

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Sommersemester 2021

Lineare Algebra II

Übungsblatt 2 26.03.21

Aufgabe 1 (Ein Skalarprodukt auf dem Polynomraum)

(10 Punkte)

Wir betrachten das reelle Skalarprodukt

$$\langle \cdot, \cdot \rangle \colon \mathbb{R}[X] \times \mathbb{R}[X] \to \mathbb{R}$$

$$(f, g) \mapsto \langle f, g \rangle \coloneqq \int_{-1}^{1} f(t)g(t) \, \mathrm{d}t$$

auf dem Polynomraum $\mathbb{R}[X]$.

Wir nennen ein Polynom $f \in \mathbb{R}[X]$ ein gerades Polynom, wenn f(-t) = f(t) für alle $t \in \mathbb{R}$ gilt, und ungerades Polynom, wenn f(-t) = -f(t) für alle $t \in \mathbb{R}$ gilt.

- a) Es sei $f \in \mathbb{R}[X]$ ein gerades und $g \in \mathbb{R}[X]$ ein ungerades Polynom. Beweisen Sie, dass f und g dann orthogonal zueinander sind.
- b) Bestimmen Sie $\langle X^p, X^q \rangle$ für alle $p, q \in \mathbb{N}_0$.
- c) Bestimmen Sie alle Polynome von Grad ≤ 2 in $\mathbb{R}[X]$, die gleichzeitig orthogonal zu den Polynomen 1 und X sind.
- d) Bestimmen Sie zwei Polynome von Grad 1 in $\mathbb{R}[X]$, die orthogonal zueinander sind.

Aufgabe 2 (Reelle und komplexe Skalarprodukte)

(10 Punkte)

Es sei V ein unitärer \mathbb{C} -Vektorraum mit einem komplexen Skalarprodukt $\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{C}$. Mit entsprechend eingeschränkter skalarer Multiplikation ist V auch ein \mathbb{R} -Vektorraum (siehe LA I, Übungsblatt 7, Aufgabe 4).

a) Beweisen Sie: Die Abbildungen

$$\operatorname{Re}\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R} \qquad \operatorname{Im}\langle \cdot, \cdot \rangle \colon V \times V \to \mathbb{R}$$
$$(v, w) \mapsto \operatorname{Re}(\langle v, w \rangle) \qquad (v, w) \mapsto \operatorname{Im}(\langle v, w \rangle)$$

sind reell bilinear, $\text{Re}\langle\cdot,\cdot\rangle$ ist ein reelles Skalarprodukt und $\text{Im}\langle\cdot,\cdot\rangle$ ist eine alternierende Abbildung.

- b) Nun sei $V = \mathbb{C} \cong \mathbb{R}^2$, wobei wir $(a, b) \in \mathbb{R}^2$ mit $a + bi \in \mathbb{C}$ identifizieren. Außerdem sei $\langle \cdot, \cdot \rangle$ das komplexe Standardskalarprodukt auf \mathbb{C} . Zeigen Sie, dass $\sqrt{\operatorname{Re}\langle v, v \rangle} = |v|$ für alle $v \in V$ gilt, wobei $|\cdot|$ den komplexen Betrag bezeichnet.
- c) Es sei weiterhin $V = \mathbb{C} \cong \mathbb{R}^2$, und $\alpha, \beta \in \mathbb{R}$ mit $|\alpha \beta| \leq \pi$. Beweisen Sie: Bezüglich des reellen Skalarproduktes $\text{Re}\langle \cdot, \cdot \rangle$ ist der Winkel zwischen $e^{i\alpha}$ und $e^{i\beta}$ durch $|\alpha \beta|$ gegeben.

d) Nun sei $V = \mathbb{C}^n \cong \mathbb{R}^{2n}$, wobei wir

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{2n-1} \\ x_{2n} \end{pmatrix} \in \mathbb{R}^{2n} \quad \text{mit} \quad \begin{pmatrix} x_1 + i x_2 \\ x_3 + i x_4 \\ \vdots \\ x_{2n-1} + i x_{2n} \end{pmatrix} \in \mathbb{C}^n$$

identifizieren. Beweisen Sie: Wenn $\langle \cdot, \cdot \rangle$ das komplexe Standardskalarprodukt auf \mathbb{C}^n ist, dann ist $\text{Re}\langle \cdot, \cdot \rangle$ das reelle Standardskalarprodukt auf \mathbb{R}^{2n} .

Abgabe bis Montag, den 03.05.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.