P-channel MOSFET I-V Characteristics

Electronic Devices Lab: Experiment 8

Department of Electrical Engineering Indian Institute of Technology, Bombay October 4, 2022.

EE236: Experiment 8 Dept. of EE, IIT-Bombay 1/13 1/13

Aim of the experiment

In this experiment, the following tasks need to be performed:

- Measure output and transfer characteristics of a P-channel enhancement type MOSFET (also called PMOS).
- Investigate the effect of body bias on the characteristics of the PMOS.

EE236 : Experiment 8 Dept. of EE, IIT-Bombay 2/13 2/3

Background Information

- The MOSFET is the commonly used transistor in both digital and analog circuits.
- It has four terminals- Gate (G), Drain (D), Source (S) and Body (B).
- The device working principle is that the voltage applied between its gate and source terminal controls the current through the source and drain terminals.
- The body terminal of an PMOS is connected to the highest voltage in the circuit i.e, V_{DD} while that of an NMOS is connected to ground.

EE236: Experiment 8 Dept. of EE, IIT-Bombay 3/13 3/13

Background Information

- For a PMOS to be "ON", the applied source-gate voltage must be greater than the threshold voltage (magnitude) i.e. $V_{SG} > |V_T|$. Otherwise it is said to be "OFF" (or in cut-off region).
- Conditions for different operating regions of a PMOS that is turned on-
 - Linear Region : $V_{SG} |V_T| < V_{SD}$
 - Saturation Region : $V_{SG} |V_T| \ge V_{SD}$

Background Information

The PMOS current equation (in different regions):

$$\begin{split} I_D &\approx 0 & \text{Cut-off region} \\ I_D &= \mu_p C_{ox} \frac{W}{L} V_{SD} \left(V_{SG} - |V_T| - \frac{V_{SD}}{2} \right) & \text{Linear region} \\ I_D &\approx \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{SG} - |V_T|)^2 (1 + \lambda V_{SD}) & \text{Saturation region} \end{split}$$

 μ_p - mobility of charge carriers (holes in PMOS)

 C_{ox} - per unit area capacitance between the gate and body

W, L - width and length of the channel respectively

 λ - channel length modulation factor

The trans-conductance and the output resistance are respectively given by-

$$g_{m} = \frac{\partial I_{D}}{\partial V_{SG}} \bigg|_{const\ V_{SD}} \qquad r_{o} = \frac{\partial V_{SD}}{\partial I_{D}} \bigg|_{const\ V_{SG}}$$

EE236 : Experiment 8 Dept. of EE, IIT-Bombay 5/13 5/13

Components Necessary

- ALD1107 PMOS IC
- 1k Potentiometer ×2
- 4.7k Resistor
- Breadboard and connecting wire
- DC power supply

ALD1107 PMOS

Figure: ALD1107 Pinout

Part I: Transfer Characteristics (Linear)

Estimate the value of threshold voltage and trans-conductance in linear region:

- Bias the transistor in linear region by keeping $V_{SD} = 200 \text{ mV}$.
- Plot I_D vs V_{SG} characteristics by varying V_{SG} from 0 to 5V.
- From this characteristic, obtain V_T and g_m .

Part I: Transfer Characteristics (Saturation)

Estimate the value of threshold voltage and trans-conductance in saturation region:

- Bias the transistor in saturation region by keeping $V_{SD} = 5V$.
- Plot I_D vs V_{SG} characteristics by varying V_{SG} from 0 to 5V.
- From this characteristic, obtain V_T and g_m .

Part II: Drain Characteristics

For the drain characteristics, I_D vs V_{SD} must be plotted for multiple (3 different) V_{SG} values.

- Measure I_D vs V_{SD} by varying V_{SD} from 0 to 5V, while keeping V_{SG} constant at 1.5V.
- Repeat the same for $V_{SG} = 2.5V$ and 3.5V.
- Plot all the 3 characteristics in a single plot to observe the drain characteristics
- Find the output resistance r_o using the slope of the plot for $V_{SG}=3.5\,V$, in saturation region.

EE236: Experiment 8 Dept. of EE, IIT-Bombay 10/1310 / 13

Circuit for Part I and Part II

Figure: PMOS I-V circuit

Part III: Body Effect

- Bias the transistor in linear region by keeping $V_{SD}=200mV$.
- Repeat the step from Part I (linear) to get 3 more sets of I_D vs V_{SG} characteristics for $V_{SB} = -1V, -2V$ and -3V.
- Show all five I_D vs V_{SG} characteristics on the same plot.
- Obtain the value of threshold voltage from each plot.
- Plot V_T vs V_{SB} and obtain body effect coefficient (γ) using below equation.

$$V_T = V_{T0} + \gamma \left(\sqrt{\phi_s - V_{SB}} - \sqrt{\phi_s} \right)$$

Here, ϕ_s is Surface Potential = 0.8 V and V_{T0} is the threshold voltage when $V_{SB} = 0 V$.

EE236 : Experiment 8 Dept. of EE, IIT-Bombay 12/13

Circuit for Part III

Figure: PMOS Body effect circuit

EE236 : Experiment 8 Dept. of EE, IIT-Bombay 13/13