### Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia
Pedro Sánchez Terraf Mauricio Tellechea
Guido Ivetta

FaMAF, 10 de septiembre de 2021



### Ejes de Contenidos

Estructuras Ordenadas



2 Lógica Proposicional

$$\frac{[\varphi \wedge \psi]_1}{\psi} \wedge E \quad \frac{[\varphi \wedge \psi]_1}{\varphi} \wedge I$$

$$\frac{\psi \wedge \varphi}{\varphi \wedge \psi \rightarrow \psi \wedge \varphi} \rightarrow I_1$$

Lenguajes y Autómatas



# Parte 2: Lógica Proposicional



### Bibliografía

- Dirk van Dalen, Logic and Structure, 3ra edición (Springer).
- PST, Apunte de Lógica Proposicional.



# Contenidos estimados para hoy

Componentes de la lógica proposicional

- 2 Sintaxis
  - El lenguaje de la lógica
  - Inducción y recursión
  - Recursión en *PROP*

En primer año de la carrera se hacía algo como esto:



En primer año de la carrera se hacía algo como esto:

En primer año de la carrera se hacía algo como esto:

```
 \begin{array}{l} \underline{p} \Rightarrow q \vee p \\ \text{Definición de} \Rightarrow \end{array} \} \\ \underline{p} \vee q \vee \underline{p} \equiv \underline{q} \vee \underline{q} \vee p \\ \equiv \left\{ \begin{array}{l} \text{Conmutativa } \vee, \text{ Idempotencia } \vee \end{array} \right\} \\ \underline{p} \vee q \equiv \underline{q} \vee \underline{p} \\ \text{Conmutativa } \vee \end{array} \} \\ \underline{True}
```

#### Preguntas...

1 ¿Qué demuestra esto?



En primer año de la carrera se hacía algo como esto:

```
 \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \end{array} \} \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{q} \vee \underline{p} \\ \equiv \{ \begin{array}{l} \underline{Conmutativa} \vee, \text{ Idempotencia} \vee \end{array} \} \\ \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \\ \text{Conmutativa} \vee \end{array} \} \\ \underline{True}
```

#### Preguntas...

1 ¿Qué demuestra esto? ¿Qué es demostrar?



En primer año de la carrera se hacía algo como esto:

```
 \begin{array}{l} \underline{p} \Rightarrow \underline{q} \vee \underline{p} \\ \text{Definición de} \Rightarrow \end{array} \} \\ \underline{p} \vee \underline{q} \vee \underline{p} \equiv \underline{q} \vee \underline{q} \vee \underline{p} \\ \equiv \left\{ \begin{array}{l} \underline{Conmutativa} \vee, \text{Idempotencia} \vee \end{array} \right\} \\ \underline{p} \vee \underline{q} \equiv \underline{q} \vee \underline{p} \\ \text{Conmutativa} \vee \end{array} \} \\ \underline{True}
```

#### Preguntas...

- 1 ¿Qué demuestra esto? ¿Qué es demostrar?
- 2 ¿Qué es True?



En primer año de la carrera se hacía algo como esto:

### Preguntas...

- 1 ¿Qué demuestra esto? ¿Qué es demostrar?
- 2 ¿Qué es True?
- 3 ¿Qué son p y q?





#### **Sintaxis**

Qué objetos usamos: proposiciones, cómo se escriben.



#### **Sintaxis**

Qué objetos usamos: **proposiciones**, cómo se escriben.

#### Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

#### **Sintaxis**

Qué objetos usamos: **proposiciones**, cómo se escriben.

#### Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

#### Cálculo

Cómo se deducen proposiciones a partir de otras y se obtienen teoremas

#### **Sintaxis**

Qué objetos usamos: **proposiciones**, cómo se escriben.

#### Semántica

Cómo asignamos significado a las proposiciones: valor de verdad.

#### Cálculo

Cómo se deducen proposiciones a partir de otras y se obtienen teoremas

Estudiaremos especialmente la interrelación entre los dos últimos conceptos.



# Proposiciones

 $(p_1 \wedge p_2)$ ,

### Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1),$$



### Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)),$$

### Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos



### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

#### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos Los símbolos que usaremos:

$$\Sigma := \{ ), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

#### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots).$$



#### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \perp, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots).$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

### Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots)\}.$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

#### Ejemplo

### Proposiciones

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots).$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

### Ejemplo

#### Definición

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ ), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

### Ejemplo

#### Definición

*PROP* es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\varphi \in At$$
 Para

 $\varphi \in At \mid \mathsf{Para} \mathsf{ todo } \varphi \in At, \varphi \in PROP.$ 

### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ ), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

### Ejemplo

#### Definición

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\boxed{arphi \in \mathit{At}}$$
 Para todo  $arphi \in \mathit{At}, \, arphi \in \mathit{PROP}.$ 

$$(arphi 
ightarrow \psi)$$
 Para todas  $arphi, \psi$  en  $\mathit{PROP}, (arphi 
ightarrow \psi)$  está en  $\mathit{PROP}.$ 

### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ ), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

#### Ejemplo

#### Definición

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\varphi \in At$$
 Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

$$(\varphi \lor \psi)$$
 Para todas  $\varphi, \psi$  en  $PROP$ ,  $(\varphi \lor \psi)$  está en  $PROP$ .

### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \ldots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ ), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

#### Ejemplo

#### Definición

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\varphi \in At$$
 Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

$$(\varphi \wedge \psi)$$
 Para todas  $\varphi, \psi$  en  $PROP$ ,  $(\varphi \wedge \psi)$  está en  $PROP$ .

#### **Proposiciones**

$$(p_1 \wedge p_2), (p_2 \vee p_1), (p_0 \to (p_5 \vee p_0)), \dots$$

Tomémoslas por lo que son: cadenas de símbolos

Los símbolos que usaremos:

$$\Sigma := \{ ), (, \wedge, \vee, \rightarrow, \bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots \}.$$

Llamaremos **átomos** al subconjunto  $\{\bot, p_0, p_1, \ldots, p_n, p_{n+1}, \ldots\}$  de  $\Sigma$ .

### Ejemplo

#### Definición

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\boxed{\varphi \in At}$$
 Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $\overline{(\varphi \odot \psi)}$  todas  $\varphi, \psi$  en PROP,  $(\varphi \odot \psi)$  está en PROP.

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

 $\boxed{\varphi \in At}$  Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $\overline{(\varphi\odot\psi)}$  Para todas  $\varphi,\psi$  en *PROP*,  $(\varphi\odot\psi)$  está en *PROP*.

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\boxed{\varphi \in At}$$
 Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

$$\overline{(\varphi\odot\psi)}$$
 Para todas  $\varphi,\psi$  en  $PROP$ ,  $(\varphi\odot\psi)$  está en  $PROP$ .

#### Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego  $A(\varphi)$  es verdadero para toda  $\varphi \in PROP$  si y sólo si:

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

$$\boxed{arphi \in At}$$
 Para todo  $arphi \in At$ ,  $arphi \in PROP$ .

$$\overline{(\varphi\odot\psi)}$$
 Para todas  $\varphi,\psi$  en  $PROP$ ,  $(\varphi\odot\psi)$  está en  $PROP$ .

### Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego  $A(\varphi)$  es verdadero para toda  $\varphi \in PROP$  si y sólo si:

$$\boxed{\varphi \in At}$$
 Si  $\varphi$  es atómica,  $A(\varphi)$  vale.

$$\boxed{ (\varphi \odot \psi) \quad \textit{Si} \, A(\varphi) \, \textit{y} \, A(\psi) \, \textit{entonces} \, A((\varphi \odot \psi)). }$$

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

 $\boxed{\varphi \in At}$  Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $\overline{(\varphi\odot\psi)}$  Para todas  $\varphi,\psi$  en PROP,  $(\varphi\odot\psi)$  está en PROP.

### Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego  $A(\varphi)$  es verdadero para toda  $\varphi \in PROP$  si y sólo si:

 $\boxed{\varphi \in At}$  Si  $\varphi$  es atómica,  $A(\varphi)$  vale.

 $\boxed{ (\varphi \odot \psi) \quad \textit{Si} \, A(\varphi) \, \textit{y} \, A(\psi) \, \textit{entonces} \, A((\varphi \odot \psi)). }$ 

#### Demostración.

 $\operatorname{Sea} X = \{\varphi \in \mathit{PROP} : A(\varphi)\}.$ 

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

 $\boxed{\varphi \in At}$  Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $\overline{(\varphi\odot\psi)}$  Para todas  $\varphi,\psi$  en PROP,  $(\varphi\odot\psi)$  está en PROP.

# Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego  $A(\varphi)$  es verdadero para toda  $\varphi \in PROP$  si y sólo si:

 $\boxed{\varphi \in At}$  Si  $\varphi$  es atómica,  $A(\varphi)$  vale.

 $\boxed{ (\varphi \odot \psi) \quad \textit{Si} \, A(\varphi) \, \, \textit{y} \, A(\psi) \, \, \textit{entonces} \, A((\varphi \odot \psi)). }$ 

#### Demostración.

Sea  $X = \{ \varphi \in PROP : A(\varphi) \}$ . Luego  $X \subseteq PROP \subseteq \Sigma^*$ .

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

 $\boxed{\varphi \in At}$  Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $(\varphi\odot\psi)$  Para todas  $\varphi,\psi$  en PROP,  $(\varphi\odot\psi)$  está en PROP.

# Teorema (inducción en subfórmulas)

Sea A un predicado sobre PROP. Luego  $A(\varphi)$  es verdadero para toda  $\varphi \in PROP$  si y sólo si:

 $\boxed{\varphi \in At}$  Si  $\varphi$  es atómica,  $A(\varphi)$  vale.

 $\boxed{ (\varphi \odot \psi) \quad \textit{Si} \, A(\varphi) \; \textit{y} \, A(\psi) \; \textit{entonces} \, A((\varphi \odot \psi)). }$ 

#### Demostración.

Sea  $X = \{ \varphi \in PROP : A(\varphi) \}$ . Luego  $X \subseteq PROP \subseteq \Sigma^*$ .

Y además  $PROP \subseteq X$  por minimalidad.

#### Definición

Una sucesión de proposiciones  $\varphi_1, \ldots, \varphi_n$  es una **serie de formación** (sdf) de  $\varphi \in PROP$  si  $\varphi_n = \varphi$  y para todo  $i \leq n$ ,  $\varphi_i$  es:

- atómica, o bien
- igual a  $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$ .

#### Definición

Una sucesión de proposiciones  $\varphi_1, \ldots, \varphi_n$  es una **serie de formación** (sdf) de  $\varphi \in PROP$  si  $\varphi_n = \varphi$  y para todo  $i \le n$ ,  $\varphi_i$  es:

- atómica, o bien
- igual a  $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$ .

#### Teorema

Toda  $\varphi \in PROP$  tiene una serie de formación.

### Definición

Una sucesión de proposiciones  $\varphi_1, \ldots, \varphi_n$  es una **serie de formación** (sdf) de  $\varphi \in PROP$  si  $\varphi_n = \varphi$  y para todo  $i \le n$ ,  $\varphi_i$  es:

- atómica, o bien
- igual a  $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$ .

#### Teorema

Toda  $\varphi \in PROP$  tiene una serie de formación.

#### Demostración.

$$\boxed{arphi\in At}$$
 " $arphi$ " es una sdf de  $arphi$  (tenemos  $n=1$ ,  $arphi_1:=arphi$ ).

#### Definición

Una sucesión de proposiciones  $\varphi_1, \ldots, \varphi_n$  es una **serie de formación** (sdf) de  $\varphi \in PROP$  si  $\varphi_n = \varphi$  y para todo  $i \le n$ ,  $\varphi_i$  es:

- atómica, o bien
- igual a  $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$ .

#### Teorema

Toda  $\varphi \in PROP$  tiene una serie de formación.

#### Demostración.

 $\boxed{arphi \in At}$  "arphi" es una sdf de arphi (tenemos  $n=1,\, arphi_1 := arphi$ ).

 $(\varphi\odot\psi)$  Por HI,  $\varphi$  y  $\psi$  tienen sdf  $\varphi_1,\ldots,\varphi_n(=\varphi)$  y  $\psi_1,\ldots,\psi_m(=\psi)$ .

#### Definición

Una sucesión de proposiciones  $\varphi_1, \ldots, \varphi_n$  es una **serie de formación** (sdf) de  $\varphi \in PROP$  si  $\varphi_n = \varphi$  y para todo  $i \le n$ ,  $\varphi_i$  es:

- atómica, o bien
- igual a  $(\varphi_j \odot \varphi_k) \operatorname{con} j, k < i$ .

#### Teorema

Toda  $\varphi \in PROP$  tiene una serie de formación.

#### Demostración.

 $\boxed{\varphi\in At}$  " $\varphi$ " es una sdf de  $\varphi$  (tenemos  $n=1,\, \varphi_1:=\varphi$ ).

 $(\varphi \odot \psi)$  Por HI,  $\varphi$  y  $\psi$  tienen sdf  $\varphi_1, \ldots, \varphi_n (= \varphi)$  y  $\psi_1, \ldots, \psi_m (= \psi)$ .

Luego  $\varphi_1, \ldots, \varphi_n, \psi_1, \ldots, \psi_m, (\varphi \odot \psi)$  es sdf de  $(\varphi \odot \psi)$ .

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

 $\varphi \in At$ 

Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $(\varphi\odot\psi)$ 

Para todas  $\varphi, \psi$  en PROP,  $(\varphi \odot \psi)$  está en PROP.

PROP es el menor subconjunto de  $\Sigma^*$  que cumple con:

 $\varphi \in At$  Para todo  $\varphi \in At$ ,  $\varphi \in PROP$ .

 $|(\varphi\odot\psi)|$  Para todas  $\varphi,\psi$  en  $PROP, (\varphi\odot\psi)$  está en PROP.

# Teorema (definición por recursión en subfórmulas)

Sea A un conjunto y supongamos dadas funciones

 $H_{At}: At \rightarrow A \text{ y } H_{\odot}: A^2 \rightarrow A \text{ para cada } \odot.$ 

Entonces hay exactamente una función  $F: PROP \rightarrow A$  tal que

$$\begin{cases} F(\varphi) &= H_{At}(\varphi) \text{ para } \varphi \text{ en } At \\ F((\varphi \odot \psi)) &= H_{\odot}\big(F(\varphi), F(\psi)\big) \end{cases}$$



Ejemmplo de definición por recursión:

### Definición

$$\boxed{\varphi \in At} gr(p_n) := n; gr(\bot) := -1.$$

$$\overline{(\varphi\odot\psi)}\ gr((\varphi\odot\psi)):=\max\{gr(\varphi),gr(\psi)\}.$$

Ejemmplo de definición por recursión:

### Definición

$$\varphi \in At$$
  $gr(p_n) := n; gr(\bot) := -1.$ 

$$\boxed{ (\varphi \odot \psi) } \ \operatorname{\textit{gr}}((\varphi \odot \psi)) := \max \{ \operatorname{\textit{gr}}(\varphi), \operatorname{\textit{gr}}(\psi) \}.$$

$$grig(((p_0 \wedge p_3) \to p_2)ig) = \max ig\{grig((p_0 \wedge p_3)ig), gr(p_2)ig\}$$
 caso " $\odot$ "

Ejemmplo de definición por recursión:

### Definición

$$\varphi \in At gr(p_n) := n; gr(\bot) := -1.$$

$$(\varphi \odot \psi) gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.$$

$$grig(((p_0 \wedge p_3) o p_2)ig) = \max ig\{grig((p_0 \wedge p_3)ig), gr(p_2)ig\}$$
 caso " $\odot$ "   
  $= \max ig\{grig((p_0 \wedge p_3)ig), 2ig\}$  caso " $At$ "

Ejemmplo de definición por recursión:

### Definición

$$\begin{array}{|c|} \hline \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$grig(((p_0 \wedge p_3) o p_2)ig) = \maxig\{grig((p_0 \wedge p_3)ig), gr(p_2)ig\}$$
 caso " $\odot$ " 
$$= \maxig\{grig((p_0 \wedge p_3)ig), 2ig\}$$
 caso " $\Delta$ t" 
$$= \maxig\{maxig\{gr(p_0), gr(p_3)ig\}, 2ig\}$$
 caso " $\odot$ "

Ejemmplo de definición por recursión:

### Definición

$$\begin{array}{|c|} \hline \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$\begin{split} gr\big(((p_0 \wedge p_3) \to p_2)\big) &= \max \big\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{gr\big((p_0 \wedge p_3)\big), 2\big\} & \text{caso "}At\text{"} \\ &= \max \big\{\max \big\{gr(p_0), gr(p_3)\big\}, 2\big\} & \text{caso "}\Delta\text{"} \\ &= \max \big\{\max \big\{0, 3\big\}, 2\big\} & \text{caso "}At\text{"} \end{split}$$

Ejemmplo de definición por recursión:

### Definición

$$\begin{array}{|c|} \hline \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$\begin{split} gr\big(((p_0 \wedge p_3) \to p_2)\big) &= \max \big\{gr\big((p_0 \wedge p_3)\big), gr(p_2)\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{gr\big((p_0 \wedge p_3)\big), 2\big\} & \text{caso "}At" \\ &= \max \big\{\max \big\{gr(p_0), gr(p_3)\big\}, 2\big\} & \text{caso "}\odot\text{"} \\ &= \max \big\{\max \big\{0, 3\big\}, 2\big\} & \text{caso "}At" \\ &= \max \big\{3, 2\big\} & \text{def de m\'ax} \end{split}$$

Ejemmplo de definición por recursión:

### Definición

$$\begin{array}{|c|} \varphi \in At & gr(p_n) := n; gr(\bot) := -1. \\ \hline (\varphi \odot \psi) & gr((\varphi \odot \psi)) := \max\{gr(\varphi), gr(\psi)\}.
\end{array}$$

$$grig(((p_0 \wedge p_3) o p_2)ig) = \max ig\{grig((p_0 \wedge p_3)ig), gr(p_2)ig\}$$
 caso " $\odot$ "   
  $= \max ig\{grig((p_0 \wedge p_3)ig), 2ig\}$  caso " $At$ "   
  $= \max ig\{\max ig\{gr(p_0), gr(p_3)ig\}, 2ig\}$  caso " $\odot$ "   
  $= \max ig\{\max ig\{0, 3ig\}, 2ig\}$  caso " $At$ "   
  $= \max ig\{3, 2ig\}$  def de máx   
  $= 3$