Prosta Boolova algebra Seminar

Luka Ponikvar

Fakulteta za matematiko in fiziko

Definicija (Boolova algebra)

Boolova algebra je neprazna množica A skupaj z binarnima operacijama \vee in \wedge , unarno operacijo \neg in dvema elementoma 0 in 1, ki skupaj zadoščajo sledečim aksiomom:

$$\neg 0 = 1, \qquad \qquad \neg 1 = 0, \tag{1}$$

$$p \wedge 0 = 0, \qquad p \vee 1 = 1, \tag{2}$$

$$p \wedge 1 = p, \qquad p \vee 0 = p, \tag{3}$$

$$p \wedge \neg p = 0, \qquad p \vee \neg p = 1, \tag{4}$$

$$\neg(\neg p) = p,\tag{5}$$

$$p \wedge p = p,$$
 $p \vee p = p,$ (6)

$$\neg (p \land q) = \neg p \lor \neg q, \qquad \neg (p \lor q) = \neg p \land \neg q, \tag{7}$$

$$p \wedge q = q \wedge p,$$
 $p \vee q = q \vee p,$ (8)

$$p \wedge q = q \wedge p, \qquad p \vee q = q \vee p, \qquad (5)$$

$$p \wedge (q \wedge r) = (p \wedge q) \wedge r, \qquad p \wedge (q \vee r) = (p \vee q) \vee r, \qquad (9)$$

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r), \quad p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r). \tag{10}$$

Definicija (Boolov polinom)

Boolov polinom je izraz, sestavljen iz konstant 0 in 1, neznank p_0, \ldots, p_n , s pomočjo standardnih operacij meet, join in komplementa.

Definicija (Boolov polinom)

Boolov polinom je izraz, sestavljen iz konstant 0 in 1, neznank p_0, \ldots, p_n , s pomočjo standardnih operacij meet, join in komplementa.

Definicija (Boolova Podalgebra)

Boolova podalgebra Boolove algebre A je neprazna podmnožica B množice A, ki je z zožitvijo operacij Boolova algebra.

Definicija (Boolov polinom)

Boolov polinom je izraz, sestavljen iz konstant 0 in 1, neznank p_0, \ldots, p_n , s pomočjo standardnih operacij meet, join in komplementa.

Definicija (Boolova Podalgebra)

Boolova podalgebra Boolove algebre A je neprazna podmnožica B množice A, ki je z zožitvijo operacij Boolova algebra.

Definicija (Boolov homomorfizem)

Boolov homomorfizem je taka preslikava f iz Boolova algebre B v Boolovo algebro A, da je

$$f(p \land q) = f(p) \land f(q),$$

$$f(p \lor q) = f(p) \lor f(q),$$

$$f(p') = (f(p))',$$

za vsaka $p, q \in B$.

Trditev

Če se dva homomorfizma ujemata na množici generatorjev domene, tedaj se ujemata povsod na domeni.

Trditev

Če se dva homomorfizma ujemata na množici generatorjev domene, tedaj se ujemata povsod na domeni.

Dokaz.

Naj bosta $f,g:B\to A$ homomorfizma, ki se ujemata na množici generatorjev $E.\ C:=\{p\in B\mid f(p)=g(p)\}$. Množica E je očitno vsebovana v C, hkrati pa iz $p,q\in C$ in

$$f(p \lor q) = f(p) \lor f(q) = g(p) \lor g(q) = g(p \lor q)$$

sledi, da so $p \lor q$, $p \land q$ in p' tudi elementi C. Sklepamo, da je C podalgebra v B, ki vsebuje E, iz česar pa takoj sledi, enakost C = B.

Definicija (Prosta Boolova algebra)

Množica *E* generatorjev Boolove algebre *B* je prosta, če lahko vsako funkcijo iz *E* v poljubno Boolovo algebro *A* razširimo do homomorfizma iz *B* v *A*. Tedaj pravimo, da *E* prosto generira *B* oz. *B* je prosta na *E*. Boolova algebra je prosta, če premore prosto množico generatorjev.

Definicija (Prosta Boolova algebra)

Množica *E* generatorjev Boolove algebre *B* je prosta, če lahko vsako funkcijo iz *E* v poljubno Boolovo algebro *A* razširimo do homomorfizma iz *B* v *A*. Tedaj pravimo, da *E* prosto generira *B* oz. *B* je prosta na *E*. Boolova algebra je prosta, če premore prosto množico generatorjev.

$$\begin{array}{c|c} E_1 \xrightarrow{h_1} B_1 \\ g & f_2 \mid f_1 \\ \downarrow & \downarrow \downarrow \\ E_2 \xrightarrow{h_2} B_2 \end{array}$$

$$E_1 \xrightarrow{h_1} B_1$$

$$g^{-1} \circ g \xrightarrow{\psi} B_1$$