Presentazione esercitazioni MSSF esame finale per l'A.A. 24/25

Lorenzo Casavecchia, matricola 0350001 lorenzo.casavecchia@students.uniroma2.eu

Ingegneria dell'Automazione

24/07/2025

Indice

1 Assignment 1 - Modello della meccanica respiratoria

Modello della meccanica respiratoria Obiettivi

- Implementare il modello della meccanica respiratoria riportato a lezione
- Comparare gli andamenti dei volumi e dei flussi tra
 - pressioni sinusoidali vs pressioni ad onda quadra
 - caso fisiologico vs in presenza di patologie respiratorie

Modello di riferimento

Figure 1: Modello Simulink e circuito equivalente per la meccanica respiratoria

Variabili del modello

Notazione

- ullet Pressione alla via aerea d'ingresso P_{ao}
- ullet Pressione alla via aerea principale P_{aw}
- ullet Flusso d'aria totale Q
- ullet Volume d'aria V
- ullet Flusso d'aria agli alveoli Q_A
- ullet Volume d'aria agli alveoli V_A

Costanti del modello

- Ostruzione alle vie aeree periferiche R_p (1 $\frac{\text{cmH2O}}{\text{litre}}$ s)
- Ostruzioni alla via aerea principale R_c (0.5 $\frac{\text{cmH2O}}{\text{litre}}$ s)
- Compliance delle vie aeree secondarie C_s (0.005 cmH2O · litre)
- Compliance del petto C_w (0.2 cmH2O · litre)
- Compliance dei polmoni C_L (0.2 cmH2O · litre)

Simulazione con P_{ao} sinusoidale

Figure 2: $P_{ao} = 2.5\sin(2\pi \cdot 0.25\frac{1}{s} \cdot t)$ cmH2O

Parametri per P_{ao} ad onda quadra

- A = 1 cmH2O
- ullet au=0.5 s, $T_i=1.7$ s, $T_e=3.3$ s ($T_{
 m breath}=5.5$ s)
- PEEP = 0 i parametri differiscono di molto da quelli proposti in Noman Qaed 2015, A=25 cmH2O, PEEP = 6 cmH2O e $T_{breath}=3$ s, ma la risposta nel tempo presenta le stesse caratteristiche

Figure 3: Forma dell'onda quadra adottata per le simulazioni

Simulazione con P_{ao} ad onda quadra

Simulazione con P_{ao} ad onda quadra

Nota

- Per P_{ao} sinusoidale abbiamo che Q, Q_A, V, V_A sono a regime sinusoidali (per sistemi lineari ingresso sinusoidale \implies uscita sinusoidale con ampiezza e fase proporzionali a quelli d'ingresso e alla frequenza)
- In entrambi i casi $Q \approx Q_A$ in quanto C_s è molto piccola \implies la portata d'aria che arriva alle vie centrali raggiunge del tutto gli alveoli
- ullet Per P_{ao} ad onda quadra la risposta dei flussi d'aria Q,Q_A è molto più aggressiva di quella dei volumi V,V_A

Modello della meccanica respiratoria $tf di Q_A/P_{ao}$

Analisi orientata alle tf

Per caratterizzare la differenza dei comportamenti rispetto alle 2 P_{ao} di riferimento calcoliamo le funzioni di trasferimento (tf) tra le misure di interesse e P_{ao}

Dal circuito elettrico abbiamo

$$\begin{cases} Q_A &= sC_sP_{\mathsf{aw}} + \frac{1}{R_c}P_{\mathsf{ao}} - \frac{1}{R_c}P_{\mathsf{aw}} \\ P_{\mathsf{aw}} &= R_pQ_A + C_{L\parallel w}\frac{1}{s}Q_A \end{cases} \implies \frac{Q_A}{P_{\mathsf{ao}}} = \frac{s}{a_2s^2 + a_1s + a_0}$$

dove $a_2 = R_c R_p C_s$, $a_1 = R_c + R_p + R_c C_s C_{L\parallel w}$ e $a_0 = C_{L\parallel w}$

Modello della meccanica respiratoria $\operatorname{tf}\operatorname{di} Q_A/P_{ao}$

Inoltre

$$\begin{cases} \frac{Q_A}{P_{\mathsf{ao}}} = \frac{s}{a_2 s^2 + a_1 s + a_0} \\ \frac{V_A}{P_{\mathsf{ao}}} = \frac{1}{a_2 s^2 + a_1 s + a_0} \\ \frac{Q}{P_{\mathsf{ao}}} = \frac{1}{R_c} \left(1 - \frac{P_{\mathsf{aw}}}{P_{\mathsf{ao}}} \right) \\ \frac{V}{P_{\mathsf{ao}}} = \frac{1}{R_c} \frac{1}{s} \left(1 - \frac{P_{\mathsf{aw}}}{P_{\mathsf{ao}}} \right) \end{cases}$$

Nota

- Le tf sono di grado 2 (2 poli e \leq 2 zeri) e si può verificare che i poli sono gli stessi (zeri di $a_2s^2+a_1s+a_0$, entrambi stabili dal criterio di Cartesio \Longrightarrow no instabilità da risonanze)
- ullet Poli uguali \Longrightarrow le proprietà di stabilità (a $P_{
 m ao}=0$) sono le stesse per Q,Q_A,V,V_A

Modello della meccanica respiratoria Zeri delle tf

- ullet Inoltre lo zero all'origine per Q,Q_A rende i flussi d'aria sensibili a ripidi cambiamenti nella pressione $P_{
 m ao}$
- Infine lo zero in $-\frac{C_LC_s+C_LC_w+C_sC_w}{C_LC_sC_wR_p}$ di Q,V può soltanto cambiare la banda passante e il guadagno a bassa frequenza

Risposte nel tempo (P_{ao} sinusoidale

Diagramma di Bode teorico (P_{ao} sinusoidale)

Diagrammi di Bode estratto dalla simulazione (P_{ao} sinusoidale)

Osservazioni per i risultati con P_{ao} sinusoidale

Nota

- La simulazione nel tempo rispetta quasi perfettamente i dati reali
- Il diagramma di Bode si discosta di molto dal comportamento previsto in quanto
 - $ightharpoonup P_{
 m ao}$ sinusoidale \implies l'unica componente "affidabile" nella trasformata di Fourier di $P_{
 m ao}, Q, Q_A, V, V_A$ è la pulsazione di $P_{
 m ao}$
 - ightharpoonup nonostante le differenze l'andamento a bassa frequenza, così come la sovrapposizione (e discostamento) tra Q,Q_a e V,V_A sulla banda studiata sono fedeli al modello reale

Risposte nel tempo (P_{ao} ad onda quadra

Diagramma di Bode teorico (P_{ao} ad onda quadra)

Diagrammi di Bode estratto dalla simulazione (P_{ao} ad onda quadra)

Osservazioni per i risultati con P_{ao} ad onda quadra)

Nota

- La simulazione nel tempo rispetta quasi perfettamente i dati reali
- Il diagramma di Bode è più fedele rispetto a P_{ao} sinusoidale (il supporto spettrale comprende infinite frequenze intervallate a multipli interi)
- ullet Anche se non riportato nelle slide, si vede che l'introduzione di rumore nella P_{ao} migliora ancora più l'accuratezza del diagramma di Bode

Per discutere l'effetto di variazioni parametriche dovute a patologie respiratorie possiamo collegarci all'effetto che questi hanno sulle singole tf

Variazioni parametriche dovute all'asma

Asma

Malattia respiratoria ostrusiva in cui la variazione di volume nelle vie aeree è ridotta rispetto al caso fisiologico, a parità di flusso d'aria

La diagnosi di malattie ostrusive tramite spirometria prevede anche la misura di

- FEV₁ volume d'aria espulsa con forza in 1 secondo, dopo una ispirazione profonda
- FVC volume d'aria espulsa con forza, tipicamente in almeno 6 secondi e dopo una ispirazione profonda

Effetti misurabili con FEV $_1$ su scale temporali più brevi rispetto a FVC, + nell'asma la riduzione in FEV $_1$ è più grande di quella in FVC \implies incremento di R_p, R_c

Effetto dell'aumento nella resistività

L'incremento di R_p, R_c

- ullet porta lo zero di Q,V verso frequenze più basse \Longrightarrow la banda passante di Q (passa-alto) aumenta
- ullet sposta i poli della tf a ciclo chiuso verso l'origine \Longrightarrow guadagno di Q_A,V_A più basso e diminuzione della banda passante

Diagrammi di Bode con $\delta R_p = 0, \delta R_c = 0$

Diagrammi di Bode con $\delta R_p = 4R_p, \delta R_c = 10R_c$

Variazioni parametriche dovute a fibrosi polmonare

Fibrosi polmonare

Malattia polmonare cronica restrittiva con cicatrizzazione della parete polmonare

A differenza dell'asma, nella fibrosi polmonare FEV_1 e FVC sono ridotti proporzionalmente rispetto al caso fisiologico, e la diagnosi si svolge con tomografie o broncoscopie (visive e non correlate a misure della pressione o del flusso d'aria ai polmoni o alle vie aeree principali)

Nota

I meccanismi della respirazione dipendono da

 $R_c R_p C_s, R_c + R_p + R_c C_s C_{L\parallel w}, C_{L\parallel w}, -\frac{C_L C_s + C_L C_w + C_s C_w}{C_L C_s C_w R_p}$ ma non dalle singole resistenze o compliances \implies diverse quadruple $(R_p, R_c, C_s, C_L, C_w)$ possono corrispondere a stesse tf