Update 17/03

GIOELE CONSANI

17/03/20

Coupler in charging regime: $\frac{E_C}{E_I} = 2$

Qubit:

$$E_J = 0.4 \text{ GHz},$$
 $E_J = 2 \text{ GHz},$
 $C_J = 93 \text{ fF},$ $C_J = 9 \text{ fF},$

Coupler:

$$E_J = 2 \text{ GHz},$$

 $C_J = 9 \text{ fF},$
 $C_g = 1 \text{ fF}.$

$$C_c = 5 \text{ fF}$$

Paper findings:

- Averin coupler can induce ZZ interaction between charge qubits, as well as (a usually small) YY interaction, resulting from non-adiabatic correction (beyond Born-Oppenheimer approximation)
- Charge regime $E_C \gg E_I$: tuneable ZZ, negligible YY
- Phase regime $E_J \gg E_C$: negligible ZZ, YY dominant and approximately constant

Paper findings:

NB: The requirement that the coupler remains in its ground state, adiabatically following the evolution of the qubits translates into $E_{J,i} < E_J$, which combined with the charging regime condition implies $E_{J,i} < E_J \ll E_C$ which means that very small critical current and/or capacitances are required.

Coupler spectrum:

Loaded coupler island capacitance = 19.5 fF, $\frac{E_C}{E_J}$ = 2 (charge regime).

Qubit spectrum:

Loaded qubit island capacitance = 97.7 fF, $\frac{E_{Ci}}{E_{Ji}}$ = 2, $\frac{E_{Ji}}{E_{I}}$ = 0.2.

System spectrum:

Lowest 4 transition energies vs. coupler island charge bias (qubits biased at $Q_{g,i} = e$). Crossing between 1st and 2nd excited state: pairwise interaction tuned across zero.

Extracted params:

1-local:

Tuning of the longitudinal field (voltage offset on coupler also offsets qubit island)

Extracted params:

2-local:

ZZ (+ZX + XZ) charge interaction, tuneable in magnitude and sign, < 10 MHz in absolute value. Negligible YY inductive interaction (non-adiabatic effect)

Comparison with paper: $\lambda_c = 4J_{zz}$, $\lambda_i = 4J_{yy}$.

Similar λ_c , λ_i everywhere negligible

Coupler in phase regime: $\frac{E_C}{E_I} = 0.5$

Qubit:

$E_I = 5.0 \text{ GHz}, \qquad E_I = 25 \text{ GHz},$

Coupler:

$$E_J = 5.0 \text{ GHz}, \qquad E_J = 25 \text{ GHz}$$

 $C_J = 4.7 \text{ fF}, \qquad C_J = 0 \text{ fF},$
 $C_g = 1 \text{ fF}. \qquad C_g = 0.9 \text{ fF}.$

$$C_c = 5 \text{ fF}$$

Coupler spectrum:

Loaded coupler island capacitance = 6.2, $\frac{E_C}{E_J} = 0.5$ (charge regime).

Qubit spectrum:

Loaded qubit island capacitance = 7.8 fF, $\frac{E_{Ci}}{E_{Ji}} = 2$, $\frac{5}{20}$

$$\frac{E_{Ji}}{E_{I}}=0.2.$$

Note the bigger energy scales

System spectrum:

Lowest 4 transition energies vs. coupler island charge bias (qubits biased at $Q_{g,i} = e$). No crossing between 1st and 2nd excited state: pairwise interaction is NOT tuned across zero.

Extracted params:

1-local:

Tuning of the longitudinal field is negligible at this scale

Extracted params:

2-local:

ZZ (+ZX + XZ) charge interaction, always negative, < 100 MHz in absolute value. Small YY (+XX) inductive interaction (non-adiabatic effect)

Comparison with paper: $\lambda_c = 4J_{zz}$, $\lambda_i = 4J_{yy}$.

 λ_c uniformly shifted, smaller λ_i . Note that all coefficients are smaller than in the charging regime relative to the system energy scale, as in the paper