CSE 21 – Winter 2018 – Midterm 1 Solution

1. Asymptotic Notation

a. (8 points) Each of the expression below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Give the *lowest* big-O class in simplest form for the complexity of each algorithm.

T(n)	$O(\ldots)$
$n\sqrt{n} + n^{1.2} + n^{1.7}$	$n^{1.7}$
$\left(10n + n^2 + n\log(n)\right)^3$	n^6
$n^3 + n^2 \log(n)$	n^3
$2^n + n^2 \log(n) + n!$	n!
$n^2 \log(n) + n \left(\log(n)\right)^2$	$n^2 \log(n)$
$5^n + n^5$	5^n
$3^{2n} + 2^{3n}$	9^n
$\log(\log(n)) + (\log n)^2$	$(\log n)^2$

b. (2 points) Circle True or False, and give a short explanation for your answer.

Let f, g, and h be functions from the natural numbers to the non-negative real numbers with $f(n) \ge g(n)$ for all $n \ge 1$. If $f(n) \in \Theta(h(n))$ and $g(n) \in \Theta(h(n))$ then $f(n) - g(n) \in \Theta(h(n))$.

Solution. The statement is false. Counter example: $f(n) = n^2 + n$, $g(n) = n^2$, $h(n) = n^2$.

2. Solving Recursion

(5 points) Suppose f is a function defined by the following recursive formula, where n is a positive integer,

$$f(n) = f(n-1) + n$$
 and $f(1) = 1$.

Find a closed-form formula for f(n). You may use any method discussed in the lecture.

Solution. By unraveling,

$$f(n) = f(n-1) + n$$

$$= f(n-2) + (n-1) + n$$

$$= f(n-3) + (n-2) + (n-1) + n$$

$$\vdots$$

$$= f(n-k) + (n-k+1) + \dots + (n-1) + n$$

$$\vdots$$

$$= f(1) + 2 + 3 + \dots + (n-1) + n \quad (let k = n-1)$$

$$= 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Final answer: $f(n) = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$

3. Iterative Algorithms and Loop Invariant

Given a list of distinct integers $A = (a_1, a_2, ..., a_n)$. A left-to-right minimum is an entry of the list that is smaller than all entries to its left. Formally, we say that a_j is a left-to-right minimum of A if $a_i > a_j$ for all i < j. By default, we also consider the first element of the list, a_1 , to be a left-to-right minimum.

For example, if A = (9, 3, 8, 4, 7, 1, 6, 2, 5) then the left-to-right minima of A are 9, 3, and 1.

Let $n \ge 1$, the following iterative algorithm takes as input a list a_1, \ldots, a_n of distinct integers and returns the number of left-to-right minima of the input. For instance, on using the input from the previous example, the algorithm would return 3, as there are three left-to-right minima.

procedure LRMin (a_1, \ldots, a_n) : list of $n \ge 1$ distinct integers)

- 1. lrm := 1
- 2. $min := a_1$
- 3. **for** i := 2 **to** n
- 4. if $a_i < min$ then
- 5. lrm = lrm + 1
- 6. $min = a_i$
- 7. return lrm
- a. (7 points) Prove the following loop invariant for LRMin

Loop Invariant After t iteration of the **for** loop, min is the value of the smallest element in the list a_1, \ldots, a_{t+1} and lrm is the number of left-to-right minima of the list a_1, \ldots, a_{t+1} .

Solution. The base case is when t = 0. In this case, we have not entered the **for** loop in line 3, so $min = a_1$ is the smallest element in the list a_1 and lrm = 1 is the correct number of left-to-right minima of the list containing only a_1 .

For the inductive step, suppose that the loop invariant holds for t = k - 1. We shall prove that it also holds for t = k. That is, we want to show that after k iterations of the **for** loop, min is the value of the smallest element in the list a_1, \ldots, a_{k+1} and lrm is the number of left-to-right minima of the list a_1, \ldots, a_{k+1} .

By the induction hypothesis, before the k-th iteration, min is the value of the smallest element in the list a_1, \ldots, a_k and lrm is the number of left-to-right minima of the list a_1, \ldots, a_k . During the k-th iteration (the index i = k + 1), we compare a_{k+1} with min in line 4. There are two cases

- Case 1: $a_{k+1} > min$. In this case, min is still the smallest element in a_1, \ldots, a_{k+1} and a_{k+1} is not a left-to-right minimum so the number of left-to-right minima in a_1, \cdots, a_{k+1} is the same as those in a_1, \cdots, a_k . In the algorithm, we do not change the value of min and lrm so the algorithm gives the correct output in this case.
- Case 2: $a_{k+1} < min$. In this case, a_{k+1} is a left-to-right minimum. This means the number of left-to-right minima in a_1, \dots, a_k, a_{k+1} is one more than the number of left-to-right minima in a_1, \dots, a_k, a_k . Line 5 of the algorithm increases this count by 1 so this is the correct output. In addition, a_{k+1} is the smallest element in a_1, \dots, a_k, a_{k+1} . Line 6 of the algorithm updates this value to be a_{k+1} so this is the correct output in this case.

This shows that the loop invariant holds for t = k. By induction hypothesis, the loop invariant holds for any value of t.

b. (3 points) Conclude from the loop invariant that the algorithm *LRMin* is correct.

Solution. Since the loop invariant in part (b) holds for any nonegative integer value t, it is true for t = n - 1. After n - 1 iterations of the **for** loop, the algorithm terminates and the output lrm is the correct number of left-to-right minima in a_1, \dots, a_n .

4. Recursive Algorithms

Here is a recursive algorithm that finds the number of left-to-right minima in a list of distinct integers a_1, \ldots, a_n , with $n \ge 1$.

procedure LRMinRec (a_1, \ldots, a_n) : list of $n \ge 1$ distinct integers)

- 1. if n = 1 then return a_1
- 2. **for** i := 1 **to** n 1
- 3. if $a_i < a_n$ then return $LRMinRec(a_1, ..., a_{n-1})$
- 4. **return** $1 + LRMinRec(a_1, \ldots, a_{n-1})$
- a. (4 points) For a fixed n, a best-case input to this algorithm is an input list of size n where the number of comparisons (involving list elements) is as small as possible. How many comparisons does LRMinRec do on a best-case input of size n? Give your answer as a closed-form (non-recursive) formula in terms of n.

Solution. n-1.

b. (3 points) For a fixed n, a worst-case input to this algorithm is an input list of size n where the number of comparisons (involving list elements) is as large as possible. Find the recurrence for the exact number of comparisons done by LRMinRec on an input of size n, in the worst case. Do not solve the recursion.

```
Solution. T(n) = T(n-1) + (n-1). Base case: T(1) = 0.
```

c. (3 points) Give the worst-case runtime of LRMinRec in Θ notation.

Solution. $\Theta(n^2)$.

5. Best and Worst Case for Sorting Algorithm

Below is the pseudocode for a revised BubbleSort algorithm. Here, the **break** command on line 7 will terminate the execution of the loop in which it occurs.

procedure RevisedBubbleSort (a_1, \ldots, a_n) : list of integers)

```
    for i := 1 to n - 1
    done := true
    for j := 1 to n - i
    if a<sub>j</sub> > a<sub>j+1</sub> then
    Interchange a<sub>j</sub> and a<sub>j+1</sub>
    done := false
    if (done == true) then break
```

a. (5 points) For the input (1, 2, 3, 4, 5, 6), the algorithm RevisedBubbleSort does 5 comparisons. Give a different input with the same entries for which RevisedBubbleSort also does 5 comparisons, or explain why no such input exists.

Solution. There is no other case.

After one iteration of the **for** loop, we have used exactly 5 comparisons between list elements. Thus, in order or the algorithm to do exactly 5 comparison, it must terminate after the first iteration which means *done* must be *true* at the end of the iteration. Observe that once we set *done* to *false*, we cannot turn it back to *true* within the same iteration. Hence, it must be the case that *done* is never set to *false* within the first iteration. Therefore, it must be the case that the input is an increasing sequence.

b. (5 points) For the input (6,5,4,3,2,1), the algorithm RevisedBubbleSort does **15** comparisons. Give a different input with the same entries for which RevisedBubbleSort also does 15 comparisons, or explain why no such input exists.

Solution. There are many answer. One possible answer is (5, 6, 4, 3, 2, 1)