Things to think about

- Character of a representation
- Irreducible representation
- Decomposation into irreducible representation
- 1. Representation Scheme of G-action on Coherent Sheaves
- 1.1. Geometric point of view of locally free sheaves and their endomorphisms. Let X be a Noetherian scheme over an algebraically closed field k. A vector bundle $\pi:V\to X$ of rank r is a scheme over X that is locally trivial, *i.e.* there is an affine cover $U_i=\operatorname{Spec} A_i$ of X and isomorphisms

$$\psi_i: \pi^{-1}(U_i) \to U_i \times_k \mathbb{A}_k^r$$

The transition functions between local frames on V need to satisfy cocycle condition.

The category of vector bundles over X is equivalent to the category of locally free O_X -modules. Given a vector bundle $\pi:V\to X$ of rank r, its sections (on open sets) form a locally free sheaf $\mathscr E$ of rank r. To recover V from $\mathscr E$, one takes Spec sym $\mathscr E^\vee$.

An endomorphism of vector bundle $\pi: V \to X$ is an X-morphism $V \to V$, *i.e.* a k-morphism that preserves the fibers.

Lemma 1. There is a vector bundle $E(\pi): E(V) \to X$ whose global sections are in one-to-one correspondence with endomorphisms of $\pi: V \to X$.

Proof. Let $\mathscr E$ be locally free sheaf of sections of $\pi:V\to X$. Then,

$$E(V) = \operatorname{Spec} \operatorname{sym} \mathscr{E}^{\vee} \otimes \mathscr{E}$$

The morphism $E(\pi): E(V) \to X$ is given by the O_X -algebra structure of sym $\mathscr{E}^{\vee} \otimes \mathscr{E}$.

Lemma 2. E(V) has an open subscheme $A(\pi): A(V) \to X$ whose global sections are in one-to-one correspondence with automorphisms of $\pi: V \to X$.

Proof. The complement of zero section of E(V) is A(V).

1.2. Representation Scheme of G-action on a vector bundle. Let G be a group. An G-action on $\pi:V\to X$ is a group homomorphism

$$T: G \to \operatorname{Aut}_X(V)$$

where the group structure on ${\rm Aut}(V)$ is given by composition. The main theorem of this section is the following

Theorem 1. Suppose G is finitely presented. Then, for any vector bundle $\pi: V \to X$, here is a scheme of finite type

$$ES(\pi): ES(V) \to X$$

whose global sections are in one-to-one correspondence with the G-action on $\pi:V\to X$.

Lemma 3. Suppose G is finitely presented, and $\pi:V\to X$ is trivial. Then, there is a scheme of finite type over X

$$ES(\pi): ES(V) \to X$$

whose global sections are in one-to-one correspondence with the G-actions on V.

Proof. Suppose $G = \langle g_1, \cdots, g_n \rangle$ is a free group on n letters. For any G-action on V

$$T:G\to \operatorname{Aut}_X(V)$$

 $T(g_i)$'s do not need to satisfy any relations. Therefore, giving an G-action on V is equivalent to specifying a global section of

$$\prod_{n} (A(\pi)) : \prod_{n} A(V) \to X$$

Now, suppose G has relations r_1, \dots, r_s (monomials in g_i). Let $e_1, \dots, e_r >$ be a global frame of the vector bundle

$$\pi:V\to X$$

and let $< e_1^{\lor}, \cdots, e_r^{\lor} >$ be the dual frame for the dual bundle

$$\pi^{\vee}:V^{\vee}\to X$$

Then, $\langle x_{ij} = e_i \otimes e_j^{\vee} \rangle$ is a global frame for the bundle

$$\mathscr{E}(\pi):\mathscr{E}(V)\to X$$

and $\mathscr{E}(V) = \operatorname{Spec}_{X[x_{ij}]}$, where $O_X[x_{ij}]$ is the symmetric algebra generated by x_{ij} over O_X .

Let $\tau:=(s_1,\cdots,s_n):X\to\prod_n A(V)$ be the section corresponding to $(T(g_1),\cdots,T(g_n))$. Then, as $\mathscr{E}(\pi):\mathscr{E}(V)\to X$ has global frame. τ is given by an O_X -algebra homomorphism:

$$\bigotimes_{k=1}^{n} O_X[x_{ij}^k] \to O_X$$

where $i, j = 1, \dots, r$. For each k, $O_X[x_{ij}^k]$ is the sheaf of regular functions of $\mathscr{E}(V)$.

Let X^k be the matrix $[x_{ij}^k]$, and let J be the ideal sheaf of $\bigotimes_{k=1}^n O_X[x_{ij}^k]$ defined by the relations

$$r_i(X^1,\cdots,X^n)=I, i=1,\cdots,s$$

Then, as an O_X -algebra map, τ factors through

$$\bigotimes O_X[x_{ij}^k] \to \bigotimes O_X[x_{ij}^k]/J$$

Conversely, let $\alpha : \bigotimes O_X[x_{ij}^k]/J \to O_X$ be any O_X -algebra map. Let M^k be the matrix over O_X corresponding to $\alpha(X^k)$, then

$$r_i(M^1, \cdots, M^n) = I, i = 1, \cdots, s$$

i.e. $T(g_i) = M_i$ defines an G-action of $\mathscr{E}(\pi) : \mathscr{E}(V) \to X$. So ES(V) is the closed subscheme of $\prod_n A(V)$ defined by the ideal sheaf J.

To prove the main theorem, we need an elementary linear algebra fact.

Lemma 4. Let M_1 and M_2 be free modules over a ring A of rank n. Let M_1 and M_2 be generated by the basis $\langle e_1, \cdots, e_n \rangle$ and $\langle s_1, \cdots, s_n \rangle$, respectively. Suppose $\phi: M_1 \to M_2$ is an isomorphism given by the matrix T. Then, the image of $e_i^{\vee} \otimes e_j$ under $\phi^{\vee -1} \otimes \phi$ is given by the ij-entry of

$$T(s_i^{\vee} \otimes s_i)T^{-1}$$

where $(s_i^{\vee} \otimes s_j)$ is the matrix whose ij-entry is $s_i^{\vee} \otimes s_j$

Proof. The proof is done by elementary computation. Suppose

$$\phi(e_i) = a_{i1}s_1 + \cdots + a_{in}s_n$$

Then, $T=(a_{ij})$. Write $T^{-1}=(b_{ij})$. Then, the map $\phi^{\vee -1}$ is given by

$$\phi^{\vee -1}(e_i^{\vee}) = b_{1i}s_1 + b_{2i}s_2 + \dots + b_{ni}s_n$$

(the inverse transpose of T).

Then, the conclusion of the lemma follows directly.

Proof. (Theorem 1) Let $U_i = \operatorname{Spec} A_i$ be an affine cover of X that trivilizes $\pi: V \to X$. Write V_i for the restriction of V on U_i and V_{ij} as the restriction on U_{ij} . As proved in Lemma 2, G-actions on $\pi_i: V_i \to U_i$ and $\pi_{ij}: V_{ij} \to U_{ij}$ can be represented by $\operatorname{ES}(\pi_i)$; $\operatorname{ES}(V_i) \to U_i$ and $\operatorname{ES}(\pi_{ij}): \operatorname{ES}(V_{ij}) \to U_{ij}$.

To make the notation clean. Assume G is generated by one element g with the relation r. The general case can be proved similarly. In that

case, $ES(\pi_{ij}) : ES(V_{ij}) \to U_{ij}$ is a subscheme of $ES(\pi_{ij}) : ES(V_{ij}) \to U_{ij}$ is a subscheme of $E(\pi_{ij}) : E(V_{ij}) \to U_{ij}$.

To prove the theorem, it is enough to show that the gluing isomorphism $\phi_{ij}: E(V_{ij}) \to E(V_{ji})$ descends to an isomorphism $\bar{\phi}_{ij}: ES(V_{ij}) \to ES(V_{ij})$.

Let $V_i = \operatorname{Spec} A_i[x_1^i, \cdots, x_n^i]$, and let

$$\phi_{ij}A_{ij}[x_1^j,\cdots,x_n^j] \to A_{ij}[x_1^i,\cdots,x_n^i]$$

be the ring map that glues V_{ij} onto V_{ji} . Let T be the matrix representing this map.

Set $x_{rs}^i := x_r^{i\vee} \otimes x_s^i$. The ring map that glues EV_{ij} on EV_{ji} is therefore

$$\phi_{ij}^{\vee -1} \otimes \phi_{ij} A_{ij}[x_{rs}^j] \to A_{ij}[x_{rs}^i]$$

By Lemma 4, the map $\phi_{ij}^{\vee -1}$ is represented by

$$(x_{rs}^j) \mapsto T(x_{rs}^i)T^{-1}$$

Let J^i be the ideal of $A_i[x_{rs}^i]$ defining $\mathrm{ES}(V_i) \to U_i$. Use the description of the map $\phi_{ij}^{\vee^{-1}}$ above, one can see that the image of J^j and J^i are the same ideal. Hence, $\phi_{ij}^{\vee^{-1}}$ descends to a map

$$\phi_{ij}^{-}^{\vee -1}: A_{ij}[x_{rs}^j]/J^j \to A_{ij}[x_{rs}^i]/J^i$$

Remark 1. Let $x \in X$ be a closed point. The fiber of ES(V) over x is the representation variety $Hom_k(G, GL(V_x))$.

1.3. A(V)-action on ES(V) by conjugation. Suppose $X = \operatorname{Spec} A$. Let $\pi: V \to X$ be a trivial vector bundle. of rank n.

Lemma 5. $A(\pi): A(V) \to X$ is a group scheme.

Write $A[x_{11}, \dots, x_{nn}]$ for the ring of regular functions on E(V), $R := A[x_{11}, \dots, x_{nn}, d^{-1}]$ for the ring of regular functions on A(V) where d is the determinant of the matrix (x_{ij}) .

 ${\bf A}(V)$ acts on ${\bf ES}(V)$ via conjugation. Ring-theoretically, the action is given by descending the morphism

$$\phi: S \to S \otimes R \tag{1.3.1}$$

$$X_i \mapsto XX_iY$$
 (1.3.2)

to

$$\bar{\phi}: S/J \to S/J \otimes R$$

Lemma 6. The morphism $\bar{\phi}$ is well-defined.

Proof. As R is flat over A, $J \otimes R \hookrightarrow S \otimes R$. So it suffices to show that $\phi(J) \subset J \otimes R$.

Let $M_i, i=1, \cdots, s$ be the matrices such that $\text{comp}(M_i-I_r)$ generates the ideal J. Each M_i can be written as $X_1^{i_1} \cdots X_n^{i_n}$ for some i_1, \cdots, i_n . Therefore,

$$\phi(M_i - I_r) = X(M_i - I_r)Y$$

So each component of $X(M_i - I_r)Y$ can be written as an element in $J \otimes R$.

Definition 1. An element $f \in S$ is said to be invariant under ϕ if

$$\phi(f) = f \otimes 1$$

Similarly, an element $\bar{f} \in S/J$ is said to be invariant under $\bar{\phi}$ if

$$\bar{\phi}(\bar{f}) = \bar{f} \otimes R$$

Denote the subring of invariant elements of S by S^{ϕ} . For each matrix X_i , write $char(X_i)$ as

$$t^r + \Gamma_i^{r-1} t^{r-1} + \cdots + \Gamma^0$$

and let $\bigwedge(X_i)$ be the set

$$\{\Gamma^{r-1},\cdots,\Gamma^0\}$$

Proposition 1. S^{ϕ} is finitely generated by the union of

$$\bigwedge(X_i), i=1,\cdots,n$$

Proof. Induction on the rank of the vector bundle. Bootstrape the matrix \Box

For each element $g \in G$, let char(T(g)) be the characteristic polynomial of T(g). It can be written as

$$t^r + a_{r_1}t^{r-1} + \dots + a_0$$

where $a_i \in H^0(X, O_X)$.

Definition 2. Two actions T_1 and T_2 are said to have the same charateristic polynomials if for each element of $g \in G$, $char(T_1(g)) = char(T_2(g))$.

Lemma 7. *If two actions are conjugate, then the have the same charateristic polynomial.*

Remark 2. The converse is not true. Theorem of MacDuffee.

Let $Y:=\operatorname{Spec}\ (S/J)^{\bar\phi}$, and let $\beta:Y\to X$ be its structure morphism, and let $\rho:\operatorname{ES}(V)\to Y$ be the map corresponding to the inclusion of the rings $(S/J)^{\bar\phi}\to S/J$ Let $\rho:\operatorname{ES}(V)\to Y$ be the natural map.

Proposition 2. Each section $T: X \to ES(V)$, induces a section $\bar{T}: X \to Y$, such that the following diagram commutes Insert a diagram here If T_1 and T_2 have the same characteristic ploynomials, then $\bar{T}_1 = \bar{T}_2$; Moreover, any A(V)-equivariant morphism $f: ES(V) \to Z$ over X with the above properties factors uniquely through $\rho: ES(V) \to Y$.

Proof. Y is the categorical quotient. Show for any $f: ES(V) \to Z$ with the above property, the following diagram commutes

$$A(V) \times_X ES(V) \longrightarrow ES(V)$$

$$\downarrow \qquad \qquad \downarrow$$

$$ES(V) \longrightarrow Z$$

How does $(S/J)^{\bar{\phi}}$ look like? Consider the simply case when Z is affine

Now, let $\pi: V \to X$ be any vector bundle. Let $U_i = \operatorname{Spec} A_i$ be any open cover of X, and let $U_{ij} = \operatorname{Spec} A_{ij}$ denote the intersection. Let $\pi_i: V_i \to U_i$ be the restriction of V on U_i . On each V_i , denote the chosen frame as i-frame. Use V_{ij} to denote V_i (with i-frame) restricts to U_{ij} . Use $\psi_{ij}: \operatorname{ES}(V_{ij}) \to \operatorname{ES}(V_{ji})$ and $\tau_{ij}: \operatorname{A}(V_{ij}) \to \operatorname{A}(V_{ji})$ to denote the respective transition function.

Proposition 3. $A(\pi): A(V) \to X$ is a group scheme.

Proof. 1. The existence of a multiplication map

$$\mu: A(V) \times_X A(V) \to A(V)$$

Let $\mu_i : A(V_i) \times_{U_i} A(V_i) \to A(V_i)$ denote the local multiplication map. It is easy to check (by Lemma 4) that the following diagram commutes

$$A_{ij}[y_{rs}^{i}] \xrightarrow{\mu_{i}^{\#}} A_{ij}[y_{rs}^{i}] \otimes A_{ij}[y_{rs}^{i}]$$

$$\downarrow^{\tau_{ij}^{\#}} \qquad \qquad \downarrow^{\tau_{ij}^{\#} \otimes \tau_{ij}^{\#}}$$

$$A_{ij}[y_{rs}^{j}] \xrightarrow{\mu_{j}} A_{ij}[y_{rs}^{j}] \otimes A_{ij}[y_{rs}^{j}]$$

Therefore, μ_i 's glue to a morphism μ . μ is associative, because μ_i 's are.

2. The existence of an inverse map

$$\eta: A(V) \to X$$

Same as above.

Over U_i , let $\phi_i : A(V_i) \times_{U_i} ES(V_i) \to ES(V_i)$ denote the action of $A(V_i)$ on $ES(V_i)$ by conjugation.

Proposition 4. The maps ϕ_i glue to a morphism

$$\phi: A(V) \times ES(V) \rightarrow ES(V)$$

Proof. The following diagram commutes

$$\frac{S_{ij}}{J_{ij}} \xrightarrow{\phi_i^{\#}} \frac{S_{ij}}{J_{ij}} \otimes R_{ij}$$

$$\downarrow^{\tau_{ij}^{\#}} \qquad \qquad \downarrow^{\psi_{ij}^{\#} \otimes \tau_{ij}^{\#}}$$

$$\frac{S_{ji}}{J_{ii}} \xrightarrow{\phi_j^{\#}} \frac{S_{ji}}{J_{ji}} \otimes R_{ji}$$

Over each U_i , let $\rho_i : \mathsf{ES}(V_i) \to Y_i$ be the quotient map where Y_i is the spectrum of the invariant functions on $\mathsf{ES}(V_i)$ under the action of $\mathsf{A}(V_i)$.

Proposition 5. The transition functions $\psi_{ij}: ES(V_{ij}) \to ES(V_{ji})$ descend to Y_{ij} , i.e. there are morphisms $\bar{\psi}_{ij}: Y_{ij} \to Y_{ji}$ so that the diagram

$$ES(V_{ij}) \xrightarrow{\rho_{ij}} Y_{ij}$$

$$\downarrow \bar{\psi_{ij}} \qquad \qquad \downarrow \bar{\psi_{ij}}$$

$$ES(V_{ji}) \xrightarrow{\rho_{ji}} Y_{ji}$$

Proof. $(\frac{S_{ij}}{J_{ij}})^{\phi_{ij}^{\#}}$ is the kernel of the map

$$\frac{S_{ij}}{J_{ij}} \xrightarrow{\phi_{ij}^{\#} - \mathrm{id}} \frac{S_{ij}}{J_{ij}} \otimes R_{ij}$$

By the proof of Proposition 4, we conclude that $\tau_{ij}^{\#}$ maps $(\frac{S_{ij}}{J_{ij}})^{\phi_{ij}^{\#}}$ isomorphically onto $(\frac{S_{ji}}{J_{ji}})^{\phi_{ji}^{\#}}$

Let Y be the schemed obtained by gluing Y_i and Y_j along Y_{ij} .

Theorem 2. The morphisms $\rho_i : ES(V_i) \to Y_i$ glue and define a morphism $\rho : ES(V) \to Y$. For each section $T : X \to ES(V)$, let \bar{T} be the induced map $X \to Y$. If T_1 and T_2 are sections corresponding to conjugate G-actions on V, then $\bar{T}_1 = \bar{T}_2$.

Before moving on, think about the A-moudle struncture of $(S/J)^{\bar{\phi}}$

Theorem 3. Suppose X is integral and G is a finite group. Then, $\beta: Y \to X$ is a finite morphism.

Proof. Without loss of generality, one can assume X is affine. Let $X = \operatorname{Spec} A$. Let L be the field of fraction of A, and let \overline{L} be the algebraic closure of L. The extension $A \to \overline{L}$ is flat This does not work, think about the the example $k[x] \to k[x, \frac{1}{x}]$

1.4. **Irreducible representations.** Throughout this section, G is assumed to be a finite group. Let $T: G \to \operatorname{End}(V)$ be a representation. For each element $g \in G$, one can define the subscheme V^g of V over X fixed by T(g) as the fiber product of the following two maps

$$id: V \to V$$
$$T(q): V \to V$$

Definition 3. The G-invariant subscheme of V is the fiber product of

$$T(g): V \to V$$

for all elements $g \in G$. It is denoted by V^G .

As G is a finite group, V^G is a closed subscheme of V.

Definition 4. A representation $T: G \to End(V)$ is said to be irreducible, if V^G is the zero section of $\pi: V \to X$.

The goal of this section is to develop a character theory similar to that of the representation of a group into a finite dimensional vector space.

Analogue of Schur's lemma

Proposition 6. Let $\pi_1: V_1 \to X$ and $\pi_2: V_2 \to X$ be two vector bundles over X, and let $T_1: G \to \operatorname{End}(V_1)$ and $T_2: G \to \operatorname{End}(V_2)$ be two irreducible representations. Let $f: V_1 \to V_2$ be a morphism of vector bundles, such that for all $g \in G$, $f \circ T_1(g) = T_2(g) \circ f$. Then,

- (1) If T_1 and T_2 are not isomorphic, then f maps V_1 onto the zero-section of V_2 .
- (2) If X is projective, $V_1 = V_2$, and $T_1 = T_2$, then f is a multiplication by scalar.

Proof. The proof is a direct generalization in Serre's book. In the first part, to prove f is an isomorphism, one shows that both f and its dual are injective.

1.5. When G acts non-trivially on X. Suppose G acts nontrivially on X, is there any scheme over X whose X-valued points correspond to G-action on $\pi: V \to X$?

Let M be an A-module. Suppose G act nontrivially on A. For each $g \in G$, let $\mu(g)$ be the automorphism of A induced from the G-action.

Definition 5. A G-equivariant struncture on M is a collection of set map

$$\lambda_q:M\to M$$

indexed by elements of G such that

• For every element $a \in A$,

$$\lambda_g(am) = \mu(a)\lambda_g(m)$$

• For $g_1, g_2 \in G$,

$$\lambda_{g_1g_2}(m) = \lambda_{g_1}(\lambda_{g_2}(m))$$

View M as A^G -module, then each λ_q becomes a map of A^G -module.

Lemma 8. Two different equivariant structures on M become two different equivariant structures on M viewed as A^G -module.

Proof. Clear. □

Let G be a finite group, and let $f: X \to Z := X/G$ be the quotient map. Then, in many good cases f_*V is a vector bundle on Z. A G-equivariant structure on V can be viewed as an G-action on f_*V in the sense of the previous chapters. And by the above lemma, two distinct G-equivairant structure on V become to two distinct G-actions on f_*V . One can ask, is there a subscheme W of $ES(f_*V)$ such that the Z-valued points of W correspond to equivariant structures on V?