If and Only If Proofs

The purpose of an iff proof is to shorten a proof where you need to show that it works both forwards and backwards. Remember the symbol for iff is \leftrightarrow .

To do this, you convert the statement into words.

Example

1. Prove that $A \cup (B \cup C) = (A \cup B) \cup C$ for all sets $A, B, C \subseteq U$.

To start off, assume that x is an element of the statement on the left:

Let $x \in A \cup (B \cup C)$.

Then start the proof. Convert all the \cup and \cap symbols to words.

```
x \in A \cup (B \cup C)
iff x \in A \text{ or } x \in (B \cup C)
iff x \in A \text{ or } x \in B \text{ or } x \in C
iff (x \in A \text{ or } x \in B) \text{ or } x \in C
iff (x \in (A \cup B)) \text{ or } x \in C
iff x \in (A \cup B) \cup C
```

 $\therefore A \cup (B \cup C) = (A \cup B) \cup C$


```
Let x \in A \cap (B \cap C)

x \in A \cap (B \cap C)

iff x \in A and x \in (B \cap C)

iff x \in A and x \in B and x \in C

iff (x \in A \text{ and } x \in B) \text{ and } x \in C

iff (x \in (A \cap B)) \text{ and } x \in C

iff x \in (A \cap B) \cap C

\therefore A \cap (B \cap C) = (A \cap B) \cap C
```


Using Nots

A basic application of the not symbol swaps \in to \notin . If the statement has a – in, this is the equivalent of and \notin . For example,

$$x \in A - B = x \in A \text{ and } x \notin B$$

Example

1. Prove that (A')' = A for all sets $A \subseteq U$.

```
Let x \in (A')'

x \in (A')'

iff x \notin A'

iff x is not \notin A

iff x \in A

\therefore (A')' = A
```


The words swap!

When you apply a \notin sign in words, then \cup means and instead of or, and \cap means or instead of and.

Example

1. Prove that $(A \cup B)' = A' \cap B'$. (De Morgan's Theorem)

```
Let x \in (A \cup B)'.

x \in (A \cup B)'

iff x \notin (A \cup B)

iff x \notin A and x \notin B (Note the use of and instead of or for \cup)

iff x \in A' and x \in B'

iff x \in A' \cap B'

\therefore (A \cup B)' = A' \cap B'
```


2. Prove that $(A \cap B)' = A' \cup B'$. (De Morgan's Theorem)

```
Let x \in (A \cap B)'.

x \in (A \cap B)'

iff x \notin (A \cap B)

iff x \notin A \text{ or } x \notin B (Note the use of or instead of and for \cap)

iff x \in A' or x \in B'

iff x \in A' \cup B'

\therefore (A \cap B)' = A' \cup B'
```


Self-Assessment Exercise 6

1. Prove the following using iff statements. The answers are on the next page.

(a)
$$X-(Y\cap W)=(X-Y)\cup (X-W)$$

(b)
$$X \cap (Y \cup W) = (X \cap Y) \cup (X \cap W)$$

Self-Assessment Exercise 6 Answers

1. Prove the following using iff statements.

(a)
$$X - (Y \cap W) = (X - Y) \cup (X - W)$$

Let
$$x \in X - (Y \cap W)$$
.
 $x \in X - (Y \cap W)$
iff $x \in X$ and $x \notin (Y \cap W)$
iff $x \in X$ and $(x \notin Y \text{ or } x \notin W)$
iff $x \in X$ and $(x \in Y' \text{ or } x \in W')$
iff $(x \in X \text{ and } x \in Y')$ or $(x \in X \text{ and } x \in W')$
iff $(x \in (X \cap Y'))$ or $(x \in (X \cap W'))$
iff $(x \in (X - Y))$ or $(x \in (X - W))$
iff $(x \in (X - Y)) \cup (X - W)$
 $\therefore X - (Y \cap W) = (X - Y) \cup (X - W)$

(b) $X \cap (Y \cup W) = (X \cap Y) \cup (X \cap W)$

