Um Estudo Correlacional entre Processo de Desenvolvimento e Qualidade de Código em Repositórios Java

Seu Nome Completo Engenharia de Software - PUC Minas

18 de setembro de 2025

Sumário

1	Introdução				
2	Metodologia				
	2.1 Seleção dos Repositórios e Coleta de Métricas de Processo	4			
	2.2 Coleta de Métricas de Qualidade de Código				
	2.3 Tratamento e Análise dos Dados				
3	Resultados	5			
	3.1 Análise Descritiva Geral	5			
	3.2 RQ01: Relação entre Popularidade e Qualidade	6			
	3.3 RQ02: Relação entre Maturidade e Qualidade	6			
	3.4 RQ03: Relação entre Atividade e Qualidade	6			
	3.5 RQ04: Relação entre Tamanho e Qualidade	7			
4	Discussão	8			
	4.1 Análise das Hipóteses	8			
5	Conclusão	10			

1 Introdução

O desenvolvimento de software de código aberto (open-source) transformou a maneira como a tecnologia é criada, promovendo um ambiente colaborativo onde desenvolvedores de todo o mundo podem contribuir para um projeto comum. No entanto, essa natureza distribuída e muitas vezes assíncrona impõe desafios significativos à gestão da qualidade interna do código. Atributos essenciais como manutenibilidade, modularidade e coesão podem se deteriorar ao longo do tempo se não houver práticas de engenharia de software bem definidas, como revisões de código rigorosas e análise estática contínua.

Neste contexto, este estudo busca investigar empiricamente a possível correlação entre as características observáveis do processo de desenvolvimento de um projeto e a qualidade intrínseca de seu código-fonte. O objetivo principal é analisar se métricas de processo — como popularidade, idade, atividade e tamanho de um repositório — podem servir como indicadores para métricas de qualidade de produto, como acoplamento (CBO), profundidade de herança (DIT) e coesão (LCOM). Para isso, realizamos uma análise em larga escala sobre os 1.000 repositórios da linguagem Java mais populares na plataforma GitHub.

Para guiar esta investigação, o trabalho se propõe a responder às seguintes quatro questões de pesquisa (RQs):

- **RQ 01:** Qual a relação entre a popularidade dos repositórios e as suas características de qualidade?
- **RQ 02:** Qual a relação entre a maturidade dos repositórios e as suas características de qualidade?
- **RQ 03:** Qual a relação entre a atividade dos repositórios e as suas características de qualidade?
- RQ 04: Qual a relação entre o tamanho dos repositórios e as suas características de qualidade?

Com base na experiência prática e em percepções comuns da comunidade de desenvolvimento, formulamos as seguintes hipóteses iniciais para cada questão, que serão validadas ou refutadas por meio da análise de dados:

- Hipótese para RQ01: Acreditamos que a popularidade e a qualidade são diretamente proporcionais. Repositórios mais populares (com mais estrelas) tendem a atrair uma comunidade maior e mais qualificada, o que levaria a um maior escrutínio e a mais contribuições para a melhoria da qualidade do código.
- Hipótese para RQ02: Hipotetizamos que repositórios mais maduros apresentam melhor qualidade. Projetos com mais tempo de existência teriam passado por mais ciclos de refatoração e aperfeiçoamento, resultando em um código mais estável e bem estruturado em comparação com projetos mais novos.
- Hipótese para RQ03: Nossa suposição é que repositórios mais ativos possuem uma qualidade inferior. A alta frequência de releases e mudanças pode indicar um estado de evolução constante, com a introdução de hotfixes e novas funcionalidades que podem degradar temporariamente a qualidade. Repositórios menos ativos, por outro lado, seriam considerados mais consolidados e estáveis.

• Hipótese para RQ04: Por fim, acreditamos que quanto maior o repositório, menor será sua qualidade. O aumento da base de código tende a elevar a complexidade e o acúmulo de débito técnico, o que se refletiria negativamente nas métricas de qualidade.

2 Metodologia

Para responder às questões de pesquisa propostas, foi executado um processo metodológico em três etapas principais: (1) seleção dos repositórios e coleta de métricas de processo via API do GitHub; (2) extração de métricas de qualidade do código-fonte utilizando a ferramenta CK; e (3) tratamento e análise estatística dos dados coletados. Todo o processo foi automatizado por meio de scripts em Python.

2.1 Seleção dos Repositórios e Coleta de Métricas de Processo

O objeto de estudo deste trabalho foram os repositórios de código aberto da linguagem Java. A primeira etapa consistiu na seleção de uma amostra representativa de projetos relevantes da comunidade. Para isso, foi desenvolvido um script (conforme main.py) que utiliza a API GraphQL do GitHub para requisitar a lista dos 1.000 repositórios Java públicos com o maior número de estrelas (stars).

Para cada repositório da lista obtida, o mesmo script realizou uma segunda consulta à API para extrair as seguintes métricas de processo:

- Popularidade: O número total de estrelas (stargazerCount).
- Maturidade: A idade do repositório em anos, calculada a partir da sua data de criação (createdAt).
- Atividade: O número total de releases (releases.totalCount) publicadas no repositório.

Ao final desta etapa, os dados de processo foram salvos em um arquivo CSV (java_repo_metrics.csv) para uso posterior.

2.2 Coleta de Métricas de Qualidade de Código

Com a lista de repositórios definida, a etapa seguinte focou na extração de métricas de qualidade de produto. Um script de automação foi utilizado para clonar localmente o código-fonte de cada um dos 1.000 repositórios.

Em seguida, a ferramenta de análise estática de linha de comando **CK** foi executada sobre o código-fonte de cada projeto. O CK analisa o código Java e calcula um conjunto de métricas de software orientadas a objetos, gerando um arquivo de saída em formato .csv para cada repositório. As métricas de qualidade selecionadas para este estudo, conforme o escopo do laboratório, foram:

- CBO (Coupling Between Objects): Mede o nível de acoplamento de uma classe com outras.
- DIT (Depth of Inheritance Tree): Indica a profundidade de uma classe na árvore de herança.
- LCOM (Lack of Cohesion of Methods): Mede a falta de coesão dos métodos dentro de uma classe.
- LOC (Lines of Code): A contagem de linhas de código, utilizada como métrica de tamanho.

2.3 Tratamento e Análise dos Dados

A saída da ferramenta CK gera métricas para cada classe individualmente. Para possibilitar a comparação entre repositórios, foi necessário agregar esses dados. Primeiramente, um script (consolidate_results.py) consolidou todos os arquivos .csv individuais em um único conjunto de dados (consolidated_metrics.csv).

Na sequência, o script de análise (analyze_results.py) processou este conjunto de dados. Para cada repositório, foi calculada a mediana de cada métrica de qualidade (CBO, DIT, LCOM e LOC). A mediana foi escolhida como medida de tendência central por sua robustez estatística, pois ela não é significativamente afetada por valores extremos (outliers). Em um repositório, algumas poucas classes muito grandes ou complexas poderiam distorcer a média, enquanto a mediana oferece uma representação mais fiel da "classe típica"do projeto.

Finalmente, o conjunto de dados de processo foi mesclado com o conjunto de dados de qualidade (já agregado pela mediana), criando uma base de dados final onde cada linha representava um único repositório com suas respectivas métricas de processo e qualidade. A análise subsequente, apresentada na Seção 3, foi realizada sobre esta base de dados final, comparando subgrupos de repositórios para investigar as relações propostas nas questões de pesquisa.

3 Resultados

Nesta seção, apresentamos os dados coletados e as estatísticas sumarizadas para responder às questões de pesquisa. A análise se baseia na coleta de métricas de processo e de qualidade de 1.000 repositórios Java populares.

3.1 Análise Descritiva Geral

A Tabela 1 apresenta um resumo estatístico das principais métricas coletadas. Observase uma grande variação nos dados, especialmente em 'popularidade' e 'atividade', onde o desvio padrão é consideravelmente alto, sugerindo a presença de outliers e uma distribuição não normal dos dados. Por essa razão, a mediana é utilizada como principal medida de tendência central nas análises subsequentes.

Tabela 1: Estatísticas Descritivas das Métricas Coletadas.

Métrica	Média	Mediana	Desvio Padrão	Mínimo	Máximo
popularidade	9283.72	5720.50	10571.66	3414.00	116825.00
maturidade	9.64	9.75	3.05	0.17	16.68
atividade	38.82	10.00	85.82	0.00	1000.00
loc	19.22	17.00	13.18	2.00	209.00
cbo	3.55	3.00	1.71	0.00	30.00
dit	1.09	1.00	0.31	1.00	4.00
lcom	1.47	0.00	16.21	0.00	453.50

Figura 1: Distribuição percentual dos repositórios analisados por categoria de maturidade.

3.2 RQ01: Relação entre Popularidade e Qualidade

Para analisar a relação entre a popularidade e a qualidade, comparamos a mediana das métricas de qualidade entre os 25% repositórios mais populares e os 25% menos populares. Conforme a Tabela 2, não foram observadas diferenças significativas nos valores de CBO, DIT e LCOM entre os dois grupos.

Tabela 2: Comparação da Mediana das Métricas de Qualidade por Popularidade.

Métrica	Top 25% Mais Populares	Bottom 25% Menos Populares
cbo	3.00	3.00
dit	1.00	1.00
lcom	0.00	0.00
loc	17.00	16.00

3.3 RQ02: Relação entre Maturidade e Qualidade

A análise da maturidade (Tabela 3) comparou repositórios com idade acima e abaixo da mediana (9.75 anos). Semelhante à popularidade, os resultados mostram que não há diferença na mediana das métricas de qualidade (CBO, DIT, LCOM) entre os repositórios mais maduros e os mais jovens.

3.4 RQ03: Relação entre Atividade e Qualidade

A Tabela 4 compara os 25% repositórios mais ativos (mais releases) com os 25% menos ativos. Observa-se que os repositórios mais ativos apresentam uma mediana de CBO (4.00) ligeiramente superior à dos menos ativos (3.00), sugerindo um acoplamento um pouco maior. As demais métricas permaneceram idênticas.

Tabela 3: Comparação da Mediana das Métricas de Qualidade por Maturidade.

Métrica	${ m Maduros} \; ({ m Idade}>={ m Mediana})$	${\bf Jovens~(Idade < Mediana)}$
cbo	3.00	3.00
dit	1.00	1.00
lcom	0.00	0.00
loc	18.00	16.00

Figura 2: Box plot da distribuição do Acoplamento (CBO) por Categoria de Maturidade do Repositório...

Tabela 4: Comparação da Mediana das Métricas de Qualidade por Atividade.

Métrica	Top 25% Mais Ativos	Bottom 25% Menos Ativos
cbo	4.00	3.00
dit	1.00	1.00
lcom	0.00	0.00
loc	19.00	16.00

3.5 RQ04: Relação entre Tamanho e Qualidade

Finalmente, ao comparar repositórios maiores (LOC >= mediana) com os menores (Tabela 5), notamos que os projetos maiores apresentam valores de CBO e LCOM medianos superiores aos dos projetos menores. Isso indica que o aumento no tamanho do código está associado a um maior acoplamento e a uma menor coesão.

Tabela 5: Comparação da Mediana das Métricas de Qualidade por Tamanho (LOC).

Métrica	${ m Grandes} \; ({ m LOC}>={ m Mediana})$	${\bf Pequenos~(LOC < Mediana)}$
cbo	4.00	3.00
dit	1.00	1.00
lcom	1.00	0.00

Qualidade vs. Tamanho do Repositório

Figura 3: Comparação da mediana das métricas de Acoplamento (CBO) e Falta de Coesão (LCOM) entre repositórios Grandes e Pequenos.

4 Discussão

Nesta seção, interpretamos os resultados apresentados e os confrontamos com as hipóteses formuladas na introdução. A análise revela que algumas das percepções comuns sobre qualidade de software não se sustentaram em nossa amostra de dados.

4.1 Análise das Hipóteses

RQ01: Popularidade vs. Qualidade Nossa hipótese inicial era de que a popularidade seria diretamente proporcional à qualidade. Os dados, no entanto, refutaram essa hipótese. A comparação entre os repositórios mais e menos populares não mostrou qualquer diferença nas medianas das métricas de qualidade CBO, DIT e LCOM (Tabela 2). Isso sugere que a popularidade, medida por estrelas, não é um indicador confiável da qualidade interna do código. Uma possível explicação é que projetos muito populares podem atrair um grande volume de contribuições de diferentes níveis de habilidade, além de crescerem em complexidade, o que pode neutralizar os benefícios de um maior escrutínio da comunidade.

Relação entre Tamanho e Acoplamento

Figura 4: Gráfico de dispersão mostrando a relação entre as linhas de código (LOC) e o acoplamento (CBO) para uma amostra de 400 repositórios. Nota-se uma tendência de que o CBO aumenta em projetos com maior LOC.

RQ02: Maturidade vs. Qualidade A hipótese de que repositórios mais maduros teriam melhor qualidade também foi refutada. A análise comparativa (Tabela 3) indicou que a idade de um projeto não tem impacto aparente nos níveis de acoplamento, profundidade de herança ou coesão. Repositórios mais antigos e mais novos apresentaram medianas idênticas para as métricas de qualidade. Isso pode indicar que a idade, por si só, não garante a refatoração ou a melhoria contínua; sem uma gestão ativa do débito técnico, o código tende a manter ou degradar sua qualidade ao longo do tempo, independentemente de sua maturidade.

RQ03: Atividade vs. Qualidade A suposição era de que repositórios mais ativos teriam qualidade inferior. Os resultados confirmam parcialmente essa hipótese. Observamos que o grupo de repositórios mais ativos apresentou uma mediana de CBO (acoplamento) superior ao do grupo menos ativo (Tabela 4). Embora a diferença não seja drástica, ela sugere que a intensa atividade de desenvolvimento (muitos releases) pode levar a um maior acoplamento entre as classes, possivelmente devido à rápida introdução de novas funcionalidades sem o tempo adequado para refatoração.

RQ04: Tamanho vs. Qualidade Por fim, a hipótese de que repositórios maiores teriam menor qualidade foi fortemente confirmada pelos dados. A Tabela 5 mostra claramente que projetos com mais linhas de código (LOC) possuem medianas mais altas tanto para CBO (acoplamento) quanto para LCOM (falta de coesão). Este é o resultado mais evidente do estudo, alinhado com a teoria da engenharia de software de que a complexidade e o débito técnico tendem a escalar com o tamanho do sistema, tornando mais difícil manter o código coeso e fracamente acoplado.

5 Conclusão