

Post-Quantum Stateful Hash-Based Signature Scheme for Improving **Bluetooth Security**

Arron Lu, Ian Lieu, Peter Anthony, Andres Colon

Advisor: Professor Mohamed El-Hadedy Assistant Professor, ECE-department, College of Engineering California State Polytechnic University, Pomona Team: Post-Quantum On-Chip

cognitive computing

RECOIDT RECONFIGURABLE INTERNET OF THINGS

Motivation

- Quantum Computers
- Post-Quantum
- Quantum Cryptography
- Hash-Based Signatures
- Shor's Algorithm
- Bluetooth Public-Key Exchange
- IoT/Low-Power Devices

IBM | I ILLINOIS

Post-Quantum

Mosca's Inequality Theorem:

If X + Y > Z, then security is broken

- X: shelf life of existing security standards
- Y: time to migrate from current crypto standards to a quantum-safe environment
- Z: time for a large-scale quantum computer to be built

[1] Dr. Michele Mosca "Cybersecurity in a quantum world: will we be ready?"

Post-Quantum Signatures

[2] T. G. Tan, J. Zhou, "A survey of Digital Signing in the post Quantum Era" (Singapore) University of Technology and Design, Singapore)

LMS: Leighton-Micali Signatures

[3] F. Campos, T. Kohlstadt, S. Reith, M. Stottinger, "LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4"

KELUIU reconfigurae

IRM I ILLINOIS

Hash

SHA-1

SHA-2 (256/512)

SHA-3 (SHAKE)

Lightweight Hash (LWC: Lightweight Cryptography)

GAGE Hash Function

Security Range Greater Than: 2112 or 2128

Low-End IoT Device Security Range: $2^{80} - 2^{96}$

Percentage of Time Spent on Hashing

	HSS	$\mathtt{XMSS}^{MT}\mathtt{SIMPLE}$
key gen	92%	85%
sign	92%	85%
verify	94%	85%

[3] Campos, Kohlstadt, Reith, Stottinger, "LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4"

	FPGA			ASIC					
LWC design	Chip	Max.Freq (MHz)	LUT	FF	Technology	Area (G.E)	Max.Freq (MHz)	Power (μW)	Energy (nJ per bit)
Micro-GAGE	Artix-7	250	226	120	32/28 nm	~2027	909	164	2.058
ACE [1]	Spartan 3	181	381	327	TSMC 65 nm	~4600	705	_	20.1
WAGE [2]	-	_	-	-	TSMC 65 nm	~3290	1120	_	13.0
Subterranean 2.0 [6]	-	ı	-	-	STMicroelectronics 40 nm	~4165.5	100	432.4	-

[4] M. El-Hadedy, M. Margala, S. Mosanu, D. Gligoroski, J. Xiong, W-M. Hwu "Micro-GAGE: A Low-power Compact GAGE Hash Function Processor for IoT Applications", 27th IEEE International Conference on Electronics, Circuits, Systems (ICECS2020), Glasgow, Scotland, November 23-25, 2020

Bluetooth

Figure 3-8. Bluetooth AES-CCM Encryption Procedure

[5] "NIST Special Publication 800-121 Revision 2, Guide to Bluetooth Security"

RECOIDT

Our Goal

- IoT Communication with Post-Quantum Security
- Hash-Based Signature Scheme Acceleration

Hardware:

- PYNQ-Z1 SoC
- ESP-WROOM-32 (ESP32) Pmod

[6] J. Monson, "Implementing high-performance, low power FPGA-based optical flow accelerators in C"

Test Results: LMS

Implementation	Function	Run Time		
Desktop	Key Generation	5 minutes		
SHA-2	Signing	< 1 second		
(SHA-256)	Verifying	< 1 second		
PYNQ-Z1	Key Generation	3 hours		
SHA-2	Signing	1 minute		
(SHA-256)	Verifying	< 1 second		
Desktop	Key Generation	7 minutes		
SHA-3	Signing	3 seconds		
(SHAKE-256)	Verifying	< 1 second		

LMS Functions

```
ubuntu@arm:~/hash-sigs$ ./demo
Usage:
    ./demo genkey [keyname]
    ./demo genkey [keyname] [parameter set]
    ./demo sign [keyname] [files to sign]
    ./demo verify [keyname] [files to verify]
    ./demo advance [keyname] [amount of advance]
```


Specifications:

Desktop: Intel Core i7-6700K CPU @ 4.00GHz, 16GB DDR4 PYNQ-Z1: Cortex-A9 ARM Processor @650MHz, 512MB DDR3

center for cognitive computing systems research

CalPoly Pomona

Demo

_ systems research

Future Works

LMS

- Replace Open-SSL SHA-256 in software with a SHA-256 hardware core

 Develop a lightweight hash compatible with LMS
- Bluetooth
 - Implement a fully functioning Btstack onto bluetooth device
 - Replace authentication model, AES to LMS

References

- 1. Dr. Michele Mosca "Cybersecurity in a quantum world: will we be ready?"
- T. G. Tan, J. Zhou, "A survey of Digital Signing in the post Quantum Era" (Singapore University of Technology and Design, Singapore)
- 3. F. Campos, T. Kohlstadt, S. Reith, M. Stottinger, "LMS vs XMSS: Comparison of Stateful Hash-Based Signature Schemes on ARM Cortex-M4"
- 4. M. El-Hadedy, M. Margala, S. Mosanu, D. Gligoroski, J. Xiong, W-M. Hwu "Micro-GAGE: A Low-power Compact GAGE Hash Function Processor for IoT Applications", 27th IEEE International Conference on Electronics, Circuits, Systems (ICECS2020), Glasgow, Scotland, November 23-25, 2020
- 5. "NIST Special Publication 800-121 Revision 2, Guide to Bluetooth Security"
- 6. J. Monson, "Implementing high-performance, low power FPGA-based optical flow accelerators in C"

Acknowledgement

This research was supported in part by:

- Xilinx Inc.
- Center for Cognitive Computing Systems Research (C3SR)
- US Air Force Research Laboratory, Academy Center for Cyberspace

lan Lieu

Arron Lu

Peter Anthony

Andres Colon

