Robô Seguidor de Linha com

Recurso a uma RaspiCam

Autores: André Moreira Oliveira

Tiago Francisco Pereira Cunha

Nº 1181045

Nº 1180922

Mestrado de Sistemas Autónomos RSDIS 2022

SUMÁRIO

1. Introdução:

- Contextualização;
- Objetivos;
- Plataforma.

2. Implementação do Projeto:

- Diagrama dos Pacotes;
- Controlo dos Motores;
- Tratamento de Imagem;
- Processamento de Imagem.

3. Experiências e Resultados;

4. Demonstração;

Introdução

INTRODUÇÃO

Contextualização

- Desenvolvimento de um sistema dotado para controlo do movimento de um robô com rodas diferenciais;
- Recurso a ROS para fazer uso de variáveis do robô, e.g., orientação, velocidade linear e angular;
- Sistema dinâmico que permita acompanhar as tomadas de decisões em tempo real.

Objetivos

- Desenvolvimento de um ROS node tele_op_keyboard para controlo da plataforma por teleoperação;
- Desenvolvimento de um ROS node motor_control para controlo dos motores por PWM;
- Desenvolvimento de um ROS node image_processing para controlo da plataforma por seguimento de uma linha preta;
- Controlo dos motores através do mecanismo PID;
- Adaptação do *node* image_processing para publicação num tópico a imagem processa

Plataforma

Hardware:

- Raspberry Pi 3b+;
- Raspberry Pi Camera Module v2.0 e o respetivo suporte;
- Raspberry Pi Motor Driver Board;
- Dois *Direct Current* (DC) *motors* e respetivas rodas;
- Uma castor wheel;
- Bateria Zippy Compact 25C Series Li-PO 2700 mAh;
- Interruptor on/off;
- Suporte para toda a plataforma.

Software:

- Raspberry Pi possui uma distribuição Linux Ubuntu 18.04 (Bionic) LTS4 com uma imagem da Ubiquity Robotics (ROS Melodic Morenia);
- Biblioteca WiringPi, OpenCV, numpy, math, pickle.

Implementação do Projeto

IMPLEMENTAÇÃO DO PROJETO

Diagrama dos Pacotes

IMPLEMENTAÇÃO DO PROJETO

Controlo dos Motores

- Identificação dos devidos pinos para controlo do sentido e velocidade de rotação dos motores;
- Recurso à biblioteca WiringPi para desenvolvimento de um ROS node motor_control e controlar sentido e velocidade de rotação;
- PWM gerado para cada motor segue uma relação trigonométrica face ao angulo publicado no tópico /cmd_vel;
- Ângulo recebido limitado em ± 45°;
- Movimentos diagonais, e.g., frente-esquerda, a velocidade entre o motor direito e esquerdo encontrase condicionada por uma relação trigonométrica que atua nos 90° do primeiro quadrante;

IMPLEMENTAÇÃO DO PROJETO

Tratamento de Imagem

Configurações do funcionamento da camara

 10 frames por segundo para uma resolução de 410x308 pixéis;

Pipeline do tratamento de imagem

- 1. Descomprimir a imagem;
- 2. Selecionar uma região de interesse;
 - A. Quando o robô de circula a uma velocidade alta;
 - B. Quando o robô de circula a uma velocidade baixa.
- 3. Converter a imagem BGR para HSV;
- 4. Aplicar um *blur à imagem*;
- 5. Binarizar a imagem;
- 6. Destacar os contornos da linha;
- 7. Desenhar informações relevantes para debugging.

Processamento de Imagem

Pipeline do tratamento de imagem

- Analisar a matriz de valores da imagem de modo anotar pontos onde se da a transição da cor preta para a cor branca;
- Garantir que os pontos anotados correspondem aos contornos da linha;
- Calcular a média para cada par de pontos encontrados;
- Calcular o ângulo α da posição do ponto intermédio mais distante relativamente a posição zero central;
- Corrigir o ângulo α pela atuação de um controlador PID;
- Publicar velocidade angular anteriormente estipulada pelo PID no tópico \cmd_vel.

IMPLEMENTAÇÃO DO PROJETO

Experiências e Resultados

EXPERIÊNCIA E RESULTADOS

Script Python

- Ler logs de imagens comprimidas;
- Testar e otimizar técnicas de processamento e tratamento de imagem;
- Visualizar a performance do sistema;

EXPERIÊNCIA E RESULTADOS

Demonstração

Robô Seguidor de Linha com Recurso a uma RaspiCam

FIM!
Obrigado pela atenção!

André Oliveira Tiago Cunha

Maio de 2022

Mestrado de Sistemas Autónomos RSDIS 2022

