2019 年普通高等学校招生全国统一考试 广东省文科数学模拟试卷(二) 参考答案及评分标准

评分标准:

- 1. 本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
- 2. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
- 3. 解答右端所注分数,表示考生正确做到这一步应得的累加分数
- 4. 只给整数分数,选择题不给中间分.
- 1. D 2. C 3. D 4. B 5. C 6. A 7. A 8. A 9. C 10. B 11. C 12. B
- 13. 3 14. $\frac{4}{3}$ 15. $\frac{3}{4}$ 16. 40

1.7	ATT (1) LA The chart (H. A.D.) DOC LACE ADDIVACY	1 11
17.	. 解:(1)由余弦定理得 $AB^2 = BC^2 + AC^2 - 2BC \times AC \times \cos C$,	⊥分
	代人数据整理得 BC ² +3BC-40=0,	3分
	解得 BC=5(BC=-8 舍去).	
		0 71
	(2)由 $\cos A = \sqrt{3} \sin B$ 及 $C = 120^{\circ}$,	
	得 $\cos(60^{\circ}-B)=\sqrt{3}\sin B$,	64
	14 COSCOO D) VSSII D,	0 71
	展开得 $\frac{1}{2}\cos B + \frac{\sqrt{3}}{2}\sin B - \sqrt{3}\sin B = 0$,	7 分
		' //
	$\sqrt{3}$ 1 $\sin B = 3$	
	$\mathbb{R}^{1/3} \frac{1}{2} \sin B = \frac{1}{2} \cos B, \tan B = \frac{\sin B}{\cos B} \frac{\sqrt{3}}{3},$	8分
	所以 B=30°	0 11
		9分
	从而 $A=60^{\circ}-B=30^{\circ}$,即 $A=B=30^{\circ}$,	
	所以 BC=AC=3	10分
	故 $\triangle ABC$ 的面积为 $\frac{1}{2}$ $3\times 3\times \sin 120^\circ = \frac{9\sqrt{3}}{4}$.	12分
	4	
	评分细则:	
	第八15日, 月亚古人共产州组为 DC 「	

第(1)问中,只要由余弦定理得到 BC=5,就给 5 分;

第(2)回中, $\cos(60^{\circ}-B)=\sqrt{3}\sin B$ 是关键,得到 $B=30^{\circ}$ 或 $A=30^{\circ}$,就给 3 分.

18. 解:(1)填写列联表如下:

性别	入围人数	未入围人数	总计
男生	24	76	100
女生	20	80	100
总计	44	156	200

因为 K^2 的观测值 $k = \frac{200 \times (24 \times 80 - 76 \times 20)^2}{100 \times 100 \times 44 \times 156} = \frac{200}{429} < 2.706$, 6 分 所以没有 90%以上的把握认为脑力测试后是否为"人围学生"与性别有关. 7 分

	(2)(\dagger)这 11 名学生中,被抽到的女生人数为 $20 \times \frac{11}{44} = 5$ 9 分
	(ii)因为入围的分数不低于 120 分,且每个女生的测试分数各不相同,每个人的分数都是整数,
	所以这 11 名学生中女生的平均分的最小值为 $\frac{120+121+122+123+124}{5}$ = 122
	评分细则:
	第(1)问计算得到 K^2 的观测值 $k = \frac{200}{429}$ 即可得 1 分.
10	120
19	(1)证明:如图,连接 BC_1 .
	又因为 F 为 AB 的中点,
	所以 EF // BC ₁ . 3分 E
	又 EF \angle 平面 BCC_1B_1 , BC_1 \angle 平面 BCC_1B_1 , 所以 EF $//$ 平面 BCC_1B_1
	(2)解:因为 $AC \perp AB$, $AA_1 \perp AC$, $AA_1 \cap AB = A$,所以 $AC \perp$ 平面 ABB_1A_1 ,
	又 $AC=4$, E 为 A_1C 的中点,所以 E 到平面 ABB_1A_1 的距离为 $\frac{1}{2}\times 4=2$
	因为 $\triangle AB_1F$ 的面积为 $\frac{1}{2}$ \times 2 \times 6=6,
	所以 $V_{B_1-AEF} = V_{E-AB_1F} = \frac{1}{3} \times 2 \times 6 = 4.$ 12 分
	评分细则:
	第(1)问中,先证面面平行,再证线面平行,也是常见的方法,阅卷时应同样给分.
20	(1)证明:设 $A(x_1,y_1),B(x_2,y_2)$,联立 $\begin{cases} y=kx+1, \\ x^2=4y, \end{cases}$ 得 $x^2 + 4kx - 4 = 0, \dots 1$ 分
	则 $x_1x_2 = -4$, 2 分
	则 $x_1x_2 = -4$, 2 分 所以 $y_1y_2 = \frac{(x_1x_2)^2}{16} = 1$, 3 分
	从而 $\overrightarrow{OA} \cdot \overrightarrow{OB} = x_1 x_2 + y_1 y_2 = -3 < 0$, 4 分 则 $\angle AOB$ 为钝角,故 $\triangle AOB$ 为钝角。 5 分
	则∠AOB为钝角,故△AOB为钝角Z角形. 5分
	(2)解:由(1)知, $x_1+x_2=4k$, $y_1+y_2=k(x_1+x_2)+2=4k^2+2$, 6 分则 $ AB =y_1+y_2+p=4k^2+4$ 7 分
	由 $x^2 = 4y$,得 $y = \frac{x^2}{4}$, $y' = \frac{x}{2}$,设 $P(x_0, y_0)$,则 $\frac{1}{2}x_0 = k$, $x_0 = 2k$, $y_0 = k^2$,
	则点 P 到直线 $y=kx+1$ 的距离 $d=\sqrt{k^2+1}$
	从而 $\triangle PAB$ 的面积 $S = \frac{1}{2}d AB = 2(k^2+1)\sqrt{k^2+1} = 16$,
	解得 $k=\pm\sqrt{3}$,
	故直线 l 的方程为 $y=\pm\sqrt{3}x-3$.
	评分细则: 第(1)问中,得到 x_1x_2 , y_1y_2 的值分别给 1分;若只是得到其中一个,且得到 $\overrightarrow{OA} \cdot \overrightarrow{OB} = -3 < 0$,可以共给 3分.
21	$f(x) = \frac{1}{2} x^2 + 3x - 4 \ln x$,定义域为 $f(x) = \frac{1}{2}$
21	2
	$f'(x) = x + 3 - \frac{4}{x} = \frac{x^2 + 3x - 4}{x} = \frac{(x - 1)(x + 4)}{x}.$
	当 $x > 1$ 时, $f'(x) > 0$, $f(x)$ 单调递增,则 $f(x)$ 的单调递增区间为 $(1, +\infty)$;
	当 $0 < x < 1$ 时, $f'(x) < 0$, $f(x)$ 单调递减,则 $f(x)$ 的单调递减区间为 $(0,1)$. 4 分
	(2)证明: $f'(x) = \frac{x^2 - (a+1)x + a}{x} = \frac{(x-1)(x-a)}{x}$,
	$g'(x) = 3x^2 + 2bx - (2b+4) + \frac{1}{x} = \frac{(x-1)[3x^2 + (2b+3)x - 1]}{x}.$ 6 $\frac{1}{2}$

 $\Rightarrow p(x) = 3x^2 + (2b+3)x-1.$ 因为 $a \in (1,2]$,所以 f(x)的极小值点为 a,则 g(x)的极小值点为 a,……………………………………………………… 8 分 此时 g(x)的极大值为 $g(1)=1+b-(2b+4)=-3-b=-3-\frac{1-3a^2-3a}{2a}=\frac{3}{2}a-\frac{1}{2a}-\frac{3}{2}$ 10 分 评分细则: 第(1)问中,计算导数时未因式分解不扣分; 第(2)问中,计算 g(x)的导数时未因式分解扣 1 分. (2)由(1)可设 P 的坐标为($2+\cos\alpha$, $3+\sin\alpha$), $0 \le \alpha < 2\pi$, 则 $|PM|=3+\sin \alpha$, 7分 又直线 $\rho\cos\theta=-1$ 的直角坐标方程为 x=-1, 所以 $|PM|+|PN|=6+\sqrt{2}\sin\left(\alpha+\frac{\pi}{4}\right)$, 9分 故当 $\alpha = \frac{\pi}{4}$ 时,|PM| + |PN|取得最大值,且最大值为 $6+\sqrt{2}$ 评分细则: 第(2)问中,亦可设 P 的坐标为($2+\sin\alpha$, $3+\cos\alpha$), PM[=3+ $\cos\alpha$,|PN|=3+ $\sin\alpha$,各给 1 分. 23. 解:(1)由 f(x)<0,得 |x+1|+|2-x|<4. 1分 当 $-1 \le x \le 2$ 时,x+1+2-x=3 < 4 恒成立,则 $-1 \le x \le 2$; … 当 x > 2 时,x+1+x-2 < 4,解得 2 $x < \frac{5}{2}$ 故 f(x) < 0 的解集为 $\left(-\frac{3}{2}, \frac{5}{2}\right)$. 5 分 (2)因为 f(x) = |x+1| + |x|x - k > |x+1+2-x|-k=3-k, 6分 6分 6分 6分 7分 因为不等式 $f(x) \geqslant \sqrt{k+3}$ 对 $x \in \mathbf{R}$ 恒成立,所以 $3-k \geqslant \sqrt{k+3}$, $k+3 \geqslant 0$, 所以 $\begin{cases} 3-k \geqslant 0, \\ (3-k) \geqslant k+3, \end{cases}$ 解得 $-3 \leqslant k \leqslant 1, \ldots$ 9分 则 k的取值范围为 $\lceil -3, 1 \rceil$ 10分 评分细则: 第(1)问中,先将 f(x)化为三段的分段函数,得 3 分,再得出不等式的解集,得 2 分; 第(2)问中,未写 $3-k \ge 0$,扣 1 分.