Discover top science with free access to our new journals

Biomaterials Science

Brings together the molecular and mesoscopic interactions of biomaterials and their potential applications www.rsc.org/biomaterialsscience

Materials Horizons

The home for rapid reports of exceptional significance on innovative materials

http://rsc.li/materials-horizons

Environmental Science: Nano

Cutting-edge research on the interactions of nanomaterials with biological and environmental systems http://rsc.li/es-nano

Inorganic Chemistry Frontiers

An international journal developed by the Chinese Chemical Society and Peking University.

Publishes high quality work on inorganic and organometallic molecules and solids with explicit applications

http://rsc.li/frontiers-inorganic

Organic Chemistry Frontiers

An international journal developed by the Chinese Chemical Society and the Shanghai Institute of Organic Chemistry. Publishes high impact work from all disciplines of organic chemistry http://rsc.li/frontiers-organic

Register for free access:

www.rsc.org/free_access_registration

Showcasing research from T. W. Hudnall's Research Laboratory, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas USA

Phosphaalkene vs. phosphinidene: the nature of the P−C bond in carbonyl-decorated carbene → PPh adducts

Carbonyl-decorated carbenes afford phosphaalkenes: Carbonyl moieties can act as pulleys in carbene \rightarrow PPh adducts by pulling electron density away from the phosphorus centre. This enhances π -bond character, and results in a shortening of the P–C interaction.

