Introducing the Roman Senatorial Debate

James Bong

9th July 2025

劢 套 野好得 摰

Successful implementation proposal

Here we present the rules of a round of Roman Senatorial Debate.

- 1. **Number of debaters.** The standard number of debaters is 8. Speaking time is 7 minutes.
 - The Roman Sentorial Debate format should work from 4 debaters to any number of debaters, even beyond 8, but for the purpose of a tournament, rooms should be assumed to accommodate 8 debaters, so the pace would mirror that of the British Parliamentary style.
- 2. Choosing sides. Before the first speech, each debater must reveal in their hand a number of coins. A sum of 1\$ means they support the motion, and so they're on the proposition, Yay (Y). A sum of 2\$ means they're against the motion, and so they're on the opposition, the Nay side (N). Anything else, including 0\$ indicates they're undecided (U). The sides chosen by the debaters must then be recorded, and so they must be seated appropriately. Rearrange the chairs if necessary so it is clear to everywhere all debaters stand. All sums are then pooled into the jackpot. Then they start the debate
 - The imbalance is intentionally weighted in favor of the motion, making it easier to support than oppose. This is partly to incentivize whoever sponsoring or organizing the debate to feel that their time, energy, and money have been adequately spent in advancing an ideological position that they themselves favour.
 - The higher cost of opposition is also there to ensure that resisting the motion is a matter of genuine conviction, not casual contrarianism—it makes conscience expensive, and therefore meaningful.
 - The sum could be scaled up to (prop: 10\$, opp: 20\$), or even (prop: 10,000\$, opp: 20,000\$), depending on the tournament's debater demographic. But the ratio should be kept at 1:2.

- Senators who began
- 3. **Speaking order.** There are multiple ways to determine the speaking order. Here we present two methods, one simple and one sophisticated.
 - Simple method. The speaking queue is ordered by Y, N, U, in that order, until all sides run out. If one side has already run out, the next side continues on the queue.
 - Say you have 8 debaters, 7 Ys, and 1Ns, then the queue is (Y, N, Y, Y, Y, Y, Y, Y).
 - Another example, say you have 8 debaters, 3 Ys, 4 Ns, and 1 U, then the queue is (Y, N, U, Y, N, Y, N, N).
 - One more example, say 2 Ys, 5 Ns, and 1 U, then the queue is (Y, N, U, Y, N, N, N, N).
 - The point of stacking the side where there is a large number of supporting senators towards the "end" of the queue is to (1) give the oppoosing side more "time" for them to make clear their point earlier, and so their speech can have more impact, and (2) to give the more numerous side more time to reconsider their position.
 - Sophisticated method. The speaker order is not determined, but bidded. Whenever the floor is open, senators may bid for the speaking slot. There are three bids. All unsuccessful bids are pooled into the jackpot. The highest bidder gets the speaking slot. If there are no bidders, then the speaker to the left of the last speaker gets the speaking slot.
 - Obviously, this method of determining speaking orders is more monetarily competitive, and involves more strategizing. It also inflates the jackpot.
- 4. Each senator makes a 7 minute speech. Any sitting may raise points of information during the 1st and 6th minute of the speech. During any time of their speech, they may add money to the pot.
- 5. Voting and resolution. When all speeches have been, the chamber shall undergo a round of voting. This ultimate round of voting involves no monetary commitment. The vote is recorded by name. Each senator must write down on a piece of paper, his name, the side he votes for, and then all the votes are counted and revealed public. Votes with no names are invalid. Senators whose vote are not recorded are considered to have abstained. Senators may vote in favour, in opposition, or abstain or remain undecided. The threshold for winning is 1 + half of the total number of debaters. This means in a chamber of 8 senators, for Proposition or Opposition to win, it must secure 5 votes. The Proposition wins if and only it has secured 5 votes, in which case we say the motion is passed, or adopted. The Opposition wins if and only if it has secured 5 votes as well, in which case we say the motion is defeated, or rejected. In the case where the vote is split, perhaps evenly 4-4, or 4-3-1 in Y-N-U, then we say the motion is unresolved, in which case we do not say the motion has passed or defeated. In such a case we also say the chamber is tied.
- 6. **Points and Jackpot** The general philosophy is that points is what counts towards breaks senators with the highest points break into the elimination rounds. Jackpot is monetary reward, and fuel. They do not count in any way towards breaks.

• The points are distributed thus, to every senator:

	stay 留	switch 轉軚	abstain 棄權
win 贏	$\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$	1	0
lose 輸		0	0
tie 和		0	0

- Senators who were undecided at the start of the debate and voted in favour or against the motion are considered to have switched sides, and are rewarded 1 point.
- You can see that those who lost the debate but stuck to their guns are rewarded more highly in terms of points than those who switched
- You can see that ties are very punishing to all senators involved. It basically means they have all wasted time and everyone has lost.
- 7. The jackpot money is split thus:
 - s is the total sum in the pot, which always abides by the following: $s = w_{\text{max}} + w_{\text{max}}$
 - v is the total number of votes on the winning side, which always abides by the following: $v = v_{\text{a}} + v_{\text{tot}}$
 - w_{all} and w_{eff} are defined as such:
 - (a) $w_{\widehat{\mathbb{H}}} = s \cdot \frac{v_{\widehat{\mathbb{H}}} + 1}{v + 1}$ (b) $w_{\widehat{\mathbb{H}}} = s \cdot \frac{v_{\widehat{\mathbb{H}}}}{v + 1}$
 - To say this without justification, this creates a quasi-prisoner's dilemma situation in the following box, where those who switch sides and win, win money but lose out relatively on points.
 - The split of the $w_{\widehat{\mathbb{H}}}$ and $w_{\widehat{\mathbb{H}}}$ leaves a weird case where everyone switched sides and that side won. In such a case, there'd be nobody to claim the virtual 留贏 share. That share can go to many places: (1) the poorest member, (2) the hosting tournament, (3) divided equally amongst all players...(4) taken by the winning side as well...
 - The point of the dynamic is: some people care about the money, some people care about passing the motion.

Payout structure by debater count

Recall that the number of senators can arguably be scaled up to any number. And also recall that the number of votes necessary to win is 1 + half of the total number of debaters.

Here we present the payout structure for different numbers of debaters and voting scenarios.

$n_{ m debaters}$	v_{win}	$v_{\mathrm{@}}$	$v_{ m e}$	$w_{\widehat{\mathbf{g}}} = 100 \cdot \frac{v_{\widehat{\mathbf{g}}} + 1}{v_{win} + 1}$	$w_{\colone{q}} = 100 \cdot rac{v_{\colone{q}}}{v+1}$	W _{留/人}	W轉/人
6	4	0	4	20.0	80.0	n/a^a	20.0
6	4	1	3	40.0	60.0	40.0	20.0
6	4	$\frac{2}{3}$	2	60.0	40.0	30.0	20.0
6 6 6	4		1	80.0	$\frac{20.0}{0.0}$	$\frac{26.67}{2}$	20.0
6	$\frac{4}{5}$	4	5	$100.0 \\ 16.67$	0.0	$^{25.0}_{ m n/a^a}$	0.0
		1			83.33	n/a°	16.67
$_{6}^{6}$	5	7	4	$ \begin{array}{c} 33.33 \\ 50.0 \end{array} $	$\begin{array}{c} 66.67 \\ 50.0 \end{array}$	$\frac{33.33}{25.0}$	$16.67 \\ 16.67$
$\overset{0}{6}$	5	$\frac{2}{3}$	$\frac{4}{3}$	66.67	33.33	22.22	16.67
ĕ	555555	4	ī	83.33	16.67	20.83	16.67
$\overset{\circ}{6}$	Š	$\frac{4}{5}$	Õ	100.0	0.0	20.0	0.0
6	6	0	6	14.29	85.71	n/a ^a	14.29
6	6	1	5	28.57	71.43	28.57	14.29
$\overset{\circ}{6}$	$\stackrel{6}{6}$	$\frac{\bar{2}}{3}$	$\frac{4}{3}$	<u>42</u> .86	57.14	21.43	14.29
6	ĕ	3	3	57.14	$\frac{42.86}{20.57}$	$\frac{19.05}{17.06}$	14.29
$\stackrel{6}{6}$	6	4	<u> </u>	$71.43 \\ 85.71$	$\frac{28.57}{14.29}$	$\frac{17.86}{17.14}$	$\frac{14.29}{14.29}$
6	$\frac{6}{6}$	$\frac{4}{5}$	Ö	100.0	$0.0^{14.29}$	16.67	$0.0^{14.29}$

a n/a, because there are literally no participants who won who stayed on the position that they started with. Obviously this is a degenerate and highly unlikely case. But we still need to figure out how to handle the payout which has no one to receive it. It can either (1) be distributed amongst those who won, (2) go to anyone on the losing side who stuck to their guns, or (3) go to the poorest member, or (4) to the tournament organizer. We are not too interested in the details.

表 1: Payout structure for different numbers of debaters and voting scenarios

$n_{ m debaters}$	$v_{ m win}$	$v_{\mathrm{ ilde{a}}}$	$v_{ m e}$	$w_{\widehat{\mathbf{a}}} = 100 \cdot \frac{v_{\widehat{\mathbf{a}}} + 1}{v_{win} + 1}$	$w_{ ext{\tiny #\#}} = 100 \cdot rac{v_{ ext{\tiny #\#}}}{v+1}$	w _{留/人}	w _{轉/人}
7	4	0	4	20.0	80.0	n/a^a	20.0
7				40.0	60.0	40.0	20.0
7	4 4 4 5 5 5 5 5 6	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array}$	$\frac{3}{2}$	60.0 80.0	$\frac{40.0}{20.0}$	$\frac{30.0}{26.67}$	$\frac{20.0}{20.0}$
7	4	3	1	80.0	20.0	26.67	20.0
7	$\frac{4}{2}$	4	0	100.0	0.0	25.0	0.0
7	5	0	5	16.67	83.33	n/a^a	16.67
7	5	1	$\frac{4}{2}$	33.33	$\underset{\underline{50.0}}{66.67}$	33.33	$\frac{16.67}{16.67}$
7	þ	2	3	50.0	50.0	$\begin{array}{c} 33.33 \\ 25.0 \\ 22.22 \end{array}$	16.67
47	5	3	$\begin{array}{c} 4\\3\\2\\1\end{array}$	$ \begin{array}{r} 66.67 \\ 83.33 \end{array} $	$\frac{33.33}{16.67}$	$\frac{22.22}{20.83}$	$\frac{16.67}{16.67}$
7	5	$\begin{array}{c} 1\\2\\3\\4\\5\end{array}$	0	100.0	0.07	$\frac{20.63}{20.0}$	0.07
7	6	ő	$\ddot{6}$	14.29	85.71	n/a^a	14.29
7				28 57	71.43	$\frac{11}{28}$ 57	14.29
7	ĕ	2	$\frac{3}{4}$	$\begin{array}{c} 28.57 \\ 42.86 \end{array}$	57.14	$\frac{28.57}{21.43}$	14.29
7	ĕ	$\bar{3}$	$\frac{5}{4}$	$5\overline{7}.\widecheck{1}\widecheck{4}$	42.86	$\bar{1}9.05$	14.29
7	6	$\overline{4}$	2	71.43	28.57	17.86	14.29
7	6	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	1	85.71	14.29	17.14	14.29
<u>7</u>	6 6 6 6 6 7	6	$\frac{0}{7}$	100.0	0.0	16.67	0.0
7		0		12.5	87.5	n/a^a	12.5
7	7 7 7	1	$\frac{6}{5}$	<u>25</u> .0	$\begin{array}{c} 75.0 \\ 62.5 \end{array}$	$\begin{array}{c} 25.0 \\ 18.75 \\ 16.67 \end{array}$	$12.5 \\ 12.5 \\ 12.5$
7	7	2	5	37.5	92.5	18.75	12.5
47	4	3	4	$\begin{array}{c} 50.0 \\ 62.5 \end{array}$	$\begin{array}{c} 50.0 \\ 37.5 \end{array}$	15.62	$12.5 \\ 12.5$
7	$\frac{1}{7}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7 \end{array} $	$\frac{4}{3}$	75.0	$25.0^{1.5}$	15.02 15.0	15.5
7	7	6		75.0 87.5	$\frac{23.0}{12.5}$	14.58	$12.5 \\ 12.5$
7	7	7	Ö	100.0	0.0	14.29	0.0

a n/a indicates no 留 voters to receive the payout.

表 2: Payout structure for different numbers of debaters and voting scenarios

$n_{ m debaters}$	$v_{ m win}$	$v_{\mathrm{ ilde{a}}}$	$v_{ m e}$	$w_{\widehat{\mathbb{H}}} = 100 \cdot \frac{v_{\widehat{\mathbb{H}}} + 1}{v_{win} + 1}$	$w_{\rm c}=100\cdot \tfrac{v_{\rm c}}{v+1}$	$w_{lpha/igwedge}$	w _{轉/人}
8	5	0	5	16.67	83.33	n/aª	16.67
8	5 555556	1		33 33	$\begin{array}{c} 66.67 \\ 50.0 \\ 33.33 \end{array}$	33.33 25.0 22.22 20.83	16.67
8	5	2	3	50.0 66.67 83.33	50.0	25.0	$\frac{16.67}{16.67}$
8	5	3	2	66.67	$\frac{33.33}{16.67}$	22.22	$\frac{16.67}{16.67}$
8	5	5	Ų	03.33 100.0	0.07	$\frac{20.83}{20.0}$	0.0
8	6	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \end{array} $	$\begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ 6 \end{array}$	14.29	85.71	n/a^a	14.29
8				28.57	71.43	28.57	14.29
8	6 6 6 6 6 7	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 0 \end{array}$	$54 \\ 3 \\ 2 \\ 1 \\ 0 \\ 7$	42.86	57 14	21.43	14.29
8	6	3	3	$\frac{57.14}{21.42}$	$\begin{array}{c} 42.86 \\ 28.57 \\ 14.29 \end{array}$	$\frac{19.05}{17.86}$	$\frac{14.29}{14.20}$
8	6	4 5	1	$71.43 \\ 85.71$	28.57 14.20	$\frac{17.86}{17.14}$	$\frac{14.29}{14.29}$
8	6	6	Ò	100.0	0.0	16.67	0.0
8	$\check{7}$			$100.0 \\ 12.5$	$ \begin{array}{c} 0.0 \\ 87.5 \end{array} $	n/a ^a	$\frac{0.0}{12.5}$
8	7	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \end{array} $	25.0 37.5 50.0 62.5 75.0	75.0	25.0	12.5
8	7	$\frac{2}{2}$	5	37.5	62.5	$\frac{18.75}{16.67}$	12.5 12.5 12.5 12.5 12.5 12.5
Š.	4	3 1	$\frac{4}{3}$	50.0 62.5	$\begin{array}{c} 50.0 \\ 37.5 \\ 25.0 \\ 12.5 \end{array}$	15.62	$\frac{12.5}{12.5}$
8	7	5	$\frac{3}{2}$	75.0	25.0	15.02	$\frac{12.5}{12.5}$
8	7	6	1	87.5	$\bar{1}2.\bar{5}$	14.58	$1\overline{2}.5$
8	7	7	0	100.0	0.0	14.29	0.0
8	8	0	8	11.11	88.89	n/a^a	11.11
8	8	1	$\frac{7}{6}$	$\frac{22.22}{33.33}$	$\begin{array}{c} 77.78 \\ 66.67 \end{array}$	$\frac{22.22}{16.67}$	$\frac{11.11}{11.11}$
8	8	$\frac{2}{3}$	5	33.33 44 44	55.56	14.81	11.11
8	8	$\overset{\mathtt{J}}{4}$	$\breve{4}$	$\begin{array}{c} 44.44 \\ 55.56 \end{array}$	44.44	14.81 13.89 13.33	11.11
8	8	5	3	$\begin{array}{c} 66.67 \\ 77.78 \end{array}$	33.33	13.33	11.11
8	ŏ	9	2	77.78 88.89	$\frac{22.22}{11.11}$	$\frac{12.96}{12.7}$	11.11 11.11
S S S S S S S S S S S S S S S S S S S	777777788888888888888888888888888888888	1 2 3 4 5 6 7 8	$ \begin{array}{c} 6 \\ 5 \\ 4 \\ 3 \\ 2 \\ 1 \\ 0 \end{array} $	100.0	$0.0^{11.11}$	$\frac{12.7}{12.5}$	0.0^{1}
a / · 1		क्रिय					

a n/a indicates no 留 voters to receive the payout.

表 3: Payout structure for different numbers of debaters and voting scenarios

$n_{ m debaters}$	$v_{ m win}$	v_{\cong}	$v_{ m e}$	$w_{\widehat{\mathbf{a}}} = 100 \cdot \frac{v_{\widehat{\mathbf{a}}} + 1}{v_{win} + 1}$	$w_{\cite{production}} = 100 \cdot rac{v_{\cite{production}}}{v+1}$	$w_{lpha/igle }$	w _{轉/人}
9	5	0	5	16.67	83.33	n/a ^a 33.33 25.0 22.22 20.83 20.0 n/a ^a	16.67
9	5	1	$5\\4\\3\\2\\1\\0\\6\\5\\4\\3\\2\\1\\0\\7$	33.33	66.67 50.0 33.33	$33^{'}\!.33$	$\frac{16.67}{16.67}$
9	5	2	3	$ 50.0 \\ 66.67 $	50.0	25.0	16.67
9	5	3	2	66.67	3 <u>3.33</u>	22.22	16.67
9	5	4 5	Ų	$83.33 \\ 100.0$	$\frac{16.67}{0.0}$	20.83 20.0	$\frac{16.67}{0.0}$
g	6	ñ	6	14.29	$\begin{array}{c} 0.0\\85.71\end{array}$	n/a ^a	$0.0 \\ 14.29$
ğ	6	ĭ	5	28 57	71.43	20.0 n/a ^a 28.57 21.43 19.05 17.86	
ğ	ĕ	$\dot{2}$	$\breve{4}$	28.57 42.86 57.14 71.43 85.71	71.43 57.14 42.86 28.57 14.29	$\bar{2}1.43$	$14.\overline{29}$
9	6	3	3	57.14	42.86	19.05	14.29
9	6	$\frac{4}{2}$	2	71.43	28.57	17.86	14.29
9	6	5 6	i I	85.71 100.0	14.29	$17.14 \\ 16.67$	14.29
9	7	ñ	7	12.5	0.0 87.5	$\frac{10.07}{n/a^a}$	14.29 14.29 14.29 14.29 14.29 0.0 12.5 12.5 12.5 12.5 12.5 12.5
ğ	7	ĭ	6	25.0	75.0	25.0	12.5
ğ	7	$\dot{2}$	5	$\begin{array}{c} 25.0 \\ 37.5 \end{array}$	$75.0 \\ 62.5$	$\frac{25.0}{18.75}$	12.5
9	7	$\bar{3}$	$\check{4}$	50.0	$5\overline{0}.\overline{0}$	$16.67 \\ 15.62$	$\bar{1}\bar{2}.\bar{5}$
9	7	$\frac{4}{2}$	3	50.0 62.5 75.0 87.5	50.0 37.5 25.0 12.5	15.62	12.5
8	4	Ş	2	(5.0	25.0	15.0	12.5
9	$\frac{1}{7}$	7	Ų	100.0	0.0	14.30	$0.0^{12.3}$
ğ	8	$\begin{array}{c} 1 \\ 23 \\ 45 \\ 0 \\ 123 \\ 456 \\ 0 \\ 123 \\ 4567 \\ 0 \end{array}$	8	11.11	0.0 88.89 77.78	15.0 14.58 14.29 n/a ^a 22.22 16.67 14.81 13.89 13.33 12.96	11.11
9	8	ĭ	$\tilde{7}$		77.78	22.22	11 11
9	8	$\bar{2}$	6	$\frac{22.22}{33.33}$	66.67 55.56	$\overline{16.67}$	11.11
9	8	3	5	$\begin{array}{c} 44.44 \\ 55.56 \end{array}$	55.56	14.81	11.11
9	8	$\frac{4}{5}$	$\frac{4}{2}$	55.56 66.67	44.44	13.89	$\frac{11.11}{11.11}$
9	8	6	3	$\frac{66.67}{77.78}$	$\begin{array}{c} 44.44 \\ 33.33 \\ 22.22 \end{array}$	12.33 12.96	11.11
ğ	8	7	ĩ	88.89	11.11	$\frac{12.50}{12.7}$ 12.5	11.11
9	8	8	Ō	100.0	0.0	$\bar{1}\bar{2}.\bar{5}$	0.0
9	9	0	9	10.0	90.0	$\frac{n}{a}$ a 20.0	10.0
9	9	1	8	20.0	80.0	20.0	10.0
9	8	$\frac{2}{5}$	6	30.0	70.0	15.0 12.22	$\frac{10.0}{10.0}$
9	9	$\frac{3}{4}$	5	$\frac{40.0}{50.0}$	$\frac{60.0}{50.0}$	13.33 12.5	$10.0 \\ 10.0$
ğ	ğ	5	$\overset{3}{4}$	60.0	$\frac{30.0}{40.0}$	$ \begin{array}{c} 15.0 \\ 13.33 \\ 12.5 \\ 12.0 \end{array} $	10.0
$\check{9}$	$\check{9}$	$\check{6}$	$\bar{3}$	70.0	30.0	11.67	10.0
9	9	7	2	80.0	20.0	11.43	10.0
9 99999 9999999 99999999 9 99999999 9 9999	5 555556 66666667 777777778 888888889 9999999999	$\begin{array}{c} 1 \\ 23 \\ 45 \\ 67 \\ 80 \\ 12 \\ 34 \\ 56 \\ 789 \end{array}$	65432108765432109876543210	$\frac{90.0}{100.0}$	$^{10.0}_{0.0}$	$\frac{11.25}{11.11}$	$\frac{10.0}{0.0}$
9	9	9	U	100.0	0.0	11.11	0.0

a n/a indicates no 留 voters to receive the payout.

 ${\ensuremath{\overline{\not{\mp}}}}$ 4: Payout structure for different numbers of debaters and voting scenarios

$n_{ m debaters}$	$v_{ m win}$	$v_{\mathrm{\widehat{a}}}$	$v_{ m e}$	$w_{\widehat{\mathbf{g}}} = 100 \cdot \frac{v_{\widehat{\mathbf{g}}} + 1}{v_{win} + 1}$	$w_{ ext{\tiny #}} = 100 \cdot rac{v_{ ext{\tiny #}}}{v+1}$	w _{留/人}	w _{轉/人}
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c} v_{\text{win}} \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\$	0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0	6 5 4 3 2 1 0 7	$w_{\widehat{\mathbb{H}}} = 100 \cdot \frac{v_{\widehat{\mathbb{H}}} + 1}{v_{win} + 1}$ 14.29 28.57 42.86 57.14 71.43 85.71 100.0 12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0 11.11 22.22 33.33 44.44 55.56 66.67	85.71 71.43 57.14 42.86 28.57 14.29 0.0 87.5 75.0 62.5 50.0 37.5 25.0 12.5 0.0 88.89 77.78 66.65	n/a ^a 28.57 21.43 19.05 17.14 16.67 n/a ^a 25.0 18.75 16.62 15.0 14.58 14.29	W _{\begin{align*} \text{W}_{\text{\sqrt{\sin}}}}}}}}}}\signt{\sqrt{\sintitita}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
10 10 10 10 10 10 10 10 10 10 10 10 10 1	$10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\frac{1}{23456780} \frac{1}{234567890} \frac{1}{23456780} \frac{1}{2345$	6543210876543210987654321009876	$\begin{array}{c} 44.44\\ 55.56\\ 66.67\\ 77.78\\ 88.89\\ 100.0\\ 10.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 70.0\\ 80.0\\ 90.0\\ 100.0\\ 9.09\\ 18.18\\ 27.27\\ 36.36\\ 45.45\\ \end{array}$	$\begin{array}{c} 44.44 \\ 33.33 \\ 32.22 \\ 11.11 \\ 0.0 \\ 90.0 \\ 80.0 \\ 70.0 \\ 60.0 \\ 50.0 \\ 40.0 \\ 30.0 \\ 20.0 \\ 10.0 \\ 0.0 \\ 90.91 \\ 81.82 \\ 72.73 \\ 63.64 \\ 54.55 \end{array}$	n/a ^a 22.22 16.67 14.81 13.89 13.33 12.96 12.7 12.5 n/a ^a 20.0 15.0 15.0 11.67 11.43 11.25 11.11 n/a ^a 18.18 13.64 12.12 11.36 10.91	11.11 11.11 11.11 11.11 11.11 10.0 10.0
$10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	10 10 10 10 10 10	1 2 3 4 5 6 7 8 9 10	9876543210	$\begin{array}{c} 54.55 \\ 63.64 \\ 72.73 \\ 81.82 \\ 90.91 \\ 100.0 \end{array}$	36.36 36.36 27.27 18.18 9.09 0.0	10.91 10.61 10.39 10.23 10.1 10.0	9.09 9.09 9.09 9.09 9.09 0.0

a n/a indicates no 留 voters to receive the payout.

表 5: Payout structure for different numbers of debaters and voting scenarios

$n_{ m debaters}$	$v_{ m win}$	v_{\cong}	$v_{ m e}$	$w_{\widehat{\mathbf{g}}} = 100 \cdot \frac{v_{\widehat{\mathbf{g}}} + 1}{v_{win} + 1}$	$w_{ ext{\tiny #\#}} = 100 \cdot rac{v_{ ext{\tiny #\#}}}{v+1}$	w _{留/人}	w _{轉/人}
11 11	6 6	0	6 5	14.29 28.57 42.86 57.14	$85.71 \\ 71.43$	n/a ^a 28.57 21.43 19.05 17.86 17.86	$\frac{14.29}{14.29}$
11 11	Ğ 6	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 0 \end{array}$	$\frac{3}{3}$	$\frac{42.86}{57.14}$	$\begin{array}{c} 71.43 \\ 71.43 \\ 57.14 \\ 42.86 \\ 28.57 \\ 14.29 \\ 0.0 \end{array}$	$\frac{21.43}{19.05}$	14.29 14.29 14.29 14.29 14.29 0.0
11 11 11 11 11	Ğ 6	$\frac{3}{4}$	$\frac{3}{1}$	$\begin{array}{c} 71.43 \\ 85.71 \end{array}$	$\frac{28.57}{14.29}$	$\frac{17.86}{17.14}$	14.29 14.29
11 11	$\frac{6}{7}$	6 0	$\frac{1}{2}$	$100.0 \\ 12.5$	0.0° 87.5	16.67 $\mathrm{n/a^a}$	125
11 11 11 11	$\frac{1}{7}$	1	6	$\begin{array}{c} 12.3 \\ 25.0 \\ 37.5 \end{array}$	75.0 62.5 50.0	$25.0 \\ 18.75$	12.5 12.5
11 11	$\frac{1}{7}$	$\frac{2}{3}$	4	50.0	50.0 57.5	16.67	$12.5 \\ 12.5 \\ 12.5$
$1\overline{1}$ $1\overline{1}$ $1\overline{1}$	$\frac{7}{7}$	1 2 3 4 5 6 7 0	$\frac{3}{2}$	$\begin{array}{c} 62.5 \\ 75.0 \\ 87.5 \end{array}$	$\begin{array}{c} 37.5 \\ 25.0 \\ 12.5 \end{array}$	16.67 15.62 15.0 14.58	12.5 12.5 12.5 12.5 12.5 12.5
11 11	7	7	0	100.0 11.11	$0.0 \\ 88.89$	14.29	$0.0 \\ 11.11$
11	8		7	$\frac{11.11}{22.22}$	77.78	14.58 14.29 n/a ^a 22.22 16.67 14.81 13.89	11.11
11 11 11	8	$\frac{2}{3}$	5	22.22 33.33 44.44 55.56	66.67 55.56 44.44	16.67 14.81	11.11 11.11
11	8	$\frac{4}{5}$	$\frac{4}{3}$	hh h'/	$\frac{44.44}{33.33}$	13.89 13.33	11.11 11.11
11 11 11	8 8	7	1	77.78 88.89 100.0	$ \begin{array}{r} \hline 33.33 \\ 22.22 \\ 11.11 \end{array} $	$\frac{12.96}{12.7}$	11.11 11.11
11	9	0	9	10.0	$0.0 \\ 90.0$	12.96 12.7 12.5 n/a	$0.0 \\ 10.0$
11 11 11	666666677777777788888888899999999999	$\begin{matrix} 1 \\ 23 \\ 45 \\ 67 \\ 80 \\ 123 \\ 45 \\ 67 \\ 89 \\ 0 \end{matrix}$	543210765432108765432109876543210	$\frac{20.0}{30.0}$	$\frac{80.0}{70.0}$	$ \begin{array}{c} 17.4 \\ 20.0 \\ 15.0 \\ 13.33 \\ 12.5 \\ 12.0 \\ 12.07 \end{array} $	$\frac{10.0}{10.0}$
11 11	9	$\frac{3}{4}$	6 5	$\frac{40.0}{50.0}$	$\begin{array}{c} 60.0 \\ 50.0 \end{array}$	$\frac{13.33}{12.5}$	$\frac{10.0}{10.0}$
11 11 11 11 11 11	9	$\frac{5}{6}$	$\frac{4}{3}$	$^{60.0}_{70.0}$	$\begin{array}{c} 40.0 \\ 30.0 \\ 20.0 \end{array}$	$\frac{12.0}{11.67}$	$\frac{10.0}{10.0}$
11 11	9	8	1	$\begin{array}{c} 80.0 \\ 90.0 \\ 100.0 \end{array}$	10.0	$ \begin{array}{c} 11.67 \\ 11.43 \\ 11.25 \\ 11.11 \end{array} $	$\frac{10.0}{10.0}$
11	10		10	9.09	$\begin{array}{c} 0.0 \\ 90.91 \end{array}$	$\frac{11.11}{n/a^a}$	$\frac{0.0}{9.09}$
$\begin{array}{c} 11 \\ 11 \end{array}$	$\frac{10}{10}$	$\frac{1}{2}$	$\frac{9}{8}$	$\frac{18.18}{27.27}$	81.82 72.73 63.64 54.55 45.45	$\frac{18.18}{13.64}$	$9.09 \\ 9.09$
11 11 11	$\frac{10}{10}$	$\frac{3}{4}$	$\frac{7}{6}$	$\begin{array}{c} 10.10\\ 27.27\\ 36.36\\ 45.45\\ 54.55\\ \end{array}$	$\begin{array}{c} 63.64 \\ 54.55 \end{array}$	$\frac{12.12}{11.36}$	$9.09 \\ 9.09$
11	$\frac{10}{10}$	$\frac{5}{6}$	$\frac{5}{4}$	63.64	$\begin{array}{c} 45.45 \\ 36.36 \end{array}$	$10.91 \\ 10.61$	$9.09 \\ 9.09$
11 11 11	$\frac{10}{10}$	1 23 4 5 6 7 8 9	9 87 65 4 32 10	$\begin{array}{c} 72.73 \\ 81.82 \end{array}$	$\begin{array}{c} 36.36 \\ 27.27 \\ 18.18 \end{array}$	11.11 n/a ^a 18.18 13.64 12.12 11.36 10.91 10.61 10.39 10.23	$9.09 \\ 9.09$
11 11 11	$\frac{10}{10}$	10	$\stackrel{1}{0}$	90.91 100.0 8.33	$9.09 \\ 0.0 \\ -$	10.1	$9.09 \\ 0.0$
11 11	$\frac{11}{11}$	$0 \\ 1$	11 10	$8.33 \\ 16.67$	$91.67 \\ 83.33$	$\frac{n/a^{a}}{16.67}$	8.33 8.33
11 11 11	11 11 11	1 2 3 4 5 6 7 8 9 10	10 98 76 54 32 1	16.67 25.0 33.33	75.0 66.67 58.33	12.5	8.33 8.33 8.33 8.33 8.33 8.33 8.33
11 11 11	11	$\frac{4}{5}$	$\overset{7}{6}$	$\begin{array}{c} 41.67 \\ 50.0 \\ 58.33 \end{array}$	50.0	$\begin{array}{c} 12.0 \\ 11.11 \\ 10.42 \\ 10.0 \\ \end{array}$	$\frac{8.33}{8.33}$
$\begin{array}{c} 11 \\ 11 \end{array}$	11 11	$\frac{6}{7}$	$\frac{5}{4}$	66.67	$\begin{array}{c} 41.67 \\ 33.33 \\ 25.0 \end{array}$	$9.72 \\ 9.52$	$8.33 \\ 8.33$
11 11 11 11 11	11 11 11	$\frac{8}{9}$	$\frac{3}{2}$	$75.0 \\ 83.33$	$25.0 \\ 16.67 \\ 8.33$	$\frac{9.38}{9.26}$	8.33 8.33
11 11	$^{11}_{11}$	$^{10}_{11}$	$\stackrel{1}{0}$	$91.67 \\ 100.0$	$\begin{array}{c} 8.33 \\ 0.0 \end{array}$	9.72 9.52 9.38 9.26 9.17 9.09	$\frac{8.33}{0.0}$
		r\$πt					

^a n/a indicates no 留 voters to receive the payout.

表 6: Payout structure for different numbers of debaters and voting scenarios

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathrm{w}_{\mathrm{e}/\mathrm{L}}$		$w_{\ensuremath{\scriptscriptstyle{f \!\! }}}=100\cdotrac{v_{\ensuremath{\scriptscriptstyle{f \!\! }}}}{v+1}$	$w_{\widehat{\mathbf{H}}} = 100 \cdot \frac{v_{\widehat{\mathbf{H}}} + 1}{v_{win} + 1}$	$v_{ m e}$	v_{a}	$v_{ m win}$	$n_{ m debaters}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} w_{\parallel}/\wedge\\ \hline 12.5\\ $	n/a ^a 25.0 18.75 16.67 15.62 15.0 14.58 14.29 16.67 14.81 13.89 13.33 12.96 12.7 12.5 12.0 15.0 11.67 11.11 11.11 11.12 11.11	87.5 75.0 62.5 50.0 37.5 25.0 12.5 0.0 88.89 77.78 66.67 55.56 44.44 33.33 22.22 11.11 0.0 90.0 80.0 70.0 60.0 40.0 30.0 20.0 10.0 90.91 81.82 72.73 63.635 45.45 36.365 27.27 18.18 9.09 91.67 83.33 75.0 66.67 83.33 75.0 61.67 33.33 25.0 61.67 33.33 25.0 61.67	$\begin{array}{c} a_{\overline{w}} = 100 & v_{win} + 1 \\ \hline 12.5 & 25.0 & 37.5 \\ 50.0 & 62.5 & 75.0 \\ 87.5 & 100.0 & 11.11 \\ 22.22 & 33.33 & 44.44 \\ 55.566 & 66.67 & 77.78 \\ 88.89 & 100.0 & 10.0 \\ 20.0 & 30.0 & 40.0 \\ 50.0 & 60.0 & 70.0 \\ 80.0 & 90.0 & 100.0 \\ 90.0 & 100.0 & 9.09 \\ 18.18 & 27.27 & 36.36 & 45.45 & 54.55 & 63.64 \\ 45.45 & 54.55 & 63.64 & 72.73 & 81.82 & 90.91 \\ 100.0 & 8.33 & 100.0 & 8.33 & 41.67 & 50.0 \\ 83.33 & 41.67 & 50.0 & 83.33 & 66.67 & 75.0 & 83.33 & 91.67 & 75.0 & 91.00 $	76543210876543210987654321009876543210110987654321012	$\begin{smallmatrix} 0&1&2&3&4&5&6&7&8&0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9&1&1&0&1&2&3&4&5&6&7&8&9&1&0&1&2&3&4&5&6&7&8&9&1&1&0&1&2&3&4&5&6&7&8&9&1&1&0&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1$	$\begin{array}{c} 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ $	12 12 12 12 12 12 12 12 12 12 12 12 12 1

a n/a indicates no 留 voters to receive the payout.

表 7: Payout structure for different numbers of debaters and voting scenarios

Elimination mechanism

Unlike the British Parliamentary style tournament where you can set the number of rooms depending on how many outrounds you want, and then the teams are exponentially and deterministically eliminated, the Roman Senatorial Debate does not work like that.

A chamber might fail to resolve the motion, in which case every senator gets 0 points. A chamber might also resolve the motion unanimously without switching sides, in which case every senator gets 3 points. These irregularities pose difficulties to a straightforward elimination mechanism like that in the British Parliamentary style tournament, as a chamber might return all 8 senators with 3 points, or all senators with 0 points.

- 1. Admission to elimination rounds. At breaks, teams are admitted into the elimination rounds by virtue of the points they've accumulated.
- 2. **Tie resolution.** In any case where there is a tie, this either resolved by money, or force. In the case where the option to resolve it by force is enabled, any tied member has the right to resolve it by trial by combat. Women may be allowed to fight, but they are accorded the privilege to find a champion. Men are not accorded the privilege of champerty. Champions must be participating senators. This is in line with the general philosophy of the tournament that debate, politics, and intellectualism makes sense only if it is a game of honour and honour only emerges if there is an ultimate backstop of violence.
- 3. **Points carryover.** Senators will continue to inherit their points from the preliminary rounds. Senators WILL NOT have their accumulated points reset to 0 in the breakrounds. The point of this is to give intellectual autonomy to the senators to stand their ground.
- 4. **Number of participants.** The number of senators the tournament admits into the outrounds is the number of rounds times 8 senators. we have:
 - (a) octos (8 strongest rooms, 4th last round): 64 \land
 - (b) quarters (4 strongest rooms, 3rd last round): 32 \land
 - (c) semis (2 strongest rooms, 2nd last round): 16 \land
 - (d) grand final (last round): 8 人.
- 5. **Elimination mechanism.** In each of the outrounds, the aggregate half of the rooms with the lowest points are eliminated. So unlike BP where the result of each room individually decides the outcome of the outround, here the aggregate result of all rooms in the outround decides the outcome.
- 6. The Market of Speech and Influence. Since senators carry over their points from the preliminary rounds, those with high scores can speak freely with their immediate fear of elimination heavily discounted. This grants intellectual autonomy to top-performing senators, allowing them to assert their own private views with confidence and demonstrate their full intellectual prowess. This means there is now a privilege to speak, where you can basically air your own views on a topic, and you granted an audience.

This, on the whole, means that the tournament becomes a market where the commodity of speech and influence can be acquired by a combination of strategic political manoeuvre and careful money management.

7. **The Grand Final.** How is the winner of the Grand Final determined? This is tricky and it depends on what matters to you. The recommendation is that the you still run the debate as a normal round, but depending on the tournament's interest, one may arbitrarily define the "winner(s)" to be whoever stuck to his guns and whose side resolved the motion.

It's not straight forward to work out backwards how the rooms should be distributed if you want to have a 8 person grand final senate.

Anyway, it's more interesting to work with a 15 people senate.

From the 15 people, take out the 8 best (by lot, rank by points, by support, by 黃袍加身 - trial by combat, assassination, I don't care), 8 will serve in the senate. 7 will be in the house.

There are only 4 possibilities as to what their rights are, by and large: a multiplication of whether they have the right to speak, and whether they have the right to vote.

Giving them the right to vote is slightly more straightforward as it merely complicates the game theoretic structure. Giving them the right to speak poses logistic difficulties - but it increases entertainment value.

Maybe POIs is the only form of speech allowable.

I think I will stick to bribery. I think it has multiple advantages, especially when compared to enabling people to buy extra votes, thereby inflating the supply of votes. Most importantly, it introduces questions of how to enforce bribes. obviously I'm not going to supply the mechanism - so it will have to be some kind of an honour and reiterated game theory dynamic. perhaps this will engender a culture of honour.

This begets an interesting question: why isn't bribery of the lowest level of voters - the general election voter, not allowed? I think there are good arguments to be made against being able to bribe parliamentarians, but do those arguments carry over to the general voter?

Bribing parliamentarians enable embezzlement or cronyism - specifically the case of transferring funds to a service provider whose service is purchased by the government. The parliamentary receives a bribe, either directly, or in the form of a kickback.

The key mechanism is that the parliamentarian increased the price the government is willing to pay for the service than the government would have paid if there was no bribe. The difference is then split between the service-provider and the bribe paid to the parliamentarian.

Does this mechanism manifest if ordinary voters are bribed? One might argue it is less likely as the parliamentarian is still

¹ Hi		

So I think it's safe to say that the case where bribery is enabled for the general voter is more resistant to embezzlement than bribes for parliamentarians. 1