Pattern Recognition

Yukyung Choi

yk.choi@rcv.sejong.ac.kr

Summary

- Decision Tree & Random Forests
 - Theory
 - Hand on labs: How to use DT & RF (Lv.0)
 - DT vs RF
 - Hand on labs: Data Classification using library (Lv.1)
 - DIGIT Classification (Lv.1)
 - IRIS Classification (Lv.1)
 - Hand on labs: Data Regression using library
 - Salary Prediction (Lv.1)
 - Hand on labs: Bike Sharing Demand (Lv.2)
 - Hand on Labs: Implementation of DT-RF (Lv.3)

Content

- Decision Tree
- Random Decision Trees
- Random Forests
- Random Forests with discriminative decision tree

Classifier

Classifier

Definition

Tree structure based Classifier

Classification method by using several rules and constrains.

tree 1: a tree is a widely-used data structure that emulates a hierarchical tree structure with a set of linked nodes.

Definition

Tree structure based Classifier

Classification method by using several rules and constrains.

Random Forest

Advantage

- 성능이 우수함
- 파라미터 튜닝이 적음
- 데이터 스케일링 없이도 동작
- 큰 데이터 셋에서 잘 동작함
- 시각화를 통한 모델의 이해
- Missing 데이터에 강함

Disadvantage

- 매우 차원이 높은 희소한 데이터에서 잘 동작하지 않음
 - 이런 데이터는 선형 모델이 더욱 적합
- Noisy한 데이터에 취약

Training

build the tree

Consideration in this step

- 1) How many splits should there be at each node?
- 2) How to select the query attribute?
- 3) When to stop growing the tree?
- 4) Which class to allow leaf nodes?

Training

build the tree

Consideration in this step

1) How many splits should there be at each node?

Multi-valued tree

Binary tree

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Ready to Candidate query attributes:

Collect all possible attributes

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Ready to Candidate query attributes:

Collect all possible attributes

Select the best query attributes:

Find the maximal decrease in *impurity(entropy)*

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Ready to Candidate query attributes:

Collect all possible attributes

Select the best query attributes:

Find the maximal decrease in *impurity(entropy)*

$$\Delta im(T) = im(T) - \frac{|X_{Tleft}|}{|X_T|} im(T_{left}) - \frac{|X_{Tright}|}{|X_T|} im(T_{right})$$

$$\Delta im(T) = \frac{|X_{Tleft}|}{|X_{T}|} \frac{|X_{Tright}|}{|X_{T}|} \left(\sum_{i=1}^{M} |p(w_{i} | T_{left}) - p(w_{i} | T_{right})| \right)^{2}$$

Training

build the tree

Consideration in this step

2) How to select the query attribute?

Impurity functions

Entropy, Gini, Misclassification

Entropy	$im(T) = 1 - \sum_{i=1}^{M} p(w_i \mid T)^2 = \sum_{i \neq j} p(w_i \mid T) p(w_j \mid T)$
Gini	$im(T) = -\sum_{i=1}^{M} p(w_i T) \log_2 p(w_i T)$
Misclassification	$im(T) = 1 - \max_{i} p(w_{i} \mid T)$

Entropy Example

1st step
$$Entropy(A) = -\sum_{k=1}^{m} p_k \log_2(p_k)$$

$$Entropy(A) = -\frac{10}{16}\log_2(\frac{10}{16}) - \frac{6}{16}\log_2(\frac{6}{16}) \approx 0.95$$
 RED: 10, BLUE: 6

Log: scale normalization effect

$$2^{\text{nd}} \text{ step}$$

$$Entropy(A) = \sum_{i=1}^{d} R_i \left(-\sum_{k=1}^{m} p_k \log_2(p_k) \right)$$
R: split region, d: # region, m: # class

$$Entropy(A) = 0.5 \times \left(-\frac{7}{8} \log_2{(\frac{7}{8})} - \frac{1}{8} \log_2{(\frac{1}{8})} \right) + 0.5 \times \left(-\frac{3}{8} \log_2{(\frac{3}{8})} - \frac{5}{8} \log_2{(\frac{5}{8})} \right) \approx 0.75$$

GINI Example

1st step

$$Gini(A) = \left(1 - \sum_{k=1}^{m} p_{ik}^2\right)$$

$$Gini(A) = (1-((10/16)^2 + (6/16)^2)$$

RED: 10, BLUE: 6

2nd step

$$G.\,I(A) = \sum_{i=1}^d \left(R_i\left(1 - \sum_{k=1}^m p_{ik}^2\right)\right)$$

R: split region, d: # region, m: # class

$$Gini(A) = 0.5*(1-((7/8)^2 + (1/8)^2)) + 0.5*(1-((5/8)^2 + (3/8)^2))$$

Miss-classification is not differential. Thus, this metric is not useful.

Training

build the tree

Consideration in this step

3) When to stop growing the tree?

Stop conditions

$$im(T) = 0$$

Overfitting

Training

build the tree

Consideration in this step

3) When to stop growing the tree?

Stop conditions

$$im(T) = 0$$

the number of $X_t <=$ threshold
argmax $\triangle im(T) <=$ threshold

Overfitting

Premature convergence

Training

build the tree

Consideration in this step

3) When to stop growing the tree?

Avoiding overfitting & premature convergence

Make the largest tree and then do pruning

Example of pruning

Training

build the tree

Consideration in this step

4) Which class to allocate leaf nodes?

Classification

recognize the sample

Classification

recognize the sample

Advantages

Very fast "Yes/NO" operation
Just h-1 times comparison (h : depth level)

Characteristics

+Handling the metric and non-metric data

weight
height
distance
cost

gender
Blood type
job
Brand name

Non-Metric data

- +Handling the metric and non-metric data
- +Visualization

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition
- -Instability(sensitive to noise data)

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition
- -Instability
- -Greedy algorithms (미리 정한 기준에 따라 매번 가장 좋아 보이는 답을 선택하는 알고리즘)

- +Handling the metric and non-metric data
- +Visualization
- +Fast recognition
- -Instability
- -Greedy algorithms
- +Handling the missing data

Algorithms

CART, ID3, C4.5

	R.Quinlan	L.Breiman
	ID3	CART
xtension	↓ ex	
	C4.5	
e mmercialization	↓ co	
	C5.0	

Comparisons

Property	CART	ID3	C4.5
Float data	0	X	0
Tree type	Binary	Multi	Multi
Prune	0	X	0
Classification	0	0	0
Regression	0	X	X
Missing data	Surrogate split	X	skip
Multi variable	0	Х	Х

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Randomized decision trees

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Idea: randomized attribute selection

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Idea: randomized attribute selection

Instead randomly use subset of K attributes (K << All cases)

- Reduce correlation between different trees
- Typical choice : K = 10 for root node, K = 100*d (d : depth level)

All cases of possible attributes

Randomized Decision Trees (Amit & German 1997) Multiple classifier of several trees

Idea: randomized attribute selection

Instead randomly use subset of K attributes (K << All cases)

- Typical choice : K = 10 for root node, K = 100*d (d:depth level)
- Reduce correlation between different trees.

Choose best splitting attribute

- Minimizing entropy (impurity)

Randomized Forests

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = ¹⁾Bootstrap sampling + ²⁾randomized attribute selection

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = ¹⁾Bootstrap sampling + ²⁾randomized attribute selection Bootstrap sampling

Select a subset by choosing N times with replacement from all training data.

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = ¹⁾Bootstrap sampling + ²⁾randomized attribute selection Bootstrap sampling

Select a subset by choosing N times with replacement from all training data.

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = $^{1)}$ Bootstrap sampling + $^{2)}$ randomized attribute selection

Bootstrap sampling

Select a subset by choosing N times with replacement from all training data.

Randomized attribute selection

Instead randomly use subset of K attributes

- Typical choice : $K = \sqrt{N}$ (N : the number of subset)

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Advantage

Resistant to Overfitting

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Advantage

Resistant to Overfitting
Well suited for large training data


```
Randomized Forests (Breiman 2001)
Multiple classifier of several trees
```

Idea: Randomness = $^{1)}$ Bootstrap sampling + $^{2)}$ randomized attribute selection

Advantage

Resistant to Overfitting
Well suited for large training data
Empirically very good results. (≥ SVM, ≥ Boosting)

Randomized Forests (Breiman 2001) Multiple classifier of several trees

Idea: Randomness = 1)Bootstrap sampling + 2)randomized attribute selection

Advantage

Resistant to Overfitting
Well suited for problems with large training data
Empirically very good results. (≥ SVM, ≥ Boosting)

Disadvantage

Memory consumption

Comparison with various classifier

- CIFAR-10: Image Classification
- Comparison with various classifier
 - https://github.com/PhilippeCodes/Image-Classifier
 - https://github.com/PhilippeCodes/Image-Classifier/blob/master/Decision%20trees%20and%20random%20forests.ipynb

		Estimator	Test Accuracy	
	0	Baseline (dummy)	0.222	
	1	KNeighbors	0.776	
	2	DecisionTree	0.646	
	3	RandomForest	0.800	
	4	LogisticRegression	0.840	
	5	SVM Linear Kernel	0.817	
	6	SVM RBF Kernel	0.823	
	7	Multilayer Neural Network	0.821	
	8	Convolutional Neural Network	0.777	

Classification & Regression with RF

- How to Build Tree
 - Classification: using entropy, information gain, Gini index
 - Regression: using MSE(mean square error)

Classification & Regression with RF

- How to decide final value
 - Classification: argmax class of **P**
 - Regression: average of Y

Classification & Regression with Tree

- How to Build Tree
 - Classification: using entropy, information gain, Gini index
 - Regression: using MSE(mean square error)

Examples

```
>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.datasets import make_classification
>>> X, y = make_classification(n_samples=1000, n_features=4,
                               n_informative=2, n_redundant=0,
                               random_state=0, shuffle=False)
>>> clf = RandomForestClassifier(n_estimators=100, max_depth=2,
                                 random_state=0)
>>> clf.fit(X, y)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=2, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
            oob_score=False, random_state=0, verbose=0, warm_start=False)
>>> print(clf.feature_importances_)
[0.14205973 0.76664038 0.0282433 0.06305659]
>>> print(clf.predict([[0, 0, 0, 0]]))
[1]
```

https://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier

Examples

```
>>> from sklearn.ensemble import RandomForestRearessor
>>> from sklearn.datasets import make_regression
>>> X, y = make_regression(n_features=4, n_informative=2,
                          random_state=0, shuffle=False)
>>> regr = RandomForestRegressor(max_depth=2, random_state=0,
                                 n_estimators=100)
>>> rear.fit(X, y)
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=2,
           max_features='auto', max_leaf_nodes=None,
           min_impuritv_decrease=0.0. min_impuritv_split=None.
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=100, n_iobs=None,
           oob_score=False, random_state=0, verbose=0, warm_start=False)
>>> print(rear.feature_importances_)
[0.18146984 0.81473937 0.00145312 0.00233767]
>>> print(regr.predict([[0, 0, 0, 0]]))
Γ-8.329878587
```

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Application (Lv.1)

- Position Salaries
- Problem
 - https://www.kaggle.com/akram24/position-salaries
- Solution: Random Forests regression
 - https://colab.research.google.com/drive/1oSEU7znIkwsfYuIHY6CzURI8pVYVxDmv

Application (Lv.1)

- Iris classification
- Solution: Random Forests classification
 - https://colab.research.google.com/drive/1NXMRygCxXob0TCY5lJa8SltpFQjCOz5_

Application (Lv.2)

- Bike Sharing Demand
- Problem
 - https://www.kaggle.com/c/bike-sharing-demand
- Solution: Random Forests
 - https://colab.research.google.com/drive/1tz_SfvfXUkh6jd8AeGCx9LWFplXkBbiZ

Hands on Lab (Lv.2)

- Decision Tree from scratch
- Random Forests from scratch