ANALIZĂ - Extras de curs nr. 2: Serii de numere reale

• O serie (infinită) de numere reale este o expresie de forma:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$

unde (a_n) este un şir de numere reale; termenul a_n se numeşte **termenul general** al seriei.

- Suma parțială de ordinul n a seriei este suma primilor n termeni: $S_n = a_1 + a_2 + \cdots + a_n$.
- Şirul (S_n) se numește **şirul sumelor parțiale** al seriei.

♣ Convergența și divergența seriilor

• Seria $\sum a_n$ este **convergentă** d.n.d. şirul sumelor parțiale (S_n) este convergent.

În acest caz, limita șirului sumelor parțiale $S = \lim_{n \to \infty} S_n$ se numește suma seriei și notăm $\sum_{n \to \infty} a_n = S$.

- Seria $\sum a_n$ este divergentă dacă și numai dacă șirul sumelor parțiale (S_n) este divergentă.
- Spunem că seria $\sum a_n$ este absolut convergentă dacă și numai dacă $\sum |a_n|$ este convergentă.
- ! Remarcă: convergența absolută implică convergența simplă (dar nu întotdeau și reciproc). În cazul seriilor cu termeni pozitivi, noțiunile de convergența absolută și convergență simplă sunt echivalente.
- \clubsuit Criteriu necesar de convergență: Dacă $seria \sum a_n$ este convergentă, atunci $\lim_{n\to\infty} a_n = 0$.
- ! Consecință: Dacă $\lim_{n\to\infty} a_n \neq 0$ sau această limită nu există, seria $\sum a_n$ este divergentă.
- ! Remarcă: Acest criteriu este doar necesar, nu și suficient (ex: $seria~armonică~\sum_{i=1}^{\infty}\frac{1}{n}$ este divergentă !!)

A Operații cu serii convergente

Dacă seriile $\sum a_n$ și $\sum b_n$ sunt convergente, atunci și seriile $\sum (a_n + b_n)$ și $\sum ca_n$ (unde $c \in \mathbb{R}$) sunt

convergence
$$\S^1$$

$$1. \sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n;$$

$$2. \sum_{n=0}^{\infty} c \ a_n = c \sum_{n=0}^{\infty} a_n.$$

2.
$$\sum_{n=0}^{\infty} c \ a_n = c \sum_{n=0}^{\infty} a_n$$
.

♣ Serii geometrice

- Seria cu termenul general $a_n=r^n$, unde $r\in\mathbb{R}$ se numește **serie geometrică de rație** r.
 Seria geometrică $\sum_{n=0}^{\infty} r^n$ este convergentă d.n.d. |r|<1. În acest caz, suma ei este $S=\sum_{n=0}^{\infty} r^n=\frac{1}{1-r}$.

\clubsuit Serii armonice (p-serii)

• Seria $\sum_{n=0}^{\infty} \frac{1}{n^p}$, unde $p \in \mathbb{R}$, se numește **p-serie**, și este convergentă d.n.d. p > 1.

♣ CRITERII DE CONVERGENTĂ

• Criteriul integralei:

Fie $f: \mathbb{R}^1_+ \to \mathbb{R}^1_+$ o funcție descrescătoare și șirul (a_n) definit prin $a_n = f(n)$ pentru orice $n \in \mathbb{N}$. Considerăm $j_n = \int_1^n f(x) dx$. Seria $\sum a_n$ este convergentă d.n.d. şirul (j_n) este convergent.

• Criteriul comparației I:

Dacă $0 \le a_n \le b_n$ pentru orice $n \in \mathbb{N}$, atunci:

- 1. dacă $\sum b_n$ este convergentă atunci şi $\sum a_n$ este convergentă. 2. dacă $\sum a_n$ este divergentă atunci şi $\sum b_n$ este divergentă.

• Criteriul comparației II:

Presupunem că seriile $\sum a_n$ și $\sum b_n$ sunt serii cu termeni pozitivi, astfel incât $\lim_{n\to\infty} \frac{a_n}{b_n} = L \in (0,\infty)$. Atunci, $\sum a_n$ este convergentă dacă și numai dacă $\sum b_n$ este convergentă.

• Criteriul lui Leibnitz pentru serii alternante:

Dacă (b_n) este un şir descrescător de numere reale astfel incât $\lim_{n\to\infty} b_n = 0$ atunci seria alternantă $\sum (-1)^n \cdot b_n$ este convergentă.

• Criteriul raportului:

Presupunem că limita $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ există sau este infinită. Atunci seria $\sum a_n$

- 1. este absolut convergentă dacă L < 1;
- 2. este divergența dacă L > 1.

Dacă L=1, acest criteriu nu este concludent.

• Criteriul rădăcinii:

Presupunem că limita $L = \lim \sqrt[n]{|a_n|}$ există sau este infinită. Atunci seria $\sum a_n$

- 1. este absolut convergentă dacă L < 1;
- 2. este divergența dacă L > 1.

Dacă L=1, acest criteriu nu este concludent.

1. Calculați suma parțială de rang n și determinați suma seriei:

1.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n^2 + n}}$$
 3.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 - 1}$$
 5.
$$\sum_{n=1}^{\infty} \ln \frac{n+1}{n}$$
 7.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}$$
 9.
$$\sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n - 2}$$

$$5. \sum_{n=1}^{\infty} \ln \frac{n+1}{n}$$

7.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+1)(n+2)}$$

$$9. \sum_{n=1}^{\infty} \frac{1}{9n^2 + 3n - 2}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$

4.
$$\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$$

6.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$

8.
$$\sum_{n=1}^{\infty} \frac{6n}{n^4 - 5n^2 + 4}$$

2.
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
 4.
$$\sum_{n=1}^{\infty} \frac{2n + 1}{n^2(n+1)^2}$$
 6.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}$$
 8.
$$\sum_{n=1}^{\infty} \frac{6n}{n^4 - 5n^2 + 4}$$
 10.
$$\sum_{n=1}^{\infty} \frac{1}{16n^2 - 8n - 3}$$

$$1. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sin\frac{1}{n}}$$

$$3. \sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{e}\right)^n$$

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sin \frac{1}{n}}$$
 3.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{3}{e}\right)^n$$
 5.
$$\sum_{n=1}^{\infty} \left(\frac{2}{n} - \frac{1}{2^n}\right)$$
 7.
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$$
 9.
$$\sum_{n=1}^{\infty} (\arctan 1)^n$$

7.
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$$

9.
$$\sum_{n=1}^{\infty} (\arctan 1)^{r}$$

$$2. \sum_{n=1}^{\infty} \frac{(-1)^n r}{n+1}$$

$$4. \sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$$

6.
$$\sum_{n=1}^{\infty} \frac{1+2^n+3^n}{3^n}$$

$$8. \sum_{n=1}^{\infty} \frac{1}{\ln n}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$
 4.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{\ln(n+1)}$$
 6.
$$\sum_{n=1}^{\infty} \frac{1+2^n+5^n}{3^n}$$
 8.
$$\sum_{n=1}^{\infty} \frac{1}{\ln n}$$
 10.
$$\sum_{n=1}^{\infty} \left[\left(\frac{7}{11} \right)^n - \left(\frac{3}{5} \right)^n \right]$$

3. Folosind criteriul integralei, determinați dacă următoarele serii sunt convergente sau divergent 1. $\sum_{n=0}^{\infty} \frac{n^2}{e^n}$ 2. $\sum_{n=0}^{\infty} \frac{\ln n}{n^2}$ 3. $\sum_{n=0}^{\infty} \frac{\arctan n}{n^2+1}$ 4. $\sum_{n=0}^{\infty} \frac{2^{1/n}}{n^2}$ 5. $\sum_{n=0}^{\infty} \frac{2^{1/n}}{n^2}$

$$1. \sum_{n=1}^{\infty} \frac{n^2}{e^n}$$

$$2. \sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

$$3. \sum_{n=1}^{\infty} \frac{\arctan n}{n^2 + 1}$$

4.
$$\sum_{n=1}^{\infty} \frac{2^{1/n}}{n^2}$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^p}, p \in \mathbb{R}$$

4. Folosind criteriile comparației, determinați dacă următoarele serii sunt convergente sau divergente.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1}$$

5.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$

$$9. \sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 + 1}$$

$$13. \sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$$

17.
$$\sum_{n=1}^{\infty} 3^n \sin \frac{\pi}{5^n}$$

$$2. \sum_{n=1}^{\infty} \frac{n^3 + 1}{n^4 + 2}$$

$$6. \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + n}$$

$$10. \sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$$

$$14. \sum_{n=1}^{\infty} \frac{\ln n}{n^2}$$

18.
$$\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$$

$$3. \sum_{n=1}^{\infty} \frac{1}{n + n^{3/2}}$$

$$7. \sum_{n=1}^{\infty} \frac{1}{\ln n}$$

11.
$$\sum_{n=1}^{\infty} \frac{n+2^n}{n+3^n}$$

15.
$$\sum_{n=1}^{\infty} \frac{2n^2 - 1}{n^2 \cdot 3^n}$$

$$19. \sum_{n=1}^{\infty} \arctan \frac{1}{n^2 + n + 1}$$

4.
$$\sum_{n=1}^{\infty} \frac{10n^2}{n^4 + 1}$$

$$8. \sum_{n=1}^{\infty} \frac{1}{n - \ln n}$$

12.
$$\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$$

16.
$$\sum_{n=1}^{\infty} \frac{2 + \sin n}{n^2}$$

Following criterille comparației, determinați dacă urmatoarele serii sunt convergente sau divergente.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n + 1}$$

5. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$

9. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2 + 1}$

13. $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$

17. $\sum_{n=1}^{\infty} 3^n \sin \frac{\pi}{5^n}$

2. $\sum_{n=1}^{\infty} \frac{n^3 + 1}{n^4 + 2}$

6. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + n}$

10. $\sum_{n=1}^{\infty} \frac{\cos^2 n}{3^n}$

14. $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$

18. $\sum_{n=1}^{\infty} \frac{(n+1)^n}{n^{n+1}}$

3. $\sum_{n=1}^{\infty} \frac{1}{n + n^{3/2}}$

7. $\sum_{n=1}^{\infty} \frac{1}{\ln n}$

11. $\sum_{n=1}^{\infty} \frac{n + 2^n}{n + 3^n}$

15. $\sum_{n=1}^{\infty} \frac{2n^2 - 1}{n^2 \cdot 3^n}$

19. $\sum_{n=1}^{\infty} \arctan \frac{1}{n^2 + n + 1}$

4. $\sum_{n=1}^{\infty} \frac{10n^2}{n^4 + 1}$

8. $\sum_{n=1}^{\infty} \frac{1}{n - \ln n}$

12. $\sum_{n=1}^{\infty} \frac{1}{5^n + 3^n}$

16. $\sum_{n=1}^{\infty} \frac{2 + \sin n}{n^2}$

20. $\sum_{n=1}^{\infty} \ln \left(1 + \frac{3}{n^2 + 4n}\right)$

$$1. \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

$$3. \sum_{n=1}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 2}}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\sqrt{n^2 + 2}}$$
5.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{2^n}$$
7.
$$\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n}$$
9.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$$

9.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{3n^2 + 2}$$

$$2. \sum_{n=1}^{\infty} \frac{(-1)^n n}{3n^2 + 2} \qquad 4. \sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{\sqrt{n}} \qquad 6. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{2}} \qquad 8. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}} \qquad 10. \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/2}}$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{2}}$$

$$8. \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}}$$

10.
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^{3/2}}$$

6. Folosind criteriile raportului sau rădăcinii, determinați dacă următoarele serii sunt convergente sau divergente.

$$1. \sum_{n=1}^{\infty} \frac{n!}{n^n}$$

3.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$

$$5. \sum_{n=1}^{\infty} \left(\frac{\ln n}{n} \right)^n$$

7.
$$\sum_{n=1}^{\infty} \frac{a^n}{n^2}, a \in \mathbb{R}$$

9.
$$\sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^n, \ a > 0$$

2.
$$\sum_{n=0}^{\infty} 3^{-\sqrt{n^2-2}}$$

4.
$$\sum_{n=1}^{\infty} \frac{(n!)^2 n^2}{(2n)!}$$

$$6. \sum_{n=1}^{\infty} \frac{3^n}{n!n!}$$

1.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
3.
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
5.
$$\sum_{n=1}^{\infty} \left(\frac{\ln n}{n}\right)^n$$
7.
$$\sum_{n=1}^{\infty} \frac{a^n}{n^2}, a \in \mathbb{R}$$
9.
$$\sum_{n=1}^{\infty} a^n \left(1 + \frac{1}{n}\right)^n, a > 0$$
2.
$$\sum_{n=1}^{\infty} 3^{-\sqrt{n^2 - 2}}$$
4.
$$\sum_{n=1}^{\infty} \frac{(n!)^2 n^2}{(2n)!}$$
6.
$$\sum_{n=1}^{\infty} \frac{3^n}{n!n}$$
8.
$$\sum_{n=1}^{\infty} \frac{(an)^n}{n!}, a \in \mathbb{R}$$
10.
$$\sum_{n=1}^{\infty} \left(\frac{an+1}{bn+2}\right)^n, a, b > 0$$

$7. \ \, {\rm Studiați} \,\, {\rm dacă} \,\, {\rm următoarele} \,\, {\rm serii} \,\, {\rm sunt} \,\, {\rm absolut} \,\, {\rm convergente}, \, {\rm convergente} \,\, {\rm sau} \,\, {\rm divergente}.$

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, p \in \mathbb{R}$$
 3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+1)}}$$
 5.
$$\sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$
 7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$$
 9.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n^n}{3^{n^2}}$$
 2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$$
 4.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$$
 6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n}$$
 8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$$
 10.
$$\sum_{n=1}^{\infty} \frac{(n+2)!}{3^n (n!)^2}$$

3.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n(n+1)}}$$

$$5. \sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$

$$7. \sum_{n=1}^{\infty} \frac{(-1)^n}{n^n}$$

9.
$$\sum_{1}^{\infty} \frac{(-1)^n n^n}{3^{n^2}}$$

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n}$$

$$4. \sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sin n}{n}$$

2

8.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n \sqrt[n]{n}}$$

10.
$$\sum_{n=1}^{\infty} \frac{(n+2)}{3^n (n!)^2}$$