

High Performance Computing

高性能計算論

Volume 6

Cyberscience Center, Tohoku Univ

Hiroyuki Takizawa takizawa@tohoku.ac.jp

What you learnt so far (1/2)

■ Parallel Computers

- Shared-memory computers
- Distributed-memory computers
- Hierarchical (hybrid) systems
- Networks

What's Parallel Computer (1/3)

■ Parallel Computer

- A multi-processor computer system supporting parallel programming
- Two major categories of parallel computers
 - Distributed-memory parallel computers
 - Multiple computers and their interconnection network.
 - Employed to build a large-scale system
 - Shared-memory parallel computers
 - Symmetric multi-processor(SMP) and multicore/manycore.
 - Employed by most of current processors.

What's Parallel Computer (2/3)

Shared-memory (NUMA)

Each memory device is mapped to a part of the memory space.

Distributed-memory

Each memory device has its own memory space.

What's Parallel Computer (3/3)

- Large-scale parallel computers = mixture of shared and distrib.-parallel.
 - One OS instance manages a node.

In addition, each node may have accelerators such as GPUs.

What you learnt so far (2/2)

- Parallel Algorithm Design
 - Task/Channel Model
 - Foster's Design Methodology
 - Communication Patterns

Foster's Design Methodology

- **■** Four steps for designing parallel algorithms
 - Partitioning
 - Communication
 - Agglomeration
 - Mapping

What is MPI?

■ Message Passing Interface (MPI)

- Interface for parallel programs with message passing.
 - Multiple programs (MPI processes) run on a parallel computer.
 - Each MPI process has its own memory space.
 - MPI processes can pass their data to others if necessary.
 - MPI defines only the interface (not the implementation).
 - We do not need to care about how MPI processes actually communicate.

■ Major MPI Implementations

- MPICH (http://www.mpich.org/)
- Open MPI (http://www.open-mpi.org/)

What's OpenMP?

- **Threads** are created/deleted on demand.
 - Thread: an execution flow

Today's Topic

- Advantages of using both MPI and OpenMP
 - Case Study: Conjugate gradient method
- **Performance Prediction and Analysis**
 - Roofline model (memory bandwidth)
 - Amdahl's Law (strong scaling ability)
 - Gustafson-Barsis's Law (weak scaling ability)
 - Karp-Flatt Metric (parallel performance evaluation)

C+MPI vs. C+MPI+OpenMP

$$C + MPI$$

C + MPI + OpenMP

- **■** Lower communication overhead
- More portions of program may be practical to parallelize
- May allow more overlap of communications with computations

Case Study: Conjugate Gradient

- A is positive definite if for every nonzero vector x and its transpose x^T , the product $x^TAx > 0$
- If A is symmetric and positive definite, then the function

$$q(x) = \frac{1}{2} x^{T} A x - x^{T} b + c$$

has a unique minimizer that is solution to Ax = b

■ Conjugate gradient is an iterative method that solves Ax = b by minimizing q(x)

Case Study: Conjugate Gradient

- Conjugate gradient method solves Ax = b
- In our program we assume A is dense
 - Matrix-vector multiplication
 - Inner product (dot product)
 - Matrix-vector multiplication has higher time complexity

Methodology

- Start with a sequential program
- Profile functions to determine where most execution time spent
- Tackle most time-intensive function first

MPI Parallelization

A is decomposed and distributed over MPI processes

Allgather communication is needed for all MPI processes to have the entire resultant vector (=new X).

Performance Profiling

- **■** Compiler with -pg option
- **■** Execute the program
- Use the gprof command to see the performance profile

```
$ mpicc -pg cg.c main.c MyMPI.c -o cg
$ mpirun -np 1 ./cg a-huge b-huge
$ ls
MyMPI.c a-huge b-huge cg cg.c gmon.out main.c
$ gprof ./cg | less
... Performance Profile Information ...
```

Result of Profiling MPI Program

Clearly our focus needs to be on function matrix_vector_product

Flat pr	ofile:					
Each sa	mple count	s as 0.01	seconds.			
% с	umulative	self		self	total	
time	seconds	seconds	calls	s/call	s/call	name
99.97	110.41	110.41	530	0.21	0.21	<pre>matrix_vector_product</pre>
0.05	110.46	0.05	1060	0.00	0.00	dot_product
0.02	110.48	0.02	10	0.00	11.05	cg
0.00	110.48	0.00	1063	0.00	0.00	my_malloc
0.00	110.48	0.00	530	0.00	0.00	<pre>create_mixed_xfer_arrays</pre>
0.00	110.48	0.00	530	0.00	0.00	replicate_block_vector
0.00	110.48	0.00	2	0.00	0.00	get_size
0.00	110.48	0.00	1	0.00	0.00	<pre>print_replicated_vector</pre>
0.00	110.48	0.00	1	0.00	0.00	print_subvector
0.00	110.48	0.00	1	0.00	0.00	read_replicated_vector
0.00	110.48	0.00	1	0.00	0.00	read_row_striped_matrix

Code for matrix_vector_product

Lines 90-103 in cg.c

```
void matrix_vector_product (int id, int p,
   int n, double **a, double *b, double *c)
{
   int i, j;
   double tmp; /* Accumulates sum */
   for (i=0; i<BLOCK_SIZE(id,p,n); i++) {</pre>
      tmp = 0.0;
      for (j = 0; j < n; j++)
         tmp += a[i][j] * b[j];
      piece[i] = tmp;
   new_replicate_block_vector (id, p,
      piece, n, (void *) c, MPI_DOUBLE);
```

Adding OpenMP directives

- Want to minimize fork/join overhead by paralleling the outermost possible loop
- Outer loop may be executed in parallel if each thread has a private copy of tmp and j

```
#pragma omp parallel for private(j,tmp)
for (i=0; i<BLOCK_SIZE(id,p,n); i++) {</pre>
```

We transformed a C+MPI program to a C+MPI+OpenMP program by adding only one line to our program!

Excercise

■ Download the zip file from the Google Classroom page

```
On your PC, copy the file to front.
$ scp cg-mpi.zip front:
                                             Login to front
$ ssh front ←
                                             Unzip the copied file on
 unzip cg-mpi.zip ←
                                             front
 cd cg-mpi/
 make ←
                                            Compiler for default
 ./gen-cg 20480 a-mat b-vec
                                            MPI execution
 qsub run.sh
 make prof 👡
                                            Generate input files
 qsub run.sh
                               Compile for profiling
 gprof ./cg | less
 make omp <
                                       Check the profiling result
$ qsub run.sh
                                      Compile with OpenMP
```


High Pe

Today's Topic

- Advantages of using both MPI and OpenMP
 - Case Study: Conjugate gradient method
- **Performance Prediction and Analysis**
 - Roofline model (memory bandwidth)
 - Amdahl's Law (strong scaling ability)
 - Gustafson-Barsis's Law (weak scaling ability)
 - Karp-Flatt Metric (parallel performance evaluation)

Performance Prediction and Analysis

- Why do we need performance prediction of a parallel algorithm?
 - Because it helps us confirm whether an expected performance has been achieved or not.
- The purposes of performance analysis
 - To understand the barriers to high performance
 - To predict how much improvement can be achieved by increasing the number of processors/cores.

Finding Performance Bottleneck (1/2)

- Roofline model (Williams, 2009)
 - Suppose a computer of B [bytes/s] and F [flop/s].
 Then, what is the expected flop/s rate on simple vector addition?
 - Assume each vector element is a 64-bit floating point value.
 - Two operands are needed for one addition, and one result is produced (Assume each is a 64-bit floating point value).
 → 24 bytes for one addition (2 inputs and 1 output).
 - = Arithmetic intensity of vector addition is 1/24
 - The computer can achieve its peak flop/s rate, F, only if B is 24 times larger than F. Otherwise, the memory bandwidth limits the theoretically achievable flop/s rate (MB = performance bottleneck).

Finding Performance Bottleneck (2/2)

Execution Time

- Execution time of a parallel algorithm:
 - The period of time during any task is active. (Shorter is Better.)

Parallelization Ratio

Parallelization Ratio α : The ratio of parallel exec.

Parallelization Overhead

Sequential

Parallel

Parallelization Overhead4 threads != 4 times faster

EX) thread creation and deletion

Speedup and Efficiency

Speedup

 The ratio between sequential execution time and parallel execution time

Speedup = (Sequential Exec. Time) / (Parallel Exec. Time)

Efficiency

A measure of processor utilization
 Efficiency = Speedup / (Number of Processors)

■ Scalability

• A measure of parallel system's ability to increase the performance as the number of processor increases.

Why Ideal Speedup so difficult?

- **■**linear speedup is prevented by ...
 - Serial operations
 - Communication operations
 - Process start-up
 - Imbalanced workloads
 - Architectural limitations

Amdahl's Law

- Operations performed by parallel algorithm
 - Computations that must be performed sequentially
 - Computations that can be performed in parallel
 - Parallelization overhead
 - Communication operations and redundant computations
- Upper bound of speedup ratio for a fixed problem size (Amdahl's law)

$$\Psi(n,p) \le \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p + \kappa(n,p)} \le \frac{\sigma(n) + \varphi(n)}{\sigma(n) + \varphi(n) / p} = \frac{1}{f + (1-f) / p}$$

 $\Psi(n,p)$: speedup for a problem of size n on p processors

 $\sigma(n)$: sequential portion of the computation

 $\varphi(n)$: parallel portion of the computation

 $\kappa(n,p)$: parallelization overhead

the number of processors

n : the problem size

: the fraction of sequential computation = $\sigma(n)/(\sigma(n) + \varphi(n))$

Example 1

■ 95% of a program's execution time occurs inside a loop that can be executed in parallel. What is the maximum speedup we should expect from a parallel version of the program executing on 8 CPUs?

Example 2

■ 20% of a program's execution time is spent within inherently sequential code. What is the limit to the speedup achievable by a parallel version of the program?

Considering the overhead

■ Limitation of Amdahl's law

- The parallelization overhead such as communication time is ignored.
- Typically, the overhead is lower complexity than parallel portion of the computation
 - The time of parallel computation grows faster than the overhead as the problem size increases.

■ EX) Suppose a program

• sequential comp. : O(n) e.g. 18000+n

• parallel comp. : $O(n^2)$ e.g. $(n^2/100)/p$

comm. : O(n + log p)e.g. 10000 ceil(log p) + (n/10)

Illustration of Amdahl Effect

Speedup is usually an increasing function of the problem size.

Amdahl Effect

- Typically κ(n,p) has lower complexity than φ(n)/p
- As n increases, $\varphi(n)/p$ dominates $\kappa(n,p)$
- As *n* increases, speedup increases

Review of Amdahl's Law

- **■** Treats problem size as a constant
- Shows how execution time decreases as number of processors increases

The salability with a fixed problem size is so-called **strong scalability**

Gustafson-Basis's Law

- What happens if the time is limited and the problem size increases with the number of processors?
 - Amdahl's effect: sequential fraction of a computation typically decreases as the problem size increases.
 - Increasing the number of processors enables us to increase the problem size solved in the time.
- Solving a problem of size n using p processors (=parallel execution), and s is the fraction of execution time spent in serial part.

$$\Rightarrow$$
 s = $\sigma(n)/(\sigma(n)+\phi(n))$

$$\Psi(n,p) \le \frac{\sigma(n) + p\phi(n)}{\sigma(n) + \frac{p\phi(n)}{p}} = p + (1-p)\frac{\sigma(n)}{\sigma(n) + \phi(n)} = p + (1-p)s$$

"Scaled speedup" improves with p (Gustafson-Basis's Law) = generally, too optimistic!

Karp-Flatt Metric

■ Experimentally determined serial fraction e

$$T(n,p) = \sigma(n) + \varphi(n)/p + \kappa(n,p)$$
 Total parallel execution time
$$T(n,1) = \sigma(n) + \varphi(n) + \kappa(n,1)$$
 Total serial execution time

Definition: experimentally determined serial fraction

$$e = (\sigma(n) + \kappa(n, p))/T(n, 1)$$

 $\Rightarrow \sigma(n) + \kappa(n, p) = T(n, 1)e$

$$T(n,p) = T(n,1)e + T(n,1)(1-e)/p$$

$$T(n,1) = T(n,p)\psi(n,p)$$

$$\Rightarrow T(n,p) = T(n,p)\psi e + T(n,p)\psi(1-e)/p$$

$$\Rightarrow 1 = \psi e + \psi(1-e)/p$$

$$\Rightarrow e = \frac{1/\psi - 1/p}{1-1/p}$$
 (smaller *e* means better parallelization)

Karp-Flatt Metric (Cont'd)

Experimentally Determined Serial Fraction

$$e = \frac{\sigma(n) + \kappa(n, p)}{\sigma(n) + \varphi(n)}$$

Inherently serial component of parallel computation + processor communication and synchronization overhead

$$e = \frac{1/\psi - 1/p}{1 - 1/p}$$

Single processor execution time

Karp-Flatt Metric (Cont'd)

- Experimentally determined serial fraction is useful because ...
 - Takes into account parallelization overhead
 - Detects other sources of overhead or inefficiency ignored in speedup model
 - Process startup time
 - Process synchronization time
 - Imbalanced workload
 - Architectural overhead

Example 1

р	2	3	4	5	6	7	8
ψ	1.8	2.5	3.1	3.6	4.0	4.4	4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

Since *e* is constant, large serial fraction is the primary reason.

Example 2

р	2	3	4	5	6	7	8
Ψ	1.9	2.6	3.2	3.7	4.1	4.5	4.7

What is the primary reason for speedup of only 4.7 on 8 CPUs?

|--|

Since *e* is steadily increasing, overhead is the primary reason.

Today's Topic

- Advantages of using both MPI and OpenMP
 - Case Study: Conjugate gradient method
- **■** Performance Prediction and Analysis
 - Roofline model (memory bandwidth)
 - Amdahl's Law (strong scaling ability)
 - Gustafson-Barsis's Law (weak scaling ability)
 - Karp-Flatt Metric (parallel performance evaluation)