Classificação - Segundo Trabalho IA - 2023.2

Para a classificação com algoritmo de regressão logística, foi utilizada a seguinte base de dados: Heart Attack Analysis

Segue o código com os comentários nas células anteriores:

Importando as bibliotecas e funções.

```
In []: import piplite
   await piplite.install('seaborn')

In []: import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import numpy as np
   from sklearn.linear_model import LogisticRegression
   from sklearn.model_selection import train_test_split
   from sklearn.preprocessing import StandardScaler
   from sklearn.svm import SVC
   from sklearn.metrics import accuracy_score, classification_report
   from sklearn.neural_network import MLPClassifier
   from sklearn import metrics
```

Base de dados de análise de ataques cardíacos

Esse dataset tem informações sobre pacientes, com o objetivo de prever se terão ataques cardíacos ou não.

```
In [ ]:
         heart = pd.read_csv('data/heart.csv')
         heart.head()
Out[]:
             age
                       cp trtbps chol fbs restecg
                                                      thalachh exng
                                                                       oldpeak slp
                                                                                       caa
                                                                                           thall
                 sex
                        3
                                    233
                                                    0
                                                            150
                                                                     0
                                                                             2.3
                                                                                         0
                                                                                               1
         0
              63
                              145
                                           1
                                                                                   0
              37
                              130
                                    250
                                                            187
                                                                             3.5
                                                                                   0
                                                                                               2
         1
              41
                        1
                              130
                                    204
                                           0
                                                    0
                                                                     0
                                                                                   2
                                                                                               2
         2
                                                            172
                                                                             1.4
              56
                              120
                                    236
                                                            178
                                                                             8.0
                                                                                               2
         3
                        0
                                    354
                                                    1
                                                                     1
                                                                                   2
                                                                                         0
                                                                                               2
              57
                    0
                              120
                                           0
                                                            163
                                                                             0.6
```

O conjunto de dados é baseado em aspectos como idade, sexo, pressão arterial, índice de colesterol no sangue, entre outros.

```
In [ ]: heart.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
# Column Non-Null Count Dtype
---
            -----
           303 non-null
0 age
                           int64
1 sex
           303 non-null int64
2 cp
           303 non-null int64
3 trtbps 303 non-null int64
4 chol 303 non-null int64
5 fbs 303 non-null int64
6 restecg 303 non-null int64
7 thalachh 303 non-null int64
8 exng 303 non-null
                           int64
9 oldpeak 303 non-null float64
          303 non-null
                           int64
10 slp
11 caa
           303 non-null
                           int64
12 thall
           303 non-null
                           int64
13 output 303 non-null
                           int64
dtypes: float64(1), int64(13)
memory usage: 33.2 KB
```

Heatmap

O mapa térmico (heatmap) de correlação é utilizado para verificar a força das relações entre as variáveis no conjunto de dados.

```
In [ ]: plt.figure(figsize=(10, 10))
    sns.heatmap(heart.corr(), annot=True, cmap='icefire').set_title('Mapa de Calor')
    plt.show()
```


Para obter-se uma melhor observação dos valores em relação ao resultado (coluna 'output'), os resultados da correlação são elencados abaixo.

```
In [ ]:
        correlacoes = heart.corr().loc[:, 'output'].drop('output')
        maiores_correlacoes = correlacoes.nlargest(10)
        print(f"Os maiores valores de correlação com o resultado:")
        print(maiores_correlacoes)
       Os maiores valores de correlação com o resultado:
                   0.433798
       ср
       thalachh
                   0.421741
       slp
                   0.345877
                   0.137230
       restecg
       fbs
                  -0.028046
       chol
                  -0.085239
                  -0.144931
       trtbps
                  -0.225439
       age
                  -0.280937
       sex
                  -0.344029
       thall
       Name: output, dtype: float64
```

Os dados são dividos entre treino e teste.

```
In [ ]: X = heart.drop('output', axis = 1)
y = heart['output']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, rando

Em seguida, os dados são normalizados.

In [ ]: scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```

Regressão Logística

É realizada a chamada da função de Regressão Logística. O modelo é treinado e testado.

support	f1-score	recall	precision	
41	0.70	a 79	0 00	0
41	0.79	0.78	0.80	0
50	0.83	0.84	0.82	1
91	0.81			accuracy
91	0.81	0.81	0.81	macro avg
91	0.81	0.81	0.81	weighted avg

SVM

É realizada a chamada da função de Máquina de Vetor de Suporte. O modelo é treinado e testado.

```
In []: svm_classifier = SVC(kernel = 'rbf', C = 1, gamma = 'scale', random_state = 42)
    svm_classifier.fit(X_train, y_train)
    y_pred = svm_classifier.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    print(f"Acurácia do método SVM: {accuracy:.4f}")
    print("Classification Report:")
    print(classification_report(y_test, y_pred))
```

Acurácia do método SVM: 0.8242 Classification Report:

	precision	recall	f1-score	support
0	0.80	0.80	0.80	41
1	0.84	0.84	0.84	50
accuracy			0.82	91
macro avg	0.82	0.82	0.82	91
weighted avg	0.82	0.82	0.82	91

Para observação no gráfico, foram escolhidas as colunas referentes ao tipo de dor no peito ('cp') e à frequência cardíaca máxima alcançada.

```
In [ ]: plt.scatter(X_train[:, 2], X_train[:, 7], c = y_train, cmap = plt.cm.coolwarm)
    plt.scatter(X_test[:, 2], X_test[:, 7], c=y_test, cmap=plt.cm.coolwarm, marker='
    plt.title('SVM Classification (2D)')
    plt.xlabel('Chest Pain Type')
    plt.ylabel('Max Heart Rate')
    plt.show()
```


MLP

É realizada a chamada da função de Percetron de Múltiplas Camadas. O modelo é treinado e testado, suas iterações são apresentadas.

0.5

Chest Pain Type

1.0

1.5

2.0

0.0

-0.5

```
In [ ]: mlp_classifier = MLPClassifier(hidden_layer_sizes=(50, 50), activation = 'relu',
    mlp_classifier.fit(X_train, y_train)
    y_pred = mlp_classifier.predict(X_test)
```

```
accuracy = accuracy_score(y_test, y_pred)
print(f"Acuracia do método MLP: {accuracy:.4f}")
print("Classification Report:")
print(classification_report(y_test, y_pred))
```

Training loss did not improve more than tol=0.000100 for 10 consecutive epochs. S topping.

Acurácia do método MLP: 0.8242

Classification Report:

	precision	recall	f1-score	support
0	0.79	0.83	0.81	41
1	0.85	0.82	0.84	50
266412264			0 02	91
accuracy			0.82	91
macro avg	0.82	0.82	0.82	91
weighted avg	0.83	0.82	0.82	91

Novamente, observa-se o resultado de acordo com as varíaveis mais influentes no resultado.

```
In []: plt.scatter(X_test[:, 2], y_test, color='blue')
   plt.scatter(X_test[:, 2], y_pred, color = 'red', alpha =.4)

plt.xlabel('Chest Pain Type')
   plt.ylabel('Output')
   plt.title('Neural Network Regression')

plt.legend(['True Values', 'Predictions'])
   plt.show()
```

Neural Network Regression


```
In [ ]: plt.scatter(X_test[:, 7], y_test, color='blue')
    plt.scatter(X_test[:, 7], y_pred, color = 'red', alpha =.4)

plt.xlabel('Max Heart Rate')
    plt.ylabel('Output')
```

```
plt.title('Neural Network Regression')

plt.legend(['True Values', 'Predictions'])
plt.show()
```

Neural Network Regression

Resultados

Observando a acurácia, destaca-se o desempenho muito semelhante entre os três métodos. Um possível motivo para isso é a base de dados não possuir uma complexidade alta a ponto de precisar de abordagens diferentes para interpretar correta e satisfatoriamente os dados, de acordo com o requisito do trabalho (80% de acurácia). Assim, os métodos SVM e MLP, mais complexos, obtiveram um resultado ligeiramente superior à Regressão Logística.

Regressão - Trabaho IA - 2023.2

Para a classificação com algoritmo de regressão linear, SVM e MLP foi utilizada a seguinte base de dados: neural net regression data. Segue o código com os comentários nas células anteriores: Importando as bibliotecas e funções.

```
import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
```

Base de dados

Lendo dados do arquivo CSV

```
profit = pd.read csv('fake reg.csv')
profit.head()
                 feature1
                              feature2
       price
 461.527929
               999.787558
                            999.766096
1 548.130011
               998.861615
                           1001.042403
2 410.297162 1000.070267
                            998.844015
3 540.382220
             999.952251
                           1000.440940
4 546.024553 1000.446011
                           1000.338531
```

dividindo em treinamento(80%) e teste(20%):

```
x_val = profit.drop(['price'], axis=1)
y_val = profit['price']
X_train, X_test, y_train, y_test = train_test_split(x_val, y_val,
test_size=0.2, random_state=42)
```

Plotando os dados

```
plt.scatter(X_train['feature1'], y_train, label='feature1')
plt.scatter(X_train['feature2'], y_train, label='feature2')
#plt.scatter(X_train['Marketing Spend'], y_train, label='Marketing
Spend Budget')
plt.xlabel('features')
plt.ylabel('price')
plt.legend()
plt.show()
```


Normalizando os dados

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_train) # Don't cheat - fit only on training data
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test) # apply same transformation to test
data
```

Criando e utilizando MLP para regreção

```
from sklearn.neural_network import MLPRegressor
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
model = MLPRegressor(
    hidden_layer_sizes=[62,62],
    activation='relu',
    solver='adam',
    verbose=True,
    random_state=1,
    max_iter=1400)
model = model.fit(X_train, y_train)
```

```
Iteration 1, loss = 127663.64691961
Iteration 2, loss = 127554.74469284
Iteration 3, loss = 127444.92467452
Iteration 4, loss = 127332.32677298
Iteration 5, loss = 127217.03250398
Iteration 6, loss = 127095.17022512
Iteration 7, loss = 126966.26891460
Iteration 8, loss = 126827.70731930
Iteration 9, loss = 126675.78869056
Iteration 10, loss = 126509.50896640
Iteration 11, loss = 126327.40313574
Iteration 12, loss = 126127.01491168
Iteration 13, loss = 125902.34616198
Iteration 14, loss = 125659.52946040
Iteration 15, loss = 125386.01183819
Iteration 16, loss = 125082.56318260
Iteration 17, loss = 124754.38114170
Iteration 18, loss = 124387.71711036
Iteration 19, loss = 123988.48180558
Iteration 20, loss = 123547.98989864
Iteration 21, loss = 123065.03557686
Iteration 22, loss = 122539.39076850
Iteration 23, loss = 121964.16799312
Iteration 24, loss = 121343.16477053
Iteration 25, loss = 120662.51391963
Iteration 26, loss = 119944.68825320
Iteration 27, loss = 119147.83614609
Iteration 28, loss = 118303.33343480
Iteration 29, loss = 117386.81436537
Iteration 30, loss = 116413.51552792
Iteration 31, loss = 115367.59573187
Iteration 32, loss = 114235.39319650
Iteration 33, loss = 113037.22379949
Iteration 34, loss = 111761.97066179
Iteration 35, loss = 110405.32063594
Iteration 36, loss = 108967.23207268
Iteration 37, loss = 107443.22153157
Iteration 38, loss = 105860.70513740
Iteration 39, loss = 104172.99766098
Iteration 40, loss = 102408.32216260
Iteration 41, loss = 100572.88876531
Iteration 42, loss = 98632.73550495
Iteration 43, loss = 96661.54484015
Iteration 44, loss = 94555.92355812
Iteration 45, loss = 92407.56821236
Iteration 46, loss = 90169.57229675
Iteration 47, loss = 87893.95129082
Iteration 48, loss = 85509.18482856
Iteration 49, loss = 83105.59818814
Iteration 50, loss = 80610.28064933
```

```
Iteration 51, loss = 78073.27136360
Iteration 52, loss = 75490.97925757
Iteration 53, loss = 72865.45255015
Iteration 54, loss = 70194.11850501
Iteration 55, loss = 67519.88644987
Iteration 56, loss = 64835.49462285
Iteration 57, loss = 62120.44078938
Iteration 58, loss = 59370.01268115
Iteration 59, loss = 56641.61836670
Iteration 60, loss = 53937.20567435
Iteration 61, loss = 51247.08642080
Iteration 62, loss = 48583.52888027
Iteration 63, loss = 45950.17160806
Iteration 64, loss = 43354.50343651
Iteration 65, loss = 40836.22305860
Iteration 66, loss = 38345.06448705
Iteration 67, loss = 35942.08279910
Iteration 68, loss = 33599.40539349
Iteration 69, loss = 31361.42548150
Iteration 70, loss = 29185.48392180
Iteration 71, loss = 27112.63489903
Iteration 72, loss = 25137.61853971
Iteration 73, loss = 23288.76353799
Iteration 74, loss = 21510.10598070
Iteration 75, loss = 19851.52637978
Iteration 76, loss = 18297.93737848
Iteration 77, loss = 16847.93153257
Iteration 78, loss = 15526.00393182
Iteration 79, loss = 14313.38077571
Iteration 80, loss = 13184.22480798
Iteration 81, loss = 12172.96462457
Iteration 82, loss = 11251.05955193
Iteration 83, loss = 10420.02935285
Iteration 84, loss = 9685.60320504
Iteration 85, loss = 9003.92873212
Iteration 86, loss = 8444.22402966
Iteration 87, loss = 7926.85703235
Iteration 88, loss = 7473.90797617
Iteration 89, loss = 7087.57367107
Iteration 90, loss = 6742.06750706
Iteration 91, loss = 6442.88115625
Iteration 92, loss = 6176.53348477
Iteration 93, loss = 5956.37798362
Iteration 94, loss = 5755.89831947
Iteration 95, loss = 5589.97420835
Iteration 96, loss = 5435.56876658
Iteration 97, loss = 5298.53711057
Iteration 98, loss = 5182.19466812
Iteration 99, loss = 5076.83212509
Iteration 100, loss = 4983.16712118
```

```
Iteration 101, loss = 4892.49480302
Iteration 102, loss = 4812.44782891
Iteration 103, loss = 4732.88593559
Iteration 104, loss = 4659.57640874
Iteration 105, loss = 4590.55027968
Iteration 106, loss = 4523.20506433
Iteration 107, loss = 4460.34629229
Iteration 108, loss = 4393.77679044
Iteration 109, loss = 4331.59895662
Iteration 110, loss = 4271.44450967
Iteration 111, loss = 4211.35980571
Iteration 112, loss = 4152.13077762
Iteration 113, loss = 4094.27210203
Iteration 114, loss = 4035.83282913
Iteration 115, loss = 3979.08485024
Iteration 116, loss = 3924.15720994
Iteration 117, loss = 3867.65232543
Iteration 118, loss = 3811.39627582
Iteration 119, loss = 3756.79483508
Iteration 120, loss = 3702.03388946
Iteration 121, loss = 3648.80678280
Iteration 122, loss = 3594.70078230
Iteration 123, loss = 3542.19999375
Iteration 124, loss = 3489.54430948
Iteration 125, loss = 3437.13166311
Iteration 126, loss = 3385.37684836
Iteration 127, loss = 3334.15985739
Iteration 128, loss = 3283.02659085
Iteration 129, loss = 3232.55302920
Iteration 130, loss = 3181.36603405
Iteration 131, loss = 3132.00861331
Iteration 132, loss = 3080.31565055
Iteration 133, loss = 3029.49632603
Iteration 134, loss = 2980.09430726
Iteration 135, loss = 2933.29450235
Iteration 136, loss = 2884.32406953
Iteration 137, loss = 2836.11938117
Iteration 138, loss = 2788.60356460
Iteration 139, loss = 2742.63207013
Iteration 140, loss = 2694.17346421
Iteration 141, loss = 2649.81015191
Iteration 142, loss = 2604.82109605
Iteration 143, loss = 2559.98848871
Iteration 144, loss = 2516.26657290
Iteration 145, loss = 2471.34184722
Iteration 146, loss = 2429.83339692
Iteration 147, loss = 2387.36454305
Iteration 148, loss = 2345.40025884
Iteration 149, loss = 2303.95367044
Iteration 150, loss = 2263.13794944
```

```
Iteration 151, loss = 2223.47711894
Iteration 152, loss = 2185.06940314
Iteration 153, loss = 2145.25832236
Iteration 154, loss = 2107.64291900
Iteration 155, loss = 2067.88326966
Iteration 156, loss = 2031.88049662
Iteration 157, loss = 1995.49589249
Iteration 158, loss = 1958.92117581
Iteration 159, loss = 1922.90169040
Iteration 160, loss = 1887.91916134
Iteration 161, loss = 1854.21424517
Iteration 162, loss = 1819.06378722
Iteration 163, loss = 1786.65761024
Iteration 164, loss = 1753.56308313
Iteration 165, loss = 1722.05404158
Iteration 166, loss = 1689.56674188
Iteration 167, loss = 1659.58367230
Iteration 168, loss = 1628.02629439
Iteration 169, loss = 1597.99882118
Iteration 170, loss = 1568.32138430
Iteration 171, loss = 1539.78959085
Iteration 172, loss = 1510.13782283
Iteration 173, loss = 1482.14961753
Iteration 174, loss = 1454.51745057
Iteration 175, loss = 1427.22664809
Iteration 176, loss = 1400.22925796
Iteration 177, loss = 1374.02449431
Iteration 178, loss = 1347.81495275
Iteration 179, loss = 1322.18414405
Iteration 180, loss = 1296.73658159
Iteration 181, loss = 1272.14703481
Iteration 182, loss = 1248.37442157
Iteration 183, loss = 1224.28039354
Iteration 184, loss = 1201.21260794
Iteration 185, loss = 1178.06959954
Iteration 186, loss = 1155.46550875
Iteration 187, loss = 1133.41979096
Iteration 188, loss = 1112.25178157
Iteration 189, loss = 1090.14565069
Iteration 190, loss = 1069.66698692
Iteration 191, loss = 1049.70430929
Iteration 192, loss = 1028.31499794
Iteration 193, loss = 1009.12008224
Iteration 194, loss = 989.30017988
Iteration 195, loss = 971.09335936
Iteration 196, loss = 951.47540420
Iteration 197, loss = 933.05174947
Iteration 198, loss = 915.16210875
Iteration 199, loss = 898.00284780
Iteration 200, loss = 880.16188163
```

```
Iteration 201, loss = 862.59464675
Iteration 202, loss = 846.54078974
Iteration 203, loss = 829.72354718
Iteration 204, loss = 814.07330294
Iteration 205, loss = 797.52210110
Iteration 206, loss = 781.67070515
Iteration 207, loss = 767.50263440
Iteration 208, loss = 751.87402317
Iteration 209, loss = 737.11686319
Iteration 210, loss = 723.04664269
Iteration 211, loss = 709.31826895
Iteration 212, loss = 694.67660239
Iteration 213, loss = 681.27440032
Iteration 214, loss = 668.48861642
Iteration 215, loss = 655.38272255
Iteration 216, loss = 642.25857721
Iteration 217, loss = 629.84662690
Iteration 218, loss = 617.76999760
Iteration 219, loss = 606.24835121
Iteration 220, loss = 594.17503485
Iteration 221, loss = 582.33729462
Iteration 222, loss = 571.49064809
Iteration 223, loss = 560.09236950
Iteration 224, loss = 549.52754396
Iteration 225, loss = 538.96962250
Iteration 226, loss = 528.63831017
Iteration 227, loss = 517.96119680
Iteration 228, loss = 508.45444836
Iteration 229, loss = 498.59772498
Iteration 230, loss = 488.76443339
Iteration 231, loss = 479.78106545
Iteration 232, loss = 470.66512891
Iteration 233, loss = 461.20389545
Iteration 234, loss = 452.63622276
Iteration 235, loss = 443.74873398
Iteration 236, loss = 435.48724982
Iteration 237, loss = 426.75313803
Iteration 238, loss = 418.75030898
Iteration 239, loss = 410.46779070
Iteration 240, loss = 402.53975226
Iteration 241, loss = 394.73773001
Iteration 242, loss = 387.45932964
Iteration 243, loss = 379.60431482
Iteration 244, loss = 372.40634609
Iteration 245, loss = 365.14057439
Iteration 246, loss = 358.02281052
Iteration 247, loss = 351.15029458
Iteration 248, loss = 344.49682908
Iteration 249, loss = 337.69509515
Iteration 250, loss = 331.03296424
```

```
Iteration 251, loss = 324.88614864
Iteration 252, loss = 318.74498912
Iteration 253, loss = 312.38736349
Iteration 254, loss = 306.44557463
Iteration 255, loss = 300.41531293
Iteration 256, loss = 294.35163681
Iteration 257, loss = 288.79469953
Iteration 258, loss = 283.17081549
Iteration 259, loss = 277.81681716
Iteration 260, loss = 272.27605779
Iteration 261, loss = 267.04219486
Iteration 262, loss = 262.08381451
Iteration 263, loss = 256.91140223
Iteration 264, loss = 251.94705217
Iteration 265, loss = 247.15309464
Iteration 266, loss = 242.52092082
Iteration 267, loss = 237.76783725
Iteration 268, loss = 233.24160431
Iteration 269, loss = 228.68790523
Iteration 270, loss = 224.35231502
Iteration 271, loss = 220.37274080
Iteration 272, loss = 215.91368731
Iteration 273, loss = 211.90044656
Iteration 274, loss = 207.93000668
Iteration 275, loss = 204.00499960
Iteration 276, loss = 200.18462144
Iteration 277, loss = 196.49622517
Iteration 278, loss = 192.71676676
Iteration 279, loss = 189.28630890
Iteration 280, loss = 185.91302694
Iteration 281, loss = 182.56945729
Iteration 282, loss = 179.02907592
Iteration 283, loss = 175.62115337
Iteration 284, loss = 172.41118204
Iteration 285, loss = 169.23446911
Iteration 286, loss = 166.16014294
Iteration 287, loss = 163.19925813
Iteration 288, loss = 160.09365735
Iteration 289, loss = 157.14234836
Iteration 290, loss = 154.42693347
Iteration 291, loss = 151.68743291
Iteration 292, loss = 148.83795778
Iteration 293, loss = 146.31781621
Iteration 294, loss = 143.57134775
Iteration 295, loss = 141.00320577
Iteration 296, loss = 138.62468582
Iteration 297, loss = 136.13664815
Iteration 298, loss = 133.74684182
Iteration 299, loss = 131.38505665
Iteration 300, loss = 129.07060113
```

```
Iteration 301, loss = 126.87324018
Iteration 302, loss = 124.61075621
Iteration 303, loss = 122.58200841
Iteration 304, loss = 120.43869651
Iteration 305, loss = 118.32081649
Iteration 306, loss = 116.40585655
Iteration 307, loss = 114.41424066
Iteration 308, loss = 112.51470088
Iteration 309, loss = 110.66391999
Iteration 310, loss = 108.81263743
Iteration 311, loss = 107.00736805
Iteration 312, loss = 105.26190818
Iteration 313, loss = 103.57054117
Iteration 314, loss = 101.79299586
Iteration 315, loss = 100.12122747
Iteration 316, loss = 98.54862593
Iteration 317, loss = 96.94539832
Iteration 318, loss = 95.45893477
Iteration 319, loss = 93.95709652
Iteration 320, loss = 92.52884927
Iteration 321, loss = 90.87198626
Iteration 322, loss = 89.46729622
Iteration 323, loss = 88.10720863
Iteration 324, loss = 86.68853713
Iteration 325, loss = 85.27126772
Iteration 326, loss = 84.08308937
Iteration 327, loss = 82.68856959
Iteration 328, loss = 81.42628322
Iteration 329, loss = 80.20696044
Iteration 330, loss = 79.03342714
Iteration 331, loss = 77.75943017
Iteration 332, loss = 76.55388114
Iteration 333, loss = 75.43322306
Iteration 334, loss = 74.31373106
Iteration 335, loss = 73.29123712
Iteration 336, loss = 72.18677117
Iteration 337, loss = 71.11863846
Iteration 338, loss = 70.08114645
Iteration 339, loss = 69.10407005
Iteration 340, loss = 68.15279639
Iteration 341, loss = 67.12020714
Iteration 342, loss = 66.29028324
Iteration 343, loss = 65.24927873
Iteration 344, loss = 64.37991198
Iteration 345, loss = 63.47851861
Iteration 346, loss = 62.65567517
Iteration 347, loss = 61.75785179
Iteration 348, loss = 60.93488353
Iteration 349, loss = 60.13218776
Iteration 350, loss = 59.30676645
```

```
Iteration 351, loss = 58.58075530
Iteration 352, loss = 57.81924215
Iteration 353, loss = 57.03276842
Iteration 354, loss = 56.31203687
Iteration 355, loss = 55.53201757
Iteration 356, loss = 54.86632547
Iteration 357, loss = 54.20300893
Iteration 358, loss = 53.50621803
Iteration 359, loss = 52.84404174
Iteration 360, loss = 52.20212636
Iteration 361, loss = 51.57942833
Iteration 362, loss = 50.94250315
Iteration 363, loss = 50.34139289
Iteration 364, loss = 49.77052095
Iteration 365, loss = 49.14175419
Iteration 366, loss = 48.56023455
Iteration 367, loss = 48.00329250
Iteration 368, loss = 47.46299402
Iteration 369, loss = 46.91321428
Iteration 370, loss = 46.40102173
Iteration 371, loss = 45.90476900
Iteration 372, loss = 45.39429013
Iteration 373, loss = 44.96160669
Iteration 374, loss = 44.38395107
Iteration 375, loss = 43.95549108
Iteration 376, loss = 43.47727538
Iteration 377, loss = 43.04319160
Iteration 378, loss = 42.58859505
Iteration 379, loss = 42.14490923
Iteration 380, loss = 41.68941723
Iteration 381, loss = 41.26548603
Iteration 382, loss = 40.87206396
Iteration 383, loss = 40.41038252
Iteration 384, loss = 40.01062308
Iteration 385, loss = 39.61254829
Iteration 386, loss = 39.17877224
Iteration 387, loss = 38.80181434
Iteration 388, loss = 38.39781982
Iteration 389, loss = 38.04137687
Iteration 390, loss = 37.62225136
Iteration 391, loss = 37.28568862
Iteration 392, loss = 36.90370646
Iteration 393, loss = 36.51895450
Iteration 394, loss = 36.15826407
Iteration 395, loss = 35.84000289
Iteration 396, loss = 35.47930867
Iteration 397, loss = 35.14706461
Iteration 398, loss = 34.81143307
Iteration 399, loss = 34.45173952
Iteration 400, loss = 34.09032881
```

```
Iteration 401, loss = 33.76393265
Iteration 402, loss = 33.46106306
Iteration 403, loss = 33.10156185
Iteration 404, loss = 32.83657557
Iteration 405, loss = 32.50897046
Iteration 406, loss = 32.24131409
Iteration 407, loss = 31.86553665
Iteration 408, loss = 31.60302785
Iteration 409, loss = 31.34407512
Iteration 410, loss = 31.03715396
Iteration 411, loss = 30.79681468
Iteration 412, loss = 30.48325176
Iteration 413, loss = 30.26129620
Iteration 414, loss = 29.97993547
Iteration 415, loss = 29.73196704
Iteration 416, loss = 29.47772046
Iteration 417, loss = 29.23012249
Iteration 418, loss = 29.00772275
Iteration 419, loss = 28.76698303
Iteration 420, loss = 28.53576803
Iteration 421, loss = 28.30524507
Iteration 422, loss = 28.06242557
Iteration 423, loss = 27.82306233
Iteration 424, loss = 27.62005588
Iteration 425, loss = 27.39525655
Iteration 426, loss = 27.20361661
Iteration 427, loss = 27.00922665
Iteration 428, loss = 26.78034527
Iteration 429, loss = 26.58283911
Iteration 430, loss = 26.39615833
Iteration 431, loss = 26.21804838
Iteration 432, loss = 26.00233832
Iteration 433, loss = 25.85828993
Iteration 434, loss = 25.64732395
Iteration 435, loss = 25.47480878
Iteration 436, loss = 25.29639215
Iteration 437, loss = 25.13746977
Iteration 438, loss = 24.96834939
Iteration 439, loss = 24.79514411
Iteration 440, loss = 24.64095353
Iteration 441, loss = 24.47904285
Iteration 442, loss = 24.34860769
Iteration 443, loss = 24.18173690
Iteration 444, loss = 24.02740821
Iteration 445, loss = 23.89244175
Iteration 446, loss = 23.73433859
Iteration 447, loss = 23.60477484
Iteration 448, loss = 23.47736236
Iteration 449, loss = 23.34095625
Iteration 450, loss = 23.19743173
```

```
Iteration 451, loss = 23.08209477
Iteration 452, loss = 22.95130895
Iteration 453, loss = 22.82547421
Iteration 454, loss = 22.70668501
Iteration 455, loss = 22.59855726
Iteration 456, loss = 22.47840412
Iteration 457, loss = 22.36318219
Iteration 458, loss = 22.24251574
Iteration 459, loss = 22.11569082
Iteration 460, loss = 22.03755248
Iteration 461, loss = 21.88602322
Iteration 462, loss = 21.78412536
Iteration 463, loss = 21.66275708
Iteration 464, loss = 21.57576263
Iteration 465, loss = 21.45779616
Iteration 466, loss = 21.34627597
Iteration 467, loss = 21.26437292
Iteration 468, loss = 21.16380697
Iteration 469, loss = 21.05748962
Iteration 470, loss = 20.95917057
Iteration 471, loss = 20.86049218
Iteration 472, loss = 20.74099991
Iteration 473, loss = 20.65584089
Iteration 474, loss = 20.56814103
Iteration 475, loss = 20.48430931
Iteration 476, loss = 20.39023838
Iteration 477, loss = 20.29152884
Iteration 478, loss = 20.20767596
Iteration 479, loss = 20.11632809
Iteration 480, loss = 20.03180433
Iteration 481, loss = 19.94897098
Iteration 482, loss = 19.86183127
Iteration 483, loss = 19.78967697
Iteration 484, loss = 19.71416928
Iteration 485, loss = 19.62578514
Iteration 486, loss = 19.54147525
Iteration 487, loss = 19.45090006
Iteration 488, loss = 19.36781627
Iteration 489, loss = 19.29888893
Iteration 490, loss = 19.21735356
Iteration 491, loss = 19.13275641
Iteration 492, loss = 19.05927590
Iteration 493, loss = 18.98484261
Iteration 494, loss = 18.91556578
Iteration 495, loss = 18.83307433
Iteration 496, loss = 18.75872968
Iteration 497, loss = 18.69265936
Iteration 498, loss = 18.62826125
Iteration 499, loss = 18.58296636
Iteration 500, loss = 18.49711010
```

```
Iteration 501, loss = 18.42659305
Iteration 502, loss = 18.36819030
Iteration 503, loss = 18.32262278
Iteration 504, loss = 18.22592210
Iteration 505, loss = 18.16670342
Iteration 506, loss = 18.11311361
Iteration 507, loss = 18.04795382
Iteration 508, loss = 17.98210412
Iteration 509, loss = 17.94473855
Iteration 510, loss = 17.87138938
Iteration 511, loss = 17.80371613
Iteration 512, loss = 17.75506189
Iteration 513, loss = 17.70226957
Iteration 514, loss = 17.64048650
Iteration 515, loss = 17.58644985
Iteration 516, loss = 17.52268216
Iteration 517, loss = 17.49595835
Iteration 518, loss = 17.42485130
Iteration 519, loss = 17.37240870
Iteration 520, loss = 17.31908988
Iteration 521, loss = 17.27637568
Iteration 522, loss = 17.21682072
Iteration 523, loss = 17.16496445
Iteration 524, loss = 17.11496976
Iteration 525, loss = 17.06226829
Iteration 526, loss = 16.99864684
Iteration 527, loss = 16.94655190
Iteration 528, loss = 16.91451094
Iteration 529, loss = 16.84584256
Iteration 530, loss = 16.80993452
Iteration 531, loss = 16.74332475
Iteration 532, loss = 16.70826000
Iteration 533, loss = 16.64369222
Iteration 534, loss = 16.58390772
Iteration 535, loss = 16.54955212
Iteration 536, loss = 16.49872377
Iteration 537, loss = 16.44998640
Iteration 538, loss = 16.41288139
Iteration 539, loss = 16.35866114
Iteration 540, loss = 16.32844797
Iteration 541, loss = 16.29873221
Iteration 542, loss = 16.26450884
Iteration 543, loss = 16.20705118
Iteration 544, loss = 16.16230335
Iteration 545, loss = 16.12764129
Iteration 546, loss = 16.08872297
Iteration 547, loss = 16.07025430
Iteration 548, loss = 16.02007373
Iteration 549, loss = 15.97504589
Iteration 550, loss = 15.94549046
```

```
Iteration 551, loss = 15.90726724
Iteration 552, loss = 15.86935060
Iteration 553, loss = 15.82739068
Iteration 554, loss = 15.80964883
Iteration 555, loss = 15.76097289
Iteration 556, loss = 15.72435571
Iteration 557, loss = 15.70103259
Iteration 558, loss = 15.65954838
Iteration 559, loss = 15.63641141
Iteration 560, loss = 15.59372710
Iteration 561, loss = 15.57353621
Iteration 562, loss = 15.54954835
Iteration 563, loss = 15.50531977
Iteration 564, loss = 15.47812133
Iteration 565, loss = 15.45145082
Iteration 566, loss = 15.42756626
Iteration 567, loss = 15.40314795
Iteration 568, loss = 15.36051177
Iteration 569, loss = 15.33857595
Iteration 570, loss = 15.30561885
Iteration 571, loss = 15.28786287
Iteration 572, loss = 15.25175601
Iteration 573, loss = 15.23228852
Iteration 574, loss = 15.20567319
Iteration 575, loss = 15.18290428
Iteration 576, loss = 15.15613481
Iteration 577, loss = 15.14956386
Iteration 578, loss = 15.12450260
Iteration 579, loss = 15.10108822
Iteration 580, loss = 15.07489634
Iteration 581, loss = 15.04945818
Iteration 582, loss = 15.01948523
Iteration 583, loss = 14.99658255
Iteration 584, loss = 14.97730641
Iteration 585, loss = 14.95289868
Iteration 586, loss = 14.92703539
Iteration 587, loss = 14.91072566
Iteration 588, loss = 14.89929074
Iteration 589, loss = 14.88464355
Iteration 590, loss = 14.84670449
Iteration 591, loss = 14.84765616
Iteration 592, loss = 14.80287021
Iteration 593, loss = 14.78129048
Iteration 594, loss = 14.76912814
Iteration 595, loss = 14.76256869
Iteration 596, loss = 14.72377989
Iteration 597, loss = 14.71560019
Iteration 598, loss = 14.69312745
Iteration 599, loss = 14.67283368
```

```
Iteration 600, loss = 14.65406163
Iteration 601, loss = 14.63031138
Iteration 602, loss = 14.63689338
Iteration 603, loss = 14.59830646
Iteration 604, loss = 14.57570318
Iteration 605, loss = 14.55185914
Iteration 606, loss = 14.53027359
Iteration 607, loss = 14.54121489
Iteration 608, loss = 14.49936422
Iteration 609, loss = 14.48112050
Iteration 610, loss = 14.46220270
Iteration 611, loss = 14.44129523
Iteration 612, loss = 14.42131701
Iteration 613, loss = 14.40881496
Iteration 614, loss = 14.38482057
Iteration 615, loss = 14.38024310
Iteration 616, loss = 14.34759036
Iteration 617, loss = 14.32468827
Iteration 618, loss = 14.31211778
Iteration 619, loss = 14.29523295
Iteration 620, loss = 14.27366952
Iteration 621, loss = 14.25545515
Iteration 622, loss = 14.24129338
Iteration 623, loss = 14.21967394
Iteration 624, loss = 14.20830398
Iteration 625, loss = 14.19884800
Iteration 626, loss = 14.17064370
Iteration 627, loss = 14.14743121
Iteration 628, loss = 14.13765109
Iteration 629, loss = 14.11704886
Iteration 630, loss = 14.10557715
Iteration 631, loss = 14.08734191
Iteration 632, loss = 14.06521599
Iteration 633, loss = 14.04732192
Iteration 634, loss = 14.03557169
Iteration 635, loss = 14.03256953
Iteration 636, loss = 14.00506605
Iteration 637, loss = 13.98182432
Iteration 638, loss = 13.97213502
Iteration 639, loss = 13.95862213
Iteration 640, loss = 13.93401322
Iteration 641, loss = 13.92363094
Iteration 642, loss = 13.90421608
Iteration 643, loss = 13.89511638
Iteration 644, loss = 13.87171028
Iteration 645, loss = 13.86204179
Iteration 646, loss = 13.84399477
Iteration 647, loss = 13.83476600
Iteration 648, loss = 13.80852551
```

```
Iteration 649, loss = 13.79056271
Iteration 650, loss = 13.79523086
Iteration 651, loss = 13.76965074
Iteration 652, loss = 13.75613539
Iteration 653, loss = 13.74161881
Iteration 654, loss = 13.72560519
Iteration 655, loss = 13.71050919
Iteration 656, loss = 13.69490372
Iteration 657, loss = 13.68544291
Iteration 658, loss = 13.66645020
Iteration 659, loss = 13.65813563
Iteration 660, loss = 13.64636367
Iteration 661, loss = 13.62887904
Iteration 662, loss = 13.63969461
Iteration 663, loss = 13.61177889
Iteration 664, loss = 13.58839106
Iteration 665, loss = 13.58516400
Iteration 666, loss = 13.57492422
Iteration 667, loss = 13.55350599
Iteration 668, loss = 13.55031094
Iteration 669, loss = 13.53566086
Iteration 670, loss = 13.50836868
Iteration 671, loss = 13.50764344
Iteration 672, loss = 13.48948882
Iteration 673, loss = 13.48053485
Iteration 674, loss = 13.46533939
Iteration 675, loss = 13.46218988
Iteration 676, loss = 13.44688855
Iteration 677, loss = 13.42742268
Iteration 678, loss = 13.42835969
Iteration 679, loss = 13.40312243
Iteration 680, loss = 13.39077406
Iteration 681, loss = 13.38268775
Iteration 682, loss = 13.40229972
Iteration 683, loss = 13.35134954
Iteration 684, loss = 13.34961491
Iteration 685, loss = 13.34283980
Iteration 686, loss = 13.32324175
Iteration 687, loss = 13.31183775
Iteration 688, loss = 13.30804639
Iteration 689, loss = 13.29580628
Iteration 690, loss = 13.27635015
Iteration 691, loss = 13.26548507
Iteration 692, loss = 13.25242876
Iteration 693, loss = 13.24011110
Iteration 694, loss = 13.23671238
Iteration 695, loss = 13.21949916
Iteration 696, loss = 13.21268022
Iteration 697, loss = 13.21441112
```

```
Iteration 698, loss = 13.19035742
Iteration 699, loss = 13.19087505
Iteration 700, loss = 13.18849322
Iteration 701, loss = 13.19516420
Iteration 702, loss = 13.19027561
Iteration 703, loss = 13.15007057
Iteration 704, loss = 13.16048587
Iteration 705, loss = 13.12778166
Iteration 706, loss = 13.11711616
Iteration 707, loss = 13.10715491
Iteration 708, loss = 13.10099740
Iteration 709, loss = 13.09405587
Iteration 710, loss = 13.08086199
Iteration 711, loss = 13.07217395
Iteration 712, loss = 13.07244506
Iteration 713, loss = 13.05350739
Iteration 714, loss = 13.05027120
Iteration 715, loss = 13.04587996
Iteration 716, loss = 13.03957405
Iteration 717, loss = 13.03247849
Iteration 718, loss = 13.03131371
Iteration 719, loss = 13.00782705
Iteration 720, loss = 13.00632033
Iteration 721, loss = 12.98869752
Iteration 722, loss = 12.98122919
Iteration 723, loss = 12.97295133
Iteration 724, loss = 12.97369720
Iteration 725, loss = 12.97000565
Iteration 726, loss = 12.96603320
Iteration 727, loss = 12.94351852
Iteration 728, loss = 12.92421924
Iteration 729, loss = 12.91782811
Iteration 730, loss = 12.91734509
Iteration 731, loss = 12.90385612
Iteration 732, loss = 12.89086415
Iteration 733, loss = 12.89001367
Iteration 734, loss = 12.88078195
Iteration 735, loss = 12.87420651
Iteration 736, loss = 12.86413402
Iteration 737, loss = 12.87445143
Iteration 738, loss = 12.87703510
Iteration 739, loss = 12.85969035
Iteration 740, loss = 12.84459965
Iteration 741, loss = 12.83151154
Iteration 742, loss = 12.83020324
Iteration 743, loss = 12.83621331
Iteration 744, loss = 12.81357655
Iteration 745, loss = 12.80360150
Iteration 746, loss = 12.80252570
```

```
Iteration 747, loss = 12.78783271
Iteration 748, loss = 12.78332330
Iteration 749, loss = 12.78215277
Iteration 750, loss = 12.77069482
Iteration 751, loss = 12.76400194
Iteration 752, loss = 12.75410915
Iteration 753, loss = 12.75456573
Iteration 754, loss = 12.77046224
Iteration 755, loss = 12.73189678
Iteration 756, loss = 12.72260041
Iteration 757, loss = 12.71958464
Iteration 758, loss = 12.71236979
Iteration 759, loss = 12.70231878
Iteration 760, loss = 12.70106326
Iteration 761, loss = 12.69062822
Iteration 762, loss = 12.68211749
Iteration 763, loss = 12.67192615
Iteration 764, loss = 12.67140416
Iteration 765, loss = 12.66482259
Iteration 766, loss = 12.66372536
Iteration 767, loss = 12.66238203
Iteration 768, loss = 12.64717043
Iteration 769, loss = 12.64596022
Iteration 770, loss = 12.63054890
Iteration 771, loss = 12.62932851
Iteration 772, loss = 12.61735728
Iteration 773, loss = 12.62373142
Iteration 774, loss = 12.61985961
Iteration 775, loss = 12.61801866
Iteration 776, loss = 12.61945997
Iteration 777, loss = 12.60283279
Iteration 778, loss = 12.59123155
Iteration 779, loss = 12.58288841
Iteration 780, loss = 12.58161252
Iteration 781, loss = 12.58386620
Iteration 782, loss = 12.56541576
Iteration 783, loss = 12.58144845
Iteration 784, loss = 12.56316877
Iteration 785, loss = 12.55460736
Iteration 786, loss = 12.55117151
Iteration 787, loss = 12.54898377
Iteration 788, loss = 12.55772903
Iteration 789, loss = 12.54260487
Iteration 790, loss = 12.54176769
Iteration 791, loss = 12.53884610
Iteration 792, loss = 12.52925188
Iteration 793, loss = 12.51995122
Iteration 794, loss = 12.51799668
Iteration 795, loss = 12.51261571
```

```
Iteration 796, loss = 12.51417624
Iteration 797, loss = 12.50957686
Iteration 798, loss = 12.50224285
Iteration 799, loss = 12.50478482
Iteration 800, loss = 12.49588053
Iteration 801, loss = 12.48837570
Iteration 802, loss = 12.48294856
Iteration 803, loss = 12.48390136
Iteration 804, loss = 12.48105598
Iteration 805, loss = 12.48526625
Iteration 806, loss = 12.46802678
Iteration 807, loss = 12.47236645
Iteration 808, loss = 12.46194148
Iteration 809, loss = 12.45437424
Iteration 810, loss = 12.45319943
Iteration 811, loss = 12.44776907
Iteration 812, loss = 12.45375803
Iteration 813, loss = 12.44897994
Iteration 814, loss = 12.42864633
Iteration 815, loss = 12.42716244
Iteration 816, loss = 12.42560371
Iteration 817, loss = 12.42056913
Iteration 818, loss = 12.41646895
Iteration 819, loss = 12.41561089
Iteration 820, loss = 12.41293982
Iteration 821, loss = 12.41168193
Iteration 822, loss = 12.41281813
Iteration 823, loss = 12.39825464
Iteration 824, loss = 12.39572656
Iteration 825, loss = 12.39122487
Iteration 826, loss = 12.39609062
Iteration 827, loss = 12.38406947
Iteration 828, loss = 12.39281261
Iteration 829, loss = 12.38640025
Iteration 830, loss = 12.37821580
Iteration 831, loss = 12.36471631
Iteration 832, loss = 12.37606733
Iteration 833, loss = 12.36426487
Iteration 834, loss = 12.36746370
Iteration 835, loss = 12.36976767
Iteration 836, loss = 12.35070139
Iteration 837, loss = 12.36266984
Iteration 838, loss = 12.34648173
Iteration 839, loss = 12.36378453
Iteration 840, loss = 12.36750660
Iteration 841, loss = 12.34765628
Iteration 842, loss = 12.34632060
Iteration 843, loss = 12.33857829
Iteration 844, loss = 12.33594379
```

```
Iteration 845, loss = 12.32420433
Iteration 846, loss = 12.33439119
Iteration 847, loss = 12.32092021
Iteration 848, loss = 12.30673765
Iteration 849, loss = 12.32545726
Iteration 850, loss = 12.31174443
Iteration 851, loss = 12.30114975
Iteration 852, loss = 12.29781681
Iteration 853, loss = 12.29131591
Iteration 854, loss = 12.29933235
Iteration 855, loss = 12.29986930
Iteration 856, loss = 12.29144319
Iteration 857, loss = 12.28409654
Iteration 858, loss = 12.30540983
Iteration 859, loss = 12.28094372
Iteration 860, loss = 12.27468124
Iteration 861, loss = 12.27203684
Iteration 862, loss = 12.26995911
Iteration 863, loss = 12.26397821
Iteration 864, loss = 12.27115901
Iteration 865, loss = 12.27358604
Iteration 866, loss = 12.25440806
Iteration 867, loss = 12.26924328
Iteration 868, loss = 12.26633705
Iteration 869, loss = 12.25222271
Iteration 870, loss = 12.25788281
Iteration 871, loss = 12.24605415
Iteration 872, loss = 12.24697651
Iteration 873, loss = 12.25387667
Iteration 874, loss = 12.23491770
Iteration 875, loss = 12.23617717
Iteration 876, loss = 12.24661398
Iteration 877, loss = 12.22618634
Iteration 878, loss = 12.24327635
Iteration 879, loss = 12.22824757
Iteration 880, loss = 12.21378895
Iteration 881, loss = 12.21004824
Iteration 882, loss = 12.22394622
Iteration 883, loss = 12.22252781
Iteration 884, loss = 12.22003893
Iteration 885, loss = 12.22053286
Iteration 886, loss = 12.21404003
Iteration 887, loss = 12.21579023
Iteration 888, loss = 12.20261724
Iteration 889, loss = 12.21477867
Iteration 890, loss = 12.21196331
Iteration 891, loss = 12.18965935
Iteration 892, loss = 12.22040145
Iteration 893, loss = 12.18730327
```

```
Iteration 894, loss = 12.18733008
Iteration 895, loss = 12.21534242
Iteration 896, loss = 12.17703651
Iteration 897, loss = 12.18539147
Iteration 898, loss = 12.17182883
Iteration 899, loss = 12.17165868
Iteration 900, loss = 12.16177216
Iteration 901, loss = 12.17394806
Iteration 902, loss = 12.17221693
Iteration 903, loss = 12.16772313
Iteration 904, loss = 12.16825965
Iteration 905, loss = 12.14527510
Iteration 906, loss = 12.15566161
Iteration 907, loss = 12.15366184
Iteration 908, loss = 12.14853896
Iteration 909, loss = 12.14337072
Iteration 910, loss = 12.14511402
Iteration 911, loss = 12.15512499
Iteration 912, loss = 12.13612177
Iteration 913, loss = 12.13434514
Iteration 914, loss = 12.13376529
Iteration 915, loss = 12.13093740
Iteration 916, loss = 12.12445169
Iteration 917, loss = 12.12136886
Iteration 918, loss = 12.13690841
Iteration 919, loss = 12.10605462
Iteration 920, loss = 12.11614664
Iteration 921, loss = 12.12214794
Iteration 922, loss = 12.10983164
Iteration 923, loss = 12.10709778
Iteration 924, loss = 12.11566436
Iteration 925, loss = 12.10060265
Iteration 926, loss = 12.11107637
Iteration 927, loss = 12.08433447
Iteration 928, loss = 12.08297917
Iteration 929, loss = 12.09753573
Iteration 930, loss = 12.08577139
Iteration 931, loss = 12.08531963
Iteration 932, loss = 12.08921580
Iteration 933, loss = 12.07857273
Iteration 934, loss = 12.07827668
Iteration 935, loss = 12.07448953
Iteration 936, loss = 12.07284879
Iteration 937, loss = 12.07350690
Iteration 938, loss = 12.07547404
Iteration 939, loss = 12.06436984
Iteration 940, loss = 12.06706033
Iteration 941, loss = 12.06293206
Iteration 942, loss = 12.07743856
```

```
Iteration 943, loss = 12.04845523
Iteration 944, loss = 12.06593075
Iteration 945, loss = 12.06509896
Iteration 946, loss = 12.04223003
Iteration 947, loss = 12.04685290
Iteration 948, loss = 12.04076626
Iteration 949, loss = 12.04093753
Iteration 950, loss = 12.02961785
Iteration 951, loss = 12.03546856
Iteration 952, loss = 12.03359577
Iteration 953, loss = 12.03557247
Iteration 954, loss = 12.03681044
Iteration 955, loss = 12.02672107
Iteration 956, loss = 12.02500488
Iteration 957, loss = 12.02744439
Iteration 958, loss = 12.02856905
Iteration 959, loss = 12.03617253
Iteration 960, loss = 12.02087239
Iteration 961, loss = 12.02652999
Iteration 962, loss = 12.00909034
Iteration 963, loss = 12.00082703
Iteration 964, loss = 12.01238000
Iteration 965, loss = 12.00045847
Iteration 966, loss = 12.01610998
Iteration 967, loss = 12.00313883
Iteration 968, loss = 11.99265574
Iteration 969, loss = 12.01532735
Iteration 970, loss = 12.00805097
Iteration 971, loss = 12.01914730
Iteration 972, loss = 11.99467873
Iteration 973, loss = 11.98712103
Iteration 974, loss = 11.99077557
Iteration 975, loss = 11.99620781
Iteration 976, loss = 11.99023597
Iteration 977, loss = 12.02290562
Iteration 978, loss = 11.99750169
Iteration 979, loss = 11.99207492
Iteration 980, loss = 12.00676676
Iteration 981, loss = 12.02228869
Iteration 982, loss = 12.00075333
Iteration 983, loss = 11.98754963
Iteration 984, loss = 11.97595760
Iteration 985, loss = 11.97757728
Iteration 986, loss = 11.97924427
Iteration 987, loss = 11.98274545
Iteration 988, loss = 11.96365330
Iteration 989, loss = 11.96276812
Iteration 990, loss = 11.96157196
Iteration 991, loss = 11.97714887
```

```
Iteration 992, loss = 11.95161107
Iteration 993, loss = 11.97820865
Iteration 994, loss = 11.96349974
Iteration 995, loss = 11.96695710
Iteration 996, loss = 11.96198223
Iteration 997, loss = 11.95493759
Iteration 998, loss = 11.97699391
Iteration 999, loss = 11.95045140
Iteration 1000, loss = 11.95603471
Iteration 1001, loss = 11.95767189
Iteration 1002, loss = 11.93837739
Iteration 1003, loss = 11.94490632
Iteration 1004, loss = 11.94855388
Iteration 1005, loss = 11.93889354
Iteration 1006, loss = 11.94654739
Iteration 1007, loss = 11.93192139
Iteration 1008, loss = 11.93499755
Iteration 1009, loss = 11.93905208
Iteration 1010, loss = 11.93142842
Iteration 1011, loss = 11.93864682
Iteration 1012, loss = 11.93373677
Iteration 1013, loss = 11.92623433
Iteration 1014, loss = 11.91887489
Iteration 1015, loss = 11.92331539
Iteration 1016, loss = 11.92312636
Iteration 1017, loss = 11.91940804
Iteration 1018, loss = 11.92761101
Iteration 1019, loss = 11.92297517
Iteration 1020, loss = 11.91695818
Iteration 1021, loss = 11.91914838
Iteration 1022, loss = 11.94465575
Iteration 1023, loss = 11.95719062
Iteration 1024, loss = 11.91415362
Iteration 1025, loss = 11.93670609
Iteration 1026, loss = 11.91569604
Iteration 1027, loss = 11.90033059
Iteration 1028, loss = 11.90558868
Iteration 1029, loss = 11.91319874
Iteration 1030, loss = 11.91955327
Iteration 1031, loss = 11.90389053
Iteration 1032, loss = 11.90427080
Iteration 1033, loss = 11.89657151
Iteration 1034, loss = 11.90163773
Iteration 1035, loss = 11.89160908
Iteration 1036, loss = 11.92294742
Iteration 1037, loss = 11.89333508
Iteration 1038, loss = 11.90627367
Iteration 1039, loss = 11.90932942
Iteration 1040, loss = 11.89284074
Iteration 1041, loss = 11.89408846
```

```
Iteration 1042, loss = 11.91264320
Iteration 1043, loss = 11.90913432
Iteration 1044, loss = 11.91191373
Iteration 1045, loss = 11.90074428
Iteration 1046, loss = 11.90242843
Training loss did not improve more than tol=0.000100 for 10
consecutive epochs. Stopping.
y pred = model.predict(X test)
model.score(X_test, y_test) # R Squared
0.9966286345849324
plt.scatter(X_test[:,0], y_test, color='blue')
plt.scatter(X_test[:,0], y_pred, color='red')
# Set the axis labels and title
plt.xlabel('feature1')
plt.vlabel('price')
plt.title('Neural Network Regression - feature1 vs price')
# Add a legend to the plot
plt.legend(['True Values', 'Predictions'])
plt.show()
```

Neural Network Regression - feature1 vs price


```
plt.scatter(X_test[:,1], y_test, color='blue')
plt.scatter(X_test[:,1], y_pred, color='red')
# Set the axis labels and title
plt.xlabel('feature2')
plt.ylabel('price')
plt.title('Neural Network Regression - feature2 vs price')
# Add a legend to the plot
plt.legend(['True Values', 'Predictions'])
plt.show()
```

Neural Network Regression - feature2 vs price

Imprimindo métricas do modelo

```
from sklearn import metrics
import numpy as np
def print_evaluate(real, predicted):
    mae = metrics.mean_absolute_error(real, predicted)
    mape = metrics.mean_absolute_percentage_error(real, predicted)
    mse = metrics.mean_squared_error(real, predicted)
    rmse = np.sqrt(mse)
    r2_square = metrics.r2_score(real, predicted)
    print("MAE:", mae)
    print("MAPE:", mape)
```

```
print("MSE:", mse)
    print("RMSE:", rmse)
    print("R2 Square:", r2_square)

print("Métricas de Desempenho (RNA):")
print("\nDados de teste:")
print_evaluate(y_test, y_pred)

Métricas de Desempenho (RNA):

Dados de teste:
MAE: 4.27513938553281
MAPE: 0.008729802073419278
MSE: 28.427624825648152
RMSE: 5.331756260900169
R2 Square: 0.9966286345849324
```

Comparando com Regressor Linear

```
from sklearn.linear model import LinearRegression
# regressão (treinamento)
my model = LinearRegression()
my model.fit(X train, y train)
print("R2 (test) =", my model.score(X test, y test)) # r2 squared
R2 (test) = 0.9969271004939649
#regressão (teste)
y pred = my model.predict(X test)
print("Métricas de Desempenho (Linear):")
print("\nDados de teste:")
print evaluate(y test, y pred)
Métricas de Desempenho (Linear):
Dados de teste:
MAE: 4.059737026111618
MAPE: 0.008309205902040373
MSE: 25.910936231970744
RMSE: 5.0902786006240115
R2 Square: 0.9969271004939649
```

Comparando com SVM

```
from sklearn.svm import SVR
svr = SVR(C=30.0, epsilon=0.5)
svr.fit(X_train, y_train)
svr.score(X_test, y_test)
#regressão (teste)
y_pred = svr.predict(X_test)
```

```
print("Métricas de Desempenho (Linear):")
print("\nDados de teste:")
print_evaluate(y_test, y_pred)

Métricas de Desempenho (Linear):

Dados de teste:
MAE: 4.802595762419471
MAPE: 0.010398254884641956
MSE: 56.17818954367445
RMSE: 7.4952111073454395
R2 Square: 0.9933375649049029
```

Ressultados

Observando os resultados, vê-se que eles são muito parecidos nos três métodos. Uma possiblidade pode ser que a base de dados não é tão complexa de uma maneiera de necessitar de diferentes abordagens.