ECE 625: Data Analysis and Knowledge Discovery

Di Niu

Department of Electrical and Computer Engineering University of Alberta

January 14, 2021

Indicator Variables

Multiple Linear Regression

Multiple Linear Regression

Estimation and Inference

Indicator Variables

Summary and Remark

Multiple Linear Regression

► Multiple Linear Regression has more than one covariate,

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p + \varepsilon,$$

Indicator Variables

where usually $\varepsilon \sim N(0, \sigma^2)$.

- \triangleright We interpret β_i as the average effect on Y due to one unit of increase in X_i , while holding all the other covariates fixed.
- In the advertising example, the model becomes

Sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times Radio + \beta_3 \times Newspaper + \varepsilon$$
.

Coefficient Interpretation

- ► The ideal scenario is when the predictors are uncorrelated a balanced design.
 - Each coefficient can be estimated and tested separately.
 - Interpretations such as a unit change in X_j is associated with a β_j change in Y, while all the other variables stay fixed, are possible.
- Correlations amongst predictors cause problems.
 - ► The variance of all coefficient tends to increase, sometimes dramatically.
 - Interpretations become hazardous when X_j changes, everything else changes.

The woes of regression coefficients

Data Analysis and Regression, Mosteller and Tukey 1977

- A regression coefficient β_j estimates the expected change in Y per unit change in X_j , with all other predictors held fixed. But predictors usually change together!
- Example: Y total amount of change in your pocket; $X_1 = \#$ of coins; $X_2 = \#$ of quarters and loonies. By itself, regression coefficient of Y on X_2 will be > 0. But how about with X_1 in model?
- ► Y = number of tackles by a football player in a season; W and H are his weight and height. Fitted regression model is $Y = \beta_0 + 0.50W 0.10H$. How do we interpret $\hat{\beta}_2 < 0$?

Two famous quotes

In real world, we are just analyzing data passively

1919 - 2013 (aged 93)

- Essentially, all models are wrong, but some are useful. George Box
- ► The only way to find out what will happen when a complex system is disturbed is to disturb the system, not merely to observe it passively.

Fred Mosteller and John Tukey, paraphrasing George Box

January 14, 2021

Coefficient estimation

• Given the estimates $\hat{\beta}_0$, $\hat{\beta}_1$, \cdots , and $\hat{\beta}_p$, the estimated regression line is

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$

We estimate all the coefficients β_i , $i = 0, 1, \dots, p$ as the values that minimize the sum of squared residuals

Residual Sum of Squares RSS =
$$\sum_{i=1}^{\infty} (y_i - \hat{y}_i)^2$$
,

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p$ is the predicted values.

► This can be done using software. The values $\hat{\beta}_0$, $\hat{\beta}_1$, ..., and $\hat{\beta}_p$ that minimize RSS are the multiple least squares regression coefficient estimates.

convex optimization

Estimation Example Y = beta0 + beta1 X1 + beta2 X2 + e

Inference

feature covariate

► Is at least one predictor useful? Use F statistic:

leads to a p-value

H0: all beta =0 (none of the predictors is useful)

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n-p-1)} \sim F_{p,n-p-1}. \\ \begin{array}{c} \text{small: reject H0 (at least one predictor is useful)} \end{array}$$

Indicator Variables

 \triangleright What about an individual coefficient, say if β_i useful? Use t statistic

H0: beta_i = 0 (predictor i is not useful)

$$t = \frac{\hat{\beta}_i - 0}{\operatorname{SE}\left(\hat{\beta}_i\right)} \sim t_{n-p-1}$$
 leads to a p-value small: reject H0 (beta_i useful)

- For given x_1, \dots, x_p , what is the prediction interval (PI) of the corresponding y? PI is the CI of (\hat y+e) that includes the effect of noise e
- ► What about the confidence interval (CI) of y? Cl is the Cl of \hat y
- ► What is the difference PI, individual and CI, average, PI is wider than CI.

Advertising example

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
             2.938889 0.311908 9.422 <2e-16 ***
 (Intercept)
             0.045765 0.001395 32.809 <2e-16 ***
TV
Radio
          Newspaper -0.001037 0.005871 -0.177
                                              0.86
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
 > predict(TVadlm, newdata, interval="c", level=0.95)
                         with 95% probability, y is in [19.99627 21.05168]
 1 20.52397 19.99627 21.05168 confidence interval
 > predict(TVadlm, newdata, interval="p", level=0.95)
        fit.
                 lwr
                          upr
                               prediction interval
 1 20.52397 17.15828 23.88967
Di Niu (University of Alberta)
                          Lecture 4 LR II
                                           January 14, 2021
                                                          10/13
```

Indicator Variables

Some predictors are not quantitative but are qualitative, taking discrete values. These are also called categorical variables.

Indicator Variables

Example: investigate difference in credit card balance between males and females, ignoring the other variables. We create a new variable.

$$x_i = \begin{cases} 1 & \text{if } i\text{-th person is female,} \\ 0 & \text{if } i\text{-th person is male} \end{cases}.$$

Resulting model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i = \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i\text{-th person is female,} \\ \beta_0 + \varepsilon_i & \text{if } i\text{-th person is male} \end{cases}$$

Interpretation and more than two levels (categories)?

11/13

Indicator Variables

- ▶ In general, if we have k levels, we need (k-1) indicator variables.
- \triangleright For example, we have 3 categories A, B, and C for a covariate х,

$$x_A = \begin{cases} 1 & \text{if } x \text{ is A,} \\ 0 & \text{if } x \text{ is not A} \end{cases}; \ x_B = \begin{cases} 1 & \text{if } x \text{ is B,} \\ 0 & \text{if } x \text{ is not B} \end{cases}.$$

Indicator Variables

- If x is C, then $x_A = x_B = 0$. We call C the baseline or default category.
- \triangleright β_A is the contrast between A and C and β_B is the contrast between B and C.

Summary and Remark

- ► Multiple linear regression
- **Estimation and inference**
- ► Indicator variables
- Read textbook Chapter 3
- Do R lab