5.2 TEST MS

1. (a) (i) Equation Na₂O + H₂O
$$\rightarrow$$
 2NaOH (1)

 pH 11–14 (1)

(ii) Equation SO₂ + H₂O \rightarrow H₂SO₃ (1)

 pH 2–5 (1) 4

(b) Covalent oxides \rightarrow acidic solutions (1)

ionic oxides \rightarrow alkaline solutions (1)

2.

(i) Macromolecular/giant covalent/giant molecular

(ii) Silicon/Si

(iii) e.g. CaO + SiO₂ CaSiO₃ Base

Balanced

1

(4)

3. (a) (i) SO₂
 $+4$

(ii) $4P + 5O_2 \rightarrow 2P_2O_5$

or $P_4 + 5O_2 \rightarrow P_4O_{10}$

(b) (i) B

E

They have low melting points

or there are weak van der Waals forces between molecules

(ii) Add water or heat in a flame

Test pH check flame colour

1 3/14 yellow

1

[9]

4.	(a)	(i)	can form a solution with pH less than 3: P ₄ O ₁₀ or SO ₃ (1)	
		(ii)	can form a solution with with a pH greater than 12: Na ₂ O (1) penalise any wrong answer to zero	2
	(b)	(i)	MgO + 2HNO ₃ \rightarrow Mg(NO ₃) ₂ + H ₂ O or an ionic equation (1) i.e. MgO + 2H ⁺ \rightarrow Mg ²⁺ + H ₂ O $\underline{not} \ O^{2-} + 2H^+ \stackrel{.}{\vdash} \ H_2O$	
		(ii)	2NaOH + SiO ₂ → Na ₂ SiO ₃ + H ₂ O or ionic equation (1) i.e. SiO ₂ + 2OH ⁻ → 2Na ⁺ + H ₂ O	
		(iii)	$3\text{Na}_2\text{O} + 2\text{H}_3\text{PO}_4 \rightarrow 2\text{Na}_3\text{PO}_4 + 3\text{H}_2\text{O}$ etc or ionic equation (1) <i>i.e.</i> $Na_2O + 2H^+ \stackrel{.}{\to} 2Na^+ + H_2O$	3
5.	(a)	(i)	NaOH may be shown as ions. Balanced using H ₂ or ½ H ₂	
			$2Na + 2H_2O \rightarrow 2NaOH + H_2$	1
		(ii)	silicon forms a giant covalent / atomic lattice / has a macromolecular structure / has diamond structure (1)	
			contains many covalent bonds / forms 4 bonds per atom / lattice is strong / the bonding is strong / bonds are strong / silicon is non-polar (1)	2
			condone 'bond is strong'	
	(b)	(i)	$SiO_2 / P_2O_5 / P_4O_{10} / P_2O_3 / P_4O_6 / SO_2 / SO_3 / Cl_2O / ClO_2 / Cl_2O_6 / Cl_2O_7$	1
		(ii)	$Na_2O / Na_2O_2 / MgO$	1
		(iii)	Al ₂ O ₃ must give formulae	1 [6]
6.	(a)	(i)	<u>Deductions</u> :	
			Ionic (1) Ions not free to move in the solid state (1) Ions free to move when molten or in aqueous solution (1) Identity of P: Na ₂ O or sodium oxide (1) N.B. If a formula given this must be correct	
			Equation: $Na_2O + H_2O \rightarrow 2 \text{ NaOH (1)}$	5
		(ii)	<u>Deductions</u> :	
			Covalent Intermolecular forces are weak or van der Waals forces, or dipole-dipole N.B. Any answer including a reference to hydrogen bonding is incorrect	
			Identity of Q : SO ₂ or sulphur dioxide (1)	
			Equation: $SO_2 + H_2O \rightarrow H_2 SO_3(1)$ NB Allow max one for SO_3 4	

- (b) (i) Amphoteric (1)
 - (ii) Equation with NaOH

 $Al(OH)_3 + NaOH \rightarrow NaAl(OH)_4$

OR AI(OH)₃(H₂O)₃ + OH⁻ $\stackrel{.}{\vdash}$ [AI(OH)₄(H₂O)₂]⁻ + H₂O OR AI(OH)₃ + OH⁻ $\stackrel{.}{\vdash}$ [AI(OH)₄]⁻

R identified as Al(OH)₃ or Al(OH)₃(H₂O)₃ (1)

A balanced equation (1)

N.B. Allow equation with six co-ordinate Aluminium and up to six OH⁻ ligands

N.B. Allow equation mark if $M(OH)_3$ given in a balanced equation

Equation with H₂SO₄

 $2Al(OH)_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 6H_2O$

OR Al(OH)₃(H₂O)₃ + H⁺ \rightarrow [Al(OH)₂(H₂O)₄⁺ + H₂O

NB Allow equations with six co-ordinate Aluminium and up to six H_2O ligands

NB Allow equation mark if H(OH)₃ given in a balanced equation

Correct Al species as product (1)

A balanced equation (1)

(iii) Large lattice energy

or strong covalent bonds

or ΔH_{soln} is very positive

or ΔG is very positive

or sum of hydration energies less than covalent bond energies (1)

[15]

(c) P_4O_{10} is a molecular (structure) or simple covalent (1)

Weak <u>intermolecular forces or van der Waals</u> forces (between molecules)

(1)

SiO₂ is a macromolecule / giant covalent / giant molecule (1)

Not giant lattice

(Strong) covalent bonds (between atoms) must be broken (1)

[9]