Построение функции a^x

- **Утв. 1.** Если $f: \mathbb{Q} \cap [a,b] \to \mathbb{R}$ удовлетворяет неравенству $|f(x) f(y)| \le C|x-y|, \forall x,y \in \mathbb{Q} \cap [a,b]$, то $\exists ! \ \tilde{f}$ непрерывная на [a,b] и такая, что $\tilde{f} = f$ на $\mathbb{Q} \cap [a,b]$.
- **Утв. 2.** Пусть a > 1, тогда $\forall N, \exists C(N) : |a^x a^y| \le C(N)|x y|, \forall x, y \in \mathbb{Q} \cap [-N, N].$
- **Утв. 3.** Для всякого $a>1, \exists$ непрерывная на \mathbb{R} функция $f(x)\colon f(x)=a^x$ при $x\in\mathbb{Q}.$
- Rm: 1. Знаем что такое a^x только для $x \in \mathbb{Q}$.
- \square Возьмем отрезок [-N,N], по утверждениям 1 и $2,\exists!\,f_N\colon f_N(x)$ непрерывна на [-N,N] и $f_N(x)=a^x$ при $x\in\mathbb{Q}\cap[-N,N]$. Проверим, что такие функции согласуются на общих кусочках, в силу единственности таких функций на отрезках.

Пусть $N < M \Rightarrow$ на отрезке [-N,N] получилась функция f_N , на отрезке [-M,M] получилась f_M . По построению $[-N,N] \subset [-M,M] \Rightarrow$ хотели бы $f_N = f_M$ на [-N,N]. f_M - непрерывна на $[-M,M] \Rightarrow$ непрерывна на [-N,N], f_M совпадает с a^x на $[-M,M] \Rightarrow$ совпадает и на [-N,N], но на [-N,N] единственная непрерывная функция совпадающая с a^x это $f_N \Rightarrow f_N$ и f_M совпадают на общем отрезке из-за единственности.

<u>Искомая функция</u>: $f(x) = f_N(x)$, при $x \in [-N, N]$. Не важно какое N возьмем, важно, чтобы x лежал в этом отрезке, поскольку на общем отрезке все эти функции - совпадают. Так как на каждом из отрезков функция непрерывна, то и искомая функция будет непрерывной. На каждом из отрезков она будет совпадать с a^x на всех рациональных числах.

Пусть $a^x = f(x), \forall x \in \mathbb{R}$. Надо проверить, что это нужная нам функция:

- $1) \ a^{x+y} = a^x \cdot a^y;$
- 2) a^{x} строго возрастает и > 0;

1)

- 1) Пусть, $x,y \in \mathbb{R}$, возьмем последовательности $r_n \to x, s_n \to y, r_n, s_n \in \mathbb{Q} \Rightarrow$ по непрерывности $a^{r_n} \to a^x, a^{s_n} \to a^y,$ а для \mathbb{Q} мы знаем это свойство: $a^{r_n} \cdot a^{s_n} = a^{r_n + s_n} \to a^{x+y}, a^{r_n} \to a^x, a^{s_n} \to a^y \Rightarrow$ по арифметике пределов $a^x \cdot a^y = a^{x+y}$;
- 2) Пусть, $x, y \in \mathbb{R}$, x < y, возьмем последовательности $r_n, s_n \in \mathbb{Q}$: $r_n \to x \land r_n \le x$, $s_n \to y \land y \le s_n \Rightarrow x + x + x + y \Rightarrow \exists r, q \in \mathbb{Q}$: $x \le r < q \le y \Rightarrow r_n \le r < q \le s_n \Rightarrow a^{r_n} \le a^r < a^q \le a^{s_n} \Rightarrow$ переходим к пределу $\Rightarrow a^x \le a^r < a^q \le a^y \Rightarrow a^x < a^y$;

Таким образом получили непрерывную функцию, которая в 0 равна 1, удовлетворяет свойствам 1)-2) и принимает сколь угодно большие положительные значения и сколь угодно маленькие положительные значения.

Область определения a^x : \mathbb{R} , область значений a^x : $(0, +\infty)$, возрастает и непрерывна \Rightarrow по теореме об обратной функции существут f^{-1} : $(0, +\infty) \to \mathbb{R}$ - непрерывна и возрастает.

Эту функцию называем логарифмом по основанию a от y: $f^{-1}(y) = \log_a y$.

При $0 < a < 1, a^x = \left(\frac{1}{a}\right)^{-x}, \frac{1}{a} > 1 \Rightarrow$ знаем как определять и получаем убывающую, непрерывную функцию на \mathbb{R} , которая также имеет обратную.

Аналогичным образом определяется логарифм: $\log_a y = -\log_{\frac{1}{a}} y$.

Упр. 1. Доказать, что:

- (1) $\lim_{x\to 0} \frac{e^x 1}{x} = 1;$
- (2) $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1;$

- (1) Заменим $1+t=e^x \Rightarrow t=e^x-1, \ x\to 0 \Rightarrow t\to 0, \ x=\ln(1+t) \Rightarrow$ воспользуемся пунктом (2) $\Rightarrow \lim_{x\to 0} \frac{e^x-1}{x} = \lim_{t\to 0} \frac{t}{\ln(1+t)} = \lim_{t\to 0} \frac{1}{\frac{\ln(1+t)}{t}};$
- (2) Знаем, что $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e \Rightarrow$ по непрерывности $\ln x \Rightarrow \lim_{x\to 0} \frac{\ln(1+x)}{x} = \lim_{x\to 0} \ln(1+x)^{\frac{1}{x}} = \ln e = 1;$

Равномерная непрерывность и равномерная сходимость

Опр: 1. Функция f - непрерывна в точке a по множеству D, если

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x \in D, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Опр: 2. Функция $f: D \to \mathbb{R}$ равномерно непрерывна на D, если

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x, y \in D, |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Для сравнения: функция f непрерывна на $D \Leftrightarrow \forall x \in D, f$ - непрерывна в точке $x \Leftrightarrow f$

$$\Leftrightarrow \underbrace{\forall x \in D, \, \forall \varepsilon > 0}, \exists \, \delta > 0 \colon \forall y \in D, \, |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

В равномерной непрерывности, δ зависит только от ε , тогда как в обычной непрерывности δ зависит еще и от конкретной точки x.

Пример: f(x) = x на $\mathbb{R} \Rightarrow |f(x) - f(y)| = |x - y| \Rightarrow$ возьмем $\delta < \varepsilon \Rightarrow |f(x) - f(y)| < \varepsilon \Rightarrow$ функция равномерно непрерывна на \mathbb{R} .

Пример: $f(x) = x^2$ на $\mathbb{R} \Rightarrow |f(x) - f(y)| = |x - y| \cdot |x + y| \Rightarrow$ возьмем $|x - y| < \delta$, но это не будет означать, что $|f(x) - f(y)| < \varepsilon$, она может быть сколь угодно большой \Rightarrow не равномерно непрерывна.

 \mathbf{Rm} : 2. Из равномерной непрерывности \Rightarrow непрерывность. Но из непрерывности \Rightarrow равномерная непрерывность.

Теорема 1. (**Кантора**) Если f непрерывна на компакте K, то f равномерно непрерывна на K.

Упр. 2. Верно ли, что если для множества E эта теорема выполнена, то E - компакт.

(I) способ: (От противного) $\exists \, \varepsilon > 0, \, \forall \delta > 0 \colon \exists \, x,y \in K, \, |x-y| < \delta \wedge |f(x)-f(y)| \geq \varepsilon.$ Возьмем

$$\delta = \frac{1}{n}, x_n, y_n \in K \colon |x_n - y_n| < \frac{1}{n} \land |f(x) - f(y)| \ge \varepsilon$$

Так как K - компакт, то $\exists x_{n_k} \to x_0 \in K$. В силу того, что $|x_{n_k} - y_{n_k}| < \frac{1}{n_k} \Rightarrow y_{n_k} \to x_0$.

Из-за непрерывности $f(x_{n_k}) \to f(x_0) \land f(y_{n_k}) \to f(x_0) \Rightarrow 0 < \varepsilon \le |f(x_{n_k}) - f(y_{n_k})| \to 0 \Rightarrow$ противоречие.

(II) способ: $\forall x \in K, \exists \mathcal{U}_{\delta(x)}(x) \colon \omega(f, \mathcal{U}_{\delta(x)}(x)) < \varepsilon$, то есть $|f(x_1) - f(x_2)| < \varepsilon, \forall x_1, x_2 \in \mathcal{U}_{\delta(x)}(x)$. Это утверждение верно, так как f - непрерывна в точке $x \Rightarrow$ колебания в окрестности неё стягиваются к 0.

Рис. 1: Окрестность зависит от точки x.

Окрестности $\mathcal{U}_{\frac{\delta(x)}{2}}(x)$ - покрывают K, когда x пробегает всё K.

Рис. 2: Окрестность $\mathcal{U}_{\frac{\delta(x)}{2}}(x)$.

Так как K это компакт, то можно выделить конечное подпокрытие: $\exists \mathcal{U}_{\frac{\delta(x_1)}{2}}(x_1), \dots, \mathcal{U}_{\frac{\delta(x_N)}{2}}(x_N)$ - покрытие K. Возьмем $\delta = \min \left\{ \frac{\delta(x_1)}{2}, \dots, \frac{\delta(x_N)}{2} \right\}$. Пусть $|x-y| < \delta$, так как $x, y \in K \Rightarrow \exists \mathcal{U}_{\frac{\delta(x_k)}{2}}(x_k) \ni x$

Рис. 3: $|x - y| < \delta$.

Поскольку $\delta \leq \frac{\delta(x_k)}{2}$, то получается что $x, y \in \mathcal{U}_{\delta(x_k)}(x_k)$.

Рис. 4: $x, y \in \mathcal{U}_{\delta(x_k)}(x_k)$.

Поскольку $x, y \in \mathcal{U}_{\delta(x_k)}(x_k) \Rightarrow |f(x) - f(y)| < \varepsilon$.

Посмотрим на определение равномерной непрерывности и попробуем записать его в терминах колебания функций.

Пусть $f: \mathbb{R} \to \mathbb{R}$, рассматриваем непрерывность и равномерную непрерывность на всей \mathbb{R} .

<u>**Непрерывность**</u>: $\forall a \in \mathbb{R}, \lim_{\delta \to 0+} \omega(f, \mathcal{U}_{\delta}(a)) = 0;$

Равномерная непрерывность: $\lim_{\delta \to 0+} \sup_{a} \omega(f, \mathcal{U}_{\delta}(a)) = 0;$

По определению равномерной непрерывности $\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x,y \in D, |x-y| < \delta \Rightarrow \Rightarrow |f(x) - f(y)| < \varepsilon \Rightarrow \omega(f, \mathcal{U}_{\frac{\delta}{2}}(a)) < \varepsilon$ и это не будет зависеть от $a \Rightarrow$ это сразу для всех $a \Rightarrow \sup_a \omega(f, \mathcal{U}_{\frac{\delta}{2}}(a)) < \varepsilon$.

Рис. 5: Равномерная непрерывность в терминах колебания функции.

Можно и в обратную сторону, пусть $\lim_{\delta \to 0+} \sup_a \omega(f, \mathcal{U}_\delta(a)) = 0 \Rightarrow \forall \varepsilon > 0, \exists \, \delta > 0 \colon \sup_a \omega(f, \mathcal{U}_\delta(a)) < \varepsilon \Rightarrow$ возьмем две точки $x,y \in D \colon |x-y| < \delta \Rightarrow$ возьмем середину и будем смотреть колебания функции на окрестности радиуса δ . На всякой такой окрестности, колебания функции будут $< \varepsilon \Rightarrow$ равномерно непрерывна.

В равномерной непрерывности в терминах колебаний записано, что предел приближается к 0 одновременно во всех точках a.

Сходимость функций

Пусть задана последовательность функций $f_n \colon D \to \mathbb{R}$.

Опр: 3. Последовательность f_n сходится к f поточечно, если $\forall x \in D$, $\lim_{n \to \infty} f_n(x) = f(x)$.

Опр: 4. Последовательность f_n сходится к f равномерно на D, если $\lim_{n\to\infty} \sup_{D} |f_n(x) - f(x)| = 0$.

Поточечная сходимость: $\forall x, \forall \varepsilon > 0, \exists N : \forall n > N, |f_n(x) - f(x)| < \varepsilon.$

Равномерная сходимость: $\forall \varepsilon > 0, \exists N : \forall n > N, \sup_{D} |f_n(x) - f(x)| < \varepsilon \Leftrightarrow \forall x \in D, |f_n(x) - f(x)| < \varepsilon,$ то есть $\forall \varepsilon > 0, \exists N : \forall n > N, \forall x \in D, |f_n(x) - f(x)| < \varepsilon.$

Пример: D = [0, 1], последовательность функций f_n имеют следующий вид:

Рис. 6: Пример поточечной сходимости функций.

Рассмотрим точку x, сначала функция f_1 равна какому-то значению в этой точке, затем значения следующих функций равны 0 в этой точке $\Rightarrow f_n(x) \to 0$. Таким образом, поточечно, в каждой точке x последовательность $f_n(x)$ стремится к 0.

Будет ли эта сходимость равномерной? $\sup_{D} |f_n(x) - 0| = 1 \to 0$. Если бы равномерно сходилась, то можно было бы указать номер, после которого все значения были бы маленькие. А здесь такой номер указать невозможно.

Пример: $f_n(x) = \frac{\sin x}{n}$, $D = \mathbb{R}$, $f_n(x) \to 0$, $|f_n(x)| \leq \frac{1}{n} \Rightarrow \sup_{D} |f_n(x)| \leq \frac{1}{n} \to 0 \Rightarrow$ есть равномерная сходимость.

Какие свойства сохраняются при приближении известными функциями неизвестной? В том числе интересуют непрерывность. При поточечной сходимости свойство непрерывности исчезнет, но не совсем, а при равномерной сходимости, непрерывность обязательно сохранится.

Пример: D = [0, 1], последовательность функций f_n имеют следующий вид:

Рис. 7: Исчезновение непрерывности, при поточечной сходимости функций.

Такая последовательность сходится поточечно к функции следующего вида: $f_n(x) \to 0, x \neq \frac{1}{2}$ и $f_n(x) \to 1, x = \frac{1}{2}$. Более того, данная сходимость не была равномерной.

Может ли последовательность непрерывных функций сходится к функции Дирихле? Нет и для этого есть следующая теорема.

Теорема 2. Пусть f_n - непрерывна на \mathbb{R} и поточечно сходится к $f(x) \colon \forall x \in \mathbb{R}, f_n(x) \to f(x)$. Тогда $\exists x_0 \in \mathbb{R} \colon f$ - непрерывна в точке x_0 .

Rm: 3. В каждом интервале найдется такая точка. Данное доказательство можно проделать для любого интервала, поэтому в каждом интервале будет точка непрерывности.

<u>Идея</u>: Доказываем от противного, если функция f не является непрерывной в точке $x_0 \Rightarrow$ она всюду разрывна \Rightarrow у нее есть точки в которых колебания положительны, то есть рядом с которыми функция ведет себя как функция Дирихле. Так как f_n сходится поточечно, то в каждом интервале найдется интервал, где f_n будет ее хорошо приближать (лучше, чем колебания функции).

С одной стороны f скачет, с другой стороны не отличается от функций у которых колебания $= 0 \Rightarrow$ так не может быть, противоречие.