Informe laboratorio - Procesamiento de Imágenes Digitales

Uso de componentes principales en imágenes multiespectrales.

Ruben Rodriguez

7 de mayo de 2022

Índice

1. Desarrollo

2. Anexo

1. Desarrollo

- 1. Cuantification
 - a) ¿Que hace la funcion de MATLAB quant()? Como podemos usarla para uniformemente cuantificar una imagen con N niveles?
 - Esta funcion hace que los valores sean multiplos de otro, es decir aumenta o disminuye el valor para que este sea multiplo del numero ingresado.
 - b) Cree una funcion para cuantificar una imagen I, de tal manera que el rango dinamico de la imagen sea cuantificado en N niveles uniformes. Donde N es un parametro de entrada de su funcion (al igual que la imagen I).

```
function [] = cuantificar(I,N)
for i=1:N
aux = (I)/(2^(i)-1);
figure, imshow(aux,[])
end
end
end
```

c) use una imagen en escala de grises. Muestre dicha imagen y las imagenes cuantificadas usando desde 1 hasta 8 bits.

Figura 1: Orignal, Nivel 1:8.

- d) ¿Cuantos bits se necesitaron para que note la diferencia?
 - A partir del cuarto bit se notan cambios empezando con el fondo y luego con la cara de las monedas.
- e) ¿Que es el ruido de cuantificacion?, ¿Cual es el maximo valor posible de ruido de cuantificacion para los ejemplos anteriores?.
 - Es la distorsion resultante de la cuantificacion, esta distorsion seria el escurecimiento gradual de la imagen. Nueve seria el valor posible de ruido.

2. Ilusiones ópticas

a) Ilusion en escala de grises

Figura 2: Ilusion 1.

b) Ilusion en escalas de azul

Figura 3: Ilusion 2.

c) Ilusion en escalas de rojo

Figura 4: Ilusion 3.

d) Ilusion en escalas de verde

Figura 5: Ilusion 4.

e) Ilusion "lineas paralelas"

Figura 6: Ilusion 5.

2. Anexo

Código de matlab.

```
r = zeros(256,3);
   g = zeros(256,3);
   b = zeros(256,3);
   r(:,1) = linspace(0,1,256);
   g(:,2) = linspace(0,1,256);
   b(:,3) = linspace(0,1,256);
   map = [r(:,1) g(:,2) b(:,3)];
9
   % assignment section
10
   [a1,a2,a3] = ilusion1(100,130,160,120);
11
12
   % gs -> green square
13
   % (89,169)
14
   a1gs = a1/256;
15
   a1gs(:,:,1) = 0;
16
   a1gs(:,:,2) = 0;
17
   a1gs(89:169,89:169,2) = 120;
18
   a1gs(89:169,89:169,3) = 0;
   %imshow(a1gs,g+b)
20
21
   a2gs = a2/256;
22
   a2gs(:,:,1) = 0;
23
   a2gs(:,:,2) = 0;
24
   a2gs(89:169,89:169,2) = 120;
25
   a2gs(89:169,89:169,3) = 0;
26
   %imshow(a2gs,g+b)
   a3gs = a3/256;
29
   a3gs(:,:,1) = 0;
30
   a3gs(:,:,2) = 0;
31
   a3gs(89:169,89:169,2) = 120;
32
   a3gs(89:169,89:169,3) = 0;
33
   %imshow(a3gs,g+b)
   % -----
   a1gsr = a1/256;
36
   a1gsr(:,:,3) = 0;
37
   algsr(:,:,2) = 0;
38
   a1gsr(89:169,89:169,2) = 120;
```

```
a1gsr(89:169,89:169,3) = 0;
   %imshow(a1gsr,r+g)
41
42
   a2gsr = a2/256;
43
   a2gsr(:,:,3) = 0;
44
   a2gsr(:,:,2) = 0;
45
   a2gsr(89:169,89:169,2) = 120;
46
   a2gsr(89:169,89:169,3) = 0;
   %imshow(a2gsr,r+g)
49
   a3gsr = a3/256;
50
   a3gsr(:,:,3) = 0;
51
   a3gsr(:,:,2) = 0;
52
   a3gsr(89:169,89:169,2) = 120;
53
  a3gsr(89:169,89:169,3) = 0;
   %imshow(a3gsr,r+g)
```

```
% ilusiones
A = horzcat(a1,a2,a3);

imshow(A/256,map)
imshow(A(:,:,1),r)
imshow(A(:,:,2),g)
imshow(A(:,:,3),b)
simshow(horzcat(a1gs,a2gs,a3gs),g+b)
imshow(horzcat(a1gsr,a2gsr,a3gsr),r+g)

% ilusion lineas paralelas
ilu = ilusion2();
imshow(ilu)
```

```
[I] = imread("coins.png");
cuantificar(I,8);
```

```
function [] = cuantificar(I,N)

for i=1:N

aux = (I)/(2^(i)-1);

figure
imshow(aux,[])

end
```

end

```
function [uno,dos, tre] = ilusion1(a1,a2,a3,b)

uno = ones(257,257,3)*a1;
dos = ones(257,257,3)*a2;
tre = ones(257,257,3)*a3;

centro = 129;
tamano = 40;

uno(centro-tamano:centro+tamano,centro-tamano:centro+tamano,:) = b;
dos(centro-tamano:centro+tamano,centro-tamano:centro+tamano,:) = b;
tre(centro-tamano:centro+tamano,centro-tamano:centro+tamano,:) = b;
end
```

```
function [illusion] = ilusion2()
      illusion = ones(410,400);
      illusion(1,:)=0.5;
      for i=1:10
          illusion(i*41,:) = 0.5;
      end
      illusion(1:410,1) = 0.5;
      illusion(1:410,400) = 0.5;
      range = [20 60;100 140;180 220;260 300;340 380];
      for i=1:9
          for j=1:5
13
              if \mod(i,2) == 0
14
                  illusion(2+(41*i-1):41+(41*i-1),(range(j,1)+20):(range(j,2)+20)) =
                     0;
              elseif mod(i,3) == 0
16
                  illusion(2+(41*i-1):41+(41*i-1),(range(j,1)-10):(range(j,2)-10)) =
17
                     0;
              elseif mod(i,5) == 0
18
                  illusion(2+(41*i-1):41+(41*i-1),(range(j,1)+10):(range(j,2)+10)) =
19
                     0;
              else
20
                  illusion(2+(41*i-1):41+(41*i-1),range(j,1):range(j,2)) = 0;
21
              end
22
```

```
end
end

for i=1:5
illusion(2:40,(range(i,1))+20:(range(i,2))+20)=0;
end
end
end
```