DEPARTMENT OF MATH EMATICS UNIVERSITY OF BENIN, BENIN CITY FIRST SEMESTER CONTINUOUS ASSESSMENT TEST 2014/2015 SESSION

MTH110 (ALGEBRA AND TRIGONOMETRY)

CONTINUOUS ASSESSMENT

NAME (SURNAME

PLEASE FILL THE SPACE BELOW

FIRST	Γ)
	NO
DEPA	RTMENT/SCHOOL
ANSV ANSV	VER ALL QUESTIONS. CIRCLE CLEARLY THE APPROPRIATE VER.
	1. If one of the roots of the equation $px^2 + qx + r = 0$ is twice the other root, find the relationship relating p, q, and r
A	$2qr = 9p$ B $9qr = 2p$ C $9q^2 = 2pr$ D $2q^2 = 9pr$
Е	None of the above 2. If α and β are the roots of the equation $px^2 + qx + r = 0$ find in terms of p, q, r the values of $\alpha^2 + \beta^2$.
A	$\frac{q^2 - 2pr}{p^2} \qquad B \qquad \frac{-q^2 - 2pr}{p^2} \qquad C \qquad \frac{q^2 - pr}{p^2} \qquad D \qquad \frac{2pr - q^2}{p^2}$
Е	None of the above
	3. If α , β are the roots of the equation $3x^2 - 7x - 1 = 0$, find the values of $(\alpha - \beta)^2$
A	$\frac{43}{9}$ B $\frac{37}{9}$ C $\frac{55}{9}$ D $\frac{61}{9}$ E None of the above
	4. If α , β are the roots of the equation $5x^2 - 3x - 1 = 0$, form the equation
	with integral coefficient which have the roots $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$
A	$25x^{2} - 72x - 5 = 0 \mathbf{B}$ $25x^{2} + 72x + 5 = 0 \mathbf{C}$ $25x^{2} + 72x - 5 = 0$

D	$25x^2 - 72x + 5 =$	0 F	None o	of the al	hove			
	5. Find the maxin							
A	5 B 11					F	None	of the above
	6 Find vifly	2 2						
A	1,5 B 1,-	5 C	-1 -5	D	-1.5	F	None	of the above
	7. Find x if $ x $		-1, -5	-	1, 5	L	TVOILE	of the above
A	x < 2, x > -8 B	~ ~ ~ ~	× / - 8	C	-8/	2	D	×-2 ×8
	x \2, x > -0 B	1 - 2,	1 < -0	C	-0<,	1 < 2	D	1 < 2, 1 < -0
E	None of the above							
	8. Evaluate u_r for the following sequence 0, 7, 26, 63, 124,							
A	$7(r-1)$ B r^2							of the above
	9. Evaluate the	first 5 ter	ms of t	he seq	uence v	vhose 1	ı, is giv	en as follows
	(1)'-1							
	$\left(-\frac{1}{3}\right)^{r-1}$							
	. 1 1 1	1			1 1	1	1	
A	$-1, \frac{1}{3}, -\frac{1}{9}, \frac{1}{27},$	81	В	-1, -	$\frac{1}{3}$, $\frac{1}{9}$,	-77	81	
С	$1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$	D	1 1	1	1 1	F	None	of the above
C	5 7 21 01		2	,	21 01			
	10. The sum of the	ne first n te	erms of	a series	s is give	n as S_n	= n	3 - 2n for all
	values of n, fi	nd the form	nula for	the rth	term			2 2 1
A	$3r^2 + 3r + 1$ B		3r-1	C	$3r^2-1$	3r+1	D	$3r^{2}-3r-1$
E	None of the abov		means	hetwee	n -5 and	59.		
A	27 B 32						Е	None of the
abov	ve e							
	12. The second to		ometric	sequen	ce is 24	and the	fifth te	rm is 81, find
	the seventh to	erm.			81			
A	$\frac{729}{4}$ B 8	1 C	729	D	4	E	None	of the above
	4							
	13. Evaluate $\sum_{r=1}^{n} \frac{n(1+3n)}{2}$ B	(2-3r)						
	n(1+3n)	n(3n	-1)		n(1 -	3n)	-	n(1-3n)
A	$\frac{n(1+3n)}{2}$ B	2	2	C	2		D	2
	-							
E	None of the abo	ve						nth term is

14. The third term of an arithmetic progression is 18 and the seventh term is 30, find the sum of the first thirty three terms

A 1890 B 720 C 1980 D 1800 E None of the above 15. The third term of a geometric sequence is -1 and the seventh term is -81, find the ninth term.

A -729 B 729 C -81 D 81 E None of the above

16. Express $\frac{25-11x}{(x+1)(x-2)(x-3)}$ into partial fraction

A
$$\frac{2}{x+1} - \frac{3}{x-2} + \frac{1}{x-3}$$
 B $\frac{3}{x+1} - \frac{1}{x-2} - \frac{2}{x-3}$ C $\frac{3}{x+1} - \frac{1}{x-2} + \frac{2}{x-3}$

- D $\frac{3}{x+1} + \frac{1}{x-2} \frac{2}{x-3}$ E none of the above.
 - 19 Find the values of λ for which the roots of the equation $x^2 (3\lambda + 1)x + \lambda^2 1 = 5\lambda$ are real.

A
$$\lambda \ge 5 \text{ or } \lambda \le \frac{1}{5} \text{ B } \lambda \le 5 \text{ or } \lambda > \frac{1}{5} \text{ C } \lambda \le -5 \text{ or } \lambda \ge -\frac{1}{5} \text{ D}$$
 $\lambda \ge -5 \text{ or } \lambda \le -\frac{1}{5}$

- E None of the above.
 - 21. The operation * on the set of real numbers is defined by $x * y = 3x + 2y 1, x, y \in \mathbb{R}$. Find the value of x such that x * 2 = 5
- A 3 B $\frac{5}{2}$ C $\frac{2}{5}$ D $\frac{2}{3}$ E None of the above

	26. Find the values of a if the equation $(5a + 1)x^2 - 8ax + 3a = 0$ has equal roots.
1	1, 3 B 1, -3 C 0, -3 D 0, 3 E None of the above
	27. If one of the roots of the equation $px^2 + qx + r = 0$ is three times the other

root, find the relationship relating p, q, and r. $3pr = 4q^2$ B $4pr = 3q^2$ C 3pq = 4qr D 4pq = 3qrA E None of the above

28. If α , β are the roots of the equation $5x^2 - 3x - 1 = 0$, form the equation with integral coefficient which have the roots $\frac{1}{\alpha^2}$ and $\frac{1}{R^2}$

A
$$25x^2 - 475x + 1 = 0$$
 B $5x^2 - 75x + 1 = 0$ C $25x^2 - 475x - 1 = 0$

E None of the above $25x^2 - 475x + 1 = 0$

29. Find the minimum value of $12 x^2 + 24 x + 13$

None of the above E B -1 C 30. Find x if $\left| \frac{1}{1+x} \right| = 1$

 $0, -1 \ B$ $0, 1 \ C$ $1, -2 \ D$ $0, -2 \ E$ None of the above A 31. Find x if $|2x + 3| \le 1$

 $-2 \le x \le 1$ B $-2 \le x \le -1$ C $2 \le x \le 1$ D $2 \le x \le -1$ A

None of the above E 32. Solve the inequalities $\frac{y+1}{3y-7} > 1$

A $\frac{7}{3} \le y \le 4$ B $-\frac{7}{3} \le y \le 4$ C $-4 \le y \le \frac{7}{3}$ D $-4 \le y \le -\frac{7}{3}$

None of the above E

33. Evaluate u_r for the following sequence $\frac{1}{2,3}$, $\frac{1}{4,5}$, $\frac{1}{6,7}$, $\frac{1}{8,9}$,

 $\frac{1}{2r(2r-1)}$ B $\frac{1}{(r+1)(2r+1)}$ C $\frac{1}{2r(2r+1)}$ D $\frac{1}{(r+1)(2r-1)}$

None of the above

A

34. Evaluate the first 5 terms of the sequence whose u_r is given as follows

 $2^{r} + r^{2}$ 3, 8, 19, 32, 57 B 3, 8, 17, 32, 59 C 3, 8, 17, 32, 57 D 3, 8, 17, 33, 57

None of the above E

35. The sum of the first n terms of a series is given as $S_n = n^3 - 2n$ for all values of n, find the formula for the rth term

A $3r^2 + 3r + 1$ B $3r^2 + 3r - 1$	C	$3r^2 - 3r + 1$	D	$3r^2 - 3r -$
-------------------------------------	---	-----------------	---	---------------

None of the above E

36. Find three numbers in arithmetic progression whose sum is 3 and the product is

None of the -1, 3, 5 C 1, 3 -5 D -3, 1, 5 E 0, 1, 2 B A above

37. Find three arithmetic means between -3 and 13.

1, 5, 9 E None of the above 0 D 38. The first term of an arithmetic sequence is 7 and the last term is 70 and the sun is 385. Find the common difference E None of the above 20

B 10 39. Evaluate $\sum_{r=1}^{n} (5r-7)$ iii)

 $\frac{n(9-5n)}{2}$ B $\frac{n(3n-9)}{2}$ C $\frac{n(5n+9)}{2}$ D $\frac{n(5n-9)}{2}$

None of the above

40. The third term of a geometric sequence is -1 and the seventh term is -81, find the ninth term.

81 E None of the above -729 B 729 C -81 D 41. Express $\frac{x-1}{(x-2)(x-1)^2}$ into partial fraction

 $\frac{3}{x-1} + \frac{3}{x-1} - \frac{2}{(x-1)^2} B \qquad \frac{3}{x-1} + \frac{3}{x-1} - \frac{2}{(x-1)^2} C$ $\frac{1}{x-2} + \frac{3}{x-1} - \frac{2}{(x-2)^2}$

E none of the above.

42. Find the inverse element of 4 under the operation Δ defined on the set of real numbers as $a\Delta b = \frac{ab}{3}$

A $\frac{9}{2}$ B 3 C $\frac{6}{2}$ D $\frac{9}{4}$ E None of the above

A 1, 5 B 1, -5 C -1, -5 D -1, 5 E None of the above 47. Find x if |x + 3| > 5

x < 2, x > -8 B x > 2, x < -8 C -8 < x < 2 D x < 2, x < -8

None of the above

48. Find y if $\left| \frac{y-3}{y+1} \right| < 2$

A $y > \frac{1}{3}$, y < -5 B $y < \frac{1}{3}$, y > -5 C $y > -\frac{1}{3}$, y < -5

 $y > \frac{1}{2}$, y < 5 E None of the above D

49. Evaluate u_r for the following sequence $0, 7, 26, 63, 124, \dots$

7(r-1) B $r^2 - 1$ C 7r D $r^3 - 1$ E None of the above 50. Evaluate the first 5 terms of the sequence whose u_r is given as follows

A $-1, \frac{1}{3}, -\frac{1}{9}, \frac{1}{27}, -\frac{1}{81}$ B $-1, -\frac{1}{3}, -\frac{1}{9}, -\frac{1}{27}, -\frac{1}{81}$ C $1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$ D $1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}$ E None of the

above

51. The sum of the first n terms of a series is given as $S_n = n^3 - 2n$ for all values of n, find the formula for the rth term $3r^2 - 3r + 1$ D $3r^2 - 3r - 1$

 $3r^2 + 3r + 1$ B A

 $3r^2 + 3r - 1$

C

None of the above

52. Find the three arithmetic means between -5 and 59.

None of the D 27, 32, 37 E 11, 27, 43 C A above

53. The second term of a geometric sequence is 24 and the fifth term is 81, find the seventh term.

E None of the above 81 C 729 D

54. Evaluate $\sum_{r=1}^{n} (2-3r)$

 $\frac{n(1+3n)}{2}$ B $\frac{n(3n-1)}{2}$ C $\frac{n(1-3n)}{2}$ D $-\frac{n(1-3n)}{2}$

None of the above E

55. The third term of an arithmetic progression is 18 and the seventh term is 30, find the sum of the first thirty three terms 1800 E

None of the above 1980 D C

56. The third term of a geometric sequence is -1 and the seventh term is -81, find the ninth term. None of the E 81 D -81 729

-729 B A above

57. Express $\frac{25-11x}{(x+1)(x-2)(x-3)}$ into partial fraction

A
$$\frac{2}{x+1} - \frac{3}{x-2} + \frac{1}{x-3}$$
 B $\frac{3}{x+1} - \frac{1}{x-2} - \frac{2}{x-3}$ C $\frac{3}{x+1} - \frac{1}{x-2} + \frac{2}{x-3}$

- $\frac{3}{x+1} + \frac{1}{x-2} \frac{2}{x-3}$ E none of the above. D
 - 58. Solve the inequalities 3x + 12 > 0 and 8 4x > 0

A
$$-2 < x < 4$$
 B $-4 < x < 2$ C $-4 < x < -2$

None of the above -2 < x < 2D 59. The first term of an arithmetic sequence is 7 and the last term is 70 and the sun is 385. Find the number of terms.

None of the E 10 D 9 8 B above

60. If a and r are both positive, find the sum of the series $\log ar + \log ar^2 + \log ar^3 + \ldots + \log ar^{n-1}$

A
$$n \log ar^{\frac{n+1}{2}}$$
 B $(n-1)\log ar^{\frac{n+1}{2}}$ C $(n+1)\log ar$

D
$$(n+1)\log ar^{\frac{n+1}{2}}$$
 E None of the above

61. Evaluate

Evaluate
$$\sum_{r=1}^{8} (3r+2)$$

A $\frac{n(3n+3)}{2}$ B $\frac{n(3n-7)}{2}$ C $\frac{n(3n+7)}{2}$ D $\frac{n(3n-3)}{2}$

None of the above E

62. Evaluate
$$\sum_{r=1}^{n} (2-3r)$$

$$A = \frac{n(1+3n)}{2} \qquad B = \frac{n(1-3n)}{2} \qquad C = \frac{n(3n-1)}{2} \qquad D$$

$$\underline{n(5-3n)}$$

None of the above E

63. Find the sum of the first 2n terms of the sequence $5 + 11 + 17 + 23 + \dots$

A
$$n(10n+4)$$
 B $n(12n+4)$ C $n(12n+8)$ D $n(12n-4)$ E None of the above

64. Find the sum of the first 2n terms of the sequence

D
$$2n(n+1)(a+3b)$$
 E None of the above

65. The product of three numbers in geometric progression is -64 and their sum is 13, find the second term

A 4 B -4 C $\frac{1}{4}$ D $-\frac{1}{4}$ E None of the 66. The third term of a geometric sequence is -1 and the seventh term is -81, find the ninth term. None of the E 81 -729 C -81 D A 729 B above 67. Find the sum to infinity the series $\frac{1}{2} + \frac{1}{3} + \frac{2}{9} + \dots$ A $1\frac{1}{3}$ B $\frac{3}{2}$ C $1\frac{2}{3}$ D $\frac{2}{3}$ E None of the 68. Evaluate $1 + \sqrt{3} + 3 + 3\sqrt{3} + \ldots + 81\sqrt{3}$ A $242(1+\sqrt{3})$ B $\frac{242}{1+\sqrt{3}}$ C $121(1+\sqrt{3})$ D None of the above 69. The first and last term of a geometric progression are 3 and 768 respectively, if the sum of the series is 1533, find common ratio E 5 B 3 C 4 D None of the above 70. Find the sum to which the following series converge $1 - x + x^3 - x^3 + \dots |x| < 1$ A $\frac{1}{1-x}$. B $\frac{1}{1-x^2}$. C $\frac{x}{1-x^2}$. D $\frac{1}{1+x}$. E None of the above 71. Evaluate $\frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \dots$ A $\frac{5}{4}$. B $\frac{1}{5}$. C $\frac{1}{4}$. D $\frac{4}{5}$. E None of the above 72. Express 0.232323... (recurring) as a fraction A $\frac{23}{100}$ B $\frac{232}{1000}$ C $\frac{2323}{10000}$ D E None of the above 73. Evaluate " $C_r + "C_{r+1}$ ${}^{"}C_{r+1}C$ ${}^{"}C_{r}$ D ${}^{"+1}C_{r+1}$ A "+1C, None of the above 74. Evaluate " $C_r + "C_{r-1}$ " B ${}^{"}C_{r+1}C$ ${}^{"}C_{r}$ D ${}^{"+1}C_{r+1}$ "+1C" A None of the above E

PART TWO

30.Expand $(2+x)^{5}$

A
$$32+60x^{1}+60x^{2}+40x^{3}+10x^{4}+x^{5}$$
 B $16+80x^{1}+80x^{2}+40x^{3}+10x^{4}+x^{5}$ C $32+60x^{1}+60x^{2}+30x^{3}+10x^{4}+x^{5}$ D $32+80x^{1}+80x^{2}+40x^{3}+10x^{4}+x^{5}$

E None of the above

31. Find the coefficient of x^8 in the expansion of $\left(x^2 + \frac{2y}{x}\right)^{10}$

A $210y^4$ B $6300y^4$ C $3360y^4$ D $1360y^4$ E None of the above

32. A box containing 2 yellow and 3 blue cards, in how many ways can 3 cards be chosen if at least one card must be blue

A 9 B 20 C 10 D 6 E None of the above 33. In how many ways can the letters of the word PENCIL be arranged if the arrangement must begin with E and end with P

A 120 B 24 C 60 D 6! E None of the above 34. How many three digit numbers can be formed using the digit 4, 5, 6 if any digit can be used more than once.

A 12 B 18 C 27 D 6 E None of the above 35. In how many ways can the letters of the word CALCULUS be arranged

A 8! B 7! C 6! D 5! E None of the above 36. How many 3 or 4 digit numbers can be formed using the digit 1, 6, 7, 8, 9 if repetition is not allowed?

A 60 B 120 C 180 D 240 E None of the above

40. Find the values of x which satisfy $2x^2 - 7x + 9 < x^2 - 2x + 3$ A x < 2, x > 3 B 3 < x < 4 C -2 < x < 3 D 2 < x < 3

E None of the above

41. For what values of x is $\frac{1}{x-3} < 1$

A 3 < x < 4 B -3 < x < 4 C x > 3, x < 4 D x < 3, x > 4

E None of the above

42. For what values of x is $\frac{2x-1}{x+3} \le \frac{2}{3}$

A $-3 \le x \le \frac{9}{4}$ B $-3 \le x \le -\frac{9}{4}$ C $-\frac{9}{4} \le x \le 3$ D $\frac{9}{4} \le x \le 3$

E None of the above

40. Find x if $|x + 3| \le 1$

-2 < x < 4 B -4 < x < 2 C -4 < x < -2 D -2 < x < 2

None of the above

Resolve the following into partial fractions $\frac{6x-10}{r^2-2r-3}$ 41.

A
$$\frac{2}{x-3} - \frac{4}{x+1}$$
 B $\frac{2}{x+3} + \frac{4}{x-1}$ C $\frac{2}{x-3} + \frac{4}{x+1}$

 $\frac{2}{r-3} - \frac{4}{r-1}$ E None of the above D

Resolve the following into partial fractions $\frac{x^3 - x^2 - 4}{x^2 - 1}$

A
$$\frac{3}{x+1} - \frac{2}{x-1}$$
 B $x-1 + \frac{3}{x+1} - \frac{2}{x-1}$ C $x-1 - \frac{3}{x+1} - \frac{2}{x-1}$

D $x-1-\frac{3}{r+1}+\frac{2}{r-1}$ E None of the above

Resolve the following into partial fractions $\frac{x^2 + 4x - 7}{(x + 1)(x^2 + 4)}$

A Resolve the following into partial fractions
$$(x + 1)(x^2 + 4)$$

$$A = \frac{x-7}{(x^2+4)} - \frac{1}{x+1} \qquad B = \frac{3x-1}{(x^2+4)} + \frac{2}{x+1} \qquad C = \frac{x+1}{(x^2+4)} + \frac{2}{x+1}$$

$$D = \frac{3x+7}{(x^2+4)} - \frac{1}{x+1} \qquad E \qquad \text{None of the above}$$

Resolve the following into partial fractions $\frac{x^2}{(x+1)^3}$

A
$$\frac{1}{x+1} - \frac{2}{(x+1)^2} + \frac{1}{(x+1)^3}$$
 B $\frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{(x+1)^3}$

C
$$\frac{1}{x+1} - \frac{2}{(x+1)^2} - \frac{1}{(x+1)^3}$$
 D
$$\frac{1}{x+1} + \frac{2}{(x+1)^2} - \frac{1}{(x+1)^3}$$

Resolve the following into partial fractions $\frac{4x+11}{(x^2+4x-5)}$

A
$$\frac{1}{2} \left(\frac{3}{x+5} - \frac{5}{x-1} \right)$$
 B $\frac{1}{2} \left(\frac{3}{x-5} + \frac{5}{x+1} \right)$

$$C \qquad \frac{1}{2} \left(\frac{3}{x-5} + \frac{5}{x-1} \right) \qquad D \qquad \frac{1}{2} \left(\frac{3}{x+5} + \frac{5}{x-1} \right) \qquad E \qquad \text{None of the above}$$

Resolve the following into partial fractions $\frac{x^2 + 2}{(2x + 1)(x^2 + 2x + 3)}$

A
$$\frac{1}{2x+1} - \frac{1}{x^2 + 2x + 3}$$
 B $\frac{1}{2x+1} + \frac{1}{x^2 + 2x + 3}$

A
$$\frac{1}{2x+1} \frac{1}{x^2+2x+3}$$
 B $\frac{1}{2x+1} + \frac{1}{x^2+2x+3}$ C $\frac{1}{2x+1} \frac{3}{x^2+2x+3}$ D $\frac{1}{2x+1} \frac{4}{x^2+2x+3}$ E None of the above $7x+2$

Resolve the following into partial fractions $\frac{7x+2}{(2x-3)(x+1)^2}$ 47.

- $\frac{2}{2x-3} \frac{1}{x+1} \frac{1}{(x+1)^2} \qquad B \qquad \frac{2}{2x-3} + \frac{1}{x+1} + \frac{1}{(x+1)^2}$ $\frac{2}{2x-3} + \frac{1}{x+1} \frac{1}{(x+1)^2} \qquad D \qquad \frac{2}{2x-3} \frac{1}{x+1} + \frac{1}{(x+1)^2}$
- C
- None of the above E
 - 49. Determine n and r if " $P_r = \frac{10!}{4!}$
- A
- n = 10, r = 4 B n = 10, r = 6 C $\therefore n = 6, r = 4 \text{ D} n = 10, r = 10$
- E None of the above
- How many 4 digit even numbers can be formed using the digit 49. 1, 6, 7, 8, 9 if repetition is not allowed?
- A 80
- 120 C
- 60
- 48 D
- None of the above E
- A committee of three boys and 4 girls is to be formed from 5 boys and 6 girls, 50. how many committees are possible?
- A 420
- В
- 60
- C
- 25
- D
- 360 E None of the above