IMAGE FORMATION

1

SAMPLING & CONVOLUTION

- 2D signals in time and frequency domain
- Spatial sampling resizing an image
- Intensity quantization
 - how many bits used to store a pixel in an image
 - impact on the quality of the image
- Correlation and convolution
- Location of specific patterns using a template (cross correlation)
- Filtering techniques

IMAGE FORMATION

- Sampling
- Quantization
- · Resize an image with sampling
- Quantize colors

3

SAMPLING

- Selection/rejection of image pixels
- Spatial operation
- Increase or reduce the size of an image (up sampling, down sampling)
- Upsampling
 - New larger images will have some pixels that have no corresponding pixels in the original smaller image
 - Guess those pixel values
 - An aggregate the mean value of its nearest known one or more pixel-neighbor values
 - An interpolated value using pixel-neighbors with bilinear or cubic interpolation
 - Nearest neighbor-based up-sampling may result in a poor quality output image

UPSAMPLING & INTERPOLATION

- Bi-linear interpolation
 - 2D analogue of linear interpolation

$$\frac{(X - X1)}{(X2 - X1)} = \frac{(Y - Y1)}{(Y2 - Y1)}$$

$$Y = Y1 + (X - X1) \frac{(Y2 - Y1)}{(X2 - X1)}$$

5

UPSAMPLING & INTERPOLATION

- Bi-cubic interpolation
 - Extension of cubic interpolation
 - Interpolated surface is smoother than corresponding surfaces obtained by bi-linear or nearest neighbor interpolation
 - · Accomplished using Lagrange polynomials, cubic splines, or cubic convolution algorithm
 - Cubic spline interpolation in a 4 x 4 environment

DOWN-SAMPLING

- For each pixel in a new smaller image multiple pixels in the original larger image
- Dropping some pixels from the larger image in a systematic way
 - For example, dropping every other row and column if we want an image a fourth of the size of the original image
- Computing the new pixel value as an aggregate value of the corresponding multiple pixels in the original image
- not very good for shrinking images
 - creates an aliasing effect
 - patchy and bad output
- Anti-aliasing
 - single pixel in the output image corresponds to 25 pixels in the input image, but sampling the value of a single pixel instead
 - averaging over a small area in the input image, ANTIALIAS high-quality down-sampling filter
 - Smoothing an image LPF such as Gaussian filter before down-sampling

QUANTIZATION

- Related to the intensity of an image
- Number of bits used per pixel
- Typically quantized to 256 gray levels
- As number of bits for pixel storage decreases, the quantization error increases
- Artificial boundaries or contours and pixelating poor quality
- Color quantization convert () with the P mode, color argument as the maximum number of possible colors
- Signal to Noise ratio (SNR) mean divided by the standard deviation
- Image quality decreases as the number of bits to store a pixel reduces
 - Reduces image size (number of bits/pixel reduced) poor quality
- Higher the SNR better the quality

9

CONVOLUTION

- Operates on two images input image, mask or kernel or filter or window
- Modify spatial frequency characteristics
- Determine the value of a central pixel adding the weighted values of all of its neighbors
- Traversing the kernel through the image
- Applies a general purpose filter effect on the input image
- Achieve various effects with appropriate kernels
 - Smoothing
 - Sharpening
 - Embossing
 - Edge detection

Mechanics of Spatial Filtering

- * g(m,n) = T[f(m,n)], g(m,n) = h(m,n)*f(m,n)
 - * if the operator T is linear & shift invariant
 - * h(m,n) is of finite extent, G(u,v) = H(u,v)F(u,v)
 - * can be interpreted in the frequency domain as a filtering operation.
 - * It has the effect of filtering frequency components (passing certain frequency components and stopping others).
 - * If h(m, n) is a 3x3 mask, output g(m, n) is computed by sliding the mask over each pixel of the image f(m, n).
- * Special care is required for the pixels at the border of image f(m, n). This depends on the so-called boundary condition. Common choices are:
 - * The mask is truncated at the border (free boundary)
 - * The image is extended by appending extra rows/columns at the boundaries. The extension is done by repeating the first/last row/column or by setting them to some constant (fixed boundary).
 - * The boundaries wrap around (periodic boundary).

Dept. of E & C, MSRIT

11

Spatial Filtering

- Procedure
 - * Move the filter mask from point to point
 - * Response of the filter at that point is calculated using a predefined relationship
 - * Response is given by a sum of products of the filter coefficients and the corresponding image pixels in the area spanned by the filter mask
 - * For a 3 x 3 mask
 - * R = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y) + ... + w(0,0)f(x,y) + ... + w(1,0)f(x+1,y) + w(1,1)f(x+1,y+1) or $R = sum_{i=1}^{9}w_{i}z_{i}$
 - * w(0,0) coincides with image value f(x,y)
 - * Mask is centered at (x,y)

Dept. of E & C, MSRIT

Smoothing Filters

- designed to smooth or flatten the image by reducing the rapid pixel-to-pixel variation in gray values.
- * Blurring: preprocessing step for removing small (unwanted) details before extracting the relevant (large) object, bridging gaps in lines/curves
- * Noise Reduction: Mitigate the effect of noise by linear or nonlinear operations.
- * Image smoothing by averaging (low pass filtering)
 - * An averaging mask is a mask with positive weights, which sum to 1. It computes a weighted average of the pixel values in a neighborhood. This operation is sometimes called neighborhood averaging

Dept. of E & C, MSRIT

EXAMPLES

- Blur an image Box kernel
- Detect edges from a gray scale image Laplace kernel
- convolve2d () mode, boundary, fillvalue
 - mode = 'full' This is the default mode, in which the output is the full discrete linear convolution of the input
 - mode = 'valid' This ignores edge pixels and only computes for those pixels with all neighbors (pixels that do not need zero-padding). The output image size is less than the input image size for all kernels (except 1 x 1)
 - mode = 'same' The output image has the same size as the input image; it is centered with regards to the 'full' output
 - RGB image apply convolution separately for each channel
 - ndimage.convolve () convolve RGB image directly

CORRELATION VS CONVOLUTION

- convolution flips the kernel twice (horizontal and vertical axis) before computing the weighted combination
- Example:
 - · Cross correlation with an eye template image
 - Location of the eye in the raccoon-face image
 - Location best match with the template (largest cross correlation value)

21

SHARPENING SPATIAL FILTERS

- Highlight fine detail in an image
- Enhance detail that has been blurred (either in error or as a natural effect of image acquisition)
- Blurring vs Sharpening
 - Blurring/smooth is done in spatial domain by pixel averaging of neighbors
 - process of integration
 - Sharpening is an inverse process, to find the difference in a neighborhood
 - done by spatial differentiation

DERIVATIVE OPERATOR

- Strength of the response of a derivative operator is proportional to the degree of discontinuity of the image at the point at which the operator is applied
- Image differentiation
 - enhances edges and other discontinuities (noise)
 - deemphasizes area with slowly varying gray-level values
- First order derivative
- $\frac{\partial f}{\partial x} = f(x+1) f(x)$ $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) 2f(x)$ Second order derivative

23

EXAMPLE

2D DERIVATIVES

Partial derivatives along the two spatial axes

Gradient operator
$$\nabla \mathbf{f} = \frac{\partial f(x,y)}{\partial x \partial y} = \frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y}$$
 (linear operator)

Laplacian operator
$$\nabla^2 f = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$
 (non-linear)

25

DISCRETE FORM OF LAPLACIAN

$$\frac{\partial^2 f}{\partial x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$
$$\frac{\partial^2 f}{\partial y^2} = f(x,y+1) + f(x,y-1) - 2f(x,y)$$

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) - 4f(x,y)]$$

OTHER IMPLEMENTATIONS

- Give the same result
- When combining (add/subtract) a Laplacian filtered image with another image
- Highlights gray level discontinuities
- Deemphasizes regions with slowly varying gray levels
- Grayish edge lines and other discontinuities, superimposed on a dark featureless background

0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	O	-1	-1	-1

27

SOLUTION

• Add original and Laplacian image (careful with Laplacian filter used)

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{if } f(x,y) \\ f(x,y) + \nabla^2 f(x,y) & \text{if } f(x,y) \end{cases}$$

if the center coefficient of the Laplacian mask is negative

if the center coefficient of the Laplacian mask is positive

0	-1	0	
-1	5	-1	
0	-1	0	

· · · · · · · · · · · · · · · · · · ·			
-1	-1	-1	
-1	9	-1	
-1	-1	-1	

IMAGE SHARPENING MASK

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) \\ f(x,y) + \nabla^2 f(x,y) \end{cases}$$

29

HIGH BOOST MASK

0	-1	0	-1	-1	-1
-1	A + 4	-1	-1	A + 8	-1
0	-1	0	-1	-1	-1

IMAGE EMBOSSING

- Computer graphics technique
 - Each pixel of an image is replaced either by a highlight or a shadow
 - depending on light/dark boundaries on the original image
 - · Low contrast areas are replaced by a gray background
- filtered image will represent the rate of color change at each location of the original image
- results in an image resembling a paper or metal embossing of the original image
- Directional difference filter

31

EMBOSS FILTER MASKS

$$\begin{pmatrix} 0 & +1 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} +1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} +1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & +1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & +1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array} \right)$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & +1 \end{pmatrix}$$

$$\left(egin{array}{cccc} 0 & 0 & +1 \ 0 & 0 & -1 \ 0 & 0 & 0 \ +1 & 0 & 0 \ \end{array}
ight)$$

$$\begin{pmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} -2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

SUMMARY

- 2D DFT, applications in image processing (filtering)
- Sampling and Quantization
- FFT algorithms (image denoising and restoration)
- Correlation and Convolution
- Application of correlation in template matching

