Classification de l'état de santé du fœtus

basée sur des données de Cardiotocographie

Timofey ABRAMOV

Yazan EL MAHMOUD

Selima KHESSAIRI

🟛 Projet SY09 — Printemps 2025

Figure 2: Projection ACP - Premier plan factoriel

Contexte & Problématique

Enjeu de santé publique

Selon l'ONU, près de **300 000 femmes** décèdent chaque année de complications liées à la grossesse. La cardiotocographie (CTG) permet de monitorer la santé fœtale, mais son interprétation reste complexe et subjective.

Objectif de l'étude

- ✓ Prédire efficacement la santé fœtale à partir de données CTG
- ✓ Améliorer la détection précoce des situations à risque
- ✓ Réduire la subjectivité de l'interprétation médicale

A Déséquilibre des classes

- Normal : **77,84%** (1655 cas)
- Suspect : **13,87**% (295 cas)
- Pathologique : **8,27**% (176 cas)

Figure 1: Distribution de la variable cible (n=2126)

Approches Non Supervisées

X Échec des méthodes non supervisées

- K-means : Indice de Rand ajusté très faible (0.045)
- CAH : Indice de Rand ajusté très faible (0.15)
- Causes : Chevauchement des classes, données non sphériques, haute dimensionnalité

Figure 3: Comparaison K-means vs vraies classes

Jeu de Données

Fetal Health Classification Dataset

- 2126 enregistrements CTG
- **=** 21 variables descriptives numériques
- Données complètes (pas de valeurs manquantes)
- 🛱 Données cliniques réelles collectées en milieu hospitalier

Catégories de variables

- (i) Rythme cardiaque fœtal : valeur basale, variabilité, accélérations/décélérations
- 1 Mesures utérines : contractions, durée, valeur maximale
- 1 Autres indicateurs: mouvements fœtaux, activité anormale

Variables les plus corrélées à la cible

- prolongued_decelerations (0.48)
- abnormal_short_term_variability (0.47)
- percentage_of_time_with_abnormal_long_term_variability (0.43)

Q Analyse Exploratoire

Analyse en Composantes Principales

- i Les 2 premières composantes expliquent 45,55% de la variance
- © Séparation partielle des classes observée
- i Chevauchement important entre classes "suspect" et autres

Approches Supervisées

Stratégie d'évaluation

- ✓ Données standardisées et stratifiées
- ✓ Focus sur la détection des cas pathologiques
- ✓ Prise en compte des coûts d'erreur asymétriques
- Méthodes testées K Plus Proches Voisins (k=4 optimal)
 - TT TOLE T TO OTTOE (TT T OP OTTOE)
 - Analyse Discriminante (LDA/QDA)
- Naive Bayes Gaussien
- Régression Logistique

Résultats des Modèles

Performances par algorithme

Modèle	Accuracy	Prec. Patho.	Rappel Patho.
Rég. Logistique	$88,\!5\%$	88%	66%
KPPV (k=4)	90,8%	84%	77%
Arbres	89,9%	81%	83%
RF	92%	87%	87%

Performances par algorithme

Modèle Accuracy		Prec. Patho.	Rappel Patho.	
LDA	85,9%	67%	46%	
QDA	$81,\!2\%$	76%	37%	
Naive Bayes	81,0%	53%	46%	

Analyse détaillée - Régression Logistique

Table 1: Matrice de confusion - Régression Logistique

	Prédit Normal	Prédit Suspect	Prédit Pathologique
Vrai Normal	314	17	1
Vrai Suspect	16	40	3
Vrai Pathologique	3	9	23

Points forts de la régression logistique multinomiale

- ✓ Excellente reconnaissance des cas normaux (95% rappel)
- ✓ Précision remarquable sur les cas pathologiques (88%)
- A Mauvaise reconnaissance des cas suspects

Approche Coût-Sensible

Table 2: Matrice de coûts utilisée

	Prédit Normal	Prédit Suspect	Prédit Pathologique
Vrai Normal	0	0.5	2
Vrai Suspect	1	0	1
Vrai Pathologique	5	4	0

Stratégie médicale adaptée

Privilégier les faux positifs plutôt que les faux négatifs critiques. Mieux vaut suspecter à tort une pathologie que de la manquer.

• Conclusions & Perspectives

Contributions majeures

- ✓ Solution efficace pour un problème médical complexe
- ✓ Approche **interprétable** pour les praticiens
- ✓ Méthodologie **adaptée aux enjeux cliniques** (coûts asymétriques)
- ✓ Validation rigoureuse sur données réelles

A Limites actuelles

- Performance modérée sur les cas suspects
- Besoin de validation prospective
- Test de Wald non effectué

E Références

[0 ONU (2024). Statistiques sur la mortalité maternelle mondiale.

[0 Fetal Health Classification Dataset. UCI Machine Learning Repository.

[0 Pedregosa, F., et al. (2011). Scikit-learn: Machine Learning in Python. JMLR, 12, 2825–2830.