Scalar Visualization

Visualizing scalar data Popular scalar visualization techniques

- Color mapping
- Contouring
- Height plots

Recap of Chap 4: Visualization Pipeline

- 1. Data Importing
- 2. Data Filtering
- 3. Data Mapping
- 4. Date Rendering

Scalar Function

$$f: R \rightarrow R$$

1-D, histogram

$$f: \mathbb{R}^2 \to \mathbb{R}$$

2-D, color mapping, contouring, height plot

$$f: \mathbb{R}^3 \to \mathbb{R}$$

3-D, isosurface, slicing, volume visualization

Visualizing scalar data Popular scalar visualization techniques

- Color mapping
- Contouring
- Height plots

Color Mapping

- Color mapping maps scalar data to colors. The scalar mapping is implemented by indexing into a color lookup table. Scalar values then serve as indices into this lookup table
- Color look-up table

Associate a specific color with every scalar value The geometry of **Dv** is the same as **D**

$$C = \{c_i\}_{i=1,2,...N}$$
where
$$c_i = c(\frac{(N-i)f_{\min} + if_{\max}}{N})$$

Luminance Colormap

•Use grayscale to represent scalar value

$$f = e^{-10(x^4 + y^4)}$$

• Most scientific data (through measurement, observation, or simulation) are intrinsically grayscale, not color

Luminance Colormap

Legend

- (a) a luminance colormap and (b) a zebra colormap
- (b) The luminance colormap shows absolute values, whereas the zebra colormap emphasizes rapid value variations.

Rainbow Colormap

- •Red: high value; Blue: low value
- Medical visualization with luminance and rainbow colormaps

Rainbow Colormap

Construction


```
• f < dx: R=0, G=0, B=1
```

•
$$f = 2$$
: R=0, G=1, B=1

•
$$f = 3$$
: R=0, G=1, B=0

•
$$f = 4$$
: R=1, G=1, B=0

•
$$f > 6 - dx$$
: R=1, G=0, B=0

Colormap: Designing Issues

- Choose right color map for correct perception
 - Grayscale: good in most cases
 - •Rainbow: e.g., temperature map
 - Rainbow + white: e.g., landscape
 - •Blue: sea, lowest
 - •Green: fields
 - Brown: mountains
 - White: mountain peaks, highest

- Attract user to certain value ranges or individual values
 - Colormap uses particularly salient colors
 - Colormap can be influenced by:
 - Application
 - Domain-specific convention &Traditions

Designing effective colormaps

- Some application, emphasize the variation of the data
 - Colormap containing two or more alternating colors
- Many other colormap designs
 - Geographical application
 - Classical medical imaging

Designing effective colormaps

- The choice of the number of Color N
 - A small N: color banding effect, artifact
 - Typical scalar visualization applications use 64 to 256 different colors
- Other factors for Colormap
 - Geometric factors
 - User group
 - The medium used to present the visualization

Designing effective colormaps

Color banding caused by a small number of colors in a look-up table.

Global air temperature by month

Exp: Earth map

Exp: Sun in green-white colormap

EIT 195 Å Dec. 1996

EIT 195 Å June 1999

Exp: Coronal loop

Summary

- Color mapping: generate color values from scalar values by
 - Colormap
 - Color transfer function
- Design issues for effective colormaps:
 - Knowledge of the application domain conventions
 - Typical data distribution
 - Visualization goals
 - General perception theory
 - Intended output devices
 - User preference

Visualizing scalar data Popular scalar visualization techniques

- Color mapping
- Contouring
- Height plots

Cartograph

•A contour line C is defined as all points p in a dataset D that have the same scalar value, or isovalue s(p)=x

$$C(x) = \{ p \in D \mid s(p) = x \}$$

- For 2D dataset, a contour line is called an isoline
- For 3-D dataset, a contour is a 2-D surface, called isosurface

Contouring and Colormapping:

Show (1) the smooth variation and (2) the specific values

7 contour lines

Properties of Contours

- Indicating specific values of interest
- •In the height-plot, a contour line corresponds with the interaction of the graph with a horizontal plane of s value

Properties of Contours

- •The tangent to a contour line is the direction of the function's minimal (zero) variation
- •The perpendicular to a contour line is the direction of the function's maximum variation: the gradient

Contour lines and **Gradient vector**

Constructing Contours

V=0.48

Finding line segments within cells

Constructing Contours

- For each cell, and then for each edge, test whether the isoline value v is between the attribute values of the two edge end points (v_i, v_i)
- If yes, the isoline intersects the edge at a point q, which uses linear interpolation

$$q = \frac{p_i(v_j - v) + p_j(v - v_i)}{v_j - v_i}$$

- For each cell, at least two points, and at most as many points as cell edges
- •Use line segments to connect these edge-intersection points within a cell
- A contour line is a polyline.

Constructing Contours

V=0.37: 4 intersection points in a cell

-> Contour ambiguity

Contouring need

- At least piecewise linear, C¹ dataset
- The complexity of computing contours
- The most popular method
 - 2D: Marching Squares
 - 3D: Marching Cubes

Implementation: Marching Squares

- Determining the topological state of the current cell with respect to the isovalue v
 - •Inside state (1): vertex attribute value is less than isovalue
 - •Outside state (0): vertex attribute value is larger than isovalue
 - •A quad cell: $(S_3S_2S_1S_0)$, 2^4 =16 possible states
 - •(0001): first vertex inside, other vertices outside
- •Use optimized code for the topological state to construct independent line segments for each cell
- Merge the coincident end points of line segments originating from neighboring grid cells that share an edge

Implementation: Marching Squares

Topological State of a Quad Cell

Marching Cubes

- Similar to Marching Squares but 3D versus 2D
- 2⁸= 256 different topological cases; reduced to only
 15 by symmetry considerations
 - 16 topological states

- Marching Cubes: A High Resolution 3D Surface Construction Algorithm
 - William E. Lorensen & Harvey E. Cline
 - ACM SIGGRAPH 1987

Marching Cubes is an algorithm which "creates triangle models of constant density surfaces from 3D scalar data."

- High resolution surface construction algorithm.
- Extracts surfaces from adjacent pairs of data slices using cubes.
- Cubes "march" through the pair of slices until the entire surface of both slices has been examined.

Marching Cubes Overview

- Load slices.
- Create a cube from pixels on adjacent slices.
- Find vertices on the surfaces.
- Determine the intersection edges.
- Interpolate the edge intersections.
- Calculate vertex normals.
- Output triangles and normals.

How Are Cubes Constructed

- Uses identical squares of four pixels connected between adjacent slices.
- Each cube vertex is examined to see if it lies on or off of the surface.

Implementation: Marching Cube

Topological State of a hex Cell

Marching cube generates a set of polygons for each contoured cell: triangle, quad, pentagon, and hexagon

Marching Cubes -- Ambiguity

Ambiguous cases for marching cubes. Each case has two contouring variants.

How Are The Cubes Used

- Pixels on the slice surfaces determine 3D surfaces.
- 256 surface permutations, but only 14 unique patterns.
- A normal is calculated for each triangle vertex for rendering.

Triangle Creation

- Determine triangles contained by a cube.
- Determine which cube edges are intersected.
- Interpolate intersection point using pixel density.
- Calculate unit normals for each triangle vertex using the gradient vector.

Grid Resolution

Variations can increase/decrease surface density.

Improvements over Other Methods

- Utilizes pixel, line and slice coherency to minimize the number of calculations.
- Can provide solid modeling.
- Can use conventional rendering techniques and hardware.
- No user interaction is necessary.
- Enables selective displays.
- Can be used with other density values.

- General rule: most isosurface details that are under or around the size of the resolution of the iso-surfaced dataset can be
 - either actual data or artifact
 - should be interpreted with great care
- Can draw more than a single iso-surface of the same dataset in one visualization

Marching Cubes

Nested isosurfaces of a tooth scan dataset

Marching Cubes

Isosurfaces and isolines are strongly related

Isosurfaces, isolines, and slicing

Summary

- Marching Cubes provides a simple algorithm to translate a series of 2D scans into 3D objects
- Marching Squares and Marching Cubes have many variations to address:
 - Generalcity in terms of input dataset type
 - Speed of execution
 - Quality of obtained contours
- Isosurface can also be generated and rendered using pointbased techniques
 - 3D surface can be rendered using large numbers of (shaded) point primitives
 - Point primitive can be considerably faster and demand less memory than polygonal ones on some graphics hardware
 - Point cloud

Visualizing scalar data Popular scalar visualization techniques

- Color mapping
- Contouring
- Height plots

 The height plot operation is to "warp" the data domain surface along the surface normal, with a factor proportional to the scalar value

$$m: D_s \to D_h$$
,
 $m(x) = x + s(x)\vec{n}(x)$,
 $\forall x \in D_s$

Height plots (elevation or carpet plots)

$$m: D_s \rightarrow D, m(x) = x + s(x)n(x), \forall x \in D_s$$

- S(x) is the scalar value of D at the point x
- n(x) is the normal to the surface Ds at x
- The height plot mapping operation "warp" a given surface Ds included in the dataset along the surface normal, with a factor proportional to the scalar values.
- Height plots are a particular case of displacement, or warped plots

Height plot over a planar 2-D surface

Population density of America

Height plot over a nonplanar 2-D surface

"Potato Earth" shows variations in planet's gravity

Summary

- Visualizing scalar data
 - Color mapping

Assign a color as a function of the scalar value at each point of a given domain

- Contouring
 - Displaying all points with a given 2D or 3D domain that have a given scalar value
- Height plots
 - Deform the scalar dataset domain in a given direction as a function of the scalar data
- Advantage
 - Produce intuitive results
 - Easily understood by the vast majority of users
 - Simple to implement
- Disadvantage
 - A number of restrictions
 - One or two dimensional scalar dataset
 - We want to visualize the scalar values of ALL, not just a few of the data points of a 3D dataset