Carl A. B. Pearson
Postdoctoral Researcher
Emerging Pathogens Institute, University of Florida
last compiled: April 9, 2013

Topic: Seasonal Vector Populations comparison of continuous, spatially homogenous models Why?

understanding of infection trends can inform interventions, health system preparations, etc.

Common Mosquito Model TODO sine	

So: low hanging fruit

preview: no sophisticated analysis to pick said fruit but these basic analyses provide fertile ground for much more quantitative detail

- 1. useful to write models in terms of measurable parameters,
- 2. measurable parameters are not scale-free,
- 3. mathematics is more useful when scale free, therefore
- 4. dimensional analysis is awesome

where M(t) is mosquito population w.r.t time

$$\dot{M}(t) = E(t) - \lambda M(t)$$

defined on $t \in (-T/2, T/2)$

common usage is $M(t) \propto$ simple trigonometric What salient observed features does that miss? aside: why replace given M(t) with given $\dot{M(t)}$?

Salient features:

- short time with appreciable population
- even shorter time for population rise and fall
- ullet low correlation with early and peak populations

Need a spike-like E(t) to replicate these. Candidates?

Spike-like could be more formally δ -function like. So: use δ -function approximations.	

TODO list approximate delta functions.	

What should we use for the shape parameters? clue: want oranges-to-oranges comparisons between the options	

I chose to make mosquito total births equivalent TODO M_p equation and then to apply a subjective "constraint" on Δt TODO delta t stuff