PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2001323054 A

(43) Date of publication of application: 20.11.01

(51) Int. CI

C08G 63/78 C08G 63/85 C08K 5/5317 C08L 67/02

(21) Application number: 2000403432

(22) Date of filing: 28.12.00

(30) Priority:

17.05.00 KR 2000 200026495

29.09.00 KR 2000 200057353

(71) Applicant:

SK CHEMICALS CO LTD

(72) Inventor:

JON ZEEYON HONG YOON-HEE

(54) METHOD FOR PRODUCING POLYESTER RESIN COPOLYMERIZED WITH 1,4-CYCLOHEXANEDIMETHANOL

and a 6 to 10C arylene) as a stabilizer.

COPYRIGHT: (C)2001,JPO

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method for producing a polyester resin copolymerized with 1,4-cyclohexanedimethanol, by which the metal content of the final reaction product can b reduced to give the polyester resin having more improved transparency and color phase as those of conventional polyester esters.

SOLUTION: This method for producing the polyester resin 1,4-cyclohexanedimethanol, copolymerized with characterized by comprising a step for charging a whole glycol component comprising ethylene glycol and 1,4cyclohexanedimethanol into terephthalic acid in a molar ratio of 1.3 to 3.0 to perform an esterification reaction and a step for polycondensing the esterification reaction product in the presence of a titanium-based compound as a catalyst and a carboxyphosphonic acid-compound of the formula (R1, R2 and R3 are each H or arbitrarily selected from the group consisting of a 1 to 10C alkyl, a cycloalkyl, and a 6 to 10C aryl; R is arbitrarily selected from the group consisting of a 1 to 10C alkylene, a cycloalkylene

-(19)日本国特許庁(JP)

(iz)公開特許公報(A)

(11)特許出願公開番号 開2001-323054

(P2001-323054A)(43)公開日 平成13年11月20日(2001.11.20)

(51) Int. Cl. 7 識別記号 FI テーマコート (参考) COSG 63/78 COSG 63/78 41002 63/85 63/85 41029 CO8K 5/5317 CO8K 5/5317 CO8L 67/02 COSL 67/02

> 審査請求 有 請求項の数6 OL (全6頁)

(21)出願番号 (71)出願人 500116041 特願2000-403432(P2000-403432) エスケー ケミカルズ カンパニー リミ (22) 出願日 平成12年12月28日 (2000.12.28) テッド 大韓民国 キュンギドウ スーウォンシ (31) 優先権主張番号 2000-26495 チャンガング ジュンジャ 1 ドン 60 (32)優先日 平成12年5月17日(2000.5.17) (33)優先権主張国 韓国(KR) (72)発明者 ジョン ゼーヨン (31) 優先権主張番号 2000-57353 大韓民国 キョンギド ヨンインシ スジ (32)優先日 平成12年9月29日(2000.9.29) ウップ サンヒョンリ ソンウォンアパー (33)優先権主張国 韓国(KR) (74)代理人 100097515 弁理士 堀田 実 (外1名)

最終頁に続く

(54) 【発明の名称】 1, 4 -シクロヘキサンジメタノールが共重合されたポリエステル樹脂の製造方法

(57)【要約】

【課題】 最終反応物の金属含量を減少させて、従来の ポリエステル樹脂より透明性及び色相を向上させた、 _1, 4-シクロヘキサンジメタノールが共重合されたポ

リエステル樹脂を製造する方法を提供する。

【解決手段】 テレフタル酸に、エチレングリコールと 1, 4-シクロヘキサンジメタノールを含む全体グリコ ール成分がモル比で1.3~3.0となるように投入し てエステル化反応させる段階と、前記エステル化反応の 生成物に、触媒としてチタニウム系化合物を使用し、安 定剤として下記 [化1] 式のカルボキシホスホン酸系化 合物を使用して重縮合させる段階とからなる。

【化1】

ここで、R₁、R₂及びR₂は、水素又は炭素数1~10 のアルキル基、シクロアルキル基、又は炭素数6~10 のアリール基からなるグループから任意に選択され、ま た、Rは炭素数1~10のアルキレン基、シクロアルキ レン基又は炭素数6~10のアリーレン基からなるゲル ープから任意に選択される。

【特許請求の範囲】

- 【請求項1】 テレフタル酸に、エチレングリコールと 1,4-シクロヘキサンジメタノールを含むグリコール 成分を投入してエステル化反応させる段階と、

前記エステル化反応の生成物に、触媒としてチタニウム系化合物を使用し、かつ、安定剤として下記 [化1]で表示されるカルボキシホスホン酸系化合物を用いて、250~290℃の加熱条件下及び400~0.1mmHgの減圧条件下で重縮合させる段階とを含むことを特徴とする1,4-シクロヘキサンジメタノールが共重合された10ポリエステル樹脂の製造方法。

(化1)

ここで、 R_1 、 R_2 及び R_1 は、水素又は炭素数 $1\sim 10$ のアルキル基、シクロアルキル基、又は炭素数 $6\sim 10$ のアリール基からなるグループから任意に選択され、また、Rは炭素数 $1\sim 10$ のアルキレン基、シクロアルキ 20 レン基又は炭素数 $6\sim 10$ のアリーレン基からなるグループから任意に選択される。

【請求項2】 前記1, 4-シクロヘキサンジメタノールの量が全グリコール成分の $10\sim90$ モル%であることを特徴とする請求項1に記載の1, 4-シクロヘキサンジメタノールが共重合されたポリ $^{\prime}$ エステル樹脂の製造方法。

【請求項3】 前記カルボキシホスホン酸系化合物は、 トリエチルホスホノアセテートであることを特徴とする 請求項1に記載の1,4-シクロヘキサンジメタノール 30 が共重合されたポリエステル樹脂の製造方法。

【請求項4】 前記カルボキシホスホン酸系化合物は、含有するリンの重量が最終ポリマーの重量に対し10~150ppmとなることを特徴とする請求項1に記載の1,4-シクロヘキサンジメタノールが共重合されたポリエステル樹脂の製造方法。

【請求項5】 前記チタニウム系化合物は、テトラエチルチタネート、アセチルトリプロピルチタネート、テトラプロピルチタネート、ポリプチルチタネート、ペート・ラブチルチタネート、ポリプチルチタネート、2ーエチルへキシルチタネート、オ40クチレングリコールチタネート、ラクテートチタネート、トリエタノールアミンチタネート、アセチルアセトアセチックエステルチタネート、イソステアリルチタネート、チタニウムジオキサイドとシリコンジオキサイド、チタニウムジオキサイドとシリコンジオキサイド共重合体、チタニウムジオキサイドとジルコニウムジオキサイド共重合体がらなるグループから少なくとも1又は2以上を用いたものであることを特徴とする請求項1に記載の1、4ーシクロへキサンジメタノールが共重合されたポリエステル樹脂の製造方法。50

【請求項6】 前記チタニウム系化合物は、含有するチタニウムの重量が最終ポリマーの重量に対し5~100 ppmとなることを特徴とする請求項1に記載の1,4-シクロヘキサンジメタノールが共重合されたポリエステル樹脂の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は1,4-シクロヘキサンジメタノールが共重合されたポリエステル樹脂の製造方法に関するもので、より詳しくはテレフタル酸に、エチレングリコールと1,4-シクロヘキサンジメタノールを含む全体グリコール成分がモル比で1.3~3.0となるように投入してエステル化反応させる段階と、前記エステル化反応物に、触媒としてチタニウム系化合物を使用し、安定剤としてカルボキシホスホン酸系化合物を使用して重縮合させる段階とを含む1,4-シクロヘキサンジメタノールが共重合された透明性が高く、色相に優れたポリエステル樹脂の製造方法に関するものである。

[0002]

【従来の技術】今日、1,4-シクロヘキサンジメタノールが共重合されたポリエステル樹脂は、包装材、成形品、フィルムなど様々な用途に広く用いられている。従来、工業的生産を目的とするポリエステル樹脂の製造は、ジメチルテレフタレートを使用し、エステル交換反応時に1,4-シクロヘキサンジメタノールを投入して行われていた。しかしながら近年では、最終製品の品質の向上や経済性の改善が図るべく、テレフタル酸を原料としたポリエステル樹脂の製造が行われている。

[0003]:

【発明が解決しようとする課題】本発明者らは先行技術により製造されたポリエステル樹脂の改良を図り、より優れた特性、すなわち透明性が高く明るい色相を有するポリエステル樹脂を製造すべく精力的な研究開発を行った結果、1,4-シクロヘキサンジメタノールが共重合されたポリエステル樹脂の製造において、重縮合触媒としてチタニウム系化合物を使用し、安定剤としてカルボキシホスホン酸系化合物を使用することにより、透明性及び色相に優れた共重合ポリエステル樹脂を製造し得ることを発見し、これに基づき本発明を完成した。

【0004】これにより本発明の目的は、1,4ーシクロヘキサンジメタノールが共重合されたボリエステル樹脂の製造において、従来のボリエステル樹脂より、最終反応物の金属含有量を減少させ、透明性及び色相を向上させた、1,4ーシクロヘキサンジメタノールが共重合されたボリエステル樹脂を製造する方法を提供することにある。

[0005]

【課題を解決するための手段】上記目的を達成するため 50 の本発明の1,4-シクロヘキサンジメタノールが共重

1

- 合されたポリエステル樹脂の製造方法は、テレフタル酸に、エチレングリコールと1,4-シクロヘキサンジメタノールを含む全体グリコール成分がモル比で1.1~3.0となるように投入し、230~270℃の加熱条件下及び0.1~3.0kg/cm³の圧力条件下でエステル化反応させる段階と、前記エステル化反応の生成物に、触媒としてチタニウム系化合物を使用し、かつ、安定剤として下記[化1]式で表されるカルボキシホスホン酸系化合物を使用して250~290℃の加熱条件下及び400~0.1mmHgの減圧条件下で重縮合させる段階と10を含む。

[0006] [化2]

ここで、 R_1 、 R_2 及び R_3 は、水素又は炭素数 $1 \sim 10$ のアルキル基、シクロアルキル基、又は炭素数 $6 \sim 10$ のアリール基からなるグループから任意に選択され、ま 20 た、Rは炭素数 $1 \sim 10$ のアルキレン基、シクロアルキレン基又は炭素数 $6 \sim 10$ のアリーレン基からなるグループから任意に選択される。

[0007]

【発明の実施の形態】以下、本発明をより具体的に説明 する。

【0008】テレフタル酸を使用した1,4ーシクロへキサンメタノールが共重合されたポリエステルの製造にあたり、まず、テレフタル酸に、エチレングリコールと1,4ーシクロへキサンジメタノールを含む全体グリコ30ール成分がモル比で1.1~3.0となるように投入し、230~270℃の加熱条件下及び0.1~3.0kg/cm²の圧力条件下でエステル化反応を実施する。この際に、1,4ーシクロへキサンジメタノールにはシス型、トランス型、又は二つの異性体の混合物を使用する。投入される1,4ーシクロへキサンジメタノールは、最終ポリマー中の所望モル%に近似した量を用いる。本発明の場合には、高分子成形過程における結晶化に起因する問題を回避するため、1,4ーシクロへキサンジメタノールの量が全体グリコール成分のなかの1040~90モル%となるように投入する。

【0009】また、エステル化反応は、240~270 ℃の加熱条件下及び0.1~3.0kg/cm²の圧力条件下 で実施する。この際に、エステル化反応の温度は、好ま しくは245~260℃であり、より好ましくは245 ~255℃である。なお、エステル化反応には、通常1 00~300分程度の時間を要するが、これは、反応温 度、圧力、テレフタル酸とグリコールとのモル比などに よって異なってくる。本発明のように、ポリエステル樹 脂の製造方法をエステル化反応の第1段階及び重縮合反 50 応の第2段階に分けると、そのエステル化反応には触媒 が不要である。

【0010】また、第1段階であるエステル化反応はバッチ(Batch)式又は連続式で行うことができ、それぞれの原料は別々に投入することもできるが、グリコールにテレフタル酸をスラリー形態にして投入する方法が最も好ましい。

【0011】エステル化反応である第1段階が完了した 後、重縮合反応である第2段階が実施される。第2段階 の重縮合反応の開始に先立って、このエステル化反応物 に重縮合触媒、安定剤及び整色剤などを添加する。

【0012】一般に、重縮合触媒は、チタニウム、ゲル マニウム、アンチモン系化合物から適宜選択して使用さ れる。このうち、チタニウム系触媒は、アンチモン系触 媒に比べて少量の使用でも反応促進が可能であり、ま た、ゲルマニウム系触媒に比べ安価であるといった長所 を有している。ここで使用可能なチタニウム系触媒に は、例えば、テトラエチルチタネート、アセチルトリプ ロピルチタネート、テトラプロピルチタネート、テトラ プチルチタネート、ポリプチルチタネート、2 **- エチル** ヘキシルチタネート、オクチレングリコールチタネー ト、ラクテートチタネート、トリエタノールアミンチタ ネート、アセチルアセトネートチタネート、エチルアセ トアセチックエステルチタネート、イソステアリルチタ ネート、チタニウムジオキサイド、チタニウムジオキサ イドとシリコンジオキサイド共重合体、チタニウムジオ キサイドとジルコニウムジオキサイド共重合体などが挙 げられ、このチタニウム系触媒は単独又は2種以上を混 合して使用することもできる。

【0013】チタニウム系触媒は、含有するチタニウムの重さが最終ポリマーの重量に対し $5\sim100$ ppmとなる量を使用する。使用される触媒は最終ポリマーの色相に影響を与え、また、使用される安定剤及び整色剤も色相に影響する。

【0014】また、安定剤には、リン酸、トリメチルホ スファート、トリエチルホスファートが一般的に使用さ れるが、本発明では、下記[化3]式に示すカルボキシ ホスホン酸系化合物を使用することにより、反応性を高 め、かつ、明るい色相を得ることができる。カルポキシ ホスホン酸系化合物のうち代表的なものにはトリエチル ホスホノアセテートが挙げられる。その添加量は、含有 するリンの重量が最終ポリマーの重量に対し10~15 0 ppm、好ましくは 1 0 ~ 1 0 0 ppmとなる 量を使用す る。本発明の安定剤は、、既存の安定剤より触媒及び熱に 対する安定性に優れ、また、従来から使用されている安 定剤よりも揮発性が低いといった利点がある。さらに、 低腐食性及び低毒性であるといった利点も有する。な お、安定剤の添加量が10ppm未満であると、安定化効 果が足りなくて色相が黄色く変わる問題があり、150 ppmを超えると、所望の高重合度に到達し得ない問題が

. ある。 [0015] 【化3】

ここで、 R_i 、 R_i 及び R_i は、水素又は炭素数 $1\sim10$ のアルキル基、シクロアルキル基、又は炭素数6~10 のアリール基からなるグループから任意に選択され、ま 10 た、Rは炭素数1~10のアルキレン基、シクロアルキ レン基又は炭素数6~10のアリーレン基からなるグル ープから任意に選択される。

【0016】また、色相を向上させるために、コバルト アセテート及びコバルトプロピオネートなどの整色剤が 使用される。その添加量は最終ポリマーの重量に対し0 ~100ppmが適当である。また、前記整色剤のほかに も、有機化合物を整色剤として使用することも可能であ る。

【0017】前記重縮合段階である第2段階は、250 ~290℃加熱条件下及び400~0.1mmHgの減圧条 件下で行われる。反応温度は、一般的に250~290 ℃であるが、好ましくは265~280℃である。ま た、減圧は、副産物として生成されるグリコールを除去 するために行われる。重縮合段階は、所望の固有粘度に 到達するまでの時間行われ、1,4-シクロヘキサンジ メタノールが共重合されたポリエステル樹脂を得ること ができる。・・

【0018】以下、実施例に基づいて本発明をより具体 的に説明するが、本発明の範疇がこれら実施例に限定さ 30 れるものではない。また、下記の実施例及び比較例にお いて、特に言及しない限り、単位の"部"は"重量部" を意味し、提示する物性は次のような方法で測定した。 【0019】◎固有粘度(IV):150℃オルトークロ ロフェノールに 0. 12%の濃度に溶解した後、35℃

の恒温槽でウベロード (Ubbelohde) 型粘度計を使用し て測定。

◎色相(Color):Pacific Scientific社のColorgard S ystemを使用して測定。

【0020】 [実施例1] 撹拌器と流出コンデンサーを 備える3 L 反応器に、テレフタル酸996部、1,4-シクロヘキサンジメタノール294部、エチレングリコ ール618部を入れ、窒素で圧力を2. Okg/cm に上げ た後、反応器の温度を徐々に255℃まで上げながら反 応を行わせる。この際に、エステル化反応に伴い発生す る水を界外に排出する。水の発生がなくなりエステル化 反応が終了した後、これを撹拌器と冷却コンデンサー及 び真空システムの取り付けられた重縮合反応器に移す。 エステル化反応物にチタニウムジオキサイドとシリコン ジオキサイド共重合体を、含有するチタニウムの重量が 最終ポリマーの重量に対し4 Oppmとなるように、トリ エチルホスホノアセテートを、含有するリンの重量が最 終ポリマーの重量に対し60ppmとなるように、コバル トアセテートを、含有するコバルトの重量が最終ポリマ 一の重量に対し8 Oppmとなるように添加する。その 後、内部温度を240℃~275℃まで上げながら圧力 を1次に常圧から50mHgまで減圧し40分間低真空反 応をさせ、エチレングリコールを取り除く。そして再度 0.1mmHgまで徐々に減圧し、高真空下で所望の固有粘 度となるまで反応させた後これを吐き出させ、チップ状 に切断する。こうして製造された!、4-シクロヘキサン メタノール共重合ポリエステル樹脂の固有粘度と色相を 前記方法により測定した。下記表1にこの反応条件での 固有粘度及び色相を示す。

【0021】 [比較例1乃至3] 使用する安定剤の種類 を下記のように変え、その他は前記実施例1と同一条件 及び方法で実施し、その固有粘度及び色相を下記 [表 1] に示した。

Burn Bally

[0022]

【表1】

実施例	安定剤稲類	重縮合温度(℃)	固有粘度(dL/g)	Color-b (Yellowness)
実施例1	安定剂-1	· 275	0.785	1.4
比較例1	安定剤-2	276	. 0, 782	3. 3
比較例2	安定剤-3	275	0. 782	8. 1
比較例3	安定剂-4	276	0.775	9. 9

安定剤-1:トリエチルポスポノアセテート

安定剤-2:燐酸

安定剤ー3:トリエチルホスファート

安定剤-4:ジステアリルペンタエリトリトールジホスファイト

【0023】 [実施例2] 撹拌器と流出コンデンサーを 備える1000mL反応器に、テレフタル酸199.2 部、1,4~シクロヘキサンジメタノール58.8部、

圧力を1. Okg/cm¹に上げた後、反応器の温度を徐々に 255℃まで上げながら反応させる。この際に、エステ ル化反応に伴い発生する水を界外に排出する。水の発生 エチレングリコール123.5部を添加した後、窒素で 50 がなくなりエステル化反応が終了した後、これを撹拌器

~と冷却コンデンサー及び真空システムの取り付けられた 重縮合反応器に移す。 エステル化反応物にテトラプロピ ルチタネートを含有するチタニウムの重量が最終ポリマ ーの重量に対し50ppm、トリエチルホスホノアセテー トを、含有するリンの重量が最終ポリマーの重量に対し 7⁰ ppmとなるように、コバルトアセテートを、含有す るコバルトの重量が最終ポリマーの重量に対し8 Oppm となるように添加する。その後、内部温度を240℃か ら270℃まで上げながら圧力を1次に常圧から50mm Hgまで減圧し40分間低真空反応させ、エチレングリコ 10 ールを取り除く。そして再度0.1mmHgまで徐々に減圧

し、高真空下で所望の固有粘度となるまで反応させた後 これを吐き出し、チップ状に切断する。こうして製造さ れた1,4-シクロヘキサンジメタノール共重合ポリエ ステル樹脂の固有粘度と色相を測定した。下記[表2] にこの反応条件での固有粘度及び色相を示す。

【0024】 [比較例4乃至6] 使用する安定剤の種類 を下記のように変え、その他は前記実施例2と同一条件 及び方法で実施し、その固有粘度及び色相を下記 [表 2] に示した。

[0025]

【表2】

実施例	安定剤種類	重縮合温度(℃)	固有粘度(dL/g)	Color-b (Yellowness)
実施例2	安定剤-1	270	0. 805	2. 2
比較例4	安定剤-2	270	0.785	5, 6
比較例5	安定剤-3	270	0.789	8. 7
比較例6	安定剤-4	270	0.781	10, 7

【0026】 [実施例3] 撹拌器と流出コンデンサーを 備える1000mし反応器に、テレフタル酸199.2 部、1,4-シクロヘキサンジメタノール58.8部、 エチレングリコール123.5部を添加した後、窒素で 圧力を1. 0 kg/cm² に上げた後、反応器の温度を徐々に 255℃まで上げながら反応させる。この際に、エステ ル化反応に伴い発生する水を界外に排出する。水の発生 がなくなりエステル化反応が終了した後、これを撹拌器 と冷却コンデンサー及び真空システムの取り付けられた 重縮合反応器に移す。エステル化反応物にテトラブチル チタネートを、含有するチタニウムの重量が最終ポリマ ーの重量に対し5 Oppmとなるようで、トリエチルホス ホノアセテートを、含有するリンの重量が最終ポリマー 30 た。 の重量に対し70ppmとなるように、コバルトアセテー トを、含有するコパルトの重量が最終ポリマーの重量に

対し70pmとなるように添加した後、内部温度を24 0℃から275℃まで上げながら圧力を1次に常圧から 50mmHgまで減圧し40分間低真空反応させ、エチレン グリコールを取り除く。そして再度 0. 1mmHgまで徐々 に減圧し、高真空下で所望の固有粘度となるまで反応さ せた後これを吐き出し、チップ状に切断する。こうして 製造された1,4-シクロヘキサンジメタノール共重合 ポリエステル樹脂の固有粘度と色相を測定た。下記[表 2] にこの反応条件での固有粘度及び色相を示す。

【0027】 [比較例7乃至8] 安定剤の種類を下記の ように変え、その他は前記実施例3と同一条件及び方法 で実施し、その固有粘度及び色相を下記[表3]に示し

[0028]

【表3】

	実施例	安定剤種類	重新合温度(°C)	固有粘度(dL/g)	Color-b (Yellowness)
1	実施例3	安定剂-1	275	0. 787	3. 7
-	比較例7	安定剤-2	275	0.780	5.9
1	比較例8	安定剤-3	275	0. 772	9. 2

【0029】 [実施例4] 撹拌器と流出コンデンサーを 備える1000mL反応器に、テレフタル酸199.2 部、1,4-シクロヘキサンジメタノール58.8部、 エチレングリコール123.5部を添加した後、窒素で 圧力を1. 0kg/cm²に上げた後、反応器の温度を徐々に 255℃まで上げながら反応させる。この際に、エステ ル化反応に伴い発生する水を界外に排出する。水の発生 がなくなりエステル化反応が終了した後、これを撹拌器 と冷却コンデンサー及び真空システムの取り付けられた **重縮合反応器に移す。エステル化反応物に、チタニウム** ジオキサイドとシリコンジオキサイド共重合体を、含有 するチタニウムの重量が最終ポリマーの重量に対し50 ppmとなるように、トリエチルホスホノアセテートを、

含有するリンの重量が最終ポリマーの重量に対し 5 Opp mとなるように、コバルトアセテートを含有するコバル トの重量が最終ポリマーの重量に対し6 Oppmとなるよ うに添加する。その後、内部温度を240℃から270 ℃まで上げながら圧力を1次に常圧から50mmHgまで減 圧し40分間低真空反応をさせ、エチレングリコールを 取り除く。そして再度 0'. 1mmHgまで徐々に減圧し、高 真空下で所望の固有粘度となるまで反応させた後これを 吐き出し、チップ状に切断する。こうして製造された 1, 4-シクロヘキサンジメタノール共重合ポリエステ ル樹脂の固有粘度と色相を測定した。下記[表4]にこ の反応条件での固有粘度及び色相を示す。

50 【0030】 [比較例9] 安定剤としてリン酸を使用し たことを除き、前記実施例4と同一条件及び方法で実施 し、その固有粘度及び色相を下記[表4]に示した。

[0031]

【表4】

实施例	安定剂種類	重縮合温度 (℃)	固有粘度 (dt/g)	Color-b (Yellowness)
実施例4	トリエチルホスネノフをデート	270	0. 782	4. 5
比較例 9	燐酸	270	0, 780	5.8

[0032]

【発明の効果】前記実施例及び比較例から分かるよう に、本発明は、1、4-シクロヘキサンジメタノールが タニウム系化合物を重縮合触媒とし、カルボキシホスホ ン酸系化合物を安定剤として使用することにより、従来 の方法により製造されたポリエステルより固有粘度、色 相などの面で優秀な結果が得られる。

【0033】また、同一量の安定剤を使用する場合にも 従来の安定剤より色相を向上させることができ、少量を 共重合されたポリエステルを製造することにおいて、チ 10 使用しても同じであるか又はより明るい色相を表し得る ので、最終反応物の金属含量を減少させて透明性を向上 させることにより、透明性及び色相が向上された共重合 ポリエステル樹脂を製造することができる。

フロントページの続き

(72)発明者 ホン ユンーヒ

大韓民国 キョンギド スウォンシ ジャ ンアンク ゾウォンドン ハンイルタウン 155-1801

Fターム(参考) 4J002 CF051 CF061 EW126 FD036 4J029 AA03 AB04 AC02 AD10 BA03 BD07A CB06A JB131 JB171 JC573 JC751 JF321 KE03 KE05