Homework 8

Anthony Falcon

May 26, 2021

Problem 1

We consider the IVP of Burgers' equation. Using the finite volume discretization and the artificial boundary conditions $u_0^n = u_1^n$ and $u_{N+1}^n = u_N^n$. We implement the following 3 methods: Upwind method 1, Upwind method 2, Lax-Wendroff. Using N=300 and $r = \Delta t/\Delta x = 0.5$.

Part 1

Part 1 simply asks us to plot the exact solution along with the three numerical solutions at t=1. Shown below. We can see that Lax-Wendroff deviates the most from the exact solution.

Part 2

Part 2 asks us to only look at Upwind method 2 and plot the numerical solution at t=0, t=1, t=1.5, t=3, t=6. We are also asked if the characteristic boundaries ever go into the computational domain? Since there is a positive slope at the left boundary the left characteristic boundary goes into the computational domain.

Problem 2

Problem 2 we continue with the IVP from problem 1 and only using upwind method 2.

Part 1

Part 1 asks us to use r = 10/8 and plot the numerical solution at t = 0.5.

Part 2

Part 2 asks us to use r=10/8.5 and plot the exact solution vs the numerical solution at t=1.6.

Problem 3

Problem 3 we consider the IVP of conservation law and we use periodic boundary conditions $u_0^n=u_N^n$ and $u_{N+1}^n=u_1^n$. We use N=400 and r=0.5.

Part 1 we plot u(x,t) vs x at t = 0,1,3,10,40.

Part 2

Part 2 we need to plot u(x,t)/max(u(x,t)) vs x at t=0,1,3,10,40. From the graph below we can see that u(x,t) vs x has a similar shape for large t.

Problem 4

Problem 4 asks us to solve a 2D IVP using method of charachteristics.

Part 1

Part 1 we set $x_1=3.9$ using that we calculate and plot $u(x_1,y,T)$ vs y for T=.75,1,1.25

Part 2 Next in part 2 we set $x_1 = 2.5$ and repeat the process as in part 1.

Problem 5

We continue with the 2D IVP and we set $(x_1, y_1) = (3.9, 2.3), (2.7, 4), (2, 3)$ for each of the points we calculate $u(x_1, y_1, t)$ as a function of t for $t \in [0, 1, 25]$. We plot $u(x_1, y_1, t)$ vs t for each of the 3 sets of points.

Problem 6

Again we continue with problem 4 we plot a grid of points $(x, y) \in [0, 2\pi]$ for 4 different t values t = 0, .5, 1, 1.25 using contourf with a color bar the 4 plots are below.

