

SEQUENCE LISTING

<110> Huang, Yung

<120> Cells for Detection of Enteroviruses

<130> DHI-06207

<160> 4

<170> PatentIn version 3.0

<210> 1

<211> 2017

<212> DNA

<213> Homo sapiens

<400> 1
ccgagcgtgc ccgcggcgct gcccctcctc ggggagctgc cccggctgct gctgctggtg 60
ctgttgtgcc tgccggccgt gtgggggtgac tgtggccttc ccccagatgt acctaattgcc 120
cagccagctt tggaaggccg tacaagtttt cccgaggata ctgtaataac gtacaaatgt 180
gaagaaaagct ttgtgaaaat tcctggcgag aaggactcag tgacctgcct taagggcatg 240
caatggtcag atattgaaga gttctgcaat cgtagctgcg aggtgccaac aaggctaaat 300
tctgcattccc tcaaaccagcc ttatatact cagaattatt ttccagtcgg tactgttg 360
gaatatgagt gccgtccagg ttacagaaga gaaccttctc tatcaccaaa actaacttgc 420
cttcagaatt taaaatggtc cacagcagtc gaattttgta aaaagaaatc atgccctaatt 480
ccgggagaaa tacgaaatgg tcagattgat gtaccaggtg gcatattatt tggtgcaacc 540
atctccttct catgtAACAC aggtaaaaa ttattttggct cgacttctag tttttgtctt 600
atttcaggca gctctgtcca gtggagtgac ccgttgccag agtgcagaga aatttattgt 660
ccagcaccac cacaaattga caatggaata attcaagggg aacgtgacca ttatggat 720
agacagtctg taacgtatgc atgtataaaa ggattcacca tgattggaga gcactctatt 780
tattgtactg tgaataatga tgaaggagag tggagtggcc caccacctga atgcagagga 840
aaatctctaa cttccaaggc cccaccaaca gttcagaaac ctaccacagt aaatgttcca 900

actacagaag tctcaccaac ttctcagaaa accaccacaa aaaccaccac accaaatgct 960
 caagcaacac ggagtacacc tgtttccagg acaaccaagc atttcatga aacaacccc 1020
 aataaaggaa gtggaaccac ttcaggtact acccgcttc tatctggca cacgtgttc 1080
 acgttgacag gtttgcttgg gacgctagta accatggct tgctgactta gccaaagaag 1140
 agttaagaag aaaatacaca caagtataca gactgttcct agttcttag acttatctgc 1200
 atattggata aaataaatgc aattgtgctc ttcatttagg atgcttcat tgtcttaag 1260
 atgtgttagg aatgtcaaca gagcaaggag aaaaaaggca gtcctggaat cacattctta 1320
 gcacacctgc gcctctgaa aatagaacaa cttgcagaat tgagagtgt tccttccta 1380
 aaagtgttaag aaagcataga gattgttcg tattaagaat gggatcacga ggaaaagaga 1440
 aggaaaagtga ttttttcca caagatctga aatgatattt ccacttataa aggaaataaa 1500
 aaatgaaaaa cattatttgg atatcaaaag caaataaaaa cccaattcag tctttctaa 1560
 gcaaaattgc taaagagaga tgaccacatt ataaagtaat cttggctaa ggcattttca 1620
 tcttccttc gggtggcaaa atatttaaa ggtaaaacat gctggtaac cagggtgttg 1680
 atggtgataa gggaggaata tagaatgaaa gactgaatct tccttggtt cacaataga 1740
 gtttggaaaa agcctgtgaa aggtgtctc tttgacttaa tgtcttaaa agtatccaga 1800
 gatactacaa tattaacata agaaaagatt atatattatt tctgaatcga gatgtccata 1860
 gtcaaatttg taaatcttat tctttgtaa tatttattta tatttattta tgacagtgaa 1920
 cattctgatt ttacatgtaa aacaagaaaa gttgaagaag atatgtgaag aaaaatgtat 1980
 ttttcctaaa tagaaataaa tgatcccatt ttttggt 2017

<210> 2

<211> 376

<212> PRT

<213> Homo sapiens

<400> 2

Pro	Ser	Val	Pro	Ala	Ala	Leu	Pro	Leu	Leu	Gly	Glu	Leu	Pro	Arg	Leu
1				5				10					15		

Leu	Leu	Leu	Val	Leu	Leu	Cys	Leu	Pro	Ala	Val	Trp	Gly	Asp	Cys	Gly
								20			25		30		

Leu	Pro	Pro	Asp	Val	Pro	Asn	Ala	Gln	Pro	Ala	Leu	Glu	Gly	Arg	Thr
								35			40		45		

Ser	Phe	Pro	Glu	Asp	Thr	Val	Ile	Thr	Tyr	Lys	Cys	Glu	Glu	Ser	Phe
								50			55		60		

Val Lys Ile Pro Gly Glu Lys Asp Ser Val Thr Cys Leu Lys Gly Met
65 70 75 80

Gln Trp Ser Asp Ile Glu Glu Phe Cys Asn Arg Ser Cys Glu Val Pro
85 90 95

Thr Arg Leu Asn Ser Ala Ser Leu Lys Gln Pro Tyr Ile Thr Gln Asn
100 105 110

Tyr Phe Pro Val Gly Thr Val Val Glu Tyr Glu Cys Arg Pro Gly Tyr
115 120 125

Arg Arg Glu Pro Ser Leu Ser Pro Lys Leu Thr Cys Leu Gln Asn Leu
130 135 140

Lys Trp Ser Thr Ala Val Glu Phe Cys Lys Lys Ser Cys Pro Asn
145 150 155 160

Pro Gly Glu Ile Arg Asn Gly Gln Ile Asp Val Pro Gly Gly Ile Leu
165 170 175

Phe Gly Ala Thr Ile Ser Phe Ser Cys Asn Thr Gly Tyr Lys Leu Phe
180 185 190

Gly Ser Thr Ser Ser Phe Cys Leu Ile Ser Gly Ser Ser Val Gln Trp
195 200 205

Ser Asp Pro Leu Pro Glu Cys Arg Glu Ile Tyr Cys Pro Ala Pro Pro
210 215 220

Gln Ile Asp Asn Gly Ile Ile Gln Gly Glu Arg Asp His Tyr Gly Tyr
225 230 235 240

Arg Gln Ser Val Thr Tyr Ala Cys Asn Lys Gly Phe Thr Met Ile Gly
245 250 255

Glu His Ser Ile Tyr Cys Thr Val Asn Asn Asp Glu Gly Glu Trp Ser
260 265 270

Gly Pro Pro Pro Glu Cys Arg Gly Lys Ser Leu Thr Ser Lys Val Pro
275 280 285

Pro Thr Val Gln Lys Pro Thr Thr Val Asn Val Pro Thr Thr Glu Val
290 295 300

Ser Pro Thr Ser Gln Lys Thr Thr Lys Thr Thr Pro Asn Ala
305 310 315 320

Gln Ala Thr Arg Ser Thr Pro Val Ser Arg Thr Thr Lys His Phe His
325 330 335

Glu Thr Thr Pro Asn Lys Gly Ser Gly Thr Thr Ser Gly Thr Thr Arg
340 345 350

Leu Leu Ser Gly His Thr Cys Phe Thr Leu Thr Gly Leu Leu Gly Thr
355 360 365

Leu Val Thr Met Gly Leu Leu Thr
370 375

<210> 3
 <211> 2220
 <212> DNA
 <213> Homo sapiens
 <400> 3
 ccgctggcg tagctgcac tcggcggagt cccggcggcg cgtccttgtt ctaaccgcgc 60
 ggcgcattgac cgtcgcgccg ccgagcgtgc ccggggcgct gcccttcctc gggagctgc 120
 cccggctgct gctgctggtg ctgttgtgcc tgccggccgt gtggggtgac tgtggccttc 180
 ccccagatgt acctaattgcc cagccagctt tggaaggccg tacaagttt cccgaggata 240
 ctgtaataac gtacaaatgt gaagaaagct ttgtgaaaat tcctggcgag aaggactcag 300
 tgatctgcct taagggcagt caatggtcag atattgaaga gttctgcaat cgtagctgcg 360
 aggtgcacac aaggctaaat tctgcattccc tcaaacagcc ttatatact cagaattatt 420
 ttccagtcgg tactgttgcg gaatatgagt gccgtccagg ttacagaaga gaaccttctc 480
 tatcacaaaa actaacttgc cttcagaatt taaaatggtc cacagcagtc gaattttgtt 540
 aaaagaaatc atgcctaat ccgggagaaa tacgaaatgg tcagattgtat gtaccagg 600
 gcatattatt tggtgcaacc atctcattct catgtAACAC aggtaaaaa ttatggct 660
 cgacttcttag ttttgtctt atttcaggca gctctgtcca gtggagtgc ccgttgccag 720
 agtgcagaga aatttattgt ccagcaccac cacaaattga caatggaaata attcaagg 780
 aacgtgacca ttatggatat agacagtctg taacgtatgc atgtataaaa ggattcacca 840
 tgattggaga gcactctatt tattgtactg tgaataatga tgaaggagag tggagtggcc 900
 caccacctga atgcagagga aaatctctaa cttccaaagggt cccaccaaca gttcagaaac 960
 ctaccacagt aaatgttcca actacagaag tctcaccaac ttctcagaaaa accaccacaa 1020
 aaaccaccac accaaatgct caagcaacac ggagtacacc tgttccagg acaaccaagc 1080
 attttcatga aacaacccca aataaaggaa gtggaaaccac ttcaaggact acccgctttc 1140
 tatctggttc tcgtcctgtc acccaggctg gtatgcggtg gtgtgatcgt agtcactgc 1200
 agtctcgaac tcctgggttc aagcgatcct tccacttcag cctcccaagt agctggtaact 1260
 acagggcaca cgtgtttcac gttgacaggt ttgcttggga cgctagtaac catgggcttg 1320
 ctgacttagc caaagaagag ttaagaagaa aatacacaca agtatacaga ctgttccctag 1380
 tttcttagac ttatctgcattt attggataaa ataaatgcaa ttgtgctttt catttaggat 1440
 gctttcatttgc tcttaagat gtgttaggaa tgtcaacaga gcaaggagaa aaaaggcagt 1500
 cctggaatca cattcttagc acacccacac ctcttgaaaa tagaacaact tgcagaatttgc 1560

agagtgattc ctttcctaaa agtgtaagaa agcatagaga tttgttcgta tttagaatgg 1620
 gatcacgagg aaaagagaag gaaagtgatt ttttccaca agatctgtaa tgttattcc 1680
 acttataaaag gaaataaaaaa atgaaaaaaca ttatggat atcaaaagca aataaaaacc 1740
 caattcagtc tcttctaagc aaaattgcta aagagagatg aaccacatta taaagtaatc 1800
 tttggctgta aggcatttc atcttcctt cgggttggca aaatatttta aaggtaaaac 1860
 atgctggtga accaggggtg ttgatggtga taagggagga atatagaatg aaagactgaa 1920
 tcttccttg ttgcacaaat agagttgga aaaagcctgt gaaaggtgtc ttcttgact 1980
 taatgtctt aaaagtatcc agagatacta caatattaac ataagaaaag attatatatt 2040
 atttctgaat cgagatgtcc atagtcaaat ttgtaaatct tattctttg taatatttat 2100
 ttatatttat ttatgacagt gaacattctg attttacatg taaaacaaga aaagttgaag 2160
 aagatatgtg aagaaaaatg tattttcct aaatagaaat aaatgatccc atttttggt 2220
 <210> 4
 <211> 381
 <212> PRT
 <213> Homo sapiens
 <400> 4

Met	Thr	Val	Ala	Arg	Pro	Ser	Val	Pro	Ala	Ala	Leu	Pro	Leu	Leu	Gly
1															15
Glu	Leu	Pro	Arg	Leu	Leu	Leu	Leu	Val	Leu	Leu	Cys	Leu	Pro	Ala	Val
															30
Trp	Gly	Asp	Cys	Gly	Leu	Pro	Pro	Asp	Val	Pro	Asn	Ala	Gln	Pro	Ala
															45
Leu	Glu	Gly	Arg	Thr	Ser	Phe	Pro	Glu	Asp	Thr	Val	Ile	Thr	Tyr	Lys
															60
Cys	Glu	Glu	Ser	Phe	Val	Lys	Ile	Pro	Gly	Glu	Lys	Asp	Ser	Val	Ile
															80
Cys	Leu	Lys	Gly	Ser	Gln	Trp	Ser	Asp	Ile	Glu	Glu	Phe	Cys	Asn	Arg
															95
Ser	Cys	Glu	Val	Pro	Thr	Arg	Leu	Asn	Ser	Ala	Ser	Leu	Lys	Gln	Pro
															110
Tyr	Ile	Thr	Gln	Asn	Tyr	Phe	Pro	Val	Gly	Thr	Val	Val	Glu	Tyr	Glu
															125
Cys	Arg	Pro	Gly	Tyr	Arg	Arg	Glu	Pro	Ser	Leu	Ser	Pro	Lys	Leu	Thr
															140

Cys Leu Gln Asn Leu Lys Trp Ser Thr Ala Val Glu Phe Cys Lys Lys
145 150 155 160

Lys Ser Cys Pro Asn Pro Gly Glu Ile Arg Asn Gly Gln Ile Asp Val
165 170 175

Pro Gly Gly Ile Leu Phe Gly Ala Thr Ile Ser Phe Ser Cys Asn Thr
180 185 190

Gly Tyr Lys Leu Phe Gly Ser Thr Ser Ser Phe Cys Leu Ile Ser Gly
195 200 205

Ser Ser Val Gln Trp Ser Asp Pro Leu Pro Glu Cys Arg Glu Ile Tyr
210 215 220

Cys Pro Ala Pro Pro Gln Ile Asp Asn Gly Ile Ile Gln Gly Glu Arg
225 230 235 240

Asp His Tyr Gly Tyr Arg Gln Ser Val Thr Tyr Ala Cys Asn Lys Gly
245 250 255

Phe Thr Met Ile Gly Glu His Ser Ile Tyr Cys Thr Val Asn Asn Asp
260 265 270

Glu Gly Glu Trp Ser Gly Pro Pro Pro Glu Cys Arg Gly Lys Ser Leu
275 280 285

Thr Ser Lys Val Pro Pro Thr Val Gln Lys Pro Thr Thr Val Asn Val
290 295 300

Pro Thr Thr Glu Val Ser Pro Thr Ser Gln Lys Thr Thr Thr Lys Thr
305 310 315 320

Thr Thr Pro Asn Ala Gln Ala Thr Arg Ser Thr Pro Val Ser Arg Thr
325 330 335

Thr Lys His Phe His Glu Thr Thr Pro Asn Lys Gly Ser Gly Thr Thr
340 345 350

Ser Gly Thr Thr Arg Leu Leu Ser Gly His Thr Cys Phe Thr Leu Thr
355 360 365

Gly Leu Leu Gly Thr Leu Val Thr Met Gly Leu Leu Thr
370 375 380