- 1. Banque CCINP 2024: 60 (endomorphisme sur des matrices)
- 2. Banque CCINP 2024: 64 (classique, noyau et image)
- 3. Banque CCINP 2024: 71 (projection sur une droite)
- **4.** [CCINP] Soit $f \in \mathcal{M}(\mathbb{R}^3)$ telle que $f^3 + f = 0$ et $f \neq 0$.
 - (a) Montrer que $\mathbb{R}^3 = \ker(f) \oplus \ker(f^2 + \mathrm{Id}_{\mathbb{R}^3})$ et que $\ker(f^2 + \mathrm{Id}_{\mathbb{R}^3}) \neq \{0\}$.
 - (b) Soit un vecteur non nul $x \in \ker(f^2 + \operatorname{Id}_{\mathbb{R}^3})$, montrer que (x, f(x)) est libre.
 - (c) Montrer qu'il existe une base \mathcal{B} de \mathbb{R}^3 telle que $\operatorname{Mat}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - (d) (facultatif) Montrer que $\{g \in \mathcal{M}(\mathbb{R}^3) \mid g \circ f = f \circ g\} = \text{Vect}(\text{Id}_{\mathbb{R}^3}, f, f^2).$
- 5. [CCINP] Soit E un espace vectoriel, p un projecteur de E et f un endomorphisme de E.
 - (a) Montrer l'équivalence entre les deux assertions suivantes :
 - (i) $p \circ f = f \circ p$.
 - (ii) $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par f.
 - (b) Si E est de dimension finie, en déduire la dimension du commutant $C(p) = \{ f \in \mathcal{M}(E) | f \circ p = p \circ f \}$ de p.
- **6.** [Centrale] Soit E un \mathbb{C} -espace vectoriel de dimension finie et f un endomorphisme de E.

On dit que f vérifie la propriété (A) s'il existe un projecteur p de E tel que $f = p \circ f - f \circ p$.

- (a) Supposons que f vérifie (A), déterminer $p \circ f \circ p$ et en déduire que $f^2 = 0$.
- (b) Réciproquement, montrer que si $f^2 = 0$, alors f vérifie la propriété (A).
- (c) Soit $n \in \mathbb{N}^*$ et $E = \mathbb{R}_{2n-1}[X]$ (les polynômes à coefficients réels et de degré inférieur ou égal à 2n-1), on définit $f: E \to E$ par : $\forall P \in E$, $f(P) = P^{(n)}$. Déterminer $\ker(f)$, $\operatorname{Im}(f)$, un supplémentaire de $\ker(f)$ et en déduire un projecteur simple p de E tel que $f = p \circ f f \circ p$.
- 7. [Centrale] Endomorphismes et permutations

Soit $n \in \mathbb{N}^*$. On note S_n l'ensemble des permutations de [1, n].

- (a) Pour $\sigma \in S_n$ on pose $\varphi_{\sigma} \colon s \in S_n \mapsto s \circ \sigma \in S_n$. Montrer que φ_{σ} est une permutation de S_n .
- (b) Soit (e_1,e_2,\ldots,e_n) la base canonique de \mathbb{R}^n . Pour $\sigma\in S_n$, on définit une application linéaire en posant $f_\sigma(e_i)=e_{\sigma(i)}$ pour tout $i\in [\![1,n]\!]$. Soit $p_n=\frac{1}{n!}\sum_{\sigma\in S_n}f_\sigma$.

Montrer que p_n est un projecteur et donner ses éléments caractéristiques.

- (c) Soient H l'hyperplan d'équation $x_1+x_2+\cdots+x_n=0$ et v un vecteur non nul de H. Montrer que $\{f_{\sigma}(v),\ \sigma\in S_n\}$ engendre H.
- 8. [MINES]

Soit $n \ge 2$ et A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$. On pose $M = \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$. Montrer que $\det(M) \ge 0$.

9. [MINES PONTS]

Soit $n \ge 1$, $E = \mathbb{C}^n$, on s'intéresse aux couples $(u, v) \in \mathcal{M}(E)^2$ tels que $u^2 = v^2 = Id_E$ et $u \circ v = -v \circ u$. Décrire tous les couples solutions (en précisant les matrices dans une base convenablement choisie); montrer qu'il en existe une infinité si n = 4, mais aucun si n = 3.

10. [Centrale] symétries qui anticommutent

Soient E un espace vectoriel de dimension finie et f,g des endomorphismes de E tels que $f^2=g^2=Id_E$ et $f\circ g+g\circ f=0$.

- (a) Montrer que la dimension de E est paire.
- (b) Montrer qu'il existe une base de E dans laquelle les matrices de f et g sont $\begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}$ et $\begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix}$.