Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

Kerline

Department of Agriculture

Forest Service

Intermountain Forest and Range **Experiment Station**

Research Note INT-310

March 1981

Spot Fire Distance Equations for Pocket Calculators

Carolyn H. Chase

Lieu Light

United States Department of Agriculture

Forest Service

Intermountain Forest and Range Experiment Station

Research Note INT-310

March 1981

Spot Fire Distance Equations for Pocket Calculators

Carolyn H. Chase¹

ABSTRACT

This note presents equations for calculating maximum spot fire distance from firebrand sources in the Intermountain West based on prevailing windspeed, vegetation cover, and terrain in the area. The equations include the capability to predict spotting distance from a torching tree(s) or from a continuous flame source such as slash piles or jackpots of heavy fuels. The equations can be used on a programmable pocket calculator. Potential uses are seen in fire management planning and real-time fire behavior predictions. For copies of a program for the Texas Instruments TI-59, send seven blank TI-59 magnetic cards to the author.

KEYWORDS: spot fire, spotting, firebrands, fire management

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others that may be suitable.

¹The author is a mathematician stationed at the Intermountain Station's Northern Forest Fire Laboratory, Missoula, Mont.

The ability to predict spot fire distance from a firebrand source gives fire management personnel another work tool. This research note presents equations for predicting maximum spotting distance from sources such as torching trees and burning piles of debris in the Intermountain West. Tree species considered have been confined to those common to the Intermountain West where data and personal experience of researchers corroborate the relationships used. To provide a simple mechanized process of calculation, these equations can be programed on a pocket calculator. Here the calculation process is implemented on the programmable Texas Instruments TI-59.

The equations are based on the model by Albini (1979), who employed a nomogram solution. The nomogram solution was simplified and used as the basis of the Fire Behavior Officers' (FBO) field procedure.² The original model has been extended (Albini 1981) to apply when transport of the firebrand is over nonforested terrain, or when the flame source is continuous (such as slash piles, jackpots of heavy fuels) as opposed to the brief, transitory flame from a torching tree. The spotting model is applicable under conditions of intermediate fire severity in which spotting distances up to a mile or two might be expected, and intensities would be sufficiently high to occasionally involve overstory fuels.

The equations presented here are those for the FBO field procedure with these additional features:

- 1. Multiplication factors to account for simultaneous burning of several identical trees that produces a single merged flame.
 - 2. Correction of flat-terrain spotting distance for use in mountainous terrain.
 - 3. Prediction of spotting distance from a continuous flame source.
- 4. Allowance for transport over short grass, bare ground, or water as appropriate.

The assumption was made in the FBO field procedure that wind at treetop level is two-thirds of the wind 20 ft (6 m) above the canopy. That assumption is retained here.

In his model, Albini had six submodels, each based on a host of assumptions. Not all those assumptions need to be stated here. It is sufficient to recognize that Albini described ideal conditions to maximize firebrand transport distance—firebrands sufficiently small to be carried some distance, yet large enough to still be viable when coming to rest, wind blowing steadily in one direction, and so forth. Conditions as they exist in the field seldom conform to this ideal. For example, winds in forested mountains vary greatly both in speed and direction. However, any variation from the ideal assumed in the model would serve only to decrease the spot fire distance. The user should expect actual spotting distance to fall short of the prediction when deviation is observed.

Albini points out factors not considered in his approach:

l. $Probability\ of\ tree(s)\ torching\ out.$ Instead, the model describes what would happen if trees torch out.

²National Wildfire Coordinating Group. Fire behavior officers' (FBO) field reference. USDA For. Serv. National Adv. Resource Technology Center, Marana Air Park, AZ, looseleaf.

- 2. Availability of optimum firebrand material. There may or may not be a firebrand particle capable of being carried the maximum distance.
- 3. Probability of spot fire ignition. Not addressed is whether the firebrand material lands in an area with easily ignited fuels, and whether enough spark or ember remains to cause ignition.
- 4. Number of spot fires. More information about the first three items is needed before this question can be considered.

The purpose of this note is to document the equations used in mechanizing the calculation of spotting distance. The remainder of the text presents the equations used, the calculator program, and operating procedures. Development of the equations is given in the appendix. The TI-59 program uses U.S. units of measure, so only U.S. units appear in this text. However, in the summary of equations (next section), metric units are added for those who may be interested.

SUMMARY OF EQUATIONS

Symbol	U.S. units	Metric units	Description
Syllibot	unites	units	Description
d	inch	cm	Diameter at breast height (d.b.h.) of tree(s) torching out
h	ft	m	Height of burning tree(s)
h	ft	m	Mean vegetation cover height downwind of source
h _c	ft	m	Minimum value of \overline{h} used to calculate spotting distance using the logarithmic windspeed variation with height (Albini 1981)
h*	ft	m	The greater of \overline{h} and \overline{h}_{C}
U	mi/h	km/h	Windspeed 20 feet (6 m) above vegetation
n	none	none	Number of trees burning simultaneously to produce a single merged flame and buoyant plume structure
h _F	ft	m	Adjusted steady flame height (perpendicular measurement from base of flame to tip of flame)
d _F	none	none	Adjusted steady flame duration
HF	ft	m	Continuous flame height for pile burning
z(0)	ft	m	Initial firebrand height above ground
F	mi	km	Flat-terrain spotting distance
D	mi	km	Ridge-to-valley horizontal distance (map)
Н	1000's ft	multiples of 300 m	Ridge-to-valley elevational difference
S	mi	km	Mountainous-terrain spotting distance (map)
M	none	none	Code number for location of firebrand source 0=midslope, windward side 1=valley bottom 2=midslope, leeward side 3=ridgetop

Equations Using U.S. Units

$$h_{F} = \begin{cases} 16.5d^{0.515}n^{0.4}, \\ 15.7d^{0.451}n^{0.4}, \\ 12.9d^{0.453}n^{0.4}, \end{cases}$$

grand fir, balsam fir

Engelmann spruce, subalpine fir, Douglas-fir, western hemlock

ponderosa pine, lodgepole pine, white pine

$$d_{F} = \begin{cases} 12.6d^{-0.256}n^{-0.2}, & \text{ponderosa pine, lodgepole pine, Engelmans spruce} \\ 10.7d^{-0.278}n^{-0.2}, & \text{subalpine fir, Douglas-fir, balsam fir, grand fir, white pine} \\ 6.3d^{-0.249}n^{-0.2}, & \text{western hemlock} \end{cases}$$

ponderosa pine, lodgepole pine, Engelmann

$$z(0) = \begin{cases} 4.24 d_F^{-0.332}(h_F) + h/2, & h/h_F \ge 1 \\ 3.64 d_F^{-0.391}(h_F) + h/2, & 0.5 \le h/h_F < 1 \\ 2.78 d_F^{-0.418}(h_F) + h/2, & h/h_F < 0.5, d_F < 3.5 \\ 4.70(h_F) + h/2 & h/h_F < 0.5, d_F \ge 3.5 \\ 12.2 H_F, & \text{pile burning option} \end{cases}$$

$$\overline{h}_{c} = 2.2 z(0)^{0.337} - 4.0$$

$$\overline{h}^* = \max(\overline{h}, \overline{h}_c)$$

$$F = 7.18 \times 10^{-4} U \overline{h}^{*1/2} \left\{ 0.362 + \left(\frac{z(0)}{\overline{h}^{*}} \right)^{1/2} \frac{1}{2} \ln \left(\frac{z(0)}{\overline{h}^{*}} \right) \right\}$$

 $S = D \cdot X_6$, where X_6 is from the iteration:

$$X_{o} = A$$

$$X_{n+1} = A - B \left(\cos(\pi X_{n} - M\pi/2) - \cos(M\pi/2) \right)$$

$$A = F/D$$

$$B = H/(10\pi)$$

Equations Using Metric Units

$$h_F = \begin{cases} 3.11d^{0.515}n^{0.4}, & \text{grand fir, balsam fir} \\ 3.14d^{0.451}n^{0.4}, & \text{Engelmann spruce, subalpine fir, Douglas-fir, western hemlock} \\ 2.58d^{0.453}n^{0.4}, & \text{ponderosa pine, lodgepole pine, white pine} \end{cases}$$

$$d_F = \begin{cases} 16.0d^{-0.256}n^{-0.2}, & \text{ponderosa pine, lodgepole pine, Engelmann spruce} \\ 13.9d^{-0.278}n^{-0.2}, & \text{subalpine fir, Douglas-fir, balsam fir, grand fir, white pine} \\ 7.95d^{-0.249}n^{-0.2}, & \text{western hemlock} \end{cases}$$

$$z(0) = \begin{cases} 4.24 d_F^{-0.332}(h_F) + h/2, & h/h_F \ge 1 \\ 3.64 d_F^{-0.391}(h_F) + h/2, & 0.5 \le h/h_F < 1 \\ 2.78 d_F^{-0.418}(h_F) + h/2, & h/h_F < 0.5, d_F < 3.5 \\ 4.70(h_F) + h/2, & h/h_F < 0.5, d_F \ge 3.5 \\ 12.2 H_F, & pile burning option \end{cases}$$

$$\overline{h}_{c} = z(0)^{0.337} - 1.22$$

$$\overline{h}^{*} = \max(\overline{h}, \overline{h}_{c})$$

$$F = 1.30 \times 10^{-3} U \overline{h}^{*1/2} \left\{ 0.362 + \left(\frac{z(0)}{\overline{h}^{*}}\right)^{1/2} \frac{1}{2} \ln\left(\frac{z(0)}{\overline{h}^{*}}\right) \right\}$$

S = $D \cdot X_6$, where X_6 is from the iteration:

$$X_{O} = A$$

$$X_{n+1} = A - B \left(\cos(\pi X_{n} - M\pi/2) - \cos(M\pi/2) \right)$$

$$A = F/D$$

$$B = H/(10\pi)$$

THE TI-59 PROGRAM

The program is recorded on one card (magnetic strip) and is accompanied by six data cards for various tree species. The TI-59 program can be used with data cards for species other than those shown in the equation summary. A prerequisite is that, for any species, the curves for flame height and flame duration can be represented as power curves of the form $y = ax^b$. (See the appendix for directions on how to make data cards for other tree species.

Copies of the program may be obtained by sending seven blank magnetic cards for the TI-59 to the author at the Northern Forest Fire Laboratory.

The program has two options:

- 1. The firebrand source is a burning tree(s) that is torching out--torching tree option.
- ·2. The source is a burning pile of debris (or fuel of similar nature) where the flame is "continuous"--pile burning option.

Input requirements, listed below, differ for the options. (Guidelines for selecting input values are given in the section on operating procedure.)

Torching tree option

Species data
Torching tree d.b.h.
Torching tree height
Mean cover height
20-foot windspeed
Number of trees (burning at once)
Ridge/valley elevation difference
Ridge/valley horizontal distance
Spotting source location code

Pile burning option

Mean cover height 20-foot windpseed Observed flame height Ridge/valley elevation difference Ridge/valley horizontal distance Spotting source location code

There are no checks made on the validity of input data. The operator must be careful to select reasonable values and to enter those data without error.

OPERATING PROCEDURE

The spotting distance program may be run with any solid state module in the calculator (such as NFDRS/Fire Behavior module, library module, statistics module) or with no module in the calculator.

I. Preliminaries

- 1. Turn on the calculator. If it is already on, turn it off momentarily to clear program and data registers.
- 2. Press 1. Feed side 1 of the program card into the lower slot on the right side of the calculator. The motor will start and stop automatically. If the display flashes, press CLR and repeat step 2.

- 3. Press 2 . Feed side 2 of the program card into the slot. If the display flashes, press CLR and repeat step 3.
- II. Initialization and input
 - 1. Input species data (omit for pile burning option): Press SBR STO and feed either side of the data card for the desired species into the TI-59 (the data are recorded on both sides of the card). A 4. should appear in the display; if the display flashes, press CLR and try again. These data remain in the TI-59 until replaced with data for another species by simply repeating this step with a different species card. Species data need not be cleared to run the pile burning option.
 - 2. Press SBR CLR. This should be done before each run to clear subroutine return registers and to clear flags that signal operating options. Although it is only necessary following a run of the pile burning option or when a run was manually stopped before its normal termination, it is better to make it a part of routine procedure to prevent problems. With the exception of continuous flame height for pile burning, it does not remove inputs. The continuous flame height is reset to 0 by this step.
 - 3. Record the required inputs on the worksheet (fig. 1). Except for continuous flame height, the presence of additional inputs that are not required does not affect calculations. Enter the required items in any order as follows:

--Enter diameter at breast height (d.b.h.) in inches of the tree(s) torching out.

Press A.

--Enter height in feet of tree(s) torching out.

Press B.

--Enter mean cover height, in feet, of the area downwind of the firebrand source. Albini called this "mean treetop height and uses this value to characterize the general forest cover as it influences the wind. If there is broken forest cover, he suggests using half the treetop height of the forest-covered portion. If there is little or no forest cover, enter vegetation height.

Press [].

--Enter average windspeed, in miles per hour, 20 ft above the vegetation.

Press D.

--Enter the number of identical trees burning at once to produce a single flame.

Press E.

--Enter elevational difference in feet from ridgetop to valley bottom as would be shown on a map. Note that the entry is in feet even though the equations use multiples of 1,000 ft. The calculator makes the required conversion. The assumption made in Albini's model is that terrain resembles a washboard. If this simple representation of terrain does not describe your situation, perhaps the model will not give you a good approximation of spotting distance.

Press 2nd A

--Enter the ridgetop-to-valley-bottom horizontal distance in miles as would be shown on a map.

Press 2nd B.

Name	Dat	Date	Sheet	Jo
Purpose				
INPUT	KEY			Reg. No.
*Species	SBR STO			
*Torching tree d.b.h., inch	A			34
*Torching tree height, ft	9			35
Mean cover height, ft	C			36
20-foot windspeed, mi/h	D			37
*Number of trees torching together	Ξ			38
Ridge/valley elevational difference, ft	2nd A			39
Ridge/valley horizontal distance, mi	2nd B			40
Spotting source location code 0 - midslope, windward side 1 - valley bottom 2 - midslope, leeward side 3 - ridgetop	2nd C			41
**Continuous flame height, pile burning, ft	2nd E			42
OUTPUT				
Flat-terrain max. spot. distance, mi	SBR =			22
Mountainous-terrain max, spot. distance, mi	SBR 2nd =			23
Flame height, ft Torching tree option (flashing) or	R/S			24
Pile burning option (continuous)				42

*Not needed for the pile burning option **An entry specifies torching tree option

Figure 1.--TI-59 MAXIMUM SPOTTING DISTANCE WORKSHEET

--Enter the spotting source location code from the following list:

Press 2nd C.

Enter for

0 midslope, windward side

1 valley bottom

2 midslope, leeward side

3 ridgetop

--OMIT FOR TORCHING TREE OPTION: Enter estimated flame height in feet from observation of continuous flame (see fig. 2). This value signals the calculator to use the pile burning option and must be entered for each run of this option even if it remains unchanged. (Entry of 0 here while using the torching tree option will cause a flashing display of an erroneous flat-terrain spotting distance in the output section. If this occurs, press | CLR | and start the run again.)

Press and E.

1II. Recall and correction of input

1. Recall first input item by pressing SBR RCL. Follow with a series of R/S to obtain successive inputs in the order listed on the worksheet. The recall subroutine can be entered only at the beginning of the list.

For mean cover height, the value recalled will depend on whether SBR RCL is performed before or after calculations. Before calculations,

the mean cover height that was input will be displayed. After calculations, h^* will be displayed (see equation summary).

When continuous flame height is recalled, a steady numerical display of that value indicates that the pile burning option is being run. Flashing nines at that point indicate that the torching tree option is being used, so no continuous flame height should exist. Press CLR and continue.

Figure 2.--The steady flame height is the perpendicular distance from the base of the flame (within the crown of the tree) to the tip of the flame. Continuous flame height is the distance from the ground to the tip of the flame.

2. To change any item(s) of input, re-enter the desired value as in part II, step 3.

IV. Performing calculations

- 1. Press SBR = . When calculations cease, the flat-terrain spotting distance in miles will appear in the display. Record it on the worksheet.
- 2. Press SBR 2nd = . The flat-terrain spotting distance is corrected for mountainous terrain, and the map location spotting distance in miles is displayed. Step 1 must be performed prior to this step for each run.

 Record the result on the worksheet.
- 3. Press R/S. This step must follow immediately after step 2. The flame height (ft) will be displayed. In the pile burning option, the display of the input value will be continuous. In the torching tree option, the calculated flame height will be a flashing display. Note that this is not the distance from the ground to the tip of the flame (see fig. 2). After recording the value, press CLR to halt the flashing display.

V. Making successive runs

- 1. Change species data, if necessary.
- 2. Repeat part II, step 2 (SBR CLR).
- 3. Change any input values desired.
- 4. Enter estimated flame height if the pile burning option is being run.
- 5. Perform calculations.

WORKED EXAMPLES

Figure 3 contains the inputs and outputs of two sample problems--one for the torching tree option and one for the pile burning option.

CONDENSED INSTRUCTIONS

- I. Press 1, feed side 1 (flashing: CLR , try again). Press 2, feed side 2 (flashing: CLR , try again).
- II. 1. SBR STO . Enter species data card.
 - 2. SBR CLR.

3.	Input	Press
	D.b.h. (inch)	A
	Height (ft)	В
	Mean cover height (ft)	С
	Wind (mi/h)	D
	Number of trees	Е
	Ridge/valley elevation difference (ft)	2nd A
	Ridge/valley horizontal distance (mi)	2nd B
	Spotting source location code	2nd C
	0 - midslope, windward side	
	1 - valley bottom	
	2 - midslope, leeward side	
	3 - ridgetop	
	Continuous flame height (ft)	2nd E

III. \overline{SBR} \overline{RCL} ; follow by series of $\overline{R/S}$

2nd $\overline{R/S}$ mean cover height: $\begin{cases} value \text{ input displayed before calculations} \\ \overline{h^*} \text{ displayed after calculations} \end{cases}$

8th R/S continuous flame height: {value input displayed in pile burning option flashing nines in torching tree option

IV. SBR = : display flat-terrain spotting distance (mi)

SBR 2nd =: display mountainous-terrain spotting distance (map mi)

R/S: display flame height (ft)--flashing display in torching tree option, continuous display in pile burning option

Figure 5.--TI-59 MAXIMUM SPOTTING DISTANCE WORKSHEET. Sample problems.

Name		Date			She e	c t
Purpose						5
INPUT	KEY					Reg. No.
*Species	SBR STO	Grand fir	1 1 1			
*Torching tree d.b.h., inch	A	20				34
*Torching tree height, ft	В	137				35
Mean cover height, ft	C	130	100			36
20-foot windspeed, mi/h	D	20	15			37
*Number of trees torching together	田					38
Ridge/valley elevational difference, ft	2nd A	4000	2000			39
Ridge/valley horizontal distance, mi	2nd B	.25				40
Spotting source location code 0 - midslope, windward side 1 - valley bottom 2 - midslope, leeward side 3 - ridgetop	2nd C	10				41
**Continuous flame height, pile burning, ft	2nd E	1 1 1 1	45			42
OUTPUT						
Flat-terrain max. spot. distance, mi	SBR =	0.34	0.25			22
Mountainous-terrain max, spot. distance, mi	SBR 2nd =	0.31	0.21			23
Flame height, ft Torching tree option (flashing)	R/S	77		}		24
or Pile burning option (continuous)			45			42

*Not needed for the pile burning option **An entry specifies torching tree option

REGISTER ASSIGNMENTS

Register	Symbol	Contents
34	d	Torching tree d.b.h.
35	h	Torching tree height
36	$\{\frac{\overline{h}}{h}*$	Mean cover height input Mean cover height used in computation
37	U	20-foot windspeed
38	n	Number of trees torching together
39	1000Н	Ridge/valley elevation difference
40	D	Ridge/vallev horizontal distance
41	M	Spotting source location code
42	$^{ m H}_{ m F}$	Continuous flame height (pile burning)
24	h _F	Adjusted steady flame height
25	d _F	Adjusted flame duration
28	z(0)	Initial firebrand height
22	F	Flat-terrain spotting distance
23	S	Mountainous-terrain spotting distance

PUBLICATIONS CITED

Albini, Frank A.

1981. Spot fire distance from isolated sources--extensions of a predictive model. USDA For. Serv. Res. Note INT-309, 9 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.

Albini, Frank A.

I979. Spot-fire distance from burning trees--a predictive modeI. USDA For. Serv. Res. Pap. INT-56, 73 p. Intermt. For. and Range Exp. Stn., Ogden, Utah.

APPENDIX

FORMULATION OF EQUATIONS

Equations were generated that approximate the curves for flame height and duration and for firebrand height in the FBO field reference. They were obtained by regressing points from the FBO curves to get power curve approximations. These equations appear in the figures accompanying the step-wise summary of the solution method presented below. The steps formed the basis of the FBO method of manually determining spotting distance and provide the rationale behind the equations presented.

1. The steady flame height is determined by relationships developed by Albini (1979) through the artifice of relationships between tree diameter and foliar biomass. The amount of foliar biomass and how it burns provides the linkage between diameter and flame height. Curves fitted to these relationships are shown in figure 4. Then, to obtain the equations appearing in the summary, the steady flame height is corrected by a factor of $n^{0.4}$ (Albini 1979), where n is the number of trees burning simultaneously.

Figure 4.--Height of "steady" flame from burning of one tree crown in still air.

2. Dimensionless steady flame duration is determined by relationships developed by Albini (1979), again through the artifice of relationships between tree diameter and foliar biomass. Curves fitted to these relationships are shown in figure 5. Then, to obtain the equations appearing in the summary, the steady flame duration is corrected by a factor of $n^{-0.2}$ (Albini 1979), where n is the number of trees burning simultaneously.

Figure 5.--Steady flame duration for individual tree torching out.

3. The ratio of lofted firebrand height to steady flame height is determined using figure 6. That quantity is multiplied by steady flame height and added to half of the torching tree's height to obtain initial firebrand height, z(0).

Figure 6.--Height of firebrands lofted by burning trees.

When the firebrand-lofting flame is continuous as opposed to the brief transitory flame from a torching tree, the first three steps above are replaced by a simple multiplication. The maximum height of a viable firebrand lofted by a continuous flame of height $H_{\scriptscriptstyle \Sigma}$ is given by z(0) = 12.2 $H_{\scriptscriptstyle \Sigma}$ (Albini 1981).

4. Flat-terrain spotting distance is calculated next. Albini's equation for flat-terrain spotting distance over forest-covered terrain is:

$$F = 21.9U_{h} \left(\frac{\overline{h}}{g}\right)^{1/2} \left\{0.362 + \left(\frac{z(0)}{\overline{h}}\right)^{1/2} \frac{1}{2} \ln\left(\frac{z(0)}{\overline{h}}\right)\right\}$$

where

F = flat-terrain spotting distance (mi)

 U_h = wind at treetop height (mi/h)

 \overline{h} = mean height of vegetation cover along the firebrand's flight path (ft)

g = acceleration of gravity (ft/h²)

z(0) = initial firebrand height (ft).

Using the assumption that U_h is two-thirds of the 20-ft wind, substituting g = 32 ft/s² and converting seconds to hours, the equation becomes

$$F = 7.18 \times 10^{-4} \text{ U } \overline{\text{h}}^{1/2} \left\{ 0.362 + \left(\frac{z(0)}{\overline{\text{h}}} \right)^{1/2} \frac{1}{2} \ln \left(\frac{z(0)}{\overline{\text{h}}} \right) \right\},\,$$

where U = windspeed at 20 ft (mi/h). If transport is over terrain which is not forest-covered, then the "effective" height, \overline{h}_c , is used in the above equation instead of \overline{h} (Albini 1981).

5. The flat-terrain spotting distance must be corrected for use in mountainous terrain. Albini's equation for maximum horizontal distance is

$$F = S + \frac{(1 + \alpha)a}{m(z_C - \overline{z}_T)} \{ \cos(m(S + X_1)) - \cos(mX_1) \}$$

where

F = flat-terrain spotting distance (mi)

S = mountainous-terrain spotting distance (mi)

2a = total elevation difference, ridge to valley = ΔH_{pV} (ft)

D = horizontal distance from ridge to valley (map mi)

 $m = \pi/D$

 \mathbf{X}_1 = distance of firebrand source from windward midslope (map mi)

 z_{T} = mean terrain height above sea level (ft)

z_c = altitude of top of surface-influenced airflow layer (ft)

 α = a dimensionless constant related to the gross structure of the surface-influenced atmosphere.

Using $\alpha = 0.2$ and $(z_G - \overline{z}_T) = 6,000$ ft, we have

$$F = S + \frac{(1.2) \Delta H_{RV}/2}{6,000 \pi/D} \left\{ \cos \left(\pi \frac{S}{D} + mX_1 \right) - \cos \left(mX_1 \right) \right\}.$$

So

$$\frac{F}{D} = \frac{S}{D} + \frac{\Delta H_{RV}}{\pi (10^4)} \left\{ \cos \left(\pi \frac{S}{D} + mX_1 \right) - \cos \left(mX_1 \right) \right\}.$$

Let H = $\Delta H_{DV}/1000$, F/D = A, and S/D = X. Thus

$$X = A - \frac{\Pi}{10\pi} \left\{ \cos(\pi X + mX_1) - \cos(mX_1) \right\}.$$

Consider the four cases:

$\frac{mX}{1}$	Location of firebrand source
0	midslope on windward side of ridge
$-\pi/2$	valley bottom
- π	midslope on leeward side of ridge
$-3\pi/2$	ridgetop

So mX $_1$ = -M $\pi/2$, where M is 0, 1, 2, or 3, respectively, for the cases listed. Let B = H/10 π , then

$$X = A - B \left\{ \cos(\pi X - M\pi/2) - \cos(M\pi/2) \right\}.$$

This equation can be solved by the iteration:

$$X_{O} = A$$

 $X_{n+1} = A - B \left\{ \cos(\pi X_{n} - M\pi/2) - \cos(M\pi/2) \right\}.$

 $\mathbf{X}_{\mathbf{n}}$ converges sufficiently within six iterations for use here.

SPECIES DATA CARDS

To make a species data card, the formulas for steady flame height and for flame duration must be expressed as power curves of the form (see, for example, the curves in Albini 1979):

$$h_F = xd^y$$
$$d_E = zd^w$$

where

 h_E = steady flame height, ft

 $d_{_{\rm F}}$ = flame duration (dimensionless)

d = diameter at breast height, inch.

Using the equation for steady flame height and taking the logarithm of both sides

$$\ln h_F = \ln x + y \ln d$$
.

When several points (d,h_p) are chosen on the curve, linear regression can be used to fit a straight line to the data points 3 (ln d, ln h_p). The y-intercept will be ln x and the slope will be y.

The derivation of the formula for flame duration parallels that for steady flame height.

Then, the list of data register contents for the data card is:

Register number	Contents	
00	0	
01	х	
02	у	
03	Z	
04	W	
05	4.24	
06	0.332	
07	3.64	
08	0.391	Constants applicable to
09	2.78	all species
10	0.418	
11	4.7	
12-29	0 7	

To prepare the data card:

- 1. Turn on your calculator. If it is already on, turn it off momentarily to clear all storage registers.
- 2. For each register numbered 1 through 11: Enter the contents from the list into the display and press $\overline{\text{STO}}$ nn where nn is the register number.

 $^{^3} The~TI-59$ applied statistics module contains a curve-fitting program (ST-12) that accepts as input the points (d,h_F) and provides x and y as output. This eliminates the transformation to (ln d, ln h_F).

- 3. Press 4 2nd R/S and feed in one side of the blank data card. A 4. should appear in the display indicating that the data has been recorded. If the display flashes, press CLR and repeat step 3.
 - 4. Repeat step 3, feeding in the other side of the data card.

PROGRAM DUPLICATION

Program Cards

- 1. Turn on your calculator. Enter the program into memory by performing part I of the operating procedure using the program card to be duplicated.
- 2. Press $\boxed{1}$ $\boxed{2nd}$ $\boxed{R/S}$ and feed in side 1 of the blank program card. If the display flashes, press \boxed{CLR} and repeat step 2.
- 3. Press $\boxed{2}$ $\boxed{2nd}$ $\boxed{R/S}$ and feed in side 2 of the blank program card. If the display flashes, press \boxed{CLR} and repeat step 3.

Data Cards

- 1. Press 4 and feed in one side of the data card to be duplicated. If the display flashes, press CLR and try again.
- 2. Press 4 2nd R/S and feed in one side of the blank card. If the display flashes, try again. Repeat step 2 for the other side of the blank card.

PROGRAM LISTING

67890123456789001234567890012345678900123456789000000000000000000000000000000000000	423944 L23 L23 L33 L53 L73 L83 L93 L03 L13 VF1 L2NL XNLV L1 L4 L2 X C14 2 7 8 L X C14 2 7 8 L X C14 3 7 6 5 3 7 C 6 3	789901234567890112345678901234567890123456789012345678901234567890123456789012345678901234567890333333333333333333333333333333333333	L8	890-234567890-234567890-234567890-234567890-234567890-2345678 556666666666777777777888888899999999990000000000	2, (T2x .337x2 .2 + 4 .0) \ C3NEGNLGT G6NLT L2 .2) (T2+C3) T2T \ BU \ C2+C3 \ 7 .337x2 .2 + 4 .0) \ C3NEGNLGT G6NLT L2 .2) (T2+C3) T2T \ BU \ C2+C3 \ 7 .337x2 .2 + 4 .0) \ XR I LRLLXS RLX R X R S G LS R R R R R R R R R R R R R R R R R R	9012345678901234567890123456789012345678901234567890123456789 122222422233333333334444444444444444444	3643293525064294 .362 \ X \ CL6 + 32 \ X \ X L7 \ X CD9X + 2 X L9 X + .362 \ X \ CC3 + 32 \ X X L7 X CD4 O 6 \ T2N LCRL + C2 T3 SR + O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
---	---	--	----	---	--	--	--

The Intermountain Station, headquartered in Ogden, Utah, is one of eight regional experiment stations charged with providing scientific knowledge to help resource managers meet human needs and protect forest and range ecosystems.

The Intermountain Station includes the States of Montana, Idaho, Utah, Nevada, and western Wyoming. About 231 million acres, or 85 percent, of the land area in the Station territory are classified as forest and rangeland. These lands include grasslands, deserts, shrublands, alpine areas, and well-stocked forests. They supply fiber for forest industries; minerals for energy and industrial development; and water for domestic and industrial consumption. They also provide recreation opportunities for millions of visitors each year.

Field programs and research work units of the Station are maintained in:

Boise, Idaho

Bozeman, Montana (in cooperation with Montana State University)

Logan, Utah (in cooperation with Utah State University)

Missoula, Montana (in cooperation with the University of Montana)

Moscow, Idaho (in cooperation with the University of Idaho)

Provo, Utah (in cooperation with Brigham Young University)

Reno, Nevada (in cooperation with the University of Nevada)

5 78

