

ÜBUNGEN

zur Veranstaltung ${\it Quanten computing}$ im Studiengang Angewandte Informatik

No. 5 Martin Rehberg

Präsenzaufgaben

Aufgabe 1: Zeigen Sie das für N=4 (bzw. n=2) der finale Zustand im Algorithmus von Grover genau $|\omega\rangle$ ist.

Aufgabe 2: Untersuchen Sie die Wirkung des Schaltkreises auf das Register $R = |q_2q_1q_0\rangle$ mit $|q_2\rangle = |1\rangle$ und $|q_1q_0\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle$.

Übungsaufgaben

Aufgabe 1: Implementieren Sie den Algorithmus von Simon mit dem Orakel

```
orcl = QuantumCircuit(6)
orcl.x(0)
orcl.ccx(0,2,5)
orcl.x([0,2])
orcl.ccx(0,2,3)
orcl.x(2)
orcl.ccx(0,1,3)
orcl.ccx(0,1,5)
```

Lösen Sie das Gleichungssystem und bestimmen Sie den String $s = s_2 s_1 s_0$.

Aufgabe 2 (No-Cloning Theorem): Ein Quantenkopierer ist eine Transformation K, die für beliebige Zustände $|\psi\rangle$

$$K: |\psi\rangle \otimes |\omega\rangle \mapsto |\psi\rangle \otimes |\psi\rangle$$

erfüllt, wobei $|\omega\rangle$ beliebig, aber fest gewählt, ist. Zeigen Sie das es keinen linearen Quantenkopierer geben kann.

Hinweis: Betrachten Sie die Wirkung von K auf $|0\rangle \otimes |0\rangle$, $|1\rangle \otimes |0\rangle$ und $\frac{|1\rangle + |0\rangle}{\sqrt{2}} \otimes |0\rangle$. Führen Sie einen Widerspruch herbei, indem Sie die Linearität von K im letztgenannten Zustand berücksichtigen.