

OWNER'S MANUAL

TABLE OF CONTENTS

Keyboard	4
Real and Integer Operations	10
Complex Operations	10
Memory	12
Stack Mechanics	13
Comparing and Addressing Real Numbers	14
Comparing and Addressing Complex Numbers	15
Addressing Labels	16
Statistical Distributions, Probalities etc.	17
Display and Modes	18
Fonts	24
Index of Operations	25
Non-programmable Control, Clearing and Information Commands	52
Catalogs	55
Addressing Catalog Items	59
Constants	60
Unit Conversions	63
Messages	67
Appendix A: Internal Support Commands	69
Appendix B: Candidates for Further Functions	71
Appendix C: Release Notes	72

WELCOME

Dear user, now you have got your own WP 34S. It uses the mechanics and hardware of the *HP-20b Business Consultant* or the new *HP-30b Business Professional*, so you get their unexcelled processor speed and with the *HP-30b* also the famous rotate-and-click keys giving the tactile feedback appreciated in vintage *Hewlett-Packard* calculators for decades. On the other hand, the firmware and the user interface of the WP 34S are carefully new designed and written from scratch to give you a **fast and compact scientific** calculator like you have never had before.

Its function set is based on the one of the renowned *HP-42S RPN Scientific*, the most powerful programmable RPN calculator built so far ¹. We expanded this set, completely incorporating the functionality of the famous programmer's calculator *HP-16C*, the fraction mode of the *HP-32SII*, probability distributions as featured by the *HP-21S*, and added many more useful functions for mathematics, statistics, physics, engineering, programming etc. like

- + Euler's Beta function, Fibonacci number calculation, Lambert's W, (all of these in the real and complex domains), the error function, incomplete regularized Beta and Gamma, Riemann's Zeta, the most 'popular' orthogonal polynomials, testing for primality,
- many statistical distributions and their inverses like Poisson, Binomial, Geometric as well as Cauchy-Lorentz, Exponential, Logistic, Weibull for reliability analysis, Lognormal and Gaussian with arbitrary means and standard deviations,
- + programmable sums and products,
- + extended date and time calculations based on a real time clock,
- + integer computing in arbitrary bases from binary to hexadecimal,
- + financial operations like mean rate of return and margin calculations,
- + over 70 conversions, mainly between universal SI and old Imperial units,
- nearly 50 fundamental physical constants as precise as known today by national standards institutes like NIST or PTB.
- + complete Greek and extended Latin letter fonts covering many languages (upper and lower case in two font sizes each).

The WP 34S is the first RPN calculator overcoming the limits of a 4-level stack – forget worries about stack overflow in calculations. It features a choice of two stack sizes expanded by a complex LASTx register: traditional 4 stack levels for HP compatibility, 8 levels for convenient calculations in complex domain, for more advanced real formulas, or for whatever application you have in your mind. The WP 34S features a full command set for navigation in either size.

Furthermore, the WP 34S features over 100 general purpose registers, 100 user flags, 476 program steps, 4 programmable hotkeys for your favorite functions or routines, and a 31 byte alpha register for message generation.

If you know how to deal with a good old HP RPN scientific calculator, you can start with your WP 34S right away. Else get an HP-42S Owner's Manual, e.g. on the DVDs

_

¹ Though the *HP-42S* was sold in 1988 already, this statement holds still. – Due to display restrictions, the *HP-42S* matrix math cannot be supported by the WP 34S. Sorry for this.

distributed by the Museum of HP Calculators (<u>www.hpmuseum.org</u>). Then please read Part 1 of it as a starter, including an excellent introduction to RPN. Part 2 will become beneficial when you are heading for programming your WP 34S. Further documentation, also about the other calculators mentioned, will add valuable information – it is all readily accessible on a single DVD from said source.

This little manual here is meant as a supplement showing you all the new features of the WP 34S. It starts presenting its keyboard as it will be active in various modes, so you know where to find what you are looking for. It continues explaining the memory and addressing items therein, browsing the catalogs, and the display and indicators used to tell you what's going on. Then the major part of this booklet is taken by the index of all operations, catalog contents, constants and conversions featured. It closes with a list of messages the WP 34S will display if special input conditions prevent it from executing your command as expected.

Your WP 34S is the result of a long range collaboration of two individuals, an Australian and a German. We did this in our free time, so you may call it our hobby (though some people close to us found different names for this). Our project was discussed on the open forum in the Museum of HP Calculators from its beginning, so we want to express our gratitude to all contributors there who taught us a lot and brought their ideas and support in several stages of our project. Special thanks go to Marcus von Cube supporting us in bringing it to life, starting with an emulator for v1.14 allowing widespread use and easy testing. With v1.17 now, it is running on the real hardware.

We baptized it 34S in honor of one of the most powerful LED pocket calculators, the *HP-34C*, and since it is our humble approach – with the hardware given – to a future 43S we can only dream of becoming the successor of the *HP-42S*. Maybe it will help convincing those having access to more resources than us that it is worthwhile covering the market of serious scientific instruments.

Firmware-wise, we have carefully checked everything we could think of to our best knowledge, so our hope may be justified the WP 34S is bug-free. We cannot guarantee this, however, nor can we bear any liability for errors in calculations nor their possible consequences. Nevertheless, we promise we will improve the WP 34S whenever it turns out being necessary – so if you ever discover any strange result, please report it to us, and if it is revealed to be an internal error we will provide you with an update as soon as we have one.

Enjoy!

Paul Dale and Walter Bonin

PRINT CONVENTIONS

Throughout this manual, calculator commands are generally called by their names, usually written in CAPITALS. Each and every command featured is listed in the Index of Operations. This **CPX** font is taken for explicit references to keys.

Register addresses are printed using Times New Roman. Lower case italic letters of this font are employed for register contents (so e.g. y lives in stack level Y, r45 in general purpose register R45, or alpha in the alpha register, respectively). Lower case bold italic Arial letters like n are used for variables.

All this holds unless stated otherwise explicitly.

KEYBOARD

Generally speaking, white labels execute the *default primary function* of the respective key. To access a golden, blue, or green label, use *prefix* , g, or h, respectively. Any label underlined opens a *catalog*. For example, 5 preceded by

- Calculates the mean values of the data in the statistic registers via x,
- g returns the standard deviations for the same data via s,
- h opens a catalog of more statistic functions via STAT.
- The dark red letter R will become relevant in alpha mode.

You may keep the respective prefix pressed if you want to call several functions showing the same label color in sequence.

Further remarks (all meant as appetizers – find more about these topics in dedicated texts below):

- The *hotkeys* \overline{A} , \overline{B} , \overline{C} , and \overline{D} immediately call the user programs carrying these labels if defined, else they act as $\overline{\Sigma +}$, \overline{V}_x , \overline{V}_x , or \overline{X}_x , respectively.
- → trailed by H.MS, H.d, DEG, RAD, GRAD, 2, 8, 10, or 16, converts x, i.e. the value currently displayed.
- If ... is used twice in numeric input, the WP 34S enters fraction mode.
- **CPX** is employed as a prefix for calling functions in complex domain.

Please see the <u>index of operations</u> for a complete list and the necessary explanations of all the commands provided.

Virtual active keyboard in **hexadecimal mode**:

Primary functions of the top six keys will be numeric input, so their *default* primary functions are accessed using \bigcirc . The key \bigcirc is exclusively for addressing and temporary display in other bases (see <u>addressing tables</u> and <u>index of operations</u> below).

For smaller integer bases than 16, the active keyboard will look similar, but those top keys not needed for numeric input will keep their default primary functions, except Σ + and CPX. Attempts to enter an illegal digit will be blocked.

Virtual active keyboard in alpha mode:

In this mode, the alpha register is displayed in the dot matrix, and the numeric line is accessible by commands only. All labels printed on dark red or blue background in this picture append characters to *alpha* immediately or via alpha catalogs; those on blue deviate from the labels printed on the WP 34S keyboard at these locations.

Alpha mode starts in upper case, and • toggles upper and lower case. PSE appends a space. Primary function of most keys is appending the letter printed bottom left of this key – dark red on the key plate. Prefix 1 is used for accessing the default

When *alpha* exceeds 31 characters, the leftmost character(s) are discarded.

A subset of these characters is sufficient for **browsing an open catalog**:

²The digits 0 and 1 may also be called using 10 or 11, respectively.

³ "Homonymic" according to ancient Greek pronunciation. And we assigned **Gamma** also to **C** due to the alphabet, and **Chi** to **H** since this letter comes next in pronunciation. Three Greek letters require special handling: **Psi** is accessed via **g 0** (below **PSE**), **Theta** via **g 1** (below **TEST** and following **T**), and **Eta** via **g ENTER†**. **Omicron** is not featured since looking exactly like **O** in either case. – Where we printed Greek capitals with lower contrast on page 7, they look like the respective Latin letters in our fonts. Greek professors, we count on your understanding.

A <u>temporary alpha</u> mode is entered during input processing in comparisons and memory addressing, e.g. during storing or recalling. See the respective virtual active keyboard here:

This mode is left automatically as soon as sufficient characters are put in for the respective command. See <u>below</u>.

In this mode,
 is employed
for ENG and
SCI only (see
below).

REAL AND INTEGER OPERATIONS

Most of the commands your WP 34S provides are mathematical operations or functions in real domain. "Real domain" means these functions use and work with real numbers like 1 or 2.34 or π or 5.6E-7. Please note integer numbers like 8, 9, 10, or -1 are just a subset of real numbers.

Most real number functions provided operate on one number only. Examples are $1/\chi$, \sqrt{x} , or SIN. Such functions replace x (i.e. the contents of the displayed stack level x) by the result x stored in x again. Everything else stays unchanged as is.

Some of the most popular mathematical functions, however, operate on two numbers. Think of + and -, for example. On the WP 34S, such a two-number real function replaces x by the result $\mathbf{f}(x,y)$, i.e. it eats up the lowest two stack levels but needs only one to put its result in. Thus, level \mathbf{Y} is then filled with the content of the next higher level, i.e. z. This goes on for higher levels, as shown <u>below</u>. Please note the top stack level content is repeated then since there is nothing else available. You may use this top level repetition for some nice tricks.

There are also 3 three-number real functions included $-I\beta$, $L_n\alpha$ and %MRR - replacing x by the result f(x, y, z). Then Y is filled with t and so on, and the content of the top level is repeated twice.

Some real functions (e.g. DECOMP) operate on one number but return two. Other operations (like RCL or SUM) do not consume any stack input at all but just return one or two numbers. Then these extra number(s) will be pushed on the stack, taking one level per real number.

COMPLEX OPERATIONS

Mathematicians know more complicated items than real numbers. The next step are complex numbers. If you do not know them nor want to learn about them, leave them aside – you can use your WP 34S perfectly without them.

Else please note the WP 34S supports many operations in complex domain as well.

CPX is employed as a prefix for calling complex functions. E.g.
CPX COS calls complex cosine, and it is displayed and listed as COS (the elevated C is the signature for complex functions on the WP 34S). All such functions operate on Cartesian coordinates exclusively. Generally, where an arbitrary real function **f** operates on ...

- one real number x only, then its complex sibling $^{\mathbf{c}}\mathbf{f}$ will operate on the complex number $x_c = x + i y$.
- one register, e.g. R12, then ^Cf will operate on R12 and R13.
- x and y, then c_f will operate on x, y, z and t.

Where one-number real functions replace x by the result f(x), one-argument complex functions replace x by the real part and y by the imaginary part of the complex result ${}^{C}f(x_c)$. Higher stack levels remain unchanged. Such functions are ${}^{C}1/x$, ${}^{C}ABS$, ${}^{C}CUBE$, ${}^{C}CUBERT$, ${}^{C}FIB$, ${}^{C}FP$, ${}^{C}IP$, ${}^{C}RND$, ${}^{C}SIGN$, ${}^{C}W$, ${}^{C}W^{-1}$, ${}^{C}x!$, ${}^{C}x^2$, ${}^{C}\sqrt{}$, ${}^{C}+/-$,

 $^{C}\Gamma(x)$, the logarithmic and exponential functions with bases 10, 2 and \mathbf{e} , as well as hyperbolic, trigonometric, and their inverses.

Two-number real functions replace x by the result f(x, y). Analogously, two-argument complex functions replace x by the real part and y by the imaginary part of the complex result ${}^{C}f(x_{o},y_{c})$. The next stack levels are filled with the complex contents of higher levels, and the complex number contained in the top two stack levels is repeated as shown <u>below</u>. Such complex functions are ${}^{C}LOG_{X}$, ${}^{C}y^{X}$, ${}^{C}\beta(x,y)$, ${}^{C}///$, and the basic arithmetic operations in complex domain.

Where complex operations (like ^CRCL) do not consume any stack input at all but just return a complex number, this will be pushed on the stack taking two levels.

MEMORY

	Stack registers	Ger
	D *	
	C *	
	B *	
	A *	
	T	
Alpha (31 bytes)	Z	
	Y	
Display	X	
	L	I **
For the first time ever in a choice of 4 or 8 stack lev top level. Registers A - D	els. So either T or	D will be the

ters if required.

Please see below for top level repetition and stack contents in complex calculations. While register L takes the real part of the last argument, I takes the imaginary part when a complex function was executed (see ^CLASTx).

After using Σ +, general purpose registers R87 - R99 will contain statistical sums as indicated. J and K may be taken for parameters of statistical distributions.

Unless required for the purposes just mentioned, the registers A - D, I, J, and K are available as additional general purpose registers.

System flags **B** and **C** are handled like in the *HP-16C*. Flag **D** is set if legal results include "NaN" and "infinite".

е	ral purpose regis	sters	User f	lags		Prog	ram steps
	R00		00			000	
	R01		01			001	
	R02		02			002	
	R85		97			473	
	R86 Σ (x^2 y)		98			474	
	R87 Σ x		99			475	
	R88 Σ χ ²						
	R89 Σ y		User rea	dable			
	R90 Σ y ²		system	flags	,		
	R91 Σ (x y)		B Big, o	verflow	./		X = R100
	R92 n		C Carry		/		Y = R101
	R93 Σ (ln x)		D Dang	er	/		Z = R102
	R94 Σ (ln² x)				/		T = R103
	R95 Σ (ln <i>y</i>)				/		A = R104
	R96 Σ (ln² y)				/		B = R105
	R97 Σ(ln <i>x</i> ln <i>y</i>)				/		C = R106
	R98 Σ (x ln y)				<i>;</i>		D = R107
	R99 Σ (y ln x)			ļ	,		L = R108
							I = R109
	J ***						J = R110
	K ***	<u> </u>					K = R111

STACK MECHANICS

The following assumes you are familiar with RPN (else please turn to the *HP-42S Owner's Manual* first). What happens with the contents of particular stack levels depends on the operation executed, its domain (real or complex) and the stack size chosen.

Real functions in a 4-level stack work as known for decades. In a larger stack, everything works alike on the WP 34S – just with more levels for intermediate results. Calculating formulas from inside out stays a wise strategy in either stack. With more levels, however, stack overflow will hardly ever happen, even with the most advanced formulas you compute in your life as a scientist or engineer.

Calculating with complex numbers uses two registers or stack levels for each such number as explained above and shown here:

	Level	Assumed stack contents at the beginning:	^C EN ^T	th	е <u>(</u>	ts <u>after</u> e complex CDROP	sta 	ack re			ior	ns CLASTX		<u>complex</u> fu one number like ^C x ²	two numbers like ^C /	of two	unctions numbers se / After
With 4 stack	T Z	$Im(y_c) = Im(t_c)$ $Re(y_c) = Re(t_c)$		(x_c)	-	$y_c = t_c$		Im(x		x_c		x_c		$y_c = t_c$	$y_c = t_c$	t z	$\frac{t}{t}$
levels	Y	$\operatorname{Im}(x_c)$	lm((x_c)		Уc		Im(y	_c)	y_c		lastx _c	,	$Im((x_c)^2)$	$Im(y_c/x_c)$	y	z
	X	$Re(x_c)$	Re((x_c)		36		Re()	_c)	30		333311		Re($(x_c)^2$)	$Re(y_c/x_c)$	x	y/x
With 8	D	$lm(t_c)$	z_c	$ x_c $		t_c		t_c	x_c	z_c		z_c		t_c	t_c	d	$\frac{d}{d}$
stack levels	C B	$Re(t_c)$ $Im(z_c)$				-										$\frac{c}{b}$	$\frac{d}{c}$
	A	$Re(z_c)$	y_c	x_c		t_c		z_c	t_c	y_c		y_c		Z _C	t_c	a	b
	$\frac{\mathbf{T}}{\mathbf{Z}}$	$Im(y_c)$ $Re(y_c)$	x_c	x_c		z_c		x_c	z_c	x_c		x_c		y_c	z_c	$\frac{t}{z}$	a t
	Y	$\operatorname{Im}(x_c)$						1		4		lastv		(m) ²	V. /	y	z
	X	$Re(x_c)$	x_c	x_c		y_c		y_c	y_c	t_c		lastx _c		$(x_c)^2$	y_c / x_c	x	y/x

So, an 8-level stack gives you the same flexibility in complex domain you are used to with a 4-level stack in real domain.

COMPARING AND ADDRESSING REAL NUMBERS

1	User input Dot matrix		<u>< ?</u>), (<u>x</u> ≤ ?), (<u>x</u> ≈	, x≠? , :?), x≥? , or x≥ lpha mode set), e.		DSE, ISG, DSZ, CB and CF and	S, STOS, aRCL, as ISZ, FIX, SCI, ENd many more bit commod the other flag comma	IG, DISP, BASE, ands, or nds etc.
_	display							_
2	User input	0 or 1	Stack level or named reg. X, Y,	ENTER leaves temp. alpha mode.	opens indirect addressing.	Stack level or named register (X), (Y), (Z),, (K) 6	Number of register or flag or bit(s) or decimals ⁷	→ opens indirect addressing.
	Dot matrix display	OP <i>n</i> e.g. x ≤ 0 ?	OP x e.g. x ≥ y ?	OP r_	OP → _	OP x e.g. SCI Z	OP <i>nn</i> e.g. SF 15	OP → _
	User input Dot matrix display	Compares x with the number 0 .	Compares x with the number on stack level Y .	Register no. 0 0 9 9 OP r nn e.g. x≠ r23?	Look right for more about indirect addressing.	Sets scientific display with the number of decimals specified in stack level Z .	Stack level etc. (X), (Y), (Z),, (K) OP → x e.g. VIEW →L	Register number 0 0 9 9 OP → nn e.g. ST0 →45
				Compares <i>x</i> with the number stored in R23 .			Shows the content of the register where L is pointing to.	Stores <i>x</i> into the location where R45 is pointing to.

⁴ For **RCL** and **STO**, any of **+**, **-**, **x**, **7**, **△**, or **▼** may precede step 2, except in RCLM and STOM. **ENG** . calls ENGOVR, **SCI** . calls SCIOVR. See the index of operations.

⁵ You may skip this for register numbers >19.

⁶ Exceptions: RCL T, RCL x T, RCL Z, RCL+ Z require an **ENTER†** preceding **T** or **Z**, e.g. **RCL** + **ENTER† Z** for the latter. This holds for STO as well.

Register and flag numbers may be 00 ... 99, number of decimals 0 ... 11, integer bases 2 ... 16, bit numbers 0 to 63, and integer word size up to 64 bits. For numbers <10, you may key in e.g. **5 ENTER** instead of **0 5**. There are three additional flags addressed via **B**, **C**, and **D**. – Take into account some registers may be allocated to special applications.

COMPARING AND ADDRESSING COMPLEX NUMBERS

1	User input		CPX x=	? or x≠ ?		CPX RCL, STO, or x2						
	Dot matrix display		OP _ (with tempora e.g.	ary alpha mode set) •x= _		OP _ (with temporary alpha mode set) e.g. PRCL _8						
2	User input	0 or 1	Stack level or named register X, Z, A, C, L, or J	ENTER↑ 9 leaves temp. alpha mode	opens indirect addressing.	Stack level or named register Z ¹⁰ , A , C , L , or J	Register number	opens indirect addressing.				
	Dot matrix display	OP <i>n</i> e.g. ^a x= ∅ ?	OP x e.g. ° x≠ z ?	OP r_	OP → _	OP x e.g. •RCL L	OP <i>nn</i> e.g. °STO 18	OP → _				
3	User input	Compares $\mathbf{x} + i \mathbf{y}$ with the real number 0 .	Compares $x + i y$ with $z + i t$.	Register number	Look right for more about indirect addressing.	This is ^C LASTx.	Stack level or named register X, Y,, K	Register number				
	Dot matrix display			OP r <i>nn</i> e.g. "x≠ r26?			OP → x e.g. ° x<> →Z	OP → nn e.g. •STO →45				
				Compares $x + i y$ with $r26 + i r27$.			Z is pointing to, the contents of the next one.	Stores $x + i y$ into 2 consecutive registers, starting with the one where R45 is pointing to.				

[.]

⁸ For **RCL** and **STO**, any of **+**, **-**, **x**, or **/** may precede step 2. See the index of operations.

⁹ You may skip this keystroke for register numbers >19.

Exceptions: CRCL Z, CRCL + Z, CSTO Z, and CSTO + Z require an ENTER† preceding Z, e.g. CPX STO + ENTER† Z for the latter.

You may key in e.g. 8 ENTER1 instead of 08. Take care of pairs, since a complex operation will always affect two registers: the one specified and the one following this. We strongly recommend storing complex numbers with their real parts at even register numbers. – Take into account some registers may be allocated to special applications.

ADDRESSING LABELS

Additionally, see GTO in the *index of operations* for some special cases applying exclusively there.

¹² Works with all these operations except **LBL** .

The 3rd character terminates entry and closes alpha mode – shorter labels need a closing **ENTER**. For the example given here you just key in **[2] ENTER (CPX) (1) (EXIT) (9) (7)** and you are done. Statements including labels being 2 or 3 characters long will take two program steps.

¹⁴ Some registers may be allocated to special applications. Please check the memory table above.

STATISTICAL DISTRIBUTIONS, PROBALITIES ETC.

You find a lot of statistics in the WP 34S. Many preprogrammed functions are implemented here for the first time in an RPN scientific calculator since we packed all in what we always had missed. All of these functions, however, have a few features in common:

• Whenever we sum up a probability mass function (pmf ¹⁵) p(n) to get a cumulated distribution function (cdf) F(m) we start at n=0. Thus,

$$F(m) = \sum_{i=0}^{m} p(i) .$$

• Whenever we integrate a function, we start at the left end of the integration interval. Thus, integrating a probability density function (pdf) f(x) to get a cdf F(x) works as

$$F(x) = \int_{-\infty}^{x} f(\xi) d\xi = P(x) .$$

- Typically, F starts with a very shallow slope, becomes steeper then, and runs out with a decreasing slope while slowly approaching 100%. Obviously you get the most precise results on the left side of the cdf using P(x). On its right side, however, the "error probability" Q(x) = 1 P(x) is more precise since P(x) comes very close to 1 there. The digits available shall be sufficient in any case.
- On the WP 34S, with an arbitrary cdf named **XYZ** you find **XYZ**_P for the pdf or pmf, and **XYZ**⁻¹ for the inverse cdf, unless stated otherwise explicitly.
- For calculating confidence limits for the "true value" based on a sample evaluation, employing a particular confidence level (e.g. 95%), you must know your objective:
 - Do you want to know the upper limit, under which the "true value" will lie with a 95% probability? Then take 0.95 as the argument of the inverse cdf to get said limit, and remember there is an inevitable chance of 5% for the "true value" being greater than it.
 - Do you want an upper <u>and</u> a lower limit confining the "true value"? Then there is an inevitable 2.5% chance for said value being less than the lower limit and an equal chance for it being greater than the upper limit. So you shall use 0.025 and 0.975 as arguments in two subsequent calculations using the inverse cdf to get both limits.
 - If you cannot live with these chances, inevitable as they are, employ an higher confidence level.

Turn to a good statistics textbook for more information, also about the particular distributions provided.

¹⁵ pmf translates to German "Dichtefunktion", pdf to "Wahrscheinlichkeitsdichte", cdf to "Verteilungsfunktion" on "Wahrscheinlichkeitsverteilung".

DISPLAY AND MODES

The display features three sections: numeric, dot matrix and fixed symbols. The numeric section features a minus sign and 12 digits for the mantissa, as well as a minus sign and 3 digits for the exponent. The dot matrix is 6 dots high and 43 dots wide, allowing for some 7 to 12 characters, depending on their widths. The fixed symbols (except the big "=") are called *annunciators*, and are for indicating modes.

The dot matrix section above is used for

- 1. indicating some more modes than the annunciators allow,
- 2. passing additional information to the user.

The numeric section in the lower part of the LCD is used for displaying numbers in different formats, status, or messages.

If two or more requests concur for display space, the items will be shown according to their priorities as follows:

- 1. error messages as described in a paragraph further below,
- 2. special information as explained below,
- 3. information about the modes the calculator is running in.

The annunciators or specific characters in the upper part of the LCD signal the modes:

Integer base or mode name	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	DECM
Signaled by	b	3	4	5	6	7	0	9	d	-1	-2	-3	-4	-5	h	
Set by	2	BA	SE3,	BAS	SE4,		8		10			, l	BASI	≣15	16	·d
Cleared by		E	TX,						g, FR/						DEC	И

Mode name	PRG	α				FRC
Signaled by	STO	INPUT	360	RAD	G	
Set by	P/R	αON	DEG	RAD	GRAD	d/c, ab/c 2 nd . in input BASE1, FRACT
Cleared by	P/R	ENTER αOFF	GRAD RAD	DEG GRAD	DEG RAD	BASE ≠ 1 H.MS, TIME, → H.MS FIX, SCI, ENG

BEG indicates the program pointer standing at step 000 of program memory. A running program is signaled by a flashing **RCL** annunciator. The small equal sign = is lit while you are browsing a catalog. **RPN** may be lit permanently. Time modes (12h / 24h) are seen in the time string directly. The numeric format of fraction mode is unambiguous as well. Further settings are signaled in the dot matrix section, like the different date modes being indicated there by **D.MY** or **M.DY**. Defaults Y.MD and DECM are not indicated. Please check the examples below.

Some mode and display settings may be stored and recalled collectively by STOM and RCLM. The command RCLM recalls a 19-bit word containing mode data packed as follows, starting with the least significant bit:

Bits	Meaning	Values and corr	esponding setting	gs
0, 1	Display format for real numbers	0 = ALL 2 = SCI	1 = FIX 3 = ENG	
2	Overflow for ALL	0 = SCIOVR	1 = ENGOVR	
3 6	Number of decimals	0 12		
7, 8	Angular mode	0 = DEG	1 = RAD	2 = GRAD
9, 10	Date display format	0 = Y.MD	1 = D.MY	2 = M.DY
11	Time display format	0 = 24h	1 = 12h	
12	Radix mark	0 = point	1 = comma	
13 15	Curve fit model	0 = LinF 2 = PowerF	1 = ExpF 3 = LogF	4 = BestF
16, 17	Integer sign mode	0 = 2COMPL 2 = UNSIGN	1 = 1COMPL 3 = SIGNMT	
18	Stack depth	0 = 4 levels	1 = 8 levels	

So the start-up default with 4 stack levels, ALL, SCIOVR, DEG, Y.MD, 24h, decimal point, LinF, and 2COMPL equals zero in this mode word. On the other hand, settings for e.g. 8 stack levels, SCI 2, RAD, D.MY, 12h, decimal comma, BestF, UNSIGN correspond to

$$1101001101010010010_2 = 69A92_{16} = 432786_{10}$$
.

STOM takes such a number and sets the calculator modes accordingly. Please see the <u>index of operations</u> for more information about changing modes.

Especially the angular modes deserve a closer look: there are three of them, DEG, RAD, and GRAD. And degrees (DEG) may be displayed in decimal numbers as well as in hours, minutes, seconds and hundredth of seconds (H.MS). Conversions are provided for going from one to the other:

From	degrees H.MS	decimal degrees	radians	gon (grad)	current angular mode
degrees H.MS	I	→H.MS			_
decimal degrees	→H .d	1	rad→°	G→°	→DEG
radians	_	°→rad	_	G→rad	→RAD
gon/grad	_	°→G	rad→G	_	→GRAD
current angular mode	_	DEG→	RAD→	GRAD→	_

Please see the <u>index of operations</u> for the commands printed on white background, and the <u>catalog of conversions</u> for those printed on yellow.

Some commands and modes use the display in a special way. They are listed below in order of falling priority:

- 1. **VERS** generates a display similar to the one shown on the title page of this manual. Pressing any key will delete this message and return to previous state.
- 2. **STATUS** displays the status of 30 flags very concisely, allowing an immediate status overview after some training. If e.g. flags 2, 3, 5, 7, 11, 13, 14, 17, 19, and 23 are set, and labels B, C, and D are defined in program memory, STATUS will display this:

Within the numeric section, each row of horizontal bars in the mantissa shows the status of 10 flags. When a flag is set, the respective bar turns black. So here the top row of bars indicates flags 0 and 1 are clear, 2 and 3 set, and flag 4 clear. Then, the divider II separates the first group of five flags from the next. Top row bars on its right side indicate flags 5 and 7 are set. Next row of bars shows flags 11, 13, 14, 17, 19 are set, and in the lowest row only flag 23 is set. All other flags in the range from 10 to 29 are clear.

Scrolling down by vill display flags 10 - 39, then 20 - 49 etc. until 90 - D. Scrolling up by reverts this. Alternatively, pressing a digit, e.g. 5, will up to show 30 flags starting with 10 times this digit, e.g. flags 50 - 79. The numeric exponent always indicates the status of the hotkeys top left on the keyboard – if all four labels are in use, then **ALL** will be displayed there.

The status will be displayed until any key is pressed but **▼**, **△**, or a digit < 9.

3. During **command input**, the dot matrix displays the command chosen until input is completed, i.e. until all required trailing parameters are entered. The prefixes 1, 9, and 1 are shown until they are resolved. If you pressed any of 1, 9, or 1 erroneously, recovery is as easy as follows:

In addressing, progress is recorded as explained in the *tables above* in detail.

4. In **programming mode**, the numeric display indicates the program step (000 – 475) in the mantissa and the number of free steps in the exponent, while the dot matrix shows the command contained in the respective step, e.g.:

5. For **floating point decimal numbers**, the mantissa will be displayed adjusted to the right, the exponent to the left. Within the mantissa, either points or commas may be selected as radix marks ¹⁶, and additional marks may be chosen to separate thousands. Assume the display set to FIX 4, then 12.345678901 millions may look like:

with thousands separators on, and without them like:

These separators may also be beneficial in integer or fraction modes described below. – With ENG 3 and after changing the sign, the same number will look like this:

If the last operation executed was a complex one, a capital C is displayed top left in the dot matrix pointing to the fact that you find the result of this function in **X** and **Y**.

Floating point decimal numbers within $10^{-383} < x < 10^{+385}$ may be entered easily. Using a decimal mantissa, even numbers down to 10^{-394} can be keyed in. The calculator works with numbers down to 10^{-398} correctly. Smaller nonzero values are shown as 0^{-398} . For results $x \ge 10^{+385}$, error 4 or 5 will appear (see <u>below</u>).

¹⁶ Starting here, decimal input is written using a point as radix mark throughout this manual, although significantly less visible, unless specified otherwise explicitly. By experience, the "comma people" are more capable to read radix points and interpret them correctly than vice versa.

6. In **integer modes**, numbers are displayed adjusted to the right as well. Word size and complement setting are indicated in the dot matrix using a format **xx.ww**, with **xx** being **1c** or **2c** for 1's or 2's complement, respectively, **un** for unsigned, or **sm** for sign-and-mantissa mode. Sign and first digit of the exponent show the base, a "c" in the second digit signals a carry bit set, an "o" in the third an overflow. Integer bases are indicated as follows:

Base	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Sign and 1 st digit of exponent displayed	b	3	4	5	6	7	0	9	d	-1	-2	-3	-4	-5	h

The example shows the WP 34S an arbitrary number in unsigned hexadecimal mode with word size 64 and carry set:

After changing to binary mode, this number will need 28 digits, being 1001001110100001010010110110. The 12 least significant digits will be displayed initially together with an indication that there are three display windows in total with the rightmost shown:

Now press <a> and you will get the next 12 digits in the middle window:

Press again to show the most significant digits:

If leading zeros were turned on, there will be six display windows in this case, with the three "most significant" containing only zeros.

Please note numeric input is limited to 12 digits in any integer base.

7. **Fraction mode** works similar to HP-35S. In particular, DENMAX sets the maximum allowable denominator (see the <u>index of operations</u>). Display will look like in the examples below. If the fraction is exactly equal, slightly less, or greater than the floating point number converted, "=", "Lt", or "Gt" is indicated in the exponent, respectively.

Assume the WP 34S reset. Key in -47.40625 and you will see:

Please note integers like 123 will be displayed as "123 0/1" or "123/1" in fraction mode, respectively. This mode can handle numbers with absolute values < 10,000 and > 0.0001. Maximum denominator is 9999.

Squaring the improper fraction shown above results in

Now, enter ab/c for converting this result into a proper fraction. You will get

with a little hook left of the first digit shown. This indicates the leading number is displayed incompletely – there are at least two digits preceding 47 but no more display space. Press **SHOW** to unveil the integer part of this proper fraction is <u>22</u>47.

8. In **H.MS display mode**, format is hhhh°mm'ss.dd" with the number of hours or degrees limited to 9000. Output may look like this:

depending on the radix setting. For decimal times less than 5ms or 0.005 angular seconds but greater than zero, an "u" for underflow will be lit in the exponent section. For times or angles exceeding the upper limit, an "o" will be shown there signaling an overflow, and the value is displayed modulo 9000.

 Output of the function DAY will look as follows for an input of 1.13201 in M.DY mode (equivalent to inputs of 13.01201 in D.MY or 2010.0113 in Y.MD). Expect similar displays after DAYS+.

Wednesday =
$$_{300\ RPN}$$

10. In **alpha mode**, the alpha register is displayed in the dot matrix, showing the last characters it is containing, while the numeric section keeps the result of the last numeric operation, e.g.:

Different information may be appended to *alpha*. See the commands starting with " α " in the index of operations below. E.g. α TIME allows creating texts like

depending on time mode setting (12h / 24h). And α DATE will append – depending on date format setting – either 2011-04-16 or 16.04.2011 or 04/16/2011 to *alpha*.

Please note *alpha* may contain up to 31 characters. And the WP 34S features a rich set of special letters. So you may store a message like

easily. Use <u>A</u> and <u>V</u> for browsing it. Browsing to the left will stop with the very first characters shown, browsing to the right stops showing the right end completely, i.e.

in this very special case.

All keyboard input will be interpreted according to the mode set at input time.

FONTS

The WP 34S features a large and a small font. Both are based on Luiz Viera's fonts as distributed in 2004. Some letters were added and some modified for better legibility, since the dot matrix is only 6 pixels high here. The following tables show the characters directly accessible through the keyboard. More are in the alpha catalogs (see *below*).

ABCDEFGHIJKLM NOPQRSTUVWXYZ

ABCDEFGHIJKLM NOPQRSTUVWXYZ

ABCDEFGHIJKLM NOPQRSTUVWXYZ

abcdefghijklm nopqrstuvwxyz

abcdef9hijklmnoparstuvwxyz abcdefghijklmnoparstuvwxyz

ΑΒΓΔΕΖΗΘΙΚΛΜ ΝΞΟΠΡΣΤΥΦΧΨΩ

ΑΒΓΔΕΖΗΘΙΚΑΜ ΝΞΟΠΡΣΤΥΦΧΨΩ ΑΒΓΔΕΖΗΘΙΚΑΜ ΝΞΟΠΡΣΤΥΦΧΨΩ

αβγδεζηθικλμ νξοπρστυφχψω
αβγέεζη9ικλμυξοπρστυΦχψω
αβγδεζηθικλμνξοπρστυφχψω

0 1 2 3 4 5 6 7 8 9	()+-×/±.!	↔ % √\& ≠\$€£¥
0123456789	()+-×/±.!	≒%1/8 ≠±€£ ¥
0123456789	()+-×/±.!	#X1/\$ #æ6##

INDEX OF OPERATIONS

All commands available are found below with their names and keystrokes necessary. Names printed in **bold** face therein belong to functions directly accessible on the keyboard, the others may be picked from catalogs. The command names will show up in program listings as well. Sorting in index and catalogs is case insensitive and works in the following order:

_, 0...9, A...Z,
$$\alpha$$
... ω , () + - × / ± , . ! ? : ; ' " # * @ _ ~ → ← ↑ ↓ ↔ < ≤ = \neq ≥ > % \$ € £ ¥ $\sqrt{\int}$ ∞ & \ ^ | G [] { }

Super- and subscripts are handled like normal characters in sorting. The fifth last item in this sorting order list is the indicator for the angular mode GRAD.

Generally, functions and keystroke programming will work as on *HP-42S*, bit and integer functions as on *HP-16C*, unless stated otherwise under remarks. Especially, all **tests** will return "Yes" or "No" in the dot matrix if called from the keyboard; if called in a program, they will skip the next program line if the test is false. Please refer to the manuals of the vintage calculators mentioned for additional information about "old" commands.

Functions available on the WP 34S for the first time on an RPN calculator are highlighted yellow under remarks, while operations carrying a familiar name but deviating in their functionality here are marked light red.

Parameters will be taken from the lowest stack levels unless mentioned explicitly in the 2^{nd} column – then they must follow the command. If <u>underlined</u>, they may also be specified using indirect addressing, as shown in the <u>tables</u> above. Some parameters of statistical distributions must be given in registers **J** and **K** if specified.

In the following, each function is listed stating the mode(s) it will work in, abbreviated by their <u>indicators</u>. In this column an "&" stands for a Boolean AND, a comma for an OR, and a backslash for "not". So e.g. 2^X works in all modes but alpha. All operations will also work in mode PRG unless stated otherwise explicitly.

Name	Keys to press	in modes	Remarks
c	(CPX)	DECM	Indicates an operation in complex domain, i.e. allowing complex input(s) and/or complex results (see <u>above</u>). CPX may be combined with all functions whose <u>names are printed in italics here</u> .
10 ^x	f 10 ^x	DECM	
12h	h MODE 12h	\α	Sets 12h time display mode meaning 1:23 becomes 1:23 a.m. and 13:45 becomes 1:45 p.m.
1COMPL	h MODE 1COMPL	\α	Sets 1's complement mode like in HP-16C.
1/x	f V _x	DECM	
1/X	В	DECM	Shortcut as long as label B is not defined yet.
24h	h MODE 24h	\α	Sets 24h time display mode meaning 1:23 a.m. becomes 1:23, and 1:45 p.m. becomes 13:45.
2COMPL	h MODE 2COMPL	\α	Sets 2's complement mode like in HP-16C.
2 ×	f 2 *	\α	
ABS	fixi	\α	CABS returns $r = \sqrt{x^2 + y^2}$ in X and clears Y .
ACOS	g COS-1	DECM	
ACOSH	g HYP-1 COS		
AGM	h X.FCN AGM	DECM	Calculates the arithmetic-geometric mean of \boldsymbol{x} and \boldsymbol{y} .
ALL	hALL	\α	Selects the format displaying "all" digits.
		Integer	Works bitwise as in <i>HP-16C</i> .
AND	h AND	DECM	Works like AND in <i>HP-28S</i> , i.e. x and y are interpreted before executing this operation. 0 is "false", any other real number is "true".
ANGLE	h X.FCN ANGLE	DECM	Calculates the angle between positive x-axis and the straight line from the origin to the point (x, y) , returns this angle in X and clears Y .
ASIN	g SIN-1	DECM	
ASINH	g HYP-1 SIN	DECM	
ASR	h X.FCN ASR <u>n</u>	Integer	Works like <i>n</i> (up to 63) consecutive ASRs in <i>HP-16C</i> . ASR 0 executes as NOP.

Name	Keys to press	in modes	Remarks
ATAN	g TAN-1	DEOM	
ATANH	g HYP-1 TAN	DECM	
BASE	MODE BASE n		Sets the base for integer calculations, with
BASE10	f 10		$2 \le n \le 16$. Popular bases are directly accessible on the keyboard. Current integer base set-
BASE16	g 16	\α	ting is indicated in the exponent as explained above.
BASE2	f 2		Furthermore, BASE0 equals DECM, and
BASE8	9 8		BASE1 calls FRACT.
BATT	h X.FCN BATT	DECM	Measures the battery voltage in the range between 1.9V and 3.4V and returns this value.
		Integer	Dto. but returns the voltage in 0.1V units.
BC?	h TEST BC? <u>n</u>	Integer	Tests the specified bit in x .
BestF	h STAT BestF	DECM	Selects the best curve fit model, maximizing the correlation like BEST does in <i>HP-42S</i> .
Binom			Binomial distribution with the number of successes \mathbf{g} in \mathbf{X} , the probability of a success \mathbf{p}_0 in \mathbf{J} and the sample size \mathbf{n} in \mathbf{K} : pmf: $p_B(g;n;p_0) = \binom{n}{g} \cdot p_0^g \cdot (1-p_0)^{n-g}$.
Binom _P	h PROB Binom etc.	DECM	cdf: $F_B(m;n;p_0) = \sum_{g=0}^m p_B(g;n;p_0)$, with the maximum number of successes m in X . The pdf equals BINOMDIST($g; n; p_0; 0$) and the cdf BINOMDIST($m; n; p_0; 1$) in MS Excel.
Binom ⁻¹			Binom ⁻¹ returns m for given probabilities F_B in \mathbf{X} and \mathbf{p} in \mathbf{J} with sample size \mathbf{n} in \mathbf{K} .
B _n	h X.FCN B _n	DECM	Returns the Bernoulli number for integer $n > 0$ given in X : $B_n = (-1)^{n+1} n \cdot \zeta(1-n) \text{ . See below for } \zeta.$
B _n *	h X.FCN B _n *	DECM	Returns the Bernoulli number according to its old definition for integer $n > 0$ given in X : $B_n^* = \frac{2 \cdot (2n)!}{(2\pi)^{2n}} \cdot \zeta(2n) \text{ . See below for } \zeta.$
BS?	h TEST BS? n	Integer	Tests the specified bit in x .

Name	Keys to press	in modes	Remarks
Cauch			Cauchy-Lorentz distribution with the location x_0 specified in J and the shape γ in K , also known as Lorentz or Breit-Wigner distribution:
Cauch _P	h PROB Cauch etc.	DECM	pdf: $f_{Ca}(x) = \frac{1}{\pi \gamma} \cdot \frac{1}{1 + \left(\frac{x - x_0}{\gamma}\right)^2}$
Cauch ⁻¹			cdf: $F_{Ca}(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x - x_0}{\gamma}\right)$. Cauch ⁻¹ returns \mathbf{x} for a given probability $\mathbf{F_{Ca}}$ in \mathbf{X} , with location $\mathbf{x_0}$ in \mathbf{J} and shape γ in \mathbf{K} .
СВ	h X.FCN CB <u>n</u>	Integer	Clears the specified bit in x .
CEIL	h X.FCN CEIL	DECM	Returns the smallest integer $\geq x$.
CF	h P.FCN CF n	\α	Clears the flag specified.
CLFLAG	h P.FCN CLFLAG	\α	Clears all user flags.
CLREG	h X.FCN CLREG	All	Clears all general purpose registers.
CLSTK	O g FILL h P.FCN CLSTK	\α	Clears all stack registers.
CLx	h CLx	All	
CLα	f CLa	All	Clears the alpha register like CLA in HP-42S.
CLΣ	gCL	DECM	Clears all statistical sums.
СОМВ	f Cy,x	DECM	Returns the number of possible <u>sets</u> of y items taken x at a time. No item occurs more than once in a set, and different orders of the same x items are <u>not</u> counted separately. Formula: $C_{y,x} = \begin{pmatrix} y \\ x \end{pmatrix} = \frac{y!}{x!(y-x)!}$
CONJ	CPX X.FCN CONJ	DECM	Changes the sign of y.
CORR	gr	DECM	Returns the correlation coefficient for the current statistical data and curve fitting model.
cos	f cos	DECM	
COSH	f HYP COS	DECIVI	

Name	Keys to press	in modes	Remarks
COV	h STAT COV	DECM	Returns the population covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $COV_{xy} = \frac{1}{n^2} \Big(n \sum x_i y_i - \sum x_i \sum y_i \Big)$
CUBE	h X.FCN CUBE	\α	Returns x^3 .
CUBERT	h X.FCN CUBERT	\α	Returns $\sqrt[3]{x}$.
DATE	h X.FCN DATE	DECM	Recalls the date from the real time clock and displays it in the numeric section in the format selected. See D.MY, M.DY, and Y.MD. The function DATE in <i>HP-12C</i> corresponds to DAYS+ in WP 34S (see below).
DAY	h X.FCN DAY	DECM	Takes x as a date in the format selected and returns the name of the day in the dot matrix and a corresponding integer in the numeric display (Monday = 1, Sunday = 7).
DAYS+	h X.FCN DAYS+	DECM	Works like DATE in <i>HP-12C</i> , adding <i>x</i> days on a date in Y in the format selected and displaying the resulting date including the day of week in the same format as DAY does.
DBLR	h X.FCN DBLR		
DBL ×	h X.FCN DBL×	Integer	Double precision commands like in HP-16C.
DBL/	h X.FCN DBL/		
DEC	h P.FCN DEC r	\α	Decrements r by one, equivalent to 1 STO- r , but without modifying the stack.
DECM	f H.d	\α	
DECOMP	h X.FCN DECOMP	FRC	Decomposes x (after converting it into an improper fraction, if applicable), resulting in a stack [$numerator(x)$, $denominator(x)$, y , z] or [$num(x)$, $den(x)$, y , z , t , a , b , c], respectively. Reversible by division.
DEG	g DEG	DECM	Sets angular mode to degrees.
DEG→	h X.FCN DEG→	DECM	Takes x as degrees and converts them to the angular mode currently set.

Page 29 of 73

DENANY h MODE DENANY w lowing maximum precision. Any denominate up to the value set by DENMAX may appear.	Name	Keys to press	in modes	Remarks
DENFAC In MODE DENFAC With e.g. DENMAX = 60, possible denominators are 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 tors are 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60 and for equaling DENMAX always. DENFIX In MODE DENFIX In MODE DENFIX Sets fixed denominator format, i.e. the denominator equaling DENMAX always. Works like /c in HP-35S, but maximum denominator settable is 9999. It will be set to this value if x < 1 or x > 9999 at execution time For x = 1 the current setting is recalled. DISP In MODE DISP DECM Changes the number of decimals while keeping the display format (FIX, SCI, ENG) as is. DROP In P.FCN DROP Drops x, changing stack contents to [y, z, t, or [y, z, t, a, b, c, d, d]], respectively. Seabove for CDROP. DSE In DSE r PRG & DECM Given cccccc.fffii in r, this function decrements r by if, skipping next program line then ccccccc ≤ fff . DSZ In P.FCN DSZ r PRG Decrements r by one, skipping next program line if then r < 1 .	DENANY	h MODE DENANY	\α	Sets default fraction format like in <i>HP-35S</i> , allowing maximum precision. Any denominator up to the value set by DENMAX may appear.
DENMAX MODE DENMAX Mode DENMAX DENMAX DECMA D	DENFAC	h MODE DENFAC	\α	Sets "factors of the maximum denominator". With e.g. DENMAX = 60, possible denominators are 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60.
DENMAX In MODE DISP In MODE	DENFIX	h MODE DENFIX	\α	Sets fixed denominator format, i.e. the denominator equaling DENMAX always.
DISP	DENMAX	h MODE DENMAX	\α	Works like /c in <i>HP-35S</i> , but maximum denominator settable is 9999. It will be set to this value if $x < 1$ or $x > 9999$ at execution time. For $x = 1$ the current setting is recalled.
DROP In P.FCN DROP or $[y, z, t, a, b, c, d, d]$, respectively. Seabove for DROP. PRG & DECM DSE IDSE \underline{r} Or $[y, z, t, a, b, c, d, d]$, respectively. Seabove for DROP. PRG & Cocccc fffii in \underline{r} , this function decrements \underline{r} by ii, skipping next program line then $ ccccccc \le fff $. Decrements \underline{r} by one, skipping next program line if then $ r < 1$. D.MY IN MODE D.MY OR DECM DECM DECM DECM DECM DECM Please see the <u>catalog of conversions below</u> .	DISP	h MODE DISP	DECM	Changes the number of decimals while keeping the display format (FIX, SCI, ENG) as is.
DSE DSE r	DROP	h P.FCN DROP	\α	Drops x , changing stack contents to $[y, z, t, t]$ or $[y, z, t, a, b, c, d, d]$, respectively. See <u>above</u> for ^C DROP.
DSZ h P.FCN DSZ \underline{r} PRG line if then $ r < 1$. D.MY h MODE D.MY	DSE	f DSE <u>r</u>		Given ccccc.fffii in r , this function decrements r by ii, skipping next program line if then cccccc \leq fff.
D→J h X.FCN D→J DECM Takes x as a date in the format selected and converts it to a Julian day number according to JG D→R DECM Please see the <u>catalog of conversions below</u> .	DSZ	h P.FCN DSZ <u>r</u>	PRG	Decrements ${\bf r}$ by one, skipping next program line if then $ {\bf r} < 1$.
D→J	D.MY	h MODE D.MY	\α	Sets the format for date display.
	D→J	h X.FCN D→J	DECM	Takes x as a date in the format selected and converts it to a Julian day number according to JG
FOOTE PURPLE FOOTE	D→R		DECM	Please see the <u>catalog of conversions below</u> .
l oggie the thousands separator (either a poir	E3OFF	h MODE E30FF	\a	Toggle the thousands separator (either a point
E3ON h MODE E3ON or a comma depending on the radix setting).	E3ON	h MODE E3ON	ια	or a comma depending on the radix setting).
ENG h ENG \underline{n} \alpha Sets engineering display format.	ENG	h ENG <u>n</u>	\α	Sets engineering display format.
ENGOVE exceeding the range displayable in these for	ENGOVR	h ENG .	\ α	Extension of ALL and FIX formats: numbers exceeding the range displayable in these formats will be shown in engineering format. See SCIOVR.
ENTER↑ Lender See above for CENTER.	ENTER ↑	ENTER†	\α	See <u>above</u> for ^C ENTER.

Name	Keys to press	in modes	Remarks
erf	h X.FCN erf	DECM	Calculates the error function and its complementary:
erfc	h X.FCN erfc	DECM	$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\tau^{2}} d\tau$ and $erfc(x) = 1 - erf(x)$
EVEN?	h TEST EVEN?	\α	Checks if x is integer and even.
e *	f e ^x	DECM	
ExpF	h STAT ExpF	DECM	Selects the exponential curve fit model.
Expon			Exponential distribution with the rate λ specified in J :
Expon _P	h PROB Expon etc.	DECM	pdf: $f_{Ex}(x) = \lambda \cdot e^{-\lambda x} = \text{EXPONDIST}(x; \lambda; 0),$ cdf: $F_{Ex}(x) = 1 - e^{-\lambda x} = \text{EXPONDIST}(x; \lambda; 1)$ in MS Excel.
Expon ⁻¹			Expon ⁻¹ returns the survival time t_s for a given probability F_{Ex} in X and rate λ in J .
e ^x -1	h X.FCN e ^X -1	DECM	Returns more accurate results for the fractional part of e^{x} with $x \approx 0$.
FB	h X.FCN FB <u>n</u>	Integer	Inverts ("flips") the specified bit in x .
FC?			
FC?C	h TEST FC? <u>n</u>	\α	Tests the flag specified. Clears, flips, or sets
FC?F	etc.	ια	this flag after testing, if applicable.
FC?S			
FF	h P.FCN FF n	\α	Flips the flag specified.
FIB	h X.FCN FIB	\α	Calculates the Fibonacci number F_x .
FILL	g FILL	\α	Copies x to all stack levels. See <u>above</u> for ^c FILL.
FIX	h FIX <u>n</u>	\α	Sets fixed point display format.
FLOOR	h X.FCN FLOOR	DECM	Returns the largest integer $\leq x$.
FP	gFP	DECM	Returns the fractional part of x .
FP?	h TEST FP?	\α	Tests <i>x</i> for having a nonzero fractional part.

Name	Keys to press	in modes	Remarks
FRACT	h P.FCN FRACT	DECM	Sets fraction mode like in HP-35S, but keeps display format as set by PROFRC or IMPFRC.
FS?			
FS?C	h TEST FS? <u>n</u>	\α	Tests the flag specified. Clears, flips, or sets
FS?F	etc.	ια	this flag after testing, if applicable.
FS?S			
F(x)	h PROB F(x)	DECM	F(x) equals 1 - Q(F) in <i>HP-21S</i> . The degrees
F ⁻¹ (p)	etc.	DECIVI	of freedom are specified in ${f J}$ and ${f K}$.
f'(x)	h P.FCN f'(x) label	- DECM	Return the first or second derivative of $f(x)$, respectively, with the function $f(x)$ being specified in a routine starting with LBL <i>label</i> . The return stack will have y , z , and t cleared and
f"(x)	h P.FCN f"(x) label		the position \mathbf{x} in \mathbf{L} . – Either command will attempt to call a user routine labeled ' $\delta \mathbf{x}$ ' to provide a fixed step size \mathbf{dx} . If that routine is not defined, a step size of 0.1 is employed instead.
GCD	h X.FCN GCD	\α	Returns the Greatest Common Divisor of \boldsymbol{x} and \boldsymbol{y} .
Geom			Geometric distribution: pdf: $f_{Ge}(m) = p_0(1-p_0)^m$,
Geom _P	h PROB Geom etc.	DECM	cdf: $F_{Ge}(m) = 1 - (1 - p_0)^{m+1}$ is the probability for a first success after $\mathbf{m} = \mathbf{x}$ Bernoulli experiments. The probability \mathbf{p}_0 for a success in each such experiment must be specified in \mathbf{J} .
Geom ⁻¹			Geom $^{-1}$ returns the number of failures f before the first success for given probabilities F_{Ge} in X and p_0 in J .
GRAD	g GRAD	DECM	Sets angular mode to gon or grads.
GRAD→	h X.FCN GRAD→	DECM	Takes x as gon or grads and converts them to the angular mode currently set.

Name	Keys to press	in modes	Remarks
		PRG	Inserts an unconditional branch to label.
	h GTO <u>label</u>	\PRG, \α	Positions the program pointer to <i>label</i> .
GTO	h GTO . A , B , C , or D	\α	to one of these labels if defined (not programmable).
	h GTO . nnn	\α	to line <i>nnn</i> (not programmable).
	h GTO	\α	to line 000 (not programmable) and lights the annunciator BEG .
H _n	h X.FCN H _n	DECM	Hermite's polynomials for probability: $H_n(x) = (-1)^n \cdot e^{\frac{x^2}{2}} \cdot \frac{d^n}{dx^n} \left(e^{-\frac{x^2}{2}} \right) \text{ with } \boldsymbol{n} \text{ in } \boldsymbol{Y},$ solving the differential equation $f''(x) - 2x \cdot f'(x) + 2n \cdot f(x) = 0 \ .$
H _{np}	h X.FCN H _{np}	DECM	Hermite's polynomials for physics: $H_{np}(x) = (-1)^n \cdot e^{x^2} \cdot \frac{d^n}{dx^n} \left(e^{-x^2} \right) \text{ with } \mathbf{n} \text{ in } \mathbf{Y}.$
H.MS	f H-MS	DECM	Assumes X containing decimal hours or degrees, and displays them in the format hhhh°mm'ss.dd" as shown above. Returns to the previous decimal display with the next keystroke thereafter.
H.MS+	h P.FCN H.MS+	DECM	Assumes X and Y containing times or degrees in the format <code>hhhh.mmssdd</code> , and adds or subtracts them, respectively.
IMPFRC	g d/c	\ α	Sets fraction mode allowing improper fractions in display (i.e. $5/3$ instead of 1 $2/3$). Converts x according to the settings by DEN Absolute decimal equivalents of x must be >1E-5 and <1E5. Compare PROFRC.
		FRC	Allows displaying improper fractions. Thus converts a proper fraction in X into the equivalent improper fraction, if applicable.
INC	h P.FCN INC r	\α	Increments r by one, equivalent to 1 STO+ r , but without modifying the stack.
INT?	h TEST INT?	\α	Tests x for being an integer, i.e. having a fractional part equal to zero. Compare FP?.
IP	f P	DECM	Returns the integer part of $oldsymbol{x}$.

Name	Keys to press	in modes	Remarks
ISG	g ISG <u>r</u>	PRG & DECM	Given ccccc.fffii in r , this function increments r by ii, skipping next program line if then cccccc > fff.
ISZ	h P.FCN ISZ <u>r</u>	PRG	Increments ${\bf r}$ by one, skipping next program line if then $ {\bf r} < 1$.
Ιβ	h X.FCN Iβ	DECM	Returns the regularized incomplete beta function $\frac{\beta_x(x,y,z)}{\beta(y,z)} = \frac{1}{\beta(y,z)} \cdot \int_0^x t^{y-1} (1-t)^{z-1} dt \text{with}$ $\beta_x \text{ being the incomplete beta function and } \beta \text{ being Euler's beta (see below)}.$
ΙΓ	h X.FCN IF	DECM	Returns the regularized incomplete gamma function $\frac{\gamma(x,y)}{\Gamma(x)}$ with $\gamma(x,y) = \int\limits_0^y t^{x-1}e^{-t}dt$ being the lower incomplete gamma function. For Γ see below.
JG1582	hX.FCN JG1582	5501	These two commands reflect different dates the Gregorian calendar was introduced in dif-
JG1752	h X.FCN JG1752	DECM	ferent large areas of the world. D→J and J→D will be calculated accordingly.
J→D	h X.FCN J→D	DECM	Takes x as a Julian day number and converts it to a date according to JG in the format selected
LASTx	RCL L	\α	See <u>above</u> for ^c LASTx .
LBL	[] LBL label	PRG	Identifies programs and routines for execution and branching. See opportunities for specifying <i>label</i> in the table <i>above</i> .
LBL?	h TEST LBL? label	All	Tests for the existence of the label specified, anywhere in program memory. See opportunities for specifying <i>label</i> in the table <i>above</i> .
LCM	h X.FCN LCM	\α	Returns the Least Common Multiple of x and y .
LEAP?	h TEST LEAP?	DECM	Takes x as a date in the format selected, extracts the year, and tests for a leap year.

Name	Keys to press	in modes	Remarks
LgNrm			Lognormal distribution with $\mu = \ln \overline{x}_g$ specified in J and $\sigma = \ln \varepsilon$ in K . See $\overline{x}g$ and ε below.
LgNrm _P	h PROB LgNrm etc.	DECM	pdf: $f_{Ln}(x) = \frac{1}{x\sigma\sqrt{2\pi}}e^{-\frac{(\ln x - \mu)}{2\sigma^2}}$,
LgNrm ⁻¹			cdf: $F_{Ln}(x) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$ with $\Phi(z)$ denoting the standard normal cdf. LgNrm ⁻¹ returns \boldsymbol{x} for a given probability $\boldsymbol{F_{Ln}}$ in \boldsymbol{X} , $\boldsymbol{\mu}$ in \boldsymbol{J} , and $\boldsymbol{\sigma}$ in \boldsymbol{K} .
LinF	h STAT LinF	DECM	Selects the linear curve fit model.
LJ	h X.FCN LJ	Integer	
LN	gLN	DECM	
L _n	h X.FCN L _n	DECM	Laguerre's polynomials (compare $L_n\alpha$ below): $L_n(x) = \frac{e^x}{n!} \cdot \frac{d^n}{dx^n} (x^n e^{-x}) = L_n^{(0)}(x) \text{ with } \boldsymbol{n} \text{ in } \boldsymbol{Y},$ solving the differential equation $x \cdot y'' + (1-x)y' + ny = 0 .$
LN1+x	h X.FCN LN1+x	DECM	Natural logarithm for values close to zero. Returns $\ln(1+x)$, providing a much higher accuracy in the fractional part of the result.
$L_n\alpha$	h X.FCN L _n a	DECM	Laguerre's generalized polynomials with n in Y and α in Z : $L_n^{(\alpha)}(x) = \frac{x^{-\alpha}e^x}{n!} \cdot \frac{d^n}{dx^n} \left(x^{n+\alpha}e^{-x} \right).$
LNβ	h STAT LNB	DECM	Returns the natural logarithm of Euler's β . See there. Also contained in the catalog X.FCN.
LNT	h STAT LNF	DECM	Returns the natural logarithm of $\Gamma(x)$. See there. Also contained in the catalog X.FCN.
LOG ₁₀	gLG	DECM	
LOG ₂	gLB	\α	Calculates the logarithm of <i>x</i> for base 2.
LogF	h STAT LogF	DECM	Selects the logarithmic curve fit model.

Name	Keys to press	in modes	Remarks
Logis			Logistic distribution with μ given in \mathbf{J} and \mathbf{s} in \mathbf{K} pdf: $f_{Lg}(x) = e^{-\frac{x-\mu}{s}} / s \cdot \left(1 + e^{-\frac{x-\mu}{s}}\right)^2$,
Logis _P	h PROB Logis etc.	DECM	cdf: $F_{Lg}(x) = \left(1 + e^{-\frac{x-\mu}{s}}\right)^{-1}$
Logis ⁻¹			Logis ⁻¹ returns $F_{Lg}^{-1}(p) = \mu + s \cdot \ln\left(\frac{p}{1-p}\right)$ for a probability \mathbf{p} given in \mathbf{X} , $\boldsymbol{\mu}$ in \mathbf{J} , and \mathbf{s} in \mathbf{K} .
	gLOGx	DECM	Calculates the logarithm of y for base x .
LOGx	CPX g LOGx	DECM	Calculates the complex logarithm of $z + it$ for the complex base $x + iy$.
LZOFF	h MODE LZOFF	Intogor	Toggles leading zeros like flag 3 does in
LZON	h MODE LZON	Integer	HP-16C.
L.R.	h L.R.	DECM	Calculates the parameters a1 and a0 of the fit curve through the data points accumulated, according to the model selected, and pushes them on the stack. For a straight regression line, a0 is the y-intercept and a1 the slope.
MASKL	MASKL <u>n</u>	latanan	Work like MASKL and MASKR on HP-16C, but
MASKR	h X.FCN MASKR n	Integer	with the mask length following the command instead of taken from \mathbf{X} .
MAX	h X.FCN MAX	\α	Returns the maximum of x and y .
MIN	h X.FCN MIN	\α	Returns the minimum of x and y .
MIRROR	h X.FCN MIRROR	Integer	Reflects the bit pattern in x (e.g. 000101 becomes 101000 for word size 6).
MOD	h MOD	\α	MOD of <i>HP-42S</i> equals RMD of <i>HP-16C</i> .
M.DY	h MODE M.DY	\α	Sets the format for date display.
NAND	h X.FCN NAND	\α	Works in analogy to AND.
NaN?	h TEST NaN?	\α	Tests x for "Not a Number".
nBITS	h X.FCN nBITS	Integer	Counts bits set in x like #B does on $HP-16C$.
NOP	h P.FCN NOP	PRG	

Name	Keys to press	in modes	Remarks
NOR	h X.FCN NOR	\α	Works in analogy to AND.
Norml			Normal distribution with an arbitrary mean μ specified in ${\bf J}$ and standard deviation ${\bf \sigma}$ in ${\bf K}$: pdf: $f_N(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$,
Norml _P	h PROB Norml etc.	DECM	cdf: $F_N(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$ with Φ denoting the standard normal distribution.
Norml ⁻¹			The pdf equals NORMDIST(x ; μ ; σ ; 0) and the cdf NORMDIST(x ; μ ; σ ; 1) in MS Excel. Norml $^{-1}$ returns x for a given probability F_N in X , mean μ in J , and standard deviation σ in K . Equals NORMINV(F_N ; μ ; σ) in MS Excel.
NOT	h NOT	\α	Works in analogy to AND.
nΣ	h STAT nΣ	DECM	Recalls the number of accumulated data points. Necessary for basic statistics.
ODD?	h TEST ODD?	\α	Checks if x is integer and odd.
OFF	h P.FCN OFF	PRG	
OR	hOR	\α	Works in analogy to AND.
PERM	g Py.x	DECM	Returns the number of possible <u>arrangements</u> of y items taken x at a time. No item occurs more than once in an arrangement, and different orders of the same x items <u>are</u> counted separately. Formula: $P_{y,x} = x! \cdot C_{y,x}$, see COMB.
P _n	h X.FCN P _n	DECM	Legendre's polynomials: $P_n(x) = \frac{1}{2^n n!} \cdot \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right] \text{ with } \mathbf{n} \text{ in } \mathbf{Y}, \text{ solving the differential equation}$ $\frac{d}{dx} \left[(1 - x^2) \frac{d}{dx} f(x) \right] + n(n+1) f(x) = 0.$

Name	Keys to press	in modes	Remarks
Poiss			Poisson distribution with the number of successes g in X , gross error probability p_0 in J , and sample size n in K . Alternatively, Poisson's $\lambda = n \cdot p_0$ may be in J if $k = 1$:
Poiss _P	h PROB Poiss etc.	DECM	pmf: $P_P(g;\lambda) = \frac{\lambda^g}{g!}e^{-\lambda}$, cdf: $F_P(m;\lambda) = \sum_{g=0}^m P_P(g;\lambda)$, with the maximum number of successes m in X .
Poiss ⁻¹			The pdf equals $POISSON(g; \lambda; 0)$ and the cdf $POISSON(g; \lambda; 1)$ in MS Excel. Poiss $^{-1}$ returns m for given probabilities F_P in \mathbf{X} and \mathbf{p} in \mathbf{J} with sample size \mathbf{n} in \mathbf{K} .
PowerF	h STAT PowerF	DECM	Selects the power curve fit model.
PRIME?	h TEST PRIME?	\ α	Checks if the absolute value of the integer part of x is a prime number. Exact for $x < 66049$, Miller-Rabin with 40 iterations otherwise, with the probability P for erroneously claiming a composite is prime being $P \approx 2^{-80} \approx 10^{-24}$.
PROFRC	fab/c	DECM	Sets fraction mode like in <i>HP-35S</i> , allowing only proper fractions or mixed numbers in display. Converts <i>x</i> according to the settings by DEN Absolute decimal equivalents of <i>x</i> must be >1E-5 and <1E5. Compare IMPFRC.
		FRC	Allows displaying only proper fractions. Thus converts an improper fraction in X , e.g. 5/3 into 1 2/3, if applicable.
PROMPT	h P.FCN PROMPT	PRG	Displays <i>alpha</i> and stops program execution (equaling α VIEW followed by STOP actually). If alpha input is requested for a program, use the sequence α ON PROMPT α OFF. With a program running, enter the value or text requested and press R/S to continue.
PSE	h PSE <u>nn</u>	PRG	Pauses program execution for nn times 0.1s, with $0 \le nn \le 99$. Refreshes the display.
RAD	g RAD	DECM	Sets angular mode to radians.
RAD→	h X.FCN RAD→	DECM	Takes x as radians and converts them to the angular mode currently set.

Name	Keys to press	in modes	Remarks
RAN#	f RAN#	DECM	Returns a random number between 0 and 1 like RAN in <i>HP-42S</i> .
		Integer	Returns a random bit pattern for the word size set.
RCL	RCL s	\α	See the <u>addressing table above</u> for ^C RCL.
RCLM	RCL MODE	\α	Recalls selected mode settings into X . See the paragraph about <i>indicators</i> above.
RCLS	h P.FCN RCLS s	\α	Recalls 4 or 8 values from a set of registers starting at address s , and pushes them on the stack. This is the converse command of STOS.
RCL+	RCL + s		
RCL-	RCL - s		Recalls the content of address s , executes the specified operation on it and pushes the result
RCL×	RCL X s	\α	on the stack. E.g. RCL-12 recalls $r12$, subtracts x from it
RCL/	RCL / s	ια	and displays the result. RCL \uparrow (\downarrow) recalls the maximum (minimum) of the values in s and X .
RCL↑	RCL A s		See the <u>addressing table above</u> for ^C RCL.
RCL↓	RCL ▼ s		
RDX,	h ./,	DECM	Toggle the radix mark. Also available in P.FCN FWIW.
RDX.		DEOIVI	
RJ	h X.FCN RJ	Integer	Works in analogy to LJ.
RL	h X.FCN RL n	Integer	Works like n consecutive RLs / RLCs on $HP-16C$. For RL, $1 \le n \le 63$. For RLC, $1 \le n \le 63$.
RLC	h X.FCN RLC <u>n</u>	integer	64. RL 0 and RLC 0 execute as NOP.
ROUND	O PND	DECM	Rounds x using the current display format, like RND in HP - $42S$.
KOOND	g RND	FRC	Rounds x using the current denominator, like RND in HP -35S.
ROUNDI	h X.FCN ROUNDI	DECM	Rounds x to next integer. $\frac{1}{2}$ rounds to 1.
RR	h X.FCN RR <u>n</u>	Integer	Works like <i>n</i> consecutive RRs / RRCs on
RRC	h X.FCN RRC <u>n</u>		HP-16C. See RL / RLC for more.

Name	Keys to press	in modes	Remarks
		\PRG	Moves the program pointer to step 000.
RTN	gRIN	PRG	Last command in a routine. Returns control to the calling routine in program execution, i.e. moves the program pointer one step behind the most recent XEQ instruction encountered. If there is none, program execution halts.
R-CLR	h P.FCN R-CLR	DECM	Interprets x in the form ss.nn. Clears nn registers starting with number ss . E.g. for $x = 34.56$, R-CLR will clear $R34$ through $R89$.
R-COPY	h P.FCN R-COPY	DECM	Interprets x in the form ss.nndd. Takes nn registers starting with number ss and copies their contents to dd . E.g. for $x = 7.0345678$, $r07$, $r08$, $r09$ will be moved into $R45$, $R46$, $R47$, respectively.
R-SORT	h P.FCN R-SORT	DECM	Interprets x in the form ss.nn. Sorts the contents of nn registers starting with number ss . Assume $x = 49.026$, $r49 = 1.2$, $r50 = -3.4$; then R-SORT returns $r49 = -3.4$, $r50 = 1.2$.
R-SWAP	h P.FCN R-SWAP	DECM	Works like R-COPY but swaps the register contents of source and destination.
R→D		DECM	Please see the <u>catalog of conversions below</u> .
R↑ R↓	R.	\α	Rotates the stack contents one level up or down, respectively. See <u>above</u> for complex rotations.
s	gs	DECM	Calculates the sample standard deviations s_y and s_x and pushes them on the stack.
SB	NX.FCN SB n	Integer	Sets the specified bit in $oldsymbol{x}$.
SCI	h sci <u>n</u>	\α	Sets scientific display format.
SCIOVR	h SCI .	\α	Extension of ALL and FIX formats: numbers exceeding the range displayable in these formats will be shown in scientific format (default as in vintage HP calculators). See ENGOVR.
SEED	h STAT SEED	DECM	Stores a seed for random number generation.

Name	Keys to press	in modes	Remarks
SERR	h STAT SERR	DECM	Works like s but pushes the standard errors s/\sqrt{n} on the stack (i.e. the standard deviations of $\bar{\mathbf{x}}$ and \mathbf{y}).
SERRW	h STAT SERRW	DECM	Works like sw but returns the standard error $s/\sqrt{\sum y_i}$ (i.e. the standard deviation of \bar{x} w).
SETDAT	h X.FCN SETDAT	DECM	Sets the date or time, respectively, for the real
SETTIM	h X.FCN SETTIM	DECM	time clock (don't work with the emulator, since it takes the information from the PC clock).
SF	h P.FCN SF n	\α	Sets the flag specified.
SIGN	h X.FCN SIGN	\α	Returns 1 for $x > 0$, -1 for $x < 0$, and 0 for $x = 0$ or non-numbers.
	CPX X.FCN SIGN	DECM	Returns the unit vector of $x + iy$ in X and Y .
SIGNMT	MODE SIGNMT	\α	Sets sign-and-mantissa mode for integers.
SIN	f SIN	DECM	
SINC	h X.FCN SINC	DECM	Returns $\frac{\sin x}{x}$.
SINH	f HYP SIN	DECM	
SL	h X.FCN SL <u>n</u>	Integer	Works like <i>n</i> (up to 63) consecutive SLs on <i>HP-16C</i> . SL 0 executes as NOP.
SLV	f SLV label	DECM	Solves the equation $f(x) = 0$, with $f(x)$ calculated by the routine specified. Two initial estimates of the root must be supplied in \mathbf{X} and \mathbf{Y} when calling SLV. For the rest, the user interface is as in HP -15 C .
SLVQ	h X.FCN SLVQ	DECM	If the stack contains the parameters [c , b , a ,] of a quadratic equation $ax^2 + bx + c = 0$, SLVQ will return its roots $-\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}$ in \mathbf{Y} and \mathbf{X} . Then \mathbf{Z} will contain what was in \mathbf{T} when SLVQ was called, etc. Please note SLVQ works for real numbers only.
SR	h X.FCN SR <u>n</u>	Integer	Works like n consecutive SRs on <i>HP-16C</i> . SR 0 executes as NOP.

sw h STAT sw DECM Returns the standard deviation for weighted data $s_{w} = + \sqrt{\frac{\sum y_{i} \cdot \sum (y_{i} \cdot x_{i}^{2}) - [\sum (y_{i} \cdot x_{i})]^{2}}{(\sum y_{i})^{2} - \sum y_{i}^{2}}}$ Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} (n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})$	Name	Keys to press	in modes	Remarks
The same will happen if stack size is changed via STOM. SSIZE? In TEST SSIZE? Via Returns the number of stack levels accessible. STO STO G G STOM STO MODE Via See the addressing table above for CSTO. STOM STO MODE Via Sets selected modes as encoded in x . See the paragraph about indicators above. STOP R/S PRG Stops program execution. STO+ STO+ STO + d STO+ STO + d STO- STO - d STO STO d STO STO d	SSIZE4	h MODE SSIZE4	\α	If stack size grows, the top level contents will be copied into the new levels. If the stack
STO STO \underline{d} See the $\underline{addressing\ table\ above}$ for ^{C}STO . STOM STOP R/S PRG Stops program execution. STOS PFCN STOS \underline{d} Stops program execution. STO- STO- STO \underline{d} Stops program execution. STO- STO- \underline{d} STO- \underline{d} Executes the specified operation on the content of address \underline{d} and stores the result into said address. STO/ STO \underline{d} STO \underline{d} STO \underline{d} STO- 12 subtracts \underline{x} from \underline{r} 12, and stores the result in R12 again. STO \underline{d} S	SSIZE8	h MODE SSIZE8		The same will happen if stack size is changed
STOM STO MODE No Sets selected modes as encoded in x . See the paragraph about indicators above. STOP R/S PRG Stops program execution. STOS IN P.FCN STOS d No STO+ STO + d STO- STO - d STOW STO X d STO STO X d STO STO X d STO STO Y d STO IN INSTALL SUM DECM STO IN STALL SXY SET Sets selected modes as encoded in x . See the paragraph about indicators above. Stops program execution. Stops program pro	SSIZE?	h TEST SSIZE?	\α	Returns the number of stack levels accessible.
STOP R/S PRG Stops program execution. STOP R/S STOP STOS \underline{d} No. Stores all stack levels in a set of 4 or 8 registers, starting at destination \underline{d} . STO+ STO + \underline{d} STO - \underline{d} STO STO \underline{x} \underline{d} Executes the specified operation on the content of address \underline{d} and stores the result into said address. STO/ STO \underline{d} STO \underline{d} STO + \underline{d} STO + \underline{d} STO + \underline{d} STO - \underline{d}	STO	STO <u>d</u>	\α	See the <u>addressing table above</u> for ^C STO.
STO+ STO \pm \pm \pm \pm STO+ STO \pm \pm STO+ STO \pm \pm STO \pm \pm STO- STO \pm \pm STO \pm STO \pm \pm STO \pm S	STOM	STO MODE	\α	
ters, starting at destination d . STO+ STO + d STO- STO - d STO X STO X d STO/ STO / d STO I STO d SUM d STO I STO d STO I STO d SUM d STO I STO d SUM d STO I STO d STO I STO d SUM d STO I ST	STOP	R/S	PRG	Stops program execution.
Executes the specified operation on the content of address d and stores the result into said address. STO X STO X d STO d	STOS	h P.FCN STOS <u>d</u>	\α	S C C C C C C C C C C C C C C C C C C C
STO-STO $=$ \underline{d} tent of address d and stores the result into said address.STOXSTO X \underline{d} tent of address d and stores the result into said address.STO/STO X \underline{d} tent of address d and stores the result in R12 again. STO1 (d) takes the maximum (minimum) of the values in d and d a	STO+	STO + <u>d</u>		tent of address d and stores the result into said address. E.g. STO-12 subtracts x from $r12$, and stores the result in $R12$ again. STO \uparrow (\downarrow) takes the maximum (minimum) of the values in d and d and d and stores it.
STO/STO / \underline{d} Lig. STO-12 again. STO↑ (\$) takes the maximum (minimum) of the values in \underline{d} and \underline{X} and stores it.STO\$ STO $\underline{\bullet}$ \underline{d} STO\$ STO $\underline{\bullet}$ \underline{d} SUMIn STAT SUMDECMRecalls the linear sums $\underline{\Sigma} \underline{y}$ and $\underline{\Sigma} \underline{x}$. Useful for elementary vector algebra.SWIn STAT SWDECMReturns the standard deviation for weighted dataSxyIn STAT SXyDECMReturns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculatesTANIn STAT SXYIn STAT SXYIn STAT SXYIn STAT SXY	STO-	STO — <u>d</u>		
STO/Gthe result in R12 again. STO' (1) takes the maximum (minimum) of the values in d and X and stores it.STO1STO $\boxed{}$ $\boxed{}$ STO $\boxed{}$ $\boxed{}$ SUMSTAT SUMDECMRecalls the linear sums $\boxed{}$ $\boxed{}$ y and $\boxed{}$ $\boxed{}$ Useful for elementary vector algebra.SWNo STAT SUMDECMReturns the standard deviation for weighted dataSWSTAT SWDECMReturns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculatesSXYSTAT SXYDECMReturns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates	STO×	STO X d	\α	
STO \searrow \searrow See the <u>addressing table above</u> for ^C STO. STO \searrow \searrow And \searrow See the <u>addressing table above</u> for ^C STO. Recalls the linear sums \searrow and \searrow And \searrow See the addressing table above for ^C STO. Recalls the linear sums \searrow and \searrow And \searrow And \searrow See the addressing table above for ^C STO. Returns the standard deviation for weighted data $s_{w} = + \sqrt{\frac{\sum y_{i} \cdot \sum (y_{i} \cdot x_{i}^{2}) - \left[\sum (y_{i} \cdot x_{i})\right]^{2}}{\left[\sum y_{i}\right]^{2} - \sum y_{i}^{2}}}$ Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} \left(n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}\right)$ TAN	STO/	STO / d		
STO1 SIO DECM Recalls the linear sums Σy and Σx . Useful for elementary vector algebra. Returns the standard deviation for weighted data $s_{w} = + \sqrt{\frac{\sum y_{i} \cdot \sum (y_{i} \cdot x_{i}^{2}) - [\sum (y_{i} \cdot x_{i})]^{2}}{(\sum y_{i})^{2} - \sum y_{i}^{2}}}$ Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} (n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})$	STO↑	STO A d		
sw h STAT sw DECM Returns the standard deviation for weighted data $s_{w} = + \sqrt{\frac{\sum y_{i} \cdot \sum (y_{i} \cdot x_{i}^{2}) - [\sum (y_{i} \cdot x_{i})]^{2}}{(\sum y_{i})^{2} - \sum y_{i}^{2}}}$ Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} (n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})$	STO↓	STO ▼ <u>d</u>		
sw h STAT sw DECM $s_{w} = + \sqrt{\frac{\sum y_{i} \cdot \sum (y_{i} \cdot x_{i}^{2}) - [\sum (y_{i} \cdot x_{i})]^{2}}{(\sum y_{i})^{2} - \sum y_{i}^{2}}}$ Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} (n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i})$	SUM	h STAT SUM	DECM	Recalls the linear sums Σy and Σx . Useful for elementary vector algebra.
sw h stat sw DECM $s_{w} = + \sqrt{\frac{\sum y_{i} \cdot \sum (y_{i} \cdot x_{i}^{2}) - \left[\sum (y_{i} \cdot x_{i})\right]^{2}}{\left(\sum y_{i}\right)^{2} - \sum y_{i}^{2}}}$ Returns the sample covariance for two data sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} \left(n \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}\right)$				
sxy h STAT sxy DECM sets. It depends on the fit model selected. For LinF, it calculates $s_{xy} = \frac{1}{n \cdot (n-1)} \left(n \sum x_i y_i - \sum x_i \sum y_i \right)$	sw	h STAT sw	DECM	
	sxy	h STAT sxy	DECM	sets. It depends on the fit model selected. For LinF, it calculates
TANH THYP (TAN)			DECM	

Name	Keys to press	in modes	Remarks
TICKS	h P.FCN TICKS	\α	Returns the number of ticks from the real time clock at execution time.
TIME	h TIME	DECM, α	Recalls the time from the real time clock at execution and shows it in decimal mode.
T _n	h X.FCN T _n	DECM	Chebychev's (a.k.a. Tschebyschow) polynomials of first kind $T_n(x)$ with \boldsymbol{n} in \boldsymbol{Y} , solving the differential equation $ (1-x^2)y''-x\cdot y'+n^2y=0 \ .$
TVM	h X.FCN TVM	DECM	Time Value of Money almost as known since the HP - 80 . Solves the equation $PMT - \frac{I}{k} \cdot \left[PV + \frac{PV + FV}{(1+I)^n - 1} \right] = 0 \text{with}$ $PMT = \text{periodic payment} = r80,$ $PV = \text{present value} = r81,$ $FV = \text{future value} = r82,$ $I = \text{interest rate per period} = r83,$ $n = \text{number of periods} = r84,$ $k = 1 \text{ if payment is made at the end of the period} = \text{flag } 80 \text{ clear,}$ $= 1 + I \text{ if it is made at the beginning of the period} = \text{flag } 80 \text{ set.}$ $\text{Store all you know and solve for the unknown.}$ $\text{E.g. solving for } PMT \text{ may look like:}$ $\text{LBL 'PMT'} \text{; routine is entered with }$ $\text{SLV 'PM1'} \text{; a first guess in } X.$ $\text{NOP} \text{; SLV acts as a test.}$ RTN $\text{LBL 'PM1'} \text{STO } 80 \text{; initial or previous guess}$ TVM RTN See SLV for more.
t(x)	h PROB t(x)	DECL	t(x) equals 1 – Q(t) in <i>HP-21S</i> . The degree of
t ⁻¹ (p)	etc.	DECM	freedom is stored in ${f J}$.
Un	h X.FCN U _n	DECM	Chebychev's polynomials of second kind $U_n(x)$ with n in Y , solving the differential equation $ (1-x^2)y''-3x\cdot y'+n(n+2)y=0 . $

Name	Keys to press	in modes	Remarks
UNSIGN	MODE UNSIGN	\α	Sets unsigned mode for integers.
VIEW	h VIEW s	All	Displays the content of address s until the next key is pressed.
W	h X.FCN W	DECM	W returns Lambert's W for given $x \ge -1/e$,
W ⁻¹	h X.FCN W ⁻¹	DECIVI	while W ⁻¹ returns x for given W (\geq -1).
Weibl			Weibull distribution with the shape parameter \boldsymbol{b} in \mathbf{J} and the characteristic lifetime \boldsymbol{T} in \mathbf{K} : pdf: $f_W(t) = \frac{b}{T} \left(\frac{t}{T}\right)^{b-1} e^{-\left(\frac{t}{T}\right)^b}$,
Weibl _P	h PROB Weibl etc.	DECM	$T\left(T\right)$ cdf: $F_{W}(t) = 1 - e^{-\left(\frac{t}{T}\right)^{b}}$.
Weibl ⁻¹	Weibl ⁻¹		The pdf equals WEIBULL(x ; b ; T ; 0) and the cdf WEIBULL(x ; b ; T ; 1) in MS Excel. Weibl $^{-1}$ returns the survival time t_s for given probability F_W , b in J and T in K .
WSIZE	h MODE WSIZE n	\α	Works like on <i>HP-16C</i> , but with the parameter following the command instead of taken from X . WSIZE 0 sets the word size to maximum, i.e. 64 bits.
WSIZE?	h TEST WSIZE?	\α	Recalls the word size set.
x ²	g x ²	\α	
	(VEO) John!	PRG	Calls the respective subroutine.
	XEQ <u>label</u>	∖PRG, ∖α	Executes the respective program.
XEQ	B , C , or D (you may need f for	PRG	Calls the respective subroutine, so e.g. XEQ C will be inserted when © is pressed.
	accessing these hotkeys in integer bases >10.)	∖PRG, ∖α	Executes the respective program if defined.
XNOR	h X.FCN XNOR	\α	Works in analogy to AND.
XOR	h XOR	\α	Works in analogy to AND.
x	fx	DECM	Calculates the arithmetic means. Pushes $\frac{1}{n}\sum y$ and $\frac{1}{n}\sum x$ on the stack. See also s, SERR, and σ .

Name	Keys to press	in modes	Remarks
х̄g	h STAT xg	DECM	Calculates the geometric means. Pushes $\sqrt[n]{\prod y} = e^{\frac{1}{n}\sum \ln y}$ and $\sqrt[n]{\prod x}$ on the stack. See also ε , ε g, and ε_P .
Χ̈W	h STAT xw	DECM	Calculates the weighted arithmetic mean $\sum xy / \sum y$. See also sw and SERRw.
ŷ	h STAT x	DECM	Returns a forecast x for a given y (in X) following the fit model chosen. See L.R. for more.
x!	h!	DECM	
$x \rightarrow \alpha$	g x l	All	Interprets x as a code of up to 6 characters. Appends these characters to $alpha$, similar to XTOA in HP - $42S$.
χ↔	h x ? <u>r</u>	\α	Swaps the contents of X and r . See <u>above</u> for complex $x \leftrightarrow .$
x⇔y	χξυ	\α	Swaps x and y , performing Re \leftrightarrow Im if a complex operation was executed immediately before. See <u>above</u> for $^{\text{C}}x\leftrightarrow y$.
x < ?	h TEST x < ? <u>a</u>		Compare x with a . The three dots will be replaced in the listing by a according to the examples given in the <u>addressing table above</u> . $x \approx ?$ will be true if the <u>rounded</u> values of x and a are equal (see ROUND). CPX f $x = ?$ a and
x ≤ ?	h TEST x ≤ ? <u>a</u>		
x = ?	1 x = ? <u>a</u>		
x≈?	h TEST x≈? <u>a</u>	\α	
x ≠ ?	g <u>x ≠ ?</u> <u>a</u>		CPX
x≥?	h TEST x ≥ ? <u>a</u>		number $x + iy$ as explained in the <u>addressing</u> table above.
x > ?	h TEST x > ? <u>a</u>		
	f yx	\α	In integer modes x must be ≥ 0 .
y ^x	C	\α, \13, \14, \15, \h	Shortcut working as long as label C is not defined yet.
ŷ	ſŷ	DECM	Returns a forecast y (in X) for a given x following the fit model chosen. See L.R. for more.
Y.MD	h MODE Y.MD	\α	Sets the format for date display.

Name	Keys to press	in modes	Remarks
αDATE	h X.FCN αDATE	\integer	Takes x as a date and appends it to $alpha$ in the format set. See DATE. – To append a date stamp to $alpha$, call DATE α DATE.
αDAY	h X.FCN αDAY	\integer	Takes x as a date, recalls the name of the respective day and appends its first 3 letters to $alpha$.
αΙΡ	h X.FCN αIP	All	Appends the integer part of x to $alpha$, similar to AIP in $HP-42S$.
αLENG	h X.FCN αLENG	All	Returns the number of characters found in <i>alpha</i> , like ALENG in <i>HP-42S</i> .
αΜΟΝΤΗ	h X.FCN αMONTH	\integer	Works like α DAY, but processing the month.
αOFF	h P.FCN αOFF	PRG & α	Work like AOFF and AON in HP-42S, turning
αΟΝ	h P.FCN αΟΝ	PRG & \α	alpha mode off and on.
a:DCI	RCL s	α	Interprets the content of the source s as cha-
αRCL	h X.FCN αRCL <u>s</u>	\α	racters and appends them to <i>alpha</i> .
αRC#	h X.FCN αRC# <u>s</u>	All	Takes the content of s as a number, converts it to a string in the format set, and appends this to <i>alpha</i> . If e.g. $s = 1234$ and ENG 2 and RDX. are set, then $_1.23E3$ will be appended.
αRL	h X.FCN αRL <u>n</u>	All	Rotates <i>alpha</i> by n characters like AROT in <i>HP-42S</i> , but with $n \ge 0$ and the parameter trailing the command instead of taken from X . $\alpha RL 0$ executes as NOP.
αRR	h X.FCN αRR <u>n</u>	All	Works like αRL but rotates to the right.
αSL	h X.FCN αSL <u>n</u>	All	Shifts the <i>n</i> leftmost characters out of <i>alpha</i> , like ASHF in <i>HP-42S</i> . αSL 0 equals NOP.
αSR	h X.FCN αSR <u>n</u>	All	Works like αSL but takes the \emph{n} rightmost characters instead.
αSTO	STO <u>d</u>	α	Stores the first (i.e. leftmost) 6 characters in the
αδίΟ	h X.FCN αSTO <u>d</u>	\α	alpha register into destination d .

Name	Keys to press	in modes	Remarks
αΤΙΜΕ	h X.FCN αTIME	\integer	Takes x as a time and appends it to $alpha$ in the format hh:mm:ss according to the time mode selected. See TIME. – To append a time stamp to $alpha$, call TIME α TIME.
αVIEW	h P.FCN αVIEW	\α	Displays \emph{alpha} . Also contained in X.FCN. Use αVIEW followed by PSE for message output in programs.
$\alpha \rightarrow x$	f x∢▶a	All	Returns the character code of the leftmost character in <i>alpha</i> and deletes this character, like ATOX in <i>HP-42S</i> .
β	h STAT β	DECM	Returns Euler's Beta $B(x,y) = \frac{\Gamma(x) \cdot \Gamma(y)}{\Gamma(x+y)}$ with $\text{Re}(x) > 0$, $\text{Re}(y) > 0$. Called β here for avoiding ambiguities. Also contained in X.FCN.
Г	h STAT F	DECM	Returns $\Gamma(x)$. This function is also contained in X.FCN. Additionally, h ! calls $\Gamma(x + 1)$.
ΔDAYS	h X.FCN ΔDAYS	DECM	Assumes X and Y containing dates in the format chosen and calculates the number of days between them. Works like in <i>HP-12C</i> .
Δ%	f Δ%	DECM	Calculates $100 \cdot \frac{x-y}{y}$ like %CH in <i>HP-42S</i> .
ε	h STAT &	DECM	Calculates the scattering factors (or geometric standard deviations) $\ln(\varepsilon_y) = \sqrt{\frac{\sum \ln^2(y) - 2n \cdot \ln(\overline{y}_G)}{n-1}} \text{and} \ln(\varepsilon_x)$ and pushes them on the stack. ε works for the geometric mean in analogy to s for the arithmetic mean but <u>multiplicative</u> .
ε _m	h STAT ε_{m}	DECM	Like ε but pushes the scattering factors of the geometric means $\varepsilon_m = \varepsilon^{1/\sqrt{n}}$ on the stack.
8 p	h STAT ε	DECM	Works like ε but with a denominator \boldsymbol{n} instead of $\boldsymbol{n-1}$, returning the scattering factors of the populations.

Name	Keys to press	in modes	Remarks
ζ	h X.FCN ζ	DECM	Returns Riemann's Zeta function for real arguments, with $\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$ for $x > 1$ and its analytical continuation for $x < 1$: $\zeta(x) = 2^x \pi^{x-1} \sin\left(\frac{\pi}{2}x\right) \cdot \Gamma(1-x) \cdot \zeta(1-x) \ .$
π	hπ	DECM	Complex version copies π in X and clears Y .
П	<mark>f∎π <u>label</u></mark>	DECM	Computes a product with the routine specified by <i>label</i> . Initially, X contains the loop control number in the format <code>ccccc.fffii</code> and the product is set to 1. Each run through the routine specified computes a factor. At its end, this factor is multiplied with said product; the operation then decrements <code>cccccc</code> by <code>ii</code> and runs said routine again if then <code>cccccc</code> > <code>fff</code> , else returns the resulting product in X .
Σ	g∑ <u>label</u>	DECM	Computes a sum with the routine specified by <code>label</code> . Initially, X contains the loop control number in the format <code>ccccc.fffii</code> and the sum is set to 0. Each run through the routine specified computes a summand; at its end, this is added to said sum; the operation then decrements <code>cccccc</code> by <code>ii</code> and runs said routine again if then <code>cccccc</code> > <code>fff</code> , else returns the resulting sum in X .
σ	h STAT o	DECM	Works like s but calculates the standard deviations of the populations instead.
Σln²x Σln²y Σlnx Σlnxy Σlnxy Σlny Σlny	h STAT $\Sigma \ln^2 x$ etc.	DECM	Recall the respective statistical sums. These sums are necessary for curve fitting models beyond pure linear. Calling them by name enhances readability of programs significantly.
σw	h STAT ow	DECM	Works like sw but calculates the standard deviation of the population instead. $\sigma_{\scriptscriptstyle W} = + \sqrt{\frac{\sum y_i (x_i - \overline{x}_{\scriptscriptstyle W})^2}{\sum y_i}}$

Name	Keys to press	in modes	Remarks
$\begin{array}{c c} \Sigma x \\ \Sigma x^2 \\ \Sigma x^2 y \\ \end{array}$ $\begin{array}{c c} \Sigma xy \\ \end{array}$ $\begin{array}{c c} \Sigma y \\ \end{array}$	h STAT Σx etc.	DECM	Recall the respective statistical sums. These sums are necessary for basic statistics and linear curve fitting. Calling them by name enhances readability of programs significantly.
Σ+	A	DECM	Shortcut as long as label A is not defined yet.
Σ-	h Σ +	DECM	
φ(x)	h PROB φ(x)	DECM	Standard normal pdf: $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$.
Ф(х)	f (Φ)	DECM	Standard normal cdf $\Phi(z) = \int_{-\infty}^{z} \varphi(x) dx$,
Φ ⁻¹ (p)	σ Φ-1		equals $1 - Q$ in $HP-32E$ and $1 - Q(z)$ in $HP-21S$ with $z = x$.
χ^2 χ^2 INV	h PROB χ² etc.	DECM	χ^2 (with the degrees of freedom given in J) equals 1 – $Q(\chi^2)$ in <i>HP-21S</i> .
(-1) [×]	h X.FCN (-1) ^X	\α	For x not being a natural number, this function will return $\cos(\pi \cdot x)$.
+ - * /	+ - x	\α	
//	g ///	DECM	Calculates $\left(\frac{1}{x} + \frac{1}{y}\right)^{-1}$.
+/-	+/_	\α	
→DEG	→ (g) DEG	DECM	Takes x as an angle in the angular mode currently set and converts it to degrees. Prefix gmay be omitted.

Name	Keys to press	in modes	Remarks
→GRAD	→ (g) GRAD	DECM	Like →DEG, but converts to gon or grads.
→ Н	→ f H.d	DECM	Takes x as hours or degrees in the format hhhh.mmssdd and converts them into a decimal time or angle.
→H.MS	→ f H.MS	DECM	Takes x as decimal hours or degrees, converts them into hhhh.mmssdd and displays the result in the format hhhh°mm'ss.dd" as shown <u>above</u> . Returns to hhhh.mmssdd with the next keystroke.
→POL	g R∢▶P	DECM	Assumes X and Y containing 2D Cartesian coordinates (x, y) and converts them to the respective polar coordinates $(r, 9)$.
→RAD	→ (g) RAD	DECM	Works like →DEG, but converts to radians.
→REC	ſR◀▶P	DECM	Assumes X and Y containing 2D polar coordinates (r, ϑ) and converts them to the respective Cartesian coordinates (x, y) .
%	g %	DECM	Calculates $\frac{x \cdot y}{100}$.
%MG	h X.FCN h % MG	DECM	Calculates the margin 17 $100 \cdot \frac{x-y}{x}$ in % for a price x and cost y , like %MU-Price in HP -17B.
%MRR	h X.FCN h % MRR	DECM	Calculates the mean rate of return in % per period, i.e. $100 \cdot \left[\left(\frac{x}{y} \right)^{\frac{1}{z}} - 1 \right]$ with $x = \text{FV} = \text{future value after } z \text{ periods}, y = \text{PV} = \text{present value}.$ For $z = 1$, $\Delta\%$ returns the same result easier.
%Т	h X.FCN h % T	DECM	Calculates $100 \cdot \frac{x}{y}$, i.e. percent of <u>t</u> otal FWIW.
%Σ	h STAT h% Σ h X.FCN h% Σ	DECM	Calculates $100 \cdot \frac{x}{\sum x}$.
%+MG	h X.FCN h % +MG	DECM	Calculates a sales price $y/(1-0.01\cdot x)$ by adding a margin ¹⁷ of x % to the cost y , as %MU-Price does in HP -17B.

¹⁷ Margin corresponds to "Handelsspanne" in German.

Name	Keys to press	in modes	Remarks
	f 😿	\α	
√	D	\α, \14, \15, \h	Shortcut working as long as label D is not defined yet.
ı	g / label	DECM	Integrates the function given in the routine specified. Lower and upper integration limits must be supplied in Y and X , respectively. Otherwise, the user interface is as in <i>HP-15C</i> .
∞?	h TEST ∞?	\α	Tests <i>x</i> for infinity.

Alphanumeric input:

Letter or digit	Keys to press	in modes	Remarks
۰	,	DECM	Separates degrees or hours from minutes and seconds, so input format is hhhh.mmssdd. The user has to take care where an arbitrary real number represents such an angle or time.
		\α	Standard numeric input. For integer bases <10, input of illegal digits throws an <u>error message</u> .
0 9	09	in ad- dressing	Register input. See the <u>tables</u> above for more.
	0, 1, f 2,,	α	Appends the respective digit to <i>alpha</i> .
A F	A F (red print)	11, 12, 13, 14, 15, h	Numeric input for digits >10. See page 6 for more information.
A Z	A Z (red print)	in ad- dressing	Register input. See the <u>addressing tables</u> above for the letters applicable.
		α	Alphabetic input. See page 7 for more.
E	E (the key)	DECM	Like EEX in the older vintage calculators.
(or)		α	Appends a left / right parenthesis to alpha.

Letter or digit	Keys to press	in modes	Remarks
[/] Se	Second .	DECM	A persistent 2 nd in input switches to fraction mode and will be interpreted as explained below. Please note you cannot enter E after you entered itwice – but you may delete the 2 nd dot while editing the input line.
		FRC	First , is interpreted as a space, 2 nd as a fraction mark. E.g. input of 2 , 3 , 4 results in 2 ³ / ₄ in the display. Improper fractions may be entered starting with a , e.g. , 3 , 2 .
[,]	h /, XEQ	α	Appends a comma to <i>alpha</i> .
[-]	f.	α	Appends a point to <i>alpha</i> .
[.] or [,]	•	DECM	Inserts a radix mark as selected.

NON-PROGRAMMABLE CONTROL, CLEARING AND INFORMATION COMMANDS

Keys to press	in modes	Remarks
	All	These two navigation keys will repeat with 5Hz when held down for longer than 0.5s.
	Status open	Goes to previous / next set of flags.
	Catalog open	Goes to previous / next item in this catalog.
	α	Scrolls the display window six characters to the left / right in <i>alpha</i> if possible. If less than six characters are beyond the limits of the display window on the left / right side, the window will be positioned to the beginning / end of string. Useful for longer strings.
	Else	Acts like BST / SST in HP-42S.
	Input pending	Deletes the last digit or character put in.
	α	Deletes the rightmost character in alpha.
—	PRG	Deletes current step.
	Else	Acts like CLx.
f / g >	Integer	Shifts the display window to the left / right like in HP-16C. Helpful while working with small bases.
f	α	Toggles upper and lower case.

Keys to press	in modes	Remarks	
h X.FCN CLALL \PRG		Clears all registers and programs if confirmed.	
h CLP \a		Clears the current program after confirmation. This program is the one the program pointer is in.	
(ENTER†)	Catalog open	Selects the current item like XEQ below.	
———	α	Turns alpha mode off.	
	Catalog open	Leaves the catalog without executing anything.	
	Input pending	Cancels the execution of pending operations, returning to the calculator status as it was before.	
EXIT	\PRG & program running	Stops the running program like R/S below.	
▼	PRG	Leaves programming mode like P/R below.	
	α	Turns alpha mode off like ENTER above.	
	Else	Does nothing.	
gOFF	All	Turns calculator off.	
ON	Calculator off	Turns calculator on.	
h P/R	\α	Toggles programming mode for keyboard entry.	
h X.FCN RESET All		Executes CLALL and resets all modes to start-up default, i.e. 24h, 2COMPL, ALL, DEG, DENANY, DENMAX 9999, DECM, LinF, PROFRC, RDX., SCIOVR, SSIZE4, WSIZE 64, Y.MD.	
R/S	\PRG, \α	Stops the running program immediately. If there is none running, runs the current program or resumes its execution starting with the current step. Compare the programmable command STOP.	
	DECM & \PRG	Shows the full mantissa until the next key is pressed.	
h SHOW	PRG	Displays a CRC checksum of program memory contents, allowing validation of program integrity.	
h STATUS	\PRG	Shows the status of all user flags, similar to STATUS on <i>HP-16C</i> . See <u>above</u> .	
h X.FCN VERS	\PRG	Shows the firmware version and build number.	
XEQ	Catalog open	Selects the item currently displayed and exits, executing the respective command. See <u>above</u> .	

Keys to press in modes		Remarks	
f X	\α	Turns on alpha mode for keyboard entry. When entering alpha constants in programs, please note there is no concatenation character – added characters are appended to $alpha$ always. For starting a new string, use $CL\alpha$ first. Alpha constants will be listed like e.g. 'Test 1'.	
→ f 2→ f 10	lα	These commands show x in target integer representation until the next key is pressed. Base is kept as set. Prefix g may be omitted here.	
→ (g) 16 → (g) 8		If used in integer bases 15 and 16, prefix	

CATALOGS

A catalog on the WP 34S is a collection of items, e.g. operations or characters. Calling a catalog will set alpha mode to allow for typing the first character(s) of the item wanted.

A and volume browse the catalog, XEQ selects the item displayed and exits, while EXIT leaves the catalog without executing anything, returning to the mode as set before. Opening the very last catalog called again, the last command selected therein is displayed for easy repetitive use. See the table below about addressing cataloged items, and the next pages for detailed item lists.

Keys to press	in modes	Contents	
h CONST	DECM	Constants like in HP35s. See them listed in a <u>table below</u> .	
CPX CONST	DECM	This will clear Y in recalling the constant selected since they are all real.	
h CONV	DECM	Conversions as listed in a <u>table below</u> .	
(CPX)	α	"Complex" letters mandatory for many languages. Upper or lower case will be displayed according to the case setting (see for above).	
h MODE	\α	Mode setting functions.	
h PROB	DECM	Extra probability distributions.	
h P.FCN	\α	Extra programming functions.	
f RI	α	Subscripts.	
h Rt	α	Superscripts.	
h STAT	DECM	Extra statistical functions.	
	\α	All tests except the two on the keyboard.	
h (TEST)	α	Comparison symbols and brackets. Parentheses are called by f and g), respectively.	
	DECM	Extra real functions.	
h X.FCN	Integer	Extra integer functions.	
	α	Extra alpha functions.	
CPX X.FCN	DECM	Extra complex functions.	
h ./,	α	Punctuation marks and text symbols.	
f →	α	Arrows and mathematical symbols.	

Catalog contents in detail:

Within these lists, the characters necessary to access a specific function from an arbitrary position in the respective catalog are printed bold. Where a character is printed **grey** it will be faster employing \blacktriangledown to get to this function. E.g. for addressing Logis⁻¹, press \bigcirc \blacktriangledown .

A single function, e.g. CB, may be contained in more than one catalog.

The alpha catalogs are found two pages below. See also CONST and CONV in separate paragraphs further below.

MODE
1 2h
1COMPL
2 4h
2COMPL
B ASE
DENANY
DENFAC
DENFIX
DENMAX
DISP
D. MY
E 3OFF
E3ON
L ZOFF
LZON
M.DY
SIGNMT
SSIZE4
SSIZE8
UNSIGN
WSIZE
Y.MD

E	
PR	OB
Binom	Lo gis
B inom _P	Logis _P
Binom ⁻¹	Logis ⁻¹
Cauch	Norml
C auch _P	Norml _P
Cauch ⁻¹	Norml ⁻¹
Expon	Poiss
Expon _P	Poiss _P
Expon ⁻¹	Poiss ⁻¹
F(x)	t(x)
F ⁻¹ (p)	t -1(p)
Geom	Weibl
Geom _P	Weibl _P
Geom ⁻¹	Weibl ⁻¹
Lgnrm	φ (x)
Lgnrm _P	χ ²
Lgnrm ⁻¹	χ ² INV

-	
ST	AT
B estF	β
COV	Г
Ex pF	3
LinF	ε _m
LNβ	ερ
LNΓ	σ
Lo gF	ΣIn ² x
nΣ	Σln ² y
P owerF	ΣΙηχ
SEED	ΣΙηχγ
SERR	ΣΙηγ
SERRW	σw
SUM	Σχ
sw	Σx²
sxy	Σx²y
x g	ΣxIny
Χw	Σχγ
Ŷ	Σy
	Σy²
	Σylnx
	%Σ

TEST
BC?
BS?
EVEN?
FC?
FC?C
FC?F
FC?S
FP?
FS?
FS?C
FS?F
FS?S
INT?
LBL?
LEAP?
NaN?
ODD?
PRIME?
S SIZE?
WSIZE?
x < ?
x ≤ ?
x ≈ ?
x ≥ ?
x > ?
∞ ?

P.FCN
CF
CL FLAG
CLSTK
DEC
DROP
DSZ
F F
FRACT
f '(x)
f "(x)
H.MS+
H.MS-
INC
ISZ
NOP
OFF
P ROMPT
RCLM
RCLS
RDX,
RDX.
R-CLR
R-COPY
R-SORT
R-SWAP
SF
STOM
STOS
TICKS αOFF
αΟΝ

 $\alpha VIEW$

CPX								
Mode: mo	1	· · ·						CPX
AGM		decimal	mode:] [integer n	nodes:		
CLREG RESET B _n NAND CLALL RLC CUBERT C		A GM	LNΓ		A SR	RESET		^c A GM
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CLALL	ANGLE	MAX		B ATT	RJ		c C ONJ
VERS Bn* NOR CLFLAG RR CDROP αDATE CEIL Pn CLREG RRC Cex - 1 CFIB αDAY CLALL RESET CUBE SB CLN1+x CFIB αIP CLREG RRC CUBERT SEED CLN1+x	CLREG	BATT	MIN		C B	RL		^c CUBE
αDATE CEIL Pn CLREG RRC Cex -1	RESET	B _n	NAND		CLALL	RLC		^C CUBERT
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V ERS	B _n *	NO R		CLFLAG	RR		^c D ROP
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αDATE	CEIL	P _n		CLREG	RRC		^с е ^х -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αDΑΥ	CLALL	RESET		CUBE	S B		^c F IB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αΙΡ	CLREG	ROUNDI		CUBERT	SEED		^c LN1+x
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αLENG	CUBE	SETDAT		D BLR	SIGN		^c LNβ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	α M ONTH	CUBERT	SETTIM		DBL*	SL		сГИС
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αRC#	D ATE	SIGN		DBL/	SR	٦	^c S IGN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αRL	DAY	SINC		F B	VERS	Ì	^C SINC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αRR	DAYS+	SLVQ		FIB	XNOR		^c W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αSL	DE COMP	T _n		G CD	αIP		CW -1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αSR	D→J	TVM		LCM	αLENG		сβ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	αΤΙΜΕ	erf	U _n		LJ	αRCL		СГ
FIB FLOOR XNOR MIN α SL α SR MIRROR α SR α MIRROR α SR α MIRROR α SR α MIRROR α STO α MIRROR α MI		erfc	VERS	М	MASKL	αRC#		c(-1) ^x
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		e ^x -1	w		MASKR	αRL		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		FIB	W ⁻¹	Ī	MAX	αRR		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		FLOOR	XNOR		MIN	αSL		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		G CD	αDATE		MIRROR	αSR		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H _n	αDAY		N AND	αSTO		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		H _{np}	αΙΡ		nBITS	α V IEW		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Iβ	αLENG		NO R	(-1) ^X		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		IL	α M ONTH				_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		J G1582	αRCL					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		JG 1752	αRC#					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		J →D	αRL	1 /	αVIEW			
$ \begin{array}{c c} \hline LN1+x & \alpha SR & \Delta DAYS & \%T \\ \hline L_n\alpha & \alpha STO & \zeta & \%\Sigma \\ \hline \end{array} $		LCM	αRR	1 /[β	% MG		
$L_n\alpha$ α STO ζ % Σ		L _n	αSL] / [Γ	%MRR		
		LN1+x	αSR] / [∆DAYS	%Т		
LN β α TIME $(-1)^X$ %+MG		L _n α	αSTO]/	ζ	%Σ		
		LNβ	αΤΙΜΕ		(-1) ^X	%+MG		

	CPX					
À	ď.	Ē	à	ā	9	
À Á Á ÂĀĀĂ Ä		1E 1E	á	0,0'JIH:HHHHTMEREEREEP PIO.	: 01 01 01 01 01 01 01 01 01 01 01 01 01	
ÂÃĀĂ	ıΩ		âãāă	Ō	ΔI	
Ä	Ω	:E	ä (ă)	Ö:	ä	
Å	.d.d.:d.:0.:0.:0.:0.:0.:0.:0.:0	. ■ . п	å	á	à	
Ć	ć	Ē	ć	ć	Ē	
Č	Ē	Е	č	Ē	Ξ	
Ç	Ç		Ç	£	Ç	
È	E	Ē	è	ē	Ē	
É	Ē	E	é	ē	Ē	
ÊĒĔĚ	Ē	A: AI	êēĕě	ē	₹	
Ë	Ë	E	ë (ĕ)	ë	T	
			ħ	ħ	ħ	
Ì	Ī	1	ì	ī	ī	
ĺ	ī ī ï	-: -	í	ī	ī	
îīīĭ	Ī	ī	îĩīĭ	ī	ī	
Ϊ	Ϊ	ï	Ϊ(Ĭ)	ï	ï	
Ñ Ň Ò Ó Ô Õ Ō Ŏ	Ñ	Ħ	ñň	ħ	Ē	
Ò	0.0	0.0	Ò	ō	6	
Ó	ō	•	ó	ō	ō	
ÔÕŌŎ	:01		ôõōŏ	ō	5	
O	0		ö (ŏ)	Ö	5	
Ø Ř Š	Ø	Ø	Ø	ø	Ø	
Ř	Wi Di	Ē	ř	F	7	
~						
Š	5	7	š	5	3	
	5		Š	上山田	多元子母	
	ij				B	
Ù	ij	בי ב.	ß	C, C'	<u>β</u> (3 (3	
Ù	ij	בו כי כי	ß	C, C'	15 B 10 10 10	
Ù	ij	כ: כו כי כי	ß	כ:כוכיכו	C: CI C: C' TO 51	
Ù	ij	כ: כו כי כי	ß	כ:כוכיכו	C C: CI CI CI 10 17	
Ù		C C C C C	ß	כ:כוכיכו	(C) (C) (C) (C) (Δ) (Δ)	
	ij	כ: כו כי כי	ß	C, C'	H (12 12 12 13 14 15 14 14 14	

Here are the contents of the alpha catalogs making the WP 34S the most versatile global calculator known. Large font is printed in left column or upper row, small font in right column or lower row. Accented letters show the same width as plain ones wherever possible.

The letters provided in the WP 34S allow for correct writing the languages of more than 3·10⁹ people (still only half of mankind yet), i.e.:

Afrikaans, Català, Cebuano, Česky, Cymraeq. Deutsch. Eesti, English, Español, Euskara. Français, Gaeilge, Galego, Bahasa Indonesia, Italiano, Basa Jawa, Kiswahili, Kreyòl ayisyen, Magyar, Bahasa Melayu, Nederlands, Português, Quechua, Shqip, Slovenčina, Slovenščina, Basa Sunda, Suomeksi, Svenska, Tagalog, Winaray, Zhōngwén (with a little trick explained below), and almost Dansk and Norsk (sorry, no æ) as well as Hrvatski and Srpski (no đ). If you know further living languages covered, please tell us.

Mandarin Chinese (Zhōngwén) features four tones, usually transcribed like e.g. mā, má, má, and mà. So you need different letters for ā and ă here, and for e, i, o, and u as well. With 6 pixels total character height we found no way to display these in both fonts nicely, keeping letters and accents separated for easy reading. For an unambiguous solution, we suggest using a dieresis (else not employed in Hànyǔ pīnyīn) representing the third tone here. Pinyin writers, we ask for your understanding.

ADDRESSING CATALOG ITEMS

1	User input	CONST, CONV, MODE, PROB, P.FCN, STAT, TEST, or X.FCN	CPX, R♣, or R↑ in alpha mode	→, (TEST), or ./. in alpha mode
	Dot	Shows 1 ^s	^t item in selected c	atalog.
	matrix display	(e.g. BC? in P.FCN) Alpha mode is set.	(e.g. Á in CPX)	(e.g. , in ./.)
2	User input	XEQ, ▼, ▲, EXIT, or 1 st character	XEQ, ▼, ▲, EXIT, or character	
		(e.g. F)	(e.g. O)	
	Dot matrix display	Shows 1 st item starting with this character *) (e.g. FB)	Shows 1 st item starting with this letter *) (e.g. Ó)	
3	User input	XEQ, ▼, ▲, EXIT, or 2 nd character		
		(e.g. S)		
	Dot matrix display	Shows 1 st item starting with this sequence *) (e.g. FS?)		
4	User	XE	Q , ▼ , ▲ , or EXI	
	input		(e.g. ▼)	
	Dot	Shows	next item in this ca	talog
	matrix display	(e.g. FS?C)	(e.g. Ò)	(e.g. ?)
		Continue browsi	ng this way until reaching the	e item desired
		(e.g. FS?F).	(e.g. Ö).	(e.g. 🕻).
n	User		XEQ	
	input	Calculator leaves	the catalog returning to the r	node set before
		and executes or		
	Dot	inserts the command chosen, or recalls the	and appends the selec	•
	matrix display	constant selected.	Contents of a	
		Result	(e.g. Östl	. Seite:)

^{*)} If a character or sequence specified is not found in this catalog then the first item following alphabetically will be shown. If there is no such item, then the last item in this catalog is displayed. You may key in even more than two characters − after 3 seconds, however, or after ▼ or ▲, the search string will be reset and you may start with a first character again.

CONSTANTS

Below you find the contents of the catalog CONST. Navigation works as in the catalogs mentioned before. Values of physical constants (incl. their relative standard deviations given in parentheses below) are from CODATA 2006, copied in August 2010. Green background denotes exact or almost exact values. The more the color turns to red, the less precise the respective constant is known 18.

For the units, remember Tesla with $1T = 1\frac{Wb}{m^2} = 1\frac{V \cdot s}{m^2}$, Joule with $1J = 1N \cdot m = 1\frac{kg \cdot m^2}{s^2}$ and on the other hand $1J = 1W \cdot s = 1V \cdot A \cdot s = \frac{1}{e}eV \approx 6.24 \cdot 10^6 TeV$. Thus $1\frac{J}{T} = 1A \cdot m^2$.

	Numeric value	Unit	Remarks
а	365.2425	d	Gregorian year (per definition)
a ₀	5.2917720859 E -11 (6.8 E -10)	m	Bohr radius $=\frac{\alpha}{4\pi \cdot R_{\infty}}$
С	2.99792458 E 8	m/s	Vacuum speed of light (per definition)
C ₁	3.74177118 E -16 <i>(5.0E-8)</i>	$m^2 \cdot W$	First radiation constant $= 2\pi \cdot h \cdot c^2$
C ₂	0.014387752 <i>(1.7E-6)</i>	$m \cdot K$	Second radiation constant $=\frac{hc}{k}$
е	1.602176487 E -19 <i>(2.5E-8)</i>	С	Electron charge $=\frac{2}{K_J R_K} = \Phi_0 G_0$
еE	2.718281828459045	1	Euler's e. Please note the letter e is used for the electron charge elsewhere in this table.
F	96485.3399 <i>(2.5E-8)</i>	$\frac{C}{mol}$	Faraday's constant $= e N_A$
g	9.80665	m/s^2	Standard earth acceleration (per definition)
G	6.67428 E -11 <i>(1.0E-4)</i>	$\frac{m^3}{kg \cdot s^2}$	Newton's gravitation constant
G _o	7.7480917004 E -5 (6.8 E -10)	$1/\Omega$	Conductance quantum = $\frac{2e^2}{h} = \frac{2}{R_K}$ with the von Klitzing constant R _K = 25812.807557 Ω
g e	2.0023193043622 (7.4 E -13)	1	Landé's g-factor

¹⁸ The bracketed values printed here for your kind attention allow you to compute the precision of results you may obtain using these constants. The procedure to be employed is called error propagation. It is often ignored, though essential for trustworthy results - not only in science. Please turn to respective texts before you believe in 4 decimals of a calculation result based on yardstick measurements.

	Numeric value	Unit	Remarks	
h	6.62606896 E -34 <i>(5.0E-8)</i>		Planck constant	
ħ	1.054571628 E -34 (5.0 E -8)	Js	$=\frac{h}{2\pi}$	
k	1.3806504 E -23 <i>(1.7E-6)</i>	$J/_{K}$	Boltzmann constant $= \frac{R}{N_A}$	
l _p	1.616252 E -35 (5.0 E -5)	m	Planck length = $\sqrt{\hbar G/c^3} = t_p c$	
m e	9.10938215 E -31 <i>(5.0E-8)</i>		Electron mass	
m _n	1.674927211 E -27 <i>(5.0E-8)</i>		Neutron mass	
m _p	1.672621637 E -27 <i>(5.0E-8)</i>		Proton mass	
Mp	2.17644 E -8 (5.0 E -5)	kg	Planck mass = $\sqrt{\hbar c/G} \approx 22 \mu g$	
mu	1.660538782 E -27 <i>(5.0E-8)</i>		Atomic unit mass = $10^{-3} kg / N_A$	
mμ	1.88353103 E- 28 <i>(5.6E-8)</i>		Muon mass	
N _A	6.02214179 E 23 <i>(5.0E-8)</i>	$\frac{1}{mol}$	Avogadro's number	
NaN			"not a number"	
po	101325	Pa	standard atmospheric pressure (per definition)	
q p	1,8755459 E -18 <i>(5.0E-5)</i>	As	Planck charge $=\sqrt{4\pi\varepsilon_0\hbar c}\approx 11.7e$	
R			Molar gas constant	
K	8.314472 <i>(1.7E-6)</i>	$\frac{J}{mol \cdot K}$	Molar gas constant	
r _e	8.314472 (1.7 E -6) 2.8179402894 E -15 (2.1 E -9)		Molar gas constant ${\sf Classical\ electron\ radius\ } = \alpha^2 \cdot a_0$	
	1 1	$\overline{mol \cdot K}$		
r _e	2.8179402894 E -15 <i>(</i> 2.1 E -9 <i>)</i>	mol·K m	Classical electron radius $= \alpha^2 \cdot a_0$	
r _e	2.8179402894 E -15 (2.1 E -9) 1.0973731568527 E 7 (6.6 E -12)	mol·K m 1/ m	Classical electron radius $= \alpha^2 \cdot a_0$ Rydberg constant $= \frac{\alpha^2 m_e c}{2h}$	
r _e R _∞ T _o	2.8179402894E-15 (2.1E-9) 1.0973731568527E7 (6.6E-12) 273.15	mol·K m //m K	Classical electron radius $= \alpha^2 \cdot a_0$ Rydberg constant $= \frac{\alpha^2 m_e c}{2h}$ $= 0^{\circ}\text{C}$, standard temperature (per definition)	

	Numeric value	Unit	Remarks
Z _o	376.730313461	Ω	Characteristic impedance of vacuum $= \sqrt{\frac{\mu_0}{\varepsilon_0}} = \mu_0 c$
α	7.2973525376 E -3 (6.8 E -10)	1	Fine-structure constant $=\frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137}$
γΕΜ	0.57721566490153286	1	Euler-Mascheroni constant
γр	2.675222099 E 8 (2.6 E -8)	$\frac{1}{s \cdot T}$	Proton gyromagnetic ratio = $\frac{2\mu_p}{\hbar}$
εο	8.854187817 E -12	$\frac{A \cdot s}{V \cdot m}$ or F/m	Electric constant, vacuum permittivity = $\frac{1}{\mu_0 c^2}$
$\lambda_{\rm c}$	2.4263102175 E -12 <i>(1.4E-9)</i>		Compton wavelength of the electron = $\frac{h}{m_e c}$
λ _{cn}	1.3195908951 E -15 <i>(1.5E-9)</i>	m	Compton wavelength of the neutron $= \frac{h}{m_n c}$
λ_{cp}	1.3214098446 E -15 <i>(1.9E-9)</i>		Compton wavelength of the proton $= \frac{h}{m_p c}$
μο	1.2566370614 E -6	$\frac{V \cdot s}{A \cdot m}$	Magnetic constant, also known as vacuum permeability = $4\pi \cdot 10^{-7} \frac{V \cdot s}{A \cdot m}$ (per definition)
μ _Β	9.27400915 E- 24 <i>(</i> 2.5 E- 8 <i>)</i>		Bohr's magneton $=\frac{e\hbar}{2m_e}$
μ _e	-9.28476377 E -24 <i>(2.5E-8)</i>	1/	Electron magnetic moment
μ _n	-9.6623641 E -27 <i>(2.4E-7)</i>	J/T	Neutron magnetic moment
μ _p	1.410606662 E -26 <i>(2.6E-8)</i>	or $A \cdot m^2$	Proton magnetic moment
μ_{u}	5.05078324 E -27 (2.5 E -8)		Nuclear magneton $=\frac{e\hbar}{2m_p}$
μμ	-4.49044786 E -26 (3.6 E -8)		Muon magnetic moment
π	3.141592653589793	1	
σ_{B}	5.6704 E -8 (7.0 E -6)	$\frac{W}{m^2K^4}$	Stefan Boltzmann constant $=\frac{2\pi^5 k^4}{15h^3c^2}$
Φ	1.61803398874989485	1	Golden ratio $=\frac{1+\sqrt{5}}{2}$

	Numeric value	Unit	Remarks
Φ_{o}	2.067833667 E -15 <i>(2.5E-8)</i>	Vs	Magnetic flux quantum $=\frac{h}{2e}=\frac{1}{K_J}$ with the Josephson constant $K_J=4.83597891\cdot 10^{14} Hz/V$
∞		1	Infinity (may the Lord of Mathematics forgive us calling this a constant)

UNIT CONVERSIONS

These are the contents of the catalog CONV 19 . Navigation works as in the other catalogs. The constant T_o may be useful for conversions, too; it is found in the <u>catalog CONST</u>. The conversion factors or divisors listed in this table for your information are user transparent in executing a conversion.

Conversion		Remarks	Class
°C→°F	* 1.8 + 32	Exactly	Temperature
°F→°C	- 32) / 1.8	Exactly	Temperature
° → G	/ 0.9	Exactly	Angle
°→rad	* π / 180	Exactly	Angle
a cres→ha	* 0.4046873	1 ha = 10^4m^2	Area
ar .→dB	10 * lg(R)	Amplitude ratio. Exactly	Ratio
at m→Pa	* 1.01325 E 5	Exactly	Pressure
AU →km	* 1.495979 E 8	Astronomic units	Length
b hp→W	* 745.6999	British horse power	Power
Bt u→J	* 1055.056		Energy
c al→J	* 4.1868	Exactly	Energy
cf t→ <i>l</i>	* 28.31685	Cubic feet	Volume
cm →inches	/ 2.54	Exactly	Length
d B→ar.	$10^{R_{dB}/20}$	Amplitude ratio. Exactly	Ratio

For most readers, many of the units appearing here may look obsolete at least. They die hard, however, in some corners of this world. For symmetry reasons, we may also add some traditional Indian and Chinese units. Anyway, this catalog provides the means to convert local to common units.

Conversion		Remarks	Class
dB →pr.	$10^{R_{dB}/10}$	Power ratio. Exactly	Ratio
f athom→m	* 1.8288		Length
fe et→m	* 0.3048	Exactly	Length
flozUK→ml	* 28.41306	$1 \ ml = 1 \ cm^3$	Volume
flozUS→ml	* 29.57353		Volume
g alUK→ <i>l</i>	* 4.54609		Volume
galUS→ l	* 3.785418		Volume
G→°	* 0.9	Exactly	Angle
g→oz	/ 28.34952		Mass
G→rad	* π / 200	Exactly	Angle
g→t r.oz	/ 31.10348		Mass
ha->acres	/ 0.4046873		Area
HP _e →W	* 746	Exactly	Power
inches→cm	* 2.54	Exactly	Length
inHg→Pa	* 3386.389		Pressure
J→Btu	/ 1055.056		Energy
J →cal	/ 4.1868	Exactly	Energy
J⇒kWh	/ 3.6 E 6	Exactly, since 1 h = 3600 s	Energy
k g→lb	/ 0.4535924		Mass
km →AU	/ 1.495979 E 8	Astronomic units	Length
km → <i>l.y.</i>	/ 9.460730 E 12	Light years	Length
km→miles	/ 1.609344	Exactly	Length
km→nmi	/ 1.852	Nautical miles, exactly	Length
km→pc	/ 3.085678 E 16	Parsec	Length
kW h→J	* 3.6E6	Exactly	Energy
Ibf→N	* 4.448222		Force
Ib→kg	* 0.4535924		Mass
<i>l.y.</i> →km	* 9.460730 E 12	Light years	Length
l →cft	/ 28.31685	Cubic feet	Volume

Conversion		Remarks	Class
<i>l</i> →g alUK	/ 4.54609		Volume
l →g alUS	/ 3.785418		Volume
m bar→Pa	* 100	Exactly	Pressure
miles→km	* 1.609344	Exactly	Length
m <i>l</i> →flozUK	/ 28.41306		Volume
m <i>l</i> →flozUS	/ 29.57353		Volume
mm Hg→Pa	* 133.3224	1 torr = 1 mm Hg	Pressure
m→fathom	/ 1.8288		Length
m→feet	/ 0.3048	Exactly	Length
m → yards	/ 0.9144	Exactly	Length
n mi→km	* 1.852	Nautical miles, exactly	Length
N →lbf	/ 4.448222		Force
o z→g	* 28.34952		Mass
P a→atm	/ 1.01325 E 5	Exactly	Pressure
Pa→ inHg	/ 3386.389		Pressure
Pa→mbar	/ 100	Exactly	Pressure
Pa→mmHg	/ 133.3224		Pressure
Pa⇒psi	/ 6894.757		Pressure
Pa→torr	/ 133.3224		Pressure
pc →km	* 3.085678 E 16	Parsec	Length
pr .→dB	10 * lg(R)	Power ratio. Exactly	Ratio
ps i→Pa	* 6894.757		Pressure
PS(hp)→W	* 735.4988		Power
rad→°	* 180 / π	Exactly	Angle
rad→G	* 200 / π	Exactly	Angle
s .tons→t	* 0.9071847	$1 t = 10^3 kg$	Mass
t ons→t	* 1.016047		Mass
to rr→Pa	* 133.3224	1 torr = 1 mm Hg	Pressure
tr .oz→g	* 31.10348	_	Mass

Conversion		Remarks	Class
t→s.tons	/ 0.9071847		Mass
t→tons	/ 1.016047		Mass
W →bhp	/ 745.6999		Power
W→HPe	/ 746	Exactly	Power
W →PS(hp)	* 735.4988		Power
y ards→m	* 0.9144	Exactly	Length

In cases of emergency of a particular type, remember Becquerel equals Hertz, Gray is the unit for deposited or absorbed energy (1Gy = 1J/kg), and Sievert is Gray times a radiation dependant dose conversion factor for the damage caused in human bodies.

In this area also some outdated units may be found in older literature: Pour les ami(e)s de Mme. Curie, $1Ci=3.7\cdot10^{10}\,Bq=3.7\cdot10^{10}\,decays/s$. And for those admiring the very first Nobel laureate in physics, Mr. Röntgen, for finding the x-rays (ruining his hands in these experiments), the charge generated by radiation in matter was measured by the unit $1R=2.58\cdot10^{-4}\,As/kg$. A few decades ago, Rem (i.e. Röntgen equivalent men) was measuring what Sievert does today.

MESSAGES

There are some commands generating messages, also in the dot matrix section of the display. Four of them, DAY, DAYS+, STATUS, and VERS, were introduced above in the <u>paragraph about display</u> already. Others are PROMPT, aVIEW and many more alpha commands, and the test commands as mentioned <u>above</u>.

Also two constants will return a special display when called: NaN and ∞ will show

Furthermore, there are a number of error messages. Depending on error conditions, the following messages will be displayed in the mode(s) listed:

Message	Error Code	Mode(s)	Explanation and Examples
bad date ‱ № Error	2	DECM	Invalid date format or incorrect date in input, e.g. month >12, day >31 etc.
bad di9it *™ Error b	9	Integer	Invalid digit in integer input, e.g. 2 in binary, 9 in octal, or +/- in unsigned mode.
bad mode ***** Error	13	All	Caused by calling an operation in a mode where it is not defined, e.g. SIN in hexadecimal.
domain 300 RPN Error	1	\α	An argument exceeds the domain of the mathematical function called. May be caused by roots or logs of negative numbers (if not preceded by \overline{CPX}), by 0/0, LN(0), Γ (0), TAN(90°) and equivalents,
			ATANH(x) for $ \text{Re}(x) \ge 1$, ACOSH(x) for $\text{Re}(x) < 1$, etc.
invalid BEG 360 RPM PR-RMGELE-	16	\α	Similar to error 1 but a parameter specified in \mathbf{J} or \mathbf{K} is out of supported range for the function called. May appear e.g. if LgNrm is called with $j < 0$.
no such 300 RPN	6	All	Attempt to address an undefined label.

Message	Error Code	Mode(s)	Explanation and Examples
out of range 300 RPN Error	8	All	 A number exceeds the valid range. Caused e.g. by specifying decimals >11, word size >64, negative flag numbers, integers ≥2⁶⁴, hours or degrees >9000, invalid times, denominators ≥9999 etc. A register address exceeds the valid range. May also happen in indirect addressing. An R-operation (e.g. R-COPY) attempts exceeding valid register numbers (0 99).
SLY J X TT RAD STO RPN	7	PRG	Nested use of solve, integrate, sum or product is not allowed.
stack BEC 360 RPM	12	All	STOS or RCLS attempt using registers that would overlap the stack. Will happen with e.g. SSIZE = 8 and STOS 94.
too few so so red d8t8 Po Int5	15	DECM	A statistical calculation was started based on too few data points, e.g. regression or standard deviation for < 2 points.
too lon9 300 RPN	10	All	Keyboard input is too long for the buffer (should never happen, but who knows).
undefined 550 RPN OP-COdE	3	All	An instruction with an undefined op-code occurred (should never happen, but who knows).
word size *** Łoo SMARLL ***	14	Integer, \PRG	Stack or register content is too big for the word size set.
+o 360 RPN	4	\α, \PRG	 Division of a number > 0 (or < 0) by zero. Divergent sum or product or integral.
	5	ia, ii ito	 Positive (or negative) overflow in DECM (see <u>above</u>).
A8 levels RAD STO RPN	11	PRG	Subroutine nesting exceeds 8 levels.

Any key pressed will erase the error message displayed and execute with the stack contents present. Thus, the easiest return to the display shown before the error occurred is pressing a prefix twice.

APPENDIX A: INTERNAL SUPPORT COMMANDS

Some commands are used in internal routines exclusively and are not accessible from the keyboard. They are listed here for sake of a complete documentation. Use at your own risk:

Name	Purpose and remarks			
BACK <u>n</u>	Jumps n program steps backwards (1 $\leq n \leq$ 99). So e.g. BACK 01 goes to the previous step. Reaching step 000 stops program execution. The BACK instruction $\underline{\text{must not}}$ be the last step of the program.			
ERR <u>n</u>	Raises the error specified. See <u>above</u> for the respective error codes.			
iC <u>n</u>	Raises the error specified. See above for the respective error codes.	low) point k10 and k20 and k18 and k18 and k16 and k16 and k14 and k12 and k12 and k19 and k19 and k17 and k17 and k15 and k15 and k15 and k15 and k15 and k11 and k11 and k13 and k11 and k11 and k11 and k11 and k13 and k11 and k11 and k11 and k11 and k11 and k13 and k11 and k12 and k13 and k11 and k11 and k12 and k13 and k14 and k16 and k19 and k1		

Name	Purpose and remarks		
RTN+1	Returns control to the calling routine like RTN does, but moves the program pointer to the second line following the most recent XEQ instruction encountered. If there is no matching XEQ, program execution halts.		
SKIP <u>n</u>	Skips n program steps forwards (1 $\leq n \leq$ 99). So e.g. SKIP 02 skips over the next two steps, going e.g. from step 123 to step 126. If the skip would land beyond the end of <u>occupied</u> program memory, the same will happen as if a RTN had been encountered.		
	The two solver commands described below may use some hidden registers and flags. The start points of the respective register and flag blocks are passed as one argument <i>n</i> . Registers: n+0 n+1: first two estimates a and b for the root n+2: third estimate c		
	 n+3: function value at first estimate f(a) n+4: function value at second estimate f(b) 		
	Flags: n+0 n+7: an eight bit iteration counter n+8: "bracket flag" – true if we've got an interval with f(a) * f(b) < 0 n+9: true if all function evaluations have been constant so far		
SLVI <u>n</u>	Initializes the solver. SLVI clears the iteration counter, takes a and b and calculates f(a) and f(b) , sets the last 2 flags accordingly, and produces a guess c . There is no stack interaction.		
SLVS <u>n</u>	Solver step. Updates the internal solver state based on the last function evaluation. In particular, SLVS takes a , b , c , f(a) , and f(b) from the register block plus f(c) from X and updates the register values so that c and f(c) replace one of a and f(a) or b and f(b) . It also produces a new guess c and returns zero in X if the solving should continue and non-zero if not. Otherwise, the stack isn't altered.		
	The built in solver loop looks like this in principle, assuming $n = 0$:		
	SLVI ; calculate f(a) and f(b) and initialize the registers and flags		
	LBL 00 RCL 02 ; recall c		
	XEQUSR ; call the user's subroutine calculating f(c)		
	x≈ 0?; test if the solution has converged GTO 01; converged, so exit		
	SLVS ; update estimates		
	x= 0?; should we continue? GTO 00; loop back again		
	LBL 01 RCL 02 ; best guess so far RTN		
	The actual solver is fairly complex. A combination of quadratic interpolation and a guarded secant method is used.		
SPEC?	Tests if x is special (i.e. NaN or infinite).		
XEQUSR	Calls a user subroutine (used by SLV, \int , Π and Σ). The subroutine is defined by the argument to the initial command (either numeric of alpha label).		

APPENDIX B: CANDIDATES FOR FURTHER FUNCTIONS

If space allows, the following functions may be implemented easily since they are coded already. None of these are counting the catalog and function table overheads. Two bytes for a catalog entry (one for each catalog it is in) and 12-20 bytes for a function table entry (but only one of these), i.e. not terribly significant. These are all moderately useful functions.

Function name and remarks	Size	Domain
Bessel functions of first and second kinds:	4470 B	R, C
Digamma function (ψ , needed for Bessel functions of second kind of integer order)	1384 B	R, C
Fused multiply and add The real version can be replaced by complex multiply. x+y*z can be done via (y, x) * (z, -1) at a pinch.	96 B	Z, R
Jacobi elliptic functions S _n , C _n & D _n	1780 B	R, C
x!!	288 B	R, C

PRIME? also includes overflow resistant code for $(a * b) \mod c$ and $(a * b) \mod c$ which could also be exposed if required.

APPENDIX C: RELEASE NOTES

	Date	Release notes
1	9.12.08	Start
1.1	15.12.08	Added the table of indicators; added NAND, NOR, XNOR, RCLWS, STOWS, //, N, SERR, SIGMA, < and >; deleted HR, INPUT, 2 flag commands, and 2 conversions; extended explanations for addressing and COMPLEX &; put XOR on the keyboard; corrected errors.
1.2	4.1.09	Added ASRN, CBC?, CBS?, CCB, SCB, FLOAT, MIRROR, SLN, SRN, >BIN, >DEC, >HEX, >OCT, BETA, D>R, DATE, DDAYS, D.MY, M.DY, Y.MD, CEIL, FLOOR, DSZ, ISZ, D>R, R>D, EMGAM, GSB, LNBETA, LNGAMMA, MAX, MIN, NOP, REAL, RJ, W and WINV, ZETA, %+ and %-; renamed the top left keys B, C, and D, and bottom left EXIT.
1.3	17.1.09	Added AIP, ALENG, ARCL, AROT, ASHF, ASTO, ATOX, XTOA, AVIEW, CLA, PROMPT (all taken from 42S), CAPP, FC?C, FS?C, SGMNT, and the# commands; renamed NBITS to BITS and STOWS to WSIZE; specified the bit commands closer; deleted the 4 carry bit operations.
1.4	10.2.09	Added CONST and a table of constants provided, D>J and J>D, LEAP?, %T, RCL and STO ▲ and ▼, and 2 forgotten statistics registers; deleted CHS, EMGAM, GSB, REAL and ZETA; purged and renamed the bit operations; renamed many commands.
1.5	5.3.09	Added RNDINT, CONV and its table, a memory table, the description of XEQ B, C, D to the operation index, and a and g_e to the table of constants; put CLSTK on a key, moved CL Σ and FILL, changed the % and log labels on the keyboard, put CLALL in X.FCN; checked and cleaned alpha mode keyboard and added a temporary alpha keyboard; rearranged the alphabet to put Greek after Latin, symbols after Greek consistently; separated the input and non-programmable commands; cleaned the addressing tables.
1.6	12.8.09	Added BASE, DAYS+, DROP, DROPY, E3OFF, E3ON, FC?F, FC?S, FIB, FS?F, FS?S, GCD, LCM, SETDAT, SETTIM, SET24, SINC, TIME, VERS, α DAY, α MONTH, α RC#; α S, as well as F-, t-, and α S-distributions and their inverses; reassigned DATE, modified DENMAX, FLOAT, α ROT, and α SHIFT; deleted BASE arithmetic, BIN, DEC, HEX, and OCT; updated the alpha keyboards; added flags in the memory table; included indirect addressing for comparisons; added a paragraph about the display; updated the table of indicators; corrected errors.
1.7	9.9.09	Added P.FCN and STAT catalogs, 4 more conversions, 3 more flags, Greek character access, CLFLAG, DECOMP, DENANY, DENFAC, DENFIX, I β , IF, α DATE, α RL, α RR, α SL, α SR, α TIME, 12h, 24h, fraction mode limits, normal distribution and its inverse for arbitrary μ and σ , and Boolean operations working within FLOAT; deleted α ROT, α SHIFT, the timer, and forced radians after inverse hyperbolics; renamed WINV to W $^{-1}$, and beta and gamma commands to Greek; added tables of catalog contents; modified label addressing; relabeled PRGM to P/R and PAUSE to PSE; swapped SHOW and PSE as well as Δ % and % on the keyboard; relabeled Q; corrected CEIL and FLOOR; updated X.FCN and alpha commands; updated the virtual alpha keyboard.
1.8	29.10.09	Added R-CLR, R-COPY, R-SORT, R-SWAP, RCLM, STOM, alpha catalogs, 1 more constant and some more conversions, a table of error messages, as well as the binomial, Poisson, geometric, Weibull and exponential distributions and their inverses; renamed some commands; put $\sqrt{}$ instead of π on hotkey D.
1.9	14.12.09	Added two complex comparisons; swapped and changed labels in the top three rows of keys, dropped CLST; completed function descriptions in the index.
1.10	19.1.10	Added IMPFRC, PROFRC, ^C ENTER, αBEG, αEND, and an addressing table for items in catalogs; updated temporary alpha mode, display and indicators, RCLM and STOM, alpha-commands and the message table; renamed the exponential distribution; wrote the introduction.
1.11	21.9.10	Changed keyboard layout to bring Π and Σ to the front, relabeled binary log, swapped the locations of π , CLPR, and STATUS, as well as SF and FS?; created a menu TEST for the comparisons removed and the other programmable tests from P.FCN; added %MG, %+MG, %MRR, RESET, SSIZE4, SSIZE8, SSIZE?, $^{\text{C}}$ DROP, $^{\text{C}}$ FILL, $^{\text{C}}$ R\$\(\text{\text{,}}\), $^{\text{C}}$ R\$\(\text{\text{,}}\), registers J and K, a table of contents and tables for stack mechanics and addressing in complex operations; updated memory and real number addressing tables, DECOMP, α OFF, α ON, Π , and Σ ; renamed ROUNDI, WSIZE?, β (x,y), Γ (x) and the constant p0; deleted DROPY (use x\$\text{\text{\text{\text{y}}}\), DROP instead), α APP, α BEG, α END, and the "too long error" message; deleted Josephson and von Klitzing constants (they are just the inverses of other constants included in CONST already); brought more symbols on the alpha keyboard.
1.12	22.12.10	Modified keyboard layout; added catalogs MODE and PROB; changed mode word, catalog contents and handling (XEQ instead of ENTER), as well as some non-programmable info commands; expanded IMPFRC and PROFRC; added a paragraph about the fonts provided and explained alpha catalogs in detail; added PRIME? and some conversions; deleted FRACT, OFF and ON.
1.13	3.2.11	Modified keyboard layout; modified αTIME, radix setting, H.MS+ and H.MS-; added EVEN?, FP?, INT?, LZOFF, LZON, ODD?, RCLS, STOS, returned FRACT; added and renamed some conversions; updated the paragraph about display; added appendices A and B; baptized the device WP 34S.

Page 72 of 73

1.14	18.3.11	Added DEC and INC, renamed FLOAT to DECM; redefined α TIME and H.MS mode; updated appendix A; documented the annunciators BEG and = as well as underflows and overflows in H.MS; corrected some errors showing up with the emulator.
1.15	21.3.11	Modified FIX, removed ALL from MODE, updated CONV.
1.16	27.3.11	Added LBL?, f'(x), and f"(x); modified PSE; upgraded catalog searching.
1.17	ff	Modified keyboard layout for adding a fourth hotkey; added AGM, BATT, B_n , B_n^* , Cauch, Lgnrm, Logis and their inverses, all the pdf, COV, CUBE, CUBERT, DEG \rightarrow , ENGOVR, erfc, GRAD \rightarrow , GTO . hotkey, JG1582, JG1752, RAD \rightarrow , SCIOVR, SERRW, SLVQ, sw, sxy, TICKS, TVM, xg, ϵ , ϵ _m , ϵ _p , ζ , σ w, (-1) ^X , the polynomials, four angular conversions, four Planck constants, and three messages; renamed most cdf; changed \rightarrow DEG, \rightarrow RAD, \rightarrow GRAD to leaving angular mode as set; moved degrees to radians conversions to CONV; removed ^C CLx, H.MS mode, %+ and %-; corrected errors.

