9 класс

Задание 9-1. «Разминка»

Данное задание состоит из 2 не связанных между собой задач.

Задача 1.1

В вашем распоряжении имеется переменный резистор (его сопротивление R_0 можете задавать произвольным) регулируемый источник напряжения (его напряжение U_0 можете задавать произвольным), идеальный вольтметр, терморезистор. Электрическое сопротивление терморезистора R зависит от температуры t (в градусах Цельсия) в диапазоне от $20^{\circ}C$ до $70^{\circ}C$ по закону

$$R = \frac{a - bt}{t},\tag{1}$$

где $a = 5,2 \cdot 10^4 \, Om \cdot град$, $b = 800 \, Om$ - постоянные величины.

Предложите электрическую схему, позволяющую измерять температуру так, чтобы показания вольтметра в милливольтах равнялись температуре терморезистора в градусах Цельсия. Укажите численные значения сопротивления переменного резистора R_0 и напряжения источника U_0 , которые необходимо использовать в вашей схеме.

Задача 1.2

Для измерения плотности жидкости используется простой прибор, который называется *ареометром*.

В данной задаче рассматривается ареометр, состоящий из сферического баллона, объем которого равен V_0 . К нижней части баллона прикреплена тонкостенная металлическая трубка, внутренний диаметр которой равен D, длина l, с открытым нижним концом и закрытым верхним. К верхней части баллона прикреплен легкий стержень диаметра d.

1.2.1 Ареометр аккуратно вертикально помещают в горячую воду. Ареометр приходит в состояние равновесия, при этом баллон оказывается полностью погруженным в воду, а над поверхностью воды стержень выступает на высоту h. Вода начинает медленно остывать. Что будет происходить с ареометром (всплывать, или погружаться) при остывании воды? Найдите изменение высоты стержня над уровнем воды

 $\frac{\Delta h}{\Delta t^{\circ}}$ при изменении температуры на малую величину Δt° .

1.2.2 Ареометр достают из воды, плотно закрывают нижний конец трубки и опять погружают в горячую воду. Что будет происходить с ареометром (всплывать, или погружаться) при остывании воды в этом случае? Найдите изменение высоты стержня над уровнем воды $\frac{\Delta h}{\Delta t^{\circ}}$ при изменении температуры на малую величину Δt° при закрытой трубке.

Подсказка. При изменении температуры изменение объемов тел подчиняется формуле
$$\Delta V = V_0 \alpha \Delta t^{\circ}. \tag{2}$$

 Γ де V_0 - начальный объем тела, ΔV - изменение объема при изменении температуры на величину Δt° , α - коэффициент теплового расширения вещества. Считайте, что коэффициенты теплового расширения воды α_1 и воздуха α_2 известны, причем $\alpha_2 >> \alpha_1$. Изменением объема всех частей ареометра можно пренебречь. Также считайте, что объем баллона значительно больше объемов трубки и стержня.