

Reinforcement Learning

Contents

Background

Goal of RL: Maximize sum of rewards.

How: Take the best action, basing on $Q^*(s,a)$.

$$a_t = argmax_a Q(s_t, a, \mathbf{w})$$

Problem: Get to know Q*(s,a).

DQN

DQN: Nueral network named Deep Q Network, denoted as Q(s,a;w).

Goal: Use Q(s,a;w) to approximate $Q^*(s,a)$.

DQN

Example: If action space is {"left", "up", "right"}, then Q is a

3-dimensional vector
$$\begin{pmatrix} Q(s_t,"left";w_t) \\ Q(s_t,"up";w_t) \\ Q(s_t,"right";w_t) \end{pmatrix}$$

DQN

Apply DQN in a game

TD – Q-Learning

TD: Temporal difference, used to train DQN, including Q-Learning & SARSA.

Q-Learning aims to approximate Q^* , while **SARSA** aims to approximate Q_{π} .

TD – Q-Learning

Observe transition: (s_t, a_t, r_t, s_{t+1})

$$\hat{q} = Q(s_t, a_t; \mathbf{w})$$

TD target: $y_t = r_t + \gamma * \max_a Q(s_{t+1}, a; w) \rightarrow Bellman Optimality Equation$

TD error: $\delta_t = Q(s_t, a_t; \mathbf{w}) - y_t$

Loss: $\delta_t^2/2$

Gradient: $\frac{\partial \delta_t^2/2}{\partial w} = \delta_t * \frac{\partial Q(s_t, a_t; w)}{\partial w}$

Update: $\mathbf{w} \leftarrow \mathbf{w} - \alpha * \delta_t * \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$

TD - SARSA

SARSA: StateActionRewardStateAction

$$(s_t, a_t, r_t, s_{t+1}, a_{t+1})$$

SARSA is used to approximate Q_{π} .

TD - SARSA

Observe transition: $(s_t, a_t, r_t, s_{t+1}, a_{t+1})$

$$\hat{q} = q(s_t, a_t; \mathbf{w})$$

TD target: $y_t = r_t + \gamma * q(s_{t+1}, a_{t+1}; \mathbf{w})$

TD error: $\delta_t = q(s_t, a_t; \mathbf{w}) - y_t$

Loss: $\delta_t^2/2$

Gradient:
$$\frac{\partial \delta_t^2/2}{\partial w} = \delta_t * \frac{\partial q(s_t, a_t; w)}{\partial w}$$

Update: $\mathbf{w} \leftarrow \mathbf{w} - \alpha * \delta_t * \frac{\partial q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}}$

On-policy & off-policy

On-policy: Behavior policy is the same with target policy.

Off-policy: Behavior policy is **not** the same with target policy.

Behavior policy: Used to control agent and gain experience.

Target policy: A certain policy that RL aims to find.

For example, Q-Learning is off-policy while SARSA is on-policy.

Experience replay

Meaning: Save interaction records (experience) into arrays and reuse them later to train the agent.

Advantages: Elimination of relevance and faster convergence speed.

Only applies to off-policy solutions.

Thank you.

