Multimodal Clustering with Role Induced Constraints for Speaker Diarization

Nikolaos Flemotomos[†], Shrikanth Narayanan

Signal Analysis and Interpretation Lab (SAIL), University of Southern California †currently with Apple

Speaker Diarization & Speaker Roles

- ▶ diarization answers the question "who spoke when?"
- conventional approach:
 - ▶ speaker segmentation: find speaker change points
 - ► speaker clustering: cluster speaker-homogeneous segments

- ▶ focus on scenarios where speakers assume *roles*
 - examples: interviews, lectures, TV shows, etc.
- roles are associated with distinguishable linguistic patterns
- ▶ can we use role-specific language to assist diarization?

Role-Induced Constrained Clustering

- extract language-based role information to impose constraints during audio-based clustering
- ► focus on segment-level pairwise constraints
 - must-link (ML): 2 segments *should* be in the same cluster
 - ► cannot-link (CL): 2 segments *should not* be in the same cluster

- possible scenarios
 - ▶ different roles played by different speakers (e.g., teacher vs. students)
 ⇒ CL constraints between segments with different roles
 - ▶ different speakers play different roles (e.g., host vs. interviewer vs. host)
 ⇒ ML constraints between segments with same roles
 - every speaker mapped to a distinct role (e.g., doctor vs. patient)
 ⇒ both ML and CL constraints

Constrained Spectral Clustering

- construct pairwise similarity matrix W
- ► construct role-based contraint matrix **Z** for a high-confidence subset of segments

$$\mathbf{Z}_{ij} = \begin{cases} +1, & \text{if } \exists \text{ ML constraint between } i \text{ and } j \\ -1, & \text{if } \exists \text{ CL constraint between } i \text{ and } j \\ 0, & \text{if } \nexists \text{ any constraint between } i \text{ and } j \end{cases}$$

- ► propagate constraints via Exhaustive and Efficient Constraint Propagation (E²CP) algorithm [1] and update **W**
- ► apply spectral clustering

Datasets

- ► University Counseling Center (UCC) psychotherapy sessions
 - dyadic conversations
 - one-to-one mapping between speakers and roles one *therapist* vs. single *client* per session
 - ► apply both ML and CL constraints
 - ▶ total speaking time: therapist (26.7h) vs. client (46.7h)
- ► This American Life (TAL) podcast
 - ► multi-party conversations (18 speakers on average)
 - ► partial role information single *host* vs. multiple *non-hosts* per episode
 - ▶ apply CL constraints between segments with different roles
 - ▶ total speaking time: host (118.6h) vs. non-host (519.2h)

Extracting Role Information

- ► adapt a BERT model to classify the speaker roles
- make sure we don't impose wrong constraints
- ightharpoonup need for confidence proxy \Rightarrow use softmax values of classifier
- ▶ trade-off decision: very confident or a lot of constraints?

accuracy and support for the BERT-based classifier when only segments with softmax value above some threshold are taken into account

Experiments & Results

- ightharpoonup use oracle segmentation + oracle transcriptions \Rightarrow only evaluate clustering performance
- speaker representation: x-vectors
- \blacktriangleright apply initial ML/CL constraints on $\sim 40\%$ of the segments and integrate constraints via E^2CP

diarization error rate (%) – lower is better

	unconstrained clustering (audio-only)	constrained clustering (multimodal)	role-based classification (language-only)
UCC	1.38	1.31	10.34
TAL	42.22	23.86	63.01^*

*results contain 2 speakers (due to the binary classification)

Conclusion

- improved diarization results for both dyadic and multi-party role-playing interactions
 - ▶ improved estimation of the number of speakers in the multi-party scenario
- ► future work
 - ▶ focused on language-based constraints what about other modalities?
 - ► can we incorporate soft constraints?

References

- [1] Z. Lu, Y. Peng, "Exhaustive and efficient constraint propagation: A graph-based learning approach and its applications". Int J Comput Vis (2013)
- [2] A. Tripathi, et. al., "Turn-to-diarize: Online speaker diarization constrained by transformer transducer speaker turn detection". ICASSP (2022)
- [3] N. Flemotomos, P. Georgiou, S. Narayanan, "Linguistically aided speaker diarization using speaker role information". Odyssey (2020)