Lecture 5: Sequences & Series I

September 10, 2019

What is a Sequence?

A sequence is a set of numbers written in some order

$$a_1, a_2, a_3, ..., a_{n-1}, a_n$$

An infinite sequence can be thought of as a function whose domain is the set of positive integers $i \in \mathbb{I}$ such that

$$a_i = f(i)$$

Examples:

Give the first four terms of the following sequences

- (a) $a_n = \frac{n}{n+1}$
- (b) $a_n = 2 + (.1)^n$
- (c) $a_n = (-1)^{n+1} \frac{n^2}{3n-1}$
- (d) $a_n = 4$

Limits of Sequences

A sequence $\{a_n\}$ has the limit

$$\lim_{n\to\infty}\{a_n\}=L$$

if for all $\epsilon > 0$ there exits a positive N such that $|a_n - L| < \epsilon$ whenever n > N. If the limit exists then the sequence converges, otherwise the sequence diverges.

Examples:

If possible, find the limit of the following sequences:

- (a) $\{\frac{n}{2n+1}\}$
- (b) $\left\{\frac{(-1)^n n^2}{1+n^3}\right\}$
- (c) $\{(1+\frac{c}{n})^n\}$

What is a Series?

If we add the terms of a sequence $\{a_n\}$ then we get an infinite series.

$$a_1 + a_2 + \dots + a_n + \dots = \sum_{i=1}^{\infty} a_i$$

If we add the first n terms of a sequence, we get the n^{th} partial sum.

$$S_1 = a_1$$

 $S_2 = a_1 + a_2$
 $\vdots = \vdots$
 $S_n = a_1 + \dots + a_n$

If the sequence of partial sums $\{S_n\}$ converges and $\lim_{n\to\infty} S_n = S$ then the series $\sum_{i=1}^{\infty} a_i$ is convergent. Otherwise $\sum_{i=1}^{\infty} a_i$ is divergent.

Geometric Series

The geometric series has the form

$$a + ar + ar^{2} + ar^{3} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 for $a \neq 0$

For |r| < 1 the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$

Examples:

- (a) Find the sum of $\sum_{n=1}^{\infty} 2(\frac{3}{4})^{n-1}$
- (b) Is this convergent and find its sum: $4 + \frac{8}{5} + \frac{16}{25} + \frac{32}{125} + ...$
- (c) Find the sum of $\sum_{x=0}^{\infty} p(1-p)^x$ for $p \in (0,1)$
- (d) Does $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ converge?

Limits and Convergence

Theorem

If the series $\sum_{n=1}^{\infty} a_n$ *is convergent, then*

$$\lim_{n\to\infty} a_n = 0$$

If the $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Note: If $\lim_{n\to\infty} a_n = 0$, this does not mean that $\sum_{n=1}^{\infty} a_n$ is convergent.

Examples:

- (a) Does $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?
- (b) Does $\sum_{n=1}^{\infty} \frac{n^2}{5n^2+4}$ converge?

Convergence Rules

Let $\{a_n\}$ and $\{b_n\}$ be two sequences such that $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B and let c be a constant. Then

- (i) $\sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n = A \pm B$
- (ii) $\sum_{n=1}^{\infty} ca_n = cA$
- (iii) $\left(\sum_{n=1}^{\infty} a_n\right)\left(\sum_{n=1}^{\infty} b_n\right) = AB$

Examples:

- (a) Does $\sum_{n=1}^{\infty} (9^{-n+2}4^{n+1} + \frac{1}{2^n})$ converge?
- (b) Coin flipping.

Series With Positive Terms

- (i) If $a_i \ge 0$ for all i, then the partial sums S_n must be non-decreasing
- (ii) If the S_n 's are to approach a limit they cannot become arbitrarily large.

Suppose there exists some $B \ge S_n$ for all n, then B is called an upper bound of the sequence $\{S_n\}$. The sequence is bounded. If B' < B such that $S_n > B'$. B is then called the least upper bound and

$$\sum_{n=1}^{\infty} a_n = B$$

Can characterize the sum of a infinte series as

$$\lim_{n\to\infty}\sum_{i=1}^n a_i \text{ or } \sup_{n=1}^\infty \{S_n\}$$