

Local-Global Transformer Enhanced Unfolding Network for Pan-sharpening

Mingsong Li¹, Yikun Liu¹, Tao Xiao¹, Yuwen Huang², Gongping Yang¹

¹School of Software, Shandong University, Jinan, China; ²School of Computer, Heze University, Heze, China

■ Local-Global Transformer: LGT

domain.

Local branch calculates local window

based self-attention in spatial domain.

Global branch extracts global contextual

 $\mathcal{F}(\mathbf{X}_g)(u,v) = \frac{1}{\sqrt{HW}} \sum_{h=0}^{H-1} \sum_{w=0}^{W-1} \mathbf{X}_g(h,w) e^{-j2\pi(\frac{h}{H}u + \frac{w}{W}v)},$

 $\mathbf{F}_q = \mathcal{F}^{-1}(DConv(\mathcal{A}(\mathbf{X}_g)), DConv(\mathcal{P}(\mathbf{X}_g))),$

 $\mathcal{A}(\mathbf{X}_g)(u,v) = \sqrt{R^2(\mathbf{X}_g)(u,v) + I^2(\mathbf{X}_g)(u,v)},$

 $\mathcal{P}(\mathbf{X}_g)(u,v) = arctan[rac{I(\mathbf{X}_g)(u,v)}{R(\mathbf{X}_g)(u,v)}].$

representation in frequency

 $\mathbf{F}_a^i = Softmax(\frac{\mathbf{Q}^i \mathbf{K}^{i^T}}{\mathbf{A}^d} + \mathbf{P}^i) \mathbf{V}^i, \ i = 1, ..., h,$

Summary

- Task description: Pan-sharpening aims to increase the spatial resolution of the low-resolution multispectral (LrMS) image with the guidance of the corresponding panchromatic (PAN) image.
- Input: The coupled LrMS image and PAN image.
- Output: A high-resolution multispectral (HrMS) image.
- > Existing two-fold deficiency:
- Model Interpretability----
- Local and Global Dependencies----
- > Our main contributions:
- We customize a transformer module LGT as an image denoiser to efficiently model local and global dependencies at the same time and sufficiently mine the potential of the proposed unfolding pan-sharpening framework.
- We develop an interpretable transformer-based deep unfolding network, LGTEUN.
- To the best of our knowledge, LGTEUN is the first transformer-based deep unfolding network for the MS pan-sharpening, and LGT is also the first transformer module to perform spatial and frequency dual-domain learning.
- Code: https://github.com/lms-07/LGTEUN

Proposed Method

Model formulation and optimization

The degradation process of the HrMS image **Z**:

 $\mathbf{X} = \mathbf{SZ} + \mathbf{N}_x, \ \mathbf{Y} = \mathbf{ZR} + \mathbf{N}_y,$

The energy function under MAP framework:

$$ar{\mathbf{Z}} = argmin \frac{1}{2} \| \mathbf{X} - \mathbf{SZ} \|^2 + \frac{1}{2} \| \mathbf{Y} - \mathbf{ZR} \|^2 + \lambda J(\mathbf{Z}),$$

Fig: Illustration of the proposed LGTEUN.

Employing proximal gradient descent (PGD) algorithm:

$$\bar{\mathbf{Z}}_k = argmin\frac{1}{2} \| \mathbf{Z} - (\bar{\mathbf{Z}}_{k-1} - \eta \nabla_f(\bar{\mathbf{Z}}_{k-1})) \|^2 + \lambda J(\mathbf{Z}),$$

The data terms oriented differentiable operator:

$$\nabla_f(\bar{\mathbf{Z}}_{k-1}) = \mathbf{S}^T(\mathbf{S}\bar{\mathbf{Z}}_{k-1} - \mathbf{X}) + (\bar{\mathbf{Z}}_{k-1}\mathbf{R} - \mathbf{Y})\mathbf{R}^T.$$

The data subproblem and the prior subproblem:

$$egin{align} ar{\mathbf{Z}}_{k-rac{1}{2}} &= ar{\mathbf{Z}}_{k-1} - \eta
abla (ar{\mathbf{Z}}_{k-1}), \ ar{\mathbf{Z}}_{k} &= prox_{\eta,J}(ar{\mathbf{Z}}_{k-rac{1}{2}}), \end{aligned}$$

Prior module: $\bar{\mathbf{Z}}_k = \mathcal{P}(\bar{\mathbf{Z}}_{k-\frac{1}{2}})$.

Deep unfolding network

Data module:
$$\bar{\mathbf{Z}}_{k-\frac{1}{2}} = \mathcal{D}(\bar{\mathbf{Z}}_{k-1}, \mathbf{X}, \mathbf{Y}, \eta_{k-1}).$$

Fig: Qualitative comparison

GSA SFIM Wavelet PanFormer CTINN LightNet SFIIN MutInf MDCUN LGTEUN Ground-Truth

Experiments

Quantitative comparison

Method	WorldView-3					WorldView-2					GaoFen-2				
Memod	PSNR↑	SSIM↑	Q8↑	SAM↓	ERGAS↓	PSNR↑	SSIM↑	Q4↑	SAM↓	ERGAS↓	PSNR↑	SSIM↑	Q4↑	SAM↓	ERGAS↓
GSA	22.5164	0.6343	0.5742	0.1106	7.8267	33.5975	0.8899	0.5681	0.0573	2.5402	36.0557	0.8838	0.5517	0.0641	3.5758
SFIM	21.4154	0.5415	0.4525	0.1147	8.8553	32.6334	0.8728	0.5159	0.0597	3.1919	34.7715	0.8572	0.4584	0.0657	4.2073
Wavelet	21.4464	0.5656	0.5271	0.1503	9.1545	32.1992	0.8500	0.4577	0.0638	3.3799	33.9208	0.8197	0.4033	0.0695	4.6445
PanFormer	30.4772	0.9368	0.9316	0.0672	3.1830	41.3581	0.9731	0.8236	0.0241	1.0617	44.8540	0.9805	0.8865	0.0271	1.3334
CTINN	31.8564	0.9518	0.9460	0.0660	2.7421	41.2015	0.9735	0.8149	0.0246	1.0880	44.2942	0.9784	0.8716	0.0293	1.4148
LightNet	32.0018	0.9525	0.9472	0.0639	2.6853	41.5589	0.9739	0.8220	0.0237	1.0382	44.6876	0.9787	0.8741	0.0279	1.3510
SFIIN	31.6587	0.9492	0.9435	0.0652	2.8016	41.9489	0.9752	0.8108	0.0229	1.0084	44.7248	0.9802	0.8721	0.0280	1.3361
MutInf	31.8298	0.9523	0.9469	0.0636	2.7526	41.9522	0.9760	0.8258	0.0227	1.0153	44.8305	0.9800	0.8836	0.0277	1.3394
MDCUN	31.2978	0.9429	0.9363	0.0661	2.9295	42.3351	0.9772	0.8370	0.0216	0.9638	45.5677	0.9825	0.8915	0.0252	1.2249
LGTEUN	32.2188	0.9545	0.9494	0.0605	2.6286	42.6837	0.9786	0.8415	0.0208	0.9280	45.8364	0.9840	0.8973	0.0247	1.1824

> A key hyperparameter setting

	,,	10 011 011			···· 9
Data Set	Metric	Stage 1	Stage 2	Stage 3	Stage 4
	PSNR↑	32.0339	32.2188	32.068	32.0042
	SSIM↑	0.9532	0.9545	0.9535	0.9527
	Q8↑	0.9481	0.9494	0.9487	0.9480
WorldView-3	SAM↓	0.0605	0.0605	0.0603	0.0612
world view-3	ERGAS↓	2.6765	2.6286	2.6678	2.6898
	Time (s/img)	0.0070	0.0133	0.0205	0.0262
	Params (KB)	270.2	540.0	809.9	1079.7
	FLOPs (GB)	9.52	19.04	28.56	38.08
	PSNR↑	42.600	42.6837	42.4771	42.1634
	SSIM↑	0.9784	0.9786	0.9781	0.9767
	Q4↑	0.8398	0.8415	0.8383	0.8329
World View 2	SAM↓	0.0209	0.0208	0.0213	0.0222
WorldView-2	ERGAS↓	0.9358	0.928	0.9573	0.9787
	Time (s/img)	0.0065	0.0137	0.0204	0.0254
	Params (KB)	101.2	202.2	303.2	404.2

FLOPs (GB) 2.57 5.14 7.71 10.28

Full-resolution test > Performance-efficiency

42.8	LGTEUN OURS (202.2 KB)			
42.6	(202.2 KB)			
42.4) (DOIN)
				MDCUN CVPR 2022 (98.4 KB)
42.2				
顧 42.0	SFIIN	Mutl		
PSNR (dB) 41.8	ECCV 2022 (85.3 KB)	CVPR 2 (185.5)		
41.8				
41.6	LightNet			
11.0	JCAI 2022 (15.8 KB)			
41.4			PanFormer ICME 2022	
41.2	CTINN AAAI 2022 (37.8 KB)		(1525.1 KB)	
$41.0\frac{1}{10^{0}}$		101	10	2

> Efficiency comparison

Data Set	Metric	GSA	SFIM	Wavelet	PanFormer	CTINN	LightNet	SFIIN	MutInf	MDCUN	LGTEUN
	Time (s/img)	0.0482	0.0591	0.0562	0.0160	0.0426	0.0019	0.0529	0.1083	0.1747	0.0133
WorldView-3	Params (KB)	_	_	-	1532.8	38.3	16.3	85.8	185.8	140.9	540.0
	FLOPs (GB)	_	-	_	11.92	2.68	2.02	5.25	9.87	479.54	19.04
GaoFen-2	Time (s/img)	0.0216	0.0301	0.0271	0.0257	0.0431	0.0017	0.0528	0.1141	0.1017	0.0129
	Params (KB)	_	_	_	1530.3	37.8	15.8	85.3	185.5	98.3	202.2
F	FLOPs (GB)	_	_	_	11.77	2.65	1.95	5.22	9.85	473.19	5.14

Ablation study

Set	ting	Reduced-resolution Test						Full-resolution Test		
Local Branch	Global Branch	PSNR↑	SSIM↑	Q 8↑	SAM↓	ERGAS↓	$D_{\lambda} \downarrow$	$D_S {\downarrow}$	QNR↑	
X	√	31.9309	0.9519	0.9468	0.0636	2.7102	0.0177	0.0364	0.9465	
\checkmark	×	31.9742	0.9525	0.9468	0.0618	2.7029	0.0170	0.0349	0.9486	
✓	\checkmark	32.2188	0.9545	0.9494	0.0605	2.6286	0.0162	0.0310	0.9532	

Contact

Mail: msli@mail.sdu.edu.cn

TIME Towards Intelligence Mechanism Lab

School of Software, Shandong University, China

