

IN THE CLAIMS

Please amend claims 1-3 and add the new claims 16-24 as shown below:

1. (Currently amended) A compound having the formula:

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group; R' is selected from the group consisting of H, alkyl, physiologically acceptable salts or metal, an ammonium cation[[s]], --CHR₂OCO(CH₂)_nCH₃, --CHR₂OCOC(CH₃)₃, in which R₂ is selected from the group consisting of H, and lower alkyl, thioacetyl acylthiomethyl, acyloxy-alpha-acyloxy-benzyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, beta-morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl, and n is from 1-4; A is selected from the group consisting of S, O, SO, SO₂ and CH₂; and Z is a donor fluorescent moiety.

2. (Currently amended) The compound of claim 1, wherein the donor fluorescent moiety is selected from the group consisting of:

(II)

(III)

(IV)

(VII)

(VII)

(VIII)

(IX)

and wherein R and R' are as defined in claim 1, R₃ is a linker for the fluorescent donor, X is H, F, Cl, Br, or CO₂R', and Y is N, CH, C-CN, or C-CF₃.

3. (Currently amended) The compound of claim 2, wherein the linker is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety, --O(CH₂)_n--, --S(CH₂)_n--, --NR₂(CH₂)_n--, --N⁺R₂(CH₂)_n--, --OCONR₂(CH₂)_n--, --O₂C(CH₂)_n--, --SCSNR₂(CH₂)_n--, --SCSO(CH₂)_n--, --S(CH₂)_nCONR₂(CH₂)_m, --S(CH₂)_nNR₂CO(CH₂)_m, and

~~in which R₂ is as previously defined; and m and n are each independently integers from 1 to 4.~~

4. (Previously presented) A compound having the structure:

5. (Withdrawn) A method for detecting the presence of β-lactamase activity in a sample, comprising contacting the sample with at least one compound of general formula I:

(I)

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group, or a quencher; R' is selected from the group consisting of H, physiologically acceptable salts or metal, ester groups, ammonium cations, --CHR₂OCO(CH₂)_nCH₃, --CHR₂OCOC(CH₃)₃, in which R₂ is selected from the group consisting of H and lower alkyl, acylthiomethyl, acyloxy-alpha-benzyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β-morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl; A is selected from the group consisting of S, O, SO, SO₂ and CH₂; and Z is a donor fluorescent moiety.

6. (Withdrawn) The method of claim 5, wherein said sample has a β -lactamase reporter gene.
7. (Withdrawn) The method of claim 6, wherein said β -lactamase reporter gene is in a mammalian cell.
8. (Withdrawn) The method of claim 5, wherein samples having β -lactamase activity are separated from samples having no β -lactamase activity by fluorescent-activated cell sorting.
9. (Withdrawn) The method of claim 5, wherein the β -lactamase activity results from a β -lactamase enzyme that was prepared by mutagenesis of another β -lactamase enzyme.
10. (Withdrawn) The method of claim 5, wherein said compound is a membrane permeant derivative.
11. (Withdrawn) The method of claim 5, wherein the donor fluorescent moiety is selected from the group consisting of:

R₃ is a linker for the fluorescent donor, X is H or lower alkyl, and Y is N or O.

12. (Withdrawn) The method of claim 11, wherein the linker is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety,
--O(CH₂)_n--, --S(CH₂)_n--, --NR₂(CH₂)_n--, --N⁺R₂(CH₂)_n, --OCONR₂(CH₂)_n--, --O₂C(CH₂)_n--, --SCSNR₂(CH₂)_n--, --SCSO(CH₂)_n--, --S(CH₂)_nCONR₂(CH₂)_m, --S(CH₂)_nNR₂CO(CH₂)_m, and

in which R₂ is as previously defined; and m and n are each independently integers from 0 to 4.

13. (Withdrawn) The method of claim 5, wherein the compound has the structure:

14. (Withdrawn) A method for determining whether a compound of claim 1 is a substrate for a β-lactamase enzyme, comprising: contacting said compound with a sample containing said β-lactamase enzyme; exciting at the wavelength for the said compound when cleaved; and measuring fluorescence.

15. (Withdrawn) The method of claim 14, wherein said compound is a membrane permeant derivative.

16. (Withdrawn) The method of claim 14, wherein said β -lactamase enzyme has been prepared by mutagenesis of another β -lactamase enzyme.

17. (New) A compound having the formula:

(I)

in which R is a benzyl, 2-thienylmethyl, or cyanomethyl group; R' is selected from the group consisting of H, alkyl, physiologically acceptable salts or metal, an ammonium cation, --CHR₂OCO(CH₂)_nCH₃, --CHR₂OCOC(CH₃)₃, in which R₂ is selected from the group consisting of H and lower alkyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β -morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl; A is selected from the group consisting of S, O, SO, SO₂ and CH₂; and Z is a donor fluorescent moiety.

18. (New) The compound of claim 17, wherein the donor fluorescent moiety is selected from the group consisting of:

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)

wherein R_3 is a linker for the fluorescent donor, X is H, F, Cl, Br, or CO_2R' , and Y is N, CH, C-CN, or C-CF₃.

19. (New) The compound of claim 18, wherein R_3 is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety,

--O(CH₂)_n--, --S(CH₂)_n--, --NR₂(CH₂)_n--, --OCONR₂(CH₂)_n--, --O₂C(CH₂)_n--, --SCSNR₂(CH₂)_n--, --SCSO(CH₂)_n--, --S(CH₂)_nCONR₂(CH₂)_m, --S(CH₂)_nNR₂CO(CH₂)_m, and

20. (New) The compound of claim 1, wherein the donor fluorescent moiety is selected from the group consisting of:

(II)

(III)

(IV)

(VI)

(VII)

(VIII)

(IX)

(X)

(XI)

and wherein R₃ is a linker for the fluorescent donor, X is H, F, Cl, Br, or CO₂R', and Y is N, CH, C-CN, or C-CF₃.

21. (New) The compound of claim 20, wherein R₃ is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety,

--O(CH₂)_n--, --S(CH₂)_n--, --NR₂(CH₂)_n--, --OCONR₂(CH₂)_n--, --O₂C(CH₂)_n--, --SCSNR₂(CH₂)_n--, --SCSO(CH₂)_n--, --S(CH₂)_nCONR₂(CH₂)_m, --S(CH₂)_nNR₂CO(CH₂)_m, and

22. (New) A compound having the formula:

(I)

in which R is a benzyl or cyanomethyl group; R' is selected from the group consisting of H, alkyl, physiologically acceptable salts or metal, an ammonium cation, --CHR₂OCO(CH₂)_nCH₃, --CHR₂OCOC(CH₃)₃, in which R₂ is selected from the group consisting of H, lower alkyl, thioacetyl, alpha-acyloxy-benzyl, deltabutyrolactonyl, methoxycarbonyloxymethyl, phenyl, methylsulphinylmethyl, β-morpholinoethyl, dialkylaminoethyl, and dialkylaminocarbonyloxymethyl; A is selected from the group consisting of S, O, SO, SO₂ and CH₂; and Z is a donor fluorescent moiety.

23. (New) The compound of claim 22, wherein the donor fluorescent moiety is selected from the group consisting of:

(II)

(III)

(IV)

(V)

(VI)

(VII)

(VIII)

(IX)

wherein R₃ is a linker for the fluorescent donor, X is H, F, Cl, Br, or CO₂R', and Y is N, CH, C-CN, or C-CF₃.

24. (New) The compound of claim 23, wherein R₃ is selected from the group consisting of a direct bond to a heteroatom in the fluorescent moiety, --O(CH₂)_n--, --S(CH₂)_n--, --

$\text{NR}_2(\text{CH}_2)_n\text{--}$, $\text{--OCONR}_2(\text{CH}_2)_n\text{--}$, $\text{--O}_2\text{C}(\text{CH}_2)_n\text{--}$, $\text{--SCSNR}_2(\text{CH}_2)_n\text{--}$, $\text{--SCSO}(\text{CH}_2)_n\text{--}$, $\text{--S}(\text{CH}_2)_n\text{CONR}_2(\text{CH}_2)_m$, $\text{--S}(\text{CH}_2)_n\text{NR}_2\text{CO}(\text{CH}_2)_m$, and

