

planetmath.org

Math for the people, by the people.

proof of fourth isomorphism theorem

 ${\bf Canonical\ name} \quad {\bf ProofOfFourthIsomorphismTheorem}$

Date of creation 2013-03-22 14:17:38 Last modified on 2013-03-22 14:17:38

Owner aoh45 (5079)Last modified by aoh45 (5079)

Numerical id 9

Author aoh45 (5079)

Entry type Proof

Classification msc 20A05

First we must prove that the map defined by $A \mapsto A/N$ is a bijection. Let θ denote this map, so that $\theta(A) = A/N$. Suppose A/N = B/N, then for any $a \in A$ we have aN = bN for some $b \in B$, and so $b^{-1}a \in N \subseteq B$. Hence $A \subseteq B$, and similarly $B \subseteq A$, so A = B and θ is injective. Now suppose S is a subgroup of G/N and $\phi: G \to G/N$ by $\phi(g) = gN$. Then $\phi^{-1}(S) = \{s \in G : sN \in S\}$ is a subgroup of G containing N and $\theta(\phi^{-1}(S)) = \{sN : sN \in S\} = S$, proving that θ is bijective.

Now we move to the given properties:

1. $A \leq B$ iff $A/N \leq B/N$

If $A \leq B$ then trivially $A/N \leq B/N$, and the converse follows from the fact that θ is bijective.

2. $A \le B$ implies |B:A| = |B/N:A/N|

Let ψ map the cosets in B/A to the cosets in (B/N)/(A/N) by mapping the coset bA $b \in B$ to the coset (bN)(A/N). Then ψ is well defined and injective because:

$$b_1 A = b_2 A \iff b_1^{-1} b_2 \in A$$

 $\iff (b_1 N)^{-1} (b_2 N) = b_1^{-1} b_2 N \in A/N$
 $\iff (b_1 N) (A/N) = (b_2 N) (A/N).$

Finally, ψ is surjective since b ranges over all of B in (bN)(A/N).

3. $\langle A, B \rangle / N = \langle A/N, B/N \rangle$

To show $\langle A,B\rangle/N\subseteq \langle A/N,B/N\rangle$ we need only show that if $x\in A$ or $x\in B$ then $xN\in \langle A/N,B/N\rangle$. The other cases are dealt with using the fact that (xy)N=(xN)(yN). So suppose $x\in A$ then clearly $xN\in \langle A/N,B/N\rangle$ because $xN\in A/N$. Similarly for $x\in B$. Similarly, to show $\langle A/N,B/N\rangle\subseteq \langle A,B\rangle/N$ we need only show that if $xN\in A/N$ or $xN\in B/N$ then $x\in \langle A,B\rangle$. So suppose $xN\in A/N$, then xN=aN for some $x\in A$, giving $x\in A$ and so $x\in A\subseteq \langle A,B\rangle$. Similarly for $xN\in B/N$.

4. $(A \cap B)/N = (A/N) \cap (B/N)$

Suppose $xN \in (A \cap B)/N$, then xN = yN for some $y \in (A \cap B)$ and since $N \subseteq (A \cap B)$, $x \in (A \cap B)$. Therefore $x \in A$ and $x \in B$, and so $xN \in (A/N) \cap (B/N)$ meaning $(A \cap B)/N \subseteq (A/N) \cap (B/N)$. Now

suppose $xN \in (A/N) \cap (B/N)$. Then xN = aN for some $a \in A$, giving $a^{-1}x \in N \subseteq A$ and so $x \in A$. Similarly $x \in B$, therefore $xN \in (A \cap B)/N$ and $(A/N) \cap (B/N) \subseteq (A \cap B)/N$.

5. $A \subseteq G$ iff $(A/N) \subseteq (G/N)$

Suppose $A \subseteq G$. Then for any $g \in G$ we have $(gN)(A/N)(gN)^{-1} = (gAg^{-1})/N = A/N$ and so $(A/N) \subseteq (G/N)$.

Conversely suppose $(A/N) \subseteq (G/N)$. Consider $\sigma \colon g \mapsto (gN)(A/N)$, the composition of the map from G onto G/N and the map from G/N onto (G/N)/(A/N). $g \in \ker \pi$ iff (gN)(A/N) = (A/N) which occurs iff $gN \in A/N$ therefore gN = aN for some $a \in A$. However N is contained in A, so this statement is equivalent to saying $g \in A$. So A is the kernel of a homomorphism, hence is a normal subgroup of G.