1 Introduction - Prelab

1.1 Biasing of Bipolar Junction Transistor

1. Calculations

- 1. (a) Calculate V_B , V_E , V_{CE} , and V_C .
 - (b) Calculate I_B , I_E , and I_C .

LTSpice simulation

1.2 Constant Current Source

1. Calculations and simulation on LTSpice

2. $R1 = 215\Omega$, $R2 = 993\Omega$

3. To have a constant current V_{CE} has to be higher than 0.3V (from 2N2222 datasheet) to stay in active mode. So the condition for RL is $V_{RL} < V_{CC} - 0.3V - V_2 = V_{RL} < 4.7V$ so R_L must be lower than $\frac{4.7}{0.004} = 1175 \Omega$.

4. Max R_L in LTSpice

At 1275Ω the current is 4mA, at 1375Ω the current is 10% less (3.6mA).

1.3 Amplifier circuit

2. DC operation point values

$$I_C = 0.011 \; \text{A}, \, I_B = 54.7 \; \text{uA}$$
 $V_B = 5.87 \text{V}, \, V_E = 5.15 \; \text{V}, \, V_C = 9.09 \text{V}, \, V_B E = 0.12, \, V_C E = 3.94 \text{V}$

3. Transient analysis at $50 \mathrm{mV}$

Green line: V_B : 17.7mV peak to peak, red line: V_{BE} : 15.4mV peak to peak.

Green line: V_i : 20.5mV peak to peak, blue line: V_o : 2.67V.

Gain: $\frac{V_o}{V_i} = 130$.

4. Harmonic distortion analysis

According to the FFT the harmonic distortion is similar between $50 \mathrm{mV}$ and $100 \mathrm{mV}$ as input amplitude and is much worse when using $200 \mathrm{mV}$.

5. AC analysis

c