

Algoritmo DES

- DES "Data Encryption Standard"
- Antigo padrão para uso no governo federal dos EUA
- Padrão definido pelo NIST (National Institute of Standards and Technologies)

Algoritmo DES - Histórico

- 1977: Adotado como padrão para o governo federal (EUA), exceto para informações secretas/militares
- 1994: NIST reafirma a utilização do DES para uso federal nos EUA por mais 5 anos (até 1999)
- 1997: NIST requisita propostas para um novo algoritmo:
 - AES: Advanced Encryption Standard
 - www.nist.gov/aes

5

Algortimos DES - Encriptação Encriptação Bloco: 64 bits Chave de 56 bits 6

Algortimos DES - Problemas

- Problemas
 - Atualmente é considerado um algoritmo extremamente inseguro, principalmente para atividades financeiras

A Força do DES

 Custo da Máquina
 Tempo de Busca

 \$100.000
 36 minutos

 \$1.000.000
 3,5 minutos

 \$10.000.000
 21 segundos

CUSTOS - DES

- Custo de Decodificação
 - 486 a 66 MHz pode encriptar 344 Kbytes/s
 - Chip VLSI específico para DES pode encriptar 64 Mbytes/s

CRÍTICAS AO DES

- Padronização de um algoritmo de criptografia
 - Padrão para uso federal EUA, execeto para informações secretas/militares
 - Largamente utilizado motivado principalmente pela padronização
 - A padronização deixa o algoritmo especialmente vulnerável já que torna o desenvolvimento de técnicas de criptoanálise atraente pois permite sua utilização em diversos segmentos
 - Viabiliza a construção de uma máquina específica

CRÍTICAS AO DES

- Número de bits (do bloco e da chave)
 reduzido:
 - É a principal crítica ao algoritmo
 - Redução ocorreu no número de bits do bloco e da chave
 - Com uma chave de comprimento de 56 bits existem 2⁵⁶ possíveis chaves (aprox. 7,2 x 10¹⁶)
 - Utilizando força bruta e realizando 1 encriptação por us (1973), levaria 1.142 anos.
 - Atualmente é relativamente fácil de quebrar.

11

CRÍTICAS AO DES

- Redução do Número de bits (continuação)
 - Em 1977 foi mostrada a possibilidade de construção de uma máquina específica.
 - Custo: US 20 milhões
 - 1 milhão encriptações/us
 - Demoraria 10 horas para a "quebra"
 - Em 1993 (Michael Wienner) foi mostrado que era possível construir uma máquina que utilizava ataque "plaintext Conhecido" que demoraria:
 - 35 horas : Custo de US 100 mil
 - 3,5 horas : Custo de US 1 milhão
 - 21 minutos : Custo de US 10 milhões
 - Provavelmente agências de inteligência dos governos possui este hardware.

CRÍTICAS AO DES

■ S-BOX

- Existem módulos internos chamados de S-BOX que podem ter sido definidos (pelo NIST e IBM) utilizando um determinado algoritmo
- Se isto realmente ocorreu, facilitaria a criptoanálise.
- Serviços de Inteligência dos EUA
 - A definição de um padrão evitaria o surgimento de vários algoritmos de criptografia, facilitando o trabalho das agências de inteligência

Modos de Operação do DES

■ ECB: Eletronic CodeBook Mode

■ CBC: Cipher Block Chaining Mode

■ CFB: Cipher FeedBack Mode

■ OFB: Output FeedBack Mode

Modos de Operação do DES

- ECB: Eletronic CodeBook Mode
 - É o modo mais simples de operação
 - Encriptação por bloco de 64 bits
 - Cada bloco é encriptado de forma independente utilizando uma mesma chave
 - O termo codebook é usado porque, dada uma chave existe um único ciphertext para cada bloco de 64 bits de plaintext.

Modos de Operação do DES

- ECB: Características
 - Ideal para mensagens pequenas
 - Inseguro para mensagens grandes
- ECB: Problemas
 - Um mesmo bloco (64 bits) sempre é codificado da mesma forma.

MODOS DE OPERAÇÃO DO DES

- CBC: Cipher Block Chaining Mode
 - Permite que um mesmo bloco de plaintext (64 bits) produza encriptações diferentes.
 - Cada bloco a ser cifrado é alterado em função da cifragem anterior
 - Como na primeira iteração, não existe encriptação anterior, uma sequência de 64 bits (Vetor Inicial) é utilizado)
 - o VI (Vetor Inicial) deve ser conhecido tanto por ambas as partes, asssim como a chave.
 - Características:
 - · Pode ser utilizado na criptografia de mensagens grandes
 - Pode ser utilizado para autenticação.

17

Modos de Operação do DES

- CFB: Cipher FeedBack Mode
 - Permite utilização em sistemas onde o bloco básico não seja de 64 bits.
 - Permite operação on-line, ou seja, se um bloco básico precisa ser transmitido ele pode ser imediatamente codificado e transmitido.
 - Aplicação distribuída: duas entidades A e B
 - Unidade básica da informação trocada é o byte. Ex.
 Acontece no TELNET.

MODOS DE OPERAÇÃO DO DES

- CFB: Cipher FeedBack Mode
 - Se utilizado o modo CBC existiria duas opções:
 - Transmitir imediatamente, completando os restants dos bits com zero. (Sobrecarga de comunicação).
 - Transmitir somente quando fosse completado 64 bits de dados. (impossível de utilizar em algumas aplicações)
 - Problemas:
 - A criptografia de um bloco do plaintext Pi, é realziada em função das encriptações anteriores (misturados XOR).
 - Se o ciphertext transmitido corromper 1 bit, toda a mensagem a partir desse ponto é afetada.

19

Modos de Operação do DES

- OFB: Output FeedBack Mode
- Similar ao CFB
- Erros na transmissão não são propagados, não inviabilizando a decriptação do restante da mensagem.

Triplo DES (3-DES)

- Dois tipos de implementação
 - Com chave de 168 bits (3 chaves de 56 bits)
 - Com chave de 112 bits (2 chaves de 56 bits)
 - Segundo estágio é uma decriptação
 - Permite manter compatibilidade com DES simples. Neste caso basta fazer K₁ = K₂.

ALGORITMO IDEA

- o International Data Encription Algorithm
- o Desenvolvido por Xuejia Lai & James Massey
- o "Swiss Federal Institute of Technology", Zurich, 1991
- o Patenteado mas com permissão para uso não comercial.
- o Considerado "forte".

IDEA - PRINCIPAIS CARACTERÍSTICAS

o Comprimento do bloco:

- Deve ser longo o suficiente para deter análise estatística
- Blocos de 64 bits.

o Comprimento da chave:

- Deve ser longa o suficiente para prevenir força bruta
- Chaves de 128 bits

31

IDEA - PRINCIPAIS CARACTERÍSTICAS

(2)

o "Confusão"

- O relacionamento ciphertext-plaintext deve ser o mais complexo possível
- Utiliza XOR, aritmética modular (+, *)

o "Difusão"

- Cada bit do plaintext deve influenciar todos os bits do ciphertext
- Cada bit da chave deve influenciar todos os bits do ciphertext

AES - O Mais Novo (2002)

- AES Advanced Encryption Standard
 - Algoritmo selecionado: RIJNDAEL
- Novo padrão FIPS (Federal Information Processing Standard) escolhido pelo NIST (National Institute of Standards and Technologies) para ser utilizado pelas organizações governamentais dos EUA na proteção de informações sensíveis
- Marca um esforço de 4 anos de cooperação entre o governo dos EUA, empresas privadas e pesquisadores de diversos países

AES - Breve Histórico

- 1997: NIST requisita propostas
- 1998: Round 1: São selecionados inicialmente
 15 algoritmos
- 1999: Round 2: Foram selecionados os algoritmos finalistas. Dos 15 pre-selecionados, foram 5 finais
- Out 2000: Anúncio do algortimo selecionado:

-RIJNDAEL

25

AES - Histórico - Ano 2000

- Nov 2000: Liberação do Draft do algoritmo AES
- Fev 2001: Término do período para comentários
- HOJE: ????
- Atualmente:
 - Anúncio do padrão FIPS
 - Mais informações: www.nist.gov/aes

Algoritmo	Projetista	Key (bits)	Bloco (bytes)	Aplicação
AES	J. Daemen, V. Rijmen	128, 192, 256	16	DMSEnvoy
Blowfish	Bruce Schneier	<= 448	8	Norton Utilities
3DES	D. Coppersmith	168	18	SSL, SSH
IDEA	X Lai, J. Massey	128	8	PGP, SSH, SS
RC6	R. Rivest, M. Robshaw, et al.	128, 192, 256	16	AES candidato
STREAM		KEY		
RC4	R. Rivest	Mínimo 8, máximo 2048 em múltiplo de 8 bits Default: 128		SSL
SEAL	P. Rogaway	Variável, Default: 160		Disk Encryption

CONFIDENCIALIDADE NO TRÁFEGO

- o Identificação dos Parceiros
- o Freqüência de Comunicação entre os parceiros
- o Padrão, comprimento e quantidade de mensagens
- o Eventos correlacionados

41

BIBLIOGRAFIA

- o Stallings, William. **Cryptography and Network Security**: Principles and Practice. Prentice Hall, 1999. 569p.
- o Tanenbaum, Andrew S. **Computers Networks**. 3rd Edition, New Jersey: Prentice Hall, 1996. 813p. Cap. 7: The Application Layer, p.577-766.
- o RSA Data Security, Inc. "Frequently Asked Questions about Today's Cryptography". 1998. http://www.rsa.com.
- o Soares, Luiz F. G.; Lemos, Guido; Colcher, Sérgio. **Redes de Computadores**: Das LANs, MANs e WANs às Redes ATM. 2ª Edição, Rio de Janeiro: Ed. Campus, 1995. 740p. Cap. 17: Segurança em Redes de Computadores, p.447-488.
- Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source Code in C. 2^{sd} Edition, New York: John Wiley & Sons, 1996. 758p.