

BMA Molekylärbiologisk metodik Bioinformatik

Explosiv tillväxt av sekvensinformation

Growth of GenBank

Report from NCBI 2013 GenBank world's largest collection of DNA sequences in collaboration with UK/EMBL and Japan/DDBJ (DNA data bank of Japan)

Bioinformatik

Hantering och analys av information från genteknologisk forskning Tvärvetenskaplig disciplin

AGCTGACGATGGGCAGATACACAGTAAC TCGACTGCTACCCGTCTATGTGTCATTG

Genes can be located on both strands. So the mRNA sequence always corresponds to the 5-3 coding sequence of a gene.

- Double stranded
- Antiparallel
- Complementary

adenine=thyamine

cytosine≡guanine

Genomes split into chromosomes

Human Genome 22 autosomal pairs 1 allosome pair Diploid

Species	# Chr	Ploidy
A.thaliana	10	Diploid
Bread Wheat	42	Hexaploid
Tobacco	48	Tetraploid
Fruit fly	8	Diploid
Earth worm	36	Diploid
Mouse	40	Diploid
Human	46	Diploid
Dog	78	Diploid
Goldfish	100-104	Diploid

Central dogma - Flow of genetic information

The Genetic Code

20 amino acids Proteins - long chain of amino-acids

nonpo	olar pola	r basic	acidic (stop co	odon)						
Standard genetic code											
1st	2nd base								3rd		
base		U			С		A		G		base
	UUU	(Phe/F) Phenylalanine		UCU	(Ser/S) Serine	UAU	(Tyr/Y) Tyrosine	UGU	(Cyc/C) Cyctoine	U	
	UUC		ariirie	UCC		UAC		UGC	(Cys/C) Cysteine	С	
U	UUA			UCA		UAA	Stop (Ochre)	UGA	Stop (Opal)	Α	
	UUG			UCG		UAG	Stop (Amber)	UGG	(Trp/W) Tryptophan	G	
	CUU	/Lou/L\ L	(1 (1) 1i		CCU		CAU	(Lie/LI) Lietidine	CGU		U
С	CUC	CUA		ccc	(Pro/P) Proline	CAC	(His/H) Histidine	CGC	(Arg/R) Arginine	С	
	CUA			CCA		CAA	(Cla/O) Clutomino	CGA		Α	
	CUG				CCG		CAG	(Gln/Q) Glutamine	CGG		G
A	AUU	(Ile/I) Isoleucine		ACU	(Thr/T) Threonine	AAU	(Asn/N) Asparagine	AGU	(Ser/S) Serine	U	
	AUC			ACC		AAC		AGC		С	
	AUA			ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	Α	
	AUG ^[A]	(Met/M)	(Met/M) Methionine			ACG		AAG		AGG	G
G	GUU	(Val/V) Valine		GCU	(Ala/A) Alanine	GAU	(Asp/D) Aspartic acid	GGU		U	
	GUC			GCC		GAC		GGC		С	
	GUA			GCA		GAA	(Glu/E) Glutamic acid	GGA	(Gly/G) Glycine	Α	
	GUG			GCG		GAG		GGG		G	

A The codon AUG both codes for methionine and serves as an initiation site: the first AUG in an mRNA's coding region is where translation into protein begins. [30]

Several cellular functions: regulation, structure, movement, catalysis, transport, signaling

A gene is a segment of DNA that encodes for a function.

Below portion of the DNA that contains all the information for production of a protein

20,000 protein-coding genes (~1.0%)
Unevenly distributed across the chromosomes

HIST1HIA 781 nt lack introns

DMD 2.2Mb largest gene

TTN 80Kb (364 exons) longest coding sequence

Coding sequence

One gene - multiple transcripts and proteins

Alternative:

- splicing
- promoters
- polyA / termination sites

Variation mellan individer Single nucleotide polymorphism (SNPs)

- Två mänskliga genom är i genomsnitt 99,9% lika
- Genom är stora så innebär ca 3 miljoner skillander, men de flesta av dessa har ingen funktion
- De flesta varianterna 90% är i form av förändring av en nukleotid SNP

Functional Consequences

Туре	Consequence
SNPs in coding area that alter aa sequence	Cause of most monogenic disorders, e.g: Hemochromatosis (HFE) Cystic fibrosis (CFTR) Hemophilia (F8)
SNPs in coding areas that don't alter aa sequence	May affect splicing
SNPs in promoter or regulatory regions	May affect the level, location or timing of gene expression
SNPs in other regions	No direct known impact on phenotype Useful as markers

Practical applications of genomic variation

- Disease diagnosis
- Association studies
- Pharmacogenomics
- Forensic testing
- Population genetics and evolutionary studies

Comparative Genomics

M.sp	UGCAUAACGAA AGGAGAGACUUUGGCA AUCCCCUUGAGAAGGAC GGAAU GGC UUUUGCUCaaacU UA CA GC CO GC GUGUUGA AGGC ACCGCUCU U A AGGAGCAUCUAggcauauugCCACCAAUUUUUUUU -
R.oryzae	GGUUAAUAGAA. AGGAGAGAACUUUGGCAAUCCCCUUGAGAAGAGAC. GGAAUGAGC. UUUUGCUCAaCA.UAACA.CACCGUG. UGUUUUugaAGGCAUCGCUCCU. CGGAGCAUCUUggcauAUUGCCACUAUUUUUu~
P.blakesleeanus	
H.sapiens	UGUUGUAUGAA, AGGAGAGAGGUUAGCA. CUCCCCUUGACAAGGAU, GGAAGA, GGCC. CUCGGGCC UGA.CA ACA.CGC AUA. C. GGUUA AGGC AUUGCCACCUACUU, CGUGGCA U
G.gallus	UGUUGUAUGAA AGGAGAGAGGUUAGCA CUCCCCUUGAUAAGGAGGGGCCC. UAGUGGCC UA. CA AC A. CGCAUA. C. GGUUA AGGCACUGCCACCUACUUgCGUGGCA
D.rerio	UGUUGUAUGAAAAGGUAGCACUCCCCUUGACAAGGGU.GGAAGAGGUCC.UAGUGGCCUUC.AACAU.CACAUAUGGUUAAGGCAUUGCCACCUACUU.CGUGGCAUCUCUAACCAAGUUUUUUU
T.nigroviridis	UGUUGUAUGAA AGGAGAGAAGGUUAGCAccAUCCCCUUGACAAGGAU.GGAAGAGGCCC.CUGAGGCCUU.CAACA.CACAUA.C.GGUUAAGGCcaAUUGCCACCUACUU.UGUGGCAUCUCUAACC.AAGUUUUUUU
F.rubripes	-GUUGUAUGAA AGGAGAGAGGUUAGCA CUCCCCUUGACAAGGAU GGAAGAGGCCC CUGUGGCC UU.CA. AC. A.CAC. AUA.C.GGUUA. AGGC. AUUGCCACCUACUU.CGUGGCAUCUC UAACC.AAGUUUUUUU
B.floridae	UGUUGUAUGAA AGGAGAGAAGGUUAGCA CUCCCCUUGAUAAGGAC GGAAGA CCCG CUUGCGGG . U
X.laevis	UGUUGUAUGAA, AGGAGAGAAGGUUAGCA, CUCCCCUUGACAAGGAU, GGAAGAGGUCC, CAGUGGCCU., UUACA,AC,A., CAU., AUA., C., GGUUA, AGGC., AUCGCCACCUACUU, CGUGGCAUCUC
C.intestinalis	UGUUGAAUAAA AGGAGAGCUGGUUAGCA . CUCCCCUUGAUAAGGAC .GGACAUGUUGA .UGGGUUCAGceauu .CA AU A. CAU AUA .A. UGGAUA AGGC ACUGUCACCAUGUGUCAUUAUCCAU GUUUUGU
S.purpuratus	UGUUGUAUGAA AGGAGAGAGGUUAGCA CUCCCCUUGAUAAGGAC GGAAUU CACC CUCGGGUG A CA AA AC AC AC AC AG CA AAA U GGUUA AGGC ACUGCCACUUACUU UGUGGCA U CUAACCACGUUUUUA~
T.spiralis	UGCGGAAUGAA AGGAGAGCUAGUUAGCA CUCCCCUUCACAAGGAC GGAGAAU U. GU.CAg. AC A.AGC ACA. A.CAGCAA AG AUCGCCUA.CCU
A.aegypti	UGUCUUUUGAA AGGAGAGCAGGUUAGCA CUCCCCUUGACAAGGAU.GGAA
A.gambiae	UGUCAUUUGAA AGGAGAGCAGGUUAGCA CUCCCCUUGACAAGGAU.GGAA
A.mellifera	UGUAGUAUGAA AGGAGAGACGUUUAGCA CUCCCCUAGACAAGGAU.GGAAUAC
B.mori	UGUCUAUUGAA AGGAGAGACGGUUAGCA CUCCCCUUGACAAGGAU GGAA C A CAC AAU U UGGUUA AGGC AC U A U UAACCAAACAUUUU~
D.melanogaster	UGUUGUUUGGA AGGAGAGCAAGUUAGCA CUCCCCUAGACAAGGAU GGAA
D.pseudoobscura	UGUUGUUUGGA AGGAGAGCAAGUUAGCA CUCCCCUAGACAAGGAU.GGAA . C. A.CAU.AAA.C.GAGCG. GCUGGC.ACAAG.AGAAGC. CGUUCACCAGUUUU~
T.castaneum	UGUAGUAUGAA AGGAGAGACGGUUAGCA CUCCCCUAGACAAGGUU.GGAA AC A.CAA AUA.C.GGUUGA GC GU.C. GCACAC UCAACC.CCAUUUUUUU
D.pulex	UGUAGUACAAA AGGAGAGCUGUUUAGCA CUCCCCUUGAUAAGGAC GGAA
T.adhaerens	UGUUGUAUGAG, CCGAGAGAAGGUUAGCA, UCUCCCUCGAUAAGGAC, GAGAAA, AGUC, UCCGGACU, U. U. U. AAcanac
H.magnipapillats	a UGUUGUAUGAG.CCGAGAGCCGGUUAGCA.UCUCCCUCGAUAAGGAC.GAGAAUAGACC.CUGA.GUCUAU.CAACcacaA.CACGCA.U.GGUUAAGGC.UAUGUCACUUACUU.UGUGGCAU
N.vectensis	UGUUGUAUGAG, CCGAGAGAAGGUUAGCA, UCUCCCUCGAUAAGGAC, GAGAAA, AGUC, UUCGGACUUUC.AACCU.ACAACA, CgUGGUUAAGGCUAUGCCACCUACUU, CGUGGCAUCUAACAUUUUUUUG
R.sp	UGUUGUAUGAG, CCGAGAGAAGGUUAGCA, UCUCCCUCGAUAAGGAC, GAGAAAAGUCU, UCN, GGACUUU, CAACMMA. CAC.A. UGGUUAAGGC UAUGCCAUCUUACUU, UGUGGCAUCUAACCAGUUUUUUUU
P.polycephalum	UGUUCGUUGAG.CCGAGAGAAGGUUAGCA.UGCCCCUCGAUAAGGAC.GGCA.AAGCU-UAUGAGCU.U.U.CA.AA.UU.A.CAC.ABC.C.GUGUUA.AGGC.UAUGACUG.C.GGCCAUA.U.UAGACUG.UAUGACUG.
A.castellanii	UGCUGGUUGAG.CCGAGAGAAGGUUAGCA.UCUCCCUGCAUAAGGAC.GGGAAA.AGAC.UCCGGUCU.U.CA.AC.U.CAC.AUC.GUGUUA.AGGC.UA.GG.UAACUUUU~
A.thaliana	UGUUCGUAGAA. AGGAGAGAUGGUUGGCAA, CUCCUCU. GACAGAGAC. GGGAUUUGACC. UUCGGGUC. U. UU. GA. AC. A.C. AUC. C. GGUU. A. AGGC. UCUCCACA. UUCG. UGUGGAUCUA
0.sativa	UGUUCGUAGAA. AGGAGAGACGGUUGGCAA, CUCCCCU. GACAGGGAC. GGGAUC. AGCU. UUCGGGCU. U. U. C.C AuCAC AUUgC. GGUU. A AGGC UACCCGCU U. CGGCGGAUCUU ACCCA AAUUUUUU
S.moellendorffii	i uguucguagaa uggagagauguuuggca uguucgucgacaaggac gggaau aacc guucggc uu uu ga ac ac agaug u gguuag aggc auccacc cucg ggugga u cuuaccccaguuuu -
P.patens	UGUUCGUUGAG.CCGAGAGAAGGUUAGCA.UCUCCCUCGAUAAGGAC.GAGAAU.AGCC.UUCGGGCU.U. U. A.CAC.AUG.A.GGUU.A.AGGC.UUCCGGGC.UUCCGGGC.AAACCAUCGCUUUU~
H.parasitica	UGUUCGUGGAG, CCGAGAGAAGGUUAGCA, UCUCCCUCGACAAGGAC, GGGAUU, GCAC, GAAAGUGUAUCC.AGUAUC.U.GGAAAGUCUAAGCUCUGUCCUCCA.CAGUGAGGAUA
P.sojae	UGUUCGUUGAG, CCGAGAGAAGGUUAGCA, UCUCCCCUCGACAAGGAC, GGGAUU, GCGC, GUAUGCGUAUC.CAACC.ACUGGA.UGGGUUAAGCUCUGUCCUCCGUGAAGACAUCUACCAGUUUUUUU-
P.ramorum	UGUUCGUUGAG, CCGAGAGAAGGUUAGCA, UCUCCCUCGACAAGGAC, GGGAUU, GCGC, GUAUGCGUAUC.CAACC.ACUGGA.UGGGUUAAGCUCUGUCCUCGCUGAAGACAUCUACCAGUUUUUUU-
P.infestans	UGUUCGUUGAG, CCGAGAGAAGGUUAGCA, UCUCCCUCGACAAGGAC, GGGAUU, GCGC, GUUUGCGUAUC.CAACC.ACUGGA.UGGGUUAAGCUCUGUCAUCCUUCUGGAAGACAUCUACCAGUUUUUUU-
SS_cons	
	——————————————————————————————————————

BLAST

BLAST (basic local alignment search tool) är en algoritm* som används för att jämföra sekvens information.

Klistra in en sekvens och hitta liknande sekvenser

Enter Query S	Sequence	BLASTN programs	search nucleotide databases us			
Enter accession n	umber(s), gi(s), or FASTA sequence(s) 😡	Clear	Query subrange 😡			
			From			
			То			
		2				
Or, upload file	Choose File no file selected	77				
Job Title						
	Enter a descriptive title for your BLAST search					
☐ Align two or mo	ore sequences 😡					
Choose Searc	ch Set					
Database	Human genomic + transcript Mouse ger	nomic + transcript Others (nr etc.):			
	Nucleotide collection (nr/nt)	♦				
Organism Optional	Enter organism name or idcompletions will be sugg	ested exclude +				
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown 🚱					
Exclude Optional	☐ Models (XM/XP) ☐ Uncultured/environmental sample sequences					
Limit to Optional	Sequences from type material					
Entrez Query		You Tube Create custom of	<u>database</u>			
Optional	Enter an Entrez query to limit search 🚱					

*Algoritm är en mängd väl definierade instruktioner för att lösa en uppgift

BLAST results

Mest lik sekvens i toppen av listan. Hög score och E-värde nära 0 betyder att det är liten risk att sekvensen av ren slump är lik din frågesekvens

Olika typer av BLAST

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

Learn more

Web BLAST

tblastn
protein ▶ translated nucleotide

Man kan söka med både DNA, RNA och protein sekvens

BioinformaticsCore Facility

Sequencing & identification of SNPs

Variant, med allele G eller T

CGATCGACGCAGCA ACGTGCAGGGACGT

CGACGCAGCTACTACACG

CTACGATCGATCGA TACTACACGTGCAGG

Reference CTACGATCGATCTACGCAGCTACTACACGTGCTGGGACGC

SNP/Indels

Next Generation Sequencing (NGS) Workflow

Ut från sekvenseringsmaskin - Rådata miljontals "reads" t.ex. exom 30 miljoner reads, 150 baspar långa fil-format FASTQ

Mappa mot referens t.ex. BWA (Burrows-Wheeler Aligner) Output bamfiler binärt format

"Calling" output: identifierade varianter, filer i s.k. VCF format

Annotera, filtrera ut kandidat-varianter som kan förklara fenotyp

FASTQ format

@HWI-D00457:83:C6EAMANXX:8:1101:6854:2245 1:N:0:CGCTCATTGGCTCTGA GAAGCAGGTGCCATGCCTGCACGTTTGTGGCTTAATGACCAAGGAGGGCCGATGAGCATGGT GGTGATCACTGC+

Varje "read" består av fyra rader. Första raden börjar med @ och har ett unikt namn.

Andra raden visar nukleotid sekvensen

Tredje raden har ett + tecken

Fjärde raden visar kvalitén för varje läst nukleotid

VCF format

```
##fileformat=VCFv4.0
##fileDate=20090805
##source=myImputationProgramV3.1
                                                                                            Header
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS, Number=1, Type=Integer, Description="Number of Samples With Data">
##INFO=<ID=DP, Number=1, Type=Integer, Description="Total Depth">
##INFO=<ID=AF, Number=., Type=Float, Description="Allele Frequency">
##INFO=<ID=AA, Number=1, Type=String, Description="Ancestral Allele">
##INFO=<ID=DB, Number=0, Type=Flag, Description="dbSNP membership, build 129">
##INFO=<ID=H2, Number=0, Type=Flag, Description="HapMap2 membership">
##FILTER=<ID=g10, Description="Quality below 10">
##FILTER=<ID=s50, Description="Less than 50% of samples have data">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=GQ, Number=1, Type=Integer, Description="Genotype Quality">
                                                                                            Body
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=HQ, Number=2, Type=Integer, Description="Haplotype Quality">
#CHROM POS
                         REF ALT
                                     OUAL FILTER INFO
                                                                                    FORMAT
                                                                                                NA00001
       14370
             rs6054257 G
                                         29
                                                     NS=3;DP=14;AF=0.5;DB;H2
                                                                                                     010:48:1
20
                                A
                                              PASS
                                                                                        GT:GQ:DP
      17330
                                                     NS=3; DP=11; AF=0.017
                                                                                                    010:49:3
20
                                              g10
                                                                                        GT:GQ:DP
20
      1110696 rs6040355 A
                                G, T
                                                     NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP
                                                                                                    112:21:6
                                              PASS
                                                     NS=3; DP=13; AA=T
20
      1230237 .
                                         47
                                              PASS
                                                                                        GT:GQ:DP
                                                                                                     010:54:7
20
       1234567 microsat1 GTCT
                                         50
                                              PASS
                                                     NS=3; DP=9; AA=G
                                                                                        GT:GQ:DP
                                                                                                    0/1:35:4
```


Variant annotering

- Är det en känd SNP?
- Hur vanlig är den i befolkningen?
- Ligger varianten i en gen?
- Vilken påverkan kan varianten ha på genens funktion?
- Vad vet vi om den genens funktion idag?

Genome Browsers

- A genome browser is a graphical interface to display an integrated picture of data from several databases including e.g.
 - Genes
 - Proteins
 - Expression
 - Regulation
 - Variation
 - Comparative analyses

Big Genome Browser:

Ensembl Genome browser http://www.ensembl.org

NCBI

https://www.ncbi.nlm.nih.gov

UCSC Genome Browser

https://genome.ucsc.edu

UCSC Browser https://genome.ucsc.edu

On-line genome browser with access to genome sequence data from a variety of organisms integrated with a large collection of aligned

annotations.

Choose species, assembly, and go to Genome Browser

NOTE! Genomic positions differ between assemblies

Zoom in:

Zoom out:

Genome viewer

Custom Annotation tracks (groups of data)

- Mapping and sequencing
- Gene predictions
- Variation and Repeats
- Comparative genomics
- Custom tracks (BAM, VCF)

BLAT har liknande funktion som BLAST, men behöver en nästan exakt match för att hitta rätt. BLAT passar inte om man vill hitta avlägset relaterade sekvenser.

Polymerase Chain Reaction (PCR)

Polymeras läser DNA mall i 3'-> 5' men bildar ny sträng med riktning 5'->3' Männsikan läser alltid i riktning 5' -> 3'

Alltså läser vi forward primer: ACTGGGCA Men reverse primer: GTTTAC

OBS! Det är viktigt att man hittar primers som binder unikt till ett ställe i genomet

Sammanfattning

- Bioinformatik är ett tvärvetenskapligt fält i rörelse
- Central dogma:
 - Replikation, Transkription, Translation
- Online verktyget Blast
- Identifiering av SNPs
- Genome Browsers
- PCR för att snabbt identifiera kända mutationer i patienter