Chapter 2: Number Systems and Codes

Lesson 1.1: Number Systems

Computer Fundamentals

Second Edition

On completion of this lesson you will know:

- ► Basic concepts of different number systems
- Characteristics of decimal, binary, octal and hexadecimal numbers
- Conversion of numbers

In logical design, however, it is necessary to perform manipulations in the binary system of numbers because of the on-off nature of the physical devices used. The popular number systems are:

- Decimal number system
- Binary number system
- Octal number system
- Hexadecimal number system

It is the most commonly used number system in real life. It has the following features:

- ► Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (total ten digits)
- ► Base (radix): 10 (ten)
- ► Weights: 1, 10, 100, 1000, (powers of base 10)

Example

Find the binary equivalent of the decimal number 1962.

Example

Find the binary equivalent of the decimal number 1962.22.

Digital computers use binary numbers for internal operations. It has the following features:

- ► Digits: 0, 1(total two digits)
- ► Base (radix): 2
- ► Weights: 1, 2, 4, 8, 16, and so on (powers of base 2)

Example

Find the decimal equivalent of the binary 101011.

Octal numbers are used in some programming languages. It has the following features:

- ► Digits: 0, 1, 2, 3, 4, 5, 6, 7 (total eight digits)
- ► Base (radix): 8
- ► Weights: 1, 8, 64, 512, and so on (powers of base 8)

Hexadecimal (also called hex in short) is a propositional numeral system. Hexadecimal is commonly used to represent computer memory addresses. It has the following features:

- Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F (total sixteen digits)
- ► Base (radix): 16
- ► Weights: 1, 16, 256, and so on (powers of base 16)

To convert a decimal number to its other equivalent numbers, the remainder method can be used. (This method can be used to convert a decimal number into any other base.) The remainder method involves the following four steps:

- Divide the decimal number by the base (in the case of binary, divide by 2).
- Indicate the remainder to the right.
- Continue dividing into each quotient (and indicating the remainder) until the divide operation produces a zero quotient.
- ► The base 2 number is the numeric remainder reading from the last division to the first.

Convert 47₁₀ to its binary equivalent

Integer quotient	Reminder	coefficien
23		
2 47	1	$a_0 = 1$
11		
2 23	1	$a_1 = 1$
_ 5		
2 11	1	$a_2 = 1$
2		
2 5	1	$a_{_{3}}=1$
1		
2 2	0	$a_4 = 0$
0		
2 1	1	$a_5 = 1$
ı	Thus, 47 ₁₀ =101111 ₂	

Convert 47₁₀ to its octal equivalent

Integer	quotient	Reminder	coefficient
	5		
8	47	7	$a_0 = 7$
	0		
8	5	5	$a_1 = 5$

Thus, $47_{10} = 57_8$

Convert 47₁₀ to its hexadecimal equivalent

The rule is as follows:

- Starting from the right of the given binary stream into group of three, if leftmost group has fewer bits, attach the required number of leading 0s to complete the group.
- Determine equivalent octal digit for each group.

```
Find the octal number of 100110111<sub>2</sub> Step 1: 100 110 111 Step 2: 100_2 = (1 \times 2^2) + (0 \times 2^1) + (0 \times 2^0) = 4_8 110_2 = (1 \times 2^2) + (1 \times 2^1) + (0 \times 2^0) = 6_8 111_2 = (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = 7_8 Thus the octal number of 100110111<sub>2</sub> is 467<sub>8</sub>
```

The rule is as follows:

- Find the equivalent binary group of 3 digits for each octal digit.
- ► Find the results by combining binary groups

Find the binary number of 467_8 Step 1: $4_8 = 100_2$ $6_8 = 110_2$ $7_8 = 111_2$ Step 2:

100110111₂ is the binary equivalent of 467₈

The rule is as follows:

- Starting from the right of the given binary stream into group of four, if leftmost group has fewer bits, attach the required number of leading 0s to complete the group.
- Determine equivalent one hexadecimal digit for each group.

Find the hexadecimal equivalent number of 10011011₂ Step 1:1001 1011 Step 2: $1001_2 = (1 \times 2^3) + (0 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 9_{16} \\ 1011_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) = B_{16} \\ \text{Thus the binary number of } 9B_{16} \text{ is } 10011011_2$

The rule is as follows:

- Find the equivalent binary group of 4 digits for each hexadecimal digit.
- ► Find the results by combining binary groups.

Find the binary equivalent number of $9B_{16}$

Step 1: $9_{16} = 1001_2$ $B_{16}1011_2$

Step 2: 10011011_2 is the binary number of $9B_{16}$ is