Week 2: Multiple Regression, Training Exercises

Coursera/Erasumus U., Econometric Methods and Applications

Anthony Nguyen

Training Exercise 2.4.1

Questions

By solving the questions of this exercise, you provide a proof of the Gauss-Markov theorem. We use the following notation:

- The OLS estimator is $b = A_0 y$, where $A_0 = (X'X)^{-1} X'$.
- Let $\hat{\beta} = Ay$ be linear, unbiased, with $A(k \times n)$ matrix.
- Define the difference matrix $D = A A_0$.
- (a) Prove the following three results:
 - (i) $var(\hat{\beta}) = \sigma^2 A A'$.
- (ii) $\hat{\beta}$ unbiased implies AX = I and DX = 0.
- (iii) Part (ii) implies $AA' = DD' + (X'X)^{-1}$.
- (b) Prove that part (a-iii) implies $var(\hat{\beta}) = \sigma^2 DD'$.
- (c) Prove that part (b) implies $var(\hat{\beta}) var(b)$ is positive semidefinite (Gauss-Markov).
- (d) Prove that $var(\hat{\beta}) \geq var(b_j)$ for every $j = 1, \dots, k$.

Answers

(a) Prove the following three results:

(i)
$$var(\hat{\beta}) = \sigma^2 A A'$$
.

Given that $y = X\beta + \varepsilon$, then we find that:

$$\hat{\beta} = Ay$$

$$= A(X\beta + \varepsilon)$$

$$= AX\beta + A\varepsilon$$

Now given that A, X, and β are fixed and $E(\varepsilon) = 0$, we find that:

$$E(\hat{\beta}) = AX\beta + AE(\varepsilon)$$

$$= AX\beta$$

$$var(\hat{\beta}) = E((\hat{\beta} - E(\hat{\beta}))(\hat{\beta} - E(\hat{\beta}))')$$

$$= E(A\varepsilon(A\varepsilon)')$$

$$= E(A\varepsilon\varepsilon'A')$$

$$= AE(\varepsilon\varepsilon'A')$$

$$= AG^2IA'$$

$$= \sigma^2AA'$$

- (ii) $\hat{\beta}$ unbiased implies AX = I and DX = 0.
- $E(\hat{\beta})$ is unbiased if $AX\beta = \beta$ for all β , or:

$$DX = (A - A_0)X$$

$$= AX - A_0X$$

$$= I - (x'x)^{-1}X'X$$

$$= I - I$$

$$= 0$$

(iii) Part (ii) implies $AA' = DD' + (X'X)^{-1}$.

$$AA' = (D + A_0)(D + A_0)'$$

$$= DD' + A_0D' + DA'_0 + A_0A'_0$$

$$DA'_0 = DX(X'X)^{-1} = 0 \cdot (X'X)^{-1} = 0$$

$$A_0D' = (DA'_0)^{-1} = 0$$

$$AA' = DD' + A_0A'_0$$

$$= DD' + (X'X)^{-1}X'X(X'X)^{-1}$$

$$= DD' + (X'X)^{-1}$$

(b) Prove that part (a-iii) implies $var(\hat{\beta}) = \sigma^2 DD'$.

Given that $var(b) = \sigma^2(X'X)^{-1}$, we find that:

$$var(\hat{\beta}) = \sigma^2 A A'$$

$$= \sigma^2 (DD' + (X'X)^{-1})$$

$$= \sigma^2 DD' + \sigma^2 (X'X)^{-1}$$

$$= \sigma^2 DD' + var(b)$$

(c) Prove that part (b) implies $var(\hat{\beta}) - var(b)$ is positive semidefinite (Gauss-Markov).

From (b) we've seen that $var(\hat{\beta}) - var(b) = \sigma^2 DD'$. Given that $\sigma^2 > 0$, then it remains to be shown that DD' is positive semidefinite (p.s.d.):

D is a $(k \times n)$ matrix D' is a $(n \times n)$ matrix c is a $(n \times 1)$ vector d = D'c is a $(n \times 1)$ vector with components d_1, \ldots, d_n

$$\therefore c'DD'c = (D'c)'D'c$$

$$= d'd$$

$$= \sum_{i=1}^{n} d_i^2 \ge 0 \text{ proving that } DD' \text{ is p.s.d.}$$

(d) Prove that $var(\hat{\beta}) \geq var(b_j)$ for every $j = 1, \dots, k$.

Let c_j be the $(k\ge 1)$ j^{th} unit vector, which means c_j can be re-written as:

$$c_j = egin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
 with the single element 1 at the j^{th} entry

from c we obtain that:

$$c'_j(var(\hat{\beta}) - var(b))c_j = \sigma^2 c'_j DD'c_j \ge 0$$

hence:

$$c_j'var(\hat{\beta})c_j \ge c_j'var(b)c_j$$

or equivalently:

$$var(c_j'\hat{\beta}) \ge var(c_j'b)$$

As $c_j'\hat{\beta} = \hat{\beta_j}$ and $c_j'b = b_j$, it follow that:

$$var(\hat{\beta}_j) \ge var(b_j)$$
 for every $j = 1, \dots, n$