

- Flow through a duct, internal flow, consists of two major regions
 - Entrance region
 - Fully developed region
- The entrance region consists of the velocity/thermal boundary layer developing from the walls of the duct.
- The fully developed region occurs when the velocity/thermal boundary layer meet each other.

- Flow is described in terms of mean velocity u_m and is given by $m = \rho u_m A_c$
 - where m is the mass flow rate, and A_c is the cross sectional area.
- The Reynolds number for a internal flow for a circular cross section is $Re_D = \frac{\rho u_m D}{u} = \frac{u_m D}{v}$
- The onset of turbulent flow for a circular cross section is $Re_{D,c} \approx 2300$
- Fully developed turbulent flow can be as high as $Re_D \approx 10000$
- For our purposes, fully developed turbulent will be considered $\frac{x}{D}$ >10

For the thermal boundary layer, the entrance length is given by

$$\left(\frac{x_{fd,t}}{D}\right) \approx 0.05 Re_D Pr$$

where $x_{fd,t}$ is the position of the start of the fully developed region of the thermal boundary layer.

Pressure Drop

- Pressure drop is often of concern in duct flow.
- The friction factor is the quantity that dictates the pressure drop in a duct.
- This is not be confused with the friction coefficient C_f .
- The friction factor is defined as

$$f \equiv \frac{-\frac{dp}{dx}D}{\rho \frac{u_m^2}{2}}$$

where dp/dx is the pressure drop in the x direction.

• For fully developed laminar flow, the friction factor is given by $f = \frac{64}{Re_D}$

Pressure Drop

For fully developed turbulent flow, the following relationship is used

$$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$$

where e is the surface roughness of the duct (a tabulated value).

- As can be seen this is not a closed form expression (i.e. f appears on both sides)
- For this reason, a plot called a *Moody* diagram is often used.
- The Moody diagram is named after Lewis Ferry Moody (1880-1953).

Moody Diagram

A differential energy balance of flow through a duct shows

$$dq_{conv} = mc_p[(T_m + dT_m) - T_m] = mc_p dT_m$$

where T_m is the mean temperature.

The differential heat rate term may be written in terms of flux as

 $dq_{conv} = q_s'' P dx$ where P is the surface perimeter.

Rearranging shows

$$\frac{dT_m}{dx} = \frac{q_s''P}{mc_p} = \frac{P}{mc_p}h(T_s - T_m)$$

• For a constant surface heat flux q_s the energy balance becomes

$$T_{m}(x) = T_{m,i} + \frac{q_{s}^{\prime\prime} P}{m c_{p}} x$$

where T_{mi} is the inlet mean temperature.

 The plot shows the axial temperature variations for heat transfer in a tube for a constant surface heat flux.

Example 1

A system for heating water from an inlet temperature of $T_{m,i} = 20 \, ^{\circ}C$ to an outlet temperature of $T_{m,o} = 60 \, ^{\circ}C$ involves passing the water through a thick walled tube having inner and outer diameters of $20 \, \text{and} \, 40 \, mm$. The outer surface of the tube is well insulated, and electrical heating within the wall provides for a uniform generation rate of $q = 10^6 \, \text{W/m}^3$.

- (a) For a water mass flow rate of m = 0.1 kg/s, how long must the tube be to achieve the desired outlet temperature?
- (b) If the inner surface temperature of the tube is $T_s = 70 \, ^{\circ}C$ at the outlet, what is the local convection heat transfer coefficient at the outlet?

• For a constant surface temperature, the term ΔT may be defined as

$$\Delta T = T_s - T_m$$

The energy balance then becomes

$$\frac{dT_m}{dx} = \frac{-d(\Delta T)}{dx} = \frac{P}{mc_p} h \Delta T$$

Solving this shows

$$\frac{T_s - T_m(x)}{T_s - T_{m,i}} = e^{\frac{-Px}{mc_p}\bar{h}}$$

 The plot shows the axial temperature variations for heat transfer in a tube for a constant surface heat flux

- Sometimes the term called the log mean temperature is used.
- This is defined as

$$\Delta T_{lm} \equiv \frac{\Delta T_o - \Delta T_i}{\ln \left(\frac{\Delta T_o}{\Delta T_i}\right)}$$

where ΔT_o and ΔT_i are the temperature differences between the surface temperature and the outlet and inlet mean temperature, respectively.

• That is $\Delta T_o = T_s - T_{m,o} \qquad \Delta T_i = T_s - T_{m,i}$

• The heat rate is then $q_{conv} = \overline{h} A_s \Delta T_{lm}$

Example 2

Steam condensing on the outer surface of a thin walled circular tube of diameter D=50~mm and length L=6~m maintains a uniform outer surface temperature of $100~^{\circ}C$. Water flows through the tube at a rate of m=0.25~kg/s, and its inlet and outlet temperatures are $T_{m,i}=15~^{\circ}C$ and $T_{m,o}=57~^{\circ}C$. What is the average convection coefficient associated with the water flow?

Circular Tubes

• For fully developed laminar flow with constant surface heat flux $Nu_D = \frac{hD}{k} = 4.36$

- For fully developed laminar flow with constant surface temperature $Nu_D=3.66$
- For fully developed turbulent flow

$$Nu_D = 0.023 Re_D^{4/5} Pr^n$$
 $(0.6 \lesssim Pr \lesssim 160)$ $(Re_D \gtrsim 10,000)$ $(L/D \gtrsim 10)$ where $n = 0.4$ when $T_s > T_m$ and $n = 0.3$ when $T_s < T_m$.

- This turbulent flow relation is good for small temperature differences and all properties are evaluated at T_m .
- This turbulent flow relation may be applied to both constant surface heat and temperature cases.

Circular Tubes

For fully developed turbulent flow with large temperature difference

$$Nu_D = 0.027 Re_D^{4/5} Pr^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14} \quad (0.7 \lesssim Pr \lesssim 16,700) \quad (Re_D \gtrsim 10,000) \quad (L/D \gtrsim 10)$$

- Again, all properties are evaluated at T_m except μ_s .
- Large temperature difference will be defined as $\Delta T \gtrsim 50 \, K$

Example 3

Hot air flows with a mass rate of m=0.050~kg/s through an uninsulated sheet metal duct of diameter D=0.15~m, which is in the crawlspace of a house. The hot air enters at $103~^{\circ}C$ and, after a distance of L=5~m, cools to $85~^{\circ}C$. The heat transfer coefficient between the duct outer surface and the ambient air at $T_{\infty}=0~^{\circ}C$ is known to be $h_{\alpha}=6~W/m^2K$.

- (a) Calculate the heat loss (W) from the duct over the length L.
- (b) Determine the heat flux and the duct surface temperature at x = L.

Noncircular Tubes

Table 10.1

 For noncircular ducts, an effective diameter is used

$$D_h \equiv \frac{4 A_c}{P}$$

where A_c is the flow cross sectional area and P is wetted perimeter.

		Nu_D		
Cross Section	$\frac{b}{a}$	(Uniform q_s'')	(Uniform T _s)	$f Re_{D_h}$
	82 <u></u>	4.36	3.66	64
<i>a</i>	1.0	3.61	2.98	57
a	1.43	3.73	3.08	59
ab	2.0	4.12	3.39	62
ab	3.0	4.79	3.96	69
ab	4.0	5.33	4.44	73
Heated	∞	8.23	7.54	96
Heated Insulated	∞	5.39	4.86	96
	<u> </u>	3.11	2.49	53

17/18

Circular Tube Annulus

Table 10.2

Applies to:

- fully developed laminar flow
- Annulus (outer section of concentric tubes)
- Nu_i is for the inside surface
- Nu_{α} is for the outside surface
- Outside surface adiabatic
- Inside surface at a constant temperature

D_i/D_o	Nu_i	Nu_o
0		3.66
0.05	17.46	4.06
0.10	11.56	4.11
0.25	7.37	4.23
0.50	5.74	4.43
≈1.00	4.86	4.86