第十章 本章历学年期末试题

1.	(2017 年) 微分方程 $(x+y)$ d $y=x$ arctan $\left(\frac{y}{x}\right)$ d x 是 () (A) 可分离变量微分方程 (B) 一阶线性非齐次方程				
	(C) 齐次方程	, 73 II	(D) 前面三种都不是		
2.	(2016年) 微分方程	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \tan\frac{y}{x}$ 的通	解是()		
	$(\mathbf{A})\sin\frac{y}{x} = \frac{1}{Cx}$	$(B) \sin \frac{y}{x} = x + C$	$(\mathbf{C})\sin\frac{x}{y} = Cx$	$(D) \sin \frac{y}{x} = Cx$	
3.	(2014 年) 函数 <i>y</i> = c	2014 年) 函数 $y = \cos x$ 是下列哪个微分方程的解 ().			
	(A) $y' + y = 0$	(B) $y' + 2y = 0$	(C) $y'' + y = 0$	$(D) y'' + y = \cos x$	
4.	(2013 年)若函数 <i>y</i> =	= e ^{-x} 是方程 <i>y"</i> + <i>a y</i>	y'-2y=0的一个解,	则 <i>a</i> 值等于 () .	
	(A) 0	(B) 1	(C) −1	(D) 2	
5 .	(2013 年)微分方程 $y'' + 4y = \cos 2x$ 的特解形式为 ().				
	$(A) y = A\cos 2x$		(B) $y = A \sin 2x$		
	$(C) y = A\sin 2x + B$	$\cos 2x$	(D) $y = x(A\sin 2x +$	$-B\cos 2x$)	
6 .	(2012 年)若函数 <i>y</i> ₁ =	$= e^{2x}$, $y_2 = e^{-x}$ 是二	二阶常系数齐次线性	微分方程 <i>y"</i> + <i>py'</i> +	
	qy = 0的两个特解,	则 p,q 的值分别等	于().		
	(A) −1,−2	(B) −1,2	(C) 1,−2	(D) 1,2	
7 .	2012 年)微分方程 $y'' - 2y' + 2y = 0$ 的通解为 ().				
	(A) $y = e^{-x}(C_1 \cos x + C_2 \sin x)$		(B) $y = e^x (C \cos x + \frac{1}{2}C \sin x)$		
	$(C) y = e^x (C \sin x +$	$\cos x$)	$(D) y = e^x (C_1 \sin x - C_2 \sin x - C_3 \sin x - C_3 \sin x)$	$-C_2\cos x$	
8.			条件y(0)=1,y'(0)=		
	(A) $y = \frac{1}{2}(e^x + 1)$	(B) $y = \frac{1}{2}(e^{-x} + 1)$	(C) $y = 2 - e^{-x}$	(D) $y = 2e^{-x} - 1$	

- 9. (2010年)若函数 $y = \cos \omega x$ 是方程 $\frac{d^2 y}{dx^2} + 9y = 0$ 的解,则 ω 的值等于 (). (A) ± 1 (B) ± 2 (C) ± 3 (D) ± 4
- **10**. (**2010**年)微分方程y'' 5y' + 6y = 0的通解为().
 - **(A)** $y = C_1 e^{-2x} + C_2 e^{-3x}$
- **(B)** $y = C_1 e^{2x} C_2 e^{3x}$

(C) $y = e^{2x} - e^{3x}$

- **(D)** $v = e^{2x} + e^{3x}$
- 11. (2017年) 微分方程 $y' \sin x = y \cos x \ln y$ 且满足 $y \Big|_{x=\frac{\pi}{2}} = e$ 的解是______
- **12**. (**2015**年) 微分方程 $y'''-x^2y''-x^5=1$ 的通解中应含有独立常数个数为______.
- 13. (2014年) 方程 $y'' = \sin x$ 的通解为
- **14**. (**2012**年)方程 $y'' + y = x \cos 2x$ 的特解形式为
- **15**. (**2011**年)微分方程*y'= x y"*的通解为
- **16**. (**2010**年) 方程 $y'' 2y = e^x$ 的特解形式为
- **17**. (**2017**年)求微分方程 $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$ 的通解.
- **18**. (**2016**年)求微分方程 $\frac{dy}{dx}$ $-2y = e^x + x$ 的通解.
- **19**. (**2015**年) 求微分方程 $xy'-y=1+x^3$ 的通解.
- **20**. (**2014**年)求微分方程 (y^2-2x^2) dx+2xy dy=0 满足初始条件 $y\Big|_{x=1}=1$ 的特解.
- **21**. (**2014**年)求微分方程 $y'' 3y' + 2y = xe^{2x}$ 的通解。
- **22**. (**2013**年)求微分方程 $xy dx + (x^2 + 1) dy = 0$ 满足初值条件 $y|_{x=0} = 1$ 的特解.
- **23**. (**2012**年) (本题满分8分)求微分方程 (x^2+3y^2) dx-2xydy=0的通解.
- **24.** (**2011**年) 求微分方程($y^2 6x$)y' + 2y = 0的通解.
- **25**. (**2011**年)求微分方程 $y'' 4y' + 4y = e^{2x}$ 的通解**.**
- **26**. (**2010**年)求方程 $\frac{dy}{dx} + \frac{y}{x} = \frac{\sin x}{x}$ 的通解**.**