

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Отчёт по практикуму

«Стохастический анализ и моделирование»

Студент 415 группы И. А. Кулешов

Руководитель практикума к.ф.-м.н, доцент С. Н. Смирнов

Содержание

1	Зад	ание 7	3
	1.1	Постановка задачи	3
	1.2	Решение задачи	3
		1.2.1 Пункт 1	3
		1.2.2 Пункт 2	5
2	Зад	ание 8	6
	2.1	Постановка задачи	6
	2.2	Решение задачи	6
3	Зад	ание 9	10
	3.1	Постановка задачи	10
	3.2	Решение задачи	10
		3.2.1 Пункт 1	10
		3.2.2 Пункт 2	12
4	Зад	ание 10	16
	4.1	Постановка задачи	16
	4.2	Решение задачи	16
5	Зад	ание 11	20
	5.1	Постановка задачи	20
	5.2	Решение задачи	20
		5.2.1 Пункт 1	20
		5.2.2 Пункт 2	22
		5.2.3 Пункт 3	23
6	Биб	блиография	26

1.1 Постановка задачи

1. Методом случайного поиска найти минимальное значение функции f на множестве $A = \{x_1, x_2 : x_1^2 + x_2^2 \le 1\}$, т.е. $y = \min_{x \in A} f(x)$, где

$$f(x) = x_1^3 \sin\left(\frac{1}{x_1}\right) + 10x_1x_2^4 \cos\left(\frac{1}{x_2}\right)$$

при $x_1 \neq 0$ и $x_2 \neq 0$, функция доопределяется по непрерывности при $x_1 = 0$ или $x_2 = 0$.

2. Методом иммитации отжига найти минимальное значение функции Розенброка g в пространстве \mathbb{R}^2 , где

$$g(x) = (x_1 - 1)^2 + 100(x_2 - x_1^2)^2$$

3. Оценить точность. Сравнить результаты со стандартными методами оптимизации.

1.2 Решение задачи

1.2.1 Пункт 1

Для поиска минимального значения функции f(x) будем n раз разыгрывать случайные величины x_1 и x_2 на множестве $A = \{x_1, x_2 : x_1^2 + x_2^2 \le 1\}$, считать для каждой пары значение функции $f(x_1, x_2)$ и затем из полученных n значений выберем наименьшее. Рассмотрим следующую величину:

$$\mathbb{P}((x_1, x_2) \in A) = \frac{1}{\pi} \iint_{\substack{x_1^2 + x_2^2 < 1}} dx_1 dx_2 = \frac{1}{\pi} \int_0^1 r dr \int_0^{2\pi} d\varphi = \int_0^1 dr^2 \int_0^{2\pi} \frac{1}{2\pi} d\varphi.$$

В этом выражении был совершен переход к полярным координатам:

$$\begin{cases} x_1 = r\cos\varphi, \\ x_2 = r\sin\varphi, \end{cases} \quad 0 \geqslant r \leqslant 1, \quad 0 \geqslant \varphi \leqslant 2\pi.$$

Сделаем замену вида: $u = r^2 > 0, u \in [0; 1]$. Тогда окончательно получим:

$$\mathbb{P}((x_1, x_2) \in A) = \int_0^1 du \int_0^{2\pi} \frac{1}{2\pi} d\varphi.$$

Отсюда видно, что совместное распределение x_1 и x_2 совпадает с совместным распределением случайных величин $u \sim U[0;1]$ и $\varphi \sim [0;\pi]$ (обоснование этого метода моделирования можно найти в задании 4). Выпишем выражения для x_1 и x_2 :

$$\begin{cases} x_1 = \sqrt{u}\cos\varphi, \\ x_2 = \sqrt{u}\sin\varphi, \end{cases} \quad u \sim U[0;1], \quad \varphi \sim U[0;2\pi].$$

Теперь оценим погрешность данного метода. Пусть точка (x^*, y^*) — точка теоретического минимума, а точка (x, y) — это точка, полученная методом случайного поиска. Тогда:

$$|f(x^*, y^*) - f(x, y)| \le \max_{(x,y) \in A} |\nabla f| |(x^*, y^*) - (x, y)|.$$

Оценим каждый из сомножителей:

1. Сначала
$$\max_{(x,y)\in A} |\nabla f| = \max_{(x,y)\in A} \sqrt{\left(\frac{\partial f}{\partial x_1}\right)^2 + \left(\frac{\partial f}{\partial x_2}\right)^2}$$
:
$$\left|\frac{\partial f}{\partial x_1}\right| = \left|3x_1^2 \sin\left(\frac{1}{x_1}\right) - x_1 \cos\left(\frac{1}{x_1}\right) + 10x_2^4 \cos\left(\frac{1}{x_2}\right)\right| \leqslant$$

$$\leqslant \left|3x_1^2 \sin\left(\frac{1}{x_1}\right)\right| + \left|x_1 \cos\left(\frac{1}{x_1}\right)\right| + \left|10x_2^4 \cos\left(\frac{1}{x_2}\right)\right| \leqslant \sqrt{10} + 10,$$

$$\left|\frac{\partial f}{\partial x_1}\right| = \left|10x_1\left(4x_2^3 \cos\left(\frac{1}{x_2}\right) + x_2^2 \sin\left(\frac{1}{x_2}\right)\right)\right| \leqslant 10 \left|4\cos\left(\frac{1}{x_2}\right) + \sin\left(\frac{1}{x_2}\right)\right| \leqslant 10\sqrt{17}.$$

Отсюда получаем оценку:

$$|\nabla f| \leqslant 45.$$

2. Теперь оценим $|(x^*, y^*) - (x, y)|$.

Найдем, чему равна вероятность того, что точка (x, y) попадет в ε -окрестность теоретической точки минимума (x^*, y^*) :

$$\mathbb{P}\Big((x,y) \in B_{\varepsilon}(x^*,y^*)\Big) = \frac{\pi\varepsilon^2}{\pi} = \varepsilon^2.$$

Заметим, что исходная функция является четной по y, поэтому точек минимума будет две: если (x^*,y^*) — точка минимума, то $(x^*,-y^*)$ — также точка минимума. Поэтому значение вероятности, равное ε^2 , верно для случая, когда обе точки минимума лежат на границе множества A. Если же обе точки минимума лежат внутри множества, то существует две ε — окрестности, в которые может попасть очередная точка (x,y), значит, вероятность будет равна $2\varepsilon^2$. Рассматривая худший случай, получаем, что вероятность попасть методом случайного поиска в ε — окрестность точки минимума равна $p=n\varepsilon^2$. Тогда:

$$|(x^*, y^*) - (x, y)| \leqslant \varepsilon = \sqrt{\frac{p}{n}}.$$

Таким образом, мы получили оценку для метода случайного поиска:

$$|f(x^*, y^*) - f(x, y)| \le 45\sqrt{\frac{p}{n}}.$$

N	значение минимума	погрешность $(p = 0.99)$	время работы
10^{5}	-1,28	0,16	$0,\!014$
10^{6}	-1,287	0,049	0,135
10^{7}	-1,288	0,016	1,372
10^{8}	-1,2885	0,0049	13,268

Таблица 1: Результаты поиска минимума функции методом случайного поиска.

1.2.2 Пункт 2

Теперь для минимизации функции f(x), которую будем интерпретировать как энергию системы, мы будем использовать метод имитации отжига. Опишем алгоритм его работы:

- 1. Случайным образом выбираем начальную точку x_0 , задаем начальную температуру T_0 Текущее значение энергии E устанавливаем равным $f(x_0)$.
- 2. k-ая итерация основного цикла состоит из следующих шагов:
 - (a) Сравнить энергию системы E в состоянии x с найденным на текщий момент глобальным минимумом. Если E=f(x) меньше, то изменить значение глобального минимума.
 - (b) Сгенерерировать новую точку x'. В нашем случае мы будем генерировать ее по нормальному закону с математическим ожиданием (x_k, y_k) и дисперсией $\sigma^2 T_k$, где $T(k) = T(k-1)k_{temp}$ температура системы в момент k.
 - (c) Вычисляем значение E' = f(x').
 - (d) Генерируем случайное число α из интервала [0;1].
 - (e) Если $\alpha < h(E'-E,T(k)) = \exp^{-(E'-E)/T(k)}$, то $x=x_i, E=E'$ и переходим к следующей итерации. Иначе, повторить шаг (b), пока не будет найдена подходящая точка x'.

2.1 Постановка задачи

Применить метод Монте-Карло к решению первой краевой задачи для двумерного уравнения Лапласа в единичном круге:

$$\begin{cases} \Delta u = 0, (x, y) \in D \\ u|_{\delta D} = f(x, y) \\ u \in C^{2}(D), f \in C(\delta D) \\ D = \{x, y : x^{2} + y^{2} \leq 1\} \end{cases}$$

Для функции $f(x,y)=x^2-y^2$ найти аналитическое решение и сравнить с полученным по методу Монте-Карло.

2.2 Решение задачи

Выберем на плоскости достаточно мелкую квадратную сетку с шагом h. Кооринаты узлов $x_i = ih, y_j = jh$, а значения функций в узлах $u(x_i, y_i) = u_{i,j}, f(x_i, y_i) = f_{i,j}$.

Определение 1. Узел сетки (i,j) называют внутренним, если и он, и все четыре соседних с ним узла (i-1,j), (i+1,j), (i,j-1), (i,j+1), принадлежат $D+\delta D$. В противном случае узел (i,j), принадлежащий $D+\delta D$, называют граничным. Остальные узлы сетки будем называть внешними.

Составим разностную схему. Первое уравнение $u_{xx} + u_{yy} = 0$ перейдет в:

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} = 0, \quad (i,j) \in D_h,$$
(1)

где D_h — множество внутренних точек для данной сетки.

Перепишем (1) относительно $u_{i,j}$ и получим:

$$\begin{cases}
 u_{i,j} = \frac{1}{4} (u_{i,-1j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1}), & (i,j) \in D_h, \\
 u_{i,j} = f_{i,j}, & (i,j) \in \delta D_h,
\end{cases}$$
(2)

где δD_h — множество граничных точек для данной сетки.

Заметим, что решение данной системы существует и единственно, и при $h \to 0$ стремится к решению задачи Дирихле. Опишем метод Монте-Карло для системы (2).

Представим себе частицу M, которая совершается равномерное блуждание по узлам сетки. Находясь в узле (i,j) частица равновероятно может перейти в один из четырех соседних узлов (i-1,j), (i+1,j), (i,j-1), (i,j+1), причем каждый переход не зависит от предыстории и положения точки. Блуждание заканчивается, как только попадает в граничную точку.

Пусть P(i,j,p,q) — вероятность того, что траектория частицы, вышедшей из узла (i,j), закончится в граничной точке (p,q). Так как рано или поздно частица неизбежно попадет на одну из точек границы, то:

$$\sum_{(p,q)\in\delta D_h} P(i,j,p,q) = 1$$

$$P(p',q',p,q) = \begin{cases} 1, & (p'-p)^2 + (q'-q)^2 = 0, \\ 0, & (p'-p)^2 + (q'-q)^2 \neq 0, \end{cases} \quad \forall (p',q') \in \delta D_h$$

Составим сумму

$$\nu_{i,j} = \sum_{(p,q)\in\delta D_h} P(i,j,p,q) f_{p,q}$$

Если рассматривать f(x,y) как случайную величину, принимающую значения $f_{p,q}$ на границе δD_h , то $\nu_{i,j}$ — это математическое ожидание f(x,y) в точке (x_i,y_j) . Так как из внутреннего узла частица равновероятно попадет в один из 4 соседних узлов, то по формуле полной вероятности:

$$\nu_{i,j} = \sum_{(p,q)\in\delta D_h} (P(i-1,j,p,q) + P(i+1,j,p,q) + P(i,j-1,p,q) + P(i,j+1,p,q)) f_{p,q}.$$
(3)

Окончательно получим:

$$\begin{cases}
\nu_{i,j} = \frac{1}{4} (\nu_{i,-1j} + \nu_{i+1,j} + \nu_{i,j-1} + \nu_{i,j+1}), & \forall (i,j) \in D_h \\
\nu_{i,j} = f_{i,j}, & (i,j) \in \delta D_h
\end{cases}$$
(4)

Мы получили систему, аналогичную (2). В силу закона больших чисел можно приближать $\nu_{i,j}$ по формуле:

$$\nu_{i,j} \approx \frac{1}{N} \sum_{k=1}^{N} f(p^k, q^k), \quad (p^k, q^k) \in \delta D_h.$$
 (5)

Для ускорения работы данного метода несколько модифицируем ход его выполнения: будем рассматривать его в «обратном времени». Частица, находясь во внутреннем узле, в предыдущий момент времени могла равновероятно быть в одном из 4 соседних внутренних узлов (предыдущей точкой не может быть граничная точка). Это значит, что если мы выберем какую-то граничную точку (k_0, l_0) и будем блуждать по аналогичному алгоритму по узлам сетки до момента попадения в седующую граничную точку (k_1, l_1) , то мы получим множество Ω тех точек, траектория «прямого» блуждания которых могла бы закончится в (k_0, l_0) . В свою очередь, попав в (k_1, l_1) , мы повторим вышеизложенную процедуру «обратного» блуждания. По-сути, в каждой точке множества Ω мы получаем слагаемое в выражение (3), где $f(p,q) = f(k_0, l_0)$. Следовательно, если для каждой внутренней точки мы будем запоминать количество попаданий «обратных блужданий» и сумму их значений на начальных граничных точках, то поделив данную сумму на количество попаданий получим в точности (5). Для того, чтобы получить необходимую точность, будем блуждать в «обратном времени» до тех пор, пока не побываем в каждой внутренней точке хотя бы N раз.

Теперь рассмотрим аналитическое решение исходной задачи. По теореме о существовании решения внутренней задачи Дирихле, решение существует. Будем искать его с помощью метода неопределенных коэффициентов:

$$u(x,y) = c_0 + a_1 x + b_1 y + a_2 x^2 + b_2 y^2.$$

Подставим это в исходную задачу:

$$\begin{cases} \Delta u = u_{xx} + u_{yy} = 2a_2 + 2b_2 = 0, \\ u|_{x^2 + y^2 = 1} = c_0 + a_1 x + b_1 y + a_2 x^2 + b_2 y^2 = x^2 - y^2, \end{cases}$$

Решая эту систему получим: $c_0 = a_1 = b_1 = 0, a_2 = 1, b_2 = -1 \Rightarrow u(x, y) = x^2 - y^2.$

Рис. 1: Аналитическое решении при n=51 точках по каждой оси.

Рис. 2: Решение методом Монте-Карло с параметрами n=51, N=10000.

Рис. 3: Ошибка метода Монте-Карло с параметрами n=51, N=10000.

3.1 Постановка задачи

Рассмотреть два вида процессов:

- Винеровский процесс $W(t), t \in [0, 1], W(0) = 0.$
- Процесс Орнштейна-Уленбека X(t), $t \in [0;1]$, $X(0) = X_0$, то есть стационарный марковский гауссовский процесс. Начальные значения X_0 генерируются случайным образом так, чтобы полученный процесс был стационарным.

Для данных гаусовских процессов:

- 1. Найти ковариационную функцию и переходные вероятности.
- 2. Моделировать независимые траектории процесса с данными переходными вероятностями методом добавления разбиения отрезка.
- 3. Построить график траектории, не соединяя точки ломаной, с целью получения визуально непрерывной линии.

3.2 Решение задачи

3.2.1 Пункт 1

Дадим несколько важных определений:

Определение 2. Пусть дано вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Параметризованное семейство $\{W_t|t\in T\}$ случайных величин вида: $W_t(\cdot):\Omega\to\mathbb{R},\ t\in T,\ \textit{где}\ T\in [0,+\infty)\ u\ T$ интерпретируется как временной интервал, называется случайным процессом.

Определение 3. Случайный процесс $\{W_t|t\in T\}$ называется гаусовским, если $\forall n\geqslant 2, \forall t_1< t_2<\ldots< t_n\in T$ случайные величины $W_{t_1},W_{t_2},\ldots,W_{t_n}$ имеют многомерное нормальное распределение.

Определение 4. Случайный процесс $\{W_t|t\in T\}$ называется процессом с независимыми приращениями, если $\forall n\geqslant 2, \forall t_1< t_2<\ldots< t_n\in T$ случайные величины $W_{t_1},W_{t_2}-W_{t_1},\ldots,W_{t_n}-W_{t_{n-1}}$ независимы.

Определим винеровский процесс на [0;1] как гауссовский с независимыми приращениями и W(0)=0 п.н.

Т.к. процесс гауссовский, то из этого следует, что $\forall t_1 < t_2 < \ldots < t_n \in T$ случайный вектор $(W_{t_1}, W_{t_2} - W_{t_1}, \ldots, W_{t_n} - W_{t_{n-1}})$ будет иметь многомерное нормальное распределение. Это значит, что $W_1 - W_0 = W_1 - 0 = W_1 \sim N(0, 1)$.

Для данного процесса вычислим ковариационную функцию $R(t,s) = \mathbb{C}$ ov (W_t,W_s) . Для этого рассмторим случай, когда $0 \le s \le t$:

$$\begin{cases} W_s - W_0 = W_s \\ W_s \text{ и } W_t - W_s \text{ независимы} \end{cases} \Rightarrow \mathbb{C}\text{ov}\left(W_s, W_t - W_s\right) = 0, \text{ но} \end{cases}$$

$$\mathbb{C}\text{ov}\left(W_s, W_t - W_s\right) = \mathbb{C}\text{ov}\left(W_s, W_t\right) - \mathbb{C}\text{ov}\left(W_s, W_s\right) = \mathbb{C}\text{ov}\left(W_s, W_t\right) - \mathbb{V}\text{ar}\left(W_s\right) = 0$$

$$= \mathbb{C}\text{ov}\left(W_s, W_t\right) - s = 0 \Rightarrow \mathbb{C}\text{ov}\left(W_s, W_t\right) = s.$$

Аналогично рассматривается и второй случай. Получаем, что для винеровского процесса:

$$R(t,s) = \min(s,t).$$

Будем строить траекторию винеровского процесса методом деления отрезка [0;1] в отношении α исходя из следующих соображений:

- $W_0 = 0, W_1 \sim N(0, 1),$
- Рассмотрим отрезок $[t_1, t_2]$ и его внутреннюю точку $t = t_1 + \alpha(t_2 t_1)$ и условную плотность:

$$p_{W_t}(x|W_{t_1} = x_1, W_{t_2} = x_2) = \frac{p_{W_{t_1}, W_{t_1}, W_{t_2}}(x_1, x, x_2)}{p_{W_{t_1}, W_{t_2}}(x_1, x_2)}.$$

Обозначим $\bar{x} = (x_1, x, x_2)'$ и $\hat{x} = (x_1, x_2)'$, тогда плотности распределения этих векторов будут равны:

$$p_{W_{t_1},W_{t},W_{t_2}}(\bar{x}) = \frac{1}{(2\pi)^{\frac{3}{2}}\sqrt{|R_1|}}e^{-\frac{1}{2}\bar{x}'R_1^{-1}\bar{x}},$$
$$p_{W_{t_1},W_{t_2}}(\hat{x}) = \frac{1}{2\pi\sqrt{|R_2|}}e^{-\frac{1}{2}\hat{x}'R_2^{-1}\hat{x}},$$

где R_1, R_2 — соответствующие матрицы ковариаций. Вспомним, что $R(t,s) = \min(s,t)$, поэтому:

$$R_1 = \begin{pmatrix} t_1 & t_1 & t_1 \\ t_1 & t & t \\ t_1 & t & t_2 \end{pmatrix}, R_2 = \begin{pmatrix} t_1 & t_1 \\ t_1 & t_2 \end{pmatrix}.$$

Используя символьные вычисления Matlab получим окончательно:

$$p_{W_t}(x|W_{t_1} = x_1, W_{t_2} = x_2) = \frac{1}{\sqrt{2\pi\alpha(1-\alpha)(t_2 - t_1)}} \exp\left\{-\frac{(x - ((1-\alpha)x_1 + \alpha x_2))^2}{2\alpha(1-\alpha)(t_2 - t_1)}\right\}.$$

Это значит, что

$$W_t \sim N((1-\alpha)x_1 + \alpha x_2), \alpha(1-\alpha)(t_2 - t_1)).$$

Пусть n — это количество шагов метода деления отрезка. Каждый шаг — это деление всех отрезков, содержавшихся в [0;1] на шаге n-1, в соотношении α . Количество точек при моделировании равно 2^n+1 на отрезке [0;1].

Рис. 4: Винеровский процесс с параметрами $n = 11, \alpha = 0.5$.

Рис. 5: Винеровский процесс с параметрами $n = 15, \alpha = 0.3$.

3.2.2 Пункт 2

Определение 5. Случайный процесс $\{X_t|t\in T\}$ называется стационарным, если конечно-мерные распределения инвариантны относительно сдвига времени.

Тогда из стационарности процесса Орншнейна-Уленбека следует, что $\mathbb{E}\,X_t=a, R(t,s)=R(|t-s|,0)=R(|t-s|).$ Без ограничения общности положим $a=0, \mathbb{V}$ аг $X_t=\sigma^2,$ тогда:

$$R(t,s) = \sigma^2 \rho(|t-s|),$$

где $\rho(|t-s|) = \rho(|t-s|, 0) = \rho(t, s)$ — коэффициент корреляции X_t, X_s .

Определение 6. Случайный процесс $\{X_t|t\in T\}$ называется марковским, если $\forall t_1 < t_2 < \ldots < t_n \in T, B \in \mathcal{B}$ выполнено

$$\mathbb{P}(X_{t_n} \in B | X_{t_1}, \dots, X_{t_{n-1}}) = \mathbb{P}(X_{t_n} \in B | X_{t_{n-1}}).$$

Отсюда следует, что $\rho(t+s) = \rho(t)\rho(s)$.

Теорема 1. Пусть функция u(t) определена $\forall t > 0$ и ограничена на каждом конечном интервале. Если u(t) удовлетворяет соотношению u(t,s) = u(t)u(s), то или $u(t) = 0, \forall t > 0$, или $\exists \lambda > 0 : u(t) = e^{-\lambda t}$.

Доказательство можно найти в [3].

Если $\rho(t) \equiv 0 \Rightarrow \mathbb{C}\text{ov}(X_t, X_S) = 0.$

В силу того, что процесс $\{X_t|t\in T\}$ — гауссовский, то в данном случае X_t независимы в совокупности. Это значит, что моделирование процесса Орнштейна-Уленбека будет заключаться в генерации независимых случайных с распределением $N(a, \sigma^2)$.

Теперь рассмотрим случай, когда $\rho(s,t)=e^{-\lambda|t-s|}, \lambda>0 \Rightarrow R(s,t)=\sigma^2 e^{-\lambda|t-s|}.$ Найдем переходную плотность:

$$p_{X_t}(x_1|X_s=x_2)=\frac{p_{X_t,X_s}(x_1,x_2)}{p_{X_s}(x_2)}.$$

Поскольку $\{X_t | t \in T\}$ — гауссовский, то для $\hat{x} = (x_1, x_2)'$:

$$p_{X_t,X_s}(\hat{x}) = \frac{1}{2\pi\sqrt{|R|}}e^{-\frac{1}{2}\hat{x}'R^{-1}\hat{x}},$$
$$p_{X_s}(x_2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x_2^2}{2\sigma^2}}.$$

Ковариационная матрица R имеет вид:

$$R = \begin{pmatrix} \sigma^2 & R(t,s) \\ R(t,s) & \sigma^2 \end{pmatrix}, \quad R^{-1} = \frac{1}{|R|} \begin{pmatrix} \sigma^2 & -R(t,s) \\ -R(t,s) & \sigma^2 \end{pmatrix}, \quad |R| = \sigma^4 - R^2(t,s).$$

Сведя все воедино получим:

$$p_{X_t}(x_1|X_s = x_2) = \frac{1}{\sqrt{2\pi\sigma^2(1 - e^{-2\lambda|t - s|})}} \exp\left\{\frac{\left(x_1 - x_2e^{-\lambda|t - s|}\right)^2}{2\sigma^2(1 - e^{-2\lambda|t - s|})}\right\}.$$

Таким образом:

$$X_t \sim N(x_2 e^{-\lambda |t-s|}, \sigma^2 (1 - e^{-2\lambda |t-s|}))$$

Для непосредственного моделирования процесса расссмотрим случайные величины X_{t_1}, X_{t_2} и найдем условную плотность:

$$p_{X_t}(x|X_{t_1} = x_1, X_{t_2} = x_2) = \frac{p_{X_{t_1}, X_t, X_{t_2}}(x_1, x, x_2)}{p_{X_{t_1}, X_{t_2}}(x_1, x_2)},$$

но в данном случае $\alpha = 0.5$, т.е. $t = (t_1 + t_2)/2$.

Обозначим $\bar{x} = (x_1, x, x_2)'$ и $\hat{x} = (x_1, x_2)'$, тогда плотности распределения этих векторов будут равны:

$$p_{X_{t_1}, X_{t_1}, X_{t_2}}(\bar{x}) = \frac{1}{(2\pi)^{\frac{3}{2}} \sqrt{|R_1|}} e^{-\frac{1}{2}\bar{x}' R_1^{-1} \bar{x}},$$
$$p_{X_{t_1}, X_{t_2}}(\hat{x}) = \frac{1}{2\pi \sqrt{|R_2|}} e^{-\frac{1}{2}\hat{x}' R_2^{-1} \hat{x}},$$

где R_1, R_2 — соответствующие матрицы ковариаций. Вспомним, что $R(t,s) = \sigma^2 e^{-\lambda |t-s|}$, поэтому:

$$R_1 = \sigma^2 \begin{pmatrix} 1 & e^{-\lambda(t-t_1)} & e^{-\lambda(t_2-t_1)} \\ e^{-\lambda(t-t_1)} & 1 & e^{-\lambda(t_2-t)} \\ e^{-\lambda(t_2-t_1)} & e^{-\lambda(t_2-t)} & 1 \end{pmatrix}, \quad R_2 = \sigma^2 \begin{pmatrix} 1 & e^{-\lambda(t_2-t_1)} \\ e^{-\lambda(t_2-t_1)} & 1 \end{pmatrix}.$$

Используя символьные вычисления Matlab получим окончательно:

$$X_t \sim N\left((x_1 + x_2) \frac{e^{-\frac{\lambda(t_2 - t_1)}{2}}}{1 + e^{-\lambda(t_2 - t_1)}}, \sigma^2 \frac{1 - e^{-\lambda(t_2 - t_1)}}{1 + e^{-\lambda(t_2 - t_1)}}\right).$$

В качестве начальных значений возьмем: $X_0 \sim N(0, \sigma^2), X_1 \sim N(x_0 e^{-\lambda T}, \sigma^2 (1 - e^{-2\lambda T})).$

Рис. 6: Процесс Орнштейна-Уленбека с параметрами $n=13, \lambda=1, \sigma=0.2.$

Рис. 7: Процесс Орнштейна-Уленбека с параметрами $n=14\lambda=100, \sigma=1.$

Рис. 8: Процесс Орнштейна-Уленбека с параметрами $n=14\lambda=30, \sigma=20.$

4.1 Постановка задачи

Провести фильтрацию одномерного процесса Орнштейна- Уленбека:

- 1. Используя генератор белого шума, добавить случайную ошибку с известной дисперсией к реализации процесса Орнштейна- Уленбека.
- 2. При помощи одномерного фильтра Калмана оценить траекторию процесса по зашумленному сигналу. Параметры процесса и белого шума считать известными.
- 3. Расмотреть случай, когда шум
 - Является гауссовским.
 - Имеет распределение Коши.

4.2 Решение задачи

Определение 7. Дискретным белым шумом называется последовательность $\xi_1, \ldots, \xi_n, \ldots$ независимых одинаково распределенных случайных величин.

Рассматриваемый нами процесс Орншейна-Уленбека — это марковский процесс, поэтому можно определить совместную плотность по всем моментам времени:

$$p(x_k,\ldots,x_0)=p(x_k|x_{k-1},\ldots,x_0)\cdot p(x_{k-1}|x_{k-2},\ldots,x_0)\cdot\ldots\cdot p(x_1|x_0)\cdot p(x_0)=$$

= {в силу марковского свойства} = $p(x_k|x_{k-1})\cdot p(x_{k-1}|x_{k-2})\ldots\cdot p(x_1|x_0)\cdot p(x_0)$

Рассмотрим соотношение:

$$x_{k+1} = f(x_k) + w(k), (6)$$

где w(k) - случайная помеха, $x_k, w(k)$ независимы и имеют гауссовское распределение, $f(x_k) = \mathbb{E}(x_{k+1}|x_k)$.

При сделанных предположениях условное математическое ожидание $\mathbb{E}(x_{k+1}|x_k)$ линейно по x_k . Тогда (6) переходит в уравнение:

$$x_{k+1} = A_k x_k + w_k.$$

Поскольку случайные величины гауссовские, то для их полного описания достаточно знать первые и вторые моменты. Обратимся к [2] и выпишем каноническую систему для нахождения исходного процесса с помощью фильтра Калмана со схемой «шагаем-меряем»:

$$\begin{cases} x_{k+1} = A_k x_k + w_k, & k = \overline{0, N - 1}, \\ y_k = C_k x_k + v_k, & k = \overline{0, N}, \end{cases}$$
 (7)

где $\{x_0, w_0, \dots w_{N-1}, v_0, \dots v_N\}$ независимы в совокупности, $Y_N = (y_0, \dots, y_N)$ — наблюдения, $X_N = (x_0, \dots, x_N)$ — исходный процесс, который нужно найти.

Введем обозначения $\mathbb{E} x_0 = \bar{x}_0$, \mathbb{V} ar $x_0 = S$, $\mathbb{E} w_k = \mathbb{E} v_k = 0$, \mathbb{V} ar $w_k = M_k$, \mathbb{V} ar $v_k = N_k$ и выпишем систему, реализующую фильтр Калмана:

$$\begin{cases}
x_{k+1|k} = A_k x_{k|k}, \\
x_{k|k} = x_{k|k-1} + R_{k|k-1} C_k^T (C_k R_{k|k-1} C_k^T + N_k)^{-1} (y_k - C_k x_{k|k-1}), \\
R_{k+1|k} = A_k R_{k|k} A_k^T + M_k, \\
R_{k|k} = R_{k|k-1} - R_{k|k-1} C_k^T (C_k R_{k|k-1} C_k^T + N_k)^{-1} C_k R_{k|k-1}, \\
x_{0|-1} = x_0, \\
R_{0|-1} = S.
\end{cases}$$
(8)

Так как рассматриваемая задача одномерная, то все коэффициенты сисемы (9) будут скалярами. Определим их. Рассмотрим уравнение для наблюдения:

$$y_k = x_k + v_k$$

где v_k - это белый шум с дисперсией $\sigma_2 \Rightarrow N_k = \sigma_2^2, C_k = 1$. Исходя из системы (7) получатм:

$$\mathbb{V}\mathrm{ar}\,x_{k+1} = A_k^2\mathbb{V}\mathrm{ar}\,x_k + \mathbb{V}\mathrm{ar}\,w_k = A_k^2V_k + M_k,$$

$$\mathbb{C}\mathrm{ov}\,(x_{k+1},x_k) = \mathbb{E}\,(x_{k+1},x_k) - \mathbb{E}\,x_{k+1}\mathbb{E}\,x_k = A_k(\mathbb{E}\,x_k^2 - (\mathbb{E}\,x_k)^2) = A_k\mathbb{V}\mathrm{ar}\,x_k = A_kV_k.$$

Из задачи 9 мы знаем, что ковариационная функция для процесса Орнштейна-Уленбека с параметрами λ, σ_1 имеет вид:

$$R(t,s) = \sigma_1^2 e^{-\lambda |t-s|} \Rightarrow \begin{cases} \sigma_1^2 = V_k, \\ \sigma_1^2 e^{-\lambda \Delta t} = A_k V_k, & \Delta t = t_{i+1} - t_i, \\ \sigma_1^2 = A_k^2 V_k + M_k, \end{cases}$$

Решив эту систему получим: $A_k = e^{-\lambda \Delta t}, V_k = \sigma_1^2, M_k = \sigma_1^2 (1 - e^{-2\lambda \Delta t}).$ Выделим повторяющуюся компоненту:

$$h = R_{k|k-1}(R_{k|k-1} + \sigma_2^2)^{-1}.$$

Перепишем систему (9) для исследуемого процесса:

$$\begin{cases}
x_{k|k} = (1-h)x_{k|k-1} + hy_k, \\
R_{k|k} = (1-h)R_{k|k-1}, \\
h = R_{k|k-1}(R_{k|k-1} + \sigma_2^2)^{-1}, \\
x_{k+1|k} = e^{-\lambda \Delta t}x_{k|k}, \\
R_{k+1|k} = e^{-2\lambda \Delta t}R_{k|k} + \sigma_1^2(1 - e^{-2\lambda \Delta t}), \\
x_{0|-1} = 0, \\
R_{0|-1} = \sigma_1^2.
\end{cases} \tag{9}$$

Доверительный интервал задается уранением:

$$x_k + k_{(1-\alpha)/2}[-R_{k|k}, R_{k|k}],$$

где α — уровень значимости, а $k_{(1-\alpha)/2}$ — квантиль нормального распределения.

Рассмотрим примеры работы программы.

• Случай, когда шум имеет гауссовское распределение:

Рис. 9: Процесс с параметрами $\lambda = 1, \sigma_1 = 1, \sigma_2 = 0.9, T = 1.$

Рис. 10: Процесс с параметрами $\lambda = 0.1, \sigma_1 = 20, \sigma_2 = 1, T = 1.$

Как мы видим, на рисунках четко выделяется траектория исходного процесса, т.е. действительно произошла фильтрация.

• Случай, когда шум имеет распределение Коши:

Рис. 11: Процесс с параметрами $\lambda=0.1, \sigma_1=5, \sigma_2=10, T=1$. Шум с $\gamma=5$.

Рис. 12: Процесс с параметрами $\lambda = 0.1, \sigma_1 = 5, \sigma_2 = 3, T = 1$. Шум с $\gamma = 3$.

Как мы видим, траектория процесса — это либо почти весь зашумленный сигнал, либо траектория просто повторяет форму входного сигнала, фильтрация не работает. Это происходит из-за того, что распределение Коши не имеет ни первых, ни вторых моментов, поэтому фильтр Калмана для таких шумов не применим.

5.1 Постановка задачи

Построить двумерное пуассоновское поле, отвечающее сложному пуассоновскому процессу:

- 1. Первая интерпретация: система массового обслуживания. При этом, первая координата поля время поступления заявки в СМО (равномероное распределение), вторая время ее обслуживания (распределение χ^2 с 10 степенями свободы).
- 2. Вторая интерпретация: система массового обслуживания с циклической интенсивностью $\lambda(1+\cos(t))$ и единичными скачками. Свести данную задачу моделирования неоднородного пуассоновского процесса при помощи метода Льюиса и Шедлеара к моделированию двумерного пуассоновского поля, где первая координата имеет равномерное распределение, а вторая распределение Бернулли.
- 3. Третья интерпретация: работа страховой компании. Первая координата момент наступления страхового случая (равномерное распределение), вторая координата величина ущерба (распределение Парето). Поступления капитала по времени линейно со скоростью c>0, начальный капитал W>0.
- 4. Для каждой системы рассмтреть всевозможные случаи поведения системы в зависимости от значения параметров.

5.2 Решение задачи

5.2.1 Пункт 1

Будем моделировать систему по следующему алгоритму:

1. Генерируем время поступления заявок на интервале [0; T]:

$$0 \leqslant t_1 \leqslant t_2 \leqslant \ldots \leqslant t_n \leqslant T$$
,

где $t_i - t_{i-1} \sim \exp(\lambda)$, $\lambda > 0$ – интенстивность процесса Пуассона.

- 2. Генерируем время обработки заявок s_i с помощью распределения χ^2 с 10 степенями свободы.
- 3. Для каждой заявки рассмотри время окончания ее выполнения q_i и количество заявок в очереди n_i :
 - К моменту поступления заявки t_i очереди нет, т.е. $q_{i-1} < t$. Тогда $q_i = t_i + s_i$, и $n_i = 0$.
 - К моменту поступления заявки t_i какая-то заявка исполняется, т.е. $q_{i-1} \geqslant t_i$. Пусть выполнено только n_{fin} заявок к предыдущему моменту t_{i-1} . Тогда мы пересчитываем n_{fin} для данного момента (т.е. находим самую позднюю заявку fin для которой $q_{fin} \leqslant t_i$) и кладем $n_i = i n_{fin}$, $q_i = q_{i-1} + s_i$.

В среднем, время обслуживания составляет,

$$\mathbb{E} s_i = 10,$$

а среднее время поступления новой заявки равно:

$$\mathbb{E}\left(t_{i}-t_{i-1}\right)=\frac{1}{\lambda}.$$

Тогда при $\lambda < 0.1$ система будет справляться, при $\lambda > 0.1$ очередь будет неограниченно расти. При $\lambda = 0.1$ будет некоторое промежуточное состояние.

Рис. 13: СМО справляется с очередью, $\lambda = 0.07$.

Рис. 14: СМО не справляется с очередью, $\lambda = 0.15$.

Рис. 15: СМО в промежуточном состоянии, $\lambda = 0.1$.

5.2.2 Пункт 2

Теперь рассмотрим СМО с циклической интенсивностью $\lambda(t) = \lambda_0(1 + \cos(t))$. Интегральная интенсивность $\Lambda(t) = \int\limits_0^t \lambda(x) dx = \lambda_0(1 + \sin(t))$.

Теорема 2. Рассмотрим одномерный неоднородный процесс Пуассона $[N^*(x):x\geqslant 0]$ с интенсивностью $\lambda^*(x)$ такой, что число точек $N^*(x_0)$ на фиксированном интервале $(0;x_0]$ имеет распределение Пуассона с параметром $\mu_0^* = \Lambda^*(x_0) - \Lambda^*(0)$. Положим $X_1^*, X_2^*, \ldots X_{N^*(x_0)}^*$ точками данного процесса на $(0;x_0]$. Предположим, что при $0\leqslant x\leqslant x_0$, $\lambda(x)\leqslant \lambda^*(x)$. Для каждого $i=1,2,\ldots,n$, удаляем точку X_i^* с вероятностью $1-\lambda(x_i^*)/\lambda^*(x_i^*)$. После этого оставшиеся точки будут образовывать неоднородный процесс Пуассона $[N(x):x\geqslant 0]$ с интенсивностью $\lambda(x)$ на интервале $(0;x_0]$.

Доказательство этой теоремы приведено в [4].

В соответствии с теоремой будем моделировать наш процесс по следующему алгоритму:

- Генерируем времена поступления заявок процесса $N^*(t): X_1^*, X_2^*, \dots X_n^*$ с частотой $\lambda^*(x) = 2$ (см. 5.2.1).
- Генерируем вектор U из n независимых с.в. с равномерным распределением на [0;1]. Формируем вектор времен поступления заявок процесса N(t), из тех X_i^* , для которых $U_i \leqslant \lambda(x_i^*)/\lambda^*(x_i^*)$, не меняя их порядка.

Рис. 16: СМО с циклической частотой при $\lambda_0=15$.

5.2.3 Пункт 3

Определение 8. Случайная величина ξ называется случайной величиной, имеющей распределение Парето с параметрами x_m, k , если ее функция распределения имеет вид:

$$F_X(x) = \mathbb{P}(X < x) = 1 - \left(\frac{x_m}{x}\right)^k \quad \forall x \geqslant x_m, \quad x_m, k > 0.$$

Аналогично пункту 1 задачи, генерируем вектор поступления страховых случаев на [0; T]. Величину ущерба s_i будем генерировать с помощью распределения Парето с параметрами x_m, k .

Случайную величину, распределенную по Парето, будем генерировать методом обратных функций:

$$F^{-1}(y) = \frac{x_m}{(1-y)^{\frac{1}{k}}}. (10)$$

Как отмечалось ранее, если $Y \sim U[0;1]$, то с.в., полученная по правилу (10), будет иметь ту же функцию распределения, что мы обратили:

$$Y \sim U[0,1] \Rightarrow s_i = x_m Y^{-\frac{1}{k}} \sim P(x_m, k).$$

Величина капитала компании в момент времени t:

$$W(t) = W_0 + ct - s(t),$$

где $s(t) = \sum_i s_i \mathbb{I}(t_i \leqslant t)$ — суммарный ущерб от наступивших страховых случаев.

Заметим, что s_i и t_i являются независимыми случаными величинами и $\mathbb{E}\sum_i \mathbb{I}(t_i\leqslant t)=t/\lambda.$

Проанализируем динамику $\mathbb{E} W(t)$ с течением времени:

$$(\mathbb{E} W(t))' = c - (\mathbb{E} s(t))' = c - \mathbb{E} s_i \left(\mathbb{E} \sum_i \mathbb{I}(t_i \leqslant t) \right)' = c - \frac{1}{\lambda} \mathbb{E} s_i,$$

$$\mathbb{E} s_i = \begin{cases} \frac{kx_m}{k-1}, & k > 1 \\ +\infty, & k \leqslant 1. \end{cases}$$

Итого:

$$(\mathbb{E} W(t))' = \begin{cases} c - \frac{1}{\lambda} \frac{kx_m}{k - 1}, & k > 1 \\ -\infty, & k \leqslant 1. \end{cases}$$

Время разорения— это случайная величина, задаваемая условием:

$$T = \min\{t > 0 | W(t) < 0\}$$

Это значит, что:

ullet при c $> rac{1}{\lambda}rac{kx_m}{k-1}$ капитал будет возрастать:

Рис. 17: Капитал при $W_0=100, \lambda=0.1, k=3, x_m=1, c=0.2, T=5000.$

• при с $<\frac{1}{\lambda}\frac{kx_m}{k-1}$ капитал будет убывать, и компания в какой-то момент разорится:

Рис. 18: Капитал при $W_0=100, \lambda=0.1, k=3, x_m=1, c=0.13, T=5000.$

ullet при $\mathbf{c}=rac{1}{\lambda}rac{kx_m}{k-1}$ капитал будет находится в положении равновесия:

Рис. 19: Капитал при $W_0=100, \lambda=0.1, k=3, x_m=1, c=0.15, T=5000.$

6 Библиография

Список литературы

- [1] С. Н. Смирнов Лекции по стохастическому анализу, 2019.
- [2] И. В. Востриков Лекции по теории идентификации, 2019.
- [3] В. Феллер Введение в теорию вероятностей и ее приложения, том 1. М: Мир, 1984.
- [4] P. A. W. Lewis Simulation of nonhomogeneous poisson processes by thinning, 1979.