Analisi dei requisiti

v0.1

7Last

Versioni

Ver.	Data	Redattore	Verificatore	Descrizione
0.1	2024-03-08	Matteo Tiozzo		Stesura struttura documento

Indice

1	Intro	oduzione 3
	1.1	Scopo del documento
	1.2	Glossario
	1.3	Riferimenti
		1.3.1 Normativi
		1.3.2 Interni
2	Des	crizione del prodotto 4
	2.1	Obiettivi del prodotto 4
	2.2	Architettura del prodotto
	2.3	Funzionalità del prodotto 4
	2.4	Caratteristiche degli utenti
		2.4.1 Conoscenze e competenze
		2.4.2 Dispositivi
3	Cas	si d'uso 5
	3.1	Introduzione
	3.2	Struttura dei casi d'uso
	3.3	Attori
	3.4	Elenco dei casi d'uso 6
4	Reg	juisiti 6
	4.1	Definizione di un requisito
	4.2	Tipologie di requisiti
		4.2.1 Codifica dei requisiti
		4.2.2 Fonti dei requisiti
		4.2.3 Importanza dei requisiti
	4.3	Requisiti funzionali

1 Introduzione

1.1 Scopo del documento

Questo documento ha lo scopo di illustrare i casi d'uso e i requisiti del capitolato proposto da *Sync Lab S.r.l.*, a seguito di un'analisi da parte del gruppo e di un confronto tenuto con l'azienda.

Vengono presentate le funzionalità che il progetto dovrà offrire, suddivise in requisiti obbligatori, desiderabili e opzionali, in accordo con le richieste del proponente.

1.2 Glossario

Per evitare qualsiasi ambiguità o malinteso sui termini utilizzati nel seguente documento, è stato a io_G , contenente le definizioni necessarie. È possibile individuare ogni termine presente nel glossario_G grazie ad uno stile specifico:

- Ad ogni parola presente sarà aggiunta una "G" al pedice della stessa.
- Verrà fornito il link al glossario_G online (v.1.0) per ciascuna parola.

1.3 Riferimenti

1.3.1 Normativi

- Capitolato C6 SyncCity: Smart city monitoring platform https://www.math.unipd.it/~tullio/IS-1/2023/Progetto/C6.pdf
- Regolamento di progetto didattico
 https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/PD2.pdf
- Norme di progetto_G

1.3.2 Interni

Durante la fase di Analisi del capitolato il gruppo ha proposto all'azienda l'utilizzo di Redpanda come piattaforma di *streaming* alternativa ad Apache Kafka. A seguito di un confronto con l'azienda, è stato deciso di utilizzare XYZ.

Come richiesto dalla proponente, il gruppo ha prodotto un documento aggiuntivo di confronto tra le due tecnologie, disponibile nella documentazione esterna.

2 Descrizione del prodotto

2.1 Obiettivi del prodotto

L'obiettivo del prodotto è quello di sviluppare una piattaforma di monitoraggio per una *Smart City* che consenta ad esempio alle autorità locali di avere una visione d'insieme delle condizioni della città, permettendo loro di prendere decisioni informate e tempestive riguardo ad eventuali interventi e ottimizzazioni dei servizi da effettuare.

2.2 Architettura del prodotto

Il prodotto è costituito da 4 componenti principali:

- **Simulatore**: rappresenta la sorgente di dati. In uno scenario reale, i dati sarebbero raccolti da migliaia di sensori installati in città. La proponente richiede che i dati siano più realistici possibili, non escludendo la possibilità di inserire rilevazioni provenienti da sensori reali. È stato scelto di utilizzare Python come linguaggio di programmazione per la simulazione dei dati;
- **Piattaforma di** *streaming*: svolge la funzione di broker per disaccoppiare lo stream di informazioni provenienti dai simulatori dei sensori. Si occupa di ricevere i dati provenienti dal simulatore e di inviarli ai vari consumatori. In questo caso, il consumatore principale è il database di cui si discute al punto successivo. A tal fine, si è scelto di utilizzare XYZ come piattaforma di streaming;
- **Database**: necessario per la persistenza dei dati raccolti. Per questo scopo è stato adottato ClickHouse, un database colonnare.
- **Dashboard**: permette di visualizzare in tempo reale i dati raccolti. Questo componente rappresenta l'interfaccia utente del prodotto. Si è scelto di utilizzare Grafana come strumento per la creazione della dashboard.

2.3 Funzionalità del prodotto

Una volta che il sistema sarà in funzione, esso sarà in grado di:

Raccogliere e memorizzare i dati provenienti dai sensori;

- Visualizzare i dati raccolti in tempo reale attraverso una dashboard, offrendo una panoramica delle condizioni della città. Tra le informazioni visualizzate ci saranno una mappa con la posizione dei sensori e alcuni grafici che mostrano gli andamenti delle misurazioni;
- Calcolare un indice di salute della città, basato sulle ultime rilevazioni dei sensori. Questo indice sarà rappresentato da un punteggio da 0 a 100, dove un punteggio più alto corrisponderà a condizioni di vita migliori;
- Notificare automaticamente le autorità locali in caso di superamento di soglie critiche da parte dei sensori.

2.4 Caratteristiche degli utenti

Si prevede che gli utenti principali saranno i dipendenti delle autorità locali responsabili del monitoraggio dello stato di salute, sicurezza ed efficienza della città. Gli utenti interagiscono solamente con il sistema attraverso la dashboard.

2.4.1 Conoscenze e competenze

Si suppone che tali utenti siano in grado di comprendere i dati visualizzati dalla dashboard e filtrare le informazioni per ottenere una visione d'insieme della situazione.

2.4.2 Dispositivi

Per accedere alla piattaforma gli utenti potranno indifferentemente utilizzare un dispositivo mobile, un computer o un tablet.

3 Casi d'uso

3.1 Introduzione

In questa sezione del documento vengono analizzati nel dettaglio i casi d'uso individuati per il sistema. nel corso dell'analisi del capitolato e dei colloqui con la proponente.

3.2 Struttura dei casi d'uso

In tutto il documento ci si riferirà ai casi d'uso utilizzando la sigla UC seguita dal rispettivo codice nella forma

UC[identificativo_caso_principale].[identificativo_sotto_caso]

il quale permette di utilizzarlo come riferimento in questo e altri documenti. Per ciascun caso d'uso vengono definiti i seguenti elementi:

- Attore principale: l'attore primariamente coinvolto nel caso d'uso;
- **Precondizioni**: le condizioni che devono essere verificate affinché il caso d'uso possa essere eseguito;
- **Postcondizioni**: le condizioni che devono essere verificate al termine dell'esecuzione del caso
- **Scenario principale**: la sequenza di passi che descrive il comportamento del sistema durante l'esecuzione del caso d'uso;
- **Sotto-scenari** (opzionale): eventuali scenari alternativi che possono verificarsi durante l'esecuzione del caso d'uso.

3.3 Attori

I seguenti attori sono coinvolti nei casi d'uso:

- Impiegati presso **autorità locali**: essi possono accedere al sistema per visualizzare i dati di monitoraggio della *Smart City*.
- **Sensori**: sorgente di dati con un determinato dominio di interesse che effettua misurazioni e trasmette i dati al sistema.

3.4 Elenco dei casi d'uso

4 Requisiti

4.1 Definizione di un requisito

Per ciascun requisito vengono fornite le seguenti informazioni:

- Codice: codice identificativo del requisito, meglio specificato nella sezione 4.2.1;
- **Descrizione**: breve descrizione del requisito;
- Fonte: provenienza del requisito, meglio specificata nella sezione 4.2.2;

• **Importanza**: indica l'importanza del requisito, meglio specificata nella sezione 4.2.3.

4.2 Tipologie di requisiti

I requisiti possono essere di quattro tipologie:

- Funzionali: descrivono le funzionalità del sistema:
- Qualitativi: descrivono le qualità che il sistema deve avere;
- **Di vincolo**: descrivono i vincoli a cui il sistema deve sottostare:
- **Prestazionali**: descrivono le prestazioni che il sistema deve avere.

4.2.1 Codifica dei requisiti

I requisiti sono codificati nel seguente modo:

R[Tipologia]-[Codice]

dove [Codice] è un numero progressivo che identifica univocamente il requisito.

4.2.2 Fonti dei requisiti

I requisiti possono avere le seguenti fonti:

- Capitolato: requisiti individuati a seguito dell'analisi del capitolato;
- **Interno**: requisiti individuati durante le riunioni interne e da coloro che hanno il ruolo di analista;
- Esterno: requisiti aggiuntivi individuati in seguito a incontri con la proponente;
- **Piano di Qualifica**: requisiti necessari per adeguare il prodotto agli standard di qualità definiti nel documento *Piano di Qualifica*.
- **Norme di Progetto**: requisiti necessari per adeguare il prodotto alle norme stabilite nel documento *Norme di Progetto*.

4.2.3 Importanza dei requisiti

I requisiti possono avere tre livelli di importanza:

- Obbligatorio: requisito irrinunciabile per il committente;
- **Desiderabile**: requisito non strettamente necessario, ma che porta valore aggiunto al prodotto;
- Opzionale: requisito relativo a funzionalità aggiuntive.

4.3 Requisiti funzionali

Codice	Importanza	Fonte	Descrizione
RF-1	Obbligatorio	Capitolato	La parte <i>IoT</i> dovrà essere simulata
			attraverso tool di generazione di
			informazioni random che tuttavia
			siano verosimili.
	Obbligatorio	Capitolato	Il sistema dovrà permettere la
RF-2			visualizzazione dei dati in tempo
			reale.
RF-3	Obbligatorio	Capitolato	Il sistema dovrà permettere la
IKIT-U			visualizzazione dei dati storici.
			L'utente deve poter accedere
RF-4	Obbligatorio	Capitolato	all'applicativo senza bisogno di
			autenticazione.
	Obbligatorio	Capitolato	L'utente dovrà poter visualizzare su
RF-5			una mappa la posizione
			geografica dei sensori.

Codice	Importanza	Fonte	Descrizione
	Obbligatorio	Capitolato	I tipi di dati che il sistema dovrà
			visualizzare sono: temperatura,
			umidità, polveri sottili dell'aria,
			traffico, lavori in corso, incidenti,
RF-6			parcheggi, lavori su rete idrica,
			livelli di acqua, posizione colonne
			di ricarica, guasti elettrici delle
			colonnine, ponti e strutture
			critiche, stato delle strade.
RF-7	Obbligatorio	Capitolato	I dati dovranno essere salvati su un
	Cooligatorio	Сарпоіато	database OLAP.
RF-8	Obbligatorio	Capitolato	I sensori di temperatura rilevano i
	- Cooling arong		dati in Celsius
	Obbligatorio	Capitolato	I sensori di polveri sottili rilevano le
RF-9			particelle di polveri nell'aria in
			μg /mc.
RF-10	Obbligatorio	Capitolato	l sensori di umidità rilevano la
		Сарпоато	percentuale di umidità nell'aria.
	Obbligatorio	Capitolato	I sensori livello acqua rilevano il
RF-11			livello di acqua nella zona di
			installazione
	Obbligatorio	Capitolato	I sensori che indicano interruzioni
			della fornitura di energia elettrica
RF-12			in una certa zona inviano un
			segnale binario, dove 0 indica la
			mancanza di corrente e 1 la
			presenza di corrente.
	Obbligatorio	Capitolato	I sensori di soglia rilevano lo stato
			di riempimento dei vari conferitori
RF-13			nelle isole ecologiche inviando un
			segnale binario, dove 0 indica
			che il conferitore è vuoto e 1 che
			è pieno.

Codice	Importanza	Fonte	Descrizione
			l dati provenienti dai sensori
RF-14	Obbligatorio	Capitolato	dovranno contenere i seguenti
KF-14			dati: id sensore, data, ora e
			valore. RF-15
		Sviluppo di altre	
	oile Capitolato	componenti	
		quali widget e	
Desiderak		grafici per la	
		visualizzazione	
		dei dati nelle	
		dashboard.	

Requisiti funzionali