

Compte rendu : TP d'algorithmes numériques 1

HIAULT Lilian, VALLET Baptiste

08 novembre 2019

Table des matières

1	Rappel des méthodes de résolution d'équations linéaires	2
	1.1 Méthode de Gauss	2
	1.2 Méthode de Cholesky	2
2	Présentation des programmes commentés	2
	2.1 Programme de résolution par la méthode de Gauss	2
	2.2 Programme de résolution grâce à la méthode de Cholesky	3
3	Jeux d'essais	3
4	Commentaire des jeux d'essais	3
5	Conclusion générale sur les méthodes	3

Introduction

À l'occasion des travaux pratiques d'algorithmes numériques HIAULT Lilian et VALLET Baptiste avons réalisé un programme en langage C qui permet de résoudre des systèmes linéaires grâce aux méthodes de Gauss et de Cholesky.

1 Rappel des méthodes de résolution d'équations linéaires

Les méthode de Gauss et de Cholesky permettent de résoudre des systèmes d'équation linéaires formé de plusieurs équations linéaires.

Par exemple:

$$\begin{cases} 2x + y = 5 \\ -x + 3y = 1 \end{cases}$$

On peut visualiser ce système d'inconnues x et y par des matrices de type Ax = b:

$$\begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$$

Sous forme de matrice augmentée A:

$$A = \begin{pmatrix} 2 & 1 & 5 \\ -1 & 3 & 1 \end{pmatrix}$$

On utilise ces matrices pour résoudre les sytèmes d'équations linéaires.

1.1 Méthode de Gauss

La méthode de Gauss permet de calculer des solutions exactes d'un système d'équation en un nombre d'itération fini. À chaque étape on doit créer des 0 en dessous de la diagonale d'un matrice A jusqu'à obtenir une matrice A' diagonale supérieure grâce à laquelle on pourra résoudre directement l'équation.

$$A' = \begin{pmatrix} 1 & \frac{1}{2} & \frac{5}{2} \\ 0 & 1 & 1 \end{pmatrix}$$

On a donc:

$$\begin{cases} x + \frac{1}{2}y = \frac{5}{2} \\ y = 1 \end{cases} \iff \begin{cases} x = 2 \\ y = 1 \end{cases}$$

1.2 Méthode de Cholesky

Méthode de Cholesky

2 Présentation des programmes commentés

2.1 Programme de résolution par la méthode de Gauss

Programme Gauss

2.2 Programme de résolution grâce à la méthode de Cholesky

Programme de Cholesky

3 Jeux d'essais

Présentation de jeux d'essais pertinents et justifiés Jeux d'essais : matrices tests

4 Commentaire des jeux d'essais

Commentaire des jeux d'essais à partir de données relatives. Pourcentage d'écart, calcul de fonction d'erreurs, vitesse de convergence, complexité pratique, ...

5 Conclusion générale sur les méthodes

Comparaison, cadre d'utilisation, stabilité, ...

Peut-on retrouver une solution connue à priori?

Stabilité : le résultat est-il modifié par des calculs dégradés (erreurs accumulées...)

Conditionnement : quel est l'effet de perturbations des données?

Evaluation des coûts en place et en temps.