ML Handbook

s.pol

Оглавление

1	Maı	гематика	5
	1.1	Случайная величина	5
	1.2	Распределение случайной величины	5
	1.3	Выборка	6
	1.4	Закон больших чисел	6
	1.5	Центральная предельная теорема	6
	1.6	Статистики	6
	1.7	Bootstrap	7
	1.8	Классический и байесовский подход	7
	1.9	Метод максимального правдоподобия	7
	1.10	Доверительный интервал	7
	1.11	Байесовский доверительный интервал	7
	1.12	Основные дискретные распределения	7
	1.13		7
	1.14	Матричные разложения	7
	1.15	К-Л дивергенция	8
	1.16	Энтропия	8
	1.17	Квантили	8
	1.18	Точечные оценки	8
	1.19	Интервальные оценки	8
	1.20	Проверка гипотез	8
	1.21	Множественная проверка гипотез	8
	1.22	Параметрические и непараметрические критерии, бутстреп .	8
	1.23	Ошибки I и II рода	8
	1.24	Достигаемый уровень значимости	8
	1.25	Мощность статистического критерия	8
	1.26	Основные задачи статистики	8
	1.27	Проверка основных гипотез	9
	1.28	Корреляция Пирсона	9
	1.29	Корреляция Спирмена	9
	1.30	Корреляция Метьюса	9
	1.31	Корреляция Крамера	9
	1.32	Z-тест Фишера	9
			q

		Критерий Пирсона χ^2	9 9
2	Ана	лиз данных	10
	2.1	Типы данных	10
	2.2	Предобработка данных	10
	2.3	Понижение размерности	10
3		цие вопросы	11
J	3.1	машинное обучение	11
	$3.1 \\ 3.2$	Основные классы задач	11
	3.2		11
	3.4	Обнаружение аномалий	11
	$\frac{3.4}{3.5}$	Контроль качества	$\frac{11}{12}$
		Недообучение	
	3.6	Переобучение	12
	3.7	Регуляризация	12
	3.8	Отбор признаков	12
	3.9	Параметры алгоритма	12
		Подбора метапараметров	12
		Основные типы алгоритмов	12
		Многоклассовая классификация	12
		Дисбаланс классов	12
	3.14	Ансамбли алгоритмов	12
	3.15	Метрики классификации	12
	3.16	Метрики многоклассовой классификации	13
	3.17	ROC-AUC метрика	13
	3.18	Индекс Джини	13
	3.19	Метрики регрессии	13
		Метрики кластеризации	13
		Разложение ошибки алгоритма	13
		Кривые валидации	13
		Кривые обучения	13
		Метрические методы	13
		Метод ближайших соседей	13
		Линейные методы	13
		Линейная регрессия	13
		Логистическая регрессия	13
		SVM	14
			14
		Ядра и спрямляющие пространства	14 14
		Случайный лес	14
		Градиентный бустинг	14
	3.34	Байесовские методы	14
4	Ней	росети	15

Предисловие

В данной книге описаны основные понятия, методы и подходы, широко используемые в современном DS и ML. Обычно, свободное владение этими понятиями необходимо для правильного понимания как основных, так и продвинутых методов ML и по умолчанию предполагается от DS специалиста.

Здесь собраны разные определения, встречавшиеся автору в научных статьях по ML и на собеседованиях. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

Освещение вопросов ни в коем случае не претендует на полноту и в некоторых случаях на строгость. Основная цель книги - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

Обозначения

DS - наука о данных ML - машинное обучение RV - случайная величина

CDF - функция распределения случайной величины PDF - плотность распределения случайной величины

CLT - центральная предельная теорема EX - среднее случайной величины X DX - дисперсия случайной величины X

 $X \sim Y$ - случайные величины X и Y одинаково распределены

Математика

В этой главе описаны основные математические понятия, необходимые для правильного понимания как основных, так и продвинутых методов ML. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

1.1 Случайная величина

Случайной величиной (RV) называется числовая функция X, определенная на некотором множестве элементарных исходов Ω (обычно подмножество \mathbb{R} или \mathbb{R}^n),

$$X:\Omega\to\mathbb{R}.$$

С прикладной точки зрения на RV часто смотрят как на генераторы случайных чисел с заданным распределением.

Примеры:

- Рост людей, взятых из некоторой группы.
- Цвет фиксированного пикселя изображения, взятого из некоторого множества изображений.
- Некоторый признак из датасета ML задачи.

1.2 Распределение случайной величины

Если RV принимает дискретное множество значений $x_1, x_2, ...,$ то она полностью определяется значениями их вероятностей: $p_k = \mathbb{P}(X = x_k)$.

Если множество значений RV не дискретно, то RV может быть описана своей функцией распределения (CDF, Cumulative distribution function): $F(x) = \mathbb{P}(X < x)$.

В большинстве прикладных случаев CDF оказывается дифференцируемой функцией. Производная от CDF называется плотностью распределения случайной величины (PDF, Probability density function): f(x) = F'(x). Таким образом, по определению

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f(x)dx.$$

1.3 Выборка

Выборкой объема n из генеральной совокупности X называется последовательность независимых и распределенных как X случайных величин:

$$X_1, X_2, ..., X_n, X_k \sim X$$

На практике под выборкой понимают конкретные реализации величин X_k , то есть последовательность чисел $x_1, x_2, ..., x_n$.

1.4 Закон больших чисел

Закон больших чисел утверждает, что если $X_1, X_2, ..., X_n$ - выборка объема n из генеральной совокупности X, то ее среднее с ростом n стабилизируется к среднему значению X:

$$\frac{X_1+X_2+\ldots+X_n}{n}\approx EX,\quad n\to\infty.$$

1.5 Центральная предельная теорема

Центральная предельная теорема (CLT) является в некотором смысле уточнением закона больших чисел. В упрощенном варианте она утверждает, что если $X_1, X_2, ..., X_n$ - выборка объема n из генеральной совокупности X, то ее распределение ее среднего при больших n очень близко к нормальному,

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \approx N(\mu, \sigma^2/n), \quad \mu = EX, \sigma^2 = DX, \quad n \to \infty.$$

Заметим, что если совокупность распределена нормально, $X \sim N(\mu, \sigma^2)$, то предыдущая формула обращается в точное равенство при любых n.

1.6 Статистики

Пусть $X_1, X_2, ..., X_n$ - выборка объема n. Статистикой называется произвольная RV, являющаяся функцией выборки:

$$T = T(X_1, X_2, ..., X_n).$$

Часто статистикой называют конкретное значение $T(x_1, x_2, ..., x_n)$, полученное на данной реализации $x_1, x_2, ..., x_n$ выборки.

Примеры:

- ullet $ar{X} = (X_1 + X_2 + ... + X_n)/n$ выборочное среднее.
- ullet $X_{(n)} = \max(X_1, X_2, ..., X_n)$ максимальное значение в выборке.
- медиана, перцентили.

1.7 Bootstrap

- 1.8 Классический и байесовский подход
- 1.9 Метод максимального правдоподобия
- 1.10 Доверительный интервал
- 1.11 Байесовский доверительный интервал
- 1.12 Основные дискретные распределения
- 1.13 Основные непрерывные распределения
- 1.14 Матричные разложения

...может разделить главу на части...

- 1.15 К-Л дивергенция
- 1.16 Энтропия
- 1.17 Квантили
- 1.18 Точечные оценки
- 1.19 Интервальные оценки
- 1.20 Проверка гипотез
- 1.21 Множественная проверка гипотез
- 1.22 Параметрические и непараметрические критерии, бутстреп
- 1.23 Ошибки I и II рода
- 1.24 Достигаемый уровень значимости
- 1.25 Мощность статистического критерия
- 1.26 Основные задачи статистики

...из лекций новосиба курсера...

- 1.27 Проверка основных гипотез
- 1.28 Корреляция Пирсона
- 1.29 Корреляция Спирмена
- 1.30 Корреляция Метьюса
- 1.31 Корреляция Крамера
- 1.32 Z-тест Фишера
- 1.33 Т-тест Стьюдента
- 1.34 Критерий Пирсона χ^2
- 1.35 Точный тест Фишера

Анализ данных

Анализ и предобработка данных - первая задача, успешное решение которой зачастую определяет успех в решении любых задач ML. В этой главе описываются основные подходы....

- 2.1 Типы данных
- 2.2 Предобработка данных
- 2.3 Понижение размерности

Общие вопросы

В этой главе приводятся основные понятия ML и DS.

3.1 Машинное обучение

Машинное обучение (ML) - область искусственного интеллекта, изучающая самообучающиеся модели, то есть решаюшие поставленную задачу не по заранее запрограммированному алгоритму, а предварительно настраивая свое поведение согласно имеющимся данным.

Обычно методы ML содержат свободные параметры, подбор которых наилучшим (в смысле имеющихся данных) образом и составляет процесс обучения алгоритма.

- 3.2 Основные классы задач
- 3.3 Обнаружение аномалий
- 3.4 Контроль качества

...оценка обобщающей способности...

- 3.5 Недообучение
- 3.6 Переобучение
- 3.7 Регуляризация
- 3.8 Отбор признаков
- 3.9 Параметры алгоритма
- 3.10 Подбора метапараметров
- 3.11 Основные типы алгоритмов
- 3.12 Многоклассовая классификация
- 3.13 Дисбаланс классов

...чем плохо... как бороться (over/undersampling/SMOTE)... http://www.machinelearning.ru/wiki/imachinelearning.ru/wiki

3.14 Ансамбли алгоритмов

3.15 Метрики классификации

Пусть некоторый алгоритм a решает задачу бинарной классификации с классами 0 (негативный) и 1 (позитивный). Тестирование алгоритма a проводится на n объектах, ответы y на которых известны. Пусть TP и TN числа правильно классифицированных позитивных и негативных объектов соответственно. Аналогично, FP и FN - числа неправильно классифицированных позитивных и негативных объектов соответственно.

О качестве алгоритма а можно судить по матрице ошибок:

$$\begin{array}{ccc} & y{=}1 & y{=}0 \\ a{=}1 & TP & FP \\ a{=}0 & FN & TN \end{array}$$

Для оценки качества работы алгоритмов бинарной классификации обычно используются следующие основные метрики:

1. Доля правильных ответов (accuracy): отношение числа правильных ответов к общему количеству. Проста в использовании, но плоха для несбалансированных выборок.

- 2. Точность (precision): TP/(TP+FP) чем ближе значение к 1, тем меньше ложных срабатываний
- 3. Полнота (recall): TP/(TP+FN) чем ближе значение к 1, тем меньше ложных пропусков
- 4. F1-мера: F = 2*P*R/(P+R) усредняет, ловит и точность, и полноту
- 5. F-мера: $F = (1+\beta^2) * P * R/(\beta^2 P + R)$ усредняет, ловит и точность, и полноту
- 6. ROC AUC: площать под ROC кривой. Одна из наиболее популярных метрик в силу своей устойчивости к выбросам.
- 7. PR AUC: площать под ROC кривой. Хороша, когда негативных объектов гораздо больше, чем позитивных.

3.16 Метрики многоклассовой классификации

- 3.17 ROC-AUC метрика
- 3.18 Индекс Джини
- 3.19 Метрики регрессии
- 3.20 Метрики кластеризации
- 3.21 Разложение ошибки алгоритма
- 3.22 Кривые валидации
- 3.23 Кривые обучения
- 3.24 Метрические методы
- 3.25 Метод ближайших соседей
- 3.26 Линейные методы
- 3.27 Линейная регрессия
- 3.28 Логистическая регрессия

...отличие от линейной...

- 3.29 SVM
- 3.30 Ядра и спрямляющие пространства
- 3.31 Решаюшие деревья
- 3.32 Случайный лес

...отличие от беггинга над решающими деревьями...

- 3.33 Градиентный бустинг
- 3.34 Байесовские методы

Нейросети

В данной главе приводится обзор основных понятий и методов, связанных с нейросетями.