

A geometric solution language

Qi Wang, Yuechen Zhao Zichen Chao, Ziyi Luo

Motivation

- Geometry is useful in mathematics, physics, computer science and so many fields.
- But built-in support for graphs are not provided in most programming languages.
- Geo is here to help!
- A simple while powerful language for graph creation and manipulation.
- The best part about Geo dynamic graphs.

Language Tutorial

A basic sample

No entry function

end

```
function gcd(a:int, b:int): int:

control structures:
if-else, while, for

while(a != b):
    if(a>b):
        a = a - b;
    else:
        b = b - a;
    end

keyword end defines the scope

function gcd(a:int, b:int): int:
    data types: int, float, bool, char, string

data types: int, float, bool, char, string

control structures:
    if (a>b):
        a = a - b;
    else:
        b = b - a;
    end

return a;
```

Language Tutorial Something special

■ Geometric types: line, dot, polygon, circle dot(x:float, y:float); line(dot1:dot,dot2:dot); polygons: polygons(num_of_apex:int,apex[]:dot);

circle: circle(center:dot,radius:float);

■ Presets:

- @panel panelname (essential) defines a panel
- @end (essential) the boundary of a specific panel

Dynamics:

model runset: runset(times_of_run:int, gl:geometric_shape, run_para_gl:char, ...); function setRunstep(val:float,pos:char):void;

Language Tutorial

```
//panel presets
                                              Advanced stuff
                      @panel panel demo
                      //geometric shape declaration and initialization
                    \rightarrow line1 = line(2.0,3.0);
geometric types:
                    circle1 = circle([3,4], 5);
dot, line, circle
and polygons
                      //runset declaration and initialization
                      line1.setRunstep(-0.5,'a');
                      circle1.setRunstep(0.1,'b');
geometric control
                    rs = runset(50, line1, 'a', circle1, 'b');
type - runset
                      //run statement description
keyword run -
                    run rs:
dynamic analysis
                      set = line1.intersect(circle1);
                      if (!set.empty())
                                                                print intersection
                           print dot list(set);
                                                                points
                      end
                      @end
```

Architecture

Architecture

■Source code statistics

File	Lines	Role	
scanner.mll	95	Breaks input stream into tokens	
parser.mly	135	Parses tokens into an AST	
ast.ml	50	Defines acceptable AST structure	
pyast.ml	38	Defines acceptable python AST structure	
compile_sc_py.ml	377	Translates geo AST to python AST	
compile_to_pycode.ml	78	Generates python code	
geo_sc_py.ml	13	Top level	

Semantic Check

■ Semantic Check

Use StringMap to implement translation environments vars: keep information about variables funcs: keep information about functions func_opt: keep information about types of function parameters

Check for: undeclared variables and functions mismatched types wrong types function parameters not match undefined operations Geo syntax error

.

Code Generation

■ Algorithm Example (demo_fb.g)

```
test-gcd.g
    @panel gcd
     function gcd(a:int, b:int):int:
         if (a<b):
             return (gcd(b,a));
         else:
             if (a == b):
 6
                  return (a);
 8
             else:
                  return(gcd(a-b, b));
10
             end
11
         end
12
     end
     print(gcd(70,28));
13
     print(gcd(147,21));
14
15
     @end
```

```
test-gcd.py
                 ×
    from Tkinter import *
    from sysgeo import *
    def gcd(a, b):
        if (a < b):
             return gcd(b, a)
6
        else:
             if (a == b):
8
                 return a
             else:
10
                 return gcd((a - b), b)
11
    PI = 3.14159265359
    print gcd(70, 28)
    print gcd(147, 21)
```

Code Generation

Algorithm Example

```
@panel qsort
function qsort(a:list, l:int, r:int):list:
  i = 1; j = r; mid = (1+r)/2;
  while (i \le j):
     while (i <= j & a\#[i] < a\#[mid]):
            i = i+1:
     end
     while (i \leq j & a#[j]> a#[mid]):
            j = j-1;
     end
     if (i \le j):
            k = a\#[i]; a\#[i] = a\#[j]; a\#[j] = k; i = i+1; j = j-1;
     end
  end
  if (1 < j):
     a = qsort(a, l, j);
  end
  if (i < r):
     a = qsort(a, i, r);
  end
  return(a);
end
b = \{3,7,8,32,1,4,7,9,2,5\}; b = qsort(b, 0, len(b)-1); print(b);
@end
```


Code Generation

Graph Example

```
@panel panel1
    c1 = circle([0, 0], 2);
3 c2 = circle([2, 0], 2);
   l1 = line([2,-4],[2,4],0,0);
   l2 = line([-2,0],[6,0],-2,6);
   r1=runset(360,0.05);
    r1.addPara(c1,'r');
   r1.addPara(c2,'r');
    r1.addPara(l1,'b');
    r1.addPara(l2,'b');
10
11
12
    run r1:
        p1 = c1.getPointbyarc(r1.getRuncount()*PI/(-36));
13
14
        print(p1);
        l1.rotateonPoint(p1,PI/36);
        l2.rotateonPoint(p1,PI/36);
16
17
        c2.setCenter(p1);
        t1=l1.getEndpoints();
        r1.mark(t1#[0]);
        r1.mark(t1#[1]);
        t1=l2.getEndpoints();
21
        r1.mark(t1#[0]);
23
        r1.mark(t1#[1]);
24
    end
```

```
PI = 3.14159265359
c1 = circle(dot(0, 0), 2)
c2 = circle(dot(2, 0), 2)
l1 = line(dot(2, -4), dot(2, 4), 0, 0)
l2 = line(dot(-2, 0), dot(6, 0), -2, 6)
r1 = runset(360, 0.05)
r1.addPara(c1, 'r')
r1.addPara(c2, 'r')
r1.addPara(l1, 'b')
r1.addPara(l2, 'b')
def runfun (r1):
   p1 = c1.getPointbyarc(((r1.getRuncount() * PI) / -36))
   print p1
   l1.rotateonPoint(p1, (PI / 36))
   l2.rotateonPoint(p1, (PI / 36))
   c2.setCenter(p1)
   t1 = l1.getEndpoints()
   r1.mark(t1[0])
   r1.mark(t1[1])
   t1 = l2.getEndpoints()
   r1.mark(t1[0])
   r1.mark(t1[1])
```

Testing Test case statistics – comprehensive check

File	Lines	File	Lines	Role
test-assignments.g	14	test-assignments.ref	6	All kinds of assignments
test-circle.g	19	test-circle.ref	12	Geo type circle & obj funcs
test-comparison.g	11	test-comparison.ref	6	Comparison & boolean opts
test-dot.g	7	test-dot.ref	3	Geo type dot & obj funcs
test-fib.g	18	test-fib.ref	9	Recursive function
test-for.g	5	test-for.ref	10	For statements
test-function.g	37	test-function.ref	1	Function & if & while
test-gcd.g	15	test-gcd.ref	2	Function & if statement
test-if.g	11	test-if.ref	1	If statements (nested)
test-line.g	35	test-line.ref	15	Geo type line & obj funcs
test-list.g	8	test-list.ref	4	List
test-operations.g	20	test-operations.ref	9	Check +-*/^% opertations
test-polygon.g	20	test-polygon.ref	11	Geo type polygon & obj funcs
test-print.g	10	test-print.ref	8	Print function
test-qsort.g	35	test-qsort.ref	1	List & recursive function
test-while.g	7	test-while.ref	6	While statement

Testing Test case statistics – error check

File Name	Lines	Role
error-semantics1.g	2	Undeclared funtion
error-semantics2.g	5	Funtion input para type error
error-semantics3.g	6	Undefined argument
error-semantics4.g	3	Char cannot plus int/float
error-syntax1.g	1	Lose end
error-syntax2.g	1	Unrecognized token
error-syntax3.g	1	Lose semicolon
error-syntax4.g	2	Wrong function declaration
error-syntax4.g	1	If statement error

Testing

■Auto check – geotestall.sh

First: Check whether all files can be successfully compiled; Then: Compared the output with the ref answer.

```
Compiling tests/test-assignments.g...
Compiling tests/test-circle.g...
Compiling tests/test-comparison.g...
Compiling tests/test-dot.g...
Compiling tests/test-fib.g...
Compiling tests/test-for.q...
Compiling tests/test-function.g...
Compiling tests/test-gcd.g...
Compiling tests/test-if.g...
Compiling tests/test-line.g...
Compiling tests/test-list.g...
Compiling tests/test-operations.g...
Compiling tests/test-polygon.g...
Compiling tests/test-print.g...
Compiling tests/test-gsort.g...
Compiling tests/test-while.g...
diff -b tests/test-print.out tests/test-print.ref > tests/test-print.diff
tests/test-gsort
diff -b tests/test-qsort.out tests/test-qsort.ref > tests/test-qsort.diff
tests/test-while
diff -b tests/test-while.out tests/test-while.ref > tests/test-while.diff
0K
##### SUCCESS
```

Lessons Learned

■ Qi Wang:

"Start early on the project and make a plan ahead, if things are different from scheduled, discuss together and activate soon."

■ Yuechen Zhao:

"Effective communications are the key to success, do not waste too much time on arguing plans, but discussion is important."

■ Zichen Chao:

"Keep the whole picture in mind, modify the plan as the project progressed and learn Ocaml as early as possible!"

■ Ziyi Luo:

"Comprehensive test cases are important and test early, you can never imagine how many problems you may encounter when testing."