## **←** Anomaly Detection

Quiz, 5 questions

| 1<br>point                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| For which of the following problems would anomaly detection be a suitable algorithm?                                                                                                                                                                       |
| Given a dataset of credit card transactions, identify unusual transactions to flag them as possibly fraudulent.                                                                                                                                            |
| From a large set of primary care patient records, identify individuals who might have unusual health conditions.                                                                                                                                           |
| Given an image of a face, determine whether or not it is the face of a particular famous individual.                                                                                                                                                       |
| Given data from credit card transactions, classify each transaction according to type of purchase (for example: food, transportation, clothing).                                                                                                           |
| 1<br>point                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                            |
| suppose you have trained an anomaly detection system that flags anomalies when $p(x)$ is less than $arepsilon$ , and you find on the ross-validation set that it has too many false positives (flagging too many things as anomalies). What should you do? |
| O Decrease $arepsilon$                                                                                                                                                                                                                                     |
| Oncrease $arepsilon$                                                                                                                                                                                                                                       |

## **Anomaly Detection**

Qui<sup>2</sup>, 5 questions point

3.

Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses

$$p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2).$$

You have two features  $x_1$  = vibration intensity, and  $x_2$  = heat generated. Both  $x_1$  and  $x_2$  take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that  $x_1 \approx x_2$ . One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large  $x_1$ , small  $x_2$ ), even though the particular values of  $x_1$  and  $x_2$  may not fall outside their typical ranges of values. What additional feature  $x_3$  should you create to capture these types of anomalies:

- $x_3 = \frac{x_1}{x_2}$
- $\bigcirc \quad x_3 = x_1 + x_2$
- $igcap x_3 = rac{1}{x_1}$

1 point

4

Which of the following are true? Check all that apply.

| Ano     | When evaluating an anomaly detection algorithm on the cross validation set (containing some positive and some negative examples), classification accuracy is usually a good evaluation metric to use. |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quiz, 5 | In a typical anomaly detection setting, we have a large number of anomalous examples, and a relatively small number of normal/non-anomalous examples.                                                 |
|         | In anomaly detection, we fit a model $p(x)$ to a set of negative ( $y=0$ ) examples, without using any positive examples we may have collected of previously observed anomalies.                      |
|         | When developing an anomaly detection system, it is often useful to select an appropriate numerical performance metric to evaluate the effectiveness of the learning algorithm.                        |
|         |                                                                                                                                                                                                       |

1 point

5.

You have a 1-D dataset  $\{x^{(1)}, \dots, x^{(m)}\}$  and you want to detect outliers in the dataset. You first plot the dataset and it looks like this:

## looks like this: Anomaly Detection

Quiz, 5 questions



Suppose you fit the gaussian distribution parameters  $\mu_1$  and  $\sigma_1^2$  to this dataset. Which of the following values for  $\mu_1$  and  $\sigma_1^2$  might you get?

- $\mu_1=-3,\sigma_1^2=4$
- $\mu_1 = -6, \sigma_1^2 = 4$
- $\mu_1=-3, \sigma_1^2=2$
- $\qquad \qquad \mu_1=-6, \sigma_1^2=2$

I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code

Diogo Vasconcelos