(19) 日本国特許庁 (JP)

(12) 公表特許公報(A)

(11)特許出願公表番号

特表平9-506837

(43)公表日 平成9年(1997)7月8日

								•	
(51) Int.Cl.6	識別記号	庁内整理番号	FΙ						
B 3 2 B 27/36		9349-4F	В3	2B 2	27/36				
. 7/02	103	9349-4F			7/02		103		
G02B 5/30		9514-2H	G 0	2 B	5/30				
// B 2 9 C 55/02		7639-4F	В 2	9 C 5	55/02				
B29K 67:00									
		審查請求	未蘭求	予備額	審査請求	有	(全 78 頁)	最終頁に続く	
(21) 出願番号	特願平7 -517483		(71)	出願人	ミネソ	タ・マ	イニング・ア	ンド・マニュフ	
(86) (22)出顧日	6) (22)出願日 平成6年(1994)12月20日			ァクチュアリング・カンパニー					
(85) 翻訳文提出日 平成8年(1996) 6月20日				アメリカ合衆国55133-3427、ミネソタ州、					
(86)国際出願番号 PCT/US94/14323				セント・ポール、ポスト・オフィス・ポッ					
(87) 国際公開番号 WO95/17303		1		クス 3	33427	野、スリーエム	・センター		
37) 国際公開日 平成7年(1995) 6月29日				(番地)	の表示	なし)			
(31)優先権主張番号) 優先権主張番号 08/171, 239		(72)	発明者	アウダ	一カー	ク、アンドリ	ュー・ジェイ	
(32) 優先日	1993年12月21日							7、ミネソタ州、	
(33) 優先権主張国					セント	· ボー	・ル、ポスト・	オフィス・ボッ	
(O) Beyon man	,,,,,,						蜂(番地の表示		
		•	(74)	代理人	弁理士	杏山	葆 (外2	名)	
								最終質に続く	
								取科貝に続く	

(54) 【発明の名称】 多層光学フィルム

(57)【要約】

本発明は、結晶性ナフタレンジカルボン酸ポリエステル (12) と別の選ばれたポリマー (14) との複数の交互の層の主要部品を含んで成る多層化ポリマーフィルム (10) であって、層の厚さが0.5 μm未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも1つの面内軸に関する屈折率が、選ばれたポリマーの隣接する層よりも高いものを包含する。

Fig. 1b

【特許請求の範囲】

- 1. 結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の交互の層の第一主要部品を含んで成る多層化ポリマーフィルムであって、層全部の厚さが、実質上0.5 μ m未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも1つの面内軸に関する屈折率が、選ばれたポリマーの隣接する層よりも高いフィルム。
- 2. 結晶性ナフタレンジカルボン酸ポリエステルが、ポリエチレンナフタレートである請求項1に記載のフィルム。
- 3. 複数の層の主要部品を1方向に延伸した後で、隣接する層の少なくとも1つの面内軸に関する屈折率が実質上等しい請求項1に記載のフィルム。
- 4. 結晶性ナフタレンジカルボン酸ポリエステル層が、フィルムの別の面内軸 に関する屈折率と少なくとも0.05の差を示す請求項3に記載のフィルム。
- 5. フィルムの面に沿った結晶性ナフタレンジカルボン酸ポリエステル層の異なる面内軸に関する屈折率の差が、少なくとも0.20である請求項4に記載のフィルム。
- 6. 隣接する層が、少なくとも0.05の配向軸に関する屈折率の差を示す請求項3に記載のフィルム。
- 7. 隣接する層が、少なくとも0.20の配向軸に関する屈折率の差を示す請求項6に記載のフィルム。
 - 8. 前記のフィルムが偏向子である請求項3に記載のフィルム。
- 9. 選ばれたポリマーが、ナフタレン基を含んで成る請求項1に記載のフィルム。
- 10. 選ばれたポリマーが、コポリエステルまたはコポリカーボネートである 請求項1 に記載のフィルム。
- 11. コポリエステルが、エチレングリコールと、ナフタレンジカルボン酸も しくナフタレンジカルボン酸のエステル20~80モル%の範囲、およびイソフ タル酸もしくはテレフタル酸またはイソフタル酸もしくテレフタル酸のエステル
- 20~80モル%の範囲との反応生成物であり、請求項10に記載のフィルム。

- 12. 選ばれたポリマーのガラス転移温度が、結晶性ナフタレンジカルボン酸ポリエステルのガラス転移温度よりも低い請求項10に記載のフィルム。
- 13. 1 軸配向した後、選ばれたポリマーの横断軸に関する屈折率が、約1. 59~1.69である請求項1に記載のフィルム。
- 14. 選ばれたポリマーが、イソフタル酸、アゼライン酸、アジピン酸、セバシン酸、ジ安息香酸、テレフタル酸、2.7-ナフタレンジカルボン酸、2.6-ナフタレンジカルボン酸、またはシクロヘキサンジカルボン酸の反応生成物である請求項1に記載のフィルム。
- 15. 選ばれたポリマーが、エチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、テトラメチレングリコール、ジエチレングリコール、シクロヘキサンジメタノール、4-ヒドロキシジフェノール、ピスフェジールA・もしくは1,8-ジヒドロキシビフェニル、または1,3-ビス(2-ヒドロキシエトキシ)ベンゼンの反応生成物である請求項1に記載のフィルム。
 - 16. フィルムを1軸延伸する請求項1に記載のフィルム。
 - 17. フィルムを2軸延伸する請求項1に記載のフィルム。
- 18. 選ばれたポリマーの屈折率が1.65未満である請求項17に記載のフィルム。
- 19. 選ばれたポリマーの屈折率が1.55未満である請求項17に記載のフィルム。
 - 20. 主要部品を、別の光学要素中に組み込む請求項1に記載のフィルム。
- 21. 結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の交互の層の第二主要部品を含んで成る請求項1に記載のフィルムであって、層全部の厚さが、実質上0.5 μ m未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも1つの面内軸に関する屈折率が、第一および第二の主要部品を互いにラミネートした選ばれたポリマーの隣接する層よりも高いフィルム。
 - 22. 第一主要部品のバンドと第二主要部品のバンドが実質上等しい請求項2

1に記載のフィルム。

- 23. 第一主要部品のバンドと第二主要部品のバンドが異なる請求項21に記載のフィルム。
- 24. 主要部品をいずれも、1方向に延伸し、かつ主要部品を、それぞれの配向軸を互いに約90°回転するように相互に配置させた請求項21に記載のフィルム。
- 25. 一方の主要部品を1軸延伸させ、かつ他方の主要部品を2軸延伸させた 請求項21に記載のフィルム。
- 26.2軸延伸した主要部品を、直交軸に沿って非対称に延伸した請求項25に記載のフィルム。
- 27.2軸延伸した主要部品を、直交軸に沿って対称に延伸した請求項25に 記載のフィルム。
 - 28. 本体、

画像を投影する手段を有する本体に接続されたヘッド、

ヘッドによって投影するための画像を置く、本体上のステージプロジェクション 領域、

本体内に配置した光源、および

結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の 交互の層を有する多層化ポリマーフィルムであって、層全部の厚さが、実質上0 5 μm未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少な くとも1つの面内軸に関する屈折率が、選ばれたポリマーの隣接する層よりも高 いフィルムであって、プロジェクションステージと光源の間に配置したフィルム を含んで成るオーバーヘッドプロジェクター。

- 29. 多層化ポリマーフィルムが、光源からの赤外線エネルギーを反射すると 同時に可視光を透過する請求項28に記載のオーバーヘッドプロジェクター。
- 30. 多層化ポリマーフィルムが、光源からの可視光を反射すると同時に赤外線エネルギーを透過する請求項28に記載のオーバーヘッドプロジェクター。
 - 31. 結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーと

の交互の層の第一積層体であって、層の厚さが 0.5 μ m未満であり、かつ結晶 性ナフタレンジカルボン酸ポリエステルの少なくとも 1 つの面内軸に関する屈折 率が、選ばれたポリマーの隣接する層よりも高いものを形成すること からなる光を反射する方法。

- 32. 積層体を1軸延伸して、隣接する層間の配向軸に関する屈折率に少なく とも0.05の差を得る請求項31に記載の方法。
- 33. それぞれの配向軸を90°回転するとミラーを形成するように配置した 2つの積層体をさらに含んで成る請求項32に記載方法。
- 34. 隣接する層間の配向軸に関する屈折率の差が少なくとも0.20になるまで、積層体を1軸延伸する請求項31に記載の方法。
- 35. 結晶性ナフタレンジカルボン酸ポリエステル層が、フィルムの異なる面内軸に関する屈折率の差少なくとも0.05を示すまで、積層体を1軸延伸する. 請求項31に記載の方法。
- 36. 結晶性ナフタレンジカルボン酸ポリエステル層が、フィルムの異なる面内軸に関する屈折率の差少なくとも0.20を示すまで、積層体を1軸延伸する 請求項31に記載の方法。
- 37. 結晶性ナフタレンジカルボン酸ポリエステルが、ポリエチレンナフタレートである請求項31に記載の方法。
- 38. 選ばれたポリマーが、イソフタル酸、アゼライン酸、アジピン酸、セバシン酸、ジ安息香酸、テレフタル酸、2,7-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、またはシクロヘキサンジカルボン酸の反応生成物である請求項31に記載の方法。
- 39. 選ばれたポリマーが、エチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、テトラメチレングリコール、ジエチレングリコール、シクロヘキサンジメタノール、4-ヒドロキシジフェノール、ビスフェノールAもしくは1,8-ジヒドロキシピフェニル、または1,3-ビス(2-ヒドロキシエトキシ)ベンゼンの反応生成物である請求項

31に記載の方法。

- 40. 結晶性ナフタレンジカルボン酸ポリエステルが、1つの面内軸に関する 屈折率と第二の面内軸に関する屈折率との間に少なくとも0.05の差を示し、 かつ少なくとも1つの軸に関係する隣接する層の屈折率が実質上等しい請求項3 1に記載の方法。
- 41. 積層体を2軸延伸し、隣接する層間の配向軸に関する屈折率に少なくとも0.05の差を得て、ミラーを形成する請求項31に記載の方法。
 - 42. 積層体を、別の光学要素内に組み込む請求項31に記載の方法。
 - 43. 請求項31に記載の方法、並びに

結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の 交互の層を含んで成る第二の積層体であって、層の厚さが 0.5 μ m未満であり 、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも 1 つの面内軸 に関する屈折率が、選ばれたポリマーの隣接する層よりも高いものを形成するこ と、および

第一および第二の積層体を互いに積層すること をさらに含んで成る方法。

44. 積層体を1軸延伸する請求項31に記載の方法。

【発明の詳細な説明】

多層光学フィルム

発明の背景

本発明は、交互の層が結晶性ナフタレンジカルボン酸ポリエステルと別の選ば れたポリマーを含んで成る多層化ポリマーフィルムに関する。

そのようなフィルムは、低い屈折率と高い屈折率を有する多数の層の間の構造的な干渉によって光を反射する光学干渉フィルターを作製するために使用することができる。多層化ポリマーフィルムからの光の反射についての先駆者的な研究は、アルフレイ(Alfrey)ら著、ポリマー・エンジニアリング・アンド・サイエンス(Polymer Engineering And Science)、第9巻、第6号、400~404頁、1969年11月、ラドフォード(Radford)ら著、ポリマー・エンジニアリング・アンド・サイエンス、第13巻、第3号、216~221頁、1973年5月、および米国特許第3,610,729号 [ロジャース(Rogers)] に記載されている。

米国特許第4.310.584号 [クーパー(Cooper) 5] には、多層化した真珠 光沢の光干渉フィルムにポリエステルを使用することが記載されている。フィルムは、高屈折率のポリマーと低屈折率のポリマーの交互の層を包含している。高い屈折率のポリマーは、熱可塑性ポリエステルまたはコポリエステル [例えば、ポリエチレンテレフタレート (PET)、ポリブチレンテレフタレート)、および1種以上のグリコールおよび/または1種以上の二塩基酸を用いて合成された様々な熱可塑性コポリエステル]を含むキャスト非延伸フィルムである。例えば、PET Gコポリエステルは、エチレングリコールおよびシクロヘキサンジメタノール並びにテレフタル酸から生成したグリコール変性したPET、またはテレフタル酸およびイソフタル酸とシクロヘキサンジメタノールの酸変性コポリエステルであるPCT Aコポリエステルである。最近、米国特許第5.122.905号 [フィートリー(Wheatley)]には、入射光の少なくとも30%反射を示す、交互の層中に第一および第二の異なるポリマー材料を含む多層反射フィルムが記載されている。各層は、光学的厚さが少なくとも0.45μmであり、隣接する層

屈折率差は、少なくとも0.03である。米国特許第5.122.906号(フィートリーら)には、同様の反射体が記載されており、各層の事実上大半が、 0.09μ m以下または少なくとも 0.45μ mの光学的厚さを有し、かつ隣接する層の屈折率差は、少なくとも0.03である。米国特許第5.126.880号(フィートリーら)にも、層の一部の厚さが $0.09\sim0.45\mu$ mの間である多層反射体が記載されており、残りの層の光学的厚さは、 0.09μ mより大きくなくまたは少なくとも 0.45μ mである。屈折率の差は、少なくとも0.03である。上記3件のフィートリーの特許は、ポリマー材料の多層4分の1 波長積層体を、顕著な真珠光沢を呈さずに、構造的な干渉によって操作させるのが困難であることを教示している。フィートリーの上記の米国特許第5.126.880号には、より薄い層が均一なバックグラウンド反射を与えるため、4分の1 波長ピーク反射率は裸眼では殆ど見えないことが記載されている。

米国特許第3,610,729号(ロジャース)は、多層ポリマーフィルムが、1つの偏向面の光を反射すると同時に、別の光を実質上透過するように一軸延伸、され得ることを教示している。この特許には、一方の層が複屈折であり、かつ他方が等方性である、交互のポリマー層から作製されたシート偏向子が記載されている。一方の層の複屈折は、フィルムをその方向に伸ばした結果、多層化シートのポリマー分子を単方向に配向することによって発現され得る。複屈折層のある屈折率が、隣接する等方性層の屈折率と等しくなるまで、無理に多層シートを伸ばして、最も高い複屈折を得る。ポリスチレン、ポリエチレンテレフタレート、ポリスルホン、ポリカーボネート、およびポリパラキシリレンが、有用な材料として記載されている。米国特許第4,525,413号(ロジャース)には、交互の層中で、0.5またはそれより高い幾何学的な指数を示す複屈折材料を用いることが記載されている。極めて高い屈折率が、ロジャースの上記の米国特許第4,525,413号に列挙されたいくつかの材料によって達せられるが、これらの材料は、乏しい光学透過、押出性能、および高いコストのために、有用な素子の製造に重大な問題を含んでいる。

現在市販されている偏向子は、延伸された着色ポリマーフィルム(吸収偏向子

)

または傾斜のある薄膜偏向子 [マックニーレ(MacNe ille)偏向子] をベースとしている。吸収偏向子では、1つの偏向面の光を吸収して、熱に転化する。傾斜のある薄膜偏向子は、反射偏向子として作用する。反射偏向子は、2つの理由から、しばしば好ましい。第一に、特に、偏向子を液晶ディスプレイ(LCD)プロジェクションシステム内で使用するときに、反射が熱処理問題を最小限度にする。第二に、反射光の偏向面を、配向し直して、1つ偏向の光学的な処理量を高めることができる。

広い範囲において、標準傾斜薄膜光学偏向子は、嵩高過ぎて、吸収偏向子が、現在、唯一の選択できるものである。先に述べた熱処理問題に加えて、吸収偏向子は、強い光では染料を漂白し、同様に、ポリビニルアルコール(PVA)ベースポリマーの融点やPVAの水溶性を低下させる。米国特許第4.756.953号・[ウツミ(Utsumi)]には、一軸延伸したポリエチレンナフタレート(P.E.N)に組み込まれた二色性染料の使用が記載されている。PENは、通常のPVAをベースとする偏向子に比べて、より高い融点と低下した水溶性の利点を有する。

傾斜薄膜偏向子は、循環マイクロプリズム (repeating microprism)基板上に薄いフィルムをうまく蒸着させることによって、約0.020インチの比較的薄いシートに圧潰できる [エム・エフ・ウェーバー(M.F.Weber)著、「レトロリフレクティング・シート・ポラライザー (Retroreflecting Sheet Polarizer)」、エス・アイ・ディー・コンファレンス・プロシーディングズ (SID Conf. proceed ings)、ボストン、マサチューセッツ州、1992年5月、427頁、およびエム・エフ・ウェーバー著、「レトロリフレクティング・シート・ポラライザー」、エス・アイ・ディー・コンファレンス・プロシーディングズ、シアトル、ワシントン州、1993年5月、669頁]。そのような偏向子は、薄膜真空蒸着技術を使用するため、高いコストを特徴としている。

欧州特許出願公開第488,544号にも、交互の多様なポリマー層の偏向子 が記載されている。偏向子は、ポリマー材料間で屈折率の不整合を生じるのに十 分に異なる、ゼロではない応力光学係数を有する少なくとも第一および第二のポ リマー材料の多数の交互の配向された層を含んで成る。PENは、延伸方向の屈 折率が隣接する層よりも低いであろうということを意味する「負の応力光学係数」を有しているものとする適するポリマーとして記載されている。

発明の総説

結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリエステルとの複数の交互の層の主要部分から成る多層化ポリマーフィルムであって、その層の厚さは 0.5 μ m未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステルの少なくとも 1 つの面内軸に関する屈折率が隣接する層よりも高いフィルム。

図面の簡単な説明

さらに、本発明を、添付した図面を用いて説明する。

図1 a および1 b は、本発明の偏向子の略図であり、

図2は、本発明のPEN層とPENコポリマー層の屈折率特徴を表すグラフであり、

図3は、50層のPEN/coPENフィルム積層体の透過率を、図2に示した屈折率に基づいてコンピューターシミュレーションしたデータのグラフであり

図4は、均等に2軸延伸した300層PEN/PENコポリマーミラーの透過 率をコンピューターシミュレーションしたデータのグラフであり、

図5は、1,300nm付近に第一次吸収ピークを有する本発明の51層赤外線(I.R.)偏向子の測定した透過率を示すグラフであり、

図6は、本発明の51層偏向子8個を合わせて積層したものの測定した透過率 を示すグラフであり、

図7は、本発明の204層偏向子の測定した透過率を示すのグラフであり、

図8は、本発明の204層偏向子2個を合わせて積層したものの測定した透過 率を示すグラフであり、

図9は、本発明のオーバーヘッドプロジェクターの略図であり、

図10は、単一界面を形成するフィルムの2層積層体を示し

図11および12は、屈折率1.60の媒体中における、1軸複屈折系についての角度-反射率曲線を示し、

図13は、屈折率1.0の媒体中における、1軸複屈折系についての角度-反射

率曲線を示し、

図14、15および16は、1軸複屈折系についての面内屈折率とz-屈折率の間の様々な関係を示し、

図17は、2種の異なる1軸複屈折系についての波長に対する無軸反射率を示し、

図18は、双軸複屈折フィルム内でのy-屈折率差をもたらす効果を示してお り、

図 19 は、双軸複屈折フィルム内での z -屈折率差をもたらす効果を示しており、

図20は、図18および19からの情報をまとめた等高線プロットを示し、 図21~26は、ミラー実施例において得られた多層ミラーの光学性能を示し、 および

図22~30は、偏向子実施例において得られた多層偏向子の光学性能を示している。

図1 a、1 b および図9は、正確な縮図ではなく、またすべての図は、単に説明的かつ非限定的であるものとする。

説明的な実施態様の詳細な説明

図1 a および1 b に表わすように、本発明は、反射偏向子またはミラーとして有用な、2 .6 -ポリエチレンナフタレート(PEN)のような結晶性ナフタレンジカルボン酸ポリエステル1 2 と、選ばれたポリマー1 4 との交互の層を有する多層化ポリマーシート 1 0 を含んで成る。PEN/選ばれたポリマーを1 軸ないし2 軸配向の範囲に亙って延伸することにより、様々に配向した面偏向入射光についての反射率の範囲を有するフィルムを創製する。2 軸延伸する場合、シートを直交軸に沿って非対称に、または直交軸に沿って対称に延伸して、所望の偏向および反射特性を得ることができる。

偏向子では、シートを、単一方向に延伸することにより好ましく配向し、PE N層の屈折率が、配向方向および横断方向と平行な偏向面を有する入射光線間で 大きな差を示す。面内軸に関する屈折率(フィルムの表面と平行な軸)は、偏向 面がその軸と平行である面偏向した入射光に対して有効な屈折率である。配向方向は、フィルムを延伸する方向を意味する。横断方向は、フィルムを延伸する方向と直交するフィルムの面の方向を意味する。

PENは、延伸後の正の応力光学係数および永久複屈折が高いために好ましい材料であり、偏向面が延伸方向と平行な場合、偏向した550nm波長の入射光についての屈折率が、約1.64~約1.9程度の高屈折率まで高まる。延伸比5:1のPENと70-ナフタレート/30-テレフタレートコポリエステル(coPEN)で表される様々な面内軸に関する屈折率の差を、図2に示す。図2において、低い方の曲線におけるデータは、横断方向のPENとcoPENの屈折率を表し、上の方の曲線は、延伸方向のPENの屈折率を表す。PENは、可視スペクトルにおいて0.25~0.40の屈折率差を示す。分子配向を高めることによって、複屈折(屈折率の差)を高めることができる。PENは、適用の収縮要求に依存して、約155から約230℃まで熱安定性である。PENは、上述において、複屈折層に好ましいポリマーとして特に論ぜられたが、ポリプチレンナフタレートも、他の結晶性ナフタレンジカルボン酸ポリエステルと同様に、適する材料である。結晶ナフタレンジカルボン酸ポリエステルは、少なくとも0.05、好ましくは0.20を超える様々な面内軸に関する屈折率の差を表さなければならない。

延伸方向の高い屈折率を、実質上妥協しない限り、少量のコモノマーをナフタレンジカルボン酸ポリエステルと置換できる。屈折率の低下(およびそれによる低下した屈折能)は、以下のどの利点とも釣りあい得る:選ばれたポリマー層への接着性、低下した押出温度、溶融粘度のより優れた適合、延伸するためのガラス転移温度のより優れた適合。適するモノマーとしては、イソフタル酸、アゼライン酸、アジピン酸、セバシン酸、ジ安息香酸、テレフタル酸、2,7-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、またはシクロヘキサンジカルボン酸が挙げられる。

本発明のPEN/選ばれたポリマー樹脂は、好ましくは、均一な多層同時押出を得るように、同程度の溶融粘度を有する。2種のポリマーの溶融粘度は、好ま

しくは典型的な剪断速度において5倍以内である。

本発明のPENと好ましい選ばれたポリマー層は、互いに良好な接着特性を発現するが、多層化シート内では分離層として残っている。

本発明のポリマーのガラス転移温度は、適合しているため、悪影響(例えば、 延伸中の一連のポリマー層のクラッキング)が生じない。適合するとは、選ばれ たポリマーのガラス転移温度が、PEN層のガラス転移温度よりも低いことを意 味する。選ばれたポリマーのガラス転移温度は、PEN層のガラス転移温度より もわずかに高くてよいが、40℃以下である。

好ましくは、層は、様々な波長域を反射するように設計された異なる何組かの層を含む4分の1波長の厚さを有する。各層は、正確に4分の1波長厚さである必要はない。主要な要求は、隣接する低い屈折率と高い屈折率のフィルム対が、0.5波長の合計光学的厚さを有することである。図2に示すような屈折率差を有し、550nmの4分の1波長であるようにえらばれた層厚さを有するPEN/coPEN層の50層積層体のバンド幅は、約50nmである。50層積層体は、測定不能の吸収を含むこの波長範囲においておよそ99%の平均反射率を提供する。透過率1%未満(99%反射率)を示すコンピューターで作成した曲線を、図3に表す。図3~8は、透過率に関するデータを包含する。本発明のフィルムは、測定可能な吸収がないため、反射率を、以下の関係式:

100-(透過率)=(反射率)

によって概算すると解するべきである。

好ましい選ばれたポリマー層 1 4 は、屈折率の等方性を維持し、かつ図 1 a に示されるような横断軸に関連する P E N層の屈折率と実質上一致する。この方向におけるその偏向面を含む光を、主に、偏向子によって透過し、同時に、配向方向の偏向面を含む光を、図 1 b に示されるように反射するであろう。

さらに、本発明の反射偏向子は、薄い赤外線シート偏向子として有用である。 薄い赤外線シート偏向子の需要は、ババ(Baba)らによって述べられている [オプ ティックス・レターズ(Optics Letters)、第17巻、第8号、622~624頁 、1992年4月15日]。ババらは、ガラスフィルムに囲まれた金の島を延伸 ることによって作製した偏向子を記載している。しかしながら、そのような偏向 子は、合理的な吸収現象において作用し、そのようなものは、反射偏向子ではな い。

本発明の反射偏向子は、眼用レンズ、ミラーまたは窓のような光学要素において有用である。偏向子は、サングラスにおいてスタイリッシュであると考えられる鏡の様な外観を特徴とする。さらに、PENは、非常に良好な紫外線フィルターであり、紫外線を、可視スペクトルの端まで効率よく吸収する。

偏向子において、PEN/選ばれたポリマー層は、関連する屈折率が好ましくは実質上等しい少なくとも1つの軸を有する。軸(典型的に横断軸である)に関する屈折率の一致は、偏向面内で光を実質上反射させない。選ばれたポリマー層は、延伸方向に関する屈折率の低下を示すこともある。選ばれたポリマーの負の複屈折は、配向軸に関する隣接する層の屈折率の差を高めるという利点を有すると同時に、横断方向に平行なその偏向面を含む光反射も無視できる。延伸後の隣接する層の横断軸に関する屈折率の差は、0.05未満、好ましくは0.02未満でなければならない。もう一つの可能性は、選ばれたポリマーが、延伸によって、正の複屈折を示すことであるが、このことは、緩和して、熱処理におけるPEN層の横断軸の屈折率を一致させることができる。この熱処理の温度は、PEN層内での複屈折を緩和させるほど高くすべきではない。

本発明の偏向子のために好ましい選ばれたポリマーは、エチレングリコールと 反応させた、ナフタレンジカルボン酸またはジメチルナフタレートのようなその エステル20~80モル%の範囲、およびイソフタル酸もしくはテレフタル酸ま たはジメチルナフタレートのようなそのエステル20~80モル%の範囲との反 応生成物のコポリエステルである。本発明の範疇にあるの他のコポリエステルは、上記に記載した特性を有し、かつ約1.59~1.69の横断軸に関する屈折率 を有する。当然、コポリエステルは、PENと同時押出できなければならない。他の適するコポリエステルは、イソフタル酸、アゼライン酸、アジピン酸、セバシン酸、ジ安息香酸、テレフタル酸、2,7-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、またはシクロヘキサンジカルボン酸をベースとする。コ

リエステルにおける他の適する変種としては、ジオール反応体としてのエチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、テトラメチレングリコール、ジエチレングリコール、シクロへキサンジメタノール、4-ヒドロキシジフェノール、プロパンジオール、ピスフェノールA、および1.8-ジヒドロキシビフェニル、または1.3-ビス(2-ヒドロキシエトキシ)ベンゼンの使用が挙げられる。モノマーの屈折率の平均値は、有用なコポリエステルを調製するのに望ましい基準である。さらに、PENのガラス転移温度と適合するガラス転移温度を有し、かつ約1.59~1.69の横断軸に関する屈折率を有するコポリカーボネートも、本発明の選ばれたポリマーとして有用である。押出装置内での2種もしくはそれ以上のポリマーのエステル交換によるコポリエステルまたはコポリカーボネートの形成も、存続可能な選ばれたポリマーへのもう一つの可能な製造法である。

ミラーを作製するために、2つの1軸延伸した偏向シート10を、90°回転した各配向軸に配置するか、または、シート10を2軸延伸する。後者において、シート面内の屈折率が高まったPENと選ばれたポリマーはいずれも、両方の偏向面の光を反射するように、できるだけ屈折率の低いものを選択すべきである。多層シートを2軸延伸することは、両者の軸と平行に隣接する層の屈折率間の差をもたらし、それによって、偏向方向の両方の面内において光の反射が生じるであろう。PENを2軸延伸することは、1軸延伸の値1.9と比較して、延伸軸に関連する屈折率を1.64~1.75まで高めるであろう。したがって、99%反射を有し(、かつ顕著でない真珠光沢を有する)絶縁ミラーを創製するためには、選ばれたポリマーとして、低屈折率のcoPETが好ましい。光学モデルは、これが、約1.55の屈折率で可能であることを示している。6回重ねた4分の1波長積層体で可視スペクトルの半分を被覆するように設計された、層の厚さに5%標準偏差を有する300層のフィルムは、図4に示される予想された性能を発揮する。延伸のより大きな対称性の程度は、比較的より対称な反射特性および比較的より少ない偏向特性を示す用品を得る。

所望により、本発明の2種またはそれ以上のシートを、反射率、光学バンド幅

またはその両者を高めるために、複合体中で使用することができる。シート内の対の層の光学的厚さが、実質上等しい場合、複合体は、多少より大きく効果的で実質上同じバンド幅と、個々のシートとしての反射のスペクトル範囲(すなわち、「バンド」)において反射するであろう。シート内の対の層の光学的厚さが、実質上等しくない場合、複合体は、個々のシートよりも広範なバンド幅に亙って(across)反射するであろう。偏向子シートを含むミラーシートから構成される複合体は、合計反射率を高めると同時に、透過した光を偏向させるのにも有用である。あるいは、単シートを、非対称に2軸延伸して、選択反射特性および偏向特性を有するフィルムを製造してよい。

2軸延伸されたミラー用途において使用するための好ましい選ばれたポリマーは、テレフタル酸、イソフタル酸、セバシン酸、アゼライン酸またはシクロヘキサンジカルボン酸をベースとし、PEN層との接着を維持している間、最も低い可能な屈折率を達成する。ナフタレンジカルボン酸を極少量用いて、PENへの接着を高めてもよい。ジオール成分を、先に記載したものいずれからも除去してよい。選ばれたポリマーの屈折率は、好ましくは、1.65未満、特に1.55未満である。

選ばれたポリマーがコポリエステルまたはコポリカーボネートである必要ない。モノマー(例えば、ビニルナフタレン、スチレン、エチレン、無水マレイン酸、アクリレート、メタクリレート)から生成されたビニルポリマーおよびコポリマーを使用してもよい。ポリエステルおよびポリカーボネート以外の縮合ポリマーも有用であることがあり、例えば、ポリスルホン、ポリアミド、ポリウレタン、ポリアミン酸、ポリイミドが挙げられる。ナフタレン基およびハロゲン(例えば、塩素、臭素およびヨウ素)は、選ばれたポリマーの屈折率を、偏向子のために、横断方向に関するPENの屈折率と実質上適合する所望のレベル(1.59~1.69)まで高めるのに有用である。アクリレート基およびフッ素は、ミラーにおける使用において、屈折率を低下させるのに、特に有用である。

図9は、オーバーヘッドプロジェクター30におけるホットミラーとしての本 発明の使用を表している。プロジェクター30は、透過型プロジェクターであり 本体32およびプロジェクションヘッド34を含む、汎用のオーバーヘッドプロジェクターの多数の特徴を有している。プロジェクションヘッド34は、本体32にアーム(図示せず。)によって接続されており、通常の調節手段によって、本体32に向かって動かしたりまたは本体32から遠ざけることによって、上げたり下げたりすることができる。本体32は、光源36、光源36のための電源(図示せず。)、およびプロジェクションステージ領域40に光を直接当てるためのミラー38のような適当な光学構成部品を包含している。汎用のオーバーヘッドプロジェクターにおけるステージ領域40は、ヘッド34に光を集光するためにその中に必須的に形成された少なくとも1個のフレネルレンズを典型的に有するガラスのような透明シートを包含する。可視画像を有するトランスペランシー(透明材料)をステージ40に置くと、画像は、ヘッド34内に設置されたミラー42とレンズ4-4のような通常の光学部品によって、例えば、プロジェクションスクリーンまたは表面付近等に集光および投影される。

本発明のミラー46を、オーバーヘッドプロジェクター30において有利に使用して、熱を発生する赤外線エネルギーを光源36から反射すると同時に可視光を透過する。赤外線エネルギーを反射するのに使用する場合、ミラー46を、ホットミラーとして使用する。これは、放出したエネルギーの約85%が赤外域の波長にある白熱光源において、特に重要である。赤外線エネルギーは、未制御の場合、プロジェクションステージ40の上に置いた色の濃いトランスペランシーまたはLCDプロジェクションパネルを過熱することがある。ホットミラーを使用する場合、ミラー46を、通常、光源36とプロジェクションステージ40の間に配置する。ミラー46は、分離要素であり得るか、またはミラーを、光源とプロジェクションステージの間の光路に、コーティングとして光学構成部品に適用することができる。

あるいは、ミラー46を、オーバーヘッドプロジェクター30においてコールドミラー(すなわち、可視光を反射すると同時に赤外線エネルギーを透過するミラー)として使用できる。本発明のミラーを、光源36とプロジェクションステージ40の間に、折り畳みミラー(図示せず)として配置してもよい。多層コー

ルドミラーの反射は、可視光の95%を容易に達成できる。本発明のミラーを、コールドミラーコーティングとして球状凹面リフレクター(例えば、光源36の後ろに置いたリフレクター38)に適用して、光源から放出された可視光を集光して向きを直すと同時に赤外線エネルギーを透過することができる。

押出成形したフィルムの配向は、加熱空気中で材料の個々のシートを延伸することによって行った。経済的な製造において、延伸を、標準長の延伸機内、テンターオーブン内、または両者内において、連続基材について達成してよい。標準ポリマーフィルム製造の規模およびライン速度の経済を達成し、それによって市販されている吸収偏向子に関するコストよりも実質上低い製造コストを達成することができる。

反射率を高めるためもしくはバンド幅を広げるために、または2種の偏向子からミラーを形成するために、2つまたはそれ以上のシートをラミネートすることは有利である。非晶質コポリエステルはラミネート材料として有用であり、グッドイヤー・タイヤ・アンド・ラバー・カンパニー・オブ・エイクロン(Goodyear Tire and Rubber Co. of Akron、オハイオ州)製、商品名ヴィッテル(VITTEL)3000および3300が、試された材料として記録されている。シート10への接着性、光学的透明性、および排気が第一基準原理であるラミネート材料の選択できる幅は広範囲である。

添加によって、本発明の性能に実質上售を及ぼさない限り、酸化防止剤、押出助剤、熱安定化剤、紫外線吸収剤、核剤、表面投影形成剤等のような無機もしくは有機補助剤 1 種またはそれ以上を通常の量で、1 つまたはそれ以上の層に添加することが望ましいことがある。

以下の実施例は、本発明の目的を説明するためのものであり、いずれの方法も 、本発明を限定するものではない。

実施例1

であった。PENとcoPENの単層フィルムを押出成型した後、約150℃において、面を押さえながら、1軸延伸した。押出成形すると、PENは、約1.65の等方性の屈折率を示し、coPENは、約1.64の等方性の屈折率を表した。等方性とは、フィルムの面内の全ての軸に関する屈折率が、実質上等しいことを意味する。屈折率の値はいずれも550nmにおいて観察された。延伸比5:1で延伸した後、配向軸に関するPENの屈折率は、約1.88に高まった。横断軸に関する屈折率は、1.64までわずかに低下した。延伸比5:1で延伸した後のcoPENフィルムの屈折率は、約1.64で等方性を維持した。

次に、標準押出ダイを供給した51スロット供給ブロックを用いて同時押出すことにより、PENとcoPENの交互の層から、満足な多層偏向子を作製した。押出成形は、約295℃で行った。PENを約23ポンド/時間で押出し、かつcoPENを約22.3ポンド/時間で押出した。PEN表面層の厚さは、押出したフィルム積層体内の層の約3倍であった。中間層はいずれも、約1300nmの光に対して、光学的4分の1波長厚さを有するように設計された。51層積層体を押出し、約0.0029インチの厚さまでキャストした後、約150℃においておよそ5:1の延伸比で、面を押さえながら1軸延伸した。延伸したフィルムの厚さは、約0.0005インチであった。

その後、延伸したフィルムを、エアーオーブン内において、約230℃で30 秒間熱硬化した。延伸したフィルムと、その後熱硬化したフィルムについての光 学スペクトルは、本質的に同じであった。

図5は、熱処理前の配向方向50と横断方向52の両者における51層積層体の測定した透過率のグラフである。

それぞれ上記と同様にして作製した8個の51層偏向子を、流体を用いて組み合わせ、408光学層の偏向子を形成してエアーギャップを排除した。図6は、配向方向54と横断方向56の両者における、408層の350~1800nmまでの透過率を示すグラフである。

実施例2

実施例1の記載と同様にして、51スロット供給ブロック内でPENとcoPE

Nを押出した後、押出において連続して2層ダブリングマルチプライヤー(multi plier)を用いることにより、満足な204層偏向子を作製した。マルチプライヤ 一は、供給プロックから出てくる押出成型された材料を、2つの半分幅のフロー 流中に分配した後、互いの上に半分幅のフロー流を積み重ねるものである。米国 特許第3,565,985号には、類似の同時押出マルチプライヤーが記載されて いる。固有粘度 0.50 d L / g の P E N を、約295 ℃において、22.5 ポン ド/時間で押し出すのと同時に、固有粘度0.60dL/gのcoPENを、16. 5ポンド/時間で押出した。キャストウェヴは、厚さ約0.0038インチであ り、延伸中、空気温度140℃で、面を押さえながら、長尺方向に比5:1で1 軸延伸した。表面層以外は、対の層すべてを、550nm光りに対して2分の1 波長光学的厚さになるようにした。図7の透過スペクトルでは、約550nmを 中心とする配向方向-6-0の2つの反射ピークが、透過スペクトルからはっきり分 かる。ダブルピークは、大抵、層マルチプライヤーに導入されたフィルム誤差の 結果であり、プロードなバックグラウンドは、押出成形工程とキャスト工程の全 体に亙る累積フィルム誤差の結果である。横断方向の透過スペクトルを58で示 す。上記のフィルム2つを光学的接着によって合わせてラミネートすることによ り、偏向子の光学消衰を大幅に向上できる。

次に、上述と同様にして作製した2つの204層偏向子を、光学接着剤を用いて手でラミネートして、408層フィルム積層体を製造した。好ましくは、接着剤の屈折率は、等方性のcoPEN層の屈折率に適合させるべきである。図8に示すように、積層試料では、図7に表れた反射ピークを平滑にしている。このことは、ピーク反射率が、フィルムの異なる領域において様々な波長でランダムな形状で生じるために起こるものである。この効果は、しばしば「真珠光沢」と呼ばれる。2つのフィルムのラミネートは、色のランダムな変化が一方のフィルムと別のフィルムとで一致しないために真珠光沢を低減し、フィルムを重ねると相殺する傾向がある。

図8には、配向方向64と横断方向62の両者における透過率データを示す。 偏向子の一方の面では、約450~650nmの範囲の波長において、光の80 %以上を反射する。

真珠光沢は、本質的には、ある領域に対する隣接する領域におけるフィルム層内の非均一性の尺度である。完全に厚さを制御すると、ある波長に中心を合わせたフィルム積層体は、試料全体に亙って色の変化がない。可視スペクトルを完全に反射するように設計した多層積層体は、ランダムな波長において、顕著な光がランダムな領域を通して漏れる場合、層の厚さの誤差によって、真珠光沢を有する。本発明のポリマー系のフィルム層間の非常に様々な屈折率は、層の数があまり多くない場合、99%を上回るフィルム反射率を可能にする。このことは、押出成形工程において、性格な層の厚さ制御が達成され得るならば、真珠光沢を排除するのに非常に好都合である。コンピューターによる光学計算例は、層厚さの値を、10%未満または10%に等しい標準偏差で制御すれば、ほとんどの可視スペクトルに亙って99%を超える反射率が、PEN/coPEN偏向子における600層でのみ得られることを示している。

多層積層体の光学特性

ここでは、上記の図1 a および1 b に示すような多層積層体10の光学特性を 、より一般的な表現で述べる。多層積層体10は、数百または数千の層を含んで 成り、各層を、多数の様々な材料から作製することができる。特定の積層体にお ける材料の選択を決定する特徴は、積層体の所望の光学性能に依存している。

積層体は、積層体中に層があるように、多数の材料を含むことができる。それぞれの製造において、好ましい光学的に薄膜積層体は、数種の異なる材料のみを含む。説明するために、本発明の論議では、2種の材料を含んで成る多層積層体を述べよう。

材料、または異なる物理的特性を有する化学的に同一の材料の間の境界は、急であるかまたは段階的であり得る。分析的な解を有するある単純な場合以外は、連続的に屈折率が変化する後者の型の階層化された媒体の分析を、通常、隣接層間の特性のほんの少しの変化を除く、急な境界線を有する非常に多数のより薄い均一な層として取り扱う。

どの方向からのどの入射角度における反射特性であるかは、フィルム積層体の

各フィルムにおける屈折率で決まる。フィルム積層体の層がいずれも、同じプロセス条件を容認するものと仮定すると、2成分の積層体の単一界面でのみ見て、 角度の作用としての積層体成分全体の特性を理解する必要がある。

したがって、論議を簡略化するために、単一界面の光学特性を述べる。しかしながら、本発明において述べた原理によれば、実際の多層積層体は、数百または数千の層から作製され得るものと介されよう。図10に示すような、単一界面の光学特性を述べるために、z字句と1つの面内光学軸を含む入射平面においてsおよびp偏向された光についての入射角度の関数としての反射率をプロットする

図10は、共に屈折率noの等方性媒体中に浸漬した、単一界面を形成する2つの材料フィルム層を示す。説明を簡単にするために、本発明の論議は、2つの材料の光学軸を揃えた直交多層複屈折系に向けるものとし、一方の光学軸(2)はフィルム平面に垂直で、他方の光学軸はx軸およびy軸に沿っている。しかしながら、光学軸が直交する必要はなく、かつ非直交系は、本発明の精神及び範囲内に十分入っているものと解されるべきである。さらに、光学軸は、フィルムの軸と揃えて本発明の意図する範疇に入れる必要もないと解されるものである。

あらゆる厚さのフィルムの積層体の光学を計算するための基本的な数学的構成 成分は、周知のフレネル反射と、個々のフィルム界面の透過係数である。フレネ ル係数は、どの入射角度においても、s偏向およびp偏向した光についての別個 の式を用いて、特定の界面の反射率の大きさを予測するものである。

絶縁界面の反射率は、入射角度の関数として変化し、また等方性材料については、 p偏向および s 偏向した光によって大いに異なる。 p偏向した光についての最小反射率は、ブルースター効果と呼ばれる効果のためであり、反射が 0 になる角度を、ブルースター角という。

どのような入射角度においても、伴ったフィルム全ての絶縁テンソルによって、フィルム積層体の反射特性を決定する。このトピックの一般理論的な取り扱いは、アール・エム・エイ・アザム(R.M.A.Azzam)およびエヌ・エム・バシャラ(N.M.Bashara)による教本「エリプソメトリー・アンド・ポラライズド・ライト(Ellipsometry and Polarized Light)」、ノース-オーランド(North-Holland)発刊

, 19

87年に記載されている。結果は、一般的に周知のマクスウェルの式から直接得 られる。

式1および2それぞれによって与えられる、p偏向およびs偏向したした光についての反射係数の絶対値を二乗することによって、系の単一界面の反射率を計算する。式1および2は、2成分の軸を揃えた1軸直交系に有効である。

1)
$$r_{pp} = \frac{n2z \cdot n2o \sqrt{(n1z^2 - no^2 \sin^2\theta)} - n1z \cdot n1o \sqrt{(n2z^2 - no^2 \sin^2\theta)}}{n2z \cdot n2o \sqrt{(n1z^2 - no^2 \sin^2\theta)} + n1z \cdot n1o \sqrt{(n2z^2 - no^2 \sin^2\theta)}}$$

2)
$$r_{ss} = \frac{\sqrt{(n10^2 - n0^2 \sin^2\theta)} - \sqrt{(n20^2 - n0^2 \sin^2\theta)}}{\sqrt{(n10^2 - n0^2 \sin^2\theta)} + \sqrt{(n20^2 - n0^2 \sin^2\theta)}}$$

(式中、 θ は、等方性媒体内で測定されたものである。)

1 軸複屈折系において、n 1x = n 1y = n 1o であり、かつ n 2x = n 2y = n 2o である。

式 1 および 2 は、反射率が、積層体における材料それぞれの x、 y および z 方向の屈折率に依存することを示す。等方性材料において、 3 つの屈折率はいずれも等しく、そのため、 $n_x = n_y = n_z$ である。 n_x 、 n_y および n_z 間の関係は、材料の光学特徴を決定する。 3 つの屈折率間の異なる関係は、材料の 3 つの一般的なカテゴリー(等方性、 1 軸複屈折、および 2 双軸複屈折)を導く。

1 軸復屈折材料は、一方向の屈折率が他の二方向の屈折率と異なる材料と定義される。本発明の論議のために、1 軸復屈折系についての約束事は、条件: nx

 $\neq n_y \neq n_z$ である。 x 軸と y 軸は、面内軸と定義され、それぞれの屈折率: n_x および n_y は、面内屈折率とよばれる。

1 軸複屈折率系を創製する一つの方法は、ポリマー多層積層体を2軸延伸(例えば、2方向に沿って延伸)することである。多層積層体の2軸延伸は、2つの軸と平行な面において隣接する層の屈折率間に差をもたらし、その結果、2つの偏向面でいずれも、光が反射する。

1 軸複屈折材料は、正か負の 1 軸複屈折を有し得る。正の 1 軸複屈折は、 2 屈 折率が、面内屈折率よりも大きい(nz>nxおよびny)ときに生じる。負の 1 軸複屈折は、 2 屈折率が面内屈折率未満である(n2 < nxおよびny)ときに生じる。

双軸複屈折材料は、三つの軸全でにおける屈折率が異なる(例えば、 $n_x \neq n_y$ $\neq n_z$)材料と定義される。屈折率 n_x および n_y も、面内屈折率といい、双軸複屈折系は、多層積層体を1方向に延伸することによって作製され得る。換言すると、積層体を2軸延伸する。本発明の論議のために、x方向を、双軸複屈折積層体における延伸方向と呼ぶ。

1 軸複屈折系 (ミラー)

1 軸複屈折系の光学特性を説明する。上述のように、1 軸複屈折材料についての一般条件は、 $n \times = n \text{ y} \neq n \text{ z}$ である。したがって、図10に示す各層102 および104は、1 軸複屈折であり、 $n \text{ 1}_{\times} = n \text{ 1}_{\text{y}}$ および $n \text{ 2}_{\times} = n \text{ 2}_{\text{y}}$ である。本発明の論議のために、層102は、層104よりも大きな面内屈折率を有すると仮定し、それによって、x 方向および y 方向の両方向においてn 1 > n 2 である。1 軸複屈折多層系の光学特性を、 $n \text{ 1}_{\text{z}}$ と $n \text{ 2}_{\text{z}}$ の値を変えることで調節して、正のまたは負の複屈折の様々なレベルを導入することができる。

上記式1を使用して、図10に示すような2つの層から構成される1軸複屈折系における単一界面の反射率を決定することができる。s偏向した光についての式2は、等方性フィルムの単純な場合と全く同一であることが容易に分かることから、式1のみをケイ酸する必要がある。説明のために、フィルムの屈折率に具体的(であるが一般的)な値を充当する:nlx=nly=1.75、nlz=可変、

n 2x = n 2y = 1 .5 0、および n 2z = 可変。この系における様々な可能なブルースター角を説明するために、周囲の等方性媒体の屈折率は no = 1 .6 0とする。 図1 1 には、n 1z が数値的に n 2z より大きいかまたは n 2z と等しい(n 1z ≥ n 2z)場合の、等方性媒体から複屈折層へ入射した p 偏向された光についての角度 一反射率曲線を示す。図1 1 に示された曲線は、以下の z 屈折率についてのものである:a) n 1z = 1 .7 5、 n 2z = 1 .5 0; b) n 1z = 1 .7 5、 n 2z = 1 .5 7; c) n 1z = 1 .7 0、 n 2z = 1 .6 0; d) n 1z = 1 .6 5、 n 2z = 1 .6 0; e) n 1z = 1 .6 1、 n 2z = 1 .6 0; および f) n 1z = 1 .6 0 = n 2z。 n 1z が n 2z に達すると、ブルースター角(反射率が 0 になる角度)が高まる。曲線 a ~ e は、角度依存性が強い。しかしながら、n 1z = n 2z のとき(曲線 f)、反射率に対する角度依存性はない。換言すると、曲線 f の反射率は、全ての入射角において一定である。その点において、式 1 は、角度依存性型に変わる:(n 2o − n 1 o) / (n 2o + n 1o)。 n 1z = n 2z のとき、ブルースター効果はなく、かつ全ての入射角において一定の反射率である。

図12には、 $n1_2$ が数値的に $n2_2$ 未満または $n2_2$ と等しい場合の、入射角度一反射率曲線を示す。光は、等方性媒体から複屈折層へ入射する。この場合、反射率は、入射角度につれて、単調に増加する。これは、s偏向した光に観られる特徴である。図12の曲線 a は、s 偏向した光についての唯一の場合を示している。曲線 b \sim e は、以下の順の様々な n_2 値におけるp 偏向した光についての場合を示している:b) $n1_2$ = 1.50、 $n2_2$ = 1.60; e) $n1_2$ = 1.55、 $n2_2$ = 1.60; e) $n1_2$ = 1.59、 $n2_2$ = 1.60; e) $n1_2$ = 1.60 = 1.60; e) $n1_2$ = 1.600 = 1.60; e) $n1_2$ = 1.600

図13は、入射媒体の屈折率が $n_0=1.0$ (空気)であることを除いて、図11 および12と同様の場合を示す。図13の曲線は、屈折率: $n_{2x}=n_{2y}=1.50$ 、 $n_{2z}=1.60$ の正の1軸材料と、 $n_{1x}=n_{1y}=1.75$ 、および n_{1z} が上から下まで以下の順[a)1.50;b)1.55;c)1.59;d)1.60;f)1.61;g)1.65;h)1.70;およびi)1.75]の負の1軸複屈

折材料との単一界面における p 偏向した光についてプロットしたものである。さらに、図11および12に示したように、n lz とn 2z の値が釣り合うとき(曲線 d)、反射率に対する角度依存性はない。

図11、12および13は、一方のフィルムのz軸屈折率が、他方のフィルムのz軸屈折率と等しい場合、一方の特徴から他方の特徴への交差が生じていることを示している。これは、負および正の1軸複屈折材料の等方性材料のいくつかの組み合わせにおいて事実である。他の状態は、ブルースター角が、より大きなまたはより小さい角度にシフトすると生じる。

面内屈折率とz軸屈折率との間の様々な考え得る関係を図14、15および16に表す。縦軸は、屈折率の相対値を表し、かつ横軸を、種々の状態を単に分離するのに使用する。各図は、2つの等方性フィルムを有する左から始まり、この場合、z屈折率は、面内屈折率と等しい。右に1つ進むと、面内屈折率は一定になけるまま、様々なz軸屈折率が増加または低下して、正または負の複屈折の相対量を表す。

図11、12および13に関する上記の場合は、図14で表される。材料1の面内屈折率は、材料2の面内屈折率よりも大きく、材料1は、負の複屈折を有し(n1zが、面内屈折率より小さい)、かつ材料2は、正の複屈折を有する(n2zが、面内屈折率よりも大きい)。ブルースター角が消失し、かつ反射率が全ての入射角において一定である点は、2つのz軸屈折率が等しい点である。この点は、図11の曲線f、図12の曲線e、または図13の曲線dに相当する。

図15において、材料1は、材料2よりも高い面内屈折率を有するが、材料1は、正の複屈折を有し、かつ材料2は、負の複屈折を有する。この場合、最小ブルースター角が、少しシフトして、角度の値を低下させ得る。

図14及び15はいずれも、1つまたは2つのフィルムが等方性である場合に限り、有効である。2つの場合は、材料1が等方性であり、材料2が正の複屈折を有する場合か、または材料2が等方性で、かつ材料1が負の複屈折率を有する場合である。ブルースター効果がない点は、複屈折材料の2軸屈折率が、等方性フィルムの屈折率と等しい点である。

もう一つの場合は、両方のフィルムが同じ種類の場合である(すなわち、いずれも負の複屈折またはいずれも正の複屈折)。図16は、両方のフィルムが負の複屈折を有する場合を示す。しかしながら、2つの正の複屈折層の場合は、図16に示した2つの負の複屈折層の場合と類似していることが分かるであろう。先に述べたように、最小のブルースター角は、一方のz軸屈折率が他方のフィルムと等しいかまたはそれを超える場合のみに排除される。

さらに別の場合は、2つの材料の面内屈折率は等しいが、 z 軸屈折率が異なる場合に生じる。この場合、図14~16に示した3つの場合全ての部分集合(subset)であり、s 偏向した光では、どの角度においても反射が生じず、かつp 偏向した光の反射率が、入射角が高まるにつれて、単調に増加する。この種の物品は、入射角度が高くなると、p 偏向した光に対する反射率が増加し、s 偏向した光を透過する。そのため、この物品は、「p 偏向子」と呼ばれる。

当業者には、1 軸複屈折系の特徴を記載した上述の原理を、適用して、広く様々な環境において、所望の光学効果を得ることができることをが容易に分かるであろう。多層積層体中の層の屈折率を操作しかつ適合させて、所望の光学特性を有する素子を製造することができる。種々の面内および z 軸屈折率を変えることで、多数の負および正の1 軸複屈折系を作製でき、多くの有用な素子を、本発明に記載の原理を用いて、設計および製造することができる。

双軸複屈折系 (偏向子)

さらに、図10を参照して、2成分の直交双軸複屈折系を説明する。また、系は、多くの層を有し得るが、積層体の光学特徴の理解は、一つの界面における光学特徴を評価することによって達成される。

双軸複屈折系は、1つの軸に平行な偏向面を含む光についての高い反射率を、全ての入射角において得るように設計でき、同時に、他の軸に平行な偏向面を含む光についての低い反射率を、全ての入射角において有することもできる。結果として、双軸複屈折系は、偏向子として作用し、一方の偏向の光を透過しかつ他の偏向の光を反射する。各フィルムの3つの屈折率(nx、nyおよびnz)を制御することによって、所望の偏向子特徴が得られる。

上記のPEN/coPENの多層反射偏向子は、双軸複屈折系の例である。しかしながら、一般に、多層積層体を構築するのに使用した材料は、ポリマーである必要がないことが分かるであろう。本発明において先に記載した一般原理の範疇に入るどのような材料を用いても、多層積層体を構成し得る。

また、図10を参照して、説明のために、フィルム屈折率に以下の値を充当する:n1x=1.88、n1y=1.64、n1z=可変、n2x=1.65、n2y=可変、およびn2z=可変。 X方向を消衰方向と呼び、またY方向を透過方向と呼ぶ。 式1を用いて、延伸方向または非延伸方向における入射面を含む光の2つの重要な場合についての双軸複屈折系の角度特性を予期することができる。偏向子は、ある偏向方向ではミラーであり、また別の方向では窓である。延伸方向において、数百層を有する多層積層体中の層の屈折率差 1.88-1.65=0.23 は、s 偏向した光に対して、非常に高い反射率を与えるであろう。p 偏向した光では、様々な角度での反射は、屈折率比n1z/n2zに依存する。

大抵の利用において、理想の反射偏向子は、入射角全でにおいて、一方の軸に沿った高い反射と、他方の軸に沿ったゼロ反射を有する。いくらかの反射率が透過軸に沿って生じ、かつ様々な波長において異なると、偏向子の有効性は低減し、透過した光に色を呈する。いずれの効果も望ましくない。これによって、面内 y 屈折率が一致していても、大きな z 屈折率誤差が生じる。こうして得られた系は、 p 偏向した光では、大きな反射を有し、かつ s 偏向した光をほぼ透過する。この場合を、ミラーの分析において、「 p 偏向子」と呼ぶ。

図17は、PEN/coPENの800層積層体における非延伸方向での入射面を含む p偏向した光に対する75°での(Log [1-R]としてプロットした)反射率を示す。反射率は、可視スペクトルに亙る波長(400~700 nm)の関数としてプロットしている。曲線 a に関する550 n mでの適切な屈折率は、n1y=1.64、n1z=1.52、n2y=1.64、およびn2z=1.63である。モデル積層体設計は、4分の1波長対における単純な直線厚さ級であり、各層は、上述の対よりも0.3%厚い。全ての層を、ガウス分布と5%標準偏差を有するランダムな厚さ誤差とした。

曲線 a は、透過軸(y 軸)に沿った可視スペクトルに亙る高い無軸反射率であって、様々な波長が様々なレベルの反射率を経験することを示している。スペクトルが層の厚さ誤差と、空間的な不均一性(例えば、フィルムカリパス)に対する感受性があるため、これは、非常に不均一で「カラフル」な外観を有する双軸復屈折系を与える。特定の利用では、高い色度が望まれるが、無軸色の度合いを制御し、LCDディスプレイまたは他の種類のディスプレイのような、均一で低い色調を要する利用では、最小限にするのが望ましい。

フィルム積層体を、全可視波長において同じ反射率を与えるように設計すると、均一で中間のグレー反射となる。しかしながら、これは、大抵、完全な厚さ制御を必要とする。その代わりとして、軸とは無関係のブルースター条件を引き起こすと同時に、s変更反射率を最小値のまま保持する非延伸面内屈折率と一致する屈折率(n-lyおよびn2y)を導入することによって、無軸反射率および無軸色を最小限にすることができる。

図18は、双軸複屈折系の透過軸にそって無軸反射率を低減する際に、 y 屈折率の一致を導入する効果を表している。 $n1_z=1.52$ および $n2_z=1.63$ (Δ nz=0.11) の場合、以下の条件を、 p 偏向した光についてプロットした: a) $n1_y=n2_y=1.64$; b) $n1_y=1.64$ 、 $n2_y=1.62$; および c) $n1_y=1.64$ 、 $n2_y=1.66$ 。 曲線 a は、面内屈折率 $n1_y$ と $n2_y$ が等しい場合の反射率を示す。 曲線 a は、 $n1_y$ ので最小反射を有するが、 $n1_y$ のののののである。 曲線 b では、 $n1_y$ > $n2_y$ であり、反射率は迅速に高まる。 $n1_y$ < $n2_y$ である曲線 c は、 $n1_y$ > $n2_y$ であり、反射率は迅速に高まる。 $n1_y$ < $n2_y$ である曲線 c は、 $n1_y$ = $n2_y$ における s 偏向した光では、顕著な反射が生じる。 図18の曲線 a ~ d は、 y 屈折率誤差($n1_y$ - $n2_y$)の徴候が、 存在するブルースター最小値における z 屈折率誤差($n1_z$ - $n2_z$)と同じなければならないことを示している。 $n1_y$ = $n2_y$ の場合、 s 偏向した光についての反射率は、全ての角度において $n1_y$ = $n2_y$ の $n2_y$

層間の z 軸屈折率差を低減することによって、無軸反射率を、更に低下させることができる。 n1z が n2z と等しければ、図 13 は、消衰軸も、通常の屈折率で

のように、無角度の高い反射率を有し得ることを示し、かつ両者の屈折率が一致 するため(例えば、 $n l_y = n 2y$ および $n l_z = n 2z$)、反射は、どの角度において も非延伸軸に沿っては生じない。

あるポリマー系では、2つの y 屈折率と2つの z 屈折率を正確に合わせることは、不可能かもしれない。 z 軸屈折率が偏向子構造物に一致しないと、わずかな誤差を、面内屈折率 n 1_y および n 2_y に要することがある。 n 1_z = 1 . 5 6 および n 2_z = 1 . 6 0 (Δ n z = 0 . 0 4) とする別の実施例を図 1 9 にプロットしており、以下の y 屈折率を有する: a)。 n 1_y = 1 . 6 4、 n 2_y = 1 . 6 5; および b) n 1_y = 1 . 6 4、 n 2_y = 1 . 6 5; および b ついてである。 y 屈折率誤差が、 z 屈折率誤差と同じである曲線 a は、最も低い無角度の反射率をもたらす。

図20は、p偏向した光について図10に関して述べた、無軸反射をまとめた式1の等高線プロットを示す。非延伸方向においてもたらされた4つの独立した屈折率は、2つの屈折率誤差(Δ nz および Δ ny)まで低下した。プロットは、 $0\sim75^\circ$ まで 15° ずつ増加させた時の様々な入射角における6点の平均である。反射率は、 0.4×10^{-4} ずつの一定増加量で、 0.4×10^{-4} の等高線 aか 54.0×10^{-4} の等高線 j までの範囲である。プロットは、1 つの光学軸に沿った屈折率誤差によって生じた反射率が、他の軸に沿った誤差によって、どの程度相殺され得るかを示している。

したがって、双軸複屈折系の層間の z 屈折率誤差を低減することにより、および/または y 屈折率誤差を導入してブルースター効果、無軸反射率、およびそれによる無軸色を生じさせることによって、多層反射偏向子の透過軸に沿って最小

にする。

本発明において記載した原理を用いて、狭い波長域で操作する狭域バンド偏向 子を設計することができることにも注意すべきである。これは、例えば、赤、緑 、骨、シアン、マゼンタ、または黄色バンドの偏向子を製造するために作製され 得る。

材料選択および方法

確立された上述の設計考察により、当業者は、所望の屈折率関係を得るために 選ばれた条件下で加工すると、広く様々な材料を用いて、本発明の多層ミラーま たは偏向子を形成できることが容易に分かるであろう。一般に、必要なことはい ずれも、材料の一つが、選ばれた方向において、第二材料とは異なる屈折率を有 することである。この違いは、(例えば、有機ポリマーの場合、)フィルムの形 成中または形成後の延伸、(例えば、液晶材料の場合、)・押出成形、またはコー ティングを含む様々な方法で達せられる。さらに、2つの材料が、同時押出する ことができるように、類似のレオロジー特性(例えば、溶融粘度)を有すること が好ましい。

一般に、適する組み合わせは、第一の材料として結晶性または半結晶性有機ポリマー、および同様に第二の材料のための有機ポリマーを選択することにより、 達成され得る。その結果、第二の材料は、結晶性、半結晶性、もしくは非晶質で あってよいか、または第一の材料とは逆の複屈折を有していてよい。

適する材料の具体例としては、ポリエチレンナフタレート(PEN)およびその異性体(例えば、2,6-、1,4-、1,5-、2,7-および2,3-PEN)、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、およびポリ-1,4-シクロヘキサンジメチレンテレフタレート)、ポリイミド(例えば、ポリアクリルイミド)、ポリエーテルイミド、アタクチックポリスチレン、ポリカーボネート、ポリメタクリレート(例えば、ポリインブチルメタクリレート、ポリプロピルメタクリレート、ポリエチルメタクリレート、およびポリメチルメタクリレート)、ポリアクリレート(例えば、ポリブチルアクリレート、およびポリメチルメタクリレート)、ポリアクリレート(例えば、ポリブチルアクリレート、およびポリメチルアクリレート)、セルロース誘導体(

えば、エチルセルロース、アセチルセルロース、セルロースプロピオネート、ア セチルセルロースプチレート、および硝酸セルロース)、ポリアルキレンポリマ 一(例えば、ポリエチレン、ポリプロピレン、ポリブチレン、ポリイソブチレン 、およびポリ(4-メチル)ペンテン)、フッ素化ポリマー(例えば、パーフル オロアルコキシ樹脂、ポリテトラフルオロエチレン、フッ素化エチレンプロピレ ンコポリマー、ポリフッ化ビニリデン、およびポリクロロトリフルオロエチレン)、塩素化ポリマー (例えば、ポリ塩化ビニリデンおよびポリ塩化ビニル)、ポ リスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリアミド、シリ コーン樹脂、エポキシ樹脂、ポリ酢酸ビニル、ポリエーテルアミド、アイオノマ 一樹脂、エラストマー(例えば、ポリブタジエン、ポリイソプレンおよびネオプ レン)、およびポリウレタンが挙げられる。コポリマー、例えば、PENのコポ リマー [例えば、(a) テレフタル酸もしくはそのエステル、(b) イソフタル 酸もしくはそのエステル、(c)フタル酸もしくはそのエステル、(d)アルカ ングリコール、(e)シクロアルカングリコール(例えば、シクロヘキサンジメ タノールジオール)、(f)アルカンジカルボン酸、および/または(g)シク ロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)と2,6-、1 .4-、1.5-、2.7-、および/または2.3-ナフタレンジカルボン酸またはそ れらのエステルとのコポリマー〕、ポリアルキレンテレフタレートのコポリマー 「例えば、(a) ナフタレンジカルボン酸もしくはそのエステル、(b) イソフ タル酸もしくはそのエステル、(c) フタル酸もしくはそのエステル、(d) ア ルカングリコール、(e)シクロアルカングリコール(例えば、シクロヘキサン ジメタノールジオール)、(f)アルカンジカルボン酸、および/または(g) シクロアルカンジカルボン酸(例えば、シクロヘキサンジカルボン酸)と、テレ フタル酸もしくはそのエステルとのコポリマー」、並びにスチレンコポリマー(例えば、スチレン-ブタジエンコポリマー、およびスチレン-アクリロニトリルコ ポリマー)、4,4-ビ安息香酸およびエチレングリコールも適している。さらに 、各層はそれぞれ、2種またはそれ以上の上記のポリマーまたはコポリマーのブ レンド(例えば、SPSとアタクチックポリスチレンとのブレンド)を包含して よい。

偏向子の場合に特に好ましい層の組み合わせとしては、PEN/co-PEN、ポリエチレンテレフタレート(PET)/co-PEN、PEN/SPS、PET/SPS、PEN/イーストエアー(Eastair)、PET/イーストエアーが挙げられ、ここで、「co-PEN」とは、(上記の通り、)ナフタレンジカルボン酸をベースとするコポリマーまたはプレンドをいい、イーストエアーは、イーストマン・ケミカル・カンパニー(Eastman Chemical Co.)から市販されているポリシクロへキサンジメチレンテレフタレートである。

ミラーの場合に特に好ましい層の組み合わせとしては、PET/エクデル(Ecd el)、PEN/エクデル、PEN/SPS、PEN/THV、PEN/co-PET 、およびPET/SPSが挙げられ、ここで、「co-PET」とは、(上記の通 り、)テレフタル酸系コポリマーまたはブレンドをいい、エクデルは、イーストマン・ケミカル・カンパニーから市販されている熱可塑性ポリエステルであり、並びにTHVは、スリーエム・カンパニー(3M Co.)から市販されているフルオロポリマーである。

素子中の層の数を選択して、経済上の理由から、最小の層数を用いて所望の光学特性を達成する。偏向子とミラー両者の場合、層の数は、好ましくは10.00未満、より好ましくは5.000未満、および(特に)2.000未満である

上述のように、多層素子を製造するために用いるプロセス条件によって、様々な屈折率において所望の関係を達成する可能性(、およびそれによる多層素子の光学特性)が影響を受ける。延伸によって配向できる有機ポリマーの場合、素子は、一般に、多層フィルムを形成するために個々のポリマーを同時押出した後、フィルムを、選ばれた温度での延伸により配向することによって、場合により、その後、選ばれた温度で熱硬化することによって調製される。あるいは、押出および配向工程を、同時に行ってよい。偏向子の場合、フィルムを実質上1方向に延伸し(1軸配向)、同様にミラーの場合、フィルムを実質上2方向に延伸する(2軸配向)。

フィルムを、十字延伸での自然縮小から十字延伸方向で寸法安定化(延伸比の 平方根に等しく)させて、抑制(すなわち、十字延伸寸法の変化が実質上ない) してよい。フィルムを、長さ方向の延伸機を用いて機械方向に、テンターを用い て幅方向に、または対角で延伸してよい。

予備延伸温度、延伸温度、延伸速度、延伸比、熱硬化温度、熱硬化時間、熱硬化緩和、および十字延伸緩和を選択して、所望の屈折率関係を有する多層素子を得る。この変種は、内部依存性である。すなわち、例えば、比較的低い延伸温度等と組み合わせると、比較的低い延伸速度を用いることができる。所望の多層素子を得るために、どのようにして、上記の変種の適する組み合わせを選択するかは、当業者には自明である。しかしながら、一般に、偏向子の場合、1:2~10(特に、1:3~7)の延伸比が好ましい。ミラーの場合には、1つの軸に沿った延伸比が1:2~10(特に1:2~8、最も好ましくは、1:3~7)の範囲であること、および第二の軸に沿った延伸比が、1:~0.5~10(特に、1=:1~7、最も好ましくは1:3~6)の範囲であることが好ましい。

適する多層素子を、(例えば、ブーセ(Boese)ら著、「ジャーナル・オブ・ポリマー・サイエンス(J. Polym. Sci.)」、パートB、30:1321(1992年)に記載されているような)スピンコーティング、および真空蒸着等のような技術を用いて調製してもよい。後者の技術は、結晶性ポリマー有機および無機材料の場合に、特に有用である。

本発明を、以下の実施例の方法により説明する。実施例では、光学吸収が無視できるために、反射は、1-透過率に等しい(R=1-T)。

ミラー実施例:

PET:エクデル、601

同時押出工程を介する連続平坦フィルム作製ラインにおいて、601層を含む 同時押出フィルムを作製した。固有粘度0.6dL/g(60重量%フェノール /40重量%ジクロロベンゼン)のポリエチレンテレフタレート(PET)を、 一方の押出において速度75ポンド/時間で分配し、エクデル9966(イーストマン・ケミカル製、熱可塑性エラストマー)を、他方の押出機において速度65ポンド/時間で分配した。PETは、表層上にある。(例えば、米国特許第3.801.429号に記載されているような)供給ブロック法を用いて、151層を 2つのマルチプライヤーに通して、601層の押出物を得た。米国特許第3.5 65.985号には、同時押出マルチプライヤーが例示されている。ウェヴを、約210°Fのウェヴ温度において、引っ張り比約3.5まで、長さ方向に配向した。その後、フィルムを約235°Fで約50秒、余熱して、約4.0の引っ張り比まで、約6%/秒の速度で横断方向に引っ張った。その後、フィルムを、400°Fに設定した熱硬化オーブン内において、最大幅の約5%に緩和した。最終フィルムの厚さは、2.5miLであった。

製造したキャストウェヴは、空気面ではきめが粗く、図21に示すような透過率を与えた。60°角度でp偏向した光に対する透過率(%)(曲線b)は、(波長シフトのある)通常入射での値(曲線a)と類似している。

比較として、恐らく等方性材料であろうミール・コーポレイション(Mear 1 Corporation)製フィルム(図2.2参照)は、60°入射におけるp偏向した光の反射率が顕著な低下を示している(曲線b、通常の入射についての曲線aと比較している。)。

PET:エクデル、151

同時押出工程を介する連続平板作製ラインにおいて、151層を含む同時押出フィルムを作製した。固有粘度0.6 d L/g(60重量%フェノール/40重量%ジクロロベンゼン)のポリエチレンテレフタレート(PET)を、一方の押出機において速度75ポンド/時間で分配し、エクデル9966(イーストマン・ケミカル製、熱可塑性エラストマー)を、他方の押出機において速度65ポンド/時間で分配した。PETは、表層上にある。供給ブロック法を用いて、151層を得た。ウェヴを、約210°Fのウェヴ温度において、引っ張り比約3.5まで、長さ方向に配向した。その後、フィルムを約215°Fで約12秒、余熱して、約4.0の引っ張り比まで、約25%/秒の速度で横断方向に引っ張った。その後、フィルムを、400°Fに設定した熱硬化オーブン内において、約6秒間、最大幅の約5%に緩和した。最終フィルムの厚さは、約0.6miLであった。

フィルムの透過率を図23に示す。600°角度でp偏向した光に対する透過率(%)(曲線b)は、波長シフトのある通常入射での値(曲線a)と類似して

る。同じ押出条件において、ウェヴ速度を落として、厚さ約 $0.8 \, \mathrm{mil} \, \mathrm{Lo}$ 赤外線反射フィルムを作製した。透過率を図 $2.4 \, \mathrm{kmr}$ (曲線 a は通常の入射、曲線 b は $6.0 \, ^{\circ}$ 入射)。

PEN:エクデル、225

キャストウェヴを1操作で押出成形することによって、225層を含む同時押出フィルムを作製した後、ラボラトリーフィルム延伸装置において、フィルムを配向した。固有粘度0.5 d L/g(60重量%フェノール/40重量%ジクロロベンゼン)のポリエチレンナフタレート(PEN)を、一方の押出機において速度18ポンド/時間で分配し、エクデル9966(イーストマン・ケミカル製、熱可塑性エラストマー)を、他方の押出機において速度17ポンド/時間で分配した。PENは、表層上にある。供給ブロック法を用いて、57層を2つのマルチプライヤーに通して、225層の押出物を得た。キャストウェヴは、厚さ12miL、および幅12インチであった。その後、ウエヴを、パントグラフを使用してフィルムの角を挟み、同時にそれを均一な速度で両方向に延伸するラボラトリー延伸装置を用いて2軸延伸した。7.46cm²のウェヴを、約100℃において延伸機中で荷重し、130℃まで60秒で加熱した。その後、試料が約3.5×3.5に延伸されるまで、(元の寸法に対して)100%/秒で延伸した。延伸直後に、室温の空気を送風することによって、試料を冷却した。

薄い多層フィルムの光学応答を図25に示す(曲線aは通常入射、曲線bは60°入射)。60°角度でp偏向した光についての透過率(%)は、(いくらかの波長シフトがある)通常の入射における値と類似している。

PEN: THV500, 449

キャストウェヴを1操作で押出成形することによって、449層を含む同時押出フィルムを作製した後、ラボラトリーフィルム延伸装置において、フィルムを配向した。固有粘度0.53dL/g(60重畳%フェノール/40重畳%ジクロロベンゼン)のポリエチレンナフタレート(PEN)を、一方の押出機において速度56ポンド/時間で分配し、THV500(ミネソタ・マイニング・アンド

・マニュファクチュアリング・カンパニー (Minnesota Mining and Manufacturing

Company)製、フルオロポリマー)を、他方の押出機において速度11ポンド/時間で分配した。PENは、表層上にあり、PENの50%は、2つの表層中に含まれている。供給プロック法を用いて、57層を2つのマルチプライヤーに通して、449層の押出物を得た。キャストウェヴは、厚さ20miL、および幅12インチであった。その後、ウエヴを、パントグラフを使用してフィルムの角を挟み、同時にそれを均一な速度で両方向に延伸するラボラトリー延伸装置を用いて2軸延伸した。7.46cm²のウェヴを、約100℃において延伸機中で荷重し、140℃で60秒間加熱した。その後、試料が約3.5×3.5に延伸されるまで、(元の寸法に対して)10%/秒で延伸した。延伸直後に、室温の空気を送風することによって、試料を冷却した。

薄い多層フィルムの透過率を図26に示す。曲線aは、通常入射における応答を示し、曲線bは、60°入射における応答を示している。

偏向子実施例:

PEN: CoPEN、449-低色(Low Color)

キャストウェヴを 1 操作で押出成形することによって、4 4 9 層を含む同時押出フィルムを作製した後、ラボラトリーフィルム延伸装置において、フィルムを配向した。固有粘度 0.5 6 d L/g(6 0 重量%フェノール/4 0 重量%ジクロロベンゼン)のポリエチレンナフタレート(PEN)を、一方の押出機において速度 4 3 ポンド/時間で分配し、固有粘度 0.5 2(6 0 重量%フェノール/4 0 重量%ジクロロベンゼン)のCoPEN(2.6 - NDC 7 0 モル%およびDMT 3 0 モル%)を、他方の押出機において速度 2 5 ポンド/時間で分配した。PENは、表層上にあり、PENの 4 0 %は、2 つの表層中に含まれている。供給ブロック法を用いて、5 7 層を 2 つのマルチプライヤーに通して、4 4 9 層の押出物を得た。キャストウェヴは、厚さ 1 0 m i L、および幅 1 2 インチであった。その後、ウエヴを、パントグラフを使用してフィルムの角を挟み、それを一方向に延伸すると同時に均一な速度で他の方向へ押すラボラトリー延伸装

置を用いて 1 軸延伸した。 7.46 c m^2 のウェヴを、約100 ℃において延伸機中で荷重し、 140 ℃まで60 秒で加熱した。その後、試料が約 5.1×1 に延伸され

るまで、(元の寸法に対して)10%/秒で延伸した。延伸直後に、室温の空気 を送風することによって、試料を冷却した。

薄い多層フィルムの透過率を図27に示す。曲線aは、通常入射におけるp偏向した光の透過率を示し、曲線bは、60°入射におけるp偏向した光の透過率を示し、曲線cは、通常入射におけるs偏向した光の透過率を示している。通常入射および60°入射の両者の透過率は非常に高いことが分かる(85~100%)。空気/PEN界面は、60°近いブルースター角を有しているため、60°でのp偏向した光についての透過率がより高く、そのため60°入射での透過率は、ほぼ100%である。曲線cで示される可視域(400~700nm)でのs偏向した光の消衰が高いことも分かる。

PEN: CoPEN、601-高色(High Color)

ウェヴを押出して、2日後にフィルムを配向することにより、他のすべての実施例とはことなるテンターで601層を含む同時押出フィルムを製造した。固有粘度0.5dL/g(60重量%フェノール/40重量%ジクロロベンゼン)のポリエチレンナフタレート(PEN)を、一方の押出機において速度75ポンド/時間で分配し、固有粘度0.55dL/g(60重量%フェノール/40重量%ジクロロベンゼン)のCoPEN(2.6-NDC 70モル%およびDMT30モル%)を、他方の押出機において速度65ポンド/時間で分配した。PENは、表層上にある。供給ブロック法を用いて、151層を2つのマルチプライヤーに通して、601層の押出物を得た。米国特許第3.565.985号には、同様の同時押出マルチプライヤーが記載されている。延伸はすべて、テンター内で行った。フィルムを約280°Fで約20秒予熱し、約4.4の引っ張り比まで、約6%/秒の速度で横断方向に引っ張った。その後、フィルムを、460°Fに設定した熱硬化オーブン内で最大幅の約2%に緩和した。最終フィルムの厚さは1.8miLであった。

図28にフィルムの透過率を示す。曲線aは、通常入射におけるp偏向した光の透過率を示し、曲線bは、60.°入射におけるp偏向した光の透過率を示し、曲線cは、通常入射におけるs偏向した光の透過率を示している。通常入射およ

び 60° 入射の両者における p 偏向した光の透過率は、不均一であることが分かる。曲線 c で示される可視域($400\sim700$ n m)での s 偏向した光の消衰も不均一であることが分かる。

PET: CoPEN, 449

キャストウェヴを1操作で押出した後、ラボラトリーフィルム延伸装置で配向 することにより、449層を含む同時押出フィルムを製造した。固有粘度0.6 0 d L/g (60重量%フェノール/40重量%ジクロロベンゼン)のポリエチ - レンテレフタレート (PET) を、一方の押出機において速度26ポンド/時間-で分配し、IV(固有粘度) 0.53dL/g(60重量%フェノール/40重 置%ジクロロベンゼン)のCoPEN(2.6-NDC 70モル%およびDM T 30モル%)を、他方の押出機において速度24ポンド/時間で分配した。 PENは、表層上にある。供給ブロック法を用いて、57層を2つのマルチプラ イヤーに通して、449層の押出物を得た。米国特許第3,565,985号には 、同様の同時押出マルチプライヤーが記載されている。キャストウェヴは、厚さ 7.5 miL、および幅12インチであった。その後、ウエヴを、パントグラフ を使用してフィルムの角を挟み、それを一方向に延伸すると同時に均一な速度で 他の方向へ押すラボラトリー延伸装置を用いて1軸延伸した。7.46cm2のウ ェヴを、約100℃において延伸機中で荷重し、120℃まで60秒で加熱した 。その後、試料が約5.0×1に延伸されるまで、(元の寸法に対して)10% /秒で延伸した。延伸直後に、室温の空気を送風することによって、試料を冷却 した。最終フィルムの厚さは約1.4 milであった。脱ラミネートせず配向プ ロセスに通すために、このフィルムを十分に接着した。

図29に、この多層フィルムの透過率を示す。曲線aは、通常の入射における p偏向した光の透過率を示し、曲線bは、60°入射におけるp偏向した光の透 過率を示し、曲線cは、通常入射におけるs偏向した光の透過率を示している。 通常入射および 60° 入射におけるp偏向した光の両者の透過率が非常に高いことが分かる ($80\sim100$ %)。

PEN: CoPEN, 601

同時押出プロセスを介して連続平坦フィルム作製ラインにおいて、601層を含む同時押出フィルムを製造した。固有粘度0.54dL/g(60重量%フェノール/40重量%ジクロロベンゼン)のポリエチレンナフタレート(PEN)を、一方の押出機において速度75ポンド/時間で分配し、CoPENを、他方の押出機において速度65ポンド/時間で分配した。CoPENは、エチレングリコールと、2.6-ナフタレンジカルボキシレートメチルエステル70モル%、ジメチルイソフタレート15モル%、およびジメチルテレフタレート15モル%とのコポリマーであった。供給ブロック法を用いて、15-1層を得た。供給ブロックは、一定量のPENの層の光学厚さ1.22、およびCoPENの層の光学厚さ1.22の層傾斜分布を得るように設計した。同時押出層の合計厚さ8%を有する光学積層体の外側にPEN表層を同時押出した。光学積層体を2つの連続マルチプライヤーで多層化した。マルチプライヤーの通常の多層化比はそれぞれ、1.2および1.22であった。その後、フィルムを、310°Fで約40秒予熱し、約5.0の引っ張り比まで6%/秒の引っ張り速度で横断方向に引っ張った。最終フィルムの厚さは約2miLであった。

図30は、多層化フィルムの透過率を示す。曲線aは、通常入射におけるp偏向した光の透過率を示し、曲線bは、60°入射におけるp偏向した光の透過率を示し、曲線cは、通常入射におけるs偏向した光の透過率を示している。通常入射および60°入射におけるp偏向した光の両者の透過率が、非常に高いことが分かる。曲線cに示すように、可視域(400~700nm)でのs偏向した光の消衰も、非常に高いことが分かる。500~650nmの間の消衰は、ほぼ100%である。

57層供給ブロックを用いた実施例では、層すべてを、ある光学厚さ(550nmの4分の1)のみに設計したが、押出装置は、積層体全体に亙って層厚さの分配を導入するため、かなり広域バンドの光学応答を引き起こした。151層供

給ブロックで作製した実施例では、供給ブロックを、層厚さの分布を創製して、 可視スペクトルの一部を覆うように設計した。その後、米国特許第5,094,7 88号および同第5,094,793号に記載の如く、非対称なマルチプライヤー

を用いて、層厚さの分布を広くして、ほとんどの可視スペクトルを覆うようにした。

本発明は、好ましい実施態様を参照して記載したが、本発明の精神および範囲から逸脱することなく、形態や詳細を変化できることが、当業者には明白であろう。

【図1】

Fig. 1a

【図1b】

Fig. 1b

[図2]

Fig. 2

[図3]

Fig. 3

[図4]

Fig. 7

[図9]

Fig. 9

[図10]

Fig. 10

ſ

[図11]

Fig. 11

Fig. 17

[図18]

Fig. 19

Fig. 22

Fig. 23

Fig. 24

【手続補正盤】特許法第184条の8 【提出日】1995年10月18日 【補正内容】

請求の範囲

- 1. 結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の交互の層の主要部品を含んで成る多層化ポリマーフィルムであって、層全部の厚さが、実質上0.5 μ m未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも1つの面内軸に関する屈折率が、選ばれたポリマーの隣接する層よりも高いフィルム。
- 2. 結晶性ナフタレンジカルボン酸ポリエステルが、ポリエチレンナフタレートである請求項1に記載のフィルム。
- 3. 複数の層の主要部品を1方向に延伸した後で、隣接する層の少なくとも1つの面内軸に関する屈折率が実質上等しい請求項1に記載のフィルム。
- 4. 結晶性ナフタレンジカルボン酸ポリエステル層が、フィルムの別の面内軸に関する屈折率と少なくとも0.05の差を示す請求項3に記載のフィルム。
- 5. フィルムの面に沿った結晶性ナフタレンジカルボン酸ポリエステル層の異なる面内軸に関する屈折率の差が、少なくとも0.20である請求項4に記載のフィルム。
- 6. 隣接する層が、少なくとも0.05の配向軸に関する屈折率の差を示す請求項3に記載のフィルム。
- 7. 隣接する層が、少なくとも 0.20 の配向軸に関する屈折率の差を示す請求項 6 に記載のフィルム。
 - 8. 前記のフィルムが偏向子である請求項3に記載のフィルム。
- 9. 選ばれたポリマーが、ナフタレン基を含んで成る請求項1に記載のフィルム。
- 10. 選ばれたポリマーが、コポリエステルまたはコポリカーボネートである 請求項1に記載のフィルム。
- 1 1. コポリエステルが、エチレングリコールと、ナフタレンジカルボン酸も しくナフタレンジカルボン酸のエステル20~80モル%の範囲、およびイソフ

タル酸もしくはテレフタル酸またはイソフタル酸もしくテレフタル酸のエステル

- 20~80モル%の範囲との反応生成物であり、請求項10に記載のフィルム。
- 12. 選ばれたポリマーのガラス転移温度が、結晶性ナフタレンジカルボン酸 ・ ポリエステルのガラス転移温度よりも低い請求項10に記載のフィルム。
- 13. 1 軸配向した後、選ばれたポリマーの横断軸に関する屈折率が、約1. 59~1.69である請求項1に記載のフィルム。
- 14. 選ばれたポリマーが、イソフタル酸、アゼライン酸、アジピン酸、セバシン酸、ジ安息香酸、テレフタル酸、2,7-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、またはシクロヘキサンジカルボン酸をベースとするコポリエステルである請求項10に記載のフィルム。
- 15. 選ばれたポリマーが、エチレシグリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、テトラメチレングリコール、ジエチレングリコール、シクロヘキサンジメタノール、4-ヒドロキシジフェノール、ビスフェノールAもしくは1.8-ジヒドロキシビフェニル、または1.3-ビス(2-ヒドロキシエトキシ)ベンゼンの使用を包含するコポリエステルである請求項10に記載のフィルム。
 - 16. フィルムを1軸延伸する請求項1に記載のフィルム。
 - 17. フィルムを2軸延伸する請求項1に記載のフィルム。
- 18. 選ばれたポリマーの屈折率が1.65未満である請求項17に記載のフィルム。
- 19. 選ばれたポリマーの屈折率が1.55未満である請求項17に記載のフィルム。
 - 20. 主要部品を、別の光学要素中に組み込む請求項1に記載のフィルム。
- 21. 結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の交互の層の第二主要部品を含んで成る請求項1に記載のフィルムであって、層全部の厚さが、実質上0.5 μ m未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも1つの面内軸に関する屈折率が、第一および第二の主要部品を互いにラミネートした選ばれたポリマーの隣接する層よりも

高いフィルム。

- 22. 第一および第二主要部品の反射率のスペクトル範囲が実質上等しい請求項21に記載のフィルム。
- 23. 第一および第二主要部品の反射率のスペクトル範囲が異なる請求項21 に記載のフィルム。
- 24. 主要部品をいずれも、1方向に延伸し、かつ主要部品を、それぞれの配向軸を互いに約90°回転するように相互に配置させた請求項21に記載のフィルム。
- 25. 一方の主要部品を1軸延伸させ、かつ他方の主要部品を2軸延伸させた 請求項21に記載のフィルム。
- 2.6. 2軸延伸した主要部品を、直交軸に沿って非対称に延伸した請求項2.5 に記載のフィルム。
- 27.2軸延伸した主要部品を、直交軸に沿って対称に延伸した請求項25に記載のフィルム。
 - 28. 本体、

画像を投影する手段を有する本体に接続されたヘッド、

ヘッドによって投影するための画像を置く、本体上のステージプロジェクション 領域、

本体内に配置した光源、および

結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の交互の層を有する多層化ポリマーフィルムであって、層全部の厚さが、実質上05 μm未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも1つの面内軸に関する屈折率が、選ばれたポリマーの隣接する層よりも高いフィルムであって、プロジェクションステージと光源の間に配置したフィルムを含んで成るオーバーヘッドプロジェクター。

- 29. 多層化ポリマーフィルムが、光源からの赤外線エネルギーを反射すると 同時に可視光を透過する請求項28に記載のオーバーヘッドプロジェクター。
 - 30. 多層化ポリマーフィルムが、光源からの可視光を反射すると同時に赤外

線エネルギーを透過する請求項28に記載のオーバーヘッドプロジェクター。

- 31. 結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの交互の層の積層体であって、層の厚さが 0.5 μ m未満であり、かつ結晶性ナフタレンジカルボン酸ポリエステルの少なくとも1つの面内軸に関する屈折率が、選ばれたポリマーの隣接する層よりも高い積層体を形成することを含んで成る光反射多層化ポリマーフィルムの作製方法。
- 32. 積層体を1軸延伸して、隣接する層間の配向軸に関する屈折率に少なくとも0.05の差を得る請求項31に記載の方法。
- 33. それぞれの配向軸を90°回転するとミラーを形成するように配置した 2つの積層体をさらに含んで成る請求項32に記載方法。
- 34. 隣接する層間の配向軸に関する屈折率の差が少なくとも0.20になるまで、積層体を1軸延伸する請求項31に記載の方法。
- 35. 結晶性ナフタレンジカルボン酸ポリエステル層が、フィルムの異なる面内軸に関する屈折率の差少なくとも0.05を示すまで、積層体を1軸延伸する請求項31に記載の方法。
- 36. 結晶性ナフタレンジカルボン酸ポリエステル層が、フィルムの異なる面内軸に関する屈折率の差少なくとも0.20を示すまで、積層体を1軸延伸する請求項31に記載の方法。
- 37. 結晶性ナフタレンジカルボン酸ポリエステルが、ポリエチレンナフタレートである請求項31に記載の方法。
- 38. 選ばれたポリマーが、イソフタル酸、アゼライン酸、アジピン酸、セバシン酸、ジ安息香酸、テレフタル酸、2.7-ナフタレンジカルボン酸、2.6-ナフタレンジカルボン酸、またはシクロヘキサンジカルボン酸の反応生成物である請求項31に記載の方法。
- 39. 選ばれたポリマーが、エチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、テトラメチレングリコール、ジエチレングリコール、シクロヘキサンジメタノール、4-ヒドロキシジフェノール、ピスフェノールAもしくは1.8-ジヒドロキシビフェニル、

または1,3-ビス(2-ヒドロキシエトキシ)ベンゼンの反応生成物である請求項

31に記載の方法。

- 40. 結晶性ナフタレンジカルボン酸ポリエステルが、1つの面内軸に関する 屈折率と第二の面内軸に関する屈折率との間に少なくとも0.05の差を示し、 かつ少なくとも1つの軸に関係する隣接する層の屈折率が実質上等しい請求項3 1に記載の方法。
- 41. 積層体を2軸延伸し、隣接する層間の配向軸に関する屈折率に少なくとも0.05の差を得て、ミラーを形成する請求項31に記載の方法。
 - 42. 積層体を、別の光学要素内に組み込む請求項31に記載の方法。
 - 43. 請求項31に記載の方法、並びに

結晶性ナフタレンジカルボン酸ポリエステルと別の選ばれたポリマーとの複数の 交互の層を含んで成る第二の積層体であって、層の厚さが 0.5 μ m未満であり 、かつ結晶性ナフタレンジカルボン酸ポリエステル層の少なくとも 1 つの面内軸 に関する屈折率が、選ばれたポリマーの隣接する層よりも高いものを形成するこ と、および

第一および第二の積層体を互いに積層することを さらに含んで成る方法。

44. 積層体を1軸延伸する請求項31に記載の方法。

【国際調査報告】

四水响且	INTERNATIONAL SEARC	H REPORT _		
] '	PCT/US 9	ticason No L/14323
A. G.AS	IFICATION OF SUBJECT MATTER	·		y • · · · · · · · · · · · · · · · · · ·
IPC 6	B32B7/02 B32B27/36 G02B27/	/28 GD2B5/30)	
ł				
	D ENTERALIONAL PARENT CLASSIFICATION (IPC) or to both fiational class S SEARCHED	makement and IPC		
	Ocumentation searched (classification system followed by classific B32B G02B	akon symbols)		
1,700	5325 GUZE			
Documents	tion searched other than maximum documentation to the extent tha	such documents are unclu-	ded in the fields :	cardocal
Berring	ata base consulted during the international search (name of data b	w and where oracinesi. If	anch terms used)	-
	and the continued and the first participation which (times or the second			
C DOCT	ENT CONTROL TO BE DESCRIPTION			
Category *	ENTS CONSIDERED TO BE RELEVANT Cluston of document, with undestron, where appropriate, of the	relevant passager		Relevant to claim No.
		-		
À	EP,A.0 488 544 (DOW CHEMICAL CO)	3 June		1
	cited in the application			•
	see claims 1,3,9,10		ĺ	
A	US,A,4 310 584 (COOPER SCOTT A E	T AL) 12		1,31
	January 1982 cited in the application			
	see column 2, line 64 - column 4	, line 16		
	DATABASE WPI			1,2,9,14
	Section Ch, Week 8809	- 60.	ļ	
}	Derwest Publications Ltd., Londo Class A23, AN 88-060962			•
	& JP.A.63 017 023 (DIA FOIL KK) January 1988	, 25		
	see abstract			
		-/		·
	•			
X Fure	er documents are listed in the continuation of box C.	X Patent family me	mbers are listed :	n ennex.
* Special car	gories of exted documents :	T later document public	bed after the mit	metional filing date
	nt defining the general state of the art which is not not to be of parteriag relevance	or princity date and o catos to understand to invention	not in conflict with the promouple or th	h the application but cory underlying the
	ocument but published on or after the international	"X" document of particular memory be considered	er relevanor; the	claimed invention be considered to
"L" docume	t which may throw doubts on priority data(s) or s cred to establish the publication data of another	involve an investore: "Y" document of perticular	tre televazor; the co	cument is taken elone claimed invention
O' docume	or other special reason (as specified) at referring to an oral disclosure, use, echibition or	cannot be considered document in combine ments, such combine	to involve an im at with one or ma	ses other such door-
Other m 'P" docume later th	cons ut published prior to the international filing date but in the payerty date charmed	in the art. 'A' document member of	•	
	coral completion of the international search	Date of menting of the	international en	areta report
1	June 1995	0 6. 06. 95		
	ming address of the ISA	Authorized officer		
	Eiropean Prient Office, P.B. 1818 Patentiam 2 NL - 2220 HV Ripwyk			,
	Td. (+31-70) 340-2040, Ts. 31 651 epo nl. Fax: [+31-70) 340-3016	McConnel	1, C	
	10 (compt chest) (fuly 1972)	·		

Form PCT/ISA/213 (second cheel) (July 1912)

INTERNATIONAL	SEARCH	REPORT

ŀ	1800	pplication No
P	CT/US	pplication No 95/14323

PCT/US 95/14323	
Reterent to claim No.	
1,2	
28	

Form PCT/ISA/210 (continuetion of encored sheet) Unity 1992

afonesso on passos family monosts

PCI/US 95/14323

			1	1 1017 00 04 2 1020	
Patent document cited in search report	Publication date	Patent family mamber(s)		Publication date	
EP-A-0488544	03-06-92	CA-A-	2056153	27-05-92	
US-A-4310584	12-01-82	CA-A-	1157619	29-11-83	
		CH-A-	649850	14-06-85	
		DE-A-	3048853	10-09-81	
		FR-A.B	2472469	03 -0 7-81	
		GB-A.B	2066155	08-07-81	
		JP-C-	1769994	30-06-93	
		JP-B-	4040681	03-07 -9 2	
		JP-A-	56099307	10-08-81	
		NL-A-	8007061	16-07-81	
		SE-B-	450473	29-06-87	
		SE-A-	8009041	27-06-81	
		US-E-	RE31780	25-12-84	
	05-02-92	-4-2U	5103337	07-04-92	
EF: A=0703/32	05 06 52	JP-A-	4313704	05-11-92	
		NS-E-	RE34605	10-05-94	
EP-A-0573905	15-12-93	JP-A-	6051399	25-02-94	

Perm PCT/ISA/210 (person family sones) (July 1992)

フロントページの続き

B 2 9 L 9:00

11:00

(81)指定国 EP(AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OA(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(KE, MW, SD, SZ), AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KE, KG, KP, KR, KZ, LK, LT, LU, LV, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TJ, TT, UA, UZ, VN

- (72)発明者 ウェーバー、マイケル・エフ アメリカ合衆国55133-3427、ミネソタ州、 セント・ポール、ポスト・オフィス・ボッ クス 33427番(番地の表示なし)
- (72)発明者 ションザ、ジェイムス・エム アメリカ合衆国55133-3427、ミネソタ州、 セント・ポール、ポスト・オフィス・ボッ クス 33427番(番地の表示なし)
- (72)発明者 ストーヴァー、カール・エイ アメリカ合衆国55133-3427、ミネソタ州、 セント・ポール、ポスト・オフィス・ボッ クス 33427番 (番地の表示なし)