

From: http://news.bitcoin.com

Blockchain

Zwischen Genesis und Mondlandung

Peer-to-Peer Cash

Ideal: Internet money without central control and anonymous

```
I've been working on a new electronic cash system that's fully peer-to-peer, with no trusted third party.

[...]

Satoshi Nakamoto

The Cryptography Mailing List
```

A toy currency

- Start with arbitrary bits that you call coins from now on
- Use cryptographic signatures to make forging messages impossible

A central bank could tell which transaction came first.

A toy currency

- Decentralize control: Shared ledger
 - Every participant keeps a record of the transaction history
 - This works as long you know all the participants and trust a majority.
- But in open peer-to-peer systems
 - It is impossible to know all the participants.
 - It is impossible to meaningfully count votes.
- Want: dynamic membership of the participant set

Bitcoin

- Proof of Work: small proof that some amount of computation was done
- 1. Define that the "official" transaction history
 - a. is valid
 - b. has the most proof of work
- 2. Providing PoW (mining) to the official history is rewarded with coins

Effect:

- Consensus on official history.
- Incentivizes mining on a history. Incentivizes mining on the official history.

Mining

- History is represented as a chain of blocks.
 - Blocks contain transactions.
- Miners create blocks by collecting transactions.
- And attempt to solve the PoW function.
- Blocks are mined on expectancy every 10 minutes.
- The miner gets a mining reward.

Mining

- Miner attempting to rewrite the history always loses in the long run
 - As long as miner has less than 50% hash rate
- Miners can not spend your coins or include invalid transactions
 - f.e. A tx that send more coins than the attacker has available.

Blockchain technology

- 2 years ago: An application that uses Bitcoin in some way
- Now: Consensus on shared censorship-resistant state with immutable rules in a distributed environment with potentially dishonest nodes.
- Goal: Reduce trust or expensive processes
- Can enable interactions that were previously impossible.

Part 2: Transactions

Transactions

- Balance-based vs. UTXOs
- Balance-based (f.e. Ethereum)

Ledger state

Alice	2
Bob	0

○ Transaction: Alice 1 coin —— Bob

New ledger state

Alice	1
Bob	1

Transactions Inputs & Outputs

Transaction output: tuple of recipient and value input: tuple of txid, vout and signature

Unspent Transaction Outputs (UTXOs)

 Alice owns 2 coins = Alice can spend transaction outputs whose values sum to 2

Spending Outputs

Part 3: Script

Cryptography Basics

- Cryptographic hash functions
 - \circ hash: $\{0,1\}^* -> \{0,1\}^n$
 - o Example: sha1("foo") =
 f1d2d2f924e986ac86fdf7b36c94bcdf32beec15
 - collision resistant
- Public key cryptography
 - key pair: secret key sk and public key pk
 - cryptographic signature over message m
 - sign(message, sk) -> sig
 - \blacksquare verify(message, pk, sig) -> {0, 1}
 - Nobody can create a sig for a pk without the sk.

Script Evaluation: Pay-to-pubkey (P2PK)

= Bitcoin script <pubKey> OP CHECKSIG

= Bitcoin script <sig>

Multisig

2 of 3 Multisig Output

Use cases: Wallet security, Escrow, Micropayment Channels

scriptPubKey: <m> <pubKey_1> ... <pubKey_n> <n> OP_CHECKMULTISIG
scriptSig: <sig_1> ... <sig_m>

Payment Channels

Setup: Alice creates transaction with 10 bitcoin to a 2-of-2 multisig with Bob

Micropayment Channel

- Problem: If Bob vanishes, Alice's coins are lost
- CheckLockTimeVerify
 - o 12345 OP CLTV
 - script evaluation fails if blockchain < 12345 blocks
- Idea: After some time, Alice gets refund

Part 4: Sidechains

Sidechains

Observations

- a. There is no single blockchain that meets all requirements.
- b. Blockchains make different trade offs.
- c. New blockchain rules need consensus, slow process.
- d. Creating new blockchains from scratch is a huge challenge
 - Network effect, security

Interoperability

- a. Pass information from chain to chain in a trustless and automated way.
- b. Leverage security from a different chain.
- c. Common API.

Sidechains

Use case: Add features to Bitcoin

Federated Peg

- New security model: Set of mutually distrusting functionaries
- Enforce the rules that Bitcoin is currently unable to.
- Uses m-of-n multisig instead of PoW.
- Auditable
- Allows creation of interoperable private chains.

Elements

https://elementsproject.org / https://github.com/elementsproject/elements

- Bitcoin Core code fork
- Uses federated peg
 - our public chain pegged to Bitcoin testnet
- Alpha released, Beta soon

Liquid

https://elementsproject.org/sidechains/liquid/

- Production Bitcoin sidechain
- Based on elements
- Key feature: Decrease interchange settlement lag (ISL)
 - o Because Liquid uses federated Peg: improves latency, throughput
- + Elements features (CT)
- Primarily for Bitcoin exchanges, payment processors, traders
- Strong Federation
- Launch in late summer 2016

Alpha feature: Confidential Transactions (CT)

alpha_address = bitcoin_address + blinding_pubKey

Without corresponding blinding private key, values are hidden (blinded).

Auditors can import private blinding key

Part 5: Bitcoin Roadmap

"Through the use of cryptographic proof and decentralized networks Bitcoin minimizes and replaces trust costs."

Segregated Witness

- Signaturen sind nicht mehr Teil der Transaktion
 - Sie sind nur ein Zeuge (Witness) den man zur Validierung braucht
- Soft-fork: Benutzer bestimmen selbst ueber Upgrade
- Implementiert, aber noch nicht aktiviert

- Loest "malleability" Problem
- Erhoeht den effektiven Transaktions-Durchsatz
- Skript Versionierung

Signature Aggregation

- Neue Skript Version
- Fuehrt neuen Signatur Algorithmus ein (Schnorr)
- Es wird nur eine Signature pro Transaktion benoetigt
- Im Durchschnitt bis zu 30% Einsparung der Transaktionsgroesse
 - Erhoeht Durchsatz
- Nebeneffekt: Man spart Transaktionsgebuehren (~ 5%) wenn man eine Transaktion gemeinsam mit einer anderen Person erstellt ("CoinJoin")

CoinJoin

Lightning Network

- = Payment channel + Netzwerk
- Zahlung benoetigt im Allgemeinen nicht Eroeffnung eines Channels
- Sind Off-chain
- Privatsphaere durch Onion Routing

From: https://BitcoinMagazine.com

Allgemeinere "Smart Contracts"

- Ziele
 - o On-Chain Verifikation, Off-Chain Berechnung
 - Basierend auf 80 Jahren Fortschritt in der Informatik
 - Und 40 Jahren Software Entwicklung
 - Privat

Beispiele

- MAST
 - Bitcoin Skript, aber es wird nur der ausgefuehrte Teil offenbart
- ZKCP
 - Zk-snark: Beweis, dass Funktion auf Input true zurueckgibt ist, ohne den Input zu offenbaren
 - Beispiel: is valid Sudoku solution(solution)
 - Bezahlung erfolgt nur genau dann wenn Beweis und Input offenbart wird
- o etc.

Zusammenfassung

- Blockchain: Consensus on shared censorship-resistant state with immutable rules in a distributed environment with potentially dishonest nodes.
- Bitcoin ist eine flexible Plattform fuer Blockchain Applikationen.
- Sidechains fuegen state-of-the-art Features hinzu und werden ab dem spaeten Sommer in Produktion gehen.
- Unzaehlige neue Features in Bitcoin sind in Entwicklung. Besondere Wertlegung auf Erhaltung der Dezentralisierung.
- Slides: https://nickler.ninja/slides/2016-Munster.pdf