Computational Data mining

Fatemeh Mansoori

These slides are bases on the slides for course CS 363D by Prof. Pradeep Ravikumar anf for course CX4242 by Mahdi Roozbahani

Matrices

• A matrix $A \in \mathbb{R}^{m \times n}$ can also be viewed as a linear transformation:

$$A: \mathbb{R}^n \mapsto \mathbb{R}^m$$

$$x \mapsto Ax$$

$$\alpha x + \beta y \mapsto A(\alpha x + \beta y) = \alpha Ax + \beta Ay \quad \text{: Linear Transformation}$$

Vector Space Model for Documents

- Extract all unique words, ignoring case
- Eliminate **stop-words**: "a", "and", "the", ...
- Eliminate non-content-bearing high-frequency and low-frequency words (using heuristic criteria)
-
- For each document, count no. of occurrences of each word

Vector Space Model for Documents

- Extract all unique words, ignoring case
- Eliminate stop-words: "a", "and", "the", ...
- Eliminate non-content-bearing high-frequency and low-frequency words (using heuristic criteria)
- Extract word phrases ("New York")
- Reduce words to their root/stem (eliminating plurals, tenses, pre/suffixes)
- Assign a unique integer between 1 and w to remaining w words
- For each document, count no. of occurrences of each word

Vector Space Model for Documents

 $\bullet \ A_{ji} = t_{ji} \times g_j \times s_i$

 t_{ji} : doc-term frequency; no. of times word j in document i

 g_j : importance of word i in entire document collection; e.g. $\log \frac{d}{d_j}$, where d_j is no. of documents that contains word j

$$s_i = 1/\sqrt{\sum_{j=1}^{w} (t_{ji}g_j)^2}$$
: normalization for document *i*.

• Note that columns of A are normalized: $||a_i||_2 = 1$.

TF-IDF

A word's importance score in a document, among N documents

When to use it? Everywhere you use "word count", you can likely use TF-IDF.

TF: term frequency

= #appearance a document
(high, if terms appear many times in this document)

IDF: inverse document frequency

= log(N / #document containing that term) (penalize "common" words appearing in almost any documents)

Final score = TF * IDF

(higher score → more "characteristic")

Query

 A^Tq : Scores of documents with respect to query

Query Retrieval

A^Tq: Scores of documents with respect to query

Caveats with using word-document matrix

• **Size:** Even after pruning and following pre-processing steps outlined earlier, the number of words would be in the tens of thousands

• Word Senses:

- Synonymy: different words have similar meaning e.g. searching for MRI, or "Magnetic Resonance Imaging"
- ► Polysemy: One words may have different meanings depending on context e.g. "mining" could refer to "data mining" or "coal mining"

Caveats with using word-document matrix

- Imagine that we could convert word-document matrix, into an ideal "semantic term" - document matrix
- Imagine that given a query (which like a document is a set of words), we can convert it into a set of "semantic terms"
 - ► Then we could compute query-document similarities as before
 - We humans do this all the time
 - Think of this ideal "semantic term" document matrix as "approximating" our word-document matrix

How Good is my Matrix Approximation?

- Bill Gates, Lord Kelvin: You can't really make progress unless you can measure!
- Suppose I want to approximate a matrix A by another matrix B.
 - ► How good is B as an approximation?
 - ► Matrices also have norms || A ||
 - ▶ Use a matrix norm to measure approximation error: || A-B ||
 - ► A popular matrix norm is the Frobenius norm:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

How do I Approximate my Matrix?

A popular way to approximate a big matrix: Low-rank Approximation

Best Low-rank Approximation

- Given A, and k, what is the best rank-k approximation?
- Find matrices B, C of rank-k which solve:

$$\min_{B,C} \|A - BC^T\|_F.$$

• Solution is given by SVD: Singular Value Decomposition of A

SVD; Singular Value Decomposition

Low-Rank Approximation Using SVD

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \end{bmatrix}$$

where
$$U_k^T U_k = I$$
, $V_k^T V_k = I$, and

$$\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_k$$
.

Low-Rank Approximation Using SVD

Low-Rank Approximation Using SVD

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \end{bmatrix}$$

Important Result: Among all rank-k approximations of A, the best is A_k :

$$\min_{B: \operatorname{rank}(B) \le k} ||A - B||_F \leftarrow \min_{B: \operatorname{rank}(B) \le k} ||A - B||_F \leftarrow \min_{B: \operatorname{rank}(B) \le k} ||A - B||_F$$

Latent Semantic Indexing (LSI)

$$\mathbf{A}_{k} = \mathbf{U}_{k} \mathbf{\Sigma}_{k} \mathbf{V}_{k}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{1}, \mathbf{u}_{2}, \cdots \mathbf{u}_{k} \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & \cdots & 0 \\ 0 & \sigma_{2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{k} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{k}^{T} \end{bmatrix}$$

- Use A_k instead of A for computing query-document similarities.
- Use $A_k^T q$ instead of $A^T q$.

LSI Contd.

Note that
$$\mathbf{A}_k^T \mathbf{q} = (\mathbf{V}_k \mathbf{\Sigma}_k) \left(\mathbf{U}_k^T \mathbf{q} \right)$$
.
$$\mathbf{U}_k^T \mathbf{q} = \begin{bmatrix} \mathbf{u}_1^T \mathbf{q} \\ \mathbf{u}_2^T \mathbf{q} \\ \vdots \\ \mathbf{u}_k^T \mathbf{q} \end{bmatrix}$$

- Each component $u_i^T q$ of the vector $U_k^T q$ is the **projection** of query vector q onto the singular vector u_i .
- The w-dimensional query vector q is reduced to k dimensions
- The singular vectors $(u_i$'s) do not span all possible documents, but span "important" part of the space

LSI Contd.

Note that
$$\mathbf{A}_k^T \mathbf{q} = (\mathbf{V}_k \mathbf{\Sigma}_k) (\mathbf{U}_k^T \mathbf{q}).$$

$$A = U_k \Sigma_k V_k^T + U_{w-k} \Sigma_{w-k} V_{w-k}^T$$
$$U_k^T A = \Sigma_k V_k^T \qquad \dots \qquad U \text{ is orthonormal}$$

- Thus, $V_k\Sigma_k$ is the projection of the documents (columns of A) onto U_k .
- So that $A_k^T q = (V_k \Sigma_k)(U_k^T q)$ can be interpreted as dot-product between projected documents and projected query!

LSI: Alternatively

- 1. For the entire document collection, form $V_k \Sigma_k$.
- 2. For a new query \mathbf{q} , form $\mathbf{U}_k^T \mathbf{q}$.
- 3. Compute $\mathbf{z} = (\mathbf{V}_k \mathbf{\Sigma}_k)(\mathbf{U}_k^T \mathbf{q})$ and return the document *i* with large \mathbf{z}_i values as being the most relevant.

Term-Doc. Matrix (Vector Space Model)

Documents

Terms	c1	c2	c 3	c4	c5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

A: Nine document vectors, each in a 12 dimensional word space

Documents projected onto 1st two sing. vectors

Words projected onto same two right sing. vectors

Words projected on 2-D space from A

An other look in LSI

Latent Semantic Indexing (LSI)

We want to find the A^Tq

A is term-document matrix so A^T is document-term matrix

document-term matrix

	data	system	retireval	lung	ear
doc1	1	1	1		
doc2	1	1	1		
doc3				1	1
doc4				1	1

SVD - Example m m n CS MD concept concept **Diagonal matrix** m terms Diagonal entries: r concepts concept strengths n documents n documents r concepts m terms 0.18 0 0 "strength" of CS-concept data into retieval 0.36 0 ()0.18 0 ()0 CS 9.64 0.58 0.58 0.58 concept 0.90 5 5 5 0 X X MD 5.29 0.71 0.71 concept 2 0 0.53 term-concept 3 0.80 3 similarity matrix 0.27 0

document-concept similarity matrix

Singular values plot

determining the optimal number of dimensions

- actual number of dimensions that can be used is limited by the number of documents in the collection
- around 300 dimensions will usually provide the best results with moderate-sized document collections (hundreds of thousands of documents)
- 400 dimensions for larger document collections (millions of documents)
- When LSI topics are used as features in supervised learning methods, one can use prediction error measurements to find the ideal dimensionality.

SVD - Interpretation #1

'documents', 'terms' and 'concepts':

U: document-concept similarity matrix

V: term-concept similarity matrix

Λ: diagonal elements: concept "strengths"

SVD - Interpretation #1

'documents', 'terms' and 'concepts': Q: if **A** is the document-to-term matrix,

what is the similarity matrix $\mathbf{A}^{\mathsf{T}} \mathbf{A}$?

A:

 $Q: A A^T$?

A:

SVD -Interpretation #2

More details

Q: how exactly is dim. reduction done?

A: set the smallest singular values to zero

						0.18	0									
1	1	1	0	0		0.36	0									
2	2	2	0	0		0.40	0									
1	1	1	0	0		0.18	0		9.64	0		0.58	0.58	0.58	0	0
5	5	5	0	0	=	0.90	0	Х	0.01		Х	0.00	0.00	0.00		
0	0	0	2	2			0.50		0	5 9		0	0	0	0.71	0.71
0	0	0	3	3		0	0.53			the same of						
0	0	0	1	1		0	0.80									
						0	0.27									

SVD -Interpretation #2

More details

Q: how exactly is dim. reduction done?

A: set the smallest singular values to zero

SVD -Interpretation #2

More details

Q: how exactly is dim. reduction done?

A: set the smallest singular values to zero

1	1	1	0	0		1	1	1	0	0
2	2	2	0	0		2	2	2	0	0
1	1	1	0	0		1	1	1	0	0
5	5	5	0	0	~	5	5	5	0	0
0	0	0	2	2		0	0	0	0	0
0	0	0	3	3		0	0	0	0	0
0	0	0	1	1		0	0	0	0	0

Case Study How to do queries with LSI?

Case Study How to do queries with LSI?

For example, how to find documents with 'data'? A: map query vectors into 'concept space' – how?

Evaluation

Confusion Matrix

Actual Values

		Positive (1)	Negative (0)
Predicted Values	Positive (1)	TP	FP
Predicte	Negative (0)	FN	TN

Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

- Accuracy is useful when the target class is well balanced but is not a good choice for the unbalanced classes.
- scenario where we had 99 images of the dog and only 1 image of a cat present in our training data
 - our model would always predict the dog, and therefore we got 99% accuracy.

Precision and Recall

- Precision
 - defined as the number of true positives divided by the number of predicted positives.
- False Positive is a higher concern than False Negatives.

$$Precision = \frac{TruePositive}{TruePositive + FalsePositive}$$

- Recall (Sensitivity)
 - defined as the number of true positives divided by the total number of actual positives.
- False Negative is of higher concern than False Positive

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative}$$

Precision/Recall Tradeoff

F measure

The F1 score is easily one of the most reliable ways to score how well a classification model performs. It is the weighted average of precision and recall

$$F = rac{2 \cdot ext{precision} \cdot ext{recall}}{(ext{precision} + ext{recall})}$$

Receiver-Operator Curve (ROC Curve) and Area Under the Curve (AUC)

- plots the TPR(True Positive Rate) against the FPR(False Positive Rate) at various threshold values
- Area Under the Curve (AUC) is the measure of the ability of a classifier to distinguish between classes.

Evaluation in information retrieval

$$precision = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{retrieved\ documents\}|}$$

$$recall = \frac{|\{relevant\ documents\} \cap \{retrieved\ documents\}|}{|\{relevant\ documents\}|}$$

Recall@k

- Number of TP in the first k retrieved documents divided by the number of all positives
- K refers to the number of items returned by the IR system

Precision@k

Number of TP in the first k retrieved documents divided by the k