11. Ortogonale og ortonormale baser

- Definition
- Lemma 5.5.7
- Gram-Schmidt

Først vil vi definere nogle grundbegreber til senere brug:

Definition: Vektorerne $v_1, ..., v_n$ danner en basis for vektorrummet Vhvis og kun hvis:

- (i) $v_1, ..., v_n$ er lin uafh.
- (ii) $v_1, ..., v_n$ udspænder V

En mængde vektorer fra Ver ortonormale, hvis de er:

- **ortogonale** på hinanden: $\langle v_i, v_i \rangle = 0, i \neq j$
- enhedsvektorer.

Vi har så, at en mængde af vektorer er ortonormale, hvis:

$$\langle u_i, u_j \rangle = \delta_{ij} = \begin{cases} 1 & , & i = j \\ 0 & , & i \neq j \end{cases}$$

Herudover er mængden en **ortonormal basis**, hvis vektorerne er lineært uafhængige og udspænder *V*.

Vi vil gerne vise og bevise Gram-Schmidt, men først vil vi vise følgende sætninger, der bruges i beviset for Gram-Schmidt.

Lemma 5.5.7: Lad S være et underrum af det indre-produkt rum V. Lad $x \in V$ og $\{x_1, ..., x_n\}$ være en ortonormal basis for S. $p \in S$ er projektionen af x på S. Så gælder:

$$p - x \in S^{\perp} \Leftrightarrow p = \sum_{i=1}^{n} \langle x, x_i \rangle x_i$$

Bevis: Da $p \in S$ kan vi skrive: $p = c_1x_1 + \cdots + c_nx_n$. Ifølge 5.5.2, kan vi skrive: $p = \sum_{i=1}^n c_ix_i$, $c_i = \langle p, x_i \rangle$. For alle $s \in S$ har vi så:

$$\begin{split} p-x &\in S^\perp \Leftrightarrow \langle s,p-x\rangle = 0 \\ &\Leftrightarrow \langle c_1x_1+\dots+c_nx_n,p-x\rangle = 0 \ , \ c_i \, skalar \\ &\Leftrightarrow c_1\langle x_1,p-x\rangle+\dots+c_n\langle x_n,p-x\rangle = 0 \ , \quad c_i \, skalar \\ &\Leftrightarrow \langle x_i,p-x\rangle = 0 \ , \quad i=1,\dots,n \\ &\Leftrightarrow \langle x_i,p\rangle = \langle x_i,x\rangle \ , \quad i=1,\dots,n \\ &\Leftrightarrow \langle p,x_i\rangle = \langle x,x_i\rangle \ , \quad i=1,\dots,n \\ &\Leftrightarrow p = \sum_{i=1}^n \langle x,x_i\rangle \, x_i \end{split}$$

Nu vil vi vise Gram-Schmidt, som bruges til at danne en ortonormal basis ud fra en anden basis. Processen går ud på, at man først gør de enkelte vektorer i basen til enhedsvektorer, og derefter retter man dem op med projektion.

Sætning 5.6.1 (Gram-Schmidt): Lad $\{x_1, ..., x_n\}$ være en basis til det indre produkt rum V. Lad

$$u_1 = \left(\frac{1}{\|x_1\|}\right) x_1$$

og definer $u_2, ..., u_n$ rekursivt:

$$u_{k+1} = \frac{1}{\|x_{k+1} - p_k\|} (x_{k+1} - p_k)$$
 , $k = 1, ..., n-1$

hvor vi har defineret projektionen af x_{k+1} på $Span(u_1, ..., u_k)$:

$$p_k = \langle x_{k+1}, u_1 \rangle u_1 + \dots + \langle x_{k+1}, u_k \rangle u_k$$

Så er $\{u_1, \dots, u_k\}$ en ortonormal basis for $Span(x_1, \dots, x_k)$. Mængden $\{u_1, \dots, u_n\}$ er en ortonormal basis for V.

Bevis: *Basis:* Det ses tydeligt, at det gælder for $Span(u_1) = Span(x_1)$.

IH: Vi siger det gælder for k, så der er konstrueret en mængde $\{u_1, \dots, u_k\}$ som er ortonormal for S_k og vi har:

$$Span(u_1, ..., u_k) = Span(x_1, ..., x_k) = S_k$$
, $k < n$

Induktionsskridt: k + 1.

 p_k er projektionen af x_{k+1} på S_k . Så skriver vi (jf. 5.5.7):

$$p_k = \langle x_{k+1}, u_1 \rangle u_1 + \dots + \langle x_{k+1}, u_k \rangle u_k = \sum_{i=1}^k \langle x_{k+1}, u_i \rangle u_i$$

1) Først skal vi vise, at $x_{k+1} - p_k$ er lin. uafh. og ikke-nul.

Da $p_k \in S_k$ kan vi skrive p_k som en linear kombination af x_1, \dots, x_k :

$$p_k = c_1 x_1 + \dots + c_k x_k$$

Vi kigger så på:

$$x_{k+1} - p_k = x_{k+1} - c_1 x_1 - \dots - c_k x_k$$

Og vi har her, at $x_{k+1} - p_k \in S_{k+1}$ og da x_1, \dots, x_{k+1} er lineært uafhængig da $\{x_1, \dots, x_n\}$ er en basis, så giver ovenstående ligning ikke-nul: $x_{k+1} - p_k \neq 0$ (da den har en ikke-nul skalar).

2) Så skal vi vise, at $x_{k+1}-p_k\perp u_i$, $i=1,\ldots,k$ (et krav for ONB):

Lemma 5.5.7 fortæller, at $x_{k+1} - p_k \in S_k^{\perp}$ pga. def. af p_k og dermed er

$$x_{k+1}-p_k\perp u_i$$
 , $i=1,\dots,k$

3) Til sidst skal vi vise, at vi kan danne en ny enhedsvektor ud fra $x_{k+1} - p_k$:

Hvis vi nu siger, at:

$$u_{k+1} = \frac{x_{k+1} - p_k}{\|x_{k+1} - p_k\|}$$

Så er $\{u_1, ..., u_{k+1}\}$ ortonormal (enhedsvektorer og ortogonale på hinanden) og indeholdt i S_{k+1} . Da $u_1, ..., u_{k+1}$ er lineært uafhængige, så udgør de en ortonormal basis for S_{k+1} .