METEOROLOGICAL DATA REPORT MEROBEE NASA 4.159 GG (15 July 1966)

BY

MARJORIE MCLARDIE HOIDALE

\mathcal{O}
,

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

E	C		\mathbb{M}	
UNITED	STATES	ARMY	ELECTRONICS	COMMAND

GPO PRICE	\$
CFSTI PRICE(S)	\$
	# 2 00

Hard copy	(HC) _	# 2.00
Microfiche		50
MICIONO	(1411 /	

ff 653 July 65

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

METEOROLOGICAL DATA REPORT

AEROBEE NASA 4.159 GG (15 July 1966)

Ву

Marjorie McLardie Hoidale

DR-56

August 1966

DA Task IV650212A127-02

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this document is unlimited.

ABSTRACT

Meteorological data gathered for the launching of Aerobee NASA 4.159 GG are presented for the National Aeronautics and Space Administration and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

PRECEDING PAGE BLANK NOT FILMED.

CONTENTS

		PAGE
ABSTRAC	T	iii
INTRODU	CTION	1
DISCUSS	ION	1
REFEREN	CES	2
TABLES		
I.	Theoretical Rocket Performance Values	3
II.	Ballistic Factors	4
III.	Anemometer-Measured Wind Speed and Direction	5
IV.	Pilot-Balloon-Measured Wind Data	6
v.	Upper Air Data (4,000-20,000 Feet)	9
VI.	Upper Air Data (4,000-100,000 Feet)	9
VII.	Computer-Calculated Upper Air Data (Release Time: 1615 MST)	10
VIII.	Computer-Calculated Upper Air Data (Release Time: 2232 MST)	17
IX.	Impact Prediction Data	24
X.	Actual and Predicted Launch Data	25
XI.	Impact Data	25

PRECEDING PAGE BLANK NOT FILMED.

INTRODUCTION

Aerobee NASA 4.159 GG was launched by Naval Ordnance Missile Test Facility personnel, White Sands Missile Range (WSMR), New Mexico, at 2231 hours MST, 15 July 1966.

Meteorological data used in conjunction with theoretical calculations to predict rocket impact were collected by the Meteorological Support Division, Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico. The Ballistic Meteorologists for this firing were Marjorie M. Hoidale and Ivan I. Layton.

DISCUSSION

Wind data for the first 4,000 feet above the surface were obtained from a Double-Theodolite Wind Velocity Computer System (1). Balloons released at the launch site were observed and tracked from a 2,000-foot baseline. Continuous angular data were transmitted from two electrically instrumented theodolites to a computer where the data were reduced to obtain a velocity-vs-height relationship. The computer output drives two recorders which trace north-south and east-west components on a specially designed wind velocity computer ballistic chart. It is possible to read directly from the chart both the mean wind component values and the mean ballistic wind components in the various ballistic layers.

Temperature, pressure and humidity data, along with upper wind data from 4,000 to approximately 100,000 feet above the surface, were obtained from standard rawinsonde operations.

Mean wind component values in each ballistic zone were determined from vertical cross sections by equal-area method.

Data appearing in Tables IX, X and XI, are based on the L. D. Duncan (2) theory. The "Predicted Impact" includes, when applicable, an adjustment of impact based on the experience of the Ballistic Meteorologists and the forecast of firing time wind conditions.

REFERENCES

- 1. "Double-Theodolite Wind Velocity Computer", UNCLASSIFIED, U. S. Army Signal Research and Development Laboratory, Fort Monmouth, New Jersey, July 1959.
- 2. Duncan, L. D. and R. J. Ensey, November 1964: "Six Degree of Freedom Digital Simulation Model for Unguided Fin-Stabilized Rockets". ERDA-196, Environmental Sciences Directorate, United States Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico.

PAYLOAD	Includes Nosecone Weight	341.5	Pounds
moanda darri mruf	Cross	3,21	Miles/MPH
ONII WIND EFFECT	Range	3.78	M1les/MPH
TOWER TILT EFFECT		16,99	Miles/Degree
	Velocity	5,262	Feet/Second
BURNOUT	Altitude	120,120	Feet MSL
	Time	51,8	Seconds
YARG	Altitude	105.5	Miles MSL
FEAN	Time	217.0	Seconds
TOTAL FLIGHT TIME		7'9017	Seconds
CORIOLIS EFFECT	West	52*11	Miles

TABLE I. THEORETICAL ROCKET PERFORMANCE VALUES AEROBEE NASA 4.159 GG

In empirical correction (85 percent of the total) has been made to the cross-unit wind effect. This correction was determined from statistical studies. *

BALLISTIC FACTOR	600°	900.	.012	010,	600.	200.	.008	,010	
LAYERS IN FEET ABOVE GROUND	35000- 40000	45000- 45000	72000- 20000	20000- 60000	00002 -00009	70000- 80000	80000- 90000	90000-100006	
BALLISTIC FACTOR	610.	910.	.031	%00.	950.	.033	.023	.017	, O14
LAYERS IN FEET ABOVE GROUND	3000- 3500	3500- 4000	7000- 2000	2000-10000	10000-15000	15000-20000	20000-25000	25000-30000	30000-35000
BALLISTIC FACTOR	.185	.115	001.	.062	.053	.031	.025	.029	.023
LAYERS IN FEET ABOVE GROUND	143- 250	250- 400	7009 -007	008 -009	800-1200	1200-1600	1600-2000	2000-2500	2500-3000

TABLE II. BALLISTIC FACTORS
AEROBEE NASA 4.159 GG

אבד קוארייוי	ANEMOMETER	ANEMOMETER-MEASURED WIND
MINUTES	Speed (Knots)	Direction (Degrees)
T - 15	15.0	841
T - 10	14.5	150
T - 5	14.0	150
T - Time	0.11	150
T + 5	14.0	154
T + 10	13.5	153
T + 15	13.5	152

TABLE III. ANEWOMETER-MEASURED WIND SPEED AND DIRECTION AEROBEE NASA 4.159 GG

NOTE: Wind speeds and directions are 5-minute averages centered at indicated times.

				MEAN W	IND COM	MEAN WIND COMPONENTS		IN MILES PER HOUR	HOUR			
LAYERS IN FEET ABOVE	1 1825 MST	1 MST	2 1842 MST	2 MST	3 1912 MST	3 MST	4 1932 MST	4 MST	1952	5 1952 MST	2012	6 2012 MST
GROUND	N-S	E-W	N-S	E-W	N-S	M-3	N-S	E-W	N-S	E-W	S-N	M-3
143- 250	30.01	30.με	6.03	17.0E	7.05	11,0E	7.08	12.0E	80.9	9.0E	8.05	11,0E
250- 400	0,11	16.0	2,0	19.0	5.0	17.0	5.0	14.0	7.0	16.0	7.0	19.0
009 -007	5.0	19.0	0.9	0.91	8,0	21.0	5.0	16.0	7.0	19.0	11.0	21.0
008 -009	0.9	18.0	8,0	15.0	3.0	20.0	10,0	19.0	10.0	21.0	11.0	21.0
800-1200	0.9	19.0	7.0	0.91	10.0	19.0	14.0	20.0	12.0	22.0	14.0	26.0
1200-1600	12.0	20.0	8,0	22.0	10.0	22.0	11.0	21,0	12.0	22.0	13.0	22.0
1600-2000	9.0	19.0	5.0	15.0	10.01	20.0	10,0	22.0	12.0	22.0	12.0	25.0
2000-2500	8.0	21.0	7.0	16.0	7.0	19.0	11.0	21.0	10.0	22.0	8.0	21.0
2500-3000	10.0	22.0	10.0	18.0	14.0	22,0	11.0	21.0	10.0	21.0	10.0	22.0
3000-3500	8,0	22.0	15.0	29.0	0.6	10.0	10.0	21.0	9.0	20.0	0.9	20.0
3500-4000	10.0	19.0	22.0	37.0	8.0	24.0	8.0	19.0	6.5	20.0	0.9	22.0

TABLE IV. PILOT-BALLOON-MEASURED WIND DATA (DOUBLE-THEODOLITE METHOD)
AEROBEE NASA 4.159 GG

T A VED C				MEAN W.	IND COM	MEAN WIND COMPONENTS	IN MILES	PER	HOUR			
FEET ABOVE	2027	7 2027 MST	2038	8 2038 MST	2050	9 2050 MST	10 2102 MST	O MST	11 2107	11 2107 MST	21.18	12 8 MST
GROUND	N-S	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	E-W
143- 250	9.03	10,0E	8.03	11,0E	9.08	10,0E	10,05	11.0E	10,05	10.0E	10.08	11.0E
250- 400	10.0	20.0	0.9	18.0	7.0	16.0	0.9	15.0	8.0	16.0	10.0	18.0
009 -00η	8.0	24.0	10.0	24.0	10.0	24.0	0.9	20.0	12.0	21.0	12.0	24.0
008 -009	14.0	56.0	15.0	26.0	15.0	23.0	15.0	21.0	15.0	26.0	0.91	26.0
800-1200	14.0	24.0	14.0	25.0	12.0	24.0	10.01	22.0	10.0	26.0	16.0	28.0
1200-1600	10.0	24.0	10.0	26.0	13.0	24.0	10.0	21.0	12.0	28.0	14.0	28.0
1600-2000	10.0	24.0	7.0	22.0	11.0	25.0	12.0	26.0	10.0	26.0	11.0	26.0
2000-2500	0.0.	25.0	10.0	23.0	10.0	23.0	7.0	20.0	11.0	24.0	10.0	24.0
2500-3000	1.0.0	22.0	8,0	20.0	8,0	21.0	0.9	21.0	12,0	22.0	0.6	21.0
3000-3500	8.0	18.0	8.0	19.0	10.01	20.0	5.0	20.0	8.0	20.0	11.0	20.0
3500-4000	1.0.0	19.0	12.0	16.0	0,11	18.0	0.9	18.0	10.0	20.0	10.0	18.0

TABLE IV. PILOT-BALLOON-MEASURED WIND DATA (Cont) (DOUBLE-THEODOLITE METHOD)
AEROBEE NASA 4.159 GG

		٠			MEAN W	IND COM	MEAN WIND COMPONENTS IN MILES	IN MIL	es per hour	HOUR				
LAYERS IN FEET ABOVE	13 21.30 MST	3 MST	11t 21t0	th Silio Mst	15 2156 MST	MST	16 2207 MST	MST	17 2218 MST	7 MST	18 2225 MST	8 MST	19 2235 MST) MST
GROUND	N-S	E-W	S-N	E-W	S-N	E-W	N-S	E-W	N-S	E-W	N-S	E-W	N-S	E-W
143- 250	10.05	13.0E	20,11	10.0E	14.0S	11.0E	10,05	12.0E	8.05	8.0E	12.08	13.0E	11.05	9.0E
250- 400	11.0	17.0	11.0	18.0	15.0	18.0	12.0	19.0	10.0	17.0	15.0	19.0	11.0	18.0
7009 -007	11.0	21.0	14.0	23.0	16.0	23.0	16.0	21.0	13.0	23.0	19.0	25.0	14.0	21.0
008 -009	16.0	26.0	18,0	26.0	21.0	26.0	20.0	26.0	18.0	27.0	19.0	28.0	14.0	26.0
800-1200	17.0	28.0	0.41	29.0	17.0	30.0	19.0	29.0	20.02	29.0	19.0	29.0	19.0	26.0
1200-1600	15.0	28.0	15.0	34.0	16. 0	24.0	13.0	28.0	11.0	29.0	13.0	29.0	20.0	25.0
1600-2000	0.11	25.0	12.0	27.0	0.41	28.0	٥٠٩٢	28.0	14.0	29.0	13.0	28.0	16.0	24.0
2000-2500	9.0	25.0	11.0	25.0	14.0	25.0	11.0	26.0	11.0	28.0	11.0	25.0	12.0	26.0
2500-3000	0.6	21.0	10.0	0,0	8.0	० मट	8.0	24.0	11.0	19.0	10.0	22.0	0.6	18.0
3000-3500	0.6	18.0	10.0	21.0	7.0	20.0	8.0	21.0	8.0	22.0	Σ	Σ	11.0	17.0
3500-4000	9.0	15.0	10.0	15.0	8.0	0,41	*	Σ	8.0	20.0	Σ	Σ	10.0	19.0

TABLE IV. PILOT-BALLOON-MEASURED WIND DATA (Cont) (DOUBLE-THEODOLITE METHOD)
AEROBEE NASA 4.159 GG

*M = Missing Data

LAYERS IN	MEA	N WIND IN K	MEAN WIND COMPONENTS IN KNOTS	NTS
FEET ABOVE GROUND	1 2020 MST	I MST	ρίτε	2 2140 MST
	N-S	E-W	N-S	E-W
1,000 5000	so*9	16.0E	so*†	35 ' 01
5000-10000	2,0N	12,0	4.5N	12.0
10000-15000	0.0	17.0	3.0	17.5
15000 20000	2.5N	14.0	3.08	3.08 17.5

Table V. upper air nata (4,000-20,000 ft) aerobee nasa 4.159 gg

100		MEAN WIND		COMPONENTS	IN KNOTS	TIS
LAYERS IN				*		7
ABOVE	1615 MST	MST	1810	1810 MST	2232	MST
CHOOND	N-S	E-W	S-N	E-W	N-S	E-W
1,000- 5000	1,55	12.0E	5,05	14.0E	5,53	15.0E
5000- 10000	0.0	15.0	2.5N	15.0	No.4	11.5
10000- 15000	2,0N	12.0	0.0	15.0	3.0	17.5
15000- 20000	1.5	0.6	2,5N	13.0	7.08	19.0
20000- 25000	13.08	7.5	12.05	4.5E	11.0	13.0
25000- 30000	18.5	3.5W	18.0	0.0	11.5	1.0
30000- 35000	17.5	3.0E	17.5	3.0E	17.0	0.0
35000- 40000	13.0	0.0	15.0	2.5	16.5	3.0E
10000- 15000	14.0	0.0	16.0	2.5E	20.5	3.5
72000- 20000	15.0	2.5W	11.5	MO.1	16.0	2.5
20000- 60000	0.0	12,0E	2.0	12,0E	4.5	12.0
00002 -00009	0.0	19.0	3.5N	20.5	3.5k	19.5
70000- 80000	0.0	13.0	5.5	32.5	0.0	36.0
80000- 90000	80.9	33.5	0.0	34.0	0.0	33.0
90000-100000	0.0	13.0	12,0N	33.0	BALLOON	BURST

TABLE VI. UPPER AIR DATA (4,000-100,000 FT) AEROBEE NASA 4,159 GG

* Rawin, telecompute data not available,

UPPER AIR DATA 3919606 WHITE SANDS SITE TABLE VII

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 1615 HRS MST ASCENSION NO. 533

INDEX OF REFRACTION	027	00027	00027	0026	00026	0025	0024	0024	0024	0023	.00023	.00023	.00023	0022	.00022	.00022	.00022	0021	0021	.00020	.00019	0018	00018	00011	0017	0017	00016	016	1.000161	015
TA SPEED KNOTS	14.8	14.8	•		15.8	•				15.1			3	12.9	•	•	4.	•	ŝ	•	•		•	•	•	•		٠	13.1	
WIND DA DIRECTION DEGREES(TN)	00	00	01.	03.		.90	08.	10.	10.	10.	10.	10.	07.	03.	-	0	0	2.	5.	5	-	•	2.	2.	6	4.	÷,	7	95.7	
SPEED OF SOUND KNOTS	86.	86.	3.	81.	7	2.	75.	73.	71.	70.	68.	66.	65.	3.	61.	.09	58.	57.	55.	54.	53.	52.	51.	50.	49.	47.	46.	45.	4.449	4
DENSITY SGM/CUBIC	85.	85.	5	64.	•	4.	5	3	2.	0	6	7.	• 9	5	4	*	8		•	80	• 9	4.	3	2.	·	6	æ	ф Ф	687.5	• 9
RELAÍIVE HUMIDITY PERCENT	•	•	•	•	7.	7	'	6	•	4.	•	å	2.	• 9	-	5.	6	2.	6	ċ		2.	•	•	•	•	•	•	25.9	Ŋ
ERATURE DEWPOINT CENTIGRADE	3	3	11.7	ò	8.9		•	•	•	•	•	•	•	4.5		•		•	•	•	•	•	•	-12.4	•	•	5	•	-16.9	•
TEMPEI AIR I DEGREES CI	Š	5		-		-	9	4.	3	1:	0	φ	7.	5	4.	2.	-	•	•	•	•	•	•	•	•	•	•	•		9.0-
PRESSURE MILLIBARS	78.	78.	63.	48.	34.	20.	06.	92.	78.	65.	51.	38.	25.	12.	00	87.	75.	63.	51.	39.	27.	16.	04.	93.	82.	71.	61.	50.	0	30.
GEOMETRIC ALTITUDE MSL FEET	989.	.000	500.	.000	500.	.000	500.	.000	500.	.000	500.	.000	9500.	.0000	0500.	1000.	1500.	2000.	2500.	3000.	3500.	4000	4500.	5000.	5500.	6000	6500.	7000.	7500	0

UPPER AIR DATA 3919606 WHITE SANDS SITE TABLE VII (Cont)

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 1615 HRS NST ASCENSION NO. 533

UPPER AIR DATA 3919606 WHITE SANDS SITE TABLE VII (Cont)

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 1615 HRS MST ASCENSION NO. 533

INDEX	9.	REFRACTION
4 H	SPEED	KNOTS
WIND DATA	DIRECTION	DEGREES(TN)
SPEED OF	GNUOS :	KNOTS
DENSITY	GM/CUBIC	r METER
RELATIVE DENSITY	HUMIDITY GM/CUBIC	PERCENT
TEMPERATURE	DEWPOINT	DEGREES CENTIGRADE
TEMP	AIR	DEGREES
PRESSURE		MILLIBARS
GEOMETRIC	ALTITUDE	MSL FEET

ALTITUDE	6 6 8		DEWPOINT	HUMIDITY	CM/CUBIC	SOUND	DIRECTION	SPEED	0F
T TI	MILLIBAKS	^	CENTIGRADE	PERCENI		S I ON S	N L N		KELKACI IUN
3500.	283.	6	•	5	11.	02.	87.	•	60
4000	277.	4	1.7.4-		04.	01.	84.	•	60000
4500.	271.	N.		5.	98.	.66	80.	•	00008
5000.	265.	•	1.64-	25.9	91.	98.	75.	•	8
5500.	259.	8	2.	1.	85.	96	70.	•	80000
6000	253.	9	•	14.4*	78.	95.	.99		0000
6500.	248.	0	9	7.1 **	72.	93.	63.	•	80000
7000	242.	•	•0	++ •0-	.99	92.	61.	•	0000
7500.	237.	•	•0	** • 0-	59.	90.	60.	•	0000
3000.	231.	•			52.	89.	61.		0000
3500.	226.		•	-0 - **	46.	87.	63.		0000
.0006	221.	•	•0	++ • 0-	40.	86.	67.	•	0000
39500.	216.	7	•	-0. **	34.	84.	71.	•	0000
.0000	211.	8	•0	++ •0-	28.	83.	75.	•	20000
500.	206.	ċ	•	++ • 0-	22.	81.	78.	•	0000
000	201.	-	•	++ • 0-	16.	8	81.	•	7
1500.	196.	52.	•0	** • 0-	10.	78.	84.	•	90000
2000.	192.	ě		++ •0-	04.	77.	85.	•	90000
2500.	187.	*	0.	** • 0-	.66	75.	84.	•	90000
43000.0	183.5	-55.8	0.	** • 0-	294.1	574.1	182.2	13.0	1.000065
3500.	179.	•	•0	++ • 0-	88.	72.	81.	•	90000
4000	175.	58.		** • 0-	83.	~	79.		9
4500.	171.	9		** · 0-	78.	.69	79.	•	90000
5000	167.	Ö		+* • 0-	73.	68	78.	•	9
5500.	163.	•	•	++ • 0-	68.	9	7.	14.6	90000
6000	159.			** • 0-	62.	65.	œ	•	0000
6500	155.	9		** • 0-	57.	. 49	æ	•	ر د
7000	151.	•		** • 0-	52.	Ô	6	•	S
500	147	S		-0. **	47.	561.4		14.3	0000
8000	144.	9	0	++ • 0-	42.	Ø	5	•	S
)							

** AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

UPPER AIR DATA 3919606 WHITE SANDS SITE

TABLE VII (Cont)

WSTM SITE COURDINATES E 488,580 FEET N 185,045 FEET

INDEX OF REFRACTION	000	00005	4000	00004	*	4 6	00000	.00003	3	.0000	ന ന	.00003	•00003	.00002	(1)	.0000	.0000	.0000	.0000	NI.
TA SPEED KNOTS	14.6 14.8 15.0	• •		• •	13.3	• •	•		•	•				15.8	•	17.5	٠	17.2	•	15.4
WIND DATA	189.8 192.6 195.3	97.	96. 92.	88. 82.	72.	55.	41.	38.	34.	33.	ω m	17.	.60	01.	2	03	05.	08.	11.	14.
SOUND KNOTS		55	51. 50.	50.	51.	51.	52.	54.	56.	57.	50 50 50	.09	62.	63.	64.	62.	65.	9	65.	9
DENSITY S GM/CUBIC METER	237.7 232.8 227.9	23.	09.	99.	89. 84.	79.	69	49	50.00	50.	46.	38.	34.	30.	•	23.			*	1111.7
RELATIVE HUMIDITY PERCENT	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *	***	* * * 0-	* * * ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °		* * *			* * *	** • 0-	** *0-				** • 0-	-0. **	** • 0-	** • 0-
TEMPIERATURE R DEWPOINT EES CENTIGRADE	000	000		••0	• •	000	• •	0	• •	•0	• •	. 0	0	•0	•	•	•	•	•0	•
TEMP AIR Degrees	-67.2 -68.1 -69.0	69.	30.			2.	71.	•	69.		~ 9	3	-64.8	4.	ښ •	5.	9	•	•	-62.5
PRESSURE MILLIBARS	970	30	20°.		08.		986	•	, ,	ф ф	6 .	•		•	76.4	•	?	40.0	6	•
GEOMETRIC ALTITUDE MSL FEET	8500. 9000. 9500.	000	1500. 2000.	2500.	53500. 54000.	4500.	5500	60000	7000.	7500.	8000. 8500.	9000	9500.	.0000	0500.	1000.	1500.	2000.	2500°	0.00069

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *****

MST	
HRS	
1615	m
	NO. 533
5 JULY	A SC ENS I ON
	JULY 66 1615 HRS

UPPER AIR DATA 3919606 WHITE SANDS SITE TABLE VII (Cont)

INDEX OF REFRACTION	000020000000000000000000000000000000000	.00002	.00001	000001	00000000
SPEED KNOTS		7.7.8	0	10 m m 4 m r	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
WIND DAT	117.2 109.4 98.9 91.3 86.7 82.8	1000	w 0 0 0		888 87.5 87.5 86.5 86.5 89.5 89.5 89.5
SPEED OF SOUND KNOTS	565. 565. 567.	70. 71. 72.	73.	72.	573.6 573.6 577.3 581.0 581.3 581.2
DENSITY S GM/CUBIC METER	109.0 106.4 103.6 100.8 98.0 95.3	10 M M M	19.	40000	60 60 61 60 60 60 60 60 60 60 60 60 60 60 60 60
RELATIVE HUMIDITY PERCENT	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
TEMPERATURE R DEWPOINT EES CENTIGRADE		0000		000000	
TEMP AIR DEGREES	90.00	66.78	6.	75.50	- 56.6 - 58.7 - 50.3 - 50.3 - 50.3 - 50.3 - 50.3
PRESSURE MILLIBARS	65.3 662.3 61.2 58.3 58.3				940 989 997 997 999 999 999 999
GEOMETRIC ALTITUDE MSL FEET		7000. 7500. 8000.	9000. 9500. 0000.	1000. 2000. 2500.	

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 1615 HRS 4ST ASCENSION NO. 533

UPPER AIR DATA 3919606 WHITE SANDS SITE TABLE VII (Cont)

GEOMETRIC ALTITUDE MSL FEET	PRESSURE MILLIBARS	TEMP AIR DEGREES	ERATURE DEWPOINT CENTIGRADE	RELATIVE HUMIDITY PERCENT	DENSITY GM/CUBIC METER	SPEED OF SOUND KNOTS	WIND DATA DIRECTION DEGREES(IN)	SPEED KNOTS	INDEX OF REFRACTION
	2°		0	•	50.4	81.	87.7	ů.	001
0006	-	0	0		ŝ	80.	ģ	2.	_
9500.	0	°	•0	** °0-	ထိ	80.	•	2。	_
.0000	ô	•	•	** ° 0-	•	80.	87.1	2,	
0500.	6	•	°	** 0-	ŝ	80.	æ	2.	_
1000.	ထိ	ô	0.	-0° **	Š	80.	;	G	_
1500.	å	ċ	°	** °O-	Š	80.	7	a,	-
2000.	۲.	-	•	** • 0	å	80.	7	4.	
2500	26.8	-51.0	•0	++ °0-	42.0	580.3	87.7	34.5	1.000009
3000°	\$.	•0	** • 0-	-	80.	å	4.	
3500°	5.	ô	•0	** °0-	ô	80.	6	4°	
4000	5.	ô	°	-O· ##	9	81.	6	ŝ	
84500.	4	6	0	** 0-	å	81.	•	•	$\overline{}$
5000.	'n	•	•0	++ 00-	7	82.	•	é	\sim
5500.	'n	å	၀	-0° ##	• 9	83.	2	÷	
0009	2.	å	0°	** ° 0-	Š	84.	ä	•	\sim
6500°	2.	~	•0	** 0-	4°	85.		•	\sim
7000.	-		0	++ 0-	33.4	86.	8.46	7	\sim
7500.	-	•	•0	++ • 0-	2°	87.	2	7	$\overline{}$
8000°	ċ	7.44-	0°	** • 0	ہ استر	88.	6.46	70	\sim
8500°	ô	•	o	-0。**	ċ	90°	•	•	
9000.	6	9	°	++ 0 0-	o	91.	•	5	
9500°	6	•	°	-0。 **	ŝ	92.	93.1	3	00
0000	6	-41.8	°	++ 0-	8	92.	5	2°	0000
0500.	æ	-41.9	0°	-O. **	8	92.	91.1	-	
1000.	ထိ	•	°	** • 0-	-	92.	91.6	6	0000
1500.	7	•	0	++ •0-	•	92.	ż	&	00
2000.	•		ô		• 9	92.	95.6	• 9	
2500°		•	•	++ • 0-	Š	92.	5	Ś	0000
۰	16.6	-45.0	°0	-0. **	2°	92.	3.	*	000

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. ##

STATION ALTITUDE 3989.0 FEET MSL	3919606	WSTM SITE COORDINATES
15 JULY 66 1615 HRS MST	WHITE SANDS SITE	E 488,580 FEET
ASCENSION NO. 533	TABLE VII (Cont)	N 185,045 FEET

UPPER AIR DATA

INDEX	KNOTS REFRACTION	24.5 1.000005	30.0 1.000005	35.6 1.000005	34.2 1.000005	28.3 1.000005	25.9 1.000005	26.8 1.000005	26.0 1.000005	24.0 1.000005	1.000004	1.000004	1.000004
WIND DATA	=	6.06	77.3	63.7	65.5	77.2	83.0	83.6	97.6	121.2			
SPEED OF	KNOTS	592.2	592.5	592.8	593.1	593.4	593.7	594.0	594.3	594.7	595.0	595.3	9.569
DENSITY S	METER	24.5	23.9	23.4	22.8	22.3	21.8	21.3	20.8	20.3	19.9	19.4	19.0
RELATIVE	PERCENT	** •0-	++ • 0-	++ • 0-	++ ·0-	++ •0-	-0 **	++ •0-	+* • 0-	++ • 0-	++ •0-	** · O-	-0. **
TEMPERATURE R DEWPOINT	CENTIGRADE	•	•	•	0.	•	•	•0	•	•	•	•	•0
TEMP	ES	-41.8	-41.6	-41.4	-41.1	6.04-	-40.6	-40.4	-40.2	-39.9	-39.7	-39.4	-39.2
PRESSURE	MILLIBARS	16.3	15.9	15.6	15.2	14.9	14.6	14.2	13.9	13.6	13.3	13.0	12.7
GEOMETRIC ALTITUDE	MSL FEET	93500.0	0.00046	94500.0	0.00056	95500.0	0.00096	96500.0	0.00076	97500.0	0.00086	98500.0	0.00066

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

)
STATION ALTITUDE 3989.0 FEET MSL	
15 JULY 66 2232 HRS MST	Ī
ASCENSION NO. 537	

UPPER AIR DATA 3919607 WHITE SANDS SITE TABLE VIII

INDEX OF REFRACTION	.0002	.00028	•00028	.00028	.00027	.00027	.00026	•00026	.00025	.00025	.00024	.00024	.00023	.00023	.00022	.00022	.00022	.00022	.00021	.00021	.00021	.00020	.00019	.00018	.00017	.00017	.00017	.00016	0016	.00016
TA SPEED KNOTS	•	•	•	ċ	4.	8	22.8	-	0	7.	5.	3	-	•	•		ċ		4	ŝ	•	•	•	•	•	•	•	7	~	•
WIND DA DIRECTION DEGREES(TN)	80.	79.	67.	55.	42.	30.	8	16.	15.	14.	12.	10.	05.	2	3	3	2.	4	6	7	7.	4.	•	-	•	•	2.	•	8.76	8
PEED OF SOUND KNOTS	76.	76.	•	77.	77.	•	674.8	3.	-	•	α	•	65.	•	62.	-	59.	58.	56.	•	53.	52.	50.	•64	48.	47.	45.	4	42.	641.3
DENSITY S GM/CUBIC METER	17.	017.	98.	.62	62.	48.	9	24.	13.	01.	.06	78.	67.	56.	43.	31.	20.	10.	00	89.	78.	. 19	56.	45.	34.	22.	12.	-	691.8	5
RELATIVE HUMIDITY PERCENT	•	•	-	•	•	ı.	42.3	3	4	Š	•	7	8	•	•	-	2.	3.	6	4	7	-	5	7	0	0	ċ	0	39.6	
ERATURE DEWPOINT CENTIGRADE	2	5	2	3	3.	2.	11.6	•	•	•	•	•	•		•		4.5		•		•	•	•	•	•	•	•	-11.8	-13.1	-14.4
TEMPI AIR DEGREES	•	•	•	-	7	•	•	3	2.	-	9	8	-	• 9	5	4	2.		•	•	•	•	•	•	•	•		•	-1.0	•
PRESSURE MILLIBARS	80.	80.	65.	50.	36.	21.	07.	93.	79.	.99	52.	39.	26.	14.	01.	88.	76.	64.	52.	40.	28.	17.	05.	94.	83.	72.	62.	51.	541.2	31.
GEOMETRIC ALTITUDE MSL FEET	989.	.000	500.	.000	500.	.000	500°	.000	500.	.000	500.	9000	500.	.0000	0500.	1000.	1500.	2000.	2500.	3000.	3500.	4000	4500.	5000.	5500.	6000	6500.	7000.	7500	000

w	FEET	ļ
SITE COURDIN	E 488,580 FE	
MIST		

STATION AL 15 JULY 66 ASCENSION	TITUDE 39.	•0 FEE 32 HRS	T MSL MST	1 3 El	3919607 WHITE SANDS TABLE VIII (C	S SITE Cont)		WSTM SITE	E COORDINATES 488,580 FEET 185,045 FEET
GEOMETRIC	PRESSIIRE	TFIED	FRATURE	RFI ATIVE	DENSITY	SPEED OF	AC CNIW	TΔ	INDEX
ITUDE		AIR	DEWPOINT	HUMIDITY	GM/CUBIC	SOUND	DIRECTION	SPEED	0F
MSL FEET	MILLIBARS	DEGREES	CENTIGRADE	PERCENT		KNOTS	GREESITN	KNOTS	REFRACTION
0	20.			38.4	670.	4	7	18.6	15
	10	-3.7	-16.1	37.6	659.6	-	α	18.9	100
ċ	501.0	-4.3	-16.9	6.		8	6	9.	015
20000.0	491.4	-5.0	-17.8	•	~	38.	3	•	015
ċ	481.9	-5.6	-18.6	5.	656.9	7	• 9	• 	0014
0	472.7	-6.2	-19.5		16.	Ŝ	6	21.9	001
0	m	•		3	ŷ	35.	m		014
•	454.7	-7.5	-21.2	2.	95.	34.	-	ó	013
ô	446.0	-8.2		2.	85.	34.	121.1	18.2	=3
0		-8.8		å	.92	33.	5	•	0013
0	•	-10.0	-23.9	31.3	567.3	631.9	• 9	٠	013
\Box	420.3	-11.4	-24.9	-	59.	30.	127.5	3.	1.000129
"	2	-12,7	-26.0	32.2	0	28.	6	•	2
25000.0	•	-14.1		2.	2	26.	32.	2	2
25500.C		-15.5	-28.2	3.	5	25.	36.	3	.00012
26000.0	388.0	•	-29.3	3,	•	23.	41.	•	2
ċ	•	-18.2	-30.4	34.0	519.6	621.8	3	7.	.00011
27000.0		•	-30.7	3.	6	21.	43.	•	
\circ	•		-31.1	3.	•	21.	39.	-	.00011
0	•		-31.4	33.1	ċ	20.	35.	0	.00011
28500.0	350.5	6		2.	482.1	19.	ċ.	•	0110
29000.0	343.4	-20.9	-33.3	2°	†	18.	30.	•	.00010
29500.0	336.4	-22.0	-34.4	2.	• 9	17.	36.	•	.00010
30000.0	329.5	-23.3	-35.4	2	S	15.	47.	•	.00010
30500.0	2.	4.		2.	•	14.	63.	•	.00010
ċ	_	5.	-37.5	2.	445.1	12.	11.	•	.00010
31500.0	309.5		-38.8	å	38.	10.	87.	77-7	.0000
32000.0	302.9	-28.9	-40.2	33.0	431.9	0	Ö, I	•	.0000
	296.5	-30.4	-41.6	3	25.	06.	93.	10.6	.0000
3	290.3	-32.0	-43.1	33.0	6	1.409	90•	•	200

MSL	HST	
FEET MSL	HRS	
3989.0	2232	7
TITUDE		NO. 527
STATION A	15 JULY 66	ASCENSION

UPPER AIR DATA 3919607 WHITE SANDS SITE TABLE VIII (Cont)

INDEX OF REFRACTION	1.000093	60000	900	800	800	00	.0000	0000	.0000	.0000	200	.0000	10000	.0000	.0000	•0000	•00000	•0000	•0000	•0000	900	•0000	900	900	002	305	005	200	002
TA SPEED KNOTS	10.5		•	•	•	19.7		•	•	•	4	ů	5	2	ů	4.	ŝ	•	6	-	2	2.	2	-	•	ċ	6	19.1	8
WIND DA DIRECTION DEGREES(TN)	178.3	61.	60.	•	3	æ	81.	83.	82.	80.	8	73.	67.	64.	61.	62.	64.	.69	72.	14.	14.	75.	77.	78.	16.	80.	80.		2
SOUND KNOTS	602.7	.00	98.	97.	• 96	95.	93.	92.	91.	89.	87.	86.	84.	83.	81.	.61	78.	76.	74.	73.	71.	70.	68.	. 19	65.	64.	63.	561.5	.09
DENSITY S GM/CUBIC METER	413.2	99.	92.	85.	78.	71.	64.	58.	52°	46.	40.	34.	28.	22.	17.	11.	.90	00	95.	90	84.	79.	73.	68.	63.	58.	53.	48.	44.
																	J												
RELATIVE HUMIDITY PERCENT	33.0	S	•	8	æ	37.4	•	0	3.344	++ • 0-	-0- **	*	** • 0-	** •0-	*	** •0-	•	++ • 0-	** •0-	-0- **	++ • 0-	++ •0-	-0. **	-0- **	** •0-	-0. **	-0- **	++ •0-	-0. **
ERATURE RELATIV DEWPOINT HUMIDIT CENTIGRADE PERCENT	5 33.	8 35	.4 36.	.0 38.	.8 38.	8.8 37.	9.9 36.	.6 20.7	0.2 3.3	• 0-	-0-	* • 0-	* • 0-	* • 0-	-0-	* • 0-	-0-	•0-	* • 0-	-0-	-0-	-0-	-0-	* • 0-	* • 0-	* • 0-	* • 0-	•	** •0- •0
TEMPERATURE RELATIV DEMPOINT HUMIDIT EES CENTIGRADE PERCENT	6 -44.5 33.	35.8 = 45.8 35.	6.8 -46.4 36.	7.8 -47.0 38.	8.8 -47.8 38.	9.6 -48.8 37.	0.5 -49.9 36.	.6 -55.6 20.7	.7 -70.2 3.3	.9 00.	.2 00.	6.5 00. *	7.7 00. *	* .0- 00 0.6	0.3 00.	1.5 00. #	2.8 00.	.1 00.	5.3 00. #	6.4 00.	7.5 00.	8.6 00.	00-	* 0 - 0 8 0 0 - 0 - 8	1.9 00. #	3.0 00. #	*1 00. *	65.2 0	6.3
EMPERATURE RELATIV DEMPOINT HUMIDIT ES CENTIGRADE PERCENT	33.6 -44.5 33.	72.0 -35.8 -45.8 35.	66.1 -36.8 -46.4 36.	60.4 -37.8 -47.0 38.	54.7 -38.8 -47.8 38.	49.1 -39.6 -48.8 37.	43.6 -40.5 -49.9 36.	38.3 -41.6 -55.6 20.7	33.0 -42.7 -70.2 3.3	27.7 -43.9 00.	22.5 -45.2 00.	17.4 -46.5 00. *	12.4 -47.7 00. *	* ·0- 0. 00. *	02.8 -50.3 00.	98.2 -51.5 00. #	93.7 -52.8 00.	89.2 -54.1 00.	84.9 -55.3 00. #	80.4 -56.4 00.	76.1 -57.5 00.	71.8 -58.6 00.	67.7 -59.7 00.	63.6 -60.8 0. -0. *	59.7 -61.9 00. *	55.8 -63.0 00. #	52.1 -64.1 00. *	48.4 -65.2 0	44.8 -66.3

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *****

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 2232 HRS MST 537 ASCENSION NO.

UPPER AIR DATA 3919607 WHITE SANDS SITE TABLE VIII (Cont)

GEOMETRIC ALTITUDE MSL FEET	PRESSURE MILLIBARS	TEMF AIR DEGREES	EMPERATURE DEWPOINT ES CENTIGRADE	RELATIVE HUMIDITY PERCENT	DENSITY GM/CUBIC METER	SPEED OF SOUND KNOTS	WIND DA DIRECTION DEGREES(IN)	SPEED KNOTS	INDEX OF REFRACTION
48500.0	141.2	-67.1 -67.8	°°	* * * · · · · · · · · · · · · · · · · ·	238.9	558.9	174.0	18.0	1.000053
9500°	34.	68.	° 0	•	800	57.	67.	9 9	.00005
0000	30.	6	0.		23°	56.	9.	•	.0000
0500	27.	6	0.	** 0-	18.	55,	60.	16.7	004
1000.	240	ö	0°	-0° **	13,	54.	7 .	0	904
ő	-	-71.3	°	++ • 0-	.60	53.	ဆိ	16,1	04
2000.	18°	2°	0.	** °0-	04°	52.	ထီ	9	004
2500°	15.	2.	0°	₩**•0-	00	51.	61.	•	004
3000°	12.	ñ	0	-0. **	95°	50°	4.		004
3500.	60	3,	ô	-O· **	90°	50.	65.		204
4000	06.	ô	0	## °O-	83°	54.	• 9	9	004
54500.	03.	ô	•0	-0. **	78°	540	.99		.0000
5000.	01.	0	•	++ • 0-	74°	54.	• 9	ŝ	.00003
5500°	ဆိ	0	0	-0. **	ô	53,	62.		003
6000°	9	-	•	-O· **	65.	53.	57.	2°	003
6500.	m	•	0	-O° ##	•	53°	46.		003
7000	-	-	0.	++ • 0-	57°	53.	3,		003
7500.	6	-	•0	++ 00-	54.	53.	10.		003
8000	•	-70.9	0	-0. **	6	53.	-		003
8500.	4.	9.69-	•	** 0-	45.	55.	81.3		.0000
.0006	2	-68.4	•0	** ° 0-	ċ	57.	9		003
9500.	Ö	-67.1	0	++ 00-	•	58°	3	•	0000
0000	8	-65.9	0	-0. **	2.	60.	ċ	•	205
0500.	9	•	•	-0° **	ဆ	62.	•	•	.0000
1000.	4.	-63.4	0	** °0-	4°	63.	æ	•	205
1500.	2.	-62.2	0°	+* 0-	ô	65.	4.	17.0	0000
2000.	-	-61.9	°	++ .0-	2	65.	ċ	•	.0000
2500.		-61.7		++ 0-	114.5	99	86.2	17.2	002
.000	7.	-61.4	°	+ + 0-	:	.99	2.	•	202

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. **

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 2232 HRS HST ASCENSION NO. 537

UPPER AIR DATA 3919607 WHITE SANDS SITE TABLE VIII (Cont)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

INDEX ED OF TS REFRACTION	1.00002	.9 1.00002	•3 1.0000	.4 1.00002	.5 1.00002	.2 1.00002	.0 1.00002	.0 1.00002	.3 1.00001	.7 1.00001	.3 1.00001	.6 1.00001	.4 1.00001	1.00001	.4 1.00001	.9 1.00001	.9 1.00001	.2 1.00001	.1 1.00001	.0 1.00001	.2 1.00001	1.00001	.5 1.00001	.4 1.00001	.0 1.00001	.7 1.00001	.4 1.00001	.0 1.00001	
DATA SPEC	<u> </u>	51	5(5(5(5(7	5(5(50	21	21	21	21	5(51	16	5	22	57	25	2(28	3(31	3	33	35	2.6
WIND DIRECTION DEGREES(TN)	76.5	3.	Š	9.	2.	÷	Š	-	8	8	7	8	2.	5	4	2.	8	4	8	3.	ŝ	8	-	5	2	6	9*68	6	c
SPEED OF SOUND KNOTS	566.9	57.	29	68.	68.	68.	69.	.69	.69	70.	70.	70.	71.	71.	71.	~	72.	12.	73.	73.	73.	74.	74.	74.	75.	75.	575.9	76.	76
DENSITY SGM/CUBIC METER	108.9	03.	00	8	• 9	3	91.2	6	•	4	2.	0	æ	•	4.	72.7	•	6	~	ŝ	4.	2.	0	6	-	•	55.1	3,	c
RELATIVE HUMIDITY PERCENT	* * *	+* •0-	** • 0-	++ • 0-	++ • 0-	## · O-	++ • 0-	** °0-	-0- **	-0· **	** 0-	++ • 0-	+* • 0-	** • 0-	++ • 0-	** • 0-	** • 0-	-0· **	+* •0-	** • 0-	++ • 0-	** • 0-	++ • 0-	++ • 0-	++ • 0-	-0· **	++ • 0-	** • 0-	4
EMPIERATURE DEWPOINT ES CENTIGRADE	00	•0	•0	•	•0	•	•	•0	•0	•	•0	•0	•0	•	°	•0	•	•	•	•0	•0	•	•	0°	•0	•	•	•	c
TEMP AIR Degrees	-61.2	0	-60.4	-60.2	-59.9	-59.7	6	6	-58.9	8.	-58.4	8	7	7	7	-57.2	•	.9	-56.4	•	-55.9	ŝ		-55.1		-54.6	-54.4		_ 52 7
PRESSURE MILLIBARS	66.2	<i>w</i>	61.6	ö	8	7.	•	4.	3.	2.	ċ	6	8	7	•	45.1	4.	8	-	°	•	6	8	7	9	5	•	3	(1
GEDMETRIC ALTITUDE MSL FEET	63500.0	4500.	5000	550	.0009	6500.	7000.	7500.	8000.	8500.	.0006	69500	.0000	0500.	1000.	71500.0	2000.	2500.	3000.	3500.	4000	4500.	5000.	5500	.0009	6500.	7000.	ô	

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

STATION ALTITUDE 3989.0 FEET MSL 15 JULY 66 2232 HRS MST ASCENSION NO. 537

UPPER AIR DATA 3919607 WHITE SANDS SITE TABLE VIII (Cont)

INDEX OF REFRACTION		00000
ATA SPEED KNOTS	60000000000000000000000000000000000000	Ô
WIND DA DIRECTION DEGREES(TN)	100 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•
SOUND KNOTS		•
DENSITY S GM/CUBIC METER	04 4 4 4 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8	, r
RELATIVE HUMIDITY PERCENT	* * * * * * * * * * * * * * * * * * *	
EMPERATURE DEWPOINT ES CENTIGRADE		. 0
TEMP AIR DEGREES	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44.
PRESSURE MILLIBARS	333 347 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37	, 0
GEOMETRIC ALTITUDE MSL FEET	78500.0 79500.0 79500.0 80500.0 81500.0 81500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0 82500.0	3000°

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. *****

	WSTM SITE COURDINATES	E 488,580 FEET	N 185,045 FEET	
UPPER AIR DATA	3919607	WHITE SANDS SITE	TABLE VIII (Cont)	
	STATION ALTITUDE 3989.0 FEET MSL	15 JULY 66 2232 HRS MST	SCENSION NO. 1537	

GEOMETRIC	PRESSURE	<	TEMPERATURE DEMOCINT	RELATIVE	DENSITY	SPEED OF	MIND DATA	TA	INDEX
MSL FEET	MILLIBARS	- 0∠	CENTIGRADE	PERCENT	METER	KNOTS	DEGREES(TN)	KNOTS	REFRACTION
93500.0	16.2	0.44-	•0	** 0-	24.6	589.4	7.47	32.9	1,000005
94000.0	15.8	-43.5	•	+* • 0-	24.0	24.0 590.1	75.4	35.3	1.000005
94500.0	15.5	-42.4	•	++ • 0-	23.4	591.4			1.000005
95000.0	15.2	-41.3	•	** • 0	22.8	592.8			1,000005
95500.0	14.8	-40.3	0	++ • 0-	22.2	594.2			1.000005

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. **#**

ſ		 		
THEORETICAL	IMPACT IN IILES FROM LAUNCHER	M-H	100.00 00 00 00 00 00 00 00 00 00 00 00 0	
THEOF	IMPAC MILES LAUNC	N-S	62.15 65.15	
	AL	H-M	50.83 169.18 179.18	
ONIM OI	TOTAL	N-S	25.98 21.08 24.08 24.08 24.08 26.68 26.68 26.28 26.28 27.88 32.08 33.08 41.08 35.18 36.18 36.18	
DUE	-(FT 0	E-W	33.33.33.33.33.33.33.33.33.33.33.33.33.	
IN MILES	20000- 100000	N-S	7.68 7.68 7.68 7.68 7.78	
DISPLACEMENT	ŦŦ	표-W	23111111111111111111111111111111111111	
	4000- 20000	N-S		**** W
IMPACT	o FT	M-E-W	37. LE 33. LE 33. LE 33. LE 39. RE 10. LE 11. GE 11. GE 11. GE 12. SE 13. SE 11. GE 12. SE 13. SE 13. SE 13. SE 14. SE 15. SE 15. SE 15. SE 16. SE 17. SE 17	
	143- 4000	N-S	20.45 14.95 17.05 19.95 19.95 22.65 22.65 22.25 24.28 24.28 27.75 36.75 36.75 36.75 36.75 36.75	
		PIBAL	P 1825 P 1842 P 1912 P 1932 P 1952 P 2027 P 2038 P 2002 P 2108 P 2100 P 2100 P 2100 P 2100 P 2100 P 2207 P 2207 P 2207 P 2207	
	RELEASE TIME (MST)	ONDE	R 1615 R 1615 R 1615 R 1615 R 1615 R 1810	
	RELEASE (MST)	RAWINSONDE	R 2020	

TIME: DATE: TABLE IX.

2231 MST 15 JULY 1966

IMPACT PREDICTION DATA AEROBEE NASA 4.159 GG

P = Double Theodolite Winds ($1\mu_3$ - μ_1 ,000 FT) R = Rawinsonde Winds (4ν ,000-20,000 FT) R₂= Rawin Winds (4ν ,000-20,000 FT) R₃= Rawin Winds (4ν ,000-20,000 FT)

* = Post-Shoot Data

JACK SETTINGS	West leg	22	inches	PREDICTED IMPACT North	North	58.0 mi	m.
LAUNCHER 21E	East leg 41	41	inches	LAUNCHER	West	3.0 mi	1 1
LAUNCHER	Tilt	60*9	6.09 degrees	PREDICTED	Azimuth	330	de
SETTING	Azimuth	328,86	328,86 degrees	BOOSTER IMPACT FROM LAUNCHER	Distance 1,700	1,700	fe
TILT	North	5.21	5.21 degrees	RECOMMENDATION - Fire, with 85%	Fire, with	85%	
COMPONENTS	твем	3.15	3,15 degrass	confidence of impacting on range, based upon:	cting on	!	
NO WIND IMPACT North	North	88,5 miles	miles	wind correction of 68.0 miles 1-hr wind variability of 9.0 miles	ity of	68.0 miles 9.0 miles	m m
LAUNCHER	West	58,3 miles	miles	15 July 1966/2221 MST	MST		

degrees

feet

miles

miles

TABLE X. ACTUAL AND PREDICTED LAUNCH DATA AEROBEE NASA 4.159 GG

RADAR IMPACI	North	61.0	miles
LAUNCHER	West	10.6	miles
ACTUAL BOOSTER	Azimuth	N/A	degrees
LAUNCHER	Distance	N/A	feet

TABLE XI. IMPACT DATA
AEROBEE NASA 4.159 GG

Security Classification

DOCUMENT CO (Security classification of title, body of abstract and index)	NTROL DATA - R&	_	he amount appear to a femality 2			
1. ORIGINATING ACTIVITY (Corporate author)	ng annotation sulet be el		RT SECURITY CLASSIFICATION			
U. S. Army Electronics Command			UNCLASSIFIED			
			25. SROUP			
Fort Monmouth, New Jersey						
3. REPORT TITLE						
AMERICAN DEPOSIT AND ADDRESS A	1 270					
METEOROLOGICAL DATA REPORT, AEROBEE 1	NASA 4.159 GG					
4. DESCRIPTIVE HOTES (Type of report and inchesive delos)						
S. AUTHOR(S) (Last name, first name, initial)						
Hoidale, Marjorie McLardie						
'iordaro, imijorro nordi dro						
•• .						
S. REPORT DATE	74. TOTAL NO. OF F	AGEP	75. NO. OF REFS			
August 1966	25		2			
Se. CONTRACT OR SRANT NO.	Sa. ORIGINATOR'S R	EPORT NUM	BER(\$)			
•						
& PROJECT NO.	DR-56					
DA Task IV650212A127-02	Shis report)	NO(3) (ARY	other numbers that may be assigned			
d.						
10. AVAILABILITY/LIMITATION NOTICES						
Distribution of this document is unla	imited.					
11. SUPPLEMENTARY NOTES	12. SPONSORING MIL		••••			
A Section of the Control of the Cont			nics Command es Laboratory			
			es haboratory			
13. ABSTRACT	1 miles cando		100.001 11011 1101100			

Meteorological data gathered for the launching of Aerobee NASA 4.159 GG are presented for the National Aeronautics and Space Administration and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

KEY WORDS	LIN	KA	LIN	KB	LIN	K C
NET WORDS	ROLE	WT	ROLE	WT	ROLE	WT
 Ballistics Meteorology Wind 		·				

- i. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9s. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
 - (1) "Qualified requesters may obtain copies of this report from DDC."
 - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UN	CLAS	SSIF	TED
----	------	------	-----