

- 13
- Algorithm (KMeans)
- Metrics
 - 1. Euclidean Distance
 - 2. Manhattan Distance
- Elbow method

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Euclidean Distance


```
In [6]: plt.xlabel('Quantity')
  plt.ylabel('Price in Thousand (Taka)')
  plt.scatter(dataframe['Quantity'], dataframe['Price(K)'],marker='+',color='blue')
```

Out[6]: <matplotlib.collections.PathCollection at 0x2a9e524a048>

Scatter Plot

À	Α	В	C
1	Products	Quantity	Price(K)
2	FaceWash	3	7
3	Cream	5	4
4	Shoes	4	3
5	Bags	4	8
6	Jacket	6	3
7	Shirt	3	8
8			
9			

1	Α	В	C
1	Products	Quantity	Price(K)
2	FaceWash	3	7
3	Cream	5	4
4	Shoes	4	3
5	Bags	4	8
6	Jacket	6	3
7	Shirt	3	8
8			
)			

1	Α	В	C
1	Products	Quantity	Price(K)
2	FaceWash	3	7
3	Cream	5	4
4	Shoes	4	3
	Bags	4	8
,	Jacket	6	3
7	Shirt	3	8
3			

$$c_{1} = (3.5.7.5) \text{ and } c_{2} = (5.3.3)$$
For 6th data point (3.8) shirt:

Distance from $c_{1} = \sqrt{(3-3.5)^{5} + (8-7.5)^{2}}$

$$= \sqrt{.25 + .25}$$

$$= 0.70 + (1)$$
Distance from $c_{2} = \sqrt{(3-5)^{5} + (8-3.33)^{2}}$

$$= \sqrt{4+2.16}$$

$$= 2.48$$
New centroid = $(\frac{3+4+3}{3}, \frac{7+8+8}{3})$

$$c_{1} = (3.33.7.67)$$

$$c_{2} = (5.3.33)$$

Zhom