Лабораторная работа №1. Бинарная классификация фактографических данных

Цель работы

Получить практические навыки решения задачи бинарной классификации данных в среде Jupyter Notebook. Научиться загружать данные, обучать классификаторы и проводить классификацию. Научиться оценивать точность полученных моделей.

Выполнение работы

- 1. Была создана данная рабочая тетрадь для выполнения работы.
- 2. Импорт необходимых для работы библиотек и модулей

```
In [1]:
```

```
import numpy as np
from sklearn.datasets import make_classification
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
```

In [2]:

```
def plot_2d_separator(classifier, X, fill=False, line=True, ax=None, eps=None):
    if eps is None:
        eps = 1.0 #X.std() / 2.
    x_{min}, x_{max} = X[:, 0].min() - eps, <math>X[:, 0].max() + eps
    y_min, y_max = X[:, 1].min() - eps, X[:, 1].max() + eps
    xx = np.linspace(x_min, x_max, 100)
yy = np.linspace(y_min, y_max, 100)
    X1, X2 = np.meshgrid(xx, yy)
X_grid = np.c_[X1.ravel(), X2.ravel()]
        decision_values = classifier.decision_function(X_grid)
        levels = [0]
        fill_levels = [decision_values.min(), 0, decision_values.max()]
    except AttributeError:
        # no decision_function
        decision_values = classifier.predict_proba(X_grid)[:, 1]
        levels = [.5]
        fill_levels = [0, .5, 1]
        if ax is None:
             ax = plt.gca()
        if fill:
             ax.contourf(X1, X2, decision_values.reshape(X1.shape);
             levels=fill_levels, colors=['cyan', 'pink', 'yellow'])
        if line:
             ax.contour(X1, X2, decision_values.reshape(X1.shape), levels=levels, colors="black")
        ax.set_xlim(x_min, x_max)
        ax.set_ylim(y_min, y_max)
        ax.set_xticks(())
        ax.set_yticks(())
```

3. Загрузили данные в соответствие с вариантом

```
In [3]:
```

In [5]:

4.Вывести первые 15 элементов выборки (координаты точек и метки класса)

```
In [4]:
print ("Координаты точек: ")
print (X[:15])
print ("Метки класса: ")
print (y[:15])
Координаты точек:
[[-0.32654509 -0.48287283]
  -0.56423228 0.369089791
 [ 1.80734839  0.64084024]
 [-1.13815022 -0.3922336 ]
 [-0.77269253 0.98787649]
 [-0.76362783 -1.03345078]
 0.28768416 0.02922487]
 [-0.19381938 -1.04395297]
 [-1.64047657 0.40696626]
 [-0.49234077 -1.04988151]
 [ 1.17360256 -0.58037911]
 [-0.66270457 -0.25318302]]
Метки класса:
[0 1 1 0 1 0 1 1 0 0 1 1 0 0 0]
```

5. Отобразили на графике сгенерированную выборку. Объекты разных классов имеют разные цвета.

```
plt.scatter (X[:,0], X[:,1], c=y)
plt.show()

2.0
1.5
1.0
-0.5
-1.0
-1.5
```

-2

6. Разбили данные на обучающую (train) и тестовую (test) выборки в пропорции 75% - 25% соответственно.

```
In [6]:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 1)
```

7. Отобразили на графике обучающую и тестовую выборки. Объекты разных классов имеют разные цвета.

```
In [7]:

col=[]
for i in range(len(y_train)):
    if y_train[i]==0:
        col.append('red')
    else:
        col.append('green')
plt.scatter (X_train[:,0], X_train[:,1], c=col)
plt.scatter (X_test[:,0], X_test[:,1], c=y_test)
plt.legend(['X_test_class0','X_test_class1'])
plt.show()
```


8. Реализовали модели классификаторов, обучили их на обучающем множестве. Применили модели на тестовой выборке, вывели результаты классификации:

- Истинные и предсказанные метки классов
- Матрицу ошибок (confusion matrix)
- Значения полноты, точности, f1-меры и аккуратности
- Значение площади под кривой ошибок (AUC ROC)
- Отобразить на графике область принятия решений по каждому классу

In [8]:

```
knn = KNeighborsClassifier(n_neighbors=1, metric = 'euclidean')
knn.fit(X_train, y_train)
KNeighborsClassifier(metric='euclidean', n_neighbors=1)
prediction = knn.predict(X_test)
print ('Prediction and test: ')
print (prediction, '\n')
print (y_test)
print ('\nConfusion matrix: ')
print ('\nConfusion matrix(y_test, prediction))
print ('\nAccuracy score: ', accuracy_score(prediction, y_test), '\n')
print(classification_report(y_test, prediction))
print('\nAUC ROC: ',roc_auc_score(y_test, prediction))
plt.xlabel("first feature")
plt.ylabel("second feature")
plot_2d_separator(knn, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
```

Prediction and test:

Confusion matrix:

```
[[115 13]
[ 12 110]]
```

Accuracy score: 0.9

	precision	recall	f1-score	support
0	0.91	0.90	0.90	128
1	0.89	0.90	0.90	122
accuracy			0.90	250
macro avg	0.90	0.90	0.90	250
weighted avg	0.90	0.90	0.90	250


```
In [9]:
```

```
gnb = GaussianNB()
gnb.fit(X_train, y_train)
prediction_NB = gnb.predict(X_test)
print ('Prediction and test: ')
print (prediction_NB,'\n')
print (y_test)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test, prediction_NB))
print ('\nAccuracy score: ', accuracy_score(prediction_NB, y_test),'\n')
print(classification_report(y_test, prediction_NB))
print('\nAUC ROC: ', roc_auc_score(y_test, prediction_NB))
plt.xlabel("first feature")
plt.ylabel("second feature
plot_2d_separator(gnb, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
Prediction and test:
```

Confusion matrix:

[[124 4] [10 112]]

Accuracy score: 0.944

	precision	recall	f1-score	support
0	0.93	0.97	0.95	128
1	0.97	0.92	0.94	122
accuracy			0.94	250
macro avg	0.95	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

In [10]:

```
clf = RandomForestClassifier(n_estimators = 5)
clf.fit(X_train, y_train)
prediction_RF = clf.predict(X_test)
print ('Prediction and test: ')
print (prediction_RF,'\n')
print (y_test)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test, prediction_RF))
print ('\nAccuracy score: ', accuracy_score(prediction_RF, y_test))
print('\n', classification_report(y_test, prediction_RF))
print('\nAUC ROC:', roc_auc_score(y_test, prediction_RF))
plt.xlabel("first feature")
plt.ylabel("second feature")
plot_2d_separator(clf, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
Prediction and test:
```

Confusion matrix: [[115 13]

[[115 13] [9 113]]

Accuracy score: 0.912

	precision	recall	f1-score	support
0	0.93	0.90	0.91	128
1	0.90	0.93	0.91	122
accuracy			0.91	250
macro avg	0.91	0.91	0.91	250
weighted avg	0.91	0.91	0.91	250

AUC ROC: 0.9123335040983607

9. По результатам п.8 занесли в отчет таблицу с результатами классификации всеми методами.

		Метод k-ближайших соседей	Наивный Байесовский метод	Random Forest
Precision	0	0.91	0.93	0.93
	1	0.89	0.97	0.89
Recall	0	0.9	0.97	0.89
	1	0.9	0.92	0.93
FI-score		0.9	0.95	0.91
Accuracy		0.9	0.94	0.91
AUC ROC		0.9	0.94	0.91

10. Изучили, как изменится качество классификации в случае другого разбиения выборки на обучающую и тестовую. Для этого повторили пункты 6, передав в параметр random_state новое значение, и пункты 8-9 дважды.

```
In [11]:
```

```
X_train_2, X_test_2, y_train_2, y_test_2 = train_test_split(X, y, test_size = 0.25, random_state = 2)
```

```
In [12]:
```

```
knn = KNeighborsClassifier(n_neighbors=3, metric = 'euclidean')
knn.fit(X_train_2, y_train_2)
KNeighborsClassifier(metric='euclidean', n_neighbors=1)

prediction2 = knn.predict(X_test_2)

print ('Prediction and test: ')
print (prediction2,'\n')
print (y_test_2)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test_2, prediction2))
print ('\nAccuracy score: ', accuracy_score(prediction2, y_test_2))
print('\nAUC ROC:', roc_auc_score(y_test_2, prediction2))
print('\nAUC ROC:', roc_auc_score(y_test_2, prediction2))

plt.xlabel("first feature")
plt.ylabel("second feature")
plt.ylabel("second feature")
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
```

Prediction and test:

Confusion matrix: [[128 7]

[12 103]]

Accuracy score: 0.924

	precision	recall	f1-score	support
0	0.91	0.95	0.93	135
1	0.94	0.90	0.92	115
accuracy			0.92	250
macro avg	0.93	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250

In [13]:

```
gnb = GaussianNB()
gnb.fit(X_train_2, y_train_2)

prediction_NB_2 = gnb.predict(X_test_2)

print ('Prediction and test: ')
print (prediction_NB_2, '\n')
print (y_test_2)
print ('\nCourset one matrix: ')
print (confusion_matrix(y_test_2, prediction_NB_2))
print ('\nAccuracy score: ', accuracy_score(prediction_NB_2, y_test_2))
print('\n', classification_report(y_test_2, prediction_NB_2))
print('\nAUC ROC:', roc_auc_score(y_test_2, prediction_NB_2))
plt.xlabel("first feature")
plt.ylabel("second feature")
plot_2d_separator(gnb, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
```

Prediction and test:

Confusion matrix: [[130 5] [9 106]]

Accuracy score: 0.944

	precision	recall	f1-score	support
0	0.94	0.96	0.95	135
1	0.95	0.92	0.94	115
accuracy			0.94	250
macro avg	0.95	0.94	0.94	250
weighted avg	0.94	0.94	0.94	250

In [14]:

```
clf = RandomForestClassifier(n_estimators = 15)
clf.fit(X_train_2, y_train_2)

prediction_RF_2 = clf.predict(X_test_2)
print ('Prediction and test: ')
print (prediction_RF_2,'\n')
print (y_test_2)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test_2, prediction_RF_2))
print ('\nAccuracy score: ', accuracy_score(prediction_RF_2, y_test_2))
print('\n', classification_report(y_test_2, prediction_RF_2))
print('\nAUC ROC: ', roc_auc_score(y_test_2, prediction_RF_2))
plt.xlabel("first feature")
plt.ylabel("second feature")
plot_2d_separator(clf, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
```

Prediction and test:

Confusion matrix:

[[128 7] [8 107]]

Accuracy score: 0.94

	precision	recall	f1-score	support
0	0.94	0.95	0.94	135
1	0.94	0.93	0.93	115
accuracy			0.94	250
macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94	250 250

AUC ROC: 0.9392914653784219

In [15]:

```
X_train_3, X_test_3, y_train_3, y_test_3 = train_test_split(X, y, test_size = 0.25, random_state = 5)
```

In [16]:

```
knn = KNeighborsClassifier(n_neighbors=9, metric = 'euclidean')
knn.fit(X_train_3, y_train_3)
KNeighborsClassifier(metric='euclidean', n_neighbors=1)
prediction3 = knn.predict(X_test_3)
print ('Prediction and test: ')
print (prediction3, '\n')
print (y_test_3)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test_3, prediction3))
print ('\nAccuracy score: ', accuracy_score(prediction3, y_test_3))
print('\n', classification_report(y_test_3, prediction3))
print('\nAUC ROC:', roc_auc_score(y_test_3, prediction3))
plt.xlabel("first feature")
plt.ylabel("second feature")
plt.ylabel("second feature")
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
```

```
Prediction and test:
```

Confusion matrix:

```
[[123 10]
[ 8 109]]
```

Accuracy score: 0.928

	precision	recall	f1-score	support
0	0.94	0.92	0.93	133
1	0.92	0.93	0.92	117
accuracy			0.93	250
macro avg	0.93	0.93	0.93	250
weighted avg	0.93	0.93	0.93	250

In [17]:

```
gnb = GaussianNB()
gnb.fit(X_train_3, y_train_3)
prediction_NB_3 = gnb.predict(X_test_3)
print ('Prediction and test: ')
print (prediction_NB_3, '\n')
print (y_test_3)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test_3, prediction_NB_3))
print ('\nAccuracy score: ', accuracy_score(prediction_NB_3, y_test_3))
print('\n', classification_report(y_test_3, prediction_NB_3))
print('\nAUC ROC:', roc_auc_score(y_test_3, prediction_NB_3))
print('\float_NBC ROC:', roc_auc_score(y_test_3, prediction_NB_3))
plt.xlabel("first feature")
plt.ylabel("second feature")
plot_2d_separator(gnb, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
```

Prediction and test:

Confusion matrix:

[[125 8] [11 106]]

Accuracy score: 0.924

	precision	recall	f1-score	support
0	0.92	0.94	0.93	133
1	0.93	0.91	0.92	117
accuracy			0.92	250
macro avg	0.92	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250


```
In [18]:
```

```
clf = RandomForestClassifier(n_estimators = 50)
clf.fit(X_train_3, y_train_3)
prediction_RF_3 = clf.predict(X_test_3)
print ('Prediction and test:
print (prediction_RF_3,'\n')
print (y_test_3)
print ('\nConfusion matrix:')
print (confusion_matrix(y_test_3, prediction_RF_3))
print ('\nAccuracy score: ', accuracy_score(prediction_RF_3, y_test_3))
print('\n', classification_report(y_test_3, prediction_RF_3))
print('\nAUC ROC: ', roc_auc_score(y_test_3, prediction_RF_3))
plt.xlabel("first feature")
plt.ylabel("second feature")
plot_2d_separator(clf, X, fill=True)
plt.scatter(X[:, 0], X[:, 1], c=y, s=70);
Prediction and test:
```

```
110011000001001110101001111000
```

101010111000000100110011011001001010111

11000100000010011101001111000

Confusion matrix: [[123 10] [9 108]]

Accuracy score: 0.924

	precision	recall	f1-score	support
0	0.93	0.92	0.93	133
1	0.92	0.92	0.92	117
accuracy			0.92	250
macro avg	0.92	0.92	0.92	250
weighted avg	0.92	0.92	0.92	250

AUC ROC: 0.9239444765760556

11. По результатам трех экспериментов составили итоговую таблицу о качестве классификаци каждым методом, включив в нее значения полноты, точности, f1-меры, аккуратности и площади под кривой ошибок. Сделали выводы о наиболее подходящем методе классификации данных

			Итерация 1 Итерация 2			а 2 Итерация 3				
		Метод k- ближайших соседей	Наивный Байесовский метод	Random Forest	Метод k- ближайших соседей	Наивный Байесовский метод	Random Forest	Метод k- ближайших соседей	Наивный Байесовский метод	Random Forest
Precision	0	0.91	0.93	0.93	0.91	0.94	0.94	0.94	0.92	0.93
	1	0.89	0.97	0.89	0.94	0.95	0.93	0.92	0.93	0.92
Recall	0	0.9	0.97	0.89	0.95	0.96	0.94	0.92	0.94	0.93
	1	0.9	0.92	0.93	0.9	0.92	0.93	0.93	0.91	0.91
FI-score		0.9	0.95	0.91	0.93	0.95	0.94	0.93	0.93	0.93
Accuracy		0.9	0.94	0.91	0.92	0.94	0.93	0.928	0.92	0.92
AUC ROC		0.9	0.94	0.91	0.92	0.94	0.93	0.928	0.92	0.92

Вывод

В ходе выполнения работы я получил практические навыки решения задачи бинарной классификации данных в среде Jupyter Notebook. Научился загружать данные, обучать классификаторы и проводить классификацию. Научился оценивать точность полученных моделей. По таблице видно, что лучше всего справился с классификацией наивный Байесовский метод в первой итерации, при этом случайное перемешивание данных при разбиении на тестовую и обучающую выборку снизило точность модели.

У метода к-средних наблюдается увеличение точности с увеличением параметра к (кол-ва соседей), в данном случае метод оказался нечувствительным к перемешиванию данных.

Random Forest в первых двух итерациях имеет практически одинаковые показатели оценок качества, в последней итерации на метрики повлияло перемешивание данных.

In []: