Effective Geometric Measure Theory

Jan Reimann Theodore Slaman

Geometric Measure Theory

- Study the geometric properties of non-negligible closed subsets of perfect Polish spaces.
- Non-negligible: with respect to a translation-invariant non-atomic measure (Hausdorff measure).
- Problem: In general, these measures are not σ -finite, there is no integration theory, etc.
- Basic tool: replace the Hausdorff measure by a probability measure "sufficiently close" to it.
- Major goal: understand local structure of fractals density, rectifiability, etc.

Effective Geometric Measure Theory

- Local structure: study typical points in a set.
- Use both measure theory and recursion theory / effective descriptive theory
- This amounts to analyzing infinite paths through trees.

Types of Measures

Probability measures

Based on a premeasure ρ which satisfies

- $\rho(\emptyset) = 1$ and
- $\rho(\sigma) = \rho(\sigma \cap 0) + \rho(\sigma \cap 1)$.

For probability measures it holds that $\mu_{\rho}(N_{\sigma})=\rho(\sigma).$

Examples

• Lebesgue measure λ : $\rho(\sigma) = 2^{-|\sigma|}$.

If $\mu(X) = 0$ for all X, then μ is called continuous.

Types of measures

Hausdorff premeasures

Any premeasure $ho: 2^{<\omega}
ightarrow \mathbb{R}^{\geqslant 0}$ satisfying

- If $|\sigma| = |\tau|$, then $\rho(\sigma) = \rho(\tau)$.
- $\rho(n)$ is non-increasing.
- $\rho(n) \to 0$ as $n \to \infty$.
- For example: $\rho(\sigma) = 2^{-|\sigma|s}$, $s \geqslant 0$.

Geometrical premeasures

There exist real numbers p, q

- $1/2 \leqslant p < 1$ and $1 \leqslant q < 2$;
- $\rho(\sigma \hat{i}) \leq p\rho(\sigma)$;
- $q\rho(\sigma) \leqslant \rho(\sigma \cap 0) + \rho(\sigma \cap 1)$.

Ranked points

Small trees - countable Π_1^0 classes

- It is not hard to see that such trees can neither support a probability nor a Hausdorff measure.
- It is known that members of such trees are hyperarithmetical, but instances occur at all levels of the hyperarithmetical hierarchy. [Kreisel]
- No member of a countable Π₁⁰ class is random for a continuous probability measure. [Kjos-Hanssen and Montalban]
- Let

 $\mathsf{NCR}_1 = \{X\colon X \text{ not random for any cont. prob. measure }\}$

Uncountable Sets

Question

Under what circumstances does a set support a continuous probability or Hausdorff measure?

- Probability measures: If the set is regular (Borel), then uncountability suffices – perfect subset property.
- Hausdorff measures: It is possible to "translate" between Hausdorff and certain kinds of probability measures.

Non-ranked points

Question

In the effective case – is being an element of a countable effectively closed set also necessary for not being continuously random?

• There was some evidence for this, since NCR₁ is completely contained in Δ_1^1 .

Theorem [Reimann and Slaman]

There exists an $X \in NCR_1$ that is not a member of any countable Π^0_1 class.

Non-ranked instances in NCR₁

Lemma

If a recursive tree T does not contain a recursive path, then no member of [T] can be an element of a countable Π_1^0 class.

- Intersect a countable Π_1^0 class with T.
- If the resulting tree S had an infinite path, [S] would be a countable Π₁⁰ class without a recursive path.
- But this is impossible.

Non-ranked instances in NCR₁

Given a tree T, let

$$T_{\infty} = \{\sigma \in T: \ \sigma \ \text{has inf. many ext. in } T\},$$

the infinite part of T.

Lemma

There exists a recursive tree T such that T has no recursive path and for all $\sigma \in T_{\infty}$, if there exist n branches along σ , then $0' \upharpoonright_n$ is settled by stage $|\sigma|$.

• Essentially a priority argument, diagonalizing against recursive paths and "thinning out" T_{∞} if the current approximation to 0' changes.

Non-ranked instances in NCR₁

T is recursive, hence $[T] = [T_{\infty}]$ contains an element in Δ^0_2 , say X.

Assume X is μ -random for some continuous μ .

- T is recursive and contains a μ -random path, hence $\mu[T] > 0$.
- Recursively in μ , we can compute $h: \mathbb{N} \to \mathbb{N}$ such that for each n, some element in [T] must have n-many branchings in T_{∞} by level h(n).
- But this implies that μ computes 0', hence μ computes X, a contradiction!

Non-ranked points

Observation

- The tree T used in the previous proof splits very slowly.
- In terms of Hausdorff measure this means that [T] is \mathcal{H}^h -null for any recursive Hausdorff premeasure h.

Binns suggested that it might be precisely such trees that capture being NCR₁.

• There is evidence for this based on a correspondance between Hausdorff and probability measures.

Hausdorff and Probability Measures

Support of a probability measure

 $\text{supp}(\mu)$ is the smallest closed set F such that $\mu(2^{\omega}\setminus F)=0.$

 $A \subseteq 2^{\omega}$ supports a measure μ if supp $(\mu) \subseteq A$.

Mass Distribution Principle

If A supports a probability measure $\boldsymbol{\mu}$ such that for some constant c>0,

$$(\forall \sigma) \ \mu(\sigma) \leqslant c2^{-|\sigma|s}$$
,

then $\mathcal{H}^{s}(A) > \mu(A)/c$.

Hausdorff and Probability Measures

A fundamental result due to Frostman (1935) asserts that the converse holds, too.

Frostman's Lemma

If A is closed and $\mathcal{H}^s(A)>0$, then there exists a probability measure μ such that $\mathrm{supp}(\mu)\subseteq A$ and for some c>0,

$$(\forall \sigma) \ \mu(\sigma) \leqslant c2^{-|\sigma|s}$$
.

(Call such a measure s-bounded.)

We will prove a pointwise version of Frostman's Lemma.

Randomness and Complexity

- An order is a nondecreasing, unbounded function $h : \mathbb{N} \to \mathbb{N}$. h is called convex if for all n, $h(n+1) \leq h(n) + 1$.
- A real is called complex if for a computable order h

$$(\forall n) \ \mathsf{K}(\mathsf{x} \upharpoonright_n) \geqslant \mathsf{h}(n),$$

where K denotes prefix-free Kolmogorov complexity.

• If X is complex via h, then we call X h-complex. X is h-complex if and only if it is $\mathcal{H}^{2^{-h}}$ -random.

Variants of Complexity

- Replace K by another type of Kolmogorov complexity.
- A (continuous) semimeasure is a function $\eta: 2^{<\omega} \to [0,1]$ such that

$$(\forall \sigma) \ \eta(\sigma) \geqslant \eta(\sigma \cap 0) + \eta(\sigma \cap 1).$$

- There exists a maximal enumerable semimeasure M that dominates (up to a multiplicative constant) any other enumerable semimeasure (Levin).
- The a priori complexity of a string σ is defined as $-\log \overline{M}(\sigma)$.
- Given a computable order h, we say a real $X \in 2^{\omega}$ is strongly h-complex if

$$(\forall n) [-\log \overline{M}(x \upharpoonright_n) \geqslant h(n)],$$

(Note that up to an additive constant, $-\log \overline{M} \leqslant K$.)

A pointwise version of Frostman's Lemma

Given an order h, we say X is h-capacitable if there exists an h-bounded probability measure μ such that X is μ -random.

Effective Capacitability Theorem

Suppose $X \in 2^{\omega}$ is strongly h-complex, where h is a computable, convex order function. Then X is h-capacitable.

Applications of Effective Capacitability

- A new proof of Frostman's Lemma.
- A new characterization of effective dimension.
- Comparison of randomness notions.

A New Proof of Frostman's Lemma

The new proof is of a profoundly effective nature.

- Kucera-Gacs Theorem (does not have a classical counterpart)
- Compactness is used in the form of a basis result for Π_1^0 classes.
- The problem of assigning non-trivial measure to A is solved by making an element of A random.

Kjos-Hanssen observed that strong randomness is the precise effective level for which a pointwise Frostman Lemma holds.

Theorem

If X is not strongly \mathcal{H}^h -random then X is not effectively h-capacitable.

A New Characterization of Effective Dimension

We also obtain a new characterization of effective dimension.

Theorem

For any real $X \in 2^{\omega}$,

$$\dim_{\mathsf{H}}^1 x = \sup\{s \in \mathbb{Q} : x \text{ is h-capacitable for } h(n) = sn\}.$$

Particularly with regard to effective dimension notions, several other test concepts have been suggested.

The standard structure of such tests is as follows: A notion of randomness $\mathcal R$ is a uniform mapping

$$\mathcal{R}: \rho \mapsto W \mapsto \bigcap_{n} W_{n},$$

where $\overline{W}\subset \mathbb{N} imes 2^{<\omega}$ is c.e. in (a representation of) ρ , and $\bigcap_{\mathfrak{n}}W_{\mathfrak{n}}$ is a μ_{ρ} -nullset that is $\Pi^0_2(\rho)$.

Examples:

- Martin-Löf tests: $\rho(W_n) \leq 2^{-n}$
- Solovay tests: $W_1 \supseteq W_2 \supseteq \ldots$, W_n contains only strings of length $\geqslant n$ and $\rho(W_n) \leqslant 1$.
- Strong tests (Calude et al): If $V \subseteq W_n$ is prefix-free, then $\rho(V) \leqslant 2^{-n}$.
- Vehement tests (Kjos-Hanssen): For each n exists V_n such that $N(V_n) \supseteq N(W_n)$ and $\rho(V_n) \leqslant 2^{-n}$.

Say for two notions of randomness that $\mathcal{R}_0 \succeq_{\rho} \mathcal{R}_1$ if every ρ -random for \mathcal{R}_0 is also ρ -random for \mathcal{R}_1 .

The following relations are known:

- $\Re_{ML} \preceq_{\mathcal{P} \cup \mathcal{H}} \Re_{S}$.
- For all computable geometrical premeasures ρ for which (G3) holds for some q > 1, $\Re_{ML} \not\succeq_{\rho} \Re_{S}$ (Reimann and Stephan).
- $\Re_{S} \leq_{\mathcal{G}} \Re_{\mathsf{str}}$ (R-S).
- For any computable, length-invariant, geometrical premeasure ρ , $\Re_S \not\succeq_{\rho} \Re_{\mathsf{str}}$ (R-S).
- $\mathcal{R}_{str} \preceq_{\mathcal{P} \cup \mathcal{H}} \mathcal{R}_{\nu}$ (every open covering in 2^{ω} has a prefix-free subcovering).

($\mathcal P$ denotes the set of all probability measures, $\mathcal H$ the set of convex Hausdorff premeasures, and $\mathcal G$ the set of all geometrical premeasures.)

We can use the effective capacitability theorem to show that strong randomness \mathcal{R}_{str} is the strongest possible randomness notion among a family of "Martin-Löf like" randomness concepts (satisfying certain consistency requirements).

Let \mathcal{H}^{\ast} denote the family of all computable convex Hausdorff premeasures.

Theorem

Suppose $\mathcal R$ is a randomness notion such that $\mathcal R_{\mathsf{str}} \preceq_{\mathcal H^*} \mathcal R$ and $\mathcal R_{\mathsf{str}} \equiv_{\mathcal P} \mathcal R$. Then $\mathcal R_{\mathsf{str}} \equiv_{\mathcal H^*} \mathcal R$.

Corollary

 $\mathcal{R}_{\mathsf{str}} \equiv_{\mathcal{P} \cup \mathcal{H}^*} \mathcal{R}_{\nu}$, i.e. for probability and computable Hausdorff measures, strong and vehement randomness coincide.

Randomness and the Size of Trees

Question

Is not being random for a continuous measures related to being a member of some "small" effective tree?

The previous results suggest that this might be the case.

 To answer the question, we will analyze the reals in NCR₁ ∩Δ₂⁰.

$NCR_1 \cap \Delta_2^0$

We will compare two functions.

• The settling function for $X \in \Delta_2^0$. Let X_0 be a recursive approximation $X = \lim_{s \to \infty} X_0(s)$. Define $c : \mathbb{N} \to \mathbb{N}$ as

$$c_X(n) = \text{the least } s \text{ such that for all } t > s, \, X_0(n,t) = X(n).$$

X can be computed from any function g which dominates c_X pointwise.

• The granularity function of a continuous measure μ . Let $g_{\mu}: \mathbb{N} \to \mathbb{N}$ be given as

$$g_{\mu}(n)=$$
 the least l such that for all σ of length l, $\mu(\sigma)<1/2^n.$

$NCR_1 \cap \Delta_2^0$

Given these two functions, we can analyze whether $X \in NCR_1$.

- If g_{μ} dominates c_X pointwise, then X is recursive in μ and hence not random relative to μ .
- An argument along this line shows, if g_{μ} is not eventually dominated by c_X , then X can be approximated in measure and is not random relative to μ .

Theorem [Reimann and Slaman]

For each Δ_2^0 set X, there is an arithmetically defined sequence of compact sets H_n of continuous measures, such that if X is random for some continuous measure, then it is random relative to some μ in one of the H_n .

• n indicates the place after which g_{μ} is dominated by c_{X} .

Exotic examples

Observation

If the approximation to X converges quickly on intervals which are long compared to the speed of convergence on the earlier part of X, then X cannot be continuously random.

This direct characterization of NCR_1 on Δ_2^0 is compatible with other constructions and thus enables us to find exotic elements of NCR_1 :

- 1-generic
- packing dimension 1

But if a 1-generic X is a path through a recursive tree, the tree must contain a whole basic cylinder $N(X \upharpoonright_n)$.