MS115 Mathematics for Enterprise Computing First in-class test - Answer ALL questions

Name	Student Id

1. In each part of this question, circle the number of **one** correct answer.

Marking scheme for Question 1: +3 for each correct answer; -1 for each incorrect answer; 0 marks for no answer or an unclear answer.

- (a) Two sets A and B are equal when
 - (i) $A \cap B \subseteq A$;
 - (ii) $A \subseteq B$ and $B \subseteq A$;
 - (iii) $A \cap B = \emptyset$;
 - (iv) $A \cap B \neq \emptyset$.
- (b) Sets A, B and C are pairwise disjoint if
 - (i) $A \cap B = C$;
 - (ii) $A \cap B \cap C = \emptyset$;
 - (iii) $A \cap B \cap C = (A \cap B) \cap C$;
 - (iv) $A \cap B = \emptyset$, $B \cap C = \emptyset$ and $A \cap C = \emptyset$.
- (c) A function from a set A to a set B is a relation on A and B that
 - (i) relates some element of A to some element of B;
 - (ii) relates exactly one element of A to some element of B;
 - (iii) relates each element of A to exactly one element of B;
 - (iv) relates every element of A to more than one element of B.
- (d) A function from a set A to a set B is invertible if
 - $(i) |A| \ge |B|;$
 - (ii) no element of A is related to more than one element of B;
 - (iii) every element of B is the image of exactly one element of A;
 - (iv) every element of B is the image of at least one element of A.
- (e) The relation \leq on the set of integers $\mathbb Z$ is
 - (i) reflexive, symmetric and transitive;
 - (ii) reflexive and symmetric, but not transitive;
 - (iii) reflexive and transitive, but not symmetric;
 - (iv) symmetric and transitive, but not reflexive.

2. Compute the truth table of the following compound proposition:

$$(P \Rightarrow Q) \lor (P \lor Q).$$

[10 marks]

P	Q	$P \Rightarrow Q$	$P \lor Q$	$(P \Rightarrow Q) \lor (P \lor Q)$
T	T	T	T	T
$\mid T \mid$	F	F	T	T
F	T	T	T	T
$\mid F \mid$	$\mid F \mid$	T	F	T

3. In each case, shade the relevant region of the given Venn diagram:

$$(i) \ (A \cap B) \cup C$$

$$(ii) \ (A \cap B) \cap \overline{C}$$

$$(iii) \ (\overline{A} \cap \overline{B}) \cap C$$

[6 marks]

4. Consider two sets A and B within a universal set U. Determine the number of elements in $A \cap B$ given the following set cardinalities:

$$|U| = 80,$$
 $|\overline{A}| = 50,$ $|\overline{B}| = 40,$ $|\overline{(A \cup B)}| = 30.$

(You may find it helpful to sketch a Venn diagram)

[6 marks]

As $|\overline{A}| = 50$ and $|\overline{(A \cup B)}| = 30$, we can conclude that $|\overline{A} \cap B| = 20$.

As $|\overline{B}| = 40$ and $|\overline{(A \cup B)}| = 30$, we can conclude that $|A \cap \overline{B}| = 10$.

Thus, as |U| = 80, $|\overline{(A \cup B)}| = 30$, $|\overline{A} \cap B| = 20$ and $|A \cap \overline{B}| = 10$, it follows that $|A \cap B| = 20$.

5. For $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, consider the equivalence relation R on A defined as follows:

$$xRy$$
 exactly when $y-x=3k$ for some $k\in\mathbb{Z}.$

Write down the distinct equivalence classes that form a partition of A.

(Note: For $x \in A$, the equivalence class of x is the set $E_x = \{y \in A \mid yRx\}$).

[7 marks]

We have that 1R4, 1R7 and 1R10. Hence $E_1 = \{1, 4, 7, 10\}$.

As 2R5 and 2R8, we have that $E_2 = \{2, 5, 8\}$.

As 3R6 and 3R9, we have that $E_3 = \{3, 6, 9\}$.

The equivalence classes that partition A are $\{1,4,7,10\}$, $\{2,5,8\}$ and $\{3,6,9\}$.

6. Consider the function

$$f(x) = \frac{x+1}{2x-2}$$

- (i) Let its domain be the largest possible subset of \mathbb{R} . Describe this set. The function f is defined for all $x \neq 1$.
- Hence, $\mathbb{R} \{1\}$ is the largest possible domain of f. (ii) Show that $\frac{1}{2}$ is not an element of the range of f.

The equation $\frac{x+1}{2x-2} = a$ does not have a solution for $a = \frac{1}{2}$, as

$$\frac{x+1}{2x-2} = \frac{1}{2} \Rightarrow 2(x+1) = 2x-2 \Rightarrow 2 = -2, \text{ a contradiction.}$$

[6 marks]