Algoritmi per la trasformata di Burrows-Wheeler posizionale con compressione run-length

Davide Cozzi

Relatore: Prof. Raffaella Rizzi Correlatore: Dr. Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

25 Ottobre 2022

Outline

- Introduzione
- 2 Preliminari
- Metodo
- Risultati sperimentali
- 5 Conclusioni e sviluppi futuri

Un punto di vista per il pangenoma

Negli ultimi anni si è assistito a un cambio di paradigma nel campo della bioinformatica, ovvero il passaggio dallo studio della sequenza lineare di un singolo genoma a quello di un insieme di genomi, provenienti da un gran numero di individui, al fine di poter considerare anche le varianti geniche. Questo nuovo concetto è stato introdotto da Tettelin, nel 2005, con il termine di **pangenoma**.

Uno degli approcci più usati per rappresentare il **pangenoma** è attraverso un pannello di aplotipi, ovvero, da un punto di vista computazionale, una matrice di M righe, corrispondenti agli individui, e N colonne, corrispondenti ai siti con le varianti.

Un **aplotipo** è l'insieme di alleli, ovvero di varianti che, a meno di mutazioni, un organismo eredita da ogni genitore.

RLBWT

Esempio

Thresholds							
A	T	SA	SA sample	BWT	Run heads	LCP	\mathcal{M}
		15	15	A	A	0	\$ATTAGATTACATTA
*		14	14	T	T	0	A\$ATTAGATTA CATT
		9		T		1	ACATTA\$ATTAGATT
		4		T		1	AGATTACATTA\$ATT
		11	11	C	C	1	ATTA\$ATTAGATTAC
		6	6	G	G	4	ATTA CATTA \$ATTA G
		1	1	\$	\$	4	ATTAGATTACATTA\$
	*	10	10	A	A	0	CATTA\$ATTAGATTA
		5		A		0	GATTACATTA\$ATTA
*		13	13	T	T	0	TA\$ATTAGATTACAT
		8		T		2	TACATTA\$ATTAGAT
		3		T		2	TAGATTA CATTA\$AT
		12	12	A	A	1	TTA\$ATTAGATTACA
		7		A		3	TTACATTA\$ATTAGA
		2		A		3	TTAGATTACATTA\$A

MONI e PHONI

MONI

Rossi et al., nel 2021, sfruttarono le conoscenze relative alla RLBWT e all'r-index per ideare **MONI**. In questa soluzione si ha la costruzione, in due sweep, tramite l'uso delle threshold (*algoritmo di Bannai*), dell'array delle matching statistics, da cui si computano i maximal exact match.

Rossi et al: MONI: A pangenomic index for finding maximal exact matches, 2021

PHONI

Nel 2021, Boucher, Gagie, Rossi et al. proposero un ulteriore miglioramento di quanto fatto in MONI, con **PHONI**, usando le LCE query al posto delle threshold, ottenendo un algoritmo "online".

Boucher et al: PHONI: Streamed matching statistics with multi-genome references, 2021

PBWT

img/matrix1.pdf

 $\begin{aligned} &a_6 = [14, 15, 0, 9, 10, 16, 8, 11, 12, 13, 18, 19, 1, 2, 3, 17, 4, 5, 6, 7] \\ &d_6 = [6, 0, 4, 2, 0, 0, 5, 0, 0, 0, 3, 0, 4, 0, 0, 6, 4, 0, 0, 0] \end{aligned}$

Durbin: Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT), 2014

Set-maximal exact match

Calcolo SMEM via **algoritmo 5 di Durbin** in tempo $\mathcal{O}(\mathit{NM}) + \mathsf{Avg}.\mathcal{O}(\mathit{N}+c)$, richiedendo 13NM byte

img/pbwtmatch.pdf

Componenti e strutture dati, una panoramica img/ds.pdf

Performance costruzione strutture dati

img/make_time_mem_paper.png

Performance calcolo degli SMEM con 100 query

```
img/exe_time_mem_paper.png
```

Performance calcolo degli SMEM per singole query

```
img/exe_time_single_paper.png
```

Considerazioni e sviluppi

Alcune considerazioni

- le strutture dati e gli algoritmi proposti hanno confermato la potenzialità dell'uso di strutture run-length encoded in pangenomica
- l'obbiettivo della tesi, ovvero lo sviluppo di un algoritmo, efficiente in spazio, per il calcolo degli SMEM di un aplotipo esterno contro un pannello, è stato raggiunto con risultati molto interessanti

Considerazioni e sviluppi

Alcune considerazioni

- le strutture dati e gli algoritmi proposti hanno confermato la potenzialità dell'uso di strutture run-length encoded in pangenomica
- l'obbiettivo della tesi, ovvero lo sviluppo di un algoritmo, efficiente in spazio, per il calcolo degli SMEM di un aplotipo esterno contro un pannello, è stato raggiunto con risultati molto interessanti

Sviluppi futuri

- SMEM interni con RLPBWT
- RLPBWT per pannelli con dati mancanti

- RLPBWT multiallelica
- calcolo K-SMEM con RLPBWT

Considerazioni e sviluppi

Alcune considerazioni

- le strutture dati e gli algoritmi proposti hanno confermato la potenzialità dell'uso di strutture run-length encoded in pangenomica
- l'obbiettivo della tesi, ovvero lo sviluppo di un algoritmo, efficiente in spazio, per il calcolo degli SMEM di un aplotipo esterno contro un pannello, è stato raggiunto con risultati molto interessanti

Sviluppi futuri

- SMEM interni con RLPBWT
- RLPBWT per pannelli con dati mancanti

- RLPBWT multiallelica
- calcolo K-SMEM con RLPBWT

Bonizzoni, Boucher, Cozzi, Gagie, Kashgouli, Köppl e Rossi:

Compressed data structures for population-scale positional Burrows–Wheeler transforms, 2022

Grazie per l'attenzione

Davide Cozzi

Relatore: Prof. Raffaella Rizzi Correlatore: Dr. Yuri Pirola

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo) Università degli Studi di Milano Bicocca

25 Ottobre 2022