Ungraded assignment 1 for Introduction to Galois theory

March 12, 2016

- 1. Let $F(x)/G(x) \in K(X)$ be a rational function over a field K. Show that the extension K(X)/K(F/G) is algebraic and compute its degree.
- 2. Let L/K be an algebraic extension and $\varphi: L \to L$ a K-algebra homomorphism. Show that φ is always an isomorphism. Give a counterexample when L/K is not algebraic.
- 3. Let m, n be square-free integers with $m \neq n$ and $m, n \neq 1$. Show that $\mathbb{Q}(\sqrt{m}, \sqrt{n}) = \mathbb{Q}(\sqrt{m} + \sqrt{n})$. Find the degree of $\sqrt{m} + \sqrt{n}$ over \mathbb{Q} and compute its minimial polynomial.
- 4. Show $x^4 + 1$ is reducible modulo every prime p, but irreducible over \mathbb{Z} . Hint: p = 2 is easy and for $p \neq 2$, consider the group of units in \mathbb{F}_p^2 .
- 5. Show $x^p x 1$ is irreducible over \mathbb{F}_p . Hint: Show it is has no root in \mathbb{F}_p and show that if α is a root in some extension, then all other roots of the form $\alpha + a$ for $a \in \mathbb{F}_p$.
 - 6. What is the degree of the splitting field of $x^5 7$ over \mathbb{Q} ?
- 7. What is the degree of the splitting field of $x^6 + x^3 + 1$ over \mathbb{F}_p for $p \equiv 1 \mod 9$, $p \equiv 2 \mod 9$, $p \equiv 7 \mod 9$.