

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Fuzzy Logic and Neural Networks Faculty Name: Prof. Dilip Kumar Pratihar

Department: Mechanical Engineering

Week 1

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Fuzzy Logic and Neural Networks Faculty Name: Prof. Dilip Kumar Pratihar

Department: Mechanical Engineering

Topic

Lecture 01: Introduction to Fuzzy Sets

CONCEPTS COVERED

Concepts Covered:

- ☐ Classical Set/Crisp Set
- ☐ Properties of Classical Set/Crisp Set
- ☐ Fuzzy Set
- ☐ Representation of Fuzzy Set

Classical Set/Crisp Set (A)

 Universal Set/Universe of Discourse (X): A set consisting of all possible elements

Ex: All technical universities in the world

- Classical or Crisp Set is a set with fixed and well-defined boundary
- Example: A set of technical universities having at least five departments each

Representation of Crisp Sets

- $\bullet A = \{a_1, a_2, \dots, a_n\}$
- $A=\{x|P(x)\}$, P: property
- Using characteristic function

$$\mu_A(x) =$$
1, if x belongs to A,

0, if x does not belong to A.

Notations Used in Set Theory

- ⊕ : Empty/Null set
- $x \in A$: Element x of the Universal set X belongs to set A
- x ∉ A : x does not belong to set A
- A ⊂ B : set A is a subset of set B
- A ⊇ B : set A is a superset of set B
- A = B : A and B are equal
- A ≠ B : A and B are not equal

- A ⊂ B : A is a proper subset of B
- A ⊃ B : A is a proper superset of B
- |A| : Cardinality of set A is defined as the total number of elements present in that set
- p(A): Power set of A is the maximum number of subsets including the null that can be constructed from a set A

Note: $|p(A)| = 2^{|A|}$

Crisp Set Operations

• Difference: $A - B = \{x | x \in A \text{ and } x \notin B\}$

It is known as relative complement of set B with respect to set A

Absolute complement: $\overline{A} = A^C = X - A = \{x | x \in X \ and \ x \notin A\}$

• Intersection: $A \cap B = \{x | x \in A \text{ and } x \in B\}$

• Union: $A \cup B = \{x | x \in A \text{ or } x \in B\}$

Properties of Crisp Sets

- 1. Law of involution: $\overline{\overline{A}} = A$
- 2. Law of Commutativity: $A \cup B = B \cup A$; $A \cap B = B \cap A$
- 3. Associativity: $(A \cup B) \cup C = A \cup (B \cup C)$; $(A \cap B) \cap C = A \cap (B \cap C)$
- 4. Distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$; $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 5. Laws of Tautology: $A \cup A = A$; $A \cap A = A$
- 6. Laws of Absorption: $A \cup (A \cap B) = A$; $A \cap (A \cup B) = A$
- 7. Laws of Identity: $A \cup X = X$; $A \cap X = A$; $A \cup \Phi = A$; $A \cap \Phi = \Phi$
- 8. De Morgan's Laws: $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$; $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$
- 9. Law of contradiction: $A \cap \overline{A} = \Phi$
- **10.** Law of excluded middle: $A \cup \overline{A} = X$

Fuzzy Sets

- Sets with imprecise/vague boundaries
- Introduced by Prof. L.A. Zadeh, University of California, USA, in 1965
- Potential tool for handling imprecision and uncertainties
- Fuzzy set is a more general concept of the classical set

Representation of a Fuzzy Set

$$A(x) = \{(x, \mu_A(x)), x \in X\}$$

Note:

Probability: Frequency of likelihood that an element is in a class

Membership: Similarity of an element to a class

Types of Fuzzy sets

1. Discrete Fuzzy set

$$A(x) = \sum_{i=1}^{n} \mu_A(x_i) / x_i,$$
n: Number of elements present in the set

2. Continuous Fuzzy set

$$A(x) = \int_X \mu_A(x) / x$$

Convex vs. Non-Convex Membership Function Distribution

A fuzzy set A(x) will be convex, if

$$\mu_A \{ \lambda x_1 + (1 - \lambda) x_2 \} \ge \min \{ \mu_A(x_1), \mu_A(x_2) \}$$

Where $0.0 \le \lambda \le 1.0$

Various Types of Membership Function Distributions

1. Triangular Membership

$$\mu_{\text{triangle}} = \max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b} \right), 0 \right)$$

2. Trapezoidal Membership

$$\mu_{trapezoidal} = \max \left(\min \left(\frac{x - a}{b - a}, 1, \frac{d - x}{d - c} \right), 0 \right)$$

3. Gaussian Membership

$$\mu_{Gaussian} = \frac{1}{e^{\frac{1}{2} \left(\frac{x-m}{\sigma}\right)^2}}$$

4. Bell-shaped Membership Function

$$\mu_{Bell-shaped} = \frac{1}{1 + \left| \frac{x - c}{a} \right|^{2b}}$$

5. Sigmoid Membership

$$\mu_{Sigmoid} = \frac{1}{1 + e^{-a(x-b)}}$$

References

Reference:

Pratihar D.K.: Soft Computing: Fundamentals and Applications, Narosa Publishing House, New-Delhi, 2014

Conclusion

Conclusion:

Classical Set/Crisp Set has been defined

Properties of Classical Set/Crisp Set has been explained

Fuzzy Set has been defined

Deals with representation of Fuzzy Set

NPTEL ONLINE CERTIFICATION COURSES

Course Name: FUZZY LOGIC AND NUERAL NETWORKS

Faculty Name: Prof. Dilip Kumar Pratihar Department: Mechanical Engineering, IIT Kharagpur

Topic

Lecture 02: Introduction to Fuzzy Sets (contd.)

Concepts Covered:

- ☐ A few terms of Fuzzy Sets
- ☐ Standard Operations in Fuzzy Sets
- Properties of Fuzzy Sets
- ☐ Fuzziness and Inaccuracy of Fuzzy Sets

Numerical Example

Triangular Membership: Determine μ , corresponding to x=8.0

$$\mu_{triangle} = max[min\left(\frac{x-a}{b-a}, \frac{c-x}{c-b}\right), 0]$$

$$= max[min\left(\frac{x-2}{6-2}, \frac{10-x}{10-6}\right), 0]$$

$$= max[min\left(\frac{x-2}{4}, \frac{10-x}{4}\right), 0]$$

We put, x=8.0

$$\mu_{triangle} = max \left[min \left(\frac{3}{2}, \frac{1}{2} \right), 0 \right] = \frac{1}{2} = 0.5$$

Trapezoidal Membership

•Determine μ corresponding to x = 3.5

$$\mu_{trapezoidal} = \max \left[\min \left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c} \right), 0 \right]$$

$$= \max \left[\min \left(\frac{x-2}{4-2}, 1, \frac{10-x}{10-8} \right), 0 \right]$$

$$= \max \left[\min \left(\frac{x-2}{2}, 1, \frac{10-x}{2} \right), 0 \right]$$

•We put **x** = 3.5

$$\mu_{trapezoidal} = \max \left[\min \left(\frac{1.5}{2}, 1, \frac{6.5}{2} \right), 0 \right]$$

 $= \max[0.75,0]$

= 0.75

Gaussian Membership:

Determine μ corresponding to x=9.0

$$\mu_{Gaussian} = \frac{1}{e^{\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}}$$

Take m = 10.0 and $\sigma = 3.0$

$$\mu_{Gaussian} = \frac{1}{e^{\frac{1}{2}(\frac{x-10.0}{3.0})^{2}}}$$

We put x = 9.0

$$\therefore \mu_{Gaussian} = \frac{1}{e^{\frac{1}{2} \left(\frac{9.0 - 10.0}{3.0}\right)^2}} = 0.9459$$

Bell-shaped Membership function: Determine μ corresponding to x = 8.0

$$\mu_{Bell-shaped} = \frac{1}{1 + \left| \frac{x - c}{a} \right|^{2b}}$$

Take c=10.0, a=2.0, b=3.0

$$\mu_{Bell-shaped} = \frac{1}{1 + \left| \frac{x - 10}{2} \right|^6}$$

We put x=8.0

$$\mu_{Bell-shaped} = \frac{1}{1 + \left| \frac{8 - 10}{2} \right|^6} = 0.5$$

Sigmoid Membership Function:

Determine μ corresponding to x = 8.0

$$\mu_{\text{sigmoid}} = \frac{1}{1 + e^{-a(x-b)}}$$

Take
$$b = 6.0$$
; $a = 2$

$$\mu_{\text{sigmoid}} = \frac{1}{1 + e^{-2(x - 6.0)}}$$

we put
$$x = 8.0$$

$$\mu_{\text{sigmoid}} = \frac{1}{1 + e^{-2 \times 2.0}} = \frac{1}{1 + e^{-4}} = 0.98$$

Difference Between Crisp and Fuzzy Sets

A Few Definitions in Fuzzy Sets

• α -cut of a fuzzy set $\alpha_{\mu_A}(x)$

A set consisting of elements x of the Universal set X, whose membership values are either greater than or equal to the value of α .

$$\alpha_{\mu_A}(x) = \{x | \mu_A(x) \ge \alpha\}$$

• Strong α-cut of a Fuzzy Set

$$\alpha_{\mu_A}^+(x)=\{x|\mu_A(x)>\alpha\}$$

The membership function distribution of a fuzzy set is assumed to follow a Gaussian distribution with mean m=100 and standard deviation $\sigma=20$. Determine 0.6 – cut of this distribution.

Solution:

Gaussian distribution:

$$\mu = \frac{1}{e^{\frac{1}{2}\left(\frac{x-m}{\sigma}\right)^2}}$$

where m : Mean ; σ : Standard deviation

By substituting the values of μ = 0.6, m = 100, σ =20 and

taking log (In) on both sides, we get

$$0.6 = \frac{1}{e^{\frac{1}{2} \left(\frac{x-100}{20}\right)^{2}}}$$

$$\Rightarrow e^{\frac{1}{2} \left(\frac{x-100}{20}\right)^{2}} = \frac{1}{0.6}$$

By taking In

$$\ln\left(e^{\frac{1}{2}\left(\frac{x-100}{20}\right)^{2}}\right) = \ln(1.6667)$$

$$\Rightarrow$$
 x = (79.7846,120.2153)

Figure: 0.6-cut of a fuzzy set.

Support of a Fuzzy Set A(x)

It is defined as the set of all $x \in X$, such that $\mu_A(x) > 0$

$$supp(A) = \{x \in X | \mu_A(x) > 0\}$$

Note: Support of a fuzzy set is nothing but its Strong 0-cut

Scalar Cardinality of a Fuzzy Set A(x)

$$|A(x)| = \sum_{x \in X} \mu_A(x)$$

Let us consider a fuzzy set A(x) as follows:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

Scalar Cardinality
$$|A(x)| = 0.1 + 0.2 + 0.3 + 0.4 = 1.0$$

Core of a Fuzzy Set A(x)

It is nothing but its 1-cut

Height of a Fuzzy Set A(x)

It is defined as the largest of membership values of the elements contained in that set.

Normal Fuzzy Set

For a normal fuzzy set, h(A) = 1.0

Sub-normal Fuzzy Set

For a sub-normal fuzzy set, h(A) < 1.0

Some Standard Operations in Fuzzy Sets

Proper Subset of a Fuzzy Set

$$A(x) \subset B(x)$$
, if $\mu_A(x) < \mu_B(x)$

Let us consider the two fuzzy sets, as follows:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

As for all $x \in X$, $\mu_A(x) < \mu_B(x)$, $A(x) \subset B(x)$, that is , A(x) is the proper subset of B(x)

Some Standard Operations in Fuzzy Sets (contd.)

Equal fuzzy sets

$$A(x) = B(x)$$
, if $\mu_A(x) = \mu_B(x)$

Let us consider the two fuzzy sets, as follows:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

As for all
$$x \in X$$
, $\mu_A(x) \neq \mu_B(x)$, $A(x) \neq B(x)$

Complement of a Fuzzy Set

$$\overline{A}(x) = 1 - A(x)$$

Let us consider a fuzzy set A(x) as follows:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

Complement $\overline{A}(x) = \{(x_1, 0.9), (x_2, 0.8), (x_3, 0.7), (x_4, 0.6)\}$

Intersection of Fuzzy Sets

Intersection of two fuzzy sets A(x) and B(x) is denoted by $(A \cap B)(x)$

and its membership values are determined as follows:

$$\mu_{(A\cap B)}(x) = \min\{\mu_A(x), \mu_B(x)\}$$

Note: Intersection is analogous to logical AND operation

Let us consider the two fuzzy sets as follows:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

Now,
$$\mu_{(A\cap B)}(x_1) = \min\{\mu_A(x_1), \mu_B(x_1)\} = \min\{0.1, 0.5\} = 0.1$$

Similarly,
$$\mu_{(A\cap B)}(x_2) = \min\{0.2, 0.7\} = 0.2$$

$$\mu_{(A\cap B)}(x_3) = \min\{0.3, 0.8\} = 0.3$$

$$\mu_{(A\cap B)}(x_4) = \min\{0.4, 0.9\} = 0.4$$

Union of Fuzzy Sets

Union of two fuzzy sets A(x) and B(x) is represented by: $(A \cup B)(x)$

and its membership value is determined as follows:

$$\mu_{(A\cup B)}(x) = \max\{\mu_A(x), \mu_B(x)\}$$

Note: Union is analogous to logical OR operation

Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

Now,
$$\mu_{(A \cup B)}(x_1) = \max\{\mu_A(x_1), \mu_B(x_1)\} = \max\{0.1, 0.5\} = 0.5$$

Similarly,
$$\mu_{(A \cup B)}(x_2) = \max\{0.2, 0.7\} = 0.7$$

$$\mu_{(A \cup B)}(x_3) = \max\{0.3, 0.8\} = 0.8$$

$$\mu_{(A \cup B)}(x_4) = \max\{0.4, 0.9\} = 0.9$$

Algebraic product of Fuzzy Sets

$$A(x).B(x) = \{(x, \mu_A(x).\mu_B(x)), x \in X\}$$

Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

$$A(x).B(x) = \{(x_1, 0.05), (x_2, 0.14), (x_3, 0.24), (x_4, 0.36)\}$$

Multiplication of a Fuzzy Set by a Crisp Number

$$d. A(x) = \{(x, d \times \mu_A(x)), x \in X\}$$

Let us consider a fuzzy set

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$
 and a crisp number $d = 0.2$

$$d.A(x) = \{(x_1, 0.02), (x_2, 0.04), (x_3, 0.06), (x_4, 0.08)\}$$

Power of a Fuzzy Set

 $A^{P}(x)$: p-th power of a fuzzy set A(x) such that

$$\mu_{A^p}(x) = \{\mu_A(x)\}^p, x \in X$$

Concentration: p=2

Dilation: p=1/2

Let us consider a fuzzy set

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$
 and power $p = 2$

$$A^{2}(x) = \{(x_{1}, 0.01), (x_{2}, 0.04), (x_{3}, 0.09), (x_{4}, 0.16)\}$$

Algebraic Sum of two Fuzzy Sets A(x) and B(x)

$$A(x) + B(x) = \{(x, \mu_{A+B}(x)), x \in X\}$$

where

$$\mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$

Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

$$\therefore A(x) + B(x) = \{(x_1, 0.55), (x_2, 0.76), (x_3, 0.86), (x_4, 0.94)\}$$

Bounded Sum of two Fuzzy Sets

$$A(x) \oplus B(x) = \{(x, \mu_{A \oplus B}(x)), x \in X\}$$

where

$$\mu_{A \oplus B}(x) = \min\{1, \mu_A(x) + \mu_B(x)\}\$$

Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

:.
$$A(x) \oplus B(x) = \{(x_1, 0.6), (x_2, 0.9), (x_3, 1.0), (x_4, 1.0)\}$$

Algebraic Difference of two Fuzzy Sets

$$A(x) - B(x) = \{(x, \mu_{A-B}(x)), x \in X\}$$

where

$$\mu_{A-B}(x) = \mu_{A \cap \overline{B}}(x)$$

•Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

$$Now, \overline{B}(x) = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.2), (x_4, 0.1)\}$$

$$\therefore A(x) - B(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.2), (x_4, 0.1)\}$$

Bounded Difference of two Fuzzy Sets

$$A(x)\Theta B(x) = \{(x, \mu_{A\Theta B}(x)), x \in X\}$$

where

$$\mu_{A\Theta B}(x) = \max\{0, \mu_A(x) + \mu_B(x) - 1\}$$

•Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$

$$A(x)\Theta B(x) = \{(x_1, 0.0), (x_2, 0.0), (x_3, 0.1), (x_4, 0.3)\}$$

Cartesian product of two Fuzzy Sets

Two fuzzy sets A(x) defined in X and B(y) defined in Y Cartesian product of two fuzzy sets is denoted by A(x)×B(y), such that $\mu_{A\times B}(x,y)=\min\{\mu_A(x),\mu_B(y)\}$

•Let us consider the following two fuzzy sets:

$$A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$$

$$B(y) = \{(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)\}$$

$$\min(\mu_A(x_1), \mu_B(y_1)) = \min(0.2, 0.8) = 0.2$$

$$\min(\mu_A(x_1), \mu_B(y_2)) = \min(0.2, 0.6) = 0.2$$

$$\min(\mu_A(x_1), \mu_B(y_3)) = \min(0.2, 0.3) = 0.2$$

$$\min(\mu_A(x_2), \mu_B(y_1)) = \min(0.3, 0.8) = 0.3$$

$$\min(\mu_A(x_2), \mu_B(y_2)) = \min(0.3, 0.6) = 0.3$$

$$\min(\mu_A(x_2), \mu_B(y_3)) = \min(0.3, 0.3) = 0.3$$

$$\min(\mu_A(x_3), \mu_B(y_1)) = \min(0.5, 0.8) = 0.5$$

$$\min(\mu_A(x_3), \mu_B(y_2)) = \min(0.5, 0.6) = 0.5$$

$$\min(\mu_A(x_3), \mu_B(y_3)) = \min(0.5, 0.3) = 0.3$$

$$\min(\mu_A(x_4), \mu_B(y_1)) = \min(0.6, 0.8) = 0.6$$

$$\min(\mu_A(x_4), \mu_B(y_2)) = \min(0.6, 0.6) = 0.6$$

 $\min(\mu_A(x_4), \mu_B(y_3)) = \min(0.6, 0.3) = 0.3$

$$\therefore A \times B = \begin{bmatrix} 0.2 & 0.2 & 0.2 \\ 0.3 & 0.3 & 0.3 \\ 0.5 & 0.5 & 0.3 \\ 0.6 & 0.6 & 0.3 \end{bmatrix}$$

Composition of fuzzy relations

Let $A = [a_{ij}]$ and $B = [b_{jk}]$ be two fuzzy relations expressed in the matrix form.

Composition of these two fuzzy relations, that is, C is represented as follows:

In matrix form

$$[c_{ik}] = [a_{ij}] o [b_{jk}]$$

Where

$$c_{ik} = max[min(a_{ij}, b_{jk})]$$

Numerical Example

•Let us consider the following two Fuzzy relations:

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 0.2 & 0.3 \\ 0.5 & 0.7 \end{bmatrix}$$

$$B = \begin{bmatrix} b_{jk} \end{bmatrix} = \begin{bmatrix} 0.3 & 0.6 & 0.7 \\ 0.1 & 0.8 & 0.6 \end{bmatrix}$$

•Elements of $\left[c_{ik}\right]$ matrix can be determined as follows:

$$c_{11} = \max[\min(a_{11}, b_{11}), \min(a_{12}, b_{21})]$$

$$= \max[\min(0.2,0.3),\min(0.3,0.1)]$$

$$= \max[0.2,0.1]$$

$$c_{12} = \max[\min(a_{11}, b_{12}), \min(a_{12}, b_{22})]$$

 $= \max[\min(0.2,0.6),\min(0.3,0.8)]$

= max[0.2,0.3]

$$c_{13} = \max[\min(a_{11}, b_{13}), \min(a_{12}, b_{23})]$$

$$= \max[\min(0.2,0.7),\min(0.3,0.6)]$$

$$= \max[0.2,0.3]$$

$$c_{21} = \max[\min(a_{21}, b_{11}), \min(a_{22}, b_{21})]$$

$$= \max[\min(0.5,0.3),\min(0.7,0.1)]$$

 $= \max[0.3,0.1]$

$$c_{22} = \max[\min(a_{21}, b_{12}), \min(a_{22}, b_{22})]$$

$$= \max[\min(0.5,0.6),\min(0.7,0.8)]$$

$$= max[0.5,0.7]$$

$$c_{23} = \max[\min(a_{21}, b_{13}), \min(a_{22}, b_{23})]$$

$$= \max[\min(0.5,0.7),\min(0.7,0.6)]$$

$$= \max[0.5,0.6]$$

$$\therefore C = \begin{bmatrix} 0.2 & 0.3 & 0.3 \\ 0.3 & 0.7 & 0.6 \end{bmatrix}$$

Properties of Fuzzy Set

Fuzzy sets follow the properties of crisp sets except the following two:

Law of excluded middle

In crisp set, $A \cup \overline{A} = X$ In fuzzy set, $A \cup \overline{A} \neq X$

• Law of contradiction

In crisp set, $A\cap \overline{A}=$ 0
In fuzzy set, $A\cap \overline{A}\neq$ 0

Measure of Fuzziness of Fuzzy Set

Entropy has been used to measure fuzziness of a fuzzy set.

Let $X = \{x_1, x_2 \dots, x_n\}$ be the discrete universe of discourse.

Entropy of a fuzzy set A(x) is determined as follows:

$$H(A) = -\frac{1}{n} \sum_{i=1}^{n} [\mu_A(x_i) \log\{\mu_A(x_i)\} + \{1 - \mu_A(x_i)\} \log\{1 - \mu_A(x_i)\}]$$

Numerical Example

```
Let A(x) = \{(x_1, 0.1), (x_2, 0.3), (x_3, 0.4), (x_4, 0.5)\}.

Entropy
H(A)
= -\frac{1}{4}[\{0.1 \times \log(0.1) + 0.9 \log(0.9)\}
+ \{0.3 \log(0.3) + 0.7 \log(0.7)\} + \{0.4 \log(0.4) + 0.6 \log(0.6)\}
+ \{0.5 \log(0.5) + 0.5 \log(0.5)\}]
= 0.2499
```


Measure of Inaccuracy of Fuzzy Set

Let us consider two fuzzy sets: A(x) and B(x) defined in the same discrete universe of discourse $X = \{x_1, x_2 \dots, x_n\}$

Inaccuracy of fuzzy set B(x) is measured with respect to the fuzzy set A(x) as follows:

$$I(A;B) = -\frac{1}{n} \sum_{i=1}^{n} [\mu_A(x_i) \log\{\mu_B(x_i)\} + \{1 - \mu_A(x_i)\} \log\{1 - \mu_B(x_i)\}]$$

Numerical Example

$$A(x) = \{(x_1, 0.1), (x_2, 0.2), (x_3, 0.3), (x_4, 0.4)\}$$

$$B(x) = \{(x_1, 0.5), (x_2, 0.7), (x_3, 0.8), (x_4, 0.9)\}$$
Inaccuracy of $B(x)$ with respect to $A(x)$,
$$I(A; B)$$

$$= -\frac{1}{4} [\{0.1 \times \log(0.5) + 0.9 \times \log(0.5)\}$$

$$+ \{0.2 \times \log(0.7) + 0.8 \times \log(0.3)\}$$

$$+ \{0.3 \times \log(0.8) + 0.7 \times \log(0.2)\} + \{0.4 \times \log(0.9)$$

$$+ 0.6 \times \log(0.1)\}$$

$$= 0.4717$$

References

References:

- ☐ Soft Computing: Fundamentals and Applications by D.K. Pratihar,
- Narosa Publishing House, New-Delhi, 2014
- ☐ Fuzzy Sets and Fuzzy Logic: Theory and Applications by G.J. Klir,
- B. Yuan, Prentice Hall, 1995

Conclusion

Conclusion:

- A few terms related to Fuzzy Sets have been defined
- Some standard Operations in Fuzzy Sets have been explained
- Properties of Fuzzy Sets have been explained
- Fuzziness and Inaccuracy of Fuzzy Sets are

determined

NPTEL ONLINE CERTIFICATION COURSES

Thank you!