Representation Learning on Graphs and Networks (L45) CST Part III / MPhil in ACS

Victor Zhao xz398@cam.ac.uk

1 Primer on Graph Representations

1. Mathematical definition of graphs:

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is a collection of nodes \mathcal{V} and edges $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$

The edges can be represented by an *adjacency matrix*, $\mathbf{A} \in \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|}$, such that

$$A_{uv} = \begin{cases} 1 & \text{if } (u, v) \in \mathcal{E} \\ 0 & \text{otherwise} \end{cases}$$

- 2. Some interesting graph types:
 - Undirected: $\forall u, v \in \mathcal{V}. (u, v) \in \mathcal{E} \iff (u, v) \in \mathcal{E} \text{ (i.e., } \mathbf{A}^{\top} = \mathbf{A})$
 - Weighted: provided edge weight w_{uv} for every edge $(u, v) \in \mathcal{E}$
 - **Multirelational**: various *edge types*, i.e. $(u, t, v) \in \mathcal{E}$ if there exists an edge (u, v) linked by type t
 - **Heterogeneous**: various *node types*
- 3. Machine learning tasks on graphs by domain:
 - Transductive: training algorithm sees all observations, including the holdout observations
 - Task is to *propagate* labels from the training observations to the holdout observations
 - Also called semi-supervised learning
 - **Inductive**: training algorithm only sees the training observations during training, and only sees the holdout observations for prediction
- 4. Node statistics:
 - Degree: amount of edges the node is incident to:

$$d_u = \sum_{v \in \mathcal{V}} A_{uv}$$

• **Centrality**: a measure of how "central" the node is in the graph: how often do infinite random walks visit the node?

$$d_u = \lambda^{-1} \sum_{v \in \mathcal{V}} A_{uv} e_v$$

where $\mathbf{e} \in \mathbb{R}^{|\mathcal{V}|}$ is the largest eigenvector of \mathbf{A} , with corresponding eigenvalue λ

• Clustering coefficient: a measure of "clusteredness": are neighbours connected amongst each other?

$$c_u = \frac{\left|\left\{(v_1, v_2) \in \mathcal{E} \middle| v_1, v_2 \in \mathcal{N}(u)\right\}\right|}{\binom{d_u}{2}}$$

5. Graph Laplacian:

Let **D** be the diagonal (out)-degree matrix of the graph, i.e., $D_{uu} = \sum_{v \in \mathcal{V}} A_{ij}$. Then:

- The unnormalised graph Laplacian: $\mathbf{L} = \mathbf{D} \mathbf{A}$
- The symmetric graph Laplacian: $\mathbf{L}_{sym} = \mathbf{D}^{-\frac{1}{2}}\mathbf{L}\mathbf{D}^{-\frac{1}{2}} = \mathbf{I} \mathbf{D}^{-\frac{1}{2}}\mathbf{A}\mathbf{D}^{-\frac{1}{2}}$
- The random walk graph Laplacian: $L_{RW} = D^{-1}L = I D^{-1}A$

Properties:

- For undirected graphs, **L** is symmetric ($\mathbf{L}^{\top} = \mathbf{L}$) and positive semi-definite ($\forall \mathbf{x} \in \mathbb{R}^{|\mathcal{V}|}$. $\mathbf{x}^{\top} \mathbf{L} \mathbf{x} \geq 0$)
- For undirected graphs:

$$\forall \mathbf{x} \in \mathbb{R}^{|\mathcal{V}|}.\ \mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{u \in \mathcal{V}} \sum_{v \in \mathcal{V}} A_{uv} (x_u - x_v)^2 = \sum_{(u,v) \in \mathcal{E}} (x_u - x_v)^2$$

1

• L has $|\mathcal{V}|$ nonnegative eigenvalues: $\lambda_1 \geq \cdots \geq \lambda_{|\mathcal{V}|} = 0$

6. Spectral clustering:

• Two-way cut: partition the graph into $A \subseteq V$ and its complement $A_c \subseteq V$:

$$Cut(\mathcal{A}) = |\{(u, v) \in \mathcal{E} | u \in \mathcal{A} \land v \in \mathcal{A}_c\}|$$

Ratio cut metric:

$$RCut(\mathcal{A}) = Cut(\mathcal{A}) \left(\frac{1}{|\mathcal{A}|} + \frac{1}{|\mathcal{A}_c|} \right)$$

• Minimising RCut(A):

Let $\mathbf{a} \in \mathbb{R}^{|\mathcal{V}|}$ be a vector representing the cut \mathcal{A} , defined as follows:

$$a_{u} = \begin{cases} \sqrt{\frac{A_{c}}{A}} & \text{if } u \in \mathcal{A} \\ -\sqrt{\frac{A}{A_{c}}} & \text{if } u \in \mathcal{A}_{c} \end{cases}$$

Then

$$\mathbf{a}^{\top} \mathbf{L} \mathbf{a} = \sum_{(u,v) \in \mathcal{E}} (a_u - a_v)^2 = |\mathcal{V}| \mathrm{RCut}(\mathcal{A})$$

Minimising $\mathbf{a}^{\top}\mathbf{L}\mathbf{a}$ corresponds to minimising RCut(\mathcal{A}) (NP-hard as the constraint is discrete)

- Relaxing: minimise $\mathbf{a}^{\top}\mathbf{L}\mathbf{a}$ subject to $\mathbf{a} \perp \mathbf{1}$ and $||\mathbf{a}||^2 = |\mathcal{V}|$ Rayleigh–Ritz Theorem: The solution is exactly the second-smallest eigenvector of \mathbf{L} To obtain the cut, place u into \mathcal{A} or \mathcal{A}_c depending on the sign of a_u
- Can be generalised to k-clustering

2 Permutation Invariance and Equivariance

1. Informal definitions:

- Permutation invariance: applying a permutation matrix does not modify the result
- Permutation equivariance: transformation preserves the node order
- Locality: signal remains stable under slight deformations of the domain

2. Setup:

- Node feature matrix: $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_{|\mathcal{V}|} \end{bmatrix}^{\top} \in \mathbb{R}^{|\mathcal{V}| \times k}$, where $\mathbf{x}_i \in \mathbb{R}^k$ is the features of node i
- (1-hop) neighbourhood of node $i: \mathcal{N}_i = \{j | (i,j) \in \mathcal{E} \lor (j,i) \in \mathcal{E}\}$
- Neighbourhood features: $X_{\mathcal{N}_i} = \{\{x_j | j \in \mathcal{N}_i\}\}$
- **Permutation matrix**: a $|\mathcal{V}| \times |\mathcal{V}|$ binary matrix that has exactly one entry of 1 in every row and column, and 0s elsewhere: $\mathbf{P} = \begin{bmatrix} \mathbf{e}_{\pi(1)} & \cdots & \mathbf{e}_{\pi(|\mathcal{V}|)} \end{bmatrix}^{\top}$

3. Learning on sets:

- $f(\mathbf{X})$ is permutation invariant if for all permutation matrices \mathbf{P} : $f(\mathbf{PX}) = f(\mathbf{X})$
- F(X) is permutataion equivariant if for all permutation matrices P: F(PX) = PF(X)
- Locality on sets: transform every node in isolation, through a shared function ψ : $\mathbf{h}_i = \psi(\mathbf{x}_i)$ Stacking \mathbf{h}_i into a matrix yields $\mathbf{H} = \mathbf{F}(\mathbf{X})$:

$$\boldsymbol{F}(\mathbf{X}) = \begin{bmatrix} - & \psi(\mathbf{x}_1) & - \\ & \vdots \\ - & \psi(\mathbf{x}_{|\mathcal{V}|}) & - \end{bmatrix}$$

• Deep Sets (Zaheer *et al.*, NIPS 2017):

$$f(\mathbf{X}) = \phi \left(\bigoplus_{i \in \mathcal{V}} \psi(\mathbf{x}_i) \right)$$

Universality of Deep Sets: any permutation invariant model can be expressed as a Deep Sets

4. Learning on graphs:

- $f(\mathbf{X})$ is permutation invariant if for all permutation matrices \mathbf{P} : $f(\mathbf{PX}, \mathbf{PAP}^{\top}) = f(\mathbf{X}, \mathbf{A})$
- F(X) is permutataion equivariant if for all permutation matrices $P: F(PX, PAP^{\top}) = PF(X, A)$
- Locality on graphs: apply a local function ϕ over all neighbourhoods:

$$\boldsymbol{F}(\mathbf{X}, \mathbf{A}) = \begin{bmatrix} - & \phi(\mathbf{x}_1, \mathbf{X}_{\mathcal{N}_1}) & - \\ & \vdots & \\ - & \phi(\mathbf{x}_{|\mathcal{V}|}, \mathbf{X}_{\mathcal{N}_{|\mathcal{V}|}}) & - \end{bmatrix}$$

To ensure permutation equivariance, it is sufficient that ϕ is permutation invariant in $\mathbf{X}_{\mathcal{N}_i}$

Appendix: Mathematical Notations

a A scalar (integer or real)

a A vectorA matrix

 \mathcal{A} or $\{\cdot\}$ A set

 $\{\{\cdot\}\}$ A multiset

 $|\mathcal{A}|$ Cardinality of set \mathcal{A} \mathbb{R} The set of real numbers

 a_i Element i of vector \mathbf{a} , with indexing starting at 1 A_{ij} Element i, j of matrix \mathbf{A} , with indexing starting at 1

f A function

F A matrix-valued function

 π A permutation

 ϕ, ψ, \cdots Learnable functions (e.g., MLPs)

① A permutation-invariant operator (e.g., sum, mean, min, max)