

MSML610: Advanced Machine Learning

Introduction

Instructor: GP Saggese, PhD - gsaggese@umd.edu

References: - AIMA Chap 1

A map of machine learning

- A map of machine learning
- What is Artificial Intelligence

A map of machine learning

ML theory

VC (Vapnik-Chervonenkis) Theory

 Measures model capacity to classify data and generalize based on hypothesis space complexity

Bias-Variance Decomposition

- Prediction error consists of:
 - Bias: Error from simplistic model assumptions, causing underfitting
 - Variance: Error due to sensitivity to training data fluctuations, causing overfitting

Computation Complexity

- Balances model complexity and fit
- Related to information theory and compression
- E.g., Minimum Description Length (MDL) measures computational complexity via efficient model and data description

Bayesian Approach

- Treats ML as probability
- Combines prior knowledge with observed data to update belief about a model
- Problem in ML Theory: Assumptions may not align with practical problems

ML paradigms

Machine learning paradigms are structured approaches to learning problems

Supervised learning

- The dataset includes inputs with corresponding outputs
- Develop an input-output relationship

Unsupervised learning

- The data is unlabeled
- Discover structure within the data
- E.g., anomaly detection, clustering

Reinforcement learning

- The correct answer isn't immediately available
- Evaluate actions based on final outcomes

Active learning

- Not all examples are available initially
- Request outputs for specific inputs

Online learning

ML models

- Linear models
- Generalized linear models
 - E.g., logistic, Poisson regression
- Neural networks
- SVM
- Nearest neighbors
 - E.g., k-means clustering, KNN
- Gaussian processes
- Graphical models
 - Model joint distributions with graphs
 - E.g., hidden Markov models (HMM), Kalman filters, Bayesian networks

ML techniques

- Input Processing
 - Data Cleaning
 - Dimensionality Reduction
 - Feature Engineering
- Model Building
 - Models
 - Learning Algorithms
- Performance Evaluation
 - Cross-Validation
 - Bias/Variance Curves
 - Learning Curves
- Regularization
- Aggregation
 - Boosting
 - Bagging
 - Stacking

Full map of the class

• Syllabus?

What is Artificial Intelligence

- · A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of AI
 - · Brief history of AI
 - Al state of the art
 - Risks and benefits of AI

AI

- · A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of AI
 - Brief history of AI
 - Al state of the art
 - · Risks and benefits of AI

Human intelligence

- We call ourselves "homo sapiens" because intelligence sets us apart from other animals
- For thousands of years, we've tried to understand how we think
 - Our brain is a small mass of matter
 - How can our brain perceive, understand, predict, and manipulate a world far more complicated than itself?

Artificial intelligence

- The term "Artificial Intelligence" was coined in 1956
- Al aims to:
 - Understand human intelligence
 - Create intelligent entities
- Al is a technology
 - Is universal and applicable to any human activity and task
 - Will have an impact greater than any previous historical event
 - Currently generates trillions of dollars annually in revenue
 - Presents many unresolved problems, while major concepts in physics might already be established

Al formal definition

- Al is defined around two axes:
 - Thinking (thought process, reasoning) vs. Acting (behavior)
 - Human (human performance) vs. Rational (ideal performance)
- This leads to four possible definitions of AI as a machine that can:
 - 1. Think humanly
 - 2. Think rationally
 - 3. Act humanly
 - 4. Act rationally

1) Al as thinking humanly

- We need to determine how humans think
- Pros
 - Once we have a precise theory of the human mind, we can express it as a computer program
- Cons
 - We don't know exactly how the human mind works
 - Definition is anthropocentric

2) Al as thinking rationally

- Apply rules of "correct thinking": given correct premises, yield correct conclusions
- Logic studies the "laws of thought"
 - · Formalizes statements about objects and their relations
- Automatic Theorem Proving
 - Programs solve problems in logical notation
 - They run indefinitely if no solution exists (related to the halting problem)

Thinking rationally: cons

- 1. Difficulty in Formalizing Informal Knowledge
 - Example: "A handshake occurs when two people extend, grip, shake hands, then release."
 - Formal logic representation:

$$\exists x, y \ (\mathsf{Person}(x) \land \mathsf{Person}(y) \land x \neq y \land \\ \mathsf{Hand}(x, h_x) \land \mathsf{Hand}(y, h_y) \land \\ \mathsf{MoveToward}(h_x, h_y) \land \mathsf{Contact}(h_x, h_y) \land \\ \mathsf{Shake}(h_x, h_y))$$

- 2. Probabilistic Nature of Knowledge
 - Example in medicine: "Fever, cough, and fatigue could indicate flu, COVID-19, or another illness."
- 3. Scalability Challenges
 - Large problems may need heuristics for practical solutions
- 4. Beyond Rational Thinking for Intelligent Behavior
 - Importance of agent interaction with the world
 - Problem of the "body"

3) Al as acting humanly

- Design AI that can act like humans
 - Agent is something that perceives and acts to reach a goal
- Turing test
 - "A computer passes the Turing test if a human cannot tell whether the answers to questions came from a person or a computer"
 - Passing the Turing test requires:
 - 1. Natural language processing to communicate in English
 - 2. Knowledge representation to store what it knows
 - 3. Automated reasoning to use stored knowledge to answer questions
 - 4. Machine learning to detect and extrapolate patterns
 - Computer vision and speech recognition to perceive objects and understand human talking to them
 - 6. Robotics to manipulate objects and move around

Turing test: Pros and Cons

Pros

- It is an operational definition of intelligence
- Sidestep the philosophical vagueness of the question "can a machine think?"

Cons

- Anthropomorphic criteria that defines intelligence in terms of humans
 - There can be multiple forms of intelligence that are not human
 - Intelligence in terms of Turing test
 - Is about designing intelligence that imitates human intelligence
 - Is about fooling humans of being a human
 - E.g., aeronautical engineering:
 - Is about wind tunnels and aerodynamics
 - Is not about designing flying machines that imitate exactly birds
 - Is not about fooling other birds of being a bird

4) Al as acting rationally

- Rational agents do the "right thing" given what they know
- Computer agents that act rationally should:
 - 1. Operate autonomously
 - 2. Perceive environment
 - 3. Persist over a prolonged time period
 - 4. Adapt to change
 - 5. Create and pursue goals

Acting rationally as ultimate goal of Al

- Which definition of AI to use?
 - Acting vs. Thinking
 - · Rational vs. Human
- Acting > Thinking
 - Acting rationally is broader than just thinking rationally
- Rational > Human
 - · Rationality can be mathematically defined
 - Human behavior is shaped by evolutionary conditions
- Al focuses on "agents acting rationally," meaning "agents that do the right thing" based on available knowledge
 - E.g., you leave the house and a meteorite strikes you
 - Did you act rationally?
 - E.g., you cross the street and a car knocks you over
 - Was crossing the street rational? It depends!

Goals of a rational agent

- A rational agent aims for:
 - The best outcome in a deterministic setup
 - The best expected outcome under uncertainty
- "Best" is determined by the objective function:
 - E.g., cost function, sum of rewards, loss function, utility
- Acting rationally: problems
 - Sometimes no provably correct action exists
 - Yet, an action must be taken
 - Perfect rationality (taking the optimal action) is not feasible in complex environments due to:
 - · Cost of acquiring all data
 - Computational demands
 - Limited rationality = acting appropriately when lacking time for all computations

ML

- A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of AI
 - · Brief history of AI
 - Al state of the art
 - · Risks and benefits of AI

What machine learning really is

- Machines don't learn like humans
 - Artificial intelligence differs from human intelligence
- A learning machine finds a mathematical formula that, when applied to inputs, produces (mostly) correct outputs
 - The formula is "learned" from training data
 - ullet Training data should statistically represent general inputs o outputs relationship
- The main problem with current ML / AI
 - Human and animal intelligence is more robust than ML/AI
 - Slight distortion of inputs can cause ML models to fail
 - Example:
 - A machine learns to play a video game
 - You slightly rotate the screen
 - A human can still play with the rotated screen
 - The machine may not play unless trained for screen rotation

Machine learning: definitions

- "Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed" Arthur Samuel (1959)
- "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if P(T) improves with experience E" Tom Mitchell (1998)
- Machine learning is the science of building machines capable of doing useful things without being explicitly programmed to do so
 - E.g. a computer learn to play checkers by playing against itself, memorizing which positions lead to winning a game

The 3 machine learning assumptions

- Machine learning involves solving a practical problem by:
 - Gathering a dataset
 - Building a statistical model from the dataset algorithmically
- The three assumptions of machine learning
 - A pattern exists
 - The pattern cannot be precisely defined mathematically
 - Data is available
- Which ML assumption is really essential?
 - A pattern exists
 - If there is no pattern, we can try learning, measure the effectiveness of learning, conclude that it does not work
 - We cannot pin down the pattern mathematically
 - If a solution is achievable in one step or can be directly programmed, machine learning is not recommended, but it may still be applicable
 - We have data
 - Without data, no progress can be made
 - Data is crucial and is of utmost importance

ML adages

- "An explanation of the data should be as simple as possible, but not simpler" (Einstein)
- "The simplest model that fits the data is also the most plausible" (Occam's razor)
- "Garbage in, garbage out" (Fuechse, 1957)
- "All models are wrong, but some are useful" (George E. P. Box, 1976)
- "If you torture the data long enough it will confess whatever you want" (Coase, 1982)
- "Data is the new oil" (Humby, 2006)
- "More data beats clever algorithms" (Norvig, ~2006)
- "The unreasonable effectiveness of data" (Halevy, Norvig, Pereira, 2009)

Al vs ML vs Deep-learning

- · A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - Al vs ML vs Deep-learning
 - The foundation of AI
 - · Brief history of AI
 - Al state of the art
 - · Risks and benefits of AI

Al vs ML vs Deep-learning

- Al: Machines programmed to think, reason, learn, and act in a rational way
- ML: Machines capable of performing useful tasks without being explicitly programmed
 - Most advances in AI are driven by ML, such as:
 - Natural language processing
 - Computer vision
 - Speech recognition
- Al without ML:
 - Example: Rule-based systems (e.g., IBM Deep Blue playing chess)
- Deep Learning (DL): A subset of ML using neural networks with multiple layers to perform complex tasks
 - Example: Autonomous vehicles

*

venn

- A [Artificial Intelligence]
- R [Machine Learning]

The foundation of AI

- A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of Al
 - · Brief history of AI
 - Al state of the art
 - · Risks and benefits of AI

Al relates to many other disciplines

Al and Philosophy (1/2)

Can formal rules be used to draw valid conclusions?

- Reasoning
 - Aristotle formulated laws governing the rational mind
 - E.g., syllogism, deduction (400 BC)
 - Machines were built for arithmetic operations
 - E.g., Pascaline by Blaise Pascal (1640)
 - Logic studies rules of proper reasoning
- Rationalism = use reasoning to understand the world

How does the mind arise from a physical brain?

- Dualism
 - Nature follows physical laws
 - Part of the human mind ("the soul") is exempt from physical laws
- Materialism
 - The mind is a physical system, following the laws of physics
 - Where is free will?
 - Free will is the perception of available choices

Al and Philosophy (2/2)

What does knowledge come from?

Empiricism

- Knowledge via senses
- Example: Observing a tree to know it is green

Induction

- General rules from associations
- Example: Seeing many swans are white, inferring all swans are white

Logical Positivism

- Knowledge as logical theories linked to sensory observations
- Example: Scientific hypotheses connected to experimental data

How does knowledge lead to action?

Utilitarianism

- Measures "utility" linking knowledge to action
- Actions justified by logic connecting goals and outcomes

Consequentialism

- · Right or wrong determined by action's expected outcomes
- E.g., "If you kill, you will go to jail"

Deontological ethics

Opposes consequentialism

Al and Cognitive Psychology

How do humans think and act?

- Cognitive Psychology
 - Brain as an information-processing device
 - Stimuli translated into internal representation
 - Representation manipulated by cognitive processes to derive new internal representations ("beliefs")
 - Representations turned into actions ("goals")
- Cognitive Science
 - Use computer models to address memory, language, and logic thinking
- Human-Computer Interaction (HCI)
 - From artificial intelligence (AI) to intelligence augmentation (IA)
 - Computers augment human abilities

Al and Mathematics

What are the formal rules to draw valid conclusions?

Formal Logic

- Boole established logical deduction rules (1850)
- Frege expanded Boole's logic to include objects and relations, creating first-order logic (1879)

Limits to Deduction

- Some statements are "undecidable."
- Godel's incompleteness theorem (1931): True statements exist that cannot be proved in any formal theory

How do we reason with uncertain information?

Probability

- Mathematics of uncertainty
- Key contributors: Cardano, Pascal, Bernoulli, Bayes (1500-1700)

Statistics

- Combines data with probability
- Key areas: experiment design, data analysis, hypothesis testing, asymptotics

Al and Computer Science

What can be computed?

- Algorithm
 - A procedure to solve problems
 - Example: Euclid's algorithm for computing GCD
- Limits to Computation
 - Turing machine (1936): Can compute any computable function
 - Some functions are non-computable, e.g., the halting problem—deciding if a program terminates
- Tractability
 - A problem is intractable if solving time grows exponentially with problem size
 - Complexity classes: Polynomial vs. exponential complexity (e.g., NP-problems)

Al and Economics (1/2)

How to make decisions to maximize payoff according to our preferences?

Economies

- Agents maximize economic well-being (utility)
- Studies desires and preferences
- "Large" vs "small economies"

Decision theory

- · Making decisions under uncertainty
- Probability theory + utility theory
- Study choices for preferred outcomes
- Examples: Investment choices, policy decisions

** How to make decisions when the payoffs are result of several actions?**

Operations Research

- Make rational decisions with payoffs from a sequence of actions
 - E.g., Markov Decision Processes
- Bellman, 1957

Satisficing

- Decisions that are good enough
- Closer to human behavior
- Example: Choosing a restaurant that meets basic criteria rather than finding the perfect one

Al and Economics (2/2)

How to act when multiple agents with different goals are present?

Large Economies

- Agents ignore other agents' actions
- Many agents with no mutual impact
- Example: National economy where individual actions don't affect overall market

Small Economies

- One player's actions influence others' utility
- Example: Local market where one seller's pricing affects competitors

Game Theory

- Von Neumann, 1944
- Small economies resemble a "game"
- Rational agents might need randomized strategies
- Example: Rock-paper-scissors where randomization prevents predictability

Al and Linguistics

How can we create systems that understand natural language?

- Computational linguistics (aka NLP) studies sentence structure and meaning
 - Structure & Meaning are central to understanding language
 - NLP Applications:
 - Machine translation (e.g., Google Translate)
 - · Sentiment analysis in social media
 - Automated customer support chatbots

How does language relate to thought?

- Knowledge representation studies how to represent knowledge in a form that a computer can reason about
- E.g., first order knowledge, knowledge graphs

Al and Neuroscience

Brain

- Parts of the brain handle specific cognitive functions
- Information processing occurs in the cerebral cortex (outer brain layer)
- E.g., injury to the frontal lobe may impair decision-making abilities

Anatomy of the Brain

- Composed of neurons (~100 billion)
 - Each neuron connects with 10-100k others via synapses
 - Axons facilitate long-range neuron connections
- Signals propagate through electrochemical reactions
- Short-term pathways support long-term brain connections, linked to learning
- We can record and stimulate individual neuron activity

Memory

- No theory on individual memory storage
- Current theory: Memories are reconstructed

The brain causes the mind

- Truly amazing conclusion: a collection of simple cells can lead to thought and consciousness
 - E.g., neurons collectively create complex processes
 - Complexity of supercomputers is comparable or superior to the brain
 - Unknown how to achieve the brain's intelligence level
- Brain-Machine Interface: the brain adjusts to interface with devices
 - E.g., the brain learns to use prosthetics as a limb
- Al Singularity
 - A (hypothetical) future point when artificial intelligence surpasses human intelligence
 - Al systems could improve themselves autonomously, leading to rapid, exponential growth in capabilities
 - Recursive self-improvement leads to superintelligence
 - Potential for profound societal impact
 - Control problem / value alignment: ensuring superintelligent Al aligns with human values
 - Economic and social disruption due to automation
 - Hard to predict

Al and Computer Engineering

How can we build an efficient computer?

- Electronic computers
 - Built during World War II
- Moore's Law
 - Performance doubled every 18 months until 2005
 - Power and scaling issues shifted focus to core multiplication over clock speed
- Hardware for AI
 - GPUs
 - TPUs
 - Wafer-scale engines
- Current Trends
 - Massive parallelism (like brain function)
 - Computing power doubling every 3 months
 - GPUs / TPUs used in deep learning
 - High precision (e.g., 64b) often unnecessary
- Quantum Computing
 - Potential for significant acceleration in key computations
 - E.g., Shor's algorithm for factorization

Al and Control theory and Cybernetics

How can artifacts operate under their own control?

- Control theory
 - Study self-regulating feedback control systems
 - E.g., a water regulator that maintains a constant water flow
 - · E.g., steam engine, thermostat
 - Mechanisms to minimize error between current and goal states
- Control theory vs AI
 - Similar goals, but different techniques to achieve them
 - Control theory:
 - Calculus
 - Matrix
 - Stochastic optimal control
 - AI:
 - Logical inference
 - Symbolic planning
 - Computation

Brief history of AI

- · A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of AI
 - Brief history of AI
 - Al state of the art
 - · Risks and benefits of AI

The beginning (1943-1956)

- McCullock-Pitts artificial neuron
 - Proposed a model of artificial neuron (1943), based on:
 - Basic physiology of the brain
 - Propositional logic
 - Theory of computation
 - Any computable function can be computed by a network of connected neurons
 - Neuron is on or off depending on the stimulation from neighboring neurons
 - Logical AND, OR, NOT can be implemented with simple networks of neurons
- Alan Turing, 1947
 - Introduced Turing test, machine learning, reinforcement learning
 - To create human-level AI:
 - Develop learning algorithms
 - Teach the machine like a child
- Birth of AI
 - McCarthy organized in US the first workshop about AI (1956)
 - Newell and Simon (1956)
 - The Logic Theorist
 - Programs able to "think non-numerically" and prove theorems

Early enthusiasm, great expectations (1952-1969)

- Early years of AI were full of successes
- Until then computers could only do arithmetics
- "A machine can never do X" where X = games, puzzles, mathematics, IQ tests
 - Al researchers demonstrated that machines could do one X after another
- General Problem Server, successor of Logic Theorist
 - Imitate human problem-solving
 - Consider sub-goals and possible actions
- Program that learned to play checkers and became better than its creator
 - Use reinforcement learning by learning from victories and mistakes in gameplay
- Lisp (1958)
 - High-level language that was used for next 30 years in AI
- Marvin Minsky (1959)
 - · Built first neural network
 - 3000 vacuum tubes to implement 40 neurons
- MIT and Stanford
 - Minsky at MIT
 - Focus on neural network
 - McCarthy at Stanford
 - Focus on representation, logic

A dose of reality (1966-1973)

- Al researchers were confident about Al's upcoming successes
- In reality, Al didn't succeed on real problems due to several reasons:
 - Al solutions were initially based on human problem-solving methods
 - Difficulty in handling "combinatorial explosion" from small to real-world problems:
 - E.g., theorem proving can handle small problems with brute force, but doesn't scale for larger problems
 - E.g., genetic programming suggested random small mutations could generate programs for any task, but this demands enormous CPU power
 - The neural network approach required algorithms (e.g., backpropagation), compute power, and data to work effectively

Expert systems (1969-1979)

- Weak AI
 - In the first wave of AI research, the goal was a general-purpose search mechanism trying to string elementary reasoning steps to find complete solution
 - These "weak" methods are general and don't scale up to large problems
 - ullet The solution is to add domain knowledge o expert systems
- Expert systems
 - Aka "knowledge-based systems"
 - Add domain knowledge in the form of rules
 - E.g., Prolog
- Al became an industry (1980-)
 - Every major US corporation was trying to adopt expert systems

(First) Al winter (1980)

• Al overconfidence/hype didn't deliver

• Reasons:

- Building/maintaining expert systems is difficult
- Reasoning methods ignore uncertainty
- Systems can't learn from experience
- E.g., expert systems in medical diagnosis struggle with complex, variable patient data
- Early Al chess systems couldn't adapt to new strategies without manual updates

Return of neural networks (1986-)

- Mid-1980s: Researchers discovered back-propagation algorithm
 - Developed in early 1960s
 - Example: Neural networks learning from data
- Connectionist models vs. Symbolic models
 - Connectionist: Neural networks
 - Example: Recognizing handwritten digits
 - Symbolic: General Problem Solver
 - Example: Solving logical puzzles with explicit rules
- Why connectionist models
 - Many concepts are not well-defined using symbolic axioms
 - Connectionist approach forms fluid internal concepts
 - Represents real-world complexity better
 - Neural networks learn from examples
 - Adjust parameters for improved predictions
 - E.g.,
 - Image recognition: Neural networks identify objects by learning from labeled images
 - Language models: Predict next words by learning from text data

Probabilistic reasoning and ML (1987-)

Al and Scientific Method

- Rigorous methods to test performance
- E.g., speech recognition, handwritten character recognition

Benchmarks for Progress

- Examples:
 - MNIST: Handwritten digit recognition
 - ImageNet: Image object recognition
 - SAT Competitions: Boolean satisfiability solvers

Al Shifts

- From Boolean logic to probability
- From hand-coded rules to machine learning
- From a-priori reasoning to experimental results

Progress in speech recognition

- 1970s: Various architectures and approaches were attempted
 - Rule-based systems with limited robustness
 - Cons: Ad-hoc, fragile
- 1980s: Hidden Markov Models (HMMs) became dominant
 - Pros: Strong theoretical foundation
 - Methods: Effective learning techniques
 - Data: Trained on large speech corpora
 - No claim humans use HMMs for speech recognition

Bayesian networks

- In 1988 Judea Pearl linked Al with:
 - Probability
 - Decision theory
 - Control theory
- Bayesian networks:
 - Efficiently represent uncertainty
 - Provide rigorous reasoning
 - Enable practical reasoning
 - Handle uncertainty
- E.g.,
 - Diagnosing diseases based on symptoms
 - Predictive text input in smartphones
 - Fraud detection in banking

Reinforcement learning

- 1988: Sutton worked on reinforcement learning and Markov Decision Processes (MDPs)
 - Reinforcement Learning (RL) involves agents learning by interacting with an environment
 - MDPs provide a mathematical framework for modeling decision-making
- E.g.,
 - Reinforcement Learning: A robot learning to navigate a maze by receiving rewards for successful paths
 - MDPs: A game strategy modeled where each move influences the outcome with certain probabilities

Reunification

- Reunification of AI with:
 - Data
 - Statistical modeling
 - Optimization
 - Machine learning
- Many subfields of AI were also re-unified
 - Computer vision
 - Robotics
 - Speech recognition
 - Multi-agent systems
 - NLP

Big data (2001-present)

- For 60 years, AI focused on algorithms and models
- For some problems, data availability matters more than algorithms, e.g.,
 - Trillions of English words
 - Billions of web images
 - Billions of speech and video hours
 - Social network data
 - Clickstream data
- Algorithms leverage large datasets
- In 2011, IBM's Watson beat human Jeopardy! champions
 - Shifted public's view of AI

Deep learning (2011-present)

- Deep Learning is ML models using multiple layers of computing elements
 - Ideas were already known in 1970s
 - Success in handwritten digit recognition in 1990s
- In 2011, DL took off
 - Surge of interest in Al among researchers, students, companies, investors, government, and the public
 - In 2012, a DL system showed dramatic improvement in the ImageNet competition
 - Previous systems used handcrafted features
 - Today, DL has exceeded human performance in several vision and speech recognition tasks
- DL needs to run on specialized hardware (e.g., GPU, TPU, FGPA) to perform highly parallel tensor operations
- General Artificial Intelligence
 - Universal algorithm for learning and acting, instead of specialized tasks (e.g., driving a car, playing chess, recognizing speech)

Al state of the art

- A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of AI
 - · Brief history of AI
 - Al state of the art
 - · Risks and benefits of AI

Progress in AI research

- Al papers increased 20x (2010-2019)
 - From 1,000 in 2010 to 20,000 in 2019
- Student enrollment in AI and CS increased 5x
 - From 10,000 in 2010 to 50,000 in 2019
- NeurIPS attendance increased 8x
 - From 1,000 attendees to 8,000
- Al startups increased 20x
 - From 100 to 2,000 startups
- Training times dropped 100x in 2 years
 - Al computing power doubles every 3 months

What can AI do today? (1/2)

- Robotic vehicles
 - Waymo passed 10 million miles without serious accident
- Legged locomotion
 - BigDog recovers on ice
 - Atlas walks on uneven terrain, jumps on boxes, backflips
- Autonomous planning and scheduling
 - Space probes, Mars rovers
- Machine translation
 - Translates 100 languages with human-level performance
- Speech recognition
 - Real-time speech-to-speech with human-level performance
 - Al assistants
- Recommendations
 - ML recommends based on past experiences
 - Spam filtering 99.9% accuracy
 - E.g., Amazon, Facebook, Netflix, Spotify, YouTube

What can AI do today? (2/2)

Game playing

- 1997 Deep Blue defeated Kasparov
- 2017 Watson beat Jeopardy! champion
- 2017 AlphaGo beat Go champion (expected 100 years to beat humans in Go)
- 2018 AlphaZero super-human in Go, chess with only rules, self-play
- Videogames: Dota2, StarCraft, Quake

Image understanding

Object recognition, Image captioning

Medicine

- Al equivalent to health care professionals
- When will AI systems achieve human-level performance across tasks?
 - Average of expert prediction is 2099
 - Papers have shown that predictions of experts are no better than amateurs
 - Unclear if need new breakthroughs or refinements on current approaches

Risks and benefits of Al

- · A map of machine learning
- What is Artificial Intelligence
 - AI
 - ML
 - AI vs ML vs Deep-learning
 - The foundation of AI
 - Brief history of AI
 - Al state of the art
 - Risks and benefits of AI

Civilization and AI

- Our civilization is the product of human intelligence
 - Greater machine intelligence leads to higher ambitions for our civilization
 - "First solve AI, then use AI to solve everything else"

Benefits

- Free humanity from menial work
- Increase the production of goods and services
- Expand human cognition
- Accelerate scientific research, e.g., cures for diseases, solutions for climate change, resource shortages)

Risks 1/2

Lethal autonomous weapons

- Locate, select, eliminate human targets without intervention
- Scalability: deploy a large number of weapons

Surveillance and persuasion

- AI (speech recognition, computer vision, natural language understanding) for mass surveillance
- Tailoring information flows through social media to modify behavior

Biased decision making

- Misuse of ML can result in biased decisions due to societal bias
- E.g., parole evaluations, loan applications

Risks 2/2

Impact on employment

- Machines can eliminate jobs
- Rebuttal
 - Machines enhance human productivity ->
 - Companies become more profitable ->
 - Higher wages
- Counter-rebuttal
 - · Wealth shifts from labor to capital, increasing inequality
- Counter-counter-rebuttal
 - Past tech advances (e.g., mechanical looms) disrupted employment, but adaptation followed

Safety critical applications

- Al used in safety-critical applications
 - E.g., self-driving cars, managing water supply or power grids
- Avoiding fatal accidents is challenging
 - E.g., formal verification and statistical analysis are insufficient
- Al requires technical and ethical standards like other high-stakes fields (e.g., engineering, healthcare)

Cybersecurity

- Al helps defend against cyberattacks (e.g., detect unusual behavior patterns) and contributes to malware development
- E.g., use reinforcement learning for targeted phishing attacks

Human-level AI

- Human-level AI is "machines able to learn to do anything a human can do"
 - Aka AGI (Artificial General Intelligence)
- Artificial Super-Intelligence**: Intelligence surpassing human ability in any domain and self-improving

The problem of control

- It is uncertain we can control machines more intelligent than us
- King Midas problem
 - Myths of humans asking for something, getting it, then regretting it
 - King Midas turned everything he touched into gold, including food and family
- Rebuttal
 - If AGI arrived in a black box from space, caution is needed before opening
 - We design AI: if AI gains control, it is a "design failure"

Solutions to problem of control

- Al researchers and corporations developed voluntary self-governance principles for Al
 - Governments and international organizations established advisory bodies
- Problems
 - Preferences are not easy to "invert" and are not consistent
- We should put "purpose into the machine" even if we don't know exactly what the objectives are
 - Incentivize AI to be switched off if uncertain about human objectives
 - Inverse reinforcement learning: Al observes human behavior to infer underlying reward function
 - Cooperative Inverse Reinforcement Learning (CIRL)

Cooperative Inverse Reinforcement Learning (CIRL)

- Al infers human goals based on actions
- Observation: Alice looks tired, sits on the couch, observes the messy table, and starts watching TV
- Inference: Al infers:
 - Alice is tired and wants to relax
 - Messy coffee table bothers her
- Action: Al:
 - Fetches a glass of water
 - Tidies up the coffee table without disturbing Alice
- Feedback loop: Al monitors Alice's reactions
 - If Alice is relaxed and happy, Al understanding is reinforced
 - If Alice is not happy, Al adjusts actions and improves inference