

СОДЕРЖАНИЕ

1.	Введение4
2.	Назначение и область применения4
3.	Технические характеристики
4.	Состав изделия и комплект поставки7
5.	Устройство и принцип работы 8
6.	Указание мер безопасности10
7.	Монтаж, подготовка к работе и порядок работы 10
8.	Техническое обслуживание
9.	Гарантийные обязательства и срок службы13
10.	Данные о контрольных испытаниях установки14
11.	Полезная информация15
12.	Схемы

1. ВВЕДЕНИЕ

Настоящий документ удостоверяет гарантированные изготовителем основные параметры и технологические характеристики локальной установки очистки бытовых сточных вод.

2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ.

Установка предназначена для глубокой биологической очистки бытовых сточных вод от коттеджей, загородных домов, кафе, магазинов и других объектов при отсутствии централизованной системы канализации.

Установка обеспечивает очистку указанных сточных вод до показателей, соответствующих нормативным требованиям к ПДК загрязнений в воде водоемов как хозяйственно-питьевого, так и рыбохозяйственного водопользования, что позволяет сбрасывать очищенные сточные воды непосредственно на рельеф (в дренажные канавы, придорожные кюветы и т.п.)

Показатели загрязнений сточных вод (среднесуточные), мг/л

		Поступающих		
	Показатели	Максимальное	Среднее	Очищенных
БПКпо	ОЛН			
`	я биохимическая ность в кислороде)	300	176	3.0
	ШЕННЫЕ ЕСТВА	260 225		3.0
	аммонийных солей	32	30	0.39
АЗОТ	нитратов	-	-	9
	нитритов	-	-	0.02
ФОСФАТЫ		13	11.4	0.2
,	оверхностно- ые вещества)	10	1.1	0.2

3. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

		0						
п Пия Си	Количество обслуживаемых жителей	Производительность по сточным водам,м³/сут	Габаритн	ыеразмер	ы, мм	чно),	ор, ная Вт	Номинальное напряжение, В
Модификация установки «Тверь»			длина	ширина	высота	Вес (справочно) кг	Компрессор, номинальная мощность, Вт	
0,35∏	12	0,35	1400	1100	1670	90	40	220
0,5∏	23	0,5	1650	1100	1670	100	40	220
0,5∏M	23	0,5	1650	1100	1970	120	40	220
0,75Π	24	0,75	1900	1100	1670	120	40	220
0,75ПМ	24	0,75	1900	1100	1970	140	40	220
0,85∏	35	0,85	2100	1100	1670	130	40	220
0,85ПМ	35	0,85	2100	1100	1970	150	40	220
1Π	46	1	2500	1100	1670	150	40	220
1∏M	46	1	2500	1100	1970	180	40	220
1,2Π	57	1,2	2800	1100	1670	200	60	220
1,2ПМ	57	1,2	2800	1100	1970	230	60	220
1,5∏	69	1,5	3500	1100	1670	250	60	220
1,5∏M	69	1,5	3500	1100	1970	280	60	220
2Π	до 12	2	4000	1300	1670	310	80	220
2ПМ	до 12	2	4000	1300	1970	350	80	220
3П	до 18	3	4000	1600	1670	330	100	220
3ПМ	до 18	3	4000	1600	1970	350	100	220
4□	до 24	4	4000	1300	1670	620	160	220
6Π	до 36	6	4000	1600	1670	660	200	220

4. СОСТАВ ИЗДЕЛИЯ И КОМПЛЕКТ ПОСТАВКИ

							I		
Модификация установки «Тверь»	Корпус установки,шт	Крышка, шт	Крышка промежуточная, шт	Компрессор, шт	Воздушный трубопровод из ПНД с разъемной муфтой, м*	Ершовая насадка, шт	Щебень доломитовый, м3	Керамзит, м3	паспорт, шт
0,35Π	1	1	1	1	20	14	0,02	0,03	1
0,5∏	1	1	1	1	20	16	0,02	0,03	1
0,5ПМ	1	1	1	1	20	16	0,02	0,03	1
0,75∏	1	2(1)	2(1)	1	20	16	0,03	0,05	1
0,75ПМ	1	2(1)	2(1)	1	20	16	0,03	0,05	1
0,85Π	1	2	2	1	20	18	0,03	0,05	1
0,85∏M	1	2	2	1	20	18	0,03	0,05	1
1Π	1	2	2	1	20	20	0,04	0,07	1
1ПМ	1	2	2	1	20	20	0,04	0,07	1
1,2Π	1	2	2	1	20	28	0,05	0,08	1
1,2ПМ	1	2	2	1	20	28	0,05	0,08	1
1,5∏	1	2	2	1	20	36	0,06	0,1	1
1,5ПМ	1	2	2	1	20	36	0,06	0,1	1
2Π	1	2	2	1	20	49	0,08	0,13	1
2ПМ	1	2	2	1	20	49	0,08	0,13	1
3П	1	2	2	1	20	72	0,11	0,16	1
3ПМ	1	2	2	1	20	72	0,11	0,16	1
4∏	2	4	4	2	40	98	0,16	0,26	1
6Π	2	4	4	2	40	144	0,22	0,32	1

5.УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

5.1 Устройство установки

Установка очистки сточных вод состоит из технологических емкостей с утепленными крышками, объединенных в общий корпус, и компрессора.

Установка очистки (рис.1) представляет собой емкость из полипропилена, разделенную внутренними перегородками, образующими секции:

- 1 Септическая камера
- 2 Анаэробный биореактор
- 3 Аэротенк
- 4 Вторичный отстойник
- 5 Аэробный биореактор
- 6 Третичный отстойник

С целью усиления прочности корпуса установки и компенсации давления на корпус воды изнутри установки, а грунта и подземных вод снаружи, стенки установки и перегородки усилены ребрами жесткости.

В анаэробном и аэробном биореакторах устанавливается ершовая насадка (4). Донная часть аэротенка снабжена аэратором (6) и заполняется слоем керамзита (8), либо другим аналогичным материалом. Донная часть аэробного биореактора снабжена аэратором (6) и заполняется слоем доломитового щебня (9). Во вторичном отстойнике и аэробном биореакторе расположены эрлифты (7), соединенные трубопроводом осадка (10) с септической камерой. Аэраторы в аэротенке и аэробном биореакторе, а также эрлифты соединены трубной разводкой (5) с системой подачи воздуха от компрессора.

Доступ к технологическим емкостям осуществляется сверху через крышки. Воздух в систему аэрации и к эрлифтам подается компрессором (14), установленным на канализуемом объекте и соединенным с установкой трубопроводом из ПНД.

5.2. Принцип работы установки

Сточные воды поступают в септическую камеру 1, в которой отделяются взвешенные вещества, затем в анаэробный биореактор 2 с ершовой насадкой (4). На насадке происходит преобразование трудноокисляемых органических загрязнений в легкоокисляемые.

После анаэробного биореактора сточные воды поступают в аэротенк 3, в котором смешиваются с активным илом. В нижнюю часть аэротенка через керамзитовую загрузку (8) подается воздух от аэраторов (6).

На загрузке образуется биопленка из микроорганизмов, которая совместно с активным илом поглощает и окисляет загрязнения.

Иловая смесь из аэротенка поступает во вторичный отстойник 4, в котором происходит разделение иловой смеси: активный ил возвращается в аэротенк, а осветленная сточная вода отводится в аэробный биореактор 5. В аэробном биореакторе сточные воды дополнительно очищаются биопленкой, образующейся в аэробной среде на насадке из искусственных водорослей (глубокая очистка). Наружный слой биопленки на насадке сорбирует и окисляет органические загрязнения, оставшиеся в сточных водах после биологической очистки. Во внутреннем слое биопленки создается дефицит кислорода, что благоприятствует протеканию процесса денитрификации.

На дне аэробного биореактора размещается слой доломитового щебня, постепенное растворение которого в сточной воде способствует удалению из нее фосфатов за счет их связывания ионами кальция и магния.

После аэробного биореактора сточные воды поступают в третичный отстойник, в котором задерживается отмершая биопленка. В третичный отстойник может быть при необходимости размещён поплавковый дозатор дезинфектанта, использующий хлорсодержащие таблетки.¹

Очищенная и обеззараженная вода отводится в ближайший водоток или водоем. При необходимости сточная вода может отводиться в накопительную емкость и перекачиваться в водоем насосом любого типа. Избыточный воздух из установки удаляется через вентилируемый канализационный стояк дома.

¹ поставляется на заказ по требованию местного Центра Госсанэпиднадзора в случае возникновения повышенной санитарно-эпидемиологической опасности

6.УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- Во время работы установка должна быть закрыта наземной крышкой.
- При ремонте установки и удалении осадка из септической камеры необходимо отключить компрессор.
- Следует исключить возможность наезда колес автотранспорта на крышки установки.
- \bullet При обслуживании компрессоров следует соблюдать правила безопасности, изложенные в их паспортах.
- Для стабильной работы установки временная перегрузка ее в процессе эксплуатации не должна превышать 20% от номинальной производительности.

При сбросе в систему бытовой канализации с последующим поступлением на установку «Тверь» грязной промывной воды от установки очистки воды для системы водоснабжения следует руководствоваться следующим:

- Секундный расход промывных вод не должен превышать максимальный секундный расход бытовых сточных вод;
- Объём промывных вод, сбрасываемых в течение суток, должен быть не более 50% суточной производительности установки;
- Грязные промывные воды не должны содержать веществ, токсичных для процесса биологической очистки (перманганат калия, кислоты, щёлочи, активный хлор и др.)

7. МОНТАЖ, ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ

- 7.1 Корпус установки разместить на основании из уплотненного песка высотой не менее 100 мм, с контролем его горизонтального положения в продольном и поперечном направлении. Подбить или пролить водой песок в пазухи у дница установки, уплотнив его.
- 7.2 Подводящий трубопровод сточных вод диаметром 110 мм проложить на глубине не менее 200 мм до верха трубы с уклоном не менее 0,02 (2 см на 1 п.м). Трубопровод разместить на основании из уплотненного песка, высотой не менее 100мм. При наличии пучинистых или слабонесущих грунтов (плывунов,

торфяников и др.) необходимо предусмотреть мероприятия, исключающие повреждения трубопроводов. При наличии поворотов трубопровода, рекомендуется выполнить их в колодце диаметром 700 мм с лотком радиусом не менее 300 мм.

- 7.3 Воздухопровод от компрессора к установке проложить в общей траншее с подводящим трубопроводом с уклоном в сторону установки и подсоединить через разъемную муфту с резьбовой муфтой подвода воздуха установки. Не допускается провисание (образование «карманов») воздухопровода во избежание замерзания конденсата.
- 7.4 Отводящий трубопровод проложить аналогично п.7.2., его уклон принять не менее 0,005.

ВНИМАНИЕ!

При разработке котлована зазор между стенками котлована и корпусом установки принять не более 200мм с каждой стороны корпуса! Максимальное заглубление днища установки не должно превышать 2-х метров (2,3 м для установок «Тверь...ПМ») от поверхности земли. При необходимости большего заглубления требуется предусматривать устройство защитного кожуха во избежании повышенной нагрузки грунта на корпус установки.

- 7.5 Компрессор разместить в техническом помещении канализуемого объекта (с учетом его малых габаритов и практически бесшумной работы), присоединив к электросети через розетку с заземляющим контуром, предварительно соединив воздухопровод с компрессором с помощью зажимного хомута.
- 7.6. Засыпать керамзитовую загрузку в аэротенк 3, равномерно распределив ее по дну секции.
- 7.7. Засыпать доломитовый щебень в аэробный биореактор 5, равномерно распределив его по дну секции.
 - 7.8. В анаэробном и аэробном биореакторах подвесить ершовую насадку(4).
- 7.9. По периметру корпуса произвести засыпку песчаным грунтом на ширину 100-200 мм.
 - 7.10. Заполнить установку водопроводной водой до уровня водосливов.

Во избежание всплытия установки при размещении в водонасыщенных грунтах, заполнение водой необходимо произвести сразу после помещения корпуса установки в котлован.

ВНИМАНИЕ!

Заполнение установки водой и засыпку корпуса установки по периметру производить поэтапно, слоями по 15-20 см с послойным трамбованием песка.

7.11. Включить систему аэрации: вентили № 1 и № 2 — открыть; шаровые краны № 3 и № 4 — закрыть.

Отрегулировать поступление воздуха, используя вентили № 1 и № 2 до поступления в аэротенк (вентиль №1) большего количества воздуха (активное бурление), а в аэробный биореактор (вентиль №2) малого количества воздуха (отдельные пузырьки не должны сливаться друг с другом).

7.12. Пуск установки осуществить подачей на нее сточной воды при включенном компрессоре. Пуск следует осуществлять при положительных температурах наружного воздуха.

Температура воды, поступающей на установку должна быть не ниже + 12° С, что, как правило, имеет место в системах канализации при наличии горячего водоснабжения.

- 7.13. Через 3-4 недели вода, выходящая из установки, достигнет расчетной степени очистки (проба очищенной воды должна быть прозрачной, без окраски, запаха и видимых включений частиц).
- 7.14. Если характеристики очищенных сточных вод не соответствуют указанным в паспорте, необходимо получить консультацию в Торговом доме «ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ» (117279, г. Москва, Профсоюзная ул., 93а, офис 528, т. (495) 580 58 50) и по результатам произвести доналадку установки.

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

8.1.Избыточный ил, нарастающий в аэротенке и осадок из третичного отстойника периодически (1 раз в 3-6 месяцев) перекачивать эрлифтами в септик (эрлифты включаются поочередно открыванием кранов № 3 и № 4 после предварительного закрывания вентилей № 1 и № 2). Краны № 3 и № 4 открывать на 5-10 минут каждый (до изменения окраски жидкости, изливающейся из трубопровода осадка, с темной на светлую). После окончания перекачки избыточного ила и осадка,

вернуть краны и вентили в исходное рабочее положение.

- 8.2. Отрегулировать поступление воздуха (1 раз в 3-6 месяцев), используя вентили №1 и №2 до поступления в аэротенки большого количества воздуха, а в аэробный биореактор малого количества воздуха. (см. схему №1)
- 8.3 Септическую камеру, в среднем, один раз в год опорожнять ассенизационной машиной либо иным приспособлением для удаления осадка.
- 8.4. Ершовую загрузку один раз в 2-3 года промывать струей воды из шланга. Один раз в 5-6 лет загрузку заменять новой. Загрузка поставляется Торговым Домом "ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ".
- 8.5.Доломитовый щебень в аэробном биореакторе пополнять по мере растворения (1 раз в 2-3 года).
 - 8.6. Очистку водосливов и стенок от отложений производить один раз в 2-3 года.
- 8.7. Эксплуатацию компрессора осуществлять в соответствии с прилагаемой к нему инструкцией завода-изготовителя.

ВНИМАНИЕ!

Во избежание «всплытия» установки под действием грунтовых вод запрещается опорожнять одновременно более одной секции установки.

9. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА И СРОК СЛУЖБЫ

Изготовитель гарантирует указанные в паспорте параметры очищенной воды при соблюдении правил эксплуатации установки.

Установка имеет экспертное заключение, декларацию о соответствии и сертификат соответствия.

Гарантийный срок эксплуатации установки – 1 год со дня её приобретения.

Гарантийный срок работы компрессора – в соответствии с паспортом.

Срок службы корпуса установки при условии соблюдения технологии монтажа и требований эксплуатации – 25 лет.

ВНИМАНИЕ!

Во избежание деформации корпуса установки запрещается складирование стройматериалов и проезд автотранспорта ближе, чем в 1,5м от установки

10	ДАННЫЕ () K	OH'	TDO	пьных	ИСПЫТА	YDNU	VCTAH	ORKI
IU.	ДАППЫЕ (ノト	UI.	IPU.	Прпріл	IICIIDIIF		уСІАП	UDINI

JCTanobka	J N=			прошла	присмивіс	испытапия
в соответствии	с ТУ	4859-013-26230499	9-2013 и	соответ	ствует пред	тьявляемым
требованиям.						

ОТК

Дата продажи

VCTALIODICA MO

<u>«</u>.

_____20___г.

м.Π.

11. ПОЛЕЗНАЯ ИНФОРМАЦИЯ

для пользователей установкой биологической очистки сточных вод

Уважаемый покупатель,

Вы приобрели установку глубокой биологической очистки бытовых сточных вод «Тверь». «Торговый дом «ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ» благодарит Вас за этот выбор и искренне надеется, что Вы не пожалеете о нем.

Биологическая очистка в настоящее время во всем мире является практически единственным процессом, преобразующим опасные и вредные в санитарном отношении бытовые сточные воды в безопасные и безвредные для природы.

Торговый дом «ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ» постарался сделать максимум возможного, чтобы установка «Тверь» при умеренной стоимости была простой, эффективной и надежной: установка имеет четыре полноценных ступени очистки; очистку осуществляет комбинированная плавающая и прикрепленная микрофлора; установка имеет большой объем, позволяющий сгладить последствия негативных воздействий на процесс очистки.

Вместе с тем следует помнить, что биологическая очистка сточных вод – природный процесс, протекающий в искусственно созданных условиях, которые необходимо поддерживать, чтобы процесс очистки происходил и был эффективным.

Внимательно прочтите, пожалуйста, паспорт установки и выполняйте содержащиеся в нем рекомендации.

Помните, что естественный характер процесса биологической очистки отнюдь не делает его протекание безусловным, а, напротив, требует соблюдения некоторых минимальных условий:

- 1) Сточные воды должны содержать в среднем, не менее 50%, и не более 110% от количества загрязнений, на которые рассчитана установка, и которые служат питанием для микрофлоры (количество загрязнений пропорционально численности пользующихся системой канализации; например, если установка рассчитана на очистку сточных вод от 4 человек, а в доме постоянно проживает 2 человека, нагрузка составляет 50%).
- 2) Температура сточных вод, поступающих на очистку, должна быть не менее 14...15°С, поскольку, в зимнее время сточные воды за время пребывания в установке остывают на 2...3°С, а биологические процессы при температуре ниже

12°C практически прекращаются; данное условие гарантированно соблюдается при использовании горячего водоснабжения (в сельских условиях – от местных водонагревателей).

3) Необходимо непрерывное поступление в установку воздуха, который подает компрессор, поставляемый с установкой. Перерывы в подаче воздуха негативно сказываются

на качестве очищенных сточных вод, а длительные перерывы (порядка нескольких дней) могут привести к гибели плавающей микрофлоры и потребовать заново её наращивать.

4) Следует исключать залповые сбросы сточных вод с большими расходами, вызывающие вынос плавающей микрофлоры из установки (необходимо отличать общий объем сбрасываемых сточных вод от их расхода, измеряемого удельным объемом сточных вод, поступающих в единицу времени. Так, относительно небольшой объем сточных вод 0.3м³, сбрасываемый в течение 10 минут, дает большой расход, равный

 $\frac{0.3.1000}{10.60} = 0.5 \text{ л/с или } 1.8\text{м}^3/\text{час})$

Расход поступающих в установку сточных вод в $\rm m^3$ /час должен составлять не более 0,3 от суточного расхода, указанного в $\rm m^3$ /сутки. Так для установки производительностью $\rm 1.5 m^3$ /сутки расход сточных вод должен быть не больше $\rm 1.5 \cdot 0.3 = 0.45 m^3$ /час или около $\rm 0.13 n/c$ (соответствует одновременной работе двух полностью открытых кранов на бытовых санитарных приборах).

5) Существуют вещества, которые иногда применяются в быту и токсичны для микрофлоры, осуществляющей биологическую очистку; к ним относятся: различные отбеливатели и чистящие средства, содержащие активный хлор; средства для прочистки канализационных труб, содержащие концентрированную щелочь; промывные воды водоочистных фильтров, содержащие марганцовокислый калий (т.н. «марганцовка»). Токсичными могут стать и обычные стиральные порошки при использовании в количествах, многократно превышающих требуемые для обеспечения процесса стирки. Во избежание гибели микрофлоры, после которой потребуется очистка установки и пуск ее в работу заново, следует исключить поступление в сточные воды токсических веществ, а стиральные порошки использовать в рекомендуемых дозах.

ВНИМАНИЕ!

Вавтономную канализацию <u>ЗАПРЕЩАЕТСЯ</u> сбрасывать жировые отходы, остающиеся после приготовления пищи (масла, животные жиры и пр.)

Следовать рекомендациям особенно важно в пусковой период, поскольку микрофлора нарастает постепенно, еще неуспела приспособиться к сточным водам данного объекта, и поэтому более уязвима.

Соблюдение условий эксплуатации установки обеспечит ее многолетнюю эффективную работу и исключит негативное воздействие сбросов неочищенных или недостаточно очищенных сточных вод на экологию и санитарное состояние местности, в которой Вы проживаете.

Желаем Вам успехов и благополучия.

Торговый дом «ИНЖЕНЕРНОЕ ОБОРУДОВАНИЕ»

Рис. 1

Рис. 3

CXEMA KPAHOB

ДЛЯ ЗАМЕТОК

-ДОГОВОР№	OT	Г
• •		

- ОТВЕТСТВЕННЫЙ ПРЕДСТАВИТЕЛЬ

- ДАТА ЗАПУСКА В ЭКСПЛУАТАЦИЮ

ФИО

- ОТВЕТСТВЕННЫЙ ПРЕДСТАВИТЕЛЬ

ФИО

- ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

