

LOS FUNDAMENTOS DE LA QUÍMICA

Prof. Ing. Sandra Leiton

Materia, sustancia, mezcla

Propiedades de la materia

Transformaciones físicas y químicas

Sustancias simples y compuestas

SUSTANCIAS

Se descomponen mediante algún método de descomposición

Sustancias compuestas

No se descomponen por ningún método de descomposición

Sustancias simples

Átomos y moléculas

Número atómico y másico

El número atómico se representa con la letra Z e indica la cantidad de protones.

El número másico se representa con la letra A e indica la cantidad de partículas en el núcleo.

A= cantidad de protones + cantidad de neutrones

A= Z + cantidad de neutrones

Representación de los átomos

Ejemplos

ÁTOMO	Z	A	nº de protones	nº de neutrones	nº de electrones
⁶³ 29 C u	29	63	29	34	29
⁴⁰ 19K	19	40	19	21	19
65 ₂₉ Cu	29	65	29	36	29
⁴⁰ 20 Ca	20	40	20	20	20
19 ₁₉ K	19	39	19	20	19

Los isótopos

Los isóbaros

Átomos que presentan igual A y distinto Z

Unidad de masa atómica

- La escala de masas atómicas es relativa al ¹²C.
- Un átomo de ¹²C tiene una masa de 12 uma. (seis protones y seis neutrones en el núcleo)
- 1 uma se define como la doceava parte de la masa de un átomo de ¹²C.

1 u.m.a. =
$$\frac{1,99 \cdot 10^{-23} \text{ g}}{12}$$
 = 1,66 \cdot 10⁻²⁴ g

Masa atómica relativa promedio: abundancia isotópica

- Abundancia isotópica del C en la naturaleza:
- 98,892 % ¹²C y 1,108 % ¹³C.

Masa atómica promedio del carbono natural =

(0.98892)(12 uma) + (0.0108)(13.00335 uma) = 12.011 uma.

Mol

- Los químicos miden los átomos y las moléculas en moles.
- En el sistema SI el mol es la cantidad de una sustancia que contiene tantas entidades elementales (átomos, moléculas u otras partículas) como átomos hay exactamente en 12 gramos ó (0.012 kilogramos) del isótopo de carbono-12.
- El número de átomos en 12 g de carbono-12 se determina experimentalmente = 6.022045 x 10²³ partículas.
- Este número se denomina número de Avogadro, en honor del científico italiano Amedeo Avogadro. Por lo general, el número de Avogadro se redondea a 6.022 x 10²³

EJEMPLO

•¿Qué tan grande es un mol de granos de arroz? Considerando que un grano de arroz pesa 0,0166 g (1,66 x 10⁻⁵ kg)

La masa de un mol de granos de arroz es = 10 000 000 000 000 000 000 (10 trillones de kg)

•6,022 x 10²³ átomos = 1 mol de átomos

Ejemplos

6,022 x 10²³ átomos de Cu= 1 mol de átomos de Cu

 $6,022 \times 10^{23}$ átomos de H = 1 mol de átomos de H

Un mol de producto se puede pesar

No es posible medir la masa de cada átomo individualmente, pero sí se puede medir la masa de un grupo representativo de átomos y compararla con una masa de otro número igual de un átomo distinto

Masa molecular:

 La masa molecular es la suma de las masas atómicas (en uma) en una molécula.

 Por ejemplo, la masa molecular del agua es 2(masa atómica del H) + masa atómica del O 2(1.008 uma) + 16.00 uma = 18.02 uma

Masa molar:

Su valor numérico coincide con el de la masa molecular pero expresado en gramos/mol en lugar de unidades de masa atómica, y se diferencia de ella en que mientras la masa molecular alude una sola molécula, la masa molar corresponde a un mol (6,022.10²³) de moléculas

Mol: ejemplo

Para el caso del agua, vemos que la relación entre el mol y la masa molecular es:

Relación del Mol y la masa molecular del Agua y de sus Partes						
00	0			>		
2 moles H	+	1 mol O	-	1 mol de agua		
2 x 1,01 g	+	16,00 g	=	18,02 g		

Por lo tanto decimos que: 1mol de agua tiene una masa de 18,02g

Masa atómica del Cu= 63,54

- Significa
- •1 átomo de Cu pesa 63,54 uma
- •1 mol de átomos de Cu pesa 63,54 g

En el caso de moléculas

6,022 x 10²³ moléculas de NH₃= 1 mol de moléculas de amoniaco

 $6,022 \times 10^{23}$ moléculas de H₂0 = 1 mol de moléculas de agua

Por lo tanto:

- •1 molécula de NH3 pesa 17 uma
- •1 mol de moléculas de amoniaco pesan 17 g
- •1 molécula de H2O pesa 18 uma
- 1 mol de moléculas de agua pesa 18 g