UNCLASSIFIED

AD NUMBER AD871980 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; 01 APR 1970. Other requests shall be referred to Army Missile Command, ATTN: AMSMI-RE, Redstone Arsenal, AL 35809. **AUTHORITY** USAMC 1tr dtd 29 Nov 1972

Y000 - 111

REPORT NO. RE-TR-70-7

AN ANALYTICAL MODEL FOR PREDICTING THE RADIATION FROM JET PLUMES IN THE MID-INFRARED SPECTRAL REGION

by

H. Tracy Jackson

April 1970

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of this Command, ATTN: AMSMI-RE.

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama 35809

AN ANALYTICAL MODEL FOR PREDICTING THE RADIATION FROM JET PLUMES IN THE MID-INFRARED SPECTRAL REGION

by

H. Tracy Jackson

DA Project No. IM2623xxA204 AMC Management Structure Code No. 522C.11.146

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of this Command, ATTN: AMSMI-RE.

Electro-Optical Branch
Advanced Sensors Laboratory
Research and Engineering Directorate
U. S. Army Missile Command
Redstone Arsenal, Alabama 35809

Best Available Copy

ABSTRACT

This report describes an analytical model for predicting the emission of radiation from a jet plume in the mid-infrared spectral region. It is assumed that the dominant radiation arises for the CO₂ molecule. Results are therefore reported for the 4.3-micrometer band of gaseous carbon dioxide which is assumed to cover the spectral region 2050 to 2400 cm⁻¹ (4.17 - 4.88 micrometers). The temperature range that is considered varies from 300° to 2100°K. The objective of the reported program was to develop a computerized program for predicting radiant energy emissions which could be readily integrated into a flow field calculation. A description is given of both the radiation model and the flow field model. The described program provides both the spectral and spatial intensity distributions of the emitted radiation.

CONTENTS

	·	Page
Section I.	INTRODUCTION	1
Section II.	JET FUELS	3
Section III	FLOW FIELD	11
Section IV	RADIATION CALCULATIONS	18
Section V.	RADIATION COMPUTER PROGRAM	28
REFEREN	ICES	40
Appendix.	FLOW FIELD PROGRAM	41
	ILLUSTRATIONS	
Table		Demo
1 a Die		Page
I	Jet Fuels	4
II	Atmospheric Composition	5
III	Radiation Computer Program	29
IV	Typical Set Input Data	34
V	Input Data Sequence	35
VI	Typical Output Data	36
A-I	Input Data Sequence	42
A-II	Typical Set of Input Data	47
A-III	Flow Field Computer Program	48
A-IV	Typical Output Data	58
Figure		
1	Approach Outline	2
2	Mole Percent of CO ₂ Contained in Exhaust Products as a	
	Function of Carbon to Hydrogen Fuel Weight Ratio with	
	Oxidizer to Fuel Ratio as a Parameter	10
3	Plume Model and Objective	11
4	Distinct Plume Features	12
5	Comparison of Plume Flow Field Analytical Model with	
	Manufacturer's Data for a Particular Jet Engine	14

ILLUSTRATIONS (Concluded)

Figure	,	Page
6	Axial Decay of Temperature and CO ₂ Concentration	14
7	Ratio of Plume to Ambient Temperature Versus Radial	
	Position with Downstream Position as a Parameter	15
8	Ratio of Plume to Ambient CO ₂ Concentration Versus	
	Radial Position with Downstream Position as a	
	Parameter	15
9	Isotherms for an Inflight Plume	16
10	Geometry for Radiation Calculations	19
11	Emission Model	22
12	Comparison of Homogeneous and Non-homogeneous	
	Calculations	23
13	Typical Turbojet Plume Surface Emission at 90-Degree	
	Aspect	24
14	Axial Decay of Plume Radiation for a Typical Turbojet	25
15	Comparison of Atmospheric Transmission Model with	
	Measured Data	26
16	Remote Plume Spectral Signature	27
17	Comparison of Model with Experimental Data	27
	•	

Section I. INTRODUCTION

This report presents the results of the second phase of a program* which has been undertaken to predict analytically the spectral and spatial distribution of radiation emitted from an inhomogeneous, nonisothermal system of hot gases. Results are reported for the 4.3-micrometer band of gaseous carbon dioxide (CO₂) which is assumed to cover the spectral region 2050 to 2400 cm⁻¹ (4.17 to 4.88 micrometers). The temperature range that is considered varies from 300° to 2100°K. It was pointed out in the first phase [1] of this study that the program was initiated because of current interest in being able to predict the radiant energy emitted by a particular system of hot gases in narrow bands of the infrared spectrum. The objective of the program was to develop a computerized computational scheme for predicting radiant energy emissions which could be readily integrated into a flow field calculation. Such a program readily provider both the spectral and spatial intensity distribution of the emitted radiation.

In particular, this report outlines the current status of the program with emphasis on modeling the radiation emitted from the hot gaseous combustion products of fixed wing jet aircraft in the mid-infrared portion of the spectrum. It is well established that one of the major cources of radiation emitted from a jet aircraft is the radiation emitted from the not jet plume. This is particularly true when the aircraft is viewed from a direction such that the hot tail pipe is not seen. Since jet fuels are largely hydrocarbons, approximately 15 percent hydrogen and 85 percent carbon, which are burned in an excess of air or oxygen, then there is considerable CO_2 in the hot exhaust gases. The CO_2 molecule possesses a very strong radiating band centered around 4.3 micrometers. The radiation arising from this vibration-rotation band of CO_2 therefore represents the major source of plume emission in the mid-infrared spectral region.

The ultimate objective of the overall program is to be able to determine the radiant energy available to a remote sensor from a particular target or class of targets operating under a specified set of arbitrary conditions. This overall problem then readily divides into three distinct phases: (1) flow field description of the bot gaseous plume. (2) radiation model describing the emission characteristics of this gaseous environment, and (3) atmospheric modification to this radiated energy. The second and third phases have been previously reported [1-4] on and will not be considered here in any depth.

[&]quot;The results of the initial phase of this work are reported in a previous work [1], which discusses the first phase of the study leading to the development of a general spectral emissivity model for carbon dioxide.

This discussion will be largely concerned with that portion of the program which describes the method of coupling the flow field description of the plume with the radiation model. In particular, the flow field description, which provides the temperature and concentration profiles for the radiating specie, simply serves as an input to the radiation model which in turn is capable of describing the spectral and spatial emission characteristics of the gaseous jet plume. An outline of the approach that has been taken is shown in Figure 1.

FIGURE 1. APPROACH OUTLINE

Section II. JET FUELS

Jet fuels consist primarily of hydrocarbons with only small amounts of other elements or compounds such as nitrogen, oxygen, sulphur and water. These non-hydrocarbons are generally controlled very carefully to rather exacting specifications for the various commercial types of jet propulsion fuels. The total amount of these non-hydrocarbons generally does not exceed 1 percent of the fuel composition. Thus, for any practical calculation involving jet fuels, it can be assumed that the fuels consist only of carbon and hydrogen. Both turboprop and turbojet engines use the same types of fuels. These propulsion fuels can be divided into three main types [5]:

- 1) Aviation kerosenes which have boiling temperatures in the range of 140° to 280°C. Such fuels with crystalline temperatures not higher than -60°C are considered excellent jet fuels. They possess high heats of combustion, low saturated vapor pressures, and good viscosity characteristics which ensure normal functioning of the jet engine under a rather wide range of operating conditions.
- 2) Wide range distillate fuels which include gasoline, kerosene, and ligroine fractions and have boiling temperatures in the range of 60° to 280°C. This type of fuel is highly volatile and generally possesses a high saturated vapor pressure. This causes high altitude operating difficulties because of vaporization and boiling.
- 3) Heavy petroleum fractions which have a low vapor pressure. This type of fuel is used principally for supersonic flight speeds and in naval aircraft and training aircraft because of its very high flash point.

Table I lists the most common jet fuels used in civilian and military aircraft.

The C:H ratios listed in Table I were estimated from the empirical relationship⁵

$$H\% = 26 - 15\rho^{15} , \qquad (1a)$$

and

$$C\% = 100 - H\%$$
 , (1b)

where ρ^{15} is the density of the jet fuel at 15°C in g/cm³. The normalized compositions were then derived by assuming the total molecular weight to be

TABLE I. JET FUELS

			Measured Density	Density Specification	Heat of Combustion	Normalized Composition C	Normalized Composition C Hy	C:H Weight
Designation	Country	Type	(g/cm^3)	(g/cm^3)	(kcal/kg)	×	Y	Ratio
:-1	U.S.S.R.	1	0.815^{st}	0.800-0.850*	10,250	7.18	13.7	6 26
TS-1	U. S. S. R.	-	0.785*	> 0.775*	10,250	7.14	14:1	6.03
T-2	U. S. S. R	2	0.760*	> 0.775*	10,250	7.11	14.5	5.85
JP-1B	U. K.	н	0.785*	0.785-0.825**	.10,280	7.14	14.1	6.03
JP-4B	U. K.	2	0.751*	0.750-0.802**	10,280	7.10	14.6	5.78
JP-5B	U. K.	1	ı	0.780-0.850**	10,300	ı	ŀ	ı
JP-1	U. S. A.	П	0.804**	0.780-0.850**	10,300	7.17	13.8	6.17
JP-3	U. S. A.	2	0.792**	0.740-0.780**	10,270	7.15	14.0	80.9
JP-4	U. S. A.	2	0.764*	0.750-0.802**	10,400	7.12	14.4	5.88
JP-5	U. S. A.	က	0.831*	0.780-0.845**	10,253	7.20	13.4	6.39
Air-3405	France		1	Not standardized	d 10,150	١	ı	ı
Air-3407	France	2	ı	0.740-0.825*	10,200	1	1	1

* 20°C **15.5°C 100 g/g-mole. In general, the C:H ratio increases somewhat with the heaviness of fractional composition and as the C:H ratio increases, the amount of air required for complete combustion decreases. The amount of air required for the complete combustion of a quantity of fuel is easily calculated, and for most jet fuels, the ratio varies from 14 to 15 units of air to one unit of fuel. This can be illustrated by computing the mass of air required for the complete combustion of a unit mass of fuel. One may consider a hydrocarbon of the form $C_{\mathbf{X}}^{\mathbf{H}}$ and assume that air is composed only of nitrogen and oxygen. This is reasonable, since the atmosphere is composed of the following major constituents.

Specie	Mole Percent

TABLE II. ATMOSPHERIC COMPOSITION

Specie	Mole Percent
Nitrogen	78.09
Oxygen	20.95
Argon	0.93
Carbon dioxide	0.03
Hydrogen	0.01

This shows that nitrogen and oxygen compose over 99 percent of the atmosphere by volume. It can therefore be assumed that the oxidizer is of the form $N_AO_{\mathbf{R}^*}$ For the temperatures and pressures encountered in a typical jet engine, nitrogen acts only as an inert specie. Therefore, the following burning or combustion process may be considered:

$$C_{X}H_{Y} + (X + Y/4)O_{2} \rightarrow XCO_{2} + (Y/2)H_{2}O$$
 (2)

The mass of oxygen required for complete combustion of a unit mass of fuel is then given by

$$\frac{\text{Mass oxygen}}{\text{Mass fuel}} = \frac{(2X + Y/2)M_{O}}{XM_{C} + YM_{H}},$$
 (3)

where M_i represents the molecular weight of the i th specie. In order to compute the mass of air required, then it is only necessary to divide the above expression by the mass fraction of oxygen occurring in the atmosphere. This is readily obtained by multiplying the mole fraction listed in Table II by the ratio of the molecular weight of oxygen to the mean molecular weight of the

atmosphere. This gives 23.2 percent by weight for oxygen. Thus the mass of air required for complete combustion of a unit mass of fuel is given by

$$\frac{\text{Mass air}}{\text{Mass fuel}} = \frac{1}{0.232} \left\{ \frac{(2X + Y/2) M_{O}}{XM_{C} + YM_{H}} \right\}. \tag{4}$$

In general, for the jet engine type of problem being discussed, an excess air factor is used to limit the temperature of the gases entering the turbine. This factor is generally of the order 3.8 to 4.0. However, at this point, the oxidizer (air) to fuel ratio can be simply denoted as O/F, and this can be treated as a parameter. The composition of the combustion products can now be obtained by first computing the coefficients A and B for the atmospheric composition $N_A{}^O{}_B$. As previously noted, the mass fraction of oxygen is 0.232 and can be computed from the composition $N_A{}^O{}_B$ by the expression

$$f_O = 0.232 = \frac{BM_O}{BM_O + AM_N}$$
 (5)

The term "B" is uniquely defined by assuming 100 as the denominator. A similar calculation for nitrogen gives the result

$$N_A^O_B = N_{5.48}^O_{1.45}$$
 (6)

The composition of the product constituents can now be obtained from the reaction

$$(O/F) N_A O_B + C_X H_Y \rightarrow XCO_2 + (Y/2) H_2 O$$

+ $\{(B/2) O/F - X - Y/4\} O_2 + (A/2) (O/F) N_2.$ (7)

If it is now assumed that a unit mass of fuel is being consumed, then the mass of the exhaust products, $W_{\bf i}$, can be written from the above equation, i.e.,

$$W_{CO_2} = \frac{X(M_C + 2M_o)}{XM_C + YM_H}, \qquad (8)$$

$$W_{H_2O} = \frac{Y(2M_H + M_O)}{2(XM_C + YM_H)},$$
 (9)

$$W_{O_2} = \left\{ \frac{B(O/F) - 2X - Y/2}{XM_C + YM_H} \right\} M_O$$
 (10)

$$W_{N_2} = \frac{A(O/F)M_N}{XM_C + YM_H} . (11)$$

For unit mass of fuel, a mass of O/F units of air is assumed to be consumed so that a total of (1 + O/F) units is involved in the reaction. The mass fraction of each product specie, α_i , is then given by simply dividing the exhaust product constituent mass by the total mass. Thus

$$\alpha_{i} = \frac{W_{i}}{\Sigma W_{i}} = \frac{W_{i}}{1 + O/F} , \qquad (12)$$

so that the mass fraction of CO_2 , for example, contained in the exhaust products after combustion is given by

$$\alpha_{\text{CO}_2} = \frac{X(\text{M}_{\text{C}} + 2\text{M}_{\text{O}})}{(X\text{M}_{\text{C}} + Y\text{M}_{\text{II}})(1 + \text{C/F})} . \tag{13}$$

Since the mole fraction of the combustion products is also of concern, particularly if concentrations are expressed in partial pressures, then it will be useful to consider the relationship between mass fraction, $\alpha_{\bf i}$, and mole fraction, $\beta_{\bf i}$. For an ideal gas mixture in thermal equilibrium, the total pressure can be written as ${\bf P}_{\bf T}\, {\bf v}\eta_{\bf T}$, where $\eta_{\bf T}$ is the total number of moles and understood to be the weight of the gas divided by the mean molecular weight. If the total pressure of the gaseous misture is now taken to be the sum of the partial pressures present in the mixture, then for each constituent the partial pressure is ${\bf P}_{\bf i}\, {\bf v}\, \eta_{\bf i}$. Thus

$$P_{i} = P_{T}(\eta_{i}/\eta_{T}) = P_{T}\beta_{i} , \qquad (14)$$

or

$$P_{i} = P_{T} \left(\frac{W_{i}}{M_{i}} \frac{M_{T}}{W_{T}} \right) = P_{T} \alpha_{i} \frac{M_{T}}{M_{i}} . \tag{15}$$

Equating these two equations yields the desired relationship, namely

$$\beta_{i} = \alpha_{i} \frac{M_{T}}{M_{i}} , \qquad (16)$$

where \mathbf{M}_{T} is the average molecular weight of the gaseous mixture which is easily shown to be

$$M_{T} = \frac{1}{\Sigma \alpha_{i}/M_{i}} , \qquad (17)$$

where the sum extends over the number of gases present in the mixture. Thus for any specie within the mixture, the relation between the mass fraction and mole fraction is

$$\beta_{i} = \frac{\alpha_{i}}{M_{i}} \frac{1}{\Sigma \alpha_{i}/M_{i}} \qquad (18)$$

Substitution of previously defined quantities into the above expression yields

$$\beta_{\text{CO}_2} = \frac{4X}{Y + 2(O/F)(A + B)}$$
, (19)

$$\beta_{\text{H}_2\text{O}} = \frac{2\text{Y}}{\text{Y} + 2(\text{O/F})(\text{A} + \text{B})} ,$$
(20)

$$\beta_{N_2} = \frac{2A (O/F)}{Y + 2 (O/F) (A + B)}$$
, (21)

$$\beta_{O_2} = \frac{2B(O/F) - 4X - Y}{Y + 2(O/F)(A + B)}$$
 (22)

The results of the preceding discussion can be illustrated by considering a specific example. The common hydrocarbon fuel CH_2 may be considered which has a C:H ratio of 5.96 and consists of 14.4 percent hydrogen and 85.6 percent carbon. Normalizing the molecular weight to a value of 100 gives a chemical formula of $C_{7.13}H_{14.3}$. The mass of oxygen required for complete combustion of a unit mass of fuel is given by equation (3),

$$\frac{\text{Mass oxygen}}{\text{Mass fuel}} = \left(\frac{14.26 + 7.15}{100}\right) 16.0 = 3.43$$

The mass of air required for the combustion process is given by equation (4) and obtained by dividing the above number by 0. 232:

$$\frac{\text{Mass air}}{\text{Mass fuel}} = \frac{3.43}{0.232} = 14.8$$

Using an excess air factor of four then gives an oxidizer to fuel ratio of 59.2. Since this occurs as a parameter in determining the concentration of the product constituents, an O/F ratio of 60 will be used. The mass fraction of each of the product species is then given by equation (12). Substituting into this set of equations yields the following:

Product	Mass Percent
CO ₂	5.14
H_2O	2. 11
O_2	17. 20
N_2	75. 51

Equation (17) can then be used to compute the average molecular weight of the product gas mixture. This yields $M_T = 28.85$. Equations (16) or (19) through (22) then give:

Product	Mole Percent
CO ₂	3.37
H ₂ O	3.38
O_2	15. 51
N_2	77.74

Finally, it will be pointed out that the CO_2 concentration present in the exhaust products as computed above is approximately 100 times the normal atmospheric concentration of CO_2 . The mole percent or percent by volume of the constituents, when expressed as a fraction, also gives the partial pressure of the specie when the total pressure of the gaseous mixture is one atmosphere [equation (14)]. Figure 2 shows the mole percent of CO_2 contained in the exhaust products as a function of C:H with air to fuel ratio expressed as a parameter.

FIGURE 2. MOLE PERCENT OF ${\rm CO_2}$ CONTAINED IN EXHAUST PRODUCTS AS A FUNCTION OF CARBON TO HYDROGEN FUEL WEIGHT RATIO WITH OXIDIZER TO FUEL RATIO AS A PARAMETER

Section III. FLOW FIELD

The flow field or plume model must be capable of generating the temperature and specie concentration within the exhaust plume as a function of the initial values at the tailpipe exit plane and the ambient conditions. Figure 3 depicts a typical jet plume along with the objective of the plume or flow field model. An axisymmetric coordinate system is used to define any point within the plume. The coordinate X measures the downstream position from the exit plane of the nozzle or tail pipe and the coordinate R measures the radial position or distance normal to the symmetry axis within the plume. The plume is divided into two regions called the core and developed or mixing regions. The core of the plume is a region of constant velocity and thermodynamic properties, whereas the developed portion of the plume is that region where the plume possesses property gradients in both the axial and radial directions. This model is a finite difference flow field program which takes the conditions at the exit nozzle; velocity, pressure, temperature, specie or constituent concentration, nozzle size, and ambient or free stream conditions, and then computes the temperature and specie concentration throughout the plume.

OBJECTIVE: TO DETERMINE THE PLUME SPREADING CHARACTERISTICS, IN PARTICULAR THE AXIAL AND RADIAL TEMPERATURE - COMPOSITION DECAY RELATIONSHIPS FROM A KNOWLEDGE OF THE GEOMETRY AND EXIT CONDITIONS OF THE NOZZLE.

FIGURE 3. PLUME MODEL AND OBJECTIVE

The primary problem is to consider the mixing of two streams which are taken to be parallel but which possess different velocities, temperatures, and chemical compositions. Only the basic features of the physical problem will be mentioned in this limited discussion. These features can be outlined by considering a fully expanded axisymmetric jet exhausting into a uniform unbounded parallel stream. This is shown in Figure 4 where it is assumed that the pressures of the two streams are the same. The transport mechanisms that take place between the two streams include the transfer of momentum, the conduction of heat, and the diffusion of species causing the two streams to mix. In the region downstream of the jet exit plane, three distinct regions exist. In regions I and II, the two streams retain their original properties. Region III contains a mixture of the two streams resulting in nonuniform temperature, velocity, and specie concentration profiles. The mixing process tends to reduce the difference. in the properties of the two streams. The flow itself can be either laminar or turbulent, and the analysis of either can be accomplished by considering only changes in the mathematical description of the expressions for the transport coefficients.

FIGURE 4. DISTINCT PLUME FEATURES

For the systems under consideration, both the pressure and temperature are relatively low. This results in the reaction time being much longer than

the flow time so that mixing occurs before any reaction takes place [6]. This frozen type flow can be analytically described by utilizing appropriate transport coefficients, an equation of state, expressions describing the temperature dependence of the species specific heat and enthalpy, and the conservation equations for continuity, energy, momentum and species. A lack of basic knowledge concerning the turbulent transport properties forces one to rely heavily on experimental data for the eddy viscosity, eddy conductivity (Prandtl number) and diffusion coefficient (Lewis number). The most difficult problem was the adoption of a satisfactory eddy viscosity model to use in the basic numerical program. A considerable amount of effort was expended to achieve a satisfactory viscosity model for incorporation into the flow program.

Typical results from the program are shown in Figures 5 through 9. Figure 5 shows the axial values of the temperature and velocity decay for a particular jet engine compared with the manufacturer's data. This is for a compressible axially symmetric free turbulent jet exhausting into quiescent air at sea level conditions. Results for an inflight aircraft are shown in Figures 6 through 9. Figure 6 shows the decay of the temperature and CO₂ concentration along the symmetry axis. This aircraft has a turbojet engine and is assumed to be flying at sea level conditions with a speed of 280 meters per second. The top curve is a normalized plot of how the temperature varies with downstream distance along the symmetry axis. The ordinate is the ratio of the axial temperature to the temperature at the tailpipe exit. At a downstream distance of 35 feet the temperature has decayed by a factor of approximately 2.5. The dotted line shows the ambient temperature ratio and at 35 feet downstream the axial temperature is 25 to 30 percent above ambient temperature. The lower curve in Figure 6 shows a normalized plot of how the CO₂ concentration varies with downstream distance along the symmetry axis. The ordinate is the ratio of the CO₂ concentration along the symmetry axis to the concentration of the tailpipe exit. This represents a concentration which is 105 times the atmospheric CO₂ concentration (0.33 percent by volume). At a distance of 35 feet downstream the concentration has decayed to within 10 to 15 percent of the ambient value. Figures 7 and 8 show the radial distribution of the temperature and CO₂ concentration at selected axial positions. These clearly depict the diminishing core and appearance of the mixing region as a function of downstream distance. The ordinate in both plots is the ratio of the plume property to the free stream property. Figure 9 shows particular isotherms and the core region (shaded) for the same plume.

^{*}This basic program was supplied to the author by Dr. A. Ferri and Dr. P. Baronti of Advanced Technology Laboratories, Inc., 400 Jericho Turnpike, Jericho, New York 11753.

FIGURE 5. COMPARISON OF PLUME FLOW FIELD ANALYTICAL MODEL WITH MANUFACTURER'S DATA FOR A PARTICULAR JET ENGINE

FIGURE 6. AXIAL DECAY OF TEMPERATURE AND CO₂ CONCENTRATION

FIGURE 7. RATIO OF PLUME TO AMBIENT TEMPERATURE VERSUS RADIAL POSITION WITH DOWNSTREAM POSITION AS A PARAMETER

FIGURE 8. RATIO OF PLUME TO AMBIENT ${\rm CO_2}$ CONCENTRATION VERSUS RADIAL POSITION WITH DOWNSTREAM POSITION AS A PARAMETER

RADIAL DISTANCE (ft)

The Advanced Technology Laboratories generalized frozen mixing program [6] is written in Fortran IV and can be used on any large scale computing system. The input instructions, a listing of the program, a typical set of input data and a sample of the subsequent output are included in the appendix.

Section IV. RADIATION CALCULATIONS

After the flow field calculations have been made for a particular aircraft, the radiation calculations may be started. The mathematical details and description of the radiation model have previously been reported on [1]. Figure 10 shows the geometry which is used for making the radiation calculations. The plume is depicted simply as a truncated ice cream cone. The outer edge of the plume is defined by the isotherm $T/T_{\infty} = 1.05$. This was found necessary, particularly for a jet exhausting into quiescent air, because of the slow exponential of the plume width in the radial direction.

A direction is then chosen in which it is desired to make the radiation calculations. This direction is indicated by α and called the aspect angle. A plane is then set up to cut the plume in this direction. The aspect angle is the angle between the symmetry axis and the direction that is chosen to make the radiation calculations. Zero degrees is the direction indicated by looking downstream along symmetry axis, 90 degrees is looking normal to the symmetry axis, and 180 degrees is looking upstream along the symmetry axis. Within this plane, various parallel lines of sight are constructed for actually making the radiation calculations. The coordinate Z_0 measures the distance of the line of sight above a line in the plane which intersects the symmetry axis. The distance measured along a particular line of sight is indicated as ℓ . The $\ell=0$ point is where the line of sight first intersects the plume surface The coordinate X_0 measures the downstream position where the calculation is being made and R_0 is the radius of the plume at this point.

Next the coordinates $(X,\,R)$ are computed as a function of ℓ , $\,Z_0,\,\,\alpha,\,\,X_0$ and $\,R_0$ along the line of sight.

$$R = \left\{ Z_0^2 + \left[f \sin \alpha - \sqrt{R_0^2 - Z_0^2} \right]^2 \right\}^{1/2} ,$$

$$X = X_0 + f \cos \alpha .$$

The increment $\Delta \ell$ which divides the plume thickness into small segments is automatically calculated by the computer. The flow field data have been stored in the computer previous to calculating the coordinates (X,R) along the line of sight. A two-dimensional interpolation scheme is then used to calculate the plume properties along the line of sight. There is now a dimensional line segment, the length of which represents the plume thickness, with the temperature and concentration of the radiating specie specified along the line. The molecular band parameters are now computed at each specified point along the line segment. The emission calculations can now be made.

FIGURE 10. GEOMETRY FOR RADIATION CALCULATIONS

It is not an easy task to calculate accurately the radiation emitted from a homogeneous gas. The problem is obviously more complicated when dealing with an inhomogeneous gas. A modified form of the statistical band model has been chosen for making the emissivity calculations. For the inhomogeneous calculations this was further modified by using a method similar to the Curtis-Godson method. This method takes inhomogeneous gas which has a certain transmissivity and replaces it with a homogeneous gas which has the same transmissivity.

In this discussion only the results of the method will be outlined. The radiating band structure exhibited by the hot plume exhaust gases is actually composed of many closely spaced or overlapping spectral lines. In general, to calculated the emissivity of transmissivity of a gas, three parameters must be known for the absorbing or emitting molecule. The molecular band parameters are dependent on spectral location as well as the state of the gas. These three parameters are denoted as S, d, and γ where S is the average intensity of a spectral line, d is the spacing between lines, and γ is the line half-width. For the inhomogeneous calculations, these parameters are combined in a particular manner and an equivalent set of parameters is computed. These equivalent parameters are denoted by μ and ν and shown below.

$$\nu = \int_{0}^{Y(\ell)} \frac{S[\lambda, T(\ell)]}{d^{2}[\lambda, T(\ell)]} \gamma[P_{e}, T(\ell)] dY(\ell) ,$$

$$\mu = \int_{0}^{Y(\ell)} \frac{S[\lambda, T(\ell)] dY(\ell)}{d[\lambda, T(\ell)]} .$$

These parameters are computed in terms of the basic band parameters and a quantity denoted as Y which is referred to as the reduced optical path or equivalent gas thickness. The reduced optical path is defined as

$$Y(\ell) = \int_{0}^{\ell} \frac{P_{CO_2}}{P_{e(\ell)}} d\ell ,$$

where ℓ represents the actual thickness of gas being considered, P_{CO_2} is the partial pressure of the absorbing gas, and P_e is the equivalent pressure. The equivalent pressure is defined by the relationship

$$P_e = P_t + b P_{CO_2}$$
,

where $\mathbf{P}_{\mathbf{t}}$ is the total pressure of the gaseous system, and b is a spectral broadening coefficient which depends on the overall gaseous composition.

The transmission of the plume along the chosen line of sight can now be computed as a function of plume thickness and spectral location λ :

$$\tau(\lambda,\ell) = \exp\left\{\frac{-2\nu}{\mu}\left(\sqrt{1+\frac{\mu^2}{\nu}}-1\right)\right\}$$

This calculation is necessary since the radiation emitted from the interior of the plume must be transmitted through a portion of the plume. At this point the computer has available at each spectral point of interest the transmission along the line of sight ℓ . The plume thickness is now divided into a number of small segments of thickness $\Delta \ell_i$ (Figure 11). Average plume properties are

assigned to each segment so that each segment can be considered as a homogeneous gas. The spectral emissivity is calculated for each homogeneous segment. This is computed from the equation

$$\epsilon_{i}(\lambda, \Delta \ell_{i}) = 1 - \exp \left\{ \frac{-2\gamma(\overline{P}_{e}, \overline{T})}{d(\lambda, \overline{T})} \, \overline{P}_{e} \left[\sqrt{\frac{1 + S(\lambda, \overline{T}) \, P_{CO_{2}}^{\Delta \ell_{i}}}{\gamma(\overline{P}_{e}, \overline{T}) \, \overline{P}_{e}}} - 1 \right] \right\}$$

where all the quantities on the right hand side of the equation have previously been defined. The radiation emitted from a particular segment is then obtained by multiplying the emissivity by Planck's black body spectral emission function. This is then multiplied by the transmission factor to obtain the radiation emitted from the surface of the plume by the segment $\Delta \ell_i$. The result is indicated by $I_i(\lambda,0)$ and given by the relationship

$$I_{i}(\lambda,0) = \frac{\epsilon_{i}^{C_{1}\lambda^{-5}\tau_{i}}}{\pi \left[\exp\left(C_{2}/\lambda T\right)-1\right]}$$

This is repeated for all segments along the line of sight, and the results are then summed to obtain the spectral radiation from this one point on the plume at the spectral point λ . This procedure is repeated for each spectral point to get the spectral distribution of radiation, again from this particular point on the plume, in the direction of α . The whole set of computations is now repeated for several points on the plume surface in order to obtain the spatial distribution or the total radiation emitted from the plume in the direction of the aspect angle α :

$$I(\lambda, \alpha, X_0, Z_0) = \sum_{i} I_{i} \left[W/(cm^2-ster-\mu m) \right]$$

FIGURE 11. EMISSION MODEL

Figure 12 shows a comparison of the results of the homogeneous and non-homogeneous calculations for a particular homogeneous gas. This represents the spectral emissivity of a slice of gas taken at the exit plane of a typical exhaust nozzle.

Results from the program are shown in Figure 13. This is for an inflight aircraft and for the same aircraft operating in a tied-down or static position. Both curves are for seal level conditions and each is for a 90-degree aspect angle. Again this is for a typical jet aircraft. The emitted radiation has been integraded over the surface of the plume so each curve gives the spectral distribution of the plume emission.

It is interesting to note that the radiation emitted from the aircraft in a static position is larger than that emitted from the inflight aircraft. The 280-meter per second curve has a peak value of 1770 watts per steradian-micrometer whereas the static curve reaches a peak of 2800 watts per steradian-micrometer. This is apparently due to the free stream air which cools and reduces the size of the plume. This is also indicated by considering the area under each curve which represents the total emitted radiation. These values are indicated by Figure 13, where it can be seen that the static value is approximately 30 percent less than the inflight value.

FIGURE 12. COMPARISON OF HOMOGENEOUS AND NON-HOMOGENEOUS CALCULATIONS

The absorption dips occurring in each curve are due to the cooler outer extremities of the plume absorbing the radiation from the hotter interior. This effect is more pronounced for the static curve since the plume is larger in size. The small peaks seen beyond 4.8 micrometers are due to a much weaker CO₂ band centered in this region.

Figure 14 shows data for the same inflight aircraft that was discussed in Figure 13. Again this is for a 90-degree aspect. The results are presented

FIGURE 13. TYPICAL TURBOJET PLUME SURFACE EMISSION AT 90-DEGREE ASPECT

in a different manner, in that the spatial distribution was not integrated over the whole surface of the plume but only over the radial coordinate and then integrated over the spectral region. The result gives the axial decay of the radiation or the radiation per unit length of plume. This permits the radiation centroid to be calculated which is also shown in Figure 14. The plume geometrical centroid is about 7 feet aft of the tailpipe for this particular aircraft.

FIGURE 14. AXIAL DECAY OF PLUME RADIATION FOR A TYPICAL TURBOJET

One of the major objectives of this effort is to be able to predict the radiant energy that is emitted from a jet aircraft and is available to a remote sensor. This implies that the signature must be propagated through the atmosphere which, in reality, acts as an attenuation filter. Therefore an atmospheric transmission model [3] has also been developed in order to determine the atmospheric modification to the emitted energy. It is a twocomponent model that was derived from the well-known experimental data of Taylor and Yates. Molecular absorption of H2O was considered along with other constituents of constant concentration such as CO2, N2O, CH4 and CO. The constituents of constant concentration were combined into a single species, XO2. The amount of XO2 was chosen to be 32 atm cm/km, which is the average concentration of CO2. Figure 15 shows a comparison of the transmission model with a set of independent measured transmission data. It can be seen that the computer model matches the measured data quite nicely. The broad absorption dip between 4.2 and 4.45 micrometers is due to CO2 absorption. The dip at 4.5 micrometers is due to N2O, and the fine structure is due primarily to H₂O.

FIGURE 15. COMPARISON OF ATMOSPHERIC TRANSMISSION MODEL WITH MEASURED DATA

Figure 16 shows a typical plume signature put through 1, 7, and 15 kilometers of atmosphere by using the previously described transmission model. This shows the importance of the wings or skirts of the emission band since the center of the band gets completely absorbed in relatively short path lengths.

A comparison of the results of the present model with measured data is shown in Figure 17. This is for a particular jet aircraft operating in a static position at 100-percent power. The aspect angle is 10 degrees and the measured data were recorded at 1 mile from the aircraft. The theoretical results were put through the above described atmospheric transmission model to obtain the signature shown in Figure 17.

FIGURE 16. REMOTE PLUME SPECTRAL SIGNATURE

FIGURE 17. COMPARISON OF MODEL WITH EXPERIMENTAL DATA

Section V. RADIATION COMPUTER PROGRAM

A copy of the computer program is shown in Table III. A typical set of input data is shown in Table IV. The first 72 data cards are standard input for each run. These cards alternately list the molecular CO_2 band parameters S/d and $S^{1/2}/d$ as a function of wave number and temperature. The first data record on each card gives the wave number and the remaining seven records list the band parameter at the given wave number as a function of temperature in increments of $300\,^{\circ}\mathrm{K}$ (for second data record, $T = 300\,^{\circ}\mathrm{K}$; for third, $T = 600\,^{\circ}\mathrm{K}$; for eighth, $T = 2100\,^{\circ}\mathrm{K}$).

The next two data cards are also standard input for each run and simply contain headings (RADIATION) for the output data headings.

The next two cards are used to document the date of the run and the description or title of the run. The first card contains the date (first 12 columns) and the second the title or name of the run (first 72 columns). The next card must contain two pieces of information according to the format (215). The first is the number of X-stations (NXS) that are desired in the calculations and the second is the number of radial or Z points (NZPEX) desired at each X station. (These numbers must be less than or equal to 60 and 8, respectively). The computer checks to insure that these limits are maintained. The coordinate X measures downstream position in centimeters, and Z is the coordinate normal to X, also measured in centimeters. The actual magnitude of these numbers and their spacing is determined by the flow field computation Again NXS and NZPEX count only the number of the points at which calculations are made. The set of flow field data is next read into the computer. This is denoted between statements 172 and 110 of the program listing. An axisymmetric coordinate system is used so that any plume property is defined by the coordinates X and R. Data from the flow field calculations are written on tape at specific X or downstream locations. The number of radial points at each X position is denoted (NRP) and each radial point defined by R(I). At each downstream position where a radiation calculation is desired, the temperature T(I, J) (I denotes the number of the downstream position, J denotes the number of the radial position) in degrees-Kelvin, the radial position R(I, J) in centimeters, and the partial pressure of CO₂ (PCO₂) in atmosphere is written on tape. The number of radial points at any given X position must be less than or equal to 25. It is assumed that the total pressure anywhere in the plume is 1 atmosphere. These quantities are not written or read according to a format but rather in binary notation.

Finally a card is read which contains two quantities, ALPHA and ISTOP according to the format (F10. 5, I5); ALPHA is the aspect angle in degrees and ISTOP is either 1, 2 or 3. A (1) will terminate the run after the calculations

TABLE III. RADIATION COMPUTER PROGRAM

		03/11/70
	TEST - EFN SCURCE STATEMENT - IFNIST -	
c	TRACY JACKSON 7/24/68	
C	CO2 4.3 MICRCN BAND PLUME SPECTRAL RADIATION PROGRAM	
	CIMENSION X16C)-R160-251-T16C-251-FCC2(60-25)-SUC(36-7)-SOD2(36	.7)
_	DIMENSION WAVNC(36).MAVLH(36).TT(7).TSPRAD(36)	
<u>``</u>	READ BAND PARAMETERS FOR COZ EMISSIVITY CALCULATIONS	
<u>c</u>		·
	REMINU 10	1
	CO 1 CO 1=1.36	
	READ(5,100C) hAVND(1),(SCD(1,J),J=1,7) READ(5,1000) hAVND(1),(SCD2(1,J),J=1,7)	4
10	0 mAVLH(1)=10CCC./MAVNU(1)	
	O FORMAT (F7.1.7E9.2)	
•	(X) 1C1 J=1.7	
	TJ=J TT(J)=300•+TJ	
	00 1C1 [=1.36	
10) L SHU2([,J)=S0D2([,J)*S0D2([,J)	
-	CIMENSIUM DATE(2).TITLE:12).HEACNC(18)	
	READ(5.1051)(HEADNG(J).J=1.18)	33
10.	1 FURMAT(12A6/6A6) READ(5,1050) CATE(1),DATE(2),(T17LE(J),J=1,12)	
105	50 FURMAT(2A6/12A6)	40
	mRITE(6.110C) DATE(1).DATE(2).(TITLE(1).1=1.12)	47
110	O FURMATITHE 4CX.52HCU2 4.3 MICRUN EARC PLUME SPECTRAL RACIATION	PRO
	1GRAM/1HG+62X+2A6/1HC+3CX+12A6) ,	• •
ii i	MR ITE(6.1101) 1 FORMAT(ING.41HALL FLUME COCRDINATES ARE MEASURED IN CM.)	54
	WR IT F(6.1102)	55
110	2' FURMAT (1HO. 17-KAVENUMBER-(1/CM))	
	wRITE(6.1103)	56
110	33 FORMAT(IHO, 2GHNAVELENGTH-(MICRGNS)) WRITE(6,1104)	
110	4 FORMAT (1HC. 41HRADIATION-(WAITS/SC.CMMICRON-STERADIAN))	
.ç	NX S=NUMBER X STATIONS	*
<u>C</u> :	NTPEXENUMBER Z PCINIS AT EACH X STATIGN	
C	READ(5.1001) AX3.NZPEX	58
Ĭo ĉ	31 FURMAT(215)	
	IF (NXS.GT.AC) GU TC 17C	
	IF (NZPEX.GT.E) GC TC 171	
	GI) TO 172 70 MF ITE(6:112C)	68
	CC FURMATI 1H1. 4GH NUMBER CF X-STATICAS MUST BE 60 CR LESS)	On.
~~~~	ST.OP	
13	71 WRITE(6.1121)	69
11 2	21 FORMAT (1H1. 36FNUMBER: OF Z-PCINTS PUST BE 8 CR LESS)	
ď	STCP	
Č	READ INPUT CATA TAPE FROM PLUME FICH FIELD PROGRAM	
C	NKP=NUMBER OF RADIAL POINTS	
<u>C</u>	•	
17	72 CONTINUE READ(1C) (TITLE(I) +1=1+12)	70
-	KEAD(10) NORUN	77
	00 102 I=1.NXS	"
	READULED XULLANAP	. 81
	REAM(10)(T(1.J).R(1.J).PCM2(1.J).J=1.NkP)	
	IF(NPP.LT.25) GU TC 110 GU TC 102	
	00 10 102 10 NKP1=NRP+1	
•	Ct 111 WW-H2C1.26	

### TABLE III. RADIATION COMPUTER PROGRAM (Continued)

TEST - SEN SCURCE STATEMENT - IFA(S) -

A STATE OF THE STA

```
R(1.KK)=R(1.NRP)
        T( 1. KK )=T( 1. NRP)
  111 PC1.2(1.KK)=PCC2(1.KPP)
  IC2 CINTINGE
IPAGE=G
        ALPHA=ASPECT ANGLE IN DEGREES(O CEG=ACSE=ON)

15 TOP=1...LL 1ERMINATE PROGRAM AFTER SINGLE ALPHA CALCULATION
15 TOP=2.RETURNS TO THIS POINT FOR ANOTHER ALFHA
15 TOP=2.RETURNS TO STMT 173 TO REAC NEW SET FLOW FIELD DATA
 1C3 = AD (5.101C1ALPHA.ISTOP
1010 FORM AT (F10.5.15)
ALF=ALPHA/57.29578C
                                                                                                                             11C
                                                                                                                             112
        CC =C CS (ALP)
        SC = STY (ALP)
                                                                                                                             113
        P1=3.1415926
  D3 167 L=1.36
160 TSPRAD(L)=0.
        NX SM 1=NXS-1
IF (ALPHA.EQ.O.C.CR.ALPHA.EQ.LBO.C) NXSM1=1
        C) 1C6 1=1.NXSM1

IXC=1

RD=F (IXD.25)

XU=X(IXD1+.G1

IF (ALPHA-FG.1EC.C) XC-X(AXS)
         LPEX =NZPEX
        BELZ =RGZZPEX
BB 602 M=1.NZPEX
     · _ ZN =14
         Z)=DEL Z*(ZM-1.)
         IF (ALPHA.EU.C.G) RC=2.*R(1:25)+(ZM-1:)*(R(NXS.25)-2.*R(1.25))/ZPEX
IF (ALPHA.EU.1E0.C) RG=(ZM-1:)*(H(NXS.25))/ ZPEX
CALCULATE CCCHOINATES X.R ALLNG LINE-CE-SIGHT AS FUNCTION OF ITS
        DIMENSION CRITODI. CXTTCCI.CLTTOCI
         IF (ALPHA. EQ.C.C.CR. ALPHA. EC. 180.C) DELL=X(AXS)/98.
        XL =0.
10 204 J=1.100
        APR=XL +SC-SCRT(RC*RC-ZO+ZO)
CP(N)=SCRT(ZC+ZO+APR*APR)
CA(N)=XC+XL+CC
                                                                                                                             146
                                                                                                                             145
      · CL (N)=XL
        IF(CX(N).LT.C.) GU TO 2C4
IF(CX(N).GT.X(NXS)) GU TC 2C4
IF(ALPPA.EC.0.0.0.GR.ALPHA.EC.180.C) GC TU 203
        CO ZCI K=1, NXS____
  IF (C X(N), LE, X(K)) GC TC 202
201 CUNT INUE
   202 IFICRINI.GT.RIKI.2511 GC TC 264
  203 XL=XL+DELL
        DELL TEO SMALL.INCREASE AS FELLESS
        Cett =DELI +DEEL /2.
  G(- TC 200
204 [F(N+LT+50)] GC TC 205
G1 TC 299
```

### TABLE III. RADIATION COMPUTER PROGRAM (Continued)

		TEST - EHI. SCURCE STATEMENT - IFN(S) -
CCC		DELL TCG LARGE DECREASE AS FOLICES
c	2 C 5	CELL =CL(N)/75.
C		PLLME THICKNESS NEGLIGIBLE AT THIS PCINT. MOVE ON TO NEXT POINT AFTER SETTING ALL SPECTHAL RADIATION VALUES EQUAL TO ZERO
С		IF (UELL.LE.C.CC5) GO TC 510
C		
000	** **	LALCULATE PRESSURE AND TEMPERATURE ALONG LINE-OF-SIGHT AT EACH X-R
	299	CIMENSION CT(100).CP(100) D) 300 J=1.N
		CO 3C1 L=1. NXS N'4=L IF(CX(J).LE.X(L)) GC TC 302
	3 <u>01</u> 302	CONTINUE DD 3C3 L=1.25
	303	MM=L IF (UR(J).LE.K(AN.L)) GC TO 304 CONTINUE
		Ck 1=CR (J)-R (NN-1 of P-1) Oh 2=R(NN-1 of M)-R(JN-1 of M-1)
		$\begin{array}{l} 0 R 3 = CR \{J\} - K \{NN_0 MM - 1\} \\ C R \{NN_0 MM\} - R\{NN_0 MM - 1\} \\ C R \{NN_0 MM\} - R\{NN_0 MM - 1\} \\ \end{array}$
		Cx2=x(NN)-x(NN-1) TX1=T(NN-1, MM-1)+(T(NN-1, MM)-T(NN-1, MM-1))+DH1/UR2
•	··-·	TX2=T(Nn, MM-1)+(T(NN, MM)-T(NN, MM-1))+DR3/OR4 CT(J)=TX1+(TX2-TX1)+DX1/OX2 PX1=PCU2(NN-1, MM-1)+(PCC2(NN-1, MM)-PCC2(NN-1, MM-1))+DR1/DR2
_		PX 2=PG()2( NN, MM-1)+ (PCC2( NN, MM) - FCC2( NN, MM-1)) *DK3/()R4 CP (J)=PX1+(PX2-PX1)*GX1/OX2
c	3 C O	IF (CT(J).LT.3CC.) CT(J)=30C. IF (CP(J).LT.C.G0033) CP(J)=G.00C33
	***	********************
		CALCULATE AT FACH SPECTRAL PCINT CONSIDERED THE BAND PARAMETERS AT FACH X+R ALUNG LINE-CF-SIGHT
•		CIMENSION CSOC(36, 130).CSOD2(36,1Cc) DD 4C1 K=1.N
		IRT=CT(K)/3CG. IF(IRT-LT-1) IRT=1 CT1=(CT(K)-TT(IRT))/3OG.
•	4.6.1	UD 4C1 L=1.36 CSCU(L,K)=SCD(L,IRT)+UT1*(SGU(L,IRT+1)-SGU(L,IRT)) CSGD2(L,K)=SUC2(L,IRT)+UT1*(SGU2(L,IRT+1)-SCU2(L,IRT))
С	701	COUNTY FACT - 2002/16 19 19 19 19 19 19 19 19 19 19 19 19 19
C	* * *	
CCC		CALCULATE TRANSMISSION AT EACH SPECTRAL POINT FROM EDGE OF PLUME TO X+K ALUNG LINE-CF-SIGHT
	· 	DIMENSION Y(100) TRNS(36.100) Y(100) TRNS(36.100)
	5C1	C() 5C1 K=2.N Y(K)=Y(K-1)+0.5+(CL(K)-CL(K-1))+(CP(K)+CP(K-1)) DC 5C2 K=1.36 TRAS(K.1)=1.C
	-	P=0. C=C.

### TABLE III. RADIATION COMPUTER PROGRAM (Continued)

TEST - CEN SCURCE STATEMENT - TENIS) -	70
Bit 502 J=2. A	<del></del>
Cr =0 +5*(Y(J)-Y(J-1))	
PV T= C. 54 (CT (J )+CT (J-1))	
GAM= C. U /5+SURT(3C). /PVT)	294
P=P+CY*(CSUU(K+J-1)+CS(C(K+J))	
C=C+CY+GAM+(C SG)2(K+J-1)+C SC)2(K+J))	295
An G=-2.*(u/P)*(-1.*SQRT(1.*P*P/C))	243
502 TKNS (K+J) =t XP (ARG)	
C 48 68 60 8 2 6 6 2 6 8 6 8 6 8 8 8 8 8 8 8 8 8 8	
C CALCULATE TUTAL SPECTRAL LMISSION/LNIT-ARFA FROM THE POINT	
C XL. & C. 20 IN THE DIRECTION OF ALFRA	301
01MEASICH SPRAD(36-11) + 28(9) + ASTEFS(9) + OFLTAL(4)	
INCEX=0	
GO 10 656	
610 INGE x=100	
67C 73 (M)=7C	
THE CALPHALEG.C.S.OR.ALPHALEG.180.C) ZREMIRC NSTEPS (MI=N	
CFLTAL (M) = DELL	
MX =M	
00 663 K=1.36	
6CC SPRAC(K.M)=C.	
IF (TAUEX.GT5C) GU TC GC2	
ħ* 1= N+ 1	
DU 601 K=1. AM1	
PV 1= (CT(K)+CT(K+1))*0.5	
XX = 1 4 3 e o . /P v T	
Gi 6C1 L=1.36	
LOSVIY-(TRAS(L.K)-TPAS(L.K+1))/TRAS(L.K)	
Pyr L = WA VLH(L)	324 125
Price MAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.)	334 335
Prl=mAVLH(L) PLKF AD=11906.*(PwL**(-5))/(EXP(XX/FWL)-1.) SP340(L.M)=PLKKAD*EMSVTY*TRNS(L.K)+SPRAD(L.M)	334 335
PHL=MAVLH(L)  PLKE AD=11906.*(PML**(-5))/(EXP(XX/FHL)-1.)  SPRAD(L.M)=PLKRAD*EMSVTY*TRNS(L.M)+SPRAD(L.M)  6C1 CUNTINUE	334 335
Prl=mAVLH(L) PLKF AD=11906.*(PwL**(-5))/(EXP(XX/FWL)-1.) SP340(L.M)=PLKKAD*EMSVTY*TRNS(L.K)+SPRAD(L.M)	334 335
PHL=MAVLH(L)  PLKE AD=11906.*(PML**(-5))/(EXP(XX/FHL)-1.)  SPRAD(L.M)=PLKRAD*EMSVTY*TRNS(L.K)+SPRAD(L.M)  6C1 CUNTINUE  6C2 CONTINUE	334 335
PHL=MAVLH(L) PLKF AD=11906.*(PhL**(-5))/(EXP(XX/FHL)-1.) SPRAD(L.E.)=PLKRAD*EMSVTY*TRNS(L.E.)+SPRAD(L.M) 6C1 CUNTINUE 6C2 CONTINUE C C C********************************	334 335
PyL=bAVLH(L) PLKE AD=11906.*(PbL**(-5))/(EXP(**/FHL)-1.) SPRAD(L,N)=PLKEAD*EMSYTY*TENS(L,K)+SPRAD(L,M) 6C1 CUNTINUE 6C2 CONTINUE C C C C C C C C C C C C C C C C C C C	334 335
PHL=WAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPRAD(L,N)=PLKEAD*EMSVTY*TENS(L,K)+SPRAD(L,M)  6C1 CUATINUE 6C2 COATINUE C C C********************************	334 335
PHL=WAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPACE(L,E)=PLKEAD*EMSVTY*TENS(L,E)+SPRAD(L.M) 6C1 CUATINUE 6C2 COATINUE C C C********************************	334 335
PHL=WAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPACIL.E.)=PLKEAD*EMSVTY*TENS(L.E.)+SPRAD(L.M) 6C1 CUATINUE 6C2 CONTINUE C C**********************************	334 335
PHL=WAVLH(L) PLKF AD=11906.*(PbL**(-5))/(EXP(XX/FHL)-1.) SPRAD(L,E)=PLKEAD*EMSVTY*TENS(L,E)+SPRAD(L,E)  6C1 CUNTINUE C C C********************************	334 335
PHE NAVEHIL PLANE AND ALTER PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME A	334 335
PHENAVEHIL) PLKE AD=11906.*(PhE**(-5))/(EXP(XX/FHL)-1.) SPRAD(L.M)=PLKEAD*EMSVTY*TENS(L.M)  6C1 CUATIVLE 6C2 COATIVLE C C***********************************	334 335
PHE NAVEHIL PLANE AND ALTER PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME AT ASPECT ANGLE ALPHA  PHE NAVEHIL PROPERTY OF THE PILME A	334 335
PHL=MAVLH(L) PLKE AD=11906.*(PhL**(-5))/(EXP(XX/FHL)-1.) SPACE(L,E)=PLKEAD*EMSVTY*TRAS(L,K)+SPRAD(L.M)  6C1 CUATINUE 6C2 COATINUE C C**********************************	334 335
PHE=MAVEH(E) PLKF AD=11906.*(PhE**(-5))/(EXP(XX/FHE)-1.) SPACE(L,E)=PLKKAD*EMSYTY*TRNS(L,K)+SPRAD(L,M)  6C1 CUNTINUE 6C2 CONTINUE C C C********************************	334 335
PHL=WAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPACE(L,E)=PLKEAD*EMSVTY*TERS(L,E)+SPRAD(L,M)  6C1 CUATIVLE 6C2 COATIVLE C C ##################################	334 335
Pyt=wAVLH(t) P( kk AD=119C6.*(Pwt**(-5))/(ExP(xx/Fwt)-1.) SPRAD(t,k)=PtkkAD*EMSVTY*TRNS(t,k)+SPRAD(t,k)  6C1 CUATINUE 6C2 COATINUE  C C*********************************	334 335
Pyt=wAVH(t) Ptk AD=11906.*(Pwt**(-5))/(ExP(xx/Fwt)-1.) SPRAD(t.,N)=PtkRAD*EMSYTY*TRNS(t.,k)+SPRAD(t.,M)  6C1 CUNTINUE 6C2 CONTINUE C C C********************************	334 335
Pyte=WAVEHIL) PI KK AD=119C6.*(PWL**(-5))/(EXP(XX/FWL)-1.) SPACEL.N)=PLKRAD*EMSVTY*TRNS(L.K)+SPRAD(L.M)  6C1 CUATINUE 6C2 COATINUE  C C*********************************	334 335
PHL=WAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FWL)-1.) SPACE(L,M)=PLKEAD*EMSVTY*TENS(L,K)+SPRAD(L,M)  6C1 CUATIVLE 6C2 COATIVLE C C**********************************	334 335
PHL=WAVEHIL) PLKE AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPACE(L.E)=PLKEAD*EMSVTY*TENS(L.K)+SPRAD(L.M)  6C1 CUATINUE 6C2 COATINUE  C C*********************************	334 335
PPL=WAVEHIL1 PLKF AD=11006.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPACIL.Fi)=PLKRAD*EMSYTY*TRAS(L.K)+SPRAU(L.M)  6C1 CUNTINUE 6C2 CONTINUE C C C********************************	334 335
P-L=WAVEHIL) PLKF AD=11006.*(PWL**(-5))/(EXP(XX/FHL)-1.) SPAC(L.F.)=PLKRAD*EMSYTY*TRAS(L.K)+SPRAU(L.M)  6C1 CUNTINUE 6C2 CONTINUE  C C*********************************	334 335
PPL=MAVLH(L) PLKK AD=11906.*(PML**(-5))/(EXP(XX/FHL)-1.) SPRO(L,K)=PLKKAO*EMSVTY*TRAS(L,K)+SPRAU(L,M)  6C1 CUNTINUE 6C2 CONTINUE  C C*********************************	
PPL=MAVLH(1) PLKK AD=11906.*(PML**(-5))/(EXP(XX/FHL)-1.) SPRO(1.M)=PLKKAD*EMSVTY*TRNS(1.K)+SPRAD(1.M)  6C1 CUNTINUE 6C2 CONTINUE C C C********************************	
Prite bavilie   Pikk an = 11 * Pikk	
PHL=WAVLHIL) PIKK AD=11906.*(PWL**(-5))/(EXP(XX/FHL)-1.) SP3COLL,ED=PLKKAD*EMSVTY*TRAS(L.K)+SPRAD(L.M)  6C1 CUATINUE 6C2 CGATINUE C C**********************************	

### TABLE III. RADIATION COMPUTER PROGRAM (Concluded)

TEST - EFA SCURGE STATEMENT - TEN(S) -	
1PKAD(L.M-1))/2. 7C7 00 7C9 L=1.36	
TCS SPRAC(L.MXP1) = SPRAD(L.MX+3)	and with the same age of the
C ************************************	
C WRITE DESIRED CUTPUT	
1PAGE=1PAGE+1 MR 1TE(6.1200) DATE(1).DATE(2).1FACE	417
1200 FORMAT(1H1.62x,2A6,3Cx,4HPAGE,13)	······································
HR ITE(6+1201)(TITLE(J) +J=1+12) HR ITE(6+1285) NCRUN	416 423
1285 FURMAT(1H0,60x,7HRLN NC=,14) 1201 FURMAT(1HC,30x,12A6)	
AB XX = N S TE P S ( 1 ) - 1 RO T 2 = A B XX + D E L TAL ( 1 )	
MRITF(6.1202) ALPHA.XO.ROT2 12C2 FORMAT(1HU.14H ASPECT ANGLE= .E1C.4.5x.20HDCWNSTRFAM PUSITIUH= .E10.	424
14.5x .16HPLUME THICKNESS=.F10.4)	
WRITE(0,150C)(NSTEPS(J),J=1,MX) 15CO FURMAT(1HO,7H STEPS=,6X,9112)	425
#RITE(E:1501)(DELTAL(J):J=1:MX) 15C1 FURMAT(IH :SH DELTA L=:7X:9E12:4)	<u>43C</u>
HR 1TE(6.1203) (ZH(J).J=1.MX) 1203 FORMAT(1H .17H PADIAL PCSITION=.E11.4.8E12.4)	435
MX 2= 2*MXP1 WR 1TE(0,1204) (HE4DNG(J),J=1,MX2)	440
12 C4 FJKYAT (1HC.17H WAYNMBR WAYLNGH,2X.18A6)	
D) 12J5 J=1,36 12C5 mR [TE(6,12O6) MAYNC(J) MAYLH(J) (SFRAD(J,K) K=1, MXP1)	447
12 G6 FORMAT(IH +F7-C+F9-3+9E12-4) DI MENSIUN RUNITL(6C)	
RUNITL(I)=0. CU 1250 J=2.36	
12 50 RUNITL(I)=RENITL(I)+(WAVLH(J-1)-WAVLH(J))+U.5*(SPRAD(J-1, MXP1)+ 15PRAD(J-MXP1))	
mR IT E(6.1251) RUNI TL(1)	465
1251 FJRMAT(1HO.46HRADIATION/UNIT LENGTH OF PLUPF(WATTS/STER-CM)=.E11.4	
#RITE16.12J7) 12C7 FORMAT(1HO.2CX.94HNCTE-THE LAST MACIATION COLUMN ABOVE GIVES THE S	467
1PECTRAL RADIATION/UNIT LENGTH OF FLUMF SURFACE) 1C6 CUNTINGE	
IPAGE=IPAGE+1  MR ITF(6,120C) DATE(1), DATE(2), IFAGE	471
43 ITE(6.1201) (TITLE(J) .J=1.12)	472
ARITE(6.1208) ALPHA 12CB FIRMAT(1HG.14H ASPECT ANGLE=.F1C.4)	475
fith AD=0. 	
7C9 T:)Tr A:)=TUTXAD+(hAVLH(L-1)-hAVLH(L))+(TSPRAC(L-1)+(TSPRAC(L))) TUTKAD=TUTKAD/2.	
WRITE(6.1209) 1209 FURMAT(1HG.37F WAVNMUR WAVLAGH SPECTRAL RACIATION)	490
wkITE(6:121C)(hAVNG(J).hAVLH(J).TSFFAD(J).J=1.36)	491
1210 FORMAT (1H + F7-C-F9-3-4X-E12-4) WRITE(6-1211) TOTRAD	5CC
CENTH=C. Du 1252 I=1.NXSM1	
1252 RUNITL(1)=RLNITL(1)*X(1)*SC*SC D) 1253 1=2,NXCH1	
12 53 CENTP=CENTR+(2(1)-X(1-1))*G.5*(RENITE(1-1)*RUNITE(1)) CENTR=CENTP/TGTKAD	
MR ITE(4.1254) CENTR 1254 FUHWAT(1HG.9HCENTROID=.E11.4)	520
1211 FORMATCHO. 24HTUTAL RADIATION CHITTED=.E10.4.11H WATTS/STER)	·
G) TC(107.103.172).ISTOP 1C7 REWIND 10	522
STCP ENG	

### TABLE IV. TYPICAL SET-INPUT DATA

```
2.60E-03 4.80E-04 3.40E-04 4.10E-06 8.70F-06 5.70E-03 2.60E-02 4.60E-02 1.33E-01 3.35E-01 7.90E-01 2.90E-00 8.90E-00 1.20E-02 1.20E-02 1.33E-01 3.35E-01 7.90E-01 2.90E-00 8.90E-00 1.20E-02 1.20E-02 1.50E-02 1.5
2050.
  2060.
 2070.
  2080.
  2080
 2040 •
2090 •
   2100.
  2100.
    2110.
  2110.
 2120
2120
   2130
   2130
   2140
  2140.
  2150
   2150.
   2160.
   2167.
    2170
     -150
   2190.
   2200.
     2216.
     2220.
      220.
     2236.
     2230
     2240
    224Q.
2250.
     2350 ..
     2260
   2260.
    2270..
2386...
     2250.
2250.
     22406
    2200
     2310
2310
      2320.
    2330.
     2330.
       2340 ..
      23500
       23766
       23:00
       23904
             49114
       24000
       7406. 4.
AMATION
 RATIATIO
        TYPICAL TURNOJET ATSCRAFT - SE LEVEL CONDITIONS - 900 DEG EGT STATIC
```

are finished for a particular ALPHA, a (2) will return the program to accept a new ALPHA and ISTOP, and a (3) returns the program to read a new set of flow field data. The input data sequence is summarized in Table V.

TABLE V. INPUT DATA SEQUENCE

Card No.	Column No.	Description	Format
1-72	1-7	*Wavenumber	F7.1
1-72/odd	8-70	*7-S/d values (300,600,,2100°K)	7E9. 2
1-72/even	8-70	*7-S ^{1/2} /d values (300,600,,2100°K)	7E9. 2
73-74	1-72	* Printout headings (RADIATION)	12A6/4A6
75	1-12	Date .	2A6
76	1-72	Title	12A6
77	1-5	Number X Stations	<b>I</b> 5
	6-10	Number Z points each X	15
78	1-10	Aspect Angle	F10.5
	11-15	ISTOP	15

^{*} Standard for all runs.

A typical set of output data from the program is shown in Table VI. The aspect angle is listed in degrees, the downstream position is given in centimeters, and the plume thickness at the downstream position (X) is also given in centimeters. At each downstream position, the thickness along the line of sight is divided in a number of segments to make the radiation calculations. The number of such segments or zones is denoted by STEPS and the size of each step is indicated by DELTAL in centimeters. These quantities are automatically calculated by the computer. The Z coordinate, previously described, gives the radial position at which the calculation is being made at a particular downstream location. This RADIAL POSITION is also given in centimeters.

The first two tabulated columns of data give the wave number  $(cm^{-1})$  and wavelength  $(\mu)$ . Next N radiation columns are listed, of which the first N-1 gives the radiation emitted from the plume surface in the direction of at the downstream location (X) and radial position (Z). This is given in watts per steradian-micrometer-cm². The last radiation column for which no radial position is indicated gives the spectral radiation per unit length of plume surface, i.e., the first N-1

### TABLE VI. TYPICAL OUTPUT DATA

t & 4.3 Michely Said Miller Saturat Abutanth And

a stuni countly in act attached in the

BAVENDYP 4-1, (C.P.)

BAVEL-NGTM-IMICADALA

TYPICZE TEABOJET ATHERAFF - SEA LEVEL CONDITIONS - 990 DEG EGT STATIC

RUN NU. 1

NSPECT ANCLE-0.9000E 02 DOWNSTREAP FCSITION-0.1236E 03 PLUME THICKNESS-0.144CE 03

RADIATICN/UNIT LENGTH OF PLUPEIWATTS/SIER-CHI» 0.1358E 01

NUTE-THE LAST RADIATION COLUMN ABOVE GIVES THE SPECTRAL RADIATION/LNIT LENGTH OF PLUME SURFACE

DELTA L. RACIAL POSITION- MAVAMBA MAVINGH 2050. 4.878	ISPECT ANGLE-0.90CCE 02 ITEPS FLTA L ACTIAL POSITION C. ACTIAL POSITION C. ACTIAL POSITION C. ACTIAL PROJESTION 2.50. 4.878 C.1092E-03.	0C#NSINEAP F 76 C-1000E C2 C-52C9E C2 RADIATION 0-8C85E-C5	0C#NSINE #P FCSITION#0.104CF 74 74 74 75 75 76 77 77 78 78 78 78 78 78 78 78 78 78 78	70 1000E 02 1563E 03 AGIATIUN 2075E-05	NO* 1 PLUME THICKNESS=0.75CCE 0.100F 02 0.100F 03 0.2684E 03 0.2605E C ABINTON RADIATION 0.1258E-05 0.8305E-07		75 0.56C0E 01 0.3126E C3 1 KADIATICN C.5744E-Co	RADIATICH 0.2326E-C2
	6.30176-04 0.54826-04 0.26256-04 0.10256-04 0.4236-05	0.2246 0.4276 0.4276 0.40426 0.40426 0.4376 0.43576 0.27446 0.27446	0.1130E-04 0.2146E-04 0.2021F-04 0.3021F-04 0.3074E-05 0.1091E-05	0.1125F-05 0.1125F-05 0.1125F-05 0.125F-05 0.125F-05 0.125F-05 0.125F-05 0.125F-05 0.473F-05 0.473F-06	0.35746-05 0.28046-05 0.28046-05 0.28346-06 0.28346-06	0.2401E-05 0.4815E-05 0.1856E-05 0.2431E-06 0.2431E-06	0.1444-05 0.1444-05 0.1246-05 0.1246-05 0.1950-06	0.6489E-02 0.1247E-01 0.1176-01 0.1176-01 0.1187E-02 0.1187E-02 0.1280E-03
	0.1386F-05 0.1386F-05 0.1386F-05 0.133F-06 0.138F-06 0.138F-06 0.138F-06 0.138F-06	0.22470E-CS 0.22470E-CS 0.22470E-CS 0.3634E-CS 0.3634E-CS 0.2634E-CS 0.2634E-CS	0.4997E-06 0.10997E-06 0.10997E-06 0.10996-05 0.3980E-05 0.3186-05	0.3934E-06 0.4128E-06 0.5567E-06 0.7691E-05 0.7798E-05 0.4130E-05	0.2204E-06 0.2304E-06 0.2304E-06 0.3046E-06 0.6504E-06 0.6526E-06 0.1362E-05	0.1406E-C6 0.1910E-C6 0.2545E-C6 0.3234E-C6 0.3234E-C6 0.3234E-C6 0.3234E-C6 0.3234E-C6	C. 9515E-C7 C. 10921E-C7 C. 10921E-C7 C. 1705E-C6 C. 1705E-C6 C. 1705E-C6 C. 1705E-C6 C. 1705E-C6 C. 1705E-C6 C. 1705E-C6 C6 1705E-C6 C7 1	0.6126E-03 0.7324E-03 0.7324E-03 0.742E-03 0.7738E-02 0.2793E-02 0.0613E-02 0.1837E-01
	C.1267E-C2 C.1267E-C2 C.1267E-C2 C.1267E-C2 C.1211E-C2 C.226E-C3 C.226E-C3		0.5025-03 0.3325-03 0.4036-03 0.4987-03 0.4987-03 0.3735-03	0.1090E-03 0.1865E-03 0.276E-03 0.276E-03 0.2796E-03 0.2520E-03	0.0285E-04 0.9071E-04 0.1125E-03 0.1424E-03 0.2224E-03 0.22332E-03	0.4177E-C4 0.6177E-C4 0.1011E-C3 0.1431E-C3 0.1835E-C3 0.2062E-C3	C. 1566-C3 C. 1876-C3 C. 1866-C3 C. 1866-C3 C. 1866-C3 C. 1876-C3 C. 1876-C3	
4.297 4.237 4.237 4.237 4.219	0.3150E-03 0.2763E-03 0.2580E-03 0.2761E-03 0.4667E-03	0.29286-03 0.26206-03 0.24696-03 0.25866-03 0.39126-03	0.2568E-03 0.2383E-03 0.2382E-03 0.2307E-03 0.2845E-03	0.2310E-03 0.2210E-03 0.2213#E-03 0.2116E-03 0.2267E-03	0.2169f-03 0.2097f-03 0.2040f-03 0.1998f-03 0.1987f-03	0.2069E-G3 0.2020E-C3 0.1972E-C3 0.1920E-C3 0.1822E-G3	0.1952E-C3 C.1957E-C3 C.1916E-C3 C.1857E-C3 O.1767E-C3	0.1627E 00 C.1528E 00 C.1470E 00 C.1476E 00 C.1758E 00

RADIATION/LMIT LENGTH OF PLUPEINATIS/STEM-CP). 0.6334E-31
ANTE-THE LAST RADIATION COLUMN ANCVE GIVES THE SPECTRAL RADIATION/LMIT LENGTH OF PLUMF SURFACE

TABLE VI. TYPICAL OUTPUT DATA (Concluded)

	TATIC
	TVPICAL TURBGIEF AIRCHAFF - SEA LEVEL CONDITIONS - 900_DEG_EGT_STATIC
	06 - SA
90	COMPITIC
6 MAR 70	LEYEL
	- S £ A
	ALPCHAFT
	TURBCAFF
	TVPICAL

4 1394	ASPECT MIGLE-0.9CCCE C2	CCF C2							
A VAMER	BA VL NGM	SPECTAAL HACTATION						,	1
2090.	4.476								
2000-	4.854	0.00616 01			,	į,			
.010	4.431								
2 C 80.	*0**	0.1784E C2							
2000	4.785								
2 100	4.762								
.0112	4.739	-							
2 120.	4.11.7	0.96946 01			•				
2130.	4.695								
2140	4.674	C. 9569E OI							
2150.	4.051	C. 1187E C2							
160.	4.430							,	
2170.	909.								
2 180.	4.547	0.44628 02				1			
2 190.	4.5.4	_							
2 200.								1	1 1
2210.	4.52%	0.4642E 03							
2 220.	4.505							1	•
2230.	***	_							
2 240.	****					•			
2 2 50.	***	_							
2 2 60.	4.425	C. 2705E 04						1	,
2270.	4.405	0.2799E 04							
2 2 8 0 .	4.385	_					•		
2 290.	+: # J	6.2298E OF							
2 300.	*: X:								
2310.	4.329	_							
320.	4.310	_					,		
2 330.	4.292	0.7772E 03							
340.	4.274	_						-	
2350	4.255								
360.	4.237	C. 7653E 03		!					
.025	4.219			!					
2340.	4.202							,	٠
390	4.104								
2400.	4.167	0.52126 03						•	1
343	TATION FM	TOTAL RACIATION FMITTEONG, 5777F OR NATIS/STER	S/STER						
				ì					
10010	CANTACIDS 0.21515 C3	ï							
1		;						•	

values of radiation have been integrated across the radial position coordinate. The last column therefore has units of watts per steradian-micrometer-cm. The next to the last line of printout gives the radiation per unit length of plume surface; i.e., the last column has been integrated over the spectral regime. As indicated, this has units of watts per steradian-cm.

After the spectral and spatial distributions have been computed for each downstream location at a particular aspect angle, the results are then integrated over the whole surface of the plume. The last output page for a given aspect angle contains this information as a function of both wave number and wavelength This is listed as SPECTRAL RADIATION and given in watts per steradian—micrometer. Next, a spectral integration is performed which gives the total radiation emitted in watts per steradian. Finally the centroid of radiation along the length of the plume is computed and listed in centimeters.

### REFERENCES

- Jackson, H. Tracy, Jr., A Model for the Spectral Emissivity of Carbon Dioxide in the 4.3 Micron Band, Report No. RE-TR-69-9, U. S. Army Missile Command, Redstone Arsenal, Alabama, April 1969.
- 2. Hyman, William D., and Dublin D. H., <u>A Computer Program for Infrared System Analysis</u>, Report No. RE-TM-68-5, U. S. Army Missile Command, Redstone Arsenal, Alabama, September 1968.
- 3. Hymar, William D., An Infrared Systems Analysis Program for the IBM 7094 Computer, Report No. RE-TR-69-4, U. S. Army Missile Command, Redstone Arsenal, Alabama, March 1969.
- Loh, Edwin D., An Empirical Model for Atmospheric Tranmission in the Mid-Infrared Spectral Region, RE-TR-70-4, U. S. Army Missile Command, Redstone Arsenal, Alabama, January 1970.
- 5. Ragozin, N. A., Jet Propulsion Fuels, translated from the Russian by William E. Jones, Pergamon Press, New York, 1961.
- Baronti, Paolo, Method of Analysis of Mixing Processes with Combustion, Report No. ATL TR No. 106, Advanced Technology Laboratories, Inc., 400 Jericho Turnpike, Jericho, New York, November 1967.
- 7. Gebbie, H. A., Harding, W. R., Hilsum, C., Pryce, A. W., and Roberts, V., Proc. Royal Soc. (London), A 206, 87, 1951.

### Appendix FLOW FIELD PROGRAM

This appendix outlines the flow field frozen mixing computer program which is used to provide the input data to the radiation program. A typical set of input-output data is shown, a description of the input data is given, and the computer program is listed. A brief description of the viscosity options is also included for completeness.

The viscosity option occurs on the second data card and is labelled ITURB by the computer, where ITURB = 0, 1, 2, 3, or 4. The statement ITURB = 0 indicates laminar flow and the viscosity is given by Sutherland's law. For ITURB = 1 or 2, the eddy viscosity is computed from the expressions

$$\mu = K_2 r_{1/2} \rho_0 U_0$$
 , (ITURB = 1)

$$\mu = K_2 r_{1/2} | \rho_0 U_0 - \rho_{\infty} U_{\infty} |$$
, (ITURB = 2)

where  $K_2$ , the turbulent viscosity coefficient, is taken to be 0.0285. The subscripts refer to jet center line and ambient conditions, and  $r_{1/2}$  is the value of R at  $\rho U = \frac{1}{2} (\rho_{\infty} U_{\infty} - \rho_{0} U_{0})$ . For ITURB = 3,  $r_{1/2} = |r_{0.99} - r_{0.50}|$ , where  $r_{0.50}$  is the value of R at  $U = \frac{1}{2} (U_{\infty} + U_{0})$  and  $r_{0.99}$  is the value of R at  $U = (0.01U_{\infty} + 0.99U_{0})$ . The viscosity is then given by the expression

$$\mu = K_2 r_{1/2} \rho_0 U_0$$
 . (ITURB = 3)

For the option ITURB = 4, the viscosity is computed from the expression

$$\mu = 10^{-4} + X(\rho_{\infty} U_{\infty} + P_0 U_0),$$
 (ITURB = 4)

where X is the downstream position. The latter option is utilized for jet aircraft plumes in the core region with this region being defined by the condition  $d^2U/dR^2\Big|_{R=0}$ . Outside the core model 3 is used for aircraft in flight and R=0

model 1 for static conditions. The program automatically selects the mode outlined above when the input data specifies option 4. Table A-I describes the input data sequence for the program. The thermodynamic data are obtained from NASA document SP-3001, pages 308-326. A typical set of input data is shown in Table A-II followed by the program itself in Table A-III. Table A-IV then shows a few pages of selected printout or output generated by the input data described in Table A-I. The initial page specifies the input data; the remaining output gives the properties as a function of downstream and radial position.

The only programmed error message occurs if the summation of the initial specie mass fractions (indicated by SIGMA) differ by more than 1 percent from unity.

The actual output from this program that is used in the radiation model is written on magnetic tape. The program first expands the number of radial points to 25 by defining the plume width to be that radial point where  $T/T_{\infty}=1.05$ . This width is then divided into 25 evenly spaced points and the properties determined at-each point by interpolation. Dimensions are converted from feet to centimeters, mass fraction to mole fraction or partial pressure, and temperature ratio to absolute temperature. The resulting tape is then read as input to the radiation model.

TABLE A-I. INPUT DATA SEQUENCE

Card No.	Column No.	Description	Format
1	1-72	Title Card	72H
2	1-5	Month $(Jan = 01, \ldots, Dec = 12)$	I 5
	6-10	Day	15
1	11-15	Year (Last Two Digits)	15
	16-20	Initial number of grid points (if the variable profile option is used) or initial number of points in jet (if the step input option is used).	15
	21-25	Number of species (21 maximum)	15
ļ	26-30	Pressure option:	15
	20 00	0 = Constant Pressure 1 = Polynomial Fit	
	31-35	Viscosity option: 0 = Laminar (Sutherland's Law) $1 = K_2 r_{1/2} \rho_0 U_0$ $2 = K_2 r_{1/2}  \rho_0 U_0 - \rho_e U_e $ $3 = K_2 r_{1/2} \rho_0 U_0$ $4 = 10^{-4} + X(\rho_0 U_0 + \rho_e U_e)$	I 5
	36-40	Flow option:  0 = Axisymmetric  1 = Two Dimensional	15

TABLE A-I. INPUT DATA SEQUENCE (Continued)

Card	Column	Described	
No.	No.	Description	Format
	41-45	Input profile option:  0 = Step Input  1 = Variable Profile	I 5
4	1-10 11-20 21-30 31-40 41-50 51-60 61-70 1-10 11-20 21-30	First print increment (ft) Final X for first print increment (ft) Second print increment (ft) Final X for second print increment (ft) Third print increment (ft) Final X for third print increment (ft) and for terminating the case X initial (ft) Lewis Number Prandtl Number The initial radius of the jet in feet if the step input option is used, otherwise ΔΨ, the radial spacing in streamline	E10.8 E10.8 E10.8 E10.8 E10.8 E10.8 E10.8 E10.8 E10.8
	31-40 41-50	coordinates  K ₁ the coefficient of laminar viscosity  K ₂ the coefficient of turbulent viscosity	E10.8 E10.8
5	1-10 11-20	P ₀ Pressure fit coefficients: P ₁ If option 1 is used, P ₀ is the pressure in lb/ft ²	E10.8 E10.8
	21-30	$P_2$ and $P_1$ , $P_2$ , $P_3$ , $P_4$ are blank. If option 2 is used, $P_1$ is the	E10.8
	31-40	P ₃ coefficient in the pressure	E10.8
	41-50	$P_4 = \begin{cases} polynomial as follows: \\ p(lb/ft^2) = \sum_{i=0}^{4} p_i Xi \end{cases}$	
6	-	Thermodynamic data for the different species being considered. There are 3 cards for each specie as described below. The specie may be input in any arbitrary order.	1
6a	1-6	Hollerith representation of the specie (e.g. H20)	A6

TABLE A-I. INPUT DATA SEQUENCE (Continued)

Card No.	Column No.	Description	Format
			ļ
	11-20	Molecular weight	E10.8
	21-30	T lower temperature bound for fit 1	E10.8
	31-40	*** =	E10.8
	31-40	T upper temperature bound for fit 1	1210.0
	41-50	T _{2L} lower temperature bound for	E10.8
	00	fit 2	
	51-60	T _{2H} upper temperature bound for	E10.8
		fit 2	
6b	1-10	a ₁	E10.8
		Coefficients for low	
	11-20	a ₂ temperature fits	E10.8
	21-30	a ₃	E10.8
	<b>.</b>	See NASA SP3001	
	31-40	a ₄	E10.8
	41-50	a ₅	E10.8
	51-60	$a_6$	E10.8
	61-70	a ₇ )	E10.8
6c	1-10	Coefficients for high temperature	E10.8
	11-20	fits	E10.8
:	21-30		E10.8
	31-40	NASA SP3001	E10.8
	41-50		E10.8
ļ	51-60		E10.8
i	61-70		E10.8
		IF THE VARIABLE INPUT OPTION IS USED:	<u> </u>
7	1-10	T ₀ Axis value of temperature (°K)	E10.8
)	11-20	$T_1$	E10.8
)	11-20	. The values of the temperature	E10.8
	11-20	at each of the inputted psi	E10.8
1	11-20	grid points are punched	E10.8
1	61-70	T ₆ 7 to a card from the axial value	E10.8
		and ending with the free stream	
		values (°K)	
7'	1-10	$\left\{\begin{array}{c} \mathbf{T}_{7} \end{array}\right\}$	E10.8
'	1-10	$\begin{bmatrix} 1_7 \\ \mathbf{T}_7 \end{bmatrix}$	E10.8
L	<u> </u>		1

TABLE A-I. INPUT DATA SEQUENCE (Continued)

Card No.	Column No.		Description	Format
110.	No.			rormat
	61-70	T ₇ T ₁₃		E10.8
7''	1-10	T ₁₄		E10.8
		T ₁₄		E10.8
Í		Tid		E10.8
		Te Free	stream value of temperature ()	
8	1-10	U ₀ )		E10.8
] .	1-10		alues of the velocity at	E10.8
<b>i</b>		· ·	of the inputted psi grid	E10.8
			s are punched	
	61-70	U ₆ 7 to a	card from axial value	E10.8
1		and e	nding with the free stream	
81	1-10	U ₇ value	s (ft/sec)	E10.8
	1-10	}		E10.8
	1-10	İ		E10.8
	61-70	U ₁₃		
8''	1-10	U ₁₄		E10.8
		U ₁₄		E10.8
		U ₁₄		E10.8
		Ue Free	stream value of velocity	
		IF THE ST	EP INPUT OPTION IS USED:	
9	1-10	$\alpha_1$		E10.8
1	11-20	$\alpha_2$		E10.8
	21-30	$\alpha_3$ Axis	values of species	E10.8
	31-40	$\alpha_4$ mag	ass fractions.	E10.8
	41-50	$\alpha_5$		E10.8
	51-60	$\alpha_6$		E10.8
	61-70	$\alpha_7$		E10.8
91	1-10	$\alpha_1$		E10.8
	11-20	- 4	es of species mass fractions	E10.8
	21-30	~ 1	each inputted psi grid point	E10.8
	31-40		e punched on one card per point	E10.8
]	41-50	$\alpha_5$ be	ginning with the axial value and	E10.8
	51-60	$\alpha_6$ en	ding with the free stream. A	E10.8
	61-70	$\alpha_7$ ma	aximum of 7 species per card.	E10.8
[	61-70	$\alpha_7$ } Th	e order of the species must	]

TABLE A-I. INPUT DATA SEQUENCE (Concluded)

Card No.	Column No.	Description	Format
	61-70	α ₇ correspond to the order of the	
	61-70	$\alpha_7$ thermodynamic data (card type 6)	
9"	1-10	$\alpha_1$	E10.8
	11-20	$\alpha_2$	E10.8
	21-30	$\alpha_3$	E10.8
	31-40	α ₄ Free stream values	E10.8
	41-50	$\alpha_5$	E10.8
	51-60	$\alpha_6$	E10.8
	61-70	α ₇ )	E10.8
		IF THE STEP INPUT OPTION IS USED:	,
7	1-10	Jet temperature (°K)	E10.8
	11-20	Free stream temperature (°K)	E10.8
	21-30	Jet velocity (ft/sec)	E10.8
	31-40	Free stream velocity (ft/sec)	E10.8
8	1-10	$\alpha_1$ ) Specie mass fractions in the	E10.8
	11-20	$\alpha_2$ jet. A maximum of seven species	E10.8
	21-30	$\alpha_3$ per card. If there are more	E10.8
	31-40	$\alpha_4$ than seven species continue on another	E10.8
]	41-50	$\alpha_5$ card in the same format. The	E10.8
	51-60	$\alpha_6$ order of the species must corres-	E10.8
	61-70	$\alpha_7$ pond to the order the thermo-	E10.8
		dynamic data (card type 6) for	ļ
		each specie input.	
9	1-10	$\alpha_1$ Specie mass fractions at the	E10.8
	11-20	$\alpha_2$ edge. Comments for card 8 are	E10.8
İ	21-30	$\alpha_3$ applicable.	E10.8
]	31-40	$\alpha_1$	E10.8
l	11-50	0.5	E10.8
	51-60	$\alpha_6$	E10.8
	61-70	$\alpha_7$ )	E10.8
10	1-10	The initial radius of the jet (ft)	E10.8
	11-15	Run number	15

# TABLE A-II. TYPICAL SET OF INPUT DATA

	TYPICAL TURROJET AIRCRAFI - SEA LEVEL CONDITIONS - 900 DEG EGT STATIC	0 0 7	20°0 50°0 50°0	2000		1000. 1000. 5000.	82-12	2490-11-3-3460-15-1-1928+03 3-7493+00	28.014 300. 1000. 1000. 5100.	3.6916+00-1.3333-03 2.5503-06-9.7688-10-9.9772-14-1.0628+03 2.2875+00	2.8546+6n 1.5976-03-6.2565-07 1.316-10-7.6897-15-8.9017+02 6.3903+00	44.011 300. 1000. 1000. 5000.	1.03781-02-1.0733-056.24591-09-1.6280-12-4.8352+041.06643+01	4.41292+003.19228-03-1.2978-062.41474-10-1.6742-14-4.8944+04-7.2875-01	1000. 1000. 5000.	4.15650+00-1.7244-035.69823-06-4.5930-091.42336-12-3.0288+04-6.8616-01	2.67075+003.03171-03-8.5351-071.17908-10-6.1973-15-2.9888+046.88383+00		01980	0.0
	AIRCRAFI	10 4	1•0	1.000		300.	-03 8.583	-04-2-238	300.	-03 2.550	-03-6.256	300	-02-1-073	-03-1-297	300.	-035.6982	-03-8-535	1800.	.05195	• 0005
	TJRBOJET	02 90	10.0	.7]		32.0	0-2.5167	00 7.8146-	28.014	0-1-3333-	1.5976-	44.011	1.03781-	03.19228-	18.016 300.	-9427-1-00	03.03171-	37€	.75290	• 7677
SOATA	TYPICAL	03	0.25	1.4	2117.	02	3.7189+0	3.5976+0	N.2	3.6916+0	2.8546+0	202	2.1761	4.41292+0	H20	4.15650+0	2.67075+0	•006	.17535	.2318

### CABLE A-III. FLOW FIELD COMPUTER PROGRAM

	MAINI	FF4	SCURCE	STATEMENT	-	[FA(S)	÷	u3/u9/70	
С	MA II. C 1MMCN F.X.DPI LMUKZ.PKAT.PCN C 1M4CH LUUT.MI	I.UE.RHCE.1	IE . XP3.AI	<b>HALF</b>				-	
	1 + 1 1 URA + 1 UFT + NO C'IMMON - WTMULE( 1 + T (N S) + H( 21 + S) 22) + SUM( 59) + ET/ 3 T( 59 ) + CH( 21 + S)	5. "UAY.MUNT [21]. CHEFFF 5]. AALPHA (2 A(59). XMU(5 5). HSTG(59)	TH. MYEAR 2(5). ALP 21.54). P 59). A(59 1.4HC(59	.1Ax2C.[VAI FA(21.59].I \$1(59).RU(! ).AhA1T(59 ).Y(59).XM	R HCUT 54) _H 1 ,RHI AX(3	(59);RCd U(59).XL GOUT(59) ).XFKT(3	TT(59).K1 E(59).1[] .UGUT(59] ).CP8AR(	rrsey	
	4 IGMA (55) + MBAR ( REWIND 10 1 CALL INPUT CALL INITAL 2 CALL FROZ1 CALL CUMPUT	12414 AF [121	121,2,11	• 1 F E 1 3 C Z E 9				J66S1033	1 5 7 9
	IF (IFINIS.GT.) CALL EXPLIC IF (IFINIS.GT.)								1.
	GO TO 2 ENC FROZ2	- FFN	SCURCE	STATEMENT	-	IFN(S')		06651047 06651048 03/09/70	
	SUPP CUTINE INF CO 4MCN K. X.OPE 1MUK2 .PRNT .PCNT COMMCN IOUT .MF 1.1 TURA. 1.1ET . A.S CO MCN WT MULE 1.T 15 91 .H (21.55 22) .SUM(59) .FT/ 3T (59) .CP(21.55 4 IGMA (59) .HBAR( GI+F NS INN YS IF IN IS=0 IP AGE=0	CX.POUT.HE. I.UF.RHCF.T SI.WHALF.R SIMDAY.MUNI 121).COEFR 9).RALPHA (2 KIS9).XMU(5 F).HSTG(59) 159).AFITS(	E+xp3.Ri /INIT-IF /H.PYEAR /I5).ALPI /I1-59).P /91.AL59  -RHG(59  21.2.7)	FALF INIS.NPSI. .IAX2C.IVA FA(21.59).I SI(59).RU( ).AHAIT(59 ).Y(59).XM	I PAGI R HCUT 59} +I ) +RHI AX (3	E.IPRESS (59) TRCO U(59) XL GOUT (59) ) , X FRT (3	, ISTART, 1 TYT54;,R1 E(59),TI1 ,UUUT(59) ),CPBARE!	17URB 17(59) 11Et 1 17TOU	
	1011 =0 EX =0 +0 R= 3,5752932 READ (5+1) (T1T)	£(1).(±1.)	21				-	06650502	5
	RF AD (5 - 10-0) MCF NP SI = MPSI = 1 RF AD (5 - 10-0) DX RE AD (5 - 10-0) DX RE AD (5 - 10-0) DX	TH.MUAY.M PRT[1].XMA) KLE[1].SIG	(11).XPR (41).YPR	T(2), AMAX(	2).X	PRT (3) 7X		066\$C528	12 22 23 24
	OG 50 J=1+NS READ (5+2000) READ (5+1000) READ (5+1000)	AFITS(J. L	K) .K=1 .	7)	.KY i	K=1 ∙ €1		ng die Nagogo auser het verkoop die der 19	33 40 45
	50 CUNT INVE IF (I VAR .NE . C) READ (5 · 1000) READ (5 · 1000) READ (5 · 1000) CUM= C · C P= COEFFP(1)	IJET, TEDGE. (YSJET(J)	J=1 .NS)	CCF	••	د موسود د خانه میشود. د موسود	a diam time 40		55 56 63
	OU 37 J=1.NS 37 CUM=CUM+YSJET RHGJ=P/A9517. IF (IAX 2D. EQ. L IX 38 I=1.MPS) If (I) =TJET U(I) =UJET	ECI/TJFT/DU DOELPSI=Y. DOELPSI=Y.	,µ JET+SGRT				-1)		 79

CO 38 J=1.NS	
38 ALPHA(J, I) = YSJET(J)	
MPSI=MPSI+2	
NPSI=MPSI=1	06030114
T(MPSI)=TEDGE T(NPSI)=TEDGE	
UCMP ST 7=1EDGE	
U( NP SI )=UEDGE	
CO 39 J=1.NS	
AL PHA(J.MPSI)=YSEUGE(J)	
39 AL PHAT J.NPS () = YSEDGE (J)	
GO TC 60	
NPSI =MPSI - 1	
	* ***
enon con enon enterior 'STECTO	03/09/70
FROZZ - EFN SOURCE STATEMENT - TFAT	5) -
READ(5.1000)(1(1), 1=1, MPS1)	114
READ (5.1000) (U(I).I=1. PSI)	121
DO 41 I=1.MPSI	
READ(5.1000) (ALPHA(J.I).J=1.NS)	130
41 CONTINUE 60 RETURN	
T FORMAT (12A6)	. 45650646
100 FORMAT(1415)	. 03430040
1000 FIRMAT (7E10.8)	06650648
2000 FURMAT (A6,4X,5E1C.8)	
ENC	06650649
FROZ3 - EFN SOURCE STATEMENT - IFNO	57 -
SUBRIGUTINE FRCZ1	
	VEITHT NEIT CHILDY CONTROL
COMMON R.X.DPCX.POUT.HE.PE.DPUUT.P.DELPS: CX.XNUT.	KHUL, DEL, XHUK1, X
LMUK2.PRNT.PCNT.UE.RHOE.TE.XP3.RFALF	· · - · · · - · · · · · · · · · · ·
<pre>IMUK2.PRNT.PCNT.UE.RHOE.TE.XP3.RHALF CUPMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.HDAY.HONTH.PYEAR.IAX2C.IVAR</pre>	ESS, ISTART, ITUKB
1MUK2.PRNI.PCNI.UE.RHOE.TE.XP3.RHALF CUPMCN IOUT.MPSI.MHALF.MINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.HDAY.MONTH.MYEAR.IAX2C.IVAR COPMCN WIROLEIZI).CUEFFP(5).AUPHA(ZI.59).HCUI(59).	ESS, ISTART, ITUKB
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RHALF CUMMCN IOUT.HPSI.MHALF.PINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.HDAY.MOATH.PYEAR.IJX2C.IVAR COMMCN WIMOLEIZI).CÜEFFP(5).ALPHA(ZI.59).HCUT(59). 1.T(59).H(ZI.59).RALPHA(ZI.59).PSI(59).RU(59).U(59)	ESS. (START, ITUMB ROOYT(59),RT(59)
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RHALF CUMMCN IOUT.HPSI.MHALF.PINIT.IFINIS.RPSI.TPAGE.IFR 1.ITURA.IJET.NS.HDAY.MOATH.PYEAR.IJXZC.IVAR COMMCN WITHOLE 121).CUEFFY.B.J.AUPHA(21.59).RU(59).U(59) 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59) 7227.SUM(59).ETA(59).XMU(59).ALG9).ALGTT(59).RHOOUTT	ESS. [START, [TURB ROOTT(59),RT(59) ,XLE(59),TITLE(1 59),UOUT(59),TOU
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RHALF CUMMCN IOUT.MPSI.MHALF.PINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.HOAY.MOATH.MYEAR.IJXZC.IVAR COMMCN WITHOLE 121).CÜEFFP.B.J.ALPHA(21.59).RU(59).U(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 221.SUM(59).ETA(59).XMU(59).A(59).AKAIT(59).RHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR	ESS. ISTART. ITURB  ROOTT(59),RT(59)  XLE(59).TITLE(1  59),UOUT(59),TOU  T(3),CPBAR(59),S
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 10U1-MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.WFAR.IAXZC.IVAR CUMMCN "WTMOLE!Z1).CUEFFP(5).AUPHA'[21.59].HCUT(59). 1.T(59).H(21.59).KALPHA(21.59).PSI(59).RU(59).U(59) 7227.SUM(59).ETA(59).XHU(59).AKAIT(59).RHOUTT: 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 41GMA(59).HBAR(59).AFITS(21.2.7).FFITS(21.47.SPECTO	ESS. ISTART. ITURB  RÖÖTT(59),RT(59)  XLE(59).TITLE(1  59).UUUT(59).TUU  [21)
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 1OUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.MYEAR.IAX2C.IVAR COMMCN "MTMOLE 121).CUEFFP'(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMUX(3).XPR 31(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).TFITS(21.47.SPECID P=CUEFFP(11)*X*(CUEFFP(2)*X*(CUEFFP(3)*X*(CUEFFP(4)+X*C	ESS. ISTART, ITURB  ROOTT(59),RT(59) ,XLE(59),TITLE(1 59),UOUT(59),TOU (13),CPBAR(59),S [21] *X*CCEFFP(5)))) 06651396
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 1OUT.MPSI.MHALF.PINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.PYEAR.IJX2C.IVAR CUMMCN "MTMOLEIZ").CÜEFFP(5).ALPHA(21.59).HU(59).U(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).ANAIT(59).RHUOUT(31.59).CP(21.59).HSTG(59).RHU(59).Y(59).XMAX(3).XPR 4 IGMA(59).MBAR(59).AFITS(21.2.7).3FITS(21.47.SPECTU P=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4).MPSI.AFITS(21.47.SPECTUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFFP(4).X*CUEFF	ESS.ISTART.ITUKB  ROOTT(59).RT(59) .XLE(59).TITLE(1 59).UOUT(59).TOU T(3).CPBAR(59).S [21) -X*CGEFFP(5)))) 06681396
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.FILIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.WYEAR.IAX2C.IVAR COMMCN WITHOLE 121).CUEFF015.ALPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59) 227.SUM(59).ETA(59).XMU(59).A(59).AAAIT(59).RHOOUT(31.59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).FITS(21.47.SPECTO P=CUEFFP(1)X*(COEFFP(2)X*(CUEFFP(3)XX*(CCEFFP(4).MPSICOEFFP(2)X*(COEFFP(3)XX*(COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(4)XX*COEFFP(	ESS.[START, ITURB ROOYT(59),RT(59) **XLE(59).TITLE(1 59),UOUT(59).TOU I(3).CPBAR(59).S [21) ************************************
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.WYEAR.IAX2C.IVAR CUMMCN "WTMOLE!21).CUEFFP(5).AUPHA'(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59) 221.SUM(59).ETA(59).XHU(59).A(59).AAAIT(59).RHOUTTI 3T(59).CP(21.55).HSIG(59).RHO(59).Y(59).XMAXIT).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.4Y).SPECTU P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU T(3).CPBAR(59),S [21) PX*CGEFFP(5)))) 066S1396 DEFFP(5)*4.)) 066S1397
1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 1OUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAR COMMCN MYMOLE (21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMUX(3).XPR 3T(59).CP(21.59).HSTG(59).RHG(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).FITS(21.47).SPECID P=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)-X*(TUEFFP(4)+X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(4)-X*	ESS.[START, ITURB ROOYT(59),RT(59) **XLE(59).TITLE(1 59),UOUT(59).TOU I(3).CPBAR(59).S [21) ************************************
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN MYMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59) 22).SUM(59).ETA(59).XHU(59).A(59).ANAIT(59).RHOUTTI 3T(59).CP(21.59).HSIG(59).AHG(59).Y(59).XMAXIJ).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.47).SPECTU P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*</pre>	ESS.[START, ITURB ROOYT(59),RT(59) **XLE(59).TITLE(1 59),UOUT(59).TOU I(3).CPBAR(59).S [21) ************************************
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT-MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.WYEAR.IAX2C.IVAR CUMMCN "MYMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).HALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XHU(59).AG(59).AAAIT(59).RHOUTT: 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.47.SPECIU) P=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*CUEFFP(2)-X*(CUEFFP(3)-X*(CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(3)-X*(CUEFFP(4)-X*CUEFFP(4)-X*CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(4)-X*CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(4)-X*CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFP(3)-X*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFF)*(CUEFFP(3)-X*(CUEFFP(3)-X*(CUEFF)*(CUEFFP(3)-X*(CUEFF)*(CUEFF)*(CUEFF)*(CUEFF)*(CUEFFP(3</pre>	ESS.[START, ITURB ROOYT(59),RT(59) **XLE(59).TITLE(1 59),UOUT(59).TOU I(3).CPBAR(59).S [21) ************************************
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.WS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN MYMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).ANAIT(59).RHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAXIT.XMUTT. 4 IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.4).SPECTU P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFPP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFPP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFPP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)-X*COEFFP(4)</pre>	ESS.[START, ITURB ROOYT(59),RT(59) **XLE(59).TITLE(1 59),UOUT(59).TOU I(3).CPBAR(59).S [21) ************************************
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFIAIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.MYEAR.IAX2C.IVAR COMMCN "MTMOLE!21".CUEFFP'(5).AUPHA'(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA'(21.59).PSI(59).RU(59).U(59). 22T.SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMUX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).TFITS(21.47).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CUEFFP(4)+X*C) DPTX=COEFFP(2)+X*(Z.*COEFFP(3)*X*(3.*COEFFP(4)+X*C) DO 1 [=1.MPSI RUCTT(1)=SORT(T(1)) AWAIT(1)=O.C DO 2 J=1.NS AWAIT(1)=AWAIT(1)+ALPHA(J.I)/HTMCLE(J) TRHO(I)=P/89517.501/T(1)/AWAIT(1) DO 20 I=1.NPSI DO 1C J=1.NS K=1</pre>	ESS.[START, ITURB ROOYT(59),RT(59) **XLE(59).TITLE(1 59),UOUT(59).TOU I(3).CPBAR(59).S [21) ************************************
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.PINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.PYEAR.IJX2C.IVAR COMMCN "MTMOLEIZI).CUEFFP(5).ALPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).ANAIT(59).RHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).FITS(21.47).SPECTO P=CUEFFP(1).X*(CUEFFP(2).X*(CUEFFP(3).X*(ZI.Y).SPECTO OD 1 I=1.MPSI RUGTTII)=SORT(T(1)) AWAIT(1)=0.0 CD 2 J=1.NS 2 AMAIT(1)=AWAIT(1)+ALPHA(J.I)/HTMCLE(J) T RHO(T)=P/89517.501/T(I)/AWAIT(T) DO 20 I=1.MPSI DD 1C J=1.NS K=1 IF(T(1).GT.TFITS(J.2)) K=2</pre>	ESS.[START, [TURB]  ROOYY(59),RY(59) ,XLE(59).TITLE(1 59).UOUY(59).YOU [13).CPBAR(59),S [21) +X*CCEFFP(5)))) 066S1396 DEFFP(5)*4.)) 066S1397
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.WYEAR.IAX2C.IVAR CUMMCN WTHOLE(21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 221.SUM(59).ETA(59).XMU(59).A(59).AAAIT(59).RHOUT(3). 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAXIT(59).XPR 4IOMA(59).HBAR(59).AFITS(21.2.7).FITS(21.47).SPECTU P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*COEFFP(4)-X*COEFFP(1)+X*(COEFFP(1)-X*(CUEFFP(3)-X*(3.*CUEFFP(4)-X*COEFFP(4)-X*COEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(CUEFFP(1)-X*(UEFT)-X*(UEFFT)-X*</pre>	ESS.ISTART.ITURB  ROOTT(59),RT(59) ,XLE(59).TITLE(1 59).UUT(59).TUJ (13).CPBAR(59),S (21) ***CCGEFFP(5)))) 066\$1396 DEFFP(5)**4.)) 066\$1397  066\$1440
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.WS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN MYMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).ANAIT(59).RHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.47).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*COEFFP(4)-X*COEFFP(2)+X*(Z.*COEFFP(3)*X*T3.*COEFFP(4)+X*COEFFP(4)-X*COEFFP(1)*SORT(T(1)) ANAIT(1)=SORT(T(1)) ANAIT(1)=ANAIT(1)+ALPHA(J.I)/HTMCLE(J) I RHO(I)=P/89517.5G1/T(I)/AWAIT(I) DO 20</pre>	ESS.ISTART.ITURB  ROOTT(59),RT(59) ,XLE(59).TITLE(1 59).UOUT(59).TOU (13).CPBAR(59).S (21) *X*CCEFFP(5)))) 06651396 DEFFP(5)*4.)) 06651397  6 06651440
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN "MTMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).AMAIT(59).RHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAXIT(59).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).FFITS(21.47).SPECTU P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4).XPC UPUX=COEFFP(2)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(2)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(Z,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(2,*COEFFP(3)*X*(3.*COEFFP(4)*X*C UPUX=COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP(1)*X*(3.*COEFFP</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.MYEAR.IDX2C.IVAR CUMMCN THROLE [2]).CUEFFP(5).ALPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 31(59).CP(21.59).HSTG(59).RHO(59).X63).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).FITS(21.47).SPECID P=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)+X*(CUEFFP(4)+X*C) DPIX=CUEFFP(1)+X*(2.*CUEFFP(3)*X*(3.*CUEFFP(4)+X*C) DDIX=CUEFFP(1)+X*(2.*CUEFFP(3)*X*(3.*CUEFFP(4)+X*C) DD 1 I=1.MPSI RIGITI']=SORT(T(1)) AWAIT(1)=0.0 DD 2 J=1.NS 2 AWAIT(1)=AWAIT(1)+ALPHA(J.I)/HTMCLE(J) I RHO(1)=P/89517.501/T(I)/AWAIT(T) DD 20 I=1.MPSI DD 1C J=1.NS K=1 IF(T(1).GT.TFITS(J.2)) K=2 CP(J.I)=(AFITS(J.K.6)+T(I)*(AFITS(J.K.2)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)+T(I)*(AFITS(J.K.4)*(AFITS(J.K.4)*(AFITS(J.K.4)*(AFITS(J.K.4)</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALE CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.TPAGE.IFR 1.ITURA.IJET.KS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN "MTMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).ANAIT(59).RHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAXIT(59).XPR 4GMA(59).HBAR(59).AFITS(21.2.7).FFITS(21.4).SPECTO P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4).XPC OD 1 =1.MPSI RUCTTI)=SORT(T(1)) AWAIT(1)=SORT(T(1)) AWAIT(1)=ANAIT(1)+ALPHA(J.I)/HTMCLE(J) I RHO(I)=P/89517.5G1/T(I)/AWAIT(I) DO 20</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.WS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN MYMOLE!21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).ANAIT(59).AHOUUT(3).XPR 3T(59).CP(21.59).HSTG(59).RHO(59).V(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.4).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)+X*(CCEFFP(4)-X*COEFFP(4)-X*COEFFP(1)+X*(COEFFP(2)-XX*(CUEFFP(3)-XX*T3.*CUEFFP(4)-X*COEFFP(4)-X*COEFFP(1)-XX*(CUEFFP(1)-XX*(CUEFFP(2)-XX*(CUEFFP(3)-XX*T3.*CUEFFP(4)-X*COEFFP(4)-X*COEFFP(1)-XX*(CUEFFP(1)-XX*(CUEFFP(2)-XX*(CUEFFP(3)-XX*T3.*CUEFFP(4)-X*COEFFP(4)-X*COEFFP(1)-XX*(CUEFFP(1)-XX*(CUEFFP(2)-XX*(CUEFFP(2)-XX*(CUEFFP(2)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(2)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(3)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(CUEFFP(4)-XX*(</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAR COMMCN MYMOLE (21).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMU(39).U(59). 3T(59).CP(21.59).HSTG(59).RHG(59).XFG(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).TFITS(21.4).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)-XX*(3)-XCOEFFP(4)+X*COD) DPDX=COEFFP(2)+X*(2.*COEFFP(3)-XX*(3)*COEFFP(4)+X*COD) I = 1.MPSI RIGHTI(1)=SORT(T(1)) AWAIT(1)=SORT(T(1)) AWAIT(1)=ANS 2 AWAIT(1)=AWAIT(1)+ALPHA(J.I)/HTMCLE(J) I RHO(1)=P/89517.5G1/T(I)/AWAIT(I) DO 70 I=1.MPSI DD 1C J=1.NS K=1 IF(T(1).GT.TFITS(J.2)) K=2 CP(J.I)=(AFITS(J.K.1)+T(1)*(AFITS(J.K.2)+T(1)*(AFITS(J.K.2)+T(1)*(AFITS(J.K.3)/3.+T(1)*(AFITS(J.K.4)/4.+T(1)*AFITS(J.H.AFITS(J.K.4)/4.+T(1)*AFITS(J.H.AFITS(J.K.4)/4.+T(1)*AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.K.4)/4.+T(1)*AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H.AFITS(J.H</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>1MUK2.PRNT.PCNT.UE.RHOE.TE.XP3.RFALF CUMMGN 1GUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAR CUMMCN "MTMOLEIZI).CUEFFP(5).ALPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).WHOUTT. 3T(59).CP(21.59).HSTG(59).RHO(59).XFX(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).TFITS(21.4).SPECID P=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)-X*(3)*CUEFFP(4)+X*C) DPUX=CUEFFP(2)+X*(2.*CUEFFP(3)-X*(3)*CUEFFP(4)+X*C) OO 1 ==1.MPSI RUCTT(1)=SORT(T(1)) AWAIT(1)=0.C CO 2 J=1.NS 2 AWAIT(1)=AWAIT(1)+ALPHA(J.I)/HTMCLE(J) 1 RHO(1)=P/89517.501/T(I)/AWAIT(1) DO 20 I=1.MPSI DD 1C J=1.NS K=1 IF(T(1).GT.TFITS(J.K.1)+T(I)*(AFITS(J.K.2)+T(I)*(AFITS(J.K.3)).F1.987*I.B/MTMCLE(J.K.3).F1.19*(AFITS(J.K.4)+T(J.XAFITS(J.K.3)).F1.987*I.B/MTMCLE(J.K.3).F1.19*(AFITS(J.K.4)+T(J.XAFITS(J.K.4)).F1.13*(AFITS(J.K.4)+T(J.XAFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4)).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1.13*(AFITS(J.K.4).F1</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 1GUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAGE.IFR CUMMCN "MTMOLE[2]).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMU(59).U(59). 3T(59).CP(21.59).HSTG(59).RHG(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.4).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(1)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CU</pre>	ESS.ISTART.ITURB  ROOTT(59),RT(59) ,XLE(59).TITLE(1 59).UOUT(59),TOU (13).CPBAR(59),S [21)  PX*(CEFFP(5)))) 066S1396  DEFFP(5)*4.)) 066S1397  6 066S1440  [S(J,K,3)+T(1)*( E(J) S(J,K,2)/2.+T(1) (J,K,5)/5.))))
<pre>1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 1GUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAGE.IFR CUMMCN "MTMOLE[2]).CUEFFP(5).AUPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 22).SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMU(59).U(59). 3T(59).CP(21.59).HSTG(59).RHG(59).Y(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.4).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(COEFFP(2)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(2)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(3)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(1)-XX+T3.*CUEFFP(4)+X*CO D=CUEFFP(1)+X*(CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)+X*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX+T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CUEFFP(1)-XX-T3.*CU</pre>	ESS.ISTART.ITURB  ROOYT(59),RT(59) pKLE(59).TITLE(1 59).UOUT(59).TUU (13).CPBAR(59).S (21) (21) (21) (22) (22) (23) (24) (24) (25) (24) (25) (26) (26) (26) (26) (27) (27) (28) (28) (28) (28) (28) (28) (28) (28
<pre>1MUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF CUMMCN 1OUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MONTH.WYEAR.IAX2C.IVAR COMMCN "MTMOLE 121).COEFFP(5).ALPHA(21.59).HCUT(59). 1.T(59).H(21.59).RALPHA(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XMU(59).A(59).AWAIT(59).XMU(39).U(59). 3T(59).CP(21.59).HSTG(59).RHO(59).XFG(59).XMAX(3).XPR 4IGMA(59).HBAR(59).AFITS(21.2.7).IFITS(21.4).SPECID P=CUEFFP(1)+X*(COEFFP(2)+X*(COEFFP(3)-XX*(3)-COEFFP(4)+X*C) DPCX=COEFFP(21+X*(2.*COEFFP(3)-XX*(3)*COEFFP(4)+X*C) DD 1 = 1.MPSI RUCTT(1)=SORT(T(1)) AMAIT(1)=0.C CD 2 J=1.NS 2 AMAIT(1)=AMAIT(1)+ALPHA(J.I)/HTMCLE(J) 1 RHO(I)=P/89517.501/T(I)/AWAIT(I) DD 1C J=1.NS K=1 IF(T(1).GT.TFITS(J.K.1)+T(I)*(AFITS(J.K.2)+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.3)/3)+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFITS(J.K.4)/4.+T(I)*(AFIT</pre>	ESS.ISTART.ITURB  ROOTT(59),RT(59) ,XLE(59).TITLE(1 59).UOUT(59),TOU (13).CPBAR(59),S [21) ***CCEFFP(5)))) 066\$1396 DEFFP(5)**4.)) 066\$1397  6 066\$1440  [S(J,K,3)+T(1)*( E(J) S(J,K,2)/2.+T(1) (J,K,5)/5.))))
<pre>IMUK2.PRNI.PCNT.UE.RHOE.TE.XP3.RFALF COPMCN IOUT.MPSI.MHALF.WINIT.IFINIS.NPSI.IPAGE.IFR 1.ITURA.IJET.NS.MDAY.MOATH.PYEAR.IAX2C.IVAR COPMCN "MTMOLE!2").CUEFFF'65".AUPHA'21.59].HCUT(59]. 1.T(59).H(21.59).RALPHA'(21.59).PSI(59).RU(59).U(59). 227.SUM(59).ETA(59).XNU(59).A(59).AWAIT(59).XHOUUT! 3T(59).CP(21.59).HSTG(59).RHO(59).Y(59).XMAX(3).XPR 4IGPA(59).HBAR'(59).AFITS(21.2.7).TFITS(21.4).SPECIU P=CUEFFP(11)*X*(COEFFP(2)*X*(CUEFFP(3)*X*(3)*CUEFFP(4)*X*C) DPDX=COEFFP(2)*X*(2.*COEFFP(3)*X*(3)*COEFFP(4)*X*C) DD 1 = 1.MPSI RIOTT(1)=SORT(T(1)) AWAIT(1)=SORT(T(1)) AWAIT(1)=AWAIT(1)*ALPHA(J.I)/HTPCLE(J) I RHOIT)=P/89517.501/T(I)/AWAIT(1) DO 20</pre>	ESS.ISTART.ITURB  ROOTT(59),RT(59) ,XLE(59).TITLE(1 59).UOUT(59).TOU (13).CPBAR(59).S (21) ***CCEFFP(5)))) 066S1396 DEFFP(5)*4.)) 066S1397  066S1440  IS(J.K.3)+T(1)*( E(J.) (J.K.5)/5.))))

```
141 !1 = SD+T(4(1-1) ++ 2+D( LPSI + (PSI (1)/RHO(1)/U(1)+PSI(1-1)/RHO(1-1)/U060S0241
                                                                                           88
    211-1111
" ([Ax20.59.11
    14:11 = Y(1-1) + CELPSI + (1. /RHO(1) / U(1)+1. /RHO(1-1) / U(1-1) 1/2.
  25 CONTINUE
     1- (I TURN . NE . C) GC In 40
     0.( TJ PK
 CO 23 1=1.4PS1
23 X40(1)=XMUK1+T(1)+ROCTT(1)/(3(1)+111.3+XMUT
                                                                              066$1549
     XM LE = (MU(1)
                                                                              06651556
     Gu 10 100
  40 GU TO125.45.6C.1U011.ETURA
  066$1559
066$1560
     1 = MP S1 - 1+ 1
     IF (m HOT(11+U(1)-)UM) 51.51.52
  52 CUNTINUE
                                                                              76651567
  51 OLL + Y(1)-(Y(1)-Y(1+1)) * (RHC(1)*L(1)-CUM)/(RHC(1)*U(1)-RHC(1+1)*U(1066S1563
          FRUZ3 - LEN SCURLE STATEMENT - IFMS) -
                                                                             06651564
    1+11)
  55 XMLT = XMUR 2+ DE L+ABS (RHO(1)+U(1)-RFC (MPSI)+U(MPSI))
     60 10 100
10C1 IF (ABS(U(1) -U(2)).LT.3.CC2+U(1)) GC -FR 1004
     IF (U(MPSI) .GT. 20.160 TC 1003
     ITURE=1
ITURE=1
     GO TO 26
16 C3 TTUR8=3
     IT UR A= 3
     GO TC 60
10C4 RUXT=RHO(1)*U(1)
RUNT=RHO(MPSI)*U(MPSI)
XMUT=X*(RUNT+RLXT)/900.+1.6-04
     Cal 99 1=1.MPSI
  99 X46( 1)=XMUT
     Go TO 100
     CONTINUE
     GUM= C.5*(RHC(1)*U(1)*RHC(HPSI)*L(PFSI) F CO 831 11=1.MPSI
     14=11-1
     IF(RHO(1)*U(1).GT.DUM) I=MPSI-II*1
IF(RHO(1)*U(1).GT.DUM) IM=I-1
     IF(RHO(I)+U(I)-DUM) 831.832.832
 8 21 CONTINUE
 832 RHALF=Y([)-(Y([)-Y([M))+(HHC([)+L([)-DUM)/(RHC([)+U([)-RHC([M)+U([
    IM))
Gi) TC 733
     IF ((U(I-1)-DUM1)*(U(I)-DUM1)*LE*C*O)II=I
IF((U(I-1)-DUM2)*(U(I)-DUM2)*LE*C*C)I2=I
     CONT INUE
     RHALF=AGS(RCNF-RTAC)
 731 CO 933 I=1. *PSI
933 x40(1)=xMUk 2*RH4LF*RHG[1)*U(1)
     IF (2 HALF * (RHALF - YEMPSI )) . GT. C. O) CALL EXIT
     X4CT = X2U(1)
                                                                              06651592
 LOD RETURN
     650
                  - EFN SCURCE STATEMENT - IFNIS) -
          F K1)Z 4
                                                                              06651944
      SUNKCUTINE EXPLIC
     COMMICA R.X.DPCX.PILT.HE.FF.DPOUT.F.DELPSI.CX.XMUT.XMUL.DEL.XMUKI.X
```

```
IMUK2.PRNT.PCNT.UE.RHCE.TE.XP3.RFALF
COMMCN IDUT.MPSI.MMALF.MINIT.IFINIS.NPSI.IPAGE.IFRESS.ISTART.ETURB
      COMMCN IDUT. PPSI .WHALF - PINIT-IF IF IS.APSI. IPAGE - IFRESS. ISTANT. FORB
1.* TURA. IJET.NS.WDAY. MONTH. PYEAR . IAX20. IVAR
C MON WTMOLE (21). COEFFP(5). ALPHA (21.59) - HCUT(59). RCCTT(59). RT(59)
1.* (55). H(21.55). RALPHA (21.59). PL(59). RU(59). U(55). XLE(59). TITLE (1
22.. SUM(59). ETA(59). XMU(59). A(59). AWAIT(59). RHOOUT(59). UOUT(59). TOU
3T(59). CP(21.59). HSTG(59). RHC(59). V(59). XMAX(3). XFRT(3). CPBAR(59).*
4IGMA (59). HBAR(59). AFITS(21.2.7). TFITS(21.4). SPECID(21)
IF (14X2D.FO.0) DX=DELPSI*DELPSI*SIGMA(1)/XMU(1)/XLE(1)/12.0
        IF (1AX 2D.EO.1)DX+DELPS1++2+SIGMA(1)/XHU(1)7XLET1)7RHOT1)7UT17/6.0
        CO 1C 1=2+NPS1
CIVIS=A(1+1)+A(1-1)+A(1)+A(1)
                                                                                                                          06050369
                                                                                                                          060$0370
  DELX=DELPSI ** 2*SIGMA(1)/XLE(1)/CIVIS/1.5
IF(1AX20.EQ.C) DELX=DELX*PSI(1)

10 CX=AMINI(DX.DELX)

11 DIFY = Y(2) - Y(1)
IF(0X-DIFY) 162-162-163
 163 CX=DIFY/2.
 162 CONTINUE
        CON 103 1=2, NPSI
EX 1=CELPSI==2/DX
IF (IAX2D.EO.O) EX1=EX1=PSI(I)
                                                                                                                          06652000
        EX 11 = . 5 + (A( I) + A( I + 1) 1
FX 12 = . 5 + (A( I) + A( I - 1) )
                                                                                                                          06652002
                                                                                                                          06652003
        RU([]=:EX11+(L([+1)-U(1))+EX12+(L([-1)-U(1)))/EX1+U([)
        EX 4= 0. 0
                                                                                                                           06652025
        00 20
   20 FX 4= EX 4+CP ( J. I) + (ALPHA ( J. I+1) - ALPHA ( J. I-1)
        FX 2= EX 1+CPHAR (1)
EX 5= XLE(1) + A(1)/SIGMA(1)
                                                                                                                          06652029
                                                                                                                          06652030
        EX == X.E: (1 + A(1)/3 GMA(1)

EX == .5*(EX5+XLE(1+1)*A(1+1)/SIG*A(1+1)

EX == CPBAR(1)*A(1)/SIGMA(1)

EX 9= .5*(EX8+CPBAR(1+1)*A(1+1)/SIGMA(1+1))
                                                                                                                           U66S2031
                                                                                                                          06652032
                                                                                                                          06652033
                                                                                                                           35652034
        EX 10 = . 5 = ( EX 8 + CPB AR ( I - 1 ) + A ( I - 1 ) / SIGMA ( I - 1 ) )
                                                                                                                          066$2035
        EX 13=EX1-EX6-EX7
EX 14=EX4+EX5/4.
                                                                                                                          06652036
                                                                                                                           06652037
        RT([]=(U([+1)-U([-1))**2*A([)/EXZ/100151723+((EX9+EX147)*T([+1)+(EX
      11J-FX14)*T(1-1)+(EX2-EX5-EX10)*T(1))/EX2
00 40 J=1.NS
   40 RALPHA(J.[)=(Ex6*ALPHA(J.[+1)+Ex13*ALPHA(J.[)+Ex7*ALPHA(J.[-1))/Ex
        1
RT([]=RT([]+CX+UPDX/RHC([]/CPBAF([]/25037.807
        RU(I)=RU(I)-CX+OPDX/RHO(I)/U(I)
 100 CONTINUE
                                                                                                                           06652060
        IF(IAX2D.EO.C) EX16=4.0*XMU(1)*CX/CELPSI/DELPSI.
IF(IAX2D.EO.1) EX16=2.0*XMU(1)*CX*RHC(1)*U(1)/DELPSI**2
RU(1)=-DX*DPDX/RHC(1)/U(1)*EX16*(U(2)-U(1))+U(1)*
 DO 200 J=1.NS
200 RALPHA(J-1)=EXIG*XLE(1)*(ALPHA(J-2)-ALPHA(J-1)*/SIGFAT1F*ALPHA(J-1)*
        RT (1)=DX+DP DX/RHC(1)/CPBAR(1)/25C37.807*EXT6*(TT2)-T(T))75TGHATTT+
                                    - EFN SCURCE STATEMENT - IFR(S) -
                FROZ 4
       CFL=CX
                                                                                                                          06652137
         IF (IFINIS)5C.1.5C
     1 IF IN IS=1
MINIT=MPSI
                                                                                                                          06652139
        MHALF=MPSI+MPSI-1
   50 CONTINUE
    X=X+CX
CO 3C I=1.59
CO 5 J=1.NS
5 ALPHA(J.I)=RALPHA(J.I)
                                                                                                                          76652156
                                                                                                                          C6652162
        T( 1) =R T(1)
                                                                                                                          066$2164
   30 U( 1) =RL(1)
1000 IF (MPS I-MHALF 1999, 1500, 1500
999 [F(ABS(U(NPSI)-U(APSI))-.001*U(MFSI)) 1001.1004.1004
1001 [F(ABS(T(NPSI)-T(MPSI))-.001*T(MPSI))1002.1004.1004
```

TACK.

```
1002 00 1003
                                     J=1.AS
              1+ (ALPHA(J. PPS1)-1.1-3C) 1CC3.1CC3.1222
1004
LOC3 CONTINUE
                                                                                                                                                                                                       06652339
             Gr. 10 2009
                                                                                                                                                                                                       06652340
             MP 51 + MP 51 + 1
                                                                                                                                                                                                       66652341
              MPSI =MPSI-1
                                                                                                                                                                                                       06652342
G: TO 2000
1500 TF IN IS =0
                                                                                                                                                                                                       06652377
             CALL FROZI
              CALL COMPUT
                                                                                                                                                                                                                                         161
             IF (IFINIS.GT.1) RETURN
CELPSI = DELPSI + DEEPSI
                                                                                                                                                                                                       06652388
             DO 1600 I=1.MINIT
U(1)=U(2+1-1)
CO 1650 J=1.NS
                                                                                                                                                                                                       06652389
                                                                                                                                                                                                       06652390
In " O ALPHA(J. 1) = ALPHA(J. 2+1-1)
                                                                                                                                                                                                       06652393
16CC T(1) -T(2+1-1)
MP 51 = 41VLT
                                                                                                                                                                                                       06652394
                                                                                                                                                                                                       06652395
              NP 51 = 4P 51 - 1
                                                                                                                                                                                                       06652396
     05652400
                                                                                                                                                                                                       06652403
             00 1750 J=1.NS
ALPHALJ.11+ALPHALJ.MPS11
                                                                                                                                                                                                       06652466
1750 RALPHAIJ. 11 = ALPHAIJ. MPSt)
                                                                                                                                                                                                       06652407
              RU(1)=L(MPSI)
                                                                                                                                                                                                       06652408
1700 ULIT=ULMPSIT
00 1800 1=2.59
                                                                                                                                                                                                       06652409
                                                                                                                                                                                                       06652410
18CO PS H 11 = PS I ( 1-1) + DE LPS1
                                                                                                                                                                                                       06652411
20 CO HE TURN
                                                                                                                                                                                                       06652428
             ENC
                                                                                   SOURCE STATEMENT - IFM(S) -
                          FKU25
                                                          - EFN
             SUBROUTINE INITAL CAMBON SERVICE SERVICE SERVICES OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STR
                                                                                                                                                                                                      06650651
           INUKZ .PRNT .PCNT.UE. RHCE . TE. XP3. RFALF
          COMMEN IJUT .MPSI .MMALF .MINIT .IF INIS.NPSI .IFAGE .IFRESS .ISTART .ITURB
1.ITURA .IJET .NS.MDAY .MDNTH .MYEAF .IAX2C .IVAR

COMMEN ATMULE (21) . COEFFP(5) . ALPHA (21 .59) .HCUT (59) .RUCTT (59) .RT (59)
1.T (59) .H(21 .59) .RALPHA (21 .59) .PSI (59) .RU(59) .UL59) .XLE (59) .TITLE (11
22) .SU4 (59) .ETA(59) .XMU(59) .A(59) .AMAIT (59) .HOUDUT (59) .UDT (59) .TU
          3T( 59 ). CP(21.59). HSTG(59). RHG(59). Y(59). XMAX(3). XFRT(3). CPBAR(59). S
4TGMA (59). HBAR (59). AFTTS(21.2.7). TFTTS(21.4). SPEC (D(21)
             XP 3= C. C
ITUR A= IAB S{ ITURH}
                                                                                                                                                                                                      0665C680
              IFLAG1 + 0
             00 220 1=1.4PSI
              CUMA =0.0
     00 10 J=1+95
10 00 MA =DUMA+ALPHA(J+1)
              IF COUMA.EQ.O.CIGO TO 22C
      14 IF (ABS (HUMA-1.)-.01)13.13.1GC
  1CC WRITELS.1111CLMA.I
                                                                                                                                                                                                                                        17
              IF LACT = 1
  111 FUSMATTIBOUSIGMA ALPHA = 1PE15.7.12HPOINT NUMBER 15.6HIN PSI)
                                                                                                                                                                                                     06650696
     13 CO 15 J=1.NS
15 ALPHA(J.I)=ALPHA(J.I)/OUMA
                                                                                                                                                                                                       06650698
  220 GINTINUE
                                                                                                                                                                                                       C665C699
             IF ( IF LAGI . E U . 1 ) CALL I XI F
00 228 1 = 2 . 59
                                                                                                                                                                                                                                        29
                                                                                                                                                                                                      06650700
                                                                                                                                                                                                     06650701
06650702
              XI F( [) = XI F( 1)
              SICMALI)=SIGMALL)
  224 PS [[]] #PS [[]-1]+DE LPS[
                                                                                                                                                                                                      06650703
                                                                                                                                                                                                      06650704
     29 P=GIEFFP(1) +X+(LGEFFP(2)+X+(CLFFFF(3)+X+(CCEFFP(4)+X+CCEFFP(5))))
```

```
DO 90 1=MPS1+59
                                                                                                            06650754
      RT(1)=T(MPS1)
T(1)=T(MPS1)
                                                                                                            06650755
                                                                                                            06650756
  DO 80 J=1.NS
RALPHA(J.I)=ALPHA(J.MPSI)
80 ALPHA(J.I)=ALPHA(J.MPSI)
                                                                                                            06650758
                                                                                                            06650759
      RU(1)=U(MPS1)
                                                                                                            06650762
 06650766
      IF(1AX2D.EQ.C) WRITE(6.616)
IF(1AX2D.EQ.1) WRITE(6.617)
WRITE(6.888) FCNTH.MDAY.MYEAR
                                                                                                                               7 C
                                                                                                                               72
      WR ITE( 6.999
      AR ITE(6,609)
WR ITE(6,611)
       WR ITE(6,612)
                                                                                                                               77
MR ITE(0.615)
WR ITE(0.618)
IF(1PRESS-2) 6C1.6C2.604
601 WR ITE(6.701)CCEFFP(1)
GO TO EC4
                                                                                                                               78
                                                                                                                               79
                                                                                                                               91
                                                                                                            06650858
6C2 WRITE(6.702)(CCEFFP(1).1=1.5)
                                                                                                                               83
                               - EFN SCURCE STATEMENT - IFNIST -
564 CONTINUE
       WRITE(6.999)
WRITE(6.808)SIGMA(1).XLE(1)
                                                                                                                               90
                                                                                                                               91
       WR ITE(6.999)
                                                                                                                                92
       WR ITE(6.809) ITURA
                                                                                                                                ٠,
      WR IT F(6.810)XMLK1. XMUK2
XMUK 1= XMUK1+DUMMY
                                                                                                                               94
       WR ITE( 6.999)
                                                                                                                               95
DO 171 I=1.3
171 WRITE(6.812) XPRT([].XMAX(])
                                                                                                                               99
       WR ITE(6.499)
                                                                                                                               103
       WRITE(6.613) U(MPSI).T(MPSI)
                                                                                                                               104
       RETURN
341 FORMAT (1H1.24x.33HGENE HALIZED FACZEN MIXING PROGRAM/1H0.5X.12A6)
8E8 FORMAT(:HO, 34x,4HDATEI3,1H/,12,1H/,12)
6C9 FORMAT(1HH VELOCITY-(FT/SEC),20x,17HENTHALPY-(BTU/LB))
611 FORMAT(29H TEMPERATURE-(DEGREES KEVVIN),9X,22HPST=("SLUGS/SEC)++1/"
612 FURMAT(22H CEASITY-(SLUGS/FT**3).1EX.19HPRESSURE-(LH/FT**2))
613 FURMAT(19H EDGE VELOCITY(UE)=E11.4.15x.21HEDGE TEMPERATURE(TE)=E11
 615 FORMAT(29H VISCOSLTY(MU)-(LB*SEC/FT**2).9X.12HRACII-(FEET))
616 FORMAT(33X. 17HAXISYMMETRIC FLOW)
617 FORMAT(32x,20+TWO DIMENSIONAL FLCh)
618 FORMAT(25H SPECIES-(MASS FRACTICNS))
808 FORMAT(16H PRANDTL NUMBER=F5.2,247,13HLEWIS NUMBER=F5.2)
809 FORMAT(18H VISCOSITY OPTION=12)
810 FORMAT(31H LAMINAR VISCOSITY COEFFICIENT=F5.2,9X.32HTURBULENT VISC
10SITY COEFFICIENT=F7.4)
      FORMAT(12H PRINT EVERYF7.3.5H FEET.21X.8HUNTIL X=F8.3.5H FEET)
759 FURMAT(1H0)
701 FURMAT(1H0,20x,23HCUNSTANT PRESSURE P=E15.7)
702 FURMAT(1H0,20x,63HPULYNUMIAL PRESSURE FIT P=A+B+(X)+C+(X++2)+D+06650960
1(X++3)+E+(X++4)/15x,2HA=1PE15.7,3H B=1PE15.7,3H C=1PE15.7,3H D=1PE0665C961
                                                                                                             06650962
     215.7.3+ E=1PE15.7)
                                                                                                            06651008
       END
                               - EFN SCURCE STATEMENT - IFA(S) -
               FRUZ 6
                                                       . . .. .......
       SUBROUTINE COMPUT
       DI MENSIUN RJACK(60.25), PJACK(60.25). TRATEM(60.25). XJACK(60)
       COMMON R. X. DPCX. POUT. HE. PE. DPUUT. P. DEL PSI . CX. XMUT. XMUL. DEL . XMUKI. X
     1MUK2 PRNT.PCNT.UE.RHOE.TE.XP3.RHALF
COMMON IOUT.MPSI.MHALF.MINIT.IFIRIS.NPSI.IPAGE.IFRESS.ISTART.ITURB
1.ITURA.IJET.NS.MDAY.MONTH.MYEAR.IAXZD.IVAR
```

	COMMON WIMOLE (21), COEFFP (5), ALPHA (21,59)	+HOUT(59), ROUTT(59) • RT(59)
	.+T(59)+H(21+59)+RALPHA(21+59)+P\$1(59)+RU	
	?2) +SU4(59) + ETA(59) +XMU(59) +A(59) +AhAIT(5	
3	3T( 59 ).CP( 21 .55).HSTG(59).RHC(59).Y(59).X	MAX (3) TX PR (3) TCPBAR (59) TS
4	+1GMA(59).HBAR(59).AFITS(21.2.7).TFITS(21	.4).SPECID(21)
	10UT=10UT+1 "	06650024
	IF(XP3.EQ.U.C) XP3=XPRT(1)	
	IF(IAX2D.EQ.C) GO TO 42	tra to the second contract to the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of
	DI) 41 I=1.MPSI	*
41	A(1) = XMU(1) + RHC(1) + U(1)	THE STREET OF THE STREET STREET, AND STREET AS STREET, AS STREET, AS STREET, AS STREET, AS STREET, AS STREET,
	GO TO 43	
42	A(1)=0.0	
	A(2) =DELPS(+XML(2)	
	EO 44 1=3.MPSI	to the control of the Well companies in Security of the Welling of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of
4.1.		
	A(I) = XMU(I) + RHC(I) + U(I) + Y(I) + Y(I) / P\$I(I) CONTINUE	C. C. C. C. C. C. C. C. C. C. C. C. C. C
43	RB AK CL =X	
	The street of	
	IF(IFINIS.EC.C) GO TO 60C	•
	CO 500 I=1.3	
	IF (RBAROL.LT.XMAX(I))GO TO 501	
500	CONT INUE	
	GO TO 888	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
5 C I	PRNT=XPRT(()	
•	IF(RBAROL.LT.XP3) RFŢURN ^	
	DO 6699 I=1.3	
	!F(RBARDL.LT.XMAX(I)) GC TC 6688	THE MEAN WAS PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY
699	CONT INUE	
888	IF IN IS=2	a to a section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the
	GU TO 555	
ARA	XP 3= XP 3+XPR T(1)	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa
	CONT INUE	
	CONT INVE	A THE PARTY SERVED ASSESSMENT AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF THE SERVED AS A STATE OF TH
	FURMAT(E10.8.15)	
714	IF (X.EC.O.) READ(5.572) ROC.NORLN	
	IF(X.EU.O.) IXP=C	68
		مان مادر شار ۱۹۰ به در در در در مشکری میسود رست کاری میبودند با در در در در در در در در در در در در در
	IF(X.EC.O.) GC TO 802	
	CHGX =X-PREVX	**************************************
	CMPR =XPRT(1)-C.1	
	IF (CHGX.LT.CMPR) RETURN	
8 C Z	PR EV X=X '	
	IXP= IXP+1	
	IF (I XP.EO.61) GO TC 999	
	TTEST=1.05+1(MPS1)	
	XJACK(IXP)=X "	n ann an American an American sea an American ann amhrican an American an American ann an American an American
	CO 525 KUNK=1.25	
	RJACK([XP+KUNK]=Y(KUNK)	
	SJACK=C.O	
	DO 530 KONK=1.NS	
i30	SJACK=SJACK+ALPHA(KONK+KUNK)/WTFCLE(KCNK	· .
	FRUZ 6 - EFN SOURCE STATEMEN	Tr - LENGS) -
		•
-	PJACK( IXP .KUNK) = AL PHA( 3.KUNK) / WTFCLETS)7	SJACK
	TRATEM(IXP+KUNK)=T(KUNK)	
	IF (TRATEM (IXP . KUNK) . LE . TTEST) GC TC 540	
25	CONT INCE	
	TOTAL DESIGNATION OF THE COLOR OF THE CALL	
		ı
545	PJACK(IXP+KUNK)=C. COO33	
	OYP=Y(KUNK-1) + Y(2)	
	GO TO 548	
544	WTRI =ALOG(T(KUNK-L)/T(MPSI) - 1.)	
	wTR2=ALUG(T(KUNK)/T(MPSI) -1.)	122
	WTRP =ALOG(0.05)	123
	YTR1 =Y(KUNK-1)	
	"YTR2 = Y (KUNK')"	
	YTRP = ( YTR 1 + YTR1 + (WTRP-WTR2)+YTR2+YTR2+(W	/TR1-WTRP))/(WTR1-WTK2)
	DYP= SORI(YTRP)	126
	ZTR1 =ALOG(PJACK(IXP,KUNK-1)-C.OCC33)	120
	ZTR2 =ALUGIPJACK(IXP.KUNK)-C.COO33)	130
	BTRA = (ZTR1-ZTR2)/(YTR2+YTR2-YTR1+YTR1)	
	CTRA = ZTR1+BTRA+YTR1+YTR1	·

	PJACK(IXP+KUNK)=0.00033+EXP(CTPA-BTRA+UYP	*CYP)	131
548	RJ ACK( IXP .KUNK)=DYP		
	TR AT EM ( IXP + KUNK ) =T TE ST	•	
	IF (KUNK. EQ. 25) GC TO 565		
	KUAK P1 = KUNK +1		
	DO 564 IJK=KUNKP1.25		
	PJ AC K( IXP = I JK) = PJACK( I XP + KUNK)		
	RJ ACKI IXP . I JK ) = KJACK ( I XP . KUNK)		
	TRATEM(IXP, IJK)=TTEST		
565	IF(IXP.NE.50) GU TC 567		
	ATR=0.		
	CTR=0.	و بندی که هرمانده ها شوره باشاره واسوم میشوند و میشوند و برموند ها مورد با مورد و میشوند ها میشوند بازد.	
	00 566 1JK=20+60		
	TY =R JACK( \JK + 25) - RGO		
	ATR=ATR+TY		
566	CTR=CTR+XJACK(IJK)	Y	
	CTR=ATH/CTR		
	DO' 568 TJK=1.60		
-568	RJACK(IJK, 25)=R()C+DTR+XJACK(IJK)		
	DO 573 NP=1.6C	A resident to the second of the second of	
	DI) 573 iP=1.24		
	IF (THATEM(NP. IP) . EQ. TTEST) RJACK(AP. IP) = R	JACK (NP-25)	
573	CONT INUE	ononi, ii vest	
	DO 5.74 NP=2.6C		
	IF(RJACK(NP.25).LE.RJACK(NP-1.25)) RJACK(	A.D. 251=01ACK/ND=1.251A0.1	
574	CONTINUE	MEASON OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF T	
214			195
0.176.0	WR ITE(6,9000)	destruite also recommende destruite destruite desse A I dem la communitation de la distriction des	173
	FORMAT(1H1)		
40 CT	FURMATIIH +4E12.51		
a = .	DO 576 NP=1.60	**************************************	
576	WR TE(6,9001) XJACK(NP) . RJACK(NP.25) . TRAT	EP(NP,231, PJACK(NP,231	195
	11=25		
	00 577 NP=1.6C		
	XJ AC K( NP) = X JA CK( NP) + 30.48		
	DO 578 KK=1.25		
	RJACKINP, KK) : RJACK (NP, KK) + 30.48		
577	CONT INUE		
	FROZ6 - FFN SOURCE STATEMENT	IFK(3) -	-
	.DIMENSION-CAT(25).RAT(25).PAT(25)		
	DO 750 NXP=1.6C		
	DO 751 NEP=1+25	a a determinant of the department of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta	-
	IF (TRATEM (NXP , NRP) . EQ. TTEST) GU TC 752		
751	CONT INUE	and the state of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	• •
	RAMAX=RJACK (NXP+NRP)		
: -7	NA TPL=NRP	۳۰ داده ۲۰ د خدمه متّ همستندی، حصت که حصر موضحته به مکنین پیکارتینیت ویسیداسیسیم طبایی ، بردیم بر پر	
	DO 753 NN=1.NRP		
	IF (R JACK (NXP. NN) .GT. RAMAX) GD TC 754	A THE CONTRACT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF	•
752	CONT INLE		
	GO TO 755	A MARTIN CONTRACTOR OF THE PROPERTY AND AND AND AND AND AND AND AND AND AND	
754	NO De NA		
1 24	'RX = I RJACK (NXF+NRP-1)+RJACK (NXP+NRP+1))/2		
	PTI=(TRATEM(NXP+NRP-1)-T(MPSI))/(TRATEM(N	, IV D . NUDA'T 1 T ( MOC ( ) )	
		WEALULATIA I CALLES IN	
	IF(PT1.LT.1.G) PT1=1.0		254
	PT2=-ALCG(PT1)	A SECURE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF TH	234
	PT3=RX+RX-R JACK(NXP+NRP-1) ++2		
	PT4=RJACK(NXP+NRP+1) ** 2-RJACK(NXF+NRP-1) *	F C	
	PT5= (PT3/PT4) +PT2		
	PT6=TRATEM(\XP+NRP-1)-T(MPSL)		/a . a
	TRATEM(NXP.NRP)=T(MPSI)+PT6*EXP(PT5)		263
	PT 1= ((PJACK(NXP+NRP-1)-C+00033))/(PJACK(N	XF, NRP+1)-0.000331	
	IF(PT1.LT.1.0) PT1 =1.3		
	PT 2=-ALUG (PT1)		27C
	PT 5= (PT3/PT4) *PT2	A W. P. WAS FORM PRODUCTION OF PRODUCT CALCULATION OF A CHARGE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY O	
	PT 6= PJACK (NXP+NRP-1)-0. CC033		
	PJACK(NXP+NRP)=0.00033+PT6*EXP(FT5)	g grangements with all restrictions of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the con	272
	RJACK(NXP+NPP)=RX		
755	CONT INUE	- X - x varies curso-minimage free trains detail or suppressed that y day distribution	
	DELTR=RAMAX/24.		
***	DO 756 NRP=2.25		

	CN T=NR P-1	
	RAT(NRP)=CNT+DELTR	- resident and the view will be to
	P1 = 0 - 0 0 0 3 3	
	TI=T(MPSI)	
	CO 757 IJK=2+NATPL	
	IF (RAT (NRP).LT.RJACK(NXP.IJK)) GC TG 758	
157	CONTINUE	
	RI =R JACK(NXP+IJK-I)	a recompany are took some
1 36		
	R2 =R JACK(NXP+IJK)	
	RX =R AT (NRP)	- · · · · ·
	T1=TRATEM(NXP+IJK-1)	
	T2 =TRATEM(NXP . (JK)	
	PI =PJACK(NXP+IJK-I)	م المعارض المالية المعارض المعارض المعارض المعارض المعارض المعارض المعارض المعارض المعارض المعارض المعارض المع
	P2=PJACK(NXP. LJK)	
	PT 1= (RX+RX-R1+R1)/(R2+R2-R1+R1)	
	PT2=(T1-T1)/(T2-T1)	a grandesta desta de relatiga e deliminação de desta e desta e destado de la desta de destado de la destada de
	IF (PT2.LT.1.0) PT2=1.G	
	PT2=-ALOG(PT2)*PT1	T11
	CA [(NRP)=T1+(T1+T1)=EXP(PT2)	30C
	PT 2= (P1-P1) / (P2-P1)	The Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Co
	IF(PT2.LT.1.G) PT2=1.0	
	PT 2=-ALOG(PT2)+PT1	
	PA T( NR P) = PI + ( P) - PI ) + EXP ( PT2 )	305
756	CONTINUE	
	Do 759 JK=2.25	
	FRUZO - EFN SOURCE STATEMENT	TENTON -
	PROZO - CEN SOUNCE, STATEMENT	- itu(2) -
	4 4 M P 40 CO	
	RJACK(NXP+JK)*RAT(JK)	
	PJ ACK(NXP + JK) = PAT(JK)	
759	TRATEM(NXP.JK)=CAT(JK)	y amen's the many of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same
. , ,	WRITE(10)(TITLE(1)+I=1+12)	316
	BRITE(10) MURUN	323
	GO 579 NP=1.6C	
	WRITE(10) XJACK(NP).[]	325
	WRITE(10)(TRATEM(NP.JJ) . RJACK(NP.JJ) . PJAC	K(NP.JJ).JJ=1.25) 327
670		20.
		The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
217	CONTINUE	
217	WRITE(6.786) XJACK(NXP)	335
519		335
	WRITE(6.786) XJACK(NXP)	
7 80	hRITE(6,786) XJACK(NXP)  DD 780 JK=1,25  WRITE(6,787)RJACK(NXP,JK),TPATEF(NXP,JK)	
780 750	WRITE(6,786) XJACK(NXP)  DD 780 JK=1,25  WRITE(6,787)RJACK(NXP,JK),TPATEF(NXP,JK),  CUNTINUE	
780 750 786	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25 WRITE(6.787)RJACK(NXP,JK).TPATEF(NXP,JK). CONTINUE FORMAT(1H .611.4)	
780 750 786 787	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25 -WRITE(6.787)RJACK(NXP,JK), TPATEP(NXP,JK), CUNTINUE FORMAT(1H .611.4) FORMAT(1H .3615.4)	
780 750 786 787	WRITE(6,766) XJACK(NXP)  DD 780 JK=1,25  WRITE(6,787)RJACK(NXP,JK),TPATEP(NXP,JK), CONTINUE  +DRMAT(1H ,611,4)  +DRMAT(1H ,2515,4)  DJ 25 II=1,MPSI	PJACK(NXP.JK) 339
780 750 786 787	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25 -WRITE(6.787)RJACK(NXP,JK), TPATEP(NXP,JK), CUNTINUE FORMAT(1H .611.4) FORMAT(1H .3615.4)	
780 750 786 787	WRITE(6,786) XJACK(NXP)  DD 780 JK=1,25  HR ITE(6,787)R JACK(NXP,JK),TPATEP(AXP,JK),  CONTINUE  +558MAT(1H ,611,4)  +508MAT(1H ,3E15,4)  DJ 25 II=1,MPSI  I=MPSI+1-II	PJACK(NXP.JK) 339
780 750 786 787	WRITE(6,786) XJACK(NXP)  DD 780 JK=1,25  WRITE(6,787)RJACK(NXP,JK),TPATEF(AXP,JK), CONTINUE  #378MAT(1H ,611,4)  #100MAT(1H ,3615,4)  DJ 25 II=1,MPSI  I=MPSI+1-II  TOUT(1)=T(1)/I(MPSI)	PJACK(NXP+JK) 339
780 750 786 787	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25 -WRITE(6.787)RJACK(NXP,JK).TPATEF(NXP,JK). CUNTINUE -DJMAT(1H .611.4) -DJMAT(1H .3E15.4) DJ 25 II=1.MPSI I=MPSI+1-II TOUT(1)=T(1)/T(MPSI) UULT(1)=U(1)/U(MPSI)	PJACK(NXP+JK) 339
780 750 786 787	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25 -WRITE(6.787)R JACK(NXP+JK)+TPATEP(NXP+JK) CUNTINUE FORMAT(1H +611.4) FORMAT(1H +3615.4) DJ 25 II=1.MPSI I=MPSI+1-II TOUT(1)=T(1)/I(MPSI) UNLT(1)=U(1)/U(MPSI) RHCGLT(1)=RHG(1)/RHU(MPSI)	PJACK(NXP,JK) 339  066\$C051  066\$C055
780 750 786 787	WRITE(6.786) XJACK(NXP)  DD 780 JK=1.25  WRITE(6.787)RJACK(NXP.JK).TPATEM(NXP.JK).  CONTINUE  +DRMAT(1H .611.4)  +DRMAT(1H .3215.4)  DJ 25 II=1.MPSI  I=MPSI+1-II  TOUI(1)=T(1)/I(MPSI)  UULT(1)=U(1)/U(MPSI)  RHCCLT(1)=HBAK(1)/RHO(MPSI)  HSTG(1)=HBAK(1)+U(1)*U(1)/50075.614	PJACK(NXP, JK) 339  066\$C051  066\$C055  066\$C055
780 750 786 787	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25 -WRITE(6.787)R JACK(NXP+JK)+TPATEP(NXP+JK) CUNTINUE FORMAT(1H +611.4) FORMAT(1H +3615.4) DJ 25 II=1.MPSI I=MPSI+1-II TOUT(1)=T(1)/I(MPSI) UNLT(1)=U(1)/U(MPSI) RHCGLT(1)=RHG(1)/RHU(MPSI)	PJACK(NXP, JK) 339  06650051  06650055
780 750 786 787	WRITE(6.786) XJACK(NXP)  DD 780 JK=1.25  WRITE(6.787)RJACK(NXP.JK).TPATEM(NXP.JK).  CONTINUE  +DRMAT(1H .611.4)  +DRMAT(1H .3215.4)  DJ 25 II=1.MPSI  I=MPSI+1-II  TOUI(1)=T(1)/I(MPSI)  UULT(1)=U(1)/U(MPSI)  RHCCLT(1)=HBAK(1)/RHO(MPSI)  HSTG(1)=HBAK(1)+U(1)*U(1)/50075.614	PJACK(NXP+JK) 339  06650051  06650055  06650057  06650058
780 750 786 787	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25 WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE HORMAT(1H .611.4) HORMAT(1H .3E15.4) DD 25 II=1.MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) RHCCLT(1)=KHG(1)/RHO(MPSI) HSIG(1)=HBAK(1)+U(1)+U(1)/50G75.614 HOUT(1)=N-6G(1)/HSIG(MPSI) SUM(I)=0.0	PJACK(NXP, JK) 339  066\$C051  066\$C055  066\$C055
780 750 786 787 567	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25	06650051 06650055 06650056 06650056 06650058 06650058
780 750 786 787 567	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25	PJACK(NXP+JK) 339  06650051  06650055  06650057  06650058
780 750 786 787 567	WRITE(6.766) XJACK(NXP) DD 780 JK=1.25	PJACK(NXP+JK) 339
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25 -WRITE(6.787)R JACK(NXP.JK).TPATEM(NXP.JK). CUNTINUE FDMAT(1H .611.4) FDMAT(1H .3615.4) DJ 25 II=1.MPSI I=MPSI+1-II TOUT(1)=T(1)/I(MPSI) UNIT(1)=U(1)/I(MPSI) RHCULT(1)=KHG(1)/RHU(MPSI) HSIG(1)=HBAK(1)+U(1)+U(1)/50G75.614 FOUT(1)=HSIG(1)/HSIG(MPSI) SUM(1)=0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.1) CONTINUE	06650051 06650055 06650055 06650056 06650058 06650058
780 750 786 787 567	WRITE(6,786) XJACK(NXP) DD 780 JK=1,25 WRITE(6,787)RJACK(NXP,JK),TPATEM(NXP,JK), CONTINUE HORMAT(1H +611.4) HORMAT(1H +3E15.4) DD 25 II=1,MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) RHCCLT(1)=KHG(1)/RHO(MPSI) HSIG(1)=HBAK(1)+U(1)+U(1)/50G75.614 HOUT(1)=HSIG(1)/HSIG(MPSI) SUM(1)=0.0 CD 11 J=1,NS SUM(1)=SUH(1)+ALPHA(J,1) CONTINUE IPAGE=IPAGE+1	PJACK(NXP+JK) 339
780 750 786 787 567	WRITE(6,766) XJACK(NXP) DD 780 JK=1,25  WRITE(6,787)R JACK(NXP,JK), TPATEP(NXP,JK), CUNTINUE FORMAT(1H +611.4) FORMAT(1H +3E15.4) DJ 25 II=1,MPSI I=MPSI+1-II TOUT(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) HSTG(1)=HHAK(1)/HU(MPSI) HSTG(1)=HHAK(1)+U(1)+U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=XUM(1)+NS SUM(1)=SUM(1)+ALPHA(J,1) CUNTINUE IPAGE=IPAGE+1 WRITE(6.201)(IITLE(1),I=1.12),IPAGE	PJACK(NXP+JK) 339
7 80 7 50 7 86 7 87 5 67	WRITE(6,766) XJACK(NXP) DD 780 JK=1,25  WRITE(6,787)R JACK(NXP,JK), TPATEP(NXP,JK), CUNTINUE FORMAT(1H +611.4) FORMAT(1H +3615.4) DJ 25 II=1,MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) HSTG(1)=HHAK(1)+U(1)+U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=X0.0  CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J,I) CONTINUE IPAGE=IPAGE+1 RRITE(6.201)(TITLE(I),I=1.12),IPAGE WRITE(6.721) NCRUN	PJACK(NXP+JK) 339
7 80 7 50 7 86 7 87 5 67	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK), TPATEP(NXP, JK), CUNTINUE FORMAT(1H .611.4) FORMAT(1H .3615.4) DJ 25 II=1, MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UNLT(1)=U(1)/I(MPSI) RHCULT(1)=RHG(1)/RHU(MPSI) HSTG(1)=HBAK(1)+U(1)*U(1)/50075.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=X0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.I) CONTINUE IPAGE=IPAGE+1 WR:TE(6.201)(TITLE(1),I=1.12).IPAGE WRITE(6.721) ACRUN FORMAT(1H0.1CHRUN NUMBER-14)	PJACK(NXP, JK)  339  066\$C051  066\$C055  066\$C057  066\$C057  066\$C059  066\$C059
7 80 7 50 7 86 7 87 5 67	WRITE(6,766) XJACK(NXP) DD 780 JK=1,25  WRITE(6,787)R JACK(NXP,JK), TPATEP(NXP,JK), CUNTINUE FORMAT(1H +611.4) FORMAT(1H +3615.4) DJ 25 II=1,MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) HSTG(1)=HHAK(1)+U(1)+U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=X0.0  CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J,I) CONTINUE IPAGE=IPAGE+1 RRITE(6.201)(TITLE(I),I=1.12),IPAGE WRITE(6.721) NCRUN	PJACK(NXP+JK) 339
7 80 7 50 7 86 7 87 5 67	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK), TPATEP(NXP, JK), CUNTINUE FORMAT(1H .611.4) FORMAT(1H .3615.4) DJ 25 II=1, MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UNLT(1)=U(1)/I(MPSI) RHCULT(1)=RHG(1)/RHU(MPSI) HSTG(1)=HBAK(1)+U(1)*U(1)/50075.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=X0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.I) CONTINUE IPAGE=IPAGE+1 WR:TE(6.201)(TITLE(1),I=1.12).IPAGE WRITE(6.721) ACRUN FORMAT(1H0.1CHRUN NUMBER-14)	PJACK(NXP, JK)  339  066\$C051  066\$C055  066\$C057  066\$C057  066\$C059  066\$C059
7 80 7 50 7 86 7 87 5 67	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE  FDRMAT(1H .611.4) FDRMAT(1H .3E15.4) DJ 25 II=1.MPSI I=MPSI+1=II TOUI(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) HSTG(1)=HBAK(1)+U(1)*U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=0.0 CD 11 J=1.NS SUM(1)=0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.1) CONTINUE IPAGE=IPAGE+1 WR:TE(6.201)(TITLE(1),I=1.12).IPAGE WR:TE(6.721) ACRUN FDRMAT(1H0.1CHRUN NUMBER.14) WR:TE(6.162) X.DX.IGUT WR:TE(6.162) X.DX.IGUT WR:TE(6.162) X.DX.IGUT	PJACK(NXP+JK) 339
7 80 7 50 7 86 7 87 5 67	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK). TPATEP(NXP, JK). CUNTINUE FORMAT(1H .611.4) FORMAT(1H .3615.4) DJ 25 II=1.MPSI I=MPSI+1=II TOUT(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) HSTG(1)=HBAK(1)-U(1)*U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=X0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.I) CUNTINUE IPAGE=IPAGE+1 MR:TE(6.201)(TITLE(I).I=1.12).IPAGE WRITE(6.721) ACRUN FORMAT(1HC.ICHRUN NUMBER.14) WR:TIE(6.609) F.DPDX	PJACK(NXP+JK) 339
7 80 7 50 7 86 7 87 5 67	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK), TPATEP(NXP, JK), CUNTINUE FORMAT(1H + £11.4) FORMAT(1H + £11.4) FORMAT(1H + 3£15.4) DJ 25 II=1.MPSI I=MPSI+1-II TOUT(1)=T(1)/T(MPSI) UULT(1)=U(1)/U(MPSI) HSTG(1)=HHAK(1)+U(1)*U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=NOO CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J,1) CONTINUE IPAGE=IPAGE+1 HR:TE(6.201)(TITLE(1)+I=1.12).IPAGE WRITE(6.721) ACRUN FORMAT(1HC,1CHRUN AUMBER.14) HR:TE(6.608)XMLL.XMUT.RHALF HR:TE(6.609) F.DPOX HR:IE(6.609) F.DPOX HR:IE(6.609) F.DPOX HR:IE(6.609) F.DPOX HR:IE(6.609) F.DPOX	PJACK(NXP+JK) 339
7 80 7 50 7 86 7 87 5 67	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE  #DRMAT(1H .611.4)  HORMAT(1H .2615.4)  DD 25 II=1.MPSI  I=MPSI+1=II  TOUI(1)=T(1)/I(MPSI)  UNLT(1)=KHG(1)/HU(MPSI)  HSIG(1)=HBAK(1)/U(1)/SOG75.614  HOUT(1)=HSIG(1)/HSIG(MPSI)  SUM(1)=0.0  CD 11 J=1.NS  SUM(1)=SUM(1)+ALPHA(J.I)  CONTINUE  IPAGE=IPAGE+1  WRITE(6.721) ACRUN  #PORMAT(1H0.1CHRUN NUMBER.14)  WRITE(6.102) X-DX.IGUT  HR ITE(6.609) F.DPDX  HR ITE(6.609)  FULL TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO	PJACK(NXPoJK) 339
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINCE  FDRMAT(1H .611.4) FDRMAT(1H .3E15.4) DD 25 II=1.MPSI I=MPSI+1=II TOUI(1)=T(1)/I(MPSI) UOLT(1)=U(1)/U(MPSI) HSTG(1)=HBAK(1)+U(1)+U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.1) CONTINUE IPAGE=IPAGE+1 WR:TE(6.201)(TITLE(1),I=1.12).IPAGE WR:TE(6.721) ACRUN FDRMAT(1H0.1CHRUN NUMBER.14) WR:TE(6.609) F.DPOX WR:ITE(6.609) F.DPOX WR:ITE(6.107) UN 10 I=1.MPSI WR:ITE(6.207)I.LJUT(1).TCLT(1).RFCCLT(1),F	06650051  06650055 06650055 06650056 06650058 06650058 06650058 0665001 0665001 06650102 375 386 387 388 388
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE  #DRMAT(1H .611.4)  HORMAT(1H .2615.4)  DD 25 II=1.MPSI  I=MPSI+1=II  TOUI(1)=T(1)/I(MPSI)  UNLT(1)=KHG(1)/HU(MPSI)  HSIG(1)=HBAK(1)/U(1)/SOG75.614  HOUT(1)=HSIG(1)/HSIG(MPSI)  SUM(1)=0.0  CD 11 J=1.NS  SUM(1)=SUM(1)+ALPHA(J.I)  CONTINUE  IPAGE=IPAGE+1  WRITE(6.721) ACRUN  #PORMAT(1H0.1CHRUN NUMBER.14)  WRITE(6.102) X-DX.IGUT  HR ITE(6.609) F.DPDX  HR ITE(6.609)  FULL TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO THE TO	PJACK(NXPoJK) 339
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DO 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK). TPATEP(NXP, JK). CUNTINUE FORMAT(1H .611.4) FORMAT(1H .3E15.4) DO 25 II=1.MPSI I=MPSI+1-II TOUT(1)=T(1)/I(MPSI) UOLT(1)=X(1)/U(MPSI) HSTG(1)HBAK(1)+U(1)*U(1)/50G75.614 FOUT(1)=HSTG(1)/HSTG(MPSI) SUM(1)=X0.0 CO 11 J=1.NS SUM(1)=XUM(1)+ALPHA(J.1) CUNTINUE IPAGE=IPAGE+1 WRITE(6.201)(TITLE(1).I=1.12).IPAGE HRITE(6.721) ACRUN FORMAT(1HC.1GHRUN AUMBER.14) WRITE(6.609) F.DPOX NRITE(6.609) F.DPOX NRITE(6.609) F.DPOX NRITE(6.609) F.DPOX NRITE(6.600) H.DUT(1).TCLT(1).RFCCLT(1).FI INTITE(6.207)I.LUUT(1).TCLT(1).RFCCLT(1).FI I.I	06650051  06650055 06650055 06650056 06650058 06650058 06650058 0665001 0665001 06650102 375 386 387 388 388
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25	06650051  06650055  06650056  06650058  06650058  06650059  06650059  06650061  06650182  375  386  387  388  387  390
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE  #DRMAT(1H .611.4)  HORMAT(1H .2615.4)  DJ 75 II=1.MPSI  I=MPSI+1=II  TOUT(1)=T(1)/T(MPSI)  UOLT(1)=XHG(1)/HU(MPSI)  HSTG(1)=HBAK(1)-U(1)*U(1)/50G75.614  HOUT(1)=HSTG(1)/HSTG(MPSI)  SUM(1)=0.0  CD 11 J=1.NS  SUM(1)=SUM(1)+ALPHA(J.I)  CONTINUE  IPAGE=IPAGE+1  MRITE(6.201)(TITLE(1).I=1.12).IPAGE  WRITE(6.721) ACRUM  FORMAT(1HC.1GHRUN NUMBER.14)  WRITE(6.721) ACRUM  FORMAT(1HC.1GHRUN NUMBER.14)  WRITE(6.609) F.DPOX  MRITE(6.609) F.DPOX  MRITE(6.607)  DJ 10 I=1.MPSI  MRITE(6.207)I.LUUT(I).TCLT(I).RFCCLT(I).FI  LI IF(6.201)(TITLE(I).I=1.12).IFAGE	066\$C051  066\$C055  066\$C055  066\$C057  066\$C057  066\$C059  066\$C061  066\$C182  375 386  387 388 387 388
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJJACKT(1)=HGAC(1)/HJRMAC(1H)/50G75.614 HDUT(1)=HBAC(1)/HJTG(MPSI) HJRMAC(1)+MJTG(MPSI) SUM(1)=0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.1) CONTINUE IPAGE=IPAGE+1 HRITE(6.721) ACRUN HJTE(6.721)	0665C051  0665C051  0665C055  0665C055  0665C059  0665C059  0665C061  0665C182  375 386  387 388 385 39C
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DO 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK). TPATEP(NXP, JK). CUNTINUE FORMAT(IH .611.4) FORMAT(IH .3E15.4) DO 25 II=1.MPSI I=MPSI+1-II TOUT(I)=T(I)/I(MPSI) UOLT(I)=X(I)/U(MPSI) HSTG(I)=HHAK(I)+U(I)+U(I)/50G75.614 FOUT(I)=HSTG(I)/HSTG(MPSI) SUM(I)=XO.0 CO 11 J=1.NS SUM(I)=XUM(I)+ALPHA(J.I) CONTINUE IPACE=IPAGE+1 WRITE(6.201)(TITLE(I).I=1.12).IPAGE HRITE(6.721) ACRUN FORMAT(IHC.ICHRUN NUMBER.I4) WRITE(6.609) F.DPOX NKITE(6.609) F.DPOX NKITE(6.107) UN IO I=1.MPSI NK ITF(2.207)I.LOUT(I).TCLT(I).RFCCLT(I).FI I.I K=MINU(7.NS) WRITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.K) DO 20 I=1.MPSI	### DACK(NXP, JK)
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DO 780 JK=1.25  WRITE(6.787)R JACK(NXP, JK). TPATEP(NXP, JK). CUNTINUE FORMAT(IH .611.4) FORMAT(IH .3E15.4) DO 25 II=1.MPSI I=MPSI+1-II TOUT(I)=T(I)/I(MPSI) UOLT(I)=X(I)/U(MPSI) HSTG(I)=HHAK(I)+U(I)+U(I)/50G75.614 FOUT(I)=HSTG(I)/HSTG(MPSI) SUM(I)=XO.0 CO 11 J=1.NS SUM(I)=XUM(I)+ALPHA(J.I) CONTINUE IPACE=IPAGE+1 WRITE(6.201)(TITLE(I).I=1.12).IPAGE HRITE(6.721) ACRUN FORMAT(IHC.ICHRUN NUMBER.I4) WRITE(6.609) F.DPOX NKITE(6.609) F.DPOX NKITE(6.107) UN IO I=1.MPSI NK ITF(2.207)I.LOUT(I).TCLT(I).RFCCLT(I).FI I.I K=MINU(7.NS) WRITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.12).IFAGE NKITE(6.201)(TITLE(I).I=1.K) DO 20 I=1.MPSI	066\$C051  066\$C055  066\$C055  066\$C057  066\$C057  066\$C059  066\$C061  066\$C182  375 386  387 388 387 388
780 750 786 787 567	WRITE(6.786) XJACK(NXP) DD 780 JK=1.25  WRITE(6.787)RJACK(NXP,JK).TPATEP(NXP,JK). CONTINUE HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJRMAT(1H .611.4) HJJACKT(1)=HGAC(1)/HJRMAC(1H)/50G75.614 HDUT(1)=HBAC(1)/HJTG(MPSI) HJRMAC(1)+MJTG(MPSI) SUM(1)=0.0 CD 11 J=1.NS SUM(1)=SUM(1)+ALPHA(J.1) CONTINUE IPAGE=IPAGE+1 HRITE(6.721) ACRUN HJTE(6.721)	### DACK(NXP, JK)

	K+C1001141021	
• •	WRITE(6,201)(TITLE(1),1=1,12),1FACE	43C
	write(6.108) (SPECID(I).I=8.K)	437
٠.	DD 34 I=1,MPSI	
34	· WRITE(6,208) 1,(ALPHA(J,I),J=H,K)	447
	THE INSTER 141 RETURN	
	K=MINO(21,NS)	
•	#RITE(6,201)(YIFLE(1),1=1,12), [FAGE	456
	WRITE(6.108) (SPECID(1).1=15.K)	463
<b></b> ·-	CO 35 (=1.MPS)	
35	i WKITE(6,208) 1.(ALPHA(J.I).J=15.K)	472
	KETURN	
999	IFINIS=2	
	FRUZE - EFN SOURCE STATEMENT - IFN(S) -	
	2.00	
<u> </u>	RETURN	
20	8 FORMAT(13.7E11.3)	
10	8 FORMAT (3HOPT - 7(3X, A6.2X))	
	1 FORMAT(1H1.3X,12A6,2X,4HPAGEI3)	
	FORMAT(13,7615.6.14)	
	FORMAT(3HOPT FEX, 4HU/UE, 1)x, 4HT/TE, 9X, 8HKHC/KHUE, 9X, 4HH/HE, 10X, 5HS1	
	"IGNA-12x-1HY-13x-3HPS1-7X-2HPT)"	
8 06		
	9 FURMAT (3HOP = 11.3 10X, 5HCPDX = 11.3)	
	2 FJRMAT(3HOX=E13.5.1GX.8HDELTA X=E13.5.10X.6HSTEPS=14)	
	END 06650478	
	20030410	

## TABLE ASIV. TYPICAL OUTPUT DATA

-).0G0C0E-19 MU T- 0.100CCE-03 RHALF* -0.30000E-19	·	C.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.160000E 01 0.180000E 04 C.300500E 01 0.333567E 00 -0.286078E 02 0.100600E 01	3.180C00E 04 C.330CC0E 01 0.333567E 00 -0.280078E 02 0.100000E 01	0.180000F 04 C.300000F CI 0.333567F 00 -0.280078F 02 0.1000005 01	0.180,000 04 0.3370,000 01 0.333567E U0 -0.280,07FE 02 0.1000,00E 01	0.180000E 04	0.180000E 04 0.300000E 01 0.333567E 00 -0.280074E 02 0.10000E 01	C.18600.E 04	0.150505E 04	C.100,005 61 C.100,006 C1 S.100,005 61 C.100,006 01 0-100,006 01	0.100000E 01 C.100000E 01 0.10000E 01 3.100000E 0. 0.100000E 01	
AND A SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SEC	L= -3.0G0C0E-19 MU T= 0.100CCE-03 RHALF= 0.212F 04 DPDX= -0.	L= -3.00000E-19 MU TP 0.1000CE-03 RHALF# -0.30000E-19 0.212F 04 DPOX# -0.	C. 212F 04 DPDX= -0.  0.212F 04 DPDX= -0.  1.212F  04 DPDX=	C. 10.000006-19 MU T. 0.1000006-03 RHALF0.300006-19 C. 212F O4 DPDX0.  U.LE T/IE RHC/MHCE H/HE SIGNA C. 10.00006 O4 C. 3303006 01 0.33356/TE 00 -0.2800786 02 0.1000006 01 0.1800006 O4 C. 3300006 01 0.33356/TE 00 -0.2800786 02 0.1000006 01	C. 10.00000E-19 MU T. 0.1000CEE-03 RHALF: -0.30000E-19 C. 212F 04 DPDX: -0.  C. 10.0000E 04 C. 300300E 01 0.333547E 00 -0.230078E 02 0.100000E 01 C. 10.0000E 04 C. 300000E 01 0.333547E 00 -0.230078E 02 0.100000E 01 C. 10.00000E 04 C. 300000E 01 0.333547E 00 -0.230078E 02 0.100000E 01 C. 10.00000E 04 C. 300000E 01 0.333547E 00 -0.280078E 02 0.100000E 01 C. 10.00000E 04 C. 300000E 01 0.33547E 00 -0.280078E 02 0.100000E 01 C. 10.00000E 04 C. 300000E 01 0.33547E 00 -0.280078E 02 0.100000E 01	C. 12.2 F 04 DPDX= -0.  0.21.2 F 04 DPDX= -0.  0.22.2 F 04 DPDX= -0.	L= -3.00000E-19 MU T= 0.1006CE-03 RHALF= -0.30000E-19 0.212F 04 DPOX= -0. 0.212F 04 DPOX= -0. 0.212F 04 DPOX= -0. 0.31354TE 00 -0.280078E 02 0.10000E 01 0.180000E 04 C.30000E 01 0.33354TE 00 -0.280078E 02 0.10000E 01 0.180000E 04 C.30000E 01 0.33354TE 00 -0.280078E 02 0.10000E 01 0.180000E 04 C.30000E 01 0.33354TE 00 -0.280078E C2 0.100000E 01 0.180000E 04 C.30000E 01 0.33354TE 00 -0.280078E C2 0.100000E 01 0.180000E 04 C.30000E 01 0.33354TE 00 -0.280078E C2 0.100000E 01	C. 12 F 04 DPDX = -0.  C. 12 F 04 DPDX = -0.  C. 16 DDDX = -0.  C. 16 DDDX = -0.  T/TE RFC/PHICE H/HE 2 S. IGHA 01  C. 16 DDDX = -0.  C. 16 DDX = -0.  C. 16 DX	L= -3.00000E-19 MU T= 0.1000CE-03 RHALF= -0.30000E-19  0.212F 04 DPDX= -0.  0.10000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300300E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300000E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300000E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300000E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.300000E 01 0.33354FE 00 -0.280078E 02 0.100300E 01  0.180000E 04 C.30000E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.30000E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.30000E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.18000E 04 C.30000E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.18000E 04 C.30000E 01 0.33354FE 00 -0.280078E 02 0.100000E 01  0.18000E 04 C.30000E 01 0.33354FE 00 -0.280078E 02 0.10000E 01	C.180000E-19 MU TP 0.100CCE-03 RHALF= -0.30000E-19  0.212F 04 DPDX= -0.  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01  0.180000E 04 C.300300E 01 0.333567E 00 -0.280078E 02 0.100000E 01	L= -3.00000E-19	C.12 F 04 DPDX= -0.  C.12 F 04 DPDX= -0.  C.16 000CE 04 C.33030CE 01 C.33356 F 00 -0.28078E 02 C.16000CE 01  C.18 000CE 04 C.33030CE 01 C.33356 F 00 -0.28078E 02 C.16000CE 01  C.18 000CE 04 C.33030CE 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.3000CG 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.3000CG 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.3000CG 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.33356 F 00 -0.280078E 02 C.10000CE 01  C.18 000CE 04 C.300CGC 01 C.3356 F 00 -0.280078E 02 C.10000CE 01  C.18 00CE 04 C.300CGC 01 C.3356 F 00 -0.280078E 02 C.10000CE 01  C.18 00CE 04 C.300CGC 01 C.300CGC 01 C.10000CE 01  C.18 00CE 04 C.300CGC 01 C.3356 F 00 -0.280078E 02 C.10000CE 01  C.18 00CE 04 C.300CGC 01 C.3356 F 00 -0.280078E 02 C.10000CE 01  C.18 00CE 04 C.300CGC 01 C.3356 F 00 -0.280078E 02 C.10000CE 01  C.18 00CE 04 C.300CGC 01 C.000CC 01 C.100COCE 01  C.18 00CE 04 C.300CGC 01 C.000CC 01 C.100COCE 01  C.18 00CE 04 C.300CGC 01 C.100CCC 01 C.100CCC 01  C.18 00CE 04 C.300CGC 01 C.100CCC 01 C.100CCC 01  C.18 00CE 04 C.300CGC 01 C.100CCC 01 C.100CCC 01  C.18 00CE 04 C.100CCC 01 C.100CCC 01 C.100CCC 01 C.100CCCC 01 C.100CCCC 01 C.100CCCC 01 C.100CCCC 01 C.10CCCCC 01 C.100CCCC 01 C.100CCCC 01 C.100CCCC 01 C.100CCCC 01 C.10

TABLE A-IV. TYPICAL OUTPUT DATA (Concluded)

-	- 1		١		İ		1		į		İ			
PAGE													l	
TYPICAL TURBOJET ATACRAFT - SEA LEVEL CCHOITIONS - 900 DEG EGT STATIC PAGE													:	
5	1		Ì		ļ		İ		ĺ				1	
23	١					l					1			
	- 1		1											
Š			Į				ļ				1			
S			Ī			Ì								
5														
9		Ξ:	=	=	=	۲	7	16	ಕ	5	<u>ۃ</u>			
8		) = 38	BE	Ę,	Ĭ	Į,	<u>.</u>		¥	Ĭ,	Ě			
VEL	<b>12C</b>	10-3861°2	.158E-01	-158E-01	158E-0	1.58F-01	.15RE-01	10-3851	158E-01	158E-01	158E-01	•	٠	
<b>4</b> .		Ì	u	u	G	U	ý	ĭ	•	·	~		_	
SEA		6	ទុ	7	5	0.5206-01	9	ទ	D. 520£-C1	ទុ	ş	£. \$€0€-€3	5	
1	2	222	22	200	200	200	520E-01	1:5206-む	220	,20E	200	င္တ	Š	
ŽŽ.	C02	C. 520E-01	j	å	0	Ö	ئ	þ	ô	ò	ò	ဒ	3	
<u>ي</u>		B	ខ	ខ	ខ	3	ខ	ខ្ល	8	3	ខ	8	8	
<b>₹</b> }		0.753€ 60	36	3	¥	×	C. 753E C	낡	C. 753E 00	0.753E"00	. 753E	175 BE	9	
30	2	5	. 75	3.753E	52.	. 75	. 35	<u>-</u>	. 75	Ë	5.5	3	7.	
3		Γ.	:.	.,	0	٠.		Ĭ.	.,	9	.,	.,	9	
, ,		20 36112	ĕ	ŏ	30	ŏ	ŏ	Ē.	ŏ	ŏ	Š	Š	π, 9	
2,	~	E	175	Ξ	17.51	C. 175F	C-175E	C-175E	0. 175E	071755	17.5	3:23.E	1.232E,	
7	05	ŝ	ó	ပ	ó	3	ပ	۲	ö	6	ċ	6	ö	
į	5	H	8	m	•	'n	•	1	80	0	2	Ξ	<b>1</b> ′2	

Security Classification			
DOCUMENT CONT	ROL DATA - R	B. D	
(Security classification of title, body of abstract and indexing	annotation must be e		
Advanced Sensors Laboratory		1	ECURITY CLASSIFICATION
Research and Engineering Pirectorate U. S. Army Missile Command		Unclass	ifica
Redstone Arsenai, Alabama 35809		NA	
B REPORT TITLE	~	J WA	
		011 BB01	**************************************
AN ANALYTICAL MODEL FOR PREDICTING	THE RADIATI	ON FROM	JET PLUMES IN THE
MID-INFRARED SPECTRAL REGION			
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)			
Technical Report			
5. AUTHORIS) (First name, middle initial, last name)			
H. Tracy Jackson			
			•
. MEPORT DATE	78. TOTAL NO. O	PAGES	7b. NO. OF REFS
1 April 1970	66		7
SE. CONTRACT OR GRANT NO	SA. ORIGINATOR'S	REPORT NUM	TO E PI (3)
	RE-TR-	707	. (
, b. PROJECT NO. (DA) 1M2623xxA204	KE-IK-	10-1	
AMC Management Structure Code No.			
522C, 11, 146	RT NO(S) (Any o	other numbers that may be nealgned	
	•		
G. 10. DISTRIBUTION STATEMENT	AD		· · · · · · · · · · · · · · · · · · ·
This document is subject to special export con	trale and each	tranemitt	al to foreign
governments or foreign nationals may be made			
ATTN: AMSMI-RE.	only with pri	or approva	i or this Command,
ATTIN: AMONIPACE	112. SPONSORING	ALLITARY ACT	IVITY
NI	4		•
None	Same as	No, 1	·
			,
13. ABSTRACT,	<del></del>	<del>,</del>	
This report describes an analytical mo			
from a jet plume in the mid-infrared spectral	region. It is	assumed th	nat the dominant radia-
tion arises for the CO2 molecule. Results are	therefore rep	orted for t	he 4.3-micrometer
band of gaseous carbon dioxide which is assum	ed to cover th	e spectral	region 2050 to
2400/cm ⁻¹ (4.17 - 4.88 micrometers). The te			
200° to 2100°K. The objective of the reported			
for predicting radiant energy emissions which			
, = = = = = = = = = = = = = = = = = = =			
culation. A description is given of both the ra-			
described program provides both the spectral	ana spatiai int	ensity dist	ributions of the emitted
radiation.	-1	, ,	
		,	· · · · · · · · · · · · · · · · · · ·
·			
,	,		,
	·	•	
		•	İ

DD FORM 1473 REPLACES DO FORM 1475, 1 JAN 64, WHICH IS

UNCLASSIFIED

63

### UNCLASSIFIED

14.	urity Classification	LIN	K A	LIN	K B	LIN	кс
	KEY WORDS	ROLE	WT	ROLE	WT	ROLE	WT
Jet plu	ıme radiation			]	ļ	)	
Mid-ir	nfrared spectral region		j				
CO ₂ m	olecule	ļ	ĺ			İ	
Radiar	nt energy emission	- }	l	<b>}</b> .			
Flow 1	ield model		ļ	}			
			1	•			
				1			
		}	ļ	}			
				Ì		}	
		1	1	1		1	
				1			
							<b>i</b>
			İ			1	ļ
			}	1		}	
			}	l		1	i
				ł		į	
				ł	İ	1	
,	,	l		}		į	
		1	}	1		}	
			,			1	
				[		{	
		- 1		]	ļ	}	
		<b>'</b>		1		ļ	ļ
	·	- [	<u>[</u>	{	,	[	
			,	1		<b>!</b> :	
	,	j	ļ	] .	<u>.</u>	j	
		1.		}	ĺ	1	• 1
		ĺ				1	1
	•			l		1	
	_	}	]	1		} .	]
•	,						, ,
		1		ľ		1	
		}					
					·		
<u>'</u> .							
. *		1		1		1	
	• •	1	].	1.			
•		į			'		[
		1	[	·	ļ.		
				٠ .	ľ		
	بيرين مسيرة سيرم ميروسي والمسيرة سينا المسيرة المسيرة المسيرة المسيرة المسيرة المسيرة المسيرة المسيرة		<u> </u>	حرسيا	Li	<u> </u>	

64

UNCLASSIFIED
Security Classification