

ÉPREUVE SPÉCIFIQUE - FILIÈRE MPI

MATHÉMATIQUES 2

Durée: 4 heures

N.B.: le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui sembler être une erreur d'énoncé, il le signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

RAPPEL DES CONSIGNES

- Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction de votre composition ; d'autres couleurs, excepté le vert, peuvent être utilisées, mais exclusivement pour les schémas et la mise en évidence des résultats.
- Ne pas utiliser de correcteur.
- Écrire le mot FIN à la fin de votre composition.

Les calculatrices sont interdites.

Le sujet est composé de deux exercices et d'un problème tous indépendants.

EXERCICE 1

On note $E = \mathbb{R}_2[X]$.

Dans cet exercice, on pourra utiliser sans démonstration que pour tout entier naturel n, la fonction $x \mapsto x^n e^{-x}$ est intégrable sur $\left[0, +\infty\right[$ et $\int_0^{+\infty} x^n e^{-x} dx = n!$.

- **Q1.** Démontrer que l'on définit un produit scalaire sur E en posant, pour tout couple (P,Q) de polynômes de E, $\langle P|Q\rangle = \int_0^{+\infty} P(x)Q(x)e^{-x}dx$. On notera $\| \ \|$ la norme euclidienne associée.
- **Q2.** Déterminer le projeté orthogonal de X^2 sur $F = \mathbb{R}_1[X]$ noté $P_F(X^2)$.
- **Q3.** Justifier que $\|X^2 P_F(X^2)\|^2 = \|X^2\|^2 \|P_F(X^2)\|^2$ puis calculer le réel $\inf_{(a,b) \in \mathbb{R}^2} \int_0^{+\infty} (x^2 ax b)^2 e^{-x} dx$.

EXERCICE 2

Soit $p \in]0,1[$, q = 1-p. Soit X et Y deux variables aléatoires indépendantes à valeurs dans $\mathbb N$ définies sur un même espace probabilisé et suivant la même loi définie par :

$$\forall k \in \mathbb{N}, P(X = k) = P(Y = k) = pq^k$$
.

On considère les variables aléatoires Z et T définies par $Z = \sup(X,Y)$ et $T = \inf(X,Y)$.

- **Q4.** Pour tout couple (m,n) d'entiers naturels, déterminer $P((Z=m) \cap (T=n))$ en distinguant trois cas : m > n, m < n et m = n.
- **Q5.** En déduire la loi de la variable aléatoire *Z*.

PROBLÈME

Dans ce problème, E est un \mathbb{C} -espace vectoriel de dimension finie.

Partie I

Q6. Un exemple

Vérifier que la matrice $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ est diagonalisable.

Démontrer que les matrices $\Pi_1 = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ et $\Pi_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sont des matrices de projecteur puis calculer $\Pi_1 + 5\Pi_2$, $\Pi_1 + \Pi_2$ et $\Pi_1\Pi_2$.

Q7. On rappelle le lemme de décomposition des noyaux :

Si $P_1, P_2, ..., P_r$ sont des éléments de $\mathbb{C}[X]$ deux à deux premiers entre eux de produit égal à T, si u est un endomorphisme de E alors :

$$\operatorname{Ker}[T(u)] = \operatorname{Ker}(P_1(u)) \oplus \operatorname{Ker}(P_2(u)) \oplus ... \oplus \operatorname{Ker}(P_r(u)).$$

L'objet de cette question est de démontrer le cas particulier r = 2.

Soit u un endomorphisme de E et soit P et Q deux polynômes premiers entre eux. Justifier que $\operatorname{Ker}(P(u)) \subset \operatorname{Ker}[(PQ)(u)]$ (de même, on a : $\operatorname{Ker}(Q(u)) \subset \operatorname{Ker}[(PQ)(u)]$).

Démontrer que : $\operatorname{Ker}[(PQ)(u)] = \operatorname{Ker}(P(u)) \oplus \operatorname{Ker}(Q(u))$.

Dans la suite du problème, on pourra utiliser librement le lemme de décomposition des noyaux.

Q8. Soit u un endomorphisme de E et soit π_u son polynôme minimal.

On suppose que $\pi_u = P_1^{k_1} P_2^{k_2}$ où les polynômes P_1 et P_2 sont premiers entre eux. On pose, pour tout entier $i \in \{1,2\}$, $Q_i = \frac{\pi_u}{P_i^{k_i}}$.

Justifier qu'il existe deux polynômes R_1 et R_2 de $\mathbb{C}[X]$ tels que $R_1Q_1 + R_2Q_2 = 1$.

Pour la suite de cette partie, on notera $\pi_u = P_1^{k_1} P_2^{k_2} ... P_m^{k_m}$ la décomposition en facteurs premiers du polynôme minimal et on admettra que, si pour tout entier $i \in \{1, 2, ..., m\}$, $Q_i = \frac{\pi_u}{P_i^{k_i}}$, il existe des polynômes de $\mathbb{C}[X]$ tels que $R_1Q_1 + R_2Q_2 + ... + R_mQ_m = 1$.

Q9. On pose alors pour tout entier $i \in \{1, 2, ..., m\}$, $p_i = R_i(u) \circ Q_i(u)$.

Démontrer que pour tout couple (i,j) d'entiers distincts de $\{1,2,...,m\}$, on a les trois résultats suivants :

$$p_i \circ p_j = 0$$
,

$$\sum_{i=1}^m p_i = id_E,$$

et chaque p_i est un projecteur de E.

Les p_i seront appelés projecteurs associés à u.

- **Q10.** Soit u un endomorphisme de E et soit χ_u son polynôme caractéristique : $\chi_u = \prod_{i=1}^m (X \lambda_i)^{\alpha_i}$ (avec les λ_i deux à deux distincts et les α_i des entiers naturels non nuls) et pour tout entier $i \in \{1, 2, ..., m\}$, $N_i = \operatorname{Ker}(u \lambda_i i d_E)^{\alpha_i}$ le sous-espace caractéristique associé à λ_i . Justifier que $E = N_1 \oplus N_2 \oplus ... \oplus N_m$.
- **Q11.** Démontrer que $E = \operatorname{Im} p_1 \oplus \operatorname{Im} p_2 \oplus ... \oplus \operatorname{Im} p_m$.
- **Q12.** Démontrer que pour tout entier $i \in \{1, 2, ..., m\}$, Im $p_i = N_i$.

Partie II

Dans toute cette partie, on suppose que l'endomorphisme u est diagonalisable et on note $\lambda_1, \lambda_2, ..., \lambda_m$ ses valeurs propres distinctes.

- **Q13.** Quel est alors le polynôme minimal π_u de u?
- **Q14.** On note toujours, pour tout entier $i \in \{1, 2, ..., m\}$, $Q_i = \frac{\pi_u}{P_i}$ où $P_i = X \lambda_i$, et on pose $\theta_i = \frac{1}{Q_i(\lambda_i)}$.

Donner, sans détails, la décomposition en éléments simples de $\frac{1}{\pi_u}$ puis démontrer que les projecteurs associés à u sont, pour tout entier $i \in \{1,2,...,m\}$, $p_i = \frac{Q_i(u)}{Q_i(\lambda_i)}$.

Q15. Démontrer que
$$X = \sum_{i=1}^{m} \frac{\lambda_i Q_i(X)}{Q_i(\lambda_i)}$$
 puis que $u = \sum_{i=1}^{m} \lambda_i p_i$ (décomposition spectrale de u).

- a) Justifier que la matrice A est diagonalisable et calculer la matrice A^2 .
- **b)** En déduire le polynôme minimal π_A de la matrice A puis la décomposition spectrale de la matrice A. On notera Π_1 et Π_2 les matrices des projecteurs associés.
- c) Calculer, pour tout entier naturel q, A^q en fonction des matrices Π_1 et Π_2 .
- **Q17.** On note $\mathbb{C}[v]$ l'algèbre des polynômes d'un endomorphisme v d'un \mathbb{C} -espace vectoriel de dimension finie.

Démontrer que la dimension de l'espace vectoriel $\mathbb{C}[v]$ est égal au degré du polynôme minimal π_v de l'endomorphisme v.

Q18. On revient au cas u diagonalisable avec $\pi_u = \prod_{i=1}^m (X - \lambda_i)$.

Démontrer que la famille $(p_1,p_2,...,p_m)$ des projecteurs associés à u est une base de l'espace vectoriel $\mathbb{C}[u]$.

- **Q19.** Dans le cas d'un endomorphisme u non diagonalisable, la famille $(p_1, p_2, ..., p_m)$ des projecteurs associés à u est-elle toujours une base de l'espace vectoriel $\mathbb{C}[u]$?
- **Q20.** Nous avons vu que si u est un endomorphisme de E diagonalisable, il existe m endomorphismes non nuls p_i de E, tels que pour tout entier q on ait $u^q = \sum_{i=1}^m \lambda_i^q p_i$.

Nous allons étudier une « réciproque ».

Soit u un endomorphisme de E, $\mathbb C$ -espace vectoriel de dimension finie. On suppose qu'il existe m endomorphismes non nuls f_i de E et m complexes $\lambda_1, \lambda_2, ..., \lambda_m$ distincts, tels que pour tout

entier naturel
$$q$$
 on ait $u^q = \sum_{i=1}^m \lambda_i^q f_i$.

Démontrer que *u* est diagonalisable.

FIN