9570000000000001	-5.763999999999999	0.489	103.68		0.0129
1hR0flFK2qRG3f3RF70pb7	0.315	0.97	-5.423999999999995	0.37	149.749		0.0234
2lbASgTSoDO7MTuLAXIT	0.44	0.96700000000000001	-5.83	0.574	96.75200000000001		0.163
1MOTmpYOZ6fcMOc56Hd	0.426	0.929	-6 729	0.539	127 059	r	0.00162
1MOTmnYOZ6fcMOc56Hd	0.426	n 979	-6 779	0.539	127 059		0.00162
SgTSoDO7MTuLAXIT	0.44	0.96700000000000001	-5.83	0.574	96.75200000000001		0

DATABASE

Using PgAdmin and SQLAlchemy, 2 tables were joined using id (song id).

- Spotify_track_info lists the id, name of song, and the artist
- Spotify_features lists the id and the chosen attributes: energy, loudness, valence, tempo, and danceability

Sample table was created to show the top 100,000 songs due to size limitation

PREPROCESSING & MACHINE LEARNING

METHODS, TECHNIQUES AND TOOLS

- SKLearn
- Pandas
- SQLAlchemy

DATA ANALYSIS & MACHINE LEARNING

SCALE

Scale values with sklearn.preprocessing.MinMaxScaler()

LABEL

Determine label based of songs in grouping to then attach a mood

Use K-means clustering elbow method based off features

Group songs on chosen attributes

PREPROCESSING & **MACHINE LEARNING**

\sim	7	Danceability	Energy	Loudness	Valence	Tempo	Acousticne
O	Mean	0.540939	0.591070	-10.166142	0.515204	121.336214	0.316986
	Standard Deviation	0.151960	0.258203	4.126904	0.247071	29.497190	0.316747

71 29.497190 0.316747 Minimum 0.065700 0.019200 -25.189000 0.030500 49.179000 0.000003 0.436000 0.390000 -12.624000 0.313750 98.366750 0.023375 25% Percentile

50% Percentile 0.545000 0.613000 -9.592500 0.535000 120 75% Percentile 0.653250 0.814250 6.750000 0.701500 139

Maximum 0.909000 0.996000 -2.584000 0.974000 207

0

0

GROUP

SCALE

Acousticness

PREPROCESSING

WHOA!

Turns out mood is subjective

PREPROCESSING & MACHINE LEARNING

ΙΔF	RFI								
		id	danceability	energy	loudness	valence	tempo	acousticness	label
- 1	155	7CAXrvSR4K7xaWyAyPmECh	0.507	0.661	-10.247	0.5910	169.575	0.225000	Angry
	123	5fSU4DYw2UNcMZ5QD5FUnq	e	0.415	-8.5		12861	0.138000	Laid-Back
	385	01Vjr2ox7iQrJaAM.lyUp1		0.518	-11.50	.30	97.928	0.555000	Calm
	275	1CTTXciW8vvCUd2AJZjp95	0.436	0.500	-7.480	0.3200	141.856	0.139000	Laid-Back
	129	2cMW6KjnjFrYcYdlsk0ER5	0.545	0.557	-11.611	0.2690	125.876	0.079000	Laid-Back
	23	OQCQ1Isa0VPVylhs6lw2C1	1	0.958	-5.1	O'	87 🗷	ERGETIC	Нарру
	324	3ATOIDU Zanwo61-pSUAKME		0.814	-11.6	20	132.115	0.002060	Нарру
	76	0UxGJ0eyqOdcPrOWCNJtmp	0.276	0.224	-11.980	0.2610	127.688	0.923000	Sad
	229	3WkdA05KkhCaCunFqkkvvX	0.532	0.457	-9.615	0.1590	105.103	0.006250	Laid-Back
	293	5zAUNFiMFn8O2hB+did=Q	200	0.191	-13.7	0.0	82,651	CDV ⁵⁹⁰⁰⁰⁰	Sad
	454	4WAMmqDol0S9z17F3JXQJQ	- Car	0.239	-16.7.		201.6/2	Un _{6.473000}	Calm
	330	0yRwZNh6tTg5Klz42Jsrr9	0.422	0.985	-2.724	0.3440	157.035	0.007830	Energetic

METHODS, TECHNIQUES AND TOOLS

- React
- Go
- Websockets

DASHBOARD & INTERACTIVITY

Visualization and dashboard produced through plotly python libraries and [dash]GitHub hosted at:

https://neuralburst.io/MusicGroup

THANKS!

DO YOU HAVE ANY QUESTIONS?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution

