Package 'CPAT'

January 22, 2019
Title Change Point Analysis Tests
Version 0.2.0.9000
Date 2018-10-16
Maintainer Curtis Miller <cmiller@math.utah.edu></cmiller@math.utah.edu>
Description Implements several statistical tests for structural change.
Depends R (>= 3.2)
Suggests cointReg (>= 0.2), foreach (>= 1.4), doRNG (>= 1.7), doParallel (>= 1.0), ggplot2 (>= 2.2), dplyr (>= 0.7), tikzDevice (>= 0.12), testthat (>= 2.0)
Imports stats (>= 3.2), utils (>= 3.2), grDevices (>= 3.2), Rdpack (>= 0.9), methods (>= 3.2), Rcpp (>= 0.12), purrr (>= 0.2),
RdMacros Rdpack
SystemRequirements GNU make
License MIT + file LICENSE
Encoding UTF-8
LazyData true
LinkingTo Rcpp, RcppArmadillo, BH
RoxygenNote 6.1.0
NeedsCompilation yes
Author Curtis Miller [aut, cre]
R topics documented:
.onAttach
Andrews.test
andrews_test
a_n
banks
besselJ_zeros
b_n
CPAT_startup_message
CUSUM test

2 .onAttach

dBst_summand_solver
DE.test
dZn
ff
getLongRunWeights
get_lrv_vec
HR.test
HS.test
is.formula
pBst
pBst_summand_solver
pdarling_erdos
phidalgo_seo
pkolmogorov
pZn
qBst
qdarling_erdos
qhidalgo_seo
qkolmogorov
qZn
rchangepoint
sim_de_stat
sim_hs_stat
sim_Vn
sim_Vn_stat
sim_Zn
sim_Zn_stat
stat_de
stat_hs
stat_hs_reg
stat_Vn
stat_Zn
stat_Zn_reg
%s%
%s0%

Package Attach Hook Function

Description

.onAttach

Hook triggered when package attached

Usage

.onAttach(lib, pkg)

Andrews.test 3

Arguments

1ib a character string giving the library directory where the package defining the

namespace was found

pkg a character string giving the name of the package

Examples

```
CPAT:::onAttach(.libPaths()[1], "CPAT")
```

Andrews.test

Andrews' Test for End-of-Sample Structural Change

Description

Performs Andrews' test for end-of-sample structural change, as described in (Andrews 2003). This function works for both univariate and multivariate data depending on the nature of x and whether formula is specified. This function is thus an interface to andrews_test and andrews_test_reg; see the documentation of those functions for more details.

Usage

```
Andrews.test(x, M, formula = NULL)
```

Arguments

x Data to test for change in mean (either a vector or data.frame)

M Numeric index of the location of the first potential change point

formula The regression formula, which will be passed to 1m

Value

A htest-class object containing the results of the test

References

Andrews DWK (2003). "End-of-Sample Instability Tests." *Econometrica*, **71**(6), 1661–1694. ISSN 00129682, 14680262, https://www.jstor.org/stable/1555535.

```
Andrews.test(rnorm(1000), M = 900)

x \leftarrow rnorm(1000)

y \leftarrow 1 + 2 * x + rnorm(1000)

df \leftarrow data.frame(x, y)

Andrews.test(df, y \sim x, M = 900)
```

andrews_test_reg

andrews_test

Univariate Andrews Test for End-of-Sample Structural Change

Description

This implements Andrews' test for end-of-sample change, as described by Andrews (2003). This test was derived for detecting a change in univariate data. See (Andrews 2003) for a description of the test.

Usage

```
andrews_test(x, M, pval = TRUE, stat = TRUE)
```

Arguments

x Vector of the data to test

M Numeric index of the location of the first potential change point

pval If TRUE, return a p-value stat If TRUE, return a test statistic

Value

If both pval and stat are TRUE, a list containing both; otherwise, a number for one or the other, depending on which is TRUE

References

Andrews DWK (2003). "End-of-Sample Instability Tests." *Econometrica*, **71**(6), 1661–1694. ISSN 00129682, 14680262, https://www.jstor.org/stable/1555535.

Examples

```
CPAT:::andrews_test(rnorm(1000), M = 900)
```

andrews_test_reg

Multivariate Andrews' Test for End-of-Sample Structural Change

Description

This implements Andrews' test for end-of-sample change, as described by Andrews (2003). This test was derived for detecting a change in multivarate data, aso originally described. See (Andrews 2003) for a description of the test.

Usage

```
andrews_test_reg(formula, data, M, pval = TRUE, stat = TRUE)
```

a_n 5

Arguments

formula The regression formula, which will be passed to 1m

data data. frame containing the data

M Numeric index of the location of the first potential change point

pval If TRUE, return a p-value stat If TRUE, return a test statistic

Value

If both pval and stat are TRUE, a list containing both; otherwise, a number for one or the other, depending on which is TRUE

References

Andrews DWK (2003). "End-of-Sample Instability Tests." *Econometrica*, **71**(6), 1661–1694. ISSN 00129682, 14680262, https://www.jstor.org/stable/1555535.

Examples

```
x \leftarrow rnorm(1000)

y \leftarrow 1 + 2 * x + rnorm(1000)

df \leftarrow data.frame(x, y)

CPAT:::andrews\_test\_reg(y \sim x, data = df, M = 900)
```

a_n

Sequence a_n of the Darling-Erdös Law

Description

```
Computes a_n(m) = \sqrt{b_n(m)/(2 \log \log n)}, with b_n(m) as described by b_n.
```

Usage

```
a_n(n, m)
```

Arguments

```
\begin{array}{ll} {\rm n} & & {\rm The\;parameter}\; n \\ \\ {\rm m} & & {\rm The\;parameter}\; m \end{array}
```

Value

The number $a_n(m)$

```
CPAT:::a_n(5, 2)
```

6 besselJ_zeros

banks

Bank Portfolio Returns

Description

Data set representing the returns of an industry portfolio representing the banking industry based on company four-digit SIC codes, obtained from the data library maintained by Kenneth French. Data ranges from July 1, 1926 to October 31, 2017.

Usage

banks

Format

A data frame with 24099 rows and 1 variable:

Banks The return of a portfolio representing the banking industry

Row names are dates in YYYY-MM-DD format.

Source

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

besselJ_zeros

Compute Zeros of the Bessel Function of the First Kind

Description

Returns the zeros of the Bessel function of the first kind, J_{ν} .

Usage

```
besselJ_zeros(b, a = 1, nu = 1)
```

Arguments

b The (one-based) index of the last zero to ret	b
---	---

a The (one-based) index of the first zero to return (so a = 1 represents the first

positive zero)

nu The order of the Bessel function

Details

This function is an interface to the function besselJ_zeros_cpp, a function written in C++ and serves effectively as an interface to a Boost C++ function cyl_bessel_j_zero. Thus this function does nothing other than make the Boost function available to R.

See the references of besselJ for more about bessel functions.

b_n 7

Value

A vector containing the zeros of the Bessel function

Examples

```
CPAT:::besselJ_zeros(4)
CPAT:::besselJ_zeros(a = 3, b = 10, nu = 3.5)
```

b_n

Sequence b_n of the Darling-Erdös Law

Description

```
Computes b_n(m) = (2 \log \log(n) + (m \log \log \log n)/2 - \log(\Gamma(m/2)))^2/(2 \log \log n)
```

Usage

```
b_n(n, m)
```

Arguments

 $\begin{array}{ll} {\rm n} & & {\rm The\; parameter}\; n \\ \\ {\rm m} & & {\rm The\; parameter}\; m \end{array}$

Value

The number $b_n(m)$

Examples

```
CPAT:::b_n(5, 2)
```

Description

Makes package startup message.

Usage

```
CPAT_startup_message()
```

```
CPAT:::CPAT_startup_message()
```

8 CUSUM.test

cpt_consistent_var

Variance Estimation Consistent Under Change

Description

Estimate the variance (using the sum of squared errors) with an estimator that is consistent when the mean changes at a known point.

Usage

```
cpt_consistent_var(x, k)
```

Arguments

x A numeric vector for the data set

k The potential change point at which the data set is split

Details

This is the estimator

$$\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$$

where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$. In this implementation, T is computed automatically as length(x) and k corresponds to t, a potential change point.

Value

The estimated change-consistent variance

Examples

 ${\it CUSUM.test}$

CUSUM Test

Description

Performs the CUSUM test for change in mean, as described in (Rice et al.).

Usage

```
CUSUM.test(x, formula = NULL, use_kernel_var = FALSE,
   stat_plot = FALSE, kernel = "ba", bandwidth = "and")
```

CUSUM.test 9

Arguments

X	Data to test for change in mean (either numeric or a data.frame)
formula	Formula used for defining the regression model, if applicable
use_kernel_var	Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run variance
	ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$,
	where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$
stat_plot	Whether to create a plot of the values of the statistic at all potential change points
kernel	If character, the identifier of the kernel function as used in cointReg (see getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg)
bandwidth	If character, the identifier for how to compute the bandwidth as defined in cointReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews' method, as used in cointReg)

Details

This is effectively an interface to stat_Vn; see its documentation for more details.

When x is a (numeric) vector, the CUSUM test is performed directly on the data. When x is a data.frame and formula is not NULL, then a regression model is estimated first with 1m and the test is performed on the residuals of the regression model (see (Ploberger and Krämer 1992)).

p-values are computed using pkolmogorov, which represents the limiting distribution of the statistic under the null hypothesis.

Value

A htest-class object containing the results of the test

References

Ploberger W, Krämer W (1992). "The CUSUM test with OLS residuals." *Econometrica*, **60**(2), 271–285.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

10 dBst

dBst

Density Function of the First Hitting Time of a Bessel Process

Description

Density function of the distribution of the first time a Bessel process with parameter $\nu>1$ hits b>0.

Usage

```
dBst(x, b, nu = -1/2, summands = NULL)
```

Arguments

x Points at which to evaluate the density function

b Point in space Bessel process hits

nu The parameter $\nu > -1$ of the Bessel process

summands Number of summands to use in summation; default is to pick the number of

 $summands\ with\ dBst_summand_solver\ (it\ could\ be\ slow,\ so\ for\ performance\ it$

may be best to pick a fixed number)

Details

Let $\tau_b^{(\nu)}$ be the first time a Bessel process with parameter ν hits b>0. Let $J_{\nu}(x)$ be the Bessel function (of the first kind) with order ν , and let $j_{\nu,k}$ be the kth zero of $J_{\nu}(x)$. Let $\Gamma(x)$ be the gamma function. Then the density function of $\tau_b^{(\nu)}$ is

$$\frac{1}{2^{\nu}b^{2}\Gamma(\nu+1)}\sum_{k=1}^{\infty}\frac{j_{\nu,k}^{\nu+1}}{J_{\nu+1}(j_{\nu,k})}e^{-\frac{j_{\nu,k}^{2}}{2b^{2}}t}$$

This was found by differentiating the CDF computed by pBst.

Value

The value of the density function at x

```
CPAT:::dBst(0.1, 1)
```

dBst_summand_solver

 $dBst_summand_solver$

Find Number of Summands Needed for Numerical Accuracy of dBst

Description

Find the number of summands needed to achieve numerical accuracy of the sum involved in dBst.

Usage

```
dBst_summand_solver(x, b, nu = -1/2, error = .Machine$double.eps)
```

Arguments

x	Quantile input to PDF
b	Point in space Bessel process hits
nu	The parameter $\nu > -1$ of the Bessel process
error	The desired numerical error of the sum

Details

The number of summands needed is determined by using a loop that runs over the summands until it encounters a summand that is not greater than the specified level of numerical accuracy. The index of that last summand is then returned.

Value

Integer for number of summands

Examples

```
dBst_summand_solver(1, 1)
```

DE.test

Darling-Erdös Test

Description

Performs the (univariate) Darling-Erdös test for change in mean, as described in (Rice et al.).

Usage

```
DE.test(x, formula = NULL, a = log, b = log,
  use_kernel_var = FALSE, stat_plot = FALSE, kernel = "ba",
  bandwidth = "and")
```

12 DE.test

Arguments

X	Data to test for change in mean (either a numeric vector or a data.frame)
formula	Formula used for defining the regression model, if applicable
а	The function that will be composed with $l(x) = (2 \log x)^{1/2}$
b	The function that will be composed with $u(x) = 2\log x + \frac{1}{2}\log\log x - \frac{1}{2}\log\pi$
use_kernel_var	Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run vari-
	ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$,
	where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$
stat_plot	Whether to create a plot of the values of the statistic at all potential change points
kernel	If character, the identifier of the kernel function as used in $cointReg$ (see getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in $cointReg$)
bandwidth	If character, the identifier for how to compute the bandwidth as defined in cointReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews' method, as used in cointReg)

Details

This is effectively an interface to stat_de; see its documentation for more details.

When x is a (numeric) vector, the CUSUM test is performed directly on the data. When x is a data.frame and formula is not NULL, then a regression model is estimated first with lm and the test is performed on the residuals of the regression model.

p-values are computed using pdarling_erdos, which represents the limiting distribution of the test statistic under the null hypothesis when a and b are chosen appropriately. (Change those parameters at your own risk!)

Value

A htest-class object containing the results of the test

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

```
DE.test(rnorm(1000))
DE.test(rnorm(1000), use_kernel_var = TRUE, kernel = "bo", bandwidth = "nw")
x \leftarrow rnorm(1000)
y \leftarrow 1 + 2 * x + rnorm(1000)
df \leftarrow data.frame(x, y)
DE.test(df, formula = y \sim x, use_kernel_var = TRUE)
```

dZn

dZn

Rényi-Type Statistic Limiting Distribution Density Function

Description

Function for computing the value of the density function of the limiting distribution of the Rényitype statistic.

Usage

```
dZn(x, d = 1, summands = NULL)
```

Arguments

Χ	Point at which to evaluate the density function (note that this parameter is not
	vectorized)

d Dimension parameter

summands Number of summands to use in summation (the default should be machine ac-

curate)

Details

The density function was found by differentiating the CDF, as described by pZn.

Value

Value of the density function at x

Examples

```
CPAT:::dZn(1)
```

ff

Fama-French Five Factors

Description

Data set containing the five factors described by Fama and French (2015), from the data library maintained by Kenneth French. Data ranges from July 1, 1963 to October 31, 2017.

Usage

ff

14 getLongRunWeights

Format

A data frame with 13679 rows and 6 variables:

Mkt.RF Market excess returns

RF The risk-free rate of return

SMB The return on a diversified portfolio of small stocks minus return on a diversified portfolio of big stocks

HML The return of a portfolio of stocks with a high book-to-market (B/M) ratio minus the return of a portfolio of stocks with a low B/M ratio

RMW The return of a portfolio of stocks with robust profitability minus a portfolio of stocks with weak profitability

CMA The return of a portfolio of stocks with conservative investment minus the return of a portfolio of stocks with aggressive investment

Row names are dates in YYYYMMDD format.

Source

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

getLongRunWeights

Weights for Long-Run Variance

Description

Compute some weights for long-run variance. This code comes directly from the source code of **cointReg**; see getLongRunWeights.

Usage

```
getLongRunWeights(n, bandwidth, kernel = "ba")
```

Arguments

n Length of weights' vector bandwidth A number for the bandwidth

kernel The kernel function; see getLongRunVar for possible values

Value

List with components w containing the vector of weights and upper, the index of the largest non-zero entry in w

```
CPAT:::getLongRunWeights(10, 1)
```

get_lrv_vec 15

get_lrv_vec	Long-Run Variance Estimation With Possible Change Points	

Description

Computes the estimates of the long-run variance in a change point context, as described in (Rice et al.). By default it uses kernel and bandwidth selection as used in the package **cointReg**, though changing the parameters kernel and bandwidth can change this behavior. If **cointReg** is not installed, the Bartlett internal (defined internally) will be used and the bandwidth will be the square root of the sample size.

Usage

```
get_lrv_vec(dat, kernel = "ba", bandwidth = "and")
```

Arguments

dat The data vector

kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar);

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in cointReg)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

Value

A vector of estimates of the long-run variance

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
x <- rnorm(1000)
CPAT:::get_lrv_vec(x)
CPAT:::get_lrv_vec(x, kernel = "pa", bandwidth = "nw")</pre>
```

HR.test

Rényi-Type Test

Description

Performs the (univariate) Rényi-type test for change in mean, as described in (Rice et al.). This is effectively an interface to stat_Zn; see its documentation for more details. p-values are computed using pZn, which represents the limiting distribution of the test statistic under the null hypothesis, which represents the limiting distribution of the test statistic under the null hypothesis when kn represents a sequence t_T satisfying $t_T \to \infty$ and $t_T/T \to 0$ as $T \to \infty$. (log and sqrt should be good choices.)

16 HS.test

Usage

```
HR.test(x, kn = log, use_kernel_var = FALSE, stat_plot = FALSE,
  kernel = "ba", bandwidth = "and")
```

Arguments

Х Data to test for change in mean

A function corresponding to the trimming parameter t_T ; by default, the square kn

root function

Set to TRUE to use kernel methods for long-run variance estimation (typically use_kernel_var

used when the data is believed to be correlated); if FALSE, then the long-run vari-

ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$; if custom_var

is not NULL, this argument is ignored

Whether to create a plot of the values of the statistic at all potential change points stat_plot

If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar); kernel

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in **cointReg**)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

> tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in **cointReg**)

Value

A htest-class object containing the results of the test

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
HR.test(rnorm(1000))
HR.test(rnorm(1000), use_kernel_var = TRUE, kernel = "bo", bandwidth = "nw")
```

HS.test

Hidalgo-Seo Test

Description

Performs the Hidalgo-Seo test for structural change, as proposed by Hidalgo and Seo (2013).

Usage

```
HS.test(x, formula = NULL, m = sqrt, corr = TRUE,
  stat_plot = FALSE)
```

HS.test 17

Arguments

X	Data to test for change in mean (either a vector or data. frame)
formula	The formula defining the regression model, when applicable
m	Either numeric or a function that returns numeric; corresponds to m used in computing the estimate of the long-run variance
corr	If TRUE, the long-run variance will be computed under the assumption of correlated residuals; ignored if custom_var is not NULL or use_kernel_var is TRUE
stat_plot	Whether to create a plot of the values of the statistic at all potential change points

Details

This function can perform both univariate and regression versions of the test described by Hidalgo and Seo.

If formula is NULL and x is numeric, this function performs the (univariate) Hidalgo-Seo test for change in mean, as described in (Rice et al.). This is effectively an interface to $stat_hs$; see its documentation for more details.

Otherwise, the function tests for structural change in a linear regression model (estimated via least squares), and serves as an interface to stat_hs_reg; see its documentation for more details. In this mode the parameter corr is effectively ignored.

p-values are computed using phidalgo_seo, which represents the limiting distribution of the test statistic when the null hypothesis is true.

Value

A htest-class object containing the results of the test

References

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." *Journal of Econometrics*, **175**(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http://www.sciencedirect.com/science/article/pii/S0304407613000626.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

```
HS.test(rnorm(1000))
HS.test(rnorm(1000), corr = FALSE)
x <- rnorm(1000)
y <- 1 + 2 * x + rnorm(1000)
df <- data.frame(x, y)
HS.test(df, formula = y ~ x)</pre>
```

18 pBst

is.formula

Check For Formulas

Description

Checks if an object is a formula.

Usage

```
is.formula(x)
```

Arguments

Х

Object to check

Value

TRUE if x is a formula, FALSE otherwise

Examples

```
CPAT:::is.formula(y ~ x)
CPAT:::is.formula(2)
```

pBst

CDF of First Hitting Time of Bessel Process

Description

CDF of the distribution of the first time a Bessel process with parameter $\nu > -1$ hits b > 0.

Usage

```
pBst(q, b, nu = -1/2, summands = NULL)
```

Arguments

summands

DF

b Point in space Bessel process hits

nu The parameter $\nu > -1$ of the Bessel process

Number of summands to use in summation; default is to pick the number of

summands with pBst_summand_solver (it could be slow, so for performance it

may be best to pick a fixed number)

pBst_summand_solver

Details

Let $\tau_b^{(\nu)}$ be the first time a Bessel process with parameter ν hits b>0. Let $J_{\nu}(x)$ be the Bessel function (of the first kind) with order ν , and let $j_{\nu,k}$ be the kth zero of $J_{\nu}(x)$. Let $\Gamma(x)$ be the gamma function. Then the CDF of $\tau_b^{(\nu)}$ is

19

$$1 - \frac{1}{2^{\nu - 1}\Gamma(\nu + 1)} \sum_{k=1}^{\infty} \frac{j_{\nu,k}^{\nu - 1}}{J_{\nu + 1}(j_{\nu,k})} e^{-\frac{j_{\nu,k}^2}{2b^2}t}$$

(This was obtained in (Kent 1980), but the formula above was given in (Hamana and Matsumoto 2013).)

Value

If T is the random variable as described, $P(T \le q)$

References

Hamana Y, Matsumoto H (2013). "The probability distributions of the first hitting times of Bessel processes." *Transactions of the American Mathematical Society*, **365**(10), 5237–5257.

Kent JT (1980). "Eigenvalue expansions for diffusion hitting times." *Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete*, **52**(3), 309–319. ISSN 1432-2064, doi: 10.1007/BF00538895, https://doi.org/10.1007/BF00538895.

Examples

```
CPAT:::pBst(1, 1)
```

pBst_summand_solver

Find Number of Summands Needed for Numerical Accuracy of pBst

Description

Find the number of summands needed to achieve numerical accuracy of the sum involved in pBst.

Usage

```
pBst_summand_solver(q, b, nu = -1/2, error = .Machine$double.eps)
```

Arguments

q Quantile input to CDF

b Point in space Bessel process hits

nu The parameter $\nu > -1$ of the Bessel process

error The desired numerical error of the sum

Details

The number of summands needed is determined by using a loop that runs over the summands until it encounters a summand that is not greater than the specified level of numerical accuracy. The index of that last summand is then returned.

20 phidalgo_seo

Value

Integer for number of summands

Examples

```
pBst_summand_solver(1, 1)
```

pdarling_erdos

Darling-Erdös Statistic CDF

Description

CDF for the limiting distribution of the Darling-Erdös statistic.

Usage

```
pdarling_erdos(q)
```

Arguments

q

Quantile input to CDF

Value

If Z is the random variable with this distribution, the quantity $P(Z \le q)$

Examples

```
CPAT:::pdarling_erdos(0.1)
```

phidalgo_seo

Hidalgo-Seo Statistic CDF

Description

CDF of the limiting distribution of the Hidalgo-Seo statistic

Usage

```
phidalgo_seo(q)
```

Arguments

q

Quantile input to CDF

Value

If Z is the random variable following the limiting distribution, the quantity $P(Z \le q)$

```
CPAT:::phidalgo_seo(0.1)
```

pkolmogorov 21

pkolmogorov

Kolmogorov CDF

Description

CDF of the Kolmogorov distribution.

Usage

```
pkolmogorov(q, summands = ceiling(q * sqrt(72) + 3/2))
```

Arguments

Quantile input to CDF

summands Number of summands for infinite sum (the default should have machine accu-

racy)

Value

If Z is the random variable following the Kolmogorov distribution, the quantity $P(Z \le q)$

Examples

```
CPAT:::pkolmogorov(0.1)
```

pZn

Rènyi-Type Statistic CDF

Description

CDF for the limiting distribution of the Rènyi-type statistic.

Usage

```
pZn(q, d = 1, summands = NULL)
```

Arguments

q Quantile input to CDFd Dimension parameter

summands Number of summands for infinite sum; if NULL, automatically determined using

pBst_summand_solver (which isn't necessarily fast, so consider picking a fixed

number if speed is important)

Details

If $G_{\nu,b}(x)$ is the CDF of the first time a Bessel process with parameter ν hits b>0 (as described by pBst) then the CDF of the Rényi-type statistic when the null hypothesis is true is $F(x)=(1-G_{d/2-1,x}(1))^2$, where d is the dimensionality parameter of the statistic. (This comes from combining the limiting distribution of the statistic described in (Rice et al.) with the expression for the CDF of the hitting time of the Bessel process described in (Hamana and Matsumoto 2013).)

22 qBst

Value

If Z is the random variable following the limiting distribution, the quantity $P(Z \leq q)$

References

Hamana Y, Matsumoto H (2013). "The probability distributions of the first hitting times of Bessel processes." *Transactions of the American Mathematical Society*, **365**(10), 5237–5257.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
CPAT:::pZn(0.1)
```

qBst

Bessel Process First Hitting Time Quantile Function

Description

Quantile function of the distribution of the first time a Bessel process with parameter $\nu > -1$ hits b > 0.

Usage

```
qBst(p, b, nu = -1/2, summands = NULL, interval = c(0, 100), tol = .Machine$double.eps, ...)
```

Arguments

p The probability associated with the desired quantile

b Point in space Bessel process hits

nu The parameter $\nu > -1$ of the Bessel process

summands Number of summands to use in summation; default is to pick the number of

summands with pBst_summand_solver (it could be slow, so for performance it

may be best to pick a fixed number)

interval, tol, ...

Arguments to be passed to uniroot

Details

This function uses uniroot for finding this quantity, and many of the the accepted parameters are arguments for that function; see its documentation for more details.

Value

The quantile associated with p

```
CPAT:::qBst(0.5, b = 1)
```

qdarling_erdos 23

qdarling_erdos

Darling-Erdös Statistic Limiting Distribution Quantile Function

Description

Quantile function for the limiting distribution of the Darling-Erdös statistic.

Usage

```
qdarling_erdos(p)
```

Arguments

р

The probability associated with the desired quantile

Value

The quantile associated with p

Examples

```
CPAT:::qdarling_erdos(0.5)
```

qhidalgo_seo

Hidalgo-Seo Statistic Limiting Distribution Quantile Function

Description

Quantile function for the limiting distribution of the Hidalgo-Seo statistic

Usage

```
qhidalgo_seo(p)
```

Arguments

р

The probability associated with the desired quantile

Value

A The quantile associated with p

```
CPAT:::qhidalgo_seo(0.5)
```

qZn

qkolmogorov

Kolmogorov Distribution Quantile Function

Description

Quantile function for the Kolmogorov distribution.

Usage

```
qkolmogorov(p, summands = 500, interval = c(0, 100),
  tol = .Machine$double.eps, ...)
```

Arguments

```
p Value of the CDF at the quantile summands Number of summands for infinite sum interval, tol, ... Arguments to be passed to uniroot
```

Details

This function uses uniroot for finding this quantity, and many of the the accepted parameters are arguments for that function; see its documentation for more details.

Value

The quantile associated with p

Examples

```
CPAT:::qkolmogorov(0.5)
```

qZn

Rènyi-Type Statistic Quantile Function

Description

Quantile function for the limiting distribution of the Rènyi-type statistic.

Usage

```
qZn(p, d = 1, summands = 500, interval = c(0, 100), tol = .Machine$double.eps, ...)
```

```
p Value of the CDF at the quantile
d Dimension parameter
summands
Number of summands for infinite sum
interval, tol,
Arguments to be passed to uniroot
```

rchangepoint 25

Details

This function uses uniroot for finding this quantity, and many of the the accepted parameters are arguments for that function; see its documentation for more details.

Value

The quantile associated with p

Examples

```
CPAT:::qZn(0.5)
```

rchangepoint

Simulate Univariate Data With a Single Change Point

Description

This function simulates univariate data with a structural change.

Usage

```
rchangepoint(n, changepoint = NULL, mean1 = 0, mean2 = 0,
  dist = rnorm, meanparam = "mean", ...)
```

Arguments

n An integer for the data set's sample size
changepoint An integer for where the change point occurs
mean1 The mean prior to the change point
mean2 The mean after the change point
dist The function with which random data will be generated
meanparam A string for the parameter in dist representing the mean

Other arguments to be passed to dist

Details

This function generates artificial change point data, where up to the specified change point the data has one mean, and after the point it has a different mean. By default, the function simulates standard Normal data with no change. If changepoint is NULL, then by default the change point will be at about the middle of the data.

Value

A vector of the simulated data

26 sim_de_stat

sim_de_stat	Darling-Erdös Statistic Simulation	
-------------	------------------------------------	--

Description

Simulates multiple realizations of the Darling-Erdös statistic.

Usage

```
sim_de_stat(size, a = log, b = log, use_kernel_var = FALSE,
kernel = "ba", bandwidth = "and", n = 500, gen_func = rnorm,
args = NULL, parallel = FALSE)
```

Arguments

size	Number of realizations to simulate
a	The function that will be composed wit $l(x) = (2 \log(x))^{1/2}$
b	The function that will be composed with $u(x) = 2\log(x) + \frac{1}{2}\log(\log(x)) - \frac{1}{2}\log(pi)$
use_kernel_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed)
kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg); this parameter has no effect if use_kernel_var is FALSE
bandwidth	If character, the identifier of how to compute the bandwidth as defined in the cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the Andrews (1991) method, as used in cointReg); this parameter has no effect if use_kernel_var is FALSE
n	The sample size for each realization
gen_func	The function generating the random sample from which the statistic is computed
args	A list of arguments to be passed to gen_func
parallel	Whether to use the foreach and doParallel packages to parallelize simulation (which needs to be initialized in the global namespace before use)

Details

If use_kernel_var is set to TRUE, long-run variance estimation using kernel-based techniques will be employed; otherwise, a technique resembling standard variance estimation will be employed. Any technique employed, though, will account for the potential break points, as described in Rice et al. (). See the documentation for stat_de for more details.

The parameters kernel and bandwidth control parameters for long-run variance estimation using kernel methods. These parameters will be passed directly to stat_de.

Value

A vector of simulated realizations of the Darling-Erdös statistic

sim_hs_stat 27

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." *Econometrica*, **59**(3), 817-858.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

sim_hs_stat

Hidalgo-Seo Statistic Simulation

Description

Simulates multiple realizations of the Hidalgo-Seo statistic.

Usage

```
sim_hs_stat(size, corr = TRUE, gen_func = rnorm, args = NULL,
  n = 500, parallel = FALSE, use_kernel_var = FALSE, kernel = "ba",
  bandwidth = "and")
```

Arguments

size	Number of realizations to simulate
corr	Whether long-run variance should be computed under the assumption of correlated residuals
gen_func	The function generating the random sample from which the statistic is computed
args	A list of arguments to be passed to gen_func
n	The sample size for each realization
parallel	Whether to use the foreach and doParallel packages to parallelize simulation (which needs to be initialized in the global namespace before use)
use_kernel_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed); <i>TODO: NOT CURRENTLY IMPLEMENTED</i>
kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg); this parameter has no effect if use_kernel_var is FALSE; <i>TODO:</i> NOT CURRENTLY IMPLEMENTED
bandwidth	If character, the identifier of how to compute the bandwidth as defined in the cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth

NOT CURRENTLY IMPLEMENTED

to use (the default behavior is to use the Andrews (1991) method, as used in **cointReg**); this parameter has no effect if use_kernel_var is FALSE; *TODO*:

28 sim_Vn

Details

If corr is TRUE, then the residuals of the data-generating process are assumed to be correlated and the test accounts for this in long-run variance estimation; see the documentation for stat_hs for more details. Otherwise, the sample variance is the estimate for the long-run variance, as described in Hidalgo and Seo (2013).

Value

A vector of simulated realizations of the Hidalgo-Seo statistic

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." *Econometrica*, **59**(3), 817-858.

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." *Journal of Econometrics*, **175**(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http://www.sciencedirect.com/science/article/pii/S0304407613000626.

Examples

sim_Vn

CUSUM Statistic Simulation (Assuming Variance)

Description

Simulates multiple realizations of the CUSUM statistic when the long-run variance of the data is known.

Usage

```
sim_Vn(size, n = 500, gen_func = rnorm, sd = 1, args = NULL)
```

Arguments

size	Number of realizations to simulate
n	The sample size for each realization
gen_func	The function generating the random sample from which the statistic is computed
sd	The square root of the second moment of the data
args	A list of arguments to be passed to gen_func

Value

A vector of simulated realizations of the CUSUM statistic

sim_Vn_stat 29

Examples

sim_Vn_stat

CUSUM Statistic Simulation

Description

Simulates multiple realizations of the CUSUM statistic.

Usage

```
sim_Vn_stat(size, kn = function(n) { 1 }, tau = 0,
use_kernel_var = FALSE, kernel = "ba", bandwidth = "and",
n = 500, gen_func = rnorm, args = NULL, parallel = FALSE)
```

Arguments

size	Number of realizations to simulate
kn	A function returning a positive integer that is used in the definition of the trimmed CUSUSM statistic effectively setting the bounds over which the maximum is taken
tau	The weighting parameter for the weighted CUSUM statistic (defaults to zero for no weighting)
use_kernel_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed)
kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg); this parameter has no effect if use_kernel_var is FALSE
bandwidth	If character, the identifier of how to compute the bandwidth as defined in the cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the method described in (Andrews 1991), as used in cointReg); this parameter has no effect if use_kernel_var is FALSE
n	The sample size for each realization
gen_func	The function generating the random sample from which the statistic is computed
args	A list of arguments to be passed to gen_func
parallel	Whether to use the foreach and doParallel packages to parallelize simulation

(which needs to be initialized in the global namespace before use)

 $sim_{\underline{Z}}$

Details

This differs from sim_Vn() in that the long-run variance is estimated with this function, while sim_Vn() assumes the long-run variance is known. Estimation can be done in a variety of ways. If use_kernel_var is set to TRUE, long-run variance estimation using kernel-based techniques will be employed; otherwise, a technique resembling standard variance estimation will be employed. Any technique employed, though, will account for the potential break points, as described in Rice et al. (). See the documentation for stat_Vn for more details.

The parameters kernel and bandwidth control parameters for long-run variance estimation using kernel methods. These parameters will be passed directly to stat_Vn.

Versions of the CUSUM statistic, such as the weighted or trimmed statistics, can be simulated with the function by passing values to kn and tau; again, see the documentation for stat_Vn.

Value

A vector of simulated realizations of the CUSUM statistic

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." *Econometrica*, **59**(3), 817-858.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

sim_Zn

Rènyi-Type Statistic Simulation (Assuming Variance)

Description

Simulates multiple realizations of the Rènyi-type statistic when the long-run variance of the data is known.

Usage

```
sim_Zn(size, kn, n = 500, gen_func = rnorm, args = NULL, sd = 1)
```

size	Number of realizations to simulate
kn	A function returning a positive integer that is used in the definition of the Rènyi- type statistic effectively setting the bounds over which the maximum is taken
n	The sample size for each realization
gen_func	The function generating the random sample from which the statistic is computed
args	A list of arguments to be passed to gen_func
sd	The square root of the second moment of the data

sim_Zn_stat 31

Value

A vector of simulated realizations of the Rènyi-type statistic

Examples

sim_Zn_stat

Rènyi-Type Statistic Simulation

Description

Simulates multiple realizations of the Rènyi-type statistic.

Usage

```
sim_Zn_stat(size, kn = function(n) { floor(sqrt(n)) },
  use_kernel_var = FALSE, kernel = "ba", bandwidth = "and",
  n = 500, gen_func = rnorm, args = NULL, parallel = FALSE)
```

size	Number of realizations to simulate
kn	A function returning a positive integer that is used in the definition of the Rènyi- type statistic effectively setting the bounds over which the maximum is taken
use_kernel_var	Set to TRUE to use kernel-based long-run variance estimation (FALSE means this is not employed)
kernel	If character, the identifier of the kernel function as used in the cointReg (see documentation for cointReg::getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg); this parameter has no effect if use_kernel_var is FALSE
bandwidth	If character, the identifier of how to compute the bandwidth as defined in the cointReg package (see documentation for cointReg::getLongRunVar); if function, a function to use for computing the bandwidth; if numeric, the bandwidth to use (the default behavior is to use the Andrews (1991) method, as used in cointReg); this parameter has no effect if use_kernel_var is FALSE
n	The sample size for each realization
gen_func	The function generating the random sample from which the statistic is computed
args	A list of arguments to be passed to gen_func
parallel	Whether to use the foreach and doParallel packages to parallelize simulation (which needs to be initialized in the global namespace before use)

32 stat_de

Details

This differs from sim_Zn() in that the long-run variance is estimated with this function, while sim_Zn() assumes the long-run variance is known. Estimation can be done in a variety of ways. If use_kernel_var is set to TRUE, long-run variance estimation using kernel-based techniques will be employed; otherwise, a technique resembling standard variance estimation will be employed. Any technique employed, though, will account for the potential break points, as described in Rice et al. (). See the documentation for stat_Zn for more details.

The parameters kernel and bandwidth control parameters for long-run variance estimation using kernel methods. These parameters will be passed directly to stat_Zn.

Value

A vector of simulated realizations of the Rènyi-type statistic

References

Andrews DWK (1991). "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation." *Econometrica*, **59**(3), 817-858.

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

stat_de

Compute the Darling-Erdös Statistic

Description

This function computes the Darling-Erdös statistic.

Usage

```
stat_de(dat, a = log, b = log, estimate = FALSE,
  use_kernel_var = FALSE, custom_var = NULL, kernel = "ba",
  bandwidth = "and", get_all_vals = FALSE)
```

dat	The data vector
а	The function that will be composed with $l(x) = (2 \log x)^{1/2}$
b	The function that will be composed with $u(x) = 2\log x + \frac{1}{2}\log\log x - \frac{1}{2}\log\pi$
estimate	Set to TRUE to return the estimated location of the change point
use_kernel_var	Set to TRUE to use kernel methods for long-run variance estimation (typically used when the data is believed to be correlated); if FALSE, then the long-run vari-
	ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$,
	where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$

stat_hs 33

custom_var	Can be a vector the same length as dat consisting of variance-like numbers at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential change point; if NULL, this argument is ignored
kernel	If character, the identifier of the kernel function as used in cointReg (see getLongRunVar); if function, the kernel function to be used for long-run variance estimation (default is the Bartlett kernel in cointReg)
bandwidth	If character, the identifier for how to compute the bandwidth as defined in cointReg (see <pre>getBandwidth</pre>); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews' method, as used in cointReg)
get_all_vals	If TRUE, return all values for the statistic at every tested point in the data set

Details

If $\bar{A}_T(\tau, t_T)$ is the weighted and trimmed CUSUM statistic with weighting parameter τ and trimming parameter t_T (see stat_Vn), then the Darling-Erdös statistic is

$$l(a_T)\bar{A}_T(1/2,1) - u(b_T)$$

with $l(x) = \sqrt{2 \log x}$ and $u(x) = 2 \log x + \frac{1}{2} \log \log x - \frac{1}{2} \log \pi$ (log x is the natural logarithm of x). The parameter a corresponds to a_T and b to b_T ; these are both log by default.

See (Rice et al.) to learn more.

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
CPAT:::stat_de(rnorm(1000))
CPAT:::stat_de(rnorm(1000), use_kernel_var = TRUE, bandwidth = "nw", kernel = "bo")
```

stat_hs

Compute the Univariate Hidalgo-Seo Statistic

Description

This function computes the Hidalgo-Seo statistic for a change in mean model.

34 stat_hs

Usage

```
stat_hs(dat, estimate = FALSE, corr = TRUE, m = sqrt,
 get_all_vals = FALSE, custom_var = NULL, use_kernel_var = FALSE,
 kernel = "ba", bandwidth = "and")
```

Arguments

dat The data vector

estimate Set to TRUE to return the estimated location of the change point

If TRUE, the long-run variance will be computed under the assumption of correcorr

lated residuals; ignored if custom_var is not NULL or use_kernel_var is TRUE

Either numeric or a function that returns numeric; corresponds to m used in m

computing the estimate of the long-run variance

If TRUE, return all values for the statistic at every tested point in the data set get_all_vals

Can be a vector the same length as dat consisting of variance-like numbers custom_var

at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

use_kernel_var Set to TRUE to use kernel methods for long-run variance estimation (typically

used when the data is believed to be correlated); if FALSE, then the long-run vari-

ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$; if custom_var is not NULL, this argument is ignored

kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar);

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in **cointReg**)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

> tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in **cointReg**)

Details

For a data set x_t with n observations, the test statistic is

$$\max_{1 \le s \le n-1} (\mathcal{LM}(s) - B_n) / A_n$$

where $\hat{u}_t = x_t - \bar{x}$ (\bar{x} is the sample mean), $a_n = (2 \log \log n)^{1/2}$, $b_n = a_n^2 - \frac{1}{2} \log \log \log n$ $\log \Gamma(1/2), \ A_n = b_n/a_n^2, \ B_n = b_n^2/a_n^2, \ \hat{\Delta} = \hat{\sigma}^2 = n^{-1} \sum_{t=1}^n \hat{u}_t^2, \text{ and } \mathcal{LM}(s) = n(n-s)^{-1} s^{-1} \hat{\Delta}^{-1} \left(\sum_{t=1}^s \hat{u}_t\right)^2.$

If corr is FALSE, then the residuals are assumed to be uncorrelated. Otherwise, the residuals are assumed to be correlated and $\hat{\Delta} = \hat{\gamma}(0) + 2\sum_{j=1}^{\lfloor m\rfloor}(1-\frac{j}{\sqrt{n}})\hat{\gamma}(j)$ with $\hat{\gamma}(j) = \frac{1}{n}\sum_{t=1}^{n-j}\hat{u}_t\hat{u}_{t+j}$. mis controlled by the parameter m.

This statistic was presented in (Hidalgo and Seo 2013).

stat_hs_reg 35

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

References

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." *Journal of Econometrics*, **175**(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http://www.sciencedirect.com/science/article/pii/S0304407613000626.

Examples

```
CPAT:::stat_hs(rnorm(1000))
CPAT:::stat_hs(rnorm(1000), corr = FALSE)
```

stat_hs_reg

Regression Model Hidalgo-Seo Statistic

Description

Compute the Hidalgo-Seo statistic indended for detecting change in linear models (estimated via least squares regression).

Usage

```
stat_hs_reg(formula, data, m = sqrt, estimate = FALSE,
  get_all_vals = FALSE)
```

Arguments

formula	A formula that describes the regression model
data	A data.frame-like object containing the data set; should be able to be passed to the data argument of 1m
m	If numeric, the number of terms of the periodogram to sum; if a function, how to compute the number of terms to sum (will be passed the number of rows of data)
estimate	Set to TRUE to return the estimated location of the change point
get_all_vals	If TRUE, return all values for the statistic at every tested point in the data set

Details

For a data set (y_t, x_t) with n observations, $y_t \in \mathbf{R}$, and $x_t \in \mathbf{R}^d$, the test statistic is

$$\max_{d < s \le n-d} (\mathcal{LM}(s) - B_n) / A_n$$

where $a_n = \sqrt{2 \log \log n}$; $b_n = a_n^2 + d \log \log \log n/2 - \log \Gamma(d/2)$; $A_n = b_n/a_n^2$; $B_n = b_n^2/a_n^2$; $\hat{\beta}$ is the least-squares estimate of the linear regression model coefficients; $\hat{u}_t = y_t - \hat{\beta}^T x_t$ are the residuals of the model;

36 stat_Vn

$$\mathcal{LM}(s) = \left(\frac{n}{\hat{\Delta}(\hat{\beta})s(n-s)}\right) \left(\sum_{t=1}^{s} x_t \hat{u}_t\right)^T \left(\sum_{t=1}^{s} x_t \hat{u}_t\right)^T$$

and $\hat{\Delta}(\hat{\beta})$ is the long-run variance estimator

$$\hat{\Delta}(\beta) = \frac{1}{m} \sum_{i=1}^{m} I\left(\frac{2\pi j}{n}; \beta\right)$$

where $I(\cdot; \beta)$ is the periodogram estimated from the residuals when the regression model coefficients are given by β . This is the test statistic suggested by the procedure introduced in (Hidalgo and Seo 2013).

The parameter m described above can be controlled via the function parameter m, which can be either numeric or a function that returns numeric values.

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

References

Hidalgo J, Seo MH (2013). "Testing for structural stability in the whole sample." *Journal of Econometrics*, **175**(2), 84 - 93. ISSN 0304-4076, doi: 10.1016/j.jeconom.2013.02.008, http://www.sciencedirect.com/science/article/pii/S0304407613000626.

Examples

```
x <- rnorm(100)
y <- 1 + 2 * x + rnorm(100)
df <- data.frame("x" = x, "y" = y)
CPAT:::stat_hs_reg(y ~ x, data = df)</pre>
```

stat_Vn

Compute the CUSUM Statistic

Description

This function computes the CUSUM statistic (and can compute weighted/trimmed variants, depending on the values of kn and tau).

Usage

```
stat_Vn(dat, kn = function(n) {     1 }, tau = 0, estimate = FALSE,
    use_kernel_var = FALSE, custom_var = NULL, kernel = "ba",
    bandwidth = "and", get_all_vals = FALSE)
```

 $stat_{Vn}$ 37

Arguments

dat The data vector

kn A function corresponding to the trimming parameter t_T in the trimmed CUSUM

variant; by default, is a function returning 1 (for no trimming)

tau The weighting parameter τ for the weighted CUSUM statistic; by default, is 0

(for no weighting)

estimate Set to TRUE to return the estimated location of the change point

use_kernel_var Set to TRUE to use kernel methods for long-run variance estimation (typically

used when the data is believed to be correlated); if FALSE, then the long-run vari-

ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$,

where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$

custom_var Can be a vector the same length as dat consisting of variance-like numbers

at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar);

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in **cointReg**)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

Details

The definition of the statistic is

$$T^{-1/2} \max_{1 \le t \le T} \hat{\sigma}_{t,T}^{-1} \left| \sum_{s=1}^{t} X_s - \frac{t}{T} \sum_{s=1}^{T} \right|$$

A more general version is

$$T^{-1/2} \max_{t_T \le t \le T - t_T} \hat{\sigma}_{t,T}^{-1} \left(\frac{t}{T} \left(\frac{T - t}{T} \right) \right)^{\tau} \left| \sum_{s=1}^{t} X_s - \frac{t}{T} \sum_{s=1}^{T} \right|$$

The parameter kn corresponds to the trimming parameter t_T and the parameter tau corresponds to τ .

See (Rice et al.) for more details.

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

38 stat_Zn

References

Rice G, Miller C, Horváth L (????). "A new class of change point test of Rényi type." in-press.

Examples

```
CPAT:::stat_Vn(rnorm(1000))
CPAT:::stat_Vn(rnorm(1000), kn = function(n) \{0.1 * n\}, tau = 1/2)
CPAT:::stat_Vn(rnorm(1000), use_kernel_var = TRUE, bandwidth = "nw", kernel = "bo")
```

stat_Zn

Compute the Rényi-Type Statistic

Description

This function computes the Rényi-type statistic.

Usage

```
stat_Zn(dat, kn = function(n) {
                                    floor(sqrt(n)) }, estimate = FALSE,
 use_kernel_var = FALSE, custom_var = NULL, kernel = "ba",
 bandwidth = "and", get_all_vals = FALSE)
```

Arguments

dat The data vector

kn A function corresponding to the trimming parameter t_T ; by default, the square

root function

Set to TRUE to return the estimated location of the change point estimate

Set to TRUE to use kernel methods for long-run variance estimation (typically use_kernel_var

used when the data is believed to be correlated); if FALSE, then the long-run vari-

ance is estimated using $\hat{\sigma}_{T,t}^2 = T^{-1} \left(\sum_{s=1}^t \left(X_s - \bar{X}_t \right)^2 + \sum_{s=t+1}^T \left(X_s - \tilde{X}_{T-t} \right)^2 \right)$, where $\bar{X}_t = t^{-1} \sum_{s=1}^t X_s$ and $\tilde{X}_{T-t} = (T-t)^{-1} \sum_{s=t+1}^T X_s$; if custom_var is not NULL, this argument is ignored

Can be a vector the same length as dat consisting of variance-like numbers custom_var

> at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar); kernel

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in **cointReg**)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in **cointReg**)

If TRUE, return all values for the statistic at every tested point in the data set get_all_vals

 $stat_Zn_reg$ 39

Details

The definition of the statistic is

$$\max_{t_T \le t \le T - t_T} \hat{\sigma}_{t,T}^{-1} \left| t^{-1} \sum_{s=1}^t X_s - (T - t)^{-1} \sum_{s=t+1}^T X_s \right|$$

The parameter kn corresponds to the trimming parameter t_T .

Value

If both estimate and get_all_vals are FALSE, the value of the test statistic; otherwise, a list that contains the test statistic and the other values requested (if both are TRUE, the test statistic is in the first position and the estimated change point in the second)

Examples

stat_Zn_reg

Compute the Rényi-Type Statistic for Stability in Linear Regression Models

Description

This function computes the Rényi-type statistic for detecting structural change in linear regression models.

Usage

```
stat_Zn_reg(formula, data, kn = function(n) { floor(sqrt(n)) },
  estimate = FALSE, use_kernel_var = FALSE, custom_var = NULL,
  kernel = "ba", bandwidth = "and", get_all_vals = FALSE,
  fast = FALSE)
```

Arguments

40 %s%

custom_var Can be a vector the same length as dat consisting of variance-like numbers

at each potential change point (so each entry of the vector would be the "best estimate" of the long-run variance if that location were where the change point occured) or a function taking two parameters x and k that can be used to generate this vector, with x representing the data vector and k the position of a potential

change point; if NULL, this argument is ignored

kernel If character, the identifier of the kernel function as used in **cointReg** (see getLongRunVar);

if function, the kernel function to be used for long-run variance estimation (de-

fault is the Bartlett kernel in cointReg)

bandwidth If character, the identifier for how to compute the bandwidth as defined in coin-

tReg (see getBandwidth); if function, a function to use for computing the bandwidth; if numeric, the bandwidth value to use (the default is to use Andrews'

method, as used in cointReg)

get_all_vals If TRUE, return all values for the statistic at every tested point in the data set

fast If TRUE, the test statistic is computed quickly but at a potential loss of numerical

accuracy (by solving the normal equations); otherwise, use slower but more

numerically stable solution techniques

Details

TODO: EXTENDED DESCRIPTION

TODO: THIS FUNCTION DOES NOT WORK AS MARKETED BECAUSE WE'RE STILL WORKING ON THE THEORY; use_kernel_var, kernel, AND bandwidth ARE IGNORED AND custom_var SHOULD NOT BE NULL, BUT CREATE A MATRIX THE SAME DIMENSION AS THE REGRESSION MODEL.

Value

TODO: RETURN VALUE DESCRIPTION

Examples

```
CPAT:::stat_Zn_reg() # TODO: EXAMPLE
```

%s% Concatenate (With Space)

Description

Concatenate and form strings (with space separation)

Usage

x %s% y

Arguments

One object

y Another object

%s0%

Value

A string combining x and y with a space separating them

Examples

```
`%s%` <- CPAT:::`%s%`
"Hello" %s% "world"
```

%s0%

Concatenate (Without Space)

Description

Concatenate and form strings (no space separation)

Usage

```
x %s0% y
```

Arguments

```
x One objecty Another object
```

Value

A string combining x and y

```
`%s0%` <- CPAT:::`%s0%`
"Hello" %s0% "world"
```

Index

*Topic datasets banks, 6 ff, 13 .onAttach, 2 %s0%, 41 %s%, 40	pBst, 10, 18, 19, 21 pBst_summand_solver, 18, 19, 21, 22 pdarling_erdos, 12, 20 phidalgo_seo, 17, 20 pkolmogorov, 9, 21 pZn, 13, 15, 21
a_n, 5 Andrews.test, 3 andrews_test, 3, 4 andrews_test_reg, 3, 4 b_n, 5, 7 banks, 6 besselJ, 6 besselJ_zeros, 6 CPAT_startup_message, 7 cpt_consistent_var, 8 CUSUM.test, 8 data.frame, 3, 9, 12, 17, 35 dBst, 10, 11 dBst_summand_solver, 10, 11 DE.test, 11 dZn, 13 ff, 13 formula, 17, 18, 35 get_lrv_vec, 15 getBandwidth, 9, 12, 15, 16, 33, 34, 37, 38, 40 getLongRunVar, 9, 12, 14–16, 33, 34, 37, 38, 40 getLongRunWeights, 14, 14 HR.test, 15 HS.test, 16	qBst, 22 qdarling_erdos, 23 qhidalgo_seo, 23 qkolmogorov, 24 qZn, 24 rchangepoint, 25 sim_de_stat, 26 sim_hs_stat, 27 sim_Vn, 28 sim_Vn_stat, 29 sim_Zn_stat, 31 sqrt, 15 stat_de, 12, 26, 32 stat_hs, 17, 28, 33 stat_hs_reg, 17, 35 stat_Vn, 9, 30, 33, 36 stat_Zn, 15, 32, 38 stat_Zn_reg, 39 uniroot, 22, 24, 25
is.formula, 18	
lm, 3, 5, 9, 12, 35, 39 log, 15	
numeric, 9, 12, 17	