Homework 1

Naman Mishra (22223)

7 August, 2024

Problem 1. Let X be an arbitrary set. Let

$$\mathcal{F} := \{ A \subseteq X \mid A \text{ is countable or } A^c \text{ is countable} \}.$$

Prove that \mathcal{F} is a sigma-algebra. Let S be the collection of all singletons in X. Prove that $\sigma(S) = \mathcal{F}$.

Solution. Since \varnothing is countable, $\varnothing \in \mathcal{F}$. For any $A \subseteq X$,

$$A \in \mathcal{F} \iff A \text{ is countable or } A^c \text{ is countable}$$

 $\iff A^c \text{ is countable or } (A^c)^c \text{ is countable}$
 $\iff A^c \in \mathcal{F}.$

Let $A_1, A_2, \dots \in \mathcal{F}$. If every A_i is countable, then $\bigcup_{i=1}^{\infty} A_i$ is a countable union of countable sets and hence countable.

If some A_i is uncountable, then A_i^c is countable (since $A_i \in \mathcal{F}$) so

$$\left(\bigcup_{j=1}^{\infty} A_j\right)^c = \bigcap_{j=1}^{\infty} A_j^c \subseteq A_i^c$$

is countable. In either case, the union is in \mathcal{F} .

Any countable set A can be written as a countable union of singletons $A = \bigcup_{a \in A} \{a\}$. Thus every countable set is in $\sigma(S)$. By closure under complements, every set whose complement is countable is also in $\sigma(S)$. Thus $\mathcal{F} \subseteq \sigma(S)$.

But
$$\mathcal{F}$$
 is a σ -algebra containing S , so $\sigma(S) \subseteq \mathcal{F}$.

Problem 2. On [0,1], let \mathcal{A} be the algebra generated by finite unions of left-open, right-closed intervals and let \mathcal{B} be the Borel sigma-algebra. Define $\mu \colon \mathcal{A} \to [0,1]$ by $\mu(A) = 1$ if $A \supseteq (0,\varepsilon)$ for some $\varepsilon > 0$ and $\mu(A) = 0$ otherwise.

- (1) Show that μ is a finitely additive measure on A.
- (2) Show that μ can not be extended to a measure on \mathcal{B} .
- (3) Why does this not contradict the Carathéodory extension theorem? Solution.
- (1) Let $A_1, A_2 \in \mathcal{A}$ be disjoint. First notice that $\mu(A_1) = \mu(A_2) = 1$ is not possible. This would imply that there exist $0 < \varepsilon_1, \varepsilon_2 \le 1$ such that $(0, \varepsilon_1) \subseteq A_1$ and $(0, \varepsilon_2) \subseteq A_2$, which would force $A_1 \cap A_2 \supseteq (0, \varepsilon_1 \varepsilon_2) \neq \emptyset$. Suppose $\mu(A_1) = \mu(A_2) = 0$. Since A_1 and A_2 are finite unions of intervals, write $A_1 = \bigcup_{i=1}^n (a_i, b_i]$, where each a_i must be positive for $\mu(A_1) = 0$. Then $\inf A_1 = \inf_{1 \le i \le n} a_i > 0$. Similarly $\inf A_2 > 0$. Thus $\inf (A_1 \cup A_2) > 0$ and so there is no $\varepsilon > 0$ for which $(0, \varepsilon) \subseteq A_1 \cup A_2$. That is, $\mu(A_1 \cup A_2) = 0$. The remaining cases are $\mu(A_1) = 1$, $\mu(A_2) = 0$ and $\mu(A_1) = 0$, $\mu(A_2) = 1$. WLOG suppose $\mu(A_1) = 1$ and $\mu(A_2) = 0$. There exists an $\varepsilon > 0$ such that $(0, \varepsilon) \in A_1 \subseteq A_1 \cup A_2$. Thus $\mu(A_1 \cup A_2) = 1$.
 - Finite additivity holds in each case.
- (2) μ can not be extended to a measure on \mathcal{B} because it is not countably additive. Let $A_n = (\frac{1}{n+1}, \frac{1}{n}]$ for $n \geq 1$. $\{A_n\}$ are pairwise disjoint and $\mu(A_n) = 0$ for all n. However, $\bigcup_{n=1}^{\infty} A_n = (0, 1]$, whose measure is 1. Thus countable additivity fails and μ can not be extended to a measure on \mathcal{B} .
- (3) This does not contradict the Carathèodory extension theorem because μ does not satisfy the criterion of being *countably additive*, which is a necessary condition for the theorem to apply.

Problem 3. Let \mathcal{F} be a σ -algebra of subsets of Ω .

- (1) Show that \mathcal{F} is closed under countable intersections $(\bigcap_n A_n)$, under set differences $(A \setminus B)$, and under symmetric differences $(A\Delta B)$.
- (2) If A_n is a countable sequence of subsets of Ω , the set $\limsup A_n$ (resp. $\liminf A_n$) is defined as the set of all $\omega \in \Omega$ that belong to infinitely many (resp. all but finitely many) of the sets A_n .
 - If $A_n \in \mathcal{F}$ for all n, show that $\limsup A_n \in \mathcal{F}$ and $\liminf A_n \in \mathcal{F}$.

- (3) If $A_1 \subseteq A_2 \subseteq A_3 \subseteq \ldots$, what are $\limsup A_n$ and $\liminf A_n$? Solution.
- (1) $\bigcap_n A_n = (\bigcup_n A_n^c)^c$ is in \mathcal{F} by properties of σ -algebras. $A \setminus B$ is simply $A \cap B^c$, and the symmetric difference is simply $A \setminus B \cup B \setminus A$.
- (2) Write $\limsup A_n = \bigcap_i \bigcup_{j>i} A_j$ and $\liminf A_n = \bigcup_i \bigcap_{j>i} A_j$.
- (3) Let $A = \bigcup A_n$. For each i,

$$\bigcup_{j \ge i} A_j = A \quad \text{and} \quad \bigcap_{j \ge i} A_j = A_i.$$

Thus $\limsup A_n = \bigcap_i A = A$ and $\liminf A_n = \bigcup_i A_i = A$.

Problem 4. Let (Ω, \mathcal{F}) be a set with a σ -algebra.

- (1) Suppose \mathbf{P} is a probability measure on \mathcal{F} . If $A_n \in \mathcal{F}$ and A_n increase to A (respectively, decrease to A), show that $\mathbf{P}(A_n)$ increases to (respectively, decreases to) $\mathbf{P}(A)$.
- (2) Suppose $\mathbf{P} \colon \mathcal{F} \to [0,1]$ is a function such that (a) $\mathbf{P}(\Omega) = 1$, (b) \mathbf{P} is finitely additive, (c) if $A_n, A \in \mathcal{F}$ and A_ns increase to A, then $\mathbf{P}(A_n) \uparrow \mathbf{P}(A)$. Then show that \mathbf{P} is a probability measure on \mathcal{F} .

Solution.

(1) First notice that $X \subseteq Y \implies \mathbf{P}(X) \leq \mathbf{P}(Y)$ and $\mathbf{P}(X) + \mathbf{P}(X^c) = \mathbf{P}(\Omega) = 1$ by additivity.

Let $A_n \uparrow A$. Let $\Delta_n = A_n \setminus A_{n-1}$ for $n \geq 2$. By additivity,

$$\mathbf{P}(A_n) = \mathbf{P}(A_{n-1}) + \mathbf{P}(\Delta_n) = \mathbf{P}(A_1) + \sum_{i=2}^n \mathbf{P}(\Delta_n).$$

Thus $\mathbf{P}(A_n)$ increases to $\mathbf{P}(A_1) + \sum_{i=2}^{\infty} \mathbf{P}(\Delta_n)$. By countable additivity, $\mathbf{P}(A)$ is precisely this.

Now suppose $A_n \downarrow A$. Then $A_n^c \uparrow A^c$ (which are all in \mathcal{F}). Then $\mathbf{P}(A_n) = 1 - \mathbf{P}(A_n^c)$ decreases to $1 - \mathbf{P}(A^c) = \mathbf{P}(A)$.

(2) Let $\Delta_1, \Delta_2, \dots \in \mathcal{F}$ be disjoint. Let $A_n = \bigsqcup_{i=1}^n \Delta_i$ and $A = \bigsqcup_{i=1}^\infty \Delta_i$. By finite additivity, $\mathbf{P}(A_n) = \sum_{i=1}^n \mathbf{P}(\Delta_i)$. Thus $\mathbf{P}(A_n)$ increases to $\sum_{i=1}^\infty \mathbf{P}(\Delta_i)$. By (c), this is $\mathbf{P}(A)$, so countable additivity holds. **Problem 5.** Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability space. Let $\mathcal{G} = \{A \in \mathcal{F} \mid \mathbf{P}(A) = 0 \text{ or } 1\}$. Show that \mathcal{G} is a σ -algebra.

```
Proof. Since \mathbf{P}(\emptyset) = 0 and \mathbf{P}(\Omega) = 1, \emptyset, \Omega \in \mathcal{G}.
 Let A \in \mathcal{G}. Since \mathbf{P}(A^c) = 1 - \mathbf{P}(A), A^c \in \mathcal{G}.
 Let A_1, A_2, \dots \in \mathcal{G}. If \mathbf{P}(A_i) = 0 for all i, then \mathbf{P}(\bigcup A_i) = 0 and \bigcup A_i \in \mathcal{G}.
 If \mathbf{P}(A_i) = 1 for some i, then \mathbf{P}(\bigcup A_i) = 1 and \bigcup A_i \in \mathcal{G}.
```

Problem 6. Let \mathcal{F} be a σ -algebra on \mathbb{N} that is strictly smaller than the power set. Show that there exist $m \neq n$ such that elements of \mathcal{F} do not separate m and n (i.e., the following holds: any $A \in \mathcal{F}$ either contains both m and n, or neither). Is the same conclusion valid if \mathbb{N} is replaced by any set Ω ?