WIMA SMD-PET

SMD-Folienkondensatoren aus metallisiertem Polyester (PET) in Becherumhüllung

Spezielle Eigenschaften

- Size Codes 1812, 2220, 2824, 4030, 5040 und 6054 in PET und umhüllt
- Anwendungstemperatur bis 100° C
- Ausheilfähig
- Konform RoHS 2011/65/EU

Anwendungsgebiete

Für allgemeine Gleichspannungsanwendungen wie z.B.

- Bypass
- Abblocken
- Koppeln und Entkoppeln
- Timing

Aufbau

Dielektrikum:

Polyethylenterephthalat (PET) Folie

Beläge:

Aufmetallisiert

Innerer Aufbau:

Umhüllung:

Lösungsmittelresistentes, flammhemmendes Kunststoffgehäuse, UL 94 V–0.

Anschlüsse:

Verzinnte Anschlussbleche.

Kennzeichnung:

Becherfarbe: Schwarz.

Elektrische Daten

Kapazitätsspektrum:

0,01 µF bis 6,8 µF

Nennspannungen:

63 V-, 100 V-, 250 V-, 400 V-, 630 V-, 1000 V-

Kapazitätstoleranzen:

 $\pm 20\%$, $\pm 10\%$ ($\pm 5\%$ auf Anfrage)

Betriebstemperaturbereich:

-55° C bis +100° C (+125° C auf Anfrage)

Klimaprüfklasse:

55/100/21 nach IEC

für Size Codes 1812 bis 2824

55/100/56 nach IEC

für Size Codes 4030 bis 6054

Isolationswerte bei +20° C:

Pr	üfsp	an	nu	na

1,6 U_N, 2s.

Spannungsderating:

Die zulässige Spannung vermindert sich gegenüber der Nennspannung bei Gleichspannungsbetrieb ab +85° C, bei Wechselspannungsbetrieb ab +75° C um 1,25% je 1 K

Zuverlässigkeit:

Betriebszeit > 300 000 h

Ausfallrate < 2 fit (0,5 \cdot U $_{
m N}$ und 40° C)

U _N	U _{meß}	C ≤ 0,33 µF	0,33 µF < C ≤ 6,8 µF
63 V- 100 V-		\geqslant 3,75 · 10 ³ M Ω (Mittelwert: 1 · 10 ⁴ M Ω)	\geq 1250 s (M $\Omega \cdot \mu$ F) (Mittelwert: 3000 s)
≥ 250 V-	100 V	$\geqslant 1 \cdot 10^4 \mathrm{M}\Omega$ (Mittelwert: $5 \cdot 10^4 \mathrm{M}\Omega$)	≥ 3000 s (MΩ·μF) (Mittelwert: 10000 s)

Meßzeit: 1 min.

Verlustfaktoren bei $+20^{\circ}$ C: tan δ

Gemessen bei	C ≤ 0,1 µF	0,1 µF < C ≤ 1,0 µF	C > 1,0 µF
1 kHz 10 kHz	≤ 8 · 10 ⁻³ ≤ 15 · 10 ⁻³	≤ 8 · 10 ⁻³ ≤ 15 · 10 ⁻³	≤ 10 · 10 ⁻³
100 kHz	≤ 30 · 10-3	-	_

Impulsbelastung: bei vollem Spannungshub

C-Wert µF	63 V-		kensteilheit . Betrieb/Pri 250 V–	•	630 V-	1000 V-
0,01 0,022 0,033 0,068 0,1 0,22 0,33 0,68 1,0 2,2 3,3 6,8	30/300 20/200 10/100 8/80 3,5/35 3/30	35/350 20/200 10/100 6/60 4/40 3/30	40/400 40/400 12/120 9/90 7/70	35/350 21/210 14/140 10/100 - -	40/400 25/250 17/170 - - -	50/500 32/320 - - - - -

Tauchlötprüfung/Verarbeitung

Lotwärmebeständigkeit:

Prüfung Tb nach DIN IEC 60068-2-58 und DIN EN 60384-19. Temperatur des Lotbades max. 260° C. Lötdauer max. 5 s. Kapazitätsänderung Δ C/C < 5%.

Löttechnik:

Reflowlötung (siehe Temperatur/Zeitdiagramm Seite 13).

Verpackung

Gegurtet lieferbar im Blistergurt.

Detaillierte Gurtungsangaben und Maßzeichnungen am Ende des Hauptkataloges.

Weitere Angaben siehe Technische Information.

WIMA SMD-PET

Fortsetzung

Wertespektrum

vveriespe	KIIOIII								
		(63 V-/40 V~*			100 V-/63 V~*		2	250 V-/160 V~*
Kapazität	Size Code	H ± 0,3	Bestellnummer	Size Code	H ± 0,3	Bestellnummer	Size Code	H ± 0,3	Bestellnummer
0,01 µF	1812 2220 2824	3,0 3,5 3,0	SMDTC02100KA00 SMDTC02100QA00 SMDTC02100TA00	1812 2220 2824	3,0 3,5 3,0	SMDTD02100KA00 SMDTD02100QA00 SMDTD02100TA00	2220 2824	3,5 3,0	SMDTF02100QA00 SMDTF02100TA00
0,015 "	1812 2220 2824	3,0 3,5 3,0	SMDTC02150KA00 SMDTC02150QA00 SMDTC02150TA00	1812 2220 2824	3,0 3,5 3,0	SMDTD02150KA00 SMDTD02150QA00 SMDTD02150TA00	2220 2824	3,5 3,0	SMDTF02150QA00 SMDTF02150TA00
0,022 "	1812 2220 2824	3,0 3,5 3,0	SMDTC02220KA00 SMDTC02220QA00 SMDTC02220TA00	1812 2220 2824	3,0 3,5 3,0	SMDTD02220KA00 SMDTD02220QA00 SMDTD02220TA00	2220 2824	3,5	SMDTF02220QA00 SMDTF02220TA00
0,033 "	1812 2220 2824	3,0 3,5 3,0	SMDTC02330KA00 SMDTC02330QA00 SMDTC02330TA00	1812 2220 2824	3,0 3,5 3,0	SMDTD02330KA00 SMDTD02330QA00 SMDTD02330TA00	2220 2824 4030	3,5 3,0 5,0	SMDTF02330QA00 SMDTF02330TA00 SMDTF02330VA00
0,047 "	1812 2220 2824	3,0 3,5 3,0	SMDTC02470KA00 SMDTC02470QA00 SMDTC02470TA00	1812 2220 2824	3,0 3,5 3,0	SMDTD02470KA00 SMDTD02470QA00 SMDTD02470TA00	2220 2824 4030	3,5 3,0 5,0	SMDTF02470QA00 SMDTF02470TA00 SMDTF02470VA00
0,068 "	1812 2220 2824	3,0 3,5 3,0	SMDTC02680KA00 SMDTC02680QA00 SMDTC02680TA00	1812 2220 2824	3,0 3,5 3,0	SMDTD02680KA00 SMDTD02680QA00 SMDTD02680TA00	2220 2824 4030	4,5* 3,0 5,0	SMDTF02680QB00 SMDTF02680TA00 SMDTF02680VA00
0,1 μF	1812 2220 2824	4,0* 3,5 3,0	SMDTC03100KB00 SMDTC03100QA00 SMDTC03100TA00	1812 2220 2824	4,0* 3,5 3,0	SMDTD03100KB00 SMDTD03100QA00 SMDTD03100TA00	2220 2824 4030	4,5* 5,0 5,0	SMDTF03100QB00 SMDTF03100TB00 SMDTF03100VA00
0,15 "	1812 2220 2824	4,0* 3,5 3,0	SMDTC03150KB00 SMDTC03150QA00 SMDTC03150TA00	1812 2220 2824	4,0 3,5 3,0	SMDTD03150KB00 SMDTD03150QA00 SMDTD03150TA00	2824 4030	5,0 5,0	SMDTF03150TB00 SMDTF03150VA00
0,22 "	1812 2220 2824	4,0* 3,5 3,0	SMDTC03220KB00 SMDTC03220QA00 SMDTC03220TA00	1812 2220 2824	4,0 3,5 3,0	SMDTD03220KB00 SMDTD03220QA00 SMDTD03220TA00	2824 4030	5,0 5,0	SMDTF03220TB00 SMDTF03220VA00
0,33 "	1812 2220 2824	4,0 4,5* 5,0*	SMDTC03330KB00 SMDTC03330QB00 SMDTC03330TB00	2220 2824 4030	4,5 5,0 5,0	SMDTD03330QB00 SMDTD03330TB00 SMDTD03330VA00	2824 4030 5040	5,0 5,0 6,0	SMDTF03330TB00 SMDTF03330VA00 SMDTF03330XA00
0,47 "	1812 2220 2824	4,0 4,5* 5,0*	SMDTC03470KB00 SMDTC03470QB00 SMDTC03470TB00	2220 2824 4030	4,5 5,0 5,0	SMDTD03470QB00 SMDTD03470TB00 SMDTD03470VA00	4030 5040	5,0 6,0	SMDTF03470VA00 SMDTF03470XA00
0,68 "	2220 2824 4030	4,5 5,0* 5,0	SMDTC03680QB00 SMDTC03680TB00 SMDTC03680VA00	2824 4030 5040	5,0 5,0 6,0	SMDTD03680TB00 SMDTD03680VA00 SMDTD03680XA00	5040	6,0	SMDTF03680XA00
1,0 µ F	2220 2824 4030	4,5 5,0* 5,0	SMDTC04100QB00 SMDTC04100TB00 SMDTC04100VA00	2824 4030 5040	5,0 5,0 6,0	SMDTD04100TB00 SMDTD04100VA00 SMDTD04100XA00	6054	7,0	SMDTF04100YA00
1,5 "	2824 4030	5,0 5,0	SMDTC04150TB00 SMDTC04150VA00	4030 5040	5,0 6,0	SMDTD04150VA00 SMDTD04150XA00		alogve igbar	ersion 2013 weiterhin
2,2 "	2824 4030	5,0 5,0	SMDTC04220TB00 SMDTC04220VA00	5040	6,0	SMDTD04220XA00			
3,3 "	4030	5,0	SMDTC04330VA00	5040	6,0	SMDTD04330XA00			ellnummer-Ergänzung: ranz: 20 % = M
4,7 "	5040	6,0	SMDTC04470XA00	6054	7,0	SMDTD04470YA00			10% = K $5% = J$ $ackung: lose = S$
6,8 "	6054	7,0	SMDTC04680YA00					Drah	ntlänge: keine= 00 rungsangaben Seite 139
							J	0011	ongodingdborroolic 107

^{*} Wechselspannungen: f = 50 Hz; 1,4 \cdot U $_{\rm eff} \sim$ + U- \leq U $_{\rm N}$

Alle Maße in mm.

Abweichungen und Konstruktionsänderungen vorbehalten.

WIMA SMD-PET

Fortsetzung

Wertespektrum

			400 V-/200 V~*		6	30 V-/300 V~*	1000 V-/400 V~*					
Kapazität	Size Code	H ± 0,3	Bestellnummer	Size Code	H ± 0,3	Bestellnummer	Size Code	H ± 0,3	Bestellnummer			
0,01 μF	2824 4030	3,0 5,0	SMDTG02100TA00 SMDTG02100VA00	4030	5,0	SMDTJ02100VA00						
0,015 "	2824 4030	3,0 5,0	SMDTG02150TA00 SMDTG02150VA00	4030	5,0	SMDTJ02150VA00	5040	6,0	SMDTO12150XA00			
0,022 "	2824 4030	5,0* 5,0	SMDTG02220TB00 SMDTG02220VA00	5040	6,0	SMDTJ02220XA00	5040	6,0	SMDTO12220XA00			
0,033 "	2824 4030	5,0 5,0	SMDTG02330TB00 SMDTG02330VA00	5040	6,0	SMDTJ02330XA00	5040	6,0	SMDTO12330XA00			
0,047 "	2824 4030	5,0 5,0	SMDTG02470TB00 SMDTG02470VA00	5040	6,0	SMDTJ02470XA00	6054	7,0	SMDTO12470YA00			
0,068 "	4030 5040	5,0 6,0	SMDTG02680VA00 SMDTG02680XA00	5040	6,0	SMDTJ02680XA00						
0,1 μF	4030 5040	5,0 6,0	SMDTG03100VA00 SMDTG03100XA00	6054	7,0	SMDTJ03100YA00						
0,15 "	4030 5040	5,0 6,0	SMDTG03150VA00 SMDTG03150XA00	6054	7,0	SMDTJ03150YA00						
0,22 "	5040	6,0	SMDTG03220XA00	6054	7,0	SMDTJ03220YA00						
0,33 "	5040	6,0										
0,47 "	6054	7,0	SMDTG03470YA00									

^{*} Wechselspannungen: f = 50 Hz; 1,4 \cdot U_{eff} \sim + U- \leq U_N

Alle Maße in mm.

Bestellnummer-Ergänzung:							
20 % = M							
10% = K							
5% = J							
: lose = S							
keine=00							

Gurtungsangaben Seite 139

Size Code	L ±0,3	B ±0,3	d	a min.	b min.	c max.
1812	4,8	3,3	0,5	1,2	3,5	3,5
2220	5,7	5,1	0,5	1,2	4	4,5
2824	7,2	6,1	0,5	1,2	4	6,5
4030	10,2	7,6	0,5	2,5	6	9
5040	12,7	10,2	0,7	2,5	6	11,5
6054	15,3	13,7	0,7	2,5	6	14

Abweichungen und Konstruktionsänderungen vorbehalten.

^{*} Katalogversion 2013 weiterhin verfügbar

Verarbeitungs- und Applikationsempfehlungen für SMD Bauteile

Layout-Gestaltung

Die Positionierung der Bauelemente auf dem Trägermaterial ist im Allgemeinen frei zu gestalten. Zur Vermeidung von Lötschatten oder Wärmesenken sollten extreme Bauelementeverdichtungen vermieden werden. In der Praxis hat sich ein Mindestabstand der Lötflächen zwischen zwei benachbarten WIMA SMDs von 2 x der Bauelementehöhe bewährt.

Lötpadempfehlung

Size	L	В	d	а	Ь	С
Code	± 0,3	± 0,3		min.	min.	max.
1812	4,8	3,3	0,5	1,2	3,5	3,5
2220	5,7	5,1	0,5	1,2	4	4,5
2824	7,2	6,1	0,5	1,2	4	6,5
4030	10,2	7,6	0,5	2,5	6	9
5040	12,7	10,2	0,7	2,5	6	11,5
6054	15,3	13,7	0,7	2,5	6	14

Die vorgegebenen Lötpadabmessungen verstehen sich als Mindestmaße, die jederzeit den Gegebenheiten des Layouts angepasst werden können.

Verarbeitung

Die Verarbeitung von SMD Bauelementen

- Bestücken
- Löten
- Elektrische Endkontrolle/Kalibrierung

muss als ein geschlossener Prozess betrachtet werden. So kann das Löten der Leiterplatten eine nicht unerhebliche Beanspruchung für alle elektronischen Bauelemente darstellen.

Die Angaben des Herstellers zur Verarbeitung der Bauelemente sind unbedingt zu beachten.

Lötprozess

Temperatur/Zeitdiagramm für die zulässige Verarbeitungstemperatur der WIMA SMD-Reihen in einem typischen Konvektions-Lötverfahren.

Bei Reflowlötprozessen können aufgrund der vielfältigen Verfahren keine exakten Prozessparameter spezifiziert werden. Das dargestellte Diagramm versteht sich als Empfehlung zur Ausarbeitung eines geeigneten praxisorientierten Lötprofils. Bei der Verarbeitung sollte eine max. Innentemperatur der WIMA SMD-Bauteile von T = 210° C nicht überschritten werden. Aufgrund der unterschiedlichen Wärmeaufnahme ist bei kleineren Bauformen die Zeitachse des Lötprozesses möglichst kurz zu halten.

SMD Handlöten

WIMA SMD Kondensatoren können, z. B für Laborzwecke, grundsätzlich auch per Hand mit dem Lötkolben gelötet werden. Dabei sollten, ähnlich wie bei automatisierten Lötprozessen, bestimmte Lötzeiten und Löttemperaturen nicht überschritten werden. Diese sind abhängig von der physischen Größe der Bauelemente und der damit verbundenen Wärmeaufnahme.

Die unten aufgeführten Angaben sind als Richtlinien zu verstehen und sollen dazu dienen, eine Schädigung des Dielektrikums durch übermäßige Hitzebeanspruchung während des Lötprozesses zu vermeiden. Die Qualität der Lötung ist dabei abhängig vom verwendeten Werkzeug sowie vom Können des Benutzers.

Size Code	Löttemperatur °C / °F	Lötdauer
1812	250 / 482	2 s Blech 1 / 5 s Pause / 2 s Blech 2
2220	250 / 482	3 s Blech 1 / 5 s Pause / 3 s Blech 2
2824	260 / 500	3 s Blech 1 / 5 s Pause / 3 s Blech 2
4030	260 / 500	5 s Blech 1 / 5 s Pause / 5 s Blech 2
5040	260 / 500	5 s Blech 1 / 5 s Pause / 5 s Blech 2
6054	260 / 500	5 s Blech 1 / 5 s Pause / 5 s Blech 2

Verarbeitungs- und Applikationsempfehlungen für SMD Bauteile (Fortsetzung)

Lötmittel

Zur Erzielung zuverlässiger Lötresultate hat sich fallweise eine der folgenden Lotlegierungen als praktikabel erwiesen:

Bleifreie Lotpasten

Sn - Bi

Sn - Zn (Bi)

Sn - Ag - Cu (geeignet für SMD-PET 5040/6054 und SMD-PPS)

Bleihaltige Lotpasten

Sn - Pb - Ag (Sn60-Pb40-A, Sn63-Pb37-A)

Waschen

WIMA SMD Bauteile mit Kunststoffumhüllung sind wie vergleichbar aufgebaute Bauelemente ungeachtet des Fabrikats nicht als hermetisch dicht anzusehen. Aufgrund der heute gängigen Waschsubstanzen, so auf wässriger Basis - anstelle der früher verwendeten halogenierten Kohlenwasserstoffe - mit weiterentwickelter Waschwirkung, hat es sich gezeigt, dass montierte SMD Kondensatoren nach entsprechendem Waschprozess eine unzulässig hohe Abweichung elektrischer Parameter aufweisen können. Auf die Verwendung industrieller Waschprozesse soll im Fall unserer SMD Bauteile daher verzichtet werden, um eine mögliche Schädigung zu vermeiden.

Inbetriebnahme/Kalibrierung

Durch die Belastung der Bauelemente während des Verarbeitungsprozesses treten bei praktisch allen elektronischen Bauelementen reversible Parameterveränderungen auf. Die zu erwartende Wiederkehrgenauigkeit der Kapazität bei verträglicher Verarbeitung liegt im Bereich von

 $|\Delta C/C| \le 5 \%$.

Bei der Inbetriebnahme der Baugruppe ist eine min. Ablagezeit

t ≥ 24 h

zu berücksichtigen. In stark kapazitätsabhängiger Applikation oder kalibrierten Geräten empfiehlt es sich, die Ablagezeit auf

 $t \ge 10 d$

auszudehnen. Dadurch werden weitere Alterungseffekte des Kondensatorgefüges vorweggenommen. Verarbeitungsbedingte Parameterveränderungen sind nach diesem Zeitraum nicht zu erwarten.

Feuchteschutzverpackung

WIMA SMD-Kondensatoren werden in Feuchteschutzbeutel nach JEDEC-Standard (ESD/EMI-Abschirmung/wasserdampfdicht) ausgeliefert.

Unter üblichen, überwachten Lagerbedingungen können die Bauteile gegen zwei Jahre und mehr im original verschlossenen Feuchteschutzbeutel gelagert werden. Angebrochene Packeinheiten sollten unmittelbar verarbeitet werden. Ist eine Lagerung erforderlich, sollte die angebrochene Packeinheit im Originalbeutel luftdicht verschlossen aufbewahrt werden.

Zuverlässigkeit

Unter Berücksichtigung der Vorgaben des Herstellers und verträglicher Verarbeitung, zeichnen sich die WIMA SMD Baureihen durch die gleiche hohe Qualität und Zuverlässigkeit wie die analogen bedrahteten WIMA Baureihen aus. Die beispielsweise im WIMA SMD-PET eingesetzte Technologie des metallisierten Kondensators erzielt für alle Anwendungsbereiche die besten Werte. Der Erwartungswert liegt bei:

 $\lambda_0 \le 2$ fit

Darüber hinaus unterliegt die Fertigung aller WIMA Bauelemente den Verfahrensregeln der ISO 9001:2008 sowie bauelementespezifisch den Richtlinien des IEC Gütebestätigungssystems (IECQ) für elektronische Bauelemente.

Elektrische Eigenschaften und Applikationsfelder

Grundsätzlich haben die WIMA SMD Baureihen die gleichen elektrischen Eigenschaften wie vergleichbare bedrahtete Kondensatoren. WIMA SMD Kondensatoren verfügen im Vergleich zu Keramik- oder Tantalausführungen über eine Reihe von weiteren herausragenden Eigenschaften.

- günstige Impulsbelastbarkeit
- niedriger ESR
- geringe dielektrische Absorption
- Verfügbarkeit in hohen Spannungsreihen
- großes Kapazitätsspektrum
- hohe mechanische Beanspruchbarkeit
- gute Langzeitstabilität

Bezogen auf die technische Performance sowie auf Qualität und Zuverlässigkeit der WIMA SMDs bietet sich die Möglichkeit, nahezu alle Anwendungsgebiete bedrahteter Folien-Kondensatoren mit SMD-Ausführungen abzudecken. Darüber hinaus erschließen sich den WIMA SMD Baureihen alle Anwendungen, in denen bisher zwingend der Einsatz bedrahteter Bauelemente erforderlich war.

- Meßtechnik
- Oszillatorschaltungen
- Differenzier- und Integrierglieder
- A/D- bzw. D/A Wandler
- ,sample and hold' Schaltungen
- Kfz-Anwendungen

Mit dem heute zur Verfügung stehenden WIMA SMD Programm kann der überwiegende Anteil aller Kunststofffolien-Kondensatorpositionen mit WIMA SMD Bauelementen abgedeckt werden. So reicht der Anwendungsbereich vom Standard-Koppelkondensator bis hin zu Schaltnetzteilanwendungen als Sieb-bzw. Ladekondensator mit hohen Spannungsund Kapazitätswerten sowie Anwendungen in der Telekommunikation wie z. B. der bekannte Telefonkondensator 1 µF/250 V.

Blistergurtung und Verpackungseinheiten für WIMA SMD-Kondensatoren

Gurtvorlauf und -nachlauf:

Alle Maße in mm.

Тур	W _{2max}	$W1\pm_0^2$	N±1,5
1812	19	12,4	62
2220	19	12,4	62
2824	19	12,4	62
4030	22,4	16,4	60
5040	30,4	24,4	90
6054	30,4	24,4	90

Verpackungseinheiten

Size Code	1812	Ao ±0,1	Αı	Bo ±0,1	Ві	Do +0.1	D ₁	P +01	Po* ±0.1	P ₂ ±0,05	E ±0.1	F ±0,05	G	W ±0,3	₩0 ±0,2	K ±0.1	T ±0.1	gegurtet Spule	
Bauform	Code	20,1		20,1		-0	9	20,1	10,1	10,00	Ξ0,1	±0,00		±0,0	±0,2	20,1	±0,1	180 mm Ø	(
4,8×3,3×3	KA	3,55	3,3	5,1	4,8	ø1,5	ø1,5	8	4	2	1,75	5,5	2,2	12	9,5	3,4	0,3	700	
4,8×3,3×4	КВ	3,55	3,3	5,1	4,8	ø1,5	Ø1,5	8	4	2	1,75	5,5	2,2	12	9,5	4,4	0,3	500	

gegurtet Spule	gegurtet Spule	lose
	330 mm Ø	Standard
700	2500	3000
500	2000	3000

Size Code	2220	A0 ±0.1	Aı	Bo ±0,1	Ві	Do +0.1	D ₁	P ±0.1	Po* ±0.1	P ₂ ±0,05	E +0.1	F ±0,05	G	W ±0,3	₩0 ±0,2	K ±0,1	T ±0.1
Bauform	Code	20,1		20,1		-0	-0	20,1	10,1	10,00	±0,1	±0,00		10,0	Ξ0,2	20,1	10,1
5,7×5,1×3,5	QA	6,3	5,7	5,6	5,1	Ø1,5	Ø1,5	8	4	2	1,75	5,5	1,95	12	9,5	3,7	0,3
5,7×5,1×4,5	QB	6,3	5,7	5,6	5,1	ø1,5	Ø1,5	8	4	2	1,75	5,5	1,95	12	9,5	4,7	0,3

gegurtet Spule	gegurtet Spule	lose
	330 mm Ø	Standard
500	1800	3000
400	1500	3000

Size Code	2824	A0 ±0,1	Aı	Bo ±0,1	Ві	Do +0,1	D1 +0.1	P ±0.1	Po* ±0.1	P ₂ ±0,05	E ±0,1	F ±0,05	G	W ±0,3	₩0 ±0,2	K ±0,1	T ±0,1
Bauform	Code	,		20,1		-0	-0	20,1	20,1	10,00	±0,1	10,00		10,0	±0,2	20,1	Ξ0,1
7,2×6,1×3	TA	6,6	6,1	7,7	7,2	Ø1,5	Ø1,5	12	4	2	1,75	5,5	0,9	12	9,5	3,4	0,3
7,2×6,1×5	ТВ	6,6	6,1	7,7	7,2	ø1,5	Ø1,5	12	4	2	1,75	5,5	0,9	12	9,5	5,4	0,4

gegurtet Spule	lose
330 mm Ø	Standard
1500	2000
750	2000

	Code	A0 ±0,1	Αı	Bo ±0,1	Ві	Do +0,1 -0	D1 +0,1 -0			P ₂ ±0,05	E ±0,1	F ±0,05	G		W ₀ ±0,2		T ±0,1
Size Code 4030	VA	10,7	10,2	8,1	9,1	ø1,5	ø1,5	16	4	2	1,75	7,5	1,9	16	13,3	5,5	0,3
Size Code 5040	XA	13,5	12,7	11	11,5	ø1,5	ø1,5	16	4	2	1,75	11,5	4,7	24	21,3	6,5	0,3
Size Code 6054	YA	17,0	16,5	15,6	15,0	ø1,5	ø1,5	20	4	2	1,75	11,5	2,95	24	21,3	7,5	0,3

gegurtet Spule 330 mm Ø	lose Standard
775	2000
600	1000
450	500

Bestellnummer-Codes für SMD Verpackungen

W (Blister)	Ø in mm	Code
12	180	P
12	330	Q
16	330	R
24	330	T

Lose Standard	S

 $^{^*}$ kumulativ nach 10 Schritten \pm 0,2 mm max. Muster und Vorserienbedarf auf Anfrage bzw. mindestens 1 Spule.

WIMA Bestellnummer-Systematik

Eine WIMA Bestellnummer bestehend aus 18 Zeichen stellt sich wie folgt zusammen:

- Feld 1 4: Typenbezeichnung
- Feld 5 6: Nennspannung
- Feld 7 10: Kapazität
- Feld 11 12: Bauform und Rastermaß
- Feld 13 14: Versions-Code (z. B. Snubber Versionen)
- Feld 15: Kapazitätstoleranz
- Feld 16: Verpackung
- Feld 17 18: Drahtlänge (ungegurtet)

Typenbezeichnung:	Nennspannung:	Kapazität:	Bauform:	Toleranz:
SMD-PET = SMD	T $50 \text{ V-} = 80$	22 pF = 0022	$4.8 \times 3.3 \times 3$ Size $1812 = KA$	$\pm 20\% = M$
SMD-PEN = SMD	N $63 \text{ V-} = \text{C0}$	47 pF = 0047	$4.8 \times 3.3 \times 4$ Size 1812 = KB	$\pm 10\% = K$
SMD-PPS = SMD		100 pF = 0100	$5,7 \times 5,1 \times 3,5$ Size $2220 = QA$	$\pm 5\% = J$
FKP 02 = FKP0	250 V- = FO	150 pF = 0150	$5,7 \times 5,1 \times 4,5$ Size $2220 = QB$	$\pm 2.5\% = H$
MKS 02 = MKS		220 pF = 0220	$7,2 \times 6,1 \times 3$ Size $2824 = TA$	$\pm 1\% = E$
FKS 2 = FKS2	450 V- = H0	330 pF = 0330	$7,2 \times 6,1 \times 5$ Size $2824 = TB$	
FKP 2 = FKP2		470 pF = 0470	$10,2 \times 7,6 \times 5$ Size $4030 = VA$	
MKS 2 = MKS		680 pF = 0680	$12,7 \times 10,2 \times 6$ Size $5040 = XA$	_
MKP 2 = MKP		1000 pF = 1100	$15,3 \times 13,7 \times 7$ Size $6054 = YA$	Verpackung:
FKS 3 = FKS3	800 V- = LO	1500 pF = 1150	$2.5 \times 7 \times 4.6 \text{ RM } 2.5 = 0B$	AMMO H16,5 $340 \times 340 = A$
FKP 3 = FKP3		2200 pF = 1220	$3 \times 7.5 \times 4.6 \text{ RM } 2.5 = 0 \text{C}$	AMMO H16,5 $490 \times 370 = B$
MKS 4 = MKS	$4 \mid 900 \text{ V-} = \text{N0}$	3300 pF = 1330	$2.5 \times 6.5 \times 7.2 \text{ RM} 5 = 1 \text{A}$	AMMO H18,5 $340 \times 340 = C$
MKP 4 = MKP	$4 \mid 1000 \text{ V-} = 01$	4700 pF = 1470	$3 \times 7.5 \times 7.2 \text{ RM} 5 = 1B$	AMMO H18,5 $490 \times 370 = D$
MKP 10 = MKP	1 1100 V - = $P0$	6800 pF = 1680	$2.5 \times 7 \times 10 \text{ RM} 7.5 = 2A$	REEL H16,5 360 = F
FKP 4 = FKP4		$0.01 \mu F = 2100$	$3 \times 8,5 \times 10 \text{ RM} 7,5 = 2B$	REEL H16,5 500 = H
FKP 1 = FKP1	1250 V- = RO	$0.022 \mu F = 2220$	$3 \times 9 \times 13 \text{ RM } 10 = 3A$	REEL H18,5 360 = I
MKP-X2 = MKX	2 1500 V- = SO	$0.047 \mu F = 2470$	$4 \times 9 \times 13 \text{ RM } 10 = 3C$	REEL H18,5 500 = J
MKP-X2 R = MKX	R $1600 \text{ V-} = \text{TO}$	$0.1 \mu F = 3100$	$5 \times 11 \times 18 \text{ RM } 15 = 4B$	ROLL H16,5 $= N$
MKP-X1R = MKX	1 $ 2000 \text{ V-} = \text{U0} $	$0.22 \mu F = 3220$	$6 \times 12,5 \times 18 \text{ RM } 15 = 4C$	ROLL H18,5 = O
MKP-Y2 = MKY	2 2500 V- = VO	$0.47 \mu F = 3470$	$5 \times 14 \times 26,5 \text{ RM } 22,5 = 5A$	BLISTER W12 180 $= P$
MP 3-X2 = MPX	$2 \mid 3000 \text{ V-} = \text{W0}$	$1 \mu F = 4100$	$6 \times 15 \times 26,5 \text{ RM } 22,5 = 5B$	BLISTER W12 330 $= Q$
MP 3-X1 = MPX	1 $ 4000 \text{ V-} = \text{XO}$	$2,2 \mu F = 4220$	$9 \times 19 \times 31,5 \text{ RM } 27,5 = 6A$	BLISTER W16 330 $=$ R
MP 3-Y2 = MPY	2 6000 V- = YO	$4.7 \mu F = 4470$	$11 \times 21 \times 31,5 \text{ RM } 27,5 = 6B$	BLISTER W24 330 $=$ T
MP 3R-Y2 = MPR		$10 \mu F = 5100$	$9 \times 19 \times 41,5 \text{ RM} 37,5 = 7A$	Schüttware/EPS Standard = S
Snubber MKP $=$ SNM	$1P 275 V \sim = 1 W$	$22 \mu F = 5220$	$11 \times 22 \times 41,5 \text{ RM} 37,5 = 7B$	
Snubber FKP = SNFF	$300 \text{V} \sim = 2 \text{W}$	$47 \mu F = 5470$	$19 \times 31 \times 56 \text{ RM } 48,5 = 8D$	
GTO MKP = GTC	$M \mid 305 \text{V} \sim = \text{AW}$	$100 \mu F = 6100$	$35 \times 50 \times 57 \text{ RM } 52,5 = 9F$	
$DC-LINK\ MKP\ 3 = DCP$		$220 \mu F = 6220$		
$DC-LINK\ MKP\ 4 = DCP$	$4 440 \text{V} \sim = 4 \text{W}$	$1000 \mu F = 7100$		
DC-LINKMKP4S = DCPS	$500 \text{V} \sim 500 \text{V}$	$1500 \mu F = 7150$		
DC-LINK MKP 5 = DCPS	5		Versions-Code:	
DC-LINK MKP 6 = DCPC	5 		Standard = 00	Drahtlänge (ungegurtet)
DC-LINK HC = DCH	C		Version A1 = 1A	$3.5 \pm 0.5 = C9$
DC-LINK HY = DCH	Υ		Version A1.1.1 = 1B	6-2 = SD
			Version A2 = 2A	$16 \pm 1 = P1$

Die Daten auf dieser Seite sind nicht vollständig und dienen lediglich der Systemerläuterung. Bestellnummer-Angaben befinden sich auf den Seiten der jeweiligen Reihen.