

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11164912 A

(43) Date of publication of application: 22.06.99

(51) Int. CI

A63B 37/00 A63B 37/04 A63B 45/00 C08L 9/00

(21) Application number: 09348660

(22) Date of filing: 03.12.97

(71) Applicant:

JSR CORP

(72) Inventor:

SONE TAKAO HATTORI IWAKAZU

(54) RUBBER COMPOSITION FOR SOLID GOLF BALL AND SOLID GOLF BALL

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a solid golf ball having improved carry, durability and ball hitting feel and a rubber compsn. which allows the production of the same.

SOLUTION: This compsn. contains 50 to 100 pts.wt. component (a), polybutadiene rubber having a 1, 4-cis

bond content of 380%, 1, 2-vinyl bond content of 22.0% and a ratio (Mw/Mn) of a weight average mol.wt. (Mw) to a number average mol.wt. (Mn) of 23.5, 50 to 0 pts.wt. component (b), diene base rubber exclusive of the component (a) (where the total amt. of the component (a) and the component (b) is specified to 100 pts.wt.), 10 to 50 pts.wt. crosslinkable monomel, 20 to 80 pts.wt. inorg. filler and an effective amt. of an org. peroxide.

COPYRIGHT: (C)1999,JPO

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-164912

(43)公開日 平成11年(1999)6月22日

(51) Int.Cl. ⁶	識別記号	FI	
A 6 3 B 37/0	00	A 6 3 B 37/00 L	
37/0	4	37/04	
45/0	0	45/00 B	
C08L 9/0	0	C 0 8 L 9/00	
		審査請求 未請求 請求項の数4 FD	全 9 頁)
(21)出顯番号	特顧平9-348660	(71)出顧人 000004178	
		ジェイエスアール株式会社	
(22)出顧日	平成9年(1997)12月3日	東京都中央区築地2丁目11番24号	}
		(72)発明者 曽根 卓男	
		東京都中央区築地二丁目11番244 成ゴム株式会社内	月 日本合
		(72)発明者 服部 岩和	
		東京都中央区築地二丁目11番24+	4 H-A
		成了人株式会社内	7 口平宜

(54)【発明の名称】 ソリッドゴルフボール用ゴム組成物およびソリッドゴルフボール

(57) 【要約】

【課題】飛距離、耐久性および打球感が向上した、ソリッドゴルフボールおよびそれを製造し得るゴム組成物を 提供すること。

【解決手段】(a) 1, 4-シス結合含量が80%以上、1, 2-ビニル結合含量が2.0%以下、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.5以下のポリブタジエンゴム50~100重量部(b)上記(a)成分以外のジエン系ゴム50~0重量部(ここで、(a)成分と(b)成分の合計量は100重量部である)、(c)架橋性モノマー10~50重量部(d)無機充填材20~80重量部、および(e)有効量の有機過酸化物、を含有するソリッドゴルフボール用ゴム組成物およびこのゴム組成物から製造されるソリッドゴルフボールが提供される。

【特許請求の範囲】

M

【請求項1】 (a) 1, 4-シス結合含量が80%以上、1, 2-ビニル結合含量が2.0%以下、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.5以下のポリブタジエンゴム50~100重量部(b)上記(a)成分以外のジエン系ゴム50~0重量部(ここで、(a)成分と(b)成分の合計量は100重量部である)、(c)架橋性モノマー10~50重量部(d)無機充填材20~80重量部 および(e)有効量の有機過酸化物、を含有することを特徴 10とするソリッドゴルフボール用ゴム組成物。

【請求項2】 (a) 成分が、希土類元素系触媒を用いて重合して得られるポリブタジエンゴムであることを特徴とする請求項1に記載のゴム組成物。

【請求項3】 (a) 成分が、希土類元素系触媒を用いて重合し、引き続き末端変性剤を反応させて得られる変性ポリブタジエンゴムであることを特徴とする請求項1に記載のゴム組成物。

【請求項4】 ソリッドゴルフボールのゴム質の一部または全部が、請求項1~3のいずれかに記載のゴム組成 20物を、架橋、成形したものであることを特徴とするソリッドゴルフボール。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ソリッドゴルフボール用ゴム組成物およびソリッドゴルフボールに関する。さらに詳しくは、打球感が良好で、飛距離が大きく、かつ耐久性に優れたソリッドゴルフボールを与えるゴム組成物および該組成物から得られるソリッドゴルフボールに関するものである。

[0002]

【従来の技術】ソリッドゴルフボールは、ゴム組成物を一体成形した架橋物からなるワンピースソリッドゴルフボール、更には1~3層構造の硬質のゴム組成物の架橋物からなるソリッドコアーにカバーを被覆したツーピースソリッドゴルフボール、スリーピースソリッドゴルフボール、フオアピースソリッドゴルフボールなどのマルチピースソリッドゴルフボールがある。

【0003】これらのソリッドゴルフボールのうち、マルチピースソリッドゴルフボールは、特に飛距離が優れ 40 ていることから、近年はラウンド用ゴルフボールの主流を占めている。しかし、このマルチピースソリッドゴルフボールは、従来用いられていた糸巻きゴルフボールに比べて、打球感が硬いという欠点を有している。そこで、コアーを軟らかくし、しかも中心に近付くほど軟らかくすることにより、打撃時のつぶれを大きくしてマルチピースソリッドゴルフボールの打球感を向上させることが試みられている。しかし、コアーを軟らかくすることによって、耐久性と反撥性能(飛距離)が低下する。したがって、打球感が良好で、飛距離が大きく、かつ耐 50

久性の優れたマルチピースソリッドゴルフボールの出現 が望まれている。

【0004】一方、ワンピースソリッドゴルフボールは、主として練習場向けのゴルフボールとして用いられているが、繰り返し打撃によって割れや欠けが発生しやすいため、それらの発生をできるかぎり防止することができるように、優れた耐久性が要求される。更に、ゴルフ練習者からは、打球感も良好であることが要求されている。

[0005]

【発明が解決しようとする課題】本発明の目的は、飛距離、耐久性および打球感が向上した、マルチピースソリッドゴルフボールを与え得るゴム組成物を提供することにある。本発明の他の目的は、耐久性および打球感が向上したモノピースソリッドゴルフボールを与え得るゴム組成物を提供することにある。本発明の他の目的は、飛距離、耐久性および打球感が向上した、マルチピースソリッドゴルフボールを提供することにある。本発明のさらなる他の目的は、耐久性および打球感が向上したモノピースソリッドゴルフボールを提供することにある。

[0006]

【課題を解決するための手段】本発明によれば、下記の ソリッドゴルフボール用ゴム組成物およびソリッドゴル フボールが提供されて、本発明の上記目的が達成され る。

- [1] (a) 1, 4-シス結合含量が80%以上、1, 2-ビニル結合含量が2.0%以下、重量平均分子量 (Mw) と数平均分子量 (Mn) との比 (Mw/Mn) が3.5以下のポリブタジエンゴム50~100重量 部、(b) 上記(a) 成分以外のジエン系ゴム50~0重量部(ここで、(a) 成分と(b) 成分の合計量は100重量部である)、(c) 架橋性モノマー10~50重量部 (d) 無機充填材20~80重量部、および(e) 有効量の有機過酸化物、を含有することを特徴とするソリッドゴルフボール用ゴム組成物。
- [2] (a) 成分が、希土類元素系触媒を用いて重合して得られるポリブタジエンゴムであることを特徴とする上記[1] に記載のゴム組成物。
- [3] (a) 成分が、希土類元素系触媒を用いて重合し、引き続き末端変性剤を反応させて得られる変性ポリブタジエンゴムであることを特徴とする上記[1] に記載のゴム組成物。
 - 【4】ソリッドゴルフボールのゴム質の一部または全部が、上記【1】~【3】のいずれかに記載のゴム組成物を、架構、成形したものであることを特徴とするソリッドゴルフボール。

以下本発明を詳述するが、それにより本発明の別の目的、利点および効果が明らかとなるであろう。

[0007]

【発明の実施の形態】まず、本発明のソリッドゴルフボ

V

ール用ゴム組成物(以下、単に「ゴム組成物」ともいう)の(a)成分について説明する。上述したように、(a)成分であるポリブタジエンゴムは、1,4ーシス結合含量(シス含量)が80%以上、好ましくは90%以上、1,2ービニル結合含量(ビニル含量)が2.0%以下、好ましくは1.5%以下、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が3.5以下、好ましくは3.0以下である。また、(a)成分のムーニー粘度は、ML1+4(100℃)は、20~140、特に30~100が好ましい。【0008】本発明のゴム組成物が、主たるゴム成分として、1,4ーシス結合が大部分を占め、しかも分子量分布の狭いポリブタジエンゴムを含有することにより、本発明のゴム組成物の架橋成形体から構成されるゴム質を有するソリッドゴルフボールは、飛距離が大きく、打

【0009】上記(a)ポリブタジエンゴムは、希土類 元素系触媒の存在下にブタジエンを重合して得ることが できる。また、(a) ポリブタジエンゴムは、上記重合 に引き続き末端変性剤を反応させて得られる変性ポリブ 20 タジエンゴムであってもよい。 以下、希土類元素系触 媒の存在下にブタジエンを重合して得たポリブタジエンゴムを「(a-1)未変性ポリブタジエンゴム」、上記 重合に引き続き末端変性剤を反応させて得られた変性ポ*

球感および耐久性に優れる結果となる。

[0011] [化1]

【0012】(式中、R²⁵は、炭素数1~20の炭素原子を含む炭化水素基、nは2以上の整数である。)
ハロゲン含有化合物としては、A1X_nR_{3-n}(ここで、Xはハロゲンであり、Rは、炭素数が1~20の炭化水素残基であり、例えばアルキル基、アリール基、アラルキル基であり、nは、1、1.5、2または3である)で示されるアルミニウムハライド; Me3SrC1、Me2SrC12、MeSrHC12、MeSrC13などのストロンチウムハライド; その他、四塩化ケイ素、四塩化スズ、四塩化チタンなどの金属ハライドが用いられる。ルイス塩基は、ランタン系列希土類元素化合物を錯化するのに用いられ。例えばアセチルアセトン、ケントアルコールなどが好適に使用される。なかでも、ランタン系列希土類元素化合物としてネオジウム化合物を用いたネオジウム系触媒の使用が、1、4ーシス結合が高含サーク・アルコールは合かが自含サーク・アルコールは対象で表別で表別で表別である。

(II)

*リブタジエンゴムを「(a-2)変性ポリブタジエンゴム」ともいう。上記(a-1)未変性ポリブタジエンゴムおよび(a-2)変性ポリブタジエンゴムは、1種単独であるいはこれらを組み合わせて用いることができるが、変性ポリブタジエンゴムの使用が保存安定性の点で好ましい。

【0010】 ブタジエンの重合に用いられる希土類元素 系触媒としては、公知のものを使用することができる。 例えば ランタン系列希土類元素化合物、有機アルミニ 10 ウム化合物、アルモキサン、ハロゲン含有化合物、必要 に応じルイス塩基の組合せよりなる触媒を用いることが できる。ランタン系列希土類元素化合物としては、原子 番号57~71の金属ハロゲン化物、カルボン酸塩、ア ルコラート、チオアルコラート、アミド等が用いられ る。また、有機アルミニウム化合物としては、A1R1 R^2R^3 (ここで、 R^1 、 R^2 、および R^3 は、同一または 異なって、それぞれ水素または炭素数1~8の炭化水素 残基を表す) で示されるものが用いられる。 アルモキサ ンは、下記式(I)または下記式(II)で示される構造 を有する化合物である。また、ファインケミカル、2 3, (9), 5 (1994), J. Am. Chem. S oc., 115, 4971 (1993), J. Am. C hem. Soc., 117, 6465 (1995) で示 されるアルモキサンの会合体でもよい。

を優れた重合活性で得られるので好ましいこれらの希土 30 類元素系触媒の具体例は、本願出願人による特願平9-203932号、特願平9-65607号の各明細書に 記載されており、用いることができる。

【0013】また、ランタン系列希土類元素化合物(La化合物)を用いた希土類元素系触媒の存在下でブタジエンを重合させる場合、シス含量およびMw/Mnを上記範囲とするために、ブタジエン/La化合物は、通常モル比で1000~200万、特には5000~100万とすることが好ましく、また、A1R¹R²R³/La化合物は、モル比で1~1000、特には3~500と40することが好ましい。更に、ハロゲン化合物/La化合物は、モル比で0.1~30、特には0.2~15であることが好ましい。ルイス塩基/La化合物は、モル比で0~30、特には1~10とすることが好ましい。重合にあたっては、溶媒を使用しても、溶媒を使用せずにバルク重合あるいは気相重合してもい。重合温度は通常一30℃~150℃、好ましくは10~100℃である。

ン系列希土類元素化合物としてネオジウム化合物を用い 【0014】(a-2)変性ポリブタジエンゴムは、上たネオジウム系触媒の使用が、1,4-シス結合が髙含 記の重合に引き続き、ポリマーの活性末端に末端変性剤 量、1,2-ビニル結合が低含量のポリブタジエンゴム 50 を反応させることにより得られる。末端変性剤は、それ 自体公知であり、例えば下記 (E) ~ (J) に記載した 化合物を挙げることができる。

【0015】(E) R4nM' X4-n、M' X4、M' X3、R4n M' (-R5-COOR6)4-nまたはR4nM' (-R5-COR6)4-nまたはR4nM' (-R5-COR6)4-n (式中、R4およびR5は、同一または異なり、炭素数1~20の炭素原子を含む炭化水素基、R6は炭素数1~20の炭素原子を含む炭化水素基であり、側鎖にカルボニル基またはエステル基を含んでいてもよく、M' はスズ原子、ケイ素原子、ゲルマニウム原子またはリン原子、Xはハロゲン原子、nは0~3の整 10数である)に対応するハロゲン化有機金属化合物、ハロゲン化金属化合物または有機金属化合物。

【0016】(F)分子中に、Y=C=Z結合(式中、Yは炭素原子、酸素原子、チッ素原子またはイオウ原子、乙は酸素原子、チッ素原子またはイオウ原子である)を含有するヘテロクムレン化合物。

【0017】(G)分子中に

[0018]

【化2】

【0019】結合(式中、Yは、酸素原子、チッ素原子またはイオウ原子である)を含有するヘテロ3員環化合物。

【0020】(H) ハロゲン化イソシアノ化合物。 【0021】(I) R^7 -(COOH) $_m$ 、 R^8 (COX) $_m$ 、 R^9 -(COO- R^{10})、 R^{11} -OCOO- R^{12} 、 R^{13} -(COOCO- R^{14}) $_m$ 、または

[0022] [化3]

$$\mathsf{R}^{\mathsf{15}} \left[\begin{matrix} \mathsf{O} \\ \\ \mathsf{C} \\ \mathsf{C} \end{matrix} \mathsf{O} \right]_{\mathsf{m}}$$

【0023】(式中、R⁷~R¹⁵は、同一または異なり、炭素数1~50の炭素原子を含む炭化水素基、Xはハロゲン原子、mは1~5の整数である)に対応するカ 40ルボン酸、酸ハロゲン化物、エステル化合物、炭酸エステル化合物または酸無水物。

[0024] (J) $R^{16}l$ M" (OCO R^{17}) $_{4-l}$, $R^{18}l$ M" (OCO $-R^{19}-COOR^{20}$) $_{4-l}$, $\pm\hbar t$ [0025]

【化4】

【0026】(式中、R¹⁶~R²²は、同一または異なり、炭素数1~20の炭素原子を含む炭化水素基、M″はスズ原子、ケイ素原子またはゲルマニウム原子、1は0~3の整数である)に対応するカルボン酸の金属塩。【0027】以上の(E)~(J)に示される末端変性剤の具体例は、本願出願人による特願平9-203932号、特願平9-65607号の各明細書に記載されている。

【0028】上記末端変性剤による変性の反応方法は、それ自体公知の方法を用いることができる。例えば本願出願人による特願平9-65607号明細書に配載されている方法、特開平7-268132号公報に記載されている方法などを採用することができる。

【0029】次に(b)成分である上記(a)成分以外のジエン系ゴムについて説明する。(b)成分は、本発明のゴム組成物の必須の成分ではなく、本発明の目的の達成を損なわない範囲で、所望により配合される成分である。(b)成分の具体例としては、シス含量が80%未満の、あるいはMw/Mnが3.5を越える未変性または変性ポリブタジエンゴム、スチレンブタジエンゴム(SBR)、天然ゴム、合成ポリイソプレンゴム、エチレンプロピレンジエンゴム(EPDM)などを挙げることができる。これらは1種単独でまたは2種以上を組み合わせて使用することができる。

【0030】次に、(c) 成分である架橋性モノマーについて説明する。この(c) 架橋性モノマーは、ラジカル開始剤として機能する下記(e) 有機過酸化物が分解して発生するラジカルにより重合すると共に、上記(s) 成分によび(b) 成分の空機を促進するように作

(a) 成分および (b) 成分の架橋を促進するように作用する。本発明のゴム組成物に配合される架橋性モノマーは、α, β-エチレン性不飽和カルボン酸の1価または2価の金属塩、であることが好ましく、その具体例として下記のものを挙げることができる。

(i) アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、ソルビン酸、チグリン酸、ケイヒ酸、およびアコニット酸。これらは、1種単独でまたは2種以上を組み合わせて使用することができる。

(ii) 上記(i) の不飽和酸のZn、Ca、Mg、Ba、およびNaの各塩。これらは、1種単独でまたは2種以上を組み合わせて使用することができる。

また、上記(i)の不飽和酸と上記(ii)の金属塩と 50 は、組み合わせて用いることができる。なお、上記α、 7

8-エチレン性不飽和カルボン酸の金属塩は、そのまま で基材ゴムなどと混合する通常の方法以外に、あらかじ め酸化亜鉛などの金属酸化物を練り混んだゴム組成物中 にアクリル酸、メタクリル酸などの α , β -エチレン性 不飽和カルボン酸を添加し練り混んでゴム組成物中で α, β-エチレン性不飽和カルボン酸と金属酸化物とを 反応させて、α, β-エチレン性不飽和カルボン酸の金 属塩としたものであってもよい。 (c) 架橋性モノマー は、1種単独でまたは2種以上を組み合わせて使用する ことができる。

【0031】次に、(d)成分である無機充填材につい て説明する。この(d)無機充填材は、架橋ゴムを補強 して強度を向上すると共に、配合量によりソリッドゴル フボールの重さを調整することができる。無機充填材と しては、具体的に、酸化亜鉛、硫酸パリウム、シリカ、 アルミナ、硫酸アルミニウム、炭酸カルシウム、ケイ酸 アルミニウム、ケイ酸マグネシウムなどを挙げることが*

- (a) 未変性または変性ポリブタジエンゴム
- (b) 上記(a) 成分以外のジエン系ゴム

*できる。なかでも、酸化亜鉛、硫酸バリウム、シリカの 使用が好ましい。これらの無機充填材は、1種単独でま たは2種以上を組み合わせて使用することができる。

【0032】次に(e)成分である有機過酸化物につい て説明する。本発明のゴム組成物に配合される有機過酸 化物は、(a)成分および(b)成分からなるゴム成 分、ならびに(c)架橋性モノマーの、架橋反応、グラ フト反応、重合反応などの開始剤として作用する。有機 過酸化物の好適な具体例として、例えばジクミルパーオ 10 キサイド、1,1-ビス(t-ブチルパーオキシ)-3, 3, 5-トリメチルシクロヘキサン、2, 5-ジメ チルー2, 5-ジー(t-ブチルパーオキシ) ヘキサ ン、1,3-ビス(t-ブチルパーオキシーイソプロピ

【0033】本発明のゴム組成物に含有される上記成分 (a)~(e)の量割合は、以下のとおりである。

> 50~100重量部 好まし くは50~90重量部 50~0重量部、好ましくは 50~10重量部

ル) ベンゼンなどが挙げられる。

ここで、(a)成分と(b)成分との合計量は100重量部である。

- (c)架橋性モノマー
- (d)無機充填材
- (e) 有機過酸化物 疵

虽

【0034】(a)~(e)成分の含有割合が上記の範 囲にあることにより、本発明のゴム組成物から、飛距 離、耐久性および打球感に優れるソリッドゴルフボール が得られる。

【0035】本発明のゴム組成物には、上記(a)~ (e) 成分の他に、所望により、酸化亜鉛などの架橋助 剤;ステアリン酸などの滑剤;酸化防止剤などを配合し てもよい。

【0036】本発明のゴム組成物から、架橋、成形され て製造されるソリッドゴルフボールの代表例を図面を参 40 照しつつ説明する。図1は、ワンピースソリッドゴルフ ボールを示す概略断面図であり、図1中、1は本体部分 で、1 a はディンブルである。本体部分1は、ゴム質 (すなわち、本発明のゴム組成物の架橋成形体からなる ゴム質)により構成されている。

【0037】図2は、ツーピースソリッドゴルフボール を示す概略断面図である。11はコアー、12はカバー であり、このカバー12は上記コアー11を被覆してい る。そして、12aはディンプルである。コアー11は ゴム質から構成されている。

10~50重量部、好ましく は10~40重量部 20~80重量部、好ましく は20~70重量部

より好ましくは0.2~5重 部

好ましくは、0.1~6重量

【0038】図3は、スリーピースソリッドゴルフボー ルを示す概略断面図であり、21は内層コアー、22は 外層コアーで、23はカバーであり、23aはディンプ ルである。このスリーピースソリッドゴルフボールで・ は、内層コアー21と外層コアー22とでソリッドコア ーを構成している。上記内層コアー21あるいは外層コ アー22が、または内層コアー21と外層コアー22の 両方がゴム質により構成されている。またスリーピース ソリッドゴルフボールの外層コアー22の密度は、内層 コアー21のそれよりも大であることが飛距離、回転数 保持性の点で好ましい。例えば外層コアー22にW2O5 などの比重の大きい充填材を配合し、内層コアー21に ZnO2などの比重の小さい充填材を配合することによ り上記のようにすることができる。

【0039】次に、本発明のゴム組成物を用いて、ソリ ッドゴルフボールを製造成する方法を説明する。まず、 ワンピースソリッドゴルフボールの本体部分、ツーピー スソリッドゴルフボールのコアーおよびスリーピースソ リッドゴルフボールの内層コアーは、それぞれに応じ、

50 本発明のゴム組成物を所定の金型に入れ、プレスにより

架橋成形される。架橋条件としては、130~180℃ の温度で、10~50分間であることが好ましい。この 架橋成形時の温度は、2段階以上変えてもよい。スリー ピースソリッドゴルフボールでは、上記のようにして得 られた内層コアーの外側に外層コアー用ゴム組成物を所 望の厚みにシート状にしたものを貼りつけてプレスで架 橋成形することによって2層構造のソリッドコアーを形 成することができる。なお、スリーピースソリッドゴル フボールでは、内層コアーおよび外層コアーのそれぞれ に用いられるゴム組成物の少なくともいずれかが本発明 10 のゴム組成物であればよいが、両者とも本発明のゴム組 成物であることが好ましい。

【0040】ツーピースソリッドゴルフボールおよびス リーピースソリッドゴルフボールのカバーは、アイオノ マー樹脂などを主材とする樹脂成分に、必要に応じて二 酸化チタンなどの無機白色顔料、光安定剤などの添加剤 を適宜配合したカバー用組成物を上記コアーに被覆する ことによって形成される。被覆にあたっては、通常イン ジェクション成形法が採用されるが、これに制限されな ٧١

【0041】また、ワンピースソリッドゴルフボールに おいては本体部分の成形時に、ツーピースソリッドゴル フボールやスリーピースソリッドゴルフボールにおいて はカバーの成形時に、必要に応じて、所望のディンプル が形成される。

【0042】フォーピースソリッドゴルフボールも、ス リーピースソリッドゴルフボールと同様にして、本発明 のゴム組成物から製造することができる。

[0043]

ď

が、本発明の範囲は実施例に制限されるものではない。 【0044】〔変性または未変性ポリブタジエンゴムの 合成例)

合成例1(変性ポリブタジエンゴム(A)(HPB (A))の合成)

窒素素置換した内容積5Lのオートクレーブに、窒素下 シクロヘキサン2.5 kg、1,3-ブタジエン300 gを仕込んだ。これらに、あらかじめオクタン酸ネオジ ム(0.18mmo1) およびアセチルアセトン(0.3 7 mm o 1)を含んだシクロヘキサン溶液、メチルアル モキサン (18.5 mmol) のトルエン溶液、水素化 ジイソプチルアルミニウム (3.9 mmol) のシクロ ヘキサン溶液および塩化ジエチルアルミニウム(0.37 0mmo1)のシクロヘキサン溶液を混合し、ネオジム の5倍量の1、3ープタジエンと25℃で30分間反応 熟成させた触媒を仕込み、50℃で30分間重合を行っ た。1,3-ブタジエンの反応転化率は、ほぼ100% であった。次いで、重合溶液の温度を50℃に保ち、ジ オクチルスズビスオクチルマレート(5.40mmo1) を添加した。その後、30分間放置し、2,4-ジーt ープチルーpークレゾール1.5gを含むメタノール溶 液を添加し、重合停止後、スチームストリッピングによ り脱溶媒し、110℃のロールで乾燥し、重合体を得 た。この重合体のムーニー粘度 (ML1+4 、 100℃) は45、シス-1,4-結合含量は97.8%、1,2 -ビニル結合含量は1.0%、Mw/Mnは2.1であ

10

【0045】 上記合成例1とほぼ同様な方法で、変性 ポリブタジエンゴム(B)(HPB(B))、変性ポリブタジ エンゴム(C)(HPB(C))、および変性ポリブタジエン ゴム(E)(HPB(E))を合成した。使用した末端変性剤 を表1に示す。また合成例1において、末端変性剤を使 用しないこと以外は、ほぼ同様な方法で未変性ポリブタ ジエンゴム(D)(PB(D))を合成した。 なお、上記HP 【実施例】以下実施例により本発明を具体的に説明する 30 B(E)は、Mw/Mnが5.1と大きく、比較の変性ポ リブタジエンゴムである。これらの変性、未変性ポリブ タジエンゴムの物性を表1に示す。

[0046]

【表1】

った。

ポリプタジ	нрв	нрв	нрв	РВ	HPB	B R 11
エンゴム	(A)	(B)	(c)	(D)	(E)	
重合条件						
重合触媒	NdX	Жbи	Жbи	N d 🛠	K b M	NIX
変性剤	Sn	Sn	MDI	未变性	Sn	未変性
物性						
A粘度	4.5	44	47	4 5	46	4 3
シス合量	97.8	97. 1	97. 6	97. 6	97.4	96
ピニル含量	1	1.1	0.9 1		1. 2	2.5
Mw/Mn	2. 1	2. 7	3.3	2.8	5. 1	4. 7

BR11:日本合成ゴム社製

Sn : ジオクチルスズピスオクチルマレート

MD1:ポリメリックタイプのジフェニルメタンジイソシアナート

【0047】(実施例1~8および比較例1~3)上記表1に示す各種ポリブタジエンを用い、該ポリブタジエンを下記表2に示す配合で、ジアクリル酸亜鉛、酸化亜 20鉛、ジクミルパーオキサイドおよび酸化防止剤をロール*

*で混練し、得られたゴム組成物を150℃で30分間加 圧架橋成形して、直径38.5mmのコアーを得た。

[0048]

【表2】

		実 施 例							比	較	例
	1	2	3	4	5	6	7	8	1	2	3
ポリブタジエンゴム											
HPB (A)	100	60									
HPB (B)			100	60							
нрв (с)					100	60		1			
PB (D)							100	60			İ
HPB (E)									100	60	
BRII				40		40		40		40	100
ジアクリル酸亜鉛	25	25	25	25	25	25	25	25	25	25	25
酸化亜鉛	22	22	22	22	22	22	22	22	22	22	22
ジクミルパーオキシド	1. 8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1. 8	1.8
酸化防止剂	0. 5	0.5	0. 5	0. 5	0.5	0.5	0. 5	0. 5	0. 5	0. 5	.0.5

酸化防止剤:ヨシノックス 425(商品名、吉富製薬社製)

【0049】次に、得られたコアーにアイオノマー樹脂(商品名:サーリン、デュポン社製)100重量部と二酸化チタン2重量部との混合物からなるカバー用組成物をインジェクション成形法で被覆してカバーを形成し、外径42.7mmのツーピースソリッドゴルフボールを作製した。なお、比較例1および2のゴルフボールは、ポリブタジエンゴムとして、ネオジウム系触媒を用いて重合し、且つ末端変性剤で変性して得られたものではあるが、Mw/Mn=5.1と分子量分布が広い変性ポリブタジエンゴム(E)(HPB(E))を用いて作成したものである。比較例3は、従来の標準的なツーピースソリッドゴルフボールである。

【0050】得られたツーピースソリッドゴルフボール 40 について、その重量、コンプレッション(PGA表示)、ボール初速、飛距離およびハンマリング耐久性を 測定した。その結果を表3に示す。また、得られたゴルフボールをトッププロ10人によりウッド1番クラブで 実打して、その打球感を調べた。その結果も表3に併せて示す。

【0051】上記ボール初速、飛距離およびハンマリング耐久性の測定方法ならびに打球感の評価方法は次に示す通りである。

(1) ボール初速:ツルーテンバー社製スイングロボッ 50 トにウッド1番クラブを取り付け、ボールをヘッドスピ ード45m/秒で打撃し、その時のボール初速(m/ 秒)を測定した。

- (2) 飛距離:ツルーテンパー社製スイングロボットに ウッド1番クラブを取り付け、ボールをヘッドスピード 4 5 m/秒で打撃した時のボールの落下点までの距離 (ヤード) を測定した。
- (3) ハンマリング耐久性:ボールを45m/秒の速度 で衝突板に繰り返し衝突させ、ボールが破壊するまでの 衝突回数を調べ、比較例3のボールが破壊するまでの回 数を100とした指数で示した。
- (4) 打球感の評価方法:トッププロ10人による実打 テストで評価した。打球感の評価にあたっては、従来の*

* 標準的なツーピースソリッドゴルフボールである比較例 3のボールを比較の対象として打球感を評価した。 評価基準は次の通りであり、評価結果を表中に表示する 際も同様の記号で表示するが、その場合は評価にあたっ た10人のうち8人以上が同じ評価を下したことを示し ている。

14

評価基準:

〇: 比較例3のボールより打球感がソフトで良い。

Δ: 比較例3のボールと打球感が同等である。

10 ×: 比較例3のボールより打球感が硬くて悪い。

[0052]

【表3】

		実 施 例							比	例	
	1	2	3	4	6	6	7	В	1	2	3
放量 (g)	45. 5	45.4	45. 5	45. 5	45. 5	45. 6	45. 4	45. 5	45. 5	45. 6	45. 4
コンプ レッション (PGA)	90	90	91	90	91	90	91	90	89	90	90
ボール初速(m/秒)	67. 6	56. 9	66. 5	66. 1	66. 5	66. 2	65. 6	65. 2	64. 5	64. 2	63. 5
飛距離 (ヤード)	236	234	233	231	233	232	230	228	226	225	222
ハンマリング耐久性*	153	144	141	138	140	137	132	126	119	115	100
打球感	0	0	0	0	0	0	0	0	0	0	-

*比較例3を100とした指数

【0053】表3に示されるの結果から、実施例1~8 のボールは、比較例1~2のボールに比べて、飛距離が 大きく、かつ耐久性が優れており、しかも従来の標準的 ツーピースソリッドゴルフボールである比較例3のボー ルに比べて、打球感が良好であった。

【0054】 (実施例9~16および比較例4~6)表 4に示す配合の配合材料をニーダーおよびロールで混練 30 来の標準的なワンピースソリッドゴルフボールである。 してゴム組成物を調製し、得られたゴム組成物を金型に 充填して168℃で25分間加圧架橋成形して、外径4

2. 7 mmの一体成形の架橋成形体からなるワンピース※

※ソリッドゴルフボールを作製した。なお、比較例4およ び5のゴルフボールは、ポリブタジエンゴムとして、ネ オジウム系触媒を用いて重合し、日つ末端変性剤で変性 して得られたものではあるが、Mw/Mn=5.1と分 子量分布が広い変性ポリブタジエンゴム (E) (HPB (E))を用いて作成したものである。比較例6は、従 [0055]

【表4】

		実 施 例							比	較	91
	9	10	11	12	13	14	15	16	1	2	3
ポリブタジエンゴム											
HPB (A)	100	60									
нрв (в)			100	60							
HPB (C)					100	60					
PB (D)							100	60			
HPB (E)									100	60	
B R 11				40		40		40		40	10
ジアクリル酸亜鉛	23	23	23	23	23	23	23	23	23	23	23
酸化亜鉛	25	25	25	25	25.	25	25	25	25	25	25
ジクミルパーオキシド	0.6	0, 6	0. 6	0.6	0.6	0. 6	0. в	0.6	0.6	0.6	0.

15

【0056】得られたワンピースソリッドゴルフボールについて、上記実施例1と同様に、重量、コンプレッション(PGA)、ボール初速、飛距離(キャリー)、ハンマリング耐久性を測定し、打球感を評価した。その結果を表5に示す。ただし、打球感の評価にあたっては、*

16
* 従来の標準的ワンピースソリッドゴルフボールである比較例6のボールを比較の対象とした。

[0057]

【表5】

		実 施 例							比	較	例
	9	10	11	12	13	14	15	16	4	5	6
盤量 (g)	45. 5	45. 4	45. 5	45. 5	45. 5	45. 4	45. 4	45. 5	45. 5	45. 5	45. 4
コンプ レッション (PGA)	81	80	81	80	81	81	81	80	78	80	90
ポール初速(m/秒)	63. 3	63	62. 5	62. 1	62. 4	62. 1	61.7	61.3	60. 8	60.5	60
飛距離 (ヤード)	222	221	219	217	218	217	216	215	213	212	210
ハンマリング跗久性*	152	147	144	141	144	140	136	131	119	114	100
打球略	0	0	0	0	0	0	0	0	0	0	-

*比較例6を100とした指数

【0058】表5に示された結果から明らかなように、これらのワンピースソリッドゴルフボールにおいても、実施例9~16のゴルフボールは、比較例4、5のゴルフボールに比べて、飛距離が大きく、且つ耐久性が優れ、しかも従来の標準的ワンピースソリッドゴルフボールである比較例6のゴルフボールに比べて、打球感が良好であった。

[0059]

【発明の効果】本発明のソリッドゴルフボールは、打球 感が良好で、飛距離が大きく、且つ耐久性に優れてい る。

【図面の簡単な説明】

【図1】 ワンピースソリッドゴルフボールの一例を示

す概略断面図である。

【図2】 ツーピースソリッドゴルフボールの一例を示す概略断面図である。

20 【図3】 スリービースソリッドゴルフボールの一例を示す概略断面図である。

【符号の説明】

1		•	本体部分
1 a,	12a,	23 a	デインプル
11			コアー
21			内層コアー
22			外層コアー
12,	2 3		カバー

[図1] 【図2】 【図3】

