AC2++

AC2++ ICPC Team Notebook

Contents

1		plates																		3
	1.1 1.2	Plantilla C++							 	 		 	 			 	 			3
	1.3	Plantilla C++ Max	• •			• •			 • •	 	• •	 • •	 		 •	 	 			3
2		Structures																		4
	2.1	Binary Indexed Tree Binary Indexed Tree 2D																		4
	2.3	DSU RollBack																		4
	2.4	Fenwick Tree								 										4
	2.5	Order Statistics Tree								 			 				• •		٠.	5 5
	2.7	Segment Tree																		5
	2.8	Lazy Segment Tree							 											
	2.9	LazyRMQ																		6
	2.10 2.11	Sparse Lazy Propagation																		6 6
	2.12																			7
	2.13	Persistent Lazy Propagation .																		7
	2.14	Iterative Segment Tree	• •						 	 		 	 		 •	 	 • •		• •	8
3	Mat	h																		9
	3.1	Operaciones con Bits							 	 		 	 			 	 			9
	3.2	Catalan							 	 		 	 				 			9
	3.3	Combinaciones																		9
	3.5	FFT																		9
	3.6	Linear Diophantine																		10
	3.7	Matrix																		10 10
	3.9	Numeros Primos																		10
	3.10	Simpson							 	 		 	 			 	 			11
	a. •																			10
4	Stri	_																		12
	4.1	Aho-Corasick											 				 			12 13
	4.3	Hashing							 	 										13
	4.4	KMP				• •														13
	4.5 4.6	Manacher																		14 14
	4.7	Suffix Automaton																		15
	4.8	Suffix Tree																		
	4.9 4.10	Trie																		16 16
	4.10	Z-Algorithm							 	 		 	 		 •	 	 			10
5	Dyn	amic Programming																		17
5	5.1	2D Sum																		17
5	5.1 5.2	2D Sum							 	 		 	 			 	 			17 17
5	5.1	2D Sum			: :				 : :	 		 	 : :	: :		 	 	: :	: :	17
5	5.1 5.2 5.3 5.4 5.5	2D Sum		· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	 	 · · · · · · · · · · · · · · · · · · ·		 	 	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	17 17 17 17
5	5.1 5.2 5.3 5.4 5.5 5.6	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·		 	 		 	 	 			17 17 17 17 17
5	5.1 5.2 5.3 5.4 5.5	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack		· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·		 	 		 	 	 			17 17 17 17 17
	5.1 5.2 5.3 5.4 5.5 5.6	2D Sum			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		 · · · · · · · · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·		 	 		 	 	 			17 17 17 17 17
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Gra p 6.1	2D Sum							 	 · · · · · · · · · · · · · · · · · · ·		 	 		 •	 				17 17 17 17 17 17 18 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection							 	 		 	 			 				17 17 17 17 17 17 17 18 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Gra p 6.1	2D Sum							 	 		 				 				17 17 17 17 17 17 18 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5	2D Sum							 			 				 				17 17 17 17 17 17 17 18 19 19 19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp										 								17 17 17 17 17 17 18 19 19 19 19 19 20 20
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro										 								17 17 17 17 17 17 18 19 19 19 19 20 20 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp																		17 17 17 17 17 17 18 19 19 19 19 19 20 20
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kyuskal (MST) Prim (MST)										 								17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kyuskal (MST) Prim (MST)																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.13 6.13	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.6 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra																		17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23
	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.16 6.16 6.16 6.16 6.16 6.16	2D Sum . Tecnica con Deque DP con digitos . Knapsack . Longest Increasing Subsequence Monotonic Stack . Travelling Salesman Problem . Salesman Problem . Travelling Salesman Problem . Salesman Problem . Travelling Salesman Problem . Salesman Salesman Problem . Salesman Salesman Salesman . Salesman Salesman Salesman . Salesman Salesman Salesman . Salesman																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 22 23 23
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 Grap 6.1 6.2 6.3 6.6 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra																		17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23
	5.1 5.2 5.3 5.4 5.5 5.5 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.6 6.1 6.12 6.12 6.14 6.15 6.14 6.15 6.16 6.16 6.16 6.16 6.17 6.17 6.18 6.19 6.19 6.19 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra Floyd-Warshall Binary Lifting LCA Euler Tour Find Centroid																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23 23 23 23 23 23
	5.1 5.2 5.3 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.16 6.17 6.18 6.19 6.19 6.19 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	2D Sum . Tecnica con Deque DP con digitos . Knapsack . Longest Increasing Subsequence Monotonic Stack . Travelling Salesman Problem . SAT . Bridge Detection . Kosaraju (SCC) . Tarjan (SCC) . Tarjan (SCC) . General Matching . Hopcroft Karp . Hungaro . Kuhn																		17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 21 22 22 22 23 23 23 23 23 23
	5.1 5.2 5.3 5.4 5.5 5.5 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.6 6.1 6.12 6.12 6.14 6.15 6.14 6.15 6.16 6.16 6.16 6.16 6.17 6.17 6.18 6.19 6.19 6.19 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra Floyd-Warshall Binary Lifting LCA Euler Tour Find Centroid																		17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23 23 23 23 23 23
6	5.1 5.2 5.3 5.4 5.5 5.6 6.7 6.2 6.3 6.4 6.5 6.6 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.16 6.17 6.18 6.19 6.10 6.19 6.10 6.11 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.17 6.17 6.17 6.17 6.17 6.17	2D Sum . Tecnica con Deque DP con digitos . Knapsack . Longest Increasing Subsequence Monotonic Stack . Travelling Salesman Problem . SAT . Bridge Detection . Kosaraju (SCC) . Tarjan (SCC) . Tarjan (SCC) . General Matching . Hopcroft Karp . Hungaro . Kuhn																		17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 21 22 22 22 23 23 23 23 23 23
6	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.6 6.1 6.12 6.13 6.14 6.14 6.15 6.16 6.15 6.16 6.17 6.19 6.19 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra Floyd-Warshall Binary Lifting LCA Euler Tour Find Centroid Hierholzer Orden Topologico metry Punto																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23 23 23 23 24 24 24
6	5.1 5.2 5.3 5.3 5.4 5.5 6.5 6.1 6.2 6.3 6.4 6.5 6.6 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.10 6.10 6.11 6.12 6.13 6.14 6.15 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	2D Sum . Tecnica con Deque DP con digitos . Knapsack . Longest Increasing Subsequence Monotonic Stack . Travelling Salesman Problem Phs 2SAT . Bridge Detection . Kosaraju (SCC) . Tarjan (SCC) . General Matching . Hopcroft Karp . Hungaro . Kuhn . Kruskal (MST) . Prim (MST) . Dinic . Min Cost Max Flow . Push Relabel . Bellman-Ford . Dijkstra . Floyd-Warshall . Binary Lifting LCA . Euler Tour . Find Centroid . Hierholzer . Orden Topologico . metry Punto .																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 21 22 22 22 22 23 23 23 23 23 23 24 24 24 25 25 25
6	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.6 6.1 6.12 6.13 6.14 6.14 6.15 6.16 6.15 6.16 6.17 6.19 6.19 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra Floyd-Warshall Binary Lifting LCA Euler Tour Find Centroid Hierholzer Orden Topologico metry Punto																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23 23 23 23 24 24 24
6	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.14 6.15 6.16 6.15 6.16 6.17 6.18 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	2D Sum . Tecnica con Deque DP con digitos . Knapsack . Longest Increasing Subsequence Monotonic Stack . Travelling Salesman Problem . Salesman Salesman Problem . Salesman Salesman . Salesman																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23 23 23 23 24 24 25 25 25 26 26
6	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.18 6.10 6.11 6.12 6.13 6.14 6.19 6.10 6.	2D Sum . Tecnica con Deque DP con digitos . Knapsack . Longest Increasing Subsequence Monotonic Stack . Travelling Salesman Problem Phs 2SAT . Bridge Detection . Kosaraju (SCC) . Tarjan (SCC) . General Matching . Hopcroft Karp . Hungaro . Kuhn . Kruskal (MST) . Prim (MST) . Dinic . Min Cost Max Flow . Push Relabel . Bellman-Ford . Dijkstra . Floyd-Warshall . Binary Lifting LCA . Euler Tour . Find Centroid . Hierholzer . Orden Topologico . metry Punto . Linea . Segmento . Poligono . Circulo . Fracciones .																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 21 22 22 22 22 23 23 23 23 23 23 24 24 24 25 25 26 26 26 26
6	5.1 5.2 5.3 5.4 5.5 5.6 6.1 6.2 6.3 6.4 6.5 6.6 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.14 6.15 6.16 6.15 6.16 6.17 6.18 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19	2D Sum Tecnica con Deque DP con digitos Knapsack Longest Increasing Subsequence Monotonic Stack Travelling Salesman Problem Phs 2SAT Bridge Detection Kosaraju (SCC) Tarjan (SCC) General Matching Hopcroft Karp Hungaro Kuhn Kruskal (MST) Prim (MST) Dinic Min Cost Max Flow Push Relabel Bellman-Ford Dijkstra Floyd-Warshall Binary Lifting LCA Euler Tour Find Centroid Hierholzer Orden Topologico metry Punto Linea Segmento Poligiono Circulo																		17 17 17 17 17 17 17 18 19 19 19 20 20 21 21 21 21 21 22 22 22 23 23 23 23 24 24 25 25 25 26 26

AC2++ 2

	7.9	Punto 3D	27
8	Extr	ras	28
	8.1	Busquedas	28
	8.2	Fechas	28
	8.3	HashPair	28
	8.4	Trucos	28

1 Templates

1.1 Plantilla C++

```
#include <bits/stdc++.h>
using namespace std;
// AC2++
using 11 = long long;
using pi = pair<int, int>;
using vi = vector<int>;
#define fi first
#define se second
#define pb push_back
#define SZ(x) int((x).size())
#define ALL(x) begin(x), end(x)
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define ROF(i, a, b) for (int i = (a)-1; i \ge (b); --i)
#define ENDL '\n'
constexpr int MOD = 1e9 + 7;
constexpr int MAXN = 1e5 + 5;
constexpr int INF = 1e9:
constexpr 11 LLINF = 1e18;
int main() {
  ios_base::sync_with_stdio(0);
  cin.tie(nullptr);
  return 0;
```

1.2 Plantilla Python

```
import sys
import math
import bisect
from sys import stdin, stdout
from math import gcd, floor, sqrt, log
from collections import defaultdict as dd
from bisect import bisect_left as bl, bisect_right as br
sys.setrecursionlimit(100000000)
def inp():
   return int(input())
def strng():
    return input().strip()
def jn(x, 1):
   return x.join(map(str, 1))
def strl():
   return list(input().strip())
    return map(int, input().strip().split())
   return map(float, input().strip().split())
    return list(map(int, input().strip().split()))
```

```
def ceil(x):
    return int(x) if (x == int(x)) else int(x) + 1

def ceildiv(x, d):
    return x // d if (x % d == 0) else x // d + 1

def flush():
    return stdout.flush()

def stdstr():
    return stdin.readline()

def stdint():
    return int(stdin.readline())

def stdpr(x):
    return stdout.write(str(x))
```

1.3 Plantilla C++ Max

```
#include <bits/stdc++.h>
using namespace std;
// AC2++
using ll = long long;
using ull = unsigned long long;
using pi = pair<int, int>;
using pl = pair<11, 11>;
using pd = pair<double, double>;
using vi = vector<int>;
using vb = vector<bool>;
using vl = vector<ll>;
using vd = vector<double>;
using vs = vector<string>;
using vpi = vector<pi>;
using vpl = vector<pl>;
using vpd = vector<pd>;
// pairs
#define mp make_pair
#define fi first
#define se second
// vectors
#define sz(x) int((x).size())
#define bg(x) begin(x)
#define all(x) bg(x), end(x)
#define rall(x) x.rbegin(), x.rend()
#define ins insert
#define ft front()
#define bk back()
#define pb push_back
#define eb emplace back
#define lb lower_bound
#define ub upper_bound
#define tcT template <class T
tcT > int lwb(vector<T> &a, const T &b) { return int(lb(all(
     a), b) - bg(a);
#define FOR(i, a, b) for (int i = (a); i < (b); ++i)
#define FOR(i, a) FOR(i, 0, a)
#define ROF(i, a, b) for (int i = (a)-1; i >= (b); --i)
#define ROF(i, a) ROF(i, a, 0)
#define ENDL '\n'
#define LSOne(S) ((S) & -(S))
```

```
#define MSET(arr, val) memset(arr, val, sizeof arr)

const int MOD = 1e9 + 7;
const int MAXN = 1e5 + 5;
const int INF = 1e9;
const il LLINF = 1e18;
const int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; //
abajo, derecha, arriba, izquierda

template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
int main() {
  ios_base::sync_with_stdio(0);
  cin.tie(nullptr);
  return 0;
}
```

2 Data Structures

2.1 Binary Indexed Tree

```
* Descripcion: arbol binario indexado, util para consultas
 * donde es posible hacer inclusion-exclusion, suma,
      multiplicacion.
 * etc. Utilizar indices 1-indexados, checar MAX, query ->
     [1, index]
 * Tiempo: O(log n)
int n, bit[MAX];
int query(int index) {
 int sum = 0;
  while (index > 0) {
   sum += bit[index];
   index -= index & (-index);
 return sum:
void add(int index, int val) {
  while (index <= n) {</pre>
   bit[index] += val;
   index += index & (-index);
```

2.2 Binary Indexed Tree 2D

```
* Descripcion: arbol binario indexado 2D, util para
      consultas en
 * un espacio 2D como una matriz
 * Construir el BIT: O(NM log(N) *log(M))
 * Consultas y Actualizaciones: O(log(N) *log(M))
int ft[MAX + 1][MAX + 1];
void upd(int i0, int j0, int v) {
  for (int i = i0 + 1; i <= MAX; i += i & -i)</pre>
    for (int j = j0 + 1; j <= MAX; j += j & -j)</pre>
      ft[i][j] += v;
int get(int i0, int j0) {
  int r = 0;
  for (int i = i0; i; i -= i & -i)
  for (int j = j0; j; j -= j & -j)
     r += ft[i][j];
  return r;
int get sum(int i0, int i0, int i1, int i1) {
  return get(i1, j1) - get(i1, j0) - get(i0, j1) + get(i0,
        j0);
```

2.3 DSU RollBack

```
/**
  * Descripcion: Estructura de conjuntos disjuntos con la
  * capacidad de regresar a estados anteriores.
  * Si no es necesario, ignorar st, time() y rollback().
  * Uso: int t = uf.time(); ...; uf.rollback(t)
  * Tiempo: O(log n)
  */
```

```
struct RollbackDSU {
 vector<int> e;
  vector<pair<int, int>> st;
 RollbackDS(int n) : e(n, -1) {}
 int size(int x) { return -e[get(x)]; }
  int get(int x) \{ return e[x] < 0 ? x : e[x] = get(e[x]); \}
  int time() { return st.size(); }
 void rollback(int t) {
    for (int i = time(); i-- > t;)
     e[st[i].first] = st[i].second;
    st.resize(t);
  bool join(int a, int b) {
    a = get(a), b = get(b);
    if (a == b)
     return false;
    if (e[a] > e[b])
     swap(a, b);
    st.push_back({a, e[a]});
    st.push_back({b, e[b]});
    e[a] += e[b];
    e[b] = a;
    return true;
};
```

2.4 Fenwick Tree

```
* Descripcion: arbol binario indexado, util para consultas
 * donde es posible hacer inclusion-exclusion, suma,
     multiplicacion.
 * etc. Utilizar indices 1-indexados, query -> [1, index]
 * La diferencia entre BIT.cpp y este es la cantidad de
      operaciones
 * soportadas, con este, son posibles las actualizaciones en
       rango.
 * Tiempo: O(log n)
#define LSOne(S) ((S) & -(S))
class FenwickTree {
private:
 vll ft;
 FenwickTree(int m) { ft.assign(m + 1, 0); }
 void build(const vll &f) {
   int m = (int) f.size() - 1;
   ft.assign(m + 1, 0);
   FOR(i, 1, m + 1) {
     ft[i] += f[i];
     if (i + LSOne(i) <= m)
       ft[i + LSOne(i)] += ft[i];
 FenwickTree(const vll &f) { build(f); }
 FenwickTree(int m, const vi &s) {
   vll f(m + 1, 0);
   FOR(i, (int)s.size()) {
     ++f[s[i]];
   build(f);
 11 query(int j) {
   11 \text{ sum} = 0;
   for (; j; j -= LSOne(j))
    sum += ft[j];
   return sum;
```

```
11 query(int i, int j) {
    return query(j) - query(i - 1);
  void update(int i, ll v) {
    for (; i < (int)ft.size(); i += LSOne(i))</pre>
     ft[i] += v;
  int select(ll k) {
   int p = 1;
    while (p * 2 < (int) ft.size())
     p *= 2;
    int i = 0:
    while (p) {
     if (k > ft[i + p]) {
       k = ft[i + p];
       i += p;
     p /= 2;
    return i + 1;
class RUPO { // Consulta de punto y actualizacion de rango
 private:
 FenwickTree ft;
 public:
 RUPQ(int m) : ft(FenwickTree(m)) {}
  void range_update(int ui, int uj, ll v) {
   ft.update(ui, v);
    ft.update(uj + 1, -v);
  11 point_query(int i) {
    return ft.query(i);
class RURQ { // Consulta de rango y actualizacion de rango
 RUPQ(int m) : rupq(RUPQ(m)), purq(FenwickTree(m)) {}
  void range_update(int ui, int uj, ll v) {
    rupq.range_update(ui, uj, v);
    purq.update(ui, v * (ui - 1));
    purq.update(uj + 1, -v * uj);
 11 query(int j) {
    return ruqp.point_query(j) * j -
          purq.query(j);
  11 query(int i, int j) {
   return query(j) - query(i - 1);
// Implementacion
vll f = {0, 0, 1, 0, 1, 2, 3, 2, 1, 1, 0}; // index 0
     siempre sera 0
FenwickTree ft(f);
printf("%lld\n", ft.rsq(1, 6)); //7 \Rightarrow ft[6]+ft[4] = 5+2
printf("%d\n", ft.select(7));
                                 // index 6, query(1, 6) ==
      7, el cual es >= 7
ft.update(5, 1);
                                  // update
     {0,0,1,0,2,2,3,2,1,1,0}
printf("%lld\n", ft.rsq(1, 10)); // 12
printf("====\n");
RUPQ rupq(10);
RURO rura (10):
rupg.range_update(2, 9, 7); // indices en [2, 3, .., 9]
```

2.5 Order Statistics Tree

```
* Descripcion: es una variante del BST, que ademas soporta
 * operaciones extra ademas de insercion, busqueda y
      eliminacion:
 * Select(i) - find_by_order: encontrar el i-esimo elemento
      (0-indexado)
 * del conjunto ordenado de los elementos, retorna un
      iterador.
 * Rank(x) - order_of_key: encontrar el rango de x en el
      conjunto.
 * es decir, retorna su indice en la lista ordenada de los
      elementos.
 * Uso:
 * oset<int> OST
 * Funciona como un set, por lo que nativamente no soporta
      elementos
 * repetidos. Si se necesitan repetidos, pero no eliminar
     valores.
 * cambiar la funcion comparadora por less_equal<T>. Si se
      necesitan
 * repetidos y tambien la eliminacion, agregar una dimension
      a T en
 * en donde el ultimo parametro sea el diferenciador (por
      ejemplo.
 * si estamos con enteros, utilizar un pair donde el second
      sea unico).
 * Modificar el primer y tercer parametro (tipo y funcion
      comparadora),
 * si se necesita un mapa, en lugar de null_type, escribir
      el tipo a mapear.
 * Tiempo: O(log n)
#include <hits/extc++ h>
using namespace __gnu_pbds;
template <class T>
using oset = tree<T, null_type, less<T>, rb_tree_tag,
     tree_order_statistics_node_update>;
```

2.6 Sparse Table

```
ST.assign(MAX_LOG, vector<T>(SZ(A), 0));

for (int i = 0; i < SZ(A); i++)
    ST[0][i] = A[i];

for (int k = 1; k <= MAX_LOG; k++)
    for (int i = 0; i + (1 << k) <= SZ(A); i++)
        ST[k][i] = min(ST[k - 1][i], ST[k - 1][i + (1 << (k - 1))]);
}

T query(int l, int r) { // [l, r]
    int p = 31 - _builtin_clz(r - 1 + 1);
    return min(ST[p][1], ST[p][r - (1 << p) + 1]);
};</pre>
```

2.7 Segment Tree

```
* Descripcion: arbol de segmentos, bastante poderoso para
* realizar consultas de rango y actualizaciones de punto,
 * se puede utilizar cualquier operacion conmutativa, es
 * aquella en donde el orden de evaluación no importe: suma,
* multiplicacion, XOR, OR, AND, MIN, MAX, etc.
 * Tiempo: O(n log n) en construccion y O(log n) por
      consulta
class SegmentTree {
private:
 int n:
 vi arr, st;
 int 1(int p) { return (p << 1) + 1; }</pre>
 int r(int p) { return (p << 1) + 2; }</pre>
  void build(int index, int start, int end) {
   if (start == end)
     st[index] = arr[start];
   else {
     int mid = (start + end) / 2;
     build(l(index), start, mid);
     build(r(index), mid + 1, end);
     st[index] = st[l(index)] + st[r(index)];
 int query(int index, int start, int end, int i, int j) {
   if (j < start || end < i)</pre>
     return 0; // Si ese rango no nos sirve, retornar un
           valor que no cambie nada
   if (i <= start && end <= j)</pre>
     return st[index];
   int mid = (start + end) / 2;
   return query(l(index), start, mid, i, j) + query(r(index
         ), mid + 1, end, i, j);
 void update(int index, int start, int end, int idx, int
       val) {
   if (start == end)
     st[index] = val;
   else {
     int mid = (start + end) / 2:
      if (start <= idx && idx <= mid)</pre>
       update(l(index), start, mid, idx, val);
       update(r(index), mid + 1, end, idx, val);
```

```
st[index] = st[l(index)] + st[r(index)];
}

public:
SegmentTree(int sz) : n(sz), st(4 * n) {}

SegmentTree(const vi &initialArr) : SegmentTree((int) initialArr.size()) {
    arr = initialArr;
    build(0, 0, n - 1);
}

void update(int i, int val) { update(0, 0, n - 1, i, val);
    }

int query(int i, int j) { return query(0, 0, n - 1, i, j);
    }
};
```

2.8 Lazy Segment Tree

```
* Descripcion: arbol de segmentos, bastante poderoso para
 * realizar consultas de suma en un rango y actualizaciones
 * de suma en un rango de manera eficiente. El metodo add
 * agrega x a todos los numeros en el rango [start, end].
 * Uso: LazySegmentTree ST(arr)
 * Tiempo: O(log n)
class LazySegmentTree {
private:
 int n:
 vi A, st, lazy;
 inline int l (int p) { return (p << 1) + 1; } // ir al
       hijo izaujerdo
  inline int r(int p) { return (p << 1) + 2; } // ir al</pre>
       hijo derecho
 void build(int index, int start, int end) {
   if (start == end) {
     st[index] = A[start];
    } else {
     int mid = (start + end) / 2;
     build(l(index), start, mid);
     build(r(index), mid + 1, end);
     st[index] = st[l(index)] + st[r(index)];
 // Nota: Si se utiliza para el minimo o maximo de un rango
        no se le agrega el (end - start + 1)
  void propagate(int index, int start, int end) {
   if (lazy[index] != 0) {
     st[index] += (end - start + 1) * lazy[index];
     if (start != end) {
       lazy[l(index)] += lazy[index];
       lazy[r(index)] += lazy[index];
     lazy[index] = 0;
 void add(int index, int start, int end, int i, int j, int
   propagate(index, start, end);
    if ((end < i) || (start > j))
     return:
   if (start >= i && end <= j) {</pre>
     st[index] += (end - start + 1) * x;
     if (start != end) {
```

```
lazy[l(index)] += x;
     lazy[r(index)] += x;
   return:
 int mid = (start + end) / 2;
  add(l(index), start, mid, i, j, x);
 add(r(index), mid + 1, end, i, j, x);
 st[index] = (st[l(index)] + st[r(index)]);
int query(int index, int start, int end, int i, int j) {
 propagate(index, start, end);
 if (end < i || start > j)
   return 0;
 if ((i <= start) && (end <= i))</pre>
   return st[index];
 int mid = (start + end) / 2;
 return query(l(index), start, mid, i, j) + query(r(index
       ), mid + 1, end, i, j);
LazySegmentTree(int sz) : n(sz), st(4 * n), lazy(4 * n) {}
LazySegmentTree(const vi &initialA) : LazySegmentTree((int
    )initialA.size()) {
 A = initialA;
 build(0, 0, n - 1);
void add(int i, int j, int val) { add(0, 0, n - 1, i, j,
    val); } // [i, i]
int query(int i, int j) { return query(0, 0, n = 1, i, j);
     } // [i, j]
```

2.9 LazyRMQ

```
* Descripcion: arbol de segmentos, bastante poderoso para
 * realizar consultas de min/max en un rango y
     actualizaciones
 * en un rango de manera eficiente.
 * Uso: LazyRMQ ST(arr)
 * Tiempo: O(log n)
class LazyRMQ {
private:
  int n;
 vi A, st, lazy;
  int 1(int p) { return (p << 1) + 1; }</pre>
 int r(int p) { return (p << 1) + 2; }</pre>
 int conquer(int a, int b) {
   if (a == -1)
     return b;
   if (b == -1)
     return a;
   return min(a, b);
  void build(int p, int L, int R) {
   if (L == R)
     st[p] = A[L];
    else {
     int m = (L + R) / 2;
     build(l(p), L, m);
      build(r(p), m + 1, R);
```

```
st[p] = conquer(st[l(p)], st[r(p)]);
void propagate(int p, int L, int R) {
  if (lazy[p] != -1) {
    st[p] = lazy[p];
     lazy[l(p)] = lazy[r(p)] = lazy[p];
      A[L] = lazy[p];
     lazy[p] = -1;
 int query(int p, int L, int R, int i, int j) {
  propagate(p, L, R);
  if (i > i)
    return -1;
  if ((L >= i) && (R <= j))</pre>
    return st[p];
  int m = (L + R) / 2;
  return conquer(query(l(p), L, m, i, min(m, j)),
                 query(r(p), m + 1, R, max(i, m + 1), j));
 void update(int p, int L, int R, int i, int j, int val) {
  propagate(p, L, R);
  if (i > j)
    return:
  if ((L >= i) && (R <= j)) {
    lazy[p] = val;
    propagate(p, L, R);
  } else {
    int m = (L + R) / 2;
     update(l(p), L, m, i, min(m, j), val);
     update(r(p), m + 1, R, max(i, m + 1), j, val);
     int lsubtree = (lazy[l(p)] != -1) ? lazy[l(p)] : st[l(
         p)];
     int rsubtree = (lazy[r(p)] != -1) ? lazy[r(p)] : st[r(
         p)];
    st[p] = (lsubtree <= rsubtree) ? st[l(p)] : st[r(p)];</pre>
public:
LazyRMQ(int sz) : n(sz), st(4 * n), lazy(4 * n, -1) {}
 LazyRMQ(const vi &initialA) : LazyRMQ((int)initialA.size()
  A = initialA;
  build(1, 0, n - 1);
 void update(int i, int j, int val) { update(0, 0, n - 1, i
```

2.10 Sparse Segment Tree

, j, val); } // [i, j]

```
/**

* Descripcion: arbol de segmentos esparcido, es util cuando

* el rango usado es bastante largo. Lo que cambia es que

solo

* se crean los nodos del arbol que se van utilizando, por

lo

* que se utilizan 2 punteros para los hijos de cada nodo.

* Uso: node ST();

* Complejidad: O(log n)

*/

const int SZ = 1 << 17;

template <class T>
```

int query(int i, int j) { return query(0, 0, n - 1, i, j);

// [i, j]

```
struct node {
 T val = 0:
  node<T>* c[2];
  node() \{ c[0] = c[1] = NULL; \}
  void upd(int ind, T v, int L = 0, int R = SZ - 1) {
   if (L == ind && R == ind) {
      val += v;
      return:
    int M = (L + R) / 2;
    if (ind <= M) {
     if (!c[0])
       c[0] = new node();
      c[0]->upd(ind, v, L, M);
    } else {
     if (!c[1])
       c[1] = new node();
      c[1] = \sup (ind, v, M + 1, R);
    val = 0;
    for (int i = 0; i < 2; i++)
     if (c[i])
       val += c[i]->val;
  T query (int lo, int hi, int L = 0, int R = SZ - 1) { // [
       1. rl
    if (hi < L || R < lo) return 0;</pre>
    if (lo <= L && R <= hi) return val;</pre>
    int M = (L + R) / 2;
    T res = 0;
    if (c[0]) res += c[0]->query(lo, hi, L, M);
    if (c[1]) res += c[1]->query(lo, hi, M + 1, R);
    return res:
};
```

2.11 Sparse Lazy Propagation

```
* Descripcion: arbol de segmentos esparcido, es util cuando
 * rango usado es bastante largo, y que ademas haya
      operaciones
 * de rango.
 * Uso:
 * Inicializar el nodo 1 como la raiz -> segtree[1] = {0, 0,
       1, 1e9}
 * utilizar los metodos update y query
 * Complejidad: O(log n)
struct Node {
 int sum, lazy, tl, tr, l, r;
 Node(): sum(0), lazy(0), l(-1), r(-1) {}
const int MAXN = 123456;
Node segtree[64 * MAXN];
int cnt = 2:
void push lazy(int node) {
  if (segtree[node].lazy) {
   segtree[node].sum = segtree[node].tr - segtree[node].tl
        + 1:
    int mid = (segtree[node].tl + segtree[node].tr) / 2;
   if (segtree[node].l == -1) {
     segtree[node].1 = cnt++;
     segtree[segtree[node].1].tl = segtree[node].tl;
     segtree[segtree[node].1].tr = mid;
   if (segtree[node].r == -1) {
      segtree[node].r = cnt++;
      segtree[segtree[node].r].tl = mid + 1;
     segtree[segtree[node].r].tr = segtree[node].tr;
```

```
segtree[segtree[node].1].lazy = segtree[segtree[node].r
         1.1azv = 1:
    segtree[node].lazy = 0;
void update(int node, int 1, int r) { // [1, r]
 push_lazy(node);
  if (l == segtree[node].tl && r == segtree[node].tr) {
    segtree[node].lazy = 1;
   push_lazy(node);
  } else {
   int mid = (segtree[node].tl + segtree[node].tr) / 2;
    if (segtree[node].1 == -1) {
      segtree[node].1 = cnt++;
     segtree[segtree[node].1].tl = segtree[node].tl;
      segtree[segtree[node].1].tr = mid;
    if (segtree[node].r == -1) {
     segtree[node].r = cnt++;
      segtree[segtree[node].r].tl = mid + 1;
      segtree[segtree[node].r].tr = segtree[node].tr;
    if (1 > mid)
     update(segtree[node].r, 1, r);
    else if (r <= mid)</pre>
     update(segtree[node].1, 1, r);
    else {
     update(segtree[node].1, 1, mid);
      update(segtree[node].r, mid + 1, r);
   push_lazy(segtree[node].1);
    push_lazy(segtree[node].r);
    segtree[node].sum =
        segtree[segtree[node].1].sum + segtree[segtree[node
             ].r].sum;
int query(int node, int 1, int r) { // [1, r]
  push_lazy(node);
  if (l == segtree[node].tl && r == segtree[node].tr)
   return segtree[node].sum;
  else {
   int mid = (segtree[node].tl + segtree[node].tr) / 2;
    if (segtree[node].1 == -1) {
     segtree[node].1 = cnt++;
     segtree[segtree[node].1].tl = segtree[node].tl;
      segtree[segtree[node].1].tr = mid;
    if (segtree[node].r == -1) {
     segtree[node].r = cnt++;
      segtree[segtree[node].r].tl = mid + 1;
      segtree[segtree[node].r].tr = segtree[node].tr;
   if (1 > mid)
     return query(segtree[node].r, 1, r);
    else if (r <= mid)</pre>
     return query(segtree[node].1, 1, r);
     return query(segtree[node].1, 1, mid) +
             query(segtree[node].r, mid + 1, r);
```

2.12 Persistent Segment Tree

```
/**
 * Descripcion: crea un segment tree donde guarda sus
 * formas pasadas cuando se hace una actualizacion
 * Tiempo: log(n)
 */
```

```
struct STree { // persistent segment tree for min over
    integers
 vi st. L. R:
 int n, tam, rt;
 STree(int n): st(1, INF), L(1, 0), R(1, 0), n(n), rt(0),
       tam(1) {}
  int new_node(int v, int 1 = 0, int r = 0) {
   int ks = sz(st);
   st.pb(v);
   L. pb (1):
   R.pb(r):
   return ks:
  int upd(int k, int s, int e, int p, int v) {
   int ks = new_node(st[k], L[k], R[k]);
   if (s + 1 == e) {
     st[ks] = v:
     return ks:
   int m = (s + e) / 2, ps;
   if (p < m)
     ps = upd(L[ks], s, m, p, v), L[ks] = ps;
     ps = upd(R[ks], m, e, p, v), R[ks] = ps;
   st[ks] = oper(st[L[ks]], st[R[ks]]);
   return ks;
 int query(int k, int s, int e, int a, int b) {
   if (e <= a | | b <= s) return INF;</pre>
   if (a <= s && e <= b) return st[k];</pre>
   int m = (s + e) / 2;
   return oper(query(L[k], s, m, a, b), query(R[k], m, e, a
 int upd(int k, int p, int v) { return rt = upd(k, 0, n, p,
 int upd(int p, int v) { return upd(rt, p, v); } // update
 int query(int k, int a, int b) { return query(k, 0, n, a,
```

2.13 Persistent Lazy Propagation

```
* Descripcion: arbol de segmentos persistente que
 * permite consultas de rango de manera eficiente.
 * Una estructura persistente es aquella que guarda
 * sus estados anteriores y puede volver a ellos.
 * Tiempo: O(log n) por consulta
11 arr[MAXN];
11 1[45 * MAXN], r[45 * MAXN], st[45 * MAXN], nodes = 0;
bool hasFlag[45 * MAXN];
11 flag[45 * MAXN];
11 root[MAXN];
11 newLeaf(11 value) {
 11 p = ++nodes:
  l[p] = r[p] = 0; // Nodo sin hijos
  st[p] = value:
  return p;
ll newParent(ll left, ll right) {
 11 p = ++nodes;
  l[p] = left;
  r[p] = right;
  st[p] = st[left] + st[right];
```

return p:

```
11 newLazyKid(ll node, ll x, ll left, ll right) {
 11 p = ++nodes:
 l[p] = l[node];
 r[p] = r[node];
  flag[p] = flag[node];
 hasFlag[p] = true;
  flag[p] = x;
  st[p] = (right - left + 1) * x; // <-- Si quieres cambiar
        todo el segmento por x
  // st[p] = st[node]+(right-left+1) *x <-- Si se quiere suma
        x a todo el segmento
 return p;
11 build(ll left, ll right) {
 if (left == right)
   return newLeaf(arr[left]);
   11 \text{ mid} = (left + right) / 2;
    return newParent(build(left, mid), build(mid + 1, right)
void propagate(ll p, ll left, ll right) {
 if (hasFlag[p]) {
   if (left != right) {
     11 \text{ mid} = (left + right) / 2;
      l[p] = newLazyKid(l[p], flag[p], left, mid);
     r[p] = newLazyKid(r[p], flag[p], mid + 1, right);
   hasFlag[p] = false;
ll update(ll a, ll b, ll x, ll p, ll left, ll right) {
 if (b < left | right < a)</pre>
 if (a <= left && right <= b)</pre>
   return newLazyKid(p, x, left, right);
  propagate(p, left, right);
  11 mid = (left + right) / 2;
 return newParent(update(a, b, x, 1[p], left, mid),
                   update(a, b, x, r[p], mid + 1, right));
ll query(ll a, ll b, ll p, ll left, ll right) {
 if (b < left || right < a)
   return 0;
  if (a <= left && right <= b)</pre>
   return st[p];
 11 \text{ mid} = (left + right) / 2;
 propagate(p, left, right);
 return (query(a, b, l[p], left, mid) + query(a, b, r[p],
       mid + 1, right));
// revert range [a:b] of p
int rangecopy(int a, int b, int p, int revert, int L = 0,
     int R = n - 1) \{
  if (b < L || R < a) return p;</pre>
                                        // keep version
 if (a <= L && R <= b) return revert; // reverted version</pre>
 return newparent(rangecopy(a, b, l[p], l[revert], L, M),
                   rangecopy(a, b, r[p], r[revert], M + 1, R
                         ));
// Usage: (revert a range [a:b] back to an old version)
// int reverted_root = rangecopy(a, b, root,
     old_version_root);
```

2.14 Iterative Segment Tree

```
* Descripcion: arbol de segmentos, bastante poderoso para
 * realizar consultas de rango y actualizaciones de punto,
 * se puede utilizar cualquier operacion conmutativa, es
      decir,
 * aquella en donde el orden de evaluación no importe: suma,
 * multiplicacion, XOR, OR, AND, MIN, MAX, etc.
 * Tiempo: O(n \log n) en construccion y O(\log n) por
      consulta
template <class T>
class SegmentTree {
private:
  const T DEFAULT = 1e18; // Causa overflow si T es int
  vector<T> ST;
  int len;
  SegmentTree(int len) : len(len), ST(len * 2, DEFAULT) {}
  SegmentTree(vector<T>& v) : SegmentTree(v.size()) {
   for (int i = 0; i < len; i++)</pre>
     set(i, v[i]);
  void set(int ind, T val) {
   ind += len;
   ST[ind] = val;
   for (; ind > 1; ind /= 2)
     ST[ind / 2] = min(ST[ind], ST[ind ^ 1]); // Operacion
  // [start, end]
  T query(int start, int end) {
   end++;
    T ans = DEFAULT;
   for (start += len, end += len; start < end; start /= 2,</pre>
         end /= 2) {
     if (start % 2 == 1) {
       ans = min(ans, ST[start++]);
      } // Operacion
     if (end % 2 == 1) {
       ans = min(ans, ST[--end]);
      } // Operacion
   return ans;
};
```

3 Math

3.1 Operaciones con Bits

```
* Descripcion: Algunas operaciones utiles con
      desplazamiento de bits, si no trabajamos
 * con numeros enteros, usar 1LL o 1ULL, siendo la primer
 * operaciones nativas y la segunda del compilador GNU (GCC)
      . si no se
 * trabaja con enteros, agregar 11 al final del nombre del
      metodo
 * Tiempo por operacion: O(1)
#define isOn(S, j) (S & (1 << j))
#define setBit(S, j) (S |= (1 << j))
#define clearBit(S, j) (S &= (1 << j))
#define toggleBit(S, j) (S ^= (1 << j))</pre>
#define lowBit(S) (S & (-S))
#define setAll(S, n) (S = (1 << n) - 1)
#define modulo(S, N) ((S) & (N - 1)) // Siendo N potencia
     de 2
#define isOdd(S) (s & 1)
#define isPowerOfTwo(S) (!(S & (S - 1)))
#define nearestPowerOfTwo(S) (1 << lround(log2(S)))</pre>
#define turnOffLastBit(S) ((S) & (S - 1))
#define turnOnLastZero(S) ((S) | (S + 1))
#define turnOffInRange(S, i, j) s &= (((^{\circ}0) << (j + 1)) |
     ((1 << i) - 1));
#define turnOffLastConsecutiveBits(S) ((S) & (S + 1))
#define turnOnLastConsecutiveZeroes(S) ((S) | (S - 1))
#define countBitsOn(n) __builtin_popcount(x);
#define firstBitOn(n) __builtin_ffs(x);
#define countLeadingZeroes(n) __builtin_clz(n)
#define log2Floor(n) 31 - __builtin_clz(n)
#define countTrailingZeroes(n) __builtin_ctz(n)
* Descripcion: Si n <= 20 y manejamos subconjuntos, podemos
 * cada uno de ellos representandolos como una mascara de
      bits, en
 * donde el i-esimo elemento es tomado si el i-esimo bit
     esta encendido
 * Tiempo: O(2^n)
int LIMIT = 1 << (n + 1);
for (int i = 0; i < LIMIT; i++) {</pre>
```

3.2 Catalan

```
catalan = [0 for i in range(150 + 5)]

def fcatalan(n):
    catalan[0] = 1
    catalan[1] = 1
    for i in range(2, n + 1):
        catalan[i] = 0
        for j in range(i):
            catalan[i] = catalan[i] + catalan[j] * catalan[i] - j - 1]

fcatalan(151)
```

3.3 Combinaciones

```
* Descripcion: Utilizando el metodo de ModOperations.cpp,
      calculamos de manera
 * eficiente los inversos modulares de x (arreglo inv) y de
     x! (arreglo invfact),
 * para toda x < MAXN, se utiliza el hecho de que comb(n, k)
       = (n!) / (k! * (n - k)!)
 * Tiempo: O(MAXN) en el precalculo de inversos modulares y
      O(1) por query.
11 invfact[MAXN];
void precalc_invfact() {
 precalc inv();
  invfact[1] = 1;
 for (int i = 2; i < MAXN; i++)</pre>
    invfact[i] = invfact[i - 1] * inv[i] % MOD;
11 comb(int n, int k) {
 if (n < k)
   return 0:
  return fact[n] * invfact[k] % MOD * invfact[n - k] % MOD;
 * Descripcion: Se basa en el teorema de lucas, se puede
     utilizar cuando tenemos
 * una MAXN larga y un modulo m relativamente chico.
 * Tiempo: O(m log_m(n))
11 comb(int n, int k) {
 if (n < k | | k < 0)
    return 0;
  if (n == k)
  return 1:
  return comb (n % MOD, k % MOD) * comb (n / MOD, k / MOD) %
 * Descripcion: Se basa en el triangulo de pascal, vale la
      pena su uso cuando
 * no trabajamos con modulos (pues no tenemos una mejor
      opcion), usa DP.
 * Tiempo: O(n^2)
11 dp[MAXN][MAXN];
11 comb(int n, int k) {
 if (k > n | | k < 0)
   return 0;
 if (n == k | | k == 0)
   return 1;
 if (dp[n][k] != -1)
    return dp[n][k];
  return dp[n][k] = comb(n-1, k) + comb(n-1, k-1);
```

3.4 Algoritmo Ext. de Euclides

```
x = 1, y = 0;
return a;
}
ll d = euclid(b, a % b, y, x);
return y -= a / b * x, d;
}
```

3.5 FFT

```
* Descripcion: Este algoritmo permite multiplicar dos
      polinomios de longitud n
 * Tiempo: O(n log n)
typedef double ld;
const ld PI = acos(-1.0L);
const ld one = 1;
typedef complex<ld> C:
typedef vector<ld> vd;
void fft(vector<C> &a) {
 int n = SZ(a), L = 31 - __builtin_clz(n);
  static vector<complex<ld>>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k \neq 2) {
    rt.resize(n):
    auto x = polar(one, PI / k);
    FOR(i, k, 2 * k)
    rt[i] = R[i] = i & 1 ? R[i / 2] * x : R[i / 2];
 vi rev(n);
 FOR(i, 0, n)
  rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  FOR(i, 0, n)
  if (i < rev[i]) swap(a[i], a[rev[i]]);</pre>
  for (int k = 1; k < n; k *= 2)
    for (int i = 0; i < n; i += 2 * k) FOR(j, 0, k) {
        // C z = rt[j+k] * a[i+j+k]; // (25% faster if hand-
             rolled) /// include-line
        auto x = (ld *) & rt[j + k], y = (ld *) & a[i + j + k];
                     /// exclude-line
        C z(x[0] * y[0] - x[1] * y[1], x[0] * y[1] + x[1] *
             y[0]); /// exclude-line
        a[i + j + k] = a[i + j] - z;
       a[i + j] += z;
typedef vector<ll> vl;
vl conv(const vl &a, const vl &b) {
 if (a.empty() || b.empty()) return {};
  vl res(SZ(a) + SZ(b) - 1);
  int L = 32 - __builtin_clz(SZ(res)), n = 1 << L;</pre>
 vector<C> in(n), out(n);
  copy(all(a), begin(in));
 FOR(i, 0, SZ(b))
 in[i].imag(b[i]);
  fft(in);
  for (C &x : in) x *= x;
  FOR(i, 0, n)
 out[i] = in[-i & (n - 1)] - conj(in[i]);
  fft(out);
 FOR(i, 0, SZ(res))
 res[i] = floor(imag(out[i]) / (4 * n) + 0.5);
  return res;
vl convMod(const vl &a, const vl &b, const int &M) {
 if (a.empty() || b.empty()) return {};
  vl res(SZ(a) + SZ(b) - 1);
  int B = 32 - \underline{\underline{\phantom{a}}} builtin_clz(SZ(res)), n = 1 << B, cut = int
       (sqrt(M));
```

```
vector<C> L(n), R(n), outs(n), outl(n);
FOR(i, 0, SZ(a))
L[i] = C((int)a[i] / cut, (int)a[i] % cut);
FOR(i, 0, SZ(b))
R[i] = C((int)b[i] / cut, (int)b[i] % cut);
fft(L), fft(R);
FOR(i, 0, n) {
 int j = -i & (n - 1);
 outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
 outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
fft (outl), fft (outs);
FOR(i, 0, SZ(res)) {
 11 av = 11(real(out1[i]) + .5), cv = 11(imag(outs[i]) +
 11 bv = 11(imag(out1[i]) + .5) + 11(real(outs[i]) + .5);
 res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
return res:
```

3.6 Linear Diophantine

```
* Problema: Dado a, b y n. Encuentra 'x' y 'y' que
      satisfagan la ecuacion ax + by = n.
 * Imprimir cualquiera de las 'x' y 'y' que la satisfagan.
void solution(int a, int b, int n) {
 int x0, y0, g = euclid(a, b, x0, y0);
  if (n % g != 0) {
   cout << "No Solution Exists" << ENDL;</pre>
   return:
 x0 *= n / q;
 y0 \star = n / g;
  // single valid answer
  cout << "x = " << x0 << ", y = " << y0 << ENDL;
 // other valid answers can be obtained through...
  // x = x0 + k*(b/g)
  // y = y0 - k * (a/q)
 for (int k = -3; k \le 3; k++) {
   int x = x0 + k * (b / g);
   int y = y0 - k * (a / q);
    cout << "x = " << x << ", y = " << y << ENDL;
```

3.7 Matrix

```
**
* Descripcion: estructura de matriz con algunas operaciones basicas
* se suele utilizar para la multiplicacion y/o exponenciacion de matrices
* Aplicaciones:
* Calcular el n-esimo fibonacci en tiempo logaritmico, esto es
* posible ya que para la matriz M = {{1, 1},{1, 0}}, se cumple
* que M^n = ({F[n + 1], F[n]}, {F[n], F[n - 2]})
* Dado un grafo, su matriz de adyacencia M, y otra matriz P tal que P = M^k,
* se puede demostrar que P[i][j] contiene la cantidad de caminos de longitud k
* que inician en el i-esimo nodo y terminan en el j-esimo.
* Tiempo: O(n^3 * log p) para la exponenciacion y O(n^3) para la multiplicacion
*/
```

```
template <typename T>
struct Matrix {
 using VVT = vector<vector<T>>;
 int n, m;
  Matrix(VVT aux) : M(aux), n(M.size()), m(M[0].size()) {}
  Matrix operator* (Matrix& other) const {
    int k = other.M[0].size();
    VVT C(n, \text{vector} < T > (k, 0));
    FOR(i, 0, n)
    FOR(j, 0, k)
    FOR(1, 0, m)
    C[i][j] = (C[i][j] + M[i][1] * other.M[1][j] % MOD) %
         MOD:
    return Matrix(C):
 Matrix operator^(ll p) const {
    assert(p >= 0);
    Matrix ret(VVT(n, vector<T>(n))), B(*this);
    FOR(i, 0, n)
    ret.M[i][i] = 1;
    while (p) {
     if (p & 1)
       ret = ret * B;
      p >>= 1;
     B = B * B;
    return ret:
};
```

3.8 Operaciones con MOD

```
* Descripcion : Calcula a * b mod m para
 * cualquier 0 <= a, b <= c <= 7.2 * 10^18
 * Tiempo: 0(1)
using ull = unsigned long long;
ull modmul(ull a, ull b, ull m) {
 ll ret = a * b - m * ull(1.L / m * a * b);
 return ret + m * (ret < 0) - m * (ret >= (11)m);
constexpr 11 MOD = 1e9 + 7;
* Descripcion: Calcula a^b mod m, en O(log n)
 * Si hay riesgo de desbordamiento, multiplicar con modmul
 * Tiempo: O(log b)
ll modpow(ll a, ll b) {
 11 \text{ res} = 1;
 a %= MOD;
  while (b) {
   if (b & 1)
     res = (res * a) % MOD;
    a = (a * a) % MOD;
    b >>= 1:
  return res;
* Descripcion: Precalculo de modulos inversos para toda
 \star x <= LIM. Se asume que LIM <= MOD y que MOD es primo
 * Tiempo: O(LIM)
constexpr LIM = 1e5 + 5;
11 inv[LIM + 1];
void precalc_inv() {
```

```
inv[1] = 1;
FOR(i, 2, LIM)
inv[i] = MOD - (MOD / i) * inv[MOD % i] % MOD;
}

/**
 * Descripcion: Precalculo de un solo inverso, usa el primer
 * metodo si MOD es primo, y el segundo en caso contrario
 * Tiempo: O(log MOD)
 */
11 modInverse(ll b) { return modpow(b, MOD - 2, MOD) % MOD;
 }
11 modInverse(ll a) {
    ll x, y, d = euclid(a, MOD, x, y);
    assert(d == 1);
    return (x + MOD) % MOD;
}
```

3.9 Numeros Primos

```
* Descripcion: Estos 2 algoritmos encuentran por medio de
      la Criba
 * de Eratostenes todos los numeros primos menor o iquales a
       n, difieren
 * por su estrategia y por consecuente su complejidad
      temporal.
 * Tiempo metodo #1: O(n log(log n))
 * Tiempo metodo #2: O(n)
ll sieve_size;
vl primes;
void sieve(int n) {
 vector<bool> is_prime(n + 1, 1);
  is_prime[0] = is_prime[1] = 0;
 for (11 p = 2; p <= n; p++) {
   if (is_prime[p]) {
      for (ll i = p * p; i <= n; i += p) is_prime[i] = 0;</pre>
      primes.push_back(p);
void sieve(int N) {
 vector<int> lp(N + 1);
  vector<int> pr;
  for (int i = 2; i \le N; ++i) {
    if (lp[i] == 0) {
      lp[i] = i;
      pr.push_back(i);
    for (int j = 0; i * pr[j] <= N; ++j) {</pre>
      lp[i * pr[j]] = pr[j];
      if (pr[j] == lp[i]) {
       break;
 *Descripcion: Calcular todos los factores primos de N
vi primeFactors(ll N) {
 vi factors;
  for (int i = 0; i < (int)primes.size() && primes[i] *</pre>
       primes[i] <= N; ++i)</pre>
    while (N % primes[i] == 0) {
     N /= primes[i];
      factors.push_back(primes[i]);
  if (N != 1) factors.push_back(N);
 return factors;
```

```
* Descripcion: Calcula la funcion de Mobius
 * para todo entero menor o igual a n
 * Tiempo: O(N)
void preMobius(int N) {
 memset(check, false, sizeof(check));
 mu[1] = 1;
 int tot = 0;
  FOR(i, 2, N) {
   if (!check[i]) { // i es primo
     prime[tot++] = i;
     mu[i] = -1;
   FOR(j, 0, tot) {
     if (i * prime[j] > N) break;
     check[i * prime[j]] = true;
     if (i % prime[j] == 0) {
       mu[i * prime[j]] = 0;
       break;
     } else {
       mu[i * prime[j]] = -mu[i];
// Primos menores a 1000:
       2
            3 5
                             11
                                  13
                                        17
                                              19
                                                   23
       29
            31
                  37
      41 43 47
                       53
                             59
                                        67
                                              71
                                                   73
                                   61
            83
                  89
      97 101 103
                      107
                            109
                                 113
                                       127
                                             131
     139 149 151
     157
                      173 179 181 191
                                            193 197
          163
                167
     199
          211
                223
     227
           229
                233
                      239 241 251
                                       257
                                            263
                                                  269
          277
     271
                281
     283
           293
                307
                      311 313 317
                                       331
                                             337
     349
           353
                359
     367
           373
                379
                      383
                            389
                                 397
                                       401
                                             409
                                                  419
          431
                433
     421
                      457
                                            479
     439
           443
                449
                            461
                                 463
                                       467
                                                  487
                503
     491
          499
                      541 547
                                 557
                                             569
     509
          521
                523
                                       563
                                                  571
     577
           587
                593
           601
                607
                      613
                            617
                                 619
                                       631
                                             641
                                                   643
     647
          653
                659
     661
           673
                677
                      683
                            691
                                 701
                                       709
                                            719
                                                  727
           7.39
                743
      751
           757
                 761
                            773
                                 787
                                       797
                                             809
     821
          823
                827
     829
           839
                853
                      857
                            859
                                 863
                                       877
                                             881
     887
          907
                911
     919 929
                937
                      941 947 953 967 971 977
     983
          991
                997
// Otros primos:
// El primo mas grande menor que 10 es 7.
     El primo mas grande menor que 100 es 97.
    El primo mas grande menor que 1000 es 997.
     El primo mas grande menor que 10000 es 9973.
     El primo mas grande menor que 100000 es 99991.
     El primo mas grande menor que 1000000 es 999983.
     El primo mas grande menor que 10000000 es 9999991.
     El primo mas grande menor que 100000000 es 99999989.
     El primo mas grande menor que 1000000000 es 999999937.
     El primo mas grande menor que 10000000000 es
     9999999967.
     El primo mas grande menor que 10000000000 es
     99999999977.
     El primo mas grande menor que 100000000000 es
     999999999989.
     El primo mas grande menor que 1000000000000 es
     999999999971.
     El primo mas grande menor que 10000000000000 es
     9999999999973.
     El primo mas grande menor que 100000000000000 es
     99999999999989.
```

```
// El primo mas grande menor que 1000000000000000 es
99999999999937.
// El primo mas grande menor que 10000000000000000 es
999999999999997.
// El primo mas grande menor que 10000000000000000 es
99999999999999999999
```

3.10 Simpson

4 Strings

4.1 Aho-Corasick

```
* Descripcion: Este algoritmo te permite buscar rapidamente
       multiples patrones en un texto
 * Tiempo: O(mk)
// Utilizar esta implementacion cuando las letras permitidas
      sean pocas
struct AhoCorasick {
  enum { alpha = 26,
        first = 'a' }; // change this!
  struct Node {
    // (nmatches is optional)
    int back, next[alpha], start = -1, end = -1, nmatches =
   Node(int v) { memset(next, v, sizeof(next)); }
  vector<Node> N;
  vi backp;
  void insert(string& s, int j) {
   assert(!s.empty());
    int n = 0;
    for (char c : s) {
     int& m = N[n].next[c - first];
     if (m == -1) {
       n = m = SZ(N);
       N.emplace_back(-1);
     } else
   if (N[n].end == -1) N[n].start = j;
    backp.push_back(N[n].end);
    N[n].end = j;
   N[n].nmatches++;
  // O(sum|pat| * C)
 AhoCorasick(vector<string>& pat) : N(1, -1) {
   FOR(i, 0, SZ(pat))
    insert(pat[i], i);
    N[0].back = SZ(N):
   N.emplace_back(0);
    queue<int> q;
    for (q.push(0); !q.empty(); q.pop()) {
     int n = q.front(), prev = N[n].back;
     FOR(i, 0, alpha) {
        int &ed = N[n].next[i], y = N[prev].next[i];
        if (ed == -1)
         ed = y;
        else {
         N[ed].back = y;
          (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
                = N[y].end;
         N[ed].nmatches += N[y].nmatches;
         q.push(ed);
  // O(|word|)
  vi find(string word) {
   int n = 0;
    vi res: // 11 count = 0;
    for (char c : word) {
     n = N[n].next[c - first];
     res.push_back(N[n].end);
      // count += N[n].nmatches;
    return res;
  vector<vi> findAll(vector<string>& pat, string word) {
   vi r = find(word);
```

```
vector<vi> res(SZ(word));
    FOR(i, 0, SZ(word)) {
      int ind = r[i];
      while (ind !=-1) {
       res[i - SZ(pat[ind]) + 1].push_back(ind);
        ind = backp[ind];
    return res:
};
class Aho {
  struct Vertex {
    unordered_map<char, int> children;
    bool leaf:
    int parent, suffixLink, wordID, endWordLink;
    char parentChar:
    Vertex() {
     children.clear();
      leaf = false;
     parent = suffixLink = wordID = endWordLink = -1;
 };
private:
 vector<Vertex*> Trie:
 vector<int> wordsLength;
 int size, root;
  void calcSuffixLink(int vertex) {
    // Procesar root
    if (vertex == root) {
      Trie[vertex]->suffixLink = root;
      Trie[vertex]->endWordLink = root;
     return:
    // Procesamiento de hijos de la raiz
    if (Trie[vertex]->parent == root) {
      Trie[vertex]->suffixLink = root;
      if (Trie[vertex]->leaf) {
       Trie[vertex]->endWordLink = vertex;
       Trie[vertex]->endWordLink =
            Trie[Trie[vertex]=>suffixLink]=>endWordLink;
     return;
    // Para calcular el suffix link del vertice actual,
         necesitamos el suffix link
    // del padre del vertice y el personaje que nos movio al
          vertice actual.
    int curBetterVertex = Trie[Trie[vertex]->parent]->
         suffixLink;
    char chVertex = Trie[vertex]->parentChar;
      if (Trie[curBetterVertex]=>children.count(chVertex)) {
        Trie[vertex]->suffixLink = Trie[curBetterVertex]->
             children[chVertex];
       break:
      if (curBetterVertex == root) {
       Trie[vertex]->suffixLink = root;
       break:
      curBetterVertex = Trie[curBetterVertex]->suffixLink;
    if (Trie[vertex]->leaf) {
     Trie[vertex]->endWordLink = vertex;
    } else {
     Trie[vertex]->endWordLink = Trie[Trie[vertex]->
           suffixLink]->endWordLink;
 public:
```

```
Aho() {
    size = root = 0;
    Trie.pb(new Vertex());
    size++:
  void addString(string s, int wordID) {
    int curVertex = root;
    FOR(i, 0, s.length()) { // Iteracion sobre los
         caracteres de la cadena
      char c = s[i];
     if (!Trie[curVertex]->children.count(c)) {
       Trie.pb(new Vertex());
        Trie[size]->suffixLink = -1;
        Trie[size]->parent = curVertex;
        Trie[size]->parentChar = c:
        Trie[curVertex]->children[c] = size;
       size++:
      curVertex = Trie[curVertex]->children[c]; // Mover al
            nuevo vertice en el trie
    // Marcar el final de la palabra y almacene su ID
    Trie[curVertex]->leaf = true;
    Trie[curVertex]->wordID = wordID;
    wordsLength.pb(s.length());
  void prepareAho() {
    queue<int> vertexQueue;
    vertexQueue.push(root);
    while (!vertexQueue.empty()) {
     int curVertex = vertexQueue.front();
      vertexQueue.pop();
      calcSuffixLink(curVertex);
     for (auto key : Trie[curVertex]->children) {
       vertexQueue.push(key.second);
  int processString(string text) {
    int currentState = root;
    int result = 0;
    FOR(j, 0, text.length()) {
      while (true) {
        if (Trie[currentState] -> children.count(text[j])) {
          currentState = Trie[currentState]->children[text[j
               11;
         break:
        if (currentState == root) break;
        currentState = Trie[currentState]->suffixLink;
      int checkState = currentState;
      // Tratar de encontrar todas las palabras posibles de
           este prefijo
      while (true) {
       checkState = Trie[checkState]->endWordLink;
        // Si estamos en el vertice raiz, no hay mas
             coincidencias
        if (checkState == root) break;
        int indexOfMatch = j + 1 - wordsLength[Trie[
             checkState]->wordID];
        // Tratando de encontrar todos los patrones
             combinados de menor longitud
        checkState = Trie[checkState]->suffixLink;
    return result;
};
int main() {
 ios_base::sync_with_stdio(0);
```

```
cin.tie(nullptr);
vector<string> patterns = {"abc", "bcd", "abcd"};
string text = "abcd";
Aho ahoAlg;
FOR(i, 0, patterns.size()) { ahoAlg.addString(patterns[i], i); }
ahoAlg.prepareAho();
cout << ahoAlg.processString(text) << ENDL;
return 0;</pre>
```

4.2 Dynamic Aho-Corasick

```
* Descripcion: Si tenemos N cadenas en el diccionario,
      mantenga log(N) Aho Corasick
 * automatas. El i-esimo automata contiene las primeras 2^k
      cadenas no incluidas en el
 \star automatas anteriores. Por ejemplo, si tenemos N = 19,
      necesitamos 3 automatas: {s[1]...s[16]},
 * {s[17]...s[18]} y {s[19]}. Para responder a la consulta,
      podemos atravesar los automatas logN.
 * utilizando la cadena de consulta dada.
 * Para manejar la insercion, primero construya un automata
      usando una sola cadena y luego
 * Si bien hay dos automatas con el mismo numero de cadenas,
       los fusionamos mediante
 * un nuevo automata usando fuerza bruta.
 * Para manejar la eliminacion, simplemente insertamos un
      valor -1 para almacenar en los puntos finales de cada
 * cadena agregada
 * Tiempo: O(m*log(numero_de_inserciones))
class AhoCorasick {
public:
  struct Node {
   map<char, int> ch:
   vector<int> accept;
   int link = -1:
   int cnt = 0;
   Node() = default:
  };
  vector<Node> states;
 map<int, int> accept_state;
  explicit AhoCorasick() : states(1) {}
  void insert(const string& s, int id = -1) {
   int i = 0;
    for (char c : s) {
     if (!states[i].ch.count(c)) {
        states[i].ch[c] = states.size();
        states.emplace back();
      i = states[i].ch[c];
    ++states[i].cnt;
    states[i].accept.push_back(id);
    accept_state[id] = i;
  void clear() {
   states.clear();
   states.emplace_back();
  int get_next(int i, char c) const {
    while (i != -1 && !states[i].ch.count(c)) i = states[i].
        link:
    return i != -1 ? states[i].ch.at(c) : 0;
```

```
void build() {
   queue<int> que;
    que.push(0);
   while (!que.empty()) {
     int i = que.front();
     que.pop();
      for (auto [c, j] : states[i].ch) {
       states[j].link = get_next(states[i].link, c);
       states[j].cnt += states[states[j].link].cnt;
       auto& a = states[j].accept;
       auto& b = states[states[j].link].accept;
       vector<int> accept;
       set_union(a.begin(), a.end(), b.begin(), b.end(),
             back_inserter(accept));
        a = accept;
       que.push(j);
 long long count(const string& str) const {
   long long ret = 0;
   int i = 0:
   for (auto c : str) {
     i = get next(i, c):
     ret += states[i].cnt;
   return ret:
  // list of (id, index)
 vector<pair<int, int>> match(const string& str) const {
   vector<pair<int, int>> ret;
   int i = 0:
   for (int k = 0; k < (int)str.size(); ++k) {</pre>
     char c = str[k];
     i = get_next(i, c);
     for (auto id : states[i].accept) {
       ret.emplace back(id, k);
   return ret;
class DynamicAhoCorasick {
 vector<vector<string>> dict;
 vector<AhoCorasick> ac;
public:
 void insert(const string& s) {
   int k = 0:
   while (k < (int)dict.size() && !dict[k].empty()) ++k;</pre>
   if (k == (int)dict.size()) {
     dict.emplace_back();
     ac.emplace back();
   dict[k].push_back(s);
   ac[k].insert(s);
   for (int i = 0; i < k; ++i) {
     for (auto& t : dict[i]) {
       ac[k].insert(t);
     dict[k].insert(dict[k].end(), dict[i].begin(), dict[i
     ac[i].clear();
     dict[i].clear();
   ac[k].build();
```

```
long long count(const string& str) const {
  long long ret = 0;
  for (int i = 0; i < (int)ac.size(); ++i) ret += ac[i].
      count(str);
  return ret;
}
};</pre>
```

4.3 Hashing

```
* Hashing
 * Descripcion: El objetivo es convertir una cadena en un
      numero entero
 * para poder comparar cadenas en O(1)
 * Tiempo: O(|s|)
const int MX = 3e5 + 2; // Tamano maximo del string S
inline int add(int a, int b, const int &mod) { return a + b
     >= mod ? a + b - mod : a + b; }
inline int sbt(int a, int b, const int &mod) { return a - b
     < 0 ? a - b + mod : a - b; 
inline int mul(int a, int b, const int &mod) { return 111 \star
const int X[] = \{257, 359\};
const int MOD[] = {(int)1e9 + 7, (int)1e9 + 9};
vector<int> xpow[2];
struct hashing {
  vector<int> h[2];
  hashing(string &s) {
    int n = s.size();
    for (int j = 0; j < 2; ++j) {
     h[j].resize(n + 1);
      for (int i = 1; i \le n; ++i) {
       h[j][i] = add(mul(h[j][i-1], X[j], MOD[j]), s[i-
             1], MOD[j]);
  // Hash del substring en el rango [i, j)
  ll value(int 1, int r) {
    int a = sbt(h[0][r], mul(h[0][1], xpow[0][r - 1], MOD
         [0]), MOD[0]);
    int b = sbt(h[1][r], mul(h[1][1], xpow[1][r - 1], MOD
         [1]), MOD[1]);
    return (11(a) << 32) + b;
// Llamar la funcion antes del hashing
void calc_xpow(int mxlen = MX) {
  for (int j = 0; j < 2; ++j) {
    xpow[j].resize(mxlen + 1, 1);
    for (int i = 1; i <= mxlen; ++i) {</pre>
     xpow[j][i] = mul(xpow[j][i-1], X[j], MOD[j]);
```

4.4 KMP

/*

* Descripcion: El prefix function para un string S es definido como un arreglo phi donde phi[i] es

* la longitud del prefijo propio de S mas largo de la subcadena S[0..i] el cual tambien

* es sufijo de esta subcadena

```
* Tiempo: O(|s| + |pat|)
vi PI(const string& s) {
 vi p(SZ(s));
  FOR(i, 1, SZ(s)) {
   int g = p[i - 1];
    while (q \&\& s[i] != s[q]) q = p[q - 1];
   p[i] = g + (s[i] == s[g]);
 return p:
// Concatena s + \backslash 0 + pat para encontrar las ocurrencias
vi KMP(const string& s, const string& pat) {
 vi phi = PI(pat + ' \setminus 0' + s), res;
  FOR(i, SZ(phi) - SZ(s), SZ(phi))
 if (phi[i] == SZ(pat)) res.push_back(i - 2 * SZ(pat));
  return res:
// A partir del phi de patron busca las ocurrencias en s
int KMP(const string& s, const string& pat) {
 vi phi = PI(pat);
  int matches = 0;
 for (int i = 0, j = 0; i < SZ(s); ++i) {</pre>
   while (j > 0 \&\& s[i] != pat[j]) j = phi[j - 1];
   if (s[i] == pat[j]) ++j;
   if (j == SZ(pat)) {
     matches++;
      j = phi[j - 1];
   }
  return matches;
* Automaton KMP
 * El estado en el es el valor actual de la prefix function,
      y la transicion de un
 * estado a otro se realiza a traves del siguiente caracter
 * Uso: aut[state][nextCharacter]
 * Tiempo: O(|s|*C)
// Automaton O(|s|*C)
vector<vector<int>> aut;
void compute_automaton(string s) {
 s += '#';
  int n = s.size();
 vector<int> phi = PI(s);
  aut.assign(n, vector<int>(26));
  FOR(i, 0, n) {
   FOR(c, 0, 26) {
     if (i > 0 && 'a' + c != s[i])
        aut[i][c] = aut[phi[i - 1]][c];
       aut[i][c] = i + ('a' + c == s[i]);
```

4.5 Manacher

int lo = 0, hi = 0;

```
FOR(i, 1, SZ(S) - 1) {
   if (i != 1) ans[i] = min(hi - i, ans[hi - i + lo]);
   while (S[i - ans[i] - 1] == S[i + ans[i] + 1]) ++ans[i];
   if (i + ans[i] > hi) lo = i - ans[i], hi = i + ans[i];
}
ans.erase(begin(ans));
FOR(i, 0, SZ(ans))
if (i % 2 == ans[i] % 2) ++ans[i];
return ans;
}
```

4.6 Suffix Array

```
* Descripcion: Un SuffixArray es un array ordenado de todos
      los sufijos de un strina
* Tiempo: O(|S|)
* Aplicaciones:
* - Encontrar todas las ocurrencias de un substring P
      dentro del string S - O(|P| \log n)
 * - Construir el longest common prefix-interval - O(n log
 * - Contar todos los substring diferentes en el string S -
   - Encontrar el substring mas largo entre dos strings S y
       T - O(|S| + |T|)
struct SuffixArray {
 vi SA, LCP;
 string S;
 int n:
 SuffixArray(string &s, int \lim = 256) : S(s), n(SZ(s) + 1)
        { // O(n log n)
   int k = 0, a, b;
   vi x(ALL(s) + 1), y(n), ws(max(n, lim)), rank(n);
   SA = LCP = y, iota(ALL(SA), 0);
   for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p
        ) {
     p = j, iota(ALL(y), n - j);
     FOR(i, 0, n) {
       if (SA[i] >= j) y[p++] = SA[i] - j;
     fill(ALL(ws), 0);
     FOR(i, 0, n) {
       ws[x[i]]++;
     FOR(i, 1, lim) {
       ws[i] += ws[i - 1];
     for (int i = n; i--;) SA[--ws[x[y[i]]]] = y[i];
     swap(x, y), p = 1, x[SA[0]] = 0;
     FOR(i, 1, n) {
       a = SA[i - 1];
       b = SA[i], x[b] = (y[a] == y[b] && y[a + j] == y[b +
              j]) ? p - 1 : p++;
   // Calcular LCP (longest common prefix)
   FOR(i, 1, n) {
     rank[SA[i]] = i;
   for (int i = 0, j; i < n - 1; LCP[rank[i++]] = k)</pre>
     for (k \&\&k--, j = SA[rank[i] - 1]; s[i + k] == s[j + k]
          ]; k++)
  * Retorna el lower_bound de la subcadena sub en el Suffix
        Arrav
   * Tiempo: O(|sub| log n)
```

```
int lower(string &sub) {
  int 1 = 0, r = n - 1;
  while (1 < r) {
    int mid = (1 + r) / 2;
    int res = S.compare(SA[mid], SZ(sub), sub);
    (res >= 0) ? r = mid : 1 = mid + 1;
  return 1:
 * Retorna el upper bound de la subcadena sub en el Suffix
       Array
 * Tiempo: O(|sub| log n)
 */
int upper(string &sub) {
  int 1 = 0, r = n - 1;
  while (1 < r) {
   int mid = (1 + r) / 2;
    int res = S.compare(SA[mid], SZ(sub), sub);
    (res > 0) ? r = mid : 1 = mid + 1;
  if (S.compare(SA[r], SZ(sub), sub) != 0) --r;
  return r:
 * Busca si se encuentra la subcadena sub en el Suffix
      Arrav
 * Tiempo: O(|sub| log n)
bool subStringSearch(string &sub) {
  int L = lower(sub);
  if (S.compare(SA[L], SZ(sub), sub) != 0) return 0;
  return 1:
* Cuenta la cantidad de ocurrencias de la subcadena sub
      en el Suffix Array
 * Tiempo: O(|sub| log n)
int countSubString(string &sub) {
  return upper(sub) - lower(sub) + 1;
 * Cuenta la cantidad de subcadenas distintas en el Suffix
 * Tiempo: O(n)
11 countDistinctSubstring() {
 11 result = 0;
  FOR(i, 1, n) {
    result += 11(n - SA[i] - 1 - LCP[i]);
  return result;
 * Busca la subcadena mas grande que se encuentra en el
      string T y S
 * Uso: Crear el SuffixArray con una cadena de la
      concatenacion de T
 * y S separado por un caracter especial (T + '#' + S)
 * Tiempo: O(n)
string longestCommonSubstring(int lenS, int lenT) {
  int maximo = -1, indice = -1;
  FOR(i, 2, n) {
    if ((SA[i] > lenS && SA[i - 1] < lenS) || (SA[i] <</pre>
         lenS && SA[i - 1] > lenS)) {
      if (LCP[i] > maximo) {
       maximo = LCP[i];
        indice = SA[i];
```

4.7 Suffix Automaton

```
* Descripcion: Construye un automata finito que reconoce
      todos los
 * sufijos de una cadena. len corresponde a la longitud
      maxima de una
 * cadena en la clase de equivalencia, pos corresponde a la
 * posicion final de dicha cadena, lnk corresponde al sufijo
      mas largo
 * que esta en una clase diferente. Los enlaces de sufijos
      corresponden
 * al arbol de sufijos de la cadena invertida
 * Tiempo: O(n log sum)
struct SuffixAutomaton {
 int N = 1;
  vi lnk{-1}, len{0}, pos{-1}; // suffix link,
  // max length of state, last pos of first occurrence of
      state
  vector<map<char, int>> nex{1};
  vector<bool> isClone(0);
 // transitions, cloned -> not terminal state
  vector<vi> iLnk;
                           // inverse links
  int add(int p, char c) { // ~p nonzero if p != -1
   auto getNex = [&]() {
     if (p == -1) return 0;
     int q = nex[p][c];
     if (len[p] + 1 == len[q]) return q;
     int clone = N++;
      lnk.pb(lnk[q]);
     lnk[q] = clone;
      len.pb(len[p] + 1), nex.pb(nex[q]),
         pos.pb(pos[q]), isClone.pb(1);
      for (; ~p && nex[p][c] == q; p = lnk[p]) nex[p][c] =
          clone:
     return clone:
   // if (nex[p].count(c)) return getNex();
    // ^ need if adding > 1 string
   int cur = N++; // make new state
   lnk.emplace_back(), len.pb(len[p] + 1), nex.emplace_back
         (),
        pos.pb(pos[p] + 1), isClone.pb(0);
    for (; ~p && !nex[p].count(c); p = lnk[p]) nex[p][c] =
         cur:
   int x = getNex();
   lnk[cur] = x;
   return cur:
  void init(string s) {
   int p = 0;
   for (char x : s) p = add(p, x);
  } /// add string to automaton
  // inverse links
```

```
void genIlnk() {
    iLnk.resize(N):
    FOR (v, 1, N)
    iLnk[lnk[v]].pb(v);
  // APPLICATIONS
  void getAllOccur(vi& oc, int v) {
    if (!isClone[v]) oc.pb(pos[v]); // terminal position
    for (auto u : iLnk[v]) getAllOccur(oc, u);
  vi alloccur(string s) { // get all occurrences of s in
       automaton
    int cur = 0;
    for (char x : s) {
     if (!nex[cur].count(x)) return {};
     cur = nex[cur][x];
    // convert end pos -> start pos
    vi oc;
    getAllOccur(oc, cur);
    for (auto t : oc) t += 1 - SZ(s);
    sort (ALL(oc));
    return oc;
  vector<ll> distinct;
  11 getDistinct(int x) {
    // # distinct strings starting at state x
    if (distinct[x]) return distinct[x];
    distinct[x] = 1;
    for (auto y : nex[x]) distinct[x] += getDistinct(y.
         second);
    return distinct[x];
  11 numDistinct() { // # distinct substrings including
    distinct.resize(N);
    return getDistinct(0);
  11 numDistinct2() { // assert(numDistinct() == numDistinct2
       ());
    11 \text{ ans} = 1;
    FOR(i, 1, N)
    ans += len[i] - len[lnk[i]];
    return ans;
SuffixAutomaton S;
vi sa:
string s;
void dfs(int x) {
 if (!S.isClone[x]) sa.pb(SZ(s) - 1 - S.pos[x]);
  vector<pair<char, int>> chr;
  for (auto t : S.iLnk[x]) chr.pb(\{s[S.pos[t] - S.len[x]\}, t
  sort (ALL(chr));
 for (auto t : chr) dfs(t.second);
int main() {
 reverse (ALL(s));
 S.init(s):
 S.genIlnk():
 dfs(0);
// Otra implementacion
struct state {
 int len, link:
 map<char, int> next;
}; // clear next!!
state st[100005];
int sz, last;
void sa_init() {
 last = st[0].len = 0;
 sz = 1:
 st[0].link = -1;
```

void sa_extend(char c) {

```
int k = sz++, p;
st[k].len = st[last].len + 1;
for (p = last; p != -1 && !st[p].next.count(c); p = st[p].
     link) st[p].next[c] = k;
if (p == -1)
 st[k].link = 0;
else {
 int q = st[p].next[c];
 if (st[p].len + 1 == st[q].len)
   st[k].link = q;
 else {
   int w = sz++;
   st[w].len = st[p].len + 1;
   st[w].next = st[q].next;
   st[w].link = st[q].link;
   for (; p != -1 && st[p].next[c] == q; p = st[p].link)
         st[p].next[c] = w;
   st[q].link = st[k].link = w;
last = k;
```

4.8 Suffix Tree

```
* Descripcion: Algoritmo de Ukkonen para arbol de sufijos.
      El sufijo no unico
 * mas largo de S tiene longitud len[p]+lef despues de cada
      llamada a add.
 * Cada iteracion del bucle dentro de add esta cantidad
      disminuye en uno
 * Tiempo: O(n log sum)
struct SuffixTree {
 string s;
  int N = 0;
  vi pos, len, lnk;
  vector<map<char, int>> to;
  SuffixTree(string _s) {
   make(-1, 0):
   int p = 0, lef = 0;
   for (char c : _s) add(p, lef, c);
   add(p, lef, '$');
   s.pop_back(); // terminal char
  int make(int POS, int LEN) { // lnk[x] is meaningful when
   // x!=0 and len[x] != MOD
   pos.pb(POS);
   len.pb(LEN):
   lnk.pb(-1);
   to.emplace back():
   return N++;
  void add(int& p, int& lef, char c) { // longest
   // non-unique suffix is at node p with lef extra chars
   s += c;
   ++lef:
   int lst = 0;
    for (; lef; p ? p = lnk[p] : lef--) { // if p != root
         then lnk[p]
      // must be defined
     while (lef > 1 && lef > len[to[p][s[SZ(s) - lef]]])
       p = to[p][s[SZ(s) - lef]], lef -= len[p];
      // traverse edges of suffix tree while you can
      char e = s[SZ(s) - lef];
      int& q = to[p][e];
      // next edge of suffix tree
      if (!q) q = make(SZ(s) - lef, MOD), lnk[lst] = p, lst
           = 0;
      // make new edge
      else {
       char t = s[pos[q] + lef - 1];
```

```
if (t == c) {
          lnk[lst] = p;
         return;
        } // suffix not unique
        int u = make(pos[q], lef - 1);
        // new node for current suffix-1, define its link
        to[u][c] = make(SZ(s) - 1, MOD);
        to[u][t] = q;
        // new, old nodes
        pos[q] += lef - 1;
        if (len[q] != MOD) len[q] -= lef - 1;
        q = u, lnk[lst] = u, lst = u;
  int maxPre(string x) { // max prefix of x which is
       substrina
    for (int p = 0, ind = 0;;) {
     if (ind == SZ(x) || !to[p].count(x[ind])) return ind;
      p = to[p][x[ind]];
      FOR(i, 0, len[p]) {
       if (ind == SZ(x) || x[ind] != s[pos[p] + i]) return
            ind;
       ind++;
  vi sa; // generate suffix array
  void genSa(int x = 0, int Len = 0) {
   if (!SZ(to[x]))
     sa.pb(pos[x] - Len); // found terminal node
   else
      for (auto t : to[x]) genSa(t.second, Len + len[x]);
};
```

Trie

4.9

4.10

bool search(string word) {

TrieNode *curr = root;

for (char c : word) {

return false;

```
* Descripcion: Un trie es una estructura de datos de arbol
      multidireccional
 * que se utiliza para almacenar cadenas en un alfabeto. La
      coincidencia
 * de patrones se puede realizar de manera eficiente usando
      trie
 * Tiempo: O(n)
struct TrieNode {
  unordered_map<char, TrieNode *> children;
  bool isEndOfWord;
  int numPrefix:
  TrieNode() : isEndOfWord(false), numPrefix(0) {}
};
class Trie {
private:
  TrieNode *root:
public:
  Trie() {
   root = new TrieNode();
  void insert(string word) {
   TrieNode *curr = root:
    for (char c : word) {
     if (curr->children.find(c) == curr->children.end()) {
        curr->children[c] = new TrieNode();
```

curr = curr->children[c]; curr->numPrefix++;

curr->isEndOfWord = true;

```
curr = curr->children[c];
   return curr->isEndOfWord:
 bool startsWith(string prefix) {
   TrieNode *curr = root;
   for (char c : prefix) {
     if (curr->children.find(c) == curr->children.end()) {
       return false:
     curr = curr->children[c];
   return true;
 int countPrefix(string prefix) {
   TrieNode *curr = root;
   for (char c : prefix) {
     if (curr->children.find(c) == curr->children.end()) {
       return 0;
     curr = curr->children[c];
   return curr->numPrefix;
};
     Z-Algorithm
* Descripcion: La Z-function es un arreglo donde el
```

if (curr->children.find(c) == curr->children.end()) {

elemento i es igual al numero mas * grande de caracteres que empiezan desde la posicion i que coincide con el prefijo de S, * excepto Z[0] = 0. (abacaba -> 0010301) * Tiempo: O(|S|) vi Z(const string& S) { vi z(SZ(S)); int 1 = -1, r = -1; FOR(i, 1, SZ(S)) { z[i] = i >= r ? 0 : min(r - i, z[i - 1]);**while** (i + z[i] < SZ(S) && S[i + z[i]] == S[z[i]])z[i]++; if (i + z[i] > r)1 = i, r = i + z[i];return z:

5 Dynamic Programming

5.1 2D Sum

```
* Descripcion: Calcula rapidamente la suma de una submatriz
       dadas sus
 * esquinas superior izquierda e inferior derecha (no
      inclusiva)
 * SubMatrix<int> m (matrix);
 * m.sum(0, 0, 2, 2); // 4 elementos superiores
 * Tiempo: O(n * m) en preprocesamiento y O(1) por query
template <class T>
struct SubMatrix (
  vector<vector<T>> p;
  SubMatrix(vector<vector<T>>& v) {
   int R = sz(v), C = sz(v[0]);
   p.assign(R + 1, vector < T > (C + 1));
   FOR(r, 0, R)
   FOR(c, 0, C)
   p[r + 1][c + 1] = v[r][c] + p[r][c + 1] + p[r + 1][c] -
         p[r][c];
  T sum(int u, int 1, int d, int r) {
    return p[d][r] - p[d][l] - p[u][r] + p[u][l];
};
```

5.2 Tecnica con Deque

```
* Descripcion: algoritmo que resuelve el problema de el
 * o maximo valor de cada sub-array de longitud fija.
 * Dado un arreglo de numeros A de longitud n y un numero k
      \leq n.
 * Encuentra el minimo para cada sub-array contiguo de
      longitud k.
 * La estrategia se basa en el uso de una bicola monotona,
 * en donde en cada iteracion sacamos del final de la bicola
 * hasta que este vacia o nos encontremos con un A[j] > A[i
 * luego agregamos i, manteniendose de manera decreciente,
     si el
 * frente se sale del rango, lo sacamos y el nuevo frente
      seria
 * el mayor en el rango (A[i]...A[i + k - 1]).
 * Este algoritmo gana fuerza cuando se generaliza a mas
      dimensiones:
 * digamos que queremos el mayor en una sub-matriz dada, se
      puede
 * precalcular el B para cada fila y luego volvemos a correr
 * el algoritmo sobre dichos valores.
 * Retorna un vector B, en donde B[i] = j,
 * tal que A[j] >= A[i], ..., A[i + k - 1]
 * Tiempo: O(n)
vector<int> solve(vector<int>& A, int k) {
 vector<int> B(A.size() - k + 1);
  deque<int> dq:
  for (int i = 0; i < A.size(); i++) {</pre>
   while (!dq.empty() && A[dq.back()] <= A[i])</pre>
     dq.pop_back();
    da.pb(i);
   if (dq.front() <= i - k)</pre>
     dq.pop_front();
   if (i + 1 >= k)
```

B[i + 1 - k] = A[dq.front()];

5.3 DP con digitos

```
* Descripcion: algoritmo que resuelve un problema de DP de
      digitos.
 * La DP de digitos se requiere cuando se trabaja sobre
      cadenas
 * (normalmente numeros) de una gran cantidad de digitos y
 * requiere saber cuantos numeros en un rango cumplen con
      cierta
 * propiedad. Enunciado del problema resuelto:
 * Dada una cadena s que contiene numeros y caracteres ?
 * el minimo entero, tal que se forme asignandole valores a
 * ademas sea divisible por D; si no existe, imprimir un *
 * Tiempo: O(n^2)
string s;
int D;
stack<int> st;
bool dp[MAXN][MAXN]; // He pasado por aqui?
bool solve(int i, int residuo) {
 if (dp[i][residuo])
    return false:
  if (i == s.length())
    return residuo == 0;
 if (s[i] == '?') {
    for (int k = (i == 0); k <= 9; k++) {</pre>
      if (solve(i + 1, (residuo * 10 + k) % D)) {
       st.push(k):
        return true;
  } else {
    if (solve(i + 1, (residuo * 10 + (s[i] - '0')) % D)) {
     st.push(s[i] - '0');
     return true;
 dp[i][residuo] = true;
  return false;
int main() {
 cin >> s >> D;
  if (solve(0, 0)) {
    while (!st.empty()) {
     cout << st.top();</pre>
      st.pop();
    cout << ENDL;
    cout << "*\n";
 return 0:
```

5.4 Knapsack

```
/**

* Descripcion: algoritmo para resolver el problema de la
mochila:
```

```
* se cuenta con una coleccion de N objetos donde cada uno
      tiene
 * un peso y un valor asignado, y una mochila con capacidad
      maxima C.
 * Se necesita maximizar la suma de valores que se puede
     lograr
 * sin que se exceda C.
* Tiempo: O(NC)
int peso[MAXN], valor[MAXN], dp[MAXN][MAXC];
int solve(int i, int c) {
 if (c < 0)
   return -INF:
  if (i == N)
   return 0:
  int &ans = dp[i][c];
 if (ans != -1)
   return ans;
 return dp[i][c] = max(solve(i + 1, c), opcion2, valor[i] +
        solve(i + 1, c - peso[i]));
```

5.5 Longest Increasing Subsequence

```
* Descripcion: algoritmo para resolver el problema de la
 * subsecuencia creciente mas larga de un arreglo (LIS) a
* partir de una estrategia de divide y venceras. Si no
 * es necesario recuperar la subsecuencia, ignorar p.
* Tiempo: O(n log n)
int n, nums[MAX], L[MAX], L_id[MAX], p[MAX];
void print_LIS(int i) { // backtracking routine
 if (p[i] == -1) {
   cout << A[i];
   return;
                    // base case
 print_LIS(p[i]); // backtrack
 cout << nums[i];</pre>
int solve_LIS() {
 int lis_sz = 0, lis_end = 0;
  for (int i = 0; i < n; i++) {
   L[i] = L_id[i] = 0;
   p[i] = -1;
  for (int i = 0; i < n; i++) {
   int pos = lower_bound(L, L + lis_sz, nums[i]) - L;
   L[pos] = nums[i];
   L_id[pos] = i;
   p[i] = pos ? L_id[pos - 1] : -1;
   if (pos == lis_sz) {
     lis_sz = pos + 1;
     lis_end = i;
 return lis_sz;
```

5.6 Monotonic Stack

```
* Descripcion: Usando la tecnica de la pila monotona para
      calcular para cada indice,
 * el elemento menor a la izquierda
 * Tiempo: O(n)
int main() {
  ios_base::sync_with_stdio(0);
  cin.tie(nullptr);
  int n = 12, heights[n] = {1, 8, 4, 9, 9, 10, 3, 2, 4, 8,
      1, 13}, leftSmaller[n];
  stack<int> st;
  FOR(i, 0, n) {
   while (!st.empty() && heights[st.top()] > heights[i])
     st.pop();
   if (st.empty())
     leftSmaller[i] = -1;
   else
     leftSmaller[i] = st.top();
   st.push(i);
```

5.7 Travelling Salesman Problem

```
* Descripcion: algoritmo para resolver el problema del
      viajero (TSP):
 * consiste en encontrar un recorrido que visite todos los
      vertices del
 * grafo, sin repeticiones y con el costo minimo. Este
     codigo resuelve
 * una variante del TSP donde se puede comenzar en cualquier
      vertice y
 * no necesita volver al inicial.
 * Tiempo: O(2^n * n)
constexpr int MAX_NODES = 15;
int n, dist[MAX_NODES][MAX_NODES], dp[MAX_NODES][1 << (</pre>
     MAX_NODES + 1)];
int solve(int i, int mask) {
  if (mask == (1 << n) - 1)
   return 0;
  int &ans = dp[i][mask];
  if (ans != -1)
   return ans;
  ans = INF;
  for (int k = 0; k < n; k++)
   if ((mask & (1 << k)) == 0)
     ans = min(ans, solve(k, mask | (1 << k)) + dist[i][k])
  return ans;
int solveTSP() {
  int ans = INF;
  for (int i = 0; i < n; i++)</pre>
   ans = min(ans, solve(i, (1 << (i))));
  return ans;
```

6 Graphs

6.1 2SAT

```
* Descripcion: estructura para resolver el problema de
      TwoSat:
 * dadas disyunciones del tipo (a or b) donde las variables
      pueden
 * o no estar negadas, se necesita saber si es posible
      asignarle un
 * valor a cada variable de tal modo que cada disyuncion se
      cumpla.
 * Las variables negadas son representadas por inversiones
      de bits (~x)
 * Uso:
 * TwoSat ts(numero de variables booleanas);
 * ts.either(0, ~3);
                               La variable 0 es verdadera o
      la variable 3 es falsa
 * ts.setValue(2);
                               La variable 2 es verdadera
 * ts.atMostOne({0, ~1, 2});
                               <= 1 de vars 0, ~1 y 2 son
      verdedero
 * ts.solve():
                               Retorna verdadero si existe
      solucion
 * ts.values[0..N-1]
                               Tiene los valores asignados a
       las variables
 * Tiempo: O(N + E), donde N es el numero de variables
      booleanas y E es el numero de clausulas
using vector<int> = vi;
struct TwoSat {
  vector<vi> adj;
  vi values; // 0 = false, 1 = true
  TwoSat(int n = 0) : N(n), adj(2 * n) {}
  int addVar() {
   adj.emplace_back();
    adj.emplace_back();
   return N++;
  // Agregar una disyuncion
  void either(int x, int v) { // Nota: (a v b), es
       equivalente a la expresion (\tilde{a} \rightarrow b) n (\tilde{b} \rightarrow a)
    x = max(2 * x, -1 - 2 * x), y = max(2 * y, -1 - 2 * y);
   adj[x].push_back(y ^ 1), adj[y].push_back(x ^ 1);
  void setValue(int x) { either(x, x); }
 void implies(int x, int y) { either(~x, y); }
  void make_diff(int x, int y) {
   either(x, y);
   either(~x, ~y);
  void make_eq(int x, int y) {
   either(~x, y);
   either(x, ~y);
  void atMostOne(const vi& li) {
   if (li.size() <= 1) return;</pre>
    int cur = ~li[0];
    for (int i = 2; i < li.size(); i++) {</pre>
     int next = addVar();
      either(cur, ~li[i]);
     either(cur, next);
     either("li[i], next);
     cur = "next;
    either(cur, ~li[1]);
  vi dfs_num, comp;
  stack<int> st;
  int time = 0;
```

```
int tarjan(int u) {
   int x, low = dfs_num[u] = ++time;
   st.push(u);
   for (int v : adj[u])
     if (!comp[v])
       low = min(low, dfs_num[v] ?: tarjan(v));
   if (low == dfs_num[u]) {
     do {
       x = st.top();
       st.pop();
       comp[x] = low;
       if (values[x >> 1] == -1)
         values[x >> 1] = x & 1;
     } while (x != u);
   return dfs_num[u] = low;
 bool solve() {
   values.assign(N, -1);
   dfs_num.assign(2 * N, 0);
   comp.assign(2 * N, 0);
   for (int i = 0; i < 2 * N; i++)
     if (!comp[i])
       tarjan(i);
   for (int i = 0; i < N; i++)
     if (comp[2 * i] == comp[2 * i + 1])
       return 0;
   return 1;
};
```

6.2 Bridge Detection

```
* Descripcion: algoritmo para buscar puentes en un grafo
 * Tiempo: O(V + E)
vector<int> g[MAXN];
bool articulation[MAXN];
int tin[MAXN], low[MAXN], timer, dfsRoot, rootChildren;
void dfs(int u, int p = -1) {
 tin[u] = low[u] = timer++;
  for (int v : q[u]) {
   if (v == p)
     continue;
   if (tin[v] != -1)
     low[u] = min(low[u], tin[v]);
   else {
     if (u == dfsRoot) // La raiz es un punto de
          articulacion
       ++rootChildren;
     dfs(v, u);
     if (low[v] >= tin[u])
       articulation[u] = 1;
      if (low[v] > tin[u])
       // La arista (u, v) es un puente
       low[u] = min(low[u], low[v]);
void find_bridges_articulations() {
 memset(tin, tin + n, -1);
 memset(low, low + n, -1);
 for (int i = 0; i < n; ++i) {
   if (tin[i] == -1) {
     dfsRoot = i;
```

```
rootChildren = 0;
   dfs(i);
   articulation[dfsRoot] = (rootChildren > 1);
}
```

6.3 Kosaraju (SCC)

```
* Descripcion: sirve para la busqueda de componentes
      fuertemente conexos (SCC).
 * este realiza dos pasadas DFS, la primera para almacenar
      el orden de finalizacion
 * decreciente (orden topologico) y la segunda se realiza en
      un grafo transpuesto a
 * partir del orden topologico para hallar los SCC.
 * Tiempo: O(V + E)
vi graph[MAXN]; // Grafo
vi graph_T[MAXN]; // Grafo transpuesto
vi dfs_num;
vi S:
int N, numSCC;
void Kosaraju(int u, int pass) {
 dfs_num[u] = 1;
  vi &neighbor = (pass == 1) ? graph[u] : graph_T[u];
  for (auto v : neighbor) {
   if (dfs_num[v] == -1)
      Kosaraju(v, pass);
  S.pb(u);
int main() {
 S.clear():
  dfs_num.assign(N, -1);
  FOR(u, N) {
   if (dfs_num[u] == -1)
      Kosaraju(u, 1);
  dfs_num.assign(N, -1);
  numSCC = 0;
  ROF(i, N) { // Segunda pasada
   if (dfs_num[S[i]] == -1) {
      ++numSCC:
      Kosaraju(S[i], 2);
  cout << numSCC << ENDL;
```

6.4 Tarjan (SCC)

```
/**

* Descripcion: sirve para la busqueda de componentes fuertemente conexos (SCC)

* Un SCC se define de la siguiente manera: si elegimo cualquier par de vertices u y v

* en el SCC, podemos encontrar un camino de u a v y viceversa

* Explicacion: La idea basica del algoritmo de Tarjan es que los SCC forman subarboles

* en el arbol de expansion de la DFS. Ademas de calcular tin(u) y low(u) para cada vertice,

* anadimos el vertice u al final de una pila y mantenemos la informacion de que vertices

* estan siendo explorados, mediante vi visited. Solo los vertices que estan marcados como
```

```
* visited (parte del SCC actual) pueden actualizar low(u).
      Ahora, si tenemos el vertice u
 * en este arbol de expansion DFS con low(u) = tin(u),
      podemos concluir que u es la raiz de
 * un SCC y los miembros de estos SCC se pueden identificar
      obteniendo el contenido actual
 * de la pila, hasta que volvamos a llegar al vertice u
 * Tiempo: O(V + E)
int n:
                          // number of nodes
vector<vector<int>> adj; // adjacency list of graph
vector<int> tin, low, visited;
int timer, numSCC;
stack<int> pila;
void tarjanSCC(int u) {
 tin[u] = low[u] = timer++;
  pila.push(u);
  visited[u] = 1;
  for (int to : adj[u]) {
   if (tin[to] == -1)
     tarjanSCC(to);
    if (visited[to])
     low[u] = min(low[u], low[to]);
  if (low[u] == tin[u]) {
    ++numSCC;
    while (1) {
     int v = pila.top();
     pila.pop();
      visited[v] = 0:
     if (u == v)
       break:
int main() {
 timer = 0;
  tin.assign(n, -1);
  low.assign(n, 0);
  visited.assign(n, 0);
  while (!pila.empty())
   pila.pop();
  timer = numSCC = 0;
  FOR(i, n) {
   if (tin[i] == -1)
     tarjanSCC(i);
```

6.5 General Matching

```
* Descripcion: Variante de la implementacion de Gabow para
      el algoritmo
 * de Edmonds-Blossom. Maximo emparejamiento sin peso para
      un grafo en
 * general, con 1-indexacion. Si despues de terminar la
      llamada a solve(),
 * white [v] = 0, v es parte de cada matching maximo.
 * Tiempo: O(NM), mas rapido en la practica.
struct MaxMatching {
 int N:
  vector<vi> adj;
  vector<int> mate, first:
  vector<bool> white;
  vector<pi> label;
  MaxMatching(int _N) : N(_N), adj(vector<vi>(N + 1)), mate(
       vi(N + 1)), first(vi(N + 1)), label(vector<pi>(N +
       1)), white (vector < bool > (N + 1)) {}
```

```
void addEdge(int u, int v) { adj.at(u).pb(v), adj.at(v).pb
     (u); }
int group(int x) {
  if (white[first[x]])
    first[x] = group(first[x]);
  return first[x];
void match(int p, int b) {
  swap(b, mate[p]);
  if (mate[b] != p)
   return;
  if (!label[p].second)
   mate[b] = label[p].first, match(label[p].first, b);
         // vertex label
   match(label[p].first, label[p].second), match(label[p]
         ].second, label[p].first); // edge label
bool augment(int st) {
  assert(st);
  white[st] = 1;
  first[st] = 0;
  label[st] = {0, 0};
  queue<int> q;
  q.push(st);
  while (!q.empty()) {
   int a = q.front();
    q.pop(); // outer vertex
    for (auto& b : adj[a]) {
     assert(b);
      if (white[b]) {
        int x = group(a), y = group(b), lca = 0;
        while (x \mid | y) {
         if (v)
           swap(x, y);
          if (label[x] == pi{a, b}) {
           lca = x;
           break:
          label[x] = \{a, b\};
          x = group(label[mate[x]].first);
        for (int v : {group(a), group(b)})
          while (v != lca) {
            assert(!white[v]); // make everything along
                 path white
            q.push(v);
            white[v] = true;
            first[v] = lca;
            v = group(label[mate[v]].first);
      } else if (!mate[b]) {
        mate[b] = a;
        match(a, b);
        white = vector<bool>(N + 1); // reset
        return true;
      } else if (!white[mate[b]]) {
        white[mate[b]] = true;
        first[mate[b]] = b;
        label[b] = \{0, 0\};
        label[mate[b]] = pi{a, 0};
        q.push(mate[b]);
  return false;
int solve() {
  int ans = 0;
  FOR(st, 1, N + 1)
  if (!mate[st])
   ans += augment(st);
  FOR(st, 1, N + 1)
  if (!mate[st] && !white[st])
    assert(!augment(st));
```

return ans; };

6.6 Hopcroft Karp

```
* Descripcion: Algoritmo para resolver el problema de
      maximum bipartite
 * matching. Los nodos para c1 y c2 deben comenzar desde el
      indice 1
 * Tiempo: O(sqrt(|V|) * E)
int dist[MAXN], pairU[MAXN], pairV[MAXN], c1, c2;
vi graph[MAXN];
bool bfs() {
 queue<int> q:
  for (int u = 1; u <= c1; u++) {</pre>
   if (!pairU[u]) {
      dist[u] = 0;
      q.push(u);
      dist[u] = INF;
  dist[0] = INF;
  while (!q.empty()) {
   int u = q.front();
    q.pop();
    if (dist[u] < dist[0]) {</pre>
      for (int v : graph[u]) {
       if (dist[pairV[v]] == INF) {
          dist[pairV[v]] = dist[u] + 1;
          q.push(pairV[v]);
  return dist[0] != INF;
bool dfs(int u) {
 if (u) {
    for (int v : graph[u]) {
      if (dist[pairV[v]] == dist[u] + 1) {
        if (dfs(pairV[v])) {
          pairU[u] = v;
          pairV[v] = u;
          return true;
    dist[u] = INF;
    return false;
  return true;
int hopcroftKarp() {
 int result = 0;
  while (bfs())
   for (int u = 1; u <= c1; u++)</pre>
     if (!pairU[u] && dfs(u))
       result++;
  return result;
```

6.7 Hungaro

```
/**
 * Descripcion: Dado un grafo bipartito ponderado, empareja
      cada nodo
 * en la izquierda con un nodo en la derecha, tal que ningun
      nodo
 * pertenece a 2 emparejamientos y que la suma de los pesos
      de las
 * aristas usadas es minima. Toma a[N][M], donde a[i][j] es
 * el costo de emparejar L[i] con R[j], retorna (costo
      minimo, match),
 * donde L[i] es emparejado con R[match[i]], negar costos si
       se requiere
 * el emparejamiento maximo, se requiere que N <= M.
 * Tiempo: O(N^2 M)
pair<int, vi> hungarian(const vector<vi> &a) {
  if (a.empty()) return {0, {}};
  int n = SZ(a) + 1, m = SZ(a[0]) + 1;
  vi u(n), v(m), p(m), ans(n - 1);
  FOR(i, 1, n) {
   p[0] = i;
    int j0 = 0; // add "dummy" worker 0
    vi dist(m, INT_MAX), pre(m, -1);
    vector<bool> done(m + 1);
    do { // dijkstra
     done[j0] = true;
      int i0 = p[j0], j1, delta = INT_MAX;
     FOR (j, 1, m)
      if (!done[j])
        auto cur = a[i0 - 1][j - 1] - u[i0] - v[j];
        if (cur < dist[j]) dist[j] = cur, pre[j] = j0;</pre>
        if (dist[j] < delta) delta = dist[j], j1 = j;</pre>
      FOR (j, 0, m) {
        if (done[j])
         u[p[j]] += delta, v[j] -= delta;
         dist[j] -= delta;
      j0 = j1;
    } while (p[j0]);
    while (j0) { // update alternating path
     int j1 = pre[j0];
     p[j0] = p[j1], j0 = j1;
  FOR(j, 1, m)
  if (p[j]) ans[p[j] - 1] = j - 1;
  return {-v[0], ans}; // min cost
```

6.8 Kuhn

```
mt[to] = v;
    return true;
}
return false;
}
int main() {
    //... reading the graph ...

mt.assign(k, -1);
    int ans = 0;
    for (int v = 0; v < n; ++v) {
        used.assign(n, false);
        if (try_kuhn(v)) ans++;
}

cout << ans << ENDL;
for (int i = 0; i < k; ++i)
    if (mt[i] != -1)
        printf("%d %d\n", mt[i] + 1, i + 1);
}</pre>
```

6.9 Kruskal (MST)

```
* Descripcion: tiene como principal funcion calcular la
      suma del
 * peso de las aristas del arbol minimo de expansion (MST)
      de un grafo.
 * la estrategia es ir construyendo gradualmente el MST,
      donde
 * iterativamente se coloca la arista disponible con menor
      peso v
 \star ademas no conecte 2 nodos que pertenezcan al mismo
      componente.
* Tiempo: O(E log E)
#include <.../Data Structure/DSU.h>
using Edge = tuple<int, int, int>;
int main() {
 int V, E;
 cin >> V >> E;
 DSU dsu;
 dsu.init(V);
 Edge edges[E];
 for (int i = 0; i < E; i++) {
   int u, v, w;
   cin >> u >> v >> w;
   edges[i] = \{w, u, v\};
 sort (edges, edges + E);
 int totalWeight = 0;
 for (int i = 0; i < E && V > 1; i++) {
   auto [w, u, v] = edges[i];
   if (!dsu.sameSet(u, v)) {
     totalWeight += w;
     V -= dsu.unite(u, v);
 cout << "MST weight: " << totalWeight << '\n';</pre>
```

6.10 Prim (MST)

/**

```
* Descripcion: tiene como principal funcion calcular la
      suma del
 * peso de las aristas del arbol minimo de expansion (MST)
      de un grafo,
 * la estrategia es ir construyendo gradualmente el MST, se
      selecciona un
 * nodo arbitrario y se agregan sus aristas con nodos que no
       havan
 * sido agregados con anterioridad y se va tomando la de
      menor peso hasta
 * completar el MST.
 * Tiempo: O(E log E)
int V, E;
vector<pi> graph[MAXN];
bool taken[MAXN];
priority_queue<pi> pq;
void process(int u) {
 taken[u] = 1;
  for (auto &[v, w] : graph[u])
   if (!taken[v])
      pq.push({-w, v});
int prim() {
  process(0):
  int totalWeight = 0, takenEdges = 0;
  while (!pq.empty() && takenEdges != V - 1) {
    auto [w, u] = pq.top();
    pq.pop();
    if (taken[u]) continue;
    totalWeight -= w;
    process(u):
    ++takenEdges;
  return totalWeight;
```

6.11 Dinic

```
* Descripcion: algoritmo para calcular el flujo maximo en
 * Tiempo: O(V^2 E)
 */
struct Dinic {
 struct Edge {
    int to, rev;
    11 c, oc;
    11 flow() { return max(oc - c, OLL); } // if you need
         flows
  vi lvl, ptr, q;
  vector<vector<Edge>> adj;
  Dinic(int n) : lvl(n), ptr(n), q(n), adj(n) {}
  void addEdge(int a, int b, ll c, ll rcap = 0) {
   adj[a].push_back({b, SZ(adj[b]), c, c});
    adj[b].push_back({a, SZ(adj[a]) - 1, rcap, rcap});
  11 dfs(int v, int t, 11 f) {
    if (v == t || !f) return f;
    for (int& i = ptr[v]; i < SZ(adj[v]); i++) {</pre>
     Edge& e = adj[v][i];
     if (lvl[e.to] == lvl[v] + 1)
        if (ll p = dfs(e.to, t, min(f, e.c))) {
         e.c -= p, adj[e.to][e.rev].c += p;
          return p;
    return 0;
```

```
ll calc(int s, int t) {
 11 \text{ flow} = 0:
 q[0] = s;
  FOR(L, 0, 31)
  do { // 'int L=30' maybe faster for random data
   lvl = ptr = vi(SZ(q));
    int qi = 0, qe = lvl[s] = 1;
    while (qi < qe && !lvl[t]) {</pre>
      int v = q[qi++];
      for (Edge e : adj[v])
        if (!lvl[e.to] && e.c >> (30 - L))
          q[qe++] = e.to, lvl[e.to] = lvl[v] + 1;
    while (ll p = dfs(s, t, LLONG_MAX)) flow += p;
  while (lvl[t])
 return flow:
bool leftOfMinCut(int a) { return lvl[a] != 0; }
```

6.12 Min Cost Max Flow

```
* Descripcion: maximo flujo de coste minimo. Se permite que
       cap[i][j] != cap[j][i], pero
 * las aristas dobles no lo estan, si los costos pueden ser
      negativos, llamar a setpi antes
 * que calc, los ciclos con costos negativos no son
     soportados.
 * Tiempo: aproximadamente O(E^2)
// #include <bits/extc++.h> importante de incluir
const 11 INF = numeric_limits<11>::max() / 4;
typedef vector<11> VL;
struct MCMF {
  int N:
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen:
  VL dist, pi;
  vector<pair<11, 11>> par;
  MCMF(int N): N(N), ed(N), red(N), cap(N, VL(N)), flow(cap
       ), cost(cap), seen(N), dist(N), pi(N), par(N) {}
  void addEdge(int from, int to, 11 cap, 11 cost) {
   this->cap[from][to] = cap;
   this->cost[from][to] = cost;
    ed[from].push_back(to);
   red[to].push_back(from);
  void path(int s) {
   fill(ALL(seen), 0);
    fill(ALL(dist), INF);
   dist[s] = 0;
   ll di;
    __qnu_pbds::priority_queue<pair<ll, int>> q;
    vector<decltype(q)::point_iterator> its(N);
    q.push({0, s});
    auto relax = [&](int i, ll cap, ll cost, int dir) {
     11 val = di - pi[i] + cost;
      if (cap && val < dist[i]) {</pre>
       dist[i] = val;
       par[i] = {s, dir};
        if (its[i] == q.end())
         its[i] = q.push({-dist[i], i});
         q.modify(its[i], {-dist[i], i});
```

```
};
   while (!q.empty()) {
     s = q.top().second;
     q.pop();
     seen[s] = 1;
     di = dist[s] + pi[s];
     for (int i : ed[s])
       if (!seen[i])
         relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
     for (int i : red[s])
       if (!seen[i])
         relax(i, flow[i][s], -cost[i][s], 0);
   FOR(i, 0, N)
   pi[i] = min(pi[i] + dist[i], INF);
 pair<11, 11> calc(int s, int t) {
   11 totflow = 0, totcost = 0;
   while (path(s), seen[t]) {
     11 fl = INF;
     for (int p, r, x = t; tie(p, r) = par[x], x != s; x =
        fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]
            ]);
      totflow += fl:
      for (int p, r, x = t; tie(p, r) = par[x], x != s; x =
       if (r)
         flow[p][x] += fl;
       else
         flow[x][p] -= fl;
   FOR(i, 0, N)
   FOR(j, 0, N) totcost += cost[i][j] * flow[i][j];
   return {totflow, totcost};
 void setpi(int s) {
   fill(ALL(pi), INF);
   pi[s] = 0;
   int it = N, ch = 1;
   11 v;
   while (ch-- && it--)
     FOR(i, 0, N)
     if (pi[i] != INF) for (int to : ed[i]) if (cap[i][to])
            if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
         pi[to] = v,
         ch = 1;
   assert(it >= 0);
};
```

6.13 Push Relabel

```
/**
 * Descripcion: algoritmo push-relabel para calcular el
 * flujo maximo en un grafo, bastante rapido en la practica
 * Tiempo: $O(V^2\sqrt E)$
 */

struct PushRelabel {
    struct Edge {
        int dest, back;
        ll f, c;
    };
    vector<vector<Edge>> g;
    vector<fl> ec;
    vector<fl> ec;
    vector<vector\set back;
    it if;
    PushRelabel(int n) : g(n), ec(n), cur(n), hs(2 * n), H(n)</pre>
```

```
void addEdge(int s, int t, ll cap, ll rcap = 0) {
  if (s == t) return;
  g[s].push_back({t, sz(g[t]), 0, cap});
  g[t].push_back({s, sz(g[s]) - 1, 0, rcap});
void addFlow(Edge& e, ll f) {
  Edge& back = g[e.dest][e.back];
  if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
  e.f += f;
  e.c -= f;
  ec[e.dest] += f;
  back.f -= f;
  back.c += f;
  ec[back.dest] -= f;
11 calc(int s, int t) {
  int v = sz(q);
  H[s] = v;
  ec[t] = 1;
  vi co(2 * v);
  co[0] = v - 1;
  rep(i, 0, v) cur[i] = g[i].data();
  for (Edge& e : g[s]) addFlow(e, e.c);
  for (int hi = 0;;) {
    while (hs[hi].empty())
      if (!hi--) return -ec[s];
    int u = hs[hi].back();
    hs[hi].pop_back();
    while (ec[u] > 0) // discharge u
      if (cur[u] == g[u].data() + sz(g[u])) {
        H[u] = 1e9;
        for (Edge& e : g[u])
          if (e.c && H[u] > H[e.dest] + 1)
            H[u] = H[e.dest] + 1, cur[u] = &e;
        if (++co[H[u]], !--co[hi] && hi < v)</pre>
          rep(i, 0, v) if (hi < H[i] && H[i] < v)-- co[H[i]
               ]], H[i] = v + 1;
        hi = H[u];
      } else if (cur[u]->c && H[u] == H[cur[u]->dest] + 1)
       addFlow(*cur[u], min(ec[u], cur[u]->c));
      else
        ++cur[u];
bool leftOfMinCut(int a) { return H[a] >= sz(g); }
```

6.14 Bellman-Ford

auto [a, b, w] = e;

```
* Descripcion: calcula el costo minimo para ir de un nodo
      hacia todos los
 * demas alcanzables. Puede detectar ciclos negativos, dando
       una ultima
 * pasada y revisando si alguna distancia se acorta.
* Tiempo: O(VE)
 */
int main() {
 int n, m, A, B, W;
  cin >> n >> m;
  tuple<int, int, int> edges[m];
 for (int i = 0; i < m; i++) {</pre>
   cin >> A >> B >> W;
   edges[i] = make_tuple(A, B, W);
 vi dist(n + 1, INF);
 int x;
 cin >> x;
  dist[x] = 0; // Nodo de inicio
  for (int i = 0; i < n; i++) {</pre>
   for (auto e : edges) {
```

```
dist[b] = min(dist[b], dist[a] + w);
}

for (auto e : edges) {
    auto [u, v, weight] = e;
    if (dist[u] != INF && dist[u] + weight < dist[v]) {
        cout << "Graph contains negative weight cycle" << endl
        ;
        return 0;
    }
}

cout << "Shortest distances from source " << x << ENDL;
for (int i = 0; i < n; i++) {
        cout << (dist[i] == INF ? -1 : dist[i]) << " ";
}

return 0;</pre>
```

6.15 Dijkstra

```
* Descripcion: calcula el costo minimo para ir de un nodo
      hacia todos los demas alcanzables.
 * Tiempo: O(E log V)
vector<pi> graph[MAXN];
int dist[MAXN];
// O(V + E \log V)
void dijkstra(int x) {
 FOR(i, 0, MAXN)
  dist[i] = INF;
  dist[x] = 0;
  priority_queue<pi> pq;
  pq.emplace(0, x);
  while (!pq.empty()) {
   auto [du, u] = pq.top();
    du *= -1;
   pq.pop();
    if (du > dist[u])
     continue:
    for (auto &[v, dv] : graph[u]) {
     if (du + dv < dist[v]) {
        dist[v] = du + dv;
        pq.emplace(-dist[v], v);
   }
  // Si la pg puede tener muchisimos elementos, utilizamos
       un set, en donde habra a lo mucho V elementos
  set<pi> pq;
  for (int u = 0; u < V; ++u)
   pq.emplace(dist[u], u);
  while (!pq.empty()) {
   auto [du, u] = *pq.begin();
    pq.erase(pq.begin());
    for (auto &[v, dv] : graph[u]) {
     if (du + dv < dist[v]) {
        pq.erase(pq.find({dist[v], v}));
        dist[v] = du + dv;
        pq.emplace(dist[v], v);
```

6.16 Floyd-Warshall

```
* Descripcion: modifica la matriz de adyacencia graph[n][n
 * tal que graph[i][j] pasa a indicar el costo minimo para
 * desde el nodo i al j, para cualquier (i, j).
* Tiempo: O(n^3)
int graph[MAXN][MAXN];
int p[MAXN][MAXN]; // Guardar camino
void floydWarshall() {
 FOR(i, N) { // Inicializar el camino
   FOR(j, N) {
     p[i][j] = i;
 FOR(k, N) {
   FOR(i, N) {
     FOR (j, N) {
       if (graph[i][k] + graph[k][j] < graph[i][j]) //</pre>
             Solo utilizar si necesitas el camino
          p[i][j] = p[k][j];
        graph[i][j] = min(graph[i][j], graph[i][k] + graph[k
             ][j]);
void printPath(int i, int j) {
 if (i != j)
 printPath(i, p[i][j]);
cout << j << " ";</pre>
```

6.17 Binary Lifting LCA

```
* Descripcion: siendo jump[i][j] el ancestro 2^j del nodo i
 * el binary liftingnos permite obtener el k-esimo ancestro
 * de cualquier nodo en tiempo logaritmico, una aplicacion
 * esto es para obtener el ancestro comun mas bajo (LCA).
 * Importante inicializar jump[i][0] para todo i.
 * Tiempo: O(n log n) en construccion y O(log n) por
      consulta
const MAX = 1e5 + 5, LOG_MAX = 28;
vector<int> g[MAX];
int jump[MAX][LOG_MAX];
int depth[MAX];
void dfs(int u, int padre = -1, int d = 0) {
 depth[u] = d;
  jump[u][0] = padre;
 for (auto &hijo : q[u])
  if (hijo != padre)
     dfs(hijo, u, d + 1);
void build(int n) {
 memset(jump, -1, sizeof jump);
 dfs(0);
```

```
for (int i = 1; i < LOG_MAX; i++)</pre>
   for (int u = 0; u < n; u++)</pre>
     if (jump[u][i - 1] != -1)
        jump[u][i] = jump[jump[u][i - 1]][i - 1];
int LCA(int p, int q) {
 if (depth[p] < depth[q])</pre>
   swap(p, q);
  int dist = depth[p] - depth[q];
 for (int i = LOG_MAX - 1; i >= 0; i--)
   if ((dist >> i) & 1)
     p = jump[p][i];
 if (p == q)
   return p;
  for (int i = LOG_MAX - 1; i >= 0; i--)
   if (jump[p][i] != jump[q][i]) {
     p = jump[p][i];
     q = jump[q][i];
 return jump[p][0];
int dist(int u, int v) {
 return depth[u] + depth[v] - 2 * depth[LCA(u, v)];
```

6.18 Euler Tour

```
* Descripcion: utilizando una DFS, es posible aplanar un
 * esto se logra guardando en que momento entra y sale cada
      nodo,
 * apoyandonos de una estructura para consultas de rango es
      muy
 * util para consultas sobre un subarbol: saber la suma de
 * todos los nodos en el, el nodo con menor valor, etc.
 * Tiempo: O(n)
 */
vi q[MAXN];
int val[MAXN], in[MAXN], out[MAXN], toursz = 0;
void dfs(int u, int p) {
 in[u] = toursz++;
  for (auto& v : q[u])
   if (v != p)
     dfs(v, u);
  out[u] = toursz++;
```

6.19 Find Centroid

```
/**
 * Descripcion: dado un arbol, encuentra su centroide
 * Tiempo: O(V)
 */
int dfs(int u, int p) {
   for (auto v : tree[u])
      if (v != p)
        subtreeSZ[u] += dfs(v, u);
   return subtreeSZ[u] += 1;
}
int centroid(int u, int p) {
   for (auto v : tree[u])
```

```
if (v != p && subtreeSZ[v] * 2 > n)
    return centroid(v, u);
return u;
```

6.20 Hierholzer

```
* Descripcion: busca un camino euleriano en el grafo dado.
 \star Un camino euleriano se define como el recorrido de un
      grafo que visita
 \star cada arista del grafo exactamente una vez
 * Un grafo no dirigido es euleriano si, y solo si: es
      conexo y todos los
 * vertices tienen un grado par
 * Un grafo dirigido es euleriano si, y solo si: es conexo y
       todos los vertices
 * tienen el mismo numero de aristas entrantes y salientes.
      Si hay, exactamente,
 * un vertice u que tenga una arista saliente adicional y,
      exactamente, un
 * vertice v que tenga una arista entrante adicional, el
      grafo contara con un
 * camino euleriano de u a v
 * Tiempo: O(E)
int N:
vector<vi> graph; // Grafo dirigido
vi hierholzer(int s) {
  vi ans, idx(N, 0), st;
  st.pb(s);
  while (!st.empty()) {
    int u = st.back();
   if (idx[u] < (int)graph[u].size()) {</pre>
     st.pb(graph[u][idx[u]]);
      ++idx[u];
    } else {
     ans.pb(u);
      st.pop_back();
  reverse(all(ans));
  return ans;
```

6.21 Orden Topologico

```
* Descripcion: algoritmo para obtener el orden topologico
 * un grafo dirigido, definido como el ordenamiento de sus
 * vertices tal que para cada arista (u, v), u este antes
 * que v en el ordenamiento. Si existen ciclos, dicho
 * ordenamiento no existe.
 * Tiempo: O(V + E)
int V;
vi graph[MAXN];
vi sorted_nodes;
bool visited[MAXN];
void dfs(int u) {
  visited[u] = true;
  for (auto v : graph[u])
   if (!visited[v])
     dfs(v);
  sorted_nodes.push(u);
```

```
void toposort() {
 for (int i = 0; i < V; i++)</pre>
   if (!visited[i])
     dfs(i);
 reverse(ALL(sorted_nodes));
 assert(sorted_nodes.size() == V);
void lexicographic_toposort() {
 priority_queue<int> q;
 for (int i = 0; i < V; i++)
   if (in_degree[i] == 0)
     q.push(-i);
 while (!q.empty()) {
   int u = -q.top();
   q.pop();
   sorted_nodes.push_back(u);
   for (int v : graph[u]) {
     in_degree[v]--;
     if (in_degree[v] == 0)
       q.push(-v);
 assert(sorted_nodes.size() == V);
```

7 Geometry

7.1 Punto

```
constexpr double EPS = 1e-9; // 1e-9 es suficiente para
     problemas de precision doble
constexpr double PI = acos(-1.0);
inline double DEG_to_RAD(double d) { return (d * PI / 180.0)
inline double RAD_to_DEG(double r) { return (r * 180.0 / PI)
typedef double T:
struct Point {
 T x, y;
  // Operaciones Punto - Punto
  Point operator+(Point p) const { return {x + p.x, y + p.y
       }; }
  Point operator-(Point p) const { return {x - p.x, y - p.y
       }; }
  Point operator*(Point b) const { return {x * b.x - y * b.y
       , x * b.y + y * b.x; }
  // Operaciones Punto - Numero
  Point operator*(T d) const { return {x * d, y * d}; }
  Point operator/(T d) const { return {x / d, y / d}; } //
       Solo para punto flotante
  // Operaciones de comparacion para punto flotante
  bool operator<(Point other) const {</pre>
   if (fabs(x - other.x) > EPS)
     return x < other.x;</pre>
    return y < other.y;</pre>
  bool operator==(Point other) const { return fabs(x - other)
        .x) <= EPS && fabs(y - other.y) <= EPS; }
  bool operator!=(Point other) const { return ! (*this ==
       other); }
  // Operaciones de comparacion para enteros
  bool operator<(Point p) const { return tie(x, y) < tie(p.x</pre>
       , p.y); }
  bool operator==(Point p) const { return tie(x, y) == tie(p
       .x, p.y); }
T sq(Point p) { return p.x * p.x + p.y * p.y; }
double abs(Point p) { return sqrt(sq(p)); }
// Para poder hacer cout << miPunto
ostream& operator<<(ostream& os, Point p) { return os << "("
      << p.x << "," << p.y << ")"; }
// Eiemplos de uso
Point a{3, 4}, b{2, -1};
cout << a + b << " " << a - b << "\n"; // (5,3) (1,5)
cout << a * -1 << " " << b / 2 << "\n"; // (-3,-4) (1.5,2)
// Operaciones generales:
Point translate(Point v, Point p) { return p + v; }
Point scale (Point c, double factor, Point p) { return c + (p
      - c) * factor; }
// Si se desea rotar a partir de un punto C, restar p-c
     realizar el rotate y sumar p+c
Point rotate (Point p, double a) { return {p.x * cos(a) - p.y
      * sin(a), p.x * sin(a) + p.y * cos(a)}; }
Point perpendicular(Point p) { return {-p.y, p.x}; }
double dist (Point p1, Point p2) { return hypot(p1.x - p2.x,
     p1.y - p2.y); }
// Vector desplazamiento desde el punto p1 a p2
Point toVector(Point& p1, Point& p2) { return p2 - p1; }
// Operaciones vectoriales, en donde nuestro punto indica el
      fin del vector, siendo el origen su inicio
T dot(Point v, Point w) { return v.x * w.x + v.y * w.y; }
```

```
bool isPerp(Point v, Point w) { return dot(v, w) == 0; }
Point scale (const Point& v, double s) { return vec(v.x * s,
     v.y * s); }
// Para c++17
double angle(Point v, Point w) { return acos(clamp(dot(v, w)
      / abs(v) / abs(w), -1.0, 1.0)); }
// C++14 o menor
double angle (Point v, Point w) {
  double cosTheta = dot(v, w) / abs(v) / abs(w);
  return acos(max(-1.0, min(1.0, cosTheta)));
// Angulo que se forma en 3 puntos
double angle (Point a, Point o, Point b) {
 Point oa = toVector(o, a), ob = toVector(o, b);
  return acos(dot(oa, ob) / sgrt(sg(oa) * sg(ob)));
bool ccw(Point p, Point q, Point r) {
 return cross(toVector(p, q), toVector(p, r)) > -EPS;
T cross (Point v, Point w) { return v.x * w.y - v.y * w.x; }
T orient (Point a, Point b, Point c) { return cross(b - a, c
     - a); }
// Funcion signum: -1 si x es negativo, 0 si x = 0 y 1 si x
     es positivo
template <typename T>
int sgn(T x) {
  return (T(0) < x) - (x < T(0));
int manhattan(Point& p1, Point& p2) { return abs(p1.x - p2.x
     ) + abs(p1.y - p2.y); }
bool areCollinear(Point& p, Point& q, Point& r) {
  return abs(cross(toVector(p, q), toVector(p, r))) <= EPS;</pre>
```

7.2 Linea

```
struct Line {
  double a, b, c;
  bool operator<(Line& other) const {</pre>
    if (fabs(a - other.a) >= EPS)
     return a < other.a;</pre>
    if (fabs(b - other.b) >= EPS)
     return b < other.b;</pre>
    return c < other.c;</pre>
Line pointsToLine (Point& p1, Point& p2) {
  if (abs(p1.x - p2.x) \le EPS)
    return Line{1.0, 0.0, -p1.x};
  double a = -(double) (p1.y - p2.y) / (p1.x - p2.x);
  return Line{a, 1.0, -(double) (a * p1.x) - p1.y};
Line pointSlopeToLine (Point& p, double& m) { return Line {-m,
      1, -((-m * p.x) + p.y);
bool areParallel(Line& 11, Line& 12) { return (abs(11.a - 12)
     .a) <= EPS) && (abs(11.b - 12.b) <= EPS); }
bool areSame(Line& 11, Line& 12) { return areParallel(11, 12
     ) && (abs(11.c - 12.c) <= EPS); }
bool areIntersect(Line 11, Line 12, Point& p) {
  if (areParallel(11, 12)) return false;
  p.x = (12.b * 11.c - 11.b * 12.c) / (12.a * 11.b - 11.a *
       12.b);
  if (fabs(11.b) > EPS)
   p.y = -(11.a * p.x + 11.c);
```

```
p.y = -(12.a * p.x + 12.c);
 return true:
// convert point and gradient/slope to Line
void pointSlopeToLine(Point p, double m, Line& 1) {
 1.a = -m;
  1.b = 1;
 1.c = -((1.a * p.x) + (1.b * p.y));
void closestPoint(Line 1, Point p, Point& ans) {
 Line perpendicular;
  if (fabs(l.b) < EPS) { // vertical Line</pre>
   ans.x = -(1.c);
   ans.y = p.y;
    return;
  if (fabs(l.a) < EPS) { // horizontal Line</pre>
   ans.x = p.x;
    ans.v = -(1.c);
   return:
 pointSlopeToLine(p, 1 / l.a, perpendicular); // normal
 areIntersect(l, perpendicular, ans);
// Retorna la distancia mas corta entre el punto P y la
     linea de A a B
// y guarda el punto mas cercano en C
double distToLine(Point p, Point a, Point b, Point& c) {
 Point ap = toVector(a, p), ab = toVector(a, b);
  double u = dot(ap, ab) / sq(ab);
 c = translate(a, scale(ab, u));
 return dist(p, c);
void reflectionPoint(Line 1, Point p, Point& ans) {
 Point b:
  closestPoint(l, p, b);
 Point v = toVector(p, b):
 ans = translate(translate(p, v), v);
```

7.3 Segmento

```
// Retorna si el punto P se encuentra en el segmento de
     puntos S a E
bool onSegment(Point s, Point e, Point p) {
  return orient(p, s, e) == 0 && dot(s - p, e - p) <= 0;
// Retorna la distancia mas corta entre el punto P y el
     segmento S a E
double dist2(Point x) { return x * x + y * y; }
double dist(Point x) { sqrt((double)dist2(x)); }
double segDist(Point& s, Point& e, Point& p) {
  if (s == e) return dist(p - s);
  auto d = dist2(e - s), t = min(d, max(.0, dot(p - s, e - s))
      )));
  return (dist((p - s) * d - (e - s) * t) / d);
// Retorna la distancia mas corta entre el punto P y el
     segmento A a B
// y guarda el punto mas cercano en C
double distToLineSegment (Point p, Point a, Point b, Point& c
  vec ap = toVector(a, p), ab = toVector(a, b);
  double u = dot(ap, ab) / sq(ab);
  if (u < 0.0) {
   c = Point{a.x, a.y};
    return dist(p, a);
```

```
if (u > 1.0) {
   c = Point{b.x, b.y};
    return dist(p, b);
  return distToLine(p, a, b, c);
// Si existe un punto de interseccion unico entre los
     segmentos de linea que van de A a B y de C a D, se
// Si no existe ningun punto de interseccion, se devuelve un
      vector vacio.
// Si existen infinitos, se devuelve un vector con 2
     elementos, que contiene los puntos finales del
     segmento de linea comun.
vector<Point> segInter(Point a, Point b, Point c, Point d) {
  auto oa = orient(c, d, a), ob = orient(c, d, b),
      oc = orient(a, b, c), od = orient(a, b, d);
  if (sgn(oa) * sgn(ob) < 0 && sgn(oc) * sgn(od) < 0)
   return { (a * ob - b * oa) / (ob - oa) };
 set < Point > s;
  if (onSegment(c, d, a)) s.insert(a);
 if (onSegment(c, d, b)) s.insert(b);
  if (onSegment(a, b, c)) s.insert(c);
 if (onSegment(a, b, d)) s.insert(d);
  return {ALL(s)};
```

7.4 Poligono

```
const double EPS = 1e-9;
double DEG_to_RAD(double d) { return d * M_PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / M_PI; }
// Duplicar P[0] al final del vector de puntos
double perimeter(const vector<Point>& P) {
  double ans = 0.0;
  for (int i = 0; i < (int)P.size() - 1; ++i)</pre>
   ans += dist(P[i], P[i + 1]);
  return ans:
// Formula de Heron
double triangleArea(Point& p1, Point& p2, Point& p3) {
  double a = abs(p2 - p1), b = abs(p3 - p1), c = abs(p3 - p2)
       ), s = (a + b + c) / 2.0;
  return sqrt(s * (s - a) * (s - b) * (s - c));
// Con la magnitud del producto cruz
double triangleArea(Point& p1, Point& p2, Point& p3) {
  return cross(p2 - p1, p3 - p1) / 2;
double area(const vector<Point>& P) {
  double ans = 0.0;
  for (int i = 0; i < (int)P.size() - 1; ++i)</pre>
   ans += (P[i].x * P[i + 1].y - P[i + 1].x * P[i].y);
  return fabs(ans) / 2.0;
bool isConvex(const vector<Point>& P) {
  int n = (int)P.size();
  if (n <= 3) return false;</pre>
  bool firstTurn = ccw(P[0], P[1], P[2]);
  for (int i = 1; i < n - 1; ++i)</pre>
   if (ccw(P[i], P[i+1], P[(i+2) == n ? 1 : i+2]) !=
         firstTurn)
      return false:
  return true;
// Retorna 1/0/-1 si el punto p esta dentro/sobre/fuera de
// cualquier poligono P concavo/convexo
int insidePolygon(Point pt, const vector<Point>& P) {
```

```
int n = (int)P.size();
 if (n <= 3) return -1;
 bool on_polygon = false;
 for (int i = 0; i < n - 1; ++i)</pre>
   if (fabs(dist(P[i], pt) + dist(pt, P[i + 1]) - dist(P[i
        ], P[i + 1])) < EPS)
     on_polygon = true;
 if (on_polygon) return 0;
 double sum = 0.0:
  for (int i = 0; i < n - 1; ++i) {
   if (ccw(pt, P[i], P[i + 1]))
     sum += angle(P[i], pt, P[i + 1]);
     sum -= angle(P[i], pt, P[i + 1]);
 return fabs(sum) > M_PI ? 1 : -1;
// Retorna si el punto esta dentro del triangulo
double area(Point a, Point b, Point c) {
 return abs((a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x *
       (a.y - b.y)) / 2.0);
bool isInside (Point a, Point b, Point c, Point p) {
 double A = area(a, b, c);
 double A1 = area(p, b, c);
 double A2 = area(a, p, c);
 double A3 = area(a, b, p);
 return (fabs(A - (A1 + A2 + A3)) <= EPS);
```

7.5 Circulo

```
double DEG_to_RAD(double d) { return d * M_PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / M_PI; }
double PI = 2 * \arccos(0.0);
To check if a Point is inside, outside, or exactly on the
     border of a circle, we can use
the following function. Modify this function a bit for the
     floating Point version
int insideCircle(const Point i &p, const Point i &c, int r)
  int dx = p.x - c.x, dy = p.y - c.y;
  int Euc = dx * dx + dy * dy, rSq = r * r;
  return Euc < rSq ? 1 : (Euc == rSq ? 0 : -1); // in/
       border/out
Given 2 Points on the circle (p1 and p2) and radius r of the
      corresponding circle, we
can determine the location of the centers (c1 and c2) of the
      two possible circles.
bool circle2PtsRad(Point p1, Point p2, double r, Point &c) {
 double d2 = (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y)
       * (p1.y - p2.y);
  double det = r * r / d2 - 0.25;
 if (det < EPS) return false;</pre>
 double h = sqrt(det);
  // to get the other center, reverse p1 and p2
 c.x = (p1.x + p2.x) * 0.5 + (p1.y - p2.y) * h;
 c.y = (p1.y + p2.y) * 0.5 + (p2.x - p1.x) * h;
  return true;
void circle_line_intersection(double r, Line linea) {
 double a = linea.a, b = linea.b, c = linea.c;
  double x0 = -a * c / (a * a + b * b), y0 = -b * c / (a * a
       + b * b);
  if (c * c > r * r * (a * a + b * b) + EPS)
   puts("no points");
  else if (abs(c * c - r * r * (a * a + b * b)) < EPS) {</pre>
   puts("1 point");
```

```
cout << x0 << ' ' << y0 << ENDL;
} else {
   double d = r * r - c * c / (a * a + b * b);
   double mult = sqrt(d / (a * a + b * b));
   double ax, ay, bx, by;
   ax = x0 + b * mult;
   bx = x0 - b * mult;
   ay = y0 - a * mult;
   by = y0 + a * mult;
   puts("2 points");
   cout << ax << ' ' << ay << ENDL;
   }
}</pre>
```

7.6 Fracciones

```
/**
 * Descripcion: estructura para manejar fracciones, es util
     cuando
 * necesitamos gran precision y solo usamos fracciones
 * Tiempo: 0(1)
struct Frac {
 int a, b;
 Frac() {}
 Frac(int _a, int _b) {
   assert (_b > 0);
   _a = -_a;
     _b = -_b;
   int GCD = gcd(abs(_a), abs(_b));
   a = _a / GCD;
   b = \_b / GCD;
  Frac operator* (Frac& other) const { return Frac(a * other.
       a, b * other.b); }
  Frac operator/(Frac& other) const {
   Frac o(other.b, other.a):
    return (*this) * o;
  Frac operator+(Frac& other) const {
   int sup = a * other.b + b * other.a, inf = b * other.b;
   return Frac(sup, inf);
  Frac operator-(Frac& other) const {
   int sup = a * other.b - b * other.a, inf = b * other.b;
   return Frac(sup, inf);
  Frac operator*(int& x) const { return Frac(a * x, b); }
 Frac operator/(int& x) const {
   Frac o(1, x);
   return (*this) * o;
  bool operator < (Frac& other) const { // PROVISIONAL,
       IMPLEMENTARLA MEJOR SI HACEN FALTA LOWER BOUNDS
    if (a != other.a)
     return a < other.a;
    return b < other.b;</pre>
  bool operator == (Frac& other) const {
   return a == other.a && b == other.b;
  bool operator!=(Frac& other) const {
   return !(*this == other);
};
```

7.7 Convex Hull

```
1++
 * Descripcion: encuentra la envolvente convexa de un
 * de puntos dados. Una envolvente convexa es la minima
 * convexa que contiene a todos los puntos del conjunto.
 * Tiempo: O(n log n)
int orientation(Point a, Point b, Point c) {
  double v = a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (
      a.v - b.v);
  if (v < 0) return -1; // clockwise</pre>
  if (v > 0) return +1; // counter-clockwise
  return 0;
bool cw(Point a, Point b, Point c, bool include_collinear) {
  int o = orientation(a, b, c);
  return o < 0 || (include_collinear && o == 0);</pre>
bool ccw(Point a, Point b, Point c, bool include_collinear)
  int o = orientation(a, b, c);
  return o > 0 || (include_collinear && o == 0);
vector<Point> convex_hull(vector<Point>& a, bool
     include collinear = false) {
  if (a.size() == 1)
   return a;
  sort (ALL(a));
  Point p1 = a[0], p2 = a.back();
  vector<Point> up, down;
  up.push_back(p1);
  down.push_back(p1);
  for (int i = 1; i < (int)a.size(); i++) {</pre>
    if (i == a.size() - 1 || cw(p1, a[i], p2,
         include_collinear)) {
      while (up.size() \ge 2 \&\& !cw(up[up.size() - 2], up[up.
           size() - 1], a[i], include_collinear))
        up.pop_back();
      up.push_back(a[i]);
    if (i == a.size() - 1 || ccw(p1, a[i], p2,
         include_collinear)) {
      while (down.size() >= 2 && !ccw(down[down.size() - 2],
            down[down.size() - 1], a[i], include_collinear)
        down.pop_back();
      down.push_back(a[i]);
  if (include_collinear && up.size() == a.size()) {
   reverse(a.begin(), a.end());
   return a;
  vector<Point> ans:
  for (int i = 0; i < (int)up.size(); i++)</pre>
   ans.push_back(up[i]);
  for (int i = down.size() - 2; i > 0; i--)
   ans.push_back(down[i]);
  return ans;
```

7.8 Puntos mas cercanos

```
/*
* Descripcion: Dado un arreglo de N puntos en el plano,
encontrar el par
```

```
* de puntos con la menor distancia entre ellos
 * Utilizar con long long de preferencia
 * Tiempo: O(n log n)
// Agregar en el struct Point
bool operator<(Point p) const { return tie(x, y) < tie(p.x,</pre>
     p.y); }
T dist2() const { return x * x + y * y; }
typedef Point P;
pair<P, P> closest(vector<P> &v) {
 set<P> S;
  sort(ALL(v), [](P a, P b) { return a.y < b.y; });</pre>
  pair<11, pair<P, P>> ret{LLONG_MAX, {P{0, 0}, P{0, 0}}};
 int i = 0:
  for (P p : v) {
   P d{1 + (ll)sqrt(ret.first), 0};
    while (v[j].y <= p.y - d.x) S.erase(v[j++]);</pre>
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d
        );
    for (; lo != hi; ++lo)
     ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
    S.insert(p);
 return ret.second:
```

7.9 Punto 3D

```
struct Point {
  double x, y, z;
  Point() {}
  Point (double xx, double yy, double zz) { x = xx, y = yy, z
        = zz;
  /// scalar operators
  Point operator*(double f) { return Point(x * f, y * f, z *
        f); }
  Point operator/(double f) { return Point(x / f, y / f, z /
        f); }
  /// p3 operators
  Point operator-(Point p) { return Point(x - p.x, y - p.y,
       z - p.z); }
  Point operator+(Point p) { return Point(x + p.x, y + p.y,
       z + p.z); }
  Point operator% (Point p) { return Point (y * p.z - z * p.y,
        z * p.x - x * p.z, x * p.y - y * p.x); } /// (|p||
        q|sin(ang)) * normal
  double operator | (Point p) { return x * p.x + y * p.y + z *
        p.z; }
  /// Comparators
  bool operator == (Point p) { return tie(x, y, z) == tie(p.x,
        p.y, p.z); }
  bool operator!=(Point p) { return !operator==(p); }
  bool operator<(Point p) { return tie(x, y, z) < tie(p.x, p</pre>
        .y, p.z); }
Point zero = Point(0, 0, 0);
/// BASICS
double sq(Point p) { return p | p; }
double abs(Point p) { return sqrt(sq(p)); }
Point unit(Point p) { return p / abs(p); }
/// ANGLES
double angle (Point p, Point q) { ///[0, pi]
  double co = (p | q) / abs(p) / abs(q);
  return acos(max(-1.0, min(1.0, co)));
double small_angle(Point p, Point q) { ///[0, pi/2]
  return acos(min(abs(p | q) / abs(p) / abs(q), 1.0))
/// 3D - ORIENT
double orient (Point p, Point q, Point r, Point s) { return (
     q - p) % (r - p) | (s - p); }
```

8 Extras

8.1 Busquedas

```
* Descripcion: encuentra un valor entre un rango de numeros
 * Busqueda Binaria: divide el intervalo en 2 hasta
      encontrar
 * el valor minimo correcto
 * Busqueda ternaria: divide el intervalo en 3 para buscar
 * minimo/maximo de una funcion
 * Tiempo: O(log n)
int binary_search(int 1, int r) {
  while (r - 1 > 1) {
   int m = (1 + r) / 2;
   if (f(m)) {
      r = m;
   } else {
     1 = m;
  return 1:
double ternary_search(double 1, double r) {
  while (r - 1 > EPS) {
    double m1 = 1 + (r - 1) / 3;
   double m2 = r - (r - 1) / 3;
    double f1 = f(m1);
    double f2 = f(m2);
   if (f1 < f2) // Maximo de f(x)
     1 = m1:
   else
     r = m2:
  return f(1);
```

8.2 Fechas

```
* Descripcion: rutinas para realizar calculos sobre fechas,
 * en estas rutinas, los meses son expresados como enteros
      desde
 * el 1 al 12, los dias como enteros desde el 1 al 31, y los
      anios
 * como enteros de 4 digitos.
string dayOfWeek[] = {"Mon", "Tue", "Wed", "Thu", "Fri", "
     Sat", "Sun"};
// Convierte fecha Gregoriana a entero (fecha Juliana)
int dateToInt(int m, int d, int y) {
 return 1461 * (y + 4800 + (m - 14) / 12) / 4 +
        367 * (m - 2 - (m - 14) / 12 * 12) / 12 - 3 * ((y +
               4900 + (m - 14) / 12) / 100) / 4 +
         d - 32075;
// Convierte entero (fecha Juliana) a Gregoriana: M/D/Y
void intToDate(int jd, int &m, int &d, int &y) {
 int x, n, i, j;
 x = jd + 68569;
 n = 4 * x / 146097;
 x = (146097 * n + 3) / 4;
 i = (4000 * (x + 1)) / 1461001;
  x = 1461 * i / 4 - 31;
 j = 80 * x / 2447;
  d = x - 2447 * j / 80;
```

```
x = 1 / 11;
 m = \dot{j} + 2 - 12 * x;
 y = 100 * (n - 49) + i + x;
// Convierte entero (fecha Juliana) a dia de la semana
string intToDay(int jd) {
 return dayOfWeek[jd % 7];
int main() {
 int jd = dateToInt(3, 24, 2004);
 int m, d, y;
 intToDate(jd, m, d, y);
 string day = intToDay(jd);
  // Salida esperada:
 // 2453089
 // 3/24/2004
 // Wed
 cout << jd << endl</pre>
       << m << "/" << d << "/" << y << endl
       << day << endl;
```

8.3 HashPair

```
/**
 * Descripcion: funciones hash utiles, ya que std::
      unordered map
 * no las provee nativamente, es recomendable usar la
      segunda
 * cuando se trate de un pair < int. int>
struct hash_pair {
 template <class T1, class T2>
  size_t operator()(const pair<T1, T2>& p) const {
    auto hash1 = hash<T1>{}(p.first);
   auto hash2 = hash<T2>{}(p.second);
    if (hash1 != hash2) {
     return hash1 ^ hash2;
    return hash1;
};
unordered_map<pair<int, int>, bool, hash_pair> um;
struct HASH {
  size_t operator()(const pair<int, int>& x) const {
    return (size t)x.first * 37U + (size t)x.second;
};
unordered_map<pair<int, int>, int, HASH> xy;
```

8.4 Trucos

```
// Imprime un '+' antes de un valor positivo
cout.setf(ios::showpos);
cout << 100 << ' ' << -100 << '\n';
cout.unsetf(ios::showpos);
// Imprime valores decimales en hexadecimales
cout << hex << 100 << " " << 1000 << " " << 10000 << dec <<
     endl:
// Redondea el valor dado al entero mas cercano
round (5.5);
// piso(a / b)
cout << a / b;
// techo(a / b)
cout << (a + b - 1) / b;
// Llena la estructura con el valor (unicamente puede ser -1
      0 (1)
memset (estructura, valor, sizeof estrutura);
// Llena el arreglo/vector x, con value en cada posicion.
fill(begin(x), end(x), value);
// True si encuentra el valor, false si no
binary_search(begin(x), end(x), value);
// Retorna un iterador que apunta a un elemento mayor o
     igual a value
lower_bound(begin(x), end(x), value);
// Retorna un iterador que apunta a un elemento MAYOR a
upper_bound(begin(x), end(x), value);
// Retorna un pair de iteradores, donde first es el
     lower_bound y second el upper_bound
equal_range(begin(x), end(x), value);
// True si esta ordenado x, false si no.
is_sorted(begin(x), end(x));
// Ordena de forma que si hay 2 cincos, el primer cinco
     estara acomodado antes del segundo, tras ser ordenado
stable_sort(begin(x), end(x));
// Retorna un iterador apuntando al menor elemento en el
     rango dado (cambiar a max si se desea el mayor), es
     posible pasarle un comparador.
min_element(begin(x), end(x));
```