Computation of $H^*(\mathbb{CP}^2)$

Theorem

Suppose $F \to E \to B$ is a fibration satisfying (conditions).

Then there exists a spectral sequence E_{st} such that

1.
$$E_2^{p,q}=H^p(B,H^q(F;\mathbb{Z}))=H^p(B;\mathbb{Z})\otimes H^q(F;\mathbb{Z})$$

2. $E_\infty^{p,q}\Rightarrow H^{p+q}(E)$

Computation

Use the above theorem with the fibration $S^1 o \mathbb{CP}^2$, as well as the following facts:

1.
$$H^*(S^1) = \mathbb{Z}\delta_0 + \mathbb{Z}\delta_1$$

2.
$$H^*(S^5)=\mathbb{Z}\delta_0+\mathbb{Z}\delta_5$$

3.
$$H^0(\mathbb{CP}^2)=\mathbb{Z}$$
 (i.e. it is simply connected)

4.
$$d_2:E_2^{p,q} o E_2^{p-2,q+1}$$

By the theorem, we have

$$E_2^{p,q}=H^p(\mathbb{CP}^2)\otimes H^q(S^1)$$

Thus the E_2 page of the spectral sequence looks like this:

Using the facts above, we can substitute in some known groups:

Now recalling two useful properties of the tensor product:

1.
$$A \otimes_{\mathbb{Z}} 0 = 0$$
, and

2.
$$A \otimes_{\mathbb{Z}} \mathbb{Z} = A$$
,

we obtain the following simplified version of the E_2 page, with several of the potentially non-trivial differentials indicated:

Now we use the fact that the spectral sequence converges to make several deductions:

Claim:

$$H^1(S^5)=0 \implies H^2(\mathbb{CP}^2)\cong \mathbb{Z} ext{ and } H^1(\mathbb{CP}^2)=0$$

(This will be a template argument for most of the rest, so I will spell out more details here and gloss over them later.)

- ullet This means that $E_{\infty}^{0,1}\oplus E_{\infty}^{1,0}=0.$
- Consider the process of obtaining the E_3 page:
 - $\circ \ E_3^{0,1}$ is obtained from the homology of the complex $0 o \mathbb{Z} \stackrel{\partial_1}{\longrightarrow} H^2(\mathbb{CP}^2) o 0$, i.e. we have $E_3^{0,1} = rac{\ker \partial_1}{\operatorname{im} 0} = \ker \partial_1$
 - \blacksquare Note that all differentials after the E_3 page extend into the p<0 and q<0 quadrants, so there is stabilization here and $E_3^{0,1}=E_\infty^{0,1}$
 - But if the homology of this sequence is not zero, then $E_3^{1,0} \neq 0$, so $E_\infty^{0,1} \neq 0$ and $E_\infty^{0,1} \oplus E_\infty^{1,0} \neq 0$, a contradiction.
 - So this is an acyclic complex, and thus an exact sequence.
 - ullet So ∂_1 is an isomorphism, and $H^2(\mathbb{CP}^2)\cong \mathbb{Z}$
 - $\circ~E_3^{1,0}$ is obtained from the homology of $0 o H^1(\mathbb{CP}^2) o 0$
 - lacktriangle By the same argument, this spot stabilizes at E_3 and so this complex must have trivial homology.
 - lacksquare But this can only happen if $H^1(\mathbb{CP}^2)=0$

Claim:

$$H^2(S^5)=0 \implies H^1(\mathbb{CP}^2)\cong H^3(\mathbb{CP}^2) ext{ and } H^2(\mathbb{CP}^2)=\mathbb{Z}$$

We have $H^2(S^5)=E^{0,2}_\infty\oplus E^{1,1}_\infty\oplus E^{2,0}_\infty$.

Note that $E_2^{0,2}=0$, so $E_\infty^{0,2}=0$ there are only two contributing terms to consider.

 $E_\infty^{1,1}$: This involves looking at the complex $0 \to H^1(\mathbb{CP}^2) \stackrel{\partial_2}{\longrightarrow} H^3(\mathbb{CP}^2) \to 0$. All differentials extend into zero quadrants starting at E_3 , so this entry stabilizes at E_3 . But any homology in this complex would contribute a nonzero contribution to $H^2(S^5)$, so this complex is acyclic/exact and ∂_2 is an isomorphism.

 $E_{\infty}^{2,0}$: This involves $0 \to \mathbb{Z} \stackrel{f}{\to} H^2(\mathbb{CP}^2) \to 0$, where the E^3 differentials extend into zero quadrants and thus this entry stabilizes at E^3 . Any nonzero homology here yields a nonzero contribution to $H^2(S^5)$, so this complex is acyclic/exact and thus f is an isomorphism.

Claim:

$$H^3(S^5) = 0 \implies H^2(\mathbb{CP}^4) \cong H^4(\mathbb{CP}^2) \cong H^6(\mathbb{CP}^2), \ H^1(\mathbb{CP}^2) \cong H^3(\mathbb{CP}^2) \cong H^5(\mathbb{CP}^2)$$

Note: this is the first spot where the differentials may not extend into zero quadrants, but since the total homology is zero, this is not a real issue yet.

We have $H^3(S^5)=\bigoplus_{p+q=n}E^{p,q}_\infty=E^{0,3}_\infty\oplus E^{1,2}_\infty\oplus E^{2,1}_\infty\oplus E^{3,0}_\infty$. Every summand must be zero, so we examine them individually.

 $E_{\infty}^{0,3}$: We have $E_2^{0,3}=0$ and is involved in a complex of the form $0 o E_2^{0,3} o E_2^{2,2} o E_2^{4,1} o E_2^{6,0} o 0$, which we can identify as $0 o 0 o 0 o H^4(\mathbb{CP}^2) o H^6(\mathbb{CP}^2) o 0$, which must be exact, so we have $H^4(\mathbb{CP}^2) \cong H^6(\mathbb{CP}^2)$.

 $E_\infty^{1,2}$: We have the complex $0 o E_2^{1,2} o E_2^{3,1} o E_2^{5,0} o 0$ which equals

 $0 \to 0 \to H^3(\mathbb{CP}^2) \overset{f}{ o} H^5(\mathbb{CP}^2) \to 0$, which must be exact and so f is an isomorphism yielding $H^3(\mathbb{CP}^2) \cong H^5(\mathbb{CP}^2)$.

 $E_{\infty}^{2,1}$: We have the complex $0 \to E_2^{0,2} \to E_2^{2,1} \to E_2^{4,0} \to 0$ which equals $0 \to 0 \to H^2(\mathbb{CP}^2) \to H^4(\mathbb{CP}^2) \to 0$, so $H^2(\mathbb{CP}^2) \cong H^4(\mathbb{CP}^2)$.

(Here we are using the fact that $E_2^{0,2}=H^2(S^1)=0$ instead of the automatic zeros from the differentials extending into zero quadrants.)

 $E_{\infty}^{3,0}$: We have $0 \to E_2^{1,1} \to E_2^{3,0} \to 0$ which equals $0 \to H^1(\mathbb{CP}^2) \to H^3(\mathbb{CP}^2) \to 0$ which must be exact and so $H^1(\mathbb{CP}^2) \cong H^3(\mathbb{CP}^2)$

Note that $H^4(S^5)=0$ doesn't give any new information at this point.

Claim

$$H^5(S^5) = \mathbb{Z} \implies H^6(\mathbb{CP}^2) = 0$$

We have $H^5(S^5)=\bigoplus_{p+q=n}E_2^{p,q}$, and so there must now be a nonzero term in this sum.

Since q>1 stabilizes to zero on E_2 , the nonzero term must come from $E_2^{5,0}$ or $E_2^{4,1}$.

 $E_2^{5,0}$: The complex is $0 o H^3(\mathbb{CP}^2) o H^5(\mathbb{CP}^2) o 0$

 $E_2^{4,1}$: The complex is $0 o H^4(\mathbb{CP}^2) o H^6(\mathbb{CP}^2) o 0$

In order for an E_3 term to be nonzero, one of these complexes must have nonzero homology. But by the previous claim, $0 \to H^3(\mathbb{CP}^2) \to H^5(\mathbb{CP}^2) \to 0$ does have zero homology, so we consider the second complex instead.

We know from our current results that $0 \to H^4(\mathbb{CP}^2) \to H^6(\mathbb{CP}^2) \to 0$ is equal to $0 \to \mathbb{Z} \stackrel{f}{\to} H^6(\mathbb{CP}^2) \to 0$, and we know that $\frac{\ker f}{\operatorname{im} 0} = \ker f \cong H^5(S^5) = \mathbb{Z}$, since this is the only possible nonzero term in the above sum.

(Not sure how to use $\ker f=0$ to show $H^6(\mathbb{CP}^2)=0$, or how to inductively compute $H^*(\mathbb{CP}^n)$.)