Série 6 Exercice à rendre

David Wiedemann

11 mars 2021

1

On considère une suite $\{x_i\} \subset E$ convergant vers x. Par un théorème du cours, on sait que $x \in \overline{E}$. On considère maintenant les deux suites $(f(x_i))_{i \in \mathbb{N}}$ et $(g(x_i))_{i \in \mathbb{N}}$. Car f et g sont continues,

$$\lim_{i \to \infty} f(x_i) = f(x) \text{ et } \lim_{i \to +\infty} g(x_i) = g(x)$$

Ainsi, on a que, pour tout $\epsilon > 0$, il existe $N \in \mathbb{N}$ satisfaisant que pour tout i > N, on a

$$|f(x_i) - f(x)| < \epsilon$$

Or $x_i \in E$ pour tout i et donc

$$|f(x_i) - f(x)| = |g(x_i) - f(x)| < \epsilon$$

Ainsi $g(x_i)$ converge vers f(x), et donc, g(x) = f(x). Car ceci est vrai pour toute suite de E et tout élément $x \in \overline{E}$, on en déduit que

$$f(x) = g(x) \forall x \in \overline{E}$$

$\mathbf{2}$

On considère à nouveau une suite $\{x_i\} \subset E$ convergeant vers $x \in \overline{E}$. Par continuité, on sait à nouveau que

$$\lim_{i \to +\infty} f(x_i) = f(x) \text{ et } \lim_{i \to +\infty} g(x_i) = g(x)$$

Notons que, par hypothèse, on a

$$f(x_i) \leq g(x_i) \forall i \in \mathbb{N}$$

Ainsi, par une propriété du cours, on a bien que

$$\lim_{i \to +\infty} f(x_i) \le \lim_{i \to +\infty} g(x_i)$$

et donc

$$f(x) \le g(x)$$

Etant donne que ceci est valable pour toute suite $(x_i)_{i\in\mathbb{N}}\subset E$ et tout $x\in\overline{E}$, on a montré que

$$f(x) \le g(x) \forall x \in \overline{E}$$

3

Montrons d'abord que $E := \{x \in \mathbb{R}^n : h(x) > 0\}$ est un ensemble ouvert. Soit $y = (y_1, \dots, y_n) \in E$.

Par l'absurde, supposons que E est fermé, alors $\forall \delta > 0, \exists x \in B(y, \delta)$ satisfaisant $h(x) \leq 0$.

Soit $\epsilon = \frac{1}{2}h(y)$, alors, par la continuité de h, il existe $\delta > 0$, satisfaisant

$$||y - x|| < \delta \Rightarrow |h(y) - h(x)| < \epsilon$$

Or, par hypothèse, $h(x) \leq 0$ et donc

$$|h(y) - h(x)| = |h(y)| + |h(x)| > \epsilon$$

ce qui constitue une contradiction à l'hypothèse. On en déduit que E est un ensemble ouvert.

Montrons maintenant que $F := \{x \in \mathbb{R}^n : h(x) = 0\}.$

Notons d'abord que, par symmetrie, l'ensemble $E' := \{x \in \mathbb{R}^n : -h(x) > 0\} = \{x \in \mathbb{R}^n : h(x) < 0\}$ est également ouvert.

Car l'union de deux ensembles ouverts est ouverte, $E \cup E'$ est ouvert.

Ainsi, le complémentaire $(E \cup E')^c$ est fermé.

Or, il est clair que $(E \cup E')^c = F$ et donc F est fermé.