

Recommender Systems

Evaluation Metrics

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Why evaluate?

Gazillions of algorithms

- Collaborative, content-based, hybrid...
- Which one to choose?

Evaluation enables an informed choice

- Rigor of science
- Efficiency of practice

Recommender evaluation

Lessons from academia

- Evaluation methodologies
- User behavioral models
- Evaluation metrics

Lessons from industry

What works in practice?

Evaluation metrics

Prediction accuracy

How well does it estimate absolute preferences?

Decision support

• How well does it return "good" things?

Ranking accuracy

How well does it estimate relative preferences?

Moving forward

Metrics tuned for specific purposes

- Sophisticated rank-based metrics
- Diversity, novelty, serendipity

Holistic evaluations

- Beyond just the recommendations
- Whole-page relevance

Evaluation metrics

General form: $\Delta(R_u, G_u)$

 $\circ R_{u}$: items recommended to user u

 $\circ G_u$: items relevant to user u

Metrics should be chosen according to the task

Rating prediction, decision support, ranking

Accuracy metrics

Accuracy of a prediction

Closeness to the actual preference

Actual preference unknown from system

- Hidden in an offline evaluation
- Truly unknown in an online evaluation

Typically measured by error metrics

	i_1	i_2	i_3	i_4
u_1	5	3	3	?
u_2	5			3
u_3		1	2	1

$$\hat{r}_{u_1 i_4} = 2.99$$
 vs. $r_{u_1 i_4} = 2$

how accurate is this prediction?

	i_1	i_2	i_3	i ₄
u_1	5	3	3	(C:-)
u_2	5			3
u_3		1	2	1

$$\hat{r}_{u_1 i_4} = 2.99$$
 vs. $r_{u_1 i_4} = 2$

raw error

$$e_{u_1 i_4} = r_{u_1 i_4} - \hat{r}_{u_1 i_4}$$
$$= 2 - 2.99$$
$$= -0.99$$

	i_1	i ₂	i_3	i ₄
u_1	5	3	3	(C:-)
u_2	5			3
u_3		1	2	1

$$\hat{r}_{u_1 i_4} = 2.99$$
 vs. $r_{u_1 i_4} = 2$

absolute error

$$e_{u_1 i_4} = |r_{u_1 i_4} - \hat{r}_{u_1 i_4}|$$

$$= |2 - 2.99|$$

$$= 0.99$$

	i_1	i ₂	i_3	i ₄
u_1	5	3	3	(C:-)
u_2	5			3
u_3		1	2	1

$$\hat{r}_{u_1 i_4} = 2.99$$
 vs. $r_{u_1 i_4} = 2$

squared error

$$e_{u_1 i_4} = (r_{u_1 i_4} - \hat{r}_{u_1 i_4})^2$$
$$= (2 - 2.99)^2$$
$$= 0.98$$

Two wrongs don't make a right!

Absolute error removes direction

Large errors should be penalized more

Squared error emphasizes discrepancies

Can't assess effectiveness based on one prediction

Average over multiple predictions

	i_1	i ₂	i_3	i ₄
u_1	5	3	·.	?
u_2	?-			3
u_3		?	2	1

mean absolute error

MAE(G) =
$$\frac{1}{|G|} \sum_{(u,i) \in G} |r_{ui} - \hat{r}_{ui}|$$

	i_1	i ₂	i_3	i ₄
u_1	5	3	·.	?
u_2	?-			3
u_3		?	2	1

mean squared error

$$MSE(G) = \frac{1}{|G|} \sum_{(u,i) \in G} (r_{ui} - \hat{r}_{ui})^2$$

	i_1	i ₂	i_3	i ₄
u_1	5	3	(C)	?:
				3
u_3		?	2	1

root mean squared error

$$RMSE(G) = \sqrt{\frac{1}{|G|}} \sum_{(u,i) \in G} (r_{ui} - \hat{r}_{ui})^2$$

Averaging errors

What could go wrong with average errors?

We averaged over all ratings

What if a user has 10k ratings and another 10?

The evaluation will be biased!

Alternative?

Average over user averages

Averaging errors

Averaging over user averages

$$\circ \mathsf{MAE}(G) = \frac{1}{|U|} \sum_{u \in U} \mathsf{MAE}(G_u)$$

$$\circ \mathsf{MSE}(G) = \frac{1}{|U|} \sum_{u \in U} \mathsf{MSE}(G_u)$$

$$\circ RMSE(G) = \frac{1}{|U|} \sum_{u \in U} RMSE(G_u)$$

Accuracy metrics

Error metrics generally correlated

- MAE more interpretable, MSE more discriminative
- RMSE gives the best of both worlds

A few caveats

- Different rating scales are not comparable
- Errors can be dominated by popular users or items

Beyond accuracy

In industry, we care about keeping our users and making them happy, not improving accuracy of recommendations by 1%

 Tao Ye, Senior Scientist at Amazon RecSys 2015, Industry Panel

Home

Rules

Leaderboard

Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grai	nd Prize - RMSE = 0.8567 - Winning Te	am: BellKor's Pragı	matic Chaos	
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries!	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09

Beyond accuracy

Decision support is key

- Does the recommender return "good" items?
- Say 1-3 stars is bad, 4-5 stars is good
- Recommender #1 says 3 stars, user says 1 star
- Recommender #2 says 4 stars, user says 2 stars

Recommender #2 misleads the user

Given a user *u*

 R_u : recommended items G_u : relevant items

Precision

 Percentage of recommended items that are relevant

$$\operatorname{Prec}(R_u, G_u) = \frac{|R_u \cap G_u|}{|R_u|}$$

Given a user *u*

 R_u : recommended items G_u : relevant items

Recall

 Percentage of relevant items that are recommended

$$Rec(R_u, G_u) = \frac{|R_u \cap G_u|}{|G_u|}$$

Precision

•
$$\operatorname{Prec}(R_u, G_u) = \frac{|R_u \cap G_u|}{|R_u|} = \frac{2}{4} = 0.50$$

Recall

•
$$\operatorname{Rec}(R_u, G_u) = \frac{|R_u \cap G_u|}{|G_u|} = \frac{2}{3} = 0.67$$

Precision is about having mostly useful stuff in a recommendation

- Not wasting the user's time
- Key assumption
- There is more useful stuff than you want to examine

Recall is about not missing useful stuff in a recommendation

Not making a bad oversight

Key assumption

 You have time to filter through recommendations

We can also combine both

$$F1(R,G) = \frac{2 \operatorname{Prec}(R,G) \operatorname{Rec}(R,G)}{\operatorname{Prec}(R,G) + \operatorname{Rec}(R,G)}$$

Beyond decision support

Modern item catalogs are huge

User may not be willing to inspect large sets

Consider top-5 rankings

- Recommender #1: + + + + −
- ∘ Recommender #2: + + + +

Recommender #2 misplaces a highly visible item

Summarizing a ranking

Calculating recall and precision at fixed rank positions

e.g., Prec@10, Rec@10

Calculating precision at standard recall levels

e.g., Prec@Rec=30%

Problem

Set-based metrics are blind within the set

Position blindness

These have exactly the same Prec@4 (0.25)

Are they equally good?

Ranking metrics

Why ranking?

Place items in order of preference

Key assumption

 Users will inspect recommended items from top to bottom (or left to right)

Average precision (AP)

Simple idea: averaging precision values at the ranking positions where relevant items were found

$$\circ AP(R,G) = \frac{1}{|G|} \sum_{c=1}^{k} 1(r_{ui_c} > 0) Prec@c$$

Average precision (AP)

Average precision

• AP(R, G) =
$$\frac{1}{|G|} \sum_{c=1}^{k} 1(r_{ui_c} > 0)$$
 Prec@c
= $\frac{1}{3}$ (Prec@1 + Prec@3)
= $\frac{1}{3} \left(\frac{1}{1} + \frac{2}{3} \right)$
= $\frac{5}{9}$ = 0.55

Average precision (AP)

Simple idea: averaging precision values at the ranking positions where relevant items were found

$$\circ AP(R,G) = \frac{1}{|G|} \sum_{c=1}^{k} 1(r_{ui_c} > 0) Prec@c$$

In practice, take the mean (MAP) across users

$$\circ MAP = \frac{1}{|U|} \sum_{u \in U} AP(R_u, G_u)$$

Reciprocal rank (RR)

Measures how deep the user has to dig in the recommended items to find the first relevant item

 \circ RR(R, G) = 1/c (c: position of the first relevant)

Mean reciprocal rank averages across users

$$\circ MRR = \frac{1}{|U|} \sum_{u \in U} RR(R_u, G_u)$$

Reciprocal rank (RR)

Reciprocal rank

• RR(R, G) =
$$\frac{1}{c}$$

= $\frac{1}{1}$ = 1.00

Reciprocal rank (RR)

Reciprocal rank

• RR(R, G) =
$$\frac{1}{c}$$

= $\frac{1}{3}$ = 0.33

Discounted cumulative gain (DCG)

Measure utility of item at each position

$$\circ \ \mathrm{DCG}(R,G) = \sum_{c=1}^k \frac{r_{ui_c}}{\log_2(c+1)} \quad \text{linear gain (e.g., in a graded scale)}$$

Discounted cumulative gain (DCG)

Discounted cumulative gain

$$DCG(R,G) = \sum_{c=1}^{k} \frac{r_{ui_c}}{\log_2(c+1)}$$

$$= \frac{2}{\log_2 1 + 1} + \frac{3}{\log_2 3 + 1}$$

$$= \frac{2}{1} + \frac{3}{2}$$

$$= 2 + 1.5$$

$$= 3.5$$

Discounted cumulative gain (DCG)

Measure utility of item at each position

$$\circ \ \mathrm{DCG}(R,G) = \sum_{c=1}^k \frac{r_{ui_c}}{\log_2(c+1)} \quad \text{linear gain (e.g., in a graded scale)}$$

Could also emphasize larger gains

$$\circ \ \mathrm{DCG}(R,G) = \sum_{c=1}^{k} \frac{2^{r_{ui_{c}-1}}}{\log_{2}(c+1)} \quad \text{exponential gain position-based discount}$$

Ideal discounted cumulative gain (iDCG)

Ideal discounted cumulative gain

$$iDCG(R,G) = \sum_{c=1}^{k} \frac{r_{ui_c}}{\log_2(c+1)}$$

$$= \frac{3}{\log_2 1 + 1} + \frac{2}{\log_2 2 + 1} + \frac{1}{\log_2 3 + 1}$$

$$= \frac{3}{1} + \frac{2}{1.58} + \frac{3}{2}$$

$$= 3 + 1.26 + 0.5$$

$$= 4.76$$

Norm. discounted cumulative gain (nDCG)

Normalized discounted cumulative gain

Average nDCG

In practice, nDCG is averaged across all test users

$$\circ \text{ nDCG} = \frac{1}{|U|} \sum_{u \in U} \frac{\text{DCG}(R_u, G_u)}{\text{iDCG}(R_u, G_u)}$$

Ranking-based metrics

Several metrics to measure a recommender's ability to order the recommended items

- Mostly borrowed from search evaluation
 nDCG increasingly common
- MRR also used

Business metrics

We are interested in satisfying the user

- Accuracy metrics
- Decision support metrics
- Ranking metrics

But also the recommendation provider

Coverage, diversity, serendipity

Coverage

Measures the percentage of products for which a recommender can make a prediction

- Or a prediction that's personalized
- Or a prediction above a confidence threshold
 - e.g., how many 5-stars movies can we recommend?

Business interest: reach the entire catalog

Diversity

Measures how different the recommendations are

- With respect to other recommended items, items the user knows of, items everyone knows of
- e.g., intra-list diversity (ILD) is the average pairwise dissimilarity among recommended item

Business interest: sales diversity

Serendipity

Measures "the occurrence of events by chance in a happy or beneficial way"

- In RS: surprising, delightful unexpectedness
- Several ways to operationalize
- Typically, based on rarity

Summary

Several metrics for different purposes

- No one-size-fits-all solution
- Different metrics, different quality estimates

Metrics may not well correlate with practice

Must look outside the box

References

Recommender Systems: An Introduction (Ch. 7)

Recommender Systems Handbook (Ch. 8)

Recommender Systems: The Textbook (Ch. 7)

Statistical Methods for Recommender Systems (Ch. 4)