HOMEWORK

(1) Provide a proof of the following result.

Lemma. Containment is a partial order on sets. In other words,

- For any set X, we have $X \subseteq X$.
- For any sets X, Y, if $X \subseteq Y$ and $Y \subseteq X$, we have X = Y.
- For any sets X, Y, Z, if $\overline{X} \subseteq Y$ and $\overline{Y} \subseteq Z$, then $X \subseteq Z$.
- (2) Let $f: X \to X$ be a function and let \sim be the relation given by the graph $\Gamma_f \subseteq X \times X$. In other words, $x \sim y$ if and only if y = f(x).
 - Show that if \sim is reflexive, then $f = id_X$.
 - Show that if \sim is symmetric, then f is an **involution**, $f^2(x) = x$ for all x.
 - Show that if \sim is transitive, then f is **idempotent**, $f^2(x) = f(x)$ for all x.