

Commercial Online Game Data Analysis Competition

EC 4213 / ET5402 / ET5303 : Machine Learning and Deep Learning

Instructor: Jonghyun Choi

Competition Organizer

School of Integrated Technology
Cognition and Intelligence Lab
Cheong-mok Bae

Index

G I S

- Introduction
- Problem: details
- Evaluation Metric

Introduction

Design for Online Game Churn Prediction Model for considering residual value using the Commercial Online Game Data

Lineage

G I T

- MMORPG(Massively Multiplayer Online Role-Playing Game)
- Serviced by NCSoft from September 1st in 1998
- Achieved 3.2 trillion KRW for Cumulative Sale in 2016
- Played by 20 million users world-widely
- https://lineage.plaync.com

- Can play variety activities based on degrees of freedom
 - ✓ Promoting and economic activities
 - ✓ Social activities
 - ✓ Other variety experience

Attraction of Game Data

- Record a wide range of activities
 - ✓ Who/When/Where/What/How → everything
 - ✓ Very high-quality data that are hard to access in real-world!

Date	Actor	Action	L	Location	Entity	Target
9-05-27 00:00:22.157	[1] 데포로쥬,	1003: 접속	본	말하는 섬 마을(15850), 3	From서버:0, 현재:1141/182, Exp:486831099, 인벤A:270049,	신규
9-05-27 00:00:22.157	[1] 데포로쥬,	1005: 맵입장	0	말하는 섬 마을(15850), 3	남음(초):0, 0	
9-05-27 00:01:09.782	[1] 데포로쥬,	1005: 맵입장	0	말하는 섬(9), 32671/33249	남음(초):0, 0	
9-05-27 00:01:09.782	[1] 데포로쥬,	1006: 맵퇴장	0	말하는 섬 마을(15850), 3	남음(초):0, 0	말하는 섬(9), 3
9-05-27 00:01:35.595	[1] 데포로쥬,	1202: NPC죽임	0	말하는 섬(9), 32647/33219	소환:오크(0), 0	다이어물프(144
9-05-27 00:01:35.595	[1] 데포로쥬,	1017: 경험치 획득	기	말하는 섬(9), 32647/33219	4874, Exp:486835973, 아인감소:2437, 총아인:1157998, 아인%	. 다이어울프(144
9-05-27 00:01:40.970	[1] 데포로쥬,	1202: NPC죽임	0	말하는 섬(9), 32649/33219	소환:오크(0), 0	혹기사(14459)
9-05-27 00:01:40.970	[1] 데포로쥬,	1017: 경험치 획득	기	말하는 섬(9), 32649/33219	6052, Exp:486842025, 아인감소:3026, 총아인:1154972, 아인%	. 흑기사(14459)
9-05-27 00:01:41.235	[1] 데포로쥬,	1012: 게임머니 증가	ge	말하는 섬(9), 32649/33219	A:50, TotA:270099	0, 오크(0)
9-05-27 00:01:47.876	[1] 데포로쥬,	1202: NPC죽임	0	말하는 섬(9), 32646/33212	소환:오크(0), 0	흑기사(14424)
9-05-27 00:01:47.876	[1] 데포로쥬,	1017: 경험치 획득	기	말하는 섬(9), 32646/33212	6052, Exp:486848077, 아인감소:3026, 총아인:1151946, 아인%	. 흑기사(14424)
9-05-27 00:01:53.876	[1] 데포로쥬,	1017: 경험치 획득	기	말하는 섬(9), 32646/33208	6052, Exp:486854129, 아인감소:3026, 총아인:1148920, 아인%	. 다이어울프(144
9-05-27 00:01:53.876	[1] 데포로쥬,	1202: NPC죽임	0	말하는 섬(9), 32646/33208	소환:오크(0), 0	다이어울프(14
9-05-27 00:01:57.704	[1] 데포로쥬,	1017: 경험치 획득	기	말하는 섬(9), 32647/33207	6052, Exp:486860181, 아인감소:3026, 총아인:1145894, 아인%	. 흑기사(14424)
9-05-27 00:01:57.704	[1] 데포로쥬,	1202: NPC죽임	0	말하는 섬(9), 32647/33207	소환:오크(0), 0	흑기사(14424)
9-05-27 00:02:03.392	[1] 데포로쥬,	1202: NPC죽임	0	말하는 섬(9), 32645/33208	소환:오크(0), 0	흑기사(14424)
9-05-27 00:02:03.392	[1] 데포로쥬,	1017: 경험치 획득	기	말하는 섬(9), 32645/33208	6052, Exp:486866233, 아인감소:3026, 총아인:1142868, 아인%	. 흑기사(14424)

Purpose of Churn Prediction

- Casual Analytics
 - ✓ Identifying 'Causation of Churns' by analyzing churn customers
 - ✓ Actually, hard work to apprehend causation using observed data (Correlation \neq Causation)
- Predictive Analysis **Coal of this competition**
 - ✓ Identifying customers who might be churned → Derive to retention via giving incentives

Purpose of Churn Prediction (cont'd)

Customer Churn Prediction

• A general scenario that adapts customers churn prediction model

Problems of general scenario #1

Lack of considering changes over time

✓ Changing of statistical characteristics gradually causes deterioration of model that learned from previous data patterns

Problems of general scenario #1 (cont'd)

Characteristics of Online Game Data

- ✓ Frequent game update and events lead to...
 - Change of game balancing
 - Add or remove game contents
 - Revising business model

Problems of general scenario #2

Not consider expectation profits

- The actual goal of churn prediction is not precisely prediction but keeping residual value by preventing churn
- Expectation profits = effect of adopt churn prediction model cost (accuracy ≠ expectation profits)

Problems of general scenario #2 (cont'd)

- Important to prevent churn for users who have a high residual value
 - ✓ Is it important to predict churn for malicious users?
 - ✓ How to estimate the residual value?
- Need to set proper incentive
 - ✓ If incentive is high → can attract customers interests
 - ✓ If incentive is low → loss will be higher than beneficial
- Also, important when does give incentive
 - ✓ No effect if miss proper timing that gives incentive

20% of customers contribute to 70% of sales benefits

Purpose of the Problem

G I T

- Construct models that have robustness for changing time
 - ✓ Give two test dataset that is in a different timeline with train dataset

- Construct models that consider expectation profits
 - ✓ Predict churn timing and sales forecast for each user
 - ✓ Appreciate expectation profits using those two factors

Expectation profits = rate of change \times (additional survival days \times sales forcast) – cost for preventing churn

Problem: details

Constitute of Datasets

- Train models using last 28 days data from prediction time
- Predict churn timing(survival days) and average payment with 70 days observed data that are recorded after prediction time
 - ✓ Regard users who are not churn for 64 days as retention (consider whether churn or not with 7 days)
 - ✓ Calculate daily average payment for each user (payment happen after prediction time / survival days)

Constitute of Datasets (cont'd)

- Volume of train and test dataset
 - ✓ Train dataset: include data for 40,000 accounts
 - ✓ Test dataset 1 & 2: include data for 20,000 accounts for each

Datasets: Outline

- Can access 16 .csv files
 - ✓ Predict results for each account ID
 - ✓ Feature data use both account ID and character ID
 - ✓ One account can have one or more character

Dataset			Contents
Train	Test1	Test2	Contents
train_label.csv	-	-	Survival days and average payment for each account
train_activity.csv	test1_activity.csv	test2_activity.csv	Activities logs for each character with account
train_combat.csv	test1_combat.csv	test1_combat.csv	PvP logs for each character with account
train_pledge.csv	test1_pledge.csv	test1_pledge.csv	Pledge combat activity logs for each character with account
train_trade.csv	test1_trade.csv	test1_trade.csv	Trade activity logs for each character with account
train_payment.csv	test1_payment.csv	test1_payment.csv	Daily average payments for each account

Datasets: Label

train_label.csv

- ✓ Survival days and daily average payments for each account
- ✓ Survival days is in between 1 to 64. (64 means retention)

Variable	Contents
acc_id	User account ID
survival_time	Survival days
amount_spent	Daily average payment

Datasets: Activity

G I S

train_activity.csv, test1_activity.csv, test2_activity.csv

✓ Record for daily activities for each character

Variable	Contents
day	Date
acc_id	User account ID
char_id	Character ID
server	Character server
playtime	Daily playtime
npc_kill	Number of killing Non-Player Character
solo_exp	Obtain experience by solo playing
party_exp	Obtain experience by party playing
quest_exp	Obtain experience by quest clear
rich_monster	Hit boss monster or not (0= not hit, 1= hit)
death	Number of character death
revive	Number of revival character
exp_recovery	Number of recover experience (in church)
fishing	Amount of spending time for fishing (daily)
private_shop	Amount of spending time for private shop (daily)
game_money_change	Daily fluctuation of Adena (currency in Lineage)
enchant_count	Number of Enchant for higher than 7 level items

Datasets: Trade

G I T

train_trade.csv, test1_trade.csv, test2_trade.csv

✓ Record for daily trading(include private shop) for each character

Variable	Contents
day	Day when happened trade
time	Time when happend trade (00:00:00 ~ 23:59:59)
type	Type of trade (trade window= 1, private shop= 0)
server	Server where happend trade
source_acc_id	Account ID who given items
source_char_id	Character ID who given items
target_acc_id	Account ID who got items
target_char_id	Character ID who got items
item_type	Type of items weapon / armor / accessory / adena (currency) / spell (skill book) / enchant_scroll
item_amount	Quantity of trading item
item_price	Price of trading: NA if trading occurs via trading window (means type=1)

Datasets: PvP

train_combat.csv, test1_combat.csv, test2_combat.csv

✓ Record daily Player vs. Player combat for each character

Variable	Contents
day	Date
acc_id	User account ID
char_id	Character ID
server	Character server
class	class (see the right table)
level	level (see the right table)
pledge_cnt	Number of combat for against with other pledges
random_attacker_cnt	Number of attack for randomly encounter user
random_defender_cnt	Number of defend for randomly encounter user
temp_cnt	Number of temporary combat
same_pledge_cnt	Number of combat for against with same pledge user
etc_cnt	Number of other combat
num_opponent	Number of opponents in combat

Category	Class
0	Monarch
1	Knight
2	Elf
3	Wizard
4	Dark Elf
5	Dragon Warrior
6	Illusioner
7	Warrior

Category	Level	Category	Level
0	1~4	9	45~49
1	5~9	10	50~54
2	10~14	11	55~59
3	15~19	12	60~64
4	20~24	13	65~69
5	25~29	14	70~74
6	30~34	15	75~79
7	35~39	16	80~84
8	40~44	17	higer than 85

Datasets: Pledge

G I S

train_pledge.csv, test1_pledge.csv, test2_pledge.csv

✓ Record for the pledge, who player character belongs to, members combat activity (daily)

Variable	Contents
day	Date
acc_id	User account ID
char_id	Character ID
server	Character server
pledge_id	Pledge ID
play_char_cnt	Number of pledge members who online currently
combat_char_cnt	Number of pledge members who participate in combat
pledge_combat_cnt	Number of combat for against with other pledges
random_attacker_cnt	Amount of number of attack for randomly encounter user for pledge members
random_defender_cnt	Amount of number of defend for randomly encounter user for pledge members
same_pledge_cnt	Amount of number of combat for against with same pledge user
temp_cnt	Amount of Number of temporary combat for pledge members
etc_cnt	Amount of Number of other combat for pledge members
combat_play_time	Amount of playtime for combat character in pledge
non_combat_play_time	Amount of playtime for non-combat character in pledge

Datasets: Payment

G I T

train_payment.csv, test1_payment.csv, test2_payment.csv

✓ Record for daily payment for each account

Variable	Contents
day	Date
acc_id	User account ID
amount_spent	Payment

Datasets: Data De-identification

For preventing expose for sensitive information, some features proceeded masking

- Marsking target: Account/Character ID, Server number
- Numerical form data have values that Origin data divided by the standard deviation

i.e)

Туре	before transformation	Standard deviation	after Transformation
party_exp	2,235,212	16.4723	135695.1973919853
fishing	21	864.2	0.0242999305716269

Evaluation Metric

Evaluation

Performance of prediction + Reproducibility + Documents

- Performance of prediction
 - ✓ Calculate expectation profits by using predicted 'Survival day(\hat{t})' and 'Daily average payment(\hat{R})'
 - ✓ Acheive a higher score when the amount of expectation profits for each user bigger and bigger
- Reproducibility
 - ✓ Submit source code for every sub-process and the whole process
 - ✓ Testing how easy, accurately re-produce the result using submitted source code
- Documents
 - ✓ Documents for each subprocess (Exploratory Data Analysis, Pre-processing, Modeling and Tuning)
 - ✓ Describe how systematically and logically approach to solving the problem (with proper visualization)

Evaluation: Metric details

Expectation Profits = $residual\ value\ imes\ rate\ of\ change\ - cost\ for\ preventing\ churn$

- Residual value = additional survival days(T) × daily average payment(R)
 - ✓ Additional Survival days determined by accuracy of prediction of survival days(\hat{t}) (Residual value = 0, if $\hat{t} \ge 64$ or t = 64)
- rate of change = rate of users who are changed their mind, from churn to retention, due to reacting for incentives
 - \checkmark Rate of change determined by accuracy of prediction of daily average payment(\widehat{R})
- *cost for preventing churn* = given incentives for predicted churn users
 - ✓ cost for preventing churns setted by 1% of predicted *residual value*

Evaluation: Module

Given score_function.py can help self-estimate your results
Use prediction file and actual label file as parameters

Scheme of prediction file

Column	Desciption
acc_id	User Account ID
survival_time	predicted survival days
amount_spent	predicted daily average payment

Example of score_function.py

```
In [2]: from score_function import score_function
    ...: score_function('predict.csv','true.csv')
56319.66765172657
```

Reproducibility

G I S

Make directories for each process files and data

Submit the zipped files including below directories named '(your or team name).zip'

Directory Name	Contents
raw	Directory for original data (DO NOT INPUT ANY DATA, just make empty directory)
preprocess	Source codes for carrying out pre-process with raw data and preprocessing results
model	Source codes for training final model and model objects
predict	Predicted files + Source code that generates predicted files using test data and model
etc	Instruction for running your code (readme.txt or readme.pdf) + Descriptions

Reproducibility: Preprocess

Preprocess directory should be consisted...

- Source code for preprocess: generates and saves data which are input for the final model
 - Input: origin data located in '(your team name)/raw'
 - Output: preprocessed data, located in '(your team name)/preprocess' directory, that are input final model
- Data files named ruled (your team name)/preprocess/dataset_preprocess_(number).(extension)

Reproducibility: Model

Model directory should be consisted...

- Source code for modeling: generates a model object for final prediction files using data that located in preprocess directory
 - Input: data that are located in preprocess directory
 - Output: a model object for generating final predict files
- Model object: final prediction model, generated by modeling source codes

Reproducibility: Predict

Predict directory should be consisted...

- Source code for prediction: generates final prediction files using data and model each located in preprocess directory and model directory
 - Input:
 - a. Preprocessed data located in preprocess directory
 - b. Model object located in model directory
 - Output:
 - a. predict/test1_predict.csv
 - b. predict/test2_predict.csv

Reproducibility: etc

etc directory should be consisted...

- readme.txt or readme.pdf
 - Packages/Libraries/Modules for running source code and running environmets
 - Descriptions for ruinning source code (running order, etc)
- (your team name).pdf
 - Descriptions for your models, algorithms, methods

Reproducibility: Example

G I T

Example for final submission

✓ Please do not use packages/libraries/modules that need a commercial license

Documents

- ✓ Documents for each subprocess (Exploratory Data Analysis, Pre-processing, Modeling and Tuning)
- ✓ Describe how systematically and logically approach to solving the problem (with proper visualization)

Self-evaluation and Final Evaluation

Self-evaluation

- ✓ Leaderboard serves for benchmarking and checking the performance of your model for the test dataset
- ✓ Leaderboard score is that score for 20% of test dataset opened to prevent abusing
- ✓ Allow 5 submissions for each day/user to prevent score hacking and traffic overload (successful submission counted)
- ✓ Leaderboard scores do not affect the final evaluation.

Final Evaluation

• The final evaluation will be carried out by **your latest submission**.

The final evaluation will become from **80% of test datasets that are not opened at the leaderboard**.

Appendix

Fomulation for estimate expectation profits

- expectation profits = residual value \times rate of change cost for preventing churn
- residual value = additional survival days(T) × daily average payment(R)

$$\checkmark T = \begin{cases} 0, & \text{if } \hat{t} = 64 \text{ or } t = 64 \\ 30 \times e^{-\frac{(t-\hat{t})^2}{2 \times 15^2}}, & \text{otherwise} \end{cases}$$

- \checkmark \hat{t} : predicted survival days, t: actual observed survival days
- cost for preventing churn(C) = given incentives for predicted churn users

$$C = \begin{cases} 0, & \text{if a user predicted as retention or predicted daily average payment} \\ 0.01 \times 30 \times \hat{R}, & \text{if a user predicted as churn} \end{cases}$$

- \checkmark \hat{R} : predicted daily average payment
- rate of change(γ) = rate of users who are changed their mind, from churn to retention, due to reacting for incentives

$$\checkmark \quad \gamma = \begin{cases} 0, if \ \hat{C} < \frac{c_{opt}}{10} \ or \ C_{opt} = 0 \\ \frac{10}{9} \left(\frac{\hat{C}}{C_{opt}} - 0.1 \right), otherwise \end{cases}$$

 \checkmark \hat{C} : predicted cost, C_{opt} : proper cost $(R = \hat{R})$