# MA3227 Numerical Analysis II

Lecture 18: Implicit Runge-Kutta Methods

Simon Etter



2019/2020

#### Introduction

Recall from Lecture 17 that adaptive time-stepping applied to the ODE  $\dot{y}=\lambda y$  with  $\lambda<0$  failed to increase the time step  $\Delta t$  beyond a certain upper bound even though theory tells us that we should be able to choose  $\Delta t$  arbitrarily large for t large enough.

The ODE  $\dot{y}=\lambda y$  is simple enough that we can determine explicit formulae for the Euler and midpoint steps:

• Euler: 
$$\tilde{y}(t) = y_0 + f(y_0) t = y_0 + \lambda y_0 t = (1 + \lambda t) y_0$$
.

Midpoint: 
$$\tilde{y}(t) = y_0 + f(y_0 + f(y_0) \frac{t}{2}) t$$

$$= y_0 + \lambda \left( y_0 + \frac{1}{2} \lambda y_0 t \right) t$$

$$= \left( 1 + \lambda t + (\lambda t)^2 \right) y_0.$$

Conclusion: after k steps with constant step size  $\Delta t$ , the Runge-Kutta solution is given by

$$\tilde{y}(k \Delta t) = R(\lambda \Delta t)^k y(0)$$
 where  $R(z) = \begin{cases} 1 + z & (\text{Euler}), \\ 1 + z + \frac{z^2}{2} & (\text{midpoint}). \end{cases}$ 

### Introduction (continued)

We know that since  $\lambda < 0$ , the exact solution satisfies

$$\lim_{k\to\infty} y(k\,\Delta t) = \lim_{k\to\infty} \exp(\lambda\,k\,\Delta t) = 0.$$

It follows from the equation on the previous slide that the numerical solution  $\tilde{y}(k\,\Delta t)$  has the same limit if and only if  $|R(\lambda\,\Delta t)|<1$ , and plots of R(z) reveal that

$$|R(\lambda \Delta t)| < 1 \quad \Longleftrightarrow \quad -2 < \lambda \Delta t < 0 \quad \Longleftrightarrow \quad \Delta t < \frac{2}{-\lambda}.$$



### Introduction (continued)

The above explains our observations in Lecture 17: if  $\Delta t > \frac{2}{-\lambda}$ , then the numerical solution diverges from the exact solution. The step-size control detects this and makes sure  $\Delta t$  never exceeds  $\frac{2}{-\lambda}$ .

The discrepancy between our expectations and the numerical results arises because our expectations are based on a wrong interpretation of Taylor series. We have seen that Euler's method satisfies

$$\ddot{\Phi}_k(\tilde{y}_{k-1}) - \Phi_k(\tilde{y}_{k-1}) = \ddot{\tilde{y}}(t_{k-1}) \frac{\Delta t_k^2}{2} + \mathcal{O}(\Delta t_k^3),$$

and we have assumed that if the  $\Delta t_k^2$ -term is small, then all higher-order terms must be even smaller. This is indeed the case if  $\Delta t_k$  is small, but in adaptive time-stepping we are interested in making  $\Delta t_k$  as large as possible, so eventually this Taylor-series argument will break down.

#### Linearisation of ODEs

The discussion so far was specific to the ODE  $\dot{y} = \lambda y$ 

However, it turns out that our conclusions are relevant for generic ODEs  $\dot{y} = f(y)$  as long as there is an attractive fixed-point, i.e. a  $y_F$  such that  $f(y_F) = 0$  and  $\nabla f(y_F)$  has at least one eigenvalue  $\lambda$  with Re( $\lambda$ ) < 0.

"Proof". For y close to  $y_F$ , we obtain

$$\frac{\frac{d}{dt}(y(t) - y_F) = f(y(t))}{= \underbrace{f(y_F)}_{=0} + \nabla f(y_F) (y(t) - y_F) + \mathcal{O}(\|y(t) - y_F\|^2)}.$$

Let us assume that  $\nabla f(y_F)$  has eigendecomposition  $\nabla f(y_F) = V \Lambda V^{-1}$ . Ignoring the  $\mathcal{O}$ -term and introducing  $w(t) = V^{-1}(y(t) - y_F)$ , we then obtain

$$V\dot{w}(t) = \frac{d}{dt}Vw(t) = \nabla f(y_F)Vw(t) = V\Lambda w(t) \iff \dot{w} = \Lambda w.$$

The last equation is a system of n decoupled ODEs of precisely the form  $\dot{w}_i = \lambda \, w_i$ ; hence the above discussion applies for y(t) close enough to  $y_F$ .

#### Discussion

The discussion on the previous slide shows that for general f(y), we are interested in the behaviour of Runge-Kutta methods applied to the ODE  $\dot{y} = \lambda y$  where  $\lambda$  is an eigenvalue of  $\nabla f(y_F)$ .

The Jacobian  $\nabla f(y_F)$  is generally a non-symmetric matrix, so the eigenvalues  $\lambda$  can be complex. The solution to  $\dot{y} = \lambda y$  is still

$$y(t) = y_0 \exp(\lambda t) = y_0 \exp(\operatorname{Re}(\lambda)t) \left(\cos(\operatorname{Im}(\lambda)) + \iota \sin(\operatorname{Im}(\lambda))\right);$$

hence we conclude that  $\operatorname{Re}(\lambda)$  indicates whether y(t) converges to zero  $(\operatorname{Re}(\lambda) < 0)$  or diverges  $(\operatorname{Re}(\lambda) > 0)$ , and  $\operatorname{Im}(\lambda)$  indicates whether the solution oscillates.

Similary, the Runge-Kutta solutions still satisfy  $\tilde{y}(k \Delta t) = R(\lambda \Delta t)^k$ , and we conclude that these solutions have the right convergence / divergence behaviour if

$$Re(z) < 0 \iff |R(z)| < 1.$$

This motivates the definitions on the next slide.

### **Terminology**

- ▶ The functions R(z) introduced above are called the stability function of the Runge-Kutta method.
- ▶ The set  $\{z \in \mathbb{C} \mid |R(z)| < 1\}$  is called the stability domain of the Runge-Kutta method.

### Example

The stability domains of the Euler and midpoint methods are:



### Example

Consider the ODE  $\ddot{x} = -x$ , x(0) = 1,  $\dot{x}(0) = 0$ , or equivalently

$$\dot{y} = \begin{pmatrix} \dot{y}_1 \\ \dot{y}_2 \end{pmatrix} = \begin{pmatrix} y_2 \\ -y_1 \end{pmatrix} = f(y)$$
 with  $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}$ .

We have  $\nabla f = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$  with eigenvalues  $\lambda = \pm \iota$ .

These eigenvalues are purely imaginary; hence the solution oscillates but does neither converge nor diverge. This is indeed the case since the exact solution is  $x(t) = \cos(t)$ .

We conclude from the domains of stability shown above that both Euler and midpoint methods have |R(z)| > 1 for purely imaginary z; hence they diverge when applied to the above ODE.

Moreover, knowing R(z) allows us to precisely predict the rate with which they diverge, see harmonic\_oscillator\_divergence().

#### Discussion

The above shows that the constraint  $|R(\lambda \Delta t)| < 1$  imposes a limit on how large the step size  $\Delta t$  can be. Our next goals are therefore to determine a formula for R(z) for arbitrary Runge-Kutta methods, and figuring out how to construct Runge-Kutta methods which do not have a step size constraint.

### Stability function for abstract Runge-Kutta method

Consider a general Runge-Kutta scheme with Butcher tableau

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right).$$

When applied to the ODE  $\dot{y} = \lambda y$ , the numerical solution  $\tilde{y}(t)$  after a single step is given by

$$\tilde{y}(t) = y_0 + w^T \mathbf{f} t$$
 where  $\mathbf{f} = \lambda (y_0 + V \mathbf{f} t)$ .

You can verify the above formula by comparing it against the formula provided in the summary of Lecture 16.

Solving the second formula for f yields (1 denotes the vector of all ones)

$$\mathbf{f} = \lambda (1 - \lambda t V)^{-1} \mathbf{1} y_0$$

and inserting this expression into the formula for  $\tilde{y}(t)$  yields

$$\tilde{y}(t) = (1 + \lambda t w^{T} (I - \lambda t V) \mathbf{1}) y(0).$$

## Stability function for abstract Runge-Kutta method (continued)

Replacing all instances of  $\lambda t$  with z in the above formula, we conclude that the stability function for the abstract Runge-Kutta scheme

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right)$$

is given by

$$R(z) = 1 + z w^{T} (I - z V) \mathbf{1}.$$

## Example: stability function for Euler method

Butcher tableau:

$$\left(\begin{array}{c|c} 0 & \\ \hline & 1 \end{array}\right)$$

Stability function:

$$R(z) = 1 + z 1(1 - 0)1 = 1 + z.$$

### Example: stability function for midpoint method

Butcher tableau:

$$\begin{pmatrix}
0 & \\
\frac{1}{2} & \frac{1}{2} \\
\hline
& 0 & 1
\end{pmatrix}$$

Stability function:

$$R(z) = 1 + z \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} I - z \begin{pmatrix} 0 & 0 \\ \frac{1}{2} & 0 \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= 1 + z \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{z}{2} & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$= 1 + z \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 + \frac{z}{2} \end{pmatrix}$$
$$= 1 + z \begin{pmatrix} 1 + \frac{z}{2} \end{pmatrix}$$
$$= 1 + z + \frac{z^2}{2}.$$

#### Discussion

Recall the formula for the stability function given above:

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right) \longrightarrow R(z) = 1 + z w^T (I - z V)^{-1} \mathbf{1}.$$

We observe that R(z) is a rational function for all V and w, and one can easily show that R(z) is a polynomial if V is strictly lower triangular using Cramer's rule.

All Runge-Kutta methods that we have seen so far have a strictly lower-triangular V. This is for a good reason, as the example on the next slide shows.

### **Example: Implicit Euler**

Consider the Runge-Kutta method with Butcher tableau

$$\left(\begin{array}{c|c} 1 & 1 \\ \hline & 1 \end{array}\right)$$

The corresponding one-step equations are

$$\tilde{y}(t) = y_0 + f_1 t$$
,  $f_1 = f(y_0 + f_1 t)$   $\iff$   $\tilde{y}(t) = y_0 + f(\tilde{y}(t)) t$ .

This method is called the implicit Euler method because the one-step equation has the same form as the (explicit) Euler method that we have seen before, but the argument to f(y) is now  $\tilde{y}(t)$  rather than  $y_0$ .

In quadrature terms, explicit Euler corresponds to a left-point rule while implicit Euler corresponds to a right-point rule.

#### Discussion

We conclude that if V is not strictly lower triangular, then the one-step equations become implicit, i.e.  $\tilde{y}(t)$  can no longer be computed by simply evaluating a given formula, but rather we have to solve a potentially nonlinear equation or maybe even system of equations.

This motivates the following terminology.

- ightharpoonup A RK scheme is called *explicit* if V is strictly lower triangular.
- ▶ A RK scheme is called *implicit* if *V* is not strictly lower triangular.

It depends on the context whether implicit one-step equations are a problem. For example, if f(y) = Ay for some  $A \in \mathbb{R}^{n \times n}$ , the implicit Euler equation becomes

$$\tilde{y}(t) = y_0 + A\tilde{y}(t) t \iff \tilde{y}(t) = (I - At)^{-1} y_0.$$

If n is small, we can solve  $(I - At)^{-1} y_0$  reliably and cheaply using the LU factorisation. If n is large, we may have to use iterative methods like Krylov or multigrid, which can become expensive since we have to solve a new linear system  $(I - At)^{-1} y_0$  for every time step.

## Implicit Runge-Kutta methods (continued)

Also, recall that iterative methods may fail to converge, which can be frustrating if your ODE solver breaks down due to a failure of the nested iterative solver.

Of course, the above remarks regarding iterative linear solvers also apply if f(y) is nonlinear and we have to solve

$$\tilde{y}(t) - y_0 - f(\tilde{y}(t)) t = 0$$

using an iterative nonlinear solver like Newton's method.

We conclude that going from explicit to implicit Runge-Kutta methods may or may not introduce difficulties depending on the properties of f(y). Next, let us look into why we are interested in implicit Runge-Kutta methods in the first place.

## Stability functions of explicit Runge-Kutta methods

Recall the formula for the stability function given above:

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right) \longrightarrow R(z) = 1 + z w^T (I - z V)^{-1} \mathbf{1}.$$

We have seen:

- ► Explicit Runge-Kutta methods have a strictly lower-triangular *V*.
- ightharpoonup Strictly lower-triangular V implies R(z) is a polynomial.

For polynomial R(z), we necessarily have

$$|z| \to \infty \implies |R(z)| \to \infty.$$

This implies that the stability domain  $\{z \in \mathbb{C} \mid |R(z)| < 1\}$  is bounded, which in turn implies that all explicit Runge-Kutta methods have a stability-induced step-size constraint.

By contrast, R(z) is a rational function if V is arbitrary, and rational functions can be bounded for  $|z| \to \infty$ . This is the one and only reason why one would ever consider implicit Runge-Kutta methods.

#### Remark: determining stability functions

Stability functions can be determined in either of two ways.

▶ Write down the Butcher tableau use the formula given above,

$$\left(\begin{array}{c|c} \theta & V \\ \hline & w^T \end{array}\right) \longrightarrow R(z) = 1 + z w^T (I - z V)^{-1} \mathbf{1}.$$

▶ Write down the one-step equations for  $\dot{y} = y$  and rearrange them into the form  $\tilde{y}(t) = R(t) y_0$ .

The first approach is convenient if you have a computer to do the linear algebra for you, the second approach is easier if you have to do the calculations by hand.

### Example: stability function for the implicit Euler method

The one-step equation for implicit Euler is  $\tilde{y}(t) = y_0 + f(\tilde{y}(t)) t$ . Inserting f(y) = y yields

$$\tilde{y}(t) = y_0 + \tilde{y}(t) t \iff \tilde{y}(t) = \frac{y_0}{1-t};$$

hence the stability function is  $R(z) = \frac{1}{1-z}$ , and the stability domain is

$${z \mid |R(z)| < 1} = {z \mid \frac{1}{|1-z|} < 1} = {z \mid |1-z| > 1}$$

which is the complement of the ball of radius 1 around z = 1.



[ To be continued ]