Vikash Kumar Maheshwari

Project-Loan Case Study

Description:

This case study aims to give you an idea of applying EDA in a real business scenario. In this case study, apart from applying the techniques that you have learnt in the EDA module, you will also develop a basic understanding of risk analytics in banking and financial services and understand how data is used to minimize the risk of losing money while lending to customers.

Approach:

Firstly we will go through the data and check the missing data or null one. After that we will remove the outliers and using charts we will show our results.

Tech-Stack Used :

Pvthon

With the help of Google colab we have analyze and EDA on our dataset

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

df = pd.read_csv('appdata.csv', on_bad_lines='skip')
```

Insights

1. Cleaning the data

```
(387511, 122)

app-df.drop(['DAYS_REGISTRATION', 'FLAG_MOBIL', 'FLAG_EMP_PHONE', 'FLAG_MORK_PHONE',

"FLAG_CONT_MOBILE', 'FLAG_PHONE', 'FLAG_EMAIL', 'MERCADY_APPR_PROCESS_START', 'HOUR_APPR_PROCESS_START', 'LIVE_REGION_NOT_MORK_REGION',

"REG_CITY_NOT_LIVE_CITY', 'REG_CITY_MOT_MORK_CITY', 'LIVE_CITY_NOT_MORK_CITY', 'DAYS_LAST_PHONE_CHANGE',

"OSB_S_BC_ENT_SOCIAL_CIRACLE', 'MERC_GENT_SOCIAL_CIRCLE', 'OBS_GO_CNT_SOCIAL_CIRCLE', 'OBF_GO_CNT_SOCIAL_CIRCLE', 'NAME_TYPE_SUITE',

"OMN_CAR_AGE', 'OCCUPATION_TYPE', 'EXT_SOUNCE_1',

"YEARS_BEGINEXPLUATATION_ANG', 'YEARS_BUILD_AVG',

"COMMONAREA_VG', 'BLOOSHIN_AVG', 'LANDAREA_AVG',

"LIVINGAPARTHENTS_AVG', 'LUTUNGAREA_ANG',

"NONLITYINGAPARTHENTS_AVG', 'LUTUNGAREA_ANG',

"YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE',

"YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE',

"YEARS_BEGINEXPLUATATION_MODE', 'YEARS_BUILD_MODE',

"LUTUNGAPARTHENTS_MODE', 'LUTUNGAREA_MODE',

"NONLITYINGAPARTHENTS_MODE', 'LUTUNGAREA_MODE',

"NONLITYINGAPARTHENTS_MODE', 'LUTUNGAREA_MODE',

"NONLITYINGAPARTHENTS_MODE', 'NONLITYINGAREA_MODE',

"NONLITYINGAPARTHENTS_MODE', 'NONLITYINGAREA_MODE',

"LUTUNGAPARTHENTS_MODE', 'NONLITYINGAREA_MODE',

"NONLITYINGAPARTHENTS_MODE', 'NONLITYINGAREA_MODE',

"LUTUNGAPARTHENTS_MODE', 'NONLITYINGAREA_MODE',

"ANARTHENTS_MODE', 'LUTUNGAREA_MODE',

"ANARTHENTS_MODE', 'NONLITYINGAREA_MODE',

"ANARTHENTS_MODE', 'NONLITYINGAREA, MODE',

"ANARTHENTS_MODE', 'NONLITYINGAREA, MODE',

"A
```

```
SK ID CURR
TARGET
NAME_CONTRACT_TYPE
CODE_GENDER
FLAG_OWN_CAR
FLAG_OWN_REALTY
CNT_CHILDREN
AMT_INCOME_TOTAL
AMT_CREDIT
AMT_ANNUITY
AMT GOODS PRICE
NAME_INCOME_TYPE
NAME_EDUCATION_TYPE
NAME_FAMILY_STATUS
NAME_HOUSING_TYPE
REGION_POPULATION_RELATIVE
DAYS_BIRTH
DAYS_EMPLOYED
DAYS_ID_PUBLISH
CNT_FAM_MEMBERS
REGION_RATING_CLIENT
REGION_RATING_CLIENT_W_CITY
REG_REGION_NOT_LIVE_REGION
REG REGION NOT WORK REGION
ORGANIZATION_TYPE
EXT_SOURCE_2
EXT_SOURCE_3
                                                 60965
FLAG_DOCUMENT_2
FLAG_DOCUMENT_3
FLAG DOCUMENT 4
 FLAG_DOCUMENT_5
FLAG DOCUMENT 6
FLAG_DOCUMENT_7
```

```
FLAG DOCUMENT 11
        FLAG_DOCUMENT_12
FLAG_DOCUMENT_13
        FLAG DOCUMENT 14
        FLAG_DOCUMENT_15
FLAG_DOCUMENT_16
        FLAG DOCUMENT 17
        FLAG_DOCUMENT_18
FLAG_DOCUMENT_19
        FLAG_DOCUMENT_20
FLAG_DOCUMENT_21
        AMT_REQ_CREDIT_BUREAU_HOUR
AMT_REQ_CREDIT_BUREAU_DAY
                                                           41519
                                                           41519
       AMI_REQ_CREDIT_BUREAU_DAY
AMT_REQ_CREDIT_BUREAU_WEEK
AMT_REQ_CREDIT_BUREAU_MON
AMT_REQ_CREDIT_BUREAU_QRT
AMT_REQ_CREDIT_BUREAU_YEAR
dtype_3_credit_bureau_YEAR
                                                           41519
                                                           41519
                                                           41519
        dtype: int64
missing_rows = app[app.isnull().any(axis=1)]
appl = app.dropna(axis=0)
appl.head()
             SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER FLAG_OWN_CAR FLAG_OWN_REALTY CNT_C
                                         1
                                                             Cash loans
                                                                                              М
                                                                                                                     Ν
         2
                     100004
                                         0
                                                                                             М
                                                                                                                     Υ
                                                      Revolving loans
                     100008
                                         0
                                                       Cash loans
                                                                                             M
                                                                                                                     Ν
                                                                                                                                                Υ
                     100009
                                         0
                                                         Cash loans
                                                                                             F
                                                                                                                    Υ
                                         0
                    100010
                                                         Cash loans
        5 rows × 53 columns
appl.shape
        (245895, 53)
appl.isnull().sum()

    SK_ID_CURR

       TARGET
NAME_CONTRACT_TYPE
        CODE_GENDER
FLAG_OWN_CAR
FLAG_OWN_REALTY
        CNT_CHILDREN
AMT_INCOME_TOTAL
        AMT_CREDIT
AMT_ANNUITY
        AMT GOODS PRICE
        NAME_INCOME_TYPE
NAME_EDUCATION_TYPE
        NAME_FAMILY_STATUS
NAME_HOUSING_TYPE
REGION_POPULATION_RELATIVE
       DAYS_BIRTH
DAYS_EMPLOYED
        DAYS ID PUBLISH
        CNT_FAM_MEMBERS
REGION_RATING_CLIENT
        REGION_RATING_CLIENT_W_CITY
REG_REGION_NOT_LIVE_REGION
        REG_REGION_NOT_WORK_REGION
       REG_REGION_NOT_WO
ORGANIZATION_TYPE
EXT_SOURCE_2
EXT_SOURCE_3
FLAG_DOCUMENT_2
FLAG_DOCUMENT_3
        FLAG_DOCUMENT_4
FLAG_DOCUMENT_5
        FLAG DOCUMENT 6
        FLAG_DOCUMENT_7
FLAG_DOCUMENT_8
        FLAG_DOCUMENT_9
FLAG_DOCUMENT_10
FLAG_DOCUMENT_11
        FLAG_DOCUMENT_12
FLAG_DOCUMENT_13
        FLAG DOCUMENT 14
        FLAG_DOCUMENT_15
FLAG_DOCUMENT_16
        FLAG_DOCUMENT_17
FLAG_DOCUMENT_18
        FLAG DOCUMENT 19
        FLAG_DOCUMENT_20
FLAG_DOCUMENT_21
        AMT_REQ_CREDIT_BUREAU_HOUR
AMT_REQ_CREDIT_BUREAU_DAY
AMT_REQ_CREDIT_BUREAU_WEEK
       AMT_REQ_CREDIT_BUREAU_MON
AMT_REQ_CREDIT_BUREAU_QRT
AMT_REQ_CREDIT_BUREAU_YEAR
dtype: int64
appl.info()
        Data columns (total 53 columns):
                                                                Non-Null Count
                                                                                           Dtype
               SK_ID_CURR
TARGET
NAME_CONTRACT_TYPE
                                                                245895 non-null
245895 non-null
         0
                                                                                           int64
                                                                                           int64
                                                                245895 non-null
                                                                                           object
                CODE_GENDER
FLAG_OWN_CAR
                                                               245895 non-null
245895 non-null
                                                                                            object
                                                                                           object
                FLAG_OWN_REALTY
CNT_CHILDREN
                                                                245895 non-null
245895 non-null
                                                                                           object
int64
```

FLAG_DOCUMENT_8 FLAG_DOCUMENT_9 FLAG_DOCUMENT_10

AMT_INCOME_TOTAL
AMT_CREDIT
AMT_ANNUITY

245895 non-null

245895 non-null 245895 non-null float64

```
NAME_EDUCATION
                                                                                                           245895 NON-NULL
              NAME_FAMILY_STATUS
NAME_HOUSING_TYPE
REGION_POPULATION_RELATIVE
                                                                                                     245895 non-null
245895 non-null
245895 non-null
                                                                                                                                                             object
object
   13
   14
15
               DAYS_BIRTH
DAYS_EMPLOYED
                                                                                                         245895 non-null
245895 non-null

        DAYS_EMPLOYED
        249895 non-null

        DAYS_ID_PUBLISH
        245895 non-null

        CNT_FAM_MEMBERS
        245895 non-null

        REGION_RATING_CLIENT
        245895 non-null

        REGION_RATING_CLIENT_W_CITY
        245895 non-null

        REG_REGION_NOT_LIVE_REGION
        245895 non-null

        REG_REGION_NOT_WORK_REGION
        245895 non-null

        245895 non-null
        245895 non-null

   18
19
20
21
                                                                                                                                                               int64
                                                                                                                                                              float64
int64
                                                                                                                                                               int64
    22
23
                                                                                                                                                              int64
               ORGANIZATION_TYPE
EXT_SOURCE_2
EXT_SOURCE_3
                                                                                                                                                              object
float64
float64
                                                                                                           245895 non-null
245895 non-null
   24
25
26
27
28
                                                                                                          245895 non-null
               FLAG_DOCUMENT_2
FLAG_DOCUMENT_3
                                                                                                          245895 non-null
245895 non-null
               FLAG_DOCUMENT_4
FLAG_DOCUMENT_5
                                                                                                         245895 non-null
245895 non-null
              FLAG_DOCUMENT_5
FLAG_DOCUMENT_7
FLAG_DOCUMENT_8
FLAG_DOCUMENT_9
FLAG_DOCUMENT_10
FLAG_DOCUMENT_11
    31
32
33
                                                                                                         245895 non-null
                                                                                                                                                               int64
                                                                                                        245895 non-null
245895 non-null
245895 non-null
    34
35
36
                                                                                                                                                               int64
                                                                                                         245895 non-null
245895 non-null
                                                                                                                                                              int64
int64
    37
38
39
               FLAG_DOCUMENT_12
FLAG_DOCUMENT_13
FLAG_DOCUMENT_14
                                                                                                         245895 non-null
                                                                                                                                                              int64
int64
                                                                                                        245895 non-null
245895 non-null
                                                                                                                                                              int64
               FLAG_DOCUMENT_15
FLAG_DOCUMENT_16
                                                                                                         245895 non-null
245895 non-null
   42
43
44
               FLAG_DOCUMENT_17
FLAG_DOCUMENT_18
FLAG_DOCUMENT_19
                                                                                                         245895 non-null
245895 non-null
245895 non-null
                                                                                                                                                              int64
int64
int64
44 FLAG_DOCUMENT_19 245895 r
45 FLAG_DOCUMENT_20 245895 r
46 FLAG_DOCUMENT_21 245895 r
47 AMT_REQ_CREDIT_BUREAU_DAY 245895 r
48 AMT_REQ_CREDIT_BUREAU_DAY 245895 r
49 AMT_REQ_CREDIT_BUREAU_MEEK 245895 r
50 AMT_REQ_CREDIT_BUREAU_MEEK 245895 r
51 AMT_REQ_CREDIT_BUREAU_QRT 245895 r
52 AMT_REQ_CREDIT_BUREAU_QRT 245895 r
52 AMT_REQ_CREDIT_BUREAU_YEAR 245895 r
dtypes: float64(14), int64(30), object(9)
memory usage: 101.3+ MB
                                                                                                          245895 non-null
245895 non-null
                                                                                                                                                              int64
int64
                                                                                                         245895 non-null
                                                                                                                                                                float64
                                                                                                         245895 non-null
245895 non-null
245895 non-null
                                                                                                                                                              float64
float64
                                                                                                                                                               float64
                                                                                                         245895 non-null float64
245895 non-null float64
```

appl.describe()

	SK_ID_CURR	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNU
count	245895.000000	245895.000000	245895.000000	2.458950e+05	2.458950e+05	245895.000
mean	278186.442091	0.077667	0.424262	1.720402e+05	6.084651e+05	27186.262
std	102823.258275	0.267648	0.726667	2.568701e+05	4.048787e+05	14333.483
min	100002.000000	0.000000	0.000000	2.610000e+04	4.500000e+04	1615.500
25%	189031.500000	0.000000	0.000000	1.125000e+05	2.745000e+05	16677.00
50%	278111.000000	0.000000	0.000000	1.575000e+05	5.212800e+05	25015.500
75%	367241.000000	0.000000	1.000000	2.025000e+05	8.140410e+05	34767.000
max	456255.000000	1.000000	19.000000	1.170000e+08	4.050000e+06	258025.50

Insights

2. Identify if there are outliers in the dataset

```
Q1 = appl.quantile(0.25)
Q3 = appl.quantile(0.75)
IQR = Q3 - Q1
print(IQR)
```

SK_ID_CURR	178209.500000
TARGET	0.000000
CNT_CHILDREN	1.000000
AMT_INCOME_TOTAL	90000.000000
AMT_CREDIT	539541.000000
AMT_ANNUITY	18090.000000
AMT_GOODS_PRICE	450000.000000
REGION POPULATION RELATIVE	0.018657
DAYS_BIRTH	7125.000000
DAYS_EMPLOYED	2577.000000
DAYS_ID_PUBLISH	2503.000000
CNT_FAM_MEMBERS	1.000000
REGION RATING CLIENT	0.000000
REGION RATING CLIENT W CITY	0.000000
REG REGION NOT LIVE REGION	0.000000
REG REGION NOT WORK REGION	0.000000
EXT_SOURCE_2	0.264126
EXT_SOURCE_3	0.298407
FLAG_DOCUMENT_2	0.000000
FLAG_DOCUMENT_3	1.000000
FLAG_DOCUMENT_4	0.000000
FLAG_DOCUMENT_5	0.000000
FLAG_DOCUMENT_6	0.000000
FLAG_DOCUMENT_7	0.000000
FLAG_DOCUMENT_8	0.000000
FLAG_DOCUMENT_9	0.000000
FLAG_DOCUMENT_10	0.000000
FLAG_DOCUMENT_11	0.000000
FLAG_DOCUMENT_12	0.000000
FLAG_DOCUMENT_13	0.000000
FLAG_DOCUMENT_14	0.000000
FLAG_DOCUMENT_15	0.000000
FLAG_DOCUMENT_16	0.000000
FLAG_DOCUMENT_17	0.000000
FLAG_DOCUMENT_18	0.000000
FLAG_DOCUMENT_19	0.000000
FLAG_DOCUMENT_20	0.000000
FLAG_DOCUMENT_21	0.000000
AMT_REQ_CREDIT_BUREAU_HOUR	0.000000
AMT_REQ_CREDIT_BUREAU_DAY	0.000000
AMT_REQ_CREDIT_BUREAU_WEEK	0.000000
AMT_REQ_CREDIT_BUREAU_MON	0.000000
AMT_REQ_CREDIT_BUREAU_QRT	0.000000
AMT_REQ_CREDIT_BUREAU_YEAR	3.000000
dtype: float64	

```
# Box plot for continuious variable
plt.figure(figsize=(14,4))
sns.boxplot(appl['EXT_SOURCE_2'])
plt.show()
```



```
plt.figure(figsize=(12,4))
sns.boxplot(appl['AMT_GOODS_PRICE'])
plt.show()
```

```
1e6
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
```

 $appl[numeric_columns] = appl[numeric_columns] . apply(pd.to_numeric)$

```
# For xna Code Gender column
print('CODE_GENDER: ',app1['CODE_GENDER'].unique())
print('No of values: ',app1[app1['CODE_GENDER']=='XNA'].shape[0])
XNA_count = appl[appl['CODE_GENDER']=='XNA'].shape[0]
per_XNA = round(XNA_count/len(appl.index)*100,3)
print('% of XNA Values:', per_XNA)
print('maximum frequency data :', appl['CODE_GENDER'].describe().top)
    CODE_GENDER: ['M' 'F' 'XNA']
No of values: 4
     % of XNA Values: 0.002
     maximum frequency data : F
\mbox{\tt\#} Dropping the XNA value in column 'CODE_GENDER' with "F" for the dataset
appl = appl.drop(appl.loc[appl['CODE_GENDER']=='XNA'].index)
{\tt appl[appl['CODE\_GENDER'] == 'XNA'].shape}
     (0, 53)
# For Organization column
print('No of XNA values: ', appl[appl['ORGANIZATION_TYPE']=='XNA'].shape[0])
XNA_count = appl[appl['ORGANIZATION_TYPE']=='XNA'].shape[0]
per_XNA = round(XNA_count/len(appl.index)*100,3)
print('% of XNA Values:', per_XNA)
appl['ORGANIZATION_TYPE'].describe()
     No of XNA values: 44176
     % of XNA Values: 17.966
     count
     unique
                                  58
    top
freq
              Business Entity Type 3 53625
    Name: ORGANIZATION_TYPE, dtype: object
# Casting variable into numeric in the dataset
```

	TARGET	CNT_CHILDREN	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	REGION_POF
count	245891.000000	245891.000000	2.458910e+05	2.458910e+05	245891.000000	
mean	0.077669	0.424257	1.720400e+05	6.084685e+05	27186.379601	
std	0.267650	0.726665	2.568721e+05	4.048809e+05	14333.557448	
min	0.000000	0.000000	2.610000e+04	4.500000e+04	1615.500000	
25%	0.000000	0.000000	1.125000e+05	2.745000e+05	16677.000000	
50%	0.000000	0.000000	1.575000e+05	5.212800e+05	25015.500000	
75%	0.000000	1.000000	2.025000e+05	8.140410e+05	34767.000000	
max	1.000000	19.000000	1.170000e+08	4.050000e+06	258025.500000	

```
# Box plot for selected columns
features = ['CNT_CHILDREN', 'AMT_INCOME_TOTAL','AMT_CREDIT','AMT_ANNUITY','DAYS_EMPLOYED',]

plt.figure(figsize = (20, 15), dpi=300)
for i in enumerate(features):
    plt.subplot(3, 2, i[0]+1)
    sns.boxplot(x = i[1], data = appl)
plt.show()
```


Count of target0_df: 226793 Count of target1_df: 19098


```
# Dividing the dataset into two dataset of target=1(client with payment difficulties) and target=0(all other)

target0_df=appl.loc[appl["TARGET"]==0]

target1_df=appl.loc[appl["TARGET"]==1]

# insights from number of target values

percentage_defaulters= round(100*len(target1_df)/(len(target0_df)+len(target1_df)),2)

percentage_nondefaulters=round(100*len(target0_df)/(len(target0_df)+len(target1_df)),2)

print('Count of target0_df:', len(target0_df))

print('Count of target1_df:', len(target1_df))

print('Percentage of people who paid their loan are: ', percentage_nondefaulters, '%')

print('Percentage of people who did not paid their loan are: ', percentage_defaulters, '%')
```

Percentage of people who paid their loan are: 92.23 %
Percentage of people who did not paid their loan are: 7.77 %

- Insights

3. Find the ratio of data imbalance.

```
# Calculating Imbalance percentage

# Since the majority is target0 and minority is target1

imb_ratio = round(len(target0_df)/len(target1_df),2)

print('Imbalance Ratio:', imb_ratio)

Imbalance Ratio: 11.88
```

Insights

4. Results of univariate, bivariate analysis

```
# Count plotting in logarithmic scale
def uniplot(df.col.title.hue =None):
    sns.set_style('whitegrid')
sns.set_context('talk')
    plt.rcParams["axes.labelsize"] = 14
plt.rcParams['axes.titlesize'] = 16
plt.rcParams['axes.titlepad'] = 14
     temp = pd.Series(data = hue)
    fig, ax = plt.subplots()
width = len(df[col].unique()) + 7 + 4*len(temp.unique())
     fig.set_size_inches(width , 8)
    plt.xticks(rotation=45)
    plt.yscale('log')
    plt.title(title)
    ax = sns.countplot(data = df, x= col, order=df[col].value_counts().index,hue = hue)
    plt.show()
# Categoroical Univariate Analysis in logarithmic scale
features = ['NAME_INCOME_TYPE','NAME_CONTRACT_TYPE','NAME_FAMILY_STATUS']
plt.figure(figsize = (20, 15))
for i in enumerate(features):
    plt.subplot(2, 2, i[0]+1)
plt.subplots_adjust(hspace=0.5)
sns.countplot(x = i[1], hue = 'TARGET', data = appl)
    plt.rcParams['axes.titlesize'] = 16
    plt.xticks(rotation = 45)
plt.yscale('log')
```


Categoroical Univariate Analysis in Value scale

```
features:=:['CODE_GENDER','FLAG_OWN_CAR']
plt.figure(figsize:=:(20,·10))

for i in enumerate(features):
    plt.subplot(2, 2, i[0]+1)
    plt.subplots_adjust(hspace=0.5)
    sns.countplot(x = i[1], hue = 'TARGET', data = appl)

plt.rcParams['axes.titlesize'] = 16
    plt.xticks(rotation = 45)
# plt.yscale('log')
```



```
# Univariate Analysis for continous variable
features = ['AMT_ANNUITY','AMT_GOODS_PRICE','DAYS_BIRTH','DAYS_EMPLOYED','DAYS_ID_PUBLISH']
plt.figure(figsize = (15, 20))
for i in enumerate(features):
    plt.subplot(3, 2, i[0]+1)
    plt.subplot(3, 2, i[0]+1)
    plt.subplots_adjust(hspace=0.5)
    sns.boxplot(x = 'TARGET', y = i[1], data = appl)
```


3.b. Bivariate analysis for numerical variables For Target 0 $\,$

7000

plt.figure(figsize=(16,12))
plt.xticks(rotation=45)
plt.yscale('log')
sns.boxplot(data =target0_df, x='NAME_EDUCATION_TYPE',y='AMT_INCOME_TOTAL', hue ='NAME_FAMILY_STATUS',orient='v')
plt.title('Income amount vs Education Status')
plt.show()

For Target 1

```
# Box plotting for credit amount

plt.figure(figsize=(15,10))
plt.xticks(rotation=45)
sns.boxplot(data =target0_df, x='NAME_EDUCATION_TYPE',y='AMT_CREDIT', hue ='NAME_FAMILY_STATUS',orient='v')
plt.title('Credit Amount vs Education Status')
plt.show()
```


 $\ensuremath{\text{\#}}$ Box plotting for Income amount in logarithmic scale

plt.figure(figsize=(16,12))
plt.xticks(rotation=45)
plt.yscale('log')
sns.boxplot(data = target0_df, x='NAME_EDUCATION_TYPE',y='AMT_INCOME_TOTAL', hue ='NAME_FAMILY_STATUS',orient='v')
plt.title('Income amount vs Education Status')
plt.show()

Insights

5. Find the top 10 correlation

```
corrdf = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
corrdf = corrdf.unstack().reset_index()
corrdf.columns = ['Var1', 'Var2', 'Correlation']
corrdf.corumins = [ vair. , vair. , vair. correlation ]
corrdf.dropna(subset = ['Correlation'], inplace = True)
corrdf['Correlation'] = round(corrdf['Correlation'], 2)
corrdf['Correlation'] = abs(corrdf['Correlation'])
corrdf.sort_values(by = 'Correlation', ascending = False).head(10)
       <ipython-input-133-d7b1279b2ebd>:4: DeprecationWarning: `np.bool` is a deprecated alias for
Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/release/">https://numpy.org/devdocs/release/</a>
corrdf = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
                                                                Var2 Correlation
                                   Var1
                                              AMT_CREDIT
         184
                        AMT_ANNUITY
         295
                 DAYS_EMPLOYED
                                                    DAYS_BIRTH
                                                                                    0.63
         512 FLAG_DOCUMENT_6 DAYS_EMPLOYED
                                                                                    0.59
         515 FLAG_DOCUMENT_6 FLAG_DOCUMENT_3
                                                                                    0.49
         587 FLAG_DOCUMENT_8 FLAG_DOCUMENT_3
                        AMT ANNUITY AMT INCOME TOTAL
         183
                                                                                    0.44
         511 FLAG_DOCUMENT_6
                                                      DAYS_BIRTH
                                                                                    0.41
                        AMT_CREDIT AMT_INCOME_TOTAL
         147
                          DAYS_BIRTH
                                              CNT_CHILDREN
         254
                                                                                    0.35
         332 DAYS_ID_PUBLISH DAYS_EMPLOYED
                                                                                    0.27
# Top 10 correlated variables: target 1 dataaframe
corr = target1_df.corr()
corrdf = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
corrdf = corrdf.unstack().reset_index()
corrdf.columns = ['Var1', 'Var2', 'Correlation']
corrdf.columns = ['Varl', 'Varl', 'Correlation']
corrdf.dropna(subset = ['Correlation'], inplace = True)
corrdf['Correlation'] = round(corrdf['Correlation'], 2)
corrdf['Correlation'] = abs(corrdf['Correlation'])
corrdf.sort_values(by = 'Correlation', ascending = False).head(10)
       <ipython-input-134-83c9c380cf9a>:4: DeprecationWarning: `np.bool` is a deprecated alias for
Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/release/">https://numpy.org/devdocs/release/</a>
           corrdf = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
                                                               Var2 Correlation
         184
                      AMT_ANNUITY
                                                  AMT_CREDIT
                                                                                   0.75
         512 FLAG_DOCUMENT_6 DAYS_EMPLOYED
                                                                                   0.62
         295
                 DAYS_EMPLOYED
                                                     DAYS_BIRTH
         587 FLAG DOCUMENT 8 FLAG DOCUMENT 3
                                                                                   0.54
         515 FLAG_DOCUMENT_6 FLAG_DOCUMENT_3
                                                                                   0.49
         511 FLAG_DOCUMENT_6
                                                     DAYS_BIRTH
                                                                                   0.40
         254
                        DAYS_BIRTH CNT_CHILDREN
                                                                                   0.27
         404 FLAG_DOCUMENT_3 DAYS_EMPLOYED
                                                                                   0.27
```

Thank You

331 DAYS_ID_PUBLISH

479 FLAG_DOCUMENT_5 FLAG_DOCUMENT_3

corr = target0_df.corr()

DAYS_BIRTH

0.23