Personal Portfolio Prem Kumar R N

Prem Kumar R N

LinkedIn: Prem Kumar R Nagarajan

Product Training Center Chennai, India

Hands-on Tractor Training Program - 60 days

U of M, Dearborn

MSE Automotive & Mobility Systems Engineering

FEV North America, Auburn Hills, **USA**

Engine and Hybrid Powertrain Intern

2015-2019

Sep-Oct'19

Oct'20 - Jul'22

Aug'22 - Present

May'23 - Aug'23

Sep'23 - Present

Thiagarajar College of Engineering Madurai

B.E. Mechanical Engineering

TAFE, Chennai, India

Mechanical Design Engineer

Application Engineer – System Dynamics Intern

February 2024

Prem Kumar R N

MSE – Automotive & Mobility Systems Engineering

University of Michigan - Dearborn

Projects

Gearbox for ATV

Two stage speed reducer with reduction ratio of **7.5** designed to achieve desired performance of ATV.

Universal Joint Half shaft for ATV

Overall **weight reduction** of about 50 % achieved by customization from OEM Maruti 800 R-zeppa half shaft

Design of FSAE Radiator

Studied 2022 powertrain Radiator design and done theoretical and MATLAB Simulation to find the scope of downsizing.

Product Development – GMC Canyon EV 28

Benchmarking, preliminary design specifications, QFD, Interface requirement, Concept CAD design with system engineering V - Model

State of Charge Estimation

State of Charge and Parameters estimation of NMC battery were done with different Kalman filters such as Linear, Extended and Joint estimation

Energy Management with Intelligent Regenerative Braking system

Developed a control strategy for selection of automatic regenerative braking modes from driving pattern in Matlab/Simulink and study on energy saving compared with manual regenerative select modes

Skills & Software Exposure

- Creo Parametric
- Ansys Workbench
- ADAMS View & Car
- KISSsoft
- Finite Element Analysis
- Solidworks
- Matlab & Simulink
- Romax DT

Leadership Qualities

- Powertrain subsystem captain & Driver of Team Prometheans, Off-raod racing team of TCE
- Joint Secretary of Mechanical
 Engineering department

Achievements

- Students Achievers Award 2018, 2019
- Won 1st prize on "CAD CONTEST" SAE TIER 1 event.
- Secured 2nd position for "Best overall conceptual design for designing drafting table" in IUCEE EPICS
 Design Thinking Competition
- Course completion on "Hands on Introduction to Engineering Simulation" – Cornell University

Competitions

Baja SAE India 2019 – 16th/130 teams

Enduro Student India 2018 – 14th/ 80 teams

Mega ATV 2019 $-2^{nd}/70$ teams

February 2024

BAJA SAE, India

2 Stage Speed Reducer

Powertrain specification and CVT tuning

ENGINE	BRIGGS & STRATON
Maximum Power	8.9 HP at 3600 RPM
Maximum Torque	18.98 Nm at 2600 RPM

TRANSMISSION UNIT				
Cvt (Gaged GX9) and reduction Gearbox				
Overall Transmission Ratio	30.55 - 7.05			

TYRE SIZE					
Front wheels (inch)	22 X 7 X 10				
Rear wheels (inch)	22 X 7 X 10				

MegaATV Event India - Overall Runner

Gearbox & Competitions

18x1.25 ISO - H TAP ₹ 20.000 PRILL (6.800) ₹ 30.000 -(1.) HOLE

Powertrain System Layout

2 Stage Gearbox – 2.5 x 3 ratio

Gearbox Assembly drawing

BAJA SAE, India Universal Joint Half shafts

UJ overview

SI	PART NAME	Nos	MATERIAL	
NO				
1	FORK(GEARBOX END)	2	EN24	
2	INTERMEDIATE SHAFT	2	AL7075T6	
3	FORK(WHEEL END)	2	EN24	
4	SPIDER	4	EN24	

Product & Testing

Successful implemented design with 50% weight reduction

Design of Experiments (DoE) Continuous Variable Transmission (CVT) - Tuning

Tuning opportunities

Driver Clutch				
Weight pairs	3 sets (55, 65, 75 grams)			
Ramps	2 different profiles			
Main Clutch Spring	2 different stiffenss			

3 x 2 x 2 = 12 Tuning opportunities

Driven Clutch				
Springs	2 different stiffness			
Preload holes	9 holes			
Helix profile	2 different profiles			

9 x 2 x 2 = 36 Tuning opportunities

Prem Kumar R N - Portfolio

Ramps Weights

Driver Clutch parts

Product & Testing

CVT tuning results by rigorous testing, showing time to reach 55 meters under different tuning setups

February 2024

IUCEE - EPICS (Engineering Projects in Community Service)

Best overall conceptual design for designing drafting table

Poster Presentation Design Contribution

My design contribution - Creative and lightweight

Design: PTC Creo 4.0

Render: Keyshot

IUCEE – Indo Universal Collaboration for Engineering Education, **Purdue University**

Result: 2nd in Poster presentation

A Hands-on Introduction to Engineering Simulations edX online course

Syllabus and Assessment

- Describe the "big ideas" in finite-element analysis and computational fluid dynamics
- Develop structural mechanics simulations using ANSYS Mechanical
- Develop fluid dynamics simulations using ANSYS Fluent ™
- Describe the mathematical models underlying simulations
- Build simulations of real-world applications using ANSYS® software
- Verify and validate simulations including checking against hand calculations
- Approach engineering analysis and simulations like an expert

Assignment type	Weight	Grade	Weighted grade
Big Ideas FEA	10%	100%	10%
2D Conduction	3%	75%	2%
2D Conduction HW	24%	87%	21%
Big Ideas: Solid Mechanics	6%	100%	6%
Bike Crank	1%	100%	1%
Bike Crank HW	16%	80%	13%
Bolted Nozzle Flange	1%	100%	1%
Bolted Nozzle Flange HW	6%	100%	6%
Big Ideas: Fluid Dyanmics	5%	83%	4%
Big Ideas: CFD	4%	100%	4%
Laminar Pipe Flow	2%	67%	1%
Laminar Pipe Flow HW	22%	100%	22%

Most interested topic & Certification

Bolt Pretention, Hoop stress, Thermal strain and deformations simulation

Ansys Simulations

Simulated models – Structural, CFD, CFX & Explicit Dynamics

Structural and CFD

Strain Gauge	Beam Theory	Ansys	Experiment	Difference
Center	321	311	348+-7	11%

Static Structural – Comparison with experimental study

Turbine Blade - CFD

Multi-fluid - CFX

BAJA – Explicit Dynamics & Loop wheel Simulation

Explicit Dynamics – ATV Crash test

Structural Analysis - Loopwheel

TAFE Product Training Centre, Chennai Sep'19 - Oct'19

Key Learnings

- Basics knowledge on tractor Models and HP range
- Classification of Implements and its usage
- Aggregate wise training Function, Assembly & Dismantle procedures
- Aggregate wise Setting procedure
- Problem identification, Troubleshooting and Maintenance
- Hands-on experience on tractor driving and field applications.

Trackwidth change animation Project

- Creo Animation project Change in trackwidth of TAFE tractors
- Front and Rear Trackwidth setting from 48 inch to 76 inch (8 settings)
- Manual changing of Tractor wheels Difficult and Time consuming
- To transfer limpid knowledge on setting procedure, Animation was created.

Rear wheel Trackwidth adjustment – 48in

8 settings – Animation highlights

Rear wheel Trackwidth adjustment - 76in

TAFE Limited, Chennai Oct'20 - Jul'22

Introduction

- Department : Research & Development
- Position : Mechanical Design and

 Development Engineer

Projects

Domestic New tractor introduction

DynaTrack (2 variants)

Hp

CRDI (2 Variants)

OBD & Simulator

CRDI

Breakout Box – DFMEA CRDi failure study training OBD Tool development, testing and Validation

8 + 8 Shuttle Transmission Design

CAD Models: PTC Creo 4.0

Simulation: Ansys & KISSsoft

Component: Shaft, Gears,
gear shifting levers, Shifting rails,
Shifting forks

Development of Proto parts

Coordinate with NPD team
and sign off

Development

Coordinate with NPQ team
and sign off

Roles and Deliverables

Design of Transmission components

- Conceptual design of transmission system that meets the design requirements
- Perform vehicle dynamics calculation and optimize transmission ratios
- To execute kinematic simulations to validate desired degrees of freedom and ensure functionality of each components in assembly

Development of Prototype parts

- Coordinate with New Part Development team to ensure feasibility study of prototype parts with potential suppliers and follow up on pilot lot production
- Coordinate with the Part Quality team to verify that dimensional accuracy, material quality, and heat treatment core and surface hardening depth align with specifications and sign off

eCIMP Co-ordination

 To coordinate with R&D team to ensure posting and implementation of new ideas from all team members to reach objective targets as per TQM.

TAFE Limited, Chennai Oct'20 - Jul'22

Highlights

Design Brainstorming session

Pilot tractor prototype

DFMEA study with breakout box for CRDi tractor

Key Learnings

- In-depth Product Training & CRDi diesel technology
- Knowledge on AGCO products
- SAM check procedures
- New technologies DynaTRACK, PST transmission, Hydraulic Clutch
- Online Product Training on ISEKI HC80P Combine Harvester
- Eicher ADDC Hydraulics Hydromatic & Non-Hydromatic
- Learning on issues from Complaint tracker
- Right To Repair Movement

Skill & Leadership development

University of Michigan Dearborn FSAE project

FSAE Project

Reverse Engineered - 3D OEM Radiator Model in SolidWorks

- 9" x 14.5" inch Aluminium alloy Radiator
- Fin density: 12 fins per inch
- Mishimoto 2 bar pressure cap Raises boiling point to 120 degree C
- Calculation method : NTU-E method
- Expected Heat rejection = 35 KW
- Expected Heat rejection = E x Qmax
 Radiator effectiveness calculator using,

$$\varepsilon = 1 - e^{-\frac{Cmax(1 - e^{-Cratio Ntu})}{Cmin}}$$

Heat capacity rates:

- Air = mfr a x Specific heat capacity (C min)
- Water = mfr_w x Specific heat capacity (C_Max)
- Cratio = C min / C max
- No. of Transfer Units (NTU) = UA / C min

U = Overall Heat transfer coefficient

A = Coolant surface area

1D Model Based Development of Cooling System

1D Model Based Simulations - 4 blocks :

- Vehicle Dynamics block analyzes road loads to determine engine torque and speed based on the current vehicle speed, which acts as input for flow models.
- Cooling System block assesses the dimensions of hoses and predicts anticipated pressure losses across the system, as well as pump speed and coolant flow rates.
- Airflow rate block evaluates ambient pressure, temperature, and vehicle speed to estimate
 the pressure drop across the sidepods and compute the airflow rate.
- Heat transfer rate block computes two factors: the anticipated heat rejection from the
 engine to the coolant, considering torque, rpm, and BMEP data; and the expected heat
 rejection from the radiator to the air, employing effectiveness NTU calculations.

Hexagon Manufacturing Intelligence – Summer Internship

EV Drivetrain build and System Dynamic load analysis

Project Objective

- Building an Empire EV drivetrain template in Adams Car using an existing Romax transmission model
- Simulate dynamic load in Adams Car and compare the results of coupler and gear contacts modelling
- High fidelity model: Gear AT, Bearing AT, Flexible shafts and Housing

Learning Objective

Software:

- Fundamentals of Adams/View & Adams/Car
- Adams Car template builder
- Romax basics User interface
- Elements overview

Prerequisite/training:

- To understand Romax user interface and Romax EV drivetrain model
- ADM740 Adams Car (till templates session)
- Adams installation documents Adams/Car
- Adams driveline template tutorial
- Adams Gear AT introduction

Project outcome

EV Drivetrain created in Adams car from scratch

Training certificate

HEXAGON

Prem Kumar Ramachandriya Nagarajan

Awarded to

For successful completion of the

ADM740 - Vehicle Modeling and Simulation using Adams Car

training on 08/08/2023

Full Car simulation – Dynamic Analysis

ADM740 Certification – Adams Car

Academic Projects – University of Michigan

Battery Modelling and Controls – State of Charge Estimation

1D Model Based Development

NMC Battery – OCV-R-2RC Plant model

Kalman Filter algorithm – Linear, Extended, Joint Estimation blocks

Model Results

SOC and Vt - Estimation vs Measurement Result

Results:

Linear and Extended:

- Output voltage profiles are more likely same and SOC with good accuracy in Linear than extended.
- Soc values are expected to be poor when actual Soc are below 15 percentage and above 85 percentage of charge, as linearization was done.

Joint Estimation – 5 states (Soc, Vt, R0, R1, C1):

- Since many unknown states, the result produces more RMSE values.
- C1 estimation didn't converge as expected
- Soc RMSE is high as it took much time to converge at the initialization point.

Joint Estimation – 3 states (Soc, Vt, R0):

- The results are more accurate with slightly low computational time.
- RO & Soc results are good as compared to 5 state estimation

Academic Projects – University of Michigan

Energy Management of Evs – Regenerative Braking: Automation of Energy Recuperation Modes selection

1D Model Based Development

Overall PHEV Model – Vehicle Dynamics, Battery Model, Motor Control, Transmission gear selector, Regenerative braking model

Automation of Regenerative braking modes – Balancing Recuperation and Ride Comfort

Model Results

SOC and Vt - Estimation vs Measurement Result

This graph shows the comparison of traction energy and recuperation energy in the 3 modes, zero and 100% recuperation. As desired, in mode 1 with 30% recup, 5.48 MJ of energy is restored. In mode 2 with 45% recup, 7.62 MJ of energy is restored and in mode 3, 11.12 MJ of energy is saved. This is a significant number considering energy management and increase in range.

Academic Projects – University of Michigan

Vehicle Electronics I – Analysis of Generator Charging System with 4 diode pairs (Mini project)

1D Model Based Development

Model - Three-phase AC voltages with noise, RL components, and four pairs of diodes for DC conversion for battery charging

Input parameters:

- The Resistance and Inductance are taken as 0.04 Ohms and 200e-6 Henry.
- Assuming the diodes are silicon diodes with forward voltage of 0.6V and 0.3 Ohm resistance
- The battery on the right side of the circuit is chosen to be 12V nominal.

Voltage source	Volts (V)	Frequency (Rad/sec)	Frequency Hz	Phase (rad)	Phase (deg)
Vsa, Vsb, Vsc	٧	1884.95	300	0, 2.0944, 4.18879	0, 120, 240
Vsa_K, Vsb_K, Vsc_K	V*K	5654.86	900	0	0

Model Results

Result:

K value	Blue Line	Volts (V)	Ampere (Amps)	Power (Watts)	Power % change
0.5	Included	12.69	79.35	1009	12
0.5	Excluded	12.54	72.01	903.3	12
0.25	Included	12.55	72.69	912	1
	Excluded	12.54	72.02	903.3	