Converting Fancy Turing Machines: Problems for Week 6 with Model Solutions

Important Note: All Turing machines in your solutions must run in polynomial time.

Exercise 1 Design a two-tape Turing machine for stretching a given input over the alphabet $\{a, b, \bot\}$. For example, the input block abab will be stretched to aabbaabb, so that it can be used by simple simulating TMs. You can assume that all other cells on the main tape are initially blank, except for the given input. The auxiliary tape is also blank with the aux head positioned at the same location as the main head.

Solution 1

Exercise 2 Review the single tape Turing machine given in the handouts, which makes a space at the current head position e.g. given the input $\dot{a}bab$ it results in the output $\dot{a}abab$. Now extend this Turing machine to stretch the input $\dot{a}bab$ over the alphabet $\{a, b, \bot\}$ to $\dot{a}abbaabb$. You can assume that all other cells on the input tape are initially blank, except for the given input.

Solution 2

Exercise 3

(a) Convert the following configurations of a fancy TM using Auxiliary characters into simple configurations using the following relation (different from the relation shown in the handout):

Character on Fancy tape	Represented on Simple tape
а	aa
b	ab
С	ba
d	bb

Fancy TM Configurations using Aux. Chars	Simple TM Configurations using Basic Chars
à_b_c_d_	
adċbadbc	
dadabbċc	

(b) Convert the following configurations of a two-tape Turing machine for the alphabet {a, b, _} into a single tape machine configurations using the following extended alphabet:

$$\{a, b, L, R, H\}.$$

Two-tape TM Configurations		Single-tape TM Configurations
Main Tape Contents	Auxiliary Tape Contents	Single-tape TWI Configurations
àbabb	_aa_b	
bb_aa_	_ba॑_ba	
b_a_b	a_b_b_a	

Solution 3

(a) Fancy TM using Auxiliary characters to simple TM configurations:

Fancy TM Configurations using Aux. Chars	Simple TM Configurations using Basic Chars
à_b_c_d_	åaabbabb
adċbadbc	aabbbaabaabbabba
dadabbċc	bbaabbaaababbaba

(b) Two-tape Turing machine configurations to a single tape machine configurations:

Two-tape TM Configurations		Single-tape TM Configurations
Main Tape Contents	Auxiliary Tape Contents	Single-tape TWI Comigurations
àbabb	_aa∟b	LHab.a.a.a.bbHbR
bb_aa_	∟ba॑∟ba	L.bb.bHa.aa.bHaR
b_a_b	a_b_b_a	LHb_aa_b_Hb_baR

- **Exercise 4** (a) Write a single-tape simulating program using the extended alphabet $\{a, b, \bot, L, R, H\}$ that corresponds to the instruction "Write Aux a" on the two-tape machine using $\{a, b, \bot\}$.
 - (b) Write a single-tape simulating program using the extended alphabet {a, b, .., L, R, H} that corresponds to the instruction "Right Main" on the two-tape machine using {a, b, ...}.

Solution 4

(a) The single-tape simulating program for the "Write Aux a" instruction is given below:

(b) The single-tape simulating program for the "Right Main" instruction is given below:

Exercise 5 (a) Given the following two-tape Turing machine configuration as simulated by a single-tape TM, *perform* each of the two-tape TM steps mentioned below in the table and show the corresponding single-tape configurations.

Two-tape TM Steps	Single-tape Simulating TM Configurations (The starting single-tape configuration is given below) La_bHa_aHb_b_b_R
Write Main a	
Right Main	
Write Aux b	
Left Aux	
Read Main	

(b) Given the following 2-Dimensional Turing machine configuration as simulated by a single-tape TM, *perform* each of the 2D-TM steps mentioned below in the table and show the corresponding single-tape configurations.

2-Dimensional TM Steps	Single-tape Simulating TM Configurations (The starting single-tape configuration is given below) TLx., RL, ,, ÖRB
Left	
Left	
Up	
Write x	
Down	
Write o	
Right	
Write x	
Up	

Solution 5 (a) Two-tape TM simulation by a single-tape TM:

	Single-tape Simulating TM Configurations
Two-tape TM Steps	(The starting single-tape configuration is given below)
	Ĺa_bHa_aHb_b_b_LR
Write Main a	Ĺa_bHa_aHa_b_bR
Right Main	Ĺa_bHa_a_a_bHbR
Write Aux b	La_bHb_a_a_a_bHbR
Left Aux	LHa_b_b_a_a_a_bHbR
Read Main	$\dot{ t L}$ Ha_b_b_a_a_a_bHbR / $Return\ b$

(b) 2D-TM simulation by a single-tape TM:

	Single-tape Simulating TM Configurations
2-Dimensional TM Steps	(The starting single-tape configuration is given below)
	TLxRLòRB
Left	TLx_RLcoRB
Left	TLx_RLRL_oRB
Up	TLx_RL_oRB
Write x	TLxRLxRLoRB
Down	TLx_RLx_RLi_oRB
Write o	TLxRLxRLoorB
Right	TLxRLxRLo_oRB
Write x	TLxRLxRLoxoRB
Up	TLxRLxRLoxoRB

Exercise 6 Consider that you have a fancy Turing machine with the input alphabet $\{0, 1, \bot\}$ and the auxiliary alphabet including $\{2, 3, 4, 5, 6, 7\}$ symbols. In order to represent the fancy TM's tape configuration as a simple TM's tape configuration, we define the following relation:

Symbol on Fancy tape	Represented on Simple tape
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111
J	

Using the above relation, show how the simple TM will simulate:

- (a) the Left and Right steps of the fancy TM.
- (b) the $Write\ 1$ and $Write\ 6$ instructions.
- (c) the *Read* instruction, which should cover all possible values that can be read by the fancy TM.

Solution 6

(a) Simulating the Left and Right steps of the fancy TM:

(b) Simulating the $Write\ 1$ and $Write\ 6$ instructions of the fancy TM:

(c) Simulating the Read instruction, which covers all possible values that can be read by the fancy TM:

