Université de Sidi Bel Abbès. Faculté des Sciences Exactes Département de Proba.Stat Année : 2021/2022 Master : STAT-APP Module Stat-Nonparam

ESTIMATION NONPARAMÉTRIQUE

Problème 1. Soit X une variable aléatoire définie sur l'espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$, à valeur dans \mathbb{R} . pour tout $x \in \mathbb{R}$, on désigne par F la fonction de répartition de X, qu'on suppose qu'elle est (k+1)-fois continûment dérivable et par f la fonction de densité, qu'on suppose qu'elle est strictement positive, et de classe C^k au voisinage de x.

Etant donné X_1, X_2, \ldots, X_n une suite de variable aléatoire réelle de même loi que X, l'estimateur de la fonction de répartition par la méthode du noyau noté $F_n(x)$, défini par :

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right), \forall x \in \mathbb{R}$$

où K est noyau et h_n est une suite de réels positifs, vérifiants

(1) Le noyau K est supposé d'ordre k intégrable, d'intégrale égale à 1, borné et positif et à support compact (0,1), vérifiant :

(i)
$$\int t^j K(t) dt = 0 \ \forall j = 1, \dots, k-1, \ et \ 0 < |\int t^k K(t) dt| < \infty.$$

(ii)
$$\exists A < \infty, \ \forall x_1, x_2 \in \mathbb{R} \ on \ a : |K^{(i)}(x_1) - K^{(i)}(x_2)| \le A|x_1 - x_2|, \ où i = 0, 1.$$

(2)
$$\lim_{n \to +\infty} h_n = 0$$
 et $\lim_{n \to +\infty} n^{\beta} h_n = \infty \quad \forall \beta > 0, \quad j = 0, 1.$

On déduit de F_n un estimateur de la densité, noté f_n , défini par

$$f_n(x) = F_n^{(1)}(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{h_n} K^{(1)}\left(\frac{x - X_i}{h_n}\right) = \frac{1}{nh_n} \sum_{i=1}^n K^{(1)}\left(\frac{x - X_i}{h_n}\right)$$

Montrer qu'on a

(1)
$$|f_n(x)-f(x)| = \mathcal{O}(h_n^k) + \mathcal{O}\left(\sqrt{\frac{\log n}{nh_n}}\right)$$
, p.co. et $\exists \delta > 0$: $\mathbb{P}(f_n(x) < \delta) < \infty$.

(2)
$$|F_n(x) - F(x)| = \mathcal{O}(h_n^k) + \mathcal{O}\left(\sqrt{\frac{\log n}{n}}\right), p.co.$$

(3)
$$\exists \delta > 0$$
 tel que $\sum_{n=1}^{\infty} \mathbb{P} \left\{ \inf_{x \in \mathbb{R}} |1 - F_n(x)| < \delta \right\} < \infty$.

Problème 2. Soit $K: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction quelconque et soit h un réel positif. On appelle estimateur à noyau la fonction

$$f_n = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h}\right)$$

où K est le noyau de cet estimateur et h est la fenêtre. Montrer que si K est positive et $\int_{\mathbb{R}} K(u)du = 1$, alors $f_n(\cdot)$ est une densité de probabilité. De plus, f_n est continue si K est continue. Lorsqu'on définit un estimateur à noyau, on a non-seulement le choix de la fenêtre h > 0 mais aussi celui du noyau K. Il y a un certain nombre de conditions qui sont considérées comme usuelles pour les noyaux et qui permettent d'analyser le risque de l'estimateur à noyau qui en résulte.

HYPOTHÈSE K : On suppose que K vérifie les 4 conditions suivantes :

$$(1) \int_{\mathbb{R}} K(u)du = 1,$$

- (2) K est une fonction paire ou, plus généralement, $\int_{\mathbb{D}} uK(u)du = 0$,
- $(3) \int_{\mathbb{P}} u^2 |K(u)| du < \infty,$
- $(4) \int_{\mathbb{R}} K(u)^2 du < \infty,$
- (i) Si les trois premières conditions de l'hypothèse K sont remplies et f est une densité bornée dont la dérivée seconde est bornée, montrer que

$$|Biais(f_n(x))| \leq C_1 h^2$$
,

où
$$C_1 = 1/2 \sup_{z \in \mathbb{R}} |f''(z)| \int_{\mathbb{R}} u^2 |K(u)| du.$$

(ii) Si, de plus, la condition 4 de l'hypothèse K est satisfaite, montrer que

$$Var\left(f_n(x)\right) \le \frac{C_2}{nh}$$

avec
$$C_2 = \sup_{z \in \mathbb{R}} f(z) \int_{\mathbb{R}} K(u)^2 du$$
.

Problème 3. Soit $X_1, X_2, ... X_n$ un n-échantillon de X de fonction de répartition F et de densité f et soit $x \in \mathbb{R}$ tel que F(x) < 1. Admettant que que la fonction de hasard $\lambda(x) = \frac{f(x)}{1 - F(x)}$ est un paramètre fonctionnel.

- (1) Déduire un estimateur $\lambda_n(x)$ pour $\lambda(x)$ par la méthode du noyau.
- (2) Montrer que

$$\lambda_n(x) - \lambda(x) = \frac{f_n(x) - f(x)}{1 - f_n(x)} + (F_n(x) - F(x)) \frac{\lambda(x)}{1 - F_n(x)}$$

(3) En utilisant la convergence presque complète de $F_n(x)$ vers F(x) montrer qu'il existe $\delta > 0$ tel que :

$$\sum_{n} \mathbb{P}\left[(1 - F_n(x)) < \delta \right] < \infty$$

(4) Etudier la convergence presque complète de l'estimateur $\lambda_n(x)$.

Problème 4. Soit $(X_1, Y_1) \dots (X_n, Y_n)$ un n-échantillon de (X, Y) dans \mathbb{R}^2 . On considère la fonction de répartition conditionnelle de Y, sachant X, définie par

$$\forall x \in \mathbb{R}$$
 $F(x,y) = \mathbb{E}(\psi_y(Y)|X=x)$

où $\psi_y(Y) = \mathcal{I}_{Y \leq y}$ avec \mathcal{I} est la fonction indicatrice. On suppose que la densité de la variable explicative X et la fonction $\mathbb{E}\left(\psi_y(Y)|X=x\right)$ vérifient la condition suivante :

$$\exists k > 0, \ \exists C < \infty, \ \forall z \in]x - \varepsilon, x + \varepsilon[, \ |\phi(x) - \phi(z)| \le C|x - z|^k,$$

où ϕ désigne indifféremment f ou $\mathbb{E}(\psi_y(Y)|X=x)$.

- (1) Estimer la fonction $F(x,y) = \mathbb{E}(\psi_y(Y)|X=x)$ par la méthode du noyau.
- (2) Montrer que, si:
 - (a) $\lim_{n \to \infty} h_n = 0$ et $\lim_{n \to \infty} \frac{nh_n}{\log n} = \infty$,
 - (b) Le noyau K est borné, intégrable et à support compact,
 - (c) La fonction f est telle que f(x) > 0, alors, l'estimateur construit converge presque complètement et que sa vitesse de convergence est

$$\mathcal{O}(h_n^k) + \mathcal{O}\left(\sqrt{\frac{\log n}{nh_n}}\right)$$
 en p.co.

Problème 5. On va s'intéresser au modèle de régression, où

$$Y_i = f(x_i) + \varepsilon_i, \quad i = 1, \dots, n$$

où $x_i \in [0,1]$ sont connus et les ε_i sont i.i.d centrés de même variances σ^2 , et on cherche à estimer f, fonction de [0,1] à valeurs dans \mathbb{R} . Supposant à présant \widehat{f} un estimateur linéaire de f tel que :

$$\forall x \in [0,1], \ \widehat{f}(x) = \sum_{i=1}^{n} W_{n,i}(x) Y_i, \quad \text{où} \quad W_{n,i}(x) = \frac{K\left(\frac{x_i - x}{h_n}\right)}{\sum_{i=1}^{n} K\left(\frac{x_i - x}{h_n}\right)}$$

(i) Soient Z_i, \ldots, Z_n des v.a.r telles que $\exists \alpha > 0$ et C > 0 tels que pour tout $i = 1, \ldots, n$ on $a : \mathbb{E}(\exp(\alpha Z_i)) \leq C$. Montrer que

$$\mathbb{E}\left(\max_{1 \le i \le n} Z_i\right) \le \frac{1}{\alpha} \ln(Cn).$$

.

- (ii) Soit $x \in [0,1]$, f continue, et qu'il esxiste $(h_n)_{n\geq 1}$ où $h_n \xrightarrow[n\to\infty]{} 0$ telle que les deux conditions suivantes sont vérifiées :
 - (1) $\lim_{n \to \infty} \sum_{i=1}^{n} W_{n,i}^{2}(x) = 0.$
 - (2) Pour tout $\delta > 0$, $\lim_{n \to \infty} \sum_{i=1}^{n} \mathbf{1}_{|x-x_i| > \delta} W_{n,i}(x) = 0$.

$$\operatorname{Montrez\ que\ \lim_{n\to\infty}\mathbb{E}\left[\left(\widehat{f}(x)-f(x)\right)^2\right]=0.$$

- (iii) Supposons f continue, et que les deux conditions suivantes sont vérifiées :
- (3) $\lim_{n \to \infty} \int_0^1 \sum_{i=1}^n W_{n,i}^2(x) dx = 0.$
- (4) Pour tout $\delta > 0$, $\lim_{n \to \infty} \sum_{i=1}^{n} \int_{|x-x_i| > \delta} W_{n,i}(x) dx = 0$.

Vérifie qu'on
$$a: \lim_{n\to\infty} \mathbb{E}\left[\int_0^1 \left(\widehat{f}(x) - f(x)\right)^2 dx\right] = 0.$$

Problème 6. Soit $(X_1, Y_1) \dots (X_n, Y_n)$ un n-échantillon de (X, Y) dans $\mathbb{R}^d \times \mathbb{R}$. On considère la moyenne conditionnelle de Y, sachant X, définie par

$$\forall x \in \mathbb{R}^d$$
 $r(x) = \mathbb{E}(Y|X = x)$.

On suppose que la densité de la variable explicative X et la fonction r(x) vérifient la condition suivante :

$$\exists a > 0, \ \exists C < \infty, \ \forall z \in]x - \varepsilon, x + \varepsilon[, \ |\phi(x) - \phi(z)| \le C ||x - z||^a,$$

où ϕ désigne indifféremment f ou $\mathbb{E}(Y|X=x)$.

 $(1) \ \textit{Estimer la fonction } r(x) = \mathbb{E}\left(Y|X=x\right) \textit{ par la méthode du noyau}.$

Montrer que si

- (i) f > 0 et r sont k fois continûment différentiables autour de x.
- (ii) $|Y| < M < \infty$.

(iii)
$$\lim_{n \to \infty} h_n = 0$$
 et $\lim_{n \to \infty} \frac{nh_n^d}{\log n} = \infty$.

- (iv) Le noyau K est borné, intégrable, d'ordre k et à support compact.
- (2) L'estimateur construit converge presque complètement et que sa vitesse de convergence est $\mathcal{O}(h_n^k) + \mathcal{O}\left(\sqrt{\frac{\log n}{nh_n^d}}\right)$ en p.co.

Supposons à présent que

- (a) r et f sont continues autour de x et f est strictement positive.
- (b) $|Y| < M < \infty$.

- (c) $\lim_{n \to \infty} h_n = 0$ et $\lim_{n \to \infty} nh_n^d = \infty$.
- $(d)\ K\ est\ born\'e,\ int\'egrable,\ positive,\ sym\'etrique\ et\ \grave{a}\ support\ compact.$ Montrer que

(3)
$$\mathbb{E}(\widehat{r}(x)) \longrightarrow r(x)$$
 où $\widehat{r}(x)$ est l'estimateur de $r(x)$ et $Var(\widehat{r}(x)) = \mathcal{O}\left(\frac{1}{nh_n^d}\right)$ p.o.

(4) Endéduire que
$$\mathbb{E}(\widehat{r}(x) - r(x))^2 \longrightarrow 0$$

Problème 7. Soient X et Y deux variables aléatoires définies sur l'espace de probabilité $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans $\mathbb{R} \times \mathbb{R}$. Pour tout $x \in \mathbb{R}$, on désigne par F^x la fonction de répartition conditionnelle de Y sachant X = x, on suppose que F^x est absolument continue par rapport à la mesure de Lebesgue de densité f^x .

Étant donné $(X_1, Y_1), \ldots, (X_n, Y_n)$ une suite des observations de même loi que (X, Y), on estime par la méthode à noyau la fonction de répartition conditionnelle F^x par l'estimateur, noté \widehat{F}^x , défini par :

$$\widehat{F}^{x}(y) = \frac{\sum_{i=1}^{n} K(h_{K}^{-1}(x - X_{i})) H(h_{H}^{-1}(y - Y_{i}))}{\sum_{i=1}^{n} K(h_{K}^{-1}(x - X_{i}))}, \quad \forall y \in \mathbb{R}$$

où K est un noyau, H est une fonction de répartition et $h_K = h_{K,n}$ (resp. $h_H = h_{H,n}$) est une suite de réels positifs. On déduit de \widehat{F}^x un estimateur de la densité conditionnelle, noté \widehat{f}^x , défini par

$$\widehat{f}^{x}(y) = \frac{h_{H}^{-1} \sum_{i=1}^{n} K(h_{K}^{-1}(x - X_{i})) H^{(1)}(h_{H}^{-1}(y - Y_{i}))}{\sum_{i=1}^{n} K(h_{K}^{-1}(x - X_{i}))}, \quad \forall y \in \mathbb{R}.$$

Pour simplifier la notation, on pose $K_i(x) = K(h_K^{-1}(x - X_i))$, $H_i(y) = H(\frac{y - Y_i}{h_H})$

$$et \ f_n(x) = \frac{1}{nh_K} \sum_{i=1}^n K_i(x) \ , \ g_n^{(j)}(x,y) = \frac{1}{nh_H^j h_K} \sum_{i=1}^n K_i(x) H_i^{(j)}(y), \quad j = 0, 1.$$

Supposons que

- (a) La f.d.r conditionnelle est k+1-fois continûment dérivable autour de S.
- (b) La densité de la variable explicative est strictement positive, et de classe \mathcal{C}^k .
- (c) La fonction H est strictement croissante, de dérivée bornée et d'ordre k :

$$\forall (y_1, y_2) \in \mathbb{R}^2, \quad |H^{(j)}(y_1) - H^{(j)}(y_2)| \le A|y_1 - y_2|; \qquad j = 0, 1.$$

(d) K est supposé d'ordre k intégrable, d'intégrale égale à 1, borné et positif. Montrer que

$$\sup_{y \in \mathcal{S}} |F^x(y)f(x) - \mathbb{E}g_n(x,y)| = \mathcal{O}(h_K^k + h_H^k).$$

$$\sup_{y \in \mathcal{S}} \left| f^x(y)f(x) - \mathbb{E}g_n^{(1)}(x,y) \right| = \mathcal{O}(h_K^k + h_H^k).$$

où \mathcal{S} est un compact de \mathbb{R}