Final Exam

Automata Theory Monsoon 2021, IIIT Hyderabad

December 4, 2021

Total Points: 25 Time: 90 mins [75 mins for writing + 15 mins for submission]

General Instructions: Upload a scanned PDF of handwritten answers on moodle. No submissions in any form after 10:05 will be evaluated. You should strictly stop writing at 9:45 and start scanning and uploading. DFA is deterministic finite automata. NFA is non-deterministic finite automata. CFL is context free language. If S_1 and S_2 are two strings, S_1S_2 represents their concatenation. All notation is standard from the lectures.

0.0.1 Parsing

- 1. [3 points] Comment on the Decidability of the Halting problem for Push-down Automata, compare it to that of the Turing Machine. If they don't match, explain why.
- 2. [4 points] Let R_1 , R_2 be a recursive language, and let RE_1 , RE_2 be two recursively enumerable languages. Are the following languages recursive or not? Are they recursively enumerable or not? Justify.
 - A: $RE_1 \cup RE_2$
 - B: $R_1 \cap RE_2$
 - C: $R_1 R_2 = \{x | (x \in R_1 \text{ and } x \notin R_2) \text{ or } (x \in R_2 \text{ and } x \notin R_1)\}$
- 3. [4 points] For any language L over Σ , the prefix closure of L is defined as:

$$Pre(L) = \{x \in \Sigma^* | \exists y \in \Sigma^* : xy \in L\}$$

Prove that if L is regular, Pre(L) is regular.

4. [3 points] Define the language EQ_{DFA} as follows:

$$EQ_{DFA} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

where M_1 , M_2 are encodings of DFAs as strings. Prove that EQ_{DFA} is recursive.

- 5. [2 points] Which of the following is the correct order and why?
 - A: Regular \subset Context Free \subset Recursive \subset Recursively Enumerable
 - B: Regular \subseteq Context Free \subseteq Recursive \subseteq Recursively Enumerable
 - C: Regular \subset Context Free \subset Recursively Enumerable \subset Recursive

- D: Regular \subseteq Context Free \subseteq Recursive \subseteq Recursively Enumerable
- 6. [3 points] Use the pumping lemma for CFLs to show that $L = \{www|w \in \{a,b\}^*\}$ is not context free.
- 7. [4 points] Let L be a CFL and $LEAST(L) = \{y \in L \mid y \text{ is a proper prefix of } x, \forall x \in L\}$. Show that CFLs are not closed under LEAST operation. (A proper prefix X of a string A is a substring such that there exists a non-empty string $S \in \Sigma^+$ such that XS = A)
- 8. [2 points] A. The regular expression $0^*(10^*)^*$ denotes the same set as
 - (a) (1*0)*1*
 - (b) $0^+(0^+10)^*$
 - (c) none of these
 - B. Draw an NFA for the same RegEx.