Programmierung

Aufgabe 1 (AGS $14.1 \star$)

(a) Das C_0 -Programm Max zur Ermittlung des Maximums zweier Zahlen wird zunächst schrittweise in ein AM_0 -Programm $bMax_0$ mit baumstrukturierten Adressen übersetzt:

```
trans(Max)
      trans(#include <stdio.h> int main () { ... return 0;})
      blocktrans({int a, b, max; scanf("%i", &a); ... return 0;})
      stseqtrans(scanf("%i", &a); ... printf("%d", max); ,
           update(int a, b, max; tab_{\emptyset}), 1)
      stseqtrans(scanf("%i", &a); ... printf("%d", max); ,
           tab_{\emptyset}[a/(var,1),b/(var,2),max/(var,3)],1)
      sttrans(scanf("\%i", \&a);, tab_1, 1.1)
      sttrans(scanf("\%i", \&b);, tab_1, 1.2)
      sttrans(if (a > b) max = a; else max = b;, tab_1, 1.3)
      sttrans(\texttt{printf("%d", max);}, tab_1, 1.4)
      READ 1;
      READ 2;
      boolexptrans(a > b, tab_1)
      JMC 1.3.1;
      sttrans(max = a; tab_1, 1.3.2)
      JMP 1.3.3;
1.3.1: sttrans(max = b;, tab_1, 1.3.4)
1.3.3 : WRITE 3;
      READ 1;
      READ 2;
      simple exptrans(a, tab_1)
      simple exptrans(b, tab_1)
      GT;
      JMC 1.3.1;
      simple exptrans(a, tab_1) STORE 3;
      JMP 1.3.3;
1.3.1: simple exptrans(b, tab_1) STORE 3;
1.3.3 : WRITE 3;
```

```
= READ 1;
READ 2;
LOAD 1;
LOAD 2;
GT;
JMC 1.3.1;
LOAD 1; STORE 3;
JMP 1.3.3;
1.3.1: LOAD 2; STORE 3;
1.3.3: WRITE 3;
```

(b) Die Umwandlung in ein Programm mit linearisierten Adressen ergibt das folgende Programm Max_0 :

```
1: READ 1; 5: GT; 9: JMP 12;
2: READ 2; 6: JMC 10; 10: LOAD 2;
3: LOAD 1; 7: LOAD 1; 11: STORE 3;
4: LOAD 2; 8: STORE 3; 12: WRITE 3;
```

Dieses Programm Max_0 wird nun auf der abstrakten Maschine AM_0 für die Eingaben 5 und 7 folgendermaßen ausgeführt (eine Zeile entspricht einem Maschinenzustand):

BZ	DK	HS	Inp	Out
1		[]	5:7	
2		[1/5]	7	
3		[1/5,2/7]		
4	5	[1/5,2/7]		
5	7:5	[1/5,2/7]		
6	0	[1/5,2/7]		
10		[1/5,2/7]		
11	7	[1/5,2/7]		
12		[1/5,2/7,3/7]		
13		[1/5,2/7,3/7]		7

Aufgabe 2 (AGS 14.14)

(a)

```
1: READ 1;
                 6: JMC 20;
                                  11: LOAD 2;
                                                   16: LIT 2;
2: READ 2;
                 7: LOAD 2;
                                 12: LOAD 1;
                                                   17: DIV;
3: LOAD 1;
                 8: LOAD 1;
                                 13: GT;
                                                   18:
                                                       STORE 2;
4: LIT 0;
                 9: SUB;
                                  14: JMC 19;
                                                       JMP 3;
                                                   19:
5: GT;
                10: STORE 1;
                                  15: LOAD 2;
                                                   20: WRITE 1;
```

(b)

BZ	DK	HS	Inp	Out
7	ε	[1/3, 2/1]	ε	ε
8	3	[1/3, 2/1]	ε	ε
9	1:3	[1/3, 2/1]	ε	ε
10	2:1:3	[1/3, 2/1]	ε	ε
11	2:3	[1/3, 2/1]	ε	ε
12	5	[1/3, 2/1]	ε	ε
13	ε	[1/3, 2/5]	ε	ε
3	ε	[1/3, 2/5]	ε	ε
4	5	[1/3, 2/5]	ε	ε
5	5:5	[1/3, 2/5]	ε	ε
6	0	[1/3, 2/5]	ε	ε
14	ε	[1/3, 2/5]	ε	ε
15	ε	[1/3, 2/5]	ε	3

Zusatzaufgabe 1 (AGS 14.6)

(a)

1:	READ 1;	6:	JMC 21;	11:	LOAD 1;	16:	STORE 1;
2:	READ 2;	7:	LOAD 2;	12:	LOAD 2;	17:	LOAD 3;
3:	LOAD 2;	8:	LIT 0;	13:	MOD;	18:	STORE 2;
4:	LIT 0;	9:	GT;	14:	STORE 3;	19:	JMP 7;
5:	GT;	10:	JMC 20;	15:	LOAD 2;	20:	WRITE 1;

(b)

BZ	DK	HS	Inp	Out
10,	2:2,	[1/2, 2/0],	$\varepsilon,$	ε
11,	0,	[1/2, 2/0],	$\varepsilon,$	ε
12,	$\varepsilon,$	[1/0, 2/0],	$\varepsilon,$	ε
13,	0,	[1/0, 2/0],	$\varepsilon,$	ε
14,	1:0,	[1/0, 2/0],	$\varepsilon,$	ε
15,	1,	[1/0, 2/0],	$\varepsilon,$	ε
16,	$\varepsilon,$	[1/0, 2/1],	$\varepsilon,$	ε
4,	$\varepsilon,$	[1/0, 2/1],	$\varepsilon,$	ε
5,	0,	[1/0, 2/1],	$\varepsilon,$	ε
6,	1:0,	[1/0, 2/1],	$\varepsilon,$	ε
7,	0,	[1/0, 2/1],	$\varepsilon,$	ε
17,	$\varepsilon,$	[1/0, 2/1],	$\varepsilon,$	ε
18,	$\varepsilon,$	[1/0, 2/1],	$\varepsilon,$	1