AUDO - Autonomous Unmanned Driving Object

TECHNISCHE UNIVERSITÄT DARMSTADT

Abschlusspräsentation

Nils Wittig, iST
Fabian Burger, iST
Ramona Volz, Wi-Etit
Maike Latsch, iST
Nikolas Ziegelmayer, Etit

Real-Time Systems Lab Prof. Dr. Andy Schürr

> Merckstr. 25 64283 Darmstadt Germany

Gliederung

- Organisation
- Hardware
- Bildverarbeitung
- Regelungstechnik
 - Hinderniserkennung und Spurwechsel
 - "race mode"
- Probleme
- Fazit und Ausblick

Organisation des Teams

- Versionsverwaltung mit GitHub
- Aufgabenverwaltung mit Trello

Gruppentreffen

- Regelmäßige wöchentliche Treffen
- Flexible Treffen zur Aufgabenbearbeitung

Optimierung der Hardware

- Anbringung von LED-Beleuchtung zur Verbesserung der Kamerabilder
- Erstellung einer modularen 3D-gedruckten Kamerahalterung im Rapid-Prototyping-Verfahren
- Anbringung einer goldfarbenen Holztafel mit dem Gruppenlogo

Bildverarbeitung I

1. Bild aufnehmen

2. Vogelperspektive

3. Zuschneiden

8. Publishen der Marker Koordinaten

4. Farbfilterung

7. Hinderniserkennung

6. Marker setzen

5. Weichzeichnen

Bildverarbeitung II

1. Bild aufnehmen

- 2. Vogelperspektive
- 3. Zuschneiden

- 4. Farbfilterung
- 5. Weichzeichnen
- 6. Marker setzen
- 7. Hinderniserkennung

Markerpositionierung

- Motivation:
 - Orientierung auf Fahrspur
 - Kurvenerkennung
- Positionierung der drei Marker in äquidistanter Höhe

Hinderniserkennung

- Farbfilterung nach orangener Farbe
- Algorithmus sucht nach zwei vertikalen Linien
- Markieren der Hindernisränder

Regelungstechnik und Spurhaltung

- Zwei Fahrmodi:
 - Fahrmodus mit Hinderniserkennung und Spurwechsel ("drive mode")
 - Fahrmodus mit optimierter Geschwindigkeit für das Rennen ("race mode")

Gemeinsame Komponenten	Unterschiede
 Bildverarbeitung Kollisionsvermeidung Aufteilung der Strecke in verschiedene Abschnitte (Kurven, Geraden) Strukturvariabler PD-Regler mit situationsabhängiger Umschaltung 	 Parametrierung des PD-Reglers Hinderniserkennung Spurwechsel

Aufbau und Funktionsweise des Reglers

- Strukturvariabler PD-Regler
- Vorteil: der Regler kann für jede Situation unabhängig optimiert werden
- Zwei zusätzliche Zustände sorgen für einen sanften Übergang zwischen Kurven- und Geradeausfahrt
- Glättung und Begrenzung der Führungs- und Stellgrößen führt zu einem ruhigen Fahrverhalten
- Erkennung der Fahrsituation anhand von Kameradaten

Umschaltung zwischen Kurven- und Geradenregler

Fahrmodus 1: Hinderniserkennung und Spurwechsel ("drive mode")

- Konstante Fahrgeschwindigkeit
- Fahrzeugposition wird durch den PD-Regler geregelt
- Bezugspunkt der Regelung ist die jeweils äußere Markierung der aktuellen Fahrspur (grüne Linie)
- Hinderniserkennung läuft permanent

Hindernis im Sichtfeld der Kamera

Vergleich der Position von Hindernis und **Fahrspur**

Wenn Hindernis auf Fahrspur: Einleitung des Spurwechsels

Umschaltung auf Standardregler

Kurzzeitige Umschaltung auf aggressiveren Regler

Maximaler Lenkeinschlag in die gewünschte Richtung

Fahrmodus 2: optimierte Geschwindigkeit ("race mode")

- Dynamische Geschwindigkeitsanpassung in Abhängigkeit der Fahrsituation
- Fahrzeugposition wird durch den PD-Regler geregelt
- Bezugspunkt der Regelung ist immer die äußere Markierung der Rennstrecke
- Abstand zum Fahrbahnrand vergrößert
- Hinderniserkennung ist deaktiviert

Probleme und verworfene Ansätze

Probleme

- Bildprobleme mit der Kinect
- Belichtungskorrektur der Weitwinkelkamera nicht abschaltbar
- Begrenzung des Lenkwinkels durch das Gehäuse
- Falschwerte des Front-Ultraschallsensors

Verworfene Ansätze

- Einbeziehung der Odometriedaten zur Positionsbestimmung
- Bildfilterung und Edge Detection mit Canny
- Contour Detection und malen des kleinsten umrandenden Rechtecks

Fazit und Ausblick

- Relativ robuste ruhige Regelung
- Großer Einfluss der Lichtverhältnisse

- Standardisierte Halterung der Weitwinkelkamera entwickeln
- Work-Around für Belichtungseinstellung

Team AUDO dankt für Ihre Aufmerksamkeit

