∞ Dérivées : fonctions exponentielles 3

Pour la fonction f qui suit, on déterminera sa dérivée, son tableau de variation, sa dérivée seconde, sa convexité et les éventuels points d'inflexion

$$f(x) = \frac{e^{8x+2}}{x+2}$$

Dérivées TG

Correction:

$$f'(x) = \frac{(8x+15)e^{8x+2}}{(x+2)^2}$$
$$f''(x) = \frac{(8x^2+16x+2)e^{8x+2}}{(x+2)^3}$$
$$\Delta = 192 > 0$$

x		-2	<u>-15</u>	+∞
8x + 15	_		0	+
$(x+2)^2$	+	0 +		
f'(x)	_	_	0	+
f(x)	0	+∞	→ 8e ¹⁷ —	+∞

x	-∞	-2	$\frac{16-\sqrt{192}}{16}$		$\frac{16+\sqrt{192}}{16}$		+∞
$(x+2)^3$	_	Ó	+				
$8x^2 + 16x + 2$	+		0	-	0	+	
f''(x)	-	+	0	-	0	+	
f	concave	convexe	0	concave	0	convexe	

On a donc trois points d'inflexion :

$$\left(2, f(2)\right) \quad \left(\frac{16 - \sqrt{192}}{16}, f\left(\frac{16 - \sqrt{192}}{16}\right)\right) \quad \left(\frac{16 + \sqrt{192}}{16}, f\left(\frac{16 + \sqrt{192}}{16}\right)\right)$$