Part I

Upper bound

Notation for gadgets and figures 1

Let
$$m = \left[\left(\frac{N}{102} \right)^{\frac{1}{d}} \right]$$
, base of the counter

MSR = most significant digit region

s =starting value of counter

$$d = \lceil \log_m s \rceil = \left\lfloor \frac{k}{2} \right\rfloor$$
, number of digits per row

 $m^d = \text{ final value of the counter}$

 $n = m^d - s$, number of rows/ times to count

 $l = \lceil \log m \rceil + 2$, bits needed to encode each digit in binary, plus 2 for MSR and MSD

2 Parameters for the counter

...therefore, let $d = \left\lfloor \frac{k}{2} \right\rfloor$, $m = \left\lceil \left(\frac{N}{102} \right)^{\frac{1}{d}} \right\rceil$, $l = \left\lceil \log m \right\rceil + 2$, $s = m^d - \left\lfloor \frac{N-12l-94}{12l+90} \right\rfloor$, where d is the number of digits per row of the counter, m is the base of the counter, l is the number of bits needed to encode each digit in binary plus 2 for indicating whether a digit is in the MSR and is the MSD in that region, and s is the starting value of the counter in decimal.

Let h be the height of the construction without any additional "roof" tiles. By inspection...we see that the height of the construction without additional tiles is 12l + 94 for the Seed unit, plus 12l + 90 for each incrementation of the counter, adding a Counter unit row each time. If we define n as the number of Counter unit rows, then h = n(12l + 90) + (12l + 94). So then the maximum height of the counter is $m^d(12l+90)+12l+94$. Since our goal is to end with a rectangle of height N, we need to pick a base such that the counter can increment so many times that when it stops, it is at least N.

Lemma 1.
$$N \le m^d (12l + 90) + 12l + 94$$

Proof.

$$N = 102 \left(\frac{N}{102}\right) = 102 \left(\left(\frac{N}{102}\right)^{\frac{1}{d}}\right)^{d} \le 102 \left[\left(\frac{N}{102}\right)^{\frac{1}{d}}\right]^{d}$$
$$= 102m^{d} \le 12lm^{d} + 90m^{d} \le 12lm^{d} + 90m^{d} + 12l + 94$$
$$= m^{d}(12l + 90) + 12l + 94$$

And the minimum height is 24l + 184.

One row of the counter might result in a final assembly that will not be tall enough but ... says that having all possible rows of the counter might result in a final assembly that is too tall. Therefore, we must start the counter at an appropriate value to get the correct height of the final assembly.

The counter can start at any whole number less than m^d and ends when it reaches 0 by rolling over m^d-1 . This means that the number of Counter unit rows n, is m^d-s , where we have defined s as the starting value of the counter. To choose the best starting value, we find the value for n that gets h close to N without exceeding N. It follows from the equation h=n(12l+90)+12l+94, that $n=\left\lfloor\frac{N-12l-94}{12l+90}\right\rfloor$. Thus, $s=m^d-\left\lfloor\frac{N-12-94}{12l+90}\right\rfloor$.

If k is an even number, no filler tiles are needed. We can assemble any rectangle that has a width k, provided that k is some even number ≥ 6 . If k is any odd number ≥ 6 , we use one filler tiles. ...as a result of each digit requiring a width of 2 tiles, if k is odd, one additional tile column must be added. The number of filler tiles needed for the width is $k \mod 2$, and the number of filler tiles for the height is $N-12l-90 \mod 12l+90$.

3 Counting with digit regions

(a) A "clean" counter row, before any reading has (b) Read digit 1 in the current row, write digit 1 started.

(c) Read digit 2 in the current row, write digit 2 (d) Read digit 3 in the current row, write digit 3 in the next row.

Figure 1: This illustrates how a counter reads and writes a digit region, in a general sense. The counter starts in the rightmost digit region by reading the bottommost digit within that region. After reading digit 1 in the current row, the corresponding digit region in the next row be started in the next row. The counter writes the first digit in the next row, and then returns to the second digit in the current digit region. Once all the digits in the current digit region are read and written into the next row, the counter can then do one of the following: continue reading digits by moving on to the next digit region, cross back all the way to the right of the rectangle and start reading the next row, or halt.

3.1 Digit regions

Each logical row of the counter is made up of $\lceil \frac{d}{3} \rceil$ "digit regions". A digit region is a group of 1-3 digits, stacked vertically on top of one another. Within a digit region, the digits are sorted in order of significance, thus the top digit is the most significant digit, the middle digit is second most significant and the bottommost digit is the least significant. The leftmost digit region is most significant and the rightmost is the least significant.

The counter reads digit 1 in the rightmost digit region, then writes digit 1' in the digit region directly north in the next row. After writing this first digit, the counter returns back to the current row and reads digit 2. Upon reading digit 2 in the current row, it then writes digit 2' in the next row and returns to the current row. Finally, in the current row, it reads digit 3, the last digit remaining, and writes digit 3' in the next row. Now that all three digits in this digit region have been evaluated, the counter will repeat this process for all remaining digit regions in the current row.

In the last digit region, which we will refer to as the MSR (most significant region), the region may or may not contain all 3 digits like the earlier regions. Because of this, there are three cases we must account for: case 1 if the MSR only has one digit; case 2 if the MSR only has two digits; or case 3 if the MSR has three digits.

In case 1, the MSR adds an additional 2 tiles to the overall width of the rectangle. In case 2, the MSR adds an additional 4 tiles to the overall width of the rectangle. And, similar to all regular digit regions with 3 digits, in case 3 the MSR adds an additional 6 tiles to the overall width of the rectangle. As a result of these cases, we're able to utilize these different to fine tune the width of the rectangle such that we only need one filler tile in the event that k is odd.

Figure 2: Digits in a typical counter vs. digits separated into digit regions.

(a) Digits in a typical counter.

(b) Digits in two digit regions, stacked vertically. Digits 1-3 are in digit region 1, and digits 4-6 are in digit region 2.

Contrary to a typical counter, each counter row has an approximate height of 3 digits $\approx 12l$. The digits are stacked up to 3, once a digit region is full, we add another digit region to the left, and repeat.

3.2 Detecting the edges

The counter must detect if a digit is in the MSR and if it's in the MSR, whether or not it is the most significant digit. To do this, all digits are encoded with two additional bits on the least significant end. If bit 0 is 1, the reader tiles know they could be reading the most significant digit (MSD) or in case 2, the second

most significant digit. If bit 1 is 1, the digit currently being read is the MSD, otherwise the digit is digit 1 in case 2.

bit_1	bit_0	Meaning
0	0	digit is not in MSR
0	1	digit is in the MSR but is not the MSD
1	0	
1	1	digit is in the MSR and is MSD

4 Tile set

When describing a special case, i.e. "digit x – case y", whatever follows will only apply to the MSR (due to each case only affecting the MSR.)

4.1 Gadgets

4.1.1 Line Gadgets

Figure 3: Line gadgets

We will use the notation NorthN_Line and SouthN_Line where N corresponds to the length of a specific line gadget.

4.1.2 Counter_Read

- For each $i = 1, 2, 3, j = 0, ..., l 2, u \in \{0, 1\}^j$, and $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:
 - $\label{eq:counter_Read} \text{ if } j = 0 \text{: create Counter_Read}(\left. \left\langle \mathtt{CounterRead}, i, \lambda, op \right\rangle, \right. \\ \left. \left\langle \mathtt{CounterRead}, i, 0, op \right\rangle, \right. \\ \left\langle \mathtt{CounterRead}, i, 1, op \right\rangle)$

from the general gadget in Figure 4.

- else: create Counter_Read($\langle \mathtt{CounterRead}, i, u, op \rangle$, $\langle \mathtt{CounterRead}, i, 0u, op \rangle$, $\langle \mathtt{CounterRead}, i, 1u, op \rangle$) from the general gadget in Figure 4.

- For each i = 1, 2, 3 and each $u \in \{0, 1\}^{l-1}$:
 - Create Counter_Read($\langle \texttt{CounterRead}, i, u, \texttt{copy} \rangle$, $\langle \texttt{PreWarp}, i, 0u, \texttt{copy} \rangle$, $\langle \texttt{PreWarp}, i, 1u, \texttt{copy} \rangle$) from the general gadget in Figure 4.

Since the counter must only increment the current value if the result will be less than m, the Counter_Read gadgets that have both an increment signal and input size of l-2 must first right

shift the bits 2 spots, and then for each possible value after reading one more bit, check whether that value is less than m-1. Basically, if the next bit read is a 0, we check if the current value + 1 is less than m. If the next bit read is a 1, we check if current value + $2^{\log(m)-1}$ + 1 is less than m. For both cases, if the counter can increment the current value, then the Counter_Read gadgets output the incremented value to the Pre_Warp gadgets and output a copy signal. Otherwise, if the counter is unable to increment the value, it outputs signal in which the bits of the digit is all zeroes and it will propagate the increment signal to the next digit.

Algorithm 1 Incrementing and halting

```
1: function ReadMostSignicantBit()
 2:
         guess0 \leftarrow 0u >> 2.
         guess1 \leftarrow 1u >> 2.
 3:
         if convertToDecimal(guess0) + 1 \le m - 1 then
 4:
              out0 \leftarrow \langle \text{PreWarp}, i, convertToBinary(convertToDecimal(quess0) + 1) + u[1] + [0], \text{copy} \rangle.
 5:
 6:
         else
 7:
              if u ends with "11" then
                  out0 \leftarrow \langle \texttt{PreWarp}, i, repeat("0", m) + 11, \texttt{halt} \rangle.
 8:
              else
9:
                  out0 \leftarrow \langle \texttt{PreWarp}, i, repeat("0", m) + u[1] + u[0], \texttt{increment} \rangle.
10:
         if convertToDecimal(guess1) + 1 \le m - 1 then
11:
              out1 \leftarrow \langle \texttt{PreWarp}, i, convertToBinary(convertToDecimal(guess1) + 1) + u[1] + [0], \texttt{copy} \rangle.
12:
         else
13:
14:
              if u ends with "11" then
                  out1 \leftarrow \langle \texttt{PreWarp}, i, repeat("0", m) + 11, \texttt{halt} \rangle.
15:
16:
                  out1 \leftarrow \langle \texttt{PreWarp}, i, repeat("0", m) + u[1] + u[0], \texttt{increment} \rangle.
17:
```

- Create Counter_Read($\langle CounterRead, i, u, increment \rangle, out0, out1)$ from the general gadget in Figure 4.

(e) Digit 3 - general overview.

(f) Digit 1 - case 1 overview. (g) Digit 1 - case 2 overview. (h) Digit 2 - case 2 overview.

Figure 4: The Counter_Read gadgets.

4.1.3 Warp_Unit

We now explain the Warp_Unit. A warp unit generally consists of the following 5 gadgets: Pre_Warp, First_Warp, Warp_Bridge, Second_Warp, Post_Warp. The job of these 5 gadgets is to transport the value read by the Counter_Read all the way to the digit region in the next row, so that the Counter_Write gadgets can write the next value in the correct locations. The First_Warp and Second_Warp gadgets are single tile gadgets that have north and south glues with identical labels. This allows the gadgets to continuously assemble until stopped by earlier parts of the assembly. These single tile gadgets also have one additional glue that will allow the next piece in the warp unit to assemble, however the assembly will also block this side of the tile all the way until the gadget can no longer continue assembling in the north direction.

• Pre_Warp: These gadgets decode the least significant two bits passed in from the read from the Counter_Read gadgets, into a special signal that indicates whether a gadget is currently in the MSR and if it is the MSD. Here is how the signal is decoded: if the least significant bit is 1, add a marker to indicate the current gadgets are in the MSR; if the second least significant bit is also 1, add a marker on the glues to indicate that the gadget is also part of the MSD.

For each $i = 1, 2, 3, u \in \{0, 1\}^l$, and each $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:

- if u ends with 00: create $Pre_Warp(\langle PreWarp, i, u, op \rangle, \langle FirstWarp, i, u, op \rangle)$ from the general gadget in Figure 5a.
- if u ends with 01: create $Pre_Warp(\langle PreWarp, 1, u, op \rangle, \langle FirstWarp, 1, u, op, msr \rangle)$ from the general gadget in Figure 5e.
- if u ends with 11: create $Pre_Warp(\langle PreWarp, i, u, op \rangle, \langle FirstWarp, i, u, op, msr, msd \rangle)$ from the general gadget in Figure 5g if i = 1 (case 1), or Figure 5i if i = 2 (case 2), or Figure 5a if i = 3 (case 3).

(a) Digits 1, 2, & 3 - general, (b) Digit 1 - general (c) Digit 2 - general (d) Digit 3 - general Digit 3 - case 3 overview. The black tiles in overview. The black tiles in this figure correspond to the gadget shown in subfigure a. gadget shown in subfigure a.

Figure 5: The 14e_Warp gadgets.

• First_Warp: The idea of the First_Warp gadget is to transport the information read by the Counter_Read gadgets, usually across a distance $O(\log m)$. We do this using a single tile that assembles an infinite line in the north direction, and has one unique glue either in the east direction or west direction. This unique glue will at some point later in the assembly, that is determined by earlier parts of the assembly, no longer be blocked. When this occurs, it can finally attach to the Warp_Bridge gadget (except in a few special cases). This process signifies the "waking up" of the First_Warp gadgets. When this gadget wakes up, it must also be blocked in the north direction, which prevents a truly infinite line from assembling. The geometry required for this process is guarenteed to be in place by earlier-assembled Digit_Top gadgets.

For each $u \in \{0,1\}^l$, and each $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:

```
- Create First_Warp(\langle FirstWarp, i, u, op \rangle,
                               \langle \text{FirstWarp}, i, u, op \rangle,
                               \langle WarpBridge, i, u, op \rangle)
   from the single tile gadget, shown in Figure 6a if i=1 or Figure 6b if i=2, otherwise from
   Figure 6c if i = 3.
- Create First_Warp(\langle FirstWarp, 1, u, op, msr \rangle,
                               \langle \text{FirstWarp}, 1, u, op, \text{msr} \rangle,
                               \langle \text{PostWarp}, 1, u, op, \text{msr} \rangle
   from the single tile gadget shown in Figure 6f.
- Create First_Warp(\langle FirstWarp, 1, u, op, msr, msd \rangle,
                               \langle \text{FirstWarp}, 1, u, op, \text{msr}, \text{msd} \rangle,
                               \langle PostWarp, 1, u, op, msr, msd \rangle
   from the single tile gadget shown in Figure 6e.
- Create First_Warp(\langle FirstWarp, 2, u, op, msr, msd \rangle,
                               \langle \text{FirstWarp}, 2, u, op, \text{msr}, \text{msd} \rangle,
                               \langle WarpBridge, 2, u, op, msr, msd \rangle
   from the single tile gadget shown in Figure 6g.
- Create First_Warp(\langle FirstWarp, 3, u, op, msr, msd \rangle,
                               \langle \text{FirstWarp}, 3, u, op, \text{msr}, \text{msd} \rangle,
                               \langle WarpBridge, 3, u, op, msr, msd \rangle
   from the single tile gadget shown in Figure 6h.
```


(e) Digit 1 - case 1 overview. (f) Digit 1 - case 2 overview. (g) Digit 2 - case 2 overview. (h) Digit 3 - case 3 overview.

Figure 6: The First_Warp gadget overviews.

• Warp_Bridge: a Warp_Bridge gadget is a gadget which assembles when the First_Warp gadget makes it to its final destination. The goal of the Warp_Bridge is to assemble a path from the end of the First_Warp gadgets to the start of the Second_Warp gadgets. For digit 1 in cases 1 and 2, the Warp_Bridge is omitted from the Warp_Unit.

For each $i = 1, 2, 3, u \in \{0, 1\}^l$, and each $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:

- Create Warp_Bridge($\langle \text{WarpBridge}, i, u, op \rangle$, $\langle \text{SecondWarp}, i, u, op \rangle$) from the general gadget in Figure 7a.
- Create Warp_Bridge($\langle WarpBridge, 2, u, op, msr, msd \rangle$, $\langle SecondWarp, 2, u, op, msr, msd \rangle$) from the general gadget in Figure 7g.
- Create Warp_Bridge($\langle WarpBridge, 3, u, op, msr, msd \rangle$, $\langle SecondWarp, 3, u, op, msr, msd \rangle$) from the general gadget in Figure 7a.

(a) Digits 1, 2, & 3 general. (b) Digit 1 - general (c) Digit 2 - general (d) Digit 2 - general (seed) overview. The black tiles in overview. The black tiles in overview. The black tiles in this figure correspond to the gadget shown in subfigure a. gadget shown in subfigure a.

(e) Digit 3 - general overview. The black tiles in overview. The black tiles in this figure correspond to the this figure correspond to the

(f) Digit 3 - general (seed) gadget shown in subfigure a. gadget shown in subfigure a.

(g) Digit 2 - case 2.

(h) Digit 2 - case 2 overview. The black tiles in this figure correspond to the gadget shown in subfigure g.

(i) Digit 3 - case 3 overview. (j) Digit 3 - case 3 (seed) get shown in subfigure a.

The black tiles in this fig- overview. The black tiles in ure correspond to the gad- this figure correspond to the gadget shown in subfigure a.

21

Figure 7: The Warp_Bridge gadgets.

• Second_Warp: Similar to the First_Warp gadgets, the idea of the Second_Warp gadget is to also to transport the information read by the Counter_Read gadgets. We do this using a single tile that assembles an infinite line in the north direction, and has one unique glue either in the east direction or up direction. This unique glue will at some point later in the assembly, that is determined by earlier parts of the assembly, no longer be blocked. When this occurs, it can finally attach to the Post_Warp gadget. This process signifies the "waking up" of the Second_Warp gadgets. When this gadget wakes up, it must also be blocked in the north direction, which prevent a truly infinite line from assembling. The geometry required for this process is guarenteed to be in place by earlier-assembled Digit_Top gadgets.

For each $i = 1, 2, 3, u \in \{0, 1\}^l$, and each $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:

```
- Create Second_Warp(\langleSecondWarp, i, u, op \rangle, \langleSecondWarp, i, u, op \rangle, \langlePostWarp, i, u, op \rangle) from the single tile gadget, shown in Figure 8a if i=1 or Figure 8b if i=2, otherwise from Figure 8c if i=3.
```

```
- \ \operatorname{Create} \ \operatorname{SecondWarp}(\ \langle \operatorname{SecondWarp}, 2, u, op, \operatorname{msr}, \operatorname{msd} \rangle \ , \\ \langle \operatorname{SecondWarp}, 2, u, op, \operatorname{msr}, \operatorname{msd} \rangle \ , \\ \langle \operatorname{PostWarp}, 2, u, op, \operatorname{msr}, \operatorname{msd} \rangle \ ) \\ \text{from the single tile gadget shown in Figure 8f.}
```

```
- Create Second_Warp( \langle SecondWarp, 3, u, op, msr, msd \rangle, \langle SecondWarp, 3, u, op, msr, msd \rangle, \langle PostWarp, 3, u, op, msr, msd \rangle) from the single tile gadget shown in Figure 8h.
```


(e) Digit 3 - general (seed) (f) Digit 2 - case 2 overview. (g) Digit 2 - case 2 (seed) (h) Digit 3 - case 3 overview. overview.

(i) Digit 3 - case 3 (seed) overview.

Figure 8: The Second_Warp gadget overviews.

• Post_Warp: The Post_Warp gadget is final gadget to assemble in the Warp_Unit. The idea of this gadget is to assemble from wherever the last warping tiles "wake up", forming a path that ends where the next digit needs to start being written.

For each $i = 1, 2, 3, u \in \{0, 1\}^l$, and each $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:

- Create

```
Post_Warp( \langle PostWarp, i, u, op \rangle, \langle CounterWrite, i, u, op \rangle) from the general gadget shown in Figure 9a if i = 1, or Figure 9c if i = 2 or i = 3.
```

- Create Post_Warp($\langle PostWarp, 1, u, op, msr \rangle$, $\langle CounterWrite, 1, u, op, msr \rangle$) from the general gadget in Figure 9j.
- For each i=1,2,3: create Post_Warp($\langle PostWarp, i, u, op, msr, msd \rangle$, $\langle CounterWrite, i, u, op, msr, msd \rangle$) from the general gadget shown in Figure 9h if i=1, or Figure 9l if i=2, or Figure 9c if i=3.

(e) Digit 2 - general (seed) (f) Digit 3 - general overview. The black tiles in overview. The black tiles in overview. The black tiles in this figure correspond to the this figure correspond to the gadget shown in subfigure c. gadget shown in subfigure c.

(g) Digit 3 - general (seed)

(h) Digit 1 - case 1.

(m) Digit 2 - case 2

(n) Digit 2 - case 2 (seed) (o) Digit 3 - case 3 overview. (p) Digit 3 - case 3 (seed) overview. The black tiles in overview. The black tiles in The black tiles in this fig- overview. The black tiles in this figure correspond to the this figure correspond to the ure correspond to the gad- this figure correspond to the gadget shown in subfigure l. gadget shown in subfigure l. get shown in subfigure c.

gadget shown in subfigure c.

4.1.4 Counter_Write

- For each i = 1, 2, 3, $j = l 1, \ldots, 1$, $u \in \{0, 1\}^j$, and each $op \in \{\text{increment}, \text{copy}, \text{halt}\}$:
 - Create Counter_Write($\langle CounterWrite, i, u0, op \rangle$, $\langle CounterWrite, i, u, op \rangle$) from the general gadget in Figure 10a.
 - Create Counter_Write($\langle CounterWrite, i, u1, op \rangle$, $\langle CounterWrite, i, u, op \rangle$) from the general gadget in Figure 10b.
 - Create Counter-Write ($\langle CounterWrite, 1, u0, op, msr \rangle$, $\langle CounterWrite, 1, u, op, msr \rangle$) from the general gadget in Figure 10a.
 - Create Counter_Write($\langle CounterWrite, 1, u1, op, msr \rangle$, $\langle CounterWrite, 1, u, op, msr \rangle$) from the general gadget in Figure 10b.
 - Create Counter_Write($\langle CounterWrite, i, u0, op, msr, msd \rangle$, $\langle CounterWrite, i, u, op, msr, msd \rangle$) from the general gadget in Figure 10a.
 - Create Counter-Write ($\langle \text{CounterWrite}, i, u1, op, \text{msr}, \text{msd} \rangle$, $\langle \text{CounterWrite}, i, u, op, \text{msr}, \text{msd} \rangle$) from the general gadget in Figure 10b.

• For each i = 1, 2, 3 and each $op \in \{\text{increment}, \text{copy}\}:$

- Create Counter_Write($\langle CounterWrite, i, 0, op \rangle$, $\langle DigitTop, i, op \rangle$) from the general gadget in Figure 10a.
- Create Counter_Write($\langle CounterWrite, i, 1, op \rangle$, $\langle DigitTop, i, op \rangle$) from the general gadget in Figure 10b.
- Create Counter_Write($\langle CounterWrite, 1, 0, op, msr \rangle$, $\langle DigitTop, 1, op, msr \rangle$) from the general gadget in Figure 10a.
- Create Counter_Write($\langle CounterWrite, 1, 1, op, msr \rangle$, $\langle DigitTop, 1, op, msr \rangle$) from the general gadget in Figure 10b.
- Create Counter_Write($\langle CounterWrite, i, 0, op, msr, msd \rangle, \langle DigitTop, i, op, msr, msd \rangle$) from the general gadget in Figure 10a.
- Create Counter_Write($\langle CounterWrite, i, 1, op, msr, msd \rangle, \langle DigitTop, i, op, msr, msd \rangle$) from the general gadget in Figure 10b.

• For each i = 1, 2, 3:

- Create Counter_Write($\langle CounterWrite, i, 0, halt, msr, msd \rangle, \langle RoofScaffolding, i, msr, msd \rangle$) from the general gadget in Figure 10a.
- Create Counter_Write($\langle CounterWrite, i, 1, halt, msr, msd \rangle$, $\langle RoofScaffolding, i, msr, msd \rangle$) from the general gadget in Figure 10b.

4.1.5 Digit_Top

The Digit_Top gadgets have special geometry designed so that First_Warp and Second_Warp tiles are allowed to "wake up", and complete their warping journey. Each digit has some type of Digit_Top gadget, however, depending on the digit region and index of a specific digit, the exact digit top will differ.

Figure 11: Topper micro-gadgets

For each $op \in \{\text{increment}, \text{copy}\}$

Digit 1 (general): the following statements create the gadget shown in Figure 12a.

- Create North_Line5($\langle \texttt{DigitTop}, 1, op \rangle$, $\langle \texttt{DigitTopA}, 1, op \rangle$) from the micro-gadget shown in Figure 3a.
- Create Topper ($\langle {\tt DigitTopA}, 1, op \rangle$, $\langle {\tt DigitTopB}, 1, op \rangle$) from the micro-gadget shown in Figure 11a.
- Create South_Line4 $l(\langle \texttt{DigitTopB}, 1, op \rangle, \langle \texttt{Return_Path}, 1, op \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 1 (MSR): the following statements create the gadget shown in Figure 12k.
 - Create Topper($\langle \texttt{DigitTop}, 1, op, \texttt{msr} \rangle$, $\langle \texttt{DigitTopA}, 1, op, \texttt{msr} \rangle$) from the micro-gadget shown in Figure 11b.
 - Create South_Line4 $l(\langle \texttt{DigitTopA}, 1, op, \texttt{msr} \rangle, \langle \texttt{Return_Path}, 1, op, \texttt{msr} \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 1 (MSD): the following statements create the gadget shown in Figure 12h.

- Create North_Line4 $l(\langle \texttt{DigitTop}, 1, op, \texttt{msr}, \texttt{msd} \rangle, \langle \texttt{DigitTopA}, 1, op, \texttt{msr}, \texttt{msd} \rangle)$ from the micro-gadget shown in Figure 3a.
- Create North_Line4($\langle DigitTopA, 1, op, msr, msd \rangle$, $\langle DigitTopB, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3a.
- Create Topper($\langle \texttt{DigitTopB}, 1, op, \texttt{msr}, \texttt{msd} \rangle$, $\langle \texttt{DigitTopC}, 1, op, \texttt{msr}, \texttt{msd} \rangle$) from the micro-gadget shown in Figure 11a.
- Create South_Line4 $l(\langle DigitTopC, 1, op, msr, msd \rangle, \langle DigitTopD, 1, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3b.
- Create South_Line30($\langle DigitTopD, 1, op, msr, msd \rangle$, $\langle DigitTopE, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Create South_Line4l(\(\text{DigitTopE}, 1, op, \text{msr}, \text{msd} \), \(\text{DigitTopF}, 1, op, \text{msr}, \text{msd} \)) from the micro-gadget shown in Figure 3b.
- Create South_Line14($\langle DigitTopF, 1, op, msr, msd \rangle$, $\langle DigitTopG, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Create South_Line17($\langle DigitTopG, 1, op, msr, msd \rangle$, $\langle Return_Path, 1, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Digit 2 (general): the following statements create the gadget shown in Figure 12a.
 - Create North_Line5($\langle DigitTop, 2, op \rangle$, $\langle DigitTopA2, op \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA2}, op \rangle$, $\langle \texttt{DigitTopB2}, op \rangle$) from the micro-gadget shown in Figure 11a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB2}, op \rangle, \langle \texttt{Return_Path}, 2, op \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 2 (MSD): the following statements create the gadget shown in Figure 12n.
 - Create North_Line4l(\(\text{DigitTop}, 2, op, \text{msr}, \text{msd} \), \(\text{DigitTopA}, 2, op, \text{msr}, \text{msd} \)) from the micro-gadget shown in Figure 3a.
 - Create Topper(\(\text{DigitTopA}, 2, op, \text{msr}, \text{msd} \), \(\text{DigitTopB}, 2, op, \text{msr}, \text{msd} \)) from the micro-gadget shown in Figure 11c.
 - Create South_Line4 $l(\langle DigitTopB, 2, op, msr, msd \rangle, \langle DigitTopC, 2, op, msr, msd \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line30($\langle DigitTopC, 2, op, msr, msd \rangle$, $\langle Return_Path, 2, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3b.
- Digit 3 (general): the following statements create the gadget from Figure 12a.
 - Create North_Line5($\langle DigitTop, 3, op \rangle$, $\langle DigitTopA, 3, op \rangle$) from the micro-gadget shown in Figure 3a.

- Create Topper($\langle \texttt{DigitTopA}, 3, op \rangle$, $\langle \texttt{DigitTopB}, 3, op \rangle$) from the micro-gadget shown in Figure 11a.
- Create South_Line4 $l(\langle \texttt{DigitTopB}, 3, op \rangle, \langle \texttt{Return_Path}, 3, op \rangle)$ from the micro-gadget shown in Figure 3b.
- Digit 3 (MSD): the following statements create the gadget from Figure 12a.
 - Create North_Line5($\langle DigitTop, 3, op, msr, msd \rangle$, $\langle DigitTopA, 3, op, msr, msd \rangle$) from the micro-gadget shown in Figure 3a.
 - $\ \, {\rm Create} \ \, {\rm Topper}(\ \langle {\tt DigitTopA}, 3, op, {\tt msr}, {\tt msd} \rangle \, , \langle {\tt DigitTopB}, 3, op, {\tt msr}, {\tt msd} \rangle \,) \\ \, {\rm from \ the \ micro-gadget \ shown \ in \ Figure \ 11a.}$
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 3, op, \texttt{msr}, \texttt{msd} \rangle, \langle \texttt{Return_Path}, 3, op, \texttt{msr}, \texttt{msd} \rangle)$ from the micro-gadget shown in Figure 3b.

(a) Digits 1, 2, & 3 - general. (b) Digit 1 - general (c) Digit 1 - general (seed) (d) Digit 2 - general overview. The black tiles in overview. The black tiles in overview. The black tiles in this figure correspond to the gadget shown in subfigure a. gadget shown in subfigure a. gadget shown in subfigure a.

(e) Digit 2 - general (seed) (f) Digit 3 - general

(g) Digit 3 - general (seed) overview. The black tiles in overview. The black tiles in overview. The black tiles in this figure correspond to the this figure correspond to the gadget shown in subfigure a. gadget shown in subfigure a. gadget shown in subfigure a.

(h) Digit 1 - case 1.

(i) Digit 1 - case 1 overview. (j) Digit 1 - case 1 (seed) get shown in subfigure h.

The black tiles in this fig- overview. The black tiles in ure correspond to the gad- this figure correspond to the gadget shown in subfigure h.

(k) Digit 1 - case 2.

(l) Digit 1 - case 2 overview. The black tiles in this figure correspond to the gadget shown in subfigure k.

(m) Digit 1 - case 2 (seed) overview. The black tiles in this figure correspond to the gadget shown in subfigure k.

(n) Digit 2 - case 2.

(o) Digit 2 - case 2 overview. (p) Digit 2 - case 2 (seed) get shown in subfigure n.

The black tiles in this fig- overview. The black tiles in ure correspond to the gad- this figure correspond to the gadget shown in subfigure n.

\$43\$ Figure 12: The Digit_Top gadgets.

4.1.6 Return_Path

After a Digit_Top has assembled, we know that the geometry that allows for the Warp_Unit to work has been placed, therefore the counter is free to return back near where it started reading the previous digit. The next gadget that assembles is the Return_Path gadget. The basic idea of this gadget is simply to provide a path from the end of Digit_Top to some general area closer to where the most recently read digit is located. Once the Return_Path has completely assembled, it output's a glue for the Next_Read gadgets to determine where the counter needs to assemble next.

For each $op \in \{\text{increment}, \text{copy}\}:$

- Create Return_Path($\langle \text{ReturnPath}, 1, op \rangle$, $\langle \text{NextRead}, 1, op \rangle$) from the general gadget shown in Figure 13a.
- Create Return_Path($\langle ReturnPath, 1, op, msr \rangle$, $\langle NextRead, 1, op, msr \rangle$) from the general gadget shown in Figure 13j
- Create Return_Path($\langle \text{ReturnPath}, 1, op, \text{msr}, \text{msd} \rangle$, $\langle \text{NextRead}, 1, op, \text{msr}, \text{msd} \rangle$) from the general gadget shown in Figure 13m.
- Create Return_Path($\langle \text{ReturnPath}, 2, op \rangle$, $\langle \text{NextRead}, 2, op \rangle$) from the general gadget shown in Figure 13d.
- Create Return_Path($\langle \text{ReturnPath}, 2, op, \text{msr}, \text{msd} \rangle$, $\langle \text{NextRead}, 2, op, \text{msr}, \text{msd} \rangle$) from the general gadget shown in Figure 13m.
- Create Return_Path($\langle ReturnPath, 3, op \rangle$, $\langle NextRead, 3, op \rangle$) from the general gadget shown in Figure 13g.
- Create Return_Path($\langle \text{ReturnPath}, 3, op, \text{msr}, \text{msd} \rangle$, $\langle \text{NextRead}, 3, op, \text{msr}, \text{msd} \rangle$) from the general gadget shown in Figure 13g.

(e) Digit 2 - general overview. The black tiles in overview. The black tiles in this figure correspond to the this figure correspond to the

(f) Digit 2 - general (seed) gadget shown in subfigure d. gadget shown in subfigure d.

(g) Digit 3 - general.

(h) Digit 3 - general overview. The black tiles in this figure correspond to the gadget shown in subfigure g.

(i) Digit 3 - general (seed) overview. The black tiles in this figure correspond to the gadget shown in subfigure g.

(j) Digit 1 - case 2.

The black tiles in this fig- overview. The black tile in ure correspond to the gad- this figure is a single tile get shown in subfigure j.

(k) Digit 1 - case 2 overview. (l) Digit 1 - case 2 (seed) gadget used only in the initial value.

(m) Digit 1 - case 1, Digit 2 case 2.

get shown in subfigure m.

(n) Digit 1 - case 1 overview. (o) Digit 1 - case 1 (seed) (p) Digit 2 - case 2 overview. The black tiles in this fig- overview. The black tiles The black tiles in this figure correspond to the gad- in this figure correspond to ure correspond to the gadthe gadget shown in subfig- get shown in subfigure m. ure m.

(q) Digit 3 - case 3 overview. (r) Digit 3 - case 3 (seed) get shown in subfigure g.

The black tiles in this fig- overview. The black tiles in ure correspond to the gad- this figure correspond to the ${\rm gadget\ shown\ in\ subfigure\ g.}$

Figure 13: The Return_Path gadgets.

4.1.7 Next_Read

Once the Return_Path gadget has assembled, the counter has a few options to choose from. The gadget that controls what happens after a digit is written is the Next_Read gadget. If there is a msr and msd signal in the input, this gadget knows that the most significant digit was just read and will output a glue for the Cross_Next_Row gadget to assemble so that the counter crosses back to the right and begins reading the first digit in the next row. Otherwise (for regular digits not in the MSR), this gadget will assemble the second half of the return path, terminating at the next digit in the current row. When this happens, the gadget increments the digit index (unless it is already digit 3, in which case it resets to 1) and outputs an empty Counter_Read signal to force the counter to begin reading the next digit.

For each $op \in \{\text{increment}, \text{copy}\}:$

- Create Next_Read($\langle NextRead, 1, op \rangle$, $\langle CounterRead, 2, \lambda, op \rangle$) from the gadget shown in Figure 14a.
- Create Next_Read($\langle NextRead, 1, op, msr \rangle$, $\langle CounterRead, 2, \lambda, op \rangle$) from the gadget shown in Figure 14o.
- Create Next_Read($\langle NextRead, 1, op, msr, msd \rangle$, $\langle CrossNextRow, op \rangle$) from the gadget shown in Figure 14k.
- Create Next_Read($\langle NextRead, 2, op \rangle$, $\langle CounterRead, 3, \lambda, op \rangle$) from the gadget shown in Figure 14a.
- Create Next_Read($\langle NextRead, 2, op, msr, msd \rangle$, $\langle CrossNextRow, op \rangle$) from the gadget shown in Figure 14k.
- Create Next_Read($\langle \text{NextRead}, 3, op \rangle$, $\langle \text{CounterRead}, 1, \lambda, op \rangle$) from the gadget shown in Figure 14e.
- Create Next_Read($\langle NextRead, 3, op, msr, msd \rangle$, $\langle CrossNextRow, op \rangle$) from the gadget shown in Figure 14q.

(a) Digit 1 & 2 - general. (b) Digit 1 - general (c) Digit 1 - general (seed) (d) Digit 2 - general overview. The black tiles in overview. The black tile in overview. The black tiles in this figure correspond to the this figure is a single tile this figure correspond to the gadget shown in subfigure a. gadget used only in the ini- gadget shown in subfigure a. tial value. 51

(i) Digit 3 - seed.

(j) Digit 3 - general (seed) (k) Digit 1 - case overview. The black tiles in Digit 2 - case 2. this figure correspond to the gadget shown in subfigure i.

(l) Digit 1 - case 1 overview. The black tiles in this figure correspond to the gadget shown in subfigure k.

(m) Digit 2 - case 2 overview. The black tiles in overview. The black tiles in this figure correspond to the this figure correspond to the gadget shown in subfigure k. gadget shown in subfigure k.

(n) Digit 2 - case 2 (seed)

(o) Digit 1 - case 2.

(p) Digit 1 - case 2 overview. The black tiles in this figure correspond to the gadget shown in subfigure o.

(q) Digit 3 - case 3.

(r) Digit 3 - case 3 overview. (s) Digit 3 - case 3 (seed) The black tiles in this fig- overview. The black tiles in ure correspond to the gad- this figure correspond to the get shown in subfigure q.

 ${\rm gadget\ shown\ in\ subfigure\ q.}$

4.1.8 Cross_Next_Row

The idea this gadget is to assemble after reading the MSD, routing the counter back to the start of the next row, in position for the counter to begin reading the first digit. The number of tiles shaded in darker grey is $6 \cdot \lfloor \frac{d}{3} \rfloor$.

For each $op \in \{\text{increment}, \text{copy}\}:$

• Create Cross_Next_Row($\langle \mathtt{CrossNextRow}, op \rangle$, $\langle \mathtt{CounterRead}, 1, \lambda, op \rangle$) from the gadget shown in Figure 15a.

shown in subfigure a.

Figure 15: The ${\tt Cross_Next_Row}$ gadget. 57

4.1.9 Roof_Unit

The Roof_Unit gadgets consist of two parts, the scaffolding and the shingles. The scaffolding is responsible for assembling a path from the top of the final last digit and adding a height of 15 tiles to the current (final) counter row. Since the most significant digit is positioned at a different height within a digit region depending on how many digits are in the MSR, the Roof_Scaffolding gadget's height must account for this. If the MSR has 3 digits, the height is only 15 tiles. If the MSR has 2 digits, the height is 30 + 12l + 15 tiles. Otherwise, if the MSR has 1 digit the height is 2(30 + 12l) + 15 tiles.

- If case 1: create Roof_Scaffolding($\langle RoofScaffolding, 1, halt, msr, msd \rangle$, $\langle RoofShingle, 0 \rangle$) from the gadget shown in Figure 16a.
- If case 2: create Roof_Scaffolding($\langle RoofScaffolding, 2, halt, msr, msd \rangle$, $\langle RoofShingle, 0 \rangle$) from the gadget shown in Figure 16b.
- If case 3: create Roof_Scaffolding($\langle RoofScaffolding, 3, halt, msr, msd \rangle$, $\langle RoofShingle, 0 \rangle$) from the gadget shown in Figure 16c.
- For each $i = 0, ..., \lceil \frac{d}{3} \rceil 1$, create Roof_Shingle($\langle \text{RoofShingle}, i \rangle, \langle \text{RoofShingle}, i + 1 \rangle$) from the gadget shown in Figure 16d.
- If k is odd, we add one additional tile to the rightmost shingle, with a west glue labeled $\langle RoofShingle, \left\lceil \frac{d}{3} \right\rceil \rangle$.

in this figure correspond to the gadget shown in subfigure a. in this figure correspond to the gadget shown in subfigure a. in this figure correspond to the gadget shown in subfigure b. in this figure correspond to the gadget shown in subfigure c.

Figure 16: The Roof_Unit gadgets.

4.2 Initial value

We begin by encoding s with the Seed unit. It has $\lceil \frac{d}{3} \rceil$ digit regions. Each digit region has three digits, except for the most significant digit region (MSR) which has $d \mod 3$ if $d \mod 3 \neq 0$, otherwise it has 3 digits.

Figure 17: These figures show an example construction of the initial value, with all the possible MSR to the left. Of the three possible MSRs, of course only one would occur in a real assembly.

Note that we use i as the index of a digit in s and j as the index of a bit in a encoded digit.

• Create Seed($\langle CounterWrite, 1, seed, 0, 0 \rangle$)

The idea here is to repeat these steps starting from i = 0 and repeating until i is the index of the first digit in the MSR. These steps build general non-MSR digit regions shown in Figure 17d.

4.2.1 General

- Start.
- Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle, \langle \text{CounterWrite}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
 - if j=1: create Counter-Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
 - if 1 < j < l 1: create Counter-Write(\langle Counter-Write, 1, seed, $i, j \rangle$, \langle Counter-Write, 1, seed, $i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
 - if j=l-1: create Counter_Write($\langle CounterWrite, 1, seed, i, j \rangle, \langle DigitTop, 1, seed, i \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- Digit_Top, the following statements create the gadget shown in Figure 12a.
 - Create North_Line5($\langle DigitTop, 1, seed, i \rangle$, $\langle DigitTopA, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle DigitTopA, 1, seed, i \rangle$, $\langle DigitTopB, 1, seed, i \rangle$) from the micro-gadget shown in Figure 11a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle, \langle \texttt{ReturnPath}, 1, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle \text{ReturnPath}, 1, \text{seed}, i \rangle$, $\langle \text{NextRead}, 1, \text{seed}, i \rangle$) (single tile).
- $i \leftarrow i + 1$.
- Create Next_Read($\langle \texttt{NextRead}, 1, \texttt{seed}, i-1 \rangle$, $\langle \texttt{SecondWarp}, 2, \texttt{seed}, i \rangle$) (single tile).
- Create Second_Warp(\langle SecondWarp, 2, seed, $i\rangle$, \langle PostWarp, 2, seed, $i\rangle$) (single tile).
- Create Post_Warp($\langle PostWarp, 2, seed, i \rangle$, $\langle CounterWrite, 2, seed, i, 0 \rangle$) from the general gadget show in Figure 9c.
- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{CounterWrite}, 2, \text{seed}, i, j \rangle, \langle \text{CounterWrite}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
 - if j=1: create Counter_Write($\langle \texttt{CounterWrite}, 2, \texttt{seed}, i, j \rangle$, $\langle \texttt{CounterWrite}, 2, \texttt{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.

- if 1 < j < l-1: create Counter_Write(\(\cap \)CounterWrite, 2, seed, $i, j \rangle$, \(\cap \)CounterWrite, 2, seed, $i, j+1 \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- if j = l 1: create Counter_Write($\langle \text{CounterWrite}, 2, \text{seed}, i, j \rangle$, $\langle \text{DigitTop}, 2, \text{seed}, i \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
- Digit_Top: the following statements create the gadget shown in Figure 12a.
 - Create North_Line5($\langle DigitTop, 2, seed, i \rangle$, $\langle DigitTopA, 2, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 11a.
 - Create South.Line4l($\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{NextRead}, 2, \texttt{seed}, i \rangle$) from the gadget in Figure 13d.
- $i \leftarrow i + 1$.
- Create Next_Read($\langle NextRead, 2, seed, i-1 \rangle$, $\langle FirstWarp, 3, seed, i \rangle$) from the general gadget shown in Figure 14g.
- Create First_Warp($\langle FirstWarp, 3, seed, i \rangle, \langle WarpBridge, 3, seed, i \rangle$)
- Create Warp_Bridge($\langle \text{WarpBridge}, 3, \text{seed}, i \rangle$, $\langle \text{SecondWarp}, 3, \text{seed}, i \rangle$) from the general gadget shown in Figure 7a.
- Create Second_Warp($\langle SecondWarp, 3, seed, i \rangle, \langle PostWarp, 3, seed, i \rangle$)
- Create Post_Warp($\langle PostWarp, 3, seed, i \rangle$, $\langle CounterWrite, 3, seed, i, 0 \rangle$) from the general gadget shown in Figure 9c.
- Digit: for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
 - if j=1: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle, \langle \text{CounterWrite}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
 - if 1 < j < l 1: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 3, \text{seed}, i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
 - if j = l 1: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle, \langle \text{DigitTop}, 3, \text{seed}, i \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
- Digit_Top, the following statements create the gadget shown in Figure 12a.
 - Create North_Line5($\langle \texttt{DigitTop}, 3, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopA}, 3, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \text{DigitTopA}, 3, \text{seed}, i \rangle$, $\langle \text{DigitTopB}, 3, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 11a.

- Create South_Line4 $l(\langle DigitTopB, 3, seed, i \rangle, \langle ReturnPath, 3, seed, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle ReturnPath, 3, seed, i \rangle$, $\langle NextRead, 3, seed, i, \rangle$) from the gadget in Figure 13g.
- $i \leftarrow i + 1$.
- Create Next_Read($\langle NextRead, 3, seed, i-1 \rangle$, $\langle CounterWrite, 1, seed, i \rangle$) from the general gadget shown in Figure 14i.
- if i is not an index in the MSR, go to start, else break.

4.2.2 Case 1

If d - i = 1 to create the assembly shown in 17a.

- Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter-Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10b.
 - if j=1: create Counter_Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle, \langle \text{CounterWrite}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10b.
 - if 1 < j < l 1: create Counter-Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 1, \text{seed}, i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
 - if j=l-1: create Counter_Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle, \langle \text{DigitTop}, 1, \text{seed}, i \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- Digit_Top, the following statements create the gadget shown in Figure 12h
 - Create North_Line4 $l(\langle DigitTop, 1, seed, i \rangle, \langle DigitTopA, 1, seed, i \rangle)$ from the micro-gadget shown in Figure 3a.
 - Create North_Line4($\langle \texttt{DigitTopA}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopC}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 11a.
 - Create South_Line4 $l(\langle \texttt{DigitTopC}, 1, \texttt{seed}, i \rangle, \langle \texttt{DigitTopD}, 1, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line30($\langle DigitTopD, 1, seed, i \rangle$, $\langle DigitTopE, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3b.
 - Create South_Line4 $l(\langle \texttt{DigitTopE}, 1, \texttt{seed}, i \rangle, \langle \texttt{DigitTopF}, 1, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
 - Create South_Line14($\langle DigitTopF, 1, seed, i \rangle$, $\langle DigitTopG, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3b.
 - Create South_Line17($\langle \texttt{DigitTopG}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle \text{ReturnPath}, 1, \text{seed}, i \rangle$, $\langle \text{NextRead}, 1, \text{seed}, i \rangle$) from the general gadget shown in Figure 13m
- Create Next_Read($\langle NextRead, 1, seed, i \rangle$, $\langle Cross_Next_Row, increment \rangle$) from the micro-gadget shown in Figure 14k.

4.2.3 Case 2

If d - i = 2 to create the assembly shown in 17b.

- Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$: - if j = 0: create Counter-Write ($\langle CounterWrite, 2, seed, i, j \rangle$, $\langle CounterWrite, 2, seed, i, j + 1 \rangle$) from the general gadget shown in Figure 10b. - if j = 1: $\text{create Counter-Write}(\,\langle \texttt{CounterWrite}, 2, \texttt{seed}, i, j \rangle\,, \langle \texttt{CounterWrite}, 2, \texttt{seed}, i, j+1 \rangle\,)$ from the general gadget shown in Figure 10a. - if 1 < j < l - 1: create Counter_Write($\langle CounterWrite, 2, seed, i, j \rangle$, $\langle CounterWrite, 2, seed, i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1. - if j = l - 1: create Counter_Write($\langle CounterWrite, 2, seed, i, j \rangle$, $\langle DigitTop, 2, seed, i \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1. • Digit_Top, the following statements create the gadget shown in Figure 12k. - Create Topper($\langle DigitTop, 1, seed, i \rangle, \langle DigitTopA, 1, seed, i \rangle$) from the micro-gadget shown in Figure 11b - Create South_Line4 $l(\langle DigitTopA, 1, op, msr \rangle, \langle ReturnPath, 1, op, msr \rangle)$ from the micro-gadget shown in Figure 3b • Create Return_Path($\langle ReturnPath, 1, seed, i \rangle$, $\langle NextRead, 1, seed, i \rangle$) (single tile) • $i \leftarrow i + 1$ • Create Next_Read($\langle NextRead, 1, seed, i-1 \rangle$, $\langle SecondWarp, 2, seed, i \rangle$) (single tile) • Create Second_Warp(\langle SecondWarp, 2, seed, $i\rangle$, \langle PostWarp, 2, seed, $i\rangle$) (single tile) • Create Post_Warp($\langle PostWarp, 2, seed, i \rangle$, $\langle CounterWrite, 2, seed, i, 0 \rangle$) from the general gadget show in Figure 91. • Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$: - if j = 0: create Counter_Write($\langle CounterWrite, 2, seed, i, j \rangle$, $\langle CounterWrite, 2, seed, i, j + 1 \rangle$) from the general gadget shown in Figure 10b. - if i = 1: create Counter_Write($\langle CounterWrite, 2, seed, i, j \rangle$, $\langle CounterWrite, 2, seed, i, j + 1 \rangle$) from the general gadget shown in Figure 10b. - if 1 < i < l - 1: create Counter_Write($\langle CounterWrite, 2, seed, i, j \rangle$, $\langle CounterWrite, 2, seed, i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1. - if j = l - 1: create Counter_Write($\langle CounterWrite, 2, seed, i, j \rangle, \langle DigitTop, 2, seed, i \rangle$)
- Digit_Top, the following statements create the gadget shown in Figure 12n.

from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.

- Create North_Line4l($\langle \texttt{DigitTop}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopA}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
- Create Topper($\langle \text{DigitTopA}, 2, \text{seed}, i \rangle$, $\langle \text{DigitTopB}, 2, \text{seed}, i \rangle$) from the micro-gadget shown in Figure 11c.
- Create South_Line4 $l(\langle DigitTopB, 2, seed, i \rangle, \langle DigitTopC, 2, seed, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create South_Line30($\langle \texttt{DigitTopC}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{NextRead}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 13m.
- Create Next_Read(\(\text{NextRead}, 2, \text_Row \), \(\text{Cross_Next_Row}, \text{increment} \)) from the micro-gadget shown in Figure 14k.

4.2.4 Case 3

If d - i = 3 to create the assembly shown in 17c.

- Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle, \langle \text{CounterWrite}, 1, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
 - $-\ \ \text{if}\ j=1;\\ \text{create Counter_Write}\big(\left\langle \texttt{CounterWrite},1,\texttt{seed},i,j\right\rangle,\left\langle \texttt{CounterWrite},1,\texttt{seed},i,j+1\right\rangle\big)\\ \text{from the general gadget shown in Figure 10a.}$
 - if 1 < j < l 1: create Counter_Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 1, \text{seed}, i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
 - if j=l-1: create Counter_Write($\langle \text{CounterWrite}, 1, \text{seed}, i, j \rangle, \langle \text{DigitTop}, 1, \text{seed}, i \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- Digit_Top, the following statements create the gadget shown in Figure 12a.
 - Create North_Line5($\langle DigitTop, 1, seed, i \rangle$, $\langle DigitTopA, 1, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 11a.
 - Create South_Line4l($\langle \texttt{DigitTopB}, 1, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 1, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- $i \leftarrow i + 1$.
- Create Return_Path($\langle \text{ReturnPath}, 1, \text{seed}, i-1 \rangle$, $\langle \text{SecondWarp}, 2, \text{seed}, i \rangle$) (single tile).
- Create Second_Warp($\langle SecondWarp, 2, seed, i \rangle$, $\langle PostWarp, 2, seed, i \rangle$) (single tile).
- Create Post_Warp($\langle PostWarp, 2, seed, i \rangle$, $\langle CounterWrite, 2, seed, i, 0 \rangle$) from the general gadget show in Figure 9c.
- Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:

- if j=0 create Counter_Write($\langle \text{CounterWrite}, 2, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
- if j=1: create Counter_Write($\langle \text{CounterWrite}, 2, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 2, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10a.
- if 1 < j < l-1: create CounterWrite(\langle CounterWrite, 2, seed, $i, j \rangle$, \langle CounterWrite, 2, seed, $i, j+1 \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- if j=l-1: create Counter_Write($\langle \text{CounterWrite}, 2, \text{seed}, i, j \rangle, \langle \text{DigitTop}, 2, \text{seed}, i \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- Digit_Top, the following statements create the gadget shown in Figure 12a.
 - Create North_Line5($\langle DigitTop, 2, seed, i \rangle$, $\langle DigitTopA, 2, seed, i \rangle$) from the micro-gadget shown in Figure 3a.
 - Create Topper($\langle \texttt{DigitTopA}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 11a.
 - Create South_Line4 $l(\langle \texttt{DigitTopB}, 2, \texttt{seed}, i \rangle, \langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle)$ from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle \texttt{ReturnPath}, 2, \texttt{seed}, i \rangle$, $\langle \texttt{NextRead}, 2, \texttt{seed}, i \rangle$) from the gadget in Figure 13d.
- $i \leftarrow i + 1$
- Create Next_Read($\langle \text{NextRead}, 2, \text{seed}, i-1 \rangle$, $\langle \text{FirstWarp}, 3, \text{seed}, i \rangle$) from the general gadget shown in Figure 14g.
- Create First_Warp($\langle FirstWarp, 3, seed, i \rangle, \langle WarpBridge, 3, seed, i \rangle$)
- Create Warp_Bridge($\langle WarpBridge, 3, seed, i \rangle$, $\langle SecondWarp, 3, seed, i \rangle$) from the general gadget shown in Figure 7a.
- Create Second_Warp(\langle SecondWarp, 3, seed, $i\rangle$, \langle PostWarp, 3, seed, $i\rangle$)
- Create Post_Warp($\langle PostWarp, 3, seed, i \rangle$, $\langle CounterWrite, 3, seed, i, 0 \rangle$) from the general gadget shown in Figure 9c.
- Digit, for each j = 0, ..., l-1 and each b in $bin(C_0[i])[j]$:
 - if j=0: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle, \langle \text{CounterWrite}, 3, \text{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10b.
 - if j=1: create Counter_Write($\langle \texttt{CounterWrite}, 3, \texttt{seed}, i, j \rangle$, $\langle \texttt{CounterWrite}, 3, \texttt{seed}, i, j+1 \rangle$) from the general gadget shown in Figure 10b.
 - if 1 < j < l 1: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle$, $\langle \text{CounterWrite}, 3, \text{seed}, i, j + 1 \rangle$) from the general gadget shown in Figure 10a if b = 0 or Figure 10b if b = 1.
 - if j=l-1: create Counter_Write($\langle \text{CounterWrite}, 3, \text{seed}, i, j \rangle, \langle \text{DigitTop}, 3, \text{seed}, i \rangle$) from the general gadget shown in Figure 10a if b=0 or Figure 10b if b=1.
- Digit_Top, the following statements create the gadget shown in Figure 12a.

- Create North_Line5($\langle \texttt{DigitTop}, 3, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopA}, 3, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3a.
- Create Topper($\langle \texttt{DigitTopA}, 3, \texttt{seed}, i \rangle$, $\langle \texttt{DigitTopB}, 3, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 11a.
- Create South_Line4l($\langle \texttt{DigitTopB}, 3, \texttt{seed}, i \rangle$, $\langle \texttt{ReturnPath}, 3, \texttt{seed}, i \rangle$) from the micro-gadget shown in Figure 3b.
- Create Return_Path($\langle \text{ReturnPath}, 3, \text{seed}, i \rangle$, $\langle \text{NextRead}, 3, \text{increment}, \text{msr}, \text{msd} \rangle$) from the gadget in Figure 13g.

Figure 18: These figures show a full example of an initial value, with both general regions and the MSRs together, instead of separated as shown above.

4.3 Overviews

