HIGH-FREQUENCY DATA AND LIMIT ORDER BOOKS A FEW EXERCISES ON POISSON PROCESSES

Exercise 1 (Poisson characterization with stationary and independent increments). Let $(N_t)_{t\geq 0}$ be a counting process such that the following conditions are satisfied:

- (C1) N has independent increments;
- (C2) N has stationary increments;
- (C3) for any interval I with finite length, N(I) is integrable;
- (C4) there exists an interval I such that $\mathbf{P}(N(I) > 0) > 0$.
- (C5) the process is simple: $\lim_{\epsilon \to 0} \frac{\mathbf{P}(N(\epsilon) \ge 2)}{\epsilon} = 0.$

The aim of the exercise is to show that the number of points in any interval is Poisson distributed. Some standard results are recalled along the way.

- 1. We start by showing that the expectation of N_t is linear with respect to t.
 - (a) Let $m(t) = \mathbf{E}[N_t]$, $t \ge 0$. Prove that for all $s, t \ge 0$, m(t+s) = m(t) + m(s).
 - (b) Prove that there exists $\lambda > 0$ such that $m(t) = \lambda t$.
- 2. Let $(p_n)_{n\in\mathbb{N}}$ be a sequence with values in [0,1] such that $\lim_{n\to+\infty} np_n = \mu > 0$. Let Z_n be a r.v. with binomial distribution with parameters n, p_n). Prove that for all $k \in \mathbb{N}$, $\lim_{n\to+\infty} \mathbf{P}(Z_n=k) = e^{-\mu} \frac{\mu^k}{k!}$.
- 3. Let t > 0. For all $n \in \mathbb{N}^*$, let $t_j = \frac{jt}{n}$ and $X_j^{(n)} = N_{t_j} N_{t_{j-1}}$, $j = 1, \dots, n$. Let also $Y_j^{(n)} = \min(X_j^{(n)}, 1), j = 1, \dots, n$, and $N_t^{(n)} = \sum_{j=1}^n Y_j^{(n)}$.
 - (a) Show that the random variables $Y_j^{(n)}$, j = 1, ..., n are i.i.d. with Bernoulli distribution. Let $p_n = \mathbf{P}(Y_1^{(n)} = 1)$.
 - (b) Prove that $\lim_{n \to +\infty} \mathbf{P}(N_t^{(n)} \neq N_t) = 0.$
 - (c) Prove that for all $k \in \mathbb{N}$, $\left| \mathbf{P}(N_t = k) \mathbf{P}(N_t^{(n)} = k) \right| \le \mathbf{P}(N_t^{(n)} \ne N_t)$.
- 4. Let Z be an integer-valued random variable. Prove that $\mathbf{E}[Z] = \sum_{l=1}^{\infty} \mathbf{P}(Z \ge l)$.
- 5. Prove that $\lim_{n\to\infty} \mathbf{E}[N_t^{(n)}] = \mathbf{E}[N_t].$
- 6. Prove that N_t has a Poisson distribution with parameter λt .

Exercise 2 (Superposition of independent Poisson processes).

Let $(N_t^{(1)})_{t\geq 0}$ and $(N_t^{(2)})_{t\geq 0}$ be two independent Poisson processes with intensities $\lambda_1>0$ and $\lambda_2>0$. Let $N_t=N_t^{(1)}+N_t^{(2)}$. Let $\lambda=\lambda_1+\lambda_2$.

- 1. Prove that for all $0 \le s < t$, and all $k \in \mathbb{N}$, $\mathbf{P}(N_t N_s = k) = e^{-\lambda(t-s)} \frac{\lambda^k (t-s)^k}{k!}$.
- 2. Prove that for all $0 \le s < t \le u < v$, $N_t N_s$ and $N_v N_u$ are independent.

- 3. Conclude.
- 4. Answer the first question again using the characteristic function this time.

Exercise 3 (Some conditional distributions).

Let N be a time-homogeneous Poisson process with parameter $\lambda > 0$. Let $(T_n)_{n \geq 1}$ be the sequence of associated events.

- 1. Determine the conditional distribution of N_s given $N_t = l$, for all $0 \le s \le t$, $l \in \mathbb{N}$.
- 2. Determine the conditional distribution of T_1 given $N_t = 1$.
- 3. Determine the conditional distribution of (T_1, \ldots, T_n) given $N_t = n$.

Exercise 4 (A family of martingales).

Let N be a time-homogeneous Poisson process with parameter $\lambda > 0$. Let $\alpha \in \mathbb{R}$ and $Y_t^{(\alpha)} = \exp(\alpha N_t - \lambda t(e^{\alpha} - 1))$. Prove that $(Y_t^{(\alpha)})_{t \geq 0}$ is a martingale (w.r.t. the filtration $(\mathcal{F}_t)_{t \geq 0}$ generated by the Poisson process).