

Binary Classification Problem

Length (cm)	Height (cm)	Number of fins	Weight (Kg)	Color	Fish type
17.8	22.9	8	5.1`	1	1
14.8	20.5	7	4.9	2	-1
16. 34	12.76	6	6.6	3	1
10. 34	8.76	3	3.8	3	1
11 .30	17.76	6	9.8	1	-1

Binary Classification:-

Given a training set $\{(X_i, Y_i): X_i \in \mathbb{R}^n, Y_i \in \{-1,1\}, i = 1,2,..., l\}$, find a function f which can efficiently predict the label Y for an unseen $X \in \mathbb{R}^n$.

Multi class problems

Multi-class Classification :-

Given a training set $\{(X_i, Y_i) : X_i \in \mathbb{R}^n, Y_i \in \{1,2,...k\}, i = 1,2,..., l\}$, find a function f which can efficiently predict the label Y for an unseen $X \in \mathbb{R}^n$.

Multi class problems

Multi-class Classification :-

Given a training set $\{(X_i, Y_i) : X_i \in \mathbb{R}^n, Y_i \in \{1,2,...k\}, i = 1,2,..., l\}$, find a function f which can efficiently predict the label Y for an unseen $X \in \mathbb{R}^n$.

Image Content Classification

Multi class problems

Multi-class Classification :-

Given a training set $\{(X_i, Y_i) : X_i \in \mathbb{R}^n, Y_i \in \{1,2,...k\}, i = 1,2,..., l\}$, find a function f which can efficiently predict the label Y for an unseen $X \in \mathbb{R}^n$.

Image Content Classification

Multi- class and Multi label classification

Multi label classification

More Examples ??

Figure 1.2: A screenshot of the IMDB webpage for the movie "Harry Potter and the Sorcerer's Stone". Genre tags associated with this movie = {Adventure, Family, Fantasy}. All genre tags available on IMDB = {Drama, Comedy, Romance, Thriller, Crime, Action, Horror, Adventure, Documentary, Mystery, Sci-Fi, Fantasy, Family, Biography, War, Animation, History, Music, Musical, Western, Short, Sport, Film-Noir, News, Adult, Talk-Show, Game-Show, Reality-TV}. From https://www.imdb.com/title/tt0241527/. Screenshot by author.

Multi label classification

Multi-label Classification :-

Given a training set $\{(X_i, Y_i) : X_i \in \mathbb{R}^n, Y_i \in \{0,1\}^L, i = 1,2,..., I\}$, where L is the number of labels, goal is to find a function f which can efficiently predict labels $Y \in \{0,1\}^L$ for an unseen $X \in \mathbb{R}^n$.

Figure 1.2: A screenshot of the IMDB webpage for the movie "Harry Potter and the Sorcerer's Stone". Genre tags associated with this movie = {Adventure, Family, Fantasy}. All genre tags available on IMDB = {Drama, Comedy, Romance, Thriller, Crime, Action, Horror, Adventure, Documentary, Mystery, Sci-Fi, Fantasy, Family, Biography, War, Animation, History, Music, Musical, Western, Short, Sport, Film-Noir, News, Adult, Talk-Show, Game-Show, Reality-TV}. From https://www.imdb.com/title/tt0241527/. Screenshot by author.

Regression Problem

Gender	Education	Seniority	Age	Work class	Income
0	3	3	34	1	78 K
1	2	2	65	0	89 K
0	1	4	25	0.	28 K
1	5	6	39	1	112 K
0	2	8	45	0	84 K
1	4	9	40	1	76 K
0	2	0	42	0	81 K

Given a training set $\{(X_i, Y_i): X_i \in R^n, Y_i \in R, i = 1,2,.., I\}$, find a function f which can efficiently approximate the relationship between independent variable X and Y for the prediction of response for an unseen test point $X_{test} \in R^n$.

Credit Card Dataset

Income	Limit	Rating	Cards	Age	Balance
14.89	1 3606	283	2	34	333
106.02	5 6645	483	3	82	903
104.59	3 7075	514	4	71	580
148.92	4 9504	681	3	36	964
55.88	2 4897	357	2	68	331
80.1	8 8047	569	4	77	1151
20.99	6 3388	259	2	37	203
71.40	8 7114	512	2	87	872
15.12	5 3300	266	5	66	279
71.06	1 6819	491	3	41	1350
63.09	5 8117	589	4	30	1407

Weights in Kg.

55	84	62	88	90
73	105	57	62	54
53	102	83	81	54
101	86	68	78	71
50	60	53	57	60
72	48	104	107	77
77	67	104	69	52
96	70	60	71	51
53	107	108	82	48
60	68	99	46	47
56	87	93	87	74
81	64	94	57	90
57	69	86	96	50
106	96	77	73	74
65	78	78	98	97
87	69	98	79	94
74	50	60	105	55
99	80	110	50	74
52	108	45	96	98
102	50	71	62	97

Maximum = 110 Median = 74 Kg. Minimum = 45. 25th Percentile :- 58.5

75th Percentile :- 94

55	84	62	88	90
73	105	57	62	54
53	102	83	81	54
101	86	68	78	71
50	60	53	57	60
72	48	104	107	77
77	67	104	69	52
96	70	60	71	51
53	107	108	82	48
60	68	99	46	47
56	87	93	87	74
81	64	94	57	90
57	69	86	96	50
106	96	77	73	74
65	78	78	98	97
87	69	98	79	94
74	50	60	105	55
99	80	110	50	74
52	108	45	96	98
102	50	71	62	97

Regression Problem

Heights in Cm. (Y)

161.8	157.5	149.3	170.0	169.1
149.7	149.4	169.3	143.4	165.9
169.5	176.0	163.5	154.1	163.5
163.1	172.3	159.7	157.2	172.5
161.4	157.7	161.8	164.2	169.3
165.2	144.9	144.3	143.3	162.4
162.6	155.6	159.2	164.7	153.1
150.6	158.4	176.0	147.9	153.5
158.4	162.8	161.0	160.7	171.9
158.5	157.4	160.4	166.5	143.9
154.7	164.4	152.7	163.3	159.8
176.8	163.9	159.7	170.8	140.5
151.2	147.5	162.3	170.1	170.2
155.2	150.5	164.3	153.5	168.6
152.9	152.6	156.3	162.6	160.0
148.3	154.9	157.6	150.6	159.3
158.1	156.8	180.2	146.8	135.1
157.3	160.1	137.4	169.2	165.8
175.3	129.7	182.3	160.0	138.1
155.4	172.4	163.4	159.5	136.8

Weights in Kg. (X)

55 73 53 101 50 72 77	84 105 102 86 60 48 67	62 57 83 68 53 104 104	88 62 81 78 57 107	90 54 54 71 60 77 52
96	70	60	71	51
53	107	108	82	48
60	68	99	46	47
56	87	93	87	74
81	64	94	57	90
57	69	86	96	50
106	96	77	73	74
65	78	78	98	97
87	69	98	79	94
74	50	60	105	55
99	80	110	50	74
52	108	45	96	98
102	50	71	62	97

Regression Problem

Ide stically and distributed Indendersty

Regression Assumptions:-

(i)
$$X_i$$
 Y_i or e iid random

Variables.

(ii) $Y_i = f_0(x_i) + G_i$

$$E(Y/X_i)$$
(iii) $E(G_i) = O_i$

Given a training set $\{(X_i, Y_i) : X_i \in \mathbb{R}^n, Y_i \in \mathbb{R}, i = 1,2,.., l\}$, find a function f which can efficiently approximate the relationship between independent variable X and Y for the prediction of response for an unseen test point $X_{test} \in \mathbb{R}^n$.

Beyond Mean Regression Problem

Quantile Regression Problem

More Examples

Quantile Regression Problem and quantile $\Sigma \in (0,1)$ for given trains set $T = d(x_i, y_i) : x_i \in \mathbb{R}^n$, $y_i \in \mathbb{R}$, $i=1,2,\ldots,2$ j, the QR model estimate a function u(x) such that it is infimum of all set of function satisfying $P(y \leq u_i(x) \mid x) = T$.

Multi-output Regression Problem

						λ^{1}	y, 1	.nvestemet in
Incomo		Limit	Dating	Canda	Λ σο	Balance		investenct in mutual a
Income	14.891	Limit 3606			Age 34			+ frad
	106.025	6645						_\ =
	104.593	7075			71		-	~
	148.924 55.882	9504 4897			36 68			_
	80.18				77			
	20.996				37			_\
	71.408				87			
	15.125	3300	266	5	66			
	71.061	6819	491	3	41	1350		
	63.095	8117	589	4	30	1407		

Unsupervised Learning

Unsupervised Learning

192 Sp(x)dx 190

≥ f(x) 8x

