RÓWNANIA RÓŻNICZKOWE, II ROK MATEMATYKI LISTA 3

Zadanie 1. Zbadać stabilność rozwiązania x = y = 0 układów

$$\dot{x} = -y, \quad \dot{y} = 2x^3;$$

$$\dot{x} = y, \quad \dot{y} = \sin x.$$

Zadanie 2. Określić dla jakich wartości parametrów a i b rozwiązanie x=y=0 jest stabilne

$$\dot{x} = ax - 2y + x^2, \quad \dot{y} = x + y + xy;$$

$$\dot{x} = ax + y + x^2, \quad \dot{y} = x + by + y^2.$$

Zadanie 3. Zbadać przebieg trajektorii w pobliżu punktu (0,0) dla układu równań

$$\dot{x} = \lambda x + y, \quad \dot{y} = \lambda y, \quad \lambda \in \mathbb{R}.$$

Zadanie 4. Narysować obraz kwadratu $\{|x|<1,\ |y|<1\}$ pod działaniem przekształcenia $f^t,\,t=1,$ z potoku fazowego układu $x'=2y,\,y'=x+y.$

Zadanie 5. Przeanalizować portret fazowy równania małych tłumionych drgań wahadła $x''+x+kx'=0,\ k\geq 0,$ tzn. układu $x'=y,\ y'=-x-ky$ na płaszczyźnie.

Zadanie 6. Zbadać punkty stacjonarne układu

$$x' = xy + 12$$
, $y' = x^2 + y^2 - 25$

i określić ich stabilność. Narysować krzywe fazowe tego układu.

Zadanie 7. Czy wszystkie rozwiązania x = x(t) równania $x'' = 1 + 2\sin x$ można przedłużyć do globalnych w czasie ?

Zadanie 8. Narysować poziomice energii w zagadnieniu Keplera z potencjałem $U(x)=-x^{-1}+Cx^{-2}$ i zbadać charakter trajektorii.

Zadanie 9. Narysować krzywe fazowe układu konserwatywnego z potencjałami $U(x) = \pm x \sin x, \ \pm \sin x^2.$

Zadanie 10. Zbadać zależność okresu drgań wahadła od amplitudy (równanie $x'' + \sin x = 0$).

Zadanie 11. Udowodnić, że równanie $\dot{x} = \nabla V(x), V : \mathbb{R} \to \mathbb{R}$, nie ma rozwiązań okresowych. (Wsk. zbadać ewolucję w czasie V(x(t)).)

Zadanie 12. Udowodnić globalne istnienie rozwiązań równań Newtona w

$$x_j'' = -\frac{\partial U}{\partial x_j}, \quad j = 1, \dots, N$$

w przypadku dodatniej energii potencjalnej U > 0.

Zadanie 13.* Obliczyć pochodną względem parametru rozwiązania zagadnienia

$$y' = y + \mu(x + y^2), \quad y(0) = 1;$$

tzn. $\frac{\partial y}{\partial \mu}|_{\mu=0}$.

Zadanie 14. Znaleźć rozwiązania równań różniczkowych z warunkami brzegowymi

a.
$$y'' - y = 2x$$
, $y(0) = 0$, $y(1) = -1$,

b.
$$y'' + y' = 1$$
, $y'(0) = 0$, $y(1) = 1$,

c.
$$y'' - y' = 0$$
, $y(0) = -1$, $y'(1) - y(1) = 2$,
d. $y'' - 2iy = 0$, $y(0) = -1$, $y(+\infty) = 0$.

d.
$$y'' - 2iy = 0$$
, $y(0) = -1$, $y(+\infty) = 0$.

Zadanie 15. Dla jakich wartości a zagadnienie y'' + ay = 1, y(0) = 0, y(1) = 0, nie ma rozwiązań?

Zadanie 16. Skonstruować funkcję Greena dla zagadnień brzegowych

a.
$$y'' = f(x)$$
, $y(0) = 0$, $y(1) = 0$,

b.
$$y'' + y' = f(x)$$
, $y(0) = 0$, $y'(1) = 0$,

c.
$$y'' + y = f(x)$$
, $y(0) = y(\pi)$, $y'(0) = y'(\pi)$.

Zadanie 17. Znaleźć wartości własne i funkcje własne zagadnień

a.
$$y'' = \lambda y$$
, $y(0) = 0$, $y(B) = 0$,

b.
$$y'' = \lambda y$$
, $y'(0) = 0$, $y'(B) = 0$,

c.
$$y'' = \lambda y$$
, $y(0) = 0$, $y'(B) = 0$,

d.
$$x^2y'' = \lambda y$$
, $y(1) = 0$, $y(A) = 0$.

Zadanie 18. $\lambda_1,...,\lambda_n$ są pierwiastkami równania charakterystycznego $\det(A-\lambda I)=0$. Pokazać, że $\exp(tA)=a_1(t)B_1+a_2(t)B_2+...+a_n(t)B_n$, gdzie $a_k(t)$ zdefiniowane są rekurencyjnie

$$a_1(t) = \exp(\lambda_1 t), \quad a_k(t) = \int_0^t \exp(\lambda_k (t - s)) a_{k-1}(s) \ ds,$$

$$B_1 = I$$
, $B_k = (A - \lambda_1 I)...(A - \lambda_{k-1} I)$, $k = 2, ..., n$.

 $24~\mathrm{marca}~2020$

Piotr Biler