

Figure 1.2 Security Concepts and Relationships

Figure 1.4 Defense in Depth and Attack Surface

Figure 2.1 Simplified Model of Symmetric Encryption

(a) Block cipher encryption (electronic codebook mode)

Figure 2.2 Types of Symmetric Encryption

Figure 2.3 Message Authentication Using a Message Authentication Code (MAC)

(0) Osing public-key eneryption

Figure 2.5 Message Authentication Using a One-Way Hash Function

Alice's public key ring Joy Mike Bob PR_b Bob's private PU_b Bob's public key key X =Transmitted $D[PU_b, Y]$ ciphertext X $Y = E[PR_b, X]$ Plaintext Plaintext Encryption algorithm Decryption algorithm input output (e.g., RSA) Bob Alice

(b) Encryption with private key

Figure 2.6 Public-Key Cryptography

(a) Creation of a digital envelope

(b) Opening a digital envelope

Figure 2.9 Digital Envelopes

Figure 3.1 The NIST SP 800-63-3 E-Authentication Architectural Model

Figure 3.2 Multifactor Authentication

(a) Loading a new password

Figure 3.3 UNIX Password Scheme

Card reader

APDU = Application protocol data unit

ATR = Answer to reset

PTS = Protocol type selection

Figure 3.6 Smart Card/Reader Exchange

Figure 3.7 User Authentication with eID

Figure 3.8 Cost Versus Accuracy of Various Biometric Characteristics in User Authentication Schemes

(a) Enrollment

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an Authorized User In this depiction, the comparison between the presented feature and a reference feature is reduced to a single numeric value. If the input value (s) is greater than a preassigned threshold (t), a match is declared.

 $\begin{tabular}{ll} Figure~4.1 & Relationship~Among~Access~Control~and~Other~Security~Functions~Source: Based~on~[SAND94]. \end{tabular}$

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

OBJECTS

		Subjects			Files		Processes		Disk drives	
		S_1	S_2	S_3	F_1	F_2	P_1	P_2	D_1	D_2
SUBJECTS	S_1	control	owner	owner control	read*	read owner	wakeup	wakeup	seek	owner
	S_2		control		write*	execute			owner	seek*
	S_3			control		write	stop			

* = copy flag set

Figure 4.3 Extended Access Control Matrix

Figure 4.4 An Organization of the Access Control Function

(a) Traditional UNIX approach (minimal access control list)

Figure 4.5 UNIX File Access Control

		OBJECTS									
		R_1	R_2	R_n	F_1	F_2	P_1	P_2	D_1	D_2	
ROLES	R_1	control	owner	owner control	read *	read owner	wakeup	wakeup	seek	owner	
	R_2		control		write *	execute			owner	seek *	
	•										
	R_n			control		write	stop				

Figure 4.7 Access Control Matrix Representation of RBAC

Figure 4.9 Example of Role Hierarchy

Figure 4.10 ABAC Scenario

(a) ACL Trust Chain

(b) ABAC Trust Chain

Figure 4.11 ACL and ABAC Trust Relationships

Identity federation

Figure 4.12 Identity, Credential, and Access Management (ICAM)

Figure 5.1 DBMS Architecture

Figure 5.5 Typical SQL Injection Attack

Figure 5.6 Bob Revokes Privilege from David

Figure 5.7 Indirect Information Access via Inference Channel

Figure 5.9 A Database Encryption Scheme

Figure 6.2 Worm Propagation Model

Figure 8.1 Profiles of Behavior of Intruders and Authorized Users

Figure 8.2 Architecture for Distributed Intrusion Detection

Figure 8.3 Agent Architecture

Figure 8.4 Passive NIDS Sensor

Source: Based on [CREM06].

Figure 9.5 Placement of Malware Monitors

Source: Based on [SIDI05]. Sidiroglou, S., and Keromytis, A. "Countering Network Worms Through Automatic Patch Generation.", Columbia University, Figure 1, page 3, November-December 2005. http://www1.cs.columbia.edu/~angelos/Papers/2005/j6ker3.pdf IEEE.

Figure 14.1 Overview of IT Security Management

Figure 14.2 The Plan-Do-Check-Act Process Model

Plan: Establish security policy, objectives, processes, and procedures; perform risk assessment; develop risk treatment plan with appropriate selection of controls or acceptance of risk.

Do: Implement the risk treatment plan.

Check: Monitor and maintain the risk treatment plan.

Act: Maintain and improve the information security risk management process in response to incidents, review, or identified changes.

Figure 19.1 Intellectual Property Infringement

Figure 19.2 DRM Components

Figure 19.4 Common Criteria Privacy Class Decomposition

Figure 19.5 The Ethical Hierarchy