

Projeto da fonte de tensão

Luísa B. Shimamabucoro Wictor Dalbosco Raissa T. Barreira

GUIA DE APRESENTAÇÃO

Componentes Utilizados
Especificação dos componentes
Cálculos
Circuito Eagle
Circuito Falstad

USP, ICMC - Jun.

Componentes Utilizados

Fonte AC de frequência 60Hz e tensão nominal(Vrms) de 127V, sendo a tensão de pico 127*sqrt(2) ~ 180V.

Ponte de diodos completa, composta por 4 diodos, utilizada para retificação (conversão de CA para CC).

Trafo com o primário de Vrms = 127V e secundário de 12V, utilizado para a transformação de tensão, reduzindo a amplitude da onda.

Capacitor, utilizado para a filtragem (redução de ripple).

USP, ICMC - Jun.

Componentes Utilizados

- Resistor + diodo zener, o resistor é utilizado para limitar a corrente que chega ao zener, de acordo com a lmax do datasheet. São utilizados para a regulação de tensão.
- Potenciômetro + resistor, o resistor é utilizado para limitar a corrente do ramo caso o potenciômetro esteja com resistência nula. São utilizados para variar a tensão na carga.

Transistor bipolar NPN, é utilizado para, a partir de uma pequena corrente de base, controlar a corrente que chega a carga.

ESPECIFICAÇÃO DOS COMPONENTES

Fonte AC 127 Vrms.

Transformador 12+12 1,2a Trafo 1200ma 12v +12v Ac 1,2a Trafo.

4 diodos 1n4007.

Capacitor 470 micro Faraday.

Resistor 470 ohms e diodo zener de tensão reversa igual a 12V 1N4742A 1W.

Potenciômetro de 10k e resistor de 2k.

1 transistor BJT NPN BC337.

Cálculos

FONTE

Para escolher a fonte, utilizamos a tensão que chega às residências, pois o objetivo do projeto é justamente fazer uma fonte que seja de fácil uso.

TRANSFORMADOR

Para escolher o transformador, consideramos que ele aguenta 127V no primário, tendo uma saída no secundário de no mínimo 12V, que pode ser adquirido ao utilizar o tap central do trafo escolhido. Além disso, o transformador deve ser capaz de aguentar a corrente do circuito, que é igual a 100mA.

USP, ICMC - Jun.

Cálculos

DIODOS

Para escolher os diodos, checamos o datasheet:

CAPACITOR

Para escolher o capacitor, levamos em consideração os valores padrão disponíveis no mercado e que geram uma redução de ripple aceitável para o projeto.

Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	1N 4001	1N 4002	1N 4003	1N 4004	1N 4005	1N 4006	1N 4007	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	50	100	200	400	600	800	1000	V
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	560	700	V
Average Rectified Output Current (Note 1) $@T_A = 75^{\circ}C$	lo	1.0					А		
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	lғsм	30					А		
Forward Voltage @I _F = 1.0A	VFM	1.0				V			
Peak Reverse Current $@T_A = 25^{\circ}C$ At Rated DC Blocking Voltage $@T_A = 100^{\circ}C$	lгм	5.0 50				μА			
Typical Junction Capacitance (Note 2)	Cj				15				рF
Typical Thermal Resistance Junction to Ambient (Note 1)	R⊕JA				50				K/W
Operating Temperature Range	Tj	-65 to +150			°C				
Storage Temperature Range	Тѕтс	-65 to +150			°C				

Cálculos

DIODOS

Para escolher o diodo zener, checamos o datasheet:

Como a corrente mínima é igual a 21mA e a tensão que chega no circuito é cerca de 18V e a de saída do zener é 12V, deve ter uma queda de 6V no resistor. Colocando um resistor de 470 ohms, facilmente encontrado no mercado, a corrente do zener foi menor que 21mA e atingiu-se o valor final desejado da fonte.

Electrical Characteristics $@T_A=25^{\circ}C$ unless otherwise specified

Type Number	Nominal Zener Voltage (Note 2)	Test Current	Maximum 2	Zener Impedar	nce (Note 3)	Leakage	Max Surge Current 8.3ms	
(Note 1)	Vz @ Izt	Izт	Z zт @ I zт	Zzk @ Izk	lzκ	lR	@ V R	Izs
	(V)	(mA)	(Ω)	(Ω)	(m A)	(μΑ)	(V)	(mA)
1N4728A	3.3	76	10	400	1.0	100	1.0	1380
1N4729A	3.6	69	10	400	1.0	100	1.0	1260
1N4730A	3.9	64	9.0	400	1.0	50	1.0	1190
1N4731A	4.3	58	9.0	400	1.0	10	1.0	1070
1N4732A	4.7	53	8.0	500	1.0	10	1.0	970
1N4733A	5.1	49	7.0	550	1.0	10	1.0	890
1N4734A	5.6	45	5.0	600	1.0	10	2.0	810
1N4735A	6.2	41	2.0	700	1.0	10	3.0	730
1N4736A	6.8	37	3.5	700	1.0	5.0	4.0	660
1N4737A	7.5	34	4.0	700	0.5	5.0	5.0	605
1N4738A	8.2	31	4.5	700	0.5	5.0	6.0	550
1N4739A	9.1	28	5.0	700	0.5	0.5	7.0	500
1N4740A	10	25	7.0	700	0.25	0.5	7.6	454
1N4741A	11	23	8.0	700	0.25	0.1	8.4	414
1N4742A	12	21	9.0	700	0.25	0.1	9.1	380
1N4743A	13	19	10	700	0.25	0.1	9.9	344
1N4744A	15	17	14	700	0.25	0.1	11.4	304
1N4745A	16	15.5	16	700	0.25	0.1	12.2	285
1N4746A	18	14	20	750	0.25	0.1	13.7	250
1N4747A	20	12.5	22	750	0.25	0.1	15.2	225
1Ν/7/2Λ	22	11 5	22	750	0.25	0.1	16.7	205

Cálculos

POTENCIÔMETRO

Para escolher o potenciômetro de 10k e o resistor de 2k, escolhemos valores facilmente encontrados no mercado e que possibilitam atingir o valor desejado na saída da fonte.

TRANSISTOR

Para escolher o transistor, checamos o datasheet:

Charact	Symbol	Min	Тур	Max	Unit				
OFF CHARACTERISTICS									
Collector–Emitter Breakdown Voltage (I _C = 10 mA, I _B = 0) BC338	BC337	V _{(BR)CE}	45 25	- -	- -	Vdc			
Collector – Emitter Breakdown Voltage (I _C = 100 μA, I _E = 0) BC338	BC337	V _{(BR)CE}	50 30	- -	-	Vdc			
Emitter – Base Breakdown Voltage (I _E = 10 μA, I _C = 0)		V _{(BR)EB}	5.0	-	-	Vdc			
Collector Cutoff Current $(V_{CB} = 30 \text{ V}, I_{E} = 0)$ $(V_{CB} = 20 \text{ V}, I_{E} = 0)$	BC337 BC338	I _{CBO}	-	-	100 100	nAdo			
Collector Cutoff Current $(V_{CE} = 45 \text{ V, } V_{BE} = 0)$ $(V_{CE} = 25 \text{ V, } V_{BE} = 0)$	BC337 BC338	Ices	-	-	100 100	nAdo			
Emitter Cutoff Current (V _{EB} = 4.0 V, I _C = 0)		I _{EBO}	-	-	100	nAdo			
ON CHARACTERISTICS									
DC Current Gain ($I_C = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$) ($I_C = 300 \text{ mA}, V_{CE} = 1.0 \text{ V}$)	BC337 BC337-16 BC337-25/BC338-25 BC337-40	h _{FE}	100 100 160 250 60	- - - -	630 250 400 630	-			
Base–Emitter On Voltage (I _C = 300 mA, V _{CE} = 1.0 V)		V _{BE(on)}	-	-	1.2	Vdc			
Collector-Emitter Saturation Voltage		V _{CE(sat)}	-	-	0.7	Vdc			

CIRCUITO E SEUS COMPONEN TES

Composto por uma ponte retificadora, potenciômetro, LED, dois capacitores, dois resistores e um regulador de tensão além da entrada e saída.

ENTRADA E PONTE RETIFICADORA

Utiliza 4 diodos para transformar a corrente alternada (CA) proveniente da fonte de energia em corrente contínua (CC) com ajuda de um capacitor.

USP, ICMC - Jun. 2020

PONTE DE DIODOS

Diodos são componentes eletrônicos que limitam a passagem de corrente elétrica em apenas um sentido.

Pontes de diodos são utilizadas para manter a corrente com valores positivos, evitando a sua característica alternada.

Os capacitor colocado em paralelo a ponte retificadora faz com que sua corrente realmente se mantenha contínua (apesar de um pequeno ripple).

LED

Utiliza um LED e um resistor como componentes opcionais do circuito.

USP, ICMC - Jun. 2020

O resistor colocado em série com o LED tem como função diminuir a tensão que passa por ele, o qual acende assim indicando o funcionamento do circuito.

REGULADOR DE TENSÃO E POTENCIÔME TRO

Utiliza um regulador de tensão ajustável (LM317), um resistor e um potenciômetro.

USP, ICMC - Jun. 2020

2020

FUNCIONAMENTO

REGULADOR DE TENSÃO

Reguladores de tensão tem como função manter uma tensão constante.

Entre o pino de ajuste e o de saída existem dois resistores (entre eles o potenciômetro, que é ajustável). Esses resistores determinam a tensão de saída.

POTENCIÔMETRO

Potenciômetros são resistores ajustáveis que variam sua resistência de acordo com a posição do cursor.

A sua variação de resistência resulta em uma variação de tensão uma vez que estáa conectado ao regulador.

SAÍDA E CAPACITOR

Utiliza um capacitor na saída.

USP, ICMC - Jun. 2020

O capacitor colocado no final do circuito tem como objetivo retificar mais a tensão, tornando-a mais constante

O capacitor diminui ainda mais o efeito de ripple antes de enviar a tensão e corrente para a saída da fonte.

