MPEI 2019-2020

Variáveis aleatórias (continuação): Distribuições

Distribuições - Motivação

- As funções de massa de probabilidade e de densidade de probabilidade (para o caso contínuo) podem assumir as mais variadas formas
- Mas existe um conjunto de "formas" (distribuições) que aparecem repetidamente em muitos e variados problemas
 - Formam um conjunto de ferramentas base que é muito útil conhecer ...

Existem muitas distribuições

- Discretas
 - Bernoulli
 - Binomial
 - Poisson
 - Geométrica
 - **–** ...
- Contínuas
 - Uniforme
 - Normal
 - Qui-quadrado
 - T de Student ...
- Ver Wikipedia
 - https://en.wikipedia.org/wiki/List of probability distributions

Distribuições Discretas

- Distribuição directamente relacionada com as experiências de Bernoulli
- Seja A um acontecimento relacionado com o resultado de uma experiência aleatória
- A variável de Bernoulli define-se como

•
$$I_A(\omega) = \begin{cases} 1 & se \ \omega \in A \\ 0 & caso \ contr\'ario \end{cases}$$

 O I que usamos para a designar resulta de ser usada muitas vezes como indicadora da ocorrência/não ocorrência de um evento

- Quando o evento ocorre a variável aleatória $\it I$ assume o valor $\it 1$
 - caso contrário o valor 0

•
$$S_I = \{0,1\}$$

•
$$p_I(1) = p$$

•
$$p_I(0) = 1-p$$

- Valor esperado E[I] ?
- Var(I) = ?

•
$$E[I] = \sum_{i} x_{i} p(x_{i})$$

$$= 0 \times (1 - p) + 1 \times p$$

$$= p$$

•
$$Var(I) = E[I^2] - (E[I])^2$$

•
$$E[I^2]=0^2 \times (1-p) + 1^2 \times p = p$$

•
$$Var(I) = p - p^2 = p(1-p)$$

Distribuição Binomial

- Directamente relacionada com a Lei Binomial
- Seja X o número de vezes que um acontecimento A ocorre em n experiências de Bernoulli
 - isto é, X representa o número de sucessos em n experiências (observações)

•
$$X = \sum_{j=1}^{n} I_j$$
 $\rightarrow S_X = \{0,1,2,...,n\}$

Distribuição Binomial

•
$$p_X(k) = \Pr(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$$

•
$$F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} {n \choose k} p^k (1-p)^{n-k}$$

Distribuição Binomial – Média e Variância

• Fácil derivar usando o facto de termos \mathbf{n} variáveis de Bernoulli independentes, que designamos por I_i

•
$$E[X] = E[\sum I_i] = \sum E[I_i] pq$$
?
= $p + p + \dots + p = np$

De forma similar

$$Var(X) = Var(\sum I_i) = \sum Var(I_i) = \cdots = n p (1-p)$$

(as variáveis aleatórias I_i são independentes)

Distribuição Binomial - Exemplos

- Têm distribuição Binomial, por exemplo:
 - Número de peças defeituosas num lote de um determinado tamanho (ex: 50 peças)
 - Número de respostas certas num exame de verdadeiro falso

 Número de clientes que efectuaram compras em 100 que entraram numa loja

Distrib. Binomial - Áreas de aplicação

- A distribuição surge em muitas áreas cientificotecnológicas:
 - Engenharia de produção: Muitas vezes as medidas de controlo de qualidade são baseadas na distribuição binomial
 - O caso Binomial aplica-se a qualquer situação industrial em que o resultado é binário e os resultados de ensaio são independentes e com probabilidades constantes
 - Medicina: Por exemplo os resultados "cura" ou "não cura" são importantes na indústria farmacêutica
 - Indústria Militar: "acerta" "falha" é muitas vezes a interpretação do lançamento de um míssil ou de uma missão
 - Informática: "acerto" e "falha" é uma interpretação possível para detectores de SPAM, testes a métodos/funções de um programa, procura de informação na web ...

Exemplo de aplicação 1: Transmissão digital

- Um sistema de transmissão digital envia um pacote de 1 kByte através de canal com ruído sendo a probabilidade de erro de cada bit 10^{-3} (ou seja 1 bit em cada mil).
- Considerando que os erros são independentes, determine:
 - Probabilidade de haver 1 erro ?
 - Probabilidade de haver erro ?

Exemplo 2 – segurança de aviões

- Considere que um motor de avião pode falhar com probabilidade p e que as falhas em motores distintos são independentes.
- Se um avião se despenha quando mais do que 50% dos motores falham, é mais seguro voar num avião de 4 motores ou de 2 motores ?
- Faz parte do guião Prático 3
- Como resolver?
- Sugestão: calcular a probabilidade de cair um avião com 2 motores, repetir para o de 4 motores e comparar os resultados (será função da probabilidade de falha de um avião)

Possível resolução

 O de 2 motores despenha-se se os 2 motores falharem. Qual a probabilidade de 2 falhas em 2 motores ?

•
$$p2 = p_X(2, n = 2) = {2 \choose 2} p^2 (1-p)^{2-2} = p^2$$

- O de 4 despenha-se se 3 ou 4 falharem. Qual a probabilidade ?
- $p4 = p_X(3, n = 4) + p_X(4, n = 4)$
- $= {4 \choose 3} p^3 (1-p)^{4-3} + {4 \choose 4} p^4 (1-p)^{4-4}$
- = $4 p^3 (1-p) + p^4 = 4 p^3 3 p^4$
- Relação entre p2 e p4
- $\frac{p4}{p2} = 4p 3p^2 = p(4-3p)$
 - NOTE que depende de p

• • •

p4/p2	p4	p2	р
0,0397	0,00000397	0,0001	0,01
0,0788	0,00003152	0,0004	0,02
0,1173	0,00010557	0,0009	0,03
0,1552	0,00024832	0,0016	0,04
0,1925	0,00048125	0,0025	0,05
0,2292	0,00082512	0,0036	0,06
0,2653	0,00129997	0,0049	0,07
0,3008	0,00192512	0,0064	0,08
0,3357	0,00271917	0,0081	0,09
0,37	0,0037	0,01	0,1
0,68	0,0272	0,04	0,2
0,93	0,0837	0,09	0,3
1,12	0,1792	0,16	0,4
1,25	0,3125	0,25	0,5
1,32	0,4752	0,36	0,6
1,33	0,6517	0,49	0,7
1,28	0,8192	0,64	0,8
1,17	0,9477	0,81	0,9

O que significam p4/p2 < 1?

p2

0,09

0,0961

0,1024

0,1089

0,1156

0,1225

0,1296

0,1369

0,1444

0,1521

p

0,3

0,31

0,32

0,33

0,34

0,35

0,36

0,37

0,38

0,39

é mais seguro voar num avião de 4 motores ou de 2 motores ?

p4/p2

0,93

0,9517

0,9728

0,9933

1,0132

1,0325

1,0512

1,0693

1,0868

1,1037

p4

0,0837

0,091458

0,099615

0,10817

0,117126

0,126481

0,136236

0,146387

0,156934

0,167873

Exemplo de aplicação III

- According to the U.S. Census Bureau, approximately 6% of all workers in Jackson, Mississippi, are unemployed.
- In conducting a random telephone survey in Jackson, what is the probability of getting two or fewer unemployed workers in a sample of 20?

De: Business Statistics, Ken Black, 6th ed, John Willey & Sons (cap 5)

Resolução

- 6% desempregado => p = 0.06
- Tamanho da amostra é $20 \Rightarrow n = 20$
- 94% têm emprego => 1 p = 0.94
- x é o número de sucessos que se pretende
- Qual é a probabilidade de termos 2 ou menos desempregados na amostra de 20 ?
- Neste tipo de problemas o importante e muitas vezes o mais difícil é identificar o p, n e x

Resolução

$$n = 20$$

 $p = 0.06$
 $q = 1 - p = 0.94$
 $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2)$
 $= 0.2901 + 0.3703 + 0.2246 = 0.8850$

$$P(X=0) = \frac{20!}{0!(20-0)!} (0,06)^{0} (0,94)^{20-0} = (1)(1)(0,2901) = 0,2901$$

$$P(X = 1) = ...$$

$$P(X = 2) =$$

Distribuição Geométrica

- Seja X o número de vezes que é necessário repetir uma experiência de Bernoulli até obter um sucesso
 - Prob. Sucesso: p prob. Falha = 1-p

- $p_X(k) = p(1-p)^{k-1}$, k = 1,2,3,...Porque teremos k-1 insucessos e depois sucesso
- $F_X(x) = \sum_{k=0}^{\lfloor x \rfloor} p(1-p)^{k-1}$

Exemplo de aplicação – Helpdesk UA

- Problema:
- Considere o serviço de atendimento via telefone do Helpdesk da UA.
- Supondo que a probabilidade de se conseguir contactar o suporte é p=0,1 (só ao fim de 10 tentativas ⊗).
- Determine a probabilidade de necessitar de menos de 3 chamadas até conseguir expor o seu problema ?
- Solução:
- $Pr(n^{\circ} chamadas < 3) =$ Pr(1 chamada OU 2 chamadas)
- $= p(1-p)^{1-1} + p(1-p)^{2-1} = p(2-p) = 0.19$

Distribuição Geométrica – Média e Variância

Demontra-se que:

•
$$E[X] = \frac{1}{p}$$

- Resultado de $\sum_{i=1}^{\infty} i \ p(1-p)^{i-1}$
- Intuitivo: no exemplo do Helpdesk, por exemplo, quanto mais provável atenderem menos chamadas teremos que fazer (em média)

•
$$Var(X) = (1 - p)/p^2$$

Dist. Binomial para valores de n elevados

- Consideremos o seguinte cenário:
- Num conjunto de programas a probabilidade de haver pelo menos um erro ao analisar um conjunto de 1.000 linhas de código é p (p<1)
 - Não nos interessa o número de erros, apenas se existe algum ou não
- Se o número total de linhas dos programas for N x 1000 e os dividirmos em blocos de 1000 linhas a probabilidade de k blocos terem erros segue a distribuição Binomial com parâmetros N e p

(continuação)

- Se quisermos analisar células de 100 linhas, e considerarmos que a distribuição dos erros é uniforme, a probabilidade desce para p/10
 - Teríamos então uma Binomial com parâmetros 10 N e p/10
 - Teoricamente temos a forma de cálculo mas basta N ser um número moderado e 10N começa a ser elevado e os cálculos complicados [mesmo em computador]
- Exemplo: Blocos de 100 linhas; 1000 blocos; p=0,98/10
- Qual a probabilidade de blocos com erro ser inferior ou igual a 100 ?

$$P = F_{x}(100) = \sum_{k=0}^{100} {1000 \choose k} 0,098^{k} 0,902^{1000-k}$$

• • •

- As coisas ainda se complicam mais de reduzirmos mais o tamanho dos blocos (100 linhas, 10 linhas ..)
- Será que conseguimos arranjar maneira(s)
 eficiente(s) de calcular quando o tamanho é muito
 pequeno ?
- No limite teremos apenas um bloco que vai ter ou não um erro
 - Número de blocos "infinitesimais" com erro = número de erros

Distribuição de Poisson

- Considere-se que temos uma variável Binomial,n cresce e p decresce por forma a $np \to \lambda > 0$
- Para n grande pode fazer-se as seguintes aproximações: p $\cong \frac{\lambda}{n} \ e \ 1-p \cong 1-\frac{\lambda}{n}$
- $P(X = k) = \binom{n}{k} p^k (1 p)^{n-k}$ \rightarrow Binomial
- $\lim_{n \to \infty} P(X = k) = \lim_{l \to \infty} {n \choose k} p^k (1 p)^{n k} =$
- = = $\frac{\lambda^k e^{-\lambda}}{k!}$
- $p_X(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

é a função de massa de probabilidade da distribuição de Poisson, com k=0, 1, 2, ...

Demonstração

•
$$\lim_{n\to\infty} \binom{n}{k} p^k (1-p)^{n-k}$$

•
$$= \lim_{n \to \infty} {n \choose k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k}$$

•
$$= \lim_{n \to \infty} \frac{n(n-1)\dots(n-k+1)}{k!} \frac{\lambda^k}{n^k} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

•
$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n(n-1)...(n-k+1)}{n^k} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

•
$$= \frac{\lambda^k}{k!} \lim_{n \to \infty} \frac{n}{n} \frac{n-1}{n} \frac{n-2}{n} \dots \frac{n-k+1}{n} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-k}$$

• =
$$\frac{\lambda^k}{k!} \lim_{n \to \infty} \mathbf{1} \left(\mathbf{1} - \frac{1}{n} \right) \left(\mathbf{1} - \frac{2}{n} \right) \dots \left(\mathbf{1} - \frac{k-1}{n} \right) \left(\mathbf{1} - \frac{\lambda}{n} \right)^n \left(\mathbf{1} - \frac{\lambda}{n} \right)^{-k}$$

- como $\lim_{\substack{n\to\infty\\n\to\infty}} \left(1-\frac{\alpha}{n}\right)^n = e^{-\alpha}$, $\lim_{\substack{n\to\infty\\n\to\infty}} \left(1-\frac{j}{n}\right) = 1$ e o limite do produto é o produto dos limites temos:
- $=\frac{\lambda^k}{k!} \times 1 \times e^{-\lambda} \times 1$

Distribuição para vários valores do parâmetro λ

• Função de probabilidade:

$$p_X(k) = \Pr(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0,1,2,3 \dots$$

Tem apenas um parâmetro, o lambda

Distribuição de Poisson: Média e Variância

- $E[X] = \lambda$
 - Relembre que λ é aproximado por np e o valor esperado da Binomial é np

• $Var(X) = \lambda$

Distribuição de Poisson

 A distribuição de Poisson foca-se apenas no número de ocorrências (discreto) num intervalo de tempo contínuo (ou região do espaço).

- Esta distribuição não tem um número de experiências (n) como na Binomial
 - As ocorrências são independentes das outras ocorrências

Aproximação de Poisson à distribuição Binomial

 Problemas envolvendo a distribuição Binomial em que n é grande e o valor de p é pequeno, gerando desta forma eventos raros, são os candidatos à utilização da distribuição de Poisson

- Regra prática ("rule of thumb"):
 - Se n>20 e np <=7 a aproximação de Poisson é suficientemente próxima para ser usada em vez da Binomial

Aproximação de Poisson à distribuição Binomial

- Procedimento para aproximar a Binomial por Poisson:
 - 1. Calcular a média da Binomial $\mu = np$
 - Como μ é o valor esperado da Binomial, passa a ser o λ (=E[X]) de Poisson
 - 3. Usar a fórmula de Poisson (ou uma tabela)

$$p_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

Aplicações da Distribuição de Poisson

- As distribuições de Poisson surgem em experiências onde se verificam as seguintes propriedades:
 - O número de resultados que ocorrem num determinado intervalo de tempo ou região é independente do número que ocorre em qualquer outro intervalo temporal ou região espacial disjunta
 - A probabilidade que um resultado ocorra durante um intervalo ou região infinitesimal é proporcional ao comprimento do intervalo ou dimensão da região e não depende das ocorrências fora desse intervalo ou região
 - A probabilidade de haver mais que um resultado numa região infinitesimal é desprezável

Exemplo de aplicação

- Bank customers arrive randomly on weekday afternoons at an average of 3.2 customers every 4 minutes.
- What is the probability of having more than 7 customers in a 4-minute interval on a weekday afternoon?

 De: Business Statistics, Ken Black, 6th ed, John Willey & Sons (cap 5)

Resolução

 Consideremos o número de clientes (em intervalos de 4 minutos) como a variável aleatória X

Pretendemos
 P("X > 7 clientes /4 minutos")

• $\lambda = 3$

• $\lambda = 3.2$ [clientes em 4 minutos]

Resolução (continuação)

- A solução requer que calculemos para k = 8, 9, 10, 11, 12, 13, 14, até o valor ser aproximadamente zero
 - Ou usemos o complemento e calculemos k=0,1,2,3,4,5,6,7
- Depois é só somar as probabilidades
- O resultado (0,0169) mostra que é pouco provável que um banco que tem em média 3,2 clientes a cada 4 minutos receba 7 clientes num período de 4 minutos
 - TPC: confirmar este valor

Resolução (continuação)

 Este tipo de probabilidades são muito úteis para os gestores de Bancos (e outras instituições com atendimento ao público) dimensionarem o número de pessoas e postos de atendimento

 A distribuição de Poisson é também muito útil na modelação da chegada de mensagens (ou outros tipos de eventos) em redes de computadores

Distribuições contínuas

Distribuição uniforme

U(a,b) é definida por:

•
$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & caso\ contrário \end{cases}$$

•
$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

•
$$E[X] = \frac{a+b}{2}$$

• $Var(X) = \frac{(b-a)^2}{12}$

Exemplo

• P(42 <= X <= 45) com U(41,47)

$$P(\chi_1 \le X \le \chi_2) = \frac{\chi_2 - \chi_1}{b - a}$$

$$P(42 \le X \le 45) = \frac{45 - 42}{47 - 41} = \frac{1}{2}$$

Função rand() do Matlab

 A função rand() do Matlab gera números obedecendo a uma distribuição uniforme

$$- \text{Com } a = 0 \text{ e } b = 1$$

Para ter U(a,b) basta usar:
 a+rand()*(b-a)

Distribuição Normal (ou Gaussiana)

 Uma V.A. diz-se normal ou Gaussiana se

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

- Frequentemente usa-se a notação $N(m, \sigma^2)$
- Curva em forma de sino, simétrica em torno da média (m) e com alargamento σ

Distribuição Normal

Função de distribuição acumulada

$$F_X(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-m)^2}{2\sigma^2}} dt$$

- E[X] = m
- $Var(X) = \sigma^2$
- Nota: é muito comum utilizar-se μ em vez de m para representar a média

Família de curvas

Variando os 2 parâmetros ...

Gaussiana normalizada

- Como existe um número infinito de combinações para m e σ pode gerar-se uma família infinita de curvas
 - Sendo pouco prático lidar com esta situação, em especial antes da existência de computadores
- Foi desenvolvido um mecanismo pelo qual qualquer distribuição normal pode ser convertida numa distribuição única, a Gaussiana normalizada N(0,1)
- A fórmula de conversão é:

$$z = \frac{x-m}{\sigma}$$

Ou seja, subtrair a média e dividir pelo desvio padrão

Gaussiana normalizada

• Função densidade de probabilidade:

$$\phi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{(x)^2}{2}}$$

• A função de distribuição acumulada $\Phi(x)$:

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t)^2}{2}} dt$$

- $\Phi(x)$ encontra-se frequentemente tabelada
 - Outras tabelas comuns são as de $Q(x) = 1 \Phi(x)$

Gaussiana normalizada

Função distribuição acumulada

• A função de distribuição (acumulada) de N(m, σ^2) pode ser expressa em termos de $\Phi(x)$

$$F_X(x) = \Phi\left(\frac{x-m}{\sigma}\right)$$

Exemplo de uso de Q(x)

 Uma empresa, monopolista do mercado de um determinado produto, tem uma procura mensal X que segue uma distribuição normal N(75,100). Determine P[78<X<80]

$$P[78 \le X \le 80] = P\left[\frac{78 - 75}{10} \le U_X \le \frac{80 - 75}{10}\right] =$$

$$= P[0.3 \le U_X \le 0.5] = Q(0.3) - Q(0.5) = 0.074$$

Distribuição Normal

- É muito provavelmente a mais conhecida e utilizada de todas as distribuições (contínuas)
- Adequa-se/ajusta-se a muitas características humanas
 - Altura, peso, velocidade, resultados de testes de inteligência, esperança de vida...
- Também se adequa a muitas outras coisas da natureza
 - Árvores, animais etc têm muitas características que seguem a distribuição normal
- Surge quando vários efeitos acumulados e independentes se sobrepõem

Distribuição Normal e a Binomial

• Demonstra-se que a Binomial de média m=np e $\sigma^2=np(1-p)$ com m não muito pequeno e n elevado pode ser aproximada por:

$$\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(k-m)^2}{2\sigma^2}}$$

- Ou seja a distribuição normal
 - Desde que m = np e variância igual np(1-p)

Distribuição exponencial

- Surge frequentemente em problemas envolvendo filas de espera e fiabilidade
 - Exemplos:
 - Tempo até um computador avariar
 - Tempo entre chegada de utentes à urgência de um Hospital
- É não negativa (prob. 0 para x<0)
- Está relacionada com a distribuição (discreta) de Poisson
 - Se o número de acontecimentos que ocorrem num intervalo seguem distribuição de Poisson, o tempo entre eles segue distribuição exponencial

Distribuição exponencial

•
$$f_X(x) = \begin{cases} 0, & x < 0 \\ \lambda e^{-\lambda x}, & x \ge 0 \end{cases}$$

•
$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

•
$$E[x] = \frac{1}{\lambda}$$

•
$$E[x] = \frac{1}{\lambda}$$

• $Var(x) = \frac{1}{\lambda^2}$

Exemplo de aplicação

- A vida útil, em milhares de horas, de um componente de um robô é uma variável aleatória com distribuição exponencial de valor médio 10 (milhares de horas)
- Qual a probabilidade de um desses componentes selecionado ao acaso durar menos de 4000 horas?

•
$$\lambda = \frac{1}{10} = 0.1$$

$$P[X < 4] = \int_0^4 0.1e^{-0.1x} dx = F_X(4) = 0.33$$

Outras distribuições

Distribuição dos primeiros dígitos

- Em 1881, um matemático e astrónomo americano, Simon Newcomb, percebeu que as primeiras páginas dos livros de logaritmos das bibliotecas estavam mais gastas que o resto, intrigado, investigou o assunto e...
- percebeu que em amostras aleatórias de dados reais o dígito
 1 aparece quase 1/3 das vezes
 - Em lugar dos 1/9 se seguissem uma distribuição uniforme (discreta)
- Mais tarde, em 1938, o físico Frank Benford após uma investigação mais profunda chegou à mesma conclusão que Newcomb, indo mais além aplicando a fórmula numa variedade de números

Lei/Distribuição de Benford

• Função probabilidade →

$$P(d) = \log_{10}(d+1) - \log_{10}(d) = \log_{10}\left(\frac{d+1}{d}\right) = \log_{10}\left(1 + \frac{1}{d}\right).$$

- A Lei/Distribuição de Benford, também conhecida como a "Lei dos Primeiros Dígitos", é uma ferramenta muito poderosa e muito simples que aponta suspeitas de fraudes, erros de digitação etc
- Mais info:
 - https://pt.wikipedia.org/wiki/Lei de Benford
 - http://gigamatematica.blogspot.pt/2011/07/lei-de-benford.html

Lei/Distribuição de Zipf

 George Kingsley Zipf, linguista da Universidade de Harvard, analisou a obra monumental de James Joyce, Ulisses, e contou as palavras distintas, ordenando-as por frequência

Verificou que:

- a palavra mais comum surgia 8000 vezes;
- a décima, 800 vezes;
- a centésima, 80 vezes;
- a milésima, 8 vezes.

Lei de Zipf

- A Lei de Zipf é uma lei empírica que rege a dimensão, importância ou frequência dos elementos de uma lista ordenada
 - formulada na década de 1940 por <u>Zipf</u>, na sua obra *Human* Behaviour and the Principle of Least-Effort ("Comportamento
 Humano e o Principio do Menor Esforço"),
- Trata-se de uma lei de potências sobre a distribuição de valores de acordo com o nº de ordem numa lista.
 - Numa lista, o membro n teria uma relação de valor com o 1º da lista segundo 1/n.
- Mais info: https://pt.wikipedia.org/wiki/Lei de Zipf

Lei de Zipf

 A lei de Zipf prevê que num dado texto, a probabilidade de ocorrência p(n) de uma palavra esteja ligada à sua ordem n na ordem das frequências por uma lei da forma:

$$p(n) = \frac{K}{n}$$

- Sendo K uma constante dependente da língua
- p(n) é estimada com base na contagem de ocorrências de palavras num texto ou conjunto de textos

Frequência das palavras em função da ordem na versão original de <u>Ulisses</u> *de James Joyce*.

De: Wikipedia

Lei de Zipf – Inglês escrito

Figura 1: Lei de Zipf no Inglês escrito (dados do OANC). Rank (k) versus frequência de ocorrência (f).

Exemplo de aplicação da Lei de Zipf

Aplicação na área da segurança:

Revista Brasileira de Ensino de Física, vol. 38, nº 1, 1313 (2016)
www.scielo.br/rbef

DOI: http://dx.doi.org/10.1590/S1806-11173812125

Artigos Gerais ⊚⊕§⊜ Licença Creative Commons

Influência da lei de Zipf na escolha de senhas

Influence of Zipf's law on the password choices

Leonardo Carneiro de Araújo*1, João Pedro Hallack Sansão1, Hani Camille Yehia2

 Artigo em PDF disponível em http://www.scielo.br/pdf/rbef/v38n1/1806-9126-rbef-38-01-S1806-11173812125.pdf

Outra distribuição: Distribuição das letras em Português ...

 Probabilidades estimadas usando o texto pg21209.txt do projecto Gutemberg

Mais informação

- Material online
 - Slides relativos aos cap. 5 e 6 do livro "Business Statistics", Ken Black, 4ed
 - http://business.uni.edu/slides/ECON-1011 Luk/ch05.pdf
 - http://business.uni.edu/slides/ECON-1011 Luk/ch06.pdf
 - Lectures:
 - http://www.stat.berkeley.edu/~stark/SticiGui/Text/randomV ariables.htm
 - Wikipedia
- Capítulo 3 do livro "Probabilidades e Processos Estocásticos", F. Vaz

Como lidar com mais do que uma variável ?

Como ter vectores com estas distribuições?

Geração de números aleatórios Geração de variáveis aleatórias