Fundamentos de Análise Exploratória de Dados

Conceitos e Aplicações

Encontro 2 Exercícios

Prof. Me. Lineu Alberto Cavazani de Freitas

O Índice de Massa Corporal (IMC) é um cálculo que faz uso do peso e da altura de um indivíduo que permite avaliar se este indivíduo está ou não com o peso "ideal". Para fazer o cálculo, basta dividir o peso pela altura ao quadrado. Uma escola tinha como objetivo avaliar como o IMC dos alunos de uma turma se comportava. Os dados estão na tabela:

18.9	22.9	17.8	30.0	23.6
17.9	24.4	25.7	24.9	20.5
29.6	23.9	18.9	10.9	35.0

- ► Obtenha média, mediana, mínimo, máximo, quartis, amplitude interquartílica e esboce o boxplot para os dados fornecidos.
- ► Obtenha amplitude, desvio absoluto médio com relação à média e mediana, variância, desvio padrão, coeficiente de variação e z-escore.

Média 22.99 Mediana 23.60 Mínimo 10.90 Máximo 35.00 1º Quartil 18.90 2º Quartil 23.60 3º Quartil 25.30 AIQ 6.40

i	IMC	Desv. abs. média	Desv. abs. mediana	Desv. quadrático	z-escore
1	10.9	12.09	12.7	146.25	-0.6919
2	17.8	5.19	5.8	26.97	-0.0158
3	17.9	5.09	5.7	25.94	-0.8779
4	18.9	4.09	4.7	16.76	1.1844
5	18.9	4.09	4.7	16.76	0.1026
6	20.5	2.49	3.1	6.22	-0.8610
7	22.9	0.09	0.7	0.01	0.2378
8	23.6	0.61	0.0	0.37	0.4575
9	23.9	0.91	0.3	0.82	0.3223
10	24.4	1.41	0.8	1.98	-0.4215
11	24.9	1.91	1.3	3.64	1.1168
12	25.7	2.71	2.1	7.33	0.1533
13	29.6	6.61	6.0	43.65	-0.6919
14	30.0	7.01	6.4	49.09	-2.0443
15	35.0	12.01	11.4	144.16	2.0296

Amplitude	24.10
Desvio absoluto médio (média)	4.42
Desvio absoluto médio (mediana)	4.38
Variância	34.99
Desvio padrão	5.92
Coeficiente de variação	25.73

Uma pesquisa tinha como objetivo verificar qual o meio de transporte mais comum entre os alunos de uma turma. As respostas foram:

Carro	Ônibus	Ônibus	Outro	Carro	A pé	Outro	Moto	Moto	Carro
Carro	Carro	Moto	Ônibus	Moto	Ônibus	Moto	Bicicleta	Ônibus	Moto
Outro	Carro	Moto	Carro	Carro	Ônibus	Carro	Ônibus	A pé	Ônibus

Obtenha uma medida de variabilidade adequada.

Respostas	f_a	f_r
Carro	9	0.300
Ônibus	8	0.267
Moto	7	0.233
Outro	3	0.100
A pé	2	0.067
Bicicleta	-1	0.033
Total	29	0.967

Respostas	f_a	f_r
Carro	9	0.300
Ônibus	8	0.267
Moto	7	0.233
Outro	3	0.100
A pé	2	0.067
Bicicleta	1	0.033
Total	29	0.967

Em um estudo, uma universidade selecionou uma amostra de 10 alunos pertencentes a 2 turmas. Destes alunos, registrou-se se tinha ou não feito um curso pré vestibular e qual a nota obtida nas provas de português e matemática. Os dados coletados estão na tabela abaixo.

Aluno	Turma	a Curso	Português	Matemática
-1	Α	Não	4	4
2	В	Não	3	3
3	В	Sim	4	5
4	A	Não	7	1
5	В	Não	6	5
6	В	Não	5	4
7	В	Não	3	9
8	A	Sim	4	9
9	Α	Não	10	6
10	В	Sim	7	3

- Para turma e curso, obtenha tabelas de dupla entrada usando frequência absoluta e relativa (total, por linha e por coluna) e esboce gráficos adequados para representar as tabelas.
- 2. Obtenha uma medida de associação para turma e curso.
- Para as notas, obtenha o coeficiente de correlação de Pearson e o diagrama de dispersão.
- 4. Obtenha medidas descritivas e box-plots das notas em função do curso e da turma.

1 Tabela de dupla entrada com frequências absolutas

1 Tabela de dupla entrada com frequências relativas (total geral)

1 Tabela de dupla entrada com frequências relativas (total linha)

1 Tabela de dupla entrada com frequências relativas (total coluna)

2 Qui-quadrado para associação

Tabela 14. Valores observados.

	Não	Sim	Total
A	3	1	4
В	4	2	6
Total	7	3	10

Tabela 15. Valores esperados.

14-14	Não	Sim	Total
A	2.8	1.2	4
В	4.2	1.8	6
Total	7.0	3.0	10

Tabela 16. $\frac{(o-e)^2}{e}$.

Não Sim

A 0.01 0.03

B 0.01 0.02

$$Q = \sum_{i=1}^{r} \sum_{j=1}^{s} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}} \approx 0$$

3 Correlação

PT	PT – PT	$(PT - \overline{PT})^2$	MT	$MT - \overline{MT}$	$(MT - \overline{MT})^2$	$(PT - \overline{PT}) \times (MT - \overline{MT})$
	12	, ,	1, 8			
4	-1.3	1.69	4	-0.9	0.81	1.17
3	-2.3	5.29	3	-1.9	3.61	4.37
4	-1.3	1.69	5	0.1	0.01	-0.13
7	1.7	2.89	1	-3.9	15.21	-6.63
6	0.7	0.49	5	0.1	0.01	0.07
5	-0.3	0.09	4	-0.9	0.81	0.27
3	-2.3	5.29	9	4.1	16.81	-9.43
4	-1.3	1.69	9	4.1	16.81	-5.33
10	4.7	22.09	6	1.1	1.21	5.17
7	1.7	2.89	3	-1.9	3.61	-3.23

55331	
$\overline{PT} =$	5.30
$\overline{MT} =$	4.90
V(PT) =	4.90
V(MT) =	6.54
COV(PT,MT) =	-1.52
COR(PT,MT) =	-0.27

4 Medidas descritivas por turma e curso

Tabela 19. Notas em português em função do turma. Tabela 21. Notas em português em função do curso.

Turma	Média	Mediana	Desvio padrão
Α	6.25	5.5	2.87
В	4.67	4.5	1.63

Curso	Média	Mediana	Desvio padrão
Não	5.43	5	2.51
Sim	5.00	4	1.73

Tabela 20. Notas em matemática em função do turma. Tabela 22. Notas em matemática em função do curso.

Turma	Média	Mediana	Desvio padrão
A	5.00	5.0	3.37
В	4.83	4.5	2.23

Curso	Média	Mediana	Desvio padrão
Não	4.57	4	2.51
Sim	5.67	5	3.06

4 box-plots das notas em função de turma e curso

