Phys 2010 (NSCC), Fall 2007 Problem Set #11

1. A uniform rod 1.00 m in length and of weight 180 N is supported by two wires as shown at the right. What is the tension in each of the cables supporting the rod?

2. The rod from Problem 2 is now supported (horizontally) by three ropes, as shown to the right.

Find the tensions in all the ropes.

 $\bf 3.$ A uniform beam of weight 500 N, 6.00 m in length is supported by a cable at the far end as shown at the right. The cable will break if its tension exceeds 1300 N

A man of weight 700 N goes walking out on the beam. How away from the wall can be get before the cable breaks?

4. A uniform solid sphere of mass 4.0 kg, when rotated about an axis through its center, has a moment of inertia of $9.70 \times 10^{-3} \, \text{kg} \cdot \text{m}^2$. What is the radius of the sphere?

5. A uniform rod of mass 1.0 kg and length 0.80 m is turned about an axis through one of its ends and perpendicular to the rod. A small 1.5 kg is attached to the very end of the rod, as shown.

Find the moment of inertia of this system about the given axis.

6. If the sphere in Problem 4 is set in rotation, find the torque that will produce an angular acceleration of $3.00 \frac{\text{rad}}{\text{s}^2}$

7. A 200-kg merry-go-round in the shape of a uniform, solid horizontal disk of radius $1.60~\rm m$ is set in motion by wrapping a rope about the rim of the disk and pulling on the rope. What constant force must be exerted on the rope to bring the merry-go-round from rest to an angular speed of $0.600~\rm rev/s$ in $2.00~\rm s$?

8. A horizontal 800-N merry-go-round of radius 1.50 m (which we'll treat as a uniform circular disk) is started from rest by a constant horizontal force of 50.0 N applied tangentially to the merry-go-round. Find the kinetic energy of the merry-go-round after 3.00 s.