Республиканская олимпиада по математике, 2017 год, 9 класс

- **1.** Можно ли числа 1, 2, ..., 2017 разбить на три непустых множества A, B и C так, что для любых $a \in A$, $b \in B$ и $c \in C$ числа ab + c и ac + b не являлись точными квадратами? (Сатылханов K.)
- **2.** Натуральное число a и простое p таковы, что $\mathbf{HOД}(a,p!)=1$. Докажите, что $a^{(p-1)!}-1$ делится на p!. (Ануарбеков T.)
- **3.** На сторонах треугольника ABC во внешнюю сторону построены прямоугольники равных площадей ABLK, BCNM и CAQP. Пусть X, Y и Z середины отрезков KQ, LM и NP соответственно. Докажите, что прямые AX, BY и CZ пересекаются в одной точке. $(M. \ Kyнгожин)$
- **4.** Неравнобедренный треугольник ABC вписан в окружность ω с центром O. Продолжение биссектрисы CN пересекает ω в точке M. Пусть MK высота треугольника BCM, P середина отрезка CM, а Q точка пересечения прямых OP и AB. Пусть прямая MQ во второй раз пересекает ω в точке R, а T точка пересечения прямых BR и MK. Докажите, что $NT \parallel PK$. (M. Кунгожин)
- **5.** Пусть a и b такие действительные числа, что $\left|3a^2-1\right|\leq 2b$ и $\left|3b^2-2\right|\leq a$. Докажите, что $a^4+b^3\leq 2$. (Сатылханов K.)
- 6. В каждую клетку таблицы 100×100 записано одно из чисел 1, 2, ..., 100, причем каждое из этих чисел встречается в таблице 100 раз. Назовем *линией* любую строку или столбец таблицы. За один ход разрешается взять линию, в котором сумма чисел больше 100, и обнулить все числа на этой линии. Какое наибольшее количество ненулевых чисел может остаться в таблице, если известно, что после нескольких ходов во всех линиях сумма чисел не превосходит 100? (Сатылханов K.)