

Puissance d'un nombre relatif

Activité

Observer le produit suivant : $3 \times 3 \times 3$

Combien y-a-t'il de facteurs dans ce produit?

Comment sont-ils ces facteurs?

Complète : $3 \times 3 \times 3$ est le produit de \cdots facteurs égaux à \cdots

2 Dans le produit $3 \times 3 \times 3 \times 3 \times 3 \times 3$

Combien y-a-t'il de facteurs dans ce produit?

Comment sont-ils ces facteurs?

Complète: $3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ est le produit de \cdots facteurs égaux à \cdots

- Écris le produit de 100 facteurs égaux à 3

 Quel est l'obstacle que tu as trouvé dans cette écriture?

 Pour passer de cet obstacle on écrit ce produit saou la forme 3¹⁰⁰

 3¹⁰⁰ est la puissance du nombre 3 et se lit 3 à la puissance 100
- 4 Écrit le produit de 25 facteurs égaux à 3
- En utilisant l'écriture précédente sous forme d'une puissance, écrit le produit de 15 facteurs égaux à (-2)

Activité

On considère le tableau suivant :

1	2	3
2	4	8
4	5	6
16		•••••
7	8	9
•••••	<u> </u>	
•••••		

- Compléter le tableau après avoir trouver la règle de remplissage des trois premier cases
- 2 Écrire chaque nombre à l'aide du nombre qui le précède
- 3 Si le nombre 8 s'écrit sous la forme 2³, alors comment peut-on exprimer les autres nombres de la mêm façon?
- Dans l'écriture 2³, le nombre 3 s'appelle l'exposant de la puissance (2³) Quelle est la puissance du nombre 2 dans le nombre situé dans la case 7
- Remplir à nouveau le tableau en utilisant cette fois les puissances du nombre (-2)

Puissance d'un nombre relatif

On considère le produit suivant : $A = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

Ce produit comporte 5 facteurs égaux à 2

On appelle ce produit la cinquième puissance du nombre 2, et on écrit : 2⁵

Le nombre 2⁵ se lit : 2 à la puissance 5, ou encore 2 exposant 5

Définition

Soit a un nombre décimal relatif non nul et n un nombre entier positif supérieur à 1

$$a^n = \underbrace{a \times a \times a \times \cdots \times a}_{n \text{ facteurs}}$$

De plus : $a^1 = a$ et pour $a \neq 0$ on a : $a^0 = 1$

* L'écriture a^n :

* Vocabulaire

Si a est un nombre relatif non nul, alors :

 $\star a^n$ se lit " a à la puissance n " ou encore " a exposant n "

★ Le nombre *n* est appelé " exposant "

 $\Rightarrow a^2$ se lit : a exposant 2, ou a puissance 2, ou a au carrée

 $\Rightarrow a^3$ se lit : a exposant 3, ou a puissance 3, ou a au cube

Remarque

La puissance 0⁰ n'existe pas

EXEMPLES

$$\bullet \quad 5^2 = 5 \times 5 = 25$$

$$(-3)^2 = (-3) \times (-3) = 9$$

$$(-2)^3 = (-2) \times (-2) \times (-2) = -8$$

$$-3^2 = -3 \times 3 = -9$$

$$-4^3 = -4 \times 4 \times 4 \times 4 = -64$$

En l'absence de parenthèses, les puissance ont priorité sur les multiplications et les divisions

Application

Calculer les puissance suivantes

$$\star 2^3$$

$$\star$$
 $(-544)^0$

$$\bigstar$$
 1¹²

$$\star 0^{45}$$

$$\star (-1)^4$$

$$\star$$
 (4)⁰

Solution

$$\star 2^3 = 8$$

 \star $(-544)^0 = 1$

$$\star 1^{12} = 1$$

$$\star 0^{45} = 0$$

$$\bigstar (-1)^4 = 1$$

$$\bigstar$$
 (4)⁰ = 1

Signe d'une puissance

Activité

1 Recopier et compléter le tableau suivant

n	1	2	3	4	5	6
$(0.1)^n$						
$(-1)^n$						
$(-2)^n$	• • • • •	• • • • • •	• • • • •	• • • • • •	• • • • •	• • • • •

2 En déduire les conditions pour que a^n soit négative, a étant un nombre relatif et n un nombre entier naturel

Règle

Une puissance est négative si sa base est négative et son exposant est impair Et elle positive dans les autres cas

- LAEWILES
- ★ La puissance $(-7)^5$ est négatif car la base -7 est négatif et l'exposant 5 est impair

★ La puissance $(-11)^4$ est positif car la base -11 est négatif est l'exposant 4 est positif

- ★ La puissance 7³³ est positif car la base 7 est positif
- * 5^2 est positif car la base 5 est positif

★ Si a est un nombre décimal et n un nombre entier naturel pair Alors $(-a)^n = a^n$

Application

Déterminer le signe des puissances suivantes :

$$(-3)^2$$
 ;; $(-2)^{15}$;; 5^3 ;; $(-7)^{15}$

Solution

 $(-3)^2$: Positif ;; $(-2)^{15}$: Négatif ;; 5^3 : Positif ;; $(-7)^{15}$: Négatif

Opérations sur les puissances

1 Produit de deux puissances de même base

Activité

Observer l'exemple suivant et compléter :

Règle

Soit a un nombre décimal relatif non nul, et m et n deux nombres entiers relatifs, alors

$$a^m \times a^n = a^{m+n}$$

EXEMPLES

$$5^5 \times 5^8 = 7^{5+8} = 7^{13}$$

$$2^3 \times 12^5 = 12^{3+5} = 12^8$$

Application

Écrire sous forme d'une puissance :

$$A = 2^4 \times 2^6$$

$$\blacksquare B = (-4.5)^4 \times (-4.5)^3 v(-4.5)^2$$

$$C = (-4)^7 \times (-4)^4$$

$$D = 9^3 \times 9^2 \times 9$$

Solution

$$A = 2^{10}$$

•
$$B = 9^6$$

$$C = (-4)^{11}$$

$$D = (-4.5)^9$$

Produit de deux puissances de même exposant

Activité

Soient a et b deux nombres décimaux relatifs tel que : a = 2 et b = 3Compléter le tableau suivant :

Que remarquez-vous?

Règle

Soient a et b deux nombres décimaux relatifs non nul, et n un nombre entier relatif

$$a^n \times b^n = a \times b^n$$

EXEMPLES

$$5^5 \times 6^5 = (5 \times 6)^5 = 30^5$$

$$2^3 \times 10^3 = (2 \times 10)^3 = 20^3$$

$$(-3)^2 \times (-2)^2 = ((-3) \times (-2))^2 = 6^2$$

Application

Écrire sous forme d'une puissance :

•
$$A = 2^3 \times 6^3$$

$$B = (-4)^2 \times (-5)^2$$

$$C = (11)^7 \times (12)^7$$

•
$$D = 9^3 \times (-3)^3$$

Solution

•
$$A = 12^3$$

•
$$B = 20^2$$

•
$$C = 132^7$$

$$D = (-27)^3$$

Quotient de deux puissances de même base

Activité

Observer l'exemple suivant et compléter :

$$\frac{2^5}{2^3} = \frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2}$$

$$= 2 \times 2$$

$$= 2^2$$

$$\frac{3^4}{3^3} = \frac{3 \times 3 \times 3 \times 3}{3 \times 3 \times 3}$$

$$= \cdots$$

$$\frac{10^5}{10^3} = \frac{\dots}{\dots}$$

$$= \dots$$

$$= \dots$$

$$\frac{a^m}{a^n} = \frac{\dots}{\dots}$$

$$= \dots$$

$$= \dots$$

Règle

Soit a un nombre décimal relatif non nul, et m et n deux nombres entiers positifs avec m > n,

$$\frac{a^m}{a^n} = a^{m-n}$$

EXEMPLES

$$\bullet \frac{6^5}{6^3} = 6^{5-3} = 6^2$$

$$3^{11} = 3^{11-2} = 3^9$$

Application

Écrire sous forme d'une puissance :

$$A = \frac{4^7}{4^3}$$

$$B = \frac{6^6}{6^2}$$

$$C = \frac{(-3)^{13}}{(-3)^7}$$

$$D = \frac{(-7)^7}{(-7)^6}$$

Solution

$$A = 4^4$$

•
$$B = 6^4$$

•
$$C = (-3)^6$$

$$D = (-7)^1$$

Quotient de deux puissances de même exposant

Activité

Soient a et b deux nombres décimaux relatifs tel que : a = 8 et b = 2Compléter le tableau suivant :

$n \blacksquare$	a^n	b^n	$\frac{a^n}{b^n}$	$\frac{a}{b}$	$\left(\frac{a}{b}\right)^n$
2			• • • • • •		• • • • • •
3			• • • • • •		
-2					

Que remarquez-vous?

Règle

Soient a et b deux nombres décimaux relatifs non nul, et n un nombre entier relatif Alors

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$$

EXEMPLES

$$\bullet \frac{3^7}{19^7} = \left(\frac{3}{19}\right)^7$$

$$\bullet$$
 $\frac{(-4)^5}{2^5} = \left(\frac{-4}{2}\right)^5 = (-2)^5$

$$\bullet \frac{6^3}{(-3)^3} = \left(\frac{6}{-3}\right)^3 = (-2)^3$$

Application

Écrire sous forme d'une puissance :

$$B = \frac{11^{17}}{121^{17}}$$

$$C = \frac{(-3)^4}{(-5)^4}$$

$$D = \frac{(-2)^3}{(5)^3}$$

Solution

$$A = \left(\frac{5}{4}\right)^{7}$$

$$C = \left(\frac{3}{5}\right)^2$$

$$rightharpoons D = \left(\frac{-2}{5}\right)^3$$

Puissance d'une puissance

Activité

• Si 3^2 et 3^3 sont les dimensions d'un rectangle Exprimer l'aire de ce rectangle sous forme d'une puissance de 3

2 ► Calculer l'aire du carré *EFGH*, ci-contre, de deux

ightharpoonup En déduire que : $(4a)^2 = 4^2 \times a^2$

ightharpoonup En déduire que : $(2^2)^3 = 2^6$

Règle

Soit a un nombre décimal relatif non nul et m et n deux nombres entiers positifs, alors :

$$(a^m)^n = a^{m \times n}$$

EXEMPLES

$$(5^6)^2 = 5^{6 \times 2} = 5^{12}$$

Application

Écrire sous forme d'une puissance :

$$A = \left(2^4\right)^3$$

$$\bullet B = \left(3^5\right)^2$$

$$C = \left[(-2)^3 \right]^6$$

•
$$D = \left[(-6)^2 \right]^4 \times \left[(0.5)^4 \right]^2$$

Solution

$$A = 2^{12}$$

•
$$B = 3^{10}$$

$$C = (-2)^{18}$$

$$D = (-3)^8$$

Puissance de 10

Règle

Soit *n* un nombre entier naturel non nul

$$10^n = 1 \underbrace{000 \dots 0}_{n \text{ zéros}}$$

EXEMPLES

$$\bullet$$
 $10^3 = 1000$

$$\bullet$$
 10⁷ = 10000000

$$10^2 = 100$$

$$\bullet$$
 10⁵ = 100000

Application

Écrire en utilisant les puissance de 10

$$A = 10000$$

$$B = 100$$

$$C = (70 + 30) \times 100000$$

$$D = (250 \times 40) \times 10000$$

Solution

•
$$A = 10^4$$

•
$$B = 10^2$$

•
$$C = 10^7$$

$$D = 10^8$$

La notation (Écriture) scientifique d'un nombre décimal

Activité

Calculer le produit 45000 × 1500000 au moyen d'une calculatrice puis sans calculatrice Que signifie l'écriture $\boxed{6,75E10}$ ou l'écriture $\boxed{6,75\times10^{10}}$ affiché par la calculatrice?

Définition

Soit b un nombre décimal tel que $b = a \times 10^n$ ou $1 \le a < 10$ et n un nombre entier relatif $a \times 10^n$ est la notation scientifique, ou l'écriture scientifique de b

EXEMPLES

$$\Rightarrow$$
 912000 = 9.12 × 10⁵ est la notation scientifique de 912000

$$0.0235 = 2.35 \times 10^{-2}$$
 est la notation scientifique de 0.0235

Application

Donner la notation scientifique des nombres suivant :

$$A = 5 \times 10^3 - 2 \times 10^2$$

$$\blacksquare B = 64.5 \times 10^8 + 631 \times 10^7$$

$$C = 300\ 000\ 000$$

$$D = 602\ 000\ 000\ 000\ 000\ 000\ 000\ 000$$

Solution

$$A = 4.8 \times 10^3$$

$$B = 1.276 \times 10^{10}$$

•
$$C = 3 \times 10^8$$
 (En m/s c'est la vitesse de la lumière)

•
$$D = 6.02 \times 10^{23}$$
 (C'est le nombre d'atome dans un gramme d'Hydrogène)