

细粒度多模态分子图表示学习

穆莹

介绍

1. 研究背景与问题

核心问题:

现有分子表示学习方法(如MoleculeSTM、MoMu、MolCA)依赖**分子整体结构(SMILES、分子图)与文本的粗粒度对齐**,但忽视了**子结构(官能团、基元)与文本的细粒度关联**,导致:

泛化能力受限:难以处理包含已知子结构但整体未知的分子。

下游任务性能不足:在需要子结构认知的任务(如分子编辑)中表现不佳。

FineMolTex 框架

新型分子图-文本预训练框架,旨在通过细粒度对齐提升分子表示学习的效果。

FineMolTex 框架

核心创新

1.双粒度学习:

- 1. 粗粒度(分子级):对比学习对齐分子图与文本描述。
- **2. 细粒度**(基元级):掩码多模态建模任务,学习子结构(如 "-COOH") 与文本片段(如 "羧酸")的关联。 **羧酸的定义:以羧基为特征官能团的化合物**

2.动态重要性掩蔽:

1. 优先掩蔽对分子性质关键的基元(如官能团)和文本词汇(如 "chloride"),避免噪声干扰。

3. 跨模态交互:

1. 通过交叉注意力层整合分子图与文本信息,实现子结构-文本的相互预测。

方法

1. 核心思想

FineMolTex 是一种**分子图-文本预训练框架**,旨在同时学习分子的**粗粒度(分子级别)**和**细粒度(子结构级别)**知识,从而提升分子表示的质量。

粗粒度知识:整个分子的全局特征(如分子量、溶解度、毒性等)。

细粒度知识:分子内部的子结构(如官能团、反应位点、药效团等)。

传统方法通常只关注**分子级别的表示**,而 FineMolTex 额外建模**子结构与文本的细粒度关联**, 使得模型能更精准地理解分子的局部化学特性。

核心组件

1.Tokenization 基元切分器

- 1. 将分子图分解为基元标记(如苯环、羧基)。
- 2. 将文本分解为**单词标记**(如 "aromatic""sulfonic acid")。

2.双模态编码器

1. 图编码器 (Graph Encoder): 提取分子及基元的空间结构特征。

输出:每个基序的向量表示

2. 文本编码器 (Text Encoder): 提取文本语义特征。

输出:每个单词的上下文相关向量(如 "acid"在化学文本中的含义)。

3.跨模态交互模块

- **1. 跨模态注意力层(Cross-Attention)**:动态融合分子基元与文本单词的关联,让分子和文本的 token 互相参考,实现细粒度对齐。。
- 2. Transformer层: 生成上下文感知的联合嵌入。让同一模态(分子或文本)内的 token 互相"交流",增强上下文理解。

图 2. FineMolTex 的架构。输入是具有分子结构和相应描述的图形文本对。相同颜色的组件具有相同的权重。

FineMolTex 包含两项预训练任务,分别对应粗粒度和细粒度学习:

(1) 对比对齐任务 (Coarse-grained Alignment)

目标: 让模型学会匹配整个分子图与其对应的文本描述(如分子名称、SMILES 字符串或文献描述)。

方法: 采用对比学习 (Contrastive Learning) ,例如:

正样本:分子图 + 正确文本描述 负样本:分子图 + 错误文本描述

作用:确保模型能区分正确的分子-文本配对,学习分子级别的全局表示。

(2) 掩码多模态建模任务 (Fine-grained Masked Multimodal Modeling)

目标: 让模型学习**子结构与文本的细粒度关联**。

方法:

选择性掩蔽 (Selective Masking):

在分子图中,随机掩蔽重要分子基元(如官能团)。在文本中,掩蔽相关词汇标签(如"羟基"、"苯环")。

预测任务:

模型需要利用未被掩蔽的信息(如部分分子图或文本)预测被掩蔽的内容。

例如: 给定一个掩蔽了"-OH"的分子图, 模型应能从文本描述中预测出"羟基"。

作用:

增强模型对**子结构-文本对应关系**的理解。 提升模型在**局部化学特征识别**上的能力。

图 2. FineMolTex 的架构。输入是具有分子结构和相应描述的图形文本对。相同颜色的组件具有相同的权重。

3. 关键创新点

1.细粒度子结构建模

传统方法(如 MolT5、MolFM)仅关注**分子级别**的匹配,而 FineMolTex 额外建模**子结构-文本关联**,使模型能更精准地理解分子局部特征。

2.选择性掩蔽策略

不同于随机掩蔽(如 BERT 的 MLM),FineMolTex **优先掩蔽重要基元**(如官能团),迫使模型学习关键化学知识。

3.双模态协同学习

同时利用分子图 (结构信息) 和文本 (语义信息) 进行训练,增强模型的跨模态理解能力。

实验

目标:验证一件事: FineMolTex是不是真的能像"化学家+翻译官"一样,既理解分子整体,又懂局部基团和文本的对应关系?

RQ1: 对未见分子的泛化能力

RQ2: 基于motif的任务表现

RQ3: 单模态任务表现

RQ4: 细粒度知识分析

RQ5: 消融实验

RQ1:对未见分子的泛化能力(零样本检索)

任务

给定一个分子,从100个描述中找出正确的(或反之)。

难点: 所有分子和文本都是模型没见过的(零样本)!

数据集

DrugBank-Pharmacodynamics: 药品分子+药理描述(如 "此药通过抑制XX酶起作用")。

Molecule-ATC: 药品+治疗分类(如"抗抑郁药")。

表 3. 准确度 (%±σ) 的图文本检索任务。

	给定分子图			给定文本		
T	4	10	20	4	10	20
KV-PLM	68.38±0.03	47.59 ±0.03	36.54±0.03	67.68 ±0.03	48.00 ±0.02	34.66 ±0.02
摩尔CA	83.75 ±0.54	74.25 ±0.2 6	66.14±0.21	81.27 ±0.33	69.46 ±0.17	62.13±0.16
MoMu-S	70.51 ±0.04	55.20 ±0.1 5	43.78 ±0.10	70.71 ±0.22	54.70± 0.31	44.25 ±0.43
MoMu-K	69.40±0.11	53.14±0.26	42.32 ±0.28	68.71 ±0.03	53.29±0.05	43.83±0.12
3D-MoLM	81.35±0.14	73.65 ±0.13	64.79 ±0.1 5	79.78 ±0.22	62.38 ±0.16	53.43±0.11
MV-摩尔	92.24 ±0.26	85.38 ±0.19	79.41 ±0.43	91.28 ±0.13	85.32 ±0.1 5	80.37±0.22
分子STM	92.14 ±0.02	86.27 ±0.02	81.08±0.05	91.44±0.02	86.76 ±0.03	81.68±0.03
精细摩德克斯	96.78±0.05	92.48±0.02	87.94±0.14	96.29±0.12	91.65±0.15	85.07±0.11

RQ2: 基于motif的任务表现(分子编辑)

任务

按照文本指令修改分子,比如:

指令1: "增加水溶性" → 模型应加入 "-OH"或 "-COOH"。

指令2: "加入氯原子" → 模型需在特定位置加 "-Cl"。

评测方法

- **1.物理性质类指令:**用计算工具检查修改后的性质(如LogP值变化)。
- 2.基团类指令:用RDKit检查是否真的加入了指定基团。

图 3.12 个基于文本的分子编辑任务的命中率。

RQ3: 单模态任务表现(分子性质预测)

任务

预测分子的8种性质(如毒性、是否穿透血脑屏障)。 特殊设定: 只给分子结构, 不给文本描述(测试单模态能力)。

数据集

•BBBP: 预测分子能否穿过血脑屏障。

•Tox21: 检测分子毒性。

Table 6. Downstream results ($\%\pm\sigma$) on eight binary classification datasets from MoleculeNet.

Model	BBBP	Tox21	ToxCast	Sider	ClinTox	MUV	HIV	Bace	Avg
AttrMask	67.8 ±2.6	75.0±0.2	63.6±0.8	58.1±1.2	75.4±8.8	73.8±1.2	75.4±0.5	80.3±0.0	71.2
ContextPred	63.1±3.5	74.3±0.2	61.6±0.5	60.3±0.8	80.3±3.8	71.4±1.4	70.7±3.6	78.8±0.4	70.1
InfoGraph	64.8 ±0.6	76.2 ±0.4	62.7 ±0.7	59.1±0.6	76.5±7.8	73.0±3.6	70.2 ±2.4	77.6 ±2.0	70.0
MolCLR	67.8±0.5	67.8±0.5	64.6±0.1	58.7 ±0.1	84.2±1.5	72.8±0.7	75.9±0.2	71.1 ±1.2	71.3
GraphMVP	68.1±1.4	77.1±0.4	65.1±0.3	60.6±0.1	84.7±3.1	74.4±2.0	77.7±2.5	80.5 ±2.7	73.5
GraphCL	69.7±0.7	73.9±0.7	62.4±0.6	60.5±0.9	76.0±2.7	69.8±2.7	78.5±1.2	75.4±1.4	70.8
KV-PLM	70.5±0.5	72.1±1.0	55.0±1.7	59.8±0.6	89.2±2.7	54.6±4.8	65.4±1.7	78.5±2.7	68.2
MoMu-S	70.5 ±2.0	75.6±0.3	63.4±0.5	60.5±0.9	79.9±4.1	70.5±1.4	75.9±0.8	76.7±2.1	71.6
MoMu-K	70.1±1.4	75.6±0.5	63.0±0.4	60.4±0.8	77.4±4.1	71.1±2.7	76.2±0.9	77.1±1.4	71.4
MolCA	70.0±0.5	77.2±0.5	64.5±0.8	63.0±1.7	89.5±0.7	72.1 ±1.3	77.2±0.6	79.8±0.5	74.2
MoleculeSTM	70.0±0.5	76.9±0.5	65.1±0.4	61.0±1.1	92.5±1.1	73.4±2.9	77.0±1.8	80.8±1.3	74.6
FineMolTex	73.5±1.6	77.1±1.2	68.6±0.9	64.8±1.4	92.5±0.8	76.3±1.2	79.0±1.4	84.0±1.5	76.9

RQ4: 细粒度知识分析

方法

- 1.可视化:用t-SNE将基序和单词向量投影到2D平面,观察是否聚类。
 - 1. 例如: "苯环""芳香""共轭"应该聚在一起。
- 2.LIME解释: 遮挡部分文本,看模型预测基序时依赖哪些词。

发现

基序-单词对齐:

- "羧基"(-COOH)的向量 ≈ "carboxylic acid"的向量。
- "磺酰胺"(-SO₂NH₂)的向量≈"antibacterial"的向量(因为磺胺类抗菌)。

错误案例:

模型曾把"吡啶环"误关联到"碱性"(正确),但也关联到"苦味"(实际无直接关系)

图 5. 使用t-SNE。三角形表示单词标记;圆圈表示主题标记。

AI的化学笔记

RQ5: 消融实验

测试组件

- **1.去掉跨模态注意力**:模型无法用文本帮助预测基序,性能 暴跌**15%**。
- **2.随机掩码**:模型学会一堆无用信息(如"C"原子),编辑任务成功率下降40%。
- **3.仅掩码基序或仅掩码文本**:效果介于全模型和随机掩码之间。

总结

理论贡献: 首次强调细粒度知识对分子-文本对齐的重要性。

方法创新:提出结合全局对比对齐和局部掩码预测的双任务框架,通过动态重要性掩码提升效率。

应用价值:在药物发现、催化剂设计等场景中展现出潜力,如分子编辑任务的显著改进。

FineMolTex通过细粒度对齐分子子结构与文本描述,显著提升了分子表示学习的泛化能力和任务适应性,为多模态分子建模提供了新思路。实验证明其在检索、生成和预测任务中的优越性。

时序知识图谱 (TKG)

穆莹

时序知识图谱的定义

时序知识图谱(Temporal Knowledge Graph, TKG)是在传统 知识图谱基础上引入时间维度的知识表示形式,将事实三元组 扩展为四元组(h,r,t,τ),其中:

h ∈ E: 头实体

r ∈ R: 关系

t ∈ E: 尾实体

τ∈ T: 时间戳或时间区间

形式化表示为: G = (E, R, T, F), 其中F ⊆ E × R × E × T是事

实四元组集合

与传统知识图谱的区别

特性	静态知识图谱	时序知识图谱
事实表示	(h, r, t)	(h, r, t, τ)
时间敏感性	无	事实仅在特定 时间有效
演化能力	无法建模变化	可捕捉实体关 系的动态演变
推理任务	实体/关系预测	增加时间预测 和未来事件预 测
应用场景	通用知识库	动态系统分析 (金融、社交网 络等)

技术体系与分类框架

按时间建模方式

按表示学习范式

按推理任务类型

静态快照法:

将TKG分解为时间片序列 $\{G_1, G_2, \ldots, G_T\}$

代表模型: RE-Net、RE-GCN

优点:可直接应用静态图谱方法

缺点: 忽略时间连续性

连续时间法:

将时间作为连续变量建模

代表模型: Know-Evolve、HyTE

优点: 更精细的时间建模

缺点: 计算复杂度高

几何空间方法:

翻译模型: t-TransE、TransE-TAE 双线性模型: TA-DisMult、TComplEx 旋转模型: ChronoR、RotatE-T

神经网络方法:

序列模型: CyGNet、RE-Net 图神经网络: RE-GCN、TeMP 混合架构: CENET、EvoKG

任务类型	输入	输出	评估指 标
实体预测	(h,r,τ)	t	MRR, Hits@K
关系预 测	(h,t,τ)	r	Accura cy
时间预测	(h,r,t)	Т	MAE
未来事件预测	(h,r,?) t>t_ma x	(h,r,t)	F1- score

关键技术与模型演进

t-TransE (2016)

核心: 在TransE (知识图谱经典模型)基础上,给关系加上"时间标签",让关系在不同时间段有不同的含义。

怎么做的?

关系演化矩阵: 比如"师徒关系"在1990年和2020年的含义可能不同,用矩阵调整关系表示。 **时间冲突检测**: 同一关系在同一时间段内不能有矛盾事实(比如一个人不可能同时在两个地方)。

缺点: 只考虑关系随时间变化,忽略了实体本身的变化(比如人的年龄、职位变化)。

HyTE (2018)

核心: 把实体和关系投影到"时间专属空间",不同时间的数据互不干扰。

怎么做的?

时间超平面:每个时间点(如2020年)有一个独立的空间,数据和其它时间的数据隔开。

投影操作: 类似把2020年的数据放在A房间,2021年的数据放在B房间,避免混淆。

优点:简单直接,适合处理精确时间点(如"某天发生了什么")。

缺点:无法处理时间段(如"某十年间的趋势")。

关键技术与模型演进

Know-Evolve (2017)

核心:用"事件流"建模,像预测地震一样预测知识图谱中事件发生的概率。 **怎么做的**?

事件强度函数:比如"A和B合作"这件事,上次发生越久,下次发生的概率越高(类似社交互动规律)。

动态实体表示:实体的表示随时间推移自动更新(比如人的影响力会变化)。

适用场景:适合建模连续发生的动态事件(如社交网络互动、论文引用)。

缺点:无法处理静态事实(如"中国的首都是北京"这种不随时间变化的知识)。

RE-Net (2020)

核心:用"历史记忆"预测未来,像写小说一样一步步生成后续事件。

怎么做的?

历史编码器:用图神经网络(R-GCN)记住过去的所有事件。

序列预测:像自动写诗一样,按时间顺序一步步预测"谁在什么时间可能做什么"。

优点:能预测复杂的多步事件链(比如"A先发表论文,B再引用,C随后加入合作")。

缺点: 计算量大, 需要大量历史数据。

关键技术与模型演进

ChronoR (2021)

核心:用"时间旋转"让同一关系在不同时间有不同的解释,像调整时钟指针一样调整语义。怎么做的?

旋转操作: 比如"导师"关系在1990年指向"严格指导",2020年指向"合作研究",通过数学旋转区分。

保持语义不变:旋转后不破坏原始关系含义("导师"还是"导师",只是细节变化)。

优点: 同时保留时间敏感性和语义一致性。

缺点: 数学复杂,训练难度高。

CENET (2023)

核心:用"双通道"解决冷启动问题,既看历史规律,又看全局趋势。 怎么做的?

历史流: 重点关注过去出现过的实体(比如常合作的学者)。

非历史流:挖掘潜在的新实体(比如突然冒出的新锐学者)。

创新点:特别擅长预测罕见事件(比如突然爆发的科研热点)。

缺点:需要平衡两个通道的权重,调参复杂。

对比总结

静态扩展:给知识加时间标签(贴日历)。

动态建模: 让知识像电影一样动态演变。

混合方法: 既考虑时间标签, 又允许动态调整。

方法	核心思路	擅长场景	短板
t-TransE	关系随时间微调	简单时间约束	忽略实体变化
НуТЕ	不同时间数据分开放	精确时间点事件	无法处理时间段
Know-Evolve	预测事件发生概率	连续事件流(如社交 网络)	不能处理静态知识
RE-Net	用历史记忆一步步预 测未来	复杂事件链	计算量大
ChronoR	旋转关系表示区分时 间	时间敏感的关系语义	训练复杂
CENET	历史+全局双通道预测	冷启动/长尾事件	需平衡双流

一、时序的数学表征形式

时间点(Timestamp)

表示事件发生的具体时刻(如 "2023-01-01")。

适用方法: HyTE、Know-Evolve。

时间区间(Time Interval)

表示事实的有效时间段(如 "[2010, 2020]")。

适用方法: t-TransE、ChronoR。

事件序列(Event Sequence)

按时间排序的事实集合

(如 (e1,r1,e2,t1) \rightarrow (e2,r2,e3,t2)(e1,r1,e2,t1) \rightarrow (e2,r2,e3,t2))

适用方法: RE-Net、Know-Evolve。

二、时序建模的核心技术

1. 静态扩展方法

思想:在静态知识图谱嵌入(如 TransE)基础上扩展时间维度。

技术实现:

时间约束编码(t-TransE):

通过时间区间不相交约束保证时序逻辑一致性。

例:同一关系在同一实体的不同时间段必须互斥。

时间超平面投影(HyTE):

将实体/关系投影到时间特定的 超平面,实现时间解耦

效果:不同时间的表示空间相互 独立。

2. 动态建模方法

思想:将时序视为连续过程,直接建模实体/关系的动态演化。

技术实现:

时序点过程(Know-Evolve):

用强度函数 $\lambda_r^{h,t}(t)$ 建模事件发生的概率密度:

 $\lambda_r^{h,t}(t) \propto \exp(h(t)^T R_r t(t)) \cdot e^{-\beta(t-T_{bat})}$

物理意义:事件概率随上次发生时间衰减(如社交互动)。

自回归序列建模(RE-Net):

用GRU编码历史事件序列,预测未来事件的联合概率:

关键:显式建模事件间的时序依赖。

二、时序建模的核心技术

3. 混合方法

思想:结合静态与动态优势,实现时间感知的几何变换。

技术实现:

时间旋转操作(ChronoR):

在复数空间通过正交矩阵 $Q_{r,\tau} \in SO(d)$ 旋转实体表

示: $h_{ au}=Q_{r, au}h,\quad Q_{r, au}^TQ_{r, au}=I$

优势:保持关系语义的同时引入时间敏感性。

双流对比学习(CENET):

历史流捕捉时间局部性,非历史流建模全局分布,解决长尾问题

三、时序逻辑的保障机制

时间冲突检测

如t-TransE的时间区间不重叠约束,确保事实的时间合理性。

时间衰减函数

Know-Evolve的 ψ(t)=e-βtψ(t)=e-βt建 模事件影响力的衰减。

时序注意力

RE-Net通过GRU的隐状态自动学习事件间的时间依赖权重。

四、典型应用	场景对比	
场景	适用方法	时序处理特 点
历史事实补全	t-TransE, HyTE	静态扩展时 间维度
连续事件预测	Know-Evolve	强度函数建 模事件流
多步未来预测	RE-Net	自回归序列 生成
新事件冷启动	CENET	对比学习缓 解数据稀疏

数据集

数据集	时间范围	时间粒度	实体数	关系数	四元组数	特点
ICEWS14	2014全年	24小时	6,869	230	96,730	政治事件密 集
ICEWS05-15	2005-2015	24小时	10,094	251	461,329	长周期分析
GDELT	2014全年	15分钟	14,018	20	3,129万	超高频事件
YAGO15k	百年尺度	1年	15,403	34	138,056	常识知识为 主
Wikidata	百年尺度	1年	11,134	95	150,079	新实体比例 高(36.39%

评估指标

1.标准指标

MRR(平均倒数排名) Hits@{1,3,10}

2.时序特定指标

时间预测MAE 未来预测准确率

3.性能对比

最佳模型在ICEWS14上的演进:

Model	MRR	Hits@1	Hits@3	Hits@10	参数量
t-TransE	0.083	0.056	0.092	0.142	2.1M
TA-DisMult	0.208	0.142	0.228	0.317	3.7M
RE-Net	0.455	0.382	0.486	0.581	8.2M
CyGNet	0.462	0.397	0.507	0.593	7.9M
CENET	0.533	0.482	0.541	0.592	9.6M

阶段	时间	技术特点	代表模型
萌芽期	2016-2017	静态模型 时间扩展	t-TransE
发展期	2018-2020	动态序列 建模	RE-Net
成熟期	2021-2023	多模态混 合架构	CENET

挑战和未来发展方向

方法演进: 从静态扩展(2016-2018)到动态建模(2019-2021),再到混合方法(2022至今),MRR指标提升近6

倍。

技术共识: GCN+时序编码的混合架构已成为主流,在ICEWS14上Top-3模型均采用此范式。

待解问题:时间预测精度(平均MAE 0.35)仍显著低于实体预测,反映时序建模的深层挑战。

时间编码瓶颈

当前方法对周期性、间隔建模不足部分解决方案: BoxTE的时间盒子嵌入

增量学习效率

金融场景需要分钟级更新 突破方向: TIE的增量框架

评估标准缺陷

缺乏统一的外推测试集 论文建议:区分插值/外推任务

应用前景:金融和医疗领域被两篇论文共同列为最具潜力的应用方向,但需解决实时性(<100ms)和可解释性需求

谢谢

OVER