Lecture 4 – Frequency Domain Transform (频率域变换)

This lecture will cover:

- 2D Discrete Fourier Transform (傅里叶变换)
- Frequency Domain Filtering (频率域滤波)
 - Lowpass Filtering(低通滤波器)
 - Highpass Filtering (高通滤波器)
 - Selective Filtering (选择性滤波)

- Other Transform

- Discrete Cosine Transform (余弦变换)
- Walsh Transform (沃尔什变换)
- Discrete Wavelet Transform (小波变换)

Image Transform

The general form:

$$T(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y)r(x,y,u,v)$$

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} T(u,v)s(x,y,u,v)$$

Where

r(x, y, u, v): forward transformation kernel

s(x, y, u, v): inverse transformation kernel

Image Transform

The general approach for operating in the linear transform domain

Properties

> Separable

$$r(x, y, u, v) = r_1(x, u)r_2(y, v)$$

Symmetry

$$r(x, y, u, v) = r_1(x, u)r_1(y, v)$$

Matrix Form

> Forward Transform

$$T = AFA$$

► Inverse Transform

$$F = BTB$$
 if $B = A^{-1}$

$$\widehat{F} = BAFAB$$
 Otherwise

Cosine Transform (余弦变换)

Discrete Cosine Transform (DCT):

$$F(0) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) \qquad F(u) = \sqrt{\frac{2}{N}} \sum_{x=0}^{N-1} f(x) \cos \frac{(2x+1)u\pi}{2N}$$

Inverse Discrete Cosine Transform (IDCT):

$$f(x) = \frac{1}{\sqrt{N}}F(0) + \sqrt{\frac{2}{N}} \sum_{u=1}^{N-1} F(u) \cos \frac{(2x+1)u\pi}{2N}$$

2D DCT

Forward Transform:

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y)$$

$$F(u,0) = \frac{\sqrt{2}}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N}$$

$$F(0,v) = \frac{\sqrt{2}}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2y+1)v\pi}{2N}$$

$$F(u,v) = \frac{2}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

2D IDCT

Inverse Transform:

$$f(x,y) = \frac{1}{N}F(0,0)$$

$$+ \frac{\sqrt{2}}{N} \sum_{u=1}^{N-1} F(u,0) \cos \frac{(2x+1)u\pi}{2N}$$

$$+ \frac{\sqrt{2}}{N} \sum_{v=1}^{N-1} F(0,v) \cos \frac{(2y+1)v\pi}{2N}$$

$$+ \frac{2}{N} \sum_{v=1}^{N-1} \sum_{v=1}^{N-1} F(u,v) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

Matrix Form

Analytic form:
$$\begin{cases} F(0) = 0.500f(0) + 0.500f(1) + 0.500f(2) + 0.500f(3) \\ F(1) = 0.653f(0) + 0.271f(1) - 0.271f(2) - 0.653f(3) \\ F(0) = 0.500f(0) - 0.500f(1) - 0.500f(2) + 0.500f(3) \\ F(0) = 0.271f(0) - 0.653f(1) + 0.653f(2) - 0.271f(3) \end{cases}$$

Matrix Form:
$$\begin{bmatrix} F(0) \\ F(1) \\ F(2) \\ F(3) \end{bmatrix} = \begin{bmatrix} 0.500 & 0.500 & 0.500 & 0.500 \\ 0.653 & 0.271 & -0.271 & -0.653 \\ 0.500 & -0.500 & -0.500 & 0.500 \\ 0.271 & -0.653 & 0.653 & -0.271 \end{bmatrix} \begin{bmatrix} f(0) \\ f(1) \\ f(2) \\ f(3) \end{bmatrix}$$

Forward Matrix form: [F(u)] = [A][f(x)]

Inverse Matrix form: $[f(x)] = [A]^T [F(u)]$

2D DCT Matrix Form

Forward Transform:

$$F(0,0) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \qquad F(u,0) = \frac{\sqrt{2}}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N}$$

$$F(0,v) = \frac{\sqrt{2}}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2y+1)v\pi}{2N} \qquad F(u,v) = \frac{2}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos \frac{(2x+1)u\pi}{2N} \cos \frac{(2y+1)v\pi}{2N}$$

Forward Matrix form: $[F(u, v)] = [A][f(x, y)][A]^T$

Inverse Matrix form: $[f(x,y)] = [A]^T [F(u,v)][A]$

Calculate DCT by DFT

$$F(u) = \sqrt{\frac{2}{N}} \sum_{x=0}^{N-1} f(x) \cos \frac{(2x+1)u\pi}{2N} = \sqrt{\frac{2}{N}} \sum_{x=0}^{N-1} f(x) \operatorname{Re} \left\{ e^{-j\frac{(2x+1)u\pi}{2N}} \right\} = \sqrt{\frac{2}{N}} \operatorname{Re} \left\{ \sum_{x=0}^{N-1} f(x) e^{-j\frac{(2x+1)u\pi}{2N}} \right\}$$

$$f_e(x) = \begin{cases} f(x), & x = 0, 1, 2, \dots, N - 1 \\ 0, & x = N, N + 1, N + 2, \dots, 2N - 1 \end{cases}$$

$$F(0) = \frac{1}{\sqrt{N}} \sum_{x=0}^{2N-1} f_e(x)$$

$$F(u) = \sqrt{\frac{2}{N}} \sum_{x=0}^{2N-1} f_e(x) \cos \frac{2(x+1)u\pi}{2N} = \sqrt{\frac{2}{N}} \operatorname{Re} \left\{ \sum_{x=0}^{2N-1} f_e(x) e^{-j\frac{(2x+1)u\pi}{2N}} \right\} = \sqrt{\frac{2}{N}} \operatorname{Re} \left\{ e^{-j\frac{u\pi}{2N}} \sum_{x=0}^{2N-1} f_e(x) e^{-j\frac{2\pi ux}{2N}} \right\}$$

where

$$\sum_{x=0}^{2N-1} f_e(x)e^{-j\frac{2\pi ux}{2N}} = DFT[f_e(x)]$$

Calculate IDCT by IDFT

$$F_e(u) = \begin{cases} F(u), & u = 0, 1, 2, \dots, N-1 \\ 0, & u = N, N+1, N+2, \dots, 2N-1 \end{cases}$$

$$f(x) = \frac{1}{\sqrt{N}}F(0) + \sqrt{\frac{2}{N}}\sum_{u=0}^{N-1}F(u)\cos\frac{(2x+1)u\pi}{2N} = \frac{1}{\sqrt{N}}F_e(0) + \sqrt{\frac{2}{N}}\sum_{u=1}^{2N-1}F_e(u)\cos\frac{(2x+1)u\pi}{2N}$$

$$= \frac{1}{\sqrt{N}} F_e(0) + \sqrt{\frac{2}{N}} \sum_{u=1}^{2N-1} \operatorname{Re} \left\{ F_e(u) e^{j\frac{(2x+1)u\pi}{2N}} \right\} = \frac{1}{\sqrt{N}} F_e(0) + \sqrt{\frac{2}{N}} \sum_{u=1}^{2N-1} \operatorname{Re} \left\{ F_e(u) e^{j\frac{u\pi}{2N}} e^{j\frac{2\pi ux}{2N}} \right\}$$

$$= \left(\frac{1}{\sqrt{N}} - \sqrt{\frac{2}{N}}\right) F_e(0) + \sqrt{\frac{2}{N}} \operatorname{Re} \left\{ \sum_{u=0}^{2N-1} \left\{ F_e(u) e^{j\frac{u\pi}{2N}} \right\} e^{j\frac{2\pi ux}{2N}} \right\}$$

where

$$\sum_{u=0}^{2N-1} \left\{ F_e(u) e^{j\frac{u\pi}{2N}} \right\} e^{j\frac{2\pi ux}{2N}} = IDFT \left[F_e(u) e^{j\frac{u\pi}{2N}} \right]$$

Basic Function for DCT

Walsh Transform

- Consist of ±1 arranged in a checkerboard pattern
- > Transform:

$$W(i) = \frac{1}{N} \sum_{t=0}^{N-1} f(t) \cdot \text{Wal}(i, t)$$

$$f(t) = \sum_{i=0}^{N-1} W(i) \cdot \text{Wal}(i, t)$$

- \triangleright Types of Wal(i, t)
 - Walsh Ordering (沃尔什定序)
 - Paley Ordering (佩利定序)
 - Hadamard Matrix Ordering (哈达玛矩阵定序)

Walsh Ordering

Paley Ordering

Hadamard Matrix Ordering

Relationship Between Ordering

Walsh ordering (Signal processing)	Paley ordering (Control Engineering)	Hadamard ordering (Mathematics)	W(m,n)
$Wal_w(0,t)$	$Wal_{P}(0,t)$	Wal _H (0, <i>t</i>)	[1 1 1 1 1 1 1]
$Wal_w(1,t)$	$Wal_{P}(1,t)$	Wal _H (4, <i>t</i>)	[1 1 1 1 -1 -1 -1 -1]
$Wal_w(2,t)$	Wal _P (3, <i>t</i>)	Wal _H (6, <i>t</i>)	[1 1-1-1-111]
Wal _w (3, <i>t</i>)	$Wal_{P}(2,t)$	Wal _H (2, <i>t</i>)	[1 1-1-111-1-1]
$Wal_w(4,t)$	Wal _P (6, <i>t</i>)	Wal _H (3, <i>t</i>)	[1 -1 -1 1 1 -1 -1 1]
Wal _w (5, <i>t</i>)	Wal _P (7, <i>t</i>)	Wal _H (7, <i>t</i>)	[1 -1 -1 1 -1 1 1 -1]
Wal _w (6, <i>t</i>)	Wal _P (5, <i>t</i>)	Wal _H (5, <i>t</i>)	[1 -1 1 -1 -1 1 -1 1]
Wal _w (7, <i>t</i>)	$Wal_{P}(4,t)$	Wal _H (1, <i>t</i>)	[1 -1 1 -1 1 -1 1 -1]

Basic Function for WHT

Block Transform

Wavelet Transform (小波变换)

- > Based on small waves called Wavelets 1) limited; 2) oscillation
- ➤ Mother wavelet (母小波): Translation & Scaling
- > Varying frequency and limited duration
- > localized in both time and frequency

Continuous Wavelet Transform (连续小波变换)

Continuous Wavelet Transform (CWT)

$$W_{\psi}(s,\tau) = \int_{-\infty}^{\infty} f(x)\psi_{s,\tau}(x)dx$$

Where $\psi_{s,\tau}(x) = \frac{1}{\sqrt{s}} \psi\left(\frac{x-\tau}{s}\right)$

s: scale parameter (尺度参数) τ : translation parameter (平移参数)

> Inverse Continuous Wavelet Transform (ICWT)

$$f(x) = \frac{1}{C_{\psi}} \int_{0}^{\infty} \int_{-\infty}^{\infty} W_{\psi}(s, \tau) \frac{\psi_{s, \tau}(x)}{s} d\tau ds$$

Where $C_{\psi} = \int_{-\infty}^{\infty} \frac{|\Psi(\mu)|^2}{|\mu|} d\mu$, $\Psi(\mu)$ is Fourier transform of $\psi(x)$

Discrete Wavelet Transform (离散小波变换)

Discrete Wavelet Transform (DWT)

$$W_{\varphi}(j_0, k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \, \varphi_{j_0, k}(n)$$

$$W_{\psi}(j,k) = \frac{1}{\sqrt{M}} \sum_{n} f(n) \psi_{j,k}(n) \quad j \ge j_0$$

Inverse Continuous Wavelet Transform (ICWT)

$$f(n) = \frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}(j_0, k) \, \varphi_{j_0, k}(n) + \frac{1}{\sqrt{M}} \sum_{j=j_0}^{\infty} \sum_{k} W_{\psi}(j, k) \, \psi_{j, k}(n)$$

Where

 $arphi_{j_0,k}(n)$: scaling function (尺度函数) $\psi_{j,k}(n)$: Wavelet (小波)

 $W_{\varphi}(j_0,k)$: Approximation coefficients (近似系数) $W_{\psi}(j,k)$: detail coefficients (细节系数)

Scale & Wavelet

2D DWT

Define 2D scale function(二维尺度函数):

$$\varphi(x,y) = \varphi(x)\varphi(y)$$

"Directionally sensitive" wavelet ("方向敏感" 小波)

$$\psi^H(x,y) = \psi(x)\varphi(y)$$
 $\psi^V(x,y) = \varphi(x)\psi(y)$ $\psi^D(x,y) = \psi(x)\psi(y)$

2D DWT

$$W_{\varphi}(j_0, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \, \varphi_{j_0, m, n}(x, y)$$

$$W_{\psi}(j, m, n) = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \, \psi_{j, m, n}^{i}(x, y) \qquad i = \{H, V, D\}$$

2D IDWT

$$f(x,y) = \frac{1}{\sqrt{MN}} \sum_{m} \sum_{n} W_{\varphi}(j_{0}, m, n) \varphi_{j_{0},m,n}(x,y)$$

$$+ \frac{1}{\sqrt{MN}} \sum_{i=\{H,V,D\}} \sum_{j=j_{0}}^{\infty} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} W_{\psi}(j, m, n) \psi_{j,m,n}^{i}(x,y)$$

2D DWT

Mother Wavelet (母小波)

➤ Mother Wavelet should satisfy

- $\int_{-\infty}^{\infty} |\psi(t)| dt < \infty$
- $\int_{-\infty}^{\infty} \psi(t)dt = 0$

