Nom:

Prénom:

Note: /20

Contrôle de connaissances 21

Précipitation et oxydoréduction (13')

/7 1 On ajoute $n = 10^{-5}$ mol d'ions Cl⁻ dans $V_0 = 10\,\mathrm{mL}$ de nitrate d'argent (Ag⁺,NO₃⁻) à $c_0 = 10^{-3}\,\mathrm{mol\cdot L^{-1}}$. On donne p $K_s(\mathrm{AgCl}) = 9.8$. Obtient-on un précipité de chlorure d'argent AgCl? Trouver la valeur limite pCl_{lim} du début de précipitation de ce solide; tracer alors son diagramme d'existence en fonction de pCl.

 ${\bf Figure~21.1}-{\rm Diagramme~d'existence~de~AgCl}$

/6 2 La solubilité de $AgCl_{(s)}$ dans l'eau pure est $s_{pur} \approx 1,3 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$. Calculer sa solubilité s'il y a déjà $c = 0,1 \text{ mol} \cdot \text{L}^{-1}$ de Cl^- en solution, et comparer à la situation pure. Comment s'appelle cet effet? On donne $pK_s(AgCl) = 9,8$.

/3 3 Pour une demi-équation

$$\alpha \text{Red} + \beta H_2 O_{(l)} = \gamma Ox + \delta H_{(aq)}^+ + \text{ne}^-$$

1/1

Donner l'expression du potentiel de NERNST en fonction de la température, puis sa forme simplifiée à 25 °C.

/4 $\boxed{4}$ Donner les demi-équations puis les potentiels des couples suivants :

 \diamond $\operatorname{Fe^{2+}_{(aq)}}/\operatorname{Fe_{(s)}}$:

 $\Diamond \operatorname{MnO}_{4(aq)}^{-}/\operatorname{Mn}_{(aq)}^{2+}:$

 $\diamondsuit \operatorname{Fe^{3+}_{(aq)}}/\operatorname{Fe^{2+}_{(aq)}}$

 $\Diamond H_{(aq)}^+/H_{2(g)}$