P20670.A04

Please amend the above-captioneo (

Please amend claims 31, 57 and 59 without preju-

marked-up copy of the amended claims is attached as an.

____ws (clean text; a

A compound of formula (I) (Amended) 31.

 R^1 to R^7 are independently selected from H, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl, optionally substituted aryl or heteroaryl, OH, halogen, CN, OR¹², $SR^{12}, COR^{12}, COOR^{12}, SOR^{12}, SO_2R^{12}, NR^{13}R^{14}, CONR^{13}R^{14}, SO_2NR^{13}R^{14}, where R^{13} \ and \ R^{14}$ are independently selected from H and $C_{1\text{--}3}$ alkyl and R^{12} represents $C_{1\text{--}6}$ alkyl; two of R^1 to R^7 , together with the atoms connecting them, each may form a 3- to 6-membered ring system, which ring system may contain one or more heteroatoms; at least one of the pairs R^1 and R^2 ; R^3 and R^4 ; and R^5 and R^6 may be replaced by an optionally substituted alkylidene group or =0; and two of R^1 to R^7 which are positioned at adjacent carbon atoms may each be replaced by a C-C bond; 2

A1 is selected from (-CR8R9-)n, optional cycloalkylene and a P20670.A04 combination of these groups, R⁸ and R⁹ being indepenhalogen, OH, OR^{12} and $NR^{13}R^{14}$ and where for $n \ge 2$, R^8 and OR^{12} and $OR^{13}R^{14}$ and where for $n \ge 2$, OR^8 and OR^{12} and $OR^{13}R^{14}$ and where for $n \ge 2$, OR^8 and OR^{12} and $OR^{13}R^{14}$ and where for $n \ge 2$, OR^8 and $OR^{13}R^{14}$ a group and two groups selected from R^8 and R^9 at adjacent C atoms magerent in each bond, and a group -O- or -CO- may be positioned between two adjacent grd by a C-C wherein one of R⁸ and R⁹ may be combined with one of R¹ to R⁷ to form.

X is selected from COOM and groups which can be converted into COOM under membered ring structure; and n = 1, 2, 3 or 4;

physiological conditions, M being selected from H and pharmaceutically acceptable cations; A^2 is $(-CR^{10}R^{11}-)_m$, where R^{10} and R^{11} are independently selected from H, $C_{1\cdot 2}$ alkyl

and halogen; where for $m \ge 2$ the groups R^{10} and R^{11} may be different in each group, a group -O- or -S- may be positioned between two adjacent groups -CR¹⁰R¹¹-, and two groups selected from R^{10} and R^{11} at adjacent C atoms may be replaced by a C-C bond; and wherein one of R^{10} and R^{11} may be combined with one of R^1 to R^9 to form a 5- to 7-membered ring

Z is selected from Y_3C-O- , $Y_2C=CR^{15}-$ and $Y_2C=N-O-$, where R^{15} is selected from H, structure; and m is 1, 2, 3, or 4; C_{1-3} alkyl or halogen and the groups γ are independently selected from optionally substituted C_{6-12} aryl and optionally substituted C_{2-5} heteroaryl having up to three heteroatoms

independently selected from N, O and S, and the groups Y may be linked by a covalent bond

or by groups between atoms belonging to different groups Y, said groups selected from -O-, P20670.A04

-S-, -NH-, -O-, -CH=CH-, -CH=N-, -CH $_2$ - and -CH $_2$ CH $_2$ -;

as well as the individual stereoisomers of these compounds.

- A process for the preparation of a compound of formula (I) of claim (Amended) 57.
- 31, wherein a compound of formula (II)

wherein R^1 to R^7 , A^1 and X are as defined in claim 31 is reacted with a compound of formula

(III):

$$D-A^2-Z$$
 (III)

wherein A² and Z are defined as in claim 31 and D represents a group which can react with the group N'H of the compound of formula (II) to form HD.

(Amended) A pharmaceutical composition comprising at least one of a pharma-59.

P20670.A04

ceutically acceptable carrier and a pharmaceutically acceptable excipient and at least one compound of formula (I):

$$R^{3}$$
 R^{4}
 R^{5}
 R^{6}
 R^{2}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

wherein

 R^1 to R^7 are independently selected from H, optionally substituted C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl, optionally substituted aryl or heteroaryl, OH, halogen, CN, OR^{12} , $SR^{12}, COR^{12}, COOR^{12}, SOR^{12}, SOR^{12}, SO_2R^{12}, NR^{13}R^{14}, CONR^{13}R^{14}, SO_2NR^{13}R^{14}, where \, R^{13} \, and \, R^{14}, \, R^{14},$ are independently selected from H and C_{1-3} alkyl and R^{12} represents C_{1-6} alkyl; two of $\ R^1$ to R^7 , together with the atoms connecting them, each may form a 3- to 6-membered ring system, which ring system may contain one or more heteroatoms; at least one of the pairs R¹ and R²; R³ and R⁴; and R⁵ and R⁶ may be replaced by an optionally substituted alkylidene group or =O; and two of R^1 to R^7 which are positioned at adjacent carbon atoms may each be replaced by a C-C bond;

 A^1 is selected from $(-CR^8R^9-)_n$, optionally substituted C_{3-6} cycloalkylene and a combination of these groups, R⁸ and R⁹ being independently selected from H, C₁₋₆ alkyl, halogen, OH, OR^{12} and $NR^{13}R^{14}$ and where for $n \ge 2$, R^8 and R^9 may be different in each

P20670.A04

group and two groups selected from R^8 and R^9 at adjacent C atoms may be replaced by a C-C bond, and a group -O- or -CO- may be positioned between two adjacent groups CR^8R^9 ; and wherein one of R^8 and R^9 may be combined with one of R^1 to R^7 to form a 5- to 7-membered ring structure; and n=1,2,3 or 4;

X is selected from COOM and groups which can be converted into COOM under physiological conditions, M being selected from H and pharmaceutically acceptable cations;

 A^2 is $(-CR^{10}R^{11}-)_m$, where R^{10} and R^{11} are independently selected from H, C_{1-2} alkyl and halogen; where for $m \ge 2$ the groups R^{10} and R^{11} may be different in each group, a group -O- or -S- may be positioned between two adjacent groups - $CR^{10}R^{11}$ -, and two groups selected from R^{10} and R^{11} at adjacent C atoms may be replaced by a C-C bond; and wherein one of R^{10} and R^{11} may be combined with one of R^{1} to R^{9} to form a 5- to 7-membered ring structure; and m is 1, 2, 3, or 4;

Z is selected from Y_3C-O- , $Y_2C=CR^{15}-$ and $Y_2C=N-O-$, where R^{15} is selected from H, C_{1-3} alkyl or halogen and the groups Y are independently selected from optionally substituted C_{6-12} aryl and optionally substituted C_{2-5} heteroaryl having up to three heteroatoms independently selected from N, O and S, and the groups Y may be linked by a covalent bond or by groups between atoms belonging to different groups Y, said groups selected from -O-, -S-, -NH-, -O-, -CH=CH-, -CH=N-, -CH₂- and -CH₂CH₂-.

Children Children