Introduction to Data Science Assignment 2 (Group 3)

Kartikey Sharma, Leire Unciti, Aviral Jain, Denice Wikström, Alexander Ares Nilsson

November 08, 2024

1 Consider a supervised learning problem where we assume that Y|X is Poisson distributed. That is, the conditional density of Y|X is given by:-

$$f_{Y|X}(y,x) = \frac{\lambda^y e^{-\lambda}}{v!}, \lambda(x) = exp(\alpha x + \beta)$$

Here α is a vector (slope) and β is a number (intercept). Follow the calculations from Section 4.2.1 to derive a loss that needs to be minimized with respect to α and β . Note: do we really need the factorial term?

Solution

The negative log-likelihood is given by:

$$= -\sum_{i=1}^{n} ln(f_{X,Y}(X_i, Y_i))$$

$$= -\sum_{i=1}^{n} \ln(f_{Y|X}(Y_i|X_i)) - \sum_{i=1}^{n} \ln(f_X(X_i))$$

$$= -\sum_{i=1}^{n} \ln(\frac{\lambda^{Y_i} e^{-\lambda}}{Y!}) - \sum_{i=1}^{n} \ln(f_x(X_i))$$

To minimize the loss with respect to α and β we can ignore both F_x and Y! as they do not depend on the parameters.

$$= -\sum_{i=1}^{n} ln(\lambda^{Y_i} e^{-\lambda})$$

$$= -\sum_{i=1}^{n} Y_i . ln(\lambda) - \lambda = \sum_{i=1}^{n} \lambda - Y_i . ln(\lambda) = \sum_{i=1}^{n} e^{\alpha X_i + \beta} - Y_i (\alpha X_i + \beta)$$

+

The loss function to minimize is: $\sum_{i=1}^{n} e^{\alpha X_i + \beta} - Y_i(\alpha X_i + \beta)$

2 Let $X_1,...,X_n$ be IID from Uniform $(0,\theta)$. Let $\hat{\theta} = \max(X_1,...,X_n)$. First, find the distribution function of $\hat{\theta}$. Then compute the bias $(\hat{\theta})$, se $(\hat{\theta})$ and MSE $(\hat{\theta})$.

Solution

CDF of $\hat{\theta}$

 $=F_{\hat{\theta}}(x)$

$$= P(\hat{\theta} \le x)$$

$$= P(max(X_1, X_2, ..., X_n) \le x)$$

= We know
$$X_i \sim Uniform(0,\theta) = F_{X_i}(x) = P(X_i \leq x) = \frac{x}{\theta}$$
 for $0 \leq x \leq \theta$

Since X_i are IID

$$= P(max(X_1,, X_n) \le x)$$

$$= P(X_1 \le x)....P(X_n \le x)$$

Therefore
$$F_{\hat{\theta}}(x) = \begin{cases} 0, x < 0 \\ (\frac{x}{\theta})^n, 0 \le x \le n \\ 1, x > \theta \end{cases}$$

PDF of $\hat{\theta}$

$$=f_{\hat{\theta}}(x)=\frac{d}{dx}F_{\hat{\theta}}(x)=\frac{n}{\theta^n}x^{n-1},\,0\leq x\leq \theta$$

 $\mathrm{E}[\hat{\theta}]$

$$=\textstyle \int_0^\theta x.f_{\hat{\theta}}(x)dx=\frac{n}{\theta^n}\textstyle \int_0^\theta x^ndx=\frac{n}{\theta^n}[\frac{x^{n+1}}{n+1}]_0^\theta=\frac{n\theta}{n+1}$$

 $E[\hat{\theta}^2]$

$$= \int_0^\theta x^2 f_{\hat{\theta}}(x) dx = \int_0^\theta x^2 \cdot \frac{n}{\theta^n} \cdot x^{n-1} dx = \frac{n}{\theta^n} \int_0^\theta x^{n+1} dx = \frac{n\theta^2}{n+2}$$

$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta = \frac{n\theta}{n+1} - \theta = -\frac{\theta}{n+1}$$

$$SE(\hat{\theta}) = \sqrt{E[\hat{\theta}^2] - (E[\hat{\theta}])^2} = \sqrt{\frac{n\theta^2}{n+2} - \frac{n^2\theta^2}{(n+1)^2}} = \sqrt{\theta^2(\frac{n}{n+2} - \frac{n^2}{(n+1)^2})}$$

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias(\hat{\theta})^2 = \theta^2 \left(\frac{n}{n+2} - \frac{n^2}{(n+1)^2}\right) + \frac{\theta^2}{(n+1)^2}$$

3 Consider the continuous distribution with density.

$$p(x) = \frac{1}{2}cos(x), -\frac{\pi}{2} < x < \frac{\pi}{2}.$$

- (a) Find the distribution function F.
- (b) Find the inverse distribution function F^{-1} .
- (c) To sample using an Accept-Reject sampler, Algorithm 1, we need to find a density g such that $p(x) \leq Mg(x)$ for some M > 0. Find such a density g and find the value of M.

Solution

(a) CDF
$$F(x)$$
 can be calculated as

$$=\int_{-\pi/2}^{x}p(t)dt$$

$$= \int_{-\pi/2}^{x} \frac{1}{2} \cos(t) dt$$

$$F_{X}(x) = \begin{cases} 0 \\ 1/2(\sin(x) + 1), -pi/2 < = x <= pi/2 \\ 1 \end{cases}$$

- $= \left[\frac{1}{2}sin(t)\right]_{-\pi/2}^{x}$ $= \frac{1+sin(x)}{2}$
- (b) To find the inverse distribution $F^{-1}(y)$

Let y = F(x)

$$\implies$$
 y = 1+sin(x)/2

$$\implies$$
 2y = 1 + sin(x)

$$\implies$$
 (2y - 1) = $\sin(x)$

$$\implies$$
 x = arcsin(2y - 1)

so,

$$F^{-1}(y) = arcsin(2y - 1)$$
 domain?

- (c) We know that $\max(p(x)) = \frac{1}{2}$
- g(x) can be a uniform distribution over the interval $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ where $g(x) = \frac{1}{\pi}$ (since this integrates to 1 over the interval)

We want $p(x) \leq Mg(x)$ which implies:-

$$\implies 1/2\cos(\mathbf{x}) \le M.1/\pi$$

$$\Longrightarrow$$
 M $\geq \frac{\pi}{2}$

So,
$$g(x) = \frac{1}{\pi}$$
 and $M = \frac{\pi}{2}$

4 Let $Y_1,Y_2,...,Y_n$ be a sequence of IID discrete random variables, where $\mathbb{P}(Y_i=0)=0.1, \ \mathbb{P}(Y_i=1)=0.3, \ \mathbb{P}(Y_i=2)=0.2, \ \text{and} \ \mathbb{P}(Y_i=3)=0.4.$ Let $X_n=\max\{Y_1,...,Y_n\}$. Let $X_0=0$ and verify that $X_0,X_1,...,X_n$ is a Markov chain. Find the transition matrix P.

Solution

We are given a sequence of discrete random variables Y_1, Y_2, Y_n with probabilities

$$P(Y_i = 0) = 0.1$$

$$P(Y_i = 1) = 0.3$$

$$P(Y_i = 2) = 0.2$$

$$P(Y_i = 3) = 0.4$$

A sequence $X_n = max\{Y_1, ..., Y_n\}$ where $X_0 = 0$. We want to show that $X_0, X_1, ..., X_n$ is a Markov chain and find the transition matrix P for this chain. Possible states of X_n are 0,1,2,3 matching the range of values that Y_i can take. Since $X_{n+1} = max(X_n, Y_{n+1})$, the next state X_{n+1} depends only on the current state X_n and the value of Y_{n+1} . This satisfies the Markov property. Let's define the transition matrix P where $P_j = P(X_{n+1} = j | X_n = i)$ for $i, j \in \{0, 1, 2, 3\}$

7

Case
$$i = 0$$

 $X_n = 0$. Since $X_{n+1} = max\{0, Y_{n+1}\} = Y_{n+1}$. The distribution of X_{n+1} is the same as the distribution of Y.

$$P_{0j} = P(X_{n+1} = j | X_n = 0) = P(Y = j)$$

$$P_{00} = 0.1$$

$$P_{01} = 0.3$$

$$P_{02} = 0.2$$

$$P_{03} = 0.4$$

Case i = 1

$$X_n = 1 \text{ then } X_{n+1} = max\{1, Y_{n+1}\}$$

if
$$Y_{n+1} = 0$$
 then $X_{n+1} = 1$

if
$$Y_{n+1} = 1$$
 then $X_{n+1} = 1$

if
$$Y_{n+1} = 2$$
 then $X_{n+1} = 2$

if
$$Y_{n+1} = 3$$
 then $X_{n+1} = 3$

This means:

$$P_{10}=0$$

$$P_{11} = 0.1 + 0.3 = 0.4$$

$$P_{12} = 0.2$$

$$P_{13} = 0.4$$

Case
$$i = 2$$

$$X_n = 2 \text{ then } X_{n+1} = max\{2, Y_{n+1}\}$$

if
$$Y_{n+1} = 0$$
 or $Y_{n+1} = 1$ then $X_{n+1} = 2$

if
$$Y_{n+1} = 2$$
 then $X_{n+1} = 2$

if
$$Y_{n+1} = 3$$
 then $X_{n+1} = 3$

So we get:-

$$P_{20} = 0$$

$$P_{21} = 0$$

$$P_{22} = 0.1 + 0.3 + 0.2 = 0.6$$

$$P_{23} = 0.4$$

Case
$$i = 3$$

Since 3 is the maximum value X_{n+1} will always be 3 once it reaches 3. So, $P_{30} = 0$, $P_{31} = 0$, $P_{32} = 0$, $P_{33} = 1$. Based on these cases, for the possible states of X_{ij} the transition matrix will therefore be:-

$$P = \begin{bmatrix} 0.1 & 0.3 & 0.2 & 0.4 \\ 0 & 0.4 & 0.2 & 0.4 \\ 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

5 Let $X_1,...,X_n$ be IID from some distribution F that is unknown. Let \hat{F}_n be the empirical distribution function, use this to find an estimate of the quantile p of F. Use theorem 5.28 to find a confidence interval for p.

Solution

Theorem 5.28

$$X_1,...,X_n(IID)$$

For any
$$\epsilon \geq 0$$
: $P(\sup(|\hat{F}_n(x) - F(x)|) \leq 2e^{-2n\epsilon^2}$

To estimate the p-quantile of F using \hat{F}_n , we define the empirical quantile value $\hat{x}p$ such that $\hat{F}_n(\hat{x}p) = p$. The empirical quantile is obtained by ordering the sample $X_1, ..., X_n$ and selecting the value at position floor(np).

Confidence interval:

Apply theorem 5.28

$$2e^{-2n\epsilon^2} = \alpha \Leftrightarrow -2n\epsilon^2 = \ln(\frac{\alpha}{2}) \Leftrightarrow \epsilon = \sqrt{\frac{\ln(2/\alpha)}{2n}}$$

With probability at least $1 - \alpha$, $|\hat{F}_n(xp) - F(xp)| \le \epsilon$

So, the confidence interval for the quantile xp can be approximated by identifying the interval of value x around $\hat{x}p$ such that $\hat{F}_n(x)$ lies within $\{p-\epsilon, p+\epsilon\}$

