Physique des particules – TD15

www.antoinebourget.org/teaching/particules/

Taux de désintégration et matrice CKM

1. On rappelle que le méson K^0 est formé des quarks d et \overline{s} . Donner les diagrammes de Feynman correspondant aux désintégrations

$$K^{0} \to \pi^{+}\pi^{-}, K^{0} \to \pi^{0}\pi^{0}, \overline{K}^{0} \to \pi^{+}\pi^{-} \text{ et } \overline{K}^{0} \to \pi^{0}\pi^{0}.$$

Quelle est la dépendance des éléments de matrice \mathcal{M} en l'angle de Cabibbo?

- 2. On rappelle les contenus en quarks des mésons $B(d\bar{b})$, $D^{-}(d\bar{c})$ et $J/\psi(c\bar{c})$.
 - (a) Donner les diagrammes de Feynman pour les désintégrations $B^0 \to D^-\pi^+$, $B^0 \to \pi^-\pi^+$ et $B^0 \to J/\psi K^0$.
 - (b) En utilisant uniquement la matrice CKM, classer ces trois modes de désintégration par taux.
 - (c) Rappeler l'expression du taux de désintégration Γ pour $a \to 1+2$ en fonction de l'élément de matrice \mathcal{M} , et des masses m_a , m_1 et m_2 .
 - (d) En déduire un classement plus précis pour les trois taux de désintégrations.
- 3. On considère maintenant les mésons $D^0(c\overline{u})$, $K^+(u\overline{s})$ et $K^-(s\overline{u})$. En utilisant les valeurs numériques des coefficients de la matrice CKM, calculer une estimation du rapport

$$\frac{\Gamma(D^0\to K^+\pi^-)}{\Gamma(D^0\to K^-\pi^+)}$$