Clustering

ML Problems

Supervised Learning

Unsupervised Learning

classification or categorization

clustering

regression

dimensionality reduction

Continuous

Discrete

Clustering (Unsupervised Learning)

Where is Clustering used?

Understanding

 Group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

Summarization

Reduce the size of large data sets

More realworld application s?

Clustering precipitation in Australia

Where is Clustering used?

Understanding Documents

Where is Clustering Used?

- City-planning: Identifying groups of houses according to their house type, value, and geographical location
- Climate change: understanding earth climate, find patterns of atmospheric and ocean
- Finance: stock clustering analysis to uncover correlation among underlying shares
- Information retrieval/organization: Google search, topic-based news
- Land use: Identification of areas of similar land use in an earth observation database
- Marketing: Help marketers discover distinct groups in their customer bases, and then use this knowledge to develop targeted marketing programs
- Social network mining: special interest group automatic discovery

Clustering: Objectives

- Discover underlying structure of data
- What sub-populations exist in the data?
 - How many are there?
 - What are their sizes?
 - Do elements in a sub-population have any common properties?
 - Are sub-populations cohesive? Can they be further split?
 - Are there outliers?

Clustering as Preprocessing

- Popular application of clustering
- Estimated group labels h_j (soft) or b_j (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor

Types of Clustering Methods

In terms of overlap of clusters

- Hard clustering: clusters do not overlap
- Soft clustering: clusters may overlap
 - "Strength of association" between element and cluster

In terms of methodology

- Flat/partitioning (vs) hierarchical: Set of groups (vs) taxonomy
- Density-based (vs) Model/Distribution-based: DBSCAN vs GMMs
- Connectionist (vs) Centroid-based: k-means vs Hierarchical clustering

Clustering Methods

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

• How?

Outline

- K-Means
- Hierarchical Clustering
- Model-based Clustering (GMM and Expectation Maximization)
- Evaluation of Clustering Algorithms

k-Means Clustering

k-Means Clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- chicken-and-egg problem
- Number of clusters, K, must be specified
- The basic algorithm is very simple

k-Means: Illustration

k-Means Clustering

- Initial centroids are often chosen randomly.
 - Clusters produced can vary from one run to another.
 - The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity etc.
- K-means will converge for common similarity measures mentioned above (local minimum though)
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Nearby points may not end up in the same cluster! Example?

5-Nov-23

Two different k-Means clusterings

Selecting Initial Centroids

- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

- For example, if K = 10, then probability = $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't

Possible Solutions

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated

Evaluating k-Means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

- x is a data point in cluster Ci and m_i is the representative point for cluster Ci
- Can show that m_i corresponds to the center (mean) of the cluster
- Given two clusterings, we can choose the one with the smaller error
- One easy way to reduce SSE is to increase K, the number of clusters
- A good clustering with smaller K can have a lower SSE than a poor clustering with higher K
- Relatively faster than other clustering methods: O(# iterations * # clusters * # instances * # dimensions)

Limitations

- k-Means has problems when clusters are of differing
 - Sizes, Densities, Non-globular shapes
- Sensitive to outliers
- The number of clusters (K) is difficult to determine

(B): Ideal clusters

Limitations

- k-Means has problems when clusters are of differing
 - Sizes, Densities, Non-globular shapes

Extensions

- Use of various distance metrics
 - Euclidean distance
 - Manhattan (city-block) distance
 - Cosine distance

Chebyshev distance

K-Means as optimization problem

 minimizes the sum of squared distances from the mean to every point in the data.

// return cluster assignments

$$\mathcal{L}(z, \mu; \mathbf{D}) = \sum_{n} \left| \left| x_n - \mu_{z_n} \right| \right|^2 = \sum_{k} \sum_{n: z_n = k} \left| \left| x_n - \mu_k \right| \right|^2 \qquad J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

Algorithm 35 K-MEANS(D, K) 1: for k = 1 to K do $\mu_k \leftarrow$ some random location // randomly initialize mean for kth cluster 3: end for

for n = 1 to N do $z_n \leftarrow \operatorname{argmin}_k || \mu_k - x_n ||$ // assign example n to closest center

for k = 1 to K do $\mu_k \leftarrow \text{MEAN}(\{x_n : z_n = k\})$ // re-estimate mean of cluster k

end for 11: until converged

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

$$\frac{dJ}{d\mu_k} = 2\sum_{n=1}^{N} r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$

$$\boldsymbol{\mu}_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}.$$

4: repeat

12: return z

end for

K-Means as optimization problem

 minimizes the sum of squared distances from the mean to every point in the data.

$$\mathcal{L}(z, \mu; \mathbf{D}) = \sum_{n} \left| \left| x_n - \mu_{z_n} \right| \right|^2 = \sum_{k} \sum_{n: z_n = k} \left| \left| x_n - \mu_k \right| \right|^2 \qquad J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \mu_k\|^2$$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

```
Algorithm 35 K-MEANS(D, K)
1: for k = 1 to K do
\mu_k \leftarrow some random location
                                                // randomly initialize mean for kth cluster
3: end for
 4: repeat
      for n = 1 to N do
         z_n \leftarrow \operatorname{argmin}_k || \mu_k - x_n ||
                                                   // assign example n to closest center
      end for
      for k = 1 to K do
        \mu_k \leftarrow \text{MEAN}(\{x_n : z_n = k\})
                                                         // re-estimate mean of cluster k
     end for
11: until converged
                                                            // return cluster assignments
12: return z
```


Choosing number of clusters: Elbow plot in Clustering

