Statistics and Estimation for Computer Science

İstanbul Teknik Üniversitesi

Mustafa Kamasak, PhD

Version: 2022.3.15

Analysis of Variance (ANOVA)

Pairwise Comparison of Populations

- ▶ How can we compare means of *K* population?
- Compare population combinations by pairs using two-sample hypothesis testing
- ightharpoonup C(K,2) hypothesis testing are required
- Let significance level (type I error) to be α for all tests
- Prability of type-I error is inflated

$$P(\text{at least one type I error}) = 1 - \underbrace{P(\text{no type-I error})}_{(1-lpha)^{\mathcal{C}(K,2)}}$$

▶ Let K = 5 an $\alpha = 0.05$

$$P(\text{at least one type I error}) = 1 - (1 - \alpha)^{10} = 0.4$$

Pairwise Comparison of Populations

- ➤ To prevent inflated significance level (type-I error) use Bonferroni correction
- ▶ If M tests will be performed on the same data use corrected significance level

$$\alpha_{\it c} = \frac{\alpha}{\it M}$$

• For K = 5 an $\alpha = 0.05$, use $\alpha_c = 0.05/10 = 0.005$

$$P(\text{at least one type I error}) = 1 - (1 - \alpha_c)^{10} \approx 0.05$$

- Even with Bonferroni correction, it is never a good idea to divide data
- Using all data to test a hypothesis will increase power of analysis

Analysis of Variance (ANOVA)

- ▶ Means of multiple populations (≥ 3) can be compared using the analysis of variances.
- Process was introduced by Sir Ronald Fisher.
- Assuming that there are K samples
 - H_0 : $\mu_1 = \mu_2 = \cdots = \mu_K$
 - ▶ H_1 : $\mu_i \neq \mu_j$ for at least one i, j $(i \neq j)$
- One-way or one-factor ANOVA investigates the mean of samples that vary with a single factor. For example, blood sugar level with respect to BMI factor.
- ► Two-way or two-factor ANOVA investigates the mean of samples that vary with a two factors. For example, blood sugar level with respect to BMI and age factors.
- More factors can also be investigated.

ANOVA Assumptions

Following criteria should be satisfied to use ANOVA:

- lacktriangle Each population should have normal distribution ightarrow Normality
- ightharpoonup Variance of the populations should be identical ightarrow Homoscedaticity
- lacktriangle Samples should be independent ightarrow Independence

Definitions

Population	1	2	 K
Pop. mean	μ_1	μ_2	 μ_{K}
Pop. var.	σ^2	σ^2	 σ^2
Sample size	n_1	n_2	 n_K
Sample mean	\overline{x}_1	\overline{x}_2	 \overline{x}_K
Sample var.	s_1^2	s_{2}^{2}	 s_K^2

▶ Let x_{ki} denote the i^{th} observation in group k.

$$\overline{x}_k = \sum_{i=1}^{n_k} x_{ki}$$

$$s_k^2 = \frac{1}{n_k - 1} \sum_{i=1}^{n_k} (x_{ki} - \overline{x}_k)^2$$

Definitions

N: Total number of observations in all samples

$$N = \sum_{k=1}^{K} n_k$$

T: Sum of all observed values

$$T = \sum_{k=1}^{K} \sum_{i=1}^{n_k} x_{ki} = \sum_{k=1}^{K} n_k \overline{x}_k$$

 $ightharpoonup \overline{\overline{x}}$: Grand mean

$$\overline{\overline{x}} = \frac{T}{N}$$

Analysis of Variance – ANOVA

- ANOVA analyses the variance in the data (as its name suggests) and sources of variances.
- ▶ Total variance in the data: SST sum of squares total

$$SST = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ki} - \overline{x})^2$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ki} - \overline{x}_k + \overline{x}_k - \overline{\overline{x}})^2$$

$$= \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ki} - \overline{x}_k)^2 + (\overline{x}_k - \overline{\overline{x}})^2 + 2(x_{ki} - \overline{x}_k)(\overline{x}_k - \overline{\overline{x}})$$

ANOVA

$$A = \sum_{k=1}^{K} \sum_{i=1}^{n_k} 2(x_{ki} - \overline{x}_k)(\overline{x}_k - \overline{\overline{x}})$$

$$= 2 \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ki} \overline{x}_k - x_{ki} \overline{\overline{x}} - \overline{x}_k^2 + \overline{x}_k \overline{\overline{x}})$$

$$= 2 \sum_{k=1}^{K} n_k \overline{x}_k^2 - n_k \overline{x}_k \overline{\overline{x}} - n_k \overline{x}_k^2 + n_k \overline{x}_k \overline{\overline{x}}$$

$$= 0$$

where $\sum_{i=1}^{n_k} x_{ki} = n_k \overline{x}_k$.

Analysis of Variance – ANOVA

► Total variance in the data: *SST* – sum of squares total

$$SST = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ki} - \overline{x})^2 = \underbrace{\sum_{k=1}^{K} \sum_{i=1}^{n_k} (x_{ki} - \overline{x}_k)^2}_{SSE} + \underbrace{\sum_{k=1}^{K} \sum_{i=1}^{n_k} (\overline{x}_k - \overline{x})^2}_{SSTr}$$

- ▶ Total variance in the data has two sources of variance
 - Variation between samples/groups/treatments (intrasample):
 SSTr or SSG sum of squares in treatment (group)

$$SSTr = \sum_{k=1}^{K} \sum_{i=1}^{n_k} (\overline{x}_k - \overline{\overline{x}})^2 = \sum_{k=1}^{K} n_k (\overline{x}_k - \overline{\overline{x}})^2$$

Variation within samples/groups (intersample):SSE - sum of squares error

$$SSE = \sum_{k} \sum_{i}^{n_{k}} (x_{ki} - \overline{x}_{k})^{2} = \sum_{k=1}^{K} (n_{k} - 1)s_{k}^{2}$$

Analysis of Variance

- Degrees of freedoms for
 - ▶ SST: N-1 (due to $\overline{\overline{x}}$)
 - ▶ SSTr: K-1 (due to $\overline{\overline{x}}$)
 - ▶ SSE: N-K (due to $\{\overline{x}_1, \dots, \overline{x}_K\}$)

Intuition of ANOVA

If all populations have equal variance (σ^2) , then SSE is 9

$$SSE = \sum_{k} \sum_{i}^{n_k} (x_{ki} - \overline{x}_k)^2 \approx \sum_{k=1}^{K} (n_k - 1)s^2 = (N - K)s^2$$
 $\hat{\sigma}^2 = \frac{SSE}{N - K}$

Assuming all samples have the same mean μ (if H₀ is correct), \overline{x} has the following distribution

$$\overline{x} \sim (\mu, \sigma^2/N)$$

SSTR is then

$$SSTr = \sum_{k=1}^{K} n_k (\overline{x}_k - \overline{\overline{x}})^2 \approx N \sum_{k=1}^{K} (\overline{x}_k - \overline{\overline{x}})^2 = (K - 1) \underbrace{Ns_{\overline{x}}^2}_{\hat{\sigma}^2}$$

$$\hat{\sigma}^2 = \frac{SSTR}{K - 1}$$

⁹ANOVA assumes equal variance for all populations

Analysis of Variance

Mean between-sample variance:

$$MSTr = \frac{SSTr}{dof} = \frac{SSTr}{K - 1}$$

Mean within-sample variance:

$$MSE = \frac{SSE}{dof} = \frac{SSE}{N - K}$$

- ► MSE is **always** an estimator of population variance, MSTr is an estimator of population variance **if H**₀ **is correct**
- Define F-statistics as follows:

$$F = \frac{MSTr}{MSE}$$

If H₀ is correct, F-statistics has F-distribution with dof1 = K-1 and dof2 = N-K.

F Distribution

Steps of ANOVA

- Compute F statistic from data
- ▶ Decide significance level (α)
- Find critical F-value from F distribution table

▶ If $F > F_{critical}$ reject H_0 (group means are different), otherwise do not reject H_0 .

ANOVA Exercise

- Consider 3 brands of batteries
- Using the same home appliance, the duration of batteries are measured (in minutes)
- With each brand 5 measurements are performed

Brand	Duration	Mean
Α	220, 251, 226, 246, 260	240.6
В	244, 235, 232, 242, 225	235.6
C	252, 272, 250, 238, 256	253.6

► Test the hypothesis that claims the mean duration of all brands are equal using significance level of 0.05

ANOVA Exercise

- Grand mean $\overline{\overline{x}} \approx 243.27$
- ► Within group variation SSE

Brand	(duration-group mean) ²	Total
Α	424.36, 108.16, 213.16, 29.16, 376.36	1151.20
В	70.56, 0.36, 12.96, 40.96, 112.36	237.12
C	2.56, 338.56, 12.96, 243.36, 5.76	603.2
Total	41151.20+237.12+603.20	1191.52

- ▶ dof of SSE is 15-3=12
- ► MSE=SSE/12=165.96
- Between group variation SSTr

$$SSTr = 5 \times ((240.6 - 243.27)^2 + (235.6 - 243.27)^2 + (253.6 - 243.27)^2) = 86$$

- ▶ dof of SSTr is 3-1=2
- ► MSTr = SSTr/2=431.68

ANOVA Exercise

▶ F statistics is

$$f_{obs} = \frac{MSTr}{MSE} = \frac{432.68}{165.96} = 2.61$$

► Check out F table with dof1=2 and dof2=12 for critical F value

	F Distribution: Critical Values of F (5% significance level)														
v	1	2	3	4	5	6	7	8	9	10	12	14	16	18	20
F2															
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.36	246.46	247.32	248.01
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.42	19.43	19.44	19.45
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.71	8.69	8.67	8.66
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.87	5.84	5.82	5.80
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.64	4.60	4.58	4.56
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.96	3.92	3.90	3.87
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.53	3.49	3.47	3.44
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.24	3.20	3.17	3.15
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.03	2.99	2.96	2.94
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.86	2.83	2.80	2.77
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.74	2.70	2.67	2.65
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.64	2.60	2.57	2.54
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.55	2.51	2.48	2.46
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.48	2.44	2.41	2.39
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.42	2.38	2.35	2.33

- From this table $F_{critical} = 3.89$
- ▶ As $f_{obs} < F_{critical}$, retain H₀

Interactive ANOVA Visualization

Checkout

https://demonstrations.wolfram.com/VisualANOVA/

Two-Factor ANOVA

- Sometimes, there are multiple factors that may effect population means.
- ➤ To analyze the effect of two factors, two-factor (two-way) ANOVA is performed.
- Assume, factor A and factor B may effect population means Factor B

		1	 С	total	avg.
	1	$\{x_{11,1}, x_{11,2},\}$	 $\{x_{1C,1}, x_{1C,2},\}$	<i>x</i> _{1*}	\overline{x}_{1*}
	2	$\{x_{21,1}, x_{21,2},\}$	 $\{x_{2C,1}, x_{2C,2},\}$	<i>x</i> _{2*}	\overline{x}_{2*}
Α,					
tor					
Factor	R	$\{x_{R1,1}, x_{R1,2},\}$	 $\{x_{RC,1}, x_{RC,2},\}$	x_{R*}	\overline{x}_{R*}
	total	<i>x</i> _{*1}	 X _{*C}	Т	
	avg.	\overline{x}_{*1}	 \overline{X}_{*C}		$\overline{\overline{x}}$

Two-way ANOVA – Definitions

- R is the number of levels in factor A, C is the number of levels in factor B.
- \triangleright $x_{rc,i}$ denotes observation i in row r and column c.
- $ightharpoonup n_{rc}$ is the number of observations row r and column c.
- ▶ This observation deviate from grand mean $\overline{\overline{x}}$

$$x_{rc,i} = \overline{\overline{x}} + \tau_r + \beta_c + (\tau\beta)_{rc} + e_{rc}$$

- ightharpoonup au_r is the effect (deviation) of row level r
- \triangleright β_c is the effect (deviation) of column level c
- $(\tau\beta)_{rc}$ is the effect of interaction of row level r and column level c
- e_{rc} is within group error. $e_{rc} \sim \mathcal{N}(0, \sigma^2)$
- ► Total sum of deviations are always zero.

$$\sum_{r=1}^{R} \tau_r = \sum_{r=1}^{R} (\tau \beta)_{rc} = \sum_{c=1}^{C} \beta_c = \sum_{c=1}^{C} (\tau \beta)_{rc} = 0$$

Two-way ANOVA – Definitions

Cell average

$$\overline{x}_{rc} = \sum_{i=1}^{n_{rc}} x_{rc,i}$$

Row sums are

$$x_{r*} = \sum_{c=1}^{C} \sum_{i=1}^{n_{rc}} x_{rc,i}$$

► Row averages are

$$\overline{x}_{r*} = \frac{x_{r*}}{\sum_{c=1}^{C} n_{rc}}$$

Number of row observations

$$n_{r*} = \sum_{c=1}^{C} n_{rc}$$

Two-way ANOVA - Definitions

Number of column observations

$$n_{*c} = \sum_{r=1}^{R} n_{rc}$$

Column sums are

$$x_{*c} = \sum_{r=1}^{R} \sum_{i=1}^{n_{rc}} x_{rc,i}$$

Column averages are

$$\overline{x}_{*c} = \frac{x_{*c}}{\sum_{r=1}^{R} n_{rc}}$$

Grand mean is

$$\overline{\overline{x}} = \frac{\sum_{r=1}^{R} x_{r*}}{\sum_{r=1}^{R} \sum_{c=1}^{C} n_{rc}} = \frac{\sum_{c=1}^{C} x_{*c}}{\sum_{r=1}^{R} \sum_{c=1}^{C} n_{rc}}$$

Two-way ANOVA – Hypothesis

- 3 hypothesis will be tested
 - ► Effect of factor A (rows) H_0 : $\tau_r = 0$ for all r H_1 : $\tau_r \neq 0$ for at least one r
 - ► Effect of factor B (columns)

 H_0 : $\beta_c = 0$ for all c H_1 : $\beta_c \neq 0$ for at least one c

▶ Interaction between factor A and factor B H₀: $(\tau \beta)_{rc} = 0$ for all r, c

 H_1 : $(\tau \beta)_{rc} \neq 0$ for at least one r or c

Two-way ANOVA – Sources of Variance

- ▶ Analyze variance in data and sources of variance.
 - ▶ SST sum of squares total
 - ► SSR sum of squares in rows
 - SSC sum of squares in columns
 - ▶ SSRC sum of squares in rows & columns

$$SST = SSR + SSC + SSRC$$

Two-way ANOVA – Sources of Variance

$$SST = \sum_{r=1}^{R} \sum_{c=1}^{C} \sum_{i=1}^{n_{rc}} (x_{rc,i} - \overline{x})^{2}$$

$$SSR = n_{r*} \sum_{r=1}^{R} (\overline{x}_{r*} - \overline{x})^{2}$$

$$SSC = n_{*c} \sum_{c=1}^{C} (\overline{x}_{*c} - \overline{x})^{2}$$

$$SSRC = \sum_{r=1}^{R} \sum_{c=1}^{C} n_{rc} (\overline{x}_{rc} - \overline{x}_{r*} - \overline{x}_{*c} + \overline{x})^{2}$$

$$SSE = \sum_{r=1}^{R} \sum_{c=1}^{C} \sum_{i=1}^{n_{rc}} (x_{rc,i} - \overline{x}_{rc})^{2}$$

Two-way ANOVA – Sources of Variance

- degrees of freedom for each source of variation is as follows:
 - ▶ SST: dof = N 1 (due to \overline{x})
 - ▶ SSR: dof = R 1 (due to $\overline{\overline{x}}$)
 - ▶ SSC: dof = C 1 (due to $\overline{\overline{x}}$)
 - ▶ SSRC: dof = (R-1)(C-1) (due to \overline{x}_{r*} and \overline{x}_{*c})
 - ▶ SSE: dof = N-RC (due to \overline{x}_{rc})

Two-way ANOVA – Mean of Variance

Mean sum of square for each source of variance is divided by its dof

$$MST = rac{SST}{N-1}$$
 $MSR = rac{SSR}{R-1}$
 $MSC = rac{SSC}{C-1}$
 $MSRC = rac{SSRC}{(R-1)(C-1)}$
 $MSE = rac{SSE}{N-RC}$

Two-way ANOVA – Test Statistics

To check effect of rows use

$$F_r = \frac{MSR}{MSE}$$

To check effect of columns use

$$F_c = \frac{MSC}{MSE}$$

▶ To check interaction between rows and columns

$$F_{rc} = \frac{MSRC}{MSE}$$

Two-way ANOVA – Hypothesis

- ▶ Determine significance level for 3 hypothesis, $\alpha_1, \alpha_2, \alpha_3$
 - Effect of factor A (rows)
 - Effect of factor B (columns)
 - Interaction between factor A and factor B
- ▶ Find critical F-value from F distribution table \rightarrow Different tables due to different dof1, dof2, and α values.
- ▶ If $F_r > F_{r,critical}$ reject H_0 (row effect), otherwise do not reject H_0 .

Nonparametric Methods

Nonparametric Methods

- Sometimes parametric methods cannot be used
 - Distribution is unknown (infact hypothesis about distribution need to be tested)
 - Assumptions of parametric methods do not hold
 - Skewed distribution and small sample size
 - Outliers that cannot be removed
 - Data is ordinal (ordered but not scaled)
- In these cases, nonparametric test methods are used
- Ranks of observations are used instead of observation values
- Nonparametric tests typically have lower test power (than parametric tests) as they have fewer (or no) assumptions

Sign Test

- Sign test can be used to test:
 - \blacktriangleright To test about median value of a population. \rightarrow One-sample sign test
 - ► To test if two populations have identical medians when observations are paired. → Two-sample sign test
- ▶ It is a "non-parametric" or "distribution free" test (no assumptions about data distribution)
- It only requires continuous distribution for data.
- It canbe used for numeric and ordinal data.
- It is easy to use.
- ▶ It has low power due to least amount of assumptions.

One Sample Sign Test

Let η denote the median of a population.

$$P(X < \eta) = P(X > \eta) = 0.5$$

Hypothesis are:

$$H_0: \eta = m$$

 $H_1: \eta \neq m$

► Equivalently:

$$H_0: p = 1/2$$

 $H_1: p \neq 1/2$

where p = P(X < m)

One Sample Sign Test

- Let T = number of observations below m (median of H_0).
- ▶ Alternatively, T1 = number of observations above m.
- ▶ Values equal to *m* (that is theoretically impossible, but practically possible due to observation errors etc.) are ignored.
- In order to obtain T or T1
 - ▶ Subtract *m* from each observation x_i : $d_i = x_i m$
 - ▶ Insert sign "-" if $d_i < 0$, "+" if $d_i > 0$, and 0 if $d_i = 0$
 - ▶ T is the number of "-", and T1 is the number of "+"
 - Sign of differences are counted (hence the name "sign test")

One Sample Sign Test

- ▶ If T (or T1) \approx N/2, H₀ cannot be rejected.
- ▶ If T (or T1) is large/small, H₀ can be rejected. Large/small?
- ▶ T is an rv, and T \sim Binomial(N,1/2) if H₀ is correct.
- p-value is

$$p = 2 \min(P(T \le T_{observed}), P(T \ge T_{observed})$$

- ▶ Note: p-value obtained using T and T1 will be equal due to min operator!
- ▶ Note: Multiplication with 2 is due to the two-tailed nature of the test.

One Sample Sign Test – Example

Assume completion time (in min) of an exam by 10 students are as follows:

```
18.58 21.11 31.41 19.13 29.75 19.30 21.23 27.22 19.26 22.28
```

- Instructor's hypothesis about the median of exam completion time is 20 min.
- Subtract 20 from each observation

$$\mathsf{Signs} = \{-, +, +, -, +, -, +, +, -, +\}$$

- $T_{observed} = |\{18.58, 19.13, 19.30, 19.26\}| = 4$
- ightharpoonup T \sim Binomial(10,1/2)
- ▶ If H₀ is correct, then E(T) = Np = 5 and $\sigma_T^2 = Np(1-p) = 2.5$

One Sample Sign Test - Example

Remember binomial distribution:

$$P(T_{observed} = k) = {N \choose k} p^k (1-p)^{N-k}$$

for $k \in \{0, ..., N\}$.

▶ In this case $P(T \le 4) < P(T \ge 4)$, hence $p = 2P(T \le 4)$

One Sample Sign Test – Example

```
import numpy as np
from scipy.stats import binom

n=10
p=.5

x = np.arange(0,11)
binom_pdf = binom.pmf(x, n, p)
print(2*sum(binom_pdf[:5]))
```

- p = 0.75
- ▶ H_0 cannot be rejected with significance level of $\alpha = 0.05$.

One Sample Sign Test Table Lookup

- Alternatively, check critical value from following table
- ▶ Critical value for two-sided $\alpha = 0.05$ and N = 10 is 1 (or 9)
- ▶ If $T_{obs} = 1$ or 9, H_0 is rejected
- Let $X \sim \text{Binom}(10,0.5)$, then

$$P(X=0)+P(X=1)\approx 0.01 \text{ and } p\approx 0.02$$

$$P(X=0)+P(X=1)+P(X=2)\approx 0.05 \text{ and } p\approx 0.11$$

▶ As $T_{obs} = 4$ in our example, H_0 should be retained

- ▶ When Np > 5 and N(1-p) > 5, we can approximate binomial distribution with normal distribution.
- $ightharpoonup T \sim \mathcal{N}(Np, Np(1-p))$
- When a discrete distribution is approximated by a continuous distribution, approximation can be improved by continuity correction.
- ▶ For example, when $X \sim \text{binomial}(N,p)$ is approximated with $Y \sim \mathcal{N}(Np, Np(1-p))$,

$$P(X \ge k) \approx P(Y \ge k - 0.5)$$

and

$$P(X \le k) \approx P(Y \le k + 0.5)$$

- For example, with N=10 and p=0.5: $X \sim \text{binomial}(10,0.5)$ and $Y \sim \mathcal{N}(5,2.5)$
 - ▶ $P(X \ge 8)$ is better approximated with $P(Y \ge 7.5)$ compared to $P(Y \ge 8)$
 - ▶ $P(X \le 8)$ is better approximated with $P(Y \le 7.5)$ compared to $P(Y \le 8)$

https://www.statisticshowto.datasciencecentral.com/what-is-the-continuity-correction-factor/

```
import numpy as no
import matplotlib.pyplot as plt
from scipy stats import norm, binom
n = 50
p=.5
t = [24.00, 22.31, 27.59, 19.73, 19.62, 23.51, 15.58, 28.98, 24.33, 19.58]
     18.00, 12.99, 20.66, 28.97, 23.37, 18.14, 14.33, 27.39, 28.30,
     21.82, 9.65, 23.97, 24.25, 21.19, 22.33, 18.68, 32.55, 20.68,
     24.88. 23.39. 20.0. 19.72. 20.77. 16.37. 23.80. 41.28. 35.08.
     24.39, 20.88, 26.60, 17.35, 20.70, 19.20, 20.05, 27.10, 18.01,
     12.40, 21.36, 20.0, 21.07]
# find t-obs
t1 = np.sum(np.less(t,20*np.ones(50)))
t2 = np.sum(np.greater(t.20*np.ones(50)))
\# we want t1<t2
if t1>t2:
  t1.t2 = t2.t1
# ... 1 of 2 ...
```

```
# ... 2 of 2 ...
# find more extreme observation
t_obs = t1 \text{ if } abs(t1-n*p) > abs(t2-n*p) \text{ else } t2
print(t1,t2,t_obs)
# exact p-value
x = np.arange(n)
binom_pdf = binom.pmf(x, n, p)
if t_obs=t1:
    exact_p = 2*sum(binom_pdf[:t_obs+1])
    t_cor = t_obs + 0.5
elif t obs==t2:
    exact_p = 2*sum(binom_pdf[t_obs:])
    t cor = t obs - 0.5
print('exact p-value: '. exact_p)
# approximate p-value using normal approximation
z = abs(t_cor-n*p)/np.sqrt(n*p*(1-p))
approx_p = 2*(1 - norm.cdf(z))
print('approximate p-value', approx_p)
```

Output:

```
16 32 16
exact p-value: 0.01534667783263009
approximate p-value 0.01620954140922537
```

▶ H_0 (median exam completion time = 20 min) can be rejected with significance level of $\alpha = 0.05$.

Single Tailed Sign Test

Sometimes it is needed to test

$$\mathsf{H}_0: \eta = m \text{ (implicitly } \eta \leq m \text{)}$$

 $\mathsf{H}_1: \eta > m$

or

$$H_0: \eta = m \text{ (implicitly } \eta \geq m)$$

 $H_1: \eta < m$

► To test these hypothesis, single tailed sign test is used.

Single Tailed Sign Test

In order to test

$$H_0: \eta = m \text{ (implicitly } \eta \leq m \text{)}$$

 $H_1: \eta > m$

Alternatively,

$$H_0: p = 1/2 \text{ (implicitly } p \ge 1/2\text{)}$$

 $H_1: p < 1/2$

where p = P(X < m).

- ▶ Use T=# of observations **below** m.
- p-value is

$$p = P(T \leq T_{observed})$$

▶ Note that the multiplication by 2 is removed.

Single Tailed Sign Test

▶ In order to test

$$H_0: \eta = m \text{ (implicitly } \eta \geq m)$$

 $H_1: \eta < m$

- ▶ Use T=# of observations **above** *m*.
- p-value is

$$p = P(T \ge T_{observed})$$

▶ Note that the multiplication is removed.

Two Sample Sign Test

▶ If two samples have paired observations, two-sample sign test can be used to test:

$$H_0: \eta_1 = \eta_2$$

 $H_1: \eta_1 \neq \eta_2$

alternatively

$$H_0: \eta_1 - \eta_2 = 0$$

 $H_1: \eta_1 - \eta_2 \neq 0$

where η_1 and η_2 are the medians of samples with paired observations.

- ► Assume that you want to analyze if feature selection really improves accuracy.
- ▶ Let:

X: # of correctly classified observations **without** feature selection Y: # of correctly classified observations **with** feature selection

- Let η_X denote the median of X and η_Y denote the median of Y.
- Test

$$H_0: \eta_X = \eta_Y$$

 Number of correctly classified observations with and without feature selection.

Classifier	no feat. sel. (X)	feat. sel. (Y)	difference	sign
C1	314	350	-36	-
C2	365	365	0	NA
C3	465	415	50	+
	•••			
C20	342	349	-7	-

- ► Assume, 14 negatives (feature sel worked well) and 3 positives (no feature sel worked well) are obtained.
- ▶ 3 ties (equal values) are ignored.

```
import numpy as no
import matplotlib.pyplot as plt
from scipy stats import norm binom
n = 20
p = .5
t1 = 14 \# negatives
t2 = 3 # positives
if t1>t2:
  t1.t2 = t2.t1
# find more extreme observation
t_{-}obs = t1 \text{ if } abs(t1-n*p) > abs(t2-n*p) \text{ else } t2
# exact p-value
x = np.arange(n)
binom_pdf = binom_pmf(x, n, p)
if t obs==t1:
    exact_p = 2*sum(binom_pdf[:t_obs+1])
    t_{-cor} = t_{-obs} + 0.5
elif t obs==t2:
    exact_p = 2*sum(binom_pdf[t_obs:])
    t_{-cor} = t_{-obs} - 0.5
print('exact p-value: ', exact_p)
# approximate p-value using normal approximation
z = abs(t_cor-n*p)/np.sqrt(n*p*(1-p))
approx_p = 2*(1 - norm.cdf(z))
print('approximate p-value', approx_p)
```

Code Output:

```
exact p-value: 0.002576828002929684 approximate p-value 0.0036504344044419046
```

- ▶ Reject H_0 for significance level of $\alpha = 0.05$.
- There is statistically significant difference between the median number of correctly classified observations with and without feature selection.

Disadvantages of Sign Test

- ▶ Advantage of sign test: No assumption about distribution
- ▶ **Disadvantage** of sign test: It only considers the sign of difference
- ▶ Does not consider or weight the amount of difference.
- ► If observations come from a symmetric distr around zero, amounts can be used
- ▶ Difference amounts are sensitive to outliers and it can dominate the observed statistic
- ▶ Ranks of the differences can be used for inclusion of difference values ⇒ Wilcoxon signed rank test

Wilcoxon Signed Rank Test

- Developed in 1945 by Frank Wilcoxon.
- Makes two assumption about about the underlying distribution of the data:
 - Distribution is continuous
 - Distribution is symmetric around zero
- Wilcoxon signed rank test can be used:
 - lacktriangle To test hypothesis about median value of a population ightarrow One-sample signed rank test
 - \blacktriangleright To test if two populations have same median when observations are paired \to Two-sample signed rank test

Let η denote the median of a population such that

$$P(X < \eta) = P(X > \eta) = 0.5$$

Hypothesis are:

(two-tailed)	(one-tailed)	(one-tailed)
$H_0: \eta = m$	$H_0: \eta \leq m$	$H_0: \eta \geq m$
$H_1:\eta\neq \mathit{m}$	$H_1: \eta > m$	$H_1: \eta < m$

▶ Take difference of observations from *m*.

$$d_i = x_i - m$$

- ▶ Sort absolute differences $|d_i|$ in ascending order.
- ▶ Rank absolute differences from 1 to N (sample size).
- Define

$$u_i = \begin{cases} i & \text{if } d_i < 0 \\ 0 & \text{if } d_i > 0 \end{cases}$$

- ▶ If $|d_i|$ are same for multiple observations, divide the sum of their total rank later.
- ▶ Add the ranks of negative and positive differences.

$$W^{-} = \sum_{i=1}^{n} u_{i}$$
 $W^{+} = \sum_{i=1}^{n} i - u_{i}$

For validation:

$$W^+ + W^- = \frac{n(n+1)}{2}$$

One Sample Wilcoxon Signed Rank Test - Example

Assume that you hypothesize the median of a course midterm as 60.

$$H_0: \eta = 60$$

 $H_1: \eta \neq 60$

➤ You asked 10 of your friends about their grades: G = [35, 87, 50, 55, 67, 75, 80, 62, 43, 49]

Grade	$d_i = g_i - \eta$
35	-25
87	27
50	-10
63	2
43	-17
49	-11

One Sample Wilcoxon Signed Rank Test – Example

Grade	$d_i = g_i - \eta$	W^-	W^+
63	2		1
55	-5	2	
67	7		3
50	-10	4	
49	-11	5	
75	15		6
43	-17	7	
80	20		8
35	-25	9	
87	27		10
	Total	27	28

- ▶ What happens when there are observations with $d_i = 0$?
 - Observations are ignored.
 - Sample size is updated by reducing the number of these observations.
- ▶ What happens when there are observations with equal $|d_i|$?
 - ▶ Their ranks are added and divided equally between the observations.

One Sample Wilcoxon Signed Rank Test – Example

Grade	$d_i = g_i - \eta$	W^-	W^+
63	2		1
55	-5	2	
67	7		3
50	-10	4	
49	-11	5	
45	-15	6.5	
75	15		6.5
80	20		8
60	0	-	-
87	27		9
	Total	17.5	27.5

▶ Sample size is updated due to ignored observation $n \leftarrow 9$

- ▶ You can use W^+ or W^- .
- W^+ and $W^- \in [0, \frac{n(n+1)}{2}]$
- ▶ Lets use $W = \min(W^-, W^+)$.
- ▶ $W \approx \frac{n(n+1)}{4}$, if H₀ is retained. Otherwise it will be either too small or too large.
- ▶ What is the distribution of W? Let n = 3:

Rank	1	2	3	W ⁻	W^+	$W = \min(W^-, W^+)$
Sign	_	_	_	6	0	0
	+	-	-	5	1	1
	_	+	-	4	2	2
	+	+	-	3	3	3
	_	-	+	3	3	3
	+	_	+	2	4	2
	_	+	+	1	5	1
	+	+	+	0	6	0

► Exact pdf of W

One Sample Wilcoxon Signed Rank Test – W Table

- Critical values of W can be found in table.
- ▶ If $W_{obs} \le W_{critical}$ reject H_0

TABLE • IX Critical Values for the Wilcoxon Signed-Rank Test

			w_{α}^{*}		
n* a	0.10 0.05	0.05 0.025	0.02 0.01	0.01 0.005	Two-sided tests One-sided tests
4					
5	0				
6	2	0			
7	3	2	0		
8	5	3	1	0	
9	8	5	3	1	
10	10	8	5	3	
11	13	10	7	5	
12	17	13	9	7	
13	21	17	12	9	
14	25	21	15	12	
15	30	25	19	15	
16	35	29	23	19	
17	41	34	27	23	
18	47	40	32	27	
19	53	46	37	32	
20	60	52	43	37	
21	67	58	49	42	
22	75	65	55	48	
23	83	73	62	54	
24	91	81	69	61	
25	100	89	76	68	

One Sample Wilcoxon Signed Rank Test – Example

- ▶ In the revised example, $W^- = 17.5$ and $W^+ = 27.5$. Hence $W = min(W^-, W^+) = 17.5$.
- ▶ For n = 9 and $\alpha = 0.05$ (two-tailed), $W_{critical} = 5$ from this table.
- ▶ As $W \not< W_{critical}$, do not reject H_0 .

As N increases,

$$W \sim \mathcal{N}\left(\frac{N(N+1)}{4}, \frac{N(N+1)(2N+1)}{24}\right)$$

Probability of each difference is equally likely to be positive or negative (remember symmetry around zero assumption!):

$$P(sgn(d_i) = +1) = P(sgn(d_i) = +1) = 0.5$$

▶ Remember $W = \sum_{i=1}^{n} u_i$ where

$$u_i = \begin{cases} i & \text{if } d_i < 0 \\ 0 & \text{if } d_i > 0 \end{cases}$$

► Hence

$$E(W) = E\left(\sum_{i=1}^{n} u_i\right) = \sum_{i=1}^{n} E(u_i)$$

$$E(u_i) = 0 \times P(sgn(d_i) = +1) + i \times P(sgn(d_i) = -1) = \frac{i}{2}$$

$$E(W) = \sum_{i=1}^{n} E(u_i) = \sum_{i=1}^{n} \frac{i}{2} = \frac{n(n+1)}{4}$$

Furthermore.

$$\sigma_W^2 = Var\left(\sum_{i=1}^n Var(u_i)u_i\right) = \sum_{i=1}^n Var(u_i)$$

as u_i are independent.

$$Var(u_i) = E(u_i^2) - E^2(u_i) = \frac{i^2}{2} - \frac{i^2}{4} = \frac{i^2}{4}$$
$$E(u_i^2) = 0^2 \times \frac{1}{2} + i^2 \times \frac{1}{2} = \frac{i^2}{2}$$

$$\sigma_W^2 = \sum_{i=1}^n \frac{i^2}{4} = \frac{n(n+1)(2n+1)}{24}$$

▶ For n = 10,

$$W \sim \mathcal{N}(27.5, 96.25)$$

▶ For n = 15,

$$W \sim \mathcal{N}(60, 310)$$

Exact and approximate pdf of W

One Sample Wilcoxon Signed Rank Test – Example

▶ In revised example, n = 9,

$$W \sim \mathcal{N}(22.5, 71.25)$$

▶ For $\alpha = 0.05$ (two-tailed),

$$W_{critical} = 22.5 - 1.96\sqrt{71.25} \approx 5.96$$

(remember exact
$$W_{critical} = 5$$
)

▶ As $W > W_{critical}$, do not reject H_0 .

One Sample Wilcoxon Signed Rank Test – p-value

- ▶ Define $W_{min} = \min(W^-, W^+)$ and $W_{max} = \max(W^-, W^+)$.
- As W^- , $W^+ = n(n+1)/2$, W_{min} and W_{max} are equal distance from the mean value (n(n+1)/4):

$$P(W \leq W_{min}) = P(W \geq W_{max})$$

p-value can be found as:

$$p = 2P(W \le W_{min}) = 2P(W \ge W_{max})$$

Continuity correction should be applied if normal approximation will be used.

One Sample Wilcoxon Signed Rank Test – Python Implementation

```
# Wilcoxon signed rank test
# one sample
# scipy.stats.wilcoxon(x, y=None, zero_method='wilcox',
     correction=False)
from scipy.stats import wilcoxon
import numpy as np
# sample
x = np.array([63, 55, 67, 50, 49, 45, 60, 75, 80, 87])
# hypothesized median
m = 60
d = x - m
# wilcox will ignore zero differences
w,p = wilcoxon(d,zero_method='wilcox',correction=False)
print ('W stat: \%d p-value \%.3f'\%(w,p))
```

One Sample Wilcoxon Signed Rank Test – Python Implementation

- Exact p-value 0.5703125
- ▶ Approximate p-value: $W \sim \mathcal{N}(22.5, 71.25)$

$$z = \frac{17.5 - 22.5}{\sqrt{71.25}} = 0.592$$

From z-table

$$p = 2(1 - 0.7224) = 0.552$$

Apply continuity correction

$$z = \frac{18 - 22.5}{\sqrt{71.25}} = 0.533$$

▶ From z-table

$$p = 2(1 - 0.7019) = 0.596$$

One Sample One Tailed Wilcoxon Signed Rank Test

Test

$$\mathsf{H}_0: \eta \leq m$$

 $\mathsf{H}_1: \eta > m$

Test

$$H_0: \eta \geq m$$

 $H_1: \eta < m$

p-value is

$$p = P(W \le W_{min}) = P(W \ge W_{max})$$

▶ Note that multiplication with 2 is removed.

Two Paired Sample Wilcoxon Signed Rank Test

- Wilcoxon signed rank test can also be used to compare the median of two populations
- Consider the following hypothesis

$$\begin{aligned} &\mathsf{H}_0:\,\eta_1=\eta_2\\ &\mathsf{H}_1:\,\eta_1\neq\eta_2\\ &\mathsf{equivalently}\\ &\mathsf{H}_0:\,\eta_1-\eta_2{=}0 \end{aligned}$$

$$H_0: \eta_1 - \eta_2 = 0$$

 $H_1: \eta_1 - \eta_2 \neq 0$

where η_1 and η_2 are the medians of two populations

Let x_i and y_i be the paired observations of sample 1 and sample 2

$$d_i = x_i - y_i$$

- ▶ Compute W^- and W^+ , and $W = \min(W^-, W^+)$
- Use exact, approx distribution or table look-up to find critical value for a given significance level

Wilcoxon Rank Sum Test

- Equivalent to Mann-Whitney U test
- ► Consider comparing distributions of two independent populations

H₀: Population 1 and 2 has same distribution H₁: Population 1 and 2 has different distribution

- ▶ Merge samples ($N = N_1 + N_2$) and find ranks in increasing order
- ▶ Let r_{1i} is the rank of observation i in sample 1
- Compute following statistic

$$W = \sum_{i=1}^{N_1} r_{1i}$$

where

$$\frac{N(N+1)}{2} = \sum_{i=1}^{N_1} r_{1i} + \sum_{i=1}^{N_2} r_{2i}$$

▶ If H₀ is correct

$$\sum_{i=1}^{N_1} r_{1i} \approx \sum_{i=1}^{N_2} r_{2i} \approx \frac{N(N+1)}{4}$$

Wilcoxon Rank Sum Test

▶ If $N_1, N_2 > 8$ then normal approximation is possible for W

$$W \sim \mathcal{N}(\mu_W, \sigma_W^2)$$

where

$$\mu_W = rac{N_1(N_1 + N_2 + 1)}{2}$$

$$\sigma_W^2 = rac{N_1N_2(N_1 + N_2 + 1)}{12}$$

Wilcoxon Rank Sum Test

TABLE • X Critical Values for the Wilcoxon Rank-Sum Test $w_{0.05}$ n_1^*

- Also called Wald–Wolfowitz runs test
- Checks randomness of binary form data
 - H_0 : Data is random
 - H_1 : Data is not random
- Consider following data

- ▶ Data has 3 '+' and 3 '-' runs
- ▶ Let R be the number of runs in the data
- ▶ If R is too small or too large reject H₀
- ▶ Let N_1 be number of negative observations, N_2 is the number of positive observations
- ▶ For the given data $N_1 = 9$ and $N_2 = 13$, and $N = N_1 + N_2$

▶ For a sample of size N, let $N_1 \neq 0$ and $N_2 \neq 0$, then

$$R_{min} = 2$$

$$R_{max} = 2 \min (N_1, N_2) + 1$$

- ▶ If N_1 or N_2 is zero $\implies R = 1$
- ▶ For N = 10

Runs Test - Exact PDF

```
import numpy as np
import matplotlib.pyplot as plt
N = 15
n1 = 5
n2 = N-n1
def runs(data):
    # count number of transitions and add 1
    r = 1
    for i in range(1, len(data)):
        if data[i] != data[i-1]:
             r += 1
    return r
t = np. arange(2, 2*min(n1, n2)+2)
run_pdf = np.zeros(len(t))
for i in range(2**N):
    x = [int(xi) \text{ for } xi \text{ in } bin(i)[2:].zfill(N)]
    if sum(x) != n1:
        continue
    r = runs(x)
    print(x,r)
    run_pdf[r-2] += 1 \# run in [1,N] not in [0, N-1]
# normalize for pdf
run_pdf /= sum(run_pdf)
plt.stem(t,run_pdf)
plt.show()
```

▶ When N is large (> 20), pdf of R can be approximated by normal distr

$$R \sim \mathcal{N}(\mu_R, \sigma_R^2)$$

where

$$\mu_R = \frac{2N_1N_2}{N} + 1$$

$$\sigma_R^2 = \frac{2N_1N_2(2N_1N_2 - N)}{N^2(N - 1)}$$

▶ Note both μ_R and σ_R^2 are symmetric with respect to N_1 and N_2

Runs Test - Normal Approximation

- ▶ For N=20 and $N_1 = 8$
- ▶ Under approximation in the middle is due to density assigned to impossible R (ie. R > 17)
- ▶ Better approximation with increasing N_1 and N_2

If data is not binary, subtract its median and use signs

$$- \text{ if } x_i - \eta < 0$$

+ \text{ if } x_i - \eta > 0
? \text{ if } x_i - \eta = 0

- ▶ If data is random, signs will also be random
- What to do with equal values (ties)
 - ▶ Count as —
 - Count as +
 - Count as previous sign (Ignored)
- ▶ If signs are different on two sides of a tie, R will not be effected ⇒ non-critical tie
- ▶ If signs are the same on two sides of a tie, R will not incremented by 2 (per each tie) ⇒ critical tie
- ▶ Count ties as compute R_- and count ties as + and compute R_+
- ▶ If there is big difference between R_- and R_+ \implies Consider ignoring

Let data be

$$x = [3, 4, 3, 2, 3, 5, 7]$$

- $\rightarrow \eta = 3$
- ► Count +

$$x - \eta = [t, +, t, -, t, +, +]$$

$$sgn(x - \eta) = [+, +, +, -, +, +, +]$$

- $R_{+} = 3$
- ► Count —

$$x - \eta = [t, +, t, -, t, +, +]$$

$$sgn(x - \eta) = [-, +, -, -, -, +, +]$$

 $R_{-} = 4$

▶ Let data be

$$x = [3, 4, 3, 2, 3, 5, 7]$$

- $\rightarrow \eta = 3$
- ► Ignore

$$x - \eta = [t, +, t, -, t, +, +]$$

$$sgn(x - \eta) = [+, +, +, -, -, +, +]$$

► $R_i = 3$

Kruskal Wallis Test

- Consider comparison of distributions for T ≥ 3 populations H₀: All populations have the same distr H₁: At least one population have different distr
- ▶ Let sample t (from population t) has size n_t
- Merge all samples $(N = \sum n_t)$, sort in increasing order
- ▶ Let r_{ti} be the rank of observation i in treatment t
- Average rank of total data is,

$$\overline{r} = \frac{1}{N} \sum_{t} \sum_{i} r_{ti} = \frac{N+1}{2}$$

When H₀ is correct, ranks will be distributed evenly between treatments

$$\overline{r}_t = \frac{1}{n_t} \sum_{i}^{n_t} r_{ti} \approx \frac{N+1}{2}$$

when H_0 is correct

Kruskal-Wallis Test

- ▶ Under H_0 , it is expected $\overline{r_t}$ will be close to $\overline{\overline{r}} = (N+1)/2$
- ▶ Define Kruskal-Wallis statistics (if there are no ties)

$$K = \frac{12}{N(N+1)} \sum_{t}^{T} n_t (\overline{r}_t - \overline{\overline{r}})^2$$
$$= \frac{12}{N(N+1)} \left(\sum_{t}^{T} \sum_{i} \overline{r_t} - 3(N+1) \right)$$

and

$$K \sim \chi^2_{T-1}$$

Kruskal-Wallis Test

- ▶ When there are ties, ranks are averaged to ties
- Define Kruskal-Wallis statistics

$$K = rac{1}{S^2} \Big(\sum_t^K \overline{r_t} - rac{N(N+1)^2}{4} \Big)$$

where S^2 is the variance of ranks that is defined as

$$S^{2} = \frac{1}{N-1} \left(\sum_{t}^{I} \sum_{i}^{n_{t}} r_{ti} - \frac{N(N+1)^{2}}{4} \right)$$

If there are not many ties, both methods of computation will be similar

Kruskal-Wallis Test

- ▶ As K is χ^2 distributed, to test H₀ with significance level of α critical value $\chi^2_{\alpha,T-1}$ is calculated
- ▶ This is always one-sided test as small values of K is not an evidence against H_0

Comparison of Methods - Big Picture

Parametric (mean)	Nonparametric (median)	
1 sample t test	Sign test,	
	Wilcoxon signed rank test	
2 sample independent t test	Mann-Whitney test	
2 sample paired t test	Wilcoxon signed rank test	
One way ANOVA	Kruskal-Wallis test	

Parametric vs Nonparametric Tests

	Parametric	Nonparametric
Sample size	large	small
Assumption	normal distr	none
Hypothesis	distribution parameter	distribution
Outliers	less robust	more robust
Power	more test power	less test power
Data type	numeric	numeric or ordinal