Homework 2

January 22, 2017

Bonus Problem.

Find the simplest possible formula in terms of positive integers $m \ge 1, n \ge 1$ and p > 1 which counts the number of matrices :

- a) of size $m \times n$ in REF and whose entries are taken from the set $\{0, 1, \dots, (p-1)\}$.
- b) of size $m \times n$ in RREF and whose entries are taken from the set $\{0, 1, \dots, (p-1)\}$.
- c) of size $n \times n$ in REF, invertible and whose entries are taken from the set $\{0,1,\cdots,(p-1)\}.$

Updated Problem 1.

Find the simplest possible formula in terms of positive integers $1 < m \le n$, which counts the number of matrices :

- a) of size $m \times n$ in REF and whose entries are taken from the set $\{0, 1, \dots, (p-1)\}$. Assume that each one of the first m rows has a pivot and each one of the first m columns has a pivot.
- b) of size $m \times n$ in RREF and whose entries are taken from the set $\{0, 1, \dots, (p-1)\}$. Assume that each one of the first m rows has a pivot and each one of the first m columns has a pivot.
- c) of size $n \times n$ in REF, invertible and whose entries are taken from the set $\{0,1,\cdots,(p-1)\}.$

Problem 2.

Show that for any nonzero matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$

$$0 < \operatorname{Rank}(\mathbf{A}) \le \min\{m, n\}.$$

Problem 3.

Using the permutation expansion of the determinant of an $n \times n$ matrix **A** expressed by :

$$\sum_{\sigma \in \text{ permutations of } 1, \cdots, n.} (-1)^{\# \text{ of inversions in } \sigma} \prod_{1 \leq i \leq n} \mathbf{A} \left[\sigma \left(i \right), i \right].$$

Show that $\det \mathbf{B} = \det \mathbf{A}$, if the $n \times n$ matrix \mathbf{B} is obtained from \mathbf{A} via the row linear combination operation described by

$$k \cdot \mathbf{R}_{n-1} + \mathbf{R}_n \to \mathbf{R}_n$$
.

Problem 4.

Given data points $\{(x_1=1,y_1=-5), (x_2=-1,y_2=1), (x_3=2,y_3=7)\}$ set up a linear system of equation to solve for the variables a_0, a_1, a_2 such that for all $1 \le i \le 3$ we have

$$y_i = a_2 \cdot (x_i)^2 + a_1 \cdot (x_i)^1 + a_0 \cdot (x_i)^0$$

Problem 5.

Set up the following chemical balance equation as a system of linear constraints in order to find the coefficients $\{x_i\}_{1\leq i\leq 4}$ via Gauss-Jordan elimination

$$x_1 \operatorname{NaOH} + x_2 \operatorname{H_2SO_4} \rightarrow x_3 \operatorname{Na_2SO_4} + x_4 \operatorname{H_2O}$$