NPDAs Accept Context-Free Languages

1

Theorem:

,

Proof - Step 1:

Convert any context-free grammar G to a NPDA M with: L(G) = L(M)

3

Proof - Step 2:

Convert any NPDA M to a context-free grammar G with: L(G) = L(M)

Deterministic PDA DPDA

5

Deterministic PDA: DPDA

Allowed transitions:

$$\underbrace{q_1} \xrightarrow{a, b \to w} \underbrace{q_2}$$

$$(q_1)$$
 $\lambda, b \to w$ (q_2)

(deterministic choices)

Allowed transitions:

(deterministic choices)

Not allowed:

(non deterministic choices)

DPDA example

$$L(M) = \{a^n b^n : n \ge 0\}$$

9

The language
$$L(M) = \{a^n b^n : n \ge 0\}$$

is deterministic context-free

Definition:

A language $\,L\,$ is deterministic context-free if there exists some DPDA that accepts it

11

Example of Non-DPDA (NPDA)

$$L(M) = \{ww^R\}$$

$$a, \lambda \to a \qquad a, a \to \lambda$$

$$b, \lambda \to b \qquad b, b \to \lambda$$

$$\downarrow q_0 \qquad \lambda, \lambda \to \lambda \qquad \downarrow q_1 \qquad \lambda, \$ \to \$ \qquad \boxed{q_2}$$

NPDAs Have More Power than DPDAs

It holds that:

Since every DPDA is also a NPDA

15

We will actually show:

We will show that there exists a context-free language L which is not accepted by any $\ensuremath{\mathsf{DPDA}}$

The language is:

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\} \qquad n \ge 0$$

We will show:

- $\cdot L$ is context-free
- $\cdot L$ is **not** deterministic context-free

17

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

Language L is context-free

Context-free grammar for L:

$$S \to S_1 \mid S_2 \qquad \{a^n b^n\} \cup \{a^n b^{2n}\}$$

$$S_1 \to aS_1b \mid \lambda \qquad \{a^nb^n\}$$

$$S_2 \to aS_2bb \mid \lambda \qquad \{a^nb^{2n}\}$$

Theorem:

The language
$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$
 is **not** deterministic context-free

(there is **no** DPDA that accepts L)

19

Proof: Assume for contradiction that

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

is deterministic context free

Therefore:

there is a DPDA $\,M\,$ that accepts $\,L\,$

DPDA
$$M$$
 with $L(M) = \{a^nb^n\} \cup \{a^nb^{2n}\}$

accepts a^nb^n
 a^nb^n
 b^n

accepts a^nb^{2n}

Fact 1: The language $\{a^nb^nc^n\}$ is not context-free

Context-free languages

a * b *

Regular languages

a * b *

(we will prove this at a later class using pumping lemma for context-free languages)

22

Fact 2: The language $L \cup \{a^n b^n c^n\}$ is not context-free

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

(we can prove this using pumping lemma for context-free languages)

We will construct a NPDA that accepts:

$$L \cup \{a^n b^n c^n\}$$

$$(L = \{a^n b^n\} \cup \{a^n b^{2n}\})$$

which is a contradiction!

Since $L \cup \{a^nb^nc^n\}$ is accepted by a NPDA

it is context-free

Contradiction!

(since $L \cup \{a^n b^n c^n\}$ is not context-free)

Therefore:

Not deterministic context free

$$L = \{a^n b^n\} \cup \{a^n b^{2n}\}$$

There is no DPDA that accepts

End of Proof