_PRÉ-PROCESSAMENTO: ONEHOTENCODER

#transforma cada valor único em uma coluna categórica em um novo conjunto de colunas binárias, onde cada coluna representa a presença ou ausência desse valor em uma linha de dados.

- > from sklearn.preprocessing import OneHotEncoder
- > colunas_categoricas = ['Migração', 'Sexo','Estrangeiro', 'Necessidades
 educacionais especiais', 'Devedor','Taxas de matrícula em dia', 'Bolsista',
 'Período','Estado civil', 'Curso', 'Qualificação prévia']

#Selecionando apenas as colunas categóricas do dataframe

> df_categorico = df[colunas_categoricas]

#Inicializando o OneHotEncoder

- > encoder = OneHotEncoder(drop='if binary')
- # Ajustando e transformando os dados, criando um novo dataframe com as colunas codificadas
- > df_encoded = pd.DataFrame(encoder.fit_transform(df_categorico).toarray(),
 columns=encoder.get_feature_names_out(columns_categoricas))

#Combinando as colunas codificadas com as colunas não codificadas do dataframe original

> df_final = pd.concat([df.drop(colunas_categoricas, axis=1), df_encoded],
 axis=1)

_DIVISÃO DOS DADOS

#Realiza a divisão dos dados entre treino, validação e teste de forma estratificada

- > X, X_teste, y, y_teste = train_test_split(X, y, test_size=0.15, stratify=y,
 random_state=0)
- > X_treino, X_val, y_treino, y_val = train_test_split(X, y, stratify=y,
 random state=0)

CONJUNTO DE DADOS

TREINO VALIDAÇÃO TESTE

_CRIANDO UM MODELO

#Importa o algoritmo Random Forest Classifier

> from sklearn.tree import RandomForestClassifier

#Inicializa um modelo de árvore de decisão com profundidade máxima de 10

> modelo = RandomForestClassifier(max_depth = 10)

_AJUSTANDO UM MODELO

#Ajusta um modelo usando dados de treinamento > modelo.fit(X_treino, y_treino)

_AVALIANDO UM MODELO

#Avalia a taxa de acerto do modelo usando dados de validação > modelo.score(X_val, y_val)

_FAZENDO PREVISÕES

Fazendo previsões do modelo a partir dos dados de validação > y pred = modelo.predict(X val)

_MATRIZ DE CONFUSÃO

#Importa a função para criação da matriz de confusão > from sklearn.metrics import confusion matrix

#Importa a função para criação da visualização da matriz de confusão 🔯

> from sklearn.metrics import ConfusionMatrixDisplay

#Gerando uma matriz de confusão

> matriz_confusao = confusion_matrix(y_val, y_pred)
> print(matriz confusao)

#Gerando a visualização a partir de uma matriz de confusão

> ConfusionMatrixDisplay(confusion_matrix = matriz_confusao,
 display labels=modelo.classes)

#Gerando a visualização da matriz de confusão a partir dos dados reais e previstos, com os valores normalizados e uma paleta de cores em tons de azul

> ConfusionMatrixDisplay.from_predictions(y_val, y_pred, normalize = 'true',
 cmap = 'Blues');

_MÉTRICAS DE DESEMPENHO

importa a função para gerar o relatório de métricas de classificação

> from sklearn.metrics import classification report

#Gera o relatório de métricas de classificação usando os dados reais e previstos

> classification_report(y_val, y_previsto)

A acurácia mede a proporção de predições corretas (verdadeiros positivos e verdadeiros negativos) em relação ao total de amostras. É uma métrica geral que avalia o desempenho global do modelo, mas pode ser enganosa em problemas de desequilíbrio de classe.

Acurácia =
$$\frac{\bigcirc VP + \bigcirc VN}{\bigcirc VP + \bigcirc VN + \bigcirc FP + \bigcirc FN}$$

A precisão é a proporção de previsões corretas entre todas as previsões positivas feitas pelo modelo. Em outras palavras, ela mede a qualidade das previsões positivas.

Precisão =
$$\frac{\bigcirc VP}{\bigcirc VP + \bigotimes FP}$$

O recall é a proporção de previsões corretas entre todos os exemplos positivos reais. Ela mede a capacidade do modelo de identificar todos os exemplos positivos.

Recall =
$$\frac{\bigotimes VP}{\bigotimes VP + \bigotimes FN}$$

O F1-Score é a média harmônica da precisão e o recall, fornecendo um equilíbrio entre essas duas métricas.

_BALANCEAMENTO DE DADOS

#Importa a função de oversampling com SMOTE

> from imblearn.over sampling import SMOTE

#Inicializa e faz o oversampling de dados com SMOTE

- > oversample = SMOTE(random_state=0)
- > X_balanceado, y_balanceado = oversample.fit_resample(X_treino, y_treino)

_PIPELINE DE DADOS

```
#Importa a função de criação de pipelines 
> from imblearn.pipeline import Pipeline as imbpipeline

#Cria um pipeline de oversampling com SMOTE e um modelo de ML
> pipeline = imbpipeline([('oversample', SMOTE()), ('modelo', modelo)])
```

_VALIDAÇÃO CRUZADA

importa a função do StratifiedKFold

> from sklearn.model_selection import StratifiedKFold

inicializa o KFold estratificado com 5 folds e embaralhamento dos dados

> skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=0)

importa a função de validação cruzada para resultados das métricas e tempo de execução

> from sklearn.model_selection import cross_validate

realiza a validação cruzada para resultados das métricas

> cv_resultados = cross_validate(pipeline, X, y, cv=skf, scoring='recall_weighted')

> cv_resultados['test_score']

