Examenul național de bacalaureat 2021 Proba E. c)

Matematică M pedagogic

BAREM DE EVALUARE ȘI DE NOTARE

Testul 6

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$9: \left(\frac{1}{2^3} - (-1)^3\right) = 9: \left(\frac{1}{8} - (-1)\right) = 9: \left(\frac{1}{8} + 1\right) =$	3 p
	$=9\cdot\frac{8}{9}=8$	2p
2.	$f(1) = 3 \Leftrightarrow a - 2 = 3$, de unde obţinem $a = 5$	3p
	$f(-1) = 5 \cdot (-1) - 2 = -7$, deci punctul $B(-1, -7)$ aparține graficului funcției f	2p
3.	$5^{2x-5} = 5^3 \Leftrightarrow 2x-5=3$	3 p
	x = 4	2p
4.	Mulțimea numerelor naturale de o cifră are 10 elemente, deci sunt 10 cazuri posibile	2p
	$3^{n-3} < 1 \Rightarrow n-3 < 0$ și, cum n este număr natural, obținem $n=0$ sau $n=1$ sau $n=2$, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{in the problem}} = \frac{3}{100}$	
	$p = \frac{1}{\text{nr. cazuri posibile}} = \frac{1}{10}$	1p
5.	M(-1,3), unde M este mijlocul segmentului AB	2p
	M este mijlocul segmentului CD , deci $-1 = \frac{1 + x_D}{2}$, $3 = \frac{3 + y_D}{2}$, de unde obținem $x_D = -3$	3 p
6.	$AC = 12\sqrt{2} , MO = 3\sqrt{2}$	2p
	$MO \perp AC$, deci $\mathcal{A}_{\Delta AMC} = \frac{MO \cdot AC}{2} = \frac{3\sqrt{2} \cdot 12\sqrt{2}}{2} = 36$	3p

SUBIECTUL al II-lea (30 de puncte)

1.	$1 \circ (-2) = 1^3 - 1^2 \cdot (-2) - 1 \cdot (-2)^2 + (-2)^3 =$	3 p
	=1+2-4-8=-9	2p
2.	$x \circ y = x^{2}(x-y) - y^{2}(x-y) = (x^{2}-y^{2})(x-y) =$	2p
	$=(x+y)(x-y)(x-y)=(x+y)(x-y)^2$, pentru orice numere reale $x \neq y$	3p
3.	$x \circ y = (x+y)(x-y)^2 = (y+x)(y-x)^2 =$	3 p
	$= y \circ x$, pentru orice numere reale x și y , deci legea de compoziție " \circ " este comutativă	2p
4.	$x \circ (-x) = (x + (-x))(x - (-x))^2 =$	2p
	$=(x-x)(x+x)^2=0$, pentru orice număr real x	3p
5.	$(2x) \circ x = (2x+x)(2x-x)^2 = 3x \cdot x^2 = 3x^3$, pentru orice număr real x	3 p
	$3x^3 = 24 \Leftrightarrow x^3 = 8$, de unde obținem $x = 2$	2p

_				
	6.	$(m+n)(m-n)^2 = 9$, pentru orice numere naturale m și n	2p	Ì
		Cum $m+n$ şi $m-n$ sunt numere naturale, rezultă că $m+n=1$ şi $m-n=3$ sau $m+n=9$ şi $m-n=1$, de unde obținem $m=2$ şi $n=-1$, care nu convin şi $m=5$ şi $n=4$, care	3 p	
		convin		

SUBIECTUL al III-lea (30 de puncte)

1. $ \det A = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 0 \cdot 0 - 1 \cdot 1 = $ $ = 0 - 1 = -1 $ 2. $ B = \begin{pmatrix} 3 & 2 \\ -1 & -3 \end{pmatrix} \Rightarrow 3A - 2B = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} - \begin{pmatrix} 6 & 4 \\ -2 & -6 \end{pmatrix} = $ $ = \begin{pmatrix} -6 & -1 \\ 5 & 6 \end{pmatrix} $ 3. $ B = \begin{pmatrix} -3 & 2 \\ 2 & -3 \end{pmatrix} \Rightarrow A \cdot B = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix} $	3p 2p 3p 2p
2. $B = \begin{pmatrix} 3 & 2 \\ -1 & -3 \end{pmatrix} \Rightarrow 3A - 2B = \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} - \begin{pmatrix} 6 & 4 \\ -2 & -6 \end{pmatrix} =$ $= \begin{pmatrix} -6 & -1 \\ 5 & 6 \end{pmatrix}$	3р
$= \begin{pmatrix} -6 & -1 \\ 5 & 6 \end{pmatrix}$	
	2p
$B = \begin{pmatrix} -3 & 2 \\ 2 & -3 \end{pmatrix} \Rightarrow A \cdot B = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}$	
	3 p
$B \cdot A = \begin{pmatrix} 2 & -3 \\ -3 & 2 \end{pmatrix}, \text{ deci } A \cdot B = B \cdot A$	2 p
4. $B \cdot B = \begin{pmatrix} a^2 + 2b & 2a - 6 \\ ab - 3b & 2b + 9 \end{pmatrix}, \text{ pentru orice numere reale } a \text{ și } b$	3р
$ \begin{pmatrix} a^2 + 2b & 2a - 6 \\ ab - 3b & 2b + 9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Leftrightarrow a = 3 \text{ si } b = -4 $	2p
5. $A - B = \begin{pmatrix} -a & -1 \\ 1 - b & 3 \end{pmatrix} \Rightarrow \det(A - B) = 1 - (3a + b)$, pentru orice numere naturale a şi b	2p
Cum a și b sunt numere naturale nenule, rezultă că $3a + b \ge 4$, deci $\det(A - B) \le 1 - 4 =$	= −3 3p
6. $A \cdot B + B \cdot A = \begin{pmatrix} b+2 & a-3 \\ a-3 & b+2 \end{pmatrix} \Rightarrow \det(A \cdot B + B \cdot A) = (b+2)^2 - (a-3)^2$, pentru orice numere	2p
naturale a și b	
$a = b + 5$, deci det $(A \cdot B + B \cdot A) = (b + 2)^2 - (b + 5 - 3)^2 = 0$	3 p