

Année universitaire 2021/2022

Site : \square Luminy \square St-Charles	\Box St-Jérôme \Box Cht-Gombert	\Box Aix-Montperrin	\Box Aubagne-SATIS
Sujet de : $\boxtimes 1^{er}$ semestre $\square 2^{er}$	$^{ m ne}$ semestre \Box Session 2	Durée de l'épreuve	: 2 h
Examen de : $M1$	Nom du diplôme : Master Info	ormatique	
Code du module : $SINAU06L$	Libellé du module : $\mathbf{R\acute{e}seaux}$		
Calculatrices autorisées : NON	Documents autorisés : NON		

1 Réseaux interconnectés (15 pts)

La figure ci-dessous donne le schéma d'un réseau constitué d'un ensemble de sous-réseaux connectés par des routeurs. Les routeurs sont indiqués par des cercles et les machines par des carrés.

- 1. Donner les adresses des sous-réseaux LAN2 et LAN8 dont le masque de chacun est $255.255.255.0_{(1pts)}$.
- 2. Donner les adresses IP des machines D et E $_{(0,5pts)}$.
- 3. La station D (dans LAN 4) souhaite connaître l'adresse MAC de la station E en lançant une requête ARP. En supposant que les caches ARP soient tous vides, donner les étapes et tous les champs des trames Ethernet échangées entre D et E, ainsi que le contenu des caches ARP de D et E (2pts).
- 4. La station E souhaite maintenant transmettre le message "Hello" à la station D en utilisant le protocole UDP. Pour cette transmission, E et D utilisent respectivement les ports 2760 et 3840. Donner la (les) trame(s) Ethernet émises par E en expliquant sa construction (les champs Longueur totale et Total de contrôle ne sont pas demandés) (1pts).
- 5. La station E et D utilisent maintenant TCP au lieu de UDP. Donner le chronogramme TCP en précisant les segments échangés entre D et E. Combien de trames Ethernet sont échangées? (2pts).
- 6. Établir la table de routage la plus courte possible du routeur R sous la forme (destination, masque, passe-relle, interface) (1,5pts). Les adresses IP des routeurs doivent être choisies parmi les premières disponibles de chacun des sous-réseaux qu'ils interconnectent.

- 7. La station A (dans LAN3) lance une commandes ping vers la station C (dans LAN8). On suppose qu'au départ seuls les routeurs connaissent les adresses MAC des machines.
 - Donner les adresses MAC et IP contenues dans les entêtes des trames Ethernet échangées et expliquer les décisions prises par les routeurs (2pts).
- 8. Les valeurs de la MTU de LAN3, LAN5, LAN6 et LAN 8 sont respectivement 2048, 1024, 512 et 2048. La station A souhaite transmettre un datagramme IP de taille 2000 octets à la machine C.
 - (a) Décrire la fragmentation réalisée pour la transmission de ce datagramme (1,5 pts).
 - (b) Où est réalisé le réassemblage des fragments (0.5 pts)?
- 9. Enfin, l'administrateur décide de découper LAN1 en 6 sous-réseaux de même taille.
 - (a) Quel est le nombre de machines que peut recevoir chacun de ces sous-réseaux? (0.5 pts)
 - (b) Quel est le masque de chacun de ces sous-réseaux? (0.5 pts)
 - (c) Donner l'adresse du premier sous-réseau obtenu par ce découpage. (0.5 pts)
 - (d) Quelle est son adresse de diffusion? (0,5 pts)

Questions diverses (6 pts)

- 1. Pourquoi le modèle OSI est structuré en couches? (0.5 pts)
- 2. Quel est le rôle du protocole HDLC (1 pts)?
- 3. Expliquer succinctement les mécanismes de contrôle de flux dans TCP (0.5pt)
- 4. Pourquoi un réseau utiliserait il un code correcteur d'erreurs à la place d'une détection de collision suivie de retransmission? (1 pts).
- 5. Pour obtenir une fiabilité supérieure à celle qu'offre un seul bit de parité, on veut utiliser un premier bit de parité calculé à partir des bits de rang impair et un second bit calculé à partir des bits de rang pair. Quelle est la distance de Hamming d'un tel code? (1 pts)
- 6. Avec l'introduction du protocole IPv6, faudra-t-il modifier le protocole ARP? Si oui, ces changements seront-ils d'ordre conceptuel ou technique? $_{(1\ \mathrm{pts})}$
- 7. Quelle est l'adresse de lien local associée à une interface Ethernet, dont l'adresse mac est 71 :4c :4c :b1 :96 :e8 sachant que l'identifiant de l'interface est basé sur le format EUI-64 modifié ? (0.5pt)

Annexe

Abréviations : dest. : destination, src. : source, MAC : adresse MAC, IP = adresse IP.

Trame Ethernet

	6	6	2	46-1500	4
ĺ	MAC dest.	MAC src.	0800	Données + remplissage	CRC

Paquet ARP

6	6	2	2	2	1	1	2	6	4	6	4
MAC dest.	MAC src.	0806	0001	0800	х	У	Op	MAC src.	IP src.	Mac dest.	IP dest.

- Op = 1 pour une requête ARP, Op = 2 pour une réponse ARP
- Type de trame = 0806 (protocole ARP), Type du matériel = 1 (Ethernet), Type protocole = 0800 (IP)
- Taille adresse matériel = x, Taille adresse protocole = y

Entête IPv4

0 1 2 3	4 5	6 7	8	9 10	11	12 1	3	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Version	Version Longueur entête Type de services									Longueur totale															
Identification												$\left \begin{array}{c c} D & M \\ F & F \end{array} \right $ déplacement du fragment													
Durée	Durée de vie Protocole										Total de contrôle de l'entête														
	adresse IP source																								
	adresse IP destination																								
	Options																								

Entête UDP

	- 0	1	2	3	4	ъ	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Port source																Р	ort	des	$_{ m tin}$	atic	on											
Longueur totale															Т	otal	de	coi	ntrá	òle												

Entête TCP

