

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

RELATÓRIO DA EXPERIÊNCIA 002 CONTROLE PID DE SISTEMAS DINÂMICOS

TURMA: 01 GRUPO 7

ALESSANDRO CERIOLI: 20200148992

CARLOS ANTONIO MIRANDA FILHO: 20190154031

ELKE SAMANTHA DA SILVA DOMINGOS: 20200001014

ROBSON DA COSTA CARNEIRO: 20190154532

RUBENS MACEDO PEREIRA: 20180009930

Natal-RN 2021 ALESSANDRO CERIOLI: 20200148992

CARLOS ANTONIO MIRANDA FILHO: 20190154031

ELKE SAMANTHA DA SILVA DOMINGOS: 20200001014

ROBSON DA COSTA CARNEIRO: 20190154532

RUBENS MACEDO PEREIRA: 20180009930

CONTROLE PID DE SISTEMAS DINÂMICOS

Segundo relatório apresentado à disciplina de Laboratório de Sistemas de Controle, correspondente à avaliação da 2º unidade do semestre 2021.1 do 7º período do curso de Engenharia de Computação e Automação da Universidade Federal do Rio Grande do Norte, sob orientação do **Prof. Fábio Meneghetti Ugulino de Araújo.**

Professor: Fábio Meneghetti Ugulino de Araújo.

Natal-RN 2021

RESUMO

O seguinte trabalho da disciplina de Sistemas de Controle tem como intuito apresentar o desenvolvimento e os resultados obtidos no controle de sistemas dinâmicos por modelos de simulação computacional. Utilizou-se o Simulink do Matlab visando analisar e modificar o sistema de tanques acoplados já proposto. Inicialmente foi implementado o controlador PID para o nível do tanque 1 (sistema de primeira ordem), e verificou-se o comportamento do sistema para diferentes valores de ganhos. Em seguida, a mesma abordagem foi utilizada para o sistema de segunda ordem (nível do tanque 2), sendo também implementada a estrategia de controle em cascata. Foi verificada uma facilidade maior em controlar o sistema de primeira ordem em relação ao de segunda ordem, sendo esse ultimo controlado também utilizando um controlador mestre-escravo.

Palavras-chave: Sistemas de controle. Simulação computacional. Tanques acoplados. Controlador PID

LISTA DE SÍMBOLOS

Erro atuante
Ganho derivativo
Ganho integrativo
Ganho proporcional
Máximo sobressinal ou overshoot
Constante de tempo
Coeficiente de amortecimento
Tempo de subida
Tempo de pico
Tempo de acomodação
Frequência natural não-amortecida
Tempo integrativo
Tempo derivativo

LISTA DE ABREVIATURAS E SIGLAS

P Proporcional

PD Proporcional derivativo
PI Proporcional integrativo

PID Proporcional integral-derivativo

Lista de Figuras

ra ordem	18 19 20 21 22
ra ordem	20 21
ra ordem	21
ra ordem	
ira ordem	22
a ardam	22
a ordeni	23
ira ordem	24
Primeira ordem .	25
l - Primeira ordem	25
Degrau - Primeira	
	26
enoidal - Primeira	
	26
Degrau - Primeira	
	27
la Senoidal - Pri-	
	27
	28
	29
	30
	31
	32
	32
	32
	33
	33
	34
	34
	35
	35
	36

Sumário

1	INTRODUÇÃO							
2	REFERENCIAL TEÓRICO 10							
	2.1	MATLAB	10					
	2.2	Simulink	10					
	2.3	Quanser	10					
		2.3.1 Sistema de Tanques	10					
	2.4	Sistemas de Primeira Ordem	11					
	2.5	Sistemas de Segunda Ordem	11					
		2.5.1 Sistema Subamortecido $(0 < \xi < 1)$	11					
		2.5.2 Sistema Criticamente Amortecido ($\xi = 1$)	12					
		2.5.3 Sistema Sobreamortecido ($\xi > 1$)	12					
	2.6	Definições Gerais	12					
	2.7	Controladores	13					
		2.7.1 Controlador Proporcional (P)	13					
		2.7.2 Controlador Proporcional Integrativo (PI)	13					
		2.7.3 Controlador Proporcional Derivativo (PD)	14					
		2.7.4 Controlador Proporcional Integral-Derivativo (PID)	14					
		2.7.5 Filtro da Ação Derivativa	14					
		2.7.6 Filtro Anti-WindUp	14					
	2.8	Sistemas de Segurança Instrumentados ou Intertravamentos	15					
3	METODOLOGIA 1							
	3.1	Sistema de Primeira Ordem	16					
		3.1.1 Ação Proporcional	16					
		3.1.2 Ação Integrativa	16					
		3.1.3 Ação Derivativa	16					
		3.1.4 Filtro na ação derivativa e anti-reset-windup	16					
	3.2	Sistema de Segunda Ordem	17					
		3.2.1 Intertravamento	17					
	3.3	Controladores em cascata						
4	RES	SULTADOS	20					
	4.1	Controle PID de Sistemas Dinâmicos de Primeira Ordem	20					
		4.1.1 Controlador Proporcional	20					
		4.1.2 Controlador Proporcional Integrativo	21					
		4.1.3 Controlador Proporcional Derivativo	23					
		4.1.4 Controlador Proporcional Integral-Derivativo	24					
		4.1.5 Filtro na Ação Derivativa	26					
		4.1.6 Filtro anti-reset-windup	27					

	4.2	Contro	le PID de Sistemas Dinâmicos de Segunda Ordem	. 28
		4.2.1	Controlador Proporcional	. 28
		4.2.2	Controlador Proporcional Integrativo	. 28
		4.2.3	Controlador Proporcional Derivativo	. 29
		4.2.4	Controlador Proporcional Integral-Derivativo	. 30
	4.3	Compa	aração do Controle nos Sistemas de Primeira e Segunda Ordem	. 31
	4.4	Contro	le no Espaço de Estados: Seguidor de Referência com Estados Estimados	. 32
		4.4.1	Configuração P-Escravo	. 32
		4.4.2	Configuração PI-P	. 33
		4.4.3	Configuração PI-PI	. 33
		4.4.4	Configuração PI-PD	. 34
		4.4.5	Configuração PI-PID	. 34
		4.4.6	Configuração PD-P	. 34
		4.4.7	Configuração PD-PI	. 35
		4.4.8	Configuração PD-PD	. 35
		4.4.9	Configuração PD-PID	. 36
		4.4.10	Configuração PID-P	. 36
		4.4.11	Configuração PID-PI	. 36
		4.4.12	Configuração PID-PD	. 37
		4.4.13	Configuração PID-PID	. 37
	4.5	Compa	aração no Controle dos Sistemas de Segunda Ordem com uma e duas malhas	. 37
5	CO	NCLUS	ÃO	38
R	eferên	icias bib	oliográficas	39

1 INTRODUÇÃO

"Para compreender e controlar sistemas complexos, deve-se obter modelos matemáticos quantitativos destes sistemas"[1]. Vemos como é importante a modelagem e a simulação como passos fundamentais quando pensamos na implementação de sistemas de controle. Além disso, para atingir os parâmetros desejados precisamos de um controlador.

Um controlador é um dispositivo que irá controlar o sistema físico, podendo ser: eletrônico, elétrico, mecânico, pneumático, hidráulico ou combinações destes, sendo os sistemas eletrônicos utilizando microcontroladores os mais utilizados atualmente devido a facilidade de tratamento e manipulação dos sinais envolvidos. Assim, um controlador visa modificar a dinâmica de um sistema, manipulando a relação entrada/saída através da atuação sobre um ou mais parâmetros, visando satisfazer certas especificações [2].

Utilizando-se um sistema eletrônico microcontrolado, é preciso programar o equipamento, implementando o algoritmo responsável por realizar os cálculos necessários para determinar a resposta do sistema a partir da variável manipulada, visando atender as especificações de desempenho, sendo essa rotina chamada de Lei de Controle e sendo parte fundamental dos controladores. Neste contexto, o tipo de controlador mais utilizado é denominado de PID, tratando-se de um controlador que pode ser formado por diferentes combinações de 3 diferentes ações de controle: Ação Proporcional, Ação Integral e Ação Derivativa.

Quando um controlador PID é utilizado na malha direta entre um comparador e uma planta, o mesmo determina o sinal de controle a ser enviado para o sistema diretamente a partir do erro de rastreamento da referência. Porém, existem situações nas quais, além da variável de interesse, pode existir uma outra variável fortemente relacionada com o comportamento do sistema. Então, podemos usar um primeiro controlador para determinar o valor dessa outra variável com base no erro de rastreamento da variável de interesse e um segundo controlador (em cascata) para determinar o valor do sinal de controle da variável de interesse com base no erro de rastreamento da variável secundária. Essa estratégia é denominada de controle em cascata.

Neste trabalho utilizamos um modelo computacional de um sistema de tanques acoplados, tendo como principais objetivos o aprimoramento das habilidades na utilização de microcomputadores para controle de sistemas, a conceituação e fixação das ações de controle proporcional (P), integral (I) e derivativa (D), a implementação de controladores P, PI, PD e PID, incluindo filtro na ação derivativa e anti-reset-windup. Esse estudo será realizado para sistemas de primeira e segunda ordem, sendo abordado também um sistema Intertravamentos e controle em cascata para este último.

2 REFERENCIAL TEÓRICO

2.1 MATLAB

MATLAB é um software de alta performance voltado para cálculo numérico. Pode ser usado para análise numérica, cálculo com matrizes, processamento de sinais e construção de gráficos. A primeira versão foi escrita no final da década de 70 nas universidades do Novo México e Stanford visando fornecer suporte a cursos de teoria matricial, álgebra linear e análise numérica. O MATLAB é um sistema que permite resolução de problemas numéricos em apenas uma fração de tempo ao se comprar com programas semelhantes escritos em C, Fortran por exemplo. O elemento básico de informação usando no MATLAB é uma matriz que não requer dimensionamento. Além disso as soluções desses problemas são expressas como são escritas matematicamente.

2.2 Simulink

Desenvolvida pela mesma companhia que o MATLAB, o Simulink é uma ferramenta de modelagem, simulação e análise de sistemas dinâmicos. É um software de diagramação gráfica por blocos. É usando em teoria de controle e processamento digital de sinais.

2.3 Quanser

A Quanser é uma empresa especializada em projetar e fabricar sistemas de tempo real de alta performance para o estudo e pesquisa nas áreas da controle, robótica e mecatrônica.

2.3.1 Sistema de Tanques

Os Sistemas de Tanques Acoplados da Quanser é um processo reconfigurável que permite a realização de experimentos de controle de diversos tipos. Consistindo de uma única bomba com dois tanques, é utilizado para estudos e pesquisas envolvendo experimentos com controle de nível de líquidos. Realizando uma descrição mais detalhada do sistema, temos que o mesmo é composto integralmente por 2 tanques, 1 reservatório, uma mini bomba d'água e tubos flexíveis para conexão. A bomba eleva o líquido, desde o reservatório, até 2 conexões hidráulicas normalmente fechadas. O líquido presente no primeiro tanque passa para o segundo através de um orifício e sofre influência da gravidade que exerce sobre ele, em seguida o segundo recebe e devolve-o para o reservatório através de um orifício semelhante ao que se encontra no primeiro tanque. As configurações e os tanques presentes nele contam com um sensor de nível tipo elétrico em função da altura da coluna de líquido no respectivo tanque. Esses sensores irão variar de 0 a 4,8 V, cujos sistemas de aquisição de dados receberão sinais de controle entre -12 e 12V para a bomba ser acionada.

2.4 Sistemas de Primeira Ordem

A função de transferência típica de primeira ordem é dada por:

$$G(s) = \frac{1}{Ts + 1}$$

Tendo o polo em $s = \frac{-1}{T}$. Sua saída para uma entrada degrau será:

$$c(t) = 1 - e^{-t/T}$$

A velocidade da resposta está intimamente relacionada com a constante de tempo T. Quanto menor o seu valor (sendo o pólo mais afastado do eixo imaginário) mais rápida é a resposta do sistema. A constante T pode ser entendia como o tempo em que o sistema atinge 63,2% do valor de regime e o seu inverso como a derivada da resposta para t=0.

2.5 Sistemas de Segunda Ordem

Para sistemas de segunda ordem, seu modelo canônico (ideal) possui dois polos e nenhum zero. A relação desse sistema numa função de transferência em malha fechada é dada por:

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi \,\omega_n s + \omega_n^2}$$

A relação acima é conhecida como forma-padrão, na qual ω_n é a frequência natural não-amortecida do sistema e ξ é o coeficiente de amortecimento. Os polos do sistema podem ser obtidos da seguinte forma:

$$s^2 + 2\xi \omega_n s + \omega_n^2 \Rightarrow s = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

As variáveis ω_n e ξ definem o comportamento do sistema, cujos casos são classificados em subamortecido, criticamente amortecido e superamortecido (ou sobreamortecido).

2.5.1 Sistema Subamortecido $(0 < \xi < 1)$

O sistema é marcado por oscilações e possui dois polos complexos conjugados. A saída c(t) para o degrau unitário será:

$$c(t) = 1 - \frac{e^{-\xi \omega_n t}}{\sqrt{1 - \xi^2}} sen\left(\omega_d t + t g^{-1}\left(\frac{\sqrt{1 - \xi^2}}{\xi}\right)\right)$$

Sendo ω_d a frequência natural amortecida, que pode ser escrita da seguinte forma:

$$\omega_d = \sqrt{1 - \xi^2}$$

Se for nula, então não haverá resposta amortecida, com oscilações perdurando indefinidamente.

Neste caso, c(t) será afetada de forma que:

$$c(t) = 1 - \cos \omega_n t$$

2.5.2 Sistema Criticamente Amortecido ($\xi = 1$)

O sistema possui dois polos reais e iguais, não apresentando mais oscilações a partir deste valor de ξ , de forma que sua saída para a entrada degrau será:

$$c(t) = 1 - e^{-\omega_n t} (1 + \omega_n t)$$

2.5.3 Sistema Sobreamortecido ($\xi > 1$)

No sistema tratado, a medida que ξ aumenta, o seu comportamento se aproxima de um sistema de primeira ordem. O mesmo possui dois polos negativos reais distintos. Para o degrau unitário, sua saída será:

$$c(t) = 1 + \frac{\omega_n}{2\sqrt{\xi^2 - 1}} \left(\frac{e^{-S_1 t}}{S_1} - \frac{e^{-S_2 t}}{S_2} \right)$$

, onde
$$S_1=(\xi+\sqrt{\xi^2-1})\omega_n$$
 e $S_2=(\xi-\sqrt{\xi^2-1})\omega_n$

2.6 Definições Gerais

• Tempo de Subida (t_r) : Tempo necessário para que a saída atingia pela primeira vez o valor desejado.

$$t_r = \frac{\pi - \beta}{\omega_d}$$

, onde
$$\beta = tg^{-1} \frac{\sqrt{1-\xi^2}}{\xi}$$

• Tempo de Pico (t_p) : Tempo em que a resposta atinge o primeiro pico do sobressinal.

$$t_p = \frac{\pi}{\omega_d}$$

• Máximo Sobressinal ou Overshoot (M_p) : Valor máximo de pico da curva de resposta em relação ao valor final.

$$M_p(\%) = \frac{c(t_p) - c(\infty)}{c(\infty)} * 100\%$$

$$M_p(\%) = 100e^{-\left(\xi\pi/\sqrt{1-\xi^2}\right)}$$

• Tempo de Acomodação (t_s): Tempo necessário para que a saída alcance e permaneça dentro de uma faixa em torno do valor final, podendo ser especificada em 2% ou 5%.

$$t_s(2\%) = \frac{4}{\xi \omega_n}$$

$$t_s(5\%) = \frac{3}{\xi \omega_n}$$

2.7 Controladores

De acordo com Ogata em seu livro Engenharia de Controle Moderno [2], um controlador automático compara o valor real da saída da planta com a entrada de referência (valor desejado), determinando o desvio e produzindo um sinal de controle que reduzirá o desvio a zero ou a um valor pequeno, sendo a produção do sinal de controle chamada de ação de controle. Ainda de acordo com o autor, o controlador detecta o sinal do erro atuante e o amplifica a um nível suficientemente alto, enquanto a saída de um controlador alimenta um atuador.

O controlador objeto de estudo será o controlador PID, podendo ser visto como uma família de controladores composta pelo proporcional (P), proporcional derivativo (PD), proporcional integrativo (PI) e o proporcional derivativo-integrativo (PID).

2.7.1 Controlador Proporcional (P)

Para este controlador, a saída u(t) é o produto entre o ganho proporcional e o erro atuante e(t), de forma que:

$$u(t) = K_n e(t)$$

Em termos de Laplace:

$$U(s) = K_p E(s)$$

Com um erro sendo:

$$e(t) = r(t) - y(t)$$

O tipo proporcional funciona como um amplificador, no qual quanto maior o ganho K_p , menor o erro de regime permanente e maior a oscilação do sistema, podendo instabiliza-lo.

2.7.2 Controlador Proporcional Integrativo (PI)

Para este controlador, o erro de regime será zerado, já que o tipo do sistema aumentará em 1 unidade, sendo usado para respostas em regime transitório boas e regime permanente insatisfatório. A principal característica do PI é a adição de um polo na origem e um zero. Sua saída U(s) em termos de Laplace será:

$$U(s) = \frac{(K_p s + K_i)}{s} E(s)$$

Sendo

$$K_i = \frac{K_p}{\tau_i}$$

, onde τ_i é denominado de tempo integrativo ou tempo de reset, cuja relação com o ganho proporcional é não-direta.

2.7.3 Controlador Proporcional Derivativo (PD)

Este controlador é utilizado para resposta transitória insatisfatória e resposta em regime permanente aceitável. Também ocorre um efeito de antecipação, reagindo não somente à magnitude do sinal como também à sua tendência para o instante futuro. Apesar disso, possui como desvantagem o fato dos sinais de ruído serem amplificados, que provoca um efeito de saturação nos atuadores do sistema. Em Laplace, sua saída será:

$$U(s) = (K_p + K_d s)E(s)$$

Sendo o tempo derivativo denominado de τ_d , cuja fórmula é dada por:

$$\tau_d = \frac{K_p}{K_d}$$

Assim, o zero será adicionado em:

$$z = \frac{-K_p}{K_d} = \frac{-1}{\tau_d}$$

2.7.4 Controlador Proporcional Integral-Derivativo (PID)

O seguinte controlador combina os tipos proporcional derivativo e integrativo, sendo bastante utilizado nas indústrias ao se fazer o controle de processos uma vez sendo utilizado em sistema em que tanto a resposta transitória quanto em regime permanente possuem resultados insatisfatórios. O mesmo insere um polo na origem e dois zeros, dependendo de seus parâmetros. Representando U(s) como saída em Laplace, obtém-se:

$$U(s) = K_p + \frac{K_i}{s} + K_d s$$

2.7.5 Filtro da Ação Derivativa

Uma vez sempre havendo algum ruido nos sensores, o mesmo será transportado para o calculo do erro, sofrendo derivação pela ação derivativa e sendo amplificado. Assim, esse filtro, além de lidar com variações bruscas do setpoint, também lidará com o ruido de leitura, minimizando o mesmo.

2.7.6 Filtro Anti-WindUp

Quando o sinal de controle calculado é diferente do sinal de controle enviado para a planta, devido a saturação, a planta não responderá tão rápido quanto o controlador espera, causando um crescimento da ação integrativa, já que o erro irá persistir e a integral do erro aumentará cada vez mais. Assim, o filtro abordado é utilizado para perceber quando o sinal enviado é diferente do sinal calculado, atuando sobre o valor da ação integrativa e atenuando-a, não permitindo seu crescimento descontrolado.

2.8 Sistemas de Segurança Instrumentados ou Intertravamentos

Intertravamento pode ser definido como o conjunto de passos na lógica de automação e controle que devem existir para garantir a segurança de um equipamento, pessoa ou processo. Tais sistemas são utilizados para monitorar as condições de certos valores e parâmetros de uma planta, mantendo-os dentro dos limites operacionais. Quando forem identificadas condições de riscos devem gerar alarmes, colocando automaticamente a planta em uma condição segura ou mesmo realizar um desligamento de segurança do processo. É preciso reforçar que nenhum sistema é totalmente imune a falhas, porém sempre deve proporcionar uma condição segura de funcionamento. Para o sistema de tanques acoplados, as seguintes regras devem ser levadas em consideração para garantir uma operação segura:

- Não deve ser enviada para o sistema uma tensão fora dos limites de +/-4 volts;
- A bomba não pode sorver água quando o nível de líquido no tanque 1 estiver muito baixo;
- Nenhum dos dois tanques pode transbordar.

3 METODOLOGIA

O modelo de simulação utilizado foi disponibilizado pelo professor Fábio Meneghetti Ugulino de Araújo, tendo sido desenvolvido no MATLAB/Simulink. No decorrer do trabalho, o sistema de tanques acoplados composto de dois níveis será sujeito a modificações através dos vários controladores implementados pelo grupo, envolvendo o controle de um sistema de primeira ordem, segunda ordem e em cascata (mestre-escravo).

3.1 Sistema de Primeira Ordem

Para um sistema de primeira ordem, a modificação do sistema é feita através da implementação do controlador proporcional, integral, derivativo e combinações dos mesmos. Além deles, será realizada também a implementação do filtro na ação derivativa e anti-reset-windup.

Primeiramente, para que o nível do tanque 1 acompanhe o valor de referência (setpoint), foi fechada a malha justamente comparando o setpoint com o nível do tanque 1 através de um bloco subtrator, saturando o sinal resultante em -4 e 4 antes de ser enviado para a planta. Além disso, o nível dos ruídos foi diminuído para os limites de -0.1 e 0.1, facilitando os testes.

3.1.1 Ação Proporcional

A configuração tipo proporcional é a mais simples dos controladores, consistindo na conexão de apenas um ganho K_p entre o comparador e o bloco de saturação.

3.1.2 Ação Integrativa

Nesta configuração, adicionou-se mais um ganho K_i conectado com um bloco de integração que por sua vez foi conectado a um somador, sendo a ação proporcional a segunda entrada deste somador. O somador, por sua vez, se liga ao bloco de saturação antes de chegar à planta. Também foi adicionado um osciloscópio, permitindo ver graficamente cada ação de controle, no qual o somador, o integrador e o ganho proporcional se ligam a ele através de um multiplexador.

3.1.3 Ação Derivativa

Para esta configuração, adicionou-se mais um ganho K_d conectado com um bloco de derivação, sendo por sua vez conectado ao bloco somador, que consistia na soma das ações proporcional e integral, e ao multiplexador.

3.1.4 Filtro na ação derivativa e anti-reset-windup

O filtro na ação derivativa foi implementado conectando o bloco derivador a um comparador, um ganho K_N e um bloco integrador, sendo esse ultimo conectado novamente ao comparador, formando uma malha. A saída do K_N foi conectada ao somador.

Para o filtro anti-windup, conectou-se um somador entre o ganho e o bloco de integração. A segunda entrada deste novo somador será o sinal de controle enviado para a planta subtraído do sinal de controle calculado, sendo essa diferença multiplicada por um ganho K_a .

Figura 1: Esquema de simulação para sistema de primeira ordem

3.2 Sistema de Segunda Ordem

A principal diferença do sistema de segunda ordem em relação ao de primeira ordem é dada através da adição de um conjunto de passos nas configurações dos blocos chamado intertravamento, cuja existência garante a segurança do processo a ser realizado. Para softwares e sistemas de automação e controle, como é o caso deste roteiro, utiliza-se portas lógicas para monitorar os valores e os parâmetros dados pelo grupo.

Outra diferença em relação ao sistema de primeira ordem é que agora se deseja controlar o nível do tanque 2, sendo o valor a ser comparado com o setpoint e consequentemente o nível do tanque 1 passa a ser uma variável interna e sem uma atuação direta.

3.2.1 Intertravamento

O bloco de Intertravamento é adicionado em série entre a planta e o sinal de controle. Dentro dele, o mesmo receberá como entradas o sinal de controle não-saturado e os níveis dos tanques 1 e 2, enquanto sua saída irá representar um sinal de controle seguro para a planta.

Dentro do sub-bloco de Intertravamento, haverá uma trava de nível baixo (Low Level ou LL), onde se o nível do tanque 1 estiver muito baixo e a tensão de entrada for negativa, uma tensão nula será enviada para o sistema, e uma trava de nível alto (High Level, ou HL), onde se o nível do tanque 1 estiver muito alto e a tensão de entrada for muito alta, envia-se uma tensão que manterá o nível 1

próximo do seu valor máximo. Além disso, se nenhuma das ocasiões anteriores acontecer, apenas limita-se a tensão de entrada com um bloco saturador com limites -4 e 4.

Assim, tendo 3 situações possíveis, utiliza-se uma chave seletora multiporta, implementando uma lógica para escolher qual será o sinal de controle com base nas 3 situações possíveis (LL, HL ou saturação simples). A lógica consiste em utilizar um multiplicador para cada par de comparadores (um para LL e um para HL), conectar a saída do primeiro na entrada negativa de um somador, a saída do segundo multiplicada por um ganho igual a 2 como segunda entrada negativa do somador e um valor constante igual a 3 como entrada positiva do mesmo somador. A saída deste somador será conectada à porta de comando da chave multiporta, selecionando a tensão correta para cada situação.

Por fim, implementaram-se travas de desligamento forçado do sistema (shutdown) caso o nível de um dos dois tanques ultrapasse o seu limite, sendo realizado utilizando travas de nível muito alto (High High Level ou HHL) tanto para o nível 2 quanto para o nível 1.

Figura 2: Esquema de simulação para sistema de segunda ordem

3.3 Controladores em cascata

Neste caso, haverá dois controladores trabalhando juntos, o controlador principal (mestre) e o secundário (escravo). O controlador mestre vai fornecer o setpoint do controlador secundário. Essa estratégia é também chamada de mestre-escravo e irá atuar efetivamente na planta. Pode-se estabelecer uma malha externa que a partir do erro de referência forneça um valor ideal para o nível do tanque 1. Pega-se a saída do controlador mestre e compara-se com a leitura do nível no tanque 1, utilizando o segundo controlador para calcular a tensão na bomba que será usada para atingir o nível desejado. Foram Implementados dois controladores que aparecem nos tópicos anteriores do trabalho em combinações diferentes e será analisado o comportamento do sistema para diferentes valores de ganhos.

Figura 3: Esquema de simulação para o controlador em cascata

4 RESULTADOS

4.1 Controle PID de Sistemas Dinâmicos de Primeira Ordem

Nesta seção serão mostradas as ações dos controladores P, PI, PD e PID em relação ao nível do tanque 1 (primeira ordem) para entradas do tipo degrau e senoidal. Serão descritas diferenças e comportamentos do sistema para cada lei de controle e suas respectivas curvas e sinais. Para entradas degrau, todos os testes foram feitos com um valor constante igual a 15. Para entradas senoidais, foram utilizadas senoide com amplitude e media igual a 6.

4.1.1 Controlador Proporcional

Entrada Degrau

Os ganhos utilizados foram 0.5, 1.5, 3 e 15, respectivamente.

Figura 4: Controlador Proporcional para entrada Degrau - Primeira ordem.

Entrada Senoidal

Foram utilizados os seguintes ganhos: 0.5, 2, 5 e 10. As curvas podem ser vistas na Figura 5.

Figura 5: Controlador Proporcional para entrada Senoidal - Primeira ordem

Análise

Para os 2 casos (entrada degrau e senoidal) o aumento do ganho K_p implicou no nível do tanque seguir melhor o valor da entrada (referência), no entanto, claramente o sistema se tornou muito mais oscilatório.

4.1.2 Controlador Proporcional Integrativo

Entrada Degrau

Para este controlador, foram utilizadas as seguintes combinações de K_p e K_i : $K_p = 0.5$ e $K_i = 2$, $K_p = 2$ e $K_i = 0.5$, $K_p = 10$ e $K_i = 0.5$ e $K_p = 10$ e $K_i = 0.01$. Estas combinações são mostradas respectivamente na Figura 6.

Figura 6: Controlador Proporcional Integrativo para entrada Degrau - Primeira ordem

Entrada Senoidal

Os seguintes ganhos K_P e K_i foram aplicados, respectivamente: 0.1 e 1; 1 e 0.1; 1 e 0.01; 5 e 0.01.

Figura 7: Controlador Proporcional Integrativo para entrada Senoidal - Primeira ordem

Análise

Tanto para entrada degrau quanto para entrada senoidal, é possível verificar um melhor acompanhamento por parte do nível do tanque 1 com relação ao valor de entrada a medida que aumenta-se o K_p e diminui-se o K_i . Porém, crescendo o K_p , aumenta-se a instabilidade do sistema. Por outro lado, devido a um K_i elevado resultar em uma resposta mais potente (rápida porém ultrapassando o valor de referência, *overshoot* maior), a diminuição do mesmo irá enfraquecer o efeito da parcela Integrativa e o controlador tenderá para um controlador P (porém menos instável).

Com K_p , o sinal que sai do controlador e vai para o sistema é proporcional ao erro, de maneira instantânea. Enquanto que no K_i este mesmo sinal é proporcional à integral do erro, ou seja, demora mais tempo para atingir o regime permanente. Então deve-se ter uma relação de valores entre eles de forma a reduzir sobressinal e também deixar a resposta mais rápida.

4.1.3 Controlador Proporcional Derivativo

Entrada Degrau

Respectivamente, as seguintes combinações de K_p e K_d foram utilizadas: 0.5 e 1; 1 e 0.5; 7 e 0.5; 7 e 0.05. As saídas são mostradas na Figura 8

(c) Controle Proporcional Derivativo com ganhos 7 e (d) Controle Proporcional Derivativo com ganhos 7 e 0.5

Figura 8: Controlador Proporcional Derivativo para entrada Degrau - Primeira ordem

Entrada Senoidal

Os seguintes ganhos K_p e K_d foram utilizados, sendo exibidas as suas respectivas saídas na Figura 9: 0.3 e 3; 1 e 0.03; 5 e 0.03.

Figura 9: Controlador Proporcional Derivativo para entrada Senoidal - Primeira ordem

Análise

Para este controlador, pode-se notar que, enquanto que o ganho K_p , a medida que aumenta, fará com que a saída se aproxime do setpoint, a diminuição do K_d acarretará em menos ruídos e menos instabilidade do sistema. Notamos a diminuição do regime transitório do sistema.

4.1.4 Controlador Proporcional Integral-Derivativo

Entrada Degrau

As seguintes combinações de K_p , K_i e K_d foram utilizadas: 1, 1 e 1; 1, 1 e 0.02; 3, 1 e 0.02; 3, 0.05 e 0.02. As saídas para estes valores são mostradas na Figura 10.

Figura 10: Controlador Proporcional Integral-Derivativo para entrada Degrau - Primeira ordem

Entrada Senoidal

Os valores utilizados para K_p , K_i e K_d foram, respectivamente: 1, 2 e 2; 1, 0.1 e 2; 1, 0.1 e 0.07; 4, 0.1 e 0.07.

Figura 11: Controlador Proporcional Integral-Derivativo para entrada Senoidal - Primeira ordem

Análise

Claramente, por este controlador ser uma combinação dos previamente apresentados, seu comportamento será uma combinação dos comportamentos individuais de cada ação de controle. Ou seja, ajustando o K_p , K_i e K_d de acordo com o previamente explicado (K_p alto, K_i e K_d baixos), obtém-se um sistema com resposta mais rápida, com menor ou ausência de sobressinal e menos oscilações.

4.1.5 Filtro na Ação Derivativa

Será realizado um teste do filtro na ação derivativa para um controlador PD, verificando as diferenças nas saídas com e sem o filtro.

Entrada Degrau

Os valores de K_p e K_d utilizados serão, respectivamente, 5 e 2, com o K_N do filtro igual a 0.01.

- (a) Controle Proporcional Derivativo sem filtro
- (b) Controle Proporcional Derivativo com filtro

Figura 12: Controlador Proporcional Derivativo com e sem filtro para entrada Degrau - Primeira ordem

Entrada Senoidal

Os valores de K_p e K_d utilizados serão, respectivamente, 3 e 2, com o K_N do filtro igual a 0.01.

Figura 13: Controlador Proporcional Derivativo com e sem filtro para entrada Senoidal - Primeira ordem

Análise

Para ambos os tipos de entrada, o uso do filtro derivativo com valores baixos de K_N resultará em uma saída muito menos ruidosa para mesmos valores de K_p e K_d , sendo o esperado devido a este filtro ser justamente utilizado para evitar que o ruido seja derivado e amplificado.

4.1.6 Filtro anti-reset-windup

Será realizado um teste do filtro anti-reset-windup para um controlador PI, verificando as diferenças nas saídas com e sem o filtro.

Entrada Degrau

Foram utilizados, respectivamente, os seguintes valores de K_p e K_i : 2 e 0.5, com o K_a do filtro igual a 1.

- (a) Controle Proporcional Integrativo sem filtro
- (b) Controle Proporcional Integrativo com filtro

Figura 14: Controlador Proporcional Integrativo com e sem filtro para entrada Degrau - Primeira ordem

Entrada Senoidal

Os valores de K_p e K_i utilizados serão, respectivamente, 2 e 0.8, com o K_a do filtro igual a 2.

Figura 15: Controlador Proporcional Integrativo com e sem filtro para entrada Senoidal - Primeira ordem

Análise

Tanto para entrada constante como para entrada degrau, fica claro que o uso do filtro anti-windup (com valores de K_a maiores que 1) resultará em um *Overshoot* menor, sendo o esperado devido a este filtro ser justamente utilizado para atenuar a ação integrativa, não permitindo seu crescimento descontrolado.

4.2 Controle PID de Sistemas Dinâmicos de Segunda Ordem

Nesta seção serão mostradas as ações dos controladores P, PI, PD e PID em relação ao nível tanque 2 (segunda ordem) para entradas do tipo degrau de valor 15. Serão analisadas diferenças e comportamentos do sistema para cada lei de controle e suas respectivas curvas e sinais. Além disso, os resultados observados serão comparados aqueles obtidos ao se realizarem os testes no sistema de primeira ordem (tanque 1), descrito na subseção 4.1.

4.2.1 Controlador Proporcional

Os testes foram realizados com ganhos K_p de valores 0.5, 1.5, 5 e 20, respectivamente.

Figura 16: Controlador Proporcional - Segunda ordem

Análise

Como para sistemas de primeira ordem, o aumento do ganho K_p resultou em um nível do tanque 2 mais próximo do valor de referencia e mais rápido, porém, o incremento na velocidade para atingir o regime permanente impõe mais oscilação ao sistema.

4.2.2 Controlador Proporcional Integrativo

Neste controlador, foram realizadas simulações com valores de K_p e K_i sendo 0.1 e 1; 1 e 0.1; 5 e 0.1; 5 e 0.01, respectivamente. As saídas são mostradas na Figura 17.

Figura 17: Controlador Proporcional Integrativo - Segunda ordem

Análise

Aumentando-se o K_p e diminuindo-se o K_i , nota-se uma melhora em relação ao regime permanente causado pelo controlador PI, o mesmo aconteceu para o sistema de primeira ordem.

4.2.3 Controlador Proporcional Derivativo

Foram realizados testes com as seguintes combinações de K_p e K_d : 0.5 e 2; 2 e 0.5; 10 e 0.5; 10 e 10;

Figura 18: Controlador Proporcional Derivativo - Segunda ordem

Análise

A ação derivativa combinada com a ação proporcional faz com que a ação de controle seja feita de forma "antecipada". Isso aumenta a estabilidade relativa do sistema e torna a resposta transitória dele mais rápida. Pela Figura 18 vemos que o aumento do K_d , juntamente com o aumento do K_p , resultou nesse efeito. Isso difere do caso de primeira ordem, onde melhora-se a resposta diminuindo-se o K_d .

4.2.4 Controlador Proporcional Integral-Derivativo

As combinações de ganhos K_p , K_i e K_d (respectivamente) que foram utilizadas para realizar as simulações foram as seguintes: $K_p = 1$, $K_i = 1$ e $K_d = 1$; $K_p = 1$, $K_i = 0.01$ e $K_d = 1$; $K_p = 7$, $K_i = 0.01$ e $K_d = 1$. Na Figura 19 são mostradas as saídas.

Figura 19: Controlador Proporcional Integral-Derivativo - Segunda ordem

nhos 7, 0.01 e 7

Análise

nhos 7, 0.01 e 1

Aqui, assim como os casos de primeira ordem, as técnicas são combinadas para a melhoria do erro em regime permanente e em regime transitório. A melhoria de um pode afetar o outro, mas o resultado mostrado na Figura 19d se mostrou satisfatório, sendo obtido aumentando-se o K_p e K_d , e diminuindo-se o K_i .

4.3 Comparação do Controle nos Sistemas de Primeira e Segunda Ordem

Para sistemas de primeira ordem, o aumento do K_p do controlador proporcional implica na diminuição do *offset*, no entanto, quanto maior, mais oscilatório se torna o sistema. Para sistemas de segunda ordem, o aumento de K_p também aumento da velocidade da resposta do sistema e diminuição do *offset*, características desejáveis, porém, leva a maior erro máximo e respostas oscilatórias por mais tempo.

Para controladores do tipo PI existe eliminação de *offset* nos dois sistemas.

Para controladores PD, a diminuição do K_d no sistema de primeira ordem implica em menos ruídos e portanto em uma melhor resposta, já no de segunda ordem a resposta é mais amortecida quanto maior o K_d .

Combinação dos três modos de controle, controlador PID, leva a resposta que tem, em geral, as mesmas características do controle PI, porém com menor tempo de estabilização tanto para o sistema de primeira quanto para o de segunda ordem.

4.4 Controle no Espaço de Estados: Seguidor de Referência com Estados Estimados

4.4.1 Configuração P-Escravo

Nesta configuração, o controlador mestre irá dominar e definir os comportamentos do sistema. Para as combinações P-escravo (mestre sendo um controlador proporcional), independentemente do controlador escravo (seja P, PI, PD ou PID) e de seus parâmetros, o controlador resultante será basicamente um controlador proporcional. As Figuras ilustram controladores P-P, P-PI, P-PD e P-PID, mostrando que todas as saídas possuem o mesmo formato para qualquer escravo. Assim, a saída irá depender apenas do K_p mestre, seguido melhor a referência aumentando-se este ganho.

Figura 20: Configuração P-P

Figura 21: Configuração P-PI

Figura 22: Configuração P-PD

Figura 23: Configuração P-PID

4.4.2 Configuração PI-P

Para esta configuração, verificou-se que, aumentando o K_p escravo, diminui-se o regime transitório, sem alterar o permanente. Isso pode ser melhorado ainda mais aumentando o K_p mestre e diminuindo o K_i mestre.

Figura 24: Configuração PI-P

4.4.3 Configuração PI-PI

Por outro lado, mantendo o K_p e o K_i do mestre e o K_p do escravo fixos, uma vez já tendo sido analisados, foi inserida a ação integrativa no escravo. Pode ser verificado que altos K_i do escravo irão piorar o transitório.

Figura 25: Configuração PI-PI

4.4.4 Configuração PI-PD

Para este tipo de configuração, mais uma vez mantendo ambos os K_p e o K_i do mestre fixos, é possível visualizar que a alteração do K_d do escravo não irá interferir na resposta do sistema, mais uma vez sendo dominado pelo mestre.

Figura 26: Configuração PI-PD

4.4.5 Configuração PI-PID

Por ser a combinação das configurações previamente explicadas, esta configuração terá características de ambas. Ou seja, no escravo, apenas o K_p e o K_i poderão alterar a saída, enquanto que o K_d não terá nenhuma influência.

4.4.6 Configuração PD-P

Nesta configuração, foi verificado um comportamento parecido com a configuração P-Escravo, onde apenas o K_p do mestre consegue alterar a saída melhorando o regime permanente a medida que aumenta, enquanto que o K_d do mestre e o K_p do escravo não tem grandes influências (quase nenhuma).

Figura 27: Configuração PD-P

4.4.7 Configuração PD-PI

A partir dessa configuração, pode-ser notar que a diminuição do K_i do escravo irá diminuir as oscilações do sistema, enquanto que o aumento do K_p do escravo diminuirá o *Overshoot*. Por fim, o aumento do K_p do mestre melhorará o regime permanente (saída seguirá melhor a entrada), enquanto que a alteração do K_d do mestre não alterará a saída do sistema.

Figura 28: Configuração PD-PI

4.4.8 Configuração PD-PD

Nesta configuração, apenas o K_p do mestre irá influenciar a resposta, tendo gráficos praticamente iguais a configuração PD-P.

4.4.9 Configuração PD-PID

Esta configuração terá comportamento exatamente igual a configuração PD-PI, já que a adição da ação derivativa no escravo não terá nenhuma influencia na saída final para quaisquer valores de K_d do escravo.

4.4.10 Configuração PID-P

Aqui, haverá um comportamento similar a configuração PI-P. Assim, aumentando o ganho K_p do escravo é possível melhorar o transitório diminuindo as oscilações, aumentando o K_p do mestre melhora-se ainda mais e escolhendo um bom valor de K_i é possível eliminar o *Overshoot* (nestas simulações, 0.1 sempre teve bons resultados).

Figura 29: Configuração PID-P

4.4.11 Configuração PID-PI

Para esta configuração, verificou-se que, mantendo o PID do mestre fixo, uma vez já tendo sido analisado, melhora-se a resposta a medida que diminui-se o K_i do escravo e aumenta-se o K_p também do escravo. Ainda no escravo, se houver um aumento do K_i , por exemplo, poderá ser mantida uma resposta parecida com a anterior ajustando (aumentando) o K_p , ou seja, basta encontrar boas combinações destes dois ganhos.

Figura 30: Configuração PID-PI

4.4.12 Configuração PID-PD

Esta configuração segue o mesmo comportamento da configuração PID-P, uma vez que o ganho K_d do escravo não influenciará a saída.

4.4.13 Configuração PID-PID

Da mesma forma, nesta configuração a saída será determinada pelos valores dos ganhos, K_p , K_i e K_d do mestre e K_p e K_i do escravo, não sofrendo alterações pela ação derivativa do escravo.

4.5 Comparação no Controle dos Sistemas de Segunda Ordem com uma e duas malhas

A principal diferença entre o controle de um sistema de segunda ordem de uma e de duas malhas está na quantidade de parâmetros que precisam ser ajustados, sendo bem maior quando se trata de um sistema mestre-escravo (duas malhas). Assim, sob este aspecto, um sistema de apenas uma malha se torna mais interessante.

Por outro lado, utilizando-se apenas um PI na malha mestre, o controle do sistema se torna simples, necessitando de poucos ou nenhum ajuste na malha escrava (se o controlador mestre for um PID, resulta ainda mais fácil).

5 CONCLUSÃO

Neste trabalho foi possível entender quais os efeitos dos controladores P, PI, PD e PID sobre sistema de primeira e segunda ordem, assim como a proporção dos ganhos de cada controlador podem influenciar os regimes do sistemas e também a interferência entre eles. O controlador P acelera a resposta dos sistemas. O controlador PI melhora o erro regime permanente (inserção de polo na ou próximo da origem aumentando o tipo do sistema) enquanto o PD a resposta transitória (adicionando zero). O PID é uma combinação dessas duas configurações. Além disso, verificaram-se as diferenças praticas no controle de sistemas de primeira e de segunda ordem, resultando mais simples controlar o primeiro grupo de sistemas.

Referências

- [1] Richard C. Dorf and Robert H. Bishop. Sistemas de Controle Moderno. LTC, 2018.
- [2] K. OGATA. Engenharia de Controle Moderno. 5ª ed. Pearson, 2011.