Apellido y Nombre:	Universidad Nacional del Litoral
	Facultad de Ingeniería y Ciencias Hídricas
Carrera: DNI:	Departamento de Informática
[Llenar con letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Examen Final. [6 de Octubre de 2005]

El examen se compone de dos partes.

- Clases y programación: TODOS.
- Operativos y preguntas: Sólo LIBRES.

Los libres deben cumplir con al menos un $70\,\%$ del porcentaje de la segunda parte.

- Ej. 1.- [todos: queue (20 pt)] Escribir las funciones del TAD COLA (queue<>). Incluir el header y todas las declaraciones necesarias.
- Ej. 2.- [todos: Ejercicios de programación]
 - a) [verifica-abb (50 pt)] Escribir una función predicado bool verifica_abb(tree<int> &A,bool (*less)(int,int)); que verifica si el subárbol de un nodo n verifica la condición de árbol binario de búsqueda con respecto a la relación de orden less().
 - b) [elimina-valor (30 puntos)]
 Escribir una función voi elimina_valor(queue<int>&C, int); que elimina todos las ocurrencias del valor n en la cola C. Por ejemplo, si C = {1,3,5,4,2,3,7,3,5}, después de elimina_valor(C,3) debe quedar C = {1,5,4,2,7,5}. Sugerencia: Usar una estructura auxiliar lista o cola.
 - Restricciones: El algoritmo debe tener un tiempo de ejecución O(n), donde n es el número de elementos en la cola original.
- Ej. 3.- [libres: Ejercicios operativos. (total 80pt)]
 - a) [particionar (20 pt)] Considerando el árbol (z q (r a (b 1)) (t n m)), decir cuál son los nodos descendientes(q), antecesores(q), izquierda(q) y derecha(q).
 - b) [heap-sort (20 pt)] Dados los enteros {6, 8, 11, 4, 5, 9, 6, 7, 10} ordenarlos por el método de "montículos" ("heap-sort"). Mostrar el montículo (minimal) antes y después de cada inserción/supresión.
 - c) [huffman (20 ptos)] Dados los caracteres siguientes con sus correspondientes probabilidades, construir el código binario y encodar la palabra KATHRINA P(K) = 0.05, P(H) = 0.2, P(T) = 0.1, P(R) = 0.05, P(A) = 0.2, P(N) = 0.15, P(I) = 0.1, P(P) = 0.05, P(S) = 0.05, P(B) = 0.05. Calcular la longitud promedio del código obtenido.
 - d) [rec-arbol (20 ptos)] Dibujar el árbol ordenado orientado cuyos nodos, listados en orden previo y posterior son
 - ORD_PRE = $\{W, X, Y, Z, R, P, Q, T, V, U\}$,
 - ORD_POST = $\{X, Y, R, P, T, V, U, Q, Z, W\}$.
- Ej. 4.- [libres: preguntas (20 pt)] Responder según el sistema "multiple choice", es decir marcar con una cruz el casillero apropiado. Atención: Algunas respuestas son intencionalmente "descabelladas" y tienen puntajes negativos!!]

Apellido y Nombre	e:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas
Carrera:	DNI:	Departamento de Informática
[Llenar con letra mayús	cula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
a) ¿(Cómo es el tiempo de ejecución para inte	rcalar dos listas clasificadas de n elementos?
b) ¿(Cuál de los siguientes árboles es un árbol	binario de búsqueda?
	(7 5 (9 6 (10 . 12)))) (7 5 (9 (8 6 .) (13 . 12)))) (7 5 (9 8 (10 . 12)))) (7 5 (9 8 (10 12))))	
c) El es		le clasificación rápida (quick-sort) en el peor caso
d) ¿(Cuál es el tiempo de ejecución de la oper	ación de re-heap en montículos?
	Caso promedio $O(\log n)$ Siempre $O(\log n)$ Caso promedio $O(n \log n)$ Siempre $O(n \log n)$.	

2