Name:	
MATH 308	"Al-l:
Fall 2022	"Algebra is the intellectual instrument which has been created for
HW 12: Due 11/04	rendering clear the quantitative aspects of the world." —Alfred North Whitehead
	-/11160 100111 101111600

Problem 1. (10pt) Showing all your work, complete the following:

- (a) Find the last digit of 3^{300} .
- (b) Find the last two digits of 13^{100} .
- (c) Fermat's Little Theorem states that if p is prime, then $a^p \equiv a \mod p$. Verify this claim when p=5 and a=3.
- (d) A generalization of Fermat's Little Theorem states that $a^{\varphi(n)} \equiv 1 \mod n$ if a is coprime to n, where $\varphi(n)$ is the Euler Phi function. Verify this claim when n=3 and a=8.

Problem 2. (10pt) Showing all your work, compute the following:

- (a) Compute 147 modulo 3.
- (b) Compute 147 modulo 3 by writing $147 = 1 \cdot 100 + 4 \cdot 10 + 7 \cdot 1$.
- (c) Compute $a_2a_1a_0$ modulo 3 by writing $a_2a_1a_0=a_2\cdot 100+a_1\cdot 10+a_0\cdot 1$. When is $a_2a_1a_0$ divisible by 3? Explain.
- (d) Using the previous parts, give a necessary and sufficient condition for an integer to be divisible by 3.

Problem 3. (10pt) Use the Chinese Remainder Theorem to solve the following system of linear congruences

$$2x \equiv 1 \mod 3$$
$$x - 3 \equiv 0 \mod 4$$
$$3x + 2 \equiv 4 \mod 5$$

Problem 4. (10pt) Show that there are no integer solutions to $x^3 + 7y^2 = 5$.