	Method			Dataset			
		ASCADv1 (fixed)	ASCADv1 (random)	DPAv4 (Zaid version)	AES-HD	OTiAiT	OTP
	Random	-0.02 ± 0.04	0.00 ± 0.02	-0.01 ± 0.01	-0.02 ± 0.02	0.00 ± 0.02	0.00 ± 0.04
First-order	SNR	0.031	-0.092	0.344	0.184	0.989	0.944
parametric	SOSD	-0.253	0.272	0.259	0.063	0.886	0.803
methods	CPA	0.521	-0.095	0.420	0.303	0.630	0.945
N 1 4	GradVis	0.585 ± 0.009	0.34 ± 0.05	0.27 ± 0.01	0.03 ± 0.03	0.21 ± 0.05	0.58 ± 0.02
Neural net	Saliency	0.579 ± 0.009	0.34 ± 0.05	0.279 ± 0.009	0.03 ± 0.03	0.51 ± 0.03	0.57 ± 0.04
attribution	Input * Grad LRP	0.58 ± 0.01	0.34 ± 0.05	0.278 ± 0.008	0.03 ± 0.03	0.61 ± 0.03	0.58 ± 0.04
		0.58 ± 0.01	0.34 ± 0.05	0.278 ± 0.008	0.03 ± 0.03	0.61 ± 0.03	0.58 ± 0.04
	1-Occlusion m-Occlusion [†]	0.59 ± 0.01	0.34 ± 0.05	0.282 ± 0.009	0.03 ± 0.03 0.18 ± 0.10	0.61 ± 0.03 0.77 ± 0.02	0.58 ± 0.04 0.74 ± 0.02
	2 nd -order 1-Occlusion	0.60 ± 0.01 0.625 ± 0.009	0.48 ± 0.06 0.35 ± 0.05	$\frac{0.353 \pm 0.009}{0.29 \pm 0.01}$	0.18 ± 0.10 0.03 ± 0.03	0.77 ± 0.02 0.71 ± 0.03	0.74 ± 0.02 0.58 ± 0.03
	OccPOI	0.025 ± 0.009 0.06 ± 0.03	0.05 ± 0.05 0.05 ± 0.01	0.29 ± 0.01 0.025 ± 0.003	0.03 ± 0.03 0.03 ± 0.03	0.71 ± 0.03 0.08 ± 0.01	0.38 ± 0.03 0.10 ± 0.03
	OccPOI (Released result)	0.00 ± 0.03 0.104	0.05 ± 0.01 0.051		0.03 ± 0.03 0.049	0.08 ± 0.01 n/a	0.10 ± 0.03 n/a
	OccPOI-Extended*	0.104 0.13 ± 0.05	0.091 ± 0.05	n/a 0.18 ± 0.02	0.049 0.05 ± 0.05	0.53 ± 0.05	0.37 ± 0.01
	GradVis (ZaidNet)	0.15 ± 0.03 0.25 ± 0.03	n/a	0.19 ± 0.02 0.19 ± 0.01	0.03 ± 0.03 0.13 ± 0.02	n/a	n/a
	Saliency (ZaidNet)	0.25 ± 0.03 0.25 ± 0.03	n/a n/a	0.19 ± 0.01 0.19 ± 0.01	0.13 ± 0.02 0.13 ± 0.02	n/a	n/a
	Input * Grad (ZaidNet)	0.25 ± 0.03 0.25 ± 0.04	n/a n/a	0.19 ± 0.01 0.19 ± 0.01	0.13 ± 0.02 0.13 ± 0.02	n/a	n/a
	1-Occlusion (ZaidNet)	0.24 ± 0.03	n/a	0.282 ± 0.009	0.13 ± 0.02 0.13 ± 0.02	n/a	n/a
	2 nd -order 1-Occlusion (ZaidNet)	0.31 ± 0.03	n/a	0.19 ± 0.01	0.13 ± 0.02 0.13 ± 0.02	n/a	n/a
	OccPOI (ZaidNet)	0.07 ± 0.02	n/a	0.09 ± 0.02	0.06 ± 0.02	n/a	n/a
	OccPOI-Extended* (ZaidNet)	0.11 ± 0.03	n/a	0.10 ± 0.02	0.11 ± 0.03	n/a	n/a
	GradVis (WoutersNet)	0.19 ± 0.03	n/a	0.21 ± 0.02	0.11 ± 0.03	n/a	n/a
	Saliency (WoutersNet)	0.19 ± 0.03	n/a	0.21 ± 0.02	0.11 ± 0.03	n/a	n/a
	Input * Grad (WoutersNet)	0.18 ± 0.03	n/a	0.21 ± 0.02	0.11 ± 0.03	n/a	n/a
	1-Occlusion (WoutersNet)	0.18 ± 0.03	n/a	0.21 ± 0.02	0.11 ± 0.03	n/a	n/a
	2 nd -order 1-Occlusion (WoutersNet)	0.23 ± 0.02	n/a	0.21 ± 0.02	0.11 ± 0.03	n/a	n/a
	OccPOI (WoutersNet)	0.09 ± 0.04	n/a	0.056 ± 0.007	0.048 ± 0.002	n/a	n/a
	OccPOI-Extended* (WoutersNet)	0.13 ± 0.05	n/a	0.11 ± 0.03	0.07 ± 0.03	n/a	n/a
	ALL (ours)	0.787 ± 0.007	0.75 ± 0.06	0.293 ± 0.003	0.21 ± 0.03	0.811 ± 0.007	0.887 ± 0.002
Table 1: Performance of leakage localization algorithms according to the oSNR ('omniscient' signal to noise ratio) metric (larger is better). This metric is computed by first computing 'ground truth'-like per-timestep localization by the performance and internal random variables which the besslines.							
leakiness measurements using implementation knowledge and internal random variables which the baselines							
do not have access to, then computing the Spearman rank correlation coefficient between the 'ground truth'							
leakiness measurements and those estimated by the baseline. Best result is boxed and best deep learning							
result is underlined. Results are reported as mean \pm std. dev. over 5 random seeds. Observe that our method							
outperforms all baselines by a large margin on the ASCADv1 datasets, which are dominated by second-order							
leakage. On the remaining datasets, which in contrast are dominated by first-order leakage, our method is							
the best deep learning method on AES-HD, OTiAiT, and OTP, and is the second-best on DPAv4. *The							
algorithm as proposed in (Yap, 2025) is very time-consuming because it requires $O(T^2)$ non-parallelizable							
passes through the dataset. Due to time constraints, for ASCADv1 (random) and AES-HD we stop it early							
after $10\times$ the runtime of ALL. †For each dataset, we use m in np.arange(1, 51, 2) which maximizes							
the oSNR metric for m-occlusion. Specifically, we use $m=3$ for ASCADv1 (fixed), $m=7$ for ASCADv1							
random), $m = 43$ for DPAv4, $m = 33$ for AES-HD, $m = 3$ for OTiAiT, and $m = 7$ for OTP.							
random, $m = 40$ for DTAV4, $m = 30$ for AED-11D, $m = 5$ for OTIAI1, and $m = 7$ for OTI.							