Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

) f 1	1		I	D. D.
Module MainModule			Fin Plate	
			Shear Connection	
	Connectivity			Column flange-Beam web
Shear(l	(N)*			200.0
	Su	pporting Sect	ion	
	Supportin	ng Section		PBP 360X133
	Mate	erial *		E 250 (Fe 410 W)A
т т	Ultimate stren	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		230
$(B-t)$ α	Mass	132.96	Iz(cm4)	379830000.0
ZZ D	Area(cm2) - A	16940.0	Iy(cm4)	136783600.0
	D(mm)	352.0	rz(cm)	149.8
-R ₁	B(mm)	373.8	ry(cm)	89.9
R ₂	t(mm)	15.6	Zz(cm3)	2158120.0
В	T(mm)	15.7	Zy(cm3)	731850.0
	FlangeSlope	90	Zpz(cm3)	2405610.0
	R1(mm)	1.52	Zpy(cm3)	731850.0
	R2(mm)	0.0		
	Su	ipported Secti	on	
		ed Section	MB 350	
	Material *		E 250 (Fe 410 W)A	
т	Ultimate strength, fu (MPa)		410	
	Yield Streng	th , fy (MPa)	230	
$(B-t)$ α	Mass	52.3	Iz(cm4)	136150000.0
4	Area(cm2) -	6660.0	Iy(cm4)	5180000.0
ZZ D	A			
	D(mm)	350.0	rz(cm)	143.0
R ₁	B(mm)	140.0	ry(cm)	28.0
- В	t(mm)	8.1	Zz(cm3)	778000.0
\ \	T(mm)	14.2	Zy(cm3)	74000.0
	FlangeSlope	98	Zpz(cm3)	888400.0
	R1(mm)	14.0	Zpy(cm3)	74000.0
	R2(mm)	7.0		
		Bolt Details		
Diameter(mm)*				[12.0, 16.0, 20.0]
Grade *			[3.6, 4.6, 4.	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Type *			Bearing Bolt	
Bolt hole type			Standard	
Slip facto	r (µ_f)		0.3	
Type of	edges		a -	Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Weld Details	
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{410 * 1 * 245}{\sqrt{3} \ * 1.25}$ $= 67.43$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.51 * 20.0 * 8.1 * 410}{1.25}$ $= 67.43$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (67.43, 67.43)$ $= 67.43$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{200.0^{2} + 80.0^{2}}}{67.43}$ $= 4$	5	
No of Columns		1	
No of Rows		5	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 8.1, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 20.0 = 50.0$	55	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 8.1, \ 300 \ mm)$ = 300	55	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = $1.7 * 22.0 = 37.4$	40	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *10.0 * \sqrt{\frac{250}{230}}$ $= 124.8$	40	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 22.0 = 37.4	40	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *10.0 * \sqrt{\frac{250}{230}}$ $= 124.8$	40	Pass
Capacity (KN)	65893.48	67426.36	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 350.0 = 210.0$	300	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ $= 350.0 - 2 * (14.2 + 14.0 + 10)$ $= 293.6$	300	Fail
Min. Plate Length (mm)	$2 * e_{min} + (n c - 1) * p_{min})$ $= 2 * 37.4 + (1 - 1) * 50.0$ $= 84.8$	90.0	Pass
Min.Plate Thickness (mm)	$t_w = 8.1$	10.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{300 * 10.0 * 230}{\sqrt{3} * 1.1}$ $= 217.29$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (300 - (5 * 22.0)) * 10.0 * 41$ $= 584.25$.0
Block Shear Capacity in Shear (V_db) (kN)		375.08	
Shear Capacity (V_d) (kN)	200.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(217.29, 584.25, 375.08)$ $= 217.29$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	
Tension Yielding Capacity (kN)			
Tension Rupture Capacity(kN)			110
Block Shear Capacity in Tension (T_db) (kN)		375.08	
Tension Capacity (kN)	80.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(188.18, 200.74, 375.08)$ $= 188.18$	Pass
Moment Capacity (kNm)	10.0	37.64	Pass
Interaction Ratio	≤ 1	$\frac{10.0}{37.64} + \frac{80.0}{188.18} = 0.69$	Pass

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = Max(15.7, 15.7) = 15.7 \\ IS800: 2007 \ cl.10.5.2.3 \ Table 21, \\ t_{w_{min}} = 5$	5	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(15.7, 15.7) = 10.0$ $t_{w_{max}} = 10.0$	5	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{10000000.0 * 145.0}{4064833.33}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{10000000.0 * 0.0}{4064833.33}$ $V_{wv} = \frac{V}{l_w} = \frac{200000.0}{580}$ $A_{wh} = \frac{A}{l_w} = \frac{80000.0}{580}$ $R_w = \sqrt{(356.72 + 137.93)^2 + (0.0 + 344.83)^2}$ $= 602.98$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3.5 * 410}{\sqrt{3}} * 1.25$ $= 662.8$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View