ОСНОВЫ ПРИКЛАДНОЙ СТАТИСТИКИ для ДПО ЦНО НИУ ВШЭ

Содержание

1	Случайные события							
	1.1	Основные свойс	тва и тождества		. 3			
2	Случайные величины							
	2.1	Функции, описы	івающие случайные величины					
	2.2	Совместное расп	пределение		. 3			
3	Xap	_	лучайных величин		4			
	3.1	Математическое	е ожидание		. 4			
	3.2	Дисперсия	сперсия					
	3.3	Ковариация и к	орреляция		. 4			
4	Обз	ор основных ра	аспределений		5			
	4.1	Дискретные рас	пределения					
	4.2	Непрерывные ра	аспределения					
	4.3	Свойства некото	ррых распределения		. 5			
5	Ста	тистический вы	ывод		6			
	5.1	Выборочные ста	атистики		. 6			
6	Пар	аметрические	Д.И. и тестирование гипотез		7			
	6.1	Введение			. 7			
		6.1.1 Доверите	ельные интервалы					
		6.1.2 Тестиров	ание гипотез		. 7 . 9			
	6.2	Асимптотические Д.И. на основе ЦПТ						
			мат. ожидания выборок из любого распре					
		6.2.2 Д.И. для	теоретической доли распределения Берн	улли				
	6.3		очные Д.И. для нормальных выборок					
			мат. ожидания					
			дисперсии					
			разности мат. ожиданий					
		6.3.4 Д.И. для	отношения дисперсий		. 11			
		6.3.5 Д.И. для	разности мат. ожиданий в зависимых вы	борка	x 12			
	6.4	Некоторые дополнительные тесты						
			ачимости корреляции					
		6.4.2 Тест о ра	венстве пропорций в зависимых выборка	х	. 12			

1 Случайные события

Определения

• Пространство элементарных исходов: Ω

• Элементарный исход: $\omega \in \Omega$

• Случайное событие: $A \subseteq \Omega$

1.1 Основные свойства и тождества

Вероятность противоположного события

$$\mathbb{P}\left[\neg A\right] = 1 - \mathbb{P}\left[A\right]$$

Вероятность объединения событий

$$\mathbb{P}\left[A \cup B\right] = \mathbb{P}\left[A\right] + \mathbb{P}\left[B\right] - \mathbb{P}\left[A \cap B\right]$$

Независимость событий Д

$$A \perp \!\!\!\perp B \iff \mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$$

Условная вероятность

$$\mathbb{P}[A \mid B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} \qquad \mathbb{P}[B] > 0$$

Формула полной вероятности

$$\mathbb{P}[B] = \sum_{i=1}^{n} \mathbb{P}[B|A_i] \mathbb{P}[A_i] \qquad \Omega = \bigsqcup_{i=1}^{n} A_i$$

Теорема Байеса

$$\mathbb{P}\left[A \,|\, B\right] = \frac{\mathbb{P}\left[B \,|\, A\right] \mathbb{P}\left[A\right]}{\mathbb{P}\left[B\right]}$$

2 Случайные величины

Случайная величина (random variable, RV) – функция, значения которой численно выражают исходы ω случайного эксперимента.

$$X:\Omega\to\mathbb{R}$$

Например, для исход $\omega=$ «родилась девочка» соответствует значению случайной величины X=1, а исход $\omega=$ «родился мальчик» соответствует X=0. Случайная величина, которая принимает только 2 возможных значения и описывает только 2 возможных исхода, называется случайной величиной из распределения Бернулли.

2.1 Функции, описывающие случайные величины

Функция вероятности (probability mass function, PMF) для дискретных случайных величин

$$\mathbb{P}\left[X=x\right]$$

Функция плотности (probability density function, PDF) для непрерывных случайных величин

$$f_X(x)$$
 such that: $\mathbb{P}\left[a \leq X \leq b\right] = \int_a^b f_X(x) \, dx$

Функция распределения (cumulative distribution function, CDF) для любых случайных величин

$$F_X(x) = \mathbb{P}\left[X \le x\right]$$

Свойства

- 1. Не убывает: $x_1 < x_2 \implies F(x_1) \le F(x_2)$
- 2. Принимает значения от 0 до 1
- 3. f(x) = F'(x)
- 4. $\mathbb{P}(a \le X \le b) = \int_a^b f(x)dx = F(b) F(a)$

2.2 Совместное распределение

Несколько случайных величин описываются совместным распределением

- PMF: $\mathbb{P}\left[X=x,Y=y\right]$ (иногда используются таблицы)
- PDF: $f_{X,Y}(x,y)$ (функция от двух аргументов)
- CDF: $F_{X,Y}(x,y) = \mathbb{P}[X \le x, Y \le y]$

Независимость

- ullet для любых случайных величин: $F_{X,Y}(x,y) = F_X(x) F_Y(y)$
- для непрерывных величин: $f_{X,Y}(x,y) = f_X(x) f_Y(y)$

3

3 Характеристики случайных величин

3.1 Математическое ожидание

Определение

$$\mathbb{E}\left[X\right] = \mu_X = \begin{cases} \sum_x x \cdot \mathbb{P}\left[x\right] & \text{X дискретная} \\ \int_{-\infty}^{+\infty} x \cdot f_X(x) \, dx & \text{X непрерывная} \end{cases}$$

Свойства

- $\mathbb{E}[aX] = a\mathbb{E}[X]$
- $\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\mathbb{E}\left[\varphi(Y)\right] \neq \varphi(\mathbb{E}\left[X\right])$ (Неравенство Йенсена)
- $\mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right] \cdot \mathbb{E}\left[Y\right]$ (если $X \perp \!\!\! \perp Y$ независимы)

•
$$\mathbb{E}\left[XY\right] = \begin{cases} \sum_{x,y} x \cdot y \cdot \mathbb{P}\left[X = x, Y = y\right] & \text{X} \text{ дискретная} \\ \int x \cdot y \cdot f_{X,Y}(x,y) \, dx \, dy & \text{X} \text{ непрерывная} \end{cases}$$

Медиана

$$Median(X): \mathbb{P}(X < Median(X)) = \mathbb{P}(X > Median(X)) = 0.5$$

Мода

$$\operatorname{Mode}(X) = \left\{ egin{array}{ll} \operatorname{argmax} \ \mathbb{P}\left[x
ight] & \operatorname{X} \ \operatorname{дискретная} \\ \operatorname{argmax} \ f(x) & \operatorname{X} \ \operatorname{непрерывная} \end{array} \right.$$

Квантиль уровня γ

quantile(X) =
$$q$$
: $\mathbb{P}(X \leq q) = \gamma$

3.2 Дисперсия

Определение

$$\operatorname{\mathbb{V}ar}\left[X\right] = \sigma_X^2 = \mathbb{E}\left[\left(X - \mathbb{E}\left[X\right]\right)^2\right] = \mathbb{E}\left[X^2\right] - \mathbb{E}\left[X\right]^2$$

Стандартное (среднеквадратичное) отклонение

$$std[X] = \sigma_X = \sqrt{\mathbb{V}ar[X]}$$

Свойства

- \mathbb{V} ar $[X + a] = \mathbb{V}$ ar [X]
- $\operatorname{\mathbb{V}ar}\left[a\cdot X\right] = a^2 \cdot \operatorname{\mathbb{V}ar}\left[X\right]$
- ullet $\operatorname{\mathbb{V}ar}\left[X\pm Y
 ight]=\operatorname{\mathbb{V}ar}\left[X
 ight]+\operatorname{\mathbb{V}ar}\left[Y
 ight]$ (если $X\perp\!\!\!\perp Y$ независимы)
- \mathbb{V} ar $[X \pm Y] = \mathbb{V}$ ar $[X] + \mathbb{V}$ ar $[Y] \pm 2 \cdot \operatorname{Cov}[X, Y]$
- $\operatorname{Var}\left[aX + bY\right] = a^2 \operatorname{Var}\left[X\right] + b^2 \operatorname{Var}\left[Y\right] + 2ab \cdot \operatorname{Cov}\left[X, Y\right]$

3.3 Ковариация и корреляция

Определение

$$\operatorname{Cov}\left[X,Y\right] = \mathbb{E}\left[(X - \mathbb{E}\left[X\right])(Y - \mathbb{E}\left[Y\right])\right] = \mathbb{E}\left[XY\right] - \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

Свойства

- $\operatorname{Cov}\left[X,a\right]=0$
- Cov[X, X] = Var[X]
- $\operatorname{Cov}\left[X,Y\right] = \operatorname{Cov}\left[Y,X\right]$
- Cov[aX, bY] = abCov[X, Y]
- $\operatorname{Cov}\left[X+a,Y+b\right]=\operatorname{Cov}\left[X,Y\right]$

Корреляция

$$\rho\left[X,Y\right] = \frac{\operatorname{Cov}\left[X,Y\right]}{\sqrt{\operatorname{Var}\left[X\right]\operatorname{Var}\left[Y\right]}}$$

Независимость

$$X \perp\!\!\!\perp Y \implies \rho\left[X,Y\right] = 0 \iff \operatorname{Cov}\left[X,Y\right] = 0 \iff \mathbb{E}\left[XY\right] = \mathbb{E}\left[X\right]\mathbb{E}\left[Y\right]$$

Исключение: если X и Y имеют совместное нормальное распределение

$$\operatorname{Cov}\left[X,Y\right]=0 \implies X \perp\!\!\!\perp Y$$

Обзор основных распределений

Дискретные распределения

	Notation	$\mathbb{P}\left[X=x\right]$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\mathrm{ar}\left[X\right]$
Бернулли	$\operatorname{Bern}\left(p\right)$	$p^x \left(1 - p\right)^{1 - x}$	p	p(1 - p)
Биномиальное	Bin(n,p)	$\frac{n!}{x!(n-x)!}$	np	np(1-p)
Пуассон	$\mathrm{Poiss}\left(\lambda\right)$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ

Непрерывные распределения

	Notation	$F_X(x)$	$f_X(x)$	$\mathbb{E}\left[X\right]$	$\mathbb{V}\mathrm{ar}\left[X\right]$
Равномерное	$\mathrm{U}\left(a,b ight)$	$\begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a < x < b \\ 1 & x > b \end{cases}$	$\frac{I(a < x < b)}{b - a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Нормальное	$\mathcal{N}\left(\mu,\sigma^2\right)$	$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$	$\phi(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	μ	σ^2
Экспоненциальное	$\operatorname{Exp}\left(eta ight)$	$1 - e^{-x/\beta}$	$\frac{1}{\beta}e^{-x/\beta}$	β	eta^2

Свойства некоторых распределения

Взаимосвязь между распределениями

•
$$X_i \sim \operatorname{Bern}(p) \implies \sum_{i=1}^n X_i \sim \operatorname{Bin}(n, p)$$

- Bin $(n,p) \xrightarrow[n \to \infty]{}$ Poiss (np) (n велико, p мало)
 Bin $(n,p) \xrightarrow[n \to \infty]{} \mathcal{N}(np,np(1-p))$ (n велико, p(n велико, p далеко от 0 и 1)
- Poiss $(\lambda) \xrightarrow[\lambda \to \infty]{} \mathcal{N}(\lambda, \lambda^2)$ $(\lambda$ велико)

Свойства нормального распределения

•
$$X \sim \mathcal{N}\left(\mu, \sigma^2\right) \implies Z = \left(\frac{X-\mu}{\sigma}\right) \sim \mathcal{N}\left(0, 1\right)$$

•
$$X \sim \mathcal{N}(\mu, \sigma^2) \wedge Z = aX + b \implies Z \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$$

•
$$\mathbb{P}\left[a < X \leq b\right] = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$
, где Φ – CDF $\mathcal{N}\left(0,1\right)$

- $\Phi(-x) = 1 \Phi(x)$
- Нижний квантиль $\mathcal{N}\left(0,1\right)$: $z_{\alpha}=\Phi^{-1}(\alpha)$
- Верхний квантиль $\mathcal{N}(0,1)$: $z_{1-\alpha} = \Phi^{-1}(1-\alpha)$
- Симметрия $\mathcal{N}(0,1)$: $|z_{\alpha}| = z_{1-\alpha}$

5 Статистический вывод

Рассмотрим выборку (sample) из некоторого распределения $X_1, \cdots, X_n \stackrel{iid}{\sim} F$

ullet iid - identically independently distributed (независимы и одинаково распределены)

Эмпирическая CDF

$$\widehat{F}_n(x) = \frac{\sum_{i=1}^n I(X_i \le x)}{n} \approx \mathbb{P}\left[X < x\right]$$
$$I(X_i \le x) = \begin{cases} 1 & X_i \le x \\ 0 & X_i > x \end{cases}$$

Эмпирическая PDF (гистограмма)

$$\hat{f}_i(x) = \frac{\sum_{i=1}^n I\{x_{i-1} \le x \le x_i\}}{n \cdot (x_{i-1} - x_i)} \approx \mathbb{P}(X \in (x_{i-1}; x_i])$$

5.1 Выборочные статистики

- Любая функция, посчитанная по выборке, $g(X_1, \cdots, X_n) = g(X_n)$ называется статистикой
- Любая статистика $g(X_n)$ является случайной величиной до тех пор, пока речь не идёт о реализации выборки (то есть о конкретном датасете)
- Если речь идет о реализации выборки, то иногда используются маленькие латинские буквы вместо заглавных
- Часто используется крышечка, чтобы обозначить, что речь идет о выборочным статистиках

Выборочное среднее

$$\widehat{\mu} = \bar{X}$$

(Смещенная) выборочная дисперсия

$$\hat{s}^2 = \widehat{\text{Var}}_{\text{biased}}[X_n] = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \bar{X}^2 - (\bar{X})^2$$

Несмещенная выборочная дисперсия

$$\widehat{\sigma}^2 = \widehat{\text{Var}}[X_n] = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

Выборочная ковариация

$$\widehat{\text{Cov}}[X_n, Y_n] = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y}_n) = \frac{n-1}{n} \cdot (\overline{XY} - \bar{X} \cdot \bar{Y})$$

Выборочная корреляция Пирсона

$$\widehat{\rho}_P = \frac{\widehat{\text{Cov}}[X_n, Y_n]}{\sqrt{\widehat{\text{Var}}[X_n]} \sqrt{\widehat{\text{Var}}[Y_n]}} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y}_n)}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \bar{Y}_n)^2}} \frac{\overline{XY} - \bar{X} \cdot \bar{Y}}{\widehat{\sigma}_X \cdot \widehat{\sigma}_Y}$$

Выборочная корреляция Спирмена (корреляция Пирсона между рангами)

$$\hat{\rho}_S(X,Y) = \hat{\rho}_P(R_X, R_Y)$$

Параметрические Д.И. и тестирование гипо- 6.1.2 Тестирование гипотез тез

Этот раздел посвящен параметрическим доверительным интервалам (Д.И.) и тестированию параметрических гипотез. Это означает, что мы будем строить Д.И. и тестировать гипотезы для параметров распределения элементов выборки, а также тестировать гипотезы о равенстве этих параметров некоторым числам.

6.1 Введение

Доверительные интервалы

Рассмотрим выборку $X_1 \dots, X_n \stackrel{iid}{\sim} F_X$ из некоторого распределения (необязательно нормального) с мат. ожиданием μ и дисперсией σ^2 , тогда, пользуясь $\Pi\Pi$ Т, получим следующий критерий (тестовую статистику) Z_n на основе статистики \bar{X} , которая будет иметь стандартное нормальное распределение

$$Z_n = \frac{\bar{X} - \mu}{\sqrt{\frac{\hat{\sigma}^2}{n}}} \underset{n \to \infty}{\overset{d}{\sim}} N(0, 1)$$

Для этой тестовой статистики мы можем записать

$$\mathbb{P}\left[-z_{1-\frac{\alpha}{2}} < Z_n < z_{1-\frac{\alpha}{2}}\right] = 1 - \alpha$$

И получить асимптотический доверительный интервал для μ

$$\mathbb{P}\left[\bar{X} - z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{\sigma}^2}{n}} < \mu < \bar{X} + z_{1-\frac{\alpha}{2}}\sqrt{\frac{\hat{\sigma}^2}{n}}\right] = 1 - \alpha$$

Или более компактно

$$\mu \in \left\{ \bar{X} \pm Z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{\sigma}^2}{n}} \right\}$$

Примечание: мы можем заменить σ^2 на $\hat{\sigma}^2$, т.к. $\hat{\sigma}^2 \xrightarrow{d} \sigma^2$

Исходя из подобной процедуры строятся все доверительные интервалы

- 1. Рассматривается некоторая статистика, связанная с параметром распределения, например, с мат. ожиданием, дисперсией, разностью мат. ожиданий, отношением дисперсий и т. д.
- 2. Подбирается переход к некоторому известному распределению
- 3. Строится доверительный интервал на основе квантилей этого распределения

На подобной логике основана процедура тестирования гипотез. Допустим нас интересует гипотеза о том, равно ли мат. ожидание некоторому числу μ_0 .

 $H_0: \mu = \mu_0$ основная гипотеза

 $H_1: \mu \neq \mu_0$ альтернативная гипотеза

Для тестирования гипотезы рассмотрим рассмотрим статистику \bar{X} , поскольку $\mathbb{E}\left[\bar{X}\right] = \mu$. Попробуем найти некоторый критерий (тестовую статистику) на основе статистики \bar{X} . Таким критерием снова окажется Z_n , однако теперь мы предположим, что $\mu = \mu_0$

$$Z_{n} = \frac{\bar{X} - \mu}{\sqrt{\frac{\hat{\sigma}^{2}}{n}}} \stackrel{H_{0}}{=} \frac{\bar{X} - \mu_{0}}{\sqrt{\frac{\hat{\sigma}^{2}}{n}}} \stackrel{H_{0}}{\sim} N(0, 1)$$

Если наша гипотеза противоречит данным, то окажется, что тестовая статистика Z_n принимает какие-то экстремальные, нетипичные ей значения. В качестве таких значений выберем значения, которые будут лежать ниже квантиля $Z_{\frac{\alpha}{2}}=-Z_{1-\frac{\alpha}{2}}$ и выше квантиля $Z_{1-\frac{\alpha}{2}}.$ Будем считать эту **область кри**тической (rejection region) $\mathcal{X} = \{|Z_{\rm obs}| > Z_{\rm crit}\}$, вероятность попасть в неё будет равна α .

Вероятность α называют **уровнем значимости** (significance level), она отражает вероятность отвергнуть H_0 , когда она верна. Также её называют вероятностью ошибки 1-го рода (Type I Error)

Если **наблюдаемая (observed) статистика**, посчитанная по данным, окажется больше некоторого критического (critical) уровня $Z_{\text{crit}} = Z_{1-\frac{\alpha}{2}}$ (то есть попадёт в критическую область), то мы сделаем вывод, что гипотеза $H_0: \mu = \mu_0$ противоречит данным и мы отвергаем основную гипотезу на уровне значимости α. В противном случае у нас нет оснований отвергать основную гипотезу.

$$|Z_{\mathrm{obs}}| = \left| \frac{\bar{x} - \mu_0}{\sqrt{\frac{\hat{\sigma}^2}{n}}} \right| > Z_{\mathrm{crit}} = Z_{1 - \frac{\alpha}{2}},$$

Рассмотренная гипотеза $H_0: \mu = \mu_0$ называется **двусторонней**, и для неё критическая область: $\mathcal{X} = \{|Z_{\text{obs}}| > Z_{\text{crit}}\}.$

Существуют также односторонние гипотезы:

Левосторонняя

- $H_0: \mu \le \mu_0$ VS $H_1: \mu > \mu_0$

Правосторонняя

- $H_0: \mu \ge \mu_0$ VS $H_1: \mu < \mu_0$
- $\mathcal{X} = \{Z_{\text{obs}} \leq Z_{\text{crit}}\}, \ Z_{\text{crit}} = Z_{\alpha}$ $\mathcal{X} = \{Z_{\text{obs}} \geq Z_{\text{crit}}\}, \ Z_{\text{crit}} = Z_{1-\alpha}$

Принятие решений

	Приняли H_0	Отвергли H_0
H_0 верна		Ошибка 1-го рода (α)
H_0 не верна	Ошибка 1-го рода (β)	$\sqrt{}$

Вероятность ошибки 1-го рода фиксируется для любого теста, а вероятность ошибки 2-го рода минимизируется по остаточному принципу. Иногда тесты сравнивают исходя из **мощности теста** – величины равной $1-\beta$.

P-value отражает максимальную вероятность допустить ошибку, когда отвергается нулевая гипотеза

p-value =
$$\mathbb{P}\left[|Z_n| \geq Z_{\text{obs}} \mid H_0 \text{ верна}\right]$$

P-value удобно использовать, чтобы абстрагироваться от $Z_{\rm obs}$ и $Z_{\rm crit}$. Можно пользоваться следующим правилом при принятии решения:

p-value	evidence
< 0.01	very strong evidence against H_0
0.01 - 0.05	strong evidence against H_0
0.05 - 0.1	weak evidence against H_0
> 0.1	little or no evidence against H_0

Тестирование гипотез естественным образом связано с доверительными интервалами. Если тестируемое значение μ не попало в доверительный интервал для μ , то автоматически можно сделать вывод о том, что гипотеза $H_0: \mu = \mu_0$ отвергается. Поэтому далее наряду с формулами доверительных интервалов также будут приводиться тестовые статистики для тестирования гипотез. Для расчета тестовой статистики вместо истинного параметра μ нужно подставить тестируемый параметр $\mu_0.$

6.2 Асимптотические Д.И. на основе ЦПТ

Предпосылки

- ullet Выборка достаточно велика $n \to \infty$
- Наблюдения независимы
- Нет выбросов

Основа

- Центральная предельная теорема (ЦПТ)
- Свойства нормального распределения

6.2.1 Д.И. для мат. ожидания выборок из любого распределения

Напомним, что для одной выборки мы получили тестовую статистику

$$Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\hat{\sigma}^2}{n}}} \underset{n \to \infty}{\overset{d}{\sim}} N(0, 1)$$

и доверительный интервал

$$\mu \in \left\{ \bar{X} \pm Z_{1 - \frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{\sigma}^2}{n}} \right\}$$

По аналогии рассмотрим две выборки $X_1\dots,X_{n_x}\stackrel{iid}{\sim} F_X$ и

 $Y_1,\dots,Y_{n_y}\stackrel{iid}{\sim} F_Y$ из некоторых **независимых** друг от друга распределений (необязательно нормальных) с мат. ожиданиями μ_x,μ_y и дисперсиями $\sigma_x^2,\sigma_y^2.$ Тогда, пользуясь ЦПТ, получим следующую тестовую статистику Z на основе \bar{X} и \bar{Y} для разности мат. ожиданий $\mu_x-\mu_y$

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\hat{\sigma}_x^2}{n_x} + \frac{\hat{\sigma}_y^2}{n_y}}} \underset{n \to \infty}{\overset{d}{\sim}} N(0, 1)$$

и доверительный интервал

$$\mu_x - \mu_y \in \left\{ \bar{X} - \bar{Y} \pm Z_{crit} \cdot \sqrt{\frac{\hat{\sigma}_x^2}{n_x} + \frac{\hat{\sigma}_y^2}{n_y}} \right\}$$

Примечания

- 1. При тестировании гипозы $H_0: \mu_x = \mu_y$ в тестовой статистике Z разность $\mu_x \mu_y$ должна быть заменена на 0
- 2. Подобные гипотезы, где сравниваются показатели двух выборок, также называют гипотезами об **однородности** (homogeneity)

6.2.2 Д.И. для теоретической доли распределения Бернулли

Рассмотрим выборку $X_1 \dots, X_n \stackrel{iid}{\sim} \text{Bern}(p)$ из распределения Бернулли с мат. ожиданием p и дисперсией p(1-p), тогда, пользуясь ЦПТ, получим следующий критерий (тестовую статистику) Z_n на основе статистики $\hat{p} = \bar{X}$, которая будет иметь стандартное нормальное распределение

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \overset{d}{\underset{n \to \infty}{\sim}} N(0, 1)$$

и доверительный интервал

$$p \in \left\{ \hat{p} \pm Z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \right\}$$

Рассмотрим две выборки $X_1\dots,X_{n_x}\stackrel{iid}{\sim} \mathrm{Ber}(p_x)$ и $Y_1,\dots,Y_{n_y}\stackrel{iid}{\sim} \mathrm{Ber}(p_y)$ из независимых друг от друга распределений Бернулли с мат. ожиданиями p_x,p_y и дисперсиями $p_x(1-p_x),p_y(1-p_y).$ Тогда, пользуясь ЦПТ, получим следующую тестовую статистику Z на основе \bar{X} и \bar{Y} для разности долей p_x-p_y

$$Z = \frac{\hat{p}_x - \hat{p}_y - (p_x - p_y)}{\sqrt{\frac{p_x(1 - p_x)}{n_x} + \frac{p_y(1 - p_y)}{n_y}}} \overset{d}{\sim} N(0, 1)$$

и доверительный интервал

$$p_x - p_y \in \left\{ \hat{p}_x - \hat{p}_y \pm Z_{crit} \cdot \sqrt{\frac{\hat{p}_x(1 - \hat{p}_x)}{n_x} + \frac{\hat{p}_y(1 - \hat{p}_y)}{n_y}} \right\}$$

Примечание: при тестировании гипотезы $H_0: p_x = p_y$ в тестовой статистике p_x, p_y должны быть заменены на некоторую общую долю, например, на $p = (m_x + m_y)/(n_x + n_y)$, где в знаменатели сумма единиц по обеим выборкам.

6.3 Точные Д.И. для нормальных выборок

Предпосылки

- Наблюдения независимы
- Требования на размер выборки нет
- Выборка из нормального распределения

Основа

- свойства нормального распределения
- распределения хи-квадрат, Стьюдента, Фишера
- теорема Фишера

6.3.1 Д.И. для мат. ожидания

Рассмотрим выборку $X_1 \dots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$ из нормального распределения с мат. ожиданием μ и дисперсией σ^2 , тогда по свойствам нормального распределения получим следующий критерий (тестовую статистику) Z_n на основе статистики \bar{X} , которая будет иметь стандартное нормальное распределение, если дисперсия σ^2 известна

$$Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1)$$

и доверительный интервал

$$\mu \in \left\{ \bar{X} \pm Z_{1-\frac{\alpha}{2}} \cdot \sqrt{\frac{\sigma^2}{n}} \right\}$$

Если дисперсия σ^2 не известна, то необходимо использовать её оценку, и тогда мы получим распределение Стьюдента

$$t = \frac{\bar{X} - \mu}{\sqrt{\frac{\hat{\sigma}^2}{n}}} \sim t (n - 1)$$

и доверительный интервал

$$\mu \in \left\{ \bar{X} \pm t_{1-\frac{\alpha}{2}}(n-1) \cdot \sqrt{\frac{\hat{\sigma}^2}{n}} \right\}$$

6.3.2 Д.И. для дисперсии

Построим доверительный интервал для σ^2 на основе \hat{s}^2 и $\hat{\sigma}^2$, предположим, что **мат. ожидание известно**, тогда следующая тестовая статистика имеет распределение **хи-квадрат по определению**

$$\chi = n \frac{\hat{s}^2}{\sigma^2} \sim \chi^2(n)$$

Доверительный интервал имеет вид

$$\frac{n \cdot \hat{s}^2}{\chi_{1-\frac{\alpha}{2}}^2(n)} \le \sigma^2 \le \frac{n \cdot \hat{s}^2}{\chi_{\frac{\alpha}{2}}^2(n)}$$

Если предположить, что **мат. ожидание не известно**, тогда **по теореме Фишера** получим снова распределение хи-квадрат

$$\chi = (n-1)\frac{\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n)$$

Доверительный интервал имеет вид

$$\frac{(n-1) \cdot \hat{\sigma}^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)} \le \sigma^2 \le \frac{(n-1) \cdot \hat{\sigma}^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}$$

Примечание: квантили не равны по модулю, т.к. распределение хи-квадрат положительно и не симметрично

6.3.3 Д.И. для разности мат. ожиданий

Рассмотрим две выборки $X_1 \dots, X_{n_x} \stackrel{iid}{\sim} \mathcal{N}(\mu_x, \sigma_x)$ и $Y_1, \dots, Y_{n_y} \stackrel{iid}{\sim} \mathcal{N}(\mu_y, \sigma_y)$ из независимых друг от друга нормальных распределений с мат. ожиданиями μ_x, μ_y и дисперсиями σ_x^2, σ_y^2 . Тогда, пользуясь свойствами нормального распределения, получим следующую тестовую статистику Z на основе \bar{X} и \bar{Y} для разности мат. ожиданий $\mu_x - \mu_y$, если дисперсии известны

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}}} \sim N(0, 1)$$

и доверительный интервал

$$\mu_x - \mu_y \in \left\{ \bar{X} - \bar{Y} \pm Z_{crit} \cdot \sqrt{\frac{\sigma_x^2}{n_x} + \frac{\sigma_y^2}{n_y}} \right\}$$

Предположим, что дисперсии не известны, но равны, тогда

$$t = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\hat{\sigma}_o^2}{n_x} + \frac{\hat{\sigma}_o^2}{n_y}}} \sim t(n_x + n_y - 2)$$

где $\hat{\sigma}_{o}^{2}$ - объединенная (pooled) дисперсия:

$$\hat{\sigma}_o^2 = \frac{(n_x - 1)\,\hat{\sigma}_x^2 + (n_y - 1)\,\hat{\sigma}_y^2}{n_x + n_y - 2}$$

и доверительный интервал имеет вид

$$\mu_x - \mu_y \in \left\{ \bar{X} - \bar{Y} \pm t_{crit} \cdot \sqrt{\frac{\hat{\sigma}_o^2}{n_x} + \frac{\hat{\sigma}_o^2}{n_y}} \right\}$$

Предположим, что дисперсии не известны и не равны, тогда получим примерное распределение Стьюдента (распределение Уэлча),

$$t = \frac{\bar{X} - \bar{Y} - (\mu_x - \mu_y)}{\sqrt{\frac{\hat{\sigma}_x^2}{n_x} + \frac{\hat{\sigma}_y^2}{n_y}}} \sim t(d)$$

где *d* – примерное число степеней свободы:

$$d = \frac{\left(\frac{\hat{\sigma}_{x}^{2}}{n_{x}} + \frac{\hat{\sigma}_{y}^{2}}{n_{y}}\right)^{2}}{\frac{\hat{\sigma}_{x}^{4}}{n_{x}(n_{x} - 1)} + \frac{\hat{\sigma}_{y}^{4}}{n_{y}^{2}(n_{y} - 1)}}$$

Доверительный интервал имеет вид

$$\mu_x - \mu_y \in \left\{ \bar{X} - \bar{Y} \pm t_{crit} \cdot \sqrt{\frac{\hat{\sigma}_x^2}{n_x} + \frac{\hat{\sigma}_y^2}{n_y}} \right\}$$

Примечание: Приближение работает хорошо, если $n_x = n_y$ или $n_x < n_y$ и $\sigma_x < \sigma_y$

6.3.4 Д.И. для отношения дисперсий

Построим доверительный интервал для отношения дисперсий, которое имеет распределение Фишера

$$\frac{\hat{\sigma}_x^2/\sigma_x^2}{\hat{\sigma}_y^2/\sigma_y^2} \sim F(n_x - 1, n_y - 1)$$

Доверительный интервал имеет вид

$$F_{\frac{\alpha}{2}}(n_y - 1, n_x - 1) \cdot \frac{\hat{\sigma}_x^2}{\hat{\sigma}_y^2} \le \frac{\sigma_x^2}{\sigma_y^2} \le \frac{\hat{\sigma}_x^2}{\hat{\sigma}_y^2} \cdot F_{1 - \frac{\alpha}{2}}(n_y - 1, n_x - 1)$$

Примечания

- 1. квантили не равны по модулю, т.к. распределение Фишера положительно и не симметрично
- 2. При тестировании гипотезы $H_0: \sigma_x^2 = \sigma_y^2$ статистика упрощается до отношения выборочных дисперсий

6.3.5 Д.И. для разности мат. ожиданий в зависимых выборках

Рассмотрим две выборки $X_1 \dots, X_n \overset{iid}{\sim} \mathcal{N}(\mu_x, \sigma_x)$ и $Y_1, \dots, Y_{n_y} \overset{iid}{\sim} \mathcal{N}(\mu_y, \sigma_y)$ из зависимых друг от друга нормальнур распределений с мат. ожиданиями μ_x, μ_y и дисперсиями σ_x^2, σ_y^2 . Например, мы делаем измерения на одних и тех же объектах в 2 момента времени.

Рассмотрим прирост на каждом объекте

$$d_i = X_i - Y_i$$

с мат. ожиданием

$$\mathbb{E}\left[d\right] = \Delta$$

Дисперсию оценим по выборке

$$\hat{\sigma}_{\Delta}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$$

Тогда снова получим распределение Стьюдента

$$t = \frac{\bar{d} - \Delta}{\sqrt{\frac{\hat{\sigma}_{\Delta}^2}{n}}} \sim t (n - 1)$$

и доверительный интервал

$$\Delta \in \left\{ \bar{d} \pm t_{\text{crit}} \cdot \sqrt{\frac{\hat{\sigma}_{\Delta}^2}{n}} \right\}$$

6.4 Некоторые дополнительные тесты

6.4.1 Тест о значимости корреляции

Для выборочного коэффициента корреляции Пирсона можно протестировать гипотезу о равенству нулю этого коэффициента (то есть об отсутствии линейной взаимосвязи двух переменных)

 $H_0: \hat{
ho}_{x,y} = 0$ нет линейной взаимосвязи

 $H_1: \hat{\rho}_{x,y} \neq 0$ есть

Для этого снова понадобится t-статистика

$$t = \hat{\rho}_{x,y} \sqrt{\frac{n-2}{1-\hat{\rho}_{x,y}^2}} \sim t(n-2)$$

6.4.2 Тест о равенстве пропорций в зависимых выборках

Делаем измерение двух бинарных признаков на одних и тех объектах и тестируем гипотезу о наличии взаимосвязи между двумя признаками. Составим таблицу сопряженности с частотами.

$$\begin{array}{c|cccc} & X_1 = 1 & X_1 = 0 \\ \hline X_2 = 1 & n_{11} & n_{21} \\ X_2 = 0 & n_{12} & n_{22} \\ \end{array}$$

Гипотеза об однородности может быть сформулирована как

$$H_0$$
: $n_{1+}=n_{+1}$, где $n_{1+}=n_{11}+n_{12}$, $n_{+1}=n_{11}+n_{21}$ или H_0 : $n_{12}=n_{21}$

Тестовая статистика имеет биномиальное распределение

$$n_{12} \sim \text{Bin}(n^*, 0.5), \quad \text{где } n^* = n_{12} + n_{21}$$

которое сходится к стандартному нормальному или хи-квадрат распределению

$$Z = \frac{n_{12} - 0.5n^*}{\sqrt{0.5(1 - 0.5)n^*}} = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21}}} \sim N\left(0, \ 1\right) \text{ или } Z^2 = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}} \sim \chi_1^2$$

Для стандартного нормального распределения также существует коррекция

$$Z = \frac{n_{12} - n_{21}}{\sqrt{n_{12} + n_{21} - \frac{(n_{12} - n_{21})^2}{n}}}$$