Házszámok

Numerália egy nagyon furcsa ország, ahol a házakat K alapú számrendszerben számozzák. Kerámia számjegyeink vannak, a számrendszer minden számjegyéhez meg van adva, hogy összesen hány darab áll rendelkezésre belőle. Elindulunk egy újonnan épült, házszámok nélküli utcán az 1-es házszámmal kezdve és sorban minden házra kirakjuk a számát a rendelkezésre álló számjegyekből.

Írj programot, amely megadja, mi lesz az a legnagyobb házszám, amit még ki tudunk rakni úgy, hogy egy ház sem marad ki!

Bemenet

A standard bemenet első sorában a számrendszer alapszáma áll ($2 \le K \le 10$). A második sorban a rendelkezésre álló K számjegy darabszámai állnak ($1 \le d_i \le 10^{12}$).

Kimenet

A standard kimenetre a legnagyobb olyan házszámot kell írni (10-es számrendszerbeli alakban), amit még ki tudunk rakni a rendelkezésre álló számjegyekből anélkül, hogy kimaradna ház a számozásból!

Példa

Bemenet	Kimenet
2	4
4 6	

Magyarázat: az 1,10,11,100 kettes számrendszerbeli házszámok kirakásához 3 darab 0-s és 5 darab 1-es számjegyet használtunk fel. A következő házszám az 101, ennek kirakásához nem maradt elég számjegy, így a válasz 4.

Korlátok

Időlimit: 0.2 mp

Memórialimit: 64 MB

Pontozás

Részfeladat	Korlátok	Pontszám
1	a minta	0
2	1≤d _i ≤100 000 minden i=0,1,,K-1-re	25
3	$K=2$ és $d_0=d_1$	10
4	$d_0 = d_1 = = d_{K-1}$	15
5	K=10	20
6	nincsenek további korlátok	30