# Validating the Performance of Forecast Models in the Case of Limited Historical Data

Zachary Hamida, PhD Student James-A Goulet, Professor

Polytechnique Montreal

February 21, 2018



### Performance of Forecast Model:

- The performance of a forecast model is determined based on:
  - 1. Forecast Accuracy.

Introduction

Introduction

- 2. Computational Efficiency (i.e. computational time or hardware resources).
- In terms of importance (generally):

Forecast Accuracy > Computational efficiency



Introduction

### Performance Validation:

- 1. Apparent Validation: model performance is tested based on the training dataset.
- 2. Internal Validation: split the data into two categories: one for training and one testing (i.e. Cross Validation or Bootstrap).
- 3. External Validation: test the model on newly available data (not used in training).



Introduction 000

## Trade-off Advantages and Limitations:

| Validation | Advantages        | Limitations                 |
|------------|-------------------|-----------------------------|
| Apparent   | Always applicable | NOT a sufficient measure    |
|            |                   | (i.e. overfitting)          |
| Internal   | Good performance  | NOT efficient in case of    |
|            | measure           | small dataset.              |
| External   | Good performance  | NOT an always available op- |
|            | measure           | tion.                       |



# Validation in case of Limited Historical Data

Is there a way to validate a forecast model in case of small datasets?.



### Problem Statement

#### Validation in case of Limited Historical Data

Is there a way to validate a forecast model in case of small datasets?.

An example (Visual Inspection Data):



900

Limited Data Validation Methods:

### Limited Data Validation Methods:

Two methods can be used in the case of limited data:

- 1. Validation through Simulation.
- 2. Panel Data Cross Validation.



- The model is tested on synthetic data that consumes the same characteristics of the original data.
- Advantages:
  - 1. Create a sufficient data to test the model through different validation methods
  - 2. Validation vs. the true state is possible. (i.e. excluding the measurement error)
- Limitation:
  - 1. The synthetic data represents only what we put in it.



## Quick Recap

MDMDET Visual Inspections database of bridges.



### Quick Recap

MDMDET Visual Inspections database of bridges.



### Quick Recap

MDMDET Visual Inspections database of bridges.



#### The employed forecast model is Kalman Filter:





Problem Parameters

- 1. Model Uncertainty  $(\sigma_w)$ .
- 2. Observation Uncertainty ( $\sigma_{V_i}$ ) that includes:
  - 2.1. Inspector Based Uncertainty (Subjective Observations).
  - 2.2. Condition Based Uncertainty.



- 1. Model Uncertainty  $(\sigma_w)$ .
- 2. Observation Uncertainty ( $\sigma_{V_i}$ ) that includes:
  - 2.1. Inspector Based Uncertainty (Subjective Observations).
  - 2.2. Condition Based Uncertainty.





- 1. Model Uncertainty  $(\sigma_w)$ .
- 2. Observation Uncertainty ( $\sigma_{V_i}$ ) that includes:
  - 2.1. Inspector Based Uncertainty (Subjective Observations).
  - 2.2. Condition Based Uncertainty.









- 1. Model Uncertainty  $(\sigma_w)$ .
- 2. Observation Uncertainty ( $\sigma_{V_i}$ ) that includes:
  - 2.1. Inspector Based Uncertainty (Subjective Observations).
  - 2.2. Condition Based Uncertainty.













#### Additional KF Framework Parameters

- 1. Initial Guess  $(M_{t=0}, \dot{M}_{t=0}, \ddot{M}_{t=0})$  (Tuned by the smoother).
- 2. Initial Guess  $(\sigma_{M_{t=0}}, \sigma_{\dot{M}_{t=0}}, \sigma_{\ddot{M}_{t=0}})$  (Tuned by the smoother).

Why?



#### Additional KF Framework Parameters

- 1. Initial Guess  $(M_{t=0}, \dot{M}_{t=0}, \ddot{M}_{t=0})$  (Tuned by the smoother).
- 2. Initial Guess  $(\sigma_{M_{t=0}}, \sigma_{\dot{M}_{t=0}}, \sigma_{\ddot{M}_{t=0}})$  (Tuned by the smoother).

#### Why?

The time series (where we have data) is too short that it can be too sensitive to the initial guess.



### Objective

- Define different frameworks to estimate all the aforementioned KF parameters.
- Select the best framework through a validation process.



### KF Parameter Estimation Frameworks Assumptions

- All frameworks share the same objective:  $Max. \sum Loglikelihood(i, j)$  for all structural elements.
- The Loglikelihood(i, i) for structural element(i) and observation (i) is computed as follows:



- In all frameworks, the parameters are optimized using the same optimization algorithm: NewtonRaphson.



#### Main KF Parameter Estimation Framework





Methodology

### Generating Synthetic Data

- 1. Generate Inspectors IDs.
- 2. Generate Inspectors standard deviation within a known range.
- Allow an inspector to inspect a structural element multiple times through grouping and shuffling.
- 4. Generating the synthetic state and observations:

$$x(t+1) = A * x(t) + w : w \sim \mathcal{N}(zeros, Q)$$
  
$$y(t+1) = F * x(t+1) + v : v \sim \mathcal{N}(0, \sigma_{v_i})$$

5. Constraints:

Hard constraint: speed & acc  $\leq 0$ Soft constraint:  $y(t+1) \le y(t)$ 



### Visual Inspections Toolbox































### Perfect Estimation Case

Structure: 4, Poutre Element: 1



Time [Year]

< □ > < □ > < ≧ > < ≧ > < ∃ > = 3

990

### **Bad Estimation Case**

Structure: 2, Poutre Element: 1



Time [Year]

### An Average Estimation Case

#### Structure: 5, Poutre Element: 1



Time [Year]



Validating the Performance of Forecast Models in the Case of Limited Historical Data

990

#### Conclusions & Future Work

#### - Conclusions:

Conclusions & Future Work

- 1. Validation can be used to compare the performance of different forecast models.
- 2. In some cases where the data is limited (small data sets), simulating the data characteristics can enable validating forecast models performance.
- Future Work:
  - 1. Panel Cross Validation with "real" visual inspection data.

