Portfolio Construction and Analytics 读书笔记(第三章)

目录.	• • • • • • •		1
Contents 1			
Contents			
1 法	产管理	的介绍	1
2 関	植机变量	、概率分布和重要的统计概念	1
3 常	包的分	·布函数介绍	1
3.1	分布函 3.1.1	数的样例	1
	3.1.2	离散型和连续型均匀分布	1
	3.1.3	t分布	2
	3.1.4	对数正态分布	2
	3.1.5	泊松分布	3
	3.1.6	指数分布	3
	3.1.7	卡方分布	4
	3.1.8	伽玛分布	4
	3.1.9	贝塔分布	5
3.2	金融回 3.2.1	报率的分布模型	5
	3.2.2	稳定Paretian分布族	5
	3.2.3	广义λ分布族	6
3.3	金融回 3.3.1	报率的尾部风险模型 广义极值分布	6
	3.3.2	广义帕累托分布	7
	3.3.3	极值模型	7

- 1 资产管理的介绍
- 2 随机变量、概率分布和重要的统计概念
- 3 常见的分布函数介绍
- 3.1 分布函数的样例
- 3.1.1记号说明

Gama 函数的定义如下:

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, dx$$

Beta函数的定义如下:

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

3.1.2离散型和连续型均匀分布

离散型均匀分布:

$$\Pr(X = x) = \frac{1}{N}$$

连续型均匀分布:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b, \\ 0 & \text{for } x < a \text{ or } x > b \end{cases}$$

3-1 离散型均匀分布

3-2 连续型均匀分布

3.1.3t分布

密度函数:

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$

自由度分别为1,2,3的t分布的密度函数。其中蓝色的线条表示正态分布的密度函数。绿色的线条表示上一幅图中t分布的密度函数。

3.1.4对数正态分布

对数正态分布(logarithmic normal distribution)是指一个随机变量的对数服从正态分布,则该随机变量服从对数正态分布。对数正态分布从短期来看,与正态分布非常接近。但长期来看,对数正态分布向上分布的数值更多一些。

密度函数:

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} \Pr(X \le x) = \frac{\mathrm{d}}{\mathrm{d}x} \Pr(\ln X \le \ln x)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

$$= \varphi\left(\frac{\ln x - \mu}{\sigma}\right) \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\ln x - \mu}{\sigma}\right)$$

$$= \varphi\left(\frac{\ln x - \mu}{\sigma}\right) \frac{1}{\sigma x}$$

$$= \frac{1}{x} \cdot \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right).$$

3-6 两种不同偏度的对数正态分布

3.1.5泊松分布

密度函数:

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

3-7 不同λ值的泊松分布

值得一提的是,随着 λ 的递增,泊松分布会不断逼近均值为 λ ,方差为 $\sqrt{\lambda}$ 的正态分布,这一结论在金融模型中有重要的应用。

3.1.6指数分布

在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。这是伽马分布的一个特殊情况。

密度函数:

$$f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

3-8 不同参数的指数分布

3.1.7卡方分布

若 \mathbf{n} 个相互独立的随机变量 $\xi_1, \xi_2, \dots, \xi_n$,均服从标准正态分布(也称独立同分布于标准正态分布),则这 \mathbf{n} 个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。

密度函数:

$$f(x; k) = \begin{cases} \frac{x^{\frac{k}{2} - 1} e^{-\frac{x}{2}}}{2^{\frac{k}{2}} \Gamma\left(\frac{k}{2}\right)}, & x > 0; \\ 0, & \text{otherwise.} \end{cases}$$

3-9 不同参数的卡方分布

3.1.8伽玛分布

伽玛分布(Gamma Distribution)是统计学的一种连续概率函数,是概率统计中一种非常重要的分布。"指数分布"和" χ^2 分布"都是伽马分布的特例。

Gamma分布中的参数 α 称为形状参数(shape parameter), β 称为尺度参数(scale parameter)。

密度函数:

$$f(x;\alpha,\beta) = \frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)} \quad \text{ for } x > 0 \text{ and } \alpha,\beta > 0,$$

3.1.9贝塔分布

在概率论中,贝塔分布,也称B分布,是指一组定义在(0,1)区间的连续概率分布。

密度函数:

$$f(x; \alpha, \beta) = \operatorname{constant} \cdot x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$= \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\int_0^1 u^{\alpha - 1} (1 - u)^{\beta - 1} du}$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$= \frac{1}{B(\alpha, \beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

3-10 不同参数的贝塔分布

3.2 金融回报率的分布模型

3.2.1椭圆分布族

椭圆分布的密度函数具有如下形式:

$$f(x) = \frac{c}{\sqrt{|\Sigma|}} \cdot g((x - \mu)' \Sigma^{-1} (x - \mu))$$

例如,我们所熟知的多元正态分布就属于椭圆分布族:

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^k|\boldsymbol{\Sigma}|}}$$

3.2.2稳定Paretian分布族

稳定Paretian分布族主要包括如下三个分布:正态分布,柯西分布,列维分布。例

如我们所熟知的柯西分布,其密度函数为:

$$f(x) = \frac{1}{\pi \gamma \left[1 + \left(\frac{x - \mu}{\gamma} \right)^2 \right]} = \frac{1}{\pi \gamma} \left[\frac{\gamma^2}{(x - \mu)^2 + \gamma^2} \right],$$

以及列维分布,其密度函数为:

$$f(x; \mu, \gamma) = \sqrt{\frac{\gamma}{2\pi}} \frac{e^{-\frac{\gamma}{2(x-\mu)}}}{(x-\mu)^{3/2}}$$

我们把μ称为位置参数,而把γ称为尺度参数。

3.2.3广义λ分布族

Tukey λ 分布:

$$F^{-1}(p) = Q(p; \lambda) = \begin{cases} \frac{1}{\lambda} \left[p^{\lambda} - (1-p)^{\lambda} \right], & \text{if } \lambda \neq 0\\ \log(\frac{p}{1-p}), & \text{if } \lambda = 0, \end{cases}$$

Tukey λ 分布可以近似一些常见的分布:

 $\lambda = -1$: 接近柯西分布 $C(0, \Pi)$

 $\lambda = 0$: logistic分布

 $\lambda = 0.14$: 接近正态分布N(0, 2.142)

 $\lambda = 1$: 均匀分布U(-1,1)

利用Tukey分布我们可以定义广义 λ 分布(GLD):

$$F^{-1}(p) = Q(p; \lambda) = \lambda_1 + \frac{1}{\lambda_2} \left[p_3^{\lambda} - (1-p)_4^{\lambda} \right]$$

上述分布的VaR和CVaR都是容易计算的。

3.3 金融回报率的尾部风险模型

3.3.1广义极值分布

采用标准化的方法:

$$s = (x - \mu)/\sigma$$

可以得到:标准广义极值分布的密度函数:

$$f(s;\xi) = \begin{cases} (1+\xi s)^{(-1/\xi)-1} \exp(-(1+\xi s)^{-1/\xi}) & \xi \neq 0\\ \exp(-s) \exp(-\exp(-s)) & \xi = 0 \end{cases}$$

3-11 不同参数下的极值分布

3.3.2广义帕累托分布

同样的采用标准化的方法:

$$s = (x - \mu)/\sigma$$

可以得到:标准广义帕累托分布的密度函数:

$$f_{(\xi,\mu,\sigma)}(x) = \frac{1}{\sigma} \left(1 + \frac{\xi(x-\mu)}{\sigma} \right)^{\left(-\frac{1}{\xi}-1\right)},$$

3-12 不同参数下的帕累托分布

3.3.3极值模型

为了拟合GDP模型,我们通常采用极大似然法估计参数(MLE)一旦GDP的参数

估计完成以后,我们就可以计算模型的VaR和CVaR了:

$$(100 - \epsilon)\% VaR = u + \frac{\theta}{\xi} ((\frac{n}{N_u} (1 - \frac{\epsilon}{100}))^{-\xi} - 1)$$