Social Network Analysis: Link Prediction

MIE223 Winter 2025

1 Link Prediction

1.1 Link Prediction in Networks

The link prediction task:

• Given G[t₀,t₀'] a graph on edges up to time t₀' output a ranked list L of links (not in G[t₀,t₀']) that are predicted to appear in G[t₁,t₁']

G[t₀, t'₀] G[t₁, t'₁]

Evaluation:

- $n = |E_{new}|$: # new edges that appear during the test period $[t_1, t_1]$
- lacktriangle Take top n elements of L and count correct edges

1.2 Link Prediction via Proximity

Predict links in a evolving collaboration network

	training period			Core		
	authors	papers	collaborations ¹	authors	$ E_{old} $	$ E_{new} $
astro-ph	5343	5816	41852	1561	6178	5751
cond-mat	5469	6700	19881	1253	1899	1150
gr-qc	2122	3287	5724	486	519	400
hep-ph	5414	10254	47806	1790	6654	3294
hep-th	5241	9498	15842	1438	2311	1576
				II.		

- Core: Since network data is very sparse
 - Consider only nodes with in-degree and out-degree of at least 3

Methodology:

- For each pair of nodes (x,y) compute score c(x,y)
 - For example: # of common neighbors c(x,y) of x and y
- Sort pairs (x,y) by the decreasing score c(x,y)
 - Note: Only consider/predict edges where both endpoints are in the core (deg. > 3)
- Predict top n pairs as new links
- See which of these links actually appear in $G[t_1, t_1]$

Different scoring functions c(x,y)

- Graph distance: (negated) Shortest path length
- **Common neighbors:** $|\Gamma(x) \cap \Gamma(y)|$
- Jaccard's coefficient: $|\Gamma(x) \cap \Gamma(y)|/|\Gamma(x) \cup \Gamma(y)|$
- Adamic/Adar: $\sum_{z \in \Gamma(x) \cap \Gamma(y)} 1/\log |\Gamma(z)|$
- Preferential attachment: $|\Gamma(x)| \cdot |\Gamma(y)|$ $\Gamma(x)$... neighbors of node x
- PageRank: $r_x(y) + r_y(x)$
 - $r_x(y)$... stationary distribution weight of y under the random walk:
 - with prob. 0.15, jump to x
 - with prob. 0.85, go to random neighbor of current node

Then, for a particular choice of c(·)

- For every pair of nodes (x,y) compute c(x,y)
- Sort pairs (x,y) by the decreasing score c(x,y)
- Predict top n pairs as new links

1.3 Results

