

Shoulder Elbow Surg. Author manuscript; available in PMC 2013 February 1.

Published in final edited form as:

J Shoulder Elbow Surg. 2012 February; 21(2): 266–277. doi:10.1016/j.jse.2011.11.016.

Biomimetic Scaffold Design for Functional and Integrative Tendon Repair

Xinzhi Zhang, MS, Danielle Bogdanowicz, BS, Cevat Erisken, PhD, Nancy M. Lee, MEng, and Helen H. Lu, PhD¹

Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering, Columbia University New York, NY 10027, USA

Abstract

Rotator cuff tears represent the most common shoulder injuries in the United States. The debilitating effect of this degenerative condition coupled with the high incidence of failure associated with existing graft choices underscore the clinical need for alternative grafting solutions. The two critical design criteria for the ideal tendon graft would require the graft to not only exhibit physiologically relevant mechanical properties but also be able to facilitate functional graft integration by promoting the regeneration of the native tendon-to-bone interface. Centered on these design goals, this review will highlight current approaches to functional and integrative tendon repair. In particular, the application of biomimetic design principles through the use of nanofiber- and nanocomposite-based scaffolds for tendon tissue engineering will be discussed. This review will begin with nanofiber-based approaches to functional tendon repair, followed by a section highlighting the exciting research on tendon-to-bone interface regeneration, with an emphasis on implementation of strategic biomimicry in nanofiber scaffold design and the concomitant formation of graded multi-tissue systems for integrative soft tissue repair. This review will conclude with a summary and future directions section.

Keywords

tendon; bone; interface; insertion; nanofiber; hydroxyapatite; biomimetic; tissue engineering

A. Introduction

Rotator cuff tears are among the most common injuries afflicting the shoulder, and in the United States alone, over 250,000 cuff repairs are performed annually³⁴. Clinical intervention is required as these tendon injuries do not heal, largely due to the complex anatomy and extended range of motion of the shoulder joint, as well as hypovascularization of the cuff tendons and relative weakening with degeneration^{13,18,34,93}. Early primary anatomic repair followed by carefully controlled rehabilitation is currently the standard treatment for rotator cuff tears¹⁸. Advances in surgical techniques coupled with mechanical

Disclaimers: None

IRB: N/A - Review Article

^{© 2011} Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

¹ To whom all correspondence should be addressed: Helen H. Lu, Ph.D. Department of Biomedical Engineering Columbia University 1210 Amsterdam Avenue 351 Engineering Terrace Building, MC 8904 New York, NY 10027, USA hhlu@columbia.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

fixation methods have significantly improved biomechanical strength and graft stability post repair⁶⁷. As such, failure rates between 20-90% have been reported after primary repair of chronic rotator cuff injuries²⁶, attributed to factors such as degenerative and poorly vascularized tendons, muscle atrophy and lack of graft-to-bone integration^{28,30,56,75,76}. These problems are exacerbated by the limited healing potential of the injured tissue, relative scarcity of autografts, and potential risks associated with allografts.

To improve healing, biological or synthetic polymer-based tendon grafts or augmentation devices^{65,70} have been explored to reconstruct large rotator cuff defects but with limited success. To date, extracellular matrix (ECM)-derived scaffolds have been the most commonly used grafts to augment rotator cuff repair¹⁹. Graft patches or tendon onlays based on decellularized allogeneic and xenogenic ECM^{2,14,18,20,80} provide both mechanical augmentation and the biological cues to improve healing, while also maintaining the ability to be remodeled by host cells. Small intestinal submucosa (SIS), containing a collagen nanofiber-based architecture and alignment, is commercially available as a graft patch for improving cuff repair. Although promising results have been reported in animal models, suboptimal outcomes were observed in human trials^{37,81}, attributed to a mismatch in mechanical properties and rapid matrix remodeling experienced in the physiologically demanding and often diseased shoulder joint. A systematic comparison of four commercially available ECM scaffolds, specifically, Restore® made from porcine SIS, CuffPatch® made from porcine SIS, GraftJacket® made from human dermis, and TissueMend® made from bovine dermis was conducted by Derwin et al using a canine model. It was found that SIS scaffolds had significantly lower mechanical properties than the native tendon, also noted was a decrease in mechanical properties due to premature graft resportion²⁰. Therefore, the debilitating effect of rotator cuff tears coupled with the high incidence of failure associated with existing graft choices underscore the clinical need for alternative grafting solution with physiologically-relevant mechanical properties.

In addition to the aforementioned functional requirements for tendon grafting, another challenge in tendon repair arises from the need for biological fixation of the tendon graft. It has been observed that full-thickness rotator cuff tears most often result from avulsion of the supraspinatus tendon from the humeral head at the insertion site¹³, thereby requiring tendonto-bone repair. The supraspinatus tendon inserts into the humeral head via a direct enthesis exhibiting region-dependent matrix heterogeneity and mineral content. Specifically, four distinct yet continuous tissue regions are observed at the tendon-bone interface (Fig. 1): tendon proper, non-mineralized fibrocartilage, mineralized fibrocartilage and bone^{6,7,91}. The tendon proper consists of fibroblasts found between aligned collagen fibers in a matrix rich in type I collagen, with small amounts of type III collagen and proteoglycans 10. The nonmineralized fibrocartilage region is composed of fibrochondrocytes in a matrix of types I, II, and III collagen with fibers oriented perpendicular to the calcified interface region⁴³. The mineralized fibrocartilage region consists of hypertrophic fibrochondrocytes within a matrix of types I and II collagen⁴³, as well as type X collagen⁸⁷. The last region of the insertion site is bone which consists of osteoblasts, osteoclasts, and osteocytes in a mineralized matrix rich in type I collagen. This multi-tissue organization mediates load transfer between tendon and bone^{6,91}, minimizes the formation of stress concentrations^{6,60,90}, and supports the heterotypic cellular interactions necessary for interface function and homeostasis⁵⁴. Published studies evaluating tendon-to-bone healing have demonstrated that the normal insertion site is not regenerated following cuff repair based on current mechanical fixation methods^{31,74}, and this lack of tendon-bone integration remains a primary cause of repair failure. More recently, given the aforementioned limitations associated with available grafting options, by combining cells, growth factors, and/or biomaterials, the principles of tissue engineering 46,58 have been applied to the formation of tendon-29,33,39,59 or bonelike^{58,95} tissues in vitro and in vivo, with promising results. As such, the critical barrier to

their clinical application is in how to achieve *biological fixation* of these newly formed grafts either with each other and/or with the host environment^{54,61}.

These observations collectively suggest that, for functional and integrative repair of rotator cuff injuries, the two critical design criteria for the ideal tendon graft would center on controlling scaffold design such that the graft will exhibit physiologically-relevant mechanical properties, in addition to facilitating the regeneration of tendon-to-bone interface. Focusing on these design considerations, the objective of this review is to provide an overview of current approaches to functional and integrative tendon repair. In particular, the application of biomimetic scaffold design, or more specifically, the use of nanofiber- and nanocomposite-based scaffolds for tendon tissue engineering will be reviewed. Scaffolds provide a framework for cells to attach, proliferate, and produce matrix, and can also serve as carriers for cells and the biomolecules necessary to guide and accelerate healing. To date, nanofibers have been widely investigated for the regeneration of a variety of connective tissues, such as bone^{27,97}, meniscus³, intervertebral disk⁶⁴, cartilage⁴⁹, and ligament^{5,48}. In addition to being biomimetic with respect to the collagenous matrix (Fig. 1), a distinct advantage of nanofiber scaffolds is that they can be engineered to resemble the native tendon extracellular matrix, exhibiting high aspect ratio, surface area, permeability and porosity^{12,50,55,63,69}. Moreover, nanofiber organization and alignment can be modulated during fabrication^{63,68}, which allows for scaffold structural and material properties to be readily tailored to meet the functional demands of the rotator cuff tendons. Matrix anisotropy can be incorporated into scaffold design with high fidelity by controlling nanofiber organization and alignment. This is especially desirable for functional and integrative tendon repair, as scaffolds with biomimetic anisotropy can be fabricated to recapitulate the inherent structure-function relationship of the rotator cuff tendons, as well as at the tendon-to-bone interface.

This paper will begin with a review of nanofiber-based approaches for functional tendon repair, followed by a section highlighting the exciting research on tendon-to-bone interface regeneration and biological fixation, with an emphasis on implementation of strategic biomimicry in nanofiber scaffold design and the concomitant formation of graded multitissue systems for integrative soft tissue repair. Finally, a summary will conclude the review and future directions will be discussed.

B. Current Approaches to Functional Tendon Repair

B.1. Nanofiber Scaffold Design and Modification for Tendon Tissue Engineering

The ideal scaffold for functional and integrative tendon repair must first meet the physiological demand of the native tendon by matching its mechanical properties, while simultaneously promoting host cell-mediated healing by mimicking the ultrastructural organization of the native tendon. Furthermore, the scaffold should be biodegradable in order to be gradually replaced by new tissue while maintaining its physiologically relevant mechanical properties. Lastly, the scaffold must integrate with the host tendon and surrounding bone tissue by promoting the regeneration of the native tendon-to-bone interface. It is well established that the highly organized nanoscale structure of tendons is characterized by closely-packed parallel collagen fiber bundles, varying in diameter and is composed of bundles of individual collagen fibrils approximately 1-2nm in diameter (Fig. 1). This structural arrangement is critical for the physiological function of tendons, which includes the stabilization and guidance of joint motion, transmission of physiological loads, and the maintenance of the anatomical alignment of the skeleton. Furthermore, the parallel alignment of collagen fibers along the direction of applied load results in one of the strongest tissues in the body⁴². The collagen fibers of tendons and ligaments typically exhibit a bimodal diameter distribution in the nanometer range (approximately 40 – 400nm)

that varies according to the specific tissue type, as well as between individuals, and may also be altered during scar formation post injury⁵².

Several groups have explored tissue engineering methods for tendon or ligament repair^{1,15,21,53}. Synthetic as well as biologically derived grafts have shown favorable results during *in vitro* culture trials, as well as in relevant *in vivo* models. It is common to use scaffolds composed of microfibers based on a variety of synthetic polymers, such as poly-L-lactic acid (PLLA), polylactide-*co*-glycolide (PLGA) and polyurethane^{15,53}, as well as biological materials, such as collagen²¹ and silk^{1,36}. While these approaches have shown promising results, the scaffold architecture differs significantly from that of the inherent nanoscale organization of tendons or ligaments. Given that scaffold fiber diameters have been shown to directly affect fibroblast phenotype and matrix production⁵, there is a significant interest in enhancing physiologically relevant soft tissue regeneration utilizing scaffolds that more closely mimic the native tissue nanostructure and mechanics.

The nanoscale architecture of the collagen-rich tendon matrix can be readily recapitulated with nanofiber scaffolds, which exhibits high surface area to volume ratio, low density, high porosity, variable pore size and mechanical properties approximating those of the native tissues. Nanofibers can be fabricated using a variety of methods⁴⁴, such as drawing, template synthesis, temperature-induced phase separation, molecular self-assembly, and, most frequently, electrospinning^{57,72}. Moffat et al was the first to report on the fabrication of PLGA nanofiber scaffolds with physiologically-relevant structural and mechanical properties for rotator cuff repair⁵⁹. It was observed that human rotator cuff fibroblast morphology and growth on aligned (615nm mean fiber diameter) and unaligned (568nm mean fiber diameter) fiber matrices were dictated by fiber alignment, with distinct cell morphology and integrin expression profiles. Upregulation of α^2 integrin, a key mediator of cellular attachment to collagenous matrices, was observed when the fibroblasts were cultured on aligned fibers, and upon which a types I and III collagen-rich matrix was deposited. More recently, Xie et al developed a single continuous PLGA nanofiber scaffold that transitioned from aligned to random orientation in order to examine the effects of this transitional region on rat tendon fibroblasts in vitro⁹². After seven days of culture, the study showed that cells proliferated on both aligned and random nanofiber orientations, but that a rounded morphology was found on unaligned nanofibers, while similar to what was seen by Moffat et al⁵⁹, cells cultured on aligned nanofibers appeared long and spindle-like, and were aligned along the long axes of the fibers.

Biological response to polymeric nanofibers may also be enhanced by additional surface modifications. For example, Rho et al electrospun aligned type I collagen nanofiber scaffolds with a mean fiber diameter of 460nm and evaluated the response of human epidermal cells after coating the scaffolds with several adhesion proteins⁷³. It was found that cell proliferation was enhanced by coating the scaffolds with both type I collagen and laminin, Recently, Park et al applied plasma treatment to polyglycolic acid (PGA), PLGA and PLLA nanofibers and grafted a surface layer of hydrophilic acrylic on these scaffolds⁶⁶. It was found that NIH 3T3 fibroblasts seeded on these modified scaffolds spread and proliferated faster compared to those on unmodified controls. Another biomimetic method to enhance biological responses is to incorporate collagen into nanofiber scaffolds. Using coelectrospinning, Zhang et al added collagen to poly-\varepsilon-caprolactone (PCL) nanofibers as well as coated these nanofibers with collagen⁹⁸. While these scaffolds promoted human dermal fibroblast growth independent of the incorporation method, cell migration into the scaffold was mainly observed in the co-electrospun PCL-collagen scaffolds. Similarly, Theisen et al seeded human tendon fibroblasts on a composite PLLA-type I collagen scaffold and found that, when compared to the PLLA control, the blended scaffold upregulated the expression of types I, III, X collagen and decorin⁸⁵.

Nanofibers have also been used to improve existing scaffold design, resulting in a graft with a more biomimetic surface for eliciting desired cell response. For example, Sahoo *et al* electrospun PLGA nanofibers directly onto a woven microfiber PLGA scaffold in order to increase cell seeding efficiency while maintaining a scaffold that was mechanically competent⁷⁸. The attachment, proliferation and differentiation of porcine bone marrow stromal cells was evaluated on these scaffolds and, when compared to scaffolds seeded via a fibrin gel delivery, it was found that seeding the cells onto nanofiber-coated scaffolds enhanced proliferation, collagen production and upregulated the gene expression of several tendon-related markers, namely decorin, biglycan, and type I collagen.

In an alternative strategy to enhance the mechanical properties of electrospun nanofibers, Barber *et al* fabricated braided nanofiber scaffolds by electrospinning bundles of aligned PLLA and braiding either 3, 4, or 5 bundles together to generate their final construct⁴. Human mesenchymal stem cells (hMSC) cultured on the braided scaffolds aligned parallel to the length of the nanofibers, and displayed realignment of actin filaments which progressed with culture time. Cells produced a matrix which bridged the gap between bundles, and when the hMSC were concurrently stimulated with cyclic tensile strain and cultured in tenogenic medium containing bone morphogenetic protein-2 (BMP-2), differentiation factor-5 (GDF-5), and fibroblast growth factor-2 (FGF-2) a significant upregulation of scleraxis was reported, indicative of hMSC differentiation into the tenogenic lineage.

The incorporation of bioactive molecules in the scaffold system to promote stem cell differentiation is another strategy adopted for tendon repair. Recently, Sahoo *et al* seeded rabbit mesenchymal progenitor cells on a hybrid scaffold for tendon repair⁷⁷. The scaffold was fabricated by electrospinning basic fibroblast growth factor (bFGF) releasing PLGA nanofibers onto knitted silk microfibers. This novel scaffold mimicked the extracellular matrix in function, initially stimulating stem cell proliferation, and subsequently promoting tenogenic differentiation as indicated by an increase in both types I and III collagen expression after two weeks *in vitro*.

The recent identification of tendon stem cells (TSPCs)⁹ has provided another cell source for studying tendon development and repair. Human TSPCs typically reside in a matrix of parallel collagen fibers, thus fiber alignment is expected to play a role in regulating stem cells differentiation^{9,35}. When Yin *et al* investigated the impact of PLLA nanofiber alignment on hTSPC differentiation⁹⁶, the expression of the tendon-specific gene scleraxis, as well as the matrix gene collagen XIV, were significantly higher on aligned versus random scaffolds after 7 days of culturing in osteogenic media. On the other hand, both gene expression and histological staining indicated that the randomly orientated nanofibers stimulate hTSPC differentiation towards an osteogenic lineage, while this was not observed for the aligned nanofiber group, providing evidence that cell orientation induced by the scaffold nanotopography play an important role in cell differentiation. Finally, intramuscular evaluation of hTSPC-seeded nanofibers in an athymic mouse model showed that the aligned scaffold guided both cell organization and collagen bundle formation, while a random orientation of both cells and matrix were observed on the random fiber controls.

B.2. Mechanical Stimulation of Scaffolds

While limited results are available for mechanical loading on nanofiber-based scaffolds, the role of mechanical loading on tendon tissue engineering has been investigated extensively for collagen-based scaffolds. For example, Gilbert *et al* loaded NIH 3T3 fibroblasts cultured on porcine small intestinal submucosa (SIS-ECM) as a function of stretch (0%, 5%,10% and 15%) and loading frequencies (0.1, 0.3 and 0.5 Hz)³². It was found that in general, the expression of type I collagen increased while that of type III collagen decreased with

increasing frequency, matching collagen expression profiles during late stage of remodeling during native tendon healing. In another study, Berry *et al* seeded human dermal fibroblasts in collagen gels and preloaded the gels (2 mN or 10mN static loading) before applying 10% cyclic strain (1 Hz) for 24 hours⁸. While cell proliferation increased with mechanical loading regardless of preloading regimen, elevated collagen synthesis was only seen in the 2mN group. Using a custom bioreactor, Garvin *et al* showed that avian flexor tendon cells seeded on the bioartifical tendon, when subjected to mechanical loading, upregulated types I, III, and XII collagen expression at levels consistent with those of cells found in the flexor tendon²⁹.

Juncosa-Melvin *et al* investigated the potential of hMSCs seeded on collagen sponges for patellar tendon repair⁴¹. Mechanical loading was applied to the scaffold to a peak strain of 4% once every 5 minutes for up to 8 hours/day over two weeks of culture. It was observed that the stimulated constructs exhibited 2.5 times the linear stiffness of the non-stimulated controls. When tested in a rabbit patellar tendon defect model accompanied by normal cage activity after surgery, maximum force, linear stiffness, maximum stress and linear modulus for the stimulated scaffold group were found to approximate those of the native patellar tendon. In a follow-up study⁴⁰, it was found that both types I and III collagen expression increased significantly in the stimulated group while no difference in decorin and fibronectin expression were evident with respect to the unloaded control.

Mechanical stimulation of nanofiber scaffolds with bioreactors has been used to promote cell infiltration through nanofiber scaffolds. Pham *et al* utilized a flow perfusion bioreactor and showed that rat MSC infiltration distance on bilayered constructs of unaligned PCL microfibers with PCL nanofibers on top was increased by a factor of 5 versus the static control⁶⁸. Similarly, Srouji *et al* utilized a plug-flow bioreactor to culture hMSCs seeded on unaligned PCL and collagen nanofiber scaffolds⁸³. After 6 weeks, cells were evident throughout the scaffold. The preconditioned constructs were implanted subcutaneously in nude mice and good integration with the surrounding tissues and neovascularization were found. These studies demonstrate the ability of media perfusion bioreactor systems to improve mass transport throughout 3D tissue engineered constructs and to promote the production of sufficient cell mass necessary for *in vivo* grafting and host integration.

C. Soft Tissue-to-Bone Interface Regeneration and Integrative Tendon Repair

The debilitating effect of rotator cuff tears coupled with the high incidence of failure associated with existing repair techniques ^{14,20,37} underscore the clinical need for functional solutions for integrative tendon-to-bone repair. The supraspinatus tendon of the rotator cuff connects to bone via a direct insertion, a complex enthesis consisting of three distinct yet continuous regions of soft tissue, fibrocartilage, and bone ^{6,16,89}. The fibrocartilaginous interface region is further divided into non-calcified and calcified regions (Fig. 2). The insertion site serves several functions, including enabling the transfer of loads between distinct tissues ^{6,91}, minimizing the formation of stress concentrations ^{6,60,90} and supporting the communication between multiple cell types necessary for interface function and homeostasis ⁵⁴. Therefore, regeneration of this multi-tissue transition is essential for biological fixation of tendon grafts.

To address this challenge, several groups have evaluated the feasibility of integrating tendon grafts with bone or biomaterials through the formation of anatomic insertion sites. Fujioka et al examined the effects of reattaching the bone and tendon in a rat model for Achilles tendon avulsion²⁴. After four weeks, surgical reattachment of tendon to bone increased type X collagen deposition, and allowed tissue to maintain distinct regions of calcified and non-

calcified fibrocartilage tissue. Additionally Inoue *et al* promoted supraspinatus tendon integration with a metallic implant using a bone marrow-infused bone graft³⁸. Other approaches include reattaching the tendon to bone with the aid of natural materials such as periosteum or demineralized bone matrix. Specifically Chang *et al* sutured a periosteal flap from tendon to bone at the end of a rabbit infraspinatus tendon, and observed remodeling of tissue at the interface over 12 weeks¹¹. At four weeks post-surgery, a fibrous layer with increased mechanical properties was seen at the interface region, which developed into a matrix similar to fibrocartilage after three months. This tissue layer possessed an increased failure load, proving improvement in integration at the interface. Similarly, Sundar *et al* attempted to augment interface healing post-surgery by implanting demineralized bone between tendon and bone in an ovine patellar tendon model⁸⁴. It was found that bone enhanced deposition of both mineralized and non-mineralized fibrocartilage at the interface, with improved weight bearing. These pioneering studies collectively demonstrate the potential for regenerating the tendon-to-bone interface and delineate the need for functional grafting solutions that can promote biological fixation.

Current knowledge of the structure-function relationship at the tendon-bone insertion ^{86,87} provides invaluable cues for biomimetic and integrative tendon scaffold design. Combining biomechanical testing with the quasi-linear viscoelastic model (QLV)²⁵, Thomopoulos *et al* determined the mechanical properties of the rat supraspinatus tendon insertion sites and later related it to collagen orientation using a finite element model^{86,87}. It was found that controlled collagen fiber alignment plays an important role in reducing stress concentration at the tendon-bone insertion⁸⁶. Another hallmark of the tendon-to-bone interface is a region-dependent mineral distribution across the insertion site^{7,91}. Calcium phosphate is a prime modulator of both the biochemical milieu and the nature of mechanical stimuli presented to cells. The presence of the non-calcified and calcified fibrocartilage regions at the interface is of functional significance, as higher matrix mineral content have been associated with greater mechanical properties in connective tissues^{17,23,71}. Moffat *et al* correlated the aforementioned increase in compressive modulus across the interface to the onset of mineral presence in the calcified fibrocartilage region⁶⁰. It is clear that both collagen alignment and mineral content are critical design parameters for functional and integrative tendon repair.

Based on these observations, the ideal scaffold for tendon-to-bone interface tissue engineering must exhibit a gradient of structural and mechanical properties mimicking those of the multi-tissue insertion. Compared to a homogenous structure, a stratified scaffold with pre-designed, tissue-specific matrix inhomogeneity can better sustain and transmit the distribution of complex loads inherent at the direct insertion site. A key criterion in stratified scaffold design is that the phases must be interconnected and pre-integrated with each other, thereby supporting the formation of distinct yet continuous multi-tissue regions. In other words, the scaffold would exhibit a gradient of physical properties in order to allow for the recapitulation of interface-like heterogeneity throughout the scaffold. It should also support growth and differentiation, as well as the interactions between heterotypic and homotypic cell populations to promote the formation and maintenance of multi-tissue interface. In addition, the scaffold phases should be biodegradable so it is gradually replaced by living tissue, and the degradation process must be balanced with respect to mechanical properties in order to permit physiological loading and neo-interface function. Finally, the interface scaffold must be compatible with existing tendon reconstruction grafts or pre-incorporated into tissue engineered graft design in order to achieve integrative and functional soft tissue repair.

To this end, a scaffold recapturing the nanoscale interface organization, with preferentially aligned nanofiber organization and region-dependent change in mineral content would be highly advantageous. Building on the functional PLGA nanofiber scaffold designed for

tendon tissue engineering⁵⁹, Moffat *et al* designed a biphasic scaffold, with the top layer consisted of nanofibers of PLGA, and the second layer of composite nanofibers of PLGA and hydroxyapatite nanoparticles. The biphasic design is aimed at regenerating both the non-mineralized and mineralized fibrocartilage regions of the tendon-to-bone insertion site, while promoting osteointegration with PLGA-HA nanofibers⁶². The response of tendon fibroblasts, osteoblasts and chondrocytes were evaluated on these nanocomposite scaffolds with promising results *in vitro*. When tested *in vivo* subcutaneously as well as in a rat rotator cuff repair model⁸², the biphasic scaffold supported regeneration of continuous non-calcified and calcified fibrocartilage regions (Fig. 2), demonstrating the potential of a biodegradable nanofiber-based scaffold system for integrative tendon-to-bone repair.

Controlling scaffold mineral distribution may be another promising approach for repairing the soft tissue-to-bone insertion site. Working with PCL nanofibers and utilizing a novel extrusion system coupled with electrospinning, Erisken *et al* incorporated calcium phosphate nanoparticles into non-woven nanofiber meshes, resulting in a gradient of mineral distribution across the depth of the PCL scaffold²². Within four weeks, culturing of MC3T3 cells on these nanofiber constructs led to the formation of a gradient of calcified matrix. Recently, using the simulated body fluid immersion method, Li *et al* formed a calcium phosphate coating on a nonwoven mat of gelatin-coated PCL and plasma-treated PLGA nanofibers in a graded manner⁵¹. It was observed that the gradient in mineral content resulted in spatial variations in the stiffness and affected the number of preosteoblastic MC3T3 cells that adhered to the substrate.

In addition to engineering the tendon-bone interface, the muscle-tendon junction is another critical research area for integrative tendon repair. As the tendon joins the muscle to bone, thus the myotendinous junction (MTJ), which connects muscle to tendon, acts as a bridge to distribute mechanical loads⁹⁴. This interface consists of a band of fibroblast-laden, interdigitating band of tissue that connects the dense collagen fibers of the tendon to the more elastic muscle fibers while displaying a gradient of structural properties⁸⁸. Current tissue engineering approaches, as demonstrated by Saxena et al, include the incorporation of myoblasts on a composite scaffold of fibronectin hydrogel and PGA⁷⁹. A muscle-like matrix was formed in vitro and was capable of responding to an electrical stimulus. Recently, Larkin et al co-cultured skeletal muscle constructs with engineered tendon constructs in order to regenerate the muscle-tendon interface⁴⁷. Interestingly, upregulation of paxillin was observed at the neo-interface, and the MTJ formed was able to sustain tensile loading beyond the physiological strain range. These studies demonstrate the promise of the biodegradable nanofiber-based scaffold system for interface tissue engineering and the potential of harnessing cellular interaction for engineering both the tendon-to-bone and muscle-to-tendon interface and ultimately, functional and integrative tendon repair ⁴⁵.

D. Summary and future directions

Interface tissue engineering focuses on the functional regeneration of the anatomic interface between distinct tissue types to accelerate the translation of tissue engineered technologies to the clinical setting. It aims to develop innovative technologies for the formation of complex tissue systems, with the broader goal of achieving the biological fixation of tissue engineered grafts with the host environment. In this regard, nanotechnology-based approaches to connective tissue repair offer several distinct advantages. Specifically, nanofiber-based scaffold systems are advantageous due to their inherent characteristics, with potential to mimic the native collagenous tendon, interface and bone matrix, and ultimately regulate cellular response. In addition, nanofiber substrates can be fabricated from a variety of synthetic as well as natural polymers, with controlled geometry, mechanical properties, porosity, permeability, degradation kinetics, and fiber diameter. The studies highlighted here

and many others collectively demonstrate the promise and the excitement in the field regarding nanotechnology-based scaffolds for guided orthopedic tissue engineering and integrative soft tissue repair.

The critical research question in the emerging field of orthopedic interface tissue engineering centers on how the graded structures between different types of connective tissues are formed, reestablished post-injury, and maintained in the body. Moreover, the effects of biological, physical, and chemical stimulation on interface formation and regeneration also remain to be explored. It is anticipated that advances in biomimetic design of nanofiber-based scaffolds for integrative soft tissue repair will be guided by continued exploration of the structure-function relationship of the native tissue-to-tissue interfaces, and increased understanding of the mechanisms governing its repair and development.

In addition, scaffold fabrication and scaling issues must be overcome in order for the widespread clinical utilization of nanofiber-based systems for functional orthopedic tissue engineering and integrative repair to be realized. For example, recent advances in nanotechnology and in the delivery of bioactive agents that are immobilized within the carriers could provide additional methods to control or enhance the formation of single- or multi-tissue systems. However, the electrospinning process used to fabricate nanofibers requires that the polymer first be soluble in a variety of toxic solvents, which may have undesired effects on the incorporation of either biomolecules or cells. Thus incorporation of biomolecules into nanofiber-based systems, while keeping them structurally stable and biologically active, and controlling their subsequent release remains to be investigated. Additionally, high-throughput fabrication and delivery processes need to be developed for scaling up nanofiber scaffolds and enabling their commercial applicability. Moreover, further optimization of scaffold design strategies is anticipated for effective clinical translation and surgical implementation. For example, combining the optimal strategies devised from the tendon and the tendon-to-bone interface regeneration in this review may yield a graft system which can enable integration with both soft and hard tissue. Such a composite scaffold system would be optimal for treating massive rotator cuff tears. Finally, the development of physiologically-relevant in vivo soft tissue repair models, of both healthy and diseased, are needed in order to evaluate the clinical efficacy of these biomimetic scaffolds

Conclusion

In closing, the design of biomimetic, nanofiber-based scaffolds for tendon and tendon-bone interface regeneration described in this review offer a promising strategy for achieving functional and integrative tendon repair. It is anticipated that these efforts will lead to the development of a new generation of biological fixation devices for soft tissue repair, and will improve clinical outcome as well as quality of life for patients suffering from the debilitating effects of soft tissue injuries.

Acknowledgments

Funding: The authors gratefully acknowledge the National Institutes of Health (NIH/NIAMS AR052402; AR056459; and AR055280), the New York Stem Cell Initiative (HHL) and the National Science Foundation Graduate Fellowship (DRB), GK-12 Fellowship (GK-12 0338329, NML) and National Science and Engineering Council of Canada (NSERC PGS-D3, XZX) for funding support.

Reference

 Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002; 23(20):4131–4141. ISSN: 0142-9612. [PubMed: 12182315]

- 2. Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002; 13(5):377–383. doi:10.1016/S1084952102000940. [PubMed: 12324220]
- 3. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 2007; 28(11):1967–1977. doi: 10.1016/j.biomaterials.2007.01.004. [PubMed: 17250888]
- 4. Barber JG, Handorf AM, Allee TJ, Li WJ. Braided Nanofibrous Scaffold for Tendon and Ligament Tissue Engineering. Tissue Eng Part A. Sep 6.2011 doi:10.1089/ten.tea.2010.0538.
- 5. Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D,L-lacticco-glycolic acid) meshes. Biomaterials. 2006; 27(33):5681–5688. doi:10.1016/j.biomaterials.2006.07.005. [PubMed: 16914196]
- 6. Benjamin M, Evans EJ, Copp L. The histology of tendon attachments to bone in man. J Anat. 1986; 149:89–100. [PubMed: 3693113]
- Benjamin M, Kumai T, Milz S, Boszczyk BM, Boszczyk AA, Ralphs JR. The skeletal attachment of tendons--tendon "entheses". Comp Biochem Physiol A Mol Integr Physiol. 2002; 133(4):931–945. doi:10.1016/S1095-6433(02)00138-1. [PubMed: 12485684]
- Berry CC, Shelton JC, Bader DL, Lee DA. Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng. 2003; 9(4):613–624. doi: 10.1089/107632703768247313. [PubMed: 13678440]
- 9. Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007; 13(10): 1219–1227. ISSN:1078-8956. [PubMed: 17828274]
- Blevins FT, Djurasovic M, Flatow EL, Vogel KG. Biology of the rotator cuff tendon. Orthop Clin North Am. 1997; 28(1):1–16. [PubMed: 9024427]
- Chang CH, Chen CH, Su CY, Liu HT, Yu CM. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histological study in rabbits. Knee Surg Sports Traumatol Arthrosc. 2009; 17(12):1447–1453. doi:10.1007/s00167-009-0809-x. [PubMed: 19440695]
- Christenson EM, Anseth KS, van den Beucken JJ, Chan CK, Ercan B, Jansen JA, et al. Nanobiomaterial applications in orthopedics. J Orthop Res. 2007; 25(1):11–22. doi: 10.1002/jor. 20305. [PubMed: 17048259]
- 13. Codman EA. The Shoulder, Rupture of the Supraspinatus Tendon and Other Lesions In or About the Subacromial Bursa. 1934
- 14. Coons DA, Alan Barber F. Tendon graft substitutes-rotator cuff patches. Sports Med Arthrosc. 2006; 14(3):185–190. doi:10.1097/00132585-200609000-00011. [PubMed: 17135966]
- 15. Cooper JA Jr. Sahota JS, Gorum WJ, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A. Feb 27; 2007 104(9):3049–3054. doi:10.1073/pnas.0608837104. [PubMed: 17360607]
- Cooper RR, Misol S. Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg Am. 1970; 52(1):1–20. [PubMed: 4189231]
- 17. Currey JD. The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone. J Biomech. 1988; 21(2):131–139. [PubMed: 3350827]
- Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am J Sports Med. 2001; 29(2):175–184. [PubMed: 11292042]
- 19. Derwin KA, Badylak SF, Steinmann SP, Iannotti JP. Extracellular matrix scaffold devices for rotator cuff repair. Journal of Shoulder and Elbow Surgery. 2010; 19(3):467–476. doi:10.1016/j.ise.2009.10.020. [PubMed: 20189415]

 Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP. Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am. 2006; 88(12):2665–2672. doi:10.2106/JBJS.E.01307. [PubMed: 17142417]

- Dunn MG, Liesch JB, Tiku ML, Zawadsky JP. Development of fibroblast-seeded ligament analogs for ACL reconstruction. J Biomed Mater Res. 1995; 29(11):1363–1371. [PubMed: 8582904]
- 22. Erisken C, Kalyon DM, Wang H. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials. 2008; 29(30):4065–4073. ISSN:0142-9612. [PubMed: 18649939]
- 23. Ferguson VL, Bushby AJ, Boyde A. Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat. 2003; 203(2):191–202. doi:10.1046/j. 1469-7580.2003.00193.x. [PubMed: 12924819]
- 24. Fujioka H, Thakur R, Wang GJ, Mizuno K, Balian G, Hurwitz SR. Comparison of surgically attached and non-attached repair of the rat Achilles tendon-bone interface. Cellular organization and type X collagen expression. Connect Tissue Res. 1998; 37(3-4):205–218. [PubMed: 9862222]
- 25. Fung YC. Stress-strain-history relations of soft tissues in simple elongation. 1972:181–208.
- 26. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004; 86-A(2):219–224. ISSN:0021-9355. [PubMed: 14960664]
- 27. Garreta E, Gasset D, Semino C, Borros S. Fabrication of a three-dimensional nanostructured biomaterial for tissue engineering of bone. Biomol Eng. 2007; 24(1):75–80. ISSN:1389-0344. [PubMed: 16846750]
- 28. Gartsman GM. Massive, irreparable tears of the rotator cuff. Results of operative debridement and subacromial decompression. J Bone Joint Surg Am. 1997; 79(5):715–721. [PubMed: 9160944]
- Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 2003; 9(5):967–979. doi: 10.1089/107632703322495619. [PubMed: 14633381]
- 30. Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clin Orthop Relat Res. 1994; (304):43–53. [PubMed: 8020233]
- 31. Gerber C, Schneeberger AG, Perren SM, Nyffeler RW. Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am. 1999; 81(9):1281–1290. [PubMed: 10505524]
- 32. Gilbert TW, Stewart-Akers AM, Sydeski J, Nguyen TD, Badylak SF, Woo SL. Gene expression by fibroblasts seeded on small intestinal submucosa and subjected to cyclic stretching. Tissue Eng. 2007; 13(6):1313–1323. doi: 10. 1089/ten.2006.0318. [PubMed: 17518717]
- 33. Goh JC, Ouyang HW, Teoh SH, Chan CK, Lee EH. Tissue-engineering approach to the repair and regeneration of tendons and ligaments. Tissue Eng. 2003; 9(Suppl 1):S31–S44. doi: 10.1089/10763270360696969. [PubMed: 14511469]
- 34. Gulotta LV, Kovacevic D, Ehteshami JR, Dagher E, Packer JD, Rodeo SA. Application of bone marrow-derived mesenchymal stem cells in a rotator cuff repair model. Am J Sports Med. 2009; 37(11):2126–2133. doi: 10.1177/0363546509339582. [PubMed: 19684297]
- 35. Hoffmann A, Gross G. Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. Int Orthop. 2007; 31(6):791–797. doi:10.1007/s00264-007-0395-9. [PubMed: 17634943]
- 36. Horan RL, Toponarski I, Boepple HE, Weitzel PP, Richmond JC, Altman GH. Design and characterization of a scaffold for anterior cruciate ligament engineering. J Knee Surg. 2009; 22(1): 82–92. doi:10.1055/s-0030-1247730. [PubMed: 19216356]
- 37. Iannotti JP, Codsi MJ, Kwon YW, Derwin K, Ciccone J, Brems JJ. Porcine small intestine submucosa augmentation of surgical repair of chronic twotendon rotator cuff tears. A randomized, controlled trial. J Bone Joint Surg Am. 2006; 88(6):1238–1244. ISSN:0021-9355. [PubMed: 16757756]
- 38. Inoue N, Ikeda K, Aro HT, Frassica FJ, Sim FH, Chao EY. Biologic tendon fixation to metallic implant augmented with autogenous cancellous bone graft and bone marrow in a canine model. J Orthop Res. 2002; 20(5):957–966. ISSN:0736-0266. [PubMed: 12382960]

39. Juncosa N, West JR, Galloway MT, Boivin GP, Butler DL. In vivo forces used to develop design parameters for tissue engineered implants for rabbit patellar tendon repair. J Biomech. 2003; 36(4):483–488. ISSN:0021-9290. [PubMed: 12600338]

- 40. Juncosa-Melvin N, Matlin KS, Holdcraft RW, Nirmalanandhan VS, Butler DL. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 2007; 13(6):1219–1226. doi:10.1089/ten. 2006.0339. [PubMed: 17518715]
- 41. Juncosa-Melvin N, Shearn JT, Boivin GP, Gooch C, Galloway MT, West JR, et al. Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 2006; 12(8):2291–2300. doi:10.1089/ten. 2006.12.2291. [PubMed: 16968169]
- 42. Jung HJ, Fisher MB, Woo SL. Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons. Sports Med Arthrosc Rehabil Ther Technol. 2009; 1(1):9. doi: 10.1186/1758-2555-1-9. [PubMed: 19457264]
- 43. Kumagai J, Sarkar K, Uhthoff HK, Okawara Y, Ooshima A. Immunohistochemical distribution of type I, II and III collagens in the rabbit supraspinatus tendon insertion. J Anat. 1994; 185(Pt 2): 279–284. [PubMed: 7961134]
- 44. Kumbar SG, James R, Nukavarapu SP, Laurencin CT. Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater. 2008; 3(3):034002. doi:10.1088/1748-6041/3/3/034002. [PubMed: 18689924]
- 45. Ladd MR, Lee SJ, Stitzel JD, Atala A, Yoo JJ. Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials. 2011; 32(6):1549–1559. ISSN:0142-9612. [PubMed: 21093046]
- 46. Langer R, Vacanti JP. Tissue Engineering. Science. 1993; 260(5110):920–926. [PubMed: 8493529]
- 47. Larkin LM, Calve S, Kostrominova TY, Arruda EM. Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. Tissue Eng. 2006; 12(11):3149–3158. doi: 10.1089/ten.2006.12.3149. [PubMed: 17518629]
- 48. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005; 26(11):1261–1270. doi:10.1016/j.biomaterials.2004.04.037. [PubMed: 15475056]
- 49. Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A. Dec 15; 2003 67(4):1105–1114. doi:10.1002/jbm.a.10101. [PubMed: 14624495]
- 50. Li WJ, Mauck RL, Cooper JA, Yuan X, Tuan RS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech. 2007; 40(8):1686–1693. doi: 10.1016/j.jbiomech.2006.09.004. [PubMed: 17056048]
- 51. Li XR, Xie JW, Lipner J, Yuan XY, Thomopoulos S, Xia YN. Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site. Nano Letters. 2009; 9(7):2763–2768. doi:10.1021/nl901582f. [PubMed: 19537737]
- 52. Liang R, Woo SL, Takakura Y, Moon DK, Jia F, Abramowitch SD. Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res. 2006; 24(4):811–819. doi:10.1002/jor.20080. [PubMed: 16514641]
- Lu HH, Cooper JA Jr. Manuel S, Freeman JW, Attawia MA, Ko FK, et al. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Biomaterials. 2005; 26(23):4805–4816. ISSN:0142-9612. [PubMed: 15763260]
- 54. Lu HH, Jiang J. Interface tissue engineering and the formulation of multiple-tissue systems. Adv Biochem Eng Biotechnol. 2006; 102:91–111. doi:10.1007/b138509. [PubMed: 17089787]
- 55. Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005; 11(1-2):101–109. doi:10.1089/ten. 2005. 11.101. [PubMed: 15738665]
- 56. Mansat P, Cofield RH, Kersten TE, Rowland CM. Complications of rotator cuff repair. Orthop Clin North Am. 1997; 28(2):205–213. [PubMed: 9113716]

57. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of Collagen Nanofibers. Biomacromolecules. 2002; 3:232–238. doi:10.1021/bm015533u. [PubMed: 11888306]

- 58. Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R. Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials. 1993; 14:323–330. [PubMed: 8507774]
- Moffat KL, Kwei AS, Spalazzi JP, Doty SB, Levine WN, Lu HH. Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng Part A. 2009; 15(1):115–126. doi:10.1089/ ten.tea.2008.0014. [PubMed: 18788982]
- 60. Moffat KL, Sun WH, Pena PE, Chahine NO, Doty SB, Ateshian GA, et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc Natl Acad Sci U S A. Jun 10; 2008 105(23):7947–7952. doi:10.1073/pnas.0712150105. [PubMed: 18541916]
- 61. Moffat KL, Wang IN, Rodeo SA, Lu HH. Orthopedic interface tissue engineering for the biological fixation of soft tissue grafts. Clin Sports Med. 2009; 28(1):157–176. doi:10.1016/j.csm. 2008.08.006. [PubMed: 19064172]
- 62. Moffat KL, Zhang X, Greco S, Boushell MK, Guo XE, Doty SB, et al. In vitro and in vivo evaluation of a bi-phasic nanofiber scaffold for integrative rotator cuff repair. Transactions of Orthopeadic Research Society. 2011
- 63. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 2007; 13(8):1845–1866. doi:10.1089/ten. 2006.0078. [PubMed: 17518727]
- 64. Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res. 2007; 25(8):1018–1028. doi:10.1002/jor.20384. [PubMed: 17457824]
- 65. Ozaki J, Fujimoto S, Masuhara K, Tamai S, Yoshimoto S. Reconstruction of chronic massive rotator cuff tears with synthetic materials. Clin Orthop Relat Res. 1986; (202):173–183. [PubMed: 3955946]
- 66. Park K, Ju YM, Son JS, Ahn KD, Han DK. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J Biomater Sci Polym Ed. 2007; 18(4): 369–382. doi:10.1163/156856207780424997. [PubMed: 17540114]
- 67. Park MC, Cadet ER, Levine WN, Bigliani LU, Ahmad CS. Tendon-to-bone pressure distributions at a repaired rotator cuff footprint using transosseous suture and suture anchor fixation techniques. Am J Sports Med. 2005; 33(8):1154–1159. doi:10.1177/0363546504273053. [PubMed: 16000662]
- 68. Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006; 7(10):2796–2805. doi: 10.1021/bm060680j. [PubMed: 17025355]
- 69. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006; 12(5):1197–1211. doi: 10.1089/ten.2006.12.1197. [PubMed: 16771634]
- 70. Post M. Rotator cuff repair with carbon filament. A preliminary report of five cases. Clin Orthop Relat Res. 1985; (196):154–158. [PubMed: 3995818]
- Ramakrishnan N, Xia Y, Bidthanapally A. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage. J Orthop Surg Res. 2008; 348 doi: 10.1186/1749-799X-3-48.
- 72. Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996; 7:216–223.
- 73. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006; 27(8):1452–1461. ISSN:0142-9612. [PubMed: 16143390]
- 74. Rodeo SA. Biologic augmentation of rotator cuff tendon repair. J Shoulder Elbow Surg. 2007; 16(5 Suppl):S191–S197. doi:10.1007/s11999-007-0112-4. [PubMed: 17574875]
- 75. Rokito AS, Zuckerman JD, Gallagher MA, Cuomo F. Strength after surgical repair of the rotator cuff. J Shoulder Elbow Surg. 1996; 5(1):12–17. [PubMed: 8919437]

 Romeo AA, Hang DW, Bach BR Jr. Shott S. Repair of full thickness rotator cuff tears. Gender, age, and other factors affecting outcome. Clin Orthop Relat Res. 1999; (367):243–255. [PubMed: 10546622]

- 77. Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. Jun 15; 2010 93(4):1539–1550. doi:10.1002/jbm.a.32645. [PubMed: 20014288]
- 78. Sahoo S, Ouyang H, Goh JC, Tay TE, Toh SL. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 2006; 12(1):91–99. doi: 10.1089/ten.2006.12.91. [PubMed: 16499446]
- 79. Saxena AK, Willital GH, Vacanti JP. Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng. 2001; 11(4):275–281. ISSN:0959-2989. [PubMed: 11790859]
- 80. Schlegel TF, Hawkins RJ, Lewis CW, Motta T, Turner AS. The effects of augmentation with Swine small intestine submucosa on tendon healing under tension: histologic and mechanical evaluations in sheep. Am J Sports Med. 2006; 34(2):275–280. doi: 10.1177/0363546505279912. [PubMed: 16210577]
- 81. Sclamberg SG, Tibone JE, Itamura JM, Kasraeian S. Six-month magnetic resonance imaging follow-up of large and massive rotator cuff repairs reinforced with porcine small intestinal submucosa. J Shoulder Elbow Surg. 2004; 13(5):538–541. ISSN:1058-2746. [PubMed: 15383811]
- 82. Soslowsky LJ, Carpenter JE, DeBano CM, Banes AJ, Moalli MR. Development and use of an animal model for investigations on rotator cuff disease. J Shoulder Elbow Surg. 1996; 5:383–392. [PubMed: 8933461]
- Srouji S, Kizhner T, Suss-Tobi E, Livne E, Zussman E. 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold. Journal of Materials Science-Materials in Medicine. 2008; 19(3):1249–1255. doi:10.1007/s10856-007-3218-z. [PubMed: 17701297]
- 84. Sundar S, Pendegrass CJ, Blunn GW. Tendon bone healing can be enhanced by demineralized bone matrix: a functional and histological study. J Biomed Mater Res B Appl Biomater. 2009; 88(1):115–122. doi:10.1007/s00167-009-0809-x. [PubMed: 18683228]
- 85. Theisen C, Fuchs-Winkelmann S, Knappstein K, Efe T, Schmitt J, Paletta JR, et al. Influence of nanofibers on growth and gene expression of human tendon derived fibroblast. Biomed Eng Online. 2010; 99 ISSN:1475-925X.
- 86. Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech. Jul 14.2005 doi: 10.1016/j.jbiomech.2005.05.021.
- 87. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ. Variations of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthop Res. 2003; 21(3):413–419. doi:10.1016/S0736-0266(03) 0057-3. [PubMed: 12706013]
- Tidball JG. Myotendinous junction injury in relation to junction structure and molecular composition. Exerc Sport Sci Rev. 1991; 19:419

 –445. [PubMed: 1936092]
- 89. Wang IE, Mitroo S, Chen FH, Lu HH, Doty SB. Age-dependent changes in matrix composition and organization at the ligament-to-bone insertion. J Orthop Res. Jun 15; 2006 24(8):1745–1755. doi:10.1002/jor.20149. [PubMed: 16779829]
- 90. Woo SL, Gomez MA, Seguchi Y, Endo CM, Akeson WH. Measurement of mechanical properties of ligament substance from a bone-ligament-bone preparation. J Orthop Res. 1983; 1(1):22–29. [PubMed: 6679572]
- 91. Woo SL, Maynard J, Butler DL, Lyon RM, Torzilli PA, Akeson WH, et al. Ligament, Tendon, and Joint Capsule Insertions to Bone. 1988; (4):133–166.
- 92. Xie J, Li X, Lipner J, Manning CN, Schwartz AG, Thomopoulos S, et al. "Aligned-to-random" nanofiber scaffolds for mimicking the structure of the tendonto-bone insertion site. Nanoscale. Jun 9; 2010 2(6):923–926. doi:10.1039/c0nr00192a. [PubMed: 20648290]
- 93. Yamanaka K, Matsumoto T. The joint side tear of the rotator cuff. A follow up study by arthrography. Clin Orthop Relat Res. 1994; (304):68–73. [PubMed: 8020236]
- 94. Yang PJ, Temenoff JS. Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev. 2009; 15(2):127–141. doi:10.1089/ten.teb.2008.0371. [PubMed: 19231983]

95. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996; 17(2):175–185. [PubMed: 8624394]

- 96. Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010; 31(8):2163–2175. ISSN: 0142-9612. [PubMed: 19995669]
- 97. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003; 24(12):2077–2082. doi:0142-9612. [PubMed: 12628828]
- 98. Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules. 2005; 6(5):2583–2589. doi:10.1021 bm050314k. [PubMed: 16153095]

	Tissue Region	Cell Type	Major Matrix Component
Tendon 125µm	Tendon	Fibroblasts	Collagen types I, III (Diameter: 40-400 nm)*
L. Wat	Non-mineralized Fibrocartilage	Fibrochondrocytes	Collagen types I, II, III
Fibrocartilage	Mineralized Fibrocartilage	Hypertrophic Fibrochondrocytes	Collagen types I, II, X
Bone	Bone	Osteoblasts Osteocytes Osteoclasts	Collagen type I (Diameter: 34.5-39.5nm)^

Figure 1.Structure and composition of tendon-to-bone insertion site.

Masson's Trichrome (rat)⁶² *Liang et al. 2006; ^Tzaphlidou 2008

Figure 2. Biomimetic Scaffold Design. Native tendon-to-bone interface with distinct yet continuous non-calcified and calcified matrix regions, (von Kossa, Lewis rat) inspired the design of the biphasic nanofiber scaffold (Phase A=PLGA and Phase B=PLGA-HA), which when tested in vivo, resulted in the formation of non-calcified and calcified matrix regions (subcutaneous, 3weeks).

Table I

Scaffold-based Approaches for Tendon Repair

Study	Scaffold Composition	Scaffold Design	Cell Type/Evaluation	Observations
Gilbert <i>et al</i> . 2007 ³²	Porcine small intestinal submucosa (SIS)	Homogeneous	NIH 3T3 fibroblasts in vitro	Col I increases and Col III decreases with increased frequency of stretch
Juncosa- Melvin <i>et al</i> . 2006 ⁴¹	Collagen sponge (type I)	Homogeneous	hMSCs in vitro and in vivo (rat patellar tendon defect model)	Mechanical stimulation improves linear stiffness
Sahoo <i>et al</i> 2006 ⁷⁸	PLGA Nanofibers (300-900nm) vs. PLGA microfibers	Variable fiber diameter	Porcine MSC in vitro	Cell attachment comparable to fibrin gel-microfiber control; gene expression indicates capacity to differentiate towards tendon lineage
Barber <i>et al.</i> 2011 ⁴	Braided aligned PLGA nanofiber (702±205nm)	3, 4, or 5 aligned nanofiber bundles	hMSC in vitro	Abundant matrix formation, upregulation of scleraxis indicating differentiation into tenogenic lineage
Sahoo <i>et al.</i> 2010 ⁷⁷	PLGA nanofiber (200-700nm) with FGF incorporated + silk microfiber	Unaligned PLGA nanofibers with electrospun onto knitted silk fibers	Rabbit BMSC in vitro	Scaffolds stimulate MSC proliferation; gene expression indicates tenogenic differentiation
Yin et al. 2010 ⁹⁶	PLLA aligned (430±170nm) vs. unaligned (450±110nm) nanofibers	Homogeneous	Human tendon stem cells (TSPCs) in vitro & in vivo (intramuscular implantation in mouse model)	Aligned scaffolds promote expression of tenogenic markers. <i>In vivo</i> , aligned scaffolds guide cell and matrix organization
Pham <i>et al.</i> 2006 ⁶⁹	Micro(2-10µm) or Nano(615±152nm)- microfibrous PCL	Variable fiber diameter	Rat MSC in vitro	Culture in flow perfusion bioreactor enhances MSC infiltration distance through scaffold
Srouji <i>et al.</i> 2008 ⁸³	Unaligned PCL and collagen (1:1)	Homogeneous	hMSC in vitro & in vivo (subcutaneous, nude mouse model)	Plug-flow bioreactor culture enhances cell proliferation and infiltration; integration with host tissue and neovasculartization in vivo
Moffatt <i>et al.</i> 2009 ⁵⁹	PLGA aligned (615±152nm) vs. unaligned nanofiber (568±147nm)	Homogeneous	Human rotator cuff tendon fibroblasts in vitro	Cell morphology and matrix alignment governed by fiber alignment

Table IIScaffold-based Approaches for Tendon-to-Bone Interface Regeneration

Study	Scaffold Composition	Scaffold Design	Cell type/Evaluation	Observations
Erisken <i>et al.</i> 2008 ²²	Unaligned, extruded/ electrospun PCL nanofibers (200–2000 nm)	Gradient of scaffold mineral content	Mouse preosteoblast cells (MC3T3) in vitro	Formation of a gradient of calcified matrix
Li et al. 2009 ⁵¹	Gelatin-coated PCL nanofibers and plasma treated PLGA	Graded coating of calcium phosphate	Mouse preosteoblast cells (MC3T3) in vitro	Cells preferentially adhere and proliferate on areas with high CP content
Xie et al. 2010 ⁵¹	Aligned and unaligned PLGA nanofibers	Aligned-to-random fiber orientation	Rat tendon fibroblasts in vitro	Cells align/organize on aligned fibers; cells remain unorganized on random fibers
Moffat <i>et</i> <i>al.</i> 2011 ⁶²	Aligned PLGA deposited over PLGA-HA nanofibers Phase A (615±152nm) Phase B (340±77nm)	Biphasic with contiguous layer of PLGA and PLGA-HA	Bovine chondrocytes in vitro Rat BMSC in vivo Rat rotator cuff model	Contiguous non- calcified and calcified fibrocartilage-like matrix were formed <i>in</i> vitro and in vivo