

Institut de Mathématiques de Toulouse, INSA Toulouse

Supervised Learning- Part II

Formation en machine Learning EUR NanoX

Béatrice Laurent - Philippe Besse - Olivier Roustant

Supervised Learning II February 2020 1 / 28

Methods studied in this course:

Part I

- Linear models for regression
- Linear models for classification

Part II

- Classification And Regression Trees, Bagging, Random Forests
- Neural networks, Introduction to deep learning

Supervised Learning II February 2020 2 / 28

Outline

- Linear models for regression
- Linear models for classification

Supervised Learning II February 2020 3 / 28

Part I-2: Classification

- Theory: Optimal Bayes classifier
- Logistic Regression
 - Definitions
 - Estimation of the parameters
 - Application
 - Multiclass classification
- A word on linear discriminant analysis
- Two-class problems : beyond Bayes classifier
 - ROC curve

Supervised Learning II February 2020 4 / 28

Part I-2: Classification

- We now consider supervised classification problems. We have a training data set with n observation points (or objects) X_i and their class (or label) Y_i .
- Suppose that \boldsymbol{d}^n corresponds to the observation of a n-sample $\boldsymbol{D}^n = \{(\boldsymbol{X}_1, Y_1), \dots, (\boldsymbol{X}_n, Y_n)\}$ with joint unknown distribution P on $\mathcal{X} \times \mathcal{Y}$.
- A classification rule is a measurable function $f: \mathcal{X} \to \mathcal{Y}$ that associates the output $f(\mathbf{x})$ to the input $\mathbf{x} \in \mathcal{X}$.
- In order to quantify the quality of the prevision, we introduce a loss function

Definition

A measurable function $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}_+$ is a loss function if $\ell(y,y) = 0$ and $\ell(y,y') > 0$ for $y \neq y'$.

- For classification : \mathcal{Y} is a finite set. We define $\ell(y, y') = \mathbb{1}_{y \neq y'}$.
- We consider the expectation of this loss, this leads to the definition of the risk:

Definition

Given a loss function ℓ , the risk - or $\mathit{generalisation error}$ - of a prediction rule f is defined by

$$R_P(f) = \mathbb{E}_{(\boldsymbol{X},Y) \sim P}[\ell(Y, f(\boldsymbol{X}))]$$

• It is important to note that, in the above definition, (X, Y) is independent of the training sample D^n that was used to build the prediction rule f.

- Let \mathcal{F} denote the set of all possible prediction rules. We say that f^* is an optimal rule if $R_P(f^*) = \inf_{f \in \mathcal{F}} R_P(f)$.
- A natural question arises : is it possible to build optimal rules?
- We define the Bayes rule, which is an optimal rule for classification.

Definition

We call *Bayes rule* any measurable function f^* in \mathcal{F} such that for all $\mathbf{x} \in \mathcal{X}$, $\mathbb{P}(Y = f^*(\mathbf{x}) | \mathbf{X} = \mathbf{x}) = \max_{\mathbf{y} \in \mathcal{Y}} \mathbb{P}(Y = \mathbf{y} | \mathbf{X} = \mathbf{x})$.

THEOREM

— If f^* is a Bayes rule, then $R_P(f^*) = \inf_{f \in \mathcal{F}} R_P(f)$.

- The definition of a Bayes rule depends on the knowledge of the distribution P of (X, Y).
- In practice, we have a training sample $D^n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$ with joint unknown distribution P, and we construct a classification rule.
- The aim is to find a "good" classification rule, in the sense that its risk is close to the optimal risk of a Bayes rule.

Supervised Learning II February 2020 8 / 28

Part I-2

- Theory: Optimal Bayes classifier
- Logistic Regression
 - Definitions
 - Estimation of the parameters
 - Application
 - Multiclass classification
- Two-class problems : beyond Bayes classifier
 - ROC curve

Supervised Learning II February 2020 9 / 28

Logistic regression model

The idea for logistic regression is to use a linear model for probabilities, thanks to a one-to-one mapping ("link" function) from [0,1] to \mathbb{R} . The most used is the logit function and its inverse, the sigmoid function :

$$\begin{array}{c|cccc} & [0,1] & & \mathbb{R} \\ \hline \textbf{logit}: & \pi & \to & \ln\left(\frac{\pi}{1-\pi}\right) \\ & & \frac{\exp(x)}{1+\exp(x)} & \leftarrow & x & : \textbf{sigmoid} \end{array}$$

Supervised Learning II February 2020 10 / 28

Logistic regression model

- We assume that $\mathcal{X} = \mathbb{R}^p$.
- One of the most popular model for binary classification when $\mathcal{Y} = \{0,1\}$ is the **logistic regression model**, for which it is assumed that for all $x \in \mathcal{X}$ and for some $\beta \in \mathbb{R}^p$,

$$egin{aligned} \pi({m{x}}) &= \mathbb{P}(Y=1|{m{X}}={m{x}}) = rac{\exp(\langleeta,{m{x}}
angle)}{1+\exp(\langleeta,{m{x}}
angle)}, \ 1-\pi({m{x}}) &= \mathbb{P}(Y=0|{m{X}}={m{x}}) = rac{1}{1+\exp(\langleeta,{m{x}}
angle)}, \end{aligned}$$

- The quantity $odds(\mathbf{x}) = \frac{\pi(\mathbf{x})}{1-\pi(\mathbf{x})}$ is called the odds for \mathbf{x} . For example, if $\pi(\mathbf{x}) = 0.8$, then $odd(\mathbf{x}) = 4$ which means that the chance of success (Y = 1) when $\mathbf{X} = \mathbf{x}$ is 4 against 1.
- The odds ratio between x and \tilde{x} is $OR(x, \tilde{x}) = odds(x)/odds(\tilde{x})$.

FIGURE – Logistic regression for a dataset composed of 2 groups of size 15, sampled from Normal distributions, centered at 5 and 7, with variance 1.

Supervised Learning II February 2020 12 / 28

Parameters estimation

- Given a n-sample $D^n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}$, we can estimate the parameter β by maximizing the conditional likelihood of $\underline{Y} = (Y_1, \dots, Y_n)$ given (X_1, \dots, X_n) .
- Since the distribution of Y given X = x is a Bernoulli distribution with parameter $\pi_{\beta}(x)$, the conditional likelihood is

$$L(Y_1,\ldots,Y_n,\beta)=\prod_{i=1}^n\pi_{\boldsymbol{\beta}}(\boldsymbol{X_i})^{Y_i}(1-\pi_{\boldsymbol{\beta}}(\boldsymbol{X_i}))^{1-Y_i}$$

$$L(\underline{Y}, \boldsymbol{\beta}) = \prod_{i, Y_i = 1} \frac{\exp(\langle \boldsymbol{\beta}, \boldsymbol{X_i} \rangle)}{1 + \exp(\langle \boldsymbol{\beta}, \boldsymbol{X_i} \rangle)} \prod_{i, Y_i = 0} \frac{1}{1 + \exp(\langle \boldsymbol{\beta}, \boldsymbol{X_i} \rangle)}.$$

Parameters estimation

- Unlike the linear model, there is no explicit expression for the maximum likelihood estimator $\hat{\beta}$.
- It can be shown that computing $\hat{\beta}$ is a convex optimization problem.
- We compute the gradient of the log-likelihood, also called **the score** function $S(\underline{Y}, \beta)$ and use a **Newton-Raphson algorithm** to approximate $\hat{\beta}$ satisfying $S(Y, \hat{\beta}) = 0$.
- Variable selection is also possible by maximizing the penalized likelihood (AIC, BIC, LASSO ..).

• We can then predict the probabilities :

$$\begin{split} \hat{\mathbb{P}}(Y = 1 | \mathbf{X} = \mathbf{x}) &= \pi_{\hat{\boldsymbol{\beta}}}(\mathbf{x}) = \frac{\exp(\langle \hat{\boldsymbol{\beta}}, \mathbf{x} \rangle)}{1 + \exp(\langle \hat{\boldsymbol{\beta}}, \mathbf{x} \rangle)} \\ \hat{\mathbb{P}}(Y = 0 | \mathbf{X} = \mathbf{x}) &= 1 - \pi_{\hat{\boldsymbol{\beta}}}(\mathbf{x}) = \frac{1}{1 + \exp(\langle \hat{\boldsymbol{\beta}}, \mathbf{x} \rangle)}. \end{split}$$

• We then compute the logistic regression classifier : we set $\hat{Y}(\mathbf{x}) = 1$ if $\hat{\mathbb{P}}(Y = 1 | \mathbf{X} = \mathbf{x})) \geq \hat{\mathbb{P}}(Y = 0 | \mathbf{X} = \mathbf{x})$ which is equivalent to $\langle \hat{\boldsymbol{\beta}}, \mathbf{x} \rangle > 0$. Hence,

$$\hat{Y}(x) = \mathbb{1}_{\langle \hat{\boldsymbol{\beta}}, x \rangle > 0}.$$

- We use the logistic regression model to predict the exceedance of the threshold 150 for the variable O3obs.
- Only with the variable MOCAGE :

> summary(logistic)

```
Coefficients Estimate Std. Error t value Pr(>|t|) (Intercept) -5.596493 0.389841 -14.36 <2e-16 *** MOCAGE 0.028659 0.002528 11.34 <2e-16 ***
```

Supervised Learning II February 2020 16 / 28

- We compute the predicted values :
- > pihat <- logistic\$fitted.values</pre>
- > Yhat <- (pihat > 0.5)
- > table(depseuil, Yhat)

$Y\setminus \hat{Y}$	0	1
0	830	33
1	152	26

- The misclassification error is 17.7%. There are many false negatives.
- The model tends to underestimate the threshold overflow : only 15% of the overflows have been predicted.
- We try to improve the model by considering more variables.

 We consider the variables JOUR, MOCAGE, TEMPE, RMH2O, NO2, NO

> summary(logistic2)

Coefficients	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-14.840457	1.116901	-13.287	< 2e-16 ***
MOCAGE	0.026924	0.004045	6.655	2.82e-11 ***
TEMPE	0.309566	0.029529	10.483	< 2e-16 ***
RMH2O	138.430723	28.548702	4.849	1.24e-06 ***
NO2	-0.210011	0.102607	-2.047	0.0407 *
NO	0.742302	0.552606	1.343	0.1792
JOUR1	0.159047	0.235654	0.675	0.4997

- We compute the predicted values :
- > pihat <- logistic2\$fitted.values</pre>
- > Yhat <- (pihat > 0.5)
- > table(depseuil, Yhat)

$Y\setminus \hat{Y}$	0	1
0	829	34
1	88	90

- The misclassification error is 11.7%.
- We have improved the results, but there are still many false negative: only 50% of the overflows have been predicted.

Multinomial or polytomic regression

- Here the response variable Y has M levels u_1, \ldots, u_M .
- Define, for all m levels, $\pi_m(\mathbf{x}) = \mathbb{P}(Y = u_m | \mathbf{X} = \mathbf{x})$. Observe that :

$$\sum_{m=1}^{M} \pi_m(\mathbf{x}) = 1.$$

• We choose a reference for levels, say the first one u_1 . The multinomial regression model is then defined by

$$\log\left(\frac{\pi_m(\mathbf{x})}{\pi_1(\mathbf{x})}\right) = \langle \boldsymbol{\beta^{(m)}}, \mathbf{x} \rangle \qquad \forall m = 2, \dots, M.$$

This is equivalent to

$$\pi_m(\mathbf{x}) = \frac{\exp(\langle \boldsymbol{\beta^{(m)}}, \mathbf{x} \rangle)}{1 + \sum_{m'=2}^{M} \exp(\langle \boldsymbol{\beta^{(m')}}, \mathbf{x} \rangle)}$$

which generalizes the logistic regression model ($u_1 = 0, u_2 = 1$).

• The parameters $\beta^{(m)}$ are estimted by maximizing the likelihood :

$$L(\underline{Y}, \beta) = \prod_{i=1}^{n} \prod_{m=1}^{M} \pi_{m}(\boldsymbol{X}_{i})^{\mathbb{I}_{Y_{i}=u_{m}}}.$$

Part I-2: Classification

- Theory : Optimal Bayes classifier
- Logistic Regression
 - Definitions
 - Estimation of the parameters
 - Application
 - Multiclass classification
- A word on linear discriminant analysis
- Two-class problems : beyond Bayes classifier
 - ROC curve

Linear discriminant analysis

Linear Discriminant Analysis (LDA), probabilistic approach

- Assume that each law $\mathbf{X}|Y=y$ is Normal, with the same variance.
- Applying the Bayes rules gives a form of... logistic regression!

Remarks

- LDA can be viewed as a particular case of logistic regression.
 But parameters are not estimated in the same way (slight differences).
- LDA is equivalent to the geometric method proposed by Fisher: Find a
 direction s.t. the projections on it maximize the ratio inter-class variance inter-class variance.
- Relaxing the constant variance assumption gives a quadratic frontier
 → Quadratic Discriminant Analysis (QDA)

Supervised Learning II February 2020 23 / 28

Part I-2: Classification

- Theory : Optimal Bayes classifier
- Logistic Regression
 - Definitions
 - Estimation of the parameters
 - Application
 - Multiclass classification
- A word on linear discriminant analysis
- Two-class problems : beyond Bayes classifier
 - ROC curve

Two-classes problem: ROC curve

Motivation

For two classes $\mathcal{Y} = \{0,1\}$, the optimal Bayes rule is :

$$\mathbb{P}(Y=1|\pmb{X}=\pmb{x})>rac{1}{2}\quad\Leftrightarrow\quad\pmb{x} ext{ belongs to class } 1$$

This gives a symmetric role to classes 0 and 1, which is often not desirable (health context, for instance)

The idea is to parameterize the decision by a new threshold parameter s:

$$\mathbb{P}(Y=1|\boldsymbol{X}=\boldsymbol{x})>\boldsymbol{s} \quad \Leftrightarrow \quad \boldsymbol{x} \text{ belongs to class } 1$$

s should be chosen according to policy decision, typically a tradeoff between the rate of true positive and false positive.

ROC curve - Definition

Definitions from the contingency table

Prediction: if $\widehat{\pi}_i > s$, $\widehat{y}_i = 1$ else $\widehat{y}_i = 0$

Prediction	Obser	Total	
	Y=1	Y = 0	
$\widehat{y}_i = 1$	$n_{11}(s)$	$n_{10}(s)$	$n_{1+}(s)$
$\widehat{y}_i = 0$	$n_{01}(s)$	$n_{00}(s)$	$n_{0+}(s)$
Total	n_{+1}	n_{+0}	n

- True positive rate : $TPR(s) = \frac{n_{11}(s)}{n_{-1}}$ (sensitivity, recall)
- False positive rate : $FPR(s) = \frac{n_{10}(s)}{n_{+0}}$

The ROC curve plots TPR(s) versus FPR(s) for all values of $s \in [0, 1]$.

Usage of ROC curve to select classifiers

 ${\it Figure-Ozone}: {\it ROC}$ curve for three models. Here, logistic regression should be prefered to Mocage.

Supervised Learning II February 2020 28 / 28