Image Classification using Semi-Supervised Learning

Deep Learning Final Project

Kuixian Zhu (<u>kz1041@nyu.edu</u>) Marvin Mananghaya (<u>msm796@nyu.edu</u>) Daniel Rivera Ruiz(<u>drr342@nyu.edu</u>)

> Deep Learning - Spring 2019 New York University

Problem Definition

• Image classification: 512k unlabeled images + 128k labeled images (64k train + 64k val), 1000 classes

Approach: use SSL techniques to take advantage of the larger set of

unlabeled images

• Algorithms explored:

- SSL-DCGANs
- Deep Clustering
- Mean Teacher

SSL-DCGANs

In the style of Guillermo, 2019:

"So DCGANs do well in learning features unsupervised? **What if we do it semi-supervised?**"

- Radford et al., 2015

"You could totally do that, just change the classification problem **from real vs fake to real k classes and fake**"

-Salimans et al., 2016

But what happened? Tl;dr It didn't work out so well.

- GANs are sensitive to hyperparameter changes
- **Easy to fall** to non-convergence
- One network can overpower another

Maybe there are **simpler** yet **better** ways to perform semi-supervised learning?

Deep Clustering

 Basic idea: alternate between clustering of the image descriptors and updating the weights of a convnet by predicting the cluster assignments.

Mean Teacher

Mean Teacher is a simple, yet scalable framework for semi-supervised learning.

- 1. Take any supervised model, call it the **student**.
- 2. Make a copy of the student model, call it the **teacher**. Let the teacher's weights to be the exponential moving average (EMA) of the student's weights.
- 3. While training, use the same images as inputs to both models, but add random noise (augmentation) to them separately.
- 4. Update the student by the classification loss as usual, yet add an additional *consistency loss* between the student and teacher outputs.

Results and Analysis

Mean Teacher training curves

 Model comparison (validation accuracy)

	Labeled examples per class during training							
	1	2	4	8	16	32	64	64
Model							acc@1	acc@5
Baseline (Resnet152)	_	_	_	_	_	_	30.45	55.20
SSL-DCGAN	_	_	_	_	_	_	10.10	27.04
Mean Teacher (Resnet152)	1.71	1.65	_	_	15.21	20.59	34.38	59.81
Deep Clustering	1.40	2.38	3.38	5.60	7.71	9.39	13.48	28.61

Conclusions

- SSL can be very powerful because it fully exploits unlabeled data, which is easier and cheaper to collect.
- In general, deep learning models rely greatly in the amount of data available and SSL models are no exception to this rule.
- Due to time and computing resources limitations, we were not able to push any of our models to the limit.