

CORRECTION IE1 – S4 – PHYSIQUE du 20/03/2023

	TOTAL	21	+0,25
	Exercice 1		15,5 +0.25 bonus
1	Le vibreur impose l'existence d'ondes harmoniques le long de la corde 2. Au niveau de la perle on a changement de milieu, ces ondes sont en partie réfléchies, et reviennent au niveau du vibreur pour être à nouveau réfléchies etc On a donc des réflexions multiples aux extrémités de la corde 2, avec des ondes directes et rétrogrades qui se superposent. Ces ondes sont partiellement transmises à la corde 1. Ces ondes partiellement transmises sont ensuite réfléchies en x=0 et puis partiellement réfléchies et transmises au niveau de la perle etc On a donc des réflexions multiples aux extrémités de la cordes 1 avec des ondes directes et rétrogrades qui se superposent.		0.25 0,25 (multiples ondes directes et rétrograde s) 0.25 (transmiss ion au niveau de
	La superposition/somme de plusieurs ondes harmoniques de même pulsation ω, de même sens de propagation, donne une onde harmonique résultante de même pulsation ω et de meme sens de propagation.		0,25
	On peut donc réduire pour chaque corde l'ensemble des ondes directes sur chaque corde à une seule onde directe, et il en est de même pour les ondes rétrogrades.		0,25
2	a) $\frac{\underline{u}_{1d}(x,t) = \underline{A_1}e^{j(\omega t - kx)}; \underline{u}_{1r}(x,t) = \underline{B_1}e^{j(\omega t + kx)}}{\underline{u}_{2d}(x,t) = \underline{A_2}e^{j(\omega t - kx)}; \underline{u}_{2r}(x,t) = \underline{B_2}e^{j(\omega t + kx)}}$ Remarque: bcp d'étudiants on écrit que les ondes « directes » se propagent selon les x décroissants car ils ont confondu avec « incidentes ». L'onde étant générée en x=L, cela explique leur méprise. Compter juste l'exercice si tout est cohérent.		0,5 0,25
	b) D'où $ \underline{u}_{1tota}(x,t) = \underline{A}_1 e^{j(\omega t - kx)} + \underline{B}_1 e^{j(\omega t + kx)} $ $ \underline{u}_{2total}(x,t) = \underline{A}_2 e^{j(\omega t - kx)} + \underline{B}_2 e^{j(\omega t + kx)} $		0,25
3	a) F_{y} T_{0} $\alpha(x,t)$ b) Si on considère la force de tension exercée par le côté droit projetée sur l'axe verticel e en que le conque il vient		0.5
	vertical: en x quelconque, il vient, $F_{y}(x^{+} \to x^{-}) = T_{0} sin(\alpha) \approx T_{0} \alpha$ $= T_{0} \frac{u(x + \delta x) - u(x, t)}{\delta x}$ $\approx T_{0} \frac{\partial u}{\partial x}$		0.5 0,5

4	Sum le conde $2 \cdot E(x^{+}) \cdot x^{-} = T \partial u_{2total}$	0.5
	Sur la corde 2 : $F_y(x^+ \to x^-) = T_0 \frac{\partial u_{2total}}{\partial x}$	0.5
	$= -jkT_0 \left(\underline{A_2} e^{j(\omega t - kx)} - \underline{B_2} e^{j(\omega t + kx)} \right)$	+0.25
	$\operatorname{et} k = \frac{\omega}{v}$	10.23
	En x=0, on a donc $E_{i}(0+x,0-x) = ihT_{i}(A_{i}x) + B_{i}x^{i}(\omega t)$	
	$F_{y}(0^{+} \to 0^{-}) = -jkT_{0}\left(\underline{A_{2}}e^{j(\omega t)} - \underline{B_{2}}e^{j(\omega t)}\right)$ Rq: certains écrive rapidement $F_{y}(0^{+} \to 0^{-})$ sans passer par la 2eme ligne, compter	1
	evidement 1.5 puisque c'est ce résultat qui est demandé	
5	La force exercée par la partie gauche sur la partie droite de la corde est	
	$F_y(x^- \to x^+) = -T_0 \sin(\alpha) \approx -T_0 \alpha = -T_0 \frac{\partial u}{\partial x}$	0.5
	Sur la corde 1 : $F_y(x^- \to x^+) = jkT_0\left(\underline{A_1}e^{j(\omega t - \cdot)} - \underline{B_1}e^{j(\omega t + kx)}\right)$ En x=0, on a donc	
	$F_{y}(0^{-} \to 0^{+}) = jkT_{0}\left(\underline{A_{1}}e^{j(\omega t)} - \underline{B_{1}}e^{j(\omega t)}\right)$	1
6	Equation fondamentale de la dynamique sur la masse. En négligeant le poids :	
	$m_0 \frac{\partial^2 u_1}{\partial t^2} (x = 0, t) = F_y(0^- \to 0^+) + F_y(0^+ \to 0^-)$	0,5
	Deux possibilités pour l'équation 1 : Si on utilise le déplacement donné par l'onde sur la corde 1 :	
	$-m_0\omega^2 (A_1 + B_1) = jkT_0 (A_1 - B_1 - A_2 + B_2)$	1
	Ou bien par l'onde sur la corde 2 (les deux sont justes, cf. question suivante) :	
	$-m_0\omega^2(A_2 + B_2) = jkT_0(A_1 - B_1 - A_2 + B_2)$	
	$\frac{(-2)^2}{2} = \frac{-2}{2} = \frac{-2}$	
7	A la jonction des deux cordes, au niveau de la perle on a <u>continuité du</u> <u>déplacement</u> $\underline{u}_{1total}(0,t) = \underline{u}_{2total}(0,t)$	0,5
	D'où	
	$A_1 + B_1 = A_2 + B_2$	0,5
8	En $x = -L$ le point fixe impose (Eq. 3):	
	$\underline{A_1}e^{jkL} + \underline{B_1}e^{-jkL} = 0$	0,5
	En $x = +L$ le vibreur impose (Eq. 4):	
	$\underline{A_2}e^{-jkL} + \underline{B_2}e^{jkL} = a$	0,5
9	Si $m_0 = 0$ alors il n'y a qu'une corde de longueur 2L.	1
	Il n'y a donc que deux ondes en présence, une directe et une rétrograde qui doivent vérifier les conditions aux limites,	
	ce qui est cohérent avec les expressions données en annexe 1 car on retrouve bien avec $m_0 = 0$ que $\underline{A_1} = \underline{A_2}$ et $\underline{B_1} = \underline{B_2}$	1
10a	Si $kL = \pi$ alors $e^{jkL} = -1$, et $e^{j2kL} = e^{j4kL} = +1$	
	$\Rightarrow \underline{A_1} = \rightarrow +\infty$	0.5 0.5
	Cette condition peut aussi s'écrire $L = \frac{\lambda}{2}$,	0.5

	On est donc en présence d'une onde stationnaire résonnante qui se forme sur la corde	
	(des deux côtés de la masse d'ailleurs).	0,5
	Comme il n'y a pas d'amortissement dans le modèle, l'amplitude diverge.	
	L'hypothèse des déplacements faibles n'est plus valide	0.25
		0.25
10b	$\underline{u_{1total}} = \frac{-\pi T_0 a}{4Lm_0 \omega^2} \left(e^{j(\omega t - kx)} + e^{j(\omega t + kx)} \right) = \frac{-\pi T_0 a}{2Lm_0 \omega^2} \cos(kx) e^{j\omega t}$	0,5
	Son expression réelle est : $u_1(x,t) = \frac{-\pi T_0 a}{2Lm_0\omega^2} cos(kx)cos(\omega t)$	
	L'amplitude maximum est donc :	
	$U_{max} = \frac{\pi T_0 a}{2L m_0 \omega^2} cos(kx) $	0,5
	Accepter $U_{max} = \frac{\pi T_0 a}{2Lm_0\omega^2}$ car il y a une ambiguité dans l'énoncé	

	Exercice 2	5.5
1	A l'angle critique, l'angle de l'onde transmise reste bloqué à $\theta_2 = \frac{\pi}{2} \Rightarrow sin\theta_2 = 1$	
	(ou bien l'angle θ_2 maximal vaut $\frac{\pi}{2}$, ce qui correspond à $sin\theta_2 = 1$)	1,5
	D'où d'apres la loi de Snell-Descartes donne : $\theta_{1,crit} = arcsin\left(\frac{n_2}{n_1}\right)$	1,5
2	$n_1 sin\theta_1 = n_2 sin\theta_2 \Rightarrow (cos\theta_2)^2 = 1 - \left(\frac{n_1}{n_2} sin\theta_1\right)^2$	0,5
	lorsque $\theta_1 > \theta_{1,crit}$, $1 - \left(\frac{n_1}{n_2} \sin \theta_1\right)^2 < 0$	0,5
	donc $\cos \theta_2$ devient un imaginaire pur	
	$\cos\theta_2 = j\sqrt{\left(\frac{n_1}{n_2}\sin\theta_1\right)^2 - 1}$	non demandé
3	En injectant l'expression ci-dessus dans celle du coefficient de réflexion on obtient	
	bien: $\underline{r}_{TE} = \frac{n_1 cos\theta_1 - jn_2 \sqrt{\left(\frac{n_1}{n_2}\right)^2 sin^2\theta_1 - 1}}{n_1 cos\theta_1 + jn_2 \sqrt{\left(\frac{n_1}{n_2}\right)^2 sin^2\theta_1 - 1}}$	0,5
4	On trouve $ \underline{r}_{TE} = 1$, on est bien en réflexion totale, comme dit dans l'énoncé	0,5
5	$k_x = k_1 cos\theta_1$ $\left(= \frac{\omega}{V_1} cos\theta_1 = \frac{\omega}{c} n_1 cos\theta_1 \right) = \frac{2\pi}{\lambda_0} n_1 cos\theta_1$	0.5+0.5
6	Avec les données $\Phi = -1,2812rd$	0.5
	$k_x = 0.004431 nm^{-1}$ mode m=1, $k_x e = \pi - \Phi \Rightarrow e = 998,2nm$	0.5