Worksheet 3

Exercise 19 (P)

With the set of English letters, S, and the corresponding set of letter-probabilities, P, we compute the Entropy, H, using the function

$$H(P) = \sum_{i=1}^{n} p_i \times \log_2\left(\frac{1}{p_i}\right)$$

where p_i is the probability of the corresponding letter s_i , to occur in a text written in the English language.

To compute the Entropy, a C#-program was written. The letter-probabilities from the lecture slides are paired with the corresponding letter in a Dictionary-datatype. The computation is then done for each entry in the dictionary, and summed in an entropy-value. Using this approach, we compute the Entropy to be approximately **4,18**. This number indicates the average number of bits needed to store one letter of an English plaintext.

The code used to calculate the entropy, is found on the following page.

Code for Exercise 19

```
using System;
using System.Collections.Generic;
namespace Cryptanalysis.Entropy
    class Program
    {
         static void Main(string[] args)
              //Probabilities extracted from the lecture slides.
              Dictionary<char, double> probabilities = new Dictionary<char, double>()
                   {'A', 0.082F},
{'B', 0.015F},
{'C', 0.028F},
{'D', 0.043F},
{'E', 0.127F},
                   {'F', 0.022F},
{'G', 0.020F},
                   {'H', 0.061F},
                   {'I', 0.070F},
                   {'J', 0.002F},
                   ('K', 0.008F),
                   {'L', 0.040F},
                   {'M', 0.024F},
                   ('N', 0.067F),
                   {'O', 0.075F},
                   {'P', 0.019F},
{'Q', 0.001F},
                   {'R', 0.060F},
                   {'S', 0.063F},
{'T', 0.091F},
                   {'U', 0.028F},
                   {'V', 0.010F},
                   {'W', 0.023F},
                   {'X', 0.001F},
{'Y', 0.020F},
                   {'Z', 0.001F}
              };
              double Entropy = 0.0F;
              for (char c = 'A'; c <= 'Z'; c++)
                   Entropy += probabilities[c] * Math.Log((1 / probabilities[c]), 2);
              Console.WriteLine("Entropy: " + Entropy);
              //Entropy: 4,18024503236223
         }
    }
}
```