## ELEMENTARE ZAHLENTHEORIE

## PROF. DR. CHRISTINA BIRKENHAKE

## Inhaltsverzeichnis

| 1.   | Minimum, Maximum und vollständige Induktion                                                     | 3  |
|------|-------------------------------------------------------------------------------------------------|----|
| 1.1. | Zahlen                                                                                          | 3  |
| 2.   | Teilbarkeit                                                                                     | 8  |
| 2.1. | Teilbarkeitsrelation                                                                            | 8  |
| 2.2. | Eigenschaften                                                                                   | 10 |
| 2.3. | Teilermengen                                                                                    | 13 |
| 2.4. | Ordnungsrelation: Teilbarkeit und Hassediagramme                                                | 15 |
| 3.   | Primzahlen                                                                                      | 16 |
| 3.1. | Einführung der Primzahlen in der Schule                                                         | 16 |
| 3.2. | Wieviele Primzahlen gibt es?                                                                    | 18 |
| 3.3. | Sieb des Eratosthenes                                                                           | 20 |
| 3.4. | Wie sind die Primzahlen innerhalb der natürlichen Zahlen                                        |    |
|      | verteilt?                                                                                       | 21 |
| 3.5. | Primzahlformeln                                                                                 | 23 |
| 3.6. | Primfaktorzerlegung                                                                             | 27 |
| 3.7. | Folgerungen aus dem Hauptsatz                                                                   | 31 |
| 3.8. | Primzahlkriterium und das Lemma von Euklid                                                      | 32 |
| 4.   | Größter gemeinsamer Teiler $(ggT)$ und kleinstes gemeinsames                                    |    |
|      | Vielfaches $(kgV)$                                                                              | 33 |
| 4.1. | ggT und Teilermengen                                                                            | 33 |
| 4.2. | Euklidischer Algorithmus                                                                        | 36 |
| 4.3. | Vielfache des $ggT$ und Linearkombinationen                                                     | 42 |
| 4.4. | Lineare Diophantische Gleichungen                                                               | 44 |
| 4.5. | kgV und Vielfachenmengen                                                                        | 49 |
| 5.   | Kongruenzen und Restklassen                                                                     | 54 |
| 5.1. | Die Kongruenzrelation $\mod m$                                                                  | 54 |
| 5.2. | Kongruenz als Äquivalenzrelation                                                                | 59 |
| 5.3. | Algebraische Struktur von $\mathbb{Z}/m\mathbb{Z}$ - Rechnen im System $\mathbb{Z}/m\mathbb{Z}$ | 62 |

| Prof. Dr. Birkenhake, Elementare Zahlentheorie                | 2   |
|---------------------------------------------------------------|-----|
| 5.4. Die Sätze von Euler, Fermat und der Chinesische Restsatz | 71  |
| 6. Stellenwertsysteme                                         | 78  |
| 6.1. Verschiedene Stellenwertsysteme                          | 78  |
| 6.2. Prinzip des Stellenwertsystems                           | 82  |
| 6.3. Zahlen in verschiedenen Zahlsystemen                     | 84  |
| 7. Dezimalbrüche                                              | 87  |
| 7.1. Gemeine Brüche und Dezimalbrüche                         | 87  |
| 7.2. Kettenbrüche                                             | 96  |
| 8. Teilbarkeitsregeln                                         | 99  |
| 8.1. Endstellenregeln                                         | 100 |
| 8.2. Quersummenregeln                                         | 103 |
| 8.3. Weitere Teilbarkeitsregeln für Primzahlen                | 106 |
| 9. Vollkommene Zahlen                                         | 109 |
| 9.1. Beispiele und Definition                                 | 109 |
| 10. Fibonaccizahlen, Goldener Schnitt und Irrationalität      | 113 |
| 10.1. Das regelmäßige 5-Eck - Goldener Schnitt                | 115 |
| 10.2. Aperiodische Plasterungen                               | 118 |
| 10.3. DIN-Norm für Papier                                     | 118 |
| 11. EAN, ISBN, PZN und IBAN                                   | 122 |
| 11.1. EAN im Supermarkt                                       | 122 |
| 11.2. <b>ISBN</b>                                             | 126 |
| 11.3. Die Pharmazentralnummer <b>PZN</b>                      | 128 |
| 11.4. IBAN, Verfahren Modulo 97-10 (ISO 7064)                 | 129 |
| 12. Kryptographie                                             | 132 |
| 12.1. Monoalphabetische Substitution                          | 132 |
| 12.2. Polyalphabetische Substitution                          | 135 |
| 13. RSA-Verschlüsselungssystem                                | 136 |



## 1. MINIMUM, MAXIMUM UND VOLLSTÄNDIGE INDUKTION

## 1.1. Zahlen.

## Natürliche Zahlen - Peano - Axiome (1889)

Giuseppe Peano (1858-1932)

- (1) 1 ist eine natürliche Zahl.  $(1 \in \mathbb{N})$
- (2) Jeder natürlichen Zahl n ist genau eine natürliche Zahl n' zugeordnet, die Nachfolger von n genannt wird.

$$(n' = n + 1)$$

(3) 1 ist kein Nachfolger.

$$(n' = 1 \implies \mbox{$\rlap/$})$$

(4) Sind n und m verschiedene natürliche Zahlen, so sind auch ihre Nachfolger n' und m' verschieden.

$$(n \neq m \Rightarrow n+1 \neq m+1)$$

(5) Enthält eine Menge M natürlicher Zahlen 1 und folgt aus  $n \in M$  stets  $n' \in M$ , so besteht M aus allen natürlichen Zahlen.  $(M = \mathbb{N})$ 

#### Uneinheitliche Notation: natürliche Zahlen mit oder ohne Null?

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$
 oder  $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ 

In mathematischen Abhandlungen je nach Vereinbarung!

In der Schule:

X Quadrat-Zeichenlegende:  $\mathbb{N} = \text{Menge der natürlichen Zahlen}$ 

 $\mathbb{N}_0$  = Menge der nat. Zahlen einschließlich Null.

bsv, Mathematische Formeln kompakt:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$
 und  $\mathbb{N}^* = \mathbb{N} \setminus \{0\} = \{1, 2, 3, \ldots\}.$ 

- (1) es gilt niemals x < x, (irreflexiv)
- (2) aus x < y folgt  $y \not\prec x$ , (Asymmerie)
- (3) aus x < y und y < z folgt, daß x < z. (Transitivität)

Gilt darüber hinaus, daß

(4) immer entweder x < y oder y < x,

so heißt < totale Ordnung.

Gilt darüber hinaus, daß

(5) jede nichtleere Teilmenge  $N \subset M$  ein kleinstes Element besitzt, d.h. es gibt ein  $x \in N$  mit x < y für alle  $y \in N \setminus \{x\}$ ,

so heißt < Wohlordnung.

Satz 1.1 (Kleinstes Element - Wohlordnungsprinzip). Jede nicht leere Teilmenge T von  $\mathbb{N}$  enthält eine kleinste Zahl m. Das heißt, für alle  $t \in T$  gilt:  $m \leq t$ .

#### **Beweis:**

Da T nicht leer ist, gibt es ein Element  $n \in T$ . Das erste (= kleinste) Element der geordneten Menge  $\{(0), 1, 2, \dots, n-1, n\}$ , daß auch in T enthalten ist, ist das gesuchte <u>kleinste Element</u>.

Satz 1.2 (Induktion). Ist eine Aussage über eine natürliche Zahl wahr für 1) n = 0 (bzw.  $n_0 \in \mathbb{N}$ ) und wenn 2) die Wahrheit der Aussage für alle a < n die Wahrheit für n selber zur Folge hat, dann ist die Aussage für alle  $n \in \mathbb{N}$  wahr.

#### **Beweis:**

Es sei T die Menge der natürlichen Zahlen  $(>n_0)$ , für die die Aussage falsch ist. Nach 1) gilt  $0 \notin T$   $(n_0 \notin T)$ . Wenn  $T = \emptyset$ , haben wir nichts zu zeigen. Wenn aber T nicht leer ist, so hat es nach 1.1 ein kleinstes Element n > 0  $(n > n_0)$ . Da dann aber die Aussage für alle natürlichen Zahlen  $(0), 1, \ldots, n-1$  (bzw.  $n_0, \ldots, n-1$ ) (also für alle a < n) gilt, so ist sie nach Vorraussetzung 2) auch für n, damit würde folgen:  $n \notin T \notin$ .

Daraus ergibt sich die Beweismethode der  $\mathit{Vollst"andigen}$   $\mathit{Induktion}$ :

Es sei A(n) eine Aussage (abhängig von einer natürlichen Zahl  $n \in \mathbb{N}$ ). Es ist zu zeigen, daß A(n) für alle natürlichen Zahlen n ab einem gewissen Anfangswert  $n_0$  gilt (d.h. für alle  $n \ge n_0$ ). Dazu zeigt man:



- (1) Induktionsanfang: Die Aussage  $A(n_0)$  ist wahr.
- (2) Induktionsschritt: Man zeigt, daß aus der Gültigkeit von A(n) für irgendein  $n \in \mathbb{N}$  auch die Gültigkeit der Aussage für den Nachfolger n+1 von n folgt. (Aus A(n) ist wahr, folgt A(n+1) ist wahr!)

Beispiel: Beweise die Summenformel mit vollständiger Induktion:

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n \cdot (n+1)}{2} \qquad \forall \quad n \in \mathbb{N}$$
 (1)

Beweis:

Induktionsanfang: Zu Zeigen: Die Aussage (1) ist für n = 1 richtig:

$$\frac{n \cdot (n+1)}{2} \stackrel{\stackrel{n=1}{\downarrow}}{=} \frac{1 \cdot (1+1)}{2} = 1 \quad \checkmark$$

Induktionsschritt: Zu Zeigen: Aus der Gültigkeit von (1) für n folgt die für n+1: Angenommen es gilt  $\underbrace{1+2+3+\cdots+n}_{2}=\frac{n\cdot(n+1)}{2}$  für ein  $n\in\mathbb{N}$ .

Dann folgt:

$$\frac{[n+1] \cdot ([n+1]+1)}{2} = \frac{(n+1) \cdot (n+2)}{2} = \frac{(n+1) \cdot n + (n+1) \cdot 2}{2}$$
$$= \frac{n \cdot (n+1)}{2} + (n+1) \quad \text{(mit Ind. Vorraussetzung)}$$
$$= 1 + 2 + 3 + \dots + n + (n+1) \quad \square$$

Satz 1.3 (Maximumsprinzip). In jeder nicht leeren <u>endlichen</u> Menge reeller Zahlen gibt es eine größte Zahl.

(Beachte: hier ist das Wort endlich wichtig! Gegenbeispiel: das offene Intervall ]0, 1[ hat weder ein kleinstes noch ein größtes Element.)

#### **Beweis:**

Eine nicht leere endliche Menge reeller Zahlen hat notwendiger Weise die Form  $\{a_1, \ldots, a_n\}$  mit einem  $n \in \mathbb{N}$ .

Sei T die Menge natürlicher Zahlen  $n \ge 1$  mit der Eigenschaft:

Jede n-elementige Menge reeller Zahlen hat ein größtes Element:

$$T = \{ n \in \mathbb{N} \mid \text{ist } M \subset \mathbb{R} \text{ mit } \# M = n \Rightarrow M \text{ hat ein größtes Element} \}$$

Klar:  $1 \in T$ , denn jede Menge  $\{a_1\}$ , mit  $a_1 \in \mathbb{R}$ , hat ein größtes Element! Angenommen  $n \in T$ , das heißt: jede n-elementige Menge  $(\subset \mathbb{R})$  besitzt ein Maximum. Ist nun  $M = \{a_1, \ldots, a_n, a_{n+1}\} \subset \mathbb{R}$ , so hat die Teilmenge  $\{a_1, \ldots, a_n\}$ 



#### Natürliche Zahlen - Addition

Den Schülern bewußt machen, daß man die natürlichen Zahlen additiv erzeugen kann:

$$n = \underbrace{1 + 1 + \dots + 1}_{n \text{ Summanden}}.$$

Die Addition ordnet stets zwei natürlichen Zahlen eine dritte zu:

$$n, m \in \mathbb{N} \implies n + m = k \in \mathbb{N}.$$

Subtraktion ist Gegenoperation zur Addition:

$$k - m = n$$
 genau dann, wenn  $n + m = k$ .

Insbesondere:

$$(n+m)-m=n.$$

Subtraktion hebt die Addition auf.

Problem, Substraktion geht nicht immer

$$m - n \not\in \mathbb{N}$$
 falls  $n > m + \not\downarrow \Rightarrow$  Erweiterung auf  $\mathbb{Z}$ 

## Natürliche Zahlen - Von der Addition zur Multiplikation

Wiederholte Addition der gleichen Zahl:

$$n \cdot m = \underbrace{m + m + \dots + m}_{n \text{ Summanden}}.$$

Formulierung: n mal m

Problem Wo ist die Betonung?

n mal m

 $n \underline{\text{mal } m}$ 

$$\underbrace{m+m+\cdots+m}_{n \text{ Summanden}}$$

Umgangssprache

Operatorauffassung:

$$n \xrightarrow{\cdot m} n \cdot m$$

Das wegen der Kommutativität der Multiplikation beides gleich ist, hilft den Schülern wenig. Man muss es durch Übung und Beispiele klar machen. z.B. so:

oder



Natürliche Zahlen - Kommutativität der Multiplikation

Umkehroperation? ⇒ neue Relation: **Teilerrelation** 

#### 2. Teilbarkeit

#### 2.1. Teilbarkeitsrelation.

**Definition 2.1.** Eine natürliche Zahl a ist genau dann Teiler der natürlichen Zahl b, wenn eine natürliche Zahl q existiert, so daß

$$a \cdot q = b.$$

Schreibweise:  $a \mid b \pmod{b}$  sonst  $a \not\mid b \pmod{b}$ 

Beispiele:

$$2 \cdot 3 = 6$$
  $\Rightarrow 2 \mid 6 \text{ und } 3 \mid 6$ 
 $10 \cdot 7 = 70$   $\Rightarrow 10 \mid 70 \text{ und } 7 \mid 70$ 
aber  $5 \not\mid 21$  denn  $4 \cdot 5 = 20 \text{ und } 5 \cdot 5 = 25$ 
und  $20 < 21 < 25$ 
 $\mid \qquad \qquad \mid$ 
 $5$ 
 $5$ 

Die letzte Begründung wird sicherlich von Schülern akzeptiert.

Wie kann man das aber beweisen?

Das wird mit Korollar 2 möglich sein!

#### (1) Null: Vorsicht bei Teilbarkeit: Bemerkung 2.1.

- $0 \not| b$  für alle  $b \in \mathbb{N} \setminus \{0\}$ , denn  $q \cdot 0 = 0$  für alle  $q \in \mathbb{N}$
- $0 \mid b \text{ implizient } \Rightarrow b = 0!!!!$ Null ist nur Teiler von Null!
- $a \mid 0$  für alle  $a \in \mathbb{N}$ , denn  $0 \cdot a = 0$  für alle  $a \in \mathbb{N}$
- $0 \mid 0$ ,  $denn \ q \cdot 0 = 0$  für z.B. q = 1 (und alle  $q \in \mathbb{N}!$ )

Um diese Ausnahmen nicht immer gesondert auszuschließen, beschränkt man sich auf  $\mathbb{N} = \{1, 2, 3, \ldots\}$  bei Teilbarkeitsuntersuchungen (ohne dies immer zu erwähnen!).

- (2) 0 | 0 aber !!! 0 : 0 !!! ist nicht definiert!
- (3) Teilbarkeit wird mittels Multiplikation definiert (nicht via Division wie bei G8)
  - Vorteilhaft beim Beweisen
  - Multiplikation (bei Schülern) einfacher als Division.
  - Zusammenhang Teiler und Vielfache transparenter.
  - Problem mit Division durch Null entfällt, keine Fallunterscheidungen nötig!
- (4) Teilen versus Dividieren:
  - Beim Dividieren können von Null verschiedene Reste auftreten:  $3:2=1+\frac{1}{2}$
  - Bei der Teilerfrage nicht:  $2 \nmid 3$  aber  $2 \mid 6$  weil  $2 \cdot 3 = 6$  $und\ damit \Rightarrow 6:2=3$
  - ⇒ Teilen ist eine Spezialfall des Dividierens!
  - Die gesuchte Information ist verschieden:

**Teilen**: Frage ob eine Zahl (multiplikativ) in einer anderen Zahl enthalten ist.

Dividieren: Frage wie oft eine Zahl in einer anderen enthalten

(5) Teilbarkeitsbetrachtungen können auch auf die ganzen Zahlen  $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$  erweitert werden. Ersetze  $\mathbb{N}$  durch  $\mathbb{Z}$  in Definition 1 ( und etwas mit der Null aufpassen).

**Definition 2.2.** Die Zahl  $b \in \mathbb{N}$  ist genau dann ein **Vielfaches** der Zahl  $a \in \mathbb{N}$ , wenn es ein  $q \in \mathbb{N}$  gibt mit

$$q \cdot a = b$$
  $bzw.$   $a \mid b$ 

**Bezeichnung**:  $a \mid b$  kann auch als b ist Vielfaches von a gelesen werden.



## 2.2. Eigenschaften.

Satz 2.3 (Teilbarkeitseigenschaften). Für 
$$a, b, c, d \in \mathbb{Z}$$
 gilt:

(1)  $a \mid b \text{ und } b \mid c \Rightarrow a \mid c$  (Transitivität)

(2)  $a \mid b \text{ und } b \mid a \Rightarrow |a| = |b|$  ( $/\mathbb{N}$ : (Anti-)Symmetrie)

(3)  $a \mid b \text{ und } c \mid d \Rightarrow a \cdot c \mid b \cdot d$ 

**Beweis:** 

(1) 
$$a \mid b \Rightarrow a \cdot q_1 = b$$
 und  $b \mid c \Rightarrow b \cdot q_2 = c$  für  $q_1, q_2 \in \mathbb{Z}$   
  $\Rightarrow c = b \cdot q_2 = (a \cdot q_1) \cdot q_2 = a \cdot (q_1 \cdot q_2) \Rightarrow a \mid c$ 

(2) Es gibt 
$$q_1, q_2 \in \mathbb{Z}$$
 mit 1.)  $a \cdot q_1 = b$  und 2.)  $b \cdot q_2 = a$ .  
2.) in 1.):  $b = a \cdot q_1 = (b \cdot q_2) \cdot q_1 = b \cdot q_2 q_1 \stackrel{!}{=} b$   
Fall:  $b \neq 0 \Rightarrow q_2 q_1 = 1$   
Da  $q_1, q_2 \in \mathbb{Z} \Rightarrow |q_1| = |q_2| = 1$   
 $\Rightarrow a = \pm b \Leftrightarrow |a| = |b|$ .  
Fall:  $b = 0$   
 $\Rightarrow a \mid 0$  (sowieso) und  $0 \mid a \Rightarrow a = 0$  (Bem. 2.1: Null teilt nur Null)

(3) 
$$a \cdot q_1 = b \text{ und } c \cdot q_2 = d \implies a \cdot c \cdot (q_1 \cdot q_2) = b \cdot d$$

**Korollar 2.4.** Für  $a, b \in \mathbb{Z}$ ,  $a \neq 0$  gilt:

$$(1) \ a \mid b \quad \Rightarrow \quad a \mid b \cdot d \quad \text{für alle } d \in \mathbb{Z}$$

(2) 
$$a \mid b \implies a \cdot d \mid b \cdot d \quad \text{für alle } d \in \mathbb{Z}$$

**Beweis:** 

Folgt aus dem Satz 2.3 (3) mit c=1 (für 1.) und c=d (für 2.).

Satz 2.3 (3) hat kein additives Analogon, denn

aber 
$$\Rightarrow$$
  $(2+3) = 5 \not\mid 21 = (6+15)$ 

**Satz 2.5** (Teilen von Linearkombinationen). Für  $a, b, c \in \mathbb{Z}$  gilt:

$$a \mid b \quad und \quad a \mid c \quad \Rightarrow \quad a \mid (rb + sc)$$

für alle  $r, s \in \mathbb{Z}$ . (d.h. a teilt jede ganzzahlige Linearkombination von b und c.)

Beweis:

Korollar  $\Rightarrow a \mid r \cdot b$  und  $a \mid s \cdot c$  für alle  $r, s \in \mathbb{Z}$ .

Also  $a \cdot q_1 = r \cdot b$  und  $a \cdot q_2 = s \cdot c$  für  $q_1 \cdot q_2 \in \mathbb{Z}$ .

$$\Rightarrow$$
  $a \cdot (q_1 + q_2) = a \cdot q_1 + a \cdot q_2 = r \cdot b + s \cdot c$ 

 $\Rightarrow$  Beh.

Der Satz ist nicht umkehrbar, denn:

$$2 \mid (2 \cdot 3 + 4 \cdot 5)$$
 aber  $2 \not\mid 3$  und  $2 \not\mid 5$ 

Aber:

**Korollar 2.6.** Für  $a, b, c \in \mathbb{Z}$  gilt:

$$a \mid b \quad und \quad a \mid c \quad \Rightarrow a \mid b \pm c$$

Nachtrag zum Beispiel aus Abschnitt 2.1:

Wie beweist man das Nicht Teiler Sein?

Beweis:

Z.B. durch Widerspruch: Annahme: 5 | 21

Es gilt sicher auch:  $5 \mid 20$ , denn  $5 \cdot 4 = 20$ .

Korollar 2.6 
$$\Rightarrow$$
 5 | (21 - 20) = 1 4



$$a\,|\,b\,\Leftrightarrow\,|a|\,\big|\,|b|$$

**Beweis:** 

$$a = \operatorname{sign}(a) \cdot |a| \text{ und } b = \operatorname{sign}(b) \cdot |b|$$

$$a|b \Leftrightarrow a \cdot q = b$$

$$\Leftrightarrow \operatorname{sign}(a) \cdot |a| \cdot q = \operatorname{sign}(b) \cdot |b| \qquad (\cdot \operatorname{sign}(b))$$

$$\Leftrightarrow |a| \cdot (q \cdot \operatorname{sign}(a) \cdot \operatorname{sign}(b)) = |b|$$

$$\Leftrightarrow |a| |b|$$

Anwendung:  $\sqrt{2}$  ist keine rationale Zahl.

#### Beweis:

Angenommen,  $\sqrt{2}$  ist rational, also ein Bruch. Sei T die Menge der natürlichen Zahlen n, so daß  $n \cdot \sqrt{2} \in \mathbb{N}$ . Nach dem Satz über das kleinste Element (Wohlordnungsprinzip Satz 1.1 ) hat T ein kleinstes Element  $n_0$ , also  $n_0 \cdot \sqrt{2} \in \mathbb{N}$ . Dann:

weil: 
$$1 < 2 < 4$$
 (Wurzel ziehen) 
$$1 < \sqrt{2} < 2$$
  $|\cdot n_0|$  
$$n_0 < n_0 \cdot \sqrt{2} < 2n_0$$
  $|-n_0|$  
$$0 < \underbrace{n_0 \cdot \sqrt{2} - n_0}_{\in \mathbb{N}} < n_0$$
  $|\cdot \sqrt{2}|$  
$$0 < \underbrace{(n_0 \cdot \sqrt{2} - n_0)}_{< n_0} \cdot \sqrt{2} = \underbrace{2n_0 - n_0 \cdot \sqrt{2}}_{\in \mathbb{N}} < n_0 \cdot \sqrt{2}$$

Also ist  $(n_0 \cdot \sqrt{2} - n_0) < n_0$  ein weiteres Element von T, das widerspricht der Minimalität von  $n_0$ . Also ist  $T = \emptyset$  und damit  $\sqrt{2}$  irrational!

## 2.3. Teilermengen.

Definition 2.3. Für eine natürliche Zahl a sei:

$$T_a = T(a) = \{x \in \mathbb{N} \mid x \text{ teilt } a\}$$

die Menge aller Teiler von a.

## Beispiele

$$T_{15} = \{1, 3, 5, 15\}$$
  
 $T_{17} = \{1, 17\}$ 

Wegen  $1 \mid a \text{ und } a \mid a \Rightarrow \{1, a\} \subseteq T_a$ .

 $T_a$  hat also immer mindestens 2 Elemente (für a > 1):  $\#T_a \ge 2$ .

### Definition 2.4.

- (1) Natürliche Zahlen, die genau 2 Teiler haben, heißen <u>Primzahlen</u>.
- (2) Natürliche Zahlen, die mindestens 3 Teiler haben, heißen zusammengesetzte Zahlen.

#### Satz 2.8.

$$a \in \mathbb{N}, a \neq 0 \implies \#T_a \leqslant a$$

(a hat also höchsten a Teiler!)

#### **Beweis:**

Sei  $b \in T_a$ , (also  $b \mid a$ ).

 $\Rightarrow b \cdot q = a$  für ein  $q \in \mathbb{N}$ .

insbesondere  $b, q \ge 1$  (da  $b, q \in \mathbb{N} \setminus \{0\}$ )

$$\Rightarrow 1 \leqslant b = b \cdot 1 \leqslant b \cdot q = a$$

Kurz 
$$1 \leq b \leq a \Rightarrow Beh.$$

Bemerkung 2.9. Für a = 0 gilt der Satz nicht, denn  $b \cdot 0 = 0$  für alle  $b \in \mathbb{N}$ 

$$\Rightarrow$$
  $\#T(0) = \infty$ 

Sei  $a \in \mathbb{N}$  mit #T(a) > 2.

(also <u>keine</u> Primzahl)

 $\Rightarrow$  es gibt Teiler:  $b \mid a$ ,  $b \neq 1$  und  $b \neq a$ 

 $\Rightarrow$  es gibt  $q \in \mathbb{N}$  mit  $b \cdot q = a$ 

 $(q \neq 1, q \neq a)$ 

Erlaubt ist auch: q = b

Wegen  $b \cdot q = a$  nennt man a auch zusammengesetzte Zahl.



Bemerkung 2.10.

• Die kleinste zusammengesetzte Zahl ist:  $4 = 2 \cdot 2$ 

$$T_4 = \{1, 2, 4\}.$$

• Die Zahl 1 ist weder Primzahl noch zusammengesetzte Zahl.

### Wie findet man Teilermengen einer Zahl?

Nutze: - Teiler treten in Paaren auf:  $b \cdot q = a$  Paar: (b,q) - Bei Quadratzahlen:  $b^2 = a$  Paar: (b,b)

## Beispiele:

a = 21:

$$a = 12$$
:
$$\frac{b \mid 1 \quad 2 \quad 3 \mid 4}{q \mid 12 \quad 6 \quad 4 \mid 3} \Rightarrow T_{12} = \{1, 2, 3, 4, 6, 12\} \Rightarrow \#T_{12} = 6$$

$$\frac{b \mid 1 \quad 3 \mid 7}{q \mid 21 \quad 7 \mid 3} \Rightarrow T_{21} = \{1, 3, 7, 21\} \Rightarrow \#T_{21} = 4$$

$$a = 16$$
: 
$$\frac{b \mid 1 \quad 2 \quad 4}{q \mid 16 \quad 8 \quad 4} \Rightarrow T_{16} = \{1, 2, 4, 8, 16\} \Rightarrow \#T_{16} = 5$$

Bemerkung 2.11. Quadratzahlen haben eine ungerade Anzahl von Teilern. Nicht-Quadratzahlen haben eine gerade Anzahl von Teilern.

Satz 2.12. Für  $a, b \in \mathbb{N}$  gilt:

$$a \mid b \Leftrightarrow T_a \subseteq T_b$$

#### **Beweis:**

"  $\Rightarrow$ " Transitivität der Teilerrelation (Satz 2.3 (1))  $\Rightarrow c \mid a \text{ und } a \mid b \Rightarrow c \mid b \Rightarrow T_a \subseteq T_b.$ 

"
$$\Leftarrow$$
"  $a \in T_a \subseteq T_b \Rightarrow a \mid b$ .

Teilbarkeitsregeln



Beispiele: Teiler Bedingung

- 2 gerade Zahl bzw. letzte Ziffer ist gerade
- 3 3 | Quersumme
- 5 letzte Ziffer 0 oder 5
- 9 9 | Quersumme
- $2^n$ Zahl der letzten n Ziffern ist durch  $2^n$  teilbar
- $5^n$ Zahl der letzten n Ziffern ist durch  $5^n$  teilbar

Das und mehr wird in einem späteren Abschnitt ausführlich behandelt!

## 2.4. Ordnungsrelation: Teilbarkeit und Hassediagramme.

**Satz 2.13.** Die Teilbarkeitsrelation über  $\mathbb{N}$  ist eine Ordnungsrelation, d.h. sie ist:

reflexiv: a teilt a (a|a) für alle  $a \in \mathbb{N}$ .



**transitiv**: aus a|b und b|c folgt a|c, für  $a, b, c \in \mathbb{N}$ . antisymmetrisch : aus a|b und b|a folgt a = b.

**Beweis:** 

- Reflexivität ist klar
- Transitivität war Inhalt von Satz 2.3 (1)
- (Anti-)Symmetrie: folgt aus Satz 2.3 (2):  $a \mid b \text{ und } b \mid a \Rightarrow |a| = |b|$ mit  $\mathbb{N}$  statt  $\mathbb{Z}$  gilt: a = b

Hassediagramme veranschaulichen Teilbarkeitszusammenhänge in Zahlenmengen: Beispiele

$$(1) \quad M = \{1, 2, 3, 4, 5\}$$



$$(2) \quad T_8 = \{1, 2, 4, 8\}$$

$$(3) \quad T_{21} = \{1, 3, 7, 21\}$$



$$(4) \quad T_{25} = \{1, 5, 25\}$$

- (5)  $M = \{1, 3, 5, 9, 45\}$
- (6)  $T_{70} = \{1, 2, 5, 7, 10, 14, 35, 70\}$

#### 3. Primzahlen

## 3.1. Einführung der Primzahlen in der Schule.

## Methode: Vervielfachungsmaschinen

Michael hat viele Vervielfachungsmaschinen:

 $\boxed{\cdot 2}, \boxed{\cdot 3}, \boxed{\cdot 4}, \dots$ 

Diese Maschinen verdoppeln, verdreifachen, vervierfachen etc..

Aufgabe: Michael soll 100 große Zahlen versechsfachen!

Problem: Maschine 6 ist defekt.

Lösung: Freund Andreas schlägt vor, die Maschinen 2 und 3 zu benutzen.

Frage 1 Warum?

Frage 2 Gibt es noch mehr überflüssige Maschinen?

Frage 3 Welche Maschinen sind unentbehrlich?



## Methode: Rechtecke Legen

Gegeben: 12 gleichgroße quadratische Plättchen.

Frage: Wie viele verschiedene Rechtecke können damit gelegt werden?

Variationen: Dabei müssen 1) alle Plättchen genutzt werden oder 2) nicht!

Wie ist das bei 13, 15 oder 20 Plättchen?

Gibt es auch Plättchenmengen, aus denen (wenn alle Teile benutzt werden sollen) keine Rechtecke gebildet werden können?

## Methode: Gefängniszellen

Ein Tyrann hat ein Gefängnis mit 1000 Einzelzellen und 1000 Wärtern.

Einmal im Jahr werden im Rahmen einer Amnestie Gefangene entlassen. Dabei werden die Gefangenen nach folgender Methode ausgewählt:

Wärter 1 macht an jeder Tür ein Kreuz

Wärter 2 macht an jeder 2ten Tür ein Kreuz

Wärter 3 macht an jeder 3ten Tür eine Kreuz

Die Gefangenen hinter den Türen mit genau 2 Kreuzen werden entlassen. Welche Zelltüren werden geöffnet?

| · · · · · · · · · · · · · · · · · · · |   |            |   |   |   |   |   |   |   |    |    |
|---------------------------------------|---|------------|---|---|---|---|---|---|---|----|----|
| $W^Z$                                 | 1 | 2          | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 1                                     | × | ×          | × | × | × | × | × | × | × | ×  | ×  |
| 2                                     |   | $\times$   |   | × |   | × |   | × |   | ×  |    |
| 3                                     |   |            | × |   |   | × |   |   | × |    |    |
| 4                                     |   |            |   | × |   |   |   | × |   |    |    |
| 5                                     |   |            |   |   | × |   |   |   |   | ×  |    |
| 6                                     |   |            |   |   |   | × |   |   |   |    |    |
| 7                                     |   |            |   |   |   |   | × |   |   |    |    |
| 8                                     |   |            |   |   |   |   |   | × |   |    |    |
| 9                                     |   |            |   |   |   |   |   |   | × |    |    |
| 2 Kreuze:                             |   | $\uparrow$ | 1 |   | 1 |   | 1 |   |   |    | 1  |

### Vergleich der Zugänge:

Vervielfachungsmaschinen: Betont die Eigenschaft der Primzahlen, 1) (multiplikative) Bausteine aller natürlicher Zahlen zu sein und 2) Unzerlegbar zu sein.

Rechtecke Legen: Darstellung natürlicher Zahlen als Produkt von 2 Zahlen, enaktiv (durch Handlung), Zerlegbarkeit von Zahlen.

Gefängnis: Vielfache, Teilbarkeit, Anzahl der Teiler, Ergänzende Frage: Wieviele und welche Wärter machen ein Kreuz an Tür Nummer n?







#### Charakteristika von Primzahlen:

- Primzahlen sind unzerlegbar
- Primzahlen sind die Bausteine der natürlichen Zahlen ==



• Primzahlen haben genau 2 Teiler

Sonderfall: Die Zahl  $\underline{1}$  ist keine Primzahl! und natürlich auch nicht zerlegbar!!

Achtung: Die Begriffe Teilbarkeit und Primzahlen betreffen die Verknüpfung: Multiplikation

Bzgl. Addition gibt es in  $\mathbb{N}$  nur ein unzerlegbares Element: die Zahl 1.

Aber es gibt  $\infty$ -viele unzerlegbare Elemente in  $\mathbb{N}$  bzgl. der Multiplikation  $\Rightarrow$  die  $\infty$ -vielen Primzahlen.

#### 3.2. Wieviele Primzahlen gibt es?

**Satz 3.1.** Der kleinste von 1 verschiedene Teiler einer natürlichen Zahl a > 1ist eine Primzahl.

Beweis:

Fall 1: a ist Primzahl

$$\Rightarrow T_a = \{1,a\} \quad \Rightarrow \quad \text{der kleinste Teiler} \neq 1 \text{ ist } a \quad \Rightarrow \text{Beh}.$$

Fall 2: a ist zerlegbar

$$\Rightarrow \{1, a\} \subset T_a$$

Sei 
$$b \in T_a \setminus \{1, a\}$$
 der kleinste Teiler.

(vgl. Satz 1.1)

Z.z. b ist Primzahl.

Klar, wegen der Transitivität der Teilbarkeitsrelation:

Wäre 
$$b$$
 keine Primzahl  $\Rightarrow \exists t \neq 1, b \text{ mit } t|b \Rightarrow 1 < t < b$ 

$$t|b \text{ und } b|a \implies t|a \notin$$



## Satz 3.2 (Euklid (um -3.Jh.)). Es gibt unendlich viele Primzahlen.



#### **Beweis:**

Annahme es gibt endlich viele Primzahlen:

$$p_1, p_2, p_3, \ldots, p_n$$

Sei 
$$a := p_1 \cdot p_2 \cdot \ldots \cdot p_n + 1 \quad (\in \mathbb{N})$$

a ist keine Primzahl, da größer als jede Primzahl, a > 1 und:

(\*) 
$$p_i \not\mid a$$
 für alle  $i = 1, \dots, n$ 

(weil Rest 
$$\frac{1}{p_i}$$
)

Sei  $p \in T_a$ der kleinste Teiler  $\neq 1$ 

Aus (\*) 
$$\Rightarrow p \neq p_i$$
,  $i = 1, ..., n$ 



Folgerung Zu jeder großen Primzahl gibt es stets eine noch größere - es gibt keine größte Primzahl.

Jagd nach großen Primzahlen: Viele Internetseiten (z.B. www.primzahlen.de),

Bücher (Ribenboim,...), Strategien, Primzahlen zu erzeugen:

z.B. Mersennezahlen: 
$$2^n - 1$$

#### 3.3. Sieb des Eratosthenes.

Erathosthenes (\* um 273 v. Chr. in Kyrene,† um 194 v. Chr. in Alexandria) Mathematiker, Geograph, Astronom, Historiker, Philosoph, leitete die Bibliothek von Alexandria.

Berechnete unter anderem den Erdumfang und die Schiefe der Ekliptik.

#### Siebmethode, 10 Spalten

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|----|----|----|----|----|----|----|----|----|----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
| :  |    |    |    |    |    |    |    |    |    |

- (1) Streiche Zahl 1, da keine Primzahl
- (2) nächste Zahl ist 2, PZ, streiche alle Vielfachen von 2.
- (3) nächste Zahl ist 3, PZ, streiche alle Vielfachen.
- $\left(4\right)$ nächste Zahl ist 5, PZ, streiche alle Vielfachen.

:

## Siebmethode, 1+6 Spalten



**Satz 3.3.** Die Primzahlen > 3 sind von der Form  $6n \pm 1$  mit  $n \in \mathbb{N}$ .

**Satz 3.4.** Beim Sieben der natürlichen Zahlen  $\leq$  n nach Eratosthenes reicht es, die Vielfachen der Primzahlen  $\leq \sqrt{n}$  zu streichen.



# 3.4. Wie sind die Primzahlen innerhalb der natürlichen Zahlen verteilt?

Primzahlen p und q mit Abstand |p-q|=2 heißen Primzahlzwillinge.

Weitere Beispiele für Primzahlzwillinge:

(9929, 9931), 
$$\underbrace{(156 \cdot 5^{202} - 1, 156 \cdot 5^{202} + 1)}_{\text{haben } 144 \text{ Ziffern}}$$
2007: 
$$\underbrace{(2.003.663.613 \cdot 2^{195.000} \pm 1)}_{\text{haben } 58.711 \text{ Ziffern}}$$

Sei 2300 Jahren bekannt: Es gibt  $\infty$ -viele Primzahlen.

Offen (nicht bekannt): ob es endlich oder unendlich viele Primzahlzwillinge gibt.

## Primzahldrillinge:

$$(3, 5, 7)$$
 sind die einzigen Primzahlentripel der Form  $(p, p + 2, p + 4)$ 

#### **Beweis:**

Annahme 3 < p, p + 2, p + 4 sind Primzahlen.

Da 
$$p \text{ prim} \Rightarrow p = 6m \pm 1$$

Wenn 
$$p = 6m + 1 \implies p + 2 = 6m + 3 \implies 3|p + 2 \nleq$$

Wenn 
$$p = 6m - 1 \implies p + 4 = 6m + 3 \implies 3|p + 4 \notin \square$$

Primzahlfolgen der Form p, p + 2, p + 6 heißen Primzahldrillinge.

#### Beispiele

Es gibt bei großen Zahlen nicht nur immer wieder Primzahlhäufungen (wie die Beispiele zeigen), aber auch beliebig lange Lücken:

**Satz 3.5.** Für alle 
$$n \in \mathbb{N}$$
 gibt es eine Primzahllücke der Länge  $\geq n$ .

(m.a.W.: für jedes n gibt es eine Folge von n aufeinanderfolgenden zusammengesetzten Zahlen.)

#### **Beweis:**

$$(n+1)! + 2 = 2 \cdot 3 \cdot 4 \cdots (n+1) + 2 \text{ hat Teiler } 2$$

$$(n+1)! + 3 = 2 \cdot 3 \cdot 4 \cdots (n+1) + 3 \text{ hat Teiler } 3$$

$$\vdots$$

$$(n+1)! + (n+1) = 2 \cdots (n+1) + (n+1) \text{ hat Teiler } (n+1)$$

Das sind insbesondere n aufeinanderfolgende zusammengesetzte Zahlen  $\Rightarrow$  Beh.

## **Satz 3.6.** Für $n \ge 3$ liegt zwischen n und n! mindestens eine Primzahl.



Sei 
$$n \in \mathbb{N}, n \ge 3$$
  $\Rightarrow n! - 1 \ge 3! - 1 = 2 \cdot 3 - 1 = 5 > 1$   $\Rightarrow$  kleinster Teiler  $p \ne 1$  von  $n! - 1$  ist eine Primzahl (vgl. Satz 3.17)

Dann: 
$$p \le n! - 1 < n!$$

Wir haben also eine Primzahl p < n! gefunden.

Es gilt aber auch n < p, denn:

$$2, 3, 4, \dots, n \in T_{n!} \Rightarrow 2, 3, 4, \dots, n \notin T_{n!-1}$$
  
 $\Rightarrow p \neq 2, 3, 4, \dots, n \Rightarrow n$ 

Euler (1737): Neuer Beweis für die Unendlichkeit der Primzahlen mittels harmonischer Reihe.

Wdh.: Harmonische Reihe/Folge:  $\sum_{i=1}^{n} \frac{1}{i}$  divergiert für  $n \to \infty$ .

$$\lim_{n \to \infty} \frac{\sum_{PZ: p \le n} \frac{1}{p}}{\ln(\ln(n))} = 1$$

d.h. Zähler- und Nennerfunktion verhalten sich asymptotisch gleich!



Folgerung:

Satz 3.8 (Euler, um 1740). 
$$\sum_{PZ: p \leq n} \frac{1}{p}$$
 divergiert für  $n \to \infty$ .

$$\Pi(x) := \#\{\text{Primzahlen } p \leq x\} \quad \text{, für} \quad x \in \mathbb{R}$$

z.B. 
$$\Pi(1) = 0$$
,  $\Pi(2) = 1$ ,  $\Pi(3) = 2$ ,  $\Pi(10) = 4$ ,  $\Pi(17,3) = \Pi(17) = 7$ 

Legendre (1752-1833) stellte aufgrund empirischer Untersuchungen die Vermutung auf, daß:

$$\Pi(x)$$
 verhält sich asymptotisch gleich  $\frac{x}{\ln x}$ 

Satz 3.9 (Primzahlsatz). (Hadamard und unabhängig Ch.de la Valleé Poussin, 1896)

$$\lim_{x \to \infty} \frac{\Pi(x)}{\frac{x}{\ln x}} = 1$$

## 3.5. Primzahlformeln.



Das Polynom

$$p(x) = x^2 - 79x + 1601$$

$$p(39) = p(40) = 41,$$
  $p(38) = p(41) = 43,$ 

$$p(37) = p(42) = 47,$$
  $p(36) = p(43) = 53$ 

$$p(35) = p(50) = 151$$
 ... alles Primzahlen?

Satz 3.10. Kein Polynom  $p(x) = a_n x^n + \dots + a_1 x + a_0$  vom  $Grad \ge 1$ ,  $a_i \in \mathbb{Z}$ , erfüllt

$$p(m)$$
 ist Primzahl für alle  $m \in \mathbb{Z}$ .

#### **Beweis:**

Sei  $p(x) = a_n x^n + \ldots$ ein Polynom vom Grad n mit ganzzahligen Koeffizienten.

Z.z.:  $\exists m \in \mathbb{Z} \text{ mit } p(m) \text{ ist zusammengesetzte Zahl!}$ 

Wenn  $a_0$  zusammengesetzte Zahl  $\Rightarrow p(0) = a_0$  zusammengesetzt.  $\checkmark$ 

Also Annahme:  $a_0$  PZ.



 $\Rightarrow \forall m \in \mathbb{N} \text{ gilt:}$ 

$$p(a_0 \cdot m) = a_n (a_0 \cdot m)^n + a_{n-1} (a_0 \cdot m)^{n-1} + \dots + a_1 (a_0 \cdot m) + a_0$$

$$= a_0 \left( \underbrace{a_n a_0^{n-1} m^n + \dots + a_1 m}_{=:A(m) \in \mathbb{Z}} + 1 \right)$$

$$= a_0 \left( A(m) + 1 \right)$$

Genauer:

$$A(m) = a_n a_0^{n-1} m^n + a_{n-1} a_0^{n-2} m^{n-1} + \dots + a_1 m$$

A(m) ist also ein Polynom vom Grad n in der Variablen m.

 $\Rightarrow A(m)$  hat höchstens n Nullstellen.

Also 
$$\exists m_0 \in \mathbb{N} \text{ (bzw.in } \mathbb{Z}) \text{ mit } A(m_0) \neq 0$$

$$\Rightarrow$$
  $p(m_0 \cdot a_0) = a_0 \underbrace{\left(A(m_0) + 1\right)}_{\neq 1}$  ist zusammengesetzte Zahl

**Satz 3.11.** Seien  $a, b \in \mathbb{N}$  mit ggT(a, b) > 1 und  $a \neq 0$ , so kann für  $x \in \mathbb{Z}$  das lineare Polynom p(x) = ax + b höchstens einen Primzahlwert annehmen.



Bemerkung 3.12. Vorgriff: ggT wird erst im nächsten Abschnitt definiert! Wir haben gesehen, daß alle Primzahlen > 3 von der Form  $6n \pm 1$  sind! Das widerspricht nicht dem Satz, denn ggT(6,1) = 1

#### **Beweis:**

Sei c := ggT(a, b), nach Vorraussetzung:  $c \neq 1$ 

$$\Rightarrow a = c \cdot a_1 \text{ und } b = c \cdot b_1 \text{ mit } a_1, b_1 \in \mathbb{N} \text{ und } a_1 \geqslant 1.$$

$$\Rightarrow \forall z \in \mathbb{Z}$$
  $p(z) = az + b = ca_1z + cb_1 = c(a_1z + b_1)$ 

Das ist nur dann eine Primzahl, wenn  $a_1z + b_1 = 1$  und c eine Primzahl ist.

Da bleiben die folgenden Möglichkeiten:

(1) 
$$b_1 = 0 \Rightarrow a_1 \cdot z = 1 \Rightarrow a_1 = z = 1 \text{ und } p(1) = c \text{ PZ},$$

(2) 
$$b_1 = 1 \implies b = c \implies (0) = b = c PZ$$

(2) 
$$b_1 = 1 \Rightarrow b = c \Rightarrow p(0) = b = c \text{ PZ},$$
  
(3)  $b_1 \ge 2 \Rightarrow 1 \le b_1 - 1 = -a_1 z \Rightarrow z \text{ negativ und } a_1 \mid b_1 - 1. \text{ Sei } a_1 \cdot q = b_1 - 1 \Rightarrow p(-q) = c(-a_1 q + b_1) = c(1 - b_1 + b_1) = c \text{ PZ}.$ 

Die 3 Fälle schliessen sich offensichtlich aus und jeweils gibt es genau den einen angegebenen Primzahlwert. 

#### Beispiele

• p(x) = 3x (also b = 0 und a = c PZ) hat Primzahlwert: p(1) = 3



- p(x) = 12x + 4 = 4(3x + 1) hat nie Primzahlwerte (/N), denn  $c \neq PZ$
- p(x) = 12x + 3 = 3(4x + 1) hat den Primzahlwert: p(0) = 3
- p(x) = 6x + 15 = 3(2x + 5) hat den Primzahlwert: p(-2) = 3

Was ist, wenn ggT(a, b) = 1?

Satz 3.13 (Dirichletscher Primzahlsatz). Zu jeder natürlichen Zahl b gibt es unendlich viele Primzahlen der Form

$$p \equiv a \mod b$$
,  $mit \ ggT(a, b) = 1$ 

Alternative Formulierung  $Sind\ a,b\in\mathbb{N}\ mit\ ggT(a,b)=1,\ so\ gibt\ es\ \infty$ viele  $Primzahlen\ der\ Form$ 

$$a \pm nb$$
,  $n \in \mathbb{N}$ 

Zum Beweis benötigt man Begriffe wie Dirchlet-Charakter, Zeta-Funktion und L-Reihen ⇒übersteigt Möglichkeiten der Elementaren Zahlentheorie.



 $\exists \quad \infty - \text{viele Primzahlen:} \quad p = 1 \mod 2$ 

 $\Leftrightarrow \exists \quad \infty - \text{viele Primzahlen:} \quad p = 1 + 2n$ 

**Klar:** jede Primzahl  $\neq 2$  ist von dieser Form.

b) In Satz 3.3 haben wir gesehen: Jede Primzahl > 3 ist von der Form:

$$6n \pm 1$$
 mit  $n \in \mathbb{N}$ 

$$\Rightarrow$$
 Fall  $a = 1, b = 6$ :  $p = 1 + 6n$ 

Aber: 
$$6n - 1 = 6(n - 1) + 6 - 1 = 6(n - 1) + 5$$

 $\Rightarrow$  Satz 3.3 beinhaltet also die beiden Fälle: (a, b) = (1, 6) und (a, b) = (5, 6).

## Offene Primzahlprobleme

Goldbach'sche Vermutung: Jede gerade Zahl > 2 läßt sich als Summe von zwei Primzahlen darstellen. (Nachgewiesen für alle  $n \le 4 \cdot 10^{17}$ .)

Äquivalent (Euler): Jede natürliche Zahl > 5 ist Summe von drei Primzahlen.

#### **Beweis:**

#### "Goldbach $\Rightarrow$ Euler":

Wenn n > 5 eine gerade Zahl ist  $\Rightarrow n - 2 > 3 > 2$  ebenfalls gerade und nach der Goldbach'schen Vermutung Summe von 2 Primzahlen:

$$n-2 = p_1 + p_2$$
  $\Rightarrow$   $n = 2 + p_1 + p_2$ 

Wenn n > 5 eine ungerade Zahl ist  $\Rightarrow n - 3 > 2$  ist eine gerade Zahl und ebenso nach Goldbach Summe von zwei Primzahlen:

$$n-3=p_1+p_2 \qquad \Rightarrow \qquad n=3+p_1+p_2 \checkmark$$

"Goldbach  $\Leftarrow$  Euler": Sei n > 2 gerade.

Wenn n = 4,  $\Rightarrow n = 4 = 2 + 2$ , also Summe von 2 Primzahlen.

Wenn n = 6,  $\Rightarrow n = 6 = 3 + 3$ , also Summe von 2 Primzahlen.

Allgemein: mit n ist  $n + 2 \ge 5$  ebenfalls gerade und nach Euler:

$$n+2=p_1+p_2+p_3$$
 mit Primzahlen  $p_i$ .

Wären  $p_1, p_2, p_3 > 2$ , so wären alle drei Primzahlen ungerade und dann auch ihre Summe.

$$\Rightarrow$$
 OE  $p_1=2, \Rightarrow n+2=2+p_2+p_3 \Rightarrow n=p_2+p_3$  ist Summe von 2 Primzahlen.



## 3.6. Primfaktorzerlegung.

## Beispiele

• Bei sehr hohen Zahlen ist das sehr mühsehlig:

z.B. 
$$a = 286.378.465$$

Finde PFZ, ist diese auch eindeutig?

In der Praxis heute ohne Rechnereinsatz kaum denkbar.

• Viererwelt:

$$V := \{1, 4, 8, 12, 16, \dots, 4n, \dots\} = 4\mathbb{N} \cup \{1\}$$

V ist abgeschlossen bzgl. Multiplikation

⇒ Teilbarkeitsuntersuchungen möglich:

<u>Def:</u> Für  $a, b \in V$ ,  $a \mid_4 b$  (a ist V-Teiler von b) genau dann, wenn  $a \cdot q = b$  für ein  $q \in V$ .

Dann

$$\underbrace{1 \mid_4 32}_{1 \cdot 32 = 32}, \quad \underbrace{4 \mid_4 32, \quad 8 \mid_4 32}_{4 \cdot 8 = 32}, \quad \underbrace{16 \not\mid_4 32}_{16 \cdot 2 = 32, \, 2 \notin V}, \quad \underbrace{32 \mid_4 32}_{32 \cdot 1 = 32}$$

 $\Rightarrow V$ -Primzahlen möglich zu definieren:

<u>Def.</u>: Eine Zahl  $p \in V$  heißt V-Primzahl, wenn sie genau 2 V-Teiler hat: 1 und p.

Dann:

$$T_{\mathbb{N}}(4) = \{(1,4), \underbrace{2}_{\notin V}\}$$
  $T_{V}(4) = \{1,4\} \Rightarrow V - PZ$ 

$$T_{\mathbb{N}}(8) = \{(1,8), (\underbrace{2,4}_{\notin V})\}$$
  $T_{V}(8) = \{1,8\} \Rightarrow V - PZ$ 

 $(da\ 4 \cdot 2 = 8 \text{ und } 2 \notin V \text{ ist } 4 \text{ kein } V\text{-Teiler von } 8)$ 

$$T_{\mathbb{N}}(12) = \{(1, 12), (\underbrace{\mathbf{3}, \mathbf{4}}_{\notin V}), (\underbrace{\mathbf{2}, \mathbf{6}}_{\notin V})\}$$
  $T_{V}(12) = \{1, 12\} \Rightarrow V - PZ$ 

 $(da \ 4 \cdot 3 = 12 \text{ ist } 4 \text{ kein } V\text{-Teiler von } 12)$ 

$$T_{\mathbb{N}}(24) = \{(1, 24), (2, 12), (3, 8), (4, 6)\}$$
  $T_{V}(24) = \{1, 24\} \Rightarrow V - PZ$ 

 $\Rightarrow$  Primfaktorzerlegung in V:

Beispiel: a = 96 eindeutige PFZ in V??



$$T_{\mathbb{N}}(96) = \{(1, 96), (2, 48), (3, 32), (4, 24), (6, 16), (8, 12)\}$$

$$T_{V}(96) = \{(1, 96), (4, 24), (8, 12)\}$$

$$\Rightarrow 96 = 8 \cdot 12 = 4 \cdot 24$$

Da 4, 8, 12, 24 V-Primzahlen, hat 96 also 2 Primfaktorzerlegungen !!?? Eindeutigkeit???

**Satz 3.14** (Existenz). Jede natürliche Zahl  $a \neq 1$  besitzt eine Primfaktorzerlegung (PFZ):

$$a = p_1 \cdots p_s$$
 mit Primzahlen  $p_i, i = 1, \dots, s, s \ge 1$ 

**Beweis:** 

Fall 1:  $a \text{ ist Primzahl} \Rightarrow a = a \text{ ist PFZ}.$ 

**Fall 2:** a zusammengesetzte Zahl: sei  $p_1|a$  der kleinste Teiler  $\neq 1$ . Satz  $3.1 \Rightarrow p_1$  ist Primzahl.

Klar:  $1 < p_1 < a$  und  $p_1 \cdot n_1 = a$  mit einem  $n_1 \in \mathbb{N}$ ,  $1 < n_1 < a$ .

Falls  $n_1 PZ \checkmark$ 

Falls  $n_1$  keine PZ: Sei  $p_2|n_1$  kleinster Teiler  $\neq 1$ 

 $\Rightarrow p_2$  PZ und  $n_1 = p_2 \cdot n_2$  mit  $n_2 \in \mathbb{N}$ ,  $1 < n_2 < n_1$ .

$$\Rightarrow$$
  $a = p_1 \cdot n_1 = p_1 \cdot p_2 \cdot n_2, \quad 1 < n_2 < n_1 < a$ 

Nun wieder  $n_2$  entweder Primzahl  $\geq 2$  (und damit wären wir fertig) oder zusammengesetzt ...

Algorithmus muß abbrechen (d.h.  $n_{s-1}$  ist Primzahl  $\geq 2$  für ein s), denn es gibt nur endlich viele natürliche Zahlen zwischen 1 und a.

Also 
$$a = p_1 \cdot p_2 \cdot \ldots \cdot p_{s-1} \cdot \underbrace{n_{s-1}}_{PZ}$$

Mit 
$$n_{s-1} =: p_s$$
  $\Rightarrow$   $a = p_1 \cdots p_s$ 

Satz 3.15 (Hauptsatz der elementaren Zahlentheorie, Eindeutigkeit). Jede natürliche Zahl  $a \neq 1$  besitzt genau eine (bis auf die Reihenfolge (b.a.R.) eindeutige) Primfaktorzerlegung.



**Annahme:** Es gibt ein  $n \in \mathbb{N}$  mit 2 Primfaktorzerlegungen.

Sei n die kleinste natürliche Zahl mit dieser Eigenschaft (vgl. Wohlordnungsprinzip 1.1), dann gilt:

Alle natürlichen Zahlen kleiner n haben eine (b.a.R.) eindeutige PFZ. (2)

Sei  $p_1 | n$  kleinster Teiler  $\neq 1$ 

Wie im Beweis von Satz 3.14 gibt es zu  $p_1$  eine PFZ:

$$n = p_1 \cdot p_2 \cdots p_s \tag{3}$$

Nach Annahme gibt es noch eine weitere PFZ:

$$n = q_1 \cdot q_2 \cdots q_t \tag{4}$$

**Zwischenbehauptung**: Die Mengen  $\{p_1, p_2, p_3, \dots, p_s\}$  und  $\{q_1, \dots, q_t\}$  sind disjunkt:

Wäre z.B.  $p_i \in \{q_1, \dots, q_t\},$  z.B.  $p_i = q_r$ , dann

$$p_1 \cdot p_2 \cdots p_i \cdots p_s = \frac{n}{p_i} = \frac{q_1 \cdot q_2 \cdots q_t}{q_r} = \underbrace{q_1 \cdot q_2 \cdots q_r \cdots q_t}_{\text{bat eindeutige PFZ}} < n$$

⇒ nach (2) müssten die beiden (äußeren) PFZ'en übereinstimmen ⇒

$$\{p_1, p_2, \dots, p_i, \dots, p_s\} = \{q_1, q_2, \dots, q_r, \dots, q_t\}$$
  $(p_i = q_r \text{ hinzufügen:})$   
 $\Rightarrow \{p_1, p_2, p_3, \dots, p_s\} = \{q_1, q_2, \dots, q_r, \dots, q_t\}$   $\xi$ 

Widerspruch zur Annahme, daß die PFZ'en  $(3)\neq (4)$ .

- $\Rightarrow$  Zwischenbehauptung!
- $\Rightarrow$  insbesondere gilt:  $p_1 \notin \{q_1, \ldots, q_t\}$ .

Setze

$$n = p_1 \cdot \underbrace{p_2 \cdots p_s}_{=:a} = p_1 \cdot a$$

$$n = q_1 \cdot \underbrace{q_2 \cdots q_t}_{=:b} = q_1 \cdot b$$
 (dabei gilt  $b > 1$ , denn sonst wäre  $n = q_1$  PZ)

$$\Rightarrow \quad z := n - p_1 \cdot b \tag{$\Rightarrow$} z < n$$

$$\Rightarrow z = p_1 \cdot a - p_1 \cdot b = p_1 \cdot (a - b) \qquad \Rightarrow p_1 | z \tag{*}$$

$$z = q_1 \cdot b - p_1 \cdot b = (q_1 - p_1) \cdot b \tag{**}$$

Da  $p_1 \neq q_1$  kleinster Teiler von  $n \Rightarrow p_1 < q_1 \Rightarrow 1 \leqslant q_1 - p_1$  und es folgt:



$$z = \underbrace{(q_1 - p_1)}_{\geq 1} \cdot \underbrace{b}_{>1} > 1 \qquad \Rightarrow \quad 1 < z < n$$

 $\Rightarrow$  PFZ von z ist eindeutig!

(\*) und (\*\*) 
$$\Rightarrow p_1$$
 Teiler von  $z = (q_1 - p_1) \cdot b = (q_1 - p_1) \cdot q_2 \cdots q_t$ 

Da  $p_1 \notin \{q_1, \dots, q_t\}$  (nach der Zwischenbehauptung)  $\Rightarrow p_1 | (q_1 - p_1)$ 

Da trivialerweise 
$$p_1|p_1 \Rightarrow (\text{mit Satz } 2.5)$$
  $p_1|(q_1-p_1)+p_1=q_1$ 

Bemerkung 3.16. (1) Warum funktioniert der Satz nicht in der Viererwelt V?

In der letzten Zeile des Beweises, beim Widerspruch:

$$p_1|(q_1-p_1)+p_1=q_1$$
 4

wird die Summenregel aus Satz 2.5 benutzt:

$$a|b \quad und \quad a|c \quad \Rightarrow \quad a|b+c \quad !$$

Diese Regel gilt nicht in V, denn z.B.:

$$4|_{4}4$$
 und  $4|_{4}4$  aber  $4|_{4}(4+4) = 8 = 2 \cdot 4$ 

(2) Die Primzahlen in einer Primfaktorzerlegung sind im Allgemeinen nicht verschieden:

$$12 = 2 \cdot 2 \cdot 3 = 2^2 \cdot 3$$

Es ist üblich (wenn möglich), die Primzahlen der Größe nach zu ordnen und Potenzschreibweise zu benutzen:

$$2^3 \cdot 3^2 \cdot 5 \cdot 11^2 = 42.560$$

 $\Rightarrow$  normierte Primfaktorzerlegung!

### Schreibweise für Primfaktorzerlegungen:

$$a = \prod_{i=1}^{\infty} p_i^{n_i}$$

meint ein Produkt, das formal über alle Primzahlen  $p_i$ , mit

$$p_1 < p_2 < p_3 < \cdots$$

läuft, beim dem aber nur endlich viele der natürlichen Zahlen  $n_i \neq 0$  sind. Damit handelt es sich also um ein endliches Produkt! z.B.:

$$12 = 2^2 \cdot 3 = \prod_{i=1}^{\infty} p_i^{n_i} = 2^2 \cdot 3^1 \cdot 5^0 \cdot 7^0 \cdot \dots \quad \text{alle } n_i = 0 \text{ für } i \geqslant 3$$



Oft schreibt man aber auch direkt:

$$a = \prod_{i=1}^{s} p_i^{n_i}$$

Ob als obere Grenze  $\infty$  oder s geschrieben wird, hängt vom Zusammenhang ab. In beiden Fällen ist das Produkt aber immer endlich!

## 3.7. Folgerungen aus dem Hauptsatz.

Satz 3.17 (Teilbarkeitskriterium). Für natürliche Zahlen a,b mit PFZ:  $a = \prod_{i=1}^{\infty} p_i^{n_i}$  und  $b = \prod_{i=1}^{\infty} p_i^{m_i}$  gilt:

$$a|b \Leftrightarrow n_i \leqslant m_i \quad \forall \ i \in \mathbb{N}$$

#### **Beweis:**

 $"\Rightarrow"$ :

Es gibt  $c \in \mathbb{N}$  mit  $a \cdot c = b$ .

PFZ: 
$$c = \prod_{i=1}^{\infty} p_i^{k_i}$$

mit  $k_i \geqslant 0$ 

$$\Rightarrow \quad a \cdot c = \prod_{i=1}^{\infty} p_i^{n_i} \cdot \prod_{i=1}^{\infty} p_i^{k_i} = \prod_{i=1}^{\infty} p_i^{n_i + k_i} \stackrel{!}{=} \prod_{i=1}^{\infty} p_i^{m_i} = b$$

Aus der Eindeutigkeit der PFZ folgt die Gleichheit der Exponenten:

$$n_i \leqslant n_i + k_i = m_i \qquad \forall i \qquad \checkmark$$

$$k_i \geqslant 0$$

"←"

$$n_i \leqslant m_i \quad \forall i \quad \Leftrightarrow \quad k_i := m_i - n_i \geqslant 0 \quad \forall i$$

dabei sind nur endlich viele  $k_i \neq 0$ , weil das für  $n_i$  und  $m_i$  gilt.

Sei 
$$c := \prod_{i=1}^{\infty} p_i^{k_i}$$

$$\Rightarrow a \cdot c = b \Rightarrow a|b$$

**Korollar 3.18.** Jeder Teiler a von  $b = \prod_{i=1}^{s} p_i^{m_i}$  ist von der Form:

$$a = \prod_{i=1}^{s} p_i^{n_i} \quad mit \quad 0 \leqslant n_i \leqslant m_i \quad \forall i$$

**Satz 3.19.** Die Anzahl der Teiler der natürlichen Zahl  $a = p_1^{m_1} \cdots p_s^{m_s}$  lautet:

$$#T_a = (m_1 + 1) \cdots (m_s + 1)$$



**Beispiel**  $a = 70 = 2 \cdot 5 \cdot 7$  muß nach Satz 3.19  $2 \cdot 2 \cdot 2 = 8$  Teiler haben:

$$T_{70} = \{1, 2, 5, 7, \underbrace{10, 14, 35, 70}_{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow} \}$$

$$a = 108 = 4 \cdot 27 = 2^2 \cdot 3^3 \implies \#T_{108} = (2+1) \cdot (3+1) = 12$$

$$T_{108} = \{1, 2, 3, \underbrace{4, 6, 9}_{2 \text{ Faktoren}}, \underbrace{12, 18, 27, 36, 54}_{4 \text{ Faktoren}}, \underbrace{108}_{5 \text{ Faktoren}}\}$$

#### **Beweis:**

Es gibt 
$$m_i + 1$$
 Zahlen  $0 \le n_i \le m_i$ .

#### 3.8. Primzahlkriterium und das Lemma von Euklid.

**Satz 3.20** (Primzahlkriterium). Eine natürliche Zahl p > 1 ist genau dann eine Primzahl, wenn für alle  $a, b \in \mathbb{N}$  gilt:

$$Aus \quad p \mid a \cdot b \quad folgt \quad p \mid a \quad oder \quad p \mid b \tag{5}$$

#### Beweis:

PZ " 
$$\Rightarrow$$
" (5): Sei  $p > 1$  Primzahl und es gelte  $p \mid a \cdot b$ 

 $\Rightarrow p$  kommt in der PFZ von  $a \cdot b$  vor.

Wegen der Eindeutigkeit der PFZ kommt p in der PFZ von a oder b oder von beiden vor.

$$\Rightarrow p \mid a \text{ oder } p \mid b.$$

[5] "
$$\Rightarrow$$
" PZ: Es gelte (5) für  $p$ , d.h. falls  $p \mid a \cdot b$  für irgendwelche  $a, b \in \mathbb{N}$ , so folgt:  $p \mid a$  oder  $p \mid b$ 

z.Z.: p ist Primzahl

Wäre pzusammengesetzte Zahl (nicht PZ)  $\Rightarrow p = a \cdot b$ mit natürlichen Zahlen 1 < a,b < p

$$\Rightarrow p|a \cdot b \stackrel{(5)}{\Rightarrow} p|a \text{ oder } p|b \text{ Widerspruch zu } a, b < p$$

Bemerkung 3.21. Das Primzahlkriterium gilt nicht in der Viererwelt V: Gegenbeispiel:

$$4 \quad ist \ V\text{-}Primzahl$$

$$4|_{4}96 = \underbrace{8 \cdot 12}_{Zerlegung \ in \ V}$$

$$aber \quad 4|_{4}8 \quad und \quad 4|_{4}12$$

Die Implikation " $\Rightarrow$ " vom Primzahlkriterium hat einen Namen:



$$p$$
 Primzahl und  $p \mid a \cdot b \Rightarrow p \mid a \text{ oder } p \mid b$ 

Bemerkung 3.23. Wir haben das Lemma von Euklid (bzw. das Primzahlkriterium) aus dem Hauptsatz der elementaren Zahlentheorie gefolgert. Aber es gilt sogar:

Hauptsatz der elementaren Zahlentheorie ⇔ Lemma von Euklid

4. Grösster gemeinsamer Teiler (ggT) und kleinstes gemeinsames Vielfaches (kgV)

## 4.1. ggT und Teilermengen.

Einführung des ggT über Teilermengen:

## Beispiel

$$T_{18} = \{1, 2, 3, 6, 9, 18\}$$
 
$$T_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}$$
 
$$T_{18} \cap T_{24} = \{1, 2, 3, 6\} = \{\text{gemeinsame Teiler von 18 und 24}\}$$
 
$$\stackrel{!}{=} T_6$$

Offenbar ist der Durchschnitt dieser Teilermengen wieder eine Teilermenge. Gilt das auch für die Vereinigung?

$$T_{18} \cup T_{24} = \{1, 2, 3, 4, 6, 8, 9, 12, 18, 24\}$$

Das ist offenbar keine Teilermenge, da z. B. 18/24.

Wir werden im Folgenden sehen, daß das allgemein so gilt.

Definition 4.1. Für zwei natürliche Zahlen a und b ist der größte gemeinsame Teiler

das Maximum der Schnittmenge  $T_a \cap T_b$ .

Bemerkung 4.1. (1) Der Name größter gemeinsamer Teiler ist selbsterklärend.

(2) Macht diese Definition Sinn?

<u>Ja!</u> Mit  $T_a$  und  $T_b$  ist auch die Schnittmenge  $T_a \cap T_b$  endlich. Außerdem ist  $T_a \cap T_b \neq \emptyset$ , da  $1 \in T_a \cap T_b$ . Nach dem Maximumsprinzip



(Satz 2.5) hat jede endliche, nichtleere Menge ein größtes Element. Es gibt also immer einen ggT.

(3) Da  $1 \in T_a$  für alle  $a \in \mathbb{N}$ , gilt:

Aus 
$$\#T_a \cap T_b = 1 \implies folgt \quad T_a \cap T_b = \{1\}$$

In diesem Fall: ggT(a, b) = 1 und man sagt: a und b sind teilerfremd.

(4) Analog läßt sich der ggT von drei, vier oder mehr natürlichen Zahlen definieren:  $a_1, a_2, \ldots, a_s \in \mathbb{N}$ :

$$ggT(a_1, a_2, \dots, a_s) := gr\"{o}\beta tes \ Element \ von \ T_{a_1} \cap T_{a_2} \cap \dots \cap T_{a_s}$$

(5) Erweiterung des Begriffs auf die ganzen Zahlen:

Seien  $a, b \in \mathbb{Z}$ ,  $(a, b) \neq (0, 0)$  (nicht beide gleichzeitig gleich 0).

Sei "d" die größte ganze Zahl mit d|a> und d|b>.

Dann  $hei\beta t/ist$  d = ggT(a, b).

<u>Klar:</u>  $d \in \mathbb{N}$ , denn mit  $d \mid a$  auch  $-d \mid a$  und  $\max(\pm d) \in \mathbb{N}$ !

<u>Klar:</u> ggT(a,b) = ggT(|a|, |b|)

Insbesondere:  $ggT \geqslant 1$ .

## Satz 4.2. Für alle $a, b \in \mathbb{N}$ gilt:

- (1) ggT(1,a) = 1
- (2) Aus a|b folgt ggT(a,b) = a

Wie findet man den ggT?

Bei nicht zu großen Zahlen (in der Schule) z.B. mittels Venn-Diagrammen:



ggT in Schulbüchern: Hier Aufgabe aus [XQuadrat (5), p.219]:



Miriam besucht ihren Onkel, der ist Fliesenleger. Der muß einen großen rechteckigen Saal der Größe 252 dm ×98 dm mit quadratischen Fliesen einer Größe auslegen. Zur Wahl stehen die Fliesengrößen

$$15 \times 15 \,\mathrm{cm}^2$$

$$25 \times 25 \, \mathrm{cm}^2$$

$$35 \times 35 \, \mathrm{cm}^2$$

$$40 \times 40 \, \mathrm{cm}^2$$

Miriam hilft ihrem Onkel bei der Wahl, weil sie gut rechnen kann.

Dazu gibt es keine weitere Anleitung. Sie als Lehrer müssen sich selber ausdenken, was Sie daraus machen. Was würden Sie machen?

## Wie bestimmt man den ggT?

Hilfe: Primfaktorzerlegung:

#### Beispiel:

$$a = 120 = 2 \cdot 60 = 2^{2} \cdot 30 = 2^{3} \cdot 15 = 2^{3} \cdot 3 \cdot 5$$

$$b = 3500 = 35 \cdot 100 = 3 \cdot 7 \cdot 10^{2} = 2^{2} \cdot 5^{3} \cdot 7$$

$$\Rightarrow ggT(a, b) = 2^{2} \cdot 5 = 20$$



Satz 4.3. Für natürliche Zahlen a und b mit Primfaktorzerlegungen

$$a = \prod_{i=1}^{\infty} p_i^{m_i}$$
  $b = \prod_{i=1}^{\infty} p_i^{n_i}$   $mit$   $m_i, n_i \in \mathbb{N}$ 

ist der größte gemeinsame Teiler:

$$ggT(a,b) = \prod_{i=1}^{\infty} p_i^{min(m_i,n_i)}$$

wobei  $min(m_i, n_i)$  das Minimum der Zahlen  $m_i, n_i$  bezeichnet.



Sei  $d := \prod_{i=1}^{\infty} p_i^{\min(m_i, n_i)}$ 

Weil 
$$\begin{cases} min(m_i, n_i) \leq m_i & \text{Satz 3.17} \\ min(m_i, n_i) \leq n_i & \text{(Teilbarkeitskriterium)} \end{cases} \begin{cases} d \mid a \\ d \mid b \end{cases}$$

 $\Rightarrow$   $d \in T_a \cap T_b$  ist also gemeinsamer Teiler von a und b.

Andererseits: für  $c \in T_a \cap T_b$ ,  $c = \prod_{i=1}^{\infty} p_i^{k_i}$  gilt umgekehrt:

$$k_i \leqslant m_i$$
 und  $k_i \leqslant n_i$ 

 $\Rightarrow k_i \leqslant min(m_i, n_i)$  für alle i

$$\Rightarrow$$
  $c \mid d$   $\Rightarrow$   $c \leqslant d$   $\Rightarrow d$  ist größter gemeinsamer Teiler.

Folgerung: Für alle  $a, b, n \in \mathbb{N}$  gilt:

$$ggT(n \cdot a, n \cdot b) = n \cdot ggT(a, b)$$

**Spezialfall:** Falls  $a|b \Rightarrow ggT(a,b) = a$ .

**Beweis:** 

Sei  $a = \prod_{i=1}^{\infty} p_i^{m_i}$ ,  $b = \prod_{i=1}^{\infty} p_i^{n_i}$  und  $n = \prod_{i=1}^{\infty} p_i^{k_i}$ . Dann gilt  $n \cdot a = \prod_{i=1}^{\infty} p_i^{k_i + m_1}$ ,  $n \cdot b = \prod_{i=1}^{\infty} p_i^{k_i + n_1}$ . Weil  $min(k_i + m_i, k_i + n_i) = k_i + min(m_i, n_i)$  folgt:

$$ggT(n \cdot a, n \cdot b) = \prod_{i=1}^{\infty} p_i^{min(k_i + m_i, k_i + m_i)} = \prod_{i=1}^{\infty} p_i^{k_i + min(m_i, n_i)}$$
$$= \prod_{i=1}^{\infty} p_i^{k_i} \cdot \prod_{i=1}^{\infty} p_i^{min(m_i, n_i)} = n \cdot ggT(a, b)$$

4.2. Euklidischer Algorithmus.

**Satz 4.4** (Teilen mit Rest). Für natürliche Zahlen  $a, b, b \neq 0$  gibt es eindeutig bestimmte Zahlen  $q, r \in \mathbb{N}_0$ , so da $\beta$ 

$$a = q \cdot b + r$$
  $mit$   $0 \le r < b$ 

#### Beispiele:

(1) Sie brauchen mehrere Kabelstücke der gleichen Länge (z.B. b=3). Dazu kaufen Sie eine Kabelrolle mit  $a=20\,\mathrm{m}$  Kabel. Wieviele Kabelstücke bekommen Sie daraus und wie lang ist der Rest?



(2) Rad abrollen



Wieviele ganze Umdrehungen passen auf eine Strecke der Länge a, wie groß ist das Reststück r?

#### **Beweis:**

$$V := \{ s \cdot b \mid s \cdot b \leq a, s \in \mathbb{N}_0 \} = \{ n \in \mathbb{N}_0 \mid n \leq a, b \mid n \}$$

sei die Menge aller Vielfachen von b kleiner gleich a.

$$0 \in V \implies V \neq \emptyset$$
 Klar:  $\#V \leqslant a+1 < \infty$  da  $V \subset \{0,1,2,\ldots,a\}$  (im Fall  $b=1 \Rightarrow V = \{0,1,2,\ldots,a\}$ )

Sei  $q \cdot b \in V$  das größte Element.

$$\Rightarrow \qquad q \cdot b \leqslant \qquad a \qquad < (q+1) \cdot b$$

$$\Rightarrow \qquad 0 = q \cdot b - q \cdot b \leqslant \underbrace{a - q \cdot b}_{=:r} \qquad < (q+1) \cdot b - q \cdot b = b$$

$$\Rightarrow \qquad 0 \leqslant \qquad r \qquad < b$$
und
$$\qquad a = q \cdot b + r$$

Damit ist die **Existenz** von q und r nachgewiesen.

#### **Eindeutigkeit:**

Angenommen es gibt ein zweites solches Paar (q', r')

$$\Rightarrow \qquad a = q \cdot b + r = q' \cdot b + r'$$
 Falls  $r = r'$ :  $\Rightarrow \quad q \cdot b = q' \cdot b \quad \Rightarrow \quad q = q' \quad (\text{da } b \neq 0)$  Falls  $r \neq r'$ : OE  $r < r'$ 

 $\Rightarrow$ 

denn q - q' ist eine ganze Zahl!

Teilen mit Rest gilt auch für negative Zahlen a:



**Korollar 4.5.** Für ganze Zahlen  $a \in \mathbb{Z}$  und  $b \ge 1$  gibt es eindeutig bestimmte Zahlen  $q, r \in \mathbb{Z}$ , so  $da\beta$ 

$$a = q \cdot b + r$$
  $mit$   $0 \le r < b$ 

#### **Beweis:**

Es reicht, den Fall a < 0 zu betrachten: Für -a = |a| > 0 gilt nach Satz 4.4:

$$-a = q' \cdot b + r'$$
 mit eindeutigen  $0 \le r' < b$  und  $q' \in \mathbb{N}$ .

Wenn r' = 0, dann

$$a = -q' \cdot b = \underbrace{(-q')}_{=:a} \cdot b + \underbrace{0}_{=:r}$$

Sonst gilt

$$a = -q' \cdot b - r' = -q' \cdot b - b + b - r' = \underbrace{(-q'-1)}_{=:q} \cdot b + \underbrace{(b-r')}_{=:r}$$

Klar, wegen 
$$0 \le r' < b \iff 0 < b - r' = r < b$$

Der Satz liefert eine Methode, den ggT und alle anderen gemeinsamen Teiler ohne PFZ zu finden:

**Beispiel:** a = 564, b = 80

Division mit Rest:  $564 = 7 \cdot 80 + 4$ 

Sei  $t \in T_{564} \cap T_{80}$  ein beliebiger Teiler

$$\Rightarrow t|564 \text{ und } t|80 \Rightarrow t|(564 - 7 \cdot 80) = 4$$

$$\Rightarrow t|4 \qquad \Leftrightarrow t \in T_4 \quad \Rightarrow t \in T_{80} \cap T_4$$

Die Mengen sind sogar gleich:

$$s \in T_{80} \cap T_4 = T_4$$

$$\text{aus} \quad 564 = 7 \cdot 80 + 4 \implies s | 564$$

$$\Rightarrow \quad T_{80} \cap T_4 \subseteq T_{564}$$

$$\text{klar} \quad T_{80} \cap T_4 \subseteq T_{80}$$

$$\Rightarrow \quad T_{80} \cap T_4 \subseteq T_{564} \cap T_{80}$$

$$\text{aus (*)} \Rightarrow \quad T_{564} \cap T_{80} = T_{80} \cap T_4 = T_4 = \{1, 2, 4\}$$

$$\Rightarrow \quad ggT(564, 80) = 4$$



$$T_a \cap T_b = T_b \cap T_r$$



**Beweis:** 

"⊆" Sei 
$$t \in T_a \cap T_b$$
  
Aus  $a - q \cdot b = r \Rightarrow t \mid r \Rightarrow t \in T_b \cap T_r$ 
 $t \mid a \qquad t \mid b$ 

"\(\sigma\)" Sei 
$$s \in T_b \cap T_r$$

Folgerung für den ggT:

**Korollar 4.7.** Für natürliche Zahlen 
$$a, b$$
 mit  $a = q \cdot b + r$ ,  $0 \le r < b$  gilt:

$$ggT(a,b) = ggT(b,r) = ggT(b,a-q \cdot b)$$

Beispiel:

$$ggT(582,72) = ggT(72,6)$$
 NR:  $582 = 8 \cdot 72 + 6$   
= 6  $72 = 12 \cdot 6 \Rightarrow 6 | 72$ 

**Satz 4.8** (Euklidischer Algorithmus). Seien  $a, b \in \mathbb{N}$  mit a > b. Induktiv werde die Division mit Rest durchgeführt:

Schritt 1 
$$a = q_1$$
:  $b + r_1$  mit  $0 \le r_1 < b$   
Schritt 2  $b = q_2$ :  $r_1 + r_2$  mit  $0 \le r_2 < r_1$   
Schritt 3  $r_1 = q_3$ :  $r_2 + r_3$  mit  $0 \le r_3 < r_2$ 

$$Schritt \ k \qquad r_{k-2} \ = \ q_k \cdot \ r_{k-1} \ + \ r_k \ mit \quad 0 \leqslant r_k < r_{k-1}$$

Es gibt einen kleinsten Rest  $\neq 0$ :  $r_n := min\{r_1, r_2, ...\}, d.h.$ :

$$r_{n-2} = q_n \cdot r_{n-1} + r_n \qquad 0 \le r_n < r_{n-1}$$
 $r_{n-1} = q_{n+1} \cdot r_n + 0$ 

Der Algorithmus bricht also am Schritt n+1 ab  $(r_{n+1}=0)$ . Insbesondere gilt:

$$T_a \cap T_b = T_{r_n}$$
 und  $ggT(a,b) = r_n$ 



Aus Satz 4.4 (Teilen mit Rest) folgt:

$$r_1 > r_2 > r_3 > \dots \geqslant 0.$$

Darum muß irgendwann 0 erreicht werden, sei  $r_n \neq 0$  und  $r_{n+1} = 0$ :

$$r_{n-1} = q_{n+1} \cdot r_n + r_{n+1}$$

$$\uparrow \\ = 0$$

$$\Rightarrow T_a \cap T_b \stackrel{\text{Satz 4.6}}{=} T_b \cap T_{r_1}$$

$$= T_{r_1} \cap T_{r_2}$$

$$\vdots$$

$$= T_{r_n} \cap \underbrace{T_{r_{n+1}}}_{=T_0 = \mathbb{N}} = T_{r_n}$$

$$\Rightarrow ggT(a,b) = max(T_{r_n}) = r_n$$

# Beispiele

1) a = 1008 und b = 840

$$1008 = 1 \cdot 840 + 168$$
  $(r_1 = 168)$   $840 = 5 \cdot 168 + 0$   $(r_2 = 0)$   $qqT(1008, 840) = 168$ 

2) 
$$a = 2940$$
 und  $b = 1617$ 

$$2940 = 1 \cdot 1617 + 1323 \qquad (r_1 = 1323)$$

$$1617 = 1 \cdot 1323 + 294 \qquad (r_2 = 294)$$

$$1323 = 4 \cdot 294 + 147 \qquad (r_3 = 147)$$

$$294 = 2 \cdot 147 \qquad (\Rightarrow r_4 = 0)$$

$$\Rightarrow ggT(\underbrace{2940}_{20 \cdot 147}, \underbrace{1617}_{11 \cdot 147}) = 147$$

Nun werden auch die Teilermengen-Beziehungen klarer:

Korollar 4.9. Für natürliche Zahlen 
$$a,b$$
 gilt:  $T_a \cap T_b = T_{ggT(a,b)}$ 

#### **Beweis:**

Konsequenz aus dem Euklidischen Algorithmus:

$$T_a \cap T_b = T_{r_n} = \bigcap_{\substack{\uparrow \ ggT(a,b) = r_n}} T_{ggT(a,b)}$$



Für Schüler:

**Korollar 4.10.** Jeder Teiler von a <u>und</u> b ist auch Teiler von ggT(a,b).

ggT von mehr als zwei Zahlen:

**Korollar 4.11.** Für  $a, b, c \in \mathbb{N}$  gilt:

$$ggT(a, b, c) = ggT(ggT(a, b), c)$$



Beweis:

Sei t Teiler von a, b und c:

$$\begin{array}{c|c} t & a \\ t & b \end{array} \Rightarrow t|ggT(a,b) \\ t & c \end{array} \Rightarrow t \mid ggT(a,b),c)$$

Beispiel

$$ggT(3792, 5640, 5274) = \cdots = ggT(24, 5274) = \cdots = 6$$

NR mit TR:

$$5640 = 1 \cdot 3792 + 1848 
3792 = 2 \cdot 1848 + 96 
1848 = 19 \cdot 96 + 24 
96 = 4 \cdot 24 + 0$$

$$5274 = 219 \cdot 24 + 18 
24 = 1 \cdot 18 + 6 
18 = 3 \cdot 6 + 0$$

$$\Rightarrow ggT(3792, 5640) = 24$$

$$\Rightarrow ggT(5274, 24) = 6$$

# 4.3. Vielfache des ggT und Linearkombinationen.

**Ziel:** Den ggT als Linearkombination darstellen, zum Beispiel:

$$ggT(24, 16) = 8 = 1 \cdot 24 - 1 \cdot 16$$
  
 $ggT(48, 9) = 3 = 1 \cdot 48 - 5 \cdot 9$   
 $ggT(2940, 1617) = 147 = ?????$ 

**Satz 4.12.** Für  $a, b \in \mathbb{N}$  gibt es ganze Zahlen x und y mit:

$$ggT(a,b) = x \cdot a + y \cdot b$$

#### **Beweis:**

Benutze den Euklidischen Algorithmus: falls a > b:

Bemerkung 4.13. (1) Satz 4.12 ist eine reine Existenzaussage bzgl. x und y, so daß ggT(a,b) = xa + yb. Diese  $\mathbb{Z}$ -Linearkombination ist nicht eindeutig:

z.B.: 
$$ggT(3,6) = 3 = (-1) \cdot 3 + 1 \cdot 6 = (-3) \cdot 3 + 2 \cdot 6$$

Klar:  $a \cdot x + b \cdot y = \underbrace{ggT(a,b)}_{c}$  ist eine affine Geradengleichung: je-

der Schnittpunkt dieser Geraden mit dem Gitter  $\mathbb{Z}^2$  ergibt eine  $\mathbb{Z}$ -Linearkombination.

- (2) Den Satz kann man auf mehr als zwei Zahlen erweitern.
- (3) Der Beweis des Satzes ist konstruktiv: Beispiel:

(vql. Beispiel oben)

$$qqT(2940, 1617) = 147 = 5 \cdot 2940 - 9 \cdot 1617$$



- (1)  $2940 = 1 \cdot 1617 + 1323$
- (2)  $1617 = 1 \cdot 1323 + 294$
- (3)  $1323 = 4 \cdot 294 + 147$
- $(4) 294 = 2 \cdot 147$

$$\Rightarrow$$
 147 = 1323 - 4 \cdot 294 (mit (3))

$$= 1323 - 4 \cdot (1617 - 1323) = 5 \cdot 1323 - 4 \cdot 1617 \qquad \text{(mit (2))}$$

$$= 5 \cdot (2940 - 1617) - 4 \cdot 1617 \tag{mit (1)}$$

$$= 5 \cdot 2940 - 9 \cdot 1617 \stackrel{TR}{\underset{Probe}{=}} 147$$

Sei  $ggT(a,b) = x \cdot a + y \cdot b$  mit  $a,b \in \mathbb{N}, x,y \in \mathbb{Z}$ 

Dann gilt für alle  $z \in \mathbb{Z}$ :  $z \cdot ggT(a, b) = z \cdot x \cdot a + z \cdot y \cdot b$ 

D.h. alle Vielfachen von ggT(a,b) sind auch  $\mathbb{Z}$ -Linearkombinationen von a und b. Das gilt auch umgekehrt:

**Satz 4.14.** Jede ganzzahlige Linearkombination von a und b  $(a, b \in \mathbb{N})$  ist ein  $\mathbb{Z}$ -Vielfaches von ggT(a, b), d.h. für alle  $x, y \in \mathbb{Z}$  gibt es ein  $z \in \mathbb{Z}$ , so daß

$$x \cdot a + y \cdot b = z \cdot ggT(a, b)$$

### **Beweis:**

Betrachte  $x \cdot a + y \cdot b$  mit  $x, y \in \mathbb{Z}$  beliebig.

Aus  $ggT(a,b) \mid a$  und  $ggT(a,b) \mid b \implies ggT(a,b) \mid x \cdot a + y \cdot b \implies Beh.$ 

Satz 4.15. Für alle natürlichen Zahlen a,b gibt es ganze Zahlen x, y, so daß

$$ggT(a,b) = x \cdot a + y \cdot b$$

Hierbei ist ggT(a,b) die <u>kleinste natürliche Zahl</u>, die sich als  $\mathbb{Z}$ -Linearkombination von a und b darstellen läßt. Eine ganze Zahl c ist genau dann  $\mathbb{Z}$ -Linearkombination von a und b, wenn c  $Vielfaches/\mathbb{Z}$  von ggT(a,b) ist.

Beispiel:

$$qqT(3792, 5640) = 24$$

$$\Rightarrow$$
 es gibt  $x, y \in \mathbb{Z}$  mit  $x \cdot 3792 + y \cdot 5640 = 24$ 

Aber

 $x \cdot 3792 + y \cdot 5640 = 25$  ist über  $\mathbb{Z}$  nicht lösbar.

Spezialfall: a und b sind teilerfremd:



**Satz 4.16.** Aus teilerfremden natürlichen Zahlen a und b (also ggT(a,b) = 1) läßt sich jede ganze Zahl linearkombinieren, d.h. für alle  $z \in \mathbb{Z}$  gibt es  $x, y \in \mathbb{Z}$  mit

$$x \cdot a + y \cdot b = z$$

# Beispiel:

$$ggT(5,3)=1 \quad \text{und} \quad 2\cdot 5-3\cdot 3=1$$
 für  $z\in\mathbb{Z}$  beliebig:  $(2z)\cdot 5-(3z)\cdot 3=z$  !!

# 4.4. Lineare Diophantische Gleichungen.

(Diophant von Alexandria, ca 250 n. Chr.)

# Beispiel:

Eine Firma will für 1000€ zwei Sorten von Werbegeschenken kaufen:

Sorte 1:  $13,00 \in \text{pro Stk.}$ 

Sorte 2:  $19,00 \in \text{pro Stk.}$ 

Wieviele Geschenke können damit von jeder Sorte gekauft werden?

**Definition 4.2.** Eine Gleichung ax + by = c mit  $a, b \in \mathbb{N}$  und  $c \in \mathbb{Z}$  heißt lineare Diophantische Gleichung mit zwei Variablen, falls man als Lösungen nur Elemente  $(x, y) \in \mathbb{Z} \times \mathbb{Z}$  zuläßt.

Allgemeiner: Eine Diophantische Gleichung ist eine Gleichung der Form:

$$F(x_1, \dots, x_n) = 0 \tag{6}$$

mit einem Polynom  $F \in \mathbb{Z}[x_1, \dots, x_n]$  und der Frage der Lösbarkeit von (6) über  $\mathbb{Z}$ .

Umformulierung von Satz 4.15:

Satz 4.17. Die lineare diophantische Gleichung ax + by = c ist genau dann  $\lim_{a \to a} ar$ , wenn  $ggT(a,b) \mid c$ .

# Beispiel

Wegen 
$$ggT(13, 19) = 1 \implies x \cdot 13 + y \cdot 19 = 1000$$
 ist lösbar über  $\mathbb{Z}!!$ 

Mit Euklidischem Algorithmus:



$$19 = 1 \cdot 13 + 6$$
  $\Leftrightarrow$   $6 = 19 - 1 \cdot 13$   
 $13 = 2 \cdot 6 + 1$   $\Leftrightarrow$   $1 = 13 - 2 \cdot 6$   
 $6 = 1 \cdot 6$   $= 13 - 2(19 - 13) = 3 \cdot 13 - 2 \cdot 19$ 

Also (x, y) = (3, -2) ist Lösung von 13x + 19y = 1.

- $\Rightarrow$  (3000, -2000) ist Lösung von 13x + 19y = 1000
- $\Rightarrow$  Lösung unbrauchbar weil eine Zahl negativ!!!

Gibt es Lösungen über N???

Wie finden wir Lösungen über №???

#### Ein bischen Geometrie:

13x + 19y = 1000 Geradengleichung!!

Notwendige Vorraussetzung für Lösungen über  $\mathbb{N}$ : Gerade muß durch den ersten Quadranten laufen.

Dazu: wie/wo liegt diese Gerade: Realschule 8te Klasse: Geraden y = mx + t

Hier:

$$y=-\frac{13}{19}\cdot x+\frac{1000}{19} \qquad , \quad t=\frac{1000}{19}\approx 52,63$$
 
$$m=-\frac{13}{19} \quad \Rightarrow \quad \text{fallend}$$
 Nullstelle:  $y=0 \qquad \Rightarrow \quad 13x+19\cdot 0=1000$  
$$x=\frac{1000}{13}\approx 76,92$$

Wenn es eine Lösung  $(x, y) \in \mathbb{N} \times \mathbb{N}$  gibt, dann:

$$0 \leqslant x \leqslant 76, \quad 0 \leqslant y \leqslant 52$$

Lösungen z.B. empirisch mit Geogebra suchen:



$$74 \cdot 13 + 2 \cdot 19 = 1000$$
  $\Rightarrow (74, 2)$   
 $55 \cdot 13 + 15 \cdot 19 = 1000$   $\Rightarrow (55, 15)$   
 $36 \cdot 13 + 28 \cdot 19 = 1000$   $\Rightarrow (36, 28)$ 

Aus einer Lösung auf alle Lösungen schließen:

Satz 4.18. Sei  $(x_0, y_0) \in \mathbb{Z} \times \mathbb{Z}$  eine Lösung der diophantischen Gleichung ax + by = c mit teilerfremden natürlichen Zahlen a und b, dann ist jede weitere Lösung von der Form:

$$(x_0 + t \cdot b, y_0 - t \cdot a)$$
 mit  $t \in \mathbb{Z}$ 

# Bemerkung:

Was, wenn a, b nicht teilerfremd sind?

Also sei  $ggT(a,b) \neq 1!$ 

Wenn ax + by = c eine Lösung/ $\mathbb{Z}$  hat, dann  $\overset{4.17}{\Rightarrow}$   $ggT(a,b) \mid c$ .

$$\Rightarrow$$
  $a' := \frac{a}{ggT(a,b)}, \quad b' := \frac{b}{ggT(a,b)}, \quad c' := \frac{c}{ggT(a,b)} \in \mathbb{Z}$ 

 $\Rightarrow$  ax + by = c ist äquivalent zu a'x + b'y = c' (hat damit die gleichen Lösungen) und das ist eine lineare diophantische Gleichung mit a', b' teilerfremd,

 $\Rightarrow$  mit einer Lösung  $(x_0, y_0)$  sind alle weiteren Lösungen:

$$(x_0+t\cdot b', y_0-t\cdot a')$$

# **Beweis:**

# Geometrisch:

ax+by=c ist eine Gerade G und  $\begin{pmatrix} x_0\\y_0 \end{pmatrix} \in \mathbb{Z}^2$  ein Punkt auf  $G:\Rightarrow \begin{pmatrix} x_0\\y_0 \end{pmatrix} \in G\cap \mathbb{Z}^2$  Analytische Geometrie:

Parallele Gerade durch Null: 
$$0 = ax + by = \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$
  
 $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$  ist Punkt auf  $G$ :  $ax_0 + by_0 = c = \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$   
Geradengleichung von  $G$ :  $\begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = c = \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$   
 $\Leftrightarrow \begin{pmatrix} a \\ b \end{pmatrix} \cdot \begin{bmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \end{bmatrix} = 0$ 



 $\Rightarrow G$  ist die affine Gerade (orthogonal)  $\perp$  zu  $\begin{pmatrix} a \\ b \end{pmatrix}$  und durch den Punkt  $\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ 

#### **Beweis:**



Darstellungsweisen der diophantischen Gleichung:

(I, algebraisch): ax + by = c

(II, anal. Geom., Hessenormalform):

$${p \text{ in } R^2 \mid <(a,b), p>=c}$$

Hyperebene orthogonal zu (a,b) mit Abstand c/||(a,b)||.

(III, anal. Geom., parametr. Form): mit (x0, y0) Partikularlösung:

$$(x0, y0) + R(b,-a)$$

$$\left\{ \mathbb{R} \begin{pmatrix} b \\ -a \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \right\} \cap \mathbb{Z} \times \mathbb{Z} = \left\{ \mathbb{Z} \cdot \begin{pmatrix} b \\ -a \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \end{pmatrix} \right\} \qquad \text{(da } a, b, x_0, y_0 \in \mathbb{Z})$$

$$= \left\{ \begin{pmatrix} t \cdot b + x_0 \\ -t \cdot a + y_0 \end{pmatrix} \mid t \in \mathbb{Z} \right\}$$

#### Algebraischer Beweis:

 $(x_0 + tb, y_0 - ta)$  ist für alle  $t \in \mathbb{R}$  eine Lösung!

Überprüfen durch Einsetzen:

$$a(x_0 + tb) + b(y_0 - ta) = \underbrace{ax_0 + by_0}_{=c} + \underbrace{t(ab - ba)}_{=0} = c$$

2) Z.z.: Es gibt keine weitere Lösungen  $\Leftrightarrow$  alle Lösungen sind von der vorgegebenen Form:

Sei also  $(x_1, y_1)$  eine weitere Lösung

$$\Rightarrow ax_1 + by_1 = c$$

Weiterhin gilt aber:  $ax_0 + by_0 = c$ 





$$a(x_1 - x_0) + b(y_1 - y_0) = 0$$

$$a(x_1 - x_0) = b(y_0 - y_1) \qquad (*)$$

$$ggT(a, b) = 1 \Rightarrow a \mid (y_0 - y_1) \Rightarrow a \cdot t = y_0 - y_1$$

$$\Rightarrow y_1 = y_0 - at$$
aus (\*) folgt außerdem: 
$$a(x_1 - x_0) = b \cdot a \cdot t \qquad | \cdot \frac{1}{a} \cdot x_0 - x_0 - x_0 - x_0 - x_0 - x_0 |$$

$$\Leftrightarrow x_1 - x_0 = b \cdot t$$

$$\Leftrightarrow x_1 = x_0 + b \cdot t$$

# Zurück zum Werbegeschenk-Beispiel:

Wir hatten die unbrauchbare Lösung:

$$(3000, -2000) = (x_0, y_0) \text{ von } 13x + 19y = 1000$$

Jede Lösung ist von der Form:

$$(3000 + t \cdot 19, -2000 - t \cdot 13), \quad t \in \mathbb{Z}$$

Damit  $x, y \ge 0$  muß gelten:

$$0 \leqslant 3000 + t \cdot 19 \Leftrightarrow -3000 \leqslant 19 \cdot t \Leftrightarrow \underbrace{-\frac{3000}{19}}_{\approx -157,89} \leqslant t \Leftrightarrow -157 \leqslant t$$

$$0 \leqslant -2000 - t \cdot 13 \Leftrightarrow 13 \cdot t \leqslant -2000 \Leftrightarrow t \leqslant \underbrace{-\frac{2000}{13}}_{\approx -153,85} \Leftrightarrow t \leqslant -154$$

$$\Rightarrow -157 \leqslant t \leqslant -154 \Rightarrow t = -157, -156, -155, -154$$

$$t = -157 \Rightarrow (3000 - 157 \cdot 19, -2000 + 157 \cdot 13) = (17, 41)$$

$$t = -156 \Rightarrow (3000 - 156 \cdot 19, -2000 + 156 \cdot 13) = (36, 28)$$

$$t = -155 \Rightarrow (3000 - 155 \cdot 19, -2000 + 155 \cdot 13) = (55, 15)$$

$$t = -154 \Rightarrow (3000 - 154 \cdot 19, -2000 + 154 \cdot 13) = (74, 2)$$

Nun wissen wir, daß das alle Lösungen sind.



# 4.5. kgV und Vielfachenmengen.

**Definition 4.3.** Für  $a \in \mathbb{N} \setminus \{0\}$  ist die Vielfachenmenge von a die Menge:

$$V_a = \left\{ x \in \mathbb{N} \setminus \{0\} \mid a \mid x \right\}$$

Beispiel:

$$V_1=\{1,2,3,\ldots\}=\mathbb{N}$$
 
$$V_2=\{2,4,6,\ldots\}=2\mathbb{N}$$
 (Menge der Geraden Zahlen) 
$$V_3=\{3,6,9,\ldots\}$$
 (Vielfache von 3)

# Bemerkung

Vielfachenmengen haben stets  $\infty$ -viele Elemente:

$$\#V_a = \infty$$

Dagegen sind die Teilermengen  $T_a$  stets endlich.

# Beispiele

$$V_2 = \{2,4,6,8,10,12,\ldots\} \qquad V_3 = \{3,6,9,12,\ldots\}$$
 
$$\Rightarrow V_2 \cap V_3 = \underbrace{\{6,12,18,\ldots\}}_{\text{gemeinsame Vielfache von 2 und 3}}$$

**Definition 4.4.** Für  $a, b \in \mathbb{N}$  heißen die Elemente der Schnittmenge

$$V_a \cap V_b = \{ x \in \mathbb{N} \setminus \{0\} \mid a \mid x \text{ und } b \mid x \}$$

gemeinsame Vielfache von a und b. Das kleinste Element von  $V_a \cap V_b$  heißt kleinstes gemeinsames Vielfaches: kgV(a,b).

### Bemerkungen

(1) Zu a und  $b \in \mathbb{N}$  gibt es immer gemeinsame Vielfache, d.h.  $V_a \cap V_b \neq \emptyset$ , denn

$$a \cdot b \in V_a \cap V_b \quad \Rightarrow \quad V_{a \cdot b} \subseteq V_a \cap V_b$$
 (7)

Es gibt also sogar ∞-viele gemeinsame Vielfache.

(2) Folgerung (7) folgt aus:

$$Aus\ v \in V_a \cap V_b\ folgt\ V_v \subseteq V_a \cap V_b$$

**Denn:** wenn  $v \in V_a \cap V_b$ , gilt 1):  $a \mid v$  und  $b \mid v$ , und 2) gilt für  $x \in V_v$ , daß  $v \mid x$ . Transitivität der Teilerrelation impliziert, daß auch:  $a \mid x$  und  $b \mid x$ . Damit  $x \in V_a \cap V_b$ 



(3) Verallgemeinerung auf drei oder mehr Zahlen: für  $a,b,c,\ldots\in\mathbb{N}$  gilt:

$$kgV(a, b, c, ...) = min(V_a \cap V_b \cap V_c \cap ...)$$

Bsp.:

$$kgV(6,8) = 24$$
 und  $kgV(6,8,15) = 120$ 

(4) Verwendung von Venndiagrammen:



Satz 4.19. Für  $a, b \in \mathbb{N}$  gilt

$$V_a \cap V_b = V_{kgV(a,b)}$$

Beweis:

Sei k := kgV(a, b).

" $\supseteq$ ": (Folgt auch aus Bemerkung (2)! Hier noch einmal der Vollständigkeit halber.)

Sei  $y \in V_k$  z.z.:  $y \in V_a \cap V_b$ 



 $\Rightarrow k \mid y$ , aber weil k = kgV(a, b), gilt auch  $a \mid k$  und  $b \mid k$ 

Transitivität der Teilerrelation  $\Rightarrow a \mid y$  und  $b \mid y$  also  $y \in V_a \cap V_b$  " $\subseteq$ ":

Es gilt 
$$a \mid k$$
 und  $b \mid k$ . (\*)

Sei  $x \in V_a \cap V_b$ , also ein gemeinsames Vielfaches von a und b.

Klar, dann ist  $x \ge k = kgV(a, b)$ .

Division mit Rest: Es gibt eindeutig bestimmte Zahlen  $q, r \in \mathbb{N}, 0 \leq r < k$ :

$$x = q \cdot k + r$$

Aus  $x \in V_a \cap V_b \implies a \mid x \text{ und } b \mid x$ 

Mit (\*) 
$$\Rightarrow$$
  $a \mid x - qk = r$  und  $b \mid x - qk = r$ 

 $\Rightarrow$   $r \in V_a \cap V_b$   $\Rightarrow r$  ist ein gemeinsames Vielfaches von a und b.

Aber

$$r < k = kgV(a,b) \quad \Rightarrow \quad r = 0$$

$$\Rightarrow \quad x = q \cdot k \quad \Rightarrow \quad x \in V_{kgV(a,b)}$$

Der kgV kann mit Hilfe der Primfaktorzerlegung gefunden werden:

**Beispiel:** kgV(120, 315) = ?

$$120 = 10 \cdot 12 = 2 \cdot 5 \cdot 4 \cdot 3 = 2^{3} \cdot 3 \cdot 5$$
$$315 = 5 \cdot 63 = 5 \cdot 3 \cdot 21 = 5 \cdot 3 \cdot 3 \cdot 7 = 3^{2} \cdot 5 \cdot 7$$
$$\Rightarrow kgV = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 = 2520$$

#### Satz 4.20.

(1) Für 
$$a = \prod_{i=1}^{\infty} p_i^{m_i}$$
 und  $b = \prod_{i=1}^{\infty} p_i^{n_i}$  gilt:

$$kgV(a,b) = \prod_{i=1}^{\infty} p_i^{\max(m_i.n_i)}$$

(2) Für  $a, b, n \in \mathbb{N}$  gilt:  $kgV(n \cdot a, n \cdot b) = n \cdot kgV(a, b)$ .

#### **Beweis:**

(1) Sei  $k = \prod_{i=1}^{\infty} p_i^{k_i}$  ein gemeinsames Vielfaches von a und b. Da dann a und b jeweils Teiler von k sind, folgt nach Satz 3.17:

$$m_i \leqslant k_i$$
 und  $n_i \leqslant k_i$ .

Die kleinste Zahl mit dieser Eigenschaft ist offensichtlich  $\prod_{i=1}^{\infty} p_i^{\max(m_i, n_i)}$ .



(2) Œ:  $n = p_i$  eine Primzahl, dann

$$p_j \cdot a = p_j^{m_j + 1} \cdot \prod_{\substack{i=1\\i \neq j}}^{\infty} p_i^{m_i} \quad \text{ und } \quad p_j \cdot b = p_j^{n_j + 1} \cdot \prod_{\substack{i=1\\i \neq j}}^{\infty} p_i^{n_i}$$

Da aber  $\max(m_j + 1, n_j + 1) = \max(m_j, n_j) + 1$  folgt

$$kgV(p_j \cdot a, p_j \cdot b) = p_j^{\max(m_j + 1, n_j + 1)} \cdot \prod_{\substack{i=1\\i \neq j}}^{\infty} p_i^{\max(m_i, n_i)} = p_j \cdot \prod_{i=1}^{\infty} p_i^{\max(m_i, n_i)}$$

Beispiel:

$$kgV(120, 315) = 5 \cdot kgV(2 \cdot 12, 63) = 5 \cdot kgV(2 \cdot 3 \cdot 4, 3 \cdot 21)$$

$$= 3 \cdot 5 \cdot kgV(2 \cdot 4, 3 \cdot 7)$$

$$\uparrow \uparrow teilerfremd$$

$$= 3 \cdot 5 \cdot 2 \cdot 4 \cdot 3 \cdot 7 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 = 2520$$

Beispiel zum Zusammenhang von kgV und ggT:

Sei a = 4 und  $b = 12 \implies 4 \mid 12$ 

$$\Rightarrow \begin{array}{ccc} ggT(4,12) & = & 4 \\ kgV(4,12) & = & 12 \end{array} \Rightarrow ggT \cdot kgV = 4 \cdot 12 = a \cdot b$$

Allgemeiner:

$$a \mid b \Rightarrow ggT(a,b) = a \atop kqV(a,b) = b$$
  $\Rightarrow ggT(a,b) \cdot kgV(a,b) = a \cdot b$ 

Noch allgemeiner gilt:

**Satz 4.21.** Für  $a, b \in \mathbb{N}$  gilt:  $ggT(a, b) \cdot kgV(a, b) = a \cdot b$ .



Sei 
$$a = \prod_{i=1}^{\infty} p_i^{m_i}$$
 und  $b = \prod_{i=1}^{\infty} p_i^{n_i}$ 

$$ggT(a,b) = \prod_{i=1}^{\infty} p_i^{min(m_i,n_i)}$$

$$kgV(a,b) = \prod_{i=1}^{\infty} p_i^{\max(m_i,n_i)}$$

sicher gilt:  $min(m_i, n_i) + max(m_i, n_i) = m_i + n_i$ 

$$\Rightarrow ggT(a,b) \cdot kgV(a,b) = \prod_{i=1}^{\infty} p_i^{min+max} = \prod_{i=1}^{\infty} p_i^{m_i+n_i} = a \cdot b$$

**Korollar 4.22.** Für teilerfremde  $a, b \in \mathbb{N}$  gilt:  $kgV(a, b) = a \cdot b$ 

Bemerkung 4.23. Mit Hilfe des Euklidischen Algorithmus' kann man den ggT bestimmen. Zusammen mit Satz 4.21 so auch das kgV:

$$kgV(a,b) = \frac{a \cdot b}{ggT(a,b)}$$

Hassediagramm eignen sich zur Bestimmung/Darstellung von ggT und kgV:

Beispiele:

a) 
$$T_{225} = \begin{cases} 1, & 3, & 5, & 9, & 15 \\ 225, & 75, & 45, & 25, & \cancel{15} \end{cases}$$



$$ggT(45,75) = 15$$

$$T_{45} \cap T_{75} = \{1,3,5,15\}$$

$$kgV(45,75) = 225$$

$$ggT(25,45,75) = 5$$

$$T_{25} \cap T_{45} \cap T_{75} = \{5,1\}$$

b) a = 18, b = 24 gesucht ggT und kgV:



$$T_{18} = \{1, 2, 3, 6, 9, 18\}$$
 und 
$$T_{24} = \{1, 2, 3, 4, 6, 8, 12, 24\}$$



#### 5. Kongruenzen und Restklassen

# 5.1. Die Kongruenzrelation $\mod m$ .

**Definition 5.1.** Seien a und b ganze Zahlen und  $m \in \mathbb{N}$ . Man sagt a ist kongruent b modulo m ( $a \equiv b \mod m$ ) genau dann, wenn  $m \mid a - b$ . Ist a nicht kongruent b modulo m, so sagt man auch a ist inkongruent b modulo m ( $a \not\equiv b \mod m$ ).

Die Zahl m heißt <u>Modul</u>, der Ausdruck  $a \equiv b \mod m$  heißt Kongruenz.

**Beispiel:** a = 33, b = 21, m = 6

Laut Definition: 
$$a - b = 33 - 21 = 12 = 2 \cdot 6$$
,

also 
$$6 = m \mid a - b = 33 - 21 = 12 \Rightarrow 33 \equiv 21 \mod 6$$

# (1) Division mit Rest

$$33 = 5 \cdot 6 + 3 
21 = 3 \cdot 6 + 3$$
  $\Rightarrow$  Rest

$$33 = 2 \cdot 6 + 21 \implies 33 \equiv 21 \mod 6$$

Frage nach: Was ist der Rest:

$$33 = * \cdot 6 + ? \Leftrightarrow 33 \equiv ? \mod 6$$

# (2) Um was unterscheiden sich a und b?

$$33 = 21 + 12 = 21 + 2 \cdot 6$$

21 und 33 unterscheiden sich also um ein Vielfaches von 6. Welche Zahlen gehören da noch in dieses Schema:

$$\dots, -3, 3, 9, 15 = 21 - 6, 21, 21 + 6 = 27, 33, = 39, \dots$$

Fragestellung:

$$? = * \cdot 6 + 21 \Leftrightarrow ? \equiv 21 \mod 6$$

# (3) Differenz

$$33 - 21 = 12 = 2 \cdot 6$$

m=6 ist ein Teiler der Differenz von a=33 und b=21.

Frage: bezüglich welcher Zahlen sind 33 und 21 kongruent:

$$33 = *\cdot? + 21 \Leftrightarrow 33 \equiv 21 \mod ?$$

Bemerkung 5.1. (1) Die Definition folgt dem Zugang (3).

(2) Die Bedingung  $m \in \mathbb{N}$  ist keine Einschränkung, denn

$$m \mid a - b \iff -m \mid a - b$$

Die folgenden Sätze zeigen die Äquivalenz der drei Zugänge.

**Satz 5.2.** Für  $a, b \in \mathbb{Z}$  und  $m \in \mathbb{N}$  gilt:

 $a \equiv b \mod m \Leftrightarrow a \text{ und } b \text{ haben bei Division durch } m \text{ denselben Rest.}$ 

### **Beweis:**

"
$$\Rightarrow$$
": Es gelte also:  $a \equiv b \mod m$ 

nach Definition 
$$\Rightarrow m \mid a - b$$

Division (durch m) mit Rest auf a und b anwenden:

Wegen Korollar 4.5 gilt das, egal ob a, b positiv oder negativ!!

$$a = q_1 \cdot m + r_1 \qquad 0 \leqslant r_1 < m$$

$$b = q_2 \cdot m + r_2 \qquad 0 \leqslant r_2 < m$$

mit eindeutigen Zahlen  $r_i, q_i$ .

Subtrahiere die beiden Gleichungen:

$$\underbrace{a-b}_{m} = \underbrace{(q_{1}-q_{2})\cdot m}_{m} + r_{1} - r_{2}$$

$$\Rightarrow m \mid \underbrace{(a-b)-(q_{1}-q_{2})\cdot m}_{=r_{1}-r_{2}} \Rightarrow m \mid r_{1}-r_{2} \qquad (*)$$

$$\text{aber} \quad 0 \leqslant r_{i} < m \quad \Rightarrow \quad 0 \leqslant |r_{1}-r_{2}| < m \qquad (**)$$

$$(*) \text{ und } (**) \quad \Rightarrow r_{1}-r_{2} = 0 \Leftrightarrow r_{1} = r_{2}$$

"⇐":

$$a = q_1 \cdot m + r$$
  
 $b = q_2 \cdot m + r$  mit  $q_i \in \mathbb{Z}$  und  $0 \le r < m$   
 $\Rightarrow a - b = (q_1 - q_2) \cdot m \Rightarrow m \mid a - b$ 

**Satz 5.3.** Für  $a, b \in \mathbb{Z}$  und  $m \in \mathbb{N}$  gilt:

 $a \equiv b \mod m$  genau dann, wenn sich a und b um ein ganzzahliges Vielfaches von m unterscheiden (d.h. es gibt ein  $q \in \mathbb{Z}$  mit  $a = b + q \cdot m$ ).



#### **Beweis:**

$$a\equiv b\mod m \Leftrightarrow m\mid (a-b)$$
 (Def. von Kongruenz) 
$$\Leftrightarrow \text{ es gibt ein } q\in \mathbb{Z} \text{ mit } m\cdot q=a-b \text{ (Def. von Teiler)}$$
 
$$\Leftrightarrow a=b+m\cdot q \text{ für ein } q\in \mathbb{Z}$$

Bemerkung 5.4. Die in den drei Zugängen dargestellten Wege zur Kongruenz sind damit äquivalent. Das heißt auch für uns, wir können uns im Unterricht für den Weg entscheiden, der am besten in unser Konzept passt!

Wie rechnet man mit Kongruenzen?

**Satz 5.5.** Seien  $a \equiv b \mod m$  und  $c \equiv d \mod m$ . Dann gilt:

- (1)  $a \pm c \equiv b \pm d \mod m$
- (2)  $a \cdot c \equiv b \cdot d \mod m$



# **Beweis:**

Nach Vorraussetzung:  $m \mid (a - b)$  und  $m \mid (c - d)$ 

(1) 
$$m \mid \underbrace{(a-b) \pm (c-d)}_{=a-b \pm c \mp d} = (a \pm c) - (b \pm d)$$
  
 $\Rightarrow (a \pm c) \equiv (b \pm d) \mod m$ 

(2)

$$\begin{array}{ll} m \mid (a-b) & \Rightarrow & m \mid (a-b) \cdot c \\ m \mid (c-d) & \Rightarrow & m \mid (c-d) \cdot b \end{array} \Rightarrow m \mid (a-b) \cdot c + (c-d) \cdot b = ac - bc + cb - db = ac - db \\ \Rightarrow & ac \equiv bd \mod m \end{array}$$



### Beispiele

$$37 \equiv 17 \mod 5$$

 $12 \equiv 2 \mod 5$ 

$$\Rightarrow 49 \equiv 19 \mod 5 \tag{"+"}$$

$$\Rightarrow 25 \equiv 15 \mod 5 \tag{"-"}$$

$$\Rightarrow 444 \equiv 34 \mod 5 \tag{"."}$$

über Kreuz: 
$$74 \equiv 204 \mod 5$$
 ("·")

Spezialfälle für d = c:

**Korollar 5.6.** Sei  $a \equiv b \mod m$ . Dann gilt für alle  $c \in \mathbb{Z}$ :

$$(1) a \pm c \equiv b \pm c \mod m$$

(2) 
$$a \cdot c \equiv b \cdot c \mod m$$

Beispiel:

$$86 \equiv 60 \mod 13$$
 (denn  $60 + 2 \cdot 13 = 60 + 26 = 86$ )

$$\stackrel{+100}{\Rightarrow} 186 \equiv 160 \mod 13$$

$$\stackrel{\cdot 3}{\Rightarrow}$$
 558  $\equiv$  480 mod 13

**Korollar 5.7.** Aus  $a \equiv b \mod m$  folgt  $a^n \equiv b^n \mod m$  für alle  $n \in \mathbb{N}$ .

Hier gilt auch n = 0, denn trivialerweise:  $a^0 = 1 \stackrel{\text{mod } m}{\equiv} 1 = b^0$ .

Bemerkung 5.8. Kongruenzen verhalten sich anscheinend ähnlich wie Gleichungen. Gleichungen sind ein Spezialfall von Kongruenzen: die Kongruenz modulo 0:

$$a \equiv b \mod 0 \Leftrightarrow 0 \mid a - b \stackrel{!}{\Leftrightarrow} a - b = 0 \Leftrightarrow a = b$$

Konsequenz für das Rechnen mit Kongruenzen: Kongruenzen lassen Äquivalenzumformungen (analog zu den Äquivalenzumformungen von Gleichungen) bzgl. der Verknüpfungen

$$''+''$$
,  $,''-''$  und  $''\cdot''$ 

zu. Vorsicht ist nur bei der Division ÷ geboten:



$$z \cdot a \equiv z \cdot b \mod m \quad \Rightarrow \quad a \equiv b \mod \frac{m}{ggT(z,m)}$$

Beispiel

**Beweis:** 

$$z \cdot a \equiv z \cdot b \mod m$$

$$\Leftrightarrow m \mid (z \cdot a - z \cdot b) = z \cdot (a - b)$$

$$\Leftrightarrow m \cdot q = z \cdot (a - b) \qquad \text{(für ein } q \in \mathbb{Z} \mid \div \underbrace{ggT(z, m)}_{=:d})$$

$$\Leftrightarrow \underbrace{\frac{m}{d}}_{\in \mathbb{Z}} \cdot q = \underbrace{\frac{z}{d}}_{\in \mathbb{Z}} \cdot (a - b)$$

$$\Leftrightarrow \frac{m}{d} \mid \frac{z}{d} \cdot (a - b)$$

$$\Leftrightarrow \frac{m}{d} \mid (a - b) \qquad \text{(da } ggT(\frac{m}{d}, \frac{z}{d}) = 1)$$

$$\Leftrightarrow a \equiv b \mod \frac{m}{d}$$

**Korollar 5.10.** Wenn ggT(z, m) = 1, dann:

$$z \cdot a \equiv z \cdot b \mod m \iff a \equiv b \mod m$$

Beispiele

$$180 = 5 \cdot 36 \equiv \underbrace{5 \cdot 24}_{=120} \mod 12$$
 (und  $ggT(5, 12) = 1$ )  

$$\Rightarrow 36 \equiv 24 \mod 12$$



(2) Aber:

$$24 \equiv 6 \mod 6$$
 
$$3 \cdot 8 \equiv 3 \cdot 2 \mod 6$$
 
$$ggT(3,6) = 3 \stackrel{\text{Satz 5.9}}{\Rightarrow} 8 \equiv 2 \mod \frac{6}{3} = 2$$
 aber es gilt auch:  $8 \equiv 2 \mod 6$ 

# 5.2. Kongruenz als Äquivalenzrelation.

**Satz 5.11.** Die Kongruenzrelation modulo m ist für jeden Modul  $m \in \mathbb{N}$  eine Äquivalenzrelation in  $\mathbb{Z}$ , d.h. für alle  $a,b,c \in \mathbb{Z}$  gilt:

$$(1) a \equiv a \mod m (Reflexivität)$$

(2) 
$$Aus \ a \equiv b \mod m \ folgt \ b \equiv a \mod m$$
 (Symmetrie)

(3) Aus 
$$a \equiv b \mod m$$
 und  $b \equiv c \mod m$  folgt  $a \equiv c \mod m$ 

(Transitivität)

Beweis:

$$(1) \ a - a = 0 = m \cdot 0 \quad \Rightarrow \quad m \mid (a - a)$$

(2)

$$m \mid (a - b)$$
  $\Leftrightarrow$   $m \cdot q = a - b$   $\Leftrightarrow$   $m \cdot (-q) = b - a$   $\Leftrightarrow$   $m \mid (b - a)$   $\Leftrightarrow$   $b \equiv a \mod m$ 

(3)  $m \mid (a - b)$  und  $m \mid (b - c) \Rightarrow m$  teilt auch die Summe:

$$\Rightarrow$$
  $m \mid (a - b) + (b - c) = (a - c) \Leftrightarrow a \equiv c \mod m$ 

 $\frac{\text{Allgemein:}}{\text{Speziell:}} \qquad \qquad \ddot{\text{A}} \text{quivalenz relation} \quad \Rightarrow \quad \text{Restklassen} (\text{einteilung})$ 

Sei  $m \in \mathbb{N}$  fest gewählt. Für  $a \in \mathbb{Z}$  sei:

$$\bar{a} := \{ z \in \mathbb{Z} \mid z \equiv a \mod m \} = \{ z = a + n \cdot m \mid n \in \mathbb{Z} \}$$

die Restklasse von a modulo m. Die Zahl a heißt Repräsentant der Restklasse. Der Repräsentant ist <u>nicht</u> eindeutig, es gibt  $\infty$ -viele Repräsentanten einer Restklasse.



Beispiel: m = 3

$$a = 0 \Rightarrow \bar{0} = \{z \in \mathbb{Z} \mid z \equiv 0 \mod 3\} = \{\dots, -6, -3, 0, 3, 6, \dots\} = 3\mathbb{Z}$$
  
 $a = 1 \Rightarrow \bar{1} = \{z \in \mathbb{Z} \mid z \equiv 1 \mod 3\} = \{\dots, -5, -2, 1, 4, 7, \dots\} = 1 + 3\mathbb{Z}$   
 $a = 2 \Rightarrow \bar{2} = \{z \in \mathbb{Z} \mid z \equiv 2 \mod 3\} = \{\dots, -4, -1, 2, 5, 8, \dots\} = 2 + 3\mathbb{Z}$ 

 $a = 3 \Rightarrow \bar{3} = \{z \in \mathbb{Z} \mid z \equiv 3 \mod 3\} = \{\dots, -9, -6, -3, 0, 3, 6, \dots\} = \bar{0}$ 

Insbesondere gilt:  $a \in \bar{a}$ 

Satz 5.12. Sei  $m \in \mathbb{N}$ . Für  $a, b \in \mathbb{Z}$  gilt:

$$\bar{a} = \bar{b} \iff a \equiv b \mod m$$

#### **Beweis:**

"  $\Rightarrow$ ": Es gelte  $\bar{a} = \bar{b}$ 

Aus  $a \in \bar{a} = \bar{b}$  folgt  $a \in \bar{b}$   $\Rightarrow a \equiv b \mod m$ .

" $\Leftarrow$ ": Sei  $a \equiv b \mod m$ .

Z.z.:  $\bar{a} = \bar{b}$  (als Mengen!)

Fall:  $\bar{a} \subseteq \bar{b}$ :

Sei  $z \in \bar{a} \implies z \equiv a \mod m$  (nach Def.)

Wegen  $a \equiv b \mod m$  und der Transitivität folgt:

$$z \equiv b \mod m \quad \Rightarrow \quad z \in \bar{b} \quad \Rightarrow \quad \bar{a} \subseteq \bar{b}$$

Fall:  $\bar{a} \supseteq \bar{b}$ :

Wie oben bei Fall:  $\bar{a} \subseteq \bar{b}$  mit Symmetrie:

$$a \equiv b \mod m \Leftrightarrow b \equiv a \mod m$$

### Satz 5.13.

- (1) Für alle  $a \in \mathbb{Z}$  gilt:  $\bar{a} \neq \emptyset$
- (2) Für alle  $a, b \in \mathbb{Z}$  gilt entweder:  $\bar{a} = \bar{b}$  oder  $\bar{a} \cap \bar{b} = \emptyset$
- (3) Für alle  $z \in \mathbb{Z}$  gibt es ein  $a \in \mathbb{Z}$  mit  $z \in \bar{a}$

### **Beweis:**

- (1) Da  $a \in \bar{a}$  für alle  $a \in \mathbb{Z}$  folgt  $\Rightarrow \bar{a} \neq \emptyset \quad \forall a \in \mathbb{Z}$ .
- (2) Seien  $a, b \in \mathbb{Z}$ :

Zwei Fälle:  $a \equiv b \mod m$  oder  $a \not\equiv b \mod m$ 

 $\underline{\operatorname{Falls}\ a\ \equiv\ b\ \bmod\ m} \quad \overset{\operatorname{Satz}\ 5.12}{\Leftrightarrow} \ \bar{a} = \bar{b}$ 

Falls  $a \not\equiv b \mod m$ : z.z.:  $\bar{a} \cap \bar{b} = \emptyset$  (als Menge)

Durch Widerspruch  $\Rightarrow$  Annahme:  $\bar{a} \cap \bar{b} \neq \emptyset$ 



$$\Rightarrow$$
 es gibt ein  $z \in \bar{a} \cap \bar{b}$ 

Wegen 
$$z \in \bar{a} \implies z \equiv a \mod m \stackrel{\text{Symmetrie}}{\Leftrightarrow} a \equiv z \mod m$$

Wegen 
$$z \in \bar{b} \implies z \equiv b \mod m$$

Transitivität 
$$a \equiv z \equiv b \mod m$$
 4

Also  $\bar{a}$  und  $\bar{b}$  disjunkt.

(3) Klar, wähle z.B. 
$$z$$
 selber:  $z \in \bar{z}$ 

**Folgerung:** Die Menge  $\mathbb{Z}$  der ganzen Zahlen wird bei gegebenen Modul m in disjunkte Teilmengen  $\bar{a}$  zerlegt.

Beispiel: 
$$m = 3$$

Die 3 Streifen entsprechen den Restklassen  $\bar{0}, \bar{1}$  und  $\bar{2},$  dabei sind 0, 1 und 2 Repräsentanten.

Wieviel Restklassen modulo m gibt es?

**Satz 5.14.** Sei  $m \in \mathbb{N}$ . Es gibt genau m verschiedene Restklassen modulo m:

$$\bar{0}$$
 $(=\bar{m})$ ,  $\bar{1}$ , ...,  $\overline{m-1}$ 

**Bemerkung 5.15.** (1) Es müssen nicht die Repäsentanten 0, 1, 2, ..., m-1 sein, diese werden aber gerne genommen.

(2) Aus Sätzen 5.13 und 5.14 folgt:

$$\bar{0} \cup \bar{1} \cup \bar{2} \cup \cdots \cup \overline{m-1} = \mathbb{Z}$$

#### **Beweis:**

Von Satz 5.14: Es reicht zu zeigen, daß jede Restklasse modulo m einen Repräsentanten zwischen 0 und m-1 hat:

Sei 
$$a \in \mathbb{Z} \implies \text{Restklasse } \bar{a}$$



Euklidischer Algorithmus: es gibt eindeutig bestimmte Zahlen  $q \in \mathbb{Z}$  und r mit  $0 \le r < m$ , so daß:

$$a = q \cdot m + r$$

$$\Rightarrow \qquad a \equiv r \mod m$$

$$\Leftrightarrow \qquad \bar{a} = \bar{r} \mod r \in \{0, 1, 2, \dots, m - 1\}$$

Die Restklassen modulo m bilden die Menge:

$$\mathbb{Z}/m\mathbb{Z} := \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{m-1}\}$$

- $\mathbb{Z}/m\mathbb{Z}$  ist eine Menge von Mengen!
- $\mathbb{Z}/m\mathbb{Z}$  wird als Menge der m "Symbole":  $\bar{0}, \bar{1}, \ldots, \overline{m-1}$  aufgefasst. Dabei "vergisst" man, daß  $\bar{0}, \bar{1}, \ldots, \overline{m-1}$  Mengen sind, aber nicht ihre Eigenschaften.
- $\mathbb{Z}/m\mathbb{Z}$  wird Restsystem modulo m (oder auch Restklassenmenge) genannt.

# Beispiele:

$$\mathbb{Z}/3\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}\}$$
 und  $\mathbb{Z}/4\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}\}$ 

5.3. Algebraische Struktur von  $\mathbb{Z}/m\mathbb{Z}$  - Rechnen im System  $\mathbb{Z}/m\mathbb{Z}$ .

Wir führen eine Addition  $\oplus$  und eine Multiplikation  $\odot$  in  $\mathbb{Z}/m\mathbb{Z}$  ein: Für  $\bar{a}, \bar{b} \in \mathbb{Z}/m\mathbb{Z}$  sei:

$$\bar{a}\oplus\bar{b}:=\overline{a+b}$$
 Restklassen  
addition 
$$\bar{a}\odot\bar{b}:=\overline{a\cdot b}$$
 Restklassen  
multiplikation

Warum ist das vernünftig?

**Satz 5.16.** Die Restklassenverknüpfungen  $\oplus$  und  $\odot$  in  $\mathbb{Z}/m\mathbb{Z}$  sind wohldefiniert.

#### **Beweis:**

1)  $\bar{a}, \bar{b} \in \mathbb{Z}/m\mathbb{Z}$  bedeutet, daß  $a, b \in \mathbb{Z}$ .

Hier sind Addition  $a + b \in \mathbb{Z}$  und Multiplikation  $a \cdot b \in \mathbb{Z}$  definiert. Damit gilt für die Restklassen:  $\overline{a+b}, \quad \overline{a \cdot b} \in \mathbb{Z}/m\mathbb{Z}$ .

2) Unabhängigkeit von der Wahl des Repräsentanten:

#### Seien:

$$\bar{a} = \bar{a'} \pmod{a, a' \in \mathbb{Z} \text{ mit } a \equiv a' \pmod{m}}$$
 und



(i) 
$$\bar{a} \oplus \bar{b} = \bar{a'} \oplus \bar{b'} \text{ und (ii)} \quad \bar{a} \odot \bar{b} = \bar{a'} \odot \bar{b'}$$

$$\bar{a}\odot\bar{b}=\bar{a'}\odot\bar{b'}$$

Aber: 
$$m \mid a - a' \mod m \mid b - b'$$

$$\Rightarrow m \mid \underbrace{(a - a') + (b - b')}_{=(a+b)-(a'+b')} \quad \Rightarrow \quad a + b \equiv a' + b' \mod m$$
(\*)

$$\Leftrightarrow \bar{a} \oplus \bar{b} = \bar{a'} \oplus \bar{b'} \quad \Rightarrow (i)$$

Aus (\*) folgt: 
$$a = a' + m \cdot q_1$$
 und  $b = b' + m \cdot q_2$   

$$\Rightarrow a \cdot b = (a' + m \cdot q_1) \cdot (b' + m \cdot q_2)$$

$$= a' \cdot b' + m \cdot q_1 b' + m q_2 a' + m^2 q_1 q_2$$

$$= a' \cdot b' + m \cdot (*)$$

$$\Rightarrow a \cdot b \equiv a' \cdot b' \mod m$$

$$\Leftrightarrow \bar{a} \odot \bar{b} = \bar{a'} \odot \bar{b'} \Rightarrow (ii)$$

Beispiele

in 
$$\mathbb{Z}/5\mathbb{Z}$$
 gilt:  $\bar{3} \oplus \bar{4} = \bar{7} = \bar{2}$ 

$$\bar{3}\odot\bar{4}=\overline{12}=\bar{2}$$

in 
$$\mathbb{Z}/7\mathbb{Z}$$
 gilt:  $\bar{3} \oplus \bar{4} = \bar{7} = \bar{0}$ 

$$\bar{3}\odot\bar{4}=\overline{12}=\bar{5}$$

Verknüpfungstafeln:

|                            | $\oplus$  | $\bar{0}$ | Ī | $\bar{2}$ | 3 | $\bar{4}$ |
|----------------------------|-----------|-----------|---|-----------|---|-----------|
|                            | Ō         | 0         | 1 | 2         | 3 | 4         |
| $\mathbb{Z}/5\mathbb{Z}$ : | $\bar{1}$ | 1         | 2 | 3         | 4 | 0         |
| <i>.</i>                   | $\bar{2}$ | 2         | 3 | 4         | 0 | 1         |
|                            | 3         | 3         | 4 | 0         | 1 | 2         |
|                            | $\bar{4}$ | 4         | 0 | 1         | 2 | 3         |

| und | $\odot$   | $\bar{0}$ | 1 | $\bar{2}$ | 3 | $\bar{4}$ |
|-----|-----------|-----------|---|-----------|---|-----------|
|     | Ō         | 0         | 0 | 0         | 0 | 0         |
|     | 1         | 0         | 1 | 2         | 3 | 4         |
|     | $\bar{2}$ | 0         | 2 | 4         | 1 | 3         |
|     | 3         | 0         | 3 | 1         | 4 | 2         |
|     | $\bar{4}$ | 0         | 4 | 3         | 2 | 4         |

symmetrisch, da Z/5Z Ring (Addition in Ringen immer kommutativ)

symmetrisch, da Z/5Z kommutativer Ring (d.h. Multiplikation kommutativ)



# Die algebraische Struktur der Restklassenmengen:

Satz 5.17.  $(\mathbb{Z}/m\mathbb{Z}, \oplus, \odot)$  ist ein kommutativer Ring (mit Einselement).

Wiederholung/Exkurs: Sei M eine Menge und  $+: M \times M \to M$  und  $\cdot: M \times M \to M$  Verknüpfungen.

**Gruppe**: (M, +) ist eine Gruppe, wenn gilt:

(1) es gibt ein <u>neutrales Element</u> e = 0 : ("Nichts" der Addition)

$$m + e = e + m = m$$
 für alle  $m \in M$ 

(2) Inverses Element: für alle  $m \in M$  gibt es ein Inverses m', d.h.:

$$m + m' = m' + m = e$$

(3) <u>Assoziativität</u>: für alle  $m, n, p \in M$  gilt (m+n) + p = m + (n+p). (macht erst die Schreibweise: m+n+p möglich!) (macht erst die Schreibweise: m+n+p möglich!)

Wenn auch noch

(4) Kommutativität: für alle  $n, m \in M$  gilt: n + m = m + ngilt, dann heißt (M, +) kommutative oder abelsche Gruppe.

**Beispiel:**  $(\mathbb{Z},+)$  ist eine kommutative Gruppe,  $\mathbb{N}$  nein,  $(\mathbb{Z},\cdot)$  auch nein, weil Inverse fehlen, aber  $(\mathbb{Q},\cdot)$  ist eine abelsche Gruppe. Rotationsgruppen: endliche abelsche Gruppen, Diedergruppen: endliche nicht abelsche Gruppen.

Ring: Ein Ring ist eine Menge M mit 2 Verknüpfungen (meist + und  $\cdot$  bezeichnet), also  $(M, +, \cdot)$ , wenn gilt:

- (M, +) ist eine kommutative Gruppe, es gilt also  $(1) \dots (4)$ .
- $(M, \cdot)$  hat ein neutrales Element (vgl. (1), bei Multiplikation Einselement 1 genannt) und erfüllt die Assoziativität (3)

und zusätzlich gilt:

(5) Distributivität: für alle  $m, n, p \in M$  gilt:

$$(m+n) \cdot p = m \cdot p + n \cdot p$$
 und  $p \cdot (m+n) = p \cdot m$ 

Wenn zusätzlich gilt:

(6) Kommutativität der Multiplikation: für alle  $n, m \in M$  gilt:





dann heißt  $(M, +, \cdot)$  kommutativer Ring (mit Eins).

**Bemerkung:** Es gibt auch Ringe ohne Eins, dann ist  $(M, \cdot)$  eine Halbgruppe, kommt selten vor!!

#### **Beweis:**

(Von Satz 5.17)

(1) Neutrales Element bzgl.  $\oplus$ :  $\bar{0}$  tuts, denn für alle  $\bar{a} \in \mathbb{Z}/m\mathbb{Z}$  gilt:

$$\bar{a} \oplus \bar{0} = \overline{a+0} = \bar{a} = \overline{0+a} = \bar{0} \oplus \bar{a}$$

(2) <u>Inverses Element:</u> Sei  $\bar{a} \in \mathbb{Z}/m\mathbb{Z}$ . Beh:  $\bar{a}' = \overline{-a}$ 

$$\bar{a} \oplus \bar{a}' = \bar{a} \oplus \overline{-a} = \overline{a + (-a)} = \bar{0}$$
  
 $\bar{a}' \oplus \bar{a} = \dots = \bar{0}$ 

(3) Assoziativität:  $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}/m\mathbb{Z}$ , also  $a, b, c \in \mathbb{Z}$ :

$$(\bar{a} \oplus \bar{b}) \oplus \bar{c} = \overline{a + b} \oplus \bar{c} = \overline{(a + b) + c} = \overline{a + (b + c)} = \bar{a} \oplus \overline{b + c} = \bar{a} \oplus (\bar{b} \oplus \bar{c})$$
Assoziativität
von  $\mathbb{Z}$ 

(4) <u>Kommutatives Element:</u> folgt aus der Kommutativität von  $\mathbb{Z}$ :

$$\bar{a} \oplus \bar{b} = \overline{a+b} = \overline{b+a} = \bar{b} \oplus \bar{a}$$

Damit ist  $(\mathbb{Z}/m\mathbb{Z}, \oplus)$  eine kommutative Gruppe.

Nun zur Multiplikation ⊙:

Einselement: Beh.:  $\bar{1}$  ist ein Einselement: Für alle  $\bar{a} \in \mathbb{Z}/m\mathbb{Z}$  gilt:

$$\bar{1} \odot \bar{a} = \overline{1 \cdot a} = \overline{a \cdot 1} = \bar{a} \odot \bar{1}$$

(5) <u>Distributivität:</u>  $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}/m\mathbb{Z}$ :

$$(\bar{a} \oplus \bar{b}) \odot \bar{c} = (\overline{a+b}) \odot \bar{c} = \overline{(a+b) \cdot c} = \overline{a \cdot c + b \cdot c} = \bar{a} \odot \bar{c} \oplus \bar{b} \odot \bar{c}$$

(6) <u>Kommutativität von  $\odot$ :</u>  $\bar{a} \odot \bar{b} = \overline{a \cdot b} = \overline{b \cdot a} = \bar{b} \odot \bar{a}$ 

# Beispiel

(1)  $\mathbb{Z}/5\mathbb{Z} = \{\bar{0}, \bar{1}, \bar{2}, \bar{3}, \bar{4}\}$ 

neutrales Element der Addition:  $\bar{0}$  (vgl. Verkn. Tafel) neutrales Element der Multiplikation:  $\bar{1}$ 

Kommutativität von  $\oplus$  und  $\odot$  sehen wir an der Symmetrie der Verknüpfungstafel.



Inverse Elemente der Addition:

$$\bar{0}' = \bar{0}$$

$$-\bar{1} = \bar{1}' = -\bar{1} = \bar{4}$$

$$-\bar{2} = \bar{2}' = -\bar{2} = \bar{3}$$

$$\bar{3}' = -\bar{3} = \bar{2}$$

$$\bar{4}' = -\bar{4} = \bar{1}$$

$$\mathrm{denn}\ \bar{1} \oplus \bar{4} = \bar{5} = \bar{0}$$

Wo sieht man das in der Verknüpfungstafel? Suche Paare, die die  $\bar{0}$ erzeugen!

| $\oplus$       | $\bar{0}$ | $\bar{1}$ | $\bar{2}$ | $\bar{3}$ | $\bar{4}$ |
|----------------|-----------|-----------|-----------|-----------|-----------|
| Ō              | Ō         | Ī         | $\bar{2}$ | 3         | $\bar{4}$ |
| 1              | Ī         | $\bar{2}$ | 3         | 4         | Ō         |
| $\bar{2}$      | $\bar{2}$ | 3         | $\bar{4}$ | Ō         | Ī         |
| 3              | 3         | 4         | $\bar{0}$ | Ī         | $\bar{2}$ |
| $\overline{4}$ | 4         | Ō         | Ī         | 2         | 3         |

$$\bar{1} \odot \bar{1} = \bar{1} \Rightarrow \bar{1}^{-1} = \bar{1}$$

$$\bar{2} \odot \bar{3} = \bar{1} \Rightarrow \bar{2}^{-1} = \bar{3}$$

$$\dots \qquad \dots \qquad \Rightarrow \bar{3}^{-1} = \bar{2}$$

$$\bar{4} \odot \bar{4} = \bar{1} \Rightarrow \bar{4}^{-1} = \bar{4}$$

| $\odot$   | U | 1         | 2         | 3         | 4         |
|-----------|---|-----------|-----------|-----------|-----------|
| Ō         | Ō | Ō         | Ō         | Ō         | Ō         |
| Ī         | Ō | Ī         | $\bar{2}$ | 3         | $\bar{4}$ |
| $\bar{2}$ | Ō | $\bar{2}$ | 4         | Ī         | 3         |
| 3         | Ō | 3         | Ī         | $\bar{4}$ | $\bar{2}$ |
| 4         | Ō | <u>4</u>  | 3         | 2         | Ī         |

und

| / |           |           |           |           |           |           |           |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|   | $\oplus$  | $\bar{0}$ | Ī         | $\bar{2}$ | 3         | $\bar{4}$ | 5         |
|   | Ō         | Ō         | Ī         | $\bar{2}$ | 3         | <u>4</u>  | 5         |
|   | 1         | Ī         | $\bar{2}$ | 3         | 4         | 5         | Ō         |
|   | $\bar{2}$ | $\bar{2}$ | 3         | $\bar{4}$ | 5         | Ō         | $\bar{1}$ |
|   | 3         | 3         | $\bar{4}$ | 5         | Ō         | Ī         | $\bar{2}$ |
|   | $\bar{4}$ | $\bar{4}$ | 5         | Ō         | Ī         | $\bar{2}$ | 3         |
|   | 5         | 5         | Ō         | Ī         | $\bar{2}$ | 3         | $\bar{4}$ |
|   | т '       |           | 1         |           | 1 1 .     |           |           |

Inverse der Addition:

z.B.: 
$$-\bar{5} = \bar{1}$$
, denn  $\bar{5} \oplus \bar{1} = \bar{0}$ 

 $\bar{0}$  $\bar{0}$  $\bar{0}$  $\bar{0}$  $\bar{0}$  $\bar{0}$  $\bar{0}$ Ī  $\bar{0}$  $\bar{2}$  $\bar{3}$  $\bar{4}$  $|\bar{0}|\bar{2}|\bar{4}|$  $\bar{0} \mid \bar{2}$  $\bar{3}$   $\bar{0}$  $\bar{3}$  $\bar{2}$  $\bar{4}$  $\bar{4}$  $\bar{4}$  $\bar{0}$  $\bar{0}$  $|\bar{0}|\bar{5}|\bar{4}$ 3  $\bar{2}$ 

Inverse der Multiplikation:

$$\bar{1}^{-1} = \bar{1}, \quad \bar{5}^{-1} = \bar{5}$$

Neu: <u>Nullteiler:</u>

$$\bar{3} \odot \bar{2} = \bar{0}$$
 und  $\bar{4} \odot \bar{3} = \bar{0}$ 

**Satz 5.18.**  $(\mathbb{Z}/m\mathbb{Z}, \odot)$  enthält genau dann Nullteiler, wenn m eine zusammengesetzte Zahl ist.

#### **Beweis:**

" $\Leftarrow$ ": Sei  $m = a \cdot b$  mit 1 < a < m also auch 1 < b < m

$$\Rightarrow \quad \bar{a} \odot \bar{b} = \overline{a \cdot b} = \bar{m} = \bar{0} \quad \in \mathbb{Z}/m\mathbb{Z}$$

" $\Rightarrow$ ": Umgekehrt:  $(\mathbb{Z}/m\mathbb{Z}, \odot)$  enthalte Nullteiler, d.h.

$$\exists \quad \bar{a}, \bar{b} \in \mathbb{Z}/m\mathbb{Z}\backslash \{\bar{0}\} \quad \text{mit} \quad \bar{a} \odot \bar{b} = \bar{0} \\ \Leftrightarrow \overline{a \cdot b} = \bar{0} \quad \Leftrightarrow \quad m \mid \underbrace{(a \cdot b - 0)}_{a \cdot b} \quad \Leftrightarrow \quad m \mid a \cdot b$$

Da  $\bar{a} \neq \bar{0} \Rightarrow m \not| a - 0 \Rightarrow m \not| a$ 

Analog m/b

Also  $m \mid a \cdot b$ , aber  $m \not\mid a$  und  $m \not\mid b$ . Aus dem Primzahlkriterium 3.20 folgt  $\Rightarrow m$  ist keine Primzahl sondern zusammengesetzte Zahl! (oder m = 1!!)

Ein Ring ohne Nullteiler heißt Integritätsring.

**Korollar 5.19.** Für m > 1 gilt:

 $\mathbb{Z}/m\mathbb{Z}$  ist Integritätsring  $\Leftrightarrow m$  ist Primzahl

Gibt es auch Inverse der Multiplikation?

Satz 5.20.  $\bar{a} \in \mathbb{Z}/m\mathbb{Z}$  hat genau dann ein multiplikativ Inverses ( $\bar{a}^{-1}$  exisiert), wenn ggT(a,m) = 1.



#### **Beweis:**

$$\bar{a}^{-1} \in \mathbb{Z}/m\mathbb{Z}$$
 existiert  $\Leftrightarrow \bar{a}^{-1} = \bar{s}$  mit  $s \in \mathbb{Z}$ ,  $OE: 1 \leqslant s < m$ 

$$\Leftrightarrow \bar{s} \cdot \bar{a} = \bar{1} \qquad \qquad (\text{mit } \bar{s} \in \mathbb{Z}/m\mathbb{Z})$$

$$\Leftrightarrow s \cdot a \equiv 1 \mod m \qquad \qquad (\text{mit } s \in \mathbb{Z})$$

$$\Leftrightarrow s \cdot a = 1 + t \cdot m \qquad (\text{mit } s, t \in \mathbb{Z})$$

$$\Leftrightarrow s \cdot a - t \cdot m = 1 \qquad (\text{mit } s, t \in \mathbb{Z})$$

 $\Leftrightarrow$  die lineare diophantische Gleichung  $s \cdot a - t \cdot m = 1$  ist lösbar in  $\mathbb{Z}$ 

$$\Leftrightarrow ggT(a,m) \mid 1$$
 (vgl. Satz 4.17)  
$$\Leftrightarrow ggT(a,m) = 1$$

**Korollar 5.21.** Seien  $a, b \in \mathbb{N}$  mit ggT(a, b) = 1. Dann ist die Kongruenz  $a \cdot x \equiv 1 \mod b$  lösbar.

Ring → Körper???

Wdh. zu Körpern:  $\mathbb{Q}$ ,  $\mathbb{R}$ ,  $\mathbb{C}$  sind Körper (mit + und ·).

Was brauchen wir noch, um aus einem Ring einen Körper zu machen?

 $\Rightarrow$  Wir brauchen noch Inverse der Multiplikation:

Sei wie zuvor:  $(M, +, \cdot)$  eine kommutativer Ring. Es gelte ferner:

(7) Inverses Element der Multiplikation: für alle  $a \in M \setminus \{0\}$  gibt es ein Inverses  $a^{-1}$ , so daß:

 $a \cdot a^{-1} = 1 \leftarrow$ Einselement=neutrales Element der Multiplikation

(Wegen der Kommutativität gilt auch  $a^{-1}\cdot a=1)$ 

Ein kommutativer Ring, der auch (7) erfüllt, heißt Körper.

# Intergriätsring $\Leftrightarrow$ Körper??

Klar, ein Körper ist immer auch ein Integritätsring, da er keine Nullteiler außer Null selber haben kann. Umgekehrt ist die Eigenschaft, ein Intergritätsring zu sein, also keine Nullteiler zu haben, eine notwendige Vorraussetzung dafür, ein Körper zu sein. Aber diese Eigenschaft ist nicht hinreichend.

Gegenbeispiel: Die ganzen Zahlen  $\mathbb{Z}$  sind ein Integritätsring, aber kein Element  $\neq 0$  oder  $\pm 1$  ist invertierbar in  $\mathbb{Z}$ .



Bei den Restklassen modulo m passiert das aber nicht, sobald keine Nullteiler, dann auch sogleich Körper!

Das folgt aus der allgemeineren Tatsache, daß Integritätsringe mit endlich vielen Elementen immer auch Körper sind.

**Satz 5.22.**  $(\mathbb{Z}/p\mathbb{Z}, \oplus, \odot)$  ist genau dann ein Körper, wenn p eine Primzahl ist.

#### **Beweis:**

" $\Leftarrow$ ": Sei p Primzahl.

Korollar 5.19  $\Rightarrow$   $(\mathbb{Z}/p\mathbb{Z}, \oplus, \odot)$  ist Integritätsring.

Z.z.: (7) jedes von Null verschiedene Element hat ein multiplikativ Inverses!

Sei 
$$\bar{a} \in \mathbb{Z}/p\mathbb{Z}\setminus\{\bar{0}\}$$
, also  $a \in \mathbb{Z}$ , OE:  $0 < a < p$ 

Wir suchen das Inverse:  $\bar{a}^{-1}$ 

Da 
$$p$$
 Primzahl  $\Rightarrow ggT(a, p) = 1$ 

Satz 5.20  $\Rightarrow$  das Inverse  $\bar{a}^{-1}$  existiert!

" $\Rightarrow$ ":  $\mathbb{Z}/p\mathbb{Z}$  sei ein Körper. Z.Z.: p ist Primzahl

 $\mathbb{Z}/p\mathbb{Z}$  Körper  $\Rightarrow$  jedes Element  $\bar{a} \neq \bar{0}$  hat ein Inverses.

Satz 5.20: die Zahlen (Repräsentanten der Elemente von  $\mathbb{Z}/p\mathbb{Z}$ ) 1, 2, 3, . . . p-1 sind zu p teilerfremd:

$$ggT(a,p)=1 \quad \forall \quad a=1,2,\ldots,p-1 \ \Rightarrow \quad T_p=\{1,p\} \ \Rightarrow p \text{ ist Primzahl.} \quad \ \Box$$

Bemerkung 5.23. Das Inverse eines Elementes  $\bar{a} \in \mathbb{Z}/m\mathbb{Z}$  findet man mit Hilfe des Euklidischen Algorithmus' bzw. durch Lösen der linearen diophantischen Gleichung:

$$x \cdot a + y \cdot m = 1$$
  $\Rightarrow$   $\bar{a}^{-1} = \bar{x}$ 



Beispiel: Bestimme 
$$\bar{7}^{-1} \in \mathbb{Z}/12\mathbb{Z}$$
:  $(ggT(7,12) = 1 \Rightarrow \bar{7}^{-1} \text{ existiert})$ 

$$7 \cdot x \equiv 1 \mod 12 \quad \Leftrightarrow \quad 7x + 12y = 1$$

$$12 = 1 \cdot 7 + 5 \qquad (5 = 12 - 7)$$

$$7 = 1 \cdot 5 + 2 \qquad (2 = 7 - 5)$$

$$5 = 2 \cdot 2 + 1$$

$$\Rightarrow \quad 1 = 5 - 2 \cdot 2$$

$$= 5 - 2 \cdot (7 - 5) = 3 \cdot 5 - 2 \cdot 7$$

$$= 3 \cdot (12 - 7) - 2 \cdot 7$$

$$= 3 \cdot 12 - 5 \cdot 7$$

$$\Leftrightarrow \quad 7 \cdot (-5) = 1 - 3 \cdot 12$$

$$\Leftrightarrow \quad 7 \cdot (-5) \equiv 1 \mod 12$$

$$\Leftrightarrow \quad \bar{7} \cdot (-5) = \bar{1}$$

$$\Rightarrow \bar{7}^{-1} = -\bar{5} = \bar{7} \in \mathbb{Z}/12\mathbb{Z}$$

# Bemerkungen:

(1) in  $\mathbb{Z}/p\mathbb{Z}$ , mit einer Primzahl p, haben alle Elemente  $\neq 0$  ein multiplikatives Inverses  $\Rightarrow \bar{a} \in \mathbb{Z}/p\mathbb{Z}, \bar{a} \neq \bar{0}$  dann existiert  $\bar{a}^{-1} \in \mathbb{Z}/p\mathbb{Z}$ .

Klar:  $7 \cdot 7 = 7^2 = 49 = 1 + 48 = 1 + 4 \cdot 12 \equiv 1 \mod 12$ 

(2) in  $\mathbb{Z}/m\mathbb{Z}$ , m beliebig, haben genau die Elemente  $\bar{a} \neq \bar{0}$  mit ggT(a, m) = 1 ein Inverses  $\bar{a}^{-1}$ .

(vgl. Multiplikationstafel von  $\mathbb{Z}/6\mathbb{Z}$ : nur 5 ist zu 6 teilerfremd!  $\Rightarrow$  nur  $\bar{5}^{-1} = \bar{5}$  existiert, sogar selbstinvers!)

### 5.4. Die Sätze von Euler, Fermat und der Chinesische Restsatz.

$$\textbf{Eulersche } \varphi\textbf{-Funktion} \text{:} \quad \varphi(m) := \# \big\{\, x \in \{1,2,\ldots,m\} \, \big| \, ggT(x,m) = 1 \, \big\}$$

$$\underbrace{\varphi(1)}_{\{1\}} = 1, \ \underbrace{\varphi(2)}_{\{1\}} = 1, \ \underbrace{\varphi(3)}_{\{1,2\}} = 2, \ \underbrace{\varphi(4)}_{\{1,3\}} = 2, \ \underbrace{\varphi(5)}_{\{1,2,3,4\}} = 4, \\
\underbrace{\varphi(6)}_{\{1,5\}} = 2, \ \underbrace{\varphi(7)}_{\{1,2,3,4,5,6\}} = 6, \ \underbrace{\varphi(8)}_{\{1,3,5,7\}} = 4, \ \underbrace{\varphi(9)}_{\{1,2,4,5,7,8\}} = 6, \ \underbrace{\varphi(10)}_{\{1,3,7,9\}} = 4$$

 $\Rightarrow$  Offensichtlich gilt für Primzahlen  $p\colon \ \varphi(p)=p-1$  (denn $\{1,2,\ldots,p-1\}$  sind zu p teilerfremd!)

 $\Rightarrow \varphi(m)$ hat was mit der Anzahl der invertierbaren Elemente in  $\mathbb{Z}/m\mathbb{Z}$  zu tun, was?

Klar,  $\varphi(m)$  ist genau die Anzahl der invertierbaren Elemente in  $\mathbb{Z}/m\mathbb{Z}$  (vgl. Satz 5.20)

Satz 5.24 (Eulerscher Satz). Für alle teilerfremden Zahlen  $a, m \in \mathbb{N}$  gilt:  $a^{\varphi(m)} \equiv 1 \mod m$ 

Äquivalent:

$$\bar{a}^{\varphi(m)} = \bar{1}$$
 in  $\mathbb{Z}/m\mathbb{Z}$ 

Beispiele (1) m = 7, (also  $\varphi(7) = 6$ )  $\Rightarrow$  für alle  $a \in \mathbb{N}$  mit ggT(a,7) = 1 gilt

$$a^6 \equiv 1 \mod 7 \quad \Leftrightarrow \quad 7 \mid a^6 - 1$$

⇒ unendlichviele Teilbarkeitsaussagen:

$$7 \mid \underbrace{1^{6} - 1}_{=0}, \quad 7 \mid \underbrace{2^{6} - 1}_{=63}, \quad 7 \mid \underbrace{3^{6} - 1}_{=728 = 7 \cdot 104}, \quad 7 \mid \underbrace{4^{6} - 1}_{=4095 = 7 \cdot 585},$$

$$7 \mid \underbrace{5^{6} - 1}_{=15.624 = 7 \cdot 2232}, \quad 7 \mid 6^{6} - 1, \quad 7 \mid 8^{6} - 1, \dots$$

(2) Frage nach dem Rest: z.B. Was ist der Rest von  $2^{81}$  bei der Division durch 5? Also:  $2^{81} \equiv ? \mod 5$  Es gilt:  $\varphi(5) = 4$ 

$$2^{80} = 2^{4 \cdot 20} = (2^{20})^4 = (2^{20})^{\varphi(5)} \stackrel{\text{Satz 5.24}}{\equiv} 1 \mod 5 \quad \text{da} \quad ggT(2^{20}, 5) = 1$$

$$\Rightarrow \quad 2^{81} = 2 \cdot 2^{80} \equiv 2 \cdot 1 \equiv 2 \mod 5$$



#### **Beweis:**

Sei  $m \in \mathbb{N}$ . Nach Definition gibt es genau  $\varphi(m)$  zu m teilerfremde Zahlen < m:

$$1 \leqslant r_1 < r_2 < r_3 < \dots < r_{\varphi(m)} < m$$

Ihre Restklassen:

$$\overline{r_1}, \overline{r_2}, \dots, \overline{r_{\varphi(m)}} \in \mathbb{Z}/m\mathbb{Z}$$

sind genau die invertierbaren Elemente von  $\mathbb{Z}/m\mathbb{Z}$ .

Da  $1 \le r_i < m \Rightarrow$  für alle  $i \ne j$  gilt:

$$1 \leqslant |r_i - r_i| < m$$

$$\Rightarrow m/r_i - r_j \quad \Rightarrow \quad r_i \not\equiv r_j \mod m \quad \forall i \neq j$$

$$\Rightarrow \overline{r_1}, \overline{r_2}, \dots, \overline{r_{\varphi(m)}}$$
 paarweise verschieden

$$\Rightarrow \left\{\overline{r_1}, \overline{r_2}, \dots, \overline{r_{\varphi(m)}}\right\} = (\mathbb{Z}/m\mathbb{Z})^* = \text{Gruppe der invertierbaren Elemente.}$$

Sei nun  $a \in \mathbb{N}$  teilerfremd zu m.

Dann gilt

- (1)  $ar_i$  ist teilerfremd zu m für alle  $i=1,\ldots,\varphi(m)$   $\Rightarrow \overline{ar_i} \in (\mathbb{Z}/m\mathbb{Z})^*$
- (2)  $\overline{ar_i} \neq \overline{ar_j}$  in  $(\mathbb{Z}/m\mathbb{Z})^*$  für alle  $i \neq j$ ,  $\left(\text{denn sonst } m \mid ar_i ar_j = \underset{ggT(a,m)=1}{a} \underbrace{(r_i r_j)}_{m \nmid (r_i r_j)} \right) \neq 0$

 $\Rightarrow \overline{ar_1}, \overline{ar_2}, \dots, \overline{ar_{\varphi(m)}}$  sind paarweise verschiedene invertierbare Elemente von  $(\mathbb{Z}/m\mathbb{Z})^*$ 

$$\Rightarrow \left\{ \overline{ar_1}, \overline{ar_2}, \dots, \overline{ar_{\varphi(m)}} \right\} = \left\{ \overline{r_1}, \overline{r_2}, \dots, \overline{r_{\varphi(m)}} \right\}$$

$$\Rightarrow \overline{ar_1} \cdot \overline{ar_2} \cdot \dots \cdot \overline{ar_{\varphi(m)}} = \overline{r_1} \cdot \overline{r_2} \cdot \dots \cdot \overline{r_{\varphi(m)}} \quad \text{in } (\mathbb{Z}/m\mathbb{Z})^*$$

$$\Rightarrow (ar_1) \cdot (ar_2) \cdot \dots \cdot (ar_{\varphi(m)}) \equiv r_1 \cdot r_2 \cdot \dots \cdot r_{\varphi(m)} \quad \text{mod } m$$

$$a^{\varphi(m)} \cdot (r_1 \cdot r_2 \cdot \dots \cdot r_{\varphi(m)}) \equiv (r_1 \cdot r_2 \cdot \dots \cdot r_{\varphi(m)}) \quad \text{mod } m$$

$$\Rightarrow a^{\varphi(m)} \equiv 1 \quad \text{mod } m$$

da  $r_1 \cdot \ldots \cdot r_{\varphi(m)}$  teilerfremd zu m, dürfen wir dadurch teilen, vgl. Korollar 5.10

**Satz 5.25** (Kleiner Satz von Fermat). Ist  $a \in \mathbb{N}$  und p eine Primzahl die a nicht teilt  $(p \not| a \text{ oder } ggT(p, a) = 1)$ , so gilt

$$a^{p-1} \equiv 1 \mod p$$

**Beweis:** 

Direkte Folgerung aus  $\varphi(p) = p - 1$ .



**Korollar 5.26.** Für jede Primzahl p und  $a \in \mathbb{N}$  gilt:

$$a^p \equiv a \mod p$$

#### **Beweis:**

Wenn ggT(a, p) = 1 ist das eine Folgerung aus dem Kleinen Fermat'schen Satz.

Wenn 
$$ggT(a, p) \neq 1$$
, also  $ggT(a, p) = p \implies p \mid a$ 

$$\Rightarrow$$
  $a \equiv 0 \mod p$  und damit auch  $a^n \equiv 0 \mod p$ 

Also ist in diesem Fall die Aussage trivial!

**Satz 5.27.** Für alle natürlichen Zahlen 
$$n \in \mathbb{N}$$
 gilt  $\sum_{d \mid n} \varphi(d) = n$ .

#### Beweis

Für jeden Teiler  $d \in T_n$  definiere die Menge

$$C_d := \{ x \in \{1, 2, \dots, n\} \mid ggT(x, n) = d \}.$$

Damit gilt: wenn  $x \in \{1, ..., n\}$ , dann  $x \in C_d$  mit d := ggT(x, n). D.h. jedes  $x \in \{1, ..., n\}$  ist eindeutig in einem  $C_d$  enthalten.

$$\bigcup_{d \mid n} C_d = \{1, 2, 3, \dots, n\}$$

Zahlenbeispiel: 
$$n = 12 = 2^2 \cdot 3$$
, dann  $T_{12} = \{1, 2, 3, 4, 6, 12\}$  und

 $C_1 = \{1 \le x \le 12 \mid ggT(x, 12) = 1\} = \{1, 5, 7, 11\}$   $\varphi(12) = 4$ 
 $C_2 = \{1 \le x \le 12 \mid ggT(x, 12) = 2\} = \{2, 10 = 2 \cdot 5\}$   $\varphi(\frac{12}{2} = 6) = 2$ 
 $C_3 = \{1 \le x \le 12 \mid ggT(x, 12) = 3\} = \{3, 9\}$   $\varphi(\frac{12}{3} = 4) = 2$ 
 $C_4 = \{1 \le x \le 12 \mid ggT(x, 12) = 4\} = \{4, 8 = 2 \cdot 4\}$   $\varphi(\frac{12}{4} = 3) = 3 - 1 = 2$ 
 $C_6 = \{1 \le x \le 12 \mid ggT(x, 12) = 6\} = \{6\}$   $\varphi(\frac{12}{6} = 2) = 2 - 1 = 1$ 
 $C_{12} = \{1 \le x \le 12 \mid ggT(x, 12) = 12\} = \{12\}$   $\varphi(1) = 1$ 

Sicherlich sind die Mengen  $C_d$  für verschiedene Teiler d von n disjunkt:

$$\bigcup_{d\mid n} C_d = \{1, 2, 3, \dots, n\}$$



Ausserdem gilt

$$#C_d = \#\{ x \in \{1, 2, \dots, n\} \mid ggT(x, n) = d\} \text{ (somit } d \mid x \text{ bzw. } x = d \cdot y)$$

$$= \#\{ y \in \{1, 2, \dots, \frac{n}{d}\} \mid \underbrace{ggT(d \cdot y, n) = d}_{ggT(y, \frac{n}{d}) = 1}$$

$$= \varphi\left(\frac{n}{d}\right)$$

$$(da \ d \mid n)$$

Schließlich folgt:

$$n = \#\{1, 2, 3, \dots, n\} = \#\bigcup_{d \mid n} C_d = \sum_{d \mid n} \#C_d = \sum_{d \mid n} \varphi\left(\frac{n}{d}\right) = \sum_{\substack{\text{durch Umsummieren} \\ d \mid n}} \varphi(d)$$

**Satz 5.28.** Für jede Primzahl p und jedes  $n \in \mathbb{N}$  gilt:

$$\varphi\left(p^{n}\right) = p^{n} \cdot \left(1 - \frac{1}{p}\right) = p^{n-1} \cdot (p-1)$$
 Beweis Nach Satz 5.27 gilt

$$p^{n} = \sum_{d \mid p^{n}} \varphi(d) = \varphi(1) + \varphi(p) + \varphi(p^{2}) + \dots + \varphi(p^{n})$$
$$p^{n-1} = \varphi(1) + \varphi(p) + \varphi(p^{2}) + \dots + \varphi(p^{n-1})$$
$$\Rightarrow p^{n} - p^{n-1} = \varphi(p^{n})$$

# Handbuch der Arithmetik des Chinesen Sun-Tzu, vor ca. 2000 Jahren:

Es soll eine Anzahl von Dingen gezählt werden. Zählt man sie zu je drei, dann bleiben zwei übrig. Zählt man sie zu je fünf, dann bleiben drei übrig. Zählt man sie zu je sieben, dann bleiben zwei übrig. Wie viele sind es??

Was ist gemeint?

$$x \equiv 2 \mod 3$$
  
 $x \equiv 3 \mod 5$   
 $x \equiv 2 \mod 7$ 

Zur Lösung:

$$x \equiv 2 \mod 3 \qquad \Rightarrow x \in \{\dots, -1, 2, 5, 8, \dots\}$$

$$x \equiv 3 \mod 5 \qquad \Rightarrow x \in \{\dots, -2, 3, 8, 13 \dots\}$$

$$x \equiv 2 \mod 7 \qquad \Rightarrow x \in \{\dots, -5, 2, 9, 16, \dots\}$$

**Satz 5.29** (Chinesischer Restsatz). Seien  $m_1, m_2, ..., m_k$  paarweise teiler-fremde natürliche Zahlen und  $a_1, a_2, ..., a_k \in \mathbb{Z}$ . Das System linearer Kongruenzen:

$$x \equiv a_1 \mod m_1$$

$$\vdots$$

$$x \equiv a_k \mod m_k$$

ist lösbar. Alle Lösungen sind kongruent modulo  $m := m_1 \cdot m_2 \cdots m_k$ , d.h. die Restklasse  $\bar{x}$  der Lösung x ist in  $\mathbb{Z}/m\mathbb{Z}$  eindeutig.

## Beweis (der Beweis ist konstruktiv!)

Lösbarkeit: Setze:

$$m := m_1 \cdot m_2 \cdots m_k$$

$$q_i := \frac{m}{m_i} = m_1 \cdots m_i \cdots m_k$$

 $m_i$  paarweise teilerfremd  $\Rightarrow ggT(m_i, q_i) = 1 \Leftrightarrow \bar{q}_i \in \mathbb{Z}/m_i\mathbb{Z}$  invertierbar



 $\Rightarrow q_i \cdot z \equiv 1 \mod m_i$  ist lösbar (vgl. Korollar 5.21) Sei  $q_i'$  eine Lösung, d.h.  $q_i'$  ist ein Repräsentant von  $\bar{q}_i^{-1} \in \mathbb{Z}/m_i\mathbb{Z}$ 

$$q_i \cdot q_i' \equiv 1 \mod m_i$$
 für  $i = 1, 2, \dots, k$ 

Sei

$$x := a_1 \cdot q_1 \cdot q_1' + a_2 \cdot q_2 \cdot q_2' + \dots + a_k \cdot q_k \cdot q_k'$$

Modulo  $m_i$  gilt:

$$x = a_1 \cdot q_1 \cdot q'_1 + a_2 \cdot q_2 \cdot q'_2 + \dots + a_i \cdot q_i \cdot q'_i + \dots + a_k \cdot q_k \cdot q'_k$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad$$

Das geht für alle i = 1, ..., k, damit ist x eine Lösung.

# Eindeutigkeit:

Sei y eine weitere Lösung:

$$\Rightarrow x \equiv a_i \mod m_i \qquad \text{und} \quad y \equiv a_i \mod m_i \qquad \text{(für i=1,...,k)}$$

$$\Rightarrow x \equiv y \mod m_i \qquad \qquad \text{(für i=1,...,k)}$$

$$\Rightarrow m_i \mid (x-y) \qquad \qquad \text{(für i=1,...,k)}$$

$$\Rightarrow m \mid (x-y) \qquad \qquad \text{da die } m_i \text{ paarweise teilerfremd}$$

$$\Rightarrow x \equiv y \mod m$$

$$\Leftrightarrow \bar{x} \equiv \bar{y} \qquad \text{in } \mathbb{Z}/m\mathbb{Z}$$

Beispiel: Sei

$$x \equiv 1 \mod 3$$
 (i=1)

$$x \equiv 3 \mod 7 \tag{i=2}$$

$$x \equiv 5 \mod 11 \tag{i=3}$$

$$\Rightarrow$$
  $m = 3 \cdot 7 \cdot 11 = 231$ 

$$\Rightarrow$$
  $q_1 = \overset{\lor}{3} \cdot 7 \cdot 11 = 77, \quad q_2 = 3 \cdot \overset{\lor}{7} \cdot 11 = 33, \quad q_3 = 3 \cdot 7 = 21$ 

Version vom 2. Oktober 2020

Finde Repräsentanten  $q'_i$  von  $\bar{q}_i^{-1}$  (modulo  $m_i$ ):

$$i = 1 : \text{in } \mathbb{Z}/3\mathbb{Z} : \quad \bar{q}_1 = \overline{77} = \overline{3 \cdot 25 + 2} = \overline{2}, \qquad \text{selbstinvers} \implies q'_1 = 2$$

$$i = 2 : \text{in } \mathbb{Z}/7\mathbb{Z} : \quad \bar{q}_2 = \overline{33} = \overline{7 \cdot 4 + 5} = \overline{5}, \qquad \overline{5} \cdot \overline{3} = \overline{15} = \overline{1} \implies q'_2 = 3$$

$$i = 3 : \text{in } \mathbb{Z}/11\mathbb{Z} : \quad \bar{q}_3 = \overline{21} = \overline{10}, \qquad \overline{10} \cdot \overline{10} = \overline{99 + 1} = \overline{1} \implies q'_3 = 10$$

$$x = a_1 \cdot q_1 \cdot q'_1 + \dots = 1 \cdot \begin{array}{c} 77, \text{ nicht } 2 \\ 77 \end{array} \qquad \cdot 2 + 3 \cdot 33 \cdot 3 + 5 \cdot 21 \cdot 10$$

$$= 1501 = 6 \cdot 231 + 115$$

(in der Formel sind die  $q_i$ 's nicht unabhängig vom Repräsentanten, denn es wird benutzt, daß z. B.  $m_2=7$  die Zahl  $q_1=77$  teilt, aber 7/2!)

$$\Rightarrow \quad \bar{x} = \overline{115} \quad \text{in} \quad \mathbb{Z}/231\mathbb{Z}$$

$$\textbf{Probe:} \quad 115 = 38 \cdot 3 + 1 \equiv 1 \mod 3 \quad \checkmark$$

$$115 = 16 \cdot 7 + 3 \equiv 3 \mod 7 \quad \checkmark$$

$$115 = 10 \cdot 11 + 5 \equiv 5 \mod 11 \quad \checkmark$$

Zurück zur Euler- $\varphi$ -Funktion:

Satz 5.30. Für teilerfremde Zahlen n und m gilt:

$$\varphi(m) \cdot \varphi(n) = \varphi(m \cdot n)$$

#### **Beweis:**

# Noch ohne Beweis, bei Beweis wird der Chinesische Restsatz benutzt!

# Beispiel aus der Astronomie

Die drei inneren Planeten unseres Sonnensystems: Merkur, Venus und Erde haben Umlaufzeiten von (gerundet) 88, 225 und 365 Tagen um die Sonne. Angenommen, ein Bahnradius R wird von Merkur in 15, von der Venus in 43 und von der Erde in 100 Tagen erreicht. Kann es sein, daß sich

- (1) Merkur und Venus,
- (2) Merkur und Erde,
- (3) Venus und Erde
- (4) Merkur, Venus und Erde

irgendwann gleichzeitig auf dem Radius R befinden? Wenn ja, wann ist das?

# Vgl. Geogebra: Bahnschleifen

#### Zur Lösung dieses Problems:

Merkur befindet sich immer nach  $15 + n_M \cdot 88$  Tagen auf R, entsprechend befindet sich Venus immer nach  $43 + n_V \cdot 225$  und die Erde nach  $100 + n_E \cdot$ 



Version vom 2. Oktober 2020

365 Tagen auf R. Also müssen zur Lösung von (1)-(4) Systeme von Linearen Kongruenzen gelöst werden:

- (1) Merkur und Venus:  $x \equiv 15 \mod 88$  $x \equiv 43 \mod 225$ und
- (2) Merkur und Erde:  $x \equiv 15 \mod 88$ und  $x \equiv 100 \mod 365$
- (3) Venus und Erde:  $x \equiv 43 \mod 225$  $x \equiv 100 \mod 365$ und
- (4) Merkur, Venus und Erde:

$$x \equiv 15 \mod 88$$
,  $x \equiv 43 \mod 225$  und  $x \equiv 100 \mod 365$ 

Da  $88 = 2^3 \cdot 11$ ,  $225 = 3^2 \cdot 5^2$  und  $365 = 5 \cdot 73$  sind die Moduln 88, 225 bzw. 88 und 365 paarweise teilerfremd.

Zu (1):

$$x \equiv 15 \mod 88$$
 (i=1)  
 $x \equiv 43 \mod 225$  (i=2)  
 $\Rightarrow m = 88 \cdot 225 = 19800$ 

$$\Rightarrow q_1 = 88 \cdot 225 = 225, \quad q_2 = 88 \cdot 225 = 88,$$

Repräsentanten  $q'_i$  von  $\bar{q}_i^{-1}$  (modulo  $m_i$ )?

$$9 \cdot 225 - 23 \cdot 88 = 1$$

$$i = 1 : \text{in } \mathbb{Z}/88\mathbb{Z} : \quad \overline{q_1} = \overline{225}, \qquad \overline{9} \cdot \overline{225} = \overline{1} \Rightarrow q_1' = 9$$

$$i = 2 : \text{in } \mathbb{Z}/225\mathbb{Z} : \quad \overline{q_2} = \overline{88}, \qquad \overline{202} \cdot \overline{88} = \overline{-23} \cdot \overline{88} = \overline{1} \Rightarrow q_2' = 202$$

$$x = a_1 \cdot q_1 \cdot q_1' + \dots = 15 \cdot 225 \cdot 9 + 43 \cdot 88 \cdot 202$$
  
=  $794743 = 40 \cdot 19800 + 2743$   
Probe:  $2743 = 31 \cdot 88 + 15$   
 $2743 = 12 \cdot 225 + 43$ 

Also in 2743 Tagen ( $\approx 7,5$  Jahre) sind Merkur und Venus auf einem Bahnradius!

#### 6. Stellenwertsysteme

## 6.1. Verschiedene Stellenwertsysteme.

Sumerer im 3ten Jt v.Chr., Babylon im 2ten Jt. v.Chr., Sexagesimalsystem: Stellenwertsystem (Positionssystem) mit Basis 60, die Zahlensymbole in Keilschrift:





Bemerkenswert und innovativ: ein Zeichen für Null! (seit Ptolemaius 150 n.Chr.) Das sexagesimale Postionssystem war außerordentlich leistungsfähig und allen späteren Zahlensystemen der Antike überlegen. Daher wurde es u.a. von den griechisch-hellenistischen Mathematikern dort verwendet, wo viele ausgiebige Rechnungen durchgeführt werden mussten, insbesondere in der Astronomie [Wußing, 6000 Jahre Mathematik, Eine kulturgeschichtliche Zeitreise, Berlin/Heidelberg, (2008), p. 130]

Die babylonische Schreibweise hatte auch Nachteile. Daß man zwischen 1 und 60 in der Schreibweise keinen Unterschied machen kann, ist für den täglichen Gebrauch nicht allzu schlimm, weil die Grössenordnung meistens sowieso bekannt ist (wir wissen ja auch, wenn im Schaufenster die Zahl 30 auf einer Bluse steht, dass es sich nicht um 30 Pfennig handelt); aber bei rein theoretischen Aufgaben kann es doch unangenehm sein. Noch unangenehmer ist es, wenn man in der Schreibweise zwischen 1, 0, 30 und 1,30 nicht unterscheiden konnte, weil die Null nicht existierte. Um diese Schwierigkeit zu beheben, hat man später ein eigenes Zeichen für den leeren Platz zwischen zwei Ziffern eingeführt, zum Beispiel:



Der Griechische Astronom Ptolemaios (150 n. Chr.), der immer sexagesimal rechnete, braucht das Zeichen 0 für Null, auch am Ende einer Zahl. Das gab dem sexagesimalen Postionssystem den letzten Schliff: dadurch wurde es fast gleichwertig mit unserem dezimalen Positionssystem. Ptolemaios schreibt zwar die ganzen Zahlen dezimal und nur die Brüche sexagesimal, aber das spielt keine große Rolle, da er fast nie große ganze Zahlen braucht. Die starke Überlegenheit der sexagesimalen Bruchrechnung war der Grund, dass die Astronomen



immer mit Sexagesimalbrüchen rechneten: daher stammen auch unsere Minuten und Sekunden. [van der Waerden, Erwachende Wissenschaft II, p. 62-63]

Zahlenbeispiele:



... haben babylonische Einflüsse mit Langzeitwirkung auf Kulturtraditionen Europas gewirkt. Etliche unserer Maßeinheiten zur Messung der Zeit u.ä. leiten sich vom babylonischen Positionssystem ab:

- Sexagesimale Zeitmaße: Die Sexagesimal-Zählung strukturiert die Einteilung das Tagesrhythmus in kleinere Zeiteinheiten: Tag + Nacht (24 =  $2 \times 6$  bzw.  $2 \times 12$  Stunden), 1 Stunde ( $60 = 6 \times 10$  Minuten), 1 Minute  $(60 = \times 10 \ Sekunden).$
- Sexagesimale Bogen und Winkelmaße: z.B. Gradeinteilung ( $360^{\circ} = 6 \times$ 60 Gradeinheiten).

[H. Haarmann, Weltgeschichte der Zahlen, C.H.Beck-Wissen (2008), auch für weiteres:

Vigesimalsystem: Zahlsystem mit Basis 20, in der Sprache enthalten z.B. in Asien (Chepang, Ainu, Tschuktschisch), Ozeanien (Drehu, Daga, Mangap-Mbula), Amerika (Zoque, Yukatekisch, Warao, Caribe), Afrika (Igbo, Yoruba, Kana, und die Niger-Kongo-Sprache Diola-Fogny).

Duales- bzw. Binäres System: Computer!

Dezimalsysteme: Zum erstem mal in Indien im 6. Jhd. n. Chr. nachgewiesen. Auch in Mittelamerika (Bibri, Nahuatl)



Version vom 2. Oktober 2020

8 Jhd. n. Chr.: dezimales System + arabische Ziffern wurde nach Europa eingeführt, es dauerte aber noch einige Jahrhunderte, bi es sich in Europa durchsetzte. Einen wichtige Beitrag dazu lieferte Adam Ries (1492-1559) mit seinen Rechenbüchern.

## Vigesimal-dezimales Mischsystem

In vielen Sprachen, deren Zahlwortsysteme Vigesimal- und Dezimalsystem erkennen lassen, z.B. in Französischen: im Bereich 80-99 gilt die 20-er Ordung, z.B. quatre-vingt-dix-huit:  $4\times 20+10+8=98$ .

Fünfer-Zwanziger Mischsystem Mittelamerika: Aztekisch:

Stellenwertsystem der Basis b:

- ullet b Symbole/Ziffern nötig
- Wert einer Ziffer gibt Anzahl der Bündel der betreffenden Mächtigkeit an.
- Stellung/Position der Ziffer gibt an, um welche Mächtigkeit es sich handelt.

Beispiel: Analyse des Dezimalsystems:

- Zehn Ziffern: 0, 1, 2, ..., 9
- Mächtigkeiten: Zehnerpotenzen 10<sup>n</sup>
- Wert einer Ziffer gibt Anzahl der Bündel der betreffenden Mächtigkeit an.
- Stellung/Position der Ziffer gibt an, um welche Mächtigkeit es sich handelt.

# Beispiele

- (1)  $51037 = 5 \cdot 10^4 + 1 \cdot 10^3 + 0 \cdot 10^2 + 3 \cdot 10^1 + 7 \cdot 10^0$
- (2) 5555 hier bedeutet die Ziffer 5 je nach Position Einer, Zehner, Hunderter oder Tausender!

Hat man das Prinzip verstanden, so läßt es sich leicht auf andere Basen übertragen:

#### Basis 2:

Dezimalsystem Dualsystem

$$25_{\bigcirc} = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 11001_{\bigcirc}$$

Algorithmus: suche größte 2er-Potenz, die  $\leq 25$ , hier:  $16 = 2^4 < 25 < 32 = 2^5$ . da  $25 = 1 \cdot 16 + 9$  mache nun mit 9 so weiter:  $9 = 8 + 1 = 2^3 + 1$ . etc. Beachte: im Dualsystem gibt es nur die Ziffern 0 und 1!

# Allgemein:

• Ist die Basis  $b<10\Rightarrow$  die Ziffern  $0,1,\ldots,b-1$  reichen für die Darstellung der Zahlen aus. Natürlich können auch neue Ziffern <u>erfunden</u> werden.



• Ist die Basis b > 10, so brauchen wir neue Symbole, z.B.: im Duodezimalsystem  $\Leftrightarrow$  Basis b = 12, setzte z := 10 und e = 11:

$$e \ 4 \ z \ 0 \ e_{\bigcirc} = 11 \cdot 12^{4} + 4 \cdot 12^{3} + 10 \cdot 12^{2} + 0 \cdot 12^{1} + 11 \cdot 12^{0}$$

$$= 11 \cdot 12^{4} + 4 \cdot 12^{3} + 10 \cdot 12^{2} + 11 =$$

$$= 236459_{\bigcirc} = 236459$$

Ohne die neuen Ziffern z und e ließe sich die Zahl nicht eindeutig schreiben:

$$e \, 4 \, z \, 0 \, e_{\mathbb{Q}} = 11 \, 4 \, 12 \, 0 \, 11_{\mathbb{Q}} \stackrel{\text{besser}}{=} (11) \, 4 \, (12) \, 0 \, (11)$$

Die Zahl 25 im Duodezimalsystem:

$$25 = 2 \cdot 12 + 1 = 21_{\square}$$

# Fragen:

- Warum findet man sehr häufig auf der Welt das Dezimalsystem?

  Schon immer haben Menschen ihr Zehn Finger als "Taschenrechner"

  benutzt.
- Kann man jede natürliche Zahl als Basis für ein Stellenwertsystem benutzen?

Ja, vgl. nächsten Satz.

**Satz 6.1.** Sei  $b \in \mathbb{N} \setminus \{1\}$ . Jede Zahl  $a \in \mathbb{N}$  läßt sich eindeutig in der Form

$$a = k_n b^n + k_{n-1} b^{n-1} + \dots + k_1 b + k_0$$

mit  $k_i \in \mathbb{N}_0$ ,  $k_n \neq 0$  und  $0 \leq k_i < b$  für  $i = 0, 1, \dots, n$  darstellen.

#### Beweis

(Der Beweis ist konstruktiv, vgl . Beispiel am Ende des Kapitels.) Eindeutigkeit der Division mit Rest impliziert:

$$a = q_0 \cdot b + k_0,$$
  $0 \le k_0 < b, \quad q_0 \in \mathbb{N}$   
 $q_0 = q_1 \cdot b + k_1,$   $0 \le k_1 < b, \quad q_1 \in \mathbb{N}$   
 $q_1 = q_2 \cdot b + k_2$   $\vdots$   
 $\vdots$   $\vdots$   
 $\Rightarrow \quad a > q_0 > q_1 > q_2 \cdot \dots > 0$ 

 $\Rightarrow$  der Algorithmus muss abbrechen, d.h. es gibt ein  $n \in \mathbb{N}$  mit  $q_n = 0$ .



Die letzten Schritte lauten somit:

$$q_{n-2} = q_{n-1} \cdot b + k_{n-1},$$
  $0 \le k_{n-1} < b, \quad q_{n-1} \in \mathbb{N}$   
 $q_{n-1} = q_n \cdot b + k_n = k_n$ 

Sukzessives Einsetzen:

# Warum Stellenwertsysteme behandeln?

Unterscheidung Zahl und Zahlwort wird thematisiert.
 Z.B. Bedeutung vermeindlich besonderer Zahlen (z.B. Geburtstage)
 wird relativiert:

$$20 = 20_{\bigcirc} = 2 \cdot 9 + 2 = 22_{\bigcirc} = 1 \cdot 11 + 9 = 19_{\bigcirc}$$

- Computer arbeiten im Dualsystem: Basis 2
- Verständnis des Babylonischen Sexagezimalsystems und der daraus abgeleiteten Zeit- und Winkelmaße.
- Das Verständnis des Stellenwertsystems fördert auch das Verständnis von Dezimalbrüchen und Teilbarkeitsregeln.
- Polynome mit Koeffizienten aus N.

## 6.3. Zahlen in verschiedenen Zahlsystemen.

## Vorgänger und Nachfolger:

Beispiel: Basis 3: N = Neuner, D = Dreier, E = Einser



d.h.  $212_{3}$  hat den Nachfolger  $220_{3}$ 

Aber beim folgenden Beispiel:

Durch fortgesetzte Nachfolgerbildung, beginnend mit der Zahl 1, erhält man die Zählreihen bezüglich beliebiger Basen:

Folgerung: Man muß zwischen einer Zahl und ihrem Zahlwort bzw. Zahlzeichen unterscheiden. Z.B. Anzahl der Finger einer Hand ist Fünf als Zahlwort und hat viele Zahlzeichen, beispielsweise:

$$5_{\bigcirc} = 10_{\bigcirc} = 11_{\bigcirc} = 12_{\bigcirc} = 101_{\bigcirc}$$

Wie übersetzt man die Zahlzeichen eines Systems in ein anderes? **Dezimalsystem**  $\Rightarrow b$ -**System:** Division mit Rest b.



Beispiel b = 12:

$$8924 = 8924_{\bigcirc}$$
 (TR: 8924 ÷ R 12 =)  
 $= 743 \cdot 12 + 8$   $k_0 = 8$   
 $743 = 61 \cdot 12 + 11$   $k_1 = 11 = e$   
 $61 = 5 \cdot 12 + 1$   $k_2 = 1$   
 $5 = 0 \cdot 12 + 5$   $k_3 = 5$ 

Algorithmus bricht ab

$$\Rightarrow 8924 = ((5 \cdot 12 + 1) \cdot 12 + 11) \cdot 12 + 8 = 5 \cdot 12^{3} + 1 \cdot 12^{2} + 11 \cdot 12 + 8$$

$$= 51(11)8_{\bigcirc}$$

$$= 51 e 8_{\bigcirc}$$

Alternativ die intuitive Methode: Suche größte 12-er Potenz kleiner-gleich 8924 durch ausprobieren:

$$12^{3} = 1728 < 8924 < 20736 = 12^{4}$$

$$= 5 \cdot 12^{3} + 284 \qquad 8924 \div 12^{3} = 5, \dots \Rightarrow 8924 - 5 \cdot 12^{3} = 284$$

$$284 = 1 \cdot 12^{2} + 140 \qquad 284 \div 12^{2} = 1, \dots \text{ etc.}$$

$$140 = 11 \cdot 12 + 8$$

$$8 = 8 \cdot 12^{0} = 8 \cdot 1$$

b-System  $\Rightarrow$  Dezimalsystem (an Polynome denken)

$$3714_{\odot} = 3 \cdot 8^3 + 7 \cdot 8^2 + 1 \cdot 8^1 + 4 \cdot 8^0 = 1996_{\odot}$$

## 7. Dezimalbrüche

# 7.1. Gemeine Brüche und Dezimalbrüche.

Bezeichungen:  $\frac{7}{8}$  gemeiner Bruch

0,875 Dezimalbruch

# Vorteile gemeiner Brüche:

- (1) Rechnen mit Verhältnissen.
- (2) Bekannt aus dem Sprachgebrauch: Ein Viertel Pfund ..., ein halbes Kilo..., Halb/ Viertel-Finale, dreiviertel 2 Uhr, etc..
- (3) Rechnen mit Wahrscheinlichkeiten,
- (4) Äquivalenzumformungen, Algebra, Einfache Rechenoperationen bei Multiplikation und Division, Ableitungen!
- (5) (Anschauliche) Grundlage für Dezimalbrüche.

# Vorteile der Dezimalbrüche:

- (1) Starke Verbreitung im täglichen Leben, z.B. im Umgang mit Geld.
- (2) Enger Zusammenhang der Schreibweise mit den ganzen Zahlen.
- (3) Einfache Rechenoperationen bei Addition, Subtraktion und Größenvergleich.
- (4) Eindeutigkeit der Schreibweise:

$$0.875 = \frac{7}{8} = \frac{35}{40} = \dots$$

Problem:  $0.88 \neq 0.875$ 

(5) Einfache Schreibweise bei gewöhnlicher Textverarbeitung.

Brüche mit Zehnerpotenz im Nenner:

$$\frac{3}{10} = 0.3$$
 ;  $\frac{53}{100} = 0.53$ 

Divisionsalgorithmus:

$$5 \div 8 = 0, 625$$

$$5 \cdot 8 = 0, 625$$

$$5 \cdot 0$$

$$4 \cdot 4$$

$$2 \cdot 0$$

$$1 \cdot 6$$

$$4 \cdot 0$$

$$4 \cdot 0$$

$$4 \cdot 0$$

$$0$$

$$5 \cdot 5$$

$$5 \cdot 0$$

$$4 \cdot 4$$

$$6 \cdot 0$$

$$4 \cdot 4$$

$$6 \cdot 0$$

$$5 \cdot 5$$

Stellenwerttafeln: E=Einer, z=Zehntel, h=Hundertstel, etc.

Hintergrund: Division mit Rest

$$E 5 = \boxed{0} \cdot 8 + 5$$

$$z 50 = 10 \cdot 5 = \boxed{6} \cdot 8 + 2$$

$$h 20 = 10 \cdot 2 = \boxed{2} \cdot 8 + 4$$

$$t 40 = 10 \cdot 4 = \boxed{5} \cdot 8 + 0$$

$$\uparrow$$

In der grauen Spalte kann man die Dezimalbruchentwicklung ablesen.



# Weitere Verallgemeinerung dieser Rechnung

 $\frac{m}{n}$ sei ein vollständig gekürzter (also ggT(m,n)=1)echter (also  $1 \leqslant m < n)$ Bruch. Wiederholte Division mit Rest:

$$E \qquad m = \boxed{0} \cdot n + r_0 \qquad 0 \leqslant r_0 = m < n$$

$$z \qquad 10 \cdot r_0 = \boxed{q_1} \cdot n + r_1 \qquad 0 \leqslant r_1 < n$$

$$h \qquad 10 \cdot r_1 = \boxed{q_2} \cdot n + r_2 \qquad 0 \leqslant r_2 < n$$

$$t \qquad 10 \cdot r_2 = \boxed{q_3} \cdot n + r_3 \qquad 0 \leqslant r_3 < n$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$10 \cdot r_{k-1} = \boxed{q_k} \cdot n + r_k \qquad 0 \leqslant r_k < n$$

Dabei gilt:  $0 \le q_i < 10$  für alle i.

Denn

$$10 \cdot n > 10 \cdot r_{i-1} = q_i \cdot n + r_i \geqslant q_i \cdot n$$

# Dezimalbruchentwicklung:

$$m = 0 \cdot n + r_{0} \qquad (r_{0} = \frac{q_{1}}{10} \cdot n + \frac{r_{1}}{10})$$

$$= \frac{q_{1}}{10} \cdot n + \frac{r_{1}}{10} \qquad (r_{1} = \frac{q_{2}}{10} \cdot n + \frac{r_{2}}{10})$$

$$= \frac{q_{1}}{10} \cdot n + \frac{q_{2}}{10^{2}} \cdot n + \frac{r_{2}}{10^{2}} \qquad (r_{2} = \frac{q_{3}}{10} \cdot n + \frac{r_{3}}{10})$$

$$\vdots$$

$$= \frac{q_{1}}{10} \cdot n + \frac{q_{2}}{10^{2}} \cdot n + \frac{q_{3}}{10^{3}} \cdot n + \dots + \frac{q_{k}}{10^{k}} \cdot n + \frac{r_{k}}{10^{k}}$$

$$\Leftrightarrow \frac{m}{n} = \frac{q_{1}}{10} + \frac{q_{2}}{10^{2}} + \frac{q_{3}}{10^{3}} + \dots + \frac{q_{k}}{10^{k}} + \frac{r_{k}}{10^{k} \cdot n}$$

$$\stackrel{!}{=} 0, q_{1}q_{2}q_{3} \cdots q_{k} \cdots$$

Wegen der Eindeutigkeit der Division mit Rest, ist diese Schreibweise bzw. dieser Dezimalbruch ebenfalls eindeutig!

Die Dezimalbruchentwicklung des echten, vollständig gekürzten Bruches  $\frac{m}{n}$ heißt

- endlich, wenn  $q_i = 0$  für alle  $i \ge i_0$  für ein  $i_0 \in \mathbb{N}$ .
- periodisch, wenn es p und  $i_0 \in \mathbb{N}$  gibt, so daß für alle  $i \ge i_0$  gilt:  $q_{i+p} = q_i$ .

Wenn dabei  $i_0=1\Rightarrow \underline{\text{reinperiodische Dezimalbruchentwicklung}}$ Wenn dabei  $i_0>1\Rightarrow \underline{\text{gemischtperiodische Dezimalbruchentwicklung}}$ 

Im Folgenden entwickeln wir Kriterien dafür, das Dezimalbruchzerlegungen endlich, reinperiodisch oder gemischtperiodisch sind.

Satz 7.1. Der vollständig gekürzte, echte Bruch  $\frac{m}{n}$  hat genau dann eine endliche Dezimalbruchentwicklung, wenn

$$n = 2^a \cdot 5^b$$

In diesem Fall hat die Dezimalbruchentwicklung genau s = max(a, b) Stellen.

Kurz:

 $\frac{m}{n}$  endlich  $\Leftrightarrow$  n hat nur Primfaktoren aus  $\{2,5\}$ 

**Beweis:** 

"⇐":

$$\frac{m}{n} = \frac{m}{2^a \cdot 5^b} = \frac{2^{s-a} \cdot 5^{s-b} \cdot m}{2^{s-a} \cdot 5^{s-b} \cdot 2^a \cdot 5^b} = \underbrace{2^{s-a} \cdot 5^{s-b} \cdot m}_{=:z} = \frac{z}{10^s}$$

Da  $z \in \mathbb{N}$ , hat  $\frac{z}{10^s}$  eine endliche Dezimalbruchentwicklung.

Diese hat genau s = Exponent von  $10^s$  Dezimalstellen, denn nach Vorraussetzung und Konstruktion gilt entweder: s - a = 0 oder s - b = 0 und somit 10 / z.

 $\frac{m}{n}$ habe eine endliche Dezimalbruchentwicklung der Länges:

$$\frac{m}{n} = 0, q_1 q_2 \cdots q_s \qquad 0 \leqslant q_i < 10, q_s \neq 0$$

$$\Rightarrow \frac{m \cdot 10^s}{n} = q_1 q_2 \cdots q_s = \underbrace{q_1 \cdot 10^s + q_2 10^{s-1} + \cdots + q_{s-1} \cdot 10 + q_s}_{\in \mathbb{N}}$$

$$\text{da } ggT(m, n) = 1 \\ \text{und } \frac{10^s \cdot m}{n} \in \mathbb{N} \end{cases} \Rightarrow n \mid 10^s$$



## Beispiel:

$$\frac{1}{1024} = \frac{1}{2^{10}}$$
 endlicher Dezimalbr. mit 10 Stellen 
$$= 0,0009765625$$

$$\frac{1}{125} = \frac{1}{5^3}$$
 endlicher Dezimalbr. mit 3 Stellen 
$$= 0,008$$

$$\frac{37}{125} = \frac{37}{5^3} = 0.296$$
 dito

Bemerkung Kurzfassung vom letzten Satz:

 $\frac{m}{n}$  hat endliche Dezimalbruchentwicklung.  $\Leftrightarrow$  Der Nenner hat nur Primfaktoren aus  $\{2,5\}$ . Die Richtung  $\Leftarrow$  gilt auch für ungekürzte Brüche. Allerdings kann man dann aus  $n=2^a5^b$  nicht die Anzahl der Dezimalstellen ablesen.

Satz 7.2. Sei  $\frac{m}{n}$  ein vollständig gekürzter, echter Bruch. Die Dezimalbruchentwicklung von  $\frac{m}{n}$  ist genau dann reinperiodisch, wenn ggT(n, 10) = 1.

#### **Beweis:**

Wiederholte Division mit Rest, die wie oben zur Dezimalbruchentwicklung führt:

$$m = \boxed{0} \cdot n + r_0 \qquad 0 \leqslant r_0 = m < n$$

$$10 \cdot r_0 = \boxed{q_1} \cdot n + r_1 \qquad 0 \leqslant r_1 < n$$

$$10 \cdot r_1 = \boxed{q_2} \cdot n + r_2 \qquad 0 \leqslant r_2 < n$$

$$\vdots$$

$$10 \cdot r_{k-1} = \boxed{q_k} \cdot n + r_k \qquad 0 \leqslant r_k < n$$
 Annahme:  $\frac{m}{n}$  nicht endlich!

Kann es dann sein, daß  $r_{i_0} = 0$  für einen Index  $i_0$ ? Wäre  $r_{i_0} = 0$ , so folgte :

$$10 \cdot r_{i_0-1} = q_{i_0} \cdot n + \underbrace{r_{i_0}}_{=0}$$

$$10 \cdot 0 = 10 \cdot r_{i_0} = q_{i_0+1} \cdot n + r_{i_0+1} = 0 \cdot n + 0$$

$$\Rightarrow q_{i_0+1} = 0$$



\*

damit sind alle folgenden Schritte auch = 0 und die Dezimalbruchentwicklung ist endlich! 4 Also gilt:  $0 < r_i < n \quad \forall i$ 

Also, m.a.W.:  $r_i \in \{1, 2, ..., n-1\}$   $\forall i$ , also gibt es nur endlich viele Möglichkeiten.  $\Rightarrow$  irgendwann muss eine Zahl ein zweites Mal vorkommen: z.B.:

$$r_{i_0} = r_{p+i_0}$$
 für Indices  $1 \le i_0, p$ 

Dabei sei  $i_0$  der kleinste Index mit dieser Eigenschaft!

Dann sieht der Algorithmus folgendermaßen aus:

Nach p Schritten wiederholt sich also alles! Insbesondere wiederholen sich auch die  $q_i$ s:

$$q_{p+i_0+1} = q_{i_0+1}$$
  
 $q_{p+i_0+2} = q_{i_0+2}$  ... etc.

Es bleibt z.z.:

Dezimalbruchzerlegung rein periodisch  $\Leftrightarrow ggT(n, 10) = 1$  "  $\Leftarrow$ ":

Dazu betrachte die Differenz der Gleichungen (\*) und (\*\*):

$$10 \cdot (r_{i_0-1} - r_{p+i_0-1}) = (q_{i_0} - q_{p+i_0}) \cdot n + \underbrace{r_{i_0} - r_{p+i_0}}_{=0}$$

$$\Rightarrow \qquad n \mid 10 \cdot (r_{i_0-1} - r_{p+i_0-1})$$
aus:  $ggT(n, 10) = 1 \qquad \Rightarrow \qquad n \mid (r_{i_0-1} - r_{p+i_0-1})$ 
mit:  $0 < r_{i_0-1}$ ,  $r_{p+i_0-1} < n \qquad \Rightarrow \qquad r_{i_0-1} - r_{p+i_0-1} = 0$ 

$$\Leftrightarrow \qquad r_{i_0-1} = r_{p+i_0-1}$$

Nach Voraussetzung  $\circledast$  war aber  $i_0$  der kleinste Index, der sich wiederholt. Also muss  $i_0 = 0$  gelten und schon der erste Rest (und alle folgenden) wiederholt sich, m.a.W.: die Dezimalbruchenrwicklung ist reinperiodisch!



"  $\Rightarrow$ ": Sei  $\frac{m}{n}$  reinperiodisch:

$$\frac{m}{n} = 0, \overline{q_1 q_2 \cdots q_s}$$

$$\frac{m}{n} \cdot 10^s = \underbrace{q_1 q_2 \cdots q_s}, \overline{q_1 q_2 \cdots q_s}$$

$$= z + 0, \overline{q_1 q_2 \cdots q_s} \stackrel{!}{=} z + \frac{m}{n}$$

$$\Leftrightarrow \quad \frac{m}{n} \cdot \left(10^s - 1\right) = z$$

$$\Leftrightarrow \quad m \cdot \left(10^s - 1\right) = z \cdot n$$

$$\Rightarrow \quad n \mid m \cdot \left(10^s - 1\right)$$
weil  $ggT(m, n) = 1 \Rightarrow \quad n \mid \left(10^s - 1\right)$ 

$$10^s - 1 \text{ ist ungerade } \Rightarrow 2 \not\mid 10^s - 1$$
ebenfalls gilt sicherlich auch:  $5 \not\mid 10^s - 1$ 

$$\Rightarrow \quad ggT(10^s - 1, 10) = 1$$

$$(*) \Rightarrow \quad ggT(n, 10) = 1$$

Bemerkung 7.3. Sobald die  $r_i$ 's sich im Algorithmus wiederholen, endet die, bzw. beginnt eine neue Periode, die  $q_i$ 's können sich natürlich zuvor schon wiederholen.

Satz 7.4. Die kleinste Zahl  $s \in \mathbb{N}$  mit  $n \mid (10^s - 1)$  ist die Periodenlänge des gekürzten, echten, und reinperiodischen Bruchs  $\frac{m}{n}$ .

Bemerkung 7.5. Die Periodenlänge hängt nur vom Nenner, nicht vom Zähler des gekürzten Bruches ab!

#### Beweis:

 $\frac{m}{n}$  sei reinperiodisch und  $s \in \mathbb{N}$  die kleinste Zahl mit  $n \mid (10^s - 1)$ . Dann gilt auch  $n \mid m \cdot (10^s - 1)$  und damit:

$$m \cdot (10^{s} - 1) = n \cdot z$$
 (für ein  $z \in \mathbb{N}$ )
$$\frac{m}{n} \cdot (10^{s} - 1) = z$$

$$\frac{m}{n} \cdot 10^{s} = z + \frac{m}{n}$$



$$q_1q_2\cdots q_s, q_{s+1}q_{s+2}\ldots = z, q_1q_2\cdots$$
 
$$\Rightarrow q_1q_2\cdots q_s = z \quad und \quad q_{s+i} = q_i \qquad (f\"{ur} \ i\geqslant 1)$$

# Beispiele:

$$\frac{1}{3} = 0,\overline{3} \qquad denn:$$

$$10^1 - 1 = 9 = 3 \cdot 3$$

Periodenlänge 1

$$\frac{1}{333} = 0,\overline{003}$$
 denn:

$$10^3 - 1 = 999 = 333 \cdot 3$$

$$Aber 333/10^2 - 1 = 99$$

Periodenlänge 3

$$\frac{1}{7} = 0,\overline{142857}$$
 denn:

$$10^6 - 1 = 142857 \cdot 7$$

Aber 
$$7/10^5 - 1$$

Periodenlänge 6

$$\frac{5}{7} = 0,\overline{714285}$$
 :

ebenfalls Periodenlänge 6

$$1 = \boxed{0} \cdot 3 + \boxed{1}$$

$$10 \cdot 1 = \boxed{3} \cdot 3 + \boxed{1}$$

$$1 = \boxed{0} \cdot 333 + \boxed{1}$$

$$10 \cdot 1 = \boxed{0} \cdot 333 + 10$$

$$10 \cdot 10 = \boxed{0} \cdot 333 + 100$$

$$10 \cdot 100 = \boxed{3} \cdot 333 + \boxed{1}$$

$$1 = \boxed{0} \cdot 7 + \boxed{1}$$

$$10 \cdot 1 = \boxed{1} \cdot 7 + 3$$

$$10 \cdot 3 = \boxed{4} \cdot 7 + 2$$

$$10 \cdot 2 = \boxed{2} \cdot 7 + 6$$

$$10 \cdot 6 = \boxed{8} \cdot 7 + 4$$

$$10 \cdot 4 = \boxed{5} \cdot 7 + 5$$

$$10 \cdot 5 = 7 \cdot 7 + 1$$

$$5 = \boxed{0} \cdot 7 + \boxed{5}$$

$$10 \cdot 5 = 7 \cdot 7 + 1$$

$$10 \cdot 1 = \boxed{1} \cdot 7 + 3$$

$$10 \cdot 3 = \boxed{4} \cdot 7 + 2$$

$$10 \cdot 2 = \boxed{2} \cdot 7 + 6$$

$$10 \cdot 6 = \boxed{8} \cdot 7 + 4$$

$$10 \cdot 4 = 5 \cdot 7 + 5$$



Beispiele: Konstruiere einen Bruch zu vorgegebener Periode und Periodenlänge:

(1) Periode: z = 173 und damit Periodenlänge s = 3. Nun wie im Beweis:

$$\frac{m}{n}(10^3 - 1) = z = 173$$

$$\Leftrightarrow \frac{m}{n} = \frac{173}{10^3 - 1} = \frac{173}{999} = 0,\overline{173}$$

(2) Periode: z = 173 aber nun mit Periodenlänge s = 4.

$$\Leftrightarrow \frac{m}{n} = \frac{173}{10^4 - 1} = \frac{173}{9999} = 0,\overline{0173}$$

(3) Ziffernfolge 3712:

Periodenlänge: 
$$s=4 \Rightarrow \frac{3712}{10^4-1} = \frac{3712}{9999} = 0,\overline{3712}$$
  
Periodenlänge:  $s=6 \Rightarrow \frac{3712}{10^6-1} = \frac{3712}{999999} = 0,\overline{003712}$   
Aber wenn:  $s=2 \Rightarrow \frac{3712}{10^2-1} = \frac{3712}{99} = 37,\overline{46}$ 

# Wiederholung:

 $\frac{m}{n}$  echter, vollständig gekürzter Bruch (also ggT(m,n) = 1 und m < n).

Wenn: alle Primteiler von n aus  $\{2,5\}$   $\frac{m}{n}$  endlich ggT(n,10)=1  $\frac{m}{n}$  reinperiodisch Welchen Fell bleibt übrig?

Welcher Fall bleibt übrig?

n hat Teiler aus  $\{2,5\}$  und noch zusätzlich andere Primteiler:

Satz 7.6. Der vollständig gekürzte echte Bruch  $\frac{m}{n}$  besitzt genau dann eine gemischt-periodische Dezimalbruchentwicklung (mit t Vorziffern), wenn  $n = n_1 \cdot n_2$  mit  $n_1 \mid 10^t$  (dabei ist t minimal mit dieser Eigenschaft) und  $ggT(n_2, 10) = 1$ .

Die Periodenlänge von  $\frac{m}{n}$  ist gleich der von  $\frac{1}{n_2}$ .

# Beispiel:

$$n=15=5\cdot 3$$
  $m=8$  
$$n_1=5\mid 10=10^1 \qquad t=1 \quad \text{Vorziffer}$$
 
$$n_2=3\mid 10^1-1=9 \qquad \Rightarrow s=1 \quad \text{Periodenlänge}$$



Dezimalbruchentwicklung:

$$8 = 0 \cdot 15 + 8$$

$$10 \cdot 8 = \boxed{5} \cdot 15 + \boxed{5}$$

$$10 \cdot 5 = \boxed{3} \cdot 15 + \boxed{5}$$

$$\Rightarrow \frac{8}{15} = 0,5\overline{3}$$

#### **Beweis:**

Aus  $n_1 \mid 10^t$  folgt:  $n_1 \cdot q = 10^t$  für einen Teiler  $q \in \mathbb{N}$  von  $10^t$ .

$$\frac{m}{n} = \frac{m}{n_1 \cdot n_2} = \frac{m \cdot q}{10^t \cdot n_2} = \frac{1}{10^t} \cdot \frac{m \cdot q}{n_2}$$

Aus  $q \in T_{10^t}$  und  $ggT(n_2, 10) = 1$  folgt  $ggT(n_2, q) = 1$   $\Rightarrow \frac{m \cdot q}{n_2}$  ist vollst. gekürzt und hat eine reinperiodische Dezimalbruchentwicklung.

$$\frac{1}{10^t} \cdot \frac{m \cdot q}{n_2} = 0, \underbrace{0 \cdots q_0}_{t \text{ Stellen}} \overline{q_1 q_2 \cdots q_s}$$

Umkehrung ohne Beweis!

#### 7.2. Kettenbrüche.

#### Beispiel

$$\begin{aligned} \frac{31}{14} &= 2 + \frac{3}{14} \\ &= 2 + \frac{1}{\frac{14}{3}} = 2 + \frac{1}{4 + \frac{2}{3}} \\ &= 2 + \frac{1}{4 + \frac{1}{\frac{3}{2}}} = 2 + \frac{1}{4 + \frac{1}{1 + \frac{1}{2}}} \end{aligned}$$
 und weiter? 
$$= 2 + \frac{1}{4 + \frac{1}{1 + \frac{1}{2}}} = 2 + \frac{1}{4 + \frac{1}{1 + \frac{1}{2}}}$$

nichts passiert weiter, weil  $\frac{1}{2}$  ein Stammbruch ist.

Der Algorithmus bricht ab, sobald man einen Stammbruch erhält!



Die Kettenbruchdarstellung von  $\frac{31}{14}$  wird zum Teil auch durch die Folge [2,4,1,2] abgekürzt, man kann also abkürzen:

$$\frac{31}{14} = 2 + \frac{1}{4 + \frac{1}{1 + \frac{1}{2}}} \stackrel{\text{statt}}{=} [2, 4, 1, 2]$$

Der Kettenbruch kann auch mittels des Euklidischen Algorithmus' berechnet werden:

$$31 = 2 \cdot 14 + 3$$

$$14 = 4 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

$$(\frac{31}{14} = 2 + \frac{3}{14})$$

$$(\frac{3}{14} = \frac{1}{\frac{14}{3}} = \frac{1}{4 + \frac{2}{3}})$$

$$(\frac{2}{3} = \frac{1}{\frac{3}{2}} = \frac{1}{1 + \frac{1}{2}})$$
(bei Rest 0 bricht es ab)

Bemerkung 7.7. Dieser Algorithmus läßt sich auf jede positive rationale Zahl anwenden und bricht immer ab. (wg. des Euklidischen Algorithmus's)

**Bedeutung:** Die Kettenbruchdarstellung approximiert den gegebenen Bruch (hier im Beispiel  $\frac{31}{14}$ ) schrittweise immer besser:

Approximation Kettenbruch Differenz/Ungenauigkeit 0-te von  $\frac{31}{14}$  2  $\left|\frac{31}{14} - 2\right| = \frac{3}{14} \approx 0,214$  1-te von  $\frac{31}{14}$  2 +  $\frac{1}{4}$   $\left|\frac{31}{14} - (2 + \frac{1}{4})\right| = \frac{1}{28} \approx 0,0357$  2-te von  $\frac{31}{14}$  2 +  $\frac{1}{4 + \frac{1}{1}}$   $\left|\frac{31}{14} - (2 + \frac{1}{4 + \frac{1}{1}})\right| = \frac{1}{70} \approx 0,0143$  3-te von  $\frac{31}{14}$  2 +  $\frac{1}{4 + \frac{1}{1 + \frac{1}{3}}}$   $\left|\frac{31}{14} - (2 + \frac{1}{4 + \frac{1}{1 + \frac{1}{3}}})\right| = 0$ 

# Anwendung: Kalender

1 tropisches Jahr:  $365^{\rm d}$   $5^{\rm h}$   $48^{\rm min}$   $45.8^{\rm s}$ 

Der "Teil-Tag" soll durch einen Bruch approximiert werden:

$$5^{h} 48^{min} 45,8^{s} = \frac{1}{24} \left( 5 + \frac{48}{60} + \frac{45,8}{60^{2}} \right)$$

$$= \frac{1}{24} \left( 5 + \frac{48}{60} + \frac{45 + \frac{4}{5}}{60^{2}} \right)$$

$$= \frac{5^{2} \cdot 60^{2} + 48 \cdot 60 \cdot 5 + 45 \cdot 5 + 4}{24 \cdot 60^{2} \cdot 5} = \frac{104629}{432000}$$

Kettenbruchentwicklung via Euklidischem Algorithmus:

Nr. Division mit Rest Approximation

$$0-te \quad 104629 = 0 \cdot 432000 + 104629 \qquad 0$$

1-te 
$$432000 = 4 \cdot 104629 + 13484$$
 0 +

2-te 
$$104629 = 7 \cdot 13484 + 10241$$
  $0 + \frac{1}{4+\frac{1}{\pi}}$ 

3-te 
$$13484 = 1 \cdot 10241 + 3243$$
  $0 + \frac{1}{4 + \frac{1}{7 + \frac{1}{7}}}$ 

4-te 
$$10241 = 3 \cdot 3243 + 512$$

5-te 
$$3243 = 6 \cdot 512 + 171$$

6-te 
$$512 = 2 \cdot 171 + 170$$
 :

7-te 
$$171 = 1 \cdot 170 + 1 \qquad \frac{1}{4 + \frac{1}{7 + \frac{1}{1 + \frac{1}{2}}}} \cdot \dots + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}$$

Es folgt:

$$\frac{104629}{432000} = \frac{1}{4 + \frac{1}{7 + \frac{1}{1 + \frac{1}{3 + \frac{1}{6 + \frac{1}{1 + \frac{1}{170}}}}}}}$$

Interpretation:



1-te Approx.:  $\frac{104629}{432000} \approx \frac{1}{4}$  Julianischer Kalender mit einem Schalttag alle 4 Jahre

2-te Approx.: 
$$\frac{104629}{432000} \approx \frac{1}{4 + \frac{1}{7}} = \frac{7}{29}$$

5-te Approx 
$$\frac{104629}{432000} \approx \frac{1}{4 + \frac{1}{7 + \frac{1}{1 + \frac{1}{3 + \frac{1}{6}}}}} = \frac{194}{801} \approx 0,2422 \implies$$
 gregorianischer Kalender

In 400 Jahren summiert sich dieser Bruchteil eines Tages auf:

$$\frac{194}{801} \cdot 400 \approx 96,8789 \approx 97$$
 Tage

Sinnvollerweise muss es also in 400 Jahren mit je 365 Tagen zusätzlich 97 Schalttage geben um bestmöglich 400 tropische Jahre auszumachen. Das wird im Gregorianischen Kalender realisiert: jedes vierte Jahr einen Schalttag machen 100 Schalttage in 400 Jahren, aber die Jahrhundertregel (nur die Jahrhunderte  $\equiv 0 \mod 4$  sind Schaltjahre) bewirkt, daß unter den vier Jahrhundert-Jahren innerhalb 400 Jahren nur ein Jahrhundert-Jahr Schaltjahr ist, drei Schaltjahre/Tage fallen also weg, also gibt es im Gregorianischen Kalender innerhalb 400 Jahren nur 97 Schaltjahre/Tage.

#### 8. Teilbarkeitsregeln

WDH. Für  $a, b, c, d \in \mathbb{Z}$  und  $t \in \mathbb{N}$  gilt:

Addition von Kongruenzen: 
$$a\equiv b \mod t$$
 
$$\Rightarrow a+c\equiv b+d \mod t$$
 
$$c\equiv d \mod t$$

Multiplikation von Kongruenzen  $a \equiv b \mod t \implies c \cdot a \equiv c \cdot b \mod t$ 

Potenzieren von Kongruenzen  $a \equiv b \mod t \implies a^n \equiv b^n \mod t \quad \forall n \in \mathbb{N}$ 



$$a \equiv b \mod t \Leftrightarrow \begin{cases} a = q_1 \cdot t + r \\ b = q_2 \cdot t + r \end{cases}$$

das heißt, sind a und b kongruent modulo t, so haben sie bei Division durch t denselben Rest r. Für Teilbarkeitsuntersuchungen bezüglich einer Zahl t gilt damit:

 $a \equiv b \mod t \Leftrightarrow a \text{ und } b \text{ haben dieselben Teilbarkeitseigenschaften bzgl. } t$ Anders formuliert:

Wenn  $a \equiv b \mod t$ , so gilt: a ist genau dann durch t teilbar, wenn auch b durch t teilbar ist.

## 8.1. Endstellenregeln.

Beispiel:

$$65432 = 6 \cdot 10^4 + 5 \cdot 10^3 + 4 \cdot 10^2 + 3 \cdot 10 + 2 \equiv 2 \mod 10$$

allgemein:

$$z_n z_{n-1} \dots z_1 z_0 = z_n \cdot 10^m + z_{n-1} \cdot 10^{n-1} \dots z_1 \cdot 10 + z_0 \cdot 10^0 = \sum_{i=0}^n z_i \cdot 10^i$$

für Ziffern  $0 \le z_i \le 9$ , i = 0, ..., n,  $z_n \ne 0$ . Also

$$z_n z_{n-1} \dots z_1 z_0 \equiv z_0 \mod 10$$

Mehr noch, weil  $10 \equiv 0 \mod t$  für alle Teiler t von 10:

#### Satz 8.1 (Endstellenregel 1ter Ordnung).

 $z_n z_{n-1} \cdots z_1 z_0 \equiv z_0 \mod t$  für alle Teiler t von 10.

#### Folgerung

Eine natürliche Zahl z (Basis 10) ist genau dann durch 2 (bzw. 5, bzw. 10) teilbar, wenn ihre Endziffer  $z_0$  durch 2 (bzw.5, bzw. 10) teilbar ist.



Es gilt

$$10 \equiv 0 \mod t \Leftrightarrow t \mid (10 - 0) = 10$$

$$\Leftrightarrow t \in \{1, 2, 5, 10\} = T_{10}$$

$$\Rightarrow 10^{i} \equiv 0 \mod t \quad \text{für} \quad t \in T_{10} \quad \text{und} \quad i \geqslant 1$$

$$\Rightarrow z_{i} \cdot 10^{i} \equiv 0 \mod t \quad \text{für} \quad t \in T_{10} \quad \text{und} \quad i \geqslant 1$$

$$\Rightarrow \sum_{i=1}^{n} z_{i} \cdot 10^{i} \equiv 0 \mod t \quad \text{für} \quad t \in T_{10} \quad \text{und} \quad i \geqslant 1$$

$$\Rightarrow z_{n}z_{n-1} \cdots z_{1}z_{0} = \sum_{i=0}^{n} z_{i} \cdot 10^{i} = \sum_{i=1}^{n} z_{1} \cdot 10^{i} + z_{0} \equiv z_{0} \mod t$$

Geht das auch in anderen Stellenwertsystemen?

Sei b > 1 eine Basis eines Stellenwertsystems.

$$\Rightarrow$$
  $b \equiv 0 \mod t \quad \forall \quad t \in T_b$ 

Eine Zahl im b-System:

$$z_{\bigoplus} = \sum_{i=0}^{n} z_i b^i = z_n z_{n-1} \cdots z_1 z_0 \quad \text{mit} \quad 0 \leqslant z_i < b$$

$$\Rightarrow \quad z_{\bigoplus} = \sum_{i=1}^{n} z_i b^i + z_0 \equiv z_0 \quad \text{mod } t \quad \text{für} \quad t \in T_b$$

Korollar 8.2. Eine natürliche Zahl  $z_{\oplus}$  (dargestellt mittels der Basis b > 1) ist genau dann durch einen Teiler t von b teilbar, wenn ihre Endziffer  $z_0$  durch t teilbar ist.

Beispiel: b = 8

Untersuche ob 4 die Zahl 152<sub>®</sub> teilt!

$$152_{\text{8}} = 1 \cdot 8^2 + 5 \cdot 8^1 + 2 \equiv 2 \mod 4$$
 da  $4 \mid 8$ 

aber 4/2 !!

Neue Frage: Welche Zahlen sind durch 4 teilbar?

Dazu

$$z_0 \in V_4 \cup \{0\}, \quad z_0 < 8 \qquad \Rightarrow z_0 \in \{0, 4\}$$



Also alle Zahlen mit den Endziffern 0 oder 4 sind durch 4 teilbar.

z.B.: 
$$4 \mid 150_{\odot}$$
 und  $4 \mid 154_{\odot}$ 

Translation ins Dezimalsystem:

$$150_{\odot} = 8^2 + 5 \cdot 8 + 0 = 104 = 4 \cdot 26 \quad \checkmark$$

Beispiel: b = 6, t = 3

Endziffern  $z_0 < 6 \text{ mit } 3 \mid z_0 \Rightarrow z_0 \in \{0, 3\}$ 

$$\Rightarrow$$
 3 | 570<sub>©</sub>, 3 | 573<sub>©</sub>

aber

$$3/571_{\odot}$$
,  $3/572_{\odot}$ ,  $3/574_{\odot}$ ,  $3/575_{\odot}$ 

# Endstellenregeln 2ter Ordnung

Es geht um die Teilbarkeit von Teilern von 100 =  $10^2$  bzw.  $t \in T_{b^2}$  im b-System. Dazu:

$$100 = 10^2 \equiv 0 \mod t \quad \forall t \in T_{10^2} \quad \text{bzw.} \quad b^2 \equiv 0 \mod t \quad \forall t \in T_{b^2}$$

Satz 8.3 (Basis 10).

$$z_n z_{n-1} \cdots z_1 z_0 = \sum_{i=0}^n z_i 10^i \equiv z_1 \cdot 10 + z_0 = z_1 z_0 \mod t \quad \forall t \in T_{10^2}$$

Damit gilt: Eine Zahl  $z \in \mathbb{N}$  ist genau dann durch einen Teiler t von 100 teilbar, wenn ihre aus den letzten beiden Ziffern gebildete zweistellige Zahl (im Dezimalsystem!!) durch t teilbar ist:

$$t \mid z_n z_{n-1} \cdots z_1 z_0 \quad \Leftrightarrow \quad t \mid z_1 z_0$$

Insbesondere folgen daraus die bekannten Teilbarkeitsregeln für  $4=2^2$  und  $25=5^2!$ 

Satz 8.3 hat auch wieder ein Analogon für die beliebige Basis b!



#### **Beweis:**

$$z_n z_{n-1} \cdots z_1 z_0 = \cdots + (\cdots) 10^4 + (z_3 10 + z_2) 10^2 + (z_1 10 + z_0)$$

$$\underset{t}{=} z_1 10 + z_0 = z_1 z_0 \mod t$$

# Umformulierung und Verschärfung für $t = 2^2 = 4$ :

Eine natürliche Zahl  $z = \sum_{i=0}^{n} z_i 10^i$  ist genau dann durch 4 teilbar, wenn  $2z_1 + z_0$  durch 4 teilbar ist.

#### **Beweis:**

nach Satz 8.3 und weil  $10 = 2 \cdot 4 + 2 \equiv 2 \mod 4$  gilt:

$$4 \mid z \Leftrightarrow 4 \mid z_1 \cdot 10 + z_0 \qquad (da: z_1 \cdot 10 + z_0 \equiv z_1 \cdot 2 + z_0)$$
  
$$\Leftrightarrow z_1 \cdot 10 + z_0 \equiv z_1 \cdot 2 + z_0 \equiv 0 \mod 4$$

# Endstellenregeln 3ter Ordnung

Aus  $1000 = 10^3 \equiv 0 \mod t$  für alls  $t \in T_{10^3}$  folgt analog:

$$t \mid z = \sum_{i=0}^{n} z_i 10^i = z_n z_{n-1} \cdots z_1 z_0 \quad \Leftrightarrow \quad t \mid z_2 z_1 z_0 = z_2 \cdot 100 + z_1 \cdot 10 + z_0 \quad \forall t \in T_{10^3}$$

Analoges kann man auch wieder im Stellenwertsystem zur Basis b>1 formulieren!

# 8.2. Quersummenregeln.

#### Streichholzspiel:

- Schritt 1 Gebe Deinem Mitspieler eine Streichholzschachtel mit mindestens 10 Hölzern.
- Schritt 2 Lasse den Mitspieler die Hölzer zählen (er soll die Anzahl geheimhalten!) die Anzahl ist eine Zahl n zwischen 10 und 38. Dann gilt  $n=z_1\cdot 10+z_0$  mit  $z_1\in\{1,2,3\}$  und  $z_0\in\{0,1,\ldots,9\}$
- Schritt 3 Fordere den Mitspieler auf: Bilde die Quersumme Q(n) (nicht verraten)  $Q(n) = z_1 + z_0$
- Schritt 4 Fordere den Mitspieler auf: Entferne Q(n) Hölzer aus der Schachtel



Schritt 5 Behauptung: Du kannst nun (ohne abzuzählen) abschätzen, wieviele Hölzer noch in der Schachtel sind!

Die Anzahl ist 
$$n-Q(n)=(z_1\cdot 10+z_0)-(z_1+z_0)=z_1\cdot 10-z_1=z_1\cdot 9,$$
 Da  $z_1\in\{1,2,3\},$  können es nur 9,18 odet 27 Hölzer sein.

Teilbarkeit durch 3 und 9:

**Satz 8.4.** Eine natürliche Zahl  $z = \sum_{i=0}^{n} z_i \cdot 10^i$  ist genau dann durch einen Teiler t von 9 teilbar, wenn ihre Quersumme  $\sum_{i=0}^{n} z^i$  durch t teilbar ist.

Beweis  $t \in T_9 = \{1, 3, 9\}$ , also t = 3 oder 9, da 1 uninteressant.

$$10 = 9 + 1 \equiv 1 \mod t$$

$$\Rightarrow 10^{i} \equiv 1 \mod t \qquad \qquad \text{für } i \in \mathbb{N}_{0}$$

$$\Rightarrow z_{i} \cdot 10^{i} \equiv z_{i} \mod t \qquad \qquad \text{für } i \in \mathbb{N}_{0}$$

$$\Rightarrow z = \sum_{i=0}^{n} z_{i} 10^{i} \equiv \sum_{i=0}^{n} z_{i} \mod t \qquad \qquad \Box$$

Läßt sich die Idee des Beweises verallgemeinern? Ja, benutze:

$$10^2 = 99 + 1 \equiv 1 \mod t$$
 für  $t \in T_{99}$ 

und schreibe:

$$z = \sum_{i=0}^{n} z_i 10^i = \dots + (z_{2j+1} \cdot 10 + z_{2j}) \cdot 10^{2j} + \dots + (z_3 \cdot 10 + z_2) \cdot 10^2 + (z_1 \cdot 10 + z_0)$$

$$\equiv \dots + (z_{2j+1} \cdot 10 + z_{2j}) + \dots + (z_3 \cdot 10 + z_2) + (z_1 \cdot 10 + z_0) \mod t$$

$$\text{für } t \in T_{99}$$

$$= \dots (z_{2j+1} z_{2j}) + \dots + (z_3 z_2) + (z_1 z_0)$$
Quersumme 2ter Ordnung

Korollar 8.5. Eine natürliche Zahl ist genau dann durch einen Teiler t von 99 teilbar, wenn ihre Quersumme 2-ter Ordnung durch t teilbar ist.

Da  $T_{99} = \{1, 3, 9, 11\}$  erhalten wir damit insbesondere eine Teilbarkeitsregel für 11!!

**Beispiel:** Sei  $t \in \{1, 3, 9, 11\}$ 



Aber  $t/73 \Rightarrow t/738514$ 

# Weitere Verallgemeinerungen:

 $1000=10^3=999+1 \ \Rightarrow \ \text{Teilbarkeitsregeln}$  für Teiler von 999 mittels Quersumme 3-ter Ordnung.

Da 999 =  $3^3 \cdot 37$  liefet das z.B. Teilbarkeitsregel für 37.

:

# Alternierende Quersummenregeln:

$$z = \sum_{i=0}^{n} z_i 10^i$$
  $\Rightarrow$  alternierende Quersumme  $Q'(z) := \sum_{i=0}^{n} (-1)^i z_i$ 

**Beispiel:** Q'(3712) = -3 + 7 - 1 + 2 = 5

Satz 8.6.

11 teilt 
$$z \Leftrightarrow 11$$
 teilt  $Q'(z)$ 

 $10 = 11 - 1 \equiv -1 \mod 11$ 

Beweis

## Beispiel:

$$13846173 \stackrel{11}{\equiv} Q'(13846173) = -1 + 3 - 8 + 4 - 6 + 1 - 7 + 3 = -11 \equiv 0 \mod 11$$

$$\Rightarrow 11 \mid 13846173$$

# Verallgemeinerungen

Idee:  $100 = 10^2 = 101 - 1 \equiv -1 \mod 101$ 

Da 101 PZ, liefert das nur Teilbarkeitsregeln für 101.



Aber  $1001 = 7 \cdot 11 \cdot 13$  liefert Teilbarkeitsregeln für 7 und 13 und eine weitere für 11:

$$10^{3} = 1001 - 1 \equiv -1 \mod t$$

$$\vdots$$

$$z = \dots + (z_{5}10^{2} + z_{4}10 + z_{3}) \cdot (10^{3})^{1} + (z_{2}10^{2} + z_{1}10 + z_{0}) \cdot (10^{3})^{0}$$

$$\equiv \dots + (z_{5}10^{2} + z_{4}10 + z_{3}) \cdot (-1)^{1} + (z_{2}10^{2} + z_{1}10 + z_{0}) \cdot (-1)^{0} \mod t$$

$$= \underbrace{\dots - (z_{5}10^{2} + z_{4}10 + z_{3}) + (z_{2}10^{2} + z_{1}10 + z_{0})}_{\text{alternierende Quersumme 3-ter Ordnung}}$$

Korollar 8.7.  $F\ddot{u}r\ t \in T_{1001}\ gilt$ :

t teilt z  $\Leftrightarrow$  t teilt die alternierende Quersumme 3-ter Ordnung von z

Beispiel: t = 7

$$\underbrace{681}_{359} \underbrace{126}_{126} \equiv +681 - 359 + 126 \mod 7$$

$$= 448$$

$$= 64 \cdot 7 \equiv 0 \mod 7$$

$$\Rightarrow 7 \mid 681 \ 359 \ 126$$

Bemerkung: Auch hier gibt es Verallgemeinerungen auf andere Stellenwertsysteme.

 $\uparrow 19.1.17 \ 1/2$ 

# 8.3. Weitere Teilbarkeitsregeln für Primzahlen.

#### Teilbarkeit durch 7:

Beispiel: Frage: ist 65 625 durch 7 teilbar?

Also auch 7 | 65 625

# Beschreibung:

(1) Streiche letzte Ziffer ⇒ Stellen verschieben sich nach rechts!



- (2) Subtrahiere (von der neuen Zahl) das Doppelte der gestrichenen Ziffer.
- (3) Wenn nötig beginne mit Algorithmus von neuem.

Warum, was passiert hier??

Benutzt werden folgende Aussagen:

$$20 + 1 = 21 \equiv 0 \mod 7 \tag{8}$$

$$z \cdot 10 \equiv 0 \mod 7 \quad \Leftrightarrow \quad z \equiv 0 \mod 7 \tag{9}$$

(9) in Worten:  $z \cdot 10$  ist genau dann durch 7 teilbar, wenn z durch 7 teilbar ist.

$$65 625 = 6 \cdot 10^{4} + 5 \cdot 10^{3} + 6 \cdot 10^{2} + 2 \cdot 10 + 5$$

$$= 6 \cdot 10^{4} + 5 \cdot 10^{3} + \underbrace{6 \cdot 10^{2} - 2 \cdot 5 \cdot 10}_{=5 \cdot 10^{2}} + 2 \cdot 10 + \underbrace{(2 \cdot 5 \cdot 10 + 5)}_{(20+1) \cdot 5 = 21 \cdot 5 \equiv 0 \mod 7}$$

$$\equiv 6 \cdot 10^{4} + 5 \cdot 10^{3} + 5 \cdot 10^{2} + 2 \cdot 10 \mod 7$$

$$= \underbrace{\left(6 \cdot 10^{3} + 5 \cdot 10^{2} + 5 \cdot 10^{1} + 2\right)}_{=:z_{1} = 6552} \cdot 10 = z_{1} \cdot 10 = 6552 \cdot 10$$

mit (9): 65 625 ist genau dann durch 7 teilbar, wenn es auch für  $z_1 = 6\,552$  gilt

$$z_{1} = 6552 = 6 \cdot 10^{3} + 5 \cdot 10^{2} + \underbrace{5 \cdot 10 - 2 \cdot 2 \cdot 10}_{1 \cdot 10} + \underbrace{\left(2 \cdot 2 \cdot 10 + 2\right)}_{21 \cdot 2 \equiv 0 \mod 7}$$
 (Schritt 2)
$$\equiv 6 \cdot 10^{3} + 5 \cdot 10^{2} + 1 \cdot 10 \mod 7$$

$$= \left(\underbrace{6 \cdot 10^{2} + 5 \cdot 10^{1} + 1}_{=:z_{2} = 651}\right) \cdot 10 = z_{2} \cdot 10$$

$$= \underbrace{(6 \cdot 10^{2} + 5 \cdot 10^{1} + 1)}_{=:z_{2} = 651}$$
 (Schritt 3)
$$z_{2} = 6 \cdot 10^{2} + 5 \cdot 10 - \underbrace{2 \cdot 10}_{=:z_{1} \equiv 0 \mod 7}$$
 (Schritt 3)
$$\equiv 6 \cdot 10^{2} + 3 \cdot 10 \mod 7$$

$$= \underbrace{(6 \cdot 10 + 3)}_{=:z_{3}} \cdot 10 = 63 \cdot 10 = 9 \cdot 7 \cdot 10 \equiv 0 \mod 7$$
 (oder:)
$$z_{3} = \underbrace{6 \cdot 10 - 3 \cdot 2 \cdot 10}_{=:z_{3}} + \underbrace{3 \cdot 2 \cdot 10 + 3}_{=3 \cdot 21 \equiv 0 \mod 7}$$

$$\equiv 0 \mod 7$$

Teilbarkeit durch 11



Beispiele: Untersuche ob 11 ein Teiler von 4785 bzw. 4766 ist:

Warum, was passiert hier?? Benutze wie oben:

$$z \cdot 10 \equiv 0 \mod 11 \quad \Leftrightarrow \quad z \equiv 0 \mod 11 \tag{10}$$

$$4785 \equiv (4785 - 5 \cdot 11) \mod 11$$
  
=  $4730 = 473 \cdot 10$   
 $473 \equiv 473 - 3 \cdot 11 \mod 11$  ( wegen (10) genügt es 473 zu untersuchen)  
=  $44 = 4 \cdot 11 \equiv 0 \mod 11$ 

Weitere Verallgemeinerungen möglich!! (vgl. [P], p. 181)

#### 9. Vollkommene Zahlen

## 9.1. Beispiele und Definition.

## Beispiel

Zahl 
$$6$$
:  $T_6 = \{1, 2, 3, 6\}$ 

Summe der Teiler 
$$\sum_{i \in T_6} i = 1 + 2 + 3 + 6 = 12 = 2 \cdot \boxed{6}$$

Bemerkung: Bei den Pythagoreern mit ihrer Zahlenmystik stand die Zahl 6 für das Universum, weil sie Summe sowie auch Produkt ihrer echten Teiler ist:

$$1 + 2 + 3 = 6 = 1 \cdot 2 \cdot 3$$

Die Zahl 6 ist also gewissermaßen 'super-'vollkommen. Weitere Beispiele:

28: 
$$\sum_{i \in T_{28}} i = 1 + 2 + 4 + 7 + 14 + 28 = 4 \cdot 14 = 2 \cdot 28$$

Aber das gilt nicht immer:

$$3: \sum_{i \in T_3} i = 1 + 3 = 4$$
 <  $2 \cdot 3$ 

4: 
$$\sum_{i \in T_4} i = 1 + 2 + 4 = 7$$
 < 2 · 4

5: 
$$\sum_{i \in T_5} i = 1 + 5 = 6$$
 <  $2 \cdot 5$ 

7: 
$$\sum_{i \in T_7} i = 1 + 7 = 8$$
 <  $2 \cdot 7$ 

8: 
$$\sum_{i \in T_8} i = 1 + 2 + 4 + 8 = 15$$
 <  $2 \cdot 8$ 

12:  $\sum_{i \in T_{12}} i = 1 + 2 + 3 + 4 + 6 + 12 = 28 > 2 \cdot 12$ 

Eine Zahl  $n \in \mathbb{N}$  heißt *vollkommen*, wenn die Summe ihrer positiven Teiler gleich  $2 \cdot n$  ist, d.h.

$$\sum_{i \in T_n} i = 2 \cdot n$$

nheißt defizient,wenn  $\sum_{i \in T_n} i < 2 \cdot n$ n heißt abundant,wenn  $\sum_{i \in T_n} i > 2 \cdot n$ 

**Satz 9.1** (Satz von Euklid (ca 300 v.Chr.)). Ist  $2^p - 1$  eine Primzahl, dann ist  $2^{p-1}(2^p - 1)$  eine vollkommene Zahl.

#### **Beweis:**

Sei 
$$n = 2^{p-1}(2^p - 1)$$
 mit  $2^p - 1$  PZ.



$$T_{2^{p-1}} = \{1, 2^{p} - 1\} \text{ weil PZ}$$

$$T_{2^{p-1}} = \{1, 2^{1}, 2^{2}, \dots, 2^{p-1}\}$$

$$\Rightarrow T_{n} = T_{2^{p-1}(2^{p}-1)} = \{1, 2, 2^{2}, \dots, 2^{p-1}, 1 \\ 1(2^{p} - 1), 2(2^{p} - 1), 2^{2}(2^{p} - 1), \dots, 2^{p-1}(2^{p} - 1)\}$$

$$\Rightarrow \sum_{i \in T_{n}} i = (\underbrace{1 + 2 + 2^{2} + \dots + 2^{p-1}}) + (1 + 2 + 2^{2} + \dots + 2^{p-1})(2^{p} - 1)$$

$$= (1 + 2 + 2^{2} + \dots + 2^{p-1})2^{p} \qquad \text{(geometrische Reihe } \sum_{k=0}^{p-1} 2^{i})$$

$$= \sum_{k=0}^{p-1} 2^{i} \cdot 2^{p} \qquad (\sum_{k=0}^{s-1} q^{i} = \frac{q^{s} - 1}{q - 1})$$

$$= \underbrace{2^{p} - 1}_{2 - 1} \cdot 2^{p} = (2^{p} - 1) \cdot 2^{p}$$

$$= 2 \cdot 2^{p-1}(2^{p} - 1) = 2 \cdot n$$

Satz 9.2 (Notwendige Bedingung für  $2^p - 1 = \text{Primzahl}$ ). Ist  $2^p - 1$  eine Primzahl, so auch p.

#### **Beweis:**

Beweis durch Widerspruch: z.z.: Ist p zusammengesetzte Zahl, so auch  $2^p - 1$ .

Schreibe die zusammengesetzte Zahl p als nichttriviales Produkt:  $p = a \cdot b$  mit 1 < a, b < p.

Wir wollen folgendes benutzen:

$$\sum_{k=1}^{s-1} q^k = \frac{q^s - 1}{q - 1} \quad \Leftrightarrow \quad (q - 1) \sum_{k=0}^{s-1} q^k = q^s - 1$$

Mit  $q = 2^a$  und s = b:

$$\underbrace{(2^a - 1) \cdot \left(\sum_{k=0}^{b-1} (2^a)^k\right)}_{\text{zusammengesetzt!}} = (2^a)^b - 1 = 2^{a \cdot b} - 1 = 2^p - 1$$

Die linke Seite ist eine zusammengesetzte Zahl, also auch die rechte Seite der Gleichung!

M.a.W.: 
$$p$$
 zusammengesetzt  $\Rightarrow 2^p - 1$  zusammengesetzt!

Umkehrung von Euklid:



Satz 9.3 (Euler, 18 Jd.). Ist n eine gerade vollkommene Zahl, so gilt

$$n = 2^{p-1}(2^p - 1)$$
 und  $2^p - 1$  ist Primzahl.

#### **Beweis:**

 $n \text{ gerade } \Rightarrow n = 2^{p-1} \cdot u, \quad \text{mit } u \in \mathbb{N} \text{ ungerade, also } ggT(u, 2) = 1, \text{ und}$ p > 1.

Wäre u=1

$$n = 2^{p-1}$$

$$\Rightarrow T_n = T_{2^{p-1}} = \{1, 2, 2^2, 2^3, \dots, 2^{p-1}\}$$

$$\Rightarrow \sum_{t \in T_n} t = \sum_{i=0}^{p-1} 2^i = \frac{2^p - 1}{2 - 1} = \underbrace{2^p - 1}_{\text{ungerade}} \notin$$

Widerspruch zu n gerade!!!  $\Rightarrow u \neq 1$ .

Jeder Teiler t von  $n=2^{p-1}u$  ist von der Form  $t=2^i\cdot d$  mit  $d\mid u$  und  $i\leqslant p-1$ . Da n vollkommene Zahl, folgt (mit geometrischer Reihe)

$$2 \cdot n = 2^p \cdot u = \sum_{t \in T_n} t = \left(\sum_{d \in T_u} d\right) \cdot (1 + 2 + \dots + 2^{p-1})$$

$$= \left(\sum_{d \in T_u} d\right) \cdot (2^p - 1)$$
(11)

Aber:

$$\sum_{d \in T_u} d = \underbrace{1 + \cdots}_{s + u} + u = s + u > u \qquad \text{für ein } s \geqslant 1$$

Aus Gleichung (11) wird dann:

$$2^{p} \cdot u = (u+s) \cdot (2^{p}-1)$$

$$\Leftrightarrow 2^{p} \cdot u = u \cdot 2^{p} - u + s \cdot (2^{p}-1) \qquad |+u|$$

$$\Leftrightarrow u = (2^{p}-1) \cdot s$$

$$\Rightarrow s \mid u \text{ und } s < u \qquad (\text{denn } 2^{p}-1 > 2^{1}-1 = 1)$$

$$\text{wäre } s \neq 1 \quad \Rightarrow \quad u + s = \sum_{d \in T_{u}} d = 1 + \dots + s + \dots + u > s + u \quad \not\downarrow$$

$$\Rightarrow s = 1 \quad \Rightarrow \quad \sum_{d \in T_{u}} d = u + 1 \quad \Rightarrow \quad u \quad \text{Primzahl}$$

$$\Rightarrow \quad u = (2^{p}-1) \cdot s = 2^{p}-1 \quad \text{Primzahl}$$

Zusammenfassung:



Version vom 2. Oktober 2020

Satz 9.4 (Euler-Euklid). Eine gerade Zahl n ist genau dann vollkommen, wenn sie von der folgenden Form ist:

$$n=2^{p-1}(2^p-1)$$
 mit einer Primzahl  $2^p-1$ 

↑ 19.1.17 2/2

# 10. FIBONACCIZAHLEN, GOLDENER SCHNITT UND IRRATIONALITÄT

#### Die Sache mit den Kaninchen:

Ein neu geborenens Kaninchenpaar wirft von Ende des zweiten Lebensmonats an jeden Monat ein Paar Junge

Satz 10.1 (Rekursionsformel der Fibonacci-Zahlen).

$$f_1 = 1$$

$$f_2 = 2$$

$$f_n = f_{n-2} + f_{n-1}$$

Die Folge beginnt mit:

$$[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \ldots]$$



## Fibonaccizahlen und $\varphi$

 $\varphi$  sei der unendliche Kettenbruch:

$$\varphi := 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} = [1, 1, \dots] \stackrel{\text{Beh.}}{=} \frac{1}{2} + \frac{\sqrt{5}}{2} \approx 1,62\dots$$

$$q_n = \frac{f_{n+2}}{f_{n+1}}$$



**Durch Induktion:** 

$$\begin{array}{lll} n=0: & \frac{f_2}{f_1} & = & \frac{1}{1}=1=q_0 \\ \\ n=1: & \frac{f_3}{f_2} & = & \frac{2}{1}=2=q_1 \\ \\ n-1 \Rightarrow n: \text{Vor.:} & q_{n-1} & = & \frac{f_{n+1}}{f_n} \\ \\ q_n & = & 1+\frac{1}{q_{n-1}} \stackrel{\text{Ind.Vor.}}{=} 1+\frac{f_n}{f_{n+1}} = \frac{f_{n+1}+f_n}{f_{n+1}} \stackrel{\text{RF}}{=} \frac{f_{n+2}}{f_{n+1}} \end{array}$$

Satz 10.3.

$$\varphi = \lim_{n \to \infty} q_n = \frac{1}{2} \left( 1 + \sqrt{5} \right) = Goldener \ Schnitt$$

#### **Beweis:**

Wegen der Kettenbruchdarstellung von  $\varphi$  gilt:

$$1 + \frac{1}{\varphi} = \varphi$$

$$\Rightarrow \quad \varphi + 1 = \varphi^{2}$$

$$\Leftrightarrow \quad \varphi^{2} - \varphi - 1 = 0$$

$$x_{1/2} = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} \qquad \text{(Lösung mit } pq\text{-Formel)}$$

$$= \frac{1}{2} \pm \sqrt{\frac{5}{4}} = \frac{1}{2} \left(1 \pm \sqrt{5}\right)$$

Da 
$$\varphi > 0$$
 folgt  $\varphi = x_1 = \frac{1}{2} (1 + \sqrt{5}).$ 

Korollar 10.4. Der Goldene Schnitt  $\varphi$  ist die positive Lösung der quadratischen (algebraischen) Gleichung:

$$\varphi^2 = \varphi + 1$$

Insbesondere ist  $\varphi$  ist eine algebraische Zahl.

Satz 10.5.

$$\varphi^n = f_{n-1} + f_n \varphi \quad \text{für} \quad n \geqslant 2$$

#### **Beweis:**

Beweis durch vollständige Induktion:

$$n=2 \qquad \varphi^2=1+\varphi=f_1+f_2\varphi.$$



Der Induktionsschritt  $n-1 \rightarrow n$ :

$$\varphi^{n} = \varphi^{n-1} \cdot \varphi$$

$$= (f_{n-2} + f_{n-1}\varphi)\varphi \qquad \text{(nach Induktions vor aussetzung)}$$

$$= f_{n-2}\varphi + f_{n-1}\varphi^{2} = f_{n-2}\varphi + f_{n-1}(1+\varphi)$$

$$= f_{n-1} + (f_{n-1} + f_{n-2})\varphi = f_{n-1} + f_{n}\varphi$$

Ebenso gibt es eine Rekursionsformel für die negativen  $\varphi$ -Potenzen

Satz 10.6.

$$\frac{1}{\varphi^n} = (-1)^n (f_{n+1} - f_n \varphi) \quad \text{für} \quad n \geqslant 1.$$

# 10.1. Das regelmäßige 5-Eck - Goldener Schnitt.

Es gibt kein gemeinsames Maß für die Diagonale und Seite des regelmäßigen Fünfecks.

D.h. Die Diagonale und die Seite sind inkommensurabel!



$$d = a + d_1 \quad a = a_1 + d_1$$

$$d_1 = a_1 + d_2 \quad a_1 >= a_2 + d_2$$

$$\vdots \qquad \vdots$$

$$\Rightarrow \text{Folge } (d_n, a_n)_{n \in \mathbb{N}}$$

Annahme:

$$d = n \cdot e$$
  $a = m \cdot e$  mit  $n, m \in \mathbb{N}$ .

#### **Beweis:**

## Hintereinander Einsetzen:



$$d_1 = d - a = n_1 \cdot e$$
  $a_1 = a - d_1 = m_1 \cdot e$   $d_2 = d_1 - a_1 = n_2 \cdot e$   $\vdots$   $\vdots$ 

mit  $n_i, m_i \in \mathbb{N}$ .

**Aber:** Die Zahlen  $d_n$  und  $a_n$  werden bei jedem Schritt mehr als die Hälfte kleiner:

$$d_{n+1} < \frac{d_n}{2} \qquad a_{n+1} < \frac{a_n}{2}.$$

 $\Rightarrow$  Irgendwann gilt:

$$d_n < e$$
  $a_n < e$  für ein  $n \in \mathbb{N}$ .  $\nleq$ 

Goldener Schnitt: Was hat das mit dem Goldenen Schnitt zu tun? Der Goldene Schnitt ist ein Streckenverhältnis:



Drei Längen:

Lang 
$$L = 1 + x$$
, Mittel  $M = x$ , Kurz  $S = 1$ 

Mit der folgendermaßen vorgeschriebenen Relation der Verhältnisse:

$$\frac{L}{M} = \frac{M}{S}$$

$$\frac{1+x}{x} = \frac{x}{1}$$

$$1+x=x^2$$

$$x^2 - x - 1 = 0$$

$$x_{1/2} = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$

es muss + heißen, da negative Lösungen für Strecken keinen Sinn machen

Lösung: 
$$M = L - K = x = \frac{1 + \sqrt{5}}{2} =: \varphi \simeq 1,618...$$



Für 0 < M < L gilt: M teilt L im goldenen Schnitt, wenn:

$$L = \varphi \cdot M \quad \Leftrightarrow \quad \frac{L}{M} = \varphi \quad \left( \Leftrightarrow \quad M = \varphi \cdot \underbrace{\left(L - M\right)}_{K} \Leftrightarrow \frac{M}{L - M} = \varphi \right)$$



Zusammenhang zum Fünfeck:

$$K = d_1 = d - a = L - M$$

Strahlensatz:  $\frac{L}{M} = \frac{M}{K}$ 

$$\frac{L}{M} = \frac{d}{a} = \frac{d_n}{a_n} = \varphi$$

Warum ist  $\varphi = \frac{1+\sqrt{5}}{2}$  irrational????

Annahme:  $\varphi = \frac{1+\sqrt{5}}{2}$  wäre rational!

$$\Rightarrow \quad \varphi = \frac{p}{q} \in \mathbb{Q}, \text{ also}$$

$$\Rightarrow \quad \frac{d}{a} = \varphi = \frac{p}{q}$$

$$\Rightarrow \quad \frac{d}{p} = \frac{a}{q}$$

Sei 
$$e := \frac{a}{p} = \frac{d}{q}$$

$$a = p \cdot e$$
 und  $d = q \cdot e \Rightarrow d, e \text{ sind kommensurabel }$ 

Also muss  $\varphi$  und damit auch  $\sqrt{5}$  irrational sein!

# 10.2. Aperiodische Plasterungen.



Penrose (1973):

2 Fliesen:

Kite und Dart

Seitenverhältnisse:

Goldener Schnitt  $\varphi$ 

Verlegevorschrift: Lege Punkte aneinander



#### Penrose Pflaster

- (1) Mit elementaren Argumenten läßt sich zeigen, daß diese Penrosepflaster immer aperiodisch sind
- (2) Es gibt ∞-viele verschiedene Penrose Pflaster, von einem kleinen Ausschnitt aus lässt sich aber nicht feststellen, welches man hat

#### Nichtperiodische Parkette

1966: Robert Berger erfindet ein nichtperiodische Parkett mit 20426 Grundbausteinen. Diese kann er darauf noch auf 104 Elemente reduzieren.

**1971:** Raphael Robinson: Nichtperiodisches Parkett mit 6 Grundbausteinen.

**1973:** Unabhängig von Robinson erfindet Roger Penrose ebenfalls ein nicht-periodische Parkett mit 6 Grundbausteinen, diesen kann er sogar auf 2 Bausteine *Kite* und Dart reduzieren.

1982: Dany Shechtman und Kollegen entdecken nicht-periodische Kristallformationen in einer Aluminium-Mangan-Legierung Quasikristalle.

 $\Rightarrow$  Nobelpreis 2011

#### 10.3. DIN-Norm für Papier.

## Die DIN-Papier Norm



## Kravatte falten

- $\Rightarrow$  Was sagt uns das?
- $\Rightarrow$  die lange Seite ist so lang wie die Diagonale des Quadrates über der kurzen Seite:

$$\Rightarrow \qquad \boxed{l = \sqrt{2} \cdot k}$$

Genauere Untersuchung der DIN-Norm:



Die Seiten  $l_n$  und  $k_n$  sind ein weiteres Beispiel inkommensurabler Zahlenpaare.

| i   | $l_i$       | $k_i$                     | $F_i = F(Ai) = l_i \cdot k_i$     |
|-----|-------------|---------------------------|-----------------------------------|
| 0   | $l_0$       | $k_0$                     | $(1 = 2^0  (m^2) \text{ später})$ |
| 1   | $l_1 = k_0$ | $k_1 = \frac{l_0}{2}$     | $\frac{1}{2}F_0 = 2^{-1}F_0$      |
|     | i i         | ÷                         | ÷                                 |
| n+1 |             | $k_{n+1} = \frac{l_n}{2}$ | $2^{-(n+1)}F_0$                   |



#### Darüberhinaus: Seitenverhältnisse konstant:

$$\frac{l_n}{k_n} = \frac{l_{n+1}}{k_{n+1}} = \frac{k_n}{\left(\frac{l_n}{2}\right)} = \frac{2k_n}{l_n}$$
$$l_n^2 = 2k_n^2$$

$$\Rightarrow$$
  $l_n = \sqrt{2} \cdot k_n$ 

## Warum sind $l_0$ und $k_0$ inkommensurabel?

Annahmen sie wären kommensurabel: Dann gibt es eine Einheitslänge e und natürliche Zahlen  $n_0, m_0 \in \mathbb{N}$  mit:

$$l_0 = m_0 \cdot e, \qquad k_0 = n_0 \cdot e.$$

Aber

$$l_{2n} = k_{2n-1} = 2^{-1}l_{2n-2} = \dots = 2^{-n}l_0 = \frac{l_0}{2^n}$$
$$k_{2n} = \frac{1}{2}l_{2n-1} = 2^{-1}k_{2n-2} = \dots = 2^{-n}k_0 = \frac{k_0}{2^n}$$

mit ungeraden Indices geht das natürlich analog:

$$l_{2n+1} = k_{2n} = 2^{-1}l_{2n-1} = \dots = 2^{-n}l_0 = 2^{-n}k_0 = \frac{k_0}{2^n}$$
$$k_{2n+1} = \frac{1}{2}l_{2n} = 2^{-1}k_{2n-1} = \dots = 2^{-n}k_1 = 2^{-(n+1)}l_0 = \frac{l_0}{2^{n+1}}$$

Kann man die Größen  $l_n$  und  $k_n$  auch explizit angeben? Dazu müssen wir  $l_0$  und  $k_0$  kennen. Erst hier brauchen wir die Information/Definition:

$$F_0 := 1 \,\mathrm{m}^2$$
.



Zusammen mit  $l_n = \sqrt{2} \cdot k_n$  folgt:

$$l_0 \cdot k_0 = 1 \text{ m}^2$$

$$k_0 = \frac{1}{l_0} = \frac{1}{\sqrt{2} \cdot k_0}$$

$$k_0^2 = \frac{1}{\sqrt{2}} = 2^{-\frac{1}{2}}$$

$$k_0 = 2^{-\frac{1}{4}} = \frac{1}{\sqrt[4]{2}}$$

$$\Rightarrow l_0 = \frac{\sqrt{2}}{\sqrt[4]{2}} = 2^{\frac{1}{2} - \frac{1}{4}} = 2^{\frac{1}{4}} = \sqrt[4]{2}$$

Ein bisschen Einsetzen und Rechnerei liefert:

$$\Rightarrow \qquad l_n = \frac{\sqrt[4]{2}}{\sqrt[2]{2^n}} \,\mathbf{m} = 2^{\frac{1-2n}{4}} \,\mathbf{m} \qquad k_n = \frac{1}{\sqrt[4]{2} \cdot \sqrt[2]{2^n}} \,\mathbf{m} = 2^{-\frac{2n+1}{4}} \,\mathbf{m}$$

Probe: DIN A4:

$$l_4 = 2^{\frac{1-2\cdot 4}{4}} \,\mathrm{m} = 2^{-\frac{7}{4}} \,\mathrm{m} = 0,2973 \,\mathrm{m} = 29,73 \,\mathrm{cm}$$
  
und  $k_4 = 2^{-\frac{9}{4}} \,\mathrm{m} = 0,2102 \,\mathrm{m} = 21,02 \,\mathrm{cm}$ 

Die Irrationalität von  $\sqrt{2}$  läßt sich nun analog wie beim goldenen Schnitt zeigen!

#### 11. EAN, ISBN, PZN UND IBAN

## 11.1. EAN im Supermarkt.

EAN = Europäische Artikelnummer

# Beispiele

Bad Brückenauer Mineralwasser 4 001784 015309

Seitenbacher Müsli 4 008391 041721

Appel Heringsfilet 4 020500 966015

#### Gemeinsamkeiten:

- 13 Ziffern
- Anfangsziffer 4 oder bzw. 40

# Bedeutung der Ziffern

z.B. Iglo Schlemmerfilet:

| 405      | 6100     | 04221    | 7        |
|----------|----------|----------|----------|
| <b>↑</b> | <b>↑</b> | <b>↑</b> | <b>↑</b> |

Ländernr. Betriebsnummer Artikelnummer Prüfziffer

Bemerkung: Es gibt einige besondere Produkte mit nur 8 Ziffern!

400 − 440 sind für Deutschland reserviert (vgl. GS1-Länderpräfix).

EAN wurde in den 1970-ger Jahren eingeführt und wird von der GS1 verwaltet. GS1 (Global Standards One) ist eine weltweite, privatwirtschaftlich aufgestellte Organisation, die globale Standards zur Verbesserung von Wertschöpfungsketten gestaltet und umsetzt sowie weltweit für die Vergabe der Global Trade Item Number (GTIN) für Produkte sowie weiterer eindeutiger Idente zur Kennzeichnung von Anlagen, Behältern, Dokumenten und anderen Geschäftsobjekten zuständig ist.

In USA: 12-ziffriger UPC-Code.

Beide Codes sind kompatibel:

0 + UPC = EAN





# Was ist die **EAN**-Prüfziffer?

Beim Schreiben einer Zahlenfolge passieren, wie beim Schreiben eines Textes, verschiedene Fehler:

- falsche Ziffer falscher Buchstabe
- Zahlendreher
- eine Ziffer zuviel oder zuwenig
- Beschädigung des Codes

Bei Worten/Texten läßt sich der richtige Text meistens erraten, bei Zahlenfolgen aber nicht  $\Rightarrow$  **Problem**!!

Zur Fehlerentdeckung dient die Prüfziffer. Die **EAN** hat 13 Ziffern:  $z_1z_2z_3\dots z_{12}z_{13}$ :

$$\underbrace{z_1 \ z_2 \ z_3}_{\text{Ländernr.}} \quad \underbrace{z_4 \dots z_7}_{\text{Betriebsnr.}} \quad \underbrace{z_8 \dots z_{12}}_{\text{Artikelnr.}}$$

Definiere dann die Prüfziffer  $0 \le z_{13} < 10$  mit:

$$z_{13} \equiv -(z_1 + z_3 + z_5 + z_7 + z_9 + z_{11} + 3 \cdot (z_2 + z_4 + z_6 + z_8 + z_{10} + z_{12})) \mod 10$$

Für die Vollständige **EAN** gilt dann:

Prüfsumme 
$$S := z_1 + z_3 + z_5 + z_7 + z_9 + z_{11} + 3 \cdot (z_2 + z_4 + z_6 + z_8 + z_{10} + z_{12}) + z_{13}$$
  
 $\equiv 0 \mod 10$ 

Überprüfung einer vollständigen  $\mathbf{EAN}$  auf ihre Korrektheit:

Code wird akzeptiert, falls: 
$$S \equiv 0 \mod 10$$

Beispiele (1)

$$4 \quad 0 \quad 5 \quad 6 \quad 1 \quad 0 \quad 0 \quad 0 \quad 4 \quad 2 \quad 2 \quad 1 \quad 7$$
 
$$\downarrow \times 1 \downarrow \times 3 \downarrow \times 1$$
 
$$4+ \quad 0+ \quad 5+ \quad 18+ \quad 1+ \quad 0+ \quad 0+ \quad 4+ \quad 6+ \quad 2+ \quad +3 \quad +7=50$$
 
$$\text{Prüfsumme}: \quad S=50\equiv 0 \quad \text{mod } 10 \quad \checkmark$$



(2)

⇒ Prüfgerät akzeptiert die Nummer!

# Häufigkeit der verschiedenen Fehlertypen:

Z.B. beim Eintippen der Ziffer: 4711

| Fehlertyp                         | Beispiel       | Häufigkeit |
|-----------------------------------|----------------|------------|
| (1) eine Ziffer falsch            | 4712           | 60%        |
| (2) zuviel/zuwenig Ziffern        | 471 oder 47111 | 25%        |
| (3) zwei oder mehr Ziffern falsch | 4822           | 8%         |
| (4) Zahlendreher                  | 7411           | 5%         |
| (5) Vertauschen von Blöcken       | 1147           | 1%         |

Hilft die Prüfziffer, diese Fehler zu entdecken?

Satz 11.1. Die Eingabe genau einer falschen Ziffer wird durch die Prüfziffer stets erkannt.

## **Beweis:**

Wenn genau eine Ziffer falsch ist  $\Rightarrow$  drei Möglichkeiten:

- (1) Die falsche Ziffer ist unter den Zahlen mit ungeraden Indices:  $\{z_1, z_3, z_5, z_7, z_9, z_{11}\}$
- (2) Die falsche Ziffer ist unter den Zahlen mit geraden Indices:  $\{z_2, z_4, z_6, z_8, z_{10}, z_{12}\}$
- (3) Die Prüfziffer  $z_{13}$  ist falsch.

<u>Fall (1)</u>: Sei  $\hat{z}_i$  mit  $1 \le i \le 11$  ungerade, die falsche Ziffer. Also  $\hat{z}_i \ne z_i$  und da beide Zahlen zwischen 0 und 9 liegen gilt:

$$\hat{z}_i \not\equiv z_i \mod 10$$

Damit wird eine falsche Prüfsumme  $\hat{S}$  berechnet:

$$\hat{S} := z_1 + \dots + \hat{z}_i + \dots + z_{11} + z_{13} + 3 \cdot (z_2 + z_4 + z_6 + z_8 + z_{10} + z_{12})$$

$$= z_1 + \dots + z_i + \dots + z_{11} + z_{13} + 3 \cdot (z_2 + z_4 + z_6 + z_8 + z_{10} + z_{12}) + (\hat{z}_i - z_i)$$

$$\equiv 0 + (\hat{z}_i - z_i) \not\equiv 0 \mod 10$$



⇒ Fehler wird entdeckt!

<u>Fall (2)</u>: Sei  $\hat{z}_i$  mit  $2 \le i \le 12$  gerade, die falsche Ziffer. Also  $\hat{z}_i \ne z_i$  und da beide Zahlen zwischen 0 und 9 liegen gilt:

$$\hat{z}_i - z_i \not\equiv 0 \mod 10 \implies 3(\hat{z}_i - z_i) \not\equiv 0 \mod 10$$

Damit wird eine falsche Prüfsumme  $\hat{S}$  berechnet:

$$\hat{S} := z_1 + \dots + z_{11} + z_{13} + 3 \cdot (z_2 + \dots + \hat{z}_i + \dots + z_{12})$$
  

$$\equiv 3(\hat{z}_i - z_i) \not\equiv 0 \mod 10$$

⇒ Fehler wird entdeckt!

Fall (3): Prüfziffer falsch, klar wird erkannt!

Werden auch Fehler mit zwei falschen Ziffern erkannt?

Diese Fehler werden nicht notwendigerweise erkannt:

## Beispiel:

richtige **EAN**: 4 008391 041721 falsche **EAN**: 4 018291 041721

Prüfsummen:

$$\hat{S} - S = 4 + 1 + 2 + 1 + 4 + 7 + 3(0 + 8 + 9 + 0 + 1 + 2)$$

$$- (4 + 0 + 3 + 1 + 4 + 7 + 3(0 + 8 + 9 + 0 + 1 + 2))$$

$$= 1 + 2 - 0 - 3 = 0$$

⇒ Fehler wird nicht entdeckt!

#### Drehfehler

Satz 11.2. Die einzigen Drehfehler benachbarter Ziffern  $z_i$ ,  $z_{i+1}$ , die nicht entdeckt werden, sind diejenigen mit:

$$z_i \equiv z_{i+1} \mod 5$$

**Beweis:** 

$$\mathbf{EAN}_{\mathrm{falsch}}: \quad z_1 z_2 z_3 \dots \underbrace{z_{i+1} z_i}_{\mathrm{Drehfehler}} \dots z_{12} z_{13}$$



Wenn i gerade  $\Rightarrow z_i$  steht an ungerader Position:

$$S_{\text{falsch}} = z_1 + \dots + z_i + \dots + z_{13} + 3 \cdot (z_2 + \dots + z_{i+1} + \dots + z_{12})$$

$$= \underbrace{z_1 + \dots + z_{i+1} + \dots + z_{13} + 3 \cdot (z_2 + \dots + z_i + \dots + z_{12})}_{S \text{ von korrekter } \mathbf{EAN} \equiv 0 \mod 10}$$

$$+ z_i + 3z_{i+1} - z_{i+1} - 3z_i$$

$$= S + 2(z_{i+1} - z_i) \equiv 2(z_{i+1} - z_i) \mod 10$$

Fehler wird genau dann nicht entdeckt, wenn:

$$S_{\text{falsch}} \equiv 0 \mod 10$$

$$\Leftrightarrow 2(z_{i+1} - z_i) \equiv 0 \mod 10 \qquad \qquad \text{(durch 2 teilen)}$$

$$\Leftrightarrow z_{i+1} - z_i \equiv 0 \mod 5 \qquad \qquad \text{(weil } \frac{10}{ggT(2,10)} = \frac{10}{2} = 5)$$

#### Wenn i ungerader Index ist, analoge Rechnung.

Das läßt sich natürlich auf andere nicht benachbarte Drehfehler erweitern, dann aber viele Fallunterscheidungen. Aber, Drehfehler sind eigentlich immer benachbart!

#### 11.2. **ISBN.**

EAN Group Publisher
Title Check digit Check digit Quelle: Sakurambo, English Wikipedia

Quelle: Sakurambo, English Wikipedia

Group Publisher

Title Check digit Check digit

Vor 2007 **ISBN-1**0: 10 Ziffern Nach 2007 **ISBN-1**3: 13 Ziffern

**Beispiel:** Ende 2006 erschien: Franke, M., Didaktik der Geometrie in der Grundschule, mit den 2 **ISBN** Nummern:

**ISBN**-10: 3-8274-1511-X



#### **ISBN**-13: 978-3-8274-1511-0

# ISBN-13 funktioniert analog EAN!

## Bedeutung der Ziffern bei ISBN-10:

Gruppennr Verlagsnr. Titelnummer Prüfziffer

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$3 \quad - \quad 8274 \quad - \quad 1511 \quad - \quad X$$

Gruppennummer 3: deutschsprachiger Raum (Deutschland, Österreich, Schweiz) (Die Gruppennummer kann auch mehrere Stellen haben, z.B. 82-Norwegen, 84-Spanien, 88-Italien, 956-Chile.... Entsprechend hat die Verlagsnummer dann weniger Stellen.)

Prüfziffer: römisch X = 10

Prüfsumme  $\Sigma$ :

$$\sum := 3 \cdot 10 + 8 \cdot 9 + 2 \cdot 8 + 7 \cdot 7 + 4 \cdot 6 + 1 \cdot 5 + 5 \cdot 4 + 1 \cdot 3 + 1 \cdot 2 + X \cdot 1$$

$$= 30 + 72 + 16 + 49 + 24 + 5 + 20 + 3 + 2 + 10$$

$$= 231 = 21 \cdot 11$$

$$\equiv 0 \mod 11$$

Wenn  $\sum \equiv 0 \mod 11$  wird die **ISBN** akzeptiert!

## Allgemeine Beschreibung

**ISBN-10**: 
$$z_{10} - z_9 z_8 z_7 z_6 - z_5 z_4 z_3 z_2 - z_1$$

Prüfziffer:  $z_1 := -(z_{10} \cdot 10 + z_9 \cdot 9 + \dots + z_2 \cdot 2) \mod 11$ 

ist also eine Ziffer  $0 \leq z_1 \leq 10$  und statt 10 schreibt man römisch X

Prüfsumme: 
$$\sum := z_{10} \cdot 10 + z_9 \cdot 9 + \ldots + z_2 \cdot 2 + z_1 \cdot 1$$

Die **ISBN** wird akzeptiert, wenn die Prüfsumme kongruent 0 modulo 11 ist, denn dann:

$$\sum \equiv 0 \mod 11$$

$$\Leftrightarrow 0 \equiv z_{10} \cdot 10 + z_9 \cdot 9 + \ldots + z_2 \cdot 2 + z_1 \cdot 1 \mod 11$$

$$\Leftrightarrow z_1 \equiv -(z_{10} \cdot 10 + z_9 \cdot 9 + \ldots + z_2 \cdot 2) \mod 11 \quad \text{(wie es sein soll!)}$$



#### Satz 11.3.

- Das **ISBN** Prüfverfahren deckt alle Fehler auf, bei denen genau eine Ziffer falsch ist.
- Fehler mit genau 2 falschen Ziffern werden <u>nicht immer</u> entdeckt.
- Alle Drehfehler (benachbart oder nicht) werden entdeckt.
- Vertauschungen benachbarter 2-er Blöcke werden häufig entdeckt.

## 11.3. Die Pharmazentralnummer PZN.

Die Pharmazentralnummer **PZN** ist eine siebenstellige Ziffernfolge:

6 Ziffern + Prüfziffer:  $a_1 a_2 a_3 a_4 a_5 a_6 p$ 

Prüfsumme:  $S := 2 \cdot a_1 + 3 \cdot a_2 + 4 \cdot a_3 + 5 \cdot a_4 + 6 \cdot a_5 + 7 \cdot a_6$ 

Prüfziffer:  $p :\equiv S \mod 11$ 

oder äquivalent: Die Prüfnummer ist der Rest beim Teilen der Prüfsumme mit Rest durch 11  $\Rightarrow$ 

$$S = b \cdot 11 + p \qquad \text{mit } 0 \le p \le 10$$

**Beispiel: PZN** - 3414966

Auf Korrektheit überprüfen:

$$2 \cdot 3 + 3 \cdot 4 + 4 \cdot 1 + 5 \cdot 4 + 6 \cdot 9 + 6 \cdot 6 = 138 = 12 \cdot 11 + 7 \equiv 6 \mod 11$$
  $\checkmark$  da  $p = 6!!$ 

# 11.4. IBAN, Verfahren Modulo 97-10 (ISO 7064).

IBAN (=International Bank Account Number) zusammen mit BIC (= Bank Identifier Code) bilden die international einheitlichen Daten zur Identifizierung eines Kontos, die im Rahmen von SEPA (Single Euro Payments Area) zum nationalen und internationalen Zahlungsverkehr benötigt werden. IBAN-Pflicht:

1. Februar 2016 (letzte Frist)

Beispiel: VR Bank Nürnberg:

BIC: GENO DE F1 N02 BLZ: 760 60 618

Format der IBAN: maximal 34 Alphanummerische Zeichen:

$$\alpha_1 \alpha_2$$
Land Prüfzahl Kontoidentifikation

Für Deutschland gilt:

DE 
$$p_1 p_2$$
  $b_1 b_2 \cdots b_8$   $k_1 k_2 \cdots k_{10}$ 
Prüfzahl Bankleitzahl Kontonummer

Berechnung einer IBAN bzw. der Prüfziffer(n)

Verfahren Modulo 97-10 (ISO 7064)

Beispiel:

BLZ: 760 60 618

Kontonummer: 218561 (ist eine zulässige fiktive Kn.)

Kontonummer hat 6 Stellen, mit Nullen zu 10 Stellen ergänzen ⇒

IBAN: DE  $p_1p_2$  7606 0618 0000 2185 61

Zur Berechnung der Prüfziffern setzt man diese zunächst gleich 00

DE 00 7606 0618 0000 2185 61

Umstellen 7606 0618 0000 2185 61 DE 00

Ersetze Buchstaben durch Zahlen: A=10, B=11, C=12, D=13...

7606 0618 0000 2185 6113 1400



$$7606\ 0618\ 0000\ 2185\ 6113\ 1400 \equiv 31 \mod 97$$

$$98 - 31 = 67 =: p_1 p_2$$

Problem Mein Taschenrechner macht Folgendes:

7606 0618 0000 2185 6113 1400 
$$\div R \Rightarrow 7,8413 \cdot 10^{21}$$

Hilfsmethode (da ggT(97, 10) = 1):

7606 0618 0000 2185 6113 1400 = 
$$760606180 000 2185 6113 1400$$
  
 $\equiv 80 000 2185 6113 1400 \mod 97$   
 $= 8000021 85 6113 1400 \mod 97$   
 $= 43 85 6113 1400 \mod 97$   
 $= 4385611 3 1400 \mod 97$   
 $= 473 1400 \mod 97$   
 $= 4731400$   
 $\equiv 31 \mod 97$   
 $= 31 \mod 97$ 

Prüfzahl: 98 - 31 = 67

IBAN: DE 67 7606 0618 0000 2185 61

- (1) Prüfziffern auf 00 setzen
- (2)  $\alpha_1 \alpha_2 p_1 p_2$  nach hinten umstellen
- (3) Buchstaben durch Zahlen ersetzen: A=10, B=11, C=12, D=13...
- (4) R = Rest modulo 97 berechnen
- (5) Prüfzahl  $p_1 p_2 = 98 R$





# Prüfung einer IBAN auf Korrektheit

IBAN: DE 67 7606 0618 0000 2185 61

Umstellen und Buchstaben ersetzen:

7606 0618 0000 2185 61 1314 67 
$$\equiv 1 \mod 97 \Rightarrow \text{korrekt}$$

Klar, denn

$$7606\ 0618\ 0000\ 2185\ 6113\ 1400 \equiv 31 \mod 97$$

 $\Rightarrow \quad 7606\ 0618\ 0000\ 2185\ 6113\ 14{\color{red}67} \equiv 31 + 67 = 98 \equiv 1 \mod 97$ 

#### 12. Kryptographie

# 12.1. Monoalphabetische Substitution.

Hierbei werden den Buchstaben des Alphabets A (Klartextalphabet) eindeutig die Buchstaben eines Geheimtextalphabets G zugeordnet (angeblich schon von Julius Cäsar angewandt). Der Code bzw. die Codierung oder Verschlüsselung ist die Abbildung:

$$\kappa: \mathbb{A} \longrightarrow \mathbb{G}$$

Der Schlüssel ist die Umkehrabbildung:

$$\kappa^{-1}: \mathbb{G} \longrightarrow \mathbb{A}$$

In diesem Abschnitt gilt:

$$\mathbb{G}=\mathbb{A}$$

# Methode 1: Zyklische Vertauschung

$$\mathbb{A} = \{\alpha_1, \alpha_2, \dots, \alpha_d\}$$
 und  $\kappa_n(\alpha_i) = \alpha_{i+n}$ 

wobei der Index modulo d zu verstehen ist, also eigentlich  $\alpha_i = \alpha_{\bar{i}}$ 

**Beispiel**:  $\mathbb{A} = \text{unser Alphabet}, n = 3$ :

Klartextalphabet A B C D ... W X Y Z

Geheimtextalphabet D E F G ... Z A B C

Hat das Alphabet A genau d (hier d=26) Elemente, so gibt es nur d-1 (bzw.

25) Verschlüsselungen dieser Art.

## Methode 2: Multiplikation statt Addition im Index:

$$\mathbb{A} = \{\alpha_1, \alpha_2, \dots, \alpha_d\}$$
 und  $\kappa_m(\alpha_i) = \alpha_{i \cdot m}$ 

Beispiel: m = 2 und  $\mathbb{A} = \{A, B, \dots Z\}$ , also d = 26

Nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A ABCDEFGHIJKLMNOPQRSTUVWXYZ

G BDFHJLNPRTVXZBDFHJLNPRTVXZ

Problem: die Abbildung ist nicht injektiv!!

#### Verallgemeinerung:

Wenn  $ggT(m,d) \neq 1$ , dann ist  $\kappa_m$  nicht injektiv und hat keine Umkehrabbildung, kommt also nicht in Frage.





Wenn ggT(m,d) = 1, dann ist  $\kappa_m$  injektiv, aber es gibt nicht allzu viele neue Verschlüsselungen, nämlich

$$\varphi(d) - 1$$
 (bzw.  $\varphi(26) - 1 = \varphi(13) \cdot \varphi(2) - 1 = 12 \cdot 1 - 1 = 11$ )

 $(\varphi(d) - 1)$ , weil  $\varphi(d)$  die Anzahl der Möglichkeiten für m mit ggT(m, d) = 1, aber m = 1 bedeutet die Identität, fällt also heraus.)

Die Methode ist also auch ziemlich unsicher, weil die wenigen Möglichkeiten einfach und schnell durchgeprüft werden können.

## Methode 3: Multiplikation und Addition kombinieren:

$$\mathbb{G} = \mathbb{A} = \{\alpha_1, \alpha_2, \dots, \alpha_d\}$$
 und  $\kappa_{m,n}(\alpha_i) = \alpha_{i \cdot m + n}$ 

Davon gibt es nach dem oben gesagten  $\varphi(d)$  Möglichkeiten für m, so daß ggT(m,d)=1, sowie d Möglichkeiten für n, aber  $\kappa_{1,1}=\mathrm{id}$  fällt heraus, also insgesamt gibt es

$$\varphi(d)d-1$$
 Möglichkeiten

(bzw. 
$$\varphi(26) \cdot 26 - 1 = 12 \cdot 26 - 1 = 311$$
).

Entschlüsselung von einem mit  $\kappa_{m,n}$  codiertem Text

**Beispiel:** d = 26 (also  $\mathbb{A} = \{A, B, \dots Z\}$ ) und (m, n) = (3, 17), also  $\kappa_{3,17}$ . Behauptung:  $\kappa_{3,17}^{-1} = \kappa_{9,3}$ .

$$9 \cdot (3 \cdot i + 17) + 3 = 27 \cdot i + 9 \cdot 17 + 3 = 27 \cdot i + 156 \equiv i \mod 26$$

$$\kappa_{9,3} \circ \kappa_{3,17}(\alpha_i) = \alpha_{9 \cdot (3 \cdot i + 17) + 3} = \alpha_i \qquad \text{(für alle } i)$$

## Allgemein:

Angenommen es gibt m', n', so daß für alle Indices  $i \in \{1, ..., d\}$  gilt:

$$m' \cdot (i \cdot m + n) + n' \equiv i \mod d$$

Dann gilt sicher

$$\kappa_{m',n'} \circ \kappa_{m,n} = \mathrm{id}$$

Satz 12.1.  $\kappa_{m,n}$  ist genau dann invertierbar, wenn ggT(m,d) = 1. Dann gilt ferner

$$\kappa_{m,n}^{-1} = \kappa_{m',n'}$$

 $mit \ m', n' \in \mathbb{Z}, \ so \ da\beta \ \overline{m'} = \overline{m}^{-1} \ in \ \mathbb{Z}/d\mathbb{Z} \ und \ n' \equiv -m' \cdot n \mod d.$ 



 $\kappa_{m,n}$  ist genau dann invertierbar, wenn es m', n' gibt mit:

$$m' \cdot (i \cdot m + n) + n' \equiv i \mod d \quad \forall i$$
 (\*)

Aber

$$m' \cdot (i \cdot m + n) + n' = m'm \cdot i + (m'n + n')$$

also (\*) gilt genau dann, wenn:

$$m'm \equiv 1 \quad \text{und} \quad m'n + n' \equiv 0 \mod d$$

Damit 
$$m'$$
 bzw.  $\overline{m}^{-1} \in \mathbb{Z}/d\mathbb{Z}$  existiert, muss  $ggT(m,d) = 1$  gelten! Beispiel  $d = 26$  und  $(m,n) = (3,2)$ , also  $\kappa_{3,2}$ :
Da  $ggT(3,26) = 1$  ist  $\kappa_{3,2}$  invertierbar. Aber:

$$\kappa_{3,2}(\alpha_{12}) = \alpha_{3,12+2} = \alpha_{38} = \alpha_{12}$$

Also hat  $\kappa_{3,2}$  Fixpunkte und ist damit ungeeignet für eine Verschlüsselung!

Wann hat  $\kappa_{m,n}$  Fixpunkte?

Offenbar gilt:

$$\kappa_{m,n}(\alpha_i) = \alpha_i \quad \Leftrightarrow \quad m \cdot i + n \equiv i \mod d \qquad \text{(für ein spezielles } i)$$

$$\Leftrightarrow d \mid (mi + n - i) = (m - 1)i + n \qquad \text{(für dieses } i)$$

Das läßt sich nur in Spezialfällen weiter untersuchen:

Beispiel d = 26 und ggT(m, 26) = 1

$$26 | (mi + n - i) = (m - 1)i + n$$

Aus ggT(m, 26) = 1 folgt, daß m ungerade ist, somit sind (m-1) und (m-1)i für alle i gerade. Wenn nun n ungerade wäre, dann wäre (m-1)i+n ungerade und damit kein Vielfaches der geraden Zahl 26.

**Folgerung:** Wenn d = 26, ggT(m, 26) = 1 und n ungerade ist, dann ist  $\kappa_{m,n}$  invertierbar und fixpunktfrei!

Je mehr Codes zur Verfügung stehen, desto schwieriger bzw. langsamer wird es, alle Möglichkeiten durchzuprobieren, um den richtigen Schlüssel zu finden. Mit den obigen Methoden gibt es aber nicht viele Codes, weniger als 311 im Fall d=26.



Weitere Verallgemeinerung: man permutiert die Buchstaben des Alphabets nicht nur linear, wie oben beschrieben, sondern läßt alle denkbaren Permutationen der d Buchstaben zu. Dann erhöht sich die Anzahl der Möglichkeiten auf d! Codes!

Aber auch diese vielen Codes lassen sich relativ einfach (mit Rechnereinsatz) entschlüsseln (d.h. den richtigen Schlüssel finden), wenn man zusätzliche Eigenschaften eines Textes, wie zum Beispiel Buchstabenhäufigkeiten (z.B. e, n, i,...) und Häufigkeiten von Buchstaben-Kombinationen (z.B. qu, sch, st, ch...) in Abhängigkeit von der Sprache natürlich, berücksichtigt. Denn diese Buchstaben- und Kombinationen findet man dann auch im Geheimtext und kann so auf gewisse Buchstaben zurüchschließen.

# 12.2. Polyalphabetische Substitution.

Hierbei werden in Folge n verschiedene Codes  $\kappa_1, \ldots, \kappa_n$  auf die Buchstaben des Klartextes angewandt:

Wenn z.B. wieder  $\mathbb{A} = \{A, B, \dots, Z\}$ , erfolgt die Verschlüsselung von einem Klartext folgendermaßen:

Klartext: dies ist ein code ...er kann sicher entschluesselt werden ...

Geheimtext:  $\kappa_{1}(d) \kappa_{2}(i) \kappa_{3}(e) \kappa_{4}(s) \kappa_{5}(i) \kappa_{6}(s) \kappa_{7}(t) \kappa_{8}(e) \kappa_{9}(i) \kappa_{10}(n) \kappa_{11}(c) \kappa_{12}(o) \kappa_{13}(d) \kappa_{14}(e) \kappa_{15} \dots \kappa_{n-3}(e) \kappa_{n-2}(r) \kappa_{n-1}(k) \kappa_{n}(a) \kappa_{1}(n) \kappa_{2}(n) \kappa_{3}(s) \kappa_{4}(i) \kappa_{5}(c) \kappa_{6}(h) \kappa_{7}(e) \kappa_{8}(r) \kappa_{9}(e) \kappa_{10}(n) \kappa_{11}(t) \kappa_{12}(s) \kappa_{13}(c) \kappa_{14}(h) \kappa_{15}(l) \kappa_{16}(u) \kappa_{17}(e) \kappa_{18}(s) \kappa_{19}(s) \kappa_{20}(e) \kappa_{21}(l) \kappa_{22}(t) \dots$ 

Die Anzahl n der Codes  $\kappa_i$  heißt *Periodenlänge*. Die Anzahl der möglichen Codes bzw. Schlüssel ist damit  $(26!)^n$ .

Kennt man die Periodenlänge, so ist eine Entschlüsselung einfacher. Darauf bemüht man Methoden wie bei der monoalphabethischen Substitution.

# Version vom 2. Oktober 2020

#### 13. RSA-Verschlüßelungssystem

Das RSA-Verschlüsselungssystem ist ein 1978 entwickeltes Verfahren. Benannt nach seinen Autoren R. Rivest, A. Shamir und L.Adleman.

# Vorgehensweise:

Eine Sender A will dem Empfänger B eine verschlüsselte Nachricht übermitteln.

- (1) Der Empfänger B bestimmt zwei mindestens 100-ziffrige Primzahlen p und q.
- (2) $n := p \cdot q$
- (3) Die Anzahl der zu n teilerfremden natürlichen Zahlen ist (vgl. Satz 5.30 in Abschnitt 5.4):

$$\varphi(n) = \varphi(p \cdot q) = \varphi(p) \cdot \varphi(q) = (p-1) \cdot (q-1)$$

- (4) Sei  $1 < s < \varphi(n)$  eine zu  $\varphi(n)$  teilerfremde Zahl (also  $ggT(s, \varphi(n)) = 1$ ). Z.B. tuts eine Primzahl s > max(p,q), denn diese teilt weder (p-1) $\operatorname{noch}(q-1)$ !
- (5) Bestimme die natürliche Zahl  $1 < t < \varphi(n)$  mit:

$$s \cdot t \equiv 1 \mod \varphi(n) \iff \bar{t} = \bar{s}^{-1}$$

Verwende dazu den Euklidischen Algorithmus wie in Kapitel 5.

(6) Zur folgenden Ver- und Entschlüsselung werden nur die Zahlen s, t und n benutzt. B veröffentlicht die Zahlen s und n.

Die Zahl t wird geheimgehalten!!

Die Zahlen p, q und  $\varphi(n)$  werden nicht mehr gebraucht und sinnvollerweise vernichtet.

(7) Der Sender A verwandelt den Klartext samt Satzzeichen in eine Ziffernfolge  $Z^{1}$  und diese wiederum in gleichlange Ziffernblöcke

$$Z = Z_1, Z_2, \dots, Z_k$$

Die Länge dieser Ziffernblöcke sei ≤ 100. Damit alle Ziffernblöcke gleich lang sind muss des letzte Block  $Z_k$  unter Umständen geeignet aufgefüllt werden.



<sup>&</sup>lt;sup>1</sup> Üblich ist z.B. der ASCII-Code (American Standard Code for Information Interchange), eine 7 oder 8 Bit Zeichencodierung ( $2^7 = 128$  Zeichen können so kodiert werden, die deutschen Umlaute gibt es nicht, aber diverse Sonderzeichen, so gilt z.B. A = 1000001, B = 1000010 und C = 1000011.

$$C_i :\equiv Z_i^s \mod n \qquad \text{mit} \quad 1 < C_i < n$$

A übermittelt die Ziffernfolge  $C_1, C_2, \ldots, C_k$  an B.

(9) B kann mit Hilfe der Zahl t den Code entschlüsseln, also die Ziffernblöcke  $Z_i$  zurückgewinnen, denn:

$$C_i^t \equiv (Z_i^s)^t = Z_i^{s \cdot t} \stackrel{?}{\equiv} Z_i \mod n$$

Beweis von  $Z_i^{s ext{-}t} \equiv Z_i \mod n$ 

Nach Vorraussetzung haben p und q mindestens 100 Stellen, aber alle  $Z_i$  haben weniger als 100 Stellen. Somit gilt  $Z_i \notin \{p,q\}$ . Da p und q Primzahlen sind, gilt:

$$T_n = T_{p \cdot q} = \{1, p, q, p \cdot q\} \quad \Rightarrow Z_i \notin T_n \quad \Rightarrow ggT(Z_i, n) = 1$$

Nach dem Eulerschen Satz (Abschnitt 5.4) gilt somit:

$$Z_i^{\varphi(n)} \equiv 1 \mod n$$

Andererseits gilt nach Wahl von s, t und n:

$$s \cdot t \equiv 1 \mod \varphi(n)$$

$$\Leftrightarrow \qquad s \cdot t = 1 + b \cdot \varphi(n) \qquad \qquad \text{(für ein } b \in \mathbb{N}\text{)}$$

$$\Rightarrow \qquad Z_i^{s \cdot t} = Z^{1 + b \cdot \varphi(n)} = Z_i \cdot \left(Z_i^{\varphi(n)}\right)^b \equiv Z_i \mod n$$

**Fazit:** B muss einfach die Blöcke  $C_i$  mit t potenzieren um so die  $Z_i$  zurückzugewinnen.

Die Sicherheit des RSA-Verfahrens beruht auf dem immensen Zeitaufwand, große Zahlen in ihre Primfaktoren zu zerlegen. Denn zur Bestimmung des geheimen Decodierschlüssels t muß die Kongruenz  $s \cdot t \equiv 1 \mod \varphi(n)$  gelöst werden. Weil aber  $p, q, \varphi(n) = (p-1) \cdot (q-1)$  und zudem t geheim gehalten wurde, ist die Zerlegung  $n = p \cdot q$  der bekannten Zahl n in ihre beiden Primfaktoren p und q nötig. Aber das ist auch für leistungsstarke Rechner sehr zeitaufwendig.

