

Flare Request No.: FLRW151764 <u>Date:</u> Tuesday, December 1, 2015

Category: NAG Flaring

<u>Waiver Start Date:</u> 11/27/2015 12:00:00 <u>Start Time:</u> 5/29/2016 12:00:00 AM

AM

Waiver End Date 09-12-2015 End Time: 6:0-PM

Facility Name:	Agbada 2 FS,
Flare (or AG) Volume (mmscfd):	18
Associated Oil Production (mbopd):	0
Reason for flaring (or HOGR production):	To enable successful execution of the clean-up proposed on the worked over AGBD-068 well. The flaring will be temporary, and will only be necessary when the well is being cleaned up. The operation will be for 7 days, refer to attached clean up proposal. The potential of the well is 40 MMscf/d and will be clean up to same rate. A total of about 17.5 MMscf of gas is expected to be flared during this operation.
Justification for waiver request:	The clean-up of AGBD-068 NAG well prior to production will ensure the protection of facilities in the gas plant and maintenance of customer specifications in gas supply by; Acidizing the completion intervals to get rid of any remaining completion fluid and debris resulting from the workover operation which might lead to impairment, thus resulting in a compromise of the welles potential and expectation recovery.
Post event actions to remain compliant:	N/A

	Job Title	Name	Date		Comments
Originator: Asset/Project/Area Dev. Mgr	Asset Manager (Swamp East)	Njoku , Chima	27-11-2015	Supported	
Agreement: GM/Lead - (Asset/Project/Dev.)	GM Onshore Assets	Kulawski , Grzegorz Jacek	27-11-2015	Supported	
Supported (SCiN only): Manager, Flared Gas	Production Services Manager	Akosa , Obi	27-11-2015	Supported	
GM Production	GM Production	Martin , David	27-11-2015	Approved	
Agreement: GM/Lead - (Asset/Project/Dev.)	GM Onshore Assets	Kulawski , Grzegorz Jacek	27-11-2015	Supported	
Supported (SCiN only): Manager, Flared Gas	Production Services Manager	Akosa , Obi		Not Supported	

Approved by the GM, Production: Signature and Date:

Distribution List:

<u>Gabon:</u> Signatories + Asset Lead/Technical Manager/Operations Manager/Finance Manager/Head of Production Programming/Senior Production Programmers/Head of Planning & Economics/Head of HSE

<u>Nigeria:</u> Signatories + Operations Manager/Senior Operations Engineer/Senior Gas Accountant/Senior Programmer/Maintenance System Manager/Production Surveillance and Support Manager.

THE SHELL PETROLEUM DEVELOPMENT COMPANY OF NIGERIA LIMITED

AGBADA-68 WELL CLEAN-UP/TEST PROPOSAL July 2013

Document Number:	SPDC-2013-04-00000003		
Document Owner:	UIO/G/DSSLE	Prepared By:	Olubamise, Taiwo Attoni, Success
Issue Date:	JULY 2013	Version:	1.0
Record Type Name:	Reservoir Data	Record Series Code:	FOP.05.02
Security Classification:	Confidential	ECCN Classification Retention:	Not Subject to EAR – No US Content EVT

Agreed by:

Name	Etokakpan, Eteobong UIO/G/DSSLE	Oghene, Ufuoma, UIO/G/DSSLE	Yahaya, Ibrahim PTW/O/NG
Signature/Date	That 2/09/201	Liter	NGYI Digitally signed by NGYIB0 DN: cn=NGYIB0 Date: 2013.07.22 14:13:58 + 01'00'

Approved by:

Nwabueze, Vincent

Asset Development Manager – Land East

UIO/G/DSSLE

Otutu, Friday
Head, Completions Engineering

PTW/O/NG

Contents

1.0	BACKGROUND	. 5
1.2	Clean-Up/Test Objectives	5
1.3	Justification	5
2.0	WELL CLEAN-UP DESIGN	5
3.0	MULTI-RATE TEST AND FLOWING/BUILD-UP/SG SURVEY	8
3.1	Initial Build-up Period	8
3.2	Flowing Period	8
3.3	Final Build-up and Static Gradient Survey Period	8
4.0	SAPHIR TEST DESIGN	10
4.1	INPUT DATA	10
4.2	SCENARIO/SENSITIVITY FORMULATION	11
4.3	ANALYSIS	13
6.0	WORKSCOPE SUMMARY	18
7.0	REFERENCES	19
APPEN	NDIX 1: RESERVOIR & COMPLETION DATA	20
APPEN	NDIX 3: Gas Well Test Risks/Mitigation	21
	NDIX 4: AGBADA-68 Final Completion Status Diagram	
	NDIX 5: Agbada 68 Proposed Timeplan & Cost Estimate	
	NDIX 6: AGBADA G8000 Top Structure Map	
	NDIX 7: Dip Oriented Composite Cross Section through Well 68 (focused on G4000, G6000	
	O sands)	

<u>Tables</u>

Table 1.0: Agbada-68 Well Clean-Up Guide	6
Table 3.0: Static Gradient Survey Stops	9
Table 4.0: Test Design Input Parameters	10
Table 4.1: Scenario Test Times.	14
Table 4.3: Optimal Test Timings	14
<u>Figures</u>	
Figure 1.1: Bean Sensitivity Plot	6
Figure 1.2 : Agbada-68 Performance Plot	6
Figure 1.3: Agbada-68 P-Q curve	7
Figure 4.1: Map Digitization Showing Active Aquifer with Support from the East/South-East	11
Figure 4.2: Map Digitization Showing Inactive Active Aquifer.	12
Figure 4.3: Scenarios	12
Figure 4.4: Simulated Pressure Response for Scenario A2	14
Figure 4.5: Derivative Pressure Response for Scenario A1, A2, A3	15
Figure 4.6: Simulated Pressure Response for Scenario B2	15
Figure 4.7: Derivative Pressure Response for Scenario B1, B2, B3	15
Figure 4.8: Sensitivity to Skin on Scenario A2	16
Figure 4.9: Sensitivity to Skin on Scenario B2	16
Figure 4.10: Sensitivity to Well Bore Storage on Scenario A2	16
Figure 4.11: Sensitivity to Well Bore Storage on Scenario B2	17
Figure 4.12: Derivative Plot for Constant Pressure Boundary GWC	17
Figure 4.13: Derivative Plot from Invalidated Test Conducted in June 2011.	17

1.0 BACKGROUND

Agbada-68 is a gas development well, which targets the G8000C reservoir in the Agbada field. It has a design off take rate of 40 MMscf/d with an expectation recovery of 47 Bscf non-associated gas (NAG) and 1.7 MMstb of associated condensate respectively. Agbada-68 was drilled and initially completed in March 2011

Agbada-68 was initially completed as a single (SSS) gas producer with 4½" 13Cr tubing equipped with non-self equalising tubing-retrievable surface-controlled subsurface safety valve (TRSCSSSV) and a Permanent Downhole Gauge (PDHG) for well and reservoir surveillance. External Gravel Pack (EGP) was deployed as sand control mechanism over an interval of ca. 30 ftah (11742 – 11775 ftah).

In June 2011, the well was cleaned up and tested to its potential of 40MMscf/d. However, during demobilization of the well test equipment, casing head pressure was observed in the A-annulus and it gradually increased to ca. 1000psi. The well was secured with an NRV plug.

Full investigation on the cause of the high casing head pressure was suspended when fire erupted on site while attempting to inflow test a plug and prong downhole in the tubing to ascertain leak point. However, it is suspected that there was a leak in the H533 tubulars.

Agbada 68 was re-entered on the 20^{th} of January 2013 for workover to eliminate the casing head pressure and change out the (suspected leaky) tubing. The workover was completed on the 26^{th} of February 2013 with the well re-completed using a $4\frac{1}{2}$ " 13% Cr H563 tubulars equipped with non-self equalising tubing-retrievable surface-controlled subsurface safety valve (TRSCSSSV) and Permanent Downhole Gauge (PDHG) for well and reservoir surveillance.

1.2 Clean-Up/Test Objectives

The objectives of the well clean-up and test are as follows:

- Clean up the well to get rid of kill fluids used to kill the well and other debris.
- Conduct multi-rate test to a maximum of 40 MMscf/d to determine well deliverability.
- Conduct Build up Test to obtain data required for reservoir characterization.
- Conduct Static Gradient Survey to validate initial pressure estimated from invalidated test (in June 2011).

1.3 Justification

The well's objective is to provide additional gas for the Domestic Gas Project via the new Agbada Gas Plant. This will form part of Associated Gas (AG) coming from Agbada, Obigbo and Imo River gas plants which is collected at the Obigbo sales point and sold to domestic customers as Sales Gas. The clean-up is required to get rid of any remaining completion fluid and debris resulting from the workover operation which might lead to impairment, thus resulting in a compromise of the well's potential and expectation recovery.

The well will be tested to its design off take rate of 40 MMscf/d which is within the limits of the third party test facility.

2.0 WELL CLEAN-UP DESIGN

The clean-up will evacuate the contents of the well, which consists of completion brine in the wellbore. The clean-up operation would include the deployment of $1\frac{1}{2}$ " coiled tubing (CT) fitted with nozzle and 10% HCL system or its equivalent to clean out the screen by jetting across it in several passes.

The acid recipe will be prepared by Halliburton and should include the following acid and additives:

Chemical	Function
33% HCl	Raw acid
HAI-GE	Corrosion inhibitor
Losurf 300M	Surfactant
FE-2	Iron Control
Musol	Mutual Solvent

The clean-up will then commence on a minimum choke (8/64th). There will be gradual bean-up in stages of 4/64th every two hours up to choke 20/64 until WGR of ca. 0.3 bbl/MMscf and a maximum rate of ca. 40 MMscf/d is attained. Clean-up parameters are not accurately predictable, however, Table 1.0 provides a fair guide. Figures 1.1, 1.2 and 1.3 are snapshots from PROSPER showing a graphical display of the wellbore model results. The flow rates, BSW, sand production and FTHP will be measured and recorded to ensure adequate well clean-up until a stabilized FTHP and WGR ca. 0.3 bbl/MMscf is achieved. Thereafter, shut-in the well for 24 hours for the reservoir pressure to stabilize, prior to conducting the Multirate test. The flow back well effluent (completion brine) will be evacuated with vacuum truck to the Waste treatment plant.

Table 1.0: Agbada-68 Well Clean-Up Guide

Estimated Rate (MMscf/d)	Expected Bean Size (1/64 th)	Expected FTHP (psia)	WGR (bbl/MMscf)	Condensate Rate (bbl/d)	Flow Period (hr)	Expected Drawdown (psi)
10	24	3881	0.3	846	6	28
20	32	3811	0.3	1431	4	48
30	40	3669	0.3	2132	4	74
40	46	3565	0.3	2700	4	88

Note: Final BSW on each choke should be ca. 5% or until it is stabilized for more than 1 hour.

Figure 1.1: Bean Sensitivity Plot

Figure 1.2: Agbada-68 Performance Plot

Figure 1.3: Agbada-68 P-Q curve

3.0 MULTI-RATE TEST AND FLOWING/BUILD-UP/SG SURVEY

3.1 Initial Build-up Period

- Close in well at choke manifold for 24 hours for an initial build-up after well clean-up to allow for reservoir stabilization prior to multirate test. Record CITHP. Monitor surface read-out of SBHP for pressure stabilization before proceeding to MRT.
- RIH Slickline and install pressure/temperature memory gauge and Down Hole Shut-In Tool (DHSIT).
 Deepest gauge should be at 11,419 ftah (XN Nipple Depth); also hook-up Fibre-optic PDHG to Baker Mobile surface readout system.

3.2 Flowing Period

Open well and carry out multi-rate test to a maximum of 40 MMscf/d as stated in Table 2.0 below:

Table 2.0: Agbada-68 Multi-rate Well Test Bean-up Sequence Guide

Estimated Rate (MMscf/d)	Expected Bean Size (1/64 th)	Expected FTHP (psia)	WGR (bbl/MMscf)	Condensate Rate (bbl/d)	Flow Period (hr)
10	24	3881	0.3	846	4
20	32	3811	0.3	1431	4
30	40	3669	0.3	2132	4
40	46	3565	0.3	2700	4

Notes:

- At each stage, collect and analyse samples every 15 mins, record bean size, gas flow rate, FBHP, FBHT, estimate drawdown, FTHP, FTHT, CGR, WGR, and sand rate.
- Close in well gradually at the choke manifold.
- Commence rig down of well test equipment ONLY after flowing period

3.3 Final Build-up and Static Gradient Survey Period

- Confirm well has been closed in down-hole with programmed DHSIT for 48 hours build-up.
- Carry out static gradient (SG) survey while POOH wireline memory gauge and DHSIT at the depths as detailed in table 3.1
- Duration of survey at each stop should be ca. 10mins.
- POOH with gauges and R/D S/line.
- Download wireline memory gauge and compare to real time fibre optic data.
- Close TRSCSSSV and line up well to production.
- Handover well to production.

Table 3.0: Static Gradient Survey Stops

Depth Tag (d)	Depth (d) ftah from RT [RT Elevation = 106 ft]	Depth(d*) ftah from Top XMT [RT - Top XMT = 24ft]	Depth (d**) ftah from compact Housing [RT- Compact Housing = 30.10ft]	d _{i-1} -d _i	Time at depth Minutes	Comment
Deepest Survey Depth	11,419	11,395	11,389	-	0	Deepest gauge @ XN nipple
1st Stop	11,399	11,375	11,369	20	10	3 Stops at 20ft intervals closest to deepest
2nd Stop	11,379	11,355	11,349	20	10	survey point in line with BHP Guidelines (2009) to enable accurate extrapolation to
3rd Stop	11,359	11,335	11,329	20	10	reservoir pressure.
4th Stop	7,813	7,789	7,783	3,546	10	3 Stops at 200ft intervals to aid
5th Stop	7,613	7,589	7,583	200	10	investigation of fluid regime just away from deepest survey point
6th Stop	7,413	7,389	7,383	200	10	deepest survey point
7th Stop	4,006	3,982	3,976	3,406	10	3 Stops at 200ft intervals to aid investigation of possible condensate drop
8th Stop	3,806	3,782	3,776	200	10	out in tubing. From 2013 ARPR Dew Point Pressure is 4858 psi. This pressure range
9th Stop	3,606	3,582	3,576	200	10	is expected within this depth range given result of last test.
10th Stop	1,306	1,282	1,276	2,300	10	2 Stone at 200ff intervals to sid
11th Stop	1,106	1,082	1,076	200	10	3 Stops at 200ft intervals to aid investigation of fluid regime close to surface.
12th Stop	906	882	876	200	10	Suitace.

4.0 SAPHIR TEST DESIGN

The focus of the test design is to determine the duration of the flow and optimal build up time required for the pressure perturbation to hit the boundaries/faults in the reservoir. Thus enabling the acquisition of fit for purpose data required to effectively describe (nature – open/close, distance from well, shape, etc) the boundaries. Furthermore, the test is designed to ensure that the permeability, permeability-thickness (kh), and near wellbore skin (damage/improvement) can be evaluated from analysis of the acquired field data. Kappa's Ecrin Saphir Software was used in this design.

The model was built based on the data as detailed in Table 4.1. Pressure simulations where generated based on the rates in section "e" of table 4.1. The generated pressure responses were subsequently analyzed using derivative plots to determine the time taken for the pressure perturbations to be felt at the possible boundaries.

Various scenarios (sensitivities) were built to test what the pressure response would be given the uncertainties in permeability, boundary geometry, and skin. These sensitivities where collectively analyzed, and the optimal test time selected.

4.1 INPUT DATA

The test design input data are as detailed in the table 4.1 below:

Table 4.0: Test Design Input Parameters

Parameter	Value	Unit	Remarks			
a. Reservoir Data						
Pay Zone Thickness	70	ft	Top of Reservoir as Penetrated by Agbada 68 to logged GWC (from Well Agbd 04)			
Average formation Porosity	0.24	fraction				
formation Compressibility	3.E-06	psi-1				
Reservoir Pressure	5296	psi				
Reservoir Temperature	225	°F				
Reservoir Permeability	740	md	Assumed Base Case based on range of permeability in Agbada Field. Sensitivities were performed on permeability			
			b. Well Data			
Well Orientation	Vertical					
Well Radius	0.411	ft				
Well bore Storage (WBS) Coefficient	0.0036	bbl/psi	Estimated assuming Down-Hole-Shut-in (DHSIT) Tool deployment at XN Nipple. WBS coefficient could be as high as 0.05 bbl/psi with surface shut-in.			
			c. Fluid Data			
Fluid Type	Gas					
Gas gravity	0.67					
			d. Others			
Reservoir Model	Homogeneou	ıs				
Wellbore model	Changing Sta		To capture possible fluid segregation (condensate dropout) and variations in density along wellbore			
Boundary Model	Polygonal (G Parallel Fault		Digitized to capture geometry of reservoir in line with top structure map (see Appendix 5)			
Modelling Approach	Numerical		To capture complexities (fault count and orientation) in the reservoir structure.			
e. Flow Data for Model Pressure Simulation						
Initial Build Up	24	Hrs	@ 0 MMscf/day			
1 st Flow Period	4	Hrs	@ 10 MMscf/day			
2 nd Flow Period	4	Hrs	@ 20 MMscf/day			

3 rd Flow Period	4	Hrs	@ 30 MMscf/day
4 th Flow Period	4	Hrs	@ 40 MMscf/day
Final Build up	96	Hrs	@ 0 MMscf/day

4.2 SCENARIO/SENSITIVITY FORMULATION

PERMEABILITY:

Based on the permeability ranges in the Agbada Field a minimum, median and maximum permeability of 500md, 740md, and 1200md¹ respectively were selected for this analysis.

BOUNDARY MODEL:

The boundary model was digitized from the top structure map (Appendix 5). The reservoir is bounded by a GWC at 11205 ftss. Depending on the aquifer strength the GWC may be seen as a constant pressure boundary (if aquifer is very active) or a no-flow boundary (if the aquifer is immobile). From the Top Structure Map and Cross Section (Appendix 6 and 7), it can be inferred with reasonable certainty that the aquifer will offer very little or minimal support from the North, West, and South-west of the structure; this is due to the existence and orientation of faults A, E and F. Thus the aquifer charge, if any, would most likely be from the Eastern and South-eastern direction. The faults on the structure were also digitized and captured as sealing faults. In view of the above, two major boundary models where tested:

- a) Aquifer active and offers support from the East/South-east direction only with faults incorporated as in top structure map. See figure 4.1 for the digitized map representing this boundary model. The blue line on the GWC indicates that the aquifer is active along that section of the GWC.
- b) Aquifer inactive all-round with faults incorporated as in top structure map. See figure 4.2 for the digitized map of this boundary model.

A third boundary condition was also tested were the GWC was represented as a constant pressure boundary (i.e. aquifer was active in all direction, see figure 4.10)

Length [ft]

5000

10000

15000

Figure 4.1: Map Digitization Showing Active Aquifer with Support from the East/South-East.

-10000

-5000

¹ Source: Agbada G sands Reservoir Development Plan, July 2008

-5000 -5000 0 5000 10000 15000 Length [ft]

Figure 4.2: Map Digitization Showing Inactive Active Aquifer.

SKIN:

No data was available to evaluate the possible skin values that may exist in reality. However, sensitivity to skin values of 5, 10, 15, and 20 (selected based on expected skin range for External Gravel Pack Completion) were tested on the base case permeability and active aquifer model.

WELLBORE STORAGE:

A wellbore storage coefficient of 0.0036 bbl/psi was estimated with the Downhole Shut-in Tool (DHSIT) at the XN-Nipple (11,684.63 ftah). A high estimate of 0.05 bbl/psi was also established assuming the well will be shut in at surface to cover the possibility of DHSIT deployment failure. WBS sensitivity was run using the above WBS coefficient values and a median case of 0.03 bbl/day.

Given the above the scenarios as shown in Figure 4.3 below were simulated and the generated pressure responses analyzed.

Scenario Name > A1 Low Case Perm 500md Mid Case Perm 740 md ► A2 High Case Perm 1200 md ► A3 Boundary Model A Active Aquifer from South/South East Boundary Model B Low Case Perm 500 md → B1 → B2 Mid Case Perm 740 md ▶ B3 High Case Perm 1200 md

Figure 4.3: Scenarios

4.3 ANALYSIS

Boundary Model A

The pressure responses generated from the simulation were analyzed using the pressure derivative plot. The generated pressure response for scenario A2 is as shown in Figure 4.4. As can be seen from the figure, during the final buildup the average reservoir pressure recharged to initial giving an indication of the support provided by the aquifer. The derivative plot for scenarios A1, A2 and A3 are plotted together to aid comparison on figure 4.5. In general it takes longer time for the pressure perturbation to hit the boundary for the case with the low permeability (ie A1).

Boundary Model B

The generated pressure response for the scenario B2 is as shown in Figure 4.6. As can be seen from the figure, during the final buildup the average reservoir pressure did not recharge to initial giving an indication that there is very weak support from the aquifer (no flow/closed boundary). The derivative plot for scenarios B1, B2 and B3 are plotted together to aid comparison on Figure 4.7.

The derivative plot generated from the case with the whole boundary (GWC) acting as a constant pressure boundary is as shown in figure 4.12. From this figure, it takes about 2 hrs (after the final shut-in) for the boundary to be felt. This case is very unlikely and was just examined for completeness.

Sensitivity to Skin

Sensitivity to Skin was evaluated, as shown in figure 4.8 and 4.9 on scenarios A2 and B2 respectively. The analysis showed that the ranges of skin values (0 – 20) considered does not greatly impact on the time for the pressure perturbation to hit the boundaries. However, it does affect the time to the end of wellbore storage (WBS), and at very high skins the WBS period may be long thus masking the Infinite Acting Radial Flow (IARF) period.

Sensitivity to WBS

Sensitivity to WBS coefficient was evaluated as shown in figure 4.10 and 4.11 on scenarios A2 and B2 respectively. The analysis showed that variations in WBS coefficient (within the expected range of values) do not impact the time taken for the pressure perturbation to hit the boundary. However, the higher the WBS coefficient, the longer the time to the end of WBS, and the shorter the Infinite Acting Radial Flow (IARF) period. The (low) WBS coefficient of 0.0036 bbl/day (with DHSIT deployed) resulted in the shortest WBS effect and longest IARF period; thus the usage of DHSIT will provide quality data for determination of the reservoir permeability.

The data from the test conducted in June 2011 was analyzed. The derivative plot obtained from the data is as shown in figure 4.13. From the figure, it can be seen that for the 36 hours build up, the boundaries signature was not clearly captured. Although the test was invalidated due to the leak in the tubing, this data was taken into consideration in selecting the optimal final build up time for this test.

Table 4.2 details the timings required for the final buildup to hit the boundaries for each of the scenarios as extracted from the derivative plots.

Table 4.1: Scenario Test Times.

Scenario	Initial Build Up (Pre Test)	1 st Flow Period	2nd flow Period	3rd Flow Period	4th Flow Period	Final Build Up	Total Time
	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs	Hrs
A1	24	4	4	4	4	50	90
A2	24	4	4	4	4	40	80
A3	24	4	4	4	4	30	70
В1	24	4	4	4	4	60	100
B2	24	4	4	4	4	50	90
В3	24	4	4	4	4	40	80

Following a detailed analysis of the derivative plots and the invalidated test data, the optimal final build up time was selected as 48 hrs. The Optimal Timings are tabulated in Table 4.3 below:

Table 4.3: Optimal Test Timings

Initial BuildUp (Pre Test) Hrs	1 st Flow Period Hrs	2nd flow Period Hrs	3rd Flow Period Hrs	4th Flow Period Hrs	Final Build Up Hrs	Total Time Hrs
24	4	4	4	4	48	88

Figure 4.4: Simulated Pressure Response for Scenario A2

Figure 4.5: Derivative Pressure Response for Scenario A1, A2, A3

 $\label{log-Log-Log-log} \mbox{Log-Log plot: } \mbox{m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]}$

Figure 4.6: Simulated Pressure Response for Scenario B2

Figure 4.7: Derivative Pressure Response for Scenario B1, B2, B3

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Figure 4.8: Sensitivity to Skin on Scenario A2

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Figure 4.9: Sensitivity to Skin on Scenario B2

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Figure 4.10: Sensitivity to Well Bore Storage on Scenario A2

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Figure 4.11: Sensitivity to Well Bore Storage on Scenario B2

Log-Log plot: m(p)-m(p@dt=0) and derivative [psi2/cp] vs dt [hr]

Figure 4.12: Derivative Plot for Constant Pressure Boundary GWC

Figure 4.13: Derivative Plot from Invalidated Test Conducted in June 2011.

6.0 WORKSCOPE SUMMARY

The summary of the clean-up work scope is given as follows:

- Hold pre-job safety and work scope meeting.
- Check and record wellhead pressures.
- Retrieve NRV.
- Carry out drift run with Slickline
- Pressure and function test CT.
- Run in hole with CT and carry out acid wash treatment by jetting across the screen in 3-passes and allow to soak for 1 hour.
- Lift well with Nitrogen if well does not come unaided.
- Commence well clean-up (Table 1.0). Minimum BS&W requirement for cleanup is 5% (condensate volume)
- Shut-in well for 24 hours for initial reservoir stabilization.
- RIH Slickline to install memory P/T gauges with programmed DHSIT 11,575 ftah (10 ftah from XN nipple 11,585 ftah).
- Open up well and conduct Multirate test (See Table 2).
- Shut in well for 48-hour final build-up test with DHSIT in closed position.
- Carry out SG survey.
- Secure well.
- RD equipment.

NOTE:

- Bean-up must be done gradually to achieve good bridging behind EGP.
- Bean-up should be carried out when flow stabilizes. At each stage, record bean size, gas flow rate, FBHP, FBHT, estimated drawdown, FTHP, FTHT, CGR, WGR, and sand rate.
- Flow well until well is properly cleaned, not exceeding a maximum gas rate of 40 MMscf/d. Well is properly cleaned when WGR is between 0.3 0.5 bbl/MMscf.

7.0 REFERENCES

- 1. Agbada G Sands Reservoir Development Plan, July 2008.
- 2. Agbada 68 Workover Proposal, August 2012.

APPENDIX 1: RESERVOIR & COMPLETION DATA

Casing Size/Type	9-5/8" / Production Casing
Setting Depth (ftah)	11725
Top Sand (ftss/ftah)	11135/11742
Well TD (ftss/ftah)	11165/11775
Sand Thickness (ft tvd)	75
Gas/Condensate Reserves to be Developed by well (Bscf/MMstb)	47/1.7
Gas Gravity (air = 1)	0.67
Reservoir Pressure @ datum depth of 11205 ftss (psia)	5296
Reservoir Pressure gradient	0.476
ls reservoir fully gas bearing? What Type	Yes/Primary
Present GWC (ftss) – (RCI-Agbada-68)	11205
Actual Completion Interval (ftss)	11134 – 11163
Actual Completion Interval (ftah)	11741 - 11773
Expected FTHP [psia]	3545
Expected CITHP [psia]	3860
Expected Initial Offtake [MMscf/d]	40
Expected WGR [bbl/MMscf]	0.3
CGR [bbl/MMscf]	64
Expected FBHP (psia)	5195
Drawdown at Potential (psi)	90
Tubing size [inches]/Material	4-1/2"/13Cr
Tubing Accessories	TRSCSSSV
Sand Exclusion Type	EGP

APPENDIX 3: Gas Well Test Risks/Mitigation

Risk	Consequence	Mitigation
Hydrate Formation	Blocked tubular, increased pressure, blow-out, injury, and fatality.	Inject glycol at low gas rates to combat hydrate formation. Use heat exchangers at high gas rates, tubing temperatures are high enough to combat hydrate.
Ill-defined Operating Envelope	Loss of well integrity, wellhead area & surrounding environment.	Modelled well, established CITHP and MAASP.
Inappropriately Sized Tools	Downhole components/tools may not get to desired depths.	Ensure the dimensions of tools to be RIH are appropriately sized for 4-1/2" tubing and accessories/profiles ID.
Use of chemicals and liquid Nitrogen during clean up & Unloading	Environmental contamination and harm to personnel.	Ensure safe handling of treatment fluid, its constituents and liquid Nitrogen as per standard handling procedures.
Fire Source	Fire outbreak, injury, and loss of equipment, fatality.	Barricade work area, prohibit use of cell phone & smoking around well's perimeter fence, restrict movement of unauthorized persons around work area.
Hydrocarbon under Pressure	Explosion, loss of containment, injury, fatality and environmental pollution.	Check integrity of the valves on the wellhead and TRScSSSV to ensure they are integral; install surface read-out gauges to monitor pressures and ensure BOP for the coil tubing unit is fully functional.
Emergency	Loss of order, injury, fatality, loss of equipment.	Presence of 2 - barrier containment Emergency Shut Down (ESD) system for wellhead, well site & test skid. Adopt MOPO (Manual of Permitted Operations) specifying when operations should be stopped if hazard mitigation is not being met.

APPENDIX 4: AGBADA-68 Final Completion Status Diagram

9	<u> </u>	ACBAD	VA 60 EI	IAL CO	MPL	ETION STAT	THE DIACE	A B./I				20 5 1 42
)	CASING	NH 80 AU	IAL CC	MPL	ETION STA	IUS DIAGRA	AIVI	MELLIN	AD (C	rface Metal Seal 2 Step System)	26-Feb-13
IZE	GRADE	WT (lbs/ft)	DEPTH (ft)	CEMENT	Conn		ПЕМ		TYPE	:AD (Su	SIZE	WP
4"	Stove Pipe	vvi (ibovit)	354	Driven	001111	Stovepipe	XMAS TREE		SMS UN	TIZED	4-1/16" x 13-5/8" Flange block x 4-1/16" outlet	5,000 psi
							TREE CAP		Kvaerne	r	4-1/16" c/w 4.060" Bore	5,000 psi
3-3/8"	K55	68	5,191	Class G	BTC	Surf Csg	GATE VALVE		Kvaerne	r	4-1/16" c/w 4.060" Bore	5,000 psi
0-3/4"	C90	60.7	3	Class G	AMS	Prod. Csg	ACTUATOR VALVE		Kvaerne	r	4-1/16" c/w 4.060" Bore	5,000 psi
-5/8"	N80	47	11,725	Class G	SLX	Prod Csg	TUBING HANGER				11" Nom X 4-1/2" w/CL & fibre optic cable prep	5,000 psi
							COMPACT HOUSING	3	Unitized		13-5/8"	5,000 psi
	•						GATE VALVE		Kvaerne	r	2-1/16" c/w 2.060" Bore	5,000 psi
	TUBING											
TRING	SIZE	WT. (lbs/ft)	GRAD.	TYPE		riation: 23.451 deg @ 6	763.37ftah				DESCRIPTION	RESERVOIR
SSS	4.5"	12.60	13Cr	Udeil CO2		XMT = 24ft 3 - Elevation (RT - Com		Δ.	1	0	Johnson Allpac screens / Gravel Pack	G8000C
55	4.5	12.60	1307	Hydril 563		ELEVATION = 21.86ft					Thixsal Mud _ 0.51psi/ft _ PV/YP = 17 / 28 _ pH = 1	0
					ODF = 8.2		Completion Fluid Typ		:		Filtered Inhibited KCI Brine _ 0.51psi/ft _ pH = 10	
					XMT = 6.8		Gas Pressure Grad				0.473psi/ft_ 5,322psi @ Sand Top	
AND		CC	MPLETION	STATUS		,	Top Depth	Length	O.D.	I.D.	DESCRIPTION	
					11	1	29.24	2.70	13.13		Tubing Hanger, 10-1/4" SSMC Mandrel Type, >	
		1 1 1	וור		1	1	31.94	0.64	4.930	3.958		3 Box x Pin
							32.58 42.61	10.03 97.39	4.930		4.5" H563 B x H563 P Pup joint, 12.60# L80 3 Tubing Joints, 4.5" 12.60# 13Cr Hydril 563 box by	/ pip
		1 1				1	140.00	3.35	4.930		X/O; 4.5" 12.60# Vam Top pin X H563 box, 13Cr	r Pili
		1 1		5		1	143.35	10.03	4.930	3.958		
		J I				L	153.38	1.10	4.930	3.985		
	•	-				=	154.48	9.77	4.930	3.985		Box x Pin
	24" SP @		4				164.25	7.39	4.500	3.813		
	354ftah						171.64	9.76	4.930	3.985	Flow Coupling, 4.5" 12.60# 13Cr L-80 Hydril OECO	
							181.40	1.06	4.930		X/O; 4.5" 12.60# Vam Top pin X OECO box, 13Cr	
	l .						181.40	6.15	4.930		Pup Joints, 4.5" 12.60# 13Cr Vam Top box by pin	
	13-3/8" Cs	-			•		182.46	6.15	4.930		Pup Joints, 4.5" 12.60# 13Cr Vam Top box by pin	
	@ 5,191f	tah					188.61	3.38	4.930	3.958	X/O; 4.5" 12.60# Vam Top pin X H563 box, 13Cr	
							191.99	11,060.74	5.00	3.958	341 Tubing Joints, 4.5" 12.60# 13Cr Hydril 563 box	- h i-
							11.252.73	9.92	4.930	3.958		к бу ріп
							11,262.65	0.69	5.00		Coupling, 4.5" 12.60# H563 Box X Box	
			1	\neg			11,263.34	5.43	6.062		Baker PDHG mandrel, 4.5",12.60# H563 Pin X P	in c/w fitted PDHG (quartz)
			₩				11,268.77	2.96	4.930		Pup Joints, 4.5" 12.75# 13Cr Hydril 563 box by pin	
				\times			11,271.73	32.47	4.930	3.958	1 Tubing Joint, 4.5" 12.60# 13Cr Hydril 563 box by	pin
				\sim			11,304.20	3.43	4.930	3.958		
							11,307.63	22.75	8.340		9 5/8" HES THT Packer Sub Assy., : 4.5" Vam T	op box X pin
							11,330.38	3.35	4.930	3.958		
			00.0	.00			11,333.73	32.75	4.930		1 Tubing Joint, 4.5" 12.60# 13Cr Hydril 563 box by	pin
			000	000			11,366.48 11,369.92	3.44 16.64	4.930 4.930		X/O; 4.5" 12.60# Vam Top pin X H563 box, 13Cr 4.5" X-Landing Nipple Sub Assy, 12.60# 13Cr \	/am Tan hay V nin
							11,386.56	18.60	4.930		4 5" HES Auto-fill Sub Assy, 12.60# 13Cr Vam	
							11,405.16	14.20	4.930		4 5" HES Mirage Plug Sub Assy, 12.60# 13Cr V	
							11,419.36	49.90	4.930		4 5" W/L+XN Nipple+Perf. Tubg. Sub Assy, 12.0	
							11,469.26		4.930	3.958	Tail of New Completions String	
							11,470.00	20.00	4.930	3.958		
			\boxtimes	\times	Ì		11,490.00	2.31	7.700	4.790		
			\Box		Γ		11,492.31	6.64	8.125	4.860		iew vam Box SN:C1397845
					I		11,498.95 11,505.52	6.57 12.36	7.030 4.930	6.180	Mill out extension + crossover Pup Joints, 4.5" 12.75# 13Cr Hydril 533 box by pin	
				0.0	I		11,505.52	12.36	4.930	3.856	FUP JUNIUS, 4.3 12.73# 13UF HYDRII 533 DOX BY PIN	
				000	I		11.517.88	1.13	5.220	3,813	Otis 4.5" X-Nipple,12.75# 13Cr L-80 H533 Box x	Pin.
							11,534.60	2.47	5.880	3.813		
					I		11,549.22	4.95	5.200		4.5" HES Mirage plug, (expended), 13Cr 12.6p	
					I		11,584.53	31.55	4.500	3.958		
			1		I					ļ		
					l		11,585.65	1.12	5.000	3.785	Otis 4.5" XN Landing Nipple, No-Go, 4.5" 12.75	# H533 Box x Pin,13Cr.
			X	X	Α					2000	Mula - b 4 (III 40 75" 400 · · · · · · · · · · · · · · ·	D:-
			0 0	0			11,589.64	1.30	5.200	3.958	Mule shoe, 4.5", 12.75# 13Cr Hydril 533 Box x F	rin.
			°e		I	,	11,628.00	5.90	8.450	4 000	9.625" x 4.75" BJ Compset pkr, # Packer, 4.00"	" Sealbore, 13Cr.
			٠		I	_	71,020.00	3.30	0.400	1.300	2 3 110 Ex Compact pri, # racker, 4.00	
			° -	- 00	В	E	11,633.00	10.00	5.500	3.750	Upper extension, 7", 13Cr	
			°-		I		11,643.89	3.35	7.530		5.5" Shear Out Safety Joint, " 13Cr (Not pinned	d)
	9-5/8" Csg			ુંં	С							
	11,725 fta	h	•	**		_	(44040		7		C C Direct Direct NIII Devict Direct	
		_	4 °.	* ° ,	K.		(11649 - 11641)	90.00	7.470		5.5" Blank Pipe, NU Box by Pin	
	Pay Interval Top:	11 749 #sh	7.3.	1 2 3	[
	ay interval rop:	ri,rea itali)	j i	F E		11,741.00	30.00	5.520	3.440	5.5" Johnson Allweld Screen, Gauge 270 mici	ron NII Box by Pin
			000		3/		71,741.00	30.00	5.520	5.740	S. Comison Airrord Screen, Sauge 270 Illici	
			(0°0 e		:							
			E :: .	િ જે	\$		(11725 -		N/A	9.875	9-7/8" Open Hole	
.000C		(@:• 	· ·	l		11774.66)					
			>:: []	13	9							
			78		á							
	l				7		11,773.00		4.780	N/A	Bull Plug, 5.5" # NU Box Up	
	Pay Interval Btm:	11,774.66 ftah	00000				11,775.00				TD	
			7					re top depths	along hol	e except	t were specified. Completion materials are 13% Chro	
	TD:	AUTHOR:			DATE CO		COMPLETED BY:				CHECKED BY:	APPROVED BY:

APPENDIX 5: Agbada 68 Proposed Timeplan & Cost Estimate

AGBADA-68 PROPOSED TIMEPLAN

	Activity	50/50 Time Estimate (Hrs)	50/50 Time Estimate (Days)
1	Mobilize Coiled tubing, WH & ancillary spread to site	24	1.0
2	Spot equipment on location	12	0.5
3	Equipment Rig up & pressure test	36	1.5
4	RIH CT to well TD @ 11,775 ft. Carry out sand face treatment	12	0.5
5	Allow solvent to soak for 1 hours	1	0.04
6	RIH CT & lift well	24	1.0
7	RD & demobilize CT from site	24	1.0
8	Mobilize MRT spread to site	24	1.0
9	Spot/RU MRT Spread.	60	2.5
10	Carry out HAZID exercise	6	0.3
11	Carry out well clean up	36	1.5
12	Shut-in well for 24 hours for initial reservoir stabilization. (RU slickline offline)	24	1.0
13	RIH slickline & drift well to xN nipple @ 11,491 ftah (can be done offline during build up)	12	0.5
14	Run in hole downhole pressure gauge and hang off at XN-nipple @ +/- 11,491 ftah	12	0.5
15	Carry out Multi-rate test	26	1.1
16	Final Build Up Survey. (commence equipment demobilization- except slickline)	24	1.0
1 <i>7</i>	Carry out Static Survey	24	1.0
18	Secure well & demobilise all equipment	24	1.0
	TOTAL TIME	405	16.84

AGBADA-68 COST ESTIMATE

S/N	Service Description	Maximum Cost (\$)
1	Well test Equipment	405,625
2	WHM Operations	43,555
3	Pumping Services	219,608
4	Well test Support Services	441,840
5	Slickline Services	141,633
6	Water Facilities	16,932
7	IT Support	4,264
8	FTO	15,000
9	Security	68,600
10	Diesel	23,000
11	CT Well lift	154,385
12	Down hole gauges	36,408
13	Glycol	8,545
	Total	1,579,393.49

APPENDIX 6: AGBADA G8000 Top Structure Map

APPENDIX 7: Dip Oriented Composite Cross Section through Well 68 (focused on G4000, G6000 & G8000 sands)

