TRIGONOMETRIE

1) Cosinus et sinus

Dans un triangle ABC rectangle en A,

le cosinus de l'angle aigu \widehat{ABC} est le nombre noté : \widehat{COS} \widehat{ABC} = $\frac{AB}{BC}$ = $\frac{\widehat{côte} \ adjacent}{hypoténuse}$,

et le sinus de l'angle aigu \widehat{ABC} est le nombre noté : sin $\widehat{ABC} = \frac{AC}{BC} = \frac{côt\acute{e}\ oppos\acute{e}}{hypot\acute{e}nuse}$

Exemple:

ABC est un triangle rectangle en B tel que BC = 5 cm et [BH] est la hauteur issue de B. On donne BH = 4 cm. Faire une figure.

- a) Calculer la mesure de l'angle \widehat{ACB} .
- b) Calculer AC, puis AB.

2) Tangente

Dans un triangle ABC rectangle en A, la tangente de l'angle aigu ABC est le nombre noté:

$$\tan \widehat{ABC} = \frac{AC}{AB} = \frac{c\hat{o}t\acute{e}\ oppos\acute{e}}{c\hat{o}t\acute{e}\ adjacent}$$

Remarque:

Le cercle a pour rayon OJ = OA = 1 et (AB) est tangente au cercle en A.

Alors
$$\tan \widehat{HCB} \approx 63^{\circ} = \frac{HB}{HC} = \frac{4}{2} HA \approx \frac{4}{\tan 27^{\circ}} B$$
.
 $\widehat{A} + \widehat{C} = 90^{\circ}$

7,9 cm

Exemple:

BH = 4 cm et CH = 2 cm.

a) Calculer la mesure de l'angle ACB. $\widehat{ACB} = \widehat{HCB}$. Dans le triangle HCB rectangle en H,

Dans le triangle HAB rectangle en H, $\tan \widehat{HAB} = \frac{HB}{HA}$, donc $\tan 27^{\circ} \approx \frac{4}{HA}$.

C

4 cm

Donc HA x tan 27° \approx 4. Donc HA $\approx \frac{4}{\tan 27^{\circ}} \approx 7.9$ cm.

3) Formules de trigonométrie

$$\sin^2 x + \cos^2 x = 1$$
 $\tan x = \frac{\sin x}{\cos x}$ $\cos x = \sin (90^\circ - x)$ $\sin x = \cos (90^\circ - x)$

Construire un triangle ABC rectangle en A tel que $\sin \widehat{ABC} = \frac{1}{2}$. Calculer ensuite cos ABC, puis tan ABC,

 $\sin^2 x + \cos^2 x = 1$, donc $\sin^2 \widehat{ABC} + \cos^2 \widehat{ABC} = 1$.

$$\operatorname{Donc}\left(\frac{1}{2}\right)^{2} + \cos^{2}\widehat{ABC} = 1, \text{ d'où } \cos^{2}\widehat{ABC} = 1 - \left(\frac{1}{2}\right)^{2}. \text{ Donc } \cos\widehat{ABC} = \sqrt{1 - \left(\frac{1}{2}\right)^{2}} = \sqrt{1 - \frac{1}{4}},$$

Car le cosinus d'un angle aigu est toujours positif.

Donc
$$\cos \widehat{ABC} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{\sqrt{4}}$$
. **Finalement** $\cos \widehat{ABC} = \frac{\sqrt{3}}{2}$.

Donc
$$\tan \widehat{ABC} = \frac{\sin \widehat{ABC}}{\cos \widehat{ABC}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{2} \times \frac{2}{\sqrt{3}}$$
. Donc $\tan \widehat{ABC} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$.

4) Tableau des valeurs particulières

	sin	cos	tan
0°	0	1	0
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	1	0	