

cmos028fdsoi Technology

PDC vs MC Noise report for EGLVT model

DK1.2_RF_mmW

Please use the bookmark to navigate

General information on PDC vs MC Noise report for EGLVT models

- Maximum supply voltage is 1.8 V.
- Validity domain is defined as follows:
 - ✓ Drawn gate length varies from 150nm to 10um.
 - ✓ Drawn transistor width varies from 0.16um to 10um.
 - ✓ Device temperature varies from -40 °C to 125 °C.

dormieub

Output parameters definitions

● Model(s): eglvtnfet_acc, eglvtpfet_acc

dormieub

eglvtnfet_acc Electrical characteristics per geometry

eglvtnfet_acc@ w=1.5e-6, l=0.15e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=9e-14, ad=9e-14, ps=1.74e-06, pd=1.74e-06, vbs=0, vdd=1.8, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-17.28	-15.85	-14.43	-17.28	-15.85	-14.43
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-8.67	-7.25	-5.83	-8.68	-7.25	-5.82
[log10(1/Hz)]						
logSv2@1Hz	-10.55	-9.12	-7.7	-10.55	-9.12	-7.7
[log10(V2/Hz)]				•		

eglvtpfet_acc Electrical characteristics per geometry

eglvtpfet_acc@ w=1.5e-6, l=0.15e-6, pre_layout_local=1, nf=2, sa=1.2e-07, sb=1.2e-07, devtype=PCELLwoWPE, as=9e-14, ad=9e-14, ps=1.74e-06, pd=1.74e-06, vbs=1.8, vdd=1.8, temp=25

	TT_Noisedev=4	TT_Noisedev=0	TT_Noisedev=2	PRO_MC_PARAM_	PRO_MC_PARAM_	PRO_MC_PARAM_
				TT_1_MC_AVG-3S	TT_1_MC_AVG	TT_1_MC_AVG+3S
logSi2@1Hz	-17.35	-16.3	-15.26	-17.35	-16.3	-15.26
[log10(A ² /Hz)]						
logSi2ovId2@1Hz	-7.95	-6.91	-5.86	-7.95	-6.91	-5.86
[log10(1/Hz)]						
logSv2@1Hz	-9.68	-8.64	-7.6	-9.69	-8.64	-7.6
[log10(V2/Hz)]				•		

dormieub

eglvtnfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10&&W/nf<5um

eglvtnfet_acc, logSi2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

→ DK1.2_RF_mmW_TT_Noisedev=4 → DK1.2_RF_mmW_TT_Noisedev=0 → DK1.2_RF_mmW_TT_Noisedev=2

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

eglvtnfet_acc, logSi2ovId2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

—— DK1.2_RF_mmW_TT_Noisedev=4

--- DK1.2_RF_mmW_TT_Noisedev=0

DK1.2_RF_mmW_TT_Noisedev=2

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

■ DK1.2 RF mmW PRO MC PARAM TT 1 MC AVG+3S

eglvtnfet_acc, LogSv2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

DK1.2_RF_mmW_TT_Noisedev=4
DK1.2_RF_mmW_TT_Noisedev=0
DK1.2_RF_mmW_TT_Noisedev=2
DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

eglvtpfet_acc Electrical characteristics scaling

Scaling versus Length @ W/L=10&&W/nf<5um

eglvtpfet_acc, logSi2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

DK1.2_RF_mmW_TT_Noisedev=4
DK1.2_RF_mmW_TT_Noisedev=0
DK1.2_RF_mmW_TT_Noisedev=2
DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S
DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

DK1.2 RF mmW PRO MC PARAM TT 1 MC AVG+3S

eglvtpfet_acc, logSi2ovId2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

── DK1.2_RF_mmW_TT_Noisedev=4 ── DK1.2_RF_mmW_TT_Noisedev=0

DK1.2_RF_mmW_TT_Noisedev=2

BUTTLE STATE OF THE OF

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

eglvtpfet_acc, LogSv2@1Hz+log10(nf) vs l [m]

W/L==10 and w/nf<5 and devType=="PCELLwoWPE"

DK1.2_RF_mmW_TT_Noisedev=4

DK1.2_RF_mmW_TT_Noisedev=0

--- DK1.2_RF_mmW_TT_Noisedev=2

DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG-3S

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG

--- DK1.2_RF_mmW_PRO_MC_PARAM_TT_1_MC_AVG+3S

ST Confidential

Annex

Conditions of simulations

The simulations were done with SBenchLSF Alpha using Eldo simulator 2018.3.

- Model eglvtnfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - \times mc_runs = 500
 - \mathbf{X} iana = 5e-6 A
 - **x** temp = $25 \, ^{\circ}$ C
 - \times mc_sens = 0
 - \star f_ext = 100k Hz
 - **x** sbenchlsf_release = Alpha
 - \mathbf{x} vbs = 0 V
 - **x** model_version = 1.2.e
 - \times vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \times vdd = 1.8 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters

Sep 21, 2018

ST Confidential

- \mathbf{x} eglvt_dev = 0
- Model eglvtpfet_acc (DK1.2_RF_mmW)
 - ✓ Input Parameters
 - **x** ams_release = 2018.3
 - **x** mc_runs = 500
 - **x** iana = 2e-6 A
 - \times temp = 25 °C
 - \mathbf{x} mc_sens = 0
 - \star f_ext = 100k Hz
 - **x** sbenchlsf_release = Alpha
 - **x**vbs = 1.8 V
 - **x** model_version = 1.2.e
 - **x** vds_ana = Vdd/4 V
 - **x** mc_nsigma = 3
 - \times vdd = 1.8 V
 - ✓ Sweep Parameters
 - ✓ Extra parameters
 - \mathbf{x} eglvt_dev = 0

Sep 21, 2018