MAS241 ANALYSIS 1 QUIZ 10

When you disprove some statements, you should give us a counter example and explain why it violates the original statement. There are 3 problems and each of them is 15 points. But, you should choose 2 problems and solve them. Your final score is determined by 2 highest score. For example, if you get 10pts, 5pts, 5pts, the score is 15 pts, not 20 pts.

Problem 1. (15 points) In this problem, you should use Theorem 6.5.1.

Theorem 6.5.1) If $\{f_k\}$ converges uniformly to f_0 on the compact set [a,b] and if each f_k is integrable on [a,b], then f_0 is also integrable on [a,b]. Furthermore,

- (1) If $F_k(x) = \int_a^x f_k(t)dt$, then $\{F_k\}$ converges uniformly to the function $F_0(x) = \int_a^x f_0(t)dt$ on [a,b].
- (2) In particular, $\lim_{k\to\infty} \int_a^b f_k(x) dx = \int_a^b f_0(x) dx$.

Now, define a function f_0 as

$$f_0 = \begin{cases} 0 & x \in \mathbb{R}/\mathbb{Q} \\ \frac{1}{m} & x = \frac{n}{m} \in \mathbb{Q}, \gcd(m, n) = 1 \end{cases}$$

Show that f_0 is integrable on [a,b] and evaluate $F_0(x)$ for $x \in [a,b]$.

Problem 2. (15 points) Let $\{f_k\}$ be a sequence of continuously differentiable functions on [a,b] such that $\lim_{k\to\infty} f_k = f_0$ pointwisely on [a,b] and $\lim_{k\to\infty} f'_k = g$ pointwisely on [a,b]. Prove or disprove that for $x \in [a,b]$,

$$f_0(x) - f_0(a) = \int_a^x g(t)dt.$$

Problem 3. (15 points) Suppose that g is defined by

$$g(x) = \begin{cases} a, & \text{for } 0 \le x < 1 \\ b, & \text{for } 1 \le x \le 2. \end{cases}$$

Here, $a \neq b$ and $c \neq d$, and they are constants.

(1) Let f be a function defined on [0,2] by

$$f(x) = \begin{cases} c, & \text{for } 0 \le x < 1\\ d, & \text{for } 1 \le x \le 2. \end{cases}$$

Prove or disprove that f is in RS[g;0,2]. Evaluate $\int_0^2 f(x)dg(x)$ if it exists.

(2) Let f be a function defined on [0,2] by

$$f(x) = \begin{cases} c, & \text{for } 0 \le x \le 1\\ d, & \text{for } 1 < x \le 2. \end{cases}$$

Prove or disprove that f is in RS[g;0,2]. Evaluate $\int_0^2 f(x)dg(x)$ if it exists.

Date: June 3, 2021.