FMAN45 Machine Learning

Assignment 1

(Van Duy Dang - va7200da-s)

1 Penalized regression via the LASSO

Task 1:

The objective is to

minimize
$$\frac{1}{2} ||r_i - x_i w_i||_2^2 + \lambda |w_i|$$
 (1)

We find w_i by differentiating (1) and solve the equation

$$\frac{d}{dw_i} \left(\frac{1}{2} \| r_i - x_i w_i \|_2^2 + \lambda |w_i| \right) = 0$$

$$\iff \frac{1}{2} \left(2(r_i - x_i w_i)(-x_i) \right) + \lambda \frac{w_i}{|w_i|} = 0$$

$$\iff x_i^T r_i = w_i \left(x_i^T x_i + \frac{\lambda}{|w_i|} \right)$$
(2)

Then we take the absolute value of both sides.

$$|x_i^T r_i| = |w_i| |(x_i^T x_i + \frac{\lambda}{|w_i|})|$$
 (3)

Because $x_i^T x_i$ and λ are positive so from (3) we have:

$$|x_i^T r_i| = |w_i| (x_i^T x_i + \frac{\lambda}{|w_i|})$$

$$\iff |w_i| = \frac{|x_i^T r_i| - \lambda}{x_i^T x_i}$$
(4)

We use (2) to find $\operatorname{sgn}(w_i)$. Since $x_i^T x_i$ and λ are positive

$$sgn(w_i) = sgn(x_i^T r_i) = \frac{x_i^T r_i}{|x_i^T r_i|}$$
(5)

Now w_i can be calculated to verify task 1 by multiplying (4) and (5)

$$w_{i} = \frac{x_{i}^{T} r_{i}}{x_{i}^{T} x_{i} |x_{i}^{T} r_{i}|} (|x_{i}^{T} r_{i}| - \lambda)$$
(6)

Task 2:

Since $x_i^T x_l = 0, \forall l \neq i$, we have

$$x_i^T r_i^{(j-1)} = x_i^T (t - \sum_{l < i} (x_l \hat{w}_l^{(j)}) - \sum_{l > i} (x_l \hat{w}_l^{(j-1)})) = x_i^T t$$

With $x_i^T x_i = 1$, we can rewrite (6) as

$$\hat{w}_i^{(j)} = x_i^T t - \lambda sgn(x_i^T t) \tag{7}$$

We can see that $\hat{w}_i^{(j)}$ does not depend on previous estimates. Therefore

$$\hat{w}_{i}^{(2)} - \hat{w}_{i}^{(1)} = x_{i}^{T}t - \lambda sgn(x_{i}^{T}t) - (x_{i}^{T}t - \lambda sgn(x_{i}^{T}t)) = 0$$

In addition, this is also correct in case of $|x_i^T r_i^{(j-1)}| \leq \lambda$ as $\hat{w}_i^{(j)} = 0$

Task 3:

We have $t = Xw^* + e$. The limit of $x_i^T t$ when $\sigma \to 0$ is:

$$\lim_{\sigma \to 0} x_i^T t = x_i^T X w^* = w^*$$

Considering the first case from the hint where $x_i^T r_i^{(j-1)} > \lambda$, we use (7) to calculate

$$\lim_{\sigma \to 0} E(\hat{w}_i^{(1)} - w_i^*) = \lim_{\sigma \to 0} E(x_i^T t - \lambda sgn(x_i^T t) - w_i^*)$$

$$= \lim_{\sigma \to 0} E(w_i^* - \lambda sgn(w_i^*) - w_i^*)$$

$$= \lim_{\sigma \to 0} E(-\lambda sgn(w_i^*)) = -\lambda$$

The second case is $x_i^T r_i^{(j-1)} < \lambda$. We use the same equation but $sgn(w_i^*) = -1$. Hence

$$\lim_{\sigma \to 0} E(\hat{w}_i^{(1)} - w_i^*) = \lim_{\sigma \to 0} E(-\lambda sgn(w_i^*)) = \lambda$$

The third case is $|x_i^T r_i^{(j-1)}| \leq \lambda$. From the requirement, we have $\hat{w}_i^{(1)} = 0$. The limit can be calculated as

$$\lim_{\sigma \to 0} E(\hat{w}_i^{(1)} - w_i^*) = \lim_{\sigma \to 0} E(0 - w_i^*) = -w_i^*$$

In conclusion, we get all 3 cases that we need to show.

LASSO (Least Absolute Shrinkage and Selection Operator) is a regularization technique used in linear regression models to prevent overfitting by shrinking the estimated coefficients towards zero. When the penalty parameter λ is sufficiently large, the LASSO method can perform variable selection effectively by forcing many of the estimated coefficients to be exactly zero.

The limit of the expected difference between $\hat{w}_i^{(1)}$ and w_i^* , as described above, shows that the LASSO method shrinks $\hat{w}_i^{(1)}$ towards zero, with the amount of shrinkage depending on w_i^* and λ .

2 Hyperparameter-learning via K-fold cross-validation

Task 4:

We can see that $\lambda = 0.1$ is small so the model is overfitting, it fits the original data. With $\lambda = 10$, it seems that the reconstructed data is shrunk too much and the model is underfitting. In my opinion, $\lambda = 1.5$ is a good value. The reconstruction data looks similar to the figure from the hint. The model does not fit the noise and it generalizes better than the previous cases.

Figure 1: Reconstruction plot

From Table 1, we can see that the smaller λ the larger the number of non-zero coordinates. The best λ that I choose has 66 non-zero coordinates. In other words, we need more than 4 non-zero coordinates to find the good model.

λ	Number of non-zero coordinates
0.1	265
10	8
1.5	66

Table 1: Number of non-zero coordinates

Task 5:

In this task, we implement a K-fold cross-validation scheme for the LASSO estimator to find the optimal λ . The training data is randomly split in 10 folds and λ is a grid of 100

values.

Figure 2: $RMSE_{val}, RMSE_{est}$ and the optimal λ

Here we can visualize the results we got from task 4. With small λ values, $RMSE_{val}$ is significantly lower than $RMSE_{est}$. It means that the model fits the training data well but the validation data. In other words, the model is overfitting. When λ is large, $RMSE_{val}$ and $RMSE_{est}$ are also large. It means that the model is underfitting and it does not perform well on both training data and validation data. We find the best model by finding $\lambda = 1.8$ that minimizes $RMSE_{val}$.

Figure 3: Reconstruction plot with $\lambda = 1.8$

The result looks similar to the final plot from task 4 and the plot from the hint.

3 Denoising of an audio excerpt

Task 6:

In this task, I choose the number of folds is 3 so that the training is faster and the data is divided evenly. The plot is similar to task 5 and we can find the optimal $\lambda = 0.0038$ that minimizes $RMSE_{val}$.

Figure 4: $RMSE_{val}, RMSE_{est}$ and the optimal $\lambda = 0.0038$

At the top right of the plot, it seems that both $RMSE_{val}$ and $RMSE_{est}$ are constant. This is because λ is too large and the model is underfitting. Increasing λ does not have any significant impact on the performance of the model.

Task 7:

After denoising the test data with $\lambda=0.0038$, I feel that the background noise has been filtered out to a small extent. In my opinion, the optimal λ found from task 6 is not a good value to denoise. With $\lambda=0.015$, all the noise seems to be filtered out.