测度论

Chengxin Gong, Peking University

https://wqgcx.github.io/

2022年8月30日

目录

1	可测	空间和可测映射		
	1.1	集合及其运算		
	1.2	集合系		
	1.3	σ 代数的生成		
	1.4	可测映射与可测函数		
	1.5	可测函数的运算		
2	测度空间			
	2.1	测度的定义与性质 4		
	2.2	外测度		
	2.3	测度的扩张		
	2.4	测度空间的完全化		
	2.5	可测函数的收敛性 (
3	积分			
	3.1	积分的定义		
	3.2	积分的性质		
	3.3	L_p 空间 \ldots		
	3.4	概率空间的积分		
4	符号测度			
	4.1	符号测度		
	4.2	Hahn 分解和 Jordan 分解		
	4.3	Radon-Nikodym 定理		
	4.4	Lebesgue 分解		
	4.5	条件期望和条件概率		

1 可测空间和可测映射

1.1 集合及其运算

- 空间 (全集): X, 非空; 元素 (点): x, y, · · · ; 集合 (子集): A, B, · · · ; 空集: ∅.
- 指示函数: $I_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$; $x \in A^c := \{x : x \notin A\}$.
- 单调 (的集合) 序列: 非降, $A_n \uparrow: A_n \subset A_{n+1}, \forall n$; 非增, $A_n \downarrow: A_n \supset A_{n+1}, \forall n$.
- 单调序列的极限: 若 $A_n \uparrow$, 则 $\lim_{n \to \infty} A_n := \bigcup_{n=1}^{\infty} A_n$; 若 $A_n \downarrow$, 则 $\lim_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} A_n$.
- 任意序列的上极限: $\limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k = \{x : \exists n_1 < n_2 < \cdots$ 使得 $x \in A_{n_r}, \forall r \geq 1\} = \{A_n \text{ i.o.}\}.$
- 任意序列的下极限: $\liminf_{n\to\infty} A_n := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k = \{A_n^c \text{ f.o.}\}.$
- 上下极限相等, 称极限存在, 记 $\lim_{n\to\infty} A_n$.

1.2 集合系

- 一些集合为元素组成的集合称为集合系, $\mathscr{A}, \mathscr{B}, \cdots$
- π 系: \mathscr{P} 非空, 对交运算封闭. e.g. $X = \mathbb{R}, \mathscr{P}_{\mathbb{R}} = \{(-\infty, a] : a \in \mathbb{R}\}.$
- 半环: \mathcal{Q} 是 π 系, 若 $A, B \in \mathcal{Q}$ 且 $A \supset B$, 则存在有限个两两不交的 $C_1, \dots, C_n \in \mathcal{Q}$ 使得 $A \setminus B = \bigcup_{k=1}^n C_k = \sum_{k=1}^n C_k$. e.g. $X = \mathbb{R}, \mathcal{Q}_{\mathbb{R}} = \{(a, b] : a, b \in \mathbb{R}\}$.
- 环: \mathscr{R} 非空, 对并、差运算封闭. e.g. $X = \mathbb{R}, \mathscr{R}_{\mathbb{R}} = \bigcup_{n=1}^{\infty} \{ \bigcup_{k=1}^{n} (a_k, b_k] : a_k, b_k \in \mathbb{R}, \forall k \}.$
- 域、代数: \mathscr{A} 是 π 系, $X \in \mathscr{A}$, 且对补运算封闭.
- 半环是 π 系, 环是半环, 代数是环.
- 单调系: 若 $A_1, A_2, \dots \in \mathcal{M}$ 且 A_n 单调, 则 $\lim_{n\to\infty} A_n \in \mathcal{M}$.
- $\lambda \lesssim X \in \mathcal{L}$; $A, B \in \mathcal{L} \coprod A \supset B \Rightarrow A \setminus B \in \mathcal{L}$; $A_1, A_2, \dots \in \mathcal{L} \coprod A_n \uparrow \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$.
- σ 代数 $(\sigma \ \ \ \ \ \): X \in \mathcal{F}; A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}; A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathcal{F}.$
- λ 系是单调系; σ 代数是 λ 系.
- σ 代数 = 代数 + 单调系, σ 代数 = λ 系 + π 系.
- σ 环: \mathscr{R} 非空; $A, B \in \mathscr{R} \Rightarrow A \setminus B \in \mathscr{R}$; $A_1, A_2, \dots \in \mathscr{R} \Rightarrow \bigcup_{n=1}^{\infty} A_n \in \mathscr{R}$.
- σ 环 = 环 + 对可列并运算封闭, σ 代数 = σ 环 + 含 X.
- $\Xi \mathscr{F} \not\equiv X \perp$ 的 σ 代数,则称 (X,\mathscr{F}) 是可测空间.
- 设 $A \in X$ 的非空子集, $\mathscr E$ 是集合系, 定义 $A \cap \mathscr E := \{A \cap E : E \in \mathscr E\}$.

可测空间和可测映射

1.3 σ 代数的生成

- 称 \mathcal{G} 为 \mathcal{E} 生成的环 (单调系、 λ 系、 σ 代数), 若: (1) $\mathcal{G} \supset \mathcal{E}$; (2) 对任意环 (单调系、 λ 系、 σ 代数) \mathcal{G}' , 均有 $\mathcal{G}' \supset \mathcal{E} \Rightarrow \mathcal{G}' \supset \mathcal{G}$. 分别记为 $r(\mathcal{E}), m(\mathcal{E}), l(\mathcal{E}), \sigma(\mathcal{E})$.
- 单调类定理: 若 \mathscr{A} 是代数, 则 $\sigma(\mathscr{A}) = m(\mathscr{A})$; λ - π 定理: 若 \mathscr{P} 是 π 系, 则 $\sigma(\mathscr{P}) = l(\mathscr{P})$.
- Borel 集: X 为拓扑空间, \mathcal{O} 为所有开集组成的集合系. 称 $\mathcal{B}_X := \sigma(\mathcal{O})$ 为 X 上的 Borel σ 代数/Borel 集合系. 若 $B \in \mathcal{B}_X$, 则称 B 为 Borel 集. 称 (X,\mathcal{B}_X) 为拓扑可测空间.
- 若 \mathcal{Q} 是半环, 则 $r(\mathcal{Q}) = \bigcup_{n=1}^{\infty} \{ \sum_{k=1}^{n} A_k : A_1, \cdots, A_n \in \mathcal{Q}$ 且两两不交 $\}$.

1.4 可测映射与可测函数

- 原像: $f^{-1}B := \{x: f(x) \in B\}, f^{-1}\mathscr{E} = \{f^{-1}B: B \in \mathscr{E}\}.$
- 对 Y 上的任意非空集合系 \mathscr{E} , $\sigma(f^{-1}\mathscr{E}) = f^{-1}\sigma(\mathscr{E})$.
- 假设 (X, \mathcal{F}) 和 (Y, \mathcal{S}) 为两个可测空间, $f: X \to Y$. 若 $f^{-1}\mathcal{S} \subset \mathcal{F}$, 则称 f 是可测映射/随机元/可测的, 记为 $f: (X, \mathcal{F}) \to (Y, \mathcal{S})$ 或 $(X, \mathcal{F}) \stackrel{f}{\to} (Y, \mathcal{S})$. $\sigma(f) := f^{-1}\mathcal{S}$ 是使 f 可测的最小 σ 域.
- $\mathfrak{P} \mathscr{E} = Y \perp \mathfrak{p}$ by $f = \mathfrak{P} = \mathfrak{P$
- 广义实数: $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\}$. 四则运算: $\pm \infty \times 0 = 0$; $\infty \infty, \infty/\infty$ 无意义. 令 $\mathscr{B}_{\mathbb{R}} = \sigma(\mathscr{B}_{\mathbb{R}} \cup \{\pm \infty\})$, 则 $\mathscr{B}_{\mathbb{R}} = \sigma(\{[-\infty, a] : a \in \mathbb{R}\})$.
- 可测函数指 $f:(X,\mathcal{F})\to(\bar{\mathbb{R}},\mathcal{B}_{\bar{\mathbb{R}}})$,随机变量指 $f:(X,\mathcal{F})\to(\bar{\mathbb{R}},\mathcal{B}_{\mathbb{R}})$,也称为有限的可测函数,可测实值函数.
- (X, \mathscr{F}) 为可测空间, $f: X \to \mathbb{R}$ (或 $f: X \to \mathbb{R}$), 则 f 为可测函数 (或随机变量) 当且仅当 $\{f \leq a\} \in \mathscr{F}, \forall a \in \mathbb{R}.$

1.5 可测函数的运算

- 可测函数的四则运算若有意义,则可测;可测函数的极值和上、下极限都可测.
- X 的有限分割: $\{A_1, \cdots, A_n\}$ 满足 $A_1, \cdots, A_n \subset X$, 两两不交且 $\bigcup_{i=1}^n A_i = X$. 有限可测分割还要求 $A_1, \cdots, A_n \in \mathcal{F}$.
- 简单函数: $f = \sum_{i=1}^{n} a_i I_{A_i}$, 其中 $\{A_1, \dots, A_n\}$ 为有限可测分割, $a_1, \dots, a_n \in \mathbb{R}$.
- 设 $g:(X,\mathscr{F})\to (Y,\mathscr{S}),\ \mathbb{M}$ $(X,g^{-1}\mathscr{S})\overset{h}{\to}(\mathbb{R},\mathscr{B}_{\mathbb{R}})$ 当且仅当 $h=f\circ g,\ \mathrm{其中}\ (Y,\mathscr{S})\overset{f}{\to}(\mathbb{R},\mathscr{B}_{\mathbb{R}}).$

- 非负广义实值函数组成的单调类: $f,g \in \mathcal{M}, a,b \in \mathbb{R}, af + bg \geq 0 \Rightarrow af + bg \in \mathcal{M}; f_1, f_2, \dots \in \mathcal{M}, f_n \uparrow f \Rightarrow f \in \mathcal{M}.$ 若 \mathscr{A} 是代数,且 $I_A \in \mathcal{M}, \forall A \in \mathscr{A}$,则 $(X, \sigma(\mathscr{A}))$ 上的非负可测函数均在 \mathscr{M} 中.
- 非负广义实值函数组成的 λ 类: $1 \in \mathcal{L}$; $f,g \in \mathcal{L}, a,b \in \mathbb{R}, af + bg \geq 0 \Rightarrow af + bg \in \mathcal{L}$; $f_1, f_2, \dots \in \mathcal{L}, f_n \uparrow f \Rightarrow f \in \mathcal{L}$. 若 \mathscr{P} 是 π 系, 且 $I_A \in \mathcal{L}, \forall A \in \mathscr{P}$, 则 $(X, \sigma(\mathscr{P}))$ 上的非负可测函数均在 \mathcal{L} 中.

2 测度空间

2.1 测度的定义与性质

- 设 $\emptyset \in \mathscr{E}$, 若 $\mu : \mathscr{E} \to [0,\infty]$ 满足可列可加性,且 $\mu(\emptyset) = 0$,则称 μ 为 \mathscr{E} 上的测度. 若 $\mu(A) < \infty, \forall A \in \mathscr{E}$,则称 μ 是有限的;若 $\exists A_1, A_2, \dots \in \mathscr{E}$ 两两不交使得 $X = \sum_{n=1}^{\infty} A_n$ 且 $\mu(A_n) < \infty, \forall n$,则称 μ 是 σ 有限的.
- $X = \mathbb{R}$, $\mathscr{E} = \mathscr{Q}_{\mathbb{R}} = \{(a, b] : a, b \in \mathbb{R}\}$, F 是右连续非降函数, 则 μ 是 \mathscr{E} 上的测度: $\mu((a, b]) = F(b) F(a)$, a < b; $\mu((a, b]) = 0$, $a \ge b$.
- 测度空间: (X, \mathscr{F}, μ) ; X: 非空集合; \mathscr{F} : X 上的 σ 代数; μ : \mathscr{F} 上的测度; 零测集: $N \in \mathscr{F}, \mu(N) = 0$. 在一般的 σ 域上建立测度很复杂, 通常使用的办法是把半环上的测度扩张到它生成的 σ 域上去, 因此需要先讨论半环上非负集函数的性质.
- 単调性: $A, B \in \mathcal{E}$, 且 $A \subset B$, 则 $\mu(A) \leq \mu(B)$; 可減性: $A, B \in \mathcal{E}$ 且 $A \subset B, B \setminus A \in \mathcal{E}$, $\mu(A) < \infty$, 则 $\mu(B A) = \mu(B) \mu(A)$; 下连续性: $A_1, A_2, \dots \in \mathcal{E}, A_n \uparrow A \in \mathcal{E}$, 则 $\mu(A) = \lim_{n \to \infty} \mu(A_n)$; 上连续性: $A_1, A_2, \dots \in \mathcal{E}, A_n \downarrow A \in \mathcal{E}$ 且 $\mu(A_1) < \infty$, 则 $\mu(A) = \lim_{n \to \infty} \mu(A_n)$; 次可列可加性: $A_1, A_2, \dots \in \mathcal{E}, \bigcup_{i=1}^{\infty} A_i \in \mathcal{E}, \mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- 半环上的测度有单调性, 可减性, 次可列可加性, 上、下连续性.
- μ 是环上的有限可加非负集函数,则 μ 可列可加 \Leftrightarrow μ 次可列可加 \Leftrightarrow μ 下连续 \Rightarrow μ 上连 续 \Rightarrow μ 在 \emptyset 处连续,即对任何满足 $A_n \downarrow \emptyset$ 和 $\mu(A_1) < \infty$ 的 $\{A_n \in \mathcal{R}, n = 1, 2, \cdots\}$,有 $\lim_{n \to \infty} \mu(A_n) = 0$.

2.2 外测度

- 设 $\tau: \mathscr{T} \to [0,\infty]$ 满足 $\tau(\emptyset) = 0$; 若 $A \subset B \subset X$ 则 $\tau(A) \leq \tau(B)$; $\forall A_1, A_2, \dots \in \mathscr{T}$ 有 $\tau(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \tau(A_n)$; 则称 τ 为 X 上的外侧度. τ 为非负集函数、半可列可加、半有限可加.
- 设 μ 是集合系 $\mathscr E$ 上的非负集函数, $\emptyset \in \mathscr E$ 且 $\mu(\emptyset) = 0$. 令 $\tau(A) = \inf\{\sum_{n=1}^{\infty} \mu(B_n) : B_n \in \mathscr E, n \ge 1; \bigcup_{n=1}^{\infty} B_n \supset A\}, \forall A \in \mathscr T$. 则 τ 是一个外测度, 称为由 μ 生成的外测度.
- 设 τ 为外测度, 若 A 满足 Caratheodory 条件 $\tau(D) = \tau(D \cap A) + \tau(D \cap A^c), \forall D \in \mathcal{T}, 则称 <math>A$ 为 τ 可测集. 记 \mathcal{F}_{τ} 为所有 τ 可测集.

测度空间

- 设 (X, \mathcal{F}, μ) 为测度空间, 若 $A \in \mathcal{F}, \mu(A) = 0 \Rightarrow B \in \mathcal{F}, \forall B \subset A$, 则称 (X, \mathcal{F}, μ) 完备/完全.
- 若 τ 是外测度, 则 \mathscr{F}_{τ} 是 σ 代数, 且 $(X, \mathscr{F}_{\tau}, \tau)$ 是完备的测度空间.

2.3 测度的扩张

- 设 μ 和 ν 分别是集合系 \mathscr{E} , $\overline{\mathscr{E}}$ 上的测度,且 $\mathscr{E} \subset \overline{\mathscr{E}}$. 若 $\mu(A) = \nu(A)$, $\forall A \in \mathscr{E}$, 则称 ν 是 μ 在 $\overline{\mathscr{E}}$ 上的扩张.
- 我们希望把一个集合系 \mathcal{E} 的测度扩张到更大的集合系上. 表面上看, 前一节建立的外测度理论来解决测度扩张问题不错: 可以生成一个外测度 τ , 然后限制在 \mathcal{F}_{τ} 上. 但这是不对的! e.g. 设 $X = \{a,b,c\}, \mathcal{E} = \{\emptyset, \{a,b\}, \{b,c\}, X\}$ 和 $\mu(\emptyset) = 0, \mu(\{a,b\}) = 1, \mu(\{b,c\}) = 1, \mu(X) = 2$. 按上面步骤扩张后发现 $\mathcal{F}_{\tau} = \{\emptyset, X\}$, 因此 $\tau|_{\mathcal{F}_{\tau}}$ 不是扩张.
- 扩张的唯一性: 设 \mathscr{P} 是 π 系. 若 $\sigma(\mathscr{P})$ 上的测度 μ, ν 满足以下两条, 则 $\mu = \nu$: (1) $\mu|_{\mathscr{P}} = \nu|_{\mathscr{P}}$; (2) $\mu|_{\mathscr{P}}$ 是 σ 有限的.
- 测度扩张定理: 设 μ 是半环 \mathcal{Q} 上的测度, τ 为 μ 生成的外测度, 则: $\sigma(\mathcal{Q}) \subset \mathscr{F}_{\tau}, \tau|_{\mathcal{Q}} = \mu$.
- 设 \mathcal{Q} 是半环, $X \in \mathcal{Q}$. 则 \mathcal{Q} 上的任意 σ 有限的测度均可唯一的扩张到 $\sigma(\mathcal{Q})$ 上.
- 设 τ 是半环 \mathcal{Q} 上的测度 μ 生成的外测度. 则: (1) $\forall A \in \mathscr{F}_{\tau}, \exists B \in \sigma(\mathcal{Q}),$ 使得 $B \supset A$ 且 $\tau(A) = \tau(B)$; (2) 若 μ 是 σ 有限的, 则 $\forall A \in \mathscr{F}_{\tau}, \exists B \in \sigma(\mathcal{Q})$ 使得 $B \supset A$ 且 $\tau(B \setminus A) = 0$.
- 测度的逼近: 设 μ 是代数 \mathscr{A} 上的测度, τ 是 μ 产生的外测度. 若 $A \in \sigma(\mathscr{A})$ 且 $\tau(A) < \infty$, 则 $\forall \epsilon > 0, \exists B \in \mathscr{A}$, 使得 $\tau(A \triangle B) < \epsilon$.
- 设 🖋 为代数, μ 是 $\sigma(\mathscr{A})$ 上的测度, 在 \mathscr{A} 上 σ 有限. 若 $A \in \sigma(\mathscr{A})$ 且 $\mu(A) < \infty$, 则 $\forall \epsilon > 0, \exists B \in \mathscr{A}$ 使得 $\mu(A \triangle B) < \epsilon$.

2.4 测度空间的完全化

- (X, \mathscr{F}, μ) 是测度空间,令 $\widehat{\mathscr{F}} := \{A \cup N : A \in \mathscr{F}, \exists B \in \mathscr{F}$ 使得 $\mu(B) = 0$ 且 $N \subset B\}$. 令 $\widetilde{\mu}(A \cup N) := \mu(A), \forall A \cup N \in \widetilde{\mathscr{F}}$. 则 $\widetilde{\mathscr{F}}$ 是 σ 域, $\widetilde{\mu}$ 良定义, $(X, \widetilde{\mathscr{F}}, \widetilde{\mu})$ 是完备的测度空间,称 $(X, \widetilde{\mathscr{F}}, \widetilde{\mu})$ 为 $(X, \widetilde{\mathscr{F}}, \widetilde{\mu})$ 的完备化/完全化.
- 设 τ 是半环 \mathcal{Q} 上的 σ 有限测度 μ 生成的外测度, 则 $(X, \mathcal{F}_{\tau}, \tau)$ 是 $(X, \sigma(\mathcal{Q}), \tau)$ 的完备化.
- e.g. L-S 测度与分布: $F: \mathbb{R} \to \mathbb{R}$, 非降、右连续,则称为准分布函数. $\nu = \nu_F := (a,b] \mapsto (F(b) F(a)) \lor 0$ 为半环 $\mathcal{Q}_{\mathbb{R}}$ 上的测度,且 σ 有限. 记 ν 生成的外测度为 $\tau = \lambda_F$. 称 \mathcal{F}_{τ} 中的集合为 Lebesgue-Stieljes 可测集, $f: (\mathbb{R}, \mathcal{F}_{\tau}) \to (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ 为 L-S 可测函数, $\tau|_{\mathcal{F}_{\tau}}$ 为 L-S 测度. $(\mathbb{R}, \mathcal{F}_{\tau}, \tau)$ 为测度空间,其完备且 σ 有限,是 $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \tau)$ 的完备化. 反过来,若 μ 为 $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ 上的测度,且 $F = F\mu: x \mapsto \mu((-\infty, x]), x \in \mathbb{R}$ 为实值函数,则 $\mu = \mu_F$ 且 $\mathcal{F}_{\lambda_F} = \{A \cup N: A \in \mathcal{B}_{\mathbb{R}}, \exists B \in \mathcal{B}_{\mathbb{R}}$ 使得 $\mu(B) = 0, N \subset B\}$. 特别地,若 $F = \mathrm{id}$,我们得到 Lebesgue 可测集,Lebesgue 测度和 Lebsgue 可测函数.
- 设 $g:(X,\mathscr{F})\to (Y,\mathscr{S})$, μ 为 \mathscr{F} 上的测度. 令 $\nu(B):=\mu(g^{-1}B)=\mu\circ g^{-1}(B), \forall B\in\mathscr{S}$, 则 ν 是 \mathscr{S} 上的测度.

设 (Ω, ℱ, P) 为概率空间, f: (Ω, ℱ) → (ℝ, ℬ_ℝ). 称 P ∘ f⁻¹: B → P(f ∈ B), ∀B ∈ ℬ_ℝ 为 f 的 (概率) 分布, 记为 μ_f. 若 μ_f = μ, 则称 f 服从分布 μ, 记为 f ~ μ. 称 F_f := F_{μ_f} 为 f 的 分布函数, 其中 F_f(x) = μ_f((-∞, x]) = P(f ≤ x), x ∈ ℝ. 若 F_f = F, 则也称 f 服从 F, 记为 f ~ F. 若 F_f = F_g(iff μ_f = μ_g), 则称 f = g 同分布, 记为 f ^d= g.

2.5 可测函数的收敛性

- 设 (X, \mathcal{F}, μ) 是测度空间, 子集 A =关于元素 x 的命题/性质. 若存在零测集 N 使得命题对所有 $x \in N^c$ 成立, 则说该命题几乎处处成立.
- 若 $\mu(\lim_{n\to\infty} f_n \neq f) = 0$, 则说 $\{f_n\}$ 几乎处处以 f 为极限. 又若 f 几乎处处有限, 则说 $\{f_n\}$ 几乎处处收敛到 f, 记为 $f_n \stackrel{\text{a.e.}}{\to} f$.
- $f_n \stackrel{\text{a.e.}}{\to} f \cong \mathbb{E}[\Lambda \cong \forall \epsilon > 0, \mu(\cap_{m=1}^{\infty} \cup_{n=m}^{\infty} \{|f_m f| \geq \epsilon\}) = 0.$
- 若 $\forall \delta > 0, \exists A \in \mathscr{F}$ 使得 $\mu(A) < \delta$ 且 $\lim_{n \to \infty} \sup_{x \notin A} |f_n(x) f(x)| = 0$,则说 $\{f_n\}$ 几乎一致收敛到 f,记为 $f_n \stackrel{\text{a.u.}}{\to} f$.
- $f_n \stackrel{\text{a.u.}}{\to} f \cong \mathbb{E}[\Lambda \cong \forall \epsilon > 0, \ \text{fin} \lim_{m \to \infty} \mu(\bigcup_{n=m}^{\infty} \{|f_n f| \ge \epsilon\}) = 0.$
- 若 $\forall \epsilon > 0$ 均有 $\lim_{n \to \infty} \mu(|f_n f| \ge \epsilon) = 0$, 则称 $\{f_n\}$ 依测度收敛到 f, 记为 $f_n \stackrel{\mu}{\to} f$.
- $f_n \stackrel{\text{a.u.}}{\to} f \Rightarrow f_n \stackrel{\text{a.e.}}{\to} f \text{ for } f_n \stackrel{\mu}{\to} f$. $\rightleftarrows \mu(X) < \infty$, $\bowtie f_n \stackrel{\text{a.u.}}{\to} f \Leftrightarrow f_n \stackrel{\text{a.e.}}{\to} f \Rightarrow f_n \stackrel{\mu}{\to} f$.
- $f_n \stackrel{\mu}{\to} f$ 当且仅当 $\{f_n\}$ 的任一子列存在其子列 $\{f_{n'}\}$ 使得 $f_{n'} \stackrel{\text{a.u.}}{\to} f$.
- 概率空间: 设 (Ω, \mathscr{F}, P) 为概率空间, f, f_1, f_2, \cdots 是随机变量. 几乎处处收敛改称为几乎必然收敛, 依测度收敛该称为依概率收敛.
- 设 F 为实值函数,记 $C(F) = \{x : F \in x \neq x \neq x \}$. 设 F, F_1, F_2, \cdots 是非降的实值函数,若 $\lim_{n \to \infty} F_n(x) = F(x), \forall x \in C(F), 则称 <math>\{F_n\}$ 弱收敛到 F, 记为 $F_n \stackrel{w}{\to} F$.
- 设 F, F_1, F_2, \cdots 是分布函数, $f_n \sim F_n, n = 1, 2, \cdots$ 若 $F_n \stackrel{w}{\to} F$, 则称 $\{f_n\}$ 依分布收敛到 F, 记为 $f_n \stackrel{d}{\to} F$. 又若 $f \sim F$, 则称 $\{f_n\}$ 依分布收敛到 f, 记为 $f_n \stackrel{d}{\to} f$.
- $f_n \stackrel{P}{\to} f \Rightarrow f_n \stackrel{d}{\to} f$.
- 若 $f_n \stackrel{d}{\to} f$, 则存在概率空间 $(\widetilde{X}, \widetilde{\mathscr{F}}, \widetilde{P})$ 与其上随机变量 $\{\widetilde{f}_n\}$ 和 \widetilde{f} 使得 $\widetilde{f}_n \stackrel{d}{=} f_n, n = 1, 2, \cdots, \widetilde{f} \stackrel{d}{=} f, \widetilde{f}_n \stackrel{\text{a.s.}}{\to} \widetilde{f}$.

3 积分

3.1 积分的定义

• 非负简单函数的积分: X 的可测划分: $\{A_i\}, i = 1, 2, \cdots$ 满足 $\mu(A_i \cap A_j) = 0, \forall i \neq j$ 且 $\mu((\cup_i A_i)^c) = 0$. 非负简单函数: $\{A_i : i = 1, 2, \cdots, n\}$ 为 X 的划分, $a_i \geq 0, \forall i, f = \sum_{i=1}^n a_i I_{A_i}$. f 的积分: $\int_X f d\mu := \sum_{i=1}^n a_i \mu(A_i)$.

- 非负可测函数的积分: 若 $\{f_n\}$ 非负简单且 $f_n \uparrow f$, 则 $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$.
- 可测函数的积分: 若 $\min\{\int_X f^+ d\mu, \int_X f^- d\mu\} < \infty$, 则称 f 的积分存在或积分有意义. 若 $\max\{\int_X f^+ d\mu, \int_X f^- d\mu\} < \infty$, 则称 f 可积. 上述两种情况下, 将 f 的积分或积分值定义为 $\int_X f d\mu := \int_X f^+ d\mu \int_X f^- d\mu$.
- $\forall A \in \mathcal{F}, (A, \mathcal{F}_A, \mu_A)$ 为测度空间, 其中 $\mathcal{F}_A = \{A \cap B : B \in \mathcal{F}\}, \mu_A = \mu|_{\mathcal{F}_A}.$ f 在 $A \in \mathcal{F}$ 上的 积分定义为 $\int_A f d\mu := \int_A f|_A d\mu_A = \int_X f I_A d\mu.$
- 若 f 的积分存在,则 $|\int_X f d\mu| \le \int_X |f| d\mu; f$ 可积当且仅当 |f| 可积; 若 f 可积,则 $|f| < \infty$ a.e..
- 若 f 积分存在,则 $\int_A f d\mu = 0$, \forall 零测集 A; 若 f, g 积分存在且 $f \geq g$ a.e., 则 $\int_X f d\mu \geq \int_X g d\mu$; 若 f = g a.e., 则积分同时存在/不存在,且 $\int_X f d\mu = \int_X g d\mu$.

3.2 积分的性质

- 线性: 设 f,g 的积分存在. $\forall a \in \mathbb{R}, af$ 的积分存在且 $\int_X (af) d\mu = a \int_X f d\mu$; 若 $\int_X f d\mu + \int_X g d\mu$ 有意义, 则 f+g a.e. 有意义, 积分存在且 $\int_X (f+g) d\mu = \int_X f d\mu + \int_X g d\mu$.
- 设 f,g 可积. 若 $\int_A f d\mu \geq \int_A g d\mu, \forall A \in \mathscr{F}, \, \text{则} \, f \geq g \text{ a.e.}; \, \text{若} \, \int_A f d\mu = \int_A g d\mu, \forall A \in \mathscr{F}, \, \text{则} \, f = g \text{ a.e.}.$
- 积分的绝对连续性: 设 f 可积, 则 $\forall \epsilon > 0, \exists \delta > 0$ 使得 $\forall A \in \mathscr{F}, \mu(A) < \delta \Rightarrow \int_A |f| d\mu < \epsilon.$
- Levi 定理: $\{f_n, n=1,2,\cdots\}, f$ 均非负可测, 若 $f_n \uparrow f$ a.e., 则 $\int_X f_n d\mu \uparrow \int_X f d\mu$.
- 若 f 的积分存在,则 $\int_X f d\mu = \sum_{k=1}^{\infty} \int_{A_n} f d\mu$, \forall 可测划分 $\{A_n, n=1, 2, \cdots\}$.
- Fatou 引理: $\{f_n, n=1,2,\cdots\}$ a.e. 非负可测, 则 $\int_X \liminf_{n\to\infty} f_n d\mu \leq \liminf_{n\to\infty} \int_X f_n d\mu$.
- Lebesgue 控制收敛定理: 假设 $f_n \stackrel{\text{a.e.}}{\to} f$ 或 $f_n \stackrel{\mu}{\to} f$. 若存在非负可积的 g 使得 $|f_n| \ge g, \forall n \ge 1$, 则 $\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu$.
- 积分变换公式: 设 $g:(X,\mathscr{F},\mu)\to (Y,\mathscr{S})$. 对任意的 (Y,\mathscr{S}) 可测的 f, 若等式 $\int_Y f d\mu \circ g^{-1} = \int_X f \circ g d\mu$ 一端有意义, 则另一端也有意义, 且等式成立.

L_p 空间

- 设 $1 \le p < \infty$, 今 $||f||_p := \left(\int_X |f|^p d\mu \right)^{\frac{1}{p}}, L_p := \{ f : ||f||_p < \infty \}.$ L_p 是线性空间.
- 设 $1 < p, q < \infty$ 且 $\frac{1}{p} + \frac{1}{q} = 1$, 则 $a^{\frac{1}{p}}b^{\frac{1}{q}} \le \frac{a}{p} + \frac{b}{q}$, $\forall a, b \ge 0$, 等号成立当且仅当 a = b.
- Holder 不等式: 设 $1 < p, q < \infty$ 且 $\frac{1}{p} + \frac{1}{q} = 1$, 则 $||fg|| \le ||f||_p ||g||_q$, $\forall f \in L_p, g$ 可测. 等号成立 当且仅当存在不全为 0 的 $\alpha, \beta \ge 0$ 使得 $\alpha |f|^p = \beta |g|^q$ a.e..
- Minkowski 不等式: 设 $1 \le p < \infty$, 则 $||f + g||_p \le ||f||_p + ||g||_p, \forall f, g \in L_p$. 等号成立的充要条件: (1) $p = 1 : fg \ge 0$; (2) $p > 1 : 存在不全为 0 的 <math>\alpha, \beta \ge 0$ 使得 $\alpha |f|^p = \beta |g|^q$ a.e..

符号测度

- 完备性: 设 $1 \le p \le \infty$. 若 $\{f_n\} \subset L_p$ 满足 $\lim_{n,m\to\infty} ||f_n f_m||_p = 0$, 则 $\exists f \in L_p$ 使得 $\lim_{n\to\infty} ||f_n f||_p = 0$.
- 设 $0 , 令 <math>||f||_p := \int_X |f|^p d\mu$, $L_p := \{f : ||f||_p < \infty\}$. $(L_p, ||\cdot||)$ 是完备的距离空间.
- 设 $1 . 若 <math>\lim_{n \to \infty} \int_X f_n g d\mu = \int_X f g d\mu, \forall g \in L_q$, 则称 $\{f_n\}$ 在 L_p 中 弱收敛到 f, 记为 $f_n \stackrel{(w)L_p}{\longrightarrow} f$.
- $f_n \stackrel{L_p}{\to} f \Rightarrow f_n \stackrel{(w)L_p}{\longrightarrow} f$.

3.4 概率空间的积分

- $\mathfrak{g}(\Omega, \mathscr{F}, P)$ 是概率空间, f 是随机变量. 称 f 的积分为 f 的期望, 记为 $\mathbb{E}f$.
- 若 $g \in (\mathbb{R}, \mathscr{B}_{\mathbb{R}})$ 上的可测函数, 则 $g \circ f \in (\Omega, \mathscr{F})$ 上的可测函数, 且 $\mathbb{E} g \circ f = \int_{\mathbb{R}} g dF_f$.
- 设 $0 < s < t < \infty$, 则 $L_t \subset L_s$. 又若 $s \ge 1$, 则 $||f||_s \le ||f||_t$, $\forall f \in L_t$, 且等号成立当且仅当 f a.s. 为常数.
- 设 $0 , 称 <math>\mathbb{E}f^p$ 为 f 的 p 阶矩. 设 $k \ge 1, f \in L_k \subset L_1$, 称 $\mathbb{E}(f \mathbb{E}f)^k$ 为 f 的 k 阶中心矩. 设 $f \in L_2$, 称 $\mathbb{E}(f \mathbb{E}f)^2$ 为 f 的方差, 记为 $\operatorname{var}f$.
- 假设 $\{f_t, t \in T\}$ 是一族随机变量. 若 $\forall \epsilon > 0, \exists \lambda > 0$ 使得 $\mathbb{E}|f_t|I_{\{|f_t|>\lambda\}} < \epsilon, \forall t \in T,$ 则称 $\{f_t, t \in T\}$ 一致可积. 若 $\forall \epsilon > 0, \exists \delta > 0$ 使得 $\forall A \in \mathcal{F}, P(A) < \delta \Rightarrow \mathbb{E}|f_t|I_A < \epsilon, \forall t \in T,$ 则称 $\{f_t, t \in T\}$ 绝对连续.
- 一致可积当且仅当绝对连续且在 L_1 中有界.
- $\stackrel{P}{\to} f, \ \mathbb{M} \ \forall 0$
- 设 $0 , <math>\{f_n\} \subset L_p$ 且 $f_n \stackrel{P}{\to} f$. 则下列说法等价: (1) $\{|f_n|^p\}$ 一致可积; (2) $f_n \stackrel{L_p}{\to} f$; (3) $f \in L_p$ 且 $||f_n||_p \to ||f||_p$.

4 符号测度

4.1 符号测度

- 若 $\phi: \mathscr{F} \to \mathbb{R}$ 满足可列可加性且 $\phi(\emptyset) = 0$, 则称 ϕ 为符号测度. 若 $|\phi(A)| < \infty, \forall A \in \mathscr{F}$, 则称 ϕ 是有限的. 若 $\exists X$ 的划分 $\{A_n\}$ 使 $|\phi(A_n)| < \infty, \forall n$, 则称 ϕ 是 σ 有限的.
- $\phi(A) < \infty, \forall A \in \mathcal{F}$ 或 $\phi(A) > -\infty, \forall A \in \mathcal{F}$. 以下约定 $\phi(A) > -\infty, \forall A \in \mathcal{F}$.
- $A \supset B \perp |\phi(A)| < \infty, \mid |\phi(B)| < \infty.$

4.2 Hahn 分解和 Jordan 分解

- 若 X 的分割 {X⁺, X⁻} 满足: φ(A) ≥ 0, ∀A ⊂ X⁺; φ(A) ≤ 0, ∀A ⊂ X⁻. 则称 {X⁺, X⁻} 为 φ 的 Hahn 分解.
- 若 ϕ^+, ϕ^- 是测度且 $\phi = \phi^+ \phi^-$, 则称该式为 ϕ 的 Jordan 分解.
- $i : \phi^*(A) := \sup \{ \phi(B) : B \subset A \}.$ $i : \emptyset$ $i : \emptyset$
- 若 $\phi(A) < \infty$, 则 $\forall \epsilon > 0, \exists A_{\epsilon} \subset A$ 使得 $\phi(A_{\epsilon}) \geq 0$ 且 $\phi^*(A \setminus A_{\epsilon}) \leq \epsilon$.
- Hahn 分解存在并在下列意义下唯一: 如果存在两个分解 $\{X_1^+, X_1^-\}$ 和 $\{X_2^+, X_2^-\}$, 则 $\forall A \in \mathscr{F}, A \subset X_1^+ \triangle X_2^+ \Rightarrow \phi(A) = 0; \forall B \in \mathscr{F}, B \subset X_1^- \triangle X_2^- \Rightarrow \phi(B) = 0.$
- Jordan 分解存在唯一: $\phi = \phi^+ \phi^-$ 且 $\phi^+ = \phi^*, \phi^- = (-\phi)^*$. 注: $\phi = \mu \nu$ 分解不唯一, 记 ϕ^+ 为 ϕ 的上变差, ϕ^- 为 ϕ 的下变差, $|\phi| := \phi^+ + \phi^-$ 为 ϕ 的全变差.

4.3 Radon-Nikodym 定理

- 若存在几乎处处意义下唯一的可测函数 f 使得 $\phi(A) = \int_A f d\mu, \forall A \in \mathscr{F}$, 则称 f 为 ϕ 对 μ 的 Radon-Nikodym 导数, 简称 R-N 导数或导数, 记为 $\frac{d\phi}{d\mu}$.
- 若 $\forall A \in \mathscr{F}$, $\mu(A) = 0 \Rightarrow \phi(A) = 0$, 则称 ϕ 对 μ 绝对连续, 记作 $\phi << \mu$. $\phi << \mu$ iff $\phi^{\pm} << \mu$.
- 若 μ 是 σ 有限的, 且 ϕ << μ , 则 $\frac{d\phi}{d\mu}$ 存在. 若 ϕ 是 σ 有限的, 则 f 是 μ -a.e. 有限的.

4.4 Lebesgue 分解

- φ, ϕ 都是符号测度. 若 $\varphi << |\phi| = \phi^+ + \phi^-$, 则称 φ 对 ϕ 绝对连续, 记作 $\varphi << \phi$.
- 若 $\exists N \in \mathscr{F}$ 使得 $|\varphi|(N^c) = |\phi|(N) = 0$, 则称 φ 和 ϕ 相互奇异, 记为 $\varphi \perp \phi$.
- $\varphi \perp \phi$ 当且仅当 $\exists N \in \mathscr{F}$ 使得 $\varphi(A \cap N^c) = \phi(A \cap N) = 0, \forall A$.
- $\Xi \varphi \ll \phi \perp \varphi$, $\emptyset \varphi \equiv 0$.
- Lebesgue 分解: φ , ϕ 都是 σ 有限的符号测度, 则存在唯一一对 σ 有限的符号测度 φ_c , φ_s 使得 $\varphi = \varphi_c + \varphi_s$, $\varphi_c << \phi$, $\varphi_s \perp \phi$.
- Ex. 分布与随机变量的分布. 设 μ 是 (\mathbb{R} , $\mathcal{B}_{\mathbb{R}}$) 上的概率分布. 若 μ << λ , 则称 μ 为连续型, 称 $\frac{d\nu}{d\lambda}$ 为 μ 的密度.
- 若 $\mu(\{x\}) > 0$, 则称 x 为 μ 的原子, μ 有限 \Rightarrow D 可数, 其中 $D = D_{\mu} := \{x \in \mathbb{R}, \mu(\{x\}) > 0\}$. 若 $\mu(D) = 1$, 则称 μ 为离散型, 记 $p_n = \mu(\{x_n\}), \forall n$, 称 $\{(x_n, p_n)\}$ 为 μ 的分布列.
- 若 $\mu \perp \lambda$ 且 $\mu(\lbrace x \rbrace) = 0, \forall x \in \mathbb{R}, 则称 \mu$ 为奇异型.

符号测度

- μ 关于 λ 的 Lebesgue 分解: $\mu = \mu_c + \mu_s, \mu_1 := \mu_c << \lambda, \mu_s \perp \lambda$. μ 的所有原子组成可数集 D, 令 $\mu_2(A) := \mu_s(A \cap D), \mu_3 := \mu_s \mu_2$. 令 $\alpha_i = \mu_i(\mathbb{R}), i = 1, 2, 3$. 则 $\alpha_1, \alpha_2, \alpha_3 \geq 0, \alpha_1 + \alpha_2 + \alpha_3 = 1$. 若 $\alpha_i = 1$, 则 $\mu = \mu_i$. 此时 μ 为连续型/离散型/奇异型.
- 存在 $\alpha_1, \alpha_2, \alpha_3$, 连续型分布 $\widetilde{\mu}_1$, 离散型分布 $\widetilde{\mu}_2$, 奇异型分布 $\widetilde{\mu}_3$, 使得 $\alpha_1, \alpha_2, \alpha_3 \geq 0, \alpha_1 + \alpha_2 + \alpha_3 = 1$ 且 $\mu = \alpha_1 \widetilde{\mu}_1 + \alpha_2 \widetilde{\mu}_2 + \alpha_3 \widetilde{\mu}_3$.

4.5 条件期望和条件概率

- 设 𝒯 是 𝒯 的子 σ 代数: 𝒯 ⊂ 𝒯 且 𝒯 是 σ 代数.
- 称满足下列 (1),(2) 的 f^* 为 f 关于 \mathcal{G} 的条件期望, 记为 $\mathbb{E}(f|\mathcal{G})$: (1) f^* 是 (X,\mathcal{G},P) 上积分存在的可测函数; (2) $\forall A \in \mathcal{G}$, $\mathbb{E}f^*I_A = \mathbb{E}fI_A$, 即 $\int_A f^*dP = \int_A fdP$.
- A 关于 \mathscr{G} 的条件概率指 $P(A|\mathscr{G}) := \mathbb{E}(I_A|\mathscr{G})$.
- 设 $g:(X,\mathcal{F})\to (Y,\mathcal{S})$. f 关于 g 的条件期望, A 关于 g 的条件概率分别指 $\mathbb{E}(f|g):=\mathbb{E}(f|\sigma(g)), P(A|g):=\mathbb{E}(I_A|g)$.
- 设 $\{A_t, t \in T\} \subset \mathscr{F}$. 若 $n \geq 2, \{t_1, \dots, t_n\} \subset T, P(\cap_{k=1}^n A_{t_i}) = \prod_{k=1}^n P(A_{t_k}), 则称 \{A_t, t \in T\}$ 相互独立.
- 设 $\mathcal{E}_t \subset \mathcal{F}, \forall t \in T$. 若任取 $A_t \in \mathcal{E}_t, t \in T$, 总有 $\{A_t, t \in T\}$ 相互独立,则称 $\{\mathcal{E}_t, t \in T\}$ 相互独立. 设 $\{f_t, t \in T\}$ 是随机变量族. 若 $\{\sigma(f_t), t \in T\}$ 相互独立,则称 $\{f_t, t \in T\}$ 相互独立.
- 设 f 是积分存在的随机变量. 若 f 与 $\mathscr E$ 相互独立, 则 $\mathbb{E}(fI_A) = (\mathbb{E}f) \cdot P(A)$.
- 设 f,g 是积分存在的随机变量, G,G₀ 是 ℱ 的子 σ 代数. (1) 可测性: 若 f 关于 G 可测, 则 E(f|G) = f a.s.; (2) 独立性: 若 f 与 G 独立, 则 E(f|G) = Ef a.s.; (3) 重条件期望公式: 若 G ⊂ G₀, 则 E(E(f|G)|G₀) = E(f|G) = E(E(f|G₀)|G) a.s.; (4) 单调性: 若 f ≤ g a.s., 则 E(f|G) ≤ E(g|G) a.s.; (5) 线性: ∀a,b ∈ ℝ, 若 aEf + bEg 有意义, 则 E(aEf + bEg|G) = aE(f|G) + bE(g|G) a.s..
- 设 f, f_1, f_2, \cdots 是积分存在的随机变量, \mathscr{G} 是 \mathscr{F} 的子 σ 代数. (1) Levi 定理、单调收敛定理: 若 $0 \leq f_n \uparrow f$ a.s., 则 $0 \leq \mathbb{E}(f_n|\mathscr{G}) \uparrow \mathbb{E}(f|\mathscr{G})$ a.s.; (2) Fatou 引理: 若 $f_n \geq 0$ a.s., 则 $\mathbb{E}(\liminf_{n \to \infty} f_n|\mathscr{G}) \leq \liminf_{n \to \infty} \mathbb{E}(f_n|\mathscr{G})$ a.s.; (3) Lebesgue 控制收敛定理: 若 $|f_n| \leq g \in L_1, n = 1, 2, \cdots$ 且 $\lim_{n \to \infty} f_n = f$ a.s., 则 $\mathbb{E}(\lim_{n \to \infty} f_n|\mathscr{G}) = \lim_{n \to \infty} \mathbb{E}(f_n|\mathscr{G})$ a.s..
- 条件期望的线性: 设 f,g 是随机变量, f,fg 的积分存在, g 是 $\mathcal{G} \subset \mathcal{F}$ 上的可测函数, 则 $\mathbb{E}(fg|\mathcal{G}) = g\mathbb{E}(f|\mathcal{G})$ a.s..