Задание 2.

Численное решение задачи Дирихле. Разработка параллельной MPI-программы и исследование ее эффективности.

Постановка задачи.

Разработать параллельную программу с использованием технологии MPI, реализующую решение 2-мерной задачи Дирихле. Провести исследование эффективности разработанной программы на системах Blue Gene/P и «Ломоносов».

Выполнить визуализацию полученного решения. Для этого требуется организовать в параллельной программе вывод решения в файл, формат которого будет соответствовать используемой системе визуализации.

Описание численных параллельных методов решения (Якоби, SOR и Red-Black) представлено в материалах лекций.

Параметры, передаваемые в командной строке

Первый параметр: m – число точек по одному измерению для задания двумерной сетки. По умолчанию – 512.

Второй параметр – точность. По умолчанию – 0.01.

Цель.

Получить навыки разработки и исследования параллельных программ с использованием технологии MPI.

Требуется.

- 1. Разработать параллельную программе с использованием технологии МРІ.
- 2. Исследовать время выполнения разработанной программы в зависимости от задаваемой точности, размера сетки и количества используемых процессов на вычислительных системах Blue Gene/P и «Ломоносов».
- 3. Для каждой из платформ для заданных значений точности метода (0.01, 0.001) Построить таблицу:

Для вычислительной системы Blue Gene/P:

	Точн	Параллельный алгоритм											
Размер сетки		32 процессо	рра пр	64 оцессора	128 процесс ров	со про	256 оцессо ров	512 про станд.		_		іроцесс ізв. мэп	-
		Время	Ускор ение	Число итераций	Время	Ускор ение	Число итера ций	Время	Уск орен ие	Число итера ций	Время	Ускор ение	Число итераций
512x512													
1024x 1024													

В случае исследования эффективности параллельной программы на Blue Gene/P для 512 процессоров рассмотреть два варианта мэппинга – стандартный, принятый по умолчанию и произвольный. Для произвольного мэппинга предусмотреть генерацию строк файла для задания случайного значения XYZT (см. материалы лекций).

Для вычислительной системы «Ломоносов»:

Размер сетки	Точн	32 процессора		64 процессора		128 процессо ров		256 процессо ров	
COTKI		Время	Ускор ение		Число итераций	Время	Ускор ение		Число итера ций
512x512									
1024x 1024									

Графическую иллюстрацию полученного решения - линии уровня функции u(i,j) провести, используя систему визуализации по собственному выбору.

Ускорение (*speedup*), получаемое при использовании параллельного алгоритма для p процессоров, определяется величиной:

Speedup(n) =
$$T_1(n)/T_p(n)$$
,

где $T_1(n)$ - время выполнения задачи на одном процессоре.

Tp(n)- время параллельного выполнения задачи при использовании p процессоров.

- 4. Построить графики для каждого из заданных значений точности (0.01, 0.001) зависимость ускорения от количества процессоров для разных размеров сетки (512x512, 1024x1024).
- 5. Подготовить отчет о выполнении задания, включающий таблицы с временами, графики, визуализацию полученного решения (линии уровня решения), текст программы. Сделать выводы по полученным результатам (объяснить убывание или возрастание производительности параллельной программы при увеличении числа используемых процессоров, сравнить поведение параллельной программы в зависимости от размера сетки).

ВАРИАНТЫ ЗАДАНИЯ.

- 1. Метод Якоби
- **2.** Meтод SOR
- **3.** Метод Red-Black

1. Литература.

- Материалы лекций «Суперкомпьютерные вычислительные технологии" http://angel.cs.msu.su/~popova/SuperComp2014/
- Материалы сайтов http://hpc.cs.msu.su и http://parallel.ru/cluster/