NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

THESIS

DEVELOPMENT OF A FORECASTING MODEL OF NAVAL AVIATOR RETENTION RATES

by

Matthew F. Coughlin

March 1996

Principal Advisor: Associate Advisor: Stephen L. Mehay Julie A. Dougherty

Approved for public release; distribution is unlimited.

19960517 137

DTIC QUALITY INSPECTED 1

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

R	EP	ORT	DO	CIIN	ENT.	ATIO	N PAGE
17					1 1 1 1 1 1	4 11/	T A TEN

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

- REPORT DATE 1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED March 1996 Master's Thesis 4. TITLE AND SUBTITLE DEVELOPMENT OF A FORECASTING MODEL OF NAVAL AVIATOR RETENTION RATES **FUNDING NUMBERS** AUTHOR Matthew F. Coughlin 7. PERFORMING ORGANIZATION NAME AND ADDRESS 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey CA 93943-5000 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
- 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.
- 12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

AGENCY REPORT NUMBER

13. ABSTRACT

The objective of this thesis is to develop an estimating model to predict the effects of various internal and external variables on Naval aviator retention rates. The estimating model will be useful to aviation program managers to develop a spreadsheet tool for predicting retention rates for Naval aviators. Past analyses have focused mainly on analyzing micro-level data. This thesis uses grouped retention rates for all Naval aviators for fiscal years 1977 through 1993 to determine factors associated with the retention decisions made by specific cohorts. The analysis quantifies the relationships between retention and various internal, external and time-related factors. Among the internal factors are various downsizing policies such as the Voluntary Separation Incentive/ Selective Separation Bonus (VSI/SSB) program and rightsizing tools such as the Aviation Continuation Pay (ACP) program. External factors examined include both civilian unemployment rates and major airline hiring rates. Additionally, time since minimum service requirement (MSR) was included in the models to control for the effects on aviator continuation rates of the expiration of the MSR during the 6-11 year mark of an aviator's career. Models were specified for each of the naval aviation communities including jet, propeller, and helicopter, and estimated using a grouped LOGIT estimation technique. The study finds that civilian unemployment rates, VSI/SSB, ACP and airline hiring rates have significant effects on retention in the various aviation communities.

14. SUBJECT TERMS	15. NUMBER OF PAGES		
Naval Aviators, Retention	70		
·	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

ii

Approved for public release; distribution is unlimited.

DEVELOPMENT OF A FORECASTING MODEL OF NAVAL AVIATOR RETENTION RATES

Matthew F. Coughlin
Lieutenant, United States Navy
B.S., Western New England College, 1988

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL March 1996

Author:

Matthew F. Coughlin

Approved by:

Stephen L. Mehay, Principal Advisor

Julie A. Dougherty, Associate Advisor

Reuben T. Harris, Chairman

Department of Systems Management

ABSTRACT

The objective of this thesis is to develop an estimating model to predict the effects of various internal and external variables on Naval aviator retention rates. The estimating model will be useful to aviation program managers to develop a spreadsheet tool for predicting retention rates for Naval aviators. Past analyses have focused mainly on analyzing micro-level data. This thesis uses grouped retention rates for all naval aviators for fiscal years 1977 through 1993 to determine factors associated with the retention decisions made by specific cohorts. The analysis quantifies the relationships between retention and various internal, Among the internal factors are various external and time-related factors. downsizing policies such as the Voluntary Separation Incentive/ Selective Separation Bonus (VSI/SSB) program and rightsizing tools such as the Aviation Continuation Pay (ACP) program. External factors examined include both civilian unemployment rates and major airline hiring rates. Additionally, time since minimum service requirement (MSR) was included in the models to control for the effects on aviator continuation rates of the expiration of the MSR during the 6-11 year mark of an aviator's career. Models were specified for each of the naval aviation communities including jet, propeller, and helicopter, and estimated using The study finds that civilian a grouped LOGIT estimation technique. unemployment rates, VSI/SSB, ACP and airline hiring rates have significant effects on retention in the various aviation communities.

vi

TABLE OF CONTENTS

I.	INTRO	ODUCTION	1
Π.	LITER	RATURE REVIEW	5
	A.	CONTINUATION RATES	5
	В.	EXTERNAL EFFECTS	. 7
	C.	INTERNAL EFFECTS	. 9
	D.	SUMMARY	10
Ш.	METH	HODOLOGY	11
	A.	DATA	11
	B.	MODEL SPECIFICATION	12
IV.	STAT	ISTICAL RESULTS	17
	A.	RESULTS OF ESTIMATING GROUPED LOGIT MODELS FOR ALL NAVAL AVIATORS	17
	B.	RESULTS OF ESTIMATING SEPARATE LOGIT MODELS BY SPECIFIC AIRCRAFT TYPE	20
	C.	DISCUSSION OF MODEL PERFORMANCE	25
	D.	DISCUSSION OF THE EXPLANATORY VARIABLES	27
V.	CONC	CLUSION	31
	A.	RECOMMENDATIONS	32
	B.	SUMMARY	33
APP	ENDIX	A. STATISTICAL DATA	35
ΔDD	EMDIY	B RESULTS OF LOGIT ESTIMATIONS	51

LIST OF REFERENCES	57
INITIAL DISTRIBUTION LIST	59

LIST OF TABLES

Table 4.1.	Weighted LOGIT Results for all Naval Aviators (dependent variable = continuation rate)	18
Table 4.2.	Unweighted LOGIT Results for All Naval Aviators (dependent variable = continuation rate)	19
Table 4.3.	Weighted LOGIT Results for All Helicopter Aviators (dependent variable = continuation rate)	20
Table 4.4.	Unweighted LOGIT Results for All Helicopter Aviators (dependent variable = continuation rate)	21
Table 4.5.	Weighted LOGIT Results for All Propeller Aviators	22
Table 4.6.	Unweighted LOGIT Results for All Propeller Aviators (dependent variable = continuation rate)	23
Table 4.7.	Weighted LOGIT Results for Jet Aviators	24
Table 4.8.	Unweighted LOGIT Results for Jet Aviators (dependent variable = continuation rate)	25
Table 4.9.	Differences In Predicted vs. Actual Continuation Rates From Weighted and Un-Weighted LOGIT Estimation Models	26
Table 4.10.	Acquired R^2 and F-Values for LOGIT Estimations	27
Table 4.11.	The Effects of Increasing the Proportion Eligible for the VSI/SSB Program by 10%	28
Table 4.12.	The Effects of Increasing the Proportion Eligible for the ACP Program by 10%	28
Table 4.13.	The Effects of an Increase in the Unemployment Rate of 1 Percentage Point	29

X

.

I. INTRODUCTION

The objective of this thesis is to develop a model to examine the effects of various internal and external variables on Naval aviator retention rates. The training of Naval aviators is among the most expensive training provided by the Armed Forces. Therefore, it is safe to say that Naval aviation training is among the largest investments in human capital in the Department of Defense. It is for this reason that measures of retention are closely scrutinized by policy-makers and program managers. The manpower implications of aviator force management is crucial to both near- and long-term readiness.

Some argue that the carrier battle group is the centerpiece of naval warfare. It is the purpose of the carrier battle group to deploy combat aircraft worldwide with very short notice as a foreign policy tool. Shortages of naval aviators will have direct implications on the ability to maintain sea control and keep specified levels of battle groups at top readiness levels.

Because the investment of human capital in aviators is so extensive, the Department of the Navy must be able to closely monitor aviator retention rates. Retention rates must be maintained sufficiently high in order to guarantee a return on investment to the Navy. If retention is too low, the Navy incurs additional costs of training and "growing" an experienced aviator to replace each loss. Also the flow of junior officers into the senior billets will not be sufficient to meet billet requirements. These considerations are especially important in times when overall force reductions are taking place. Currently (1996), an atmosphere of "rightsizing" has replaced the "downsizing" mentality of the early 1990s. During this time of rightsizing the Navy must be able to follow continuation trends so that the high aviator turnover of the downsizing period does not repeat itself and threaten overall readiness.

In order for program mangers to monitor continuation patterns, a tool must be available to predict future continuation rates as a function of internal Navy rightsizing policies, external economic forces and time-in-service considerations. Aviation community managers must have the ability to separate the influence of internal policies from the external effects exerted by the civilian labor market. Once a set of predicted retention rates is obtained, program managers can devise policies on pay, bonuses, and other financial incentives to counterbalance the expected changes in military (e.g., downsizing) policies, and changes in the civilian sector (e.g., changes in airline hiring rates). Some internal policies that affect retention both negatively and positively include the VSI/SSB programs and ACP bonus programs. Other recent policy changes that affected retention included the extension of minimum service requirements and mandatory United States Naval Reserve commissions for all newly commissioned officers.

External factors that possibly affect retention include unemployment rate for professional civilian workers. Additionally, it has been hypothesized that another highly motivating external economic factor affecting aviation retention rates is the major airline hiring rates (AHR). The Department of Defense, and the Air Force in particular, has historically been concerned that the employment patterns of the major civilian airlines have had a detrimental effect on the retention of career aviators.

Therefore, it is essential to determine what effects that both internal policies and external economic factors have had on the underlying survival rates of Naval aviators. Of course, there are many other factors that play into separation decisions such as taste for military life, family separation, arduous sea duty and a host of other factors. This study will concern itself with qualitative data obtainable from readily accessible sources and with implementing econometric estimation techniques for grouped data.

The estimation technique used on the grouped data will consist of a LOGIT model estimated via maximum likelihood techniques. This differs from ordinary least squares (OLS) estimation, which has been used in past studies. The data set uses past continuation rates originally developed by Turner (1995). The grouped LOGIT method of estimation provides a quantitative estimate of the marginal effects of internal and external factors on Naval aviator retention. With this model in place, a spreadsheet program can be devised for use by the community manager to predict future retention rates to help guide internal pay and other incentive policies.

. 4

II. LITERATURE REVIEW

This study will focus on historical retention rate information to help predict future baseline continuation rates as a function of several internal and external economic factors. Continuation rates are computed as the percentage of an entering cohort remaining in service over a particular time period. Since these rates form the basis of the study, a review of the calculation procedure is needed.

A. CONTINUATION RATES

Continuation rates measure the proportion of a cohort remaining on active duty status from one year to the next. Two types of retention calculations are routinely used in the manpower field, Cumulative Retention Rates (CRR) and Minimum Service Requirement rates (MSR). CRR is now the official method of calculating survival rates (Hogan, 1995). The CRR is the product of the yearly continuation rates from year of service 6 through 11. This is calculated not from the cohort itself, but from a cross section of cohorts for a particular period (Hogan, 1995). Thus, CCR is calculated as:

$$CCR = \sum_{y=6}^{11} CR_{t,y}$$

where $CR_{t,y}$ is the continuation rate for a specified fiscal year t at year of service y. Note in this particular case that the CCR measures the continuation rate over the 6-11 year mark. The continuation rates themselves are calculated on a yearly basis. This is done by dividing the ending inventory of the cohort by the beginning inventory for the same cohort in a given fiscal year t. It is therefore evident that CCR is different from the cohort survival rate $CR_{t,y}$ (Hogan, 1995).

Historically speaking, the Navy has not suffered from the grip of low retention rates as much as the Air Force. Historically, CCR's for Air Force Pilots have been very unpredictable. The Air Force suffered its lowest CCR in FY 1979

when it dropped to 26 percent. After 1980, CCR's for the Air Force returned to a healthy 78 percent. But this success was followed by another wave of losses of aviators, with CCR's declining to the 36 percent range in 1990 (Crum, 1990). The Navy, on the other hand, has not had an impressive record. The Navy suffered two setbacks with aviator retention when CCR's decreased to 32 percent in FY 1985 and 1986. In FY 1991 and 1992 the Navy CCR for aviators decreased to 33 percent (BUPERS, 1995). This could well be due to the downsizing efforts being exerted at that particular time.

A comparison of Naval aviator and Air Force pilot CCR's is shown in Figure 1. It is observed that Navy CCR's have remained somewhat level since 1983. On the other hand, Air Force CCR's have steadily decreased following 1983. It is for this reason that much research in the field of aviation retention has come from Air Force sources.

Source: RAND (1995) and Bureau of Naval Personnel

Figure 1. Air Force Pilot CCR vs. Naval Aviator CCR

B. EXTERNAL EFFECTS

One topic that consistently reappears in prior retention studies is the theme that commercial airline hiring rates are the single greatest threat to aviator retention. Lieutenant Colonel Rhodes, USAF, in his historical analysis of USAF pilot retention, reports that a booming economy combined with plentiful airline jobs on the outside is the primary reason for aviator losses (Simpson, 1987). According to Major Longino, who served in the Officer Branch at the USAF Retention Division in 1987, 75 percent of all Air Force pilots intended to leave service life for a career in the airlines (Simpson, 1987). Additionally, Major Gentile, USAF, reports a direct correlation between airline hiring and USAF pilot retention. (Simpson, 1987). Crum (1990) found that Air Force pilot retention was directly correlated with airline hiring rates. Whether or not this is "just an Air Force problem" remains to be seen. The desperation by the Air Force was best stated by Lt. Gen. Thomas Hickey, Deputy Chief of Staff for Personnel:

"We have the bonus. We have the flight pay increase ...we have had almost annually, pilot retention conferences to find out what we can think of that was an irritant. We've reduced every one of those....Bluntly, we are out of ammunition...."

On the other hand, a report by RAND in 1995 stated, "Historical data shows time periods where there is an inverse relationship between civilian airline hiring and military pilot retention (that is, when civilian airline hiring goes up, military pilot retention goes down), and other times when hiring and retention move in the same direction" (RAND, 1995). One factor that was not addressed in the Rand report was how the Airline Deregulation Act of 1978 may have affected the situation. In Figure 2. one can see a sharp jump in hires by the airlines around the 1978, 1979 time-frame when deregulation was introduced.

Source: Future Aviation Professionals of America

Figure 2. Airline Hiring Rates 1977-1994

It is probably safe to say that airline hiring rates are not the major determinant of whether an aviator will decide to leave the service. Captain Simpson, USAF, conducted a study to predict aviator retention rates among Air Force pilots. Other than airline hires, he investigated indicators of the economy such as the overall unemployment rate, corporate profits, a help wanted advertisement index, and relative wage differences between civilian and military personnel. He used an Annualized Cost of Leaving model (ACOL) to predict continuation rates (Simpson, 1987).

A second Air Force study investigated the effect of several economic variables on Air Force pilot retention rates. The study adopted the idea of the "economic man," assuming a "pilot is an individual whose behavior is primarily shaped, both directly and indirectly, by various economic influences in the environment" (Cromer and Julicher, 1982).

Cromer and Julicher used 16 independent variables to describe the economic environment. Among the variables were: white collar unemployment,

average percent change in Gross National Product, airline hiring rate, Consumer Price Index, average prime rate, an index of private housing units, and vendor performance. Much effort was expended towards examining the effect of lagged variables. This study appears to have been somewhat flawed due to the R squares of 1.0 for certain models. The author also discusses the "overlapping information" problem which would cause collinearity among the independent variables.

In his work on Naval aviator retention, Turner (1995) modeled the effects of downsizing policies on retention rates. By using the aggregate unemployment rate as one of his independent variables in an OLS regression model, he was able to determine that civilian unemployment rates were statistically significant in one Navy aviation community, fixed wing propeller aircraft, namely P-3 and C-130 aircraft. He theorized that fixed wing propeller type aviators were in more demand by civilian airlines. The assumption implicitly made by Turner is that civilian airline hiring rates are highly correlated with aggregate unemployment rates, which may not be true. Additionally, Hogan (1995) addresses several concerns with Turner's work. Hogan states, "The model was estimated using ordinary least squares regression. Because the dependent variable, the continuation rate, is a grouped rate, grouped logit is the more appropriate specification."

C. INTERNAL EFFECTS

We now turn to a consideration of internal policies that affect retention decisions. Again, Turner's work addresses various internal policies used during the drawdown to reduce the overall aviator manpower levels. He uses independent variables for the effect of both the ACP and VSI/SSB programs on retention. He found the ACP to be positive and significant in all aviation communities with the exception of the jet community. He concludes, "This outcome indicates that an increase in the number of bonuses available to a community significantly increases

the continuation rate of that community, averaged over year group and fiscal year."

Using VSI/SSB as another independent variable, Turner found the effect of this variable to be statistically insignificant: also the coefficient was positive, which was the opposite to the hypothesized relationship. This result was explained as being due to extremely small numbers of observations that were eligible (3.7 percent of the data set) for the VSI/SSB. In their combined effort, Mehay and Hogan (1995) on the other hand, estimated that the net effect of the VSI/SSB programs on mid-career enlisted naval personnel to range from "modest to large." Their study was aimed at naval enlisted personnel in the FY 1992 time-frame. Although these studies are aimed at two different populations, there is credence in both the Turner and Mehay/Hogan studies pertaining to the effects brought about by the VSI/SSB programs.

D. SUMMARY

The literature review provides insight into previous research efforts pertaining to estimation of aviation continuation rates. The differences in methodologies used by various researchers identifies the source of some of the problems that arise when trying to predict retention rates. In the following chapters we take previous work by Turner and build upon it.

III. METHODOLOGY

The research effort in this thesis evolved from a continuation of Turner's work on Naval aviator continuation rates, although with less emphasis on the specific effects of drawdown policies on retention. This thesis estimates the multivariate models using a more appropriate grouped LOGIT technique instead of the traditional ordinary least square estimation technique used by Turner.

A. DATA

The data base used in this research was obtained from several sources. The main portion of data was obtained from Turner's (1995) original data. This data base was constructed by Turner in his research on the effect of Navy downsizing policies on aviatior retention rates. He used Officer Master Files (OMF) obtained from the Defense Manpower Data Center (DMDC) for fiscal years 1977-1993. The OMF yielded a database of 16,626 Naval aviators. After placing filters for individuals who were prior to their MSR year, who received a discharge other than honorable, or who separated due to Desert Shield/Desert Storm, the sample was reduced to 14,580 observations. Using this data base, Turner constructed EXCEL spreadsheets to calculate the grouped retention rates from FY 1977 to FY 1993 for every cohort (commissioning year group), who entered the Navy between 1960 and 1987.

Building on Turner, the database constructed in this thesis also consisted of Naval aviators with continuation rates for cohorts with less than 20 years of service (YOS). This filter was placed on the database in order to avoid possibly obtaining negative coefficients for YOS variables due to the sharp drop in continuation rates after the 20-year point. Fiscal years 1980 and 1983 also were deleted due to unavailability of data. However, it is believed that the effect of missing data will be small.

Other data was obtained from the Turner effort on individual eligibility for the VSI/SSB and ACP Bonus programs. This information was used to calculate the percentage of a cohort that met the eligibility requirements for either the VSI/SSB or ACP bonus program. Data for unemployment rates for given years was also obtained. They were calculated for "white collar" workers as defined by the Bureau of Labor Statistics. Finally, data was obtained from the Future Aviation Professionals of America (FAPA) on the number of major airline hires for each year between 1977 and 1995. Major airline hires included all new hires by companies flying jet aircraft. This group includes major, national, and turbojet companies; smaller regional airlines flying propeller type aircraft are not included, however.

B. MODEL SPECIFICATION

The analysis used grouped data on aviator continuation rates. The other factors -- VSI/SSB, ACP, professional unemployment rates, and major airline hiring rates -- were used as explanatory variables. The relationship between these explanatory variables and the cohort continuation rates of Naval aviators was estimated using both a weighted grouped LOGIT and a unweighted grouped LOGIT estimation technique. The basic model specification is as follows:

Equation 1:

$$L = \beta_0 + \beta_1 \text{ VSI/SSB} + \beta_2 \text{ ACP} + \beta_3 \text{ AHR} + \beta_4 \text{ UNEMP} + \beta_5 \text{ MSR} + \beta_6 \text{ MSR}_{+1} + \beta_7 \text{ MSR}_{+2} + \beta_8 \text{ MSR}_{+3}$$

Where, L is the LOGIT value which is defined as:

$$L = \ln[P_t / (1 - P_t)]$$

where the P_t 's represent the continuation rates for a given cohort in a specified year t, β_0 is the intercept term, and the remaining β 's represent the corresponding coefficients of the independent variables. The explanatory variables in Equation 1 are defined as follows:

- 1. VSI/SSB is the percentage of a cohort that meets eligibility requirements for the voluntary separation incentive (VSI) or special separation bonus (SSB);
- 2. ACP is the number of aviation continuation bonuses available to a cohort, defined as a percentage of the cohort;
- 3. AHR is the number of major airline hires for a given year t. A major airline is defined by the Future Aviation Professionals of America as being one of the international, national and turbojet companies flying jet aircraft. Regional airline hires are deleted. (FAPA, 1995);
- 4. UNEMP is the national white collar unemployment rate as reported by the Bureau of Labor Statistics;
- 5. MSR is a dummy variable for aviators with minimum service requirements completed (1 = yes, 0 = no);
- 6. MSR+1 is a dummy variable for aviators who have completed an additional year of active service above their minimum service requirement (1 = yes, 0 = no);
- 7. MSR+2 is a dummy variable for aviators who have completed two years of active service above their minimum service requirement (1 = yes, 0 = no);
- 8. MSR+3 is a dummy variable for aviators who have completed three years of active service above their minimum service requirement (1 = yes, 0 = no).

This specification was also estimated using a weighted grouped LOGIT to resolve the potential problem of heteroscadacity and to determine if variation in cohort size would bias the results. Basically, this was done by using a weighted term defined as:

$$\mathbf{w}_{i} = \mathbf{N}_{i} \mathbf{P}_{i} (1 - \mathbf{P}_{i})$$

where N is the beginning inventory of a cohort for a given fiscal year, and P is the continuation rate for that same cohort in the given fiscal year. The final weighted grouped LOGIT model becomes:

Equation 2:

$$\sqrt{\mathbf{w_i}} \mathbf{L} = \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_1 \text{ VSI / SSB} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_2 \text{ACP} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_3 \text{ AHR} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_4 \text{ UNEMP} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_5 \text{ MSR} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_6 \text{ MSR}_{+1} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_7 \text{ MSR}_{+2} + \sqrt{\mathbf{w_i}} \boldsymbol{\beta}_8 \text{ MSR}_{+3}$$

As previously stated, in a second specification of Equations 1 and 2, a YOS variable was used in place of the MSR dummies. We would expect a positive coefficient for YOS because continuation rates tend to rise as a cohort ages.

The combined data set used in this thesis consisted of 539 grouped observations based on 27 cohorts (Year Groups 1960-1987) times 16 fiscal years (1977-1993). The aviation communities had 164, 208, and 167 observations for the helicopter, propeller and jet communities, respectively. Filters were placed to delete any cohorts with greater than 20 years of service to avoid skewed results due to drastic decreases in continuation rates caused by the majority of 20 year retirements. Cohorts with continuation rates of 1.0 were also deleted due to the infinite LOGIT values obtained in Equation 2.

The models were estimated separately for the three naval aviation communities: Jet, Propeller, and Helicopter. Additionally, a pooled model was estimated for the whole aviation community, and an F-test was conducted to determine whether any differences in the estimated coefficients among the communities were statistically significant.

The hypothesized relationships expected between continuation behavior and the explanatory variables are as follows:

1. VSI/SSB is hypothesized to have a negative effect on the continuation rate of naval aviators. This is due to the fact that the program is targeted as an incentive for members to leave the military and thus reduces the member's "cost of leaving."

- 2. ACP is hypothesized to have a positive effect on the continuation rate in line with its goal of increasing the manpower levels in various aviation communities in the Navy by increasing the officer's "cost of leaving."
- 3. AHR seems to have an ambiguous effect. As stated in the literature review, several studies have either confirmed or rejected that airline hiring rates have a detrimental effect on military aviator cohort survival rates. It is the contention of this author that an increase in airline hiring will reduce naval aviator continuation rates.
- 4. UNEMP is expected to have a direct positive relationship with continuation rates of naval aviators. When unemployment rates increase in the civilian sector, aviators are more likely to remain in the military because few jobs are available in the civilian sector.
- 65. MSR, MSR+1, MSR+2, MSR+3 are thought to have a negative effect on retention for two reasons. Initially, MSR equates to the first decision point when an aviatior's initial obligation expires. Historically, this has been the point where the greatest losses have occurred. Secondly, promotion to Lieutenant Commander occurs at the ten year mark in one's career. This is typically at the MSR+2 or MSR+3 mark depending on community type. If any of the minimum service requirement coefficients take on positive values it would be expected in the jet community for the variable MSR+3, since the majority of jet aviators reach the 10 year mark (promotion to O-4) at MSR+2 due to the extended length of flight training.
- 6. YOS is hypothesized to have a positive effect on retention. After the initial obligation expires at MSR and MSR+1, a steady increase in retention rates has historically been observed. This continues up to the 20-year point in one's career.

Six basic models for each airframe community were estimated using either weighted or unweighted variables, lagged or contemporaneous time dependent explanatory variables, and finally, either MSR or YOS variables. The goal is to observe which model yields the most accurate prediction of actual continuation rates. Upon estimation of a successful model, a spreadsheet tool will be devised

to allow for specific inputs by users to forecast aviator continuation rates as a function of the various independent variables.

IV. STATISTICAL RESULTS

Results for the aviation community for both the estimated weighted and unweighted LOGIT models are presented in Tables 4.1 through 4.8. A model for all naval aviators is presented first in Tables 4.1 and 4.2, followed by separate models for each individual aviation community.

For each aviation community two models were estimated, a weighted and an unweighted LOGIT. According to Gujarati (1995), when discussing LOGIT estimating techniques on grouped data, he recommends the weighted least squares method be used to avoid heteroscadasticity. He states that the sample size must be "reasonably large" for each cell in order to obtain valid results. The grouped data used here pools cross-sectional and time series data. The weighted least squares estimates apply OLS techniques to the transformed (weighted) data, and the unweighted results apply OLS techniques to the original grouped data.

The data used can be found in Appendix A. The data set was compiled using an EXCEL spreadsheet program. Once raw data for year, year group, and continuation rates for each cohort was established for each observation, LOGIT values were calculated. Each observation was then supplied with values of the following for each aircraft community: VSI/SSB, ACP, AHR, UNEMP, MSR, MSR+1, MSR+2 and MSR+3 variables. Using the statistical package included in the EXCEL software, various OLS regressions could then be estimated.

A. RESULTS OF ESTIMATING GROUPED LOGIT MODELS FOR ALL NAVAL AVIATORS.

1. Weighted LOGIT Model Results

Table 4.1 displays the results of a pooled model for all aviation communities. The coefficients of ACP, unemployment rate, MSR, MSR+1 and MSR+2 dummy variables are all statistically significant. The coefficients of the

ACP and unemployment variables are both positive, verifying the hypothesized positive effect on continuation rates. The coefficients of the MSR dummy variables are negative, suggesting that retention is lower in the first three years after expriation of one's MSR. The coefficient of MSR+3 is also negative, but is significant only at the .10 significance level.

The VSI/SSB and AHR variables are not statistically significant. The negative coefficient for the VSI/SSB variable is in accord with the hypothesized effect of the separation bonus program on aviator retention. On the other hand, the positive coefficient of the airline hiring rate is the opposite to the hypothesized negative relationship.

Model performance was checked by comparing the percentage difference between predicted and actual continuation rates. The average difference between actual and predicted aviator retention rates using the weighted model for the combined aviator sample was 9.95 percent.

Table 4.1. Weighted LOGIT Results for all Naval Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	-0.1920	-1.2776	0.2019
ACP(bonus)	0.3879	3.0351	0.0025
Airline Hire Rate	7.6256 X 10 ⁶	0.9717	0.3316
Unemployment Rate	16.7079	14.0007	4.0127 X 10 ⁻³⁸
MSR	-0.6320	-9.1050	1.7516 X 10 ⁻¹⁸
MSR+1	-0.6796	-9.8370	4.3747 X 10 ⁻²¹
MSR+2	-0.4080	-5.4350	8.3696 X 10 ⁻⁸
MSR+3	-0.1503	-1.7183	0.08632
INTERCEPT	3.5186	21.1817	1.3280 X 10 ⁻⁷²
$R^2 = .3247$			
F = 31.8605			
N = 539			

Note: All bold variables are statistically significant

2. Unweighted LOGIT Model Results

Table 4.2 displays the results of a pooled model for all aviation communities using an unweighted LOGIT model estimated by OLS on the original grouped data. The VSI/SSB, ACP, AHR, unemployment rate, and all MSR dummy variables are significant. The coefficients of VSI/SSB and all MSR dummy variables are negative as hypothesized, while the coefficients of ACP, unemployment, and AHR variables are positive. All variables assumed the hypothesized signs for the coefficients except for AHR. AHR assumed a positive coefficient opposite to the hypothesized negative relationship on continuation rates.

When comparing actual and predicted continuation rates, the unweighted model performance (i.e., the difference between predicted and actual continuation rates) for the combined aviator sample dropped to a difference of only 5.39 percent. This equates to a 46 percent improvement over the weighted pooled aviator model.

Table 4.2. Unweighted LOGIT Results for All Naval Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	-0.8045	-3.9935	7.4311 X 10 ⁻⁵
ACP(bonus)	0.53687	2.6087	0.0093
Airline Hire Rate	4.7652 X 10 ⁻⁵	2.9552	.0033
Unemployment Rate	27.9275	7.4406	4.0716 X 10 ⁻¹³
MSR	-1.6653	-13.5249	5.1241 X 10 ⁻³⁶
MSR+1	-1.5878	-12.9580	1.4883 X 10 ⁻³³
MSR+2	-0.9626	-7.8061	3.1704 X 10 ⁻¹⁴
MSR+3	-0.3915	-3.2127	0.0014
COEFFICIENT	1.0479	3.5844	0.0004
$R^2 = .4309$			
F = 50.1671			
N = 539			

Note: All bold variables are statistically significant

B. RESULTS OF ESTIMATING SEPARATE LOGIT MODELS BY SPECIFIC AIRCRAFT TYPE

1. Helicopter Aviators

Table 4.3 summarizes the weighted grouped LOGIT model for helicopter aviators. When using a weighted grouped LOGIT for helicopter aviators, VSI/SSB, ACP, AHR, unemployment rate, MSR, MSR+2 and MSR+3 variables are all statistically significant. Both AHR and MSR dummy variables were positive. The positive coefficient of AHR again is counter to the hypothesized negative relationship. More interestingly, the MSR through MSR+3 variables assumed positive coefficients which would suggest a positive relationship between MSR year and continuation rates. Historically, we know this is not true, which brings into question the validity of this model. When comparing predicted with actual continuation rates for the weighted helicopter aviator model, an average 5.28 percent difference was found.

Table 4.3. Weighted LOGIT Results for All Helicopter Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	06578	-2.7533	0.0066
ACP(bonus)	0.4681	2.5088	0.0131
Airline Hire Rate	3.1172 X10 ⁻⁵	2.5795	0.0108
Unemployment Rate	11.9084	5.4219	2.2186 X 10 ⁻⁷
MSR	0.2729	2.2709	0.02453
MSR+1	0.2285	1.9025	0.0589
MSR+2	0.4594	3.7231	0.0003
MSR+3	0.4567	3.3174	.0011
INTERCEPT	3.1122	12.2765	2.3857 X 10 ⁻²⁷
$R^2 = .7391$			
F = 54.8856			
N = 164			

Note: All bold variables are statistically significant

Table 4.4 summarizes the unweighted LOGIT model for helicopter aviators. VSI/SSB, AHR, unemployment, and MSR through MSR+2 years were all statistically significant. The hypothesized signs were obtained for all variables with the exception of AHR, which was positive. ACP and MSR+3 variables were found to be statistically insignificant. This would suggest that the bonus program has a negligible effect on helicopter aviator retention.

The unweighted helicopter model yielded only a 3.08 percent difference between predicted and actual continuation rates. This amounts to a 42 percent improvement over the weighted helicopter model performance.

Table 4.4. Unweighted LOGIT Results for All Helicopter Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	-1.2384	-3.4036	0.0008
ACP(bonus)	0.5888	1.6801	0.0950
Airline Hire Rate	8.5654 X 10 ⁻⁵	3.1985	0.0017
Unemployment Rate	31.2584	4.9679	1.7704 X 10 ⁻⁶
MSR	-1.0563	-5.1979	6.2743 X 10 ⁻⁷
MSR+1	-1.1927	-5.9493	1.7279 X 10 ⁻⁸
MSR+2	-0.6027	-2.9327	0.0039
MSR+3	0501	-0.2521	0.8013
INTERCEPT	0.8494	1.7322	0.8523
$R^2 = .3780$			
F=11.7764			
N = 164		·	

Note: All bold variables are statistically significant

2. Propeller Aviators

Table 4.5 depicts results obtained when modeling propeller aviators retention rates using a weighted grouped LOGIT estimation. ACP, unemployment rate, and MSR through MSR+3 dummy variables are all statistically significant. Although not significant, the VSI/SSB variable had a positive coefficient, contrary to the hypothesized negative relationship. AHR, which was not significant, had a

positive coefficient. The average difference between the calculated weighted propeller model continuation rates and actual continuation rates was 13.38 percent.

Table 4.5. Weighted LOGIT Results for All Propeller Aviators

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	0.0999	0.7213	0.4716
ACP(bonus)	0.4277	3.3678	0.0009
Airline Hire Rate	1.5647 X10 ⁻⁶	0.1904	0.8492
Unemployment Rate	12.3856	8.7279	1.4073 X 10 ⁻¹⁵
MSR	-0.8430	-10.6735	2.5558 X 10 ⁻²¹
MSR+1	-0.8796	-11.3574	2.2862 X 10 ⁻²³
MSR+2	-0.6406	-8.1946	3.0217 X 10 ⁻¹⁴
MSR+3	-0.3052	-3.4337	0.0007
INTERCEPT	5.1077	19.6866	1.3473 X 10 ⁻⁴⁸
$R^2 = .4945$			
F = 24.3346			· ·
N = 208			

Note: All bold variables are statistically significant

When using an unweighted grouped LOGIT estimation method for propeller aviators the unemployment rate and MSR through MSR+3 are statistically significant. However, neither VSI/SSB, ACP, or airline hiring rates were significant. The AHR variable was positive. All other variables coincided with their hypothesized relationship with continuation rates. The results can be seen in Table 4.6.

The performance of the unweighted propeller model was significantly better than the weighted version. When comparing the predicted continuation rates against the actual continuation rates for propeller aviators, the average error was found to be 4.32 percent in this model, which is much better than the 13.38 percent average error observed for the weighted propeller model.

Table 4.6. Unweighted LOGIT Results for All Propeller Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	1999	-0.8196	0.4134
ACP(bonus)	0.3250	1.2677	0.2064
Airline Hire Rate	1.9901 X10 ⁻⁵	0.9714	0.3325
Unemployment Rate	21.0778	4.3547	2.1309 X 10 ⁻⁵
MSR	-2.0914	-12.6734	2.2606 X 10 ⁻²⁷
MSR+1	-2.2441	-13.5204	5.6587 X 10 ⁻³⁰
MSR+2	-1.6676	-10.0871	1.3729 X 10 ⁻¹⁹
MSR+3	-0.8834	-5.3715	2.1687 X 10 ⁻⁷
Intercept	1.5732	4.1793	4.3773 X 10 ⁻⁵
$R^2 = .6694$			
F=50.3602			
N = 208			

Note: All bold variables are statistically significant

3. Jet Aviators

Table 4.7 depicts weighted LOGIT results for Jet aviators. Among the statistically significant explanatory variables are VSI/SSB, unemployment rate, MSR and MSR+1 dummy variables. The MSR and MSR+1 dummy variables would suggest that Jet aviators are more likely to leave military service during those two particular years. Staying beyond MSR+1 years changes the hypothesized negative effect on retention to a positive relationship. Although AHR is insignificant, the variable has a coefficient in conjunction with the hypothesized relationship on continuation rates. The weighted model for jet aviators yielded an average 9.96 percent error when comparing predicted and actual continuation rates.

Table 4.8 contains results from an unweighted LOGIT estimation of Jet aviators. The coefficients of VSI/SSB, ACP, unemployment rate, and MSR through MSR+2 variables are all statistically significant. VSI/SSB and MSR

dummy variables are negative as expected. ACP and unemployment rate are positively related to retention. The AHR variable is positive but is not significant.

Table 4.7. Weighted LOGIT Results for Jet Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	-1.0437	-3.5014	0.0006
ACP(bonus)	0.3213	1.5011	0.1353
Airline Hire Rate	-4.2583 X 10 ⁻⁶	-0.3504	0.7265
Unemployment Rate	14.3960	7.1244	3.4934 X 10 ⁻¹¹
MSR	-0.4302	-3.7711	0.0002
MSR+1	-0.2347	-2.1111	0.0363
MSR+2	0.1121	0.9169	0.3606
MSR+3	0.1488	1.1325	0.2591
Intercept	3.1194	12.1888	1.640 X 10 ⁻²⁴
$R^2 = .4304$			
F=14.9230		,	
N = 167			

Note: All bold variables are statistically significant

MSR+3 was found to be insignificant. MSR+3, however, did have a negative coefficient. This would suggest that although MSR+3 has a negative relationship on jet aviator retention, the MSR+3 year is not a significant factor in jet community retention behavior.

The unweighted jet model yielded a 4.87 percent average error when comparing predicted and actual retention rates. This is roughly half the error exhibited by the weighted jet model.

Table 4.8. Unweighted LOGIT Results for Jet Aviators (dependent variable = continuation rate)

VARIABLE	COEFFICIENT	t STATISTIC	P-VALUE
VSI/SSB	-1.2388	-3.3542	0.0010
ACP(bonus)	0.8278	2.11968	0.0356
Airline Hire Rate	4.3329 X10 ⁻⁵	1.4297	0.15478
Unemployment Rate	32.5125	4.7589	4.3629 X 10 ⁻⁶
MSR	-1.8771	-8.5446	3.0217 X 10 ⁻¹⁴
MSR+1	-1.3327	-6.1269	6.8565 X 10 ⁻⁹
MSR+2	-0.5822	-2.6789	0.00817
MSR+3	-0.2524	-1.1610	0.2474
Intercept	0.6327	1.8667	0.2371
$R^2 = .4577$			
F = 16.6668			
N = 167			

Note: All bold variables are statistically significant

C. DISCUSSION OF MODEL PERFORMANCE

1. Predicted vs. Actual Retention rates

In comparing the model performance of the weighted and unweighted LOGIT estimating models, the two models were used to predict continuation rates using a spreadsheet program. These predicted retention rates were then compared to actual retention rates, and the percentage difference between the predicted continuation and actual rates for a given cohort in a specific fiscal year was calculated. The percentage differences were then averaged for each community. Table 4.9 below compares the errors of the weighted and unweighted models. The unweighted LOGIT results appear to provide the most accurate predictions of aviation continuation rates. In most cases, the percentage error is less than 5 percent for the unweighted OLS estimates.

Table 4.9. Differences In Predicted vs. Actual Continuation Rates From Weighted and Unweighted LOGIT Estimation Models

MODEL	WEIGHTED LOGIT MODELS	UNWEIGHTED LOGIT MODELS
ALL AVIATORS	9.95 %	5.39 %
HELICOPTER AVIATORS	5.28 %	3.08 %
PROPELLER AVIATORS	13.38 %	4.32 %
JET AVIATORS	9.96 %	4.87 %

Observing the relationship of the coefficients with their hypothesized sign also supported the use of the unweighted LOGIT estimation technique. For example, when estimating helicopter retention, the coefficients for MSR should be negative. Since this will be the end of obligated service, the aviator will be more likely to leave the service at this point than at any other time. Table 4.3 shows that the MSR variable in the weighted LOGIT model is statistically significant, but it has a positive relationship with retention. Another anomaly can be seen in Table 4.5 in the case of propeller pilots. We know from previous studies (Mehay and Hogan, 1995) that VSI/SSB should have a negative effect, since the goal of the program is to induce the people to leave military service. However, the weighted LOGIT estimation for propeller aviators yields a positive relationship. We conclude that the unweighted LOGIT models provide more accurate predictions of retention and more plausible signs of the estimated coefficients.

Each of the weighted LOGIT estimation results for each community can be found in Appendix B. The EXCEL statistical results are listed in Appendix B, which displays R-square values, number of observations, F-values, coefficients and other pertinent results for each of the model runs.

2. Goodness of Fit: R Square and F - Values

The coefficient of determination is used to measure goodness of fit for a given regression model. The F- test is used to test the null hypothesis that all coefficients are simultaneously equal to zero. Table 4.13 summarizes the R^2 and F - values from the unweighted LOGIT models.

Table 4.10. Acquired R^2 and F-Values for LOGIT Estimations

MODEL	R^2	F -value
ALL AVIATORS	.4309	50.1671
HELICOPTER AVIATORS	.3780	11.7764
PROPELLER AVIATORS	.6694	50.3602
JET AVIATORS	.4577	16.6668

As seen in Table 4.10, the R^2 values obtained for each of the models are of a reasonable magnitude in explaining the proportion of the total variation in the dependent variable. The calculated F-value was compared to the critical F-value (at the .05 level of significance). In order to reject the null hypothesis, the calculated F-value must be greater than the critical F-value. The greatest critical F-value obtained for any of the models was 2.09. As can be seen from Table 4.10 the calculated F-value is larger than the critical-F for each model. Thus, the null hypothesis can be rejected for all of the models.

D. DISCUSSION OF THE EXPLANATORY VARIABLES

1. Voluntary Separation Incentive/Selective Separation Bonus (VSI/SSB)

The VSI/SSB variable was significant in all but the propeller community. When all communities are grouped together, the average effect of VSI/SSB is also statistically significant. The coefficient obtained for each group was negative, thus

confirming the hypothesized negative relationship with retention rates. Table 4.11 represents the effects of a hypothetical increase in the proportion of personnel eligible for VSI/SSB by 10 percentage points. For example, if 50 percent of a cohort is currently offered participation in the VSI/SSB program, the effects of increasing the eligibility to 60 percent of a cohort are as listed in Table 4.11.

Table 4.11. The Effects of Increasing the Proportion Eligible for the VSI/SSB Program by 10%

COMMUNITY	CHANGE IN RETENTION
ALL AVIATORS	-0.6 %
HELICOPTER AVIATORS	-0.7 %
PROPELLER AVIATORS	-0.2 %
JET AVIATORS	-1.09 %

The ACP program variable is statistically significant in the pooled aviator sample. However, in the separate models for each individual aviation community, ACP was statistically significant only for the Jet community. All coefficients were positive, thus supporting the positive effect of the bonus on continuation rates. Table 4.12 represents the effects of a hypothetical increase in the proportion of personnel eligible for the ACP bonus program by 10 percentage points.

Table 4.12. The Effects of Increasing the Proportion Eligible for the ACP Program by 10%

COMMUNITY	CHANGE IN RETENTION
ALL AVIATORS	+0.4 %
HELICOPTER AVIATORS	+0.4 %
PROPELLER AVIATORS	+0.3 %
JET AVIATORS	+0.7 %

2. Airline Hiring Rate (AHR)

The AHR variable proved to be statistically significant in the combined aviator sample. However, in the model estimates for the individual communities, AHR was statistically significant only for helicopter aviators. All coefficients for AHR are positively related to retention rates, which is counter to the expected relationship. As stated earlier in Chapter II, this same relationship was found in a RAND (1995) report on the effects of airline hiring on military aviator retention rates. One possible explanation for this result could be the scope of time involved for the data used. In 1978 the airline industry was de-regulated, which caused a large spike in airline pilot hires (see Figure 2, above). This in turn may have influenced the overall relationship of airline hiring rates on aviator retention rates during the 1977 to 1993 period.

3. Unemployment Rate

Of all the explanatory variables, the professional unemployment rate had the largest impact on naval aviator retention rates. Unemployment rates were statistically significant for each individual aviation community and also in the combined aviator sample. The unemployment rate was positively related to continuation rates, as hypothesized. Table 4.13 represents the change in aviator retention rates for a given additional increase of 1 percentage point in the unemployment rate.

Table 4.13. The Effects of an Increase in the Unemployment Rate of 1 Percentage Point

COMMUNITY	CHANGE IN RETENTION
ALL AVIATORS	+ 2.3 %
HELICOPTER	+ 1.9 %
AVIATORS	
PROPELLER	+ 2.0%
AVIATORS	
JET AVIATORS	+ 3.0%

V. CONCLUSION

This thesis examined the relationship of various internal policies and external economic factors on grouped Naval aviator continuation rates. The data base contained 539 pooled observations for cohorts from year groups 1960 to 1987 for fiscal years 1977 to 1993. Both weighted and unweighted grouped LOGIT estimation techniques were employed to determine which factors played key roles. Additionally, the estimations were conducted initially for all combined aviators and then separately for each aviation community.

It was found that the unweighted LOGIT models yielded the best results in predicting continuation rates for each of the above categories. Each unweighted model predicted the mean aviator continuation rate within 5 percent of the actual value for each category.

In the pooled samples, VSI/SSB, ACP, airline hiring rate, unemployment rate, and MSR through MSR+1 dummy variables were all statistically significant. The airline hiring rate variable was the only variable which did not have the hypothesized effect on continuation rates. Airline hiring rate exhibited a positive relationship with aviator continuation rates in all cases. This could be due to the large sudden increase in airline hires during the airline deregulation of 1978. This possibly influenced the overall relationship of airline hiring rates on naval aviator continuation rates.

The variable with the greatest effect on naval aviator continuation was the unemployment rate for professional workers. Unemployment rates were consistently significant and positively related to continuation rates across all communities. A one percentage point increase in the unemployment rate led to a 2.3 percent increase in continuation rates for the combined aviator sample. The one percentage point increase in the unemployment rate also equated to increases

of 1.9, 2.0, and 3.0 percent increases in continuation rates for the helicopter, propeller and jet communities, respectively.

The effect of the VSI/SSB program was significant in all but the propeller community. An increase of 10 percentage points in the proportion eligibile for the VSI/SSB program generated a decrease of 0.6 percent in continuation rates for the combined aviator model. This same increase in eligibility produced decreases of 0.7, 0.2, and 1.09 percent in continuation rates for the helicopter, propeller and jet communities, respectively.

The ACP bonus program displayed a positive relationship with continuation rates. A 10 percentage point increase in the proportion of aviators eligible for ACP yielded a 0.4 percent increase in continuation rates for the pooled aviator sample. This same 10 percentage point increase had a 0.4, 0.3 and a 0.7 percent increase in continuation rates for the helicopter, propeller and jet communities, respectively.

A. RECOMMENDATIONS

Future research should include data compiled on aviator retention since 1993. This would increase the amount of data for years in which the military drawdown was taking place. One area of concern was the effect of the airline hiring rate. Although airline hiring did not play a major role in the grouped retention data used here, a more thorough analysis should be conducted. One possible avenue would be to try to eliminate the effect of the Airline Deregulation Act of 1978. This could be done by interpolating hypothetical airline hiring rates for the years 1978 and 1979. This would "smooth" the airline hiring profile from 1977 to 1980 in order to avoid the sharp increase in hires that occurred due to deregulation.

B. SUMMARY

Using the data supplied in Appendix A, the aviation community manager can now take the grouped data supplied and manipulate it in various ways with relative ease using the EXCEL statistical package. Additionally, one can use the coefficients and intercepts obtained from the unweighted models presented in Appendix B and predict future aviator continuation rates. This can be accomplished very easily using EXCEL or any other spreadsheet software package with a statistics capability.

Being able to interpret trends in naval aviator continuation rates is critical to aviation program mangers. The analysis in this thesis provides an important tool in understanding the effects of various internal Navy policies and external economic factors on aviator continuation rates. It will be even more important in the future with an emphasis on a lean force structure to be able to adjust compensation policies in connection with given external labor market forces and predict future aviator continuation rates.

APPENDIX A. STATISTICAL DATA

Pages 36-49 list the grouped data used in the LOGIT models. The variables are defined as follows:

YR Fiscal year of observation

YG Year of Commissioning

YOS Years of active duty service completed

CR Continuation rate

LOGIT Calculated LOGIT value

HELO Dummy variable for helicopter aviator

JET Dummy variable for jet aviator

PROP Dummy variable for propeller aviator

AHR Airline hiring rate

LAG Airline hiring rate lagged one year(YR-1)

UNEMP White collar unemployment rate

LAG White collar unemployment rate lagged one year (YR-1)

VSI/SSB Percent of a cohort eligible for VSI/SSB program

ACP Percent of a cohort eligible for ACP program

MSR Dummy variable to signify cohort has completed minimum service

requirement

MSR+1 Dummy variable to signify cohort has completed one but less than

two years of service above minimum service requirement.

MSR+2 Dummy variable to signify cohort has completed two but less than

three years of service above minimum service requirement.

MSR+3 Dummy variable to signify cohort has completed three but less than

four years of service above minimum service requirement.

N Number of observations in cohort

z	165	245	124	8	93	29	31	45	218	218	162	116	81	83	67	35	33	30	4	132	136	146	184	104	99	74	62	33	32	40	123	183	123	115	108	146	65	72	46	31
MSR+3		0	0	-	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
MSR+2	0	0	-	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
MSR+1	0	1	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
MSR	-	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
ACP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.63	0.55	0.47	0.75	0.73	99.0	0.78			0.09
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.066	990.0	0.066	990'0	0.066	0.066	0.066	0.066	0.066	0.066	990.0	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069
UNEMP	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076		0.076
LAG	547	547	547	547	547	547	547	547	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	750	750	750	750	750	750	750	750	750	750
AHR	1446	1446	1446	1446	1446	1446	1446	1446	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3271	3271	3271	3271	3271	3271	3271	3271	3271	3271	3271	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116
PROP ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HELO	1	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	1	1	1	-	-	-	-	-	-	1	1	-
LOGIT VALUE	2.378847078	2.175197255	2.815355727	3.827518088	3.102603276	4.191381946	3.399854892	3.785212861	2.187264336	1.368885317	2.018250636	2.602152773	3.259135499	2.747994734	4.191381946	3.525331612	3.465839033	3.368330812	2.614673635	2.302695098	1.945910149	1.395067447	2.662873134	2.98517781	2.335813705	4.29147364	3.399854892	2.740946481	3.435640097	2.944438979	2.320983041	2.345802386	2.052500137	2.592850034	2.669454807	4.276564735	3.448956299	4.261868929	3.808504111	2.674415922
1-CR	0.0848	0.102	0.0565	0.0213	0.043	0.0149	0.0323	0.0222	0.1009	0.2028	0.1173	0.069	0.037	0.0602	0.0149	0.0286	0.0303	0.0333	0.0682	0.0909	0.125	0.1986	0.0652	0.0481	0.0882	0.0135	0.0323	0.0606	0.0312	0.05	0.0894	0.0874	0.1138	0.0696	0.0648	0.0137	0.0308	0.0139	0.0217	0.0645
CR	0.9152	0.898	0.9435	0.9787	0.957	0.9851	0.9677	0.9778	0.8991	0.7972	0.8827	0.931	0.963	0.9398	0.9851	0.9714	0.9697	0.9667	0.9318	0.9091	0.875	0.8014	0.9348	0.9519	0.9118	0.9865	0.9677	0.9394	0.9688	0.95	0.9106	0.9126	0.8862	0.9304	0.9352	0.9863	0.9692	0.9861	0.9783	0.9355
YOS	9	7	8	6	10	17	16	17	80		_	6	10	=======================================	12	15	16	17	18	8	7	9	6	10	11	12	13	16	17	19	æ	7	9	6	10	11	13	15	16	17
УG	71	2	 	ļ	67	99	61	+	70	1_	1_	1	_	_	99	63	62	_	8	71			1	69	89	_	99	63	62	9	73	74	75	ļ	71	20	89	99	65	\$
ΥR	77	77	77	77	77	77	77	77	13	_	1_	1	<u> </u>		78	78	78	L	78	79	79		_	_	<u></u>	1	79	<u> </u>	79	79	81	8	8	8	8	8	<u> </u>	8	8	8
#OBS	-	2	6	4	5	S.	7	80	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	4

z	႙	က္က	160	112	59	117	103	101	137	9	71	47	က္က	28	61	149	103	100	130	93	87	8	123	2	20	40	129	159	158	8	129	66	87	88	134	63	67	129	148	105
MSR+3	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0		\rightarrow	0
MSR+2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	=
MSR+1	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0	0
MSR	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0
ACP	0	0	0.46	0.48	0.48	0.38	0.34	0.42	0.37	0.39	0.1	0	0	0	0.38	0.53	0.09	0.02	0.01	0	0	0	0	0	0	0	0	0.18	0.02	0	0	0	0	0	0	0	0		0.29	0
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.069	0.069	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.068	0.068	0.068
UNEMP	0.076	0.076	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.07	0.07	0.07
LAG	750	120	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	7840	7840	7840
AHR	1116	1116	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	6341	6341	6341
PROP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
国	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HELO	1	-	-	1	+	-	-	1	1	1	1	-	-	-	-	-	-	-	7	-	-	-	-	Τ.	-	-	-	1	1	-	-	1	-	-	F	-	-	1	-	-
LOGIT VALUE		2.197224577	3.245193133	3.064396242	3.349852334	2.917401874	1	2.955015492		4.075505542	4	2.686075939	1.872090669	2.565380206	2.656328916	2.869146642	2.976475889	3.891820298	4.858805152	2.867180496	4.453841607	3.069099946	4.807758234	3.971311282	3.525331612	2.944438979	L	2.5	.,	3,259135499	4.845800966	2	4.453841607	3.771482983	4.885323992	4.125408409	2.14819515	2.188367124	2.340797764	3.525331612
1-CR	0.0333	0.1	0.0375	0.0446	0.0339	0.0513	0.0194	0.0495	0.0146	0.0167	0.0141		0.133	0.0714	0.0656	0.0537	0.0485	0.02	0.0077	0.0538	0.0115	0.044	0.0081	0.0185	0.0286	0.05	0.0543	0.0692	0.019	0.037	0.0078	0.0505	0.0115	0.0225	0.0075	0.0159	0.1045	0.1008	0.0878	0.0286
CR	0.9667	0.0		0.9554	0.9661	0.9487	0.9806	0.9505	0.9854	0.9833	0.9859			0.9286	0.9344	0.9463	0.9515	0.98	0.9923	0.9462	0.9885	0.9556	0.9919	0.9815	0.9714	0.95		-	0.981	0.963	0.9922	-	0.9885	0.9775	_	1	_	0.8992		0.9714
YOS	18	19	8	7	9	6	9	=	12	4	16	17	18	19	80	7	9	6	10	=	12	13	14	16	18	19	æ	7	9	6	Ξ	12	13	4	15	17	19	æ	7	6
YG	63	62	-	75	92	73		71	_	89	_	65		1		77	78	1	74	-	72	71	2	89	_	-	_	78	79	9/	74	73	72	7.1	2	89	99	78	79	11
YR	81	8	_	.82	82	82	_	_	1	1_	82	82	!	_	84	84		_	84	_	84	84	84	84	84	_	85	1	85	85	85	85	85	85	85	85	85	98	86	98
#OBS YR	4	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58	59	09	61	62	63	64	65	99	49	89	69	70	71	72	73	74	75	92	77	78	79	8

z	46	81	111	<u>8</u>	79	82	116	49	75	114	124	8	80	38	102	74	73	11	100	78	46	116	243	77	67	31	63	49	9	65	26	206	179	8	83	22	28	53	99	56
MSR+3	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0
MSR+2	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
MSR+1	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0 ,	-	0	0	0	0	0	0	0	0
MSR	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
ACP	0	0	0	0	0	0	0	0	0	0.07	0.25	0	0.01	0.03	0	0	0	0	0	0	0	0.05	0.25	0.03	0	0	0	0	0	0	0	0.01	0.02	0	0	0	0	0	0	0
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	990.0	0.066	0.066	990.0	0.066	0.066	0.066	0.066	990.0	0.066	0.066	990.0	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052
UNEMP	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053
LAG	7840	7840	7840	7840	7840	7840	7840	7840	7840	6341	6341	6341	6341	6341	6341	6341	6341	6341	6341	6341	6341	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	6683	6683	6683	6683	6683	6683	6683	6683	6683
AHR	6341	6341	6341	6341	6341	6341	6341	6341	6341	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	9026	9026	9026	9026	9026	9026	9026	9026	9050
PROP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
JET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
HELO	-	-	1	1	1	-	-	-	-	-	-	-	-	l l	1	-	-	-	1	-	1	1	1	ļ	1	-	1	1	1	1	-	-	-	-	1	1	1	-	-	7
LOGIT VALUE		3.259135499		2.525350705	,	3.726974329	4.747355882	3.157417522	2.63852174	2.726979568	2.815355727	3.785212861		2.891005271	4.615524557	2.861302669	4.276564735	3.6	4.59511985	4.345427482	1.41338946	2.256386504	2.165409696	3.204412763	4.191381946	2.674415922	2.691109616	3.871609424	3.368330812	4.157867958	2.322212047	1.934983566	1.865183638	3.134659753	4.410776048	2.853513186	3.296251761		3,465339033	2.565380206
1-CR	0.0435	0.037	0.027	0.0741	0.0127	0.0235	0.0086	0.0408	0.0667	0.0614	0.0565	0.0222	0.025	0.0526	0.0098	0.0541	0.0137	0.026	0.01	0.0128	0.1957	0.0948	0.1029	0.039	0.0149	0.0645	0.0635	0.0204	0.0333	0.0154	0.0893	0.1262	0.1341	0.0417	0.012	0.0545	0.0357	0.0189	0.0303	0.0714
CR	0.9565	0.963	0.973	0.9259	0.9873	0.9765	0.9914	0.9592	0.9333	0.9386	0.9435	0.9778	0.975	0.9474	0.9902	0.9459	0.9863	0.974	0.99	0.9872	0.8043	0.9052	0.8971	0.961	0.9851	0.9355	0.9365	0.9796	_		0.9107	0.8738	0.8659	0.9583	0.988	0.9455	0.9643		$\overline{}$	0.9286
YOS	10	11	12	13	14	15	16	18	19	æ	7	6	10	11	13	14	15	16	17	18	19	8	7	10	11	12	15	16	17	18	19	8	7	6	10	11	13		15	9
УG	\Box		74	73		71	20	99	29	79	80	78	77	9/	74	73	72	71	2	69	_		81	78	77	9/	73		71	70	69	81	82	80	79	18	92		_	73
YR		86	86	98	98	88	98	86	<u></u>	87	87	87	37	87	87	87	87	87	87	87	87		88	88	88	88			88	88	88		88	89	L		89	- 1	1	88
#OBS	81	82	83	84	85	86	87	88	88	ြင်	91	92	93	94	95	96	97	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120

z	4	29	26	158	\$	186	71	7.1	4	\$	27	51	62	Ŗ	6	131	153	122	118	4	98	33	9	29	27	24	127	213	117	33	24	9	26	25	188	780	8	10	1	\$
MSR+3	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0
MSR+2	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0
MSR+1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0
MSR N	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0
ACP	0	0	0	0.1	0.36	0.05	0.03	0.01	0	0	0	0	0	0	0	0.01	0.27	0.03	0.03	0	0	0	0	0	0	0	90.0	0.23	0.03	0	0	0	0	0	0.0	0	0		0.01	
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.17	0.59	0.15	0.17	0.04	0.57
LAG	0.052	0.052	0.052	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.065	0.065	0.065	0.065	0.065	1	0.065	0.065	0.071		0.071	0.071	o.	0.071
UNEMP	0.053	0.053	0.053	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.068	0.068	0.068	0.068	0.068	0.068
LAG	6683	6683		9026	9056	9056	9026							9056	9056	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4004	4004	4004	4004	4004	4004	4004	4004	2607	2607	2607	2607	2607	2607
AHR	9026	9026	9026	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	2607	2607	2607	2607	2607	2607	2607	2607	2067	2067	2067	2067	2067	2067
PROP	0	0	0	0	0	0	0	C	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TH.		0	0	0	0	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HH O		-	-	-	-	1	-	-		-		-	-	-			-	-	-	-		1	-	-		1	-	-	-	-	-	-	-	-	-	1	-	-	-	
I OGIT VALUE	3 688469534	2 871116245		1 875557345	1 7607215	2 588226458	4 247380132	4 247380132	3 043475317	2 822266604	2 250135499	2 773013802		2 525350705			1	1		1	12	1.139566288		1.832842488	1.749581428		1	1.626575672	2.611530713		3,134659753	2.197224577	3.217836324	1	-	2,237880583	-	-	3.204412763	3.713981903
- CB	0 0244	0.0536	0.000	0 1329	0 1467	0 0800	0.0000	0.00	0.0141	0.0400	0.0000	0.000	0.0000	0.0741	0.05	0 1527	0 1569	0.0656	0.0424	0.0455	0.0556	0.2424	0.1	0.1379	0.1481	0.0833	0.2362	0.1643	0.0684	0.0303	0.0417	0.1	0.0385	0.08	0.2394	0.0964	0.217	0.1485	0.039	0.0238
80	0 9756	2 0464	0.8571	0.8671	0.8533	0 0301	0.000	0.300.0	0.9039	0.0040	0.8444	0.903	0.0877	0.000	0.020	0 8473	0.8431	0 9344	0.9576	0.9545	0.9444	0.7576	0.9	0.8621	0.8519	0.9167	0.7638	0.8357	0.9316	0.9697	0.9583	0.9	0.9615	0.92	0.7606	0.9036	0.783	0.8515	0.961	0.9762
NO.		2	2 0	2 00	1	- 0	2 6	2 7	- 5	7	2 3	1 4	5 4	7 2	- 8	2 00	2	- 0	10	+	12	13	15	17	18	10	00	7	6	13	14	16	18	10	8	7	. 6	9	=	12
2	-		2			_	_		2 0		1 92	_	_	_		_		2	-	-	+	4-		4_	٠.						_		_	_			1_	1_		11
2	2 0	-	_	\perp	-i		+	_	3 8	4	3 8	_	-	\perp	_		-	- 1	1	_	+	-	\perp	_	1	_	_			4	+	4_			1	1				1
300#	121	122	122	124	125	100	127	171	128	671	130	2	122	127	124	138	127	138	130	140	141	142	143	144	145	146	147	148	149	150	151	159	153	154	155	156	157	158	159	160

z	24	17	10	24	132	89	200	224	231	201	145	4	161	136	28	134	159	83	282	186	161	265	195	177	140	142	152	135	129	128	154	105	233	190	136	136	230	198	174	149
MSR+3	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
MSR+2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
MSR+1 N	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0
MSRIN	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
ACP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSI/SSB		0.92	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.071	0.071	0.071	0.071	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.066	0.066	990.0	0.066	0.066	0.066	0.066	990.0	0.066	0.086	0.066	0.066	0.066	0.066	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
UNEMP	0.068	0.068	0.068	0.068	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
LAG	2607	2607	2607	2607	547	547	547	547	247	547	547	547	547	247	547	547	547	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	3550	3550	3550	3550	3550	3550	3550	3550	3550
AHR	2067	2067	2067	2067	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3550	3271	3271	3271	3271	3271	3271	3271	3271	3271
PROP,	0	0	0	0	+	1	-	1	-	-	-	-	1	-	-	-	-	-	-	-	1	+-	1	-	-	1	-	-	-	+	-	-	+	-	-	+	+	-	-	-
JET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HELO	1	-	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2		_	2.	٥	-	-	۲-	2	2	3.322717947	3.85670433	3.134659753	3.965818543	3.789829807	3.77603963		3.949512469	0.3656192	0.567993253	0.946446603	1.433846901	2.058463312	2.817233189	2.92772317	3.525331612	3.11974749	3.907240012	3.489933996	3.735726182	3.731341129	2.667805852	-0.01920059	0.373481653	0.822185198	1.059526247	2.087680401	1.41338946	2.431526761	2.796750972	3.35905176
1 - CR	0.0833	0.0588	0.1			0.2167	0.2096	0.0743	0.0649	0.0348	0.0207	0.0417	0.0186	0.0221	0.0224	0.0299	0.0189	0.4096	0.3617	0.2796	0.1925	0.1132	0.0564	0.0508	0.0286	0.0423	0.0197	0.0296	0.0233	0.0234	0.0649	0.5048	0.4077	0.3053	0.2574	0.1103	0.1957	0.0808	0.0575	0.0336
CR	0.9167	0.9412	6.0	0.6667	0.7803	0.7833	0.7904	0.9257	0.9351	0.9652	0.9793	0.9583		_	0.9776	$\overline{}$		0.5904	0.6383	0.7204	0.8075	0.8868	0.9436	0.9492	0.9714	0.9577	0.9803	0.9704	0.9767			0.4952	_	_		_	-			0.9664
YOS			17	19	5		7		6	10	17		13	14		16	17	2	9	7	8	6	10	11		13	14	15		- 1	!	5		7	_	6	9			13
ΥG				74						. 67		_	64					73	72					29							1		73			2	1			8
_			93	93		77	77		77	77	77						77	78	78	78			78	78						78	78	79	79	79	62	79	79	79	79	79
#OBS	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200

z	145	150	125	118	121	131	227	230	132	122	95	107	177	171	160	147	130	139	120	108	42	8	188	187	125	120	35	112	182	168	170	4	126	137	112	216	222	68	162	1/1
MSR+3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0		٥
MSR+2	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	5
	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	5
MSR+1																													Ì											
MSR	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
ACP	0	0	0	0	0	0	0.71	0.51	0.57	0.55	0.57	0.63	0.62	0.63	0.65	0.81	0.5	0.03	0.01	0.02	0.04	0.73	0.71	0.51	0.53	0.52	0.5	0.48	44.	0.44	0.41	0.23	0.12	0	0.01	0.04	0.28	0.12	0.01	0.01
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.056	0.056	0.056	0.056	0.056	0.056	690.0	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.092	0.092	0.092	0.092	0.092
UNEMP	0.058	0.058	0.058	0.058	0.058	0.058	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.075	0.075	0.075	0.075	0.075
LAG	3550	3550	3550	3550	3550	3550	750	750	750	750	750	750	750	750	750	750	750	750	750	750	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	2552	2552	2552	2552	2552
AHR	3271	3271	3271	3271	3271	3271	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	5465	5465	5465	5465	5465
PROP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	₹	-	-	-		-	-	-	1	-	-	-	-	-	-	-	-	1	-
JET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HELO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3006	3298	3756	7956	7157	7634	3437	3038	1866	7637	3079	4416	1808	5282	4699	2159	4208	2386	1646	7726	9710	9116	9287	2829	5614	2341	5576	1761	7393	2423	4329	5524	4548	0227	1615	3176	9408	2561	3888	5271
OGIT VALUE	3,142193006	891820298	705408756	647277956	3,1447157	045577634	935056437	1 041296038	2 131211866	1 964322637	38660	2.822884416	5040	3,154865282	960354699	4 283992159	3 027474208	2602	3.663561646	1.988647726	450010176	1,450010176	1.44029287	368582829	556365614	293052341	496555576	296251761	845777393	4.004892423	3.726974329	3.554525524	3.185894548	3.27326022	2.120711615	338303176	577146408	2.460142561	3.097753888	2.89100527
ľ			က	က		0	i c		- 1		2	2.8	3.0	3	m			4	36	7	-	-	1	2	1		2	က	12	•		i	,	1	•	2	-	1	i i	
1 - CR	0.041		0.02	0.025	0.041		0 2819	0 2600			0.084	0.056	0.045	0.040			0.046	0 0 14		0.120	0.19				0.07	0.091	0.076	0.035	0.054			0.027	0.039	0.036			0.171	0.0787	0.0432	
E,	0.9586	0.98	9260	0.9746	0 9587	0 8855	0 7181	0 7301	0.739	0.877	0 9158	0.9439	0.9548	0.9591	0.9813	0 9864	0.9538	0 9856	0.975	0.8796	0.81	0.81	0.8085	0 9144	0.928	0.9083	0 9239	0.9643	0.9451	0.9821	0.9765	0.9722	0.9603	0.9635	0.8929	0.912	0.8288	0.9213	0.9568	0.9474
VOSIC	1		19				- 1	ш.			_	_1.	+-			_L			_			9	1	-				-1	13	· t					i		_	-	-	\Box
\(\frac{1}{2}\)		3 4	33	8	2 5	8	3 2	2 2	t 6	3 5	1/2	12	9	88	67	99	3 8	3 2	3 6	3 6	12	76	75	74	2 2	2	7.	. 02	69	89	29	99	35	2	63	78	77	92	75	74
2	0,2	2 0	2 0	107	70	2 0	2 2	à	οά	à	5 &	2	3		1			ă		1	8	1	8		3 8	1		1	1	.1	1	1_		8	1_			84		84
#OBC#	202	202	203	204	205	200	202	200	200	240	211	212	213	214	215	216	217	218	210	220	221	222	223	224	225	228	227	228	229	230	231	232	233	234	235	236	237	238	239	240

Z	129	130	92	126	187	184	175	147	125	195	224	161	80	8	152	119	116	87	2	170	150	138	124	166	160	134	126	73	140	160	135	126	91	130	182	72	28	215	108	82
MSR+3	0	0	0	0	0	0	0	-	-	-	-	+	+	0			0	0	0	0	-	0	0	0	0	-	1	0	0	0	0	0	0	0	0	0	0	0 2	0	0
MSR+2	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	1
MSR+1		0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0
MSR	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0
ACP	0	0	0	0	0	0	0	0	0	0	0.03	0	0	0	0	0	0	0	0	0	0	0	0	0	0.02	0.01	0.01	0	0	0	0	0	0	0	0	0	0	0.03	0.1	0.08
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0
LAG	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	990.0	990.0	990.0
UNEMP	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072	0.072				0.07		-		-	-			_	0.07	_	_	07	0.07	_		0.062 (
LAG	2552	2552	2552	2552	2552	2552	2552	2552	2552	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	6341	6341	341
AHR	5465	5465	5465	5465	5465	5465	5465	5465	5465	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	7840	6341	6341	6341	6341	6341	6341	6341	6341	6341	6341	6341		-		-	7010	7010
PROP	1	+	1	1	-	1	1	-	-	-	-	+	-	1	-	-	-	-	1	1	-	-	-	+	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
JET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	히
HELO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		2.867180496	3.390299772	713981		3.808504111	3.525331612	3.576961538	1.91875916	1.380056038	0.726787882		2.512305624	4.191381946	3.029745894	2.773013802	3.100175896	3.331686778	3.518157033	3.007236965	3.891820298	3.511030638	2.54742005	0.989048792	0.564529803		2.565380206	2.847706351			3.069099946	2.996152353	3.377690934	3.744551675	3.078568279	4.445082376	2552	0.366859891	1.252891545	1.865183638
1 - CR	0.062	0.0538	0.0326	0.0238	0.0374	0.0217	0.0286	0.0272	0.128	0.201	0.3259	0.1429	0.075	0.0149	0.0461	0.0588	0.0431	0.0345	0.0288	0.0471	0.02	0.029	0.0726	0.2711	0.3625	0.1493	0.0714	0.0548	0.0571	0.02	0.0444	0.0476	0.033	0.0231	0.04	0.0116	0.0949	0.4093	0.2222	0.1341
	0.938	0.9462	0.9674	0.9762	0.9626	0.9783	0.9714	0.9728	0.872	0.799	0.6741	0.8571		-						0.9529	0.98	\rightarrow		- 1		-		1		- 1		_	_	,	-	-+	-	_	_	0.8659
-	Ξ	12	13	4	1		11	18	19	9	7	-	1	\rightarrow						\rightarrow	17			_	-			\rightarrow		<u> </u>							1			2
	73	72		{		89	29	99	65	79	78	77	9/	75	74	23	72	7	2	69	88	29	99	8	79	28	1	9/	2	4	73	72	7	0	69	89	/9	81	200	2
7	8	84		84		84	84	8	84	82	82	82	82	82	82	82	82	82	82	82	82			_			_ 1	_	_	_Ł							-	-+	_	'n
	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260	261	797	263	264	265	266	792	268	522	7/0	271	272	273	274	275	5/6	7/7	278	579	780

z	117	114	83	125	72	131	128	8	138	181	168	196	214	87	78	119	114	61	133	173	137	147	100	8	202	125	266	157	97	83	135	130	8	142	182	4	72	\$	167	139
MSR+3	-	0	0		_	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
MSR+2	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0
MSR+1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
MSR N	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	=
ACP	0.02	0.01	0.02	0	0	0	0	0	0	0	0	0.02	0.05	0.38	0.33	0.17	0	0	0	0	0	0	0	0	0	0.01	0	0.01	0	0	0	0	0	0	0	0	0	0		0.3
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	990.0	990.0	990.0	990.0	990.0	990.0	990.0	0.066	990.0	990.0	990.0	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.052	0.05
UNEMP	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	.0.055	0.055	0.055	0.055	0.055	0.055	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.055
LAG	6341	6341	6341	6341	6341	6341	6341	<u> </u>	.1	6341	6341	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	9026
AHR	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	7010	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	6683	9026	9026	9026	9026	9056	9026	9056	9026	9026	9026	9026	9026	9026	9026	4779
PROP	-	+	-	-	1	-	-	-	1	-	-	-	1	1	-	1	1	-	1	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-	-
Ę	0	0	0	0	0	0	0	C	C	0	0	C	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HELO	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I OGIT VALUE	3 639229545	i c	0	ď	1	1	1	2	ي اد	2 73743866	-	- 0		-		i	1	-	i m	0	i ``		3	1.		0	1	1	12	2	(6)	2	2	7	2.485231694	1	1	2.6	1.059003151	1.013988606
1. CR	0.0256	0.0263	0.0535	0 024	0.0649	0.0611	0.0301	0000	0.0213	0.0217	0.000	04133	0.4430	0 1724	0.0897	0.0588	0 1053	0.100	0.0376	0.0983	0.0657		-	0.0427	0.2079	0.352		0 2739	0.1031	0.0482			0.0476	0.0563	0.0769	0.0486			0.2575	0.2662
90	0 0744				0 9351	0 0380	0.000	7070	0.9707			1	0.5561	0.3301	0.0273	0.0412	0.047	0.034						1				+-	-		1 0.9704	-	_		5 0.9231				-	1
SUA	5		_								0 0					-								L							L				L		\perp	180		
<u>ر</u>	1-	-	-	+	+	-	٠.		- 1		8 8	-						_ 1							L_				-1			_1_		1		1			2	
2	2 6					\perp			01		9 6	1	4					0 8					_	_i_			3 8		\perp	1	8	\perp	\perp	\perp	L			1_	1_	8
OGC#		287	202	287	285	200	2007	707	788	202	200	200	787	207	206	200	700	767	2000	300	3 6	500	303	300	304	305	307	200	300	300	34	312	313	314	315	316	317	318	319	320

z	230	196	123	9	\$	135	119	133	173	4	147	5	244	194	194	173	136	114	120	155	153	78	174	206	173	168	205	299	145	148	152	135	110	117	160	159	189	225	188	331
MSR+3	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0
MSR+2	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0
MSR+1	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	Ó	0	0	0	0	0	0	0	0	0	0
MSR	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-
ACP	0.24	0.09	0.02	0.04	0.01	0	0	0	0	0	0	0	0.32	0.19	90.0	0.05	0.01	0	0	0	0	0	0	0	0	0	0.47	0.19	0.05	0.01	0.01	0	0	0	0	0	0	0	0	0.04
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0.46
LAG	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.071
UNEMP	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.087	0.087	0.074	0.074	0.074	0.074		0.074	0.074	0.074	_	0.074		4		0.068
LAG	9026	9026	9026	9026	9026	9026	9026	9026	9026	9026	9026	9026	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	2607
AHR	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4779	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	4004	2607	2607		-			2607	_	-	-			-	2067
PROP	-	1	-	-	-	-	1	-	-	-	-		1	1	-	1	-	1	1	1	1	-	-	-	+	-	-	-	-	-	1	-	-	-	-	1	-	-	-	=
Ē	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HELO.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
등	0.667307493	0.842540477	2.224180387	3.794467217	3.713981903	2.764014973	3.655388327	3.052724376	3.325699247	2.708050201	3.34680331	1.374461378	0.870741667	0.527500693	0.639321196	1.875557345	2.335813705	2.45738738	2.108224599	2.571428862	2.897041625	3.639229545	2.909213126	2.976475889	2.430181106	1.744043996	1.687537177	1.300980777	0.86354129	1.098612289	2.765809035	3.259135499		3.340731129	3.435640097	3.429043837	3,259135499	3.438953588	1.622212249	1.159819965
1 - CR	0.3391	0.301	0.0976	0.022	0.0238	0.0593	0.0252	0.0451	0.0347	0.0625	0.034	0.2019	0.2951	0.3711	0.3454	0.1329	0.0882	0.0789	0.1083	0.071	0.0523	0.0256	0.0517	0.0485	0.0809	0.1488	0.1561	0.214	0.2966	0.25	0.0592	0.037	0.0273	0.0342	0.0312	0.0314	0.037	0.0311		0.2387
\mathbf{c}	0.6609	0.699	0.9024	0.978	0.9762				0.9653	0.9375		\rightarrow	-				0.9118	0.9211	0.8917	_				_	-	-	0.8439	-	_					- 1		1	- 1	0.9689	1	0.7613
YOS								15	16	17	18	19				တ	10	11	12	13	14	15	16	1		19	9	_	8	6	9	Ξ		13		15			_	7
-	-	\rightarrow		_	_	امتا		75	74				_	_	-			-				\rightarrow			73		_	_						79	78	77	75	74	73	86
_	8	_		_	•	_	_		8	90	90	8	9	9	9	9	9	9	9	9				i		91	8	92	92	92	92	92	92	92	92	92	92	92	92	93
#OBS	321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340	34	345	343	344	345	346	347	348	349	320	351	352	353	354	355	356	357	358	329	360

z	245	105	121	138	135	116	133	170	160	92	186	225	200	224	192	175	163	63	65	43	97	146	191	157	156	153	쫣	62	36	4	42	86	9	97	146	117	137	148	77	9
MSR+3	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
MSR+2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0
MSR+1	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
MSR	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0
ACP	0.03		0.01	0.01	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VSI/SSB	0.2	0.23	0.15	0.16	0.34	0.69	0.99	0.98	0.98	0.99	0.98	0.99	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	990.0	990.0	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056
UNEMP	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.068	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058	0.058
LAG	2607	2607	2607	2607	2607	2607	2607	2607	2607	2607	2607	2607	547	547	547	547	547	547	547	547	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	1446	3550	3550	3550	3550	3550	3550	3550	3550	3550
AHR	2067	2067	2067	2067	2067	2067	2067	2067	2067	2067	2067	2067	1446	1446	1446	1446	1446	1446	1446	1446	3550	3550	3550	3550	-	3550			_	3550	3550	3271	3271	3271	3271	3271	3271	3271	3271	3271
PROP	1	-		_	_	_	-	-	-	-	1	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
里	0		L	0	0	0	0	0	0	0	0	0	-	1	-	-	-	1	-	-	+	-	-	1	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-
HELO	0	0	0	0	0	0	0		0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOGIT VALUE	0.388410496	1.791409513	1.955084525	2.548906233	2.63852174	2.475411542	1		2.944438979			-	1.29504569	2.499403606	2.708050201	3.525331612	4.385779746	3.399854892	2.485231694	3.020687112	0.396722702	1.009386147	1.761520581	1.982994352	2.681064269	4.321956487	2.996152353	2.674415922	3.554525524	3.762428743	2.565380206	0.818416012	0.84729786	1.548520892	1.577146408	2.485231694	2.438277909	4.984009441	3.623314766	2.944438979
1 - CR	0.4041	0.1429	0.124	0.0725	0.0667	0.0776	0.015	0.0294	0.05	0.0435	0.0645	0.1556	0.215	0.0759	0.0625	0.0286	0.0123	0.0323	0.0769	0.0465	0.4021	0.2671	0.1466	0.121	0.0641	0.0131	0.0476	0.0645	0.0278	0.0227	0.0714	0.3061	0.3	0.1753	0.1712	0.0769	0.0803	0.0068	0.026	0.05
CR	0.5959	0.8571	0.876	0.9275	0.9333	0.9224	0.985		0.95	0.9565			0.785	0.9241	0.9375	0.9714	0.9877	0.9677	0.9231	0.9535	0.5979	0.7329	0.8534	0.879	0.9359	0.9869	0.9524	0.9355	0.9722	0.9773	0.9286	0.6939	0.7	0.8247	0.8288	-			0.974	0.95
YOS		6	9	11	12	13	4		16	17	18	19	7	œ	6	10	11	12	13	14	7	8	L	10	=	12	13	4	15	16	18	7	8	6	10	11	12	13	14	15
YG	3 85	84	₩.	3 82	84	8	1		77	9/	75	74		69	-	. 67	99	65	8	63	71	70	69	68	67		65	ঞ	63	1	9		71	2	69	99	29	99	65	8
3YR	93				93		_	_	L_	93	-	93	_	77	77	77	77	77	77	77	78	78	78	78	78	ı	78	78	78	78	78	79	79	_	79	79	79	79	79	79
#OBS	361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	38.4	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400

z	40	45	4	102	85	72	40	75	110	86	112	121	67	56	发	40	160	2	8	67	37	73	110	97	101	112	22	53	发	176	79	115	75	86	59	32	99	100	87	8
MSR+3	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	-	0	0
MSR+2	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
MSR+1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0
MSR	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ACP	0	0	0	0.25	0.49	0.45	0.49	0.56	0.62	0.58	99.0	0.59	0.78	0.43	0	0.08	0.78	0.58	0.57	0.63	0.47	0.54	0.39	0.45	0.26	0.16	0	0	0	0.33	0.14	0.02	0.03	0.02	0	0	0	0	0	0
VSI/SSB	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAG	0.056	0.056	0.056	0.069	0.069	0.069	690.0	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.069	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092	0.092
UNEMP	0.058	0.058	0.058	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.076	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.097	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075
LAG	3550	3550	3550	750	750	750	750	750	750	750	750	750	750	750	750	750	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552	2552
AHR	3271	3271	3271	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1116	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	1050	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465	5465
PROP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
国	-	-	-	٦	1	7	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1	~	-	-	1	٦	1	-	7	1	-	٦	-	-	-	-	1	-	-	=
HELO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VALUE	646	861	635	501	673	716	149	383	208	314	723	127	603	245	763	149	696	615	206	603	699	351	208	063	695	161	339	395	968	201	941	034	007	448	222	201	317	985	607	812
LOGIT VA	3.663561646	3.785212861	2.614673635	1.233897501		2.398331716	1.945910149	3.17805383	4.690339208	3.455677314	3.592187723	4.783165127	3.059712603	2.871116245	3.496919763	1.945910149	1.347984969	2.120711615	2.565380206	3.059712603	2.861302669	2.847706351	4.690339208	3.861649063	3.902074695	4.712764161	3.313823339	2.505120395	1.75752968	2.708050201	2.051508941	2.592850034	4.306602007	2.785733448	4.0633972	2.708050201	3.04347531	4.59511985	4.453841607	3.368330812
1-CR	0.025	0.0222	0.0682	0.2255	0.1765	0.0833	0.125	0.04	0.0091	0.0306	0.0268	0.0083	0.0448	0.0536	0.0294	0.125	0.2062	0.1071	0.0714	0.0448	0.0541	0.0548	0.0091	0.0206	0.0198	0.0089	0.0351	0.0755	0.1471	0.0625	0.1139	0.0696	0.0133	0.0581	0.0169	0.0625	0.0455	0.01	0.0115	0.0333
CR	0.975	0.9778	0.9318	0.7745	0.8235	0.9167	0.875	96.0	0.9909	0.9694	0.9732	0.9917	0.9552	0.9464	0.9706	0.875	0.7938	0.8929	0.9286	0.9552	0.9459	0.9452	0.9909	0.9794	0.9802	0.9911	0.9649	0.9245	0.8529	0.9375	0.8861	0.9304	0.9867	0.9419	0.9831	0.9375	0.9545	0.99	0.9885	0.9667
YOS	16	17	19	7	œ	6	10	11	12	13	14	15	16	17	18	19	7	8	6	10	Ξ	12	13	14	15	16	17	18	19	7	80	6	10	7	12	13	14	12	16	18
YG		62	9	74	73	72	7.1	2	69	89	67	99	65	94	63	-62	75	74	73	72	71	70	69	89	29	99	65	8	63	11	9/	75	74	73	72	71	2	Ll	99	99
YR	79	79	79	81	81	81	81	84	84	81	81	81	81	84	81	81	82	82	82	82	82	82	82	82	82	82	82	82	82	84	8	84	84	84	84	84	84	84	84	84
#OBS	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440

Name	2 2 2	105 91 73
NR FOR JOSE 11 - CR LOCGIT VALUE HELO JET PROP AHR IAGE LUNEMP IAGE VSI/SSB ACP MSR MSR+1 MSR+1 MSR+1 MSR+1 MSR+2 86		000-
Name		
NR CONTROL 1 - CR LOGIT VALUE HELO LET PROP AHR LAG LOKEINP LAG VSISSB ACP MSR MSRATION 46 66 19 0.8571 0.1429 1.791409613 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	000	0 7 0
NR VG (YOS) CR 1. CR LOGIT VALUE HELO JET PROP JAHR LAG INNEMP LAG. UNEMP LAG. UNEMP LAG. VSI/SSB ACP MSR MSR*1 MSR MSR*1 84 66 19 0.8671 0.1429 1.7291409513 0 1 0 0.946 1.720 0.075 0.075 0.005 0.007 0.042 0.007 0.041 0.000 0	000	0-00
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET PROPIAHR LAG UNEMIP LAG LAG UNEMIP LAG VSISSB ACP MSR ASISSB ACP MSR AS		
NE 1 CR LOGIT VALUE HELO JET PROP AHR LAG UNEMP I AG VSI/SS ACS ACS ODS ODS ODS ODS ODS ODS OD OD OD OD OD OD OD OD ACS ACS ACS ACS OD COT OD ACS OD ACS	000	-000
YR YG YGS CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAG UNEMP LAG VNISSB AG 84 65 19 0.8571 0.1429 1.791409513 0 1 0.5465 2522 0.075 0.071 0 86 78 19 0.8571 0.1429 1.791409513 0 1 0 7840 5465 0.072 0.071 0 86 77 8 0.8524 0.0476 2.936452353 0 1 0 7840 5465 0.072 0.071 0 86 76 10 0.9697 0.0030 3.465839033 0 1 0 7840 5465 0.072 0.071 0 86 76 10 0.9697 0.0029 3.51103058 0 1 0 7840 5465 0.072 0.071 0 86 70 10 0.9698 0.072 0.071 0 0 7840	000	000 000
NR YG VOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAG UNEMP LAG VSI/SSB 84 65 19 0.8571 0.1429 1.791409513 0 1 0 5465 2552 0.075 0.071 0 85 77 1 0.8571 0.1429 1.791409513 0 1 0 7840 5465 0.077 0.071 0 85 76 10 0.9624 0.0476 2.96915233 0 1 0 7840 5465 0.072 0.071 0 86 76 10 0.9624 0.0476 2.96915233 0 1 0 7840 5465 0.072 0.071 0 86 76 10 0.9697 0.0323 3.5103663 0 1 7840 5465 0.072 0.071 0 86 72 10 0.868 0.072 0.073 0 0 7840 5465		0000
YE YOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAG UNEMP LAG 86 78 19 0.8571 0.1429 1.791409513 0 1 0.5465 2552 0.075 0.071 86 78 7 0.7425 0.2575 1.059003151 0 7840 5465 0.072 0.071 86 76 9 0.9524 0.0476 2.99815353 0 1 0 7840 5465 0.072 0.071 86 76 10 0.9697 0.0303 3.468839033 0 1 0 7840 5465 0.072 0.071 86 73 1.2 0.3697 0.0322 3.598654827 0 1 0 7840 5465 0.072 0.071 86 72 1.0 0.352 0.0048 2.773013802 0 1 0 7840 5465 0.072 0.071 86 1.0 0.358 <td< td=""><td>000</td><td></td></td<>	000	
YE YOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR IAG UNEMP LAG 86 78 7 0.7425 0.2575 1.791409513 0 1 0.5465 2552 0.075 0.071 86 78 1.0 0.527 0.1030057535 0 1 0.7840 5465 0.072 0.071 86 77 8 0.8952 0.0476 2.99353535 0 1 0.7840 5465 0.072 0.071 86 72 10 0.9897 0.0303 3.468839033 0 1 0.7840 5465 0.072 0.071 86 72 10 0.9897 0.0323 3.398642372 0 1 0.7840 5465 0.072 0.071 86 72 10 0.9870 0.0323 0.010 1 0.7840 5465 0.072 0.071 86 17 1.9960 0.000 0.014 4.247380132 0 1 0.7840		
YE YG YOS CRR 1 - CRR LOGIT VALUE HELO JET PROP AHR LAG UNEMPI LAG	0.066	0.058 0.058 0.058 0.058
YR YG YOS CR LOGIT VALUE HELO JET PROP AHR LAG LIAG LIAG <th< td=""><td></td><td></td></th<>		
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAB 84 65 7 0.08571 0.1429 1.701409513 0 1 0 5465 6 8 7 0.08571 0.1429 1.701409513 0 1 0 5465 6 8 7 0 0.0857 0.0129 2.103057535 0 1 0 7840 6 0 7840 6 0 7840 6 7840 6 0 0 0 7840 6 0 0 0 7840 6 0	0.062	0.055
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAB 84 65 7 0.08571 0.1429 1.701409513 0 1 0 5465 6 8 7 0.08571 0.1429 1.701409513 0 1 0 5465 6 8 7 0 0.0857 0.0129 2.103057535 0 1 0 7840 6 0 7840 6 0 7840 6 7840 6 0 0 0 7840 6 0 0 0 7840 6 0	6341 6341	7010 7010 7010 7010
YG YOS CR 1 - CR LOGIT VALUE HELO JET PROPA 84 65 19 0.8571 0.1429 1.791409513 0 1 0 0 1 0		
YG YOS CR 1 - CR LOGIT VALUE HELO JET PROF 84 65 19 0.8571 0.1429 1.791409513 0 85 7 0.7425 0.2575 1.791409513 0 1 85 7 0.8912 0.02675 0.076037535 0 1 85 75 10 0.96524 0.0408 2.0360452353 0 1 85 75 10 0.9697 0.0293 3.511030638 0 1 0 85 74 11 0.9677 0.0293 3.511030638 0 1 0 85 72 13 0.9677 0.0293 3.399854892 0 1 0 85 72 13 0.9677 0.0293 3.511030638 0 1 0 85 72 14 0.9412 0.0323 3.398548932 0 1 0 86 16 0.9904 0.0029 2.730		
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET 84 65 19 0.8571 0.1429 1.791409513 0 85 78 7 0.7425 0.2575 1.059003151 0 0 85 77 8 0.8912 0.1088 2.103055535 0 1 85 77 8 0.8912 0.1088 2.103055535 0 1 85 75 10 0.9697 0.029 3.511030638 0 1 85 74 11 0.9472 0.023 3.539854892 0 1 85 72 13 0.9679 0.0323 2.538542372 0 1 85 72 14 0.9472 0.0323 2.538542372 0 1 85 72 14 0.9472 0.029 3.511030638 0 1 86 77 0.9805 0.0128 2.77301302 0 1 <td></td> <td></td>		
YR YG YOS CR 1 - CR LOGIT VALUE HELO 84 65 19 0.8571 0.1429 1.791409513 0 85 78 7 0.7425 0.2575 1.059003151 0 85 77 8 0.8912 0.1088 2.103057535 0 85 77 8 0.8912 0.0076 2.996152353 0 85 77 8 0.9524 0.0476 2.996152353 0 85 74 11 0.971 0.029 3.511030638 0 85 74 11 0.9472 0.0253 2.39854892 0 85 73 12 0.9859 0.0732 2.538542372 0 85 74 14 0.9412 0.0293 2.7346499292 0 85 68 16 0.9959 0.0472 3.05501125 0 86 7 18 0.9472 0.1528 1.712806918 <td></td> <td></td>		
YR YG YOS CR 1 - CR LOGIT VALUE 84 65 19 0.8571 0.1429 1.791409513 85 78 7 0.7425 0.2575 1.0590031515 85 77 8 0.8912 0.1088 2.103057535 85 77 8 0.9524 0.0476 2.996152353 85 74 11 0.9671 0.0293 3.465839033 85 74 11 0.9677 0.0393 3.399854892 85 74 14 0.9412 0.0593 3.511030638 85 74 14 0.9472 0.0588 2.773013802 85 74 14 0.9472 0.0588 2.773013802 85 76 16 0.9965 0.0472 3.09501142 85 66 16 0.9965 0.0472 3.05501142 86 71 10 0.9528 0.0472 3.045910142 86	000	0000
YR YG YOS CR 1 - CR LL 84 65 19 0.8571 0.1429 85 78 7 0.7425 0.2675 85 77 8 0.8912 0.1088 85 77 8 0.9524 0.0476 85 75 10 0.9697 0.029 85 74 11 0.977 0.029 85 73 12 0.9659 0.0045 85 74 14 0.9412 0.058 85 74 14 0.9472 0.058 85 74 14 0.9472 0.058 85 76 16 0.995 0.0047 85 69 16 0.995 0.0047 86 77 10 0.9592 0.0408 86 76 11 0.912 0.069 86 77 14 0.9464 0.053	188	15 48 2
YR YG YOS CR 1 - CR L 84 65 19 0.8571 0.1429 85 78 7 0.7425 0.2675 85 77 8 0.8912 0.1088 85 75 10 0.9624 0.029 85 74 11 0.977 0.029 85 74 11 0.9412 0.058 85 74 14 0.9412 0.058 85 74 14 0.9472 0.029 85 74 14 0.9472 0.058 85 70 15 0.9859 0.0142 85 69 16 0.9859 0.0142 86 71 1 0.952 0.0405 86 76 10 0.9522 0.0408 86 75 11 0.9125 0.0125 86 77 14 0.9464 0.0536 <tr< td=""><td>259135499 713981903</td><td>1,15267951 693297184 719000115 377690934</td></tr<>	259135499 713981903	1,15267951 693297184 719000115 377690934
YR YG YOS CR 1 - CR L 84 65 19 0.8571 0.1429 85 78 7 0.7425 0.2575 85 77 8 0.8912 0.1088 85 75 10 0.9657 0.029 85 75 10 0.967 0.029 85 74 11 0.971 0.029 85 73 12 0.967 0.029 85 70 15 0.9905 0.004 85 70 15 0.9905 0.004 85 66 19 0.875 0.047 86 70 16 0.9905 0.009 86 76 10 0.952 0.040 86 76 10 0.952 0.040 86 76 10 0.962 0.009 86 71 0.982 0.015 86 <	713	
YR YG YOS CR 1 - CF 84 65 19 0.8571 0.145 85 78 7 0.7425 0.25 85 77 8 0.8912 0.10 85 77 8 0.9524 0.04 85 75 10 0.9697 0.03 85 74 11 0.912 0.05 85 73 12 0.9677 0.03 85 74 14 0.9412 0.05 85 76 15 0.9859 0.01 85 69 16 0.9905 0.00 85 67 18 0.9852 0.04 86 77 10 0.9522 0.05 86 76 1 0.9472 0.15 86 74 1 0.9463 0.05 86 74 1 0.9464 0.05 86 7	\perp	
YR YG YOS CR 84 65 19 0.8571 85 78 7 0.7425 85 77 8 0.8912 85 76 10 0.9697 85 75 10 0.9697 85 74 11 0.971 85 73 12 0.9268 85 73 12 0.9658 85 70 15 0.9967 85 70 15 0.9968 85 66 19 0.9528 86 77 10 0.9528 86 76 10 0.9628 86 74 12 0.9623 86 74 12 0.9632 86 74 12 0.9634 86 71 16 0.9657 86 67 16 0.9667 86 67 19 0.9467	0.037	0.24 0.3333 0.152 0.033
REAL REAL <th< td=""><td>-</td><td></td></th<>	-	
REAL REAL <th< td=""><td>0.963</td><td>0.76 0.848 0.967</td></th<>	0.963	0.76 0.848 0.967
YR YR 94 85 85 77 85 77 85 77 85 77 85 70 85 70 85 70 86 70 86 70 86 86 70 86 70 86 86 86 86 86 87 77 87 77 87 77 87 77 87 77 87 77 87 77	9 4 9	0 0 0 5
AR AR	2 8 8	80 82 82
	87 87	28888
#0888 441 442 443 444 444 446 446 446 466 466	474	476 477 479

Column C		42	99	67	56	53	81	51	61	87	9/	61	38	20	52	83	53	26	190	9	51	79	72	28	33	28	61	29	138	131	80	99	8	62	48	32	46	55	62	47	103
Name	+3 N	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0		-	_	0	-	0	0	0	0	0	0	_	$\overline{}$	0	-	0	0	0	0	0	0	0	0	0
Name	MSR																																					L.			
Name		0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	
Name	MSF																					L	L													_					
Name	7+1	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0			0	٥	0	,	O					
New York Vision	-														L				_													0	0	0	0	0	0	0	0	0	
NE 17.0 COST 1.0 COST IAAS IAMEMP LAG	MSR	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	-		0																				
RF 77 (FOS) CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAG UNEMP LAG VNEMP LAG		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60.0	0.05	0.01	0.01	1	0	0	0	0	0	90.0	0.03	0.04	0	0	0	0	0	0	0	0	0	0.0
Name			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-		+	1_	-	0	0	0	0	0	-	\vdash		0	0	0	0	0	0	0	0	0	0
Name	SS/IS/																																								
NEAR TOTAL CREATING TOTAL		-	28	928	92	92	928)52)52)52	352	352	352	352	352	352	252	052	90.	0.05	90.	0.05	0.05	.05	.05	05	05	0.05	053	053	053	053	053	053	053	053	053	053	053	053	065
NE 7G YOS CR 1 - CR LOGITVALUE HELO JET PROP AHR LAG 701 88 75 13 0.9546 0.0455 3.043475317 0 1 0 6683 7010 0 88 75 13 0.9546 0.0455 3.043475317 0 1 0 6683 7010 0 88 73 15 0.9546 0.0363 3.217836324 0 1 0 6683 7010 0 88 77 18 0.9641 0.0369 1.628491779 0 1 0 6683 7010 0 88 69 19 0.7901 0.0369 1.628491779 0 1 0 6683 7010 0 89 76 11 0.9701 0.0369 1.622491779 0 1 0 6683 7010 0 89 76 11 0.9624 0.3246248779 0 1 0 0 <td< td=""><td>A I</td><td>0</td><td>0</td><td>4-</td><td></td><td>0</td><td>1_</td><td></td><td>-</td><td>_</td><td></td><td></td><td>_</td><td>1</td><td>_</td><td>_</td><td>_</td><td>┺</td><td>1</td><td></td><td>_</td><td></td><td>L</td><td>_</td><td>L</td><td></td><td>\perp</td><td></td><td>0</td><td>−</td><td>_</td><td>1</td><td>ـــ</td><td>-</td><td>-</td><td>-</td><td>-</td><td>1-</td><td>+</td><td>-</td><td>0</td></td<>	A I	0	0	4-		0	1_		-	_			_	1	_	_	_	┺	1		_		L	_	L		\perp		0	−	_	1	ـــ	-	-	-	-	1-	+	-	0
RB 76 VOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR LAG 88 76 12 0.881 0.119 2.001934133 0 1 0 6883 7010 88 75 13 0.9546 0.0456 3.043475317 0 1 0 6883 7010 88 73 15 0.9546 0.0746 2.51808568 0 1 0 6683 7010 88 77 17 0.9615 0.07801 0.29546 0.0780 0.0583 0.0688 0 0 6683 7010 88 80 19 0.7901 0.0291 0.0294 0	NEMP	0.055	0.055	0.055	0.055	0.055	0.055	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.053	0.052	0.053	0.053	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.06	90.0	0.06	90.0	0.06	0.06	0.06	0.0	0.06	90.0	0.06	0.07
RB 76 VOS CR 1 - CR LOGIT VALUE HELO JET PROP AHR PROP AHR BB 76 12 0.881 0.0456 3.043475317 0 1 0 6683 7 BB 75 13 0.9546 0.0456 3.043475317 0 1 0 6683 7 BB 73 15 0.9546 0.0365 3.043475317 0 1 0 6683 7 BB 71 16 0.9811 0.0366 0.2568293 0 1 0 6683 7 BB 70 16 0.9811 0.0366 0.25682833 0 1 0 9026 0 BB 69 16 0.7801 0.2089 2.216130159 0 1 0 9026 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	10	0	9	9	9	10	83	83	383	183	383	383	383	383	383	383	383	026	920	326	128	920	026	026	920	920	920	779	779	779	779	779	779	779	779	779	779	779	779	904
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET PROP 88 75 12 0.884 0.0455 3.043475317 0 1 0 6 88 75 15 0.9545 0.0455 3.043475317 0 1 0 6 8 88 73 15 0.9545 0.0746 2.51808569 0 1 0 6 6 8 6 1 0 0 6 6 6 1 0 6 6 1 0 <td>4</td> <td>3 70</td> <td>-</td> <td>+</td> <td></td> <td>1</td> <td>_</td> <td>-</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>_1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>_</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>4-</td> <td>٠.</td> <td>1</td> <td>-</td> <td>-</td> <td>-</td>	4	3 70	-	+		1	_	-	1	1			1		_1	1	1					1			1_					_	_	-	-	-	-	4-	٠.	1	-	-	-
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET PROPRES 88 75 13 0.9545 0.0465 3.043475317 0 1 88 75 15 0.9546 0.0465 3.043475317 0 1 88 73 15 0.9546 0.0746 2.518085569 0 1 0 88 77 17 0.9615 0.0356 3.217836524 0 1 0 88 69 19 0.7901 0.2056 0.325497737 0 1 0 89 79 10 0.931 0.069 2.602152773 0 1 0 89 79 10 0.931 0.069 2.60215773 0 1 0 89 76 11 0.9615 0.0326 0.1639 1.22462773 0 1 0 89 77 12 0.9615 0.0326 0.0769 2.76057763 0	QH V	668	668	968	668	668	668	902	902	902	902	100	902	902	206	902	902	900	477	477	477	477	477	477	477	477	477	477		-	_	1_	-	1	1_	1	+	\perp	-	-	
YR YG YOS CR 1 - CR LOGIT VALUE HELO JET 88 75 12 0.9845 0.01934133 0 88 75 13 0.9245 0.0746 2.518085699 0 1 88 73 15 0.9254 0.0746 2.518085699 0 1 88 70 18 0.9814 0.0189 3.949512469 0 1 88 70 18 0.0834 0.0209 1.325528293 0 1 89 80 9 0.8361 0.1639 1.629491779 0 1 89 80 9 0.8361 0.1639 1.629491779 0 1 89 76 19 0.8361 0.1639 1.629491779 0 1 89 76 14 0.9821 0.0179 4.004892423 0 1 89 76 13 0.8158 0.0346 2.216130199 0 1 <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>0</td> <td>C</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>C</td> <td>0</td> <td>C</td> <td>0</td> <td>C</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>) </td> <td></td> <td>0</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>C</td> <td>0</td> <td>C</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td>			0	0	0	0	C	0	C	0	0	0	C	C	0	C	0	C	0	0	0)		0			0	0	0	0	0	C	0	C			0	0	0
97 K VG VOS CR 1 - CR LOGIT VALUE HELO 88 76 12 0.9845 0.0456 2.0457317 0 88 75 13 0.9545 0.0456 2.518085569 0 88 73 15 0.9545 0.0746 2.518085569 0 88 70 18 0.9811 0.0346 3.245528293 0 88 69 19 0.7801 0.2099 1.325528293 0 89 81 8 0.6954 0.3046 0.826487779 0 89 81 8 0.6954 0.3046 0.826491737 0 89 77 12 0.9016 0.0894 2.15130159 0 89 76 13 0.8158 0.1692 2.602152773 0 89 76 14 0.9821 0.0179 4.04892423 0 89 76 14 0.9821 0.0179 4.048947410						+	-		+	-	+	-	-	-	-	-	-	-	-	-	-	+		-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-
YG YG CR 1 - CR LOGIT VALUE 88 76 12 0.881 0.455 3.043475317 88 75 13 0.9545 0.0455 3.043475317 88 73 15 0.9254 0.0746 2.518085569 88 73 15 0.9254 0.0709 2.518085569 88 70 18 0.9811 0.0189 3.349512469 88 70 18 0.9811 0.0209 1.32528293 89 70 10 0.931 0.069 2.602152773 89 76 11 0.9821 0.069 2.21513473 89 76 12 0.9015 0.0326 0.0794 2.450527523 89 76 19 0.8625 0.0345 3.214886778 89 76 19 0.8625 0.0345 3.214886778 89 78 10 0.8625 0.0345 3.21428291 80<	- 1 -	11	0	0	0	0	c	0	0	0	0	5 0	0	0	0	0	C	0	0	0	0	0	> 0	0	0) C	0	5 0	0	0	0	C	0	0	10	C	0	0	0	0	0
Y K G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G Y G R B 76 12 0.845 0.0455 3.04377 88 75 13 0.9545 0.0455 3.04377 88 73 15 0.9546 0.0456 3.04377 2.1838 88 70 18 0.0540 0.038 1.0183 3.049518 88 88 70 18 0.0540 0.038 1.0183 3.049518 88 89 1.0183 0.0564 0.3046 0.82548 88 88 99 0.8361 0.1639 1.62949 1.82949 1.82949 1.82949 1.82949 1.82949 1.82949 1.82949 1.82949 1.82949 1.82949 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788 1.83788		-	2 1	- 0	2 4	g	2 2	2 0	2 12	2 5	2 0	2 0	3 5	3 5	3 2	3 2	3 8	2 8	3 8	3 8	38	3 2	- 0	3 5	3 8	74	2 5	2 2	12	72	49	2 5	48	2 2	49	9	3 2	5 8	22	160	252
YE YG YOS CR 1 - CR LOG 2 LOG CR 1 - CR LOG 2 CR 1 - CR LOG CR 1 - CR LOG CR 1 - CR LOG CR 2 CR <t< td=""><td>1</td><td>344</td><td>752</td><td>25,50</td><td>363</td><td>1246</td><td>282</td><td>877</td><td>- </td><td>- 1</td><td>242</td><td>2015</td><td>474</td><td>100</td><td>262</td><td>575</td><td>1867</td><td>080</td><td>7007</td><td>090</td><td>2000</td><td></td><td>707</td><td>8618</td><td>2050</td><td>1462</td><td>107</td><td>0 0</td><td>1816</td><td>8753</td><td>9101</td><td>6637</td><td>6955</td><td>7346</td><td>4</td><td>3370</td><td>8731</td><td>3 2</td><td>820</td><td>2546</td><td>5012</td></t<>	1	344	752	25,50	363	1246	282	877	-	- 1	242	2015	474	100	262	575	1867	080	7007	090	2000		707	8618	2050	1462	107	0 0	1816	8753	9101	6637	6955	7346	4	3370	8731	3 2	820	2546	5012
YR YG YOS CR 1 - CR LCR LCR <td>E</td> <td>1015</td> <td>2424</td> <td>7180</td> <td>217</td> <td>0405</td> <td>2256</td> <td>0200</td> <td>200</td> <td>6021</td> <td>0448</td> <td>215</td> <td>700</td> <td></td> <td>247</td> <td>4505</td> <td>2346</td> <td>SES</td> <td>200</td> <td>5 5</td> <td>2758</td> <td>3 6</td> <td></td> <td>42 K</td> <td>200</td> <td></td> <td></td> <td></td> <td>2 2</td> <td>008</td> <td>045</td> <td>168</td> <td>959</td> <td>300</td> <td>945</td> <td>786</td> <td>5 6</td> <td>25.2</td> <td>300</td> <td>743</td> <td>264</td>	E	1015	2424	7180	217	0405	2256	0200	200	6021	0448	215	700		247	4505	2346	SES	200	5 5	2758	3 6		42 K	200				2 2	008	045	168	959	300	945	786	5 6	25.2	300	743	264
YR YG YOS CR 88 76 12 0.9545 88 75 13 0.9545 88 73 15 0.9545 88 73 15 0.9545 88 70 18 0.9811 88 70 18 0.9546 89 80 9 0.8351 89 70 10 0.931 89 77 12 0.9016 89 77 12 0.9016 89 77 14 0.9821 89 77 18 0.9655 89 77 18 0.9655 89 77 18 0.9655 89 77 18 0.9655 89 77 18 0.9655 89 77 18 0.9655 89 77 18 0.9655 89 77 14 0.9621	3	3 6	i c	3 0	۳	2 6	1		7	- 6	ic	3 0	1	-	t c) c	i	2 4	-	1	- -	- 6	- 1	+ 100	26	-		7					- 1				- (- 1	1	1	2
YR YG YOS CR 88 76 12 0.881 88 75 13 0.9545 88 73 15 0.9545 88 73 15 0.9541 88 70 18 0.9811 88 70 18 0.9654 89 80 19 0.7001 89 70 10 0.931 89 70 10 0.931 89 70 10 0.9321 89 70 14 0.9621 89 70 19 0.833 89 70 19 0.832 89 71 18 0.9625 89 71 18 0.9625 89 71 19 0.8636 89 72 14 0.9621 89 73 16 0.9226 89 74 15 0.9625	2	2 5	745	0450	0386	0200		2020	100	200	200.0	0200	4000	2476	2000	200	2760	3 9	3		127	200	0.0	170		080	500	000	200	267	12	100	127	200	12	107	OFF.	3 2	12	148	220
KR VG VOS CF 88 75 12 88 75 13 88 75 13 88 75 13 88 77 15 88 77 14 88 70 19 89 87 10 89 77 12 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 89 77 14 90 77 14 90 77 14 10 9 14 10 9 14 10 1 14 10 1 14		ᆛ	1			-		_	-	1	_1				- 1	1						-		-									ן אַ	3 5			3 6	2 4			_
YR YG YOS 88 76 YOS 88 75 13 88 75 13 88 75 13 88 70 16 88 89 81 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 89 70 10 80 70 10 80 70 10 80 70 10 80 10 10 <td></td> <td>2</td> <td>0.0</td> <td>90.0</td> <td>027</td> <td>00.00</td> <td>100.</td> <td>200</td> <td>0000</td> <td>2000</td> <td>0.83</td> <td>3.973</td> <td>0.00</td> <td>0.0</td> <td>7.207</td> <td>200</td> <td>0.00</td> <td>000</td> <td>20.0</td> <td>2 2</td> <td>0000</td> <td>0.00</td> <td>0.30</td> <td>0.00</td> <td>0.02</td> <td>0.80</td> <td>0.840</td> <td>200</td> <td>0.030</td> <td>7 2 2</td> <td>2</td> <td></td> <td>0.00</td> <td>70.0</td> <td>2 0</td> <td></td> <td>0.0</td> <td>200</td> <td>ά α α</td> <td>0.85</td> <td>0.77</td>		2	0.0	90.0	027	00.00	100.	200	0000	2000	0.83	3.973	0.00	0.0	7.207	200	0.00	000	20.0	2 2	0000	0.00	0.30	0.00	0.02	0.80	0.840	200	0.030	7 2 2	2		0.00	70.0	2 0		0.0	200	ά α α	0.85	0.77
R K KG R B B T F B B B T F B B B T F B B B T F B B B T F B B B T F B B B T F B B B T F B B B B		2	_						-										_1	_				_ !				_	_1.		Ш.					_	- 1	1 .	_		
X X	-	$\overline{}$	9	35	2 3	- 5	2 8	60	- 0	2 6	2	2	1	0 1	0	4 6	21	- 6	2 8	70	٥	2	6/	19	= 1	9	2	2	=	20 00	04	0 0	2 8	1 0	19	- 5	9 1	0	4 6	25	48
	- 1	-	_			_			\rightarrow		-1		_1_	_ 1.								_			_1_			<u> </u>	_		5 0	5 6	5 0	200	200	5	5 6	5	20.00	5	92
		_	_				4		4				\rightarrow	_	_	_	_	_	-	_	_	_	_	202	503	504	505	206	207	200	200	27.5	0	710	2 2	0	212	210	210	210	520

	83	8	6	- 5	X S	3	ဂ္ဂ	7	ରା	2	33	91	C	3	82	ຊ	48	27	23	6	cc	31
Z	0	100	-		7						0 273	0	1	5	=	.,	_				,	-
MSR+3				,							_											
1SR+2	0	-	-	0	> 0	0	0	0	0	0	0	0		-	0	0	0	0	0	C	0	7
3R+1 N	-	c		0	5	0	0	0	0	0	0	7		5	0	0	0	0	0	c	,	5
ISR MS	0	C) 0	> 0	5	0	0	0	0	0	+	c	,	9	0	0	0	0	0	0	,	٥
ACP IN	0.03	C	0	9	0	0	0	0	0	0	90.0	0 0		0.02	0	0	0	0	c	0	9	5
VSI/SSB ACP MSR MSR+1 MSR+2 MSR+3 N	0	C	0	0	0	0	0	0	0	0	0.15	010	2 9	0.13	0.08	0.65	0.92	0.85	96.0	000	00.0	0.99
	0.065	0 085	200.0	0.00	0.065	0.065	0.065	0.065	0.065	0.065	0.071	0 074		0.071	0.071	0.071	0.071	0.071	0.071	0.074		0.0/1
UNEMPILAG	0.074	0.074	1000	0.074	0.074	0.074	0.074	0.074	0.074	0.074	0.068	0.084	00.0	0.061 0.071	0.061	0.061	0.081	0.061	0.084	200	30.0	0.061 0.071
LAG	4004				4004 4004	4004	4004	4004	4004	4004	2607	7090	1007	2067 2607	2067 2607	2607	2607				7007	2067 2607
AHR	2807	2607	1007	2607	2607	2607	2607	2607	2607	2607	2067	-	4	2067	2067	2067	2087	2067	2007	200	1997	2067
PROP	0		2	٥	0	0	0	0	0	0	0			<u> </u>	0	0	C				2	0
H		1	-	-	~	-	-	-	-	-	-		-	_	-	-	1	-	1	-		_
H H		9	5	0	0	0	0	0	0	0	C	0	7	0	0	C	0	0	0	0	5	0
I OGIT VALUELHEI OLIET PROPIAHR	POST POST OF THE P	0.090000000	1.58562/204	2.656328916	1.945910149	2.996152353	3.525331612	2.398331716	2 944438979	1 504199624	4 332173924	1.000000	1.142830205	1.553370474	1 906274247	2 350R277R2	2 15140504	2 070554047	2.07.333404	3.090519651	1.252891545	1.041296038
90	10	0.0040	0.17	0.0656	0.125		0.0286	0.0833	0 05	0 1818	2000	0.2000	0.2418	0.1746	0 1294		1045	4444	2000	0.0435	0.2222	0.2609
	61,		0.83	0.9344	0.875	13 0.9524	14 0 9714 0 028	0 9167 0 083	0.05	10 0 8182 0 1818	0.0102 0.101	0.7312	0.7582 0.241	0 8254 0 174	0 8708	0010	0200	45 0.0930 0.104	0.0003		0.7778 0.222	0.7391 0.260
30,	3	n	9	11	12	13	14	18	2 5	- 0	0	0	<u></u>	10			2	4 4			17	19
2	2		82	81	80		2 00	2 28	02 75	2 5	2 6		84	83	38	2 6	3 6	2 6	0	1	9/	93 74
2	۲ ا	- 1	85	92		1	1			200	200		8	03	•		3 8	3	- 1		83	
	#UBS 1R 1G 103 CR	521	522	523	524	525	526	537	500	070	670	က္က	531	532	400	200	60	22	က္က	537	538	539

APPENDIX B. RESULTS OF LOGIT ESTIMATIONS

Regression Statistics Multiple R 0.614848246 R Square 0.378038366 Adjusted R Square 0.718014121 Standard Error 0.718014121 Observations 164 ANOVA df Regression df Residual 155 Total 163	1246 1366 1712 1121							
egression Statistics 0.614848 0.378038 3 Square 0.34593 Error 0.718014 ons on	1246 1366 1712 1121							
0.614848 0.378038 Square 0.34593 Error 0.718014 on df	1246 1366 1712 1121							
0.378038 Error 0.718014 ons df	1366 1712 1121							
A Square 0.34593 Error 0.718014 ons df	1712							
ard Error 0.718014 vations /A	1121							
vations /A df ession lual	161							
/A df ssion lual	5							
JA df assion lual								
off sesion Lual								
ession Iual		SS	MS	F	Significance F			
lual	8	48.57020659	6.071275823	11.77643916	5.0088E-13			
	155	79.90936309	0.515544278					
	163	128.4795697						
Coefficients	Т	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	~
	+	0 490385993	1 732184694 0.085229972	0.085229972	-0.119262569	1.818140791	1.818140791 -0.119262569	1.818140791
	4976	0 363853281	-3 403638333 0.000846457	0.000846457	-1.957175695	-0.519674257	-1.957175695	-0.519674257
ACD 0 588810676	0676	0.350462585	1,680095683	0.09495305	-0.103488247	1.281109599	-0.103488247	1.281109599
	F-05	2 67794E-05	3.198506016	10	3.27544E-05	0.000138554	3.27544E-05	0.000138554
QN	6899	6.291982705	4.967967706	4.967967706 1.77039E-06	18.82927163	43.68746214		43.68746214
	7859	0.203208369	0.203208369 -5.197856102 6.27425E-07	6.27425E-07	-1.457662848	-0.654832869		-1.457662848 -0.654832869
-	7002	0.200483776	0.200483776 -5.949344262 1.72787E-08	1.72787E-08	-1.588779869	-0.796714135	-1.588779869	-1.588779869 -0.796714135
	7785	0.205517915	-2.932677592 0.003870434	0.003870434	-1.00869502	-0.196740549		
	9483	0.198736918	0.198736918 -0.252139779 0.801267051	0.801267051	-0.44269163	0.342472665	-0.44269163	0.342472665

Table B-1. Helicopter LOGIT Estimation

THE INTERNATION OF ITEM IN								
O LICO EXCAMINOS								
Regnession Statistics	atistics							
Multiple R	0.81815059							
R Square	0.669370389							
Adjusted R Square	0.656078746							
Standard Error	0.60484423							
Observations	208							
ANOVA								
	df.	SS.	MS	4	Significance F			
Regression	80	147.3889449	18.42361811	50.36024555	7.92732E-44			
Residual	199	72.80147194	0.365836542					
Total	207	220.1904168						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
tromotel.	1 573151313	0.376415627	4 17929331	4	0.830875763	2.315426864	0.830875763	2.315426864
Welloadi.	-0 19991611	0 243908334	-0.81963624		-0.680892933	0.281060714	-0.680892933	0.281060714
ACD (RONI IS)	0.325010448	0.256377991	1,267700265	1,267700265 0.206386313	-0.180556008	0.830576904	0.830576904 -0.180556008	0.830576904
AIRI INF HIRF RATE	1.99009E-05	2.04858E-05	0.971450938	0.971450938 0.332503061	-2.04962E-05	6.02981E-05	-2.04962E-05	6.02981E-05
IINMEDI OVMENT	21.0778446	4.840214493		4.354733583 2.13085E-05	11.53314822	30.62254099	30.62254099 11.53314822	30.62254099
MSR	-2 091366906	0.165019581	-12.67344696	2.2606E-27	-2.416778476	-1.765955336	-2.416778476 -1.765955336 -2.416778476 -1.765955336	-1.765955336
MCD44			-13.52037656	5.6587E-30	-2.57142933	-2.57142933 -1.916815387	-2.57142933	-2.57142933 -1.916815387
MSB+2	-1 667555257	0.165315555	-10.08710435	1.37291E-19	-1.993550476	-1.993550476 -1.341560038	-1.993550476 -1.341560038	-1.341560038
MSR+3	-0.88343054	0.16446738	0.16446738 -5.371463564 2.16869E-07	2.16869E-07	-1.207753194	-0.559107886	-1.207753194 -0.559107886 -1.207753194 -0.559107886	-0.559107886

Table B-2. Propeller LOGIT Estimation

SUMMARY OUTPUT								
Regression Statistics	atistics							
Multiple R	0.676511586							
R Square	0.457667926							
Adjusted R Square	0.430208074							
Standard Error	0.786158751							
Observations	167							
ANOVA								
	đ	SS	MS	F	Significance F			
Regression	8	82.40674891	10.30084361	16.66680246	9.02147E-18			
Residual	158	97.65120183	0.618045581					
Total	166	180.0579507						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0.632742934	0.533204064	1.18668063	1.18668063 0.237134856	-0.420383361	1.68586923	-0.420383361	
VSI/SSB	-1,238839406	0.3693358	-3.35423592	-3.35423592 0.000996405	-1.968311045	-0.509367767	7	٠,
ACP(BONUS)	0.827775706	0.39051905	2.119680734	2.119680734 0.035595414	0.05646523	1.599086182		1.599086182
AIR! INE HIRE RATE	4.33287E-05	3.03059E-05	1.429708651	0.15477501	-1.65283E-05	0.000103186		0.000103186
UNEMPLOYMENT	32.51251633	6.831883302	4.758939065	4.758939065 4.36295E-06	19.01892834	46.00610432	19.01892834	46.00610432
MSR	-1.877101777	0.219683343	0.219683343 -8.544579456	1.03148E-14	-2.310996267	-1.443207288	-1.443207288 -2.310996267	-1.443207288
MSR+1	-1.332727164	0.21752187	0.21752187 -6.126865142 6.85649E-09	6.85649E-09	-1.76235255	-0.903101779	-1.76235255	-0.903101779
MSR+2	-0.582164397	0.217313136	-2.678919494	0.00816782	-1.011377513	-0.15295128		-0.15295128
MSR+3	-0.252426934	0.217418847	0.217418847 -1.161016801 0.247386156	0.247386156	-0.681848838	0.176994971	-0.681848838	0.176994971

Table B-3. Jet LOGIT Estimation

Till								
SUMMARY CUIPUI								
Regression Statistics	atistics							
Multiple R *	0.6564491							
R Square	0.430925421							
Adjusted R Square	0.422335616							
Standard Error	0.768522605							
Observations	539							
ANOVA								
	đ f	SS	WS	F	Significance F			
Regression	8	237.0402472	29.6300309	50.16707863	3.39548E-60			
Residual	530	313.0323074	0.590626995					-
Total	538	550.0725546						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	1.047901099	0.292348498	1	3.584424437 0.000369016	0.473597257	1.622204941	0.473597257	
VSI/SSB	-0.80446445	1	0.201445075 -3.993467943 7.43114E-05	7.43114E-05	-1.200193115	-0.408735785	٠,	٠,
ACP	0.536870547	0.205802548	ł	2.608668122 0.009346115	0.132581847	0.941159247		- 1
AIRI INE HIRE RATE	1	1.61248E-05	2.955200579	2.955200579 0.003263651	1.59757E-05	7.93283E-05	1.59757E-05	- 1
I INEMPI OVMENT	2	3.753405579		7.4405799 4.07166E-13	20.55413862	35.30088959	20.55413862	35.30088959
MSR		0.123130742	0.123130742 -13.52486548 5.12418E-36	5.12418E-36	-1.907210832	-1.4234426	-1.4234426 -1.907210832	
MSR+1	l m	0.122535866	0.122535866 -12.95800514 1.48831E-33	1.48831E-33	-1.828535893	-1.347104867	-1.828535893 -1.347104867 -1.828535893	-1.347104867
MSR+2	-0.962578606		0.12331091 -7.806110644 3.17038E-14	3.17038E-14	-1.204816653	-0.720340558	-1.204816653 -0.720340558 -1.204816653 -0.720340558	-0.720340558
MSR+3	-0.391512553		0.121865229 -3.212668266 0.001394994	0.001394994	! 1	-0.152114473	-0.630910634 -0.152114473 -0.630910634 -0.152114473	-0.152114473

Table B-4. Combined Pilot LOGIT Estimation

LIST OF REFERENCES

Crum, D.F., <u>Air Force Pilot Retention: A Look at 1996</u>, Research Project, Army War College, Carlisle Barrack, PA, March 1990.

Gujarati, D.N., Basic Econometrics, 3rd Ed., McGraw-Hill,. Inc., New York, 1995.

Hogan, P.F., Naval Aviator Cohort Survival Rates: Progress and Next Steps., Lewin-VHI, Fairfax, VA, April 1995.

Hogan, P.F. and Mehay, S.L., <u>The Effects of Separation Bonuses on Voluntary Quits: Evidence from Military Personnel</u>, Lewin-VHI, Fairfax, VA, April 1995.

Jaroch, V.D. and Williams, M.A., <u>Alternate Solutions to the Problems of Pilot Retention.</u>, Research Report, United States Air Force Air War College, Maxwell Air Force Base, AL, October 1990.

Julichen, M. R., and Cromer, D., <u>An Examination of the Effects of Economic Conditions on Pilot Retention</u>., Thesis, United States Air force Institute of Technology, Maxwell Air Force Base, AL, September 1982.

Rhodes, J.D., <u>Pilot Retention: An Historical Analysis.</u>, Research Report, United States Air Force Air War College, Maxwell Air Force Base, AL, February 1996.

Simpson, J.R., <u>A Methodology For Forcasting Voluntary Retention Rates for Air Force Pilots.</u>, Thesis, United States Air Force Institute of Technology, Maxwell Air Force Base, AL, December 1987.

Turner, R.S., <u>The Impact of The Military Drawdown on USN Aviators Retention Rates: What Is The Influence On Retention Downsizing of The Downsizing and of Specific Downsizing Policies?</u>, Thesis, Naval Postgraduate School, Monterey, CA, March 1995.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center
2.	Dudley Knox Library
3.	Navy Manpower Analysis Center
4.	Stephen L. Mehay
5.	LCDR Julie Dougherty
6.	Lt. Matthew F. Coughlin