Семинар 22. ARCH- GARCH-процессы (Stata)

План занятия

- 1. Анализ **ARCH- GARCH-процессов** и их свойств.
- 2. Представление GARCH в виде $ARCH(\infty)$.
- 3. Моделирование ARCH-, GARCH-процессов.

Задача 1.1. Анализ ARCH-, GARCH-процессов и их свойств.

Для процессов рассчитайте условные и безусловные характеристики (математическое ожидание $E(y_t)$, дисперсию $V(y_t)$, ковариацию 1-го порядка $\gamma(1)$)

1.
$$u_t = \varepsilon_t \cdot \sigma_t = \varepsilon_t \cdot (0.7 + 0.3u_{t-1}^2)^{1/2}$$
, $\varepsilon_t \sim WN(0, \sigma^2 = 1)$
2. $u_t = \varepsilon_t \cdot \sigma_t = \varepsilon_t \cdot (0.1 + 0.2u_{t-1}^2 + 0.1u_{t-2}^2)^{1/2}$, $\varepsilon_t \sim WN(0, \sigma^2 = 1)$

Задача 1.2. Запишите модели:

ARCH(2) GARCH(1,3) AR(1 4)-GARCH(1,1)

Пример записи модели MA(1)-ARCH(4)

$$\begin{aligned} y_t &= const + \varepsilon_t + \theta_1 \ \varepsilon_{t-1}, \quad \varepsilon_t \sim N(0, \sigma_{t|t-1}^2) \\ \sigma_{t|t-1}^2 &= \text{var}(\varepsilon_t) = E(\varepsilon_t^2 \mid \varepsilon_{t-1}) = \alpha_0 + \alpha_1 \ \varepsilon_{t-1}^2 + \alpha_2 \ \varepsilon_{t-2}^2 + \alpha_3 \ \varepsilon_{t-3}^2 + \alpha_4 \ \varepsilon_{t-4}^2 \end{aligned}$$

Задача 2. Используя ряд дневных доходностей DJ-индекса y_t , оцените волатильность в t=600, 601, 602, если известны параметры GARCH-модели и некоторые значения: -2 0.005 + 0.7 c^2 + 0.1 -2

$$\sigma_{t}^{2} = 0.005 + 0.7 \, \varepsilon_{t-1}^{2} + 0.1 \, \sigma_{t-1}^{2}$$

$$t \quad \hat{\sigma}_{t}^{2} \quad \hat{\varepsilon}_{t}^{2}$$

$$599 \quad 0.01 \quad 0.005$$

$$600 \qquad -$$

$$601 \qquad -$$

$$602 \qquad -$$

Моделирование ARCH- GARCH-процессов.

Задача 3. ARCH-эффекты

Файл: wpi.dta (Индекс цен)

1. Откройте данные. Изучите график временного ряда.

2. Перейдите к логарифмической разности.

$$r_t = \ln \frac{y_t}{y_{t-1}}$$

Постройте квадрат ряда логарифмической разности для определения эффекта «кластеризации» волатильности. Наблюдается ли эффект «кластеризации волатильности»?

Команда Stata:

g lnwpi=ln(wpi)
g Dlnwpi=D.lnwpi
g Dlnwpi2=(D.lnwpi)^2
tsline Dlnwpi Dlnwpi2

3. **Стационарность ряда.** Постройте ACF, PACF для ряда логарифмической разности. Исследуйте ряд на стационарность (DF-test, KPSS). Сделайте вывод.

. dfuller Dlnwpi, lag(1) regress

. kpss Dlnwpi, auto notrend KPSS test for Dlnwpi

Automatic bandwidth selection (maxlag) = 7
121 Autocovariances weighted by Bartlett kernel

Augmented Dickey-Fuller test for unit root

Number of obs =

		Inter	polated Dickey-F	uller Critical values for H0: Dlnwpi is level stationar
	Test	1% Critical	5% Critical	10% Critical
	Statistic	Value	Value	Value 10%: 0.347 5%: 0.463 2.5%: 0.574 1%: 0.739
Z(t)	-3.629	-3.503	-2.889	-2.579 Lag order Test statistic
MacKinnon	approximate p-val	ue for Z(t) = 0.0052		7 .265

4. **Описательные статистики.** Рассчитайте описательные статистики и проанализируйте описательные статистики. На какой показатель надо обратить внимание при исследовании эффекта «кластеризации волатильности»?

Команда Stata:
sum Dlnwpi, detail

. sum Dlnwpi, detail

		Dlnwpi		
	Percentiles	Smallest		
1%	0150986	018424		
5%	0036631	0150986		
10%	0030913	0097878	0bs	123
25%	.0010347	0070105	Sum of Wgt.	123
50%	.0064933		Mean	.0108215
		Largest	Std. Dev.	.014377
75%	.0156989	.0473313		
90%	.0301661	.0475147	Variance	.0002067
95%	.0355368	.0641246	Skewness	1.439496
99%	.0641246	.069526	Kurtosis	5.906107

Проверьте гипотезу о том, что показатель починяются нормальному закону распределения. Какие особенности имеют данные?

swilk Dlnwpi

Shapiro-Wilk W test for normal data

Variable	0bs	W	V	z	Prob>z
Dlnwpi	123	0.89130	10.681	5.313	0.00000

5. Исследуйте АРСН-эффекты.

Условная дисперсия:
$$\sigma_t^2 = \text{var}(\varepsilon_t) = E(\varepsilon_t^2 \mid \varepsilon_{t-1}) = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

Команда Stata:	
regress Dlnwpi	
estat archlm, lags(1)	

. estat archlm, lags(1)

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p)	chi2	df	Prob > chi2
1	8.366	1	0.0038

H0: no ARCH effects

vs. H1: ARCH(p) disturbance

Вывод: присутствуют ARCH(1)-эффекты.

6. **ARCH-модели.** Оцените, запишите и сравните модели: ARCH(1) GARCH(1,1)

Команда Stata:

arch D.lnwpi, arch(1)

arch D.lnwpi, arch(1) garch(1)

ARCH family regression

ARCH family regression

Sample: 1960q2 - 1990q4 Distribution: Gaussian

Wald chi2(.)

Sample: 1960q2 -	1990q4
Distribution: Gau	ussian
Log likelihood =	373.234

Number of obs	=	12.
Wald chi2(.)	=	
Prob > chi2	=	

Log l	Log likelihood = 358.9719				Prob	> chi2 =	
	O.lnwpi	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
lnwpi	_cons	.0078156	.0015534	5.03	0.000	.0047709	.0108602
ARCH	arch					470440	
	L1. _cons	.0001174	.1355637 9.67e-06	3.28 12.13	0.001	.1784129	.7098128

D.lnwpi	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
lnwpi _cons	.0061167	.0010616	5.76	0.000	.0040361	.0081974
ARCH						
arch						
L1.	.4364123	.2437428	1.79	0.073	0413147	.9141394
garch						
L1.	.4544606	.1866606	2.43	0.015	.0886127	.8203086
_cons	.0000269	.0000122	2.20	0.028	2.97e-06	.0000508

Lag	Lag
ARCH(1)	GARCH(1,1)
$y_t = const + \varepsilon_t, \varepsilon_t \sim N(0, \sigma_{t t-1}^2)$	$y_t = const + \varepsilon_t, \varepsilon_t \sim N(0, \sigma_{t t-1}^2)$
$\sigma_t^2 = 0,0001 + 0,44 \varepsilon_{t-1}^2$	$\sigma_t^2 = 0.00003 + 0.44 \varepsilon_{t-1}^2 + 0.45 \sigma_{t-1}^2$
Значимость коэффициентов	
AIC	
BIC	
Остатки	

7. **ARCH+ARIMA-модели.** Для устранения квартальных сезонных эффектов (автокорреляции остатков) добавьте в модель ARMA компоненту и оцените модель ARMA (1; 1 4) GARCH(1,1)

Команда Stata:

arch D.lnwpi, ar(1) ma(1 4) arch(1) garch(1) test [ARCH]L1.arch [ARCH]L1.garch

[ARCH]L1.garch
= 0 = 84.92
•

8. Проверьте выполнение предпосылок стационарности моделей:

$$\begin{aligned} & \text{ARCH}(2) \quad \boldsymbol{\sigma}_{t|t-1}^{2} = \boldsymbol{\alpha}_{0} + \boldsymbol{\alpha}_{1} \,\, \boldsymbol{\varepsilon}_{t-1}^{2} + \boldsymbol{\alpha}_{2} \,\, \boldsymbol{\varepsilon}_{t-2}^{2} \longrightarrow \boldsymbol{\alpha}_{0} > 0, \boldsymbol{\alpha}_{i} \geq 0, \sum_{i=1}^{2} \boldsymbol{\alpha}_{i} < 1. \\ & \text{ARCH}(p) \quad \boldsymbol{\sigma}_{t|t-1}^{2} = \boldsymbol{\alpha}_{0} + \sum_{i=1}^{p} \boldsymbol{\alpha}_{i} \,\, \boldsymbol{\varepsilon}_{t-i}^{2}. \qquad \boldsymbol{\alpha}_{0} > 0, \boldsymbol{\alpha}_{i} \geq 0, \sum_{i=1}^{p} \boldsymbol{\alpha}_{i} < 1. \\ & \text{GARCH}(p,q) \\ & \boldsymbol{\sigma}_{t|t-1}^{2} = \boldsymbol{\alpha}_{0} + \sum_{i=1}^{p} \boldsymbol{\alpha}_{i} \,\, \boldsymbol{\varepsilon}_{t-i}^{2} + \sum_{j=1}^{q} \boldsymbol{\gamma}_{i} \,\, \boldsymbol{\sigma}_{t-j}^{2}. \qquad \boldsymbol{\alpha}_{0} > 0, \boldsymbol{\alpha}_{i} \geq 0, \boldsymbol{\gamma}_{j} \geq 0, \sum_{i=1}^{p} \boldsymbol{\alpha}_{i} + \sum_{j=1}^{q} \boldsymbol{\gamma}_{j} < 1. \end{aligned}$$

9. Анализ остатков. Исследуйте поведение остатков.

Сравните с остатками для белого шума.

- анализ автокорреляции в остатках
- анализ ARCH-эффектов в остатках
- анализ нормального распределения в остатках (тесты, гистограмма, описательные статистики, Q-Q график) (в случае отсутствия нормальности, необходимо рассматривать другие модификации GARCH)

LM test for autoregressive conditional heteroskedasticity (ARCH)

lags(p)	chi2	df	Prob > chi2
1	1.438	1	0.2304

H0: no ARCH effects vs. H1: ARCH(p) disturbance

Замечание.

- Есть некоторые предположения, которые чаще всего используют при работе с GARCH-моделями (Stata):
 - -нормальное (Гауссово) распределение,
 - t-распределение Стьюдента (и асимметричное)
 - обобщенное распределение ошибок (Generalized Error Distribution (GED).

Учитывая предположение о распределении, параметры модели оцениваются ММП (методом максимального правдоподобия).

- Для t-распределения Стьюдента при степенях свободы v > 2 моделируются «толстые хвосты».
- Для учета асимметрии следует использовать асимметричные распределения с «толстыми хвостами», например, скошенное tраспределение Хансена.

Например, можно привести Q-Q графики в предположении нормальности и Tраспределения.

Команда Stata: qnorm e3 qnorm e3, grid

Возможны варианты:

10.Постройте прогноз на 3 шага вперед (в Stata).

$$\sigma_t^2 = \alpha_0 + \alpha_1 \, \varepsilon_{t-1}^2 + \gamma \, \sigma_{t-1}^2$$

$$h = 1 \rightarrow \hat{\sigma}_{T+1}^2 = E(\sigma_{T+1}^2 | \Omega_T) = E(\alpha_0 + \alpha_1 \varepsilon_T^2 + \gamma \sigma_T^2 | \Omega_T) = \alpha_0 + \alpha_1 \varepsilon_T^2 + \gamma \sigma_T^2$$

Задача 4. ARCH-эффекты: анализ фондовых индексов

Файл: returns.dta

returns.def Obs: 271, monthly, (1988:1 - 2010.7)

nasdaq	NASDAQ stock Index (USA)
allods	All Ordinaries Stock Index (Australia)
ftse	FTSE Stock Index (UK)
nikkei	NIkkei Stock Index (Japan)

Source: Yahoo Finance

Родионова Л.А. Майнор «Прикладной статистический анализ» Временные ряды и их практическое применение 2021

Для справки: NASDAQ (сокр. от англ. National Association of Securities Dealers Automated Quotation, читается как «Насдак» — Автоматизированные котировки Национальной ассоциации дилеров по ценным бумагам) — американская биржа, специализирующаяся на акциях высокотехнологичных компаний (производство электроники, программного обеспечения и т. п.). Одна из трёх основных фондовых бирж США (наряду с NYSE и AMEX), является подразделением NASD, контролируется SEC. Собственник биржи — американская компания NASDAQ OMX Group. Помимо NASDAQ, ей принадлежат также 8 европейских бирж. Основана 8 февраля 1971 года. Название происходит от автоматической системы получения котировок, положившей начало бирже. На данный момент на NASDAQ торгуют акциями более 3 200 компаний, в том числе и двух российских.

- 1. Постройте графики показателей. Что можно сказать об эффекте «Кластеризации волатильности»?
- 2. Рассчитайте описательные статистики и проверьте гипотезу о том, что показатели починяются нормальному закону распределения. Какие особенности имеют данные?
- 3. Исследуйте **ARCH-эффекты.**

Показатель	Описательные статистики	ARCH-эффекты
nasdaq	As=-0.74; Ek=1.7	H0 отклоняется (присутствуют ARCH-
		эффекты)
allods		
ftse		
nikkei		

4. Оцените и запишите модели: ARCH(1)

ARCH(2)

GARCH(1,1)

Сравните модели

Модель	σ	LnL	Информационные критерии
ARCH(1)			
ARCH(2)			
GARCH(1,1)			

- 5. Исследуйте поведение остатков. Сравните с остатками для белого шума.
 - анализ автокорреляции в остатках
 - анализ ARCH-эффектов в остатках
 - анализ нормального распределения в остатках (тесты, гистограмма, описательные статистики, Q-Q график) (в случае отсутствия нормальности, необходимо рассматривать другие модификации GARCH)

Задача 5. Модификакции GARCH (p, q). (Stata)

Недостатки GARCH (р, q). Одним из основных недостатков спецификации модели GARCH (р, q) является положение о том, что положительные и отрицательные шоки

имеют одинаковое влияние на ожидаемую будущую волатильность. Однако, в реальности часто наблюдается эффект левериджа. Для этого используются асимметричные модели.

Разновидности GARCH (q, p).

Экспоненциальная GARCH-модель (Exponential GARCH, EGARCH).

$$\log \sigma_t^2 = \omega + \sum_{k=1}^q eta_k g(Z_{t-k}) + \sum_{k=1}^p lpha_k \log \sigma_{t-k}^2$$

$$g(Z_t) = \theta Z_t + \lambda(|Z_t| - E(|Z_t|))$$

Воздействие асимметрично, если $\alpha_i \neq 0$.

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370.

Пороговая ARCH-модель (Threshold ARCH, TARCH).

$$\sigma_t^2 = \omega + \sum_{j=1}^q \beta_j \sigma_{t-j}^2 + \sum_{i=1}^p \alpha_i \epsilon_{t-i}^2 + \sum_{k=1}^r \gamma_k \epsilon_{t-k}^2 \ \varGamma_{t-k},$$
 где $\varGamma_t = 1$, если $\epsilon_t < 0$, и $\varGamma_t = 0$ — в противном случае.

В данной модели позитивные новости при $\epsilon_{t-i} > 0$ и негативные новости при $\epsilon_{t-i} < 0$ имеют различные эффекты воздействия.

Zakoian J. M.(1994). Threshold heteroscedastic models // Journal of Economic dynamics and Control. 18, 931–955.

Stata:

Common term

ARCH (Engle 1982)

GARCH (Bollersley 1986)

ARCH-in-mean (Engle, Lilien, and Robins 1987)

GARCH with ARMA terms

EGARCH (Nelson 1991)

TARCH, threshold ARCH (Zakoian 1994)

GJR, form of threshold ARCH (Glosten, Jagannathan, and Runkle 1993)

SAARCH, simple asymmetric ARCH (Engle 1990)

PARCH, power ARCH (Higgins and Bera 1992)

NARCH, nonlinear ARCH

NARCHK, nonlinear ARCH with one shift

A-PARCH, asymmetric power ARCH (Ding, Granger, and Engle 1993)

NPARCH, nonlinear power ARCH

Данные: Индекс цен Файл: wpi.dta

Оцените Экспоненциальную GARCH-модель

Statistics > Time series > ARCH/GARCH > Nelson's EGARCH model

Предположение: Экономика реагирует по-разному на непредвиденное повышение оптовых цен, чем на снижение (левередж эффект). Возможно, непредвиденное увеличение цен приведет к проблемам с денежными потоками, которые повлияют на запасы и приведут к увеличению волатильности.

Рассмотрим модель ARCH, которая позволяет учесть асимметричный эффект «новостей» - нововведений или непредвиденных изменений, модели - EGARCH (Nelson 1991).

Команда Stata:
arch D.ln_wpi, ar(1) ma(1 4) earch(1) egarch(1)

ARCH family regression -- ARMA disturbances

Sample: 1960q2 - 1990q4

Distribution: Gaussian

Log likelihood = 405.3145

Number of obs = 123

Wald chi2(3) = 156.02

Prob > chi2 = 0.0000

D	.ln_wpi	Coef.	OPG Std. Err.	z	P> z	[95% Conf.	Interval]
ln_wp	_cons	. 0087342	. 0034004	2.57	0.010	. 0020695	. 0153989
ARMA							
	ar L1.	.7692142	. 0968392	7.94	0.000	. 5794128	. 9590157
	ma L1. L4.	3554624 . 2414626	.1265721 .0863834	-2.81 2.80	0.005 0.005	6035392 . 0721542	1073857 . 4107709
ARCH							
	earch L1.	. 406393	.11635	3.49	0.000	.1783512	. 6344348
	earch_a L1.	. 2467327	.1233356	2.00	0.045	. 0049992	. 4884661
	egarch L1.	. 8417338	.0704073	11.96	0.000	.703738	. 9797296
	_cons	-1.48836	. 6604349	-2.25	0.024	-2.782789	1939314

Экспоненциальная GARCH (p,q)-модель (Exponential GARCH, EGARCH).

$$\log \sigma_t^2 = \omega + \sum_{k=1}^q eta_k g(Z_{t-k}) + \sum_{k=1}^p lpha_k \log \sigma_{t-k}^2$$

 $g(Z_t) = heta Z_t + \lambda (|Z_t| - E(|Z_t|))$ имеет стандартное нормальное

распределение или обобщенное распределение ошибок (Generalized Error Distribution (GED).

Представление g(Zt) позволяет оценить отдельно влияние положительных шоков (θ) и отрицательных (λ) .

Воздействие асимметрично, если α_і≠0.

Запись модели:

$$\ln(\sigma_t^2) = -1.49 + .406 z_{t-1} + .247 \left(\left| z_{t-1} \right| - \sqrt{2/\pi} \right) + .842 \ln(\sigma_{t-1}^2)$$

where $z_t = \epsilon_t / \sigma_t$, which is distributed as $N(0, 1)$.

Анализ коэффициентов: Наблюдается наличие левередж эффекта (значимость коэффициента при L1.egarch 0.84). Положительный коэффициент при L1.earch (0,406) означает, что положительные шоки (непредвиденный рост цен) являются более дестабилизирующими, чем отрицательные шоки (коэффициент 0,247).

LM test for autoregressive conditional heteroskedasticity (ARCH)

	lags(p) chi2			df	Prob > chi2	
	1 1.118			1		0.2903
•	н0: г	no ARCH effects	V5.	H1: ARCH(n)	disturbance	

Замечание. В случае, если остатки не подчиняются нормальному закону распределения, то при оценивании модели делается дополнительное предположение.

Заново оцените модель, предположив, что остатки подчиняются распределению Стьюдента с числом степеней свободы 2.

Команда Stata:

arch lnwpi, ar(1) ma(1 4) earch(1) egarch(1) distribution(t 3)

Задача 5. (самостоятельно). Подобрать одну из моделей класса ARCH model

Исходные данные: Daily stock price data (closing value of the Dow-Jones Industrial Average) from the 1953 (02jan1953- 20feb1990).

Файл(Stata): dow.dta

1. Откройте данные. webuse dow1

2. Изучите график временного ряда. Перейдите к *погарифмической разности*. Для получения рядов доходностей берутся логарифмы исходных рядов, к ним применяется оператор первых разностей и полученные величины умножаются на 100 для перехода к процентным изменениям за период (t-1); t

$$r_t = \ln \frac{y_t}{y_{t-1}}$$

Постройте график ряда доходностей для определения эффекта «кластеризации» волатильности.

tsline D.ln_dow

19 октября 1987. <u>Чёрный понедельник</u>: <u>индекс Доу-Джонса</u> пережил самое большое падение в истории — на 22.6 %.

3. **Стационарность ряда.** Постройте ACF, PACF для ряда логарифмической разности. Исследуйте ряд на стационарность (DF-test, KPSS). Сделайте вывод.

3. Дескриптивные статистики. Рассчитайте дескриптивные статистики. Чему равен эксцесс? О чем это свидетельствует?

	D. ln_dow						
	Percentiles	Smallest					
1%	0217228	2563195					
5%	0131841	0838103					
10%	0093744	0715547	obs	9340			
25%	0043364	070972	Sum of Wgt.	9340			
50%	.0003128		Mean	.0002339			
		Largest	Std. Dev.	.0089265			
75%	. 0048165	.0483613					
90%	. 009645	. 0494537	Variance	.0000797			
95%	.0132322	.0571537	Skewness	-2.539828			
99%	.0229793	.0966616	Kurtosis	81.32063			

- 4. ARCH-эффекты. Проведите тест на наличие ARCH-эффектов
- 5. Подобрать одну из моделей класса ARCH model

Asymmetric power ARCH model

Kоманда Stata:

arch D.ln_dow, ar(1) aparch(1) pgarch(1)
arch D.ln_dow, ar(1) aparch(1) pgarch(1) distribution(ged)

Обсуждение модели: см help Stata

Анализ остатков:

- анализ автокорреляции в остатках
- анализ ARCH-эффектов в остатках
- анализ нормального распределения в остатках (тесты, гистограмма, описательные статистики, Q-Q график) (в случае отсутствия нормальности, необходимо рассматривать другие модификации GARCH)

Рекомендуемая литература:

- Engle, Robert F. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation". Econometrica. 50 (4): 987–1008.
- Bollerslev, Tim (1986). "Generalized Autoregressive Conditional Heteroskedasticity". *Journal of Econometrics*. **31** (3): 307–327.
- Эконометрический ликбез: волатильность// Квантиль№8. http://quantile.ru/08/08-ER.pdf
- О.Е. Перцовский МОДЕЛИРОВАНИЕ ВАЛЮТНЫХ РЫНКОВ НА ОСНОВЕ ПРОЦЕССОВ С ДЛИННОЙ ПАМЯТЬЮ Препринт WP2/2004/03

https://www.hse.ru/data/2010/05/04/1216407546/WP2_2004_03.pdf

- Федорова Е.А. МОДЕЛИРОВАНИЕ ВОЛАТИЛЬНОСТИ ФОНДОВОГО РЫНКА В ПЕРИОД КРИЗИСА (2011, 2013) https://cyberleninka.ru/article/n/modelirovanie-volatilnosti-fondovogo-rynka-v-period-krizisa

Book: Guidolin M., Pedio M. (2018) Essentials of Time Series for Financial Applications https://www.sciencedirect.com/book/9780128134092/essentials-of-time-series-for-financial-applications