# 零死角玩转STM32





淘宝: fire-stm32.taobao.com

论坛: www.firebbs.cn



扫描进入淘宝店铺

## 主讲内容



01 什么是STM32

02 STM32能做什么

03 STM32怎么选型

参考资料:《零死角玩转STM32》

"初识STM32"章节

## 什么是STM32



### STM32的字面含义

- 1、ST— 意法半导体,是一个公司名,即SOC厂商
- 2、M— Microelectronics的缩写,表示微控制器,大家注意微控制

器和微处理器的区别

3、32—32bit的意思,表示这是一个32bit的微控制器

## 什么是STM32



### STM32诞生的背景

- 1、技术的更替,这个是最主要的原因
- 2、市场的需求(成本、性能、功耗、GUI、操作系统),传统的8/16位的微控制器,久经岁月的洗礼,如今虽有余晖,当面对这些需求时更显的是捉襟见肘
- 3、ST的努力(产品线丰富、开发简单易上手—基于固件库开发),让STM32在众多的基于Cortex-M内核的微控制器中脱引而出,成为最璀璨的新星

### 我们该怎么做

作为一名合格的嵌入式工程师,面对新出现的技术,我们不是充耳不闻,而是要尽快吻合市场的需要,跟上技术的潮流。如今 STM32 的出现就是一种趋势,一种潮流,我们要做的就是搭上这趟快车,让自己的技术更有竞争力。



### STM32有什么

STM32属于一个微控制器,自带了各种常用通信接口,功能非常强大

- 1、串口—USART,用于跟跟串口接口的设备通信,比如:USB转串口模块、ESP8266 WIFI、GPS模块,GSM 模块,串口屏、指纹识别模块
- 2、内部集成电路—I2C,用于跟I2C接口的设备通信,比如:EEPROM、电容屏、陀螺仪MPU6050、0.96寸OLED模块
- 3、串行通信接口—SPI,用于跟SPI接口的设备通信,比如:串行FLASH、以太网W5500、音频模块VS1053
- 4、SDIO、FSMC的超级、I2S、SAI、ADC、GPIO



## 身边常见的电子产品

智能手环,微型四轴飞行器,平衡车、扫地机、移动POST机,智能电饭锅,3D打印机



智能手环



微型四轴飞行器



扫地机



### STM32F071VBT6做的扫地机











## STM32429做的智能手环——三星 gear fit



| 资源   | 三星Gear Fit                       | 秉火STM32F407霸天虎           |  |  |
|------|----------------------------------|--------------------------|--|--|
| CPU  | STM32F439ZIY6S,WLCSP143封装        | STM32F407ZGT6,LQPF144 封装 |  |  |
| 存储   | NOR+SRAM 16MB,FMC接口              | SRAM 1MB,FSMC接口          |  |  |
| 显示   | 1.84寸的 AMOLED, RGB接口, LTDC<br>驱动 | 4.55寸电容屏,MCU接口,FSMC驱动    |  |  |
| 陀螺仪  | MPU6050,I2C接口                    | MPU6050,I2C接口            |  |  |
| 无线通信 | 蓝牙:博通BCM4334,SDIO或者SPI接口         | WIFI: ESP8266,UART接口     |  |  |



#### 淘宝众筹

https://hi.taobao.com/market/hi/deramdetail.php?spm=a215p.1472805.0.0.c9an1L&id=10072392

学会了 STM32, 想自己做产品,如何实现自己的梦想,淘宝众筹吧。做出产品原型, 用别人的钱为自己的梦想买单。

淘宝众筹科技类网址:这里面有很多小玩意都可以用 STM32 实现,只要你的创意到了,就会有人买单,前提是我们要先学会 STM32。

https://hi.taobao.com/market/hi/list.php?spm=a215p.1596646.1.8.LbVyJk#type=121288001





### STM32分类

表格 5-2 STM8 和 STM32 分类

| CPU 位数 | 内核           | 系列       | 描述          |  |  |
|--------|--------------|----------|-------------|--|--|
|        | Cortex-M0    | STM32-F0 | 入门级         |  |  |
|        | Cortex-IVIO  | STM32-L0 | 低功耗         |  |  |
|        |              | STM32-F1 | 基础型,主频 72M  |  |  |
|        | Cortex-M3    | STM32-F2 | 高性能         |  |  |
| 32     |              | STM32-L1 | 低功耗         |  |  |
|        |              | STM32-F3 | 混和信号        |  |  |
|        | Cortex-M4    | STM32-F4 | 高性能,主频 168M |  |  |
|        |              | STM32-L4 | 低功耗         |  |  |
|        | Cortex-M7    | STM32-F7 | 高性能         |  |  |
|        |              | STM8S    | 标准系列        |  |  |
| 8      | 超级版 6502     | STM8AF   | 标准系列的汽车应用   |  |  |
| 8      | 户已约X/IX 0302 | STM8AL   | 低功耗的汽车应用    |  |  |
|        |              | STM8L    | 低功耗         |  |  |



### STM32的命名方法

#### 表格 5-3 STM32F407ZGT6 命名解释

| _                                                                              | ST<br>M32                                                       | F       | 407        | Z     | G       | Т        | 6   |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------|---------|------------|-------|---------|----------|-----|
| 家族                                                                             | STM32                                                           | 表示 ST 生 | 产的 32bit 的 | J MCU |         |          |     |
| 产品类型                                                                           | F表示基                                                            | 甚础型     |            |       |         |          |     |
| 具体特性                                                                           | 407表示高性能且带 DSP 和 FPU                                            |         |            |       |         |          |     |
| <b>引脚数目</b> Z 表示 144pin, 其他常用的为 C 表示 48, R 表示 64, V 表示 176, B 表示 208, N 表示 216 |                                                                 |         |            |       | ,V 表示 1 | 00, I 表示 |     |
| FLASH大小                                                                        | <b>ASH 大小</b> G 表示 1024KB, 其他常用的为 C 表示 256, E 表示 512, I 表示 2048 |         |            |       |         |          | 048 |
| 封装                                                                             | <b>封装</b> T表示 QFP 封装,这个是最常用的封装                                  |         |            |       |         |          |     |
| 温度                                                                             | <b>温度</b> 6表示温度等级为 A: -40~85°                                   |         |            |       |         |          |     |



### STM32的命名方法





### 选择合适的MCU

一个原则:花最少的钱,做最多的事

在确定项目需求的情况下,一般按照下面的顺序来选择合适的MCU

- 1、选择哪种内核的芯片,内核越高意味着功耗也越高
- 2、选择多少引脚的芯片,引脚多少决定了资源的多少,也影响价格
- 3、选择多少RAM和FLASH的芯片,FLASH越大,价格越贵
- 4、还要考虑所选型号采购是否容易,供货是否稳定



### 如何分配原理图引脚

#### 表格 1-4 画原理图时的引脚分类

| 引脚分类    | 引脚说明说明                                                      |  |  |  |  |  |
|---------|-------------------------------------------------------------|--|--|--|--|--|
| 电源      | (VBAT)、(VDD VSS)、(VDDA VSSA)、(VREF+ VREF-)等                 |  |  |  |  |  |
| 晶振 IO   | 主晶振 IO,RTC 晶振 IO                                            |  |  |  |  |  |
| 下载 IO   | 用于 JTAG 下载的 IO: JTMS、JTCK、JTDI、JTDO、NJTRST                  |  |  |  |  |  |
| BOOT IO | BOOT0、BOOT1,用于设置系统的启动方式                                     |  |  |  |  |  |
| 复位 IO   | NRST, 用于外部复位                                                |  |  |  |  |  |
|         | 上面 5 部分 IO 组成的系统我们也叫做最小系统                                   |  |  |  |  |  |
|         | 专用器件接到专用的总线,比如 I2C, SPI, SDIO, FSMC, DCMI 这些总线的器件需要接到专用的 IO |  |  |  |  |  |
| GPIO    | 普通的元器件接到 GPIO, 比如蜂鸣器, LED, 按键等元器件用普通的 GPIO 即                |  |  |  |  |  |
|         | 如果还有剩下的 IO,可根据项目需要引出或者不引出                                   |  |  |  |  |  |



### 如何寻找引脚的功能说明

官方资料:STM32Fxxx数据手册,也叫datasheet。注意数据手册跟参考手册的区别

#### 表格 4-5 参考手册和数据手册的内容区别

| 手册     | 主要内容                | 说明                                                        |
|--------|---------------------|-----------------------------------------------------------|
| 参考手册   | 片上外设的功能说<br>明和寄存器描述 | 对片上每一个外设的功能和使用做了详细的说明,包含<br>寄存器的详细描述。编程的时候需要反复查询这个手<br>册。 |
|        | 功能概览                | 主要讲这个芯片有哪些功能,属于概括性的介绍。芯片                                  |
|        |                     | 选型的时候首先看这个部分。                                             |
|        | 引脚说明                | 详细描述每一个引脚的功能,设计原理图的时候和写程                                  |
| 数据手册   |                     | 序的时候需要参考这部分。                                              |
| 双1/6丁加 | 内存映射                | 讲解该芯片的内存映射,列举每个总线的地址和包含有                                  |
|        |                     | 哪些外设。                                                     |
|        | 封装特性                | 讲解芯片的封装,包含每个引脚的长度宽度等,我们画                                  |
|        |                     | PCB 封装的时候需要参考这部分的参数。                                      |



### 数据手册中对引脚的功能定义

表格 5-6 数据手册中对引脚定义

| Table 7. STM32F40xxx pin and ball definitions (continued) |         |         |         |          |         |                                                      |          |                 |       |                                   |                         |
|-----------------------------------------------------------|---------|---------|---------|----------|---------|------------------------------------------------------|----------|-----------------|-------|-----------------------------------|-------------------------|
|                                                           | - 1     | Pin r   | numb    | er       | 1       | 2                                                    | 3        | 4               | 5     | 6                                 | 7                       |
| LQFP64                                                    | WLCSP90 | LQFP100 | LQFP144 | UFBGA176 | LQFP176 | Pin name<br>(function after<br>reset) <sup>(1)</sup> | Pin type | I / O structure | Notes | Alternate functions               | Additional<br>functions |
| -                                                         | -       | -       | 11      | НЗ       | 17      | PF1                                                  | I/O      | FT              | -     | FSMC_A1 / I2C2_SCL /<br>EVENTOUT  | -                       |
| -                                                         | -       | -       | 12      | H2       | 18      | PF2                                                  | I/O      | FT              | -     | FSMC_A2 / I2C2_SMBA /<br>EVENTOUT | -                       |



### 引脚的功能定义解读

#### 表格 1-7 对引脚定义的解读

| 名称       | 缩写                                         | 说明                         |  |  |  |
|----------|--------------------------------------------|----------------------------|--|--|--|
| ① 引脚序号   | 阿拉伯数字表示 LQFP 封装,英文字母开头的表示 BGA 封装。引脚序号      |                            |  |  |  |
|          | 这里列出了有                                     | 了8种封装型号,具体使用哪一种要根据实际情况来选择。 |  |  |  |
| ② 引脚名称   | 指复位状态                                      | 下的引脚名称                     |  |  |  |
|          | S                                          | 电源引脚                       |  |  |  |
| ③ 引脚类型   | I                                          | 输入引脚                       |  |  |  |
|          | I/O                                        | 输入/输出引脚                    |  |  |  |
|          | FT                                         | 兼容 5V                      |  |  |  |
| ④ I/O 结构 | TTa                                        | 只支持 3V3, 且直接到 ADC          |  |  |  |
| 4 1/0 编档 | В                                          | BOOT 引脚                    |  |  |  |
|          | RST                                        | 复位引脚, 内部带弱上拉               |  |  |  |
| ⑤ 注意事项   | 对某些 IO 要注意的事项的特别说明                         |                            |  |  |  |
| ⑥ 复用功能   | IO 的复用功能, 过 GPIOx_AFR 寄存器来配置选择。一个 IO 口可以复用 |                            |  |  |  |
|          | 为多个功能,即一脚多用,这个在设计原理图和编程的时候要灵活选择。           |                            |  |  |  |
| ⑦ 额外功能   | IO 的额外功能,通过直连的外设寄存器配置来选择。个人觉得在使用上跟         |                            |  |  |  |
|          | 复用功能差不多。                                   |                            |  |  |  |



# PCB哪里打样

设计好原理图,画好 PCB 之后,需要把板子做出来,进行软硬件联调。首先得 PCB 打样,这里我推荐一家我经常打样的厂家,深圳嘉立创(JLC),行业标杆,良心价格,网址: http://www.sz-jlc.com。一块 10CM\*10CM 以内的板子,三天做好,50 块就可以搞定,还包邮,简直便宜到掉渣。如果你足够懒,不想自己焊接电阻电容二三极管什么的,嘉立创还可以帮你把 PCB 样板上的阻容贴好给你,打样贴片一条龙。

样品做好了, 软硬件什么都 OK, 要小批量怎么办? 还是找 JLC。

# 零死角玩转STM32





论坛: www.firebbs.cn

淘宝: fire-stm32.taobao.com



扫描进入淘宝店铺