Теометрия в компьютерных приложениях

Лекция 1: Введение и геометрия плоских кривых

Богачев Николай Владимирович

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applications

26 августа 2017 г.

1. Введение

1.1. Основные цели курса.

- Освоить абстрактные геометрические структуры:
 - кривые, поверхности, многообразия,
 - касательные пространства и расслоения

Boy Surface, Обервольфах, Германия

Бутылка Клейна

- Понять, где это может быть полезным?
 - распознавание образов и компьютерная геометрия
 - мультимедиа
 - робототехника
 - теория игр
 - сенсорные сети
 - ранжирование
 - наука

• Вычисления: как научить компьютер использовать геометрию?

• Дискретизация поверхностей VS. непрерывная дифференциальная геометрия.

1.2. Обозначения:

- lacktriangled \mathbb{R} вещественная прямая, \mathbb{R}^n n-мерное вещественное пространство
- $\mathbb{R}P^n$, $\mathbb{C}P^n$ вещественное и комплексное проективные пространства.
- $C^k(D)$ множество всех k-раз дифференцируемых функций на множестве D, $C^\infty(D)$ гладких.

2. ГЕОМЕТРИЯ ПЛОСКИХ КРИВЫХ

2.1. Определения и способы задания кривых.

Пусть $I \subset \mathbb{R}$ – некий отрезок или интервал.

Определение

Кривая-график: $\gamma = \{(x, f(x)) : x \in I, f \in C^{\infty}(I)\}.$

Определение

Неявно заданная кривая:

$$\gamma = \{(x,y) \in \mathbb{R}^2 : F(x,y) = 0, \left(\frac{\partial F}{\partial x}\right)^2 + \left(\frac{\partial F}{\partial y}\right)^2 \neq 0, \quad F \in C^{\infty}(\mathbb{R}^2)\}.$$

Регулярная кривая, заданная параметрически:

$$\gamma = \{(x(t), y(t)) \in \mathbb{R}^2 : t \in I, \ x(t), y(t) \in C^{\infty}(I), \ (x'(t))^2 + (y'(t))^2 \neq 0\}.$$

Предложение

Все три выше указанных способа задания кривых локально эквивалентны

Доказательство.

- (1) \Rightarrow (2): F(x, y) = y f(x);
- (2) \Rightarrow (1): по теореме о неявной функции для каждой точки y_0 существует такая окрестность $B(y_0, \varepsilon)$, что y = f(x);
- (1) \Rightarrow (3): $\gamma(t) = (x(t), y(t)) = (t, f(t))$;
- (3) \Rightarrow (1): м.сч. $x'(t) \neq 0$. По теореме об обратной функции существует гладкая t = t(x). Тогда y = y(t(x)).

Гладкая кривая на \mathbb{R}^2 : гладкое отображение $\gamma\colon [a,b]\to\mathbb{R}^2$, т.е. вектор-функция $\gamma(t)=(x(t),y(t))\in C^\infty([a,b]\times [a,b])$. Вектор скорости: $\gamma'(t)=(x'(t),y'(t))$. Кривая регулярная: $\gamma'(t)\neq 0$.

2.2. Длина дуги кривой. Натуральный параметр.

Определение

Длиной дуги кривой $\gamma = \gamma(t)$ между точками, заданными значениями $t_1 < t_2$, называется число

$$L(\gamma) = \int_{t_1}^{t_2} |\gamma'(t)| \ dt = \int_{t_1}^{t_2} \sqrt{(x'(t))^2 + (y'(t))^2} \ dt.$$

Пример

$$L(\gamma) = \int_a^b \sqrt{(1 + (f'(x))^2} \ dx.$$

Предложение

Длина кривой не зависит от параметризации.

Доказательство. Если $t=\varphi(\tau)$, то

$$\int_{t_1}^{t_2} \left| \frac{d\gamma}{dt} \right| \ dt = \int_{\tau_1}^{\tau_2} \left| \frac{d\gamma}{d\tau} \right| \ d\tau,$$

где
$$t_j=arphi(au_j)$$
, $j=1,2$.

Зафиксируем точку t_0 и будем задавать точку, отвечающую параметру $t > t_0$, новым **натуральным** параметром s:

$$s(t) = \int_{t_0}^t \left| \frac{d\gamma}{dt} \right| dt,$$

для $t < t_0$ параметр s задается так же, то есть это будет длина дуги со знаком «минус». В этом случае $\gamma = \gamma(s)$ — натуральная параметризация.

Замечание

Производная по натуральному параметру обозначается точкой: $\dot{\gamma}=d\gamma/ds$. Ясно, что $|\dot{\gamma}|=1$.

2.3. Касательная и нормаль.

Определение

Касательной к кривой $\gamma=\gamma(t)$ в точке t_0 называется предельное положение секущей, проходящей через точки t_0 и $t_0+\Delta$ при $\Delta\to 0$.

Предложение

Направляющим вектором касательной к кривой $\gamma=\gamma(t)$ в точке t_0 является ее вектор скорости $\gamma'(t_0)$, а уравнение касательной имеет вид

$$\ell(\tau) = \gamma'(t_0)\tau + \gamma(t_0),$$

где au — параметр на ней.

Доказательство.

- Единичный вектор секущей: $\vec{s}\left(\Delta\right) = \frac{\gamma(t_0 + \Delta) \gamma(t_0)}{|\gamma(t_0 + \Delta) \gamma(t_0)|} \ \mathrm{sgn}\left(\Delta\right)$.
- ullet $\lim_{\Delta o 0} ec{s}'(\Delta) = rac{\gamma'(t_0)}{|\gamma'(t_0)|} \Rightarrow \gamma'(t_0)$ направляющий вектор касательной

Нормалью к кривой в точке t_0 называется прямая, проходящая через эту точку перпендикулярно касательной в ней.

Направляющий вектор нормали: $(-y'(t_0),x'(t_0))$, уравнение нормали: $\frac{x-x(t_0)}{y'(t_0)}+\frac{y-y(t_0)}{x'(t_0)}=0$.

2.4. Кривизна. Формулы Френе

Определение

Две гладкие регулярные кривые касаются в точке P, если они обе проходят через эту точку и имеют в ней общую касательную.

Две гладкие регулярные натурально параметризованные кривые $r_1(s)$ и $r_2(s)$ имеют в точке s=0 касание порядка k, если выполнены равенства:

$$r_1(0) = r_2(0), \quad \dot{r}_1(0) = \dot{r}_2(0), \quad \ldots, \quad r_1^{(k)}(0) = r_2^{(k)}(0).$$

Пример-задача

У кривых-графиков $y=x^2$ и $y=\mathop{\rm ch} x-1$ каков порядок касания?

Лемма

Пусть $a\colon t\mapsto a(t)\in\mathbb{R}^n$ — гладкая вектор-функция, причем $|a(t)|\equiv const.$ Тогда $a'(t)\perp a(t).$

ДОКАЗАТЕЛЬСТВО. Продифференцируем равенство $(a(t),a(t))=const^2$ и получаем 2(a(t),a'(t))=0.

Теорема

Пусть $\gamma(s)$ – регулярная кривая с натуральным параметром, причем в точке $s=s_0$ вектор $\ddot{\gamma}(s_0)
eq 0$. Тогда существует единственная окружность, имеющая в точке s_0 касание второго порядка с кривой γ . Более того, ее центр лежит на нормали к кривой в направлении вектора ускорения, а ее радиус равен $|\ddot{\gamma}(s_0)|^{-1}$.

Доказательство. Натуральная параметризация окружности радиуса R с центром в точке x_0, y_0 имеет вид

$$r(s) = \left(x_0 + R\cos\frac{s}{R}, y_0 + R\sin\frac{s}{R}\right).$$

Тогда

$$\ddot{r}(s) = -\frac{1}{R} \left(\cos \frac{s}{R}, \sin \frac{s}{R} \right).$$

Ясно, что

$$\dot{r}(s) \perp \ddot{r}(s), \quad |\ddot{r}| = R^{-1}.$$

Следовательно, чтобы векторы скорости и ускорения кривой $\gamma(s)$ и некоторой окружности r(s) совпали, необходимо и достаточно, чтобы центр окружности лежал в направлении вектора ускорения кривой, отложенного от их общей точки, а $R = |\ddot{\gamma}(s_0)|^{-1}$.

Геометрия

Эта окружность называется соприкасающейся окружностью к кривой $\gamma(s)$ в точке s_0 , а ее радиус R – радиусом кривизны.

Величина $k(s_0)=R^{-1}=|\ddot{\gamma}(s_0)|$ называется кривизной кривой в точке s_0 .

Пусть $\ddot{\gamma}(s_0) \neq 0$.

Определение

Вектор нормали: $n(s_0) = \frac{\ddot{\gamma}(s_0)}{|\ddot{\gamma}(s_0)|} = \frac{\ddot{\gamma}(s_0)}{k(s_0)}$.

Тогда из векторов скорости $v(s_0) = \dot{\gamma}(s_0)$ и нормали $n(s_0)$ можно составить ортонормированный репер. Действительно,

$$\dot{\gamma}(s_0) \perp \ddot{\gamma}(s_0) = \dot{v}(s_0) = k(s_0)n(s_0).$$

Ясно, что $n(s_0) \perp \dot{n}(s_0)$, значит, $\dot{n}(s_0) = cv(s_0)$. Осталось продифференцировать равенство $(v(s), n(s_0)) = 0$:

$$0 = (\dot{v}(s_0), n(s_0)) + (v(s_0), \dot{n}(s_0)) = c + k(s_0).$$

Таким образом, для производных репера (v(s), n(s)) во всех точках s ненулевой кривизны мы получаем формулы Френе:

$$\dot{v}(s) = k(s)n(s), \quad \dot{n}(s) = -k(s)v(s).$$

2.5. Как задавать и рисовать кривые

- Приближение ломаными
- Приближение сплайнами (кусочно-полиномиальными функциями)

Список литературы

- [1] Иванов, Тужилин
- [2] Иванов, Тужилин
- [3] Фоменко
- [4] Тайманов