

Meta Reinforcement Learning

Yun Hua

Outline

- Motivation
- Basic Formulation
- Main Works:
 - 1. Optimizing Model Weights for Meta-learning(MAML)
 - 2. Meta-learning Hyperparameters(Meta Gradient RL)
 - 3. Meta-learning the Exploration Strategies(MAESN)
 - 4. Meta-Learning the Task Embedding(RL^2)
- Shortages
- More works and summary

Motivation

Regular RL: learn policy for single task

$$\theta^{\star} = \arg\max_{\rho} E_{\pi_{\theta}(\tau)}[R(\tau)]$$

$$= f_{\rm RL}(\mathcal{M})$$

$$\downarrow$$

$$MDP$$

Meta-RL: learn adaptation rule

$$\theta^{\star} = \arg\max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

Meta-training / **Outer loop**

Adaptation / **Inner loop**

$$\mathcal{M}_2$$
 \mathcal{M}_3

 \mathcal{M}_{test}

Basic Formulation

$$\theta^* = \arg\max_{\theta} \sum_{i=1}^n E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where
$$\phi_i = f_{\theta}(\mathcal{M}_i)$$

What should the adaptation procedure do?

- Explore: Collect the most informative data
- Adapt: Use that data to obtain the optimal policy

Basic Formulation

across a batch of tasks

Different algorithms:

- Choice of function f
- Choice of loss function L

MAML

Algorithm 3 MAML for Reinforcement Learning

Require: $p(\mathcal{T})$: distribution over tasks

Require: α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K trajectories $\mathcal{D} = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using f_{θ} in \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample trajectories $\mathcal{D}_i' = \{(\mathbf{x}_1, \mathbf{a}_1, ... \mathbf{x}_H)\}$ using $f_{\theta_i'}$ in \mathcal{T}_i
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 4

11: end while

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = -\mathbb{E}_{\mathbf{x}_t, \mathbf{a}_t \sim f_{\phi}, q_{\mathcal{T}_i}} \left[\sum_{t=1}^{H} R_i(\mathbf{x}_t, \mathbf{a}_t) \right]. \quad (4)$$

Key point: using the prior infos to learning an Efficient initialization parameter for the test tasks.

Meta Gradient RL

The core update function is:

$$G_{\eta}^{(n)}(\tau_t) = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v_{\theta}(s_{t+n}) \qquad ; \text{n-step return}$$

$$G_{\eta}^{\lambda}(\tau_t) = (1-\lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{\eta}^{(n)} \qquad ; \lambda \text{-return, mixture of n-step returns}$$

Meta Gradient RL

- The work process of the algorithm:
 - 1. The algorithm starts with parameters θ , and applies the update function to the first sample(s) τ , resulting in new parameters θ'
 - 2. The gradient $d\theta'/d\eta$ of these update indicates how the meta-parameters affected these new parameters.
 - 3. Measuring the performance of the new parameters θ' on a subsequent, independent sample τ' , utilizing a differentiable meta-objective $J'(\tau', \theta', \eta')$

Meta-Reinforcement Learning of Structured Exploration Strategies

Algorithm 1 MAESN meta-RL algorithm

- 1: Initialize variational parameters ω_i for each training task τ_i
- 2: **for** iteration $k \in \{1, \dots, K\}$ **do**
- 3: Sample a batch of N training tasks from $p(\tau)$
- 4: **for** task $\tau_i \in \{1, ..., N\}$ **do**
- 5: Gather data using the latent conditioned policy θ , (ω_i)
- 6: Compute inner policy gradient on variational parameters via Equation (4) (optionally (5))
- 7: end for
- 3: Compute meta update on both latents and policy parameters by optimizing (3) with TRPO
- 9: **end for**

Figure 1: Computation graph for MAESN. Metalearn pre-update latent parameters ω_i , and policy parameters θ , such that after a gradient step, the post-update latent parameters ω_i' , policy parameters θ' , are optimal for the task. The sampling procedure introduces time correlated noise.

$$\omega_i' = \omega_i + \alpha_\omega \circ \nabla_{\omega_i} E_{a_t \sim \pi(a_t | s_t; \theta, z_i)} \left[\sum_t R_i(s_t) \right]$$

$$(3)$$

Key point: using a prior info to learn the distribution of the exploration.

RL^2 : Fast Reinforcement Learning via Slow Reinforcement Learning

Figure 1: Procedure of agent-environment interaction

Key points:

- 1. Using the prior trajectories to learn a task embedding($meta\ parameter\ \theta$)
- 2. Adapt the task embedding to the new tasks

Shortage of recent meta reinforcement learning

- In the sparse reward environment, these basic methods always doesn't works well.
- In adaptation, the test tasks always in the same distribution with the training tasks.

Summary

 Every thing can be meta-learned !!!!!(trajectories, hyperparamter, gradient, loss function, return function, initialization, reward, advantage, etc)

Further works

- Meta learning in Gradient:
 - Evolved policy gradients.(NIPS2018)
- Meta learning in loss function:
 - High-Dimensional Continuous Control Using Generalized Advantage Estimation(ICLR2016)
- Meta Learning in Reward:
 - Learning a Prior over Intent via Meta-Inverse Reinforcement Learning
- Meta Learning in Advantage:
 - NoRML: No-Reward Meta Learning(AAMAS 2019)