第一章行列式

本章主要内容

- > n阶行列式的定义
- 〉行列式的主要性质
- > 行列式按行(列)展开

第一节n阶行列式的定义

§ 1.1.1 二、三阶行列式的定义

一、二阶行列式的引入

用消元法解二元线性方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
 (1)

(1)
$$\times a_{22}$$
: $a_{11}a_{22}x_1 + a_{12}a_{22}x_2 = b_1a_{22}$,

(2)×
$$a_{12}$$
: $a_{12}a_{21}x_1 + a_{12}a_{22}x_2 = b_2a_{12}$,

两式相减消去 x2,得

$$(a_{11}a_{22}-a_{12}a_{21})x_1=b_1a_{22}-a_{12}b_2;$$

 $(a_{11}a_{22}-a_{12}a_{21})$ $x_1=b_1a_{22}-a_{12}b_2$; 类似地,消去 x_1 ,得

$$(a_{11}a_{22}-a_{12}a_{21}) x_2=a_{11}b_2-b_1a_{21},$$

当 $a_{11}a_{22}-a_{12}a_{21}\neq 0$ 时,方程组的解为

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \quad x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}.$$

由方程组的四个系数确定.

为便于记忆和表达 用记号
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$
 表示 $\begin{vmatrix} a_{11}a_{22} - a_{12}a_{21} + 称之为一个$

二阶(级)行列式,即

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

二阶行列式的计算——对角线法则

对于二元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$
 若记
$$D = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, a_{22}$$

若记

系数行列式

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2, \\ D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \end{cases}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}},$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12} b_2,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12} b_2,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1, \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases} x_2 = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}.$$

$$x_2 = \frac{a_{11}b_2 - b_1a_{21}}{a_{11}a_{22} - a_{12}a_{21}}.$$

$$D_2 = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = a_{11}b_2 - b_1a_{21}.$$

则二元线性方程组的解为

$$x_1 = rac{D_1}{D} = rac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \\ a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \qquad x_2 = rac{D_2}{D} = rac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \\ a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}.$$

注意 分母都为原方程组的系数行列式.

$$x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \qquad x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}}.$$

二、三阶行列式

定义 设有9个数排成3行3列的数表

记

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
(4)
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

(4) 式称为数表(3) 所确定的三阶行列式.

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

三阶行列式的计算(参考,后面会有更好方法)

$$D = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32}$$
$$-a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.$$

三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积. 其中三项为正. 三项为负.

利用三阶行列式求解三元线性方程组

如果三元线性方程组
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

的系数行列式
$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \neq 0,$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

或

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} \quad D = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} \quad a_{12} \quad a_{13} \\ a_{22} \quad a_{23} \\ a_{33} \quad a_{32} \quad a_{33}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D_1 = egin{array}{ccccc} b_1 & a_{12} & a_{13} \ b_2 & a_{22} & a_{23} \ b_3 & a_{32} & a_{33} \ \end{pmatrix},$$

$$D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases}$$

得
$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}$$

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3; \end{cases} \Rightarrow D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

$$D = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \quad D_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix},$$

$$D_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \quad D_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & b_3 \end{vmatrix}.$$

则三元线性方程组的解为:

$$x_1 = \frac{D_1}{D}, \qquad x_2 = \frac{D_2}{D}, \qquad x_3 = \frac{D_3}{D}.$$

三、小结

二阶和三阶行列式是由解二元和三元线性方程组引入的.

二阶和三阶行列式的计算 ——对角线法则

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} \\ -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31},$$

思考

- · 1. n阶行列式如何定义?
- · 2. n元线性方程组的解是什么形式?