Data Science Final Project

Jobelle Sorino-Simblante

December 16, 2022

Context

Irrespective of whether or not data nd images are stored/analyzed in a centralized manner, variability in scanner models, acquisition protocols and reconstruction settings are unavoidable in the current clinical practice. Yet radiomics are notoriously sensitive to such protocol variations. Hence, there is a clear need for the harmonization of features in order to allow consistent findings in radiomics multicenter studies.

Objective

The objective of this project is to develop different models to predic failure (endpoint) of the radiomics signature based from MRI, PET and CT scans.

Needed Packages

These are the needed packages in this activity:

```
library(readr)
library(dplyr)
library(ggplot2)
library(stringr)
library(recipes)
library(rsample)
library(xgboost)
library(gbm)
library(rpart)
library(rpart.plot)
library(ROCR)
library(pROC)
library(gridExtra)
library(tidyverse)
library(cluster)
library(factoextra)
library(caret)
library(keras)
library(tfruns)
library(tensorflow)
library(tfestimators)
library(mclust)
```

Dataset

Radiomics dataset has 431 variables with 197 observations.

```
radiomics = read.csv("radiomics_completedata.csv",header = TRUE, sep = ",")
attach(radiomics)
str(radiomics)
```

```
## 'data.frame':
                   197 obs. of 431 variables:
   $ Institution
                                : chr
                                      "A" "A" "A" "A" ...
##
  $ Failure.binary
                                : int
                                       0 1 0 1 0 1 0 0 1 1 ...
## $ Failure
                                : num
                                       49.3 12.6 79.8 17.9 39.6 ...
##
   $ Entropy_cooc.W.ADC
                                       12.9 12.2 12.8 13.5 12.6 ...
                                : num
##
   $ GLNU_align.H.PET
                                : num
                                      46.3 27.5 90.2 325.6 89.6 ...
  $ Min_hist.PET
                                : num 6.25 11.01 2.78 6.3 3.58 ...
## $ Max_hist.PET
                                       17.83 26.47 6.88 22.03 7.92 ...
                                : num
   $ Mean hist.PET
                                : num
##
                                       9.78 15.43 4.3 10.33 4.45 ...
## $ Variance_hist.PET
                                : num 6.814 12.932 0.923 6.65 0.572 ...
## $ Standard Deviation hist.PET: num
                                       2.612 3.598 0.962 2.581 0.757 ...
## $ Skewness hist.PET
                                       0.689 0.79 0.249 0.832 1.575 ...
                                : num
                                : num
##
   $ Kurtosis hist.PET
                                       -0.34 -0.32 -0.944 0.856 3.25 ...
## $ Energy_hist.PET
                                      0.00509 0.0063 0.00502 0.00329 0.00807 ...
                               : num
## $ Entropy_hist.PET
                                : num 9.63 8.07 9.67 10.57 7.62 ...
## $ AUC_hist.PET
                                : num
                                       0.507 0.508 0.503 0.544 0.544 ...
                                : num 1.124 1.927 0.411 0.92 0.306 ...
##
   $ H suv.PET
## $ Volume.PET
                                : num 13752 9328 26624 51058 29415 ...
## $ X3D_surface.PET
                                : num 5623 8357 16832 29100 7769 ...
##
   $ ratio_3ds_vol.PET
                                : num
                                       3.21 4.85 3.16 2.03 4.82 ...
##
   $ ratio_3ds_vol_norm.PET
                                : num 15.9 21.1 19.5 20.1 21 ...
##
  $ irregularity.PET
                                : num
                                      2.21 2.35 2.12 1.86 2.22 ...
##
  $ tumor_length.PET
                                      44 39.4 50.9 76.2 36.9 ...
                                : num
##
   $ Compactness_v1.PET
                                : num
                                       0.00337 0.00308 0.00314 0.00312 0.00308 ...
## $ Compactness_v2.PET
                                      0.00278 0.00264 0.00266 0.00265 0.00264 ...
                                : num
## $ Spherical_disproportion.PET: num
                                       15.9 21.1 19.5 20.1 21 ...
## $ Sphericity.PET
                                : num
                                       0.0654 0.0499 0.0538 0.0522 0.0501 ...
##
   $ Asphericity.PET
                                : num
                                       14.9 20.1 18.5 19.1 20 ...
## $ Center of mass.PET
                                      0.811 0.588 0.393 0.867 0.526 ...
                                : num
                                : num
## $ Max 3D diam.PET
                                      44 39.4 50.9 76.2 36.9 ...
## $ Major_axis_length.PET
                                       34.6 35.1 48.1 64.1 36 ...
                                : num
## $ Minor_axis_length.PET
                                : num
                                       25.9 27.3 30.4 54.5 23.8 ...
## $ Least_axis_length.PET
                                : num
                                      25 21.2 27.5 51.6 21.4 ...
## $ Elongation.PET
                                      0.751 0.78 0.634 0.852 0.665 ...
                                : num
                                : num
##
   $ Flatness.PET
                                       0.725 0.605 0.574 0.807 0.597 ...
##
   $ Max_cooc.L.PET
                                : num 0.00502 0.00819 0.00503 0.00597 0.00755 ...
## $ Average_cooc.L.PET
                                : num
                                      22.9 21.9 27.3 17.8 15.4 ...
                                       206 227 209 103 142 ...
## $ Variance_cooc.L.PET
                                : num
##
   $ Entropy_cooc.L.PET
                                       10.69 10.29 10.88 10.24 9.83 ...
                                : num
## $ DAVE_cooc.L.PET
                                : num
                                      11.86 13.99 12.28 7.47 10.24 ...
## $ DVAR cooc.L.PET
                                       84.2 129.4 85.3 43.9 79.4 ...
                                : num
## $ DENT_cooc.L.PET
                                : num
                                      5 5.21 5 4.38 4.8 ...
## $ SAVE cooc.L.PET
                                       45.8 43.8 54.5 35.6 30.7 ...
                                : num
## $ SVAR_cooc.L.PET
                                : num 588 581 600 311 385 ...
                                : num 6.53 6.49 6.59 6.11 6.05 ...
## $ SENT_cooc.L.PET
                                : num 0.0033 0.0036 0.0032 0.00368 0.004 ...
## $ ASM cooc.L.PET
```

```
$ Contrast cooc.L.PET
                                        234.8 325.1 236.1 99.8 184.2 ...
                                 : num
## $ Dissimilarity_cooc.L.PET
                                        11.86 13.99 12.28 7.47 10.24 ...
                                 : num
## $ Inv diff cooc.L.PET
                                 : num
                                        0.166 0.156 0.154 0.229 0.189 ...
                                        0.859 0.839 0.853 0.905 0.876 ...
## $ Inv_diff_norm_cooc.L.PET
                                 : num
##
   $ IDM cooc.L.PET
                                 : num
                                        0.0889 0.0854 0.079 0.1416 0.1083 ...
## $ IDM_norm_cooc.L.PET
                                        0.954 0.938 0.953 0.98 0.964 ...
                                 : num
## $ Inv_var_cooc.L.PET
                                 : num
                                        0.0913 0.0875 0.0846 0.1498 0.1144 ...
##
   $ Correlation cooc.L.PET
                                 : num
                                        0.432 0.285 0.438 0.517 0.355 ...
##
   $ Autocorrelation_cooc.L.PET : num
                                        612 544 833 370 286 ...
##
   $ Tendency_cooc.L.PET
                                 : num
                                        588 581 600 311 385 ...
   $ Shade_cooc.L.PET
                                        6860 4692 403 3806 9785 ...
                                 : num
##
   $ Prominence_cooc.L.PET
                                 : num
                                        869822 803735 800130 345453 743501 ...
##
   $ IC1_.L.PET
                                        -0.084 -0.0967 -0.0724 -0.0503 -0.0707 ...
                                 : num
## $ IC2_.L.PET
                                        0.79 0.814 0.758 0.655 0.728 ...
                                 : num
## $ Coarseness_vdif_.L.PET
                                        0.01432\ 0.0142\ 0.01627\ 0.00494\ 0.01724\ \dots
                                 : num
##
   $ Contrast_vdif_.L.PET
                                        1.021 1.51 1.014 0.306 0.854 ...
                                 : num
##
   $ Busyness_vdif_.L.PET
                                 : num
                                        0.0874 0.0802 0.0575 0.3927 0.082 ...
  $ Complexity_vdif_.L.PET
                                        17053 21289 15200 10762 16797 ...
                                 : num
## $ Strength_vdif_.L.PET
                                        27.4 35.76 24.45 5.55 57.04 ...
                                 : num
## $ SRE_align.L.PET
                                 : num
                                        0.987 0.99 0.989 0.973 0.986 ...
## $ LRE_align.L.PET
                                        1.07 1.06 1.06 1.13 1.07 ...
                                 : num
## $ GLNU_align.L.PET
                                 : num
                                        10.16 8.42 9.12 94.57 10.57 ...
## $ RLNU_align.L.PET
                                        384 263 395 2941 262 ...
                                 : num
##
   $ RP align.L.PET
                                 : num
                                        0.981 0.985 0.985 0.964 0.981 ...
## $ LGRE_align.L.PET
                                 : num
                                        0.0637 0.0658 0.0392 0.0481 0.0917 ...
## $ HGRE_align.L.PET
                                 : num
                                        590 560 781 387 296 ...
##
                                        0.0625 0.0642 0.0388 0.0466 0.0902 ...
   $ LGSRE_align.L.PET
                                 : num
## $ HGSRE_align.L.PET
                                 : num
                                        581 555 768 377 292 ...
## $ LGHRE_align.L.PET
                                        0.0687 0.0724 0.041 0.0544 0.0978 ...
                                 : num
## $ HGLRE_align.L.PET
                                        632 584 836 428 309 ...
                                 : num
##
   $ GLNU_norm_align.L.PET
                                 : num
                                        0.0279 0.0334 0.0248 0.0323 0.0411 ...
##
   $ RLNU_norm_align.L.PET
                                 : num
                                        0.961 0.97 0.968 0.929 0.96 ...
##
   $ GLVAR_align.L.PET
                                        202 215 217 108 121 ...
                                 : num
##
   $ RLVAR_align.L.PET
                                        0.0259 0.0215 0.0208 0.0464 0.0245 ...
                                 : num
##
   $ Entropy_align.L.PET
                                        5.59 5.39 5.7 5.48 5.05 ...
                                 : num
## $ SZSE.L.PET
                                 : num
                                        0.927 0.961 0.974 0.906 0.966 ...
## $ LZSE.L.PET
                                 : num
                                        1.38 1.24 1.11 1.62 1.15 ...
## $ LGLZE.L.PET
                                        0.0623 0.0648 0.0405 0.048 0.0933 ...
                                 : num
##
                                        593 567 770 394 301 ...
   $ HGLZE.L.PET
                                 : num
## $ SZLGE.L.PET
                                        0.0561 0.0606 0.0404 0.0433 0.0911 ...
                                 : num
## $ SZHGE.L.PET
                                 : num
                                        554 546 736 361 296 ...
##
   $ LZLGE.L.PET
                                        0.09 0.0865 0.0407 0.0768 0.1018 ...
                                 : num
                                 : num
##
   $ LZHGE.L.PET
                                        832 650 905 591 322 ...
## $ GLNU_area.L.PET
                                        9.17 7.82 8.88 83.35 10.25 ...
                                 : num
## $ ZSNU.L.PET
                                        301 233 372 2206 242 ...
                                 : num
##
   $ ZSP.L.PET
                                 : num
                                        0.9 0.941 0.966 0.861 0.956 ...
##
   $ GLNU_norm.L.PET
                                 : num
                                        0.0275 0.0326 0.0247 0.0319 0.0409 ...
## $ ZSNU_norm.L.PET
                                 : num
                                        0.823 0.9 0.931 0.781 0.91 ...
## $ GLVAR_area.L.PET
                                        202 214 216 110 124 ...
                                 : num
## $ ZSVAR.L.PET
                                        0.142 0.1098 0.0385 0.2592 0.0488 ...
                                 : num
## $ Entropy_area.L.PET
                                        5.89 5.55 5.78 5.9 5.16 ...
                                 : num
## $ Max cooc.H.PET
                                 : num
                                       0.0312 0.0436 0.1694 0.0402 0.4235 ...
                                 : num 39.9 39.2 44.9 38.2 49.5 ...
## $ Average_cooc.H.PET
## $ Variance cooc.H.PET
                                 : num 255.3 259.2 226.9 276.5 65.5 ...
```

head(radiomics df[1:5])

```
head(radiomics[1:5])
##
     Institution Failure.binary Failure Entropy_cooc.W.ADC GLNU_align.H.PET
## 1
                             0 49.30000
                                                   12.85352
                                                                    46.25635
              Α
## 2
              Α
                              1 12.56667
                                                   12.21115
                                                                    27.45454
## 3
                             0 79.80000
                                                                    90.19570
              Α
                                                  12.75682
## 4
              Α
                             1 17.86667
                                                  13.46730
                                                                   325.64333
## 5
              Α
                             0 39.56667
                                                  12.63733
                                                                    89.57904
## 6
              Α
                             1 4.76667
                                                  13.16159
                                                                   101.71345
Preprocess the data
# Check for null and missing values
any(is.na(radiomics))
## [1] FALSE
# Check for normality, if not, normalized the data
shapiro.test(Entropy_cooc.W.ADC) # Entropy_cooc.W.ADC is normally distributed
##
##
   Shapiro-Wilk normality test
##
## data: Entropy_cooc.W.ADC
## W = 0.98903, p-value = 0.135
shapiro.test(GLNU_align.H.PET)
                                 \# GLNU_align.H.PET is not normally distributed
##
## Shapiro-Wilk normality test
## data: GLNU_align.H.PET
## W = 0.76271, p-value < 2.2e-16
shapiro.test(Min_hist.PET)
                                 # Min_hist.PET is not normally distributed
##
## Shapiro-Wilk normality test
##
## data: Min hist.PET
## W = 0.91623, p-value = 3.821e-09
# Since some of the variables are not normally distributed, then we will
# normalized it by using scale() function
radiomics_df <- as.data.frame(scale(select(radiomics, -c("Institution",</pre>
                                                         "Failure.binary" ))))
```

```
Failure Entropy_cooc.W.ADC GLNU_align.H.PET Min_hist.PET Max_hist.PET
## 1 1.1985789
                       0.55290547
                                       -0.57063689 -0.4541408 -0.4361311
                                                                   0.1486951
## 2 -0.7212472
                      -0.06486729
                                       -0.78903636
                                                      0.4998369
## 3 2.7926271
                       0.45990825
                                       -0.06024275 -1.1504338 -1.1768823
## 4 -0.4442487
                       1.14318298
                                        2.67468822 -0.4446190
                                                                -0.1516658
## 5 0.6898772
                       0.34499368
                                      -0.06740573 -0.9887407 -1.1061760
## 6 -1.1289054
                                       0.07354603 -1.1864923 -1.2223057
                       0.84917904
# Get the correlation of the whole data except the categorical variables
cor.radiomics_df= cor(radiomics_df)
corr = round(cor.radiomics_df,2) # 2 decimals
head(corr[1:4,1:3])
##
                     Failure Entropy_cooc.W.ADC GLNU_align.H.PET
## Failure
                        1.00
                                          -0.35
                                                          -0.23
                       -0.35
                                                           0.39
## Entropy_cooc.W.ADC
                                          1.00
## GLNU_align.H.PET
                       -0.23
                                           0.39
                                                           1.00
## Min_hist.PET
                       -0.12
                                           0.02
                                                           -0.03
corMatrix = cor(radiomics df, y = NULL, use = "ev")
highly_correlated_columns = findCorrelation(
 corMatrix,
 cutoff = 0.95, # correlation coefficient
 verbose = FALSE,
 names = FALSE,
 exact = TRUE
df <- radiomics_df[, -highly_correlated_columns]</pre>
# Final Radiomics Data
final_radiomics <- cbind(radiomics['Failure.binary'], df)</pre>
head(final radiomics[1:4])
                      Failure Entropy_cooc.W.ADC GLNU_align.H.PET
##
    Failure.binary
## 1
               0 1.1985789
                                    0.55290547
                                                      -0.57063689
## 2
                 1 -0.7212472
                                     -0.06486729
                                                      -0.78903636
## 3
                 0 2.7926271
                                      0.45990825
                                                      -0.06024275
## 4
                 1 -0.4442487
                                      1.14318298
                                                       2.67468822
## 5
                 0 0.6898772
                                      0.34499368
                                                      -0.06740573
                 1 -1.1289054
## 6
                                      0.84917904
                                                      0.07354603
final_radiomics$Failure.binary <- as.factor(final_radiomics$Failure.binary)</pre>
str(final_radiomics)
## 'data.frame':
                   197 obs. of 148 variables:
## $ Failure.binary
                                : Factor w/ 2 levels "0", "1": 1 2 1 2 1 2 1 1 2 2 ...
## $ Failure
                                : num 1.199 -0.721 2.793 -0.444 0.69 ...
## $ Entropy_cooc.W.ADC
                                : num 0.5529 -0.0649 0.4599 1.1432 0.345 ...
## $ GLNU_align.H.PET
                                : num -0.5706 -0.789 -0.0602 2.6747 -0.0674 ...
## $ Min_hist.PET
                                : num -0.454 0.5 -1.15 -0.445 -0.989 ...
## $ Skewness_hist.PET
                                : num -0.323 -0.177 -0.959 -0.116 0.958 ...
## $ Kurtosis_hist.PET
                                : num -0.273 -0.266 -0.472 0.12 0.907 ...
```

```
$ Entropy_hist.PET
                                        -0.38 -0.747 -0.37 -0.157 -0.853 ...
                                  : num
##
   $ Volume.PET
                                        -0.7713 -0.8698 -0.4849 0.0587 -0.4229 ...
                                  : num
  $ X3D surface.PET
##
                                  : num
                                        -0.52 -0.431 -0.155 0.244 -0.45 ...
##
   $ ratio_3ds_vol.PET
                                  : num
                                        -0.228 0.422 -0.248 -0.701 0.409 ...
##
   $ tumor_length.PET
                                  : num
                                        -0.499 -0.625 -0.314 0.368 -0.691 ...
##
   $ Compactness v1.PET
                                        -0.072 -0.0845 -0.0816 -0.0828 -0.0844 ...
                                  : num
   $ Sphericity.PET
                                        -0.443 -0.505 -0.49 -0.496 -0.504 ...
                                  : num
##
   $ Asphericity.PET
                                  : num
                                         -0.3646 0.0201 -0.0967 -0.0517 0.0143 ...
##
   $ Center_of_mass.PET
                                         -0.0305 -0.3264 -0.5841 0.0433 -0.4082 ...
                                  : niim
##
   $ Max_3D_diam.PET
                                  : num
                                        -0.6641 -0.7524 -0.5337 -0.0528 -0.7991 ...
   $ Minor_axis_length.PET
                                        -0.81 -0.749 -0.616 0.43 -0.899 ...
                                  : num
##
   $ Least_axis_length.PET
                                  : num
                                        -0.553 -0.74 -0.43 0.74 -0.728 ...
                                        -0.377 -0.3 -0.683 -0.111 -0.601 ...
##
   $ Elongation.PET
                                  : num
##
   $ Flatness.PET
                                  : num
                                        0.0389 -0.3472 -0.4444 0.3031 -0.3724 ...
##
   $ Variance_cooc.L.PET
                                  : num
                                        -0.1075 0.0906 -0.0764 -1.0807 -0.7069 ...
##
   $ DVAR_cooc.L.PET
                                         -0.438 0.284 -0.42 -1.081 -0.515 ...
                                  : num
##
   $ DENT_cooc.L.PET
                                        -0.489 -0.392 -0.485 -0.774 -0.58 ...
                                  : num
##
                                        -0.221 0.302 -0.214 -1.004 -0.515 ...
   $ Contrast cooc.L.PET
                                  : num
##
                                        -0.53 -0.577 -0.66 0.158 -0.277 ...
   $ IDM_cooc.L.PET
                                  : num
##
   $ Shade cooc.L.PET
                                  : num
                                        0.167 -0.248 -1.069 -0.418 0.727 ...
##
   $ Prominence_cooc.L.PET
                                        0.031 -0.0979 -0.1049 -0.9915 -0.2153 ...
                                  : num
  $ IC1 .L.PET
                                  : num
                                        0.2871 0.0714 0.4831 0.8565 0.5117 ...
##
   $ IC2_.L.PET
                                        -0.339 -0.27 -0.427 -0.716 -0.512 ...
                                  : num
##
   $ Contrast vdif .L.PET
                                  : num
                                        -0.2003 0.0485 -0.204 -0.5642 -0.2854 ...
##
   $ Complexity_vdif_.L.PET
                                  : num
                                        -0.266 0.166 -0.455 -0.908 -0.292 ...
   $ Strength_vdif_.L.PET
                                  : num
                                        -0.2699 -0.0894 -0.3336 -0.7416 0.3698 ...
##
   $ LGHRE_align.L.PET
                                  : num
                                        -0.159 -0.104 -0.566 -0.37 0.268 ...
##
   $ GLNU_norm_align.L.PET
                                        -0.2387 -0.0911 -0.321 -0.121 0.114 ...
                                  : num
##
   $ RLVAR_align.L.PET
                                        -0.261 -0.377 -0.393 0.272 -0.298 ...
                                  : num
##
  $ LZSE.L.PET
                                        -0.448 -0.615 -0.77 -0.168 -0.73 ...
                                  : num
##
   $ HGLZE.L.PET
                                  : num
                                         -0.298 -0.373 0.214 -0.874 -1.142 ...
##
   $ LZLGE.L.PET
                                        -0.154 -0.1898 -0.6707 -0.2921 -0.0298 ...
                                  : num
##
   $ LZHGE.L.PET
                                        -0.1861 -0.5424 -0.0428 -0.6587 -1.1883 ...
                                  : num
##
   $ ZSVAR.L.PET
                                        -0.223 -0.414 -0.836 0.472 -0.775 ...
                                  : num
##
                                        -0.562 -0.464 0.534 -0.491 2.549 ...
   $ Max cooc.H.PET
                                  : num
##
   $ Entropy_cooc.H.PET
                                        -0.441 -0.198 -1.23 -0.482 -1.474 ...
                                  : num
   $ DENT cooc.H.PET
                                  : num
                                        0.0819 -0.8326 -0.015 -0.0686 -0.2714 ...
##
                                         -0.2112 -0.5177 -0.049 -0.0605 -0.2237 ...
   $ SVAR_cooc.H.PET
                                  : num
##
   $ SENT_cooc.H.PET
                                  : num
                                        0.0703 0.2185 -0.7391 0.0341 -0.9923 ...
##
   $ Contrast_cooc.H.PET
                                        -0.415 -0.106 -0.561 -0.55 -1.55 ...
                                  : num
   $ Inv_var_cooc_.H.PET
                                  : num
                                        0.125 0.163 -0.42 0.183 -0.152 ...
##
   $ Autocorrelation cooc.H.PET : num
                                        -0.636 -0.73 -0.128 -0.759 0.316 ...
                                  : num
##
   $ Shade cooc.H.PET
                                        0.5612 -0.0321 -0.0644 -0.3905 1.5498
##
   $ Prominence_cooc.H.PET
                                  : num
                                        -0.277 -0.383 -0.722 0.327 -1.726 ...
##
   $ IC1_d.H.PET
                                        0.4584 0.841 0.0806 -0.0258 0.4427 ...
                                  : num
##
   $ Contrast_vdif.H.PET
                                  : num
                                        -0.427 -0.567 0.723 -0.484 -0.542 ...
                                        -0.364 -0.37 -0.348 -0.247 -0.367 ...
##
   $ Busyness_vdif.H.PET
                                  : num
##
   $ Complexity_vdif.H.PET
                                  : num
                                        -0.1093 0.0616 -0.1995 -0.2352 -0.7292 ...
   $ Strength_vdif.H.PET
                                        -0.1303 -0.0926 -0.1141 -0.2392 0.0872 ...
                                  : num
##
   $ LRE_align.H.PET
                                        -0.72 -0.907 0.382 -0.465 0.602 ...
                                  : num
## $ RLNU_align.H.PET
                                        -0.497 -0.542 -0.585 0.719 -0.632 ...
                                  : num
## $ HGLRE_align.H.PET
                                  : num
                                        -0.68 -0.857 0.687 -0.498 1.027 ...
## $ RLVAR_align.H.PET
                                        -0.583 -0.804 0.744 -0.262 0.96 ...
                                  : num
## $ HGLZE.H.PET
                                  : num -0.29 -0.783 -0.382 0.527 0.726 ...
```

```
$ SZHGE.H.PET
                                       -3.66e-01 -9.23e-02 -9.77e-01 -5.58e-01 -2.87e-05 ...
                                : num
## $ LZLGE.H.PET
                                : num -0.254 -0.287 -0.201 -0.038 -0.12 ...
## $ LZHGE.H.PET
                                : num
                                      -0.23385 -0.24389 -0.09548 -0.18688 0.00664 ...
## $ GLNU_area.H.PET
                                : num -0.544 -0.58 -0.429 0.539 -0.581 ...
##
   $ ZSP.H.PET
                                : num
                                      -0.225 0.513 -0.929 -0.613 -1.116 ...
## $ GLVAR_area.H.PET
                                : num -0.422 -0.46 -0.732 -0.101 -1.748 ...
## $ ASM cooc.W.PET
                                : num -0.201 -0.233 0.332 -0.189 1.229 ...
                                      -0.308 0.774 -0.958 -0.47 -0.971 ...
## $ Contrast cooc.W.PET
                                : num
##
   $ Dissimilarity_cooc.W.PET
                                : num -0.254 0.536 -1.134 -0.455 -1.203 ...
## $ Correlation_cooc.W.PET
                                : num
                                      -0.24 -0.827 -0.225 0.117 -0.601 ...
## $ Shade_cooc.W.PET
                                : num -0.1939 -0.0771 -0.3808 -0.1221 -0.3673 ...
## $ Coarseness_vdif.W.PET
                                : num -0.055 -0.0353 0.0154 -0.311 0.0258 ...
## $ Contrast_vdif.W.PET
                                : num -0.185 0.981 -0.88 -0.8 -1.009 ...
## $ Busyness_vdif.W.PET
                                : num -0.698 -0.841 0.336 -0.297 0.717 ...
## $ Complexity_vdif.W.PET
                                      -0.395 0.0832 -0.6695 -0.2371 -0.6679 ...
                                : num
## $ Strength_vdif.W.PET
                                       -0.149 0.434 -0.598 -0.483 -0.519 ...
                                : num
## $ LRE_align.W.PET
                                      -0.7391 -0.8573 -0.0674 -0.5816 0.0205 ...
                                : num
## $ GLNU align.W.PET
                                : num -0.656 -0.753 -0.379 0.831 -0.321 ...
## $ LGRE_align.W.PET
                                : num -0.402 -0.54 0.346 -0.752 1.528 ...
## $ LGHRE align.W.PET
                                : num
                                      -0.463 -0.557 0.328 -0.667 1.732 ...
## $ HGLRE_align.W.PET
                                : num -0.3725 -0.0206 -0.8543 -0.1871 -0.9693 ...
## $ LZSE.W.PET
                                      -0.4602 -0.5497 0.0317 -0.2898 0.0801 ...
                                : num
## $ LZLGE.W.PET
                                : num -0.281 -0.323 -0.14 -0.303 0.362 ...
   $ LZHGE.W.PET
                                : num -0.5234 -0.3964 -0.7161 0.0809 -1.0935 ...
##
## $ GLVAR area.W.PET
                               : num -0.277 0.33 -0.896 -0.238 -0.924 ...
## $ Min hist.ADC
                               : num 0.411 -0.866 0.609 -0.866 -0.866 ...
## $ Max_hist.ADC
                                : num -0.5414 -0.5918 -0.0183 -0.0104 -0.4345 ...
                                : num -0.387 -0.519 -0.364 -0.458 -0.745 ...
##
   $ Mean_hist.ADC
## $ Standard_Deviation_hist.ADC: num -0.1324 -0.4277 0.5113 0.0383 -0.1624 ...
## $ Skewness_hist.ADC
                               : num 0.76 -1.313 1.401 -0.334 -0.228 ...
## $ Kurtosis_hist.ADC
                                : num
                                       -0.365 0.356 0.884 -0.483 -0.293 ...
## $ X3D_surface.ADC
                                : num -0.8336 -0.7264 -0.5623 -0.0772 -0.5594 ...
## $ ratio_3ds_vol.ADC
                                : num 0.407 -0.204 -0.515 -0.528 -0.479 ...
## $ Compactness_v2.ADC
                                : num -0.5654 0.0169 0.2181 -0.8744 0.0688 ...
## $ Spherical_disproportion.ADC: num
                                      -0.51 -0.731 -0.789 -0.34 -0.747 ...
## $ Sphericity.ADC
                               : num -0.576 -0.338 -0.266 -0.729 -0.319 ...
## $ Asphericity.ADC
                                : num -0.3281 -0.796 -0.9186 0.0325 -0.829 ...
## $ Center_of_mass.ADC
                                : num -0.16 -0.135 0.312 0.165 -0.522 ...
     [list output truncated]
```

attach(final_radiomics)

<157/40/197>

Create training (80%) and testing (20%) data.

```
set.seed(123)
radio <- final_radiomics %>% mutate_if(is.ordered, factor, ordered = FALSE)
splitdata = initial_split(radio ,prop = 0.8 ,strata = "Failure.binary")
splitdata
## <Training/Testing/Total>
```

```
final_radiomics_train <- training(splitdata)</pre>
head(final radiomics train[1:5])
##
      Failure.binary
                        Failure Entropy_cooc.W.ADC GLNU_align.H.PET Min_hist.PET
## 5
                   0 0.6898772
                                        0.34499368
                                                         -0.06740573 -0.98874071
## 7
                   0 -0.0714332
                                       -0.07231092
                                                         -0.68049871
                                                                       0.02814910
## 13
                   0 0.9198383
                                       -0.47508410
                                                         -0.04700109
                                                                       0.25645562
## 16
                                        0.30131288
                                                         -0.60733786 -1.00812837
                   0 1.1811577
## 22
                   0 1.9233047
                                       -1.86279117
                                                         -0.95781836 -0.49187889
## 23
                                                         -0.29104352
                                                                       0.04032431
                   0 1.1619942
                                       -0.94025294
final_radiomics_test <- testing(splitdata)</pre>
head(final_radiomics_test[1:5])
##
      Failure.binary
                        Failure Entropy_cooc.W.ADC GLNU_align.H.PET Min_hist.PET
## 1
                   0 1.1985789
                                      0.5529054683
                                                         -0.57063689
                                                                       -0.4541408
## 3
                                                         -0.06024275
                   0 2.7926271
                                      0.4599082452
                                                                       -1.1504338
## 4
                   1 -0.4442487
                                      1.1431829822
                                                          2.67468822
                                                                       -0.4446190
## 8
                   0 0.4930166
                                     -0.0029909626
                                                        -0.51556521
                                                                       -0.5619898
## 24
                   1 -0.8519069
                                      1.1229005476
                                                          0.94672092
                                                                       -0.5762384
## 28
                   0 0.4477213
                                     -0.0007790328
                                                          0.34523282 -0.4119103
prep_train <- recipe(Failure.binary~., data=final_radiomics_train) %>%
  step_integer(all_nominal()) %>%
  step_nzv(all_nominal()) %>%
  step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%
  step center(all numeric(), -all outcomes()) %>%
  step_scale(all_numeric(), -all_outcomes()) %>%
  prep(training = final_radiomics_train, retain = TRUE) %>%
  juice()
prep_test <- recipe(Failure.binary~., data=final_radiomics_test) %>%
  step_integer(all_nominal()) %>%
  step nzv(all nominal()) %>%
  step_dummy(all_nominal(), -all_outcomes(), one_hot = TRUE) %>%
  step_center(all_numeric(), -all_outcomes()) %>%
  step_scale(all_numeric(), -all_outcomes()) %>%
  prep(testing = final_radiomics_test, retain = TRUE) %>%
  juice()
X_train<- as.matrix(prep_train[setdiff(names(prep_train),</pre>
                                            "Failure.binary")])
Y_train<- prep_train$Failure.binary</pre>
X_test<- as.matrix(prep_test[setdiff(names(prep_test),</pre>
                                         "Failure.binary")])
Y_test<- prep_test$Failure.binary</pre>
```

Model 1

Model 1.1: Modelling the data using XGBOOST

```
# optimal parameter list
params <- list(</pre>
 eta = 0.01,
 max_depth = 3,
 min_child_weight = 3,
 subsample = 0.5,
  colsample_bytree = 0.5
# Model of Train Data
set.seed(123)
xgb.fit.final <- xgboost(</pre>
 params = params,
  data = X_train,
 label = Y_train-1,
 nrounds = 4000,
 objective = "binary:logistic",
  verbose = 0
summary(xgb.fit.final)
```

```
##
                 Length Class
                                            Mode
## handle
                       1 xgb.Booster.handle externalptr
## raw
                 2906834 -none-
                                            raw
## niter
                      1 -none-
                                            numeric
## evaluation_log
                     2 data.table
                                            list
## call
                      14 -none-
                                            call
## params
                     7 -none-
                                           list
## callbacks
                      1 -none-
                                            list
## feature_names
                    147 -none-
                                            character
## nfeatures
                       1 -none-
                                            numeric
# Top 20 important features during Training
vip::vip(xgb.fit.final, num_features = 20)
```


Prediction performance of the model using training data set
pred_xgboost_train<- predict(xgb.fit.final, X_train, type = "prob")
pred_xgboost_train</pre>

```
[1] 0.099857010 0.058816653 0.014479009 0.046121638 0.014174885 0.043349206
##
##
     [7] 0.052952662 0.267831147 0.007973359 0.012994351 0.017465856 0.047533493
    [13] 0.038613003 0.030375447 0.026322233 0.053214654 0.013139801 0.112728432
##
    [19] 0.108347528 0.041213144 0.031961415 0.037135199 0.036562968 0.022781346
    [25] 0.015294581 0.021129945 0.010686113 0.032881964 0.023751076 0.017315181
##
    [31] 0.020384636 0.019715860 0.055517863 0.027203469 0.057680108 0.014648456
    [37] 0.013708800 0.013956445 0.079623953 0.052200902 0.018291030 0.028915629
##
    [43] 0.054857679 0.026446063 0.012269739 0.092204437 0.018490253 0.033492487
##
    [49] 0.149206325 0.064320475 0.058247797 0.065827601 0.060390830 0.265067965
     [55] \ \ 0.196747810 \ \ 0.070988320 \ \ 0.049936168 \ \ 0.042830337 \ \ 0.070069231 \ \ 0.025953034 
##
    [61] 0.440651000 0.215244457 0.259388864 0.280341029 0.024854125 0.019391682
    [67] 0.016616840 0.010625809 0.060528897 0.027998473 0.021445725 0.061455321
    [73] \quad 0.172972918 \quad 0.033041745 \quad 0.454813421 \quad 0.071569338 \quad 0.029419405 \quad 0.009356284
##
    [79] 0.009943988 0.086578146 0.010247789 0.026394285 0.011763698 0.027550003
##
    [85] 0.017781980 0.016190708 0.215698332 0.018005263 0.026681492 0.243469357
    [91] 0.032860588 0.016484503 0.375563532 0.015363351 0.041187692 0.021189865
##
    [97] 0.014912988 0.013414036 0.025056668 0.027815564 0.034197401 0.146598831
## [103] 0.022172604 0.038975149 0.683638930 0.954720080 0.886610568 0.630057275
   [109] 0.952911735 0.973130882 0.921227276 0.945268869 0.969312429 0.979291737
   [115] 0.868677258 0.968729317 0.983300567 0.485143244 0.940416038 0.977697313
  [121] 0.978055716 0.958996594 0.940067410 0.933341682 0.944213688 0.984498084
## [127] 0.987913430 0.618517697 0.980422199 0.987508714 0.939536452 0.896966159
```

```
## [133] 0.639649391 0.735558033 0.960798860 0.765768349 0.864851296 0.965727210
## [139] 0.926994443 0.696273327 0.651460171 0.854598820 0.961534739 0.985732913
## [145] 0.940430045 0.392735660 0.844619572 0.942693293 0.967622995 0.965173960
## [151] 0.951722741 0.942448497 0.858735561 0.914785445 0.594496548 0.880704045
## [157] 0.735231042
perf1 <- prediction(pred_xgboost_train,final_radiomics_train$Failure.binary) %>%
  performance(measure = "tpr", x.measure = "fpr")
perf1
## A performance instance
     'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')
##
     with 158 data points
# Prediction performance of the model using testing data set
pred_xgboost_test<- predict(xgb.fit.final, X_test, type = "prob")</pre>
pred_xgboost_test
## [1] 0.404377669 0.358926207 0.950822949 0.060761694 0.953233600 0.078627832
   [7] 0.975705087 0.035459876 0.605009973 0.006428809 0.031629287 0.010345870
## [13] 0.121987216 0.444863558 0.102037884 0.281896681 0.131317899 0.204408988
## [19] 0.037064303 0.078438655 0.828603208 0.517040551 0.199922308 0.483729303
## [25] 0.701296926 0.005774284 0.785132825 0.969533443 0.883065999 0.346980691
## [31] 0.030128101 0.940216124 0.017736306 0.963804543 0.178022757 0.290226817
## [37] 0.109095208 0.028470060 0.027936855 0.505909383
perf2 <- prediction(pred_xgboost_test, final_radiomics_test$Failure.binary) %>%
  performance(measure = "tpr", x.measure = "fpr")
perf2
## A performance instance
     'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')
##
     with 41 data points
# Training and Testing data performance plot
par(mfrow = c(1,2))
# Training prediction performane
roc(final_radiomics_train$Failure.binary ~ pred_xgboost_train,
   plot=TRUE, legacy.axes=FALSE,
    percent=TRUE, col="blue", lwd=2, print.auc=TRUE,
   main = "Performance in Training")
##
## Call:
## roc.formula(formula = final_radiomics_train$Failure.binary ~ pred_xgboost_train, plot = TRUE, le
```

Area under the curve: 99.96%

Data: pred_xgboost_train in 104 controls (final_radiomics_train\$Failure.binary 0) < 53 cases (final_

```
# Testing set prediction performance
roc(final_radiomics_test$Failure.binary ~ pred_xgboost_test,
    plot=TRUE, legacy.axes=FALSE,
    percent=TRUE, col="red", lwd=2, print.auc=TRUE,
    main = "Performance in Testing")
```


Model 1.2: Modelling the data using GBM

```
set.seed(123)
gbm_model <- gbm(
  formula = Failure.binary ~ .,
  data = final_radiomics_train,
  distribution = "gaussian",
  n.trees = 500,
  shrinkage = 0.1,
  interaction.depth = 3,</pre>
```

```
n.minobsinnode = 10,
  cv.folds = 10
)

# Top 20 important features during Training
vip::vip(gbm_model, num_features = 20)
```



```
##
     [1] 1.0566497 1.0816403 0.9693307 1.0196355 0.9893454 0.9351025 1.1278266
##
     [8] 1.5476636 0.9690415 0.9661116 0.9309952 1.1560535 1.0312913 1.0315849
##
    [15] 0.9331039 0.9962456 0.9822937 1.1300473 1.0564736 1.0369094 0.9998221
     [22] \ 1.0291438 \ 0.9834592 \ 0.9952928 \ 1.0271875 \ 0.9719281 \ 0.9270533 \ 1.0128893 
##
    [29] 1.0175781 1.0798480 1.0071605 1.0540205 1.0221665 1.0514597 0.9909503
##
    [36] 0.9428613 1.0314571 0.9815587 1.1003302 1.0907252 1.0201658 1.0930131
##
    [43] 1.1563157 0.9780830 0.9410110 1.0926590 0.9315293 1.0114950 1.1804196
##
    [50] 0.9619457 1.1035300 1.1682644 1.0637943 1.3719950 1.3079941 1.0591457
    [57] 1.0155701 1.0716342 1.0397281 0.9782105 1.4500397 1.2002860 1.0711105
##
##
    [64] 1.5737326 0.9809746 0.9265685 0.9696695 0.8998626 1.0638641 0.9922283
    [71] 1.0797131 1.0399246 1.0614436 1.0069654 1.6553242 1.0805268 0.9395916
##
    [78] 0.9504520 0.9482118 1.0973026 1.0795828 1.0586595 1.0273664 1.1073017
   [85] 0.9560699 0.9744405 1.3678170 0.9698946 1.0534984 1.3353315 1.0892608
##
```

```
## [141] 1.6298320 1.9120780 1.8157256 2.0871928 2.0552012 1.3035513 1.7154484
## [148] 1.9402573 2.0501549 2.0015447 2.0324168 2.0026052 1.9163733 1.9128407
## [155] 1.7689935 1.6731549 1.9170913
perf3 <- prediction(pred_gbm_train,final_radiomics_train$Failure.binary) %>%
 performance(measure = "tpr", x.measure = "fpr")
perf3
## A performance instance
##
     'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')
     with 158 data points
# Prediction performance of the model using testing data set
pred_gbm_test<- predict(gbm_model, newdata=as.data.frame(X_test),</pre>
                        type = "response")
pred gbm test
   [1] 1.4319948 1.4955901 1.9581071 1.0877395 2.0022408 1.0565499 1.9566118
## [8] 1.0202829 1.2409809 0.9101864 1.0086530 0.9270703 1.1024023 1.8247972
## [15] 1.1715897 1.1311502 1.0687053 1.1484260 1.0650793 1.2015374 1.8009021
## [22] 1.4901733 1.1761204 1.6342046 1.6761921 0.9114302 1.7754062 1.7617687
## [29] 1.6474194 1.1923029 0.9474163 1.9376117 1.0074654 1.9834138 1.4608164
## [36] 1.6102214 1.1172166 0.9199796 0.9770945 1.9667019
perf4 <- prediction(pred_gbm_test, final_radiomics_test$Failure.binary) %>%
 performance(measure = "tpr", x.measure = "fpr")
perf4
## A performance instance
     'False positive rate' vs. 'True positive rate' (alpha: 'Cutoff')
    with 41 data points
# Training and Testing data performance plot
par(mfrow = c(1,2))
# Training prediction performane
roc(final_radiomics_train$Failure.binary ~ pred_gbm_train,
   plot=TRUE, legacy.axes=FALSE,
   percent=TRUE, col="blue", lwd=2, print.auc=TRUE,
   main = "Performance in Training")
##
## Call:
## roc.formula(formula = final_radiomics_train$Failure.binary ~ pred_gbm_train, plot = TRUE, legacy
                                            14
```

「92] 1.0753950 1.6086557 1.0658027 1.0838032 1.0352556 0.9868398 1.0399511 ## [99] 0.9433450 1.0072161 1.0313690 1.3517551 0.9816960 1.0128522 1.5463945 ## [106] 1.9895515 1.7938371 1.5309483 2.0779838 1.9648821 1.9901807 1.6761529 ## [113] 2.0119019 2.0448209 1.8690355 1.9530526 2.0386907 1.4368486 1.9412657 ## [120] 2.0432251 2.0192088 1.9649723 1.8581213 1.9645322 1.8953674 1.9905785 ## [127] 2.0268372 1.4078311 2.1438709 2.0223600 1.9449216 1.9333967 1.6668446 ## [134] 1.8504634 1.9198445 1.6846205 1.6352294 1.9855378 1.8559478 1.8718856

```
##
## Data: pred_gbm_train in 104 controls (final_radiomics_train$Failure.binary 0) < 53 cases (final_radi
## Area under the curve: 99.46%</pre>
```

```
# Testing set prediction performance
roc(final_radiomics_test$Failure.binary ~ pred_gbm_test,
    plot=TRUE, legacy.axes=FALSE,
    percent=TRUE, col="red", lwd=2, print.auc=TRUE,
    main = "Performance in Testing")
```


Model 1.3: Modelling the data using Rpart


```
0.9479167 0.05208333
## 1
## 2
       0.9479167 0.05208333
## 3
       0.9479167 0.05208333
       0.9479167 0.05208333
       0.9479167 0.05208333
## 5
       0.9479167 0.05208333
## 6
## 7
       0.9479167 0.05208333
       0.1296296 0.87037037
## 8
## 9
       0.9479167 0.05208333
## 10 0.9479167 0.05208333
## 11 0.9479167 0.05208333
```

```
## 12 0.9479167 0.05208333
## 13
       0.9479167 0.05208333
       0.9479167 0.05208333
## 15
       0.9479167 0.05208333
  16
       0.9479167 0.05208333
       0.9479167 0.05208333
##
  17
       0.1296296 0.87037037
## 18
       0.9479167 0.05208333
## 19
##
  20
       0.9479167 0.05208333
##
  21
       0.9479167 0.05208333
  22
       0.9479167 0.05208333
##
  23
       0.9479167 0.05208333
##
   24
       0.9479167 0.05208333
##
   25
       0.9479167 0.05208333
##
  26
       0.9479167 0.05208333
##
  27
       0.9479167 0.05208333
##
       0.9479167 0.05208333
  28
##
       0.9479167 0.05208333
##
       0.9479167 0.05208333
  30
##
  31
       0.9479167 0.05208333
##
  32
       0.9479167 0.05208333
   33
       0.9479167 0.05208333
       0.9479167 0.05208333
## 34
       0.9479167 0.05208333
   35
##
  36
       0.9479167 0.05208333
   37
       0.9479167 0.05208333
##
  38
       0.9479167 0.05208333
##
   39
       0.9479167 0.05208333
##
       0.9479167 0.05208333
  40
## 41
       0.9479167 0.05208333
## 42
       0.9479167 0.05208333
##
  43
       0.9479167 0.05208333
##
       0.9479167 0.05208333
       0.9479167 0.05208333
##
  45
##
   46
       0.9479167 0.05208333
##
       0.9479167 0.05208333
  47
  48
       0.9479167 0.05208333
## 49
       0.9479167 0.05208333
## 50
       0.9479167 0.05208333
       0.9479167 0.05208333
## 51
       0.9479167 0.05208333
  52
## 53
       0.9479167 0.05208333
       0.1296296 0.87037037
##
   54
##
   55
       0.9479167 0.05208333
       0.9479167 0.05208333
  56
       0.9479167 0.05208333
## 57
##
  58
       0.9479167 0.05208333
## 59
       0.9479167 0.05208333
##
  60
       0.9479167 0.05208333
##
   61
       0.1296296 0.87037037
  62
       0.1296296 0.87037037
##
##
  63
      0.9479167 0.05208333
## 64
      0.1296296 0.87037037
## 65 0.9479167 0.05208333
```

```
## 66 0.9479167 0.05208333
## 67
       0.9479167 0.05208333
       0.9479167 0.05208333
## 69
       0.9479167 0.05208333
  70
       0.9479167 0.05208333
      0.9479167 0.05208333
## 71
       0.9479167 0.05208333
## 72
       0.9479167 0.05208333
## 73
## 74
       0.9479167 0.05208333
## 75
       0.1296296 0.87037037
  76
       0.8571429 0.14285714
## 77
       0.9479167 0.05208333
##
  78
       0.9479167 0.05208333
## 79
       0.9479167 0.05208333
## 80
       0.8571429 0.14285714
## 81
       0.9479167 0.05208333
       0.9479167 0.05208333
## 82
## 83
       0.9479167 0.05208333
       0.9479167 0.05208333
## 84
## 85
       0.9479167 0.05208333
##
  86
       0.9479167 0.05208333
## 87
       0.8571429 0.14285714
      0.9479167 0.05208333
## 88
       0.9479167 0.05208333
## 89
## 90
      0.8571429 0.14285714
## 91
      0.9479167 0.05208333
## 92
       0.9479167 0.05208333
## 93
       0.8571429 0.14285714
## 94
      0.9479167 0.05208333
## 95
      0.9479167 0.05208333
## 96
       0.9479167 0.05208333
## 97
       0.9479167 0.05208333
       0.9479167 0.05208333
## 99 0.9479167 0.05208333
## 100 0.9479167 0.05208333
## 101 0.9479167 0.05208333
## 102 0.8571429 0.14285714
## 103 0.9479167 0.05208333
## 104 0.9479167 0.05208333
## 105 0.9479167 0.05208333
## 106 0.1296296 0.87037037
## 107 0.1296296 0.87037037
## 108 0.9479167 0.05208333
## 109 0.1296296 0.87037037
## 110 0.1296296 0.87037037
## 111 0.1296296 0.87037037
## 112 0.1296296 0.87037037
## 113 0.1296296 0.87037037
## 114 0.1296296 0.87037037
## 115 0.1296296 0.87037037
## 116 0.1296296 0.87037037
## 117 0.1296296 0.87037037
## 118 0.9479167 0.05208333
## 119 0.1296296 0.87037037
```

```
## 120 0.1296296 0.87037037
## 121 0.1296296 0.87037037
## 122 0.1296296 0.87037037
## 123 0.1296296 0.87037037
## 124 0.1296296 0.87037037
## 125 0.1296296 0.87037037
## 126 0.1296296 0.87037037
## 127 0.1296296 0.87037037
## 128 0.9479167 0.05208333
## 129 0.1296296 0.87037037
## 130 0.1296296 0.87037037
## 131 0.1296296 0.87037037
## 132 0.1296296 0.87037037
## 133 0.1296296 0.87037037
## 134 0.1296296 0.87037037
## 135 0.1296296 0.87037037
## 136 0.1296296 0.87037037
## 137 0.9479167 0.05208333
## 138 0.1296296 0.87037037
## 139 0.1296296 0.87037037
## 140 0.1296296 0.87037037
## 141 0.1296296 0.87037037
## 142 0.1296296 0.87037037
## 143 0.1296296 0.87037037
## 144 0.1296296 0.87037037
## 145 0.1296296 0.87037037
## 146 0.9479167 0.05208333
## 147 0.1296296 0.87037037
## 148 0.8571429 0.14285714
## 149 0.1296296 0.87037037
## 150 0.1296296 0.87037037
## 151 0.1296296 0.87037037
## 152 0.1296296 0.87037037
## 153 0.1296296 0.87037037
## 154 0.1296296 0.87037037
## 155 0.1296296 0.87037037
## 156 0.1296296 0.87037037
## 157 0.1296296 0.87037037
# Prediction performance of the model using testing data set
pred_rpart_test<- predict(rpart_test_model, newdata=as.data.frame(X_test),</pre>
                        type = "prob", na.action = na.pass)
pred_rpart_test
               0
     0.92592593 0.07407407
## 1
     0.92592593 0.07407407
     0.07692308 0.92307692
## 3
     0.92592593 0.07407407
     0.07692308 0.92307692
## 5
## 6
     0.92592593 0.07407407
## 7
     0.07692308 0.92307692
    0.92592593 0.07407407
## 9 0.92592593 0.07407407
```

```
## 10 0.92592593 0.07407407
## 11 0.92592593 0.07407407
## 12 0.92592593 0.07407407
## 13 0.92592593 0.07407407
## 14 0.07692308 0.92307692
## 15 0.92592593 0.07407407
## 16 0.92592593 0.07407407
## 17 0.92592593 0.07407407
## 18 0.92592593 0.07407407
## 19 0.92592593 0.07407407
## 20 0.92592593 0.07407407
## 21 0.07692308 0.92307692
## 22 0.92592593 0.07407407
## 23 0.92592593 0.07407407
## 24 0.07692308 0.92307692
## 25 0.07692308 0.92307692
## 26 0.92592593 0.07407407
## 27 0.07692308 0.92307692
## 28 0.92592593 0.07407407
## 29 0.92592593 0.07407407
## 30 0.92592593 0.07407407
## 31 0.92592593 0.07407407
## 32 0.07692308 0.92307692
## 33 0.92592593 0.07407407
## 34 0.07692308 0.92307692
## 35 0.92592593 0.07407407
## 36 0.07692308 0.92307692
## 37 0.92592593 0.07407407
## 38 0.92592593 0.07407407
## 39 0.92592593 0.07407407
## 40 0.07692308 0.92307692
# Training and Testing data performance plot
par(mfrow = c(1,2))
# Training prediction performane
roc(final_radiomics_train$Failure.binary ~ pred_rpart_train[,2],
    plot=TRUE, legacy.axes=FALSE,
    percent=TRUE, col="blue", lwd=2, print.auc=TRUE,
   main = "Performance in Training")
##
## roc.formula(formula = final_radiomics_train$Failure.binary ~
                                                                  pred_rpart_train[, 2], plot = TRUE,
## Data: pred_rpart_train[, 2] in 104 controls (final_radiomics_train$Failure.binary 0) < 53 cases (fin
## Area under the curve: 90.53%
# Testing set prediction performance
roc(final_radiomics_test$Failure.binary ~ pred_rpart_test[,2],
   plot=TRUE, legacy.axes=FALSE,
   percent=TRUE, col="red", lwd=2, print.auc=TRUE,
   main = "Performance in Testing")
```



```
##
## Call:
## roc.formula(formula = final_radiomics_test$Failure.binary ~ pred_rpart_test[,
                                                                                     2], plot = TRUE, 1
## Data: pred_rpart_test[, 2] in 26 controls (final_radiomics_test$Failure.binary 0) < 14 cases (final_
## Area under the curve: 87.36%
```

0

Model 2

```
set.seed(123)
Train_Features <- data.matrix(final_radiomics_train[,-1])</pre>
Train_Labels <- final_radiomics_train[,1]</pre>
Test_Features <- data.matrix(final_radiomics_test[,-1])</pre>
Test_Labels <- final_radiomics_test[,1]</pre>
# Reshaping the dataset
colnames(Train_Features) <- paste0("V", 1:ncol(Train_Features))</pre>
Train_Features <- Train_Features / 255</pre>
colnames(Test_Features) <- paste0("V", 1:ncol(Test_Features))</pre>
Test_Features <- Test_Features / 255</pre>
# Converting the labels into categorical
Train_Labels <- to_categorical(Train_Labels, num_classes = 2)</pre>
```

```
Test_Labels <- to_categorical(Test_Labels, num_classes = 2)</pre>
# Model training
set.seed(123)
model <- keras_model_sequential() %>%
 layer_dense(units = 256, activation = "sigmoid", input_shape = ncol(Train_Features)) %>%
 layer dropout(rate = 0.3) %>%
 layer dense(units = 128, activation = "sigmoid") %>%
 layer_dropout(rate = 0.3) %>%
 layer_dense(units = 128, activation = "sigmoid") %>%
 layer_dropout(rate = 0.3) %>%
 layer_dense(units = 64, activation = "sigmoid") %>%
 layer_dropout(rate = 0.3) %>%
 layer_dense(units = 64, activation = "sigmoid") %>%
 layer_dropout(rate = 0.3) %>%
 layer_dense(units = 2, activation = "softmax")
summary(model)
## Model: "sequential"
## Layer (type)
                                   Output Shape
                                                                Param #
## dense_5 (Dense)
                                   (None, 256)
                                                                37888
## dropout_4 (Dropout)
                                   (None, 256)
## dense_4 (Dense)
                                   (None, 128)
                                                                32896
## dropout_3 (Dropout)
                                   (None, 128)
## dense 3 (Dense)
                                   (None, 128)
                                                                16512
## dropout_2 (Dropout)
                                   (None, 128)
## dense 2 (Dense)
                                   (None, 64)
                                                                8256
## dropout_1 (Dropout)
                                   (None, 64)
                                                                Ω
## dense 1 (Dense)
                                   (None, 64)
                                                                4160
## dropout (Dropout)
                                   (None, 64)
## dense (Dense)
                                   (None, 2)
                                                                130
## Total params: 99,842
## Trainable params: 99,842
## Non-trainable params: 0
# Backpropagation
model %>% compile(
 loss = "categorical_crossentropy",
 optimizer = optimizer_rmsprop(),
 metrics = c("accuracy")
# Compiling the model
model %>% compile(
 loss = "categorical_crossentropy",
 optimizer = optimizer adam(),
 metrics = c("accuracy")
```

```
# Train the model
set.seed(123)
model_fit \leftarrow model \%>\%
  fit(Train_Features, Train_Labels, epochs = 10, batch_size = 128,
      validation_split = 0.15)
# Display Output
model_fit
##
## Final epoch (plot to see history):
           loss: 0.5685
##
##
       accuracy: 0.7744
##
       val_loss: 2.053
## val_accuracy: 0
plot(model_fit)
```



```
# Model evaluation
model %%
  evaluate(Test_Features, Test_Labels)
```

epoch

```
## loss accuracy
## 0.8078468 0.6500000
```

```
model %>% predict(Test_Features)
##
              [,1]
                        [,2]
    [1,] 0.8716558 0.1283442
   [2,] 0.8716552 0.1283448
## [3,] 0.8716555 0.1283446
## [4,] 0.8716555 0.1283445
## [5,] 0.8716553 0.1283446
## [6,] 0.8716556 0.1283443
## [7,] 0.8716550 0.1283450
## [8,] 0.8716559 0.1283441
## [9,] 0.8716551 0.1283449
## [10,] 0.8716553 0.1283448
## [11,] 0.8716562 0.1283438
## [12,] 0.8716562 0.1283438
## [13,] 0.8716557 0.1283443
## [14,] 0.8716551 0.1283450
## [15,] 0.8716555 0.1283445
## [16,] 0.8716555 0.1283446
## [17,] 0.8716555 0.1283445
## [18,] 0.8716555 0.1283445
## [19,] 0.8716553 0.1283448
## [20,] 0.8716558 0.1283442
## [21,] 0.8716547 0.1283453
## [22,] 0.8716551 0.1283450
## [23,] 0.8716558 0.1283442
## [24,] 0.8716555 0.1283445
## [25,] 0.8716555 0.1283444
## [26,] 0.8716555 0.1283444
## [27,] 0.8716559 0.1283441
## [28,] 0.8716551 0.1283449
## [29,] 0.8716553 0.1283448
## [30,] 0.8716553 0.1283446
## [31,] 0.8716550 0.1283450
## [32,] 0.8716549 0.1283450
## [33,] 0.8716552 0.1283448
## [34,] 0.8716543 0.1283457
## [35,] 0.8716560 0.1283441
## [36,] 0.8716548 0.1283452
## [37,] 0.8716555 0.1283446
## [38,] 0.8716553 0.1283447
## [39,] 0.8716555 0.1283444
## [40,] 0.8716548 0.1283452
```

Model prediction

Model 3

```
# The data
data <- radiomics_df
head(data[1:5])</pre>
```

Failure Entropy_cooc.W.ADC GLNU_align.H.PET Min_hist.PET Max_hist.PET

```
## 1 1.1985789
                      0.55290547
                                      -0.57063689
                                                   -0.4541408
                                                                -0.4361311
## 2 -0.7212472
                     -0.06486729
                                      -0.78903636
                                                   0.4998369
                                                                0.1486951
                      0.45990825
## 3 2.7926271
                                      -0.06024275 -1.1504338 -1.1768823
## 4 -0.4442487
                      1.14318298
                                      2.67468822
                                                  -0.4446190
                                                                -0.1516658
## 5 0.6898772
                      0.34499368
                                      -0.06740573
                                                   -0.9887407
                                                                -1.1061760
## 6 -1.1289054
                      0.84917904
                                      0.07354603 -1.1864923 -1.2223057
```

summary(data[1:5])

```
Entropy_cooc.W.ADC
                                       GLNU_align.H.PET
                                                        Min_hist.PET
##
      Failure
## Min. :-1.1289
                    Min. :-2.6407173
                                       Min. :-0.9982
                                                       Min. :-1.4098
## 1st Qu.:-0.7892
                   1st Qu.:-0.6921994
                                       1st Qu.:-0.6721
                                                       1st Qu.:-0.6742
## Median :-0.3066 Median : 0.0001827
                                       Median :-0.1783
                                                       Median :-0.2256
## Mean : 0.0000 Mean : 0.0000000
                                       Mean : 0.0000
                                                       Mean : 0.0000
## 3rd Qu.: 0.6028
                    3rd Qu.: 0.6719746
                                       3rd Qu.: 0.1947
                                                       3rd Qu.: 0.4998
## Max. : 3.7247
                    Max. : 2.1464095
                                       Max. : 5.3894
                                                       Max. : 3.9898
##
   Max_hist.PET
## Min. :-1.3604
## 1st Qu.:-0.7578
## Median :-0.2204
## Mean : 0.0000
## 3rd Qu.: 0.6421
## Max. : 3.7697
```

Model 3.1: K-Means

```
# Determining Optimal Number of Clusters
set.seed(123)
# Function to compute total within-cluster sum of square
wss <- function(k) {
  kmeans(data, k, nstart = 10)$tot.withinss
}
# Compute and plot wss for k = 1 to k = 15
k.values <- 1:15
# extract wss for 1-15 clusters
wss_values <- map_dbl(k.values, wss)</pre>
plot(k.values, wss_values,
     type="b", pch = 19, frame = FALSE,
     xlab="Number of clusters K",
    ylab="Total within-clusters sum of squares")
```



```
# or use this
fviz_nbclust(data, kmeans, method = "silhouette")
```



```
# compute gap statistic
set.seed(123)
gap_stat <- clusGap(data, FUN = kmeans, nstart = 25,</pre>
                    K.max = 10, B = 50)
# Print the result
print(gap_stat, method = "firstmax")
## Clustering Gap statistic ["clusGap"] from call:
## clusGap(x = data, FUNcluster = kmeans, K.max = 10, B = 50, nstart = 25)
## B=50 simulated reference sets, k = 1..10; spaceH0="scaledPCA"
   --> Number of clusters (method 'firstmax'): 10
##
##
             logW
                   E.logW
                                 gap
##
   [1,] 7.171204 7.635853 0.4646496 0.009379996
   [2,] 6.879524 7.546674 0.6671493 0.008786338
##
  [3,] 6.798848 7.500436 0.7015873 0.007082545
  [4,] 6.760004 7.466467 0.7064633 0.006632270
## [5,] 6.715614 7.441579 0.7259645 0.006374244
   [6,] 6.689522 7.419633 0.7301115 0.006603869
  [7,] 6.661683 7.399745 0.7380616 0.006654018
  [8,] 6.643211 7.381624 0.7384134 0.006480643
  [9,] 6.616471 7.365139 0.7486677 0.006484664
## [10,] 6.588968 7.349544 0.7605765 0.006453097
fviz_gap_stat(gap_stat)
```

Optimal number of clusters


```
# Compute k-means clustering with k = 2
set.seed(123)
k_means <- kmeans(data, 2, nstart = 25)
print(k_means)</pre>
```

```
## K-means clustering with 2 clusters of sizes 50, 147
##
## Cluster means:
##
           Failure Entropy_cooc.W.ADC GLNU_align.H.PET Min_hist.PET Max_hist.PET
## 1 -0.0014733768
                           0.04845450
                                            -0.07901100
                                                           0.9204612
## 2 0.0005011486
                          -0.01648112
                                            0.02687449
                                                          -0.3130820
                                                                       -0.3220524
    Mean_hist.PET Variance_hist.PET Standard_Deviation_hist.PET Skewness_hist.PET
##
## 1
        0.9216792
                           0.4594337
                                                        0.9319222
                                                                          0.9115602
## 2
        -0.3134963
                          -0.1562700
                                                       -0.3169804
                                                                         -0.3100545
     Kurtosis_hist.PET Energy_hist.PET Entropy_hist.PET AUC_hist.PET H_suv.PET
##
## 1
            0.25274217
                             0.6864958
                                               1.5003007
                                                            1.6957546 0.9652219
                                              -0.5103064
                                                           -0.5767873 -0.3283068
## 2
           -0.08596673
                            -0.2335020
##
     Volume.PET X3D_surface.PET ratio_3ds_vol.PET ratio_3ds_vol_norm.PET
## 1 0.5900077
                      0.3802612
                                        0.9436984
                                                                0.9622506
## 2 -0.2006829
                     -0.1293406
                                       -0.3209858
                                                               -0.3272961
     irregularity.PET tumor_length.PET Compactness_v1.PET Compactness_v2.PET
## 1
            1.6522842
                             1.0256292
                                                 0.8807232
                                                                    0.4324058
## 2
           -0.5620014
                            -0.3488535
                                                -0.2995657
                                                                   -0.1470768
     Spherical_disproportion.PET Sphericity.PET Asphericity.PET Center_of_mass.PET
## 1
                       0.9622506
                                      0.4460709
                                                      0.9240341
                                                                          0.6358358
## 2
                      -0.3272961
                                     -0.1517248
                                                     -0.3142973
                                                                         -0.2162707
```

```
## Max_3D_diam.PET Major_axis_length.PET Minor_axis_length.PET
       0.8259982
                                                   1.1433164
## 1
                             0.8904297
                                                   -0.3888831
         -0.2809518
                              -0.3028672
## 2
## Least_axis_length.PET Elongation.PET Flatness.PET Max_cooc.L.PET
              0.9772289 1.4563692 1.3553445 0.7290795
## 1
## 2
              -0.3323908 -0.4953637 -0.4610015
                                                       -0.2479862
## Average cooc.L.PET Variance cooc.L.PET Entropy cooc.L.PET DAVE cooc.L.PET

      1.389215
      1.1041050
      1.6813985

      -0.472522
      -0.3755459
      -0.5719043

                                                 1.6813985 1.2936781
## 1
             -0.472522
## 2
                                                                -0.4400266
## DVAR_cooc.L.PET DENT_cooc.L.PET SAVE_cooc.L.PET SVAR_cooc.L.PET
         1.1366603 1.6603800 1.3889879 1.1209781
        -0.3866192 -0.5647551 -0.4724449
                                                     -0.3812851
## 2
## SENT_cooc.L.PET ASM_cooc.L.PET Contrast_cooc.L.PET Dissimilarity_cooc.L.PET
## 1
         1.6614758 0.6775498 0.9285775
                                                                   1.2936781
                    -0.2304591
         -0.5651278
                                         -0.3158427
                                                                  -0.4400266
## Inv_diff_cooc.L.PET Inv_diff_norm_cooc.L.PET IDM_cooc.L.PET
       1.443028 1.6979660 1.2814891
-0.490826 -0.5775395 -0.4358807
## 1
             -0.490826
## 2
                                    -0.5775395
                                                   -0.4358807
## IDM_norm_cooc.L.PET Inv_var_cooc.L.PET Correlation_cooc.L.PET
            1.7046571 1.2896785
-0.5798153 -0.4386661
## 1
## 2
            -0.5798153
                                                     -0.382193
## Autocorrelation_cooc.L.PET Tendency_cooc.L.PET Shade_cooc.L.PET
## 1
                   1.0338012 1.1209781
                                                      0.5578271
                   -0.3516331
                                     -0.3812851
## 2
                                                       -0.1897371
## Prominence cooc.L.PET IC1 .L.PET IC2 .L.PET Coarseness vdif .L.PET
              0.7889007 -0.6341334 1.5273752 0.7537450
## 2
              -0.2683336 0.2156916 -0.5195154
                                                         -0.2563758
## Contrast_vdif_.L.PET Busyness_vdif_.L.PET Complexity_vdif_.L.PET
## 1 0.3878173 0.5565230 1.2153015
## 2 -0.1319107 -0.1892936 -0.4133678
## Strength_vdif_.L.PET SRE_align.L.PET LRE_align.L.PET GLNU_align.L.PET

      0.4934069
      1.706523
      1.6948229
      0.4587983

      -0.1678255
      -0.580450
      -0.5764704
      -0.1560539

## 1
## 2
## RLNU_align.L.PET RP_align.L.PET LGRE_align.L.PET HGRE_align.L.PET
## 1
         0.4189336 1.7061400 1.0408063 1.0700373
## 2
          -0.1424944
                       -0.5803197
                                        -0.3540158
                                                        -0.3639583
## LGSRE align.L.PET HGSRE align.L.PET LGHRE align.L.PET HGLRE align.L.PET

      1.048281
      1.0672364
      1.0052958

      -0.356558
      -0.3630056
      -0.3419373

## 1
                                                               1.078233
## 2
                                                               -0.366746
## GLNU_norm_align.L.PET RLNU_norm_align.L.PET GLVAR_align.L.PET

      1.1041018
      1.7034139
      1.1510468

      -0.3755448
      -0.5793925
      -0.3915125

## 2
## RLVAR_align.L.PET Entropy_align.L.PET SZSE.L.PET LZSE.L.PET LGLZE.L.PET
## 1
          -0.3562762
                             -0.5741722 -0.5672382 -0.4031507 -0.3605919
## HGLZE.L.PET SZLGE.L.PET SZHGE.L.PET LZLGE.L.PET LZHGE.L.PET GLNU_area.L.PET
## 2 -0.3696172 -0.3651462 -0.3665321 -0.2876586 -0.3032228
                                                                  -0.1571874
## ZSNU.L.PET ZSP.L.PET GLNU_norm.L.PET ZSNU_norm.L.PET GLVAR_area.L.PET
## 1 0.4218710 1.679008 1.1042309 1.681848 1.1694826
## 2 -0.1434935 -0.571091 -0.3755887 -0.572057 -0.3977832
## ZSVAR.L.PET Entropy_area.L.PET Max_cooc.H.PET Average_cooc.H.PET
## 2 -0.2567379
                      -0.5746188
                                     -0.1718446 -0.5664137
```

```
## Variance_cooc.H.PET Entropy_cooc.H.PET DAVE_cooc.H.PET DVAR_cooc.H.PET
    1.4721984 1.4404122 1.5079528 1.4645709
## 1
## 2
           -0.5007478
                           -0.4899361
                                         -0.5129091
## DENT_cooc.H.PET SAVE_cooc.H.PET SVAR_cooc.H.PET SENT_cooc.H.PET
     1.3368883 1.6782221 1.4484331 1.1582831
## 1
        -0.4547239 -0.5708239 -0.4926643
## 2
                                                 -0.3939739
## ASM cooc.H.PET Contrast cooc.H.PET Dissimilarity cooc.H.PET
      0.4701159 1.344935
-0.1599034 -0.457461
## 1
                                              1.5079528
## 2
                                              -0.5129091
## Inv_diff_cooc.H.PET Inv_diff_norm_cooc.H.PET IDM_cooc.H.PET
                     1.6996628
-0.5781166
           1.1377441
          -0.3869878
## 2
                                             -0.3257476
## IDM_norm_cooc.H.PET Inv_var_cooc_.H.PET Correlation_cooc.H.PET
## 1 1.7052806 0.9554037 1.1365587
           -0.5800274
                            -0.3249672
                                                -0.3865846
## Autocorrelation_cooc.H.PET Tendency_cooc.H.PET Shade_cooc.H.PET
       1.5649714 1.4092944 -0.7124616
-0.5323032 -0.4793518 0.2423339
## 1
## 2
## Prominence_cooc.H.PET IC1_d.H.PET IC2_d.H.PET Coarseness_vdif.H.PET
## 1 1.0427158 -0.23095606 1.3345708 0.6663547
## 2
            -0.3546653 0.07855648 -0.4539356
## Contrast_vdif.H.PET Busyness_vdif.H.PET Complexity_vdif.H.PET
           ## 1
                                               1.0958360
## 2
                                               -0.3727333
## Strength vdif.H.PET SRE align.H.PET LRE align.H.PET RLNU align.H.PET
## 1 0.03112072 1.6638495 1.0890098
          -0.01058528
## 2
                        -0.5659352
                                      -0.3704115
                                                     -0.1417226
## RP align.H.PET LGRE_align.H.PET HGRE_align.H.PET LGSRE_align.H.PET
## 1 1.6436641 0.7082866 1.5743684 0.7040204
## 2 -0.5590694 -0.2409138 -0.5354994 -0.2394627
## HGSRE_align.H.PET LGHRE_align.H.PET HGLRE_align.H.PET GLNU_norm_align.H.PET

      1.6533952
      0.7311054
      0.7453460
      0.8572435

      -0.5623793
      -0.2486753
      -0.2535191
      -0.2915794

## 1
## 2
## RLNU_norm_align.H.PET GLVAR_align.H.PET RLVAR_align.H.PET Entropy_align.H.PET
## 1 1.5584253 1.4161797 0.4776867 1.550297
             -0.5300766
                           -0.4816938
                                         -0.1624785
                                                              -0.527312
## SZSE.H.PET LZSE.H.PET LGLZE.H.PET HGLZE.H.PET SZLGE.H.PET SZHGE.H.PET
## 1 1.4671263 -0.09759617 0.7096710 1.4890573 0.6984264 1.4294579
## 2 -0.4990226 0.03319598 -0.2413847 -0.5064821 -0.2375600 -0.4862102
    LZLGE.H.PET LZHGE.H.PET GLNU_area.H.PET ZSNU.H.PET ZSP.H.PET
## 1 0.001044652 -0.08592571 0.4835029 0.3648643 1.1565208
## GLNU norm.H.PET ZSNU norm.H.PET GLVAR area.H.PET ZSVAR H.PET
## 1
      0.8791603
                  1.2441418 1.3802703 -0.09449223
                  -0.4231775 -0.4694797 0.03214021
       -0.2990341
## Entropy_area.H.PET Max_cooc.W.PET Average_cooc.W.PET Variance_cooc.W.PET
      1.6279234 0.5502762 0.9151412
-0.5537154 -0.1871688 -0.3112725
## 1
                                                         0.4579807
## 2
                                                         -0.1557757
## Entropy_cooc.W.PET DAVE_cooc.W.PET DVAR_cooc.W.PET DENT_cooc.W.PET
-0.5028837 -0.3253300 -0.1756997
## 2
                                                  -0.493205
## SAVE cooc.W.PET SVAR cooc.W.PET SENT cooc.W.PET ASM cooc.W.PET
## 2
       -0.3108861
                  -0.1406689
                                   -0.5216462
                                               -0.2025715
```

```
## Contrast_cooc.W.PET Dissimilarity_cooc.W.PET Inv_diff_cooc.W.PET
              ## 1
## 2
              -0.1811387
                                       -0.3253300
                                                            -0.4337035
## Inv_diff_norm_cooc.W.PET IDM_cooc.W.PET IDM_norm_cooc.W.PET
     1.6983343 1.044167 1.7048157
## 1
## 2
                   -0.5776647 -0.355159
                                                  -0.5798693
     Inv var cooc.W.PET Correlation cooc.W.PET Autocorrelation cooc.W.PET
             1.1637708 1.1228422
-0.3958404 -0.3819191
## 1
## 2
                                                                -0.1556714
     Tendency_cooc.W.PET Shade_cooc.W.PET Prominence_cooc.W.PET IC1_d.W.PET

      0.4135667
      0.07642004
      0.022900737 -0.26887955

      -0.1406689
      -0.02599321
      -0.007789366 0.09145563

## 2
## IC2_d.W.PET Coarseness_vdif.W.PET Contrast_vdif.W.PET Busyness_vdif.W.PET
                                                                     0.4153574
## 1 1.4455561 0.7071892 0.8252351
                    -0.2405405
## 2 -0.4916858
                                               -0.2806922
                                                                     -0.1412780
## Complexity_vdif.W.PET Strength_vdif.W.PET SRE_align.W.PET LRE_align.W.PET

      0.2991726
      0.4249851
      1.697315
      1.4801473

      -0.1017594
      -0.1445527
      -0.577318
      -0.5034515

## 1
## 2
## GLNU_align.W.PET RLNU_align.W.PET RP_align.W.PET LGRE_align.W.PET

      0.4738278
      0.4182280
      1.6901986
      0.8300003

      -0.1611659
      -0.1422544
      -0.5748975
      -0.2823130

## 2
## HGRE_align.W.PET LGSRE_align.W.PET HGSRE_align.W.PET LGHRE_align.W.PET
           0.4630749 0.8904857
## 1
                                         0.4557129
           -0.1575085 -0.3028863
                                         -0.1550044
## 2
                                                                  -0.1892186
## HGLRE align.W.PET GLNU norm align.W.PET RLNU norm align.W.PET
      0.4921754 0.8494549
                                                         1.658483
## 2
           -0.1674066
                                  -0.2889302
                                                          -0.564110
## GLVAR_align.W.PET RLVAR_align.W.PET Entropy_align.W.PET SZSE.W.PET
## 1 0.4593218 0.5957178 1.5543465 1.6121174
## 2 -0.1562319 -0.2026251 -0.5286893 -0.5483392
     LZSE.W.PET LGLZE.W.PET HGLZE.W.PET SZLGE.W.PET SZHGE.W.PET LZLGE.W.PET
##
## 1 0.21517025 0.8709408 0.4690713 0.9938480 0.4481637 -0.004326372
## 2 -0.07318716 -0.2962384 -0.1595481 -0.3380435 -0.1524366 0.001471555
   LZHGE.W.PET GLNU_area.W.PET ZSNU.W.PET ZSP.W.PET GLNU_norm.W.PET
## 1 0.5263985 0.4910918 0.3971868 1.4948131 0.8826796
## 2 -0.1790471 -0.1670380 -0.1350976 -0.5084398 -0.3002311
## ZSNU_norm.W.PET GLVAR_area.W.PET ZSVAR.W.PET Entropy_area.W.PET Min_hist.ADC

      1.4869647
      0.4655759
      0.06408427
      1.6167770
      0.5724098

      -0.5057703
      -0.1583592
      -0.02179737
      -0.5499242
      -0.1946972

## 1
## 2
   Max_hist.ADC Mean_hist.ADC Variance_hist.ADC Standard_Deviation_hist.ADC
##
## 1 1.5075750 1.4864908 0.7599395
## 2 -0.5127806 -0.5056091
                                   -0.2584828
## Skewness_hist.ADC Kurtosis_hist.ADC Energy_hist.ADC Entropy_hist.ADC
## 1
         0.3899909 0.4662845
                                          0.7015053 1.6284344
           -0.1326500
                        -0.1586002
                                           -0.2386073
## AUC_hist.ADC Volume.ADC X3D_surface.ADC ratio_3ds_vol.ADC
## 1 1.6655300 0.5687484 0.7349831 1.1042095
## 2 -0.5665068 -0.1934518 -0.2499942 -0.3755815
                                                    -0.3755815
## ratio_3ds_vol_norm.ADC irregularity.ADC Compactness_v1.ADC Compactness_v2.ADC
## 1 1.6106322 1.6397737 1.1221987 1.3007130
## 2 -0.5478341 -0.5577462 -0.3817002 -0.4424194
## Spherical disproportion.ADC Sphericity.ADC Asphericity.ADC Center of mass.ADC
                     1.6106322 1.6242350 1.1989866 0.5373920
## 1
                     -0.5478341 -0.5524609 -0.4078186
                                                                  -0.1827864
## 2
```

```
Max_3D_diam.ADC Major_axis_length.ADC Minor_axis_length.ADC
## 1
         1.0866100
                              1.2316275
                                                  1.1312333
                             -0.4189209
## 2
        -0.3695952
                                                  -0.3847732
    Least_axis_length.ADC Elongation.ADC Flatness.ADC Max_cooc.L.ADC
                                                      0.8250964
## 1
               1.0417403 1.4824827 1.4052040
## 2
              -0.3543334
                            -0.5042458
                                       -0.4779606
                                                      -0.2806450
    Average cooc.L.ADC Variance cooc.L.ADC Entropy cooc.L.ADC DAVE cooc.L.ADC
                              0.9533869
## 1
             1.456079
                                                1.6827114
## 2
             -0.495265
                              -0.3242813
                                                -0.5723508
                                                               -0.4360387
    DVAR_cooc.L.ADC DENT_cooc.L.ADC SAVE_cooc.L.ADC SVAR_cooc.L.ADC
         0.9295089
                      1.6521421 1.4558899
                                     -0.4952006
## 2
        -0.3161595
                       -0.5619531
                                                    -0.3169287
    SENT_cooc.L.ADC ASM_cooc.L.ADC Contrast_cooc.L.ADC Dissimilarity_cooc.L.ADC
## 1
        1.2584756
                    0.7127202
                                          0.8811662
                                                                  1.2819538
## 2
        -0.4280529
                      -0.2424218
                                         -0.2997164
                                                                 -0.4360387
    Inv_diff_cooc.L.ADC Inv_diff_norm_cooc.L.ADC IDM_cooc.L.ADC
## 1
             1.5058302
                                    1.7039344
                                                 1.3642322
                                    -0.5795695
## 2
            -0.5121871
                                                  -0.4640245
    IDM_norm_cooc.L.ADC Inv_var_cooc.L.ADC Correlation_cooc.L.ADC
             1.7073272
## 1
                               1.379898
                                                   -0.4155378
## 2
            -0.5807235
                               -0.469353
## Autocorrelation_.L.ADC Tendency_cooc.L.ADC Shade_.L.ADC Prominence_cooc.L.ADC
## 1
                1.1050198
                                  0.9317704 0.29259000
                                                                   0.5515288
                                  -0.3169287 -0.09952041
               -0.3758571
                                                                   -0.1875948
## 2
##
    IC1_.L.ADC IC2_.L.ADC Coarseness_vdif_.L.ADC Contrast_vdif_.L.ADC
## 1 -0.6732168 1.5121032
                                  0.6939723
                                                        0.6587722
## 2 0.2289853 -0.5143208
                                   -0.2360450
                                                       -0.2240722
## Busyness_vdif_.L.ADC Complexity_vdif_.L.ADC Strength_vdif_.L.ADC
## 1
             0.6475886
                                                      0.4214397
                                   1.2753146
## 2
             -0.2202682
                                   -0.4337805
                                                      -0.1433468
    SRE_align.L.ADC LRE_align.L.ADC GLNU_align.L.ADC RLNU_align.L.ADC
##
                    1.6811893
                                   0.5682374
## 1
         1.7052408
                                                       0.5910147
         -0.5800139
                        -0.5718331
                                       -0.1932780
## 2
                                                       -0.2010254
    RP_align.L.ADC LGRE_align.L.ADC HGRE_align.L.ADC LGSRE_align.L.ADC
## 1
        1.7034645
                       0.7243458
                                   1.2086645
                                                        0.7235521
## 2
        -0.5794097
                       -0.2463761
                                       -0.4111104
                                                        -0.2461061
## HGSRE align.L.ADC LGHRE align.L.ADC HGLRE align.L.ADC GLNU norm align.L.ADC
## 1
           1.2124123
                          0.7234431
                                          1.1801466
                                                                 1.2291014
## 2
           -0.4123852
                           -0.2460691
                                            -0.4014104
                                                                 -0.4180617
    RLNU_norm_align.L.ADC GLVAR_align.L.ADC RLVAR_align.L.ADC Entropy_align.L.ADC
##
        1.6955541 0.9930121 1.1385331
## 2
              -0.5767191
                              -0.3377592
                                               -0.3872562
                                                                  -0.5776262
   SZSE.L.ADC LZSE.L.ADC LGLZE.L.ADC HGLZE.L.ADC SZLGE.L.ADC SZHGE.L.ADC
## 1 1.6968578 1.3430968 0.7262967
                                    1.2295659 0.7219542 1.2399482
## 2 -0.5771625 -0.4568356 -0.2470397 -0.4182197 -0.2455627 -0.4217511
## LZLGE.L.ADC LZHGE.L.ADC GLNU_area.L.ADC ZSNU.L.ADC ZSP.L.ADC GLNU_norm.L.ADC
                1.077189 0.5782984 0.5919629 1.6748354
    0.6651854
                                                                  1.2251432
## 2 -0.2262535
                -0.366391
                               -0.1967001 -0.2013479 -0.5696719
                                                                   -0.4167154
    ZSNU_norm.L.ADC GLVAR_area.L.ADC ZSVAR.L.ADC Entropy_area.L.ADC
## 1
         1.6570978
                         1.012871 0.6758567
## 2
        -0.5636387
                         -0.344514 -0.2298832
                                                     -0.5785992
## Max cooc.H.ADC Average cooc.H.ADC Variance cooc.H.ADC Entropy cooc.H.ADC
## 1
       0.7039103
                         1.6967547
                                            1.7053247
                                                              1.7011475
## 2
        -0.2394253
                                            -0.5800424
                         -0.5771274
                                                              -0.5786216
```

```
## DAVE cooc.H.ADC DVAR cooc.H.ADC DENT cooc.H.ADC SAVE cooc.H.ADC
## 1 1.5698813 1.4861394 1.7017575 1.6967573
## 2 -0.5339732 -0.5054896 -0.5788291 -0.5771283
## SVAR_cooc.H.ADC SENT_cooc.H.ADC ASM_cooc.H.ADC Contrast_cooc.H.ADC
-0.5512522
## 2
                      -0.5715335 -0.2247337
                                                     -0.4713904
## Dissimilarity cooc.H.ADC Inv diff cooc.H.ADC Inv diff norm cooc.H.ADC
       1.56988131.55468881.7028145-0.5339732-0.5288057-0.5791886
## 1
## 2
## IDM_cooc.H.ADC IDM_norm_cooc.H.ADC Inv_var_cooc.H.ADC Correlation_cooc.H.ADC
## 1 1.4136874 1.7054539 1.4364367
## 2 -0.4808461 -0.5800864 -0.4885839
                                                              -0.4079451
## Autocorrelation_cooc.H.ADC Tendency_cooc.H.ADC Shade_cooc.H.ADC
## 1
                  1.6722184 1.6206816 0.3887230
                  -0.5687818
                                   -0.5512522 -0.1322187
## Prominence_cooc.H.ADC IC1_d.H.ADC IC2_d.H.ADC Coarseness_vdif.H.ADC
       1.5404751 -0.5455177 1.5085932 0.6780216
-0.5239711 0.1855502 -0.5131269 -0.2306196
## 1
## 2
             -0.5239711 0.1855502 -0.5131269
                                                      -0.2306196
## Contrast_vdif.H.ADC Busyness_vdif.H.ADC Complexity_vdif.H.ADC
          1.5316725 0.6153610 1.503704
-0.5209771 -0.2093065 -0.511464
## 1
## 2
## Strength_vdif.H.ADC SRE_align.H.ADC LRE_align.H.ADC GLNU_align.H.ADC
           0.3677298 1.7071497 1.7038845
                                                      0.5901231
## 1
            -0.1250782 -0.5806632 -0.5795526
## 2
## RLNU align.H.ADC RP align.H.ADC LGRE align.H.ADC HGRE align.H.ADC
## 1 0.5924412 1.706814 1.0946139 1.7100780
         -0.2015106
                      -0.580549
                                     -0.3723177
## 2
                                                    -0.5816592
## LGSRE_align.H.ADC HGSRE_align.H.ADC LGHRE_align.H.ADC HGLRE_align.H.ADC
## 1 1.0760014 1.7093907 1.1710039 1.7053139
## 2 -0.3659869 -0.5814254 -0.3983006 -0.5800387
## GLNU_norm_align.H.ADC RLNU_norm_align.H.ADC GLVAR_align.H.ADC

      0.9735389
      1.7053279
      1.7100152

      -0.3311357
      -0.5800435
      -0.5816378

## 1
## 2
## RLVAR_align.H.ADC Entropy_align.H.ADC SZSE.H.ADC LZSE.H.ADC LGLZE.H.ADC
-0.5814126 -0.5799008 -0.5556764 -0.3601708
          -0.3635207
## HGLZE.H.ADC SZLGE.H.ADC SZHGE.H.ADC LZLGE.H.ADC LZHGE.H.ADC GLNU_area.H.ADC
      1.709075 1.0114862 1.7031396 1.0813161 1.5698347 0.5919958
    -0.581318 -0.3440429 -0.5792992 -0.3677946 -0.5339574
## ZSNU.H.ADC ZSP.H.ADC GLNU_norm.H.ADC ZSNU_norm.H.ADC GLVAR_area.H.ADC
## 1 0.5972096 1.7013318 0.9745507 1.692802 1.7072803
## 2 -0.2031325 -0.5786843 -0.3314798 -0.575783
## ZSVAR.H.ADC Entropy_area.H.ADC Max_cooc.W.ADC Average_cooc.W.ADC
## 2 -0.2867790 -0.5804802 -0.2336096
## Variance_cooc.W.ADC DAVE_cooc.W.ADC DVAR_cooc.W.ADC DENT_cooc.W.ADC
     0.7283676 1.3033631 0.7679414 1.6768624
-0.2477441 -0.4433208 -0.2612045 -0.5703613
## 1
## 2
## SAVE_cooc.W.ADC SVAR_cooc.W.ADC SENT_cooc.W.ADC ASM_cooc.W.ADC
## 1 1.1909017 0.6843706 1.2023295 0.6601442
## 2 -0.4050686 -0.2327791 -0.4089556 -0.2245389
## Contrast_cooc.W.ADC Dissimilarity_cooc.W.ADC Inv_diff_cooc.W.ADC
## 1 0.7994120 1.3033631 1.3827605
                        -0.4433208 -0.4703267
## 2
           -0.2719088
```

```
## Inv_diff_norm_cooc.W.ADC IDM_cooc.W.ADC IDM_norm_cooc.W.ADC
## 1 1.7038802
                        1.3112119 1.7073083
-0.4459904 -0.5807171
## 2
              -0.5795511
## Inv_var_cooc.W.ADC Correlation_cooc.W.ADC Autocorrelation_cooc.W.ADC
## 1 1.3074526 1.2225367
                                                  0.8447953
                            -0.4158288
## 2
         -0.4447118
                                                  -0.2873453
## Tendency_cooc.W.ADC Shade_cooc.W.ADC Prominence_cooc.W.ADC IC1_d.W.ADC

      0.6843706
      0.2567335
      0.3775512
      -0.6756692

      -0.2327791
      -0.0873243
      -0.1284188
      0.2298194

## 1
## 2
## IC2_d.W.ADC Coarseness_vdif.W.ADC Contrast_vdif.W.ADC Busyness_vdif.W.ADC
## 1 1.6012140 0.7114542 0.6249552 1.0116700
## 2 -0.5446306 -0.2419912 -0.2125698 -0.3441054
## Complexity_vdif.W.ADC Strength_vdif.W.ADC SRE_align.W.ADC LRE_align.W.ADC
## 1 0.6003182 0.5784705 1.7073214 1.7065667
            -0.2041899 -0.1967587
                                       -0.5807216
                                                      -0.5804649
## GLNU_align.W.ADC RLNU_align.W.ADC RP_align.W.ADC LGRE_align.W.ADC
## 1 0.6326468 0.5857336 1.7071535 0.6918953
## 2 -0.2151860 -0.1992291 -0.5806645 -0.2353386
## 2
                     -0.1992291
                                 -0.5806645
        -0.2151860
                                               -0.2353386
## HGRE_align.W.ADC LGSRE_align.W.ADC HGSRE_align.W.ADC LGHRE_align.W.ADC
## 1 0.8626770 0.6918084 0.8616174 0.6894568
## 2 -0.2934276 -0.2353090 -0.2930672 -0.2345091
## HGLRE_align.W.ADC GLNU_norm_align.W.ADC RLNU_norm_align.W.ADC
        0.866512 0.9154487
-0.294732 -0.3113771
## 1
                                            1.7063312
## 2
                                            -0.5803848
## GLVAR_align.W.ADC RLVAR_align.W.ADC Entropy_align.W.ADC SZSE.W.ADC LZSE.W.ADC
## 1 0.7640782 0.9834635 1.661714 1.7066974 1.6823970
                       -0.3345114
## 2
         -0.2598905
                                       -0.565209 -0.5805093 -0.5722439
## LGLZE.W.ADC HGLZE.W.ADC SZLGE.W.ADC SZHGE.W.ADC LZLGE.W.ADC LZHGE.W.ADC
## 1 0.6918923 0.8639228 0.6899145 0.8602645 0.6450074 0.8755515
## 2 -0.2353375 -0.2938513 -0.2346648 -0.2926070 -0.2193903 -0.2978066
## GLNU_area.W.ADC ZSNU.W.ADC ZSP.W.ADC GLNU_norm.W.ADC ZSNU_norm.W.ADC
-0.2152226 -0.1980565 -0.5799634
                                     -0.3108129
                                                   -0.577900
## GLVAR_area.W.ADC ZSVAR.W.ADC Entropy_area.W.ADC
## 1 0.7713592 1.0785430 1.672228
        -0.2623671 -0.3668514
                                 -0.568785
## 2
##
## Clustering vector:
## [186] 1 1 1 1 1 1 1 1 1 1 1 1
## Within cluster sum of squares by cluster:
## [1] 21058.70 23808.27
## (between_SS / total_SS = 46.6 %)
## Available components:
##
## [1] "cluster" "centers"
                            "totss"
                                         "withinss" "tot.withinss"
## [6] "betweenss" "size"
                            "iter"
                                         "ifault"
```

```
# Plot of Final kmeans clustering
kmeans_plot <- fviz_cluster(k_means, data = data) +
   ggtitle("(3.1) K-Means Clustering")
kmeans_plot</pre>
```

(3.1) K-Means Clustering

Model 3.2: Hierarchical


```
## sub_grp
## 1 2
## 147 50
```

table(sub_grp)

sub_grp <- cutree(hierarchical, k = 2)</pre>

Number of members in each cluster

```
# Plot full dendogram
hierarchical_plot <- fviz_dend(
    hierarchical,
    k = 2,
    horiz = FALSE,
    rect = TRUE,
    rect_fill = TRUE,
    rect_border = "jco",
    k_colors = "jco",
    cex = 0.1
) +
    ggtitle("(3.2) Hierarchical Clustering")
hierarchical_plot</pre>
```

(3.2) Hierarchical Clustering

Model 3.3: Model-Based

```
# Apply GMM model with 10 components
set.seed(123)
radiomics_mc <- Mclust(data, 1:10)
summary(radiomics_mc)</pre>
```

^{##} Gaussian finite mixture model fitted by EM algorithm

```
##
## Mclust VEI (diagonal, equal shape) model with 10 components:
##
##
   log-likelihood
                   n
                        df
                                 BIC
##
         -36831.86 197 4737 -98690.26 -98690.27
##
## Clustering table:
  1 2 3 4 5 6 7 8 9 10
## 60 44 26 3 2 12 10 12 11 17
plot(radiomics_mc, what = 'BIC',
     legendArgs = list(x = "bottomright", ncol = 10))
```



```
probabilities <- radiomics_mc$z

probabilities <- probabilities %>%
   as.data.frame() %>%
   mutate(id = row_number()) %>%
   tidyr::gather(cluster, probability, -id)

ggplot(probabilities, aes(probability)) +
   geom_histogram() +
   facet_wrap(~ cluster, nrow = 2)
```



```
uncertainty <- data.frame(
   id = 1:nrow(data),
   cluster = radiomics_mc$classification,
   uncertainty = radiomics_mc$uncertainty
)

uncertainty %>%
   group_by(cluster) %>%
   filter(uncertainty > 0.0001) %>%
   ggplot(aes(uncertainty, reorder(id, uncertainty))) +
   geom_point() +
   facet_wrap(~ cluster, scales = 'free_y', nrow = 1)
```



```
cluster2 <- data %>%
    scale() %>%
    as.data.frame() %>%
    mutate(cluster = radiomics_mc$classification) %>%
    filter(cluster == 2) %>%
    select(-cluster)

cluster2 %>%
    tidyr::gather(product, std_count) %>%
    group_by(product) %>%
    summarize(avg = mean(std_count)) %>%
    ggplot(aes(avg, reorder(product, avg))) +
    geom_point() +
    labs(x = "Average standardized consumption", y = NULL)
```

