

AO4435 30V P-Channel MOSFET

General Description

The AO4435 uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

- -RoHS Compliant
- -AO4435 is Halogen Free

Product Summary

 $V_{DS} = -30V$

 $I_D = -10.5A$ $(V_{GS} = -20V)$

 $R_{DS(ON)} < 14m\Omega \ (V_{GS} = -20V)$

 $R_{DS(ON)}$ < $18m\Omega$ ($V_{GS} = -10V$)

 $R_{DS(ON)} < 36m\Omega (V_{GS} = -5V)$

100% UIS Tested 100% Rg Tested

Absolute Maximum Ratings T _A =:	25℃ unless otherwise noted
--	----------------------------

Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	-30	V		
Gate-Source Voltage		V_{GS}	±25	V		
Continuous Drain	T _A =25℃		-10.5			
Current ^A	T _A =70℃	I _D	-8	Α		
Pulsed Drain Current ^B		I _{DM}	-80			
Power Dissipation ^A	T _A =25℃	$-P_D$	3.1	W		
	T _A =70℃	L D	2.0	VV		
Avalanche Current B		I _{AR}	-20	А		
Repetitive avalanche energy 0.3mH ^B		E _{AR}	60	mJ		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C		

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ hetaJA}$	32	40	℃/W	
Maximum Junction-to-Ambient A	Steady State	IN _θ JA	60	75	℃/W	
Maximum Junction-to-Lead ^C	Steady State	$R_{ hetaJL}$	17	24	℃/W	

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, \ V_{GS} = 0 V$	-30			V	
I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = -30V, V_{GS} = 0V$			-1	μΑ		
	T _J = 55℃			-5			
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V$, $V_{GS} = \pm 25V$			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = -250 \mu A$	-1.7	-2.3	-3	V	
$I_{D(ON)}$	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	-80			Α	
R _{DS(ON)} Static Drain-Source On-Resistance		$V_{GS} = -20V, I_D = -11A$		11	14	14	
	Static Drain Source On Registence	T _J =125℃		15	19	m0	
	$V_{GS} = -10V, I_D = -10A$		15	18	mΩ		
		$V_{GS} = -5V$, $I_D = -5A$		27	36		
g FS	Forward Transconductance	$V_{DS} = -5V, I_{D} = -10A$		22		S	
V_{SD}	Diode Forward Voltage	$I_S = -1A, V_{GS} = 0V$		-0.74	-1	V	
Is	Maximum Body-Diode Continuous Curre	ent			-3.5	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			1130	1400	pF	
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		240		pF	
C _{rss}	Reverse Transfer Capacitance			155		pF	
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	1	5.8	8	Ω	
SWITCHII	NG PARAMETERS						
Q _{g(10V)}	Total Gate Charge			18	24	nC	
Q _{g(4.5V)}	Total Gate Charge	V - 10V V - 15V I - 10A		9.5			
Q_{gs}	Gate Source Charge	-V _{GS} =-10V, V _{DS} =-15V, I _D =-10A		5.5		nC	
Q_{gd}	Gate Drain Charge			3.3		nC	
t _{D(on)}	Turn-On DelayTime			8.7		ns	
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =1.5 Ω ,		8.5		ns	
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		18		ns	
t _f	Turn-Off Fall Time]		7		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =-10A, dI/dt=100A/μs		25	30	ns	
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-10A, dI/dt=100A/μs		12		nC	

A: The value of R BIA is measured with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T A = 25°C.

Rev7: Nov. 2010

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

The value in any given application depends on the user's specific board design. The current rating is based on the $t \le 10s$ thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \le 10s$ thermal resistance rating.

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep T_j =25C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

