MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL TECHNICAL UNIVERSITY OF UKRAINE "IHORY SIKORSKY KYIV POLYTECHNIC INSTITUTE"

Volodymyr Shymkovych

Design and implementation of software systems with neural networks

Design and Implementation of a Neural Network for Binary Classification Using TensorFlow

LABORATORY WORK #1

kulubecioglu mehmet IM-14 FIOT

Kyiv IHORY SIKORSKY KYIV POLYTECHNIC INSTITUTE 2024

1. Installing Libraries:

```
In [13]: import tensorflow as tf
import numpy as np
```

- import tensorflow as tf: Installs the TensorFlow library with the alias tf.
- import numpy as np: Installs the NumPy library with the alias np.

pip install tensorflow

```
In [5]: pip install tensorflow
        7154d678359bed995abdd9daf0cff0/google_auth-2.28.1-py2.py3-none-any.whl.m
        etadata
          Using cached google auth-2.28.1-py2.py3-none-any.whl.metadata (4.7 kB)
        Collecting google-auth-oauthlib<2,>=0.5 (from tensorboard<2.16,>=2.15->t
        ensorflow-intel==2.15.0->tensorflow)
          Obtaining dependency information for google-auth-oauthlib<2,>=0.5 from
        https://files.pythonhosted.org/packages/71/bf/9e125754d1adb3bc4bd206c4e5
        df756513b1d23675ac06caa471278d1f3f/google_auth_oauthlib-1.2.0-py2.py3-no
        ne-any.whl.metadata
          Using cached google_auth_oauthlib-1.2.0-py2.py3-none-any.whl.metadata
        Requirement already satisfied: markdown>=2.6.8 in c:\users\mehme\anacond
        a3\lib\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel==2.
        15.0->tensorflow) (3.4.1)
        Requirement already satisfied: requests<3,>=2.21.0 in c:\users\mehme\ana
        conda3\lib\site-packages (from tensorboard<2.16,>=2.15->tensorflow-intel
        ==2.15.0->tensorflow) (2.31.0)
        Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard<2.16,
        >=2.15->tensorflow-intel==2.15.0->tensorflow)
          Obtaining dependency information for tensorboard-data-server<0.8.0,>= \textbf{\textit{V}}
```

pip install numpy

```
In [12]: !python -m pip install --upgrade pip
       Downloading pip-24.0-py3-none-any.whl.metadata (3.6 kB)
     Downloading pip-24.0-py3-none-any.whl (2.1 MB)
                   ----- 0.0/2.1 MB ? eta -:--:--
        ----- 0.0/2.1 MB ? eta -:--:--
        ----- 0.0/2.1 MB ? eta -:--:--
          ----- 0.0/2.1 MB ? eta -:--:--
            ----- 0.0/2.1 MB ? eta -:--:--
            ----- 0.0/2.1 MB ? eta -:--:--
              ----- 0.0/2.1 MB ? eta -:--:--
              ----- 0.0/2.1 MB ? eta -:--:--
              ----- 0.0/2.1 MB ? eta -:--:--
           ----- 0.0/2.1 MB ? eta -:--:--
          ----- 0.0/2.1 MB ? eta -:--:--
           ----- 0.0/2.1 MB 640.0 kB/s eta 0:
     00:04
            ----- 0.0/2.1 MB 640.0 kB/s eta 0:
     00:04
                 ----- 0.0/2.1 MB 640.0 kB/s
     00:04
```

2. Identification of Data:

```
# Tanımlama

x = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 0]])

y = np.array([0, 1, 1, 0])
```

- x: A NumPy array of values 0 and 1, containing 4 rows and 3 columns.
- y: A 4-element NumPy array consisting of values 0 and 1.

3. Model Creation:

```
model = tf.keras.Sequential([
    tf.keras.layers.Dense(3, input_dim=3, activation="tanh"),
    tf.keras.layers.Dense(1, activation="sigmoid")
])
```

- tf.keras.Sequential([...]): Creates a Keras model that defines layers in a sequential manner.
- tf.keras.layers.Dense(3, input_dim=3, activation="tanh"): Creates a hidden layer with 3 neurons and "tanh" activation function.

- tf.keras.layers.Dense(1, activation="sigmoid"): Creates an output layer with 1 neuron and "sigmoid" activation function.

4. Model Compilation:

```
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.05), loss='binary_crossentropy', metrics=['accuracy'])
```

- model.compile(): Sets the parameters necessary to train the model.
- **optimizer:** Defines the optimization algorithm. Here, the Adam algorithm is selected and the learning rate is set to 0.05.
- **loss:** Defines the loss function. Here the binary cross entropy function is selected.
- **metrics:** Defines the measurements to be tracked during training. Here the accuracy metric is selected.

5. Model Training:

```
# Model eğitme
model.fit(x, y, epochs=100)
```

- model.fit(): Used to train the model on data.
- x: Input data.
- **v:** Target data.
- **epochs:** The number of epochs to be repeated during training. Here, 100 cycles are selected.

6. Model Evaluation:

```
# Model değerlendirme
loss, accuracy = model.evaluate(x, y)
```

- **model.evaluate():** Used to evaluate the performance of the model.
- x: Input data.
- y: Target data.
- loss: Value of the loss function.
- accuracy: The value of the accuracy metric.

7. Making Predictions:

```
# Tahmin yapma
prediction = model.predict(x)
```

- model.predict(): Allows the model to make predictions on new data.
- x: Input data.
- **prediction:** Values predicted by the model.

8. Printing:

```
# Yazdırma
for i in range(len(x)):
    print(f"Input: {x[i]} Guess: {round(prediction[i][0])}")
```

- for loop: Used to print each input and prediction value.
- round(prediction[i][0]): Rounds the prediction value to the nearest integer.

Output:

```
jupyter kulubecioglu mehmet NN lab-1 Last Checkpoint: bir saat önce (autosaved)
                                                                                                      Logout
File Edit View Insert Cell Kernel Widgets Help
                                                                                     Trusted Python 3 (ipykernel) (
prediction = model.predict(x)
          for i in range(len(x)):
    print(f"Input: {x[i]} Guess: {round(prediction[i][0])}")
          Epoch 1/100
                    ========= ] - 1s 649ms/step - loss: 0.8542 - accuracy: 0.5000
          Epoch 2/100
          Epoch 3/100
          1/1 [=
                         ======== 1 - 0s 7ms/step - loss: 0.7331 - accuracy: 0.5000
          Epoch 4/100
                        1/1 [======
          Epoch 5/100
                        1/1 [===
          Epoch 6/100
1/1 [=====
                                  ===] - 0s 5ms/step - loss: 0.6088 - accuracy: 0.5000
          Epoch 7/100
1/1 [=====
Epoch 8/100
                  1/1 [=====
Epoch 9/100
                                     - 0s 6ms/step - loss: 0.5472 - accuracy: 0.7500
                                     - 0s 6ms/step - loss: 0.5203 - accuracy: 0.7500
          Epoch 10/100
          1/1 [======
Epoch 11/100
                                       0s 6ms/step - loss: 0.4952 - accuracy: 1.0000
                                   ==] - 0s 8ms/step - loss: 0.4717 - accuracy: 1.0000
          Epoch 12/100
          1/1 [======
Epoch 13/100
                            =======] - 0s 6ms/step - loss: 64 - accuracy: 1.0000
```

jupyter kulubecioglu mehmet NN lab-1 Last Checkpoint: bir saat önce (autosaved)

