Predicting molecular properties with machine learning

Md Naim Hassan Saykat

Petko Petkov

Project objective

train machine learning models to predict molecular properties from the 3D structure of the molecules

perform data exploration on QM9 dataset, convert the data into an appropriate format for machine learning models

 compare multiple regression models after cross-validation and hyperparameter tuning

Dataset

 QM9 (quantum chemical properties of approximately 134,000 stable small organic molecules, we're using 1000 random samples)

 includes computed geometric, energetic, electronic, and thermodynamic properties for each molecule

 contains 16 physical/chemical features (we are predicting 2 of them - heat capacity and isotropic polarizability) and Euclidean coordinates of the atoms

Dataset features

I.	Property	Unit	Description
1	tag	=	gdb9; string constant to ease extraction via grep
2	index	-	Consecutive, 1-based integer identifier of molecule
3	Α	GHz	Rotational constant A
4	В	GHz	Rotational constant B
5	C	GHz	Rotational constant C
6	mu	Debye	Dipole moment
7	alpha	Bohr^3	Isotropic polarizability
8	homo	Hartree	Energy of Highest occupied molecular orbital (HOMO)
9	lumo	Hartree	Energy of Lowest occupied molecular orbital (LUMO)
10	gap	Hartree	Gap, difference between LUMO and HOMO
11	r2	Bohr^2	Electronic spatial extent
12	zpve	Hartree	Zero point vibrational energy
13	U0	Hartree	Internal energy at 0 K
14	U	Hartree	Internal energy at 298.15 K
15	Н	Hartree	Enthalpy at 298.15 K
16	G	Hartree	Free energy at 298.15 K
17	Cv	cal/(mol K)	Heat capacity at 298.15 K

Preprocessing

- the dataset contains XYZ format files (coordinates of atoms and the molecular properties)
- extracting the atoms' coordinates and features from the XYZ files

Example XYZ format file:

```
gm9-molecules > data > = gm9 460.xyz
      13
      qdb 460 6.95109 3.605
                               2.72215 1.8411 49.49
                                                        -0.246 0.0261 0.2721 504.1131
                                                                                             0.109554
                                                                                                          -286.510514 -286.504912 -286.503968 -286.539796 19.819
           -0.1875361387
                            1.5483985282
                                            -0.0015224394
                                                            -0.396727
                                        0.0166833042
            0.07229417 0.0511345788
                                                         0.113356
           0.9452326913
                           -0.4820790606
                                            -1.1540812291
                                                            -0.192434
                           -1.0161526732
                                            -0.5211874978
                                                            -0.262577
            2.1643700861
           1.9974828955
                           -0.8558646542
                                             0.7241073334
                                                             0.122525
           0.8641487372
                           -0.2873843153
                                            1.1949494463
                                                            -0.230837
           0.7540120674
                            2.1008437961
                                            -0.0814498065
                                                             0.129414
          -0.8130444335
                            1.8082348907
                                            -0.8619794537
                                                             0.122652
          -0.7027820073
                            1.8688477128
                                             0.9080091098
                                                             0.130441
           -0.8700079159
                           -0.4978928383
                                                             0.094257
 12
                                             0.1094746394
           0.4474514051
                           -1.2731170793
                                            -1.7242119199
                                                             0.117336
           1.2106716005
                            0.3121861877
                                            -1.8613440684
                                                             0.113784
            2.7073449821
                           -1.1405681236
                                             1.4932744417
                                                             0.138808
```

Data exploration

- visualize the data so we can get an idea of the targets we can predict

- make more informed decisions on model selection and evaluation metrics

 identify any potential outliers or skewness in the data that may require special handling during preprocessing

Heat capacity distribution

Isotropic polarizability distribution

Correlation between features

	Feature correlation heatmap															- 1.00		
- 1.00	0.35	-0.31	-0.32	-0.23	-0.35	0.78	0.18		0.52	0.42	0.99	0.22	0.22	0.22	0.22	0.79		1.00
- 0.35	1.00	-0.29	-0.37	-0.41	0.00	0.37	-0.01	0.06	0.07	0.42	0.30					0.48		
0.31	-0.29	1.00	-0.21	-0.09	0.01	-0.25	-0.08	-0.10	-0.06	0.17	-0.27	0.27	0.27	0.27	0.27	-0.32		- 0.75
0.32	-0.37	-0.21	1.00	0.89	-0.07		0.11	0.03	-0.03	-0.85	-0.26	0.27	0.27	0.27	0.27	-0.60		
0.23	-0.41	-0.09	0.89	1.00	-0.16		0.09	0.17	0.13	-0.86	-0.16	0.36	0.36	0.36	0.36	-0.59		- 0.50
0.35	0.00	0.01	-0.07	-0.16	1.00	-0.24	-0.19	-0.37	-0.28	0.02	-0.36	-0.24	-0.24	-0.24	-0.24	-0.16		
- 0.78	0.37	-0.25	-0.45		-0.24	1.00	0.29	0.29	0.15	0.55	0.75	0.28	0.28	0.28	0.28	0.71		- 0.25
- 0.18	-0.01	-0.08	0.11	0.09	-0.19	0.29	1.00	0.23	-0.26	-0.10	0.19	0.14	0.14	0.14	0.14	0.02		0.23
- 0.61	0.06	-0.10	0.03	0.17	-0.37	0.29	0.23	1.00	0.88	0.01	0.64	0.27	0.27	0.27	0.27	0.32		
- 0.52	0.07	-0.06	-0.03	0.13	-0.28	0.15	-0.26	0.88	1.00	0.06	0.54	0.20	0.20	0.20	0.20	0.30		- 0.00
- 0.42	0.42	0.17	-0.85	-0.86	0.02	0.55	-0.10	0.01	0.06	1.00	0.37	-0.18	-0.18	-0.18	-0.18	0.69		
- 0.99	0.30	-0.27	-0.26	-0.16	-0.36	0.75	0.19	0.64	0.54	0.37	1.00	0.29	0.29	0.29	0.29	0.73		0.25
- 0.22	-0.43	0.27	0.27	0.36	-0.24	0.28	0.14	0.27	0.20	-0.18	0.29	1.00	1.00	1.00	1.00	-0.08		
- 0.22	-0.43	0.27	0.27	0.36	-0.24	0.28	0.14	0.27	0.20	-0.18	0.29	1.00	1.00	1.00	1.00	-0.08		0.50
- 0.22	-0.43	0.27	0.27	0.36	-0.24	0.28	0.14	0.27	0.20	-0.18	0.29	1.00	1.00	1.00	1.00	-0.08		
- 0.22	-0.43	0.27	0.27	0.36	-0.24	0.28	0.14	0.27	0.20	-0.18	0.29	1.00	1.00	1.00	1.00	-0.08		
0.79	0.48	-0.32	-0.60	-0.59	-0.16	0.71	0.02	0.32	0.30	0.69	0.73	-0.08	-0.08	-0.08	-0.08	1.00		0.75
n_atom	ı ns index	Å	В	c	nu	alpha	l homo	lumo	gap	R2	zpve	uo	Ů	н	G G	Cv	e e e e	

Calculate Coulomb matrices

- simple global descriptor which mimics the electrostatic interaction between nuclei
- N x N dimension where N is the number of atoms. The number of eigenvalues is also equal to N

$$M_{ij} = egin{cases} rac{Z_i Z_j}{\|\mathbf{R}_i - \mathbf{R}_j\|}, & i
eq j \ 0.5 Z_i^{2.4}, & i = j \end{cases}$$

where

 Z_i is the atomic number of atom i,

 \mathbf{R}_i is the position vector of atom i,

i, j are indices for atoms,

 $\|\mathbf{R}_i - \mathbf{R}_j\|$ is the Euclidean distance between atoms i and j.

Example Coulomb matrices

Calculation and padding of eigenvalues

- use eigenvalues of Coulomb matrix instead of the matrix itself as input to the models
- more efficient compressed version of the matrix
- apply padding to the eigenvalues to ensure that all eigenvalues have the same dimension

	filename	eig_1	eig_2	eig_3	eig_4	eig_5	eig_6	eig_7	eig_8	eig_9		eig_19	eig_20	eig_21	eig_22	eig_23	eig_24	eig_25	eig_26	eig_27	Cv
0	qm9_266	1.0	0.329025	0.227358	0.179935	0.073478	0.027857	0.0	0.000426	0.002725		0.005651	0.005651	0.005651	0.005651	0.005651	0.005651	0.005651	0.005651	0.005651	24.010
1	qm9_315	1.0	0.439247	0.224507	0.082111	0.140650	0.049320	0.0	0.005895	0.004430		0.005750	0.005750	0.005750	0.005750	0.005750	0.005750	0.005750	0.005750	0.005750	23.500
2	qm9_360	1.0	0.307410	0.273072	0.135665	0.092332	0.032927	0.0	0.000600	0.003172	•••	0.006556	0.006556	0.006556	0.006556	0.006556	0.006556	0.006556	0.006556	0.006556	25.744
3	qm9_420	1.0	0.330884	0.236063	0.112527	0.086585	0.029833	0.0	0.001303	0.003517		0.006290	0.006290	0.006290	0.006290	0.006290	0.006290	0.006290	0.006290	0.006290	21.625
4	qm9_459	1.0	0.306993	0.148639	0.218897	0.068910	0.055836	0.0	0.001705	0.000396		0.007163	0.007163	0.007163	0.007163	0.007163	0.007163	0.007163	0.007163	0.007163	22.613
5	qm9_530	1.0	0.440842	0.203108	0.130178	0.089190	0.038114	0.0	0.001056	0.002569		0.006990	0.006990	0.006990	0.006990	0.006990	0.006990	0.006990	0.006990	0.006990	25.054
6	qm9_567	1.0	0.404012	0.147004	0.128440	0.102299	0.047325	0.0	0.000665	0.001601		0.005366	0.005366	0.005366	0.005366	0.005366	0.005366	0.005366	0.005366	0.005366	21.718
7	qm9_635	1.0	0.345999	0.169299	0.138705	0.105061	0.053458	0.0	0.001206	0.001708		0.006622	0.006622	0.006622	0.006622	0.006622	0.006622	0.006622	0.006622	0.006622	24.967
8	qm9_655	1.0	0.310514	0.227941	0.095727	0.083522	0.040396	0.0	0.001804	0.003092		0.006568	0.006568	0.006568	0.006568	0.006568	0.006568	0.006568	0.006568	0.006568	19.969
9	qm9_743	1.0	0.257261	0.237552	0.121723	0.056193	0.027864	0.0	0.004586	0.004603		0.004961	0.004961	0.004961	0.004961	0.004961	0.004961	0.004961	0.004961	0.004961	16.782

Models training

 compare multiple regression models - Linear regression, Random forest, SVR (Epsilon-support vector regression), K-nearest neighbors, XGBoost (Extreme gradient boosting) and Ridge regression

 perform hyperparameter optimization for each of the models in order to find the best hyperparameters

use cross-validation to assess how well the models will generalize on unseen data

Mean squared error and R² loss functions

Compare models' performance with MSE and R² loss functions:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(y_i - \hat{y}_i
ight)^2$$

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

Heat capacity models cross-validation performance

Heat capacity models test set performance

Heat capacity predictions

Isotropic polarizability cross-validation performance

Isotropic polarizability test set performance

Isotropic polarizability predictions

Conclusion

- data preprocessing and exploration on the QM9 dataset

 trained and compared multiple regression models on the eigenvalues of the Coulomb matrices to predict heat capacity and isotropic polarizability, performed hyperparameter tuning and cross-validation

- XGBoost is the best model for this task

 if we had more time: extend the dataset by adding molecules with more atoms and compare how these models would perform when the size of the molecules is significantly increased