Classification

Louis Jachiet

Louis JACHIET 1 / 1

What is classification?

Wikipedia definition

Classification is the problem of identifying to which of a set of categories (sub-populations) a new observation belongs, on the basis of a training set of data containing observations (or instances) whose category membership is known.

Louis JACHIET 2 / 17

Generalize known structures to apply to new data.

An e-mail program might attempt to classify an e-mail as "legitimate" or as "spam".

Louis JACHIET 3 / 17

Spam example

Data set that describes e-mail features for deciding if it is spam.

Example				
Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Louis JACHIET 4 / 17

Spam example

Data set that describes e-mail features for deciding if it is spam.

Example				
Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	com	yes	night	yes
yes	edu	no	night	yes
no	com	yes	night	yes
no	edu	no	day	no
no	com	no	day	no
yes	cat	no	day	yes

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Louis JACHIET 4 / 17

Definition

Definition

Given a set of classes $C_1...C_N$, a classifier algorithm builds a model that predicts for every unlabelled instance I the class C_i to which it belongs with accuracy.

Example

Spam filter

Example

Twitter Sentiment analysis: analyze tweets with positive or negative feelings

Example

Cat or Dog?

Louis JACHIET 5 / 17

Basic Classifiers

Majority vote

Training

Compute the majority class in the dataset

Prediction

Output the majority class

Louis JACHIET 6 / 17

k-Nearest Neighbors (k-NN)

Training

Store all instance (+ eventual index)

Prediction

Find the k closest point in the input and output the majority over those k points.

Louis JACHIET 7 / 17

k-Nearest Neighbors (k-NN)

Training

Store all instance (+ eventual index)

Prediction

Find the k closest point in the input and output the majority over those k points.

Closest according to what metric?

 L_1 vs L_2 vs L_∞ vs COS

Louis JACHIET 7 / 17

Formula

$$\frac{P(A) \times P(B|A)}{P(B)} = P(A|B)$$

Louis JACHIET 8 / 17

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

Louis JACHIET 9 / 17

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B) = P(B) \times P(A|B)$$

Louis JACHIET 9 / 17

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B) = P(B) \times P(A|B)$$

$$P(A) \times P(B|A) = P(B) \times P(A|B)$$

Louis JACHIET 9 / 17

Proof.

$$P(A \cap B) = P(A) \times P(B|A)$$

$$P(A \cap B) = P(B) \times P(A|B)$$

$$P(A) \times P(B|A) = P(B) \times P(A|B)$$

$$\frac{P(A) \times P(B|A)}{P(B)} = P(A|B)$$

9 / 17

Formula

$$\frac{P(A) \times P(B|A)}{P(B)} = P(A|B)$$

Interpretation

$$prior \times \frac{likelihood}{evidence} = posterior$$

10 / 17 Louis JACHIET

Naive Bayes Classifier

Grouping attributes

$$P(C_i) \times \frac{P(\bar{x}|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Multiple attributes

$$P(C_i) \times \frac{\prod_j P(x_j|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Louis JACHIET 11 / 17

Naive Bayes Classifier

Grouping attributes

$$P(C_i) \times \frac{P(\bar{x}|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Multiple attributes

$$P(C_i) \times \frac{\prod_j P(x_j|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

With independence hypothesis!

Louis JACHIET 11 / 17

Naive Bayes Classifier

Grouping attributes

$$P(C_i) \times \frac{P(\bar{x}|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

Multiple attributes

$$P(C_i) \times \frac{\prod_j P(x_j|C_i)}{P(\bar{x})} = P(C_i|\bar{x})$$

With independence hypothesis!

 $P(\bar{x})$ does not change with the class

Louis JACHIET 11 / 17

Tree Methods

Classification

Data set that describes e-mail features for deciding if it is spam.

Example Contai		nain Ha	s Time	2
"Mone	ey" typ	oe atta	ch. receive	ed spam
yes	CO	m yes	s night	yes
yes	ed	u no	night	yes
no	CO	m yes	s night	yes
no	ed	u no	day	no
no	CO	m no	day	no
yes	ca	t no	day	yes

Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Louis JACHIET 12 / 17

Classification

• Assume we have to classify the following new instance:

Contains	Domain	Has	Time	
"Money"	type	attach.	received	spam
yes	edu	yes	day	?

Louis JACHIET 12 / 17

Decision Trees

Recursive construction technique

- $A \leftarrow$ the *best* decision attribute for next *node*
- Assign A as decision attribute for node
- For each value of A, create new descendant of node
- Sort training examples to leaf nodes
- If training examples perfectly classified, Then STOP, Else iterate over new leaf nodes

Louis JACHIET 13 / 17

Bagging

Example

Dataset of 4 Instances: A, B, C, D

Classifier 1: B, A, C, B

Classifier 2: D, B, A, D

Classifier 3: B, A, C, B

Classifier 4: B, C, B, B

Classifier 5: D, C, A, C

Bagging builds a set of M base models, with a bootstrap sample created by drawing random samples with replacement.

Louis JACHIET 14 / 17

Random Forests

- Bagging
- Random Trees: trees that in each node only uses a random subset of the attributes

⇒ one of the most popular methods in machine learning.

Louis JACHIET 15 / 17

Gradient-based Methods

Logistic Regression

Training

Learn an hyperplan $\mathcal P$ separating well the two classes.

Prediction

What side of the hyperplan \mathcal{P} is the point?

Based on the gradient of the logit function.

Louis JACHIET 16 / 17

Logistic Regression

Training

Learn an hyperplan $\mathcal P$ separating well the two classes.

Prediction

What side of the hyperplan \mathcal{P} is the point?

Based on the gradient of the logit function.

Louis JACHIET 16 / 17

Logistic Regression

Training

Learn an hyperplan \mathcal{P} separating well the two classes.

Prediction

What side of the hyperplan \mathcal{P} is the point?

Based on the gradient of the logit function.

Louis JACHIET 16 / 17

Neural Network

Louis JACHIET 17 / 17