Fie G=(V,E,w) cu ponderi distincte

Atunci există un unic apcm T_{min} al lui G

Second best apcm – al doilea apcm = arbore parțial T_s cu $w(T_s) = min\{w(T) | T \text{ arbore parțial în G diferit de } T_{min}\}$

Second best - nu este neapărat unic

Cum se poate obtine second best din apcm?

Cum se poate obtine second best din apcm?

Idee:

second = apcm în care se schimbă doar o muchie

Propoziție Fie G=(V,E,w) conex cu ponderi distincte

Fie T_{min} unicul apcm al lui G

Fie T_s un arbore second best

Atunci există $uv \in T_{min}$ și $xy \notin T_{min}$ astfel încât

$$T_s = T_{min} - uv + xy$$

Demonstrație - Tema

Idee algoritm:

Fie T_{min} apcm

Cum derminăm uv∈ T_{min} și xy ∉ T_{min} a.î

T_{min} – uv +xy să fie arbore și

w(xy)-w(uv) minim cu această proprietate?

Idee algoritm:

Dacă **fixăm** un $xy \notin T_{min}$, atunci cum determinăm $uv \in T_{min}$ a.î

T_{min} – uv +xy să fie arbore și

w(xy)-w(uv) minim cu această proprietate?

Idee algoritm:

Dacă **fixăm** un $xy \notin T_{min}$, atunci cum determinăm $uv \in T_{min}$ a.î

 T_{min} – uv +xy să fie arbore și w(xy)–w(uv) minim cu această proprietate?

uv este muchia de cost maxim din ciclul închis de xy în T_{min}, adică muchia de cost maxim din lanțul de la x la y din T_{min}

Idee algoritm:

Fie T unicul apcm

Se determină xy pentru care se atinge minimul:

$$min\{ w(xy) - w(max[x,y]) \mid xy \notin T \}$$

unde

max[x,y] = muchia maximă din lanțul de la x la y din T

$$T_s = T + xy - max[x,y]$$

Algoritm second best

- 1. Determinăm T apcm în G
- 2. Pentru orice $x, y \in T$ determină:

max[x,y] = muchia maximă din lanțul de la x la y din T

3. Determină o muchie xy ∉ T cu

$$w(x,y) - w(max[x,y])$$
 minim

4.
$$T_s = T + xy - max[x,y]$$

Cum determinăm max[s,x] pentru orice s,x in T?

arbore parțial de cost minim

X	1	2	3	4	5	6	7	8
max[1,x]								
max[2,x]								

Cum determinăm max[s,x] pentru orice s,x in T?

arbore parțial de cost minim

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2) 4	(4,3) 11	(1,4)	(4,3) 11	(7 , 6)	(1,7) 1	(1 , 8)
max[2,x]	(2,4)	0	(3,4) 11	(2,4)	(3,4) 11	(2,4)	(2,4)	(1 , 8)

Determinare max[s,x] pentru orice s,x in T

Pentru s fixat – parcurgere din s

Determinare max[s,x] pentru orice s,x în T

Pentru s fixat - **parcurgere din s**, actualizând pentru un vârf y descoperit din x max[s,y] astfel:

$$\max[s,y] = \begin{cases} xy, & \text{dacă } w(x,y) > w(\max[s,x]) \\ \max[s,x], & \text{altfel} \end{cases}$$

arbore parțial de cost minim

arbore parțial de cost minim

Calculăm max[1, x] folosind BF(1)

arbore parțial de cost minim

X	1	2	3	4	5	6	7	8
max[1,x] d	0							

 $\max[1,4] = \max\{ w(1,4) , \max[1,1] \} \Rightarrow (1,4)$

X	1	2	3	4	5	6	7	8
max[1,x] d	0			(1,4)				

$$\max[1,7] = \max\{ w(1,7) , \max[1,1] \} \Rightarrow (1,7)$$

X	1	2	3	4	5	6	7	8
max[1,x]	0			(1,4)			(1,7)	
				2			1	

 $\max[1,8] = \max\{ w(1,8) , \max[1,1] \} \Rightarrow (1,8)$

X	1	2	3	4	5	6	7	8
max[1,x]	0			(1,4)			(1,7)	(1,8)
				2			1	6

$$\max[1,2] = \max\{ w(4,2) , \max[1,4] \} \Rightarrow (4,2)$$

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)		(1,4)			(1,7)	(1,8)
		4		2			1	6

$$\max[1,3] = \max\{ w(4,3) , \max[1,4] \} \Rightarrow (4,3)$$

X	1	2	3	4	5	6	7	8
max[1,x] d	0	(4,2)	(4,3) 11	(1,4)			(1,7) 1	(1,8) 6

X	1	2	3	4	5	6	7	8
max[1,x] d	0	(4,2)	(4,3) 11	(1,4)		(7,6)	(1,7) 1	(1,8) 6

 $\max[1,5] = \max\{ w(3,5) , \max[1,3] \} = \max[1,3] \Rightarrow (4,3)$

X	1	2	3	4	5	6	7	8
max[1,x] d	0	(4,2) 4	(4,3) 11	(1,4) 2	(4,3) 11	(7 , 6)	(1,7) 1	(1 , 8)

arbore parțial de cost minim

Calculăm max[2, x] folosind BF(2)

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

Considerăm pe rând muchiile care nu sunt în apcm:

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

(2,6):

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

(2,6): w(2,6) - w(max[2,6]) = w(2,6) - w(2,4) = 10 - 4 = 6

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

$$(2,6)$$
: $w(2,6) - w(max[2,6]) = w(2,6) - w(2,4) = 10 - 4 = 6$

$$(1,2)$$
: $w(1,2) - w(max[1,2]) = w(1,2) - w(2,4) = 12 - 4 = 8$

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

$$(2,6)$$
: $w(2,6) - w(max[2,6]) = w(2,6) - w(2,4) = 10 - 4 = 6$

$$(1,2)$$
: $w(1,2) - w(max[1,2]) = w(1,2) - w(2,4) = 12 - 4 = 8$

$$(1,5)$$
: $w(1,5) - w(max[1,5]) = w(1,5) - w(4,3) = 13 - 11 = 2$

X	1	2	3	4	5	6	7	8
max[1,x]	0	(4,2)	(4,3)	(1,4)	(4,3)	(7 , 6)	(1,7)	(1,8)
max[2,x]	(2,4)	0	(3,4)	(2,4)	(3,4)	(2,4)	(2,4)	(1,8)

$$(2,6)$$
: $w(2,6) - w(max[2,6]) = w(2,6) - w(2,4) = 10 - 4 = 6$

$$(1,2)$$
: $w(1,2) - w(max[1,2]) = w(1,2) - w(2,4) = 12 - 4 = 8$

$$(1,5)$$
: $w(1,5) - w(max[1,5]) = w(1,5) - w(4,3) = 13 - 11 = 2$

$$=>$$
 Second best = $T_{min} - max[1,5] + (1,5) = T_{min} - (3,4) + (1,5)$

Algoritm second best

- 1. Determinăm T apcm în G
- 2. Pentru orice x, $y \in T$ determină:

max[x,y] = muchia maximă din lanțul de la x la y din T

Determină o muchie xy ∉ T cu
w(x,y) - w(max[x,y]) minim

4.
$$T_s = T + xy - max[x,y]$$

Complexitate?

Algoritm second best

- 1. Determinăm T apcm în G
- 2. Pentru orice x, $y \in T$ determină:

max[x,y] = muchia maximă din lanțul de la x la y din T

3. Determină o muchie xy ∉ T cu

$$w(x,y) - w(max[x,y])$$
 minim

4.
$$T_s = T + xy - max[x,y]$$

Complexitate O(n2) - cu varianta descrisă la pasul 3

Alte idei pentru pasul 3?