ÜBUNGEN ZU "C*-ALGEBREN UND K-THEORIE" ÜBUNGSBLATT 4 ABGABE: 14.11.2016

VL: PD DR. A. ALLDRIDGE; ÜBUNGEN: CH. MAX, MSC, D. OSTERMAYR, MSC

Aufgabe 1. (5 Punkte)

(a) Seien (\mathcal{H}_j, π_j) , j = 1, 2, *-Darstellungen von A mit zyklischen Vektoren ψ_j , j = 1, 2. Zeigen Sie: Genau dann gibt es eine unitären Operator $U : \mathcal{H}_1 \longrightarrow \mathcal{H}_2$ mit $U\psi_1 = \psi_2$ und $\pi_2(a)U = U\pi_1(a)$ für alle $a \in A$, wenn

$$\langle \psi_1 \mid \pi_1(a)\psi_1 \rangle = \langle \psi_2 \mid \pi_2(a)\psi_2 \rangle, \quad \forall a \in A.$$

(b) Sei (\mathcal{H}, π) eine *-Darstellung von A mit zyklischem Vektor ψ . Definiere

$$\phi(a) := \langle \psi \mid \pi(a)\psi \rangle, \quad \forall a \in A.$$

Bestimmen Sie die *-Darstellung $(\mathcal{H}_{\phi}, \pi_{\phi})$ und den Vektor ψ_{ϕ} .

Aufgabe 2. Sei A eine unitale C^* -Algebra. Sei G(A) die Gruppe der invertierbaren (5 Punkte) Elemente in A und U(A) die Untergruppe der unitären Elemente. Sei $G_0(A)$ die Menge der $g_0 \in G(A)$, so dass es einen stetigen Pfad

$$g:[0,1]\longrightarrow G(A)$$

gibt mit $g(0) = g_0$ und g(1) = 1. Analog sei $U_0(A)$ die Menge der $u_0 \in U(A)$, so dass es einen stetigen Pfad $u : [0, 1] \longrightarrow U(A)$ mit $u(0) = u_0$ und u(1) = 1 gebe. Zeigen Sie:

- (a) Für $g \in G(A)$ ist $u = g|g|^{-1} \in U(A)$ und $|g|^{-1} \in G_0(A)$.
- (b) Es gilt

$$G_0(A) \cap U(A) = U_0(A).$$

- (c) Es ist $G_0(A)$ eine normale Untergruppe von G(A), d.h. G_0 ist eine Untergruppe und aus $g_0 \in G_0(A)$ und $g \in G(A)$ folgt $gg_0g^{-1} \in G_0(A)$. Analog gilt: $U_0(A)$ ist eine normale Untergruppe von U(A).
- (d) Die Inklusionsabbildung $U(A) \longrightarrow G(A)$ induziert einen Isomorphismus von Gruppen

$$U(A)/U_0(A) \cong G(A)/G_0(A)$$
.