

Essential Pre-Uni Physics H7.1

Complete the questions in the table. Give your answers to 2 significant figures.

Magnetic flux density / ${ m T}$	Area of coil	Angle between plane of coil and magnetic field lines / $^{\circ}$	Number of turns	Magnetic flux linkage / Wb turns
2.0	$2.0\mathrm{m} imes 1.0\mathrm{m}$	90	40	(a)
0.00232	$5.0\mathrm{cm} imes 5.0\mathrm{cm}$	60	2400	(b)

Part A First row

a) What is the magnetic flux linkage?

Part B Second row

b) What is the magnetic flux linkage?

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Essential Pre-Uni Physics H7.4

Part A Rate of change of flux linkage

Calculate the rate of change in the magnetic flux linkage in a $400\,\mathrm{turn}$ coil of area $3.0\times10^{-4}\,\mathrm{m}^2$ when the magnetic field is reduced from $0.20\,\mathrm{T}$ to zero in $0.40\,\mathrm{s}$. Assume that the field lines are perpendicular to the plane of the coil.

Part B Induced voltage

What is the voltage induced across the coil? Give your answer to 2 significant figures.

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Essential Pre-Uni Physics H7.5

Complete the questions in the table. Give your answers to 2 significant figures.

Initial flux linkage / Wb turns	Final flux linkage / Wb turns	Time taken for flux to change / s	Voltage induced /
30	60	0.2	(a)
200	0	(b)	400

Part A Voltage induced

a) What is the induced voltage to 2 significant figures?

Part B Time taken for flux to change

b) What is the time taken for the flux to change to 2 significant figures?

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Essential Pre-Uni Physics H7.6

Part A Induced voltage

a) A single turn coil of $10\,\mathrm{cm}\times5.0\,\mathrm{cm}$ sits, <u>stationary</u>, in a $21000\,\mathrm{T}$ magnetic field, at right angles to the plane of the coil. What is the voltage induced across the ends of the wire?

Part B Increasing the area

b) The coil is made using flexible wiring. The coil area is increased steadily to $10\,\mathrm{cm} \times 10\,\mathrm{cm}$ by stretching it over the course of $0.020\,\mathrm{s}$. Calculate the voltage induced across the ends of the wire.

Part C Field parallel to the wires

c) What would the answer to part (b) have been if the magnetic field were parallel to the sides of the coil which were originally $5.0\,\mathrm{cm}$ long?

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Gameboard Physics Fields Magnetic Fields Electromagnetic Induction - Moving Wire 21.1

Electromagnetic Induction - Moving Wire 21.1

Figure 1: A wire is moved through the magnetic field. The magnetic field is perpendicular to both the wire and the velocity.

Quantities:

B magnetic flux density (T)

u speed of wire (m s⁻¹)

w distance moved by wire (m)

V induced voltage (V)

L wire length (m)

t time taken (s)

A area swept through (m^2)

q charge of carriers (C)

 F_{B} magnetic force (N)

 F_{E} electric force (N)

E electric field (N C^{-1})

Equations:

$$A=Lw$$
 $w=ut$ $V=rac{\mathrm{d}(BA)}{\mathrm{d}t}=rac{BA}{t}$ $F_{\mathsf{B}}=quB$ $F_{\mathsf{E}}=qE$ $E=V/L$

Use the equations above to write down expressions for:

1 of 3

Part A Area swept out

the area A swept through by the wire using u, Δt and L.

The following symbols may be useful: A, Delta t, L, ${\tt u}$

Part B Magnetic flux cut

the magnetic flux BA cut by the wire using u, Δt and L.

The following symbols may be useful: A, B, Delta t, L, u

Part C Rate of flux cutting

the rate of cutting flux d(BA)/dt.

The following symbols may be useful: A, A, B, B, Derivative(_, t), E, L, V, q, t, u

Part D Voltage induced in the wire

the voltage ${\cal V}$ induced in the wire by Faraday's Law.

The following symbols may be useful: A, B, E, L, V, q, t, u

Part E Magnetic force on a charge q inside the wire

the magnetic force on a charge q inside the wire.

The following symbols may be useful: A, B, E, F, L, V, q, t, u

Part F Equivalent electric field

the strength of an electric field E along the wire that could produce the same force on the charge.

The following symbols may be useful: A, B, E, L, q, t, u

Part G Voltage between wire ends

the voltage V that would exist between the ends of the wire, if that electric field was uniform.

The following symbols may be useful: A, B, E, L, V, q, t, u

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

3 of 3

<u>Home</u> <u>Gameboard</u> Physics Fields Magnetic Fields Electromagnetic Induction - Rotating Coil 22.1

Electromagnetic Induction - Rotating Coil 22.1

A generator contains a coil of wire rotating uniformly in a uniform magnetic field.

Quantities:

 ε EMF (V)

N number of turns

 ϕ magnetic flux (Wb)

B flux density (T)

 A_0 coil area (m^2)

t time (s)

A component of coil area linking

flux (m^2)

 ω angular frequency (rad s⁻¹)

Subscript _{rms} represents root mean

square values

 $rac{\mathrm{d}}{\mathrm{d}t}$ means $\emph{rate of change of a}$

quantity

Equations:

$$arepsilon = -Nrac{\mathrm{d}\phi}{\mathrm{d}t} \qquad \quad \phi = BA \qquad \quad A = A_0\cos\omega t$$

$$arepsilon_{\mathsf{rms}} = \sqrt{\left(arepsilon^2
ight)_{\mathsf{mean}}} \qquad rac{\mathrm{d}\cos\omega t}{\mathrm{d}t} = -\omega\sin\omega t$$

Use the equations above to derive expressions for:

Part A Magnetic flux

the magnetic flux ϕ in terms of B, A_0 and t.

The following symbols may be useful: A_0, B, cos(), omega, phi, sin(), t, tan()

Part B EMF

the EMF ε in terms of B, A_0 , N, ω and t.

The following symbols may be useful: A_0, B, N, cos(), epsilon, omega, sin(), t, tan()

Part C Maximum EMF

the maximum EMF ε_{max} .

The following symbols may be useful: A_0, B, N, cos(), epsilon_max, omega, sin(), t, tan()

Part D RMS EMF

the root mean squared EMF $\varepsilon_{\rm rms}$ in terms of $\varepsilon_{\rm max}$.

The following symbols may be useful: epsilon_max, epsilon_rms

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

2 of 2

Electromagnetic Induction - Rotating Coil 22.3 Home Gameboard Physics Fields Magnetic Fields

Electromagnetic Induction - Rotating Coil 22.3

A $5.00\,\mathrm{cm}$ long square coil with 10 turns is slowly rotated in a magnetic field of $80.0\,\mathrm{mT}$ at a rate of $20.0\,\mathrm{rpm}$

(revolutions per minute). Calculate				
Part A Angular frequency				
Calculate the angular frequency in ${ m rad}{ m s}^{-1}.$				
Part B EMF induced				
Calculate the magnitude of the EMF induced $1.00\mathrm{s}$ after the EMF was zero.				
Part C Maximum EMF induced				
The magnitude of the maximum EMF induced.				

Gameboard:

STEM SMART Physics 41 - School of Fields - Induction

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Essential Pre-Uni Physics H8.9

All transformers are perfectly efficient unless you are told otherwise.

Calculate the current in the load fed by the secondary of a 90% efficient step down transformer where the primary has $50\times$ as many turns as the secondary, and where the primary current is $5.0\,\mathrm{A}$? Give your answer to 3 significant figures.

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.