

EE141-Spring 2010 Digital Integrated Circuits

Lecture 17 Domino Logic Registers

EECS141 Lecture #17

Administrativia

- □ Phase 2 announced. Launched in the next 24 hours.
- □ Hw 6 due on Fr.

Class Material

- □ Last lecture
 - Ratioed Logic
 - Dynamic Logic
- □ Today's lecture
 - Domino Logic
 - Registers
- □ Reading (Ch 6, Ch 7)

EECS141 Lecture #17

Dynamic Logic

Challenges of Dynamic Gates

- □ Noise sensitivity and small noise margins
- □ Leakage
- □ Charge sharing
- □ Clock feedthrough

Issues in Dynamic Design 3: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD}. The fast rising (and falling edges) of the clock couple to Out.

Other Effects

- □ Capacitive coupling
- □ Substrate coupling
- □ Minority charge injection
- □ Supply noise (ground bounce)

EECS141 Lecture #16 13

Domino Logic

Properties of Domino Logic

- □ Only non-inverting logic can be implemented
- □ Very high speed
 - static inverter can be skewed, only L-H transition critical
 - Input capacitance reduced smaller logical effort

Why Sequencing?

Two key (related) reasons that we need sequencing:

(1) Want to know when an input has a "new" value

EECS141 Lecture #16

Why Sequential Logic?

Two key (related) reasons that we need sequencing:

- (2) Need to slow down signals that are too fast
 - In order to keep them aligned with slower ones

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

Converting into a MUX

Forcing the state (can implement as NMOS-only)

EECS141 Lecture #16 33

Pseudo-Static Latch

