Number-Theoretic Significance of li(x)

(Assuming Riemann's hypothesis that all non-real zeros of $\zeta(z)$ have a real part of $\frac{1}{2}$)

5.1.50 li
$$(x) - \pi(x) = O(\sqrt{x} \ln x)$$
 $(x \to \infty)$

 $\pi(x)$ is the number of primes less than or equal to x.

FIGURE 5.5. y=li(x) and $y=\pi(x)$

Asymptotic Expansion

5.1.51

$$E_n(z) \sim \frac{e^{-z}}{z} \left\{ 1 - \frac{n}{z} + \frac{n(n+1)}{z^2} - \frac{n(n+1)(n+2)}{z^3} + \dots \right\}$$
 (|arg z| $< \frac{3}{2}\pi$)

Representation of $E_n(x)$ for Large n

5.1.52

$$E_n(x) = \frac{e^{-x}}{x+n} \left\{ 1 + \frac{n}{(x+n)^2} + \frac{n(n-2x)}{(x+n)^4} + \frac{n(6x^2 - 8nx + n^2)}{(x+n)^6} + R(n, x) \right\}$$
$$-.36n^{-4} \le R(n, x) \le \left(1 + \frac{1}{x+n-1} \right) n^{-4} \quad (x > 0)$$

Polynomial and Rational Approximations 5

5.1.53
$$0 \le x \le 1$$

$$E_1(x) + \ln x = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 + \epsilon(x)$$

$$|\epsilon(x)| < 2 \times 10^{-7}$$

$$a_0 = -.57721 \ 566$$
 $a_3 = .05519 \ 968$
 $a_1 = .99999 \ 193$ $a_4 = -.00976 \ 004$
 $a_2 = -.24991 \ 055$ $a_5 = .00107 \ 857$

5.1.54
$$1 \le x < \infty$$

$$xe^{x}E_{1}(x) = \frac{x^{2} + a_{1}x + a_{2}}{x^{2} + b_{1}x + b_{2}} + \epsilon(x)$$

$$|\epsilon(x)| < 5 \times 10^{-5}$$

$$a_1 = 2.334733$$
 $b_1 = 3.330657$
 $a_2 = .250621$ $b_2 = 1.681534$

5.1.55
$$10 \le x < \infty$$
$$xe^{x}E_{1}(x) = \frac{x^{2} + a_{1}x + a_{2}}{x^{2} + b_{1}x + b_{2}} + \epsilon(x)$$
$$|\epsilon(x)| < 10^{-7}$$

$$a_1 = 4.03640$$
 $b_1 = 5.03637$ $a_2 = 1.15198$ $b_2 = 4.19160$

5.1.56 1≤
$$x$$
<∞

$$xe^{x}E_{1}(x) = \frac{x^{4} + a_{1}x^{3} + a_{2}x^{2} + a_{3}x + a_{4}}{x^{4} + b_{1}x^{3} + b_{2}x^{2} + b_{3}x + b_{4}} + \epsilon(x)$$

$$|\epsilon(x)| < 2 \times 10^{-8}$$

$$a_1 = 8.57332 87401$$
 $b_1 = 9.57332 23454$
 $a_2 = 18.05901 69730$ $b_2 = 25.63295 61486$
 $a_3 = 8.63476 08925$ $b_3 = 21.09965 30827$
 $a_4 = .26777 37343$ $b_4 = 3.95849 69228$

5.2. Sine and Cosine Integrals

Definitions

5.2.1
$$\operatorname{Si}(z) = \int_{0}^{z} \frac{\sin t}{t} dt$$

5.2.2 6

$$\operatorname{Ci}(z) = \gamma + \ln z + \int_0^z \frac{\cos t - 1}{t} dt \qquad (|\arg z| < \pi)$$

5.2.3 ⁷ Shi(z) =
$$\int_0^z \frac{\sinh t}{t} dt$$

5.2.4

$$\operatorname{Chi}(z) = \gamma + \ln z + \int_{0}^{z} \frac{\cosh t - 1}{t} dt \qquad (|\arg z| < \pi)$$

$$\operatorname{Cin}(z) = -\operatorname{Ci}(z) + \ln z + \gamma.$$

⁷ The notations $Sih(z) = \int_0^z \sinh t \ dt/t$,

 $\operatorname{Cinh}(z) = \int_0^z (\cosh t - 1) dt/t$ have also been proposed [5.14.]

⁵ The approximation 5.1.53 is from E. E. Allen, Note 169, MTAC 8, 240 (1954); approximations 5.1.54 and 5.1.56 are from C. Hastings, Jr., Approximations for digital computers, Princeton Univ. Press, Princeton, N.J., 1955; approximation 5.1.55 is from C. Hastings, Jr., Note 143, MTAC 7, 68 (1953) (with permission).

⁶ Some authors [5.14], [5.16] use the entire function $\int_0^t (1-\cos t) dt/t$ as the basic function and denote it by $\operatorname{Cin}(z)$. We have

5.2.5
$$si(z) = Si(z) - \frac{\pi}{2}$$

Auxiliary Functions

5.2.6
$$f(z) = \text{Ci}(z) \sin z - \sin(z) \cos z$$

5.2.7
$$g(z) = -\text{Ci}(z) \cos z - \sin(z) \sin z$$

Sine and Cosine Integrals in Terms of Auxiliary Functions

5.2.8
$$\operatorname{Si}(z) = \frac{\pi}{2} - f(z) \cos z - g(z) \sin z$$

5.2.9
$$Ci(z) = f(z) \sin z - g(z) \cos z$$

Integral Representations

5.2.10
$$\operatorname{si}(z) = -\int_0^{\frac{\pi}{2}} e^{-z \cos t} \cos (z \sin t) dt$$

5.2.11 Ci(z) +E₁(z) =
$$\int_{0}^{\frac{\pi}{2}} e^{-z \cos t} \sin(z \sin t) dt$$

5.2.12
$$f(z) = \int_0^\infty \frac{\sin t}{t+z} dt = \int_0^\infty \frac{e^{-zt}}{t^2+1} dt$$
 ($\Re z > 0$)

5.2.13
$$g(z) = \int_0^\infty \frac{\cos t}{t+z} dt = \int_0^\infty \frac{t e^{-zt}}{t^2+1} dt$$
 (\$\mathre{A}z > 0)

FIGURE 5.6. y=Si(x) and y=Ci(x)

Series Expansions

5.2.14 Si(z) =
$$\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)(2n+1)!}$$

5.2.15
$$\operatorname{Si}(z) = \pi \sum_{n=0}^{\infty} J_{n+\frac{1}{2}}^{2} \binom{z}{2}$$

5.2.16
$$\operatorname{Ci}(z) = \gamma + \ln z + \sum_{n=1}^{\infty} \frac{(-1)^n z^{2n}}{2n(2n)!}$$

5.2.17
$$\operatorname{Shi}(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)(2n+1)!}$$

5.2.18 Chi(z) =
$$\gamma$$
 + ln z + $\sum_{n=1}^{\infty} \frac{z^{2n}}{2n(2n)!}$

Symmetry Relations

5.2.19
$$\operatorname{Si}(-z) = -\operatorname{Si}(z), \operatorname{Si}(\overline{z}) = \operatorname{Si}(z)$$

5.2.20

$$Ci(-z) = Ci(z) - i\pi \qquad (0 < \arg z < \pi)$$

$$Ci(\overline{z}) = \overline{Ci(z)}$$

Relation to Exponential Integral

5.2.2

$$\operatorname{Si}(z) = \frac{1}{2i} [E_1(iz) - E_1(-iz)] + \frac{\pi}{2} \quad (|\arg z| < \frac{\pi}{2})$$

5.2.22 Si(
$$ix$$
) = $\frac{i}{2}$ [Ei(x) + $E_1(x)$] (x >0)

5.2.23

$$Ci(z) = -\frac{1}{2} [E_1(iz) + E_1(-iz)]$$
 (|arg z| $<\frac{\pi}{2}$)

5.2.24 Ci(ix)=
$$\frac{1}{2}$$
[Ei(x)- E_1 (x)]+ $i\frac{\pi}{2}$ (x>0)

Value at Infinity

5.2.25
$$\lim_{x \to \infty} \text{Si}(x) = \frac{\pi}{2}$$

Integrals

(For more extensive tables of integrals see [5.3], [5.6], [5.11], [5.12], [5.13].)

5.2.26
$$\int_{-\infty}^{\infty} \frac{\sin t}{t} dt = -\sin(z)$$
 (|arg z| $<\pi$)

5.2.27
$$\int_{z}^{\infty} \frac{\cos t}{t} dt = -\operatorname{Ci}(z) \quad (|\arg z| < \pi)$$

5.2.28
$$\int_0^\infty e^{-at} \operatorname{Ci}(t) dt = -\frac{1}{2a} \ln(1+a^2)$$
 ($\Re a > 0$)*

5.2.29
$$\int_0^\infty e^{-at} \sin(t) dt = -\frac{1}{a} \arctan a \qquad (\Re a > 0)$$

5.2.30
$$\int_0^{\infty} \cos t \, \text{Ci}(t) dt = \int_0^{\infty} \sin t \, \text{si}(t) dt = -\frac{\pi}{4}$$

^{*}See page II

5.2.38

5.2.31
$$\int_{0}^{\infty} \operatorname{Ci}^{2}(t) dt = \int_{0}^{\infty} \operatorname{si}^{2}(t) dt = \frac{\pi}{2}$$
5.2.32*
$$\int_{0}^{\infty} \operatorname{Ci}(t) \operatorname{si}(t) dt = \ln 2$$
5.2.33
$$\int_{0}^{1} \frac{(1 - e^{-at}) \cos bt}{t} dt = \frac{1}{2} \ln \left(1 + \frac{a^{2}}{b^{2}} \right) + \operatorname{Ci}(b)$$

$$+ \Re E_{1}(a + ib) \quad (a \text{ real}, b > 0)$$

Asymptotic Expansions

5.2.34

$$f(z) \sim \frac{1}{z} \left(1 - \frac{2!}{z^2} + \frac{4!}{z^4} - \frac{6!}{z^6} + \dots \right) \quad (|\arg z| < \pi)$$

5.2.35

$$g(z) \sim \frac{1}{z^2} \left(1 - \frac{3!}{z^2} + \frac{5!}{z^4} - \frac{7!}{z^6} + \dots \right)$$
 (|arg z| $< \pi$)

Rational Approximations 8

5.2.36
$$1 \le x < \infty$$

$$f(x) = \frac{1}{x} \left(\frac{x^4 + a_1 x^2 + a_2}{x^4 + b_1 x^2 + b_2} \right) + \epsilon(x)$$

$$|\epsilon(x)| < 2 \times 10^{-4}$$

$$a_1 = 7.241163 \qquad b_1 = 9.068580$$

$$a_2 = 2.463936 \qquad b_2 = 7.157433$$

5.2.37
$$1 \le x < \infty$$

$$g(x) = \frac{1}{x^2} \left(\frac{x^4 + a_1 x^2 + a_2}{x^4 + b_1 x^2 + b_2} \right) + \epsilon(x)$$

$$|\epsilon(x)| < 10^{-4}$$

$$a_1 = 7.547478 \qquad b_1 = 12.723684 \qquad *$$

$$a_2 = 1.564072 \qquad b_2 = 15.723606 \qquad *$$

$$f(x) = \frac{1}{x} \left(\frac{x^8 + a_1 x^6 + a_2 x^4 + a_3 x^2 + a_4}{x^8 + b_1 x^6 + b_2 x^4 + b_3 x^2 + b_4} \right) + \epsilon(x)$$

$$|\epsilon(x)| < 5 \times 10^{-7}$$

$$a_1 = 38.027264 \qquad b_1 = 40.021433$$

$$a_2 = 265.187033 \qquad b_2 = 322.624911$$

$$a_3 = 335.677320 \qquad b_3 = 570.236280$$

$$a_4 = 38.102495 \qquad b_4 = 157.105423$$

$$5.2.39 \qquad 1 \le x < \infty$$

$$g(x) = \frac{1}{x^2} \left(\frac{x^8 + a_1 x^6 + a_2 x^4 + a_3 x^2 + a_4}{x^8 + b_1 x^6 + b_2 x^4 + b_3 x^2 + b_4} \right) + \epsilon(x)$$

$$|\epsilon(x)| < 3 \times 10^{-7}$$

Numerical Methods

5.3. Use and Extension of the Tables

Example 1. Compute Ci (.25) to 5D. From Tables 5.1 and 4.2 we have

$$\frac{\text{Ci } (.25) - \ln(.25) - \gamma}{(.25)^2} = -.249350,$$

Ci
$$(.25) = (.25)^2(-.249350) + (-1.38629) + .577216 = -.82466.$$

Example 2. Compute Ei (8) to 5S.

From **Table 5.1** we have xe^{-x} Ei (x) = 1.18185 for x=8. From **Table 4.4**, $e^8 = 2.98096 \times 10^3$. Thus Ei (8) = 440.38.

Example 3. Compute Si (20) to 5D.

 $a_1 = 42.242855$

 $a_2 = 302.757865$

 $a_3 = 352.018498$

Since 1/20=.05 from **Table 5.2** we find f(20)=.049757, g(20)=.002464. From **Table 4.8**, $\sin 20=.912945$, $\cos 20=.408082$. Using **5.2.8**

 $a_4 = 21.821899$ $b_4 = 449.690326$

 $b_1 = 48.196927$

 $b_2 = 482.485984$

 $b_3 = 1114.978885$

Si(20)=
$$\frac{\pi}{2}$$
-f(20) cos 20-g(20) sin 20
=1.570796-.022555=1.54824.

Example 4. Compute $E_n(x)$, n=1(1)N, to 5S for x=1.275, N=10.

If x is less than about five, the recurrence relation 5.1.14 can be used in increasing order of n without serious loss of accuracy.

By quadratic interpolation in Table 5.1 we get $E_1(1.275) = .1408099$, and from Table 4.4, $e^{-1.275} = .2794310$. The recurrence formula 5.1.14 then yields

^{*}See page II.

⁸ From C. Hastings, Jr., Approximations for digital computers, Princeton Univ. Press, Princeton, N.J., 1955 (with permission).