MDL Assignment 2 Part 1

Submitted by
T.H. ARJUN
CSD
2019111012

Parameters

Questions

Wilte the Transploon Table

	Table				
Current State	Action	Next State	Probabel	Reward.	
A	Move Right	В	0.8	-1	
A	Move Right	A	0.2	-1	
A	Move Up	C	0.8		
A	Move up	A	0.2		
В	Move lyt	A	0.8	,	
B	Move left	B	0.2	-1	
В	Move up	R	0.8		
В	Move Up	В	0.2	4 / 4	
C	Move Right	R			
C	Move Right	C.	0·25 0·75	-3	
C	Move Down	A			
		c	0.8	-1.	
C	Move Down		. 0.2	-1	

Take the following steps:-

At square A, Move Right and then at B move up. If you end up at c Move Right

The leason for their chopus is the discount factor 8. Hue 8 = 0.2. So each time our rewards in jutue become 2/10 m. So mue Ps high deprenation. So we care less about the future and cone more about the current chope. Hence at A Moving Right ui most rewarding as it has high chances Of Reaching B from where here is high chance of reaching Terminal State. At B moving Up is the best Policy as we reach terminal state of high reward with high probability And at C Move Right as we have a high uward waiting and we due to dow value of 8 (discountifact Value Iteration

Emperetton of Rewards:

$$R(A, Move Up) = 0.6 \times -1 + 0.2 \times -1 = -1$$

$$R(B, Move Left) = 0.8x-1 + 0.2x-1 = -1$$

R (B) Move Up) =
$$0.8 \times -4 + 0.2 \times -1 = -1$$

R (C) Move Right) = $0.35 \times -4 + 0.2 \times -1 = -3.4$

R (c, Move Right) =
$$0.25 \times -3 + 0.75 \times -1 = -1.5$$

R (c, Move Douge) = $0.25 \times -3 + 0.75 \times -1 = -1.5$

R (c, Move Down) =
$$0.8 \times -1 + 0.2 \times -1 = -1.5$$

Carveu,

$$\delta = 0.20$$

Value Iteration Algoritm.

Initialize Vo (I) = 0

Iterate:

$$U_{t+1}(I) = man \left[R(I,A) + \beta \ge P(J|I,A) * U_{t}(J) \right]$$

So 9n ou case the updates be come following

State Ut Ut+1

A a man(-1+0.2(0.8h+0.2.)

	T	
A	a	man [-1+0.2(0.8b+0.2a)
	,	-1 +0.2 (0.8c+0.2a) ?
2		

C man
$$\int_{-1.5+0.2}^{-1.5+0.2} (0.257 + 0.75c)$$
, $-1 + 0.2(0.8a + 0.2c)$ }

Ry

Iterati	Iteration 1					
State	Uı	U2 empression	U2			
A	0	max [-1+0.2 x (0.8 x0 + 0.2 x0)]	-1			
В	0	man (-1+0.2x (0.8x0+0.2x0), -3.4+0.2x (0.8x18+0.2x0))	-0.52			
C	0	man f-1.5+0.2x (0.25 x 18 + 0.75 x 0), -1 + 0.2 x (0.8 x 0 + 0.2 x 0)	- 0.6			
R	18	18	}			
		(62-01) = 1 $(62-01) = 1$				
Thomas of the same						

J	_t	23	arro	00	2

Iterano	on 2		
State	V2	Uz Empresson	
Α	-1	man (-1+(0.8 x -0.52+0.2x-1), -1+0.2 x (0.8 x 0.6 +0.2x-1)}	\mathcal{U}_3
B		-1+0.2 x (0.8 x 0.6 + 0.2 x -1)}	-1.12
, 0	-0.52	man 1 -1 +0.2 (0.8x-1+0.2x-0.52)	
		-3.4+0.2×(0.8*18+0.2×-0.52)	-0.54
· · C	-0-6	man (-1.5+ 0.2 (0.25 × 18+ 0.75 × +0-6),	
		-1+0.2(0.8x-1+0.2x-0.6)	-0-69
R	12	. 18	
$man (03- 02) = 0.123 \qquad 0.69$			8
		es c	

11.12

70,54

B

	Iteral	on 3		
-	State	Ug	U4 Empreus Pon	Vy
	Α	-1.12	11 4 2 /	-1-131
,	B	-0.54	-1+ 0.2 (0.8x 7 +0.2x)}	1,(9)
	C		man (-1+0.2 (0.8 x -1-12+0.2 x -0.54)? -34+0.2 (0.8 x 18+0.2 x -0.54)?	-0.54
		-0-69	mara d-1.5+ 0.2 (0.35)	
	R	18	-1+0.2(0.8x-1.12+0.2x-0.69)	-0.70g
	Itera		0.0135 e States 0.0135 -0.703 R -1.1314 -0.541 A B	
	State	Uy	Us Empression	V5
	A		uan (-1+0.2 x (0.8 x -0.54+0.2 x -1.13), -1+0.2 x (0.8 x -0.7 +0.2 x -1.13)	-1.131
	В	_0.54	man {-1+0.2x (0.8x-1.13+0.2x-0.54)	20511
	c	10.7	maga 4-1.70.2 x (0.25 x 10 + 2.2	- 0·5416
	R	18	-1+0.2x(0.8x -1.131+0.2x-0.7)	-0 10 5
		man/l	Ds - U, 1	8
	e .		-1-1319 -0 A B	D-5416

For finding the optimal path we need to find the optimal policy at each state To find the optimal policy we need to find Utility of each state, action pair available and choose but according to Marinum emperted Utility principle ile TI*(S(I)) = arogima or (Epackon X U(S(I))) $U(A, Move RPght) = 0.8 \times -0.54 + 0.2 \times -1.13 = -0.658$ $U(A, Move Up) = 0.8 \times -0.7 + 0.2 \times -1.13 = -0.786$

So Bert Polley at A is Move Right

U (B, Move left) = $0.8 \times -1.13 + 0.2 \times -0.59 = -1.012$ U'(B, Move Up) = $0.8 \times 18 + 0.2 \times -0.59 = 3.6$

So Best Polley at B is Move Up

U(C, Move Right) = 0.25 x 18+0.75 x -0.7= 3.975 U(C, Move Down) = 0.8 x -1.13 + 0.2 x -0.7 = -1.04

> So Best Policy at C is Move Right

So Best path is

A -> Move Right

B -> Move Up

C -> Move Right.

=> My Inital gues is correct.

5) The two states from where reaching terminal state in possible is BEC due to high value of Reward/Vifor men and high de preclation of yeutre rewards due to Now gamma (descount factor) we call more about current reward and hence et is best en our enterest to Move Up at B and Move Right at c. From A 9t & better to move to B by choosing Move Right as we have high probability of reaching B from where we can leach R with high probablity and reward. So the things that sets the trend here are the high rewards the some transitions They weigh in so much mat it is Very draw what the best policy is. them around will change the best policy.