

ELEC 3210 Introduction to Mobile Robotics Lecture 15

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

Recap L14

- Harris Corner
 - Eigen value and eigen vectors

Courtesy: 2

Feature Descriptors

- We know how to detect good points
- Next question: How to match them?

Feature Descriptor and Matching

Invariance

- Suppose we are comparing two images I₁ and I₂
 - I₂ may be a transformed version of I₁
 - What kinds of transformations are we likely to encounter in practice?
- We'd like to find the same features regardless of the transformation
 - This is called transformational *invariance*
 - Most feature methods are designed to be invariant to
 - Translation, 2D rotation, scale
 - They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited illumination/contrast changes

How to achieve invariance

Need both of the following:

1. Make sure your detector is invariant

- Harris is invariant to translation and rotation
- Scale is trickier
 - Many sophisticated methods find "the best scale" to represent each feature (e.g., SIFT), Autoscale in Lecture 14

2. Design an invariant feature descriptor

- A descriptor captures the information in a region around the detected feature point
- The simplest descriptor: a square window of pixels
 - What's this invariant to?
- Let's look at some better approaches...

Scale Invariant Feature Transform

• Basic idea:

- Take 16x16 square window around detected feature
- Compute edge orientation for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations

SIFT

- Full version
 - Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
 - Compute an orientation histogram for each cell
 - 16 cells * 8 orientations = 128 dimensional descriptor

Courtesy: Steve Seitz and Richard Szeliski

SIFT Properties

- Translation invariance
- Illumination invariance

- Rotation invariance
 - rotate all pixel gradients to 90 deg using to the "main direction"
 - main direction = the highest bin in histogram
 - invariant up to about 60 degree out of plane rotation

Problem

Given a feature in I_1 , how to find the best match in I_2 ?

- 1. Define distance function that compares two descriptors
- 2. Test all the features in I_2 , find the one with min distance

Feature Distance

- How to define the difference between two features f_1 , f_2 ?
 - Simple approach is SSD(f₁, f₂)
 - sum of square differences between entries of the two descriptors
 - can give good scores to very ambiguous (bad) matches

 I_1

 I_2

Feature Distance

- How to define the difference between two features f_1 , f_2 ?
 - Better approach: ratio distance = SSD(f₁, f₂) / SSD(f₁, f₂')
 - f₂ is best SSD match to f₁ in l₂
 - f_2 ' is 2nd best SSD match to f_1 in I_2
 - gives small values for ambiguous matches

I₁

 I_2

Feature Matching by SIFT

3D-2D Pose Estimation (Pose from Projective Transform) (The PnP Problem)

Recap L4 - Depth from Stereo Vision

Courtesy: Shaojie Shen, Kostas Daniilidis

Recap L5 ICP

- Pose estimation via Iterative Closest Point
- 3D-3D pose estimation

Iteration 0

3D-3D for Visual Pose Estimation,

- How to obtain 3D-3D data association?
 - Calibrated stereo image pairs as input
 - Spatial matching feature matching between stereo image pairs, for computation of 3D points
 - Temporal matching feature matching between images captures at different times, for motion estimation
 - Need to address outlier removal (RANSAC) to be discussed soon
 - Usually poor performance due to increased ranging error at longer distance with stereo vision – use 3D-2D pose estimation instead

How about 2D-3D?

3D-2D

- 3D features in frame 1
 (or known 3D features in world frame)
- 2D feature observations in frame 2
 (or feature observations in body frame)
- 2D feature reprojections of given a estimated pose of frame 2 in frame 1 (or estimated transformation of body frame in world frame)

Recap L4 Pin-hole Camera Model

Nonlinear 3D-2D Pose Estimation

- $\boldsymbol{\theta}$: Euler Angles ϵR^3 \boldsymbol{t} : Translation ϵR^3 $\pi(\cdot)$: projection function
- Minimize the reprojection error w.r.t. camera pose
 - Can be solved via Gauss-Newton method

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \left\| \begin{bmatrix} u_i \\ v_i \end{bmatrix} - \pi \left(\boldsymbol{K} \cdot (\boldsymbol{R}(\boldsymbol{\theta}) \cdot \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \boldsymbol{t}) \right) \right\|^2$$

Image

- Feature observations
- Feature reprojections

3D-2D Visual Localization with Markers

What if no markers?

22

- In unstructured environments
 - For data association

$$\min_{\boldsymbol{\theta}, \boldsymbol{t}} \sum_{i} \left\| \begin{bmatrix} u_i \\ v_i \end{bmatrix} - \pi \left(\boldsymbol{K} \cdot (\boldsymbol{R}(\boldsymbol{\theta}) \cdot \begin{bmatrix} x_i \\ y_i \\ z_i \end{bmatrix} + \boldsymbol{t}) \right) \right\|^2$$

No Markers

23

- What if you do not have markers?
 - Outlier rejection

RANdom SAmple Consensus (RANSAC)

- Model fitting with outlier rejection
 - The 6-DOF pose you are trying to estimation is a model
- Algorithm:
 - Loop:
 - Randomly select a small amount of (or minimum) data points to find a model
 - See the error between the model and all other data points
 - Find the data points with error smaller than a threshold as inliers
 - If the current model has more inliers than all previous ones, record all inliers
 - Repeat
 - Use all inliers to find the best estimate of the model

Courtesy: 25

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

Iteration 1: 4 Inliers

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

Iteration 2: 10 Inliers

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

• Iteration 3: 12 Inliers

Failure

- RANSAC for 2D line fitting
 - Minimum number of points to define a 2D line: 2
 - Error metric: point to line distance
 - How many iterations are required?

Iteration 4: 4 Inliers

Pose Estimation with RANSAC

- How many feature correspondences are required to create a model?
 - 3D-3D: 3
 - 3D-2D: 3
 - It is OK to use more points to find the model
 - But few number of points is better (Why?)
- How to define the error metric?
 - 3D-3D: point distance
 - 3D-2D: reprojection error
- How many iterations are required?

- How many iterations are required the probability
 - Probability of outlier: X (X < 1)
 - M number of data points to create a model
 - N iterations
- RANSAC failure: all random sample contains at least 1 outlier
 - Failure probability = $(1 (1 X)^M)^N$
 - 2D line fitting example
 - 30% outliers
 - 2 data points to create a model
 - Failure probability for 5 iterations: 3.45%
 - Failure probability for 10 iterations: 0.12%

- How many iterations are required the probability
 - Probability of outlier: X (X < 1)
 - M number of data points to create a model
 - N iterations
- RANSAC failure: all random sample contains at least 1 outlier
 - Failure probability = $(1 (1 X)^M)^N$
 - 3D-3D pose estimation
 - 30% outliers
 - 3 data points to create a model
 - Failure probability for 5 iterations: 12.24%
 - Failure probability for 10 iterations: 1.49%
 - Failure probability for 20 iterations: 0.02%

- How many iterations are required the probability
 - Probability of outlier: X (X < 1)
 - M number of data points to create a model
 - N iterations
- RANSAC failure: all random sample contains at least 1 outlier
 - Failure probability = $(1 (1 X)^M)^N$
 - 3D-3D pose estimation
 - 30% outliers
 - 20 data points to create a model (bad example)
 - Failure probability for 5 iterations: 99.6%
 - Failure probability for 10 iterations: 99.2%
 - Failure probability for 20 iterations: 98.4%
 - Failure probability for 1000 iterations: 45%
 - Failure probability for 10000 iterations: 0.03%

Extract features

Courtesy: Cyrill Stachniss

- Extract features
- Compute putative matches

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

Courtesy: Cyrill Stachniss

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T
 - Verify transformation (search for other matches consistent with T)

Visual Odometry

Pipeline

• A mini pipeline, but can work

Visual Odometry

Courtesy: YouTube 40

Deep Learning-based

• Sarlin PE, DeTone D, Malisiewicz T, Rabinovich A. Superglue: Learning feature matching with graph neural networks. CVPR 2020 (pp. 4938-4947).

Paul-Edouard Sarlin¹ Tomasz Malisiewicz² Daniel DeTone² Andrew Rabinovich²

Courtesy: Super Glue 41

Next Lecture

- Sensing + Estimation 🙂
- Planning

