

Code Jam Korea 2012 예선 라우드

A. 새로운 달력

<u>B. 계산식 복원</u>

C. 약속장소 정하기

Contest Analysis

<u>질문 내용</u> 16

Submissions

새로운 달력

- 10 시도하지 않음 점 **사용자 533/660명**이 해 결(81%)
- 15 시도하지 않음 점 **사용자 169/502명**이 해

점 **사용자 109/302명**의 (결(34%)

계산식 복원

- 15 시도하지 않음 점 **사용자 105/295명**이 해 결(36%)
- 25 시도하지 않음 점 **사용자 19/68명**이 해결 (28%)

약속장소 정하기

- 10 시도하지 않음 점 **사용자 172/260명**이 해 결(66%)
- 25 시도하지 않음 점 **사용자 87/146명**이 해결 (60%)

Top Scores

unbing	100
myungwoo	100
beingryu	100
Astein	100
Baekjoon	100
wook	100
wooyaggo	100
LIBe	100
domeng	100
gimae	100

문제 C 약속장소 정하기

이 대회에서는 연습을 허용합니다. 모든 문제를 원하는 횟수만큼 시도할 수 있습니다. <u>빠른 시작 가이드</u>를 읽고 시작하세요.

소량 인풋 10점 대량 인풋 25점

약속장소 정하기

서로 다른 도시에 사는 친구들이 급히 약속장소를 정하려고 한다. 하지만 길이 너무 복잡하고 서로 멀리 살아서, 어느 정도 시간 여유를 잡아야 할지 알아내기가 어렵다. 친구들이 한 곳에서 만나는 데 걸리는 최소한의 시간은 얼마인가?

약속장소를 잡기 위해 펼친 지도에는 도시와 각 도시를 잇는 도로에 대한 정보가 있다. 이것은 두 도시를 연결하는 길을 의미하는 것이 아니라, 연속된 길들의 집합으로서 여러 도시를 지나간다.

더욱 자세히 말하면, 각각의 **T** 개의 테스트 케이스에 대해 다음과 같은 것이 주어진다.

- N: 도시의 숫자
- P: 친구의 수
- M: 도로의 숫자

각 도시는 순서대로 1부터 N까지의 번호가 붙여져 있다.

또한, 1부터 P까지의 번호가 붙여져 있는 각 친구 i에 대해, 다음과 같은 것이 주어진다.

- Xi: 친구가 출발하는 도시의 번호.
- **V**_i: 친구가 거리 1 만큼 움직이는 데 걸리는 시간.

각 도시를 잇는 도로 j에 대해서는 다음과 같은 것이 주어진다. 도로는 단순히 두 도시를 잇는 길이 아니라, 여러 도시를 순서대로 잇는 연속된 길의 모임이다.

- D_j: 도로가 지나가는 도시들 사이의 거리. (한 도로 위에서, 인접한 도시 사이의 거리는 D_j로 같다.)
- Li: 도로가 지나가는 도시들의 숫자
- $\{C_{j,k}\}$: 도로가 이어주는 도시의 번호가 순서대로 나열된다.

위의 정보들을 이용해서, 동시에 출발한 친구들이 한 도시에서 만나는 데 필요한 최소한의 시간을 구하시오. 만약 다들 모일 수 있는 도시가 없다면 '-1'을 대신 출력하시오.

모임은 도시에서만 이루어질 수 있으며, 먼저 도착한 친구들은 다른 친구들을 기다릴 수 있다.

두 도시를 바로 연결하는 도로는 둘 이상 존재할 수 없으며, 어떤 도시에 도착하였을 때, 해당 도 시를 지나는 도로 간의 이동은 추가 시간 없이 자유로이 할 수 있다.

인력

입력은 다음과 같은 형식으로 주어진다.

```
 \begin{array}{l} T \\ N \ P \ M \\ X_1 \ V_1 \\ X_2 \ V_2 \\ \dots \\ X_P \ V_P \\ D_1 \ L_1 \ C_{1,1} \ C_{1,2} \ \dots \ C_{1,L_1} \\ D_2 \ L_2 \ C_{2,1} \ C_{2,2} \ \dots \ C_{2,L_2} \\ \dots \\ D_M \ L_M \ C_{M,1} \ C_{M,2} \ \dots \ C_{M,L_M} \\ N' \ P' \ M' \\ \dots \end{array}
```

출력

각각의 테스트 케이스에 대해서, x가 1번부터 시작하는 케이스 번호라고 하고 y가 각 케이스에 해당하는 답이라고 할 때 출력 파일의 각 줄에 "Case #x: y"와 같은 형식으로 출력한다. 친구들이 한 도시에서 만나는 것이 불가능하다면, 최소 시간 대신 '-1'을 출력한다.

제한

각 테스트 케이스에 대한 답은 2147483647 이하이다.

- $1 \le \mathbf{T} \le 30$.
- $1 \leq V_i \leq 200$.
- $1 \le \mathbf{D_i} \le 200.$
- $2 \le L_i \le N$.

```
Small dataset
1 \le N \le 110.

2 \le P \le 10.

1 \le M \le 10.
2 \le L_j \le 25.
Large dataset
1 \le N \le 10000.
2 \le P \le 100.

1 \le M \le 1000.

2 \le L_j \le 150.
예제
    입력
                              출력
   3
2 2 1
1 1
2 2
1 2 1 2
5 2 2
1 1
                             Case #1: 1
Case #2: 3
Case #3: -1
   5 100
1 3 1 2 3
2 3 4 2 5
5 2 2
1 1
   5 5
1 2 1 2
1 3 3 4 5
   예제에 있는
테스트 케이스 #2
                                                                                                              도시
                                            2
                                                                                                             친구
                                            2
                                                                          3
                                                                                                             1번 도로
(거리 1)
                                                                                                             2번 도로
(거리 2)
```

All problem statements, input data and contest analyses are licensed under the <u>Creative Commons Attribution License</u>.

© 2008-2017 Google Google Home - Terms and Conditions - Privacy Policies and Principles

Powered by

