CS528 Interconnection Network of HPC

A Sahu

Dept of CSE, IIT Guwahati

Outline

- Multi-node Architecture
 - Static Network: Parameters and Performance
 - Dynamic Network
 - Interconnection and Topology Embedding
- Amdhal's Law
- Cilk

Bus interconnection/Shared Memory

Switched Networks

BUS

- Shared media
- Lower Cost
- Lower throughput
- Scalability poor

Switched Network

- Switched paths
- Higher cost
- Higher throughput
- Scalability better

Interconnection Networks

- Topology: who is connected to whom?
- Direct / Indirect : where is switching done ?
- Static / Dynamic : when is switching done ?
- Circuit switching / packet switching : how are connections established ?

Interconnection Networks

- Store & forward / worm hole routing : how is the path determined ?
- Centralized / distributed : how is switching controlled ?
- Synchronous/asyn: mode of operation?

Direct and Indirect Networks

DIRECT

INDIRECT

Static and Dynamic Networks

- Static Networks
 - fixed point to point connections
 - usually direct
 - each node pair may not have a direct connection
 - routing through nodes
- Dynamic Networks
 - connections established as per need
 - usually indirect
 - path can be established between any pair of nodes
 - routing through switches

Dynamic Network

Direct and Indirect Networks

DIRECT

INDIRECT/Dynamic

Dynamic Networks

building block for multi-stage dynamic networks

Baseline Network

blocking can occur

Diameter=Num Stage= $Log_{\kappa}N$

24 links but 8C2=28

Baseline Network: Blocking

blocking can occur

Benes Network

non-blocking

Diameter=Num Stage=2Log_KN-1

Static Network

Static Network Topologies

Non-uniform connectivity

2D-Mesh

Tree

Static Networks Topologies- contd.

Uniform connectivity

Ring

Fully Connected

Torus

Fat Tree Network

Switch / Network Topology

Quality of Topology based on:

Degree: number of links from a node

 Diameter: max number of links crossed between two nodes

Average distance: number of links to random destination

Switch / Network Topology

Quality of Topology based on:

 Bisection: minimum number of links that separate the network into two halves

 Bisection bandwidth = link bandwidth * bisection

Bisection Bandwidth

- Bandwidth across smallest cut that divides network into two equal halves
- Bandwidth across "narrowest" part of the network

bisection bw= link bw

bisection bw = sqrt(n) * link bw

 BB important for algorithms in which all processors need to communicate with all others

Linear Array

- Diameter = n-1
- Average distance ~n/3
- Bisection bandwidth = 1 (in units of link bandwidth)

Ring /Ring Torus

- Diameter = n/2
- Average distance = n/4
- Bisection bandwidth = 2
- Natural for Algo that work with 1D arrays

Meshes

- Diameter
 - = 2*(sqrt(n) 1)
- Bisection Bandwidth
 - = sqrt(n)

- Generalizes to higher dimensions
- Natural for algorithms that work with 2D and/or 3D arrays

2D Torus

Two dimensional torus

- Diameter = sqrt(n)
- Bisection BW = 2*sqrt(n)

- Generalizes to higher dimensions
- Natural for algorithms that work with 2D and/or 3D arrays

Mesh/Torus

2D mesh

Diameter $\Theta(\sqrt{n})$ Bisection width $\Theta(\sqrt{n})$

Hyper-cubes

- Number of nodes n = 2d for dimension d
 - Diameter = d = Log(N)

- Bisection bandwidth = n/2

- Popular in early machines (Intel iPSC, NCUBE, CM)
- Grey code addressing:
 - Each node connected to others with 1 bit different

Hypercube

Trees

- Diameter = log n.
- Bisection bandwidth = 1
- Easy layout as planar graph
- Many tree algorithms (e.g., summation)

Fat-Trees

- Fat trees avoid bisection bandwidth problem of tree:
 - -More (or wider) links near top
 - -Example: Thinking Machines CM-5

Common Topologies

Туре	Degree	Diameter	Ave Dist	Bisection
1D mesh	2	N-1	N/3	1
2D mesh	4	2(N ^{1/2} - 1)	$2N^{1/2} / 3$	$N^{1/2}$
3D mesh	6	$3(N^{1/3}-1)$	$3N^{1/3} / 3$	$N^{2/3}$
nD mesh	2n	n(N ^{1/n} - 1)	$nN^{1/n}$ / 3	N (n-1) / n
Ring	2	N/2	N /4	2
2D torus	4	$N^{1/2}$	$N^{1/2} / 2$	2N ^{1/2}
Hypercu	be Log ₂ N	n=Log ₂ N	n/2	N/2
2D Tree	3	2Log ₂ N	~2Log ₂ N	1
Crossba	r N-1	1	1	N ² /2

N = number of nodes, n = dimension

Hierarchical (Multilevel) Networks

We have already seen several examples of hierarchical networks: multilevel buses

Hierarchical or multilevel bus network.

Ring of Ring

Rings are simple, but have low performance and lack robustness

A 64-node ring-of-rings architecture composed of eight 8-node local rings and one second-level ring.

Slide 33

2.5D and 3D MESH

3D and 2.5D physical realizations of a 3D mesh.

Stronger and Weaker Connectivities MESH

Eight-neighbor and hexagonal (hex) meshes.

As in higher-dimensional meshes, greater connectivity does not automatically translate into greater performance

Area and signal-propagation delay penalties must be factored in

Simplification via Link Orientation

Two in- and out-channels per node, instead of four

With even side lengths, the diameter does not change

Some shortest paths become longer, however

Can be more cost-effective than 2D mesh

4 × 4 Manhattan street network.

A Sahu Slide 36

Using a Single Global Bus

Mesh with a global bus

The single bus increases the bisection width by 1

Broadcast the result to all nodes (one step)