Financial Econometrics 1 - M2 FTD

EMPIRICAL APPLICATIONS

Luis Miguel Fonseca Stéphane Eloundou Mvondo Natalia Cárdenas Frías

December 5, 2023

Contents

	Introduction	2
1	Series Dynamics	2
	1.1 Unit root and trends	2
	1.2 Seasoanlity	3
	1.3 Cyclical component	3
2	Canonical VAR model application	3
3	Cointegration theory	3
4	Impulse Response Analysis	3
	4.1 Canonical IRF	3
	4.2 Structural IRF	3
5	Introduce non-linearities	3
	5.1 Markov-switching model	3
	5.2 STR model	3
6	Difference-in-Difference	3

Introduction

something, probably describe how all applications make sense one after the other and what is the research question we could have made ourselves when doing the applications, try to give a coherent look to the whole thing.

This document compiles all our applications of the Financial Econometrics course. Each section represents a specific application, but we tried to make them coherent across them around a broad question:

1 Series Dynamics

Note: Depending on each exercise along these applications we might use different series. In this first section, we performed the stationarity and component analysis of all of them to be able to use them rapidly without having to worry about seasonality or the presence of UR. Therefore, this section encompasses more than the 3 series that were asked in the exercise.

1.1 Unit root and trends

ADF - Test jointly for deterministic and stochastic trend (with drift) 1st regression

- Inflation expectation, $t_{\gamma}=-4.650<-3.420$ we can reject HO ie we can't say that the series has an UR need to test β_0 and β_1 with standard models
- Fed fund rate, $t_{\gamma} = -1.709$

Table 1: ADF test - 1st regression with drift, deterministic trend and stochastic trend

	infl_e	rate	corp_debt	deflator	unempl	splong	CV 1pct	CV 5pct	CV 10pct
tau3	-4.650	-1.709	-1.975	-1.867	-5.197	-3.763	-3.980	-3.420	- 3.130
phi2	7.375	2.015	3.875	10.326	9.097	4.769	6.150	4.710	4.050
phi3	11.061	2.917	1.997	4.247	13.644	7.134	8.340	6.300	5.360

Table 2: ADF test - 2nd regression with drift and stochastic trend

	infl_e	rate	corp_debt	deflator	unempl	splong	CV 1pct	CV 5pct	CV 10pct
tau2	-4.527	-2.412	-1.005	-2.480	-5.090	-3.752	-3.440	-2.870	-2.570
phi1	10.246	3.014	4.300	14.279	12.953	7.057	6.470	4.610	3.790

ADF - Test jointly for stochastic trend and drift

ADF - Test for stochastic trend only DECOMPOSITION SERIES IN DELTAS

Figure 1: Time series decomposition

- 1.2 Seasoanlity
- 1.3 Cyclical component
- 2 Canonical VAR model application
- 3 Cointegration theory

Table 3: ADF test - 3rd regression regression with only stochastic trend

	infl_e	rate	corp_debt	deflator	unempl	splong	CV 1pct	CV 5pct	CV 10pct
tau1	-0.884	-1.935	2.647	4.471	-2.658	-1.235	-2.580	-1.950	-1.620

Figure 2: Decomposition of the series in deltas

Table 4: Estimation of the seasonality of each series

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
infl_e	-0.104	-0.108	0.031	0.078	0.149	0.1	0.017	0.088	0.031	0.006	-0.116	-0.17
deflator	0.018	0.035	0.053	0.072	0.06	0.045	0.03	-0.024	-0.078	-0.128	-0.072	-0.01
unempl	0.464	0.327	0.132	-0.045	-0.074	0.296	0.284	0.007	-0.257	-0.406	-0.379	-0.34
rate	-0.042	-0.05	-0.046	-0.059	-0.03	0.025	0.048	0.067	0.074	0.025	0.008	-0.02
splong	0.003	0.002	-0.005	0.003	0.007	0.006	0.007	0.002	-0.007	-0.017	-0.003	0.003
corp_debt	0.003	0.001	-0.006	-0.007	-0.007	-0.004	0.001	0.006	0.006	0.002	0.001	0.003

Table 5: Canonical VAR in levels - Identify order

	1	2	3	4	5	6	7	8	9	10
AIC(n)	-10.01	-10.56	-10.59	-10.73	-10.88	-10.87	-10.93	-11.01	-11.00	-10.98
HQ(n)	-9.96	-10.48	-10.47	-10.57	-10.68	-10.64	-10.66	-10.71	-10.66	-10.60
SC(n)	-9.89	-10.35	-10.29	-10.33	-10.38	-10.29	-10.25	-10.25	-10.14	-10.03
FPE(n)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00