ON DEPENDENCE AND LOGIC

SWEDISH CONGRESS OF PHILOSOPHY, STOCKHOLM

Fredrik Engström

June 16, 2013

•0000

Axiomatizations

$$\forall x \exists y \forall z \exists w Rxyzw$$

$$\forall x \downarrow \\ \exists y \\ \forall z \\ \exists w$$

$\forall x \exists y \forall z \exists w Rxyzw$

Axiomatizations

$$\begin{array}{ccc} \forall x & \forall z \\ \downarrow & \downarrow \\ \exists y & \exists w \end{array}$$

$$\forall x \quad \forall z \\ \downarrow \quad \downarrow \\ \exists y \quad \exists w$$

Domain $\{0,1\}$. $\forall x \exists y \forall z \exists w Rxyzw$

Domain $\{0,1\}$. $\forall x \exists y \forall z \exists w Rxyzw$

Axiomatizations

Axiomatizations

Domain $\{0,1\}$. $\forall x \exists y \forall z \exists w Rxyzw$

Domain $\{0,1\}$. $\forall x \exists y \forall z \exists w Rxyzw$

x	у	z	w
0	0	0	1
0	0	1	0
1	1	0	0
1	1	1	0

Domain $\{0,1\}$. $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$ Rxyzw

0000

x	у	z	w
0	0	0	1
0	0	1	0
1	1	0	0
1	1	1	0

Domain $\{0,1\}$. $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$ Rxyzw

0000

x	у	z	w
0	0	0	1
0	0	1	0
1	1	0	0
1	1	1	0

Domain $\{0,1\}$. $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$ Rxyzw

x	у	z	w
0	0	0	1
0	0	1	0
1	1	0	1
1	1	1	0

Dependence

DEPENDENCE

•0000000

				_
x	у	z	w	_
0	0	0	1	$\neq D(z \rightarrow z)$
0	0	1	0	$\not\vDash D(z, w)$
1	1	0	0	
1	1	1	0	

x y	z	w	_		
0	0	1	_ ⊬	D(z)	4.1)
0	1	0	/	D(z,	W)
1	0	0			
1	1	0			
			-		

x	у	z	w	_	
0	0	0	1	$\vdash \vdash D(\mathbf{z})$	4.1)
0	0	1	0	$\not\vDash D(z,$	w_j
1	1	0	0		
1	1	1	0		
				-	

$$\frac{x \quad y \quad z \quad w}{0 \quad 0 \quad 0 \quad 1} = D(z, w)$$

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} Rxyzw \equiv \forall x \exists y \forall z \exists w (D(z, w) \land Rxyzw)$$

TAKE HOME MESSAGES

Dependence is a property of strategies. strategy \approx set of assignments = teams.

TAKE HOME MESSAGES

Dependence is a property of strategies. strategy \approx set of assignments = teams.

DEFINITION

X a team.

$$M, X \models D(\bar{x}, y)$$
 iff for all $s, s' \in X$ if $s(\bar{x}) = s'(\bar{x})$ then $s(y) = s'(y)$.

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- ightharpoonup X is a team, i.e., a set of assignments.
- ▶ $M, X \vDash (\neg) R\bar{x}$ iff for all $s \in X$: $M, s \vDash (\neg) R\bar{x}$.
- $\blacktriangleright M, X \vDash \varphi \land \psi \text{ iff } M, X \vDash \varphi \text{ and } M, X \vDash \psi.$

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- \blacktriangleright X is a team, i.e., a set of assignments.
- \blacktriangleright $M, X \models (\neg) R\bar{x}$ iff for all $s \in X$: $M, s \models (\neg) R\bar{x}$.
- \blacktriangleright $M, X \models \varphi \land \psi$ iff $M, X \models \varphi$ and $M, X \models \psi$.
- \blacktriangleright $M, X \models \varphi \lor \psi$ iff there are Y and Z such that $M, Y \models \varphi$ and $M, Z \vDash \psi$ and $X = Y \cup Z$.

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- \blacktriangleright X is a team, i.e., a set of assignments.
- \blacktriangleright $M, X \models (\neg) R\bar{x}$ iff for all $s \in X$: $M, s \models (\neg) R\bar{x}$.
- \blacktriangleright $M, X \models \varphi \land \psi$ iff $M, X \models \varphi$ and $M, X \models \psi$.
- \blacktriangleright $M, X \models \varphi \lor \psi$ iff there are Y and Z such that $M, Y \models \varphi$ and $M, Z \models \psi \text{ and } X = Y \cup Z.$
- ▶ $M, X \models \exists x \varphi$ iff there is $f: X \to M$ such that $M, X(x \mapsto f) \models \varphi$.

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- \blacktriangleright X is a team, i.e., a set of assignments.
- \blacktriangleright M, $X \models (\neg) R\bar{x}$ iff for all $s \in X$: M, $s \models (\neg) R\bar{x}$.
- \blacktriangleright $M, X \models \varphi \land \psi$ iff $M, X \models \varphi$ and $M, X \models \psi$.
- \blacktriangleright $M, X \models \varphi \lor \psi$ iff there are Y and Z such that $M, Y \models \varphi$ and $M, Z \models \psi \text{ and } X = Y \cup Z.$
- ▶ $M, X \models \exists x \varphi$ iff there is $f: X \to M$ such that $M, X(x \mapsto f) \models \varphi$.

$$X(x \mapsto f) = \{ s(x \mapsto f(s)) \mid s \in X \}.$$

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- \blacktriangleright X is a team, i.e., a set of assignments.
- \blacktriangleright $M, X \models (\neg) R\bar{x}$ iff for all $s \in X$: $M, s \models (\neg) R\bar{x}$.
- \blacktriangleright $M, X \models \varphi \land \psi$ iff $M, X \models \varphi$ and $M, X \models \psi$.
- \blacktriangleright $M, X \models \varphi \lor \psi$ iff there are Y and Z such that $M, Y \models \varphi$ and $M, Z \models \psi \text{ and } X = Y \cup Z.$
- \blacktriangleright $M, X \models \exists x \varphi$ iff there is $f: X \to M$ such that $M, X(x \mapsto f) \models \varphi$.
- \blacktriangleright $M, X \models \forall x \varphi \text{ iff } M, X(x \mapsto M) \models \varphi.$

$$X(x \mapsto f) = \{ s(x \mapsto f(s)) \mid s \in X \}.$$

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- \blacktriangleright X is a team, i.e., a set of assignments.
- \blacktriangleright $M, X \models (\neg) R\bar{x}$ iff for all $s \in X$: $M, s \models (\neg) R\bar{x}$.
- \blacktriangleright $M, X \models \varphi \land \psi$ iff $M, X \models \varphi$ and $M, X \models \psi$.
- \blacktriangleright $M, X \models \varphi \lor \psi$ iff there are Y and Z such that $M, Y \models \varphi$ and $M, Z \models \psi \text{ and } X = Y \cup Z.$
- \blacktriangleright $M, X \models \exists x \varphi$ iff there is $f: X \to M$ such that $M, X(x \mapsto f) \models \varphi$.
- \blacktriangleright $M, X \models \forall x \varphi \text{ iff } M, X(x \mapsto M) \models \varphi.$

$$X(x \mapsto f) = \{ s(x \mapsto f(s)) \mid s \in X \}.$$

$$X(x \mapsto M) = \{ s(x \mapsto a) \mid a \in M, s \in X \}.$$

- ► Syntax: FOL + $D(\bar{x}, y)$ in negation normal form
- ightharpoonup X is a team, i.e., a set of assignments.

DEPENDENCE 0000000

- ▶ $M, X \vDash (\neg) R\bar{x}$ iff for all $s \in X$: $M, s \vDash (\neg) R\bar{x}$.
- ▶ $M, X \vDash \varphi \land \psi$ iff $M, X \vDash \varphi$ and $M, X \vDash \psi$.
- ▶ $M, X \vDash \varphi \lor \psi$ iff there are Y and Z such that $M, Y \vDash \varphi$ and $M, Z \vDash \psi$ and $X = Y \cup Z$.
- ▶ $M, X \vDash \exists x \varphi$ iff there is $f: X \to M$ such that $M, X(x \mapsto f) \vDash \varphi$.
- ▶ $M, X \vDash \forall x \varphi \text{ iff } M, X(x \mapsto M) \vDash \varphi.$

$$X(x \mapsto f) = \{ s(x \mapsto f(s)) \mid s \in X \}.$$

$$X(x \mapsto M) = \{ s(x \mapsto a) \mid a \in M, s \in X \}.$$

▶ $M \vDash \sigma \text{ iff } M, \{\emptyset\} \vDash \sigma.$

Properties of Dependence logic

Properties of Dependence logic

DEPENDENCE

00000000

Properties of Dependence Logic

- ► $M, \emptyset \vDash \varphi$
- **▶** Downwards closure: If $Y \subseteq X$ and $M, X \models \varphi$ then $M, Y \models \varphi$.

Properties of Dependence Logic

- $\blacktriangleright M, \emptyset \models \varphi$
- ▶ **Downwards closure**: If $Y \subseteq X$ and $M, X \models \varphi$ then $M, Y \models \varphi$.
- ▶ Dependence logic \equiv Existential Second Order logic (ESO or Σ_1^1)

Properties of Dependence Logic

- $\blacktriangleright M, \emptyset \models \varphi$
- ▶ **Downwards closure**: If $Y \subseteq X$ and $M, X \models \varphi$ then $M, Y \models \varphi$.
- ▶ Dependence logic \equiv Existential Second Order logic (ESO or Σ_1^1)
- ► For formulas the situation is slightly different: Dependence logic and the negative fragment of ESO are equivalent.

DEPENDENCE LOGIC, AGAIN

▶ $M, X \models \exists x \varphi$ iff there is $f: X \to M$ such that $M, X(x \mapsto f) \models \varphi$.

 \blacktriangleright $M, X \models \forall x \varphi \text{ iff } M, X(x \mapsto M) \models \varphi.$

DEPENDENCE LOGIC, AGAIN

- \blacktriangleright M, $X \models \exists x \varphi$ iff there is $f: X \to M$ such that M, $X(x \mapsto f) \models \varphi$.
- ▶ $M, X \models \exists x \varphi$ iff there is $F: X \to \mathcal{P}(M) \setminus \{\emptyset\}$ such that $M, X(x \mapsto F) \vDash \varphi.$
- \blacktriangleright $M, X \models \forall x \varphi \text{ iff } M, X(x \mapsto M) \models \varphi.$

The move to set-valued *F*s corresponds to **non-deterministic** strategies.

- \blacktriangleright M, $X \models \exists x \varphi$ iff there is $f: X \to M$ such that M, $X(x \mapsto f) \models \varphi$.
- \blacktriangleright M, $X \models \exists x \varphi$ iff there is $F: X \to \mathcal{P}(M) \setminus \{\emptyset\}$ such that $M, X(x \mapsto F) \models \varphi$.
- \blacktriangleright M, X $\models \forall x \varphi \text{ iff } M, X(x \mapsto M) \models \varphi$.
- ▶ $M,X \models Qx \varphi$ iff there is $F: X \to Q_M$ such that $M, X(x \mapsto F) \models \varphi$.

The move to set-valued *F*s corresponds to **non-deterministic** strategies.

DEPENDENCE LOGIC, AGAIN

- \blacktriangleright M, $X \models \exists x \varphi$ iff there is $f: X \to M$ such that M, $X(x \mapsto f) \models \varphi$.
- \blacktriangleright M, $X \models \exists x \varphi$ iff there is $F: X \to \mathcal{P}(M) \setminus \{\emptyset\}$ such that $M, X(x \mapsto F) \models \varphi$.
- \blacktriangleright M, X $\models \forall x \varphi \text{ iff } M, X(x \mapsto M) \models \varphi$.
- ▶ $M,X \models Qx \varphi$ iff there is $F: X \to Q_M$ such that $M, X(x \mapsto F) \models \varphi$.
- ► Generalized quantifier: *Q* a class of structures (one unary relation).
- \blacktriangleright $M, s \models Qx \varphi \text{ iff } (M, \varphi^{M,s}) \in Q.$
- ▶ $Q_M = \{ R \mid (M, R) \in Q \}.$

The move to set-valued *F*s corresponds to **non-deterministic** strategies.

Domain $\{0,1,2\}$. $\exists^{\geq 2}x\exists^{\geq 2}yRxy$

Axiomatizations

Domain $\{0, 1, 2\}$. $\exists^{\geq 2} x \exists^{\geq 2} y Rxy$

THEOREM

For φ in L(Q) (without dependence atoms) and Q monotone increasing:

$$M, X \vDash \varphi \text{ iff } M, s \vDash \varphi \text{ for all } s \in X.$$

$$\exists a \forall x \exists y \forall z \exists w (D(z, w) \land (x = z \leftrightarrow y = w) \land y \neq a)$$

$$\exists a \, \forall x \, \exists y \, \forall z \, \exists w \, (D(z, w) \land (x = z \leftrightarrow y = w) \land y \neq a)$$

$$\exists a \,\exists f, g \,\forall x, z \, \big((x = z \leftrightarrow f(x) = g(z)) \land f(x) \neq a \big)$$

Example I

DEPENDENCE 000000

$$\exists a \forall x \exists y \forall z \exists w (D(z, w) \land (x = z \leftrightarrow y = w) \land y \neq a)$$

$$\exists a \,\exists f, g \,\forall x, z \, \big((x = z \leftrightarrow f(x) = g(z)) \land f(x) \neq a \big)$$

$$\exists a \,\exists f \,\forall x, z \, \big((f(x) = f(z) \to x = z) \land f(x) \neq a \big)$$

EXAMPLE II

$$\exists w, w' \big(D(\bar{z}, w) \land D(\bar{z}, w') \land Qx \exists y (y = w \land D(\bar{z}, x, y) \land Qx' \exists y' (y' = w' \land D(\bar{z}, x', y') \land \forall u \exists v (D(\bar{z}, u, v) \land (x = u \rightarrow v = w) \land \forall u' \exists v' (D(\bar{z}, u', v') \land (x' = u' \rightarrow v' = w') \land ((v = w \land v' = w') \rightarrow \varphi(u, u', \bar{z})))))\big)$$

DEPENDENCE 0000000

EXAMPLE II

$$\exists w, w' \big(D(\bar{z}, w) \land D(\bar{z}, w') \land Qx \exists y (y = w \land D(\bar{z}, x, y) \land Qx' \exists y' (y' = w' \land D(\bar{z}, x', y') \land \forall u \exists v (D(\bar{z}, u, v) \land (x = u \rightarrow v = w) \land \forall u' \exists v' (D(\bar{z}, u', v') \land (x' = u' \rightarrow v' = w') \land ((v = w \land v' = w') \rightarrow \varphi(u, u', \bar{z}))))) \big)$$

$$\exists A \in Q \exists B \in Q \forall x \in A \forall y \in B \varphi(x, y, \bar{z})$$

EXAMPLE II

$$\exists w, w' \big(D(\bar{z}, w) \land D(\bar{z}, w') \land Qx \exists y (y = w \land D(\bar{z}, x, y) \land Qx' \exists y' (y' = w' \land D(\bar{z}, x', y') \land \forall u \exists v (D(\bar{z}, u, v) \land (x = u \rightarrow v = w) \land \forall u' \exists v' (D(\bar{z}, u', v') \land (x' = u' \rightarrow v' = w') \land ((v = w \land v' = w') \rightarrow \varphi(u, u', \bar{z}))))) \big)$$

$$\exists A \in Q \exists B \in Q \forall x \in A \forall y \in B \varphi(x, y, \bar{z})$$

$$\begin{pmatrix} Qx \\ Qy \end{pmatrix} \varphi(x, y, \bar{z}) \equiv Br(Q, Q)xy\varphi(x, y, \bar{z})$$

$$\exists w, w' (D(\bar{z}, w) \land D(\bar{z}, w') \land Qx \exists y (y = w \land D(\bar{z}, x, y) \land Qx' \exists y' (y' = w' \land D(\bar{z}, x', y') \land \forall u \exists v (D(\bar{z}, u, v) \land (x = u \rightarrow v = w) \land \forall u' \exists v' (D(\bar{z}, u', v') \land (x' = u' \rightarrow v' = w') \land ((v = w \land v' = w') \rightarrow \varphi(u, u', \bar{z}))))))$$

$$\exists A \in Q \exists B \in Q \forall x \in A \forall y \in B \varphi(x, y, \bar{z})$$

$$\begin{pmatrix} Qx \\ Qy \end{pmatrix} \varphi(x, y, \bar{z}) \equiv Br(Q, Q)xy\varphi(x, y, \bar{z})$$

Remember that

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} \varphi(x, y, z, w, \overline{z}') \equiv \forall x \exists y \forall z \exists w \big(D(z, w) \land \varphi(x, y, z, w, \overline{z}') \big)$$

AXIOMATIZATIONS

AXIOMATIZATIONS •00

DEPENDENCE: ARMSTRONG'S AXIOMS

Let $D(\bar{x}; \bar{y})$ be a short-hand for the conjunction of $D(\bar{x}, y_1), ...,$ $D(\bar{x}, y_k)$.

Let $D(\bar{x}; \bar{y})$ be a short-hand for the conjunction of $D(\bar{x}, y_1), ...,$ $D(\bar{x}, y_k)$.

If $D \cup \{\varphi\}$ is a finite set of dependence atoms then $D \models \varphi$ iff φ is derivable from *D* with the following inference rules:

AXIOMATIZATIONS

- ▶ Reflexivity: If $\bar{y} \subseteq \bar{x}$ then $D(\bar{x}; \bar{y})$.
- ► Augmentation: If $D(\bar{x}; \bar{y})$ then $D(\bar{x}, \bar{z}; \bar{y}, \bar{z})$.
- ► Transitivity: If $D(\bar{x}; \bar{y})$ and $D(\bar{y}; \bar{z})$ then $D(\bar{x}; \bar{z})$.

DEPENDENCE LOGIC

 $\,\blacktriangleright\,$ Dependence logic has the same strength as ESO.

- ▶ Dependence logic has the same strength as ESO.
- ▶ The relation $\Gamma \vDash \varphi$ is not r.e.

AXIOMATIZATIONS

- ▶ Dependence logic has the same strength as ESO.
- ▶ The relation $\Gamma \vDash \varphi$ is not r.e.
- \blacktriangleright Restricting to φ 's without dependence atoms.

AXIOMATIZATIONS

- ▶ Dependence logic has the same strength as ESO.
- ▶ The relation $\Gamma \vDash \varphi$ is not r.e.
- lacktriangle Restricting to φ 's without dependence atoms.
- ▶ An easy exercise shows that $\Gamma \vDash \varphi$ is r.e.

- Dependence logic has the same strength as ESO.
- ▶ The relation $\Gamma \vDash \varphi$ is not r.e.
- ▶ Restricting to φ 's without dependence atoms.
- ▶ An easy exercise shows that $\Gamma \vDash \varphi$ is r.e.
- ► An explicit axiomatization has been given by Kontinen and Väänänen.

AXIOMATIZATIONS 000

DEPENDENCE LOGIC WITH GENERALIZED QUANTIFIERS

▶ For the L(Q) consequences of D(Q) to be axiomatizable we need the L(Q) to be axiomatizable.

Dependence logic with generalized quantifiers

- ▶ For the L(Q) consequences of D(Q) to be axiomatizable we need the L(Q) to be axiomatizable.
- ► Keisler showed that $L(Q_1)$ is axiomatizable, where Q_1 is "there exists uncountable many."

DEPENDENCE LOGIC WITH GENERALIZED QUANTIFIERS

- ▶ For the L(Q) consequences of D(Q) to be axiomatizable we need the L(Q) to be axiomatizable.
- ► Keisler showed that $L(Q_1)$ is axiomatizable, where Q_1 is "there exists uncountable many."
- ▶ An axiomatization of the $L(Q_1)$ consequences of $D(Q_1)$ was recently given.

- ▶ For the L(Q) consequences of D(Q) to be axiomatizable we need the L(Q) to be axiomatizable.
- \blacktriangleright Keisler showed that $L(Q_1)$ is axiomatizable, where Q_1 is "there exists uncountable many."
- ▶ An axiomatization of the $L(Q_1)$ consequences of $D(Q_1)$ was recently given.
- ► Achieved by using a prenex normal form theorem.

Conclusion

Extending dependence logic with generalized quantifiers is a natural and stable extension:

- ► The satisfaction relation is naturally defined when moving to non-deterministic strategies.
- ▶ D(Q) properly extends both L(Q) and D.
- \triangleright D(Q) is in fact equivalent to ESO(Q).
- \triangleright D(Q) has a prenex normal form theorem.
- ▶ L(Q) consequences of D(Q) can be axiomatized in some cases.

Conclusion

Extending dependence logic with generalized quantifiers is a natural and stable extension:

- ► The satisfaction relation is naturally defined when moving to non-deterministic strategies.
- ▶ D(Q) properly extends both L(Q) and D.
- \triangleright D(Q) is in fact equivalent to ESO(Q).
- \triangleright D(Q) has a prenex normal form theorem.
- ▶ L(Q) consequences of D(Q) can be axiomatized in some cases.

What about the **non-monotone** case?

THANK YOU FOR YOUR ATTENTION.

BIBLIOGRAPHY

Fredrik Engström and Juha Kontinen. Characterizing quantifier extensions of dependence logic. Journal of Symbolic Logic, 78(1):307-316, 2013.

AXIOMATIZATIONS

- Fredrik Engström, Juha Kontinen, and Jouko Väänänen. Dependence logic with generalized quantifiers: Axiomatizations. In Workshop on Logic, Language, Information and Computation, 2013.
- Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, pages 1-26, 2012. ISSN 0925-8531. 10.1007/s10849-012-9162-4.
- Leon Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), pages 167-183. Pergamon, Oxford, 1961.
- Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic Journal of IGPL, 5(4):539–563, 1997.
- H Jerome Keisler. Logic with the quantifier "there exist uncountably many". Annals of Mathematical Logic, 1(1):1-93, 1970.
- Juha Kontinen and Jouko Väänänen. Axiomatizing first order consequences in dependence logic. arXiv preprint arXiv:1208.0176, 2012.
- Jouko Väänänen. Dependence logic, volume 70 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2007. ISBN 978-0-521-70015-3; 0-521-70015-9. A new approach to independence friendly logic.