Pupillometry and Auditory Attention Switching

Methods and Interpretations

Daniel McCloy Eric Larson Adrian KC Lee

2017 November 16

Overview

- Modeling the stereotypical pupil response
 - Hoeks & Levelt 1993
- Working backward from dilation to arousal / effort / load / attention
 - Weirda et al 2012; McCloy et al 2016
- The effort of auditory attention switching
 - McCloy et al 2017
- Attention switching and APD

Modeling the stereotypical pupillary response

Pupillary output = system impulse response * attentional input

•
$$y(t) = h * x(t)$$

- System modeled as cascade of decaying exponentials (≈ neural relays)
 - Assumption: all relays have identical response properties (up to scaling factor) → Erlang

•
$$h(t) = t^n e^{-nt/t_{max}}$$
 (for $t > 0$)

- Hoeks & Levelt's estimates of free parameters:
 - number of relays ("shape"): n = 10.1
 - latency of peak ("scale"): $t_{max} = 0.930 \text{ s}$

Hoeks & Levelt (1993). "Pupillary dilation as a measure of attention: A quantitative system analysis," *Behavior Research Methods, Instruments*, & Computers, 25, 16–26. doi:10.3758/BF03204445

Working backward from dilation to attention

- stipulate temporal locations of "attentional pulses"
- fit linear sum of pupil impulse responses at those times

Wierda, van Rijn, Taatgen, & Martens (2012). "Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution," *Proceedings of the National Academy of Sciences*, 109, 8456–8460. doi:10.1073/pnas.1201858109

Problem encountered

- Hoeks & Levelt (1993) estimated t_{max} using button-press trials
 - ~70% of pupillary response is button-press (Hupé et al 2009)
 - Estimate of t_{max} too large \rightarrow acausal deconvolution results

Hoeks & Levelt (1993). "Pupillary dilation as a measure of attention: A quantitative system analysis," *Behavior Research Methods, Instruments, & Computers*, 25, 16–26. doi:10.3758/BF03204445

 $Hup\acute{e}, Lamirel, \& Lorenceau~(\textbf{2009}).~``Pupil~dynamics~during~bistable~motion~perception, "\textit{Journal of Vision}, \textbf{9}, article~10.~\\ doi:10.1167/9.7.10$

Problem solved?

- Auditory deviant detection task (100 ms tone pips)
 - Our lab's estimate: $t_{max} = 0.512$ seconds
 - *N*=10 adults, aged 21-35

McCloy, Larson, Lau, & Lee (**2016**). "Temporal alignment of pupillary response with stimulus events via deconvolution," *The Journal of the Acoustical Society of America*, **139**, EL57–EL62. doi:10.1121/1.4943787

Methods summary: pupillary deconvolution

- Estimates of t_{max} not necessarily stable across tasks
 - Maybe re-estimate for each study type
 - Range across subjects: 0.397 to 0.607 s
- How problematic are button presses for event-related analyses?

- Is attention switching the kind of cognitive event that manifests in the pupil?
 - If so, when does it show up?
 - Is it bigger than the response due to stimulus degradations?
 - Does it tell us anything that behavioral measures can't?
- 3 experiments:
 - 2 concurrent streams of spoken letters
 - Detect target "O" and press button
 - Pre-trial "maintain" or "switch" cue

- Experiment 1: ±45° spatially separated streams
 - Stimulus degradation: anechoic vs. reverberant
 - Stream segregation: 2 ♂ voices vs. 1 ♂ 1 ♀ voice
 - Attention: report same talker throughout trial, or switch halfway

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

- Stimulus degradation (reverb)
 - Significant differences in d' and reaction time
 - No difference in pupillary response

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

- Stream separability (talker gender)
 - Significant differences in d' and reaction time
 - No difference in pupillary response

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

- Attention (maintain/switch)
 - Significant differences in d' and reaction time
 - Pupil sizes larger on "switch" trials, as soon as cue is heard

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

Experiment 2

- Stimulus degradation: 10- vs. 20-band noise vocoder
- Short- vs. long-duration mid-trial gap
- Attention: maintain vs. switch (same as Exp. 1)

McCloy, Lau, Larson, Pratt, & Lee (2017). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, 141, 2440–2451. doi:10.1121/1.4979340

- Stimulus degradation (# vocoder bands)
 - Significant differences in d' and reaction time
 - No difference in pupillary response

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

- Length of switching gap
 - Significant differences in d' and reaction time
 - Difference in pupil: latency, not magnitude

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

- Attention (maintain/switch)
 - Significant difference in d'
 - Pupil sizes larger on "switch" trials, as soon as cue is heard

McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340

Summary: spatial and non-spatial attention switching

- Pupillometry provides different information from either d' or reaction time
 - Our interpretation: "listener effort, but only when it makes a difference"
- Same pattern of pupillary response for spatial switches (reverb exp.) and non-spatial switches (vocoder exp.)

- Same paradigm, no stimulus degradation this time
- Switching between talkers
 - spatial (same voice, different locations)
 - non-spatial (different voices, same location)
 - mixed (different voices and different locations)
- Population contrast: self-reported APD
 - "Do you have difficulty understanding speech in the presence of background noise or in large rooms that echo?"
 - "Do you have difficulty determining where a sound came from without having to look?"

Gatehouse & Noble (2004). "The speech, spatial and qualities of hearing scale (SSQ)," *International Journal of Audiology*, 43, 85–99. doi:10.1080/14992020400050014

- Behavioral stats (APD vs. control)
 - No differences in performance between groups in any condition
- Behavioral stats ("maintain" vs. "switch")
 - **spatial**: difference in d' for both populations
 - non-spatial: difference in d' for both populations
 - **mixed**: no difference in d' for either population

Self-reported APD listeners (N=12, aged 21-66)

Age-matched control listeners (N=12, aged 21-66)

Summary: Attention switching and APD

- Pupillometry reflects listener self-report (at least to some degree)
 - Doesn't seem to be error-monitoring (performance not different for APD / controls)
 - Trying harder to achieve same result? (cf. "listening effort")
 - Just nervous?
- Acausality after deconvolution
 - Wrong t_{max} ? (older listeners \rightarrow shorter latency?)
 - Experimentally blocked trials?

Discussion

- How to interpret results of deconvolved pupil size generally?
 - "Attentional processes"? (Wierda et al 2012)
 - "Cognitive load"?
 - "Arousal"?
 - Input to locus coeruleus?
 - Something the listener does to improve performance ("Effort")?
- Interpretation depends on experiment design, and perhaps even depends on what point in the trial listener is at

Wierda, van Rijn, Taatgen, & Martens (2012). "Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution," *Proceedings of the National Academy of Sciences*, 109, 8456–8460. doi:10.1073/pnas.1201858109

Acknowledgments

- T32-DC000018 (U. Washington)
- R01-DC013260 (Lee)
- NIH LRP award (McCloy)

References

- [1] Hoeks & Levelt (**1993**). "Pupillary dilation as a measure of attention: A quantitative system analysis," *Behavior Research Methods, Instruments, & Computers*, **25**, 16–26. doi:10.3758/BF03204445
- [2] Wierda, van Rijn, Taatgen, & Martens (**2012**). "Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution," *Proceedings of the National Academy of Sciences*, **109**, 8456–8460. doi:10.1073/pnas.1201858109
- [3] Hupé, Lamirel, & Lorenceau (**2009**). "Pupil dynamics during bistable motion perception," *Journal of Vision*, **9**, article 10. doi:10.1167/9.7.10
- [4] McCloy, Larson, Lau, & Lee (**2016**). "Temporal alignment of pupillary response with stimulus events via deconvolution," *The Journal of the Acoustical Society of America*, **139**, EL57–EL62. doi:10.1121/1.4943787
- [5] McCloy, Lau, Larson, Pratt, & Lee (**2017**). "Pupillometry shows the effort of auditory attention switching," *The Journal of the Acoustical Society of America*, **141**, 2440–2451. doi:10.1121/1.4979340
- [6] Gatehouse & Noble (**2004**). "The speech, spatial and qualities of hearing scale (SSQ)," *International Journal of Audiology*, **43**, 85–99. doi:10.1080/14992020400050014