1 Operations

higher order roots	$\sqrt[mn]{x+y}$ $\sqrt[3]{2}$	\sqrt[mn]{x+y} \sqrt[3]{2}
root sign	$\sqrt{[x+y]}$	\surd[x+y]
force large fraction	$\frac{a+b}{x+\log\frac{Y}{Z}}$	\frac{a+b}{x+\log\dfrac{Y}{Z}}
Continued fraction	$1 + \frac{2}{3 + \frac{4}{5 + \frac{6}{7 + \cdots}}} = \frac{1}{\sqrt{e} - 1}$	1+\cfrac{2}{
prime	y'' + y' + y = u	y'' + y' + y = u
mod	$a \mod n = b$ $a \equiv b \pmod n$ $a \equiv b \mod n$ $a \equiv b \pmod n$	<pre>\begin{array}{l} a\bmod n = b \\ a\equiv b\pmod n \\ a\equiv b\mod n \\ a\equiv b\pod n \end{array}</pre>

2 Subscripts and superscripts

multilevel sub- scripts	$\sum_{\substack{1 \le m \le N, \\ m \text{ odd}}} P(m)$	\sum_{\substack{ 1 \le m \le N, \\ m\text{ odd}}} P(m)
sub- and super- scripts before the symbol	${}_nC_k$	{}_n C_k
subscripts and superscripts for large symbols	$a \sum_{b}' c$	\sideset{^a_b}{'_c} \sum

3 Sums, integrals, and products

contour integral	\oint_C	\oint_C
double and triple integrals	$\iint_S \ \iiint_S$	\iint_S \iiint_S
even more integrals	$\iiint_S \int \cdots \int_S$	\iiiint_S \idotsint_S
integrals with alternative limit placement	$\int\limits_{lpha}^{eta}\int\limits_{S}$	\int\limits_\alpha^\beta \iint\limits_S
Unions and inter- sections	$\bigcup_{\alpha \in S} \bigcap_{V \in \mathfrak{V}}$	\bigcup_{\alpha\in S} \bigcap_{V\in\mathfrak{V}}
Direct sums, co- products, and so on	⊙ ⊕ ⊗ ∐ V ∧	<pre>\begin{array}{c} \bigodot \bigoplus\\ \bigotimes \bigsqcup\\ \biguplus \coprod\\ \bigvee \bigwedge\\ \end{array}</pre>

4 Brackets

pairing brackets	(),[],{} , [],] ()	(\;), [\;], \{\;\} \lvert\;\rvert, \lVert\;\rVert \lceil\;\rceil, \lfloor\;\rfloor
Bracket size can be specified explicitly	$\left(\left(\left(\left(\begin{array}{c} \left(\left(\begin{array}{c} \\ \end{array}\right)\right)\right)\right)\right)$	\Biggl(\biggl(\Bigl(\bigl(\Biggr\}\biggr\}\Bigr\}\bigr\}
visually to large	$\left[\sum_{j}\left \sum_{i}x_{ij}\right ^{2}\right]^{1/2}$	<pre>\left[\sum_j \left \sum_i x_{ij}\right ^2 \right]^{1/2}</pre>

manually-sized	$\left[\sum_{j} \left \sum_{i} x_{ij}\right ^{2}\right]^{1/2}$	\biggl[\sum_j \Bigl \sum_i x_{ij}\Bigr ^2 \biggr]^{1/2}
----------------	--	---

5 Multilien formulas and piecewise functions

plecewise func- tion/cases	$a_k = \begin{cases} k & \text{for } k \le n/2\\ n & \text{for } k = n/2\\ k - 1 & \text{otherwise} \end{cases}$	<pre>a_k = \begin{cases} k & \text{for \$k \le n/2\$}\\ n & \text{for \$k=n/2\$}\\ k-1 & \text{otherwise}</pre>
multiline equations	$\tan^2 x = \sin^2 x / \cos^2 x$ $= 1/\cos^2 x - 1$	\begin{split}\tan^2 x = \sin^2 x/\cos^2 x\\ = 1/\cos^2 x - 1 \end{split}
Systems of equations	$\begin{cases} ax + by = r_1 \\ cx + dy = r_2 \end{cases}$	\left\{\begin{array}{1} ax+by=r_1\\ cx+dy=r_2 \end{array}\right.

6 Arrows