Metody numeryczne

Laboratorium 11

Odszumianie sygnału przy użyciu FFT – splot funkcji.

31.05.2020r.

Adrian Furman

1. Wstęp teoretyczny

Szereg Fouriera – każdą funkcję okresową, spełniającą warunki Dirichleta można rozwinąć w szereg trygonometryczny Fouriera:

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{N} [a_k \cos(kx) + b_k \sin(kx)], \quad (1)$$

gdzie:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt, \quad (2)$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt$$
. (3)

Szereg Fouriera w postaci zespolonej:

$$f(x) = \sum_{k=-n}^{n} c_k e^{Ikx},$$
 (4)

gdzie:

$$c_k = \frac{1}{2}(a_k - Ib_k).$$
 (5)

DFT (Dyskretna Transformata Fouriera) to przekształcenie funkcji f(x) w ciag P(x) ortogonalnych jednomianów eksponencjalnych $E_k(x)$:

$$f(x) = P(x) = \sum_{k=0}^{N-1} \langle f, E_k \rangle E_k, \quad (6)$$

gdzie:

$$E_k(x) = e^{Ikx}, \quad k = 0, \pm 1, \pm 2, \pm 3,...$$
 (7)

FFT (Szybka Transformata Fouriera) to implementacja DFT zmniejszająca liczbę niezbędnych operacji z $O(N^2)$ do $O(Nlog_2N)$.

Radix-2 to najprostszy algorytm FFT (Cooleya-Tukeya) opracowany w latach 60 w celu szybkiej analizy danych sejsmologicznych. Fundamentalną rolę w tym algorytmie odgrywa liczba węzłów, która musi być potęgą liczby 2, jest to wymagane ze względu na specyfikę jego działania opierajacą się o rekurencyjne podziały zgrupowanych elementów.

Splot funkcji definiujemy jako:

$$(f * g)(t) = \int_{-\infty}^{\infty} (f(\tau) \cdot g(t - \tau)) d\tau.$$
 (8)

Traktując f(t) jako sygnał a g(t) jako wagę, splot tych funkcji możemy pojmować jako uśrednienie funkcji f pewną wagą g. Jest to niezwykle pomocna własność podczas wygładzania zaszumionego sygnału. Proces ten można dodatkowo usprawnić wykorzystując FFT do obliczenia splotu:

$$FFT\{f(t) * g(t)\} = FFT\{f\} \cdot FFT\{g\} = f(k) \cdot g(k),$$

$$f * g = FFT^{-1}\{f(k) \cdot g(k)\}.$$
 (9)

2. Zadanie do wykonania

2.1 Opis problemu

Celem zajęć było wygładzenie zaszumionego sygnału opisanego funkcją:

$$f(t) = f_0(t) + \Delta,$$

gdzie:

$$f_0(t) = \sin(\omega t) + \sin(2\omega t) + \sin(3\omega t),$$

 Δ - pseudolosowa liczba $\Delta \in (-0.5, 0.5)$ wygenerowana w następujący sposób:

$$\Delta = \frac{rand()}{RANDMAX + 1.0} - \frac{1}{2}.$$

Za funkcję wagową przyjęta została:

$$g(t) = \frac{1}{\sigma\sqrt{2\pi}}\exp(-\frac{t^2}{2\sigma^2}).$$

Na potrzeby zadania wypełnione zostały 3 tablice, w następujący sposób:

$$f[2 \cdot i] = f_0(t) + \Delta,$$

$$f[2 \cdot i + 1] = 0,$$

$$g_1[2 \cdot i] = g_2[2 \cdot i] = g(t),$$

$$g_1[2 \cdot i + 1] = g_2[2 \cdot i + 1] = 0.$$

Elementy tablic o nieparzystych indeksach odpowiadają za część urojoną.

Na tablicach f oraz g_1 wykonano transformatę Fouriera przy użyciu funkcji $gsl_fft_complex_radix2_forward$ z biblioteki numerycznej GSL. Na tablicy g_2 dokonano transformaty odwrotnej $gsl_fft_complex_radix2_backward$ z tej samej biblioteki.

W kolejnym kroku zsumowano obie transformaty tablic g_1 oraz g_2 do wynikowej tablicy g :

$$g[k] = FTT\{g_1(t)\} + FTT^{-1}\{g_2(t)\}.$$

Następnie obliczony został splot funkcji f oraz g przechowywanych w tablicach wzór (9). Rachunki przeprowadzono na zasadzie iloczynu dwóch odpowiadających sobie zespolonych elementów tablic (elementy o parzystych indeksach $2 \cdot i$ to część rzeczywista a kolejny element o indeksie $2 \cdot i + 1$ to część urojona danej liczby).

Ostatnim krokiem było policzenie transformaty odwrotnej tablicy f w której zapisany był wynik omówionego w poprzednim akapicie splotu (iloczynu).

Obliczenia przeprowadzone zostały 3 razy dla $k = \{8,10,12\}$ które to pełniło rolę wykładnika: $N = 2^k$, gdzie N to liczba węzłów (potęga 2 zgodnie z założeniami algorytmu radix2). Pozostałe parametry:

$$T=1.0, (\omega=2\pi/T),$$
 $t_{max}=3T,$ $dt=t_{max}/N,$ $\sigma=T/20.$

2.2 Wyniki

Obliczony za pomocą transformat Fouriera splot zestawiony został z analityczną funkcją f0 oraz z jej zaszumioną wersją (f przed jakimikolwiek modyfikacjami) na wykresach poniżej. Do ich wygenerowania wykorzystano program *gnuplot*.

Wykres 1. Zestawienie rezultatów z analityczną funkcją dla k = 8, $N = 2^k$ węzłów.

Wykres 2. Zestawienie rezultatów z analityczną funkcją dla k = 10, $N = 2^{10}$ węzłów.

Wykres 3. Zestawienie rezultatów z analityczną funkcją dla k = 12, $N = 2^{12}$ węzłów.

Wykresy rysowane były dla znormalizowanych elementów tablicy f, dla kolejnych k f_{max} wynosiło odpowiednio:

 $f_{max1} = 50689,$

 $f_{max2} = 728264$,

 $f_{max3} = 11335800.$

Wyniki naturalnie nieznacznie różnią się od tych wzorcowych ze względy na czynnik pseudolosowy. Istotne jest to, że zgadzają się co do rzędu wielkości, co w połączeniu z poprawnymi wykresami świadczy o poprawnym wykonaniu ćwiczenia.

Jeśli chodzi o wykresy, wraz ze wzrostem liczby węzłów zauważamy poprawę gładkości funkcji. Dla k=8 wynik nie jest zadowalający jednak przy $k=10,\ 12$ wykres można uznać za wystarczająco gładki.

Zauważamy, że nie dla wszystkich czasów splot funkcji f_0 odpowiada wraz z funkcją wagową g pokrywa się z wykresem analitycznym. Jest to spowodowane nieodpowiednim dobraniem odchylenia standardowego funkcji wagowej g. Przyjmując za ten parametr wartość za dużą wynik za bardzo odchyla się od prawidłowego. Z kolei jeśli sigma będzie zbyt mała, przekształcenie będzie zbyt wrażliwe na szum i pomimo trochę lepszego pokrywania się z odpowiednikiem analitycznym utracimy na gładkość wykresu.

3. Wnioski

Odszumianie sygnału przy użyciu splotu funkcji, do którego wyznaczenia użyto FTT jest dobrym narzędziem, dającym zazwyczaj wystarczająco satysfakcjonujące rezultaty. Przy obliczeniach należy zadbać o dobre dopasowanie parametru odchylenia standardowego w funkcji wagowej g ponieważ zależy od niego stopień pokrycia się funkcji analitycznej z odszumionym, rzeczywistym wynikiem – zależnie od jego wartości odszumiona funkcja może być za mało lub za bardzo wrażliwa na szum. Liczba węzłów powinna być możliwie jak największa aby zmaksymalizować gładkość funkcji wyjściowej.