MAC 0460 / 5832 Introduction to Machine Learning

12 - Random topics

- Linear × non-linear ✓
- ullet Multiclass classification ullet softmax function ullet \checkmark
- Underfitting/Overfitting
 Validation loss

IME/USP (23/05/2021)

Linear × Non-linear

Poraphon Regussão linear Logistic Regussion

 $\sum_{i=1}^{d} w_i x_i + b$

Linear × non-linear

$$\mathbf{x} = (x_1, x_2, \dots, x_d)$$

 $\mathbf{w} = (w_1, w_2, \dots, w_d) \in \mathbb{R}^d, b \in \mathbb{R}$

Linear function:

$$s = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$$

Non-linear function – some examples:

$$s = w_1x_1 + w_2x_2 + w_3x_1x_2 + w_4x_1^2 + w_5x_2^2 + b$$
$$s = w_1x_1^2 + w_2x_2^2 + b$$

Any function $s: \mathbb{R}^d \to \mathbb{R}$ can be used for classification:

- $s < 0 \implies$ class := negative
- $s > 0 \Longrightarrow \mathsf{class} := \mathsf{positive}$
- $s = 0 \Longrightarrow$ decision boundary

Fonte: https://jtsulliv.github.io/perceptron/

Linear is illinee

Data:

Another example

Credit line is affected by 'years in residence'

but **not** in a linear way!

Nonlinear $[[x_i < 1]]$ and $[[x_i > 5]]$ are better.

Can we do that with linear models?

Linear in what?

Linear regression implements

Linear classification implements

$$\operatorname{sign}\left(\sum_{i=0}^d \textcolor{red}{w_i} \ x_i\right)$$

Algorithms work because of linearity in the weights

$$f_2(x_1, x_2) = w_0 + w_1 x_1^2 + w_2 x_1 x_2$$
Non-linear with respect to x_i

$$f_2(x_1, x_2) = w_0 + w_1 x_1^2 + w_2 x_1 x_2$$
Linear with respect to w_i

Transform the data nonlinearly

Nonlinear transforms

$$z_i = \varphi_i(\mathbf{x})$$
 $\mathbf{z} = \Psi(\mathbf{x})$

Example:
$$\mathbf{z} = (1, x_1, x_2, x_1 x_2, x_1^2, x_2^2)$$

Final hypothesis $g(\mathbf{x})$ in \mathcal{X} space:

$$\operatorname{sign}\left(ilde{\mathbf{w}}^{\mathsf{T}} \Phi(\mathbf{x}) \right)$$
 or $ilde{\mathbf{w}}^{\mathsf{T}} \Phi(\mathbf{x})$

The price we pay

$$\mathbf{x} = (x_0, x_1, \cdots, x_d)$$
 $\stackrel{\Phi}{\longrightarrow}$
 $\mathbf{z} = (z_0, z_1, \cdots, z_{\tilde{d}})$
 \downarrow
 \mathbf{w}
 $\tilde{\mathbf{w}}$
 $d_{\text{VC}} = d + 1$
 $d_{\text{VC}} \leq \tilde{d} + 1$

- Linear models are simple but have limited ability to discriminate classes
- There are many non-linear algorithms
 Neural networks, decision trees, etc
- Non-linear transformation applied on the data
 A kind of feature transformation
- Some algorithms such as SVM explicitly explore this fact
 - Neural net layers can be interpreted as input feature transformers

Multiclass classification

Multiclass classification

C classes problem

Approach 1: Combine multiple binary classifiers

- OVA (One versus All)
- OVO (One versus One)

OVA scheme (One versus All)

- one classifier for each class: h_i is a binary classifier designed to recognize objects of class j amongst all obejcts
- total of C binary classifiers: h_j , $j=1,2,\ldots,C$
- assume each classifier returns a score in [0,1]
- **Decision**: given \mathbf{x} , let $\hat{y} = \arg \max_{j} \{h_{j}(\mathbf{x})\}$

OVO scheme (One versus One)

- one classifier for each pair of classes: h_{jk} is a binary classifier trained using only examples from class j (positive) and k (negative)
- total of $\frac{C(C-1)}{2}$ pinary classifiers: h_{jk} , j < k, j, k = 1, 2, ..., C (note that for k > j, we have $h_{kj} = 1 h_{jk}$)
- ullet assume each classifier returns a score in [0,1] ${m ec{\hspace{0.5cm}}}$
- **Decision**: given \mathbf{x} , let $\hat{y} = \underset{j \in \{1,2,...,C\}}{\operatorname{arg\,max}} \left\{ \sum_{k=1}^{C} h_{jk}(\mathbf{x}) \right\}$

Example of a binary classifier that outputs a score in [0,1]

Logistic regression (sigmoid)

$$\hat{p}_1 = \hat{P}(y = 1|\mathbf{x}) = \theta(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T\mathbf{x}}}$$

Its output ($\hat{p}_1 = \hat{P}(y = 1|\mathbf{x})$) is interpreted as a probability

Note that OVA and OVO can be based on any type of binary classifiers. If the classifiers return a score value (that is, an estimate of $P(y|\mathbf{x})$), then the rules given earlier can be used.

What if we use hard classifiers instead of soft classifiers?

```
Hard classifier: output in \{0,1\} (class label y)

Soft classifier: output in [0,1] (conditional probability P(y|x))
```

11

We can use, for instance, the majority vote

Voting may lead to regions with undefined classification

Fonte: https://utkuufuk.com/2018/06/03/one-vs-all-classification/

The triangular region at the center will receive no classification

There are many ways to **combine multiple binary classifiers** to implement multiclass classification.

(see for instance: *A review on the combination of binary classifiers in multiclass problems*, Ana C. Lorena, André C. P. L. F. de Carvalho, João M. P. Gama)

Similarly, classifier combination / ensemble of classifiers are topics vastly studied in the field of machine learning (see for instance: Combining Pattern Classifiers: Methods and Algorithms, Ludmila I. Kuncheva)

Random Forest

It is not our goal here to discuss them exhaustively

Approach 2: Inherently multiclass algorithms

Any method that estimates the C conditionals $P(y = j \mid \mathbf{x})$, $j=1,2,\ldots,C$ at once

Multinomial logistic regression

The generalization of logistic regression for multiple classes is known as **multinomial logistic regression**

To estimate the conditional probabilities we use the **softmax**

Fonte: https://www.cntk.ai/pythondocs/CNTK_103B_MNIST_LogisticRegression.html

Example for C = 3 classes:

$$\hat{\rho}_1 = \hat{P}(y = 1 | \mathbf{x}) = \underbrace{e^{\mathbf{w}_1^T \mathbf{x}}}_{e^{\mathbf{w}_1^T \mathbf{x}} + e^{\mathbf{w}_2^T \mathbf{x}} + e^{\mathbf{w}_3^T \mathbf{x}}}$$

$$\hat{p}_2 = \hat{P}(y = 2|\mathbf{x}) = \frac{e^{\mathbf{w}_1^T \mathbf{x}}}{e^{\mathbf{w}_1^T \mathbf{x}} + e^{\mathbf{w}_2^T \mathbf{x}} + e^{\mathbf{w}_3^T \mathbf{x}}}$$

$$\hat{p}_3 = \hat{P}(y = 3|\mathbf{x}) = \frac{e^{\mathbf{w}_3^T \mathbf{x}}}{e^{\mathbf{w}_1^T \mathbf{x}} + e^{\mathbf{w}_2^T \mathbf{x}} + e^{\mathbf{w}_3^T \mathbf{x}}}$$

Clearly
$$\hat{p}_1 + \hat{p}_2 + \hat{p}_3 = 1$$

Also
$$0 \le \hat{p}_j \le 1$$

Observe that in the binary classification case, we used

$$\hat{\rho}_1 = \hat{P}(y = 1|\mathbf{x}) = \theta(\mathbf{w}^T\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T\mathbf{x}}}$$

It can be rewritten as:

$$\frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \frac{e^{\mathbf{w}^T \mathbf{x}}}{e^{\mathbf{w}^T \mathbf{x}}} \frac{1}{(1 + e^{-\mathbf{w}^T \mathbf{x}})} = \frac{e^{\mathbf{w}^T \mathbf{x}}}{e^{\mathbf{w}^T \mathbf{x}} + 1}$$

Hence:

$$\hat{p}_0 = \hat{P}(y = 0|\mathbf{x}) = 1 - \hat{P}(y = 1|\mathbf{x})$$

$$= 1 - \frac{e^{\mathbf{w}^T \mathbf{x}}}{e^{\mathbf{w}^T \mathbf{x}} + 1} = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$

and

$$\hat{p}_1 + \hat{p}_0 = \hat{P}(y = 1|\mathbf{x}) + \hat{P}(y = 0|\mathbf{x}) = 1$$

Recall (previous page):

$$\hat{P}(y=0|\mathbf{x}) = \frac{1}{1+e^{\mathbf{w}^T\mathbf{x}}}$$
 $\hat{P}(y=1|\mathbf{x}) = \frac{e^{\mathbf{w}^T\mathbf{x}}}{1+e^{\mathbf{w}^T\mathbf{x}}}$

The softmax formulation for two classes:

$$\hat{P}(\underline{y=0}|\mathbf{x}) = \frac{1}{(1+e^{\mathbf{w}^T\mathbf{x}})} \frac{e^{\mathbf{w}_0^T\mathbf{x}}}{e^{\mathbf{w}_0^T\mathbf{x}}} = \frac{e^{\mathbf{w}_0^T\mathbf{x}}}{e^{\mathbf{w}_0^T\mathbf{x}} + e^{(\mathbf{w}+\mathbf{w}_0)^T\mathbf{x}}}$$

$$\hat{P}(y=1|\mathbf{x}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{(1+e^{\mathbf{w}^T \mathbf{x}})} \frac{e^{\mathbf{w}_0^T \mathbf{x}}}{e^{\mathbf{w}_0^T \mathbf{x}}} = \frac{e^{(\mathbf{w}+\mathbf{w}_0)^T \mathbf{x}}}{e^{\mathbf{w}_0^T \mathbf{x}} + e^{(\mathbf{w}+\mathbf{w}_0)^T \mathbf{x}}}$$

19

Recall (previous page):

$$\hat{P}(y=0|\mathbf{x}) = \frac{1}{1+e^{\mathbf{w}^T\mathbf{x}}} \qquad \hat{P}(y=1|\mathbf{x}) = \frac{e^{\mathbf{w}^T\mathbf{x}}}{1+e^{\mathbf{w}^T\mathbf{x}}}$$

The softmax formulation for two classes:

$$\hat{P}(y=0|\mathbf{x}) = \frac{1}{(1+e^{\mathbf{w}^T\mathbf{x}})} \frac{e^{\mathbf{w}_0^T\mathbf{x}}}{e^{\mathbf{w}_0^T\mathbf{x}}} = \frac{e^{\mathbf{w}_0^T\mathbf{x}}}{e^{\mathbf{w}_0^T\mathbf{x}} + e^{(\mathbf{w}+\mathbf{w}_0)^T\mathbf{x}}}$$

$$\hat{P}(y=1|\mathbf{x}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{(1+e^{\mathbf{w}^T \mathbf{x}})} \frac{e^{\mathbf{w}_0^T \mathbf{x}}}{e^{\mathbf{w}_0^T \mathbf{x}}} = \frac{e^{(\mathbf{w}+\mathbf{w}_0)^T \mathbf{x}}}{e^{\mathbf{w}_0^T \mathbf{x}} + e^{(\mathbf{w}+\mathbf{w}_0)^T \mathbf{x}}}$$

Cost function for multi-output case

One-hot encoding of the output:

For each input
$$\underline{\mathbf{x}^{(i)}}$$
, the output is a vector $\underline{\mathbf{y}^{(i)}} = (y_1^{(i)}, y_2^{(i)}, \dots, y_C^{(i)})$ with $\underline{y_j^{(i)}} = 1 \iff \mathbf{x}^{(i)}$ is from class $j, j = 1, 2, \dots, C$

Cross-entropy loss (wrt inputs $\mathbf{x}^{(i)} \in D$):

Cross-entropy loss (wrt inputs $\mathbf{x}^{(i)} \in D$):

$$\sum_{i=1}^{N} \sum_{j=1}^{C} y_{j}^{(i)} \log \hat{p}_{j}^{(i)}$$

Note that: $\hat{p}_j^{(i)} = \hat{P}(y^{(i)} = j \mid \mathbf{x}^{(i)}), \sum_{i=1}^{C} \hat{p}_j^{(i)} = 1$, and the parameters to be

optimized, \mathbf{w}_j , are those in the softmax function $\frac{e^{\mathbf{w}_j^T \mathbf{x}}}{\sum_{i=1}^C e^{\mathbf{w}_i^T \mathbf{x}}}$ $\mathbf{y}^{(i)} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{bmatrix}$

 $(x^{(1)},3)$

Overfitting

21

Where we are

- We know what machine learning is
- We have learned some supervised learning algorithms

Linear regression Perceptron Logistic regression

We have seen that learning from data is feasible

 $|E_{in}(g) - E_{out}(g)|$ can be made arbitrarily small

What really matters: E_{out} (the error computed over the entire domain) – out-of-sample error

Generalization: We minimize E_{in} hoping to also minimize E_{out} . We would like to have small E_{in} and E_{out} as close as possible to E_{in}

In general, the following equality holds:

Training loss

 E_{in} (loss / cost) usually decreases along the iteration (for instance, when we are employing *gradient descent*)

Overtraining

Overtraining may result in overfitting

green illustrates overfitting

Fonte: Wikipedia

Underfitting / Overfitting

It is not just about number of iterations. It is also related to model complexity

E_{out}

28

Since in practice we can not compute E_{out} , we can use an independent set of examples (validation set) and compute the cost on it, E_{val}

 E_{val} can be thought as a proxy of E_{out}

E_{val} provides a hint on whether we are doing the right thing or not

Validation error and overfitting

<u>Underfitting</u>: large E_{in} and E_{val} indicate strong model bias (model is too constrained)

Overfitting: when the curves of E_{in} and E_{val} start to get separated each other along the iterations, it is an indication of overfitting (model is too sophisticated)

Validation error and overfitting Underfitting Just right Overfitting · High training error . Training error slightly · Very low training error · Training error close to test lower than test error . Training error much lower Symptoms error than test error · High bias · High variance Regression illustration model Classification arated illustration ηg Error Error Error Validation Validation Deep learning Training Validation illustration Training Trainin 12. MAC0460/MAC5832 Epochs Nina S. T. Hirata

Epochs

30

Epochs

Learning curve example: deep neural network (test = error on validation set)

(Learning curve: not the same concept seen in the last class)

Prof. Mostafa's lectures:

Lecture 11: Overfitting / Lecture 12: Regularization / Lecture 13: Validation /

How to deal with overfitting :

- regularization add a penalty term in the cost function (to be seen later)
- validation error on the validation set, E_{val} , can be used to choose a family of hypotheses \mathcal{H} of "right complexity"

Validation versus regularization

In one form or another,
$$\int\!\! E_{
m out}(h) \,=\, E_{
m in}(h) \,+\,$$
 overfit penalty

Regularization:

$$E_{
m out}(h) = E_{
m in}(h) + {
m overfit}$$
 penalty

Validation:

$$E_{
m out}(h) = E_{
m in}(h)$$
 + overfit penalty

validation estimates this quantity

 $\frac{E_{\rm out}(h)}{\text{estimates this quantity}} = E_{\rm in}(h) + \text{overfit penalty}$