(2)

Data Provided: You may need to use the following physical constants:

Charge on electron: $q = -1.602 \times 10^{-19} \text{ C}$

Free electron rest mass: $m_0 = 9.110 \times 10^{-31} \text{ kg}$

Speed of light in vacuum: $c = 2.998 \times 108 \text{ m s}^{-1}$

Planck's constant: $h = 6.626 \times 10^{-34} \text{ Js}$

Boltzmann's constant: $k = 1.381 \times 10^{-23} \text{ JK}^{-1}$

Melting point of ice: $0^{\circ}\text{C} = 273.2 \text{ K}$

Permittivity of free space: $\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1}$

Permeability of free space: $\mu_0 = 4\pi \times 10^{-7} \text{ Hm}^{-1}$

The University of Sheffield

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

EEE225 Analogue and Digital Electronics

Answer **ALL** questions.

Part A: State whether each of the following statements is TRUE or FALSE and justify your answer with a brief (2 lines maximum) justification.

erature device operation.
-

Metal-semiconductor schottky junctions are usually used when high speed switching is required.
You can differentiate between an LED and a laser by the amount of optical power they emit.
Any semiconductor material that can be used to make a solar-cell can also be used to make a photodiode.
When a silicon a n innation diada is compared to conlicht way can obtain a voltage
When a silicon p-n junction diode is exposed to sunlight, you can obtain a voltage at the terminals that is approximately equal to the built-in voltage.
In a perfectly compensation doped semiconductor, the concentration of acceptors
and donors falls to below the intrinsic carrier concentration.

 In an enhancement mode MOST, the drain current can vary linearly with drain
voltage.
Part B: Question 11
Sketch, label and discuss briefly the conduction mechanisms in an induced
channel Metal Oxide Semiconductor Transistor (MOST). Identify all the significant parts of the device.
significant parts of the device.

b) The unsaturated drain characteristic of such a device as in (a) can be represented by:

$$I_d = \frac{\mu_e C_g}{l^2} \left[V_g - V_T - \frac{V_d}{2} \right] V_d$$

where the symbols have their usual meaning.

i) Under what voltage conditions does saturation of the drain current happen?

ii) What is the transconductance in the saturation region?

(2)

semiconductor junction in equilibrium when the semiconductor is n-type,	iii)	Show that the transconductance is simply given by twice the ratio of the saturated drain current to drain voltage.
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
semiconductor junction in equilibrium when the semiconductor is n-type, identifying clearly the built-in (contact) potential and the Fermi-level. State		
identifying clearly the built-in (contact) potential and the Fermi-level. State		
clearly the relative work functions for the metal and semiconductor.		
	clearly th	e relative work functions for the metal and semiconductor.

Questions 12-20 are about the building blocks of analogue circuits. Answer all questions.

Figure 1: Some Common Analogue Transistor Circuit Blocks

12 Identify the circuits in Figure 1 by writing the letters A to F next to the names below. *Some Letters may fall into two categories.* **{1 mark for each correct assignment}**

Zetters may fatt this the cares	erres (I marii ioi each collec	e assignment,
Emitter follower	Differential amplifier	Cascode
Common base	Push pull	Current Mirror
Common collector	Darlington	Common Emitter

Using the column headings below list the transistors in Figure 1 according to type.

{1 mark for each correct}

NPN and N Channel	PNP and P Channel

State two assumptions		
	* O - d - 14	an
In the import described		
		OI
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A		V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
differential mode? {1 r In Figure 1f, $+V_s = 1$ transistors are 100 μ A	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of
transistors are 100 µA	nark } 5 V, $-V_s = -15$ V, $V_B = 4.3$ S. Find values of R_{11} and R_{12} that	V and the collector currents of

_	Draw the small signal equivalent circuit of Figure 1c and label all components. {3 mark
	Derive an expression for the transimpedance (collector voltage/input current, v_c/i_{in}) of
	Fig. 1c. {7 marks}
	Hint: Start by summing currents at the emitter.
	Why is R_6 is often neglected in the calculation of transimpedance for this circuit. {2 max}
	why is 10 is often neglected in the calculation of transmipedance for this circuit. (2 mass)

Hence or otherwise describe the impedance transforming nature of the transistor in a sentances. {3 marks}								
	Hence or o	therwise desc	cribe the ir	npedance	transformi	ng nature	of the tran	sistor in a