Contrôle de cours 1 (1 heure)

Nom:		Prénom:	Classe:
N.B.	: le barème est sur 20.		
1	Comparaisons of	le suites	
Exe	ercice 1 (4 points)		
1	1. Considérons deux suite	s (u_n) et (v_n) telles que, au voisinage de $+\infty$, u	$v_n = o\left(\frac{1}{n^2}\right) \text{ et } v_n = o\left(\frac{1}{n^3}\right).$
	Pour chacune des suites	(w_n) suivantes, expliquer si les hypothèses perm	nettent de trouver $\alpha \in \mathbb{R}$ tel que $w_n = o\left(\frac{1}{n^{\alpha}}\right)$.
	En cas de réponse posi-	tive, donner la plus grande valeur possible de $lpha$.	Justifier.
	(a) $w_n = u_n - v_n$		
	(b) $w_n = u_n \times v_n$		
:		nettant en $+\infty$ le développement limité à l'ordrermet-elle de déterminer un développement limit	
	22222222222222222		
	(b) Cette expression pe Si non, justifier.	rmet-elle de déterminer un développement limit	é à l'ordre 3 de $(1+u_n)^2$? Si oui, donner ce DL.
Ex	ercice 2 (2 points)		
Soie	ent deux suites (u_n) et (v_n)	a) strictement positives telles que $u_n \sim v_n$. Dire	si les relations suivantes sont vraies ou non.
(a) $1 + u_n \sim 1 + v_n : \cdots$	\cdots (b) $\sqrt{u_n} \sim \sqrt{v_n} : \cdots $ (c) $\ln(u_n) \sim$	$e^{\ln(v_n)}:\cdots$ (d) $e^{u_n}\sim e^{v_n}:\cdots$

2	Séries	numériques
Exe	rcice 3	(3 points)

Déterminer la nature de $\sum \left(\frac{\sin\left(\frac{1}{n}\right) - \frac{1}{n}}{\ln\left(1 + \frac{1}{n}\right)}\right)$.
Question de cours (3 points)
1. Énoncer la règle de d'Alembert pour les séries numériques.
2. Donner une exemple d'une suite (u_n) strictement positive vérifiant à la fois
$orall n \in \mathbb{N}, rac{u_{n+1}}{u_n} < 1 \qquad ext{et} \qquad \sum u_n ext{ diverge}$
Question de cours avec démonstration (5 points)
Considérons une suite (u_n) telle que $\sum u_n $ converge.
1. Que peut-on dire de $\sum u_n$?
2. Démontrer cette propriété.
••••••
A

***************************************	***************************************
***************************************	***************************************

***************************************	***************************************
3. Étudier la nature de $\sum \frac{\sin(n)}{n^2}$.	

3 Probabilités	
3.1 Exercice 4 (3 points)	
3.1 Exercice 4 (3 points)	Y , prenant leurs valeurs dans $\{0,1\}$ et telles que
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et	
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et	
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X{=}1) = \frac{1}{3}, P(X{=}0) =$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=1.$ Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=$ 1. Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=$ 1. Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=$ 1. Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=$ 1. Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=$ 1. Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et $P(X=1)=\frac{1}{3}, P(X=0)=$ 1. Exprimer les fonctions génératrices $G_X(t)$ et $G_Y(t)$	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con la L'espérance de X 	$\frac{2}{3}$, $P(Y=1)=\frac{3}{4}$ et $P(Y=0)=\frac{1}{4}$ de ces deux variables. es deux fonctions permettent d'obtenir :
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con la L'espérance de X 	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables.
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con la L'espérance de X 	$\frac{2}{3}$, $P(Y=1)=\frac{3}{4}$ et $P(Y=0)=\frac{1}{4}$ de ces deux variables. es deux fonctions permettent d'obtenir :
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con la L'espérance de X (b) La variance de X 	$\frac{2}{3}$, $P(Y=1)=\frac{3}{4}$ et $P(Y=0)=\frac{1}{4}$ de ces deux variables. es deux fonctions permettent d'obtenir :
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con la L'espérance de X (b) La variance de X 	$\frac{2}{3}$, $P(Y=1)=\frac{3}{4}$ et $P(Y=0)=\frac{1}{4}$ de ces deux variables. es deux fonctions permettent d'obtenir :
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con (a) L'espérance de X (b) La variance de X 	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables. es deux fonctions permettent d'obtenir :
 3.1 Exercice 4 (3 points) Considérons deux variables aléatoires indépendantes X et P(X=1) = 1/3, P(X=0) = 1. Exprimer les fonctions génératrices G_X(t) et G_Y(t) 2. Expliquer (sans faire les calculs finaux) comment con la L'espérance de X (b) La variance de X 	$\frac{2}{3}$, $P(Y=1) = \frac{3}{4}$ et $P(Y=0) = \frac{1}{4}$ de ces deux variables. es deux fonctions permettent d'obtenir :

