单元6.4 无向图的连通度

第二编图论 第七章图

7.4 无向图的连通度

内容提要

- 点割集、点连通度
- 边割集、边连通度

如何定量比较连通性?

• 如何定义一个图比另一个图的连通性更好?

点连通度、边连通度

- 为了破坏连通性,至少需要删除多少个顶点?
- 为了破坏连通性,至少需要删除多少条边?
- "破坏"连通性:
 - p(G-V') > p(G)
 - -p(G-E')>p(G)
 - 连通分支数增加

点割集

- 点割集: G=<V,E>, Ø≠V'⊂V, (1) p(G-V')>p(G);
 (2) ∀ V"⊂V', p(G-V")=p(G) (极小性条件)
- 例 G₁: {f},{a,e,c},{g,k,j}, {b,e,f,k,h}不是 G₂: {f}不是,{a,e,c},{g,k,j},{b,e,f,k,h}

割点

- v是割点 ⇔ {v}是割集
- 例: G₁中f是割点, G₂中无割点

边割集

- 边割集: G=<V,E>, ∅≠E'⊂E, (1) p(G-E')>p(G);
 - (2) ∀E"⊂E', p(G-E")=p(G) (极小性条件)
- 例: G₁: {(a,f),(e,f),(d,f)}, {(f,g),(f,k),(j,k),(j,i)}, {(c,d)}不是, {(a,f),(e,f),(d,f),(f,g),(f,k),(f,j)}不是 G₂: {(b,a),(b,e),(b,c)}

引理1

- 设E'是边割集,则p(G-E')=p(G)+1.
- 证: 如果p(G-E')>p(G)+1,则E'不是边割集,因为不满足定义中的极小性. #
- 注: 点割集无此性质

割边(桥)

- (u,v)是割边 ⇔ {(u,v)}是边割集
- 例: G₁中(f,g)是桥, G₂中无桥

扇形割集

- I_G(v)不一定是边割集(不一定极小)
- I_G(v)是边割集⇔v不是割点

• 扇形割集: 边割集E'⊆I_G(v)

扇形割集举例

- {(a,g),(a,b)},{(g,a),(g,b),(g,c)},
- {(c,d)}, {(d,e),(d,f)}
- {(a,b),(g,b),(g,c)}不是

点连通度

G是无向连通非完全图,
 κ(G) = min{ | V' | | V'是G的点割集 }

规定: κ(K_n) = n-1
 G非连通: κ(G)=0
 (平凡图N₁连通, 但κ(N₁) = κ(K₁) = 0)

点连通度举例

• $\kappa(G)=1$, $\kappa(H)=2$, $\kappa(F)=3$, $\kappa(K_5)=4$

边连通度

G是无向连通图,
 λ(G) = min{ | E'| | E'是G的边割集 }

• 规定: G非连通: λ(G)=0

边连通度举例

• $\lambda(G)=1, \lambda(H)=2, \lambda(F)=3, \lambda(K_5)=4$

引理2

・ 设E'是非完全图G的最小边割集, G-E'的两个(引理1)连通分支是 G_1 , G_2 , 则存在 $u \in V(G_1)$, $v \in V(G_2)$, 使得 $(u,v) \notin E(G)$.

引理2证明

- 证: (反证) 否则
 λ(G) = |E'| = |V(G₁)|×|V(G₂)|
 - ≥ |V(G₁)|+|V(G₂)|-1=n-1, 与G非完全图相矛盾! #
- $a \ge 1 \land b \ge 1 \implies (a-1)(b-1) \ge 0$ $\Leftrightarrow ab-a-b+1 \ge 0 \iff ab \ge a+b-1.$

k-(边)连通图

• k-连通图: κ(G)≥k

K-边连通图: λ(G) ≥ k

· 例: 彼得森图: κ=3, λ=3

它是1-连通图, 2-连通图, 3-连通图,

但不是4-连通图

它是1-边连通图, 2-边连通图, 3-边连通图,

但不是4-边连通图

定理

• 定理: 对3-正则图G,

$$\kappa(G) = \lambda(G)$$
.

• 证明: (作业).#

· 彼得森图: κ=3, λ=3

Whitney定理

定理7.10(Whitney不等式): 任意G,
 κ(G) ≤ λ(G) ≤ δ(G).

· 推论: k-连通图一定是k-边连通图. #

目标: κ≤λ≤δ.

· 证明: 不妨设G是 3阶以上 连通 非完全 简单图. (否则可直接验证结论成立).

- 第一部分: λ≤δ
- 证明: 设 $d_G(v) = \delta$. $I_G(v) = \{ (u,v) \mid (u,v) \in E(G) \}$ 则必有扇形边割集 $S \subseteq I_G(v)$, 所以, $\lambda \leq |S| \leq |I_G(v)| = \delta$.

- 第二部分:κ≤λ
- ・ 证明: 设边割集E'满足|E'|= λ . 根据引理1和引理2, 设G-E'的两个连通分支是 G_1 和 G_2 , 设 $u \in V(G_1), v \in V(G_2), 使得(u,v) \notin E(G)$.

• 如下构造V": 对任何e∈E', 选择e的异于u,v的一个端点放入V". 则 $u,v \in G-V$ " $\subseteq G-E$ '= $G_1 \cup G_2$, 所以 V"中含有点割集V'. 故 $\kappa \leq |V'| \leq |V''| \leq |E'| = \lambda$.#

x-y割

如果 x,y是G中不相邻顶点,
 S ⊆ V(G) - {x,y},
 在G-S中x与y不连通,
 则 S称为G中的x-y割

独立路径

• 两条除起点和终点外无其他公共顶点的路径

Menger定理

定理(Menger,1927): 在图G中,
 最小的x-y割包含的顶点数
 最大的x-y独立路径的条数. #

· 最小-最大(min-max)定理

2-连通的充分必要条件

- · 定理7.15: 3阶以上无向简单连通图G是2-连通图
- ⇔G中任两顶点共圈
- ⇔ G中任两顶点之间有2条以上独立路径. #

北京大学

边不交路径

• 两条无公共边(但可能有公共顶点)的路径

2-边连通的充分必要条件

- 定理7.16:
 - 3阶以上无向图G是2-边连通图
- ⇔G中任2顶点共简单回路
- ⇔ G中任2顶点间有2条以上边不交路径. #

k-(边)连通的充分必要条件

- 定理: 3阶以上无向图G是k-连通图
- ⇔ G中任2顶点间有k条以上独立路径.#
- 定理: 3阶以上无向图G是k-边连通图
- ⇔ G中任2顶点间有k条以上边不交路径.#

割点的充分必要条件

• 定理7.17:

无向连通图G中顶点v是割点

⇔可把V(G)-{v}划分成V₁与V₂, 使得从V₁中任意顶点u到V₂中任意顶点w的路径都要经过v.

割点的充分必要条件

- 推论: 无向连通图G中顶点v是割点
- ⇔存在与v不同的顶点u和w,使得从顶点u到w的路径都要经过v. #

桥的充分必要条件

- · 定理7.18-19: 无向连通图G中边e是桥
- ⇔ G的任何圈都不经过e
- \leftrightarrow 可把V(G)划分成V₁与V₂, 使得从V₁中 任意顶点u到V₂中任意顶点v的路径都要经过e. #

块(block)

• 块: 极大无割点连通子图

块的充分必要条件

定理7.20: G是3阶以上无向简单连通图. 则G是块 ⇔ G中任意2项点共圈 ⇔ G中任意1项点与任意1边 共圈 ⇔ G中任意2项点与任意1边,有路径连接这2项点并经过这1边 ⇔ G中任意3项点,有路径连接其中2项点并经过第3点⇔ G中任意3项点,有路径连接其中2项点并不经过第3点. #

几个概念的比较

- 块: 极大无割点连通子图
- 2-连通图: κ≥2, 即连通无割点图
- 2-边连通图: λ≥2, 即连通无桥图
- 2-连通 ⊂ 2-边连通 (可能 κ<λ)
- · 2-连通 ⊂ 块 (K₂是块,不是2-连通)
- 块≠2-边连通(K₂是块,不是2-边连通;8字形图是2-边连通,不是块)

定理7.14

- n阶简单连通图的κ,λ,δ之间关系有且仅有3种可能:
 - (1) $\kappa = \lambda = \delta = n-1$
 - (2) $1 \le 2\delta n + 2 \le \kappa \le \lambda = \delta \le n 2$
 - (3) $0 \le \kappa \le \lambda \le \delta < \lfloor n/2 \rfloor$
- 注: $1 \le 2\delta n + 2 \Leftrightarrow (n-1)/2 \le \delta$ $\Leftrightarrow \lfloor n/2 \rfloor \le \delta$

定理7.14证明(有)(1)

- 目标: (有): (1) κ = λ = δ = n-1.
- 构造: 令 G = K_n即可.
- 注意: 非连通图 \Rightarrow κ= λ =0 但是 K_1 连通, κ(K_1)= λ (K_1)= δ (K_1)=0

定理7.14证明(有)(2)

- 目标: 1≤2δ-n+2≤κ≤λ=δ≤n-2
- 构造: 令r = [(n-κ)/2], s = [(n-κ-1)/2],

r+s = n-κ-1. 令 $G'=K_{\kappa}+(K_{r}\cup K_{s})$. 给G'增加顶点 ν , 使得 ν 与 K_{κ} 中所有顶点相邻, 与 K_{s} 中δ-κ个顶点相邻, 就得到G.

定理7.14证明(有)(2)

• 分析: δ(G)=δ:

 K_{κ} : d(u) = κ -1+r+s+1 = n-1 $\geq \delta$,

 K_r : $d(u) = r-1+\kappa \ge \delta$,

 K_s : $d(u) = s-1+\kappa \ge \delta$,

 $v: d(v) = \delta.$

定理7.14证明(有)(2)

• 分析:

κ(G)=κ: 删除K_κ.

 $\lambda(G)=\lambda=\delta$: 删除 $I_G(v)$.

定理7.14证明(有)(3)

- 目标: 0 ≤ κ ≤ λ ≤ δ < ⌊n/2⌋
- 构造:令G'=K_{δ+1}∪K_{n-δ-1}, 设

$$V(K_{\delta+1}) = \{u_1, u_2, ..., u_{\delta+1}\},$$

$$V(K_{n-\delta-1}) = \{v_1, v_2, ..., v_{n-\delta-1}\},$$

给G'增加边(u_i,ν_i), i=1,2,...,κ,

以及(u_1,v_i), i=2,3,...,λ-κ+1, 就得到G.

定理7.14证明(有)(3)

• 分析: δ(G)=δ:

 $K_{\delta+1}$: $d(u) \ge \delta$, $K_{n-\delta-1}$: $d(u) \ge n-\delta-2 \ge \delta$.

κ(G)=κ: 删除{ u_i | i=1,2,...,κ },

λ(G)=λ: 删除

 $\{(u_i,v_i) | i=1,2,...,\kappa\} \cup \{(u_1,v_i) | i=2,3,...,\lambda-\kappa+1\}$

定理7.14(仅有)(1)

• 如果 G是完全图,则 G= K_n , 所以 $\kappa = \lambda = \delta = n-1$.

定理7.14(仅有)(2)(3)

• (2) $1 \le 2\delta - n + 2 \le \kappa \le \lambda = \delta \le n - 2$ $\delta \ge \lfloor n/2 \rfloor$ 时, 定理7.12, 7.13.

(3) 0 ≤ κ ≤ λ ≤ δ < ⌊n/2⌋
 δ < ⌊n/2⌋ 时, Whitney定理. #

定理7.11证明

• 证: 设 E_1 是G的最小边割, $|E_1|=\lambda(G)$. 设 G_1 0, E_2 0, E_3 0, E_4 0, E_4 0, E_5 0,

定理7.11证明

• 给 G_1 加新边使它成为 K_{n1} ,给 G_2 加新边使它成为 K_{n2} , 给 G_2 加新边使它成为 K_{n2} , 令 $G^* = K_{n1} \cup E_1 \cup K_{n2}$.

定理7.11证明

•
$$\lambda(G) < \delta(G) \le \delta(G^*) \le n_1 - 1 + \lambda(G) / n_1$$

 $\Rightarrow \lambda(G) < n_1 - 1 + \lambda(G) / n_1 \Leftrightarrow (n_1 - 1) (n_1 - \lambda(G)) > 0$
 $\Rightarrow \lambda(G) < n_1 \Rightarrow \lambda(G) \le n_1 - 1$.
 $\lambda(G) = n_1 - 1 \Rightarrow \lambda(G) = n_1 - 1 + \lambda(G) / n_1$
 $\Rightarrow \lambda(G) < \delta(G) \le \delta(G^*) \le \lambda(G)$ (矛盾!)
 $\lambda(G) < n_1 - 1 \Rightarrow \lambda(G) \le n_1 - 2 \Rightarrow \lambda(G) + 2 \le n_1$. #

推论

- (1) δ(G)≤δ(G*)≤n₁-1≤_n/2」-1
 (2) G*中有不相邻顶点u,v,使得 d_{G*}(u)+d_{G*}(v)≤n-2
 - (3) $d(G) \ge d(G^*) \ge 3$
- 证明: (2) $u \in G_1, v \in G_2$,在G中不相邻,则在G*中仍然不相邻.
 - (3) d(G)=max d(u,v) λ (G)≤n₁-2 #

定理7.12

- · G是6阶以上连通简单无向图.
- (1) $\delta(G) \ge \lfloor n/2 \rfloor \Rightarrow \lambda(G) = \delta(G)$
- (2) 任意一对不相邻顶点u,v都有 d(u)+d(v)≥n-1,

$$\Rightarrow \lambda(G) = \delta(G)$$
.

(3)
$$d(G) \le 2 \Rightarrow \lambda(G) = \delta(G)$$
. #

定理7.13

- 定理7.13 G是n阶简单连通无向非完全图,则
 2δ(G)-n+2 ≤ κ(G).
- 证: 设V₁是G的点割集, $|V_1|=\kappa(G)$, 设G-V₁的连通分支是G₁,G₂,...,G_s(s≥2), 设 $|V(G_1)|=n_1$, $|V(G_2)|+...+|V(G_s)|=n_2$, 则n₁+ n₂+κ(G)=n.

$$\delta$$
(G)≤n₁-1+κ(G)=n₁+κ(G)-1,

$$\Rightarrow$$
 2δ(G) \leq n₁+κ(G)+n₂+κ(G)-2
= n+κ(G)-2

$$\Rightarrow \kappa(G) \ge 2\delta(G)-n+2$$
. #

小结

- ・ 点割集, 边割集, 点(边)连通度κ(λ);
- κ , λ , δ 之间关系, Whitney定理等
- k-(边)连通图, Menger定理等
- 2-(边)连通,割点,桥,块的充要条件

