22.11.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 3月24日

出 願 番 号 Application Number:

特願2004-087812

[ST. 10/C]:

[JP2004-087812]

出 願 人 Applicant(s):

住友電気工業株式会社

特許庁長官 Commissioner, Japan Patent Office 2005年 1月 7日

1) 11]

BEST AVAILABLE COPY

【書類名】 特許願 【整理番号】 104I0128 【提出日】 平成16年 3月24日 【あて先】 特許庁長官殿 【国際特許分類】 C30B 29/04 【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹 製作所内 【氏名】 難波 暁彦 【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹 製作所内 【氏名】 西林 良樹 【発明者】 【住所又は居所】 兵庫県伊丹市昆陽北一丁目1番1号 住友電気工業株式会社伊丹 製作所内 【氏名】 今井 貴浩 【特許出願人】 【識別番号】 000002130 【氏名又は名称】 住友電気工業株式会社 【代理人】 【識別番号】 100088155 【弁理士】 【氏名又は名称】 長谷川 芳樹 【選任した代理人】 【識別番号】 100089978 【弁理士】 【氏名又は名称】 塩田 辰也 【選任した代理人】 【識別番号】 100092657 【弁理士】 【氏名又は名称】 寺崎 史朗 【選任した代理人】 【識別番号】 100110582 【弁理士】 【氏名又は名称】 柴田 昌聰 【選任した代理人】 【識別番号】 100108213 / 空上 【氏名又は名称】 阿部 豊隆 【先の出願に基づく優先権主張】 【出願番号】 特願2003-394183 【出願日】 平成15年11月25日 【手数料の表示】 【予納台帳番号】 014708 【納付金額】 21,000円

特許請求の範囲 1

明細書 1

図面 1

【提出物件の目録】 【物件名】

【物件名】

【物件名】

【物件名】 要約書 1 【包括委任状番号】 0308433

【書類名】特許請求の範囲

【請求項1】

n型の導電型をもつダイヤモンド半導体を備え、

前記ダイヤモンド半導体は、特定温度領域において伝導体の電子濃度の温度依存性が負の相関を示すことを特徴とするダイヤモンドn型半導体。

【請求項2】

前記ダイヤモンド半導体は、前記特定温度領域において前記伝導体のホール係数の温度 依存性が正の相関を示すことを特徴とする請求項1に記載のダイヤモンドn型半導体。

【請求項3】

前記特定温度領域は、0℃から300℃までの温度領域内に100℃以上の温度範囲に 渡って存在することを特徴とする請求項1又は2に記載のダイヤモンドn型半導体。

【請求項4】

前記ダイヤモンド半導体は、前記特定温度領域内の少なくとも何れかの温度において 0 0 Ω c m以下の抵抗率を有することを特徴とする請求項 $1\sim3$ の何れか一項に記載のダイヤモンド n 型半導体。

【請求項5】

前記ダイヤモンド半導体は、前記特定温度領域において前記電子濃度が常に 10^{16} c m $^{-3}$ 以上であることを特徴とする請求項 $1\sim 4$ の何れか一項に記載のダイヤモンド n 型半導体。

【請求項6】

前記ダイヤモンド半導体は、ドナー元素を $2\times10^{19}~{
m cm}^{-3}$ 以上含有していることを特徴とする請求項 $1\sim5$ の何れか一項に記載のダイヤモンドn型半導体。

【請求項7】

前記ダイヤモンド半導体は、ドナー元素と共に、当該ドナー元素以外の不純物元素を含有することを特徴とする請求項 $1\sim6$ の何れか一項に記載のダイヤモンドn型半導体。

【請求項8】

前記ダイヤモンド半導体は、前記不純物元素として $Sie1 \times 10^{17} cm^{-3}$ 以上含有していることを特徴とする請求項7に記載のダイヤモンドn型半導体。

【請求項9】

前記ダイヤモンド半導体は、単結晶ダイヤモンドであることを特徴とする請求項1~8の何れか一項に記載のダイヤモンドn型半導体。

【請求項10】

前記ダイヤモンド半導体に隣接して設けられた、n型判定される第2のダイヤモンド半導体を更に備え、

前記第2のダイヤモンド半導体は、伝導体の電子濃度の温度依存性が負の相関を示さず、かつ前記伝導体のホール係数の温度依存性が正の相関を示さないことを特徴とする請求項1~9の何れか一項に記載のダイヤモンドn型半導体。

【請求項11】

請求項1~10の何れか一項に記載のダイヤモンドn型半導体が少なくとも一部に用いられていることを特徴とする半導体素子。

【請求項12】

請求項1~10の何れか一項に記載のダイヤモンドn型半導体が少なくとも電子放出部に用いられていることを特徴とする電子放出素子。

【請求項13】

前記電子放出部は、4回回転対称性を有することを特徴とする請求項12に記載の電子 放出素子。

【請求項14】

請求項1~10の何れか一項に記載のダイヤモンドn型半導体を製造する方法であって

ダイヤモンド基板にドナー元素以外の不純物元素を人為的に導入しながら、当該ダイヤ

出証特2004-3120405

モンド基板上に前記ダイヤモンド半導体をエピタキシャル成長させる工程を備えることを 特徴とするダイヤモンドn型半導体の製造方法。

【請求項15】

前記ダイヤモンド基板に、前記不純物元素としてSiを人為的に導入することを特徴とする請求項14に記載のダイヤモンドn型半導体の製造方法。

【発明の名称】ダイヤモンドn型半導体及びその製造方法、並びに半導体素子及び電子放出素子

【技術分野】

[0001]

本発明は、ダイヤモンドn型半導体及びその製造方法、並びにそのダイヤモンドn型半導体を用いた半導体素子及び電子放出素子に関する。

【背景技術】

[0002]

SCR、GTO、SIT、IGBT及びMISFET等の半導体材料を用いたパワーデバイスは、n型やp型の半導体を利用して作製されている。かかるパワーデバイスにおいては、それぞれのキャリアの濃度を制御する以外に、非常に高濃度のキャリア濃度を形成し、抵抗を下げることが重要である。それは、電流を供給する電極金属との接触抵抗が小さいことが好ましいからである。そのために、従来から、高濃度のドーピングによって、n+ 層やp+ 層を形成し、その層を介して金属層との接触抵抗が低いオーミック特性を実現してきた。n+ 層やp+ 層はエピタキシャル成長によって形成しても良い。また、イオン注を形成しアニールによって元素を拡散することによって形成しても良い。また、イオン注を形成しアニールによって元素を拡散することによって形成しても良い。また、イオン注をがないアニールによって元素を拡散することによって形成しても良い。また、イオン注をがいて、では、n というできる。しかしながら、低抵抗 n 型層や n 型層を実現できないりイドギャップ材料も多く存在する。その場合、低接触抵抗を実現できないという問題点がある。

[0003]

低抵抗のn型層は半導体の特性を左右するというだけでなく、ディスプレイや電子銃、 蛍光管及び真空管等に用いられる電子放出素子においても大きく影響する。特にワイドギャップ材料では、電子親和力が小さくなる傾向があり、n型層を形成すれば仕事関数の小さい材料とすることができ、電子放出材料として有望である。しかしながら、キャリア濃度が小さいと、バイアスをかけても、充分に電子を蓄積できず、バイアスの印加効果を有効に利用できないため、電子放出を容易にすることはできないという問題点がある。

[0004]

以上のように半導体応用にしても、電子放出応用にしても、キャリア濃度(特に電子濃度)の大きな半導体は重要である。

[0005]

ダイヤモンドについては、p型半導体は非常に高濃度ドーピングが容易であるが、n型半導体は高濃度ドーピングが困難であった。低濃度のn型半導体であればP(リン)ドープやS(硫黄)ドープによって実現可能であるが、そのドーピング濃度を高くするのは非常に困難であった。すなわち、高濃度にドーピングしようとすると、ダイヤモンドの結晶性が大きく崩れてしまい、却って抵抗が高くなってしまっていた。また、結晶性をなんとか保ったとしても、欠陥が生じて、移動度が小さくなり、抵抗が高くなるということが生じていた。

100007

このような場合には、そのダイヤモンド半導体がn型であるかさえも定かではない程であった。しかし、ダイヤモンドは結晶性が崩れた場合、あるいは欠陥が生じた場合、炭素にパイ結合が生じることがあり、低抵抗になっても金属的な伝導となるために、n型であるかどうかを判定し、n型であることを確認することが重要である。結晶の伝導が金属的な伝導であるなら、仕事関数が大きいことを意味するので、あまり重要ではないが、n型であるなら、伝導帯に充分近いところでキャリアが伝導することを意味しており、ダイヤモンドが半導体素子としても、電子放出素子としても重要となるからである。

[0007]

なお、従来のダイヤモンド半導体としては、特許文献 $1 \sim 3$ 及び非特許文献 $1 \sim 3$ に記載されているものがある。特許文献 1 、 2 には、それぞれ P ドープ膜及び S ドープ膜をダイヤモンド基板に気相合成したダイヤモンド半導体が記載されている。特許文献 3 及び非

2/

特許文献1には、それぞれn型ドーパントのN(窒素)及びp型ドーパントのB(ボロン)を大量にドーピングされたダイヤモンド半導体が記載されている。また、非特許文献2,3には、Pドープ膜をダイヤモンド(111)基板に、及びSドープ膜をダイヤモンド(100)基板に気相合成することがそれぞれ記載されている。

【特許文献1】特許1704860号公報

【特許文献2】特許2081494号公報

【特許文献3】特許3374866号公報

【非特許文献 1】Shiomi et al. JJAP, Vol.30 (1991) p.1363

【非特許文献 2】 寺地他、New Diamond Vol.17 No.1 (2001) p.6

【非特許文献 3】 蒲生他、New Diamond Vol.15 No.4 (1999) p.20

【発明の開示】

【発明が解決しようとする課題】

[0008]

従来のダイヤモンド n 型半導体では、室温でのキャリア濃度が低いばかりでなく、室温から高温までの温度領域におけるキャリア濃度の変化量が非常に大きく、それゆえ抵抗値の変化量も非常に大きいという問題がある。例えば、Pがドーピングされたダイヤモンドでは、通常、キャリア濃度が室温で $10^{1/3}$ c m $^{-/3}$ $\sim 10^{1/4}$ c m $^{-/3}$ 程度である一方、500 \sim の高温では $10^{1/7}$ c m $^{-/3}$ $\sim 10^{1/8}$ c m $^{-/3}$ 程度である。このように温度によるキャリア濃度の変化が大きいという特性は、ダイヤモンド n 型半導体を半導体素子や電子放出素子への応用した場合に、それらの素子が広い温度範囲で好適に動作することを妨げることになる。言い換えれば、そのような特性を有するダイヤモンド n 型半導体は、種々の素子への応用可能性が著しく制限されてしまう。

[0009]

そこで、本発明は、かかる事情に鑑みてなされたものであり、広い温度範囲においてキャリア濃度の変化量が充分に低減されたダイヤモンドn型半導体及びその製造方法、並びにそのダイヤモンドn型半導体を用いた半導体素子及び電子放出素子を提供することを目的とする。

【課題を解決するための手段】

[0010]

上記課題を解決するために、本発明によるダイヤモンドn型半導体は、n型の導電型をもつダイヤモンド半導体を備え、ダイヤモンド半導体は、特定温度領域において伝導体の電子濃度の温度依存性が負の相関を示すことを特徴とする。

[0011]

このダイヤモンド n 型半導体においては、伝導体の電子濃度すなわちキャリア濃度の温度依存性が負の相関を示す温度領域(特定温度領域)が存在する。ここで、キャリア濃度の温度依存性が負の相関を示すとは、温度が高くなるにつれて、キャリア濃度が低くなるということである。このため、キャリア濃度が温度に対して常に正の相関を示す従来のダイヤモンド n 型半導体に比して、広い温度範囲におけるキャリア濃度の変化量が小さい。したがって、本発明によるディーロンド II 坐十号呼は、種々の半導体素子及び電子放出素子への広範な応用が可能である。ここで、キャリア濃度の変化量とは、考えている温度範囲におけるキャリア濃度の最大値と最小値との差のことである。具体的には、このダイヤモンド n 型半導体について、0℃から50℃までの温度範囲におけるキャリア濃度の変化量は、3 桁未満であるのが好ましい。

[0012]

また、ダイヤモンド半導体は、特定温度領域において伝導体のホール係数の温度依存性が正の相関を示すことが好適である。ダイヤモンド n 型半導体では、伝導体のホール係数が電子濃度すなわちキャリア濃度の逆数に比例する。すなわち、電子のキャリア濃度の温度依存性が負の相関を示す場合には、伝導体のホール係数は正の相関を示す。このような場合、伝導体のホール係数が温度に対して常に負の相関を示す従来のダイヤモンド n 型半導体に比して、広い温度範囲におけるホール係数の変化量が小さい。ここで、ホール係数

の変化量とは、考えている温度範囲におけるホール係数の最大値と最小値との差のことである。具体的には、0℃から500℃までの温度範囲におけるホール係数の変化量は、3桁未満であり、1桁未満であるのが好ましい。

[0013]

さらに、上記ダイヤモンド半導体を用いて、このダイヤモンド半導体よりもドナー元素 濃度が低い n型層と積層構造を形成した場合、ダイヤモンド半導体から n型層へのキャリ アの高い染み出し効果が得られる。

[0014]

特定温度領域は、0 ℃から3 0 0 ℃までの温度領域内に1 0 0 ℃以上の温度範囲に渡って存在することが好適である。このように1 0 0 ℃以上という温度範囲に渡ってキャリア 濃度の温度依存性が負の相関を示すとともに、伝導体のホール係数の温度依存性が正の相関を示すことにより、広い温度範囲におけるキャリア濃度の変化量が充分に小さくなる。しかも、かかる相関が0 ℃から3 0 0 ℃という温度範囲で現れるのは、ダイヤモンドn 型 半導体の応用上、非常に有用なことである。なぜなら、一般的に、この温度範囲は半導体素子や電子放出素子の使用温度に含まれるからである。

[0015]

ダイヤモンド半導体は、特定温度領域内の少なくとも何れかの温度において500Ωcm以下の抵抗率を有することが好適である。キャリア濃度の温度依存性が負の相関を示すとともに、ホール係数の温度依存性が正の相関を示す温度領域において500Ωcmという充分に低い抵抗率を示すことにより、半導体素子や電子放出素子に応用した場合、素子に電流を供給する電極金属との接触抵抗が小さくなる。

[0016]

ダイヤモンド半導体は、特定温度領域において電子濃度が常に 10^{16} cm⁻³ 以上であることが好適である。キャリア濃度の温度依存性が負の相関を示すとともにホール係数の温度依存性が正の相関を示す温度領域において電子濃度が常に 10^{16} cm⁻³ 以上、すなわちこの温度領域におけるキャリア濃度の最小値が 10^{16} cm⁻³ 以上、あるいはホール係数の最大値が 6.25×10^2 C⁻¹ cm³ であることにより、電子放出素子に応用した場合、バイアス印加効果が顕著となり、それゆえ良好な電子放出特性を得ることができる。

[0017]

ダイヤモンド半導体は、ドナー元素を 2×10^{19} c m $^{-3}$ 以上含有していることが好適である。ドナー元素を 2×10^{19} c m $^{-3}$ 以上と高濃度にドーピングすることにより、充分に高いキャリア濃度をもつダイヤモンドn型半導体を好適に製造することができる。ドナー元素としては、例えばPやSをHいることができる。

[0018]

ダイヤモンド半導体は、ドナー元素と共に、ドナー元素以外の不純物元素を含有することが好適である。このようにドナー元素以外の不純物元素を導入しながらドナー元素をドーピングすることにより、ダイヤモンドの結晶性の劣化を抑えつつ、ドナー元素を非常に高濃度にドーヒングできるという効果が奏される。

[0019]

[0020]

ダイヤモンド半導体は、単結晶ダイヤモンドであることが好適である。この場合、多結晶ダイヤモンドである場合に比して、n型半導体として特に優れた特性をもつダイヤモンドn型半導体が得られる。

[0021]

ダイヤモンド半導体に隣接して設けられた、n型判定される第2のダイヤモンド半導体 出証特2004-3120405

を更に備え、第2のダイヤモンド半導体は、伝導体の電子濃度の温度依存性が負の相関を示さず、かつ伝導体のホール係数の温度依存性が正の相関を示さないことが好適である。この場合、ダイヤモンド半導体から隣接する第2のダイヤモンド半導体にキャリアが染み出し(拡散し)、これらを備えるダイヤモンド n型半導体全体としてのキャリア濃度が増加する。本発明では、上述の通り、ダイヤモンド半導体のキャリア濃度の温度依存性が負の相関を有するとともに、伝導体のホール係数の温度依存性が正の相関を有するため、キャリアの染み出し効果が特に高くなっている。なお、ここで「ダイヤモンド半導体」と「第2のダイヤモンド半導体」とは区別して用いられている。また、第2のダイヤモンド半導体としては、例えば従来技術に係るダイヤモンド半導体が該当する。

[0022]

また、本発明による半導体素子は、本発明によるダイヤモンド n 型半導体が少なくとも一部に用いられていることを特徴とする。これにより、広い温度範囲で良好に動作することが可能な半導体素子が得られる。例えば、ダイヤモンド n 型半導体は、半導体素子における電極金属との接触部分に用いられる。この場合、良好なオーミック接触が実現される

[0023]

また、本発明による電子放出素子は、本発明によるダイヤモンドn型半導体が少なくとも電子放出部に用いられていることを特徴とする。これにより、広い温度範囲で良好に動作する電子放出素子が得られる。また、高い電子放出特性を有する電子放出素子を実現することが可能である。

[0024]

上記電子放出部は、4回回転対称性を有していることが好適である。ここで、電子放出 部は、電子放出素子を鉛直方向から見た中心軸の周りでの90度回転に関して対称性を有 するように配置されている。この対称性を「4回回転対称性」という。これにより、複数 の電子放出素子を規則正しく形成できる。

[0025]

また、本発明によるダイヤモンドn型半導体の製造方法は、ダイヤモンド基板にドナー元素以外の不純物元素を人為的に導入しながら、当該ダイヤモンド基板上にダイヤモンド半導体をエピタキシャル成長させる工程を備えることを特徴とする。これにより、ダイヤモンドの結晶性が大きく劣化するのを防ぎつつ、ドナー元素が多量にドープされたダイヤモンドn型半導体を得ることができる。ここで、不純物元素を人為的に導入するとは、ドナー元素以外の不純物が自然に或いは偶然に混入するような場合を除く趣旨である。この製造方法においては、結晶に歪みや欠陥を人為的に導入しながら、ダイヤモンド半導体を形成することによっても、ダイヤモンドの結晶性が大きく劣化するのを防ぎつつ、ドナー元素が多量にドープされたダイヤモンドn型半導体を得ることができる。

[0026]

本発明によるダイヤモンドn型半導体の製造方法においてダイヤモンド基板に導入する 不純物元素として、Siが好適である。Siを用いた場合、ダイヤモンドの結晶性が大き く劣化するのを防ぎつつ、rナー兀索か多重にドープされたダイヤモンドn型半導体を得 るという上記効果が一層顕著に奏される。

[0027]

このように人為的にドナー元素以外の不純物元素を導入するという手法、及び人為的に結晶歪みや結晶欠陥を与えるという手法は、純度を上げることによりダイヤモンドの結晶性を良くするという従来技術が目指していた方向性と相反するものであり、本発明者が鋭意研究の結果として得た知見である。従来技術では、PやSをドナー元素として高濃度にドーピングすると、これらの元素はダイヤモンドの構成原子である炭素に比べて大きいために、結晶格子が歪み、結晶性が悪くなる。ダイヤモンドの結晶性が崩れたり、結晶に欠陥が導入されたりすると、電気抵抗が高くなったりしてしまう。導入される欠陥がグラファイト的にパイ結合を含むような場合には、電気抵抗が低くなることもあるが、導電性が金属的なので、測定・評価では n型判定されない。

n型判定されるとともに電気が流れる状態を作るためには、PやSを多量にドーピングしても、ダイヤモンドの結晶性を崩すことなく、ドナー準位近くに導電性の準位を形成すればよい。この場合、結晶に点欠陥等が導入され、ギャップ内準位で、ホッピングやその他の欠陥バンドのような機構で電気伝導が可能となる。そして、本発明者は、上述のように、ドナー元素以外の不純物を導入しながら或いは結晶歪みや結晶欠陥を与えながら、ドナー元素のドーピングを行えば、このような伝導機構を実現できるという知見を得たのである。

【発明の効果】

[0029]

本発明によれば、広い温度範囲においてキャリア濃度の変化量が充分に低減されたダイヤモンドn型半導体及びその製造方法、並びにそのダイヤモンドn型半導体を用いた半導体素子及び電子放出素子が実現される。

【発明を実施するための最良の形態】

[0030]

以下、添付図面を参照して、本発明に係るダイヤモンドn型半導体及びその製造方法、並びに半導体半導体素子及び電子放出素子の好適な実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。

[0 0 3 1]

図1 (a) は、本発明によるダイヤモンド n 型半導体の一実施形態を示す断面図である。ダイヤモンド n 型半導体 1 は、ダイヤモンド基板 1 0 及びダイヤモンド半導体層 1 2 を備えている。ダイヤモンド基板 1 0 としては、単結晶ダイヤモンドが用いられる。ダイヤモンド基板 1 0 としては、単結晶ダイヤモンドが用いられる。ダイヤモンド基板 1 0 の主面 S 1 上には、ダイヤモンド半導体層 1 2 が形成されている。ダイヤモンド半導体層 1 2 の形成は、制御性が良いため、マイクロ波のプラズマ C V D 法で行うことが好適である。ただし、その他の手法を用いてもよい。このとき、ドナー元素としては、例えば P (リン) 又は S (ボロン) 等が用いられる。また、主面 S 1 の面方位は、Pをドナー元素とする場合には(1 1 1)、S の場合には(1 0 0)であることが好ましい。なお、(1 0 0)基板上に適宜の加工技術によって微細に(1 1 1)面を形成することによって、面方位が(1 1 1)の主面 S 1 を得てもよい。

[0032]

また、ダイヤモンド半導体層 1 2 は、適宜の半導体評価装置或いは測定装置によって n型判定されるとともに、その n型判定される温度領域の一部においてキャリア濃度(電子濃度)の温度依存性が負の相関を示すとともに伝導体のホール係数の温度依存性が正の相関を示す。このような相関が現れる温度領域を特定温度領域と呼ぶことにすると、この特定温度領域は、0℃から300℃までの温度領域内に存在し、且つ100℃以上の温度範囲に渡って存在することが好適である。この場合の例としては、少なくとも室温から200℃までの温度領域で上述の相関が現れる場合である。一方、特定温度領域よりも高温では、従来技術に係るダイヤモンド n型半導体と同様に、上述の相関関係が、キャリア濃度においては正、ホール係数においては負であることが好ましい。例えば、室温から300℃までは温度の増加につれてキャリア濃度が減少し、それよりも高温になると温度の増加につれてキャリア濃度が適かし、それよりも高温になると温度の増加につれてキャリア濃度が適かる。

[0033]

ダイヤモンド半導体層 12 を形成する際には、ドナー元素を多量にドーピングすることが好適である。例えば、ダイヤモンド半導体層 12 には P元素或いは S元素が 2×10^1 c m m 3 以上含有されていることが好ましい。ダイヤモンドの結晶性の劣化を抑えつつドナー元素を多量にドーピングするためには、上述のマイクロ波プラズマ C V D 法におけるメタン濃度が非常に低いことが好ましい。すなわち、このメタン濃度は、好ましくは 0

[0034]

さらに、ダイヤモンドの結晶性の劣化を抑えつつドナー元素を多量にドーピングするためには、ダイヤモンド半導体層 12を形成する際に、ドナー元素と共にドナー元素以外の不純物を導入することが好ましい。このような不純物は、上記ドナー元素よりも低い濃度で導入する。不純物としては、Siが好適であり、濃度は 1×10¹⁷ cm³ 以上が好適である。あるいは、Alを不純物としてもよい。また、これらの不純物を導入する代わりに或いはこれらの不純物の導入と共に、ダイヤモンド結晶に歪みや点欠陥を人為的に与えながら、ドナー元素をドーピングすることも好適である。

[0035]

ダイヤモンド半導体層 12のキャリア濃度は、上記特定温度領域において常に、好ましくは 10^{16} c m $^{-3}$ 以上、より好ましくは 5×10^{16} c m $^{-3}$ 以上である。また、ダイヤモンド半導体層 12 の抵抗率は、上記特定温度領域内の少なくとも何れかの温度において 500Ω c m以下であることが好適である。

[0036]

次に、ダイヤモンドn型半導体1の効果を説明する。

[0037]

ダイヤモンドn型半導体1においては、キャリア濃度の温度依存性が負の相関を示すとともに、伝導体のホール係数の温度依存性が正の相関を示す温度領域が存在する。このため、キャリア濃度が温度に対して常に正の相関を示すとともに、ホール係数が温度依存性に対して常に負の相関を示す従来のダイヤモンドn型半導体に比して、広い温度範囲におけるキャリア濃度の変化量が小さい。具体的には、0℃から500℃までの温度範囲におけるキャリア濃度の変化量は、3桁未満であり、1桁未満であるのが好ましい。これは、異なる移動度を持つ複数のキャリアを考える場合でも、同様な現象を理解できる。すなわち、一方のキャリアが減少する現象と、他方のキャリアが増加する現象との重ね合わせになるからである。したがって、ダイヤモンドn型半導体1は、種々の半導体素子及び電子放出素子への広範な応用が可能である。

[0038]

さらに、このダイヤモンド半導体層 1 2 を用いて、ダイヤモンド半導体層 1 2 よりもドナー元素濃度が低い n 型層と積層構造を形成した場合、ダイヤモンド半導体層 1 2 から n 型層へのキャリアの高い染み出し効果が得られる。

[0039]

特定温度領域が0℃から300℃までの温度領域内に100℃以上の温度範囲に渡って存在する場合、広い温度範囲におけるキャリア濃度の変化量が充分に小さくなる。また、キャリア濃度の温度依存性の負の相関及びホール係数の温度依存性の正の相関が、0℃から300℃という温度範囲で現れるのは、ダイヤモンドn型半導体1の応用上、非常に有用である。なぜなら、一般的に、この温度範囲は半導体素子や電子放出素子の使用温度に含まれるからである。

[0040]

特定温度領域内の少なくとも何れかの温度において500Ωcm以下の抵抗率を有する場合、ダイヤモンドn型半導体1を半導体素子や電子放出素子に応用した場合に、素子に電流を供給する電極金属との接触抵抗が小さくなる。

[0041]

特定温度領域においてキャリア濃度が常に 10^{16} c m $^{-3}$ 以上である場合、ダイヤモンド n 型半導体 1 を電子放出素子に応用した場合、バイアス印加効果が顕著となり、それゆえ良好な電子放出特性を得ることができる。

[0042]

ダイヤモンド半導体層 1 2 が P 元素を 2 × 1 0 ^{1 9} c m ^{- 3} 以上含有している場合、充 出証特 2 0 0 4 - 3 1 2 0 4 0 5

[0043]

[0044]

図1 (b) は、本発明によるダイヤモンドn型半導体の他の実施形態を示す断面図である。ダイヤモンドn型半導体2は、ダイヤモンド基板10、ダイヤモンド半導体層12、及び第2のダイヤモンド半導体層14a、14bを備えている。ダイヤモンド基板10の主面S1上に、第2のダイヤモンド半導体層14a、ダイヤモンド半導体層12及び第2のダイヤモンド半導体層14bが順に形成されている。これらは、それぞれマイクロ波プラズマCVD法を用いてエピタキシャル成長させることにより形成することができる。ダイヤモンド基板10及びダイヤモンド半導体層12については、図1(a)で説明した通りである。一方、第2のダイヤモンド半導体層14a、14bは、n型判定される点はダイヤモンド半導体層12と同様であるが、キャリア濃度(電子濃度)の温度依存性が負の相関を持たない。つまり、伝導体のホール係数の温度依存性が正の相関をもつことはない。すなわち、第2のダイヤモンド半導体層14a、14bのキャリア濃度(電子濃度)は常に、温度に対して正の相関を持つか、或いは温度に依らず一定値であるかの何れかである。ここで、第2のダイヤモンド半導体層14a、14bの名称は、ダイヤモンド半導体層12と区別するために便宜的に付したものである。

[0045]

ダイヤモンドn型半導体2においては、ダイヤモンド半導体層12から隣接する第2のダイヤモンド半導体層14a,14bにキャリアが染み出す。したがって、ダイヤモンドn型半導体2全体としてのキャリア濃度が増加する。ここで、ダイヤモンド半導体層12のキャリア濃度の温度依存性が上述の通り負の相関を有するため、キャリアの染み出し効果が特に高くなっている。

[0046]

なお、本実施形態においては、第2のダイヤモンド半導体層14a,14bのうち何れか一方のみが設けられていてもよい。すなわち、図1(b)では、ダイヤモンド半導体層12の両面が第2のダイヤモンド半導体層14a,14bによって覆われているが、ダイヤモンド半導体層12の一方の面のみが第2のダイヤモンド半導体層14a又は第2のダイヤモンド半導体層14bによって覆われる構成としてもよい。或いは、図1(b)では、ダイヤモンド半導体層12の面の略全体を覆うように第2のダイヤモンド半導体層14a,14bが設けられているが、ダイヤモンド半導体層12の面の一部のみを覆うように第2のダイヤモンド半導体層14bを設ける構成としてもよい。これらの場合でも、ダイヤモンド半導体層12の少なくとも一部に第2のダイヤモンド半導体層14a,14bが隣接して設けられるので、上述のようなキャリアの染み出しにより、ダイヤモンドn型半導体2全体としてキャリア濃度が増加するという効果が得られる。また、図1(b)では、ダイヤモンド半導体層2が増加するという効果が得られる。また、図1(b)では、ダイヤモンド半導体12が一層のみ設けられているが、これが複数層設けられて、複数の第2のダイヤモンド半導体層と交互に積層されていてもよいことは言うまでもない。

[0047]

図2(a)~図2(c)を用いて、ダイヤモンドn型半導体2においてキャリアの染み出し効果が特に高い点についてより詳しく説明する。図2(c)が上記実施形態におけるダイヤモンドn型半導体に関し、図2(a)及び図2(b)はその比較例として示すものである。図2(a)は、ボロンドープ層(B-dope層)とアンドープ層(undope層)とを積層したときのエネルギーバンド図である。一般に、このようなドープ層とアンドープ層

[0048]

また、図2 (b) は、高濃度ボロンドープ層と低濃度ボロンドープ層とを積層したときのエネルギーバンド図である。この場合、図2 (a) の場合に比べると、ポテンシャル障壁は低いため、キャリアを引き戻そうとする力も小さくなる。しかし、キャリアの染み出した拮抗する力が働くことに変わりはなく、やはり染み出し力が低減されてしまう。また、ボロンの場合、多量にドープすると、キャリア濃度は、温度に依存しなくなり、すなわち温度変化に依らず一定値をとるようになる。しかも、有効なバンドギャップが小さくなるため、真性半導体へのキャリア注入が困難となってしまうという問題がある。

[0049]

これらに対して、図2(c)は、高濃度リンドープ層(例えば図1(b)のダイヤモンド半導体層12)と低濃度リンドープ層(例えば図1(b)の第2のダイヤモンド半導体層14a,14b)とを積層したときのエネルギーバンド図である。この場合、高濃度リンドープ層のバンドギャップが小さくなっていないため、低濃度リンドープ層との間にはポテンシャル障壁がほとんど生じない。むしろ、フェルミ準位(E_F)が下がる分だけ、低濃度リンドープ層へのキャリアの染み出し効果が増長される。これが、キャリア濃度の温度依存性が負相関をもつことの利点の一つである。なお、積層構造が薄い程、上述の効果が発現し易い。

[0050]

図1 (a) 及び図1 (b) に示した上述のダイヤモンドn型半導体1, 2は、SCR、GTO、SIT、IGBT及びMISFET等の半導体素子に好適に用いることができる。例えば、これらの素子のn型層の一部又は全部にダイヤモンドn型半導体1, 2を用いれば、これらの素子は、広い温度範囲で良好に動作することが可能である。特に、電極金属との接触部分にダイヤモンドn型半導体1, 2を用いた場合、良好なオーミック接触が得られる。また、ダイヤモンドn型半導体とダイヤモンドp型半導体とをpn接合させることにより、pnダイオード等の半導体素子を形成することができる。

[0051]

また、ダイヤモンドn型半導体1,2は、ディスプレイ、電子銃、蛍光管及び真空管等に用いられる電子放出素子にも好適に用いることができる。ダイヤモンドn型半導体1,2を電子放出部に用いた電子放出素子は、広い温度範囲で良好に動作できるとともに、高い電子放出特性を有する。また、電子を受けるターゲット板を設け、このターゲット板をプラスに帯電させ、ダイヤモンドn型半導体をマイナスに帯電させるようにして、電子放出素子を構成してもよい。

【実施例1】

[0052]

本発明のダイヤモンドn型半導体及びその製造方法、並びに半導体素子及び電子放出素子について、実施例に基づいてさらに具体的に説明する。

[0053]

 $2 \, \text{mm}$ 角の単結晶ダイヤモンドII a (1 1 1) 基板上に、マイクロ波プラズマC V D法で、下記のような条件でリンドープダイヤモンドをエピタキシャル成長させた。その条件とは、メタン濃度(C H $_4$ / H $_2$) = 1. 0% $_4$ 0. 003%、フォスフィン濃度(P H $_3$ / H $_2$) = 1, 000ppm $_4$ 200, 000ppm、パワー200 $_4$ 00W、基板温度850 $_4$ 1, 000 $_4$ に圧力100Torr (1. 33×10 $_4$ P a) である。さらにCO2 ガスをCO2 / C H $_4$ = 0. 1% $_4$ 10% 添加した。これはCO2 をC H $_4$ と同程度添加すると膜が形成されないが、全く入っていないことに比べると、Pの取り込みが良くなるからである。これにより、膜厚1 $_4$ mのエピタキシャル膜が形成された。

[0054]

なお、本実施例では種々の合成条件で複数のダイヤモンドn型半導体を作製したが、それらの全てが本発明によるダイヤモンドn型半導体に含まれるというわけではなく、後述するようにキャリア濃度の温度依存性が負の相関をもつとともに、伝導体のホール係数の温度依存性が正の相関をもつものだけが含まれる。したがって、上記相関をもたないものは、本発明に含まれるダイヤモンドn型半導体に対する比較例である。

[0055]

A C 磁場を利用したホール効果測定によって、n型判定、抵抗率、キャリア濃度、ホール係数、移動度などを評価した。典型的な試料($CH_4/H_2=0.05\%$ 、 $PH_3/H_2=200,000ppm$)に対して、キャリア濃度、ホール係数、及び抵抗率の温度依存性をホール効果測定により測定した結果をそれぞれ図3、図4及び図5に示す。100 C以上においてn型判定され、約100 C \sim 300 C o 温度範囲でキャリア濃度の温度依存性が負の相関を、伝導体のホール係数の温度依存性が正の相関を示した。

[0056]

[0057]

キャリア濃度の温度依存性が負の相関を持つ試料において、最小のキャリア濃度はいずれも $1\times10^{1.6}$ cm $^{-3}$ 以上であることがわかった。これは、ある温度以下の温度領域では低温になるにつれてキャリア濃度が増える傾向があるため、キャリア濃度が一定量(すなわち、正相関と負相関との境界温度におけるキャリア濃度)以下には減少しないことと関係している。また、(CH $_4$ /H $_2$ = 0.1%、PH $_3$ /H $_2$ = 22,000 ppm)の試料は本実施例で負の相関が得られた試料の中で抵抗率が一番大きく、抵抗率は300 cmであった。

[0058]

P原子濃度をSIMSにより調べると、200, $000ppmの場合 9 \times 10^{1.9} \sim 1$. $5 \times 10^{2.0}$ 個/c m^3 、 22, $000ppmの場合 <math>5 \times 10^{1.9} \sim 8 \times 10^{1.9}$ 個/c m^3 、 11, $000ppmの場合 <math>2 \times 10^{1.9} \sim 4 \times 10^{1.9}$ 個/c m^3 、 $1000ppmの場合 <math>6 \times 10^{1.8} \sim 9 \times 10^{1.8}$ 個/c m^3 であった。一方、Sig子濃度についても調べると、すべての試料において検出限界値($7 \times 10^{1.6}$ 個/c m^3)以下であった。

[0059]

上述のダイヤモンドn型半導体を用いて半導体素子を作製した。具体的には、n型であってキャリア濃度の温度依存性が負相関を有する層とp型ダイヤモンド層とのpn接合によるpnダイオード、及びキャリア濃度の温度依存性が負相関のない正相関のみの層とp

型ダイヤモンド層との接合による p n ダイオードを作製した。そして、両者の特性を比較したところ、それらの温度依存性において顕著な違いがあった。すなわち、0℃から500℃までの温度範囲において、後者のダイオードの整流比および順方向抵抗が3桁以上変化したのに対し、前者のそれは1~2桁しか変化しなかった。広い温度範囲で変化量が小さい特性を実現する上で、素子の温度制御は、キャリア濃度の温度依存性が負相関をもつダイヤモンドn型半導体を用いて半導体素子を作製した場合の方が、正相関のみのダイヤモンドn型半導体を用いた場合に比してはるかに容易であった。

[0060]

キャリア濃度の温度依存性が負相関をもつダイヤモンドn型半導体と正相関のみのダイヤモンドn型半導体とをそれぞれ電子エミッタ(電子放出部)に用いた電子放出素子を作製した。ここで、電子エミッタには尖鋭化処理を行った。そして、これらの電子放出素子の特性を比較した。閾値電圧、及び最大放出電流値を比較したところ、負相関を持つダイヤモンドn型半導体を用いた電子放出素子の方が閾値電圧は低く、最大放出電流値は高かった。

[0061]

また、主面に複数の微小突起を形成したダイヤモンド(100)単結晶基板上に、キャリア濃度(電子濃度)の温度依存性が負相関であるダイヤモンドn型半導体、キャリア濃度の温度依存性が正相関のみを有するダイヤモンドn型半導体を気相成長させて、電子放出素子を作製した。負相関を有するダイヤモンドn型半導体を用いた電子放出素子の、電子放出部の写真を図6に示す。この電子放出部は、電子放出素子を鉛直方向から見た中心軸の周りでの90度回転に関して対称性を有するように配置されていた。この対称性を「4回回転対称性」という。これにより、電子放出素子を規則正しく形成でき、隣接する電子放出素子と当接することが防止することができる。

[0062]

さらに、この電子放出素子は、鉛直方向より10度以内の傾きの軸を中心として、4つの連なる(111)小平面と、これら小平面の中心かつ先端部に配置された(100)小平面と、を備えていた。図6以外の電子放出部も、すべて図6に示すような形状であった。ここで、電子放出素子を鉛直方向から見た場合における電子放出部が、鉛直方向より、好ましくは35度以内の傾きの中心軸を持つ4回回転対称性有していることが好適である。これは、ピラミッド形状の電子放出素子の側壁面の底面に対する角度が最小55度となる場合において、突起が傾くことにより、該側壁面が鉛直にならない限界の角度が35度であるからである。さらに、電子放出素子を鉛直方向から見た場合における電子放出部が、鉛直方向より、より好ましくは10度以内の傾きの中心軸を持つ4回回転対称性有していることが好適である。これにより、より規則正しく形成でき、隣接する電子放出素子の突起と当接することをより確実に防止できる。

[0063]

なお、ダイヤモンド半導体がドナー元素としてPを含有する場合、気相合成を行うと、 上記(111)面において、電子濃度の温度依存性が負の相関とともにホール係数の温度 依存性が正の相関が容易に得られる。これにより、この電子放出部を有する電子放出素子 は、広い温度範囲で良好に動作し、高い電子放出特性を有している。

【表1】

合成条件とホール効果測定の結果

メタン設度 (CH₄/H₂)	742742没度 (PH ₅ /H ₂)	n型判定	キャリア設度の 温度との相関	ホール係数の 温度との相関	最小 キャリア 濃度 [cm ⁻³]	室温での 抵抗卒 [Ωcm]
(%) 0.05	[ppm] 200000	n 型	E(700℃~350℃)	負(700℃~350℃)	~5×10 ¹⁶	100
0.03	200000	n 型	负(350℃~100℃) 正(700℃~350℃) 负(350℃~70℃)	正(350℃~100℃) 负(700℃~350℃) 正(350℃~70℃)	~8×10 ¹⁶	80
0.005	200000	n 型	五(350℃~70℃) 五(700℃~350℃) 五(350℃~50℃)	魚(700℃~350℃) 正(350℃~50℃)	~2×10 ¹⁷	50
1.0	22000	判定不能	観測不能	観測不能		
0.5	22000	n型	正(700℃~300℃) のみ	負(700℃~300℃) のみ	~4×10 ¹⁵	800
0.1	22000	n型	正(700℃~300℃) 負(700℃~300℃) 自(300℃~180℃) 正(300℃~180℃) ~1×10 ¹⁶		~1×10 ¹⁶	300
0.05	22000	n型	正(700℃~300℃) 負(300℃~100℃)	負(700℃~300℃) 正(300℃~100℃)	~3×10 ¹⁶	250
0.03	22000	n型	正(700℃~300℃) 負(300℃~50℃)	負(700℃~300℃) 正(300℃~50℃)	~5×10 ¹⁶	200
0.005	22000	n型	正(700℃~300℃) 負(300℃~30℃)	負(700℃~300℃) 正(300℃~30℃)	~6×10 ¹⁶	180
0.003	22000	判定不能	観測不能	観測不能		
0.1	11000	n型	正(700℃~200℃) のみ	負(700℃~200℃) のみ	~6×10 ¹⁴	1000
0.05	11000	n型	正(700℃~150℃) のみ	負(700℃~150℃) のみ	~8×10 ¹⁴	800
0.05	1000	判定不能	観測不能	視測不能		
0.05	1000	n型	正(700℃~30℃) 負(700℃~30℃) のみ のみ ~3×10 ¹³		20000	
0.03	1000	n型	正(700℃~30℃) のみ	負(700℃~30℃) のみ	~4×10 ¹³	20000
0.005	1000	n型	正(700℃~30℃) のみ	負(700℃~30℃) のみ	~6×10 ¹³	15000

【実施例2】

[0064]

実施例1と同様な方法において、P以外にSiをSiH4ガス(SiH4/CH4)として50ppm添加して、リンドープ層の合成を行い、ダイヤモンドn型半導体を作製した。これとは別に、ダイヤモンド基板近くにSiの固体供給源(Si半導体基板)を置いて、Siの混入を試み、リンドープ層の合成を行い、ダイヤモンドn型半導体を形成した。ここでは、実施例1のようにCO2ガスの添加は行わなかった。

[0065]

ここで、表2は、Siをガスによって供給したときのリンドープ層の合成条件、SIM S結果のSi原子濃度、及び作製したダイヤモンドn型半導体のホール効果を測定した結果を示す。また、表3は、Siを固体によって供給した場合を示す。なお、表3において、上段の2つの試料はSiO2を固体供給した場合を示している。下段の3つの試料はSiを固体供給した場合である。

[0066]

表2の結果からわかるように、Siが原子濃度 1×10^{17} 個 $/cm^3$ 以上混入すると、キャリア濃度の温度依存性が負の相関とともに、ホール係数の温度依存性が正の相関を持つ特性を発現する試料形成条件の範囲が広くなった。すなわち、実施例1ではフォスフィン濃度が22,000ppm以上の試料でしか上述の相関を持つ特性が発現しなかったのに対し(表1参照)、本実施例では、表2に示すように20,000ppm以下(表で

は10,000ppm及び5,000ppm)の試料でも負相関を持つ特性が発現した。 【0067】

このような相関を持つ試料の中で、一番抵抗率の高かった試料は、($CH_4/H_2=0$. 1%、 $PH_3/H_2=5$, 000ppm)の試料で、 500Ω cmであった。この条件でのダイヤモンドn型半導体を用いたダイオードや電子放出素子においても、これらの素子特性の温度に対する変化量が少ないという効果が実施例1と同様に得られた。

[0068]

なお、SIMS結果のP原子濃度については、フォスフィン濃度が22, 000ppm の場合 $7\times10^{19}\sim1\times10^{20}$ 個/cm³、10, 000ppmの場合 $4\times10^{19}\sim6\times10^{19}$ 個/cm³、5, 000ppmの場合は $2\times10^{19}\sim4\times10^{19}$ 個/cm³、1, 000ppmの場合 $9\times10^{18}\sim2\times10^{19}$ 個/cm³ であった。

[0069]

表3からわかるように、SiやSiO2を固体供給した場合も、表2と同様な傾向の結果が得られた。ガス添加に比べると効率性、制御性に劣るものの、添加が可能であった。

【表 2 】 Si同時含有(ガス添加)の合成条件、Si 設度、ホール効果測定の結果

							Π۵ وطح
メタン 設度 (CH₄/H₂) [%]	7+スノイン 濃度 (PH#/H2) [ppm]	Si 混麼 [cm ⁻³]	n型料) 定	キャリア 濃度 の温度 との相関	ホール係数 の過度 との相関	投小 キャリア 濃度 [cm ^{⋅3}]	室辺 での 抵抗卒 [Ωcm]
0.05	22000	1× 10 ¹⁹	n型	正(700℃~300℃) 丸(300℃~100℃)	ሷ(700℃~ 300℃) Œ(300℃~ 100℃)	~4× 10 ¹⁶	200
0.03	22000	8× 10 ¹⁸	n型	正(700℃~300℃) 負(300℃~100℃)	負(700℃~ 300℃) 正(300℃~ 100℃)	~6× 10 ¹⁶	150
1	10000	3× 10 ¹⁹	判定不 能	観測不能	観測不能		
0.5	10000	1× 10 ¹⁹	n型	正(700℃~500℃) のみ	負(700℃~ 500℃) のみ	~8× 10 ¹⁴	1000
0.1	10000	8× 10 ¹⁸	n型	正(700℃~300℃) 丸(300℃~150℃)	負(700℃~ 300℃) 正(300℃~ 150℃)	~4× 10 ¹⁶	300
0.05	10000	3× 10 ¹⁸	n型	正(700℃~280℃) 負(280℃~80℃)	負(700℃~ 280℃) 正(280℃~80℃)	~5× 10 ¹⁶	200
0.5	5000	2× 10 ¹⁸	n型	正(700℃~400℃) のみ	気(700℃~ 400℃) のみ	~5× 10 ¹⁴	1500
0.1	5000	8× 10 ¹⁷	n型	正(700℃~300℃) 負(300℃~150℃)	負(700℃~ 300℃) 正(300℃~ 150℃)	~1× 10 ¹⁶	500
0.05	5000	2× 10 ¹⁷	n型	正(700℃~250℃) 負(250℃~50℃)	負(700℃~ 250℃) 正(250℃~50℃)	~2× 10 ¹⁶	300
0.05	1000	9× 10 ¹⁶	n型	正(700℃~200℃) のみ	負(700℃~ 200℃) のみ	~1× 10 ¹⁴	7000
0.03	1000	8× 1016	n型	正(700℃~200℃) のみ	负(700℃~ 200℃) のみ	~2× 10 ¹⁴	4000

【表3】

Si同時含有 (固体原料) の合成条件、Si 設度、ホール効果測定の結果 (上段Si O₂、下段Si 原料)

メクン	フォスフィン	I				最小	室温
深度	濃度	Si 读度 [cm ⁻³]	n 型剁定	キャリア濃度	ホール係数 の温度 との相関	キャリア	での
(CH ₄ /H ₂)	(PH ₂ /H ₂)			の温度		濃度	抵抗牢
[%]	[ppm]			との相関		[cm·3]	(Ω cm)
			n型	正(700℃~	Д(700°C~	~6×10 ¹⁶	
0.05	22000			350℃)	350℃)		100
				⊈(350℃~80℃)	Œ(350℃~80℃)		
0.05	5000	8×10 ¹⁸	n型	Œ(700℃~	വ(700℃~	~2×10 ¹⁶	350
				280℃)	280℃)		
				負(280℃~50℃)	正(280℃~50℃)		
0.05	22000	9×10 ¹⁸	n型	正(700℃~	负(700℃~	~6×10 ¹⁶	150
				300℃)	300℃)		
				⊈(300℃~	Œ(300℃~		
				100℃)	100℃)		
0.05	10000	1×10 ¹⁸	n型	正(700℃~	负(700℃~	~5×10 ¹⁶	
				280℃)	280℃)		250
				負(280℃~	Œ(280℃~		
				100℃)	100℃)		
0.05	5000	4×10 ¹⁸	n型	正(700℃~	負(700℃~	~3×10 ¹³	
				280℃)	280℃)		500
				負(280℃~80℃)	正(280℃~80℃)		L

[0070]

以上の実施例からもわかるように、本発明によるダイヤモンドn型半導体は広い温度範囲においてキャリア濃度の変化量が小さく、したがってダイオード等の半導体素子や電子放出素子に用いた場合に、素子特性の温度に対する変化量が小さい素子を得ることができる。それゆえ、本発明によるダイヤモンドn型半導体は、発光素子やトランジスタ等に用いても有効である。

【図面の簡単な説明】

[0071]

【図1】(a)は、本発明によるダイヤモンドn型半導体の一実施形態を示す断面図である。(b)は、本発明によるダイヤモンドn型半導体の他の実施形態を示す断面図である。

【図2】 $(a) \sim (c)$ は、キャリアの染み出し効果について説明するための図である。

【図3】実施例に係るダイヤモンドn型半導体におけるキャリア濃度の温度依存性を 測定した結果を示すグラフである。

【図4】実施例に係るダイヤモンド π 型半導体におけるホール係数の温度依存性を測定した結果を示すグラフである。

【図 5】 実施例に係るダイヤモンドn型半導体における抵抗率の温度依存性を測定した結果を示すグラフである。

【図 6】実施例に係るダイヤモンドn型半導体を用いた電子放出素子の電子放出部を示す写真である。

【符号の説明】

[0072]

1, 2…ダイヤモンドn型半導体、10…ダイヤモンド基板、12…ダイヤモンド半導体層、14a, 14b…第2のダイヤモンド半導体層。

【書類名】図面 【図1】

【図4】

BEST AVAILABLE COPY

【書類名】要約書

【要約】

【課題】 広い温度範囲においてキャリア濃度の変化量が充分に低減されたダイヤモンドn型半導体及びその製造方法、並びにそのダイヤモンドn型半導体を用いた半導体素子及び電子放出素子を提供する。

【解決手段】 ダイヤモンド n型半導体 1 は、ダイヤモンド基板 1 0、及びその主面 S 1 上に形成されたダイヤモンド半導体 1 2 を備えている。このダイヤモンド半導体 1 2 は、ダイヤモンド半導体層 1 2 は、n型判定されるとともに、そのn型判定される温度領域の一部においてキャリア濃度(電子濃度)の温度依存性が負の相関を示すとともに、ホール係数の温度依存性が正の相関を示す。このような特性をもつダイヤモンド n型半導体 1 は、例えば、ダイヤモンド基板 1 0 上に、ドナー元素以外の不純物を導入しながら、ドナー元素を多量にドープしたダイヤモンド半導体 1 2 を形成することにより得られる。

【選択図】 図1

特願2004-087812

出願人履歴情報

識別番号

[000002130]

1. 変更年月日

1990年 8月29日

[変更理由]

新規登録

住 所

大阪府大阪市中央区北浜四丁目5番33号

氏 名 住友電気工業株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017077

International filing date: 17 November 2004 (17.11.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-087812

Filing date: 24 March 2004 (24.03.2004)

Date of receipt at the International Bureau: 20 January 2005 (20.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

