M &

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL General Certificate of Education Advanced Level

MARKING SCHEME

NOVEMBER 2018

6 a(x) + E b(y)

STATISTICS

6046/2

(b)
$$P(Prime) = \frac{17}{36}$$

$$= 0.4722$$
answer
B1

(c) (i)
$$E(X) = 2 \times \frac{1}{36} + 3 \times \frac{4}{36} + 4 \times \frac{10}{36} + 5 \times \frac{12}{36} + 6 \times \frac{9}{36}$$
 M1

$$= 4,6667 = 4 \times \frac{9}{36} \times 4 \times \frac{1}{36} \times \frac{10}{36} \times \frac{12}{36} \times \frac{9}{36} \times \frac{12}{36} \times$$

$$\frac{10}{9} = 1.11$$

$$\Rightarrow A1 [8]$$

5 (a)
$$\int_0^\infty ke^{-\frac{x}{3}}dt = 1$$

$$\left[-3ke^{-\frac{x}{3}}\right]_0^\infty = 1$$

$$3k = 1$$

$$k = \frac{1}{3}$$

$$k = \frac{1}{3}$$

(b)
$$\frac{1}{3} \int_0^\infty x \cdot e^{\frac{-x}{3}} dx$$

Let $u = x$ $\frac{dv}{dx} = e^{\frac{-x}{3}} dx$

$$du = dx \qquad v = -3e^{\frac{-x}{3}}$$

11 $A = x + 3 = x$

$$= \frac{1}{3} \left[-\frac{3}{4}e^{\frac{\pi}{3}} - \int -3e^{\frac{\pi}{3}} dx \right] \xrightarrow{\text{askings to }} M1$$

$$= -xe^{-\frac{\pi}{3}} + \int e^{-\frac{\pi}{3}} dx \xrightarrow{\text{Superpotential of }} \frac{M1}{4} \Delta_1$$

$$= \left[xe^{-\frac{\pi}{3}} - 3e^{-\frac{\pi}{3}} \right]_0^{\infty} \xrightarrow{\text{Attempt to }} \sum_{\text{Superpotential of }} \Delta_1$$

(c)
$$P(X \ge 60) = \frac{1}{3} \int_{60}^{\infty} e^{-\frac{x}{3}} dx$$

$$= \left[-e^{-\frac{x}{3}} \right]_{60}^{\infty} - \frac{a_1 t_{engl} t_{engl}}{a_2 t_{engl}}$$

$$= e^{-20} \text{ or equiv. } \left(\underbrace{\text{Pract arguar}}_{\text{[8]}} \right)$$

$$= \frac{1}{3} \int_{60}^{\infty} e^{-\frac{x}{3}} dx$$

= 3

$$F(x = 6) = {}^{8}C_{6}(0.9)^{4}(0.1)^{2} \qquad P(x = 6) \qquad P(x = 6) \qquad P(x = 6) \qquad P(x = 18) + P(x = 19) + P(x = 20) \qquad P(x = 6) \qquad P(x = 18) + P(x = 19) + P(x = 20) \qquad P(x = 6) \qquad P(x = 18) \qquad P(x = 10) \qquad P(x = 18) \qquad P(x =$$

Scanned by CamScanner

Scanned by CamScanner

(ii) A statistic is a measure from a sample whilst a parameter is a measure from a population (iii) A population is the entire group under study whilst a sample is part of B1 apopulation (b) $\bar{x} = 4.978$ (b) $\bar{x} = 4.978$ (c) $\bar{x} = 4.978$ (d) $\bar{x} = 4.978$ (e) $\bar{x} = 5$ (f) $\bar{x} = 4.978$ (g) $\bar{x} = 5$ (g) $\bar{x} = 4.978$ (h) $\bar{x} = 4.978 - 5$ (g) $\bar{x} = 5$ (h) $\bar{x} = 4.978 - 5$ (g) $\bar{x} = 5$ (h) $\bar{x} = 4.978 - 5$ (h) $\bar{x} = 4.97$	10	(a)	(i)	A or	ne tailed tes looks for a	t looks for an increase or decrease whilst a two tailed change in the mean	B1 B1	
(iii) A population is the entire group under study whilst a sample is part of a population (b) $\bar{x} = 4.978$ $A = 4.978$ $A = 5$ $A_0: \mu = 5$ $A_1: \mu \neq 5$ $A_1: \mu \neq 5$ $A_1: \mu \neq 5$ $A_1: \mu \neq 5$ $A_2: \mu = 5$ $A_1: \mu \neq 5$ $A_1: \mu \neq 5$ $A_1: \mu \neq 5$ $A_2: \mu = 5$ $A_1: \mu \neq 5$ A			(ii)	A sta	atistic is a n a populati	neasure from a sample whilst a parameter is a measu	re B1	
$B^{2} = S^{2} = 0.019^{2}$ $H_{0}: \mu = 5$ $H_{1}: \mu \neq 5$ $H_{1}: \mu \neq 5$ $T_{cal} = \frac{4.978-5}{\sqrt{170}}$ $= -3.47 - 3.666$ $MIAI$ $II (a) (i) A time series is a set of observations of a random variable in chronological (time) order. (ii) A trend is a general increase or decrease (b) (iii) Sales 3 point M.A 1. 700 2. 200 400 3. 300 433 4. 800 500 5. 400 566 6. 500 633 7. 1000 666 8. 500 700 9. 600 766 10. 1 200 (iii) Gill (iiii) Sales 3 point M.A All Fray one All corfe as some contents of the content$			(iii)	A po	pulation is pulation	the entire group under study whilst a sample is part	of B1	
T _{cal} = \(\frac{4.978-5}{\colored{0}}\) \(\frac{1}{\sqrt{10}}\) = -3.47 - 3 \(\colored{0}\) \(\colored{0}\) \(\frac{1}{\sqrt{10}}\) = 3.355 \(\frac{3}{\sqrt{250}}\) \(\colored{0}\) \(\frac{1}{\sqrt{10}}\) \(\frac{1}{\sqrt					₎ 2	サーサーキリーナ	2 Bl 92	⁽⁸][6]
T _{cal} = \(\frac{4.978-5}{\colored{0}}\) \(\frac{1}{\sqrt{10}}\) = -3.47 - 3 \(\colored{0}\) \(\colored{0}\) \(\frac{1}{\sqrt{10}}\) = 3.355 \(\frac{3}{\sqrt{250}}\) \(\colored{0}\) \(\frac{1}{\sqrt{10}}\) \(\frac{1}{\sqrt			•		7	(247,800-49,78") anw >	Ba BI	
(i) A time series is a set of observations of a random variable in chronological (time) order. B2					78-5 014 (10		MI	
(i) A time series is a set of observations of a random variable in chronological (time) order. B2				= -	3,47 -	3,6616	A1	
(i) A time series is a set of observations of a random variable in chronological (time) order. B2	0.0	В Т99,	(8)	= 3:3	55 3,2 m	3,250 By	BIB	
11 (a) (i) A time series is a set of observations of a random variable in chronological (time) order. B2	whork	Sinc MIA1	e 3,47	<-3.,	355, we re	ject Ho and conclude its not in good working or	der.	
Chronological (time) order. (ii) A trend is a general increase or decrease (b) (u) (i) Sales 3 point M.A 1. 700 2. 200 400 3. 300 433 4. 800 500 5. 400 566 6. 500 633 7. 1000 666 8. 500 700 9. 600 766 10. 1 200 B1 B2 B1 [3] MI Fry ope A1 cont column of the contract of	11	(2)	G)	A tin	ne series is	s sid of charges in a first translation in		[10]
(b) (i) Sales 3 point M.A 1. 700 2. 200 460 3. 300 433 4. 800 500 5. 400 566 6. 500 633 7. 1000 666 8. 500 700 9. 600 766 10. 1200	11	(2)	(.)	chror	ological (t	ime) order,	B2	
(b)[exf (i)			(ii)	A tre	nd is a gen	eral increase or decrease	Bl	(3)
2. 200 400 31 300 433 41 300 433 41 300 433 41 300 433 41 300 400 400 410		(b)[esf (i)	1.		3 point M.A		
3. 300 433 4. 800 500 5. 400 566 6. 500 633 7. 1000 666 8. 500 700 9. 600 766 10. 1200						400	MI	Any one
4. 800 500 5. 400 566 6. 500 633 7. 1000 666 8. 500 700 9. 600 766 10. 1200 B1 Cartering						433	6718	
6. 500 633 7. 1000 666 8. 500 700 9. 600 766 10. 1200 B1 Centering					800	500		Carried.
7. 1000 666 8. 500 700 9. 600 766 10. 1200 B1 Certering				5.	400	566		all
8. 500 700 9. 600 766 10. 1200 By Cartering				6.	500	633	Al	any or
9, 600 766 10. 1200 Bi-Centering				7.	1 000	666		constan
10. 1200 Br Centering				8.	500			Small mark
Corrector					600	766	THE	HAT COIT
There was a general increase in sales Southern Control of the Con				10.	1 200		B_{I}	Centering
- Spales		+	的_	There	was a gen	eral increase in sales	> B	B2
- Cyclic				TOUT	toward.	variables		
				0	Lie			13

12	Ho: the obser	rvations follow	Normal distribution with mean 163	Bi
12	Ha: the obser	vations does no	follow a Normal distribution with mean 163)	- Bi
		O 4 18	E connuty cores 2,65 — 3,58	MIAI Dry one Al Correct
		40 20 3	36,9 22,8 4,47 36,55 7	ENT AI - All consects
		0	E (0-E)2	- AA
	2	0	E	Bl pooling
		22	20.8 2405 0.069 0,175	MIAI - D Arry one
		40	36,9 26,65 0,260 0, 326	Al correct
		23	27.2 78,4 0.648 0 5890-6	A1 STA COTH
		$X_{5\%}^{2}^{(2)} = \frac{5}{5}$	5,991	Greet value of
		Since 0,977 <	5,59 we accept Ho and conclude that it follow	153 HI M, Comparis
			oution with a mean of 163.	At Conduct
	-	Suc	O, (P1 L 5) 59	[16]