Step 1: Load Train dataset and preview

```
In [ ]: import pandas as pd

df = pd.read_csv("train.csv")

print("Shape:", df.shape)

df.head()
```

Shape: (891, 12)

Fa	Ticket	Parch	SibSp	Age	Sex	Name	Pclass	Survived	PassengerId	
7.250	A/5 21171	0	1	22.0	male	Braund, Mr. Owen Harris	3	0	1	0
71.28	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1
7.92!	STON/O2. 3101282	0	0	26.0	female	Heikkinen, Miss. Laina	3	1	3	2
53.100	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	3
8.050	373450	0	0	35.0	male	Allen, Mr. William Henry	3	0	5	4
										4

Observation:

- The dataset has 891 rows and 12 columns.
- The first few rows show columns such as Passengerld, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, and Embarked.

Step 2: Dataset info and missing values

```
In [ ]: df.info()
    df.isnull().sum()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): Column Non-Null Count Dtype -----PassengerId 891 non-null 0 int64 Survived 891 non-null int64 1 Pclass 891 non-null int64 891 non-null object 3 Name Sex 891 non-null object 5 Age 714 non-null float64 SibSp 891 non-null int64 6 Parch 7 891 non-null int64 Ticket 891 non-null object 9 891 non-null float64 Fare 10 Cabin 204 non-null object 11 Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.7+ KB PassengerId Survived Pclass Name Sex 0 177 Age SibSp 0 Parch 0

dtype: int64

Ticket Fare

Cabin

Embarked

Observation: The dataset contains the following data types:

- Integer columns: 2 (Passengerld, Survived, Pclass, SibSp, Parch)
- Float columns: 2 (Age,Fare)

0

2

687

• Object (string) columns: 5 (Name, Sex, Ticket, Cabin, Embarked)

Missing values are present in columns such as:

Age: 177Cabin: 687

• Embarked: 2

Step 3: Statistical summary of numerical columns

In []: df.describe()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fa
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2042
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.6934
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9104
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4542
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.3292

Observation:

From the statistical summary:

- The average age of passengers is around 29.7 years, with a minimum of 0.42 and a maximum of 80.
- Fare ranges from 0 to 512.33, with a mean of 32.20.
- The most common passenger class (median Pclass = 3) indicates that a majority of passengers traveled in 3rd class.

Step 4: Frequency counts for categorical columns

```
print("Sex:\n", df['Sex'].value_counts(), "\n")
 print("Embarked:\n", df['Embarked'].value_counts(), "\n")
 print("Pclass:\n", df['Pclass'].value_counts(), "\n")
Sex:
Sex
          577
male
female
         314
Name: count, dtype: int64
Embarked:
Embarked
  644
C
     168
     77
Name: count, dtype: int64
Pclass:
Pclass
    491
1
    216
     184
Name: count, dtype: int64
```

Observation:

- Majority of passengers are male (577) compared to female (314).
- Most passengers embarked from port 'S' (Southampton), followed by 'C' (Cherbourg) and 'Q' (Queenstown).
- Passenger class distribution shows that class 3 has the highest count.

Step 5.1: Histograms for numerical columns

Observation:

- Age distribution is roughly right-skewed, with most passengers aged between 20–40 years.
- Fare distribution is highly right-skewed, with most fares below 100.
- SibSp and Parch have many passengers with 0 relatives onboard.

Step 5.2: Boxplots for detecting outliers

```
In []: plt.figure(figsize=(6,4))
    sns.boxplot(x=df['Age'], color='lightgreen')
    plt.title('Boxplot of Age')
    plt.show()

plt.figure(figsize=(6,4))
    sns.boxplot(x=df['Fare'], color='salmon')
```

plt.title('Boxplot of Fare')
plt.show()

Boxplot of Fare

Observation:

- Age column has a few mild outliers above ~65 years.
- Fare column shows many extreme outliers, with some fares above 300–500.

Step 5.3: Correlation Heatmap

```
In [ ]: corr_matrix = df.corr(numeric_only=True)

plt.figure(figsize=(8,6))
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")
    plt.title('Correlation Heatmap')
    plt.show()
```


Observation:

- Survived is positively correlated with Fare and negatively correlated with Pclass (higher class = higher survival chances).
- Age has very weak correlation with survival.
- SibSp and Parch show a small positive correlation with each other, indicating families often traveled together.

Step 5.4: Pairplot of selected features

```
In [ ]: selected_cols = ['Survived', 'Pclass', 'Age', 'Fare', 'SibSp', 'Parch']
    sns.pairplot(df[selected_cols], hue='Survived', palette='husl')
    plt.show()
```


Observation:

- Passengers in Pclass 1 generally paid higher fares and had better survival rates.
- Younger passengers (children) had slightly higher chances of survival.
- Many passengers with 0 SibSp or Parch did not survive, but families with small group sizes had better outcomes.

Step 6: Summary of EDA Findings

Summary of Insights:

- 1. **Survival Rate:** Only ~38% of passengers survived.
- 2. **Gender Impact:** Females had a much higher survival rate than males.
- 3. **Passenger Class:** Pclass 1 passengers had the highest survival rate; Pclass 3 had the lowest.
- 4. **Age Distribution:** Most passengers were between 20–40 years; children had higher chances of survival.
- 5. **Fare:** Higher fares were associated with better survival chances (linked to higher class).
- 6. **Family Size:** Small family sizes (SibSp and Parch values of 1–2) had better survival rates than those traveling alone or with very large families.

7. **Embarkation Port:** Most passengers boarded at Southampton, but Cherbourg passengers had higher survival rates.

- 8. Outliers: Fare column contained extreme outliers; Age had a few mild outliers.
- 9. **Correlations:** Fare and Pclass had the strongest correlation with survival. Age had very weak correlation with survival.