Logika Matematika Bab 1: Aljabar Boolean

Andrian Rakhmatsyah Teknik Informatika IT Telkom

Referensi

- Rosen, Kenneth H., *Discrete Mathematic and Its Applications*, 4th edition, McGraw Hill International Editions, 1999
- Munir, Rinaldi., Matematika Diskrit, Penerbit Informatika, Bandung, 2001
- Korfhage, Robert R., Logic and Algorithms With Application to the Computer and Information Sciences, John Wiley and Sons, Inc., US, 1966.
- Tinder, Richard F., *Digital Engineering Design A Modern Approach*, Prentice-Hall International, Inc., 1991

Teori himpunan-pengertian

- Himpunan adalah kumpulan obyek yang berbeda tetapi memiliki sifat yang serupa,
- Sifat serupa ini menjadi syarat keanggotaan himpunan,
- Elemen himpunan merupakan anggota dari suatu himpunan,
- Himpunan direpresentasikan dengan huruf kapital A, B, C, dan seterusnya,
- Elemen himpunan direpresentasikan dengan huruf kecil a, b, c, dan seterusnya,
- Simbol dari elemen A ditulis sebagai $1 \in A$, $0 \in A$,
- Simbol dari bukan elemen A ditulis sebagai x ∉ A,

Teori himpunan-representasi

Terdapat 4 metoda untuk merepresentasikan himpunan, yaitu.

1. Enumerasi

Dengan menyebutkan semua (satu per satu) elemen himpunan Contoh,

$$B = \{1, 2, 3, 4, 5\}$$

 $D = \{apel, mangga, jambu\}$

2. Notasi khusus himpunan atau simbol standar

Dengan simbol-simbol standar yang biasa digunakan untuk mewakili suatu himpunan, contoh

```
P = himpunan bilangan integer positif = {1, 2, 3, ...}

Q = himpunan bilangan natural = {0, 1, 2, ...}

Z = himpunan bilangan rasional = {..., -2, -1, 0, 1, 2, ...}
```

Teori himpunan-representasi

3. Notasi pembentuk himpunan

Dengan menyebutkan sifat atau syarat keanggotaan dari himpunan.

Contoh,
$$B = \{ x \mid x \le 5, x \in A \}$$

Aturan dalam penulisan syarat keanggotaan himpunan:

- bagian kiri tanda '| ' melambangkan elemen himpunan,
- tanda '| ' dibaca sebagai *dimana* atau sedemikian sehingga,
- bagian di kanan tanda '|' menunjukkan syarat keanggotaan himpunan,
- setiap tanda ',' dibaca sebagai *dan*.

Teori himpunan-representasi

4. Diagram venn

Dengan menggambarkan keberadaan himpunan terhadap himpunan lain. Himpunan Semesta (S) digambarkan sebagai suatu segi empat sedangkan himpunan lain digambarkan sebagai lingkaran.

Contoh,

$$S = \{ 1,2,...,7,8 \}; A = \{ 1,2,3,5 \}; B = \{ 2,5,6,8 \}$$

Himpunan	Area
A	1,2
В	2,3
$A \cap B$	2
$A \cup B$	1, 2, 3

Teori himpunan-kardinalitas

- Untuk menyatakan banyaknya elemen suatu himpunan berhingga,
- Jumlah elemen A disebut kardinalitas dari himpunan A,
- Simbol: |A| = 3 atau |K| = 0.

Himpunan-himpunan khusus

Himpunan semesta/universal

Simbol: S atau U

• Himpunan kosong (Null Set)

Adalah himpunan yang tidak memiliki elemen

Simbol: { } atau Ø

Contoh : $F = \{ x \mid x < x \}$

• Himpunan bagian (Subset)

A adalah subset dari B jika dan hanya jika setiap elemen A juga merupakan elemen B.

 $Simbol : A \subseteq B$

Contoh:

$$A = \{ (x,y) \mid x + y < 4 \} \text{ dan } B = \{ (x,y) \mid 2x + y < 4 \}$$

Maka $A \subset B$

Catatan:

$$\emptyset \subseteq A \text{ dan } A \subseteq A$$

Ø dan A dikatakan sebagai himpunan bagian tak sebenarnya (improver subset) dari himpunan A.

Himpunan-himpunan khusus

• Himpunan bagian yang sebenarnya (proper subset)

Jika $A \subseteq B$ dimana $B \neq \emptyset$ dan $B \neq A$, maka B dikatakan himpunan bagian sebenarnya dari A

Himpunan yang sama

Himpunan A dikatakan sama dengan himpunan B jika dan hanya jika setiap elemen A merupakan elemen B dan sebaliknya setiap elemen B juga merupakan elemen A.

Simbol : $A = B \leftrightarrow A \subseteq B \text{ dan } B \subseteq A$

Himpunan yang ekivalen

Himpunan A dikatakan ekivalen dengan himpunan B jika dan hanya jika kardinal dari kedua himupunan tersebut sama.

Simbol: $A \sim B$

Himpunan saling lepas (disjoint)

Dua himpunan A dan B dikatakan saling lepas jika tidak memiliki elemen yang sama.

Contoh:

$$A = \{ x \mid x < 8, x \in P \} ; B = \{ 10, 20, 30, \dots \}$$

Maka A dan B adalah himpunan yang saling lepas.

Teori himpunan-operasi

• Irisan (intersection)

Irisan dari himpunan A dan B adalah himpunan yang setiap elemennya merupakan elemen dari himpunan A dan himpunan B.

```
Simbol, A \cap B = \{ x \mid x \in A \text{ dan } x \in B \}
Contoh:
A = \{ 3, 5, 9 \}
B = \{ -2, 6 \}
A \cap B = \{ \}
```

• Gabungan (*Union*)

Gabungan dari himpunan A dan B adalah himpunan yang setiap anggotanya merupakan anggota himpunan A atau anggota himpunan B atau anggota keduanya.

```
Simbol : A \cup B = \{ x \mid x \in A \text{ atau } x \in B \}
```

Teori himpunan-operasi

Komplemen suatu himpunan

Komplemen dari suatu himpunan A terhadap suatu himpunan semesta adalah suatu himpunan yang elemennya merupakan elemen S yang bukan elemen A.

Simbol: $A' = \{ x \mid x \in S \text{ dan } x \notin A \} = S - A$

Selisih

Selisih dari 2 buah himpunan A dan B adalah suatu himpunan yang elemennya merupakan elemen A dan bukan elemen B. Selisih antara A dan B dapat juga dikatakan sebagai komplemen himpunan B relatif terhadap himpunan A

Simbol: $A - B = \{ x \mid x \in A \text{ dan } x \notin B \} = A \cap B'$

Teori himpunan-operasi

• Perbedaan simetris (Symmetric Difference)

Perbedaan simetris dari himpunan A dan B adalah suatu himpunan yang elemennya ada pada himupunan A atau B tetapi tidak pada keduanya.

Simbol:

```
A B = A \oplus B = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)
Contoh:
A = { 2, 4, 6 }; B = { 2, 3, 5 }
A \oplus B = { 3, 4, 5, 6 }
```

Aljabar himpunan

Aljabar himpunan mempunyai sifat yang analogi dengan aljabar aritmetika. Operasi pada aljabar aritmetika adalah penambahan (+) dan perkalian (•).

Sifat-sifat operasi pada aljbar aritmetika, misal a, b, c, adalah sembarang bilangan.

• Tertutup (*Closure*)

A1: a + b adalah bilangan M1: a • b adalah bilangan

Assosiatif

A2 :
$$(a + b) + c = a + (b + c)$$

M2 : $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Aljabar himpunan

Identitas

A3 : Ada sebuah bilangan unik yaitu nol (0) sedemikian sehingga untuk semua bilangan berlaku bahwa a + 0 = 0 + a = a

M3: Ada sebuah bilangan unik yaitu 1 sedemikian sehingga untuk semua bilangan berlaku bahwa

$$a \bullet 1 = 1 \bullet a = a$$

Invers

A4: Untuk setiap bilangan a terdapat bilangan unik (-a) sedemikian sehingga berlaku

$$a + (-a) = (-a) + a = 0$$

M4: Untuk setiap bilangan a ≠ 0, terdapat bilangan unik (a 1) sedemikian sehingga berlaku

$$a \bullet a 1 = a 1 \bullet a = 1$$

Komutatif

$$A5 : a + b = b + a$$

$$M6: a \bullet b = b \bullet a$$

Distributif

A6 :
$$a \bullet (b + c) = (ab) + (ac)$$

M6: $(a + b) \bullet c = (ac) + (bc)$

Aljabar himpunan

Sifat-sifat tersebut berlaku pula pada aljabar himpunan dimana terdapat perubahan.

- Operator penjumlahan (+) diganti dengan operator perbedaan simetris (Δ),
- Operator perkalian (•) diganti dengan operator irisan (\cap),
- Sifat M4 bilangan unik nol (0) diganti himpunan \emptyset , bilangan unik 1 diganti himpunan semesta S,
- A4 Bilangan unik (-a) diganti dengan A', sedemikian sehingga berlaku,

$$A \Delta A' = S$$
 $A \cap A' = \emptyset$

Transisi dari himpunan ke logika

Pada dasarnya Aljabar Boolean memberikan perantaraan antara Aljabar himpunan dan logika sebagai berikut :

• operasi-operasi dasar dalam aljabar himpunan dengan 2 elemen yaitu \varnothing dan $^\Delta$

Jika diinterpretasikan sebagai aljabar boolean maka kedua elemen pada aljabar himpunan berkorespodensi dengan elemen pada aljabar Boolean yaitu 0 dan 1.

Transisi dari himpunan ke logika

• operasi-operasi dasar dalam aljabar boolean dengan 2 elemen yaitu, 0 dan 1,

$$\begin{array}{c|cccc}
0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 \\
\hline
\alpha + \beta
\end{array}$$

	0	1	
0	0	0	
1	0	1	
	α	• β ¹	

• operasi-operasi dasar dalam logika (kalkulus proposisi) melibatkan elemen *false* dan *true*,

	False	True
False	False	True
True	True	True
	α	<i>γ</i> β

Aljabar boolean-definisi

Sistem aljabar dengan dua operasi penjumlahan (+) dan perkalian (.) yang didefinisikan sehingga memenuhi ketentuan berikut ini :

- aturan A1 sampai dengan A5, M1 sampai M3, M5, D1,
 dan D2,
- setiap elemen a, b, c dari S mempunyai sifat-sifat atau
 aksioma-aksioma berikut ini.

Aljabar boolean-definisi

A ₁	$a+b \in S$	< dosure >
M_2	$a.b \in S$	< dosure >
A_2	a + (b + c) = (a + b) + c	< asosiatif >
M_2	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$	< asosiatif >
A_3	Jika $0 \in S$ maka untuk setiap $a \in S$,	< identitias >
	adalah a + 0 = 0 + a = a	
M_3	Jika 1 ∈ S maka untuk setiap a ∈ S,	< identitas >
	adalah a . $1 = 1$. $a = a$	
Α,	a+b=b+a	< komutatif >
M_5	a.b = b.a	< komutatif >
D_{i}	a.(b+c) = a.b + a.c	< distributif>
D_2	$(a + b) \cdot c = a \cdot c + b \cdot c$	< distributif>
D_3	$a + (b.c) = (a + b) \cdot (a + c)$	< distributif >
D_4	$(a.b) + c = (a + c) \cdot (b + c)$	< distributif>
C_{i}	Untuk setiap a ∈ S, dan a' ∈ S, maka a +	< komplemen >
	$a^2 = 1 \operatorname{dan} a \cdot a^2 = 0$	

Teorema 2.1

Untuk setiap elemen a, berlaku: a + a = a dan $a \cdot a = a$

<u>Bukti</u>

$$a + a = (a + a) (1)$$

= $(a + a) (a + a')$
= $a + (a \cdot a')$
= $a + 0$
= a

a.a
$$= a.a + 0$$

 $= a.a + a.a'$
 $= a. (a + a')$
 $= a.1$
 $= a$

identitas komplemen distributif komplemen identitas

• Teorema 2.2

Untuk setiap elemen a, berlaku : a + 1 = 1 dan a.0 = 0

<u>Bukti</u>

$$a + 1 = a + (a + a')$$

= $(a + a) + a'$
= $a + a'$
= 1

komplemen asosiatif teorema 1a komplemen

komplemen asosiatif idempoten komplemen

Teorema 2.3 (Hukum Penyerapan)

Untuk setiap elemen a dan b, berlaku: $a + a \cdot b = a$ dan a $\cdot (a+b) = a$

<u>Bukti</u>

$$a+ab = a.1 + a.b$$

= $a \cdot (1 + b)$
= $a + 1$
= a

a.
$$(a+b) = a.a + a.b$$

 $= a + ab$
 $= a.1 + ab$
 $= a. (1 + b)$
 $= a. 1$
 $= a$

Identitas distributif teorema 2a identitas

distributif idempoten identitas distributif teorema 2a identitas

• Teorema 2.4 (Hukum de Morgan)
Untuk setiap elemen a dan b, berlaku : (a . b)' = a' + b' dan (a+b)' = a'b'

```
Bukti
(a.b)' = a' + b'
Diketahui : (ab) (ab)'
Diperlihatkan : (ab) (a'+b')
(ab) (a'+b') = aba' + abb'
                                                = 0
                                                = 0
                                                distributif
                       = 0.b + a.0
                                                komplemen
                       = 0 + 0
                                                teorema 2b
                                                identitas
                        = 0
(a + b)' = a'b'
                        (ab) + (ab)' = 1

(ab) + a' + b' = 1
Diketahui
Diperlihatkan
ab + (a' + b')
                        = (a + a' + b') (b + a' + b')
                                                            distributif
                        = (1 + b') (1 + a')
= 1.1
                                                            kompleman
                                                            teorema 2a
                        = 1
                                                            identitas
```

• Teorema 2.4 (Hukum de Morgan)

Untuk setiap elemen a dan b, berlaku : (a . b)' = a' + b' dan (a+b)' = a'b'

• Teorema 2.5

$$0' = 1 \operatorname{dan} 1' = 0$$

• Teorema 2.6

Jika suatu Aljabar Boolean berisi paling sedikit dua elemen yang berbeda, maka 0 ≠ 1

Fungsi boolean

Misalkan $x_1, x_2, x_3, \ldots, x_n$ merupakan variabel-variabel aljabar Boolean. Fungsi Boolean dengan n variabel adalah fungsi yang dapat dibentuk dari aturan-aturan berikut:

fungsi konstan

$$f(x_1, x_2, x_3, \dots, x_n) = a$$

• fungsi proyeksi

$$f(x_1, x_2, x_3, ..., x_n) = x_i$$
 $i = 1, 2, 3, ..., n$

fungsi komplemen

$$g(x_1, x_2, x_3, \ldots, x_n) = (f(x_1, x_2, x_3, \ldots, x_n))'$$

fungsi gabungan

$$b(x_1, x_2, x_3, \dots, x_n) = f(x_1, x_2, x_3, \dots, x_n) + g(x_1, x_2, x_3, \dots, x_n)$$

$$b(x_1, x_2, x_3, \dots, x_n) = f(x_1, x_2, x_3, \dots, x_n) \cdot g(x_1, x_2, x_3, \dots, x_n)$$

Bentuk fungsi boolean

Suatu fungsi Boolean dapat dinyatakan dalam bentuk yang berbeda tetapi memiliki arti yang sama

Contoh:

$$f_1(x,y) = x' \cdot y'$$

 $f_2(x,y) = (x + y)'$

f₁ dan f₂ merupakan bentuk fungsi boolean yang sama, yaitu dengan menggunakan Hukum De Morgan.

Nilai fungsi

Fungsi Boolean dinyatakan nilainya pada setiap variabel yaitu pada setiap kombinasi (0,1).

Contoh: Fungsi Boolean

f(x,y)	X	y l	x'y	ху	y	f(x,y)
	0	0	0	0	1	1
	0	1	1	0	0	1
	1	0	0	1	1	1
	1	1	0	0	0	0

Cara representasi

Aljabar

- Contoh : fungsi f(x,y,z)=xyz'
- Representasi secara aljabar adalah f(x,y,z) = xyz'

Tabel Kebenaran

- Contoh: fungsi f(x,y,z)=xyz'
- Jumlah elemen dalam tabel kebenaran adalah jumlah kombinasi dari nilai-nilai variabelnya, yaitu sejumlah 2n, dimana n adalah banyaknya variabel biner

Konversi fungsi boolean

х	У	z	f(x,y,z)
0	0	0	→ SOP (Sum of product)
0	0	1	1 ←SOP 1). $f_1(x,y,z) = x'y'z + xy'z' + xyz$
0	1	0	$0 \leftarrow POS$ = $m_1 + m_4 + m_7$
0	1	1	0
1	0	0	$1 \leftarrow SOP$ $f'(\lambda_1 \lambda_1 \lambda_2) = \lambda_1 \lambda_1 \lambda_2 \lambda_2 \lambda_2 \lambda_3 \lambda_4 \lambda_4 \lambda_2 \lambda_2 \lambda_4 \lambda_4 \lambda_4 \lambda_4 \lambda_4 \lambda_4 \lambda_4 \lambda_4 \lambda_4 \lambda_4$
1	0	1	$f_1'(x,y,z) = x'y'z' + x'yz' + x'yz + xy'z + xyz'$
1	1	0	0
1	1	1	1 ←SOP → POS (Product of sum)
			2) f(x,y,y) = (x,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y,y

2).
$$f_2(x,y,z) = (x+y+z)(x+y'+z)(x+y'+z')(x'+y+z')$$

 $(x'+y'+z)$
 $= (f_1'(x,y,z))'$
 $= M_0 M_2 M_3 M_5 M_6$

 $\therefore F = m_1 + m_4 + m_7 = M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$

Konversi fungsi boolean

X	У	z	f(x,y,z)	1). $f_1(x,y,z) = x'y'z' + x'y'z + x'yz' + x'yz + x'yz + x'yz' + x'yz + x'yz' + x'yz'$
0	0	0	1	$xy'z+xyz' \leftarrow SOP$
0	0	1	1	$= m_0 + m_1 + m_2 + m_3 + m_4 + m_6$
0	1	0	1	$f_1'(x,y,z) = xy'z + xyz$
0	1	1	1	$\mathcal{I}(\mathcal{O})$
1	0	0	1	2) $f(x,y,z) = (x,y+y+z,y+y+z,y+z,y+z,y+z,y+z,y+z,y+z,y+z$
1	0	1	0	2). $f_2(x,y,z) = (x'+y+z')(x'+y'+z') \leftarrow POS$
1	1	0	1	$= (f_1'(x,y,z))'$ $= M M$
1	1	1	0	$= \mathbf{M}_5 \mathbf{M}_7$

 $\therefore F = m_0 + m_1 + m_2 + m_3 + m_4 + m_6 = M_5 \cdot M_7$

Konversi fungsi boolean

				1). $f_1(x,y,z) = x'yz' + x'yz + xyz' + xyz$ \leftarrow SOP
X	у	Ż	f(x,y,z)	$= m_2 + m_3 + m_6 + m_7$
0	0	0	0	1112 1113 1116
0	0	1	0	$f_1'(x,y,z) = x'y'z' + x'y'z + xy'z' + xy'z$
0	1	0	1	
0	1	1	1	2) $f(x,y,z) = (x + y + z)(x + y + z)(x^2 + y + z)$
1	0	0	0	2). $f_2(x,y,z) = (x + y + z)(x + y + z)(x' + y + z)$
1	0	1	0	$(x'+y+z') \qquad \leftarrow \mathbf{POS}$
1	1	0	1	$= (f_1'(x,y,z))'$
1	1	1	1	$= \mathbf{M}_0 \mathbf{M}_1 \mathbf{M}_4 \mathbf{M}_5$

 $\therefore F = m_2 + m_3 + m_6 + m_7 = M_0 \cdot M_1 \cdot M_4 \cdot M_5$

Bentuk standar/kanonik

• Jika f adalah fungsi boolean satu variabel maka untuk semua nilai x berlaku:

$$f(x) = f(1) \cdot x + f(0) \cdot x'$$

• Jika f adalah fungsi boolean dua variabel maka untuk semua nilai x berlaku : $f(x,y) = f(0,0) \cdot x'y' + f(0,1) \cdot x'y + f(1,0) \cdot xy' + f(1,1) \cdot xy$

• Jika f adalah fungsi boolean tiga variabel maka untuk semua nilai x berlaku:

$$f(x,y,z) = f(0,0,0) \cdot x'y' \cdot z' + f(0,0,1) \cdot x'y'z + f(0,1,0) \cdot x'yz' + f(0,1,1) \cdot x'yz + f(1,0,0) \cdot xy'z' + f(1,0,1) \cdot xy'z' + f(1,1,0) \cdot xyz' + f(1,1,1) \cdot xyz$$

Bentuk standar/kanonik

	77	Minterm		Maxterm	
X	У	Term	Nilai	Term	nilai
0	0	x'y'	m_0	x + y	M_{0}
0	1	x²y	m_{i}	x + y	M_{i}
1	0	хy	$\mathrm{m_2}$	x² + y	$\mathrm{M}_{\!\scriptscriptstyle 2}$
1	1	хy	$\mathrm{m_{_3}}$	x' + y'	$\mathrm{M}_{\scriptscriptstyle 3}$

Bentuk standar/kanonik

<u>#</u>							
	X	Minterm 2		term	Maxterm		
		у	Z	Term	Nilai	Term	Nilai
	0	0	0	x'y'z'	m_0	x + y + z	$M_{\scriptscriptstyle 0}$
	0	0	1	x²yz	m_1	x + y + z	M_{i}
	0	1	0	x'yz'	m_2	x + y' + z	M_2
	0	1	1	x²yz	m_3	x + y '+ z'	M_3
	1	0	0	xy'z'	$\mathrm{m_4}$	x'+y+z	$\mathrm{M}_{\scriptscriptstyle{4}}$
	1	0	1	xy'z	$\mathrm{m}_{\mathfrak{s}}$	x'+y+z'	$ m M_{\scriptscriptstyle 5}$
	1	1	0	xyz²	m_6	x'+y'+z	$\mathrm{M}_{\scriptscriptstyle{6}}$
	1	1	1	хуż	m_7	$x^2 + y^2 + z^2$	M_7

Konversi ke bentuk standar/kanonik

1. Cari bentuk standar dari f(x,y) = x'

```
Jawab:
f(x,y) = x' \cdot 1
                           identitas
                           komplemen
      = x' \cdot (y+y')
      = x'y + x'y'
                           distributif
      = \sum m(0, 1)
:. Bentuk Standar : f(x,y) = x'y + x'y'
:. Bentuk Kanonik : f(x,y) = \sum m(0, 1)
dengan mj' = Mj
        = x . 1
                                      identitas
f'(x,y)
      = x .(y+y') komplemen
      = xy + xy'
                           distributif
(f'(x,y))' = (x'+y')(x'+y)
      = \Pi M(2, 3)
:.Bentuk Standar: f(x,y) = (x'+y')(x'+y)
∴ Bentuk Kanonik : f(x,y) = \Pi M(2,3)
```

← bentuk SOP

← bentuk POS

Konversi ke bentuk standar/kanonik

2. Cari bentuk standar dari f(x,y,z) = y' + xy + x'yz'Jawab:

$$f(x,y,z) = y' + xy + x'yz' \qquad \leftarrow \text{lengkapi literal pada tiap suku}$$

$$= y'(x+x')(z+z') + xy(z+z') + x'yz'$$

$$= (xy' + x'y')(z+z') + xyz + xyz' + x'yz'$$

$$f(x,y,z) = xy'z + xy'z' + x'y'z + x'y'z' + xyz + xyz' + x'yz'$$

$$= m_5 + m_4 + m_1 + m_0 + m_7 + m_6 + m_2$$

\rightarrow SOP

- ∴ Bentuk Standar : f(x,y,z) = xy'z + xy'z' + x'y'z + x'y'z' + xyz + xyz' + x'yz'
- :.Bentuk Kanonik : $f(x,y) = \sum m(0, 1, 2, 4, 5, 6, 7)$

atau

→ POS

- ∴ Bentuk Standar : f(x,y,z) = x + y' + z'
- ∴ Bentuk Kanonik : $f(x,y) = \Pi M(3)$

Latihan

1. Cari bentuk standar dari:

a.
$$f(x,y,z) = x + z$$
,

b.
$$f(x,y,z) = z'$$

2. Cari bentuk Kanonik dari:

a.
$$f(x,y) = x'y + xy'$$

b.
$$f(x,y,z) = x'y'z + xy'z' + xyz$$

Konversi ke bentuk SOP

1. Nyatakan Fungsi Boolean f(x,y,z) = x + y'z dalam SOP Jawab :

Lengkapi literal untuk setiap suku agar sama

$$f(x,y,z) = x \cdot (y+y') \cdot (z+z') + (x+x') \cdot y'z$$

$$= (xy+xy')(z+z') + xy'z + x'y'z$$

$$= xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$$

$$= xyz + xyz' + xy'z + xy'z' + x'y'z$$

$$= m_7 + m_6 + m_5 + m_4 + m_1$$

$$= \sum m(1, 4, 5, 6, 7)$$

Konversi ke bentuk SOP

2. Nyatakan Fungsi Boolean f(x,y,z) = x'y'z + xz + yz dalam SOP

Jawab:

Lengkapi literal untuk setiap suku agar sama

$$f(x,y,z) = x'y'z + xz + yz$$

$$= x'y'z + x. (y+y') \cdot z + (x+x') \cdot yz$$

$$= x'y'z + xyz + xy'z + xyz + x'yz$$

$$= m_1 + m_3 + m_5 + m_7$$

$$= \sum m(1, 3, 5, 7)$$

Konversi ke bentuk SOP

3. Nyatakan Fungsi Boolean f(w,x,y,z) = wxy + yz + xy dalam SOP Jawab;

Lengkapi literal untuk setiap suku agar sama

```
f(w,x,y,z) = wxy + yz + xy
= wxy \cdot (z+z') + (w+w')(x+x') \cdot yz + (w+w') \cdot xy \cdot (z+z')
= wxyz + wxyz' + (wx+wx'+w'x+w'x')yz + (wxy+w'xy)(z+z')
= wxyz + wxyz' + wxyz + wx'yz + w'xyz + w'x'yz + wxyz + wxyz'
= wxyz' + w'xyz + w'xyz'
= w'x'yz + w'xyz' + w'xyz + wx'yz + wxyz' + wxyz
= \sum m(3, 6, 7, 10, 14, 15)
```

Konversi ke bentuk POS

1. Nyatakan Fungsi Boolean f(x,y,z) = x y + x'z dalam POS Jawab :

Bentuk fungsi ke POS

$$f(x,y,z) = xy + x'z$$

$$= (xy + x')(xy + z) distributif$$

$$= (x + x')(y + x')(x + z)(y + z) distributif$$

$$= (x' + y)(x + z)(y + z) komplemen, identitas$$

Lengkapi literal untuk setiap suku agar sama

Suku-1
$$\Rightarrow$$
 x' + y = x' + y + zz'
= (x' + y + z)(x' + y + z')
Suku-2 \Rightarrow x + z = x + z + yy'
= (x + y + z)(x + y' + z)
Suku-3 \Rightarrow y + z = xx' + y + z
= (x + y + z)(x' + y + z)

Semua suku dengan literal lengkap:

$$\begin{split} f(x,y,z) &= (xy+x')(xy+z) \\ &= (x+x')(y+x')(x+z)(y+z) \\ &= (x'+y)(x+z)(y+z) \\ &= (x'+y+z)(x'+y+z')(x+y+z)(x+y'+z)(x+y+z)(x'+y+z) \\ &= (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') \\ &= M_0 \cdot M_2 \cdot M_4 \cdot M_5 \\ &= \Pi M(0,2,4,5) \end{split}$$

Konversi ke bentuk POS

2. Nyatakan Fungsi Boolean f(x,y,z) = (x+z)(y'+z') dalam POS

Jawab:

Fungsi Boolean asumsi sudah dalam bentuk POS

$$f(x,y,z) = (x+z)(y'+z')$$
 \leftarrow lengkapi literal pada tiap suku $= (x+yy'+z)(xx'+y'+z')$ Identitas, Komplemen $= (x+y+z)(x+y'+z)(x+y'+z')(x'+y'+z')$ distributif $= M_0 \cdot M_2 \cdot M_3 \cdot M_7$

Penyederhanaan fungsi boolean

Asumsi yang dipakai dalam penyederhanaan:

- bentuk fungsi boolean paling sederhana adalah SOP,
- operasi yang digunakan adalah operasi penjumlahan (+), perkalian (.) dan komplemen (⁶).

ALJABAR

- Bersifat *trial and error* tidak ada pegangan,
- Dalam menyederhanakannya menggunakan aksioma-aksioma dan teorema-teorema yang ada pada aljabar boolean.

PETA KARNAUGH

- Mengacu pada diagram venn,
- Menggunakan bentuk-bentuk peta karnaugh.

QUINE-MCLUSKEY

- penyederhanaan didasarkan pada hukum distribusi,
- Eliminasi *Prime Implicant Redundant*.

1. Sederhanakanlah fungsi Boolean f(x,y) = x'y + xy' + xy

Jawab:

$$f(x,y) = x'y + xy' + xy$$

 $= x'y + x \cdot (y'+y)$
 $= x'y + x \cdot 1$
 $= x'y + x$
 $= (x'+x)(x+y)$
 $= 1 \cdot (x+y)$
 $= (x+y)$

Distributif
Komplemen
Identitas
Distributif
Komplemen
Identitas

2. Sederhanakanlah fungsi Boolean dibawah ini : f(x,y,z) = x'y'z' + x'y'z + x'yz + x'yz' + xy'z' + xyz'

Jawab:

$$f(x,y,z) = x'y'z' + x'y'z + x'yz + x'yz' + xy'z' + xyz'$$

$$= x'.(y'z'+y'z+yz+yz') + x . (y'z'+yz')$$

$$= x'.((y'(z+z') + y(z+z')) + x . ((y'+y)z')$$

$$= x'.(y' .1 + y.1) + x(1 . z')$$

$$= x'.(y'+y) + xz'$$

$$= x' .1 + xz'$$

$$= x' + xz'$$

$$= (x'+x)(x'+z')$$

$$= 1. (x'+z')$$

$$= x' + z'$$

Distributif
Distributif
Komplemen
Identitas
Komplemen
Identitas
Distributif
Komplemen
Identitas

3. Sederhanakanlah fungsi Boolean : f(x,y) = x + xy' + y'

Jawab:

$$f(x,y) = x + xy' + y'$$

= x . (1 + y') + y'
= x .1 + y'
= x + y'

Distributif

Teorema 2

Identitas

atau

$$f(x,y) = x + xy' + y'$$

= $x + (x + 1) \cdot y'$
= $x + 1 \cdot y'$
= $x + y'$

Distributif

Teorema 2.

Identitas

4. Sederhanakanlah fungsi Boolean : f(x,y,z) = xy + xy'z + y(x'+z) + y'z'Jawab :

$$f(x,y,z) = xy + xy'z + y(x'+z) + y'z'$$

$$= x(y+y'z) + y(x'+z) + y'z'$$

$$= x((y+y')(y+z)) + x'y + yz + y'z'$$

$$= x \cdot (y+z) + x'y + yz + y'z'$$

$$= xy + xz + x'y + yz + y'z'$$

$$= xy + xz + xy + yz + y'z'$$

$$= y \cdot 1 + xz + yz + y'z'$$

$$= y + xz + yz + y'z'$$

$$= (y+y')(y+z') + xz + yz$$

$$= (y+y')(y+z') + xz + yz$$

$$= 1 \cdot (y+z') + xz + yz$$

$$= y + yz + xz + z'$$

$$= y \cdot 1 + (x+z')(z+z')$$

$$= y \cdot 1 + (x+z')(z+z')$$

$$= y + (x+z')(z+z')$$

$$= y + (x+z') \cdot 1$$

$$= x + y + z'$$

Distributif Distributif Komplemen **Identitas** Distributif Distributif Komplemen Identitas Distributif Komplemen Identitas Distibutif Teorema 2 Identitas Komplemen Identitas

a). K'Map 2 variabel

x	9 0	1
0	x'y'	x'y
1	xy'	xy

x	y 0	1
0	m_0	m_1
1	m_2	m_3

b) K'Map 3 variabel

\mathbf{x} \mathbf{y}	z 00	01	11	10
0	`x'y'z'	x'y'z	x'yz	x'yz'
1	xy'z'	xy'z	xyz	xyz'

$_{\rm X}$ $\sqrt{\rm y}_{\rm Z}$	z 00	01	11	10
0	m_0	m_1	m_3	m_2
1	m_4	$\mathrm{m}_{\scriptscriptstyle{5}}$	m_7	$ m m_6$

c) K'Map 4 variabel

wx^{VZ}	00	0.1	4.4	40
wx \	00	01	11	10
00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'
01	w'xy'z'	w'xy'z	w'xyz	w'xyz'
11	Wxy'z'	wxy'z	wxyz	wxyz'
10	wx'y'z'	wx'y'z	wx'yz	wx'yz'

\yz				
wx 🔨	00	01	11	10
00	\mathbf{m}_0	m_1	m_3	m_2
01	m_4	m_5	m_7	\mathbf{m}_{6}
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_8	m_9	m_{11}	\mathbf{m}_{10}

1. Place the following four-variable Canonical SOP function in a truth table and represent it in a fourth-order K-map $f(w,x,y,z) = \Sigma m(0, 1, 3, 5, 6, 8, 9, 10, 13)$

Solution

- The truth table is constructed by placing a logic 1 in the *f* coulumn for each MINTERM represented by the function above.
- The absence of MINTERM is a MAXTERM, which accordingly, is assigned logic 0. The K-map is a graphical representation of the canonical truth table and is constructed directly from the truth table as shown below

 $f(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}) = \Sigma \mathbf{m}(0, 1, 3, 5, 6, 8, 9, 10, 13)$

Truth T.	W	Χ	Y	Z	f	W	Х	Y	Z	f
	0	0	0	0	1	1	0	0	0	1
	0	0	0	1	1	1	0	0	1	1
	0	0	1	0	0	1	0	1	0	1
	0	0	1	1	1	1	0	1	1	0
	0	1	0	0	0	1	1	0	0	0
	0	1	0	1	1	1	1	0	1	1
	0	1	1	0	1	1	1	1	0	0
	0	1	1	1	0	1	1	1	1	0

fourth-order K-map

wx^{yz}	00	01	11	10
00	1	1	1	0
01	0	1	0	1
11	0	1	0	0
10	1	1	0	1

2. Place the following three-variable CANONICAL POS function in a truth table and represent it in a thirs-order K-Map.

$$f(A,B,C) = (A+B'+C)(A'+B'+C')(A+B+C)(A'+B+C)(A'+B+C')$$

Solution

The procedure is similar to that followed in example 1 except that, in this case, a logic 0 is placed in the f coulumn and K-map cell each Maxterm

Α	В	С	f	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	0	

B(C 00	01	11	10
0	0	1	1	0
1	0	0	0	1

3. Convert the reduced SOP function given in this example to canonical SOP and POS form by using a fourth-order K-map. Represent the canonical expression by using both literal and coded notation

$$f(A,B,C,D) = ABCD + AD' + B'C'D' + A'B'C + A'BC'D + BCD' + A'B'D'$$

ABC	D 00	01	11	10	1
AB 00	1	0	1	1	
01	0	1	0	1	
11	1	0	1	1	
10	1	0	0	1	

Sederhanakanlah persamaan,

$$f(x,y) = x'y + xy' + xy = m1 + m2 + m3$$

Jawab:

Sesuai dengan bentuk minterm, maka 3 kotak dalam K'Map 2

dimensi, diisi dengan 1:

1	0	1
0		1
1	1	1

Selanjutnya pengelompokkan semua 1 yang ada dengan membuat kumpulan kotak atau persegi panjang dentgan jumlah bujursangkar kecil 2ⁿ. Buatlah kelompok yang sebesar-besarnya.

- Cara menentukan bentuk sederhana dari hasil pengelompokkan adalah :
- Carilah variabel yang memiliki nilai yang sama dalam kelompok tersebut, sebagai contoh kelompok A.
 Pada kelompok A adalah variabel y dengan harga 1
 Pada kelompok B adalah variabel x dengan harga 1
- Menentukan bentuk hasil pengelompokkan.
 Kelompok A adalah y, dan
 Kelompok B adalah x, sehingga
 Hasil bentuk sederhana dari contoh diatas
 A + B = y + x

2. Sederhanakanlah persamaan:

$$f(x,y,z) = x'y'z'_{X} + x'y'z + x'yz + x'yz' + xy'z' + xyz'$$

$$\therefore f(x,y,z) = z' + x'$$

3. Sederhanakanlah fungsi Boolean berikut:

$$f(w,x,y,z) = \sum m(0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14)$$

$$Jaw_{wx} = \begin{bmatrix} 00 & 01 & 11 & 10 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$01 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$11 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$11 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$11 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$11 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$11 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$12 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$13 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$14 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

4. Sederhanakanlah fungsi Boolean:

$$f(x,y,z) = xyz + xyz' + xy'z + x'yz + x'yz' + xy'z' + x'y'z'$$
 dengan menggunakan K'Map

Sederhanakanlah fungsi Boolean:

$$f(w,x,y) = \sum m(0, 1, 3, 5, 7)$$

6. Sederhanakanlah fungsi Boolean:

$$f(w,x,y,z) = wxy'z' + wxy'z + wxyz + wx'yz + w'x'yz + w'x'yz' + w'xyz' + w'xy'z' + w'xy'z' + w'xy'z'$$

Jawab:

Soal Latihan

- 1. Sederhanakanlah Fungsi Boolean dibawah ini dengan menggunakan CARA ALJABAR:
- a. xy + xy'z + y(x' + z) + y'z'
- b. wx + xy + yz + zw + w'x'yz' + w'x'y'z
- c. wxy'z' + wxy'z + wxyz + wx'yz + w'x'yz + w'x'yz' + w'x'y'z' + w'xyz' + w'xyz' + w'xy'z' + w'x'y'z' + w'x'y'z'
- d. A'B'CE' + A'B'C'D' + B'D'E' + B'CD' + CDE' + BDE'

Soal Latihan

- 2. Sederhanakanlah Fungsi Boolean dibawah ini dengan menggunakan PETA KAURNAUGH:
- a. F = BDE + B'C'D + CDE + A'B'CE + A'B'C + B'C'D'E'
- b. wx + xy + yz + zw + w'x'yz' + w'x'y'z
- c. wxy'z' + wxy'z + wxyz + wx'yz + w'x'yz + w'x'yz' + w'x'yz' + w'xyz' + w'xy'z' + w'x'z' + w'x'z'z' + w'x'z

∖ CD								
АВ	00	01	11	10				
A B	00	01	11	10				
0	A'B'C'(D'+D)	A'B'C(D'+D)	A'BC(D'+D)	A'BC'(D'+D)				
	0,1	2,3	6,7	4,5				
1	AB'C'(D'+D)	AB'C(D'+D)	ABC(D'+D)	ABC'(D'+D)				
	8,9	10,11	14,15	12,13				

Latihan

Tentukan fungsi boolean dibaawah ini:

_	XY			
V	1	1	Z'	1
Ī	Z	Z	Z'	Z'

	XY			
<i>l</i>	1	Z'	0	1
	Z	1	1	Z

\	Υ	
X	1	Z
	1	1

Metoda Quine McCluskey digunakan untuk menyederhanakan fungsi Boolean dengan 4 atau lebih variabel

Algoritma:

- 1. nyatakan variabel komplemen dengan '0', sebaliknya '1',
- 2. kelompokkan suku-suku berdasarkan jumlah '1',
- 3. kombinasikan suku-suku tersebut dengan kelompok lain yang jumlah '1'-nya berbeda satu, → diperoleh bentuk prime yang lebih sederhana
- 4. mencari *prime-implicant*, term yang menjadi calon yang terdapat dalam fungsi sederhana,
- 5. memilih prime-implicant yang mempunyai jumlah literal paling sedikit

Contoh:

Sederhanakanlah fungsi Boolean dibawah ini:

$$F = \sum m(0, 1, 2, 8, 10, 11, 14, 15)$$

1. kelompokkan representasi biner untuk tiap minterm menurut jumlah digit 1

Desimal	Biner
0	0000
1	0001
2	0010
8	1000
10	1010
11	1011
14	1110
15	1111

Dari tabel konversi tersebut dapat dilihat bahwa jumlah digit

adalah

Jumlah Digit 1	Desimal
0	0
1	1, 2, 8
2	10
3	11, 14
4	15

	w	X	у	z
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
8	1	О	0	0
10	1	0	1	0
11	1	0	1	1
14	1	1	1	0
15	1	1	1	1

	777	37	7.7	-7	W	\mathbf{X}	\mathbf{v}	Z	
_	W	X	<u>y</u>	Z	$-\sqrt{10}$ 0, 1	0	0	0	_ :::
0	0	0	0	0	- γatu 0, 1 - γma 0, 2	0	0	<u>_</u>	() i
1	0	0	0	1	$\frac{\sqrt{2}}{\sqrt{2}}$ an tai $0, 8$	_	Ŏ	0	Ŏ
2	0	0	1	0	2. 10	_	0	1	0
8	1	0	Ο	0	$\frac{1}{2}$ 8, 10	1	0	_	0
10	1	0	1	0	$\int_{-1}^{1} 10, 11$	1	0	1	_
11	1	0	1	1) 10, 14	1	_	1	0
14	1	1	1	0	¹ 11, 15	1	_	1	1
15	1	1	1	1	$^{\checkmark}$ 14, 15	1	1	1	_

3. Kelompokkan hasil minterm tahap 2) seperti tahap 1) kemudian lakukan seperti pada tahap 2)

	W	X	у	z	l w x y z
0, 1	0	0	0	_	[] 0, 2, 8, 10 - 0 - 0
0, 2	0	0	_	0	$\begin{bmatrix} \sqrt{2} & 0.8 & 2.10 \end{bmatrix} - \begin{bmatrix} 0 & 1 & -1 & 0 \end{bmatrix}$
0, 8	_	0	0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2, 10	-	0	1	0	10, 14, 11, 13 1 - 1 -
8, 10	1	0	_	0	N
10, 11	1	0	1	-	TV.
10, 14	1	-	1	0	$\sqrt{}$
11, 15	1	-	1	1	T √
14, 15	1	1	1	_	√

4. mencari *prime-implicant*, term yang menjadi calon yang terdapat dalam fungsi sederhana,

	W	X	у	Z		
0, 1	0	0	0	_	A	
0, 2	0	0	_	0		
0, 8	_	0	0	0		
2, 10	-	0	1	0		
8, 10	1	0	_	0		
10, 11	1	0	1	_		
10, 14	1	_	1	0		
11, 15	1	_	1	1		
14, 15	1	1	1	_		

	w	X	у	z	
0, 2, 8, 10	-	0	_	0	В
0, 8, 2, 10	_	0	_	0	ע
10, 11, 14, 15	1	-	1	-	C
10, 14, 11, 15	1	_	1	_	

5. Memilih Prime-Implicant

	W	X	у	Z	
0, 1	0	0	0	_	A
0, 2	0	0	_	0	
0, 8	_	0	0	0	
2, 10	-	0	1	0	
8, 10	1	0	_	0	
10, 11	1	0	1	_	
10, 14	1	_	1	0	
11, 15	1	_	1	1	
14, 15	1	1	1	_	

	Z	у	X	W	
В	0	-	0	-	0, 2, 8, 10
	0	-	О	-	0, 8, 2, 10
C	-	1	1	1	10, 11, 14, 15
	_	1	-	1	10, 14, 11, 15

		2	8	10	11	14	15
X	X						
X		X	X	X			
				X	X	X	X
_						x x x x	x x x x

Penyeder Lan Lan - McCluskey

		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$	V
		0	1	2	8	10	11	14	15
	A	X	\otimes						
\rightarrow	B	\otimes		\otimes	\otimes	X			
\rightarrow						⊗ ←	_ ⊗_	→ ⊗	\otimes

$$F = C + B + A$$
$$= wy + x'z' + w'x'y'$$

Langkah 2,

	W	X	У	Z	
0	0	0	0	0	
2	0	0	1	0	
4	0	1	0	0	
8	1	0	0	0	
5	0	1	0	1	$\sqrt{}$
6	0	1	1	0	
10	1	0	1	0	
11	1	0	1	1	
13	1	1	0	1	

						:
		W	X	У	Z	
;	0, 2	0	0	_	0	
	0, 4	0	_	0	0	
	0, 4 0, 8	_	0	0	0	
	2,6	0	-	1	0	
	2,10	_	0	1	0	
	4, 5	0	1	0	_	
	2,10 4, 5 4, 6	0	1	_	0	
	8,10	1	0	_	0	
	5, 13	-	1	0	1	
	10, 11	1	0	1	_	

		W	X	У	Z		7 - 1	0				D	
7	0,2,4,6	0	_	_	0)	4, 5	0	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$		- i	D	
0	,2,8,10	-	0	-	0 E		5, 13 10, 11	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	_	C	
1	Langkal	15, ♥		†	▼	*	*		▼	*	4	7	▼
		√		V	√	√	√	1	V	$\sqrt{}$	V		$\sqrt{}$
		0		2	4	5	6		8	10	1	1	13
	A				X	X							
	B					\otimes							\otimes
	©									X	()	
	D	\otimes		\otimes	\otimes		\otimes						
	E	X		X					\otimes	\otimes			

$$f(w,x,y,z) = \sum m(0, 2, 4, 5, 6, 8, 10, 11, 13)$$

= B + C + D + E
= xy'z + wx'y + w'z' + x'z'