BEST AVAILABLE COPY

T S3/5/1

3/5/1

DIALOG(R) File 351: Derwent WPI

(c) 2005 Thomson Derwent. All rts. reserv.

012465324 **Image available**
WPI Acc No: 1999-271432/199923

XRPX Acc No: N99-202997

Multi synchronizing circuit for LCD panel of notebook PC - has FIFO type double port memory in which input video signals are stored

Patent Assignee: HOSIDEN & PHILIPS DISPLAY CORP (HOSD)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week JP 11085119 A 19990330 JP 97245500 A 19970910 199923 B

Priority Applications (No Type Date): JP 97245500 A 19970910 Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes JP 11085119 A 8 G09G-005/00

Abstract (Basic): JP 11085119 A

NOVELTY - The capacity of the memory is obtained by relation involving number of vertical lines `V1' corresponding to rows `H1', number of vertical lines `V2' corresponding to rows `H2', two arbitrary constants `a', `b' which assume present value depending on monochrome or color display and number of bits of data of one pixel. DETAILED DESCRIPTION - Input video signal is stored in frame memory which of the FIFO type having dual port.

USE - For LCD panel of notebook PC.

ADVANTAGE - The capacity of frame memory is utilized efficiently. DESCRIPTION OF DRAWING(S) - The diagram shows block diagram of the multi synchronizing circuit.

Dwg.1/5

Title Terms: MULTI; CIRCUIT; LCD; PANEL; FIFO; TYPE; DOUBLE; PORT; MEMORY; INPUT; VIDEO; SIGNAL; STORAGE

Derwent Class: P85; T01; T04

International Patent Class (Main): G09G-005/00

International Patent Class (Additional): G09G-003/20; G09G-003/36

File Segment: EPI; EngPI

?

(19)日本国特許庁(JP)

(12) 公開特許公報 (A)

(11)特許出麗公開番号

特開平11-85119

(43)公開日 平成11年(1999)3月30日

		1					
(51)Int.Cl. ⁵ G 0 9 G	5/00	酸別記号 5 2 0 5 5 0 5 5 5		FI G09G 5/0	5 5 6 K		
•	3/20	3 0 0	審查請求	未請求 請求項	556W /20 R の数4 OL (全8頁) 最終頁に続く		
(21)出願番号		特顯平9-245500		(71)出願人 397015223 ホシテン・フィリップス・ディスプレイ株			
(22)出廢日		平成9年(1997)9.	月10日 		兵庫県神戸市西区高塚台4丁目3番1 4 シデン・フィリップス・ディスプレイ株式		
	٠.			(72)発明者	会社内 渡邉 英俊 兵庫県神戸市西区高塚台4丁目3番1 ス シデン・フィリップス・ディスプレイ株		
				(74)代理人	会社内 、 弁理士 草野 卓 (外1名)		

モニタ装置のマルチシンク回路 (54) 【発明の名称】

(57)【要約】

【課題】 フレームメモリの容量を必要最小限に抑え る。

【解決手段】 この発明のマルチシンク回路は、解像度 がH、×V、の入力映像信号を、解像度がH、×V 、(しかし、 $H_1 \ge H_1$ 、 $V_1 \ge V_1$)のドットマトリ クス表示器の画面の中央付近に、人力映像信号の解像度 のまま表示するように信号を変換する。この発明では特 に、入力映像信号を一時記憶し、その信号を読み出して 前記表示器へ送出するフレームメモリ 1 として、デュア ルポートのFIFOメモリを用いる。その容量NをN≥ V, (1-V, /V,) H, ab (カラー表示のとき a = 3, モノクロ表示のとき a = 1; bは 1 画素のデータ のビット数)に選定する。制御回路は、メモリ1に書き 込む信号のX=V₁ (1-V₁ /V₂) 行毎にライトア ドレスポインタをゼロアドレスにリセットし、メモリ1 にX行分書き込んだ時点で、リードサイクルを開始し、 メモリ1よりX行分のデータを読み出す毎にリードアド レスポインタをゼロアドレスにリセットする。

【特許請求の範囲】

【請求項1】 解像度がH、×V、(H、は1画面の列 数、V₁は行数)の入力映像信号を、解像度がH₁×V , (しかし、H, ≧H, , V, ≧V, とける) のドットマトリクス表示器の画面の中央付近に、入力映像信号の 解像度のまま表示するように信号を変換するモニタ装置 のマルチシンク回路において、

入力映像信号を一時記憶し、その記憶した信号を読み出 して前記表示器へ送出するフレームメモリとして、デュ アルポートのFIFO (First In First 10 Out) メモリを用い、

そのFIFOメモリの容量NをN≥V, (1-V, /V ,) H, ab (しかし、カラー表示の場合a=3, モノ クロ表示のときa=1とし、bは1画素のデータのビッ ト数とする)に選定することを特徴とするモニタ装置の マルチシンク回路。

【請求項2】 請求項1において、前記フレームメモリ に書き込む入力映像信号のX = V, (1 - V, /V,)行毎にライトアドレスポインタをゼロアドレスにリセッ

前記フレームメモリに前記X行分のデータを書き込んだ 時点で、リードサイクルを開始し、

前記フレームメモリより前記X行分のデータを読み出す 毎にリードアドレスポインタをゼロアドレスにリセット する制御回路を設けたことを特徴とするモニタ装置のマ ルチシンク回路。

【請求項3】 解像度がH、×V、の入力映像信号を、 解像度がH, ×V, (しかし、H, ≥H, , V, ≥V, とする)のドットマトリクス表示器の画面の中央付近 に、入力映像信号の解像度のまま表示するように信号を 30 変換するモニタ装置のマルチシンク回路において、

入力映像信号を一時記憶し、その記憶した信号を読み出 して前記表示器へ送出するフレームメモリとして、シン グルポートの第1、第2FIFOメモリを用い、

第1F1FOメモリの容量N、を、N、≥V、1(V、- V_1) H_1 ab $/(V_1' + V_1 V_1 - V_1')$ K. #2FIFOメモリの容量N、を、N、≧V、V、(V、-V ı) H, ab/(V,'+V, V, -V,') にそれぞれ選 定することを特徴とするモニタ装置のマルチシンク回

【請求項4】 請求項3において、

第1サイクルで、第1FIFOメモリは映像信号のX= V,'(V, - V,) / (V,'+ V, V, - V,') 行分の データを書き込み、

第2サイクルで、第2FIFOメモリに映像信号のY= $V_1 \ V_2 \ (V_1 - V_1) / (V_1' + V_1 \ V_1 - V_1')$? 分のデータを書き込むと共に、第1FIFOメモリの前 記X行分のデータを読み出し、

第3サイクルで、第2FIFOメモリのY行分のデータ を読み出すと共に、第1F1FOメモリにY(V、/V 50 00×600)の時はその全てのデータをフレームメモ

、) 行分のデータを書き込み、

第4サイクルで、第1F1FOメモリよりY(V、/V 、)行分のデータを読み出すと共に、第2FIFOメモ リにY(V, /V,),行分のデータを書き込み、 以下同様に、第1、第2FIFOメモリの書き込み/読 み出しを行う制御回路を設けたことを特徴とするモニタ 装置のマルチシンク回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】近年になってLCDがノート バソコンなどと異なり、単にモニタとして使われること が増えてきた。モニタとして使う場合、ユーザーが使用 する解像度にはVGA、SVGAなどのいろいろな解像 度があり、必ずしもLCDハネルの解像度と一致するわ けではない。そのため、入力した信号の解像度をLCD バネルの解像度に合わせるように信号を変換する、いわ ゆるマルチシンク回路が必要となる。

【0002】このマルチシンク回路による表示の変換方 法には大きく分けて2通りの方法がある。その一つは、 20 LCDパネルの全有効表示域に入力信号を拡大する方法 (EXPANDモード) であり、もう一つはLCDパネ ルの中央付近に入力信号をそのままの解像度で表示する 方法である。例えば、入力信号がVGA(ドット構成が 640列×480行)で、LCDがXGA (ドット構成 が1024列×768行)であった場合、VGAを縦横 1. 6倍に拡大して表示するのがEXPANDモードで、 あり、1024×768ドットの中央の640×480 ドットの領域に表示するのがNON-EXPANDモー ドである(図5)。

【0003】EXPANDモードではフレームメモリは 必要ないが、NON-EXPANDモードではフレーム メモリが必要となるが、フレームメモリは高価であるため め、この数を減らすことが重要である。この発明は、N ON-EXPANDモードで必要最小限度のフレームメ モリを備えたマルチシンク回路に関する。 [0.004]

【従来の技術】従来は入力した信号の1フレーム分を、 全てフレームメモリに書き込み(ライトサイクル)、書 き込みが終わってから、第n+1フレームで第nフレー 40 ムのデータを読み出す(リードサイクル)ということが 行われてきた。使用されるメモリは、主としてデュアル・ ポートのFIFO (First InFirst Ou t) メモリで、これは書き込みポートと読み出しポート。 の双方をもっており、書き込みながら同時に読み出せる。 というメモリである。すなわち、第nフレームのデータ を読み出しながら、それと同時に第n+1フレームのデ

【0005】とれは例えば、XGAのLCDパネルをモ ニタにする場合、入力信号がVGAまたはSVGA(8

ータを書き込むことができる。

3 りに書き込むととになる。従って1ドットのデータがR GB各色8bilの場合のフレームメモリの容量Nは $N = 800 \times 600 \times 8 \times 3 = 11520000 \text{ bit}(=$ 1. 37 Mbyte) Nをバイトで表すと1.1520000 /8=1440000パイトとなる。ゲーバイトに直す ために210=1024で割って、1440000/10 24=1406.25 kバイトとなる。更にメガバイト に直すと、1406.25/1024=1.37Mバイ トとなる。このためフレームメモリとして512kB (ケーバイト) のFIFOメモリが3個必要になる。

[0006] 【発明が解決しようとする課題】 フレームメモリは高価 であるので、との発明はその容量を必要最小限に抑えよ うとするものである。

[0007]

【課題を解決するための手段】

(1) 請求項1の発明は、解像度がH, ×V, (H, は 1 画面の列数、V、は行数)の入力映像信号を、解像度 がH, \times V, (しかし、H, \geq H, V, \geq V, とす る)のドットマトリクス表示器の画面の中央付近に、入 2C を用いる場合 力映像信号の解像度のまま表示するように信号を変換す るモニタ装置のマルチシンク回路に関する。 請求項1で は特に、入力映像信号を一時記憶し、その記憶した信号 を読み出して前記表示器へ送出するフレームメモリとし て、テュアルボートのFIFO (First In F irst Out) メモリを用い、そのFIFOメモリ の容量NをN≥V₁ (1-V₁/V₁)H₁ ab (しか し、カラー表示の場合a=3,モノクロ表示のときa= 1とし、bは1画素のデータのビット数とする) に選定

【0008】(2)請求項2の発明では、前記(1)に おいて、フレームメモリに書き込む入力映像信号のX= V₁ (1-V₁/V₂) 行毎にライトアドレスポインタ をゼロアドレスにリセットし、フレームメモリにX行分 のテータを書き込んだ時点で、リードサイクルを開始 し、フレームメモリよりX行分のデータを読み出す毎に リードアドレスポインタをゼロアドレスにリセットする 制御回路を設ける。

[0009] (3)請求項3の発明は、解像度がH,× V_1 の入力映像信号を、解像度が H_1 $\times V_2$ (しかし、 .H, ≥H, , V, ≧V, とする) のドットマトリクス表 示器の画面の中央付近に、入力映像信号の解像度のまま 表示するように信号を変換するモニタ装置のマルチシン ク回路に関する。請求項3では特に、入力映像信号を一 時記憶し、その記憶した信号を読み出して前記表示器へ 送出するフレームメモリとして、シングルボートの第 1、第2F1FOメモリを用い、第1F1FOメモリの 容量N₁ を、N₁ ≧V₁ (V₁ -V₁) H₁ ab/(V ,²+V, V, -V,²) に、第2FIFOメモリの容量N , &. N, ≥V, V, (V, -V,) H, ab/(V,'

+ V, V, - V,¹) にそれぞれ選定する。

【0010】(4)請求項4の発明は、前記(3)にお いて、第1サイクルで、第1F1FOメモリに映像信号 $\emptyset X = V_1^{i} (V_1 - V_1) / (V_1^{i} + V_1 V_1 - V_1^{i})$ 行分のデータを書き込み、第2サイクルで、第2FIF Oメモリに映像信号のY=V、V、(V, -V,)/ (V゚゚+ V゚ V゚ - V゚゚) 行分のデータを書き込むと共 に、第1F1FOメモリのX行分のデータを読み出し、 第3サイクルで、第2FIFOメモリのY行分のデータ 10 を読み出すと共に、第1FIFOメモリにY(V,/V 。) 行分のデータを書き込み、第4サイクルで、第1 F IFOメモリよりY(V, /V,)行分のデータを読み 出すと共に、第2F1FOメモリにY(V、/V,) 行分のデータを書き込み、以下同様に、第1、第2 F I FOメモリの書き込み/読み出しを行う制御回路を設け る。

[0011]

【発明の実施の形態】

(A) フレームメモリにデュアルポートFIFOメモリ

(A1) 基本的な考え方

デュアルポートFIFOメモリは書き込みながら同時に 読み出すととができるので、1フレーム分の全データを 書き込み終わる前に読み出しを開始しても動作に問題は ない。そこで、ある程度データを書き込んだら読み出し を開始して、新しいデータを書き込みなから、以前に書 き込んだデータを読み出すようにする、読み出してしま えばそのデータは不要になるので、別のデータに書き代 えられても表示には影響がない。とのような制御をすれ 3C ば、フレームメモリの容量を減らすことができる(図 3)。ただし、このような制御でもライトアドレスポイ ンタをリードアドレスポインタが追い越すことがないタ イミングで読み出しを開始させなければならない。次に VGAの入力信号をXGAのLCDに表示させることを 例にとって説明する。

【0012】通常のVGAの信号は垂直同期周波数60 Hz,水平同期周波数32kHz,ドットクロック25 MH z で、水平640ドット、垂直480ドットの信号 である。これをXGAの信号、すなわち垂直同期周波数 60Hz、水平同期周波数50kHz、ドットクロック 65MHzで、水平1024ドット、垂直768ドット 4C の信号に変換する。

【0013】図1のフレームメモリ1のライトサイクル は入力ドットデータの内の座標(0,0)のデータをラ イトアドレスOのメモリに書き込み、その後25MHz のドットクロックが一つ入力する毎にライトアドレスを 1つずつ増やして欠々にデータを書き込んでゆく。ある 時間にライトアドレスがどこにいるかを示すのがライト アドレスポインタである。

【0014】同様にリードサイクルは出力ドットデータ

の内の座標(0,0)のデータをリードアドレス0のメ モリから読み出し、その後65MHzのドットクロック が入力する毎にリードアドレスを一つずつ増やして次々 にデータを読み出してゆく。ある時間にリードアドレス がどとにいるかを示すのがリードアドレスポインタであ る。ただし、65MH2で連続的に読み出すのではな く、1水平期間内に640アドレス進めたら、次の水平 期間の始まりまでリードアドレスポインタは止る。

【0015】今、第n+1フレームを書き込んでいる途 レスにあるものとする。この時XWアドレスより小さい アドレスにはすでに第n+1フレームのデータが書き込 まれているがXWアドレスより大きいアドレスにはまだ 第nフレームのデータが残っている。この時、リードア ドレスポインタはXWアドレスより小さいアドレスのX Rアドレスにいるものとする。

【0016】その後時刻T2になった時にはリードアド レスポインタがライトアドレスポインタを追い越した ら、その時読み出したデータは第nフレームのデータに なっている。すなわち読み出したデータは始めは第n+ 20 出しはV,/V,行を読み出すととができる。従って、 1フレームのデータを読み出していたのがリードアドレ スポインタがライトアトレスポインタを追い越してから は第nフレームのデータを読み出すことになる。そのた めリードアドレスポインタがライトアドレスポインタを 追い越すのは許されない。なお、ライトアドレスポイン タよりもリードアドレスポインタの方が速いので、ライ トアドレスポインタがリードアドレスポインタを追い越来

 $(V_1 - X) \dot{V}_i / V_1 \leq V_1$

これを解いて(2)式を得る。

 $X \ge V_1$ $(1+V_1/V_2)$

1行分のデータを書き込むのにH, ×a (カラー表示の ときa=3、モノクロ表示のときa= 1) アドレスが必 要であるから、メモリに必要な全容量NはR, G, Bの※

 $N \ge V_1$ ($I + V_1 / V_2$) $H_1 \in b$

よって必要最小なメモリの量は

 $N = V_1$ ($I + V_1 / V_i$) $H_1 \in b$

である。このNを、a=3、b=8として従来例と同様 に計算すれば、

VGAの場合:

 $X = 480 \times (1 - 480 / 768) = 180$ $N = XH_1$ a b = 180 × 640 × 8 × 3 = 2764800bit (= 337.5 kbyte)

SVGAの場合:

 $X = 600 \times (1 - 600 / 768) = 131.25$ $N = XH_1$ a b = 131.25×800 × 8 × 3 = 2520000bit (= 307.6 kbyte)

であり、従来必要であったメモリの1/4でよい。 (A3)メモリの制御タイミング

前項で検討したように図1Aのメモリ1を制御するタイ

*すのは考慮しなくてもよい。

(A2)メモリ容量の算出

ととでは、前項の考え方を基に、フレームメモリの必要 最小限のメモリ容量を算出する。

【0017】まず、入力する信号の解像度をH、列×V 、行、LCDパネルの解像度をH、列×V、行とする。 ただしH、<H、、V、<V、とする。との時、出力す るべき水平同期信号は入力した水平同期信号のV、/V , 倍の周波数になる。NON-EXPANDモードでは 中のある時刻T1でライトアドレスポインタがXWアド 1C 入力した1行分のデータはLCDパネルの1行分に表示 されるので、フレームメモリ1にV、行書き込む時間に V、行のデータが読み出される。従ってフレームメモリ 1にX行分のデータを書き込んでから読み出しを開始し て、H、×V、個のデータを書き込み終わった直後にH 1×V、個のデータを読み出し終ればよい(図1B)。 【0018】とのときのXの値を求める。ライトサイク ルではX行分のデータを書き込んだので、残りはV、-X行である。とのV, -X行を書き込む時間と同じ時間 でV、行を読み出す。1行分を書き込む時間T、で読み 1行分を読み出す時間はT.・V./V.となり、V. -X行の書き込み時間≤V,行の読み出し時間であるか

> $(V_1 - X) T_* \leq V_1 T_* \times V_1 / V_2$ 従って(1)式が成立する。

[0019]

... (1)

... (2)

... (4)

※各1ドットのデータのビット数を b とすれば、(3) 式 となる。

[0020]

... (3)

タ量に等しいので、X行毎にOアドレスに戻り、書き込 む動作を繰り返せばよい。

【0021】メモリからの読み出しはX行分のデータの 4C 書き込みが終わってから、読み出しを開始し、X行毎に 0アトレスに戻り、読み出す動作を繰り返せばよい。但 し、ことで述べたXの値は(2)式の等号で与えられ

(B) フレームメモリにシングルポートFIFOメモリ を用いる場合

これまではフレームメモリーに書き込み、読み出しが同 時にできるデュアルポートFIFOメモリを使うものと して考えてきたが、書き込み、読み出しを同時にできな いシングルポートFIFOメモリを使う場合もあり得 ミングを図1Bに示す。メモリの全容量はX行分のデー SC る。この時のメモリ容量を以下で求める。この時はリー

ドノライトを同時にはできないので、図2に示すように FIFOメモリが2個必要になるので、2つのメモリの それぞれの値を計算する。

(B1) メモリの制御タイミング

(A2) と同様に入力する信号の解像度をH、×V、、 LCDパネルの解像度をH、×V、としてメモリ制御タ イミングを考察する。

【0022】メモリはシングルポートなので、書き込む か読み出すかのどちらかしかできない。そこで2個のメ モリを用いて一方が書き込み中に他方が読み出すように 1C する。2つのメモリをメモリ1-1、1-2、メモリ1 -1に書き込むことのできる行数をX、メモリ1-2に 書き込むことのできる行数をYとする。

【0023】(A. サイクル) メモリ 1-1 にX行分書 き込み、メモリ1-2は何もしない。

(A, サイクル) メモリ1-1 にX行分書き込んだら、 メモリ1-2にY行分の書き込みを開始する。メモリ1 -2にY行分のデータを書き込み終わるのと同時にメモ リーーからX行分のデータを読み出し終わるようにす

【0024】(A, サイクル) メモリ 1-1 がX行分の* $M = X + Y \sum_{0}^{n-2} (V_1 / V_2)^{n-2}$

このサイクルを無限に繰り返して全部でV、行書き込め

ればよいので、(4)式は(5)式に変形できる。

(5) 式をさらに変形して(6)式とする。

 $y \ge V_1 (V_1 + V_1) / V_1 - (V_1 - V_1) X / V_1$ さらに最初にメモリ1-2に書き込まれたY行分のデー タを読み出すA, サイクル間に、メモリ1-1にはY (V、/V、) 行分のデータを書き込まなければならな いので、メモリ1-1の全行数XはA, サイクルで書き★

(6)、(7)式を同時に満足するXとYは図4の斜線 部の領域である。A、サイクルを考えると、メモリ1-2にY行分のデータを書き込む時間内にメモリ1-1の☆

$$XT. (A^{1} X A^{2} X A^{2} Y A^{2} Y$$

(6), (7), (8) 式を同時に満足する領域は図4 の点線の領域となる。

[0028] このXとYからX+Yが最小になるように 決める。直線X+Y=K(一定)を図4に描いた場合、 破線のような直線が描かれる。このような直線はKの値 によって無数にあるが、その中でKが最小になる直線は◆

 $Y = V_1 (V_1 + V_1) / V_2 - (V_1 - V_1) X / V_2$... (9)

$$Y = V_{1} (V_{1} + V_{1}) / V_{2} - (V_{1} - V_{1}) X / V_{2}$$

$$Y = X (V_{2} / V_{1})$$
... (10)

これを解いて(11)、(12)式を得る。

$$(12)$$
 式を得る。 ... (11) $(V_1^2 + V_1 V_2 - V_1^2)$... (11) $(V_1^2 + V_1 V_2 - V_1^2)$... (12) $(V_2^2 + V_1 V_2 - V_1^2)$... (12)

 $Y = V_1 \ V_2 \ (\dot{V}_2 - V_1) / (V_2^2 + V_1 \ V_2 - V_1^2)$... (12) よってメモリ1-1 化必要な容量N、、メモリ1-2 に 50 必要な容量N、はそれぞれ(13)、(14)式で与え

*読み出しを終えたら、メモリ1-1は書き込みを開始す る。同時にメモリ1-2からY行分の読み出しを開始す

(A、サイクル) メモリー2がY行分の読み出しを終 えると同時にメモリ1-1から読み出しを始め、メモリ 1-2は書き込みを開始する。このように、片方が読み 出しを終えたら、リード/ライトを入れ替えるというサ イクルを繰り返す。但し、この時1行分データの読み出 しに要する時間は1行分のデータの書き込みに要する時 間T、のV、/V、倍なので、どちらかのメモリに書き 込める行数は1サイクル毎にV、/V、倍されることに

(B2) メモリ容量の算出

(B1) のような制御を繰り返した時のXとYの値を計 算する。メモリ1-2が最初の書き込みを終えたあとで はリード/ライトが切り替わる毎に書き込むととができ る行数はV1/V1倍されるのであるから、とのA1サ ィクル目で書き込むことのできる行数はY(V,/ V.) *** 行である。

2C 【0025】よって、A。サイクルの終わりまでに書き 込んだ行数の総和Mは(4)式となる。

% [0026]

★込む行数Y(V, /V,)以上でなければならない。即 3C ち、X≧Y (V, /V,) である。よって (7) 式が成 立する。 [0027]

... (6)

... (7)

☆X行分のデータを読み出さなければならないので、1行 分の入力信号を書き込む時間をT。とすれば、

... (8)

◆A点を通る直線である。従って、求めるX、Yの値は (6)、(7)式を等式として連立方程式をとけば求め

られる。(6)、(7)式を等式として(9)、(1 0) 式を得る。

[0029]

られる。

* * [0030] $N_1 = V_1^2 (V_2 - V_1) H_1 ab / (V_1^2 + V_1 V_2 - V_1^2)$ $N_1 = V_1 V_1 (V_1 - V_1) H_1 ab/(V_1 + V_1 V_2 - V_1^2)$... (14)

a=3、b=8としてメモリ量を計算する。

【0031】VGAの場合:

 $X = 480^{2} \times (768-480)/(768^{2}+768 \times 480+480^{2})=91.1388$ N, = X H. a b = $91.1388 \times 640 \times 3! \times 8 = 1399893b$ it(=170.9k8)

 $Y = 480 \times 768 \times (768-480)/(768^2+768 \times 480-480^3)=14$

N, = YH, a b = 145.8 \times 640 \times 3 \times 8 = 2239488bit (=273.3kB)

SVGAの場合:

 $X = 600^{2} \times (768-600)/(768^{2}+768 \times 600+600^{2})=87.5731$ $N_1 = XH_1$ a b = 87.5731 \times 800 \times 3 \times 8 = 1681404b it(=205.2kB)

 $Y = 600 \times 768 \times (768-600)/(768^2 + 768 \times 600-600^2) = 11$

 $N_2 = YH_1$ a b = 112.093 × 800 × 31× 8 = 2152197b it(=262.7kB)

となる。

【0032】この結果からVGA、SVGAのどちらも できるようにするためには、メモリ1-1に205.2 kB、メモリ1-2には273.3KkBが必要である ように見えるが、実際にはメモリ1-1が205.2k B、メモリ1-2は262.7kBでよい。その理由は メモリ1-1が205.2kBなので、VGAの10 9. 44行分をリードライトでき、メモリ1-2が26 30 Aの入出力信号のタイミングチャート。 2. 7kBなのでVGAの140. 11行分をリードラ イトできる。 との値はX=109.44、Y=140. 11、V1=480、V1=768とした時の(6)、 (7)、(8)式を満足するからである。

(C) その他

今まで考えてきたような制御をすることで、(A).

(B) いずれのメモリを用いても、メモリ使用量を最小 にできる。しかし現実には、メモリの容量は1Mbit※

※や512kbitと言った2"で表わされる値になる。 その時は(4)式や(13)、(14)式で表わされる 値より大きく、一番近い値のメモリを選択すればよい。 また、たとえば、メモリ1-1に256kB、メモリ1 10 -2にも256kBを用いると、VGA、SVGAの各 パラメータを、(6)、(7)、(8)式に代入して成 立し、これでも実用範囲内であることがわかる。従来技 術の1/3のメモリで済む。

【0033】とれまで、LCDを例として説明してきた が、LCDに限らず、プラズマディスプレイやエレクト ロルミネッセンスといった、ドットマトリクス表示器で あっても、本発明の効果が変わらないことは、言うまで もない。

[0034]

20 【発明の効果】との発明では、フレームメモリとしてデ ュアルポートのF 1 F Oメモリまたはシングルポートの 第1、第2FIFOメモリを用い、それらの容量を必要 最小限度に押さえるととができる。これにより従来必要 としたメモリ容量の例えば1/4~1/3程度で済み、 大幅な経済化を行える。

【図面の簡単な説明】

【図1】Aは請求項1の実施例を示すブロック図、Bは Aの入出力信号のタイミングチャート。

【図2】Aは請求項3の実施例を示すブロック図、Bは

【図3】請求項1の発明の考え方を説明するためのフレ ームメモリのライトデータ、リードデータのタイミング チャート。

【図4】図2のフレームメモリ1-1、1-2に書き込 む映像信号の行数X、Y間の関係を示すグラフ。

【図5】液晶モニタ装置のEXPANDモードとNON -EXPANDモードを説明するための図。

【図3】

[図2]

[図4]

【図5】

2 5

フロントページの続き

(51) Int:C1.⁶ 識別配号 G 0 9 G 3/36 FI . G09G 3/36

		. 1
THIS PAGE BLANK (USPTO)	
	,	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

