PH101L Applied Physics Lab Open-Ended Lab Lab Report

Reg.#	Name	Section	Faculty
	Shayan Rizwan	J	CE
	Syed Zain Ali	J	CE
	Agha Salaat	J	CE
	Hannan	J	CE

1. Introduction

The task involves analyzing and designing a circuit to meet a specific requirement for charging time;

■ We are to verify that the capacitor charges up to 2.85 V (57% of 5 V) in 27.85 seconds.

2. Calculation

 All Calculations related to R and C by using charging/discharging equation of capacitors.

$$V(t) = V \max \left(1 - e^{-t/RC}\right)$$

$$0.57 = 1 - e^{\frac{-t}{RC}}$$

$$0.57 + e^{\frac{-27.85}{RC}} = 1$$

$$e^{\frac{-27.85}{RC}} = 1 - 0.57 = 0.43$$

$$\ln e^{\frac{-27.85}{RC}} = \ln(0.43)$$

$$\frac{-27.85}{RC} = \ln(0.43)$$

$$RC = \frac{-27.85}{\ln(0.43)} = 33 \text{ seconds}$$

When using the formula for the charging of an RC circuit, we take the percentage to which the circuit is to be charged, in decimal form, and the **Vmax** is to be set at **1**.

$$33 \text{ seconds} = 33 \mu F * 1M\Omega$$

The **resistor** is to be taken of value 1 **Mega ohm**, and the **capacitor** is to be taken of capacitance, 33 micro farads.

$$[0.57 * 5 = 2.85 \text{ Volts}]$$

3. Circuit Diagram

- Include a labeled circuit diagram showing the voltage source, capacitor, resistor.
- You can draw the circuit diagram online [https://www.circuit-diagram.org/]

4. Data

A. Charging Voltage of a Capacitor

Time (t)	
5	0.68
10	1.29
15	1.77
20	2.17
25	2.54
30	2.82
35	3.07
40	3.27
45	3.45
50	3.58
55	3.71
60	3.81
65	3.89
70	3.96
75	4.02

B. Discharging Voltage of a Capacitor

c. Charging Current of a Capacitor

Time (t)	Current $I_C(t) = C \frac{dv}{dt}$

D. Discharging Current of a Capacitor

Time (t)	Current $I_{C}(t)$ $=$ $C\frac{dv}{dt}$

5. Graphs

• Plot the graphs using graphing tools i.e., Excel or through any online resources.

A. Charging and Discharging Voltage of a Capacitor

B. Charging and Discharging Current of a Capacitor

6. % Error

• Compute the % error here.

7. Conclusion