# **GEOMETRY**

**Chapter 2** 







TRIÁNGULOS CONGRUENTES







# **0**1

# TRIÁNGULOS CONGRUENTES

## **DEFINICIÓN**

Son dos o más triángulos que tienen igual forma e igual tamaño, es decir, tienen sus lados y ángulos, respectivamente, congruentes. En triángulos congruentes, se cumple a lados congruentes se oponen ángulos congruentes y viceversa.



**Notación:**  $\triangle ABC \cong \triangle PQR \rightarrow Se$  lee:

 $\Delta ABC$  es congruente al  $\Delta PQR$ .

#### TEOREMAS DE CONGRUENCIA DE TRIÁNGULOS

Lado - ángulo - lado (LAL)





2. Ángulo - lado - ángulo (ALA)



$$\rightarrow$$
 El  $\triangle$ ABC  $\cong$   $\triangle$ PQR

3. Lado - lado (LLL)





 $\rightarrow$  El  $\triangle$ ABC  $\cong$   $\triangle$ PQR



# 1. En la figura, AB = BC y AD = DC. Halle el valor de x.



## Resolución:

Piden el valor de x

\* 
$$\triangle$$
 ABD  $\cong$   $\triangle$  ABD (L.L.L)

$$m \not\preceq BCD = m \not\preceq BCD = x$$
  
Luego:

$$4x + x = 180^{\circ}$$
  
 $5x = 180^{\circ}$ 

$$x = 36^{\circ}$$



2. En un triángulo equilátero ABC, se ubican los puntos D en AB y E en BC, de modo que AD = BE. Halle la medida del menor ángulo determinado por AE y DC.

## Resolución:

Nos piden el ángulo entre AE y CD

\*  $\triangle$  ABE  $\cong$   $\triangle$  DAC (L.A.L)

#### **Entonces:**

 $m \not\preceq BAE = m \not\preceq ACD = o$ 

Luego , en △ AQC:

$$x = 60^{\circ} - \alpha + \alpha$$

$$x = 60^{\circ}$$





## 3. En la figura, halle el valor de x si AC = AE.



$$x = 10^{\circ}$$

 $18x = 180^{\circ}$ 





4. En un triángulo ABC, se ubican los puntos D en BC y E en  $\overline{AC}$ , de modo que AB = DC, AD = EC y m  $\not \perp$  BAD = m  $\not \perp$  DCE = 25°. Halle m  $\not \perp$  ADE.

## Resolución:

Piden m  $\not \perp$  ADE = x

$$m \not = BDA = m \not = DEC =$$

Luego, en △ DEC:

$$\phi + 25^{\circ} = \phi + x$$

$$x = 25^{\circ}$$





## 5. En la figura, halle el valor de x si AB = BC y DC = 2(BD).



## Resolución:

Piden el valor de x
Se prolonga BD hasta E

$$180^{\circ} = 45^{\circ} + x$$

$$x = 135^{\circ}$$



6. En un triángulo ABC, se traza la altura BD ( D en AC ). Halle m ⋨ BCD si DC = AB + AD y m ⋨ BAD = 70°.





## 7. En la figura, los triángulos ABC y CDE son equiláteros. Halle el valor de x.



## Resolución:

Piden el valor de x.

\* 
$$\triangle$$
 ADC  $\cong$   $\triangle$  BEC (L.A.L)  
m  $\not=$  DCA = m  $\not=$  BCE =  $\alpha$   
Luego:

$$3x = 60^{\circ} + x$$

$$2x = 60^{\circ}$$

$$x = 30^{\circ}$$



8. En el interior de un triángulo equilátero ABC, se ubica el punto D, de modo que m ≰ BAD = 4x, m ≰ DBC = 3x y m ≰ DCA = 5x. Halle el valor de 2x.

#### Resolución:

Piden el valor de 2x

\*  $\triangle$  ABD  $\cong$   $\triangle$  ADC (L.A.L<sub>mayor</sub>)

Del gráfico:

$$60^{\circ} - 3x = 5x$$
  
 $60^{\circ} = 8x$  ( ÷ 4 )

$$2x = 15^{\circ}$$





## 9. Halle el valor de x en la figura si las regiones triangulares sombreadas son congruentes.



## Resolución:

Piden el valor de x

Como:  $\triangle$  ABD  $\cong$   $\triangle$  CED

**Entonces:** 

$$m \not = EDC = m \not = ABC = x$$

$$m \not\preceq CED = m \not\preceq BAC = 80^{\circ}$$

En 
$$\triangle$$
 BCD: m  $\not \triangle$  BCA = 50° + x

Luego, en  $\triangle$  ABC:

$$80^{\circ} + x + 50^{\circ} + x = 180^{\circ}$$
  
 $2x = 50^{\circ}$ 

$$x = 25^{\circ}$$



