

Lending Club Case Study

Work Flow

1 -Introduction To EDA

2 – Introduction to Case Study

3 – Problem Statement

4 -Procedure to Solve Case Study

5 – Univariate Analysis

6 – Bivariate Analysis

7 - Derived Metrics
Analysis

8 - Conclusion

9 – Question and Answer

What is Exploratory Data Analysis (EDA)?

- EDA stands for Exploratory Data Analysis
- EDA is an approach to analyze the data using visual techniques
- It is used to discover trends, patterns, or to check assumptions with the help of statistical summary and graphical representations

Dr. Manjunath M

Problem Statement:

LOAN DATASET

- The consumer finance company which specialises in lending various types of loans to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile.
- Two types of risks are associated with the bank's decision:
 - If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
 - If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company

EDA Procedure:

- Exploratory Data Analysis is a data analytics process to understand the data in depth and learn the different data characteristics, often with visual means.
- This allows you to get a better feel of your data and find useful patterns in it.
- **Steps** Involved in Exploratory Data Analysis
 - Data sourcing:
 - It refers to the process of finding and loading data into our system
 - Data cleaning:
 - Data cleaning refers to the process of removing unwanted variables and values from the dataset
 - Univariate analysis:
 - In Univariate Analysis, analyzsis of data is done for one variable
 - Bivariate analysis
 - In Bivariate Analysis, analyzsis of data is done for two variable
 - Derived metrics:
 - New variables could be created based on your business understanding

- Univariate analysis is the technique of comparing and analyzing the dependency of a single predictor and a response variable
- Example:
 - Analysing the home_ownership column and its relationship

```
[40]: df["home_ownership"].value_counts()
```

[40]: RENT 17512

MORTGAGE 16315

OWN 2581

OTHER 94

Name: home_ownership, dtype: int64

• Analysing the home_ownership column using Pie chart and Bar Chart

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

• Analysing the loan_status column using Bar Chart

• Analysing the emp_length column using Bar Chart

• Analysing the grade column using histogram Chart

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

- Bivariate analysis helps in analysing the relationship between two variables.
- Example:
 - Analysing the home_ownership and loan_status columns relationship
 - 3.5.2 Anaysisng the home_ownership column with loan_status for better understanding

[57]:	loan_status	home_ownership	Charged Off	Current	Fully Paid
	0	MORTGAGE	2075	597	13643
	1	OTHER	18	0	76
	2	OWN	349	70	2162
	3	RENT	2562	399	14551

• Analysing the home_ownership and loan_status column using Bar Chart

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

- A derived metric is a calculation based on the data included in the report definition
- Example:
 - Deriving the new column called "Risk"

```
Grade=["A", "B", "C"]

Sub_Grade = ["A1", "A2", "A3", "A4", "A5", "B1", "B2", "B3", "B4", "B5", "C1", 

→"C2", "C3", "C4", "C5", "D1", "D2", "D3", "D4", "D5"]

Home = ["RENT", "OWN", "MORTGAGE"]

loan_status = ["Current", "Fully Paid"]

verification = ["Verified", "Source Verified"]

df["Risk"] = (df["home_ownership"].isin(Home) ) & (df["grade"].isin(Grade)) & 

→(df["loan_status"].isin(loan_status)) & (df["annual_inc"]>= 40000)
```

```
df["Risk"].value_counts()
```

True 19356 False 17146 Name: Risk, dtype: int64

• Analysing the Risk column using histogram and Bar Chart

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

• Analysing the Accepted and Defaulted Loan using Bar Chart

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

• Analysing the Accepted and Defaulted Loan using Heat Map

Dr. Manjunath M

Email: manjuu.bms66@gmail.com

Statistics of Accepted Loan

	= df_Res loc[df_Ac		ed"]=="Acce	pted_Loan"								
id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownership
1075358	1311748	3000	3000	3000.000000	60 months	12.69%	67.79	В	B5	University Medical Group	1.0	RENT
1069908	1305008	12000	12000	12000.000000	36 months	12.69%	402.54	В	B5	UCLA	11.0	OWN
1062474	1294539	6000	6000	6000.000000	36 months	11.71%	198.46	В	ВЗ	Connection Inspection	1.0	MORTGAGE
1069710	1304821	10000	10000	10000.000000	36 months	11.71%	330.76	В	В3	Value Air	11.0	OWN
1069697	1273773	15000	15000	15000.000000	36 months	9.91%	483.38	В	B1	Winfield Pathology Consultants	2.0	MORTGAGE
•••			***									
355680	358791	1000	1000	92.173793	36 months	7.37%	31.05	Α	A1	Retired	11.0	OWN
355467	360172	7500	5550	0.000000	36 months	8.32%	174.74	Α	A4	L-3 Communications Holdings	1.0	MORTGAGE
351964	354815	8000	8000	2141.029177	36 months	10.96%	261.76	В	B5	Kapstone	5.0	MORTGAGE
323288	323280	7500	7500	1758.843849	36 months	10.39%	243.38	В	B4	H&S	0.0	MORTGAGE
308498	308484	25000	18175	14903.250000	36 months	10.08%	587.14	В	В3	Emergency Medical Associate	2.0	MORTGAGE
6666 rows	x 43 colum	nns										

Phone: 9535096576

Dr. Manjunath M

Statistics of Defaulted Loan

Dr. Manjunath M

	3.70	loan_amnt	funded_amnt	funded_amnt_inv	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	home_ownershi
id												
1076863	1277178	10000	10000	10000.00	36 months	13.49%	339.31	С	C1	AIR RESOURCES BOARD	11.0	REN
1069639	1304742	7000	7000	7000.00	60 months	15.96%	170.08	С	C5	Southern Star Photography	8.0	REN
1070078	1305201	6500	6500	6500.00	60 months	14.65%	153.45	С	C3	Southwest Rural metro	5.0	OW
1065775	1299699	10000	10000	10000.00	36 months	15.27%	347.98	С	C4	Chin's Restaurant	4.0	REN
1069971	1304884	3600	3600	3600.00	36 months	6.03%	109.57	Α	A1	Duracell	11.0	MORTGAG
223308	223192	7500	7500	1000.00	36 months	10.78%	244.76	С	C1	Tradelink	1.0	MORTGAG
222829	222675	14400	14400	1510.69	36 months	9.51%	461.35	В	B2	County of San Diego	11.0	REI
200600	200597	7500	7500	1599.78	36 months	9.83%	241.41	В	В3	UCLA Medical Center	7.0	REI
186572	186568	12000	12000	725.00	36 months	9.01%	381.66	В	B2	Bank of America Corp.	6.0	MORTGAG
158706	158450	12375	12375	1000.00	36 months	10.91%	404.62	С	C3	Fullmoon Software	2.0	REI

Email: manjuu.bms66@gmail.com

Conclusion

- The analysis presented above is related to Loan dataset.
- The aim of this analysis to reduce the loss percentage of Consumer Finance Company by providing the loan to loan applicants
- This detailed analysis of loan dataset using EDA addresses the two key challeges
 - If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
 - If the applicant is **not likely to repay the loan**, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company
- The analysis presented above, identifies the number of Good_loan and Bad_loans using various EDA process and, also identify the staticstics to approve Full loan and Defaulted loan based on the loan applications.
- Hence, by identifing staticstics to Full approved loan and dfaulted loan, reduces the loss percentage for the Finance Company

