SULIT

SK015

Chemistry1 Semester I Session 2023/2024 Kimia 1 Semester I Sesi 2023/2024

CHEMISTRY UNITKOLEJ MATRIKULASI MELAKA

SMARTCHEM 1.0 CHEMISTRY 1 SUGGESTED ANSWER SCHEME

No	0.	Suggested Answer	Marks
1	(a)		
		Average atomic mass = $\frac{(24 \times 79) + (25 \times 10) + (26 \times 11)}{100}$	1
		Average atomic mass = 24.32 a.m.u	1
		Relative atomic mass = $\frac{24.32 \text{ a.m.u}}{\frac{1}{12} \text{ x } 12 \text{ a.m.u}}$	
		$\frac{1}{12} \times 12 \text{ a.m.u}$	
		= 24.32	1
		— ATOM	_
	(b)	Mass of C = $\frac{12}{44} \times 21.5$ g = 5.8636 g	1
		Mass of H = $\frac{2}{18} \times 8.87 \text{ g} = 0.9856 \text{ g}$	1
		Element C H	
		Mass (g) 5.8636 0.9856	
		No. of mole(mole) 0.4887 0.9856	
		Mole ratio 1 2	1
		. Empirical formula CH	1
		\therefore Empirical formula = CH ₂	1
		$[CH_2] n = 126.0$	
		n = 9	1
		$\therefore \mathbf{Molecular formula} = \mathbf{C}_{9}\mathbf{H}_{18}$	1
	(c)	Assume that mass of nitric acid solution is 100.00 g	1
		∴ mass of solute is 85.00 g	1
		85.00 g	1
		$n_{\text{solute, HNO}_3} = \frac{85.00 \text{ g}}{1 + 14 + 3(16) \text{g/mol}} = 1.349 \text{ mol}$	1
		V _ 100.00 g	1
		$V_{\text{solution}} = \frac{100.00 \text{ g}}{0.8362 \text{ g/m}} = 119.6 \text{ mL}$	_
		moles solute	
		$Molarity = \frac{moles \ solute}{volume \ solution \ (L)}$	
		@	
		1.3492 mol	1
		$= \frac{119.5886 \times 10^{-3} L}{10^{-3} L}$	
		1	
		= 11.282 mol L ⁻¹	1

(d)	Oxidation: $(MnO_4^-(aq)+8H^+(aq)+5e^- \rightarrow Mn^{2+}(aq)+4H_2O(1)) \times 2$	1
	Reduction: $(C_2O_4^{2^-}(aq) \to 2CO_2(g) + 2e^-) \times 5$	1
		-
	Overall reaction:	
	$2\text{MnO}_{4}^{-}(\text{aq}) + 5\text{C}_{2}\text{O}_{4}^{2-}(\text{aq}) + 16\text{H}^{+}(\text{aq}) \rightarrow 2\text{Mn}^{2+}(\text{aq}) + 10\text{CO}_{2} \text{ (g)} + 8\text{H}_{2}\text{O}$	1
(e)	From balance equation,	
	$1 \text{ mol MnO}_2 \equiv 4 \text{ mol HCl}$	
	Given, 0.86 mol MnO ₂ .	
	∴ 3.44 mol HCl needed.	1
	Moles HCl needed (3.44 mol) is more than moles HCl provided	
	$(48.2 \text{ g/}36.5 \text{ gmol}^{-1} = 1.3205 \text{ mol}),$	
	hence HCl is Limiting reactant.	1
	From equation,	
	$4 \text{ mol HCl} \equiv 1 \text{ mol Cl}_2$	
	$\therefore 1.3205 \text{ mol HCl} \equiv 0.3301 \text{ mol Cl}_2$	1
	Mass of Cl₂ gas produce = $0.3301 \text{ mol x } 2(35.5) \text{ gmol}^{-1}$	
	= 23.44 g	1
	Total Marks	22
	Max	21

No.		Suggested Answer	Marks	
2 (a)	(i)	$\frac{1}{\lambda} = R_{H} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right) ; n_{1} < n_{2}$ or	1	
		$1094 \times 10^{-9} = 1.097 \times 10^{7} \left(\frac{1}{n_1^2} - \frac{1}{6^2} \right)$		
		$n_1 = 3$	1	
		The electron falls from $n = 6$ to $n = 3$	1	
	(ii)	$E_n = -R_H(\frac{1}{n^2})$		
		@	1	
		$E_3 = -2.18 \times 10^{-18} (\frac{1}{3^2})$		
		$= -2.42 \times 10^{-19} J$	1	
	(iii)	Paschen	1	
2 (b)	(i)	$n = 3, l = 1, m = +1, s = +\frac{1}{2}$	1	
		$n=3$, $l=1$, $m=-1$, $s=+\frac{1}{2}$	1	
		Any 2 correct answers (different m value, same s value)		
	(ii)	$ \begin{array}{c} $	1	
		Correct shape and label. 3py is not accepted.	1	
	(iii) 8 electrons			
		Total marks	10	

No.		Suggested Answer	Marks
3	(a)	$[:S=C=N:]^{T}$ $[:S\stackrel{+}{=}C-N:]^{T}$ $[:S-C\equiv N:]^{T}$	1
		(0) (0) (-1) (+1) (0) (-2) (-1) (0) (0)	1 1
		A B C	1 mark - each structure
	(b)	Structure A is the most plausible Lewis structure. It is because its negative formal charge is on the most electronegative N atom. N atom is more electronegative than S atom in SCN ⁻ molecules.	1 1
	(c)	C ground state	FC -1
		C excited state	1
		C hybrid sp $2p$	1
		S ground state $3s$ $3p$	
		S excited state $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	
		S hybrid $\begin{array}{c c} \uparrow \downarrow & \uparrow \downarrow & \uparrow \\ \hline sp^2 & 3p \end{array}$	1 mark (sp ² hybrid orbital S)
		N^{-} ground state $2s$ $2p$	
		N^{-} excited state $2s$ $2p$	1 mark
		N^{-} hybrid $property property pro$	(sp ² hybrid orbital N ⁻)

No.		Suggested Answer	Marks
4	(a)	$P_{Total} = 745 \text{ torr}$ $P_{N2} = 745 \text{ torr} - 25 \text{ torr} = 720 \text{ torr} = 0.947 \text{ atm}$	1
		$PV = nRT$ $n = \frac{PV}{RT}$	1
		$=\frac{(0.947 \text{atm})(0.511 \text{L})}{(0.08206 \text{ Latm mol}^{-1} \text{K}^{-1})(299.15 \text{K})}$	1
		= 0.01971 mol	1
		Mass = $0.01971 \text{ mol x } 28 \text{ gmol}^{-1}$ = $\mathbf{0.552 g}$	1
	(b)	- A has higher boiling point because A has stronger intermolecular forces than B	1
		- More energy is required to overcome the intermolecular forces between A molecules than in B.	1
		- A can hardly vaporise to achieve atmospheric pressure, therefore A has lower vapour pressure than B.	1
		- Thus, A boils at higher temperature.	
		- Boling point A is higher than B.	1
		TOTAL MARKS	9

No.		Suggested Answer	Marks
5	(a)	$PCl_5(g) = PCl_3(g) + Cl_2(g)$	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1
		$Kc = \frac{[PCl_3][Cl_2]}{[PCl_3]}$	1
		$Kc = \frac{(1.23)(1.23)}{(3.77)}$	1
		= 0.401	1
		$\Delta n = 2-1 = 1$	1
		$K_p = K_c(RT)^{\Delta n}$	1
		@	
		$K_p = (0.401)(0.08206 \times 298.15)^1$	
		= 9.81	1
	(b)(i)	Equilibrium position shifts to the right / forward	1
	(b)(ii)	Equilibrium position shifts to the left / backward	1
_		TOTAL MARKS	9

No.			Sug	ggested An	swer		Marks		
6	(a)	CH ₃ C	1						
			CH₃COOH	H ₂ O	HCOO-	H3O+			
		[] _i /M	0.125	<u> </u>	0	0			
		[] _c /M	- X	-	+x	+x	1		
		[] _e /M	0.125-x	-	X	X			
		$1.8 \times 10^{-5} =$	$\frac{\text{OO}^{-}[\text{H}_{3}\text{O}^{+}]}{\text{GCOOH}}$ @ $\frac{(x)(x)}{0.125 - x}$ s very small, 0		0.125		1		
		$x = 1.5 \times 10^{-3}$ $[H_3O^+] = x = 10^{-3}$	3 M = 1.5 ×10 ⁻³ M				1		
		pH = -log [I	pH = -log [H3O+]						
		$= -\log(1)$							
		pH = 2.82	1						
	(b) (i)	$pH = pK_a$							
		$5.0 = -\log$	1						
		= 4.221	1						
		Mol of C ₆ H							
			1						
		Mass of C ₆ I	H_5 COON $a=0$.	1266 mol x	x 144 g mol ⁻¹				
			= 18	8.23 g			1		

	(b)(ii)	When small amount of KOH is added, it will be neutralized by C_6H_5COOH	
		@	
		$C_6H_5COOH (aq) + OH^- (aq) \rightarrow C_6H_5COO^- (aq) + H_2O (l)$	1
		The concentration of C ₆ H ₅ COOH will decrease a little while the concentration of C ₆ H ₅ COO ⁻ will	
		increase. The pH of the solution is not much affected.	1
	(c)	$Mg(OH)_2(s) \leftrightharpoons Mg^{2+}(aq) + 2 OH^-(aq)$	1
		$K_{sp} = [Mg^{2+}] [OH^{-}]^{2} @$	
		$2.0 \times 10^{-11} = [s] [2s]^2$	1
		$2.0 \times 10^{-11} = 4s^2$	
		$= 2.236 \times 10^{-6} \text{mol L}^{-1}$	1
	14		