Reinforcement Learning Formula Sheet

Eddie Guo

Multi-Armed Bandit Problem

Expected reward of action a: $q_*(a) \equiv \mathbb{E}[R_t \mid A_t = a]$

Estimate of
$$q_*(a)$$
 at time t : $Q_t(a) \equiv \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i=a}}$

Optimization:
$$Q_{n+1} = Q_n + \frac{1}{n}(R_n - Q_n)$$

$$\lim_{t \to \infty} Q_t(a) = q_*(a) \text{ by LLN}$$

Greedy action selection: $A_t = \operatorname{argmax} Q_t(a)$

ε-greedy selection: greedy most of time but selects random action w/ small probability ϵ

Nonstationary problems: constant step-size parameter

$$Q_{n+1} \equiv Q_n + \alpha (R_n - Q_n), \quad \alpha \in [0, 1)$$

$$Q_{n+1} = (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

Notice exponentially decaying past rewards.

1: A simple bandit algorithm

Initialize, for a = 1 to k:

$$Q(a) \leftarrow 0$$

 $N(a) \leftarrow 0$

Loop:

$$A \leftarrow \begin{cases} \operatorname*{argmax} Q(a), & \text{with probability } 1 - \epsilon \\ \operatorname*{random action}, & \text{with probability } \epsilon \end{cases}$$

$$R \leftarrow bandit(A)$$

$$M(A) \neq M(A) +$$

$$N(A) \leftarrow N(A) + 1$$

 $Q(A) \leftarrow Q(A) + \frac{1}{N(A)}[R - Q(A)]$

Upper Confidence Bound (UCB) Action Selection

"Optimism in the face of uncertainty"

Same as greedy except initialize $Q_t(a)$ to a high value, select value that optimizes an action A_t , and updates the upper bound to $Q_t(a)$.

$$A_t \equiv \operatorname{argmax} \left[Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$

Finite Markov Decision Processes

State: $S_t \in \mathcal{S}$, Reward: $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$ Action: $A_t \in \mathcal{A}(s)$,

Transition dynamics fn (joint PMF):

Joint prob of next state s' and reward r given state s and action a.

$$p(s', r \mid s, a) \equiv \Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a\}$$

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$$

$$\sum_{s' \in S} \sum_{r \in \mathcal{R}} p(s', r \mid s, a) = 1, \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A}(s)$$

State-Transition Probabilities (Alternative Forms)

$$p(s', r \mid s, a) \equiv \Pr\{S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a\}$$

$$p(s' \mid s, a) = \Pr\{S_t = s' \mid S_{t-1} = s, A_{t-1} = a\} = \sum_{s \in \mathcal{F}} p(s', r \mid s, a)$$

$$r(s, a) \equiv \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r \mid s, a)$$

$$r(s, a, s') \equiv \mathbb{E}[R_t \mid S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s', r \mid s, a)}{p(s' \mid s, a)}$$

Markov property: future states of Markov process depend only on present state and not on past events.

Agent-envir interactions: episode \rightarrow terminal state \rightarrow reset

Goal of agent: maximize expected return, G_t

Episodic tasks: $G_t \equiv R_{t+1} + R_{t+2} + \cdots + R_T$

.....

Continuing Tasks (no terminal state)

$$G_t \equiv R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{k-1} R_{t+k} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$G_t = R_{t+1} + \gamma G_{t+1}, \qquad \sum_{k=0}^{\infty} \gamma^k = \frac{1}{1-\gamma}, \qquad \gamma \in [0,1) \text{ is discount rate}$$

$$G_t \equiv \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$
 $T = \infty \text{ or } \gamma = 1 \text{ (but not both)}$

Notice that future rewards are discounted more.

 $\gamma = 0$: agent only cares about immediate reward (greedy).

 $\gamma \to 1$: future rewards contribute more.

Policies

Law of total expectation: $\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$

Partition formula:
$$\mathbb{E}[X] = \sum_{i} \mathbb{E}[X \mid A_i] P(A_i)$$

Policy: mapping from states to probs of selecting each possible action.

$$\pi(a|s) = p(a \mid s) = \Pr\{A_t = a \mid S_t = s\}$$

Expectation of R_{t+1} in terms of π and p:

$$\mathbb{E}[R_{t+1} \mid S_t = s] = \sum_{a} \pi(a \mid S_t) \sum_{s', r} p(s', r \mid s, a) r$$

Value Functions

Value fine give expected return G_t when starting in state s and following policy π thereafter.

State-value fn:
$$v_{\pi}(s) \equiv \mathbb{E}_{\pi}[G_t \mid S_t = s]$$
 $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

Value of terminal state is always 0.

Action-value fn:
$$q_{\pi}(s, a) \equiv \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

$$v_{\pi}$$
 in terms of q_{π} and π : $v_{\pi}(s) = \sum \pi(a \mid S_t)q_{\pi}(s, a)$

$$q_{\pi}$$
 in terms of v_{π} and p : $q_{\pi}(s, a) = \sum_{r,s'} p(s', r \mid s, a)[r + \gamma v_{\pi}(s')]$

Bellman Equations

$$v_{\pi}(s) = \sum_{a} \pi(a \mid s) \sum_{s' \ r} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$

$$q_{\pi}(s, a) = \sum_{s', r} p(s', r \mid s, a) \left[r + \gamma \sum_{a'} \pi(a' \mid s') q(s', a') \right]$$

Optimal value fns: $\pi_1 \geq \pi_2 \iff v_{\pi_1}(s) \geq v_{\pi_2}(s), \quad \forall s \in \mathcal{S}$

$$v_*(s) = \max_{\pi} v_{\pi}(s) = \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')], \quad \forall s \in \mathcal{S}$$

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a) = \sum_{s', r} p(s', r \mid s, a) [r + \gamma \max_{a'} q_*(s', a')]$$

 $\forall s \in \mathcal{S}, \forall a \in \mathcal{A}$

Policy Evaluation

$$\pi_* = \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_*(s')]$$

2: Iterative Policy Evaluation

Input π , the policy to be evaluated $\vec{V} \leftarrow \vec{0}, \vec{V}' \leftarrow \vec{0}$ loop: $\Delta \leftarrow 0$

loop for each
$$s \in \mathcal{S}$$
:
$$V'(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a)[r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |V'(s) - V(s)|)$$

$$V \leftarrow V'$$

until $\Delta < \theta$ (small positive number) return $V \approx v_{\pi}$

Policy improvement thm: $q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s), \forall s \in \mathcal{S}$

$$\pi'(s) \equiv \operatorname*{argmax}_{a} q_{\pi}(s, a) = \operatorname*{argmax}_{a} \sum_{s', r} p(s', r \mid s, a) [r + \gamma v_{\pi}(s')]$$

3: Policy Iteration

1. Initialization

 $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily $\forall s \in \mathcal{S}$

2. Policy Evaluation

Loop:

Loop for each $s \in \mathcal{S}$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r \mid s,\pi(s))[r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

3. Policy Improvement

policy- $stable \leftarrow true$

For each $s \in \mathcal{S}$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\begin{aligned} & \textit{old-action} \leftarrow \pi(s) \\ & \pi(s) \leftarrow \underset{a}{\operatorname{argmax}} \sum_{s',r} p(s',r \mid s,a)[r + \gamma V(s')] \end{aligned}$$

If old-action $\neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2.

Monte Carlo Methods

- Regs only sample sequences of states, actions, rewards from interactions w/ envir. Works in RL by averaging sample returns.
- MC only for episodic tasks b/c only upon completion of episode are value estimates and policies changed.

4: First-visit MC prediction for estimating $V \approx v_{\pi}$

Input: policy π to be evaluated

Initialize:

 $V(s) \in \mathbb{R}$, arbitrarily $\forall s \in \mathcal{S}$ $Returns(s) \leftarrow \text{empty list } \forall s \in \mathcal{S}$

Loop (for each episode):

Generate episode following π

Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$:

 $G \leftarrow \gamma G + R_{t+1}$

Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$:

Append G to $Returns(S_t)$

 $V(S_t) \leftarrow \text{average}(Returns(S_t))$

MC Estimation of Action Values

$$\pi(s) \equiv \underset{s}{\operatorname{argmax}} q(s, a), \qquad q_{\pi_k}(s, \pi_{k+1}(s)) \ge q_{\pi_k}(s, \pi_k(s)) \ge v_{\pi_k}(s)$$

5: First-visit MC prediction for estimating $V \approx v_{\pi}$

Input: policy π to be evaluated

Initialize:

 $\pi(s) \in \mathcal{A}(s)$, arbitrarily $\forall s \in \mathcal{S}$ $Q(s, a) \in \mathbb{R}$, arbitrarily $\forall s \in \mathcal{S}, \forall a \in \mathcal{A}$ $Returns(s) \leftarrow \text{empty list } \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$

Loop (for each episode):

Choose $S_0 \in \mathcal{S}, A_0 \in \mathcal{A}(S_0)$ randomly st all pairs have probabilities greater than 0

Generate episode from S_0, A_0 following π

 $G \leftarrow 0$

Loop for each step of episode, $t = T - 1, T - 2, \dots, 0$:

 $G \leftarrow \gamma G + R_{t+1}$

Unless S_t appears in $S_0, A_0, \ldots, S_{t-1}, A_{t-1}$:

Append G to $Returns(S_t)$

 $Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))$

 $\pi(S_t) \leftarrow \operatorname{argmax} Q(S_t, a)$

Note the last three lines can be made more efficient:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{n}(G - Q(S_t, A_t))$$

 $\pi(S_t) \leftarrow \operatorname{argmax} Q(S_t, a)$