Testausdokumentti

Yksikkötestauksen kattavuusraportti.

Yksikkötestausta on tehty JPS:lle ja A*:lle. En ajatellut laajentaa tätä muihin osuuksiin

				coverage: platform darwin, python	3.10.0-fi
Name	Stmts	Miss	Cover	Missing	
astar.py	49	 0	100%		
astar_and_jps_route_test.py	234	234	0%	1-545	
grid.py	6	6	0%	1-7	
jps.py	144	11	92%	155, 157, 162, 164, 169, 171, 224, 230, 234, 326	, 346
main.py	125	125	0%	9–282	
map_loader.py	21	21	0%	1-65	
tests/initpy	0	0	100%		
tests/astar_test.py	51	1	98%	86	
tests/jps_test.py	113	1	99%	220	
tests/testmap.py	11	11	0%	1–19	
visualization.py	100	100	0%	1–220	
TOTAL	854	510	40%		

Mitä on testattu, miten tämä tehtiin?

- Testistrategiani on seuraava
 - 1. A* ja JPS testaus saman mittaisen reitin löytämiseen. Reitti on luotu yksinkertaiseen ruudukkoon ja reitti testataan eri ilmansuuntiin. Esimerkit:

- 2. Ylätason testit A*, JPS ja valmiiden testiskenaarioiden välillä
- Tässä testataan oikean mittaisen reitin löytäminen, ja algoritmien välinen performanssi oikeassa pelikartassa
 - Lisäsin siihen myös JPS Jump Point:ien määrän ja A* open set:iin lisättyjen pisteiden määrän. Tämä auttaa vertaamaan kuinka monta pistettä käsitellään. Reittien pituudet ovat samat A* ja JPS, mutta voivat erota testiskenaariosta kulmien oikaisun vuoksi.
 - Testi ajataan kaikille kartalla oleville valmiille 450:lle skenaariolle

0	Esir	merkki										
	Skenaa	rioAlku	Loppu	Optimaalinen	JPS pituus	JPS virhe	JPS aika	JPS hypyt	A* pituus	A* virhe	A∗ aika	A* open set
	1	(40, 170)	(41, 167)	3.41	3.41	0.0	0.0006	5	3.41	0.0	0.0	15
	2	(14, 151)	(11, 152)	3.41	3.41	0.0	0.0018	5	3.41	0.0	0.0	15
	3	(13, 169)	(13, 167)	2.0	2.0	None	0.0007	4	2.0	None	0.0	12
	4	(8, 26)	(7, 27)	1.41	1.41	0.0	0.0003	4	1.41	0.0	0.0	9
	5	(17, 82)	(14, 82)	3.0	3.0	None	0.0009	5	3.0	None	0.0	15
	6	(38, 10)	(38, 11)	1.0	1.0	None	0.0	3	1.0	None	0.0	6
	7	(24, 10)	(25, 12)	2.41	2.41	0.0	0.0004	4	2.41	0.0	0.0	15
	8	(36, 82)	(36, 83)	1.0	1.0	None	0.0004	5	1.0	None	0.0	9
	9	(13, 160)	(15, 159)	2.41	2.41	0.0	0.0013	5	2.41	0.0	0.0	16
	10	(4, 65)	(5, 66)	1.41	1.41	0.0	0.0004	2	1.41	0.0	0.0	9
	11	(24, 155)	(22, 151)	4.83	4.83	0.0	0.0022	6	4.83	0.0	0.0	22
	12	(26, 138)	(29, 133)	6.24	6.24	0.0	0.0006	8	6.24	0.0	0.0001	28
	13	(31, 159)	(27, 165)	7.66	7.66	0.0	0.0017	6	7.66	0.0	0.0001	32
	14	(33, 130)	(28, 131)	5.41	5.41	0.0	0.0006	5	5.41	0.0	0.0	21
	15	(21, 120)	(26, 122)	5.83	5.83	0.0	0.001	6	5.83	0.0	0.0001	31
	16	(36, 68)	(31, 65)	6.24	6.24	0.0	0.0015	5	6.24	0.0	0.0001	27
	17	(15, 48)	(11, 52)	5.66	5.66	0.0	0.0006	6	5.66	0.0	0.0	24
	18	(14, 161)	(17, 166)	6.24	6.24	0.0	0.0013	5	6.24	0.0	0.0001	31
	19	(21, 30)	(19, 24)	6.83	6.83	0.0	0.0007	9	6.83	0.0	0.0001	27
	20	(32, 46)	(34, 53)	7.83	7.83	0.0	0.0004	4	7.83	0.0	0.0001	39
	21	(34, 99)	(39, 91)	10.07	10.07	0.0	0.0014	6	10.07	0.0	0.0002	74
	22	(5, 131)	(15, 128)	11.24	11.24	0.0	0.0005	6	11.24	0.0	0.0002	60
	23	(33, 61)	(27, 70)	11.49	11.49	0.0	0.0021	5	11.49	0.0	0.0001	45
_	24	(27, 57)	(20, 53)	9.83	8.66	1.17	0.0015	8	8.66	1.17	0.0001	25
\circ	25	(7 50)	(10 42)	10 41	0 83	0.50	0 0008	Q	0 83	0 50	0 0001	35

- JPS:n keskimääräinen reitinhakuaika: 0.003429 sekuntia
- A*:n keskimääräinen reitinhakuaika: 0.004632 sekuntia

3. Visuaalinen testaus

- tällä pyritään visuaalisesti seuraamaan A* ja JPS algoritmien toimintaa, ja erityisesti jump pointien oikeaa muodostamista

- 4. yksikkötestaukset relevanteille funktioille
- pyritään testaamaan yksittäisten funktioiden oikeaa toimintaa.
- JPS ja A* tehty, muihin sitä ei tarvita
- yksikkötestien kattavuus dokumentin alussa

Minkälaisilla syötteillä testaus tehtiin?

- Luodulla testikartalla ja reiteille kahdeksaan suuntaan (1)
- Latatulla testikartalla ja skenaarioilla (2 ja 3)
 - o Yksi kartta, 450 skenaariota joista olemassa optimireitin pituus
- Keksityllä datalla (4)

Miten testit voidaan toistaa?

- Ajamalla ohjelma (1&2&3)
- Ajamalla pytest (4)