

Trabajo practico LFAC

October 17, 2024 LFAC

Integrante	LU	Correo electrónico
Olmos, Francisco José	1101/23	francisco.olmos.99@gmail.com

1 Ejercicio 4.1

Sea $L = \{ab^nc^m|n \geq 1 \land m \text{ no es multiplo de } n\}$. Determinar si L es un lenguaje regular. En caso afirmativo, dar un autómata finito que lo reconozca, indicando si es determinístico. En caso contrario, demostrarlo.

Afirmo que el lenguaje L no es regular, para hacerlo voy a demostrar que L no cumple el $lema\ de\ pummping$, sabemos que si un lenguaje es regular, entonces cumple el lema, de esta forma usando la equivalencia del contrareciproco, si demostramos que no cumple pumping, entonces L no es regular.

Lema de pummping: Sea L un lenguaje regular. Existe entonces una longitud minima p tal que, todas las cadenas $\alpha \in L$ que superan o igualan dicha longitud, pueden ser escritas de la forma $\alpha = xyz$ donde

$$|xy| \le p$$
; $|y| \ge 1$; $\forall i \ge 0, xy^i z \in L$

Proof. Estructura de la demostracion:

Para todo p>0,Existe un α tal que $\alpha\in L,\, |\alpha|\geq p$

tal que para toda descomposicion $\alpha=xyz$ con $|xy|\leq p$ y $|y|\geq 1,$ existe un $i\geq 0$ tal que $xy^iz\notin L$

Definicion: m no es multiplo de n significa que no existe un $n_0 \in \mathbb{Z}$ tal que $n*n_0=m$.

Dado p > 0 tomo $\alpha = ab^pc^{p+1}$ con $\alpha \in L$ ya que para todo $p \ge 2$ se tiene que p+1 no es un multiplo de p haciendo que ab^pc^{p+1} y $|\alpha| \ge p$.

Observacion: pedimos que $p \geq 2$ pero si p = 1 nos quedaria abc^m pero no existe ningun $m \in \mathbb{N}$ que no sea multiplo de 1 lo cual ya no estaria dentro del lenguaje. O lo mismo que, $1*n_0 = m, \forall n_0 \in \mathbb{N}$

Para toda descomposicion $\alpha = xyz$ tal que $|xy| \le p$ y $|y| \ge 1$.

Tomamos $xy = ab^{p-1}$, asi $|xy| = p \le p$ e y = b pudiendo darnos $|y| = 1 \ge 1$ cumpliendo asi las hipotesis de la descomposicion α .

Nos quedaria $x = ab^{p-2}$; y = b; $z = c^{p+1}$.

De esta forma existe un $i \in N_0$ tal que $xy^iz \notin L$, tomando i=2 tenemos que $\alpha=ab^{p-1}b^2c^{p+1}=ab^{p+1}c^{p+1}$ la cual no esta en el lenguaje dado que p+1 es mutiplo de si mismo.

Por lo tanto, concluimos que L no es regular.

2 Ejercicio 4.2

Sea L el lenguaje denotado por la expresión regular $(a(ab)^*)^*$. Dar una expresión regular para L^c (tomando el complemento sobre el alfabeto $\{a,b\}$)

Estrategia: Dado un ER puedo pasarlo a un AFD derivando la ER, luego tomar el complemneto del automata y utlimo pasar del automata a la expresion regular que denota obteniendo asi L^C

$2.1 \quad \mathrm{ER} o \mathrm{AFD}$

$$\begin{split} \Sigma &= \{a,b\}; R_0 = (a.(a.b)^*)^* \\ L_0 &= L(R_0) = a.\partial a(L_0) \mid b.\partial b(L_0) \mid \epsilon(L_0) \\ L_0 &= a.\partial a(L_0) \mid b.\partial b(a.(a.b)^*).(a.(a.b)^*)^* \mid \lambda \\ L_0 &= a.\partial a(L_0) \mid b.(\partial b(a).(a.b)^* \mid \epsilon(a).\partial b(ab)^*).(a.(a.b)^*)^* \mid \lambda \\ L_0 &= a.\partial a(L_0) \mid b.(\emptyset.(a.b)^* \mid \emptyset.\partial b(ab)^*).(a.(a.b)^*)^* \mid \lambda \\ L_0 &= a.\partial a(L_0) \mid b.(\emptyset.(a.(a.b)^*)^* \mid \lambda \\ L_0 &= a.\partial a(L_0) \mid b.(\emptyset.(a.(a.b)^*)^* \mid \lambda \\ L_0 &= a.\partial a(L_0) \mid \emptyset \mid \lambda \\ L_0 &= a.\partial a(L_0) \mid \lambda \end{split}$$

$$a.\partial a(L_0) &= a.\partial a(a.(a.b)^*).(a.((a.b)^*)^* \\ a.\partial a(L_0) &= a.(\partial a(a).(a.b)^* \mid \epsilon(a).\partial a((a.b)^*)).(a.((a.b)^*)^* \\ a.\partial a(L_0) &= a.(\lambda.(a.b)^* \mid \emptyset.\partial a((a.b)^*)).(a.((a.b)^*)^* \\ a.\partial a(L_0) &= a.(\lambda.(a.b)^* \mid \emptyset.\partial a((a.b)^*)).(a.((a.b)^*)^* \\ a.\partial a(L_0) &= a.((a.b)^* \mid \emptyset).(a.((a.b)^*)^* \\ a.\partial a(L_0) &= a.(a.b)^*.(a.((a.b)^*)^* \\ a.\partial a(L_0) &= a.(a.b)^*.(a.(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid b.(\partial b((a.b),(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid b.((\partial b(a),b)(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid b.((\partial b(a),b)(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid b.((a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid b.((a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid b.((a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid \lambda \\ a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid \lambda \\ a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid \lambda \\ a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a(L_1) \mid \lambda \\ a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a.b)^*.L_0 \mid \lambda \\ L_1 &= a.\partial a((a.b)^*.L_0)) &= a.(\partial a(a.b).(a$$

$$L_2 = b.L_1 = b.(a.b)^*.L_0$$

$$L_2 = a.\partial a(L_2) \mid b.\partial b(L_2) \mid \epsilon(L_2)$$

$$\begin{array}{l} L_2 = a.\partial a(b.L_1) \mid b.\partial b(b.L_1) \mid \epsilon(b.L_1) \\ L_2 = a.(\partial a(b).L_1|\epsilon(b).\partial a(L_1)) \mid b.(\partial b(b).L_1|\epsilon(b).\partial b(L_1) \mid \emptyset \\ L_2 = a.(\emptyset.L_1|\emptyset.\partial a(L_1)) \mid b.\lambda.L_1|\emptyset.\partial b(L_1) \\ L_2 = \emptyset \mid b.L_1|\emptyset \\ L_2 = b.L_1 \\ L_2 = b.\partial b(L_2) \end{array}$$

L_i	=	∂a	∂b
L_0	$(a.(a.b)^*)^*$	L_1	Ø
L_1	$(a.b)^*.L_0$	$L_2 L_1$	Ø
L_2	$b.L_1$	Ø	L_1

Nos quedaria configurado el siguiente Automata ${\cal M}_{ND}$ que es no determinisito

$$M_{ND} = \langle \{L_0, L_1, L_2\}, \{a, b\}, \delta, L_0, \{L_0, L_1\} \rangle$$

Figure 1: Automata AFND

Volvamos el automata deterministico, haciendo que L_2 se vuelva un estado final, aceptando indeterminadas a y haciendo que L_1 no pueda consumir mas a. Notese que los lengujaes que aceptan son el mismo.

Nos quedaria configurado el siguiente Automata M_D que es **determinisitco**

$$M_D = \langle \{L_0, L_1, L_2, T\}, \{a, b\}, \delta, L_0, \{L_0, L_1, L_2\} \rangle$$

L_i	=	∂a	∂b
L_0	$(a.(a.b)^*)^*$	L_1	T
L_1	$(a.b)^*.L_0$	L_2	T
L_2	$b.L_1$	L_2	L_1
T	$(a b)^*$	T	T

Figure 2: Automata AFD

2.2 Complemento del AFD

Nos quedaria configurado el siguiente Automata M_C que es **el complemento del** M_D , simplemente por haberlo determinizado podemos hacer que los estados que no eran finales transformarlos en finales y viceversa, los que eran finales transformarlos en no finales.

$$M_C = \langle \{L_0, L_1, L_2, T\}, \{a, b\}, \delta, L_0, \{T\} \rangle$$

Figure 3: Complemento Automata AFD

$\mathbf{2.3}\quad \mathbf{AFD} \rightarrow \mathbf{ER}$

Tomando L_0 , como el conjunto de cadenas aceptadas partiendo de q_0 (el estado inicial). Vamos a obtener cada L_j tal que sea el lenguaje aceptado partiendo de cada q_j correspondiente. Asi podemos denotar cada lenguaje con una expresion

regular. Por ultimo la expresion regular que denote $L_0=L(M_C)$ va a denotar el lenguaje que acepta el automata

Lema de Arden: Sea R un lenguaje, α, β expresiones regulares sobre Σ Si $R = \alpha . R \mid \beta$ y $\lambda \notin L(\alpha)^a$, entonces $R = \alpha^* . \beta$

$$L_0 = a.\partial a(L_0) \mid b.\partial b(L_0) \mid \epsilon(L_0) = a.L_1 \mid b.T \mid \emptyset$$

$$L_1 = a.\partial a(L_1) \mid b.\partial b(L_1) \mid \epsilon(L_1) = a.L_2 \mid b.T \mid \emptyset$$

$$L_2 = a.\partial a(L_2) \mid b.\partial b(L_2) \mid \epsilon(L_2) = a.L_2 \mid b.L_1 \mid \emptyset$$

$$T = a.\partial a(T) \mid b.\partial b(T) \mid \epsilon(T) = a.T \mid b.T \mid \lambda$$

Vamos a usar un simbolo! cuando estemos usando lema de Arden

```
\begin{array}{l} T=a.T \mid b.T \mid \lambda \text{ (distributividad de . sobre |)} \\ T=(a|b).T|\lambda=(a|b)^* \ ! \\ L_0=a.L_2|b.(a|b)^* \\ L_1=a.L_2|b.(a|b)^* \\ L_2=a.L_2|b.L_1|\emptyset=a.L_2|b.L_1 \text{ ($\emptyset$ es el elem. neutro de |)}} \\ L_2=a^*.b.L_1 \ ! \\ L_1=a.(a^*.b.L_1)|b.(a|b)^* \text{ (asociatividad de . )}} \\ L_1=(a^+.b).L_1|b.(a|b)^* \\ L_1=(a^+.b)^*.b.(a|b)^* \ ! \\ L_0=a.(a^+.b)^*.b.(a|b)^* |b.(a|b)^* \\ L_0=(a.(a^+.b)^*|\lambda).b.(a|b)^* \text{ (distributividad de . sobre |)}} \end{array}
```

Concluyendo, la expresion regular que denota L^c seria:

$$L^{c} = (a.(a^{+}.b)^{*}|\lambda).b.(a|b)^{*}$$