

Universidad Nacional de San Agustín Facultad de Ingeniería de Producción y Servicios Escuela Profesional de Ingeniería Electrónica (EPIE)

Sistemas de Control Avanzado

Lista de Ejercicios 3

16 de agosto de 2020

Ingeniero a <mark>carg</mark>o Juan C. Cutipa Luque

Integrante

-Flores Huanca Jorge Eduardo CUI: 20160388

Índice

1.	Introducción	2
2.	Procedimientos	2

1. Introducción

Esta última lista de ejercicios explora el control LQR, observador de estados y elcontrol Hinfinito. Para facilidad, el alumno debe elegir de la literatura un modelo que ya tenga la planta linealizada. Esta planta debe ser multivariable (MIMO), cuadrada (mismo número de entradas y mismo número de salidas), de fase mínima y con al menos dos entradas y dos salidas. Se evitan plantas repetitivas entre colegas y, para eso, el alumno debe decidir el modelo anticipadamente recibiendo la aprobación del profesor.

2. Procedimientos

La planta elegida fue la del control de Vertical Take-Off and Landing o control de despegue y aterrizaje vertical, Se obtuvo las matrices de estado de una referencia [KARAKLAS NIKOLAOS, 2017], por lo que empezaremos con el modelo ya linealizado.

1. Represente la planta GN en matriz de transferencia indicando las magnitudes físicas de sus variables y el valor de sus parámetros.

Haciendo uso del software tomaremos las matrices:

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \\ \dot{X}_3 \\ \dot{X}_4 \\ \dot{X}_5 \\ \dot{X}_6 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & -g & -c/m & 0 & 0 \\ 0 & 0 & 0 & 0 & -c/m & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1/m & 0 \\ 0 & 1/m \\ r/J & 0 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$
(1)

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \\ X_6 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix}$$
 (2)

Teniendo el modelo los siguientes parámetros:

- m=4:masa del avion
- J=0.05:Inercia
- r=0.3: Distancia desde el centro de masa a las fuerzas
- g= 9.81:Gravedad
- c=0.07:Constante de Amoriguamiento

Haciendo uso de software se obtuvo la siguiente matriz de transferencia:

$$\begin{bmatrix} \frac{-58,86-1,955D^{-14}s+0,25s^2+2,144D^{-15}s^2}{0,0175s^3+s^4} & 0 \\ 0 & \frac{0,25-8,939D^{-17}s}{0,0175+s^2} \end{bmatrix}$$

Calcule los polos y ceros de transmisión de la planta.
 Los polos y ceros de transmisión de la planta fueron hallados con la ayuda de scilab donde los valores se encuentran en la siguiente gráfica :

Figura 1: Polos y Ceros de Transmisión del Sistema

- 3. Defina las barreras de estabilidad y desempeño para el sistema controlado y plotee dichas barreras en relación a la frecuencia.
- 4. Calcule los valores singulares de la planta.

Los valores singulares de la planta son los siguientes:

$$0 + 0i$$

$$0 + 0i$$

$$-0.0175 + 0i$$

$$0 + 0i$$

$$-0.0175 + 0i$$

$$0 + 0i$$

5. Plotee los valores singulares máximos y mínimos de GN en relación a la frecuencia.

Figura 2: Valores Singulares de la planta

6. Diseñe un controlador óptimo LQR (lineal cuadrático), asumiendo que conoce todos los estados.

El diseño del controlador LQR se realiza a traves:

$$J = \int_0^\infty (x^T(t)Qx(t) + u^T(t)Ru(t))dt$$
 (3)

Para nuestro caso $Q = C^TC > 0$. Siendo que el control u = -Gx(t), el problema se reduce en calcular $G = R^{-1}B^TX$, hallando X resolviendo la Ecuación Algebraica de Ricatti (ARE).

$$0 = -XA - A^{T}X - C^{T}C + XBR^{-1}B^{T}X$$
 (4)

Haciendo uso de software y con un integrador añadido a la planta obtenemos el siguiente resultado:

```
--> X
X =
  1.9779871 -4.504D-16 -5.9514168 1.4455981 -2.596D-15 -1.4689428 -1.
                                                                           -5.745D-16
  1.973D-16 3.8292932 -9.065D-16 1.893D-16 6.7592932 -2.042D-16 -1.548D-16
                                                                           1.
 -5.9514168
           3.667D-15 58.079706 -10.199275 2.321D-14 17.209681 14.181318
                                                                            4.117D-15
  1.4455981 -7.078D-16 -10.199275
                                 2.2343297 -4.318D-15 -2.6828976 -1.9526891
                                                                            -8.952D-16
  8.523D-16 6.7592932 -3.702D-15 7.781D-16 21.343545 -8.679D-16 -6.560D-16
                                                                            3.7110056
 -1.4689428 9.757D-16 17.209681 -2.6828976 7.391D-15 6.1320524 5.9514168
                                                                           1.036D-15
 -1. 7.568D-16 14.181318 -1.9526891 5.684D-15 5.9514168 8.4522575
                                                                            7.553D-16
  3.277D-16 1.
                      -1.502D-15 3.403D-16 3.7110056 -3.800D-16 -2.830D-16
--> G
            7.568D-16 14.181318 -1.9526891 5.684D-15 5.9514168 8.4522575
                                                                             7.553D-16
  3.277D-16 1.
                      -1.502D-15 3.403D-16 3.7110056 -3.800D-16 -2.830D-16
                                                                            1.6898233
```

Figura 3: Ganancia LQR y X

- 7. Diseñe un observador de estados determinístico considerando que solamente es posible medir algunos estados de la planta.
 - El observador planteado es uno deterministico, usando el método de locación de polos, que con el uso de scilab donde la función que se encarga es ppol:
- 8. Con el controlador y el observador proyectados anteriormente, forme la estructura del compensador K(s).

Figura 4: Estructura del Compensador

- 9. Plotee las curvas de sensibilidad S y T y de la función de malla GNK. Evalúe si estas respetan las barreras de desempeño (realice gráficos superpuestos).
- 10. Plotee la respuesta del sistema controlado en función del tiempo frente a una entrada escalón unitario, quiere decir el compensador K y la planta GN en realimentación.
- 11. A partir de las barreras de estabilidad y desempeño, defina las funciones de ponderación WS y WT y plotee en relación a la frecuencia.
- 12. Encuentre la planta extendida P para proyecto de controlador robusto H-infinito, grafique en diagrama de bloques.
- 13. Sintetice el compensador robusto H-infinito obteniendo un gama cercano a 1.
- 14. Plotee las curvas de sensibilidad S y T. Evalúe si estas respetan las ponderaciones dadas (no deben existir cruzamientos entre WS y S y entre WT y T).
- 15. Plotee la respuesta del sistema controlado en función del tiempo frente a una entrada escalón unitario, quiere decir el compensador K y la planta GN en realimentación.

NOTA: Si los valores singulares máximos y mínimos de la planta están muy distantes entre si, realice un escalonamiento. Para garantizar un buen tracking, aumente integradores a la planta antes de realizar el proyecto de controlador. Puede usar Gnu-Octave o Scilab y cuando consideré necesario método analítico. El informe se entrega en un solo archivo pdf, anexando códigos en sección anexos y además presentando el enalce github para descarga.

Anexos

Lo que viene a continuación es el apartado de anexos donde tendremos los distintos códigos usados en el informe así como el calculo analítico para el caso MoDiCA-X los codigos pueden ser descargados Haciendo Click ->AQUI:

할 jfloreshu Add files via upload		feb7b9ь 1 minute ago	1 commits
○ VTOL_Plane.sce	Add files via upload		1 minute ago
○ VtolControl.sce	Add files via upload		1 minute ago
○ VtolModelLQR.zcos	Add files via upload		1 minute ago
○ Vtol_NonLinear.sce	Add files via upload		1 minute ago
	Add files via upload		1 minute ago

Figura 5: Github

Referencias

[KARAKLAS NIKOLAOS, 2017] KARAKLAS NIKOLAOS, P. L. (2017). Control de aviones con posibilidad vertical despegue / aterriza. Technical report, Departamento de Ingeniería Eléctrica y Tecnología Informática Patras Departamento de Sistemas y Control Automático.