Scalp Maps for Hearing Impairment Detection: A CNN Model

Grace Wang, Dr. Beiyu Lin University of Nevada, Las Vegas Department of Electrical and Computer Engineering Smart Cities REU: Summer 2023

Objective

The goal of this project is to utilize scalp maps derived from spatial and temporal electroencephalography (EEG) data to distinguish between individuals with hearing impairment and healthy individuals.

Dataset

The dataset contains EEG data from:

- 22 healthy subjects
- 22 hearing impaired subjects

Experiment recorded each patient's event related potentials (ERPs) in response to 1 kHz tone beeps presented at random intervals 180 times.

Fig 2. (left) Examples of hearing impaired and healthy scalp maps (right) Averaged scalp maps of both groups

Event Related Potentials (ERPS)

ERPs serve as the **features** utilized **for** classifying the two groups.

Acquired ERP waveform up to 400 ms after onset of tone stimuli for each patient.

Topographical scalp maps were extracted at 10 ms intervals within the 0 to 400 ms time range.

Total images: 1,760

Fig 3. Individual traces of ERP data averaged over fronto-central electrode cluster. Thin lines reflect data from individual subjects. Thick lines reflect group-mean averages.

Convolutional Neural Network (CNN) Architecture

Results

The results below are the experiments for testing the CNN model on different types of data splits.

Table 1: Experiment Results

Experiment	Training Data	Validation Data	Testing Data	Test Loss	Test Accuracy
1	70%		30%	0.379	0.865
2	80%	10%	10%	0.227	0.950
3	70%	15%	15%	0.470	0.891

Discussion

Fig 4. Learning curve for Experiment 3

CNN is effective in distinguishing between hearing impaired and healthy individuals in this study.

Averaged accuracy: 85%-95%

Conclusion

Here are some ways to **enhance** the model's accuracy and generalization:

- apply larger and diverse datasets
- exploring alternative machine learning **methods** (SVM, RNN, random forest)
- fine-tuning model parameters and optimizations (cross validation, regularization etc.)

Acknowledgements

Dr. Joel Snyder, UNLV Psychology Dr. Brendan Morris, UNLV Electrical and Computer Engineering

Dr. Sarah Harris, UNLV Electrical and Computer Engineering

