1/3/2019 8.4. ROM design

8.4 ROM design

ROM using floating-gate transistors

Flip-flops, SRAMs, and DRAMs lose stored bits when electrical power is removed (*volatile* memory). In contrast, **ROM** (readretains stored bits when power is removed (*non-volatile* memory), by using technology that usually has slow writes, so write frequent than reads; hence the term "read-only" (a misnomer when writing is in fact possible). Writing to a ROM is called **pr** ROM.

Bit storage in a ROM commonly uses a *floating-gate transistor* having a special region where electrons can be trapped, sta without power. Applying a large positive voltage traps the electrons (programming). A large negative voltage frees the elect Applying such large voltages long enough to trap or free electrons is slow, which is why writing a ROM is slow.

Natar The character of	" : ":f - DOI	1	alaatuiaal faatuusa laa	ومروم والمشرو ومرون والمال والمرون
Note: The above is a	logical view of a RUI	/i, oversimpiliying	electrical reatures be	yond this material's scope.

PARTICIPATION ACTIVITY	8.4.2: ROM using floating-gate transistors.	
	rammed floating-gate (no electrons trapped in the ite)	
O acts	as a normal transistor	
O acts	opposite a normal transistor.	
O won	't conduct	
, ,	med floating-gate transistor trapped in the floating gate)	
O acts	as a normal transistor	
O acts	opposite a normal transistor.	
O won	't conduct	
	ning a floating-gate transistor a a large	
O posi	tive voltage	
O nega	ative voltage	
O ham	nmer	
	Ploating-gate transistor is large	

opositive voltage	
O negative voltage	
5) A 256x16 ROM would have how many word lines? O 8 O 16	
O 2566) A 256x16 ROM would have how many floating-gate transistors?O 16	
2564096	
7) A ROM has 8 bits per location. Location 99 has only the first two transistors programmed (electrons trapped). What value is stored at location 99?	
O 11000000	
O 00111111	
O 11111111	
8) The ROM shown above would use to achieve the 1's and 0's at the data output.	
O normal logic	
O special circuitry	

8.4. ROM design

ROM types

1/3/2019

Numerous ROM types exist.

- Mask-programmed ROM: The word line to bit line connections are hardwired during chip manufacturing, and can nev
- **OTP ROM** (one-time programmable ROM): The word line to bit line connections have a fuse that can be "blown" to bre connection. A user can program the device only once.
- **EPROM** (erasable programmable ROM): Programming uses large positive voltage to trap electrons in a floating-gate t erasing is done by placing the chip under ultraviolet light to provide the energy to free the trapped electrons. This RON the more convenient EEPROM.
- **EEPROM** (electrically-erasable programmable ROM): Programming uses large positive voltage to trap electrons in a fl transistor, and erasing uses a large negative voltage.
- **Flash**: Programming uses large positive voltage to trap electrons in a floating-gate transistor, and erasing uses a large voltage to quickly erase entire blocks of locations at one time, like a "flash".

PARTICIPATION 8.4.3: ROM type:	S.		
Start 2x speed			
Mask-programmed ROM	Programmed during manufacturing	word lin bit line	е
OTP ROM			Programming blows fuses
EPROM		~G, ~G,	Entire chip erased by UV light
EEPROM		~G, ~G,	Each word erased by negative voltage
		^c, *e,	Entire blocks quickly erased by

8.4. ROM design

Flash

negative voltage

PARTICIPATION ACTIVITY

1/3/2019

8.4.4: ROM types.

Match the ROM type with the most likely usage scenario.

EPROM

Mask-programmed ROM

Flash

OTP ROM

EEPROM

Storing program instructions in a calculator that will be produced in the hundreds of millions.

Storing a unique ID number for a secure card key, which should never be changed.

Storing a program in a microprocessor chip being used for prototyping in an engineering lab, with the chip being reprogrammed a few times a day, in the 1980s.

Storing 256 phone numbers in a portable keychain device, each number reprogrammable by some button clicks.

1/3/2019 8.4. ROM design

A digital photo frame to which 8 photos can be uploaded, with the frame showing a different photo every minute.

Reset

Exploring further:

- ROM (Wikipedia)
- Flash (Wikipedia)
- Provide feedback on this section