Alternating Series Test:

Let $a_n > 0$ for all n. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge if the following two conditions are met simultaneously:

I.
$$\lim_{n\to\infty} a_n = 0$$

II. $a_{n+1} \le a_n$ for all n (monotonically decreasing)

The way to demonstrate the following is to demonstrate that:

"the terms of the alternating series decrease in absolute value to zero." $\leftrightarrow \lim_{n\to\infty} \left| (-1)^m a_n \right| = 0$

Alternating Series Remainder Theorem:

If an alternating series $\sum_{n=1}^{\infty} (-1)^n a_n$ satisfies the condition that $a_{n+1} \le a_n$, then the absolute value of the remainder of R_N involved in approximating the sum S with the N^{th} partial sum S_N is *less than or equal to the absolute value of the first neglected term* [Since the sum starts at n=1, this would be $(N+1)^{\text{th}}$ term].

$$|S - S_N| = |R_N| \le |a_{N+1}|$$

Note that another way to express the bound of the difference is $|a_{N+1}| = |S_{N+1} - S_N|$

Proof: The series obtained by deleting the first N terms of the given series satisfies the conditions of the Alternating Series Test and has remainder of R_N . S_N represents the first N terms of the series and S the actual infinite sum.

$$\begin{split} S_N + R_N &= S \\ R_N &= S - S_N \\ &= \sum_{n=1}^{\infty} \left(-1\right)^{n+1} a_n - \sum_{n=1}^{N} \left(-1\right)^{n+1} a_n \\ &= \left(-1\right)^{N+1} a_{N+1} + \left(-1\right)^{N+2} a_{N+2} + \left(-1\right)^{N+3} a_{N+3} + \cdots \\ &= \left(-1\right)^{N+1} \left[a_{N+1} - a_{N+2} + a_{N+3} - \cdots \right] \\ \left| R_N \right| &= \left| \left(-1\right)^{N+1} \left[a_{N+1} - a_{N+2} + a_{N+3} - \cdots \right] \right| \\ &= \left| \left(-1\right)^{N+1} \left| \left| \left[a_{N+1} - a_{N+2} + a_{N+3} - \cdots \right] \right| \\ &= a_{n+1} - a_{n+2} + a_{n+3} - a_{n+4} + a_{n+5} - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+4} - a_{N+5} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+1} - \left(a_{N+2} - a_{N+3} \right) - \left(a_{N+2} - a_{N+3} \right) - \cdots \\ &= a_{N+2} - \left(a_{N+2} - a$$

Example #1:

$$S = \sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n!} = -1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \cdots$$

$$S_4 = \sum_{n=1}^{4} \frac{(-1)^n}{n!} = -1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!}$$

$$\left| S - S_4 \right| = \left| R_4 \right| \le \left| -\frac{1}{5!} \right|$$

Example # 2:

$$S = \sum_{n=0}^{\infty} \left(-\frac{2}{3} \right)^n = 1 - \frac{2}{3} + \left(\frac{2}{3} \right)^2 - \left(\frac{2}{3} \right)^3 + \left(\frac{2}{3} \right)^4 - \cdots$$

$$S_4 = \sum_{n=0}^{3} \left(-\frac{2}{3}\right)^n = 1 - \frac{2}{3} + \left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^3$$

$$\left| S - S_4 \right| = \left| R_4 \right| \le \left| \left(\frac{2}{3} \right)^4 \right|$$

A series is <i>conditionally convergent</i> if	A series is	conditionally	y convergent	if:
--	-------------	---------------	--------------	-----

 $\sum a_n$ converges and $\sum |a_n|$ diverges

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\ln\left(n+1\right)}$$

Converges by Alternating Series Test

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^n}{\ln\left(n+1\right)} \right|$$
 does not converge by using the Direct

Comparison Test with the Harmonic Series

$$\frac{1}{n} \le \left| \frac{\left(-1\right)^n}{\ln\left(n+1\right)} \right| = \frac{1}{\ln\left(n+1\right)}$$

A series converges absolutely if

 $\sum |a_n|$ converges

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\left(n-1\right)!}$$

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^n}{\left(n-1\right)!} \right| = \sum_{n=1}^{\infty} \frac{1}{\left(n-1\right)!}$$
 converges by direct

comparison test with $\frac{1}{n^2}$

$$\frac{1}{(n-1)!} \le \frac{1}{n^2}$$
 for sufficiently large n .