Automne 2020

Série 4

Tous les exercices seront corriges. La correction sera postee sur le moodle apres 2 semaines.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs) l'exercice (\star) et a rendre votre solution (eventuellement a plusieurs) avant le dimanche de la semaine suivante celle ou la serie a ete postee. Il faudra transmettre votre solution sur moodle, sous forme de fichier pdf (eventuellement tape en LaTeX) en suivant le lien a cet effet dans la semaine de la serie.

Exercice 1. Soient A, B, C des anneaux et $\varphi : A \mapsto B$ et $\psi : B \mapsto C$ des morphismes d'anneaux.

- 1. Montrer que $\psi \circ \varphi : A \mapsto C$ est un morphisme d'anneaux.
- 2. Montrer que si φ est bijectif alors sa reciproque $\psi^{-1}: B \mapsto A$ est un morphisme d'anneaux.

Exercice 2. Soit (M, +, *) un A-module (de loi de multiplication externe notee *).

1. Montrer que pour tout $m \in M$

$$0_A.m = 0_M, (-1_A) * m = -m$$

(ou -m est l'oppose de m dans le groupe additif (M, +)).

Exercice 3. On considere le Z-module libre (muni de l'addition)

$$\mathbb{Z}^3 = \{(x, y, z), \ x, y, z \in \mathbb{Z}\}.$$

1. Montrer que l'ensemble

$$\{(x, y, z) \in \mathbb{Z}^3, \ x + 2y + 3z = 0\}$$

est un sous \mathbb{Z} -module non-nul de \mathbb{Z}^3 .

2. Montrer que l'ensemble

$$\{(x, y, z) \in \mathbb{Z}^3, \ x + 2y + 3z = 3x + 2y + z = 0\}$$

est un sous \mathbb{Z} -module non-nul de \mathbb{Z}^3 .

Exercice 4. (*) Soient $a, b, c, d \in \mathbb{Z}$ tels que $ad - bc = \pm 1$. On va montrer que la paire $\{(a, b), (c, d)\}$ engendre le \mathbb{Z} -module \mathbb{Z}^2 .

1. Pour tout $(m, n) \in \mathbb{Q}^2$, resoudre dans \mathbb{R}^2 le systeme d'equations lineaires (d'inconnue (x, y))

$$\begin{cases} ax + cy = m \\ bx + dy = n \end{cases}.$$

(on discutera separement les cas b = 0 et $b \neq 0$).

- 2. Montrer que si $(m,n) \in \mathbb{Z}^2$ alors en fait $(x,y) \in \mathbb{Z}^2$.
- 3. Montrer que tout element de \mathbb{Z}^2 peut s'exprimer comme une combinaison lineaire de (a,b) et (c,d) a coefficients dans \mathbb{Z} et en deduire que $\{(a,b),(c,d)\}$ engendre le \mathbb{Z} -module \mathbb{Z}^2 .
- 4. Montrer que en revanche, si $\Delta = ad bc \neq \pm 1$ alors le module engendre $\langle (a,b),(c,d)\rangle$ n'est pas egal a \mathbb{Z}^2 . On traitera seulement le cas $\Delta \neq 0$ et on montrera que si on avait $\langle (a,b),(c,d)\rangle = \mathbb{Z}^2$ alors Δ diviserait a,b,c et d et on en deduira une contradiction.

Exercice 5. Soit A un anneau et L un A-module, $X, Y \subset L$ des sous-ensembles et $\langle X \rangle$, $\langle Y \rangle \subset L$ les sous A-modules qu'ils engendrent.

- 1. Montrer que si $X \subset Y$ alors $\langle X \rangle \subset \langle Y \rangle$.
- 2. Montrer que si $\langle Y \rangle$ contient une famille generatrice de L alors Y est une famille generatrice de L (et donc $\langle Y \rangle = L$).
- 3. Montrer que $\langle X \cap Y \rangle \subset \langle X \rangle \cap \langle Y \rangle$ et donner un exemple (pour l'anneau $A = \mathbb{Z}$) d'un module non-nul L tel que $\langle X \cap Y \rangle = \{0_L\}$ et $\langle X \rangle \cap \langle Y \rangle = L$; ceci montre qu'on n'a pas egalite en general dans l'inclusion precedente.

Exercice 6. Soit A un anneau et $L, M \subset N$ des sous A-modules d'un module N. On defini la somme de ces sous-modules par

$$L+M:=\{l+m,\ l\in L,\ m\in M\}\subset N.$$

1. Montrer que L + M est un sous-module de N et que

$$\langle L \cup M \rangle = L + M.$$

2. Soient X et Y des parties generatrices de L et M respectivement : $L = \langle X \rangle, \ M = \langle Y \rangle$. Montrer que

$$\langle X \cup Y \rangle = L + M.$$

Exercice 7. Soit (A, +, .) un anneau, $\operatorname{End}_{Gr}(A)$ l'anneau des endomorphismes du groupe additif (A, +). On a definit pour tout $a \in A$ l'application de A vers A,

$$[\times a]: a' \in A \mapsto [\times a](a') := a.a' \in A$$

et on a montre que c'etait un endomorphisme du groupe (A, +), ie. $[\times a] \in \operatorname{End}_{Gr}(A)$.

- 1. Montrer que [×a] n'est pas un morphisme d'anneaux sauf si $a=0_A,1_A.$
- 2. Montrer que l'application

$$[\times \bullet]: \begin{matrix} A & \mapsto & \operatorname{End}_{Gr}(A) \\ a & \mapsto & [\times a] \end{matrix}$$

est un morphisme d'anneaux.

3. En deduire que l'ensemble $A.\mathrm{Id}_A=\{[\times a],\ a\in A\}\subset\mathrm{End}_{Gr}(A)$ est un sous-anneau de $\mathrm{End}_{Gr}(A).$