$\begin{array}{c} \mathbf{Modern~Quantum~Chemistry,~Szabo~\&~Ostlund} \\ \mathbf{HW} \end{array}$

王石嵘

$March\ 1,\ 2020$

Contents

5	Pair and Coupled-pair Theories	2
	5.1 The Independent Electron Pair Approximation	2
	Ex 5.1	2
	Ex 5.2	2

5 Pair and Coupled-pair Theories

5.1 The Independent Electron Pair Approximation

Ex 5.1

a.

$${}^{1}E_{\text{corr}}(\text{FO}) = \frac{|\langle 1\bar{1} \parallel 2\bar{2} \rangle|^{2}}{\varepsilon_{1} + \varepsilon_{1} - \varepsilon_{2} - \varepsilon_{2}}$$

$$= \frac{|\langle 1\bar{1} \mid 2\bar{2} \rangle - \langle 1\bar{1} \mid \bar{2}2 \rangle|^{2}}{2\varepsilon_{1} - 2\varepsilon_{2}}$$

$$= \frac{|[12|\bar{1}\bar{2}] - [1\bar{2}|\bar{1}2]|^{2}}{2\varepsilon_{1} - 2\varepsilon_{2}}$$

$$= \frac{K_{12}^{2}}{2(\varepsilon_{1} - \varepsilon_{2})}$$
(5.1.1)

b.

$${}^{1}E_{\text{corr}} = \Delta - \Delta \sqrt{1 + \frac{K_{12}^{2}}{\Delta^{2}}}$$

$$= \Delta - \Delta \left(1 + \frac{K_{12}^{2}}{2\Delta^{2}}\right)$$

$$= -\frac{K_{12}^{2}}{2\Delta}$$

$$\approx \frac{K_{12}^{2}}{2(\varepsilon_{1} - \varepsilon_{2})}$$
(5.1.2)

Ex 5.2 From Eq. 5.9a and 5.9b in the textbook, we get

$$\sum_{t < u} c_{1_i \bar{1}_i}^{tu} \left\langle \Psi_0 \middle| \mathcal{H} \middle| \Psi_{1_i \bar{1}_i}^{tu} \right\rangle = e_{1_i \bar{1}_i}$$

$$(5.1.3)$$

$$\left\langle \Psi^{rs}_{1_{i}\bar{1}_{i}} \middle| \mathcal{H} \middle| \Psi_{0} \right\rangle + \sum_{t < u} \left\langle \Psi^{rs}_{1_{i}\bar{1}_{i}} \middle| \mathcal{H} - E_{0} \middle| \Psi^{tu}_{1_{i}\bar{1}_{i}} \right\rangle c^{tu}_{1_{i}\bar{1}_{i}} = e_{1_{i}\bar{1}_{i}} c^{rs}_{1_{i}\bar{1}_{i}}$$
 (5.1.4)

∴.

$$c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}\left\langle \Psi_{0}\left|\,\mathcal{H}\,\right|\Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}\right\rangle =e_{1_{i}\bar{1}_{i}}\tag{5.1.5}$$

$$\left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \middle| \mathcal{H} \middle| \Psi_{0} \right\rangle + \sum_{t \leq u} \left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \middle| \mathcal{H} - E_{0} \middle| \Psi_{1_{i}\bar{1}_{i}}^{tu} \right\rangle c_{1_{i}\bar{1}_{i}}^{tu} = e_{1_{i}\bar{1}_{i}} c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}$$

$$(5.1.6)$$

(5.1.5) gives

$$K_{12}c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} = e_{1_{i}\bar{1}_{i}} \tag{5.1.7}$$

For (5.1.6)

$$\left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \left| \mathcal{H} \right| \Psi_{0} \right\rangle + \sum_{ik} \left\langle \Psi_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}} \left| \mathcal{H} - E_{0} \right| \Psi_{1_{i}\bar{1}_{i}}^{2_{j}\bar{2}_{k}} \right\rangle c_{1_{i}\bar{1}_{i}}^{2_{j}\bar{2}_{k}} = e_{1_{i}\bar{1}_{i}} c_{1_{i}\bar{1}_{i}}^{2_{i}\bar{2}_{i}}$$
(5.1.8)