Il criterio di Cauchy per la convergenza delle successioni

27 ottobre 2011

Lo scopo di questi appunti è la dimostrazione del seguente teorema

Teorema 1. Una successione $(x_n)_n$ di numeri reali è convergente ad un numero reale ℓ se e solo se per ogni $\varepsilon > 0$ esiste un intero positivo N_{ε} tale che la disuguaglianza

$$|x_n-x_m|<\varepsilon$$

si verifichi per tutti gli indici $n, m > N_{\varepsilon}$.

È molto facile dimostrare che se la successione $(x_n)_n$ è convergente, allora soddisfa alla condizione enunciata nel Teorema 1. Infatti se $\lim_n x_n = \ell$, allora per ogni $\varepsilon > 0$ esiste un intero positivo N_{ε} tale che quanto l'indice n supera N_{ε} risulta $|x_n - \ell| < \varepsilon/2$. La disuguaglianza triangolare per il valore assoluto ci permette allora di dire che, se $m, n > N_{\varepsilon}$,

$$|x_n - x_m| = |(x_n - \ell) - (x_m - \ell)| \le |x_n - \ell| + |x_m - \ell| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Più difficile è invece dimostare che se $(x_n)_n$ è una successione che soddisfa la condizione indicata nel Teorema 1, allora x_n è convergente. Cominciamo con dare un nome alla condizione indicata nel Teorema 1.

Definizione 1. Si dice che una successione $(x_n)_n$ di numeri reali soddisfa la condizione di Cauchy o in breve che è una successione di Cauchy se per ogni $\varepsilon > 0$ esiste un intero positivo N_{ε} tale che, per tutti gli indici $n, m > N_{\varepsilon}$ risulti

$$|x_n-x_m|<\varepsilon$$

Un modo equivalente per esprimere la condizione $|x_n - x_m| < \varepsilon$ per $n, m > N_{\varepsilon}$ è quello di richiedere che per tutti i numeri interi positivi p e per tutti gli indici n maggiori di N_{ε} risulti

$$|x_n-x_{n+p}|<\varepsilon.$$

Ci sono due proprietà importanti delle successioni di Cauchy che sono enunciate nei seguenti due lemmi.

Lemma 1. Una successione di Cauchy è limitata.

DIMOSTRAZIONE. Per definizione esiste un intero positivo N tale che se n, m > N, risulta $|x_n - x_m| < 1$. In particolare se m > N, deve essere $|x_{N+1} - x_m| < 1$. Ne segue che se m > N, allora $|x_m| \le 1 + |x_{N+1}|$. Questo ci porta a concludere che il numero

$$M = \max\{|x_1|, |x_2|, \dots |x_N|, 1 + |x_{N+1}|\},\$$

è un maggiorante per tutti gli $|x_n|$.

Prima di passare al secondo lemma, diamo una

Definizione 2. Una successione $(y_k)_k$ si dice sottosuccessione di $(x_n)_n$, o successione estratta da $(x_n)_n$, se

$$y_k = x_{n_k}$$
 per ogni $k \in \mathbb{N}$,

dove gli indici $(n_k)_k$ sono una successione strettamente crescente di numeri naturali. Una tale sottosuccessione verrà più spesso indicata come $(x_{n_k})_k$.

L'idea intuitiva alla base della definizione precedente è quella di prendere solo alcuni termini della successione $(x_n)_n$, e precisamente quelli di indice n_1, n_2, \ldots , per formare una nuova successione $(y_k)_k$. La successione di indici $(n_k)_k$ che serve per selezionare i termini si suppone strettamente crescente per evitare ripetizioni e per far sì che i termini scelti mantengano nella $(y_k)_k$ lo stesso ordine che avevano nella $(x_n)_n$. Ad esempio, sono successioni estatte da $x_n = \sqrt{n}$ le successioni $y_k = \sqrt{2k}$ $(n_k = 2k)$, $z_k = k$ $(n_k = k^2)$, $a_k = \sqrt{k^2 + 1}$ $(n_k = k^2 + 2)$.

Lemma 2. Se una successione di Cauchy ammette una sottosuccessione convergente ad un limite ℓ , allora anche la successione di partenza converge allo stesso limite.

DIMOSTRAZIONE. Supponiamo che $(x_n)_n$ sia una successione di Cauchy e $(x_{n_k})_k$ una sua sottosuccessione convergente al limite ℓ . In simboli

$$\lim_{k\to+\infty}x_{n_k}=\ell.$$

Vogliamo mostrare che, per ogni $\varepsilon > 0$ esiste un intero positivo N tale che, quando n > N, si verifichi $|x_n - \ell| < \varepsilon$.

Sia ε un numero positivo arbitrariamente scelto. Sappiamo che esiste un $k_{\varepsilon} \in \mathbb{N}$ tale che

$$|x_{n_k} - \ell| < \varepsilon/2$$
 per ogni $k > k_{\varepsilon}$

Esiste anche un intero positivo N tale che

$$|x_n - x_m| < \varepsilon/2$$
 per ogni $n, m > N$.

Sia n > N. Scegliamo $\overline{k} > k_{\varepsilon}$ tale che $n_{\overline{k}} > N$ (cosa possibile perché $(n_k)_k$ è strettamente crescente). Ne segue che

$$|x_n - \ell| = |x_n - x_{n_{\overline{\nu}}} + x_{n_{\overline{\nu}}} - \ell| \le |x_n - x_{n_{\overline{\nu}}}| + |x_{n_{\overline{\nu}}} - \ell| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Naturalmente per queste disuguaglianze abbiamo utilizzato il fatto che gli indici n ed $n_{\overline{k}}$ sono stati scelti maggiori di N.

Dimostriamo ora un teorema importante che, assieme ai precedenti lemmi, ci porterà a concludere che ogni successione di Cauchy è convergente.

Teorema 2. Ogni successione limitata ammette una sottosuccessione convergente.

DIMOSTRAZIONE. Supponiamo che la successione $(x_n)_n$ sia limitata. Questo significa che esiste un numero positivo M tale che $|x_n| \le M$. In altre parole, i termini della successione $(x_n)_n$ appartengono tutti ad un intervallo chiuso e limitato [a,b] (possiamo infatti, se non altro, porre a=-M e b=M).

Costruiamo ora una successione di intervalli incapsulati $I_n = [a_n, b_n]$, con la proprietà che per ogni n l'intervallo I_n contiene termini della successione $(x_n)_n$ per infiniti valori dell'indice n. Poniamo inizialmente $a = a_1$ e $b = b_1$, e $I_1 = [a_1, b_1]$. Dividiamo ora I_1 in due sottointervalli $[a_1, \frac{a_1+b_1}{2}]$ e $[\frac{a_1+b_1}{2}, b_1]$. Almeno uno di questi due sottointervalli conterrà termini della successione $(x_n)_n$ per infiniti valori dell'indice n. Chiamiamo I_2 questo sottointervallo. Se entrambi i sottointervalli contengono termini della successione per infiniti indici, scegliamo come I_2 l'intervallo più a destra.

Ripetiamo la stessa costruzione a partire da I_2 per ottenere I_3 , e così via. Più precisamente, supponiamo di aver definito i primi k intervalli incapsulati in modo che ognuno di essi sia la metà del precedente, e che ognuno di essi contenga termini della successione $(x_n)_n$ per un insieme infinito di indici. Per definire I_{k+1} , dividiamo $I_k = [a_k, b_k]$ nei due intervalli $[a_k, \frac{a_k + b_k}{2}]$ e $[\frac{a_k + b_k}{2}, b_k]$ e scegliamo come I_{k+1} quello tra questi due intervalli che contiene termini della successione $(x_n)_n$ per infiniti indici. Se ambedue contengono termini per infiniti indici, scegliamo quello più a destra. In tal modo abbiamo una successione di intervalli incapsulati $I_k = [a_k, b_k]$, ognuno dei quali contiene termini della successione x_n per una quantità infinita di indici, ed ha lunghezza che è la metà della lunghezza del precedente intervallo, il che implica che la lunghezza di I_k è

$$b_k - a_k = \frac{b - a}{2^{k-1}}.$$

Costruiamo ora la sottosuccessione convergente $(x_{n_k})_k$ come segue. Scegliamo $n_1=1$, scegliamo poi $n_2>n_1$ in modo tale che x_{n_2} appartenga ad I_2 . Supponendo di aver scelto $n_k>n_{k-1}>\dots n_2>n_1$ con la proprietà che $x_{n_k}\in I_k$, scegliamo $n_{k+1}>n_k$ in modo tale che $x_{n_{k+1}}\in I_{k+1}$. Questo è sempre possibile perché I_{k+1} contiene termini della successione $(x_n)_n$ per infiniti indici e quindi contiene termini di indice arbitrariamente grande. Osserviamo ora che

$$a_k \leq x_{n_k} \leq b_k$$
.

Osserviamo anche che le successioni $(a_k)_k$ e $(b_k)_k$ convergono, visto che $(a_k)_k$ è una successione crescente limitata superiormente, mentre $(b_k)_k$ è una successione decrescente limitata inferiormente. Convergono inoltre allo stesso limite perché $b_k - a_k = \frac{b-a}{2^{k-1}}$ (se i limiti fossero diversi la loro distanza dovrebbe essere minore di $\frac{b-a}{2^{k-1}}$ per ogni k). Per il teorema dei carabinieri, anche $(x_{n_k})_k$ converge allo stesso limite. Questo conclude la dimostrazione del teorema.

Corollario 3. Se $(x_n)_n$ è una successione di Cauchy, allora $(x_n)_n$ è convergente.

DIMOSTRAZIONE. Dal Lemma 1 si deduce che $(x_n)_n$ è limitata. Ne segue, per il Teorema 1, che ammette una sottosuccessione $(x_{n_k})_k$ convergente. Segue quindi dal Lemma 2 che $(x_n)_n$ è convergente.

Esercizio 1. Supponiamo che la successione $(x_n)_n$ assuma un numero finito di valori dimostrare che se $(x_{n_k})_k$ è una sottosuccessione convergente allora esiste un intero positivo K tale che x_{n_k} è costante per k > K.

Esercizio 2. Applicare gli argomenti della dimostrazione del Teorema 1 alla successione $x_n = \cos(n\pi/4)$, partendo dall'intervallo $I_1 = [-1, 1]$ e trovare la corrispondente sottosuccessione convergente $(x_{n_k})_k$.