A Bayesian Model for Pediatric Chronic Pain

M-MA Kolloquium, 16.01.2017

Anna-Lena Eckert, B.sc.

Dr. Dominik Endres Unit for Theoretical Neurosciences

& Dr. Anna Thorwart Associative Learning Workgroup; Marburg

Epidemiology Pediatric chronic pain

- Worldwide 3-5% of children affected (severely underdiagnosed)
- 10% of hospitalized children show features of CP
- 3% disabled by pain, require intensive treatment
- Time-based definition: Pain that persists for 2 (Rome IV criteria) or 3 (ICD-10) months
- Functional definition:

"Pain that extends beyond the **expected period of healing**" and "Hence lacks the **acute warning function** of physiological nociception. "

Turk & Okifuji; 2001

Economic impact Pediatric chronic pain

- \$19.5 billion per year Groenewald et al., 2014
 - Health services; social services; informal care; productivity loss of child and parent
- High risk of persistence into adulthood
 - O About 1/3, Walker et al., 2010
- \$600 billion costs annually for adults with chronic pain

Etiology

movement injury

Case example: Liz

Biological processes

Psychological factors

Sociocultural variables

- Chronic abdominal pain for 5 years after acute inflammation
- Ever Since: fear/ avoidance of pain
- Terrible fights with single mother every morning before school
 - Missed substantial parts of grade 6-9
- Socially isolated; "outsider" among peer group
 - Aggressive behavior; narcissism
- Helplessness, frustration;
- Pressure, tension; productivity impaired (doctor visits; late for work)
- Decision to transfer Liz to private boarding school

Newer developments

The role of expectations for mental disorders

(Hechler, Endres & Thorwart, 2016; Rief et al., 2015)

Interoceptive predictive coding theory of chronic pain

computational psychiatry

Computational psychiatry

- Diagnostic categories: empirical basis unclear
- Treatment selection: "educated guessing" (Huis, Maia & Frank, 2016)
- Connects neurosciences and psychiatry/ clinical psychology

Data driven approach

- Machine-learning methods on high-dimensional data
- Improve disease classification
- Predict treatment outcomes
- Improve treatment selection

Theory driven approach

- Use models to represent underlying mechanisms
- Rely on prior knowledge, explicit hypotheses

Expectations and predictions

- Discussed as "core features of mental disorder" Rief et al., 2015
 - Especially persisting expectations
 - No modification of expectation/ learning despite alternative evidence
 - Maladaptive anticipatory responses
- Emergence of an entire framework focusing on the role of expectations/ predictions
- What is predictive coding?

Prediction Error framework

World represented in top-down predictions of sensory input

Brain is a prediction testing machine

Predictions query the world

→ "Predictions + sensations influence perceptions"

Goal: minimize prediction error

→ Predictions determine sensations

Ancient "representational" view

Senses form representations of world

Brain soaks everything up in a passive **bottom up** manner (S-R organ)

Only sensations produce perception

Top Down signals: only as feedback from the cognitive system on the signal

Predictive Coding...

Minimizing prediction error:

- 1. Change prior predictions
- 2. Move the body (active inference)
- 3. Sample sensory input differently

Both action and perception are active processes, serving to minimize error

Associated: Bayesian Brain (eg Doya) and Free energy (Friston)

Hohwy, 2013

Predictive Coding...

... some examples you might already know

Interoceptive Predictive Coding

Seth, 2013; Seth & Friston, 2016; Barrett & Simmons, 2015

- So far: prediction drives perception of external world
- Interoceptive Predictive Coding:
 - Predictions (generated by models) also determine perception of interoceptive signals
- Interoceptive experiences are limbic predictions about the state of the body
 - o [temperature; heart rate; glucose levels, inflammation; emotion; pain]
 - See EPIC model by Barrett & Simmons, 2015
- Visceromotor cortizes generates hormonal and immunological predictions
 - Body deploys autonomic, **metabolic and immunological** resources
 - Responses underlie allostatic and anticipatory principles
- What about Pain?

Chronic Pain & predictive brains

- Buchel et al.: 2014
- Brain is not waiting passively for nociceptive stimuli it is active!
 - Predicting pain based on prior experiences and expectations
- Expectations influence pain perception
- Well-known example: "Placebo Analgesia" (Beh. med. lecture Amanzio & Benedetti, 1999)
 - Placebo hypogesia
 - Decreased sensation of pain!

Quick reminder: Bayes' theorem

Conditional Probability

Likelihood of **A**, given **B** is true

"Posterior probability"

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Conditional Probability
Likelihood of B, given A is true

"Likelihood"

Likelihood to observe A

Part of the "Prior"

Likelihood to observe **B**

Evidence for B

Bayesian Pain

To what probability do we perceive pain
 given we experienced a sensation? (Hechler, Endres & Thorwart, 2016)

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

- Let A be the PAIN
- Let **B** be the **SENSATION**...

Bayesian Pain

Pain perception

The Probability of Perceiving
Pain given we have
experienced a sensation
Posterior

$$p(pain | sensation) =$$

Probability of sensation

Bayesian Pain: Evidence

- Büchel et al., 2014 refering to Pollo et al, 2001
- Control Condition
 - Flat, uninformative prior
 - Perceived pain and sensual data:
 Match!
- B: Instruction: Either placebo or drug
 - Imprecise info → flat prior
 - Perceived pain smaller than sensual data
- C: Instruction: powerful analgesic drug
 - Narrow prior precise information
 - Posterior distribution "moves" towards prior

What's underlying chronic pain?

- Heightened anticipation of pain (as a cause for random sensation) p(pain)
- Dysfunctional longer term learning
 And active inference p(sensation | pain)

Hierarchical Model

What we want to model:

- Expectations as a time series of (conditional) probabilities
 - Representing **increasing anticipation** of pain
 - Learning processes (conditioning)
 - Active inference → actions generating pain (rubbing, muscle tension)
 - Attentional shifts
 - ... even when confronted with harmless sensations
- Example of abdominal pain
 - latent conditions (hunger; stomach rumbling; pain)
 - sensations (stomach pain; pressure, bloating; nociception)
- Hierarchical Markov Model

S = sensations

What's the Free Energy Principle?

- Karl Friston University College London
- Concept from thermodynamics
- Related to Prediction Error Framework
- Biological systems maintain their order
 - by minimizing an **internal free-energy functional**
 - Related to idea of a "Bayesian model evidence"
 - Goal is to minimize entropy (or "surprise")

What's the Free Energy Principle?

Active inference

Actively sample outcomes

Bayesian Model Evidence

For my generative model (adapt if evidence suggests)

Free energy minimization

With an upper bound on average long-term surprise (entropy)

Message passing in Bayesian Networks

Message passing in Bayesian Networks

- Sum product algorithm for singly connected graphs
- Derive a factor graph from graphical model (next slide)
- In factors: collect all information from nodes, then send it to next node.
 - Sum over all variables...

Summary: Preliminary graphical model

- Time series model
 - o Increasing anticipation leads to pain perception on a theoretical level
- Conditional probabilities (hierarchy level) represent learning processes
- Message passing between nodes via Sum-Product algorithm
- Some free-energy learning

Modeling pediatric chronic pain data

- Collaboration with Tanja Hechler; Vestische Kinderklinik Datteln
- Questionnaire data on pain predictions
 - How likely do you think it is that sensation X caused by pain?
 - What causes sensation X? Name as many as possible.
- Maybe later: Experimental data on higher pain prior in children w CP

Outlook

- Next steps in my thesis project
 - Learn more about modeling, machine learning techniques & free energy learning
 - Learn more about computational psychiatry and PC framework
 - Get the modeling going somehow
- Best case:
 - Derive specific etiologic and therapeutic hypotheses
 - o Identify mathematically informed therapy recommendations & simulate

Literature

- Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews Neuroscience, 16(7), 419-429.
- Büchel, C., Geuter, S., Sprenger, C., & Eippert, F. (2014). Placebo analgesia: a predictive coding perspective. Neuron, 81(6), 1223-1239.
- Clark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.
- Hechler, T., Endres, D., & Thorwart, A. (2016). Why harmless sensations might hurt in individuals with chronic pain: About heightened prediction and perception of pain in the mind. Frontiers in psychology, 7.
- Hohwy, J. (2013). The predictive mind. Oxford University Press.
- Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in cognitive sciences, 16(1), 72-80.
- Seth, A. K. (2013). Interoceptive inference, emotion, and the embodied self. Trends in cognitive sciences, 17(11), 565-573.
- Seth, A. K., & Friston, K. J. (2016). Active interoceptive inference and the emotional brain. Phil. Trans. R. Soc. B, 371(1708), 20160007.
- Vlaeyen, J. W., & Linton, S. J. (2000). Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain, 85(3), 317-332.
- Wang, X. J., & Krystal, J. H. (2014). Computational psychiatry. Neuron, 84(3), 638-654.

Thank you for your attention

Questions and comments?