2022-2023 MP2I

12. Suites 2

Exercice 1. (m) Étude du cas f décroissant. On pose $f: x \mapsto (1-x)^2$ et on considère la suite définie par $u_0 \in [0,1]$ et pour $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.

- 1) Vérifier que [0,1] est un intervalle stable par f et en déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée.
- 2) Déterminer l'unique $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.
- 3) Quelle est la monotonie de f? Quelle est celle de $f \circ f$? En déduire que la suite $(u_{2n})_{n \in \mathbb{N}}$ est croissante si $u_0 \le u_2$ et décroissante si $u_0 \ge u_2$. Dans chacun des cas considérés, que peut-on alors dire de la suite $(u_{2n+1})_{n\in\mathbb{N}}$?
- 4) Étudier le signe de $x \mapsto (f \circ f)(x) x$ sur [0,1] et déterminer les points fixes de $f \circ f$.
- 5) En déduire que si $u_0 \in [0, x_0[$, alors la suite $(u_{2n})_{n \in \mathbb{N}}$ converge vers 0 et que la suite $(u_{2n+1})_{n \in \mathbb{N}}$ converge vers 1. Traiter de même le cas $u_0 \in [x_0, 1]$. Pour quelles valeurs de u_0 la suite $(u_n)_{n \in \mathbb{N}}$ est-elle convergente?

Exercice 2. (m) Étude du cas f décroissant 2. On pose $f: x \mapsto \frac{1}{1+x}$ et on considère la suite définie par $u_0 \in [0,1]$ et pour $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. Reprendre les questions de l'exercice précédent sauf pour la question 5) qui devient :

5) En déduire que si $u_0 \in [0, x_0]$, alors la suite $(u_{2n})_{n \in \mathbb{N}}$ converge vers x_0 et que la suite $(u_{2n+1})_{n \in \mathbb{N}}$ converge vers x_0 . Traiter de même le cas $u_0 \in [x_0, 1]$. Que peut-on dire de la suite $(u_n)_{n \in \mathbb{N}}$?

Exercice 3. (c) Vrai ou faux. Que pensez vous des énoncés suivants?

- 1) Si $u_n \sim \frac{1}{n}$ et $v_n \sim \frac{2}{n}$, alors $u_n + v_n \sim \frac{3}{n}$.
- 2) Si $u_n \sim \frac{1}{n}$ et $v_n \sim \frac{1}{n^2}$, alors $u_n + v_n \sim \frac{1}{n} + \frac{1}{n^2}$.
- 3) Si $u_n \sim \frac{1}{n} + \frac{1}{n^2}$ et $v_n \sim \frac{1}{n}$, alors $u_n v_n \sim \frac{1}{n^2}$.

Exercice 4. (c) Théorème des gendarmes pour les équivalents. Soient $(u_n), (v_n), (w_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$ telles que $\forall n \in \mathbb{N}, \ u_n \leq v_n \leq w_n \text{ et } w_n \sim_{+\infty} u_n$. Montrer que $v_n \sim_{+\infty} u_n$.

Exercice 5. (c) Classer par ordre de négligeabilité les suites ont les termes généraux sont les suivants :

1

- 1) $\frac{1}{n}$, $\frac{1}{n^2}$, $\frac{\ln(n)}{n}$, $\frac{\ln(n)}{n^2}$, $\frac{1}{\ln(n)}$, $\frac{1}{n\ln(n)}$.
- 2) $n, n^2, n \ln(n), \sqrt{n} \ln(n), \frac{n}{\ln(n)}, \frac{n^2}{\ln(n)}$

Exercice 6. (m) Donner un équivalent simple des suites suivantes :

1)
$$u_n = \frac{n^2 + 3n + 2}{n - 1}$$
.

4)
$$x_n = \tan\left(\frac{\pi}{2} + \frac{1}{n^2}\right).$$

$$2) \quad v_n = n \sin\left(\frac{1}{n^2}\right).$$

5)
$$y_n = \ln(n+1) - \ln(n)$$
.

2)
$$v_n = n \sin\left(\frac{1}{n^2}\right)$$
.
3) $w_n = \frac{1}{n-1} - \frac{1}{n+1}$.

6)
$$z_n = \sqrt{n+1} - \sqrt{n-1}$$
.

Exercice 7. (m) Trouver un équivalent simple aux suites (u_n) suivantes et déterminer leur limite :

$$u_n = (n+3\ln(n))e^{-(n+1)}, \ v_n = \frac{\ln(n^2+1)}{n+1} \text{ et } w_n = \frac{\sqrt{n^2+n+1}}{\sqrt[3]{n^2-n+1}}.$$

Exercice 8. (m) Trouver un équivalent simple aux suites (u_n) suivantes et déterminer leur limite :

$$u_n = \frac{n^2 - \sqrt{n^5 + 1}}{\ln(n) - 2n^2}, \ v_n = \frac{2n^3 - \ln(n) + 1}{n^2 + 1} \text{ et } w_n = \frac{n! + e^n}{2^n + 3^n}.$$

Exercice 9. (m) Déterminer les limites de :

1)
$$u_n = \frac{n^{\ln(n)}}{\ln^n(n)}$$
. 2) $v_n = \sqrt[n]{n^2}$.

3)
$$w_n = \left(\frac{n-1}{n+1}\right)^n$$
. 4) $x_n = n^{\frac{\sin(n)}{n}}$.

Exercice 10. (m) Montrer que $\sum_{k=1}^{n} k! \sim n!$. On pourra découper la somme.

Exercice 11. (m) Soit
$$u_n = \frac{1}{n^n}$$
. Montrer que $\sum_{k=n}^{2n} u_k \sim u_n$.

Exercice 12. \bigcirc En utilisant la formule de Stirling, déterminer un équivalent simple de $u_n = \binom{2n}{n}$.

Exercice 13. (m) Montrer que $n! \ge \left(\frac{n}{2}\right)^{n/2}$. En déduire que la suite $\left(\sqrt[n]{(n!)}\right)_{n \in \mathbb{N}^*}$ diverge vers $+\infty$.

Pourquoi ne peut-on pas utiliser la formule de Stirling pour montrer ceci?

Exercice 14. (i) Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle de limite nulle telle que $u_n + u_{n+1} \sim \frac{1}{n}$.

- 1) Montrer que si $(u_n)_{n\in\mathbb{N}}$ est décroissante, alors $u_n \sim \frac{1}{2n}$.
- 2) On pose $u_n = \frac{1}{2n} + \frac{(-1)^n}{\sqrt{n}}$. Vérifier que $\lim_{n \to +\infty} u_n = 0$, que $u_n + u_{n+1} \sim \frac{1}{n}$ et déterminer un équivalent de u_n . Conclusion?

Exercice 15. (m) Pour $n \geq 3$, on pose $f_n : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^n + nx - 1 \end{cases}$.

- 1) Montrer qu'il existe un unique $u_n \ge 0$ tel que $f_n(u_n) = 0$.
- 2) Déterminer un encadrement de la suite $(u_n)_{n\in\mathbb{N}}$ et en déduire sa limite et un équivalent.

2

Exercice 16. (m) Soit $f: \begin{cases} [1, +\infty[\to \mathbb{R} \\ x \mapsto \frac{x \ln(x)}{x+1} \end{cases}$.

- 1) Montrer que pour tout $n \in \mathbb{N}^*$, f(x) = n admet une unique solution u_n .
- 2) Étudier la suite $(u_n)_{n\in\mathbb{N}^*}$ (monotonie/limite) et en donner un équivalent.