CSE377 HW9: Image Registration (10 pts)

Due May 5 2023, 11:59PM, submitted via Brightspace

Given a source image (left) and a target image (right) below, manually select N pts in the source image (x_n, y_n) and the corresponding N pts in the target image (x_n', y_n') . n = 1, ..., N and $N \ge 4$.

1. (2pts) Assume $h_{33}=1$, estimate the homography transformation matrix

$$h = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix}$$

from the source to the target image coordinates by formulating the following linear equation systems:

Denote the above linear equation system as Ah = b, solve h by pseudo-inverse $h = (A^TA)^{-1}(A^Tb)$.

2. (2pts) Without assuming $h_{33} = 1$, estimate the homography transformation matrix from the source to the target image coordinates by formulating the following homogeneous equation systems:

1

Denote the above homogeneous equation system as Ah = 0, solve h by eigen decomposition (eig) as discussed in the class. Denote the solution as h_{eig} .

- **3. (1pt)** Using the same A matrix in part 2, solve h by singular value decomposition (svd) as discussed in the class. Denote the solution as h_{svd} .
- **4.** (1pt) Compare h, h_{eig} and h_{svd} .

Check if h_{eig} is identical to h_{svd} .

 $m{h}_{eig}$ and $m{h}_{svd}$ are 9×1 vectors. Dividing them by their last element (i.e., $m{h}_{eig} \leftarrow m{h}_{eig}/m{h}_{eig}(9)$ and $m{h}_{svd} \leftarrow m{h}_{svd}/m{h}_{svd}(9)$. Check if the first 8 elements of the new $m{h}_{eig}$ and $m{h}_{svd}$ are the same as $m{h}$ in part 1.

- **5.** (2pts) Implement the <u>forward</u> warping to warp the source image to the target image coordinate, using the estimated h or h_{eig} or h_{svd} .
- **6. (2pts)** Implement the <u>backward</u> warping to warp the source image to the target image coordinate, using the estimated h or h_{eig} or h_{svd} . You can use the interp2() function.