Deep Learning 读书会第七次讨论记录 (由@极视角小助手整理)

下面为 2017 年 1 月 2 日 Deep Learning 读书会第六章深度前馈网络前三节。本次讨论问题由@安兴乐整理,并组织讨论。笔记由极视角筱雅整理。如有想加入读书会讨论的,请联系小助手(微信:Extreme-Vision).

讨论话题

话题一. 神经网络能够模拟 "XOR" 运算有什么意义?神经网络是如何模拟 "XOR" 运
算的?(安兴乐)
话题二. 为什么需要用"激活函数", 如何确定是用什么样的"激活函数"呢?(安兴
乐)5
话题三. BP 算法是否能保证收敛于"最佳状态"呢?(人工智障 v1.04)
话题四.如何去衡量一个神经网络的 VC 维呢?(安兴乐)
写在最后

话题一. 神经网络能够模拟 "XOR" 运算有什么意义?神经网络是如何模拟 "XOR" 运算的?(安兴乐)

安兴乐

之前神经网络不被看好,很大程度上是因为感知器无法模拟 XOR 运算。

Stomachache007

哦,这样。

安兴乐

实际上根据《neural network and deep learning》这本书的阐述,第一个问题也可以这样提问: 为什么神经网络可以拟合所有函数? (http://neuralnetworksanddeeplearning.com/chap4.html)

曲晓峰

西瓜书上关于这段故事的介绍。

卷心菜+翻译+第九章

是因为神经元有多隐层吗?

安兴乐

这里给出了一个可视化证明:

CHAPTER 4

A visual proof that neural nets can compute any function

证明多层神经网络可以计算任意的函数。不过我觉得还是不够"明显"。在台大的《机器学习技法》里面给了一个相当可视化的证明过程:这是一个典型的神经网络:

它对数据的拟合图示(同理可得 OR 运算的):

如果在固定的一层上增加神经元的数量:

但是如何处理这样的数据呢? 非线性可分的

这个时候线性不可分的数据处理就是一个问题了。这就是异或问题。 很显然无 法增加神经元数量来解决了.

大家想如何解决这样的问题呢?

曲晓峰

线性不可分,在 svm 里面也是靠 kernel 来做,算法有时尽,不可强求。

安兴乐

但是这里肯定不能用核函数了,都是线性单元,从数理逻辑的角度来看: 我们知道 XOR(g1; g2) = OR(and(-g1; g2); and(g1;-g2)),两条线的 and 之后再 OR。

曲晓峰

所以还是靠多层?

安兴乐

也就是之后的这个 OR , 需要增加一层 模拟 "OR"的神经元来解决!

曲晓峰

嗯,所以一般说神经网络能逼近任意函数,至少也要三层才有这特性,还得输入数据给力。

安兴乐

是的。这样子的话,神经网络通过增加层数就解决了长期被人 诟病的 XOR 问题了。这样是为什么我们经常说的 神经网络只要够深,就能解决所有问题....

枫

好像必须要非线性单元才可以吧?

安兴乐

这就是另外一个问题了。

AG-GROUP 元芳 第四章翻译

没有,最早的多层感知器激活函数就是简单的阈值。

极视角小助手

那对于第一个问题大家还有其他有疑问的地方吗?没有的话 我们继续第二个问题哈,为什么需要用"激活函数",如何确定使用什么样的"激活函数"呢?

话题二. 为什么需要用"激活函数",如何确定是用什么样的"激活函数"呢?(安兴乐)

Yisen

线性的话一直加深,还是线性啊。

安兴乐

@Yisen? 从何说来

枫

书上的171页有讲。

安兴乐

对于单层的神经元,多个线性还是线性的。

Yisen

刚才一个童鞋说的,必须要非线性单元。

枫

倒数第二段。

AG-GROUP 元芳 第四章翻译

链式法则决定了线性怎么线性叠加还是线性的。

枫

y=w*x z=W*y z=W*w*x

yisen

多层的话,也还是线性啊。

安兴乐

但是对于多层的神经网络,我们通过上面的证明已经可以看到,通过增加层数,是可以你和任意的函数的。大家一起来看看书吧。这个问题再重新表述: 没有核函数,神经网络怎么可以比 SVM 牛逼啊?看 172 页的图示。

Yc

我觉得是不是没有激活函数再深也是线性可分才能表示。

安兴乐

我们无法通过线性函数来拟合 XOR 问题。这个时候的方法就是: 通过隐层来 实现特征空间的映射

Stomachache007

这个隐层是非线性运算?不好意思 比较小白。

阿林

激活函数就是映射函数?

安兴乐

还是个线性的。

Stomachache007

max (0, x) 是线性运算么?

安兴乐

我错了, relu 不是线性的。

Stomachache007

灰常感谢,这个问题闲扰了我好久。

柳阳

分段线性。

安兴乐

Relu 就是为了解决这个问题而来的。在第二层的线性函数之上加入了"非线性元素"来解决这个问题。

Yisen

就没有线性的激活函数。因为这样失去了激活的意义。

柳阳

有道理。

Stomachache007

嗯,是的。

极视角小助手

那为什么要使用激活函数呢?

Stomachache007

为了模拟非线性函数吧。

Yisen

引入非线性元素啊。

阿林

特征映射?

安兴乐

来解决我们的 非线性函数问题。

Clearly, we must use a nonlinear function to describe the features. Most neural networks do so using an affine transformation controlled by learned parameters, followed by a fixed, nonlinear function called an activation function. We use that strategy here, by defining $\mathbf{h} = g(\mathbf{W}^{\top}\mathbf{x} + \mathbf{c})$, where \mathbf{W} provides the weights of a linear transformation and \mathbf{c} the biases. Previously, to describe a linear regression model, we used a vector of weights and a scalar bias parameter to describe an

极视角小助手

哦 那怎么选用激活函数呢?

安兴乐

解决问题的不同吧。

枫

现在好像基本都用 RELU 或 PRELU。

安兴乐

这是 6.3 的开篇第一问: How to choose the type of hidden unit to use in the hidden layers of the model.

极视角小助手

好的,谢谢。

曲晓峰

非线性、易求导、不阻碍导数向前传递。

安兴乐

靠猜。

枫

closer linear 函数

曲晓峰

后来又加上尽量避免负输出,输出尽量在规范化范围内。

安兴乐

用 Relu 的开始变多了 Hinton 去年发了篇关于 Relu 应用的文章 https://arxiv.org/abs/1504.00941 把Relu用在RNN上 证明不比LSTM差。

枫

RELU 的输出好像是避免了负输出,那正无穷怎么办?

柳阳

为什么会有正无穷?

安兴乐

输入有正无穷吗?

枫

当输入无限大的时候 RELU 也会输出无限大的 这个有问题吗?

Yisen

Normalization

曲晓峰

对呀,输入有 BN 对付

话题三. BP 算法是否能保证收敛于"最佳状态"呢?(人工智障v1.04)

极视角小助手

那我们继续下一个关于 BP 算法的问题哈 ,之前也有讨论过 BP 算法 ,那么 BP 算法是否能够保证收敛于"最佳状态"呢?

Yc

为什么要抑制负的?

曲晓峰

不好处理,有正负就需要叠加,单正容易做组合。收敛方面,不然没法保证最优的。

安兴乐

也因为 人的神经元需要一定的 "阈值" 才可以被激活吧

极视角小助手

那也就是不能保证啦?

曲晓峰

但似乎现在很多情况下是高维数据,数据维度一高,局部极小的情况就变得非常罕见了,大多数都会是鞍点,所以,越是高维状况,局部极小的情况越不严重。

安兴乐

最近面试的时候,有面试官让我讲讲 BP。我就吧 BP 的公式和简单伪代码写出来了,然后面试官说后面确定了再确定前面,这样子的话不断地调整一层又一层,永远也不会找到合适的权重的。我说:会收敛的。 他说: 不会的....然后我们开始 Rap 了。 面试官:"你来证明一下会收敛"

曲晓峰

就是在一个甚至几个维度上的局部极小,在其它维度还有较为显著的梯度,迭代还是会很顺畅的走下去。

Yisen

没法证明收敛 也没法证明不收敛 从数学上。

曲晓峰

这个面试官其实不是问 BP,他问的其实是积分的基本理解。阿吉里斯追龟问题

枫

今年有篇文章好像证明了收敛 我找找

曲晓峰

但深度学习也确实会震荡。

Yisen

我猜 特定下情况下的 可以 general 的 估计不行。

安兴乐

@枫 是吗?

Yisen

收敛

阿林

一般证明收不收敛我都不看的

枫

Deep Learning without Poor Local Minima

Yc

Bp 的公式是什么?

枫

https://www.zhihu.com/question/54016305/answer/137631979

yc

是指的 cost function 对 系数的导数吗?

Yisen

▲ 周博磊,MIT博士在读, AI方向。

110 /110 人赞同

▼ 论文内容本身我就不多说了,证明了在线性网络上softmax上的一个conjecture,还是有些局限,想做 DL编理论的同学可以对比看下这篇和@田渊栋的那篇icir'17。大过节的,我来多说说八卦算了:)

枫.

我没看懂 能力不够

Yisen

假设都要求网络隐层中各结点的输出相互独立,才能得到结论。但是众所周知这个假设在实际情况中几乎不成立,各结点的输出都依赖于输入,因此往往强相关。

安兴乐

Got it! 工程上只要能够进入一定条件就可以了。

话题四.如何去衡量一个神经网络的 VC 维呢?(安兴乐)

极视角小助手

好,那我们进入最后一个问题,如何去衡量一个神经网络的 VC 维呢?

安兴乐

在简单网络中应该是 神经元个数*权重个数 。 这个对于 RNN 怎么来算呢?

极视角小助手

大家有什么见解吗?

柳阳

能解释一下吗?简单网络的

安兴乐

VC 维就是"能打撒(区分)"的样本数。那么一个网络能够区分多大的数据呢?如果一个网络就是一个简单的线性函数,那么它应该可以区分 2 类。衡量一个网络的"区分"数据的能力,就是看它能否"区分"多大的数据量。这个时候简单网络的的"打散数据"的能力就是神经元个数*权重个数。N 维空间中线性分类器和线性实函数的 VC 维是 N,错了应该是 N+1 吧。

柳阳

N+1 是对。

枫

那神经网络的 VC 维就是最后的 softmax 的 VC 维吗?假设使用的是 softmax

安兴乐

VC 维 和 分类的类别数, 之间有区别。

枫

什么是区分数据?

安兴乐

这个.....看一下 VC 维的定义吧。我好像解释的不太清楚。

枫

是这个意思吧?

安兴乐

对!

James Liu

找到一篇证明加 momentum 的 GD 收敛性的文章 (CONVERGENCE OF GRADIENT METHOD WITH MOMENTUM

FOR BACK-PROPAGATION NEURAL NETWORKS*)。反正结论是收敛到 local minima... (文章有附在 git 项目里)

极视角小助手

刚刚最后一个问题 如何去衡量一个神经网络的 VC 维呢? 这里有个@缨宁 答的参考答案: 被模型分散的最大样本集合的大小 。大家可以参考想想~

_____End____

写在最后

非常感谢此次进行讨论交流的朋友们以及群内支持的朋友们,希望我们读书会能让大家学到更多,并且讨论后可以对原书有更独到的理解。

#广告时间#

视觉前沿资讯,将算法放至极市关注请关注极市平台公众号。

