

UNIVERSITY OF NEW ENGLAND

New England			IN	AME			
New England			S	STUDENT NUMBER:			
UNIT NAME:	C	CHEM110					
PAPER TITLE:	C	Chemistry I					
PAPER NUMBE	R: F	First and Only					
DATE:	(1	for examinations t	to enter	TIME: (f	or exan	ninations to enter)	
TIME ALLOWE	D : T	Two (2) hours and f	ifteen (15) minutes			
NUMBER OF PA	GES II	N PAPER:	FOUR	TEEN (14)			
NUMBER OF QU	JESTIC	ONS ON PAPER:		FIFTEEN (15)			
NUMBER OF QU	NUMBER OF QUESTIONS TO BE ANSWERED: FIFTEEN (15)						
STATIONERY PER	0	6 LEAF A4 BOOKS	1	ROUGH WORK BOOK	0	GENERAL PURPOSE ANSWER SHEET	
CANDIDATE:	0	12 LEAF A4 BOOKS	0	GRAPH PAPER SHEETS	1	SEE OTHER 'AIDS REQUIRED' BELOW	

NIANTE.

OTHER AIDS REQUIRED: THE PERIODIC TABLE IS ON PAGE 14

POCKET CALCULATORS PERMITTED: YES (SILENT TYPE)

TEXTBOOKS OR NOTES PERMITTED: ONE (A4) PAGE OF STUDENT'S OWN NOTES (MAY BE WRITTEN, TYPED OR PHOTOCOPIED ON BOTH SIDES)

INSTRUCTIONS FOR CANDIDATES:

- Candidates MAY NOT start writing until instructed to do so by the supervisor
- Please pay attention to the announcements and read all instructions carefully before commencing the paper
- Candidates MUST write their name and student number on the top of this page
- All answers **MUST** be written on the examination paper in the space provided for each question
- The rough work book may be used for rough work, but ANY WORK IN THE ROUGH WORK BOOK WILL NOT BE ASSESSED
- The Periodic Table is supplied on page 14
- The maximum marks allocated for each question are shown to the right of the question number. Use these as a guide to how much time you should spend on each question
- This examination question paper **MUST BE HANDED IN** with worked scripts. Failure to do so may result in the cancellation of all marks for this examination

REMEMBER TO WRITE YOUR NAME AND STUDENT NUMBER AT THE TOP OF THIS PAGE

THE UNIVERSITY CONSIDERS IMPROPER CONDUCT IN EXAMINATIONS TO BE A SERIOUS OFFENCE. PENALTIES FOR CHEATING ARE EXCLUSION FROM THE UNIVERSITY FOR ONE YEAR AND/OR CANCELLATION OF ANY CREDIT RECEIVED IN THE EXAMINATION FOR THAT UNIT.

QU	[8 marks]
	the following reaction, identify the oxidation number of each element indicated in the ce provided.
	$2Fe^{2+}(aq) + IO_4^{-}(aq) + H_2O(aq) \rightarrow 2Fe^{3+}(aq) + IO_3^{-}(aq) + 2OH^{-}(aq)$
(a)	For the reaction shown, which reactant is oxidised?
(b)	For the reaction shown, which reactant is reduced?
(c)	If 63.7 mL of 0.100 M sodium periodate (NaIO ₄) is required to react with all the iron (II) chloride present in a sample, how many moles of iron (II) chloride were originally present?
(d)	How much sodium periodate, in grams, must be dissolved in a $1.000\ L$ volumetric flask to make a $0.100\ M$ solution?

QUESTION 2.	[10 marks]
Given the following data:	
	$\Delta_f H^\circ$ naphthalene (s) = +78.53 kJ mol ⁻¹
	$\Delta_{\rm f} H^{\circ}$ water (g) = -241.82 kJ mol ⁻¹
	$\Delta_f H^\circ$ carbon dioxide (g) = -393.5 kJ mol ⁻¹ Heat capacity of water = 4.184 J g ⁻¹ K ⁻¹
/	
(a) Write a balanced equation	n for the complete combustion of solid naphthalene, $C_{10}H_8$.
(b) How much energy is generated	erated if 50 g of naphthalene is burnt at constant pressure?
	by burning 50 g of naphthalene was used to heat 10 kg of will the final temperature of the water be?

QUI	ESTION 3.				[4 marks]
(a)		nol ⁻¹ . What is	sodium chloride is the change in entropessure?		
QUI	ESTION 4.				[8 marks]
			to provide emerge		ircraft is the
dec	composition of sodi		IO_3 , according to the		
			\rightarrow 2NaI(s) + 3O ₂		
(a)			below, calculate the	enthalpy of reaction	n and entropy
	of reaction for thi	s process.			
			$\Delta_{\rm f} { m H}^{\circ}$ (kJ mol ⁻¹)	S° (J K ⁻¹ mol ⁻¹)	
		NaIO ₃ (s)	-440.1	134.2]
		NaI(s)	-287.8	98.5	
		$O_2(g)$	0	205.2	
	_		_	_	
(b)	From your values reaction will become		ΔS_{rxn}° , calculate the voured.	temperature at which	ch this

QUE	ESTION 5				1	[5 marks]
		=		_	m is expected to be the b	pasis of the
nex	t generation o	of photolithograp	-			
		_		ber, $N_{\rm A} = 6.02$ it, $h = 6.626 \times$	$22 \times 10^{23} \text{ mol}^{-1}$	
				$n = 6.626 \times 10^{8}$ = 2.998×10^{8}		
(a)	What is the f	requency of this				
(a)	W hat is the i	requeitey of this	5 13.3 1111	Tadiation (iii	5):	
(b)	What is the	energy of one pl	noton of t	his radiation?		
(a)	If the a being dies	~ ~~~~~ ~ f ~~ ~	1004404 :-	a tomtolyma is (5.5×10^{-19} J, can it be ejo	
(c)					eted electron be?	ected using
	ESTION 6					[Amanka]
_	ESTION 6	1 1 1	1 % 1 1			[4 marks]
(a)	ion.	below draw an	orbital d	iagram for the	e electron configuration	of the Cu
	1 <i>s</i> 2 <i>s</i>	2 <i>p</i>	3 <i>s</i>	3p	3 <i>d</i>	4s
(b)	Write the con	ndensed electron	n configu	ration for this	ion.	
1						

QUESTION 7. [8 marks]

(a)	Draw Lewis dot structures for both reactants and products illustrating the formation of
	chemical bonds between (i) a lithium ion and a hydride ion; (ii) a carbon atom and
	four fluorine atoms; and (iii) a nitrogen atom and two oxygen atoms.

lithium ion	hydride ion	carbon atom	fluorine atom
	nyariae ion		Traorine atom
Lithium hydrid	de	Carbon tetraflu	oride
(iii)			
nitrogen atom		oxygen atom	
Nitrogen dioxi	de		
_			
in why you hav	ve drawn the numb	er of structures you	have for nitroger
=			

QUESTION 8.	[8 marks]
-------------	-----------

(a) Fill in the missing quantities in the table. Order the electronegativities of the elements shown from 1 to 5.

Element		Fluorine			
Symbol	¹³⁴ Ba			¹⁸ O	
#Protons			7		30
#Neutrons		10			34
Mass Number			14		
Electronegativity (1 = highest, 5 = lowest)					

Write balanced equations for the reactions of (b) barium hydroxide and nitric acid, (c) zinc with fluorine, and (d) barium with water. Show the states of matter for all reactants and products.

(b)	
(a)	
(c)	
(d)	

QUESTION 9. [7 marks]

(a) Using VSEPR theory and the Lewis structures given, determine the electronic and molecular structure of the following ions.

(i)

$$[: \overset{\circ}{\circ} - \overset{\circ}{\circ} :]_{\overline{\circ}}$$

(ii)

$$[:\overset{\circ}{\mathsf{O}}-\overset{\mathsf{N}}{\mathsf{N}}=\overset{\circ}{\mathsf{O}}:]_{\scriptscriptstyle{\overline{\mathsf{I}}}}$$

(b) Predict the bond angle in each case.

(i)

(ii)

QUESTION 10. [7 marks]

A laboratory-scale method for reducing a metal oxide is to heat it with H_2 . The pure metal and H_2O are products. What volume of H_2 at 101.99 kPa and 225°C is needed to form 35.5 g of Cu from copper (II) oxide? Gas constant: R = 8.314 kPa L/K mol = 0.08206 L atm/K mol.

$$CuO(s) + H_2(g) \rightarrow Cu(s) + H_2O(g)$$

QUE	ESTION 11.	[3 mar	·ks]
(a)	Which of the following has the higher vapour pressure, NH ₃ or PH ₃ ? answer.	Justify	your
(b)	Name the phase change in each of these events:		
	(i) A diamond film forms on a surface from gaseous carbon atoms in a	vacuum	l.
	(ii) Mothballs in a bureau drawer disappear over time.		
	(iii) Molten iron from a blast furnace is cast into ingots.		
(i)			
(ii)			
(iii)			

QUESTION 12.	[4 marks]
An element crystallizes in a face-centered cubic lattice and has a The edge of the unit cell is 4.52×10^{-8} cm.	density of 1.45 g/cm ³ .
(a) How many atoms are there in each unit cell?	
(b) What is the volume and mass of a unit cell?	
(c) Calculate an approximate atomic mass for the element.	
L	

QUE	ESTION 13. [7 marks]
(a)	A car radiator coolant solution contains 1.00 kg of antifreeze (ethylene glycol, $C_2H_6O_2$) and 4450 g of water. What is the freezing point of this solution? ($K_f=1.86~^{\circ}C~m^{-1}$)
(b)	The partial pressure of carbon dioxide gas inside a bottle of cola is 4 atm at 25°C. What is the solubility of CO_2 ? The Henry's Law constant for CO_2 dissolved in water is 3.3×10^{-2} mol /L atm at 25°C.

QUESTION 14. [9 marks]

The following reaction between ozone (O₃) and atomic oxygen (O), which occurs in the Stratosphere, produces molecular oxygen (O₂).

$$O(g) + O_3(g) \longrightarrow 2 O_2(g)$$

It has been found that the reaction is first order in ozone and atomic oxygen.

(a) What is the rate law for this reaction?

(b) Given that the rate constant is $k = 4.15 \times 10^{-5} \text{ M}^{-1} \text{ s}^{-1}$. What would the rate of ozone destruction be if $[O_3] = 1.2 \times 10^{-8} \text{ M}$ and $[O] = 1.7 \times 10^{-14} \text{ M}$?

(c) The rate law for the decomposition

$$2 \text{ NH}_3(g) \longrightarrow 10(g) + 3 \text{ H}_2(g)$$

is given by, Rate = k [NK-1] Calculate the rate constant, k, for the reaction given the following data.

/,	[NH ₃] (M)	Time (s)		
	0.67	0		
	0.26	19		

QUESTION 15.	[8 marks]						
At 2300 K the equilibrium constant for the formation of NO(g) is 1.7×10^{-3} .							
$N_2(g) + O_2(g) \longrightarrow 2 NO(g)$							
(a) If the concentrations of N_2 and O_2 are both 0.25 M, and that of NO is 0 system at equilibrium?	0.0042 M. Is the						
(b) If the system is not at equilibrium, in which direction does the reaction	proceed?						
(c) What is the value for the equilibrium constant, <i>K</i> , for the reaction values?	when written as						
$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g)$ NO(g)							

The Periodic Table is on page 14

	greater of trivial	87 Fr Francium (223)	55 Cs Cesium 132.905 4519	37 Rb Rubidium 85.4678	19 X Potassium 39.0983	11 Na Sodium 22.989 769 28	3 Lithium 6.941	Group 1	1 H Hydrogen 1.007 94
	greater than 112 will be used to of trivial names by the IUPAC.	88 Radium (226) tematic name	56 Ba Barium 137.327	38 Sr Strontium 87.62	20 Ca Calcium 40.078	12 Mg Magnesium 24.3050	Beryllium 9.012 182	Group 2	
	be used unti e IUPAC.	Actinium (227)	57 La Lanthanum 138.905 47	39 Y Yttrium 88.905 85	21 Sc Scandium 44.955 912	Group 3			
	greater than 112 will be used until the approval of trivial names by the IUPAC.	87 88 89 104 Fr Ra Ac Rf ncium Radium Actinium Rutherfordium 223) (226) (227) (261)	72 Hf Hafnium 178.49	40 Zr Zirconium 91.224	22 Ti Titanium 47.867	Group 4			
90 Th Thorium 232.038 06	58 Ce Cerium 140.116	105 Dubnium (262)	73 Ta Tantalum 180.947 88	41 Nb Niobium 92.906 38	23 V Vanadium 50.9415	Group 5			Peri
91 Pa Protactinium 231.035 88	59 Pr Praseodymium 140.907 65	Seaborgium (266)	74 W Tungsten 183.84	42 Mo Molybdenum 95.94	24 Cr Chromium 51.9961	Group 6			Periodic Table of the Elements
92 Uranium 238.028 91	Neodymium 144.242	107 Bh Bohrium (264)	75 Re Rhenium 186.207	43 Tc Technetium (98)	Mn Mn Manganese 54.938 045	Group 7			able c
93 Np Neptunium (237)	Pm Promethium (145)	108 HS Hassium (277)	76 OS Osmium 190.23	Ruthenium 101.07	26 Fe Iron 55.845	Group 8			of the
Pu Pu Plutonium (244)	62 Sm Samarium 150.36	109 Mt Meitnerium (268)	77 r Iridium 192.217	45 Rh Rhodium 102.905 50	27 Co Cobalt 58.933 195	Group 9			Eleme
95 Am Americium (243)	63 Eu Europium 151.964	Ds Darmstadtium (271)	78 Pt Platinum 195.084	46 Pd Palladium 106.42	28 Ni Nickel 58.6934	Group 10			ents
96 Cm Curium (247)	64 Gd Gadolinium 157.25	DS Rg Cn Ununquadium Ununhexium (292) The discoveries of elements with atomic numbers 112, 114, and 116 have been reported but not fully confirmed	79 Au Gold 196.966 569	47 Ag Silver 107.8682	29 Cu Copper 63.546	Group 11			
97 BK Berkelium (247)	65 Tb Terbium 158.925 35	Copernicum (285)	Hg Mercury 200.59	48 Cd Cadmium 112.411	30 Zn Zinc 65.409	Group 12			
98 Cf Californium (251)	Dysprosium	mbers 112, 1	81 T I Thallium 204.3833	49 In Indium 114.818	31 Ga Gallium 69.723	13 Al Aluminum 26.981 5386	5 Boron 10.811	Group 13	
99 ES Einsteinium (252)	67 Ho Holmium 164.930 32	114 Uuq* Ununquadium (289) 14, and 116 hav	82 Pb Lead 207.2	50 Sn Tin 118.710	32 Ge Germanium 72.64	Silicon 28.0855	6 C Carbon 12.0107	Group 14	
100 Fm Fermium (257)	68 Er Erbium 167.259	ve been repor	83 Bi Bismuth 208.980 40	Sb Antimony 121.760	33 As Arsenic 74.921 60	15 P Phosphorus 30.973 762	7 N Nitrogen 14.0067	Group 15	
101 Md Mendelevium (258)	69 Tm Thulium 168.934 21	116 Uuh* Ununhexium (292) ed but not fully	Polonium (209)	52 Te Tellurium 127.60	34 Se Selenium 78.96	16 S Sulfur 32.065	8 Oxygen 15.9994	Group 16	
102 No Nobelium (259)	70 Yb Ytterbium 173.04	confirmed.	85 At Astatine (210)	53 lodine 126.904 47	35 Br Bromine 79.904	17 Cl Chlorine 35.453	9 F Fluorine 18.998 4032	Group 17	
103 Lr Lawrencium (262)	71 Lu Lutetium 174.967		86 Rn Radon (222)	54 Xe Xenon 131.293	36 Xr Krypton 83.798	18 Ar Argon 39.948	10 Ne Neon 20.1797	He Helium 4.002 60	Group 18
				1.4					