EG2104 芯片用户手册

带 SD 功能 MOS 管驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2017年11月21日	EG2104 数据手册初稿
V1.1	2017年11月23日	输出电流能力修改

見 录

1.	特性.	
2.	描述.	
		领域1
		引脚定义
	3.2	引脚描述
4.	结构机	框图
5.	典型』	应用电路
6.		
0.		极限参数
	6.2	典型参数
		开关时间特性及死区时间波形图
7.	应用i	设计
	7.1	Vcc 端电源电压
		输入逻辑信号要求和输出驱动器特性
		自举电路
_		
8.		尺寸9
	0 1	COD9 科港日子

EG2104 芯片数据手册 V1.1

1. 特性

- 高端悬浮自举电源设计,耐压可达 600V
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- 低端 VCC 电压范围 2.8V-20V
- 输出电流能力 IO+/- 2A/2.5A
- 内建死区控制电路
- SD输入通道低电平有效,关闭 HO、LO 输出。
- 外围器件少
- 静态电流小于 1uA,非常适合电池场合
- 封装形式: SOP-8

2. 描述

EG2104 是一款高性价比的带SD功能的 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器、电源 DC-DC 中的驱动电路。

EG2104 高端的工作电压可达 600V,低端 Vcc 的电源电压范围宽 2.8V \sim 20V,静态功耗小于 1uA。该芯片输入通道 IN 内建了一个 200K 下拉电阻, \overline{SD} 内建了一个 200K 下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 \overline{I} 0+/ $\overline{}$ 2/2.5A,采用 SOP8 封装。

3. 应用领域

- 移动电源高压快充开关电源
- 无线充电驱动器变频水泵控制器
- DC-DC 电源
- 无刷电机驱动器
- 高压 Class-D 类功放

4. 引脚

4.1 引脚定义

图 4-1. EG2104 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述	
1	1 Vcc Pc		芯片工作电源输入端, 电压范围 2.8V-20V, 外接一个高频 0.1uF 旁	
ı			路电容能降低芯片输入端的高频噪声	
		逻辑输入控制信号,控制输出 MOS 管的导通与截止		
2	IN	I	"0"对应 LO 高电平,HO 低电平。	
			"1"对应 HO 高电平,LO 低电平。	
			逻辑输入控制信号低电平有效,强行使 LO、HO 输出低电平。	
3	3 <u>SD</u>		"1"允许 LO、HO 随 IN 输入控制。	
			"0"强行使 LO、HO 输出低电平。	
4	GND	GND	芯片的地端。	
5	LO	0	输出控制低端 MOS 功率管的导通与截止	
6	VS	0	高端悬浮地端	
7	НО	0	输出控制高端 MOS 功率管的导通与截止	
8	VB	Power	高端悬浮电源	

5. 结构框图

图 5-1. EG2104 内部电路图

6. 典型应用电路

图 6-1. EG2104 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
自举高端 VB 电源	VB	-	-0.3	600	V
高端悬浮地端	VS	ı	VB-20	VB+0.3	V
高端输出	НО	_	VS-0.3	VB+0.3	V
低端输出	LO	ı	-0.3	VCC+0.3	V
电源	VCC	-	-0.3	20	٧
高通道逻辑信号 输入电平	IN	-	-0.3	VCC+0.3	V
低通道逻辑信号 输入电平	SD	-	-0.3	6	V
TA	环境温度	-	-45	125	${\mathbb C}$
Tstr	储存温度	-	-55	150	${\mathbb C}$
TL	焊接温度	T=10S	-	300	${\mathfrak C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在 TA=25℃, Vcc=12V, 负载电容 CL=10nF 条件下

参数名称	符号	测试条件	最小	典型	最大	单位
电源	Vcc	-	2.8	12	20	V
静态电流	Icc	输入悬空, Vcc=12V	-	-	1	uA
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.5	-	-	V
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	V
输入逻辑信号高 电平的电流	Iin(H)	Vin=5V	-	-	30	uA
输入逻辑信号低 电平的电流	Iin(L)	Vin=OV	-10	-	-	uA
低端输出 LO 开关时	付间特性					
开延时	Ton	见图 7-1	-	280	400	nS
关延时	Toff	见图 7-1	-	125	300	nS
上升时间	Tr	见图 7-1	-	120	200	nS
下降时间	Tf	见图 7-1	-	80	100	nS
高端输出 HO 开关时	付间特性					
开延时	Ton	见图 7-2	-	250	400	nS
关延时	Toff	见图 7-2	-	180	400	nS
上升时间	Tr	见图 7-2	-	120	200	nS
下降时间	Tf	见图 7-2	-	80	100	nS
死区时间特性						
死区时间	DT	见图 7-3 , 无负载电容 CL=0	50	100	300	nS
IO 输出最大驱动能力						
IO 输出拉电流	I0+	Vo=0V,VIN=VIH PW≤10uS	1.8	2	-	А
IO 输出灌电流	I0-	Vo=12V,VIN=VIL PW≤10uS	2	2.5	-	А

7.3 开关时间特性及死区时间波形图

图 7-1. 低端输出 LO 开关时间波形图图

7-2. 高端输出 HO 开关时间波形图

图 7-3. 死区时间波形图

8. 应用设计

8.1 Vcc 端电源电压

针对不同的 MOS 管,选择不同的驱动电压,芯片电源电压范围 2.8V-20V。

8.2 输入逻辑信号要求和输出驱动器特性

EG2104 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG2104 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 2.5A 和最大输出电流可达 2A, 高端上桥臂通道可以承受 600V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 280nS、关断传导延时为 125nS,高端输出开通传导延时为 250nS、关断传导延时为 180nS。低端输出开通的上升时间为 110nS、关断的下降时间为 50nS。

输入信号和输出信号逻辑功能图如图 8-2:

图8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输入		输出			
输入、输出逻辑					
IN (引脚 2)	SD (引脚 3)	HO (引脚 7)	LO (引脚 5)		
0	0	0	0		
1	0	0	0		
0	1	0	1		
1	1	1	0		

从真值表可知,在输入逻辑信号 \overline{SD} 为"0"时,不管 IN 为"1"或者"0"情况下,驱动器控制输出 HO、LO 同时为"0",上、下功率管同时关断;当输入逻辑信号 \overline{SD} 为"1"、IN 为"0"时,HO 输出为"0",LO 输出为"1";当输入逻辑信号 \overline{SD} 为"1"、IN 为"1"时,HO 输出为"1",LO 输出为"0"。

8.3 自举电路

EG2104 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N 沟道 MOS 管和低端 N 沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG2104 可以使用外接一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 VC 自举电容已充到足够的电压(Vc=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N 沟道 MOS 管的驱动。

图 8-3. EG2104 自举电路结构

9. 封装尺寸

9.1 SOP8 封装尺寸

