DISTRIBUER L'ÉNERGIE

ETT - Cours

IUT DE CACHAN

09 NOVEMBRE 2018

1 Généralités

2 Des exemples de solutions technologiques

3 Les transistors

4 Transformateur électrique parfait

GÉNÉRALITÉS

LA FONCTION DISTRIBUER

DÉFINITION

Le bloc Distribuer

La fonction « Distribuer » de la chaîne d'information reçoit des ordre de la part de la chaîne d'information et distribue l'énergie dans le système suivant ces ordres.

DÉFINITION

Le bloc Distribuer

La fonction « Distribuer » de la chaîne d'information reçoit des ordre de la part de la chaîne d'information et distribue l'énergie dans le système suivant ces ordres.

Propriétés

L'énergie est de la même forme en entrée et en sortie. La particularité de cette fonction est qu'une faible énergie de commande venant de la chaîne d'information (ordre) doit entraîner le passage ou non d'une énergie dans la suite de la chaîne d'énergie.

UN EXEMPLE SIMPLE : LE ROBINET

DES EXEMPLES DE SOLUTIONS TECH-NOLOGIQUES

LE RELAIS ÉLECTROMAGNÉTIQUE

RELAIS BISTABLE ET MONOSTABLE

Le relais monostable

Un seul état est stable. Lorsque l'on cesse de l'alimenter, le relais retourne spontanément dans cet état.

RELAIS BISTABLE ET MONOSTABLE

Le relais monostable

Un seul état est stable. Lorsque l'on cesse de l'alimenter, le relais retourne spontanément dans cet état.

Le relais monostable

Les deux états sont stables. Il faut apporter de l'énergie au relais pour qu'il change d'état.

CONTACTEUR

LES TRANSISTORS

LES TRANSISTORS

A retenir:

Un transistor comporte trois connexions : L'émetteur (E), la base (B) et le collecteur (C).

L'émetteur est associé à une flèche précisant le sens du courant. La base est du côté de la barre.

Formule d'un transistor

$$I_C = \beta I_B$$

EXEMPLE

FONCTIONNEMENT EN COMMUTATION

FONCTIONNEMENT EN COMMUTATION

TRANSISTOR MOS

Principe

 $V_{gs} = o \Rightarrow$ Transitor bloqué, $V_{gs} > o \Rightarrow$ Transitor saturé (passant).

HACHEUR

ONDULEUR DE TENSION

REDRESSEUR DE TENSION

TRANSFORMATEUR ÉLECTRIQUE PAR-

FAIT

TRANSFORMATEUR ÉLECTRIQUE

Fonction

Un transformateur est un composant permettant d'adapter (augmenter ou abaisser) une tension sinusoïdale. Il est composé de deux bobines de cuivre (inductances) autour d'un circuit magnétique.

TRANSFORMATEUR ÉLECTRIQUE

Lien tension primaire - Tension secondaire

Le courant et la tension dans le circuit secondaire dépendent directement du courant et de la tension dans le circuit primaire. Plus précisément, le **rapport transformation** m est tel que :

$$m = \frac{N_2}{N_1} = \frac{U_1}{U_2} = \frac{I_2}{I_1}$$

Symbole électrique du transformateur

Applications