Exercise 3.7

Nolan Hauck

Last updated Wednesday 28th February, 2024 at 15:32

Suppose that ν is a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$.

a.
$$\nu^{+}(E) = \sup \{ \nu(F) : F \in \mathcal{M}, F \subset E \}$$
 and $\nu^{-}(E) = -\inf \{ \nu(F) : F \in \mathcal{M}, F \subset E \}.$

b.
$$|\nu|(E) = \sup\{\sum_{1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{1}^{n} E_j = E\}.$$

Solution. Let $X = P \cup N$ be a Hahn decomposition of X with respect to ν .

a. Using the Hahn decomposition, we have $\nu^+(E) = \nu(E \cap P)$ and $E \cap P \subset E$ which is measurable. The collection over which the relevant supremum is taken is $\mathcal{P}(E) \cap \mathcal{M}$, so $\nu^+(E) = \nu(P \cap E) \leq \sup\{\nu(F) : F \subset E, F \in \mathcal{M}\}$. On the other hand, for any $F \subset E$ with $F \in \mathcal{M}$, $\nu(F) = \nu^+(F) - \nu^-(F) \leq \nu^+(F) \leq \nu^+(E)$ since $F \subset E$ and ν^+ is a positive measure. So $\sup\{\nu(F)\} \leq \nu^+(E)$.

For the second part note that $-\inf\{\nu(F): F \in \mathcal{M}, F \subset E\} = \sup\{-\nu(F): F \in \mathcal{M}, F \subset E\}$. Then one can use the same proof as before to get that $\nu^-(E)$ is an upper bound for the collection of measures and that $\nu^-(E) \leq \sup\{-\nu(F): F \in \mathcal{M}, F \subset E\}$ (since $\nu^-(E) = \nu(E \cap N)$ and $E \cap N \subset E$ which is measurable).

Note that by the uniqueness of the Jordan decomposition, the functions defined by $\mu_1(E) = \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$ and $\mu_2(E) = -\inf\{\nu(F) : F \in \mathcal{M}, F \subset E\}$ for $E \in \mathcal{M}$ are actually positive and well-defined measures which are mutually singular.

b. For any disjoint collection $\{E_i\}_1^n$ of ν -measurable sets such that $\bigcup_{i=1}^n E_i = E$, we have

$$\sum_{1}^{n} |\nu(E_{j})| \le \sum_{1}^{n} |\nu| (E_{j}) = |\nu| (\bigcup_{1}^{n} E_{j}) = |\nu| (E)$$
(1)

SO

$$\sup\left\{\sum_{1}^{n} |\nu(E_j)|\right\} \le |\nu|(E). \tag{2}$$

Conversely, we can use the Hahn decomposition to write $E = (E \cap P) \cup (E \cap N)$ as a disjoint union of measurable sets, so that $|\nu|(E) = \nu^+(E) + \nu^-(E) = \nu(E \cap P) - \nu(E \cap N) \le |\nu(E \cap P)| + |\nu(E \cap N)|$. However, since $(E \cap P) \cup (E \cap N)$ is a disjoint union, $|\nu(E \cap P)| + |\nu(E \cap N)|$ is in the set over which we are taking our supremum, so $|\nu|(E) \le \sup\{\sum_{i=1}^{n} |\nu(E_i)|\}$. Thus the two quantities are equal.