Kaggle | Google

5-Day Gen AI Intensive Course with Google 2025 Whitepaper Companion Podcast (Notes): Embeddings and Vector Stores

Introduction to Embeddings and Vector Stores

- Embeddings are low-dimensional numerical representations of data, designed to capture underlying meaning and relationships^[1]. They transform heterogeneous data into a unified vector representation^[1].
- They represent data like text, images, and audio as compact vectors, preserving essential semantic information and making it easier to process and compare large amounts of data^[1].
- **Analogy**: Embeddings map complex data into a simpler space, similar to how latitude and longitude pinpoint locations on Earth^[1].

Importance of Embeddings

- **Efficiency**: Embeddings represent various data types (text, audio, images, video, structured data) efficiently^[1].
- **Pattern Recognition**: They facilitate finding patterns and relationships in data that would be difficult to spot otherwise^[1].
- **Semantic Relationships**: Embeddings capture how similar or different data pieces are. For example, in an embedding space, "king" is closer to "queen" than to "bicycle" [1].

Applications of Embeddings

• **Retrieval**: Used in search systems like Google. Web pages are pre-computed into embeddings. A search query is converted into an embedding, and the system finds web pages with the nearest neighbor embeddings^[1].

- **Recommendation Systems**: Items or content with similar embeddings to a user's past interactions are recommended^[1].
- **Joint Embeddings**: Handle multimodal data (text and images) by mapping different data types into a common embedding space^[1].

Evaluating Embedding Effectiveness

• **Relevance**: Assessed by how well embeddings retrieve relevant items and filter out irrelevant ones^[1].

Metrics:

- o **Precision**: Measures how many of the retrieved items are relevant^[1].
- o **Recall**: Measures the proportion of all relevant items that are retrieved.
- o **Precision at K & Recall at K**: Focus on the top K results^[1].
- o **Normalized Discounted Cumulative Gain (NDCG)**: Gives higher scores when the most relevant items are at the top of the results list^[1].
- **Benchmarks**: Standardized collections of datasets and tasks to evaluate and compare different embedding models (e.g., BEIR, MTEB)^[1].
- **Libraries**: Established libraries like TEREVAL, TRank, or PyTerrier can be used for evaluation^[1].
- **Practical Considerations**: Model size, embedding dimensionality, latency, and cost^[1].

Retrieval Augmented Generation (RAG)

• Embeddings enhance language models by finding relevant information from a knowledge base to boost prompts^[1].

Process:

a. **Index Creation**: Documents are broken into chunks, embeddings are generated for each chunk using a document encoder, and embeddings are stored in a vector database^[1].

- b. **Query Processing**: A user's question is converted into an embedding using a query encoder, and a similarity search is performed in the vector database to find the closest chunks^[1].
- **Importance of Speed**: Efficient vector databases are crucial for quick query processing^[1].
- **Progress in Embedding Models**: Significant improvements have been made, such as Google's embeddings, where the average BEIR score jumped from 10.6 to 55.7^[1].
- **Code Snippet**: The white paper includes a code example using the NF Corpus dataset^[1].

Types of Embeddings

- Categorized based on the type of data^[1].
 - o **Text Embeddings**: Represent words, sentences, paragraphs, or entire documents as numerical vectors^[1].
 - **Tokenization**: Breaking down text into smaller units (tokens)^[1].
 - **One-Hot Encoding**: Representing token IDs as binary vectors.
 - **Word Embeddings**: Capture the meaning of individual words and their semantic relationships^[1].
 - ♠ Word2Vec: Core principle is that a word is known by the company it keeps (context)^[1].
 - **CBOW (Continuous Bag of Words)**: Predicts a target word based on context words^[1].
 - **Skip-gram**: Uses a target word to predict surrounding words^[1].
 - ♣ FastText: Extension of Word2Vec that considers the internal structure of words at the subword level^[1].
 - ◆ **GloVe**: Captures global information about how words co-occur in the entire corpus^[1].
 - **swivel**: Uses a co-occurrence matrix and is efficient for large datasets with distributed processing^[1].

 Document Embeddings: Represent the meaning of larger text chunks (paragraphs or whole documents)^[1].

♣ Bag of Words Models:

- **LSA (Latent Semantic Analysis)**: Uses a matrix of word counts and documents and applies dimensionality reduction techniques^[1].
- **LDA (Latent Dirichlet Allocation)**: Models each document as a mixture of topics^[1].
- ★ TF-IDF Based Models: Weigh words based on their frequency in a document compared to the entire corpus; BM25 is a strong baseline^[1].
- ♣ **Doc2Vec**: Extends Word2Vec by adding a paragraph vector to the model^[1].
- Deep Pre-trained Large Language Models:
 - **BERT**: Uses the Transformer architecture and is trained on large datasets^[1].
 - **Sentence-BERT, SimCSE, and E5**: Designed to produce good sentence embeddings^[1].
 - **T5**, **PaLM**, **Gemini**, **GPT**, **and Llama**: Larger language models leading to better embedding models like GTR and SentenceT5^[1].
 - **Matryx embeddings**: Allow you to choose the dimensionality of the embeddings^[1].
 - **Multi-vector embeddings**: Deal with documents that contain both text and images (e.g., ColBERT, XTR, and Kpali)^[1].
- o **Image Embeddings**: Obtained by training convolutional neural networks (CNNs) or Vision Transformers on large image datasets^[1].
- o **Multimodal Embeddings**: Combine image embeddings with other types of embeddings (e.g., text embeddings) to create joint representations^[1].
- o **Structured Data Embeddings**: More application-specific due to the data's dependency on the schema and context^[1].

- **Techniques**: Dimensionality reduction techniques like PCA^[1].
- User and Item Data: Map users and items into the same embedding space for recommendation systems^[1].
- o **Graph Embeddings**: Represent objects and their relationships within a network^[1].
 - Algorithms: DeepWalk, Node2Vec, LINE, and GraphSage^[1].

Training Embedding Models

- **Dual Encoder Architecture**: Uses an encoder for the query and an encoder for the documents/images^[1].
- **Contrastive Loss**: Pulls embeddings of similar data points closer together while pushing dissimilar ones farther apart^[1].
- Training Stages:
 - o **Pre-training**: Training the model on a massive dataset to learn general representations^[1].
 - o **Fine-tuning**: Tuning the model on a smaller, task-specific dataset^[1].
- **Fine-tuning Data Sets**: Created through manual labeling, synthetic data generation, model distillation, or hard negative mining^[1].
- **Downstream Tasks**: Trained embeddings can be used for various tasks, such as classification^[1].

Vector Search

- **Efficient Searching**: Finding items based on their meaning, not just keywords^[1].
- **Process**: Compute embeddings for all data, store them in a vector database, embed the query into the same space, and find data items with the closest embeddings^[1].
- Approximate Nearest Neighbor (ANN) Search: Used to speed up search in large datasets^[1].
- ANN Techniques:

- o **Locality Sensitive Hashing (LSH)**: Maps similar items to the same bucket using hash functions^[1].
- o **Tree-based Methods**: KD trees and ball trees partition the data space recursively^[1].
- o **Combining Hashing and Tree-based Approaches**: e.g., FAI with HNSW and Scan^[1].
- o **HNSW (Hierarchical Navigable Small World)**: Builds a hierarchical proximity graph^[1].
- o **Scan (Scalable Approximate Nearest Neighbor)**: Used in Google products and available through Vertex AI Vector Search^[1].

Vector Databases

- **Specialized Systems**: Designed for high-dimensional data and similarity-based queries^[1].
- **Hybrid Search**: Traditional databases are starting to add vector search capabilities^[1].
- **Workflow**: Embed data, index vectors, embed guery, and search for similar items^[1].
- **Options**: Vertex Vector Search, AlloyDB, Cloud SQL for PostgreSQL, Pinecone, Weaviate, ChromaDB^[1].
- **Operational Considerations**: Scalability, availability, consistency, updates, backups, and security^[1].

Applications of Embeddings and Vector Stores

- **Applications**: Information retrieval, recommendation systems, semantic text similarity, classification, clustering, and reranking^[1].
- **Combining with ANN Search**: Enables powerful applications like RAG, large-scale search engines, personalized recommendation systems, anomaly detection, and few-shot classification^[1].
- **Ranking**: Embeddings are often used in the first stage of ranking for large-scale applications^[1].
- **RAG**: Enhances language model accuracy^[1].

•	Importance of Sources : Providing sources for retrieved information to enhance user trust ^[1] .