TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA KHOA HỌC MÁY TÍNH BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

HOMEWORK #01

ĐÁNH GIÁ THUẬT TOÁN DÙNG KỸ THUẬT TOÁN SƠ CẤP

Môn: Phân tích thiết kế thuật toán

Lớp: CS112.N23.KHCL

Giảng viên hướng dẫn: Huỳnh Thị Thanh Thương

Nhóm thực hiện: Hồ Thị Khánh Hiền
(Leader) - 21522057

Tổng Trần Tiến Dũng - 21521983

Bùi Mạnh Hùng - 21522110

TP Hồ Chí Minh, Ngày 3 tháng 4 năm 2023

Mục lục

1	Tính tổng hữu hạn	3
	a)	3
	b)	3
	c)	3
	d)	3
	e)	3
	f)	3
	,	4
	0)	4
	h)	_
	i)	4
	$\mathbf{j})$	4
2	Tính cố nhón gón và co gónh	4
4	Tính số phép gán và so sánh	4 5
	Bài 2	_
	Bài 3	6
	Bài 4	7
	Bài 5	9
	Bài 6	10
	Bài 7	12
	Bài 8	14
	Bài 9	15
	Bài 10	17
3	[BONUS]Tính số phép gán và so sánh & kiểm tra kết quả đếm bằng	
J	•	17
	·	11 19
	Bài 12	20
	Rái 13	.,.,

1 Tính tổng hữu hạn

a)

$$1 + 3 + 5... + 999 = \sum_{i=1}^{500} (2i - 1) = 2\sum_{i=1}^{500} (i) - \sum_{i=1}^{500} (1) = 500(500 + 1) - 500 = 250000$$

b)

$$S = 2+4+8+16+...+1024$$

Số hạng đầu $u_1 = 2$

Công bội q = 2

Có: $u_n = u_1 q^{n-1} = 1024 = 2.2^{n-1} = n = 10$

$$S = \frac{u_1(q^{10} - 1)}{q - 1} = \frac{2(2^{10} - 1)}{2 - 1} = 2046$$

c)

$$\sum_{i=2}^{n+1} 1 = \frac{(n+1)-3+1}{2} = \frac{n-1}{2}$$

d)

$$\sum_{i=3}^{n+1} i = \sum_{i=1}^{n+1} i - \sum_{i=1}^{2} i = \frac{(n+1)(n+2)}{2} - 3$$

e)

$$\sum_{i=0}^{n-1} i(i+1) = \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i$$

Đặt x = n-1 suy ra:

$$\sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i = \sum_{i=0}^{x} i^2 + \sum_{i=0}^{x} i = \frac{x(x+1)(2x+1)}{6} + \frac{x(x+1)}{2} = \frac{n(n^2-1)}{3}$$

f)

$$\sum_{j=1}^{n} 3^{j+1} = 3\sum_{j=1}^{n} 3^{j} = 3(3^{1} + 3^{2} + \dots + 3^{n}) = 3\frac{3^{n+1} - 3}{2} = \frac{9}{2}(3^{n} - 1)$$

g)
$$\sum_{i=1}^{n} \sum_{i=1}^{n} ij = \sum_{i=1}^{n} i \sum_{i=1}^{n} j = \sum_{i=1}^{n} i \left(\frac{n(n+1)}{2} \right) = \frac{n(n+1)}{2} \sum_{i=1}^{n} i = \left(\frac{n(n+1)}{2} \right)^{2}$$

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)}$$
$$= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

i)
$$\sum_{j \in \{2,3,5\}} (j^2 + j) = \sum_{j \in \{2,3,5\}} j(j+1) = (2.3 + 3.4) + 5.6 = 3.6 + 5.6 = 6.8 = 48$$

j)
$$\sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{100} (i+j) = \sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{100} i + \sum_{i=1}^{m} \sum_{j=0}^{n} \sum_{k=0}^{100} j = 100n \sum_{i=1}^{m} i + 100 \sum_{i=1}^{m} \sum_{j=0}^{n} j$$
$$= 100n \left(\frac{m(m+1)}{2} \right) + 100m \left(\frac{n(n+1)}{2} \right)$$

2 Tính số phép gán và so sánh

Bài 2

```
\begin{array}{l} s = 0; \\ i = 1; \\ \text{while } (i \leq n) \text{ do} \\ j = 1; \\ \text{while } (j \leq i^2) \text{ do} \\ s = s + 1; \\ j = j + 1; \\ \text{end do}; \\ i = i + 1; \\ \text{end do}; \\ \end{array}
```

Giải

Gọi α_i là số lần lặp của while trong = số con j, j chạy từ $1 -> i^2$, bước tăng là $1 = i^2 - 1 + 1 = i^2$ (lần)

Kết luân

$$Gán(n) = 2 + 2n + \sum_{i=1}^{n} 2\alpha_i = 2 + 2n + 2\sum_{i=1}^{n} i^2$$

$$= 2 + 2n + \frac{2n(n+1)(2n+1)}{6}$$

$$= 2 + 2n + \frac{n(n+1)(2n+1)}{3}$$

$$= \frac{(n+1)(2n^2 + n + 6)}{3}$$

So
$$sanh(n) = n + 1 + \sum_{i=1}^{n} \alpha_i + 1 = n + 1 + \sum_{i=1}^{n} (i^2 + 1)$$

$$= n + 1 + \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} 1$$

$$= n + 1 + \frac{n(n+1)(2n+1)}{6} + n$$

$$= \frac{(2n+1)(n^2 + n + 6)}{6}$$

Bài 3

Giải

Gọi α_i là số lần lặp của vòng lặp While P_i (xét độc lập với while ngoài) Vòng lặp P_i chỉ thực hiện khi $j \leq i^2 <=> n-i^2 \leq 2i^2 => i \geq \sqrt{\frac{n}{2}} (i \geq 1)$ Suy ra:

$$\alpha_i = \begin{cases} i^2 - (n - i^2) + 1, \end{cases}$$

Kết luận

$$\begin{split} &\mathrm{Gán}(\mathbf{n}) = 2 + 2n + \sum_{i=1}^{n} 2\alpha_{i} = 2 + 2n + 2\sum_{i=\rfloor\sqrt{\frac{n}{2}}}^{n} 2i^{2} - n + 1 \\ &= 2 + 2n + 2(n - \rfloor\sqrt{\frac{n}{2}} + 1)(1 - n) + 2\sum_{i=\rfloor\sqrt{\frac{n}{2}}}^{n} 2i^{2} \\ &= 2 + 2n + 2(n - \rfloor\sqrt{\frac{n}{2}} + 1)(1 - n) + 4(\sum_{i=1}^{n} i^{2} - \sum_{i=1}^{\rfloor\sqrt{\frac{n}{2}} - 1} i^{2}) \\ &= 2 + 2n + 2(n - \rfloor\sqrt{\frac{n}{2}} + 1)(1 - n) + 4(\frac{n(n+1)(2n+1)}{6} - \frac{\alpha(\alpha+1)(2\alpha+1)}{6})(\text{v\'oi} \ \alpha = \rfloor\sqrt{\frac{n}{2}} - 1) \end{split}$$

So
$$sanh(n) = n + 1 + \sum_{i=1}^{n} \alpha_i + 1 = n + 1 + n + \sum_{i=\rfloor\sqrt{\frac{n}{2}}}^{n} 2i^2 - n + 1$$

$$= 2n + 1 + (n - \rfloor \sqrt{\frac{n}{2}} + 1)(1 - n) + \sum_{i=\rfloor\sqrt{\frac{n}{2}}}^{n} 2i^2$$

$$= 2n + 1 + (n - \rfloor \sqrt{\frac{n}{2}} + 1)(1 - n) + 2(\sum_{i=1}^{n} i^2 - \sum_{i=1}^{\rfloor\sqrt{\frac{n}{2}} - 1} i^2)$$

$$= 2n + 1 + (n - \rfloor \sqrt{\frac{n}{2}} + 1)(1 - n) + \frac{n(n+1)(2n+1) - \alpha(\alpha+1)(2\alpha+1)}{3}(\text{v\'oi } \alpha = \rfloor \sqrt{\frac{n}{2}} - 1)$$

Bài 4

Giải

Quy ước: Không xét câu lệnh return

Số lần lặp của vòng lặp While P_i (xét độc lập với while ngoài):

- Vòng lặp while P_i chỉ thực hiện khi $j \leq i$,
số lần thực hiện bằng số con j với j
 chạy từ 1 đến i bước tăng 2j

Gọi α_i là số lần lặp của P_i tập

$$\begin{split} j &: \{1, 2, 4, 8, ..., <= i\} \\ j &: \{2^0, 2^1, 2^2, 2^3, ... 2^k, <= i\} \\ \alpha_i &= \text{s\^{o}} \text{ con } \text{k thu\^{o}c} \{k \in N | 2^k \le i\} \ 2^k \le i \\ \Leftrightarrow \log_2 i \le k \\ \text{m\`{a}} \ k \ge 0 \to 0 \le k \le \log_2 i \\ \alpha_i &= \text{s\^{o}} \text{ con } \text{k} = \log_2 i + 1 \end{split}$$

$$Gán(P_i) = 2\sum_{i=1}^{n} (\log_2 i + 1)$$
So sánh(P_i) = $\sum_{i=1}^{n} (\log_2 i + 1 + 1)$
= $\sum_{i=1}^{n} (\log_2 i + 2)$

$$Gán(n) = 2 + 2 + 4n + 2 \sum_{i=1}^{n} (\log_2 i + 1)$$

$$= 4 + 6n + 2 \sum_{i=1}^{n} (\log_2 i)$$
So sánh(n) = (n+1) + $\sum_{i=1}^{n} (\log_2 i + 2)$

$$= 3n + 1 + \sum_{i=1}^{n} (\log_2 i)$$

```
sum = 0; i = 1;
while (i \le n)
{
j = n - i;
while (j \le 2*i)
{
sum = sum + i*j;
j = j + 2;
}
k = i;
while (k > 0)
{
sum = sum + 1;
k = k / 2;
}
i = i + 1;
}
```

Giải

Số lần lặp while ($j \le 2*i$)= $\alpha_i =$ số con j: n-i $\rightarrow 2i$, bước tăng $2 = \frac{2i-(n-i)}{2} + 1 = \frac{3i-n+2}{2}$ While ($j \le 2*i$) chỉ thực hiện khi $n-i \le 2i \Rightarrow i \ge \frac{n}{3}$

Suy ra:
$$\alpha_i = \begin{cases} (3i - n + 2)/2 & \text{khi } i \ge n/3 \\ 0 & \text{khi } i < n/3 \end{cases}$$

Số lần lặp while $(k \ge 0) = \beta_i = \text{số con k: } i \to 1$, bước giảm i/2

Tập k:
$$\{\frac{i}{2^0}, \frac{i}{2^1}, \frac{i}{2^2}, .., \frac{n}{2^u} \ge 1\}$$

$$\Rightarrow \beta_i$$
 là số u với $\{ u \in N | \frac{i}{2^u} \ge 1 \}$

$$\Rightarrow i \ge 2^u \Leftrightarrow u \le \log_2 i \Leftrightarrow 0 \le u \le \log_2 i$$

$$\Leftrightarrow \beta_i = \hat{\text{so}} \text{ con } \mathbf{u} = \log_2 i + 1$$

$$Gán(n) = 2 + 3n + \sum_{i=1}^{n} 2\alpha_{i} + \sum_{i=1}^{n} 2\beta_{i} = 2 + 5n + \sum_{i=n/3}^{n} (3i - n + 2) + 2\sum_{i=1}^{n} \log_{2} i$$

$$= 2 + 5n + (2 - n)(n - \frac{n}{3} + 1) + \sum_{i=n/3}^{n} 3i + 2\sum_{i=1}^{n} \log_{2} i$$

$$= 2 + 5n + \frac{(2n + 3)(2 - n)}{3} + 3(\sum_{i=1}^{n} i - \sum_{i=1}^{\frac{n}{3} - 1} i) + 2\sum_{i=1}^{n} \log_{2} i$$

$$= 2 + 5n + \frac{(2n + 3)(2 - n)}{3} + 3\left(\frac{n(n + 1)}{2} - \frac{\frac{n}{3}(\frac{n}{3} - 1)}{2}\right) + 2\sum_{i=1}^{n} \log_{2} i$$

$$= 2 + 5n + \frac{(n - 1)(n - 6)}{3} + 2\sum_{i=1}^{n} \log_{2} i$$

$$\approx 2 + 5n + \frac{(n - 1)(n - 6)}{3} + 2n \log_{2} n$$

So
$$sanh(n) = n + 1 + \sum_{i=1}^{n} (\alpha_i + 1) + \sum_{i=1}^{n} (\beta_i + 1) = 4n + 1 + \sum_{i=n/3}^{n} \frac{3i - n + 2}{2} + \sum_{i=1}^{n} \log_2 i$$

$$= 4n + 1 + \frac{1}{2} \sum_{i=n/3}^{n} (3i - n + 2) + \sum_{i=1}^{n} \log_2 i$$

$$= 4n + 1 + \frac{(n-1)(n-6)}{6} + \sum_{i=1}^{n} \log_2 i$$

$$\approx 4n + 1 + \frac{(n-1)(n-6)}{6} + n \log_2 n$$

```
i = 1; count =0;
while ( i ≤ 4n)
{
    x=(n-i)(i-3n) ;
    y=i-2n;
    j=1;
    while (j ≤ x )
    {
        count = count - 2;
        j = j + 2;
    }
    if (x>0)
        if (y>0)
        count = count +1;
    i = i + 1;
}
```

Giải Xét bảng đổi dấu của x và y theo i

i	1		n		2n		3n		4n
x		_	0	+		+	0	_	
y		_		_	0	+		+	

```
Câu lệnh if(y > 0) chỉ thực hiện khi (x > 0)
=> Số lần thực hiện phép so sánh (y > 0) = Số con i thỏa điều kiện (x > 0) = (3n - 1) - (n - 1) + 1 = 2n - 1
Câu lệnh count = count + 1 thực hiện khi (x > 0) và (y > 0) => Số lần thực hiện phép gán (\text{count} = \text{count} + 1) = Số con i thỏa điều kiện (x > 0) và (y > 0)
```

$$= (3n - 1) - (2n + 1) + 1 = n - 1$$

Gọi α_i là số lần lặp của While trong P_i (xét độc lập với While ngoài) Số lần lặp của While trong P_i = số con j | j:1 -> x, bước tăng là 2 Vòng lặp While trong chỉ thực hiện khi x \geq 1, hay x > 0 => n < i < 3n

$$\alpha_i = \begin{cases} x/2, & \text{khi } x > 0 \\ 0, & \text{khi } x \le 0 \end{cases} = \begin{cases} x/2, & \text{khi } n < i < 3n \\ 0, & \text{khi } i \le n \text{ hoặc } i \ge 3n \end{cases}$$

$$\sum_{i=1}^{4n} Gán(P_i) = \sum_{i=1}^{2n} 2\alpha_i = \sum_{i=n+1}^{3n-1} (n-i)(i-3n)$$

$$\sum_{i=1}^{4n} \text{So sánh}(P_i) = \sum_{i=1}^{4n} (\alpha_i + 1) = \sum_{i=n+1}^{3n-1} \frac{(n-i)(i-3n)}{2}$$

$$\begin{aligned} &\mathrm{Gán}(\mathbf{n}) = 2 + 12n + n + (n - 1) + \sum_{i=n+1}^{3n-1} (n - i)(i - 3n) \\ &= 14n + 1 + \sum_{i=n+1}^{3n-1} (-i^2 + 4ni - 3n^2) \\ &= 14n + 1 - 3n^2[(3n - 1) - (n + 1) + 1] + \sum_{i=n+1}^{3n-1} (-i^2 + 4ni) \\ &= 14n + 1 - 3n^2(2n - 1) - (\sum_{i=1}^{3n-1} i^2 - \sum_{i=1}^{n} i^2) + 4n(\sum_{i=1}^{3n-1} i - \sum_{i=1}^{n} i) \\ &= 14n + 1 - 6n^3 + 3n^2 - \left[\frac{(3n - 1)3n(6n - 1) - n(n + 1)(2n + 1)}{6}\right] + 4n\left[\frac{(3n - 1)3n - n(n + 1)}{2}\right] \\ &\approx 14n + 1 - 6n^3 + 3n^2 - \left(\frac{(3n - 1)^3 - n^3}{2}\right) + 4n\left(\frac{(3n - 1)^2 - n^2}{2}\right) \end{aligned}$$

So
$$sanh(n) = 4n + 1 + 4n + 2n - 1 + \sum_{i=n+1}^{3n-1} \frac{(n-i)(i-3n)}{2} = 10n + \sum_{i=n+1}^{3n-1} \frac{(n-i)(i-3n)}{2}$$
$$\approx 10n + \frac{-6n^3 + 3n^2 - (\frac{(3n-1)^3 - n^3}{3}) + 4n(\frac{(3n-1)^2 - n^2}{2})}{2}$$

```
i=1;
count = 0;
while(i<=4n)
{
    x=(n-i)(i-3n)
    y=i-2n
    j=1
    while(j<=x)
    {
        if(i>=2y)
            count = count -2
        j=j+1
    }
    i=i+1
}
```

Giải Xét bảng đổi dấu của x theo i

i	1		n		3n		4n
x		_	0	+	0	-	
y							

Gọi α_i là số lần lặp của While trong P_i (xét độc lập với While ngoài) Số lần lặp của While trong $P_i =$ số con j | j:1 -> x, bước tăng là 1 Vòng lặp While trong chỉ thực hiện khi $x \ge 1$,hay x > 0 => n < i < 3n

$$\alpha_i = \begin{cases} x, & \text{khi } x > 0 \\ 0, & \text{khi } x \le 0 \end{cases} = \begin{cases} x, & \text{khi } n < i < 3n \\ 0, & \text{khi } i \le n \text{ hoặc } i \ge 3n \end{cases}$$

số lần thực hiện câu lệnh if($i \le 2y$) = α_i câu lệnh count = ... chỉ thực hiện khi:

$$i \ge 2y \Leftrightarrow i \ge 2i - 4n \Leftrightarrow i \le 4n$$

mà i ≤ 4 n luôn đúng khi vòng lặp P_i thực hiện \Rightarrow số lần phép count $= \dots$ thực hiện $= \alpha_i$

$$\sum_{i=1}^{4n} Gán(P_i) = \sum_{i=1}^{4n} \alpha_i + \sum_{i=1}^{4n} \alpha_i = 2 \sum_{i=n+1}^{3n-1} (n-i)(i-3n)$$

$$\sum_{i=1}^{4n} \text{So sánh}(P_i) = \sum_{i=1}^{4n} (\alpha_i + 1) + \sum_{i=1}^{4n} \alpha_i = 2 \sum_{i=n+1}^{3n-1} (n-i)(i-3n) + \sum_{i=1}^{4n} 1$$

Kết luận

$$\begin{split} & \operatorname{Gán}(\mathbf{n}) = 2 + 16n + 2\sum_{i=n+1}^{3n-1} (n-i)(i-3n) \\ & = 16n + 2 + 2\sum_{i=n+1}^{3n-1} (n-i)(i-3n) \\ & = 16n + 2 + 2\left[-3n^2[(3n-1) - (n+1) + 1] + \sum_{i=n+1}^{3n-1} (-i^2 + 4ni) \right] \\ & = 16n + 2 + 2\left[-3n^2(2n-1) - \left(\sum_{i=1}^{3n-1} i^2 - \sum_{i=1}^n i^2\right) + 4n\left(\sum_{i=1}^{3n-1} i - \sum_{i=1}^n i\right) \right] \\ & = 16n + 2 \\ & + 2\left[-6n^3 + 3n^2 - \left(\frac{(3n-1)3n(6n-1) - n(n+1)(2n+1)}{6}\right) + 4n\left(\frac{(3n-1)3n - n(n+1)}{2}\right) \right] \\ & \approx 16n + 2 - 12n^3 + 6n^2 - 2\left[\frac{(3n-1)^3 - n^3}{3}\right] + 8n\left[\frac{(3n-1)^2 - n^2}{2}\right] \end{split}$$

$$\operatorname{SS}(\mathbf{n}) = 4n + 1 + 2\sum_{i=n+1}^{3n-1} (n-i)(i-3n) + \sum_{i=1}^{4n} 1 \\ & = 8n + 1 + 2\left[-3n^2[(3n-1) - (n+1) + 1] + \sum_{i=n+1}^{3n-1} (-i^2 + 4ni) \right] \\ & = 8n + 1 + 2\left[-3n^2(2n-1) - \left(\sum_{i=n+1}^{3n-1} i^2 - \sum_{i=n+1}^n i^2 + 4ni\right) \right] \\ & = 8n + 1 + 2\left[-3n^2(2n-1) - \left(\sum_{i=n+1}^{3n-1} i^2 - \sum_{i=n+1}^n i^2 + 4ni\right) \right] \end{split}$$

 $+2\left[-6n^3+3n^2-\left(\frac{(3n-1)3n(6n-1)-n(n+1)(2n+1)}{6}\right)+4n\left(\frac{(3n-1)3n-n(n+1)}{2}\right)\right]$

 $\approx 8n + 1 - 12n^3 + 6n^2 - 2\left[\frac{(3n-1)^3 - n^3}{3}\right] + 8n\left[\frac{(3n-1)^2 - n^2}{2}\right]$

```
i= 1;count = 0;
while (i \leq 3*n)
{
    x = 2*n - i;
    y = i - n;
    j = 1;
    while (j \leq x)
    {
        if(j \geq n)
            count = count - 1;
        j = j+1;
    }
    if (y > 0)
        if (x > 0)
        count = count + 1;
    i = i+1;
}
```

Giải Xét bảng đổi dấu của x và y theo i

i	1		n		2n		3n
x		+		+	0	_	
y		_	0	+		+	

```
Câu lệnh if(x > 0) chỉ thực hiện khi (y > 0) => Số lần thực hiện phép so sánh (x > 0) = Số con i thỏa điều kiện (y > 0) = 3n - (n+1) + 1 = 2n
```

Câu lệnh count = count + 1 thực hiện khi
$$(y > 0)$$
 và $(x > 0)$ => Số lần thực hiện phép gán $(count = count + 1)$ = Số con i thỏa điều kiện $(x > 0)$ và $(y > 0)$ = $(2n - 1) - (n + 1) + 1 = n - 1$

Gọi α_i là số lần lặp của While trong P_i (xét độc lập với While ngoài) Số lần lặp của While trong P_i = số con j | j:1 -> x, bước tăng là 1 Vòng lặp While trong chỉ thực hiện khi x \geq 1, hay x > 0 =>i<2n

$$\alpha_i = \begin{cases} 0, & \text{khi } i \ge 2n \\ x, & \text{khi } i \le 2n - 1 \end{cases} = \begin{cases} 0, & \text{khi } i \ge 2n \\ 2\text{n-i}, & \text{khi } i \le 2n - 1 \end{cases}$$

Gọi l_1 là số lần lặp của câu lệnh gán count = count - 1Ta thấy câu lệnh gán count = count - 1 thực hiện khi $n \le j \le x$

$$\operatorname{Hay}, \begin{cases} i \leq 2n - 1 \\ n \leq x \\ n \leq j \end{cases} <=> \begin{cases} i \leq 2n - 1 \\ n \leq 2n - i \\ n \leq j \end{cases} <=> \begin{cases} i \leq 2n - 1 \\ n \leq j \end{cases}, \quad \operatorname{khi} n < 1 \\ i \leq n \\ n \leq j \end{cases}, \quad \operatorname{khi} n \geq 1$$

Kết luận

Trường hợp: $n \ge 1$

$$Gán(n) = 2 + 9n + (n - 1) + 3n + \sum_{i=1}^{3n} [\alpha_i + (x - n + 1)]$$

$$= 13n + 1 + \sum_{i=1}^{2n-1} (2n - i) + \sum_{i=1}^{n} (n - i + 1)$$

$$= 13n + 1 + 2n(2n - 1) - \sum_{i=1}^{2n-1} i + n(n + 1) - \sum_{i=1}^{n} i$$

$$= 13n + 1 + 4n^2 - 2n - \frac{(2n - 1 + 1)(2n - 1)}{2} + n^2 + n - \frac{n(n + 1)}{2}$$

$$= 5n^2 + 12n + 1 - \frac{2n(2n - 1) + n(n + 1)}{2} = 5n^2 + 12n + 1 - \frac{5n^2 - n}{2}$$

So
$$sanh(n) = (3n+1) + \sum_{i=1}^{3n} (\alpha_i + 1) + \sum_{i=1}^{i=3n} \alpha_i + (3n) + [3n - (n+1) + 1]$$

$$= 11n + 1 + 2\sum_{i=1}^{2n-1} 2n - i = 11n + 1 + 4n(2n-1) - 2\sum_{i=1}^{2n-1} i$$

$$= 8n^2 + 1 + 7n - 2\frac{(2n-1+1)(2n-1)}{2} = 8n^2 + 1 + 7n - 4n^2 + 2n = 4n^2 + 9n + 1$$

Trường hợp: n < 1

$$Gán(n) = 2$$

So
$$sánh(n) = 1$$

Giải

Gọi α_i là số lần lặp của while trong

Tại j = j+k, ta thấy j luôn là tổng của các số 1,3,5,7,... => j thuộc tập hợp các số chính phương.

Chứng minh j luôn là số chính phương: j=1+3+5+...+xĐặt x=2y-1 $(y \in N, y>1)$

$$j = 1 + 3 + 5 + \dots + 2y - 1 = \frac{(2y - 1) + 1}{2} \left(\frac{(2y - 1) - 1}{2} + 1\right) = y^2$$

=> điều cần chứng minh

$$\alpha_i$$
 là số con t
 với $\{t \in N \mid t \ge 1, t^2 \le i\} => \begin{cases} t \ge 1 \\ -\sqrt{i} \le t \le \sqrt{i} \end{cases} => 1 \le t \le \sqrt{i}$
 $=> \alpha_i = \sqrt{i}$

Gán(n) = 2 + 3n +
$$\sum_{i=1}^{n} 3\alpha_i = 2 + 3n + 3\sum_{i=1}^{n} i^{1/2}$$

 $\approx 2 + 3n + \frac{3n^{\frac{1}{2}+1}}{\frac{1}{2}+1} = 2 + 3n + 2n^{3/2}$

So sánh(n) =
$$n + 1 + \sum_{i=1}^{n} \alpha_i + 1 = 2n + 1 + \sum_{i=1}^{n} i^{1/2}$$

$$\approx 2n + 1 + \frac{n^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} = 2n + 1 + \frac{2}{3}n^{3/2}$$

Giải

Xét TH: n là số chẵn

Xét vòng lặp While trong, ta thấy:

- Câu lệnh if((i==j)&&(i+j==n+1)) đúng $<=>2i=n+1|i\in N$ Mà n chẵn => không có i thỏa mãn => Câu lệnh gán (idx=i) thực hiện 0 lần
- Số lần thực hiện lệnh so sánh (i+j==n+1)= Số lần câu lệnh so sánh (i==j) đúng = 1 lần

$$\sum_{i=1}^{n} Gán(P_i) = \sum_{i=1}^{n} 2 = 2n$$

$$\sum_{i=1}^{n} \text{So sánh}(P_i) = \sum_{i=1}^{n} n + 1 + n + 1 = \sum_{i=1}^{n} 2n + 2 = 2n^2 + 2n$$

Vậy

$$Gán(n|n chãn) = 3 + 2n + 2n = 4n + 3$$

So sánh(n|n chẵn) =
$$n+1+2n^2+2n+1=2n^2+3n+2$$

Xét TH: n là số lẻ

Xét vòng lặp While trong, ta thấy:

- Câu lệnh if((i==j)&&(i+j==n+1)) đúng $<=>2i=n+1|i\in N$ Mà n lẻ => có 1 giá trị i = (n+1)/2 thỏa mãn => Câu lệnh gán (idx=i) thực hiện 1 lần khi i = (n+1)/2
- Số lần thực hiện lệnh so sánh (i+j==n+1)= Số lần câu lệnh so sánh (i==j) đúng = 1 lần

$$\sum_{i=1}^{n} \text{Gán}(P_i) = 1 + \sum_{i=1}^{n} 2 = 2n + 1$$

$$\sum_{i=1}^{n} \text{So sánh}(P_i) = \sum_{i=1}^{n} n + 1 + n + 1 = \sum_{i=1}^{n} 2n + 2 = 2n^2 + 2n$$

Vây

$$Gán(n|n \text{ lé}) = 3 + 2n + 2n + 1 + 1 = 4n + 5$$

So sánh(n|n lė) =
$$n + 1 + 2n^2 + 2n + 1 = 2n^2 + 3n + 2$$

3 [BONUS]Tính số phép gán và so sánh & kiểm tra kết quả đếm bằng máy tính

Bài 11

```
 i = 1; ret = 0; s = 0; \\ while ( i \le n) \\  \{ j = 1; \\  s = s+1/i; // \{s\~o thực\} \\  while ( j \le s ) \\  \{ ret = ret + i*j; \\  j = j + 1; \\  \} \\  i = i + 1; \\  \}
```

Giải

Gọi α_i là số lần lặp của While trong P_i (xét độc lập với While ngoài) Số lần lặp của While trong P_i = số con j | j:1 -> s, bước tăng là 1

$$s = \sum_{j=0}^{i} \frac{1}{j}$$

vì s là số thực, suy ra: với mỗi con i, số con j thoã mãn điều kiện j≤s là phần nguyên của s:

$$\Leftrightarrow \alpha_i = \Big[\sum_{j=0}^i \frac{1}{j}\Big]$$

$$Gán(P_i) = 2\sum_{i=1}^{n} [\alpha_i]$$

So sánh(P_i) =
$$\sum_{i=1}^{n} [\alpha_i + 1]$$

Kết luận

Gán(n) =
$$3 + 3n + 2\sum_{i=1}^{n} \left[\alpha_{i}\right]$$

= $3 + 3n + 2\sum_{i=1}^{n} \left[\sum_{j=0}^{i} \frac{1}{j}\right]$
 $\approx 3 + 3n + 2\sum_{i=1}^{n} \left[\ln i + \gamma\right] (với\gamma \approx 0.5772)$

So
$$sanh(n) = (n+1) + \sum_{i=1}^{n} [\alpha_i + 1]$$

$$= (n+1) + \sum_{i=1}^{n} ([\alpha_i] + 1)$$

$$= (n+1) + \sum_{i=1}^{n} [\sum_{j=0}^{i} \frac{1}{j}] + \sum_{i=1}^{n} 1$$

$$\approx 2n + 1 + \sum_{i=1}^{n} [\ln i + \gamma] (v \acute{o} i \gamma \approx 0.5772)$$

Bảng so sánh kết quả giữa công thức thủ công và chạy chương trình:

n	1	2	3	4	5	6	7	8	9	10
$G(n) = 3 + 3n + 2\sum_{i=1}^{n} \left[\ln i + \gamma \right]$	6	11	16	21	28	35	42	48	56	63
G(n) khi chạy chương trình =	8	13	18	25	32	39	46	53	60	67
$SS(n) = 2n + 1 + \sum_{i=1}^{n} \left[\ln i + \gamma \right]$	3	6	9	12	16	20	24	28	32	36
SS(n) khi chạy chương trình =	4	7	10	14	18	22	26	30	34	38

n	11	12	13	14	15	16	17	18	19	20
$G(n) = 3 + 3n + 2\sum_{i=1}^{n} [\ln i + \gamma]$	70	76	85	97	106	115	124	135	142	151
G(n) khi chạy chương trình =	76	85	94	103	112	121	130	139	148	157
$SS(n) = 2n + 1 + \sum_{i=1}^{n} \left[\ln i + \gamma \right]$	40	45	50	55	60	65	70	75	80	85
SS(n) khi chạy chương trình =	43	48	53	58	63	68	73	78	83	88

$$i=1$$
; res = 0;
while $(i \le n)$ do
 $j=1$;
while $(j \le i)$ do
res = res + i*j;
 $j=j+1$;
end do;
 $i=i+s\acute{o}$ thứ tự của nhóm;
end do;

Giải

Số lần lặp while ngoài = số con i chạy từ 1 -> n, bước tăng 7 = $\left[\frac{n-1}{7}+1\right]=\left[\frac{n+6}{7}\right]$ (lần) Số lần lặp while trong = x = số con j chạy từ: 1 -> i, bước tăng 1. Vì bước tăng của i là 7 \Rightarrow i có dạng: $7k+1, k \in N$ Có: $i \le n \Rightarrow 7k+1 \le n \Rightarrow k \le \left[\frac{n-1}{7}\right]$ $\Rightarrow x = 7k+1$ với k $\in N, 0 \le k \le \left[\frac{n-1}{7}\right]$

$$\begin{split} \mathrm{Gán}(\mathbf{n}) &= 2 + 2 \left[\frac{n+6}{7} \right] + \sum_{k=0}^{\left[\frac{n-1}{7} \right]} 2x \\ &= 2 + 2 \left[\frac{n+6}{7} \right] + 2 \sum_{k=0}^{\left[\frac{n-1}{7} \right]} (7k+1) \\ &= 2 + 2(y+1) + 14 \sum_{k=0}^{y} k + \sum_{k=0}^{y} 2 \text{ (v\'oi } \mathbf{y} = \left[\frac{n-1}{7} \right] \text{)} \\ &= 4 + 2y + 7y(y+1) + 2(y+1) \\ &= 7y^2 + 11y + 6 = 7 \left[\frac{n-1}{7} \right]^2 + 11 \left[\frac{n-1}{7} \right] + 6 \end{split}$$

So sánh(n) =
$$\left[\frac{n+6}{7}\right] + 1 + \sum_{k=0}^{\left[\frac{n-1}{7}\right]} (x+1)$$

= $\left[\frac{n+6}{7}\right] + 1 + \sum_{k=0}^{\left[\frac{n-1}{7}\right]} (7k+2)$
= $y + 2 + 7\sum_{k=0}^{y} k + \sum_{k=0}^{y} 2 \text{ (v\'oi y = } \left[\frac{n-1}{7}\right]\text{)}$
= $y + 2 + \frac{7y(y+1)}{2} + 2(y+1)$
= $\frac{7y^2 + 13y + 8}{2} = \frac{7\left[\frac{n-1}{7}\right]^2 + 13\left[\frac{n-1}{7}\right] + 8}{2}$

Bảng so sánh kết quả giữa công thức thủ công và chạy chương trình:

n	1	2	3	4	5	6	7	8	9	10
$G(n) = 7\left[\frac{n-1}{7}\right]^2 + 11\left[\frac{n-1}{7}\right] + 6$	6	6	6	6	6	6	6	24	24	24
G(n) khi chạy chương trình =	6	6	6	6	6	6	6	24	24	24
$SS(n) = \frac{7\left[\frac{n-1}{7}\right]^2 + 13\left[\frac{n-1}{7}\right] + 8}{2}$	4	4	4	4	4	4	4	14	14	14
SS(n) khi chạy chương trình =	4	4	4	4	4	4	4	14	14	14

n	11	12	13	14	15	16	17	18	19	20
$G(n) = 7\left[\frac{n-1}{7}\right]^2 + 11\left[\frac{n-1}{7}\right] + 6$	24	24	24	24	56	56	56	56	56	56
G(n) khi chạy chương trình =	24	24	24	24	56	56	56	56	56	56
$SS(n) = \frac{7\left[\frac{n-1}{7}\right]^2 + 13\left[\frac{n-1}{7}\right] + 8}{2}$	14	14	14	14	31	31	31	31	31	31
SS(n) khi chạy chương trình =	14	14	14	14	31	31	31	31	31	31

Giải

Số lần lặp của While ngoài = Số con i chạy từ i:n->1,
bước giảm i/2 Ta thấy: i = { $\frac{n}{2^0}$,
 $\frac{n}{2^1}$,
 $\frac{n}{2^2}$,...,
 $\frac{n}{2^k}$ } $i>0<=>\frac{n}{2^k}\geq 1<=>n\geq 2^k<=>k\leq \log_2 n$
 α_i = số con k,0 $\leq k\leq \log_2 n$ => $\alpha_i=\log_2 n$ +1

Kết luân

$$\begin{aligned} \operatorname{Gán}(\mathbf{n}) &= \sum_{k=0}^{\lfloor \log_2 n} (2 + \sum_{j=1}^{\frac{n}{2^k}} 2) + 2 = \sum_{k=0}^{\lfloor \log_2 n} 2 + \sum_{k=0}^{\lfloor \log_2 n} (\sum_{j=1}^{\frac{n}{2^k}} 2) + 2 \approx 2(\lfloor \log_2 n + 1) + 2n \sum_{k=0}^{\lfloor \log_2 n} \frac{1}{2^k} + 2 \\ &\approx 2(\lfloor \log_2 n) + 4 + 2n(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2(\lfloor \log_2 n)}) \end{aligned}$$

$$\begin{aligned} &\text{So sánh(n)} = \alpha_i + 1 + \sum_{k=0}^{\log_2 n} (\sum_{j=1}^{\frac{n}{2k}} 1 + 1) = \log_2 n + 2 + \sum_{k=0}^{\log_2 n} (\sum_{j=1}^{\frac{n}{2k}} 1 + 1) \\ &\approx \rfloor \log_2 n + 2 + \sum_{k=0}^{\log_2 n} (\sum_{j=1}^{\frac{n}{2k}} 1) + \rfloor \log_2 n + 1 \approx \rfloor \log_2 n + 2 + \sum_{k=0}^{\log_2 n} \rfloor \frac{n}{2^k} + \rfloor \log_2 n + 1 \\ &\approx 2 \rfloor \log_2 n + 3 + \sum_{k=0}^{\log_2 n} \rfloor \frac{n}{2^k} \end{aligned}$$

Bảng so sánh kết quả giữa công thức thủ công và chạy chương trình:

n	1	2	3	4	5	6	7	8	9	10
G(n)-(a)	6	10	12	16	18	20	22	26	28	30
G(n)-ChayCT	6	12	14	22	24	28	30	40	42	46
SS(n)-(a)	4	7	8	11	12	13	14	17	18	19
SS(n)-ChayCT	4	8	9	14	15	17	18	24	25	27

Bảng 1: Kiểm tra kết quả đếm n:1->10

n	11	12	13	14	15	16	17	18	19	20
G(n)-(a)	32	34	36	38	40	44	46	48	50	52
G(n)-ChayCT	48	54	56	60	62	74	76	80	82	88
SS(n)-(a)	20	21	22	23	24	27	28	29	30	31
SS(n)-ChayCT	28	31	32	34	35	42	43	45	46	49

Bảng 2: Kiểm tra kết quả đếm n:11->20