Ex 2.1

Q1

By the definition of equality of ordered pairs

$$\left(\frac{a}{3}+1, \ b-\frac{2}{3}\right) = \left(\frac{5}{3}, \ \frac{1}{3}\right)$$

$$\Rightarrow \frac{a}{3}+1 = \frac{5}{3} \quad \text{and} \quad b-\frac{2}{3} = \frac{1}{3}$$

$$\Rightarrow \frac{a}{3} = \frac{5}{3}-1 \quad \text{and} \quad b = \frac{1}{3}+\frac{2}{3}$$

$$\Rightarrow \frac{a}{3} = \frac{5-3}{3} \quad \text{and} \quad b = \frac{1+2}{3}$$

$$\Rightarrow \frac{a}{3} = \frac{2}{3} \quad \text{and} \quad b = \frac{3}{3}$$

$$\Rightarrow a = 2 \quad \text{and} \quad b = 1$$

By the definition of equality of ordered pairs

$$(x+1,1) = (3,y-2)$$

$$\Rightarrow x+1=3 \text{ and } 1=y-2$$

$$\Rightarrow x=3-1 \text{ and } 1+2=y$$

$$\Rightarrow x=2 \text{ and } 3=y$$

$$\Rightarrow x=2 \text{ and } y=3$$

Q2

We have,

$$(x,-1) \in \{(a,b) : b = 2a-3\}$$

and, $(5,y) \in \{(a,b) : b = 2a-3\}$
 $\Rightarrow -1 = 2 \times x - 3$ and $y = 2 \times 5 - 3$
 $\Rightarrow -1 = 2x - 3$ and $y = 10 - 3$
 $\Rightarrow 3 - 1 = 2x$ and $y = 7$
 $\Rightarrow 2 = 2x$ and $y = 7$
 $\Rightarrow x = 1$ and $y = 7$

We have, a+b=5 $\Rightarrow a=5-b$ $\therefore b=0 \Rightarrow a=5-0=5$, $b=3 \Rightarrow a=5-3=2$, $b=6 \Rightarrow a=5-6=-1$,

Hence, the required set of ordered pairs (a,b) is $\{(-1,6),(2,3),(5,0)\}$

Q4

We have,

all \$\{2,4,6,9\}\$

and, \$\Delta \{4,6,18,27\}\$

Now, \$a/b\$ stands for a divides \$b'\$. For the elements of the given sets, we find that \$2/4, 2/6, 2/18, 5/18, 9/18 and 9/27

all \$\{(2,4), (2,6), (2,10), (6,10), (9,10), (9,27)\}\$ are the recuired set of ordered pairs \$\((e, b)\)\$.

Q5

We have,

$$A = \{1, 2\} \text{ and } B = \{1, 3\}$$
Now,
$$A \times B = \{1, 2\} \times \{1, 3\}$$

$$= \{(1, 1), (1, 3), (2, 1), (2, 3)\}$$
and,
$$B \times A = \{1, 3\} \times \{1, 2\}$$

$$= \{(1, 1), (1, 2), (3, 1), (3, 2)\}$$

$$A = \{1,2,3\} \text{ and } B = \{3,4\}$$

$$A \times B = \{1,2,3\} \times \{3,4\}$$

$$= \{(1,3), (1,4), (2,3), (2,4), (3,3), (3,4)\}$$

In order to represent $A \times B$ graphically, we follow the following steps:

- (a) Draw two mutually perpendicular line one horizontal and other vertical.
- (b) On the horizontal line represent the element of set A and on the vertical line represent the elements of set B.
- (c) Draw vertical dotted lines through points representing elements of A on horizontal line and horizontal lines through points representing elements of B on the vertical line points of intersection of these lines will represent $A \times B$ graphically.

$$\Rightarrow (A \times E) \cap (E \times A) = \{(2, 2)\}.$$

Q8

We have,

$$n(A) = 5$$
 and $n(E) = 4$

We know that, if A and B are two finite sets, then $n(A \times B) = n(A) \times n(B)$

$$\therefore n(A \times B) = 5 \times 4 = 20$$

Now,

$$n[(A \times B) \cap (E \times A)] = 3 \times 3 = 9$$

[∨ A and E have 3 elements in common]

Let
$$(a,b)$$
 be an arbitrary element of $(A \times B) \cap (B \times A)$. Then,
 $(a,b) \in (A \times B) \cap (B \times A)$

$$\Leftrightarrow$$
 $(a,b) \in A \times B$ and $(a,b) \in B \times A$

$$\Leftrightarrow$$
 (a \in A and b \in B) and (a \in B and b \in A)

$$\Leftrightarrow$$
 (a \in A and a \in B) and (b \in A and b \in B)

$$\Leftrightarrow$$
 $a \in A \cap B$ and $b \in A \cap B$

Hence, the sets $A \times B$ and $B \times A$ have an element in comon iff the sets A and B have an element in common.

Q10

Since (x,1), (y,2), (z,1) are elements of $A \times B$. Therefore, x, y, $z \in A$ and $1,2 \in B$

It is given that n(A) = 3 and n(B) = 2

$$\therefore x, y, z \in A \text{ and } n(A) = 3$$

$$\Rightarrow$$
 $A = \{x, y, z\}$

$$1, 2 \in B \text{ and } n(B) = 2$$

$$\Rightarrow$$
 $B = \{1, 2\}.$

Q11

We have,

$$A = \big\{1, 2, 3, 4\big\}$$

and,
$$R = \{(a,b) = a \in A, b \in A, a \text{ divides } b\}$$

Now,

a/b stands for 'a divides b'. For the elements of the given sets, we find that 1/1, 1/2, 1/3, 1/4, 2/2, 3/3 and 4/4

$$\therefore R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$$

We have,

$$A = \{-1, 1\}$$

..
$$A \times A = \{-1, 1\} \times \{-1, 1\}$$

= $\{(-1, -1), (-1, 1), (1, -1), (1, 1)\}$

$$A \times A \times A = \{ 1,1 \} \times \{ (1,1), (1,1), (1,1), (1,1) \}$$

$$= \{ (-1,-1,-1), (-1,-1,1), (-1,1,-1), (-1,1,1), (1,-1,1), (1,1,1) \}$$

Q13

(i) False,

If
$$P = \{m, n\}$$
 and $Q = \{n, m\}$,

Then,

$$P \times Q = \{(m, n), (m, m), (n, n), (n, m)\}$$

(ii) False,

If A and B are non-empty sets, then AB is a non-empty set of ordered pairs (x,y) such that $x \in A$ and $y \in B$.

(iii) True

Q14

We have,

$$A = \{1, 2\}$$

$$A \times A = \{1, 2\} \times \{1, 2\}$$
$$= \{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

$$A \times A \times A = \{1,2\} \times \{(1,1), (1,2), (2,1), (2,2)\}$$

$$= \{(1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2)\}$$

We have,

$$A = \{1, 2, 4\} \text{ and } B = \{1, 2, 3\}$$

$$A \times B = \{1, 2, 4\} \times \{1, 2, 3\}$$

$$= \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (4, 1), (4, 2), (4, 3)\}$$

Hence, we represent A on the horizontal line and B on vertical line.

Graphical representation of $A \times B$ is as shown below:

$$A = \{1, 2, 4\} \text{ and } B = \{1, 2, 3\}$$

$$B \times A = \{1, 2, 3\} \times \{1, 2, 4\}$$

$$= \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (3, 1), (3, 2), (3, 4)\}$$

Hence, we represent B on the horizontal line and A on vertical line.

Graphical representation of $B \times A$ is as shown below:

We have,

$$A = \{1, 2, 4\}$$

$$A \times A = \{1, 2, 4\} \times \{1, 2, 4\}$$

$$= \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4)\}$$

Graphical representation of $A \times A$ is shown below:

$$B = \{1, 2, 3\}$$

$$B \times B = \{1, 2, 3\} \times \{1, 2, 3\}$$

$$= \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$$

Graphical representation of $B \times B$ is shown below:

We have,
$$A = \{1, 2, 3\}, B = \{3, 4\} \text{ and } C = \{4, 5, 6\}$$
$$A \times B = \{1, 2, 3\} \times \{3, 4\}$$
$$= \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}$$
and,
$$B \times C = \{3, 4\} \times \{4, 5, 6\}$$
$$= \{(3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)\}$$
$$\therefore (A \times B) \cap (B \times C) = \{3, 4\}.$$

Q2

We have,

$$A = \{2,3\}, B = \{4,5\} \text{ and } C = \{5,6\}$$

$$B \cup C = \{4,5\} \cup \{5,6\}$$

$$= \{4,5,6\}$$

$$A \times (B \cup C) = \{2,3\} \times \{4,5,6\}$$

$$= \{(2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$
Now,

$$B \cap C = \{4,5\} \cap \{5,6\} = \{5\}$$

$$A \times (B \cap C) = \{2,3\} \times \{5\}$$

$$= \{(2,5), (3,5)\}$$
Now,

$$A \times B = \{2,3\} \times \{4,5\}$$

$$= \{(2,4), (2,5), (3,4), (3,5)\}$$
and,
$$A \times C = \{2,3\} \times \{5,6\}$$

$$= \{(2,5), (2,6), (3,5), (3,6)\}$$

$$(A \times B) \cup (A \times C) = \{(2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}$$

$$A = \{1, 2, 3\}, B = \{4\} \text{ and } C = \{5\}$$

$$B \cup C = \{4\} \cup \{5\} = \{4, 5\}$$

$$A \times (B \cup C) = \{1, 2, 3\} \times \{4, 5\}$$

$$A \times (B \cup C) = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\} \qquad --- (i)$$
Now,
$$A \times B = \{1, 2, 3\} \times \{4\}$$

$$= \{(1, 4), (2, 4), (3, 4)\}$$
and,
$$A \times C = \{1, 2, 3\} \times \{5\}$$

$$= \{(1, 5), (2, 5), (3, 5)\}$$

$$A \times B \cup (A \times C) = \{(1, 4), (2, 4), (3, 4)\} \cup \{(1, 5), (2, 5), (3, 5)\}$$

$$A \times B \cup (A \times C) = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\} \qquad --- (ii)$$

From equation(i) and(ii), we get

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Hence verified.

We have,

$$A = \{1, 2, 3\}, B = \{4\} \text{ and } C = \{5\}$$

$$B \cap C = \{4\} \cap \{5\} = \emptyset$$

$$A \times (B \cap C) = \{1, 2, 3\} \times \emptyset$$

$$A \times (B \cap C) = \emptyset$$
---(i)

Now,

$$A \times B = \{1, 2, 3\} \times \{4\}$$

$$= \{(1, 4), (2, 4), (3, 4)\}$$
and,
$$A \times C = \{1, 2, 3\} \times \{5\}$$

$$= \{(1, 5), (2, 5), (3, 5)\}$$

$$\therefore (A \times B) \cap (A \times C) = \{(1, 4), (2, 4), (3, 4)\} \cap \{(1, 5), (2, 5), (3, 5)\}$$

$$\Rightarrow (A \times B) \cap (A \times C) = \emptyset \qquad ---(ii)$$

From equation(i) and equation(ii), we get

$$A\times \left(B\cap C\right)=\left(A\times B\right)\cap \left(A\times C\right)$$

Hence verified.

$$A = \{1, 2, 3\}, B = \{4\} \text{ and } C = \{5\}$$

 $B - C = \{4\}$
 $A \times (B - C) = \{1, 2, 3\} \times \{4\}$
 $A \times (B - C) = \{(1, 4), (2, 4), (3, 4)\}$ ---(i)

Now,

$$A \times B = \{1, 2, 3\} \times \{4\}$$

$$= \{(1, 4), (2, 4), (3, 4)\}$$
and,
$$A \times C = \{1, 2, 3\} \times \{5\}$$

$$= \{(1, 5), (2, 5), (3, 5)\}$$

$$\therefore (A \times B) - (A \times C) = \{(1, 4), (2, 4), (3, 4)\}$$
 --- (ii)

From equation(i) and equation(ii), we get $A \times (B - C) = (A \times B) - (A \times C)$

Hence verified.

Q4

We have,

$$A = \{1,2\}, B = \{1,2,3,4\}, C = \{5,6\} \text{ and } D = \{5,6,7,8\}$$

$$B \times D = \{1,2,3,4\} \times \{5,6,7,8\}$$

$$= \begin{cases} (1,5), & (1,6), & (1,7), & (1,8), & (2,5), & (2,6), & (2,7), & (2,8), \\ (3,5), & (3,6), & (3,7), & (3,8), & (4,5), & (4,6), & (4,7), & (4,8) \end{cases}$$
---(i)

and,
$$A \times C = (1,2) \times (5,6)$$

= $\{(1,5), (1,6), (2,5), (2,6)\}$ ---(ii)

Clearly from equation (i) and equation (ii), we get $A \times C \subset B \times D$

Hence verified.

$$A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\} \text{ and } D = \{5, 6, 7, 8\}$$

$$B \cap \bigcap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \emptyset$$

$$A\times \left(B\cap C\right) =\left\{ 1,2\right\} \times \phi =\phi \qquad \qquad ---\left(i\right)$$

Now,

$$\begin{aligned} A \times B &= \big\{1,2\big\} \times \big\{1,2,3,4\big\} \\ &= \big\{\big(1,1\big)\,,\;\; \big(1,2\big)\,,\;\; \big(1,3\big)\,,\;\; \big(1,4\big)\,,\;\; \big(2,1\big)\,,\;\; \big(2,2\big)\,,\;\; \big(2,3\big),\;\; \big(2,4\big)\big\} \end{aligned}$$

and,
$$A \times C = \{1, 2\} \times \{5, 6\}$$

= $\{(1, 5), (1, 6), (2, 5), (2, 6)\}$

$$\therefore \qquad (A \times B) \cap (A \times C) = \theta \qquad \qquad ---(ii)$$

From equation(i) and equation(ii), we get

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Hence verified.

```
Given:
A = \{1, 2, 3\}, B = \{3, 4\} \text{ and } C = \{4, 5, 6\}
(i) A × (B ∩ C)
Now.
(B \cap C) = \{4\}
 A \times (B \cap C) = \{(1, 4), (2, 4), (3, 4)\}
(ii) (A \times B) \cap (A \times C)
Now.
(A \times B) = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}
And,
(A \times C) = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}
 A \times A \times B \cap A \times C = \{(1, 4), (2, 4), (3, 4)\}
(iii) A × (B U C)
Now.
(B \cup C) = \{3, 4, 5, 6\}
 A \times (B \cup C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6), (3, 6
6)}
(iv) (A × B) U (A × C)
 Now.
(A \times B) = \{(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)\}
(A \times C) = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)\}
A \times B \cup (A \times C) = \{(1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 4), (3, 4), (3, 4), (4, 4), (4, 5), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (4, 6), (
5), (3, 6)}
```

```
Let (a,b) be an arbitrary element of (A \cup B) \times C. Then,
           (a,b) \in (A \cup B) \times C
           a \in A \cup B and b \in C.
                                                                   [By defination]
         (a \in A \text{ or } a \in B) and b \in C
                                                                  [By defination]
      (a \in A \text{ and } b \in C) or (a \in B \text{ and } b \in C)
         (a,b) \in A \times C or (a,b) \in B \times C
\Rightarrow
           (a,b) \in (A \times C) \cup (B \times C)
\Rightarrow
     (a,b) \in (A \cup B) \times C
\Rightarrow \qquad (a,b) \in (A \times C) \cup (B \times C)
           (A \cup B) \times C \subseteq (A \times C) \cup (B \times C)
\Rightarrow
                                                                                          ---(i)
Again, let (x,y) be an arbitrary element of (A \times C) \cup (B \times C). Then,
           (x,y) \in (A \times C) \cup (B \times C)
      (x,y) \in A \times C or (x,y) \in B \times C
\Rightarrow x \in A \text{ and } y \in C \qquad \text{or} \qquad x \in B \text{ and } y \in C
\Rightarrow (x \in A \text{ or } x \in B) \qquad \text{and} \qquad y \in C
\Rightarrow X \in A \cup B
                                            and
                                                        y \in C
\Rightarrow \qquad (x,y) \in (A \cup B) \times C
\Rightarrow (x,y) \in (A \times C) \cup (B \times C)
          (x,y) \in (A \cup B) \times C
\Rightarrow
          (A \times C) \cup (B \times C) \subseteq (A \cup B) \times C
                                                                                           --- (ii)
Using equation(i) and equation(ii), we get
           (A \cup B) \times C = (A \times C) \cup (B \times C)
Hence proved.
```

Let (a,b) be an arbitrary element of $(A \cap B) \times C$. Then,

 $(A \cap B) \times C = (A \times C) \cap (B \times C)$

$$(a,b) \in (A \cap B) \times C$$
⇒ $a \in A \cap B$ and $b \in C$
⇒ $(a \in A \text{ and } a \in B)$ and $b \in C$ [By defination]
⇒ $(a \in A \text{ and } b \in C)$ and $(a \in B \text{ and } b \in C)$
⇒ $(a,b) \in A \times C$ and $(a,b) \in B \times C$
⇒ $(a,b) \in (A \times C) \cap (B \times C)$
⇒ $(a,b) \in (A \cap B) \times C$
⇒ $(a,b) \in (A \cap B) \times C$
⇒ $(a,b) \in (A \times C) \cap (B \times C)$
⇒ $(A \cap B) \times C \subseteq (A \times C) \cap (B \times C)$ ---(i)

Let (x,y) be an arbitrary element of $(A \times C) \cap (B \times C)$. Then, $(x,y) \in (A \times C) \cap (B \times C)$
⇒ $(x,y) \in A \times C$ and $(x,y) \in B \times C$ [By defination]
⇒ $(x \in A \text{ and } y \in C)$ and $(x \in B \text{ and } y \in C)$
⇒ $(x,y) \in (A \cap B) \times C$
⇒ $(A \times C) \cap (B \times C) \subseteq (A \cap B) \times C$
⇒ $(A \times C) \cap (B \times C) \subseteq (A \cap B) \times C$

Using equation (i) and equation (ii), we get

Let (a,b) be an arbitrary element of $A \times B$, then,

$$(a,b) \in A \times B$$

$$\Rightarrow a \in A \text{ and } b \in B$$

$$---(i)$$
Now,
$$(a,b) \in A \times B$$

$$\Rightarrow (a,b) \in C \times D$$

$$\Rightarrow a \in C \text{ and } b \in D$$

$$\therefore A \times B \subseteq C \times D$$

$$\Rightarrow a \in C \text{ and } b \in D$$

$$\therefore a \in A \Rightarrow a \in C$$

$$\Rightarrow A \subseteq C$$
and,
$$b \in B \Rightarrow b \in D$$

$$\Rightarrow B \subseteq D$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

$$(i)$$

Hence, proved

(i) We have,

$$A = \{1, 2, 3\}$$
 and $B = \{4, 5, 6\}$

 $\{(1,6), (3,4), (5,2)\}$ is not a relation from A to B as it is not a subset of $A \times B$.

(ii) We have,

$$A = \{1, 2, 3\}$$
 and $B = \{4, 5, 6\}$

 $\{(1,5), (2,6), (3,4), (3,6)\}$ is a subset of $A \times B$, so it is a relation from A to B.

(iii) We have,

$$A = \{1, 2, 3\}$$
 and $B = \{4, 5, 6\}$

 $\{(4,2), (4,3), (5,1)\}$ is not a relation from A to B as it is not a subset of $A \times B$.

(iv) We have,

$$A = \{1, 2, 3\}$$
 and $B = \{4, 5, 6\}$

 $A \times B$ is a relation from A to B.

Q2

We have,

$$A = \{2,3,4,5\}$$
 and $B = \{3,6,7,13\}$

It is given that $(x,y) \in R \Leftrightarrow x$ is relatively brime to y

$$(2,3) \in \mathcal{R}, \ \ \{3,7\} \in \mathcal{R}, \ \ \{3,10\} \in \mathcal{R}, \ \ \{4,7\} \in \mathcal{R}, \ \ \{5,3\} \in \mathcal{R}, \ \ \text{and} \ \ \{5,7\} \in \mathcal{R}$$

Thus,

$$R = \left\{ \left(2,0\right), \;\; \left(2,7\right), \;\; \left(3,7\right), \;\; \left(3,10\right), \;\; \left(4,0\right), \;\; \left(4,7\right), \;\; \left(5,0\right), \;\; \left(5,7\right) \right\}$$

Clearly, Domain (2) – $\{2, 3, 4, 5\}$ and Range – $\{3, 7, 10\}$.

$$A = (-,2,3,4,5)$$

. A is the set of first five natural number.

It is given that R be a relation on A defined as $(x,y) \in S \Leftrightarrow x \le y$

For the elements of the given sets Alabo A, we find that

$$1 = 1, \ 1 < 2, \ 1 < 3, \ 1 < 4, \ 1 < 5, \ 2 = 2, \ 2 < 3, \ 2 < 4, \ 2 < 5, \ 3 = 3, \ 3 < 4, \ 3 < 5, \ 4 = 4, \ 4 < 5, \ and \ 5 = 5$$

$$(-,1) \in R$$
, $(1,2) \in G$, $(1,3) \in R$, $(1,4) \in R$, $(-,5) \in R$, $(2,2) \in R$, $(2,3) \in G$, $(2,4) \in R$, $(2,5) \in R$, $(3,6) \in R$, $(3,6) \in R$, $(4,4) \in R$, $(4,5) \in R$ and $(5,5) \in R$.

Thus,

A 50

- (i) Domain $(R^{-1}) = \{1, 2, 3, 4, 5\}$
- (ii) Range (R) = {1, 2, 3, 1, 5}

(i) We have,

$$R = \{(1,2), (1,3), (2,3), (3,2), (5,6)\}$$

 $\Rightarrow R^{-1} = \{(2,1), (3,1), (3,2), (2,3), (6,5)\}$

(ii) We have,

$$R = \{(x,y) : x, y \in N, x + 2y = 8\}$$

Now,

$$x + 2y = 8$$

$$\Rightarrow x = 8 - 2y$$

Putting y = 1, 2, 3 we get x = 6, 4, 2 respectively.

For y = 4, we get $x = 0 \notin N$. Also for y > 4, $x \notin N$

$$R = \{(6,1), (4,2), (2,3)\}$$

Thus,

$$R^{-1} = \{(1,6), (2,4), (3,2)\}$$

$$\Rightarrow$$
 $R^{-1} = \{(3,2), (2,4), (1,6)\}$

(iii) We have,

R is a relation from $\{11, 12, 13,\}$ to $\{8, 10, 12,\}$ defined by y = x - 3

Now,

$$y = x - 3$$

Putting x = 11,12,13 we get y = 8,9,10 respectively

$$\Rightarrow$$
 (11,8) $\in R$, (12,9) $\notin R$ and (13,10) $\in R$

Thus,

$$R = \{(11,8), (13,10)\}$$

$$\Rightarrow$$
 $R^{-1} = \{(8, 11), (10, 13)\}$

() We have,

$$x - 2y$$

Putting y = 1, 2, 3 we get x = 2, 4, 5 respectively.

$$R = \{(2,1), (4,2), (6,3)\}$$

(i) We have,

It is given that relation R on the set $\{1,2,3,4,5,6,7\}$ defined by $\{x,y\} \in R \Leftrightarrow x$ is relatively prime to y.

$$(2,3) \in R, (2,5) \in R, (2,7) \in R, (3,2) \in R, (3,4) \in R, (3,5) \in R, (3,7) \in R, (4,3) \in R, (4,5) \in R, (4,7) \in R, (5,2) \in R, (5,3) \in R, (5,4) \in R, (5,6) \in R, (5,7) \in R, (6,5) \in R, (6,7) \in R, (7,2) \in R, (7,3) \in R, (7,4) \in R, (7,5) \in R \text{ and } (7,6) \in R.$$

Thus,

$$R = \begin{cases} (2.3), & (2.5), & (2.7), & (3.2), & (3.4), & (3.5), & (3.7), & (4.3), & (4.5), & (4.7), & (5.2), \\ (5.3), & (5.4), & (5.6), & (5.7), & (6.5), & (6.7), & (7.2), & (7.3), & (7.4), & (7.5), & (7.6), \end{cases}$$

(ii) We have,

$$2x + 3y = 12$$

$$\Rightarrow 2x = 12 - 3y$$

$$\Rightarrow \qquad x = \frac{12 - 3\gamma}{2}$$

Putting y = 3, 2, 4 we get x = 6, 3, 0 respectively.

For $y = 1, 3, 5, 6, 7, 8, 9, 10, x \notin given set$

$$R = \{(6,0), (3,2), (0,4)\}$$

$$= \{(0,4), (3,2), (6,0)\}$$

(iv) We have,

$$A = (5,6,7,8)$$
 and $B = (10,12,15,16,18)$

Now,

a/b stands for 'a divides b'. For the elements of the given set A and B, we find that 5/10, 5/15, 6/12, 6/18 and 8/16

Thus.

$$R = \{(5,10), (5,15), (6,12), (6,18), (8,16)\}$$

We have,

$$(x,y) \in R \Leftrightarrow x + 2y = 8$$

Now,

$$x + 2y = 8$$

$$\Rightarrow x = 8 - 2y$$

Putting y = 1, 2, 3, we get x = 6, 4, 2 respectively

For
$$y = 4$$
, we get $x = 0 \notin N$

Also, for
$$y > 4$$
, $x \in N$

$$R = \{(6,1), (4,2), (2,3)\}$$

Thus,

$$R^{-1} = \{(1,6), (2,4), (3,2)\}$$

$$\Rightarrow$$
 $R^{-1} = \{(3,2), (2,4), (1,6)\}$

Q7

We have,

$$A = \{3,5\}, B = \{7,11\}$$

and, $R = \{(a,b): a \in A, b \in B, a-b \text{ is odd}\}$

For the elements of the given sets A and B, we find that 3-7=-4, 3-11=-8, 5-7=-2 and 5-11=-6

Thus, R is an empty relation from A into B.

$$A = \{1, 2\}$$
 and $B = \{3, 4\}$

$$n(A) = 2 \text{ and } n(B) = 2$$

$$\Rightarrow$$
 $n(A) \times n(B) = 2 \times 2 = 4$

$$\Rightarrow$$
 $n(A \times B) = 4$

$$[\because n(A \times B) = n(A) \times n(B)]$$

So, there are $2^4 = 16$ relations from A to B.

$$[\because n(x) = a, n(y) = b]$$

$$\Rightarrow \text{Total number of relations} = 2^{ab}$$

Q9

(i) We have,

$$R = \left\{ \left(\times, \times + 5 \right) : \times \in \left\{ 0, 1, 2, 3, 4, 5 \right\} \right\}$$

For the elements of the given sets, we find that

$$R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$$

Clearly, Domain (R) = $\{0,1,2,3,4,5\}$ and Range (R) = $\{5,6,7,8,9,10\}$

(ii) We have,

$$R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$$

For the elements of the given sets, we find that

$$x = 2, 3, 5, 7$$

$$(2,8) \in R$$
, $(3,27) \in R$, $(5,125) \in R$ and $(7,343) \in R$

$$\Rightarrow$$
 R = {(2,8), (3,27), (5,125), (7,343)}

Clearly, Domain $(R) = \{2,3,5,7\}$ and Range $(R) = \{8,27,125,343\}$

(i) We have,

$$R = \{(a,b): a \in N, a < 5, b = 4\}$$

 $\Rightarrow a = 1,2,3,4 \text{ and } b = 4$

Thus,
$$R = \{(1, 4), (2, 4), (3, 4), (4, 4)\}$$

Clearly, Domain (R) = $\{1, 2, 3, 4\}$ and Range (R) = $\{4\}$

(ii) We have,

$$S = \{(a, b) : b = |a - 1|, a \in z \text{ and } |a| \le 3\}$$

 $\Rightarrow a = -3, -2, -1, 0, 1, 2, 3$

For
$$a = -3, -2, -1, 0, 1, 2, 3$$
 we get
 $b = 4, 3, 2, 1, 0, 1, 2$ respectively

Thus,
$$S = \{(-3, 4), (-2, 3), (-1, 2), (0, 1), (2, 1), (3, 2)\}$$

Domain
$$(S) = \{-3, -2, -1, 0, 1, 2, 3\}$$
 and Range $(R) = \{0, 1, 2, 3, 4\}$

Q11

Here, $A = \{a, b\}$

we know that,

Number of relations = 2^{mn}

$$= 2^{2.2}$$

= 24

= 16

Number of relations on A = 16

Relations on A are given by

$$R = \{a, a\}, \{a, b\}, \{b, a\}, \{b, b\}$$

$$\{(a, a), (a, b)\}, \{(a, a), (b, a)\}, \{(a, a), (b, b)\},$$

$$\{(a, b), (b, a)\}, \{(a, b), (b, b)\}, \{(b, a), (b, b)\},$$

$$\{(b,a),(b,b),(a,a)\},\{(b,b),(a,a),(a,b)\},$$

$$\{(a,a),(b,a),(b,b)\},\{(a,a),(b,a),(b,b)\}$$

We have,

$$A = \{x, y, z\} \text{ and } B = \{a, b\}$$

$$\Rightarrow$$
 $n(A) = 3 \text{ and } n(B) = 2$

$$\Rightarrow n(A) \times n(B) = 3 \times 2 = 6$$

$$\Rightarrow$$
 $n(A \times B) = 6$

$$\left[\because n \left(A \times B \right) = n \left(A \right) \times n \left(B \right) \right]$$

So, there are $2^6 = 64$ relations from A to B.

$$\because n(x) = a, n(y) = b$$

 \Rightarrow Total number of relations = 2^{ab}

Q13

We have,

$$R = \{(a,b): a, b \in N \text{ and } a = b^2\}$$

- (i) This statement is not true because $(5,5) \notin R$.
- (ii) This statement is not true because (25,5) ∈ R but (5,25) ∉ R.
- (iii) This statement is not true because (36,6) e R and (25,5) e R but (36,5) e R.

We have,

$$3x - y = 0$$

$$\Rightarrow$$
 $3x = y$

$$\Rightarrow$$
 $y = 3x$

Putting x = 1, 2, 3, 4 we get, y = 3, 6, 9, 12 respectively

For x > 4, we get y > 14 which does not belong to set A.

$$R = \{(1,3), (2,6), (3,9), (4,12)\}$$

The arrow diagram representing R is as follows:

Clearly, Domain (R) =
$$\{1, 2, 3, 4\}$$
,
Co-domain (R) = $\{1, 2, 3, 4..., 14\}$ and

Range
$$(R) = \{3, 6, 9, 12\}$$

We have,

$$R = \{(x,y): y = x + 5, x \text{ is a natural number less than } 4, x, y \in N\}$$

- (i) Putting x = 1, 2, 3 we get, y = 6, 7, 8 respectively
- Relation R in roster form is $R = \{(1,6), (2,7), (3,8)\}$
- (ii) The arrow diagram representing R is as follows:

Clearly, Domain (R) = $\{1,2,3\}$ and

Range $(R) = \{6, 7, 8\}$

Q16

We have,

$$A = \{1, 2, 3, 5\}$$
 and $B = \{4, 6, 9\}$

It is given that,

$$R = \big\{ \big\{ x,y \big\} \colon \text{ the difference between } x \text{ and } y \text{ is odd, } x \in A, \ y \in B \big\}$$

For the elements of the given sets A and B, we find that

$$(1,4) \in R$$
, $(1,6) \in R$, $(2,9) \in R$, $(3,4) \in R$, $(3,6) \in R$, $(5,4) \in R$ and $(5,6) \in R$

$$R = \{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$$

Hence, relation R in roster form is $\{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$

We have,

$$R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$$

For the elements of the given sets, we find that

$$x = 2, 3, 5, 7$$

$$(2,8) \in R$$
, $(3,27) \in R$, $(5,125) \in R$ and $(7,343) \in R$

.. Relation R in roster form is = {(2,8), (3,27), (5,125), (7,343)}

Q18

We have,

$$A = \{1, 2, 3, 4, 5, 6\}$$
and,
$$R = \{(a, b) \ a, b \in A, b \text{ is exactly divisible by a}\}$$

- (i) Now, a/b stands for 'a divides b'. For the elements of the given sets A and A, we find that 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 2/2, 2/4, 2/6, 3/3, 3/6, 4/4, 5/5, 6/6
- $Relation R in roster form is R = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)\}$
- (i) Domain (R) = $\{1, 2, 3, 4, 5, 6\}$
- (ii) Range $(R) = \{1, 2, 3, 4, 5, 5\}$

Q19

(i) Set builder form of the relation from P to Q is

$$R = \{(x, y) : y = x - 2, x \in P, y \in Q\}$$

(ii) Roster form of the relation from P to Q is

$$R = \{(5,3), (6,4), (7,5)\}$$

Domain $(R) = \{5, 6, 7\}$

Range
$$(R) = \{3, 4, 5\}$$

We have,
$$R = \{(a,b): a, b \in Z, a-b \text{ is an integer}\}$$
 Clearly, Domain $\{R\} = Z$, Range $\{R\} = Z$.

Q21

Let
$$\left(1, \frac{-1}{2}\right) \in R_1$$
 and $\left(\frac{-1}{2}, -4\right) \in R_1$

$$\Rightarrow 1+1\times\frac{-1}{2}>0 \text{ and } 1+\left(\frac{-1}{2}\right)-4>0$$

But,
$$1+1\times(-4)=1-4$$

= -3 < 0

Q22

We have,

$$(a,b)R(c,d) \Leftrightarrow a+d=b+c \text{ for all } (a,b), (c,d) \in N \times N$$

(i) We have,

$$a+b=b+a$$
 for all $a,b\in N$
 $(a,b)R(a,b)$ for all, $a,b\in N$

(ii) Now,

$$\Rightarrow$$
 $a+d=b+c$

$$\Rightarrow$$
 $(c,d)R(a,b)$

(iii) Now,

$$(a,b)R(c,d)$$
 and $(c,d)R(e,f)$

$$\Rightarrow$$
 a+d=b+c and c+f=d+e

$$\Rightarrow a+f=b+e$$

$$\Rightarrow$$
 $(a,b)R(e,f)$