

Eye-tracking data analysis using hidden semi-Markovian models to identify and characterize reading strategies

Brice Oliver⁽¹⁾, <u>Jean-Baptiste Durand</u>⁽¹⁾,

Anne Guérin-Dugué⁽²⁾

also with contributions by Sophie Achard, Benoit Lemaire, Yann Guédon Project supported by PERSYVAL-Lab

Outline

- Aim of the study, experiment and data
- Model
- Results and interpretation
- Conclusion and perspectives

Protocol

- Presentation of a goal topic (e.g. "bird hunting") and then a text.
- Question asked: is the text about that topic?

Data

SUBJ	TEXT_NO	TEXT	X	Υ	FDLR	SACAMP	WINC	READMODE	WIREQ	COSINET
4.0000	9.0000	dasse_ciseaux-f1	232,2000	299.6000	162,0000	-139.4323	2000	acccc	82%.0800	accocc
4.0000	9.0000	drasse_ciseaux-f1	371.6000	296.6000	290,0000	-88.9892	0.0000	20000	-10000	0.1356
4.0000	9.0000	drasse_ciseaux-f1	460,4000	290.8000	179.0000	-134.0481	2000	accocc	-10000	0.1356
4.0000	9.0000	drasse_ciseaux-f1	594.3000	284.5000	237.0000	-266.8162	10000	10000	41.5500	0.8865
4.0000	9.0000	drasse_ciseaux-f1	3326000	336,5000	185.0000	-39.6989	0,0000	2000	49.2600	0.1649
4.0000	9.0000	drasse_ciseaux-f1	293,0000	339.3000	100,0000	153.6422	2000	α	49.2600	0.1649
4.0000	9.0000	drasse_ciseaux-f1	446.6000	342,9000	186,0000	-103.1363	2000	α	1637200	0.1194
4.0000	9.0000	dnasse_ciseaux-f1	549.6000	337.6000	178,0000	129.3031	2000	$\alpha \infty \infty$	282.7700	0.0837
4.0000	9.0000	dnasse_ciseaux-f1	678,9000	338,5000	156,0000	-360,7417	2000	$\alpha \infty \infty$	<i>67.910</i> 0	0.4000
4.0000	9.0000	drasse_ciseaux-f1	322,5000	394.3000	154.0000	72,3224	10000	10000	146623000	α
4.0000	9.0000	drasse_ciseaux-f1	394.8000	396.1000	1720000	-101.0179	-1.0000	30000	7.8400	0.3204
4.0000	9.0000	drasse_ciseaux-f1	293,8000	398.0000	157.0000	-101.0218	10000	10000	82%.0800	accocc
4.0000	9.0000	drasse_ciseaux-f1	394.8000	395,9000	171.0000	-132,4000	2000	α	7.8400	0.3204
4.0000	9.0000	drasse_ciseaux-f1	527.2000	395.8000	248,0000	-239.3214	-4.0000	4.0000	-1.0000	0.0368
4.0000	9.0000	drasse_ciseaux-f1	287.9000	399.0000	234.0000	257.2000	4.0000	α	82%.0800	accocc
4.0000	9.0000	drasse_ciseaux-f1	545.1000	399.1000	141.0000	80.5453	10000	10000	-10000	0.0368
4.0000	9.0000	drasse_ciseaux-f1	625.6000	401.8000	167.0000	-87.9260	10000	10000	99.3200	-0.0082
4.0000	9.0000	dnasse_diseaux-f1	7133000	395.5000	104.0000	-401.5383	2000	accocc	375.6800	acccc

- Subject, text, topic
- Sequences of coordinates x,y of fixations
- Fixation durations, (signed) number of words between fixations
- Word frequencies, length, semantic proximity to target topic

Example of a scanpath

X	Υ	FDLR	WINC
232,2000	299.6000	1620000	2000
371.6000	296.6000	290,0000	accocc
460.4000	290.8000	179.0000	2000
594.3000	284.5000	237.0000	10000
332,6000	336,5000	185.0000	accocc
293,0000	339.3000	100,000	2000
446.6000	342,9000	186,0000	2000
549.6000	337.6000	1780000	2000
<i>67</i> 8 <i>9</i> 000	338.5000	156,0000	2000
322,5000	394.3000	154.0000	10000
394.8000	3% 1000	1720000	-10000
293.8000	398.0000	157.0000	10000
394.8000	395.9000	171.0000	2000
527.2000	395.8000	248.0000	-4.0000
287.9000	399.0000	234.0000	4.0000
545.1000	399.1000	141.0000	10000
625.6000	401.8000	167.0000	10000
7133000	395.5000	104.0000	2000

Types of text

- S: strongly related, U: unrelated, M: moderately related to topic
- Example: Target topic "Bird hunting"

 \mathbf{S} U \mathbf{M}

In the north of France, hunters claim the right to carry on hunting in huts. However, France could face heavy fines if European directives protecting migratory birds are not respected.

The French and Japanese space agencies decided to constitute working groups on natural risk monitoring. One of them will be in charge for better use of space data.

Fat balls coated with seeds are quite much appreciated by chickadees, which storm them as soon as the weather gets colder.

NB. "M"-texts may be more or less close to S or U...

Issues to be addressed

• Segmentation of scanpaths into interpretable zones, in terms of cognitive phases in information acquisition and processing (speed reading, careful reading, taking a decision, ...)

\rightarrow reading strategies

- Characterization of the effect of different sources of variability (individual effects, text effects) on the reading strategy (global / local strategies)
- Characterization of the effect of global (text type) and local text characteristics (word frequency, length, semantic proximity to target topic, ...) on reading strategies.

Hidden semi-Markov chain models

- Purpose: segmentation, variability in global reading strategies
- Statistical model for time series $X_1, ..., X_n$
- Here time step t = fixation. The considered variable X_t ("observation") should characterize the fixation.
 - Here: ReadMode (categorical)
 - 0: more than 1 backward, 1: 1 backward, 2: same word,
 - 3: next word, 4: more than 1 forward (increasing IncWord)
- Number of possible reading strategies fixed in advance (must try several numbers, here: 5)
- From one state to another, the probability of each ReadMode should change (eventually the probabilities define the states)

Model hypotheses and parameters

• State S_t at fixation t: reading strategy at t.

$$S_t \in \{0,\ldots,4\}$$

- Given $S_t = k$, X_t has distribution P_k .
- Zone $S_t = S_{t+1} = ... = S_{t+L}$: within this zone, the observations are independent with same distribution.
- Changes of zones are ruled Markovian-like: transition matrix $A_{jk} = P(S_t = k \mid S_{t-1} = j)$
- Zone length L: random variable which distribution depends on current state of zone (this is the semi-Markov aspect)
- All we know is $X_1, ..., X_n$, the states must be deduced from them.

Parameter estimation

- Parameters:
 - $A_{jk} = P(S_t = k \mid S_{t-1} = j)$
 - $\blacksquare B_{rk} = P(X_t = r \mid S_t = k)$
 - Parameters of the zone length distributions (e.g. Binomial or Poisson with offset)
- All trials are assumed to follow the same hidden semi-Markov distribution (no individual / text effect here).
- Parameter estimation by maximum likelihood (numerical optimization by the EM algorithm)

Transitions / observations

"Hidden" aspects

- Each possible value of ReadMode may be observed in several states (observation distributions overlap)
- For example ReadMode = 3 (reading next word) may be observed in states 0, 1, 2 and 4.

• Given the observed variable, we cannot be sure of current state, hence "hidden"

- Alternation between short stays between 0 and 1 is a very strong pattern that will remain even in a 3-state model.
- Combine 0/1 into one "phase" and call it "normal reading"

Sojourn duration distributions for other states

0

normal reading (2)

unsure

speed reading

Segmentation

- 2 unsure
- 3 speed reading
- 4 confirmation

```
Dans le Pas-de-Calais, les chasseurs
réclasser à chasser
dans Resenuttes. La France risque pourtant
une lourde amende si elle contrebuient aux
directives européennes qui proffegenteles
```

Subject 4, text 26 (bird hunting)

$$\hat{S}_1, \dots, \hat{S}_n = \underset{S_1, \dots, S_n}{\operatorname{arg max}} P(S_1, \dots, S_n | X_1, \dots, X_n)$$

Variability: text effect

Dans le Pas-de Calais, les chasseurs

réclapient le droit de continuer à chasser

dans les huttes. La France risque pourtant

une loupdepannende si elle contrevient aux

directives européennes qui protègent les

oiseaux migrateurs.

On se Reduvient du fareup symbole du dollar revu pare Andy Pwarhol. Le pop-artiste Le Red Le

L'état de l'iniple route ne peut supporter pruse peut supporter un afflux gimultané de tous les réfugiés.

Le HCR prévoit des campagnes d'information PRef LPr LPr LPr LPr de masse dans les camps pour sensibiliser au danger des mines.

Subject 1, 4 different texts

Ces compats, qui ne remettent pas en pause la suprematie des talibans sur l'Afghangestan, prouvent que l'état-major veut et peut maintenir la pression sur ses adversaires.

Variability: individual effect

Dans le Pas-de Calais, les chasseurs

réclament le droit de continuer à chasser

dans les huttes. La France risque pourtant
une lourderancende si elle contrevient aux

directives européennes qui protègent les

oiseaux migrateurs.

Dans le Pas-de-Calais, les chasseurs
réclament le droit de continuer à chasser
dans les huttes. La France risque pourtant
une lourde amendé si elle contrevient aux
directives européennes qui protègent les
oiseaux migrateurs.

Text 26,4 different subjects

Dans le Pas-de-Calais, les chasseurs
Ref
réclatRenRefle droitede confinuer à chasser
dans Résehuttes. La France risque pourfant
une lourde amende si elle confrévient aux
Pr Ref
directives européennes qui profégenteles
oiseaux migrateurs.

Dans le Pas-de-Calais, les chasseurs

réclameRé le droit de continue, à chasser

LPr

dans les nuttes. La France risque pourtant

une lourde amende si elle contreRédent aux

LPr

directives européennes qui protègent les

oiseaux migrateurs.

Variability: individual effect

Factorial Correspondence Analysis: phase and subject

Clusters of individuals:

- + Normal reading / unsure ; speed reading / confirmation
- + Speed reading ; normal reading / unsure
- + Confirmation; normal reading / unsure

→ gradient between fast and careful readers

Type of text effect

Type of text effect

Mean number of transitions

Mean number of transitions per type of text

trigger words

Dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

réclateure le droite de confinuer à chasser

dans le Pas-de-Calais, les chasseurs

dans le Pas-de

Type of text effect

Distribution of the number of fixations per phase and type of text

Conclusion: gradient in complexity between U, S, M characterized by

- Number of fixations
- Reading speed
- Time spent in confirmation vs. speed reading
- Number of strategy changes
- Effect of trigger words on strategy changes

EEG data

- Records: 10 s EEG on 30 channels at 1,000 Hz.
- Ideally phases should have contrasted EEG properties
- Use wavelet transform in place of Raw EEGs (too noisy for clear and contrasted patterns to emerge from phases)
- First results on "S" texts only with a different 5-states model: differences in variances / correlations between channels / band frequencies regarding phases

Conclusion and possible extensions

- Hidden Markov models: useful approach to infer strategies
- Strategies seemingly related to subjects, reading speed, type of text and semantic properties
- Strong effect of type of text on taking decisions
- Modeling eye movements and EEGs jointly
- Coupling hidden Markov models
- Infer zones in brains involved in different reading strategies and their synchronisms

References

- A. Frey, G. Ionescu, B. Lemaire, F. Lopez Orozco, T. Baccino and A. Guérin-Dugué. Decision-making in information seeking on texts: an Eye-Fixation-Related Potentials investigation. *Frontiers in Systems Neuroscience*, 7, pp. 39 (2013)
- J. Simola, J. Salojärvi and I. Kojo. Using hidden Markov model to uncover processing states from eye movements in information search tasks. *Cognitive Systems Research* 9(4), 237-251 (October 2008)
- S.-Z. Yu. Hidden semi-Markov models. *Artificial Intelligence* 174, 215-243 (2010)