

Group-14

Serial Number	Name	Enrollment Number
1	Ananya Aggarwal	220378
2	Aastha Singh	220387
3	Siddhika Sinha	220388
4	Peehu	220623

Problem Statement

Understanding emotions is crucial for improving human-computer interaction.

Unimodal systems struggle in real-world scenarios due to noise or occlusions.

Need for a multimodal system combining speech and facial cues to increase accuracy and robustness.

Develop a robust emotion recognition system using both facial expressions and speech.

Our Aim

Applications: Menta health, education, customer service, and entertainment.

Leverage advanced deep learning models for real-time emotion classification.

Data Acquisition:

- TESS Dataset for speech-based emotion recognition.
- FER-2013 Dataset for facial emotion recognition.

Feature Extraction:

- Speech: MFCCs, pitch variations.
- Facial: Convolutional Neural Networks (CNNs).

Model Development:

- LSTM for speech data processing.
- CNN for facial data processing.

Datasets for Analysis

TESS Dataset (Speech):

- 2 female actors recording 7 emotions: happiness, sadness, anger, fear, disgust, surprise, neutral.
- High-quality WAV files, 16 kHz sampling rate.

FER-2013 Dataset (Facial):

- 48x48 grayscale images of facial expressions.
- Covers 7 emotion classes with 35,887 labeled images.

Features for Analysis

Speech Features:

- MFCCs
- Pitch variations
- Spectral contrast

Facial Features:

 Hierarchical features learned using CNNs.

Technology Stack

Programming Language	Python	
Libraries	TensorFlow, Keras, Librosa, OpenCV, Seaborn, Matplotlib	
Models Used	LSTM for speech processing. CNN for facial expression recognition.	

System Architecture

RESULTS

Speech Analysis Model Results

Facial Analysis Model Results


```
w Go Run ··· ← →
                                                    P Face recognition
   ♠ face_recognition.py
♠ import tensorflow as tf.py 1
                                                     lace emotion recognition[1] pynb
   ♠ FACE SPEECH EMO.py > 
 main
   292 def main():
    382
   383
              except Exception as e:
    384
                 print(f"Error in main loop: {str(e)}")
    385
    386
              finally:
    387
                  running = False
    388
                  cap.release()
    389
                  cv2.destroyAllWindows()
                  # Wait for threads to finish
    398
    391
                  keyboard_thread.join(timeout=1)
    392
                  audio_thread.join(timeout=1)
    393
                  print("\nProgram terSminated.")
    394
    395
    396 if __name__ == "__main__":
    397
          main()
    PROBLEMS 30 DEBUG CONSOLE TERMINAL CULTPUT PORTS SUPPLER
    Final processed shape: (1, 500, 40)
Input shape before prediction: (1, 500, 40)
Raw predictions: [6.1641382e=03 5.5859133e=04 4.0822248e=03 4.3322626e=04 2.2493205e=03
1.5153948e-03 1.4711329e-04 6.6922158e-03 2.9967401e-02 2.9664708e-02
    1.8276734e-02 2.8386363e-01 3.4857117e-02 5.8153623e-01]
    Prediction shape: (14,)
    Predicted index: 13
n... Number of labels: 7
    Labels: ['Neutral', 'Happy', 'Sad', 'Angry', 'Fear', 'Disgust', 'Surprise']
    Program terminated.
   PS C:\Users\aasth\OneDrive\Desktop\Face-recognition>
```


Applications

MENTAL HEALTH **EDUCATION**

CUSTOMER SERVICE

GAMING

Multilingual adaptability.

Integration with IoT devices for real-time applications.

Advanced fusion techniques like transformers.

Future Scope

Thank You