pstat274_hw05_aoxu

AO XU

2022-11-01

1. A glossary of R-commands for time series.

define working directory

getwd()

read and plot data

read.csv()

ts.plot()

simulate and plot ARMA models

```
x_1 <- arima.sim(n = 100,model = list(ma=c(\theta_1, \theta_2)))
```

add trend and mean line to the original time series plot

```
abline(lm(data~as.numeric(1:length(data))))
abline(lm(data~as.numeric(1:length(data))))
```

calculate and plot theoretical acf/pacf for ARMA models

```
plot(ARMAacf(ar=...,ma=...,lag.max=...,pacf=T/F))
```

calculate and plot sample acf/pacf

acf or pacf(model,lag.max=..., plot=T/F)

check whether a particular model is causal/invertible (R commands to find and plot roots of polynomials)

polyroot(c(...))

perform Box-Cox transforms

boxcox(data~as.numeric(1:length(data)) # library(MASS)

perform differencing data at lags 1 and 12

diff(x,lag = 1) diff(x, lag = 12)

perform Yule-Walker estimation and find standard deviations of the estimates

```
data.ywest<- arima(data, aic = TRUE, order.max = NULL, method=c("yule-walker")) sqrt(data.ywest$var.pred)
```

perform MLE and check AICC associated with the model

```
arima(data, aic = TRUE, order.max = NULL, method = c("mle"))
```

AICc()

2. Choose a dataset

- a. It's about gold price monthly. Contains prices in respective currencies for each country monthly from January 1979 to July 2021.
- b. It's interesting since it's well-known that people like to invest on gold and it could maintain the wealth even in such a high-inflation world. I want to forcast how gold price would change in the next five years or 10 years.

C.

```
library(ggplot2)
data <- read.csv("gold.csv")</pre>
```

```
train <- data[1:450,2]
test <- data[451:511,2]
mydata <- ts(train,start=c(1979,1),frequency = 12)
plot(mydata,ylab="Gold Price")</pre>
```


the graph, we could see that (i) no trend between 1980 and 2000, but a positive trend between 2000 and 2021 (ii) no seasonal component (iii) we could see that there is an apparent sharp change between 2000 and 2010.

d.

```
gold_diff <- diff(mydata,50)
gold_ts <- ts(gold_diff,start = c(1979,1), end = c(2021,7))
plot.ts(gold_ts,type="l")</pre>
```


used lag = 50 to difference the data to get stationary series. The transformed data is staionary now since it follows the stationary distribution.

e.

```
acf(gold_ts,main="")
title("ACF",line=-1,outer=TRUE)
```

ACF


```
pacf(gold_ts,main="")
title("PACF",line=-1,outer=TRUE)
```

PACF

ACF, we could get that it do not follow pattern of MA(q) and should be AR model.

From PACF, we could that it should be AR(1) model.

3.

Option A.

```
X1 = 2.91

X2 = 0.98

X3 = 3.53

Xt = 2.637 + 0.252*(X1 - 2.637) + 0.061*(X2 - 2.637) - 0.202*(X3 - 2.637) + 0

Xt
```

```
## [1] 2.424333
```

Since 2.424333 < 3.0, then we choose A.

4.

AR(1) model with mean 0: $\rho(2)$ = 0.215, $\rho(3)$ = -0.100, X_T = -0.431

Solution:

Since $\rho(3)$ = -0.100, then $\phi < 0$.

```
phi = -sqrt(0.215)
XT = -0.431
XTplus1 = XT*phi
XTplus1
```

```
## [1] 0.1998465
```

5.

The five models, AR(1), ARMA(1, 1), ARMA(1, 2), ARMA(2, 3), and ARMA(4, 3) are fitted to the same time series. The models are ranked using Akaike Information Criterion (AIC): AIC = $-2 \times \log$ -likelihood + 2 ×(p + q + 2).

```
AR1 = -650

ARMA11 = -641

ARMA12 = -636

ARMA23 = -630

ARMA43 = -629

AIC_AR1 = -2 * AR1 + 2*(1+0+2)

AIC_ARMA11 = -2 * ARMA11 + 2*(1+1+2)

AIC_ARMA12 = -2 * ARMA12 + 2*(1+2+2)

AIC_ARMA23 = -2 * ARMA23 + 2*(2+3+2)

AIC_ARMA43 = -2 * ARMA43 + 2*(4+3+2)

AIC_AR1
```

```
## [1] 1306
```

```
AIC_ARMA11
```

```
## [1] 1290
```

```
AIC_ARMA12
```

```
## [1] 1282
```

```
AIC_ARMA23
```

```
## [1] 1274
```

```
AIC_ARMA43
```

```
## [1] 1276
```

Therefore, ARMA(2,3) is the best model, which has the lowest AIC 1274.

G₁

$$w_{11} = 1 - 3\rho(1)^2 + 4\rho(1)^4$$

$$w_{ii} = 1 + 2\rho(1)^2$$
 for i > 1

$$\hat{\rho}(1) = 0.438$$

$$\hat{\rho}(2) = 0.145$$

95% CI for
$$\rho(1)$$
:
$$\frac{|\hat{\rho}(1) - \rho(1)|}{\sqrt{\frac{1 - 3\rho(1)^2 + 4\rho}{100}}} \le 1.96$$

$$\theta = 0.6, \rho(1) = \frac{\theta}{1+\theta^2} = \frac{15}{34}$$

$$|\hat{\rho}(1) - \frac{15}{34}| < 1.96 * \sqrt{\frac{1 - 3(\frac{15}{34})^2 + 4(\frac{15}{34})^4}{100}}$$

$$\Rightarrow 0.294 < \hat{\rho}(1) < 0.589$$

95% CI for
$$\rho(2)$$
: $\frac{|(\hat{\rho}^2) - \rho(2)|}{\sqrt{\frac{1+2\rho(1)}{100}}} < 1.96$

$$|\hat{\rho}(1) - 0| < 1.96 * \sqrt{\frac{1+2(\frac{15}{34})^2}{100}}$$

$$\Rightarrow -0.23 < \hat{\rho}(2) < 0.23$$

Since
$$0.294 < \hat{\rho}(1) = 0.438 < 0.589$$
, $0.23 < \hat{\rho}(2) = 0.145 < 0.23$,

then we could get that the data are consistent with an MA(1) model with $\theta = 0.6$