Tutorat mathématiques : TD5

Université François Rabelais

Département informatique de Blois

Mathématiques générales

* *

Problème 1

Soit $a \in \mathbb{R}$ et f une fonction réelle définie au voisinage de a. On suppose de plus que f est définie au point a.

Donner la définition de la continuité de f en a et l'illustrer par une figure. La continuité est une notion de topologie qui énonce que : pour un intervalle $I \subset \mathbb{R}$, une fonction réelle $f: I \to \mathbb{R}$ et $a \in \mathbb{R}$, la fonction f est continue en a si :

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, |x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$$

Cela veut dire que si l'on se fixe un seuil ε aussi petit que l'on veut, on peut toujours trouver un intervalle autour de a tel que f(x) soit à une distance inférieure à ε de f(a).

FIGURE 1 : Illustration de la continuité au point a de la fonction f

Problème 2

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que :

$$\forall x \in \mathbb{R}, f(2x) = f(x)$$

Montrer que f est une fonction constante.

 $f(x) = f\left(\frac{x}{2}\right),$ $f\left(\frac{x}{2}\right) = f\left(\frac{x}{4}\right),$ \vdots $f\left(\frac{x}{2^{n-1}}\right) = f\left(\frac{x}{2^n}\right),$ On a finalement que :

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(x) = f\left(\frac{x}{2^n}\right)$$

De plus, $\lim_{n \to +\infty} \frac{x}{2^n} = 0$. Donc, par continuité de f en 0, il vient que $\lim_{n \to +\infty} f\left(\frac{x}{2^n}\right) = f(0)$ Mais, on sait que $f(x) = f\left(\frac{x}{2^n}\right)$, on a également $\lim_{n \to +\infty} f\left(\frac{x}{2^n}\right) = f(x)$. Par unicité de la limite, on a

$$f(x) = f(0)$$

Comme ceci est valable pour tout $x \in \mathbb{R}$, il résulte que la fonction f est constante.

Problème 3

Soit f la fonction définie sur \mathbb{R} telle que

$$f(x) = \begin{cases} \frac{x^4 + 2x^3 + a}{x^3 - 1} & \text{si } x \neq 1\\ b & \text{si } x = 1 \end{cases}$$

où a et b sont des nombres réels.

1. Montrer que, indépendamment du choix de a et b, la fonction f admet une droite asymptote Δ en $+\infty$ dont on déterminera l'équation.

On cherche $\Delta=\alpha x+\beta$ telle que $\lim_{x\to+\infty}f(x)-\Delta=0$. En établissant $\lim_{x\to+\infty}f(x)$, il vient immédiatement que $\lim_{x\to+\infty}f(x)=x+2$, on en déduit que $\Delta=x+2$. Dans la forme, on a aussi $\lim_{x\to+\infty}\frac{f(x)}{x}=\alpha$ et $\lim_{x\to+\infty}f(x)-x=\beta$.

2. Pour quelles valeurs de a et b la fonction f est-elle continue sur \mathbb{R} .

Les fonctions $N(x) = x^4 + 2x^3 + 1$ et $D(x) = x^3 - 1$ (respectivement numérateur et dénominateur de f) sont continues sur $\mathbb R$ et le polynôme D ne s'annule qu'en 1, ainsi la fonction f est continue sur $\mathbb{R}\backslash\{1\}.$ La fonction f sera continue en 1 si et seulement si

$$\lim_{x \to 1} \frac{x^4 + 2x^3 + a}{x^3 - 1} = b$$

$$N(1) = 0 \Leftrightarrow a = -3$$

Cette configuration force le polynôme
$$N$$
 à s'annuler également en 1 pour compenser D .
$$N(1)=0 \Leftrightarrow a=-3.$$
 Ainsi, on a $N(x)=(x-1)(x^3+3x^2-3x+3)$ et $D(x)=(x-1)(x^2+x+1)$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{N(x)}{D(x)} = \lim_{x \to 1} \frac{x^3 + 3x^2 - 3x + 3}{x^2 + x + 1} = \frac{10}{3} = b$$

Finalement, f est continue sur \mathbb{R} si et seulement si a=-3 et $b=\frac{10}{3}$.

Problème 4

Étudier la continuité de la fonction f suivante :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{x - E(x)} - E(x) \end{cases}$$

On rappelle que E(x) est la fonction partie entière telle que : $\forall x \in \mathbb{R}, x \leq E(x) < x+1$

Le fonction est continue en tout point de $\mathbb{R}\setminus\mathbb{Z}$ puisque la partie entière est constante au voisinage d'un

Étudions la situation en un entier $n \in \mathbb{Z}$. Par définition de la partie entière, on a :

On ajoute la dernière partie entière pour compléter la fonction f.

$$\lim_{x \to n^{+}} f(x) = \lim_{x \to n^{+}} \sqrt{x - E(x)} + E(x) = n$$

et

$$\lim_{x \to n^{-}} f(x) = \lim_{x \to n^{-}} \sqrt{x - E(x)} + E(x) = n$$

Les limites sont égales à gauche et à droite et valent n. Ceci est valable pour tout $n \in \mathbb{Z}$. Dès lors fest continue sur \mathbb{R} .

Problème 5

On appelle fonction caractéristique χ_F d'un sous-ensemble $F \subset E$, une fonction :

$$\chi_F: \begin{cases} E \to \{0, 1\} \\ x \mapsto \begin{cases} 1 & \text{si } x \in F \\ 0 & \text{si } x \notin F \end{cases} \end{cases}$$

1. Démontrer que Q est dense dans R, c'est-à-dire qu'entre deux réels il existe toujours un nombre rationnel.

On pourra utiliser la propriété d'Archimède qui énonce que :

Axiome d'Archimède - Pour deux grandeurs inégales, il existe toujours un multiple entier de la plus petite, supérieur à la plus grande.

$$\forall (x, y) \in \mathbb{R}, (0 < x < y \Rightarrow \exists n \in \mathbb{N} | n \times x > y)$$

Soient a,b deux réels tels que a < b. Il s'agit d'exhiber un rationnel $\frac{p}{q}$ tel que $a < \frac{p}{q} < b$. En appliquant la propriété d'Archimède , on voit qu'il existe un entier q tel que

$$\frac{1}{b-a} < q$$

En prenant y = 1 et $x = \frac{1}{b-a}$.

On obtient par le suite

$$qa + 1 < qb$$

Soit p le plus petit entier relatif tel que p>qa. On a alors

$$p-1 < aa < p$$

p-1 < qa < p Donc $p \leq qa+1$ et qa En divisant par <math display="inline">q on obtient le résultat voulu.

2. Montrer que la fonction caractéristique de $\chi_{\mathbb{Q}}$ pour $E=\mathbb{R}$ est discontinue en chacun de ses points.

Soit $a \in \mathbb{Q}$ (respectivement $a \in \mathbb{R} \setminus \mathbb{Q}$). Pour tout réel $\delta > 0$, on peut trouver un nombre irrationnel (respectivement rationnel) x dans $]a - \delta, a + \delta[$ et on a $|\chi_{\mathbb{Q}}(x) - \chi_{\mathbb{Q}}(a)| = 1$, ce qui prouve la discontinuité de $\chi_{\mathbb{Q}}$ en tout point de

Problème 6

Soit un polynôme P tel que deg(P) est impair. Montrer que P admet au moins une racine réelle.

Si P est de degré impair, alors on a de suite que :

• $\lim_{X \to +\infty} P(X) = +\infty$ Ainsi, $\exists A > 0$ tel que P(A) > 0. • $\lim_{X \to -\infty} P(X) = -\infty$ Ainsi, $\exists A' < 0$ tel que P(A') < 0. Un polynôme est continu sur son ensemble de définition. On peut donc appliquer le théorème des valeurs intermédiaires qui nous assure l'existence d'un réel $a \in [A', A]$ sur lequel P s'annule.

Problème 7

Déterminer l'ensemble de définition des fonctions suivantes ainsi que la limite en α .

1.
$$f_1(x) = \frac{\sin(x)}{x}$$
, $\alpha = 0$

$$D_{f_1} = \mathbb{R}^*$$

 $D_{f_1} = \mathbb{R}^*$ Par la formule du taux d'accroissement, on a $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$ Dès lors ici $\lim_{x \to 0} \frac{\sin(x)}{x} = \cos(0) = 1$

Dès lors ici
$$\lim_{x \to 0} \frac{\sin(x)}{x} = \cos(0) = 1$$

2.
$$f_2(x) = 1 - x - 2x \ln|x|$$
, $\alpha = 0$

$$D_{f_2} = \mathbb{R}^*$$

On note que
$$x \ln |x| = \frac{1}{X} \ln \left| \frac{1}{X} \right|$$

$$= -\frac{1}{X} \ln |X|$$

$$\ln |X|$$

Ainsi
$$\lim_{x \to 0} x \ln |x| = 0$$

3.
$$f_3(x) = \frac{|x|-2}{x^2-4}$$
, $\alpha = 2$

$$D_{f_3} = \mathbb{R} \setminus \{-2, 2\}$$

3.
$$f_3(x) = \frac{|x|-2}{x^2-4}$$
, $\alpha = 2$

$$D_{f_3} = \mathbb{R} \setminus \{-2, 2\}$$
Comme $2 > 0$, on peut établir que :
$$\lim_{x \to 2} f_3(x) = \lim_{x \to 2} \frac{|x|-2}{x^2-4}$$

$$= \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)}$$

$$= \frac{1}{4}$$

4.
$$f_4(x) = \ln(\sqrt{x} + 1) - \ln(x)$$
, $\alpha = +\infty$

$$D_{f_4} = \mathbb{R}_+^*$$

On a
$$f_4(x) = \ln\left(\frac{\sqrt{x+1}}{x}\right)$$

On a
$$\lim_{x \to +\infty} \frac{\sqrt{x+1}}{x} = 0$$

 $D_{f_4} = \mathbb{R}_+^*$ On a $f_4(x) = \ln\left(\frac{\sqrt{x}+1}{x}\right)$ On a $\lim_{x \to +\infty} \frac{\sqrt{x+1}}{x} = 0$ Par composition des limites, il vient que $\lim_{x \to +\infty} f_4(x) = -\infty$.

5.
$$f_5(x) = xE(\frac{1}{x})$$
, $\alpha = 0$

$$D_{f_{5}} = \mathbb{R}^{3}$$

$$1 \le f_5(x) < 1 + x$$

 $D_{f_5} = \mathbb{R}^*$ Par définition, on a $\frac{1}{x} \leq E\left(\frac{1}{x}\right) < \frac{1}{x} + 1$ • On considère x positif, dès lors : $1 \leq f_5(x) < 1 + x$ Lorsque $x \to 0^+$, par le théorème de gendarmes, il résulte immédiatement que $\lim_{x \to 0^+} f_5(x) = 1$

$$1 \ge f_5(x) > 1 + x$$

Lorsque $x \to 0^+$, par le théorème de gendarmes, il résulte \cdot On considère x négatif, dès lors : $1 \geq f_5(x) > 1 + x$ De même, lorsque $x \to 0^-$, il résulte que $\lim_{x \to 0^-} f_5(x) = 1$ On a alors $\lim_{x \to 0} f_5(x) = 1$

6.
$$f_6(x) = \frac{x^2 + 2|x|}{x}$$
, $\alpha = 0$

$$D_{f_6} = \mathbb{R}^*$$

 $D_{f_6} = \mathbb{R}^*$ On peut simplifier l'expression de $f_6(x)$ telle que $f_6(x) = \begin{cases} x+2 & \text{si } x > 0 \\ x-2 & \text{si } x < 0 \end{cases}$ On a alors $\lim_{x \to 0^+} = 2$ et $\lim_{x \to 0^-} = -2$. Dès lors, la fonction n'est pas continue.

7.
$$f_7(x) = \frac{e^x - e^2}{x^2 + x - 6}$$
, $\alpha = 2$

$$D_{f_{\pi}} = \mathbb{R} \setminus \{-3, 2\}$$

$$\begin{split} D_{f_7} &= \mathbb{R} \backslash \{-3,2\} \\ \text{En factorisant le dénominateur, on a } f_7(x) &= \frac{e^x - e^2}{(x-2)(x+3)} \\ &= \frac{e^x - e^2}{x-2} \times \frac{1}{x+3} \\ \text{On reconnait le taux d'accroissement de } e^x \text{ en } 2 : \lim_{x \to 2} \frac{e^x - e^2}{x-2} = e^2 \\ \text{Dès lors } \lim_{x \to 2} f_7(x) &= \frac{e^2}{5} \end{split}$$

8.
$$f_8(x) = \frac{1}{x} \left(\sqrt{1 + x + x^2} - 1 \right), \ \alpha = 0$$

$$D_{f_8} = \mathbb{R}^*$$

8.
$$f_8(x) = \frac{1}{x} \left(\sqrt{1 + x + x^2} - 1 \right)$$
, $\alpha = 0$

$$D_{f_8} = \mathbb{R}^*$$
En modifiant un peu l'expression de f_8 , on a :
$$f_8(x) = \frac{1}{x} \left(\frac{\left(\sqrt{1 + x + x^2} - 1 \right) \left(\sqrt{1 + x + x^2} + 1 \right)}{\sqrt{1 + x + x^2} + 1} \right)$$

$$= \frac{1}{x} \left(\frac{\sqrt{1+x+x^2}^2 - 1^2}{\sqrt{1+x+x^2} + 1} \right)$$

$$= \frac{1}{x} \left(\frac{x(x+1)}{\sqrt{1+x+x^2} + 1} \right)$$

$$= \frac{x+1}{\sqrt{1+x+x^2} + 1}$$
If vient que $\lim_{x \to 0} f_8(x) = \frac{1}{2}$

Problème 8

Soit f une fonction continue croissante $f:[a,b]\to [a,b]$. Démontrer que l'équation f(x)=x admet au moins une solution.

Soit E l'ensemble défini tel que $E = \{x \in [a,b] | f(x) \ge x\}$. $E \ne \emptyset$ car $a \in E$, en particulier a minore f et b majore f. Donc E admet une borne supérieure c telle que $a \le c \le b$.

Montrons que f(c) = c.

Si c = b, alors $\forall n \in \mathbb{N}^*, \exists x_n \in E | b - \frac{1}{n} < x_n \leq b$. Puisque f est à valeurs dans [a, b] et que les x_n sont dans E pour tout $n \neq 0$.

On a alors

$$x_n \le f(x_n) \le b$$
 (*)

Quand $n \to +\infty$, la suite $x_n \to b$ par le théorème des gendarmes. La fonction f étant croissante, il vient que $f(x_n) \to f(b^-) \le f(b)$.

En se remplaçant dans l'équation (*), il vient que $b \leq f(b^-) \leq f(b) \leq b$ et donc que f(b) = b. Finalement, dans ce cas, b est un point fixe.

Par une technique analogue, on montre bien que si $c \in [a, b[$, on a bien f(c) = c.