Worksheet 2. Fundamental Postulates of Quantum Mechanics and the Particle-in-a-box.

- 1. Which of the following functions are eigenfunctions of the momentum operator, $\hat{p}(x) = -i\hbar \frac{d}{dx}$?

- (a) $\sin(kx)$ (d) $\cos(2kx)$ (g) kx (j) e^{+2ikx} (b) $\sin(2kx)$ (e) e^{-kx} (h) 2kx (k) e^{-x^2} (c) $\cos(kx)$ (f) e^{-2kx} (i) e^{-ikx} (l) e^{-2kx^2}

- 2. For the functions in #1 that are eigenfunctions of the momentum, what are the eigenvalues?
- 3. The ground-state vibrational state of a quantum mechanical oscillator is given by $\Psi(x) = e^{-x^2}$. Which of the following functions are orthogonal to this wavefunction.

- (a) $\sin(kx)$ (e) $e^{-k|x|}$ (i) e^{-ikx} (m) xe^{-x^2} (b) $\sin(2kx)$ (f) $e^{-2k|x|}$ (j) e^{+2ikx} (n) $x^2e^{-x^2}$ (o) $(1-x^2)e^{-x^2}$ (d) $\cos(2kx)$ (h) 2kx (l) e^{-2kx^2} (p) $\sin(kx)e^{-kx^2}$

- 4. Which of the following are not linear, Hermitian, operators?
 - (a) $\frac{d}{dx}$ (the derivative)
 - (b) $\frac{d^2}{dx^2}$ (2nd derivative)
 - (c) $\frac{d^4}{dx^4}$ (4th derivative)
 - (d) x (multiplication by x)
 - (e) $g_{+}(x) = f(x) + f^{*}(x)$ (multiplication by $g_+(x)$, where $f(x) \in \mathbb{C}$ is any complex-valued function.
- (f) $g_{-}(x) = f(x) f^{*}(x)$ (multiplication by g(x), where $f(x) \in \mathbb{C}$ is any complex-valued function.
- (g) $g(x) = f(x)f^*(x)$ (multiplication by g(x), where $f(x) \in \mathbb{C}$ is any complexvalued function.
- (h) $ig(x) = if(x) f^*(x)$ (multiplication by ig(x), where $f(x) \in \mathbb{C}$ is any complexvalued function.
- 5. Which of the following is/are not an allowable wavefunction(s) for a system that is defined on the one-dimensional interval $0 \le x < \infty$? Note: just because some of these wavefunctions are not normalized does not mean they are not allowable.
 - (a) $\Psi(x) = 1$.
 - (b) $\Psi(x) = x$
 - (c) $\Psi(x) = x^{-1}$
 - (d) $\Psi(x) = e^{-x}$.

- (f) $\Psi(x) = \begin{cases} 1 & 0 \le x < 1 \\ e^{-x} & x \ge 1 \end{cases}$