Un algorithme de tri (d'après Centrale 2016)

Durée: 3 heures

Présentation

Motivation

Trier des données est un problème récurrent dans tous les systèmes d'information. Dans un système travaillant en temps réel (par exemple un système de freinage d'une voiture) ou un système pouvant être soumis à des attaques (par exemple un serveur web), on s'intéresse à la complexité dans le pire des cas. Or, dans une application réelle, les données que l'on veut trier ne sont pas quelconques mais suivent une certaine distribution aléatoire, qui est loin d'être uniforme : ainsi, il est fréquent que les données soient déjà presque triées. De plus, de nombreux algorithmes de tris (même les plus performants) atteignent leur complexité maximale lorsque les données sont déjà triées.

Le but de ce problème est d'étudier un algorithme de tri, proche du tri par tas mais présentant avec lui quelques différences significatives et notamment des performances intéressantes lorsque les données qu'il reçoit sont presque triées. Dans tout le problème, on triera, par ordre croissant, des valeurs entières.

Dans toutes les questions de complexité en temps, la mesure de complexité à considérer est le nombre de comparaisons par la relation d'ordre ≤ entre entiers.

Notations et préliminaires

Dans la suite, si un objet mathématique est noté t, on notera t l'objet Caml qui l'implante et, si t appartient à un ensemble T implanté en Caml par le type T, on écrira de manière équivalente $t \in T$ ou t: T. Par exemple, pour signifier que l désigne une liste d'entiers, on notera l: int list.

Étant donné deux fonctions f et g à valeurs positives, on note :

- -f = O(g) pour exprimer qu'il existe une constante C telle que, pour tout n suffisamment grand, f(n) ≤ Cg(n);
- f = Ω(g) pour exprimer qu'il existe une constante C > 0 telle que pour, tout n suffisamment grand, f(n) ≥ Cg(n);
- $-f = \Theta(g)$ pour exprimer qu'on a f = O(g) et $f = \Omega(g)$.

On tiendra compte dans la suite que la structure à trier n'est pas un ensemble, car le même élément peut être répété plusieurs fois. Ainsi on sera amené à manipuler en Cami des listes dans lesquels un même élément peut apparaître plusieurs fois, et des arbres dans lesquels la même valeur peut étiqueter plusieurs sommets différents. Dans la suite, lorsqu'il s'agira de déterminer le minimum d'une telle structure, il pourra être atteint plusieurs fois; de même, lorsqu'on triera ou « réunira » deux telles structures, ce sera toujours en tenant compte des répétitions, c'est-à-dire sans perte d'éléments. Ainsi, par exemple, pour les listes $l_1 = (7,4,2,8,2,7,3)$ et $l_2 = (5,2,3,9)$, le minimum de l_1 est 2, trier l_1 consiste à renvoyer la liste [2; 2; 3; 4; 7; 7; 8] et « réunir » l_1 et l_2 consiste à renvoyer la liste [7; 4; 2; 8; 2; 7; 3; 5; 2; 3; 9]. De manière générale, lorsqu'on dira que deux structures de données contiennent les mêmes éléments, ce sera toujours en tenant compte des répétitions. Par exemple les listes [1; 2; 2] et [2; 1; 2] contiennent les mêmes éléments mais pas les listes [3; 4; 4] et [4; 3; 3].

Partie I. Préliminaires

Tri par insertion

Question 1. Écrire la fonction insere: int -> int list -> int list insérant un élément dans une liste supposée triée, c'est-à-dire telle que pour toute liste u supposée triée et tout élément x, (insere x u) renvoie une liste v telle que

- v contient les mêmes éléments que x :: u;
- v est triée.

Question 2. Écrire la fonction tri_insertion: int list -> int list triant la liste reçue en argument en utilisant la fonction précédente.

Question 3. Pour $n \in \mathbb{N}$, on note $P_I(n)$ le nombre de comparaisons effectuées par l'appel (tri_insertion l) dans le cas le pire pour une liste l de longueur n. On note de même $M_I(n)$ le nombre de comparaisons effectuées dans le cas le meilleur. Déterminer $P_I(n)$ et $M_I(n)$.

Tas binaires

On appelle *arbre* un arbre binaire étiqueté par des éléments de N. Un tel arbre est implanté en Caml à l'aide de la déclaration de type suivante :

```
type arbre =
    | Vide
    | Noeud of int * arbre * arbre ;;
```

On définit la *hauteur* et la *taille* (appelée aussi *nombre d'éléments*) d'un arbre a, notées respectivement haut(a) et |a| par induction sur la structure de l'arbre :

```
- haut(Vide) = 0 et haut(Noeud(x, a1, a2)) = 1 + max\{haut(a1), haut(a2)\};
```

```
- |Vide| = 0 et |Noeud(x, a1, a2)| = 1 + |a1| + |a2|
```

pour tous arbres binaires a1 et a2 et tout entier x.

x, a1 et a2 sont appelés respectivement la racine, le fils gauche et le fils droit de l'arbre a.

On dit que deux arbres *ont mêmes éléments* s'ils ont les mêmes ensembles d'étiquettes et que chaque étiquette présente apparait le même nombre de fois dans chacun des arbres.

On dit qu'un arbre binaire est *parfait* s'il s'agit de l'arbre vide **Vide**, ou s'il est de la forme **Noeud(x, a1, a2)** où **a1** et **a2** sont deux arbres parfaits de même hauteur.

On dit qu'un arbre binaire est un *tas binaire parfait* (ou simplement un *tas parfait*) si c'est un arbre parfait et que la valeur étiquetant chaque nœud de l'arbre est inférieure ou égale à celle de ses fils.

On dit qu'un arbre binaire est un *quasi-tas* si c'est un arbre de la forme **Noeud(x, a1, a2)** et que **a1** et **a2** sont des tas binaires parfaits de même taille : aucune contrainte d'ordre n'est donc imposée sur l'étiquette de la racine x.

Étant donné un arbre non vide a, on note min_A(a) le minimum des éléments qu'il contient.

Question 4. Pour $k \in \mathbb{N}$, on note m_k la taille d'un arbre binaire parfait de hauteur k. Déterminer m_k pour tout $k \in \mathbb{N}$. On justifiera la réponse en exprimant m_{k+1} en fonction de m_k .

Question 5. Écrire la fonction min_tas: arbre -> int telle que pour tout tas binaire parfait a non vide, (min_tas a) renvoie $\min_{\mathcal{A}}(\mathbf{a})$. On fera en sorte que la complexité en temps de min_tas soit constante.

Question 6. Écrire la fonction min_quasi: arbre -> int tel que pour tout quasi-tas a, (min_quasi a) renvoie $\min_{A}(a)$ en temps constant.

Question 7. Écrire la fonction **percole: arbre -> arbre** telle que (**percole a**) renvoie **a** si **a** est l'arbre vide et, si **a** est un quasi-tas, renvoie un tas binaire parfait contenant les mêmes éléments. Donner la complexité de **percole** dans le cas le pire, en fonction de la hauteur *k* du quasi-tas **a**.

Décomposition parfaite d'un entier

L'algorithme de tri que l'on va étudier repose sur une propriété remarquable des nombres m_k obtenus à la question 4. Étant donné un entier naturel r, on dit qu'un r-uplet (k_1, \ldots, k_r) d'entiers naturels non nuls *vérifie la propriété QSC* (pour « quasi strictement croissant ») si l'une des trois conditions suivantes est vérifiée :

```
- r \le 1;

- ou r = 2 et k_1 \le k_2;

- ou r \ge 3 et k_1 \le k_2 < k_3 < \dots < k_r.
```

En particulier, on convient qu'il existe un unique 0-uplet, noté (), et que ce 0-uplet vérifie la propriété QSC.

La propriété remarquable des nombres m_k qui nous intéressera est alors la suivante :

pour tout entier naturel non nul n, il existe un unique entier r et un unique r-uplet $(k_1, ..., k_r)$ d'entiers naturels non nuls vérifiant la propriété QSC et tel que $n = m_{k_1} + \cdots + m_{k_r}$ (cette somme étant par convention nulle si r = 0).

Une telle écriture $n=m_{k_1}+\cdots+m_{k_r}$, où (k_1,\ldots,k_r) vérifie la propriété QSC est appelée une décomposition parfaite de n. Par exemple, les entiers de 1 à 5 admettent les décompositions parfaites suivantes : $1=m_1$, $2=m_1+m_1$, $3=m_2$, $4=m_1+m_2$, $5=m_1+m_1+m_2$.

On peut remarquer que, du fait de la stricte croissance de la suite d'entiers $(m_k)_{k \in \mathbb{N}}$, un r-uplet d'entiers naturels (k_1, \dots, k_r) vérifie la propriété QSC si et seulement si le r-uplet $(m_{k_1}, \dots, m_{k_r})$ vérifie également cette propriété.

L'unicité d'une décomposition parfaite ne nous préoccupe pas ici (on l'admettra donc), mais seulement son existence. Plus précisément, l'outil dont nous aurons besoin par la suite est un algorithme récursif d'obtention d'une décomposition parfaite.

Question 8. Donner la décomposition parfaite des entiers 6, 7, 8, 9, 10, 27, 28, 29, 30, 31, 100 et 101.

Question 9. Soit n un entier naturel admettant une décomposition parfaite de la forme $n = m_{k_1} + \cdots + m_{k_r}$. Montrer qu'alors n+1 admet une décomposition parfaite de la forme :

$$n+1 = \begin{cases} m_{k_1+1} + (m_{k_3} + \dots + m_{k_r}) & \text{si } r \ge 2 \text{ et } k_1 = k_2 \\ m_1 + m_{k_1} + \dots + m_{k_r} & \text{sinon} \end{cases}$$

Question 10. Écrire la fonction **decomp_parf**: int \rightarrow int list telle que, pour tout entier $n \in \mathbb{N}$, (**decomp_parf** n) renvoie la liste $(m_{k_1}, \dots, m_{k_r})$ des entiers apparaissant dans la décomposition parfaite de n (dans cet ordre). Cette fonction devra avoir une complexité temporelle en O(n).

Partie II. Le tri lisse

Création d'une liste de tas

On appelle *liste de tas* une liste de couples de la forme (a, t) où a désigne un tas binaire parfait et t = |a| est la taille de l'arbre a: il existe donc un entier naturel k tel que $t = m_k$.

Une liste de tas est implantée en CAML par le type (arbre * int) list.

Étant donnée une liste de tas h de la forme précédente, on définit :

- la *longueur* de *h*, notée long(*h*), par

$$long(h) = \begin{cases} 0 & \text{si } h \text{ est la liste vide} \\ r & \text{si } h = ((a_1, t_1), \dots, (a_r, t_r)) \end{cases}$$

- la *taille* de *h*, notée |*h*|, par

$$|h| = \begin{cases} 0 & \text{si } h \text{ est la liste vide} \\ t_1 + \dots + t_r & \text{si } h = ((a_1, t_1), \dots, (a_r, t_r)) \end{cases}$$

- la *hauteur* de *h*, notée haut(*h*), par

$$haut(h) = \begin{cases} 0 & \text{si } h \text{ est la liste vide} \\ \max(\text{haut}(a_1), \dots, \text{haut}(a_r)) & \text{si } h = ((a_1, t_1), \dots, (a_r, t_r)) \end{cases}$$

– le *minimum* de h, noté $min_{\mathcal{H}}(h)$, par

$$\min_{\mathcal{H}}(h) = \begin{cases} +\infty & \text{si } h \text{ est la liste vide} \\ \min(\min_{\mathcal{A}}(a_1), \dots, \min_{\mathcal{A}}(a_r)) & \text{si } h = ((a_1, t_1), \dots, (a_r, t_r)) \end{cases}$$

Comme pour les arbres binaires, on dit que deux listes de tas ont mêmes éléments si les deux listes des arbres les constituant font apparaître exactement les mêmes étiquettes avec exactement le même nombre d'apparitions de chaque étiquette. De même, une liste l d'entiers naturels et une liste de tas constituée d'arbres dont les étiquettes appartiennent à $\mathbb N$ ont mêmes éléments si les deux structures font apparaître exactement les mêmes éléments avec le même nombre d'apparitions de chaque élément.

On dit qu'une liste de tas $h = ((a_1, t_1), ..., (a_r, t_r))$ vérifie la condition TC (pour « tas croissants ») si le r-uplet d'entiers naturels $(t_1, ..., t_r)$ vérifie la propriété QSC. On peut remarquer qu'une liste de tas vérifie la condition TC si et seulement si $|h| = t_1 + \cdots + t_r$ est une décomposition parfaite de |h|. En particulier, la liste de tas vide vérifie la condition TC; on constate enfin que toute liste de tas de la forme h = ((a, |a|)) vérifie la condition TC.

Question 11.

- a) Si h est une liste non vide de tas, a-t-on nécessairement haut $(h) = O(\log_2(|h|))$? A-t-on nécessairement $\log(h) = O(\log_2(|h|))$? Justifier.
- b) Même question si *h* est une liste de tas vérifiant la condition TC.

Question 12. Considérons un arbre réduit à sa racine (c'est à dire un couple (a,1) correspondant à un tas binaire parfait) et une liste de tas $h = ((a_1,t_1),...,(a_r,t_r))$ vérifiant la condition TC. Si l'on ajoute le couple (a,1) en tête de la liste h, on obtient bien une liste de tas (a,1) :: $h = ((a,1),(a_1,t_1),...,(a_r,t_r))$, mais qui ne vérifie peut-être plus la condition TC. L'objectif de cette question consiste à concevoir, en utilisant les outils mis en oeuvre dans les question précédentes, un algorithme qui construit une liste de tas h' ayant les mêmes éléments que (a,1) :: h telle que h' vérifie la condition TC.

a) On considère $h_1 = ((a_1^1, 1), (a_1^2, 3), (a_1^3, 7))$ et $h_2 = ((a_2^1, 3), (a_2^2, 3), (a_2^3, 7))$ deux listes de tas vérifiant la condition TC, où les arbres a_1^1, a_1^2, a_1^3 et a_2^1, a_2^2, a_2^3 , sont donnés dans la figure 1.

FIGURE 1 – Les tas de la question 12.

Expliquer de manière détaillée (à l'aide de représentations graphiques) comment on construit les listes de tas h'_1 et h'_2 lors de l'ajout de l'arbre a réduit à sa racine d'étiquette 8 dans chacune des listes de tas h_1 et h_2 .

- b) Décrire le plus précisément possible un algorithme qui consiste à construire h' à partir d'un arbre a réduit à sa racine et d'une liste de tas h vérifiant la condition TC. On fera en sorte que cet algorithme ait une complexité dans le cas le pire en $O(haut(a_1))$ (où a_1 est le premier tas de la liste h) et en O(1) dans le cas le meilleur. On justifiera soigneusement la correction de la fonction et brièvement sa complexité dans le cas le pire.
- c) Écrire la fonction ajoute: int -> (arbre * int) list -> (arbre * int) list telle que (ajoute x h) renvoie la liste de tas vérifiant la condition TC construite par l'algorithme de la question précédente à partir d'un arbre a réduit à sa racine x et une liste de tas h vérifiant la condition TC.

Question 13. On définit la fonction suivante, de type int list -> (arbre * int) list:

- a) Montrer que le coût en temps de l'appel (constr_liste_tas l) pour une liste l: int list déjà triée de longueur n dans le cas le pire est en O(n).
- b) Montrer que, pour une liste l: int list déjà triée de longueur n, (constr_liste_tas l) a une complexité temporelle en $O(n \log_2(n))$ dans le cas le pire. 1

Tri des racines

On dit qu'une liste de tas $h = ((a_1, t_1), \dots, (a_r, t_r))$ vérifie la condition RO (pour « racines ordonnées ») si les tas présents dans la liste apparaissent par ordre croissant de leurs racines ou, ce qui est équivalent, par ordre croissant de leurs minimums : $\min_A(a_1) \le \dots \le \min_A(a_r)$.

^{1.} On peut en fait montrer que cette complexité est un $\Theta(n)$ mais cela n'est pas demandé.

On considère une liste de tas $h = ((a_1, t_1), \dots (a_r, t_r))$ vérifiant la condition TC et ne vérifiant pas nécessairement la condition RO. On veut réarranger les éléments apparaissant dans h de façon à obtenir une liste de tas h' vérifiant à la fois les conditions TC et RO. Si l'on trie brutalement par insertion les tas de h dans l'ordre croissant des racines, on risque de perdre la condition TC. On va donc mettre en place un tri s'inspirant du tri par insertion mais consistant à échanger les racines des tas présents dans h plutôt que les tas eux-mêmes.

Question 14. Écrire une fonction echange_racines: arbre -> arbre -> (arbre * arbre) de complexité constante telle que si a1 et a2 sont deux arbres binaires non vides, (echange a1 a2) renvoie le couple d'arbres passés en argument en se contentant d'échanger les étiquettes de leurs racines.

Question 15. On considère une liste de tas non vide $h = ((a_1, t_1), \dots, (a_r, t_r))$ vérifiant la condition RO et un quasi-tas a de taille t. Montrer que :

- a) si $\min_{A}(a) \leq \min_{A}(a_1)$, alors (percole a, t)::h est une liste de tas vérifiant RO;
- b) $\sin \min_{\mathcal{A}}(a_1) > \min_{\mathcal{A}}(a_1)$ et si on pose (b, b1) = (echange_racines a a1), alors b est un tas binaire parfait, b_1 est un quasi-tas et $\min_{\mathcal{A}}(b) = \min_{\mathcal{A}}(a_1) \leqslant \min_{\mathcal{A}}(b_1)$.

Question 16. On examine maintenant trois exemples de couples (a, h) pour lesquels a est un quasi-tas et h est une liste de tas non vide vérifiant la condition RO. On souhaite à chaque fois faire évoluer la liste de tas (a, |a|) :: h jusqu'à obtenir une liste de tas vérifiant la condition RO, en ne s'autorisant pour seules opérations que d'éventuelles permutations entre des étiquettes d'un même arbre ou entre des étiquettes de deux arbres distincts (aucune modification de la forme ou de la taille d'aucun arbre en jeu n'est autorisée).

Les couples considérés sont notés (a_1, h_1) , (a_2, h_2) et (a_3, h_3) avec $h_1 = ((a_1^1, 7))$, $h_2 = ((a_2^1, 7))$ et $h_3 = ((a_3^1, 3), (a_3^2, 7))$, où les arbres a_1, a_1^1, a_2, a_2^1 et a_3, a_3^1, a_3^2 sont donnés figure 2.

Figure 2 – Les tas de la question 16.

Pour chacun de ces trois couples, détailler (à l'aide de représentations graphiques) les étapes de la transformation de la liste (a, |a|) :: h en une liste de tas vérifiant la condition RO. Chaque étape devra être clairement identifiée comme faisant appel à un procédé précédemment décrit.

Question 17. Décrire et justifier le plus précisément possible un algorithme qui, à partir d'un quasi-tas a, de sa taille t et d'une liste de tas h, renvoie une liste de tas h' identique à (a,t):: h à permutation près des étiquettes des arbres et tel que si h vérifie la condition RO alors h' vérifie la condition RO.

Montrer que sa complexité en temps est O(1) si a est un tas non vide, que la liste de tas h vérifie la condition RO et que $\min_{\mathcal{A}}(a) \leq \min_{\mathcal{H}}(h)$.

Montrer que sa complexité en temps est O(k + r) où $k = \max\{haut(a), haut(h)\}\$ et $r = \log(h)$.

Question 18. Écrire la fonction

```
insere_quasi: arbre -> int -> (arbre * int) list -> (arbre * int) list
```

telle que **(insere_quasi a t h)** renvoie la liste de tas vérifiant la condition RO construite par l'algorithme de la question précédente à partir d'un quasi-tas *a* de taille *t* et une liste de tas *h* vérifiant la condition RO.

Question 19. Écrire la fonction tri_racines: (arbre * int) list -> (arbre * int) list transformant une liste de tas h supposée vérifier la condition TC en une liste h' de vérifiant à la fois la condition RO et la condition TC et telle que h et h' aient les mêmes éléments.

Question 20. Montrer que la fonction **tri_racines**, appliquée à une liste de tas h vérifiant la condition TC, a une complexité temporelle en $O((\log_2 |h|)^2)$.

Extraction des éléments d'une liste de tas

On souhaite dans cette sous-partie récupérer une liste d'étiquettes à partir d'une liste de tas vérifiant les propriétés précédentes. Soit $h = (Noeud(x, a_1, a_2), t) :: h'$ une liste de tas non vide vérifiant RO et TC. Pour supprimer x de h, si a_1 et a_2 ne sont pas vides, il suffit de construire $h'' = (insere_quasi \ a_1 \ |a_1| \ (insere_quasi \ a_2 \ |a_2| \ h'))$, où $|a_1|$ et $|a_2|$ peuvent se calculer en temps constant.

Question 21. Montrer que h'' vérifie RO et TC.

Question 22. Donner la complexité temporelle de l'évaluation de (**insere_quasi** $a_1 | a_1 |$ (**insere_quasi** $a_2 | a_2 |$ h')) dans le cas le pire, sous la forme O(f(|h|)) pour une fonction f que l'on précisera.

Question 23. Écrire la fonction **extraire:** (**arbre** * **int**) **list** -> **int list** prenant en argument une liste de tas *h* vérifiant les conditions RO et TC et renvoyant la liste triée des éléments de *h* en utilisant les idées ci-dessus.

Question 24. Montrer que la fonction **extraire**, appliquée à une liste de tas h vérifiant les conditions RO et TC, a une complexité temporelle en $O(|h|\log_2|h|)$ dans le pire des cas.

Synthèse

Question 25. Écrire la fonction tri_lisse: int list -> int list qui trie une liste en construisant une liste de tas intermédiaire vérifiant RO et TC avant den extraire les éléments.

Question 26. Montrer que la complexité de cette fonction est en $O(n \log_2 n)$ où n est la longueur de la liste donnée en argument.

Question 27. Déterminer la complexité temporelle de la fonction **tri_lisse** dans le cas particulier où la liste passée en argument est déjà triée.

Question 28. Justifier enfin que la complexité spatiale de tri_lisse sur une liste l de longueur n est en $\Omega(n)$.

