SICP

God's Programming Book

Lecture-19 Efficiency

Efficiency

Slides Adapted from cs61a of UC Berkeley

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Memoization

Memoization

Idea: Remember the results that have been computed before

Example: memo_fib

```
def make memo fib():
    cache = \{0: 0, 1: 1\}
    def memo_fib(n):
         if n in cache:
             return cache[n]
         res = memo_fib(n - 2) + memo_fib(n - 1)
         cache[n] = res
    return cache[n]
return memo fib
```

Memoized Tree Recursion

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
def square(x):
    return x * x
```

$$b^n = \begin{cases} 1 & \text{if } n = 0 \\ b \cdot b^{n-1} & \text{otherwise} \end{cases}$$

$$b^n = egin{cases} 1 & ext{if } n = 0 \ (b^{rac{1}{2}n})^2 & ext{if } n ext{ is even} \ b \cdot b^{n-1} & ext{if } n ext{ is odd} \end{cases}$$

Exponentiation

Goal: one more multiplication lets us double the problem size

```
def exp(b, n):
    if n == 0:
        return 1
    else:
        return b * exp(b, n-1)
def exp_fast(b, n):
    if n == 0:
        return 1
    elif n % 2 == 0:
        return square(exp_fast(b, n//2))
    else:
        return b * exp_fast(b, n-1)
def square(x):
    return x * x
```

Linear time:

- Doubling the input doubles the time
- 1024x the input takes 1024x as much time

Logarithmic time:

- Doubling the input increases the time by a constant C
- 1024x the input increases the time by only 10 times C

Orders of Growth

Quadratic Time

Functions that process all pairs of values in a sequence of length n take quadratic time

Tree-recursive functions can take exponential time

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


Tree-recursive functions can take exponential time

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)
```


def fib(n): Tree-recursive functions can take exponential time if n == 0: return 0 **elif** n == 1: return 1 else: return fib(n-2) + fib(n-1)fib(4)fib(2)fib(3)fib(0)fib(1) fib(1)fib(2)fib(0)fib(1)

def fib(n): Tree-recursive functions can take exponential time if n == 0: return 0 **elif** n == 1: fib(5)return 1 else: return fib(n-2) + fib(n-1)fib(3)fib(4)fib(1)fib(2)fib(2)fib(3)fib(0)fib(1)fib(0)fib(1)fib(1) fib(2)

fib(0)

fib(1)

Common Orders of Growth

Exponential growth. E.g., recursive fib

Incrementing n multiplies time by a constant

Quadratic growth. E.g., overlap

$$a \cdot b^{n+1} = (a \cdot b^n) \cdot b$$

$$a \cdot (n+1)^2 = (a \cdot n^2) + a \cdot (2n+1)$$

Incrementing n increases time by n times a constant

Linear growth. E.g., slow exp

Incrementing n increases time by a constant

Logarithmic growth. E.g., exp_fast

Doubling n only increments time by a constant

Constant growth.

Increasing n doesn't affect time

$$a \cdot (n+1) = \frac{(a \cdot n)}{(a \cdot n)} + a$$

$$a \cdot \ln(2 \cdot n) = (a \cdot \ln n) + a \cdot \ln 2$$

Time for input n+1

Time for n+n

Time for input n

Order of Growth Notation

Big Theta and Big O Notation for Orders of Growth

Exponential growth. E.g., recursive fib	$\Theta(b^n)$	$O(b^n)$
Incrementing n multiplies time by a constant		
Quadratic growth. E.g., overlap	$\Theta(n^2)$	$O(n^2)$
Incrementing n increases time by n times a constant	$\mathcal{O}(n^r)$	0(11)
Linear growth. E.g., slow exp		
Incrementing n increases time by a constant	$\Theta(n)$	O(n)
Logarithmic growth. E.g., exp_fast		
Doubling n only increments time by a constant	$\Theta(\log n)$	$O(\log n)$
Constant growth.		
Increasing n doesn't affect time	$\Theta(1)$	O(1)

Space

Space and Environments

Which environment frames do we need to keep during evaluation? At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments

Fibonacci Space Consumption

Thanks for Listening

