В решении рассмотрены два алгоритма управления движением концевого эффектора манипулятора по заданной траектории на основе дифференциальной обратной кинематики: метод демпфирующих наименьших квадратов и метод, основанный на транспонировании матрицы Якоби (DLS и Transpose). Для оценки качества работы алгоритмов были проведены несколько экспериментов с различными скоростями движения концевого эффектора и различными параметрами опорной траектории. В качестве оценки используется метрика root mean square error (rmse).

Параметры окружности:

$$x = 0.3 \text{ m}, y = 0.3 \text{ m}, z = 0.25 \text{ m}$$

 $r = 0.08 \text{ m}$

velocity = 0.1 m/c

versely our man		
Алгоритм	RMSE position(M)	RMSE velocity(M/c)
DLS	0.00044	0.018
Transpose	0.0108	0.038

velocity = 0.5 m/c

Алгоритм	RMSE position(M)	RMSE velocity(M/c)
DLS	0.0014	0.02
Transpose	0.071	0.2

velocity = 0.7 m/c

Алгоритм	RMSE position(M)	RMSE velocity(M/c)
DLS	0.002	0.018
Transpose	0.076	0.23

velocity = 1 m/c

Алгоритм	RMSE position(M)	RMSE velocity(M/c)
DLS	0.0027	0.020
Transpose	0.1	0.35

$$x = 0.2 \text{ m}, y = 0.4 \text{ m}, z = 0.25 \text{ m}$$

 $r = 0.15 \text{ m}$

velocity = 0.1 m/c

Алгоритм	RMSE position(M)	RMSE velocity(M/c)
DLS	0.00058	0.044
Transpose	0.07	0.036

velocity = 0.5 m/c

Алгоритм	RMSE position(M)	RMSE velocity(m/c)
DLS	0.00249	0.0783
Transpose	0.09	0.29

velocity = 0.7 m/c

Алгоритм	RMSE position(M)	RMSE velocity(M/c)
DLS	0.0029	0.0741
Transpose	0.11	0.33

velocity = 1 m/c

Алгоритм	RMSE position(M)	RMSE velocity(m/c)
DLS	0.0034	0.059
Transpose	0.12	0.4

По результатам моделирования можно сделать следующие выводы:

- 1) Метод Damped Least Squares стабильно показывает хорошие результаты отслеживания опорной траектории в широком диапазоне скоростей. Метод, основанный на транспонировании Якобиана, показывает значительно более низкое качество отслеживания положения и скорости концевого эффектора. Кроме того, метод испытывает проблемы со сходимостью при увеличении скорости (требуется увеличение времени интегрирования).
- 2) С увеличением скорости движения концевого эффектора по траектории, возрастают траекторная и скоростная ошибки. Предполагается, что это связано с тем, что Якобиан представляет собой линейную аппроксимацию прямой кинематики. Для каждого из методов считается, что на каждой итерации находятся приращения углов сочленений, такие, что $J\Delta\theta$ = s . Поскольку это предположение основано на линейном приближении, ошибка будет возрастать с ростом величин twist матрицы s (которые будут возрастать с ростом требуемой линейной скорости перемещения концевого эффектора).
- 3) Многие траектории нельзя реализовать или из-за ограничений максимальных углов вращения сочленений манипулятора, или из-за ограничений угловых скоростей их вращения. Для учета этих физических ограничений в алгоритме учтены пределы угловых скоростей вращения и самих углов сочленений.