Exercice 1. (a) Let $\phi: A \to B$ be a ring homomorphism and let $a \in A^{\times}$. Then, there exists $b \in A^{\times}$ such that ab = 1. Then:

$$1 = \phi(1) = \phi(ab) = \phi(a)\phi(b).$$

Hence $\phi(a)$ is an invertible element of B with inverse $\phi(b)$.

(b) Let $a, b \in A$ such that $a \sim b$. Then there exists $u \in A^{\times}$ such that a = ub and we have:

$$\phi(a) = \phi(ub) = \phi(u)\phi(b).$$

Now by point (a) we have that $\phi(u) \in B^{\times}$ and we conclude that $\phi(a) \sim \phi(b)$.

- (c) Counterexample: Consider the ring homomorphism: $\xi_2 : \mathbb{Z}[x] \to \mathbb{F}_2[x]$ (Example 1.4.36). Now $x^2 + 4x + 2 \in \mathbb{Z}[x]$ is irreducible (one shows this using Eisenstein with p = 2), but $\xi_2(x^2 + 4x + 2) = x^2$ and $x^2 \in \mathbb{F}_2[x]$ is reducible.
- **Exercice 2.** (a) For all $1 \le i \le n$ we have that $(x a_i)|f(x)$ as $a_i \in A$ is a root of f(x). Now as $a_i \ne a_j$ for all $1 \le i, j \le n$, it follows that $\gcd(x a_i, x a_j) = 1$.

As $(x-a_1)|f(x)$, there exists $f_1(x) \in A[x]$ such that $f(x) = (x-a_1)f_1(x)$. Now $(x-a_2)|f(x)$ and, as $gcd(x-a_1,x-a_2)=1$, it follows that there exists $f_2(x) \in A[x]$ such that $f(x)=(x-a_1)(x-a_2)f_2(x)$. We continue this process and find that there exists $f_n(x) \in A[x]$ such

that
$$f(x) = \prod_{i=1}^{n} (x - a_i) f_n(x)$$
. We conclude that $\prod_{i=1}^{n} (x - a_i) | f(x)$.

(b) As p, q are odd primes, it follows that pq is odd and therefore $[1]_{pq}$ and $[-1]_{pq}$ are distinct roots of $t^2 - [1]_{pq} \in \mathbb{Z}/pq\mathbb{Z}$. Furthermore, as p,q are distinct, there exist a, $b \in \mathbb{Z}$ such that ap + bq = 1. Then $(2ap - 1)^2 = 4a^2p^2 - 4ap + 1 = 4ap(ap - 1) + 1 = -4abpq + 1$.

Assume there exists $c \in \mathbb{Z}$ such that 2ap-1=cpq. Then p(2a-cq)=1 and so $p=\pm 1$, which is a contradiction. Therefore $[0]_{pq} \neq [2ap-1]_{pq} \in \mathbb{Z}/pq\mathbb{Z}$ is a root of $t^2-[1]_{pq}$. Moreover, we also get that $[1-2ap]_{pq} \in \mathbb{Z}/pq\mathbb{Z}$ is a root of $t^2-[1]_{pq}$.

We now show that the four roots are distinct:

- If $[2ap-1]_{pq} = [1]_{pq}$, then $[2]_{pq}[a]_{pq}[p]_{pq} = [2]_{pq}$. As pq is odd, we have that $\gcd(pq,2) = 1$, hence there exist $c_1, c_2 \in \mathbb{Z}$ such that $c_1 \cdot 2 + c_2 \cdot pq = 1$. This gives $[c_1]_{pq}[2]_{pq} = [1]_{pq}$ and we deduce that $[2]_{pq} \in (\mathbb{Z}/(pq)\mathbb{Z})^{\times}$. We now multiply $[2]_{pq}[a]_{pq}[p]_{pq} = [2]_{pq}$ by $[c_1]_{pq}$ and obtain $[a]_{pq}[p]_{pq} = [1]_{pq}$, which is a contradiction since $[p]_{pq}$ is a zero divisor.
- If $[2ap-1]_{pq} = [-1]_{pq}$, then $[2]_{pq}[ap]_{pq} = [0]_{pq}$, hence $[ap]_{pq} = [0]_{pq}$. It follows that a = cq, for some $c \in \mathbb{Z}$, since $\gcd(p,q) = 1$. But then 1 = ap + bq = q(cp + b) and, consequently, $q = \pm 1$, a contradiction.
- If $[2ap 1]_{pq} = [1 2ap]_{pq}$, then $[2ap 1]_{pq} = [0]$, which is a contradiction.
- If $[1-2ap]_{pq}=[1]_{pq}$, then $[2ap-1]_{pq}=[-1]_{pq}$, which is a contradiction.
- If $[1-2ap]_{pq}=[-1]_{pq}$, then $[2ap-1]_{pq}=[1]_{pq}$, which is a contradiction.

We deduce that $[2ap-1]_{pq}$, $[1-2ap]_{pq}$, $[1]_{pq}$ and $[-1]_{pq}$ are distinct roots of $t^2-[1]_{pq}$ in $\mathbb{Z}/pq\mathbb{Z}$.

Lastly, $(t-[1]_{pq})(t-[-1]_{pq})(t-[2ap-1]_{pq})(t-[1-2ap]_{pq})$ is a polynomial of degree 4 and it clearly does not divide $t^2-[1]_{pq}$, a polynomial of degree 2.

(c) As f|g in $\mathbb{Q}[t]$, there exists $h \in \mathbb{Q}[t]$ such that g(t) = f(t)h(t). Now, as $h \in \mathbb{Q}[t]$, we can write $h(t) = c \cdot h_1(t)$, where $h_1(t) \in \mathbb{Z}[t]$ is primitive and $c \in \mathbb{Q}$. Then:

$$g(t) = c \cdot f(t)h_1(t).$$

By Lemma 3.8.9, we have that $f(t)h_1(t)$ is primitive and, since g(t) is also primitive, we use Lemma 3.8.11 to determine that $c \in \mathbb{Z}^{\times}$, i.e. $c = \pm 1$. Then

$$g(t) = \pm f(t)h_1(t)$$
 in $\mathbb{Z}[t]$, therefore $f|g$ in $\mathbb{Z}[t]$.

(d) The roots of $x^4 + 1$ over \mathbb{C} are $e^{i(\frac{\pi}{4} + \frac{k\pi}{2})}$, where $0 \le k \le 3$, and we have:

$$x^4 + 1 = \prod_{k=0}^{3} (x - e^{i(\frac{\pi}{4} + \frac{k\pi}{2})}).$$

We group the conjugate complex roots and obtain the decomposition over $\mathbb{R}[x]$

$$x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1).$$

By Example 3.9.2 (4), it follows $x^4 + 1$ does not admit roots in \mathbb{Q} , as it does not admit roots in \mathbb{R} . If $x^4 + 1 = f(x)g(x)$, where $f(x), g(x) \in \mathbb{Q}[x]$ are polynomials of degree 2, then $f(x) = (x-a_1)(x-a_2)$ and $g(x) = (x-a_3)(x-a_4)$, where $a_1, a_2, a_3, a_4 \in \{e^{i(\frac{\pi}{4} + \frac{k\pi}{2})} | 0 \le k \le 3\}$ are distinct. One checks that for every choice of a_i a_j the polynomial $(x - a_i)(x - a_j)$ does not have coefficients in \mathbb{Q} . We conclude that $x^4 + 1$ is irreducible in $\mathbb{Q}[x]$. Lastly, we note that, as it is primitive, by Lemma 3.8.13, it is also irreducible in $\mathbb{Z}[x]$.

In $\mathbb{F}_2[x]$ we have $x^4 + [1]_2 = (x + [1]_2)^4$.

The squares in \mathbb{F}_{11} are $[0]_{11}$, $[1]_{11}$, $[3]_{11}$, $[4]_{11}$, $[5]_{11}$ and $[9]_{11}$ and we deduce that $x^4 + [1]_{11}$ does not admit roots in \mathbb{F}_{11} . Assume that $x^4 + [1]_{11}$ admits a decomposition into a product of two polynomials of degree 2. As \mathbb{F}_{11} is a field, we can assume that these polynomials are unitary. We have:

$$x^{4} + [1]_{11} = (x^{2} + ax + b)(x^{2} + cx + d) = x^{4} + (a + c)x^{3} + (b + ac + d)x^{2} + (bc + ad)x + bd$$

and so $d = b^{-1}$ and c = -a. We substitute and obtain:

$$x^4 + [1]_{11} = x^4 + (b - a^2 + b^{-1})x^2 + a(b^{-1} - b)x + [1]_{11}$$

and so $a(b^{-1} - b) = 0$.

- if a = 0, then $b a^2 + b^{-1} = b + b^{-1} = 0$, which is impossible as $[-1]_{11}$ is not a square in \mathbb{F}_{11} .
- if $b = b^{-1}$, then $b^2 = [1]_{11}$ and so $b \in \{[1]_{11}, [10]_{11}\}$.
 - If $b = [1]_{11}$, then $b a^2 + b^{-1} = [2]_{11} a^2 = 0$, which is impossible as $[2]_{11}$ is not a square in \mathbb{F}_{11} .
 - If $b = [10]_{11}$, then $b a^2 + b^{-1} = [9]_{11} a^2 = 0$ and so $a \in \{[3]_{11}, [8]_{11}\}$.

We conclude that

$$x^4 + [1]_{11} = (x^2 + [3]_{11} \cdot x + [10]_{11})(x^2 + [8]_{11} \cdot x + [10]_{11})$$
 in $\mathbb{F}_{11}[x]$.

Since $x^8 - 1 = (x^4 + 1)(x^4 - 1)$ it suffices to factor $x^4 - 1$:

- in $\mathbb{C}[x]$ we have: $x^4 1 = (x+i)(x-i)(x+1)(x-1)$.
- in $\mathbb{R}[x]$, $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$ we have: $x^4 1 = (x^2 + 1)(x + 1)(x 1)$.

- in $\mathbb{F}_2[x]$ we have: $x^4 [1]_2 = x^4 + [1]_2 = (x + [1]_2)^4$.
- in $\mathbb{F}_{11}[x]$ we have: $x^4 [1]_{11} = (x^2 + [1]_{11})(x + [1]_{11})(x + [10]_{11})$, where we have seen earlier that $x^2 + [1]_{11}$ is irreducible.

Exercice 3. (a) We write $\frac{2}{9}x^5 + \frac{5}{3}x^4 + x^3 + \frac{1}{3} = \frac{1}{9}(2x^5 + 15x^4 + 9x^3 + 3) \in \mathbb{Q}[x]$.

Now $\frac{1}{9} \in \mathbb{Q}[x]^{\times}$, as $\frac{1}{9} \in \mathbb{Q}^{\times}$. Therefore $\frac{2}{9}x^5 + \frac{5}{3}x^4 + x^3 + \frac{1}{3}$ is irreducible in $\mathbb{Q}[x]$ if and only if $2x^5 + 15x^4 + 9x^3 + 3$ is. As $\gcd(2, 15, 9, 3) = 1$, we have that $2x^5 + 15x^4 + 9x^3 + 3$ is primitive, hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). Using Eisenstein for p = 3, where $3 \in \mathbb{Z}$ is irreducible, we deduce that $2x^5 + 15x^4 + 9x^3 + 3$ is irreducible in $\mathbb{Z}[x]$.

(b) Let $f(x) = x^4 + [2]_5 \in \mathbb{F}_5[x]$. Note that for all $a \in \mathbb{F}_5$ we have $a^2 \in \{[0]_5, [1]_5, [4]_5\}$. Therefore f does not admit roots in \mathbb{F}_5 . We will now show that f is not a product of two polynomials of degree 2. As \mathbb{F}_5 is a field, we can assume that these polynomials are unitary and so assume there exist $a, b, c, d \in \mathbb{F}_5$ such that

$$f(x) = x^4 + [2]_5 = (x^2 + ax + b)(x^2 + cx + d) = x^4 + (a+c)x^3 + (b+ac+d)x^2 + (bc+ad)x + bd.$$

Then c = -a and $d = [2]_5 b^{-1}$ and substituting in the above gives:

$$x^4 + [2]_5 = x^4 + (b - a^2 + [2]_5 \cdot b^{-1})x^2 + (-ab + [2]_5 \cdot ab^{-1})x + [2]_5.$$

Thus $-ab + [2]_5 \cdot ab^{-1} = a(-b + [2]_5 \cdot b^{-1}) = 0$ and

- if a=0, then $b^2=-[2]_5$, a contradiction.
- if $-b + [2]_5 b^{-1} = 0$, then $b^2 = [2]_5$, a contradiction.

We conclude that f is irreducible in $\mathbb{F}_5[x]$.

Lastly, let $x^4 + 15x^3 + 7 \in \mathbb{Q}[x]$. As the dominant coefficient is 1, this polynomial is primitive, hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). Let $\phi_5: \mathbb{Z} \to \mathbb{F}_5$ be the quotient homomorphism and let $\pi_5: \mathbb{Z}[x] \to \mathbb{F}_5[x]$ be its induced homomorphism. We have that:

$$\pi_5(x^4 + 15x^3 + 7) = x^4 + [2]_5$$

and, as $x^4 + [2]_5$ is irreducible in $\mathbb{F}_5[x]$, we use Proposition 3.9.1 to conclude that $x^4 + 15x^3 + 7$ is irreducible in $\mathbb{Z}[x]$.

- (c) First we note that $x^2 + y^2 + 1 \in \mathbb{R}[x, y]$ is primitive as its dominant coefficient is 1. Secondly, $y^2 + 1 \in \mathbb{R}[y]$ is irreducible. We now apply Eisenstein with $p = y^2 + 1$ to conclude that $x^2 + y^2 + 1$ is irreducible in $\mathbb{R}[x, y]$.
- (d) We have $x^2 + y^2 + [1]_2 = (x + y + [1]_2)^2$ in $\mathbb{F}_2[x, y]$.
- (e) The evaluation homomorphism $\operatorname{ev}_0: \mathbb{Q}[y] \to \mathbb{Q}$, $\operatorname{ev}_0(y) = 0$, induces the homomorphism $\xi: \mathbb{Q}[y][x] \to \mathbb{Q}[x]$ with $\xi(y) = 0$ and $\xi(x) = x$. We have that:

$$\xi(y^4 + x^3 + x^2y^2 + xy + 2x^2 - x + 1) = x^3 + 2x^2 - x + 1$$

and, by Proposition 3.9.1, $y^4+x^3+x^2y^2+xy+2x^2-x+1$ is irreducible in $\mathbb{Q}[x,y]$ if x^3+2x^2-x+1 is irreducible in $\mathbb{Q}[x]$. Now $\deg(x^3+2x^2-x+1)=3$ and thus x^3+2x^2-x+1 is irreducible in $\mathbb{Q}[x]$ if and only if it does not admit roots in \mathbb{Q} . Assume $\frac{p}{r}\in\mathbb{Q}$, where $p,r\in\mathbb{Z}$ and $\gcd(p,r)=1$, is a root of x^3+2x^2-x+1 . Then

$$\left(\frac{p}{r}\right)^3 + 2\left(\frac{p}{r}\right)^2 - \left(\frac{p}{r}\right) + 1 = 0.$$

As $\gcd(p,r)=1$, it follows that $p|1,\,r|1$ and so $\frac{p}{r}\in\{-1,1\}$. One checks that neither -1, nor 1 is a root of x^3+2x^2-x+1 and thus x^3+2x^2-x+1 is irreducible in $\mathbb{Q}[x]$.

(f) We have $4x^3+120x^2+8x-12=4(x^3+30x^2+2x-3)\in \mathbb{Q}[x]$. Now $4\in \mathbb{Q}[x]^{\times}$ and so $4x^3+120x^2+8x-12$ is irreducible in $\mathbb{Q}[x]$ if and only if x^3+30x^2+2x-3 is. As $\deg(x^3+30x^2+2x-3)=3$ it follows that x^3+30x^2+2x-3 is irreducible in $\mathbb{Q}[x]$ if and only if it does not admit roots in \mathbb{Q} . Assume there exist $\frac{p}{r}\in \mathbb{Q}$, where $p,r\in \mathbb{Z}$ and $\gcd(p,r)=1$, such that:

$$\left(\frac{p}{r}\right)^3 + 30\left(\frac{p}{r}\right)^2 + 2\left(\frac{p}{r}\right) - 3 = 0.$$

As gcd(p,r) = 1, it follows that p|3 and r|1. Therefore $\frac{p}{r} \in \{-3, -1, 1, 3\}$. One checks that none of the elements in $\{-3, -1, 1, 3\}$ is a root of $x^3 + 30x^2 + 2x - 3$. We conclude that $x^3 + 30x^2 + 2x - 3$ is irreducible in $\mathbb{Q}[x]$.

(g) As the polynomial $t^6 + t^3 + 1$ is primitive, it follows that it is irreducible in $\mathbb{Q}[t]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). We consider the quotient homomorphism $\phi_2 : \mathbb{Z} \to \mathbb{F}_2$ and its induced homomorphism $\pi_2 : \mathbb{Z}[t] \to \mathbb{F}_2[t]$ under which

$$\pi_2(t^6 + t^3 + 1) = t^6 + t^3 + [1]_2$$

By Proposition 3.9.1, $t^6 + t^3 + 1$ is irreducible in $\mathbb{Z}[t]$ if $t^6 + t^3 + [1]_2$ is irreducible in $\mathbb{F}_2[t]$.

Now, one checks that $t^6+t^3+[1]_2$ does not admit roots in $\mathbb{F}_2[t]$. Secondly, the only irreducible polynomial of degree 2 in $\mathbb{F}_2[t]$ is $t^2+t+[1]_2$ and one checks that this does not divide $t^6+t^3+[1]_2$. Lastly, we assume that $t^6+t^3+[1]_2$ is a product of two polynomials of degree 3. As \mathbb{F}_2 is a field, we can assume that these polynomials are unitary and we have:

$$t^{6} + t^{3} + [1]_{2} = (t^{3} + a_{2}t^{2} + a_{1}t + a_{0})(t^{3} + b_{2}t^{2} + b_{1}t + b_{0})$$

$$= t^{6} + (a_{2} + b_{2})t^{5} + (a_{1} + a_{2}b_{2} + b_{1})t^{4} + (a_{0} + a_{1}b_{2} + a_{2}b_{1} + b_{0})t^{3} +$$

$$+ (a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0})t^{2} + (a_{0}b_{1} + a_{1}b_{0})t + a_{0}b_{0}.$$

Then $a_0 = b_0 = [1]_2$, $a_2 = b_2$ and

$$\begin{cases} a_0b_1 + a_1b_0 = [0]_2 \\ a_0b_2 + a_1b_1 + a_2b_0 = [0]_2 \\ a_0 + a_1b_2 + a_2b_1 + b_0 = [1]_2 \\ a_1 + a_2b_2 + b_1 = [0]_2 \end{cases} \rightarrow \begin{cases} b_1 + a_1 = [0]_2 \\ a_1b_1 = [0]_2 \\ b_2(a_1 + b_1) = [1]_2 \end{cases} \rightarrow [1]_2 = [0]_2.$$

We conclude that $t^6 + t^3 + [1]_2$ is irreducible in $\mathbb{F}_2[t]$.

(h) We first note that the ring $\mathbb{Q}[x]$ is factorial, as \mathbb{Q} is (Theorem 3.8.1), and that $x \in \mathbb{Q}[x]$ is irreducible. Secondly the polynomial $y^4 + xy^3 + xy^2 + x^2y + 3x^2 - 2x \in \mathbb{Q}[x,y]$ is primitive, as its dominant coefficient is 1. We now apply Eisenstein with p = x to conclude that $y^4 + xy^3 + xy^2 + x^2y + 3x^2 - 2x$ is irreducible in $\mathbb{Q}[x,y]$.

Exercice 4.

Let
$$f(t) = t^4 + 4t^3 + 3t^2 + 7t - 4 \in \mathbb{Z}[t]$$
.

- (a) We have $\pi_2(f(t)) = t^4 + t^2 + t = t(t^3 + t + [1]_2) \in \mathbb{F}_2[t]$. Moreover, we remark that $t^3 + t + [1]_2$ is irreducible in $\mathbb{F}_2[t]$, as it does not admit roots in \mathbb{F}_2 .
- (b) We have $\pi_3(f(t)) = t^4 + t^3 + t [1]_3 = (t^2 + [1]_3)(t^2 + t [1]_3) \in \mathbb{F}_3[t]$.
- (c) Assume that f(t) is reducible in $\mathbb{Z}[t]$. Then either f(t) = (t a)g(t), where $a \in \mathbb{Z}$ and $g(t) \in \mathbb{Z}[t]$ is a polynomial of degree 3, or $f(t) = f_1(t)f_2(t)$, where $f_1(t), f_2(t) \in \mathbb{Z}[t]$ are two polynomials of degree 2.

In the first case, a|4 but none of the elements of $\{\pm 1, \pm 2, \pm 4\}$ are roots of f. Hence, we only need to consider the case when $f(t) = f_1(t)f_2(t)$, where $\deg(f_1(t)) = \deg(f_2(t)) = 2$, and we have:

$$\pi_2(f(t)) = \pi_2(f_1(t)f_2(t)) = \pi_2(f_1(t))\pi_2(f_2(t)).$$

Now, as $\deg(\pi_2(f(t))) = 4$ and as $\deg(\pi_2(f_1(t))) = \deg(\pi_2(f_2(t))) \le 2$, it follows that $\deg(\pi_2(f_1(t))) = 2$ and $\deg(\pi_2(f_2(t))) = 2$.

On the other hand, we have $\pi_2(f(t)) = t^4 + t^2 + t = t(t^3 + t + [1]_2)$, where $t^3 + t + [1]_2 \in \mathbb{F}_2[t]$ is irreducible. We have arrived at a contradiction. We conclude that $f(t) \in \mathbb{Z}[t]$ is irreducible.

1 Supplementary exercise

Exercice 5. (a) Recall that $f(t) \in F[[t]]^{\times}$, where $f(t) = \sum_{i=0}^{\infty} a_i t^i$, if and only if $a_0 \neq 0$ (Exercise

9, Series 1). We will show that every $f(t) \in F[[t]] \setminus \{0\}$ admits a unique decomposition into irreducible factors.

Consider $t \in F[[t]]$ and assume it is reducible. Then there exist $f(t), g(t) \in F[[t]], f(t) = \sum_{i=1}^{\infty} a_i t^i$ and $g(t) = \sum_{i=1}^{\infty} b_i t^j$ such that

$$t = \left(\sum_{i=1}^{\infty} a_i t^i\right) \left(\sum_{j=1}^{\infty} b_j t^j\right) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i b_j t^{i+j}.$$

But $\deg(t) = 1$ and $\deg(\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i b_j t^{i+j}) \ge 2$, which is a contradiction. Therefore $t \in F[[t]]$ is irreducible.

We will now show that, up to association, t is the unique irreducible element of F[[t]]. Let $f(t) \in F[[t]]$ be irreducible. We write $f(t) = \sum_{i=0}^{\infty} a_i t^i$ and, as f(t) is irreducible, it follows that f(t) is not invertible and so $a_i = 0$. Let $j \ge 1$ be such that $a_j \ne 0$ and $a_i = 0$ for all i < j. Then:

$$f(t) = t^{j}(a_{j} + \sum_{i=1}^{\infty} a_{j+i}t^{j+i}),$$

where $u = a_j + \sum_{i=1}^{\infty} a_{j+i} t^{j+i} \in (F[[t]])^{\times}$. If $j \geq 2$, then $f(t) = t \cdot t \cdot t^{j-2} \cdot u$, contradicting the irreducibility of f(t). It follows that j = 1 and thus $f(t) = t \cdot u$, where $u \in (F[[t]])^{\times}$. We conclude that $f(t) \sim t$.

Lastly, take $f(t) \in F[[t]]$, where $f(t) = \sum_{i=0}^{\infty} a_i t^i$, and let $i \ge 0$ be such that $a_i \ne 0$ and $a_j = 0$ for all j < i.

- If i = 0, then $f(t) \in (F[[t]])^{\times}$ and we are done.
- If i > 0, then

$$f(t) = t^{i}(a_{i} + \sum_{i=1}^{\infty} a_{i+j}t^{i+j}) = (\underbrace{t \cdot t \cdot \cdot \cdot t}_{i})(a_{i} + \sum_{i=1}^{\infty} a_{i+j}t^{i+j}) = (\underbrace{t \cdot t \cdot \cdot \cdot t}_{i})u$$

is a decomposition of f(t) into irreducible factors in F[[t]], where $u=a_i+\sum_{j=1}^{\infty}a_{i+j}t^{i+j}\in F[[t]]^{\times}$. It is clear that this decomposition is unique and so we conclude that F[[t]] is an

(b) Let $x^{2021} - t^{42} \in F[[t]][x]$. To begin with, we show that this polynomial has no roots in the fraction field F((t)). For if there was a root $f \in F((t))$, then by Sheet 1 Exercise 9 we can write $f = t^a u$ where $a \in \mathbb{Z}$ and $u \in (F[[t]])^{\times}$. Then we would have

$$t^{2021a} \cdot u^{2021} = t^{42} \quad \text{in } F((t))$$

which is a contradiction as 42 is not divisible by 2021. We conclude that $x^{2021} - t^{42}$ does not admit roots in F((t)).

We now assume that there exist $f(x), g(x) \in F[[t]][x]$ with $\deg(f(x)) \ge 2$ and $\deg(g(x)) \ge 2$ such that $x^{2021} - t^{42} = f(x)g(x)$.

We write the decomposition of $x^{2021} - t^{42}$ into linear factors

$$x^{2021} - t^{42} = (x - a_1) \cdots (x - a_{2021}),$$

where the a_i 's belong to some field extension of F((t)).

Since we have assumed that $x^{2021} - t^{42} = f(x)g(x)$ it follows that there exists some $2 \le n \le n$

2019 such that $f(x) = \prod_{i=1}^{n} (x - a_i)$. Let $a = a_1 \cdots a_n$ and we see that $a \in F[[t]]$ as it is, up

to sign, equal to the free coefficient of f(x). Now, as each a_i is a root of $x^{2021} - t^{42}$, we have that:

$$a^{2021} = (a_1 \cdots a_n)^{2021} = a_1^{2021} \cdots a_n^{2021} = t^{42 \cdot n}.$$

We distinguish two cases:

UFD.

• If gcd(2021, n) = 1, then there exist $c, d \in \mathbb{Z}$ such that 2021c + nd = 1. It follows that:

$$(a^d(t^{42})^c)^{2021} = a^{2021d}(t^{42})^{2021c} = (t^{42})^{nd}(t^{42})^{2021c} = (t^{42})^{2021c + nd} = t^{42}.$$

Thus $a^d(t^{42})^c \in F((t))$ is a root of $x^{2021} - t^{42}$, which is a contradiction.

• If gcd(2021, n) = e, where $e \in \{43, 47\}$, then there exist $c, d \in \mathbb{Z}$ such that 2021c + nd = e. It follows that:

$$(a^d(t^{42})^c)^{2021} = a^{2021d}(t^{42})^{2021c} = (t^{42})^{nd}(t^{42})^{2021c} = (t^{42})^{2021c + nd} = t^{42 \cdot e}.$$

If e=43, respectively e=47, then the polynomial $x^{2021}-t^{1806}\in F[[t]][x]$, respectively the polynomial $x^{2021}-t^{1974}\in F[[t]][x]$, admits a root in F((t)), which is a contradiction. (We argue as for $x^{2021}-t^{42}$ to show that neither $x^{2021}-t^{1806}$, nor $x^{2021}-t^{1974}$, admits roots in F((t)).)

We conclude that $x^{2021} - t^{42}$ is irreducible in F[[t]][x].

(c) In point (a) we have shown that F[[t]] is a factorial ring. Therefore, by Theorem 3.8.1, it follows that F[[t]][y] is also factorial. We note that the polynomial $x^{2021} + y^{2021} - t^{42} \in F[[t]][y][x]$ is primitive as its dominant coefficient is equal to 1. By point (b) we have that $y^{2021} - t^{42}$ is an irreducible polynomial in F[[t]][y]. We argue using Eisenstein for $p = y^{2021} - t^{42}$ to conclude that $x^{2021} + y^{2021} - t^{42}$ is irreducible in F[[t]][x, y].