

Lecture 12: Layout & Stick Diagrams

Inverter Cross-section

- Substrate must be tied to GND and n-well to V_{DD}
- Metal to lightly-doped semiconductor forms poor connection called Shottky Diode
- Use heavily doped well and substrate contacts / taps

Inverter Top View

- Transistors and wires are defined by masks
- Cross-section taken along dashed line

Standard Cell Layout

Standard Height

Bus connects to neighboring cells

Well connects to neighboring cells

Well connects to neighboring cells

Bus connects to neighboring cells

Example: Inverter

Gate Layout

- Layout can be very time consuming
 - Design gates to fit together nicely
 - Build a library of standard cells
- Standard cell design methodology
 - V_{DD} and GND should be about standard height
 - Adjacent gates should satisfy design rules
 - nMOS at bottom and pMOS at top
 - All gates include well and substrate contacts

Layout

- Chips are specified with set of masks
- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- \Box Feature size f = distance between source and drain
 - Set by minimum width of polysilicon
- ☐ Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- \square Express rules in terms of $\lambda = f/2$
 - E.g. λ = 0.3 μ m in 0.6 μ m process

Simplified Design Rules

Conservative rules to get you started

Source and Drain

- We will follow the convention: current always flows from top to bottom in an electronic circuit
 - For pMOS transistor:
 - Carrier: holes (+)
 - Top node: Source
 - Bottom node: Drain
 - For nMOS transistor:
 - Carrier: electrons (-)
 - Top node: Drain
 - Bottom node: Source

Example: Inverter

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

Example: NAND3

Example: NAND3

- ☐ Horizontal N-diffusion and p-diffusion strips
- Vertical polysilicon gates
- Metal1 V_{DD} rail at top
- Metal1 GND rail at bottom
- \Box 32 λ by 40 λ

Example: NAND3

Wiring Tracks

- ☐ A wiring track is the space required for a wire
 - -4λ width, 4λ spacing from neighbor = 8λ pitch
- Transistors also consume one wiring track

Well spacing

- \Box Wells must surround transistors by 6 λ
 - Implies 12 λ between opposite transistor flavors
 - Leaves room for one wire track

Stick Diagrams

- Stick diagrams help plan layout quickly
 - Need not be to scale
 - Draw with color pencils or dry-erase markers

Area Estimation

- ☐ Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

Parallel tracks along the width = 4 metals

Area Estimation

- ☐ Estimate area by counting wiring tracks
 - Multiply by 8 to express in λ

Parallel tracks along the height = 3 metals + 2 diff

$$Y = \overline{AB} (2 NAND)$$

$Y = \overline{AB} (2 NAND)$

Parallel tracks along the width = 3 metals width = $3x8\lambda = 24 \lambda$

$Y = \overline{AB} (2 NAND)$

Parallel tracks along the height = 3 metals + 2 diff height = $5x8\lambda = 40 \lambda$

$Y = \overline{ABC}$ (3 NAND)

$Y = \overline{ABC}$ (3 NAND)

Parallel tracks along the width = 4 metals

width =
$$4x8\lambda = 32 \lambda$$

$Y = \overline{ABC}$ (3 NAND)

Parallel tracks along the height = 3 metals + 2 diff height = $5x8\lambda = 40 \lambda$

$$Y = \overline{A + B} (2 NOR)$$

$$Y = \overline{A + B} (2 NOR)$$

Parallel tracks along the width = 3 metals width = $3x8\lambda = 24 \lambda$

$$Y = \overline{A + B} (2 NOR)$$

Parallel tracks along the height = 3 metals + 2 diff width = $5x8\lambda = 40 \lambda$

$$Y = \overline{A + B + C} (3 NOR)$$

$$Y = \overline{A + B + C} (3 NOR)$$

Parallel tracks along the width = 4 metals width = $4x8\lambda = 32 \lambda$

$$Y = \overline{A + B + C} (3 NOR)$$

Parallel tracks along the height = 3 metals + 2 diff height = $5x8\lambda = 40 \lambda$

$$Y = \overline{A + B + C + D} (4 NOR)$$

$$Y = \overline{A + B + C + D} (4 NOR)$$

Parallel tracks along the width = 5 metals width = $5x8\lambda = 40 \lambda$

$$Y = \overline{A + B + C + D} (4 NOR)$$

Parallel tracks along the height = 3 metals + 2 diff height = $5x8\lambda = 40 \lambda$

$$Y = \overline{AB + CD}$$

$$Y = \overline{AB + CD}$$

Parallel tracks along the width = 5 metals

width =
$$5x8\lambda = 40 \lambda$$

$$Y = \overline{AB + CD}$$

Parallel tracks along the height = 5 metals + 2 diff width = $7x8\lambda = 56 \lambda$

$$Y = \overline{(A + B + C)D} \ (O3AI)$$

Stick Diagram Optimization

1: Circuits & Layout

3-NAND

Stick Diagram Optimization

Alternate Representations A(B+C)

$$A(B+C)$$

Alternate Representations A(B+C)

$$A(B+C)$$

Alternate Representations

$$\overline{AB+C}$$

Alternate Representations AB + C

$$\overline{AB + C}$$

