Static Linear Panel Data Models

230347 Advanced Microeconometrics Tilburg University

Christoph Walsh

Static Linear Panel Model

► The static linear panel data model is:

$$y_{it} = \alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$$
 $i = 1, \dots, N, t = 1, \dots, T$

▶ The one-way error component model has individual-specific effects:

$$u_{it} = \alpha_i + \varepsilon_{it}$$

▶ The two-way error component model adds time effects:

$$u_{it} = \alpha_i + \lambda_t + \varepsilon_{it}$$

Pooled OLS

▶ The pooled OLS estimator stacks the *NT* observations and estimates (α, β) using OLS:

$$y_{it} = \alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$$
 $i = 1, \dots, N, t = 1, \dots, T$

- ▶ If $Cov(u_{it}, x_{it}) = 0$, then pooled OLS is a consistent estimator for (α, β) .
- ▶ If the Cov $(u_{it}, u_{is}) \neq 0$ for $t \neq s$, then OLS standard errors will be too small.
 - Correlated observations contain less information than independent observations.
- Pooled OLS is inconsistent if the true model is fixed effects and the α_i are correlated with x_{it} as the error term is correlated with the regressors:

$$y_{it} = \alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + u_{it}$$

= $\alpha + \mathbf{x}'_{it}\boldsymbol{\beta} + (\alpha_i - \alpha + \varepsilon_{it})$

Between Estimator

▶ The between estimator estimates (α, β) with OLS using the average of all observations by individual:

$$\underbrace{\frac{1}{T} \sum_{t=1}^{T} y_{it}}_{=\bar{y}_i} = \alpha + \underbrace{\left(\frac{1}{T} \sum_{t=1}^{T} x_{it}\right)'}_{=\bar{x}_i'} \beta + \underbrace{\frac{1}{T} \sum_{t=1}^{T} u_{it}}_{\bar{u}_i}$$

- ▶ The between estimator only uses cross-sectional variation to estimate β :
- ▶ When T = 1, this is the same as a cross-section regression.
- ▶ The between estimator is consistent only if the composite error term \bar{u}_i is independent of the regressors \bar{x}_i .

Within Estimator (Fixed Effects Estimator)

ightharpoonup The within estimator demeans by individual to remove the individual fixed effects α_i :

$$y_{it} - \bar{y}_i = \underbrace{\alpha_i - \frac{1}{T} \sum_{t=1}^{T} \alpha_i + (\mathbf{x}_{it} - \bar{\mathbf{x}}_i)' \boldsymbol{\beta} + \varepsilon_{it} - \bar{\varepsilon}_i}_{=0}$$

- The above model can then be estimated with OLS.
- The within estimator is a consistent estimator of β if $N \to \infty$ while T is fixed, even if the α_i are correlated with \mathbf{x}_{it} .

Limitations:

- Inability to estimate the effects of time-invariant regressors.
- If the α_i are independent of the x_{it} , then random effects is more efficient.

Within Estimator for Two-Way Errors

- ▶ Suppose the composite error term is now $u_{it} = \alpha_i + \lambda_t + \varepsilon_{it}$.
- ▶ If T is fixed and $N \to \infty$, we could consistently estimate λ_t with dummies for each time period.
- lacktriangle However, we can also apply a double within transformation to remove both the $lpha_i$ and λ_t .
 - ▶ The transformation is $y_{it} \bar{y}_i \bar{y}_t + \bar{y}$, where $\bar{y} = \frac{1}{NT} \sum_{i=1}^{N} \sum_{t=1}^{T} y_{it}$.
- With λ_t , we can no longer estimate effects that are individual-invariant within a time period.
 - For example, macroeconomic variables or a time trend.

First-Differences Estimator

The first-differences estimator removes the fixed effect α_i by subtracting the lag of the model $y_{i,t-1} = \alpha_i + \mathbf{x}'_{i,t-1}\boldsymbol{\beta} + \varepsilon_{i,t-1}$:

$$y_{i,t} - y_{i,t-1} = (x_{i,t} - x_{i,t-1})' \beta + \varepsilon_{i,t} - \varepsilon_{i,t-1}$$
 $i = 1, ..., N$ $t = 2, ..., T$

and estimating with OLS.

- ▶ The first-differences estimator is consistent as $N \to \infty$ with T fixed.
- ightharpoonup When T=2, both estimators produce identical estimates and standard errors.
- ▶ If the $\varepsilon_{i,t}$ are iid, the within estimator is more efficient.
 - But estimation with first differences can be efficient if using GLS.
- If $\varepsilon_{i,t} = \varepsilon_{i,t-1} + e_{i,t}$ ($\varepsilon_{i,t}$ is a random walk) and $e_{i,t} = \Delta \varepsilon_{i,t}$ is iid, then the first-differences estimator is more efficient.

Random Effects Estimator

The model is:

$$y_{it} = \mu + \mathbf{x}'_{it}\boldsymbol{\beta} + \alpha_i + \varepsilon_{it}$$

- ▶ The random effects model treats $\alpha_i + \varepsilon_{it}$ as a composite error term.
 - $ightharpoonup \alpha_i$ is iid and has mean and variance 0 and σ_{α}^2 respectively.
 - $ightharpoonup arepsilon_{it}$ is iid and has mean and variance 0 and $\sigma_{arepsilon}^2$ respectively.
- ▶ The RE model allows for the estimation of time-invariant regressors.
- ▶ If the α_i are correlated with the \mathbf{x}_{it} , the RE model is inconsistent.
- ▶ If the RE model is consistent, the FE model is also consistent but less efficient.

FGLS Estimation of RE Model (With Balanced Panels)

▶ Step 1: Estimate model with fixed effects and use the residuals to compute:

$$\widehat{\sigma}_{\varepsilon}^{2} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} \left[\left(y_{it} - \overline{y}_{i} \right) - \left(\mathbf{x}_{it} - \overline{\mathbf{x}}_{i} \right)' \widehat{\boldsymbol{\beta}}_{FE} \right]^{2}}{N(T-1) - K}$$

► Step 2: Estimate between model and use the residuals to compute:

$$\widehat{\sigma}_{\alpha}^{2} = \frac{\sum_{i=1}^{N} (\bar{y}_{i} - \mu_{B} - \bar{x}_{i}'\beta_{B})^{2}}{N - (K + 1)} - \frac{1}{T}\widehat{\sigma}_{\varepsilon}^{2}$$

- Step 3: Compute: $\widehat{\lambda} = 1 \widehat{\sigma}_{\varepsilon} / \sqrt{T \widehat{\sigma}_{\alpha}^2 + \widehat{\sigma}_{\varepsilon}^2}$
- ► Step 4: Estimate the model below with OLS to obtain the RE estimates $(\widehat{\mu}_{RE}, \widehat{\beta}_{RE})$:

$$y_{it} - \widehat{\lambda} \bar{y}_i = \left(1 - \widehat{\lambda}\right) \mu + \left(x_{it} - \widehat{\lambda} \bar{x}_i\right)' \beta + \nu_{it}$$

Hausman (1978) Test

- Since FE is consistent and RE inconsistent when the individual effects are correlated with the covariates, the difference between $\hat{\beta}_{FF}$ and $\hat{\beta}_{RF}$ can be used to test for this correlation.
- The Hausman test statistic is:

$$\left(\widehat{\boldsymbol{\beta}}_{\textit{FE}} - \widehat{\boldsymbol{\beta}}_{\textit{RE}}\right)' \left[\widehat{\mathsf{Avar}}\left(\widehat{\boldsymbol{\beta}}_{\textit{FE}}\right) - \widehat{\mathsf{Avar}}\left(\widehat{\boldsymbol{\beta}}_{\textit{RE}}\right)\right]^{-1} \left(\widehat{\boldsymbol{\beta}}_{\textit{FE}} - \widehat{\boldsymbol{\beta}}_{\textit{RE}}\right) \sim \chi_{\textit{K}}^2$$

where K is the number of elements in β .

- Note that difference in variances is positive definite as RE is more efficient than FE.
- A rejection of the test suggests you should reject the RE estimates in favour of the FE estimates.

Difference-in-Differences

	Treatment $(g_i=1)$	Control $(g_i = 0)$
Pre-treatment $(t=1)$	$ar{\mathcal{Y}}_{pre}^{treatment}$	$ar{y}_{pre}^{control}$
Post-treatment $(t=2)$	y treatment Y post	ӯcontrol Уроst

▶ If the treatment is randomly assigned, its effect can be estimated with:

$$\left(\bar{y}_{\textit{post}}^{\textit{treatment}} - \bar{y}_{\textit{pre}}^{\textit{treatment}}\right) - \left(\bar{y}_{\textit{post}}^{\textit{control}} - \bar{y}_{\textit{pre}}^{\textit{control}}\right)$$

▶ We can also estimate it in a regression, where $Post_t = 1 \{t = 2\}$:

$$y_{it} = \beta_0 + \beta_1 g_i + \beta_2 Post_t + \beta_3 g_i Post_t + \varepsilon_{it}$$

Or with first differences:

$$y_{i2} - y_{i1} = \beta_2 + \beta_3 g_i + (\varepsilon_{i2} - \varepsilon_{i1})$$

Generalized Difference-in-Differences

- We often observe several periods before and after treatment.
- ▶ We also may have several control groups (and treatment groups).
- ► This can be estimated with:

$$y_{ist} = \beta D_{st} + \mathbf{x}'_{ist} \boldsymbol{\gamma} + \alpha_s + \delta_t + \varepsilon_{ist}$$

where s denotes state/region and $D_{st} \in \{0,1\}$ denotes the having received treatment.

- ▶ This model can be estimated with repeated cross sections.
 - ▶ If panel data are available, α_s can be replaced by α_i .
- We will see, however, that estimating this generalized model has many problems.

Serial Correlation in Difference-in-Differences

Bertrand et al. (2004)

- ▶ If there are several time periods before and after the policy change, serial correlation makes standard errors too small.
- ▶ Bertrand, Duflo, and Mullainathan (2004) generate placebo laws in the CPS data and find "effects" significant at the 5% level for almost half of their placebo interventions when using conventional standard errors.
- Different methods can be used to correct the standard errors:
 - Use a state-level block bootstrap.
 - Use clustered standard errors at the state level.
 - With a small number of clusters (5-30) Cameron, Gelbach, and Miller (2008) provide a wild bootstrap method.
 - Aggregate data by state into two periods: pre- and post-intervention.
 - Also found to work well for small number (pprox 10) of states.
 - ▶ See also Cameron and Miller (2015) for an overview of cluster-robust inference.

The Bootstrap and Block Bootstrap

- ▶ *NT* observations: $\{x_{1c1}, \dots, x_{1cT}, \dots, x_{Nc'1}, \dots, x_{Nc'T}\}$
- \triangleright Each *i* has an associated cluster *c* (such as the state), with *C* clusters in total.

Regular Bootstrap:

- 1. Draw NT observations from the sample at random with replacement.
- 2. Estimate β with the bootstrap sample. Call it $\widehat{\beta}_b$. Repeat B times.
- 3. The standard error can then be calculated as $\sqrt{\sum_{b=1}^{B}\frac{\left[\widehat{\beta}_{b}-\left(\frac{1}{B}\sum_{b=1}^{B}\widehat{\beta}_{b}\right)\right]^{2}}{B-1}}$

Block Bootstrap:

- ▶ Instead of drawing observations (i, t) independently, you draw entire clusters (blocks).
- You draw C entire clusters with replacement, where for each cluster you take all observations (i, t) in that cluster.
- This maintains the structure of the correlation between observations within a cluster.

Clustered Standard Errors

- lackbox For iid errors, recall that $\widehat{\mathsf{Var}}\left(\widehat{oldsymbol{eta}}\right)=\widehat{\sigma}^2\left(oldsymbol{X}'oldsymbol{X}
 ight)^{-1}.$
- For heteroskedastic but independent errors, the Huber-Ecker-White variance-covariance matrix for $\widehat{\beta}$ is:

$$\widehat{\mathsf{Var}}\left(\widehat{eta}
ight) = \left(m{X}'m{X}
ight)^{-1} \left[\sum_{i=1}^N \sum_{t=1}^T \widehat{arepsilon}_{igt}^2 m{x}_{ict} m{x}_{ict}'
ight] \left(m{X}'m{X}
ight)^{-1}$$

If we want to allow correlation within a group g, i.e.:

$$\mathbb{E}\left[\varepsilon_{ict}\varepsilon_{jc's}\right] = \begin{cases} \sigma_{it,js} & \text{if } c = c' \quad \text{(same group/cluster)} \\ 0 & \text{if } c \neq c' \quad \text{(different group/cluster)} \end{cases}$$

Then:

$$\widehat{\mathsf{Var}}\left(\widehat{\boldsymbol{\beta}}\right) = \left(\frac{C}{C-1}\right) \left(\frac{NT-1}{NT-2}\right) \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1} \left[\sum_{c=1}^{C} \boldsymbol{x}_c' \widehat{\boldsymbol{\varepsilon}}_c \widehat{\boldsymbol{\varepsilon}}_c' \boldsymbol{x}_c\right] \left(\boldsymbol{X}'\boldsymbol{X}\right)^{-1}$$

Staggered Difference-in-Differences

▶ We often have situations where a policy is rolled out in a staggered manner.

Four 2 × 2 Difference-in-Differences

TWFE gives a weighted average of all 2×2 DiD estimates

▶ Suppose we have a model with only one observation per state and no covariates:

$$y_{st} = \beta D_{st} + \alpha_s + \delta_t + \varepsilon_{st}$$

- ▶ De Chaisemartin and d'Haultfoeuille (2020) show that the estimator for β is a weighted average of the individual 2 × 2 difference-in-difference estimates.
- ▶ The weight for the effect of the treatment on state *s* in time *t* is proportional to:

$$\widetilde{D}_{st} = D_{st} - \frac{1}{T} \sum_{t=1}^{T} D_{st} - \frac{1}{S} \sum_{s=1}^{S} D_{st} + \frac{1}{ST} \sum_{s=1}^{S} \sum_{t=1}^{T} D_{st}$$

▶ If $\frac{1}{T} \sum_{t=1}^{T} D_{st}$ and $\frac{1}{S} \sum_{s=1}^{S} D_{st}$ are large, it is possible for weights to be negative!

Negative Weighting Example

▶ Recall that the weights are proportional to:

$$\widetilde{D}_{st} = D_{st} - \frac{1}{T} \sum_{t=1}^{T} D_{st} - \frac{1}{S} \sum_{s=1}^{S} D_{st} + \frac{1}{ST} \sum_{s=1}^{S} \sum_{t=1}^{T} D_{st}$$

▶ Consider the following S = 2 and T = 3 example:

State	t = 1	t = 2	t=3
s=1	0	1	1
<i>s</i> = 2	0	0	1

► Then:

$$\widetilde{D}_{1,2} = 1 - \frac{2}{3} - \frac{1}{2} + \frac{1}{2} = \frac{1}{3}$$
 $\widetilde{D}_{1,3} = 1 - \frac{2}{3} - 1 + \frac{1}{2} = -\frac{1}{6}$ $\widetilde{D}_{2,3} = 1 - \frac{1}{3} - 1 + \frac{1}{2} = \frac{1}{6}$

- ▶ The normalized weights are then +1, -1/2, +1/2, summing to 1.
- Suppose treatment effects are dynamic so that one year after treatment the effect on y is 4 on average, whereas the effect is only 1 in the year of treatment. Then the weighted sum is $1 \times 1 \frac{1}{2} \times 4 + \frac{1}{2} \times 1 = -\frac{1}{2}$. The negative weight can flip the sign!

Staggered Difference-in-Differences

- ▶ If treatment effects are heterogeneous (across units or over time), negative weights can lead to situations where all the individual ATTs are positive but the weighted average is negative.
- ► Furthermore, if treatment effects are dynamic (e.g., the effect grows larger over time), already-treated units make bad comparison groups for newly treated units.
- Callaway and Sant'Anna (2021) provide a method that alleviates these concerns (did package in R).
 - ▶ The approach involves estimating all possible 2×2 DiD regressions with OLS.
 - It does not use earlier-treated units as a control group for later-treated units. It only uses never-treated units (if available) or not-yet-treated units as control.
 - It aggregates all these estimates with equal weights, avoiding the "negative weight problem."
 - ▶ To be estimated in the computer assignment!

Synthetic Controls

Abadie et al. (2010)

- Sometimes people use all untreated states as the control groups. Other times people use neighboring states.
- Choosing control groups can be arbitrary so it may be better to let the data choose the correct control group(s).
- The synthetic control method uses a data-drived approach to choose the optimal convex combination of potential control groups (the *donor pool*) from pre-period data.
- ▶ Abadie, Diamond, and Hainmueller (2010) study the effects of Proposition 99, a large-scale tobacco control program, on cigarette sales in California.
- ► They first exclude other states that had tobacco-related policy changes in the post period. They also exclude DC.

Trends in per-capita cigarette sales: Rest of US

Trends in per-capita cigarette sales: Synthetic CA

Changes-in-Changes

Athey and Imbens (2006)

▶ DiD is functional form dependent. The common trend assumption may hold for the log but not the level:

▶ Athey and Imbens (2006) propose a generalization of the difference-in-differences method.

Changes-in-Changes: Setup

- ▶ The data is (Y_i, G_i, T_i) for i = 1, ..., N.
- \triangleright Y_i is the outcome variable.
- ▶ $G_i \in \{0,1\}$ denotes whether i is in the control or treatment group.
- ▶ $T_i \in \{0,1\}$ is time (before and after treatment).
- ▶ Under Rubin's potential outcomes framework: $Y_i = G_i T_i Y_i^I + (1 G_i T_i) Y_i^N$
 - For each individual we observe only one of Y_i^I and Y_i^N .
 - We call the unobserved outcome the counterfactual outcome.

Changes-in-Changes: Assumptions

- \blacktriangleright Write (Y, G, T, U) as random variables, where U is unobserved heterogeneity.
- ► They assume the following:
 - ▶ Model: Untreated outcomes are a function of unobserved heterogeneity and time:

$$Y^N = h(U,T)$$

- ▶ **Strict Monotonicty:** h(u, t) is strictly increasing in u for $t \in \{0, 1\}$.
- ▶ Time Invariance Within Groups: $U \perp T \mid G$
 - \blacktriangleright Each i's ranking in the distribution of Y_i^N is the same in both time periods.
- ▶ Support: $\mathbb{U}_1 \subseteq \mathbb{U}_0$.

Changes-in-Changes: Counterfactual Distribution of Treated Group

- ▶ Let $F_{Y,gt}$ be the cdf of Y for group g at time t.
- ▶ Given the assumptions, they show that the distribution of Y_{11}^N is identified:

$$F_{Y^{N},11}(y) = F_{Y,10}\left(F_{Y,00}^{-1}(F_{Y,01}(y))\right)$$

- $ightharpoonup F_{Y^N,11}(y)$ can be estimated by taking the empirical cdf of $\widehat{F}_{Y,01}^{-1}(\widehat{F}_{Y,00}(Y_{10}))$.
 - Note: The empirical cdf of n iid draws of a random variable X_i is: $\widehat{F}(x) = \frac{1}{n} \sum_{i=1}^{N} \mathbb{1} \{X_i \leq x\}$
- ▶ Since $F_{11}(y) = F_{Y',11}(y)$, you can use the empirical cdf of Y_{11} to estimate $\widehat{F}_{Y',11}(y)$.

Changes-in-Changes: Average Treatment Effects

▶ The average treatment effect on the treated is then:

$$\tau^{CIC} = \mathbb{E}\left[Y_{11}'\right] - \mathbb{E}\left[Y_{11}^{N}\right]$$
$$= \mathbb{E}\left[Y_{11}'\right] - \mathbb{E}\left[F_{Y,01}^{-1}\left(F_{Y,00}\left(Y_{10}\right)\right)\right]$$

The sample analogue is:

$$\widehat{\tau}^{CIC} = \frac{1}{N_{11}} \sum_{i=1}^{N_{11}} Y_{11,i} - \frac{1}{N_{10}} \sum_{i=1}^{N_{10}} \widehat{F}_{Y,01}^{-1} \left(\widehat{F}_{Y,00} \left(Y_{10,i} \right) \right)$$

Changes-in-Changes: Quantile Treatment Effects

► The effect at quantile q is:

$$au_q^{CIC} = F_{Y^I,11}^{-1}(q) - F_{Y^N,11}^{-1}(q)$$

▶ Using $F_{Y^N,11}(y) = F_{Y,10}\left(F_{Y,00}^{-1}(F_{Y,01}(y))\right)$, we can calculate the sample analogue of this with:

$$\widehat{\tau}_{q}^{\textit{CIC}} = \widehat{F}_{Y,11}^{-1}\left(q\right) - \widehat{F}_{Y,01}^{-1}\left(\widehat{F}_{Y,00}\left(\widehat{F}_{Y,10}^{-1}\left(q\right)\right)\right)$$

Changes-in-Changes: Graphical Illustration

References

- Baltagi, Ch. 2 and beginning of Ch. 3
- Cameron and Trivedi, Ch. 21
- ABADIE, A., A. DIAMOND, AND J. HAINMUELLER (2010): "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program," *Journal of the American statistical Association*, 105, 493–505.
- ATHEY, S. AND G. W. IMBENS (2006): "Identification and Inference in Nonlinear Difference-in-Differences Models," *Econometrica*, 74, 431–497.
- BERTRAND, M., E. DUFLO, AND S. MULLAINATHAN (2004): "How Much Should we Trust Differences-in-Differences Estimates?" The Quarterly Journal of Economics, 119, 249–275.
- CALLAWAY, B. AND P. H. SANT'ANNA (2021): "Difference-in-Differences with Multiple Time Periods," Journal of Econometrics, 225, 200–230.
- CAMERON, A. C., J. B. GELBACH, AND D. L. MILLER (2008): "Bootstrap-Based Improvements for Inference with Clustered Errors," *The Review of Economics and Statistics*, 90, 414–427.
- CAMERON, A. C. AND D. L. MILLER (2015): "A Practitioner's Guide to Cluster-Robust Inference," Journal of Human Resources, 50, 317–372.
- DE CHAISEMARTIN, C. AND X. D'HAULTFOEUILLE (2020): "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, 110, 2964–96.
- GOODMAN-BACON, A. (2021): "Difference-in-Differences with Variation in Treatment Timing," Journal of Econometrics, 225, 254–277.
- HAUSMAN, J. A. (1978): "Specification Tests in Econometrics," Econometrica, 1251-1271.

Note: Probability Limit & Consistency

Probability Limit:

A sequence of random variables $\{x_N : N = 1, 2, ...\}$ converges in probability to the constant a if for all $\varepsilon > 0$, $\Pr(|x_N - a| > \varepsilon) \to 0$ as $N \to \infty$.

• We can write this as: $x_N \stackrel{p}{\to} a$ or plim $x_N = a$.

Consistency:

Let $\{\boldsymbol{\theta}_N : N = 1, 2, \dots\}$ be a sequence of estimators of $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ where N indexes sample size. If $\boldsymbol{\theta}_N \stackrel{p}{\to} \boldsymbol{\theta}$ for any value of $\boldsymbol{\theta}$, then we say $\widehat{\boldsymbol{\theta}}_N$ is a *consistent estimator* of $\boldsymbol{\theta}$.

Example: Suppose x_N is the average outcome of N coin tosses. Then $x_N \stackrel{p}{\to} \frac{1}{2}$.