

 $\nabla L_{in}(w)$ 求解:

当w是单变量时

 $L_{in}(w) = \frac{1}{N} \left(aw^2 - 2bw + c \right)$

 $\nabla L_{in}(w) = \frac{1}{N} (2aw - 2b)$

 $L_{in}(w) = \frac{1}{N} \|\mathbf{X}w - Y\|^2 = \frac{1}{N} (w^T \mathbf{X}^T \mathbf{X}w - 2w^T \mathbf{X}^T Y + Y^T Y) = \frac{1}{N} (w^T Aw - 2w^T b + c)$

 $\nabla L_{in}(\mathbf{w}) = \frac{2}{N} (\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - \mathbf{X}^{\mathsf{T}} \mathbf{Y})$

D C

当w是向量时

 $L_{in}(w) = \frac{1}{N} (w^T A w - 2w^T b + c)$

 $\nabla L_{in}(\mathbf{w}) = \frac{1}{N}(2\mathbf{A}\mathbf{w} - 2\mathbf{b})$

\$3.3 GD

感知器算法的GD

- 对样本的特征向量x和权向量w增广化
- 初始化权向量w₀(例如: w₀ = 0) ● for t = 0,1,2,... (t 代表迭代次数)
- ① 对某些样本n,通过下式对权向量w,进行更新

 $\mathbf{w}_{t+1} = \mathbf{w}_t + 1 \cdot (\left[\operatorname{sign}(\mathbf{w}_t^T \mathbf{x}_{n(t)}) \neq y_n \right] \mathbf{x}_{n(t)})$

..直到满足停止条件,此时的w_{t+1}作为学到的

算法可理解成通过选择(n, v), 以及确定"停止条件"的找到最佳解的迭代优化过程

线性则归的GD

- 初始化权向量w。 for t = 0,1,2,... (t 代表迭代次数)
- ① 计算梯度: $\nabla L_{in}(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n y_n) \mathbf{x}_n$
- ② 对权向量 \mathbf{w}_t 进行更新: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \mathbf{\eta} \nabla L_{in}(\mathbf{w}_t)$

.直到 $\nabla L_{in}(\mathbf{w}) = \mathbf{0}$,或者迭代足够多次数

返回最终的wt+1作为学到的g

据梯度调整到平门引出改良优化器

O Adagrad

2 RMS prop $w_{i,t+1} \leftarrow w_{i,t} - \frac{\eta}{\sigma_{i,t}} \frac{\partial L_{in}}{\partial w_{i,t}}$

逃离鞍点/局部极值3出改良优长器

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation, g_1^2 indicates the elementwise square $g_1 \otimes g_2$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-2}$. All operations on vectors are element-wise. With β_1^4 and β_2^4 we denote β_1 and β_2 to the proposition. Require: α_1 Stepsize Require: β_1 , $\beta_2 \in [0,1)$. Exponential decay rates for the moment estimates Require: $\{\theta_1\}$ Stochastic objective function with parameters θ Require: θ_0 : Initial parameter vector θ_0 or θ_0 (Initialize θ^1 moment vector) of θ_0 or θ_0 (Initialize θ^1 moment vector) of θ_0 or θ_0 (Initialize θ_0 moment vector) of θ_0 while θ_0 not converged do θ_0 or θ_0 while θ_i not converged do

RMSprop $\theta_i \leftarrow t + t + 1$ $g_i \leftarrow \nabla g_i / (\theta_{i-1})$ (Get gradients w.t.t such natic objective at timestep t) $g_i \leftarrow \nabla g_i / (\theta_{i-1})$ (Get gradients w.t.t such natic objective at timestep t) $u_i \leftarrow \theta_j$: $u_{i-1} + (1 - \beta_j) \cdot g_i^T$ (Update biased second raw moment estimate) $u_i \leftarrow \theta_j \cdot u_{i-1} + (1 - \beta_j) \cdot g_i^T$ (Update biased second raw moment estimate) $u_i \leftarrow u_j \cdot (1 - \beta_j)$ (Compute bias-corrected rist moment estimate) $u_i \leftarrow u_j \cdot (1 - \beta_j)$ (Compute bias-corrected rist moment estimate) $u_i \leftarrow u_j \cdot (1 - \beta_j)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters) end while

全√Lin (w) = 0 解得

= (X^TX) - X^T Y = X⁺Y

办参数量大时 X[†]训算额

小批量时会的批次鞍点不梯度 ⇒ Batch速度 Vepah速度 个性能 V

