Introduction to Probability

Review: data and distributions

- Central tendency is important...
- ...But in statistics, variance is more important
- Visualization of data can help us understand the distribution of a variable

Probability

- What is my chance of winning the lottery?
- Will I die in a plane crash?
- Will it rain today?
- Will I win this game of Chutes & Ladders?

```
# successes
# events
```

• If I flip a quarter, what is the probability that it will land on *Heads*?

• If a mother has three girls, what is the probability that the fourth child will be a girl?

• The probability that some event A happens, given (or "conditional upon") the occurrence of some other event B.

• What is the probability that I flip a Quarter two times and *both times* it lands on *Tails*?

$$\frac{1 \text{ Tails}}{2 \text{ Sides}} * \frac{1 \text{ Tails}}{2 \text{ Sides}} = 25\%$$

• Four possible outcomes:

HH HT TH TT

- 10% of employees are stealing (but we don't know which 10%)
- A lie-detector test is 80% accurate
- What is the probability that someone who is found to be stealing is actually doing so?

Natural Frequencies

Say you choose a base of 100...

Natural Frequencies

Say you choose a base of 100...

8 Caught

2 Not caught

18 False Positive

72 Cleared

Bayes' Theorem

$$\frac{0.80*0.10}{(0.80*0.10) + (0.20*0.90)} = 0.308$$

- Among women aged 40-50, with no symptoms or family history of breast cancer:
 - The probability that she has breast cancer is 0.8%
 - If a woman has breast cancer, the probability is 90% that she will have a positive mammogram
 - If a woman does not have breast cancer, the probability is 7% that she will still have a positive mammogram
- What is the probability that a woman who tests positive for breast cancer actually has breast cancer?

• What is the probability of this happening?

Two Games of Chutes & Ladders

Two Games of Chutes & Ladders

Number of Wins	Results	Number of Ways	Probability
0	LL	1	25%
1	L W W L	2	50%
2	WW	1	25%

Four Games of Chutes & Ladders

Four Games of Chutes & Ladders

Number of Wins	Results	Number of Ways	Probability
0	LLLL	1	6.25%
1	W	4	25%
2	W W L L W L W L W L L W L L W W L W L W L W W L	6	37.5%
3	LWWW WLWW WWLW WWWL	4	25%
4	www	1	6.25%

Probability for Multiple Combinations

- $\mathbf{n} = \text{number of events}$
- **x** = number of 'successes' within the event

Probability for Multiple Combinations

$$2^n x!(n-x)!$$

If we play 4 games (**n=4**), the probability of any combination of 2 wins (**x=2**) would be calculated as:

- $\mathbf{n} = \text{number of events}$
- **x** = number of 'successes' within the event

$$4! / (24*2!*(4-2)!)$$
= 4! / (16 * 2 * 2)
= 24 / 64
= 0.375 or 37.5%

100 Games of Chutes & Ladders

The Normal Distribution

Probability & Statistics

• In statistics, we estimate the probability that the data would be at least as extreme as those observed if there were no effect in the population.

Next Class

• Sampling Distribution

Review

- Probability estimates the likelihood of some random occurrence
- In practice, we use probability distributions

a)

Т	Н	Н	Н	Н	Т	Т	Т	Т	Н
T	Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	Н	Т	Т	Н	Т	Н	Т	Н
Н	Т	Т	Т	Т	Т	Т	Н	Н	Н
Н	Н	Н	Т	Н	Т	Н	Т	Т	Н
Т	Т	Н	Н	Н	Н	Н	Т	Н	Т
Т	Т	Т	Н	Н	Н	Т	Н	Т	Н
Н	Н	Т	Н	Т	Т	Т	T	Т	Н
Н	Т	Т	Т	Н	Н	Т	Η	Н	Т
T	Н	Т	Н	Н	Т	Н	Т	Т	Т

b)

Н	Т	Н	Т	Н	Т	Т	Н	Т	Н
Н	Т	Т	Н	Н	Т	Н	Т	Н	T
Н	Н	Н	Т	Н	Т	Н	Н	Т	Н
Н	Т	Т	Т	Н	Н	Н	Т	Т	Н
Н	Н	Т	Т	Т	Н	Т	Т	Т	Τ
Т	Н	Н	Н	Н	Т	Т	Т	Н	Н
Н	Т	Т	Н	Т	Н	Т	Т	Н	Н
Т	Т	Н	Н	Н	Т	Т	Т	Н	Τ
Н	Т	Т	Т	Н	Н	Н	Т	Т	Н
Н	Т	Н	Т	Н	Т	Т	Н	Т	Н

c)

Т	Т	Н	Т	Н	Т	Н	Н	Н	Н
Т	Н	Т	Н	Н	Т	Т	Н	Т	Н
Н	Н	Н	Н	Т	Н	Т	Н	Т	Т
Т	Т	Т	Т	Н	Т	Н	Т	Н	Т
Н	Н	Н	Т	Т	Н	Т	Н	Н	Т
Н	Н	Т	Н	Т	Т	Н	Т	Н	Н
Т	Т	Т	Т	Н	Т	Т	Т	Т	Т
Н	Т	Т	Н	Н	Т	Н	Н	Т	Н
Н	Т	Н	Н	Н	Н	Т	Т	Н	Т
Т	Т	Н	Н	Т	Н	Н	Т	Т	Т

d)

Н	Т	Н	Н	Т	Т	Т	Н	Т	Т
Н	Н	Н	Т	Н	Τ	Т	Т	Т	Н
T	Н	Т	Т	Т	Т	Т	Н	Т	Т
Н	Н	Т	Т	Н	Т	Н	Н	Н	Н
Т	Н	Т	Н	Т	Н	Н	Т	Т	Н
<u>H</u>	Т	Н	Н	Н	Т	Н	Н	Т	Т
<u>H</u>	Н	Т	Т	Н	Т	Н	Т	Н	Н
Н	Т	Т	Т	Н	Н	Н	Т	Т	Н
Т	Н	Т	Т	Н	Ι	Т	Ι	Т	Н
Н	Т	Т	Т	Т	Т	Т	Т	Н	Т