BLG 311E – FORMAL LANGUAGES AND AUTOMATA SPRING 2017 HOMEWORK 1

1. Reduce the states of the incompletely specified Mealy machine below using complete cover and draw the state transition table of the reduced machine in Moore model.

	00	01	11	10
a	a/0	b/0	c/0	d/1
b	b/0	-/-	c/0	-/-
c	a/0	f/0	c/0	-/-
d	d/1	-/-	e/0	a/0
e	e/0	g/0	d/1	b/0
f	-/-	f/0	-/-	a/0
g	-/-	g/0	d/1	c/0

2. Reduce the states of the Moore machine given below. Then, draw the state transition table of the reduced machine in Mealy model.

	0	1	Output
a	a	d	0
b	a	b	0
c	e	С	0
d	a	d	0
e	a	d	1
f	e	С	0

IMPORTANT: You must do this homework by hand and submit it using the box in the department secreteriat.

1.

	а	_				
b	✓	b	_			
С	(b,f) √	(b,a)	c			
d	XXXX	XXXX	XXXX	d		
e	XXXX	XXXX	XXXX	XXXX	e	_
f	xxxx	>	~	~	(a,b),(f,g)	f
g	xxxx	xxxx	xxxx	xxxx	(b,c) 🗸	(a,c) ✓

Dependency graph:

Complete cover:

{a,b,c}

 $\{e,f,g\}$

 $\{b,c,f\}$

 $\{f,d\}$

{a,b,c} - S1

 $\{e,f,g\}$ - S2

 $\{b,c,f\}$ - S3

 $\{f,d\}$ - S4

S1/0 - α

S2/0 -β

 $S3/0 - \gamma$

 $S4/1 - \delta$

Mealy State Transition table:

	00	01	11	10
S1	S1/0	S3/0	S3/0	S4/1
S2	S2/0	S2/0	S4/1	S1/0
S3	S1/0	S3/0	S1/0	S1/0
S4	S4/1	S2/0	S2/0	S1/0

Moore State Transition table:

	00	01	11	10	Output
α	α	γ	γ	δ	0
β	β	β	δ	α	0
γ	α	β	α	α	0
δ	δ	β	β	α	1

2.

	a	b	c	d	e
b	(b-d) OK				
С	(a-e)(c-d) X	(a-e) X			
d	OK	OK	(a-e) X		
e	X	X	X	X	
f	(a-e)(c-d) X	(a-e)(b-c) X	OK	(a-e)(c-d) X	X

Equivalence class: $(\{a, b, d\}, \{c, f\}, \{e\})$

$$\{a, b, d\} \rightarrow A$$

$$\{c, f\} \rightarrow B$$

$$\{e\} \rightarrow C$$

Moore transition table:

	0	1	Output
Α	Α	Α	0
В	С	В	0
C	A	A	1

Mealy transition table:

	0	1
Α	A/0	A/0
В	C/1	B/0
C	A/0	A/0