RECOMMENDER SYSTEMS

Recommendations

From scarcity to abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- The web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines

Recommendation Types

- Editorial
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- □ C = set of Customers
- \square S = set of Items
- □ Utility function υ : C X S -> R
 - $\square R = \text{set of ratings}$
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	King Kong	LOTR	Matrix	Nacho Libre
			Wat IX	
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- □ Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

- Explicit
 - Ask people to rate items
 - Does not work well in practice people cannot be bothered
- Implicit
 - Learn ratings from user actions
 - e.g., purchase implies high rating
 - What about low ratings?

Extrapolating Utilities

- Key problem: matrix U is sparse
 - most people have not rated most items
- □ Three approaches
 - Content-based
 - Collaborative
 - Hybrid

Content-based recommendations

- Main idea: recommend items to customer C similar to previous items rated highly by C
- Movie recommendations
 - recommend movies with same actor(s), director, genre,
- Websites, blogs, news
 - recommend other sites with "similar" content

Plan of action

Item Profiles

- □ For each item, create an item profile
- Profile is a set of features
 - movies: author, title, actor, director,...
 - text: set of "important" words in document
- How to pick important words?
 - Usual heuristic is TF.IDF (Term Frequency times Inverse Doc Frequency)

TF.IDF

 $\mathbf{f_{ij}}$ = frequency of term $\mathbf{t_i}$ in document $\mathbf{d_i}$ $TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$

n; = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF.IDF score $w_{ij} = Tf_{ij} \times IDF_i$

Doc profile = set of words with highest TF.IDF scores, together with their scores

User profiles and prediction

- User profile possibilities:
 - Weighted average of rated item profiles
 - Variation: weight by difference from average rating for item
 - **-** ...
- Prediction heuristic
 - Given user profile **c** and item profile **s**, estimate $u(\mathbf{c},\mathbf{s}) = \cos(\mathbf{c},\mathbf{s}) = \mathbf{c}.\mathbf{s}/(|\mathbf{c}||\mathbf{s}|)$
 - Need efficient method to find items with high utility: later

Machine Learning Approaches

- Various machine learning techniques are feasible
 - E.g., decision trees, and neural networks.
- These methods use models learned from the underlying data
 - For example, based on a set of Web pages that were rated as "relevant" or "irrelevant" by the user, the machine learning classifier can be used to classify unrated Web pages.

Advantages of Content-Based Approach

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend to users with unique tastes
- Able to recommend new and unpopular items
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Disadvantages of Content-Based Method

- Requires content that can be encoded as meaningful features
- Users' tastes must be represented as a learnable function of these content features
- Unable to exploit quality judgments of other users
 - Unless these are somehow included in the content features

Collaborative Filtering

- Maintain a database of many users' ratings of a variety of items
- For a given user, find other similar users whose ratings strongly correlate with the current user
- Recommend items rated highly by these similar users,
 but not rated by the current user

Collaborative Filtering

Collaborative Filtering Method

- Weight all users with respect to similarity with the active user
- Select a subset of the users (neighbors) to serve as predictors
- Normalize ratings and compute a prediction from a weighted combination of the selected neighbors' ratings
- Present items with highest predicted ratings as recommendations

Similarity Weighting

use Pearson correlation coefficient between ratings for active user a and another user u

$$c_{a,u} = \frac{\text{cov}(r_a, r_u)}{\sigma_{r_a} \sigma_{r_u}}$$

 r_a and r_u : rating vectors for the m items rated by **both** a and u

Significance Weighting

- not to trust correlations based on very few co-rated items
- □ Include significance weights, $s_{a,u}$, based on number of co-rated items, m

$$W_{a,u} = S_{a,u}C_{a,u}$$

$$s_{a,u} = \begin{cases} 1 \text{ if } m > 50\\ \frac{m}{50} \text{ if } m \le 50 \end{cases}$$

Neighbor Selection

- For a given active user a, select correlated users to serve as source of predictions
 - $lue{}$ use the most similar n users, u, based on similarity weights $w_{a,u}$
- Alternatively, include all users whose similarity weight is above a given threshold

Rating Prediction

- Predict a rating, p_{a,i}, for each item i, for active user, a, by using the n selected neighbor users, υ ∈ {1,2,...n}
- To account for users different ratings levels, base predictions on differences from a user's average rating
- Weight users' ratings contribution by their similarity to the active user

$$p_{a,i} = \overline{r}_a + \frac{\sum_{u=1}^{n} w_{a,u} (r_{u,i} - \overline{r}_u)}{\sum_{u=1}^{n} w_{a,u}}$$

Challenges Of User-based CF Algorithms

- Sparsity evaluation of large item sets, users purchases are under 1%.
- Difficult to make predictions based on nearest neighbor algorithms =>Accuracy of recommendation may be poor
- Scalability Nearest neighbor require computation that grows with both the number of users and the number of items.

Other approaches to CF

Matrix Factorization

- Dimension reduction technique for matrices
 - \square X[n x m] = U[n x d] V[m x d]^T
- Each item summarized by a d-dimensional vector q_i
- \square Similarly, each user summarized by p_u
- Choose d much smaller than number of items or users
 - e.g., d = 50 << 18,000 or 480,000
- Predicted rating for Item i by User u
 - \blacksquare Inner product of q_i and p_u

$$\hat{r}_{ui} = q_i^T p_u \quad \text{or} \quad \hat{r}_{ui} = \mathcal{M} + a_u + b_i + q_i' p_u$$

Example

- This graph shows a hypothetical layout of movies in two dimensions.
- In the example, the horizontal dimension contrasts "chick flicks" from "macho movies", while the vertical dimension measures the seriousness of the movie.
- In a real application of SVD, an algorithm would determine the layout, so it night not be easy to label the axes.

Example...

- Users fall into the same space as movies, where a user's position in a dimension reflects the user's preference for (or against) movies that score high on that dimension.
- For example, Gus tends to like male-oriented movies, but dislikes serious movies. Therefore, we would expect him to love "Dumb and Dumber" and hate "The Color Purple".
- Note that these two dimensions do not characterize Dave's interests very well; additional dimensions would be needed.

Collaborative filtering: Pros

No feature selection needed

Collaborative filtering: Cons

Sparsity

If there are many items to be recommended, even if there are many users, the user/ratings matrix is sparse, and it is hard to find users that have rated the same items

□ Cold Start

- New User Problem
 - To make accurate recommendations, the system must first learn the user's preferences from the ratings
- New Item Problem
 - Until the new item is rated by a substantial number of users, the recommender system is not able to recommend it

Popularity Bias

- Cannot recommend items to someone with unique tastes
- Tends to recommend popular items

Hybrid

- Combine the results of different recommendation techniques into a single recommendation list
 - Example 1: a linear combination of recommendation scores
 - **Example 2:** treats the output of each recommender (collaborative, content-based and demographic) as a set of votes, which are then combined in a consensus scheme