練習実験報告

肖宇笑

2024年6月3日

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Galvano Sepctrum

Fig. 1: Wavelen. correction

Galvano Sepctrum

Calibration

Fig. 2: Correction function

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Selected peaks

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Peak assignments

464.484 nm ≈ 43058.49 cm ⁻¹	464.114 nm ≈ 43092.81 cm ⁻¹	460.875 nm $\approx 43395.69 \text{cm}^{-1}$	456.659 nm ≈ 43796.34 cm ⁻¹
px = 253.162	px = 253.655	px = 181.319 & 256.240	px = 246.776
rR2 (44.5) $qR12 (51.5)$ $qQ2 (51.5)$	rR2 (45.5) qR12 (51.5) qQ2 (51.5)	sR21 (48.5)	sR21 (58.5) pQ12 (76.5) pP2 (76.5)

Notice

Colored assignments are mismatched, and will not be used to calculate.

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^1$	$E_{int.}(NO)$
Peak 1 464.484nm	43058.49 cm $^{-1}$		$\Delta E_v(1 \to 0) + E(J = 44)$
Peak 2 464.114nm	43 092.81cm ⁻¹		$\Delta E_v(1 \to 0) + E(J = 45)$
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	$\Delta E_v(1 \to 0) + E(J = 48)$
Peak 4 456.659nm	43 796.34cm ⁻¹		$\Delta E_v(1 \to 0) + E(J = 58)$

¹Rémy Jost et al. The Journal of Chemical Physics **105**.3 (July 1996).

Trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O}\mathrm{-NO})^2$	$E_{int.}(NO)$
Peak 1 464.484nm	43 058.49cm ⁻¹		$2341.9327750 \text{cm}^{-1} + E(J = 44)$
Peak 2 464.114nm	43 092.81cm ⁻¹		$2341.9327750 \text{cm}^{-1} + E(J = 45)$
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	$2341.9327750 \text{cm}^{-1} + E(J = 48)$
Peak 4 456.659nm	43 796.34cm ⁻¹		$2341.9327750 \text{cm}^{-1} + E(J = 58)$

Vib. energy level

$$E_v = \omega_e \left(v + \frac{1}{2} \right) - \omega_e x_e \left(v + \frac{1}{2} \right)^2 + \omega_e y_e \left(v + \frac{1}{2} \right)^3.$$

²Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

Trans. energy of NO

	E_{total}	$E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^3$	$E_{int.}(NO)$
Peak 1 464.484nm	43 058.49cm ⁻¹		5814.033cm ⁻¹
Peak 2 464.114nm	43 092.81cm ⁻¹		5965.969cm ⁻¹
Peak 3 460.875nm	43 395.69cm ⁻¹	25 128.57cm ⁻¹	6239.696cm ⁻¹
Peak 4 456.659nm	43 796.34cm ⁻¹	·	8004.278cm ⁻¹

Rot. energy level

Simulated data generated by PGOPHER⁴.

³Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

⁴Colin M. Western. *Journal of Quantitative Spectroscopy and Radiative Transfer* **186** (2017), pp. 221–242.

Trans. energy of NO

5 E _{int.} (O)	$\begin{split} E_{trans}(total) &\approx 2.875464 E_{trans}(NO) \\ &= E_{total} - E_{bond}(O\!-\!NO) - E_{int.}(O) - E_{int.}(NO) \end{split}$	$E_{trans}(NO) \\ = \frac{1}{2}m(NO)v^2(NO)$
$^{3}P_{2}$ (0cm^{-1})	$11081.356 \mathrm{cm}^{-1}$ $10964.609 \mathrm{cm}^{-1}$ $10794.143 \mathrm{cm}^{-1}$ $9398.766 \mathrm{cm}^{-1}$	4375.588 cm $^{-1}$ 4334.685 cm $^{-1}$ 4344.824 cm $^{-1}$ 3870.489 cm $^{-1}$
³ P ₁ (158.625cm ⁻¹)	$10922.731 \mathrm{cm}^{-1}$ $10805.984 \mathrm{cm}^{-1}$ $10635.518 \mathrm{cm}^{-1}$ $9240.141 \mathrm{cm}^{-1}$	4320.423cm^{-1} 4279.520cm^{-1} 4289.659cm^{-1} 3815.324cm^{-1}
$^{3}P_{0}$ (226.977cm ⁻¹)	$10854.379 \mathrm{cm}^{-1} \\ 10737.632 \mathrm{cm}^{-1} \\ 10567.166 \mathrm{cm}^{-1} \\ 9171.789 \mathrm{cm}^{-1}$	4296.653cm^{-1} 4255.749cm^{-1} 4265.888cm^{-1} 3791.553cm^{-1}

⁵Charlotte Emma Moore and Jean W. Gallagher. "Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions". 1993.

Trans. speed of NO

E _{int.} (O)	$v(NO) = \sqrt{\frac{2E_{trans}(NO)}{m(NO)}}$	Δy
$^{3}P_{2}$ (0cm ⁻¹)	$\begin{array}{c} 1867.845\mathrm{ms^{-1}} \\ 1859.094\mathrm{ms^{-1}} \\ 1861.267\mathrm{ms^{-1}} \\ 1756.732\mathrm{ms^{-1}} \end{array}$	253.177 253.650 256.147 246.776
$^{3}P_{1}$ (158.625cm ⁻¹)	$\begin{array}{c} 1856.033\mathrm{ms^{-1}}\\ 1847.226\mathrm{ms^{-1}}\\ 1849.413\mathrm{ms^{-1}}\\ 1744.168\mathrm{ms^{-1}} \end{array}$	253.177 253.650 256.148 246.776
$^{3}P_{0}$ (226.977cm ⁻¹)	$\begin{array}{c} 1850.920 \mathrm{m s}^{-1} \\ 1842.089 \mathrm{m s}^{-1} \\ 1844.282 \mathrm{m s}^{-1} \\ 1738.726 \mathrm{m s}^{-1} \end{array}$	253.177 253.650 256.147 246.776

Trans. speed of NO

Trans. speed of NO

Average $12.35 \rm m\,s^{-1}\,px^{-1}$ Intercept $\approx -1292 \rm m\,s^{-1}$

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Galvano Sepctrum

REMPI scan

Selected peaks

Peak assignments

Speed correction

Error

Average $12.35 \mathrm{m\,s^{-1}\,px^{-1}}$ Intercept $\approx -1292 \mathrm{m\,s^{-1}}$

Average

 $12.35 {\rm m\,s^{-1}\,px^{-1}}$ Intercept $\approx -1292 {\rm m\,s^{-1}}$

Notice

What we are calculating here are actually $|\mathbf{v}_{\mathrm{NO}}|$, which are not supposed to be minus a .

 a Maybe $\pm 5 \mathrm{m \, s^{-1}}$ -level intercept noise is permitted.

Error

If we assume a virtual zero point: The fake data obtains a huge weight! Statistics tools always treat all data as proper indications.

⇒ After assignments, which are the points we should use?

Assignment for Assignment

464.484 nm $\approx 43058.49 \text{cm}^{-1}$	464.114 nm ≈ 43092.81 cm ⁻¹	460.875 nm $\approx 43395.69 \text{cm}^{-1}$	456.659 nm $\approx 43796.34 \text{cm}^{-1}$
px = 253.162	px = 253.655	px = 256.240	px = 246.776
rR2 (44.5)	rR2 (45.5)	sR21 (48.5)	sR21 (58.5)

Reference

- [1] Rémy Jost et al. The Journal of Chemical Physics 105.3 (July 1996).
- [2] Charlotte Emma Moore and Jean W. Gallagher. "Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions". 1993.
- [3] Colin M. Western. Journal of Quantitative Spectroscopy and Radiative Transfer 186 (2017), pp. 221–242.