VORONOI

DIAGRAMS

FIVE POLICE STATIONS

Which areas should they be responsible for?

VORONOI TESSELLATION

The set of points in each polygon is closest to its seed (i.e station)

VORONOI EDGES

The edges trace a path which is furthest away from seeds (i.e. stations)

1. Choose a point and identify nearest neighbours

2. Draw a line to neighbours, create perpendicular line at bisect point

3. Iterate for other neighbours

4. Connect vertices

5. Repeat this procedure for other points

VORONOI PROPERTIES

Vertices are equidistant to three seeds (two vertices diagrammed)

CHOLERA LONDON

CHOLERA DEATHS IN LONDON

Cholera deaths in Soho, London 1854

East / West

CHOLERA DEATHS IN LONDON

Location of water pumps

VORONOI TESSELLATION

Voronoi tessellation based on water pump location

VORONOI TESSELLATION

Deaths, water pumps and Voronoi tessellation

TABULATION

Count of deaths by Voronoi tessellation

Pump Name	Count	Percentage
Broad Street	359	62.1%
Soho	65	11.2%
Crown Chapel	61	10.5%
Briddle Street	28	4.8%
Oxford Street [2]	24	4.1%
Warick	20	3.4%
Oxford Street [1]	12	2.0%
Marlborough	6	1.0%
Dean Street	2	0.3%
Castle Street	1	0.2%

