제3장 중선형회귀모형

3.8 기타논제

3.8.3 최소제곱법의 기하학적 의미

최소제곱법을 이용하여 회귀계수를 추정하는 과정은 기하학적으로 더욱 쉽고 명료하게 설명될 수 있다.

중회귀모형 $y = X\beta + \epsilon$ 여기서, $X_{(n \times p)}$

■ 반응변수의 관측값 벡터 $y = \left[y_1 \cdots y_n\right]^t$: n차원 공간의 한 점

- 만약 X의 계수(rank)가 p라면 $X\beta$ 는 β 의 값이 변함에 따라 n차원 공간에서 p개의 선형독립인 벡터 $\left[X_0 \ X_1 \ \cdots \ X_{p-1}\right]$ 에 의해 생성(span)되는 p차원 평면[→추정공간 (estimation space)]을 형성하게 된다.
- $lacksymbol{\bullet}$ 오차벡터 $oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 & \epsilon_2 & \cdots & \epsilon_n \end{bmatrix}^t$

: 이 추상공간 위의 한 점과 벡터 y와의 차이를 나타내는 벡터

- 최소제곱법: 오차제곱합[$S = \epsilon^t \epsilon = (y X\beta)^t (y X\beta)$]을 최소화하는 β 의 값을 찾는 것
- \rightarrow 벡터 y에서 가장 가까운 추정공간 위의 한 점을 찾는 것
- \rightarrow 이 점은 벡터 y를 추정공간에 정사영(orthogonal projection)시켜 얻을 수 있으며,
- 이 점을 $\hat{y}=X\hat{\beta}$ 라 하면 여기에 해당되는 벡터 $\hat{\beta}$ 가 β 의 최소제곱추정치가 된다.
- 잔차벡터 $e=y-X\hat{\beta}$ 는 추정공간 위의 모든 벡터들과 직교한다. X의 모든 열벡터에 대해 $X_i^t e=X_i^t (y-X\hat{\beta})=0$ $(j=0,\,1,\,\cdots,\,p-1)$
- $\rightarrow X^t e = X^t y X^t X \hat{\beta} = 0$ \Rightarrow (정규방정식) $X^t X \hat{\beta} = X^t y$
- 회귀의 분산분석에 사용되는 세 가지 제곱합의 분할은 직각삼각형에 대한 피타고라스 정리를 사용하여 얻어진다.
- 자차벡터 e와 \hat{y} 이 직교 $\rightarrow ||y||^2 = ||\hat{y}||^2 + ||e||^2$
- 벡터의 내적으로 표현 $\rightarrow y^t y = \hat{y}^t \hat{y} + (y X\hat{\beta})^t (y X\hat{\beta}) \leftarrow SST = SSR + SSE$
- 자유도 간의 관계식 n = p + (n p): 각 벡터가 위치하는 공간의 차원 간의 관계

3.8.4 다변량 정규분포와의 관계

$$Z \sim N_n(\mu, \Sigma)$$

$$Z = egin{bmatrix} Z_1 & Z_2 \end{bmatrix}^t, \; \mu = egin{bmatrix} \mu_1 & \mu_2 \end{bmatrix}, \; \varSigma = egin{bmatrix} \varSigma_{11} & \varSigma_{12} \ \varSigma_{21} & \varSigma_{22} \end{bmatrix}$$

$$\rightarrow \ Z_1 | \ Z_2 \ \sim \ N_r \! \left(\mu_1 + \varSigma_{12} \varSigma_{22}^{-1} \! \left(Z_2 - \mu_2 \right) \! \right), \ \varSigma_{12} \varSigma_{22}^{-1} \varSigma_{21} \! \right)$$

$$y = \beta_0 + \beta_1 X_1 + \cdots + \beta_{p-1} X_{p-1} + \epsilon$$

$$E(Y|X) = \beta_0 + \beta_1 X_1 + \cdots + \beta_{p-1} X_{p-1}$$

$$=eta_0+ig[eta_1\cdotseta_{p-1}ig]^t X$$
 여기서, $X=ig[X_1\quad\cdots\quad X_{p-1}ig]$

$$= E(Y) + Cov(Y, X)Cov(X)^{-1}[X - E(X)] \leftarrow$$
 다변량 정규분포의 조건부 기댓값

$$= E(\mathit{Y}) - \mathit{Cov}(\mathit{Y}, \mathit{X})\mathit{Cov}(\mathit{X})^{-1}E(\mathit{X}) + \mathit{Cov}(\mathit{Y}, \mathit{X})\mathit{Cov}(\mathit{X})^{-1}\mathit{X}$$

$$\Rightarrow \beta_0 = E(Y) - Cov(Y, X)Cov(X)^{-1}E(X)$$

$$[\beta_1 \cdots \beta_{p-1}]^t = Cov(Y, X) Cov(X)^{-1}$$

p = 2인 단순선형회귀모형의 경우를 생각해 보면

모집단	표본
$eta_0 = E(Y) - rac{Cov(Y, X)E(X)}{Var(X)}$	$\hat{eta}_0 = \overline{Y} \!\!-\! \hat{eta}_1 \overline{X}$
$eta_1 = rac{Cov(\mathit{Y}, \mathit{X})}{Var(\mathit{X})}$	$\hat{eta}_1 = rac{\displaystyle\sum_{i=1}^n ig(X_i - \overline{X}ig)ig(Y_i - \overline{Y}ig)}{\displaystyle\sum_{i=1}^n ig(X_i - \overline{X}ig)^2}$