AI Art Advisor: A Machine Learning Approach to Art Style Classification

Heeje Yoo – August 13, 2025

This paper documents the methodology and findings for the "AI Art Advisor," a classification system designed to identify the style of an artwork from a digital image. It evaluates an ensemble of machine learning algorithms to determine the most effective model and discusses its application in improving art accessibility and education.

Methodology

The system follows a full data mining workflow, from acquisition and preprocessing to feature extraction and model evaluation.

- <u>Data Sourcing and Preparation</u>: The "WikiArt All Artpieces" dataset (Kaggle) was used, focusing on 15 prominent art styles (e.g., Impressionism, Cubism, Surrealism). To avoid class imbalance, a maximum of 2,000 images per style was sampled, producing 30,000 images. Corrupted files were removed, leaving 29,907 valid images for the analysis.
- <u>Feature Extraction with Transfer Learning</u>: A pre-trained **EfficientNetB7** CNN (trained on ImageNet) served as a feature extractor. Images were resized to 224×224 pixels, passed through the network (top layer removed, GlobalAveragePooling2D added), and converted into **2,560-dimensional** vectors capturing high-level patterns and textures. This leveraged deep learning without the cost of training a large CNN from scratch.
- <u>Model Training and Evaluation</u>: Features were split into training (70%) and test (30%) sets, standardized, and fed into six classification algorithms: Logistic Regression, Gaussian Naive Bayes, Decision Tree, Random Forest, K-Nearest Neighbors, and a Support Vector Machine (SVM). A separate K-Means cluster analysis was also performed to explore the natural groupings within the feature data. Each classification model was evaluated with 5-fold cross-validation; the SVM underwent GridSearchCV tuning, which found the optimal parameters to be {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}. Performance was assessed via accuracy, precision, recall, and F1-score.

Findings and Model Selection

The optimized **SVM** outperformed all other models, though overall accuracy was lower than initially reported. It achieved a **47.4% cross-validation accuracy** and a **48.0% test accuracy**. The SVM's superior ability to handle the high-dimensional, non-linear relationships in the feature space made it the best choice for this problem, leading to its selection for deployment.

Real-World Application

The "AI Art Advisor" enhances art appreciation with instant style identification and explanations, serving as an educational tool, museum companion, or recommendation engine. By automating art style classification, this project provides a foundation for tools that enrich cultural education and foster a broader appreciation of the arts.

Appendix

Model Comparison

Model	Cross- Validation Accuracy	Test Accuracy	Precision (Weighted Avg)	Recall (Weighted Avg)	F1-Score (Weighted Avg)	
Support Vector Machine	47.4%	48.0%	47.7%	48.0%	47.7%	
Logistic Regression	37.1%	36.9%	37.1%	36.9%	37.0%	
Random Forest	32.9%	33.9%	32.8%	33.9%	32.5%	
K-Nearest Neighbors	32.5%	33.1%	33.5%	33.1%	31.9%	
Naive Bayes	32.5%	32.7%	33.3%	32.7%	31.7%	
Decision Tree	16.4%	16.4%	16.6%	16.4%	16.5%	

	- Model Comparison							
	Model	Cross-Val	lidation	Accuracy	y Test	Accuracy	\	
0	Logistic Regression			0.371118	3	0.368773		
1	Naive Bayes			0.324830)	0.326647		
2	Decision Tree			0.164326	5	0.164493		
3	Random Forest			0.328843	3			
4	Support Vector Machine			0.473774	4	0.479996		
5	K-Nearest Neighbors			0.324593	1	0.330882		
	Precision (Weighted Avg)	Recall	(Weighte	ed Avg)	F1-Scor	re (Weigh	ted Avg)	
0	0.371414	1	0.	368773			0.369812	
1	0.333425	5	0.	326647			0.317255	
2	0.165552	2	0.	164493			0.164899	
3	0.327856	5	0.	338794			0.325242	
4	0.476960)	0.	479996			0.476894	
5	0.335384	1	0.	330882			0.318501	

Model Cross-Validation Accuracy Comparison

Analyzing clusters with k=7							
Cross-tabulation of Tru	e Art	Styl	es vs.	к-ме	ans C	luste	r ID:
Cluster_ID	0	1	2	3	4	5	6
True_Style							
Abstract Expressionism	17	82	1306	126	443	24	2
Art Nouveau (Modern)	134	726	347	127	298	191	173
Baroque	126	228	73	189	252	681	447
Cubism	61	686	685	57	382	98	27
Expressionism	92	595	449	148	304	208	199
Impressionism	248	147	101	767	339	173	218
Neoclassicism	303	280	115	136	407	237	510
Northern Renaissance	135	350	132	94	290	592	388
Pop Art	50	427	679	32	652	50	110
Post-Impressionism	310	377	224	513	248	148	173
Realism	115	281	78	529	370	212	408
Rococo	143	127	58	119	183	466	893
Romanticism	161	208	34	569	275	374	371
Surrealism	86	368	552	129	662	136	64
Symbolism	143	364	301	521	273	251	145

References

Lopes, S. (2022). *WikiArt All Artpieces*. Kaggle. Retrieved August 13, 2025, from https://www.kaggle.com/datasets/simolopes/wikiart-all-artpieces