Воронежский государственный университет

Факультет прикладной математики, информатики и механики

Конспект лекций по функциональному анализу

4 семестр

Лектор

Баскаков А. Г.

Конспект подготовил

Xаритонов В. (kharvd@gmail.com)

2014 г.

Содержание

1	Элементы теории меры и интеграла	3
	1.1 Пространства с мерой	3
	1.2 Интегрирование простых функций	5
	1.3 Интегрирование измеримых функций	8
	1.4 Пространства Лебега	9
2	Ограниченные операторы	10
3	Принцип равномерной ограниченности	13
4	Ряды в банаховом пространстве	15
5	Гильбертовы пространства	16
	5.1 Начальные сведения	16
	5.2 Теорема об ортогональном дополнении	17
	5.3 Базис в гильбертовом пространстве	21
	5.4 Теорема Рисса	24
6	Теорема Хана-Банаха	25
7	Элементы нелинейного анализа	27
	7.1 Производная отображения	27
	7.2 Задачи на экстремум	31
8	Элементы теории функции комплексной переменной	33
9	Спектральная теория линейных операторов	37
	9.1 Обратные операторы и их свойства	37
	9.2 Спектр оператора	40
10	Элементы функционального исчисления операторов	44
	10.1 Операторное исчисление	44
	10.2 Проекторы Рисса	46
11	Компактные операторы	48

§1. Элементы теории меры и интеграла

1.1. Пространства с мерой

Определение 1.1. Пусть X — непустое множество. Семейство подмножеств $\mathcal F$ из X называется σ -алгеброй, если выполняются следующие условия:

- 1) $X \in \mathcal{F}$;
- (2) $X \setminus A \in \mathcal{F}$ для всех A из \mathcal{F} ;
- 3) для всех $A_i, i \in \mathbb{N}$ из \mathcal{F}

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$$

Подмножества, принадлежащие этому семейству, называются *измеримыми*.

Определение 1.2. Отображение $\mu \colon \mathcal{F} \to \mathbb{R} \cup \{\infty\}$ называется *мерой*, если

- 1) $\mu(A) \ge 0$ для всех измеримых подмножеств A;
- 2) для любой последовательности $\{A_i\}$ взаимно непересекающихся измеримых подмножеств справедливо

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Теорема 1.1. Справедливы следующие свойства:

- 1) Пересечение конечного или счетного числа измеримых множеств есть измеримое множество;
 - 2) Если E_1 и E_2 измеримые множества и $E_1 \subset E_2$, то

$$\mu(E_1) \leqslant \mu(E_2).$$

Доказательство. См. методичку

Определение 1.3. Тройка (X, \mathcal{F}, μ) , где X — непустое множество, \mathcal{F} — σ -алгебра измеримых подмножеств из X, а μ — мера, называется *пространством с мерой*.

Пример 1.1. Пусть X — некоторое непустое множество. В качестве \mathcal{F} возьмем всевозможные подмножества из X. Очевидно, что они образуют σ -алгебру. Меру $\mu_a \colon \mathcal{F} \to \mathbb{R}$, где a — некоторый элемент из X, определим

следующим образом:

$$\mu_a(A) = \begin{cases} 1, & \text{если } a \in A \\ 0 & \text{в противном случае.} \end{cases}$$

Доказательство того, что определенная таким образом функция в самом деле является мерой, элементарно (см. методичку).

Построенная мера называется мерой Дирака, сосредоточенной в точке a.

Пример 1.2. В качестве X возьмем вещественную прямую \mathbb{R} . Определим длину интервала (a,b) равенством $\mu((a,b))=b-a$. Любое открытое множество на прямой представимо в виде объединения не более чем счетного числа взаимно непересекающихся интервалов. Тогда определим меру открытого множеств по формуле

$$\mu(G) = \sum_{i=1}^{\infty} (b_i - a_i),$$

где

$$G = \bigcup_{i=1}^{\infty} (a_i, b_i).$$

Пусть $E \subset \mathbb{R}$ — ограниченное множество на прямой. Его можно покрыть некоторым открытым множеством $G \supset E$. Величина

$$\mu^*(E) = \inf_{G \supset E} \mu(G),$$

где инфимум берется по всем открытым покрытиям E, называется $\mathit{верxheй}$ мерой множества E.

 $\mathit{Huж}$ няя $\mathit{мерa}$ множества E определяется по формуле

$$\mu_*(E) = b - a - \mu([a, b] \setminus E),$$

где [a,b] — наименьший отрезок, содержащий множество E.

Назовём ограниченное множество Е измеримым по Лебегу, если

$$\mu_*(E) = \mu^*(E).$$

Тогда $\mathit{мерой}$ $\mathit{Лебега}$ множества E назовём общее значение верхней и нижней мер этого множества.

Мера Лебега также определяется и для неограниченных множеств. Для этого в качестве нижней меры множества E берется предел нижних мер множеств вида $E_n=E\cap [-n,n]$ при $n\to\infty$. Этот предел существует или

бесконечен, поскольку последовательность $\mu_*(E_n)$, как можно показать, монотонно неубывает. \diamondsuit

Теорема 1.2. Тройка $(\mathbb{R}, \mathcal{F}, \mu)$, где \mathcal{F} — множество измеримых по Лебегу множеств на прямой, а μ — мера Лебега, является пространством с мерой.

Пример 1.3. Тройка $(\Omega, \mathfrak{A}, P)$, где Ω — пространство элементарных исходов, \mathfrak{A} — алгебра событий, P — вероятностная мера, является пространством с мерой. \diamondsuit

1.2. Интегрирование простых функций

Пусть далее (X, \mathcal{F}, μ) — пространство с мерой, $E \in \mathcal{F}$ — некоторое измеримое подмножество.

Определение 1.4. Функция $f \colon E \to \mathbb{R}$ называется *простой*, если E можно представить в виде счетного объединения взаимно непересекающихся измеримых подмножеств E_i так, что функция f принимает на этих подмножествах постоянное значение: $f(x) = a_i$ для всех x из E_i .

Функция f называется $\mathit{ступенчатой}$, если такое объединение конечно.

Пример 1.4. Пусть $(\mathbb{R}, \mathcal{F}, \mu)$ — прямая с мерой Лебега, E = [0, 1]. Функция Дирихле, определенная на E и принимающая значение 1 для рациональных аргументов и 0 для иррациональных, является простой (и даже ступенчатой). В качестве E_1 можно взять множество рациональных чисел из отрезка E, а в качестве E_2 — множество иррациональных чисел из того же отрезка. Оба этих множества измеримы по Лебегу.

Лемма 1.1. Линейная комбинация простых функций, определенных на измеримом множестве *E* является простой функцией.

Доказательство. Покажем, что $\alpha f + \beta g$ также простая функция для простых функций $f,g\colon E\to\mathbb{R}$ и чисел $\alpha,\beta\in\mathbb{R}$.

Пусть

$$E = \bigcup_{i=1}^{\infty} E_i = \bigcup_{j=1}^{\infty} F_j,$$

причем

$$f(x) = a_i, \quad x \in E_i,$$

 $g(x) = b_j, \quad x \in F_j.$

Обозначим $G_{ij} = E_i \cap F_j$. Это также измеримые множества. Более того непосредственно проверяется, что

$$E = \bigcup_{i,j=1}^{\infty} G_{ij}.$$

На множестве G_{ij} функция $\alpha f + \beta g$ принимает значение

$$(\alpha f + \beta g) = \alpha a_i + \beta b_j.$$

Этим доказано, что функция $\alpha f + \beta g$ простая, принимающая постоянные значения на множествах G_{ij} .

Из этой леммы следует, что простые функции образуют линейное пространство.

Далее будем считать, что мера множества E конечна.

Определение 1.5. Простая функция $f \colon E \to \mathbb{R}$ называется *абсолютно суммируемой*, если конечна величина

$$\sum_{i=1}^{\infty} |a_i| \, \mu(E_i),$$

в обозначениях предыдущего определения.

Определение 1.6. *Интегралом* от абсолютно суммируемой функции f называется сумма вида

$$\int_E f(x) \,\mathrm{d}\mu(x) := \sum_{i=1}^\infty a_i \mu(E_i).$$

Аргумент в записи интеграла часто опускают и пишут просто

$$\int_{E} f \, \mathrm{d}\mu.$$

В следующей теореме доказываются основные свойства интеграла от абсолютно суммируемых функций.

Теорема 1.3. Пусть $f,g: E \to \mathbb{R}$ — абсолютно суммируемые функции. Тогда справедливы следующие свойства:

1) Линейность: для любых $\alpha, \beta \in \mathbb{R}$ функция $\alpha f + \beta g$ абсолютно суммируема и справедливо равенство

$$\int_{E} (\alpha f + \beta g) d\mu = \alpha \int_{E} f d\mu + \beta \int_{E} g d\mu;$$

2) Оценка модуля интеграла:

$$\left| \int_{E} f \, \mathrm{d}\mu \right| \leqslant \mu(E) \sup_{x \in E} |f(x)|;$$

3) Неотрицательность: если $f \geqslant 0$, то

$$\int_{E} f \, \mathrm{d}\mu \geqslant 0;$$

4) Монотонность: если $f \geqslant g$, то

$$\int_{E} f \, \mathrm{d}\mu \geqslant \int_{E} g \, \mathrm{d}\mu;$$

5) Аддитивность: если E представимо в виде объединения не более чем счетного числа взаимно непересекающихся измеримых подмножеств A_k , то

$$\int_{E} f \, \mathrm{d}\mu = \sum_{k} \int_{A_{k}} f \, \mathrm{d}\mu.$$

Доказательство.

1) Абсолютная суммируемость линейной комбинации следует из леммы 1.1, свойств абсолютно сходящихся числовых рядов и из свойства монотонности меры.

Покажем, что справедливо указанное в утверждении теоремы равенство. Будем пользоваться обозначениями из леммы.

$$\int_{E} (\alpha f + \beta g) d\mu = \sum_{i,j=1}^{\infty} (\alpha a_i + \beta b_j) \mu(G_{ij}) =$$

$$= \alpha \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i \mu(G_{ij}) + \beta \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} b_j \mu(G_{ij}) =$$

$$= \alpha \sum_{i=1}^{\infty} a_i \sum_{j=1}^{\infty} \mu(G_{ij}) + \beta \sum_{i=1}^{\infty} b_j \sum_{j=1}^{\infty} \mu(G_{ij}).$$

Поскольку, как нетрудно видеть,

$$E_i = \bigcup_{j=1}^{\infty} G_{ij}, \quad F_j = \bigcup_{i=1}^{\infty} G_{ij},$$

а множества G_{ij} взаимно не пересекаются, из свойства аддитивности меры получаем

$$\sum_{j=1}^{\infty} \mu(G_{ij}) = \mu(E_i); \quad \sum_{i=1}^{\infty} \mu(G_{ij}) = \mu(F_j).$$

Таким образом

$$\alpha \sum_{i=1}^{\infty} a_i \sum_{j=1}^{\infty} \mu(G_{ij}) + \beta \sum_{j=1}^{\infty} b_j \sum_{i=1}^{\infty} \mu(G_{ij}) = \alpha \sum_{i=1}^{\infty} a_i \mu(E_i) + \beta \sum_{j=1}^{\infty} b_j \mu(F_j) = \alpha \int_E f \, \mathrm{d}\mu + \beta \int_E g \, \mathrm{d}\mu.$$

- 2) Тривиально (неравенство треугольника, аддитивность меры).
- 3) Тривиально.
- 4) Рассмотреть функцию f-g и применить линейность и предыдущее свойство.
- 5) Рассмотреть взаимно непересекающиеся множества вида $H_{ik} = E_i \cap A_k$, на которых функция принимает постоянные значения c_{ik} , и которые образуют разбиение E:

$$\int_{E} f \, \mathrm{d}\mu = \sum_{i} \sum_{k} c_{ik} \mu(H_{ik}) = \sum_{k} \sum_{i} c_{ik} \mu(H_{ik}) = \sum_{k} \int_{A_{k}} f \, \mathrm{d}\mu$$

1.3. Интегрирование измеримых функций

Определение 1.7. Функция $f \colon E \to \mathbb{R}$, определенная на измеримом множестве E, называется *измеримой*, если она является равномерным пределом на E последовательности простых функций, т.е. существует такая последовательность $\{f_n\}$, $f_n \colon E \to \mathbb{R}$, что

$$\sup_{x \in E} |f(x) - f_n(x)| \to \infty, \quad n \to \infty.$$

Определение 1.8. Функция $f \colon E \to \mathbb{R}$ называется измеримой, если

$$f^{-1}((-\infty, x)) \in \mathcal{F}, \quad \forall x \in \mathbb{R}.$$

Теорема 1.4. Вышеприведенные определения измеримой функции эквивалентны.

Доказательство. см. в методичке на с. 51 (требуется только необходимость).

Определение 1.9. Если существует последовательность простых интегрируемых функций, сходящаяся равномерно к измеримой функции f, то *интегралом* функции f назовем предел

$$\int_{E} f \, \mathrm{d}\mu := \lim_{n \to \infty} \int_{E} f_n \, \mathrm{d}\mu.$$

Можно показать, что предел (быть может, бесконечный) всегда существует и не зависит от выбора последовательности f_n .

Определение 1.10. Неотрицательная функция f называется unme-грируемой на множестве E, если предел из предыдущего определения конечен.

Всякая измеримая функция f представима в виде разности двух неотрицательных измеримых функций:

$$f_{+}(x) = \begin{cases} f(x), & f(x) \ge 0 \\ 0, & f(x) < 0 \end{cases}, \quad f_{-}(x) = \begin{cases} -f(x), & f(x) \le 0 \\ 0, & f(x) > 0 \end{cases}.$$
$$f(x) = f_{+}(x) - f_{-}(x).$$

Тогда если хотя бы одна из функций f_+ или f_- интегрируема, интегралом функции f назовём величину

$$\int_E f \, \mathrm{d}\mu = \int_E f_+ \, \mathrm{d}\mu - \int_E f_- \, \mathrm{d}\mu.$$

Определение 1.11. В случае, когда $X=\mathbb{R}, \mathcal{F}-\sigma$ -алгебра измеримых по Лебегу множеств на \mathbb{R}, μ — мера Лебега, интеграл, определённый по схеме, приведённой в данном разделе, называется *интегралом Лебега* на прямой.

Теорема 1.5. Если $(\mathbb{R}, \mathcal{F}, \mu)$ — прямая с мерой Лебега, $f \colon [a,b] \to \mathbb{R}$ интегрируема по Риману, то тогда она интегрируема по Лебегу и значения интегралов Римана и Лебега совпадают.

1.4. Пространства Лебега

Определение 1.12. Функция $f \colon E \to \mathbb{R}$, определенная на измеримом множестве E, называется *суммируемой со степенью* $p, \ p \geqslant 1$, если величина

$$\int_E |f(x)|^p \, \mathrm{d}\mu(x)$$

определена и конечна.

Определение 1.13. Будем говорить, что некоторое свойство выполнено *почти всюду* на измеримом множестве E, если оно выполнено на всём множестве E, за исключением, быть может, множества меры нуль.

Определение 1.14. Две функции $f_1, f_2 : E \to \mathbb{R}$ назовём *эквивалентными* на множестве E, если их значения совпадают почти всюду.

Отношение \sim , введённое в определении выше, является отношением эквивалентности.

Пусть $\mathcal{L}^p(E,\mu),\, p\geqslant 1$ — линейное пространство суммируемых со степенью p функций, определенных на множестве E.

Рассмотрим фактормножество $L^p(E,\mu)=\mathcal{L}^p(E,\mu)/\sim$. Оно также будет являться линейным пространством. В нём можно ввести норму по формуле

$$\|\tilde{f}\|_p = \left(\int_E |f(x)|^p d\mu(x)\right)^{1/p}.$$

Классы эквивалентности из $L^p(E,\mu)$, допуская неточность, часто отождествляют с функциями-представителями из этого класса.

Если $E=[a,b]\subset\mathbb{R},\,\mu$ — мера Лебега на прямой, то вместо $L^p([a,b],\mu)$ обычно пишут просто $L^p[a,b].$

Теорема 1.6 (Лебега). $L^p(E,\mu)$ — банахово пространство.

§2. Ограниченные операторы

Далее X и Y — нормированные пространства над полем $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$.

Определение 2.1. Отображение $A\colon X\to Y$ из линейного пространства X в линейное пространство Y называется линейным оператором, если

$$A(\alpha x_1 + \beta x_2) = \alpha A x_1 + \beta A x_2, \quad \forall x_1, x_2 \in X, \alpha, \beta \in \mathbb{K}.$$

Если $Y=\mathbb{K},$ то вместо слова «оператор» говорят «функционал».

Пример 2.1. Отображение $D\colon C^1[a,b]\to C[a,b],$ определённое по правилу Dx=x' называется *оператором дифференцирования*. Это линейный оператор.

Пример 2.2. Отображение $J\colon C[a,b]\to C[a,b],$ определённое по правилу

$$(Jx)(t) = \int_a^t x(s) \, \mathrm{d}s, \quad t \in [a, b],$$

назывется оператором неопределённого интегрирования.

Пример 2.3. Пусть $(\Omega, \mathcal{F}, \mu)$ — пространство с мерой, $L^1(\Omega, \mu)$ — банахово пространство классов эквивалентности суммируемых функций на Ω . Отображение $J_0 \colon L^1(\Omega, \mu) \to \mathbb{R}$, определенное по правилу

$$J_0 x = \int_{\Omega} x \, \mathrm{d}\mu,$$

есть линейный функционал.

Пример 2.4. Отображение $A: \ell^1 \to \ell^\infty$, определённое по правилу

$$(Ax)(n) = \sum_{k=1}^{n} x(k),$$

есть линейный оператор, который каждой последовательности из ℓ^1 ставит в соответствие её последовательность частичных сумм.

Пример 2.5. Отображение $A: C[a,b] \to C[a,b]$, определённое по правилу

$$(Ax)(t) = \int_a^b K(t,s)x(s) \,\mathrm{d}s, \quad t \in [a,b],$$

где $K:[a,b]\times[a,b]\to\mathbb{R}$ — непрерывная функция, называется интегральным оператором. При этом функция K называется ${\it ядром}$ этого интегрального оператора.

Определение 2.2. Оператор $A \colon X \to Y$ между нормированными пространствами называется ограниченным, если величина

$$||A|| = \sup_{||x|| \leqslant 1} ||Ax||$$

конечна. Эта величина, в таком случае, называется нормой оператора A.

Можно показать, что все следующие определения нормы совпадают с данным выше:

- 1) $||A|| = \sup_{\|x\| < 1} ||Ax||$ 2) $||A|| = \sup_{\|x\| = 1} ||Ax||$
- 3) $||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||};$
- 4) $||A|| = \inf \{C \geqslant 0 : \forall x \in X \ ||Ax|| \leqslant C ||x|| \}$

Нетрудно видеть, что $||Ax|| \le ||A|| \, ||x||$ для всех $x \in X$.

Пример 2.6. Рассмотрим оператор умножения $A: \mathbb{C} \to \mathbb{C}$, Ax = ax, где $a \in \mathbb{C}$. Если ||x|| = |x| = 1, то

$$||Ax|| = |ax| = |a|.$$

Таким образом ||A|| = |a|.

 \Diamond

Множество всех линейных ограниченных операторов между нормированными пространствами X и Y будем обозначать L(X,Y).

Теорема 2.1. L(X,Y) — нормированное пространство.

Доказательство. Непосредственно доказывается, что сумма ограниченных операторов есть ограниченный оператор. Также легко показать, что норма оператора — в самом деле норма в L(X,Y). Установим, напри-

мер, справедливость неравенства треугольника. Пусть $A,B\in L(X,Y)$ и $\|x\|=1.$ Тогда

$$||(A+B)x|| = ||Ax + Bx|| \le ||Ax|| + ||Bx||.$$

Взяв верхнюю грань по всем x с нормой 1, получим, что

$$||A + B|| \le ||A|| + ||B||$$
.

Определение 2.3. Алгебру $\mathcal B$ называют *банаховой алгеброй*, если она как линейное пространство является банаховым пространством, причем для всех $a,b\in\mathcal B$

$$||ab|| \leq ||a|| \, ||b||$$
.

Если ${\mathcal B}$ при этом является алгеброй с единицей e, то требуют также, чтобы выполнялось свойство

$$||e|| = 1.$$

Теорема 2.2. Если Y — банахово пространство, то L(X,Y) — банахово пространство.

Доказательство. см. Антоневич, Радыно, 1984, с. 180.

Следствие 1. Если X — банахово пространство, то L(X) — банахова алгебра c единицей.

Доказательство. Из алгебры известно, что L(X) образует алгебру с единицей I. Покажем, что выполняется мультипликативное свойство для нормы операторов. Пусть $||x|| \le 1$:

$$||ABx|| \le ||A|| \, ||Bx|| \le ||A|| \, ||B|| \, ||x|| \le ||A|| \, ||B||$$
.

Взяв в этом неравенстве верхнюю грань по $||x|| \le 1$, получим

$$||AB|| \leq ||A|| \, ||B||$$
.

Норма тождественного оператора, очевидно, равна единице.

Определение 2.4. Пространство ограниченных линейных функционалов $L(X,\mathbb{K})$ называют *сопряженным пространством* к пространству X и обозначают символом X^* .

Теорема 2.3. Пусть A — линейный оператор. Тогда следующие условия эквивалентны:

- 1) A непрерывное отображение;
- 2) A непрерывное в точке 0 отображение;
- $3) \ A ограниченный оператор;$
- 4) A- липшицево отображение.

Доказательство. Импликации $1 \Rightarrow 2$, и $4 \Rightarrow 1$ очевидны. Докажем,

что $2 \Rightarrow 3$. Непрерывность A означает, что

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X: \; \|x\| < \delta \to \|Ax\| < \varepsilon.$$

Зафиксируем некоторый $\varepsilon>0$ и соответствующий ему δ . Тогда для любого $x\in X, \, \|x\|\leqslant 1,$ справедливо

$$||Ax|| = \frac{2}{\delta} ||A(\frac{\delta}{2}x)|| \le \frac{2\varepsilon}{\delta}.$$

Переходя в неравенстве к верхней грани, получаем, что

$$\sup_{\|x\| \leqslant 1} \|Ax\| \leqslant \frac{2\varepsilon}{\delta},$$

что и означает ограниченность оператора A.

Импликация $3\Rightarrow 4$ проверяется непосредственно: если A — ограниченный оператор, $x_1,x_2\in X$, то

$$||Ax_1 - Ax_2|| = ||A(x_1 - x_2)|| \le ||A|| \, ||x_1 - x_2||.$$

§3. Принцип равномерной ограниченности (теорема Банаха-Штейнгауза)

Определение 3.1. Множество из метрического пространства называется *множеством I категории («тощим», разреженным)*, если его можно представить в виде счетного объединения замкнутых множеств, каждое из которых не содержит шара.

Определение 3.2. Множество, не являющееся множеством I категории, называется *множеством II категории («тучным»)*.

Теорема 3.1 (Бэра). Всякое полное метрическое пространство является множеством II категории.

Пусть X и Y — банаховы пространства, Ω — множество индексов, $\{A_{\alpha}\}_{\alpha\in\Omega}$ — семейство ограниченных операторов.

Будем называть семейство операторов *ограниченным поточечно*, если для каждого $x \in X$ существует такая константа M(x) > 0, что

$$||A_{\alpha}x|| \leqslant M(x)$$

для всех $\alpha \in \Omega$, то есть для каждого $x \in X$ множество

$${A_{\alpha}x : \alpha \in \Omega} \subset Y$$

ограничено в Y.

Семейство операторов назовём *ограниченным равномерно*, если существует такое число C>0, что для всех $\alpha\in\Omega$ выполнено неравенство

$$||A_{\alpha}|| < C,$$

то есть числовое множество

$$\{\|A_{\alpha}\| : \alpha \in \Omega\}$$

ограничено.

Теорема 3.2 (Банаха-Штейнгауза). Если семейство ограниченных операторов $\{A_{\alpha}\}_{{\alpha}\in\Omega}$, действующих из банахова пространства X в нормированное пространство Y, ограничено поточечно, то оно ограничено и равномерно.

Доказательство. Рассмотрим множества вида

$$X_n = \{ x \in X : \forall \alpha \in \Omega \ \|A_{\alpha}x\| \leqslant n \}.$$

В силу поточечной ограниченности семейства, $X = \bigcup_{n=1}^{\infty} X_n$.

Каждое из множеств X_n замкнуто. В самом деле: если $\{x_k\}$ — сходящаяся к $x_0 \in X$ последовательность элементов из X_n , то, в силу непрерывности операторов A_α , $\lim_{k\to\infty}\|A_\alpha x_k\|=\|A_\alpha x_0\|$, а поскольку для всех x_k и всех $\alpha\in\Omega$ выполняется неравенство $\|A_\alpha x_k\|\leqslant n$, то и $\|A_\alpha x_0\|\leqslant n$, а значит $x_0\in X_n$, что и означает замкнутость X_n .

Поскольку пространство X полно, по теореме Бэра существует такой номер n_0 , что X_{n_0} содержит в себе шар, который будем обозначать B(x',r), где r — радиус этого шара, а x' — его центр.

Для всех элементов x из B(x',r) и для всех $\alpha \in \Omega$ справедливо, что

$$||A_{\alpha}x|| \leqslant n_0,$$

то есть значения $\|A_{\alpha}x\|$ ограничены на этом шаре. Покажем, что они ограничены и на единичном шаре, что будет означать ограниченность норм A_{α} .

Пусть $x\in B(0,1)$. Тогда, как нетрудно проверить, $z=rx+x'\in B(x',r)$. В таком случае для всех $\alpha\in\Omega$

$$||A_{\alpha}x|| = \left||A_{\alpha}\left(\frac{z-x'}{r}\right)\right|| \leqslant \frac{1}{r}(||A_{\alpha}z|| + ||A_{\alpha}x'||) \leqslant \frac{2n_0}{r},$$

откуда, взяв верхнюю грань по всем $x \in B(0,1)$, получаем утверждение теоремы. \square

§4. Ряды в банаховом пространстве

Определение 4.1. *Рядом* элементов из нормированного пространства X называется пара последовательностей (x_n, s_n) , связанных соотношением

$$s_n = \sum_{k=1}^n x_k.$$

 x_n называют n-ым членом ряда, а s_n-n -ой частичной суммой ряда.

Определение 4.2. Говорят, что ряд (x_n, s_n) сходится, если сходится последовательность его частичных сумм. Тогда предел этой последовательности называют суммой ряда и обозначают

$$\lim_{n \to \infty} s_n = \sum_{k=1}^{\infty} x_k.$$

Определение 4.3. Говорят, что ряд (x_n, s_n) абсолютно сходится, если сходится числовой ряд вида

$$\sum_{k=1}^{\infty} \|x_k\|.$$

Теорема 4.1. Если ряд элементов из банахова пространства сходится абсолютно, то он сходится.

Теорема 4.2. Пусть задан ряд (x_n, s_n) элементов из банахова пространства X и существует сходящийся числовой ряд

$$\sum_{n=1}^{\infty} a_n$$

такой, что для всех п выполняется неравенство

$$||x_n|| \leqslant a_n$$
.

Тогда ряд (x_n, s_n) сходится абсолютно.

Эти теоремы доказываются аналогично знакомым теоремам из курса математического анализа.

§5. Гильбертовы пространства

5.1. Начальные сведения

Определение 5.1. Линейное пространство H над полем \mathbb{K} называется пространством со скалярным произведением, если в нем задана функция $\langle \cdot, \cdot \rangle \colon H \times H \to \mathbb{K}$, такая что для всех $x,y,z \in H$ и $\alpha,\beta \in \mathbb{K}$ справедливы следующие свойства:

- 1) $\langle x, x \rangle = 0 \Leftrightarrow x = 0$ (невырожденность);
- 2) $\langle x, x \rangle \geqslant 0$ (положительная определённость);
- 3) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$ (линейность по первому аргументу);
- 4) $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (эрмитова симметричность).

Такая функция называется скалярным произведением.

Далее будем рассматривать только комплексные пространства со скалярным произведением.

В пространстве со скалярным произведением можно ввести норму по формуле

$$||x|| = \sqrt{\langle x, x \rangle}. (5.1)$$

Неравенство треугольника следует из неравенства

$$|\langle x, y \rangle| \leqslant ||x|| \, ||y|| \,, \tag{5.2}$$

которое называют неравенством Коши-Буняковского-Шварца или просто неравенством Шварца.

Теорема 5.1. Пусть $\{x_n\}$, $\{y_n\}$ — последовательности из H, причем $x_n \to x, \ y_n \to y$. Тогда $\langle x_n, y_n \rangle \to \langle x, y \rangle$.

Доказательство. Используем неравенство Шварца:

$$\begin{split} |\langle x_n,y_n\rangle - \langle x,y\rangle| &= |\langle x_n,y_n\rangle - \langle x_n,y\rangle + \langle x_n,y\rangle - \langle x,y\rangle| \leqslant \\ &\leqslant |\langle x_n,y_n-y\rangle| + |\langle x_n-x,y\rangle| \leqslant \\ &\leqslant \|x_n\| \, \|y_n-y\| + \|x_n-x\| \, \|y\| \to 0, \quad n \to \infty \quad \Box \end{split}$$

Определение 5.2. Если пространство со скалярным произведением полно по норме, определённой равенством (5.1), то оно называется *гиль-бертовым пространством*.

Пример 5.1. Лебегово пространство $L^2(E,\mu)$ является гильбертовым пространством со скалярным произведением, определённым по формуле

$$\langle f, g \rangle = \int_E f(x) \overline{g(x)} \, \mathrm{d}\mu(x).$$

 \Diamond

Существование этого интеграла следует из неравенства

$$\left| f(x)\overline{g(x)} \right| \le \frac{\left| f(x) \right|^2 + \left| g(x) \right|^2}{2}.$$

Пример 5.2. В частности, гильбертовым пространством является пространство суммируемых с квадратом последовательностей ℓ^2 . Скалярное произведение задаётся формулой

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_n \overline{y_n}.$$

Сходимость ряда обеспечивается аналогичной оценкой.

Определение 5.3. Векторы $x,y\in H$ называются *ортогональными*, если $\langle x,y\rangle=0$. При этом пишут $x\perp y$.

Определение 5.4. Пусть $M \subset H$ — множество из H. Тогда говорят, что вектор $x \in H$ ортогонален M, если x ортогонален любому вектору $m \in M$ (в этом случае используется обозначение $x \perp M$).

Теорема 5.2. Для всех векторов $x, y \in H$ выполняется тождество параллелограмма:

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$
.

Доказательство. Доказывается элементарными преобразованиями.

5.2. Теорема об ортогональном дополнении

Определение 5.5. Множество $A \subset X$ называется *выпуклым*, если для любых векторов $a,b \in A$ векторы вида $(1-t)a+tb,t \in [0,1]$ также лежат в A.

Очевидно, всякое подпространство в нормированном пространстве является выпуклым множеством.

Теорема 5.3 (о наилучшем приближении). Пусть A — непустое выпуклое замкнутое множество в гильбертовом пространстве H. Тогда для любого $x \in H \setminus A$ найдётся единственный вектор $a_0 \in A$ такой, что

$$||x - a_0|| = \inf_{a \in A} ||x - a||.$$

Иначе говоря, в A найдется вектор a_0 , который находится от x на наименьшем возможном расстоянии. Такой вектор a_0 называется элементом наилучшего приближения вектора x в множестве A.

Доказательство. По определению нижней грани, существует такая

последовательность $\{a_n\}$ элементов из A, что

$$d_n = ||x - a_n|| \to \inf_{a \in A} ||x - a|| = d.$$

Покажем, что эта последовательность фундаментальна.

По тождеству параллелограмма получаем:

$$\|(a_n - x) + (a_m - x)\|^2 + \|(a_n - x) - (a_m - x)\|^2 =$$

$$= 2(\|a_n - x\|^2 + \|a_m - x\|^2).$$

Заметим, что правая часть равенства стремится к $4d^2$ при стремлении n и m к бесконечности. Разделим обе части равенства на 4:

$$\frac{1}{4} \left(\left\| (a_n - x) + (a_m - x) \right\|^2 + \left\| (a_n - x) - (a_m - x) \right\|^2 \right) =$$

$$= \frac{1}{2} \left(\left\| a_n - x \right\|^2 + \left\| a_m - x \right\|^2 \right).$$

После преобразований получаем:

$$\left\| \frac{a_n + a_m}{2} - x \right\|^2 + \frac{\|a_n - a_m\|^2}{4} = \frac{1}{2} \left(\|a_n - x\|^2 + \|a_m - x\|^2 \right).$$

Поскольку множество A выпукло, вектор $(a_n + a_m)/2$ принадлежит A, а значит, в силу определения нижней грани, справедлива оценка

$$\left\| \frac{a_n + a_m}{2} - x \right\|^2 \geqslant d^2.$$

Тогда

$$\frac{\|a_n - a_m\|^2}{4} = \frac{1}{2} \left(\|a_n - x\|^2 + \|a_m - x\|^2 \right) - \left\| \frac{a_n + a_m}{2} - x \right\|^2 \le$$

$$\le \frac{1}{2} \left(\|a_n - x\|^2 + \|a_m - x\|^2 \right) - d^2.$$

Правая часть неравенства стремится к нулю, а это значит, что $||a_n - a_m||$ также стремится к нулю, что и означает фундаментальность последовательности $\{a_n\}$.

Поскольку пространство полно, существует вектор $a_0 = \lim_{n \to \infty} a_n$. В силу

П

замкнутости множества A этот вектор также лежит в A. При этом

$$||x - a_0|| \le ||x - a_n|| + ||a_n - a_0|| \to d, \quad n \to \infty,$$

то есть $\|x-a_0\|=d$, что и означает, что a_0 является элементом наилучшего приближения x в A.

Покажем, что других векторов наилучшего приближения в A нет. Пусть $a_0' \in A$ и $\|a_0' - x\| = d$. Тогда, снова используя тождество параллелограмма, получаем

$$4\left\|x - \frac{a_0 + a_0'}{2}\right\|^2 + \left\|a_0 - a_0'\right\|^2 = 2\left\|x - a_0\right\|^2 + 2\left\|x - a_0'\right\|^2 = 4d^2.$$

Первый квадрат нормы не меньше $4d^2$, откуда следует, что второй не превосходит нуля, а значит

$$\|a_0 - a_0'\|^2 = 0,$$

то есть $a_0 = a'_0$.

Определение 5.6. Пусть $M \subset H$ — подпространство из H. Вектор $a \in M$ называется *проекцией* вектора $x \in H$ на M если $x - a \perp M$, то есть для всех $m \in M$ выполняется равенство

$$\langle x - a, m \rangle = 0.$$

Теорема 5.4. Если $M \subset H$ — замкнутое подпространство, $x \in H \backslash M$, то тогда вектор $a \in M$ является проекцией x на M тогда u только тогда, когда a — элемент наилучшего приближения x g M.

Доказательство.

Необходимость:

Пусть $x-a\perp M$. Тогда по теореме Пифагора для любого $m\in M$ справедливо равенство

$$||x - m||^2 = ||x - a||^2 + ||a - m||^2$$
.

Значит,

$$\inf_{m \in M} \|x - m\| = \|x - a\|,$$

откуда и следует, что a — элемент наилучшего приближения x в M.

Достаточность:

Пусть $a \in M$ — элемент наилучшего приближения x в M, то есть

$$\inf_{m \in M} \|x - m\| = \|x - a\| = d.$$

Покажем, что для любого $m \in M$ выполнено равенство $\langle x-a,m\rangle=0$.

Обозначим x-a=z и пусть $t \in \mathbb{R}$. Тогда

$$\begin{aligned} \|x - (a + tm)\|^2 &= \|z - tm\|^2 = \langle z - tm, z - tm \rangle = \\ &= \|z\|^2 - 2t \, \Re \mathfrak{e} \langle z, m \rangle + t^2 \, \|m\|^2 = d^2 - 2t \, \Re \mathfrak{e} \langle z, m \rangle + t^2 \, \|m\|^2 \, . \end{aligned}$$

Поскольку $a + tm \in M$, $||x - (a + tm)||^2 \ge d^2$, откуда

$$d^2 - 2t \Re (z, m) + t^2 \|m\|^2 \geqslant d^2,$$

то есть при всех $t \in \mathbb{R}$

$$t^2 \|m\|^2 - 2t \Re \epsilon \langle z, m \rangle \geqslant 0,$$

что возможно только в случае $\Re \mathfrak{e}\langle z, m \rangle = 0.$

Взяв теперь вместо t величину $it,\,t\in\mathbb{R},$ можно аналогично показать, что $\mathfrak{Im}\langle z,m\rangle=0,$ что в совокупности даёт

$$\langle z, m \rangle = 0,$$

то есть $x - a \perp M$.

Таким образом мы доказали, что для всякого замкнутого подпространства $M \in H$ и вектора $x \in H \setminus M$ существует проекция x на M, причём она совпадает с элементом наилучшего приближения x в M.

Определение 5.7. *Ортогональным дополнением* множества A в гильбертовом пространстве H называется множество

$$A^{\perp} = \{ x \in H : x \perp A \} .$$

Из свойств скалярного произведения и теоремы 5.1 нетрудно видеть, что A^{\perp} — замкнутое подпространство из H для любого подмножества $A\subset\subset H$.

Теорема 5.5 (об ортогональном дополнении). *Если* M — *замкну- тое подпространство из* H, *то* $H = M \oplus M^{\perp}$.

Доказательство. Покажем, что всякий вектор $x \in H$ можно представить в виде суммы векторов из M и M^{\perp} . Пусть a — элемент наилучшего приближения x в M. Тогда по предыдущей теореме $x-a \perp M$, то есть $x-a \in M^{\perp}$, откуда получаем

$$x = a + (x - a),$$

где $a \in M, x - a \in M^{\perp}$.

Единственность такого представления обеспечивается тем фактом, что

$$M \cap M^{\perp} = \{0\}.$$

5.3. Базис в гильбертовом пространстве

Определение 5.8. Банахово пространство X называется $\underline{cenapa6eль-}$ ным, если существует такое счетное множество $M \subset X$, что $\overline{M} = X$, то есть, как еще говорят, M всюду плотно в X.

Определение 5.9. Множество $M \subset H$ называется *ортонормированным*, если для всех $x,y \in M$

- 1) ||x|| = 1;
- 2) $x \neq y \Leftrightarrow \langle x, y \rangle = 0$.

Лемма 5.1. B сепарабельном гильбертовом пространстве всякое ортонормированное множество не более чем счетно.

Доказательство. Пусть E — ортонормированное множество в сепарабельном гильбертовом пространстве H. Тогда для любых векторов e_1 , e_2 из E справедливо (проверяется непосредственно):

$$||e_1 - e_2|| = \sqrt{2}.$$

Поскольку H сепарабельно, существует счетное множество $F = \{f_k\}$, такое что для любого $e \in E$ найдется $f \in F$, что $\|e - f\| < \sqrt{2}/2$. Но тогда, если $\|e_1 - f\| < \sqrt{2}/2$, то (из неравенства треугольника)

$$||e_2 - f|| \ge ||e_1 - e_2|| - ||e_1 - f|| > \frac{\sqrt{2}}{2},$$

то есть двум разным e_1 и e_2 не может соответствовать один и тот же f с вышеуказанным свойством, то есть существует инъективное отображение E в F. Из этого следует, что множество F имеет мощность, не меньшую чем множество E, то есть E — не более, чем счетно.

Лемма 5.2. Пусть $\{e_n\}$ — ортогональная последовательность векторов из H. Тогда следующие условия эквивалентны:

- 1) $\sum_{n=1}^{\infty} e_n$ cxodumcs;
- 2) $\sum_{n=1}^{\infty} \|e_n\|^2 \operatorname{cxodumca}$

Доказательство. По теореме Пифагора

$$\left\| \sum_{k=m+1}^{n} e_k \right\|^2 = \sum_{k=m+1}^{n} \left\| e_k \right\|^2.$$

Из этого равенства и полноты пространства утверждение теоремы следует немедленно. $\hfill\Box$

Далее H — сепарабельное гильбертово пространство.

Определение 5.10. Последовательность $\{e_n\}$ называется *ортонорми- рованным базисом* (Шаудера) в H, если выполнены следующие условия:

- 1) Элементы последовательности $\{e_n\}$ образуют ортонормированное множество;
 - 2) Если $a \perp e_k$ для всех $k \in \mathbb{N}$, то a = 0 (свойство полноты).

Определение 5.11. Пусть $\{e_n\}$ — ортонормированный базис в H. Тогда pядом $\Phi ypьe$ вектора $x \in H$ называется ряд

$$\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k.$$

Теорема 5.6. Для любого вектора $x \in H$ ряд Фурье сходится, причем сходится κ вектору x.

Доказательство. По лемме 5.2 ряд Фурье сходится в точности тогда, когда сходится ряд $\sum_{k=1}^{\infty} \left| \langle x, e_k \rangle \right|^2$. По неравенству Бесселя (см. «Лекции по алгебре», параграф 17)

$$\left\| \sum_{k=1}^{n} \langle x, e_k \rangle e_k \right\|^2 = \sum_{k=1}^{n} \left| \langle x, e_k \rangle \right|^2 \leqslant \left\| x \right\|^2,$$

откуда получаем, что ряд Фурье сходится (последовательность частичных сумм ограничена). Обозначим через y сумму этого ряда.

Покажем, что x = y:

$$\langle x - y, e_j \rangle = \langle x - \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k, e_j \rangle =$$

$$= \langle x, e_j \rangle - \sum_{k=1}^{\infty} \langle x, e_k \rangle \langle e_k, e_j \rangle = \langle x, e_j \rangle - \langle x, e_j \rangle = 0.$$

В силу свойства полноты базиса, x - y = 0. Дальнейшее очевидно. Следствие 1 (равенство Парсеваля). Для любого вектора $x \in H$

$$||x||^2 = \sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2$$
.

Теорема 5.7. Для всякого бесконечномерного сепарабельного гильбер-

това пространства существует ортонормированный базис Шаудера.

Доказательство. Пусть $\{y_n\} \subset H$ — счетное всюду плотное множество. Применяя процесс Грама-Шмидта (см. алгебру), получим не более чем счетное ортонормированное множество $M = \{e_n\}$. Линейная оболочка span M, как нетрудно видеть, плотна в H (в силу процесса Грама-Шмидта, всякий вектор y_n выражается как конечная линейная комбинация векторов из M).

Покажем, что M обладает свойством полноты. Пусть

$$\langle a, e_k \rangle = 0, \quad k \in \mathbb{N}.$$
 (5.3)

Рассмотрим последовательность подпространств

$$E_n = \operatorname{span} \{e_1, \dots, e_n\}.$$

B силу условия $\overline{\operatorname{span} M} = H$,

$$d(a, E_n) \to 0, \tag{5.4}$$

где $d(a, E_n) = \inf_{z \in E_n} \|a - z\|.$

По теореме 5.4, проекция $a_n = \sum\limits_{k=1}^n \langle a,e_k \rangle e_k$ вектора a на E_n есть элемент наилучшего приближения, то есть

$$d(a, E_n) = ||a - a_n||.$$

Но $a_n = 0$ для всех n в силу условия (5.3). Поэтому

$$d(a, E_n) = ||a||,$$

откуда получаем, что a = 0 в силу (5.4).

Таким образом, $\{e_n\}$ — базис в H.

Определение 5.12. Два нормированных пространства X и Y называют изометрически изоморфными, если существует такой биективный оператор $J \in L(X,Y)$, что для всех $x \in X$

$$\|Jx\| = \|x\|.$$

Теорема 5.8. Каждое сепарабельное гильбертово пространство бесконечной размерности над полем $\mathbb C$ изометрически изоморфно пространству последовательностей $l^2 = l^2(\mathbb N, \mathbb C)$.

Доказательство. Рассмотрим произвольный ортонормированный базис $\{e_n\}$ в H, существующий в силу теоремы 5.7.

Определим оператор $J \colon H \to l^2$ по правилу

$$Jx = (\langle x, e_n \rangle)_{n=1}^{\infty},$$

то есть J ставит x в соответствие последовательность его координат $\langle x, e_n \rangle$.

Инъективность следует из теоремы 5.6, сюръективность из леммы 5.2. Изометричность следует из равенства Парсеваля.

Следствие 1. Все сепарабельные гильбертовы пространства изометрически изоморфны между собой.

5.4. Теорема Рисса об общем виде линейного функционала

Теорема 5.9 (Рисса о представлении). Каждый линейный ограниченный функционал $f \in H^*$ допускает единственное представление вида

$$f(x) = \langle x, a \rangle, \tag{5.5}$$

 $r \partial e \ a \in H$, причем

$$||f|| = ||a||.$$

Доказательство.

1) Если $a \in H$ — фиксированный вектор, то (5.5), очевидно, задаёт линейный функционал. Определим его норму:

$$\begin{split} |f(x)| &= |\langle x, a \rangle| \leqslant \|a\| \, \|x\| \quad x \in H; \\ \|f\| &\leqslant \|a\| \, ; \\ \left| f\left(\frac{a}{\|a\|}\right) \right| &= \left\langle a, \frac{a}{\|a\|} \right\rangle = \|a\| \, . \end{split}$$

Таким образом

$$||f|| = ||a||$$

2) Пусть $f \in H^*$. Будем считать, что $f \neq 0$, потому что в противном случае достаточно взять a=0. Тогда $M=\operatorname{Ker} f \neq H$.

Возьмем ненулевой вектор $b \in (\operatorname{Ker} f)^{\perp}.$ Очевидно, что (проверяется непосредственно)

$$f(x)b - f(b)x \in \text{Ker } f.$$

Тогда $f(x)b - f(b)x \perp b$. В таком случае

$$\langle f(x)b - f(b)x, b \rangle = f(x)\langle b, b \rangle - f(b)\langle x, b \rangle = 0,$$

откуда получаем

$$f(x) = \frac{f(b)\langle x, b \rangle}{\|b\|^2} = \left\langle x, \frac{\overline{f(b)}}{\|b\|^2} b \right\rangle = \langle x, a \rangle,$$

где
$$a = \frac{\overline{f(b)}}{\left\|b\right\|^2}b.$$

§6. Теорема Хана-Банаха

Далее X — линейное пространство над полем \mathbb{K} .

Определение 6.1. Отображение $p\colon X\to\mathbb{R}$ называется *полунормой*, если для всех $x,y\in X$ и $\alpha\in\mathbb{K}$

- 1) $p(x) \ge 0$;
- 2) $p(\alpha x) = |\alpha| p(x)$;
- 3) $p(x+y) \le p(x) + p(y)$.

Очевидно, что всякая норма является полунормой.

Пример 6.1. Отображение $p \colon C[a,b] \to \mathbb{R}, \, p(x) = \max_{t \in [a,c]} |x(t)|, \, \text{где } c < b,$ является полунормой, но не является нормой. \diamondsuit

Определение 6.2. $\mathit{Hocume.nem}$ функции $f\colon \mathbb{R} \to \mathbb{R}$ называется множество

$$\operatorname{supp} f = \overline{\{x \in \mathbb{R} : f(x) \neq 0\}},$$

где черта, как обычно, означает замыкание.

Определение 6.3. Функция $f \colon \mathbb{R} \to \mathbb{R}$ называется финитной, если её носитель — компактное множество в \mathbb{R} .

Пример 6.2. Множество всех финитных бесконечно дифференцируемых функций $C_0^\infty(\mathbb{R})$ можно наделить семейством полунорм по формуле

$$p_{k,a,b} = \max_{t \in [a,b]} \left| x^{(k)}(t) \right|, \quad k \geqslant 0.$$

Определение 6.4. Пусть $M \subset X$ — линейное подпространство в X, $f_0 \colon M \to \mathbb{K}$ — линейный функционал. Будем говорить, что линейный функционал $f \colon X \to \mathbb{K}$ является *продолжением* f_0 на X если

$$f(x) = f_0(x), \quad x \in M.$$

Теорема 6.1 (Хана-Банаха).

Пусть X — линейное пространство над полем \mathbb{K} , p — полунорма на X, $M \subset X$ — подпространство из X и $f_0 \colon M \to \mathbb{K}$ — линейный функционал

П

со свойством

$$|f_0(x)| \leq p(x), \quad x \in M.$$

Тогда существует такой линейный функционал $f: X \to \mathbb{K}$, что

- 1) $f npoдoлжение f_0$ на X;
- $2) |f(x)| \leq p(x), x \in X.$

Следствие 1. Пусть $X \neq \{0\}$ — линейное нормированное пространство. Тогда для всякого $x_0 \neq 0$ из X существует такой линейный ограниченный функционал $f \in X^*$, что

- 1) $|f(x_0)| = ||x_0|| \neq 0$;
- 2) ||f|| = 1.

Доказательство. Пусть $M = \{\alpha x_0 : \alpha \in \mathbb{K}\}.$

Функционал $f_0 \in M^*$ определим по правилу

$$f_0(\alpha x_0) = \alpha \|x_0\|,$$

а в качестве полунормы p возьмём норму:

$$p(x) = ||x||, \quad x \in X.$$

По теореме Хана-Банаха существует продолжение f_0 на X, причем

- 1) $f(x_0) = f_0(x_0) = ||x_0|| \neq 0;$
- 2) $|f(x)| \leq ||x||$.

В таком случае получаем, что ||f|| = 1.

Из этого следствия ясно видно, что если $X \neq \{0\}$, то и $X^* \neq \{0\}$.

Рассмотрим пространство $(X^*)^*$, которое далее будем обозначать X^{**} . Зафиксируем некоторый $x_0 \in X$ и определим функционал $\xi_{x_0} \in X^{**}$ по правилу

$$\xi_{x_0}(f) = f(x_0), \quad f \in X^*.$$
 (6.1)

Из следствия 1 получаем, что

$$\|\xi_{x_0}\| = \|x_0\|.$$

Таким образом мы построили инъективное (проверьте!) отображение $\xi_{\bullet} \colon X \to X^{**}$. Такое отображение называется каноническим вложением пространства X в X^{**} . Заметим, что это линейный ограниченный оператор, сохраняющий норму.

Определение 6.5. Банахово пространство X называется peфлексивным, если каждый функционал из X^{**} представим в виде (6.1). Иначе говоря, каноническое вложение осуществляет изометрический изоморфизм между X и X^{**} .

Примерами рефлексивных пространств являются лебеговы пространства $L^p[a,b], \ell^p$, где $p \in [1,\infty)$. С другой стороны, пространства ℓ^∞ и C[a,b] не рефлексивны.

§7. Элементы нелинейного анализа

7.1. Производная отображения

Всюду далее X,Y — банаховы пространства над $\mathbb{K} \in \{\mathbb{C}, \mathbb{R}\}$, буквами U и V обозначаются открытые множества в X и Y.

Определение 7.1. Пусть $f\colon U\subset X\to Y,\ g\colon U\subset X\to \mathbb{R},\ x_0\in U.$ Говорят, что

$$f(x) = o(g(x))$$
 при $x \to x_0$,

если справедливо равенство

$$||f(x)|| = \varepsilon(x)g(x),$$

где $\varepsilon: U \subset X \to \mathbb{R}$, $\varepsilon(x) \to 0$ при $x \to x_0$.

Определение 7.2. Пусть $f,g\colon U\subset X\to Y$ — отображения, определеные на открытом множестве U из пространства X. Отображение g называется *касательным* к f в точке $x_0\in U$, если

$$f(x) = g(x) + o(\|x - x_0\|)$$
 при $x \to x_0$,

то есть

$$\frac{\|f(x) - g(x)\|}{\|x - x_0\|} \to 0 \quad \text{при } x \to x_0,$$

Легко видеть, что «f касательно g» есть отношение эквивалентности.

Определение 7.3. Отображение $f\colon U\subset X\to Y$ называется дифференцируемым в точке x_0 , если существует такой оператор $A\in L(X,Y)$, что f касательно g в точке x_0 , где g определено по формуле

$$g(x) = f(x_0) + A(x - x_0), \quad x \in U.$$

Иначе говоря, f дифференцируемо в точке x_0 если

$$f(x) = f(x_0) + A(x - x_0) + o(\|x - x_0\|)$$
 при $x \to x_0$.

Если f дифференцируемо в каждой точке U, то f называют $\partial u\phi$ ференцируемым.

Оператор A называется npouseodhoù отображения f в точке x_0 . При этом используется привычное обозначение:

$$f'(x_0) = A.$$

Также пишут $Df(x_0), D_{x_0}f$ и т. д.

Теорема 7.1. Определение производной корректно: линейный оператор A определён однозначно для каждой точки x_0 .

П

Доказательство. Пусть $f\colon U\subset X\to Y$ дифференцируемо в точке x_0 . Тогда f касательно g в точке x_0 , где $g(x)=f(x_0)+A(x-x_0)$. Пусть теперь $g_0(x)=f(x_0)+B(x-x_0),\ B\in L(X,Y),$ также касательно к f в точке x_0 . Тогда g_0 касательно g в точке x_0 :

$$g(x) - g_0(x) = (A - B)(x - x_0),$$

причем

$$g(x) - g_0(x) = o(||x - x_0||).$$

Примем обозначение $h = x - x_0$. Тогда

$$(A - B)h = o(||h||).$$

Раскрывая определение символа «о» получаем, что для всякого $\varepsilon>0$ существует такое δ , что если $\|h\|<\delta$, то

$$\left\| (A-B)\frac{h}{\|h\|} \right\| < \varepsilon, \quad \|h\| < \delta.$$

Тогда

$$\sup_{\|h\| < \delta} \left\| (A - B) \frac{h}{\|h\|} \right\| = \sup_{\|x\| \le 1} \|(A - B)x\| = \|A - B\| < \varepsilon,$$

откуда, в силу произвольности ε получаем, что A=B.

Теорема 7.2. Пусть $f, g: U \subset X \to Y$ дифференцируемы в точке x_0 . Тогда $\alpha f + \beta g$ также дифференцируемо в точке x_0 , причем

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0).$$

При этом производная линейной комбинации функций есть линейная комбинация производных.

Доказательство. Отображения $f,\ g$ дифференцируемы в точке $x_0,$ значит

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(||x - x_0||),$$

$$g(x) = g(x_0) + g'(x_0)(x - x_0) + o(||x - x_0||).$$

Домножая эти равенства на α и β соответственно и сложив, получаем, в силу свойств символа «о»:

$$(\alpha f + \beta g)(x) = (\alpha f + \beta g)(x_0) + + (\alpha f'(x_0) + \beta g'(x_0))(x - x_0) + o(||x - x_0||),$$

то есть, в силу корректности определения производной,

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0). \qquad \Box$$

Следующие две теоремы предлагаются в качестве упражнения.

Теорема 7.3. Если $f: X \to Y$ — постоянное отображение, то f дифференцируемо в любой точке пространства X, причем $f'(x) = \mathbf{0}$ в любой точке $x \in X$.

Теорема 7.4. Если $A \in L(X,Y)$, то отображение A дифференцируемо в любой точке $x \in X$ и A'(x) = A.

Теорема 7.5. Пусть $f: U \subset X \to Y$ дифференцируемо в точке $x_0 \in U$, а $g: V \subset Y \to Z$ дифференцируемо в точке $y_0 = f(x_0)$ и $f(U) \subset V$. Тогда отображение $F = g \circ f: U \subset X \to Z$ дифференцируемо в точке x_0 и

$$F'(x_0) = g'(f(x_0))f'(x_0) \in L(X, Z).$$

Доказательство. Рассмотрим приращение отображения *F*:

$$F(x) - F(x_0) = g(f(x)) - g(f(x_0)) =$$

$$= g'(f(x_0))(f(x) - f(x_0)) + o(||f(x) - f(x_0)||) =$$

$$= g'(f(x_0))(f'(x_0)(x - x_0) + o(||x - x_0||)) + o(||f(x) - f(x_0)||) =$$

$$= g'(f(x_0))f'(x_0)(x - x_0) +$$

$$+ g'(f(x_0))o(||x - x_0||) + o(||f(x) - f(x_0)||)$$

Покажем, что

$$g'(f(x_0))o(||x - x_0||) + o(||f(x) - f(x_0)||) = o(||x - x_0||)$$

при $x \to x_0$. Введем для краткости замену $h = x - x_0$. Тогда, с учетом того, что

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0)\|}{\|h\|} \leqslant f'(x_0),$$

получаем

$$\frac{\|g'(f(x_0))o(\|h\|) + o(\|f(x_0 + h) - f(x_0)\|)\|}{\|h\|} \leqslant$$

$$\leqslant \frac{\|g'(f(x_0))\| \|o(\|h\|)\| + \|o(\|f(x_0 + h) - f(x_0)\|)\|}{\|h\|} =$$

$$= \frac{\|g'(f(x_0))\| \varepsilon_1(h) \|h\| + \varepsilon_2(h) \|f(x_0 + h) - f(x_0)\|}{\|h\|} =$$

$$=\|g'(f(x_0))\|\,arepsilon_1(h)+rac{arepsilon_2(h)\,\|f(x_0+h)-f(x_0)\|}{\|h\|} o 0$$
 при $h o 0.$

Таким образом

$$F(x) - F(x_0) = g'(f(x_0))f'(x_0)(x - x_0) + o(||x - x_0||)$$
 при $x \to x_0$.

См. «Лекции по алгебре» для определения полилинейного (билинейного) оператора.

Определение 7.4. Билинейный оператор $A \colon X \times X \to Y$ называется *ограниченным*, если

$$||A|| = \sup_{\|x_1\| \le 1, \|x_2\| \le 1} ||A(x_1, x_2)|| < \infty.$$

Символом $B_2(X,Y)$ будем обозначать нормированное пространство билинейных ограниченных операторов, действующих из $X \times X$ в Y.

Аналогично определяется полилинейный ограниченный оператор. Пространство n-линейных ограниченных операторов обозначается $B_n(X,Y)$.

Теорема 7.6. Пространство операторов L(X, L(X, Y)) и пространство билинейных операторов $B_2(X, Y)$ изометрически изоморфны.

Доказательство. Пусть отображение

$$J \colon L(X, L(X, Y)) \to B_2(X, Y)$$

действует по правилу

$$(JA)(x_1, x_2) = (Ax_1)x_2.$$

Очевидно, это линейный оператор между L(X, L(X, Y)) и $B_2(X, Y)$. Биективность проверяется непосредственно. Проверим изометричность:

$$||JA||_{B_2(X,Y)} = \sup_{\|x_1\| \leqslant 1, \|x_2\| \leqslant 1} ||(Ax_1)x_2||_Y =$$

$$= \sup_{\|x_1\| \leqslant 1} (\sup_{\|x_2\| \leqslant 1} ||(Ax_1)x_2||_Y) = \sup_{\|x_1\| \leqslant 1} (||Ax_1||_{L(X,Y)}) =$$

$$= ||A||_{L(X,L(X,Y))}. \quad \Box$$

Аналогичный результат справедлив для полилинейных операторов:

Теорема 7.7.

Пространства
$$L(\underbrace{X,L(X,\ldots,L(X),Y)}_{n\ pas})))$$
 и $B_n(X,Y)$ изометрически изо-

морфны.

Из этих теорем, в частности, следует, что $B_n(X,Y)$ — банахово пространство, если Y банахово.

Определение 7.5. Пусть $f: U \subset X \to Y$ дифференцируемо в каждой точке U и отображение $f': U \subset X \to L(X,Y)$ дифференцируемо в точке x_0 . Тогда *второй производной* отображения f в точке x_0 называется производная отображения f' в точке x_0 .

Таким образом, вторая производная отображения f в точке x_0 есть линейный оператор $f''(x_0) \in L(X,L(X,Y))$, или, в силу предыдущей теоремы, вторую производную можно считать билинейным оператором из $B_2(X,Y)$.

Аналогично определяется n-ая производная отображения f в точке x_0 . Тогда $f^{(n)}(x_0) \in B_n(X,Y)$.

Определение 7.6. Отображение $f\colon U\subset X\to Y$ называется n раз непрерывно дифференцируемым, если для каждого $k=\overline{1,n}$ существует k-ая производная $f^{(k)}(x)$, определенная для всех $x\in U$ и при этом отображение $f^{(n)}\colon U\subset X\to B_n(X,Y)$ непрерывно.

Пусть $A \in B_n(X,Y)$. Введём следующее обозначение:

$$Ah^n := A(h, \dots, h).$$

Договоримся также, что $f^{(0)}(x) = f(x)$ для всех $x \in U$, и $h^0 = 1 \in \mathbb{K}$.

Теорема 7.8 (Тейлора). Пусть отображение $f: U \subset X \to Y$ п раз непрерывно дифференцируемо. Тогда для любой точки $x_0 \in U$ и любого вектора h такого, что $x_0 + h \in U$, имеет место формула (Тейлора):

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)h^k}{k!} + o(\|h\|^n) \ npu \ h \to 0.$$

7.2. Задачи на экстремум

Определение 7.7. Точка $x_0 \in U$ называется точкой локального минимума (максимума) функции $f \colon U \subset X \to \mathbb{R}$, если существует шар $B(x_0,\varepsilon) \subset U$ такой, что $f(x_0) \leqslant f(x)$ ($f(x_0) \geqslant f(x)$) для всех $x \in B(x_0,\varepsilon)$. Если же выполняется строгое неравенство, то точка x_0 называется точкой строгого локального минимума (максимума).

Точка, являющаяся точкой (строгого) локального минимума либо максимума, также называется mочкой (cmpoгого) локального экстремума.

Теорема 7.9 (Ферма). Пусть $f: U \subset X \to \mathbb{R}$ — дифференцируемая в точке x_0 функция и $x_0 \in U$ — точка локального экстремума. Тогда $f'(x_0) = 0$, то есть $f'(x_0) \in X^*$ — нулевой функционал.

Доказательство. Пусть, для определенности, x_0 — точка локального минимума (случай локального максимума рассматривается аналогично), и для всех $h \in X$ таких, что $||h|| < \varepsilon$ выполняется условие $f(x_0 + h) \geqslant f(x_0)$.

Предположим противное: пусть $f'(x_0) \neq 0$. Тогда найдется такой вектор h_0 , $||h_0|| < \varepsilon$, что $\alpha_0 = f'(x_0)h_0 > 0$. Пусть $t \in (-1,0) \subset \mathbb{R}$. Тогда, разумеется, $||th_0|| < \varepsilon$ и $f'(x_0)(th_0) < 0$. В силу дифференцируемости функции в точке x_0 справедливо равенство

$$f(x_0 + th_0) - f(x_0) = f'(x_0)(th_0) + o(t).$$

Тогда

$$0 \leqslant f(x_0 + th_0) - f(x_0) = f'(x_0)(th_0) + o(t) = t\left(\alpha_0 + \frac{o(t)}{t}\right).$$

Но, поскольку $\alpha_0 > 0$, при достаточно малых t < 0 справедливо

$$\alpha_0 + \frac{o(t)}{t} > 0,$$

откуда следует, что в правой части равенства стоит строго отрицательная величина. Получили противоречие. $\hfill \Box$

Определение 7.8. Билинейная форма $\xi \colon X^2 \to \mathbb{R}$ называется равномерно положительной (равномерно отрицательной), если существует такая константа c>0, что для всех $h\in X$

$$\xi(h,h) \geqslant c \|h\|^2$$

$$(\xi(h,h) \leqslant -c \|h\|^2).$$

Теорема 7.10 (достаточное условие экстремума).

Пусть $f: U \subset X \to \mathbb{R}$ — дважды дифференцируемая функция, $f'(x_0) = 0$ и пусть $f''(x_0)$ — равномерно отрицательная (равномерно положительная) билинейная форма. Тогда x_0 — точка строгого локального максимума (минимума).

Доказательство. Пусть, для определённости, $f''(x_0)$ равномерно отрицательна, то есть существует такая константа $\alpha>0$, что

$$f''(x_0)h^2 \leqslant -\alpha \|h^2\|.$$

Разложим функцию по формуле Тейлора в окрестности x_0 :

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{f''(x_0)h^2}{2} + o(\|h\|^2).$$

Поскольку $f'(x_0) = 0$,

$$f(x_0 + h) - f(x_0) = \frac{f''(x_0)h^2}{2} + o(\|h\|^2) \le -\frac{\alpha \|h\|^2}{2} + o(\|h\|^2).$$

Найдется такое $\delta>0,$ что при всех $\|h\|<\delta$ выполняется неравенство $o(\|h\|^2)\leqslant (\alpha/4)\,\|h\|^2,$ поэтому

$$f(x_0 + h) - f(x_0) \le -\frac{\alpha \|h\|^2}{2} + o(\|h\|^2) \le -\frac{\alpha \|h\|^2}{4} < 0$$

при $\|h\| < \delta$. А это в точности и означает, что x_0 — точка строгого локального максимума. Аналогично рассматривается случай локального минимума.

§8. Элементы теории функции комплексной переменной

Более подробную информацию можно найти, например, в книге Шабата Б. В. «Введение в комплексный анализ».

Рассмотрим функцию $F \colon E \subset \mathbb{R}^2 \to \mathbb{R}^2$. Её можно представить в виде

$$F(x,y) = (P(x,y), Q(x,y)),$$

где $P,Q\colon E\to\mathbb{R}.$ Более того, эту функцию можно рассматривать как функцию $F\colon E\subset\mathbb{C}\to\mathbb{C}$:

$$F(x+iy) = P(x,y) + iQ(x,y).$$

Пусть теперь F дифференцируема в точке $x_0 \in E$ как отображение из \mathbb{R}^2 в \mathbb{R}^2 . Исследуем, при каких условиях эта функция будет дифференцируема как отображение из \mathbb{C} в \mathbb{C} . Заметим, что существуют функции, для которых это не выполняется. Примером может служить функция

$$f: \mathbb{C} \to \mathbb{C}, \quad f(z) = \mathfrak{Re} z.$$

Если рассматривать эту функцию как отображение $f \colon \mathbb{R}^2 \to \mathbb{R}^2$, то легко видеть, что это линейный оператор:

$$f(x_1, x_2) = x_1.$$

То есть f дифференцируемо в каждой точке из \mathbb{R}^2 . Однако если мы рассмотрим предел

$$\lim_{z \to 0} \frac{f(z) - f(0)}{z} = \lim_{z \to 0} \frac{\Re \mathfrak{e} \, z}{z} \tag{8.1}$$

при стремлении z к нулю вдоль мнимой оси и вдоль действительной оси

$$\lim_{\substack{z \to 0 \\ \Re \mathfrak{e} \ z = 0}} \frac{\Re \mathfrak{e} \ z}{z} = 0;$$

$$\lim_{\substack{z \to 0 \\ \mathfrak{Im} \, z = 0}} \frac{\mathfrak{Re} \, z}{z} = \frac{z}{z} = 1.$$

Таким образом предел (8.1) не существует, то есть $f\colon\mathbb{C}\to\mathbb{C}$ не дифференцируема.

Как известно, если отображение $f: \mathbb{R}^2 \to \mathbb{R}^2$ дифференцируемо в точке $x_0 = (x,y)$, то у него существуют частные производные первого порядка, и матрица Якоби в точке x_0 есть матрица оператора $f'(x_0)$ в стандартном базисе.

Пусть f(x, y) = (u(x, y), v(x, y)).

$$f'(x_0) \sim \begin{pmatrix} \frac{\partial u(x,y)}{\partial x} & \frac{\partial u(x,y)}{\partial y} \\ \frac{\partial v(x,y)}{\partial x} & \frac{\partial v(x,y)}{\partial y} \end{pmatrix}$$

Следующее утверждение вытекает из представления комплексных чисел в виде матрицы и утверждения, что все линейные операторы в $\mathbb C$ действуют по правилу $x\mapsto \alpha x,\ \alpha\in\mathbb C.$

Лемма 8.1. Для того чтобы матрица $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ с вещественными коэффициентами задавала линейный оператор в комплексном линейном пространстве \mathbb{C} , необходимо и достаточно, чтобы

$$\begin{cases} a = d \\ b = -c \end{cases}$$

Непосредственно из леммы получаем

Теорема 8.1 (условия Коши-Римана). Дифференцируемое в точке $x_0 = (x,y) \in U \subset \mathbb{R}^2$ отображение $f \colon U \subset \mathbb{R}^2 \to \mathbb{R}^2$, такое что f(x,y) = (u(x,y),v(x,y)), дифференцируемо как отображение $U \subset \mathbb{C} \to \mathbb{C}$ в том и только в том случае, если выполняются следующие условия (условия Коши-Римана):

$$\left\{ \begin{array}{l} \frac{\partial u(x,y)}{\partial x} = \frac{\partial v(x,y)}{\partial y} \\ \frac{\partial u(x,y)}{\partial y} = -\frac{\partial v(x,y)}{\partial x} \end{array} \right.$$

Определение 8.1. Функция $f\colon U\subset\mathbb{C}\to\mathbb{C}$ называется *аналитической* (чаще говорят *голоморфной*) на открытом множестве U, если она дифференцируема (как функция в комплексном пространстве) в каждой точке множества U.

Определение 8.2. Путём в $U \subset \mathbb{C}$ называется непрерывное отображение $\gamma \colon [a,b] \to U$. Если это отображение является кусочно непрерывно дифференцируемым, то его называют кусочно гладким путём.

Определение 8.3. Интегралом от функции $f: U \subset \mathbb{C} \to \mathbb{C}$ вдоль кусочно гладкого пути $\gamma: [a,b] \to U$ называется

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt.$$

Если f(x+iy) = u(x,y) + iv(x,y), то интеграл можно записать в виде

$$\begin{split} \int_{\gamma} f(z) \, \mathrm{d}z &= \int_{\gamma} (u(x,y) + iv(x,y)) \, \mathrm{d}(x+iy) = \\ &= \int_{\gamma} u(x,y) \, \mathrm{d}x - v(x,y) \, \mathrm{d}y + i \int_{\gamma} v(x,y) \, \mathrm{d}x + u(x,y) \, \mathrm{d}y, \end{split}$$

где в правой части стоят известные из курса анализа криволинейные интегралы второго рода.

Теорема 8.2 (Коши). Если функция f является аналитической в односвязной области $U \subset \mathbb{C}$, то ее интеграл вдоль любого кусочно гладкого замкнутого пути $\gamma \colon [a,b] \to U$ равен нулю:

$$\int_{\gamma} f(z) \, \mathrm{d}z = 0.$$

Доказательство. Вспомним известную из анализа формулу Грина:

$$\int_{\gamma} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y,$$

где D — область, ограниченная путем γ . Тогда, применяя формулу Грина и условия Коши-Римана, получаем:

$$\int_{\gamma} f(z) dz = \int_{\gamma} u(x, y) dx - v(x, y) dy + i \int_{\gamma} v(x, y) dx + u(x, y) dy =$$

$$= \iint_{D} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy + i \iint_{D} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy = 0. \quad \Box$$

Теорема 8.3 (интегральная формула Коши).

Пусть $f\colon U\subset\mathbb{C}\to\mathbb{C}$ — аналитическая функция, определенная в области U . Тогда для всех $z\in U$

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{\lambda - z} d\lambda,$$

где γ — граница односвязной области V, где $\overline{V} \subset U$ и $z \in V$, причем направление обхода контура положительно.

Из формулы Коши вытекает следующая теорема.

Теорема 8.4. Если $f: U \subset \mathbb{C} \to \mathbb{C}$ — аналитическая функция и $z_0 \in U$, то в любом круге $D = \{|z - z_0| < R\} \subset U$ эту функцию можно представить в виде сходящегося степенного ряда

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n,$$

где

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{(\lambda - z_0)^{n+1}} d\lambda, \quad n = 0, 1, \dots,$$

а контур $\gamma: [a,b] \to D$ есть круг радиуса r < R с центром в точке z_0 .

Эта теорема влечет за собой, что всякая дифференцируемая функция комплексной переменной дифференцируема бесконечное число раз, причем, поскольку из теоремы о почленном дифференцировании степенных рядов следует, что

$$c_n = \frac{f^{(n)}(z_0)}{n!},$$

получаем

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

Справедлива также и обратная теорема.

Теорема 8.5. Если $z_0 \in \mathbb{C}$ и ряд

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

 $cxodumcs\ npu\ |z-z_0| < R,\ mo\ функция\ f\ является\ аналитической\ в\ круге\ |z-z_0| < R.$

Теорема 8.6 (единственности). Если $f\colon U\subset\mathbb{C}\to\mathbb{C}$ аналитична на U u

$$f(z_n) = 0,$$

где $\{z_n\}$ — сходящаяся последовательность, то для всех $z\in U$

$$f(z) = 0.$$

Определение 8.4. Функция $f: \mathbb{C} \to \mathbb{C}$ называется *целой*, если она является аналитической на всей комплексной плоскости.

Всякую целую функцию можно представить в виде

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n.$$

Теорема 8.7 (Лиувилля). Если целая функция $f: \mathbb{C} \to \mathbb{C}$ ограничена, то она постоянна, т.е. $f(z) = c \in \mathbb{C}$ для всех $z \in \mathbb{C}$.

Результаты данного параграфа легко обобщаются на функции комплексной переменной, принимающие значение в некоторой банаховой алгебре.

§9. Спектральная теория линейных операторов

Определение обратного оператора и другие алгебраические аспекты теории можно найти в «Лекциях по алгебре».

Далее всюду X — комплексное банахово пространство.

9.1. Обратные операторы и их свойства

Пусть $A \colon D(A) \subset X \to X$ — линейный оператор, определенный на некотором подпространстве D(A) пространства X.

Определение 9.1. Оператор $A\colon D(A)\subset X\to X$ называется *замкну-тым*, если его график

$$\Gamma(A) = \{(x, Ax) : x \in D(A)\} \subset X \times X$$

является замкнутым подмножеством в пространстве $X \times X$, наделённом нормой

$$||(x_1, x_2)|| = \max\{||x_1||, ||x_2||\}.$$

Иначе говоря, оператор замкнут, если для всякой сходящейся последовательности $\{x_n\}\subset D(A)$ такой, что $Ax_n\to y\in X$, её предел x лежит в D(A) и y=Ax.

Пример 9.1. Оператор $A \colon D(A) \subset C[a,b] \to C[a,b], \ D(A) = C^1[a,b],$ действующий по правилу Ax = x', является замкнутым. Это следует из теоремы о почленном дифференцировании функциональных последовательностей, известной из курса математического анализа. \diamondsuit

Теорема 9.1. Всякий ограниченный оператор $A \in L(X)$ замкнут.

Доказательство. Пусть $A \in L(X)$, $x_n \to x_0$, $Ax_n \to y_0$. В силу непрерывности $A, Ax_n \to Ax_0$, значит, в силу единственности предела последовательности, $Ax_0 = y_0$.

Следующую теорему примем без доказательства. Заметим, что её доказательство опирается на теорему Бэра.

Теорема 9.2 (Банаха о замкнутом графике).

Пусть $A \colon X \to X$ — замкнутый линейный оператор, определенный на всем банаховом пространстве X. Тогда оператор A ограничен.

Пусть $A \in L(X)$. Рассмотрим два условия:

- 1) $\operatorname{Ker} A = \{0\}$ оператор A инъективен.
- 2) $\operatorname{Im} A = X$ оператор A сюръективен.

В случае, когда X — конечномерное пространство, как известно из алгебры, эти два условия эквивалентны. Однако в случае бесконечномерных пространств это не так. Примерами для этого факта могут служить операторы правого и левого сдвига в l^{∞} .

Если для оператора из $A \in L(X)$ выполняются условия (1,2), он является биективным, а значит существует обратное отображение A^{-1} , которое, как известно из алгебры, также является линейным оператором. Будет ли этот оператор ограниченным? Оказывается, если пространство X является полным, это всегда так.

Теорема 9.3 (Банаха об обратном операторе).

Пусть линейный оператор $A \in L(X)$, действующий в банаховом пространстве X, биективен, т.е. выполнены условия (1) и (2). Тогда A^{-1} ограничен.

Доказательство. Поскольку A ограничен, он замкнут. Покажем, что A^{-1} также замкнут.

$$\Gamma(A^{-1}) = \left\{ (x, A^{-1}x) : x \in X \right\} = \left\{ (Ax, x) : x \in X \right\}.$$

Пусть $Ax_n \to y_0$, а $x_n \to x_0$. Поскольку A замкнут, $y_0 = Ax_0$, и, в силу определения графика, $(y_0,x_0) = (Ax_0,x_0) \in \Gamma(A^{-1})$, то есть множество $\Gamma(A^{-1})$ замкнуто. Значит, оператор A^{-1} замкнут, а по теореме о замкнутом графике он и ограничен.

Если $A\colon D(A)\subset X\to X$ определен не на всем пространстве, то для него также можно рассматривать условия $(1,\ 2)$. Тогда будем называть обратным к оператору A оператор $A^{-1}\colon X\to X$, который удовлетворяет естественным условиям

$$AA^{-1} = I_X$$

И

$$A^{-1}Ax = x$$

для всех $x \in D(A)$. Обратим внимание, что мы считаем A^{-1} действующим из X во всё пространство X, а не в D(A).

Теорема 9.4 (Банаха об обратном операторе).

Пусть $A\colon D(A)\subset X\to X$ — замкнутый биективный линейный оператор, определенный на подмножестве D(A) банахова пространства X. Тогда $A^{-1}\colon X\to X$ — ограниченный оператор.

Доказательство аналогично предыдущему.

Лемма 9.1. Если $A \in L(X)$ и ||A|| < 1, то оператор I - A обратим, а обратный задается формулой

$$(I-A)^{-1} = \sum_{n=0}^{\infty} A^n,$$

причем ряд сходится абсолютно и

$$\|(I-A)^{-1}\| \leqslant \frac{1}{1-\|A\|}.$$

Доказательство. Покажем, что ряд сходится абсолютно. Используем формулу суммы геометрической прогрессии:

$$\sum_{n=0}^{\infty} \|A^n\| \leqslant \sum_{n=0}^{\infty} \|A\|^n = \frac{1}{1 - \|A\|}.$$

Итак, ряд сходится абсолютно, значит он сходится. Отсюда же следует и оценка нормы. Обозначим сумму ряда через $B\in L(X)$. Покажем, что B — обратный к I-A.

$$(I - A)B = (I - A)\sum_{n=0}^{\infty} A^n = \lim_{m \to \infty} (I - A)\sum_{n=0}^m A^n =$$

$$= \lim_{m \to \infty} \sum_{n=0}^m (A^n - A^{n+1}) = \lim_{m \to \infty} (I - A^{m+1}) = I,$$

где последнее равенство справедливо в силу условия ||A|| < 1.

Аналогично доказывается, что B(I - A) = I.

Теорема 9.5. Пусть $A, B \in L(X), A$ обратим, $\|B\| \|A^{-1}\| < 1$. Тогда A-B обратим u

$$(A-B)^{-1} = \sum_{n=0}^{\infty} (A^{-1}B)^n A^{-1},$$

и справедлива оценка

$$\|(A-B)^{-1}\| \le \frac{\|A^{-1}\|}{1-\|B\|\|A^{-1}\|}.$$

Доказательство. Предствим оператор A-B в виде $A-B=A(I-A^{-1}B)$. Оператор A обратим, оператор $I-A^{-1}B$ обратим в силу леммы. Значит и A-B обратим. Остальное прямо следует из леммы, если её применить к оператору $I-A^{-1}B$.

9.2. Спектр оператора

Лемма 9.2. Если $A: D(A) \subset X \to X$ замкнут, то и $A - \lambda I$ замкнут, где $\lambda \in \mathbb{C}$, а $I: D(A) \subset X \to X$ — тождественный оператор.

Доказательство. Пусть A замкнут, $\{x_n\}\subset D(A),\ x_n\to x$ и $(A-\lambda I)x_n\to y.$ Тогда

$$\lim_{n \to \infty} Ax_n = \lim_{n \to \infty} (Ax_n - \lambda x_n + \lambda x_n) = \lim_{n \to \infty} (A - \lambda I)x_n + \lambda \lim_{n \to \infty} x_n = y + \lambda x.$$

Тогда, в силу замкнутости A,

$$Ax = \lambda x + y \Rightarrow (A - \lambda I)x = y,$$

то есть $A - \lambda I$ также замкнут.

Определение 9.2. Пусть $A\colon D(A)\subset X\to X$ — замкнутый оператор. Будем называть число $\lambda\in\mathbb{C}$ точкой спектра оператора A, если оператор $A-\lambda I\colon D(A)\subset X\to X$ необратим, то есть выполнено хотя бы одно из условий

- 1) $\operatorname{Ker}(A \lambda I) \neq \{0\}$ оператор не инъективен.
- 2) $\operatorname{Im}(A \lambda I) \neq X$ оператор не сюръективен.

Если же число $\lambda \in \mathbb{C}$ не является точкой спектра, то его называют регулярной точкой оператора A.

Заметим, что по теореме Банаха об обратном операторе, если число λ — регулярная точка A, то оператор $(A-\lambda I)^{-1}$ ограничен.

Определение 9.3. Множество $\sigma(A)$ точек спектра оператора A называется *спектром* оператора A.

Определение 9.4. Множество $\rho(A) = \mathbb{C} \setminus \sigma(A)$ регулярных точек оператора A называется *резольвентным множеством* оператора A.

Спектр оператора принято разбивать на три взаимно непересекающиеся части:

- 1) Дискретный спектр $\sigma_d(A)$ множество собственных значений оператора A, то есть такие $\lambda \in \mathbb{C}$, что $\operatorname{Ker}(A \lambda I) \neq \{0\}$.
- 2) Непрерывный спектр $\sigma_c(A)$ множество таких $\lambda \in \mathbb{C}$, не являющихся собственными значениями, что $\mathrm{Im}(A-\lambda I) \neq X$, но $\overline{\mathrm{Im}(A-\lambda I)} = X$.
- 3) Остаточный спектр $\sigma_r(A)$ множество точек спектра, не вошедших ни в дискретный спектр, ни в непрерывный спектр.

Ясно, что $\sigma(A) = \sigma_d(A) \cup \sigma_c(A) \cup \sigma_r(A)$.

Определение 9.5. Отображение $\mathrm{R}(ullet,A)\colon \rho(A)\to L(X),$ действующее по правилу

$$R(\lambda, A) = (A - \lambda I)^{-1},$$

называется pезольвентой оператора A.

Теорема 9.6. Для всякого замкнутого оператора A множество $\rho(A)$ открыто. Резольвента $\mathrm{R}(\bullet,A)\colon \rho(A)\to L(X)$ — аналитическая функция на $\rho(A)$.

Доказательство. Пусть $\lambda_0 \in \rho(A)$, а $\lambda \in \mathbb{C}$ таково, что

$$|\lambda - \lambda_0| < \frac{1}{\|\mathbf{R}(\lambda_0, A)\|}.$$

Тогда представим оператор $A - \lambda I$ в следующем виде:

$$A - \lambda I = A - \lambda_0 I + \lambda_0 I - \lambda I = (A - \lambda_0 I)(I - (\lambda - \lambda_0) R(\lambda_0, A)).$$

Оператор $I - (\lambda - \lambda_0) R(\lambda_0, A)$ обратим, поскольку (см. лемму 9.1)

$$\|(\lambda - \lambda_0) R(\lambda_0, A)\| < 1.$$

Так как $A - \lambda_0 I$ также обратим, то и $A - \lambda I$ обратим как произведение обратимых операторов. Отсюда следует, что резольвентное множество открыто: вместе с каждой точкой λ_0 в $\rho(A)$ входит открытый круг радиусом меньше $\|\mathbf{R}(\lambda_0,A)\|^{-1}$ с центром в точке λ_0 .

Оператор, обратный к $(I-(\lambda-\lambda_0)\operatorname{R}(\lambda_0,A))$ представляется в виде

$$(I - (\lambda - \lambda_0) R(\lambda_0, A))^{-1} = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R(\lambda_0, A)^n.$$

Тогда

$$R(\lambda, A) = (A - \lambda I)^{-1} = (I - (\lambda - \lambda_0) R(\lambda_0, A))^{-1} (A - \lambda_0 I)^{-1} =$$

$$= \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n R(\lambda_0, A)^{n+1}.$$

Таким образом мы получили, что $R(\lambda,A)$ в некоторой окрестности каждой точки $\lambda_0 \in \rho(A)$ представляется в виде суммы степенного ряда с коэффициентами $c_n = R(\lambda_0,A)^{n+1}$. Значит, по теореме 8.5, функция $R(\lambda,A)$ аналитична на $\rho(A)$.

Следствие 1. Для всякого замкнутого оператора A множество $\sigma(A)$ замкнуто.

Теорема 9.7 (тождество Гильберта). Для любого замкнутого оператора A и любых чисел $\lambda, \mu \in \rho(A)$ справедливо равенство

$$R(\lambda, A) - R(\mu, A) = (\lambda - \mu) R(\lambda, A) R(\mu, A).$$

Доказательство. Применяя к правой и левой частям равенства $A - \lambda I$ справа и $A - \mu I$ слева, получим одинаковые выражения:

$$(A - \lambda I)(R(\lambda, A) - R(\mu, A))(A - \mu I) = A - \mu I - A + \lambda I = (\lambda - \mu)I;$$
$$(\lambda - \mu)(A - \lambda I)R(\lambda, A)R(\mu, A)(A - \mu I) = (\lambda - \mu)I,$$

то есть

$$(A - \lambda I)(R(\lambda, A) - R(\mu, A))(A - \mu I) =$$

$$= (\lambda - \mu)(A - \lambda I) R(\lambda, A) R(\mu, A)(A - \mu I).$$

Из биективности $A-\lambda I$ и $A-\mu I$ следует, что на них можно «сократить» справа и слева. Тогда получаем требуемое равенство. \square

Следствие 1. Операторы $R(\lambda, A)$ и $R(\mu, A)$ перестановочны.

Теорема 9.8 (о спектре ограниченного оператора).

Пусть $A \in L(X)$ — ограниченный оператор, действующий в банаховом пространстве X. Тогда его спектр $\sigma(A)$ есть непустое компактное множество в \mathbb{C} .

Доказательство. Сначала покажем, что $\sigma(A)$ — компактное множество. Как известно из анализа, множество в евклидовом пространстве компактно тогда и только тогда, когда оно замкнуто и ограничено. Замкнутость спектра следует из теоремы 9.6. Докажем ограниченность.

Пусть $|\lambda| > ||A|| \geqslant 0$. Тогда

$$A - \lambda I = -\lambda (I - \lambda^{-1} A).$$

Оператор $(I - \lambda^{-1}A)$ обратим, поскольку

$$\left\|\lambda^{-1}A\right\| = \frac{\|A\|}{|\lambda|} < 1.$$

Тогда и $A-\lambda I$ обратим. Отсюда получаем, что спектр оператора A лежит

внутри круга радиуса $\|A\|$ и с центром в нуле, то есть $\sigma(A)$ — ограниченное множество и, в силу замкнутости, компактное.

Покажем, что $\sigma(A)$ непустое множество. Предположим противное: положим $\rho(A)=\mathbb{C}$ и $|\lambda|>\|A\|.$ Тогда при таких λ резольвента представляется в виде

$$R(\lambda, A) = -\sum_{n=0}^{\infty} \frac{A^n}{\lambda^{n+1}}.$$

При этом для нормы резольвенты справедлива оценка

$$\|\mathrm{R}(\lambda,A)\|\leqslant \sum_{n=0}^{\infty}\frac{\|A\|^n}{\left|\lambda\right|^{n+1}}=\frac{1}{\left|\lambda\right|}\frac{1}{1-\frac{\|A\|}{\left|\lambda\right|}}=\frac{1}{\left|\lambda\right|-\|A\|}\to 0\ \mathrm{пр}\ \lambda\to\infty.$$

То есть при $\lambda \to \infty$ норма $\|R(\lambda, A)\|$ стремится к нулю.

При этом, по теореме 9.6, резольвента является аналитической функцией на $\rho(A)=\mathbb{C}$, то есть в нашем случае резольвента оказывается целой ограниченной функцией (ограниченность следует из стремления к нулю на бесконечности и непрерывности). Поэтому, по теореме Лиувилля, $\mathrm{R}(\lambda,A)=\mathbf{0}\in L(X)$ для всех $\lambda\in\mathbb{C}$, что невозможно. Получили противоречие. Значит спектр оператора A непуст.

Определение 9.6. Спектральным радиусом линейного ограниченного оператора $A \in L(X)$ называется величина

$$r(A) = \max_{\lambda \in \sigma(A)} |\lambda|.$$

Спектральный радиус корректно определен в виду компактности спектра A и его непустоты. Из доказательства теоремы 9.8 видно, что

$$r(A) \leqslant ||A||$$
,

поскольку, если $|\lambda| > ||A||$, то оператор $A - \lambda I$ обратим.

Теорема 9.9 (формула Бёрлинга-Гельфанда). Пусть $A \in L(X)$. Тогда для спектрального радиуса оператора A справедлива формула

$$r(A) = \lim_{n \to \infty} \sqrt[n]{\|A^n\|}.$$

§10. Элементы функционального исчисления операторов

10.1. Операторное исчисление

Далее X — комплексное банахово пространство. Обозначим символом $\mathcal{F}(\mathbb{C})$ алгебру целых функций $f\colon \mathbb{C}\to \mathbb{C}$. Пусть $A\in L(X),\ f\in \mathcal{F}(\mathbb{C}),\ a\ f$ разлагается в ряд

$$f(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n.$$

Определим отображение $\Phi_A \colon \mathcal{F}(\mathbb{C}) \to L(X)$ следующим образом:

$$\Phi_A(f) = f(A) := \sum_{n=0}^{\infty} a_n A^n.$$

Можно показать, что ряд сходится, а отображение Φ_A является гомоморфизмом алгебр.

Отображение Φ_A называется *целым исчислением* оператора A.

Пример 10.1. Экспонентой оператора $A \in L(X)$ назовём оператор e^A , определяемый формулой

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

Рассмотрим более общий вид функционального исчисления операторов. Обозначим символом $\mathcal{F}(A)$ множество функций, аналитических на неко-

тором открытом множестве, содержащем спектр $\sigma(A)$ оператора $A \in L(X)$. Это множество является алгеброй с поточечными операциями сложения и умножения: если $f \colon U_1 \supset \sigma(A) \to \mathbb{C}, \ g \colon U_2 \supset \sigma(A) \to \mathbb{C}, \ \text{то} \ f+g$ и fg действуют из $U_1 \cap U_2 \supset \sigma(A)$ в \mathbb{C} по правилу

$$(f+g)(z) = f(z) + g(z),$$

 $(fg)(z) = f(z)g(z)$ $z \in U_1 \cap U_2.$

Вспомним интегральную формулу Коши:

$$f(z) = -\frac{1}{2\pi i} \int_{\gamma} \frac{f(\lambda)}{z - \lambda} d\lambda.$$

Идея исчисления Данфорда (еще говорят голоморфного функционального исчисления, операторного исчисления) состоит в том, чтобы использовать интегральную формулу Коши для определения значения функции

от оператора.

Пусть $A \in L(X)$. Определим отображение $\Psi_A \colon \mathcal{F}(A) \to L(X)$ по правилу

$$\Psi_A(f) = f(A) := -\frac{1}{2\pi i} \int_{\gamma} f(\lambda) R(\lambda, A) d\lambda,$$

где контур γ — граница открытого множества $V \supset \sigma(A)$, лежащего в множестве аналитичности функции f.

Отображение Ψ_A называется *исчислением Данфорда* оператора A или просто *операторным исчислением*. Следующая теорема обосновывает корректность такого названия.

Теорема 10.1.

Отображение Ψ_A является гомоморфизмом алгебры $\mathcal{F}(A)$ в алгебру L(X), то есть для всех $f,g\in\mathcal{F}(A)$ справедливо

$$(f+g)(A) = f(A) + g(A),$$

$$(fg)(A) = f(A)g(A).$$

Kроме того, если f — целая функция, то

$$f(A) = \sum_{n=0}^{\infty} a_n A^n,$$

то есть целое исчисление и исчисление Данфорда совпадают для целых функций.

Доказательство. Первое свойство следует из линейности интеграла по контуру. Докажем второе свойство. Пусть U_1 и U_2 — открытые множества, содержащие спектр, причем такие, что замыкание U_1 лежит в U_2 , а замыкание U_2 лежит в общем множестве аналитичности функций f и g. Символами γ_1 и γ_2 обозначим контуры, обходящие границы U_1 и U_2 соответственно в положительном направлении обхода (так, чтобы внутренность множества оставалась слева). Тогда, применяя интегральную формулу Коши и тождество Гильберта, получим

$$f(A)g(A) = \frac{1}{4\pi^2} \int_{\gamma_1} f(\lambda) R(\lambda, A) d\lambda \cdot \int_{\gamma_2} f(\mu) R(\mu, A) d\mu =$$

$$= \frac{1}{4\pi^2} \int_{\gamma_1} \int_{\gamma_2} f(\lambda)g(\mu) R(\lambda, A) R(\mu, A) d\mu d\lambda =$$

$$= \frac{1}{4\pi^2} \int_{\gamma_1} \int_{\gamma_2} f(\lambda)g(\mu)(\lambda - \mu)^{-1} (R(\lambda, A) - R(\mu, A)) d\mu d\lambda =$$

$$= \frac{1}{4\pi^2} \int_{\gamma_1} \int_{\gamma_2} f(\lambda) g(\mu) (\lambda - \mu)^{-1} R(\lambda, A) d\mu d\lambda -$$

$$- \frac{1}{4\pi^2} \int_{\gamma_1} \int_{\gamma_2} f(\lambda) g(\mu) (\lambda - \mu)^{-1} R(\mu, A) d\mu d\lambda =$$

$$= -\frac{1}{2\pi i} \int_{\gamma_1} f(\lambda) R(\lambda, A) \left(-\frac{1}{2\pi i} \int_{\gamma_2} \frac{g(\mu)}{\lambda - \mu} d\mu \right) d\lambda -$$

$$- \left(-\frac{1}{2\pi i} \right) \int_{\gamma_2} g(\mu) R(\mu, A) \left(-\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\lambda)}{\lambda - \mu} d\lambda \right) d\mu =$$

$$= -\frac{1}{2\pi i} \int_{\gamma_1} f(\lambda) R(\lambda, A) \left(-\frac{1}{2\pi i} \int_{\gamma_2} \frac{g(\mu)}{\lambda - \mu} d\mu \right) d\lambda =$$

$$= -\frac{1}{2\pi i} \int_{\gamma_1} f(\lambda) g(\lambda) R(\lambda, A) d\lambda = (fg)(A),$$

где интеграл

$$\int_{\gamma_1} \frac{f(\lambda)}{\lambda - \mu} \, \mathrm{d}\lambda$$

равен нулю, поскольку μ лежит за пределами U_1 (на контуре γ_2), то есть функция

$$h(\lambda) = \frac{f(\lambda)}{\lambda - \mu}$$

аналитична в области U_1 (знаменатель в ноль не обращается).

Третье свойство дано без доказательства.

Теорема 10.2 (Данфорда об отображении спектра). $\Pi ycmv \ A \in L(X), \ f \in \mathcal{F}(A). \ Tor\partial a$

$$\sigma(f(A)) = f(\sigma(A)) = \{f(\lambda) : \lambda \in \sigma(A)\}.$$

10.2. Проекторы Рисса

Теорема 10.3. Пусть спектр оператора $A \in L(X)$ представим в виде объединения двух непересекающихся замкнутых частей: $\sigma(A) = \sigma_1 \cup \sigma_2$. Тогда существует разложение X в прямую сумму замкнутых подпространств $X = X_1 \oplus X_2$, причем пространства X_1 и X_2 инвариантны относительно оператора A. Более того, если $A_k = A|_{X_k}$, k = 1, 2, то $\sigma(A_1) = \sigma_1$ и $\sigma(A_2) = \sigma_2$.

Доказательство. Определим функцию $f: U_1 \cup U_2 \to \mathbb{C}$ по правилу

$$f(\lambda) = \begin{cases} 1, & \lambda \in U_1, \\ 0, & \lambda \in U_2, \end{cases}$$

где U_1 и U_2 — взаимно непересекающиеся открытые множества, содержащие σ_1 и σ_2 соответственно. Очевидно, что f — аналитическая функция: она дифференцируема в каждой точке $U_1 \cup U_2$, то есть $f \in \mathcal{F}(A)$. Значит можно определить оператор f(A):

$$f(A) = -\frac{1}{2\pi i} \int_{\gamma} f(\lambda) R(\lambda, A) d\lambda = -\frac{1}{2\pi i} \int_{\gamma_1} f(\lambda) R(\lambda, A) d\lambda - \frac{1}{2\pi i} \int_{\gamma_2} f(\lambda) R(\lambda, A) d\lambda = -\frac{1}{2\pi i} \int_{\gamma_1} R(\lambda, A) d\lambda,$$

где γ — граница $U_1 \cup U_2$, являющаяся объединением γ_k — границ U_k , k=1,2.

Введем обозначение $P_1 = f(A)$. Покажем, что P_1 — проектор. Поскольку $(f \cdot f)(\lambda) = (f(\lambda))^2 = f(\lambda)$ для всех $\lambda \in U_1 \cup U_2$, в силу определения гомоморфизма алгебр, получаем:

$$P_1^2 = f(A)f(A) = (f \cdot f)(A) = f(A) = P_1.$$

Итак, P_1 в самом деле проектор.

Пусть $X_1={\rm Im}\, P_1,\, X_2={\rm Ker}\, P_1.$ Из алгебры известно, что пространство X раскладывается в прямую сумму X_1 и X_2 . Покажем, что пространства X_1 и X_2 инвариантны относительно A. Для этого достаточно показать, что $AP_1=P_1A$ (см. алгебру).

$$AP_1 = -\frac{1}{2\pi i} \int_{\gamma_1} A R(\lambda, A) d\lambda,$$

$$P_1 A = -\frac{1}{2\pi i} \int_{\gamma_1} R(\lambda, A) A d\lambda.$$

Легко показать, что для любого оператора $A \in L(X)$ и любого $\lambda \in \rho(A)$ справедливо равенство 1

$$A R(\lambda, A) = R(\lambda, A)A.$$

Отсюда получаем, что в самом деле пространства X_1 и X_2 инвариантны относительно A. Значит можно определить сужения $A|_{X_1}=A_1\in L(X_1),$

 $^{^{1}}$ Рассмотрите очевидное равенство $(A - \lambda I)A = A(A - \lambda I)$

 $A|_{X_2} = A_2 \in L(X_2)$. Утверждение о спектре этих сужений оставим без доказательства. \square

§11. Компактные операторы

Далее X и Y — банаховы пространства.

Определение 11.1. Оператор $A \in L(X,Y)$ называется *компактным*, если образ A(M) всякого ограниченного множества $M \subset X$ есть предкомпактное множество в Y.

Множество компактных операторов, действующих из X в Y будем обозначать Сотр(X,Y). Как обычно, если X=Y, пишут Сотр(X).

Можно показать, что для компактности оператора A достаточно показать предкомпактность образа единичного шара.

Замечание. Из теоремы Хаусдорфа следует, что оператор компактен тогда и только тогда, когда для каждой ограниченной последовательности $\{x_n\}$ из последовательности $\{Ax_n\}$ можно выделить сходящуюся в Y подпоследовательность.

Определение 11.2. Оператор $A \in L(X,Y)$ называется *оператором с конечным рангом*, если его образ ${\rm Im}\ A$ есть конечномерное подпространство в Y.

Теорема 11.1. Для того чтобы множество из конечномерного банахова пространства было предкомпактно, необходимо и достаточно чтобы оно было ограничено. Как следствие, такое множество компактно тогда и только тогда, когда оно замкнуто и ограничено.

Теорема 11.2. Всякий оператор с конечным рангом компактен.

Доказательство. Поскольку A ограничен, он переводит ограниченное множество M в ограниченное. Но поскольку ${\rm Im}\,A$ конечномерен, то по предыдущей теореме A(M) предкомпактно.

Пример 11.1. Пусть $A\colon C[a,b]\to C[a,b]$ — интегральный оператор с ядром $K\in C([a,b]\times [a,b]).$

Используя теорему Арцела, можно показать, что всякий интегральный оператор компактен.

Ядро K называется $\mathit{вырожсdeнным},$ если его можно представить в виде

$$K(t,s) = \sum_{i=1}^{n} p_i(t)q_i(s),$$

где $p_i, q_i \in C[a, b]$ и p_i линейно независимы.

Оператор с вырожденным ядром является оператором с конечным ран-

гом. В самом деле:

$$(Ax)(t) = \sum_{i=1}^{n} p_i(t) \int_a^b q_i(s) x(s) ds,$$

то есть всякая функция $Ax \in C[a,b]$ представима в виде линейной комбинации p_i , которые линейно независимы, а значит образуют базис в $\operatorname{Im} A.\Diamond$

Определение 11.3. Подмножество $I \subset A$ алгебры A называется ude-алом (двусторонним идеалом), если оно является подпространством в A и для всех $a \in A$ и $b \in I$ справедливы равенства

$$ab \in I$$
, $ba \in I$.

Теорема 11.3. Множесство Comp(X,Y) образует замкнутое подпространство в L(X,Y). Если X=Y, то Comp(X)- двусторонний идеал в банаховой алгебре L(X).

Доказательство. Докажем, что $\operatorname{Comp}(X,Y)$ образует подпространство в L(X,Y). Пусть $A,B\in\operatorname{Comp}(X,Y)$. Если $\{x_n\}\subset X$ — ограниченная последовательность, то из $\{(\alpha A+\beta B)x_n\}$ можно выделить сходящуюся, выделив сходящуюся сначала из последовательности $\{Ax_n\}-\{Ax_{n_k}\}$, а затем выделить сходящуюся из $\{Bx_{n_k}\}-\{Bx_{n_{k_i}}\}$. Тогда последовательность $\{(\alpha A+\beta B)x_{n_{k_i}}\}$ также будет сходящейся, то есть линейная комбинация компактных операторов также является компактным оператором.

Покажем, что $\mathrm{Comp}(X,Y)$ замкнуто в L(X,Y). Пусть $\{A_n\}$ — последовательность операторов из $\mathrm{Comp}(X,Y)$ — сходится по норме к A, то есть $\|A_n-A\|\to 0$. Покажем, что A компактен. Для этого покажем, что образ единичного шара B(0,1) вполне ограничен (тогда, по теореме Хаусдорфа, он предкомпактен), то есть нужно доказать, что для каждого $\varepsilon>0$ множество A(B(0,1)) можно покрыть конечным числом шаров радиуса ε .

Зафиксируем $\varepsilon > 0$. Пусть m таково, что $\|A_m - A\| < \varepsilon/2$. Поскольку $A_m(B(0,1))$ — вполне ограниченное множество, по $\varepsilon/2$ для него найдется конечное покрытие шарами радиуса $\varepsilon/2$ с центрами в точках $y_i, i = \overline{1,k}$:

$$A_m(B(0,1)) \subset \bigcup_{i=1}^k B(y_i, \frac{\varepsilon}{2}).$$

Покажем, что

$$A(B(0,1)) \subset \bigcup_{i=1}^{k} B(y_i, \varepsilon).$$

В самом деле, пусть $x \in B(0,1)$ и $A_m x \in B(y_i, \varepsilon/2)$. Тогда

$$||A_m x - Ax|| < \frac{\varepsilon}{2}$$

И

$$||Ax - y_i|| \le ||Ax - A_m x|| + ||A_m x - y_i|| < \varepsilon,$$

то есть Ax лежит в шаре $B(y_i,\varepsilon) \subset \bigcup_{i=1}^k B(y_i,\varepsilon)$. Компактность оператора A доказана, то есть $\mathrm{Comp}(X,Y)$ — замкнутое подпространство.

Осталось доказать, что $\operatorname{Comp}(X)$ образует двусторонний идеал в L(X). Пусть $A \in \operatorname{Comp}(X)$, $B \in L(X)$. Нужно показать, что $AB, BA \in \operatorname{Comp}(X)$. Пусть $\{x_n\}$ — ограниченная последовательность в X. $\{Bx_n\}$ также ограничена. Поскольку оператор A компактен, из последовательности $\{A(Bx_n)\}$ можно выделить сходящуюся, что в точности и означает, что AB — компактный оператор. Из последовательности $\{Ax_n\}$ также можно выделить сходящуюся $\{Ax_{n_k}\}$, но тогда и $\{B(Ax_{n_k})\}$ сходится, значит BA компактен.

Лемма 11.1 (о почти перпендикуляре). Пусть X — банахово пространство, $M \subset X$ — замкнутое подпространство, не совпадающее со всем X. Тогда для любого $\varepsilon > 0$ найдется такой $x \in X \setminus M$, ||x|| = 1, что

$$1 - \inf_{m \in M} \|x - m\| < \varepsilon.$$

Теорема 11.4 (Рисса). Пусть X — бесконечномерное банахово пространство. Тогда замкнутый шар $\overline{B(a,r)}$ не является компактом.

Доказательство. Докажем утверждение для единичного шара (общее утверждение следует). Возьмем произвольный x_0 , $\|x_0\|=1$. Определим подпространство $M_1=\mathrm{span}\,\{x_0\}$. По лемме о почти перпендикуляре для $\varepsilon=1/2$ найдется такой $x_1\in X\setminus M_1$, $\|x_1\|=1$, что $\|x_1-x_0\|>1/2$. Для подространства $M_2=\mathrm{span}\,\{x_0,x_1\}$ также справедлива лемма о почти перпендикуляре, значит найдется $x_3\in X\setminus M_2$, $\|x_3\|=1$, что $\|x_2-x_0\|>1/2$ и $\|x_2-x_1\|>1/2$. Продолжая аналогично, получим последовательность $\{x_k\}$ единичных векторов, находящихся друг от друга на расстоянии большем 1/2. Очевидно, что из такой последовательности выделить сходящуюся нельзя, а значит множество $\overline{B}(0,1)$ не компактно.

Следующая теорема полностью описывает спектры компактных операторов.

Теорема 11.5. Пусть $A \in \text{Comp}(X)$. Тогда

- 1) Спектр оператора A есть не более чем счетное множество c возможной единственной предельной точкой, равной нулю. Все точки спектра, отличные от нуля, являются собственными значениями. В бесконечномерном пространстве число 0 всегда лежит в спектре A.
 - 2) Ядра $\operatorname{Ker}(A \lambda I)$ конечномерны для всех $\lambda \neq 0$, $\lambda \in \sigma(A)$.

3) Более общо: ядра ${\rm Ker}(A-\lambda I)^m$ конечномерны для всех ненулевых λ из спектра, причем найдется такой номер n>0, что ${\rm Ker}(A-\lambda I)^n=={\rm Ker}(A-\lambda I)^{n+1}$.

Доказательство.

1) Покажем только, что $0 \in \sigma(A)$, если X бесконечномерно.

Предположим противное: оператор A обратим, то есть существует оператор $A^{-1} \in L(X)$ такой, что

$$AA^{-1} = I$$
.

Но поскольку $\operatorname{Comp}(X)$ есть идеал в L(X), оператор I должен быть также компактен, что невозможно в случае бесконечномерного X (образ единичного шара не предкомпактен в силу теоремы Pucca).

Остальные утверждения данного пункта оставим без доказательства.

- 2) Покажем, что если $\lambda \neq 0$, то $X_0 = \operatorname{Ker}(A \lambda I)$ конечномерно. Ядро оператора $A \lambda I$ инвариантно относительно оператора A: если $x \in \operatorname{Ker}(A \lambda I)$, то $Ax = \lambda x \in \operatorname{Ker}(A \lambda I)$. Также, как нетрудно убедиться, X_0 замкнутое подпространство (значит, оно банахово). Значит можно определить сужение $A_0 = A|_{X_0}$ оператора A на это подпространство. Оно имеет вид $A_0 = \lambda I_0$, где I_0 тождественный оператор в X_0 . Сужение компактного оператора на замкнутое подпространство, очевидно, также компактно, а значит X_0 конечномерно в силу той же теоремы Рисса.
 - 3) Без доказательства.

Определение 11.4. Замкнутый оператор $A\colon D(A)\subset X\to X$ называется *оператором с компактной резольвентной*, если его резольвентное множество непусто и найдется такое $\lambda_0\in\rho(A)$, что оператор $\mathrm{R}(\lambda_0,A)$ компактен.

Лемма 11.2. Если A — оператор c компактной резольвентой, то для любого $\mu_0 \in \rho(A)$ оператор $R(\mu_0, A)$ компактен.

Доказательство. Пусть $\lambda_0 \in \rho(A)$ — число из определения оператора с компактной резольвентой. Тогда из тождества Гильберта получаем

$$R(\mu_0, A) = R(\lambda_0, A) + (\mu_0 - \lambda_0) R(\mu_0, A) R(\lambda_0, A).$$

Оператор $R(\lambda_0, A)$ компактен, значит компактен

$$(\mu_0 - \lambda_0) R(\mu_0, A) R(\lambda_0, A),$$

но тогда и $R(\mu_0, A)$ компактен как сумма компактных операторов.

Теорема 11.6.

Пусть замкнутый оператор $A\colon D(A)\subset X\to X$ обратим. Тогда если $D(A)\neq X$, то

$$\sigma(A^{-1}) = \left\{ \frac{1}{\lambda} : \lambda \in \sigma(A) \right\} \cup \{0\}.$$

Eсли жее D(A) = X (оператор A тогда ограничен), то

$$\sigma(A^{-1}) = \left\{ \frac{1}{\lambda} : \lambda \in \sigma(A) \right\}.$$

Доказательство. Пусть $D(A) \neq X$. Тогда $0 \in \sigma(A^{-1})$, поскольку A^{-1} необратим (его образ не совпадает со всем X). Возьмем $\lambda_0 \in \rho(A)$ и покажем, что $\lambda_0^{-1} \in \rho(A^{-1})$. Обратным для $A^{-1} - \lambda_0^{-1}I$ является оператор $-\lambda_0 A(A-\lambda_0 I)^{-1}$, это проверяется непосредственно. Аналогично, если $\lambda_0 \in \rho(A^{-1})$, то $\lambda_0^{-1} \in \rho(A)$, причем обратный для $A - \lambda_0^{-1}I$ есть $-\lambda_0 A^{-1}(A^{-1} - \lambda_0 I)^{-1}$.

Лемма 11.3. Если $A\colon D(A)\subset X\to X$ — обратимый линейный замкнутый оператор, а $x\in D(A)$ — собственный вектор, отвечающий собственному значению $\lambda\in\sigma_d(A),\ \lambda\neq 0,\ mo\ x$ является собственным вектором оператора A^{-1} , соответствующим собственному значению λ^{-1} . Иначе утверждение леммы можно записать в виде

$$\operatorname{Ker}(A - \lambda I) = \operatorname{Ker}(A^{-1} - \lambda^{-1}I).$$

Доказательство. Если $Ax=\lambda x$, то $x=\lambda A^{-1}x$. Дальнейшее очевидно.

Теорема 11.7. Пусть $A\colon D(A)\subset X\to X$ — оператор c компактной резольвентой. Тогда

- 1) Его спектр состоит только из не более чем счетного числа собственных значений с единственной возможной предельной точкой равной ∞ .
 - 2) Ядра $\operatorname{Ker}(A \lambda I)$ конечномерны для всех $\lambda \in \sigma(A)$.

Доказательство. Пусть $\lambda_0 \in \rho(A)$. Тогда $(A - \lambda_0 I)^{-1}$ компактен, значит его спектр $\sigma((A - \lambda_0 I)^{-1})$ счетен и единственной возможной предельной точкой является точка 0. Из теоремы 11.6 следует, что

$$\sigma((A - \lambda_0 I)^{-1}) = \left\{ \frac{1}{\lambda - \lambda_0} : \lambda \in \sigma(A) \right\} \cup \{0\},\,$$

откуда получаем

$$\sigma(A) = \left\{ \frac{1}{\mu} + \lambda_0 : \mu \in \sigma((A - \lambda_0 I)^{-1}), \mu \neq 0 \right\}.$$

Отсюда следует, что оператор A имеет не более чем счетный спектр с единственной возможной предельной точкой равной бесконечности.

Покажем, что все точки спектра A являются собственными значениями. Если $\lambda \in \sigma(A)$, то $\lambda = \mu^{-1} + \lambda_0$, где $\mu \in \sigma((A - \lambda_0 I)^{-1})$). Поскольку оператор $(A - \lambda_0 I)^{-1}$ компактен и $\mu \neq 0$, μ является собственным значением этого

оператора, а значит найдется такой ненулевой $x \in X$, что

$$(A - \lambda_0 I)^{-1} x = \mu x.$$

Из предыдущей леммы следует, что x является собственным вектором оператора $A-\lambda_0 I$, соответствующим собственному значению $\mu^{-1}=\lambda-\lambda_0$, то есть, как легко видеть, x есть собственный вектор A, соответствующий собственному значению λ . Из леммы также получаем, что

$$\operatorname{Ker}((A - \lambda_0 I)^{-1} - (\lambda - \lambda_0)^{-1} I) = \operatorname{Ker}(A - \lambda I),$$

откуда сразу следует второе утверждение теоремы.