Corrigé première session 2018

Question de cours. Soit \vec{u} un vecteur de coordonnées (x_u, y_u, z_u) et \vec{v} un vecteur de coordonnées (x_v, y_v, z_v) . Le produit vectoriel $\vec{u} \wedge \vec{v}$ a pour coordonnées

$$(y_u z_v - z_u y_v, z_u x_v - x_u z_v, x_u y_v - y_u x_v).$$

Exercice 1. 1. L'image de la partie A est définie par

$$f(A) = \{ y \in F \mid \exists x \in A, y = f(x) \} = \{ f(x), x \in A \}.$$

2. L'image réciproque de la partie B est définie par

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \}.$$

3. Soit $x \in A$. La seconde égalité de la question 1 implique que $f(x) \in f(A)$. Donc $x \in f^{-1}(f(A))$. Donc on a démontré

$$\forall x \in A, \quad x \in f^{-1}(f(A))$$

c'est-à-dire $A \subset f^{-1}(f(A))$.

4. Soit $x \in E$ tel que $f(x) \in f(A)$. Par définition de f(A), il existe $x' \in A$ tel que f(x) = f(x'). Comme f est supposée injective, x = x' ce qui prouve que $x \in A$. On a obtenu l'assertion

$$\forall x \in E, \quad f(x) \in f(A) \Rightarrow x \in A.$$

Mais pour $x \in E$ les assertions $f(x) \in f(A)$ et $x \in f^{-1}(f(A))$ sont équivalentes. On obtient donc que

$$\forall x \in f^{-1}(f(A)), \quad x \in A$$

c'est-à-dire $f^{-1}(f(A)) \subset A$. Comme la question 3 nous donne l'inclusion inverse, cela prouve que, dans ce cas,

$$A = f^{-1}(f(A)).$$

5. On suppose ici que f n'est pas injective. Il existe donc deux éléments distincts x_1 et x_2 de E tels que

$$f(x_1) = f(x_2).$$

Donc $f(x_2) \in \{f(x_1)\} = f(\{x_1\})$ ce qui prouve que

$$x_2 \in f^{-1}(f(\{x_1\})).$$

6. Par la question 4, si f est injective,

(50)
$$\forall A \in \mathfrak{P}(E), \quad A = f^{-1}(f(A)).$$

Par la question 5, si f n'est pas injective, il existe $x_1 \in E$ tel que

$$\{x_1\} \neq f^{-1}(f(\{x_1\})),$$

ce qui donne une partie A de E telle que $A \neq f^{-1}(f(A))$. Cela prouve la contraposée de la réciproque. En conclusion on a démontré que f est injective si et seulement si l'assertion (50) est vérifiée.

Exercice 2. 1. Pour tout nombre réel t, on a que $\cos(t) \in [-1, 1]$ et donc $|\cos(t)| \le 1$. Par conséquent, si $t \in \mathbf{R}_+^*$, on obtient les inégalités

$$|f(t)| = \left|t\cos\left(\frac{1}{t}\right)\right| = |t|\left|\cos\left(\frac{1}{t}\right)\right| \leqslant |t|.$$

Si t = 0, alors |f(t)| = 0 = |0|. Donc

$$\forall t \in \mathbf{R}, \quad |f(t)| \leq |t|.$$

2. Par la question précédente, on a les inégalités

$$\forall t \in \mathbf{R}, \quad -|t| \leqslant f(t) \leqslant |t|.$$

Comme la fonction $t\mapsto |t|$ tend vers 0 quand t tend vers 0, le théorème des gendarmes implique que f admet la limite 0 en 0.

3. Soit $t \in \mathbf{R}_+^*$. La relation $\cos\left(\frac{1}{t}\right) = 0$ équivaut à $\frac{1}{t} \equiv \frac{\pi}{2}$ [π] ce qui revient à dire qu'il existe $k \in \mathbf{Z}$ tel que $\frac{1}{t} = \frac{\pi}{2} + k\pi$, c'est-à-dire

$$t = \frac{1}{\frac{\pi}{2} + k\pi}.$$

Comme ce nombre est strictement positif si et seulement si $k \ge 0$, on obtient

$$A = \left\{ \frac{1}{\frac{\pi}{2} + k\pi}, k \in \mathbf{N} \right\}.$$

4. De manière analogue, la relation $\cos\left(\frac{1}{t}\right) = -1$ équivaut à $\frac{1}{t} \equiv \pi$ [2 π] c'est-à-dire à l'existence de $k \in \mathbf{Z}$ tel que

$$t = \frac{1}{\pi + 2k\pi}.$$

On obtient

$$B = \left\{ \frac{1}{\pi + 2k\pi}, k \in \mathbf{N} \right\}.$$

5. On fixe $\eta \in \mathbf{R}_{+}^{*}$. Soit $k \in \mathbf{N}$ on a l'équivalence

$$0<\frac{1}{\frac{\pi}{2}+k\pi}<\eta \Leftrightarrow k>\frac{1}{\eta\pi}-\frac{1}{2}.$$

Il suffit donc de poser $k_0 = \left\lfloor \frac{1}{\eta \pi} + \frac{1}{2} \right\rfloor$ pour obtenir un élément $\frac{1}{\frac{\pi}{2} + k_o \pi}$ de A strictement inférieur à η .

De même, si on pose $k_1 = \left\lfloor \frac{1}{\eta 2\pi} + \frac{1}{2} \right\rfloor$ cela fournit un élément $\frac{1}{\pi + 2k_1\pi}$ de B strictement inférieur à η .

6. Pour tout $t \in \mathbf{R}_+^*$ le taux d'accroissement de la fonction f entre 0 et t est donné par

$$g(t) = \frac{f(t) - f(0)}{t} = \cos\left(\frac{1}{t}\right).$$

En particulier, on obtient que $g_{|A}$ est la fonction constante nulle et $g_{|B}$ est la fonction constante de valeur -1. Raisonnons par l'absurde en supposant que f est dérivable en 0. Alors la fonction g admet la limite f'(0) en 0. Par la question 5, 0 est adhérent à A et B. Comme la limite est conservée par restriction et que la limite d'une fonction constante est la valeur de cette fonction, on obtient que 0 = f'(0) = -1 ce qui est absurde. Donc la fonction f n'est pas dérivable en 0.

Exercice 3. 1. En utilisant la définition de u_n , on obtient

$$u_0 = \frac{2 \times 0}{1} = 0$$
, $u_1 = \frac{2 \times 1}{2} = 1$ et $u_2 = \frac{2 \times 1}{3} + \frac{2 \times 2}{3} = \frac{6}{3} = 2$.

2. Par la formule sur la somme des entiers, on obtient

$$\sum_{k=0}^{n} \frac{2k}{n+1} = \frac{2}{n+1} \sum_{k=0}^{n} k = \frac{2n(n+1)}{(n+1) \times 2} = n.$$

Exercice 4. 1. $|-7+24i| = \sqrt{49+576} = \sqrt{625} = 25$.

2. On résoud le système

$$\begin{cases} x^2 + y^2 = |-7 + 24i| = 25 \\ x^2 - y^2 = -7 \\ xy > 0 \end{cases} \Leftrightarrow \begin{cases} x^2 = 9 \\ y^2 = 16 \\ xy > 0 \end{cases}$$

Les racines carrées de -7 + 24i sont donc -3 - 4i et 3 + 4i.

3. On veut résoudre l'équation

$$z^2 + z + 2 - 6i = 0.$$

Son discriminant est donné par

$$\Delta = 1 - 4(2 - 6i) = -7 + 24i.$$

Par la question précédente les deux solutions de l'équation sont donc

$$\frac{-1-3-4i}{2} = -2-2i$$
 et $\frac{-1+3+4i}{2} = 1+2i$.

Exercice 5. 1. Le vecteur \overrightarrow{AB} a pour coordonnées (-2, -1) et le vecteur \overrightarrow{AC} a pour coordonnées (2, -2).

2. La droite \mathscr{D} , passant par A et de vecteur directeur \overrightarrow{AB} a pour équation

$$\begin{vmatrix} -2 & (x-1) \\ -1 & (y-2) \end{vmatrix} = 0$$

c'est-à-dire

$$x - 2y + 3 = 0.$$

- 3. On aplique l'équation aux coordonnées de C, ce qui donne $3+3=6\neq 0$. Donc les points A, B et C ne sont pas alignés.
- 4. Par les questions précédentes.

$$d(C, \mathcal{D}) = \frac{|6|}{\sqrt{1+4}} = \frac{6}{5}\sqrt{5}.$$

5. Le vecteur $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ a pour coordonnées

$$(1 - x_G - 1 - x_G + 3 - x_G, 2 - y_G + 1 - y_G + 0 - y_G)$$

soit
$$(3 - 3x_G, 3 - 3y_G)$$
.

6. Par la question précédente, le point G vérifie la condition

$$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = 0$$

si et seulement si ses coordonnées vérifient le système

$$\begin{cases} 3x_G - 3 = 0 \\ 3y_G - 3 = 0 \end{cases}$$

ce qui équivaut à $(x_G, y_G) = (1, 1)$ ce qui prouve qu'il existe un unique tel point G, de coordonnées (1, 1).

7. On a les égalités

$$AM^{2} + BM^{2} + CM^{2} = (x-1)^{2} + (y-2)^{2} + (x+1)^{2} + (y-1)^{2} + (x-3)^{2} + y^{2}$$
$$= 3x^{2} + 3y^{2} - 6x - 6y + 16$$

8. Par la question précédente, le point M de coordonnées (x,y) appartient à l'ensemble $\mathscr C$ si et seulement si ses coordonnées vérifient

$$3x^2 + 3y^2 - 6x - 6y = -3$$

ce qui équivaut à

$$x^2 + y^2 - 2x - 2y = -1$$

ou encore à

$$(x-1)^2 + (y-1)^2 = 1.$$

L'ensemble $\mathscr C$ est donc un cercle de centre G et de rayon 1. Comme $AG = \sqrt{0+1} = 1$, le cercle passe par le point A.