343 OPERATIONS RESEARCH

Basic Linear Algebra Refresher

Part I

Basic Linear Algebra

Matrix

Rectangular array of (real) numbers:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Example:

$$A = \begin{bmatrix} 1.0 & 5.5 & 6.3 \\ 3.1 & 2.4 & 8.9 \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

Matrix Equality

Two matrices A and B are equal, i.e.,

$$A = B$$

if and only if (iff):

$$a_{ij}=b_{ij}$$

$$\forall i, i = 1, \dots, m$$

 $\forall j, j = 1, \dots, n$

Vector

Matrix with only one column:

$$v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{bmatrix} \in \mathbb{R}^{m \times 1} = \mathbb{R}^m$$

Example:

$$v = \begin{bmatrix} 1.0 \\ 2.5 \end{bmatrix} \in \mathbb{R}^2$$

Scalar Product

The scalar product of two vectors v and u is:

$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \qquad v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

$$v^T u = u^T v = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n$$

Multiplication by a Scalar

For a $m \times n$ Matrix A:

$$3 A = \begin{bmatrix} 3 a_{11} & 3 a_{12} & \dots & 3 a_{1n} \\ 3 a_{21} & 3 a_{22} & \dots & 3 a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 3 a_{m1} & 3 a_{m2} & \dots & 3 a_{mn} \end{bmatrix}$$

Matrix Addition

For two $m \times n$ Matrices A and B:

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}$$

Matrix Transpose

For a $m \times n$ Matrix A, its transpose is

$$A^{T} = \left[egin{array}{ccccc} a_{11} & a_{21} & \dots & a_{m1} \ a_{12} & a_{22} & \dots & a_{m2} \ dots & dots & \ddots & dots \ a_{1n} & a_{2n} & \dots & a_{mn} \end{array}
ight]$$

that is a $n \times m$ Matrix with:

$$(A^T)^T = A$$

For a Matrix $A(m \times r)$ and a Matrix $B(r \times n)$, their product is the matrix

$$A B = C = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

that is a $m \times n$ Matrix with

$$c_{ij} = (\text{row } i \text{ of } A)^T (\text{column } j \text{ of } B).$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$$

$$c_{11} = \left[\begin{array}{ccc} 1 & 1 & 2\end{array}\right] \left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array}\right] = 5$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$$

$$c_{12} = \left[\begin{array}{ccc} 1 & 1 & 2 \end{array}\right] \left|\begin{array}{c} 1 \\ 3 \\ 2 \end{array}\right| = 8$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$$

$$c_{21} = \left[egin{array}{cccc} 2 & 1 & 3 \end{array}
ight] \left[egin{array}{cccc} 1 \ 2 \ 1 \end{array}
ight] = 7$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$$

$$c_{22} = \left[egin{array}{cccc} 2 & 1 & 3 \end{array}
ight] \left[egin{array}{cccc} 1 \\ 3 \\ 2 \end{array}
ight] = 11$$

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 2 \end{bmatrix}$$

$$AB = C = \begin{bmatrix} 5 & 8 \\ 7 & 11 \end{bmatrix}$$

Properties: C = A B

Associative:

$$A(BC) = (AB)C$$

Distributive:

$$A(B+C)=(AB)+(AC)$$

$$(A+B) C = (A C) + (B C)$$

In general, matrix product is not commutative:

$$AB \neq BA$$

Part II

Matrices and Systems of Linear Equations

Linear Equations

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$
 $a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m$

m Equations in n Variables

Matrix Notation

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \quad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \quad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$A x = b$$

Sometimes denoted:

$$[A \mid b]$$

Example

$$x_1 + 2x_2 = 5$$

 $2x_1 - x_2 = 0$

Matrices:
$$\begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$

Example

$$x_1 + 2x_2 = 5$$

 $2x_1 - x_2 = 0$

Compact:
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & -1 & 0 \end{bmatrix}$$

Solution:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Gauss-Jordan Method

A System of Linear Equations

$$A x = b$$

may have:

- no solutions;
- a unique solution;
- infinitely many solutions.

Commonly solved by the Gauss-Jordan Method, which uses *Elementary Row Operations (ERO)* to progressively simplify the coefficient matrix A.

ERO 1

Multiplying any row by a non-zero scalar $c \neq 0$:

$$(row i of A') = c (row i of A)$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 9 & 15 & 18 \\ 0 & 1 & 2 & 3 \end{bmatrix} = A'$$

ERO 2

Multiplying any row by a non-zero scalar $c \neq 0$ and add it to another one $(i \neq j)$:

$$(row j of A') = c (row i of A) + (row j of A)$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 4 & 13 & 22 & 27 \end{bmatrix} = A'$$

$$4 \begin{bmatrix} 1 & 3 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 13 & 22 & 27 \end{bmatrix}$$

ERO 3

Interchange any two rows i and j:

$$(row j of A') = (row i of A)$$

 $(row i of A') = (row j of A)$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 6 \\ 0 & 1 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 3 & 5 & 6 \\ 1 & 2 & 3 & 4 \end{bmatrix} = A'$$

Use ERO1 and ERO2 to simplify Equations.

$$x_1 + x_2 = 2 2x_1 + 4x_2 = 7$$

Use ERO1 and ERO2 to simplify Equations.

$$x_1 + x_2 = 2$$
 $x_1 + x_2 = 2$
 $2x_1 + 4x_2 = 7$ $2x_2 = 3$

$$(row \ 2 \ of \ A') = -2 \ (row \ 1 \ of \ A) + (row \ 2 \ of \ A)$$

Use ERO1 and ERO2 to simplify Equations.

$$x_1 + x_2 = 2$$
 $x_1 + x_2 = 2$
 $2x_1 + 4x_2 = 7$ $2x_2 = 3$

$$x_1 + x_2 = 2$$

$$x_2 = \frac{3}{2}$$

$$(\text{row 2 of } A') = \frac{1}{2} (\text{row 2 of } A)$$

Use ERO1 and ERO2 to simplify Equations.

$$x_1 + x_2 = 2$$
 $x_1 + x_2 = 2$
 $2x_1 + 4x_2 = 7$ $2x_2 = 3$

$$x_1 + x_2 = 2$$
 $x_1 = \frac{1}{2}$ $x_2 = \frac{3}{2}$

(row 1 of A') = -1 (row 2 of A) + (row 1 of A)

Solving Equations (cont)

In Compact Form:

$$\begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & \frac{3}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \end{bmatrix}$$

Basic Principle

lf

$$\begin{bmatrix} A' \mid b' \end{bmatrix}$$

is obtained by ERO1, ER02, and ER03 from

$$\begin{bmatrix} A \mid b \end{bmatrix}$$

Then:

$$A' x = b'$$
 and $A x = b$

are equivalent.

Example

$$2x_1 + 2x_2 + x_3 = 9$$

$$2x_1 - x_2 + 2x_3 = 6$$

$$x_1 - x_2 + 2x_3 = 5$$

Gauss-Jordan Method: Solve by systematically applying the ERO

$$\left[\begin{array}{c|ccc} A & b \end{array}\right] = \left[\begin{array}{cccc} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{array}\right]$$

$$\begin{bmatrix} 2 & 2 & 1 & 9 \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix}$$
ERO 1
$$(\text{row 1}) = \frac{1}{2}(\text{row 1})$$

$$\left[\begin{array}{ccc|c}
1 & 1 & \frac{1}{2} & \frac{9}{2} \\
2 & -1 & 2 & 6 \\
1 & -1 & 2 & 5
\end{array}\right]$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 2 & -1 & 2 & 6 \\ 1 & -1 & 2 & 5 \end{bmatrix}$$

$$ERO 2$$

$$(row 2) = -2 (row 1) + (row 2)$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & -3 \\ 1 & -1 & 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & -3 & 1 & -3 \\ 1 & -1 & 2 & 5 \end{bmatrix}$$
ERO 2
$$(\text{row 3}) = -1 (\text{row 1}) + (\text{row 3})$$

$$\left[\begin{array}{ccc|c}
1 & 1 & \frac{1}{2} & \frac{9}{2} \\
0 & -3 & 1 & -3 \\
0 & -2 & \frac{3}{2} & \frac{1}{2}
\end{array}\right]$$

$$\left[\begin{array}{ccc|c}
1 & 1 & \frac{1}{2} & \frac{9}{2} \\
0 & -3 & 1 & -3 \\
0 & -2 & \frac{3}{2} & \frac{1}{2}
\end{array}\right]$$

ERO 1

$$(row 2) = -\frac{1}{3} (row 2)$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & \frac{1}{2} & \frac{9}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & -2 & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
ERO 2

(row 1) = -1 (row 2) + (row 1)

$$\left[\begin{array}{ccc|c}
1 & 0 & \frac{5}{6} & \frac{7}{2} \\
0 & 1 & -\frac{1}{3} & 1 \\
0 & -2 & \frac{3}{2} & \frac{1}{2}
\end{array}\right]$$

$$\left[\begin{array}{ccc|c}
1 & 0 & \frac{5}{6} & \frac{7}{2} \\
0 & 1 & -\frac{1}{3} & 1 \\
0 & -2 & \frac{3}{2} & \frac{1}{2}
\end{array}\right]$$

ERO 2

$$(row 3) = 2 (row 2) + (row 3)$$

$$\left[\begin{array}{ccc|c}
1 & 0 & \frac{5}{6} & \frac{7}{2} \\
0 & 1 & -\frac{1}{3} & 1 \\
0 & 0 & \frac{5}{6} & \frac{5}{2}
\end{array}\right]$$

$$\left[\begin{array}{ccc|c}
1 & 0 & \frac{5}{6} & \frac{7}{2} \\
0 & 1 & -\frac{1}{3} & 1 \\
0 & 0 & \frac{5}{6} & \frac{5}{2}
\end{array}\right]$$

ERO 1

$$(row 3) = \frac{6}{5} (row 3)$$

$$\left[\begin{array}{ccc|c} 1 & 0 & \frac{5}{6} & \frac{7}{2} \\ 0 & 1 & -\frac{1}{3} & 1 \\ 0 & 0 & 1 & 3 \end{array}\right]$$

$$\begin{bmatrix} 1 & 0 & \frac{5}{6} \\ 0 & 1 & -\frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{7}{2} \\ 1 \\ 3 \end{bmatrix}$$
ERO 2

$$(row 1) = -\frac{5}{6} (row 3) + (row 1)$$

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & -\frac{1}{3} & 1 \\
0 & 0 & 1 & 3
\end{array}\right]$$

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & -\frac{1}{3} & 1 \\
0 & 0 & 1 & 3
\end{array}\right]$$

ERO 2

$$(row 2) = \frac{1}{3} (row 3) + (row 2)$$

```
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]
```

$$\left[\begin{array}{ccc|c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 3
\end{array}\right]$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

The solution is now straightforward:

$$x_1 = 1$$
, $x_2 = 2$, and $x_3 = 3$

Remark (ER03)

ERO3 can be used to re-arrange rows such that ERO1 and ERO2 can be applied systematically.

$$\begin{array}{rcl}
2x_2 + x_3 &= 6 \\
x_1 + x_2 - x_3 &= 2 \\
2x_1 + x_2 + x_3 &= 4
\end{array}$$

$$\begin{bmatrix} 0 & 2 & 1 & | & 6 \\ 1 & 1 & -1 & | & 2 \\ 2 & 1 & 1 & | & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & -1 & | & 2 \\ 0 & 2 & 1 & | & 6 \\ 2 & 1 & 1 & | & 4 \end{bmatrix}$$

Part III

Basic Variables and Solutions

Basic Variables

For any system of linear equations

$$A x = b$$

a variable x_i with:

- one coefficient a_{ij} equal to 1, and
- ▶ all other coefficients in column j equal to 0 is called a Basic Variable.

All other variables are called Non-Basic Variables.

Solutions I

Condition 1:

$$A' \ x = b'$$
 has at least one row of the form
$$\left[\begin{array}{cccc} 0 & 0 & \dots & 0 & | & c \end{array} \right]$$
 with $c \neq 0$.

Condition $I \implies A x = b$ has no solution.

e.g.
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$
 has no solution!

Solutions II

Suppose Condition I does not hold and the set of non-basic variables is empty, $NBV = \emptyset$. Then A'x = b' and hence Ax = b has a unique solution.

e.g.
$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

has a unique solution:

$$x_1 = 1$$
, $x_2 = 2$, $x_3 = 3$

Solutions III

Suppose Condition I does not hold but the set of non-basic variables is non-empty, $NBV \neq \emptyset$.

Then A' x = b' and A x = b have an infinite number of solutions.

In order to obtain these solutions, set each NBV to an arbitrary value. Then solve for the BVs in terms of the NBVs.

$$x_1$$
 + x_4 + x_5 = 3
 x_2 + $2x_4$ = 2
 x_3 + x_5 = 1

$$\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & 1 & 3 \\
0 & 1 & 0 & 2 & 0 & 2 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]$$

Rank = 3 < M(5) => No Solution

$$\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 1 & 1 & 3 \\
0 & 1 & 0 & 2 & 0 & 2 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]$$

Condition I does not apply, and:

$$BV = \{x_1, x_2, x_3\}$$
 and $NBV = \{x_4, x_5\}$

Set: $x_4 = a$ and $x_5 = b$, for any value of a and b we get:

$$x_1 = 3 - a - b$$

$$x_2 = 2 - 2a$$

$$x_3 = 1 - b$$

Gauss-Jordan: Summary

Does
$$[A \mid b]$$
 have a row $[0 \ 0 \ \dots \ 0 \mid c]$ with $c \neq 0$?

- NO: Find BV and NBV. Is NBV= ∅?
 - YES: ∃! solution
 - NO: ∃ solutions (infinite)

Part IV

Linear Combinations

Linear Combinations

Let V be a set of (column) vectors,

$$V = \{v_1, v_2, v_3, \dots, v_k\}$$

all of the same dimension.

A *linear combination* of vectors in V is any vector of the form:

$$v=c_1v_1+c_2v_2+\ldots+c_kv_k.$$
 with $c_1,c_2,\ldots,c_k\in\mathbb{R}.$

$$V = \left\{ v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$$

$$2v_1 - v_2 = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

$$v_1 + 3v_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

$$0v_1 + 3v_2 = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Linear Independence I

Let V be a set of (column) vectors in \mathbb{R}^m

$$V = \{v_1, v_2, v_3, \dots, v_k\}.$$

and the null vector

$$N = \begin{bmatrix} 0 & 0 & \dots & 0 \end{bmatrix}^T$$
.

In order to determine if V is *linearly independent* (l.i.), we try to find a linear combinations of vectors in V which results in N.

Clearly the trivial linear combination always works:

$$0v_1 + 0v_2 + \ldots + 0v_k = N.$$

Linear Independence II

- ▶ A set of vectors V is linearly independent iff the only linear combination which gives the null vector is the trivial linear combination.
- Otherwise the vectors in V are said to be linearly dependent.
- Any V containing N is linearly dependent (for $c \neq 0$)

e.g.
$$c \begin{bmatrix} 0 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = N.$$

The vectors $e_1 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and $e_2 = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$ are l.i.:

$$c_1 \left[egin{array}{c} 1 \ 0 \end{array}
ight] + c_2 \left[egin{array}{c} 0 \ 1 \end{array}
ight] = extbf{ extit{N}} \quad \Rightarrow \quad c_1 = 0 = c_2.$$

The vectors $e_1 = \begin{bmatrix} 1 & 2 \end{bmatrix}^T$ and $e_2 = \begin{bmatrix} 2 & 4 \end{bmatrix}^T$ are l.d.:

$$2\left\lceil\frac{1}{2}\right\rceil-1\left\lceil\frac{2}{4}\right\rceil=N.$$

Rank of a Matrix

Take a $m \times n$ matrix A. Consider its column vectors:

$$C = \{c_1, c_2, \ldots, c_n\}.$$

The rank of A is the maximal number of linear independent vectors in C.

e.g.
$$rank\left(\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]\right)=0$$
 e.g. $rank\left(\left[\begin{array}{cc} 1 & 2 \\ 1 & 2 \end{array}\right]\right)=1$ e.g. $rank\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\right)=2$

Inverse of a Matrix

Let A be an $m \times m$ square matrix.

The $m \times m$ identity matrix is given by:

$$I = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}$$

A matrix A^{-1} for which the following holds:

$$A A^{-1} = A^{-1} A = I$$

is called the *inverse* matrix of A.

Inverse of a Matrix II

- ▶ The inverse of a matrix may not exist!
- An invertible matrix A is called non-singular.
- ▶ The inverse of an $m \times m$ matrix does not exist if rank(A) < m.

Matrix inversion can be used to solve linear systems:

$$A x = b$$

$$A^{-1} A x = A^{-1} b$$

$$I x = A^{-1} b$$

$$x = A^{-1} b$$

The Gauss-Jordan process indirectly computes A^{-1} .