Outline

Wiskunde 1b: Continuity, Limits and Differentiation

B. Jacobs

Institute for Computing and Information Sciences - Digital Security Radboud University Nijmegen

Version: fall 2014

Continuous functions

Limits

Derivatives

Radboud University Nijmegen

Radboud University Nijmegen

Continuous functions

Definition

A function $f: D \to \mathbb{R}$ is continuous in point $a \in D$ if f(x) is close to f(a) for each x that is close to a.

More formally: $f: D \to \mathbb{R}$ is continuous in point $a \in D$ if: $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in D \,|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon.$

Example

The function f(x) = sign(x) is not continuous in 0 Indeed, $\exists \epsilon > 0 \, \forall \delta > 0 \, \exists x \text{ with } |x - 0| = |x| < \delta \text{ but}$

 $|f(x) - f(0)| = |f(x)| \ge \epsilon$

Choose $\epsilon = \frac{1}{2}$, then any $x \neq 0$ with $|x| < \delta$ has |sign(x)| = 1. The function values around 0 do not fall into the ϵ -interval.

Definition

A function $f: D \to \mathbb{R}$ is continuous if it is continuous in all $a \in D$.

Definition

Limits

A function $f: D \to \mathbb{R}$ has limit b for $x \to a$ if:

 $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in D \,|x - a| < \delta \Rightarrow |f(x) - b| < \epsilon.$

In that case we write $\lim_{x \to a} f(x) = b$.

(Note: a does not have to be in D.)

Example

- $\lim_{x \to 2} \frac{x^2 4}{x 2} = \lim_{x \to 2} \frac{(x 2)(x + 2)}{x 2} = 4.$
- $\lim_{x \to 1} \frac{-1}{x-1}$ is undefined

Radboud University Nijmegen

Derivatives

Radboud University Nijmegen

Limits involving infinity

We also need $\lim_{x\to\infty} f(x)$ or $\lim_{x\to-\infty} f(x)$. What does this mean?

A function $f: D \to \mathbb{R}$ has limit b for $x \to \infty$ if: $\forall \epsilon > 0 \,\exists n \in \mathbb{N} \,\forall x \in D \, x > n \Rightarrow |f(x) - b| < \epsilon.$

In that case we write $\lim_{x\to\infty} f(x) = b$. Formulate yourself what $\lim_{x \to -\infty} f(x) = b \text{ means.}$

Example

- $\lim_{x \to \pm \infty} \frac{1}{x} = 0$
- $\lim_{x \to \pm \infty} \frac{6x^2 + 2x + 1}{5x^2 3x + 4}$
- $\lim_{x \to +\infty} \frac{2x^3}{x^2 + 1}$

Definition

A function $f:D\to\mathbb{R}$ is differentiable at a if $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists. In this case the limit is denoted f'(a) and is called the derivative of f at a.

f is differentiable if f is differentiable at a for every $a \in D$. If $f(x) = \cdots$ then f' ("Lagrange notation") is sometimes written as $\frac{df}{dx}$ ("Leibniz notation")

We also define the tangent line to f at a to be the line through $(a, f(a)) \in G(f)$ with slope f'(a).

Example (Geometric interpretation)

Find a tangent line of a curve $f(x) = \frac{1}{x}$ in x = 2.

Example

Investigate if f(x) = |x| is differentiable in 0.

Let $f, g: D \to \mathbb{R}$ be differentiable functions in $a \in D$

- For a constant function $f(x) = c, c \in \mathbb{R}$, we have f'(x) = 0
- f(x) = x, then f'(x) = 1.
- plus/minus rule $(f \pm g)'(a) = f'(a) \pm g'(a)$.
- scalar rule: $(c \cdot f)'(a) = c \cdot f'(a)$.
- multiplication rule $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.
- division rule $(\frac{f}{g})'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g^2(a)}$.
- chain/composition rule $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$
- if f has an inverse f^{-1} , then $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$

Radboud University Nijmegen

Radboud University Nijmegen

Derivatives of powers

Monotonicity and the derivative

Lemma

- **1** For $n \in \mathbb{N}$ and $f(x) = x^n$ we have $f'(x) = nx^{n-1}$
 - This can be shown by induction on n
- 2 In fact, for $n \in \mathbb{Z}$ and $f(x) = x^n$ we have $f'(x) = nx^{n-1}$
 - This follows from the previous point, using the division rule.
- **3** It can be shown that $\frac{dx^a}{dx} = ax^{a-1}$, for each $a \in \mathbb{R}$.

Definition

Let $f: D \to \mathbb{R}$ be a function.

- f is increasing if $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$, for all $x_1, x_2 \in D$
- f is strictly increasing if $x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$, for all
- f is decreasing if $x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$, for all $x_1, x_2 \in D$
- f is strictly decreasing if $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$, for all $x_1, x_2 \in D$

How related to derivatives

- If $f'(x) \ge 0$, $\forall x \in [a, b] \Rightarrow f$ is increasing on [a, b].
- If $f'(x) \le 0$, $\forall x \in [a, b] \Rightarrow f$ is decreasing on [a, b].

Radboud University Nijmegen

Derivation exercises

Example

- f(x) = (2+3x)(2-3x). Find f'.
- $y = x^5 3x^3 + 4x^2 3$. Find f'.
- $y = \sqrt{2 5x}$. Find f'.
- $f(x) = x^2$. Find $(f^{-1})'$.