Artificial Intelligence

Fuzzy Logic

Lesson 3: Fuzzy Control

Vincenzo Piuri

Università degli Studi di Milano

Contents

- Mamdani Control
- Takagi-Sugeno Control
- Fuzzy Control as Similarity-Based Reasoning

Architecture of a Fuzzy Controller

Mamdani Control

Example: Cartpole Problem (1)

- Balance an upright standing pole by moving its foot
- Lower end of pole can be moved unrestrained along horizontal axis
- Mass m at foot and mass M at head
- Influence of mass of shaft itself is negligible
- Determine force *F* (control variable) that is necessary to balance pole standing upright
- That is measurement of following output variables
 - angle θ of pole in relation to vertical axis,
 - change of angle, *i.e.* triangular velocity $\dot{\theta} = \frac{d\theta}{dt}$
- Both should converge to zero

Example: Cartpole Problem (2)

- Angle $\theta \in X_1 = [-90^{\circ}, 90^{\circ}]$
- Theoretically, every angle velocity $\dot{\theta}$ possible
- Extreme $\dot{\theta}$ are artificially achievable
- Assume $-45^{\circ}/s \le \dot{\theta} \le 45^{\circ}/s$ holds, i.e. $\dot{\theta} \in X_2 = [-45^{\circ}/s, 45^{\circ}/s]$
- Absolute value of force $|F| \le 10$ N
- Thus define $F \in Y = [-10N, 10N]$

Example: Cartpole Problem (3)

- X₁ partitioned into 7 fuzzy sets
 - Support of fuzzy sets: intervals with length 1/4 of whole range X_1
 - Similar fuzzy partitions for X₂ and Y
- Specify rules
 - if ξ_1 is $A^{(1)}$ and . . . and ξ_n is $A^{(n)}$ then η is B, $A^{(1)}, \ldots, A^{(n)}$ and B represent linguistic terms corresponding to $\mu^{(1)}, \ldots, \mu^{(n)}$ and μ according to X_1, \ldots, X_n and Y
 - Rule base consists of k rules

Example: Cartpole Problem (4)

Example: Cartpole Problem (5)

 θ

		nb	nm	ns	az	ps	pm	pb
	nb			ps	pb			
	nm				pm			
	ns	nm		ns	ps			
	az	nb	nm	ns	az	ps	pm	pb
	ps				ns	ps		pm
	pm pb				nm			
	pb				nb	ns		_

• 19 rules for cartpole problem, often not necessary to determine all table entries e.g.

If θ is approximately zero and $\dot{\theta}$ is negative medium then F is positive medium

Definition of Table-based Control Function (1)

- Measurement $(x_1,...,x_n) \in X_1 \times ... \times X_n$ is forwarded to decision logic
- Consider rule

if
$$\xi_1$$
 is $A^{(1)}$ and . . . and ξ_n is $A^{(n)}$ then η is B

- Decision logic computes degree to $\xi_1, ..., \xi_n$ fulfills premise of rule
- For $1 \le \nu \le n$, the value $\mu^{(\nu)}(x_{\nu})$ is calculated
- Combine values conjunctively by

$$\alpha = \min\{\mu^{(1)}, \dots, \mu^{(n)}\}$$

• For each rule R_r with $1 \le r \le n$, compute

$$\alpha_r = \min \left\{ \mu_{i_{1,r}}^{(1)}(x_1), \dots, \mu_{i_{n,r}}^{(n)}(x_n) \right\}$$

Definition of Table-based Control Function (2)

- Output of R_r = fuzzy set of output values
- Thus "cutting off" fuzzy set μ_{i_r} associated with conclusion of R_r at α_r
- For input $(x_1, ..., x_n)$, R_r implies fuzzy set

$$\mu_{x_{1},...,x_{n}}^{\text{ouptut}(R_{r})}: Y \to [0,1]$$

$$y \mapsto \min \left\{ \mu_{i_{1},r}^{(1)}(x_{1}), ..., \mu_{i_{n},r}^{(n)}(x_{n}), \mu_{i_{r}}(y) \right\}$$

- If $\mu_{i_1,r}^{(1)}(x_1) = \dots = \mu_{i_n,r}^{(n)}(x_n) = 1$ then $\mu_{x_1,\dots,x_n}^{\operatorname{ouptut}(R_r)} = \mu_{i_r}$
- If for all $v \in \{1,\ldots,n\}$ $\mu_{i_{v,r}}^{(v)}(x_v) = 0$, then $\mu_{x_1,\ldots,x_n}^{\operatorname{ouptut}(R_r)} = 0$

Combination of Rules

- The decision logic combines the fuzzy sets from all rules
- The maximum leads to the output fuzzy set

$$\mu_{x_{1},...,x_{n}}^{\text{ouptut}(R_{r})}: Y \to [0,1]$$

$$y \mapsto \min \left\{ \mu_{i_{1},r}^{(1)}(x_{1}), ..., \mu_{i_{n},r}^{(n)}(x_{n}), \mu_{i_{r}}(y) \right\}$$

• Then $\mu_{x_1,\dots,x_n}^{\text{ouptut}}$ is passed to defuzzification interface

Rule Evaluation

Defuzzification

- Mapping between each (n_1, \ldots, n_n) and $\mu_{x_1, \ldots, x_n}^{\text{ouptut}}$
- Output = description of output value as fuzzy set
- Defuzzification interface derives crisp value from $\mu^{\text{ouptut}}_{x_1,\dots,x_n}$
- This step is called defuzzification
- Most common methods:
 - max criterion
 - mean of maxima
 - center of gravity

The Max Criterion Method

- Choose an arbitrary $y \in Y$ for which $\mu_{x_1,...,x_n}^{\text{ouptut}}$ reaches the maximum membership value
- Advantages:
 - Applicable for arbitrary fuzzy sets
 - Applicable for arbitrary domain Y(even for $Y \neq \mathbb{R}$)
- Disadvantages:
 - Rather class of defuzzification strategies than single method
 - Which value of maximum membership?
 - Random values and thus non-deterministic controller
 - Leads to discontinuous control actions

The Mean of Maxima (MOM) Method

- Preconditions:
 - 1. Y is interval
 - 2. $Y_{\text{Max}} = \{ y \in Y \mid \forall y' \in Y : \mu_{x_1,\dots,x_n}^{\text{ouptut}}(y') \leq \mu_{x_1,\dots,x_n}^{\text{ouptut}}(y) \}$ is non-empty and measurable
 - 3. Y_{Max} is set of all $y \in Y$ such that $\mu_{x_1,\dots,x_n}^{\text{ouptut}}$ is maximal
- Crisp output value = mean value of Y_{Max} if Y_{Max} is finite if Y_{Max} is infinite

$$\eta = \frac{1}{|Y_{\text{Max}}|} \sum_{y_i \in Y_{\text{Max}}} y_i \qquad \qquad \eta = \frac{\int_{y \in Y_{\text{Max}}} y \, dy}{\int_{y \in Y_{\text{Max}}} dy}$$

MOM can lead to discontinuous control actions

Center of Gravity (COG) Method (1)

- Same preconditions as MOM method
 - η = center of gravity, i.e., center of area of $\mu_{x_1,...,x_n}^{\text{ouptut}}$
 - If Y is finite, then

$$\eta = \frac{\sum_{y_i \in Y} y_i \cdot \mu_{x_1, \dots, x_n}^{\text{ouptut}}(y_i)}{\sum_{y_i \in Y} \mu_{x_1, \dots, x_n}^{\text{ouptut}}(y_i)}$$

If Y is infinite, then

$$\eta = \frac{\int_{y_i \in Y} y \cdot \mu_{x_1, \dots, x_n}^{\text{ouptut}} dy}{\int_{y_i \in Y} \mu_{x_1, \dots, x_n}^{\text{ouptut}} dy}$$

Center of Gravity (COG) Method (2)

- Advantages
 - Nearly always smooth behavior
 - If certain rule dominates once, not necessarily dominating again
- Disadvantage:
 - No semantic justification
 - Long computation
 - Counterintuitive results possible
- Also called center of area (COA) method
- Take value that splits $\mu_{x_1,...,x_n}^{\text{ouptut}}$ into 2 equal parts

Example

- Task: compute $\eta_{\rm COG}$ and $\eta_{\rm MOM}$ of fuzzy set shown below.
- Based on finite set Y = 0, 1, ..., 10 and infinite set Y = [0, 10]

Example for COG Continuous and Discrete Output Space

$$\eta_{\text{COG}} = \frac{\int_0^{10} y \cdot \mu_{x_1, \dots, x_n}^{\text{output}}(y) \, dy}{\int_0^{10} \mu_{x_1, \dots, x_n}^{\text{output}}(y) \, dy} \\
= \frac{\int_0^5 0.4y \, dy + \int_5^7 (0.2y - 0.6)y \, dy + \int_7^{10} 0.8y \, dy}{5 \cdot 0.4 + 2 \cdot \frac{0.8 + 0.4}{2} + 3 \cdot 0.8} \\
\approx \frac{38.7333}{5.6} \approx 6.917$$

$$\eta_{\text{COG}} = \frac{0.4 \cdot (0 + 1 + 2 + 3 + 4 + 5) + 0.6 \cdot 6 + 0.8 \cdot (7 + 8 + 9 + 10)}{0.4 \cdot 6 + 0.6 \cdot 1 + 0.8 \cdot 4}$$

$$= \frac{36.8}{6.2} \approx 5.935$$

Example for MOM Continuous and Discrete Output Space

$$\eta_{\text{MOM}} = \frac{\int_{7}^{10} y \, dy}{\int_{7}^{10} \, dy}$$

$$= \frac{50 - 24.5}{10 - 7} = \frac{25.5}{3}$$

$$= 8.5$$

$$\eta_{\text{MOM}} = \frac{7+8+9+10}{4}$$

$$= \frac{34}{4}$$

$$= 8.5$$

Problem Case for MOM and COG

- What would be the output of MOM or COG?
- Is this desirable or not?

Takagi-Sugeno Control

Takagi-Sugeno Control (1)

- Modification and extension of Mamdani controller
- Both in common: fuzzy partitions of input domain X_1, \ldots, X_n
- Difference to Mamdani controller
 - no fuzzy partition of output domain Y
 - controller rules R_1, \ldots, R_k are given by

$$R_r$$
: if ξ_1 is $A_{i_1,r}^{(1)}$ and . . . and ξ_n is $A_{i_n,r}^{(n)}$
then $\eta_r = f_r(\xi_1,...,\xi_n)$,
 $f_r: X1 \times ... \times X_n \to Y$

• generally, f_r is linear, i.e. $f_r(x_1,...,x_n) = a_0^r + \sum_{i=1}^n a_i^r x_i$

Takagi-Sugeno Control (2)

- For given input $(x_1,...,x_n)$ and for each R_r , decision logic computes the truth value α_r of each premise, and then $f_r(x_1,...,x_n)$
- Analogously to Mamdani controller

$$\alpha_r = \min \left\{ \mu_{i_1, r}^{(1)}(x_1), \dots, \mu_{i_n, r}^{(n)}(x_n) \right\}$$

Output equals crisp control value

$$\eta = \frac{\sum_{r=1}^{k} \alpha_r \cdot f_r(x_1, \dots, x_n)}{\sum_{r=1}^{k} \alpha_r}$$

Thus no defuzzification method necessary

Example

- If a certain clause " x_j is $A_{i_1,r}^{(1)}$ " in rule R_r is missing, then $\mu_{i_j,r}(x_j) \equiv 1$ for all linguistic values $i_{j,r}$
- For instance, here x_2 in R_1 , so $\mu_{i_{2,1}}(x_2) \equiv 1$ for all $i_{2,1}$

Example: Output Computation

input: $(\xi_1, \xi_2) = (6, 7)$

$$\alpha_1 = \frac{1}{2} \land 1 = \frac{1}{2}$$
 $\eta_1 = 6 + \frac{7}{2} + 1 = 10.5$
 $\alpha_2 = \frac{1}{2} \land \frac{2}{3} = \frac{1}{2}$ $\eta_2 = -0.6 + 28 + 1.2 = 28.6$
 $\alpha_3 = \frac{1}{2} \land \frac{1}{3} = \frac{1}{3}$ $\eta_3 = 0.9 \cdot 6 + 0.7 \cdot 7 + 9 = 19.3$
 $\alpha_4 = 0 \land \frac{1}{3} = 0$ $\eta_4 = 6 + \frac{7}{2} + 1 = 10.5$

output:
$$\eta = f(6,7) = \frac{1/2 \cdot 10.5 + 1/2 \cdot 28.6 + 1/3 \cdot 19.3}{1/2 + 1/2 + 1/3} = 19.5$$

Fuzzy Control as Similarity-Based Reasoning

Interpolation in the Presence of Fuzziness

- Both Takagi-Sugeno and Mamdani are based on heuristics
- They are used without a concrete interpretation
- Fuzzy control is interpreted as a method to specify a non-linear transition function by knowledgebased interpolation
- A fuzzy controller can be interpreted as fuzzy interpolation
- It uses the concept of *fuzzy equivalence* relations (also called *similarity relations*)

Similarity: Example

Specification of a partial control mapping ("good control actions")

		gradient								
		-40.0	-6.0	-3.0	0.0	3.0	6.0	40.0		
	-70.0	22.5	15.0	15.0	10.0	10.0	5.0	5.0		
	-50.0	22.5	15.0	10.0	10.0	5.0	5.0	0.0		
	-30.0	15.0	10.0	5.0	5.0	0.0	0.0	0.0		
deviation	0.0	5.0	5.0	0.0	0.0	0.0	-10.0	-15.0		
	30.0	0.0	0.0	0.0	-5.0	-5.0	-10.0	-10.0		
	50.0	0.0	-5.0	-5.0	-10.0	-15.0	-15.0	-22.5		
	70.0	-5.0	-5.0	-15.0	-15.0	-15.0	-15.0	-15.0		

Interpolation of Control Table

- There might be additional knowledge available
 - Some values are "indistinguishable", "similar" or "approximately equal"
 - Or they should be treated in a similar way
- Two problems:
 - 1. How to model information about similarity?
 - 2. How to interpolate in case of an existing similarity information?

How to Model Similarity? Equivalence Relation?

Definition

- Let A be a set and ≈ be a binary relation on A
- \approx is called an equivalence relation if and only if $\forall a, b, c \in A$
 - 1) $a \approx a$ (reflexivity)
 - 2) $a \approx b \leftrightarrow b \approx a$ (symmetry)
 - 3) $a \approx b \wedge b \approx c \rightarrow a \approx c$ (transitivity)
- Let us try $a \approx b \Leftrightarrow |a b| < \varepsilon$ where ε is fixed
- \approx is not transitive, \approx is no equivalence relation
- Poincaré paradox: $a \approx b$, $b \approx c$, $a \not\approx c$
- This is counterintuitive

How to Model Similarity? Fuzzy Equivalence Relation

Definition

A function $E: X^2 \to [0,1]$ is called a fuzzy equivalence relation with respect to the *t*-norm \top if it satisfies the following conditions

1)
$$E(x,x) = 1$$
 (reflexivity)
 $\forall x,y,z \in X$ 2) $E(x,y) = E(y,x)$ (symmetry)
3) $\forall x,y,z \in X$ 3) $\forall E(x,y), E(y,z) \in E(x,z)$ (t-transitivity)

E(x,y) is the degree to which $x \approx y$ holds

- *E* is also called similarity relation, *t*-equivalence relation, indistinguishability operator, or tolerance relation
- Note that property 3) corresponds to the vague statement if $(x \approx y) \land (y \approx z)$ then $x \approx z$

Fuzzy Equivalence Relations: Example

• Let δ be a pseudo metric on X

Furthermore $T(a,b) = \max\{a+b-1,0\}$ Łukasiewicz t-norm Then $E_{\delta}(x,y) = 1 - \min\{\delta(x,y),1\}$ is a fuzzy equivalence relation

 $\delta(x,y)=1-E_{\delta}(x,y)$ is the induced pseudo metric Fuzzy equivalence and distance are dual notions in this case

Definition

A function $E: X^2 \rightarrow [0,1]$ is called a fuzzy equivalence relation if $\forall x,y,z \in X$

- 1) E(x,x) = 1 (reflexivity)
- 2) E(x,y) = E(y,x) (symmetry)
- 3) $\max\{E(x,y) + E(y,z) 1,0\} \le E(x,z)$ (Łukasiewicz transitivity)

Fuzzy Sets as Derived Concept

$$\delta(x,y) = |x-y|$$
 metric $E_{\delta}(x,y) = 1 - \min\{|x-y|, 1\}$ fuzzy equivalence relation

metric

 $\mu_{x_0}: X \rightarrow [0,1]$ $x \mapsto E_{\delta}(x, x_0)$ fuzzy singleton μ_{χ_0} describes "local" similarities

Extensional Hull

- $E: \mathbb{R} \times \mathbb{R} \to [0,1], \quad (x,y) \mapsto 1 \min\{|x-y|,1\}$ is fuzzy equivalence relation w.r.t. $\top_{\text{Łuka}}$
- Definition

Let E be a fuzzy equivalence relation on X w.r.t. \top $\mu \in F(X)$ is extensional if and only if

$$\forall x, y \in X : T(\mu(x), E(x, y)) \le \mu(y)$$

Definition

Let E be a fuzzy equivalence relation on a set XThe extensional hull of a set $M \subseteq X$ is the fuzzy set $\mu_M: X \to [0,1], \qquad x \mapsto \sup\{E(x,y) \mid y \in M\}$

• The extensional hull of $\{x_0\}$ is called a singleton

Specification of Fuzzy Equivalence Relation

 Given a family of fuzzy sets that describes "local" similarities

• There exists a fuzzy equivalence relation on X with induced singletons μ_i if and only if

$$\forall i, j : \sup_{x \in X} \{ \mu_i(x) + \mu_j(x) - 1 \} \le \inf_{y \in X} \{ 1 - |\mu_i(y) - \mu_j(y)| \}$$

• If $\mu_i(x) + \mu_j(x) \le 1$ for $i \ne j$, then there is a fuzzy equivalence relation E on X

$$E(x,y) = \inf_{i \in I} \{1 - |\mu_i(x) - \mu_i(y)|\}$$

Necessity of Scaling (1)

- Are there other fuzzy equivalence relations on \mathbb{R} than $E(x,y) = 1 \min\{|x-y|,1\}$?
- A fuzzy equivalence relation depends on the measurement unit, e.g.
 - Celsius: $E(20 \, ^{\circ}\text{C}, \, 20.5 \, ^{\circ}\text{C}) = 0.5,$
 - Fahrenheit: E(68 F, 68.9 F) = 0.9,
 - scaling factor for Celsius/Fahrenheit = 1.8
 (F = 9/5C + 32)
- $E(x,y) = 1 \min\{|c \cdot x c \cdot y|, 1\}$ is a fuzzy equivalence relation

Necessity of Scaling (2)

- How to generalize scaling concept?
 - X = [a, b]
 - Scaling

$$c: X \to [0, \infty)$$

Transformation

$$f: X \to [0, \infty), x \mapsto \int_a^x c(t)dt$$

Fuzzy equivalence relation

$$E: X \times Y \to [0,1], (x,y) \mapsto 1 - \min\{|f(x) - f(y)|, 1\}$$

Fuzzy Equivalence Relations: Fuzzy Control

- The imprecision of measurements is modeled by fuzzy equivalence relations E_1, \ldots, E_n and F on X_1, \ldots, X_n and Y, respectively
- The information provided by control expert are
 - k input-output tuples $(x_1^{(r)}, \dots, x_n^{(r)}, y^{(r)})$
 - the description of the fuzzy equivalence relations for input and output spaces, respectively
- The goal is to derive a control function $\varphi: X_1 \times ... \times X_n \rightarrow Y$ from this information

Determine Fuzzy-valued Control Functions (1)

The extensional hull of graph of φ must be determined

• Then the equivalence relation on $X_1 \times ... \times X_n \times Y$ is

$$E((x_1,...,x_n,y),(x'_1,...,x'_n,y'))$$
= min{E1(x1,x'1),...,E_n(x_n,x'_n),F(y,y')}

Determine Fuzzy-valued Control Functions (2)

• For X_i and Y, define the sets

$$X_i^{(0)} = \{x \in X_i \mid \exists r \in \{1, ..., k\} : x = x_i^r\}$$

and

$$Y^{(0)} = \{ y \in Y \mid \exists r \in \{1, \dots, k\} : y = y^{(r)} \}$$

- $X_i^{(0)}$ and $Y^{(0)}$ contain all values of the r input-output tuples $(x_i^r, ..., x_n^r, y^{(r)})$
- For each $x_0 \in X_i^{(0)}$, singleton μ_{x_0} is obtained by

$$\mu_{x_0}(x) = E_i(x, x_0)$$

Determine Fuzzy-valued Control Functions (3)

- If φ is only partly given, then use E_1, \ldots, E_n, F to fill the gaps of φ_0
- The extensional hull of φ_0 is a fuzzy set

$$\mu'_0(x'_1, \dots, x'_n, y') = \max_{r \in \{1, \dots, k\}} \left\{ \min\{E_1(x_1^{(r)}, x'_1), \dots, E_n(x_n^{(r)}, x'_n), F(y^{(r)}, y')\} \right\}$$

- μ_0' is the smallest fuzzy set containing the graph of ϕ_0
- Obviously, $\mu_{\phi_0} \leq \mu_{\phi}$ $\mu_{\phi_0}^{(x_1,\ldots,x_n)}:Y\to [0,1],$ $y\mapsto \mu_{\phi_0}(x_1,\ldots,x_n,y)$

Reinterpretation of Mamdani Controller (1)

- For input (x_1,\ldots,x_n) , the projection of the extensional hull of graph of ϕ_0 leads to a fuzzy set as output
- This is identical to the Mamdani controller output
- It identifies the input-output tuples of ϕ_0 by linguistic rules

```
R_r: if \mathcal{X}_1 is approximately x_1^{(r)} and...
and \mathcal{X}_n is approximately x_n^{(r)} then \mathcal{Y} is y^{(r)}
```

 A fuzzy controller based on equivalence relations behaves like a Mamdani controller

Reinterpretation of Mamdani Controller (2)

if x is large then y is large

- 3 fuzzy rules (specified by 3 input-output tuples)
- The extensional hull is the maximum of all fuzzy rules