Actividades en Economía 1

EXAMEN FINAL

(Aula 723)

Problema No. 1 (8 puntos)

Se desea estimar el modelo AR(1),

$$Y_t = c + \phi Y_{t-1} + \epsilon_t$$

con

$$\epsilon_t \sim iid\mathbb{N}(0, \sigma^2)$$

mediante el método de máxima verosimilitud. El método de máxima verosimilitud se basa en encontrar aquel vector de parámetros $\theta = (c, \phi, \sigma^2)'$ que maximiza a la función de log-verosimilitud $\mathcal{L}(\theta)$

Uno de los métodos numéricos basados en gradiente es el de Newton-Raphson, el cual estima las aproximaciones numéricas según la regla

$$\theta^{(k)} = \theta^{(k-1)} - \left[\mathbf{H}\left(\theta^{(k-1)}\right)\right]^{-1}\mathbf{g}\left(\theta^{(k-1)}\right)$$

partiendo de un valor inicial $\theta^{(0)}$, para todo k = 1, 2, ..., MaxIter. El vector gradiente $\mathbf{g}(\theta)$ y la matriz Hessiana, $\mathbf{H}(\theta)$, se obtienen a partir de $\mathcal{L}(\theta)$.

En la siguiente páfina se describe el algoritmo para ajustar el modelo AR(1) mediante el método de máxima verosimilitud a un conjunto de datos de retornos (archivo Excel: serie_retornos.xlsx) considerando como criterio de convergencia que la distancia entre las log-verosimilitudes sea menor que un nivel de tolerancia $\varepsilon = 10^{-12}$.

Codifique el script MATLAB que permita llevar a cabo la estimación de los parámetros del modelo AR(1) siguiendo los pasos especificados en el algoritmo. Como ayuda se le ha proporcionado la función **loglikeAR1.m** que recibe como argumento de entrada θ y la serie de retornos \mathbf{y} , retornando como salida $\mathcal{L}(\theta)$, $\mathbf{g}(\theta)$ y $\mathbf{H}(\theta)$.

 ${f NOTA}$: El operador \div corresponde a la división elemento a elemento.