(Cognome) (Nome) (Corso di laurea)

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \min 3 y_1 + 12 y_2 + y_3 + y_4 + 4 y_5 + 5 y_6 \\ -y_1 - 4 y_2 + y_4 + 4 y_5 + 4 y_6 = 4 \\ y_1 - 3 y_2 + y_3 + y_4 - y_5 = 5 \\ y \ge 0 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (-3, 0)	SI	NO
${3, 5}$	y = (0, 0, 6, 0, 1, 0)	SI	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	$\{2, 4\}$	(-15, 16)	(0, 1, 0, 8, 0, 0)	1	$\frac{1}{2}, \frac{8}{7}$	2
2° iterazione	{1, 4}	(-1, 2)	$\left(\frac{1}{2},\ 0,\ 0,\ \frac{9}{2},\ 0,\ 0\right)$	3	1, 9	1

Esercizio 3.

vedi esercizio 3 dell'altro compito

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) $(1,4)$ $(2,5)$				
(4,3) $(4,6)$ $(6,7)$	(1,3)	x = (0, 11, -6, 0, 7, 0, 0, -14, 5, 0, 3)	NO	SI
(1,2) (1,4) (2,3)				
(3,7) (5,7) (6,7)	(3,5)	$\pi = (0, 8, 12, 7, 6, 11, 16)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,3) $(1,4)$ $(2,3)$ $(3,7)$ $(4,6)$ $(5,7)$	(1,3) $(1,4)$ $(2,3)$ $(3,5)$ $(3,7)$ $(4,6)$
Archi di U	(3,5)	
x	(0, 0, 5, 7, 0, 10, 0, 0, 2, 3, 0)	(0, 0, 5, 7, 0, 7, 3, 0, 2, 0, 0)
π	(0, 4, 8, 7, 2, 17, 12)	(0, 4, 8, 7, 14, 17, 12)
Arco entrante	(3,5)	(2,5)
ϑ^+,ϑ^-	4,3	11,7
Arco uscente	(5,7)	(2,3)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter 1		iter	· 2	iter	: 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		4	:	9	}		Ď	(j	7	7
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 3	15	1	15	1	15	1	15	1	15	1	15	1	15	1
nodo 4	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 5	$+\infty$	-1	26	2	26	2	18	3	18	3	18	3	18	3
nodo 6	$+\infty$	-1	$+\infty$	-1	23	4	23	4	23	4	23	4	23	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	32	3	26	5	26	5	26	5
$\begin{matrix} \text{insieme} \\ Q \end{matrix}$	2, 3	, 4	3, 4	, 5	3, 5	, 6	5, 6	5, 7	6,	7	7	7	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 3 - 7	14	(0, 14, 0, 0, 0, 0, 14, 0, 0, 0, 0)	14
1 - 2 - 5 - 7	7	(7, 14, 0, 7, 0, 0, 14, 0, 0, 7, 0)	21
1 - 4 - 6 - 7	6	(7, 14, 6, 7, 0, 0, 14, 0, 6, 7, 6)	27

Taglio di capacità minima: $N_s = \{1, 2, 3, 5\}$ $N_t = \{4, 6, 7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max & 9 \ x_1 + 13 \ x_2 \\ 15 \ x_1 + 6 \ x_2 \le 68 \\ 9 \ x_1 + 10 \ x_2 \le 57 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(0, \frac{57}{10}\right)$$
 $v_S(P) = 74$

b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento

sol. ammissibile =
$$(0,5)$$

c) Calcolare un taglio di Gomory.

$$r = 2$$
 $x_2 \le 5$ $x_2 \le 3$ $x_1 + 4x_2 \le 22$

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	44	22	51	21
2		13	52	25
3			10	29
4				22

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3-albero:
$$(1,5)(2,3)(2,5)(3,4)(4,5)$$
 $v_I(P)=91$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4 - 3 - 2 - 5 - 1$$
 $v_S(P) = 120$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{24} , x_{23} , x_{14} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + 2x_1 + x_2^2 + 2x_2$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_1 + x_2^2 \le 0, \quad x_1^2 - 4 \le 0\}.$$

Soluzioni del si	Mass	imo	Mini	mo	Sella		
x	λ	μ	globale	locale	globale	locale	
(-1, -1)	(0,0)		NO	NO	SI	SI	NO
(-2, -1)	$\left(0,-\frac{1}{2}\right)$		NO	NO	NO	NO	SI
$\left(-2, -\sqrt{2}\right)$	$\left(-\frac{26}{90}, -\frac{51}{90}\right)$		NO	SI	NO	NO	NO
$\left(-2, \sqrt{2}\right)$	$\left(-\frac{38}{22}, -\frac{83}{90}\right)$	_	SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 8 x_1 x_2 - 4 x_2^2 + 5 x_1 - 6 x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (3,-4), (-5,-0), (-1,-4) e (2,-0). Fare una iterazione del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
				possibile		
$\left(-\frac{1}{3},0\right)$	(-0,1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\left(-\frac{11}{3},0\right)$	$\frac{14}{11}$	$\frac{1}{4}$	$\left(-\frac{5}{4},0\right)$