Ejercicios Tema 1

Curvas y superficies

Blanca Cano Camarero

4 de abril de 2021

Índice

Ejercicio 7
a) Regularidad
b) Cálculo de su curvatura y ver que es impar
c) Simetría de $Img(\alpha)$ respecto del punto $\alpha(0)$
d) Simetría de la imagen por paridad de la función curvatura
Ejercicio 11
a) Comprueba que β está parametrizada por la longitud del arco
b) Construcción del triedro de Frenet de β
c) Cálculo de las funciones curvatura y torsión, k_{β} y τ_{β}

Ejercicio 7

Sea la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, t^3)$, para todo $t \in \mathbb{R}$. (a) Comprueba que es regular.

- a) Comprueba que es regular.
- (b) Prueba que $k(t) = \frac{6t}{(1+9t^4)^{\frac{3}{2}}}$ y que, en particular k(t) = -k(-t) para todo $t \in \mathbb{R}$.
- (c) Observa que la $Img(\alpha)$ es simétrica respecto del punto $\alpha(0)$ (es decir, que el giro de centro $\alpha(0)$ y el ángulo π deja a $Img(\alpha)$ invariante).
- (d) Motivado por lo anterior, si $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$ con $\epsilon > 0$ o $\epsilon > \infty$, es una curva regula cuya curvatura cumple que k(t) = -k(-t) para todo $t \in (-\epsilon, \epsilon)$, ¿podemos afirmar que $Img(\alpha)$ es simétrica respecto del punto $\alpha(0)$.

a) Regularidad

Se tiene que $\alpha(t)' = (1, 3t^2)$ que no se anula sea cual sea $t \in \mathbb{R}$ gracias a su primera componente, luego es regular.

b) Cálculo de su curvatura y ver que es impar.

Para este aparatado veremos que $\alpha(t)$ es la parametrización natural de la gráfica de la función cúbica $f(x) = x^3$.

Esto es $\alpha(t) = (t, f(t))$

Además para este tipo de curvas conocemos la siguiente expresión para calcular su curvatura

$$k(t) = \frac{f''(t)}{(1 + f'(t)^2)^{\frac{3}{2}}}$$

luego como $f^{\prime}(t)=3t^2$ y $f^{\prime\prime}(t)=6t,$ podemos concluir que

$$k(t) = \frac{6t}{(1+9t^4)^{\frac{3}{2}}}$$

como se quería probar.

Finalmente veamos que independientemente del valor de $t \in \mathbb{R}$

$$-k(-t) = -\frac{6(-t)}{(1+9(-t)^4)^{\frac{3}{2}}} = \frac{6t}{(1+9t^4)^{\frac{3}{2}}} = k(t).$$

c) Simetría de $Img(\alpha)$ respecto del punto $\alpha(0)$

Sea G(x,y)=(-x,-y) para todo $t\in\mathbb{R}^2$ el giro de π radianes respecto del origen (o quivalentemente la simetría respecto a la recta y=-x).

Observemos que $G\alpha(t)=G(t,t^3)=(-t,-t^3)=\alpha(-t),$ es decir, que el giro lo deja invariante como queríamos ver.

d) Simetría de la imagen por paridad de la función curvatura

Como hipótesis tenemos una curva $\alpha:(-\epsilon,\epsilon)\longrightarrow \mathbb{R}^2$ regular, que aemá su curvatura cumple k(t)=-k(-t).

Consideremos el movimiento rígido M de \mathbb{R}^2 que cumple que $M(\alpha(0))=(0,0)$, que $\overrightarrow{M}_{e_1(0)}=(1,0)$ y que $\overrightarrow{M}_{e_2(0)}=(0,1)$.

Luego la curva $M \circ \alpha : (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$ es regular y congruente con α , cumple además que que $e_1^{M \circ \alpha}(0) = (1, 0)$ y $e_2^{M \circ \alpha}(0) = (0, 1)$ Si probamos que

$$S(M \circ \alpha(t))$$
 para todo t , (1)

siendo G la aplicación giro definida en el apartado anterior, tendríamos que $Im(\alpha(M \circ \alpha)$ es simétrica respecto al origen.

Por tanto $M^{-1} \circ G \circ M \circ \alpha(-t) = \alpha(t)$, $M^{-1} \circ G \circ M$ es un giro respecto a una recta L

Ejercicio 11

Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva parametrizada por la longitud del arco y tal que $\alpha''(t) \neq 0$ para todo tinI, y con k > 0, $\tau > 0$. Se considera la curva $\beta(t) = \int_{t_0}^t e_3(s)ds$, donde $e_3(t)$ es el vector binormal a α en t.

- (a) Comprueba que β está parametrizada por la longitud del arco.
- (b) Construye del triedro de Frenet de β .
- (c) Calcula las funciones curvatura y torsión, k_{β} y τ_{β} .

a) Comprueba que β está parametrizada por la longitud del arco.

Por el teorema fundamental del cálculo se tiene que $\beta'(t) = e_3(t)$, por ser $e_3(t)$ el vector binormal a α en t, su módulo será simpre uno para todo t, luego acabamod de probar que β está parametrizada por la longitud del arco.

b) Construcción del triedro de Frenet de β .

Para no confundirnos con el triedro de Frener de α $\{e_1, e_2, e_3\}$, utilizaré la notación $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ para referirme al triedro de Frenet de β .

Por definición y estar parametrizado sabemos que

$$\epsilon_1(t) = \frac{\beta'(t)}{|\beta'(t)|} = \beta'(t) = e_3(t) \tag{1}$$

Con lo que acabamos de calcular ϵ_1 . Por otro lado

$$\tilde{\epsilon_2}(t) = \beta''(t) - \langle \beta''(t), \epsilon_1(t) \rangle \epsilon_1(t) = e_3'(t) - \langle e_3'(t), e_3(t) \rangle \epsilon_3(t)(t)$$

Gracias a las ecuaciones de Frenet conocemos que $e_3'(t) = -a_{23}e_2$; sustituyendo en la ecuación anterior y teniendo en cuenta la linealidad del producto escalar y la perpendicularidad entre los vectores del triedo de Frenet de α :

$$\tilde{e}_2(t) = -a_{23}e_2 - \langle -a_{23}e_2, e_3(t) \rangle = -a_{23}e_2$$

Luego podemos concluir que

$$\epsilon_2 = \frac{\tilde{\epsilon}_2(t)}{|\tilde{\epsilon}_2(t)|} = \frac{-a_{23}e_2}{|-a_{23}e_2|} = -e_2$$
(2)

Finalmente

$$\epsilon_3(t) = \epsilon_1 \times \epsilon_2 = e_3 \times -e_2 = e_1 \tag{3}$$

Gracias a las igualdades (1), (2) y (3) podemos afirmar que el triedo de Frenet de β es $\{e_3, -e_2, e_1\}$.

c) Cálculo de las funciones curvatura y torsión, k_{β} y τ_{β} .

Por definición de curvatura, estar β parametrizada por la longitud del y el apartado (b)

$$k_{\beta}(t) = \frac{a_{12}^{\beta}(t)}{|\beta'(t)|} = \langle \epsilon'_{1}(t), \epsilon_{2}(t) \rangle = \langle \epsilon'_{3}(t), -e_{2}(t) \rangle = -a_{32}^{\alpha}(t) = a_{23}^{\alpha}(t) = \tau_{\alpha}(t)|\alpha'(t)|.$$

Veamos ahora la torsión

$$\tau_{\beta}(t) = \frac{a_{23}^{\beta}(t)}{|\beta'(t)|} = <\epsilon_{2}'(t), \epsilon_{3}(t) > = <-e_{2}'(t), e_{1}'(t) > = -a_{21}^{\alpha}(t) = a_{12}^{\alpha}(t) = k_{\alpha}(t)|\alpha'(t)|.$$