А/В тестирование

Занятие 2

Мурашкин Вячеслав mvjacheslav@gmail.com

Содержание

- Гистограммы и плотность распределения
- Выборочное среднее
- Проверка статистических гипотез
- Обзор инструментов А/В тестирования

квантили

Гистограммы, плотность распределения,

Гистограмма

Нормировка гистограммы

Аппроксимация нормальным распределением

q-Квантиль

q-Квантиль (cumulative distribution function)

Процентиль

Процентиль (percent point function)

Выборочное среднее и центральная предельная теорема

Выборочное среднее

- приближение теоретического среднего распределения, основанное на выборке
- дисперсия оценки зависит от числа наблюдений

Выборочное среднее

- в процессе эксперимента получаем N значений
- оцениваем среднее полученных значений

- в процессе эксперимента получаем N значений
- оцениваем среднее полученных значений
- повторяем эксперимент М-раз

- в процессе эксперимента получаем N значений
- оцениваем среднее полученных значений
- повторяем эксперимент М несколько раз
- получаем М оценок средних
- дисперсия этих оценок зависит от числа наблюдений в эксперименте

ЦПТ для выборочного среднего

 $\{X_1, X_2, \ldots\}$ - независимые наблюдения одинаково распределенных случайных величин

$$\mathrm{E}[X_i] = \mu$$
 - мат. ожидание случайной величины

$$\operatorname{Var}[X_i] = \sigma^2$$
 - дисперсия генеральной совокупности

$$S_n := rac{X_1 + \dots + X_n}{n}$$
 - среднее значение семпла n случайных величин

$$\sqrt{n}\left(S_n-\mu
ight)\stackrel{d}{ o} N\left(0,\sigma^2
ight)$$
 - связь распределения средних с нормальным распределением

https://en.wikipedia.org/wiki/Central limit theorem

ЦПТ для выборочного среднего

ЦПТ для выборочного среднего

https://www.youtube.com/watch?v=jvoxEYmQHNM

- вычисляется разность средних в сплитах
- эта разность сравнивается с нулем
- нулевая гипотеза: "Разницы в средних нет"
- альтернативная гипотеза: "Разность средних отлична от нуля"

Right-tail test

 H_a : μ > value

Left-tail test

 H_a : μ < value

Two-tail test

 H_a : $\mu \neq value$

- оцениваем дисперсию разности
- задаемся порогом "уверенности", например 95%

- оцениваем дисперсию разности
- задаемся порогом "уверенности", например 95%
- определяем порог для выбранного значения "уверенности"
- если разность больше порога считаем верной альтернативную гипотезу

Дисперсия суммы (разности) независимых с. в. равна сумме дисперсий

$$\sigma_- = \sqrt{\sigma_x^2 + \sigma_y^2}$$

Стандартное нормальное распределение

Z-test

$$z = \frac{\overline{X}_A - \overline{X}_B}{SE_{AB}}$$

- z-статистика, используется для оценки уровня значимости

$$SE_{AB} = \sqrt{SE_A^2 + SE_B^2} \quad - \quad$$

формула для стандартной ошибки разности

$$SE = \frac{\sigma}{\sqrt{n}}$$

связь стандартной ошибки и дисперсии

Z-test

P-value

- вероятность получить тоже значение разницы средних или больше, при условии верности нулевой гипотезы
- вероятность ошибки отклонения нулевой гипотезы

P-value

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

Мощность критерия

 $power = Pr (reject H_0 \mid H_1 \text{ is true})$

Распределение Стьюдента (t-распределение)

- альтернатива нормальному распределению
- используется в случае небольшого числа наблюдений
- дисперсия генеральной совокупности неизвестна, оценивается по семплу

Распределение Стьюдента vs Нормальное

$$f(t) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\,\Gamma(rac{
u}{2})}igg(1+rac{t^2}{
u}igg)^{-rac{
u+1}{2}}$$

$$\Gamma(n) = (n-1)!$$

https://en.wikipedia.org/wiki/Student%27s_t-distribution#Probability_density_function

Тест Стьюдента

$$t=rac{ar{X}_1-ar{X}_2}{s_{ar{\Delta}}}$$

$$s_{ar{\Delta}} = \sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}$$

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2 \ ext{d. f.} = rac{\left(rac{s_1^2}{n_1} + rac{s_2^2}{n_2}
ight)^2}{rac{\left(s_1^2/n_1
ight)^2}{n_1-1} + rac{\left(s_2^2/n_2
ight)^2}{n_2-1}}$$

ЦПТ для пропорций

$$p = \frac{x}{n}$$

- среднее значение числа положительных событий в семпле

$$\sigma = \sqrt{rac{p(1-p)}{n}}$$

стандартное отклонение среднего

Online Calculator

https://abtestguide.com/calc/

Непараметрические методы

Тест Манна-Уитни

Placebo	7	5	6	4	12
New Drug	3	6	4	2	1

$$U_1 = n_1 n_2 + \frac{n_1 (n_1 + 1)}{2} - R_1$$
$$U_2 = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$

Тест Манна-Уитни

Тест Манна-Уитни

		Tota	al Sample	Ranks				
		(Ordered Sn	nallest to Largest)					
Usual Care	New Program	Usual Care	New Program	Usual Care	New Program			
8	9	2		1				
7	8	3		2				
6	7	5		3				
2	8	6	6	4.5	4.5			
5	10	7	7	7	7			
8	9	7		7				
7	6	8	8	10.5	10.5			
3		8	8	10.5	10.5			
			9		13.5			
			9		13.5			
			10		15			
				R ₁ =45.5	R ₂ =74.5			

Уровень значимости оценивается по таблице

Critical Values of the Mann-Whitney U

(One-Tailed Testing)

n ₂			n_1																
	α	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3	.05	0	0	1	2	2	3	4	4	5	5	6	7	7	8	9	9	10	11
3	.01		0	0	0	0	0	1	1	1	2	2	2	3	3	4	4	4	5
4	.05	0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18
7	.01			0	1	1	2	3	3	4	5	5	6	7	7	8	9	9	10
5	.05	1	2	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
3	.01		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
6	.05	2	3	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
O	.01		1	2	3	4	6	7	8	9	11	12	13	15	16	18	19	20	22
7	.05	2	4	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
/	.01	0	1	3	4	6	7	9	11	12	14	16	17	19	21	23	24	26	28
8	.05	3	5	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
0	.01	0	2	4	6	7	9	11	13	15	17	20	22	24	26	28	30	32	34

Multi-armed bandit experiments

Multi-armed bandit experiments

https://support.google.com/analytics/answer/2844870?hl=en

Multi-armed bandit experiments

https://support.google.com/analytics/answer/2844870?hl=en

Causal Impact

Causal Impact

https://google.github.io/CausalImpact/CausalImpact.html

Полезные материалы

- Central Limit Theorem
- OpenIntro Statistics 3rd Edition, 2015
- Introduction to Probability and Data
- Mathematical Biostatistics Boot Camp
- Probability Cheatsheet
- Nonparametric Tests