MH1810 Math 1 Part 3 Differentiation First Derivative and Growth of a Function

Tang Wee Kee

Nanyang Technological University

First Derivative and the Growth of a Function

Suppose f is differentiable and f is increasing on (a, b). Then it follows from the definition of derivative that $f'(x) \ge 0$ on (a, b).

How about the converse?

If $f'(x) \ge 0$ on (a, b), does it follow that f is increasing on (a, b)? The next result says that it is true if f'(x) > 0.

Theorem

Theorem

• If f'(x) > 0 on (a, b), then f is increasing on (a, b), i.e., for $x_1, x_2 \in (a, b)$

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$$

② If f'(x) < 0 on (a, b), then f is decreasing on I, i.e., for $x_1, x_2 \in (a, b)$

$$x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$$

Proof.

(Use Mean Value Theorem)

Corollary

Suppose f continuous on [a, b].

- If f'(x) > 0 on (a, b), then f is increasing on [a, b].
- ② If f'(x) < 0 on (a, b), then f is decreasing on [a, b].

Example

Example

Find interval(s) where f defined by $f(x) = 2 + 3x - x^3$ is increasing.

Solution

The function $f(x) = 2 + 3x - x^3$ is continuous on \mathbb{R} .

Note that

$$f'(x) = 3 - 3x^2 = 3(1 - x)(1 + x)$$
 on \mathbb{R} .

Thus, f'(x) > 0 for $x \in (-1,1)$ and f'(x) < 0 for

 $x \in (-\infty, -1) \cup (1, \infty)$.

Since f is continuous \mathbb{R} , we conclude that f is increasing on [-1,1].

Using f' for checking one-to-one

If f is increasing or decreasing on (a, b), then f is one-to-one on (a, b).

Example

Show that $f(x) = \sin x$ with domain $[-\pi/2, \pi/2]$ is one-to-one.

Solution

We have

$$f'(x) = \cos x > 0, \quad x \in (-\pi/2, \pi, 2).$$

So, f is continuous on $[-\pi/2, \pi/2]$, differentiable on $(-\pi/2, \pi, 2)$ and f'(x) > 0 on $(-\pi/2, \pi, 2)$.

Thus, f is increasing on $[-\pi/2, \pi/2]$ and hence it is one-to-one. (And, its inverse is denoted by $\sin^{-1} x$.)

Using f' to Solve Optimization Problems

Example

How do we construct a cylindrical metal can with a given volume V in a way that minimizes the surface area (the amount of metal used)?

Solution

Let r be the radius and h the height and A the surface area of the cylindrical can. Then

$$V = \pi r^2 h$$
, $A = 2\pi r^2 + 2\pi r h$.

The first equation gives us $h = \frac{V}{\pi r^2}$, which we can substitute into A to get $A(r) = 2\pi r^2 + \frac{2V}{r}$.

Solution

$$A(r)=2\pi r^2+\frac{2V}{r}.$$

Our objective is to find the minimum of A(r), where the domain of A(r) is $(0,\infty)$. Note that A is continuous on $(0,\infty)$, and we have

$$A'(r) = 4\pi r - \frac{2V}{r^2} = \frac{4\pi}{r^2} \left(r^3 - \frac{V}{2\pi} \right).$$

Solution

$$A'(r) = \frac{4\pi}{r^2} \left(r^3 - \frac{V}{2\pi} \right) = 0 \Leftrightarrow r = \left(\frac{V}{2\pi} \right)^{1/3}$$
 For $0 < r < \left(\frac{V}{2\pi} \right)^{1/3}$, $A'(r) < 0$. Thus, $A(r)$ is decreasing on $\left(0, \left(\frac{V}{2\pi} \right)^{1/3} \right)$. For $r > \left(\frac{V}{2\pi} \right)^{1/3}$, $A'(r) > 0$. Thus, $A(r)$ is increasing on $\left(\left(\frac{V}{2\pi} \right)^{1/3}, \infty \right)$. Therefore, $A(r)$ where $r = \left(\frac{V}{2\pi} \right)^{1/3}$ must be a global minimum point.

Hence we should choose to make our cans with radius $r=\left(\frac{V}{2\pi}\right)^{1/3}$ and height $h=V/(\pi r^2)$.

Second Derivatives and Shape of Curve

We start with describing the shape of a curve, followed by using the second derivative to classify its shape.

Definition

Suppose f is differentiable.

(a) The graph of a function f concaves upward at a point c if the graph of f lies above its tangent at c, i.e.,

$$f(x) \ge f(c) + f'(c)(x - c)$$

for x in a neighbourhood of c.

The graph of a function f concaves upward on an interval (a, b) if it is concave upward (or convex) at every point in (a, b).

Second Derivatives and Shape of Curve

Definition

Suppose f is differentiable.

(b) The graph of a function f concaves downward at a point c if the graph of f lies below its tangent at c, i.e.,

$$f(x) \le f(c) + f'(c)(x - c)$$

for x in a neighbourhood of c.

The graph of a function f concaves downward on an interval (a, b) if it is concave downward (or concave) at every point in (a, b).

Inflection Points

Definition

Suppose f is differentiable.

(c) A point P on the curve y = f(x) is called an inflection point if f is continuous there and the curve changes concavity, i.e., from concaving upward to concaving downward, or from concaving downward to concaving upward.

Concavity Test

Theorem

- (a) If $f''(x) \ge 0$ for all x in (a, b), then the graph of f concaves upward on (a, b).
- (b) If $f''(x) \le 0$ for all x in (a, b), then the graph of f concaves downward on (a, b).

[Proof] OMITTED.

This is a consequence of the Mean Value Theorem applied to f'.

Concavity Test: Examples

Example

Let $f(x) = 2 + 3x - x^3$. Find the intervals where the graph concave upwards. Find also the intervals where the graph concaves downwards and the points of inflection.

Solution

$$f(x)=2+3x-x^3$$
 , $f'(x)=3-3x^2$, $f''(x)=-6x$ at every $x\in\mathbb{R}$.

$$f''(x) > 0 \Longleftrightarrow x < 0,$$

$$f''(x) < 0 \iff x > 0.$$

Therefore, the graph of f is concave downward on $(0, \infty)$, and concave upward on $(-\infty, 0)$.

There is a change of concavity at x = 0. So, x = 0 is a point of inflection.

Second derivatives and the nature of extrema

The next result is useful for solving some optimization problems, especially if the function is twice differentiable.

Theorem

Suppose f is twice differentiable on (a, b) and f'(c) = 0 for some $c \in (a, b)$.

- (a) If $f''(x) \ge 0$ on (a, b), then f(c) is a global minimum.
- (b) If $f''(x) \le 0$ on (a, b), then f(c) is a global maximum.

[Proof.] Omitted.

Application to an Optimisation Problem

Example

How do we construct a cylindrical metal can with a given volume V in a way that minimizes the surface area (the amount of metal used)?

Solution

Let r be the radius and h the height and A the surface area of the cylindrical can. Then

$$V = \pi r^2 h$$
, and $A = 2\pi r^2 + 2\pi r h$.

The first equation gives us $h = \frac{V}{\pi r^2}$, which we can substitute into A to get

$$A(r) = 2\pi r^2 + \frac{2V}{r}.$$

Note that A(r) is continuous on $(0, \infty)$, and we have

$$A'(r) = rac{4\pi}{r^2} \left(r^3 - rac{V}{2\pi}
ight) \ ext{and} \ A''(r) = 4\pi + rac{4V}{r^2} > 0.$$

We also note that

$$A'(r) = 0 \Leftrightarrow r = \left(\frac{V}{2\pi}\right)^{1/3}$$

Since A''(r) > 0 for every $r \in (0, \infty)$ and $A'(\left(\frac{V}{2\pi}\right)^{1/3}) = 0$, we conclude that $A(\left(\frac{V}{2\pi}\right)^{1/3})$ is a global minimum.

