УДК 536.24:621.039.553.34

ВЛИЯНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ СФЕРОИДАЛЬНЫХ ЭЛЕМЕНТОВ РЕЛЬЕФА И СХЕМЫ ИХ РАСПОЛОЖЕНИЯ НА ТЕПЛОВУЮ ЭФФЕКТИВНОСТЬ ПЛАСТИНЧАТОЙ ПОВЕРХНОСТИ ТЕПЛООБМЕНА

В.Т. Буглаев, А.А. Анисин

Брянский государственный технический университет, г. Брянск

Приводятся результаты экспериментальных исследований теплоаэро-динамических характеристик опытных вариантов профильной пластинчатой поверхности теплообмена с различной геометрией проходных сечений смежных каналов и оценивается их тепловая эффективность.

Интенсификация процессов конвективного теплообмена, направленная на улучшение работы существующих и создание перспективных экономичных и надежных теплообменных аппаратов, является важной задачей технического развития в условиях стремительно нарастающего дефицита энергетических ресурсов.

Одним из направлений в производстве компактных и эффективных теплообменников является использование высокотехнологичных пластинчатых поверхностей теплообмена с различными оптимальными геометрическими формой и параметрами элементов рельефа, обеспечивающими высокий уровень теплоотдачи в каналах со сложной конфигурацией. Положительным технологическим резервом пластины с профильной поверхностью является также возможность ее применения при изготовлении круглых сварных труб с рациональными типом и формой пристенных интенсификаторов. Поэтому поиск и исследование поверхностей с эффективной геометрической формой рельефа и нестандартными компоновочными решениями в конструкции теплообменных аппаратов представляют научный и практический интерес.

Одной из ряда заслуживающих внимания эффективных профильных поверхностей является пластинчатая поверхность теплообмена с шахматной и коридорной схемами расположения двухсторонних сфероидальных элементов. Поверхность имеет высокие теплогидродинамические характеристики и отличается технологичностью и многовариантностью компоновки пластин в матрице теплообменного аппарата, а также возможностью трансформации в трубчатую поверхность с шероховатостью в виде сфероидальных выступов и впадин со значительным интенсифицирующим тепловым эффектом [1-4]. Из анализа работ по исследованию поверхности с указанным типом рельефа выявлено предпочтение использования компоновок пластин с контактирующими вершинами сфероидальных элементов (рис. 1), что объясняется положительными конструктивными особенностями теплообменника с нагруженным корпусом и

высокими тепловыми показателями поверхности сетчато-поточного типа [1, 2]. Актуальность вопросов более глубокого и подробного исследования ее характеристик и возможностей широкого практического использования в теплообменных устройствах различного назначения приобретает большую значимость в связи с пристальным вниманием к применению с целью интенсификации теплообмена в пристенной области с максимальным поперечным градиентом температуры интенсификаторов различного конструктивного исполнения и формы: цилиндрических, сферических, призматических выступов и выемок с различным расположением относительно направления потока. Активный интерес, судя по количеству публикаций, был проявлен к исследованиям особенностей интенсификации теплообмена с помощью сферических выемок (углублений) на гладкой поверхности, продемонстрировавшим высокую энергетическую эффективность поверхности теплообмена и перспективу возможного использования различных вариантов такого рельефа [5]. Вместе с тем следует отметить, что теплофизические свойства и «чистота» теплоносителей, геометрические параметры с жесткими допусками и особенностями технологии профилирования поверхности со сферическими выемками с наиболее рациональной относительной глубиной $h/d \le 0,1...0,2$, область использования и условия эксплуатации, обслуживание и режимный диапазон чисел *Re*, обеспечивающий проявление теплового эффекта, а также необходимость дальнейших исследований и уточнения зависимостей для расчета теплоотдачи и гидродинамического сопротивления в каналах с системой сферических выемок накладывают определенные существенные ограничения их широкого применения. Очевидно и то, что опытная пластинчатая поверхность теплообмена с двухсторонними сфероидальными выступами и впадинами с эффектными результатами испытаний ее теплогидродинамических характеристик, положившая начало представительному ряду публикаций по интенсификации теплообмена в плоских щелевых каналах с помощью сферических выемок (углублений, лунок), является, по существу, аналогом указанных интенсифицирующих теплообмен элементов рельефа поверхности [6].

Сложная геометрия проходных сечений каналов различных компоновок пластинчатой поверхности с двухсторонними сфероидальными элементами синтезирует в структуре отрывного потока особенности продольного течения в канале (внутренняя задача) и внешнего поперечного обтекания элементов рельефа, формирующие существенно трехмерный характер движения теплоносителя. Положительным качеством поверхности с шахматной схемой расположения выступов и впадин при равновеликой штамповке является также наличие по обеим сторонам пластины неизменной по потоку величины проходного поперечного сечения, что уменьшает склонность к загрязнению поверхности теплообмена и улучшает условия «самообдувки» в каналах смежных теплоносителей при различной ориентации элементов рельефа относительно направления движения потока [2]. При этом определенным недостатком теплообменных аппаратов с указанной компоновкой является одинаковая величина проходных сечений каналов для разных по физическим свойствам и рабочим параметрам теплоносителей по обеим сторонам профильного листа (рис. 1, I-III a). Особенно остро этот недостаток проявляется в теплообменниках с большими расходами и разной плотностью газообразных теплоносителей в условиях массогабаритных ограничений, предъявляемых к аппаратам энергетических установок, когда не всегда удается обеспечить рациональные соотношения расходов и скоростей для смежных теплоносителей за счет различных схем включения и комбинирования каналов рабочих сред без ухудшения массовых и объемных характеристик теплообменных аппаратов [7]. Возможность реализации компоновок теплообменной поверхности с разными проходными сечениями для теплоносителей, отличающихся между собой по

* - газовый теплоноситель

Рис. 1. Проходные сечения каналов опытных пластинчатых теплообменников с шахматной (I) и коридорной (II) схемами расположения элементов рельефа поверхности: а) - равновеликие сечения смежных каналов; 6), в) - разновеликие сечения смежных каналов; III - геометрия профилирующих элементов: а) - при разновеликих смежных каналах; б), в) - при разновеликих каналах

физическим свойствам и давлениям рабочих сред, может быть достигнута при использовании поверхности с разновеликой выштамповкой или компоновок поверхности с промежуточными (между теплоотдающими поверхностями) профильными листами [8, 9].

Как было показано в [10] на примере расчета пластинчатого регенератора ГТУ, с увеличением относительной глубины равновеликой штамповки h/t увеличиваются проходные сечения каналов ($s_1 = s_2$) и объем теплообменного аппарата, но вместе с тем уменьшается площадь поверхности теплообмена, число профильных пластин матрицы и ее масса и, следовательно, сокращается стоимость материала и трудозатрат на изготовление теплообменника, определяющие экономическую целесообразность применения поверхности с большой глубиной штамповки сфероидальных элементов h. С изменением геометрических параметров штамповки пластинчатой поверхности теплообмена изменяется и соотношение основных размеров матрицы теплообменника: ширины, высоты, длины ($B \times H \times L$).

Повышение относительной глубины h/t, обусловленное увеличением абсолютной глубины штамповки h и уменьшением шага расположения профильных элементов поверхности t, в значительной мере определяется соотношением диаметров профилирующих сфероидальных элементов d_1/d_2 , а также пластическими прочностными характеристиками материала пластин. В отличие от равновеликой штамповки $(r_1=r_2)$ (рис.1, III а) профилирование поверхности с противоположных сторон пластины штампующими элементами с разными радиусами сферы (разновеликая штамповка (r/R<1)) позволяет изменить соотношение проходных сечений для смежных теплоносителей и обеспечить $s_2/s_1>1$ (рис.1, III 6; рис. 2 а).

Однако результаты расчета величины отношения проходных сечений каналов для смежных теплоносителей по обеим сторонам пластины с шахматным расположением профильных элементов, приведенные на рис. 2 в виде зависимостей $s_2/s_1=f(r,R,h,t)$ [8], и пробная штамповка поверхности теплообмена из стали 1X18H9T толщиной $\delta=0,25$ мм показали проблематичность практической реализации соотношения $s_2/s_1>1,5$ при r/R=0,2...0,5, т.к. растяжение металла выходит за пределы пластической деформации.

Один из возможных вариантов повышения относительной глубины h/t и достижения более высоких значений соотношения s_2/s_1 может быть осуществлен при использовании при штамповке с одной из сторон пластины профилирующих цилиндрических элементов с диаметром $d_2 \ge d_1$, со сферической сегментной головкой и радиусом сферы $R > (d_2/2)$, обеспечивающих при этом условие $0.5(d_1+d_2) < t$ (рис.1, III в).

Для оценки аэродинамических характеристик опытной пластинчатой поверхности были проведены испытания моделей теплообменников с разновеликими проходными сечениями ($s_2/s_1 < 1$) для смежных теплоносителей по обеим сторонам пластин с шахматной и коридорной схемами расположения и различной формой профильных выступов и впадин: сфероидальных и сегментных, образованных цилиндрическими штампующими элементами с радиусом сферы рабочей части соответственно r=2,5 мм и R=15 мм. Глубина штамповки элементов рельефа на пластинах из стали 1X18H9T толщиной δ =0.25 мм с шахматной схемой расположения составляла h=4,3 мм при величине шага чередования выступов и впадин t_{uu} =10 мм, с коридор-

ной схемой — h_{κ} =4,1 мм и $t_{\kappa}=t_{w}\sqrt{2}=10\sqrt{2}=14,14$ мм (квадратное расположение выступов или впадин). Площадь проекции профильной части пластин равнялась 100×210 мм². В качестве теплоносителя использовался воздух. Основные геометрические характеристики исследованных вариантов пластинчатой поверхности теплообмена представлены на рис.1 и в табл. 1.

Таблица 1
Геометрические характеристики исследованных вариантов поверхности теплообмена

Номер опытного теплообменника	Компоновка поверхности теплообмена на рис. 1	Шаг профильных элементов поверхности $t_{\text{u}}(t_{\text{k}})$, мм	Соотношение радиусов рабочей поверхности штампующих элементов r/R	Относительная глубина штамповки h/t	
1	Iб	10	2,5/15	4,3/10 = 0,43	
2	Ιв	10	15/2,5	4,3/10 = 0,43	
3	ΙΙ б	10√2	2,5/15	$4,1/10\sqrt{2}=0,29$	
4	Ив	10√2	15/2,5	$4,1/10\sqrt{2}=0,29$	
5	la	10	4,75/4,75	4,45/10 = 0,445	
6	II a	10√2	4/4	$4,3/10\sqrt{2} = 0,3$	

Конструктивные и технологические особенности изготовления пластинчатой поверхности и опытных теплообменников, описание экспериментальной установки в виде аэродинамической трубы разомкнутого типа, работающей на всасывание от вентилятора низкого давления, а также методика исследования пластинчатой повер-

хности теплообмена со сфероидальными элементами приведены в [2].

Результаты проведенных исследований средней величины теплоотдачи и аэродинамического сопротивления опытных теплообменников с различными вариантами рельефа поверхности теплообмена приведены на рис. 3 и 4 в виде зависимостей $Nu_h=f(Re_h)$ и $Eu_L=f'(Re_h)$ и в табл. 2 в виде коэффициентов и показателей степени критериальных уравнений теплоотдачи $Nu_h=a\mathrm{Re}_h^n$ и сопротивления $Eu_L=b\mathrm{Re}_h^{-m}$, где $Nu_h=\alpha h/\lambda$, $Eu_L=\Delta p/\rho w^2$, $\mathrm{Re}_h=wh/\nu$.

Рис. 3. Теплоотдача опытных вариантов пластинчатой поверхности теплообмена: ϕ - 1; - - 2; \Diamond - 3; - - 4; - - 5; O - 6 (1 – 6 – табл. 1, 2)

Рис. 4. Сопротивление опытных вариантов пластинчатой поверхности теплообмена: ϕ - 1; ϕ - 2; \Diamond - 3; \odot - 4; \bullet - 5; O - 6 (1 - 6 - табл. 1, 2)

Для сравнения энергетической эффективности поверхности теплообмена с различными вариантами рельефа в табл. 1, 2 (п. 5 и 6) и на рис. 3 и 4 приведены также геометрические характеристики и результаты испытаний теплоаэродинамических показателей компоновок поверхности с равновеликими проходными сечениями смежных каналов, с наиболее близкими к представленным вариантам поверхности с разновеликими проходными сечениями, значениями глубины штамповки сфероидальных элементов рельефа h_{ω} =4,45 мм и t_{w} =10 мм (п. 5) с шахматной схемой расположения (по данным [2]) и h_{κ} =4,3 мм и t_{κ} =14,14 мм - с коридорной (п. 6) (по [3]).

В качестве определяющих параметров при обработке опытных данных принимались значения средних величин: температуры потока воздуха t_f , скорости в поперечном сечении воздушного канала (соответствующей величине скорости и в поперечном сечении компоновок поверхности шахматным расположением равновеликих по обеим сторонам листа сфероидальных элементов), глубины сфероидальных выступов и впадин h. Температура стенки t_{ϖ} принималась равной средней температуре горячей воды в водяных элементах матрицы теплообменника ввиду незначительного термического сопротивления стенки, а также термического сопротивления водяной

Таблица 2

Коэффициенты и показатели степени критериальных уравнений теплоотдачи и сопротивления опытных вариантов пластинчатой поверхности теплообмена

Номер опытного теплообменника	Теплоотдача		Сопротивление		Диапазон изменения
	а	n	b	m	чисел Рейнольдса Re _{1 · · ·} Re _{кр} , Re _{кр · · ·} Re ₂
1	0,000977	1,4	478,63	0,27	300 950
	0,02138	0,95			950 10000
2	0,0051	1,13	19,055	0,2	300 1013
	0,1	0,7			1013 10000
3	0,0035	1,13	45,7	0,2	300 819
	0,0229	0,85			819 10000
4	0,003169	1,13	7,586	0,17	300 926
	0,0302	0,8	7,560		926 10000
5	0,03208	0,875	89,12	0,25	900 10000
6	0,00359	1,13	13,0	0,1	300 1223
	0,022	0,875			1223 10000

стороны. Теплофизические свойства воздуха ρ , λ , ν - определялись по среднеарифметическим величинам давления и температуры потока, измеряемым на входе и выходе каналов теплообменников. При этом величина давления является полным гидродинамическим сопротивлением матрицы, включающим в себя входные и выходные потери, потери на трение и потери, связанные с формой сечения воздушных каналов. При определении коэффициента теплоотдачи плотность теплового потока рассчитывалась по площади проекции профильной части теплоотдающей пластины.

Из рис. 3 следует, что величина теплоотдачи поверхности каналов с разновеликими проходными сечениями, образованными профильными элементами рельефа глубиной $h_{ul}=4$,3 мм с соотношением радиусов контактирующих участков сегментной и сфероидальной поверхности выступов r/R=2,5/15 и R/r=15/2,5 с шахматной схемой их расположения (табл.1, 2, п. 1, 2), выше, чем для однотипной поверхности с коридорной схемой расположения профильных элементов рельефа (табл. 1, 2, п. 3, 4), имеющих глубину штамповки $h_{\kappa}=4$,1 мм ($h_{ul}/h_{\kappa}=1$,04). Так, при числе Рейнольдса $Re=5\cdot10^2$ (Nu_{ul}/Nu_{κ})_{2,5/15}=1,495; (Nu_{ul}/Nu_{κ})_{15/2,5}=1,609; при $Re=5\cdot10^3$ (Nu_{ul}/Nu_{κ}) Nu_{κ})_{2,5/15}=2,188; (Nu_{ul}/Nu_{κ})_{15/2,5}=1,413.

Соотношения интенсивности теплоотдачи поверхности с равновеликими проходными сечениями с шахматным расположением профильных элементов глубиной h=4,45 мм (табл. 1,2, п.5) и опытных вариантов поверхности с разнопроходными сечениями смежных каналов (табл. 1, 2, п. 1, 2) при $Re=5\cdot10^3$ составляют ($Nu_p/Nu_{2,5/15}$) $_{u}=0,792$, ($Nu_p/Nu_{15/2,5}$) $_{u}=1,42$. Для соответствующих поверхностей с коридорным расположением профильных элементов рельефа (табл. 1, 2, п. 3, 4, 6) указанные соотношения равняются ($Nu_p/Nu_{2,5/15}$) $_{\kappa}=1,19$, ($Nu_p/Nu_{2,5/15}$) $_{\kappa}=1,38$. При этом глубина равновеликих сфероидальных элементов $h_p=4,3$ мм (табл. 1, 2, п.6). Как видно на рис. 3, величина теплоотдачи поверхности опытных каналов с шахматным расположением элементов рельефа, сфероидальных выступов с радиусом r=2,5 мм или сегментных с R=15 мм заметно различается при числе Рейнольдса Re>455 (рис. 1; табл. 1, 2, п. 1, 2). Причем интенсивность теплоотдачи в каналах с контактирующими поперечно обтекаемыми сегментными выступами существенно выше, чем интенсивность теплоотдачи в каналах с поперечно обтекаемыми сфероидальными выступами со значительно меньшей степенью загромождения сечения, обусловленной геометрической

формой и размерами профильных элементов. Так, при числе Рейнольдса $Re=5\cdot10^2$ соотношение величины теплоотдачи поверхностей с различными комбинациями радиусов контактирующих выступов (табл. 1, п. 1, 2), при $Re=5\cdot10^3$ - $Nu_{2,5/15}/Nu_{15/2,5}=1,798$. При этом для указанных вариантов поверхности теплообмена значения показателя степени n в уравнении подобия теплоотдачи $Nu=aRe^n$ различаются, как и значения критического числа Рейнольдса, соответствующего точке излома зависимостей по теплоотдаче, отделяющей границу переходного и развитого турбулентного режимов течения. Для варианта поверхности с комбинацией r/R=2,5/15 (табл. 1, 2, п. 1) n=1,4 и 0,95 при $Re_{\kappa p}=950$. Для варианта поверхности с R/r=15/2,5 (табл. 1, 2, п.2) - R=1,13 и 0,7 при $Re_{\kappa p}=1013$, что характеризует более интенсивный процесс теплоотдачи поверхности в каналах с сегментными выступами (1) по сравнению со смежными каналами поверхности со сферическими выступами меньшего радиуса r=2,5 мм (2).

Для соответствующих вариантов (3, 4) пластинчатой поверхности с коридорной схемой расположения выступов и впадин (элементов рельефа) указанные соотношения интенсивности теплоотдачи составляют при $Re=5\cdot 10^2~Nu_{2,5/15}/Nu_{15/2,5}=1,104$, при $Re=5\cdot 10^3~Nu_{2,5/15}/Nu_{15/2,5}=1,161$, что показывает слабое влияние геометрии профильных элементов при линейном их расположении на изменение теплоотдачи поверхности при различных режимах движения потока и степени загромождения проходного сечения. При этом значения n=1,13 и 0,85 при $Re_{\kappa p}=819$ для варианта поверхности с r/R=2,5/15 (табл. 1, 2, п. 3) и n=1,13 и 0,8 при $Re_{\kappa p}=926$ для варианта поверхности с R/r=15/2,5 (табл. 1, 2, п. 4) указывают на более интенсивный процесс теплоотдачи и более ранний переход режима течения в каналах с сегментными выступами и вместе с тем согласуются по величине показателя степени n с характерным для потока в гладких каналах значением n=0,8, отражающим преобладание «внутреннего» характера течения.

Сложные проходные сечения каналов опытных теплообменников с разной геометрической формой контактирующих элементов рельефа с шахматной и коридорной схемами расположения обеспечивают различный уровень теплоотдачи, обусловленный турбулизацией потока путем реализации прежде всего эффекта внешнего поперечного обтекания профильных выступов, моделирующих при их взаимном контакте трубчатую поверхность с переменным по высоте и разным по величине радиусом образующей в условиях внутренней задачи, и за счет гидродинамических процессов в сфероидальных впадинах. И в этом плане, как и в поперечно обтекаемых пучках круглых цилиндрических труб, пластинчатая поверхность с шахматной схемой расположения контактирующих профильных элементов разной формы имеет более высокую интенсивность теплоотдачи по сравнению с поверхностью с коридорным расположением элементов рельефа.

Анализируя представленные на рис. 4 опытные данные по сопротивлению исследованных вариантов пластинчатой поверхности в виде графических зависимостей Eu=f'(Re), следует отметить их значительные различия по величине сопротивления, обусловленные геометрическими параметрами рельефа и степенью загромождения проходного сечения соответствующих экспериментальных каналов. Величина сопротивления опытных вариантов поверхности с разновеликими проходными сечениями смежных каналов, образованными профильными элементами с шахматной схемой расположения (табл. 1, 2, п. 1, 2), не только превосходит величину сопротивления подобных вариантов поверхности с коридорной схемой расположения (табл. 1, 2, п. 3, 4) элементов рельефа, но и значительно различается для вариантов поверхности с разными комбинациями контактирующих сегментных и сфероидальных выступов с r/R=2,5/15 и R/r=15/2,5 (табл. 1, 2, п. 1, 2) с указанной шахматной схемой рас-

положения, обеспечивающих среднюю величину отношения проходных сечений смежных каналов $s_2/s_1\approx 1,5$.

При значении числа Рейнольдса $Re=5\cdot 10^2$ ($Eu_{\it w}/Eu_{\it \kappa}$)_{2,5/15}=6,779; ($Eu_{\it w}/Eu_{\it \kappa}$)_{15/2,5}=2,085; при $Re=5\cdot 10^3$ ($Eu_{\it w}/Eu_{\it \kappa}$)_{2,5/15}=5,77; ($Eu_{\it w}/Eu_{\it \kappa}$)_{15/2,5}=1,945. В то же время при $Re=5\cdot 10^3$ ($Eu_{2,5/15}/Eu_{15/2,5}$) $_{\it w}=13,8$.

Соотношение значений сопротивления вариантов поверхности с коридорной схемой расположения и разными комбинациями контактирующих сегментных и сфероидальных выступов с r/R=2.5/15 или R/r=15/2.5 при $Re=5\cdot10^3$ составляет ($Eu_{2.5/15}/Eu_{15/2.5}$) $_{\kappa}=4.66$. Варианты поверхности с коридорной схемой расположения профильных элементов отличаются непостоянством проходного сечения каналов по ходу потока из-за образующихся двуугольных овальных диафрагменных сужений (между контактирующими выступами) высотой h, периодически расширяющихся в вертикальной плоскости высотой 2h в пределах шага их чередования t_{κ} (рис. 1). Поэтому величина отношения средних проходных сечений смежных каналов вариантов поверхности с коридорным расположением профильных элементов составляет $s_2/s_1\approx 1.5$ (для узких проходных сечений смежных каналов $s_2/s_1\approx 2$).

Соотношения величины сопротивления опытных поверхностей с равновеликими проходными сечениями (табл. 1, 2, п. 5, 6) и разновеликими проходными сечениями соответствующих смежных каналов (табл. 1, 2, п. 1-4) при $Re=5\cdot10^3$ составляют: с шахматной схемой расположения профильных элементов $(Eu_p/Eu_{2,5/15})_{\mu}=0,22$ и; с коридорной схемой расположения профильных элементов $(Eu_p/Eu_{2,5/15})_{\kappa}=0,666$ и $(Eu_p/Eu_{15/2,5})_{\kappa}=3,11$.

Приведенные расчетные соотношения показывают существенное влияние на величину гидродинамического сопротивления вариантов поверхности с разновеликими проходными сечениями смежных каналов геометрической формы, размеров и схемы расположения профильных элементов рельефа.

Контактирующие сегментные выступы в большем приближении, чем сфероидальные, моделируют поперечно обтекаемые короткие трубчатые поверхности и согласно схеме их расположения определяют величину полного сопротивления экспериментальных пластинчатых теплообменников (табл. 1, 2, п. 1, 3). Наблюдаемые в указанных вариантах поверхности изменения проходного сечения со сложной геометрией приводят, с одной стороны, к увеличению степени турбулизации потока и повышению интенсивности теплоотдачи, с другой стороны, сопровождаются повышением диссипации кинетической энергии потока, приводящей к несоразмерному росту гидродинамического сопротивления. При этом показатели степени m при числе Re в уравнении подобия сопротивления Eu=bRe-m для вариантов поверхности с шахматной и коридорной схемами расположения сегментных выступов (табл. 1, 2, п. 1, 3) составляют 0,27 и 0,2, равные аналогичным средним значениям показателей степени в критериальных зависимостях, рекомендуемых нормативным методом [11] для расчета сопротивления в шахматных и коридорных поперечно обтекаемых пучках труб в области развитого переходного режима течения потока.

Для оценки энергетической эффективности исследованных вариантов пластинчатой поверхности с различной величиной отношения проходных сечений смежных каналов опытные данные по теплоотдаче и аэродинамическому сопротивлению представлены на рис. 5 в виде тепловых комплексных характеристик $Q/F\Delta \bar{t}=\alpha=f(Q/N\Delta \bar{t})$. На рис. 5 видно, что в интервале изменения значений энергетического коэффициента $Q/N\Delta \bar{t}=(158...5)K^{-1}$, соответствующих переходному режиму течения с относительно небольшими массовыми скоростями потока, тепловые характеристики экспериментальных каналов (1-6) значительно расслаиваются. При-

Рис. 5. Тепловые комплексные характеристики опытных вариантов пластинчатой поверхности теплообмена (1 - 6 - табл. 1, 2)

чем, несмотря на более высокий уровень теплоотдачи варианты поверхности с шахматной и коридорной схемами расположения контактирующих сегментных выступов (табл. 1, 2, п. 1, 3) имеют пониженную тепловую эффективность (при $Q/N\Delta \bar{t}=idem$) по сравнению с вариантами поверхности со сфероидальными выступами малого радиуса с шахматным и коридорным расположением (табл. 1, 2, п. 2, 4), отличающимися более свободными проходными сечениями каналов, существенно меньшей величиной сопротивления и несколько меньшей теплоотдачей.

По мере увеличения массовой скорости потока теплоносителя (уменьшения значений $O/N\Delta \bar{t}$) тепловые характеристики опытных поверхностей располагаются более компактно, сохраняя общую картину соотношения тепловой эффективности во всем диапазоне изменения величины энергетического коэффициента $Q/N\Delta ar{t} = (158...0,1) \, {\sf K}^{-1}$. При одинаковом значении $Q/N\Delta ar{t} = 1 \, {\sf K}^{-1}$ отношения величины коэффициентов теплоотдачи соответствующих опытных каналов с разновеликими проходными сечениями выглядят как $\alpha_1:\alpha_2:\alpha_3:\alpha_4=135:232:121:188$. При этом на рис. 5 выделяется более интенсивный рост тепловой эффективности поверхности с шахматным расположением сегментных выступов (1) (табл. 1, 2, п. 1), обусловленный реализацией внешней задачи в каналах со значительным гидродинамическим сопротивлением, увеличение которого однако в области больших чисел Re компенсируется энергетически более весомым повышением теплоотдачи.

Величина тепловой эффективности вариантов поверхности с равновеликими проходными сечениями смежных каналов (5, 6) (табл. 1, 2, п. 5, 6) превосходит уровень эффективности соответствующих опытных вариантов поверхности с разновеликими проходными сечениями: с шахматным расположением элементов рельефа (5, 1, 2) при $Q/N\Delta \bar{t} < 1 \text{K}^{-1}$, с коридорным (6, 3, 4) - при $Q/N\Delta \bar{t} < 0.32 \text{K}^{-1}$ и сохраняет тенденцию своего роста при увеличении массовой скорости потока (уменьшении $Q/N\Delta \bar{t}$).

выводы

- 1. Представленные результаты исследования теплоаэродинамических характеристик компоновок пластинчатой поверхности с разной величиной проходных сечений $(s_2/s_1>1)$ смежных каналов (с шахматной и коридорной схемами расположения двухсторонних контактирующих элементов рельефа) показали значительное различие величины сопротивления в каналах по обеим сторонам профильной пластины при практически сопоставимой с компоновками поверхности с обычными равновеликими $(s_2/s_1=1)$ смежными каналами интенсивностью теплоотдачи.
- 2. Существенное уменьшение гидродинамического сопротивления по одной из сторон пластинчатой поверхности в компоновках с разными проходными сечениями смежных каналов ($s_2/s_1>1$) при обеспечении приемлемой (из условия располагаемого перепада давления в теплообменнике) допустимой величины сопротивления по другой стороне пластины, с учетом теплофизических свойств потоков, можно рассматривать как один из способов повышения энергетической эффективности пластинчатой поверхности теплообмена при прочих равных условиях.
- 3. Возможность обеспечения оптимальной геометрии смежных каналов, образованных профильными пластинами, т.е. величины отношения проходных сечений ($s_2/s_1>1$) и их конфигурации и, следовательно, рациональных массовой кратности и соотношения скоростей потоков теплоносителей является одним из основных условий поиска резерва повышения эффективности теплообмена пластинчатой поверхности с двухсторонними сфероидальными выступами и впадинами.

Литература

- 1. Берман C.C. Пластинчатые теплообменники для тепловозов // Электрическая и тепловозная тяга. 1960. № 5. С.4-8.
- 2. Андреев М.М., Берман С.С., Буглаев В.Т., Костров Х.Н. Теплообменная аппаратура энергетических установок. М.: Машгиз, 1963.-240 с.
- 3. *Евенко В.И., Шишков В.М., Анисин А.К.* Теплообмен и сопротивление профильной пластинчатой поверхности с коридорным расположением сфероидальных выштамповок // Транспортное машиностроение (НИЙинформтяжмаш, 5-74-10). М., 1974. № 10. С. 5-10.
- 4. *Анисин А.К.* Теплоотдача и сопротивление трубчатой поверхности с двухсторонними сфероидальными элементами шероховатости // Изв. вузов СССР. Энергетика. 1983. №3. С. 93-96.
- 5. *Щукин А.В. и др*. Интенсификация теплообмена сферическими выемками. Обзор // Изв. АН. Энергетика.- 1998.- № 3.- С.47-64.
- 6. Кикнадзе Г.И., Краснов Ю.К., Подымака Н.Ф., Хабенский В.Б. Сомоорганизация вихревых структур при обтекании водой полусферической лунки // Доклады Академии наук СССР. 1986. Т.291. №6. С.1315-1318.
- 7. Коваленко Л.М., Глушков А.Ф. Теплообменники с интенсификацией теплоотдачи. М.: Энергоатомиздат, 1986. 240 с.
- 8. Анисин А.К., Буглаев В.Т. Экспериментально аналитическая оценка теплоаэродинамических характеристик компоновок пластинчатой поверхности теплообмена из плоских и профильных листов с шахматным расположением сфероидальных элементов // Изв. вузов. Ядерная энергетика. 1997. №4. С. 40 47.
- 9. Анисин А.К., Буглаев В.Т. Особенности теплоаэродинамических характеристик компоновок поверхности теплообмена из профильных пластин с коридорным расположением сфероидальных элементов // Изв. вузов. Ядерная энергетика. 1998. № 3. С. 80 89.
- 10. Шишков В.М., Соченов В.Н., Анисин А.К. и др. Влияние геометрических параметров пластинчатой поверхности на технико-экономические показатели теплообменных аппаратов // Изв. вузов СССР. Энергетика. 1977. №10. С. 83 89.
- 11. Аэродинамический расчет котельных установок (нормативный метод) / Под ред.С.И. Мочана.-Л.: Энергия, 1977.- 256 с.

УДК 621.039.586

Analysis of Failure of a Fast Reactor Runaway in Approach of Zero Lifetime of Prompt Neutrons \N.M. Kadjuri; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 5 pages, 2 illustrations. – References, 2 titles.

The estimations of the limit introducing of reactivity ρ_m conducting to destruction of fuel in approach of zero lifetime of prompt neutrons are carried out.

УДК 536.24:621.039.553.34

Influence of Geometrical Parameters of Surface Spheriodical Elements and the Scheme of Their Arrangement on Heat Efficiency of Heat-Exchange Plate Surface \ V.T. Buglaev, A.A.Anisin; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 11 pages, 5 illustrations. – References, 11 titles.

The reseach results of heat-aerodynamic characteristics of heat-exchange profile plate surface experimental patterns with different geometrical parameters of flow sections of adjustable passages are given and their heat efficiency is estimated.

УДК 621.039.6

Magnetohydrodynamic Resistance Reduction by Forming Oxide Electroinsulated Coatings on Channels with Heavy Liquid Metal Coolants of TOKAMAK Reactor\A.V. Beznosov, S.S. Pinaev, M.A. Kamnev, A.V. Nazarov, P.V.Romanov; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) — Obninsk, 2002. — 3 pages, 1 table, 1 illustration. — References, 8 titles.

The article includes experimental data received in investigations of magnetohydrodynamic resistance reduction by forming oxide electroinsulated coatings on internal surfaces of channels of tokamak blanket and divertor.

УДК 556.555.8

⁹⁰Sr Contamination of Water Ecosystems in Bryansk Regions Damaged after Chernobyl Accident \M.N. Katkova, Ya.I. Gaziev, G.I. Petrenko, A.M. Polukhina; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 6 pages, 3 tables, 2 illustrations.

In 1997-1999 the monitoring of water ecosystems in Bryansk regions contaminated after Chernobyl fallout have been conducted. In the framework of these investigations the present ⁹⁰Sr level in water bodies was evaluated. Taking into accounts the obtained result the basic conclusions and recommendations for their future use were done.

УДК 631.42

Distribution of ¹³⁷Cs on ""grain-size" fractions in soils at the 30 km restricted zone around Chernobyl NPP\S.M. Rudaya, O.V. Chistik, I.I. Matveenko; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 8 pages, 2 tables, 2 illustrations. – References, 8 titles.

The results of investigation of ¹³⁷Cs distribution on "grain-size" fractions in soils contaminated by Chernobyl catastrophe products are presented. The mathematical description of radiocaesium distribution on fractions >0,01 mm, 0,01-0,001 mm, <0,001 mm is given. Is shown that "grain-size" and mineralogy composition of researched soils substantially determines a sorption of a radionuclide on soil particles and influences vertical migration.

УДК 574:621.039.542.4

Ecological Aspects of Mass Production of Motor Fuels from Brown Coals and Heavy Petroleum Residuals by Hydrogenation with the Use of Nuclear Technologies \ G.I. Sidorov, V.M. Poplavsky, A.A. Kritchko, A.S. Maloletnev; Editorial board of Journal "Izvestia visshikh uchebnikh zavedeniy, Yadernaya energetica" (Communications of Higher Schools. Nuclear Power Engineering) – Obninsk, 2002. – 10 pages, 5 tables. – References, 28 titles.