

Spatio-temporal variability of ETo and climatic variables over Florida

Fitsum T. Teshome

INTRODUCTION

Background

- Evapotranspiration (ET) is a main component of the hydrological cycle, which assures the availability of precipitation on the earth's surface.
- Global warming is anticipated to alter the evapotranspiration rate by intensifying the hydrological cycle.
- In this project, we investigated the monthly, seasonal, and annual trends of reference evapotranspiration of Florida.

METHODS

Study sites

- Florida is the southern region of the U.S. state.
- The climate of the north and central parts of the US state of Florida is humid subtropical. Most of South Florida has a tropical climate.

Data inputs

- Daily ETo and climatic data of Florida for the 1985-2018 period were downloaded from (USGS) data center.
- Standard procedures were followed to filter the data that fulfill the minimum requirement for trend analysis.

Mann-Kendall (MK)

- Mann-Kendall (MK) is commonly used test to identify monotonic trends in hydrological and climatic data (Yue et al., 2002a).
- Z-test and Sen's slope estimator were used to measure the significancy and magnitude of trend, respectively.
- Kendall and dplyr R packages were used for the analysis.

RESULTS

Historical data statistics

- The annual reference evapotranspiration of Florida ranges between 1577-2655 mm.
- The seasonal ETo of the Florida varies from 258-865 mm. Spring and summer are the seasons where the maximum mean seasonal ETo was recorded.
- On a monthly scale, the mean monthly ETo of the Florida fluctuates from 84-323 mm. April, May, and June are the months where the maximum ETo was recorded.

ETo and climatic variables trends

- Southeast of Florida has shown a decreasing (-0.003 mm/year) annual trends while northwest of the region shown an increasing trend (0.001-0.003 mm/year) however, none of the region has observed a statistically significant trend (Fig. 1).
- Seasonally, summary season has shown similar trend as annual ETo, but it was not significant (Fig. 3).
- Annual trend analysis of climatic variables has shown temperature, wind speed, and solar radiation, relative humidity plays a major role for the variability of ETo.

CONCLUSION

 Florida's ETo and climatic variables has shown a spatial and temporal variability however, the variability was not significant.

REFERENCES

Yue, S., Pilon, P., Cavadias, G., 2002a. Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. J. Hydrol. 259, 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7