ICML 2013 Whale Challenge Method Documentation

Yun-Chiao Lee and Pei-Hao Su

(Big thanks to Sz-Rung Siang and Po-Wei

Chou for their help)

Foreword

- We survey and found the key factor of Kaggle winner last year is Template Matching!
- Therefore we modified his released code to fit our data
- Surprisingly, the winner of the last year win this year's ICML whale challenge again with same methods and more positive template
- Small conclusion: image processing methods are useful for whale sound detection!

Whale Sound detection

- Feature extraction:
 - Template Matching
- Classification Algorithm:
 - Gradient Boosting Classifier
- Language:
 - python
- Tool:
 - opencv package, scikit learn package

Spectrogram

params = {'NFFT':256, 'Fs':2000, 'noverlap':192}

Clip without whale sound

Clip with whale sound

Preprocessing

- Cut margin
 - We choose clip with whale sound and cut the margin of positive part within spectrogram manually (blue part)
 - Totally 30 manual templates

 Contrast enhancement on each spectrogram to make sound part more explicit

Template Matching

- Up-sweep trajectory in spectrogram
 - Calculate Max correlation and find X,Y location centTime, bwTime, skewTime, tvTime (centroid, width, skew, and total variation)...
- We found that most whale sounds spread at frequency between 100-250Hz
- Some audio clips had very low SNR ratio

Classifier

- 4-fold cross validation
- We tried several machine learning classifiers
 - 3-Nearest Neighbors
 - Linear SVM (C=0.025)
 - RBF SVM (gamma=2,C=1)
 - Decision Tree (depth=5)
 - Random Forest(max_depth=5, n_estimators=10, max_features=1)
 - Naive Bayes
 - LDA
 - QDA
 - Gradient Boosting (ensemble of 15000 decision tree)
- Gradient Boosting yields the best result!