SELF-SUPERVISED LEARNING

Федорова Анна, БПМИ-191

ПРОБЛЕМА РАЗМЕТКИ ДАННЫХ

АУГМЕНТАЦИИ

ПОВОРОТЫ

ВЗАИМОРАСПОЛОЖЕНИЕ ФРАГМЕНТОВ

$$X = (),); Y = 3$$

Question 1:

Question 2:

ПОДВОХ ЦВЕТОВЫХ КАНАЛОВ

ПАЗЛЫ

ПОДСЧЕТ ВИЗУАЛЬНЫХ ПРИМИТИВОВ

ПРЕОБРАЗОВАНИЕ ИЗОБРАЖЕНИЙ

Масштабирование

Плитка 2х2

ФОРМУЛЫ ДЛЯ ОБУЧЕНИЯ

$$\phi(x) = \phi(D \circ x) = \sum_{i=1}^{4} \phi(T_i \circ x)$$

Функция, которую ищет модель

D – обратно масштабирует изображение

 T_i – возвращает i-ый элемент плитки 2×2

Функции, обращающие наши преобразования

ФУНКЦИЯ ОШИБКИ

$$L_{feat} = \|\phi(D \circ x) - \sum_{i=1}^{4} \phi(T_i \circ x)\|_2^2$$

 $L_{diff} = \max(0, c - \|\phi(D \circ y) - \sum_{i=1}^{\tau} \phi(T_i \circ x)\|_2^2)$

Функция ошибки

Исключаем тождественный ноль

$$L = L_{feat} + L_{diff} = \|\phi(D \circ x) - \sum_{i=1}^{4} \phi(T_i \circ x)\|_2^2 + \max(0, c - \|\phi(D \circ y) - \sum_{i=1}^{4} \phi(T_i \circ x)\|_2^2)$$

СХЕМА РАБОТЫ НЕЙРОННОЙ СЕТИ

СПАСИБО ЗА ВНИМАНИЕ

Шаг 0.1) Нам нужны примеры пар изображений, которые похожи, и которые отличаются

Шаг 0.2) Делим весь массив фотографий на батчи

Шаг 1.1) Трансформируем изображения random (crop + flip + color jitter + grayscale) — обрезаем (берём фрагмент), поворачиваем, приводим к серому, смещения зеленого и пурпурного в сторону серого, случайное удаление 2 из 3 цветовых каналов

Random Transformation

Шаг 1.2) Заменяем исходные изображения в батче их трансформированными копиями

Шаг 2) «Сжимаем» изображение, например с помощью сети ResNet-50 (можно использовать и другие)

Что такое ResNet или «остаточная сеть», объяснять не буду, вот красивая картинка:

Запомните

Шаг 3.0) Считаем Cosine Similarity

$$s_{i,j} = rac{m{z_i^T z_j}}{(au || m{z_i}|| || m{z_j}||)} \quad ext{ => }$$

Напоминание:

similarity(
$$\overset{x_i}{\square}$$
, $\overset{x_j}{\square}$) = cosine similarity($\overset{z_i}{\square}$, $\overset{z_j}{\square}$)

Шаг 3.1) Для каждой (!) пары изображений считаем Softmax

Pair 1

Шаг 4.1) Посчитаем I (image1, image2) по формуле ниже

$$l(i,j) = -log\frac{exp(s_{i,j})}{\sum_{k=1}^{2N} l_{[k!=i]} exp(s_{i,k})}$$

$$l(\text{ a similarity}(\text{ a similarity}(\text$$

Шаг 4.2) Также посчитаем I (image2, image1)

Шаг 4.3) Теперь можем посчитать L для нашего батча

$$L = \frac{1}{2N} \sum_{k=1}^{N} [l(2k-1,2k) + l(2k,2k-1)]$$
Pair 1 Loss (k=1)
Pair 2 Loss (k=2)
$$\begin{bmatrix} I(\bigcirc) & & & & \\ &$$

Шаг 4.4) Обновляем параметры сети и возвращаемся к шагу 1.1 с новым батчем

P.S. Сам алгоритм (из статьи)

Algorithm 1 SimCLR's main learning algorithm. **input:** batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, ..., N\}$ do draw two augmentation functions $t \sim T$, $t' \sim T$ # the first augmentation $\tilde{\boldsymbol{x}}_{2k-1} = t(\boldsymbol{x}_k)$ $\boldsymbol{h}_{2k-1} = f(\tilde{\boldsymbol{x}}_{2k-1})$ # representation $z_{2k-1} = q(h_{2k-1})$ # projection # the second augmentation $\tilde{m{x}}_{2k} = t'(m{x}_k)$ $\boldsymbol{h}_{2k} = f(\tilde{\boldsymbol{x}}_{2k})$ # representation $\boldsymbol{z}_{2k} = q(\boldsymbol{h}_{2k})$ # projection end for for all $i \in \{1, ..., 2N\}$ and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\mathsf{T}} \mathbf{z}_i / (\|\mathbf{z}_i\| \|\mathbf{z}_i\|)$ # pairwise similarity end for **define** $\ell(i,j)$ **as** $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(s_{i,k}/\tau)}$ $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$ update networks f and g to minimize \mathcal{L} end for **return** encoder network $f(\cdot)$, and throw away $g(\cdot)$

P.S.S. Сравнение с другими методами (также из статьи)

