Statistical Theory: Exercise Sheet 3 — Corrections

October 16, 2018; 8:15-10:00 in MA 12.

Tomáš Rubín, tomas.rubin@epfl.ch

Remark. When we say that X_1, \ldots, X_n is a sample from the distribution F it means that X_1, \ldots, X_n are iid with the distribution F.

Exercise 1. Let X_1, \ldots, X_n be a sample from the uniform distribution on $(0, \theta)$ $(\theta > 0)$.

- (a) Show that $S = X_{(n)}$ is a complete sufficient statistic for θ .
- (b) Show that $T = X_{(1)}/X_{(n)}$ is ancillary for θ .
- (c) Use Basu's theorem to show that S and T are independent.

Solution to Exercise 1. The sufficiency of S follows from the factorization lemma (see the lecture slides). The density of S is $f_S(s) = ns^{n-1}/\theta^n 1_{(0,\theta)}(s)$.

Completeness of S: Suppose that h(s) is a function such that $\mathsf{E}_{\theta} \, h(S) = \int_0^{\theta} h(s) n s^{n-1} / \theta^n ds$ is equal to 0 for all $\theta > 0$. This implies that $\int_0^{\theta} h(s) s^{n-1} ds = 0$, thus its derivative (w.r.t. θ) $h(\theta)\theta^{n-1}$ equals zero, which is possible only if $h(\theta) = 0$ for all $\theta > 0$. Hence, S is complete.

Ancillarity of T: For any θ , X_i has the same distribution as θU_i where U_i are iid U(0,1). Thus $T = X_{(1)}/X_{(n)} \stackrel{d}{=} (\theta U_{(1)})/(\theta U_{(n)}) = U_{(1)}/U_{(n)}$. Therefore, the distribution of T does not depend on θ and T is ancillary. The application of Basu's theorem is straightforward.

Exercise 2. Let X_1, \ldots, X_n be a sample from the uniform distribution on $(-\theta, \theta)$ $(\theta > 0)$.

- (a) Show that $S = (X_{(1)}, X_{(n)})^{\mathsf{T}}$ is a sufficient statistic for θ .
- (b) Show that S is not a complete statistic.
- (c) Suggest a different statistics that is complete.

Solution to Exercise 2. S is sufficient: As the joint density of X_1, \ldots, X_n is $f(x_1, \ldots, x_n; \theta) = \frac{1}{2\theta} \mathbb{1}\{-\theta < x_{(1)} \leq x_{(n)} < \theta\}$, the sufficiency of S follows by the Neyman–Fisher factorization lemma.

<u>S</u> is not complete: Consider the function h(u,v) = u + v. It is easily computed that $\mathsf{E}_{\theta} \, \overline{h(X_{(1)},X_{(n)})} = \mathsf{E}_{\theta}(X_{(1)}+X_{(n)}) = 0$ for all θ . However, $h(X_{(1)},X_{(n)}) = X_{(1)}+X_{(n)}$ is not identically equal to zero (almost surely). Therefore, S is not complete.

The join density of X_1, \ldots, X_n can be rewritten as $f(x_1, \ldots, x_n; \theta) = \frac{1}{(2\theta)^n} \mathbb{1}_{[-\theta < x_{(1)} \le x_{(n)} < \theta]} = \frac{1}{(2\theta)^n} \mathbb{1}_{[-X_{(1)} < \theta]} \mathbb{1}_{[X_{(n)} < \theta]} = \frac{1}{(2\theta)^n} \mathbb{1}_{[\max\{-X_{(1)}, X_{(n)}\} < \theta]}$. Thus it makes sense to consider $T = \max(-X_{(1)}, X_{(n)})$ which is clearly a sufficient statistics.

Now derive the density of T and get $f_T(t) = n \frac{t^{n-1}}{\theta^n}$. The proof of the completeness is identical to Exercise 1, (a).

Exercise 3. Let X_1, \ldots, X_n be a sample from the distribution with density $f(x; \mu) = e^{-(x-\mu)} 1_{(\mu,\infty)}(x)$ with a parameter $\mu \in \mathbb{R}$.

- (a) Show that $X_{(1)}$ is a complete sufficient statistic for μ .
- (b) Use Basu's theorem to show that $X_{(1)}$ and $\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$ are independent.

Solution to Exercise 3. Sufficiency of $X_{(1)}$: By the factorization lemma. Completeness of $X_{(1)}$: Notice that $(X_1, \ldots, X_n)^{\mathsf{T}} \stackrel{d}{=} \mu + (E_1, \ldots, E_n)^{\mathsf{T}}$ where E_i are iid Exp(1). We know (immediately, or from Exercise 3 in Set 1) that $E_{(1)} \sim \operatorname{Exp}(n)$, hence $X_{(1)} \stackrel{d}{=} \mu + E_{(1)}$. Therefore, $\mathsf{E}_{\mu} h(X_{(1)}) = \int_{\mu}^{\infty} h(u) n \exp\{-n(u-\mu)\} du$, which is zero for all μ if an only if $\int_{\mu}^{\infty} h(u) \exp\{-nu\} du = 0$ for all μ . Differentiate with respect to μ to see that this happens only if h is zero.

Ancillarity of $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2$: The sample variance does not depend on the location shift μ , thus its distribution does not depend on μ . Therefore, it is ancillary. The independence of $X_{(1)}$ and $\frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2$ follows directly from Basu's theorem.

Exercise 4. Let Y_1, \ldots, Y_n follow the normal linear regression model, that is, they are independent with distribution $N(\beta_0 + \beta_1 x_i, \sigma^2)$, where $\sigma > 0$ is known and x_i are some fixed known constants.

Find a minimal sufficient statistic for the parameter $(\beta_0, \beta_1)^T$ (find a sufficient statistic using the factorization lemma and then prove its minimality).

Solution to Exercise 4. The joint density of Y_1, \ldots, Y_n is

$$f(y_1, \dots, y_n; \beta_0, \beta_1) = \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left\{-\frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right\}$$
$$= \frac{1}{(\sqrt{2\pi}\sigma)^n} \exp\left\{-\frac{\sum_{i=1}^n y_i^2}{2\sigma^2}\right\} \exp\left\{\frac{2\beta_0 \sum_{i=1}^n y_i + 2\beta_1 \sum_{i=1}^n y_i x_i - \sum_{i=1}^n (\beta_0 + \beta_1 x_i)^2}{2\sigma^2}\right\}.$$

Therefore, by the factorization lemma, the statistic $T(Y) = (\sum_{i=1}^n Y_i, \sum_{i=1}^n Y_i x_i)^\mathsf{T}$ is sufficient for $(\beta_0, \beta_1)^\mathsf{T}$. By observing that $f(y_1, \ldots, y_n; \beta_0, \beta_1)/f(z_1, \ldots, z_n; \beta_0, \beta_1)$ does not depend on $(\beta_0, \beta_1)^\mathsf{T}$ if and only if T(y) = T(z), we find that T is minimal sufficient.

Exercise 5. Let X_1, \ldots, X_n be a sample from the exponential distribution with intensity $\lambda > 0$. Show that $T = \sum_{i=1}^n X_i$ is a complete and sufficient statistic for λ . Show that $R = X_1/(\sum_{i=1}^n X_i)$ is ancillary for λ . Conclude (using Basu's theorem) that T and R are independent. (Useful fact: If $X_1 \sim \Gamma(a, p_1)$, $X_2 \sim \Gamma(a, p_2)$ are independent, then $X_1 + X_2 \sim \Gamma(a, p_1 + p_2)$.)

Solution to Exercise 5. Sufficiency of T: Immediately by the factorization criterion. Completeness of S: We know that $T \sim \Gamma(\lambda, n)$. $\mathsf{E}_{\lambda} \, h(T) = \lambda^n / \Gamma(n) \int_0^{\infty} h(t) e^{-\lambda t} t^{n-1} dt$ is zero for

all $\lambda > 0$ if and only if the integral is zero for all $\lambda > 0$. The integral, as a function of λ , is the Laplace transform of the function $h(t)t^{n-1}$. If the Laplace transform is zero, the function $h(t)t^{n-1}$ is zero (almost everywhere), thus h(t) = 0 (a.e.) which proves that T is complete. Ancillarity of R: Notice that $(X_1, \ldots, X_n)^{\mathsf{T}} \stackrel{d}{=} (E_1, \ldots, E_n)^{\mathsf{T}}/\lambda$ where E_i are iid Exp(1), and proceed similarly as in Exercise 1.

Exercise 6. Suppose that X_1, \ldots, X_n are independent random variables, each uniformly distributed on $(0, \theta)$, where $\theta > 0$ is a parameter. For each of the variables T_1, \ldots, T_6 below, decide whether it is a sufficient statistic or not.

$$T_{1} = (X_{1}, \dots, X_{n}),$$

$$T_{2} = (X_{(1)}, \dots, X_{(n)}),$$

$$T_{3} = (X_{(1)}, X_{(n)}),$$

$$T_{4} = X_{(1)}$$

$$T_{5} = X_{(n)}$$

$$T_{6} = \frac{n+1}{n} \times X_{(n)}$$

Is any of them minimal sufficient? If so, is it also complete? (Notice the dimensions.)

Solution to Exercise 6. The joint density of X_1, \ldots, X_n is

$$f_{X_1,...,X_n}(x_1,...,x_n) = \frac{1}{\theta^n} \mathcal{I}\{x_{(n)} < \theta\} \times \mathcal{I}\{x_{(1)} > 0\},$$

where \mathcal{I} is the indicator function. By the factorisation criterion it follows that all the statistics except for T_4 are sufficient.

All the sufficient statistics given in the exercise are functions of T_5 and T_6 , but T_5 is a function of neither of T_1 , T_2 and T_3 . It follows that T_1 , T_2 and T_3 are not minimal. On the other hand, T_5 and T_6 are minimal sufficient. This follows from the theorem on Slide 13 of the lecture notes. Statistics T_5 and T_6 are also complete. We show this for T_5 , the result for T_6 then follows. The density of $T_5 = \max(X_1, \ldots, X_n)$ is

$$f_{T_5}(x) = \frac{n}{\theta^n} \times x^{n-1} \mathcal{I}\{x < \theta\}.$$

Suppose that h(x) is a function such that

$$\mathsf{E}_{\theta} h(T_4) = \frac{n}{\theta^n} \int_0^{\theta} h(x) \, x^{n-1} dx = 0 \quad \text{for every } \theta > 0.$$

Then

$$\int_{\theta-\varepsilon}^{\theta+\varepsilon} h(x)x^{n-1}dx = \int_0^{\theta+\varepsilon} h(x)x^{n-1}dx - \int_0^{\theta-\varepsilon} h(x)x^{n-1}dx = 0 - 0 = 0$$

for every $\theta > 0$ and $0 < \varepsilon < \theta$. It follows that

$$\lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{\theta - \varepsilon}^{\theta + \varepsilon} h(x) x^{n-1} dx = 0,$$

and the Lebesgue differentiation theorem gives that $h(\theta) = 0$ for a.e. $\theta > 0$.

Exercise 7. Suppose that X_1, \ldots, X_n are independent random variables, each with normal distribution $N(\mu, \sigma^2)$, where σ^2 is a known constant and μ is an unknown parameter. Decide whether any of the variables T_1, \ldots, T_4 below is an ancillary statistic.

$$T_{1} = (X_{1}, ..., X_{n}),$$

$$T_{2} = (X_{1} - X_{2}, X_{2} - X_{3}, ..., X_{n-1} - X_{n}),$$

$$T_{3} = \frac{1/n \sum_{i=1}^{n} X_{i} - \mu}{\sigma/\sqrt{n}}.$$

$$T_{4} = \frac{1/n \sum_{i=1}^{n-1} (X_{i} - X_{i+1})^{2}}{\operatorname{var} \left(1/n \sum_{i=1}^{n-1} (X_{i} - X_{i+1})^{2}\right)}.$$

Solution to Exercise 7. T_2 and T_3 are ancillary, T_1 is not (the distribution depends on the parameter), T_4 is not a statistic (it is a function of the parameter). The variance of the term in the denominator in T_4 is in fact independent of the unknown parameter μ , therefore it is a statistic. The distribution of T_4 is independent of μ thus T_4 is ancillary.