

COLUMN TANDAMENT OF THE STREET

The Car and the car and the car and £į ļ.,<u>i.</u> 

NON AFFECTED CONTROLS=76 >65 YEARS PSA<4 ASSOCIATION STUDIES (FIRST SCREENING) 35 SPORADIC CASES +77 FAMILIAL CASES AFFECTED CASES= 117 POPULATION CHARACTERISTICS POPULATION SAMPLE SIZE



FIG.2

All this manner manner by the

9.10

ASSOCIATION STUDIES (ZOOM)

|                 | AFFECTED            | UNAFFECTED     |
|-----------------|---------------------|----------------|
|                 | CASES (185)         | CONTROLS (104) |
| CHARACTERISTICS | 47 SPORADIC CASES   | >65 YEARS      |
| OF POPULATIONS  | +138 FAMILIAL CASES | PSA<4          |



continuation of a second second

FIG.3

HAPLOTYPE FREQUENCY ANALYSIS

POPULATIONS

| UNAFFECTED | CONTROLS 3 (130) | >65 YEARS          | PSA<4               |
|------------|------------------|--------------------|---------------------|
| AFFECTED   | CASES 2 (281)    | 143 SPORADIC CASES | +138 FAMILIAL CASES |
|            |                  | CHARACTERISTICS    | OF POPULATIONS      |

|                                             |           |            | PVALUE   |                                                              |                              | 9,00E-04 ***       | 6,00E-05 ***       | 1,005-05****       | 10,06 9,00E-07**** | 2,00E-05****      | 2,00E-05****        | 4,00E-05****        | 2,00E-04***         | 1,00E-04***       | 3,00E-04***         | 6,00E-04**          |
|---------------------------------------------|-----------|------------|----------|--------------------------------------------------------------|------------------------------|--------------------|--------------------|--------------------|--------------------|-------------------|---------------------|---------------------|---------------------|-------------------|---------------------|---------------------|
|                                             |           |            | RELATIVE | RISK                                                         |                              | 4,42               | 6,46               | 6,78               | 10,06              | 5,17              | 4,78                | 2,33                | 2,17                | 2,32              | 2,01                | 2,05                |
|                                             | HAPLOTYPE | REQUENCIES |          | CASES CONTROLS                                               | ,_,                          | 0,018              | 0,016              | 0,019              | 0,117 0,013        | 0,025             | 0,027               | 0,222 0,109         | 0,251 0,134         | 0,226 0,112       | 0,256 0,146         | 0,233 0,129         |
|                                             |           | FREQU      |          |                                                              |                              | 0,075              | 0,095              | 0,116              | 0,117              | 0,117             | 0,117               | 0,222               | 0,251               | 0,226             | 0,256               | 0,233               |
| 99-135                                      | 80725812  |            |          | 2,005-0                                                      | >100KB<                      | ۷                  | ۷                  |                    |                    |                   |                     |                     |                     |                   |                     |                     |
| 99-221                                      |           |            |          | 7,00E-01                                                     | <29KB>>                      | ٧                  | ٧                  | ٧                  | A                  | A                 | A                   |                     |                     |                   |                     |                     |
| 4-77  99-217   4-67  99-213  99-221  99-135 |           |            |          | ,00E-01 2,00E-02 2,00E-02 6,00E-04 9,00E-02 7,00E-012,00E-01 | <15KB> <29KB>>100KB<         | 9                  | ပ                  | 9                  | ပ                  | 9                 | 9                   | 9                   |                     | 9                 | _                   | 9                   |
| 4-67                                        | B0463F01  |            | Å        | 6,00E-04                                                     | <17KB>                       | ⊢                  | _                  | ⊢                  | F                  | _                 | ⊢                   | 1                   | T                   | ⊢                 | Ţ                   | 1                   |
| 99-217                                      | 3         | 33         | – PG1 —  | 2,00E-02                                                     | <88KB> <22KB> <17KB>         | ⊢                  | <u>_</u>           | ⊢                  | <b>j</b>           | ⊢                 | F                   | <b>-</b>            | ⊢                   | ⊢                 | 1                   |                     |
| 4-77                                        |           | 11453      | <b>Y</b> | 2,00E-02                                                     | <88KB>                       | ပ                  | ပ                  | ပ                  | ပ                  | ပ                 |                     | S                   | ပ                   |                   |                     |                     |
| 4-14                                        | B0189E08  |            |          |                                                              | <15KB>                       | ပ                  | ပ                  | ပ                  | ပ                  |                   |                     |                     |                     |                   |                     |                     |
| 4-26                                        | 801       |            |          | ,00E-01                                                      | <18KB>                       | 4                  | ¥                  | ⋖                  |                    |                   |                     |                     |                     |                   |                     |                     |
| 99-123 4-26                                 | H0287809  |            |          | 2,00E-011,00E-011                                            | ~                            | ပ                  |                    |                    |                    |                   |                     |                     |                     |                   |                     |                     |
| MARKERS                                     | BACS      | CONTIGS    | GENES    | P VALUE                                                      | DISTANCE BETWEEN MARKERS(KB) | IAPLOTYPE 8>304KB< | IAPLOTYPE 7>286KB< | IAPLOTYPE 6<186KB> | IAPLOTYPE 5<171KB> | HAPLOTYPE 4<83KB> | HAPLOTYPE 3.1<54KB> | HAPLOTYPE 3.2<54KB> | HAPLOTYPE 2.2<39KB> | HAPLOTYPE 2<32KB> | HAPLOTYPE 1.1<17KB> | HAPLOTYPE 1.2<15KB> |

THE PARTMENTANGED IN

FIG.4

HAPLOTYPE SIMULATIONS (100 ITERATIONS)



THE THE PARTY OF T

FIG.5A

HAPLOTYPE SIMULATIONS (100 ITERATIONS)

|              |      |      |        |      |          | -                             | HAPLOTYPE F | HAPLOTYPE FREQUENCIES   1 | RELATIV | 21112    |
|--------------|------|------|--------|------|----------|-------------------------------|-------------|---------------------------|---------|----------|
| MARKERS 4-14 | 1-14 | 4-77 | 99-217 | 4-67 | 99 - 213 | 44-7799-2174-67 99-213 99-221 | CASES       | CONTROLS                  | RISK    | r vALUE  |
| HAPLOTYPE    | ပ    | ပ    | -      | _    | ပ        | ∢                             | 0,117       | 0,013                     | 10,06   | 9,00E-07 |



i Talelio e de mantinami de constitui

FIG.5B

| SEQ   ID   RP SEQUENCE   SEQ   ID   POLYMORPHISM   BASE     39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C         MARKER         SEQ ID         PU SEQUENCE         SEQ ID         POLYMORPHISM         BASE         N           18         99-123         21         30         AAAGCCAGGACTAGAAGG         39         TATTCAGAAGGAGGGGGGG         48         24         A/G           189         4-26         22         31         TAGGCCCTGTAAGACAC         40         GAGGACTGCTAGGAAG         49         24         A/G           189         4-7         24         33         TGTAGCTCTCATCCAAC         40         GAGGACTGCTTAGAAG         49         24         A/G           1463         4-77         24         33         TGTAGCTCATCCAAC         40         GAGGACTGCTTGAAGGAGGAAG         49         24         A/G           1463         4-77         24         33         TGTAGCTCATCCAAC         40         GAGGAGGTAGAAG         50         24         C/T         1-           1463         4-77         24         33         TGTTGATTTACAGGCGGG         42         GGTGGGAATTTACTATAG         43         24         C/T         1-           1463         4-67         26         35         AAGTTCACCTTCCAGGCGCTTTGGTGGGGGGGGGGGGGG |
| C. MARKER         SEQ ID         PU SEQUENCE         SEQ ID         PU SEQUENCE         SEQ ID         PPOSTITION*         BASE           18 99-123         21 30         AAAGCCAGGACTAGAAGGAAGG         39 14TAGAAAGGAAGG         48 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C         MARKER         SEQ ID         PU SEQUENCE         SEQ ID         RP SEQUENCE         SEQ ID           18         99-123         21         30         AAAGCCAGGACTAGAAGG         39         TATTCAGAAAGGAGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C         MARKER         SEQ ID         PU SEQUENCE         SEQ ID         RP SEQUENCE         SEQ ID           18         99-123         21         30         AAAGCCAGGACTAGAAGG         39         TATTCAGAAAGGAGGGGGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C MARKER SEQ ID SEQ ID PU SEQUENCE SEQ ID N°(MUT) AAAGCCAGGACTAGAAGG 39 4-26 22 31 TACAGCCCTGTAGAACG 40 189 4-12 23 32 TACAGCCCTGTAGACAC 41 17 24 32 32 TGTTGATTTACAGCGC 42 161 463 4-77 25 34 GGTGGCAATTTACAGCGCG 42 161 463 4-67 25 35 AAGTTCACCTTCTAAGC 44 163 99-213 27 35 ATACTGGCAGCGTGTTC 45 166 AAGTTGTATTACAGC 44 17 166 AAGTTGTATTACAGC 47 17 166 AAGTTGTATTACAGC 47 17 166 AAGTTGTATTACAGC 47 17 166 AAGTTGTATTATTACAGC 47 17 166 AAGTTGTATTACAGC 47 17 166 AAGTTGTATTATTACAGC 47 17 18 18 18 18 18 18 18 18 18 18 18 18 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C MARKER SEQ ID SEQ ID PU SEQUENCE  18 99-123 21 30 AAAGCCAGGACTAGAAGG 189 4-26 22 31 TACAGCCCTGTAAGACAC 189 4-14 23 32 TACAGCCTTCATCCAAC 189 9-217 25 34 GGTGGAATTTACAGGCGGG 18 99-217 25 35 AAGTTCACCTTCAAGC 18 99-213 28 37 CCCTTTTTCACGTTC 18 99-135 29 38 TGGAAGTTGTTACAGGCGGCGTC 18 99-213 28 37 CCCTTTTTCTCACGTTC 18 99-135 29 38 TGGAAGTTGTTCACTGTTC 18 99-135 29 38 TGGAAGTTGTTATTGCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C MARKER SEQ ID SEQ ID PU N'(MUT) SEQ ID PU AAAGCC 31 TAAAGCC 189 4-14 23 31 TAAAGCC 189 4-17 24 33 TGTTGA 53 99-217 25 35 AAGTTG 53 99-213 27 35 TGTAAAGCC 55 99-135 29 35 TGGAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| C MARKER SEQ 1D SE 19 99–123 21 1463 4–7 24 25 25 4–67 24 25 39–217 25 39–217 25 39–217 25 39–213 27 28 39–213 27 28 39–213 27 28 39–213 27 28 39–213 27 28 39–213 27 28 39–213 28 39–213 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C MARKER SE(<br>89 99-123<br>189 4-14<br>463 4-77<br>463 4-77<br>463 4-67<br>39-217<br>99-213<br>99-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C<br>189<br>1463<br>1463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C<br>189<br>1463<br>1463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## FIG.6A

\*: POSITIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID Nº 21-38 AND 57-62)

ter melletiten dimentianistelle in

| BAC                   | MARKER                   | SEQ ID         | SEO ID<br>N*(MUT) | PU SEQUENCE                                                         | SEO D    | RP SEQUENCE                                                        | SEQ ID         | POLYMORPHISM<br>POSITION* | BASE                                                                                             | POLYMORPHISM BASE MICROSEQ. OLIGOS POSITIONS*                                                      |
|-----------------------|--------------------------|----------------|-------------------|---------------------------------------------------------------------|----------|--------------------------------------------------------------------|----------------|---------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| 189/46.<br>463<br>463 | 399-1482<br>4-73<br>4-65 | 57<br>58<br>59 | 60<br>61<br>62    | ATCAAATCAGTGAAGTCTGAG<br>ATCGCTGGAACATTCTGG<br>GATTTAAGCTACGCTATTAG | 63<br>65 | ACAAATCTATATAAGGCTGG<br>CTCTTGGTTAAACAGCAGTG<br>TGGCTCTGCATTTCTTCC | 66<br>67<br>68 | 24<br>24<br>24            | 2<br>2<br>2<br>2<br>1<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | A/C 1-23 25-47 (COMPLEMENTARY)<br>G/C 1-23 25-47 (COMPLEMENTARY)<br>C/T 1-23 25-47 (COMPLEMENTARY) |

# FIG.6B

\*: POSITIONS ARE GIVEN RELATIVE TO THE SEQUENCE OF THE CORRESPONDING MARKER (i.e. SEQ ID Nº 21-38 AND 57-62)

| EXON<br>Phase | START | END   | 5' SPsite | PHASE | 3' SPsite |
|---------------|-------|-------|-----------|-------|-----------|
| Ex1<br>+0     | 2001  | 2216  |           |       | GTGAGC    |
| Ex2<br>+1     | 18196 | 18265 | TAG       | +0    | GTTTGTA   |
| Ex3 +0        | 23717 | 23832 | CAG       | +2    | GTAACT    |
| Ex4<br>+0     | 25571 | 25660 | CAG       | +0    | GTAAGA    |
| Ex5<br>+2     | 34669 | 34759 | CAG       | +0    | GTAAGT    |
| Ex6<br>+1     | 40688 | 40846 | TAG       | +1    | GTAAGT    |
| Ex7<br>+2     | 48070 | 48193 | TAG       | +2    | GTGAGT    |
| Ex8           | 50182 | 54523 | TAG       | +1    |           |
| ATG codon     | 2031  | 2033  |           |       |           |
| STOP codon    | 50405 | 50407 |           |       |           |
| POLY Ad site  | 54445 | 54450 |           |       |           |

FIG. 7





The equipment of the  $\alpha \in \mathbb{N}$ 

|                       |          | box 1       | box 2          | box 3             |
|-----------------------|----------|-------------|----------------|-------------------|
| PG1                   | Hs       | NHQ 81-83   | FPEGTR 160-165 | LDAIYDVTV 211-219 |
| AF003136<br>(Genbank) | Ce       | NHQ 630-632 | FPEGTR 712-717 | LDAIYDVTV 762-770 |
| Z72511<br>(Genbank)   | Ce       | 48 NHR 50   | FPEGTD 129-134 | VEYIYDITI 204-212 |
| P38226<br>(Swissport  | Sc<br>:) | 111 NHQ 113 | FPEGTN 223-228 | IESLYDITI 271-279 |
| P33333<br>(Swissport  | Sc<br>:) | 81 NHQ 83   | FPEGTR 154-159 | -                 |
| Z49770<br>(Genbank)   | Sc       | 116 NHQ 118 | FPEGTN 215-220 | LDAIYDVTI 265-273 |
| P26647<br>(Swissport  | Ec<br>)  | 72 NHQ 74   | FPEGTR 145-150 | -                 |
| Z49860<br>(Genbank)   | Bn       | -           | FVEGTR 90-95   | VPAIYDMTV 138-146 |
| U89336<br>(Genbank)   | Hs       | 95 NHQ 97   | FPEGTR 168-173 | -                 |
| U56417<br>(Genbank)   | Hs       | 103 NHQ 105 | FPEGTR 176-181 | -                 |
| AB005623<br>(Genbank) | Mm       | 100 NHQ 102 | FPEGTR 173-178 |                   |
| Z29518<br>(Genbank)   | Zm       | 91 NHR 93   | FVEGTR 170-175 | VPAIYDTTV 218-226 |

Hs = Homo sapiens, Ce = Caenorabibitis elegans, Ec = Escherichia coli; Sc = Saccharomyces cerevisiae, Bn = Brassica napus, Zm = Zea maize, Mm = Mus Musculus

Note: Funcitional acyl glycerol transferases all contain boxes 1 and 2 and not box 3. Proteins most related to PG1 contain the 3 boxes with a high degree of conservation.

### FIG. 9

<sup>- =</sup> pattern absent from protein sequence

CONTRACTOR AND ARREST DE

FIG. 10

A MANAGEMENT OF STREET PARTY AND ADDRESS OF THE PARTY AND ADDRESS OF TH

FIG. 11



PC3 PG1 8-1











Ы

FIG. 12







PNT2 PG1 mut229

FIG. 13

1

FIG. 14A

FIG. 14

FIG. 14B

Alternative splicing



application (Color of



FIG. 14B

A METABLISTIA DE LE PROPERTIE DE LA CONTROL DE LA CONTROL

## Combination of exons of PG1 gene discovered by PCR with primers specific for exon borders

|              |          |            |              |          |           | <b>.</b>      | ~              |              |              |            |              |          |          |              |          |          |          |            |           |               |           |              |               |             |          |                  |             |             |              | $\Box$                |
|--------------|----------|------------|--------------|----------|-----------|---------------|----------------|--------------|--------------|------------|--------------|----------|----------|--------------|----------|----------|----------|------------|-----------|---------------|-----------|--------------|---------------|-------------|----------|------------------|-------------|-------------|--------------|-----------------------|
|              |          | е          |              |          |           | .nCaPFCG      | <b>NCaPJMB</b> |              |              |            |              |          |          |              |          |          |          |            |           |               |           |              | _             |             | _        | _                |             | 2           | 2            | 4                     |
| Printer      | Clones   | orostat    | 1            | 18       | 2         | αР            | aP             | CoHPV        | <b>Du145</b> |            | 2            | 9        | 7        | 8            | õ        | ECP10    | ECP11    | ECP12      | ECP13     | 14            | ECP15     | ECP16        | 11            | ECP18       | 19       | ECP20            | ECP21       | ECP22       |              | P2                    |
| - <u>-</u> - | ō        | ro         | PNT          | PNT1B    | PNT       | nC            | 2              | ,oH          | 11           | PC3        | ECP5         | ECP6     | ECP7     | ECP8         | ECP9     | CF       | CF       | CF         | S         | ECP1          | CF        | S            | ECP1          | Ċ           | ECP1     | SCF              | S           | $\Xi$       |              | ECP                   |
|              |          | <u>a</u>   | <u>a</u> .   | 777      | <u>a.</u> |               | <u> </u>       | 777          | 777          | <u>ц</u> , | 777          | <u> </u> | 22       | 777          | 777      | 777      | 777      | 777        | 7777      | 7777          | 777       | 777          | 77            |             | 70       | 77               | 70          | 00          |              |                       |
| TOTORETTE    |          |            |              |          |           |               |                |              |              |            |              |          |          |              |          |          |          |            |           |               |           |              | 90            |             |          |                  |             |             |              | $\mathcal{Z}$         |
| 1 CTCXCITT   | 22       | 20         | 22           | 22       | 20        | 20            | ŹŹ             | 22           | 2/2          | 2          | 22           | 22       | 22       | 22           | 222      | 22       | 200      | 22         | 200       | 22            | 01/2      | 22           | 21/           | 27/2        | 27/2     | 27/2             | 01/         | 27/         | 27/4         | 27/2                  |
| PG1exon15    | +        | _          | _            | _        | _         | _             | _              | NT           | _            | _          | +            | _        | -        | _            | -        | _        | -        | _          | 1         | =             | _         | _            | _             | _           | <u> </u> | _                | +           |             |              | $\exists$             |
| PG1exon16    | -        | +          | -            | +        | +         | _             | _              | NT           | _            | _          | _            | _        | +        | _            | _        | _        | -        | -          | _         | _             |           | _            | 1             | _           | _        | +                | +           | $\vdash$    | +            |                       |
| PG1exon17    | +        | +          | +            | +        | +         | +             | +              | NT           | +            | +          | _            | _        | +        | _            | _        | _        | +        | +          | +         | +             | +         | +            | +             | _           | _        | -                | Τ_          |             |              | $\exists$             |
| PG1exon18    | +        | +          | +            | +        | +         | <b>-</b>      | -<br>////      | NT           | +            | +<br>///   | <del>-</del> | -        | <br>//// | <b>-</b>     | -        | <b>-</b> | -<br>770 | -<br>770   | -         | 70            | +         | 700          | -<br>70       | -<br>(///   | 00       | 720              | 72          | 720         |              | 72                    |
| PG1exon24    | 22       | 2          | 2            | 2        | M         | 200           | 2              | 2            | 2/2          | M          | 20           | 20       | 22       | 22           | 222      | 010      | 21/2     | 212        | 27/2      | 22/2          | 21/2      | 71/2         | 01/           | 07/2        | 77/      | <b>0</b> 7/2     | 07/         | 27/4        | +            | 224                   |
| PG1exon25    | +        | +          | -            | +        | +         | -             |                | NT           | +            | -          | <b>-</b>     | _        | -        | <u> </u>     | -        | <b>-</b> | +        | -          | -<br>00   | 70            | +         |              | -<br>(7(7)    | 70          | 00       |                  | 72          | 72          |              |                       |
| PG1exon26    |          | X)         |              | 2        | 2         | 2             | 2              | X            | 2            | 24         | 22           | 20       | 22       | 22           |          | 20       |          | 22         | 200       | 22/2          |           | 224          | 08/           | 77/         | 77/2     | ØZ/2             | 07/         | <i>0</i> 74 | <i>7</i> 7/  | <i>7</i> 22           |
| PG1exon27    | _        | _          | _            | +        | +         | _             | _              | NT           | +            | _          |              | _        |          | _            | _        | _        | _        | +          | _         | _             | +         | _            |               | _           | <u> </u> | _                | _           |             | <del> </del> | _                     |
| PG1exon28    | _        | _          | +            | _        | _         | _             | _              | NT           | _            | _          | _            | _        | _        | -            |          |          | _        | _          | _         | _             | _         | <u> </u>     | _             | _           | <u> </u> | _                | <u>-</u>    | -           |              | $\exists$             |
| PG1exon35    | _        | +          | +            | +        | +         | +             | 7777           | NT           | +            | +          | _            | -        | _        | <b>-</b>     | <u>-</u> | -        | +        | +          | -<br>//// | +             | +         | +            | -             | <b>-</b>    | +        | +                | +           | +           |              |                       |
| PG1exon36    |          | 2          | 2            | 2        | X         | Ź             | 44             | M            | 2            | ŹŹ         | 2            | 20       | 2        | 20           | 22       | 20       | 20       | 22         | 2012      | 22            | M         | 22           | 01/2          | 27/2        | 22       | 21/2             | 27/         | 27/4        | 224          | 224                   |
| PG1exon37    | _        | _          | _            | -        | _         | -             | _              | NT           | _            | _          | _            | _        | _        | _            | _        | _        | _        | _          | _         | _             | -         | _            |               | _           | _        | _                | _           |             | $\dashv$     | $\dashv$              |
| PG1exon38    | _        | _          | _            | _        | _         | _             | _              | NT           | _            | +          | _            | _        | -        | -            | _        | -        | <b>-</b> | <b>-</b> : | -<br>//// | -             | +         | -            | -             | 777         | -        | -<br>///         | +           | 770         |              |                       |
| PG1exon46    |          |            |              | X        |           |               |                |              |              | X          |              |          |          |              |          |          |          |            | 24        |               |           |              |               |             |          |                  |             |             |              |                       |
| PG1exon47    |          |            |              | 1        | M         | 2             | 2              | M            | 2            | 20         | 2            | Ź        | 2        | 010          | 22       |          | ð L      | 22         |           | 22            | 20        | 22           | 21/2          | 21/2        | 22/      | 27/2             | 27/         | 200         | 224          | 2014                  |
| PG1exon48    | _        | _          | -            | _        | +         | -             | -              | NT           | -            | -          | -            | -        | +        | <del>-</del> | <b>-</b> | -        | -        | -<br>1100  | -<br>//// | <b>-</b>      | -         | -            | 70            | -<br>////   | 00       | -<br>///         | 72          | 700         | <i>a</i>     |                       |
| PG1exon57    | 2        | 1          | 25/2         | 2        | 2         | 2             | M              | M.           | 20           | 2          | 2            | 2        | 22       |              | 222      |          | 000      | 200        | 24/2      | 20            | 200       | 22           | 01/           | (ZZ)        | 22       | 201/2            | 27/         | +           | 27/2         | 224                   |
| PG1exon58    | _        | _          | _            | _        | -         | +             | +              | NT           | _            | _          | -            | _        | _        | -            | _        | _        |          | -          | -         | _             | _         | _            | -             | <u> </u>    | =        | _                | F           |             | +            | +                     |
| PG1exon68    | _        | +          | +            | <u> </u> | +         | +             | +              | NT           | +            | +          | _            | _        | _        | _            | +        | +        | -        | -          | +         | +             | _         | _            | +             | <u> </u>    | _        | -                | +           | =           |              | $\frac{\perp}{\perp}$ |
| PG1exon11b   | +        | +          | +            | +        | +         | +             | +              | NT           | +            | +          | _            | +        | _        | +            | +        | +        | +        | +          | +         | +             | _         | _            | +             | <u> </u>    | _        | +                | ++          | ++          | Н            | +                     |
| PG1exon1b2   | +        | +          | +            | +        | +         | +             | +              | NT           | +            | +          | _            | +        | -        | +            | +        | +        | +        | +          | <b>+</b>  | +             | -<br>70   | -            | +             | 00          | 20       | +                | 7           | 7           | -<br>V20     |                       |
| PG1exon1b3   |          | 1          |              | 2        | ŹŹ        | Ź             | ŹŹ             | XX           | 2            | 2          | 2/2          | 2        | 77/      | 22           | ŹΩ       | 21/2     | 01/2     | 010        | 24/       | 22            | 24        | 22           | 27/           | 22/         | +        | +                | 77/         | 27/         | +            | 224                   |
| PG1exon1b4   | <u> </u> | +          | _            | +        | +         | +             | +              | +            | +            | +          | _            | _        | +        | _            | +        | +        | _        |            | _         | +             | +         | +            | +             | <u> </u>    | T        | +                | +           | +           | +            | $\exists$             |
| PG1exon1b5   |          | +          | _            | +        | +         | +             | +              | NT           | +            | +          | -            | <b>-</b> | +        | <b>-</b>     | -        | -        | +        | +          | 7/1       | 77            | +         | 000          | +             | -<br>77     | V.W      | 7<br>VZ          | /<br>///    | VZ          | 1            |                       |
| PG1exon1b6   |          | ( <u>X</u> |              | 2        | 2         | <i>X</i> /    | 2              | NT.          | ŹŹ           | 22/2       | 2            | 2//      | <b>/</b> | 77/          | ŹŹ       | 07/      | 200      | 21/2       | 27/       | 27/2          | 28/       | <b>/</b> /// | 27/           | 77/         | (TL)     | 77/              | <i>7</i> 22 | 72/         |              |                       |
| PG1exon1b7   | L        | +          | _            | +        | +         | +             | +              | NT           | +            | +          | +            | +        | =        | _            | _        | +        | _        | =          | <b>-</b>  | <b> -</b>     | _         | -            | ᆮ             | -           | Ε        |                  |             |             |              |                       |
| PG1exon1b8   |          | -          | _            | +        | -         | +             | -              | NT           | -            | -          | -            | +        | -        | -            | -        | -        | -        | -          | -         | 70            | -<br>//// | 77           | 77/           | //          |          | -<br>V <i>II</i> | 02          | 12          | 100          |                       |
| PG1exon3b4   | Z        | <b>X</b>   | 12/2         |          | Ź         | 2             | 22             | N.           | 22           | 2          | 2            | 2/       | Ź        | 22           | 01/2     | Ź        | 27/2     | 22         | 27/2      | 27/           | 27/2      | 77/          | 01/           | <i>7</i> 22 | 77/      | 77/              |             |             |              |                       |
| PG1exon3b5   |          | -          | -            | +        | +         | -             | -              | NT           | -            | -          | -            | -        | 777      | -            | -        | -        | -        | 77         | -         | 70            | 777       | -<br>///     | 7             | -<br>V/L    | 02       | 72               | -<br>VZ     | w           | 000          | 100                   |
| PG1exon3b6   |          | 2          |              |          | 2         | <b>2</b>      | 22             | NJ.          | Ž            | 2/2        | 2            | 11/      | 2        | 2            |          | 2//      | 27/      | 22/2       | 01/       | 77/           | 77/       | 77/          | <i>[X]</i>    | 77/         | 77/      | 27/              | 77/         | 122         | 222          | 222                   |
| PG1exon3b7   | _        | +          | _            | +        | +         | -             |                | NT           |              | +          | =            | +        | _        | _            | _        | =        | <u>Γ</u> | _          | -         | <del> -</del> | +         | +            | _             | _           | T        | E                | =           | 上           | E            |                       |
| PG1exon3b8   |          | -          | -            | -        | _         | _             |                | NT           | -            | <u> </u>   | <u>  -</u>   | <u> </u> | _        | _            | _        | 二        | -        | -          | <u> </u>  | =             | _         | =            | =             | =           | E        | E                | =           | E           |              |                       |
| PG1exon5b6   | +        |            | +            | -        | -         | =             |                |              |              |            |              | +        | =        | _            | _        | _        | +        | +          | -         | -             | _         | -            |               | E           | E        | E                | E           | E           |              |                       |
| PG1exon5b7   | _        | +          | -            | +        |           | +             |                | NT           | -            |            | _            | -        | -        | -            | =        | _        | _        | F          | -         | =             |           | +            | E             |             | E        | Ξ                |             | <u> </u>    | -            |                       |
| PG1exon5b8   | 100      | -          | <del>-</del> | 1-       |           | -             |                | NT           |              |            |              | 7///     | 100      | 70           | 70       | 70       | 73       | 00         | 00        | -<br>V.O.     | 100       | -<br>VII.    | 1             | VZ          | VI       | 1/1/2            | 1/1/2       | 100         | 100          |                       |
| PG1exon56b   |          |            |              | 1        | <b>X</b>  |               |                | <b>1</b> 1   | <b>(</b> *// |            |              |          |          |              |          |          |          | 00         |           |               |           |              |               |             |          |                  |             |             |              |                       |
| PG1exon46b   |          | <b>X</b>   |              |          |           |               |                | <b>1</b> 17  | <b>(*</b> // |            |              |          |          |              |          |          |          |            |           |               | 00        | W.           |               |             |          |                  |             |             | W            |                       |
| PG1exon36b   |          | <b>X</b>   | <b>X</b>     |          |           | <b>X</b>      |                | <b>107</b>   |              |            |              |          |          |              |          |          |          |            |           |               |           |              |               |             |          |                  |             |             |              |                       |
| PG1exon26b   |          |            |              | X        | <b>*</b>  |               |                | <b>1</b> 0.2 |              |            |              |          |          |              | 7        |          |          |            |           |               |           |              |               |             |          |                  |             |             |              |                       |
| PG1exon16b   | 1//      | X X        | <u>X</u>     | X        | XX        | 12 <u>1</u> 2 | XX             | 122          | XX           | 100        | 100          | 8/1/     | 101      | 17/          | 100/     | 17/      | 01/      |            |           | XX/           |           | <u> </u>     | $\mathcal{W}$ | XX          | XX       | X/Y/             | X/Z         | XXX         | <u> </u>     | <u> </u>              |

[+] alternative splicing form with combination of exons 13478 instead of 1345678

FIG. 15

The extribute outside and construction of the filter and a little in the construction of the filter and a little in the construction of the filter and a little in the construction of the



FIG. 17

ASSOCIATION STUDIES PG1 (8p23)





THE REPORT OF THE PROPERTY OF THE PARTY OF T

ASSOCIATION STUDIES

FIG. 18A

PG1 (8p23)

| SNOITA III ADA                    |           | AFFECTED N= [275;491]                                      |                      | UNAFFECTED N=[130;313]                                                                   |
|-----------------------------------|-----------|------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|
|                                   | ALL CASES | SPORADIC CASES                                             | FAMILIAL CASES       | CONTROLS                                                                                 |
| characteristics<br>of populations |           | <=491 all cases <=294 sporadics cases <=197 familial cases | <=197 familial cases | <28 unaffected (65 years or older)<br>& <=289 controls<br>(65 years or older with PSA<4) |



is religious designation of the second of th

|                                       | Т           | -         |            | 1        | _        |          |          | 7        | _          | 1          |          | Į.         | _          |            |            | · · ·      | _        |          |          |
|---------------------------------------|-------------|-----------|------------|----------|----------|----------|----------|----------|------------|------------|----------|------------|------------|------------|------------|------------|----------|----------|----------|
| Attributable<br>Risk                  | 17.58       | 2         | 9          | 13.15    | 18.16    | 18.64    | 13.25    | 26.76    | 9          | Q.         | 9.32     | Q          | Q          | S          | 8.46       | 18.40      | S        | 13.16    | 10.97    |
| Freq(randoms)                         | 0.29        | \$QN      | QN         | 0.41     | 0.31     | 0.28     | 0.31     | 0.52     | QN         | QN         | 0.28     | ON         | QN         | QN.        | 0.28       | 0.24       | ON       | 0.24     | 0.24     |
| Pvalue                                | 2.53E-02    | 9.64E-03  | 6.93E-02   | 1.57E-01 | 1.35E-02 | 1.43E-02 | 9.43E-02 | 7.29E-03 | 8.33E-02   | 4.83E-02   | 1.68E-01 | 2.69E-02   | 7.52E-01   | 7.29E-03   | 1.07E-01   | 3.18E-03   | 0,527§   | 4.68E-03 | 2.39E-02 |
| Odd Ratio                             | 1.44        | 1.51      | 1.37       | 1.23     | 1.43     | 1.49     | 1.29     | 1.48     | 1.30       | 1.36       | 1.25     | 1.44       | 1.01       | 1.55       | 1.20       | 1.72       | 1.76     | 1.43     | 1.33     |
| abs diff % (fq(cases)— (fq(controls)) | 7.4         | 10.1      | 5.8        | 2        | 7.4      | 8.3      | 5.7      | 9.7      | 6.2        | 7          | 4.4      | 7.4        | 0.3        | 9.2        | 3.8        | 8.2        | 0.3      | 6.2      | 4.9      |
| Freq(controls)                        | 0.24        | 0.42      | 0.22       | 0.38     | 0.26     | 0.26     | 0.30     | 0.42     | 0.37       | 0.30       | 0.25     | 0.25       | 0.34       | 0.25       | 0.28       | 0.17       | 0.00     | 0.19     | 0.20     |
| Freq(cas)                             | 0.32        | 0.52      | 0.28       | 0.43     | 0.34     | 0.34     | 92.0     | 0.52     | 0.43       | 0.37       | 0.29     | 0.33       | 0.34       | 0.35       | 0.31       | 0.27       | 0.01     | 0.25     | 0.25     |
| Polym.                                | L/*9        | C/T       | C/T        | G/A      | 2/9      | A/G      | A/G      | 2/9      | 4 G/A      | A/T        | A/C      | A/G        | 1/A        | G/A        | 2/1        | 2/9        | G/A      | C/T      | 1/0      |
| PG1                                   | prom        | in 1      | in.        | in 1     | in1        | in1        | in2      | in2        | in3        | in4        | in4        | ju6        | 3'UTR    | 3'UTR    | 3'UTR    |
| name of<br>markers                    | 99-1485/251 | 99-622/95 | 99-619/141 | 4-76/222 | 4-77/151 | 4-71/233 | 4-72/127 | 4-73/134 | 99-610/250 | 99-609/225 | 4-90/283 | 99-602/258 | 99-600/492 | 99-598/130 | 99-217/277 | 99-576/421 | 4-61/269 | 4-66/145 | 4-67/40  |

§ Test Fisher—\$ ND: Not done —\* disease associated allele / not associated allele

## FIG. 18B

### FIG. 19A HAPLOTYPE FREQUENCY ANALYSIS

| POPULATIONS                       | AFFECTED                                   | UNAFFECTED                                                                            |
|-----------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------|
| sample sizes                      | CASES (n=491)                              | CONTROLS (n=317)                                                                      |
| characteristics<br>of populations | 294 sporadic cases<br>+ 197 familial cases | 28 unaffected (65 years or older)<br>+ 289 controls<br>(65 years or older with PSA<4) |

|                     |       |            |                              |                     |                     | <del>,</del>           |
|---------------------|-------|------------|------------------------------|---------------------|---------------------|------------------------|
|                     |       | _          | 4-14/240                     | 99-217/277          | 4-66/145            | 99-221/377             |
| PG1 (8              | p23   | )          |                              | in4                 | 3'UTR               |                        |
| distance bet        | ween  | mks        | <100                         | 0kb> <17            | kb> <43             | kb>                    |
| size (cases v       | s cor | itrols)    | 481 vs 305                   | 481 vs 302          | 481vs 300           | 481 vs 303             |
| frequency % (co     | ises/ | controls)  | 65,7/62,1(C)                 | 31,3/27,5(C)        | 25,1/19(C)          | 42,7/42,91 (A)         |
| abs diff freq. all. | cases | -controls) | 3.6                          | 3.8                 | 6.2                 | 0                      |
| pvalı               | ıe    |            | 1.47E-01                     | 1.07E-01            | 4.68E-03            | 7.52E-01               |
| Hardy Weindeberg    |       | cases      | 5.84E-01                     | 6.55E-01            | 2.54E-01            | 5.84E-01               |
| Disequilibrium      |       | controls   | 4.80E-01                     | 2.21E-01            | 3.71E-01            | 2.54E-01               |
| HAP 1 <43kb>        |       | 451 vs 297 |                              |                     |                     | //// <b>/X</b> /////:: |
| HAP 2 <17kb>        |       | 451 vs 296 |                              |                     |                     |                        |
| HAP 3 <117kb>       |       | 452 vs 299 |                              | 9994 - 199          | ////\$1///          |                        |
| HAP 4 <100kb>       |       | 479 vs 302 | (//// <b>\$</b> /////        | 199 <b>3</b> 0 199  |                     |                        |
| HAP 5 <60kb>        |       | 476 vs 300 |                              |                     |                     |                        |
| HAP 6 <160kb>       | PT2   | 476 vs 303 | ///// <b>S</b> //////        | <u> </u>            |                     |                        |
| HAP 7 <160kb>       |       | 447 vs 297 | <b>/////\$</b> //////        | m. 44. 341          |                     | //// <b>/</b>          |
| HAP 8 <60kb>        |       | 446 vs 294 |                              |                     |                     | //// <b>/</b> #////    |
| HAP 9 <117kb>       |       | 450 vs 296 | <b>(</b> //// <b>5</b> ///// |                     |                     |                        |
| HAP 10 <160kb>      | PT3   | 474 vs 300 |                              | <u> </u>            |                     |                        |
| HAP 11 <160kb>      | PT4   | 445 vs 294 | (1/1/ <b>)\$</b> (1/1/):     | 999 <b>7V</b> : 999 | //// <b>%</b> ///// |                        |

|       | otype<br>encies |              |       |           |          |
|-------|-----------------|--------------|-------|-----------|----------|
| cases | controls        | Odd<br>ratio | Chi-S | Pvali     | ue       |
| 0.116 | 0.067           | 1.83         | 9.85  | (1.7e-03) | ***      |
| 0.243 | 0.183           | 1.43         | 7.49  | (6.2e-03) | **       |
| 0.182 | 0.130           | 17:49        | 7.18  | (7.3e-03) | **       |
| 0.217 | 0.188           | 1.20         | 1.88  | (1.7e-01) | *        |
| 0.155 | 0.132           | 1.20         | 1.54  | (2.1e-01) | *        |
| 0.373 | 0.346           | 1.12         | 1.16  | (2.7e-01) | *        |
| 0.095 | 0.042           | 2.39         | 14.62 | (1.3e-04) | ****     |
| 0.117 | 0.065           | 1.93         | 11.33 | (7.3e-04) | ***      |
| 0.178 | 0.125           | 1.53         | 7.80  | (5.2e-03) | **       |
| 0.114 | 0.089           | 1.32         | 2.44  | (1.1e-01) | *        |
| 0.095 | 0.032           | 3.18         | 21.59 | (3.4e-06) | *****/// |

## FIG. 19B

# HAPLOTYPE FREQUENCY ANALYSIS PG1 (8p23)

| markers              | 4-14/240 | 4-14/240   99-217/277 | 4-66/145 | 99-221/377 |
|----------------------|----------|-----------------------|----------|------------|
| of haplotype Max     |          | in4                   | 3'UTR    |            |
|                      | ပ        | L                     | ၁        | Ą          |
| distance between mks | <100     | <100kb> <17           | <17kb> < | <43kb>     |

| •                                       |                     |                          |               |              |       |          |       |
|-----------------------------------------|---------------------|--------------------------|---------------|--------------|-------|----------|-------|
|                                         | sample sizes        | haplotype<br>frequencies | fype<br>ncies | odd<br>ratio | chi-S | P value  | lue   |
| PG1                                     | cases vs<br>control | cases                    | controls      |              |       |          |       |
| cases vs control                        | 455 vs 294          | 0.095                    | 0.032         | 3.18         | 21.59 | 3.40E-06 | ****  |
| cases (<=65 years) vs controls          | 171 vs 294          | 0.105                    | 0.032         | 3.56         | 20.91 | 4.60E-06 | ****  |
| cases (>65 years) vs control            | 271 vs 294          | 0.079                    | 0.032         | 2.60         | 12.13 | 4.80E-04 | ***   |
| sporadic cases vs controls              | 266 vs 294          | 960.0                    | 0.032         | 3.23         | 19.73 | 8.60E-06 | ****  |
| sporadic cases (<=65 years) vs controls | 85 vs 294           | 0.095                    | 0.032         | 3.20         | 12.04 | 5.00E-04 | ***   |
| sporadic cases (>65 years) vs controls  | 178 vs 294          | 0.085                    | 0.032         | 2.82         | 12.75 | 3.50E-04 | ***   |
| informative sporadic cases vs controls  | 67 vs 294           | 0.062                    | 0.032         | 2.00         | 2.70  | 9.40E-02 | **    |
| familial cases vs controls              | 179 vs 294          | 0.098                    | 0.032         | 3.32         | 18.33 | 1.80E-05 | ****  |
| familial cases (<=65 years) vs controls | 86 vs 294           | 0.112                    | 0.032         | 3.83         | 17.98 | 2.20E-05 | ****  |
| familial cases (>65 years) vs controls  | 93 vs 294           | 0.075                    | 0.032         | 2.48         | 6:59  | 1.00E-02 | **    |
| familial cases (>=3 caP) vs controls    | 79 vs 294           | 0.123                    | 0.032         | 4.26         | 21.33 | 3.70E-06 | ***** |
|                                         |                     |                          |               |              |       |          |       |

FIG. 20

# HAPLOTYPE FREQUENCY ANALYSIS (PG1)

| ### Attributable Risk %    Markers in PG1   G/T   C/I   Size (cases vs controls)   336 vs 108   363 vs 108   364/26     allelic frequency % (cases / controls)   10.1   7     diff freq. all. % (cases-controls)   964E-03   1.35     hardy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C/G int 363 vs 173 34726 (G) 31 (G) 7.4 1.35E-02 | A/G<br>1<br>336 vs 130<br>34/26 (A)<br>28 (A)<br>8.3<br>1.43E-02 | ()                                | A/G<br>in4<br>347 vs 126<br>35/25 (G) | C/G<br>in6 | Į.         | _     |             | _     |              |                     |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-----------------------------------|---------------------------------------|------------|------------|-------|-------------|-------|--------------|---------------------|-------------|
| 10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1   10.1    | 3 (G) (G) III                                    | ╡╸┠ <del>╍╎╸╎╍╏╍╏</del> ╾┼╾╂                                     | 352 vs 129<br>52/42 (G)<br>52 (G) | in4<br>347 vs 126<br>35/25 (G)        | jn6        | 3          |       |             |       |              |                     |             |
| 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 173<br>(G)<br>3)                                 | <del>╒╼╎╼╎╼╏</del> ╼╾┼═╸ <del>╏</del>                            | 52 vs 129<br>52/42 (G)<br>52 (G)  | 347 vs 126<br>35/25 (G)               |            | 3"UTR      | frequ | frequencies |       |              |                     |             |
| Cases / Controls   S242 (G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34/26 (G)<br>31 (G)<br>7.4<br>1.35E-02<br>       | 28 (A)<br>28 (A)<br>8.3<br>1.43E-02                              | 52/42 (G)<br>52 (G)               | 35/25 (G)                             | 355 vs 129 | 456 vs 306 |       |             | -     |              |                     |             |
| ND   10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31 (G)<br>7.4<br>1.35E-02<br>                    | 28 (A)<br>8.3<br>1.43E-02                                        | 52 (G)                            | 1                                     | 27/17 (G)  | 25/19 (C)  |       |             | _     |              |                     |             |
| 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.4<br>1.35E-02<br>**                            | 8.3<br>1.43E-02                                                  |                                   | QN                                    | 24 (G)     | 24 (C)     |       |             |       |              |                     |             |
| 29,64E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,35E-02<br>**<br>1,43                           | 1.43E-02                                                         | 9.7                               | 9.2                                   | 9.2        | 6.2        | cases | controls    | ppo   | Attributable | Pvalue              | 9           |
| 1.51   1.51   1.51   1.51   1.51   1.51   1.51   1.51   1.52E-01   1.52E-01 | 1.43                                             | :                                                                | 7.29E-03                          | 7.29E-03                              | 3.18E-03   | 4.68E-03   |       |             | Ratio | Risk %       | (cases vs controls) | trols)      |
| Odd Ratio         1.51           Outable Risk %         ND           cases         7.52E-01           controls         4.39E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.43                                             |                                                                  | 1                                 | ī                                     | :          | ***        |       |             |       |              |                     |             |
| cases 7.52E-01 controls 4.39E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                | 1 49                                                             | 1.48                              | 1.55                                  | 1.72       | 1.43       |       |             |       |              |                     |             |
| cases 7.52E-01 controls 4.39E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 16                                            | 18 64                                                            | 26 76                             | ND                                    | 8 46       | 13.16      |       |             |       |              |                     |             |
| controls 4 39E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 52E-01                                         | 5 84F-01                                                         | 7.52E-01                          | 7.52E-01                              | 7.52E-01   | 3.43E-01   |       |             |       |              |                     |             |
| controls 4 38E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 02E 04                                         | 1 21E-01                                                         | 7 52F-01                          | 6.52E-02                              | 7.52E-01   | 1.29E-01   | _     |             |       |              |                     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.03E-01                                         |                                                                  |                                   |                                       |            |            | L     |             |       |              |                     |             |
| haptotype 1 2 MKS 339 vs 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |                                                                  |                                   |                                       |            |            | 0.263 | 0.152       | 1.99  | 18.55        | $\neg$              |             |
| hanlotyne 2 3 MKS 330 vs 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                |                                                                  |                                   |                                       |            |            | 0.259 | 0.147       | 2 02  | QN           | (3.9e-04)           |             |
| A Mice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  | X                                                                |                                   |                                       |            | ×          | 0.259 | 0.147       | 2 02  | Q            | (4.19-04)           |             |
| CVINI +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                |                                                                  |                                   |                                       |            |            | 0.26  | 0.148       | 2.01  | QN           | (4.86-04)           | :           |
| 5 MKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |                                                                  |                                   |                                       |            |            | 0.258 | 0 149       | 2     | 2            | (5.39-04)           | -           |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                                                                  |                                   |                                       |            |            | 0 255 | 0 146       | 2     | £            | (1 6e-03)           |             |
| haplotype 6 7 MKS 290 vs 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |                                                                  |                                   |                                       |            |            |       | 4           |       |              | Z                   | ND Not Done |

FIG. 21

Comparison of Pvalue between nb of mks for haplotype (19 mks of PG1)

| GENE # of markers combinations combinations PG1 19 171 969 |      |              |              |              |              |
|------------------------------------------------------------|------|--------------|--------------|--------------|--------------|
| # of markers combinations                                  |      |              | # of 2 mks   | # of 3 mks   | # of mks     |
| 19 171                                                     | GENE | # of markers | combinations | combinations | combinations |
|                                                            | PG1  | 19           | 171          | 696          | 3876         |



~

2 mks combinations