Cauchy Thm: A squence (an) converges if and only if Lecture 24:

Q1) How to find a formula for Sik? QZI Equal 100-oin jars in NYC? O3) Sorting Exams: 3/,... 194 how many swaps are needed to out it? Q4) $\rho(x) \in Q(x)$ polynomial u/ vational officets, when $\rho(n) \in \mathbb{Z}$, $\forall n \in \mathbb{Z}$? I Binomial Theorem: Q: What is (xty) "? Refair For S a finite set on primitation of S is a bijection fis - S. For 15/=n, how many are there? What properties to be they have? f, for first. , ids and frof! Defn: A k-relection from S, is a subset PSS
st. 1P1=1 (kxn)

Recall: let [n]= 11,..., n? the the set roll and

Sn = 1 f:[n] - [n] | fix bijective? ee Sn is the identity premutation e(i) = ; & kish a transposition is a permutation that only changes two darts. Ex: $t_{12}(1) = 2$ $t_{12}(2) = (1)$, $t_{12}(i) = i$ \forall ξ_{SiSV} for $i \neq j$ in [n], t_{ij} is the transparition of i and j. Notation: word from tur 112) Q: Promoner Problem, in complete dancing, two downwards afternating, after each dance I wo men swap postwers, at the end all washer coupler are spouses. Determine which drummer is playing at the end from the initial dancing and configuration. Consider $f(x) = \frac{1}{|x|}(x_i - x_j)$ For each of E. Sh one has $\sigma f(x) \equiv \frac{1}{1/2} \left(x_{(i)} - x_{\sigma(i)} \right).$ (lain: 1) of (x) = (-1) ". f(x) Y of ESn. 2) If on is the initial dance configuration, then
the last drummer = first drummer

Locturel 8:	Prine Factorization.
	Motivation: Ally study prime factorizations.
	Claim: every integer util has an unique (up to factorization in terms of prime numbers.
	Pf: Existence: n is either prime so at the product of primes (we proved this before.) Unique vers: $n = p_1 : \dots p_K$, suppose $n = q_1 : \dots q_R$ for some other primes. Notice p_1 divides n .
	Notice prédivides n.
	Lemma: It a prime number p divides a, 94 where aie N , then p divides a; for some j.
	= p_i divides q_i for some j . = $p_i = q_j$.
	By judiction we obtain $k=1$ and $39p_1,,pk? is equal to 3q_1,,q_2?$
	Exercise: Fill the details, prove Lemma and fill the block.
	Given a, be N, they are east to be relatively prime it pacelless Corollary: If yedla, bl =1, al n and blu , then =1.

In partant lemma: If gcd/a,b/=/, then there exists mine it.

s.t.

ma+n.b=1. gcd(9,6) = gcd(1al, 161). Induction on |a| + |b|, if $a = 0 \Rightarrow b = \pm 1$ in which case $(m,n) = (0 \neq 1)$ does it. without lost of generality we assume 100 \$60 >09. and | Hence if the result is true. For GRAD a+672. Consider (6+1) 72 (6+1) 70 (6+1) - 0 The Presult in true for both and both the m'(b+1)-a) + n'.(b+1) Suppose the wesult is fore DY (a', b') | a'+b' & k. and let a+b= k+1, pand a>b. (stronise take) then (a-b)>0, 6>0 and the result holds for ([a-b], b) since $(a-b)+b=a \leq k$.

>D] (m/n') s.t. m'(a-b) + n'b= | = 1 = 1 m' a + (n'-m') 6=1. = P (m', (h'-n')) is a solution for (2,6). M Odd - Pistinct. N= a1.1 + a3.3 + as-5 + ... ai= Zki.mi

(mi odd.)

(k: 70.) = (2 61 + 2 612 + ... + 2 614) .] + + (2 621 + 2 632 + ... + 6546) .] + ... = 1.261 + 1.2612 + -- + 1.82614 3.7621 + 3.2632 + -- + 3.826203 + each is district. let I mi, miz, ..., with the Distinct - Odd. Im; = } ; e[k]/ mi = mi }. $h = l_1 + \cdots + l_k$ = 2" mi + - - + 2" mk. = mi (2") +

mi (2") = mi (2") +

ie Imi

ie Imi [k]. Imz = 3; (- [4]) Claim the composite is a bijection.

Lemma: Ya, b, k & TL gcd (a, 6) = lgcd (a-kb, b). Pf: let d/a and d/b => d/(a-kb/. =10 gcd(a-kb,b/7 gcd(a,b). Analogosty, if dla-kbl and dlb then. dl(a-kb+kb)=a≠ god (a,6) ≥ gcd(a-kb,d). I dean use the above to provide an algorithm to find Step 1: Consider (ai, bil s.t. 917 bi Step 7: find the largest k s.t. q1 = k-b1 + v1, Step3: Consider (be, v.), mos godbikel Ima godlbi, ril = godlvi, bil = godlvi + kbi, bil = godlbai, bi Repent of Step 2 & 3 until rn = 0. Example: (154,35) ~> 154=4-35+14. (35,14) ~> 35=2-14+7

Suppose aln and bln and godlabl=1. lem (a, b) In. By HW lem (a, b). ged (a, b) = a.b. = lem (a, b) = ab. =D 96/n. A=391... Je val be the primes that? a= p, pla. g cd(a, 6/=1. 6= q1... 9k6. N= V1 ... Vkn. and by Fi 7 rj s.t. n= pi.... pk. 9:... 446 00.0. 11 vj. /

Nov. 26. Peablem: n divided by 3 has remainder?

n divided by 5 has remainder 2, and

n divided by 7 has remainder 4.

Q: What is the minimum n? Refn: A relation on a set S is a subset RCSX
We say when For x, y e S, we say x is in relation
to y (or x is related to y) if (x,y) \in R. Examples: (i) S= people at UI, & (x,y) & R; f

x is in a student of y. (ii) S = 00 Z, (x,y) eR if x-y is divisible by (iii) f: A - DA a function, 17/f/c Ax A is a volation. Detn: Equivalence relation if

(i) (reflexive) if $\forall x \in S$, $(x,x) \in R$;

(ii) (symmetric) if $\forall x,y \in S$ $(x,y) \in R = P(y,x) \in R$,

(iii) (transitive) if $\forall x,y,t \in S$ $q(x,y) \in R$ and $(y,t) \in R$, $\Rightarrow (x,t) \in R$; D (x,7/∈ R; Ex: (i;) $(x,x) \in R$, $(x,y) \in R = R$ $(y,x) \in R$ and $((x,y) \in R) \cap R$ $(x,z) \in R$. More generally, R = 3 (xyl EZ / (x-y) is divisible by n). VI let f: 5 -> 7 be a function.

Define RC SXS. 3(x,y) | f(x) = f(y) $\mathbf{0}_{g}$ Ris an equivalence relation. Non-examples: a) S = states at UI (not transitive) 6/ S= P(A). , (x,y) ER if x c y. (antisymmetric), if (x,y) ER and (y,x) ER =D x=y. RK: A notlegire, anti-symmetric and transitive relation is called an order relation Petri: Let R be an equivalence relation on S, for xES

[x]=34 & S/(x,y) & Ry is the equivalence class of x Example: (ii) let $1 \in \mathbb{Z}$, $C1] = 3 \dots, -3, -1, 1, 3, \dots$?

[0] $UC1] = \mathbb{Z}$ (partition) [iv] For $x \in S$, [x] is } then $y \in S |f(y) = |x|$?

Uf -'(f) is a part: from of S.

Exercise: How example (ii) is a case of example (iv)

Proposition: Let 9,6 € 2 6 + 0. Then there exists
Proposition: Let $a, b \in \mathbb{Z}$ $b \neq 0$. Then there exists unique $k, r \in \mathbb{Z}$ s.t.
a= k6+r and 0 € v €/b/-/.
Qf. 1) C 1 1-) 1 1 7 1 120
Pf: 1) Consider A= 3 a-nb/ne 2 and a-nb 70
Claim: A & B , by Aith water property there
always exist N s.t. N(-6) > -a.
Claim: A & p., by Arithmotic property here always exist N s.t. N (-b) 7-a. WALKE Calo CHARA W. D. V. b, a E Z.
아내 전 보다 보면 그런 바라고 그리고 보니는 데 그런 그런 나를 보는데, 보는데, 보는데 그는 데 그 보고 나왔다.
2) let r= min A, i.e. r= infA and reA.
3) Da O < v < (= b)
3) De OE v < lab! Judeed, if r7/6/, then pelo I me Z s.t.
() () () () () () () () () ()
= a-(m+1/6 < v and a-(m+1/6 & A.
4) Let r= min A, Delle i.e. v= a- mb for some m G TC =p q= r + mb , take k= m.
5) Suppose I k', v' s.t. r'= q - k'-6 = min A =
5) Suppose I k', v' s.t. r'= q - k'-6 = min A = v= q- k6.
6 (onsider $Y' - Y = (a - k'b) - (a - kb) =$
6) Consider $y'-y=(a-k'b)-(a-kb)=$ $=(k-k')\cdot b.$ $= (k-k')\cdot b.$ $= (k-k'b)-(a-kb)=$ $= (k-k'b)-(a-k'$
Now, Osvi < 161 and Osv<161 v'-r7,0-r
- DAME - 14 M 7-1

So - 16/< v-v' < 161. 1 Gu tradiction. V-V' = 0 l.b for some integer and -16/< 0 lb < 16/ -10 [e=0]

Vov. 30.	Jacob & Is made, (1). Bryan.
	For every $n \in \mathbb{N}$, $R_n \subseteq \mathbb{Z} \times \mathbb{Z} \setminus (x,y) \in R_n$ if $n \mid (x-y)$ is an equivalence relation
G	: What are the equivalence classes of Rn? A: [0], [1],, [n-1].
- 1	Defn: Z/nZ = set of equivalence Desas classes of Rn.
	FACTI: ZINTL has an addition operation.
	$\begin{bmatrix} a \end{bmatrix} + \begin{bmatrix} b \end{bmatrix} = \begin{bmatrix} a + b \end{bmatrix}.$
	[a] + [b] = [a']+[b']. [a+6] = [a'+6']? a=k.n+a'
	6= l.n + 6'
	$= D \left[a+b \right] = \left[a'+b' + (k+l) \cdot n \right].$ $= \left[a'+b' \right].$
	FACT 2: Z/uZ has a multiplication operation. for QQ [a], [6] = Z/uZ let [a]:[6] = [a.6].

if [a] = [6] www.t. Rn.

Notation!

Prop: Suppose a and b are relatively prime, and x e 72.

Then 3 x, x + b, x + 2b, ---, x + (a-1)-b? all have district remainder of upon division by a. PA: Suppose $X + ib \equiv x + jb \mod a$ for $i \neq j$ $0 \leq i, j \leq (a-1).$ $\Rightarrow (i-j)b \equiv 0 \mod a.$ $\gcd(a,b)=1$ $\Rightarrow a \text{ divides. } (i-j)\cdot b \Rightarrow D \text{ a } / (i-j).$ \Rightarrow contradiction since 0 < i-j < a-1 or -(a-1) < i-j < 0. Cori let $2a \cdot x = R$ modern For a and n fixed the equation ax = 1 mod n has a solution if gcd(q, n) = 1. As Call = 0 for any two solutions. Pf: Consider [a]: $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$.

[6] $I \to I_{a.b.}$ If gcd(a, n) = I $\int \int [a] \cdot [a]$ Since, 12/n/2 is finite =1 [a]. is bijective.

Chapter 5. Ī. (23/54). (t19) (2345) 23451

Chapter 5. $= h(h-1)\cdot \dots \cdot (h-k+1)$ k!k! (h) + 9(k) nk-1 + O(nk-2) $= \frac{(V+1)!}{(K+1)!} + \frac{(K)!}{(K+1)!} + \frac{(V+1)!}{(K+1)!} + \frac{(K)!}{(K)!} \cdot \frac{\rho(N)!}{(K+1)!} = \frac{(K+1)!}{(K+1)!} \cdot \frac{(K+1)!}{(K+1)!} \cdot \frac{(K+1)!}{(K+1)!} = \frac{(K+1)!}{(K+1)!} \cdot \frac{(K+1)!}{(K+1)!} \cdot \frac{(K+1)!}{(K+1)!} = \frac{(K+1)!}{(K+1)!} \cdot \frac{(K+1)!}$ deg & N.

Chapter 6.
I. let deg lal= n, deg (b)=m.
Strong. Induction on n. It nom then you.
If nim let
$a = a_{1} \cdot x^{n} + O(x^{n-1})$ $b = b_{1} \cdot x^{n} + O(x^{m-1})$
$h(x) = gn \cdot x^{n-m}$ $bm \qquad b$
$\Rightarrow u(x) \cdot \xi = q_{n-x} + O(x^{n-1})$
$= a_{n-x} + allow $
9 9 (x) = 8 9 (x) + 1 (x) an-x = 6.6
-s(x)
$\Rightarrow \qquad q - q \cdot n \cdot n = q + (x) w'$ $\Rightarrow \qquad b + (x) = b \cdot q + c \cdot n \cdot n$
= hb + f - s $= hb + f - s$
deg on to vesult by inhedi

I. ICRGI ;f (i) V pa e I; page I; (ii) V pe I, VreREDXI; repe I. A principal ideal if 7 geR[x] s.t. I = 3 9 - 9 | 9 E R[x]. Example: (il) p e R[x] | p(0) = 0}. E R[x].
= p p= x-q w/qeR[x]. Non-exple: R(x,y), $I= \} \times f + y \cdot g = 1$ Let $b \in I$ of least deg.

H V a ∈ I , a = q · b +r

a - q · b ∈ I. $\Rightarrow I \in I. \Rightarrow I = I = I = I$

Chapter 7. II. Main claim: p prime then a'= | mod & p

4-17 a= | mod p or a= p- | mod p. $\rho \mid (a^{2}-1) \rightarrow \rho \mid (a-1)(a+1) \rightarrow \rho \mid a-1 \mid er \mid \rho \mid a+1.$ $\Rightarrow \rho \mid \alpha \leq \rho \neq 1 \quad \text{und} \quad \rho = \rho = 1$ $\Rightarrow \rho \mid \alpha \leq \rho = 1 \quad \text{und} \quad \rho = \rho = 1$ Assume 20 & i & p-2, then I! i' s.t. $P^{-2} \quad i \cdot i' \equiv 1 \quad \text{mod} \quad \rho$ $|I| \quad i \equiv 1 \quad \text{mod} \quad \rho$ $|I| \quad j \equiv (\rho - 1) \quad \text{mod} \quad \rho$ $|i \Rightarrow 1| \quad |i \Rightarrow 1| \quad$