Applications linéaires Endomorphismes du plan

- 1. Déterminer si les applications suivantes sont linéaires :
 - a) f: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ $(x; y; z) \longmapsto (|x|; 0)$
 - b) f: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x;y) \longmapsto (x;0)$
 - c) f : $\mathbb{R}^2_+ \longrightarrow \mathbb{R}^2$ $(x;y) \longmapsto (\sqrt{x};\sqrt{y})$
 - d) $f : \mathbb{M}(2,\mathbb{R}) \longrightarrow \mathbb{R}$ $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto f(A) = \det A$
 - e) $f: \mathbb{M}(2,\mathbb{R}) \longrightarrow \mathbb{R}$ $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto f(A) = a^2 + b^2$

 $P_2[x]$ est l'espace vectoriel des polynômes en x de degré plus petit ou égal à 2; $p=a\,x^2+b\,x+c$.

- f) $f : P_2[x] \longrightarrow P_2[x]$ $p \longmapsto f(p) = c + b(x+1) + a(x+1)^2$
- g) $f: P_2[x] \longrightarrow P_2[x]$ $p \longmapsto f(p) = (c+1) + bx + ax^2$
- ${\bf 2.}\ \mathbb{R}^2$ est muni de la base canonique orthonormée. O est l'origine.

On considère l'application $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $\vec{x} \longmapsto f(\vec{x}) = \vec{x} - 2(\vec{x} \cdot \vec{v}) \vec{v}$

- où \vec{v} est un vecteur unitaire donné.
- a) Montrer que f est linéaire. Que représente f géométriquement ?
- b) On note $\overrightarrow{OP'}$ l'image d'un vecteur \overrightarrow{OP} ; calculer l'équation vectorielle de l'image d'une droite passant par P et de vecteur directeur \vec{u} tel que :
 - $-\vec{u} \perp \vec{v}$
 - $-\vec{u} \parallel \vec{v}$
 - $\vec{u} = \vec{v} 3\vec{w}$ tel que $\|\vec{w}\| = 4$ et $\cos \phi = \frac{1}{2}$, $\phi = \angle(\vec{v}, \vec{w})$.

3. Soit
$$h$$
: $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} 2x \\ 2y \end{pmatrix}$$

- a) Quelle est la nature géométrique de h?
- b) Définir l'inverse de h et montrer alors que l'image par h de tout cercle est un cercle dont on précisera le centre et le rayon.
- **4.** Soient E, F et G des espaces vectoriels, g de E vers F et f de F vers G deux applications linéaires.

Montrer les égalités suivantes. Dans quel cas ou pour quelle application l'hypothèse de la linéarité n'est pas nécessaire?

- a) $(\alpha f) \circ g = \alpha (f \circ g), \quad \alpha \in \mathbb{R}$
- b) $f \circ (\lambda g) = \lambda (f \circ g), \quad \lambda \in \mathbb{R}$
- c) $(\alpha f) \circ (\lambda g) = \alpha \lambda (f \circ g), \quad \alpha, \lambda \in \mathbb{R}$
- 5. Soient E, F et G des espaces vectoriels et les applications linéaires g_1 , g_2 de E vers F et f_1 , f_2 de F vers G .

Montrer les égalités suivantes. Dans quel cas ou pour quelle application l'hypothèse de la linéarité n'est pas nécessaire?

- a) $f \circ (g_1 + g_2) = f \circ g_1 + f \circ g_2$
- b) $(f_1 + f_2) \circ g = f_1 \circ g + f_2 \circ g$
- c) $f \circ (\alpha g_1 + \beta g_2) = \alpha (f \circ g_1) + \beta (f \circ g_2)$
- d) $(\alpha f_1 + \beta f_2) \circ g = \alpha (f_1 \circ g) + \beta (f_2 \circ g)$
- **6.** Soient E, F et G des espaces vectoriels et f une application linéaire de E vers F. Montrer que si f est bijective alors f^{-1} est aussi linéaire.
- 7. Soient E et F des espaces vectoriels réels.

Montrer que $\mathcal{H}(E,\bar{F})$, ensemble des applications linéaires de E vers F, est un espace vectoriel réel pour les lois de composition interne et externe suivantes : addition et multiplication par un scalaire.

8. On considère les bases canoniques de \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 notées respectivement (\vec{v}) , $(\vec{u}_1; \vec{u}_2)$, $(\vec{e}_1; \vec{e}_2; \vec{e}_3)$. O est l'origine.

Pour chacune des applications linéaires suivantes, déterminer l'image des vecteurs de base, les équations (paramétriques ou cartésiennes) de ${\rm \,Im}\, f\,,\,\,{\rm Ker}\, f\,,\,\,{\rm une}$ base de ${\rm \,Im}\, f\,,\,\,{\rm une}$ base de ${\rm \,Ker}\, f\,.$

a)
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} 2x - y \\ -8x + 4y \end{pmatrix}$$

Lesquels des vecteurs suivants sont dans $\,\,{\rm Im}\, f$:

$$\vec{a} = \begin{pmatrix} 1 \\ -4 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 5 \\ 0 \end{pmatrix} \qquad \vec{c} = \begin{pmatrix} -3 \\ 12 \end{pmatrix}$$

Lesquels des vecteurs suivants sont dans $\operatorname{Ker} f$:

$$\vec{d} = \begin{pmatrix} 5 \\ 10 \end{pmatrix} \qquad \vec{e} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad \vec{f} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

b)
$$f : \mathbb{R}^3 \longrightarrow \mathbb{R}$$

 $\vec{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto f(\vec{x}) = (x+y+z)$

Déterminer $f^{-1}(\{\overrightarrow{OP'}\})$ avec $\overrightarrow{OP'}=(4)$.

c)
$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto f(\vec{x}) = (3x - y)\vec{e}_1 + (-6x + 2y)\vec{e}_2 + (9x - 3y)\vec{e}_3$

d)
$$f$$
: $\mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie par :
$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \longmapsto \begin{pmatrix} -6 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$

Déterminer $f^{-1}(\{\overrightarrow{OP'}\})$ avec $\overrightarrow{OP'}=12\,\vec{u}_1-4\,\vec{u}_2$.

e)
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 définie par $\begin{pmatrix} 1\\2\\0 \end{pmatrix} \longmapsto \begin{pmatrix} 1\\4 \end{pmatrix}$ $\begin{pmatrix} -1\\3\\0 \end{pmatrix} \longmapsto \begin{pmatrix} -1\\1 \end{pmatrix}$

et
$$f(\vec{e}_3) - f(\vec{e}_1) + 3f(\vec{e}_2) = \vec{0}$$
.

Déterminer
$$f^{-1}(\{\overrightarrow{OP'}\})$$
 avec $\overrightarrow{OP'} = \overrightarrow{OA} + \lambda(\overrightarrow{u}_1 + \overrightarrow{u}_2)$ et $\overrightarrow{OA} = \begin{pmatrix} 1\\4 \end{pmatrix}$.

9. \mathbb{R}^3 est muni de la base canonique orthonormée. O est l'origine.

Soit
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 définie par :

$$\begin{cases} x' = x + 2y - 5z \\ y' = -2x + y - 5z \\ z' = 4x + 3y - 5z \end{cases}$$

- a) Chercher l'image des vecteurs de la base, et les équations cartésiennes de $\,{\rm Im}\, f$ et $\,{\rm Ker}\, f$.
- b) Soient A(0;0;1), $\vec{v} = \begin{pmatrix} -1 \\ 3 \\ 1 \end{pmatrix}$ et $F = \{\vec{x} \in \mathbb{R}^3 \mid \vec{x} = \overrightarrow{OA} + \lambda \vec{v}, \lambda \in \mathbb{R}\}$; chercher les équations de f(F).
- c) Soit P'(1;1;1), chercher les équations paramétriques de $f^{-1}(\{\overrightarrow{OP'}\})$.
- **10.** Soit $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$ une matrice donnée.

On considère $f: \mathbb{M}_2(\mathbb{R}) \longrightarrow \mathbb{M}_2(\mathbb{R})$ définie par f(X) = AX.

- a) Montrer que f est linéaire.
- b) Déterminer les images des vecteurs de la base usuelle.
- c) Chercher $\operatorname{Im} f$ et $\operatorname{Ker} f$; dans chaque cas, déterminer la dimension et donner une base.
- 11. a) Soient E et F des espaces vectoriels et f une application linéaire de E vers F. Montrer que

si $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ sont des vecteurs de E linéairement dépendants alors

 $f(\vec{v}_1), f(\vec{v}_2), \dots, f(\vec{v}_n)$ sont linéairement dépendants.

Ecrire l'énoncé contraposé et donner sa valeur de vérité.

b) Soient E et F des espaces vectoriels et f une application linéaire et injective de E vers F.

 $Montrer\ l'\'equivalence\ suivante:$

 $\vec{v}_1, \, \vec{v}_2, \, \dots, \vec{v}_n$ sont n vecteurs de E linéairement indépendants si et seulement si

 $f(\vec{v_1}), f(\vec{v_2}), \dots, f(\vec{v_n})$ sont linéairement indépendants.

- **12.** Déterminer par rapport aux bases canoniques de \mathbb{R} , \mathbb{R}^2 et \mathbb{R}^3 , notées respectivement (\vec{v}) , $(\vec{u}_1; \vec{u}_2)$ et $(\vec{e}_1; \vec{e}_2; \vec{e}_3)$, les matrices des applications linéaires de l'exercice n° 8 a), b), c).
- 13. Soit $P_2[x]$ l'espace vectoriel des polynômes en x de degré inférieur ou égal à 2 et l'application linéaire

$$g: P_2[x] \longrightarrow \mathbb{R}^3$$

$$p(x) \longmapsto g(p(x)) = \begin{pmatrix} 4p(-1) \\ p(0) \\ p(-1) \end{pmatrix}$$

- a) Déterminer la matrice de g par rapport à la base $(x^2; x; 1)$ de $P_2[x]$ et à la base canonique de \mathbb{R}^3 .
- b) Déterminer la matrice de g par rapport à la base $((x-1)^2; x-1; 1)$ de $P_2[x]$ et à la base canonique de \mathbb{R}^3 .
- 14. \mathbb{R}^2 est muni de la base canonique orthonormée $B = (\vec{e_1}, \vec{e_2})$. O est l'origine. On considère les applications linéaires suivantes.
 - a) f(x;y) = (2x;y)
 - b) f est telle que : f(1;1) = (3;0) et f(4;2) = (10;2)
 - c) f est la projection orthogonale du plan sur :
 - l'axe Ox
 - l'axe Oy
 - la première bissectrice : y = x
 - la droite d: 4x = 5y

Déterminer, dans chaque cas, la matrice de f, $\operatorname{Im} f$ et $\operatorname{Ker} f$.

- 15. \mathbb{R}^3 est muni de la base canonique orthonormée. O est l'origine. Trouver la matrice de chacune des applications suivantes. Chercher, sans faire de calcul, Im f et Ker f dans les cas a) et b).
 - a) Dans l'espace, f est une symétrie orthogonale par rapport au plan : x-3y+2z=0 .
 - b) f est une projection de l'espace sur la droite d: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$ parallèlement au plan α : x + y + z = 0.
 - c) Dans $\mathbb{M}_2(\mathbb{R})$ f est définie par f(X) = AX avec $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$.
- **16.** Soit $P_n[x]$ l'espace vectoriel des polynômes en x à coefficients réels, de degré inférieur ou égal à n.
 - a) Soit $f: P_n[x] \longrightarrow \mathbb{R}$ $p \longmapsto f(p) = p^{(3)}(\sqrt{2})$

où $p^{(r)}$ désigne le polynôme dérivé d'ordre $\ r$ de $\ p$.

Chercher la matrice de f par rapport aux bases $(1; x; x^2; \dots; x^n)$ de $P_n[x]$ et (1) de \mathbb{R} .

b) On considère l'application f définie par

$$f: P_n \longrightarrow P_n$$

 $p(x) \longmapsto f(p(x)) = p(-x)$

Déterminer la matrice de f relativement aux bases $\mathcal{B}(1, x, ... x^n)$ de l'ensemble de départ et $\mathcal{E}(1, 1 + x, 1 + x^2, 1 + x^3, ..., 1 + x^n)$ de l'ensemble d'arrivée.

- 6
- 17. \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\vec{e_2})$. O est l'origine.

Déterminer la nature géométrique des applications linéaires du plan de matrice M(f), données relativement à B.

Chercher éventuellement $\operatorname{Im} f$, $\operatorname{Ker} f$, l'ensemble des points fixes, l'image d'un vecteur quelconque.

a)
$$M(f) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$d) M(f) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

b)
$$M(f) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

e)
$$M(f) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

c)
$$M(f) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

f)
$$M(f) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

18. \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2})$. O est l'origine.

On considère l'application linéaire f définie par $f = h \circ s \circ p$ où p est la projection orthogonale du plan sur la droite $(O; \vec{u})$ $(\vec{u}$ vecteur donné), s est la symétrie orthogonale d'axe Ox et h est l'homothétie de centre O et de rapport $-\frac{1}{2}$.

- a) Calculer la matrice de f, relativement à B, si $\vec{u} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$.
- b) Calculer l'équation vectorielle de l'image d'une droite parallèle à \vec{u} .
- 19. \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2})$. O est l'origine.

On considère l'application linéaire $f = r + (h \circ p)$ où h est une homothétie de centre O et de rapport k=2, r est une rotation de centre O et d'angle $\varphi = \operatorname{Arccos} \frac{4}{5}$ et p est la projection orthogonale du plan sur la droite d'équation x - 2y = 0.

Déterminer la matrice de l'application f et montrer que f admet une droite de points fixes.

20. \mathbb{R}^2 est muni de la base canonique orthonormée $B = (\vec{e_1}, \vec{e_2})$. O est l'origine.

On considère les endomorphismes suivants :

- s est une symétrie telle que le point P(2;2) a pour image le point $P'(1+\sqrt{3};-1+\sqrt{3})$,
- r est une rotation de centre O et d'angle $\varphi = -\frac{\pi}{24}$, et l'application f définie par $f(\vec{x}) = (\vec{x} \cdot \vec{e_1}) \vec{e_2} + (\vec{x} \cdot \vec{e_2}) (\vec{e_1} + \vec{e_2})$.
- a) Montrer que la symétrie s est orthogonale. Déterminer l'équation cartésienne de son axe.
- b) Soit g l'endomorphisme défini par $g = s \circ r^4$. Déterminer la matrice de g
- c) On pose h = f g. Calculer la matrice de h et en déduire directement la nature géométrique de h.

21. \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2})$. O est l'origine. On considère l'application linéaire g suivante :

$$g: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $\vec{x} \longmapsto g(\vec{x}) = \begin{pmatrix} 3x + 2y \\ 6x + 4y \end{pmatrix}$

- a) Déterminer Im g et ker g. Donner les composantes d'un vecteur \vec{a} de Im g et \vec{b} de ker g. Montrer que $B' = (\vec{a}, \vec{b})$ est une base de \mathbb{R}^2 .
- b) Décomposer un vecteur \vec{x} selon les directions de Im g et Ker g puis chercher son image. En déduire que g est composée d'une homothétie h et d'une projection p à déterminer.

Soit le point M tel que $\overrightarrow{OM} = \vec{e_1} + \vec{e_2}$.

Représenter graphiquement $p(\overrightarrow{OM})$, $(h \circ p)(\overrightarrow{OM})$, $h(\overrightarrow{OM})$ et $(p \circ h)(\overrightarrow{OM})$ dans le repère orthonormé $(O, \vec{e_1}, \vec{e_2})$), unité = 1 cm.

- c) Etablir la matrice de g dans la base $B' = (\vec{a}, \vec{b})$.
- **22.** \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\vec{e_2})$. O est l'origine. On considère l'application linéaire $f:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ définie par $f=p\circ h\circ r$ où r est la rotation de centre O et d'argument $\frac{\pi}{4}$, h est l'homothétie de centre O et de rapport $\sqrt{2}$, et p est la projection orthogonale du plan sur la droite $(O;\vec{u})$, $\vec{u}=(1;-2)$.
 - a) Calculer la matrice de f.
 - b) Déterminer $\operatorname{Im} f$ et $\operatorname{Ker} f$. Calculer $f(\vec{x})$ si $\vec{x} \in \operatorname{Im} f$ et en déduire la nature géométrique de f.
 - c) Etablir la matrice de $\,f\,$ par rapport à une base formée de vecteurs de $\,{\rm Im}\,f\,$ et $\,{\rm Ker}\,f\,.$
- 23. Soit $f = h \circ p$ un endomorphisme de l'espace tel que

h est l'homothétie de centre O et de rapport 3;

et p est la projection orthogonale de l'espace sur la droite

$$a : \begin{pmatrix} x \\ y \\ z \end{pmatrix} = k \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

- a) Sans calcul, chercher $\, {\rm Im} \, f \,$ et $\, {\rm Ker} \, f \, .$
- b) Calculer la matrice M_f par rapport à la base canonique de \mathbb{R}^3 ; puis par rapport à une base formée de vecteurs de Ker f et Im f.
- **24.** Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application linéaire définie par :

$$\begin{cases} x' = \frac{1}{9} (x - 2y + 2z) \\ y' = \frac{2}{9} (-x + 2y - 2z) \\ z' = -\frac{2}{9} (-x + 2y - 2z) \end{cases}$$

- a) Chercher les équations cartésiennes de $\operatorname{Im} f$ et $\operatorname{Ker} f$.
- b) Quelle est la nature géométrique de f? Déterminer la matrice de f relativement à une base formée de vecteurs de $\operatorname{Im} f$ et $\operatorname{Ker} f$.
- **25.** Soient \mathbb{R}^2 muni de la base $(\vec{e_1}, \vec{e_2})$ et f de \mathbb{R}^2 dans \mathbb{R}^2 définie par : $f(\vec{e_1}) = \vec{e_1}'$, $f(\vec{e_2}) = \vec{e_2}'$; $\vec{e_1}'$ et $\vec{e_2}'$ sont solutions du système :

$$\begin{cases} 3\vec{e_1}' + \vec{e_2}' = 3\vec{a} \\ 5\vec{e_1}' + 2\vec{e_2}' = 9\vec{a} \end{cases}$$
 où \vec{a} est un vecteur non nul de \mathbb{R}^2 .

- a) Déterminer vectoriellement $\operatorname{Im} f$ et $\operatorname{Ker} f$.
- b) Déterminer la nature géométrique de f. Déterminer la matrice de f par rapport à une base judicieusement choisie.
- **26.** Soit f l'application linéaire

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$\vec{x} \longmapsto f(\vec{x}) = \begin{pmatrix} 4x - 3y \\ -3x + 4y \end{pmatrix}$$

- a) Déterminer $\operatorname{Im} f$ et $\operatorname{Ker} f$. Montrer que f admet une droite de points fixes de direction notée \overrightarrow{u} . Que peut-on en déduire sur la nature géométrique de f?
- b) Montrer qu'un point M et son image M' déterminent une direction fixe notée \overrightarrow{v} . Calculer $f(\overrightarrow{v})$.
- c) Déterminer la matrice de f relativement à la base $(\vec{u}\,,\vec{v})$ et en déduire la nature géométrique de f .
- **27.** On considère l'endomorphisme f défini par sa matrice A relativement à la base canonique de \mathbb{R}^2 .

$$A = \left(\begin{array}{cc} a & -3 \\ -2 & 2 \end{array}\right) \qquad a \in \mathbb{R}$$

a) Déterminer le paramètre $a \in \mathbb{R}$ de sorte que l'endomorphisme f admette une droite de points fixes.

Déterminer alors $\operatorname{Im} f$ et $\ker f$.

Que peut-on en déduire sur la nature géométrique de f?

b) Relativement à une base judicieusement choisie, déterminer la matrice de f et en déduire sa nature géométrique.

28. Soit \vec{u} un vecteur unitaire du plan et l l'application linéaire définie par :

$$\begin{array}{cccc} l & : & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \\ & \vec{x} & \longmapsto & l(\vec{x}) = k\vec{x} + \alpha(\vec{x} \cdot \vec{u}) \, \vec{u} & & k \,, \alpha \in \mathbb{R} \end{array}$$

Soit encore un vecteur \vec{v} du plan tel que $\vec{v} \cdot \vec{u} = 3$ et s l'affinité d'axe (O, \vec{u}) , de direction \vec{v} et rapport -1.

- a) Déterminer la matrice M de $f = l \circ s$ relativement à la base (\vec{u}, \vec{v}) .
- b) On pose k=-2. Est-il possible de déterminer une valeur de α pour laquelle f est seulement une projection? Déterminer avec précision la nature géométrique de f.
- c) Même question avec k = -1.
- **29.** \mathbb{R}^2 est muni de la base canonique orthonormée $B = (\vec{e}_1, \vec{e}_2)$. O est l'origine. Relativement à B, on donne la matrice A d'une application linéaire f:

$$A = \frac{1}{4} \left(\begin{array}{cc} 3 & \sqrt{3} \\ \sqrt{3} & 1 \end{array} \right)$$

- a) Montrer que f n'est pas bijective.
- b) Déterminer l'équation cartésienne de l'ensemble des points fixes de f, ainsi que l'équation cartésienne de $\mathrm{Ker} f$.

Interpréter f géométriquement.

c) Donner une base de \mathbb{R}^2 par rapport à laquelle la matrice de f est diagonale. Dans cette base, donner la matrice A' de f.

On considère les deux applications linéaires suivantes :

- r est une rotation de centre O et d'angle $\alpha = \frac{2\pi}{9}$;
- s est une symétrie orthogonale d'axe (O, \vec{a}) tel que $\angle(\vec{e}_1; \vec{a}) = \frac{\pi}{6}$.
- d) Relativement à la base B, calculer :
 - la matrice de l'application $s \circ r^{12}$;
 - la matrice de l'application $g=2\,f+s\circ r^{12}$; en déduire une interprétation géométrique de g.
- **30.** \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\ \vec{e_2})$. O est l'origine. On considère les endomorphismes suivants.
 - a) s est la symétrie oblique envoyant le point $\,A(6;-2)\,$ sur son image $\,A'(0;4)\,.$ Calculer :
 - l'équation cartésienne de l'axe de s;
 - \bullet les composantes d'un vecteur donnant la direction de s;
 - la matrice de s dans la base B.

- b) On considère les applications linéaires suivantes :
 - l'homothétie h de centre O et de rapport 2 ;
 - la rotation de centre O et d'angle $\frac{\pi}{8}$;
 - l'application g définie par : $\begin{cases} g(\vec{e}_1 2\vec{e}_2) = -7\vec{e}_1 + 3\vec{e}_2 \\ g(\vec{e}_1) = 3\vec{e}_1 3\vec{e}_2 \end{cases}$

Calculer la matrice de l'application $f = h \circ s + \frac{\sqrt{2}}{2}(g \circ r^2)$ dans la base B.

- c) Montrer que f admet une droite de points fixes.
- d) Montrer qu'un point M quelconque du plan et son image M' déterminent une direction fixe \vec{v} et calculer $f(\vec{v})$.
- e) Dans une base judicieusement choisie, calculer la matrice de f et en déduire sa nature géométrique.
- **31.** \mathbb{R}^2 est muni de la base canonique orthonormée $B=(\vec{e_1},\,\vec{e_2})$. O est l'origine.

On note g l'application linéaire désignant une affinité de rapport k=3 telle que $\overrightarrow{OP}=-\vec{e}_1+2\vec{e}_2$ a pour image $\overrightarrow{OP'}=3\vec{e}_1$.

a) Déterminer la matrice M_q de g relativement à la base B.

On considère les deux endomorphismes suivants :

- $\bullet \; p \;$ est une projection orthogonale dont le noyau est l'axe de l'affinité $\; g \, ,$
- s est une symétrie orthogonale d'axe (O, \vec{a}) telle que $\angle(\vec{e}_1, \vec{a}) = -\frac{\pi}{8}$.
- b) Calculer la matrice de l'application $f = p \circ g \circ s^{(2k+1)}$, $k \in \mathbb{N}$, relativement à la base B.
- c) Déterminer la nature géométrique de f.
- **32.** a) Soit E un espace vectoriel réel de dimension finie.

Montrer l'équivalence suivante :

il existe f de E vers E linéaire telle que $\ker f = \operatorname{Im} f$

si et seulement si

la dimension de E est paire.

b) On considère l'endomorphisme f de \mathbb{R}^2 définit par

$$\begin{cases} f(\vec{e}_1) = \vec{0} \\ f(\vec{e}_2) = \vec{e}_1 \end{cases}$$

où $(\vec{e_1}, \vec{e_2})$ est la base canonique de \mathbb{R}^2 .

Déterminer la matrice de f. Montrer que $\ker f = \operatorname{Im} f$ et donner la nature géométrique de f.

33. a) Soient E et F des espaces vectoriels réels de dimension p et n respectivement et dont les bases \mathcal{B}_E et \mathcal{B}_F sont fixées.

Montrer que l'application linéaire suivante est bijective :

$$\varphi : \mathcal{H}(E, F) \longrightarrow \mathbb{M}(n \times p; \mathbb{R})$$

$$f \longmapsto \varphi(f) = M$$

- b) On pose $E = F = \mathbb{R}^2$ muni de la base canonique $(\vec{e_1}, \vec{e_2})$. Déterminer la dimension de $\mathcal{H}(\mathbb{R}^2, \mathbb{R}^2)$ ainsi qu'une base de cet ensemble. Relativement à cette base, donner les composantes
 - i) de l'application linéaire f telle que $f(\vec{x}) = \begin{pmatrix} 2x y \\ 3y \end{pmatrix}$
 - ii) d'une rotation r de centre O et angle α .

Réponses

1. a) non

c) non

e) non

g) non

b) oui

d) non

f) oui

- **2.** a) f est une symétrie d'axe d perpendiculaire à \vec{v} passant par O.
- **3.** a) h est une homothétie de centre O et de rapport 2.

b) h^{-1} : $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $\begin{pmatrix} x' \\ y' \end{pmatrix} \longmapsto \frac{1}{2} \begin{pmatrix} x' \\ y' \end{pmatrix}$

- 8. a) Im f: droite d'équation : y = -4xKer f: droite d'équation : y = 2x \vec{a} , $\vec{c} \in \text{Im } f$ $\vec{d} \in \text{Ker } f$
 - b) Im $f=\mathbb{R}$ Ker f: plan d'équation : x+y+z=0 $f^{-1}(\{\overrightarrow{OP'}\}) : \text{ plan d'équation : } x+y+z=4$
 - c) Im f: droite d'équation : 6x = -3y = 2zKer f: droite d'équation : 3x - y = 0 $f^{-1}(\{\overrightarrow{OP'}\})$: droite d'équation : 3x - y = 1
 - d) Im f: droite d'équation : 3y + x = 0Ker f: plan d'équation : x - 2y + 3z = 0 $f^{-1}(\{\overrightarrow{OP'}\})$: plan d'équation : x - 2y + 3z = 4
 - e) $f(\vec{e}_1) = \vec{u}_1 + 2\vec{u}_2$ $f(\vec{e}_2) = \vec{u}_2$ $f(\vec{e}_3) = \vec{u}_1 \vec{u}_2$ Im $f = \mathbb{R}^2$ Ker f: droite d'équation : -3x = y = 3z $f^{-1}(\{\overrightarrow{OP'}\})$: plan d'équation : x + y - 2z - 3 = 0
- 9. a) Im f: plan d'équation : -2x + y + z = 0Ker f: droite d'équation : -3x = y = 3z
 - b) $f(F) = \overrightarrow{OA'}$ avec A'(-5, -5, -5)

c)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{1}{5} - \lambda \\ \frac{3}{5} + 3\lambda \\ \lambda \end{pmatrix}$$

10. c) Im
$$f = \left\{ Y = \begin{pmatrix} x & y \\ 2x & 2y \end{pmatrix} / x, y \in \mathbb{R} \right\}$$
 de dimension 2 Ker $f = \left\{ X = \begin{pmatrix} x & y \\ 2x & 2y \end{pmatrix} / x, y \in \mathbb{R} \right\}$ de dimension 2

12. a)
$$M(f) = \begin{pmatrix} 2 & -1 \\ -8 & 4 \end{pmatrix}$$

b)
$$M(f) = (1 \ 1 \ 1)$$

c)
$$M(f) = \begin{pmatrix} 3 & -1 \\ -6 & 2 \\ 9 & -3 \end{pmatrix}$$

13. a)
$$M = \begin{pmatrix} 4 & -4 & 4 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

b)
$$M = \begin{pmatrix} 16 & -8 & 4 \\ 1 & -1 & 1 \\ 4 & -2 & 1 \end{pmatrix}$$

14. a)
$$M(f) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

b)
$$M(f) = \begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$$

c)
$$M(f) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 (sur Ox) $M(f) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ (sur $y = x$) $M(f) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ (sur Oy) $M(f) = \frac{1}{41} \begin{pmatrix} 25 & 20 \\ 20 & 16 \end{pmatrix}$ (sur $4x = 5y$)

15. a)
$$M = \frac{1}{7} \begin{pmatrix} 6 & 3 & -2 \\ 3 & -2 & 6 \\ -2 & 6 & 3 \end{pmatrix}$$
 Im $f = \mathbb{R}^3$ Ker $f = \{\vec{0}\}$

b)
$$M = \frac{1}{4} \begin{pmatrix} -1 & -1 & -1 \\ 3 & 3 & 3 \\ 2 & 2 & 2 \end{pmatrix}$$
 Im f : droite d Ker f : plan α

c)
$$M = \begin{pmatrix} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ 4 & 0 & -2 & 0 \\ 0 & 4 & 0 & -2 \end{pmatrix}$$

16. a) M est une matrice à une ligne et n colonnes.

$$M = \begin{pmatrix} 0 & 0 & 0 & 3! & 4! \sqrt{2} & \cdots & \frac{k!}{(k-3)!} (\sqrt{2})^{k-3} & \cdots & \frac{n!}{(n-3)!} (\sqrt{2})^{n-3} \end{pmatrix}$$

b) La matrice est d'ordre $(n+1) \times (n+1)$.

$$M = \begin{pmatrix} 1 & 1 & -1 & 1 & -1 & \dots & (-1)^{n+1} \\ 0 & -1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & (-1)^n \end{pmatrix}$$

- 17. a) Symétrie orthogonale d'axe Ox.
 - b) Symétrie centrale ou rotation d'angle π .
 - c) Rotation d'angle $\frac{\pi}{2}$.
 - d) Projection orthogonale sur l'axe Ox.
 - e) Homothétie de rapport 2.
 - f) Homothétie de rapport 2 suivie d'une projection orthogonale sur l'axe Ox.

18. a)
$$M(h \circ s \circ p) = \frac{1}{50} \begin{pmatrix} -16 & -12 \\ 12 & 9 \end{pmatrix}$$

19.
$$M(f) = \frac{1}{5} \begin{pmatrix} 12 & 1 \\ 7 & 6 \end{pmatrix}$$

L'ensemble des points fixes est une droite d'équation : 7x + y = 0.

20. a)
$$\sqrt{3}x - 3y = 0$$

b)
$$M(g) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

c)
$$M(h) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

h est une projection orthogonale du plan sur la droite O, \vec{e}_2 .

21.
$$M'(g) = \begin{pmatrix} 7 & 0 \\ 0 & 0 \end{pmatrix}$$

relativement à la base $\mathcal{B}'=(\vec{a}\,;\,\vec{b})$ où $\vec{a}=\left(\begin{array}{c}1\\2\end{array}\right)$ et $\vec{b}=\left(\begin{array}{c}2\\-3\end{array}\right)$.

22. a)
$$M_f = \frac{1}{5} \begin{pmatrix} -1 & -3 \\ 2 & 6 \end{pmatrix}$$

b) Im f: la droite (O, \vec{u}) .

 $\operatorname{Ker} f: \text{ la droite d'équation } x+3y=0.$

f est la projection du plan sur la droite (O, \vec{u}) de direction $\vec{v} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$.

c)
$$M'_f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

relativement à la base $\mathcal{B}' = (\vec{u}; \vec{v})$ où $\vec{v} \in \operatorname{Ker} f$.

23. a) Im f: droite (O, \overrightarrow{a})

 $\operatorname{Ker} f$: le plan α orthogonal à \overrightarrow{a} passant par O

b)
$$M_f = \frac{1}{3} \begin{pmatrix} 4 & -2 & 4 \\ -2 & 1 & -2 \\ 4 & -2 & 4 \end{pmatrix}$$
 (base canonique)

$$M'_f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{relativement à la base } \mathcal{B}' = (\vec{u}; \vec{v}; \vec{w}) \quad \text{où } \vec{u} \text{ et } \vec{v}$$

sont des vecteurs directeurs de Ker f et $\overrightarrow{w} \in \text{Im } f$.

24. a) Im f: droite d'équation 2x = -y = z.

 $\operatorname{Ker} f$: plan d'équation x - 2y + 2z = 0.

b) f est une projection orthogonale de l'espace sur la droite $\operatorname{Im} f$.

$$M'_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{relativement à la base } \mathcal{B}' = (\vec{u}\,;\,\vec{v}\,;\,\vec{w}) \text{ où } \vec{u} \in \text{Im } f\,, \vec{v} \text{ et } \vec{w}$$
 sont des vecteurs directeurs de Ker f .

25. a) Im f: droite passant par O de vecteur directeur \vec{a} .

Ker f: droite passant par O de vecteur directeur $4\vec{e}_1 + \vec{e}_2$.

b) f est une projection du plan sur ${\rm Im}\, f$ parallèlement à ${\rm Ker}\, f$ composée avec une homothétie de centre O et de rapport $k=-3\,a_1+12\,a_2$ où $\vec a=a_1\,\vec e_1+a_2\,\vec e_2$.

$$M'_f = \begin{pmatrix} k & 0 \\ 0 & 0 \end{pmatrix}$$
 relativement à la base $\mathcal{B}' = (\vec{a}; \vec{v})$ où $\vec{v} \in \operatorname{Ker} f$.

26. a) Im $f = \mathbb{R}^2$

$$\operatorname{Ker} f = \{\vec{0}\}\$$

La droite de points fixes a pour équation : x-y=0, dirigée par le vecteur $\vec{u}=\begin{pmatrix}1\\1\end{pmatrix}$.

f est une affinité ou une symétrie.

b)
$$\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
.
$$f(\vec{v}) - 7\vec{v}$$

c)
$$M'_f = \begin{pmatrix} 1 & 0 \\ 0 & 7 \end{pmatrix}$$
.

f est une affinité d'axe y = x, de direction $\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et de rapport 7.

- **27.** a) a=7 et la droite de points fixes a pour équation : 2x-y=0, dirigée par le vecteur $\vec{u}=\begin{pmatrix}1\\2\end{pmatrix}$.
 - b) L'endomorphisme est une affinité d'axe (O, \vec{u}) , de rapport k=8 et de direction $\vec{v}=\begin{pmatrix}3\\-1\end{pmatrix}$.

Dans la base (\vec{u}, \vec{v}) , la matrice de f s'écrit : $M' = \begin{pmatrix} 1 & 0 \\ 0 & 8 \end{pmatrix}$.

28. a)
$$M = \begin{pmatrix} \alpha + k & -3\alpha \\ 0 & -k \end{pmatrix}$$

b) Non.

Si $\alpha=2$ f alors comporte une projection; elle est alors composée d'une homothétie de rapport 2 et d'une projection de direction \vec{u} sur la droite $(O, -3\vec{u} + \vec{v})$.

c) Oui. $\alpha = 1$

C'est une projection de direction \vec{u} sur la droite $(O, -3\vec{u} + \vec{v})$.

- **29.** a) f n'est pas bijective car $\det A = 0$.
 - b) L'ensemble des points fixes est la droite d'équation $x \sqrt{3}y = 0$. Le noyau est la droite d'équation $\sqrt{3}x + y = 0$. f est une projection orthogonale du plan sur Im f, la droite invariante d'équation $x - \sqrt{3}y = 0$.
 - c) Relativement à la base (\vec{a}, \vec{b}) formée des vecteurs directeurs de Ker f et Im f, la matrice de f s'écrit :

$$A' = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

d) $M_{sor^{12}} = \frac{1}{2} \begin{pmatrix} 1 & -\sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ et $M_g = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$

g est la composée d'une projection orthogonale sur la droite (O, \vec{e}_1) et d'une homothétie de rapport 2.

30. a) La symétrie est d'axe la droite d'équation x-3y=0, de direction parallèle au vecteur $\vec{d}=\begin{pmatrix} -1\\1 \end{pmatrix}$.

$$M(s) = \frac{1}{2} \begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$$

- b) $M(f) = \begin{pmatrix} 5 & 4 \\ -2 & -1 \end{pmatrix}$
- c) La droite de points fixes a pour équation x + y = 0.
- d) $\vec{v} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$
- e) Soient \vec{u} un vecteur directeur de la droite x + y = 0 et la base $B = (\vec{u}; \vec{v})$.

Dans $B: M(f) = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$.

f est une affinité de direction \vec{v} , d'axe (O, \vec{u}) et de rapport 3.

31. a)
$$M_g = \begin{pmatrix} 5 & 4 \\ -2 & -1 \end{pmatrix}$$

b)
$$M_f = -\frac{3\sqrt{2}}{2} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$$

c) f est la composée d'une homothétie de centre O et rapport $\lambda=-\frac{3\sqrt{2}}{2}$, avec une projection sur la droite x-y=0, parallèlement à \overrightarrow{e}_1 .