

R para Finanzas Guía de Ejercicios 5

Profesor: Víctor Macías E.

```
library(tidyquant)  # Pregunta 1, 2, 3, 6 y 7
library(dplyr)  # Preguntas 2 a 8
library(ggplot2)  # Preguntas 2, 3, 6, 7, y 8
library(ggthemes)  # Pregunta 2
library(lubridate)  # Preguntas 3 y 6
library(kableExtra)  # Preguntas 3 y 5
library(tidyr)
library(forcats)
```

Pregunta 1

Baja datos del precio de la acción de Shell (SHEL), BP (BP), Exxon Mobil Corporation (XOM) y Chevron Corporation (CVX) para el período 02/01/2018 hasta el 11/04/2025 desde Yahoo! Finance.

Pregunta 2

Construye un gráfico de líneas que muestre la evolución del precio de cierre.

Ejercicio 1: Representa cada acción por una línea de un color diferente

```
stock_prices |>
  ggplot(aes(x = date, y = close, col = symbol)) +
  geom_line() +
  theme_minimal()
```

Ejercicio 2: Representa cada acción por un tipo de línea diferente

```
stock_prices |>
  ggplot(aes(x = date, y = close, linetype = symbol)) +
  geom_line() +
  theme_minimal()
```

Ejercicio 3: Representa cada acción por una línea de un color diferente que es seleccionado manualmente

Ejercicio 4: Representa cada acción separadamente, permitiendo que el eje X sea el mismo para las cuatro acciones

```
stock_prices |>
  ggplot(aes(x = date, y = close)) +
  geom_line(col = "#790808") +
  labs(title = "Evolución diaria de los precios de cierre",
      subtitle = "2018-2025",
      caption = "Fuente: Elaboración propia en base a datos de Yahoo Finance.",
      x = "Fecha",
```

```
y = "Precio de cierre (en dólares)") +
facet_grid(rows = vars(symbol), scales = "free_y") +
theme_minimal()
```

Ejercicio 4.1: ¿Cómo cambia el gráfico si geom_line(aes(col = symbol))?

Ejercicio 4.2: Usa otros themes. Por ejemplo, theme_tq del paquete tidyquant.

A continuación se usa theme_economist() del paquete ggthemes.

Pregunta 3

Construye un gráficos de velas (candlestick), usando geom_candlestick(). Sólo incluye precios a contar del 3 de marzo de 2025.

Para entender mejor este tipo de gráficos, a continuación se presentan los precios de las acciones correspondientes al 07 y 08 de abril de 2025:

Symbol	Date	Open	High	Low	Close
SHEL	2025-04-07	60.43	64.12	60.33	62.32
SHEL	2025-04-08	63.14	63.56	59.01	59.75
BP	2025-04-07	26.80	28.33	26.43	27.17
BP	2025-04-08	27.90	27.91	25.75	26.11
XOM	2025-04-07	100.39	105.80	98.46	102.94
XOM	2025-04-08	105.46	105.60	99.01	100.77
CVX	2025-04-07	138.73	146.19	137.29	140.15
CVX	2025-04-08	144.15	144.49	134.87	136.93

Calcule el retorno diario de cada acción, usando el retorno aritmético.

```
# Cálculo de retornos diarios
retornos_diarios <- stock_prices |>
```

```
group_by(symbol) |>
mutate(daily_retorno = ((close - lag(close))/lag(close))*100) |>
ungroup()
```

Construye una tabla donde se muestre el número de observaciones, media aritmética, desviación estándar, valor mínimo, percentil 5, percentil 25, percentil 50 (mediana), percentil 75 y valor máximo de los retornos diarios para cada una de las acciones. Interpreta el valor de los percentiles 5 y 95.

```
retornos_diarios |>
  group_by(symbol) |>
  summarise(
    n = n(), # Número de observaciones
  mean = mean(daily_retorno, na.rm = TRUE), # Media aritmética
  sd = sd(daily_retorno, na.rm = TRUE), # Desviación estándar
  min = min(daily_retorno, na.rm = TRUE), # Mínimo
  p05 = quantile(daily_retorno, 0.05, na.rm = TRUE), # Percentil 5
  p25 = quantile(daily_retorno, 0.25, na.rm = TRUE), # Percentil 25 o primer cuartil
  p50 = median(daily_retorno, na.rm = TRUE), # Percentil 50 o segundo cuartil
  p75 = quantile(daily_retorno, 0.75, na.rm = TRUE), # Percentil 75 o tercer cuartil
  p95 = quantile(daily_retorno, 0.95, na.rm = TRUE),
  max = max(daily_retorno, na.rm = TRUE)) |> # Máximo
  kbl(booktabs = T, digits = 3, linesep ="", escape = FALSE) |>
  kable_styling(font_size = 10, latex_options = c("striped", "hold_position"))
```

symbol	n	mean	sd	min	p05	p25	p50	p75	p95	max
BP	1830	-0.002	2.154	-19.104	-3.177	-0.998	0.000	0.943	2.999	21.605
CVX	1830	0.024	2.036	-22.125	-2.797	-0.845	0.084	0.929	2.843	22.741
SHEL	1830	0.017	2.089	-17.172	-2.902	-0.944	0.046	0.949	3.006	19.679
XOM	1830	0.030	1.961	-12.225	-2.998	-0.996	0.009	1.068	3.031	12.687

Pregunta 6

Construye un gráfico de líneas que muestre la evolución de los retornos diarios de las cuatro acciones en el período 02/01/2020 al 08/04/2025.

Construye un histograma de los retornos diarios.

Pregunta 8

Construye un diagrama de caja que muestre la distribución de los retornos diarios.

```
subtitle = "2018-2025",
    caption = "Fuente: Elaboración propia en base a datos de Yahoo Finance.",
    x = NULL,
    y = "Retorno diario (%)") +
    coord_flip() +
    theme_minimal()
```

Calcula la matriz de correlación de los retornos diarios de las 4 empresas.

```
retornos_diarios |>
  select(date, symbol, daily_retorno) |>
  pivot_wider(names_from = symbol, values_from = daily_retorno) |>
  select(-date) |>
  cor(use = "complete.obs")
```

Pregunta 10

Construye un gráfico de dispersión ($scatter\ plot$) que muestre la relación entre los retornos diarios de BP y CVX.

Construye un gráfico de barras que muestre el promedio de los retornos diarios por mes y compañía.

```
retornos_diarios |>
  mutate(
         month = month(date, label = TRUE, abbr = FALSE)) |>
  group_by(symbol, month) |>
  summarise(nobs = n(),
            retorno_promedio = mean(daily_retorno, na.rm = TRUE)) |>
  ungroup() |>
  ggplot(aes(x = fct rev(month), y = retorno promedio, fill = symbol)) +
  geom_bar(stat = "identity",
           position = position_dodge2(preserve = "single", padding = 0.1)) +
  labs(title = "Promedios mensuales de los retornos diarios",
       subtitle = "2019-2025",
       caption = "Fuente: Elaboración propia en base a datos de Yahoo Finance.",
       x = NULL
       y = "Promedio de retorno diario (%)") +
  scale_fill_brewer(name = NULL, palette = "Set2") +
  coord_flip() +
  theme_minimal() +
  theme(legend.position = "top")
```

Pregunta 12

Construye un gráfico de barras donde se muestre el día de la semana con un mayor porcentaje de días con retornos negativos.