

CLASSROOM CONTACT PROGRAMME

(Academic Session : 2024 - 2025)

ENTHUSIAST COURSE

 $PHASE: MEA,B,C,D,F,G,H,L,M,N,O,P,Q,R,S,U \ \& \ V$

TARGET: PRE-MEDICAL 2025

Test Type: MAJOR Test Pattern: NEET (UG)

TEST DATE: 15-01-2025

	ANSWER KEY															\bigcirc														
Q.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
A.	1	2	3	2	2	2	4	4	3	2	4	4	3	1	1	3	1	2	3	3	1	3	2	1	3	3	1	3	1	3
Q.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
A.	1	4	2	2	2	2	3	1	3	1	4	4	4	2	4	3	4	2	2	4	2	1	4	4	1	2	3	3	1	3
Q.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
A.	3	1	3	1	2	2	4	3	1	1	3	1	4	2	1	4	2	4	2	1	4	4	2	2	3	3	3	4	3	4
Q.	91	92	93	94	95	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
A.	3	1	3	3	2	2	2	4	3	3	2	2	4	2	1	3	3	4	4	1	3	2	1	3	2	1	2	2	2	3
Q.	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150
A.	1	2	2	1	1	4	4	3	3	4	1	4	3	3	1	2	1	3	4	3	2	1	2	3	2	1	1	1	2	3
Q.	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
A.	4	3	1	3	3	3	4	1	3	4	3	2	2	2	3	3	1	4	2	4	3	2	4	2	3	3	2	2	2	4

HINT - SHEET

- 1. Ans (1) NCERT XII, Page No. 8
- 2. Ans (2) NCERT XII Pg. # 14
- 3. Ans (3) NCERT Page No. # 74, 75
- 4. Ans (2) NCERT, Pg. # 69
- 5. Ans (2) XII NCERT Page No. # 80, 81
- 6. Ans (2) NCERT-XII, Page No. # 104
- 7. Ans (4) NCERT, Pg. # 107
- 8. Ans (4)
 Module No. 9 Page. No.110

- 9. Ans (3) NCERT Pg. # 113
- 10. Ans (2) NCERT Pg. # 99
- 11. Ans (4) NCERT, Pg. # 64
- 12. Ans (4)
 NCERT Page. No. 201
- 13. Ans (3) NCERT Pg. # 230
- **14. Ans (1)** NCERT Page No. 243
- 15. Ans (1) NCERT Pg. # 242
- **16. Ans (3)** NCERT Pg. # 212, 214

ALLEN®

- 17. Ans (1) NCERT Pg. # 207, 227, 228
- 18. Ans (2) NCERT, Pg. # 215, 216, 217
- 19. Ans (3) NCERT Pg. # 72
- **20.** Ans (3) NCERT, Pg. #81
- **21. Ans (1)** NCERT-XII, Pg. # 4
- 22. Ans (3)
 NCERT Page No. 4,5
- 23. Ans (2) NCERT Page No. 8 (Table 1.1)
- **24. Ans (1)** NCERT-XI Pg. # 14, 15
- 25. Ans (3) NCERT-XI Pg. 15
- **26. Ans (3)** NCERT-XI, Pg. 27
- **27. Ans (1)** NCERT XI Pg. # 33
- 28. Ans (3) NCERT Pg # 33
- **29. Ans (1)** NCERT-XI, Pg. # 143, 144, 146
- **30. Ans (3)** NCERT XI Pg. # 140, 146, 149
- 31. Ans (1) NCERT-XI Pg. # 146
- **32. Ans (4)** NCERT Pg. # 140
- **33.** Ans (2) NCERT XI, Pg. # 157
- **34.** Ans (2) NCERT-XI Pg. # 160

- **35. Ans (2)** NCERT Pg. # 176
- **36. Ans (2)** NCERT Pg. # 177
- **37. Ans (3)** NCERT Pg. # 174,176,177,178
- **38. Ans (1)** NCERT-XI, Pg. # 66
- **39. Ans (3)** NCERT-XII, Pg. # 63
- **40. Ans (1)** NCERT Pg. # 69(E), 68(H)
- **41. Ans (4)** NCERT, Pg. # 64
- **42. Ans (4)** NCERT-XI, Pg. # 74
- **43. Ans (4)** NCERT, Pg. # 72
- **44. Ans (2)** NCERT, Pg. # 75
- **45. Ans (4)** NCERT, Pg. # 76
- **48. Ans (2)** NCERT, Pg. # 44, 4.2.7
- 51. Ans (2) NEW NCERT XI Page no. 81 Para 7.2.2
- 52. Ans (1) NCERT XI Pg.# 283-284
- **53. Ans (4)** NCERT-XI, Pg. # 280
- **54. Ans (4)** NCERT Page No. # 188
- 61. **Ans (3)**NCERT, Pg # 224
- 63. Ans (3) NCERT XII Pg # 28,30,31

67. Ans (4)

NCERT Page No. # 151

68. Ans (3)

NCERT Pg # 121 [E]

71. Ans (3)

NCERT Pg. #96

73. Ans (4)

NCERT Pg # 153

74. Ans (2)

NCERT, Pg # 165,173,182,183(E), 181,190,196,197(H)

77. Ans (2)

NCERT-XI, Pg # 123

78. Ans (4)

NCERT XI, Page # 134

79. Ans (2)

NCERT Pg # 155

83. Ans (2)

NCERT Page No. # 50,51,52,54

84. Ans (2)

NCERT Page No. # 284(18.3.1)

91. Ans (3)

$$I_1 = \left\lceil \frac{ML^2}{3} \sin^2 30^{\circ} \right\rceil \times 2$$

$$I_1 = \frac{ML^2}{6}$$

$$I_2 = I_3 = \frac{ML^2}{3}$$

$$I_4 = \left\lceil \frac{ML^2}{3} \right\rceil \times 3$$

$$\therefore \boxed{I_4 = ML^2}$$

$$I_5 = \left[\frac{ML^2}{3} \sin^2 30^\circ \right] + M(L \sin 30^\circ)^2$$

$$I_5 = \frac{ML^2}{12} + \frac{ML^2}{4}$$

$$=\frac{ML^2+3ML^2}{12}$$

$$I_5 = \frac{ML^2}{3} = I_2 = I_3$$

92. Ans (1)

System is in rotational equilibrium

$$|\vec{\tau}_{net}| = 0$$

$$F_1 r_1 - F_2 r_2 = 0$$

$$\therefore F_1 r_1 = F_2 r_2$$

93. Ans (3)

If net force on a system is zero, then calculation of torque is independent upon the choice of point about which it is to be calculated.

94. Ans (3)

$$E_{q} = \frac{E_{1}r_{2} + E_{2}r_{1}}{r_{1} + r_{2}} = E_{1} \frac{\left[r_{2} + \left(\frac{E_{2}}{E_{1}}\right)r_{1}\right]}{(r_{2} + r_{1})}$$
or $E_{2} \left[\frac{r_{1} + \left(\frac{E_{1}}{E_{2}}\right)r_{2}}{r_{1} + r_{2}}\right]$

Hence E_{eq} may be equal to greater or less than E_1 or E_2 depending as above on r_1 and r_2 .

And
$$r_{eq.} = \frac{r_1 r_2}{r_1 + r_2} = r_1 \left(\frac{r_2}{r_1 + r_2} \right)$$

or $r_2 \left(\frac{r_1}{r_1 + r_2} \right) < r_1$ and r_2 .

95. Ans (2)

$$S = \frac{G}{\frac{I}{I_g} - 1} \Rightarrow 4 = \frac{36}{\frac{I}{I_g} - 1} \Rightarrow \frac{I}{I_g} = \frac{10}{1}$$
$$\Rightarrow \frac{I_g}{I} = 0.1 \quad \Rightarrow \frac{I_g}{I} \times 100 = 10\%.$$

96. Ans (2)

$$\begin{array}{c|c} & 1\Omega & 3V & 8V & 2\Omega & 10V \\ \hline A & 5A & & & & \\ \end{array}$$

Using KVL,

$$V_A - 5(1) + 3 - 8 - 5(2) + 10 = V_B$$

$$V_{A} - 10 = V_{B}$$

 $V_A - V_B = 10V$.

97. Ans (2)

$$R^3 = 8r^3$$

$$R = 2r = 2 \times 10^{-3} \text{ m}$$

$$V = \frac{kq}{R} = \frac{9 \times 10^9 \times 8 \times 10^{-9}}{2 \times 10^{-3}}$$

$$= 3.6 \times 10^4 \text{ V}$$

98. Ans (4)

The total electric charge of a system is the algebraic sum of all the individual charges in the system, also known as law of superposition of electric charge.

99. Ans (3)

$$y = \frac{\Delta x D}{d} \implies \frac{\beta}{3} = \frac{\Delta x D}{d} \implies \frac{\lambda D}{3d} = \frac{\Delta x D}{d}$$

$$\Delta x = \frac{\lambda}{3}$$

$$\therefore \Delta \phi = \frac{2\pi}{\lambda} \Delta x$$

$$\Delta \phi = 2\pi/3$$

$$I_{R} = I_{0} \cos^{2} \left(\frac{\Delta \phi}{2}\right) = I_{0} \cos^{2}(\pi/3)$$

$$\therefore I_{R} = \frac{I_{0}}{4}$$

100. Ans (3)

$$\omega_{1} = 2\omega_{2}$$

$$\frac{\omega_{1}}{\omega_{2}} = \frac{2}{1} = \frac{a_{1}}{a_{2}} \dots (\omega \ \alpha \ a) \text{ (Given)}$$

$$\frac{I_{\min}}{I_{\max}} = \frac{(a_{\min})^{2}}{(a_{\max})^{2}} = \left(\frac{a_{1} - a_{2}}{a_{1} + a_{2}}\right)$$

$$= \left(\frac{2 - 1}{2 + 1}\right)^{2}$$

$$= 1:9$$

101. Ans (2)

$$g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$$

$$\frac{9g}{25} = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$$

$$\frac{h}{R} + 1 = \frac{5}{3}$$

$$h = \frac{2R}{3}$$

102. Ans (2)

$$V_0 = \sqrt{\frac{GM}{R}}$$

$$\frac{(V_0)_A}{(V_0)_B} = \sqrt{\frac{R_B}{R_A}}$$

$$\frac{4V}{V_B} = \sqrt{\frac{4R}{16R}} = \frac{1}{2}$$

$$V_B = 8V$$

103. Ans (4)

Energy stored by a capacitor
$$U = \frac{q^2}{2C}$$

$$U_1 = \frac{q_1^2}{2C}, \quad U_2 = \frac{q_2^2}{2C}$$

$$\frac{U_1}{U_2} = \left(\frac{q_1}{q_2}\right)^2 = \left(\frac{q}{q+2}\right)^2$$
given $\frac{u_2 - u_1}{u_1} = 0.21$
On solving $q = 20$ C

104. Ans (2)

Workdone = Area under (Fx curve)
=
$$10 \times 1 + 20 \times 1 - 20 \times 1 + 10 \times 1$$

= 20 erg

105. Ans (1)

$$x = \frac{mL}{M_{cart} + m} = \frac{60 \times 3}{120 + 60} = 1m$$
 left side

106. Ans (3)

In metals and semimetals the fermi level lies inside at least one band i.e., inside conduction band. So (S)-4.

107. Ans (3)

Case-I:

$$V_A < V_B \quad [\because (-10V) < (-5V)]$$

D₁ & D₃ are RB and D₂ is FB

$$R_1 = \frac{R}{4} + R + \frac{R}{4} = \frac{3R}{2}$$

$$V_A > V_B$$

 \Rightarrow D₁ & D₂ are FB and D₃ is R_B

$$\therefore R_2 = \frac{R}{4} + \frac{\frac{R}{2} \times \frac{R}{2}}{\left(\frac{R}{2} + \frac{R}{2}\right)} + \frac{R}{4} = \frac{3R}{4}$$

Case-III:

$$V_A > V_B$$

⇒ same as case-II

$$R_3 = \frac{3R}{4}$$

108. Ans (4)

Impulse $I = |\Delta \vec{p}| = (same)$

$$F_{\text{avg}} = \frac{|\Delta \dot{p}|}{\Delta t} \Rightarrow F_{\text{avg}} \propto \frac{1}{\Delta t}$$

$$\therefore \Delta t_{\text{A}} < \Delta t_{\text{B}}$$

$$\therefore F_A > F_B$$

109. Ans (4)

As
$$T = \frac{2u_y}{g}$$

also $T = \text{same} \Rightarrow (u_y)_A = (u_y)_B$
 $U_A \cos 45^\circ = U_B \cos 60^\circ$
 $\frac{u_A}{u_B} = \frac{1}{\sqrt{2}}$

110. Ans (1)

For first interval: acceleration is +ve and constant

For second interval: acceleration is -ve and constant.

111. Ans (3)

Venturiflow meter is used to measure flow rate.

112. Ans (2)

$$\frac{F_{C}}{F_{C}} = \frac{mv^{2}}{r} \times \frac{2r}{mv^{2}}$$

$$\therefore \frac{F_{C}}{F'_{C}} = \frac{2}{1}$$

$$\therefore F'_{C} = \frac{F_{C}}{2} \text{ (it becomes halved)}$$

113. Ans (1)

$$\hat{\mathbf{E}} \times \hat{\mathbf{B}} = \hat{\mathbf{v}}$$

$$+\hat{\mathbf{k}} \times \hat{\mathbf{B}} = -\hat{\mathbf{j}}$$

$$\hat{\mathbf{B}} = -\hat{\mathbf{i}}$$

114. Ans (3)

$$V = \sqrt{V_R^2 + V_L^2}$$

$$\sqrt{(10)^2 + (10)^2}$$
= 10\sqrt{2 volt}

115. Ans (2)

116. Ans (1)

$$B_{axis} = \frac{\mu_0}{4\pi} \cdot \frac{2M}{r^3}$$

1001CMD303029240064

117. Ans (2)

Meissner effect

118. Ans (2)

$$W_{ABCA}$$
 = (Area of ΔABC)
= $-\frac{1}{2}$ × (500 – 100) × (200 – 100) × 10^3 × 10^{-6}
= -20 J

119. Ans (2)

FLOT

$$Q = \Delta U + W$$

$$\Delta U = Q - W$$

$$= 20 \times 4.2 \text{ kJ} - 4 \text{ kJ}$$

$$= 84 - 4$$

$$= 80 \text{ kJ}$$

120. Ans (3)

 $P \propto T^4$

PT⁻⁴ = cont.
For adiabatic process
PT
$$\frac{\gamma}{1-\gamma}$$
 = const.
By compering $\frac{\gamma}{1-\gamma}$ = -4
 $\Rightarrow \therefore \gamma = 4/3$

121. Ans (1)

0°C to 4°C density of water increases and maximum at 4°C then decreases due to anomalus behaviour of water.

122. Ans (2)

$$\frac{\Delta T}{\Delta t} = K \left[\frac{T_1 + T_2}{2} - T_S \right] \text{ Newton's law of cooling}$$

$$\frac{64 - 52}{10} = K \left[\frac{64 + 52}{2} - 16 \right] \dots (i)$$

$$\frac{52 - T}{10} = K \left[\frac{52 + T}{2} - 16 \right] \dots (ii)$$
on solving (i) & (ii) $T = 43^{\circ}C$

123. Ans (2)

$$n = A\sin(\omega t) = A\sin(\theta_1)$$

$$v = \omega A\cos(\omega t) = \omega a \sin(\omega t + \frac{\pi}{2}) = A\sin(\theta_2)$$

$$a = -\omega^2 A \sin(\omega t) = \omega^2 A \sin(\omega t + \pi) = A\sin(\theta_3)$$
Thus $\theta_3 > \theta_2 > \theta_1$
and $\theta_3 - \theta_2 = +\pi/2$

$$\theta_2 - \theta_1 = +\pi/2$$

124. Ans (1)

$$\lambda = 2 (\lambda_2 - \lambda_1)$$

$$\lambda = 2 (58 - 18) \text{ cm}$$

$$\lambda = 80 \text{ cm}$$

$$\nu = \lambda f$$

$$=\frac{80}{100}\times500=400 \text{ m/s}$$

126. Ans (4)

$$\frac{1}{f} \propto \mu \propto \frac{1}{\lambda}$$

127. Ans (4)

$$P = P_1 + P_2$$

$$= 2 - 1 = +1D$$

$$\therefore f = \frac{100}{P} = \frac{100}{1} = 100cm$$

128. Ans (3)

$$F = [MLT^{-2}]$$

$$a = 1, b = 1, c = -2$$

$$E = [ML^2T^{-2}]$$

$$x = 1, y = 2, z = -2$$

$$ax + by + cz = 1 + 2 + 4 = 7$$

129. Ans (3)

The least count of given Vernier Calipers is

$$LC = MSD - VSD = 1 - (9/10) = 0.1 \text{ mm}$$

Zero Error =
$$CVSD \times LC$$

$$= 3 \times 0.1 = 0.3 \text{ mm}$$

130. Ans (4)

$$R = 75 \times 10^2 \pm 5\% \text{ of } 7500$$

$$R = (7500 \pm 375)\Omega$$

131. Ans (1)

In metre bridge length of wire should be constant So, low temperature coefficient is required.

Also,
$$R = \frac{\rho \ell}{A}$$

$$\therefore R \propto \rho$$

For Higher value of resistance, for a small displacement along wire, we are getting more deflection.

∴ For high resistivity, our device is much more sensible.

132. Ans (4)

Value of reaction

$$12 \times 7.68 - 13 \times 7.48 = 92.16 - 97.24 = -5.08$$

133. Ans (3)

de-Broglie wavelength of gas molecules

$$\begin{split} \lambda &= \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{3mkT}} \\ \Rightarrow \frac{\lambda_H}{\lambda_{He}} &= \sqrt{\frac{m_{He}T_{He}}{m_HT_H}} = \sqrt{\frac{4(273+127)}{2(273+27)}} = \sqrt{\frac{8}{3}} \end{split}$$

134. Ans (3)

$$_{90}X^{200} \longrightarrow {}_{80}Y^{168} + a \times {}_{2}\alpha^{4} + b \times {}_{1}\beta^{0}$$

135. Ans (1)

$$\tau = PEsin\theta$$

$$\tau = 4 \times 10^{-9} \times 5 \times 10^4 \times \frac{1}{2}$$

= 10⁻⁴ N m

142. Ans (1)

as per EN

$$HF > H_2O > NH_3$$

(H Bond strength)

strongest base

153. Ans (1)

Duo to localized lone pair CH_2-NH_2 is the

157. Ans (4)

$$CH_3$$
— CH_2 — $Cl \xrightarrow{AgCN} CH_3$ — CH_2 — NC
 CH_3 — CH_2 — $Cl \xrightarrow{KCN} CH_3$ — CH_2 — CN

160. Ans (4)

164. Ans (2)

Fact

165. Ans (3)

NCERT (XI) Pg. # 357 (Pb. No. 12.21)

166. Ans (3)

n must be greater than $\,\ell\,$

167. Ans (1)

$$E_{A1} = 9, 2.7 = \frac{9 \times Q}{96500} \quad \left\{ w = \frac{E \times Q}{96500} \right\}$$

168. Ans (4)

Arrange in decreasing order of SRP

169. Ans (2)

Isotonic means same osmotic pressure

∴ same concentration

$$\frac{5 \times 10}{\text{M M}_{\text{urea}}} = \frac{2 \times 10}{\text{M M}_{\text{sub}}} \qquad \{\text{M M}_{\text{urea}} = 60\}$$

170. Ans (4)

$$d = \frac{P \times MM}{R \times T} = \frac{2 \times 44}{0.0821 \times 400}$$

171. Ans (3)

$$P_{4} + 3O_{2} \xrightarrow{80\%} P_{4}O_{6}$$

$$n_{P_{4}} = \frac{62}{124} = 0.5 \qquad n_{P_{4}O_{6}} = 0.5 \times 0.8$$

$$\downarrow \qquad = 0.4$$

$$Mass of P_{4}O_{6} = 0.4 \times 220$$

$$= 88 g$$

172. Ans (2)

Eq. wt of metal = E_M , Eq. wt. of metal oxide = $E_M + 8 = 24$

$$E_{M} = 16$$

Eq. wt of chloride =
$$E_M + E_{Cl} = 16 + 35.5 = 51.5$$

173. Ans (4)

Longest λ of balmer in He^+ Shorterst λ of lyman

in H

$$n_{2} = 3 \qquad z = 2 \qquad z = 1 \qquad n_{2} = \infty$$

$$\downarrow \qquad \qquad \downarrow$$

$$n_{1} = 2 \qquad \qquad n_{1} = 1$$

$$\frac{1}{\lambda_{1}} = R \times 2^{2} \left[\frac{1}{2^{2}} - \frac{1}{3^{2}} \right] \qquad \frac{1}{\lambda_{2}} = R \times 1^{2} \left[\frac{1}{1^{2}} - \frac{1}{\infty^{2}} \right]$$

$$\frac{5}{9x} = R \times 4 \left[\frac{9 - 4}{4 \times 9} \right] \qquad \frac{1}{\lambda_{2}} = R$$

$$\frac{1}{x} = R \qquad \Rightarrow \lambda_{2} = \frac{1}{R} = x$$

174. Ans (2)

Al(OH)₃
$$\rightleftharpoons$$
 Al⁺³ + 3OH⁻
S' 3S' + 0.1
 $K_{sp} = (Al^{+3}) (OH^{-})^3$
 $1.9 \times 10^{-33} = (s') (3s' + 0.1)^3$
 $1.9 \times 10^{-33} = S' \times 10^{-3}$ $\begin{cases} 3s' << 0.1 \\ \therefore 3s' + 0.1 \approx 0.1 \end{cases}$
S' = 1 9 × 10⁻³⁰

175. Ans (3)

$$NH_4COONH_4(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$$

$$K_p = (P_{NH_3})^2 (P_{CO_2})$$

 $108 \times 10^{-6} = (2P)^2 (P)$
 $108 \times 10^{-6} = 4P^3$

$$P = 3 \times 10^{-2}$$

Total pressure = $3P = 9 \times 10^{-2}$

176. Ans (3)

Refer NCERT exampler class 12 chapter 3

177. Ans (2)

S-I

pH of solution of salt of WA & WB is given as

$$pH = 7 + \frac{1}{2} [pK_a - pK_b]$$

C_II

$$h = \sqrt{K_h} = \sqrt{\frac{K_w}{K_a \times K_h}}$$

: degree of hydrolysis is independent of conc.

178. Ans (2)

A
$$\rightarrow$$
 B $t_{1/2} = \frac{2.303}{k} \log 2$...(1)
 $t = 0$ 100 $t_{90}\% = 40$
 $t_{90\%}$ 10 $40 = \frac{2.303}{k} \log \left(\frac{100}{10}\right)$ (2)
divide (1) & (2)

179. Ans (2)

Catalyst only increases rate of reaction

180. Ans (4)

Ref. heat of solution from NCERT class 11 thermodynamics