

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C07H 21/04, C07K 1/00, 14/00, C12N 1/21, 15/00, 15/09, 15/63, 15/70, C12P 19/34	A1	(11) International Publication Number: WO 00/52027 (43) International Publication Date: 8 September 2000 (08.09.00)
(21) International Application Number: PCT/US00/05432		(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 2 March 2000 (02.03.00)		
(30) Priority Data: 60/122,389 2 March 1999 (02.03.99) US 60/126,049 23 March 1999 (23.03.99) US 60/136,744 28 May 1999 (28.05.99) US		
(71) Applicant: LIFE TECHNOLOGIES, INC. [US/US]; 9800 Medical Center Drive, Rockville, MD 20850 (US).		
(72) Inventors: HARTLEY, James, L.; 7409 Hillside Drive, Frederick, MD 21702 (US). BRASCH, Michael, A.; 20931 Sunnymacres Road, Gaithersburg, MD 20882 (US). TEMPLE, Gary, F.; 114 Ridge Road, Washington Grove, MD 20882 (US). CHEO, David; 2006 Baltimore Road, #21, Rockville, MD 20851 (US).		Published <i>With international search report.</i> <i>With an indication in relation to deposited biological material furnished under Rule 13bis separately from the description.</i>
(74) Agents: ESMOND, Robert, W. et al.; Sterne, Kessler, Goldstein & Fox P.L.L.C., Suite 600, 1100 New York Avenue, N.W., Washington, DC 20005-3934 (US).		
(54) Title: COMPOSITIONS AND METHODS FOR USE IN RECOMBINATIONAL CLONING OF NUCLEIC ACIDS		
(57) Abstract		
<p>The present invention relates generally to compositions and methods for use in recombinational cloning of nucleic acid molecules. In particular, the invention relates to nucleic acid molecules encoding one or more recombination sites or portions thereof, to nucleic acid molecules comprising one or more of these recombination site nucleotide sequences and optionally comprising one or more additional physical or functional nucleotide sequences. The invention also relates to vectors comprising the nucleic acid molecules of the invention, to host cells comprising the vectors or nucleic acid molecules of the invention, to methods of producing polypeptides using the nucleic acid molecules of the invention, and to polypeptides encoded by these nucleic acid molecules or produced by the methods of the invention. The invention also relates to antibodies that bind to one or more polypeptides of the invention or epitopes thereof. The invention also relates to the use of these compositions in methods for recombinational cloning of nucleic acids, <i>in vitro</i> and <i>in vivo</i>, to provide chimeric DNA molecules that have particular characteristics and/or DNA segments.</p>		

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

Compositions and Methods for Use in Recombinational Cloning of Nucleic Acids

5

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to recombinant DNA technology.

10

More particularly, the present invention relates to compositions and methods for use in recombinational cloning of nucleic acid molecules. The invention relates specifically to nucleic acid molecules encoding one or more recombination sites or one or more partial recombination sites, particularly *attB*, *attP*, *attL*, and *attR*, and fragments, mutants, variants and derivatives thereof. The invention also relates to such nucleic acid molecules wherein the one or more recombination site nucleotide sequences is operably linked to the one or more additional physical or functional nucleotide sequences. The invention also relates to vectors comprising the nucleic acid molecules of the invention, to host cells comprising the vectors or nucleic acid molecules of the invention, to methods of producing polypeptides and RNAs encoded by the nucleic acid molecules of the invention, and to polypeptides encoded by these nucleic acid molecules or produced by the methods of the invention, which may be fusion proteins. The invention also relates to antibodies that bind to one or more polypeptides of the invention or epitopes thereof, which may be monoclonal or polyclonal antibodies. The invention also relates to the use of these nucleic acid molecules, vectors, polypeptides and antibodies in methods for recombinational cloning of nucleic acids, *in vitro* and *in vivo*, to provide chimeric DNA molecules that have particular characteristics and/or DNA segments. More particularly, the antibodies of the invention may be used to identify and/or purify proteins or fusion proteins encoded by the nucleic acid molecules or vectors of the invention, or to identify and/or purify the nucleic acid molecules of the invention.

15

20

25

30

Related Art

5 ***Site-specific recombinases.*** Site-specific recombinases are proteins that are present in many organisms (e.g. viruses and bacteria) and have been characterized to have both endonuclease and ligase properties. These recombinases (along with associated proteins in some cases) recognize specific sequences of bases in DNA and exchange the DNA segments flanking those segments. The recombinases and associated proteins are collectively referred to as "recombination proteins" (see, e.g., Landy, A., *Current Opinion in Biotechnology* 3:699-707 (1993)).

10

Numerous recombination systems from various organisms have been described. See, e.g., Hoess *et al.*, *Nucleic Acids Research* 14(6):2287 (1986); Abremski *et al.*, *J. Biol. Chem.* 261(1):391 (1986); Campbell, *J. Bacteriol.* 174(23):7495 (1992); Qian *et al.*, *J. Biol. Chem.* 267(11):7794 (1992);
15 Araki *et al.*, *J. Mol. Biol.* 225(1):25 (1992); Maeser and Kahnmann *Mol. Gen. Genet.* 230:170-176 (1991); Esposito *et al.*, *Nucl. Acids Res.* 25(18):3605 (1997).

20 Many of these belong to the integrase family of recombinases (Argos *et al.* *EMBO J.* 5:433-440 (1986); Vozianov *et al.*, *Nucl. Acids Res.* 27:930 (1999)). Perhaps the best studied of these are the Integrase/att system from bacteriophage λ (Landy, A. *Current Opinions in Genetics and Devel.* 3:699-707 (1993)), the Cre/loxP system from bacteriophage P1 (Hoess and Abremski (1990) In *Nucleic Acids and Molecular Biology*, vol. 4. Eds.: Eckstein and Lilley, Berlin-Heidelberg: Springer-Verlag; pp. 90-109), and the FLP/FRT system from the Saccharomyces cerevisiae 2 μ circle plasmid (Broach *et al.* *Cell* 29:227-234 (1982)).

25

Backman (U.S. Patent No. 4,673,640) discloses the *in vivo* use of λ recombinase to recombine a protein producing DNA segment by enzymatic site-specific recombination using wild-type recombination sites attB and attP.

30 Hasan and Szybalski (*Gene* 56:145-151 (1987)) discloses the use of λ Int recombinase *in vivo* for intramolecular recombination between wild type attP and attB sites which flank a promoter. Because the orientations of these sites are

inverted relative to each other, this causes an irreversible flipping of the promoter region relative to the gene of interest.

5 Palazzolo *et al.* *Gene* 88:25-36 (1990), discloses phage lambda vectors having bacteriophage λ arms that contain restriction sites positioned outside a cloned DNA sequence and between wild-type *loxP* sites. Infection of *E. coli* cells that express the Cre recombinase with these phage vectors results in recombination between the *loxP* sites and the *in vivo* excision of the plasmid replicon, including the cloned cDNA.

10 Pósfai *et al.* (*Nucl. Acids Res.* 22:2392-2398 (1994)) discloses a method for inserting into genomic DNA partial expression vectors having a selectable marker, flanked by two wild-type FRT recognition sequences. FLP site-specific recombinase as present in the cells is used to integrate the vectors into the genome at predetermined sites. Under conditions where the replicon is functional, this cloned genomic DNA can be amplified.

15 Bebee *et al.* (U.S. Patent No. 5,434,066) discloses the use of site-specific recombinases such as Cre for DNA containing two *loxP* sites for *in vivo* recombination between the sites.

20 Boyd (*Nucl. Acids Res.* 21:817-821 (1993)) discloses a method to facilitate the cloning of blunt-ended DNA using conditions that encourage intermolecular ligation to a dephosphorylated vector that contains a wild-type *loxP* site acted upon by a Cre site-specific recombinase present in *E. coli* host cells.

25 Waterhouse *et al.* (WO 93/19172 and *Nucleic Acids Res.* 21 (9):2265 (1993)) disclose an *in vivo* method where light and heavy chains of a particular antibody were cloned in different phage vectors between *loxP* and *loxP 511* sites and used to transfet new *E. coli* cells. Cre, acting in the host cells on the two parental molecules (one plasmid, one phage), produced four products in equilibrium: two different cointegrates (produced by recombination at either *loxP* or *loxP 511* sites), and two daughter molecules, one of which was the desired product.

30 Schlake & Bode (*Biochemistry* 33:12746-12751 (1994)) discloses an *in vivo* method to exchange expression cassettes at defined chromosomal locations, each flanked by a wild type and a spacer-mutated FRT recombination site. A

double-reciprocal crossover was mediated in cultured mammalian cells by using this FLP/FRT system for site-specific recombination.

Hartley *et al.* (U.S. Patent No. 5,888,732) disclose compositions and methods for recombinational exchange of nucleic acid segments and molecules, including for use in recombinational cloning of a variety of nucleic acid molecules *in vitro* and *in vivo*, using a combination of wildtype and mutated recombination sites and recombination proteins.

Transposases. The family of enzymes, the transposases, has also been used to transfer genetic information between replicons. Transposons are structurally variable, being described as simple or compound, but typically encode the recombinase gene flanked by DNA sequences organized in inverted orientations. Integration of transposons can be random or highly specific. Representatives such as Tn7, which are highly site-specific, have been applied to the *in vivo* movement of DNA segments between replicons (Lucklow *et al.*, *J. Virol.* 67:4566-4579 (1993)).

Devine and Boeke *Nucl. Acids Res.* 22:3765-3772 (1994), discloses the construction of artificial transposons for the insertion of DNA segments, *in vitro*, into recipient DNA molecules. The system makes use of the integrase of yeast TY1 virus-like particles. The DNA segment of interest is cloned, using standard methods, between the ends of the transposon-like element TY1. In the presence of the TY1 integrase, the resulting element integrates randomly into a second target DNA molecule.

Recombination Sites. Also key to the integration/recombination reactions mediated by the above-noted recombination proteins and/or transposases are recognition sequences, often termed "recombination sites," on the DNA molecules participating in the integration/recombination reactions. These recombination sites are discrete sections or segments of DNA on the participating nucleic acid molecules that are recognized and bound by the recombination proteins during the initial stages of integration or recombination. For example, the recombination site for Cre recombinase is *loxP* which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence. See Figure 1 of Sauer, B., *Curr. Opin. Biotech.*

5 5:521-527 (1994). Other examples of recognition sequences include the *attB*, *attP*, *attL*, and *attR* sequences which are recognized by the recombination protein λ Int. *attB* is an approximately 25 base pair sequence containing two 9 base pair core-type Int binding sites and a 7 base pair overlap region, while *attP* is an approximately 240 base pair sequence containing core-type Int binding sites and arm-type Int binding sites as well as sites for auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis). See Landy, *Curr. Opin. Biotech.* 3:699-707 (1993); see also U.S. Patent No. 5,888,732, which is incorporated by reference herein.

10 **DNA cloning.** The cloning of DNA segments currently occurs as a daily routine in many research labs and as a prerequisite step in many genetic analyses. The purpose of these clonings is various, however, two general purposes can be considered: (1) the initial cloning of DNA from large DNA or RNA segments (chromosomes, YACs, PCR fragments, mRNA, etc.), done in a relative handful of known vectors such as pUC, pGem, pBlueScript, and (2) the subcloning of these DNA segments into specialized vectors for functional analysis. A great deal of time and effort is expended both in the transfer of DNA segments from the initial cloning vectors to the more specialized vectors. This transfer is called subcloning.

15

20 The basic methods for cloning have been known for many years and have changed little during that time. A typical cloning protocol is as follows:

- 25
- (1) digest the DNA of interest with one or two restriction enzymes;
 - (2) gel purify the DNA segment of interest when known;
 - (3) prepare the vector by cutting with appropriate restriction enzymes, treating with alkaline phosphatase, gel purify etc., as appropriate;
 - (4) ligate the DNA segment to the vector, with appropriate controls to eliminate background of uncut and self-ligated vector;
 - (5) introduce the resulting vector into an *E. coli* host cell;
 - (6) pick selected colonies and grow small cultures overnight;
 - (7) make DNA minipreps; and

(8) analyze the isolated plasmid on agarose gels (often after diagnostic restriction enzyme digestions) or by PCR.

The specialized vectors used for subcloning DNA segments are functionally diverse. These include but are not limited to: vectors for expressing nucleic acid molecules in various organisms; for regulating nucleic acid molecule expression; for providing tags to aid in protein purification or to allow tracking of proteins in cells; for modifying the cloned DNA segment (*e.g.*, generating deletions); for the synthesis of probes (*e.g.*, riboprobes); for the preparation of templates for DNA sequencing; for the identification of protein coding regions; for the fusion of various protein-coding regions; to provide large amounts of the DNA of interest, *etc.* It is common that a particular investigation will involve subcloning the DNA segment of interest into several different specialized vectors.

As known in the art, simple subclonings can be done in one day (*e.g.*, the DNA segment is not large and the restriction sites are compatible with those of the subcloning vector). However, many other subclonings can take several weeks, especially those involving unknown sequences, long fragments, toxic genes, unsuitable placement of restriction sites, high backgrounds, impure enzymes, *etc.* Subcloning DNA fragments is thus often viewed as a chore to be done as few times as possible.

Several methods for facilitating the cloning of DNA segments have been described, *e.g.*, as in the following references.

Ferguson, J., *et al.* *Gene* 16:191 (1981), discloses a family of vectors for subcloning fragments of yeast DNA. The vectors encode kanamycin resistance. Clones of longer yeast DNA segments can be partially digested and ligated into the subcloning vectors. If the original cloning vector conveys resistance to ampicillin, no purification is necessary prior to transformation, since the selection will be for kanamycin.

Hashimoto-Gotoh, T., *et al.* *Gene* 41:125 (1986), discloses a subcloning vector with unique cloning sites within a streptomycin sensitivity gene; in a streptomycin-resistant host, only plasmids with inserts or deletions in the dominant sensitivity gene will survive streptomycin selection.

5

10

15

20

Accordingly, traditional subcloning methods, using restriction enzymes and ligase, are time consuming and relatively unreliable. Considerable labor is expended, and if two or more days later the desired subclone can not be found among the candidate plasmids, the entire process must then be repeated with alternative conditions attempted. Although site specific recombinases have been used to recombine DNA *in vivo*, the successful use of such enzymes *in vitro* was expected to suffer from several problems. For example, the site specificities and efficiencies were expected to differ *in vitro*; topologically linked products were expected; and the topology of the DNA substrates and recombination proteins was expected to differ significantly *in vitro* (see, e.g., Adams *et al*, *J. Mol. Biol.* 226:661-73 (1992)). Reactions that could go on for many hours *in vivo* were expected to occur in significantly less time *in vitro* before the enzymes became inactive. In addition, the stabilities of the recombination enzymes after incubation for extended periods of time in *in vitro* reactions was unknown, as were the effects of the topologies (*i.e.*, linear, coiled, supercoiled, etc.) of the nucleic acid molecules involved in the reaction. Multiple DNA recombination products were expected in the biological host used, resulting in unsatisfactory reliability, specificity or efficiency of subcloning. Thus, *in vitro* recombination reactions were not expected to be sufficiently efficient to yield the desired levels of product.

Accordingly, there is a long felt need to provide an alternative subcloning system that provides advantages over the known use of restriction enzymes and ligases.

25

SUMMARY OF THE INVENTION

30

The present invention relates to nucleic acid molecules encoding one or more recombination sites or one or more partial recombination sites, particularly *attB*, *attP*, *attL*, and *attR*, and fragments, mutants, variants and derivatives thereof. The invention also relates to such nucleic acid molecules comprising one or more of the recombination site nucleotide sequences or portions thereof and one or more additional physical or functional nucleotide sequences, such as those

encoding one or more multiple cloning sites, one or more transcription termination sites, one or more transcriptional regulatory sequences (*e.g.*, one or more promoters, enhancers, or repressors), one or more translational signal sequences, one or more nucleotide sequences encoding a fusion partner protein or peptide (e.g., GST, His₆ or thioredoxin), one or more selection markers or modules, one or more nucleotide sequences encoding localization signals such as nuclear localization signals or secretion signals, one or more origins of replication, one or more protease cleavage sites, one or more desired proteins or peptides encoded by a gene or a portion of a gene, and one or more 5' or 3' polynucleotide tails (particularly a poly-G tail). The invention also relates to such nucleic acid molecules wherein the one or more recombination site nucleotide sequences is operably linked to the one or more additional physical or functional nucleotide sequences.

The invention also relates to primer nucleic acid molecules comprising the recombination site nucleotide sequences of the invention (or portions thereof), and to such primer nucleic acid molecules linked to one or more target-specific (*e.g.*, one or more gene-specific) primer nucleic acid sequences. Such primers may also comprise sequences complementary or homologous to DNA or RNA sequences to be amplified, *e.g.*, by PCR, RT-PCR, etc. Such primers may also comprise sequences or portions of sequences useful in the expression of protein genes (ribosome binding sites, localization signals, protease cleavage sites, repressor binding sites, promoters, transcription stops, stop codons, etc.). Said primers may also comprise sequences or portions of sequences useful in the manipulation of DNA molecules (restriction sites, transposition sites, sequencing primers, etc.). The primers of the invention may be used in nucleic acid synthesis and preferably are used for amplification (*e.g.*, PCR) of nucleic acid molecules. When the primers of the invention include target- or gene-specific sequences (any sequence contained within the target to be synthesized or amplified including translation signals, gene sequences, stop codons, transcriptional signals (*e.g.*, promoters) and the like), amplification or synthesis of target sequences or genes may be accomplished. Thus, the invention relates to synthesis of a nucleic acid molecules comprising mixing one or more primers of the invention with a nucleic acid

template, and incubating said mixture under conditions sufficient to make a first nucleic acid molecule complementary to all or a portion of said template. Thus, the invention relates specifically to a method of synthesizing a nucleic acid molecule comprising:

- 5 (a) mixing a nucleic acid template with a polypeptide having polymerase activity and one or more primers comprising one or more recombination sites or portions thereof, and
- 10 (b) incubating said mixture under conditions sufficient to synthesize a first nucleic acid molecule complementary to all or a portion of said template and which preferably comprises one or more recombination sites or portions thereof.

Such method of the invention may further comprise incubating said first synthesized nucleic acid molecule under conditions sufficient to synthesize a second nucleic acid molecule complementary to all or a portion of said first nucleic acid molecule. Such synthesis may provide for a first nucleic acid molecule having a recombination site or portion thereof at one or both of its termini.

In a preferred aspect, for the synthesis of the nucleic acid molecules, at least two primers are used wherein each primer comprises a homologous sequence at its terminus and/or within internal sequences of each primer (which may have a homology length of about 2 to about 500 bases, preferably about 3 to about 100 bases, about 4 to about 50 bases, about 5 to about 25 bases and most preferably about 6 to about 18 base overlap). In a preferred aspect, the first such primer comprises at least one target-specific sequence and at least one recombination site or portion thereof while the second primer comprises at least one recombination site or portion thereof. Preferably, the homologous regions between the first and second primers comprise at least a portion of the recombination site. In another aspect, the homologous regions between the first and second primers may comprise one or more additional sequences, *e.g.*, expression signals, translational start motifs, or other sequences adding functionality to the desired nucleic acid sequence upon amplification. In practice, two pairs of primers prime synthesis or amplification of a nucleic acid molecule. In a preferred aspect, all or at least a portion of the synthesized or amplified nucleic acid molecule will be homologous

to all or a portion of the template and further comprises a recombination site or a portion thereof at at least one terminus and preferably both termini of the synthesized or amplified molecule. Such synthesized or amplified nucleic acid molecule may be double stranded or single stranded and may be used in the recombinational cloning methods of the invention. The homologous primers of the invention provide a substantial advantage in that one set of the primers may be standardized for any synthesis or amplification reaction. That is, the primers providing the recombination site sequences (without the target specific sequences) can be pre-made and readily available for use. This in practice allows the use of shorter custom made primers that contain the target specific sequence needed to synthesize or amplify the desired nucleic acid molecule. Thus, this provides reduced time and cost in preparing target specific primers (e.g., shorter primers containing the target specific sequences can be prepared and used in synthesis reactions). The standardized primers, on the other hand, may be produced in mass to reduce cost and can be readily provided (e.g., in kits or as a product) to facilitate synthesis of the desired nucleic acid molecules.

Thus, in one preferred aspect, the invention relates to a method of synthesizing or amplifying one or more nucleic acid molecules comprising:

- (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template specific sequence (complementary to or capable of hybridizing to said templates) and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said second primer is homologous to or complementary to at least a portion of said first primer; and
- (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one and preferably both termini of said molecules.

More specifically, the invention relates to a method of synthesizing or amplifying one or more nucleic acid molecules comprising:

- 5 (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template specific sequence (complementary to or capable of hybridizing to said templates) and at least a portion of a recombination site, and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said recombination site on said second primer is complementary to or homologous to at least a portion of said recombination site on said first primer; and
- 10 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one and preferably both termini of said molecules.
- 15

In a more preferred aspect, the invention relates to a method of amplifying or synthesizing one or more nucleic acid molecules comprising:

- 20 (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and one or more first primers comprising at least a portion of a recombination site and a template specific sequence (complementary to or capable of hybridizing to said template);
- 25 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more first nucleic acid molecules complementary to all or a portion of said templates wherein said molecules comprise at least a portion of a recombination site at one and preferably both termini of said molecules;
- (c) mixing said molecules with one or more second primers comprising one or more recombination sites, wherein said recombination sites of said second primers are homologous to or
- 30

complementary to at least a portion of said recombination sites on said first nucleic acid molecules; and

- 5 (d) incubating said mixture under conditions sufficient to synthesize or amplify one or more second nucleic acid molecules complementary to all or a portion of said first nucleic acid molecules and which comprise one or more recombination sites at one and preferably both termini of said molecules.

The invention also relates to vectors comprising the nucleic acid molecules of the invention, to host cells comprising the vectors or nucleic acid molecules of the invention, to methods of producing polypeptides encoded by the nucleic acid molecules of the invention, and to polypeptides encoded by these nucleic acid molecules or produced by the methods of the invention, which may be fusion proteins. The invention also relates to antibodies that bind to one or more polypeptides of the invention or epitopes thereof, which may be monoclonal or polyclonal antibodies. The invention also relates to the use of these nucleic acid molecules, primers, vectors, polypeptides and antibodies in methods for recombinational cloning of nucleic acids, *in vitro* and *in vivo*, to provide chimeric DNA molecules that have particular characteristics and/or DNA segments.

20 The antibodies of the invention may have particular use to identify and/or purify peptides or proteins (including fusion proteins produced by the invention), and to identify and/or purify the nucleic acid molecules of the invention or portions thereof.

25 The methods for *in vitro* or *in vivo* recombinational cloning of nucleic acid molecule generally relate to recombination between at least a first nucleic acid molecule having at least one recombination site and a second nucleic acid molecule having at least one recombination site to provide a chimeric nucleic acid molecule. In one aspect, the methods relate to recombination between a first vector having at least one recombination site and a second vector having at least one recombination site to provide a chimeric vector. In another aspect, a nucleic acid molecule having at least one recombination site is combined with a vector having at least one recombination site to provide a chimeric vector. In a most preferred aspect, the nucleic acid molecules or vectors used in recombination

comprise two or more recombination sites. In a more specific embodiment of the invention, the recombination methods relate to a Destination Reaction (also referred to herein as an "LR reaction") in which recombination occurs between an Entry clone and a Destination Vector. Such a reaction transfers the nucleic acid molecule of interest from the Entry Clone into the Destination Vector to create an Expression Clone. The methods of the invention also specifically relate to an Entry or Gateward reaction (also referred to herein as a "BP reaction") in which an Expression Clone is recombined with a Donor vector to produce an Entry clone. In other aspects, the invention relates to methods to prepare Entry clones by combining an Entry vector with at least one nucleic acid molecule (e.g., gene or portion of a gene). The invention also relates to conversion of a desired vector into a Destination Vector by including one or more (preferably at least two) recombination sites in the vector of interest. In a more preferred aspect, a nucleic acid molecule (e.g., a cassette) having at least two recombination sites flanking a selectable marker (e.g., a toxic gene or a genetic element preventing the survival of a host cell containing that gene or element, and/or preventing replication, partition or heritability of a nucleic acid molecule (e.g., a vector or plasmid) comprising that gene or element) is added to the vector to make a Destination Vector of the invention.

Preferred vectors for use in the invention include prokaryotic vectors, eukaryotic vectors, or vectors which may shuttle between various prokaryotic and/or eukaryotic systems (e.g. shuttle vectors). Preferred prokaryotic vectors for use in the invention include but are not limited to vectors which may propagate and/or replicate in gram negative and/or gram positive bacteria, including bacteria of the genera *Escherichia*, *Salmonella*, *Proteus*, *Clostridium*, *Klebsiella*, *Bacillus*, *Streptomyces*, and *Pseudomonas* and preferably in the species *E. coli*. Eukaryotic vectors for use in the invention include vectors which propagate and/or replicate in yeast cells, plant cells, mammalian cells, (particularly human and mouse), fungal cells, insect cells, nematode cells, fish cells and the like. Particular vectors of interest include but are not limited to cloning vectors, sequencing vectors, expression vectors, fusion vectors, two-hybrid vectors, gene therapy vectors, phage display vectors, gene-targeting vectors, PACs, BACs, YACs, MACs, and

reverse two-hybrid vectors. Such vectors may be used in prokaryotic and/or eukaryotic systems depending on the particular vector.

In another aspect, the invention relates to kits which may be used in carrying out the methods of the invention, and more specifically relates to cloning or subcloning kits and kits for carrying out the LR Reaction (e.g., making an Expression Clone), for carrying out the BP Reaction (e.g., making an Entry Clone), and for making Entry Clone and Destination Vector molecules of the invention. Such kits may comprise a carrier or receptacle being compartmentalized to receive and hold therein any number of containers. Such containers may contain any number of components for carrying out the methods of the invention or combinations of such components. In particular, a kit of the invention may comprise one or more components (or combinations thereof) selected from the group consisting of one or more recombination proteins or auxiliary factors or combinations thereof, one or more compositions comprising one or more recombination proteins or auxiliary factors or combinations thereof (for example, GATEWAY™ LR Clonase™ Enzyme Mix or GATEWAY™ BP Clonase™ Enzyme Mix), one or more reaction buffers, one or more nucleotides, one or more primers of the invention, one or more restriction enzymes, one or more ligases, one or more polypeptides having polymerase activity (e.g., one or more reverse transcriptases or DNA polymerases), one or more proteinases (e.g., proteinase K or other proteinases), one or more Destination Vector molecules, one or more Entry Clone molecules, one or more host cells (e.g. competent cells, such as *E. coli* cells, yeast cells, animal cells (including mammalian cells, insect cells, nematode cells, avian cells, fish cells, etc.), plant cells, and most particularly *E. coli* DB3.1 host cells, such as *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells), instructions for using the kits of the invention (e.g., to carry out the methods of the invention), and the like. In related aspects, the kits of the invention may comprise one or more nucleic acid molecules encoding one or more recombination sites or portions thereof, particularly one or more nucleic acid molecules comprising a nucleotide sequence encoding the one or more recombination sites or portions thereof of the invention. Preferably, such nucleic acid molecules comprise at least two recombination sites which flank a selectable

marker (*e.g.*, a toxic gene and/or antibiotic resistance gene). In a preferred aspect, such nucleic acid molecules are in the form of a cassette (*e.g.*, a linear nucleic acid molecule comprising one or more and preferably two or more recombination sites or portions thereof).

5 Kits for inserting or adding recombination sites to nucleic acid molecules of interest may comprise one or more nucleases (preferably restriction endonucleases), one or more ligases, one or more topoisomerases, one or more polymerases, and one or more nucleic acid molecules or adapters comprising one or more recombination sites. Kits for integrating recombination sites into one or 10 more nucleic acid molecules of interest may comprise one or more components (or combinations thereof) selected from the group consisting of one or more integration sequences comprising one or more recombination sites. Such integration sequences may comprise one or more transposons, integrating viruses, homologous recombination sequences, RNA molecules, one or more host cells 15 and the like.

Kits for making the Entry Clone molecules of the invention may comprise any or ~~a~~ number of components and the composition of such kits may vary depending on the specific method involved. Such methods may involve inserting the nucleic acid molecules of interest into an Entry or Donor Vector by the recombinational cloning methods of the invention, or using conventional molecular biology techniques (*e.g.*, restriction enzyme digestion and ligation). In a preferred aspect, the Entry Clone is made using nucleic acid amplification or synthesis products. Kits for synthesizing Entry Clone molecules from amplification or synthesis products may comprise one or more components (or combinations thereof) selected from the group consisting of one or more Donor Vectors (*e.g.*, one or more attP vectors including, but not limited to, pDONR201 (Figure 49), pDONR202 (Figure 50), pDONR203 (Figure 51), pDONR204 (Figure 52), pDONR205 (Figure 53), pDONR206 (Figure 53), and the like), one or more polypeptides having polymerase activity (preferably DNA polymerases and most preferably thermostable DNA polymerases), one or more proteinases, one or more reaction buffers, one or more nucleotides, one or more primers comprising one or 20 25 30

more recombination sites or portions thereof, and instructions for making one or more Entry Clones.

Kits for making the Destination vectors of the invention may comprise any number of components and the compositions of such kits may vary depending on the specific method involved. Such methods may include the recombination methods of the invention or conventional molecular biology techniques (e.g., restriction endonuclease digestion and ligation). In a preferred aspect, the Destination vector is made by inserting a nucleic acid molecule comprising at least one recombination site (or portion thereof) of the invention (preferably a nucleic acid molecule comprising at least two recombination sites or portions thereof flanking a selectable marker) into a desired vector to convert the desired vector into a Destination vector of the invention. Such kits may comprise at least one component (or combinations thereof) selected from the group consisting of one or more restriction endonucleases, one or more ligases, one or more polymerases, one or more nucleotides, reaction buffers, one or more nucleic acid molecules comprising at least one recombination site or portion thereof (preferably at least one nucleic acid molecule comprising at least two recombination sites flanking at least one selectable marker, such as a cassette comprising at least one selectable marker such as antibiotic resistance genes and/or toxic genes), and instructions for making such Destination vectors.

The invention also relates to kits for using the antibodies of the invention in identification and/or isolation of peptides and proteins (which may be fusion proteins) produced by the nucleic acid molecules of the invention, and for identification and/or isolation of the nucleic acid molecules of the invention or portions thereof. Such kits may comprise one or more components (or combination thereof) selected from the group consisting of one or more antibodies of the invention, one or more detectable labels, one or more solid supports and the like.

Other preferred embodiments of the present invention will be apparent to one of ordinary skill in light of what is known in the art, in light of the following drawings and description of the invention, and in light of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

5 **Figure 1** depicts one general method of the present invention, wherein the starting (parent) DNA molecules can be circular or linear. The goal is to exchange
the new subcloning vector D for the original cloning vector B. It is desirable in
one embodiment to select for AD and against all the other molecules, including the
Cointegrate. The square and circle are sites of recombination: *e.g.*, *lox* (such as
loxP) sites, *att* sites, *etc.* For example, segment D can contain expression signals,
protein fusion domains, new drug markers, new origins of replication, or
specialized functions for mapping or sequencing DNA. It should be noted that the
cointegrate molecule contains Segment D (Destination vector) adjacent to
segment A (Insert), thereby juxtaposing functional elements in D with the insert
in A. Such molecules can be used directly in vitro (*e.g.*, if a promoter is positioned
adjacent to a gene-for in vitro transcription/translation) or in vivo (following
10 isolation in a cell capable of propagating ccdB-containing vectors) by selecting for
the selection markers in Segments B+D. As one skilled in the art will recognize,
this single step method has utility in certain envisioned applications of the
invention.

15

20 **Figure 2** is a more detailed depiction of the recombinational cloning
system of the invention, referred to herein as the "GATEWAY™ Cloning
System." This figure depicts the production of Expression Clones via a
"Destination Reaction," which may also be referred to herein as an "LR Reaction."
A kan^r vector (referred to herein as an "Entry clone") containing a DNA molecule
of interest (*e.g.*, a gene) localized between an *attL1* site and an *attL2* site is
reacted with an amp^r vector (referred to herein as a "Destination Vector")
containing a toxic or "death" gene localized between an *attR1* site and an *attR2*
site, in the presence of GATEWAY™ LR Clonase™ Enzyme Mix (a mixture of
Int, IHF and Xis). After incubation at 25°C for about 60 minutes, the reaction
yields an amp^r Expression Clone containing the DNA molecule of interest
localized between an *attB1* site and an *attB2* site, and a kan^r byproduct molecule,
25 as well as intermediates. The reaction mixture may then be transformed into host
cells (*e.g.*, *E. coli*) and clones containing the nucleic acid molecule of interest may
30

be selected by plating the cells onto ampicillin-containing media and picking amp^r colonies.

5

Figure 3 is a schematic depiction of the cloning of a nucleic acid molecule from an Entry clone into multiple types of Destination vectors, to produce a variety of Expression Clones. Recombination between a given Entry clone and different types of Destination vectors (not shown), via the LR Reaction depicted in Figure 2, produces multiple different Expression Clones for use in a variety of applications and host cell types.

10

15

20

25

Figure 4 is a detailed depiction of the production of Entry Clones via a "BP reaction," also referred to herein as an "Entry Reaction" or a "Gateward Reaction." In the example shown in this figure, an amp^r expression vector containing a DNA molecule of interest (e.g., a gene) localized between an attB1 site and an attB2 site is reacted with a kan^r Donor vector (e.g., an attP vector; here, GATEWAY™ pDONR201 (see Figure 49A-C)) containing a toxic or "death" gene localized between an attP1 site and an attP2 site, in the presence of GATEWAY™ BP Clonase™ Enzyme Mix (a mixture of Int and IHF). After incubation at 25°C for about 60 minutes, the reaction yields a kan^r Entry clone containing the DNA molecule of interest localized between an attL1 site and an attL2 site, and an amp^r by-product molecule. The Entry clone may then be transformed into host cells (e.g., *E. coli*) and clones containing the Entry clone (and therefore the nucleic acid molecule of interest) may be selected by plating the cells onto kanamycin-containing media and picking kan^r colonies. Although this figure shows an example of use of a kan^r Donor vector, it is also possible to use Donor vectors containing other selection markers, such as the gentamycin resistance or tetracycline resistance markers, as discussed herein.

Figure 5 is a more detailed schematic depiction of the LR ("Destination") reaction (Figure 5A) and the BP ("Entry" or "Gateward") reaction (Figure 5B) of the GATEWAY™ Cloning System, showing the reactants, products and byproducts of each reaction.

Figure 6 shows the sequences of the attB1 and attB2 sites flanking a gene of interest after subcloning into a Destination Vector to create an Expression Clone.

5 **Figure 7** is a schematic depiction of four ways to make Entry Clones using the compositions and methods of the invention: 1. using restriction enzymes and ligase; 2. starting with a cDNA library prepared in an attL Entry Vector; 3. using an Expression Clone from a library prepared in an attB Expression Vector via the BxP reaction; and 4. recombinational cloning of PCR fragments with terminal attB sites, via the BxP reaction. Approaches 3 and 4 rely on recombination with a
10 Donor vector (here, an attP vector such as pDONR201 (see Figure 49A-C), pDONR202 (see Figure 50A-C), pDONR203 (see Figure 51A-C), pDONR204 (see Figure 52A-C), pDONR205 (see Figure 53A-C), or pDONR206 (see Figure 54A-C), for example) that provides an Entry Clone carrying a selection marker such as kan^r, gen^r, tet^r, or the like.

15 **Figure 8** is a schematic depiction of cloning of a PCR product by a BxP (Entry or Gateward) reaction. A PCR product with 25 bp terminal attB sites (plus four Gs) is shown as a substrate for the BxP reaction. Recombination between the attB-PCR product of a gene and a Donor vector (which donates an Entry Vector that carries kan^r) results in an Entry Clone of the PCR product.

20 **Figure 9** is a listing of the nucleotide sequences of the recombination sites designated herein as *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2*. Sequences are written conventionally, from 5' to 3'.

25 **Figures 10-20:** The plasmid backbone for all the Entry Vectors depicted herein is the same, and is shown in Figure 10A for the Entry Vector pENTR1A. For other Entry Vectors shown in Figures 11-20, only the sequences shown in Figure "A" for each figure set (*i.e.*, Figure 11A, Figure 12A, etc.) are different (within the attL1-attL2 cassettes) from those shown in Figure 10 -- the plasmid backbone is identical.

30 **Figure 10** is a schematic depiction of the physical map and cloning sites (Figure 10A), and the nucleotide sequence (Figure 10B), of the Entry Vector pENTR1A.

-20-

5 **Figure 11** is a schematic depiction of the cloning sites (Figure 11A) and the nucleotide sequence (Figure 11B) of the Entry Vector pENTR2B.

10 **Figure 12** is a schematic depiction of the cloning sites (Figure 12A) and the nucleotide sequence (Figure 12B) of the Entry Vector pENTR3C.

15 **Figure 13** is a schematic depiction of the cloning sites (Figure 13A) and the nucleotide sequence (Figure 13B) of the Entry Vector pENTR4.

20 **Figure 14** is a schematic depiction of the cloning sites (Figure 14A) and the nucleotide sequence (Figure 14B) of the Entry Vector pENTR5.

25 **Figure 15** is a schematic depiction of the cloning sites (Figure 15A) and the nucleotide sequence (Figure 15B) of the Entry Vector pENTR6.

30 **Figure 16** is a schematic depiction of the cloning sites (Figure 16A) and the nucleotide sequence (Figure 16B) of the Entry Vector pENTR7.

35 **Figure 17** is a schematic depiction of the cloning sites (Figure 17A) and the nucleotide sequence (Figure 17B) of the Entry Vector pENTR8.

40 **Figure 18** is a schematic depiction of the cloning sites (Figure 18A) and the nucleotide sequence (Figure 18B) of the Entry Vector pENTR9.

45 **Figure 19** is a schematic depiction of the cloning sites (Figure 19A) and the nucleotide sequence (Figure 19B) of the Entry Vector pENTR10.

50 **Figure 20** is a schematic depiction of the cloning sites (Figure 20A) and the nucleotide sequence (Figure 20B) of the Entry Vector pENTR11.

55 **Figure 21** is a schematic depiction of the physical map and the Trc expression cassette (Figure 21A) showing the promoter sequences at -35 and at -10 from the initiation codon, and the nucleotide sequence (Figure 21B-D), of Destination Vector pDEST1. This vector may also be referred to as pTrc-DEST1.

60 **Figure 22** is a schematic depiction of the physical map and the His6 expression cassette (Figure 22A) showing the promoter sequences at -35 and at -10 from the initiation codon, and the nucleotide sequence (Figure 22B-D), of Destination Vector pDEST2. This vector may also be referred to as pHis6-DEST2.

5 **Figure 23** is a schematic depiction of the physical map and the GST expression cassette (Figure 23A) showing the promoter sequences at -35 and at -10 from the initiation codon, and the nucleotide sequence (Figure 23B-D), of Destination Vector pDEST3. This vector may also be referred to as pGST-DEST3.

10 **Figure 24** is a schematic depiction of the physical map and the His6-Trx expression cassette (Figure 24A) showing the promoter sequences at -35 and at -10 from the initiation codon and a TEV protease cleavage site, and the nucleotide sequence (Figure 24B-D), of Destination Vector pDEST4. This vector may also be referred to as pTrx-DEST4.

15 **Figure 25** is a schematic depiction of the attR1 and attR2 sites (Figure 25A), the physical map (Figure 25B), and the nucleotide sequence (Figure 25C-D), of Destination Vector pDEST5. This vector may also be referred to as pSPORT(+-)-DEST5.

20 **Figure 26** is a schematic depiction of the attR1 and attR2 sites (Figure 26A), the physical map (Figure 26B), and the nucleotide sequence (Figure 26C-D), of Destination Vector pDEST6. This vector may also be referred to as pSPORT(-)-DEST6.

25 **Figure 27** is a schematic depiction of the attR1 site, CMV promoter, and the physical map (Figure 27A), and the nucleotide sequence (Figure 27B-C), of Destination Vector pDEST7. This vector may also be referred to as pCMV-DEST7.

30 **Figure 28** is a schematic depiction of the attR1 site, baculovirus polyhedrin promoter, and the physical map (Figure 28A), and the nucleotide sequence (Figure 28B-D), of Destination Vector pDEST8. This vector may also be referred to as pFastBac-DEST8.

35 **Figure 29** is a schematic depiction of the attR1 site, Semliki Forest Virus promoter, and the physical map (Figure 29A), and the nucleotide sequence (Figure 29B-E), of Destination Vector pDEST9. This vector may also be referred to as pSFV-DEST9.

5 **Figure 30** is a schematic depiction of the attR1 site, baculovirus polyhedrin promoter, His6 fusion domain, and the physical map (Figure 30A), and the nucleotide sequence (Figure 30B-D), of Destination Vector pDEST10. This vector may also be referred to as pFastBacHT-DEST10.

10 **Figure 31** is a schematic depiction of the attR1 cassette containing a tetracycline-regulated CMV promoter and the physical map (Figure 31A), and the nucleotide sequence (Figure 31B-D), of Destination Vector pDEST11. This vector may also be referred to as pTet-DEST11.

15 **Figure 32** is a schematic depiction of the attR1 site, the start of the mRNA of the CMV promoter, and the physical map (Figure 32A), and the nucleotide sequence (Figure 32B-D), of Destination Vector pDEST12.2. This vector may also be referred to as pCMVneo-DEST12, as pCMV-DEST12, or as pDEST12.

20 **Figure 33** is a schematic depiction of the attR1 site, the λP_L promoter, and the physical map (Figure 33A), and the nucleotide sequence (Figure 33B-C), of Destination Vector pDEST13. This vector may also be referred to as p λP_L -DEST13.

25 **Figure 34** is a schematic depiction of the attR1 site, the T7 promoter, and the physical map (Figure 34A), and the nucleotide sequence (Figure 34B-D), of Destination Vector pDEST14. This vector may also be referred to as pPT7-DEST14.

30 **Figure 35** is a schematic depiction of the attR1 site, the T7 promoter, and the N-terminal GST fusion sequence, and the physical map (Figure 35A), and the nucleotide sequence (Figure 35B-D), of Destination Vector pDEST15. This vector may also be referred to as pT7 GST-DEST15.

25 **Figure 36** is a schematic depiction of the attR1 site, the T7 promoter, and the N-terminal thioredoxin fusion sequence, and the physical map (Figure 36A), and the nucleotide sequence (Figure 36B-D), of Destination Vector pDEST16. This vector may also be referred to as pT7 Trx-DEST16.

30 **Figure 37** is a schematic depiction of the attR1 site, the T7 promoter, and the N-terminal His6 fusion sequence, and the physical map (Figure 37A), and the

nucleotide sequence (Figure 37B-D), of Destination Vector pDEST17. This vector may also be referred to as pT7 His-DEST17.

5

Figure 38 is a schematic depiction of the attR1 site and the p10 baculovirus promoter, and the physical map (Figure 38A), and the nucleotide sequence (Figure 38B-D), of Destination Vector pDEST18. This vector may also be referred to as pFBp10-DEST18.

10

Figure 39 is a schematic depiction of the attR1 site, and the 39k baculovirus promoter, and the physical map (Figure 39A), and the nucleotide sequence (Figure 39B-D), of Destination Vector pDEST19. This vector may also be referred to as pFB39k-DEST19.

15

Figure 40 is a schematic depiction of the attR1 site, the *polh* baculovirus promoter, and the N-terminal GST fusion sequence, and the physical map (Figure 40A), and the nucleotide sequence (Figure 40B-D), of Destination Vector pDEST20. This vector may also be referred to as pFB GST-DEST20.

20

Figure 41 is a schematic depiction of a 2-hybrid vector with a DNA-binding domain, the attR1 site, and the ADH promoter, and the physical map (Figure 41A), and the nucleotide sequence (Figure 41B-E), of Destination Vector pDEST21. This vector may also be referred to as pDB Leu-DEST21.

25

Figure 42 is a schematic depiction of a 2-hybrid vector with an activation domain, the attR1 site, and the ADH promoter, and the physical map (Figure 42A), and the nucleotide sequence (Figure 42B-D), of Destination Vector pDEST22. This vector may also be referred to as pPC86-DEST22.

25

Figure 43 is a schematic depiction of the attR1 and attR2 sites, the T7 promoter, and the C-terminal His6 fusion sequence, and the physical map (Figure 43A), and the nucleotide sequence (Figure 43B-D), of Destination Vector pDEST23. This vector may also be referred to as pC-term-His6-DEST23.

30

Figure 44 is a schematic depiction of the attR1 and attR2 sites, the T7 promoter, and the C-terminal GST fusion sequence, and the physical map (Figure 44A), and the nucleotide sequence (Figure 44B-D), of Destination Vector pDEST24. This vector may also be referred to as pC-term-GST-DEST24.

5 **Figure 45** is a schematic depiction of the attR1 and attR2 sites, the T7 promoter, and the C-terminal thioredoxin fusion sequence, and the physical map (Figure 45A), and the nucleotide sequence (Figure 45B-D), of Destination Vector pDEST25. This vector may also be referred to as pC-term-Trx-DEST25.

10 **Figure 46** is a schematic depiction of the attR1 site, the CMV promoter, and an N-terminal His6 fusion sequence, and the physical map (Figure 46A), and the nucleotide sequence (Figure 46B-D), of Destination Vector pDEST26. This vector may also be referred to as pCMV-SPneo-His-DEST26.

15 **Figure 47** is a schematic depiction of the attR1 site, the CMV promoter, and an N-terminal GST fusion sequence, and the physical map (Figure 47A), and the nucleotide sequence (Figure 47B-D), of Destination Vector pDEST27. This vector may also be referred to as pCMV-Spneo-GST-DEST27.

20 **Figure 48** is a depiction of the physical map (Figure 48A), the cloning sites (Figure 48B), and the nucleotide sequence (Figure 48C-D), for the attB cloning vector plasmid pEXP501. This vector may also be referred to equivalently herein as pCMV•SPORT6, pCMVSPORT6, and pCMVSport6.

25 **Figure 49** is a depiction of the physical map (Figure 49A), and the nucleotide sequence (Figure 49B-C), for the Donor plasmid pDONR201 which donates a kanamycin-resistant vector in the BP Reaction. This vector may also be referred to as pAttPkanr Donor Plasmid, or as pAttPkan Donor Plasmid

Figure 50 is a depiction of the physical map (Figure 50A), and the nucleotide sequence (Figure 50B-C), for the Donor plasmid pDONR202 which donates a kanamycin-resistant vector in the BP Reaction.

25 **Figure 51** is a depiction of the physical map (Figure 51A), and the nucleotide sequence (Figure 51B-C), for the Donor plasmid pDONR203 which donates a kanamycin-resistant vector in the BP Reaction.

Figure 52 is a depiction of the physical map (Figure 52A), and the nucleotide sequence (Figure 52B-C), for the Donor plasmid pDONR204 which donates a kanamycin-resistant vector in the BP Reaction.

Figure 53 is a depiction of the physical map (Figure 53A), and the nucleotide sequence (Figure 53B-C), for the Donor plasmid pDONR205 which donates a tetracycline-resistant vector in the BP Reaction.

5 **Figure 54** is a depiction of the physical map (Figure 54A), and the nucleotide sequence (Figure 54B-C), for the Donor plasmid pDONR206 which donates a gentamycin-resistant vector in the BP Reaction. This vector may also be referred to as pENTR22 attP Donor Plasmid, pAttPGenr Donor Plasmid, or pAttPgent Donor Plasmid.

10 **Figure 55** depicts the attB1 site, and the physical map, of an Entry Clone (pENTR7) of CAT subcloned into the Destination Vector pDEST2 (Figure 22).

Figure 56 depicts the DNA components of Reaction B of the one-tube BxP reaction described in Example 16, pEZC7102 and attB-tet-PCR.

15 **Figure 57** is a physical map of the desired product of Reaction B of the one-tube BxP reaction described in Example 16, tetx7102.

Figure 58 is a physical map of the Destination Vector pEZC8402.

20 **Figure 59** is a physical map of the expected tet^r subclone product, tetx8402, resulting from the LxR Reaction with tetx7102 (Figure 57) plus pEZC8402 (Figure 58).

25 **Figure 60** is a schematic depiction of the bacteriophage lambda recombination pathways in *E. coli*.

Figure 61 is a schematic depiction of the DNA molecules participating in the LR Reaction. Two different co-integrates form during the LR Reaction (only one of which is shown here), depending on whether attL1 and attR1 or attL2 and attR2 are first to recombine. In one aspect, the invention provides directional cloning of a nucleic acid molecule of interest, since the recombination sites react with specificity (attL1 reacts with attR1; attL2 with attR2; attB1 with attP1; and attB2 with attP2). Thus, positioning of the sites allows construction of desired vectors having recombined fragments in the desired orientation.

30 **Figure 62** is a depiction of native and fusion protein expression using the recombinational cloning methods and compositions of the invention. In the upper figure depicting native protein expression, all of the translational start signals are

included between the attB1 and attB2 sites; therefore, these signals must be present in the starting Entry Clone. The lower figure depicts fusion protein expression (here showing expression with both N-terminal and C-terminal fusion tags so that ribosomes read through attB1 and attB2 to create the fusion protein).
5 Unlike native protein expression vectors, N-terminal fusion vectors have their translational start signals upstream of the attB1 site.

10 **Figure 63** is a schematic depiction of three GATEWAY™ Cloning System cassettes. Three blunt-ended cassettes are depicted which convert standard expression vectors to Destination Vectors. Each of the depicted cassettes provides amino-terminal fusions in one of three possible reading frames, and each has a distinctive restriction cleavage site as shown.

15 **Figure 64** shows the physical maps of plasmids containing three attR reading frame cassettes, pEZC15101 (reading frame A; Figure 64A), pEZC15102 (reading frame B; Figure 64B), and pEZC15103 (reading frame C; Figure 64C).

15 **Figure 65** depicts the attB primers used for amplifying the tet^r and amp^r genes from pBR322 by the cloning methods of the invention.

20 **Figure 66** is a table listing the results of recombinational cloning of the tet^r and amp^r PCR products made using the primers shown in Figure 65.

25 **Figure 67** is a graph showing the effect of the number of guanines (G's) contained on the 5' end of the PCR primers on the cloning efficiency of PCR products. It is noted, however, that other nucleotides besides guanine (including A, T, C, U or combinations thereof) may be used as 5' extensions on the PCR primers to enhance cloning efficiency of PCR products.

25 **Figure 68** is a graph showing a titration of various amounts of attP and attB reactants in the BxP reaction, and the effects on cloning efficiency of PCR products.

30 **Figure 69** is a series of graphs showing the effects of various weights (Figure 69A) or moles (Figure 69B) of a 256 bp PCR product on formation of colonies, and on efficiency of cloning of the 256 bp PCR product into a Donor Vector (Figure 69C).

5 **Figure 70** is a series of graphs showing the effects of various weights (Figure 70A) or moles (Figure 70B) of a 1 kb PCR product on formation of colonies, and on efficiency of cloning of the 1 kb PCR product into a Donor Vector (Figure 70C).

10 **Figure 71** is a series of graphs showing the effects of various weights (Figure 71A) or moles (Figure 71B) of a 1.4 kb PCR product on formation of colonies, and on efficiency of cloning of the 1.4 kb PCR product into a Donor Vector (Figure 71C).

15 **Figure 72** is a series of graphs showing the effects of various weights (Figure 72A) or moles (Figure 72B) of a 3.4 kb PCR product on formation of colonies, and on efficiency of cloning of the 3.4 kb PCR product into a Donor Vector (Figure 72C).

20 **Figure 73** is a series of graphs showing the effects of various weights (Figure 73A) or moles (Figure 73B) of a 4.6 kb PCR product on formation of colonies, and on efficiency of cloning of the 4.6 kb PCR product into a Donor Vector (Figure 73C).

25 **Figure 74** is photograph of an ethidium bromide-stained gel of a titration of a 6.9 kb PCR product in a BxP reaction.

30 **Figure 75** is a graph showing the effects of various amounts of a 10.1 kb PCR product on formation of colonies upon cloning of the 10.1 kb PCR product into a Donor Vector.

Figure 76 is photograph of an ethidium bromide-stained gel of a titration of a 10.1 kb PCR product in a BxP reaction.

Figure 77 is a table summarizing the results of the PCR product cloning efficiency experiments depicted in Figures 69-74, for PCR fragments ranging in size from 0.256 kb to 6.9 kb.

35 **Figure 78** is a depiction of the sequences at the ends of attR Cassettes. Sequences contributed by the Cm^r-ccdB cassette are shown, including the outer ends of the flanking attR sites (boxed). The staggered cleavage sites for Int are indicated in the boxed regions. Following recombination with an Entry Clone, only the outer sequences in attR sites contribute to the resulting attB sites in the

Expression Clone. The underlined sequences at both ends dictate the different reading frames (reading frames A, B, or C, with two alternative reading frame C cassettes depicted) for fusion proteins.

5 **Figure 79** is a depiction of several different attR cassettes (in reading frames A, B, or C) which may provide fusion codons at the amino-terminus of the encoded protein.

10 **Figure 80** illustrates the single-cutting restriction sites in an attR reading frame A cassette of the invention.

15 **Figure 81** illustrates the single-cutting restriction sites in an attR reading frame B cassette of the invention.

20 **Figure 82** illustrates the single-cutting restriction sites in two alternative attR reading frame C cassettes of the invention (Figures 82A and 82B) depicted in Figure 78.

25 **Figure 83** shows the physical map (Figure 83A), and the nucleotide sequence (Figure 83B-C), for an attR reading frame C parent plasmid prfC Parent III, which contains an attR reading frame C cassette of the invention (alternative A in Figures 78 and 82).

Figure 84 is a physical map of plasmid pEZC1301.

Figure 85 is a physical map of plasmid pEZC1313.

20 **Figure 86** is a physical map of plasmid pEZ14032.

Figure 87 is a physical map of plasmid pMAB58.

Figure 88 is a physical map of plasmid pMAB62.

25 **Figure 89** is a depiction of a synthesis reaction using two pairs of homologous primers of the invention.

Figure 90 is a schematic depiction of the physical map (Figure 90A), and the nucleotide sequence (Figure 90B-D), of Destination Vector pDEST28.

Figure 91 is a schematic depiction of the physical map (Figure 91A), and the nucleotide sequence (Figure 91B-D), of Destination Vector pDEST29.

30 **Figure 92** is a schematic depiction of the physical map (Figure 92A), and the nucleotide sequence (Figure 92B-D), of Destination Vector pDEST30.

5 **Figure 93** is a schematic depiction of the physical map (Figure 93A), and the nucleotide sequence (Figure 93B-D), of Destination Vector pDEST31.

10 **Figure 94** is a schematic depiction of the physical map (Figure 94A), and the nucleotide sequence (Figure 94B-E), of Destination Vector pDEST32.

15 **Figure 95** is a schematic depiction of the physical map (Figure 95A), and the nucleotide sequence (Figure 95B-D), of Destination Vector pDEST33.

20 **Figure 96** is a schematic depiction of the physical map (Figure 96A), and the nucleotide sequence (Figure 96B-D), of Destination Vector pDEST34.

25 **Figure 97** is a depiction of the physical map (Figure 97A), and the nucleotide sequence (Figure 97B-C), for the Donor plasmid pDONR207 which donates a gentamycin-resistant vector in the BP Reaction.

30 **Figure 98** is a schematic depiction of the physical map (Figure 98A), and the nucleotide sequence (Figure 98B-D), of the 2-hybrid vector pMAB85.

35 **Figure 99** is a schematic depiction of the physical map (Figure 99A), and the nucleotide sequence (Figure 99B-D), of the 2-hybrid vector pMAB86.

DETAILED DESCRIPTION OF THE INVENTION

20 *Definitions*

In the description that follows, a number of terms used in recombinant DNA technology are utilized extensively. In order to provide a clear and consistent understanding of the specification and claims, including the scope to be given such terms, the following definitions are provided.

25 **Byproduct:** is a daughter molecule (a new clone produced after the second recombination event during the recombinational cloning process) lacking the segment which is desired to be cloned or subcloned.

30 **Cointegrate:** is at least one recombination intermediate nucleic acid molecule of the present invention that contains both parental (starting) molecules. It will usually be linear. In some embodiments it can be circular. RNA and polypeptides may be expressed from cointegrates using an appropriate host cell strain, for example *E. coli* DB3.1 (particularly *E. coli* LIBRARY EFFICIENCY®

DB3.1TM Competent Cells), and selecting for both selection markers found on the cointegrate molecule.

5 **Host:** is any prokaryotic or eukaryotic organism that can be a recipient of the recombinational cloning Product, vector, or nucleic acid molecule of the invention. A "host," as the term is used herein, includes prokaryotic or eukaryotic organisms that can be genetically engineered. For examples of such hosts, *see Maniatis et al., Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982).

10 **Insert or Inserts:** include the desired nucleic acid segment or a population of nucleic acid segments (segment *A* of Figure 1) which may be manipulated by the methods of the present invention. Thus, the terms Insert(s) are meant to include a particular nucleic acid (preferably DNA) segment or a population of segments. Such Insert(s) can comprise one or more nucleic acid molecules.

15 **Insert Donor:** is one of the two parental nucleic acid molecules (e.g. RNA or DNA) of the present invention which carries the Insert. The Insert Donor molecule comprises the Insert flanked on both sides with recombination sites. The Insert Donor can be linear or circular. In one embodiment of the invention, the Insert Donor is a circular DNA molecule and further comprises a cloning vector sequence outside of the recombination signals (see Figure 1). When a population of Inserts or population of nucleic acid segments are used to make the Insert Donor, a population of Insert Donors results and may be used in accordance with the invention. Examples of such Insert Donor molecules are GATEWAYTM Entry Vectors, which include but are not limited to those Entry Vectors depicted in Figures 10-20, as well as other vectors comprising a gene of interest flanked by 20 one or more *attL* sites (e.g., *attL1*, *attL2*, etc.), or by one or more *attB* sites (e.g., *attB1*, *attB2*, etc.) for the production of library clones.

25 **Product:** is one of the desired daughter molecules comprising the *A* and *D* sequences which is produced after the second recombination event during the recombinational cloning process (see Figure 1). The Product contains the nucleic acid which was to be cloned or subcloned. In accordance with the invention, when a population of Insert Donors are used, the resulting population of Product

molecules will contain all or a portion of the population of Inserts of the Insert Donors and preferably will contain a representative population of the original molecules of the Insert Donors.

Promoter: is a DNA sequence generally described as the 5'-region of a gene, located proximal to the start codon. The transcription of an adjacent DNA segment is initiated at the promoter region. A repressible promoter's rate of transcription decreases in response to a repressing agent. An inducible promoter's rate of transcription increases in response to an inducing agent. A constitutive promoter's rate of transcription is not specifically regulated, though it can vary under the influence of general metabolic conditions.

Recognition sequence: Recognition sequences are particular sequences which a protein, chemical compound, DNA, or RNA molecule (*e.g.*, restriction endonuclease, a modification methylase, or a recombinase) recognizes and binds. In the present invention, a recognition sequence will usually refer to a recombination site. For example, the recognition sequence for Cre recombinase is *loxP* which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence. *See Figure 1 of Sauer, B., Current Opinion in Biotechnology 5:521-527 (1994).* Other examples of recognition sequences are the *attB*, *attP*, *attL*, and *attR* sequences which are recognized by the recombinase enzyme λ Integrase. *attB* is an approximately 25 base pair sequence containing two 9 base pair core-type Int binding sites and a 7 base pair overlap region. *attP* is an approximately 240 base pair sequence containing core-type Int binding sites and arm-type Int binding sites as well as sites for auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis). *See Landy, Current Opinion in Biotechnology 3:699-707 (1993).* Such sites may also be engineered according to the present invention to enhance production of products in the methods of the invention. When such engineered sites lack the P1 or H1 domains to make the recombination reactions irreversible (*e.g.*, *attR* or *attP*), such sites may be designated *attR'* or *attP'* to show that the domains of these sites have been modified in some way.

5 **Recombination proteins:** include excisive or integrative proteins, enzymes, co-factors or associated proteins that are involved in recombination reactions involving one or more recombination sites, which may be wild-type proteins (See Landy, *Current Opinion in Biotechnology* 3:699-707 (1993)), or mutants, derivatives (e.g., fusion proteins containing the recombination protein sequences or fragments thereof), fragments, and variants thereof.

10 **Recombination site:** is a recognition sequence on a DNA molecule participating in an integration/recombination reaction by the recombinational cloning methods of the invention. Recombination sites are discrete sections or segments of DNA on the participating nucleic acid molecules that are recognized and bound by a site-specific recombination protein during the initial stages of integration or recombination. For example, the recombination site for Cre recombinase is *loxP* which is a 34 base pair sequence comprised of two 13 base pair inverted repeats (serving as the recombinase binding sites) flanking an 8 base pair core sequence. See Figure 1 of Sauer, B., *Curr. Opin. Biotech.* 5:521-527 (1994). Other examples of recognition sequences include the *attB*, *attP*, *attL*, and *attR* sequences described herein, and mutants, fragments, variants and derivatives thereof, which are recognized by the recombination protein λ Int and by the auxiliary proteins integration host factor (IHF), FIS and excisionase (Xis). See
15 Landy, *Curr. Opin. Biotech.* 3:699-707 (1993).

20 **Recombinational Cloning:** is a method described herein, whereby segments of nucleic acid molecules or populations of such molecules are exchanged, inserted, replaced, substituted or modified, *in vitro* or *in vivo*. By “*in vitro*” and “*in vivo*” herein is meant recombinational cloning that is carried out outside of host cells (e.g., in cell-free systems) or inside of host cells (e.g., using recombinant proteins expressed by host cells), respectively.

25 **Repression cassette:** is a nucleic acid segment that contains a repressor or a Selectable marker present in the subcloning vector.

30 **Selectable marker:** is a DNA segment that allows one to select for or against a molecule (e.g., a replicon) or a cell that contains it, often under particular conditions. These markers can encode an activity, such as, but not limited to,

production of RNA, peptide, or protein, or can provide a binding site for RNA, peptides, proteins, inorganic and organic compounds or compositions and the like. Examples of Selectable markers include but are not limited to: (1) DNA segments that encode products which provide resistance against otherwise toxic compounds (e.g., antibiotics); (2) DNA segments that encode products which are otherwise lacking in the recipient cell (e.g., tRNA genes, auxotrophic markers); (3) DNA segments that encode products which suppress the activity of a gene product; (4) DNA segments that encode products which can be readily identified (e.g., phenotypic markers such as β -galactosidase, green fluorescent protein (GFP), and cell surface proteins); (5) DNA segments that bind products which are otherwise detrimental to cell survival and/or function; (6) DNA segments that otherwise inhibit the activity of any of the DNA segments described in Nos. 1-5 above (e.g., antisense oligonucleotides); (7) DNA segments that bind products that modify a substrate (e.g. restriction endonucleases); (8) DNA segments that can be used to isolate or identify a desired molecule (e.g. specific protein binding sites); (9) DNA segments that encode a specific nucleotide sequence which can be otherwise non-functional (e.g., for PCR amplification of subpopulations of molecules); (10) DNA segments, which when absent, directly or indirectly confer resistance or sensitivity to particular compounds; (11) DNA segments that encode products which are toxic in recipient cells; (12) DNA segments that inhibit replication, partition or heritability of nucleic acid molecules that contain them; and/or (13) DNA segments that encode conditional replication functions, e.g., replication in certain hosts or host cell strains or under certain environmental conditions (e.g., temperature, nutritional conditions, etc.).

Selection scheme: is any method which allows selection, enrichment, or identification of a desired Product or Product(s) from a mixture containing an Entry Clone or Vector, a Destination Vector, a Donor Vector, an Expression Clone or Vector, any intermediates (e.g. a Cointegrate or a replicon), and/or Byproducts. The selection schemes of one preferred embodiment have at least two components that are either linked or unlinked during recombinational cloning. One component is a Selectable marker. The other component controls the expression *in vitro* or *in vivo* of the Selectable marker, or survival of the cell (or

the nucleic acid molecule, *e.g.*, a replicon) harboring the plasmid carrying the Selectable marker. Generally, this controlling element will be a repressor or inducer of the Selectable marker, but other means for controlling expression or activity of the Selectable marker can be used. Whether a repressor or activator is used will depend on whether the marker is for a positive or negative selection, and the exact arrangement of the various DNA segments, as will be readily apparent to those skilled in the art. A preferred requirement is that the selection scheme results in selection of or enrichment for only one or more desired Products. As defined herein, selecting for a DNA molecule includes (a) selecting or enriching for the presence of the desired DNA molecule, and (b) selecting or enriching against the presence of DNA molecules that are not the desired DNA molecule.

In one embodiment, the selection schemes (which can be carried out in reverse) will take one of three forms, which will be discussed in terms of Figure 1. The first, exemplified herein with a Selectable marker and a repressor therefore, selects for molecules having segment **D** and lacking segment **C**. The second selects against molecules having segment **C** and for molecules having segment **D**. Possible embodiments of the second form would have a DNA segment carrying a gene toxic to cells into which the *in vitro* reaction products are to be introduced. A toxic gene can be a DNA that is expressed as a toxic gene product (a toxic protein or RNA), or can be toxic in and of itself. (In the latter case, the toxic gene is understood to carry its classical definition of "heritable trait".)

Examples of such toxic gene products are well known in the art, and include, but are not limited to, restriction endonucleases (*e.g.*, *DpnI*), apoptosis-related genes (*e.g.* ASK1 or members of the bcl-2/ced-9 family), retroviral genes including those of the human immunodeficiency virus (HIV), defensins such as NP-1, inverted repeats or paired palindromic DNA sequences, bacteriophage lytic genes such as those from $\Phi X 174$ or bacteriophage T4; antibiotic sensitivity genes such as *rpsL*, antimicrobial sensitivity genes such as *pheS*, plasmid killer genes, eukaryotic transcriptional vector genes that produce a gene product toxic to bacteria, such as GATA-1, and genes that kill hosts in the absence of a suppressing function, *e.g.*, *kicB*, *ccdB*, $\Phi X 174 E$ (Liu, Q. *et al.*, *Curr. Biol.*

8:1300-1309 (1998)), and other genes that negatively affect replicon stability and/or replication. A toxic gene can alternatively be selectable *in vitro*, e.g., a restriction site.

Many genes coding for restriction endonucleases operably linked to inducible promoters are known, and may be used in the present invention. See, e.g. U.S. Patent Nos. 4,960,707 (*DpnI* and *DpnII*); 5,000,333, 5,082,784 and 5,192,675 (*KpnI*); 5,147,800 (*NgoAIII* and *NgoAI*); 5,179,015 (*FspI* and *HaeIII*); 5,200,333 (*HaeII* and *TaqI*); 5,248,605 (*HpaII*); 5,312,746 (*ClaI*); 5,231,021 and 5,304,480 (*XbaI* and *XbaII*); 5,334,526 (*AhuI*); 5,470,740 (*NsiI*); 5,534,428 (*SstI/SacI*); 5,202,248 (*NcoI*); 5,139,942 (*NdeI*); and 5,098,839 (*PacI*). See also Wilson, G.G., *Nucl. Acids Res.* 19:2539-2566 (1991); and Lunnen, K.D., *et al.*, *Gene* 74:25-32 (1988).

In the second form, segment **D** carries a Selectable marker. The toxic gene would eliminate transformants harboring the Vector Donor, Cointegrate, and Byproduct molecules, while the Selectable marker can be used to select for cells containing the Product and against cells harboring only the Insert Donor.

The third form selects for cells that have both segments **A** and **D** in *cis* on the same molecule, but not for cells that have both segments in *trans* on different molecules. This could be embodied by a Selectable marker that is split into two inactive fragments, one each on segments **A** and **D**.

The fragments are so arranged relative to the recombination sites that when the segments are brought together by the recombination event, they reconstitute a functional Selectable marker. For example, the recombinational event can link a promoter with a structural nucleic acid molecule (e.g., a gene), can link two fragments of a structural nucleic acid molecule, or can link nucleic acid molecules that encode a heterodimeric gene product needed for survival, or can link portions of a replicon.

Site-specific recombinase: is a type of recombinase which typically has at least the following four activities (or combinations thereof): (1) recognition of one or two specific nucleic acid sequences; (2) cleavage of said sequence or sequences; (3) topoisomerase activity involved in strand exchange; and (4) ligase

activity to reseal the cleaved strands of nucleic acid. See Sauer, B., *Current Opinions in Biotechnology* 5:521-527 (1994). Conservative site-specific recombination is distinguished from homologous recombination and transposition by a high degree of sequence specificity for both partners. The strand exchange mechanism involves the cleavage and rejoicing of specific DNA sequences in the absence of DNA synthesis (Landy, A. (1989) *Ann. Rev. Biochem.* 58:913-949).

5

Subcloning vector: is a cloning vector comprising a circular or linear nucleic acid molecule which includes preferably an appropriate replicon. In the present invention, the subcloning vector (segment *D* in Figure 1) can also contain functional and/or regulatory elements that are desired to be incorporated into the final product to act upon or with the cloned DNA Insert (segment *A* in Figure 1). The subcloning vector can also contain a Selectable marker (preferably DNA).

10

Vector: is a nucleic acid molecule (preferably DNA) that provides a useful biological or biochemical property to an Insert. Examples include plasmids, phages, autonomously replicating sequences (ARS), centromeres, and other sequences which are able to replicate or be replicated *in vitro* or in a host cell, or to convey a desired nucleic acid segment to a desired location within a host cell. A Vector can have one or more restriction endonuclease recognition sites at which the sequences can be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a nucleic acid fragment can be spliced in order to bring about its replication and cloning. Vectors can further provide primer sites, *e.g.*, for PCR, transcriptional and/or translational initiation and/or regulation sites, recombinational signals, replicons, Selectable markers, *etc.* Clearly, methods of inserting a desired nucleic acid fragment which do not require the use of homologous recombination, transpositions or restriction enzymes (such as, but not limited to, UDG cloning of PCR fragments (U.S. Patent No. 5,334,575, entirely incorporated herein by reference), T:A cloning, and the like) can also be applied to clone a fragment into a cloning vector to be used according to the present invention. The cloning vector can further contain one or more selectable markers suitable for use in the identification of cells transformed with the cloning vector.

15

20

25

30

5

10

20

25

30

Vector Donor: is one of the two parental nucleic acid molecules (e.g. RNA or DNA) of the present invention which carries the DNA segments comprising the DNA vector which is to become part of the desired Product. The Vector Donor comprises a subcloning vector **D** (or it can be called the cloning vector if the Insert Donor does not already contain a cloning vector (e.g., for PCR fragments containing *attB* sites; see below)) and a segment **C** flanked by recombination sites (see Figure 1). Segments **C** and/or **D** can contain elements that contribute to selection for the desired Product daughter molecule, as described above for selection schemes. The recombination signals can be the same or different, and can be acted upon by the same or different recombinases. In addition, the Vector Donor can be linear or circular. Examples of such Vector Donor molecules include GATEWAY™ Destination Vectors, which include but are not limited to those Destination Vectors depicted in Figures 21-47 and 90-96.

Primer: refers to a single stranded or double stranded oligonucleotide that is extended by covalent bonding of nucleotide monomers during amplification or polymerization of a nucleic acid molecule (e.g. a DNA molecule). In a preferred aspect, a primer comprises one or more recombination sites or portions of such recombination sites. Portions of recombination sites comprise at least 2 bases (or basepairs, abbreviated herein as "bp"), at least 5-200 bases, at least 10-100 bases, at least 15-75 bases, at least 15-50 bases, at least 15-25 bases, or at least 16-25 bases, of the recombination sites of interest, as described in further detail below and in the Examples. When using portions of recombination sites, the missing portion of the recombination site may be provided as a template by the newly synthesized nucleic acid molecule. Such recombination sites may be located within and/or at one or both termini of the primer. Preferably, additional sequences are added to the primer adjacent to the recombination site(s) to enhance or improve recombination and/or to stabilize the recombination site during recombination. Such stabilization sequences may be any sequences (preferably G/C rich sequences) of any length. Preferably, such sequences range in size from 1 to about 1000 bases, 1 to about 500 bases, and 1 to about 100 bases, 1 to about 60 bases, 1 to about 25, 1 to about 10, 2 to about 10 and preferably about 4 bases.

Preferably, such sequences are greater than 1 base in length and preferably greater than 2 bases in length.

Template: refers to double stranded or single stranded nucleic acid molecules which are to be amplified, synthesized or sequenced. In the case of double stranded molecules, denaturation of its strands to form a first and a second strand is preferably performed before these molecules will be amplified, synthesized or sequenced, or the double stranded molecule may be used directly as a template. For single stranded templates, a primer complementary to a portion of the template is hybridized under appropriate conditions and one or more polypeptides having polymerase activity (e.g. DNA polymerases and/or reverse transcriptases) may then synthesize a nucleic acid molecule complementary to all or a portion of said template. Alternatively, for double stranded templates, one or more promoters may be used in combination with one or more polymerases to make nucleic acid molecules complementary to all or a portion of the template. The newly synthesized molecules, according to the invention, may be equal or shorter in length than the original template. Additionally, a population of nucleic acid templates may be used during synthesis or amplification to produce a population of nucleic acid molecules typically representative of the original template population.

Adapter: is an oligonucleotide or nucleic acid fragment or segment (preferably DNA) which comprises one or more recombination sites (or portions of such recombination sites) which in accordance with the invention can be added to a circular or linear Insert Donor molecule as well as other nucleic acid molecules described herein. When using portions of recombination sites, the missing portion may be provided by the Insert Donor molecule. Such adapters may be added at any location within a circular or linear molecule, although the adapters are preferably added at or near one or both termini of a linear molecule. Preferably, adapters are positioned to be located on both sides (flanking) a particular nucleic acid molecule of interest. In accordance with the invention, adapters may be added to nucleic acid molecules of interest by standard recombinant techniques (e.g. restriction digest and ligation). For example, adapters may be added to a circular molecule by first digesting the molecule with

5

10

an appropriate restriction enzyme, adding the adapter at the cleavage site and reforming the circular molecule which contains the adapter(s) at the site of cleavage. In other aspects, adapters may be added by homologous recombination, by integration of RNA molecules, and the like. Alternatively, adapters may be ligated directly to one or more and preferably both termini of a linear molecule thereby resulting in linear molecule(s) having adapters at one or both termini. In one aspect of the invention, adapters may be added to a population of linear molecules, (e.g. a cDNA library or genomic DNA which has been cleaved or digested) to form a population of linear molecules containing adapters at one and preferably both termini of all or substantial portion of said population.

15

20

25

Adapter-Primer: is primer molecule which comprises one or more recombination sites (or portions of such recombination sites) which in accordance with the invention can be added to a circular or linear nucleic acid molecule described herein. When using portions of recombination sites, the missing portion may be provided by a nucleic acid molecule (e.g., an adapter) of the invention. Such adapter-primers may be added at any location within a circular or linear molecule, although the adapter-primers are preferably added at or near one or both termini of a linear molecule. Examples of such adapter-primers and the use thereof in accordance with the methods of the invention are shown in Example 25 herein. Such adapter-primers may be used to add one or more recombination sites or portions thereof to circular or linear nucleic acid molecules in a variety of contexts and by a variety of techniques, including but not limited to amplification (e.g., PCR), ligation (e.g., enzymatic or chemical/synthetic ligation), recombination (e.g., homologous or non-homologous (illegitimate) recombination) and the like.

30

Library: refers to a collection of nucleic acid molecules (circular or linear). In one embodiment, a library may comprise a plurality (*i.e.*, two or more) of DNA molecules, which may or may not be from a common source organism, organ, tissue, or cell. In another embodiment, a library is representative of all or a portion or a significant portion of the DNA content of an organism (a "genomic" library), or a set of nucleic acid molecules representative of all or a portion or a significant portion of the expressed nucleic acid molecules (a cDNA library) in a

cell, tissue, organ or organism. A library may also comprise random sequences made by *de novo* synthesis, mutagenesis of one or more sequences and the like. Such libraries may or may not be contained in one or more vectors.

Amplification: refers to any *in vitro* method for increasing a number of copies of a nucleotide sequence with the use of a polymerase. Nucleic acid amplification results in the incorporation of nucleotides into a DNA and/or RNA molecule or primer thereby forming a new molecule complementary to a template. The formed nucleic acid molecule and its template can be used as templates to synthesize additional nucleic acid molecules. As used herein, one amplification reaction may consist of many rounds of replication. DNA amplification reactions include, for example, polymerase chain reaction (PCR). One PCR reaction may consist of 5-100 "cycles" of denaturation and synthesis of a DNA molecule.

Oligonucleotide: refers to a synthetic or natural molecule comprising a covalently linked sequence of nucleotides which are joined by a phosphodiester bond between the 3' position of the deoxyribose or ribose of one nucleotide and the 5' position of the deoxyribose or ribose of the adjacent nucleotide. This term may be used interchangeably herein with the terms "nucleic acid molecule" and "polynucleotide," without any of these terms necessarily indicating any particular length of the nucleic acid molecule to which the term specifically refers.

Nucleotide: refers to a base-sugar-phosphate combination. Nucleotides are monomeric units of a nucleic acid molecule (DNA and RNA). The term nucleotide includes ribonucleoside triphosphates ATP, UTP, CTG, GTP and deoxyribonucleoside triphosphates such as dATP, dCTP, dITP, dUTP, dGTP, dTTP, or derivatives thereof. Such derivatives include, for example, [α S]dATP, 7-deaza-dGTP and 7-deaza-dATP. The term nucleotide as used herein also refers to dideoxyribonucleoside triphosphates (ddNTPs) and their derivatives. Illustrated examples of dideoxyribonucleoside triphosphates include, but are not limited to, ddATP, ddCTP, ddGTP, ddITP, and ddTTP. According to the present invention, a "nucleotide" may be unlabeled or detectably labeled by well known techniques. Detectable labels include, for example, radioactive isotopes, fluorescent labels, chemiluminescent labels, bioluminescent labels and enzyme labels.

5 **Hybridization:** The terms “hybridization” and “hybridizing” refers to base pairing of two complementary single-stranded nucleic acid molecules (RNA and/or DNA) to give a double stranded molecule. As used herein, two nucleic acid molecules may be hybridized, although the base pairing is not completely complementary. Accordingly, mismatched bases do not prevent hybridization of two nucleic acid molecules provided that appropriate conditions, well known in the art, are used. In some aspects, hybridization is said to be under “stringent conditions.” By “stringent conditions” as used herein is meant overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt’s solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

10

15 Other terms used in the fields of recombinant DNA technology and molecular and cell biology as used herein will be generally understood by one of ordinary skill in the applicable arts.

Overview

Two reactions constitute the recombinational cloning system of the present invention, referred to herein as the “GATEWAY™ Cloning System,” as depicted generally in Figure 1. The first of these reactions, the **LR Reaction** (Figure 2), which may also be referred to interchangeably herein as the **Destination Reaction**, is the main pathway of this system. The LR Reaction is a recombination reaction between an Entry vector or clone and a Destination Vector, mediated by a cocktail of recombination proteins such as the GATEWAY™ LR Clonase™ Enzyme Mix described herein. This reaction transfers nucleic acid molecules of interest (which may be genes, cDNAs, cDNA libraries, or fragments thereof) from the Entry Clone to an Expression Vector, to create an Expression Clone.

20

25

The sites labeled L, R, B, and P are respectively the attL, attR, attB, and attP recombination sites for the bacteriophage λ recombination proteins that constitute the Clonase cocktail (referred to herein variously as “Clonase” or

30

5

“GATEWAY™ LR Clonase™ Enzyme Mix” (for recombination protein mixtures mediating attL x attR recombination reactions, as described herein) or “GATEWAY™ BP Clonase™ Enzyme Mix” (for recombination protein mixtures mediating attB x attP recombination reactions, as described herein)). The Recombinational Cloning reactions are equivalent to concerted, highly specific, cutting and ligation reactions. Viewed in this way, the recombination proteins cut to the left and right of the nucleic acid molecule of interest in the Entry Clone and ligate it into the Destination vector, creating a new Expression Clone.

10

15

20

25

30

The nucleic acid molecule of interest in an Expression Clone is flanked by the small attB1 and attB2 sites. The orientation and reading frame of the nucleic acid molecule of interest are maintained throughout the subcloning, because attL1 reacts only with attR1, and attL2 reacts only with attR2. Likewise, attB1 reacts only with attP1, and attB2 reacts only with attP2. Thus, the invention also relates to methods of controlled or directional cloning using the recombination sites of the invention (or portions thereof), including variants, fragments, mutants and derivatives thereof which may have altered or enhanced specificity. The invention also relates more generally to any number of recombination site partners or pairs (where each recombination site is specific for and interacts with its corresponding recombination site). Such recombination sites are preferably made by mutating or modifying the recombination site to provide any number of necessary specificities (e.g., attB1-10, attP1-10, attL1-10, attR1-10, etc.), non-limiting examples of which are described in detail in the Examples herein.

When an aliquot from the recombination reaction is transformed into host cells (e.g., *E. coli*) and spread on plates containing an appropriate selection agent, e.g., an antibiotic such as ampicillin with or without methicillin, cells that take up the desired clone form colonies. The unreacted Destination Vector does not give ampicillin-resistant colonies, even though it carries the ampicillin-resistance gene, because it contains a toxic gene, e.g., *ccdB*. Thus selection for ampicillin resistance selects for *E. coli* cells that carry the desired product, which usually comprise >90% of the colonies on the ampicillin plate.

To participate in the Recombinational (or “GATEWAY™”) Cloning Reaction, a nucleic acid molecule of interest first may be cloned into an Entry

Vector, creating an Entry Clone. Multiple options are available for creating Entry Clones, including: cloning of PCR sequences with terminal attB recombination sites into Entry Vectors; using the GATEWAY™ Cloning System recombination reaction; transfer of genes from libraries prepared in GATEWAY™ Cloning System vectors by recombination into Entry Vectors; and cloning of restriction enzyme-generated fragments and PCR fragments into Entry Vectors by standard recombinant DNA methods. These approaches are discussed in further detail herein.

A key advantage of the GATEWAY™ Cloning System is that a nucleic acid molecule of interest (or even a population of nucleic acid molecules of interest) present as an Entry Clone can be subcloned in parallel into one or more Destination Vectors in a simple reactions for anywhere from about 30 seconds to about 60 minutes (preferably about 1-60 minutes, about 1-45 minutes, about 1-30 minutes, about 2-60 minutes, about 2-45 minutes, about 2-30 minutes, about 1-2 minutes, about 30-60 minutes, about 45-60 minutes, or about 30-45 minutes). Longer reaction times (*e.g.*, 2-24 hours, or overnight) may increase recombination efficiency, particularly where larger nucleic acid molecules are used, as described in the Examples herein. Moreover, a high percentage of the colonies obtained carry the desired Expression Clone. This process is illustrated schematically in Figure 3, which shows an advantage of the invention in which the molecule of interest can be moved simultaneously or separately into multiple Destination Vectors. In the LR Reaction, one or both of the nucleic acid molecules to be recombined may have any topology (*e.g.*, linear, relaxed circular, nicked circular, supercoiled, etc.), although one or both are preferably linear.

The second major pathway of the GATEWAY™ Cloning System is the **BP Reaction** (Figure 4), which may also be referred to interchangeably herein as the **Entry Reaction** or the **Gateward Reaction**. The BP Reaction may recombine an Expression Clone with a Donor Plasmid (the counterpart of the byproduct in Figure 2). This reaction transfers the nucleic acid molecule of interest (which may have any of a variety of topologies, including linear, coiled, supercoiled, etc.) in the Expression Clone into an Entry Vector, to produce a new Entry Clone. Once this nucleic acid molecule of interest is cloned into an Entry

Vector, it can be transferred into new Expression Vectors, through the LR Reaction as described above. In the BP Reaction, one or both of the nucleic acid molecules to be recombined may have any topology (*e.g.*, linear, relaxed circular, nicked circular, supercoiled, etc.), although one or both are preferably linear.

5 A useful variation of the BP Reaction permits rapid cloning and expression of products of amplification (*e.g.*, PCR) or nucleic acid synthesis. Amplification (*e.g.*, PCR) products synthesized with primers containing terminal 25 bp attB sites serve as efficient substrates for the Gateward Cloning reaction. Such amplification products may be recombined with a Donor Vector to produce an Entry Clone (see
10 Figure 7). The result is an Entry Clone containing the amplification fragment. Such Entry Clones can then be recombined with Destination Vectors -- through the LR Reaction -- to yield Expression Clones of the PCR product.

15 Additional details of the LR Reaction are shown in Figure 5A. The GATEWAY™ LR Clonase™ Enzyme Mix that mediates this reaction contains lambda recombination proteins Int (Integrase), Xis (Excisionase), and IHF (Integration Host Factor). In contrast, the GATEWAY™ BP Clonase™ Enzyme Mix, which mediates the BP Reaction (Figure 5B), comprises Int and IHF alone.

20 The recombination (att) sites of each vector comprise two distinct segments, donated by the parental vectors. The staggered lines dividing the two portions of each att site, depicted in Figures 5A and 5B, represent the seven-base staggered cut produced by Int during the recombination reactions. This structure is seen in greater detail in Figure 6, which displays the attB recombination sequences of an Expression Clone, generated by recombination between the attL1 and attL2 sites of an Entry Clone and the attR1 and attR2 sites of a Destination
25 Vector.

30 The nucleic acid molecule of interest in the Expression Clone is flanked by attB sites: attB1 to the left (amino terminus) and attB2 to the right (carboxy terminus). The bases in attB1 to the left of the seven-base staggered cut produced by Int are derived from the Destination vector, and the bases to the right of the staggered cut are derived from the Entry Vector (see Figure 6). Note that the sequence is displayed in triplets corresponding to an open reading frame. If the reading frame of the nucleic acid molecule of interest cloned in the Entry Vector

is in phase with the reading frame shown for attB1, amino-terminal protein fusions can be made between the nucleic acid molecule of interest and any GATEWAY™ Cloning System Destination Vector encoding an amino-terminal fusion domain. Entry Vectors and Destination Vectors that enable cloning in all three reading frames are described in more detail herein, particularly in the Examples.

The LR Reaction allows the transfer of a desired nucleic acid molecule of interest into new Expression Vectors by recombining a Entry Clone with various Destination Vectors. To participate in the LR or Destination Reaction, however, a nucleic acid molecule of interest preferably is first converted to a Entry Clone. Entry Clones can be made in a number of ways, as shown in Figure 7.

One approach is to clone the nucleic acid molecule of interest into one or more of the Entry Vectors, using standard recombinant DNA methods, with restriction enzymes and ligase. The starting DNA fragment can be generated by restriction enzyme digestion or as a PCR product. The fragment is cloned between the attL1 and attL2 recombination sites in the Entry Vector. Note that a toxic or "death" gene (*e.g.*, ccdB), provided to minimize background colonies from incompletely digested Entry Vector, must be excised and replaced by the nucleic acid molecule of interest.

A second approach to making an Entry Clone (Figure 7) is to make a library (genomic or cDNA) in an Entry Vector, as described in detail herein. Such libraries may then be transferred into Destination Vectors for expression screening, for example in appropriate host cells such as yeast cells or mammalian cells.

A third approach to making Entry Clones (Figure 7) is to use Expression Clones obtained from cDNA molecules or libraries prepared in Expression Vectors. Such cDNAs or libraries, flanked by attB sites, can be introduced into a Entry Vector by recombination with a Donor Vector via the BP Reaction. If desired, an entire Expression Clone library can be transferred into the Entry Vector through the BP Reaction. Expression Clone cDNA libraries may also be constructed in a variety of prokaryotic and eukaryotic GATEWAY™-modified vectors (*e.g.*, the pEXP501 Expression Vector (see Figure 48), and 2-hybrid and

attB library vectors), as described in detail herein, particularly in the Examples below.

A fourth, and potentially most versatile, approach to making an Entry Clone (Figure 7) is to introduce a sequence for a nucleic acid molecule of interest into an Entry Vector by amplification (*e.g.*, PCR) fragment cloning. This method is diagramed in Figure 8. The DNA sequence first is amplified (for example, with PCR) as outlined in detail below and in the Examples herein, using primers containing one or more bp, two or more bp, three or more bp, four or more bp, five or more bp, preferably six or more bp, more preferably 6-25 bp (particularly 5
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25) bp of the attB nucleotide sequences (such as, but not limited to, those depicted in Figure 9), and optionally one or more, two or more, three or more, four or more, and most preferably four or five or more additional terminal nucleotide bases which preferably are guanines. The PCR product then may be converted to a Entry Clone by performing a BP Reaction, in which the attB-PCR product recombines with a Donor Vector containing one or more attP sites. Details of this approach and protocols for PCR 10
15 fragment subcloning are provided in Examples 8 and 21-25.

A variety of Entry Clones may be produced by these methods, providing a wide array of cloning options; a number of specific Entry Vectors are also available commercially from Life Technologies, Inc. (Rockville, MD). The 20 Examples herein provide a more in-depth description of selected Entry Vectors and details of their cloning sites. Choosing the optimal Entry Vector for a particular application is discussed in Example 4.

Entry Vectors and Destination Vectors should be constructed so that the 25 amino-terminal region of a nucleic acid molecule of interest (*e.g.*, a gene, cDNA library or insert, or fragment thereof) will be positioned next to the attL1 site. Entry Vectors preferably contain the rrnB transcriptional terminator upstream of the attL1 site. This sequence ensures that expression of cloned nucleic acid molecules of interest is reliably “off” in *E. coli*, so that even toxic genes can be successfully cloned. Thus, Entry Clones may be designed to be transcriptionally 30 silent. Note also that Entry Vectors, and hence Entry Clones, may contain the kanamycin antibiotic resistance (kan^r) gene to facilitate selection of host cells

containing Entry Clones after transformation. In certain applications, however, Entry Clones may contain other selection markers, including but not limited to a gentamycin resistance (*gen^r*) or tetracycline resistance (*tet^r*) gene, to facilitate selection of host cells containing Entry Clones after transformation.

Once a nucleic acid molecule of interest has been cloned into an Entry Vector, it may be moved into a Destination Vector. The upper right portion of Figure 5A shows a schematic of a Destination Vector. The thick arrow represents some function (often transcription or translation) that will act on the nucleic acid molecule of interest in the clone. During the recombination reaction, the region between the attR1 and attR2 sites, including a toxic or "death" gene (*e.g.*, *ccdB*), is replaced by the DNA segment from the Entry Clone. Selection for recombinants that have acquired the ampicillin resistance (*amp^r*) gene (carried on the Destination Vector) and that have also lost the death gene ensures that a high percentage (usually >90%) of the resulting colonies will contain the correct insert.

To move a nucleic acid molecule of interest into a Destination Vector, the Destination Vector is mixed with the Entry Clone comprising the desired nucleic acid molecule of interest, a cocktail of recombination proteins (*e.g.*, GATEWAY™ LR Clonase™ Enzyme Mix) is added, the mixture is incubated (preferably at about 25°C for about 60 minutes, or longer under certain circumstances, *e.g.* for transfer of large nucleic acid molecules, as described below) and any standard host cell (including bacterial cells such as *E. coli*; animal cells such as insect cells, mammalian cells, nematode cells and the like; plant cells; and yeast cells) strain is transformed with the reaction mixture. The host cell used will be determined by the desired selection (*e.g.*, *E. coli* DB3.1, available commercially from Life Technologies, Inc., allows survival of clones containing the *ccdB* death gene, and thus can be used to select for cointegrate molecules -- *i.e.*, molecules that are hybrids between the Entry Clone and Destination Vector). The Examples below provide further details and protocols for use of Entry and Destination Vectors in transferring nucleic acid molecules of interest and expressing RNAs or polypeptides encoded by these nucleic acid molecules in a variety of host cells.

The cloning system of the invention therefore offers multiple advantages:

- Once a nucleic acid molecule of interest is cloned into the GATEWAY™ Cloning System, it can be moved into and out of other vectors with complete fidelity of reading frame and orientation. That is, since the reactions proceed whereby attL1 on the Entry Clone recombines with attR1 on the Destination Vector, the directionality of the nucleic acid molecule of interest is maintained or may be controlled upon transfer from the Entry Clone into the Destination Vector. Hence, the GATEWAY™ Cloning System provides a powerful and easy method of directional cloning of nucleic acid molecule of interest.
- One-step cloning or subcloning: Mix the Entry Clone and the Destination Vector with Clonase, incubate, and transform.
- Clone PCR products readily by *in vitro* recombination, by adding attB sites to PCR primers. Then directly transfer these Entry Clones into Destination Vectors. This process may also be carried out in one step (see Examples below).
- Powerful selections give high reliability: >90% (and often >99%) of the colonies contain the desired DNA in its new vector.
- One-step conversion of existing standard vectors into GATEWAY™ Cloning System vectors.
- Ideal for large vectors or those with few cloning sites.
- Recombination sites are short (25 bp), and may be engineered to contain no stop codons or secondary structures.
- Reactions may be automated, for high-throughput applications (*e.g.*, for diagnostic purposes or for therapeutic candidate screening).
- The reactions are economical: 0.3 µg of each DNA; no restriction enzymes, phosphatase, ligase, or gel purification. Reactions work well with miniprep DNA.
- Transfer multiple clones, and even libraries, into one or more Destination Vectors, in a single experiment.
- A variety of Destination Vectors may be produced, for applications including, but not limited to:

- Protein expression in *E. coli*: native proteins; fusion proteins with GST, His6, thioredoxin, etc., for purification, or one or more epitope tags; any promoter useful in expressing proteins in *E. coli* may be used, such as pptrc, λ P_L, and T7 promoters.
- 5 • Protein expression in eukaryotic cells: CMV promoter, baculovirus (with or without His6 tag), Semliki Forest virus, Tet regulation.
- DNA sequencing (all *lac* primers), RNA probes, phagemids (both strands)
- 10 • A variety of Entry Vectors (for recombinational cloning entry by standard recombinant DNA methods) may be produced:
 - Strong transcription stop just upstream, for genes toxic to *E. coli*.
 - Three reading frames.
 - With or without TEV protease cleavage site.
 - Motifs for prokaryotic and / or eukaryotic translation.
 - Compatible with commercial cDNA libraries.
- 15 • Expression Clone cDNA (attB) libraries, for expression screening, including 2-hybrid libraries and phage display libraries, may also be constructed.

Recombination Site Sequences

20 In one aspect, the invention relates to nucleic acid molecules, which may or may not be isolated nucleic acid molecules, comprising one or more nucleotide sequences encoding one or more recombination sites or portions thereof. In particular, this aspect of the invention relates to such nucleic acid molecules comprising one or more nucleotide sequences encoding attB, attP, attL, or attR, or portions of these recombination site sequences. The invention also relates to mutants, derivatives, and fragments of such nucleic acid molecules. Unless otherwise indicated, all nucleotide sequences that may have been determined by sequencing a DNA molecule herein were determined using manual or automated DNA sequencing, such as dideoxy sequencing, according to methods that are routine to one of ordinary skill in the art (Sanger, F., and Coulson, A.R., *J. Mol. Biol.* 94:444-448 (1975); Sanger, F., *et al.*, *Proc. Natl. Acad. Sci. USA* 74:5463-5467 (1977)). All amino acid sequences of polypeptides encoded by DNA

5

10

15

20

25

30

molecules determined herein were predicted by conceptual translation of a DNA sequence determined as above. Therefore, as is known in the art for any DNA sequence determined by these approaches, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by such methods are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

Unless otherwise indicated, each "nucleotide sequence" set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G, C and T). However, by "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides, and for an RNA molecule or polynucleotide, the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U). Thus, the invention relates to sequences of the invention in the form of DNA or RNA molecules, or hybrid DNA/RNA molecules, and their corresponding complementary DNA, RNA, or DNA/RNA strands.

In a first such aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attB1*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attB1* nucleotide sequence having the sequence set forth in Figure 9, such as: ACAAGTTGTACAAAAAAGCAGGCT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attB1*, or mutants, fragments, variants or derivatives thereof. As one of ordinary skill will appreciate, however, certain mutations, insertions, or deletions of one or more bases in the *attB1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional

integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attB1* sequence are encompassed within the scope of the invention.

In a related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attB2*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attB2* nucleotide sequence having the sequence set forth in Figure 9, such as: ACCCAGCTTCTTGTACAAAGTGGT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attB2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attB2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attB2* sequence are encompassed within the scope of the invention.

A recombinant host cell comprising a nucleic acid molecule containing *attB1* and *attB2* sites (the vector pEXP501, also known as pCMV Sport6; see Figure 48), *E. coli* DB3.1(pCMV Sport6), was deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit No. NRRL B-30108. The *attB1* and *attB2* sites within the deposited nucleic acid molecule are contained in nucleic acid cassettes in association with one or more additional functional sequences as described in more detail below.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attP1*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attP1* nucleotide sequence having the sequence set forth in Figure 9, such as: TACAGGTCACTAATACCATCTAAGTAGTTGATTCACTAGTGA-CTGGATATGTTGTGTTTACAGTATTATGTAGTCTGTTTTAT-GCAAAATCTAATTAAATATATTGATAATTATATCATTACGTT-TCTCGTTCAGCTTTTGACAAAGTTGGCATTATAAAAAAGCATTG-CTCATCAATTGTTGCAACGAACAGGTCACTATCAGTCAAAATAA-

AATCATTATTTG, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attP1*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attP1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attP1* sequence are encompassed within the scope of the invention.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attP2*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attP2* nucleotide sequence having the sequence set forth in Figure 9, such as: CAAATAATGATTATTTGACTGATAGTGACCTGTTCGTTG-CAACAAATTGATAAGCAATGCTTCTTATAATGCCAACTTT-GTACAAGAAAGCTGAACGAGAACGTAAAATGATA-TAAATATCAATATATTAAATTAGATTTCGATAAAAAACAG-ACTACATAATACTGTAAAACACAACATATCCAGTCACTATGAATCAA-CTACTTAGATGGTATTAGTGACCTGTA, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attP2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attP2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attP2* sequence are encompassed within the scope of the invention.

A recombinant host cell comprising a nucleic acid molecule (the *attP* vector pDONR201, also known as pENTR21-*attPkan* or pAttPkan; see Figure 49) containing *attP1* and *attP2* sites, *E. coli* DB3.1(pAttPkan) (also called *E. coli* DB3.1(pAHKan)), was deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit No. NRRL B-30099. The *attP1* and *attP2* sites within the deposited nucleic acid molecule are contained in nucleic acid

cassettes in association with one or more additional functional sequences as described in more detail below.

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attR1*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attR1* nucleotide sequence having the sequence set forth in Figure 9, such as: A C A A G T T T G T A C A A A A A A G C T G A A C G A G - A A A C G T A A A A T G A T A T A A A T A T C A A T A T A T T A A A T T A G A T T T G C A T - A A A A A C A G A C T A C A T A T C T G T A A A A C A C A A C A T A T C C A G T C A - C T A T G, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attR1*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attR1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attR1* sequence are encompassed within the scope of the invention.

10

15

20

25

30

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attR2*, or mutants, fragments, variants or derivatives thereof. Such nucleic acid molecules may comprise an *attR2* nucleotide sequence having the sequence set forth in Figure 9, such as: G C A G G T C G A C C A T A G T G A C T G G A T A T - G T T G T G T T T A C A G T A T T A T G T A G T C T G T T T T A T G C A A A A T C T A - A T T A A T A T T G A T A T T A T A T C A T T T A C G T T C T C G T T C A G C T T - T C T T G T A C A A A G T G G T, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attR2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attR2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attR2* sequence are encompassed within the scope of the invention.

5

10

Recombinant host cell strains containing *attR1* sites apposed to cloning sites in reading frame A, reading frame B, and reading frame C, *E. coli* DB3.1(pEZR15101) (reading frame A; see Figure 64A), *E. coli* DB3.1(pEZR15102) (reading frame B; see Figure 64B), and *E. coli* DB3.1(pEZR15103) (reading frame C; see Figure 64C), and containing corresponding *attR2* sites, were deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit Nos. NRRL B-30103, NRRL B-30104, and NRRL B-30105, respectively. The *attR1* and *attR2* sites within the deposited nucleic acid molecules are contained in nucleic acid cassettes in association with one or more additional functional sequences as described in more detail below.

15

20

25

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attL1*, or mutants, fragments, variants and derivatives thereof. Such nucleic acid molecules may comprise an *attL1* nucleotide sequence having the sequence set forth in Figure 9, such as: CAA ATA ATG ATT TTA TTT TGA CTG ATA GTG ACC TGT TCG TTG CAA CAA ATT GAT AAG CAA TGC TTT TTT ATA ATG CCA ACT TTG TAC AAA AAA GCA GGC T, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attL1*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attL1* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attL1* sequence are encompassed within the scope of the invention.

30

In another related aspect, the invention provides nucleic acid molecules comprising one or more nucleotide sequences encoding *attL2*, or mutants, fragments, variants and derivatives thereof. Such nucleic acid molecules may comprise an *attL2* nucleotide sequence having the sequence set forth in Figure 9, such as: C AAA TAA TGA TTT TAT TTT GAC TGA TAG TGA CCT GTT CGT TGC AAC AAA TTG ATA AGC AAT GCT TTC TTA TAA TGC CAA

-55-

5 CTT TGT ACA AGA AAG CTG GGT, or a nucleotide sequence complementary to the nucleotide sequence set forth in Figure 9 for *attL2*, or mutants, fragments, variants or derivatives thereof. As noted above for *attB1*, certain mutations, insertions, or deletions of one or more bases in the *attL2* sequence contained in the nucleic acid molecules of the invention may be made without compromising the structural and functional integrity of these molecules; hence, nucleic acid molecules comprising such mutations, insertions, or deletions in the *attL2* sequence are encompassed within the scope of the invention.

10 Recombinant host cell strains containing *attL1* sites apposed to cloning sites in reading frame A, reading frame B, and reading frame C, *E. coli* DB3.1(pENTR1A) (reading frame A; see Figure 10), *E. coli* DB3.1(pENTR2B) (reading frame B; see Figure 11), and *E. coli* DB3.1(pENTR3C) (reading frame C; see Figure 12), and containing corresponding *attL2* sites, were deposited on February 27, 1999, with the Collection, Agricultural Research Culture Collection 15 (NRRL), 1815 North University Street, Peoria, Illinois 61604 USA, as Deposit Nos. NRRL B-30100, NRRL B-30101, and NRRL B-30102, respectively. The *attL1* and *attL2* sites within the deposited nucleic acid molecules are contained in nucleic acid cassettes in association with one or more additional functional sequences as described in more detail below.

20 Each of the recombination site sequences described herein or portions thereof, or the nucleotide sequence cassettes contained in the deposited clones, may be cloned or inserted into a vector of interest (for example, using the recombinational cloning methods described herein and/or standard restriction cloning techniques that are routine in the art) to generate, for example, Entry Vectors or Destination 25 Vectors which may be used to transfer a desired segment of a nucleic acid molecule of interest (*e.g.*, a gene, cDNA molecule, or cDNA library) into a desired vector or into a host cell.

30 Using the information provided herein, such as the nucleotide sequences for the recombination site sequences described herein, an isolated nucleic acid molecule of the present invention encoding one or more recombination sites or portions thereof may be obtained using standard cloning and screening procedures, such as those for cloning cDNAs using mRNA as starting material. Preferred such

methods include PCR-based cloning methods, such as reverse transcriptase-PCR (RT-PCR) using primers such as those described herein and in the Examples below. Alternatively, vectors comprising the cassettes containing the recombination site sequences described herein are available commercially from
5 Life Technologies, Inc. (Rockville, MD).

The invention is also directed to nucleic acid molecules comprising one or more of the recombination site sequences or portions thereof and one or more additional nucleotide sequences, which may encode functional or structural sites such as one or more multiple cloning sites, one or more transcription termination
10 sites, one or more transcriptional regulatory sequences (which may be promoters, enhancers, repressors, and the like), one or more translational signals (*e.g.*, secretion signal sequences), one or more origins of replication, one or more fusion partner peptides (particularly glutathione S-transferase (GST), hexahistidine (His₆), and thioredoxin (Trx)), one or more selection markers or modules, one or
15 more nucleotide sequences encoding localization signals such as nuclear localization signals or secretion signals, one or more origins of replication, one or more protease cleavage sites, one or more genes or portions of genes encoding a protein or polypeptide of interest, and one or more 5' polynucleotide extensions (particularly an extension of guanine residues ranging in length from about 1 to about 20, from about 2 to about 15, from about 3 to about 10, from about 4 to about 10, and most preferably an extension of 4 or 5 guanine residues at the 5' end of the recombination site nucleotide sequence. The one or more additional functional or structural sequences may or may not flank one or more of the recombination site sequences contained on the nucleic acid molecules of the
20 invention.
25

In some nucleic acid molecules of the invention, the one or more nucleotide sequences encoding one or more additional functional or structural sites may be operably linked to the nucleotide sequence encoding the recombination site. For example, certain nucleic acid molecules of the invention may have a promoter sequence operably linked to a nucleotide sequence encoding a recombination site or portion thereof of the invention, such as a T7 promoter, a phage lambda PL
30

promoter, an *E. coli lac*, *trp* or *tac* promoter, and other suitable promoters which will be familiar to the skilled artisan.

Nucleic acid molecules of the present invention, which may be isolated nucleic acid molecules, may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically, or in the form of DNA-RNA hybrids. The nucleic acid molecules of the invention may be double-stranded or single-stranded. Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand. The nucleic acid molecules of the invention may also have a number of topologies, including linear, circular, coiled, or supercoiled.

By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells, and those DNA molecules purified (partially or substantially) from a solution whether produced by recombinant DNA or synthetic chemistry techniques. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the DNA molecules of the present invention.

The present invention further relates to mutants, fragments, variants and derivatives of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of one or more recombination sites. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism (*see* Lewin, B., ed., *Genes II*, , John Wiley & Sons, New York (1985)). Non-naturally occurring variants may be produced using art-known mutagenesis techniques, such as those described hereinbelow.

Such variants include those produced by nucleotide substitutions, deletions or additions or portions thereof, or combinations thereof. The substitutions, deletions or additions may involve one or more nucleotides. The variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding

regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the encoded polypeptide(s) or portions thereof, and which also do not substantially alter the reactivities of the recombination site nucleic acid sequences in recombination reactions. Also especially preferred in this regard are conservative substitutions.

Particularly preferred mutants, fragments, variants, and derivatives of the nucleic acid molecules of the invention include, but are not limited to, insertions, deletions or substitutions of one or more nucleotide bases within the 15 bp core region (GCTTTTTTATACTAA) which is identical in all four wildtype lambda *att* sites, *attB*, *attP*, *attL* and *attR* (see U.S. Application Nos. 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed October 23, 1998, which describes the core region in further detail, and the disclosures of which are incorporated herein by reference in their entireties). Analogously, the core regions in *attB1*, *attP1*, *attL1* and *attR1* are identical to one another, as are the core regions in *attB2*, *attP2*, *attL2* and *attR2*. Particularly preferred in this regard are nucleic acid molecules comprising insertions, deletions or substitutions of one or more nucleotides within the seven bp overlap region (TTTATAC, which is defined by the cut sites for the integrase protein and is the region where strand exchange takes place) that occurs within this 15 bp core region (GCTTTTTTATACTAA). Examples of such preferred mutants, fragments, variants and derivatives according to this aspect of the invention include, but are not limited to, nucleic acid molecules in which the thymine at position 1 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; in which the thymine at position 2 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; in which the thymine at position 3 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or adenine; in which the adenine at position 4 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or thymine; in which the thymine at position 5 of the seven bp overlap region has been deleted or substituted with a

-59-

guanine, cytosine, or adenine; in which the adenine at position 6 of the seven bp overlap region has been deleted or substituted with a guanine, cytosine, or thymine; and in which the cytosine at position 7 of the seven bp overlap region has been deleted or substituted with a guanine, thymine, or adenine; or any combination of one or more such deletions and/or substitutions within this seven bp overlap region. As described in detail in Example 21 herein, mutants of the nucleic acid molecules of the invention in which substitutions have been made within the first three positions of the seven bp overlap (TTTATAC) have been found in the present invention to strongly affect the specificity of recombination, mutant nucleic acid molecules in which substitutions have been made in the last four positions (TTTATAC) only partially alter recombination specificity, and mutant nucleic acid molecules comprising nucleotide substitutions outside of the seven bp overlap, but elsewhere within the 15 bp core region, do not affect specificity of recombination but do influence the efficiency of recombination.

Hence, in an additional aspect, the present invention is also directed to nucleic acid molecules comprising one or more recombination site nucleotide sequences that affect recombination specificity, particularly one or more nucleotide sequences that may correspond substantially to the seven base pair overlap within the 15 bp core region, having one or more mutations that affect recombination specificity. Particularly preferred such molecules may comprise a consensus sequence (described in detail in Example 21 herein) such as NNNATAC, wherein "N" refers to any nucleotide (*i.e.*, may be A, G, T/U or C), with the proviso that if one of the first three nucleotides in the consensus sequence is a T/U, then at least one of the other two of the first three nucleotides is not a T/U.

In a related aspect, the present invention is also directed to nucleic acid molecules comprising one or more recombination site nucleotide sequences that enhance recombination efficiency, particularly one or more nucleotide sequences that may correspond substantially to the core region and having one or more mutations that enhance recombination efficiency. By sequences or mutations that "enhance recombination efficiency" is meant a sequence or mutation in a recombination site, preferably in the core region (*e.g.*, the 15 bp core region of *att* recombination sites), that results in an increase in cloning efficiency (typically

measured by determining successful cloning of a test sequence, e.g., by determining CFU/ml for a given cloning mixture) when recombining molecules comprising the mutated sequence or core region as compared to molecules that do not comprise the mutated sequence or core region (e.g., those comprising a wildtype recombination site core region sequence). More specifically, whether or not a given sequence or mutation enhances recombination efficiency may be determined using the sequence or mutation in recombinational cloning as described herein, and determining whether the sequence or mutation provides enhanced recombinational cloning efficiency when compared to a non-mutated (e.g., wildtype) sequence. Methods of determining preferred cloning efficiency-enhancing mutations for a number of recombination sites, particularly for *att* recombination sites, are described herein, for example in Examples 22-25. Examples of preferred such mutant recombination sites include but are not limited to the *attL* consensus core sequence of caactnnntnnnannaagttg (wherein "n" represents any nucleotide), for example the *attL5* sequence agcctgctttattatactaaggcattt and the *attL6* sequence agcctgcttttatattaaggcattt; the *attB1.6* sequence ggggacaacttgtacaaaaagttggct; the *attB2.2* sequence ggggacaacttgtacaagaaagctgggt; and the *attB2.10* sequence ggggacaacttgtacaagaaagttgggt. Those of skill in the art will appreciate that, in addition to the core region, other portions of the *att* site may affect the efficiency of recombination. There are five so-called arm binding sites for the integrase protein in the bacteriophage lambda *attP* site, two in *attR* (P1 and P2), and three in *attL* (P'1, P'2 and P'3). Compared to the core binding sites, the integrase protein binds to arm sites with high affinity and interacts with core and arm sites through two different domains of the protein. As with the core binding site a consensus sequence for the arm binding site consisting of C/AAGTCACTAT has been inferred from sequence comparison of the five arm binding sites and seven non-*att* sites (Ross and Landy, *Proc. Natl. Acad. Sci. USA* 79:7724-7728 (1982)). Each arm site has been mutated and tested for its effect in the excision and integration reactions (Numrych *et al.*, *Nucl. Acids Res.* 18:3953 (1990)). Hence, specific sites are utilized in each reaction in different ways, namely, the P1 and P'3

5

10

15

20

25

30

sites are essential for the integration reaction whereas the other three sites are dispensable to the integration reaction to varying degrees. Similarly, the P2, P'1 and P'2 sites are most important for the excision reaction, whereas P1 and P'3 are completely dispensable. Interestingly, when P2 is mutated the integration reaction occurs more efficiently than with the wild type attP site. Similarly, when P1 and P'3 are mutated the excision reaction occurs more efficiently. The stimulatory effect of mutating integrase arm binding sites can be explained by removing sites that compete or inhibit a specific recombination pathway or that function in a reaction that converts products back to starting substrates. In fact there is evidence for an XIS-independent LR reaction (Abremski and Gottesman, *J. Mol. Biol.* 153:67-78 (1981)). Thus, in addition to modifications in the core region of the att site, the present invention contemplates the use of att sites containing one or more modifications in the integrase arm-type binding sites. In some preferred embodiments, one or more mutations may be introduced into one or more of the P1, P'1, P2, P'2 and P'3 sites. In some preferred embodiments, multiple mutations may be introduced into one or more of these sites. Preferred such mutations include those which increase the recombination *in vitro*. For example, in some embodiments mutations may be introduced into the arm-type binding sites such that integrative recombination, corresponding to the BP reaction, is enhanced. In other embodiments, mutations may be introduced into the arm-type binding sites such that excisive recombination, corresponding to the LR reaction, is enhanced. Of course, based on the guidance contained herein, particularly in the construction and evaluation of effects of mutated recombination sites upon recombinational specificity and efficiency, analogous mutated or engineered sequences may be produced for other recombination sites described herein (including but not limited to *lox*, FRT, and the like) and used in accordance with the invention. For example, much like the mutagenesis strategy used to select core binding sites that enhance recombination efficiency, similar strategies can be employed to select changes in the arms of attP, attL and attR, and in analogous sequences in other recombination sites such as *lox*, FRT and the like, that enhance recombination efficiency. Hence, the construction and evaluation of such mutants is well within the abilities of those of ordinary skill in the art without undue experimentation.

One suitable methodology for preparing and evaluating such mutations is found in Numrych, *et al.*, (1990) *Nucleic Acids Research* 18(13): 3953-3959.

Other mutant sequences and nucleic acid molecules that may be suitable to enhance recombination efficiency will be apparent from the description herein, or may be easily determined by one of ordinary skill using only routine experimentation in molecular biology in view of the description herein and information that is readily available in the art

Since the genetic code is well known in the art, it is also routine for one of ordinary skill in the art to produce degenerate variants of the nucleic acid molecules described herein without undue experimentation. Hence, nucleic acid molecules comprising degenerate variants of nucleic acid sequences encoding the recombination sites described herein are also encompassed within the scope of the invention.

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 50% identical, at least 60% identical, at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to the nucleotide sequences of the seven bp overlap region within the 15 bp core region of the recombination sites described herein, or the nucleotide sequences of *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* as set forth in Figure 9 (or portions thereof), or a nucleotide sequence complementary to any of these nucleotide sequences, or fragments, variants, mutants, and derivatives thereof.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a particular recombination site or portion thereof is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations (*e.g.*, insertions, substitutions, or deletions) per each 100 nucleotides of the reference nucleotide sequence encoding the recombination site. For example, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference *attB1* nucleotide sequence, up to 5% of the nucleotides in the *attB1* reference sequence may be

5 deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the *attB1* reference sequence may be inserted into the *attB1* reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

10 As a practical matter, whether any particular nucleic acid molecule is at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, a given recombination site nucleotide sequence or portion thereof can be determined conventionally using known computer programs such as DNAsis software (Hitachi Software, San Bruno, California) for initial sequence alignment followed by ESEE version 3.0 DNA/protein sequence software (cabot@trog.mbb.sfu.ca) for multiple sequence alignments. Alternatively, such 15 determinations may be accomplished using the BESTFIT program (Wisconsin Sequence Analysis Package, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711), which employs a local homology algorithm (Smith and Waterman, *Advances in Applied Mathematics* 2: 482-489 (1981)) to find the best segment of homology between two sequences. When 20 using DNAsis, ESEE, BESTFIT or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number 25 of nucleotides in the reference sequence are allowed.

30 The present invention is directed to nucleic acid molecules at least 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to the *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* nucleotide sequences as set forth in Figure 9, or to the nucleotide sequence of the deposited clones, irrespective of whether they encode particular functional polypeptides. This is because even where a particular nucleic acid molecule does not encode a particular functional polypeptide, one of skill in the art would still know how to use the nucleic acid

molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer.

Mutations can also be introduced into the recombination site nucleotide sequences for enhancing site specific recombination or altering the specificities of the reactants, etc. Such mutations include, but are not limited to: recombination sites without translation stop codons that allow fusion proteins to be encoded; recombination sites recognized by the same proteins but differing in base sequence such that they react largely or exclusively with their homologous partners allowing multiple reactions to be contemplated; and mutations that prevent hairpin formation of recombination sites. Which particular reactions take place can be specified by which particular partners are present in the reaction mixture.

There are well known procedures for introducing specific mutations into nucleic acid sequences. A number of these are described in Ausubel, F.M. *et al.*, *Current Protocols in Molecular Biology*, Wiley Interscience, New York (1989-1996). Mutations can be designed into oligonucleotides, which can be used to modify existing cloned sequences, or in amplification reactions. Random mutagenesis can also be employed if appropriate selection methods are available to isolate the desired mutant DNA or RNA. The presence of the desired mutations can be confirmed by sequencing the nucleic acid by well known methods.

The following non-limiting methods can be used to modify or mutate a given nucleic acid molecule encoding a particular recombination site to provide mutated sites that can be used in the present invention:

1. By recombination of two parental DNA sequences by site-specific (e.g. attL and attR to give attP) or other (e.g. homologous) recombination mechanisms where the parental DNA segments contain one or more base alterations resulting in the final mutated nucleic acid molecule;
2. By mutation or mutagenesis (site-specific, PCR, random, spontaneous, etc) directly of the desired nucleic acid molecule;
3. By mutagenesis (site-specific, PCR, random, spontaneous, etc) of parental DNA sequences, which are recombined to generate a desired nucleic acid molecule;

4. By reverse transcription of an RNA encoding the desired core sequence;
and
5. By *de novo* synthesis (chemical synthesis) of a sequence having the desired
base changes, or random base changes followed by sequencing or
functional analysis according to methods that are routine in the art.

The functionality of the mutant recombination sites can be demonstrated in ways that depend on the particular characteristic that is desired. For example, the lack of translation stop codons in a recombination site can be demonstrated by expressing the appropriate fusion proteins. Specificity of recombination between homologous partners can be demonstrated by introducing the appropriate molecules into *in vitro* reactions, and assaying for recombination products as described herein or known in the art. Other desired mutations in recombination sites might include the presence or absence of restriction sites, translation or transcription start signals, protein binding sites, particular coding sequences, and other known functionalities of nucleic acid base sequences. Genetic selection schemes for particular functional attributes in the recombination sites can be used according to known method steps. For example, the modification of sites to provide (from a pair of sites that do not interact) partners that do interact could be achieved by requiring deletion, via recombination between the sites, of a DNA sequence encoding a toxic substance. Similarly, selection for sites that remove translation stop sequences, the presence or absence of protein binding sites, etc., can be easily devised by those skilled in the art.

Accordingly, the present invention also provides a nucleic acid molecule, comprising at least one DNA segment having at least one, and preferably at least two, engineered recombination site nucleotide sequences of the invention flanking a selectable marker and/or a desired DNA segment, wherein at least one of said recombination site nucleotide sequences has at least one engineered mutation that enhances recombination *in vitro* in the formation of a Cointegrate DNA or a Product DNA. Such engineered mutations may be in the core sequence of the recombination site nucleotide sequence of the invention; *see U.S. Application Nos. 08/486,139, filed June 7, 1995, 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed*

October 23, 1998, the disclosures of which are all incorporated herein by reference in their entireties.

While in the preferred embodiment the recombination sites differ in sequence and do not interact with each other, it is recognized that sites comprising the same sequence, which may interact with each other, can be manipulated or engineered to inhibit recombination with each other. Such conceptions are considered and incorporated herein. For example, a protein binding site (*e.g.*, an antibody-binding site, a histone-binding site, an enzyme-binding site, or a binding site for any nucleic acid molecule-binding protein) can be engineered adjacent to one of the sites. In the presence of the protein that recognizes the engineered site, the recombinase fails to access the site and another recombination site in the nucleic acid molecule is therefore used preferentially. In the cointegrate this site can no longer react since it has been changed, *e.g.*, from attB to attL. During or upon resolution of the cointegrate, the protein can be inactivated (*e.g.*, by antibody, heat or a change of buffer) and the second site can undergo recombination.

The nucleic acid molecules of the invention can have at least one mutation that confers at least one enhancement of said recombination, said enhancement selected from the group consisting of substantially (i) favoring integration; (ii) favoring recombination; (iii) relieving the requirement for host factors; (iv) increasing the efficiency of said Cointegrate DNA or Product DNA formation; (v) increasing the specificity of said Cointegrate DNA or Product DNA formation; and (vi) adding or deleting protein binding sites.

In other embodiments, the nucleic acid molecules of the invention may be PCR primer molecules, which comprise one or more of the recombination site sequences described herein or portions thereof, particularly those shown in Figure 9 (or sequences complementary to those shown in Figure 9), or mutants, fragments, variants or derivatives thereof, attached at the 3' end to a target-specific template sequence which specifically interacts with a target nucleic acid molecule which is to be amplified. Primer molecules according to this aspect of the invention may further comprise one or more, (*e.g.*, 1, 2, 3, 4, 5, 10, 20, 25, 50, 100, 500, 1000, or more) additional bases at their 5' ends, and preferably comprise one or more (particularly four or five) additional bases, which are preferably

guanines, at their 5' ends, to increase the efficiency of the amplification products incorporating the primer molecules in the recombinational cloning system of the invention. Such nucleic acid molecules and primers are described in detail in the examples herein, particularly in Examples 22-25.

5 Certain primers of the invention may comprise one or more nucleotide deletions in the *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* sequences as set forth in Figure 9. In one such aspect, for example, *attB2* primers may be constructed in which one or more of the first four nucleotides at the 5' end of the *attB2* sequence shown in Figure 9 have been deleted. Primers according to this aspect of the invention may therefore have the sequence:

10 (attB2(-1)): CCCAGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n

(attB2(-2)): CCAGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n

(attB2(-3)): CAGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n

(attB2(-4)): AGCTTCTTGTACAAAGTGGTnnnnnnnnnnnn . . . n,

15 wherein "nnnnnnnnnnnn . . . n" at the 3' end of the primer represents a target-specific sequence of any length, for example from one base up to all of the bases of a target nucleic acid molecule (*e.g.*, a gene) or a portion thereof, the sequence and length which will depend upon the identity of the target nucleic acid molecule which is to be amplified.

20 The primer nucleic acid molecules according to this aspect of the invention may be produced synthetically by attaching the recombination site sequences depicted in Figure 9, or portions thereof, to the 5' end of a standard PCR target-specific primer according to methods that are well-known in the art. Alternatively, additional primer nucleic acid molecules of the invention may be produced synthetically by adding one or more nucleotide bases, which preferably correspond 25 to one or more, preferably five or more, and more preferably six or more, contiguous nucleotides of the *att* nucleotide sequences described herein (*see, e.g.*, Example 20 herein; *see also* U.S. Application Nos. 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed October 23, 1998, the disclosures of which are all incorporated herein by reference in their entireties), to the 5' end of a standard PCR target-specific primer according to methods that are well-known in the art, to provide

primers having the specific nucleotide sequences described herein. As noted above, primer nucleic acid molecules according to this aspect of the invention may also optionally comprise one, two, three, four, five, or more additional nucleotide bases at their 5' ends, and preferably will comprise four or five guanines at their 5' ends. In one particularly preferred such aspect, the primer nucleic acid molecules of the invention may comprise one or more, preferably five or more, more preferably six or more, still more preferably 6-18 or 6-25, and most preferably 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25, contiguous nucleotides or bp of the *attB1* or *attB2* nucleotide sequences depicted in Figure 9 (or nucleotides complementary thereto), linked to the 5' end of a target-specific (*e.g.*, a gene-specific) primer molecule. Primer nucleic acid molecules according to this aspect of the invention include, but are not limited to, *attB1*- and *attB2*-derived primer nucleic acid molecules having the following nucleotide sequences:

15 ACAAGTTGTACAAAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 ACCACTTGTACAAGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 TGTACAAAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 TGTACAAGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 ACAAAAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
20 ACAAGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 AAAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 AGAAAGCTGGGT-nnnnnnnnnnnnn . . . n
 AAAAGCAGGCT-nnnnnnnnnnnnn . . . n
 GAAAGCTGGGT-nnnnnnnnnnnnn . . . n
25 AAAGCAGGCT-nnnnnnnnnnnnn . . . n
 AAAGCTGGGT-nnnnnnnnnnnnn . . . n
 AAGCAGGCT-nnnnnnnnnnnnn . . . n
 AAGCTGGGT-nnnnnnnnnnnnn . . . n
 AGCAGGCT-nnnnnnnnnnnnn . . . n
30 AGCTGGGT-nnnnnnnnnnnnn . . . n
 GCAGGCT-nnnnnnnnnnnnn . . . n
 GCTGGGT-nnnnnnnnnnnnn . . . n

CAGGCT-nnnnnnnnnnnn . . . n

CTGGGT-nnnnnnnnnnnn . . . n,

wherein "nnnnnnnnnnnn . . . n" at the 3' end of the primer represents a target-specific sequence of any length, for example from one base up to all of the bases of a target nucleic acid molecule (e.g., a gene) or a portion thereof, the sequence and length which will depend upon the identity of the target nucleic acid molecule which is to be amplified.

Of course, it will be apparent to one of ordinary skill from the teachings contained herein that additional primer nucleic acid molecules analogous to those specifically described herein may be produced using one or more, preferably five or more, more preferably six or more, still more preferably ten or more, 15 or more, 20 or more, 25 or more, 30 or more, etc. (through to and including all) of the contiguous nucleotides or bp of the *attP1*, *attP2*, *attL1*, *attL2*, *attR1* or *attR2* nucleotide sequences depicted in Figure 9 (or nucleotides complementary thereto), linked to the 5' end of a target-specific (e.g., a gene-specific) primer molecule. As noted above, such primer nucleic acid molecules may optionally further comprise one, two, three, four, five, or more additional nucleotide bases at their 5' ends, and preferably will comprise four guanines at their 5' ends. Other primer molecules comprising the *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* sequences depicted in Figure 9, or portions thereof, may be made by one of ordinary skill without resorting to undue experimentation in accordance with the guidance provided herein.

The primers of the invention described herein are useful in producing PCR fragments having a nucleic acid molecule of interest flanked at each end by a recombination site sequence (as described in detail below in Example 9), for use in cloning of PCR-amplified DNA fragments using the recombination system of the invention (as described in detail below in Examples 8, 19 and 21-25).

Vectors

The invention also relates to vectors comprising one or more of the nucleic acid molecules of the invention, as described herein. In accordance with the invention, any vector may be used to construct the vectors of the invention. In

5

10

20

25

30

particular, vectors known in the art and those commercially available (and variants or derivatives thereof) may in accordance with the invention be engineered to include one or more nucleic acid molecules encoding one or more recombination sites (or portions thereof), or mutants, fragments, or derivatives thereof, for use in the methods of the invention. Such vectors may be obtained from, for example, Vector Laboratories Inc., InVitrogen, Promega, Novagen, New England Biolabs, Clontech, Roche, Pharmacia, EpiCenter, OriGenes Technologies Inc., Stratagene, Perkin Elmer, Pharmingen, Life Technologies, Inc., and Research Genetics. Such vectors may then for example be used for cloning or subcloning nucleic acid molecules of interest. General classes of vectors of particular interest include prokaryotic and/or eukaryotic cloning vectors, Expression Vectors, fusion vectors, two-hybrid or reverse two-hybrid vectors, shuttle vectors for use in different hosts, mutagenesis vectors, transcription vectors, vectors for receiving large inserts and the like.

Other vectors of interest include viral origin vectors (M13 vectors, bacterial phage λ vectors, bacteriophage P1 vectors, adenovirus vectors, herpesvirus vectors, retrovirus vectors, phage display vectors, combinatorial library vectors), high, low, and adjustable copy number vectors, vectors which have compatible replicons for use in combination in a single host (pACYC184 and pBR322) and eukaryotic episomal replication vectors (pCDM8).

Particular vectors of interest include prokaryotic Expression Vectors such as pcDNA II, pSL301, pSE280, pSE380, pSE420, pTrcHisA, B, and C, pRSET A, B, and C (Invitrogen, Inc.), pGEMEX-1, and pGEMEX-2 (Promega, Inc.), the pET vectors (Novagen, Inc.), pTrc99A, pKK223-3, the pGEX vectors, pEZ218, pRIT2T, and pMC1871 (Pharmacia, Inc.), pKK233-2 and pKK388-1 (Clontech, Inc.), and pProEx-HT (Life Technologies, Inc.) and variants and derivatives thereof. Destination Vectors can also be made from eukaryotic Expression Vectors such as pFastBac, pFastBac HT, pFastBac DUAL, pSFV, and pTet-Splice (Life Technologies, Inc.), pEUK-C1, pPUR, pMAM, pMAMneo, pBI101, pBI121, pDR2, pCMVEBNA, and pYACneo (Clontech), pSVK3, pSVL, pMSG, pCH110, and pKK232-8 (Pharmacia, Inc.), p3'SS, pXT1, pSG5, pPbac, pMbac, pMC1neo, and pOG44 (Stratagene, Inc.), and pYES2, pAC360, pBlueBacHis A,

B, and C, pVL1392, pBsueBacIII, pCDM8, pcDNA1, pZeoSV, pcDNA3 pREP4, pCEP4, and pEBVHis (Invitrogen, Inc.) and variants or derivatives thereof.

Other vectors of particular interest include pUC18, pUC19, pBlueScript, pSPORT, cosmids, phagemids, YACs (yeast artificial chromosomes), BACs (bacterial artificial chromosomes), MACs (mammalian artificial chromosomes), pQE70, pQE60, pQE9 (Qiagen), pBS vectors, PhageScript vectors, BlueScript vectors, pNH8A, pNH16A, pNH18A, pNH46A (Stratagene), pcDNA3 (InVitrogen), pGEX, pTrsfus, pTrc99A, pET-5, pET-9, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pSPORT1, pSPORT2, pCMVSPORT2.0 and pSV-SPORT1 (Life Technologies, Inc.) and variants or derivatives thereof.

Additional vectors of interest include pTrxFus, pThioHis, pLEX, pTrcHis, pTrcHis2, pRSET, pBlueBacHis2, pcDNA3.1/His, pcDNA3.1(-)/Myc-His, pSecTag, pEBVHis, pPIC9K, pPIC3.5K, pAO815, pPICZ, pPICZ α , pGAPZ, pGAPZ α , pBlueBac4.5, pBlueBacHis2, pMelBac, pSinRep5, pSinHis, pIND, pIND(SP1), pVgRXR, pcDNA2.1. pYES2, pZErO1.1, pZErO-2.1, pCR-Blunt, pSE280, pSE380, pSE420, pVL1392, pVL1393, pCDM8, pcDNA1.1, pcDNA1.1/Amp, pcDNA3.1, pcDNA3.1/Zeo, pSe, SV2, pRc/CMV2, pRc/RSV, pREP4, pREP7, pREP8, pREP9, pREP10, pCEP4, pEBVHis, pCR3.1, pCR2.1, pCR3.1-Uni, and pCRBac from Invitrogen; λ ExCell, λ gt11, pTrc99A, pKK223-3, pGEX-1 λ T, pGEX-2T, pGEX-2TK, pGEX-4T-1, pGEX-4T-2, pGEX-4T-3, pGEX-3X, pGEX-5X-1, pGEX-5X-2, pGEX-5X-3, pEZZ18, pRIT2T, pMC1871, pSVK3, pSVL, pMSG, pCH110, pKK232-8, pSL1180, pNEO, and pUC4K from Pharmacia; pSCREEN-1b(+), pT7Blue(R), pT7Blue-2, pCITE-4abc(+), pOCUS-2, pTAg, pET-32 LIC, pET-30 LIC, pBAC-2cp LIC, pBACgus-2cp LIC, pT7Blue-2 LIC, pT7Blue-2, λ SCREEN-1, λ BlueSTAR, pET-3abcd, pET-7abc, pET9abcd, pET11abcd, pET12abc, pET-14b, pET-15b, pET-16b, pET-17b-pET-17xb, pET-19b, pET-20b(+), pET-21abcd(+), pET-22b(+), pET-23abcd(+), pET-24abcd(+), pET-25b(+), pET-26b(+), pET-27b(+), pET-28abc(+), pET-29abc(+), pET-30abc(+), pET-31b(+), pET-32abc(+), pET-33b(+), pBAC-1, pBACgus-1, pBAC4x-1, pBACgus4x-1, pBAC-3cp, pBACgus-2cp, pBACsurf-1, plg, Signal plg, pYX, Selecta Vecta-Neo, Selecta Vecta - Hyg, and Selecta Vecta - Gpt from Novagen; pLexA, pB42AD, pGBT9, pAS2-1,

5 pGAD424, pACT2, pGAD GL, pGAD GH, pGAD10, pGilda, pEZM3, pEGFP, pEGFP-1, pEGFP-N, pEGFP-C, pEBFP, pGFPuv, pGFP, p6xHis-GFP, pSEAP2-Basic, pSEAP2-Contral, pSEAP2-Promoter, pSEAP2-Enhancer, p β gal-Basic, p β gal-Control, p β gal-Promoter, p β gal-Enhancer, pCMV β , pTet-Off, pTet-On, pTK-Hyg, pRetro-Off, pRetro-On, pIRES1neo, pIRES1hyg, pLXSN, pLNCX, pLAPSN, pMAMneo, pMAMneo-CAT, pMAMneo-LUC, pPUR, pSV2neo, pYEX 4T-1/2/3, pYEX-S1, pBacPAK-His, pBacPAK8/9, pAcUW31, BacPAK6, pTriplEx, λ gt10, λ gt11, pWE15, and λ TriplEx from Clontech; Lambda ZAP II, pBK-CMV, pBK-RSV, pBluescript II KS +/-, pBluescript II SK +/-, pAD-GAL4, 10 pBD-GAL4 Cam, pSurfscript, Lambda FIX II, Lambda DASH, Lambda EMBL3, Lambda EMBL4, SuperCos, pCR-Script Amp, pCR-Script Cam, pCR-Script Direct, pBS +/-, pBC KS +/-, pBC SK +/-, Phagescript, pCAL-n-EK, pCAL-n, pCAL-c, pCAL-kc, pET-3abcd, pET-11abcd, pSPUTK, pESP-1, pCMVLaci, pOPRSVI/MCS, pOPI3 CAT, pXT1, pSG5, pPbac, pMbac, pMC1neo, pMC1neo 15 Poly A, pOG44, pOG45, pFRT β GAL, pNEO β GAL, pRS403, pRS404, pRS405, pRS406, pRS413, pRS414, pRS415, and pRS416 from Stratagene.

20 Two-hybrid and reverse two-hybrid vectors of particular interest include pPC86, pDBLeu, pDBTrp, pPC97, p2.5, pGAD1-3, pGAD10, pACt, pACT2, pGADGL, pGADGH, pAS2-1, pGAD424, pGBT8, pGBT9, pGAD-GAL4, pLexA, pBD-GAL4, pHISi, pHISi-1, placZi, pB42AD, pDG202, pJK202, pJG4-5, pNLexA, pYESTrp and variants or derivatives thereof.

25 Yeast Expression Vectors of particular interest include pESP-1, pESP-2, pESC-His, pESC-Trp, pESC-URA, pESC-Leu (Stratagene), pRS401, pRS402, pRS411, pRS412, pRS421, pRS422, and variants or derivatives thereof.

According to the invention, the vectors comprising one or more nucleic acid 30 molecules encoding one or more recombination sites, or mutants, variants, fragments, or derivatives thereof, may be produced by one of ordinary skill in the art without resorting to undue experimentation using standard molecular biology methods. For example, the vectors of the invention may be produced by introducing one or more of the nucleic acid molecules encoding one or more recombination sites (or mutants, fragments, variants or derivatives thereof) into one or more of the vectors described herein, according to the methods described,

5

10

15

20

25

30

for example, in Maniatis *et al.*, *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (1982). In a related aspect of the invention, the vectors may be engineered to contain, in addition to one or more nucleic acid molecules encoding one or more recombination sites (or portions thereof), one or more additional physical or functional nucleotide sequences, such as those encoding one or more multiple cloning sites, one or more transcription termination sites, one or more transcriptional regulatory sequences (*e.g.*, one or more promoters, enhancers, or repressors), one or more selection markers or modules, one or more genes or portions of genes encoding a protein or polypeptide of interest, one or more translational signal sequences, one or more nucleotide sequences encoding a fusion partner protein or peptide (*e.g.*, GST, His₆ or thioredoxin), one or more origins of replication, and one or more 5' or 3' polynucleotide tails (particularly a poly-G tail). According to this aspect of the invention, the one or more recombination site nucleotide sequences (or portions thereof) may optionally be operably linked to the one or more additional physical or functional nucleotide sequences described herein.

Preferred vectors according to this aspect of the invention include, but are not limited to: pENTR1A (Figures 10A and 10B), pENTR2B (Figures 11A and 11B), pENTR3C (Figures 12A and 12B), pENTR4 (Figures 13A and 13B), pENTR5 (Figures 14A and 14B), pENTR6 (Figures 15A and 15B), pENTR7 (Figures 16A and 16B), pENTR8 (Figures 17A and 17B), pENTR9 (Figures 18A and 18B), pENTR10 (Figures 19A and 19B), pENTR11 (Figures 20A and 20B), pDEST1 (Figures 21A-D), pDEST2 (Figure 22A-D), pDEST3 (Figure 23A-D), pDEST4 (Figure 24A-D), pDEST5 (Figure 25A-D), pDEST6 (Figure 26A-D), pDEST7 (Figure 27A-C), pDEST8 (Figure 28A-D), pDEST9 (Figure 29A-E), pDEST10 (Figure 30A-D), pDEST11 (Figure 31A-D), pDEST12.2 (also known as pDEST12) (Figure 32A-D), pDEST13 (Figure 33A-C), pDEST14 (Figure 34A-D), pDEST15 (Figure 35A-D), pDEST16 (Figure 36A-D), pDEST17 (Figure 37A-D), pDEST18 (Figure 38A-D), pDEST19 (Figure 39A-D), pDEST20 (Figure 40A-D), pDEST21 (Figure 41A-E), pDEST22 (Figure 42A-D), pDEST23 (Figure 43A-D), pDEST24 (Figure 44A-D), pDEST25 (Figure 45A-D), pDEST26 (Figure 46A-D), pDEST27 (Figure 47A-D), pEXP501 (also known

5

10

15

20

25

30

as pCMVSPORT6) (Figure 48A-B), pDONR201 (also known as pENTR21 attP vector or pAttPkan Donor Vector) (Figure 49), pDONR202 (Figure 50), pDONR203 (also known as pEZ15812) (Figure 51), pDONR204 (Figure 52), pDONR205 (Figure 53), pDONR206 (also known as pENTR22 attP vector or pAttPgen Donor Vector) (Figure 54), pMAB58 (Figure 87), pMAB62 (Figure 88), pDEST28 (Figure 90), pDEST29 (Figure 91), pDEST30 (Figure 92), pDEST31 (Figure 93), pDEST32 (Figure 94), pDEST33 (Figure 95), pDEST34 (Figure 96), pDONR207 (Figure 97), pMAB85 (Figure 98), pMAB86 (Figure 99), and fragments, mutants, variants, and derivatives thereof. However, it will be understood by one of ordinary skill that the present invention also encompasses other vectors not specifically designated herein, which comprise one or more of the isolated nucleic acid molecules of the invention encoding one or more recombination sites or portions thereof (or mutants, fragments, variants or derivatives thereof), and which may further comprise one or more additional physical or functional nucleotide sequences described herein which may optionally be operably linked to the one or more nucleic acid molecules encoding one or more recombination sites or portions thereof. Such additional vectors may be produced by one of ordinary skill according to the guidance provided in the present specification.

Polymerases

Preferred polypeptides having reverse transcriptase activity (*i.e.*, those polypeptides able to catalyze the synthesis of a DNA molecule from an RNA template) for use in accordance with the present invention include, but are not limited to Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase, Rous Sarcoma Virus (RSV) reverse transcriptase, Avian Myeloblastosis Virus (AMV) reverse transcriptase, Rous Associated Virus (RAV) reverse transcriptase, Myeloblastosis Associated Virus (MAV) reverse transcriptase, Human Immunodeficiency Virus (HIV) reverse transcriptase, retroviral reverse transcriptase, retrotransposon reverse transcriptase, hepatitis B reverse transcriptase, cauliflower mosaic virus reverse transcriptase and bacterial reverse transcriptase. Particularly preferred are those polypeptides having reverse

5

10

15

20

25

30

transcriptase activity that are also substantially reduced in RNase H activity (*i.e.*, “RNase H” polypeptides). By a polypeptide that is “substantially reduced in RNase H activity” is meant that the polypeptide has less than about 20%, more preferably less than about 15%, 10% or 5%, and most preferably less than about 2%, of the RNase H activity of a wildtype or RNase H⁻ enzyme such as wildtype M-MLV reverse transcriptase. The RNase H activity may be determined by a variety of assays, such as those described, for example, in U.S. Patent No. 5,244,797, in Kotewicz, M.L. *et al.*, *Nucl. Acids Res.* 16:265 (1988) and in Gerard, G.F., *et al.*, *FOCUS* 14(5):91 (1992), the disclosures of all of which are fully incorporated herein by reference. Suitable RNase H⁻ polypeptides for use in the present invention include, but are not limited to, M-MLV H⁻ reverse transcriptase, RSV H⁻ reverse transcriptase, AMV H⁻ reverse transcriptase, RAV H⁻ reverse transcriptase, MAV H⁻ reverse transcriptase, HIV H⁻ reverse transcriptase, THERMOSCRIPT™ reverse transcriptase and THERMOSCRIPT™ II reverse transcriptase, and SUPERSCRIPT™ I reverse transcriptase and SUPERSCRIPT™ II reverse transcriptase, which are obtainable, for example, from Life Technologies, Inc. (Rockville, Maryland). See generally published PCT application WO 98/47912.

Other polypeptides having nucleic acid polymerase activity suitable for use in the present methods include thermophilic DNA polymerases such as DNA polymerase I, DNA polymerase III, Klenow fragment, T7 polymerase, and T5 polymerase, and thermostable DNA polymerases including, but not limited to, *Thermus thermophilus* (*Tth*) DNA polymerase, *Thermus aquaticus* (*Taq*) DNA polymerase, *Thermotoga neopolitana* (*Tne*) DNA polymerase, *Thermotoga maritima* (*Tma*) DNA polymerase, *Thermococcus litoralis* (*Tli* or VENT®) DNA polymerase, *Pyrococcus furiosus* (*Pfu*) DNA polymerase, *Pyrococcus* species GB-D (or DEEPVENT®) DNA polymerase, *Pyrococcus woosii* (*Pwo*) DNA polymerase, *Bacillus stearothermophilus* (*Bst*) DNA polymerase, *Sulfolobus acidocaldarius* (*Sac*) DNA polymerase, *Thermoplasma acidophilum* (*Tac*) DNA polymerase, *Thermus flavus* (*Tfl/Tub*) DNA polymerase, *Thermus ruber* (*Tru*) DNA polymerase, *Thermus brockianus* (DYNAZYME®) DNA polymerase, *Methanobacterium thermoautotrophicum* (*Mth*) DNA polymerase, and mutants,

variants and derivatives thereof. Such polypeptides are available commercially, for example from Life Technologies, Inc. (Rockville, MD), New Englan BioLabs (Beverly, MA), and Sigma/Aldrich (St. Louis, MO).

5

Host Cells

10

15

20

25

30

The invention also relates to host cells comprising one or more of the nucleic acid molecules or vectors of the invention, particularly those nucleic acid molecules and vectors described in detail herein. Representative host cells that may be used according to this aspect of the invention include, but are not limited to, bacterial cells, yeast cells, plant cells and animal cells. Preferred bacterial host cells include *Escherichia* spp. cells (particularly *E. coli* cells and most particularly *E. coli* strains DH10B, Stbl2, DH5 α , DB3, DB3.1 (preferably *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells; Life Technologies, Inc., Rockville, MD), DB4 and DB5; see U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, the disclosure of which is incorporated by reference herein in its entirety), *Bacillus* spp. cells (particularly *B. subtilis* and *B. megaterium* cells), *Streptomyces* spp. cells, *Erwinia* spp. cells, *Klebsiella* spp. cells, *Serratia* spp. cells (particularly *S. marcessans* cells), *Pseudomonas* spp. cells (particularly *P. aeruginosa* cells), and *Salmonella* spp. cells (particularly *S. typhimurium* and *S. typhi* cells). Preferred animal host cells include insect cells (most particularly *Drosophila melanogaster* cells, *Spodoptera frugiperda* Sf9 and Sf21 cells and *Trichoplusa* High-Five cells), nematode cells (particularly *C. elegans* cells), avian cells, amphibian cells (particularly *Xenopus laevis* cells), reptilian cells, and mammalian cells (most particularly CHO, COS, VERO, BHK and human cells). Preferred yeast host cells include *Saccharomyces cerevisiae* cells and *Pichia pastoris* cells. These and other suitable host cells are available commercially, for example from Life Technologies, Inc. (Rockville, Maryland), American Type Culture Collection (Manassas, Virginia), and Agricultural Research Culture Collection (NRRL; Peoria, Illinois).

Methods for introducing the nucleic acid molecules and/or vectors of the invention into the host cells described herein, to produce host cells comprising one or more of the nucleic acid molecules and/or vectors of the invention, will be

5

10

15

20

familiar to those of ordinary skill in the art. For instance, the nucleic acid molecules and/or vectors of the invention may be introduced into host cells using well known techniques of infection, transduction, transfection, and transformation. The nucleic acid molecules and/or vectors of the invention may be introduced alone or in conjunction with other the nucleic acid molecules and/or vectors. Alternatively, the nucleic acid molecules and/or vectors of the invention may be introduced into host cells as a precipitate, such as a calcium phosphate precipitate, or in a complex with a lipid. Electroporation also may be used to introduce the nucleic acid molecules and/or vectors of the invention into a host. Likewise, such molecules may be introduced into chemically competent cells such as *E. coli*. If the vector is a virus, it may be packaged *in vitro* or introduced into a packaging cell and the packaged virus may be transduced into cells. Hence, a wide variety of techniques suitable for introducing the nucleic acid molecules and/or vectors of the invention into cells in accordance with this aspect of the invention are well known and routine to those of skill in the art. Such techniques are reviewed at length, for example, in Sambrook, J., *et al.*, *Molecular Cloning, a Laboratory Manual*, 2nd Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, pp. 16.30-16.55 (1989), Watson, J.D., *et al.*, *Recombinant DNA*, 2nd Ed., New York: W.H. Freeman and Co., pp. 213-234 (1992), and Winnacker, E.-L., *From Genes to Clones*, New York: VCH Publishers (1987), which are illustrative of the many laboratory manuals that detail these techniques and which are incorporated by reference herein in their entireties for their relevant disclosures.

Polypeptides

25

30

In another aspect, the invention relates to polypeptides encoded by the nucleic acid molecules of the invention (including polypeptides and amino acid sequences encoded by all possible reading frames of the nucleic acid molecules of the invention), and to methods of producing such polypeptides. Polypeptides of the present invention include purified or isolated natural products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, insect, mammalian, avian and higher plant cells.

5

10

15

20

25

30

The polypeptides of the invention may be produced by synthetic organic chemistry, and are preferably produced by standard recombinant methods, employing one or more of the host cells of the invention comprising the vectors or isolated nucleic acid molecules of the invention. According to the invention, polypeptides are produced by cultivating the host cells of the invention (which comprise one or more of the nucleic acid molecules of the invention, preferably contained within an Expression Vector) under conditions favoring the expression of the nucleotide sequence contained on the nucleic acid molecule of the invention, such that the polypeptide encoded by the nucleic acid molecule of the invention is produced by the host cell. As used herein, "conditions favoring the expression of the nucleotide sequence" or "conditions favoring the production of a polypeptide" include optimal physical (e.g., temperature, humidity, etc.) and nutritional (e.g., culture medium, ionic) conditions required for production of a recombinant polypeptide by a given host cell. Such optimal conditions for a variety of host cells, including prokaryotic (bacterial), mammalian, insect, yeast, and plant cells will be familiar to one of ordinary skill in the art, and may be found, for example, in Sambrook, J., *et al.*, *Molecular Cloning, A Laboratory Manual*, 2nd Ed., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, (1989), Watson, J.D., *et al.*, *Recombinant DNA*, 2nd Ed., New York: W.H. Freeman and Co., and Winnacker, E.-L., *From Genes to Clones*, New York: VCH Publishers (1987).

In some aspects, it may be desirable to isolate or purify the polypeptides of the invention (e.g., for production of antibodies as described below), resulting in the production of the polypeptides of the invention in isolated form. The polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods of protein purification that are routine in the art, including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. For example, His6 or GST fusion tags on polypeptides made by the methods of the invention may be isolated using appropriate affinity chromatography matrices which bind polypeptides bearing

His₆ or GST tags, as will be familiar to one of ordinary skill in the art. Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes.

Isolated polypeptides of the invention include those comprising the amino acid sequences encoded by one or more of the reading frames of the polynucleotides comprising one or more of the recombination site-encoding nucleic acid molecules of the invention, including those encoding *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* having the nucleotide sequences set forth in Figure 9 (or nucleotide sequences complementary thereto), or fragments, variants, mutants and derivatives thereof; the complete amino acid sequences encoded by the polynucleotides contained in the deposited clones described herein; the amino acid sequences encoded by polynucleotides which hybridize under stringent hybridization conditions to polynucleotides having the nucleotide sequences encoding the recombination site sequences of the invention as set forth in Figure 9 (or a nucleotide sequence complementary thereto); or a peptide or polypeptide comprising a portion or a fragment of the above polypeptides. The invention also relates to additional polypeptides having one or more additional amino acids linked (typically by peptidyl bonds to form a nascent polypeptide) to the polypeptides encoded by the recombination site nucleotide sequences or the deposited clones. Such additional amino acid residues may comprise one or more functional peptide sequences, for example one or more fusion partner peptides (*e.g.*, GST, His₆, Trx, etc.) and the like.

As used herein, the terms "protein," "peptide," "oligopeptide" and "polypeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of two or more amino acids, preferably five or more amino acids, or more preferably ten

or more amino acids, coupled by (a) peptidyl linkage(s), unless otherwise defined in the specific contexts below. As is commonly recognized in the art, all polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus.

5 It will be recognized by those of ordinary skill in the art that some amino acid sequences of the polypeptides of the invention can be varied without significant effect on the structure or function of the polypeptides. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the protein which determine structure and activity. In general, it is possible to replace residues which form the tertiary structure, provided that residues performing a similar function are used. In other instances, the type of residue may be completely unimportant if the alteration occurs at a non-critical region of the polypeptide.

10 Thus, the invention further includes variants of the polypeptides of the invention, including allelic variants, which show substantial structural homology to the polypeptides described herein, or which include specific regions of these polypeptides such as the portions discussed below. Such mutants may include 15 deletions, insertions, inversions, repeats, and type substitutions (for example, substituting one hydrophilic residue for another, but not strongly hydrophilic for strongly hydrophobic as a rule). Small changes or such "neutral" or "conservative" 20 amino acid substitutions will generally have little effect on activity.

25 Typical conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu and Ile; interchange of the hydroxylated residues Ser and Thr; exchange of the acidic residues Asp and Glu; substitution between the amidated residues Asn and Gln; exchange of the basic residues Lys and Arg; and replacements among the aromatic residues Phe and Tyr.

30 Thus, the fragment, derivative or analog of the polypeptides of the invention, such as those comprising peptides encoded by the recombination site nucleotide sequences described herein, may be (i) one in which one or more of the amino acid residues are substituted with a conservative or non-conservative amino acid residue (preferably a conservative amino acid residue), and such substituted amino acid residue may be encoded by the genetic code or may be an amino acid (e.g.,

desmosine, citrulline, ornithine, etc.) that is not encoded by the genetic code; (ii) one in which one or more of the amino acid residues includes a substituent group (e.g., a phosphate, hydroxyl, sulfate or other group) in addition to the normal "R" group of the amino acid; (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which additional amino acids are fused to the mature polypeptide, such as an immunoglobulin Fc region peptide, a leader or secretory sequence, a sequence which is employed for purification of the mature polypeptide (such as GST) or a proprotein sequence. Such fragments, derivatives and analogs are intended to be encompassed by the present invention, and are within the scope of those skilled in the art from the teachings herein and the state of the art at the time of invention.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. Recombinantly produced versions of the polypeptides of the invention can be substantially purified by the one-step method described in Smith and Johnson, *Gene* 67:31-40 (1988). As used herein, the term "substantially purified" means a preparation of an individual polypeptide of the invention wherein at least 50%, preferably at least 60%, 70%, or 75% and more preferably at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% (by mass) of contaminating proteins (*i.e.*, those that are not the individual polypeptides described herein or fragments, variants, mutants or derivatives thereof) have been removed from the preparation.

The polypeptides of the present invention include those which are at least about 50% identical, at least 60% identical, at least 65% identical, more preferably at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical, to the polypeptides described herein. For example, preferred *attB1*-containing polypeptides of the invention include those that are at least about 50% identical, at least 60% identical, at least 65% identical, more preferably at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical,

to the polypeptide(s) encoded by the three reading frames of a polynucleotide comprising a nucleotide sequence of *attB1* having a nucleic acid sequence as set forth in Figure 9 (or a nucleic acid sequence complementary thereto), to a polypeptide encoded by a polynucleotide contained in the deposited cDNA clones described herein, or to a polypeptide encoded by a polynucleotide hybridizing under stringent conditions to a polynucleotide comprising a nucleotide sequence of *attB1* having a nucleic acid sequence as set forth in Figure 9 (or a nucleic acid sequence complementary thereto). Analogous polypeptides may be prepared that are at least about 65% identical, more preferably at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% identical, to the *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* polypeptides of the invention as depicted in Figure 9. The present polypeptides also include portions or fragments of the above-described polypeptides with at least 5, 10, 15, 20, or 25 amino acids.

By a polypeptide having an amino acid sequence at least, for example, 65% "identical" to a reference amino acid sequence of a given polypeptide of the invention is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to 35 amino acid alterations per each 100 amino acids of the reference amino acid sequence of a given polypeptide of the invention. In other words, to obtain a polypeptide having an amino acid sequence at least 65% identical to a reference amino acid sequence, up to 35% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 35% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino (N-) or carboxy (C-) terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. As a practical matter, whether a given amino acid sequence is, for example, at least 65% identical to the amino acid sequence of a given polypeptide of the invention can be determined

conventionally using known computer programs such as those described above for nucleic acid sequence identity determinations, or more preferably using the CLUSTAL W program (Thompson, J.D., *et al.*, *Nucleic Acids Res.* 22:4673-4680 (1994)).

5 The polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. In addition, as described in detail below, the polypeptides of the present invention can be used to raise polyclonal and monoclonal antibodies which are useful in a variety of assays for detecting protein expression, localization, detection of interactions with other molecules, or 10 for the isolation of a polypeptide (including a fusion polypeptide) of the invention.

In another aspect, the present invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, which may be used to raise antibodies, particularly monoclonal antibodies, that bind 15 specifically to one or more of the polypeptides of the invention. The epitope of this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind 20 is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes (*see, e.g.*, Geysen *et al.*, *Proc. Natl. Acad. Sci. USA* 81:3998- 4002 (1983)).

As to the selection of peptides or polypeptides bearing an antigenic epitope 25 (*i.e.*, that contain a region of a protein molecule to which an antibody can bind), it is well-known in the art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein (*see, e.g.*, Sutcliffe, J.G., *et al.*, *Science* 219:660-666 (1983)). Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized 30 by a set of simple chemical rules, and are not confined to the immunodominant regions of intact proteins (*i.e.*, immunogenic epitopes) or to the amino or carboxy

termini. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer peptides, especially those containing proline residues, usually are effective (Sutcliffe, J.G., *et al.*, *Science* 219:660-666 (1983)).

Epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at least five, more preferably at least seven or more amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a given polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (*i.e.*, the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); sequences containing proline residues are particularly preferred.

Non-limiting examples of epitope-bearing polypeptides or peptides that can be used to generate antibodies specific for the polypeptides of the invention include certain epitope-bearing regions of the polypeptides comprising amino acid sequences encoded by polynucleotides comprising one or more of the recombination site-encoding nucleic acid molecules of the invention, including those encoding *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1* and *attR2* having the nucleotide sequences set forth in Figure 9 (or a nucleotide sequence complementary thereto); the complete amino acid sequences encoded by the three reading frames of the polynucleotides contained in the deposited clones described herein; and the amino acid sequences encoded by all reading frames of polynucleotides which hybridize under stringent hybridization conditions to polynucleotides having the nucleotide sequences encoding the recombination site sequences (or portions thereof) of the invention as set forth in Figure 9 (or a nucleic acid sequence complementary thereto). Other epitope-bearing polypeptides or peptides that may be used to generate antibodies specific for the polypeptides

of the invention will be apparent to one of ordinary skill in the art based on the primary amino acid sequences of the polypeptides of the invention described herein, via the construction of Kyte-Doolittle hydrophilicity and Jameson-Wolf antigenic index plots of the polypeptides of the invention using, for example, PROTEAN computer software (DNASTAR, Inc.; Madison, Wisconsin).

5

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, a short epitope-bearing amino acid sequence may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis (see, e.g., U.S. Patent No. 4,631,211 and Houghten, R. A., *Proc. Natl. Acad. Sci. USA* 82:5131-5135 (1985), both of which are incorporated by reference herein in their entireties).

10

15

20

25

30

As one of skill in the art will appreciate, the polypeptides of the present invention and epitope-bearing fragments thereof may be immobilized onto a solid support, by techniques that are well-known and routine in the art. By "solid support" is intended any solid support to which a peptide can be immobilized. Such solid supports include, but are not limited to nitrocellulose, diazocellulose, glass, polystyrene, polyvinylchloride, polypropylene, polyethylene, dextran, Sepharose, agar, starch, nylon, beads and microtitre plates. Linkage of the peptide of the invention to a solid support can be accomplished by attaching one or both ends of the peptide to the support. Attachment may also be made at one or more internal sites in the peptide. Multiple attachments (both internal and at the ends of the peptide) may also be used according to the invention. Attachment can be via an amino acid linkage group such as a primary amino group, a carboxyl group, or a sulphydryl (SH) group or by chemical linkage groups such as with cyanogen bromide (CNBr) linkage through a spacer. For non-covalent attachments to the support, addition of an affinity tag sequence to the peptide can be used such as GST (Smith, D.B., and Johnson, K.S., *Gene* 67:31 (1988)), polyhistidines (Hochuli, E., et al., *J. Chromatog.* 411:77 (1987)), or biotin. Such affinity tags

may be used for the reversible attachment of the peptide to the support. Such immobilized polypeptides or fragments may be useful, for example, in isolating antibodies directed against one or more of the polypeptides of the invention, or other proteins or peptides that recognize other proteins or peptides that bind to one or more of the polypeptides of the invention, as described below.

As one of skill in the art will also appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described herein can be combined with one or more fusion partner proteins or peptides, or portions thereof, including but not limited to GST, His₆, Trx, and portions of the constant domain of immunoglobulins (Ig), resulting in chimeric or fusion polypeptides. These fusion polypeptides facilitate purification of the polypeptides of the invention (EP 0 394 827; Traunecker *et al.*, *Nature* 331:84- 86 (1988)) for use in analytical or diagnostic (including high-throughput) format.

15

Antibodies

20

In another aspect, the invention relates to antibodies that recognize and bind to the polypeptides (or epitope-bearing fragments thereof) or nucleic acid molecules (or portions thereof) of the invention. In a related aspect, the invention relates to antibodies that recognize and bind to one or more polypeptides encoded by all reading frames of one or more recombination site nucleic acid sequences or portions thereof, or to one or more nucleic acid molecules comprising one or more recombination site nucleic acid sequences or portions thereof, including but not limited to *att* sites (including *attB1*, *attB2*, *attP1*, *attP2*, *attL1*, *attL2*, *attR1*, *attR2* and the like), *lox* sites (*e.g.*, *loxP*, *loxP511*, and the like), FRT, and the like, or mutants, fragments, variants and derivatives thereof. See generally U.S. Patent No. 5,888,732, which is incorporated herein by reference in its entirety. The antibodies of the present invention may be polyclonal or monoclonal, and may be prepared by any of a variety of methods and in a variety of species according to methods that are well-known in the art. *See*, for instance, U.S. Patent No. 5,587,287; Sutcliffe, J.G., *et al.*, *Science* 219:660-666 (1983); Wilson *et al.*, *Cell* 37: 767 (1984); and Bittle, F.J., *et al.*, *J. Gen. Virol.* 66:2347-2354 (1985). Antibodies specific for any of the polypeptides or nucleic acid molecules described

25

30

5

herein, such as antibodies specifically binding to one or more of the polypeptides encoded by the recombination site nucleotide sequences, or one or more nucleic acid molecules, described herein or contained in the deposited clones, antibodies against fusion polypeptides (*e.g.*, binding to fusion polypeptides between one or more of the fusion partner proteins and one or more of the recombination site polypeptides of the invention, as described herein), and the like, can be raised against the intact polypeptides or polynucleotides of the invention or one or more antigenic polypeptide fragments thereof.

10

15

20

As used herein, the term "antibody" (Ab) may be used interchangeably with the terms "polyclonal antibody" or "monoclonal antibody" (mAb), except in specific contexts as described below. These terms, as used herein, are meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')₂ fragments) which are capable of specifically binding to a polypeptide or nucleic acid molecule of the invention or a portion thereof. It will therefore be appreciated that, in addition to the intact antibodies of the invention, Fab, F(ab')₂ and other fragments of the antibodies described herein, and other peptides and peptide fragments that bind one or more polypeptides or polynucleotides of the invention, are also encompassed within the scope of the invention. Such antibody fragments are typically produced by proteolytic cleavage of intact antibodies, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')₂ fragments). Antibody fragments, and peptides or peptide fragments, may also be produced through the application of recombinant DNA technology or through synthetic chemistry.

25

Epitope-bearing peptides and polypeptides, and nucleic acid molecules or portions thereof, of the invention may be used to induce antibodies according to methods well known in the art, as generally described herein (*see, e.g.*, Sutcliffe, *et al.*, *supra*; Wilson, *et al.*, *supra*; and Bittle, F. J., *et al.*, *J. Gen. Virol.* 66:2347-2354 (1985)).

30

Polyclonal antibodies according to this aspect of the invention may be made by immunizing an animal with one or more of the polypeptides or nucleic acid molecules of the invention described herein or portions thereof according to standard techniques (*see, e.g.*, Harlow, E., and Lane, D., *Antibodies: A*

Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press (1988); Kaufman, P.B., et al., In: *Handbook of Molecular and Cellular Methods in Biology and Medicine*, Boca Raton, Florida: CRC Press, pp. 468-469 (1995)). For producing antibodies that recognize and bind to the polypeptides or nucleic acid molecules of the invention or portions thereof, animals may be immunized with free peptide or free nucleic acid molecules; however, antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as albumin, KLH, or tetanus toxoid (particularly for producing antibodies against the nucleic acid molecules of the invention or portions thereof; see Harlow and Lane, *supra*, at page 154), or to a solid phase carrier such as a latex or glass microbead. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N- hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice may be immunized with either free (if the polypeptide immunogen is larger than about 25 amino acids in length) or carrier-coupled peptides or nucleic acid molecules, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide, polynucleotide, or carrier protein, and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of antibody which can be detected, for example, by ELISA assay using free peptide or nucleic acid molecule adsorbed to a solid surface. In another approach, cells expressing one or more of the polypeptides or polynucleotides of the invention or an antigenic fragment thereof can be administered to an animal in order to induce the production of sera containing polyclonal antibodies, according to routine immunological methods. In yet another method, a preparation of one or more of the polypeptides or polynucleotides of the invention is prepared and purified as described herein, to render it substantially free of natural contaminants. Such a preparation may then be introduced into an animal in order to produce polyclonal antisera of greater specific activity. The titer of antibodies in serum from an immunized animal, regardless of the method of immunization used, may be increased by selection of anti-peptide or anti-polynucleotide antibodies, for

instance, by adsorption to the peptide or polynucleotide on a solid support and elution of the selected antibodies according to methods well known in the art.

In an alternative method, the antibodies of the present invention are monoclonal antibodies (or fragments thereof which bind to one or more of the polypeptides of the invention). Such monoclonal antibodies can be prepared using hybridoma technology (Kohler *et al.*, *Nature* 256:495 (1975); Köhler *et al.*, *Eur. J. Immunol.* 6:511 (1976); Köhler *et al.*, *Eur. J. Immunol.* 6:292 (1976); Hammerling *et al.*, In: *Monoclonal Antibodies and T-Cell Hybridomas*, Elsevier, N.Y., pp. 563-681 (1981)). In general, such procedures involve immunizing an animal (preferably a mouse) with a polypeptide or polynucleotide of the invention (or a fragment thereof), or with a cell expressing a polypeptide or polynucleotide of the invention (or a fragment thereof). The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP₂O), available from the American Type Culture Collection, Rockville, Maryland. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.* (*Gastroenterol.* 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding one or more of the polypeptides or nucleic acid molecules of the invention, or fragments thereof. Hence, the present invention also provides hybridoma cells and cell lines producing monoclonal antibodies of the invention, particularly that recognize and bind to one or more of the polypeptides or nucleic acid molecules of the invention.

Alternatively, additional antibodies capable of binding to one or more of the polypeptides of the invention, or fragments thereof, may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, antibodies specific for one or more of the polypeptides or polynucleotides of the invention, prepared as described above, are used to immunize an animal, preferably a mouse. The splenocytes of such an

animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to an antibody specific for one or more of the polypeptides or polynucleotides of the invention can be blocked by polypeptides of the invention themselves. Such antibodies comprise anti-idiotypic antibodies to the antibodies recognizing one or more of the polypeptides or polynucleotides of the invention, and can be used to immunize an animal to induce formation of further antibodies specific for one or more of the polypeptides or polynucleotides of the invention.

5

10

For use, the antibodies of the invention may optionally be detectably labeled by covalent or non-covalent attachment of one or more labels, including but not limited to chromogenic, enzymatic, radioisotopic, isotopic, fluorescent, toxic, chemiluminescent, or nuclear magnetic resonance contrast agents or other labels.

15

Examples of suitable enzyme labels include malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

20

Examples of suitable radioisotopic labels include ^3H , ^{111}In , ^{125}I , ^{131}I , ^{32}P , ^{35}S , ^{14}C , ^{51}Cr , ^{57}To , ^{58}Co , ^{59}Fe , ^{75}Se , ^{152}Eu , ^{90}Y , ^{67}Cu , ^{217}Cl , ^{211}At , ^{212}Pb , ^{47}Sc , ^{109}Pd , etc.

25

^{111}In is a preferred isotope where *in vivo* imaging is used since its avoids the problem of dehalogenation of the ^{125}I or ^{131}I -labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging (Perkins *et al.*, *Eur. J. Nucl. Med.* 10:296-301 (1985); Carasquillo *et al.*, *J. Nucl. Med.* 28:281-287 (1987)). For example, ^{111}In coupled to monoclonal antibodies with 1-(*P*-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumorous tissues, particularly the liver, and therefore enhances specificity of tumor localization (Esteban *et al.*, *J. Nucl. Med.* 28:861-870 (1987)).

30

Examples of suitable non-radioactive isotopic labels include ^{157}Gd , ^{55}Mn , ^{162}Dy , ^{52}Tr , and ^{56}Fe .

Examples of suitable fluorescent labels include an ^{152}Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, a

phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, a green fluorescent protein (GFP) label, and a fluorescamine label.

Examples of suitable toxin labels include diphtheria toxin, ricin, and cholera toxin.

5 Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

10 Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

15 Typical techniques for binding the above-described labels to the antibodies of the invention are provided by Kennedy *et al.*, *Clin. Chim. Acta* 70:1-31 (1976), and Schurs *et al.*, *Clin. Chim. Acta* 81:1-40 (1977). Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

20 It will be appreciated by one of ordinary skill that the antibodies of the present invention may alternatively be coupled to a solid support, to facilitate, for example, chromatographic and other immunological procedures using such solid phase-immobilized antibodies. Included among such procedures are the use of the antibodies of the invention to isolate or purify polypeptides comprising one or more epitopes encoded by the nucleic acid molecules of the invention (which may be fusion polypeptides or other polypeptides of the invention described herein), or to isolate or purify polynucleotides comprising one or more recombination site sequences of the invention or portions thereof. Methods for isolation and purification of polypeptides (and, by analogy, polynucleotides) by affinity chromatography, for example using the antibodies of the invention coupled to a solid phase support, are well-known in the art and will be familiar to one of ordinary skill. The antibodies of the invention may also be used in other applications, for example to cross-link or couple two or more proteins, polypeptides, polynucleotides, or portions thereof into a structural and/or functional complex. In one such use, an antibody of the invention may have two

25

30

5

10

15

20

25

30

or more distinct epitope-binding regions that may bind, for example, a first polypeptide (which may be a polypeptide of the invention) at one epitope-binding region on the antibody and a second polypeptide (which may be a polypeptide of the invention) at a second epitope-binding region on the antibody, thereby bringing the first and second polypeptides into close proximity to each other such that the first and second polypeptides are able to interact structurally and/or functionally (as, for example, linking an enzyme and its substrate to carry out enzymatic catalysis, or linking an effector molecule and its receptor to carry out or induce a specific binding of the effector molecule to the receptor or a response to the effector molecule mediated by the receptor). Additional applications for the antibodies of the invention include, for example, the preparation of large-scale arrays of the antibodies, polypeptides, or nucleic acid molecules of the invention, or portions thereof, on a solid support, for example to facilitate high-throughput screening of protein or RNA expression by host cells containing nucleic acid molecules of the invention (known in the art as "chip array" protocols; *see, e.g.*, U.S. Patent Nos. 5,856,101, 5,837,832, 5,770,456, 5,744,305, 5,631,734, and 5,593,839, which are directed to production and use of chip arrays of polypeptides (including antibodies) and polynucleotides, and the disclosures of which are incorporated herein by reference in their entireties). By "solid support" is intended any solid support to which an antibody can be immobilized. Such solid supports include, but are not limited to nitrocellulose, diazocellulose, glass, polystyrene, polyvinylchloride, polycarbonate, polypropylene, polyethylene, dextran, Sepharose, agar, starch, nylon, beads and microtitre plates. Preferred are beads made of glass, latex or a magnetic material. Linkage of an antibody of the invention to a solid support can be accomplished by attaching one or both ends of the antibody to the support. Attachment may also be made at one or more internal sites in the antibody. Multiple attachments (both internal and at the ends of the antibody) may also be used according to the invention. Attachment can be via an amino acid linkage group such as a primary amino group, a carboxyl group, or a sulphydryl (SH) group or by chemical linkage groups such as with cyanogen bromide (CNBr) linkage through a spacer. For non-covalent attachments, addition of an affinity tag sequence to the peptide can be used such as GST

(Smith, D.B., and Johnson, K.S., *Gene* 67:31 (1988)), polyhistidines (Hochuli, E., et al., *J. Chromatog.* 411:77 (1987)), or biotin. Alternatively, attachment can be accomplished using a ligand which binds the Fc region of the antibodies of the invention, e.g., protein A or protein G. Such affinity tags may be used for the reversible attachment of the antibodies to the support. Peptides may also be recognized via specific ligand-receptor interactions or using phage display methodologies that will be familiar to the skilled artisan, for their ability to bind polypeptides of the invention or fragments thereof.

5

10

Kits

15

20

25

30

In another aspect, the invention provides kits which may be used in producing the nucleic acid molecules, polypeptides, vectors, host cells, and antibodies, and in the recombinational cloning methods, of the invention. Kits according to this aspect of the invention may comprise one or more containers, which may contain one or more of the nucleic acid molecules, primers, polypeptides, vectors, host cells, or antibodies of the invention. In particular, a kit of the invention may comprise one or more components (or combinations thereof) selected from the group consisting of one or more recombination proteins (e.g., Int) or auxiliary factors (e.g. IHF and/or Xis) or combinations thereof, one or more compositions comprising one or more recombination proteins or auxiliary factors or combinations thereof (for example, GATEWAY™ LR Clonase™ Enzyme Mix or GATEWAY™ BP Clonase™ Enzyme Mix) one or more Destination Vector molecules (including those described herein), one or more Entry Clone or Entry Vector molecules (including those described herein), one or more primer nucleic acid molecules (particularly those described herein), one or more host cells (e.g. competent cells, such as *E. coli* cells, yeast cells, animal cells (including mammalian cells, insect cells, nematode cells, avian cells, fish cells, etc.), plant cells, and most particularly *E. coli* DB3, DB3.1 (preferably *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells; Life Technologies, Inc., Rockville, MD), DB4 and DB5; see U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, and the corresponding U.S. Utility Application No. _____ of Hartley et al., entitled "Cells Resistant to Toxic Genes and Uses Thereof," filed

5

10

15

20

30

on even day herewith, the disclosures of which are incorporated by reference herein in its entirety), and the like. In related aspects, the kits of the invention may comprise one or more nucleic acid molecules encoding one or more recombination sites or portions thereof, such as one or more nucleic acid molecules comprising a nucleotide sequence encoding the one or more recombination sites (or portions thereof) of the invention, and particularly one or more of the nucleic acid molecules contained in the deposited clones described herein. Kits according to this aspect of the invention may also comprise one or more isolated nucleic acid molecules of the invention, one or more vectors of the invention, one or more primer nucleic acid molecules of the invention, and/or one or more antibodies of the invention. The kits of the invention may further comprise one or more additional containers containing one or more additional components useful in combination with the nucleic acid molecules, polypeptides, vectors, host cells, or antibodies of the invention, such as one or more buffers, one or more detergents, one or more polypeptides having nucleic acid polymerase activity, one or more polypeptides having reverse transcriptase activity, one or more transfection reagents, one or more nucleotides, and the like. Such kits may be used in any process advantageously using the nucleic acid molecules, primers, vectors, host cells, polypeptides, antibodies and other compositions of the invention, for example in methods of synthesizing nucleic acid molecules (*e.g.*, via amplification such as via PCR), in methods of cloning nucleic acid molecules (preferably via recombinational cloning as described herein), and the like.

Optimization of Recombinational Cloning System

The usefulness of a particular nucleic acid molecule, or vector comprising a nucleic acid molecule, of the invention in methods of recombinational cloning may be determined by any one of a number of assay methods. For example, Entry and Destination vectors of the present invention may be assessed for their ability to function (*i.e.*, to mediate the transfer of a nucleic acid molecule, DNA segment, gene, cDNA molecule or library from a cloning vector to an Expression Vector) by carrying out a recombinational cloning reaction as described in more detail in the Examples below and as described in U.S. Application Nos. 08/663,002, filed

5

10

June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, 09/177,387, filed October 23, 1998, and 60/108,324, filed November 13, 1998, the disclosures of which are incorporated by reference herein in their entireties. Alternatively, the functionality of Entry and Destination Vectors prepared according to the invention may be assessed by examining the ability of these vectors to recombine and create cointegrate molecules, or to transfer a nucleic acid molecule of interest, using an assay such as that described in detail below in Example 19. Analogously, the formulation of compositions comprising one or more recombination proteins or combinations thereof, for example GATEWAY™ LR Clonase™ Enzyme Mix and GATEWAY™ BP Clonase™ Enzyme Mix, may be optimized using assays such as those described below in Example 18.

15 *Uses*

15

20

25

30

There are a number of applications for the compositions, methods and kits of the present invention. These uses include, but are not limited to, changing vectors, targeting gene products to intracellular locations, cleaving fusion tags from desired proteins, operably linking nucleic acid molecules of interest to regulatory genetic sequences (*e.g.*, promoters, enhancers, and the like), constructing genes for fusion proteins, changing copy number, changing replicons, cloning into phages, and cloning, *e.g.*, PCR products, genomic DNAs, and cDNAs. In addition, the nucleic acid molecules, vectors, and host cells of the invention may be used in the production of polypeptides encoded by the nucleic acid molecules, in the production of antibodies directed against such polypeptides, in recombinational cloning of desired nucleic acid sequences, and in other applications that may be enhanced or facilitated by the use of the nucleic acid molecules, vectors, and host cells of the invention.

In particular, the nucleic acid molecules, vectors, host cells, polypeptides, antibodies, and kits of the invention may be used in methods of transferring one or more desired nucleic acid molecules or DNA segments, for example one or more genes, cDNA molecules or cDNA libraries, into a cloning or Expression Vector for use in transforming additional host cells for use in cloning or

amplification of, or expression of the polypeptide encoded by, the desired nucleic acid molecule or DNA segment. Such recombinational cloning methods which may advantageously use the nucleic acid molecules, vectors, and host cells of the invention, are described in detail in the Examples below, and in commonly owned U.S. Application Nos. 08/486,139, filed June 7, 1995, 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, 09/177,387, filed October 23, 1998, and 60/108,324, filed November 13, 1998, the disclosures of all of which are incorporated by reference herein in their entireties.

5

10

15

It will be understood by one of ordinary skill in the relevant arts that other suitable modifications and adaptations to the methods and applications described herein are readily apparent from the description of the invention contained herein in view of information known to the ordinarily skilled artisan, and may be made without departing from the scope of the invention or any embodiment thereof. Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included herewith for purposes of illustration only and are not intended to be limiting of the invention.

20

Examples

Example 1: Recombination Reactions of Bacteriophage λ

25

The *E. coli* bacteriophage λ can grow as a lytic phage, in which case the host cell is lysed, with the release of progeny virus. Alternatively, lambda can integrate into the genome of its host by a process called lysogenization (see Figure 60). In this lysogenic state, the phage genome can be transmitted to daughter cells for many generations, until conditions arise that trigger its excision from the genome. At this point, the virus enters the lytic part of its life cycle. The control of the switch between the lytic and lysogenic pathways is one of the best understood processes in molecular biology (M. Ptashne, *A Genetic Switch*, Cell Press, 1992).

30

The integrative and excisive recombination reactions of λ , performed *in vitro*, are the basis of Recombinational Cloning System of the present invention. They can be represented schematically as follows:

10

15

20

25

The four att sites contain binding sites for the proteins that mediate the reactions. The wild type attP, attB, attL, and attR sites contain about 243, 25, 100, and 168 base pairs, respectively. The attB x attP reaction (hereinafter referred to as a "BP Reaction," or alternatively and equivalently as an "Entry Reaction" or a "Gateward Reaction") is mediated by the proteins Int and IHF. The attL x attR reaction (hereinafter referred to as an "LR Reaction," or alternatively and equivalently as a "Destination Reaction") is mediated by the proteins Int, IHF, and Xis. Int (integrase) and Xis (excisionase) are encoded by the λ genome, while IHF (integration host factor) is an *E. coli* protein. For a general review of lambda recombination, see: A. Landy, *Ann. Rev. Biochem.* 58: 913-949 (1989).

Example 2: Recombination Reactions of the Recombinational Cloning System

The LR Reaction -- the exchange of a DNA segment from an Entry Clone to a Destination Vector -- is the *in vitro* version of the λ excision reaction:

30

There is a practical imperative for this configuration: after an LR Reaction in one configuration of the present method, an att site usually separates a functional motif (such as a promoter or a fusion tag) from a nucleic acid molecule of interest in an Expression Clone, and the 25 bp attB site is much smaller than the attP, attL, and attR sites.

Note that the recombination reaction is conservative, i.e., there is no net synthesis or loss of base pairs. The DNA segments that flank the recombination

sites are merely switched. The wild type λ recombination sites are modified for purposes of the GATEWAY™ Cloning System, as follows:

To create certain preferred Destination Vectors, a part (43 bp) of attR was removed, to make the excisive reaction irreversible and more efficient (W. Bushman et al., *Science* 230: 906, 1985). The attR sites in preferred Destination Vectors of the invention are 125 bp in length. Mutations were made to the core regions of the att sites, for two reasons: (1) to eliminate stop codons, and (2) to ensure specificity of the recombination reactions (i.e., attR1 reacts only with attL1, attR2 reacts only with attL2, etc.).

Other mutations were introduced into the short (5 bp) regions flanking the 15 bp core regions of the attB sites to minimize secondary structure formation in single-stranded forms of attB plasmids, e.g., in phagemid ssDNA or in mRNA. Sequences of attB1 and attB2 to the left and right of a nucleic acid molecule of interest after it has been cloned into a Destination Vector are given in Figure 6.

Figure 61 illustrates how an Entry Clone and a Destination Vector recombine in the LR Reaction to form a co-integrate, which resolves through a second reaction into two daughter molecules. The two daughter molecules have the same general structure regardless of which pair of sites, attL1 and attR1 or attL2 and attR2, react first to form the co-integrate. The segments change partners by these reactions, regardless of whether the parental molecules are both circular, one is circular and one is linear, or both are linear. In this example, selection for ampicillin resistance carried on the Destination Vector, which also carries the death gene ccdB, provides the means for selecting only for the desired attB product plasmid.

Example 3: Protein Expression in the Recombinational Cloning System

Proteins are expressed *in vivo* as a result of two processes, transcription (DNA into RNA), and translation (RNA into protein). For a review of protein expression in prokaryotes and eukaryotes, see Example 13 below. Many vectors (pUC, BlueScript, pGem) use interruption of a transcribed lacZ gene for blue-white screening. These plasmids, and many Expression Vectors, use the lac promoter to control expression of cloned genes. Transcription from the lac

promoter is turned on by adding the inducer IPTG. However, a low level of RNA is made in the absence of inducer, i.e., the lac promoter is never completely off. The result of this "leakiness" is that genes whose expression is harmful to *E. coli* may prove difficult or impossible to clone in vectors that contain the lac promoter, or they may be cloned only as inactive mutants.

In contrast to other gene expression systems, nucleic acid molecules cloned into an Entry Vector may be designed *not* to be expressed. The presence of the strong transcriptional terminator *rrnB* (Orosz, et al., *Eur. J. Biochem.* 201: 653, 1991) just upstream of the attL1 site keeps transcription from the vector promoters (drug resistance and replication origin) from reaching the cloned gene. However, if a toxic gene is cloned into a Destination Vector, the host may be sick, just as in other expression systems. But the reliability of subcloning by *in vitro* recombination makes it easier to recognize that this has happened -- and easier to try another expression option in accordance with the methods of the invention, if necessary.

Example 4: Choosing the Right Entry Vector

There are two kinds of choices that must be made in choosing the best Entry Vector, dictated by (1) the particular DNA segment that is to be cloned, and (2) what is to be accomplished with the cloned DNA segment. These factors are critical in the choice of Entry Vector used, because when the desired nucleic acid molecule of interest is moved from the Entry Vector to a Destination Vector, all the base pairs between the nucleic acid molecule of interest and the Int cutting sites in attL1 and attL2 (such as in Figure 6) move into the Destination Vector as well. For genomic DNAs that are not expressed as a result of moving into a Destination Vector, these decisions are not as critical.

For example, if an Entry Vector with certain translation start signals is used, those sequences will be translated into amino acids if an amino-terminal fusion to the desired nucleic acid molecule of interest is made. Whether the desired nucleic acid molecule of interest is to be expressed as fusion protein, native protein, or both, dictates whether translational start sequences must be included between the attB sites of the clone (native protein) or, alternatively, supplied by the Destination

Vector (fusion protein). In particular, Entry Clones that include translational start sequences may prove less suitable for making fusion proteins, as internal initiation of translation at these sites can decrease the yield of N-terminal fusion protein. These two types of expression afforded by the compositions and methods of the invention are illustrated in Figure 62.

No Entry Vector is likely to be optimal for all applications. The nucleic acid molecule of interest may be cloned into any of several optimal Entry Vectors.

As an example, consider pENTR7 (Figure 16) and pENTR11 (Figure 20), which are useful in a variety of applications, including (but not limited to):

5

10

- Cloning cDNAs from most of the commercially available libraries. The sites to the left and right of the *ccdB* death gene have been chosen so that directional cloning is possible if the DNA to be cloned does not have two or more of these restriction sites.

15

20

- Cloning of genes directionally: *SalI*, *BamHI*, *XmnI* (blunt), or *KpnI* on the left of *ccdB*; *NotI*, *XhoI*, *XbaI*, or *EcoRV* (blunt), on the right.

25

25

- Cloning of genes or gene fragments with a blunt amino end at the *XmnI* site. The *XmnI* site has four of the six most favored bases for eukaryotic expression (see Example 13, below), so that if the first three bases of the DNA to be cloned are ATG, the open reading frame (ORF) will be expressed in eukaryotic cells (e.g., mammalian cells, insect cells, yeast cells) when it is transcribed in the appropriate Destination Vector. In addition, in pENTR11, a Shine-Dalgarno sequence is situated 8 bp upstream, for initiating protein synthesis in a prokaryotic host cell (particularly a bacterial cell, such as *E. coli*) at an ATG.

30

- Cleaving off amino terminal fusions (e.g., His₆, GST, or thioredoxin) using the highly specific TEV (Tobacco Etch Virus) protease (available from Life Technologies, Inc.). If the nucleic acid molecule of interest is cloned at the

-101-

blunt *XmnI* site, TEV cleavage will leave two amino acids on the amino end of the expressed protein.

5 • Selecting against uncut or singly cut Entry Vector molecules during cloning with restriction enzymes and ligase. If the *ccdB* gene is not removed with a double digest, it will kill any recipient *E. coli* cell that does not contain a mutation that makes the cell resistant to *ccdB* (see U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, the disclosure of which is incorporated by reference herein in its entirety).

10

• Allowing production of amino fusions with ORFs in all cloning sites. There are no stop codons (in the attL1 reading frame) upstream of the *ccdB* gene.

In addition, pENTR11 is also useful in the following applications:

15

• Cloning cDNAs that have an *NcoI* site at the initiating ATG into the *NcoI* site. Similar to the *XmnI* site, this site has four of the six most favored bases for eukaryotic expression. Also, a Shine-Dalgarno sequence is situated 8 bp upstream, for initiating protein synthesis in a prokaryotic host cell (particularly a bacterial cell, such as *E. coli*) at an ATG.

20

• Producing carboxy fusion proteins with ORFs positioned in phase with the reading frame convention for carboxy-terminal fusions (see Figure 20A).

25

Table 1 lists some non-limiting examples of Entry Vectors and their characteristics, and Figures 10-20 show their cloning sites. All of the Entry Vectors listed in Table 1 are available commercially from Life Technologies, Inc., Rockville, Maryland. Other Entry Vectors not specifically listed here, which comprise alternative or additional features may be made by one of ordinary skill using routine methods of molecular and cellular biology, in view of the disclosure contained herein.

30

Table 1
Examples of Entry Vectors

Designation	Mnemonic Name	Class of Entry Vector	Distinctive Cloning Sites	Amino Fusions	Native Protein in E. coli	Native Protein in Eukaryotic Cells	Protein Synthesis Features
pENTR-1A, 2B, 3C	Minimal blunt RF A, B, C	Alternative Reading Frame Vectors	Reading frame A, B, or C; blunt cut closest to attL1	Good	Poor	Good	Minimal amino acids between tag and protein; no SD
pENTR4	Minimal Nco	Restr. Enz. Cleavage Vectors	Nco I site (common in euk. cDNAs) closest to attL1	Good	Poor	Good	Good Kozac; no SD
pENTR5	Minimal Nde	Restr. Enz. Cleavage Vectors	NdeI site closest to attL1	Good	Poor	Poor at Nde I, Good at Xmn I	No SD; poor Kozac at Nde, good at Xmn
pENTR6	Minimal Sph	Restr. Enz. Cleavage Vectors	Sph I site closest to attL1	Good	Poor	Poor at Sph I, Good at Xmn I	No SD; poor Kozac at Sph, good at Xmn
pENTR7	TEV Blunt	TEV Cleavage Site Present	Xmn I (blunt) is first cloning site after TEV site	Good	Poor	Good at Xmn I site	TEV protease leaves Gly-Thr on amino end of protein; no SD
pENTR8	TEV Nco	TEV Cleavage Site Present	Nco I is first cloning site after TEV site	Good	Poor	Good	TEV protease leaves Gly-Thr on amino end of protein; no SD

pENTR9	TEV Nde	TEV Cleavage Site Present	Nde I is first cloning site after TEV site	Good	Poor	Poor	TEV protease leaves Gly-Thr on amino end of protein; no SD, poor Kozac
pENTR10	Nde with SD	Good SD for E.coli Expression	Strong SD; Nde I site, no TEV	Poor	Good	Poor	Strong SD, internal starts in amino fusions. Poor Kz. No TEV
pENTR11	2 X SD+Kozac	Good SD for E.coli Expression	Xmn I (blunt) and Nco I sites each preceded by SD and Kozac	Good	Good	Good	Strong SD/Koz Internal starts in amino fusions. No TEV

5

10

15

20

Entry vectors pENTR1A (Figures 10A and 10B), pENTR2B (Figures 11A and 11B), and pENTR3C (Figures 12A and 12B) are almost identical, except that the restriction sites are in different reading frames. Entry vectors pENTR4 (Figures 13A and 13B), pENTR5 (Figures 14A and 14B), and pENTR6 (Figures 15A and 15B) are essentially identical to pENTR1A, except that the blunt *Dra*I site has been replaced with sites containing the ATG methionine codon: *Nco*I in pENTR4, *Nde*I in pENTR5, and *Sph*I in pENTR6. Nucleic acid molecules that contain one of these sites at the initiating ATG can be conveniently cloned in these Entry vectors. The *Nco*I site in pENTR4 is especially useful for expression of nucleic acid molecules in eukaryotic cells, since it contains many of the bases that give efficient translation (see Example 13, below). (Nucleic acid molecules of interest cloned into the *Nde*I site of pENTR5 are not expected to be highly expressed in eukaryotic cells, because the cytosine at position -3 from the initiating ATG is rare in eukaryotic genes.)

Entry vectors pENTR7 (Figures 16A and 16B), pENTR8 (Figures 17A and 17B), and pENTR9 (Figures 18A and 18B) contain the recognition site for the TEV protease between the attL1 site and the cloning sites. Cleavage sites for *Xmn*I (blunt), *Nco*I, and *Nde*I, respectively, are the most 5' sites in these Entry vectors. Amino fusions can be removed efficiently if nucleic acid molecules are cloned into these Entry vectors. TEV protease is highly active and highly specific.

Example 5: Controlling Reading Frame

25

30

One of the trickiest tasks in expression of cloned nucleic acid molecules is making sure the reading frame is correct. (Reading frame is important if fusions are being made between two ORFs, for example between a nucleic acid molecule of interest and a His6 or GST domain.) For purposes of the present invention, the following convention has been adopted: The reading frame of the DNA cloned into any Entry Vector must be in phase with that of the attB1 site shown in Figure 16A, pENTR7. Notice that the six As of the attL1 site are split into two lysine codons (aaa aaa). The Destination Vectors that make amino fusions were constructed such that they enter the attR1 site in this reading frame.

-105-

Destination Vectors for carboxy terminal fusions were also constructed, including those containing His₆ (pDEST23; Figure 43), GST (pDEST24; Figure 44), or thioredoxin (pDEST25; Figure 45) C-terminal fusion sequences.

Therefore, if a nucleic acid molecule of interest is cloned into an Entry Vector so that the aaa aaa reading frame within the attL1 site is in phase with the nucleic acid molecule's ORF, amino terminal fusions will automatically be correctly phased, for all the fusion tags. This is a significant improvement over the usual case, where each different vector can have different restriction sites and different reading frames.

See Example 15 for a practical example of how to choose the most appropriate combinations of Entry Vector and Destination Vector.

Materials

Unless otherwise indicated, the following materials were used in the remaining Examples included herein:

5X LR Reaction Buffer:

200-250 mM (preferably 250 mM) Tris-HCl, pH 7.5

250-350 mM (preferably 320 mM) NaCl

1.25-5 mM (preferably 4.75 mM) EDTA

12.5-35 mM (preferably 22-35 mM, and most preferably 35 mM)

Spermidine-HCl

1 mg/ml bovine serum albumin

GATEWAY™ LR Clonase™ Enzyme Mix:

per 4 µl of 1X LR Reaction Buffer:

150 ng carboxy-His6-tagged Int (see U.S. Appl. Nos. 60/108,324, filed

November 13, 1998, and 09/438,358, filed November 12,

30 1999, both entirely incorporated by reference herein)

-106-

25 ng carboxy-His6-tagged Xis (see U.S. Appl. Nos. 60/108,324, filed November 13, 1998, and 09/438,358, filed November 12, 1999, both entirely incorporated by reference herein)

30 ng IHF

5 50% glycerol

5X BP Reaction Buffer:

125 mM Tris-HCl, pH 7.5

110 mM NaCl

10 25 mM EDTA

25 mM Spermidine-HCl

5 mg/ml bovine serum albumin

GATEWAY™ BP Clonase™ Enzyme Mix:

15 per 4 µl of 1X BP Reaction Buffer:

200 ng carboxy-His6-tagged Int (see U.S. Appl. Nos. 60/108,324, filed November 13, 1998, and 09/438,358, filed November 12, 1999, both entirely incorporated by reference herein)

80 ng IHF

20 50% glycerol

10X Clonase Stop Solution:

25 50 mM Tris-HCl, pH 8.0

1 mM EDTA

2 mg/ml Proteinase K

Example 6: LR ("Destination") Reaction

To create a new Expression Clone containing the nucleic acid molecule of interest (and which may be introduced into a host cell, ultimately for production of the polypeptide encoded by the nucleic acid molecule), an Entry Clone or Vector containing the nucleic acid molecule of interest, prepared as described

-107-

herein, is reacted with a Destination Vector. In the present example, a β -Gal gene flanked by attL sites is transferred from an Entry Clone to a Destination Vector.

Materials needed:

- 5 • 5 X LR Reaction buffer
- Destination Vector (preferably linearized), 75-150 ng/ μ l
- Entry Clone containing nucleic acid molecule of interest, 100-300 ng in \leq 8 μ l TE buffer
- Positive control Entry Clone (pENTR- β -Gal) DNA (See note, below)
- 10 • Positive control Destination Vector, pDEST1 (pTrc), 75 ng/ μ l
- GATEWAY™ LR Clonase™ Enzyme Mix (stored at - 80° C)
- 10X Clonase Stop solution
- pUC19 DNA, 10 pg/ μ l
- Chemically competent *E. coli* cells (competence: $\geq 1 \times 10^7$ CFU/ μ g), 400 μ l.
- 15 • LB Plates containing ampicillin (100 μ g/ml) and methicillin (200 μ g/ml) \pm X-gal and IPTG (See below)

Notes:

Preparation of the Entry Clone DNA: Miniprep DNA that has been treated with RNase works well. A reasonably accurate quantitation ($\pm 50\%$) of the DNA to be cloned is advised, as the GATEWAY™ reaction appears to have an optimum of about 100-300 ng of Entry Clone per 20 μ l of reaction mix.

The positive control Entry Clone, pENTR- β -Gal, permits functional analysis of clones based on the numbers of expected blue vs. white colonies on LB plates containing IPTG + Bluo-gal (or X-gal), in addition to ampicillin (100 μ g/ml) and methicillin (200 μ g/ml). Because β -Galactosidase is a large protein, it often yields a less prominent band than many smaller proteins do on SDS protein gels.

In the Positive Control Entry Vector pENTR- β -Gal, the coding sequence of β -Gal has been cloned into pENTR11 (Figures 20A and 20B), with translational start signals permitting expression in *E. coli*, as well as in eukaryotic

-108-

cells. The positive control Destination Vector, for example pDEST1 (Figure 21), is preferably linearized.

To prepare X-gal + IPTG plates, either of the following protocols may be used:

5

A. With a glass rod, spread over the surface of an LB agar plate: 40 µl of 20 mg/ml X-gal (or Bluo-gal) in DMF plus 4 µl 200 mg/ml IPTG. Allow liquid to adsorb into agar for 3-4 hours at 37° C before plating cells.

10

B. To liquid LB agar at ~45° C, add: X-gal (or Bluo-Gal) (20 mg/ml in DMF) to make 50 µg/ml and IPTG (200 mM in water) to make 0.5-1 mM, just prior to pouring plates. Store X-gal and Bluo-Gal in a light-shielded container.

15

Colony color may be enhanced by placing the plates at 5° C for a few hours after the overnight incubation at 37° C. Protocol B can give more consistent colony color than A, but A is more convenient when selection plates are needed on short notice.

20

Recombination in Clonase reactions continues for many hours. While incubations of 45-60 minutes are usually sufficient, reactions with large DNAs, or in which both parental DNAs are supercoiled, or which will be transformed into cells of low competence, can be improved with longer incubation times, such as 2-24 hours at 25° C.

Procedure:

25

1. Assemble reactions as follows (combine all components at room temperature, except GATEWAY™ LR Clonase™ Enzyme Mix ("Clonase LR"), before removing Clonase LR from frozen storage):

Component	Tube 1 Neg.	Tube 2 Pos.	Tube 3 Neg.	Tube 4 Test
p-Gate-βGal, (Positive control Entry Clone) 75 ng/μl	4 μl	4 μl		
pDEST1 (Positive control Destination Vector), 75 ng/μl	4 μl	4 μl		
Your Entry Clone (100-300 ng)			1 - 8 μl	1 - 8 μl
Destination Vector for your nucleic acid molecule, 75 ng/μl			4 μl	4 μl
5 X LR Reaction Buffer	4 μl	4 μl	4 μl	4 μl
TE	8 μl	4 μl	To 20 μl	To 16 μl
GATEWAY™ LR Clonase™ Enzyme Mix (store at - 80° C, add last)	---	4 μl	---	4 μl
Total Volume	20 μl	20 μl	20 μl	20 μl

2. Remove the GATEWAY™ LR Clonase™ Enzyme Mix from the -80° C freezer, place immediately on ice. The Clonase takes only a few minutes to thaw.
3. Add 4 μl of GATEWAY™ LR Clonase™ Enzyme Mix to reactions #2 and #4;
4. Return GATEWAY™ LR Clonase™ Enzyme Mix to - 80° C freezer.
5. Incubate tubes at 25° for at least 60 minutes.
6. Add 2 μl Clonase Stop solution to all reactions. Incubate for 20 min at 37°C. (This step usually increases the total number of colonies obtained by 10-20 fold.)
7. Transform 2 μl into 100 μl competent *E. coli*. Select on plates containing ampicillin at 100 μg/ml.

Example 7: Transformation of E. coli

To introduce cloning or Expression Vectors prepared using the recombinational cloning system of the invention, any standard *E. coli* transformation protocol should be satisfactory. The following steps are recommended for best results:

-110-

1. Let the mixture of competent cells and Recombinational Cloning System reaction product stand on ice at least 15 minutes prior to the heat-shock step. This gives time for the recombination proteins to dissociate from the DNA, and improves the transformation efficiency.

5

2. Expect the reaction to be about 1%-5% efficient, i.e., 2 µl of the reaction should contain at least 100 pg of the Expression Clone plasmid (taking into account the amounts of each parental plasmid in the reaction, and the subsequent dilution). If the E. coli cells have a competence of 10^7 CFU/µg, 100 pg of the desired clone plasmid will give about 1000 colonies, or more, if the entire transformation is spread on one ampicillin plate.
3. Always do a control pUC DNA transformation. If the number of colonies is not what you expect, the pUC DNA transformation gives you an indication of where the problem was.

10

15

Example 8: Preparation of attB-PCR Product

For preparation of attB-PCR products in the PCR cloning methods described in Example 9 below, PCR primers containing attB1 and attB2 sequences are used. The attB1 and attB2 primer sequences are as follows:

attB1: 5'-GGGGACAAGTTGTACAAAAAAGCAGGCT- (template-specific sequence)-3'

attB2: 5'-GGGGACCCTTGTACAAGAAAGCTGGGT- (template-specific sequence)-3'

The attB1 sequence should be added to the amino primer, and the attB2 sequence to the carboxy primer. The 4 guanines at the 5' ends of each of these primers enhance the efficiency of the minimal 25 bp attB sequences as substrates for use in the cloning methods of the invention.

Standard PCR conditions may be used to prepare the PCR product. The following suggested protocol employs PLATINUM *Taq* DNA Polymerase High

20

25

30

-111-

Fidelity®, available commercially from Life Technologies, Inc. (Rockville, MD). This enzyme mix eliminates the need for hot starts, has improved fidelity over Taq, and permits synthesis of a wide range of amplicon sizes, from 200 bp to 10 kb, or more, even on genomic templates.

5

Materials needed:

- PLATINUM Taq DNA Polymerase High Fidelity® (Life Technologies, Inc.)
- attB1- and attB2- containing primer pair (see above) specific for your template
- DNA template (linearized plasmid or genomic DNA)
- 10X High Fidelity PCR Buffer
- 10 mM dNTP mix
- PEG/MgCl₂ Mix (30% PEG 8000, 30 mM MgCl₂)

10

15

Procedure:

1.) Assemble the reaction as follows:

Component	Reaction with <u>Plasmid Target</u>	Reaction with <u>Genomic</u> Target
10X High Fidelity PCR Buffer	5 µl	5 µl
dNTP Mix 10 mM	1 µl	1 µl
MgSO ₄ , 50mM	2 µl	2 µl
attB1 Primer, 10 µM	2 µl	1 µl
attB2 Primer, 10 µM	2 µl	1 µl
Template DNA	1-5 ng*	≥ 100 ng
PLATINUM Taq High Fidelity	2 µl	1 µl
Water	to 50 µl	to 50 µl

* Use of higher amounts of plasmid template may permit fewer cycles (10-15) of PCR

30

35

2.) Add 2 drops mineral oil, as appropriate.

3.) Denature for 30 sec. at 94°C.

4.) Perform 25 cycles:

5 94°C for 15 sec-30 sec

 55°C for 15 sec-30 sec

 68°C for 1 min per kb of template.

10 5.) Following the PCR reaction, apply 1-2 µl of the reaction mixture to an agarose gel, together with size standards (e.g., 1 Kb Plus Ladder, Life Technologies, Inc.) and quantitation standards (e.g., Low Mass Ladder, Life Technologies, Inc.), to assess the yield and uniformity of the product.

15 Purification of the PCR product is recommended, to remove attB primer dimers which can clone efficiently into the Entry Vector. The following protocol is fast and will remove DNA <300 bp in size:

16 6.) Dilute the 50 µl PCR reaction to 200 µl with TE.

17 7.) Add 100 µl PEG/MgCl₂ Solution. Mix and centrifuge immediately at 13,000 RPM for 10 min at room temperature. Remove the supernatant (pellet is clear and hard to see).

18 8.) Dissolve the pellet in 50 µl TE and check recovery on a gel.

20 If the starting PCR template is a plasmid that contains the gene for Kan^r, it is advisable to treat the completed PCR reaction with the restriction enzyme *Dpn*I, to degrade the plasmid since unreacted residual starting plasmid is a potential source of false-positive colonies from the transformation of the GATEWAY™ Cloning System reaction. Adding ~5 units of *Dpn*I to the completed PCR reaction and incubating for 15 min at 37°C will eliminate this potential problem. Heat inactivate the *Dpn*I at 65°C for 15 min, prior to using the PCR product in the GATEWAY™ Cloning System reaction.

Example 9: Cloning attB-PCR products into Entry Vectors via the BP ("Gateward") Reaction

The addition of 5'-terminal attB sequences to PCR primers allows synthesis of a PCR product that is an efficient substrate for recombination with a Donor (attP) Plasmid in the presence of GATEWAY™ BP Clonase™ Enzyme Mix. This reaction produces an Entry Clone of the PCR product (See Figure 8).

The conditions of the Gateward Cloning reaction with an attB PCR substrate are similar to those of the BP Reaction (see Example 10 below), except that the attB-PCR product (see Example 8) substitutes for the Expression Clone, and the attB-tet^r PCR positive control (attB-tet^r) substitutes for the Expression Clone Positive Control (GFP).

Materials needed:

- 5 X BP Reaction Buffer
- Desired attB-PCR product DNA, 50-100 ng in ≤ 8 µl TE.
- Donor (attP) Plasmid (Figures 49-54), 75 ng/µl, supercoiled DNA
- attB-tet^r PCR product positive control, 25 ng/µl
- GATEWAY™ BP Clonase™ Enzyme Mix (stored at - 80° C)
- 10x Clonase Stop Solution
- pUC19 DNA, 10 pg/µl.
- Chemically competent E.coli cells (competence: ≥ 1x10⁷ CFU/µg), 400 µl

Notes:

- Preparation of attB-PCR DNA: see Example 8.

- The Positive Control attB-tet^rPCR product contains a functional copy of the tet^r gene of pBR322, with its own promoter. By plating the transformation of the control BP Reaction on kanamycin (50 µg/ml) plates (if kan^r Donor Plasmids are used; see Figures 49-52) or an alternative selection agent (e.g., gentamycin, if gen^r Donor Plasmids are used; see Figure 54), and then picking about 50 of these colonies onto plates with tetracycline (20 µg/ml), the

-114-

percentage of Entry Clones containing functional tet^r among the colonies from the positive control reaction can be determined (% Expression Clones = (number of tet^r + kan^r (or gen^r) colonies/kan^r (or gen^r) colonies).

5

Procedure:

1. Assemble reactions as follows. Combine all components except GATEWAY™ BP Clonase™ Enzyme Mix, before removing GATEWAY™ BP Clonase™ Enzyme Mix from frozen storage.

10

15

20

25

30

Component	Neg.	Pos.	Test
	Tube 1	Tube 2	Tube 3
attB-PCR product, 50-100 ng			1 - 8 µl
Donor (attP) Plasmid 75 ng/µl	2 µl	2 µl	2 µl
attB-PCR tet ^r control DNA (75 ng/µl)		4 µl	
5 X BP Reaction Buffer	4 µl	4 µl	4 µl
TE	10 µl	6 µl	To 16 µl
GATEWAY™ BP Clonase™ Enzyme Mix (store at -80° C, add last)	4 µl	4 µl	4 µl
Total Volume	20 µl	20 µl	20 µl

2. Remove the GATEWAY™ BP Clonase™ Enzyme Mix from the -80° C freezer, place immediately on ice. The Clonase takes only a few minutes to thaw.
3. Add 4 µl of GATEWAY™ BP Clonase™ Enzyme Mix to the subcloning reaction, mix.
4. Return GATEWAY™ BP Clonase™ Enzyme Mix to - 80° C freezer.
5. Incubate tubes at 25° for at least 60 minutes.

6. Add 2 μ l Proteinase K (2 μ g/ μ l) to all reactions. Incubate for 20 min at 37°C.
7. Transform 2 μ l into 100 μ l competent E. coli, as per 3.2, above. Select on LB plates containing kanamycin, 50 μ g/ml.

5

Results:

10

In initial experiments, primers for amplifying tetR and ampR from pBR322 were constructed containing only the tetR- or ampR-specific targeting sequences, the targeting sequences plus attB1 (for forward primers) or attB2 (for reverse primers) sequences shown in Figure 9, or the attB1 or attB2 sequences with a 5' tail of four guanines. The construction of these primers is depicted in Figure 65. After PCR amplification of tetR and ampR from pBR322 using these primers and cloning the PCR products into host cells using the recombinational cloning system of the invention, the results shown in Figure 66 were obtained. These results demonstrated that primers containing attB sequences provided for a somewhat higher number of colonies on the tetracycline and ampicillin plates. However, inclusion of the 5' extensions of four or five guanines on the primers in addition to the attB sequences provided significantly better cloning results, as shown in Figures 66 and 67. These results indicate that the optimal primers for cloning of PCR products using recombinational cloning will contain the recombination site sequences with a 5' extension of four or five guanine bases.

15

20

25

30

To determine the optimal stoichiometry between attB-containing PCR products and attP-containing Donor plasmid, experiments were conducted where the amount of PCR product and Donor plasmid were varied during the BP Reaction. Reaction mixtures were then transformed into host cells and plated on tetracycline plates as above. Results are shown in Figure 68. These results indicate that, for optimal recombinational cloning results with a PCR product in the size range of the tet gene, the amounts of attP-containing Donor plasmids are between about 100-500 ng (most preferably about 200-300 ng), while the optimal concentrations of attB-containing PCR products is about 25-100 ng (most preferably about 100 ng), per 20 μ l reaction.

Experiments were then conducted to examine the effect of PCR product size on efficiency of cloning via the recombinational cloning approach of the invention.

-116-

PCR products containing attB1 and attB2 sites, at sizes 256 bp, 1 kb, 1.4 kb, 3.4 kb, 4.6 kb, 6.9 kb and 10.1 kb were prepared and cloned into Entry vectors as described above, and host cells were transformed with the Entry vectors containing the cloned PCR products. For each PCR product, cloning efficiency was calculated relative to cloning of pUC19 positive control plasmids as follows:

$$\text{Cloning Efficiency} = \frac{\text{CFU/ng attB PCR product}}{\text{CFU/ng pUC19 control}} \times \frac{\text{Size (kb) PCR product}}{\text{Size (kb) pUC19 control}}$$

5

10

15

The results of these experiments are depicted in Figures 69A-69C (for 256 bp PCR fragments), 70A-70C (for 1 kb PCR fragments), 71A-71C (for 1.4 kb PCR fragments), 72A-72C (for 3.4 kb PCR fragments), 73A-73C (for 4.6 kb PCR fragments), 74 (for 6.9 kb PCR fragments), and 75-76 (for 10.1 kb PCR fragments). The results shown in these figures are summarized in Figure 77, for different weights and moles of input PCR DNA.

20

25

25

Together, these results demonstrate that attB-containing PCR products ranging in size from about 0.25 kb to about 5 kb clone relatively efficiently in the recombinational cloning system of the invention. While PCR products larger than about 5 kb clone less efficiently (apparently due to slow resolution of cointegrates), longer incubation times during the recombination reaction appears to improve the efficiency of cloning of these larger PCR fragments. Alternatively, it may also be possible to improve efficiency of cloning of large (> about 5 kb) PCR fragments by using lower levels of input attP Donor plasmid and perhaps attB-containing PCR product, and/or by adjusting reaction conditions (e.g., buffer conditions) to favor more rapid resolution of the cointegrates.

Example 10: The BP Reaction

30

One purpose of the Gateward ("Entry") reaction is to convert an Expression Clone into an Entry Clone. This is useful when you have isolated an individual Expression Clone from an Expression Clone cDNA library, and you wish to transfer the nucleic acid molecule of interest into another Expression Vector, or

to move a population of molecules from an attB or attL library. Alternatively, you may have mutated an Expression Clone and now wish to transfer the mutated nucleic acid molecule of interest into one or more new Expression Vectors. In both cases, it is necessary first to convert the nucleic acid molecule of interest to an Entry Clone.

5

Materials needed:

- 5 X BP Reaction Buffer
- Expression Clone DNA, 100-300 ng in ≤ 8 µl TE.
- Donor (attP) Vector, 75 ng/µl, supercoiled DNA
- Positive control attB-tet-PCR DNA, 25 ng/µl
- GATEWAY™ BP Clonase™ Enzyme Mix (stored at - 80°C)
- Clonase Stop Solution (Proteinase K, 2 µg/µl).

10

15

Notes:

Preparation of the Expression Clone DNA: Miniprep DNA treated with RNase works well.

20

25

1. As with the LR Reaction (see Example 14), the BP Reaction is strongly influenced by the topology of the reacting DNAs. In general, the reaction is most efficient when one of the DNAs is linear and the other is supercoiled, compared to reactions where the DNAs are both linear or both supercoiled. Further, linearizing the attB Expression Clone (anywhere within the vector) will usually give more colonies than linearizing the Donor (attP) Plasmid. If finding a suitable cleavage site within your Expression Clone vector proves difficult, you may linearize the Donor (attP) Plasmid between the attP1 and attP2 sites (for example, at the *Nco*I site), avoiding the *ccdB* gene. Maps of Donor (attP) Plasmids are given in Figures 49-54.

Procedure:

30

1. Assemble reactions as follows. Combine all components at room temperature, except GATEWAY™ BP Clonase™ Enzyme Mix, before removing GATEWAY™ BP Clonase™ Enzyme Mix from freezer.

Component	Neg.	Pos.	Test
	Tube 1	Tube 2	Tube 3
Positive Control, attB-tet-PCR DNA, 25 ng/ μ l	4 μ l	4 μ l	
Desired attB Expression Clone DNA (100ng) linearized			1 - 8 μ l
Donor (attP) Plasmid, 75 ng/ μ l	2 μ l	2 μ l	2 μ l
5 X BP Reaction Buffer	4 μ l	4 μ l	4 μ l
TE	10 μ l	6 μ l	To 16 μ l
GATEWAY™ BP Clonase™ Enzyme Mix (store at - 80° C, add last)	---	4 μ l	4 μ l
Total Volume	20 μ l	20 μ l	20 μ l

- 5
2. Remove the GATEWAY™ BP Clonase™ Enzyme Mix from the -80°C freezer, place immediately on ice. The mixture takes only a few minutes to thaw.
 - 10 3. Add 4 μ l of GATEWAY™ BP Clonase™ Enzyme Mix to the subcloning reaction, mix.
 - 20 4. Return GATEWAY™ BP Clonase™ Enzyme Mix to - 80° C freezer.
 - 25 5. Incubate tubes at 25° for at least 60 minutes. If both the attB and attP DNAs are supercoiled, incubation for 2-24 hours at 25°C is recommended.
 6. Add 2 μ l Clonase Stop Solution. Incubate for 10 min at 37°C.
 7. Transform 2 μ l into 100 μ l competent E. coli, as above. Select on LB plates containing 50 μ g/ml kanamycin.

30 *Example 11: Cloning PCR Products into Entry Vectors using Standard Cloning Methods*

Preparation of Entry Vectors for Cloning of PCR Products

35 All of the Entry Vectors of the invention contain the death gene ccdB as a stuffer between the “left” and “right” restriction sites. The advantage of this arrangement is that there is virtually no background from vector that has not been cut with both restriction enzymes, because the presence of the ccdB gene will kill

all standard *E. coli* strains. Thus it is necessary to cut each Entry Vector twice, to remove the ccdB fragment.

5

10

We strongly recommend that, after digestion of the Entry Vector with the second restriction enzyme, you treat the reaction with phosphatase (calf intestine alkaline phosphatase, CIAP or thermosensitive alkaline phosphatase, TSAP). The phosphatase can be added directly to the reaction mixture, incubated for an additional time, and inactivated. This step dephosphorylates both the vector and ccdB fragments, so that during subsequent ligation there is less competition between the ccdB fragment and the DNA of interest for the termini of the Entry Vector.

15

Blunt Cloning of PCR products

20

Generally PCR products do not have 5' phosphates (because the primers are usually 5' OH), and they are not necessarily blunt. (On this latter point, see Brownstein, et al., *BioTechniques* 20: 1006, 1996 for a discussion of how the sequence of the primers affects the addition of single 3' bases.) The following protocol repairs these two defects.

25

30

In a 0.5 ml tube, ethanol precipitate about 40 ng of PCR product (as judged from an agarose gel).

1. Dissolve the precipitated DNA in 10 µl comprising 1 µl 10 mM rATP, 1 µl mixed 2 mM dNTPs (i.e., 2 mM each dATP, dCTP, dTTP, and dGTP), 2 µl 5x T4 polynucleotide kinase buffer (350 mM Tris HCl (pH7.6), 50 mM MgCl₂, 500mM KCl, 5 mM 2-mercaptoethanol) 10 units T4 polynucleotide kinase, 1 µl T4 DNA polymerase, and water to 10 µl.
2. Incubate the tube at 37° for 10 minutes, then at 65° for 15 minutes, cool, centrifuge briefly to bring any condensate to the tip of the tube.
3. Add 5 µl of the PEG/MgCl₂ solution, mix and centrifuge at room temperature for 10 minutes. Discard supernatant.
4. Dissolve the invisible precipitate in 10 µl containing 2 µl 5x T4 DNA ligase buffer (Life Technologies, Inc.), 0.5 units T4 DNA ligase, and about 50 ng of blunt, phosphatase-treated Entry Vector.

-120-

- 5 5. Incubate at 25° for 1 hour, then 65° for 10 minutes. Add 90 µl TE, transform
10 µl into 50 - 100 µl competent *E. coli* cells.
- 10 6. Plate on kanamycin.

5 **Note:** In the above protocol, steps b-c simultaneously polish the ends of the PCR product (through the exonuclease and polymerase activities of T4 DNA polymerase) and phosphorylate the 5' ends (using T4 polynucleotide kinase). It is necessary to inactivate the kinase, so that the blunt, dephosphorylated vector in step e cannot self ligate. Step d (the PEG precipitation) removes all small molecules (primers, nucleotides), and has also been found to improve the yield of cloned PCR product by 50 fold.

Cloning PCR Products after Digestion with Restriction Enzymes

15 Efficient cloning of PCR products that have been digested with restriction enzymes includes three steps: inactivation of *Taq* DNA polymerase, efficient restriction enzyme cutting, and removal of small DNA fragments.

20 Inactivation of *Taq* DNA Polymerase: Carryover of *Taq* DNA polymerase and dNTPs into a RE digestion significantly reduces the success in cloning a PCR product (D. Fox et al., *FOCUS* 20(1):15, 1998), because *Taq* DNA polymerase can fill in sticky ends and add bases to blunt ends. Either TAQQUENCH™ (obtainable from Life Technologies, Inc.; Rockville, Maryland) or extraction with phenol can be used to inactivate the *Taq*.

25 Efficient Restriction Enzyme Cutting: Extra bases on the 5' end of each PCR primer help the RE cut near ends of PCR products. With the availability of cheap primers, adding 6 to 9 bases on the 5' sides of the restriction sites is a good investment to ensure that most of the ends are digested. Incubation of the DNA with a 5-fold excess of restriction enzyme for an hour or more helps ensure success.

30 Removal of Small Molecules before Ligation: Primers, nucleotides, primer dimers, and small fragments produced by the restriction enzyme digestion,

-121-

can all inhibit or compete with the desired ligation of the PCR product to the cloning vector. This protocol uses PEG precipitation to remove small molecules.

Protocol for cutting the ends of PCR products with restriction enzyme(s):

5

1. Inactivation of Taq DNA polymerase in the PCR product:

Option A: Extraction with Phenol

A1. Dilute the PCR reaction to 200 µl with TE. Add an equal volume of phenol:chloroform:isoamyl alcohol, vortex vigorously for 20 seconds, and centrifuge for 1 minute at room temperature. Discard the lower phase.

10

A2. Extract the phenol from the DNA and concentrate as follows. Add an equal volume of 2-butanol (colored red with "Oil Red O" from Aldrich, if desired), vortex briefly, centrifuge briefly at room temperature. Discard the upper butanol phase. Repeat the extraction with 2-butanol. This time the volume of the lower aqueous phase should decrease significantly. Discard the upper 2-butanol phase.

15

A3. Ethanol precipitate the DNA from the aqueous phase of the above extractions. Dissolve in a 200 µl of a suitable restriction enzyme (RE) buffer.

20

Option B: Inactivation with TaqQuench

25

B1. Ethanol precipitate an appropriate amount of PCR product (100 ng to 1 µg), dissolve in 200 µl of a suitable RE buffer.

B2. Add 2 µl TaqQuench.

30

2. Add 10 to 50 units of restriction enzyme and incubate for at least 1 hour. Ethanol precipitate if necessary to change buffers for digestion at the other end of the PCR product.

3. Add $\frac{1}{2}$ volume of the PEG/MgCl₂ mix to the RE digestion. Mix well and immediately centrifuge at room temperature for 10 minutes. Discard the supernatant (pellet is usually invisible), centrifuge again for a few seconds, discard any remaining supernatant.

5

4. Dissolve the DNA in a suitable volume of TE (depending on the amount of PCR product in the original amplification reaction) and apply an aliquot to an agarose gel to confirm recovery. Apply to the same gel 20-100 ng of the appropriate Entry Vector that will be used for the cloning.

10

Example 12: Determining The Expected Size of the GATEWAY™ Cloning Reaction Products

If you have access to a software program that will electronically cut and splice sequences, you can create electronic clones to aid you in predicting the sizes and restriction patterns of GATEWAY™ Cloning System recombination products.

The cleavage and ligation steps performed by the enzyme Int in the GATEWAY™ Cloning System recombination reactions mimic a restriction enzyme cleavage that creates a 7-bp 5'-end overhang followed by a ligation step that reseals the ends of the daughter molecules. The recombination proteins present in the Clonase cocktails (see Example 19 below) recognize the 15 bp core sequence present within all four types of att sites (in addition to other flanking sequences characteristic of each of the different types of att sites).

By treating these sites in your software program as if they were restriction sites, you can cut and splice your Entry Clones with various Destination Vectors and obtain accurate maps and sequences of the expected results from your GATEWAY™ Cloning System reactions.

30

Example 13: Protein Expression

Brief Review of Protein Expression

Transcription: The most commonly used promoters in *E. coli* Expression Vectors are variants of the lac promoter, and these can be turned on by adding

IPTG to the growth medium. It is usually good to keep promoters off until expression is desired, so that the host cells are not made sick by the overabundance of some heterologous protein. This is reasonably easy in the case of the lac promoters used in *E. coli*. One needs to supply the *lac I* gene (or its more productive relative, the *lac I^q* gene) to make *lac* repressor protein, which binds near the promoter and keeps transcription levels low. Some Destination Vectors for *E. coli* expression carry their own *lacI^q* gene for this purpose. (However, lac promoters are always a little "on," even in the absence of IPTG.)

5

Controlling transcription in eukaryotic cells is not nearly so straightforward or efficient. The tetracycline system of Bujard and colleagues is the most successful approach, and one of the Destination Vectors (pDEST11; Figure 31) has been constructed to supply this function.

10

15

20

25

30

Translation: Ribosomes convert the information present in mRNA into protein. Ribosomes scan RNA molecules looking for methionine (AUG) codons, which begin nearly all nascent proteins. Ribosomes must, however, be able to distinguish between AUG codons that code for methionine in the middle of proteins from those at the start. Most often ribosomes choose AUGs that are 1) first in the RNA (toward the 5' end), and 2) have the proper sequence context. In *E. coli* the favored context (first recognized by Shine and Dalgarno, *Eur. J. Biochem.* 57: 221 (1975)) is a run of purines (As and Gs) from five to 12 bases upstream of the initiating AUG, especially AGGAGG or some variant.

In eukaryotes, a survey of translated mRNAs by Kozak (*J. Biol. Chem.* 266: 19867 (1991)) has revealed a preferred sequence context, gcc Acc ATGG, around the initiating methionine, with the A at -3 being most important, and a purine at +4 (where the A of the ATG is +1), preferably a G, being next most influential. Having an A at -3 is enough to make most ribosomes choose the first AUG of an mRNA, in plants, insects, yeast, and mammals. (For a review of initiation of protein synthesis in eukaryotic cells, see: Pain, V.M. *Eur.J. Biochem.* 236:747-771, 1996.)

Consequences of Translation Signals for GATEWAY™ Cloning System: First, translation signals (Shine-Dalgarno in *E. coli*, Kozak in eukaryotes) have to be close to the initiating ATG. The attB site is 25 base pairs long. Thus if

5

translation signals are desired near the natural ATG of the nucleic acid molecule of interest, they must be present in the Entry Clone of that nucleic acid molecule of interest. Also, when a nucleic acid molecule of interest is moved from an Entry Clone to a Destination vector, any translation signals will move along. The result is that the presence or absence of Shine-Dalgarno and/or Kozak sequences in the Entry Clone must be considered, with the eventual Destination Vectors to be used in mind.

10

Second, although ribosomes choose the 5' ATG most often, internal ATGs are also used to begin protein synthesis. The better the translation context around this internal ATG, the more internal translation initiation will be seen. This is important in the GATEWAY™ Cloning System, because you can make an Entry Clone of your nucleic acid molecule of interest, and arrange to have Shine-Dalgarno and/or Kozak sequences near the ATG. When this cassette is recombined into a Destination Vector that transcribes your nucleic acid molecule of interest, you get native protein. If you want, you can make a fusion protein in a different Destination Vector, since the Shine-Dalgarno and/or Kozak sequences do not contain any stop signals in the same reading frame. However, the presence of these internal translation signals may result in a significant amount of native protein being made, contaminating, and lowering the yield of, your fusion protein.

20

This is especially likely with short fusion tags, like His6.

25

A good compromise can be recommended. If an Entry Vector like pENTR7 (Figure 16) or pENTR8 (Figure 17) is chosen, the Kozak bases are present for native eukaryotic expression. The context for *E. coli* translation is poor, so the yield of an amino-terminal fusion should be good, and the fusion protein can be digested with the TEV protease to make near-native protein following purification.

30

Recommended Conditions for Synthesis of Proteins in E. coli: When making proteins in *E. coli* it is advisable, at least initially, to incubate your cultures at 30°C, instead of at 37°C. Our experience indicates that proteins are less likely to form aggregates at 30°C. In addition, the yields of proteins from cells grown at 30°C frequently are improved.

The yields of proteins that are difficult to express may also be improved by inducing the cultures in mid-log phase of growth, using cultures begun in the morning from overnight growths, as opposed to harvesting directly from an overnight culture. In the latter case, the cells are preferably in late log or stationary growth, which can favor the formation of insoluble aggregates.

5

Example 14: Constructing Destination Vectors from Existing Vectors

10

Destination Vectors function because they have two recombination sites, attR1 and attR2, flanking a chloramphenicol resistance (CmR) gene and a death gene, ccdB. The GATEWAY™ Cloning System recombination reactions exchange the entire Cassette (except for a few bases comprising part of the attB sites) for the DNA segment of interest from the Entry Vector. Because attR1, CmR, ccdB gene, and attR2 are contiguous, they can be moved on a single DNA segment. If this Cassette is cloned into a plasmid, the plasmid becomes a Destination Vector. Figure 63 shows a schematic of the GATEWAY™ Cloning System Cassette; attR cassettes in all three reading frames contained in vectors pEYC15101, pEYC15102 and pEYC15103 are shown in Figures 64A, 64B, and 64C, respectively.

15

20

The protocol for constructing a Destination Vector is presented below. Keep in mind the following points:

25

- Destination Vectors must be constructed and propagated in one of the DB strains of *E. coli* (e.g., DB3.1, and particularly *E. coli* LIBRARY EFFICIENCY® DB3.1™ Competent Cells) available from Life Technologies, Inc. (and described in detail in U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, which is incorporated herein by reference), because the ccdB death gene will kill any *E. coli* strain that has not been mutated such that it will survive the presence of the ccdB gene.
- If your Destination Vector will be used to make a fusion protein, a GATEWAY™ Cloning System cassette with the correct reading frame must be used. The nucleotide sequences of the ends of the cassettes are shown in Figure 78. The reading frame of the fusion protein domain must

30

-126-

be in frame with the core region of the attR1 site (for an amino terminal fusion) so that the six As are translated into two lysine codons. For a C-terminal fusion protein, translation through the core region of the attR2 site should be in frame with -TAC-AAA-, to yield -Tyr-Lys-.

- 5
- Note that each reading frame Cassette has a different unique restriction site between the chloramphenicol resistance and ccdB genes (*Mlu*I for reading frame A, *Bgl*II for reading frame B, and *Xba*I for reading frame C; see Figure 63).
 - Most standard vectors can be converted to Destination Vectors, by inserting the Entry Cassette into the MCS of that vector.
- 10

Protocol for Making a Destination Vector

1. If the vector will make an amino fusion protein, it is necessary to keep the "aaa aaa" triplets in attR1 in phase with the triplets of the fusion protein. Determine which Entry cassette to use as follows:

15

a.) Write out the nucleotide sequence of the existing vector near the restriction site into which the Entry cassette will be cloned. These must be written in triplets corresponding to the amino acid sequence of the fusion domain.

20

b.) Draw a vertical line through the sequence that corresponds to the restriction site end, after it has been cut and made blunt, i.e., after filling in a protruding 5' end or polishing a protruding 3' end.

25

c.) Choose the appropriate reading frame cassette:

- If the coding sequence of the blunt end ends after a complete codon triplet, use the reading frame A cassette. See Figures 78, 79 and 80.

30

-127-

- If the coding sequence of the blunt end ends in a single base, use the reading frame B cassette. See Figures 78, 79 and 81.

5

- If the coding sequence of the blunt end ends in two bases, use the reading frame C cassette. See Figures 78, 79, 82A-B, and 83A-C.

10

2. Cut one to five micrograms of the existing plasmid at the position where you wish your nucleic acid molecule of interest (flanked by att sites) to be after the recombination reactions. **Note:** it is better to remove as many of the MCS restriction sites as possible at this step. This makes it more likely that restriction enzyme sites within the GATEWAY™ Cloning System Cassette will be unique in the new plasmid, which is important for linearizing the Destination Vector (Example 14, below).

15

3. Remove the 5' phosphates with alkaline phosphatase. While this is not mandatory, it increases the probability of success.

20

4. Make the end(s) blunt with fill-in or polishing reactions. For example, to 1 µg of restriction enzyme-cut, ethanol-precipitated vector DNA, add:

25

- i. 20 µl 5x T4 DNA Polymerase Buffer (165 mM Tris-acetate (pH 7.9), 330 mM Na acetate, 50 mM Mg acetate, 500 µg/ml BSA, 2.5 mM DTT)
- ii. 5 µl 10mM dNTP mix
- iii. 1 Unit of T4 DNA Polymerase
- iv. Water to a final volume of 100 µl
- v. Incubate for 15 min at 37°C.

30

5. Remove dNTPs and small DNA fragments: Ethanol precipitate (add three volumes of room temperature ethanol containing 0.1 M sodium acetate, mix well, immediately centrifuge at room temperature 5 - 10 minutes), dissolve wet precipitate in 200 µl TE, add 100 µl 30% PEG 8000, 30 mM MgCl₂, mix well,

-128-

immediately centrifuge for 10 minutes at room temperature, discard supernatant, centrifuge again a few seconds, discard any residual liquid.

6. Dissolve the DNA to a final concentration of 10 - 50 ng per microliter. Apply
5 20 - 100 ng to a gel next to supercoiled plasmid and linear size standards to confirm cutting and recovery. The cutting does not have to be 100% complete, since you will be selecting for the chloramphenicol marker on the Entry cassette.

10 7. In a 10 μ l ligation reaction combine 10 - 50 ng vector, 10 - 20 ng of Entry Cassette (Figure 79), and 0.5 units T4 DNA ligase in ligase buffer. After one hour (or overnight, whichever is most convenient), transform 1 μ l into one of the DB strains of competent *E. coli* cells with a *gyrA*462 mutation (See U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, which is incorporated herein by reference), preferably DB3.1, and most preferably *E. coli* LIBRARY
15 EFFICIENCY® DB3.1™ Competent Cells. The *ccdB* gene on the Entry Cassette will kill other strains of *E. coli* that have not been mutated so as to survive the presence of the *ccdB* gene.

20 8. After expression in SOC medium, plate 10 μ l and 100 μ l on chloramphenicol-containing (30 μ g / ml) plates, incubate at 37° C.

25 9. Pick colonies, make miniprep DNA. Treat the miniprep with RNase A and store in TE. Cut with the appropriate restriction enzyme to determine the orientation of the Cassette. Choose clones with the attR1 site next to the amino end of the protein expression function of the plasmid.

Notes on Using Destination Vectors

- We have found that about ten-fold more colonies result from a GATEWAY™ Cloning System reaction if the Destination Vector is linear or relaxed. If the competent cells you use are highly competent ($>10^8$ per microgram), linearizing the Destination Vector is less essential.
30

-129-

- The site or sites used for the linearization must be within the Entry Cassette. Sites that cut once or twice within each cassette are shown in Figures 80-82.
- Minipreps of Destination Vectors will work fine, so long as they have been treated with RNase. Since most DB strains are *endA*- (See U.S. Provisional Application No. 60/122,392, filed on March 2, 1999, which is incorporated herein by reference), minipreps can be digested with restriction enzymes without a prior phenol extraction.
- Reading the OD₂₆₀ of miniprep DNA is inaccurate unless the RNA and ribonucleotides have been removed, for example, by a PEG precipitation.

5

10

Example 15: Some Options in Choosing Appropriate Entry Vectors and Destination Vectors: An Example

15

In some applications, it may be desirable to express a nucleic acid molecule of interest in two forms: as an amino-terminal fusion in *E. coli*, and as a native protein in eukaryotic cells. This may be accomplished in any of several ways:

20

25

Option 1: Your choices depend on your nucleic acid molecule of interest and the fragment that contains it, as well as the available Entry Vectors. For eukaryotic translation, you need consensus bases according to Kozak (*J. Biol. Chem.* 266:19867, 1991) near the initiating methionine (ATG) codon. All of the Entry Vectors offer this motif upstream of the *XmnI* site (blunt cutter). One option is to amplify your nucleic acid molecule of interest, with its ATG, by PCR, making the amino end blunt and the carboxy end containing the natural stop codon followed by one of the "right side" restriction sites (*EcoRI*, *NotI*, *XhoI*, *EcoRV*, or *XbaI* of the pENTR vectors).

If you know your nucleic acid molecule of interest does not have, for example, an *XhoI* site, you can make a PCR product that has this structure:

30

Xho I

5' ATG nnn nnn --- nnn TAA ctc gag nnn nnn 3'
3' tac nnn nnn --- nnn att gag ctc nnn nnn 5'

-130-

After cutting with *Xba*I, the fragment is ready to clone:

5' ATG nnn nnn --- nnn TAA c 3'
3' tac nnn nnn --- nnn att gag ct 5'

(If you follow this example, don't forget to put a phosphate on the amino oligo.)

5

Option 2: This PCR product could be cloned into two Entry Vectors to give the desired products, between the *XmnI* and *XhoI* sites: pENTR1A (Figures 10A, 10B) or pENTR7 (Figures 16A, 16B). If you clone into pENTR1A, amino fusions will have the minimal number of amino acids between the fusion domain and your nucleic acid molecule of interest, but the fusion cannot be removed with TEV protease. The converse is true of clones in pENTR7, i.e., an amino fusion can be cleaved with TEV protease, at the cost of more amino acids between the fusion and your nucleic acid molecule of interest.

10

In this example, let us choose to clone our hypothetical nucleic acid molecule of interest into pENTR7, between the *Xmn*I and *Xho*I sites. Once this is accomplished, several optional protocols using the Entry Clone pENTR7 may be followed:

20 **Option 3:** Since the nucleic acid molecule of interest has been amplified
with PCR, it may be desirable to sequence it. To do this, transfer the nucleic acid
molecule of interest from the Entry Vector into a vector that has priming sites for
the standard sequencing primers. Such a vector is pDEST6 (Figures 26A, 26B).
This Destination Vector places the nucleic acid molecule of interest in the opposite
25 orientation to the lac promoter (which is leaky -- see Example 3 above). If the
gene product is toxic to *E. coli*, this Destination Vector will minimize its toxicity.

25

Option 4: While the sequencing is going on, you might wish to check the expression of the nucleic acid molecule of interest in, for example, CHO cells, by recombining the nucleic acid molecule of interest into a CMV promoter vector (pDEST7, Figure 27; or pDEST12, Figure 32), or into a baculovirus vector (pDEST8, Figure 28; or pDEST10, Figure 30) for expression in insect cells. Both

30

-131-

of these vectors will transcribe the coding sequence of your nucleic acid molecule of interest, and translate it from the ATG of the PCR product using the Kozak bases upstream of the *XmnI* site.

Option 5: If you wish to purify protein, for example to make antibodies, you can clone the nucleic acid molecule of interest into a His6 fusion vector, pDEST2 (Figure 22). Since the nucleic acid molecule of interest is cloned downstream of the TEV protease cleavage domain of pENTR7 (Figure 16), the amino acid sequence of the protein produced will be:

10 [----- attB1 -----] TEV protease
NH2- MSYYHHHHHGITSLYKKAGF**ENLYFO!** GTM---COOH

The attB site and the restriction sites used to make the Destination and Entry Vectors are translated into the underlined 11 amino acids (GITSLYKKAGF). Cleavage with TEV protease (arrow) leaves two amino acids, GT, on the amino end of the gene product.

See Figure 55 for an example of a nucleic acid molecule of interest, the chloramphenicol acetyl transferase (CAT) gene, cloned into pENTR7 (Figure 16) as a blunt (amino)-*Xba*I (carboxy) fragment, then cloned by recombination into the His6 fusion vector pDEST2 (Figure 22).

Option 6: If the His6 fusion protein is insoluble, you may go on and try a GST fusion. The appropriate Destination vector is pDEST3 (Figure 23).

Option 7: If you need to make RNA probes and prefer SP6 RNA polymerase, you can make the top strand RNA with your nucleic acid molecule of interest cloned into pSPORT+ (pDEST5 (Figures 25A, 25B)), and the bottom strand RNA with the nucleic acid molecule of interest cloned into pSPORT(-) (pDEST6 (Figures 26A, 26B)). Opposing promoters for T7 RNA polymerase and SP6 RNA polymerase are also present in these clones.

5 **Option 8:** It is often worthwhile to clone your nucleic acid molecule of interest into a variety of Destination Vectors in the same experiment. For example, if the number of colonies varies widely when the various recombination reactions are transformed into *E. coli*, this may be an indication that the nucleic acid molecule of interest is toxic in some contexts. (This problem is more clearly evident when a positive control gene is used for each Destination Vector.) Specifically, if many more colonies are obtained when the nucleic acid molecule of interest is recombined into pDEST6 than in pDEST5, there is a good chance that leakiness of the lac promoter is causing some expression of the nucleic acid molecule of interest in pSPORT "+" (which is not harmful in pDEST6 because the nucleic acid molecule of interest is in the opposite orientation).

10

15 ***Example 16: Demonstration of a One-tube Transfer of a PCR Product (or Expression Clone) to Expression Clone via a Recombinational Cloning Reaction***

20 In the BxP recombination (Entry or Gateward) reaction described herein, a DNA segment flanked by attB1 and attB2 sites in a plasmid conferring ampicillin resistance was transferred by recombination into an attP plasmid conferring kanamycin resistance, which resulted in a product molecule wherein the DNA segment was flanked by attL sites (attL1 and attL2). This product plasmid comprises an "attL Entry Clone" molecule, because it can react with a "attR Destination Vector" molecule via the LxR (Destination) reaction, resulting in the transfer of the DNA segment to a new (ampicillin resistant) vector. In the previously described examples, it was necessary to transform the BxP reaction products into *E. coli*, select kanamycin resistant colonies, grow those colonies in liquid culture, and prepare miniprep DNA, before reacting this DNA with a Destination Vector in an LxR reaction.

25

30 The goal of the following experiment was to eliminate the transformation and miniprep DNA steps, by adding the BxP Reaction products directly to an LxR Reaction. This is especially appropriate when the DNA segment flanked by attB sites is a PCR product instead of a plasmid, because the PCR product cannot give

-133-

ampicillin-resistant colonies upon transformation, whereas attB plasmids (in general) carry an ampicillin resistance gene. Thus use of a PCR product flanked by attB sites in a BxP Reaction allows one to select for the ampicillin resistance encoded by the desired attB product of a subsequent LxR Reaction.

5 Two reactions were prepared: Reaction A, negative control, no attB PCR product, (8 µl) contained 50 ng pEZC7102 (attP Donor plasmid, confers kanamycin resistance) and 2 µl BxP Clonase (22 ng / µl Int protein and 8 ng/µl IHF protein) in BxP buffer (25 mM Tris HCl, pH 7.8, 70 mM KCl, 5 mM spermidine, 0.5 mM EDTA, 250 µg / ml BSA). Reaction B (24 µl) contained
10 150 ng pEZC7102, 6 µl BxP Clonase, and 120 ng of the attB -tet-PCR product in the same buffer as reaction A. The attB - tet - PCR product comprised the tetracycline resistance gene of plasmid pBR322, amplified with two primers containing either attB1 or attB2 sites, and having 4 Gs at their 5' ends, as described earlier.

15 The two reactions were incubated at 25°C for 30 minutes. Then aliquots of these reactions were added to new components that comprised LxR Reactions or appropriate controls for the LxR Reaction. Five new reactions were thus produced:

20 **Reaction 1:** 5 µl of reaction A was added to a 5 µl LxR Reaction containing 25 ng *NcoI*-cut pEZC8402 (the attR Destination Vector plasmid) in LxR buffer (37.5 mM Tris HCl, pH 7.7, 16.5 mM NaCl, 35 mM KCl, 5 mM spermidine, 375 µg / ml BSA), and 1 µl of GATEWAY™ LR Clonase™ Enzyme Mix (total volume of 10 µl).

25 **Reaction 2:** Same as reaction 1, except 5 µl of reaction B (positive) were added instead of reaction A (negative).

30 **Reaction 3:** Same as reaction 2, except that the amounts of Nco-cut pEZC8402 and GATEWAY™ LR Clonase™ Enzyme Mix were doubled, to 50 ng and 2 µl, respectively.

-134-

Reaction 4: Same as reaction 2, except that 25 ng of pEZ11104 (a positive control attL Entry Clone plasmid) were added in addition to the aliquot of reaction B.

5 **Reaction 5:** Positive control LxR Reaction, containing 25 ng *Nco*I-cut pEZC8402, 25 ng pEZ11104, 37.5 mM Tris HCl pH 7.7, 16.5 mM NaCl, 35 mM KCl, 5 mM spermidine, 375 µg / ml BSA and 1 µl GATEWAY™ LR Clonase™ Enzyme Mix in a total volume of 5 µl.

10 All five reactions were incubated at 25°C for 30 minutes. Then, 1 µl aliquots of each of the above five reactions, plus 1 µl from the remaining volume of Reaction B, the standard BxP Reaction, were used to transform 50 µl competent DH5 α *E. coli*. DNA and cells were incubated on ice for 15 min., heat shocked at 42°C for 45 sec., and 450 µl SOC were added. Each tube was incubated with shaking at 37°C for 60 min. Aliquots of 100 µl and 400 µl of each transformation were plated on LB plates containing either 50 µg/ml kanamycin or 100 µg/ml ampicillin (see Table 2). A transformation with 10 pg of pUC19 DNA (plated on LB-amp₁₀₀) served as a control on the transformation efficiency of the DH5 α cells. Following incubation overnight at 37°C, the number of colonies on each plate was determined.

15 20

Results of these reactions are shown in Table 2.

25 **Table 2***

Reaction No.:	1	2	3	4	5	6
Vol. plated:	Number of Colonies					
Neg. Control BxP Reaction	1X pEZC8402 and LR Clonase™	2X pEZC8402 and LR Clonase™	LxR Reaction with Pos. Control DNA	LxR Reaction alone	BxP Reaction alone	
100 µl	2	1	8	9	~1000	~1000
400 µl	5	10	35	62	>2000	>2000
Selection:	Kan	Amp	Amp	Amp	Amp	Kan

30 *(Transformation with pUC 19 DNA yielded 1.4 x 10⁹ CFU/µg DNA.)

-135-

5

10

34 of the 43 colonies obtained from Reaction 3 were picked into 2 ml Terrific Broth with 100 µg/ml ampicillin and these cultures were grown overnight, with shaking, at 37°C. 27 of the 34 cultures gave at least moderate growth, and of these 24 were used to prepare miniprep DNA, using the standard protocol. These 24 DNAs were initially analyzed as supercoiled (SC) DNA on a 1% agarose gel to identify those with inserts and to estimate the sizes of the inserts. Fifteen of the 24 samples displayed SC DNA of the size predicted (5553 bp) if **tetx7102** had correctly recombined with **pEZC8402** to yield **tetx8402**. One of these samples contained two plasmids, one of ~5500 bp and a one of ~3500 bp. The majority of the remaining clones were approximately 4100 bp in size.

15

All 15 of the clones displaying SC DNA of predicted size (~5500 bp) were analyzed by two different double digests with restriction endonucleases to confirm the structure of the expected product: **tetx8402**. (See plasmid maps, Figures 57-59) In one set of digests, the DNAs were treated with Not I and Eco RI, which should cut the predicted product just outside both attB sites, releasing the tet^r insert on a fragment of 1475 bp. In the second set of digests, the DNAs were digested with *NotI* and with *NruI*. *NruI* cleaves asymmetrically within the subcloned tet^r insert, and together with *NotI* will release a fragment of 1019 bp.

20

Of the 15 clones analyzed by double restriction digestion, 14 revealed the predicted sizes of fragments for the expected product.

Interpretation:

25

The DNA components of Reaction B, pEZC7102 and attB-tet-PCR, are shown in Figure 56. The desired product of BxP Reaction B is tetx7102, depicted in Figure 57. The LxR Reaction recombines the product of the BxP Reaction, tetx7102 (Figure 57), with the Destination Vector, pEZC8402, shown in Figure 58. The LxR Reaction with tetx7102 plus pEZC8402 is predicted to yield the desired product tetx8402, shown in Figure 59.

30

Reaction 2, which combined the BxP Reaction and LxR Reaction, gave few colonies beyond those of the negative control Reaction. In contrast, Reaction 3, with twice the amount of pEZC8402 (Figure 58) and LxR Clonase, yielded a

-136-

5

larger number of colonies. These colonies were analyzed further, by restriction digestion, to confirm the presence of expected product. Reaction 4 included a known amount of attL Entry Clone plasmid in the combined BxP-plus-LxR reaction. But reaction 4 yielded only about 1% of the colonies obtained when the same DNA was used in a LxR reaction alone, Reaction 6. This result suggests that the LxR reaction may be inhibited by components of the BxP reaction.

10 Restriction endonuclease analysis of the products of Reaction 3 revealed that a sizeable proportion of the colonies (14 of the 34 analyzed) contained the desired tet^r subclone, tetx8402 (Figure 59).

15

The above results establish the feasibility of performing first a BxP recombination reaction followed by a LxR recombination reaction -- in the same tube -- simply by adding the appropriate buffer mix, recombination proteins, and DNAs to a completed BxP reaction. This method should prove useful as a faster method to convert attB-containing PCR products into different Expression Clones, eliminating the need to isolate first the intermediate attL-PCR insert subclones, before recombining these with Destination Vectors. This may prove especially valuable for automated applications of these reactions.

20

This same one-tube approach allows for the rapid transfer of nucleic acid molecules contained in attB plasmid clones into new functional vectors as well. As in the above examples, attL subclones generated in a BxP Reaction can be recombined directly with various Destination Vectors in a LxR reaction. The only additional requirement for using attB plasmids, instead of attB-containing PCR products, is that the Destination Vector(s) employed must contain a different selection marker from the one present on the attB plasmid itself and the attP vector.

25

Two alternative protocols for a one-tube reaction have also proven useful and somewhat more optimal than the conditions described above.

Alternative 1:

30

Reaction buffer contained 50 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.25 mM EDTA, 2.5 mM spermidine, and 200 µg/ml BSA. After a 16 (or 3) hour incubation of the PCR product (100 ng) + attP Donor plasmid (100 ng) +

-137-

GATEWAY™ BP Clonase™ Enzyme Mix + Destination Vector (100 ng), 2 µl of GATEWAY™ LR Clonase™ Enzyme Mix (per 10 µl reaction mix) was added and the mixture was incubated an additional 6 (or 2) hours at 25°C. Stop solution was then added as above and the mixture was incubated at 37°C as above and transformed by electroporation with 1 µl directly into electrocompetent host cells. Results of this series of experiments demonstrated that longer incubation times (16 hours vs. 3 hours for the BP Reaction, 6 hours vs. 2 hours for the LR Reaction) resulted in about twice as many colonies being obtained as for the shorter incubation times. With two independent genes, 10/10 colonies having the correct cloning patterns were obtained.

5

10

15

20

25

30

Alternative 2:

A standard BP Reaction under the reaction conditions described above for Alternative 1 was performed for 2 hours at 25°C. Following the BP Reaction, the following components were added to the reaction mixture in a total volume of 7 µl:

20 mM Tris-HCl, pH 7.5
100 mM NaCl
5 µg/ml Xis-His6
15% glycerol
~1000 ng of Destination Vector

The reaction mixture was then incubated for 2 hours at 25°C, and 2.5 µl of stop solution (containing 2 µg/ml proteinase K) was added and the mixture was incubated at 37°C for an additional 10 minutes. Chemically competent host cells were then transformed with 2 µl of the reaction mixture, or electrocompetent host cells (*e.g.*, EMax DH10B cells; Life Technologies, Inc.) were electroporated with 2 µl of the reaction mixture per 25-40 µl of cells. Following transformation, mixtures were diluted with SOC, incubated at 37°C, and plated as described above on media selecting for the selection markers on the Destination Vector and the Entry clone (B x P reaction product). Analogous results to those described for Alternative 1 were obtained with these reaction conditions -- a higher level of colonies containing correctly recombined reaction products were observed.

Example 17: Demonstration of a One-tube Transfer of a PCR Product (or Expression Clone) to Expression Clone via a Recombinational Cloning Reaction

5 Single-tube transfer of PCR product DNA or Expression Clones into Expression Clones by recombinational cloning has also been accomplished using a procedure modified from that described in Example 16. This procedure is as follows:

- 10 • Perform a standard BP (Gateway) Reaction (see Examples 9 and 10) in 20 µl volume at 25°C for 1 hour.

- 15 • After the incubation is over, take a 10 µl aliquot from the 20 µl total volume and add 1 µl of Proteinase K (2 mg/ml) and incubate at 37°C for 10 minutes. This first aliquot can be used for transformation and gel assay of BP reaction analysis. Plate BP reaction transformation on LB plates with **Kanamycin** (50 µg/ml).

- 20 • Add the following reagents to the remaining 10 µl aliquot of the BP reaction:

25 1 µl of 0.75 M NaCl
2 µl of destination vector (150 ng/µl)
4 µl of LR Clonase™ (after thawing and brief mixing)

- 30 • Mix all reagents well and incubate at 25°C for 3 hours. Stop the reaction at the end of incubation with 1.7 µl of Proteinase K (2 mg/ml) and incubate at 37°C for 10 minutes.

- Transform 2 µl of the completed reaction into 100 µl of competent cells. Plate 100 µl and 400 µl on LB plates with **Ampicillin** (100 µg/ml).

Notes:

- If your competent cells are less than 10⁸ CFU/µg, and you are concerned about getting enough colonies, you can improve the yield several fold by incubating the

-139-

BP reaction for 6-20 hours. Electroporation also can yield better colony output than chemical transformation.

5 •PCR products greater than about 5-6 kb show significantly lower cloning efficiency in the BP reaction. In this case, we recommend using longer incubation times for both BP and LR steps.

10 •If you want to move your insert gene into several destination vectors simultaneously, then scale up the initial BP reaction volume so that you have a 10 µl aliquot for adding each destination vector.

Example 18: Optimization of GATEWAY™ Clonase™ Enzyme Compositions

15 The enzyme compositions containing Int and IHF (for BP Reactions) were optimized using a standard functional recombinational cloning reaction (a BP reaction) between attB-containing plasmids and attP-containing plasmids, according to the following protocol:

Materials and Methods:

Substrates:

AttP - supercoiled pDONR201

AttB - linear ~ 1Kb [³H]PCR product amplified from pEZC7501

Proteins:

25 IntH6 -- His₆-carboxy- tagged λ Integrase

IHF -- Integration Host Factor

Clonase:

30 50 ng/µl IntH6 and 20 ng/µl IHF, admixed in 25 mM Tris- HCl (pH 7.5), 22 mM NaCl, 5 mM EDTA, 1 mg/ml BSA, 5 mM Spermidine, and 50% glycerol.

Reaction Mixture (total volume of 40 µl):

1000 ng AttP plasmid

600 ng AttB [³H] PCR product

8 µl Clonase (400 ng IntH6, 160 ng IHF) in 25 mM Tris-HCl (pH 7.5),

5 22 mM NaCl, 5 mM EDTA, 1 mg/ml BSA, 5 mM Spermidine, 5 mM DTT.

Reaction mixture was incubated for 1 hour at 25°C, 4 µl of 2 µg/µl proteinase K was added and mixture was incubated for an additional 20 minutes at 37°C. Mixture was then extracted with an equal volume of Phenol/Chloroform/Isoamyl alcohol. The aqueous layer was then collected, and 0.1 volumes of 3 M sodium acetate and 2 volumes of cold 100% ethanol were added. Tubes were then spun in a microcentrifuge at maximum RPM for 10 minutes at room temperature. Ethanol was decanted, and pellets were rinsed with 70% ethanol and re-centrifuged as above. Ethanol was decanted, and pellets were allowed to air dry for 5-10 minutes and then dissolved in 20 µl of 33 mM Tris-Acetate (pH 7.8), 66 mM potassium acetate, 10 mM magnesium acetate, 1 mM DTT, and 1mM ATP. 2 units of exonuclease V (*e.g.*, Plasmid Safe; EpiCentre, Inc., Madison, WI) was then added, and the mixture was incubated at 37°C for 30 minutes.

20 Samples were then TCA-washed by spotting 30 µl of reaction mixture onto a Whatman GF/C filter, washing filters once with 10% TCA + 1% NaPPi for 10 minutes, three times with 5% TCA for 5 minutes each, and twice with ethanol for 5 minutes each. Filters were then dried under a heat lamp, placed into a scintillation vial, and counted on a β liquid scintillation counter (LSC).

25 The principle behind this assay is that, after exonuclease V digestion, only double-stranded circular DNA survives in an acid-insoluble form. All DNA substrates and products that have free ends are digested to an acid-soluble form and are not retained on the filters. Therefore, only the ³H-labeled attB linear DNA which ends up in circular form after both inter- and intramolecular integration is complete is resistant to digestion and is recovered as acid-insoluble product. Optimal enzyme and buffer formulations in the Clonase compositions therefore are those that give the highest levels of circularized ³H-labeled attB-containing

sequences, as determined by highest cpm in the LSC. Although this assay was designed for optimization of GATEWAY™ BP Clonase™ Enzyme Mix compositions (Int + IHF), the same type of assay may be performed to optimize GATEWAY™ LR Clonase™ Enzyme Mix compositions (Int + IHF + Xis), except that the reaction mixtures would comprise 1000 ng of AttR (instead of AttP) and 600 ng of AttL (instead of AttB), and 40 ng of His₆-carboxy- tagged Xis (XisH6) in addition to the IntH6 and IHF.

Example 19: Testing Functionality of Entry and Destination Vectors

As part of assessment of the functionality of particular vectors of the invention, it is important to functionally test the ability of the vectors to recombine. This assessment can be carried out by performing a recombinational cloning reaction (as schematized in Figures 2, 4, and 5A and 5B, and as described herein and in commonly owned U.S. Application Nos. 08/486,139, filed June 7, 1995, 08/663,002, filed June 7, 1996 (now U.S. Patent No. 5,888,732), 09/005,476, filed January 12, 1998, and 09/177,387, filed October 23, 1998, the disclosures of all of which are incorporated by reference herein in their entireties), by transforming *E. coli* and scoring colony forming units. However, an alternative assay may also be performed to allow faster, more simple assessment of the functionality of a given Entry or Destination Vector by agarose gel electrophoresis. The following is a description of such an in vitro assay.

Materials and Methods:

Plasmid templates pEYC1301 (Figure 84) and pEYC1313 (Figure 85), each containing a single wild type att site, were used for the generation of PCR products containing attL or attR sites, respectively. Plasmid templates were linearized with *Afl*NI, phenol extracted, ethanol precipitated and dissolved in TE to a concentration of 1 ng/ μ l.

-142-

PCR primers (capital letters represent base changes from wildtype):

attL1 gggg agcct gc^TttttGtacAaa gttggcatta taaaaaagca ttgc

attL2 gggg agcct gc^TttCttGtacAaa gttggcatta taaaaaagca ttgc

attL right tg^Tgccggg aagcttagagt aa

5

attR1 gggg Acaag ttTgt^Aaaaaaagc tgaacgaga aacgtaaaat

attR2 gggg Acaag ttTgt^AaaGaaagc tgaacgaga aacgtaaaat

attR right ca gacggcatga tgaacctgaa

10

PCR primers were dissolved in TE to a concentration of 500 pmol/μl. Primer mixes were prepared, consisting of attL1 + attLright primers, attL2 + attLright primers, attR1 + attRight primers, and attR2 + attRight primers, each mix containing 20 pmol/μl of each primer.

PCR reactions:

15

1 μl plasmid template (1 ng)

1 μl primer pairs (20 pmoles of each)

3 μl of H₂O

45 μl of Platinum PCR SuperMix® (Life Technologies, Inc.)

20

Cycling conditions (performed in MJ thermocycler):

95°C/2 minutes

94°C/30 seconds

25 cycles of 58°C/30 seconds and 72°C/1.5 minutes

72°C/5 minutes

5°C/hold

25

The resulting attL PCR product was 1.5 kb, and the resulting attR PCR product was 1.0 kb.

30

PCR reactions were PEG/MgCl₂ precipitated by adding 150 μl H₂O and 100 μl of 3x PEG/ MgCl₂ solution followed by centrifugation. The PCR products were dissolved in 50 μl of TE. Quantification of the PCR product was performed by gel electrophoresis of 1 μl and was estimated to be 50-100 ng/μl.

Recombination reactions of PCR products containing attL or attR sites with GATEWAY™ plasmids was performed as follows:

5 8 µl of H₂O
 2 µl of attL or attR PCR product (100-200 ng)
 2 µl of GATEWAY™ plasmid (100 ng)
 4 µl of 5x Destination buffer
 4 µl of GATEWAY™ LR Clonase™ Enzyme Mix

10 20 µl total volume (the reactions can be scaled down to a 5 µl total volume by adjusting the volumes of the components to about ¼ of those shown above, while keeping the stoichiometries the same).

15 Clonase reactions were incubated at 25 °C for 2 hours. 2 µl of proteinase K (2 mg/ml) was added to stop the reaction. 10 µl was then run on a 1 % agarose gel. Positive control reactions were performed by reacting attL1 PCR product (1.0 kb) with attR1 PCR product (1.5 kb) and by similarly reacting attL2 PCR product with attR2 PCR product to observe the formation of a larger (2.5 kb) recombination product. Negative controls were similarly performed by reacting attL1 PCR product with attR2 PCR product and vice versa or reactions of attL PCR product with an attL plasmid, etc.

20 In alternative assays, to test attB Entry vectors, plasmids containing single attP sites were used. Plasmids containing single att sites could also be used as recombination substrates in general to test all Entry and Destination vectors (*i.e.*, those containing attL, attR , attB and attP sites). This would eliminate the need to do PCR reactions.

25 Results:

30 Destination and Entry plasmids when reacted with appropriate att-containing PCR products formed linear recombinant molecules that could be easily visualized on an agarose gel when compared to control reactions containing no attL or attR PCR product. Thus, the functionality of Destination and Entry vectors constructed according to the invention may be determined either by carrying out the Destination or Entry recombination reactions as depicted in

-144-

Figures 2, 4, and 5A and 5B, or more rapidly by carrying out the linearization assay described in this Example.

Example 20: PCR Cloning Using Universal Adapter-Primers

As described herein, the cloning of PCR products using the GATEWAY™ PCR Cloning System (Life Technologies, Inc.; Rockville, MD) requires the addition of attB sites (attB1 and attB2) to the ends of gene-specific primers used in the PCR reaction. The protocols described in the preceding Examples suggest that the user add 29 bp (25 bp containing the attB site plus four G residues) to the gene-specific primer. It would be advantageous to high volume users of the GATEWAY™ PCR Cloning System to generate attB-containing PCR product using universal attB adapter-primers in combination with shorter gene-specific primers containing a specified overlap to the adapters. The following experiments demonstrate the utility of this strategy using universal attB adapter-primers and gene-specific primers containing overlaps of various lengths from 6 bp to 18 bp. The results demonstrate that gene-specific primers with overlaps of 10 bp to 18 bp can be used successfully in PCR amplifications with universal attB adapter-primers to generate full-length PCR products. These PCR products can then be successfully cloned with high fidelity in a specified orientation using the GATEWAY™ PCR Cloning System.

Methods and Results:

To demonstrate that universal attB adapter-primers can be used with gene-specific primers containing partial attB sites in PCR reactions to generate full-length PCR product, a small 256 bp region of the human hemoglobin cDNA was chosen as a target so that intermediate sized products could be distinguished from full-length products by agarose gel electrophoresis.

The following oligonucleotides were used:

B1-Hgb: GGGG ACA AGT TTG TAC AAA AAA GCA GGC T-5' -Hgb*
B2-Hgb: GGGG ACC ACT TTG TAC AAG AAA GCT GGG T-3' -Hgb**

-145-

	18B1-Hgb:	TG TAC AAA AAA GCA GGC T-5'-Hgb
	18B2-Hgb:	TG TAC AAG AAA GCT GGG T-3'-Hgb
	15B1-Hgb:	AC AAA AAA GCA GGC T-5'-Hgb
	15B2-Hgb:	AC AAG AAA GCT GGG T-3'-Hgb
5	12B1-Hgb:	AA AAA GCA GGC T-5'-Hgb
	12B2-Hgb:	AG AAA GCT GGG T-3'-Hgb
	11B1-Hgb:	A AAA GCA GGC T-5'-Hgb
	11B2-Hgb:	G AAA GCT GGG T-3'-Hgb
	10B1-Hgb:	AAA GCA GGC T-5'-Hgb
10	10B2-Hgb:	AAA GCT GGG T-3'-Hgb
	9B1-Hgb:	AA GCA GGC T-5'-Hgb
	9B2-Hgb:	AA GCT GGG T-3'-Hgb
	8B1-Hgb:	A GCA GGC T-5'-Hgb
	8B2-Hgb:	A GCT GGG T-3'-Hgb
15	7B1-Hgb:	GCA GGC T-5'-Hgb
	7B2-Hgb:	GCT GGG T-3'-Hgb
	6B1-Hgb:	CA GGC T-5'-Hgb
	6B2-Hgb:	CT GGG T-3'-Hgb

20 attB1 adapter: GGGG ACA AGT TTG TAC AAA AAA GCA GGC T
attB2 adapter: GGGG ACC ACT TTG TAC AAG AAA GCT GGG T

* -5'-Hgb = GTC ACT AGC CTG TGG AGC AAG A

** -3'-Hgb = AGG ATG GCA GAG GGA GAC GAC A

25 The aim of these experiments was to develop a simple and efficient universal adapter PCR method to generate attB containing PCR products suitable for use in the GATEWAY™ PCR Cloning System. The reaction mixtures and thermocycling conditions should be simple and efficient so that the universal adapter PCR method could be routinely applicable to any PCR product cloning application.

30 PCR reaction conditions were initially found that could successfully amplify predominately full-length PCR product using gene-specific primers containing 18bp and 15 bp overlap with universal attB primers. These conditions are outlined below:

-146-

10 pmoles of gene-specific primers
10 pmoles of universal attB adapter-primers
1 ng of plasmid containing the human hemoglobin cDNA.
100 ng of human leukocyte cDNA library DNA.
5 5 µl of 10x PLATINUM Taq HiFi® reaction buffer (Life Technologies, Inc.)
2 µl of 50 mM MgSO₄
1 µl of 10 mM dNTPs
0.2 µl of PLATINUM Taq HiFi® (1.0 unit)
H₂O to 50 µl total reaction volume

10

Cycling conditions:

15 25 x | 95°C/5 min
 | 94°C/15 sec
 | 50°C/30 sec
 | 68°C/1 min
 | 68°C/5 min
 | 5°C/hold

20 To assess the efficiency of the method, 2 µl (1/25) of the 50 µl PCR reaction was electrophoresed in a 3 % Agarose-1000 gel. With overlaps of 12 bp or less, smaller intermediate products containing one or no universal attB adapter predominated the reactions. Further optimization of PCR reaction conditions was obtained by titrating the amounts of gene-specific primers and universal attB adapter-primers. The PCR reactions were set up as outlined above except that the
25 amounts of primers added were:

0, 1, 3 or 10 pmoles of gene-specific primers
0, 10, 30 or 100 pmoles of adapter-primers

-147-

Cycling conditions:

5 25 x |
 95°C/3 min
 94°C/15 sec
 50°C/45 sec
 68°C/1 min
 68°C/5 min
 5°C/hold

10 The use of limiting amounts of gene-specific primers (3 pmoles) and excess adapter-primers (30 pmoles) reduced the amounts of smaller intermediate products. Using these reaction conditions the overlap necessary to obtain predominately full-length PCR product was reduced to 12 bp. The amounts of gene-specific and adapter-primers was further optimized in the following PCR reactions:

15

0, 1, 2 or 3 pmoles of gene-specific primers

0, 30, 40 or 50 pmoles of adapter-primers

Cycling conditions:

20 25 x |
 95°C/3 min
 94°C/15 sec
 48°C/1 min
 68°C/1 min
 68°C/5 min
 5°C/hold

25

30

The use of 2 pmoles of gene-specific primers and 40 pmoles of adapter-primers further reduced the amounts of intermediate products and generated predominately full-length PCR products with gene-specific primers containing an 11 bp overlap. The success of the PCR reactions can be assessed in any PCR application by performing a no adapter control. The use of limiting amounts of gene-specific primers should give faint or barely visible bands when 1/25 to 1/10 of the PCR reaction is electrophoresed on a standard agarose gel. Addition of the

-148-

universal attB adapter-primers should generate a robust PCR reaction with a much higher overall yield of product.

PCR products from reactions using the 18 bp, 15 bp, 12 bp, 11 bp and 10 bp overlap gene-specific primers were purified using the CONCERT® Rapid 5 PCR Purification System (PCR products greater than 500 bp can be PEG precipitated). The purified PCR products were subsequently cloned into an attP containing plasmid vector using the GATEWAY™ PCR Cloning System (Life Technologies, Inc.; Rockville, MD) and transformed into *E. coli*. Colonies were selected and counted on the appropriate antibiotic media and screened by PCR for 10 correct inserts and orientation.

Raw PCR products (unpurified) from the attB adapter PCR of a plasmid clone of part of the human beta-globin (Hgb) gene were also used in GATEWAY™ PCR Cloning System reactions. PCR products generated with the full attB B1/B2-Hgb, the 12B1/B2, 11B1/B2 and 10B1/B2 attB overlap Hgb 15 primers were successfully cloned into the GATEWAY™ pENTR21 attP vector (Figure 49). 24 colonies from each ($24 \times 4 = 96$ total) were tested and each was verified by PCR to contain correct inserts. The cloning efficiency expressed as cfu/ml is shown below:

Primer Used	cfu/ml
Hgb full attB	8,700
Hgb 12 bp overlap	21,000
Hgb 11 bp overlap	20,500
Hgb 10 bp overlap	13,500
GEP control	1,300

Interestingly, the overlap PCR products cloned with higher efficiency than did the full attB PCR product. Presumably, and as verified by visualization on agarose gel, the adapter PCR products were slightly cleaner than was the full attB 30 PCR product. The differences in colony output may also reflect the proportion of PCR product molecules with intact attB sites.

Using the attB adapter PCR method, PCR primers with 12 bp attB overlaps were used to amplify cDNAs of different sizes (ranging from 1 to 4 kb)

5

from a leukocyte cDNA library and from first strand cDNA prepared from HeLa total RNA. While three of the four cDNAs were able to be amplified by this method, a non-specific amplification product was also observed that under some conditions would interfere with the gene-specific amplification. This non-specific product was amplified in reactions containing the attB adapter-primers alone without any gene-specific overlap primers present. The non-specific amplification product was reduced by increasing the stringency of the PCR reaction and lowering the attB adapter PCR primer concentration.

10

15

20

25

These results indicate that the adapter-primer PCR approach described in this Example will work well for cloned genes. These results also demonstrate the development of a simple and efficient method to amplify PCR products that are compatible with the GATEWAY™ PCR Cloning System that allows the use of shorter gene-specific primers that partially overlap universal attB adapter-primers. In routine PCR cloning applications, the use of 12 bp overlaps is recommended. The methods described in this Example can thus reduce the length of gene-specific primers by up to 17 residues or more, resulting in a significant savings in oligonucleotide costs for high volume users of the GATEWAY™ PCR Cloning System. In addition, using the methods and assays described in this Example, one of ordinary skill can, using only routine experimentation, design and use analogous primer-adapters based on or containing other recombination sites or fragments thereof, such as *attL*, *attR*, *attP*, *lox*, FRT, etc.

Example 21: Mutational Analysis of the Bacteriophage Lambda *attL* and *attR* Sites: Determinants of *att* Site Specificity in Site-specific Recombination

30

To investigate the determinants of *att* site specificity, the bacteriophage lambda *attL* and *attR* sites were systematically mutagenized. As noted herein, the determinants of specificity have previously been localized to the 7 bp overlap region (TTTATAC, which is defined by the cut sites for the integrase protein and is the region where strand exchange takes place) within the 15 bp core region (GCTTTTTATACTAA) which is identical in all four lambda *att* sites, *attB*, *attP*, *attL* and *attR*. This core region, however, has not heretofore been systematically

-150-

mutagenized and examined to define precisely which mutations produce unique changes in *att* site specificity.

Therefore, to examine the effect of *att* sequence on site specificity, mutant *attL* and *attR* sites were generated by PCR and tested in an *in vitro* site-specific recombination assay. In this way all possible single base pair changes within the 7 bp overlap region of the core *att* site were generated as well as five additional changes outside the 7 bp overlap but within the 15 bp core *att* site. Each *attL* PCR substrate was tested in the *in vitro* recombination assay with each of the *attR* PCR substrates.

10

Methods

15

To examine both the efficiency and specificity of recombination of mutant *attL* and *attR* sites, a simple *in vitro* site-specific recombination assay was developed. Since the core regions of *attL* and *attR* lie near the ends of these sites, it was possible to incorporate the desired nucleotide base changes within PCR primers and generate a series of PCR products containing mutant *attL* and *attR* sites. PCR products containing *attL* and *attR* sites were used as substrates in an *in vitro* reaction with GATEWAY™ LR Clonase™ Enzyme Mix (Life Technologies, Inc.; Rockville, MD). Recombination between a 1.5 kb *attL* PCR product and a 1.0 kb *attR* PCR product resulted in a 2.5 kb recombinant molecule that was monitored using agarose gel electrophoresis and ethidium bromide staining.

20

25

30

Plasmid templates pEYC1301 (Figure 84) and pEYC1313 (Figure 85), each containing a single wild type *attL* or *attR* site, respectively, were used for the generation of recombination substrates. The following list shows primers that were used in PCR reactions to generate the *attL* PCR products that were used as substrates in L x R Clonase reactions (capital letters represent changes from the wild-type sequence, and the underline represents the 7 bp overlap region within the 15 bp core *att* site; a similar set of PCR primers was used to prepare the *attR* PCR products containing matching mutations):

-151-

GATEWAY™ sites (note: attL2 sequence in GATEWAY™ plasmids begins "accca" while the attL2 site in this example begins "agcct" to reflect wild-type attL outside the core region.):

5

attL1: gggg agcct gctttttGtacAaa gttggcatta taaaaa-
 agca ttgc

10

attL2: gggg agcct gctttCttGtacAaa gttggcatta taaaaa-
 agca ttgc

15

Wild-type:

attL0: gggg agcct gctttttataactaa gttggcatta taaaaa-
 agca ttgc

20

Single base changes from wild-type:
attLT1A: gggg agcct gctttAttataactaa gttggcatta taaaaa-
 agca ttgc

25

attLT1C: gggg agcct gctttCttataactaa gttggcatta taaaaa-
 agca ttgc

30

attLT1G: gggg agcct gctttGttataactaa gttggcatta taaaaa-
 agca ttgc

35

attLT2A: gggg agcct gctttAtataactaa gttggcatta taaaaa-
 agca ttgc

attLT2C: gggg agcct gctttCtataactaa gttggcatta taaaaa-
 agca ttgc

attLT2G: gggg agcct gctttGtataactaa gttggcatta taaaaa-
 aagca ttgc

-152-

attLT3A: gggg agcct gcttttAataactaa gttggcatta taaaa-
aagca ttgc

5 attLT3C: gggg agcct gcttttCataactaa gttggcatta taaaa-
aagca ttgc

10 attLT3G: gggg agcct gcttttGataactaa gttggcatta taaaa-
aagca ttgc

attLA4C: gggg agcct gctttttCtactaa gttggcatta taaaa-
aagca ttgc

15

attLA4G: gggg agcct gctttttGtactaa gttggcatta taaaa-
aagca ttgc

20

attLA4T: gggg agcct gctttttTtactaa gttggcatta taaaa-
aagca ttgc

25

attLT5A: gggg agcct gcttttttaAactaa gttggcatta taaaa-
aagca ttgc

30

attLT5C: gggg agcct gcttttttaCactaa gttggcatta taaaa-
aagca ttgc

35

attLA6C: gggg agcct gctttttatCctaa gttggcatta taaaa-
aagca ttgc

-153-

attLA6G: gggg agcct gctttttatGctaa gttggcatta taaaa-
aagca ttgc

5 attLA6T: gggg agcct gctttttatTctaa gttggcatta taaaa-
aagca ttgc

10 attLC7A: gggg agcct gctttttataAtaa gttggcatta taaaa-
aagca ttgc

15 attLC7G: gggg agcct gctttttataGtaa gttggcatta taaaa-
aagca ttgc

attLC7T: gggg agcct gctttttataTtaa gttggcatta taaaa-
aagca ttgc

Single base changes outside of the 7 bp overlap:

20 attL8: gggg agcct Actttttataactaa gttggcatta taaaa-
aagca ttgc

25 attL9: gggg agcct gcCttttataactaa gttggcatta taaaaa-
agca ttgc

attL10: gggg agcct gcttCttataactaa gttggcatta taaaaa-
agca ttgc

30 attL14: gggg agcct gctttttatacCaa gttggcatta taaaaaa-
agca ttgc

35 attL15: gggg agcct gctttttatactaG gttggcatta taaaaa-
agca ttgc

-154-

Note: additional vectors wherein the first nine bases are gggg agcca (*i.e.*, substituting an adenine for the thymine in the position immediately preceding the 15-bp core region), which may or may not contain the single base pair substitutions (or deletions) outlined above, can also be used in these experiments.

5

Recombination reactions of *attL*- and *attR*-containing PCR products was performed as follows:

- 10 8 µl of H₂O
 2 µl of *attL* PCR product (100 ng)
 2 µl of *attR* PCR product (100 ng)
 4 µl of 5x buffer
 4 µl of GATEWAY™ LR Clonase™ Enzyme Mix
 20 µl total volume

15

Clonase reactions were incubated at 25°C for 2 hours.

2 µl of 10X Clonase stop solution (proteinase K, 2 mg/ml) were added to stop the reaction.

10 µl were run on a 1 % agarose gel.

20

Results

25

Each *attL* PCR substrate was tested in the *in vitro* recombination assay with each of the *attR* PCR substrates. Changes within the first three positions of the 7 bp overlap (TTTATAC) strongly altered the specificity of recombination. These mutant *att* sites each recombined as well as the wild-type, but only with their cognate partner mutant; they did not recombine detectably with any other *att* site mutant. In contrast, changes in the last four positions (TTTATAC) only partially altered specificity; these mutants recombined with their cognate mutant as well as wild-type *att* sites and recombined partially with all other mutant *att* sites except for those having mutations in the first three positions of the 7 bp

30

-155-

overlap. Changes outside of the 7 bp overlap were found not to affect specificity of recombination, but some did influence the efficiency of recombination.

Based on these results, the following rules for *att* site specificity were determined:

- 5 • Only changes within the 7 bp overlap affect specificity.
- Changes within the first 3 positions strongly affect specificity.
- Changes within the last 4 positions weakly affect specificity.

Mutations that affected the overall efficiency of the recombination reaction were also assessed by this method. In these experiments, a slightly increased (less than 2-fold) recombination efficiency with *att*L T1A and *att*LC7T substrates was observed when these substrates were reacted with their cognate *att*R partners. Also observed were mutations that decreased recombination efficiency (approximately 2-3 fold), including *att*LA6G, *att*L14 and *att*L15. These mutations presumably reflect changes that affect Int protein binding at the core *att* site.

The results of these experiments demonstrate that changes within the first three positions of the 7 bp overlap (TTTATAC) strongly altered the specificity of recombination (*i.e.*, *att* sequences with one or more mutations in the first three thymidines would only recombine with their cognate partners and would not cross-react with any other *att* site mutation). In contrast, mutations in the last four positions (TTTATAC) only partially altered specificity (*i.e.*, *att* sequences with one or more mutations in the last four base positions would cross-react partially with the wild-type *att* site and all other mutant *att* sites, except for those having mutations in one or more of the first three positions of the 7 bp overlap). Mutations outside of the 7 bp overlap were not found to affect specificity of recombination, but some were found to influence (*i.e.*, to cause a decrease in) the efficiency of recombination.

Example 22: Discovery of Att Site Mutations That Increase the Cloning Efficiency of GATEWAY™ Cloning Reactions

In experiments designed to understand the determinants of *att* site specificity, point mutations in the core region of *att*L were made. Nucleic acid molecules containing these mutated *att*L sequences were then reacted in an LR

reaction with nucleic acid molecules containing the cognate *attR* site (*i.e.*, an *attR* site containing a mutation corresponding to that in the *attL* site), and recombinational efficiency was determined as described above. Several mutations located in the core region of the att site were noted that either slightly increased (less than 2-fold) or decreased (between 2-4-fold) the efficiency of the recombination reaction (Table 3).

Table 3. Effects of attL mutations on Recombination Reactions.

	<u>Site</u>	<u>Sequence</u>	<u>Effect on Recombination</u>
10	attL0	agcctgcttttataactaaga t ttggcatta	
	attL5	agcctgctt A tataactaaga t ttggcatta	slightly increased
	attL6	agcctgcttttata T taaga t ttggcatta	slightly increased
15	attL13	agcctgcttttatGctaaga t ttggcatta	decreased
	attL14	agcctgcttttataccCaaga t ttggcatta	decreased
	attL15	agcctgcttttataactaGgttggcatta	decreased
20	consensus	CAACTTnnTnnnAnnAAGTTG	

It was also noted that these mutations presumably reflected changes that either increased or decreased, respectively, the relative affinity of the integrase protein for binding the core att site. A consensus sequence for an integrase core-binding site (CAACTTNNT) has been inferred in the literature but not directly tested (see, *e.g.*, Ross and Landy, *Cell* 33:261-272 (1983)). This consensus core integrase-binding sequence was established by comparing the sequences of each of the four core att sites found in *attP* and *attB* as well as the sequences of five non-att sites that resemble the core sequence and to which integrase has been shown to bind in vitro. These experiments suggest that many more att site mutations might be identified which increase the binding of integrase to the core att site and thus increase the efficiency of GATEWAY™ cloning reactions.

Example 23: Effects of Core Region Mutations on Recombination Efficiency

To directly compare the cloning efficiency of mutations in the att site core region, single base changes were made in the attB2 site of an attB1-TET-attB2 PCR product. Nucleic acid molecules containing these mutated *attB2* sequences were then reacted in a BP reaction with nucleic acid molecules containing non-cognate *attP* sites (*i.e.*, wildtype *attP2*), and recombinational efficiency was determined as described above. The cloning efficiency of these mutant attB2 containing PCR products compared to standard attB1-TET-attB2 PCR product are shown in Table 4.

5

10

Table 4. Efficiency of Recombination With Mutated attB2 Sites.

	<u>Site</u>	<u>Sequence</u>	<u>Mutation</u>	<u>Cloning Efficiency</u>
15	attB0	tcaagtt <u>agtataaaaa</u> aggct		
	attB1	ggggaca <u>agttgtacaaaaaa</u> aggct		
	attB2	ggggacc <u>acttgtacaaga</u> agctgggt		100%
	attB2.1	gggg <u>A</u> c <u>a</u> c <u>t</u> t <u>gtacaaga</u> agctgggt	C→A	40%
	attB2.2	gggg <u>a</u> c <u>A</u> c <u>t</u> t <u>gtacaaga</u> agctgggt	C→A	131%
20	attB2.3	gggg <u>acc</u> <u>C</u> <u>t</u> <u>t</u> <u>gtacaaga</u> agctgggt	A→C	4%
	attB2.4	gggg <u>acca</u> <u>A</u> <u>tt</u> <u>gtacaaga</u> agctgggt	C→A	11%
	attB2.5	gggg <u>accac</u> <u>G</u> <u>t</u> <u>gtacaaga</u> agctgggt	T→G	4%
	attB2.6	gggg <u>accact</u> <u>G</u> <u>t</u> <u>gtacaaga</u> agctgggt	T→G	6%
	attB2.7	gggg <u>accactt</u> <u>G</u> <u>gtacaaga</u> agctgggt	T→G	1%
25	attB2.8	gggg <u>accactt</u> <u>T</u> <u>tacaaga</u> agctgggt	G→T	0.5%

30

As noted above, a single base change in the attB2.2 site increased the cloning efficiency of the attB1-TET-attB2.2 PCR product to 131% compared to the attB1-TET-attB2 PCR product. Interestingly, this mutation changes the integrase core binding site of attB2 to a sequence that matches more closely the proposed consensus sequence.

Additional experiments were performed to directly compare the cloning efficiency of an attB1-TET-attB2 PCR product with a PCR product that contained attB sites containing the proposed consensus sequence (*see Example 22*) of an integrase core binding site. The following attB sites were used to amplify attB-TET PCR products:

attB1 ggggacaaggtttgtacaaaaaaagcaggct
 attB1.6 ggggacaaCtttgtacaaaaaaagTTggct
 attB2 ggggaccacttgtacaqaaagctgggt
 attB2.10 ggggacAacttgtacaqaaagTtgggt

BP reactions were carried out between 300 ng (100 fmoles) of pDONR201 (Figure 49A) with 80 ng (80 fmoles) of attB-TET PCR product in a 20 μ l volume with incubation for 1.5 hrs at 25°C, creating pENTR201-TET Entry clones. A comparison of the cloning efficiencies of the above-noted attB sites in BP reactions is shown in Table 5.

Table 5. Cloning efficiency of BP Reactions.

PCR product	CFU/ml	Fold Increase
B1-tet-B2	7,500	
B1.6-tet-B2	12,000	1.6 x
B1-tet-B2.10	20,900	2.8 x
B1.6-tet-B2.10	30,100	4.0 x

These results demonstrate that attB PCR products containing sequences that perfectly match the proposed consensus sequence for integrase core binding sites can produce Entry clones with four-fold higher efficiency than standard Gateway attB1 and attB2 PCR products.

The entry clones produced above were then transferred to pDEST20 (Figure 40A) via LR reactions (300 ng (64 fmoles) pDEST20 mixed with 50 ng (77 fmoles) of the respective pENTR201-TET Entry clone in 20 μ l volume; incubated for 1 hr incubation at 25°C). The efficiencies of cloning for these reactions are compared in Table 6.

Table 6. Cloning Efficiency of LR Reactions.

pENTR201-TET x pDEST20	CFU/ml	Fold Increase
L1-tet-L2	5,800	
L1.6-tet-L2	8,000	1.4
L1-tet-L2.10	10,000	1.7
L1.6-tet-L2.10	9,300	1.6

5

10

15

These results demonstrate that the mutations introduced into attB1.6 and attB2.10 that transfer with the gene into entry clones slightly increase the efficiency of LR reactions. Thus, the present invention encompasses not only mutations in *attB* sites that increase recombination efficiency, but also to the corresponding mutations that result in the *attL* sites created by the BP reaction.

To examine the increased cloning efficiency of the attB1.6-TET-attB2.10 PCR product over a range of PCR product amounts, experiments analogous to those described above were performed in which the amount of attB PCR product was titrated into the reaction mixture. The results are shown in Table 7.

20

25

Table 7. Titration of attB PCR products.

Amount of attB PCR product (ng)	PCR product	CFU/ml	Fold Increase
20	attB1-TET-attB2	3,500	6.1
	attB1.6-TET-attB2.10	21,500	
50	attB1-TET-attB2	9,800	5.0
	attB1.6-TET-attB2.10	49,000	
100	attB1-TET-attB2	18,800	2.8
	attB1.6-TET-attB2.10	53,000	
200	attB1-TET-attB2	19,000	2.5
	attB1.6-TET-attB2.10	48,000	

30

These results demonstrate that as much as a six-fold increase in cloning efficiency is achieved with the attB1.6-TET-attB2.10 PCR product as compared to the standard attB1-TET-attB2 PCR product at the 20 ng amount.

Example 24: Determination of attB Sequence Requirements for Optimum Recombination Efficiency

To examine the sequence requirements for attB and to determine which attB sites would clone with the highest efficiency from populations of degenerate attB sites, a series of experiments was performed. Degenerate PCR primers were designed which contained five bases of degeneracy in the B-arm of the attB site. These degenerate sequences would thus transfer with the gene into Entry clone in BP reactions and subsequently be transferred with the gene into expression clones in LR reactions. The populations of degenerate attB and attL sites could thus be cycled from attB to attL back and forth for any number of cycles. By altering the reaction conditions at each transfer step (for example by decreasing the reaction time and/or decreasing the concentration of DNA) the reaction can be made increasingly more stringent at each cycle and thus enrich for populations of attB and attL sites that react more efficiently.

The following degenerate PCR primers were used to amplify a 500 bp fragment from pUC18 which contained the lacZ alpha fragment (only the attB portion of each primer is shown):

20	attB1	GGGG ACAAGTTT <u>GTACAAA</u> AAAGC AGGCT
	attB1n16-20	GGGG ACAAGTTT <u>GTACAAA</u> nnnnn AGGCT
	attB1n21-25	GGGG ACAAGTTT <u>GTACAAA</u> AAAGC nnnnn
25	attB2	GGGG ACCACTT <u>GTACAAG</u> AAAGC TGGGT
	attB2n16-20	GGGG ACCACTT <u>GTACAAG</u> nnnnn TGGGT
	attB2n21-25	GGGG ACCACTT <u>GTACAAG</u> AAAGC nnnnn

The starting population size of degenerate att sites is 4^5 or 1024 molecules. Four different populations were transferred through two BP reactions and two LR reactions. Following transformation of each reaction, the population of transformants was amplified by growth in liquid media containing the appropriate selection antibiotic. DNA was prepared from the population of clones by alkaline

-161-

lysis miniprep and used in the next reaction. The results of the BP and LR cloning reactions are shown below.

BP-1, overnight reactions

	cfu/ml	percent of control
attB1-LacZa-attB2	78,500	100 %
attB1n16-20-LacZa-attB2	1,140	1.5 %
attB1n21-25-LacZa-attB2	11,100	14 %
attB1-LacZa-attB2n16-20	710	0.9 %
attB1-LacZa-attB2n21-25	16,600	21 %

LR-1, pENTR201-LacZa x pDEST20/*EcoRI*, 1hr reactions

	cfu/ml	percent of control
attL1-LacZa-attL2	20,000	100 %
attL1n16-20-LacZa-attL2	2,125	11 %
attL1n21-25-LacZa-attL2	2,920	15 %
attL1-LacZa-attL2n16-20	3,190	16 %
attL1-LacZa-attL2n21-25	1,405	7 %

BP-2, pEXP20-LacZa/*ScalI* x pDONR 201, 1hr reactions

	cfu/ml	percent of control
attB1-LacZa-attB2	48,600	100 %
attB1n16-20-LacZa-attB2	22,800	47 %
attB1n21-25-LacZa-attB2	31,500	65 %
attB1-LacZa-attB2n16-20	42,400	87 %
attB1-LacZa-attB2n21-25	34,500	71 %

LR-2, pENTR201-LacZa x pDEST6/*NcoI*, 1hr reactions

	cfu/ml	percent of control
attL1-LacZa-attL2	23,000	100 %
attL1n16-20-LacZa-attL2	49,000	213 %
attL1n21-25-LacZa-attL2	18,000	80 %
attL1-LacZa-attL2n16-20	37,000	160 %
attL1-LacZa-attL2n21-25	57,000	250 %

35

These results demonstrate that at each successive transfer, the cloning efficiency of the entire population of att sites increases, and that there is a great deal of flexibility in the definition of an *attB* site. Specific clones may be isolated from the above reactions, tested individually for recombination efficiency, and

sequenced. Such new specificities may then be compared to known examples to guide the design of new sequences with new recombination specificities. In addition, based on the enrichment and screening protocols described herein, one of ordinary skill can easily identify and use sequences in other recombination sites, e.g., other *att* sites, *lox*, FRT, etc., that result in increased specificity in the recombination reactions using nucleic acid molecules containing such sequences.

5

Example 25: Design of att Site PCR Adapter-Primers

10

Additional studies were performed to design gene-specific primers with 12bp of attB1 and attB2 at their 5'-ends. The optimal primer design for *att*-containing primers is the same as for any PCR primers: the gene-specific portion of the primers should ideally have a Tm of > 50°C at 50 mM salt (calculation of Tm is based on the formula $59.9 + 41(\%GC) - 675/n$).

15

Primers:

12bp attB1: AA AAA GCA GGC TNN - forward gene-specific primer

20

12bp attB2: A GAA AGC TGG GTN - reverse gene-specific primer

attB1 adapter primer: GGGGACAAGTTGTACAAAAAAGCAGGCT

attB2 adapter primer: GGGGACCCTTGTACAAGAAAGCTGGGT

25

Protocol:

- (1) Mix 200 ng of cDNA library or 1 ng of plasmid clone DNA (alternatively, genomic DNA or RNA could be used) with 10 pmoles of gene specific primers in a 50 µl PCR reaction, using one or more polypeptides having DNA polymerase activity such as those described herein. (The addition of greater than 10 pmoles of gene-specific primers can decrease the yield of attB PCR product. In addition, if RNA is used, a standard reverse transcriptase-PCR (RT-

30

PCR) protocol should be followed; *see, e.g.*, Gerard, G.F., *et al.*, *FOCUS* 11:60 (1989); Myers, T.W., and Gelfand, D.H., *Biochem.* 30:7661 (1991); Freeman, W.N., *et al.*, *BioTechniques* 20:782 (1996); and U.S. Application No. 09/064,057, filed April 22, 1998, the disclosures of all of which are incorporated herein by reference.)

5

1st PCR profile:

- (a) 95°C for 3 minutes
- (b) 10 cycles of:
 - (i) 94°C for 15 seconds
 - (ii) **50°C*** for 30 seconds
 - (iii) 68°C for 1 minute/kb of target amplicon
- (c) 68°C for 5 minutes
- (d) 10°C hold

15

*The optimal annealing temperature is determined by the calculated Tm of the gene-specific part of the primer.

20

(2) Transfer 10 µl to a 40 µl PCR reaction mix containing 35 pmoles each of the attB1 and attB2 adapter primers.

2nd PCR profile:

- (a) 95°C for 1 minute
- (b) 5 cycles of:
 - (i) 94°C for 15 seconds
 - (ii) **45°C*** for 30 seconds
 - (iii) 68°C for 1 minute/kb of target amplicon
- (c) 15-20 cycles** of:
 - (i) 94°C for 15 seconds
 - (ii) **55°C*** for 30 seconds

30

- (iii) 68°C for 1 minute/kb of target amplicon
 (d) 68°C for 5 minutes
 (e) 10°C hold

5 *The optimal annealing temperature is determined by the calculated Tm of the gene-specific part of the primer.

**15 cycles is sufficient for low complexity targets.

Notes:

- 10 1. It is useful to perform a no-adapter primer control to assess the yield of attB PCR product produced.
 2. Linearized template usually results in slightly greater yield of PCR product.

15

Example 26: One-Tube Recombinational Cloning Using the GATEWAY™ Cloning System

20 To provide for easier and more rapid cloning using the GATEWAY™ cloning system, we have designed a protocol whereby the BP and LR reactions may be performed in a single tube (a "one-tube" protocol). The following is an example of such a one-tube protocol; in this example, an aliquot of the BP reaction is taken before adding the LR components, but the BP and LR reactions may be performed in a one-tube protocol without first taking the BP aliquot:

25

<u>Reaction Component</u>	<u>Volume</u>
attB DNA (100-200 ng/25 µl reaction)	1-12.5 µl
attP DNA (pDONR201) 150 ng/µl	2.5 µl
5X BP Reaction Buffer	5.0 µl
Tris-EDTA	(to 20 µl)
<u>BP Clonase</u>	<u>5.0 µl</u>
Total vol.	25 µl

After the above components were mixed in a single tube, the reaction mixtures were incubated for 4 hours at 25°C. A 5 µl aliquot of reaction mixture was removed, and 0.5 µl of 10X stop solution was added to this reaction mixture and incubated for 10 minutes at 37°C. Competent cells were then transformed with 1-2 µl of the BP reaction per 100 µl of cells; this transformation yielded colonies of Entry Clones for isolation of individual Entry Clones and for quantitation of the BP Reaction efficiency.

To the remaining 20 µl of BP reaction mixture, the following components of the LR reaction were added:

<u>Reaction Component</u>	<u>Final Concentration</u>	<u>Volume Added</u>
NaCl	0.75 M	1 µl
Destination Vector	150 ng/ul	3 µl
<u>LR Clonase</u>		<u>6 µl</u>
Total vol.		30 µl

After the above components were mixed in a single tube, the reaction mixtures were incubated for 2 hours at 25°C. 3 µl of 10X stop solution was added, and the mixture was incubated for 10 minutes at 37°C. Competent cells were then transformed with 1-2 µl of the reaction mixture per 100 µl of cells

Notes:

1. If desired, the Destination Vector can be added to the initial BP reaction.
2. The reactions can be scaled down by 2x, if desired.
3. Shorter incubation times for the BP and/or LR reactions can be used (scaled to the desired cloning efficiencies of the reaction), but a lower number of colonies will typically result.
4. To increase the number of colonies obtained by several fold, incubate the BP reaction for 6-20 hours and increase the LR reaction to 3 hours. Electroporation also works well with 1-2 ul of the PK-treated reaction mixture.

-166-

5. PCR products greater than about 5 kb may show significantly lower cloning efficiency in the BP reaction. In this case, we recommend using a one-tube reaction with longer incubation times (*e.g.*, 6-18 hours) for both the BP and LR steps.

5

Example 27: Relaxation of Destination Vectors During the LR Reaction

10

To further optimize the LR Reaction, the composition of the LR Reaction buffer was modified from that described above and this modified buffer was used in a protocol to examine the impact of enzymatic relaxation of Destination Vectors during the LR Reaction.

15

LR Reactions were set up as usual (*see, e.g.*, Example 6), except that 5X BP Reaction Buffer (*see* Example 5) was used for the LR Reaction. To accomplish Destination Vector relaxation during the LR Reaction, Topoisomerase I (Life Technologies, Inc., Rockville, MD; Catalogue No. 38042-016) was added to the reaction mixture at a final concentration of ~15U per μ g of total DNA in the reaction (for example, for reaction mixtures with a total of 400ng DNA in the 20 μ l LR Reaction, ~6units of Topoisomerase I was added).

Reaction mixtures were set up as follows:

20

25

<u>Reaction Component</u>	<u>Volume</u>
ddH ₂ O	6.5 μ l
4X BP Reaction Buffer	5 μ l
100ng single chain/linear pENTR CAT, 50 ng/ μ l	2 μ l
300ng single chain/linear pDEST6, 150ng/ μ l	2 μ l
Topoisomerase I, 15 U/ml	0.5 μ l
LR Clonase	4 μ l

30

Reaction mixtures were incubated at 25°C for 1hour, and 2 μ l of 2 μ g/ μ l Proteinase K was then added and mixtures incubated for 10 minutes at 37°C to stop the LR Reaction. Competent cells were then transformed as described in the preceding examples. The results of these studies demonstrated that relaxation of

-167-

substrates in the LR reaction using Topoisomerase I resulted in a 2- to 10-fold increase in colony output compared to those LR reactions performed without including Topoisomerase I.

Having now fully described the present invention in some detail by way of illustration and example for purposes of clarity of understanding, it will be obvious to one of ordinary skill in the art that the same can be performed by modifying or changing the invention within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any specific embodiment thereof, and that such modifications or changes are intended to be encompassed within the scope of the appended claims.

All publications, patents and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains, and are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.

167.1

Applicant's or agent's file reference number	0942.508PC03	International application No. t ₁ PCT/US 00/05432
--	--------------	--

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL
(PCT Rule 13bis)**

ORGANISM REC'D 17 APR 2000

WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page 52, line 31.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depositary institution

Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit

February 27, 1999

Accession Number

NRRL B-30099

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)

This information is continued on an additional sheet

Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)

E. SEPARATE FURNISHING OF INDICATIONS (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

This sheet was received with the international application

Authorized officer *[Signature]*
IT Operations MPP Technol
Foothill Corp. 1000 SCS-3230 (PA)

For International Bureau use only

This sheet was received by the International Bureau on:

Authorized officer

167.2

Applicant's or agent's file reference number	0942.468PC03	International application No. t _l PCT/US 00/05432
--	--------------	---

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL
(PCT Rule 13bis)**

REC'D 17 APR 2000

WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page 55, line 16.

B. IDENTIFICATION OF DEPOSITFurther deposits are identified on an additional sheet

Name of depositary institution
Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit
February 27, 1999

Accession Number
NRRL B-30100

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)This information is continued on an additional sheet

Escherichia coli DB3.1(pENTR-1A)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

For International Bureau use only

This sheet was received with the international application

This sheet was received by the International Bureau on:

Authorized officer

Barbara Friddle
INTERNATIONAL PCT RECEIVING
SECTION
17 APR 2000

Authorized officer

167-3	
Applicant's or agent's file reference number 0942.468PC03	International application No. tb. PCT/US00/05432

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

REC'D 11/11/00
WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page <u>16</u> , line <u>15</u> .	
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>	
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit February 27, 1999	Accession Number NRRL B-30101
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/> Escherichia coli DB3.1(pENTR-2B)	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only	
<input checked="" type="checkbox"/> This sheet was received with the international application	
Authorized officer	Barbara Fuchs PT Operations Manager PCT/US00/05432 (E)
For International Bureau use only	
<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	

167.4

Applicant's or agent's file reference number	0942.468PC03	International application No. <i>REFUSU 0105432</i>
--	--------------	---

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

REC'D 17 APR 2000
WIPO PCT

- A. The indications made below relate to the microorganism referred to in the description on page 55, line 16.

B. IDENTIFICATION OF DEPOSITFurther deposits are identified on an additional sheet

Name of depositary institution
Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit
February 27, 1999

Accession Number
NRRL B-30102

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)This information is continued on an additional sheet

Escherichia coli DB3.1(pENTR-3C)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

For International Bureau use only

This sheet was received with the international application

This sheet was received by the International Bureau on:

Authorized officer

87
PCT/US00/05432
167.4
0942.468PC03 (E)

Authorized officer

167.5

Applicant's or agent's file reference number	0942.468PC03	International application No. tbc PCT/US 00/05432
--	--------------	--

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

PCT	17	REC'D 17 APR 2000
V.		WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page <u>8</u> .		REC'D 17 APR 2000
B. IDENTIFICATION OF DEPOSIT		Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority		
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America		
Date of deposit February 27, 1999	Accession Number NRRL B-30103	
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		This information is continued on an additional sheet <input type="checkbox"/>
Escherichia coli DB3.1(pEZC15101)		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)		
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)		

For receiving Office use only	
<input checked="" type="checkbox"/> This sheet was received with the international application	
Authorized officer	RECEIVED INT'L BUREAU APR 17 2000 PCT/US00/05432 (E)

For International Bureau use only	
<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	

167.6

Applicant's or agent's file reference number	0942.468PC03	International application No. t. PCT/US 10/05432
--	--------------	---

REC'D 17

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL WPO**
(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page <u>54</u> , line <u>9</u> .	
B. IDENTIFICATION OF DEPOSIT	
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit February 27, 1999	Accession Number NRRL B-30104
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/> Escherichia coli DB3.1(pEZZC15102)	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only

This sheet was received with the international application

Authorized officer *Barbara Hedges* *JF*
International Bureau of the World Intellectual Property Organization

For International Bureau use only

This sheet was received by the International Bureau on:

Authorized officer

167.7

Applicant's or agent's file reference number	0942.468PC03	International application No. PCT/US 00/05432
--	--------------	--

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

REF ID: A7 ARR 100
V T

A. The indications made below relate to the microorganism referred to in the description on page <u>54</u> , line <u>9</u> .	
B. IDENTIFICATION OF DEPOSIT Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>	
Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit February 27, 1999	Accession Number NRRL B-30105
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>) This information is continued on an additional sheet <input type="checkbox"/> Escherichia coli DB3.1(pEZZC15103)	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>) The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only		For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application		
Authorized officer	Barbara Friday U.S. Patent and Trademark Office Received by U.S. Post Office 2000-02-27, 10:00 AM	
		Authorized officer

167.8

Applicant's or agent's file reference number	0942.408PC03	International application No. t ₁ PCT/US 00/05432
--	--------------	---

**INDICATIONS RELATING TO DEPOSITED MICROORGANISM
OR OTHER BIOLOGICAL MATERIAL**
(PCT Rule 13bis)

- A. The indications made below relate to the microorganism referred to in the description on page 51, line 20-21.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depositary institution

Agricultural Research Culture Collection (NRRL)
International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
Peoria, Illinois 61604
United States of America

Date of deposit

February 27, 1999

Accession Number

NRRL B-30108

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)

This information is continued on an additional sheet

Escherichia coli DB10B(pCMV Sport6)

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)

E. SEPARATE FURNISHING OF INDICATIONS (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

This sheet was received with the international application

Authorized officer

Barbara Fries *BF*

For International Bureau use only

This sheet was received by the International Bureau on:

Authorized officer

WHAT IS CLAIMED IS:

1. An isolated nucleic acid molecule comprising a nucleotide sequence selected from the group of nucleotide sequences consisting of an attB1 nucleotide sequence as set forth in Figure 9, an attB2 nucleotide sequence as set forth in Figure 9, an attP1 nucleotide sequence as set forth in Figure 9, an attP2 nucleotide sequence as set forth in Figure 9, an attL1 nucleotide sequence as set forth in Figure 9, an attL2 nucleotide sequence as set forth in Figure 9, an attR1 nucleotide sequence as set forth in Figure 9, an attR2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, and a mutant, fragment, or derivative thereof.
2. An isolated nucleic acid molecule comprising an attB1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
3. An isolated nucleic acid molecule comprising an attB2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
4. An isolated nucleic acid molecule comprising an attP1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
5. An isolated nucleic acid molecule comprising an attP2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.
6. An isolated nucleic acid molecule comprising an attL1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

7. An isolated nucleic acid molecule comprising an attL2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

5 8. An isolated nucleic acid molecule comprising an attR1 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

10 9. An isolated nucleic acid molecule comprising an attR2 nucleotide sequence as set forth in Figure 9, a polynucleotide complementary thereto, or a mutant, fragment, variant or derivative thereof.

15 10. The isolated nucleic acid molecule of claim 1, further comprising one or more functional or structural nucleotide sequences selected from the group consisting of one or more multiple cloning sites, one or more localization signals, one or more transcription termination sites, one or more transcriptional regulatory sequences, one or more translational signals, one or more origins of replication, one or more fusion partner peptide-encoding nucleic acid molecules, one or more protease cleavage sites, and one or more 5' polynucleotide extensions.

20 11. The nucleic acid molecule of claim 10, wherein said transcriptional regulatory sequence is a promoter, an enhancer, or a repressor.

25 12. The nucleic acid molecule of claim 10, wherein said fusion partner peptide-encoding nucleic acid molecule encodes glutathione S-transferase (GST), hexahistidine (His₆), or thioredoxin (Trx).

13. The nucleic acid molecule of claim 10, wherein said 5' polynucleotide extension consists of from one to five nucleotide bases.

30 14. The nucleic acid molecule of claim 13, wherein said 5' polynucleotide extension consists of four or five guanine nucleotide bases.

15. A primer nucleic acid molecule suitable for amplifying a target nucleotide sequence, comprising the isolated nucleic acid molecule of claim 1 or a portion thereof linked to a target-specific nucleotide sequence useful in amplifying said target nucleotide sequence.

5

16. The primer nucleic acid molecule of claim 15, wherein said primer comprises an attB1 nucleotide sequence having the sequence shown in Figure 9 or a portion thereof, or a polynucleotide complementary to the sequence shown in Figure 9 or a portion thereof.

10

17. The primer nucleic acid molecule of claim 15, wherein said primer comprises an attB2 nucleotide sequence having the sequence shown in Figure 9 or a portion thereof, or a polynucleotide complementary to the sequence shown in Figure 9 or a portion thereof.

15

18. The primer nucleic acid molecule of claim 15, further comprising a 5' terminal extension of four or five guanine bases.

20

19. A vector comprising the isolated nucleic acid molecule of claim 1.

20. The vector of claim 19, wherein said vector is an Expression Vector.

25

21. A host cell comprising the isolated nucleic acid molecule of claim 1 or the vector of claim 19.

30

22. A method of synthesizing or amplifying one or more nucleic acid molecules comprising:

(a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template-specific sequence that is complementary to or capable of hybridizing to said

templates and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said second primer is homologous to or complementary to at least a portion of said first primer; and

- 5 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one or both termini of said molecules.

10

23. A method of synthesizing or amplifying one or more nucleic acid molecules comprising:

- 15 (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity and at least a first primer comprising a template-specific sequence that is complementary to or capable of hybridizing to said templates and at least a portion of a recombination site, and at least a second primer comprising all or a portion of a recombination site wherein said at least a portion of said recombination site on said second primer is complementary to or homologous to at least a portion of said recombination site on said first primer; and
- 20 (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more nucleic acid molecules complementary to all or a portion of said templates and comprising one or more recombination sites or portions thereof at one or both termini of said molecules.
- 25

30 24. A method of amplifying or synthesizing one or more nucleic acid molecules comprising:

- (a) mixing one or more nucleic acid templates with at least one polypeptide having polymerase or reverse transcriptase activity

and one or more first primers comprising at least a portion of a recombination site and a template-specific sequence that is complementary to or capable of hybridizing to said template;

- (b) incubating said mixture under conditions sufficient to synthesize or amplify one or more first nucleic acid molecules complementary to all or a portion of said templates wherein said molecules comprise at least a portion of a recombination site at one or both termini of said molecules;
 - (c) mixing said molecules with one or more second primers comprising one or more recombination sites, wherein said recombination sites of said second primers are homologous to or complementary to at least a portion of said recombination sites on said first nucleic acid molecules; and
 - (d) incubating said mixture under conditions sufficient to synthesize or amplify one or more second nucleic acid molecules complementary to all or a portion of said first nucleic acid molecules and which comprise one or more recombination sites at one or both termini of said molecules.

10

15

20

25. A polypeptide encoded by the isolated nucleic acid molecule of any one of claims 1-10.

25

30

26. An isolated nucleic acid molecule comprising one or more *att* recombination sites comprising at least one mutation in its core region that increases the specificity of interaction between said recombination site and a second *att* recombination site.

27. The isolated nucleic acid molecule of claim 26, wherein said mutation is at least one substitution mutation of at least one nucleotide in the seven basepair overlap region of said core region of said recombination site

28. The isolated nucleic acid molecule of claim 26, wherein said nucleic acid molecule comprises the sequence NNNATAC, wherein "N" refers to any nucleotide with the proviso that if one of the first three nucleotides in the consensus sequence is a T/U, then at least one of the other two of the first three nucleotides is not a T/U.

5

29. An isolated nucleic acid molecule comprising one or more mutated *att* recombination sites comprising at least one mutation in its core region that enhances the efficiency of recombination between a first nucleic acid molecule comprising said mutated *att* recombination site and a second nucleic acid molecule comprising a second recombination site that interacts with said mutated *att* recombination site.

10

15

30. The isolated nucleic acid molecule of claim 29, wherein said mutated *att* recombination site is a mutated *attL* site comprising a core region having the nucleotide sequence caactnnntnnnannaagttg, wherein "n" represents any nucleotide.

15

20

31. The isolated nucleic acid molecule of claim 30, wherein said mutated *attL* recombination site comprises a core region having a nucleotide sequence selected from agcctgcattatactaagttggcatta (*attL5*) and agcctgcattttatattaagttggcatta (*attL6*).

25

32. The isolated nucleic acid molecule of claim 29, wherein said mutated *att* recombination site comprises a core region having a nucleotide sequence selected from the group consisting of ggggacaacttgtacaaaaagttggct (*attB1.6*), ggggacaacttgtacaaagaaagctgggt (*attB2.2*), and ggggacaacttgtacaaagaaagttgggt (*attB2.10*).

30

33. A vector selected from the group consisting of pENTR1A, pENTR2B, pENTR3C, pENTR4, pENTR5, pENTR6, pENTR7, pENTR8, pENTR9, pENTR10, pENTR11, pDEST1, pDEST2, pDEST3, pDEST4,

-174-

pDEST5, pDEST6, pDEST7, pDEST8, pDEST9, pDEST10, pDEST11, pDEST12.2 (also known as pDEST12), pDEST13, pDEST14, pDEST15, pDEST16, pDEST17, pDEST18, pDEST19, pDEST20, pDEST21, pDEST22, pDEST23, pDEST24, pDEST25, pDEST26, pDEST27, pDEST28, pDEST29, pDEST30, pDEST31, pDEST32, pDEST33, pDEST34, pDONR201 (also known as pENTR21 attP vector or pAttPkan Donor Vector), pDONR202, pDONR203 (also known as pEZ15812), pDONR204, pDONR205, pDONR206 (also known as pENTR22 attP vector or pAttPgen Donor Vector), pDONR207, pMAB58, pMAB62, pMAB85 and pMAB86.

5

10

34. A host cell comprising the vector of claim 33.

35. A polypeptide encoded by the vector of claim 33.

15 36. A kit for use in synthesizing a nucleic acid molecule, said kit comprising the isolated nucleic acid molecule of any one of claims 1-10, 26 and 29.

20 37. A kit for use in synthesizing a nucleic acid molecule, said kit comprising the primer of claim 15 or claim 18.

38. A kit for use in cloning a nucleic acid molecule, said kit comprising the vector of claim 19 or claim 33.

1/240

Figure 1

2/240

FIGURE 2

FIGURE 3

FIGURE 4

*A**B*

FIGURE 5

6/240

FIGURE 6

FIGURE 7

8/240

FIGURE 8

Recombination Site Nucleotide Sequences

attB1: 5'-ACAAGTTGTACAAAAAAGCAGGCT-3'

attB2: 5'-ACCCAGCTTCTTGTACAAAGTGGT-3'

attP1: 5'-TACAGGTCACTAACCATCTAAGTAGTTGATTGATAGTGACTGGATATG-TTGTGTTTACAGTATTATGTAGTCTGTTTATGCAAATCTAATTATATATTGATATTTATCATTACGTTCTCGTTAGCTTTGTAC-AAAGTTGGCATTATAAAAAGCATTGCTCATCAATTGTTGCAACGAAC-GGTCACTATCAGTCAAAATAAAATCATTATTG-3'

attP2: 5'-CAAATAATGATTTATTTGACTGATAGTGACCTGTTGCAACAAATTGATAAGCAATGCTTCTTATAATGCCAAGTGTACAAGAAAGCTGAAC-GAGAAACGTAAAATGATATAAATATCAATATATTAAATTAGATTTGCATAAAAACAGACTACATAACTGTAAAACACAACATATCCAGTCACTATGATCAACTACTTAGATGGTATTAGTGACCTGTA-3'

attR1: 5'-ACAAGTTGTACAAAAAAGCTGAACGAGAACGTAATGATATAAA-TATCAATATATTAAATTAGATTTGCATAAAAACAGACTACATAATAC-TGTAAAACACAACATATCCAGTCACTATG-3'

attR2: 5'-GCAGGTGACCATAGTGACTGGATATGTTGTGTTTACAGTATTAT-GTAGTCTGTTTATGCAAATCTAATTATATTGATATT-ATATCATTACGTTCTCGTTAGCTTCTGTACAAAGTGGT-3'

attL1: 5'-CAAATAATGATTTATTTGACTGATAGTGACCTGTTGCAAC-AAATTGATAAGCAATGCTTTTATAATGCCAAGTGTACAAAAAA-GCAGGCT-3'

attL2: 5'-CAAATAATGATTTATTTGACTGATAGTGACCTGTTGCAACAA-ATTGATAAGCAATGCTTCTTATAATGCCAAGTGTACAAAGAAAGCTGGGT-3'

Figure 9

10/26/00

Figure 10A: Cloning sites of the Entry Vector pENTR™ 1A (reading frame A)

$\overbrace{\text{ACT TTG TAC AAA AAA GCA GGC TTT|AAA GGA ACC|AAT TCA GTC GAC TGG ATC CGG TAC|CGA ATT C}$
 $\text{TGA AAC ATG TTT TTT CGT CCG AAA|TTT CCT TGG|TTA AGT CAG CTG ACC TAG|GCC ATG GCT TAA|G}$
 thr leu tyr lys lys ala gly phe lys gly thr asn ser val asp trp ile arg tyr arg ile

$\overbrace{\text{EcoR I}} \quad \overbrace{\text{Not I}} \quad \overbrace{\text{Xho I}} \quad \overbrace{\text{EcoR V}}$
 --- ccdB gene --- $\overbrace{\text{G|AAT TCG CGG CCG CAC|TCG AGA T|AT CTA GAC CCA GCT TTC TTG TAC AAA}}$
 $\text{C TTA AGC GCC GGC GTG AGC T|CT A|TA GAT CTG GGT CGA AAG AAC ATG TTT}$

pENTR1A 2717 bp

<u>Base Nos.</u>	<u>Gene Encoded</u>
67..166	attL1
321..626	ccdB
655..754	attL2
877..1686	KmR
1791..2364	ori

1 CTGACGGATG GCCTTTTG CTTTCTACAA ACTCTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACCTTG TACAAAAAAG CAGGCTTTAA AGGAACCAAT
 181 TCAGTCGACT GGATCCGGTA CGAACATTGC TTACTAAAAG CCAGATAACA GTATGCGTAT
 241 TTGCGCGCTG ATTTTGCGG TATAAGAATA TATACTGATA TGATACCCG AAGTATGTCA
 301 AAAAGAGGTG TGCTTCTAGA ATGCAGTTA AGGTTACAC CTATAAAAAGA GAGAGCCGTT
 361 ATCGTCTGTT TGTGGATGTA CAGAGTGATA TTATTGACAC GCCCGGGCGA CGGATAGTGA
 421 TCCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGTCTC CCGTGAACCT TGACCCGGTGG
 481 TGCATATCGG GGATGAAAGC TGGCGCATGA TGACCACCGA TATGGCCAGT GTGCCGGTCT
 541 CCGTTATCGG GGAAGAAGTG GCTGATCTCA GCCACCGCGA AAATGACATC AAAAACGCCA
 601 TTAACCTGAT GTTCTGGGA ATATAGAATT CGCGGGCGA CTCGAGATAT CTAGACCCAG
 661 CTTTCTTGT AAAAGTTGGC ATTATAAGAA AGCATTGCTT ATCAATTGTT TGCAACGAAC
 721 AGGTCACTAT CAGTCAAAAT AAAATCATTA TTTGCCATCC AGCTGCAGCT CTGGCCCGTG
 781 TCTCAAAATC TCTGATGTTA CATTGCACAA GATAAAAATA TATCATCATG AACAAATAAAA
 841 CTGTCTGCTT ACATAAACAG TAATACAAGG GGTGTTATGA GCCATATTCA ACGGGAAACG
 901 TCGAGGCCGC GATTAAATT CAACATGGAT GCTGATTAT ATGGGTATAA ATGGGCTCGC
 961 GATAATGTCG GGCAATCAGG TGCACAAATC TATCGCTTGT ATGGGAAGCC CGATGCGCCA
 1021 GAGTTGTTTC TGAAACATGG CAAAGGTAGC GTTGCCAATG ATGTTACAGA TGAGATGGTC
 1081 AGACTAAACT GGCTGACGGA ATTTATGCCT CTTCCGACCA TCAAGCATT TATCCGTACT
 1141 CCTGATGATG CATGGTTACT CACCACTGCG ATCCCCGGAA AAACAGCATT CCAGGTATTA
 1201 GAAGAATATC CTGATTCAAGG TGAAAATATT GTTGATGCGC TGGCAGTGTC CCTGCGCCGG
 1261 TTGCAATTGCA TTCTGTTTG TAATTGTCCT TTTAACAGCG ATCGCTTATT TCGTCTCGCT
 1321 CAGGCGCAAT CACGAATGAA TAACGGTTTG GTTGATGCGA GTGATTTGA TGACGAGCGT
 1381 ATGGCTGGC CTGTTGAACA AGTCTGGAA GAAATGCATA AACTTTGCC ATTCTCACCG
 1441 GATTCACTCG TCACTCATGG TGATTTCTCA CTTGATAACC TTATTTTGAA CGAGGGAAA
 1501 TTAATAGTT GTATTGATGT TGGACGAGTC GGAATCGCAG ACCGATACCA GGATCTGCC
 1561 ATCCTATGGA ACTGCTCGG TGAGTTTCT CCTTCATTAC AGAAACGGCT TTTCAAAAAA
 1621 TATGGTATTG ATAATCCTGA TATGAATAA TTGCAAGTTTCA ATTGATGCT CGATGAGTTT
 1681 TTCTAATCAG AATTGGTTAA TTGGTTGTA CATTATTCAAGG ATGGGGCCCC GTTCCACTGA
 1741 CGCTCAGACC CCGTAGAAAA GATCAAAGGA TCTTCTTGAG ATCCTTTTTT TCTGCGCGTA
 1801 ATCTGCTGCT TGCAAACAAA AAAACACCG CTACCAGCGG TGTTTGTGTT GCCGGATCAA
 1861 GAGCTACCAA CTCTTTTCCC GAAGGTAACT GGCTTCAGCA GAGCGCAGAT ACCAAATACT
 1921 GTTCTCTAG TGTAGGCCA GTTACCGCAC CACTTCAAGA ACTCTGTAGC ACCGCCTACA
 1981 TACCTCGCTC TGCTAATCCT GTTACCGAGC GCTGCTGCC GTGGCGATAA GTCGTGTCTT
 2041 ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCAG AGCGGTCGGG CTGAACGGGG
 2101 GTTCTGTCGA CACAGCCCAG CTGGAGCGA ACGACCTACA CGGAACGTAG ATACCTACAG
 2161 CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA
 2221 AGCGGCAGGG TCGGAACAGG AGAGCGCAGC AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT
 2281 CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC GTGATTTTT GTGATGCTCG
 2341 TCAGGGGGGC GGAGCTATG GAAAAACGCC AGCAACCGCGG CCTTTTACG GTTCCCTGGCC
 2401 TTTTGCTGGC CTTTTGCTCA CATGTTCTT CCTGCGTTAT CCCCTGATTG TGTTGGATAAC
 2461 CGTATTACCG CTAGCATGGA TCTCGGGGAC GTCTAACTAC TAAGCGAGAG TAGGGAACGTG
 2521 CCAGGCATCA AATAAAACGA AAGGCTCAGT CGGAAGACTG GGCTTTCGT TTTATCTGTT
 2581 GTTTGTCGGT GAACGCTCTC CTGAGTAGGA CAAATCCGCC GGGAGCGGAT TTGAACGTTG
 2641 TGAAGCAACG GCCCGGAGGG TGGCGGGCAG GACGCCGCC ATAAACTGCC AGGCATCAA
 2701 CTAAGCAGAA GGCCATC

FIGURE 10B

12/24/00

Figure 11A: Cloning Sites of the Entry Vector pENTR2B (reading frame B)

Int	attL1	EheI	XmnI	SalI	BamHI
-----	-------	------	------	------	-------

TTG TAC AAA AAA GCA GGC TGG CGC CGG AAC CAA TTC AGT CGA CTG GAT CCG
 AAC ATG TTT TTT CGT CCG ACC GCG GCC TTG GTT AAG TCA GCT GAC CTA GGC
 ↓
 Leu Tyr Lys Lys Ala Gly Trp Arg Arg Asn Gln Phe Ser Arg Leu Asp Pro

KpnI	EcoRI	EcoRI	NotI	XhoI	EcoRV	XbaI
------	-------	-------	------	------	-------	------

GTA GCG AAT TC- ccdB --G AAT TCG CGG CCG CAC TCG AGA TAT CTA GAC CCA
 CAT GGC TTA AG C TTA AGC GCC GGC GTG AGC TCT ATA GAT CTG GGT
 ↓
 Val Pro Asn Asn Ser Arg Pro His Ser Arg Tyr Leu Asp Pro

Int	attL2
-----	-------

GCT TTC TTG TAC AAA G
 CGA AAG AAC ATG TTT C
 ↓ ↓ ↓ ↓ ↓
 Ala Phe Leu Tyr Lys

13/240

pENTR2B 2718 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
322..627	ccdB
656..755	attL2
878..1687	KmR
1792..2365	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTC ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACCTTG TACAAAAAAG CAGGCTGGCG CGGAAACCAA
 181 TTCAGTCGAC TGGATCCGGT ACCGAATTG CTTACTAAA GCCAGATAAC AGTATGCGTA
 241 TTTGCGCGCT GATTTTGCG GTATAAGAAAT ATATACTGAT ATGTATACCC GAAGTATGTC
 301 AAAAAGAGGT GTGCTTCTAG AATGCAGTT AAGGTTTACA CCTATAAAAAG AGAGAGCCGT
 361 TATCGTCTGT TTGTGGATGT ACAGAGTGAT ATTATTGACA CGCCCGGGCG ACGGATGGTG
 421 ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAGTCT CCCGTGAAC TTACCCGGTG
 481 GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG ATATGGCCAG TGTGCCGGTC
 541 TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG AAAATGACAT CAAAACGCC
 601 ATTAACCTGA TGTTCTGGGG AATATAGAAAT TCGCGGCCGC ACTCGAGATA TCTAGACCCA
 661 GCTTTCTGTG ACAAAAGTTGG CATTATAAGA AAGCATTGCT TATCAATTG TTGCAACGAA
 721 CAGGTCACTA TCAGTCAAA TAAAATCATT ATTTGCCATC CAGCTGCAGC TCTGGCCCGT
 781 GTCTCAAAAT CTCTGATGTT ACATTGCACA AGATAAAAAT ATATCATCAT GAACAATAAA
 841 ACTGTCTGCT TACATAAACAA GTAATACAAG GGGTGTATG AGCCATATTC AACGGGAAAC
 901 GTCGAGGCCG CGATTAATT CCAACATGGA TGCTGATT TAATGGGTATA AATGGGCTCG
 961 CGATAATGTC GGGCAATCAG GTGCGACAAT CTATCGCTTG TATGGGAAGC CCGATGCGCC
 1021 AGAGTTGTTT CTGAAACATG GCAAAGGTAG CGTTGCAAT GATGTTACAG ATGAGATGGT
 1081 CAGACTAAAC TGGCTGACGG AATTTATGCC TCTTCCGACC ATCAAGCATT TTATCCGTAC
 1141 TCCTGATGAT GCATGTTAC TCACCACTGC GATCCCCGGA AAAACAGCAT TCCAGGTATT
 1201 AGAAGAATAT CCTGATTCA GTGAAAATAT TGTTGATGCG CTGGCAGTGT TCCCTGCCTG
 1261 GTTGCATTG ATTCTGTGTT GTAATTGTCC TTTTAACAGC GATCGCGTAT TTCGTCTCGC
 1321 TCAGGCGCAA TCACGAATGA ATAACGGTTT GGTTGATGCG AGTGATTTG ATGACGAGCG
 1381 TAATGGCTGG CCTGTTGAAC AAGTCTGGAA AGAAATGCAT AAACCTTTGC CATTCTCACC
 1441 GGATTCAGTC GTCACTCATG GTGATTCTC ACTTGATAAC CTATTTTTG ACGAGGGGAA
 1501 ATTAATAGGT TGTATTGATG TTGGACGAGT CGGAATCGCA GACCGATACC AGGATCTTGC
 1561 CATCCTATGG AACTGCCTCG GTGAGTTTC TCCCTTCATTA CAGAAACGGC TTTTCAAAA
 1621 ATATGGTATT GATAATCCTG ATATGAATAA ATTGCACTTT CATTGATGCG TCGATGAGTT
 1681 TTTCTTAATCA GAATTGGTTA ATTGGTTGTA ACATTATTCA GATTGGGCC CGTTCCACTG
 1741 AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTT TTCTGCGCGT
 1801 AATCTGCTGC TTGCAAACAA AAAAACACC GCTACCGCG GTGGTTGTT TGCCGGATCA
 1861 AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC
 1921 TGTTCTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAG AACTCTGTA CACCGCCTAC
 1981 ATACCTCGCT CTGCTTAATCC TGTTTACAGT GGCTGCTGCC AGTGGCGATA AGTCGTTCT
 2041 TACCGGGTTG GACTCAAGAC GATAGTTAC GGATAAGGCG CAGCGGTGG GCTGAACGGG
 2101 GGGTTCTGTC ACACAGCCC GCTTGGAGCG AACGACCTAC ACCGAACGTG GATAACCTACA
 2161 GCGTGAGCTA TGAGAAAAGCG CCACGCTTC CGAAGGGAGA AAGGCGGACA GGTATCCGGT
 2221 AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA
 2281 TCTTTATAGT CCTGTCGGGT TTGCCCCACT CTGACTTGAG CGTCGATTTT TGTGATGCTC
 2341 GTCAGGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC GGTTCTGGC
 2401 CTTTTGCTGG CCTTTGCTC ACATGTTCT TCCCTGCTTA TCCCCTGATT CTGTGGATAA
 2461 CCGTATTACC GCTAGCATGG ATCTCGGGGA CGTCTAACTA CTAAGCGAGA GTAGGAAACT
 2521 GCCAGGCATC AAATAAAACG AAAGGCTCAG TCGGAAGACT GGGCCTTCG TTTTATCTGT
 2581 TGTTTGTGG TGAAACGCTCT CTCAGTAGG ACAAAATCCGC CGGGAGCGGA TTTGAACGTT
 2641 GTGAAGCAAC GGCCGGAGG GTGGCGGGCA GGACGCCGC CATAAAACTGC CAGGCATCAA
 2701 ACTAAGCAGA AGGCCATC

FIGURE 11B

Figure 12A: Cloning Sites of the Entry Vector pENTR3C (reading frame C)

Int	attL1	DraI	XmnI	SalI	BamHI
-----	-------	------	------	------	-------

TTG TAC AAA AAA GCA GGC TCT TTA AAG GAA CCA ATT CAG |TCG ACT CGA TCC GGT
 AAC ATG TTT TTT CGT CCG AGA AAT TTC CTT GGT TAA GTC AGC TGA CCT AGG CCA
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 Leu Tyr Lys Lys Ala Gly Ser Leu Lys Glu Pro Ile Gln Ser Thr Gly Ser Gly

KpnI	EcoRI	PvuI	EcoRI	NotI	XbaI	EcoRV	XbaI
------	-------	------	-------	------	------	-------	------

AGC GAA TTC GAT CGC-- ccdB --G|AAT TCG CGG CCG CAC |TCG AGA TAT |CTA
 TGG CTT AAG |CTA GCG C TTA AGC GCC GGC GTG AGC TCT ATA GAT
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 Thr Glu Phe Asn Ser Arg Pro His Ser Arg Tyr Leu

attL2	Int
-------	-----

GAC CCA GCT TTC TTG TAC AAA G
 CTG GGT CGA AAG AAC ATG TTT C
 ↓
 Asp Pro Ala Phe Leu Tyr Lys

15/240

pENTR3C 2723 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
327..632	ccdB
661..760	attL2
883..1692	KmR
1797..2370	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACCTTG TACAAAAAAG CAGGCTCTT AAAGGAACCA
 181 ATTCAGTCGA CTGGATCCGG TACCGAATTG GATCGCTTAC TAAAAGCCAG ATAACAGTAT
 241 GCGTATTTGC GCGCTGATT TTGCGGTATA AGAATATATA CTGATATGTA TACCCGAAGT
 301 ATGTCAAAAAA GAGGGTGTGCT TCTAGAATGC AGTTTAAGGT TTACACCTAT AAAAGAGAGA
 361 GCGCTTATCG TCTGTTGTG GATGTACAGA GTGATATTAT TGACACGCC GGGCGACGGA
 421 TGGTGATCCC CCTGGCCAGT GCACGTCTGC TGTCAGATAA AGTCTCCCGT GAACTTTACC
 481 CGGTGGTGCATATCGGGAT GAAAGCTGGC GCATGATGAC CACCGATATG GCCAGTGTGC
 541 CGGTCTCCGT TATCGGGAA GAAGTGGCTG ATCTCAGCCA CCGCGAAAAT GACATCAAA
 601 ACGCCATTAA CCTGATGTTG TGGGAATAT AGAATTGCG GCGCACTCG AGATATCTAG
 661 ACCCAGCTTT CTTGTACAA GTTGGCATTA TAAGAAAGCA TTGCTTATCA ATTTGTTGCA
 721 ACGAACAGGT CACTATCAGT CAAAATAAAAA TCATTATTTG CCATCCAGCT GCAGCTCTGG
 781 CCCGTGTCTC AAAATCTCTG ATGTTACATT GCACAAGATA AAAATATATC ATCATGAACA
 841 ATAAAACGTG CTGCTTACAT AACAGTAAT ACAAGGGGTG TTATGAGCCA TATTCAACGG
 901 GAAACGTCGA GGCGCCGATT AAATTCCAA ACATGGATGCTG ATTATATATGG GTATAAATGG
 961 GCTCGCGATA ATGTCGGCA ATCAGGTGCG ACAATCTATC GCTTGTATGG GAAGCCGAT
 1021 GCGCCAGAGT TGTTTCTGAA ACATGGCAA GGTAGCGTTG CCAATGATGT TACAGATGAG
 1081 ATGGTCAAGAC TAAACTGGCT GACGGAATTG ATGCCCTCTC CGACCACCAA GCATTTTATC
 1141 CGTACTCCGT ATGATGCATG GTTACTCACC ACTGCGATCC CCGGAAAAAC AGCATTCCAG
 1201 GTATTAGAAG AATATCCTGA TTCAGGTGAA AATATTGTTG ATGCGCTGGC AGTGTCTTG
 1261 CGCCGGTTGC ATTGCAATTCTC TGTTTGTAA TGTCCTTTTA ACAGCGATCG CGTATTCTCG
 1321 CTCGCTCAGG CGCAATCACG AATGAATAAC GTTGGTGTG ATGCGAGTGA TTTTGTGAC
 1381 GAGCGTAATG GCTGGCCTGT TGAACAAGTC TGGAAAGAAA TGCATAAAACT TTTGCCATT
 1441 TCACCGGATT CAGTCGTCAC TCATGGTGAT TTCTCACTTG ATAACCTTAT TTTTGACGAG
 1501 GGGAAATTAA TAGGGTGTAT TGATGGTGA CGAGTCGGAA TCGCAGACCG ATACCAGGAT
 1561 CTTGCCATCC TATGGAACTG CCTCGGGTAG TTTCTCCTT CATTACAGAA ACGGCTTTT
 1621 CAAAAATATG GTATTGATAA TCTGTATG AATAAATTG AGTTTCATT GATGCTCGAT
 1681 GAGTTTTCT AATCAGAATT GTTAAATTGG TTGTAACATT ATTCAAGATTG GGCCCGTTC
 1741 CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG
 1801 CGCGTAATCT GCTGCTTGCA AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTGCCG
 1861 GATCAAGAGC TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA
 1921 AATACTGTTC TTCTAGTGTG GCCGTAGTTA GGCCACACT TCAAGAACTC TGTAGCACCG
 1981 CCTACATACC TCGCTCTGCT AATCCTGTG CCAGTGGCTG CTGCCAGTGG CGATAAGTCG
 2041 TGTCTTACCG GTTGGACTC AAGACGATAG TTACCGATA AGGCGCAGCG GTCGGGCTGA
 2101 ACGGGGGGTT CGTGACACCA GCCCAGCTG GAGCGAACGA CCTACACCGA ACTGAGATAC
 2161 CTACAGCGT AGCTATGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT
 2221 CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC
 2281 TGTTATCTT ATAGTCCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTGTGA
 2341 TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACGCGGCCCTT TTTACGGTTC
 2401 CTGGCCTTT GCTGGCCTT TGCTCACATG TTCTTCTG CGTTATCCCC TGATTCTGTG
 2461 GATAACCGTA TTACCGCTAG CATGGATCTC GGGGACGTCT AACTACTAAG CGAGAGTAGG
 2521 GAACTGCCAG GCATCAAATA AACGAAAGG CTCAGTCGGA AGACTGGGCC TTTCGTTTA
 2581 TCTGTTGTTT GTCGGTGAAC GCTCTCCTGA GTAGGACAAA TCCGCCGGGA GCGGAGTTGA
 2641 ACGTTGTGAA GCAACGGCCC GGAGGGTGGC GGGCAGGACG CCCGCCATAA ACTGCCAGGC
 2701 ATCAAACCAA GCAGAAGGCC ATC

FIGURE 12B

16/240

Figure 1.3A: Cloning Sites of the Entry Vector pENTR4

Int attL1 NcoI Kozak XmnI SalI BamHI
 TTG TAC AAA AAA GCA GGC TCC ACC ATG GGA ACC AAT TCA GTC GAC TGG ATC CGG
 AAC ATG TTT TTT CGT CCG AGG TGG TAC CCT TGG TTA AGT CAG CTG ACC TAG GCG
 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
 Leu Tyr Lys Lys Ala Gly Ser Thr Met Gly Thr Asn Ser Val Asp Trp Ile Arg

KpnI EcoRI	EcoRI	NotI	XhoI	EcoRV	XbaI
<u>TAC</u> CGA ATT C-- ccdB	--G <u>AAT</u> TCG <u>CG</u> CCG CAC <u>TCG</u> AGA TAT <u>CTA</u> GAC CCA GCT				
ATG GCT TAA G	C TTA AGC GCC GGC GTG AGC TCT ATA GAT CTG GGT CGA				
Tyr Arg Ile	Asn Ser Arg Pro His Ser Arg Tyr Leu Asp Pro Ala				

Int attL2

TTC	TTG	TAC	AAA	G
AAG	AAC	ATG	TTT	C

Phe Leu Tyr Lys

17/240

pENTR4 2720 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
324..629	ccdB
658..757	attL2
880..1689	KmR
1794..2367	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCAA TAATGATTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAG CAGGCTCCAC CATGGGAACC
 181 AATTCACTCG ACTGGATCCG GTACCGAATT CGCTTACTAA AAGCCAGATA ACAGTATGCG
 241 TATTGCGCG CTGATTTTG CGGTATAAGA ATATATACTG ATATGTATAC CCGAAGTATG
 301 TCAAAAAGAG GTGTGCTCT AGAATGCAGT TTAAGGTTTA CACCTATAAA AGAGAGAGCC
 361 GTTATCGTCT GTTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCGGG CGACGGATGG
 421 TGATCCCCCT GGCCAGTGC CGCTCTGCTGT CAGATAAAGT CTCCCGTGA CTTTACCCGG
 481 TGGTGCATAT CGGGGATGAA AGCTGGCGCA TGATGACCAC CGATATGGCC AGTGTGCCGG
 541 TCTCCGTTAT CGGGGAAGAA GTGGCTGATC TCAGCCACCG CGAAAATGAC ATCAAAAACG
 601 CCATTAACCT GATGTTCTGG GAAATATAGA ATTCCGGGCC GCACTCGAGA TATCTAGACC
 661 CAGCTTCTT GTACAAAGTT GGCATTATAA GAAAGCATTG CTTATCAATT TGTTGCAACG
 721 AACAGGTAC TATCACTCG AATAAAATCA TTATTGCCA TCCAGCTGCA GCTCTGGCCC
 781 GTGTCTCAA ATCTCTGATG TTACATTGCA CAAGATAAAA ATATATCATC ATGAACAATA
 841 AAACGTCTG CTTACATAAA CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGGAA
 901 ACGTGAGGG CGCGATTAAA TTCCAACATG GATGCTGATT TATATGGGTA TAAATGGGCT
 961 CGCGATAATG TCGGGCAATC AGGTGCGACA ATCTATCGCT TGTATGGGAA GCCCGATGCG
 1021 CCAGAGTTGT TTCTGAAACA TGGCAAGGT AGCGTTGCCA ATGATGTTAC AGATGAGATG
 1081 GTCAGACTAA ACTGGCTGAC GGAATTATG CCTCTCCGA CCATCAAGCA TTTTATCCGT
 1141 ACTCCTGGTG ATGCATGGTT ACTCACCACT GCGATCCCCG GAAAACAGC ATTCCAGGTA
 1201 TTAGAAGAAT ATCCTGATTC AGGTGAAAAT ATTGTTGATG CGCTGGCAGT GTTCTGCGC
 1261 CGGTTGCATT CGATTCTGT TTGTAATTGT CCTTTTAACA GCGATCGCGT ATTTCGTCTC
 1321 GCTCAGGCGC AATCACGAAT GAATAACGGT TTGTTGATG CGAGTGTATT TGATGACGAG
 1381 CGTAATGGCT GGCCTGTTGA ACAAGTCTGG AAAGAAATGC ATAAACTTTT GCCATTCTCA
 1441 CGGGATTCAAG TCGTCACTCA TGGTGATTTC TCACTTGATA ACCTTATTG TGACGAGGGG
 1501 AAATTAATAG GTTGTATTGA TGTTGGACGA GTCGGAATCG CAGACCGATA CCAGGATCTT
 1561 GCCATCCTAT GGAACTGCCT CGGTGAGTT TCTCCTTCAT TACAGAAACG GCTTTTCAA
 1621 AAATATGGTA TTGATAATCC TGATATGAAT AAATTGCACT TTCATTGAT GCTCGATGAG
 1681 TTTTCTAAT CAGAATTGGT TAATTGGTG TAACATTATT CAGATTGGG CCCGTTCCAC
 1741 TGAGCGTCAG ACCCGTAGA AAAGATCAA GGATCTTCTT GAGATCCTTT TTTTCTGCGC
 1801 GTAATCTGCT GCTTGAAAC AAAAACCAG CCGCTACCA CGGTGGTTG TTTGCCGGAT
 1861 CAAGAGCTAC CAACTCTTT TCCGAAGGTA ACTGGCTCA GCAGAGCGCA GATACCAAAT
 1921 ACTGTTCTTC TAGTGTAGGC GTAGTTAGGC CACCACTCA AGAACTCTGT AGCACCGCCT
 1981 ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA TAAGTCGTGT
 2041 CTTACCGGGT TGGACTCAAG ACGATAGTTA CCGGATAAGG CGCAGCGGTC GGGCTGAACG
 2101 GGGGGTTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAACT GAGATAACCTA
 2161 CAGCGTGAGC TATGAGAAAAG CGCCACGCTT CCCGAAGGG AAAAGGCGGA CAGGTATCCG
 2221 GTAAGCGGCA GGGTCGGAAC AGGAGAGCGC ACGAGGGAGC TTCCAGGGGG AAACGCCCTGG
 2281 TATCTTTATA GTCCTGTCGG GTTCTGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC
 2341 TCGTCAGGGG GGCAGGAGCCT ATGGAAAAAC GCCAGCAACG CGGCCTTTT ACGGTTCCCTG
 2401 GCCTTTGCT GGCCTTTGC TCACATGTT TTTCTGCGT TATCCCTGA TTCTGTGGAT
 2461 AACCGTATTA CCGCTAGCAT GGATCTCGGG GACGTCTAAC TACTAAGCGA GAGTAGGGAA
 2521 CTGCCAGGCA TCAAAATAAA CGAAAGGCTC AGTCGGAAGA CTGGGCCTTT CGTTTATCT
 2581 GTTGTGTTGTC GGTGAACGCT CTCCTGAGTA GGACAAATCC GCCAGGGAGCG GATTTGAACG
 2641 TTGTGAAGCA ACGGCCCGGA GGGTGGCGGG CAGGACGCC GCCATAAAACT GCCAGGCATC
 2701 AAACTAAGCA GAAGGCCATC

FIGURE 13B

18/240

Figure 14A: Cloning sites of the Entry Vector pENTR25

Int att L1 Nde I Kpn I Sal I
 --- gag tac aaa aaa gca ggc tt cat atg gga tcc aat tca gtc
 --- dac atg ttt ttt cgt ccg aaa gta ttc cct tgg tta agt cag
 Leu Tyr Lys Lys Ala Gly Phe His Met Gly Thr Asn Ser Val

Bam HI Kpn I Eco RI Eco RI
 gac tgg atc cgg tac cga att cgc --- Death --- agt att cgc
 ctg acc tag ggc atg gct taa gcg --- (ccdB) --- tct taa gcg
 Asp Trp Ile Arg Tyr Arg Ile

Not I Xba I Eco RI Xba I Int att L2
 bge cgc act cga gat atc tag acc cag ctt tcc tgg aca aeg
 ccc gcg tga gct cta tag atc tgg gtc gaa aca aca tgt ttc

pENTR5 2720 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
324..629	ccdB
658..757	attL2
880..1689	KmR
1794..2367	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCAA TAATGATTT ATTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTCA TATGGGAACC
 181 AATTCACTCG ACTGGATCCG GTACCGAATT CGCTTACTAA AAGCCAGATA ACAGTATGCG
 241 TATTTGCGCG CTGATTGTTG CGGTATAAGA ATATATACTG ATATGTATAC CCGAAGTATG
 301 TCAAAAAGAG GTGTGCTTCT AGAATGCAGT TTAAGGTTA CACCTATAAA AGAGAGAGCC
 361 GTTATCGTCT GTTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCCGGG CGACGGATGG
 421 TGATCCCCCT GGCCAGTGC CGTCTGCTGT CAGATAAAAGT CTCCCGTGAA CTTTACCCGG
 481 TGGTGCATAT CGGGGATGAA AGCTGGCGCA TGATGACCAC CGATATGGCC AGTGTGCCGG
 541 TCTCCGTTAT CGGGGAAGAA GTGGCTGATC TCAGCCACCG CGAAAATGAC ATCAAAAACG
 601 CCATTAACCT GATGTTCTGG GGAATATAGA ATTGCGGGCC GCACTCGAGA TATCTAGACC
 661 CAGCTTTCTT GTACAAAGTT GGCATTATAA GAAAGCATTG CTTATCAATT TGTTGCAACG
 721 AACAGGTAC TATCAGTCAA AATAAAATCA TTATTTGCCA TCCAGCTGCA GCTCTGGCCC
 781 GTGTCTCAA ATCTCTGATG TTACATTGCA CAAGATAAAA ATATATCATC ATGAACAATA
 841 AAACGTCTG CTTACATAAA CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGAA
 901 ACGTGAGGC CGCGATTAAA TTCCAACATG GATGCTGATT TATATGGGTAA TAAATGGCT
 961 CGCGATAATG TCGGGCAATC AGGTGCGACA ATCTATCGCT TGATGGGAA GCCCGATGCG
 1021 CCAGAGTTG TTCTGAAACA TGGCAAAGGT AGCGTTGCCA ATGATGTTAC AGATGAGATG
 1081 GTCAACTAA ACTGGCTGAC GGAATTATAG CCTCTTCCGA CCATCAAGCA TTTTATCCGT
 1141 ACTCTGTATG ATGCATGGTT ACTCACCAC GCGATCCCCG GAAAACAGC ATTCCAGGTA
 1201 TTAGAAGAAT ATCCTGATTG AGGTGAAAAT ATTGTTGATG CGCTGGCAGT GTTCCCTGCG
 1261 CGGTTGCATT CGATTCTGTG TTGTAATTGT CCTTTAACCA GCGATCGCGT ATTCGTCCTC
 1321 GCTCAGGCGC AATCACGAAT GAATAACGGT TTGGTGTGATG CGAGTGTGATTT TGATGACGAG
 1381 CGTAATGGCT GGCCTGTTGA ACAAGTCTGG AAAGAAATGCA ATAACACTTTT GCCATTCTCA
 1441 CCGGATTCAAG TCGTCACTCA TGGTGTGATTG TCACTTGATA ACCTTATTTTG TGACGAGGGG
 1501 AAATTAATAG GTTGTATTGA TGGTGGACGA GTCGGAATCG CAGACCGATA CCAGGATCTT
 1561 GCCATCCTAT GGAACCTGCCT CGGTGAGTT TCTCCTTCAT TACAGAAAAG GCTTTTCAA
 1621 AAATATGGTA TTGATAATCC TGATATGAAT AAATTCGAGT TTCAATTGAT GCTCGATGAG
 1681 TTTTTCTAAT CAGAATTGGT TAATTGGTG TAACATTATT CAGATTGGGCCC CGTCTGCCAC
 1741 TGAGCGTCAG ACCCGTAGA AAAGATCAAA GGATCTTCTT GAGATCCTTT TTTCTGCGC
 1801 GTAATCTGCT GCTTGAAAC AAAAAGACCA CCGCTTACAG CGGTGGTTG TTTGCCGGAT
 1861 CAAGAGCTAC CAAACTTTT TCCGAAGGTA ACTGGCTTCAG GCAAGAGCGCA GATAACCAAT
 1921 ACTGTTCTTC TAGTGTAGCC GTAGTTAGGC CACCACTTCAG AGAACTCTGT AGCACCGCCT
 1981 ACATACCTCG CTCTGCTAAT CCTGTTACCA GTGGCTGCTG CCAGTGGCGA TAAGTCGCTG
 2041 CTTACCGGGT TGGACTCAAG ACAGATAGTTA CGGGATAAGG CGCAGCGGTC GGGCTGAACG
 2101 GGGGGTTCGT GCACACAGCC CAGCTTGGAG CGAACGACCT ACACCGAAGT GAGATAACCTA
 2161 CAGCGTGAGC TATGAGAAAG CGCCACGCTT CCCGAAGGGAA GAAAGGCGGA CAGGTATCCG
 2221 GTAAGCGGCA GGGTCCGAAC AGGAGAGCGC ACGAGGGAGC TTCCAGGGGG AAACGCCCTGG
 2281 TATCTTTATA GTCTCTGCTGG GTTTCGCCAC CTCTGACTTG AGCGTCGATT TTTGTGATGC
 2341 TCGTCAGGGG GGCAGGAGCCT ATGGAAAAAC GCCAGCAACG CGGCCTTTT ACAGGTTCTG
 2401 GCCTTTGCT GGCCTTTGC TCACATGTT TTTCCCTGCGT TATCCCCCTGA TTCTGTGGAT
 2461 ACCCGTATTA CCGCTAGCAT GGATCTCGGG GACGCTAAC TACTAAGCGA GAGTAGGGAA
 2521 CTGCCAGGCA TCGAATAAAA CGAAAGGCTC AGTCGGAAGA CTGGGCCTTT CGTTTATCT
 2581 GTTGTGTTGTC GGTGAACGCT CTCTGAGTA GGACAAATCC GCCGGGAGCG GATTTGAACG
 2641 TTGTGAAGCA ACGGCCCGGA GGGTGGCGGG CAGGACGCC GGCATAAACT GCCAGGCATC
 2701 AAACTAAGCA GAAGGCCATC

FIGURE 14B

20/240

Figure 15A: Cloning sites of the Entry Vector pENTR 6

Int att L1 Sph I Kpn I Xba I Sal I
 --- tct tac aaa aaa gca ggc tgc atg cga acc|aat tca gtc
aac aag tct ttt cgt ccg aat tac gct tgg tta agt cag
 Leu Tyr Lys Lys Ala Gly Cys Met Arg Thr Asn Ser Val

BamH I Kpn I EcoRI Ecl RI
 gac tct atc cgg tac cgg att cgc --- Death --- aga att cgc
cgt acc tag gcc atg gct taa gcg --- (codB) --- tct taa gcg
 Asp Trp Ile Arg Tyr Arg Ile

Not Xba I EcoRI Xba I Int att L2
 ggc cgc act cga gat atc tag acc cag ctt tcc tgc aga dag ---
cgg gcg tga gct cta tag atc tgg gtc gaa aga aca tgt tcc ---

21/240

pENTR6 2717 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
321..626	ccdB
655..754	attL2
877..1686	KmR
1791..2364	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACCTTG TACAAAAAAG CAGGCTGCAT GCGAACCAAT
 181 TCAGTCGACT GGATCCGGTA CGAATTCCGC TTACTAAAAG CCAGATAACA GTATGCGTAT
 241 TTGCGCGCTG ATTTTGCGG TATAAGAATA TATACTGATA TGATACCCG AAGTATGTCA
 301 AAAAGAGGTG TGCTTCTAGA ATGCAGTTA AGGTTACAC CTATAAAAGA GAGAGCCGTT
 361 ATCGTCTGTT TGTGGATGTA CAGAGTGATA TTATTGACAC GCCCGGGCGA CGGATGGTGA
 421 TCCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGTCTC CCGTGAACCT TACCCGGTGG
 481 TGCATATCGG GGATGAAAGC TGGCGCATGA TGACCACCGA TATGGCCAGT GTGCCGGTCT
 541 CCGTTATCGG GGAAGAAGTG GCTGATCTCA GCCACCGCGA AAATGACATC AAAAACGCCA
 601 TTAACCTGAT GTTCTGGGG AATAGAATT CGCGGCCGCA CTCGAGATAT CTAGACCCAG
 661 CTTTCTTGTG CAAAGTTGGC ATTATAAGAA AGCATTGCTT ATCAATTGTT TGCAACGAAC
 721 AGGTCACTAT CAGTCAAAAT AAAATCATTA TTTGCCATCC AGCTGCAGCT CTGGCCGTG
 781 TCTCAAAATC TCTGATGTTA CATTGCACAA GATAAAAATA TATCATCATG AACAAATAAA
 841 CTGTCTGCTT ACATAAACAG TAATACAAGG GGTGTTATGA GCCATATTCA ACGGGAAACG
 901 TCGAGGCCGC GATTAATTG CAACATGGAT GCTGATTAT ATGGGTATAA ATGGGCTCGC
 961 GATAATGTCG GGCAATCAGG TGCGACAATC TATCGTTGT ATGGGAAGCC CGATGCGCCA
 1021 GAGTTGTTTC TGAAACATGG CAAAGGTAGC GTTGCCAATG ATGTTACAGA TGAGATGGTC
 1081 AGACTAAACT GGCTGACGGA ATTATGCTCCT CTTCCGACCA TCAAGCATT TATCCGTA
 1141 CCTGATGATG CATGGTTACT CACCACTGCG ATCCCAGGAA AAACAGCATT CCAGGTATTA
 1201 GAAGAATATC CTGATTTCAGG TGAAAATATT GTTGATGCGC TGGCAGTGTG CCTGCGCCGG
 1261 TTGCATTGCA TTCCTGTTTG TAATTGCTCT TTTAACAGCG ATCGCGTATT TCGTCTCGCT
 1321 CAGGCGCAAT CACGAATGAA TAACGGTTTG GTTGATGCGA GTGATTTGA TGACGAGCGT
 1381 ATGGCTGGC CTGTTGAACA AGTCTGGAA GAAATGCATA AACTTTGCG ATTCTCACCG
 1441 GATTCACTCG TCACTCATGG TGATTTCTCA CTTGATAACC TTATTTTGA CGAGGGAAA
 1501 TTAATAGGTT GTATTGATGT TGGACGAGTC GGAATCGCAG ACCGATACCA GGATCTGCC
 1561 ATCCTATGGA ACTGCCTCGG TGAGTTTCT CTTTCATTAC AGAAACGGCT TTTCAAAAAA
 1621 TATGGTATTG ATAATCTGA TATGAATAAA TTGCACTTGC ATTGATGCT CGATGAGTTT
 1681 TTCTAATCAG AATTGGTTAA TTGGTTGTA CATTATTCAAGG ATTGGGCCCG GTTCCACTGA
 1741 GCGTCAGACC CCGTAGAAAAA GATCAAAGGA TCTTCTTGAG ATCCTTTTT TCTGCCGTA
 1801 ATCTGCTGCT TGCAAAACAAA AAAACACCG CTACCAGCGG TGTTTGTGTT GCCGGATCAA
 1861 GAGCTACCAA CTCTTTTCC GAAGGTAACG GGCTTCAGCA GAGCGCAGAT ACCAAATACT
 1921 GTTCTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA ACTCTGTAGC ACCGCCCTACA
 1981 TACCTCGCTC TGCTAATCCT GTTACCACTG GCTGCTGCCA GTGGCGATAA GTCGTGTCTT
 2041 ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCGC AGCGGTCGGG CTGAACGGGG
 2101 GTTTCGTGCA CACAGCCCAG CTTGGAGCGA ACGACCTACA CGAACACTGAG ATACCTACAG
 2161 CGTGAGCTAT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA AGGCGGACAG GTATCCGGTA
 2221 AGCGGCAGGG TCGGAACAGG AGAGCGCAGG AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT
 2281 CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC GTGATTTTT GTGATGCTCG
 2341 TCAGGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACGCGG CCTTTTTACG GTTCCCTGGCC
 2401 TTTTGCTGGC CTTTGTCTCA CATGTTCTT CCTGCGTTAT CCCCTGATTC TGTGGATAAC
 2461 CGTATTACCG CTAGCATGGA TCTCGGGGAC GTCTAATAC TAAGCGAGAG TAGGAAACTG
 2521 CCAGGCATCA AATAAAACGA AAGGCTCAGT CGGAAGACTG GGCGTTTCGT TTTATCTGTT
 2581 GTTTGTCGGT GAACGCTCTC CTGAGTAGGA CAAATCCGCC GGGAGCGGAT TTGAACGTTG
 2641 TGAAGCAACG GCCCGGGAGGG TGGCGGGCAG GACGCCGCC ATAAACTGCC AGGCATCAAA
 2701 CTAAGCAGAA GGCCATC

FIGURE 15B

Figure 16A: Cloning sites of the Entry Vector pENTR7

23/240

pENTR7 2738 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
342..647	ccdB
676..775	attL2
898..1707	KmR
1812..2385	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACCTTG TACAAAAAAG CAGGCTTTGA AAACCTGTAT
 181 TTTCAAGGAA CGTTTCATG CATCGTCGAC TGGATCCGGT ACCGAATTG CTTACTAAAA
 241 GCCAGATAAC AGTATGCGTA TTGCGCGCT GATTTTGCG GTATAAGAAT ATATAACTGAT
 301 ATGTATACCC GAAGTATGTC AAAAAGAGGT GTGCTCTAG ATGCAAGTT AAGGTTTACA
 361 CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTGGATGT ACAGAGTGAT ATTATTGACA
 421 CGCCCGGGCG ACGGATAGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAGTCT
 481 CCCGTGAAC TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG
 541 ATATGGCCAG TGTGCCGGTC TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG
 601 AAAATGACAT CAAAAACGCC ATTAACCTGA TGTTCTGGGG AATATAGAAT TCGCGGCCGC
 661 ACTCGAGATA TCTAGACCCA GCTTTCTTGT ACAAAAGTTGG CATTATAAGA AAGCATTGCT
 721 TATCAATTG TTGCAACGAA CAGGTCACTA TCAGTCAAA TAAAATCATT ATTTGCCATC
 781 CAGCTGCAGC TCTGGCCCGT GTCTCAAAAT CTCTGATGTT ACATTGCACA AGATAAAAAT
 841 ATATCATCAT GAACAATAAA ACTGTCTGCT TACATAAAC A GTAATACAAG GGGTGTATG
 901 AGCCATATTC AACGGGAAAC GTCGAGGCCG CGATTAATT CCAACATGGA TGCTGATTAA
 961 TATGGGTATA AATGGGCTCG CGATAATGTC GGGCAATCG GTGCGACAAT CTATCGCTTG
 1021 TATGGGAAGC CCGATGCGCC AGAGTTGTTT CTGAAACATG GCAAAGGTAG CGTTGCAAT
 1081 GATGTTACAG ATGAGATGGT CAGACTAAAC TGGCTGACGG AATTTATGCC TCTTCCGACC
 1141 ATCAAGCAT TTATCCGTAC TCCTGATGAT GCATGTTAC TCACCACTGC GATCCCCGGA
 1201 AAAACAGCAT TCCAGGTATT AGAAGAATAT CCTGATTTCAG GTGAAAATAT TGTTGATGCG
 1261 CTGGCAGTGT TCCCTGCCCG GTTGCAATTG ATTCCCTGTTT GAAATTGTC TTTTAACAGC
 1321 GATCGCGTAT TTCGTCCTCGC TCAGGCGCAA TCACGAATGA ATAACGGTTT GGTTGATGCG
 1381 ACTGATTTG ATGACGGAGCG TAATGGCTGG CCTGTTGAAAC AAGTCTGGAA AGAAATGCAT
 1441 AAACCTTTGC CATTCTCACG GGATTCACTG GTCACCATG GTGATTTCTC ACTTGATAAC
 1501 CTTATTTTG ACGAGGGGAA ATTAATAGGT TGTATTGATG TTGGACGAGT CGGAATCGCA
 1561 GACCGATACC AGGATCTTCG CATCCTATGG AACTGCCCG GTGAGTTTC TCCTTCATTA
 1621 CAGAAACGGC TTTTCAAAA ATATGGTATT GATAATCCTG ATATGAATAA ATTGCACTT
 1681 CATTGATGC TCGATGAGTT TTTCTAATCA GAATTGGTTA ATTGGTTGTA ACATTATTCA
 1741 GATTGGGCC CGTTCACGT AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA
 1801 GATCCTTTT TTCTGCCCGT AATCTGCTG TTGCAAACAA AAAAACACC GCTACCGCG
 1861 GTGGTTTGTG TGCCGGATCA AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC
 1921 AGAGCGCAGA TACCAAATAC TGTTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAG
 1981 AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAGT GGCTGCTGCC
 2041 AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAAGTTACC GGATAAGCG
 2101 CAGCGGTGG GCTGAACGGG GGGTTCTGTC ACACAGCCCCA GCTTGGAGCG AACGACCTAC
 2161 ACCGAACCTGA GATACTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA
 2221 AAGGGCGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT
 2281 CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT TTGCGCACCT CTGACTTGAG
 2341 CGTCGATTTT TGTGATGCTC GTCAGGGGG CGGAGCCTAT GAAAAAACGC CAGCAACCG
 2401 GCCTTTTAC GGTTCTGGC CTTTGTCTGG CCTTTTGCTC ACATGTTCTT TCCCTGCGTTA
 2461 TCCCCTGATT CTGTGGATAA CCGTATTACG GCTAGCATGG ATCTCGGGGA CGTCTAACTA
 2521 CTAAGCGAGA GTAGGGAACT GCCAGGCATC AAATAAAACG AAAGGCTCAG TCGGAAGACT
 2581 GGGCCTTCG TTTTATCTGT TGTTGTGG TGAACGCTCT CCTGAGTAGG ACAAAATCCGC
 2641 CGGGAGCGGA TTGAACGTT GTGAAGCAAC GGCCGGAGG GTGGCGGGCA GGACGCCGC
 2701 CATAAAACTGC CAGGCATCAA ACTAAGCAGA AGGCCATC

FIGURE 16B

24/240

Figure 17A: Cloning Sites of the *EAT-1* Vector, pENTR8

Int attL

TEV Protease

NcoI KpnI SalI BamHI KpnI EcoRI
act atg gac cta gtc gac tgg atc cgg tac cgt att cgc ---
tgg tac ctg gat cag cgg acc tag gcf atg gct taa gcg ---
Thr Met Asp Leu Val Asp Trp Ile Arg Tyr Arg Ile

EcoRI Not I XbaI EcoRV XbaI att
Death --- aga att cgc ggc cgc act cga gat atc tag acc cag
--- tct taa gcg ccc cgg tga gct cta tag atc tgg gtc

Int

attL

25/240

pENTR8 2735 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
339..644	ccdB
673..772	attL2
895..1704	KmR
1809..2382	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAG CAGGCTTTGA AAACCTGTAT
 181 TTTCAAGGAA CCATGGACCT AGTCGACTGG ATCCGGTACC GAATTCGCTT ACTAAAAGCC
 241 AGATAACAGT ATGCGTATTT GCGCGCTGAT TTTTGCCTGA TAAGAATATA TACTGATATG
 301 TATACCCGAA GTATGTCAA AAGAGGTGTG CTTCTAGAAT GCAGTTAAG GTTTACACCT
 361 ATAAAAGAGA GAGCCGTTAT CGTCTGTTTG TGGATGTACA GAGTGTATATT ATTGACACGC
 421 CCGGGCGACG GATAGTGATC CCCCTGGCCA GTGCACGTCT GCTGTCAGAT AAAGTCTCCC
 481 GTGAACTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG ACCACCGATA
 541 TGGCCAGTGT GCCGGTCTCC GTTATCGGGG AAGAAGTGGC TGATCTCAGC CACCGCGAAA
 601 ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGAAT ATAGAATTG CGGCCGCACT
 661 CGAGATATCT AGACCCAGCT TTCTTGATCA AAGTTGGCAT TATAAGAAAG CATTGCTTAT
 721 CAATTGTTG CAACGAACAG GTCACTATCA GTCAAAATAA AATCATTATT TGCCATCCAG
 781 CTGCAGCTCT GGCCCGTGT TCAAAATCTC TGATGTTACA TTGACACAAGA TAAAATATA
 841 TCATCATGAA CAATAAAACT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTTATGAGC
 901 CATATTCAAC GGGAAACGTC GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTATAT
 961 GGGTATAAAAT GGGCTCGCGA TAATGTCGGG CAATCAGGTG CGACAATCTA TCGCTTGTAT
 1021 GGGAAAGCCCG ATGCGCCAGA GTTGTGTTCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT
 1081 GTTACAGATG AGATGGTCAG ACTAAACTGG CTGACCGGAAT TTATGCTCT TCCGACCATC
 1141 AAGCATTCTA TCCGTACTCC TGATGATGCA TGTTACTCA CCACTGCGAT CCCCCGGAAAA
 1201 ACAGCATTCC AGGTATTAGA AGAATATCCT GATTCAAGGTG AAAATATTGT TGATGCGCTG
 1261 GCAGTGTCCC TGCGCCGGTT GCATTGCGATT CCTGTTGTA ATTGTCCTTT TAACAGCGAT
 1321 CGCGTATTTG GTCTGCTCA GGCAGCAATCA CGAATGAATAC ACGGTTTGGT TGATGCGAGT
 1381 GATTTGATG ACGAGCGTAA TGGCTGGCCT GTTGAACAAG TCTGGAAAGA AATGCATAAA
 1441 CTTTGCCAT TCTCACCGGA TTCAGTCGTC ACTCATGGTG ATTCTCACT TGATAACCTT
 1501 ATTTTGACG AGGGGAAATT ATAGGTTGTG ATTGATGTTG GACGAGTCGG AATCGCAGAC
 1561 CGATACCAGG ATCTTGCCAT CCTATGGAAC TGCCCTGGTG AGTTTCTCC TTCATTACAG
 1621 AAACGGCTT TTCAAAATAA TGGTATTGAT AATCCTGATA TGAATAAAATT GCAGTTTCAT
 1681 TTGATGCTCG ATGAGTTTT CTAATCAGAA TTGGTTAATT GTTGTAAACA TTATTCAAGAT
 1741 TGGGGCCCGT TCCACTGAGC GTCAGACCCCC GTAGAAAAGA TCAAAGGATC TTCTTGAGAT
 1801 CCTTTTTTTC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACACCGCT ACCAGCGGTG
 1861 GTTTGTTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACGG CTTCAGCAGA
 1921 GCGCAGATAC CAAATACTGT TCTTCTAGTG TAGCGTAGT TAGGCCACCA CTTCAAGAAC
 1981 TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACAGTGGC TGCTGCCAGT
 2041 GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA TAAGGCGCAG
 2101 CGGTGGGCT GAACGGGGGG TTCGTGCACA CAGCCAGCT TGGAGCGAAC GACCTACACC
 2161 GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG
 2221 GCGGACAGGT ATCCGTAAG CGGCAGGGTC GGAACAGGAG AGCGCAGGAG GGAGCTTCCA
 2281 GGGGGAAACG CCTGGTATCT TTATAGTCCT GTGGGGTTTC GCCACCTCTG ACTTGAGCGT
 2341 CGATTTTGTGATGCTCGTC AGGGGGGGCGG AGCCTATGGA AAAACGCCAG CAACCGGGCC
 2401 TTTTACGGT TCCTGGCCTT TTGCTGGCCT TTTGCTCACA TGTTCTTCC TGCGTTATCC
 2461 CCTGATTCTG TGGATAACCG TATTACCGCT AGCATGGATC TCGGGGACGT CTAACTACTA
 2521 AGCGAGAGTA GGGAACTGCC AGGCATCAAA TAAAACGAAA GGCTCAGTCG GAAGACTGGG
 2581 CCTTTCTGTT TATCTGTTGT TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGG
 2641 GAGCGGATTG GAACGTTGTG AAGCAACGGC CGGGAGGGTG CGGGCAGGA CGCCCGCCAT
 2701 AAACGCCAG GCATCAAACG AAGCAGAAGG CCATC

FIGURE 17B

26/240

Figure 18A: Cloning sites of the Entry Vector pENTR9

Int att L1

NdeI BglII SalI BamHI KpnI EcoRI
 cat atg aga tct gtc gac tgc atc cgg tac cgt ctt att cgc ---
 gta tac tct aga cag cgt acc tag gct atg gct taa gca ---
 His Met Arg Ser Val Asp Trp Ile Arg Tyr Arg Ile

TEV protease

EcoRI NotI XbaI EcoRI XbaI att L2

Death --- aga att ccg ggc ccg act cgt cgt gat atc tag acc cag
 --- tct taa gca ccg ccg tga gct cta tag atc tgg gtc

Int

att L2

ctt tcc tgt aca xag ---
 gaa aga aca tgt tcc ---

27/240

pENTR9 2735 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
339..644	ccdB
673..772	attL2
895..1704	KmR
1809..2382	ori

1 CTGACGGATG GCCTTTTGCA GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGCACCT GTTCGTTGCA ACAAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACCTTG TACAAAAAAG CAGGCTTGA AAACCTGTAT
 181 TTTCAAGGAC ATATGAGATC TGTCGACTGG ATCCGGTACCC GAATTCGCTT ACTAAAAGCC
 241 AGATAAACAGT ATGCGTATTT GCGCGCTGAT TTTTGCCTGA TAAGAATATA TACTGATATG
 301 TATAACCGAA GTATGTCAA AAGAGGTGTG CTTCTAGAAT GCAGTTTAAG GTTTACACCT
 361 ATAAAAGAGA GAGCCGTTAT CGTCTGTTG TGGATGTACA GAGTGTATT ATTGACACGC
 421 CCGGGCGACG GATAGTGCAT CCCCTGGCCA GTGCACGTCT GCTGTCAGAT AAAGTCTCCC
 481 GTGAACCTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG ACCACCGATA
 541 TGGCCAGTGT GCCGGTCTCC GTTATCGGGG AAGAAAGTGGC TGATCTCAGC CACCGCGAAA
 601 ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGAAT ATAGAATTG CGGCGCACT
 661 CGAGATATCT AGACCCAGCT TTCTTGTACA AAGTTGGCAT TATAAGAAAG CATTGCTTAT
 721 CAATTTGTG CAACGAACAG GTCACTATCA GTCAAAATAA AATCATTATT TGCCATCCAG
 781 CTGCAGCTCT GGCCCGTGTCA TCAAAATCTC TGATGTTACA TTGCACAAGA TAAAATATA
 841 TCATCATGAA CAATAAAACT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTTATGAGC
 901 CATATTCAAC GGGAAACGTC GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTATAT
 961 GGGTATAAAT GGGCTCGCGA TAATGTCGGG CAATCAGGTG CGACAATCTA TCGCTTGTAT
 1021 GGGAGCCCG ATGCCGAGA GTTGTTCCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT
 1081 GTTACAGATG AGATGGTCAG ACTAAACTGG CTGACCGAAT TTATGCCTCT TCCGACCATC
 1141 AAGCATTCTA TCCGTACTCC TGATGATGCA TGGTTACTCA CCACTGCGAT CCCCAGAAAA
 1201 ACAGCATTCC AGGTATTAGA AGAATATCCT GATTGAGGTG AAAATATTGT TGATGCGCTG
 1261 GCAGTGTCCC TGCGCCGGTT GCATTCGATT CCTGTTGTA ATTGTCCTTT TAACAGCGAT
 1321 CGCGTATTC GTCTCGCTCA GGCGCAATCA CGAATGAATA ACGGTTGGT TGATGCGAGT
 1381 GATTTGATG ACGAGCGTAA TGGCTGGCCT GTTGAACAAG TCTGGAAAGA AATGCATAAA
 1441 CTTTGCCAT TCTCACCGA TTCAGTCGTC ACTCATGGTG ATTTCTCACT TGATAACCTT
 1501 ATTTTGACG AGGGAAATT AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC
 1561 CGATACCGAG ATCTTGCCT CCTATGGAAC TGCGCTGGTG AGTTTCTCC TTCATTACAG
 1621 AAACGGCTT TTCAAAATAA TGGTATTGAT AATCCTGATA TGAATAAAATT GCAGTTTCAT
 1681 TTGATGCTCG ATGAGTTTTT CTAATCAGAA TTGGTTAATT GTGTTGAACA TTATTGAGAT
 1741 TGGGCCCGT TCCACTGAGC GTCAGACCCCC GTAGAAAAGA TCAAAAGGATC TTCTTGAGAT
 1801 CCTTTTTTTC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCACCGCT ACCAGCGGTG
 1861 GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG CTTCAGCAGA
 1921 GCGCAGATAC CAAATACTGT TCTTCTAGTG TAGCCGTAGT TAGGCCACCA CTTCAAGAAC
 1981 TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAAGTGGC TGCTGCCAGT
 2041 GGCATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA TAAGGCGCAG
 2101 CGGTGGGGCT GAACGGGGGG TTGCTGCACA CAGCCCAGCT TGGAGCGAAC GACCTACACC
 2161 GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA AGGGAGAAAG
 2221 GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG GGAGCTTCCA
 2281 GGGGGAAACG CCTGGTATCT TTATAGTCT GTGGGTTTC GCCACCTCTG ACTTGAGCGT
 2341 CGATTTTGT GATGCTGTC AGGGGGGGCGG AGCCTATGGA AAAACGCCAG CAACGCCGCC
 2401 TTTTACGGT TCCTGGCCTT TTGCTGGCTT TTGCTCACA TGTTCTTCC TGCCTTATCC
 2461 CCTGATTCTG TGGATAACCG TATTACCGCT AGCATGGATC TCGGGGACGT CTAACACTA
 2521 AGCGAGAGTA GGGAACTGCC AGGCATCAA TAAAACGAAA GGCTCAGTCG GAAGACTGGG
 2581 CCTTCGTTT TATCTGTTGT TTGCTGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGG
 2641 GAGCGGATTG GAACGTTGTG AAGCAACGGC CCGGAGGGTG CGGGGCAGGA CGCCCGCCAT
 2701 AACTGCCAG GCATCAAAC AAGCAGAAGG CCATC

FIGURE 18B

28/260

Figure 19A: Cloning sites of the ENTRY Vector pENTR10

Int attL1 S.D. - 12 Nde

--- ttt tac aaa aaa gca ggc tcc gaa cta agg aaa tac tta cat ---
 --- dac atg pte ttt cgt ccg aag ctt gat tcc ttt atg aat gta ---
 Leu Tyr Lys Lys Ala Gly Phe Glu Leu Arg Lys Tyr Leu His

Kpn Xba Sal Bam Kpn EcoRI
 atg gga [acc] aat tca gtc gac tgg atc cgg tac | cga att cgc ---
 Tha cct tgg tta agt cag ctg acc tag gcc atg gct taa gcg ---
 Met Gly Thr Asn Ser Val Arg Trp Ile Arg Tyr Arg Ile

EcoRI Not Xba EcoRI Xba attL2
 Death --- aga att cgc [ggc cgc act cga gat] atc tag [acc cag
 (ccdB) --- tct taa gcg ccg gcg tga gct cta tag atc tgg gtc

Int
 ctt tcc tgg aca aag ---
 gaa aga aca tgg ---

29/240

pENTR10 2738 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
342..647	ccdB
676..775	attL2
898..1707	KmR
1812..2385	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCAA TAATGATTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAG CAGGCTTCGA ACTAAGGAAA
 181 TACTTACATA TGGGAACCAA TTCAGTCGAC TGGATCCGGT ACCGAATTGCG CTTACTAAAA
 241 GCCAGATAAC AGTATGCGTA TTGCGCGCT GATTTTGCG GTATAAGAAT ATATACTGAT
 301 ATGTATACCC GAAGTATGTC AAAAGAGGT GTGCTTCTAG AATGCAGTTT AAGGTTTACA
 361 CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTGGATGT ACAGAGTGAT ATTATTGACA
 421 CGCCC GGCG ACGGATGGTG ATCCCCCTGG CCAGTCACG TCTGCTGTCA GATAAAGTCT
 481 CCCGTGAAC TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG
 541 ATATGCCAG TGTGCCGGTC TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG
 601 AAAATGACAT CAAAAACGCC ATTAACCTGA TGTTCTGGGG ATATAGAAT TCGCGGCCGC
 661 ACTCGAGATA TCTAGACCCA GCTTTCTTGT ACAAAAGTTGG CATTATAAGA AAGCATTGCT
 721 TATCAATTG TTGCAACGAA CAGGTCACTA TCAGTCAAA TAAAATCATT ATTTGCCATC
 781 CAGCTGCAGC TCTGGCCCGT GTCTCAAAAT CTCTGATGTT ACATTGCACA AGATAAAAAT
 841 ATATCATCAT GAACAATAAA ACTGTCTGCT TACATAAACAA GTAATACAAG GGGTGTATG
 901 AGCCATATTG AACGGAAAC GTCGAGGCC CGATTAAATT CCAACATGGA TGCTGATTTA
 961 TATGGGTATA AATGGGCTCG CGATAATGTC GGGCAATCAG GTGCGACAAT CTATCGCTT
 1021 TATGGGAAGC CCGATGCGCC AGAGTTGTTT CTGAAACATG GCAAAGGTAG CGTTGCCAAT
 1081 GATGTTACAG ATGAGATGGT CAGACTAAAC TGGCTGACGG AATTTATGCC TCTTCCGACC
 1141 ATCAAGCATT TTATCGTAC TCCCTGATGAT GCATGGTTAC TCACCACTGC GATCCCCGGA
 1201 AAAACAGCAT TCCAGGTATT AGAAGAAATAT CCTGATTTCAG GTGAAAATAT TGGTGTGCG
 1261 CTGGCAGTGT TCCCTGCGCC GTTGCATTGCG ATTCCCTGTTT GTAAATTGTC TTTAACACGC
 1321 GATCGCGTAT TTGCTCTCGC TCAGCGCAGA TCACGAATGA ATAACGGTTT GGTTGATGCG
 1381 AGT GATTTTG ATGACGAGCG TAATGGCTGG CCTGTTGAAAC AAGTCTGGAA AGAAATGCAT
 1441 AAACCTTTGC CATTCTCACCG GGATTTCAGTC GTCACACTATG GTGATTTCTC ACTTGATAAC
 1501 CTTATTTTG ACGAGGGGAA ATTAATAGGT TGTATTGATG TTGGACGAGT CGGAATCGCA
 1561 GACCGATACC AGGATCTTG CATCCTATGG AACTGCCCTG GTGAGTTTTC TCCCTCATT
 1621 CAGAAACGGC TTTTCAAAATATGGTATT GATAATCCTG ATATGAATAA ATTGCAGTTT
 1681 CATTGATGC TCGATGAGTT TTTCTAATCA GAATTGGTTA ATGGTTGTA ACATTATTCA
 1741 GATTGGGCC CGTTCACGT AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA
 1801 GATCCTTTT TTCTGCGCGT AATCTGCTGC TTGCAACAAA AAAAACACC GCTACCGCG
 1861 GTGGTTTGTG TGCCGGATCA AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC
 1921 AGAGCGCAGA TACCAAAATAC TGTTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACCTCAAG
 1981 AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC TTGTTACCAGT GGCTGCTGCC
 2041 AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG
 2101 CAGCGGTGCG GCTGAACGGG GGGFTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC
 2161 ACCGAACGTGA GATACTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA
 2221 AAGGCAGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT
 2281 CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTCGGGT TTGCCCCACT CTGACTTGAG
 2341 CGTCGATTT TGTGATGCTC GTCAAGGGGG CGGAGCCTAT GGAAAACGC CAGCAACCGCG
 2401 GCCTTTTAC GGTTCTGGC CTTTGCTGG CCTTTGCTC ACATGTTCTT TCCTGCGTTA
 2461 TCCCTGATT CTGTGGATAA CCGTATTACG GCTAGCATGG ATCTCGGGGA CGTCTAACTA
 2521 CTAAGCGAGA GTAGGAAACT GCCAGGCATC GAATAAAACG AAAGGCTCAG TCGGAAGACT
 2581 GGGCTTTCG TTTTATCTGT TGTTTGTGCG TGAACGCTCT CCTGAGTAGG ACAAAATCCGC
 2641 CGGGAGCGGA TTGAACGTT GTGAAGCAAC GGCCCCGGAGG GTGGCGGGCA GGACGCCGC
 2701 CATAAACTGCA CAGGCATCAA ACTAAGCAGA AGGCCATC

FIGURE 19B

30/240

Figure 20A: Cloning Sites of the Entry Vector pENTR11

Int	attL1	S.D.	Kozak XmnI	S.D.
TTG	TAC AAA AAA GCA GGC TTC	GAA GGA GAT AGA ACC	AAT TCT CTA AGG AAA TAC	
AAC	ATG TTT TTT CGT CCG AAG	CTT CCT CTA TCT TGG	TTA AGA GAT TCC TTT ATG	
Leu Tyr Lys Lys Ala Gly Phe Glu Gly Asp Arg Thr Asn Ser Leu Arg Lys Tyr				

Kozak	NcoI	SalI	BamHI	KpnI	EcoRI	EcoRI	NotI
TTA	ACC ATG	GTC GAC	TGG ATC	CGG TAC	CGA ATT	C--	ccdB
AAT	TGG TAC	CAG CTG	ACC TAG	GCC ATG	GCT TAA	G	
Leu Thr Met Val Asp Trp Ile Arg Tyr Arg Ile							
Asn Ser Arg Pro							

XbaI	EcoRV	XbaI	Int	attL2
CAC	TCG AGA TAT	CTA GAC CCA GCT TTC	TTG TAC AAA G	
GTG	AGC TCT ATA GAT	CTG GGT CGA AAG AAC ATG	TTT C	
His Ser Arg Tyr Leu Asp Pro Ala Phe Leu Tyr Lys				

31/240

pENTR11 2744 bp (rotated to position 2578)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..166	attL1
348..653	ccdB
683..781	attL2
904..1713	KmR
1818..2391	ori

1 CTGACGGATG GCCTTTTGC GTTTCTACAA ACTCTTCCTG TTAGTTAGTT ACTTAAGCTC
 61 GGGCCCCAAA TAATGATTTT ATTTTGACTG ATAGTGACCT GTTCGTTGCA ACAAAATTGAT
 121 AAGCAATGCT TTTTATAAT GCCAACTTTG TACAAAAAAAG CAGGCTTCGA AGGAGATAGA
 181 ACCAATTCTC TAAGGAAATA CTTAACCATG GTCGACTGGA TCCGGTACCG AATTGCGCTTA
 241 CTAAAAGCCA GATAACAGTA TGCGTATTG CGCGCTGTGATT TTTGCGGTAT AAGAATATAT
 301 ACTGATATGT ATACCCGAAG TATGTCAAAA AGAGGGTGTGC TTCTAGAATG CAGTTAAGG
 361 TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTTGT GGATGTACAG AGTGTATTTA
 421 TTGACACGCC CGGGCGACGG ATAGTGATCC CCCTGGCCAG TGCACGTCTG CTGTCAGATA
 481 AAAGTCTCCCG TGAACTTTAC CCGGTGGTGC ATATCGGGG A TGAAAGCTGG CGCATGATGA
 541 CCACCGATAT GGCCAGTGTG CCGGTCTCG TTATCGGGG AGAAGTGGCT GATCTCAGCC
 601 ACCCGGAAAA TGACATCAA AACGCCATTA ACCTGATGTT CTGGGGATA TAGAATTGCG
 661 GGCGCACTC GAGATATCTA GACCCAGCTT TCTTGTACAA AGTTGGCATT ATAAGAAAGC
 721 ATTGCTTATC AATTGTTGC AACGAACAGG TCACTATCAG TCAAAATAAA ATCATTATTT
 781 GCCATCCAGC TGCAGCTCTG GCCC GTGTCT CAAAATCTCT GATGTTACAT TGCACAAGAT
 841 AAAAATATAT CATCATGAAC AATAAAACTG TCTGCTTACA TAAACAGTAA TACAAGGGGT
 901 GTTATGAGCC ATATTCAACG GGAAACGTCG AGGCCCGCAT TAAATTCCAA CATGGATGCT
 961 GATTTATATG GGTATAAAATG GGCTCGCGAT AATGTCGGGC AATCAGGTGC GACAATCTAT
 1021 CGCTTGTATG GGAAGCCCGA TGCGCCAGAG TTGTTCTGA AACATGGCAA AGGTAGCGTT
 1081 GCCAATGATG TTACAGATGA GATGGTCAGA CTAAACTGGC TGACGGAATT TATGCTCTT
 1141 CCGACCATCA AGCATTTTAT CCGTACTCTC GATGATGCAT GGTTACTCAC CACTGCGATC
 1201 CCCGGAAAAA CAGCATTCCA GGTATTAGAA GAATATCCTG ATTCAAGGTGA AAATATTGTT
 1261 GATGCGCTGG CAGTGTTCCT GCGCCGGTTG CATTGCGATTC CTGTTGTAA TTGTCCTTT
 1321 AACAGCGATC GCGTATTTCG TCTCGCTCAG GCGCAATCAC GAATGAATAA CGGTTGGTT
 1381 GATGCGAGTG ATTTGATGA CGAGCGTAAT GGCTGGCCTG TTGAAACAAGT CTGGAAAGAA
 1441 ATGCATAAAC TTTGCCATT CTCACCGGAT TCAGTCGTCA CTCATGGTGA TTTCTCACTT
 1501 GATAACCTTA TTTTGACGA GGGGAAATTAA ATAGGTTGTA TTGATGTTGG ACGAGTCGGA
 1561 ATCGCAGACC GATACCAGGA TCTTGCCATC CTATGGAACG GCCTCGGTGA GTTTTCTCCT
 1621 TCATTACAGA AACGGCTTTT TCAAAATAT GGTATTGATA ATCCTGATAT GAATAATTG
 1681 CAGTTTCATT TGATGCTCGA TGAGTTTTT TAATCAGAAT TGGTTAATTG GTGTAACAT
 1741 TATTTCAGATT GGGCCCCGTT CCACTGAGCG TCAGACCCCCG TAGAAAAGAT CAAAGGATCT
 1801 TCTTGAGATC CTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAAA ACCACCGCTA
 1861 CCAGCGGTGG TTTGTTGCC GGATCAAGAG CTACCAACTC TTTTCCGAA GTAACTGGC
 1921 TTCAGCAGAG CGCAGATAACC AAATACTGTT CTTCTAGTGT AGCCGTAGTT AGGCCACCAC
 1981 TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT ACCAGTGGCT
 2041 GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT
 2101 AAGGCGCAGC GGTGGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG
 2161 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCGAA
 2221 GGGAGAAAGG CGGACAGGTG TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG
 2281 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG CCACCTCTGA
 2341 CTTGAGCGTC GATTTTGTG ATGCTCGTCA GGGGGCGGA GCCTATGGAA AAACGCCAGC
 2401 AACGCGGCCT TTTTACGGTT CCTGGCCTT TGCTGGCCTT TTGCTCACAT GTTCTTCCT
 2461 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCTA GCATGGATCT CGGGGACGTC
 2521 TAACTACTAA GCGAGAGTAG GGAACGTCCA GGCATCAAAT AAAACGAAAG GCTCAGTCGG
 2581 AAGACTGGGC CTTTCGTTT ATCTGTTGTT TGTCGGTGAA CGCTCTCCTG AGTAGGACAA
 2641 ATCCGCCGGG AGCGGATTTG AACGTTGTGA AGCAACGGCC CGGAGGGTGG CGGGCAGGAC
 2701 GCGCGCCATA AACTGCCAGG CATCAAACTA AGCAGAAGGC CATC

FIGURE 20B

32/240

Figure 2 | A: pDEST1 Native Protein Expression in E. coli

-35 Trc promoter -10 Pribnow
 1 atgagctgt gacaatata catccggctc gataatgtg tggatttgt agccggataac
 tactcgacaa ctgttaatta gttagccgag catattacac accttaaacac tcgccttattg
 61 aatttcacac aggaaacaga caggtatagg atccacaagtt tgtaaaaaaa agctgaaagg
 taaaagtgtg tcctttgtct gtccatatcc tagtgttcaa acatgttttc tcgcgtctgt

33/240

pDEST1 6464 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
216..257	Trc promoter
397..273	attR1
647..1306	CmR
1426..1510	inactivated ccdA
1648..1953	ccdB
1994..2118	attR2
2598..3503	ampR
4104..4264	ori
4504..4941	fiori (f1 intergenic region)
5340..6420	lacIq

1 GTTTGACAGC TTATCATCGA CTGCACGGTG CACCAATGCT TCTGGCGTCA GGCAGCCATC
 61 GGAAGCTGTG GTATGGCTGT GCAGGTCGTA AATCACTGCA TAATTCGTGT CGCTCAAGGC
 121 GCACTCCCGT TCTGGATAAT GTTTTTGCG CCGACATCAT AACGGTTCTG GCAAATATTG
 181 TGAAATGAGC TGTTGACAAT TAATCATCCG GTCCGTATAA TCTGTGGAAT TGTGAGCGGG
 241 ATAACAATTT CATCGCGAGG TACCAAGCTA TCACAAGTTT GTACAAAAAA GCTGAACGAG
 301 AAACGTAAAA TGATATAAAT ATCAATATAT TAAATTAGAT TTTGCATAAA AAACAGACTA
 361 CATAATACTG TAAAACACAA CATATCCAGT CACTATGGCG GCCGCTAAGT TGGCAGCATC
 421 ACCCGACGCA CTTTGCGCCG AATAAATACC TGTGACGGAA GATCACTTCG CAGAATAAAT
 481 AAATCCTGGT GTCCCTGTTG ATACCAGGGAA GCCCCTGGCC AACTTTGGC GAAAATGAGA
 541 CGTTGATCGG CACGTAAGAG GTTCCAACCT TCACCATAAT GAAATAAGAT CACTACCGGG
 601 CGTATTTTTG GAGTTATCGA GATTTTCAGG AGCTAAGGAA GCTAAAATGG AGAAAAAAAT
 661 CACTGGATAT ACCACCGTTG ATATATCCCA ATGGCCTCGT AAAGAACATT TTGAGGCATT
 721 TCAGTCAGTT GCTCAATGTA CCTATAACCA GACCCTTCAG CTGGATATTAA CGGCCTTTT
 781 AAAGACCGTA AAGAAAAATA AGCACAAGTT TTATCCGGCC TTTATTTCACA TTCTTGCCCC
 841 CCTGATGAAT GCTCATCCGG AATTCGTTA GGCAATGAAA GACGGTGAGC TGGTGTATG
 901 GGATAGTGTGTT CACCCCTGTT ACACCGTTT CCATGAGCAA ACTGAAACGT TTTCATCGCT
 961 CTGGAGTGAA TACCACGACG ATTTCCGGCA GTTTCTACAC ATATATTTCGC AAGATGTGGC
 1021 GTGTTACGGT GAAAACCTGG CCTATTTCCC TAAAGGGTTT ATTGAGAATA TGTTTTTCGT
 1081 CTCAGCCAAT CCCTGGGTGA GTTTCACCAG TTTTGATTTA AACGTGGCCA ATATGGACAA
 1141 CTTCTTCGCC CCCGTTTTCA CCATGGGCAA ATATTATACG CAAGGCGACA AGGTGCTGAT
 1201 GCCGCTGGCG ATTCAAGGTTT ATCATGCCGT CTGTGATGGC TTCCATGTCG GCAGAATGCT
 1261 TAATGAATTA CAACAGTACT GCGATGAGTG GCAGGGCGGG GCGTAAACGC GTGGATCCGG
 1321 CTTACTAAAA GCCAGATAAC AGTATGCGTA TTTGCGCGCT GATTTTTGCG GTATAAGAAT
 1381 ATATACTGAT ATGTATACCC GAAGTATGTC AAAAAGAGGT GTGCTATGAA GCAGCGTATT
 1441 ACAGTGCAGC TTGACAGCGA CAGCTATCAG TTGCTCAAGG CATATATGAT GTCAATATCT
 1501 CCGGTCTGGT AAGCACAACC ATGCGAGAATG AAGCCCGTCG TCTGCGTGC GAACGCTGGA
 1561 AAGCGGAAAA TCAGGAAGGG ATGGCTGAGG TCGCCCGTT TATTGAAATG AACGGCTCTT
 1621 TTGCTGACGA GAACAGGGAC TGGTGAATG CAGTTAAGG TTTACACCTA TAAAAGAGAG
 1681 AGCCGTTATC GTCTGTTGT GGATGTACAG AGTGTATTA TTGACACGCC CGGGCGACGG
 1741 ATGGTGTATCC CCCTGGCCAG TGCACGCTG CTGTGAGATA AAGTCTCCCG TGAACTTTAC
 1801 CCGGTGGTGC ATATCGGGGA TGAAAGCTGG CGCATGATGA CCACCGATAT GGCCAGTGTG
 1861 CCGGTCTCCG TTATCGGGGA AGAAGTGGCT GATCTCAGCC ACCGCAAAA TGACATCAAA
 1921 AACGCCATTA ACCTGATGTT CTGGGAAATA TAAATGTCAG GCTCCCTTAT ACACAGCCAG
 1981 TCTGCAGGTC GACCATAGTG ACTGGATATG TTGTGTTTA CAGTATTATG TAGTCTGTTT
 2041 TTTATGCAAATCTAATTTA ATATATTGAT ATTTATATCA TTTTACGTTT CTCGTTCAAGC
 2101 TTTCTTGTAC AAAGTGGTGA TAGCTTGGCT GTTTTGGCGG ATGAGAGAAAG ATTTTCAGCC
 2161 TGATACAGAT TAAATCAGAA CGCAGAACGG CTGTGATAAA ACAGAATTG CCTGGCGGCC
 2221 GTAGCGCGGT GGTCCCCACCT GACCCCATGC CGAACTCAGA AGTAAACGC CGTAGCGCCG
 2281 ATGGTAGTGT GGGGTCTCCC CATGCGAGAG TAGGAACTG CCAGGCATCA AATAAAACGA
 2341 AAGGCTCAGT CGAAAGACTG GGCTTTCGT TTTATCTGTT GTTGTGCGGT GAACGCTCTC
 2401 CTGAGTAGGA CAAATCCGCC GGGAGCGGAT TTGAACGTTG CGAAGCAACG GCCCAGGG
 2461 TGGCGGGCAG GACGCCGCC ATAAACTGCG AGGCATCAA TTAAGCAGAA GGCCATCCTG
 2521 ACGGATGGCC TTTTGCCTT TCTACAAACT CTTTTGTTT ATTGTTCTAA ATACATTCAA-

FIGURE 21B

34/240

2581 ATATGTATCC GCTCATGAGA CAATAACCCCT GATAAAATGCT TCAATAATAT TGAAAAGGA
 2641 AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTGCG GCATTTGCC
 2701 TTCCTGTTTT TGCTCACCCA GAAACGCTGG TGAAAGAAA AGATGCTGAA GATCAGTTGG
 2761 GTGCACGAGT GGGTTACATC GAACCTGGATC TCAACAGCGG TAAGATCCTT GAGAGTTTC
 2821 GCCCGAAGA ACGTTTCCA ATGATGAGCA CTTTTAAAGT TCTGCTATGT GGCGCGGTAT
 2881 TATCCCCTGT TGACGCCGGG CAAGAGCAAC TCGGTGCCCG CATAACTAT TCTCAGAATG
 2941 ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG ACAGTAAGAG
 3001 AATTATGCAG TGCTGCCATA ACCATGAGTC ATAACACTGC GGCCAACCTTA CTTCTGACAA
 3061 CGATCGGAGG ACCGAAGGAG CTAACCGCTT TTTTGACCAA CATGGGGGAT CATGTAACTC
 3121 GCCTTGATCG TTGGGAACCG GAGCTGAATG AAGCCATACC AAACGACGAG CGTGACACCA
 3181 CGATGCCTAC AGCAATGGCA ACAACGTTGC GCAAACATT ATTACTGGCGAA CTACTTACTC
 3241 TAGCTTCCCG GCAACAATTA ATAGACTGGA TGGAGGGCGGA TAAAGTTGCA GGACCACTTC
 3301 TCGCCTCGGC CCTTCCGGCT GGCTGGTTA TTGCTGATAA ATCTGGAGCC GGTGAGCGTG
 3361 GGTCTCGCGG TATCATTGCA GCACTGGGGC CAGATGGTAA GCCCTCCCGT ATCGTAGTTA
 3421 TCTACACGAC GGGGAGTCAG GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG
 3481 GTGCCTCACT GATTAAGCAT TGTTAACCTGT CAGACCAAGT TTACTCATAT ATACTTTAGA
 3541 TTGATTTAAA ACTTCATTAA TAATTTAAAAA GGATCTAGGT GAAGATCCTT TTTGATAATC
 3601 TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG AGCGTCAGAC CCCGTAGAAA
 3661 AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGCGT AATCTGCTGC TTGCAAACAA
 3721 AAAAACCAAC GCTACCAGCG GTGGTTTGTG TGCGGATCA AGAGCTACCA ACTCTTTTC
 3781 CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGTCTTCTA GTGTAGCCGT
 3841 AGTTAGGCCA CCACTTCAG AACTCTGTAG CACCGCCTAC ATACCTCGCT CTGCTAATCC
 3901 TGTACCCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT TACCGGGTTG GACTCAAGAC
 3961 GATAGTTACC GGATAAGGCG CAGCGGTCCG GCTGAACGGG GGGTTCGTGC ACACAGCCCA
 4021 GCTTGGAGCG AACGACCTAC ACCGAACCTGA GATACCTACA GCGTGAGCTA TGAGAAAGCG
 4081 CCACGCTTCC CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG
 4141 GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT CCTGTGGGT
 4201 TTGCCCCACTT CTGACTTGAG CGTCGATTTT TGTGATGCTC GTCAGGGGGG CGGAGCCTAT
 4261 GGGAAAACCG CAGCAACCGC GCCTTTTAC GGTTCCTGGC CTTTGCTGG CTTTTGCTC
 4321 ACATGTTCTT TCCTGCGTTA TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTTGAGT
 4381 GAGCTGATAC CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG
 4441 CGGAAGAGCG CCTGATGCGG TATTTCTCC TTACGCATCT GTGCGGTATT TCACACCGCA
 4501 TAATTTGTT AAAATTGCG TTAAATTTT GTTAAATCAG CTCATTTTTT AACCAATAGG
 4561 CCGAAATCGG CAAAATCCCT TATAAATCAA AAGAATAGAC CGAGATAGGG TTGAGTGTG
 4621 TTCCAGTTTG GAACAAGAGT CCACTATTAA AGAACGTGGA CTCCAACGTC AAAGGGCGAA
 4681 AAACCGTCTA TCAGGGCGAT GGGCCACTAC GTGAACCACAT ACCCTAATCA AGTTTTTGG
 4741 GGTGAGGTG CCGTAAAGCA CTAATCGGA ACCCTAAAGG GAGCCCCGA TTTAGAGCTT
 4801 GACGGGGAAA GCCGGCGAAC GTGGCGAGAA AGGAAGGGAA GAAAGCGAAA GGAGCGGGCG
 4861 CTAGGGCGCT GGCAAGTGTG GCGGTACCGC TGCGCTAAC CACACACCC GCGCGCTTA
 4921 ATGCGCCGCT ACAGGGCGCG TCCATTGCGC ATTCAAGCTG CTATGGTGC CTCTCAGTAC
 4981 AATCTGCTCT GATGCCCAT AGTTAAAGCA GTACCACTGA CGTAGCGATA TCGGAGTGT
 5041 TACACTCCGC TATCGCTACG TGACTGGGT ATGGCTGCGC CCCACACCC GCCAACACCC
 5101 GCTGACGCGC CCTGACGGGC TTGTCCTGTC CCGGCATCCG CTTACAGACA AGCTGTGACC
 5161 GTCTCCGGGA GCTGCATGTG TCAGAGGTT TCACCGTCAT CACCGAAACG CGCGAGGAG
 5221 CAGATCAATT CGCGCGCGAA GCGAAGCGG CATGCATTAA CGTTGACACC ATCGAATGGT
 5281 GCAAAACCTT TCGCGGTATG GCATGATAGC GCCCAGAAGA GAGTCATTC AGGGTGGTGA
 5341 ATGTGAAACC AGTAACGTTA TACGATGTCG CAGAGTATGC CGGTGTCTCT TATCAGACCG
 5401 TTTCCCGCGT GGTGAACCAAG GCCAGCCACG TTTCTGCGA AACGCGGGAA AAAGTGAAG
 5461 CGGCGATGGC GGAGCTGAAT TACATTCCCA ACCCGTGGC ACAACAACG GCGGGCAAAC
 5521 AGTCGTTGCT GATTGGCGTT GCCACCTCCA GTCTGGCCCT GCACCGCGCG TCGCAAATTG
 5581 TCGCGCGAT TAAATCTCGC GCCGATCAAC TGGGTGCCAG CGTGGTGGTG TCGATGGTAG
 5641 AACGAAGCGG CGTCGAAGCC TGAAAGCGG CGGTGCACAA TCTTCTCGCG CAACCGCTCA
 5701 GTGGGCTGAT CATTAACTAT CCGCTGGATG ACCAGGATGC CATTGCTGTG GAAGCTGCCT
 5761 GCAACTAATGT TCCGGCGTTA TTCTTGTG TGCTCTGACCA GACACCCATC AACAGTATTA
 5821 TTTCTCCCA TGAAGACGGT ACCGCACTGG GCGTGGAGCA TCTGGTGCCTA TTGGGTGACC
 5881 AGCAAATCGC GCTGTTAGCG GGGCCATTAA GTTCTGCTC GGGCGCTCTG CGTCTGGCTG
 5941 GCTGGCATAA ATATCTCACT CGCAATCAAATGCTTCAAGCCATGCTTCAAGGGC GAAGGGCACT
 6001 GGAGTGCCTAATGCTTCAAGCCATGCTTCAAGGGC ATCGTTCCCA-

FIGURE 21C

35/240

6061 CTGCGATGCT GGTTGCCAAC GATCAGATGG CGCTGGCGC AATGCGGCC ATTACCGAGT
6121 CCGGGCTGCG CGTTGGTGC GATATCTCG TAGTGGATA CGACGATACC GAAGACAGCT
6181 CATGTTATAT CCCGCCGTTA ACCACCATCA AACAGGATT TCGCCTGCTG GGGCAAACCA
6241 GCGTGGACCG CTTGCTGCAA CTCTCTCAGG GCCAGGCGGT GAAGGGCAAT CAGCTGTTGC
6301 CCGTCTCACT GGTGAAAAGA AAAACCACCC TGGCACCCAA TACGCAAACC GCCTCTCCCC
6361 GCGCGTTGGC CGATTCATTA ATGCAGCTGG CACGACAGGT TTCCCGACTG GAAAGCGGGC
6421 AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CGCGAATTGA TCTG

FIGURE 21D

36/240

Figure 22A: PDEST2

His6 fusions in E. coli

970 aat att ctg aaa tga gct gtt gac aat taa ⁻³⁵ T₇ promoter tca tcc ggt ccg aat aat ctg
 tta taa gac ttt act cga caa ctg tta att agt agg cca ggc ata tta gac
 1021 tgg aat tgc gag cgg ata aca att tca cac agg aaa cag acc atg tcg tac
 acc tta aca ctc gcc tat tgt taa agt gtg tcc ttt gtc tgg tac agc atg
 1072 T₇ His His His His His His attR1
 tac cat dac cat cat cat cat ggt att tca aac atg ttg/cag aac aaa gct gaa
 atg gta gtg gta gtg gta gtg ccg tag tgt tca aac atg ttt/ttt cca/cyt

37/260

pDEST2 6553 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
912..962	Trc
1223..1009	attR1
1473..2132	CmR
2252..2336	inactivated ccdA
2474..2779	ccdB
2820..2944	attR2
3509..4414	ampR
5015..5175	ori
5415..5852	fiori (f1 intergenic region)
6225..752	lacIq

1 GGCGGTGCAC AATCTTCTCG CGCAACGCGT CAGTGGGCTG ATCATTAACT ATCCGCTGGA
 61 TGACCAGGAT GCCATTGCTG TGGAAAGCTGC CTGCACTAAT GTTCCGGCGT TATTTCCTGA
 121 TGTCTCTGAC CAGACACCCA TCAACAGTAT TATTTCTCC CATGAAGACG GTACGCGACT
 181 GGGCGTGGAG CATCTGGTCG CATTGGGTCA CCAGCAAATC GCGCTGTTAG CGGGCCCATT
 241 AAGTTCTGTC TCAGCGCGTC TGCGTCTGGC TGGCTGGCAT AAATATCTCA CTCGCAATCA
 301 AATTCAAGCCG ATAGCGAAC GGGAAAGCGA CTGGAGTGCC ATGTCGGTT TTCAACAAAC
 361 CATGCAAATG CTGAATGAGG GCATCGTTCC CACTGCGATG CTGGTTGCCA ACGATCAGAT
 421 GGGCGTGGGC GCAATGCGCG CCATTACCGA GTCCGGGCTG CGCGTTGGTG CGGATATCTC
 481 GGTAGTGGGA TACGACGATA CCGAAAGACAG CTCATGTTAT ATCCCAGCGT CAACCACCAT
 541 CAAACAGGAT TTTCGCTGC TGGGGCAAAC CAGCGTGGAC CGCTTGTGC AACTCTCTCA
 601 GGGCCAGGCG GTGAAGGGCA ATCAGCTGTT GCCCCGTCGA CTGGTAAAAA GAAAAAACAC
 661 CCTGGCACCC AATACGAAA CCGCCTCTCC CGCGCGTTG GCGGATTCAAT TAATGCAGCT
 721 GGCACGACAG GTTCCCAGC TGGAAAGCGG GCAGTGGCG CAACGCAATT AATGTGAGTT
 781 AGCGCGAATT GATCTGTTT GACAGCTTAT CATCGACTGC ACGGTGCACC AATGCTTCTG
 841 GCGTCAGGCA GCCATCGGAA GCTGTGGTAT GGCTGTGCAG GTCGTAAATC ACTGCATAAT
 901 TCGTGTGCT CAAGGCGCAC TCCCAGTCTG GATAATGTTT TTTGCGCCGA CATCATAACG
 961 GTTCTGGCAA ATATTCTGAA ATGAGCTGTT GACAATTAAAT CATCCGGTCC GTATAATCTG
 1021 TGGAAATTGTG AGCGGATAAC AATTCACAC AGGAAACAGA CCATGTCGTA CTACCATCAC
 1081 CATCACCATC ACGGCATCAC AAGTTGTAC AAAAAAGCTG AACGAGAAC STAAAATGAT
 1141 ATAAATATCA ATATATTAAA TTAGATTTTG CATAAAAAAC AGACTACATA ATACTGTAAC
 1201 ACACAACATA TCCAGTCACT ATGGCGGCCG CTAAGTGGC AGCATCACCC GACGCACCTT
 1261 GCGCCGAATA AATACCTGTG ACAGGAAGATC ACTTCGCGA ATAATAAAAT CCTGGTGTCC
 1321 CTGTTGATAC CGGGAAGCCC TGGGCAACT TTTGGCAAA ATGAGACGTT GATCGGCACG
 1381 TAAGAGGTTTC CAACTTTCAC CATAATGAAA TAAGATCACT ACCGGGCGTA TTTTTTGAGT
 1441 TATCGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA AAAAATCACT GGATATACCA
 1501 CCGTTGATAT ATCCCAATGG CATCGTAAAG AACATTGTA GGCAATTCAG TCAGTTGCTC
 1561 AATGTACCTA TAACCAAGAC GTTCAGCTGG ATATTACGGC CTTTTTAAAG ACCGTAAGA
 1621 AAAATAAGCA CAAGTTTTAT CCGGCCTTTA TTCACATTCT TGCCCGCCTG ATGAATGCTC
 1681 ATCCGGAATT CCGTATGGCA ATGAAAGACG GTGAGCTGGT GATATGGGAT AGTGTTCACC
 1741 CTTGTTACAC CGTTTCCAT GAGCAAATG AAACGTTTC ATCGCTCTGG AGTGAATACC
 1801 ACGACGATT CCAGCAGTTT CTACACATAT ATTGCGAAGA TGTGGCGTGT TACGGTGAAGA
 1861 ACCTGGCCTA TTTCCCTAAA GGGTTTATTG AGAATATGTT TTTGCTCTCA GCCAATCCCT
 1921 GGGTGAGTTT CACCAAGTTT GATTAAACG TGGCCAATAT GGACAACCTTC TTGCCCCCG
 1981 TTTTCACCAT GGGCAAATAT TATACGCAAG GCGACAAGGT GCTGATGCCG CTGGCGATT
 2041 AGGTTCATCA TGCGCTCTGT GATGGCTTCC ATGTCGGCAG AATGCTTAAAT GAATTACAC
 2101 AGTACTGCGA TGAGTGGCAG GCGGGGGCGT AAACGCGTGG ATCCGGCTTA CTAAAAGCCA
 2161 GATAACAGTA TGCGTATTG CGCGCTGATT TTTGCGGTAT AAGAAATATAT ACTGATATGT
 2221 ATACCGAAG TATGTCAAAA AGAGGTGTGC TATGAAGCAG CGTATTACAG TGACAGTTGA
 2281 CAGCGACAGC TATCAGTTGC TCAAGGCATA TATGATGTCA ATATCTCCGG TCTGGTAAGC
 2341 ACAACCATGC AGAATGAAGC CCGTCGCTG CGTGGCGAAC GCTGGAAAGC GGAAAATCAG
 2401 GAAGGGATGG CTGAGGTGCG CCGGTTTATT GAAATGAACG GCTTTTTGC TGACGAGAAC
 2461 AGGGACTGGT GAAATGCGT TTAAGGTTTA CACCTATAAA AGAGAGAGCC GTTATCGTCT
 2521 GTTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCGGG CGACGGATGG TGATCCCCCT-

FIGURE 22B

38/240

2581 GGCCAGTGCA CGTCTGCTGT CAGATAAAGT CTCCCGTGAA CTTTACCCGG TGGTGCATAT
 2641 CGGGGATGAA AGCTGGCGCA TGATGACCAC CGATATGGCC AGTGTGCCGG TCTCCGTTAT
 2701 CGGGGAAGAA GTGGCTGATC TCAGCCACCG CGAAAATGAC ATCAAAAACG CCATTAAACCT
 2761 GATGTTCTGG GGAATATAAA TGTCAAGGCTC CCTTATACAC AGCCAGTCTG CAGGTGCGACC
 2821 ATAGTGACTG GATATGTTGT GTTTTACAGT ATTATGTAGT CTGTTTTTA TGCAAAATCT
 2881 AATTTAATAT ATTGATATTG ATATCATTTC ACGTTCTCG TTCAGCTTTC TTGTACAAAG
 2941 TGGTGTGACCATATGGAA TTCAAAGGCC TACGTGACG AGCTCACTAG TCGCGGCCGC
 3001 TTCTAGAGGA TCCCTCGAGG CATGCGGTAC CAAGCTTGGC TGTTTTGGCG GATGAGAGAA
 3061 GATTTTCAGC CTGATACAGA TAAATCAGA ACGCAGAACG GGTCTGATAA AACAGAATT
 3121 GCCTGGCGGC AGTAGCGCGG TGCGCCACC TGACCCCATG CCGAACTCAG AAGTGAACG
 3181 CCGTAGCGCC GATGGTAGTG TGGGGTCTCC CCATGCGAGA GTAGGGAACG GCCAGGCATC
 3241 AAATAAAACG AAAGGCTCAG TCGAAAGACT GGGCCTTCG TTTTATCTGT TGTTTGTGCG
 3301 TGAACGCTCT CCTGAGTAGG ACAAAATCCGC CGGGAGCGGA TTTGAACGTT GCGAAGCAAC
 3361 GGGCCGGAGG GTGGCGGGCA GGACGCCGC CATAAAACTGC CAGGCATCAA ATTAAGCAGA
 3421 AGGCCATCCT GACGGATGGC CTTTTGCGT TTCTACAAAC TCTTTTGTG TATTTTCTA
 3481 AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAAATGC TTCAATAATA
 3541 TTGAAAAAGG AAGAGTATGA GTATTCAACA TTTCCGTGTC GCCCTTATTG CTTTTTTG
 3601 GGCATTTGCT CTTCTGTTT TTGCTCACCC AGAAACGCTG GTGAAAGTAA AAGATGCTGA
 3661 AGATCAGTTG GGTGCACGAG TGGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT
 3721 TGAGAGTTT CGCCCCGAAG AACGTTTCC AATGATGAGC ACTTTAAAG TTCTGCTATG
 3781 TGGCGGGTA TTATCCCGTG TTGACGCCGG GCAAGAGCAA CTCGGTCGCC GCATACACTA
 3841 TTCTCAGAAT GACTTGGTT AGTACTCACC AGTCACAGAA AAGCATCTTA CGGATGGCAT
 3901 GACAGTAAGA GAATTATGCA GTGCTGCCAT AACCATGAGT GATAACACTG CGGCCAACTT
 3961 ACTTCTGACA ACGATCGGAG GACCGAAGGA GCTAACCGCT TTTTGCACA ACATGGGGGA
 4021 TCACTGAACT CGCCTTGATC GTTGGGAACG GGAGCTGAAT AAAGCCATAC CAAACGACGA
 4081 GCGTGCACCC ACGATGCCA CAGCAATGGC AAACAACGTT CGCAAACATAT TAACTGGCGA
 4141 ACTACTTACT CTAGCTTCCC GGCAACAAATT AATAGACTGG ATGGAGGCCGG ATAAAGTTGC
 4201 AGGACCACTT CTGCGCTCGG CCCTTCCGGC TGGCTGGTTT ATTGCTGATA AATCTGGAGC
 4261 CGGTGAGCGT GGGTCTCGCG GTATCATTGC AGCACTGGG CCAGATGGTA AGCCCTCCCG
 4321 TATCGTAGTT ATCTACACGA CGGGGAGTC GGCAACTATG GATGAACGAA ATAGACAGAT
 4381 CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAACG TCAGACCAAG TTTACTCATA
 4441 TATACTTTAG ATTGATTAA AACTCATTG TTAATTAAA AGGATCTAGG TGAAGATCCT
 4501 TTTTGATAAT CTCATGACCA AAATCCCTTA ACCTGAGTTT TCCTTCCACT GAGCGTCAGA
 4561 CCCCGTAGAA AAGATCAAAG GATCTTCTTG AGATCCTTT TTTCTGCGCG TAATCTGCTG
 4621 CTTGCAAACA AAAAACCCAC CGCTTACCGC GGTGGTTTGT TTGGGGGATC AAGAGCTACC
 4681 AACTCTTTT CCGAAGGTTA CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGCTCTCT
 4741 AGTGTAGCCG TAGTTAGGCC ACCACTCAA GAACTCTGTA GCACCGCCTA CATACTCGC
 4801 TCTGCTAAATC CTGTTACAG TGGCTGCTGC CAGTGGCGAT AAGTCGTGTC TTACCGGGTT
 4861 GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAGCGGTG GGCTGAACGG GGGGTTCTG
 4921 CACACAGCCC AGCTTGGAGC GAAAGACCTA CACCGAACTG AGATACCTAC AGCGTGAGCT
 4981 ATGAGAAAGC GCCACGCTTC CGAAGGGAG AAAGGCGGAC AGGTATCCGG TAAGCGGCAG
 5041 GGTGGAACA GGAGAGCGA CGAGGGAGCT TCCAGGGGA AACGCCCTGGT ATCTTTATAG
 5101 TCCTGTCGGG TTTCGCCACC TCTGACTTGA GCGTCGATTT TTGTGATGCT CGTCAGGGGG
 5161 GCGGAGCCTA TGGAAAAACG CCAGCAACGC GGCTTTTTA CGGTTCTGG CTTTTGCTG
 5221 GCCTTTGCT CACATGTTCT TTCTGCGTT ATCCCCTGAT TCTGTGGATA ACCGTATTAC
 5281 CGCCTTGAG TGAGCTGATA CCGCTCGCCG CAGCGAACG ACCGAGCGCA GCGAGTCAGT
 5341 GAGCGAGGAA CGGGAAGAGC GCCTGATGCG GTATTTCTC CTTACGCATC TGTGCGGTAT
 5401 TTCACACCCTG ATAATTGTTG TAAAATTGCG GTTAAATTG TGTAAATCA GCTCATTGTT
 5461 TAACCAATAG GCCGAATCG GAAAATCCC TTATAAAATCA AAAGAATAGA CCGAGATAGG
 5521 GTTGAGTGTGTT GTTCCAGTTT GGAACAAGAG TCCACTATTA AAGAACGTGG ACTCCAACGT
 5581 CAAAGGGCGA AAAACCGTCT ATCAGGGCGA TGGCCCACTA CGTGAACCAT CACCCATAATC
 5641 AAGTTTTTG GGGTCGAGGT GCGTAAAGC ACTAAATCGG AACCCCTAAAG GGAGCCCCCG
 5701 ATTTAGAGCT TGACGGGAA AGCCGGCGA CGTGGCGAGA AAGGAAGGGAGA AGAAAGCGAA
 5761 AGGAGCGGGC GCTAGGGCGC TGGCAAGTGT AGCGGTACG CTGCGCGTAA CCACCAACACC
 5821 CGCCGCGCTT AATGCGCCGC TACAGGGCGC GTCCCATTG CCATTCAAGGC TGCTATGGTG
 5881 CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAACG CAGTATACAC TCCGCTATCG
 5941 CTACGTGACT GGGTCATGGC TGCGCCCCGA CACCCGCCAA CACCCGCTGA CGCGCCCTGA
 6001 CGGGCTTGTC TGCTCCCGC ATCCGCTTAC AGACAAGCTG TGACCGTCTC CGGGAGCTGC-

FIGURE 22C

39/240

6061 ATGTGTCAGA GGTTTCACC GTCATCACCG AAACGCGCGA GGCAGCAGAT CAATTGCGC
6121 CGGAAGGCAGA AGCGGCATGC ATTACGTTG ACACCATCGA ATGGTGCAAA ACCTTTCGCG
6181 GTATGGCATG ATAGCGCCCG GAAGAGAGTC AATTCAAGGT GGTGAATGTG AAACCAGTAA
6241 CGTTATACGA TGTCGCAGAG TATGCCGGTG TCTCTTATCA GACCGTTTCC CGCGTGGTGA
6301 ACCAGGCCAG CCACGTTCT CGAAAACGC GGGAAAAAGT GGAAGCGGCG ATGGCGGAGC
6361 TGAATTACAT TCCCAACCAGC GTGGCACAAC AACTGGCGGG CAAACAGTCG TTGCTGATTG
6421 GCGTTGCCAC CTCCAGTCTG GCCCTGCACG CGCCGTCGCA AATTGTCGCG GCGATTAAAT
6481 CTCGCGCCGA TCAACTGGGT GCCAGCGTGG TGGTGTGCGAT GGTAGAACGA AGCGGCGTCG
6541 AAGCCTGTAA AGC

FIGURE 22D

40/240

Figure 23A: pDEST3

GST fusions in *E. coli*

154 cggttc tgg caa ata ttc tga aat gag ctg -35 Trc promoter
 gcc aag acc gtt tat aag act tta ctc gac ttg aca att aat cat ctt cgg ctc
 .205 ~~gtat~~⁻¹⁰ aac tgt gtt gaa ttg tga gcg gat aac aat ttc aca cag gaa aca gta
 cat att ~~aca~~ cac ctt aac act cgc cta ttg tta aag tgt gtc ctt tgt cat
 256 ttc atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc
 M S P I L → GST / / /
 aag tac agg gga tat gat cca ata acc ttt taa ttc ccc gaa cac gtt ggg

919 " GST → R G S R R A S V G S P S T S
 ctg gtt ccg cgt gga tct cgt cgt gca tct gtt gga tcc cca tca aca agt
 gac caa ggc gca cct aga gca gca cgt aga caa cct agg ggt agt tgt tca
 970 Y K K
~~ttt x ac aac aca gtc gaa cga gaa acg taa aat gat ata aat aat aat aat~~
~~aac atg ttt ttt cga ctt gct ctt tgc att tta cta tat tta tag tta tat~~

pDEST3 6823 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
150..200	Trc
1087..963	attR1
1337..1996	CmR
2116..2200	inactivated ccdA
2338..2643	ccdB
2684..2808	attR2
3231..4091	ampR
5295..6254	lacIq

1 ACGTTATCGA CTGCACGGTG CACCAATGCT TCTGGCGTCA GGCAGGCCATC GGAAGCTGTG
 61 GTATGGCTGT GCAGGTCGTA AATCACTGCA TAATTCTGT CGCTCAAGGC GCACTCCCGT
 121 TCTGGATAAT GTTTTTGCG CCGACATCAT AACGGTTCTG GCAAATATTG TGAAATGAGC
 181 TGGTACAAT TAATCATCGG CTCGTATAAT GTGTGGAATT GTGAGCGGAT AACAAATTCA
 241 CACAGGAAAC AGTATTCTATG TCCCCTATAC TAGGTTATTG GAAAATTAAG GGCCTTGTC
 301 AACCCACTCG ACTTCTTTG GAATATCTG AAGAAAAATA TGAAGAGCAT TTGTATGAGC
 361 GCGATGAAGG TGATAAATGG CGAAACAAAA AGTTTGAATT GGGTTGGAG TTTCCAATC
 421 TTCCTTATTA TATTGATGGT GATGTTAAAT TAACACAGTC TATGGCCATC ATACGTTATA
 481 TAGCTGACAA GCACAAACATG TTGGGGTGGTT GTCCAAAAGA GCGTGCAGAG ATTTCAATGC
 541 TTGAAGGGAGC GGTTTTGGAT ATTAGATACG GTGTTTCGAG AATTGATAT AGTAAAGACT
 601 TTGAAACTCT CAAAGTTGAT TTTCTTAGCA AGCTACCTGA AATGCTGAAA ATGTTCGAAG
 661 ATCGTTTATG TCATAAAACAA TATTTAAATG GTGATCATGT AACCCATCCT GACTTCATGT
 721 TGTATGACGC TCTTGATGTT GTTTTATACA TGGACCCAAT GTGCCCTGGAT GCGTTCCCAA
 781 AATTAGTTG TTTTAAAAAA CGTATTGAAG CTATCCCACA AATTGATAAG TACTTGAAAT
 841 CCAGCAAGTA TATAGCATGG CCTTTGCAGG GCTGGCAAGC CACGTTTGGT GGTGGCGACC
 901 ATCCCTCCAAA ATCGGATCTG GTTCCGCGTG GATCTCGTC TGCACTCTGTT GGATCCCCAT
 961 CAACAAGTTT GTACAAAAAA GCTGAACGAG AAACGTAATA TGATATAAAT ATCAATATAT
 1021 TAAATTAGAT TTTGCATAAA AAACAGACTA CATAATACTG TAAAACACAA CATATCCAGT
 1081 CACTATGGCG GCCGCTAACT GTCGACGATC ACCCGACGCA CTTTGCAGCCG AATAAAATACC
 1141 TGTGACGGAA GATCACTTCG CAGAATAAAAT AAATCCTGGT GTCCCTGTGTT ATACCGGGAA
 1201 GCCCTGGGCC AACTTTGGC GAAAATGAGA CGTTGATCGG CACGTAAGAG GTTCCAACCTT
 1261 TCACCATAAT GAAATAAGAT CACTACCGGG CGTATTTTT GAGTTATCGA GATTTTCAGG
 1321 AGCTAAGGAA GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCGTTG ATATATCCCA
 1381 ATGGCATCGT AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTCAATGTA CCTATAACCA
 1441 GACCGTTCAAG CTGGATATTA CGGCTTTTAAAGACCGTA AGAAAATA AGCACAAGTT
 1501 TTATCCGGCC TTTATTCAAC TTCTTGCCCG CCTGATGAAT GCTCATCCGG AATTCCGTAT
 1561 GGAATGAAA GACGGTGAGC TGGTGTATG GGATAGTGTGTT CACCTTGTT ACACCGTTT
 1621 CCATGAGCAA ACTGAAACGT TTTCATCGCT CTGGAGTGAA TACACGACG ATTTCCGGCA
 1681 GTTTCTACAC ATATATTTCG AAGATGTTGC GTGTTACGGT GAAAACCTGG CCTATTCCCC
 1741 TAAAGGGTTT ATTGAGAATA TGTGTTTCGT CTCAGCCAAT CCCGGGTGA GTTTCACCAAG
 1801 TTTTGATTTA AACGTGGCCA ATATGGACAA CTTCTTCGCC CCCGTTTCA CCATGGCAA
 1861 ATATTATACG CAAGGCGACA AGGTGCTGAT GCCGCTGGCG ATTCAAGGTT ATCATGCCGT
 1921 CTGTGATGGC TTCCATGTCG GCAGAATGCT TAATGAATTA CAACAGTACT GCGATGAGTG
 1981 GCAGGGCGGG GCGTAAAGAT CTGGATCCGG CTTACTAAAA GCCAGATAAC AGTATGCGTA
 2041 TTTGCGCGCT GATTTTGCG GTATAAGAAT ATATACTGAT ATGTATACCC GAAGTATGTC
 2101 AAAAAGAGGT GTGCTATGAA GCAGCGTATT ACAGTGACAG TTGACAGCGA CAGCTATCAG
 2161 TTGCTCAAGG CATATATGAT GTCAATATCT CCGGTCTGGT AAGCACAACC ATGCAGAATG
 2221 AAGCCCGTCC TCTGCGGCC GAACGCTGGA AAGCGAAAAA TCAGGAAGGG ATGGCTGAGG
 2281 TCGCCCGGTT TATTGAAATG AACGGCTCTT TTGCTGACGA GAACAGGGAC TGGTGAATG
 2341 CAGTTTAAGG TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTTGT GGATGTACAG
 2401 AGTGATATTA TTGACACGCC CGGGCGACGG ATGGTGATCC CCCTGGCCAG TGCACGTCTG
 2461 CTGTCAGATA AAGTCTCCCG TGAACATTAC CCGGTGGTGC ATATCGGGGA TGAAAGCTGG
 2521 CGCATGATGA CCACCGATAT GGCCAGTGTG CCGGTCTCCG TTATCGGGGA AGAAAGTGGCT
 2581 GATCTCAGCC ACCGCGAAAAA TGACATCAA AACGCCATTA ACCTGATGTT CTGGGAAATA
 2641 TAAATGTCAG GCTCCCTTAT ACACAGGCCAG TCTGCAAGTC GACCATAGTG ACTGGATATG-

FIGURE 23B

42/240

2701 TTGTGTTTTA CAGTATTATG TAGTCTGTT TTTATGCAAA ATCTAATTAA ATATATTGAT
 2761 ATTTATATCA TTTTACGTT CTCGTCAGC TTTCTTGAC AAAGTGGTTG ATGGGAATTG
 2821 ATCGTGAATG ACTGACGATC TGCCCTCGCG GTTTCGGTGA TGACGGTGAA AACCTCTGAC
 2881 ACATGCAGCT CCCGGAGACG GTACAGCTT GTCTGTAAGC GGATGCCGG AGCAGACAAG
 2941 CCCGTCAAGGG CGCGTCAGCG GGTGTTGGCG GGTGTCGGGG CGCAGCCATG ACCCAGTCAC
 3001 GTAGCGATAG CGGAGTGTAT AATTCTTGAA GACGAAAGGG CCTCGTGTATA CGCCTATTG
 3061 TATAGGTTAA TGTCATGATA ATAATGGTTT CTTAGACGTC AGGTGGACT TTTCGGGAA
 3121 ATGTGCGCGG AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA
 3181 TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA AAGGAAGAGT ATGAGTATTG
 3241 AACATTTCCG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCGCTTCTT GTTTTGCTC
 3301 ACCCAGAAC GCTGGTAAA GTAAAAGATG CTGAAGATCA GTGGGTGCA CGAGTGGGTT
 3361 ACATCGAATC GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTCGCCCG GAAGAACGTT
 3421 TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTGTGACG
 3481 CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT
 3541 CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA TGCAGTGCTG
 3601 CCATAACCAC GAGTGTAAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA
 3661 AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTGGG
 3721 AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG CCTGCAGCAA
 3781 TGGCAACAAAC GTTGCACAA CTATTAACTG GCGAACTACT TACTCTAGCT TCCCAGGAAAC
 3841 AATTAATAGA CTGGATGGAG GCGGATAAAAG TTGCAGGACC ACTTCTGCGC TCAGGCCCTTC
 3901 CGGCTGGCTG GTTTATGCT GATAAATCTG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA
 3961 TTGCAAGCACT GGGGCCAGAT GTAAAGCCCT CCCGTATCGT AGTTATCTAC ACGACGGGG
 4021 GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC TCACTGATTA
 4081 AGCATTGGTA ACTGTCAGAC CAAGTTACT CATATATACT TTAGATTGAT TTAAAACCTTC
 4141 ATTTTTAATT TAAAGGATC TAGGTGAAGA TCCCTTTGTA TAATCTCATG ACCAAAATCC
 4201 CTTAACGTGA GTTTTCGTT CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT
 4261 CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA CCACCGCTAC
 4321 CAGCGGTGGT TTGTTTGCCTG GATCAAGAGC TACCAACTCT TTTCAGGAAAG GTAACTGGCT
 4381 TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT GCGTAGTTA GGCCACCACT
 4441 TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT AATCTGTAA CCAGTGGCTG
 4501 CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG TTACCGGATA
 4561 AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA
 4621 CCTACACCGA ACTGAGATAC CTACAGCGT ACCTATGAGA AACCGCCACG CTTCCCGAAG
 4681 GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG
 4741 AGCTTCCAGG GGGAAACGCC TGGTATCTT ATAGTCTCTGT CGGGTTTCGCA CACCTCTGAC
 4801 TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG GGGGGGGAG CCTATGGAAA AACGCCAGCA
 4861 ACCGGGCCTT TTTACGGTT CTCGGCTTTT GCTGGCCTTT TGCTCACATG TTCTTCTG
 4921 CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGGACT GATACCGCTC
 4981 GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA GAGCGCCTGA
 5041 TCGGGTATTT TCTCCTTACG CATCTGTGCG GTATTTACA CGCGATAAAAT TCCGACACCA
 5101 TCGAATGGTG CAAAACCTT CGCGGTATGG CATGATAGCG CCCGGAAAGAG AGTCAATTCA
 5161 GGGTGGTGAA TGTGAAACCA GTAACGTTAT ACGATGTCGC AGAGTATGCC GGTGTCTCTT
 5221 ATCAGACCGT TTCCCGCTG GTGAACCGAG CCAGCCACGT TTCTGCGAAA ACGCGGGAAA
 5281 AAGTGGAAAGC GGCAGATGGCG GAGCTGAATT ACATTCCAA CGCGTGGCA CAACAACCTGG
 5341 CGGGCAAACCA GTCGTTGCTG ATTGGCGTTG CCACCTCCAG TCTGGCCCTG CACCGCCGT
 5401 CGCAAATTGT CGCGGCGATT AAATCTCGC CCGATCAACT GGGTGGCCAGC GTGGTGGTGT
 5461 CGATGGTAGA ACGAAGCGGC GTCGAAGCCT GTAAAGCGGC GGTGACAAAT CTTCTCGCGC
 5521 AACCGCTAG TGGGCTGATC ATTAACTATC CGCTGGATGA CCAGGATGCC ATTGCTGTGG
 5581 AAGCTGCCTG CACTAATGTT CGGGCGTTAT TTCTTGATGT CTCTGACCAAG ACACCCATCA
 5641 ACAGTATTAT TTTCTCCCAT GAAGACGGTA CGCGACTGGG CGTGGAGCAT CTGGTGCAT
 5701 TGGGTCACCA GCAAATCGCG CTGTTAGCGG GCCCCATTAAAG TTCTGTCCTG GCGCGTCTGC
 5761 GTCTGGCTGG CTGGCATAAA TATCTCACTC GCAATCAAAT TCAGCCGATA GCGGAACGGG
 5821 AAGGCGACTG GAGTGCCATG TCCGGTTTCA AACAAACCAT GCAAATGCTG AATGAGGGCA
 5881 TCGTTCCAC TCGGATGCTG GTTGCACAGC ATCAGATGGC GCTGGGCGCA ATGCGCGCCA
 5941 TTACCGAGTC CGGGCTGCGC GTTGGTGCAG ATATCTCGGT AGTGGGATAC GACGATACCG
 6001 AAGACAGCTC ATGTTATATC CGGCCGTAA CCACCATCAA ACAGGATTTT CGCCTGCTGG
 6061 GGCAAACCAAG CGTGGACCGC TTGCTGCAAC TCTCTCAGGG CCAGGCGGTG AAGGGCAATC
 6121 AGCTGTTGCC CGTCTCACTG GTGAAAAGAA AAACCAACCTT GGCAGCCAAAT ACGCAAACCG-

FIGURE 23C

43/240

6181 CCTCTCCCCG CGCGTTGGCC GATTCAITAA TGCAGCTGGC ACGACAGGTT TCCCGACTGG
6241 AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCAG
6301 GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT
6361 CACACAGGAA ACAGCTATGA CCATGATTAC GGATTCACTG GCCGTCGTTT TACAACGTCG
6421 TGACTGGAA AACCCCTGGCG TTACCCAACT TAATGCCCTT GCAGCACATC CCCCTTTCGC
6481 CAGCTGGCGT AATAGCGAAG AGGCCCGCAC CGATGCCCT TCCCAACAGT TGCAGCAGCCT
6541 GAATGGCGAA TGGCGCTTTG CCTGGTTTCC GGCACCAGAA GCGGTGCCGG AAAGCTGGCT
6601 GGAGTGCGAT CTTCCTGAGG CCGATACTGT CGTCGTCCCC TCAAACCTGGC AGATGCACGG
6661 TTACGATGCG CCCATCTACA CCAACGTAAC CTATCCCATT ACGGTCAATC CGCCGTTTGT
6721 TCCCACGGAG AATCCGACGG GTTGTACTC GCTCACATTT AATGTTGATG AAAGCTGGCT
6781 ACAGGAAGGC CAGACGCGAA TTATTTTGA TGGCGTTGGA ATT

FIGURE 23D

Figure 24A: pDEST^{T4}

His6-thioredoxin fusions in E. coli

919 gca aat att ctg aaa tga gct ~~gtt~~ gac ~~att~~ taa tca tcc ggt ccc ~~cgt~~ aat ~~aat~~
 cgt tta taa gac ttt act cga cta ~~ctg~~ tta att agt agg cca ggc ~~ata~~ tta

970 ctg tgg ^{→ mlRA} taa tgg gag cgg ata aca att tca cac agg aaa cag acc Met ^{Gly} atg gtc
 gac acc tta aca ctc gcc tat tgt taa agt gtg tcc ttt gtc tgg tac cca

His6

1021 ~~His His His His His His Tyr Arg Ile Pro Thr Thr Glu Asp Lys Tyr~~
 cat dat cat cat cat cac gat tac gat atc cca acg acc gaa aac ctg taa
 gta gta gta gta gta gta gta atg cta tag ggt tgc tgg ctt tgg gac ata

TEV protease → Thioredoxin - ~ 150 amino acids)

1072 ~~Phe Glu^{Gly} Asp His His Ser Ile Ile His Lys Thr Arg Arg Ser~~
 ttt cag ggc gcc cat atg agc gat aaa att att cac ctg act gac gac agt
 aaa gtc cgg cgg gta tac tgg cta ttt taa gta gtc gac tga ctg ctg tca

attR 1

1429 ~~Gat Arg Arg Arg Lys Val Pro Ile Ser Leu Tyr Lys Lys~~
 cta ctg cta ctg ttc cat ggg tag tgg tca aac arg rtt ttt gaa gct gct

Int cleavage

45/240

pDEST4 6964 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
964..1003	Trc
1577..1453	attR1
1827..2486	CmR
2606..2690	inactivated ccdA
2828..3133	ccdB
3174..3298	attR2
3872..4777	ampR
5378..5538	ori
5778..6215	flori (f1 intergenic region)
6587..704	lacIq

1 CTATCCGCTG GATGACCAGG ATGCCATTGC TGTGGAAGCT GCCTGCACTA ATGTTCCGGC
 61 GTTATTTCTT GATGTCTCTG ACCAGACACC CATCAACAGT ATTATTTCT CCCATGAAGA
 121 CGGTACCGA CTGGGCGTGG AGCATCTGGT CGCATTGGGT CACCAAGCAA TCGCGCTGTT
 181 AGCGGGCCA TTAAGTTCTG TCTCGGCGCG TCTCGTCTG GCTGGCTGGC ATAAATATCT
 241 CACTCGCAAT CAAATTTCAGC CGATAGCGGA ACGGGAAGGC GACTGGAGTG CCATGTCCGG
 301 TTTTCAACAA ACCATGCAAA TGCTGAATGA GGGCATCGTT CCCACTGCAG TGCTGGTTGC
 361 CAACGATCAG ATGGCGTGG GCGCAATGCG CGCCATTACC GAGTCCGGC TGCGCGTTGG
 421 TGC GGATATC TCGGTAGTGG GATA CGACGA TACCGAAGAC AGCTCATGTT ATATCCGCC
 481 GTCAACCACC ATCAAACAGG ATTTTCGCCT GCTGGGCAA ACCAGCGTGG ACCGCTTGCT
 541 GCAACTCTCT CAGGGCCAGG CGGTGAAGGG CAATCAGCTG TTGCCCCGTCT CACTGGTGA
 601 AAGAAAAACC ACCCTGGCAC CCAATACGCA AACCGCCCTC CCCCGCGCGT TGGCCGATT
 661 ATTAATGCAG CTGGCACGAC AGGTTTCCCG ACTGGAAAGC GGGCAGTGAG CGCAACGCCA
 721 TTAATGTGAG TTAGCGCGA TTGATCTGGT TTGACAGCTT ATCATCGACT GCACGGTGCA
 781 CCAATGCTTC TGGCGTCAGG CAGCCATCGG AAGCTGTGGT ATGGCTGTGC AGGTCGTA
 841 TCACTGCATA ATTCTGTGTCG CTCAGGCAGC ACTCCCGTTC TGGATAATGT TTTTGC
 901 GACATCATAA CGGTTCTGGC AAATATTCTG AAATGAGCTG TTGACAATTAA ATCATCCGG
 961 CCGTATAATC TGTGGAATTG TGAGCGGATA ACAATTTCAC ACAGGAAACA GACCATGGG
 1021 CATCATCATC ATCATCACGA TTACGATATC CCAACGACCG AAAACCTGTA TTTTCAGGG
 1081 GCCCATATGA GCGATAAAAT TATTCACTG ACTGACGACA GTTTGACAC GGATGTACTC
 1141 AAAGCGGACG GGGCGATCCT CGTCGATTTC TGGCAGAGT GGTGCGGTCC GTGCAAATG
 1201 ATCGCCCGA TTCTGGATGA AATCGCTGAC GAATATCAGG GCAAACATGAC CGTTGCA
 1261 CTGAACATCG ATCAAACACCG TGGCACTGCG CCGAAATATG GCATCCGTGG TATCCC
 1321 CTGCTGCTGT TCAAAAACGG TGAAGTGGCG GCAACCAAAG TGGGTGCACT GTCTAAAGGT
 1381 CAGTTGAAAG AGTTCTCGA CGCTAACCTG GCGGTTCTG GTTCTGGTGA TGACGATGAC
 1441 AAGGTACCCA TCACAAGTTT GTACAAAAAA GCTGAACGAG AACGTAAAA TGATATA
 1501 ATCAATATAT TAAATTAGT TTTGCATAAA AAACAGACTA CATAATACTG TAAAAC
 1561 CATATCCAGT CACTATGGCG GCCGCTAAGT TGGCAGCATC ACCCGACGCA CTTTGC
 1621 AATAAAATACC TGTGACGGAA GATCACTTCG CAGAATAAAAT AAATCCTGGT GTCCCTG
 1681 ATACCGGGAA GCCCTGGGCC AACTTTTGGC GAAAATGAGA CGTTGATCGG CACGTAAGAG
 1741 GTTCCAACCTT TCACCATAAT GAAATAAGAT CACTACCGGG CGTATTTTTT GAGTTATCGA
 1801 GATTTTCAGG AGCTAAGGAA GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCG
 1861 ATATATCCCA ATGGCATCGT AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTCAATG
 1921 CCTATAACCA GACCGTCAG CTGGATATTA CGGGCTTTT AAAGACCGTA AAGAAAAA
 1981 AGCACAAAGTT TTATCCGGCC TTTATTCA CTTCTGGCC CGTATGGTGAAT GCTCATCC
 2041 AATTCCGTAT GGCAATGAAA GACGGTGAGC TGGTGATATG GGATAGTGTT CACCC
 2101 ACACCGTTT CCATGAGCAA ACTGAAACGT TTTCATCGCT CTGGAGTGAA TACCA
 2161 ATTTCCGGCA GTTTCTACAC ATATATTTCG AAGATGTGGC GTGTTACGGT GAAAAC
 2221 CCTATTTCCC TAAAGGGTTT ATTGAGATA TGTGTTTCGT CTCAGCCAAT CCCTGG
 2281 GTTTCACCAG TTTGATTAA AACGTGGCCA ATATGGACAA CTTCTTCGCC CCCGTTTCA
 2341 CCATGGGCAA ATATTATACG CAAGGCGACA AGGTGCTGAT GCCGCTGGC ATTCAG
 2401 ATCATGCCGT CTGTGATGGC TTCCATGTGCG GCAGAAATGCT TAATGAATTA CAACAG
 2461 GCGATGAGTG GCAGGGCGGG GCGTAAACGC GTGGATCCGG CTTACTAAA GCCAGA
 2521 AGTATGCGTA TTTGCGCGCT GATTTTTGCG GTATAAGAAT ATATACTGAT ATGTATA
 ACC-

FIGURE 24B

2581 GAAGTATGTC AAAAAGAGGT GTGCTATGAA GCAGCGTATT ACAGTGACAG TTGACAGCGA
 2641 CAGCTATCAAG TTGCTCAAGG CATATATGAT GTCATATCT CCGGTCTGGT AAGCACAACC
 2701 ATGCAGAATG AAGCCCGTCG TCTGCGTGCC GAACGCTGGA AAGCGGAAAA TCAGGAAGGG
 2761 ATGGCTGAGG TCGCCCCGTT TATTGAAATG AACGGCTCTT TTGCTGACGA GAACAGGGAC
 2821 TGGTGAATAG CAGTTTAAGG TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTGT
 2881 GGATGTACAG AGTGTATTA TTGACACGCC CGGGCGACGG ATGGTGATCC CCCTGGGAG
 2941 TGACAGCTG CTGTCAGATA AAGTCTCCCG TGAACCTTAC CCGGTGGTGC ATATCGGGGA
 3001 TGAAAGCTGG CGCATGATGA CCACCGATAT GGCCAGTGTG CCGGTCTCCG TTATCGGGGA
 3061 AGAAGTGGCT GATCTCAGCC ACCCGGAAAA TGACATCAA AACGCCATTA ACCTGATGTT
 3121 CTGGGGAAATA TAAATGTCAG GCTCCCTTAT ACACAGCCAG TCTGAGGTC GACCATAGTG
 3181 ACTGGATATG TTGTTGTTA CAGTATTATG TAGTCTGTTT TTTATGCAA ATCTAATTAA
 3241 ATATATTGAT ATTATATATCA TTTTACGTTT CTCGTTCAAGC TTTCTTGTAC AAAGTGGTGA
 3301 TGGGGATCCT CTAGAGTCGA CCTGCAGTAA TCGTACAGGG TAGTACAAAT AAAAAGGCA
 3361 CGTCAGATGA CGTGCCTTTT TTCTTGTGAG CAGTAAGCTT GGCTGTTTTG GCGGATGAGA
 3421 GAAGATTTTC AGCCTGATAC AGATTAATC AGAACCGAGA AGCGGTCTGA TAAAACAGAA
 3481 TTGCGCTGGC GGCAGTAGCG CGGTGGTCCC ACCTGACCCC ATGCCGAACCT CAGAAGTGA
 3541 ACGCCGTAGC GCCGATGGTA GTGTGGGTC TCCCCATGCG AGAGTAGGG ACTGCCAGGC
 3601 ATCAAATAAA ACGAAAGGCT CAGTCGAAAG ACTGGGCTT TCGTTTTATC TGTTGTTGT
 3661 CGGTGAACGC TCTCCTGAGT AGGACAAATC CGCCGGGAGC GGATTTGAAC GTTGCAGAC
 3721 AACGGCCCGG AGGGTGGCGG GCAGGACGCC CGCCATAAAC TGCCAGGCAT CAAATTAAGC
 3781 AGAAGGCCAT CCTGACGGAT GGCCTTTTG CGTTTCTACA AACTCTTTT GTTTATTTT
 3841 CTAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA CCCTGATAAA TGCTTCATAA
 3901 ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT GTCGCCCTTA TTCCCTTTT
 3961 TGCGGCATT TGCGCTTCTG TTTTGCTCA CCCAGAAACG CTGGTGAAG TAAAAGATGC
 4021 TGAAAGATCAG TTGGGTGCAC GAGTGGGTTA CATCGAACTG GATCTCAACA GCGGTAAGAT
 4081 CCTTGAGAGT TTTCGCCCCG AAGAACGTTT TCCAATGATG AGCACTTTA AAGTTCTGCT
 4141 ATGTGGCGCG GTATTATCCC GTGTTGACGC CGGGCAAGAG CAACTCGGTC GCGCATAACA
 4201 CTATTCTCAG AATGACTTGG TTGAGTACTC ACCAGTCACA GAAAAGCATC TTACGGATGG
 4261 CATGACAGTA AGAGAATTAT GCAGTGCTGC CATAACCAGT AGTGATAACA CTGCGCCAA
 4321 CTTACTCTG ACAACGATCG GAGGACCGAA GGAGCTAAC GCTTTTTG GCAACATGGG
 4381 GGATCATGTA ACTCGCCTTG ATCGTTGGG ACCGGAGCTG AATGAAGCCA TACCAAACGA
 4441 CGAGCGTGAC ACCACGATGC CTACAGCAAT GGCAACAACG TTGCGCAAAC TATTAACTGG
 4501 CGAACTACTT ACTCTAGCTT CCCGGCAACA ATTAATAGAC TGGATGGAGG CGGATAAAAGT
 4561 TGCAGGACCA CTTCTGCGT CGGCCCTTCC GGCTGGCTGG TTTATTGCTG ATAAATCTGG
 4621 AGCCGGTGTAG CGTGGGTCTC GCGGTATCAT TGCAGCACTG GGGCCAGATG GTAAGCCCTC
 4681 CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT ATGGATGAAC GAAATAGACA
 4741 GATCGCTGAG ATAGGGCCT CACTGATTAA GCATTGGTAA CTGTCAGACC AAGTTTACTC
 4801 ATATATACTT TAGATTGATT TAAAACCTCA TTTTTAATT AAAAGGATCT AGGTGAAGAT
 4861 CCTTTTTGAT AATCTCATGA CCAAAATCCC TTAACGTGAG TTTCTGTTCC ACTGAGCGTC
 4921 AGACCCCGTA GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTCTGC GCGTAATCTG
 4981 CTGCTTGCAA CACAAAAAAC CACCGCTTAC ACCGGTGGT TGTGCGCCGG ATCAAGAGCT
 5041 ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGC CAGATACCA AATACTGTCCT
 5101 TCTAGTGTAG CCGTAGTTAG GCCACCACCTT CAAGAACTCT GTAGCACCGC CTACATACCT
 5161 CGCTCTGCTA ATCCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG
 5221 GTTGGACTCA AGACGATAGT TACCGATAA GGGCAGCGG TCGGGCTGAA CGGGGGGTTTC
 5281 GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA CTGAGATACC TACAGCGTGA
 5341 GCTATGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG GACAGGTATC CGGTAAGCGG
 5401 CAGGGTCGGA ACAGGAGAGC GCACGAGGG GCTTCCAGGG GGAAACGCC GGTATCTTTA
 5461 TAGCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTGA TTTTTGAT GCTCGTCAGG
 5521 GGGCGGGAGC CTATGGAAAA ACGCCAGCAA CGCGGCCCTT TTACGGTTCC TGGCCTTTTG
 5581 CTGGCCCTTT GCTCACATGT TCTTCTGTC GTTATCCCT GATTCTGTTG ATAACCCTGAT
 5641 TACCGCCTT GAGTGAGCTG ATACCGCTCG CCGCAGCCGA ACGACCGAGC GCAGCGAGTC
 5701 AGTGAGCGAG GAAGCGGAAG AGCGCCTGAT GCGGTATTT CTCTTACGC ATCTGTGCCG
 5761 TATTCACAC CGCATAATT TGTAAAATT CGCGTTAAAT TTTGTTAAA TCAGCTCATT
 5821 TTTAACCAA TAGGCGAAA TCGCAAAAT CCCTTATAAA TCAAAAGAAT AGACCGAGAT
 5881 AGGGTTGAGT GTTGTCCAG TTTGGAACAA GAGTCCACTA TTAAAGAACG TGGACTCCAA
 5941 CGTCAAAGGG CGAAAAACCG TCTATCAGGG CGATGGCCCA CTACGTGAAC CATCACCTA
 6001 ATCAAGTTT TTGGGGTCGA GGTGCCGTA AGCACTAAAT CGGAACCCTA AAGGGAGCCC-

47/740

6061 CCGATTTAGA GCTTGACGGG GAAAGCCGGC GAACGTGGCG AGAAAGGAAG GGAAGAAAGC
6121 GAAAGGAGCG GGCCTAGGG CGCTGGCAAG TGTAGCGGTC ACGCTGCGCG TAACCAC
6181 ACCCGCCGCG CTTAATGCGC CGCTACAGGG CGCGTCCATT CGCCATTAG GCTGCTATGG
6241 TGCACACTCA GTACAATCTG CTCTGATGCC GCATAGTTAA GCCAGTATAAC ACTCCGCTAT
6301 CGCTACGTGA CTGGGTCTAG GCTGCGCCCC GACACCCGCC AACACCCGCT GACGCCCT
6361 GACGGGCTTG TCTGCTCCCG GCATCCGCTT ACAGACAAGC TGTGACCGTC TCCGGGAGCT
6421 GCATGTGTCA GAGGTTTCA CGCTCATCAC CGAAACGCCG GAGGCAGCAG ATCAATTGCG
6481 GCGCGAAGGC GAAGCGGCAT GCATTTACGT TGACACCATC GAATGGTGCA AAACCTTCG
6541 CGGTATGGCA TGATAGCGCC CGGAAGAGAG TCAATTCAAG GTGGTGAATG TGAAACCAAGT
6601 AACGTTATAC GATGTCGAG AGTATGCCGG TGTCTCTTAT CAGACCGTTT CCCGCGTGGT
6661 GAACCAGGCC AGCCACGTTT CTGCGAAAAC GCGGGAAAAA GTGGAAGCGG CGATGGCGGA
6721 GCTGAATTAC ATTCCCAACC GCGTGGCACA ACAACTGGCG GGCAAACAGT CGTTGCTGAT
6781 TGGCGTTGCC ACCTCCAGTC TGCCCTGCA CGCGCCGTCG CAAATTGTCG CGGCGATTAA
6841 ATCTCGCGCC GATCAACTGG GTGCCAGCGT GGTGGTGTG ATGGTAGAAC GAAGCGCGT
6901 CGAAGCCTGT AAAGCGCGG TGCAACATCT TCTCGCGCAA CGCGTCAGTN GGGCTGATCA
6961 TTAA

FIGURE 241

48/240

Figure 25A

pDEST5

pSPORT '+' (for sequencing, probes,
phagemid)

1 agg cac ccc agg ⁻³⁵ cct tac act tta tgc ttc cgg ctc gta ^{lac promoter} tgt tgt gtg gaa ⁻¹⁰ ^{lac RNA}
 tcc gtg ggg tcc gaa atg tga aat acg aag gcc gag cat aca aca cac ctt

"reverse" sequencing primers

52 ttg tga gcg gat aac aat ^{α-peptide} ttc aca cag gaa aca gct atg acc atg att acg
 aac act cgc cta ttg tta aag tgt gtc ctt tgt cga tac tgg tac taa tgc

103 cca agc tct aat acg act cac tat agg gaa ^{T7 promoter} ^{T7 RNA} agg tac ggg tac gcc tgc ^{Pst} ^{Kpn}
 ggt tcg aga tta tgc tga gtg ata tcc gtt tcg acc atg cgg acg tcc atg

154 EcoRI SmaI SstI Int attR1
 cgg tcc ggg att ccc ggg tcg acg atc aca agt ttg xac xaa xaa gct gaa
 gcc agg cct taa ggg ccc agc tgc tag tgt tca aac atg ttt ttg cga gtt

↓
Gene

1990 Int attR2 Spe
 ctc acg ttt ctc gtt cag ctc gtt tgc ttt aca aag tgg tga tca acta gtc ggc
 aaa tgc aaa gag caa gtc gaa aga aca tgc ttc acc act agt gat gag cag cgg

2041 Not Xba Bam Hind3 Mlu Sph
 bgc cgc tct aga gga tcc agg ctt acg tac ggg tgc atg cga cgt cat agc
 ccc ggg aga tct cct agg ttc gaa tgc atg cgc agg tac gct gca gta tcc

2092 SP6 promoter
 tct tct ata gtg tca ccc aaa tcc aat tca ctg gcc gtc gtt tta caa cgt
 aga aga cat cac agt gga ttt aag tta agt gac cgg cag caa aat gtt gca
 ← SP6 RNA

"forward sequencing . . .

2143 cgt gac tgg gaa aac cct ggc gtt acc caa ctt aat cgc ctt gca gca cat
 gca ctg acc ctt ttg gga ccc gaa tgg gtt gaa tta gcg gaa cgt cgt gta
 . . primers

491260

Figure 25B

→ DESTS

(cont'd)

50/240

pDEST5 5957 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
305..181	attR1
555..1214	CmR
1334..1418	inactivated ccdA
1556..1861	ccdB
1902..2026	attR2
2278..2733	f1 (f1 intergenic region)
2865..3722	ampR
5378..5538	ori
4756..5922	lacI

1 AGGCACCCCA GGCTTTACAC TTTATGCTTC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG
 61 GATAACAATT TCACACAGGA AACAGCTATG ACCATGATTA CGCCAAGCTC TAATACGACT
 121 CACTATAGGG AAAGCTGGTA CGCCTGCAGG TACCGGTCCG GAATTCCCGG GTCGACGATC
 181 ACAAGTTTGT ACAAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA
 241 AATTAGATTT TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTC
 301 CTATGGCGGC CGCTAAGTTG GCAGCATCAC CCGACGCCACT TTGCGCCGAA TAAATACCTG
 361 TGACGGAAGA TCACTTCGCA GAATAAATAA ATCCTGGTGT CCTGTGTTGAT ACCGGGAAGC
 421 CCTGGGCCAA CTTTGCGCA AAATGAGACG TTGATCGGCA CGTAAGAGGT TCCAACCTTC
 481 ACCATAAGTC AATAAGATCA CTACCGGGCG TATTTTTTGA GTTATCGAGA TTTTCAGGAG
 541 CTAAGGAAGC TAAAATGGAG AAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCCAAT
 601 GGCATCGTAA AGAACATTTC GAGGCATTTC AGTCAGTGC TCAATGTACC TATAACCAGA
 661 CCGTTCAGCT GGATATTACG GCCTTTTAA AGACCGTAAA GAAAATAAG CACAAGTTT
 721 ATCCGGCTT TATTACATT CTTGCCGCC TGATGAATGC TCATCCGGAA TTCCGTATGG
 781 CAATGAAAGA CGGTGAGCTG GTGATATGGG ATAGTGTCA CCCTTGTAC ACCGTTTCC
 841 ATGAGCAAAC TGAAACGTTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT
 901 TTCTACACAT ATATTCGAA GATGTGGCGT GTTACGGTGA AAAACCTGGCC TATTTCCCTA
 961 AAGGGTTTAT TGAGAATATG TTTTCGTCT CAGCCAATCC CTGGGTGAGT TTCACCAAGTT
 1021 TTGATTTAAA CGTGGCCAAT ATGGACAAC TCTTCGCCCC CGTTTTCACC ATGGGCAAAT
 1081 ATTATACGCA AGGCGACAAG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT
 1141 GTGATGGCTT CCATGTCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC
 1201 AGGGCGGGGC GTAAACCGCT GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT
 1261 TGCAGCGCTGA TTTTTCGGT ATAAGAATAT ATACTGATAT GTATACCCGA AGTATGTC
 1321 AAAGAGGTGT GCTATGAAGC AGCGTATTAC AGTGCAGATT GACAGCGACA GCTATCAGTT
 1381 GCTCAAGGCA TATATGATGT CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA
 1441 GCCCGTCGTC TGCAGGCCGA ACAGCTGGAAA GCGGAAAATC AGGAAGGGAT GGCTGAGGTC
 1501 GCCCGGTTTA TTGAAATGAA CGGCTCTTT GCTGACCGAGA ACAGGGACTG GTGAAATGCA
 1561 GTTTAAGGTT TACACCTATA AAAGAGAGAG CCGTTATCGT CTGTTTGTGG ATGTACAGAG
 1621 TGATATTATT GACACGCCCG GGGCACGGAT GGTGATCCCC CTGGCCAGTG CACGTCTGCT
 1681 GTCAAGATAAA GTCTCCCGTG AACTTTACCC GGTGGTCAT ATCGGGGATG AAAGCTGGCG
 1741 CATGATGACC ACCGATATGG CCAGTGTGCC GGTCTCCGTT ATCGGGGAAAG AAGTGGCTGA
 1801 TCTCAGCCAC CGCGAAAATG ACATAAAAA CGCCATTAAAC CTGATGTTCT GGGGAATATA
 1861 AATGTCAGGC TCCCTTATAC ACAGCCAGTC TGCAGGTGCA CCATAGTGAC TGGATATGTT
 1921 GTGTTTACA GTATTATGTA GTCTGTTTT TATGAAAAAT CTAATTAAAT ATATTGATAT
 1981 TTATATCATT TTACGTTTCT CGTTCAGCTT TCTTGTACAA AGTGGTGATC ACTAGTC
 2041 GGCGCCTCTA GAGGATCCAA GCTTACGTAC GCGTGCATGC GACGTCTAG CTCTTCTATA
 2101 GTGTCACCTA AATTCAATT ACTGGCCGTC GTTTTACAAC GTCTGACTG GGAAAACCT
 2161 GGCGTTACCC AACTTAATCG CCTTGCAGCA CATCCCCCTT TCGCCAGCTG GCGTAATAGC
 2221 GAAGAGGCCCG GCACCGATCG CCCTTCCCAA CAGTTGCAGCA GCCTGAATGG CGAATGGACG
 2281 CGCCCTGTAG CGGCGCATTAA AGCGCGGCCGG GTGTGGTGGT TACCGCGAGC GTGACCGCTA
 2341 CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTCTT CCCTTCTTT CTCGCCACGT
 2401 TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC CGATTAGTG
 2461 CTTTACGGCA CCTCGACCCC AAAAAACTTG ATTAGGGTGA TGGTTCACGT AGTGGGCCAT
 2521 CGCCCTGTATA GACGGTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT AATAGTGGAC
 2581 TCTTGTCCA AACTGGAACA ACACCTCAACC CTATCTCGGT CTATTCTTT GATTTATAAG-

FIGURE 25C

51/240

2641 GGATTTGCC GATTCGGCC TATTGGTAA AAAATGAGCT GATTTAACAA AAATTTAACG
 2701 CGAATTAA CAAAATATTA ACGTTACAA TTTCAGGTGG CACTTTCGG GGAAATGTGC
 2761 CGGGAACCCC TATTTGTTA TTTTTCTAAA TACATTCAA TATGTATCCG CTCATGAGAC
 2821 AATAACCCCTG ATAAATGCTT CAATAATATT GAAAAAGGAA GAGTATGAGT ATTCAACATT
 2881 TCCGTGTCGC CCTTATTCCC TTTTTGCGG CATTTCGCCT TCCTGTTTT GCTCACCCAG
 2941 AACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG TGACAGAGTG GGTTACATCG
 3001 AACTGGATCT CAACAGCGGT AAGATCCTG AGAGTTTCG CCCCAGAAGAA CGTTTCCAA
 3061 TGATGAGCAC TTTTAAAGTT CTGCTATGTG GCGCGGTATT ATCCCGTATT GACGCCGGC
 3121 AAGAGCAACT CGGTGCCGC ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAAG
 3181 TCACAGAAAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT GCTGCCATAA
 3241 CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA CCGAAGGAGC
 3301 TAACCGCTTT TTTGACAAC ATGGGGGATC ATGTAACCTG CTTGATCGT TGGGAACCAG
 3361 AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACCAAC GATGCCGTGTA GCAATGCCAA
 3421 CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA
 3481 TAGACTGGAT GGAGGCGGAT AAAGTTGCAG GACCACCTCT GCGCTCGGCC CTTCCGCTG
 3541 GCTGGTTAT TGCTGATAAA TCTGGAGCGG GTGAGCGTGG GTCTCGCGGT ATCATTGAG
 3601 CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGACG GGGAGTCAGG
 3661 CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCCTACTG ATTAAGCATT
 3721 GTAACTGTC AGACCAAGTT TACTCATATA TACTTTAGAT TGATTTAAAAA CTTCATTTT
 3781 AATTAAAAG GATCTAGGT AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTAAC
 3841 GTGAGTTTC GTTCCACTGA GCGTCAGACC CCGTAGAAAAA GATCAAAGGA TCTTCTTGAG
 3901 ATCCTTTTT TCTGCGCGTA ATCTGCTGCT TGCAACAAAA AAAACCACCG CTACCAGCGG
 3961 TGGTTTGTGTT GCCGGATCAA GAGCTACCAA CTCTTTTCC GAAGGTAACG GGCTTCAGCA
 4021 GAGCGCAGAT ACCAAATACT GTCCCTCTAG TGTAGCCGTA GTAGGCCAC CACTCAAGA
 4081 ACTCTGTAGC ACCGCTTACA TACCTCGCTC TGCTAATCCT GTTACCAAGTG GCTGCTGCCA
 4141 GTGGCGATAA GTCGTGTCCT ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGC
 4201 AGCGGTGCGG CTGAACGGGG GGTCGTCGCA CACAGCCCG CTGGAGCGA ACGACCTACA
 4261 CCGAACTGAG ATACCTACAG CCGTAGCATT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA
 4321 AGGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC
 4381 CAGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGTT TGCCCACCTC TGACTTGAGC
 4441 GTCGATTTT GTGATGCTCG TCAGGGGGGG GGAGCTATG GAAAACGCC AGAACCGCG
 4501 CCTTTTACG GTTCCCTGGCC TTTTGCTGGC CTGGTCTCA CATGTTCTTT CCTGCGTTAT
 4561 CCCCTGATTG TGTGGATAAC CGTATTACCG CTTTGGATGT AGCTGATACC GCTCGCGCA
 4621 GCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CCAATACGA
 4681 AACCGCTCT CCCCGCGCGT TGGCCGATT ATTAAATGCAAG AGCTTGCAT TCGCGCGCA
 4741 AGGCGAAGCG GCATTACGT TGACACCATC GAATGGCGCA AAACCTTTCG CGGTATGGCA
 4801 TGATAGGCC CGGAAGAGAG TCAATTCAAG GTGGTGAATG TGAAACCAGT AACGTTATAC
 4861 GATGTCGAG AGTATGCCGG TGTCTTTAT CAGACGTTT CCCGCGTGGT GAACCAAGGCC
 4921 AGCCACGTTT CTGCGAAAAC GCGGGAAAAA GTGGAAGCGG CGATGGCGGA GCTGAATTAC
 4981 ATTCCCAACC CGGTGGCACA ACAACTGGCG GGCAAACAGT CGTTGCTGAT TGGCGTTGCC
 5041 ACCTCCAGTC TGGCCCTGCA CGCGCCGTC CAAATTGTCG CGCGGATTAA ATCTCGCGCC
 5101 GATCAACTGG GTGCCAGCGT GGTGGTGTG ATGGTAGAAC GAAGCGCGT CGAACGCTGT
 5161 AAAGCGGCGG TGCACAATCT TCTCGCGCAA CGGGTCAGTG GGCTGATCAT TAACTATCCG
 5221 CTGGATGACC AGGATGCCAT TGCTGTGGAA GCTGCTGCA CTAATGTTCC GGCGTTATTT
 5281 CTTGATGTC CTGACCAAGAC ACCCATCAAC AGTATTATTT TCTCCCATGA AGACGGTACG
 5341 CGACTGGCG TGGAGCATCT GGTGCGATTG GGTGACCCAGC AAATCGCGCT GTTAGCGGGC
 5401 CCATTAAGTT CTGTCCTGGC GCGTCTCGGT CTGGCTGGCT GGCATAAATA TCTCACTCG
 5461 AATCAAATTC AGCCGATAGC GGAACGGGAA GGCAGCTGGA GTGCCATGTC CGGTTTCAA
 5521 CAAACCATGCA AAATGCTGAA TGAGGGCATC GTTCCCACTG CGATGCTGGT TGCCAACGAT
 5581 CAGATGGCGC TGGCGCAAT GCGCGCCATT ACCGAGTCCG GGCTGCGCGT TGGTGCAGGAT
 5641 ATCTCGGTAG TGGGATAACGA CGATAACCGAA GACAGCTCAT GTTATATCCC GCCGTCAACC
 5701 ACCATCAAAC AGGATTTTCG CCTGCTGGGG CAAACCAAGCG TGGACCGCTT GCTGCAACTC
 5761 TCTCAGGGCC AGGCGGTGAA GGGCAATCAAG CTGTTGCCCG TCTCACTGGT GAAAAGAAAA
 5821 ACCACCCCTGG CGCCCAATAC GCAAACCGCC TCTCCCCGCG CGTTGGCCGA TTCATTAAATG
 5881 CAGCTGGCAC GACAGGTTTC CCGACTGGAA AGCGGGCAGT GAGCGCAACG CAATTAATGT
 5941 GAGTTAGCTC ACTCATT

FIGURE 25D

52/240

Figure 26A

pDEST6

pSPORT “-“
(opposite strand)

“forward” sequencing primers

1 taa/cgc cag ggt ttt ccc agt cac gac gtt gta aaa cga cgg cca gtg aat
att gcg gtc cca aaa ggg tca gtg ctg caa cat ttt gct gcc ggt cac tta

52 Sph I Mlu I
tga att tag gtg aca cta tag aag aac tat gac gtc gca tgc acg cgt acg
act taa atc cac tgt gat atc ttc tcc ata ctg cag cgt acg tgc gca tgc

Hind III Bam Xba Not Spe att R1 Int
103 taa gct tag atc ctc tag agc ggc cgc cga cta gtg atc aca agt tgg taa
att cga acc tag gag atc tcc ccg gcg gct gat dac tag tgt tca aac atg

154 aat aat gat gaa cga gaa acg taa aat gat ata aat atc aat ata taa aat
ttt tet cga ctt gct ctt tgg att tta cta tat tta tag tta tat aat tca

↓ Gene

1939 Int att R2
tat tta tat tat ttt acg ttt ctc gtr tag crt gct tgg aca aag tgg tga
ata aat ata gta aaa ggc aac gag taa gtc gaa aga aca tgg ttc acc act

1990 Sal Sma EcoRI Kpn Pst
tcg tcc acc cgg daa ttc cgg acc ggt acg tgc agg cgt acc aac ttt ccc
agc agc tgg gcc ctt aag gcc tgg qca tgg acg tcc gca tgg tcc aat ggg
T7 RNA

2041 tat agt gag tcg tat tag agc ttg gcg taa tca tgg tca tag ctg ttt cct
ata tca ctc agc ata atc tcc aac cgc att agt acc agt atc gac aaa gga
T7 promoter α-peptide ← “reverse ..”

2092 gtg tga aat tgt tat ccc ctc aca att cca cac aac ataa cga gct gga agc
cac act tta aca ata ggc gag tgt taa ggt gtc ttg tat gct cgg cct tcc
.. sequencing primers lac promoter
lac RNA

2143 ata aag tgt aaa gcc tgg ggt gcc taa tga gtg agc taa ctc aca tta att
tat ttc aca ttt cgg acc cca cgg att act cac tcc att gag tgt aat taa
-35

53/240

Figure 26B

PDEST6 (cont'd)

54/240

pDEST6 5957 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
266..142	attR1
516..1175	CmR
1295..1379	inactivated ccdA
1517..1822	ccdB
1863..1987	attr2
2203..3369	lacI
4403..5260	ampR
5392..5847	f1 (f1 intergenic region)

1 TAACGCCAGG GTTTTCCAG TCACGACGTT GTAAAACGAC GGCCAGTGAA TTGAATTAG
 61 GTGACACTAT AGAAGAGCTA TGACGTCGCA TGCACGCGTA CGTAAGCTTG GATCCTCTAG
 121 AGCGGCCGCC GACTAGTGAT CACAAGTTG TACAAAAAAG CTGAACGAGA AACGTAAAAT
 181 GATATAAAATA TCAATATATT AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT
 241 AAAACACAAAC ATATCCAGTC ACTATGGCGG CCGCTAAGTT GGCAGCATCA CCCGACGCAC
 301 TTTGCGCCGA ATAAATACCT GTGACGGAAG ATCACTTCGC AGAATAAATA AATCCTGGTG
 361 TCCCTGTTGA TACCGGGAAAG CCCTGGGCCA ACTTTTGGCG AAAATGAGAC GTTGATCGGC
 421 ACGTAAGAGG TTCCAACCTT CACCATAATG AAATAAGATC ACTACCGGGC GTATTTTTG
 481 AGTTATCGAG ATTTTCAGGA GCTAAGGAAG CTAAAATGGA GAAAAAAATC ACTGGATATA
 541 CCACCGTTGA TATATCCAA TGGCATCGTA AAGAACATT TGAGGCATT TGAGTCAGTTG
 601 CTCATGTAC CTATAACCAG ACCGTTCAGC TGGATATTAC GGCTTTTTA AAGACCGTAA
 661 AGAAAAAAATAA GCACAAAGTTT TATCCGGCCT TTATTCACAT TCTTGGCCG CTGATGAATG
 721 CTCATCCCGA ATTCCGTATG GCAAATGAAAG ACGGTGAGCT GGTGATATGG GATAGTGTTC
 781 ACCCTTGTAA CACCGTTTC CATGAGCAA CTGAAACGTT TTCATCGCTC TGGAGTGAAT
 841 ACCACGAGCA TTTCCGGCAG TTTCTACACA TATATTGCGA AGATGTGGCG TGTTACGGTG
 901 AAAACCTGGC CTATTTCCCT AAAGGGTTA TTGAGAATAT GTTTTCGTC TCAGCCAATC
 961 CCTGGGTGAG TTTCACCAAGT TTTGATTAA ACGTGGCCAA TATGACAAC TTCTTCGCCC
 1021 CCGTTTTCAC CATGGGCAA TATTATACGC AAGGCACAA GGTGCTGATG CCGCTGGCA
 1081 TTCAGGTTCA TCATGCCGTC TGTGATGGCT TCCATGTCGG CAGAATGCTT AATGAATTAC
 1141 AACAGTACTG CGATGAGTGG CAGGGCGGGG CGTAAACGCG TGGATCCGGC TTACTAAAAG
 1201 CCAGATAACA GTATGCGTAT TTGCGCGCTG ATTTTTCGCG TATAAGAATA TATAACTGATA
 1261 TGATACCCG AAGTATGTC AAAAGAGGTG TGCTATGAAAG CAGCGTATTA CAGTGACAGT
 1321 TGACAGCGAC AGCTATCAGT TGCTCAAGGC ATATATGATG TCAATATCTC CGGTCTGGTA
 1381 AGCACAACCA TGCAGAATGA AGCCCCGTCGT CTGCGTGGCG AACGCTGGAA AGCGGAAAAT
 1441 CAGGAAGGGGAG TGGCTGAGGT CGCCCCGGTTT ATTGAAATGA ACGGCTCTTT TGCTGACGAG
 1501 AACAGGGACT GGTGAAATGC AGTTTAAGGT TTACACCTAT AAAAGAGAGA GCCGTTATCG
 1561 TCTGTTGTC GATGTACAGA GTGATATTAT TGACACGCC GGGCGACCGA TGGTGATCCC
 1621 CCTGGCCAGT GCACGCTCTGC TGTCAAGATAA AGTCTCCGT GAACTTTACC CGGTGGTGCA
 1681 TATCGGGGAT GAAAGCTGGC GCATGATGAC CACCGATATG GCCAGTGTGC CGGTCTCCGT
 1741 TATCGGGGAA GAAGTGGCTG ATCTCAGCCA CCGCGAAAAT GACATCAAAA ACGCCATTAA
 1801 CCTGATGTTG TGGGGAAATAT AAATGTCAGG CTCCCTTATA CACAGCCAGT CTGCAGGTG
 1861 ACCATAGTGA CTGGATATGT TGTGTTTAC AGTATTATGT AGTCTGTTT TTATGCAAAA
 1921 TCTAATTAA TATATTGATA TTTATATCAT TTTACGTTTC TCGTTCAGCT TTCTTGTACA
 1981 AAGTGGTGTAG CGTCGACCCCG GGAATTCCGG ACCGGTACCT GCAGGGCGTAC CAGCTTCCC
 2041 TATAGTGTAGT CGTATTAGAG CTTGGCGTAA TCATGGTCAT AGCTGTTTCC TGTGTGAAAT
 2101 TGTATCCGC TCACAATTCC ACACAACATA CGAGCCGGAA GCATAAAGTG TAAAGCTGG
 2161 GGTGCCTAAT GAGTGAGCTA ACTCACATTA ATTGCGTTGC GCTCACTGCC CGCTTCCCAG
 2221 TCGGGAAACC TGTCGTCGCA GCTGCATTAA TGAATCGGCC AACGCGCGGG GAGAGCGGT
 2281 TTGCGTATTG GGCGCCAGGG TGGTTTTCT TTTCACCAGT GAGACGGGCA ACAGCTGATT
 2341 GCCTTCACC GCCTGGCCCT GAGAGAGTTG CAGCAAGCGG TCCACGCTGG TTTGCCAG
 2401 CAGGCAGAAA TCCTGTTGA TGGTGGTTGA CGGCAGGATA TAACATGAGC TGTCTCGGT
 2461 ATCGTCGTAT CCCACTACCG AGATATCCGC ACCAACCGC AGCCCGGACT CGGTAATGGC
 2521 GCGCATTGCG CCCAGCGCCA TCTGATCGTT GGCAACCAGC ATCGCAGTGG GAACGATGCC
 2581 CTCATTCAGC ATTTGCAATGG TTTGTTGAAA ACCGGACATG GCACTCCAGT CGCCTTCCCAG
 2641 TTCCGCTATC GGCTGAATTG GATTGCGAGT GAGATATTG TGCCAGGCCAG CCAGACCGCAG-

FIGURE 26C

2701 ACGCGCCGAG ACAGAACCTTA ATGGGCCGC TAACAGCGCG ATTGCTGGT GACCCAATGC
 2761 GACCAGATGC TCCACGCCA GTCGCGTACG GTCTTCATGG GAGAAAATAA TACTGTTGAT
 2821 GGGTGTCTGG TCAGAGACAT CAAGAAATAA CGCCGGAACA TTAGTGCAGG CAGCTTCCAC
 2881 AGCAATGGCA TCCTGGTCAT CCAGCGGATA GTTAATGATC AGCCCACGTGAC CCCGTTGCGC
 2941 GAGAAGATTG TGCAACGCCG CTTTACAGGC TTCGACGCCG CTTCGTTCTA CCATCGACAC
 3001 CACCACGCTG GCACCCAGTT GATCGGCGCG AGATTTAACG GCCGCGACAA TTTGCGACGG
 3061 CGCGTGCAGG GCCAGACTGG AGGTGGCAAC GCCAATCAGC AACGACTGTT TGCCCCGCCAG
 3121 TTGTTGTGCC ACGCGGTTGG GAATGTAATT CAGCTCCGCC ATCGCCGCTT CCACTTTTTC
 3181 CCGCGTTTTC GCAGAAACGT GGCTGGCCTG GTTCACACG CGGGAAACGG TCTGATAAGA
 3241 GACACCGGCA TACTCTGCGA CATCGTATAA CGTTACTGGT TTCACATTCA CCACCCCTGAA
 3301 TTGACTCTCT TCCGGCGCT ATCATGCCAT ACCCGGAAAG GTTTTGCGCC ATTGATGGT
 3361 GTCAACGTAA ATGCCGCTTC GCCTTCGCGC GCGAATTGCA AGCTCTGCGAT TAATGAATCG
 3421 GCGAACCGCG GGGGAGAGGC GTGTTGCGTA TTGGCGCTC TTCCGCTTCC TCGCTCACTG
 3481 ACTCGCTGCG CTCGGTCTGTT CGGCTGCGC GAGCGGTATC AGCTCACTCA AAGGCGGTAA
 3541 TACGGTTATC CACAGAACATCA GGGGATAACG CAGGAAGAA CATGTGAGCA AAAGGCCAGC
 3601 AAAAGGCCAG GAACCGTAAA AAGGCCGCGT TGCTGGCGTT TTCCATAGG CTCCGCCCCC
 3661 CTGACGAGCA TCACAAAAAT CGACGCTCAA GTGAGGGTG GCGAAACCCG ACAGGACTAT
 3721 AAAAGATACCA GGCCTTCTCC CCTGGAAGCT CCCTCGTGC CTCTCCTGTT CCGACCCCTGC
 3781 CGCTTACCGG ATACCTGTCC GCCTTCTCC CTTCGGAAAG CGTGGCGCTT TCTCAATGCT
 3841 CACGCTGTAG GTATCTCAGT TCGGTGTAGG TCGTTGCGTC CAAGCTGGC TGTGTGACG
 3901 AACCCCCCGT TCAGCCGAC CGCTGCGCCT TATCGGTAA CTATCGTCTT GAGTCCAACC
 3961 CGGTAAGACA CGACTTATCG CCACTGGCAG CAGCCACTGG TAACAGGATT AGCAGAGCGA
 4021 GGTATGTAGG CGGTGCTACA GAGTTCTTGA AGTGGTGGCC TAACTACGGC TACACTAGAA
 4081 GGACAGTATT TGGTATCTGC GCTCTGCTGA AGCCAGTTAC CTTCGGAAAAGAGTTGGT
 4141 GCTCTTGTAC CGGCAACAA ACCACCGCTG GTAGCGGTGG TTTTTTTGTT TGCAAGCAGC
 4201 AGATTACGCG CAGAAAAAAA GGATCTCAAG AAGATCCTT GATCTTTCT ACGGGGTCTG
 4261 ACGCTCAGTG GAACGAAAAC TCACGTTAAC GGATTTGGT CATGAGATT TCAAAAAGGA
 4321 TCTTCACCTA GATCCTTTA AATTAAAAAT GAAGTTTAA ATCAATCTAA AGTATATATG
 4381 AGTAAACCTTG GTCTGACAGT TACCAATGCT TAATCAGTGA GGCACCTATC TCAGCGATCT
 4441 GTCTATTTCC TTTCATCCATA GTTGCTGAC TCCCCGTCGT GTAGATAACT ACGATACGGG
 4501 AGGGCTTACCC ATCTGGCCCC AGTGTGCAA TGATACCGCG AGACCCACGC TCACCCGCTC
 4561 CAGATTATC AGCAATAAAC CAGCCAGCGC GAAGGGCGA GCGCAGAAAGT GGTCCTGCAA
 4621 CTTTATCCGC CTCCATCCAG TCTATTAAATT GTTGCCGGGA AGCTAGAGTA AGTAGTCGC
 4681 CAGTTAATAG TTTGCGAAC GTTGTGCA TTGCTACAGG CATCGTGGTG TCACGCTCGT
 4741 CGTTGGTAT GGCTTCATTC AGCTCCGGTT CCCAACGATC AAGGCAGTT ACATGATCCC
 4801 CCATGTTGTG CAAAAAAGCG GTTAGCTCCT TCGGTCTCC GATCGTTGTC AGAAGTAAGT
 4861 TGGCCGCACT GTTATCACTC ATGGTTATGG CAGCACTGCA TAATTCTCTT ACTGTCATGC
 4921 CATCCGTAAG ATGCTTTCT GTGACTGGTG AGTACTCAAC CAAGTCATTC TGAGAATAGT
 4981 GTATGCGGGC ACCGAGTTGC TCTTGCCTGG CGTCAATACG GGATAATACC GCGCCACATA
 5041 GCAGAACCTT AAAAGTGTCTC ATCATTGGAA AACGTTCTTC GGGCGAAA CTCTCAAGGA
 5101 TCTTACCGCT GTTGAGATCC AGTTGATGT AACCCACTCG TGACCCAAAC TGATCTTCAG
 5161 CATCTTTAC TTTCACCGC GTTTCTGGGT GAGCAAAAC AGGAAGGCAA AATGCCCAA
 5221 AAAAGGGAAT AAGGGCGACA CGGAAATGTT GAATACTCAT ACTCTTCCTT TTTCAATATT
 5281 ATTGAAGCAT TTATCAGGGT TATTGTCTCA TGAGCGATA CATAATTGAA TGTATTAGA
 5341 AAAATAAACAA AATAGGGTT CGCGCACAT TTCCCCAAA AGTGCACCT GAAATTGTAA
 5401 ACGTTAATAT TTTGTTAAAAA TTGCGTTAA ATTTTTGTTA AATCAGCTCA TTTTTTAACC
 5461 AATAGGCCGA AATCGGCAAA ATCCCTTATA AATCAAAAGA ATAGACCGAG ATAGGGTTGA
 5521 GTGTTGTTCC AGTTGGAAC AAGAGTCCAC TATTAAGAA CGTGGACTCC AACGTCAAAG
 5581 GCGAAAAAAC CGTCTATCAG GGGGATGGCC CACTACGTGA ACCATCACCC TAATCAAGTT
 5641 TTTGGGGTCA GAGGTGGCGT AAAGCACTAA ATCGGAACCC TAAAGGGAGC CCCCAGTTA
 5701 GAGCTTGACG GGGAAAGCCG CGGAACGTGG CGAGAAAGGA AGGGAAGAAA GCGAAAGGAG
 5761 CGGGCGCTAG GGCCTGGCA AGTGTAGCGG TCACGCTGCG CGTAACCACCC ACACCCGCCG
 5821 CGCTTAATGC GCCGCTACAG GGCCTGGCCA TTGCCCCATTG AGGCTGCGCA ACTGTTGGGA
 5881 AGGGCGATCG GTGCGGGCCT CTTGCTATT ACGCCAGCTG GCGAAAGGGG GATGTGCTGC
 5941 AAGGCGATTA AGTTGGG

FIGURE 26D

Figure 27A: PDEST7

CMV promoter for eukaryotic expression

970 cca ttg acg caa atg ggc ggt agg cgt gta cgg tgg gag gtc tat ata agc
 ggt aac tgc gtt tac ccc cca tcc gca cat gcc acc ctc cag ata tat tcg
 1021 aga gct cgt tta gtg aac cgt cag atc gcc tgg aga cgc cat cca cgc tgg
 tct cga gca aat cac ttg gca gtc tag cgg acc tct gcg gta ggt gcg aca
 CMV enhancer / promoter.
 1072 ttt gac ctc cat aga aga cac cgg gac cga tcc agc ctc cgg act cta gcc
 aaa ctg gag gta tct tct gtg gcc ctg gct agg tgg gag ggc tga gat cgg
 1123 tag gcc gcg gag cgg ata aca att tca cac agg aaa cag cta tga cca cta
 atc cgg cgc ctc gcc tat tgt taa agt gtg tcc ttt gtc gat act ggt gat
 1174 ggc ttt tgc aaa aag cta ttt agg tga cac tat aga agg tac gcc tgc agg
 cgg aaa acg ttt ttc gat aaa tcc act gtg ata tct tcc atg cgg acg tcc
 1225 Kpn EcoRI Int attR1 Pst
 tac cgg tcc gga att ccc atc [aca agt tgg tag xaa xaa got gaa/cgg gaa
 atg gcc agg cct taa] ggg tag [tgt tca aac atg ttt tct cga ctc gct ctc]

571240

pDEST7 6025 bp (rotated to position 2800)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
67..589	CMV promoter
906..782	attR1
1015..1674	CmR
1794..1878	inactivated ccdA
2016..2321	ccdB
2362..2486	attR2
2671..3033	small t & polyA
3227..3502	f1
3962..4822	ampR
5022..5661	ori

1 ATTATCATGA CATTAAACCTA TAAAAAATAGG CGTAGTACGA GGCCCTTTCA CTCATTAGAT
 61 GCATGTCGTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG
 121 CCCATTGACG TCAATAATGA CGTATGTTCC CATAGTAACG CCAATAGGGA CTTTCCATTG
 181 ACGTCAATGG GTGGAGTATT TACGGTAAAC TGCCCACCTG GCAGTACATC AAGTGTATCA
 241 TATGCCAAGT ACGCCCCCTA TTGACGTCAA TGACGGTAAA TGGCCCGCCT GGCATTATGC
 301 CCAGTACATG ACCTTATGGG ACTTTCCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC
 361 TATTACCATG GTGATCGGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTTTGACTC
 421 ACGGGGATTT CCAAGTCTCC ACCCCATTGA CGTCAATGGG AGTTTGTTTT GGCACCAAAA
 481 TCAACGGGAC TTTCCAAATAT GTCGTAACAA CTCCGCCCCA TTGACGCAAA TGGGCGGTAG
 541 GCGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTCGTTA GTGAACCGTC AGATCGCTG
 601 GAGACGGCAT CCACGCTGTT TTGACCTCCA TAGAAGACAC CGGGACCGAT CCAGCCTCCG
 661 GACTCTAGCC TAGGCCCGG AGCGGATAAC AATTTCACAC AGGAAACAGC TATGACCATT
 721 AGGCCTTGC AAAAAGCTAT TTAGGTGACA CTATAGAAGG TACGCCTGCA GGTACCGGAT
 781 CACAAGTTG TACAAAAAAAG CTGAACGAGA AACGTAAAAT GATATAAATA TCAATATATT
 841 AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT AAAACACAAAC ATATCCAGTC
 901 ACTATGGCGG CCGCATTAGG CACCCCAGGC TTTACACTTT ATGCTTCCGG CTCGTATAAT
 961 GTGTGGATTI TGAGTTAGGA TCCGTCGAGA TTTTCAGGAG CTAAGGAAGC TAAAATGGAG
 1021 AAAAATCA CTGGATATAC CACCGTTGAT ATATCCAAT GGCACTCGTAA AGAACATTTT
 1081 GAGGCATTTC AGTCAGTTGC TCAATGTACC TATAACCAGA CCGTTCAGCT GGATATTACG
 1141 GCCTTTAA AGACCGTAA GAAAAATAAG CACAAGTTT ATCCGGCCTT TATTACACATT
 1201 CTTGCCGCC TGATGAATGC TCATCCGAA TTCCGTATGG CAATGAAAGA CGGTGAGCTG
 1261 GTGATATGGG ATAGTGTCA CCCCCTGTTAC ACCGTTTCC ATGAGCAAAC TGAAACGTTT
 1321 TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT ATATTCGAA
 1381 GATGTGGCGT GTTACGGTGA AACCTGGCC TATTTCCCTA AAGGGTTTAT TGAGAATATG
 1441 TTTTCGTCT CAGCCAATCC CTGGGTGAGT TTCACCAAGTT TTGATTAACTT CGTGGCCAAT
 1501 ATGGACAACT TCTTCGCCCC CGTTTTCACC ATGGGCAAAT ATTATACGCA AGGCACAAAG
 1561 GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT CCATGTCGGC
 1621 AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGCGGGGC GTAAACCGGT
 1681 GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT TGCGCGCTGA TTTTGGCGGT
 1741 ATAAGAATAT ATACTGATAT GTATACCGA AGTATGTCAA AAAGAGGTGT GCTATGAAGC
 1801 AGCGTATTAC AGTGACAGTT GACAGCGACA GCTATCAGTT GCTCAAGGCA TATATGATGT
 1861 CAATATCTCC GGTCTGGTAA GCACAAACCAT GCAGAATGAA GCCGCTCGTC TCGTGCCGA
 1921 ACGCTGGAAA GCGGAAATC AGGAAGGGAT GGCTGAGGTC GCCCGGTTTA TTGAAATGAA
 1981 CGGCTCTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTTAAGGTT TACACCTATA
 2041 AAAGAGAGAG CCGTTATCGT CTGTTTGTGG ATGTACAGAG TGATATTATT GACACGCCG
 2101 GCGCACGGAT GGTGATCCCC CTGGCCAGTG CACGTCGTCT GTCAGATAAA GTCTCCCGTG
 2161 AACTTACCC GGTGGTGCAT ATCAGGGGATG AAAGCTGGCG CATGATGACC ACCGATATGG
 2221 CCAGTGTGCC GGTCTCGTT ATCAGGGGAAAG AAGTGGCTGA TCTCAGCCAC CGCGAAAATG
 2281 ACATAAAAAA CGCCATTAAC CTGATGTTCT GGGGAATATA AATGTCAGGC TCCCTTATAAC
 2341 ACAGCCAGTC TGCAAGTCGA CCATAGTGAC TGGATATGTT GTGTTTACA GTATTATGTA
 2401 GTCTGTTTTT TATGCAAAT CTAATTAAAT ATATTGATAT TTATATCATT TTACGTTCT
 2461 CGTCAGCTT TCTTGTACAA AGTGGTGATC GCGTGCATGC GACGTCTAG CTCTCTCCCT
 2521 ATAGTGAAGTC GTATTATAAG CTAGGCAGTG GCGTCGTTT TACAACGTCG TGACTGGAA-

FIGURE 27B

58/240

2581 AACTGCTAGC TTGGGATCTT TGTGAAGGAA CCTTACTTCT GTGGTGTGAC ATAATTGGAC
 2641 AAACATACCTA CAGAGATTTA AAGCTCTAAC GTAAATATAA AATTTTTAAG TGTATAATGT
 2701 GTTAAACTAG CTGCATATGC TTGCTGCTTG AGAGTTTGC TTACTGAGTA TGATTTATGA
 2761 AAATATTATA CACAGGAGCT AGTGATTCTA ATTGTTGTG TATTTTAGAT TCACAGTCCC
 2821 AAGGCTCATT TCAGGCCCT CAGTCCTCAC AGTCTGTTCA TGATCATAAT CAGCCATACC
 2881 ACATTTGTAG AGGTTTACT TGCTTAAAA AACCTCCAC ACCTCCCCCT GAACCTGAAA
 2941 CATAAAATGA ATGCAATTGT TTGTTGTTAAC TTGTTTATTG CAGCTTATAA TGGTTACAAA
 3001 TAAAGCAATA GCATCACAAA TTTCACAAAT AAAGCATTTT TTTCACTGCA TTCTAGTTGT
 3061 GGTGGTCCA AACTCATCAA TGTTATCTTAT CATGTCCTGA TCGATCCTGC ATTAATGAAT
 3121 CGGCCAACGC GCGGGGAGAG GCGGTTTGCG TATTGGCTGG CGTAATAGCG AAGAGGCCG
 3181 CACCGATCGC CCTTCCCAAC AGTTGCGCAG CCTGAATGGC GAATGGGACG CGCCCTGTAG
 3241 CGGCGCATTAGCAGCAGG GTGTGGTGGT TACGCGCAGC GTGACCGCTA CACTTGCAG
 3301 CGCCCTAGCG CCCGCTCTT TCGCTTCTT CCCTTCTT CTCGCCACGT TCGCCGGCTT
 3361 TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA
 3421 CCTCGACCCC AAAAAACTTG ATTAGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGTAG
 3481 GACGGTTTTT CGCCCTTGA CGTTGGAGTC CACGTTCTT AATAGTGGAC TCTTGTCCA
 3541 AACTGGAACA ACACCTCAAC CTATCTCGGT CTATTCTTT GATTATAAG GGATTTGCC
 3601 GATTCGGCC TATTGGTTAA AAAATGAGCT GATTAAACAA AAATTTAACG CGAATTTAA
 3661 CAAATATTAA ACGTTTACAA TTTCAGGTGG CACTTTCGG GAAATGTGC GCGGAACCC
 3721 TATTGTTTA TTTTCTAAAC TACATTCAA TATGTTACCG CTATGCCAG GTCTTGACT
 3781 GGTGAGAACG GCTTGCTCGG CAGCTTCGAT GTGTGCTGGA GGGAGAATAA AGGTCTAAGA
 3841 TGTGCGATAG AGGGAAGTCG CATTGAATTA TGTGCTGTG AGGGATCGCT GGTATCAAAT
 3901 ATGTGTGCC ACCCCTGGCA TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA
 3961 AAGGAAGAGT ATGAGTATTG AACATTCCG TGTGCCCTT ATTCCCTTTT TTGCGGCATT
 4021 TTGCTTCCTT GTTTTGCTC ACCCAGAAAC GCTGGTGGAA GTAAAAGATG CTGAAGATCA
 4081 GTTGGGTGCA CGAGTGGTT ACATCGAACT GGATCTAAC AGCGTAAGA TCCTTGAGAG
 4141 TTTTCGCCCG GAAGAACGTT TTCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCG
 4201 GGTATTATCC CGTATTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA
 4261 GAATGACTTG GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT
 4321 AAGAGAATTAA TGCACTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT
 4381 GACAACGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT
 4441 AACTCGCCTT GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA
 4501 CACCACGATC CCTGTAGCAA TGCAACAAAC GTTGCAGAAA CTATTAACGT GCGAACTACT
 4561 TACTCTAGCT TCCCGGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAAG TTGCAGGACC
 4621 ACTTCTGCGC TCGGCCCTTC CGGCTGGCTG TTTTATTGCT GATAATCTG GAGCCGGTGA
 4681 GCGTGGGTCT CGCGGTATCA TTGCACTGACT GGGGCCAGAT GGTAGCCCT CCCGTATCGT
 4741 AGTTATCTAC ACGACGGGGA GTCAAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA
 4801 GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT CATATATACT
 4861 TTAGATTGAT TAAACACTTC ATTNTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTGA
 4921 TAATCTCATG CCATAACCTTC GTATAATGTA TGCTATACGA AGTTATGGCA TGACAAAAT
 4981 CCCTTAACGT GAGTTTCTCGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC
 5041 TTCTTGAGAT CCTTTTTTC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCACCGCT
 5101 ACCAGCGGTG GTTTGTTGCG CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACCTGG
 5161 CTTCAGCAGA GCGCAGATAC CAAATACTGT CTTCTAGTG TAGCCGTAGT TAGGCCACCA
 5221 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCACTGGC
 5281 TGCTGCCAGT GGCAGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA
 5341 TAAGGCGCAG CGGTGGGCT GAACGGGGGG TTGCTGCACA CAGCCAGCT TGGAGCGAAC
 5401 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCATTGA GAAAGCGCCA CGCTTCCCAG
 5461 AGGGAGAAAG CGGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG
 5521 GGAGCTTCA GGGGAAACG CCTGGTATCT TTATAGTCCT GTCGGGTTTC GCCACCTCTG
 5581 ACTTGAGCGT CGATTTTGT GATGCTCGTC AGGGGGCGG AGCTTATGGA AAAACGCCAG
 5641 CAACCGGGCC TTTTACGGT CCTGATTCTG TGATAACCG TATTACCGC TTTGAGTGAG CTGATACCGC
 5701 TCGTTATCC CCTGATTCTG TGATAACCG TATTACCGC TTTGAGTGAG CTGATACCGC
 5761 TCGCCCGAGC CGAACGACCC AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG AAGAGGCC
 5821 AATACGCAAA CGCCTCTCC CGCGCTGTTG GCCGATTCAT TAATGCAGAG CTTGCAATT
 5881 GCGCTTTT CAATATTATT GAAGCATTAA TCAGGGTTAT TGCTCATGA GCGGATACAT
 5941 ATTGAAATGT ATTAGAAAA ATAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAGT
 6001 GCCACCTGAC GTCTAAGAAA CCATT

Fig 12E 27c

Figure 28A: pDEST8 Polyhedron Promoter, Baculovirus Transfer Plasmid

AccI

1 cgt ata ctc cgg aat att aat aga tca tgg aga taa tta aaa tga taa cca
 gca tat gag gcc tta taa tta tct agt acc tct att aat ttt act att ggt

52 tct cgc aaa taa ata agt att tta ctg ttt tcg taa cag ttt tgt aat aaa
 aga gcg ttt att tat tca taa aat gac aaa agc att gtc aaa aca tta ttt

103 aaa acc tat aaa tat tcc gga tta ttc ata ccg tcc cac cat cgg gcg dgg
 ttt tgg ata ttt ata agg cct aat aag tat ggc agg gtg gta gcc cgc gcc
 Bam Int attR1

154 atc atc aca agt tgg tag aaa aa gct gaa cga gaa aog taa dat gat ata
 tag tag tgt tca aac atg ttt tcc cga ctt gct ctt tgc att tta ctt tat

60/240

pDEST8 6526 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
23..152	Ppolh
284..160	attR1
534..1193	CmR
1313..1397	inactivated ccdA
1535..1840	ccdB
1881..2005	attr2
2766..3146	f1
3240..4090	ampR
4289..4869	ori
5564..6496	genR

1 CGTATACTCC GGAATATTAA TAGATCATGG AGATAATTAA AATGATAACC ATCTCGAAA
 61 TAAATAAGTA TTTTACTGTT TTCTGTAACAG TTTTGTAATA AAAAACCTA TAAATATTCC
 121 GGATTATTCA TACCGTCCC CCATCGGGCG CGGATCATCA CAAGTTGTA CAAAAAAAGCT
 181 GAACGAGAAA CGTAAAATGA TATAAATATC AATATATTAA ATTAGATTTT GCATAAAAAAA
 241 CAGACTACAT AATACTGTAA AACACAACAT ATCCAGTCAC TATGGCGGCC GCTAAGTTGG
 301 CAGCATCACC CGACGCACCT TGCGCCGAAT AAATACCTGT GACCGAAGAT CACTTCGCAG
 361 AATAAATAAA TCCTGGTGT CCTGTTGATA CGGGGAAGCC CTGGGCCAAC TTTTGGCGAA
 421 AATGAGACGT TGATCGGCAC GTAAGAGGTT CCAACTTTCA CCATAATGAA ATAAGATCAC
 481 TACCGGGCGT ATTTTTTGAG TTATCGAGAT TTTCAGGAGC TAAGGAAGCT AAAATGGAGA
 541 AAAAATACAC TGGATATACC ACCGTTGATA TATCCAATG GCATCGTAAA GAACATTGG
 601 AGGCATTTCAGTCAGTTGCT CAATGTACCT ATAACCAAGAC CGTCAGCTG GATATTACGG
 661 CCTTTTAAAG GACCGTAAAG AAAAATAAGC ACAAGTTTA TCCGGCCTTT ATTACACATT
 721 TTGCCCCGCT GATGAATGCT CATCCGGAAT TCCGTATGGC AATGAAAGAC GGTGAGCTGG
 781 TGATATGGGA TAGTGTTCAC CTTGTTACA CGTTTTCGA TGAGCAAAC GAAACGTTT
 841 CATCGCTCTG GAGTGAATAC CACGACGATT TCCGGCAGTT TCTACACATA TATTCCGAAG
 901 ATGTGGCGTG TTACGGTGA AACCTGGCCT ATTTCCCTAA AGGGTTTATT GAGAATATGT
 961 TTTTCGTCAGCAATCCCC TGGGTGAGTT TCACCAAGTT TGATTTAAAC GTGGCCAATA
 1021 TGGACAACCTT CTTCGCCCCC GTTTTCACCA TGGGCAAATA TTATACGCAA GGCGACAAGG
 1081 TGCTGATGCC GCTGGCGATT CAGGTTCATC ATGCCGTCTG TGATGGCTTC CATGTCGGCA
 1141 GAATGCTTAA TGAATTACAA CAGTACTGCG ATGAGTGGCA GGGCGGGGCG TAAACCGGTG
 1201 GATCCGGCTT ACTAAAAGCC AGATAACAGT ATGCGTATTG GCGCGCTGAT TTTTGGGTA
 1261 TAAGAATATA TACTGATATG TATACCCGAA GTATGTCAAA AAGAGGTGTG CTATGAAGCA
 1321 GCGTATTACA GTGACAGTTG ACAGCGACAG CTATCAGTTG CTCAAGGCAT ATATGATGTC
 1381 AATATCTCCG GTCTGGTAAAG CACAACCATG CAGAATGAAG CCCGTCGTCT GCGTGGCAA
 1441 CGCTGGAAAG CGGAAAATCA GGAAGGGATG GCTGAGGTG CCGCGTTTAT TGAAATGAAC
 1501 GGCTCTTTG CTGACGAGAA CAGGGACTGG TGAAATGCAG TTTAAGGTTT ACACCTATAA
 1561 AAGAGAGAGC CGTTATCGTC TGTTTGTGGA TGTACAGAGT GATATTATG ACACGCCGG
 1621 GCGACGGATG GTGATCCCCC TGCCAGTGC ACGTCGTCT TCAGATAAAG TCTCCCGTGA
 1681 ACTTTACCCG GTGGTGATA TCGGGGATGA AAGCTGGCG ATGATGACCA CCGATATGGC
 1741 CAGTGTCCG GTCTCGTTA TCGGGGAAGA AGTGGCTGAT CTCAGGCCACC GCGAAAATGA
 1801 CATCAAAAC GCCATTAACC TGATGTTCTG GGGAAATATAA ATGTCAGGCT CCCTTATACA
 1861 CAGCCAGTCT GCAGGTCGAC CATACTGACT GGATATGTT TGTTTACAG TATTATGTAG
 1921 TCTGTTTTT ATGCAAATC TAATTTAATA TATTGATATT TATATCATT TACGTTCTC
 1981 GTTCAGCTT CTTGTACAAA GTGGTGATAG CTTGTCGAGA AGTACTAGAG GATCATAATC
 2041 AGCCATACCA CATTGTAGA GTTTTACTT GCTTTAAAAA ACCTCCCACA CCTCCCCCTG
 2101 AACCTGAAAC ATAAAATGAA TGCAATTGTT GTTGTAACT TGTTTATTGC AGCTTATAAT
 2161 GTTACAAAT AAAGCAATAG CATCACAAAT TTCACAAATA AACGATTTTT TTCACTGCAT
 2221 TCTAGTTGTT GTTTGTCATA ACTCATCAAT GTATCTTATC ATGTCGGAT CTGATCACTG
 2281 CTTGAGCCTA GGAGATCCGA ACCAGATAAG TGAAATCTAG TTCCAAACTA TTTTGTCTT
 2341 TTTAATTTC GTATTAGCTT ACCACGCTAC ACCCAGTTCC CATCTATTGTC ACTCTTC
 2401 CCTAAATAAT CCTTAAAC TCCATTCCCA CCCCTCCAG TTCCCAACTA TTTTGTCCGC
 2461 CCACAGCGGG GCATTTCCT TCCGTATG TTTTAATCA AACATCCCTGC CAACTCCATG
 2521 TGACAAACCG TCATCTCGG CTACTTTTC TCTGTCACAG AATGAAAATT TTTCTGTCAT-

FIGURE 28B

61/240

2581 CTCTTCGTTA TTAATGTTT TAATTGACTG AATATCAACG CTTATTTGCA GCCTGAATGG
 2641 CGAATGGACG CGCCCTGTAG CGGCGCATTA AGCGCAGCG GTGTTGGTGGT TACGCGCAGC
 2701 GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT CCCTTCCTT
 2761 CTCGCCACGT TCGCCGGCTT TCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC
 2821 CGATTTAGTG CTTTACGGCA CCTCGACCCCC AAAAAGCTTG ATTAGGGTGA TGGTTCACGT
 2881 AGTGGGCCAT CGCCCTGATA GACGGTTTT CGCCCTTGA CGTGGAGTC CACGTTCTT
 2941 AATAGTGGAC TCTTGTCCA AACTGGAACA ACACCTAACCT ATATCTCGGT CTATTCTTT
 3001 GATTATAAG GGATTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA
 3061 AAATTTAACG CGAATTTAA CAAAATATTA ACGTTACAA TTTCAGGTGG CACTTTCCG
 3121 GGAAATGTGC CGGAAACCCC TATTTGTTA TTTTCTAAA TACATTCAA TATGTATCCG
 3181 CTCATGAGAC AATAACCTG ATAATGCTT CAATAATATT GAAAAGGAA GAGTATGAGT
 3241 ATTCAACATT TCCGTGTCGC CCTTATTCCC TTTTTGCGG CATTTGCCT TCCTGTTTT
 3301 GCTCACCCAG AAACGCTGGT GAAAGTAAAA GATGCTGAAG ATCAGTTGGG TGCACGAGTG
 3361 GGTTACATCG AACTGGATCT CAACAGCGGT AAGATCCTG AGAGTTTCG CCCCAGAAGAA
 3421 CGTTTCCAA TGATGAGCAC TTTTAAAGTT CTGCTATGTG GCCGGTATT ATCCCGTATT
 3481 GACGCCGGGC AAGAGCAACT CGTCGCCGC ATACACTATT CTCAGAATGA CTTGGTTGAG
 3541 TACTCACCAAG TCACAGAAAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCAGT
 3601 GCTGCCATAA CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA
 3661 CCGAAGGAGC TAACCGCTT TTGCAACAC ATGGGGGATC ATGTAACCTG CCTTGATCGT
 3721 TGGGAACCGG AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACCAC GATGCCTGTA
 3781 GCAATGGCAA CAACGGCG CAAACTATTA ACTGGCAAC TACTTACTCT AGCTTCCGG
 3841 CAACAATTAA TAGACTGGAT GGAGGCGGAT AAAGTGCAG GACCACCTCT GCGCTCGGCC
 3901 CTTCCGGCTG GCTGGTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGGGT
 3961 ATCATTGAG CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCGTAGTTAT CTACACGAGC
 4021 GGGAGTCAGG CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCTCACTG
 4081 ATTAAGCATT GGTAACTGTC AGACCAAGTT TACTCATATA TACTTTAGAT TGATTTAAAA
 4141 CTTCAATTAA AATTTAAAG GATCTAGGTG AAGATCCTT TTGATAATCT CATGACCAAA
 4201 ATCCCTTAAC GTGAGTTTC GTTCCACTGA CGTCAGACCC CGTAGAGAAA GATCAAAGGA
 4261 TCTTCTTGAG ATCCTTTTT TCTGCGCGTA ATCTGCTGCT TGCAACAAAA AAAACCAACG
 4321 CTACCAGCGG TGGTTTGTGTT GCGGATCCTA GAGCTACCA CTCTTTTCC GAAGGTAAC
 4381 GGCTTCAGCA GAGCGCAGAT ACCAAATACT GTCCTCTAG TGTAGCCGTA GTTACCGCAG
 4441 CACTCTAAGA ACTCTGAGC ACCGCTTACCA TACCTCGCTC TGCTTAATCT GTTACCGAGT
 4501 GCTGCTGCCA GTGGCGATAA GTCTGCTCTT ACCGGGTTGG ACTCAAGAGC ATAGTTACCG
 4561 GATAAGGCGC AGCGGTGGG CTGAACGGGG GGTCGCGTA CACAGCCCAG CTTGGAGCGA
 4621 ACGACCTACA CGAACCTGAG ATACCTACAG CGTGCAGATT GAGAAAGCGC CACGCTTCCC
 4681 GAAGGGAGAA AGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCAG
 4741 AGGGAGCTTC CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC
 4801 TGACTTGAGC GTGATTTTT GTGATGCTG TCAGGGGGC GGAGCCTATG GAAAACGCC
 4861 AGCAACGCGG CCTTTTACG GTTCCCTGGCC TTTTGTGGC CTTTGCTCA CATGTTCTT
 4921 CCTGCGTTAT CCCCTGATTG TGTTGATAAC CGTATTACCG CCTTGAGTG AGCTGATACC
 4981 GCTGCCGCCA GCCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC
 5041 CTGATGCGGT ATTTCTCCT TACGCATCTG TCGGGTATTT CACACCGCAG ACCAGCGCG
 5101 TAACCTGGCA AAATCGGTTA CGGTTGAGTA ATAAATGGAT GCCCTCGCTA AGCGGGTGTG
 5161 GCGGACAAT AAAGTCTAA ACTGAACAAA ATAGATCTAA ACTATGACAA TAAAGTCTTA
 5221 AACTAGACAG AATAGTTGTA AACTGAAATC AGTCCAGTTA TGCTGTGAAA AAGCATACTG
 5281 GACTTTGTT ATGGCTAAAG CAAACTCTTC ATTTCTGAA GTGCAAATTG CCCGCTGTAT
 5341 TAAAGAGGGG CGTGGCCAAG GGCATGGTAA AGACTATATT CGCGCGCTTG TGACAATTAA
 5401 CCGAACAACT CGCGGCCGG GAAGCCGATC TCGGCTGAA CGAATTGTTA GGTGGGGTA
 5461 CTTGGGTCGA TATCAAAGTG CATCACTCT TCCCGTATGC CCAACTTTGT ATAGAGAGCC
 5521 ACTGCGGGAT CGTCACCGTA ATCTGCTTGC ACGTAGATCA CATAAGCACC AAGCGCGTTG
 5581 GCCTCATGCT TGAGGAGATT GATGAGCGCG GTGGCAATGC CCTGCCTCCG GTGCTCGCG
 5641 GAGACTGCGA GATCATAGAT ATAGATCTA CTACCGGGCT GCTAAACCT GGGCAGAACG
 5701 TAAGCCCGA GAGGCCAAC ACCGCTTCT TGGTGAGG CAGCAAGCGC GATGAATGTC
 5761 TTACTACGGA GCAAGTTCCC GAGGTAATCG GAGTCGGCT GATGTTGGGA GTAGGTGGCT
 5821 ACGTCTCCGA ACTCACGACC GAAAAGATCA AGAGCAGCCC GCATGGATT GACTGGTCA
 5881 GGGCCGAGCC TACATGTGCG ATGATGCCCT ATACTGAGC CACCTAACTT TGTTTAGGG
 5941 CGACTGCCCT GCTGCGTAAC ATCGTTGCTG CTGCGTAACA TCGTTGCTGC TCCATAACAT
 6001 CAAACATCGA CCCACGGCGT AACGCGCTTG CTGCTGGAT GCGCGAGGCA TAGACTGTAC-

FIGURE 28C

62/240

6061 AAAAAAACAG TCATAACAAG CCATGAAAAC CGCCACTGCG CCGTTACCAC CGCTGCCTTC
6121 GGTCAAGGTT CTGGACCACT TGCGTGAGCG CATACTGCTAC TTGCATTACA GTTTACGAAC
6181 CGAACAGGCT TATGTCAACT GGGTTCGTGC CTTCATCCGT TTCCACGGTG TGCCTCACCC
6241 GGCAACCTTG GGCAGCAGCG AAGTCGAGGC ATTTCTGTCC TGGCTGGCGA ACGAGCGCAA
6301 GGTTTCGGTC TCCACGCATC GTCAGGCATT GGCGGCCTTG CTGTTCTTCT ACGGCAAGGT
6361 GCTGTGCACG GATCTGCCCT GGCTTCAGGA GATCGGAAGA CCTCGGCCGT CGCGGCGCTT
6421 GCCGGTGGTG CTGACCCCCGG ATGAAGTGGT TCGCATCCTC GGTTTTCTGG AAGGCGAGCA
6481 TCGTTTGTTC GCCCAGGACT CTAGCTATAG TTCTAGTGGT TGGCTA

FIGURE 28D

63/260

Figure 29A: pDEST9

Semliki Forest Virus vector

103 ttg gcg agg gac att aag gcg ttt aag aaa ttg aga gga cct gtt ata cac
 aac cgc tcc ctg taa ttc cgc aaa ttc ttt aac tct cct gga caa tat gtg
243 attR1 → 265 RVA

154 ctc tac ggc ggt cct aga ttg gtg cgt taa tac aca gaa ttc tga ttg gat
 gag atg ceg cca gga tct aac cac gca att atg tgt ctt aag act aac cta
RsrII attR1

205 ccc ggt ccc aag cgc gct ttc cca tca aca agt tta/tac aae aad act gct gaa
ggg cca ggc ttc gcg cga aag ggt agt tgt tca aac atg ttt tta cga tcc

pDEST9 12464 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
355..232	attR1
605..1264	CmR
1384..1468	inactivated ccdA
1606..1911	ccdB
1952..2078	attR2
2532..2782	ori
3482..4282	ampR
5232..5365	SP6 promoter
5365..6965	nsp1:non-structural protein 1
6965..9265	nsp2:non-structural protein 2
9265..10865	nsp3:non-structural protein 3
10865..161	nsp4:non-structural protein 4

1 AGCAAGTGGT TCCGGACAGG CTTGGGGGCC GAACTGGAGG TGGCACTAAC ATCTAGGTAT
 61 GAGGTAGAGG GCTGCAAAAG TATCCTCATA GCCATGGCCA CCTTGGCGAG GGACATTAAG
 121 GCGTTTAAGA AATTGAGAGG ACCTGTTATA CACCTCTACG GCGGTCTAG ATTGGTGCCT
 181 TAATACACAG AATTCTGATT GGATCCCGGT CGGAAGCGCG CTTTCCCATC ACAAGTTGT
 241 ACAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA AATTAGATTT
 301 TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCAT CTATGGCGC
 361 CGCTAAAGTTG GCAGCATCAC CCGACGCAC TTGCGCCGAA TAAATACCTG TGACGGAAGA
 421 TCACCTCGCA GAATAAATAA ATCCTGGTGT CCCTGTTGAT ACCGGGAAGC CCTGGGCCAA
 481 CTTTGGCGA AAATGAGACG TTGATCGGC CGTAAGAGGT TCCAACTTTC ACCATAATGA
 541 AATAAGATCA CTACCGGGCG TATTTTTGTA GTTATCGAGA TTTTCAGGAG CTAAGGAAGC
 601 TAAAATGGAG AAAAAAAATCA CTGGATATAC CACCCTGAT ATATCCCAAT GGCATCGTAA
 661 AGAACATTTT GAGGCATTT AGTCAGTTGC TCAATGTACC TATAACCAGA CCGTTCAGCT
 721 GGATATTACG GCCTTTTAA AGACCGTAA GAAAATAAG CACAAGTTTT ATCCGGCCTT
 781 TATTACATT CTTGCCGCC TGATGAATGC TCATCCGGAA TTCCGTATGG CAATGAAAGA
 841 CGGTGAGCTG GTGATATGGG ATAGTGTCA CCCTGTTAC ACCGTTTTCC ATGAGCAAAC
 901 TGAAACGTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT
 961 ATATTGCAA GATGTGGCGT GTTACGGTGA AAACCTGGCC TATTCCCTA AAGGGTTTAT
 1021 TGAGAATATG TTTTCGCT CAGCCAATCC CTGGGTGAGT TTCACCAAGTT TTGATTAAA
 1081 CGTGGCAAT ATGGACAATCT TCTTCGCCCC CGTTTCACC ATGGGCAAAT ATTATACGCA
 1141 AGGCACAAAG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT
 1201 CCATGTCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGCG AGGGCGGGC
 1261 GTAAAGATCT GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT TGCAGCTGA
 1321 TTTTCGCGT ATAAGAATAT ATACTGATAT GTATACCCGA AGTATGTCAA AAAGAGGGTGT
 1381 GCTATGAAGC AGCGTATTAC AGTACAGAGT GACAGCGACA GCTATCAGTT GCTCAAGGCA
 1441 TATATGATGT CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA GCGCGTCGTC
 1501 TCGGTGCCGA ACGCTGGAAA GCGGAAAATC AGGAAGGGAT GGCTGAGGTC GCGCGTTTA
 1561 TTGAAATGAA CGGCTCTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTTAAGGTT
 1621 TACACCTATA AAAGAGAGAG CGGTTATCGT CTGTTGTGG ATGTACAGAG TGATATTATT
 1681 GACACGCCCG GGCACGGAT GGTGATCCCC CTGGCCAGTG CACGCTCTGCT GTCAGATAAA
 1741 GTCTCCCGTG AACTTTACCC GGTGGTGCAT ATCGGGGATG AAAGCTGGCG CATGATGACC
 1801 ACCGATATGG CCAGTGTGCC GGTCTCCGTT ATCGGGGAAAG AAGTGGCTGA TCTCAGCCAC
 1861 CGCGAAAATG ACATCAAAAA CGCCATTAAC CTGATGTTCT GGGGAATATA AATGTCAGGC
 1921 TCCCTTATAC ACAGCCAGTC TGCAAGTCGA CCATAGTGAC TGGATATGTT GTGTTTACA
 1981 GTATTATGTA GTCTGTTTT TATGCAAAAG TGCTAATTAA ATATATTGAT ATTTATATCA
 2041 TTTTACGTT CTCGTTCAAGC TTTCTTGTAC AAAGTGGTGA TGGGAACCTCG AGTTCACTAG
 2101 TCGATCCCGC GGCGCTTTG GAACTTAGGC AAGCATGCGG GCCCAGTGGG TAATTAATTG
 2161 AATTACATCC CTACGCAAAC GTTTTACGGC CGCCGGTGGC GCCCGCGCCC GCGGGCCCGT
 2221 CCTTGGCCGT TGCAGGCCAC TCCGGTGGCT CCCGTCGTCC CGGACTTCCA GCGCCAGCAG
 2281 ATGCAGCAAC TCATCAGCGC CGTAAATGCG CTGACAATGA GACAGAACGC AATTGCTCCT
 2341 GCTAGGAGCT TAATTGACG AATAATTGGA TTTTTATTAA ATTTGCAAT TGGTTTTAA
 2401 TATTTCCAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA-

Fig RE 29B

65/240

2461 AAAAAAAA AAAAAGACTA GAAATCGCGA TTTCTAGTCT GCATTAATGGA ATCGGCCAAC
 2521 GCGCGGGGAG AGGC GGTTTG CGTATTGGC GCTCTTCGCTC ACTGACTCGC
 2581 TGC GCTCGGT CGTTCGGCTG CGGGCAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT
 2641 TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG
 2701 CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTCCA TAGGCTCCGC CCCCCTGACG
 2761 AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT
 2821 ACCAGGC GTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCGCTTA
 2881 CCGGATACCT GTCCGCCTT CTCCCTTCGG GAAGCGTGGC GCTTCTCAA TGCTCGCGCT
 2941 GTAGGTATCT CAGTCGGTG TAGTCGTTG GCTCCAAGCT GGGCTGTGTG CACGAACCCC
 3001 CCGITCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA
 3061 GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG
 3121 TAGGCGGTGC TACAGAGTC TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG
 3181 TATTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT
 3241 GATCCGGCAA ACAAAACCAC GCTGGTAGCG GTGGTTTTTG TGTTGCAAG CAGCAGATTA
 3301 CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC
 3361 AGTGAACGAA AAACCTACGT TAAGGGATT TGTCATGAG ATTATCAAA AGGATCTTCA
 3421 CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA
 3481 CTTGGTCTGA CAGTTACCAA TGCTTAATCA GTGAGGCCAC TATCTCAGCG ATCTGTCAT
 3541 TTCGTTCATC CATAGTTGCC TGACTCCCCG TCCTGTAGAT AACTACGATA CGGGAGGGCCT
 3601 TACCATCTGG CCCCAGTGCT GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT
 3661 TATCAGCAAT AAACCAAGCCA GCCCGAAGGG CCGAGCAG AAGTGGTCTCT GCAACTTTAT
 3721 CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAAGCTAG AGTAAGTAGT TCGCCAGTTA
 3781 ATAGTTTGC CAAACGTTGTT GCCATTGCTA CAGGCATCGT GGTTCACGC TCGTCGTTG
 3841 GTATGGCTTC ATTCA GCTCC GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT
 3901 TGTGAAAAAA AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGT CAGAAGT AAGTTGGCCG
 3961 CAGTGTATC ACTCATGGTT ATGGCAGCAC TGCTAAATTC TCTTACTGTC ATGCCATCCG
 4021 TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC
 4081 GGC GACCGAG TTGCTCTTGC CGGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA
 4141 CTTTAAAGT GCTCATCATT GGAAAACGTT CTTCGGGGC AAAACTCTCA AGGATCTTAC
 4201 CGCTGTTGAG ATCCAGTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT
 4261 TTACTTCAC CAGCGTTCTC GGGT GAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAGG
 4321 GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT CCTTTTCAA TATTATTGAA
 4381 GCATTATCA GGGTTATTGT CTCATGAGCG GATAACATATT TGAATGTATT TAGAAAATA
 4441 AACAAATAGG GGTTCGGCGC ACATTCCCC GAAAAGTGC ACCTGACGTC TAAGAAAACCA
 4501 TTATTATCAT GACATTAACC TATAAAAATA GGC GTATCAC GAGGCCCTT CGTCTCGCGC
 4561 GTTTCGGTGA TGACGGTGAA AACCTCTGAC ACATGCGACT CCCGGAGACG GTCACAGCTT
 4621 CTGCTTAAGC GGATGCCGGG AGCAGACAAG CCCGTCAGGG CGCGTCAGCG GGTGTTGGCG
 4681 GGTGTCGGGG CTGGCTTAAC TATGCGGCAT CAGAGCAGAT TGTACTGAGA GTGCACCATATA
 4741 TCGACGCTCT CCTTATGCG ACTCCTGCAT TAGGAAGCAG CCCAGTACTA GGTTGAGGCC
 4801 GTTGAGCACC GCCGCCGAA GGAATGGTGC ATGCAAGGAG ATGGCGCCCA ACAGTCCCC
 4861 GGCCACGGGG CCTGCCACCA TACCCACGCC GAAACAAAGCG CTCATGAGCC CGAAGTGGCG
 4921 AGCCGATCT TCCCCATCGG TGATGTCGGC GATATAGCG CCAGCAACCG CACCTGTC
 4981 GCCGGTGTG CCGGCCACGA TGCGTCCGGC GTAGAGGATC TGGCTAGCGA TGACCCGCT
 5041 GATTGGTTCG CTGACCATTT CGGGGGTGC GAAACGGCGTT ACCAGAAACT CAGAAGGGTCT
 5101 GTCCAACCAA ACCGACTCTG ACGGCAGTTT ACAGAGAGAGA TGATAGGGTC TGCTTCAGTA
 5161 AGCCAGATGC TACACAATTAA GGCTTGACA TATTGTCGTT AGAACGCGGC TACAATTAT
 5221 ACATAACCTT ATGTATCATA CACATACGAT TTAGGTGACA CTATAGATGG CGGATGTGTG
 5281 ACATACACGA CGCCAAAAGA TTTTGTTCGA GCTCCTGCCA CCTCCGCTAC GCGAGAGATT
 5341 AACCAACCCAC GATGGCCGCC AAAGTGCATG TTGATATTGA GGCTGACAGC CCATTCA
 5401 AGTCTTGC A GAGGCATT CCGTCGTTG AGGTGGAGTC ATTGCAGGTC ACACCAATG
 5461 ACCATGCAA TGCCAGAGCA TTTTCGCA C TGGCTACCAA ATTGATCGAG CAGGAGACTG
 5521 ACAAAAGACAC ACTCATCTTG GATATCGCA GTGCGCCTTC CAGGAGAATG ATGTCTACGC
 5581 ACAAAATACCA CTGCGTATGC CCTATCGCA GCGCAGAAGA CCCGAAAGG CTCGATAGCT
 5641 ACGCAAAGAA ACTGGCAGCG GCCTCCGGGA AGGTGCTGG A TAGAGAGATC GCAGGAAAAA
 5701 TCACCGACCT GCAGACCGTC ATGGCTACGC CAGACGCTGA ATCTCCTACC TTTTGCCTGC
 5761 ATACAGACGT CACGTGTCGT ACGGCAGCCG AAGTGGCCGT ATACCAGGAC GTGTATGCTG
 5821 TACATGCACC AACATCGCTG TACCATCAGG CGATGAAAGG TGT CAGAACG GCGTATTGGA
 5881 TTGGGTTTGA CACCACCCCG TTTATGTTTG ACACGCTAGC AGGCGCTAGT CCAACCTACG-

FIGURE 29C

66/260

5941 CCACAAACTG GGCGGACGAG CAGGTGTTAC AGGCCAGGAA CATAGGACTG TGTGCAGCAT
 6001 CCTTGACTGA GGGAAAGACTC GGCAAACTGT CCATTCTCCG CAAGAAGCAA TTGAAACCTT
 6061 GCGACACAGT CATGTTCTCG GTAGGATCTA CATTGTACAC TGAGAGCAGA AAGCTACTGA
 6121 GGAGCTGGCA CTTACCCCTCC GTATTCCACC TGAAAGGTTAA ACAATCCTT ACCTGTAGGT
 6181 GCGATAACCAT CGTATCATGT GAAGGGTAGC TAGTTAAGAA AATCACTATG TGCCCCGGCC
 6241 TGTACCGTAA AACGGTAGGG TACGCCGTGA CGTATCACCG GGAGGGATTG CTAGTGTGCA
 6301 AGACCACAGA CACTGTAAA GGAGAAAGAG TCTCATTCCC TGTATGCACC TACGTCCCT
 6361 CAACCATCTG TGATCAAATG ACTGGCATAAC TAGGCACCGA CGTCACACCG GAGGACGCAC
 6421 AGAAGTTGTT AGTGGGATG AATCAGAGGA TAGTTGTGAA CGGAAGAACAA CAGCGAAACA
 6481 CTAACACGAT GAAGAACTAT CTGCTTCCGA TTGTGGCGT CGCATTAGC AAGTGGCGA
 6541 GGGAAATACAA GGCAGACCTT GATGATGAAA AACCTCTGGG TGTCCGAGAG AGGTCACCTA
 6601 CTTGCTGCTG CTTGTGGCA TTTAAAACGA GGAAGATGCA CACCATGTAC AAGAAACCAAG
 6661 ACACCCAGAC AATAGTGAAG GTGCCCTCAG AGTTTAACCT GTCGTCATC CCGAGCCTAT
 6721 GGTCTACAGG CCTCGCAATC CCAGTCAGAT CACGCATTA GATGCTTTG GCCAAGAAGA
 6781 CCAAGCGAGA GTTAATACCT GTTCTCGACG CGTCGTCAGC CAGGGATGCT GAACAAGAGG
 6841 AGAAGGAGAG GTTGGAGGCC GAGCTGACTA GAGAACGCCT ACCACCCCTC GTCCCCATCG
 6901 CGCCGGCGGA GACGGGAGTC GTCGACGTCG ACGTTGAAGA ACTAGAGTAT CACGCAGGTG
 6961 CAGGGGTCGT GGAAACACCT CGCAGCGCGT TGAAAGTCAC CGCACAGCCG AACGACGTAC
 7021 TACTAGGAAA TTACGTTAGT CTGTCCTCGC AGACCGTGT CAAGAGCTCC AAGTTGGCCC
 7081 CCGTCACCC TCTAGCAGAG CAGGTGAAAA TAATAACACA TAACGGGAGG GCCGGCGGTT
 7141 ACCAGGTCGA CGGATATGAC GGCAGGGTCC TACTACCATG TGGATCGGCC ATTCCGGTCC
 7201 CTGAGTTTCA GGCTTTGAGC GAGAGCGCCA CTATGGTGT CAACGAAAGG GAGTTCGTCA
 7261 ACAGGAAACT ATACCATATT GCGCTTCACG GACCCTCGCT GAACACCGAC GAGGAGAACT
 7321 ACGAGAAAGT CAGAGCTGAA AGAACTGACG CCGAGTACGT GTTCGACGTA GATAAAAAAT
 7381 GCTGCGTCAA GAGAGAGGAA GCGTCGGGTT TGGTGTGTT GGGAGAGCTA ACCAACCCCC
 7441 CGTTCCATGA ATTGCGCTAC GAAGGGCTGA AGATCAGGCC GTCGGCACCA TATAAGACTA
 7501 CAGTAGTGTAGG AGTCTTTGGG GTTCCGGGAT CAGGCAAGTC TGCTATTATT AAGAGCCTCG
 7561 TGACCAAACA CGATCTGGTC ACCAGCGGCAGA AGAAGGGAGAA CTGCCAGGAA ATAGTTAACG
 7621 ACGTGAAGAA GCACCGCGGG AAGGGGACAA GTAGGGAAAA CAGTGAACCTC ATCCTGCTAA
 7681 ACGGGTGTG TCGTGCCGTG GACATCCTAT ATGTCGACGA GGCTTTCGCT TGCCATTCCG
 7741 GTACTCTGCT GGCCCTAATT GCTCTGTAA AACCTCGGAG CAAAGTGGTG TTATGCGAG
 7801 ACCCAAAGCA ATGCGGATTC TTCAATATGA TGCAGCTTAA GGTGAACCTTC AACCCACAACA
 7861 TCTGCACTGA AGTATGTCA AAAAGTATAT CCAGACGTG CACCGTCCA GTCACG3CCA
 7921 TCGTGTCTAC GTTGCCTAC GGAGGCAAGA TCGGCACGAC CAACCCGTGC AACAAACCCA
 7981 TAATCATAGA CACCAGAGA CAGACCAAGC CCAAGCCAGG AGACATCGTG TTAACATGCT
 8041 TCCGAGGCTG GGCAGGACAG CTGCGATTGG ACTACCGTGG ACACGAAGTC ATGACAG3CAG
 8101 CAGCATCTCA GGGCCTCACC CGCAAAGGGG TATAACCGCT AAGGAGAG GTGAATGAAA
 8161 ATCCCCGTGA TGCCCCGTGG TCGGAGCACG TGAATGTACT GCTGACGCC ACTGAGGATA
 8221 GGCTGGTGTG GAAAACGCTG GCGGGCGATC CCTGGATTAA GGTCTTATCA AACATTCCAC
 8281 AGGGTAACCT TACGGCCACA TTGGAAGAAT GGCAAGAAGA ACACGACAAA ATAATGAGG
 8341 TGATTGAAGG ACCGGCTGCG CCTGTGGACG CGTTCCAGAA CAAAGCGAAC GTGTGTTGGG
 8401 CGAAAAGCCT GGTGCCTGTC CTGGCAACTG CCGGAATCAG ATTGACAGCA GAGGAGTGG
 8461 GCACCATATAAT TACAGCATT AAGGAGGACA GAGCTTACTC TCCAGTGGTG GCCTTGAATG
 8521 AAATTGACAC CAAGTACTAT GGAGTTGACC TGGACAGTGG CCTGTTTCT GCCCCGAAGG
 8581 TGTCCCTGTAA TTACGAGAAC AACCACTGGG TAAACAGACC TGGTGGAAAGG ATGTATGAT
 8641 TCAATGCCGC AACAGCTGCC AGGCTGGAAG CTAGACATAC CTTCTGAAAG GGGCACTGGC
 8701 ATACGGCAA GCAGGCAGTT ATCGCAGAAA GAAAATCCTA ACCGCTTCT GTGCTGGACA
 8761 ATGTAATTCC TATCAACCGC AGGCTGCCGC ACGCCCTGGT GGCTGAGTAC AAGACGGTTA
 8821 AAGGCAGTAG GTTGTGAGTGG CTGGTCAATA AAGTAAGAGG GTACACGTC CTGCTGGTGA
 8881 GTGAGTACAA CCTGGCTTTG CCTCGACGCA GGGTCACTG GTTGTGACCG CTGAATGTC
 8941 CAGGGCGCGA TAGGTGCTAC GACCTAAGTT TAGGACTGCC GGCTGACGCC GGCAGGTTCG
 9001 ACTTGGTCTT TGTGAACATT CACACGGAAT TCAGAACTCA CCACCTACAG CAGTGTGTC
 9061 ACCACGCCAT GAAGCTGCAG ATGCTTGGGG GAGATGCCT ACGACTGCTA AAACCCGGCG
 9121 GCATCTTGAT GAGAGCTTAC GGATACGCCG ATAAAATCAG CGAAGCCGTT GTTCTCTCCT
 9181 TAAGCAGAAA GTTCTCGTCT GCAAGAGTGT TGCGCCCGA TTGTGTCAAG AGCAATACAG
 9241 AAGTGTCTT GCTGTTCTCC AACTTTGACA ACGGAAAGAG ACCCTCTACG CTACACCCAGA
 9301 TGAATACCAA GCTGAGTGCC GTGTATGCCG GAGAAGCCAT GCACACGGCC GGGTGTGAC
 9361 CATCCTACAG AGTTAAGAGA GCAGACATAG CCACGTGCAC AGAACGGCT GTGGTTAACG

FIGURE 29d

67/240

9421 CAGCTAACGC CCGTGGAACT GTAGGGATG GCGTATGCAG GGCGTGGCG AAGAAATGGC
 9481 CGTCAGCCTT TAAGGGAGCA GCAACACCAG TGGGCACAAT TAAAACAGTC ATGTGCGCT
 9541 CGTACCCCGT CATCCACGCT GTAGGCCTA ATTTCTCTGC CACGACTGAA GCAGAAGGG
 9601 ACCCGAATT GGCGCTGTC TACCGGGCAG TGCCGCCGA AGTAAACAGA CTGTCACTGA
 9661 GCAGCGTAGC CATCCCGCTG CTGTCACAG GAGTGTTCAG CGGCGGAAGA GATAGGCTGC
 9721 AGCAATCCCT CAACCACATCA TTCACAGCAA TGGACGCCAC GGACGCTGAC GTGACCATCT
 9781 ACTGCAGAGA CAAAAGTTGG GAGAAGAAAA TCCAGGAAGC CATTGACATG AGGACGGCTG
 9841 TGGAGTTGCT CAATGATGAC GTGGAGCTGA CCACAGACTT GGTGAGAGTG CACCCGGACA
 9901 GCAGCCTGGT GGGTCGTAAG GGCTACAGTA CCACTGACGG GTGCCTGTAC TC GTACTTTG
 9961 AAGGTACGAA ATTCAACCAAG GCTGCTATTG ATATGGCAGA GATACTGACG TTGTGGCCA
 10021 GACTGCAAGA GCAACAGAA CAGATATGCC TATACGCGCT GGGCGAAACA ATGGACAACA
 10081 TCAGATCCAA ATGTCGGTG AACGATTCCG ATTCACTAAC ACCTCCCCAGG ACAGTGCCT
 10141 GCCTGTGCCG CTACGAAATG ACAGCAGAAC GGATCGCCCG CCTTAGGTCA CACCAAGTTA
 10201 AAAGCATGGT GTTITGCTCA TCTTTCCCCC TCCCGAAATA CCATGTAGAT GGGGTGCAGA
 10261 AGGTAAAGTG CGAGAAGGTT CTCCCTGTTCG ACCCGACGGT ACCTTCAGTG GTTACTCCGC
 10321 GGAAGTATGC CGCATCTACG ACGGACCACT CAGATCGGTC GTTACGAGGG TTTGACTTGG
 10381 ACTGGACAC CGACTCGTCT TCCACTGCCA GCGATACCAT GTGCCTACCC AGTTTGCACT
 10441 CGTGTGACAT CGACTCGATC TACGAGCCAA TGGCTCCCAT AGTAGTGCAG GCTGACGTAC
 10501 ACCCTGAACC CGCAGGCATC CGGGACCTGG CGGCAGATGT GCACCCCTGAA CCCGCAGACC
 10561 ATGTGGACCT GGAGAACCCG ATTCCCTCCAC CGCGCCCGAA GAGAGCTGCA TACCTTGCT
 10621 CCCGCGCGGC GGAGCGACCG GTGCCGGCGC CGAGAAAGCC GACGCCCTGCC CCAAGGACTG
 10681 CGTTTAGGAA CAAGCTGCCCT TTGACGTTCG GCGACTTTGA CGAGCACGAG GTCGATGCGT
 10741 TGGCTCCGG GATTACTTTC GGAGACTTCG ACGACGTCCT GCGACTAGGC CGCGCAGGGT
 10801 CATATATTTC CTCCCTGGAC ACTGGCAGCG GACATTTACA ACAAAAATCC GTTACGGCAGC
 10861 ACAATCTCCA GTGCGCACAA CTGGATGCGG TCCAGGAGGA GAAAATGTAC CCGCCAAAT
 10921 TGGATACTGA GAGGGAGAAG CTGTTGCTGC TGAAAATGCA GATGCACCCCA TCGGAGGCTA
 10981 ATAAGAGTCG ATACCACTCT CGCAAAGTGG AGAACATGAA AGCCACGGTG GTGGACAGGC
 11041 TCACATCGGG GGCCAGATTG TACACGGGAG CGGACGTAGG CCGCATACCA ACATACCGGG
 11101 TTCGGTACCC CCGCCCCGTG TACTCCCCTA CGGTGATGCA AAGATTCTCA AGCCCCGATG
 11161 TAGCAATCGC AGCGTGCAAC GAATACTTAT CCAGAAATTCA CCAACACAGTG GCGTCGTACC
 11221 AGATAAACAGA TGAATACGAC GCATACTTGG ACATGGTTGA CGGGTCGGAT AGTTGCTTGG
 11281 ACAGAGCGAC ATTCTGCCCG GCGAAGCTCC GGTGCTACCC GAAACATCAT GCGTACCAACC
 11341 AGCCGACTGT ACGCAGTGCC GTCCCGTCAC CCTTTCAGAA CACACTACAG AACGTGCTAG
 11401 CGGCTGCCAC CAAGAGAAC TGCAACGTCA CGCAAATGCG AGAACATACCC ACCATGGACT
 11461 CGGCAGTGTGTT CAACGTGGAG TGCTTCAGC GCTATGCCG CTCCGGAGAA TATTGGGAAG
 11521 AATATGCTAA ACAACCTATC CGGATAACCA CTGAGAACAT CACTACCTAT GTGACCAAAT
 11581 TGAAAGGCC GAAAGCTGCT GCCTTGTTCG CTAAGACCCA CAACTTGGTT CCGCTGCAGG
 11641 AGGTTCCCCT GGACAGATTC ACGGTGACAA TGAAACGAGA TGTCAAAGTC ACTCCAGGGA
 11701 CGAAACACAC AGAGGAAAGA CCCAAAGTCC AGGTAATTCA AGCAGCGGAG CCATTGGCGA
 11761 CCGCTTACCT GTGCGGCATC CACAGGAAT TAGTAAGGAG ACTAAATGCT GTGTTACGCC
 11821 CTAACGTGCA CACATTGTT GATATGTCGG CGGAAGACTT TGACCGATC ATCGCCTCTC
 11881 ACTTCCACCC AGGAGACCCG GTTCTAGAGA CGGACATTGC ATCATTGAC AAAAGCCAGG
 11941 ACGACTCCTT GGCTCTTACA GGTTAATGA TCCTCGAAGA TCTAGGGGTG GATCAGTACC
 12001 TGCTGGACTT GATCGAGGCA GCCTTGGGG AAATATCCAG CTGTCACCTA CCAACTGGCA
 12061 CGCGCTTCAA GTTCGGAGCT ATGATGAAAT CGGGCATGTT TCTGACTTTG TTTATTAACA
 12121 CTGTTTGAA CATCACCATCA GCAAGCAGGG TACTGGAGCA GAGACTCACT GACTCCGCCT
 12181 GTGCGGCCCTT CATCGGCAGAC GACAACATCG TTCACGGAGT GATCTCCGAC AAGCTGATGG
 12241 CGGAGAGGTG CGCGTCGTGG GTCAACATGG AGGTGAAGAT CATTGACGCT GTCATGGCG
 12301 AAAAACCCCC ATATTTTGT GGGGATTCA TAGTTTTGA CAGCGTCACA CAGACCGCCT
 12361 GCCGTGTTTC AGACCCACTT AAGGCCCTGT TCAAGTTGGG TAACCGCCTA ACAGCTGAAG
 12421 ACAAGCAGGA CGAAGACAGG CGACGAGCAC TGAGTGCAGA GGTT

FIGURE 29E

68/240

Figure 30A: pDEST10 Polyhedron Promoter with N-His6,
Baculovirus Transfer Plasmid

154 *mRNA from polyhedrin promoter*
 aaa taa gta ttt tac tgc ttt cgt aac agt ttt gta ata aaa aaa cct ata
 ttt att cat aaa atg aca aaa gca ttg tca aaa cat tat ttt ttt gga tat

205 aat att ccg gat tat tca tac cgt ccc acc atc ggg cgc gga tct cgg tcc
 tta taa ggc cta ata atg atg gca ggg tgg tag ccc gcg cct aga gcc agg

256 Met Ser Tyr Tyr His His His His Asp Tyr Asp Ile Pro
 gaa acc atg tcg tac tac cat cac cat cac cat cac gat tac gat atc cca
 ctt tgg tac agc atg atg gta gtg gta gtg gta gtg cta atg cta tag ggt

307 Thr Thr Glu Asn Leu Tyr Phe Gln⁺ Gly Ile Thr Ser Leu Tyr Lys Lys
 acg acc gaa aac ctg tat ttt cag ggc atc aca agt tgg/tcc aca gaa gct
 tgc tgg ctt ttg gac ata aaa gtc cgg tag tgt tca aac atg ttt tcc ogx
 attR1 Int

69/240

pDEST10 6708 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
23..152	Ppolh
461..337	attr1
711..1370	CmR
1490..1574	inactivated ccdA
1712..2017	ccdB
2058..2182	attr2
3394..4369	ampR
4510..5164	ori
5658..62	genR

1 CCCGGATGA AGTGGTCGC ATCCTCGGTT TTCTGGAAGG CGAGCATCGT TTGTTGCC
 61 AGGACTCTAG CTATAGTTCT AGTGGTTGGC TACGTATACT CCGGAATATT AATAGATCAT
 121 GGAGATAATT AAAATGATAA CCATCTCGCA AATAAAATAAG TATTTTACTG TTTTCGTAAC
 181 AGTTTGTA TAAAAAAACC TATAAATATT CGGGATTATT CATACCGTCC CACCATCGGG
 241 CGCGGATCTC GGTCCGAAAC CATGTCGTAC TACCATCACC ATCACCATCA CGATTACGAT
 301 ATCCAACGA CCGAAAACCT GTATTTTCAG GGCATCACAA GTTGTACAA AAAAGCTGAA
 361 CGAGAAACGT AAAATGATAT AAATATCAAT ATATTAAATT AGATTTGCA TAAAAAAACAG
 421 ACTACATAAT ACTGTAAAAC ACAACATATC CAGTCACTAT GGCGGCCGCT AAGTTGGCAG
 481 CATCACCGA CGCACTTGC GCCGAATAAA TACCTGTGAC GGAAGATCAC TTGCGAGAAT
 541 AAATAAATCC TGTTGTCCT GTTGATACCG GGAAGCCCTG GGCAACTTT TGGCGAAAAT
 601 GAGACGTTGA TCGGCACGTA AGAGGTTCCA ACTTTCACCA TAATGAAATA AGATCACTAC
 661 CGGGCGTATT TTTTGAGTTA TCGAGATTTT CAGGAGCTAA GGAAGCTAA ATGGAGAAAA
 721 AAATCACTGG ATATACCACC GTTGATATAT CCCAATGGCA TCGTAAAGAA CATTGGAGG
 781 CATTTCAGTC AGTTGCTCAA TGTACCTATA ACCAGACCGT TCAGCTGGAT ATTACGGCCT
 841 TTTTAAAGAC CGTAAAGAAA AATAAGCACA AGTTTTATCC GGCCTTTATT CACATTCTG
 901 CCCGCCTGAT GAATGCTCAT CCGGAATTCC GTATGGCAAT GAAAGACGGT GAGCTGGTGA
 961 TATGGGATAG TGTTCACCC TGTTACACCG TTTTCCATGA GCAAACGTGAA ACGTTTCAT
 1021 CGCTCTGGAG TGAATACCAC GACGATTTC GGCAGTTCT ACACATATAT TCGCAAGATG
 1081 TGGCGTGTGTA CGGTGAAAAC CTGGCCTATT TCCCTAAAGG GTTATTGAG AATATGTTTT
 1141 TCGTCTCAGC CAATCCCTGG GTGAGTTCA CCAGTTTGA TTTAAACGTG GCCAATATGG
 1201 ACAACTCTT CGCCCCCGTT TTCACCATGG GCAAATATTA TACGCAAGGC GACAAGGTGC
 1261 TGATGCCGCT GGCGATTCA GTTCATCATG CCGTCTGTGA TGGCTTCCAT GTCGGCAGAA
 1321 TGCTTAATGA ATTACAACAG TACTGCGATG AGTGGCAGGG CGGGCGTAA ACGCGTGGAT
 1381 CCGGCTTACT AAAAGCCAGA TAACAGTATG CGTATTGCG CGCTGATTTT TCGGGTATAA
 1441 GAATATATAC TGATATGTAT ACCCGAAGTA TGTCAAAAG AGGTGTGCTA TGAAGCAGCG
 1501 TATTACAGTG ACAGTTGACA GCGACAGCTA TCAGTTGCTC AAGGCATATA TGATGTCAAT
 1561 ATCTCCGGTC TGGTAAGCAC AACCATGCAG AATGAAGGCC GTCGCTGCG TGCGAACGC
 1621 TGGAAAGCGG AAAATCAGGA AGGGATGGCT GAGGTGCCCC GGTTTATTGA AATGAACGGC
 1681 TCTTTGCTG ACGAGAACAG GGACTGGTGA AATGCAGTTT AAGGTTACA CCTATAAAAG
 1741 AGAGAGCCGT TATCGTCTGT TTGTTGGATGT ACAGAGTGAT ATTATTGACA CGCCCGGGCG
 1801 ACGGATGGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAAGTCT CCCGTGAAC
 1861 TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG ATATGGCCAG
 1921 TGTGCCGGTC TCCGTTATCG GGGAAAGAAGT GGCTGATCTC AGCCACCGCG AAAATGACAT
 1981 CAAAAACGCC ATTAACCTGA TGTTCTGGGG AATATAAAATG TCAGGCTCCC TTATACACAG
 2041 CCAGTCTGCA GGTGACCAT AGTGAATGGA TATGTTGTGT TTTACAGTAT TATGTAGTCT
 2101 GTTTTTATG CAAAATCTAA TTTAATATAT TGATATTAT ATCATTTCAT GTTTCTCGTT
 2161 CAGCTTTCTT GTACAAAGTG GTGATGCCAT GGATCCGAA TTCAAAGGCC TACGTCGACG
 2221 AGCTCAACTA GTGCCGGCCG TTTCGAATCT AGAGCCTGCA GTCTCGAGGC ATGCGGTAC
 2281 AAGCTTGTGAGAAGTACTA GAGGATCATA ATCAGCCATA CCACATTGT AGAGGTTTA
 2341 CTTGTTTAA AAAACCTCCC ACACCTCCCC CTGAACCTGA AACATAAAAT GAATGCAATT
 2401 GTTGTGTTA ACTTGTATT TGCACTTAT AATGGTTACA AATAAAAGCAA TAGCATCACA
 2461 AATTCACAA ATAAAGCATT TTTTCACTG CATTCTAGTT GTGGTTTGTC CAAACTCATC
 2521 AATGTATCTT ATCATGTCTG GATCTGATCA CTGCTTGAGC CTAGGAGATC CGAACCCAGAT
 2581 AAGTGAATC TAGTTCCAAA CTATTTGTC ATTTTTAATT TTCGTTATTAG CTTACGACGC-

FIGURE 30B

70/240

2641 TACACCCAGT TCCCATCTAT TTTGTCACTC TTCCCTAAAT AATCCTAAA AACTCCATT
 2701 CCACCCCTCC CAGTTCCCAA CTATTTGTC CGCCACAGC GGGGCATT TTCTCCTGTT
 2761 ATGTTTTAA TCAAACATCC TGCCAACCTCC ATGTGACAAA CCGTCATCTT CGGCTACTTT
 2821 TTCTCTGTCA CAGAATGAAA ATTTCCTGT CATCTCTCG TTATTAATGT TTGTAATTGA
 2881 CTGAATATCA ACGCTTATTT GCAGCCTGAA TGGCGAATGG GACGCGCCCT GTAGCGGCC
 2941 ATTAAGCGCG GCGGGTGTGG TGGTTACGCG CAGCGTGACC GCTACACTTG CCAGCGCCCT
 3001 AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTCCTCGCC ACGTTCGCC GCTTTCCCG
 3061 TCAAGCTCTA AATCGGGGGC TCCCTTAGG GTTCCGATT AGTGCCTTAC GGACACCTCGA
 3121 CCCCCAAAAAA CTTGATTAGG GTGATGGTT ACGTAGTGGG CCATCGCCCT GATAGACGGT
 3181 TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG
 3241 AACAAACACTC AACCCCTATCT CGGTCTATTC TTTTGATT TAAGGGATT TGCGATTT
 3301 GGCCTATTGG TTAAAAAAATG AGCTGATT TAACAAAATTT AACGCGAATT TTAACAAAAT
 3361 ATTAACGTTT ACAATTTCAG GTGGCACCTT TCAGGGAAAT GTGCGCGGAA CCCCTATTTG
 3421 TTTATTTTTC TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAAAT
 3481 GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTCCGTG TCGCCCTTAT
 3541 TCCCTTTTTT GCGGCATT TTGCCTCCTGT TTTTGCTCAC CCAGAAACGC TGGTGAAGT
 3601 AAAAGATGCT GAAGATCAGT TGGGTGCACG AGTGGGTTAC ATCGAACACTGG ATCTCAACAG
 3661 CGGTAAGATC CTTGAGAGTT TTCGCCCGA AGAACGTTT CCAATGATGA GCACTTTAA
 3721 AGTTCTGCTA TGTGGCGCGG TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGGTCG
 3781 CCGCATAACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG AAAAGCATCT
 3841 TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGTGCC ATAACCATGA GTGATAACAC
 3901 TGCGCCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTGCA
 3961 CAACATGGGG GATCATGTA CTCGCCTTGA TCGTTGGAA CGGAGCTGA ATGAAGCCAT
 4021 ACCAAACGAC GAGCGTGACA CCACGATGCC TGTAGCAATG GCAACAAACGT TCGCIAAACT
 4081 ATTAACTGGC GAACTACTTA CTCTAGCTTC CCAGCAACAA TTAATAGACT GGATGGAGGC
 4141 GGATAAAAGTT GCAGGACCAC TTCTGCGCTC GGCCTCCG GCTGGCTGGT TTATTGCTGA
 4201 TAAATCTGGA GCCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG
 4261 TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG
 4321 AAATAGACAG ATCGCTGAGA TAGTGTGCC ACTGATTAAG CATTGGTAAC TGTCAAGACCA
 4381 AGTTTACTCA TATATACTTT AGATTGATT AAAACTTCAT TTTTAATTTA AAAGGATCTA
 4441 GGTGAAGATC CTTTTTGATA ATCTCATGAC CAAAATCCCT TAACGTGAGT TTTCGTTCA
 4501 CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT TTTTCTGCG
 4561 CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTGCCGGA
 4621 TCAAGAGCTA CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATACAAA
 4681 TACTGTCCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACTCTG TAGCACGCC
 4741 TACATACCTC GCTCTGCTAA TCCTGTTACC AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG
 4801 TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC
 4861 GGGGGTTCG TGCACACAGC CCAGCTTGA GCGAACGACC TACACCGAAC TGAGATAACCT
 4921 ACAGCGTGAG CATTGAGAAA GCGCCACGCT TCCCGAAGGG AGAAAAGGCG ACAGGTATCC
 4981 GGTAAGCGGC AGGGTCGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGGG GAAACGCC
 5041 GTATCTTTAT AGTCCTGTCG GTTTCGCCA CCTCTGACTT GAGCGTCAT TTTTGTGATG
 5101 CTCGTCAGGG GGGCGGAGCC TATGAAAAA CGCCAGCAAC GCGGCCCTTT TACGGTTCT
 5161 GGCCTTTGTC TGGCCTTTG CTCACATGTT CTTCCTGCG TTATCCCTG ATTCTGTGGA
 5221 TAACCGTATT ACCGCCTTTG AGTGAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG
 5281 CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCGCCTGATG CGGTATTTTC TCCTTACCGA
 5341 TCTGTGCGGT ATTTCACACC GCAGACCAGC CGCGTAACCT GGCAAATCG GTTACGGTTG
 5401 AGTAATAAAAT GGATGCCCTG CGTAAGCGGG TGTGGCGGA CAATAAAAGTC TTAAACTGAA
 5461 CAAAATAGAT CTAAACTATG ACAATAAAAGT CTTAAACTAG ACAGAAATAGT TGTAAACTGA
 5521 AATCAGTCCA GTTATGCTGT GAAAAAGCAT ACTGGACTTT TGTTATGGCT AAAGCAAAC
 5581 CTTCATTTTC TGAAGTGCAA ATTGCCGTC GTATTAAGA GGGCGTGGC CAAGGGCATG
 5641 GTAAAGACTA TATTCGCGC GTTGTGACAA TTTACCGAAC AACTCCGCGG CGGGGAAGCC
 5701 GATCTCGGCT TGAACGAATT GTTAGGTGGC GGTACTTGGG TCGATATCAA AGTCATCAC
 5761 TTCTTCCCGT ATGCCAACT TTGTATAGAG AGCCACTGCG GGATCGTCAC CGTAATCTGC
 5821 TTGCACTGAG ATCACATAAG CACCAAGCGC GTTGGCCTCA TGCTTGAGGA GATTGATGAG
 5881 CGCGTGGCA ATGCCCTGCC TCCGGTGCTC GCCGGAGACT GCGAGATCAT AGATATAGAT
 5941 CTCACTACGC GGCTGCTCAA ACCTGGCAG AACGTAAGCC GCGAGAGCGC CAACAAACCGC
 6001 TTCTTGGTCG AAGGCAGCAA GCGCGATGAA TGTCTTACTA CGGAGCAAGT TCCCGAGGTA
 6061 ATCGGAGTCC GGCTGATGTT GGGAGTAGGT GGCTACGTCT CCGAACTCAC GACCGAAAAG-

FIGURE 30C

71/240

6121 ATCAAGAGCA GCCCGCATGG ATTTGACTTG GTCAGGGCCG AGCCTACATG TCGAATGAT
6181 GCCCATACTT GAGCCACCTA ACTTTGTTT AGGGCGACTG CCCTGCTGCG TAACATCGTT
6241 GCTGCTGCGT AACATCGTG CTGCTCCATA ACATCAAACA TCGACCCACG GCGTAACGCG
6301 CTTGCTGCTT GGATGCCCGA GGCATAGACT GTACAAAAAA ACAGTCATAA CAAGCCATGA
6361 AAACCGCCAC TGCGCCGTAA CCACCGCTGC GTTCGGTCAA GGTTCTGGAC CAGTTGCGTG
6421 AGCGCATAACG CTACTTGCAT TACAGTTAAC GAACCGAACAA GGCTTATGTC AACTGGGTTTC
6481 GTGCCTTCAT CCGTTTCCAC GGTGTGCGTC ACCCGGCAAC CTTGGGCAGC AGCGAAGTCG
6541 AGGCATTTCT GTCCTGGCTG GCGAACGAGC GCAAGGTTTC GGTCTCCACG CATCGTCAGG
6601 CATTGGCGGC CTTGCTGTT TTCTACGGCA AGGTGCTGTG CACGGATCTG CCCTGGCTTC
6661 AGGAGATCGG AAGACCTCGG CCGTCGCGGC GCTTGCCGGT GGTGCTGA

FIGURE 30D

72/240

Figure 31A:

pDEST11

Tet-regulated eukaryotic expression

mRNA from CMV promoter (controlled by tetracycline)

358 tag tga acc gfc aga tcg cct gga gac gcc atc cac get gtt ttg acc tcc
atc act tgg cag tct agc gga cct ctg cgg tag gtg cga caa aac tgg agg

409 ata gaa gac acc ggg acc gat cca gcc tcc gcg gcc ccc aat tcg agc tcg
tat ctt ctg tgg ccc tgg cta ggt cgg agg cgc cgg ggc tta agc tcg agc

460 gta ccc ggg gat cct cta gag tcg agg tcg acg gta tcg ata agc ttg ata
cat ggg ccc cta gga gat ctc agc tcc agc tgc cat agc tat tcg aac tat

511 tca aca agt ttg zaa zaa gat gaa cga gaa acg taa zat gat ata zat
agt tgg tca aac atg ttt tet cga ctt gct ctc tgc att tta cta dat tta

73/260

pDEST11 7026 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
4..479	Tet ^r ((Tet operator) ₇ and min hCMV promoter)
638..514	attR1
888..1547	CmR
1667..1751	inactivated ccdA
1889..2194	ccdB
2235..2359	attR2
2402..4132	polyA
4347..4803	f1 ori
4940..5797	ampR

1 CGAGTTTACCGTCCCTATC AGTGATAGAG AAAAGTGAAGA GTCGAGTTTA CCACTCCCTA
 61 TCAGTGATAG AGAAAAGTGA AAGTCGAGTT TACCACTCCC TATCAGTGAT AGAGAAAAGT
 121 GAAAGTCGAG TTTACCCTAC CCTATCAGTG ATAGAGAAAA GTGAAAGTCG AGTTTACAC
 181 TCCCTATCAG TGATAGAGAA AAGTGAAGT CGAGTTTACCGTCCCTATC AGTGATAGAG
 241 AAAAGTGAAGA GTCGAGTTTA CCACCTCCCTA TCAGTGATAG AGAAAAGTGA AAGTCGAGCT
 301 CGGTACCCGG GTCGAGTAGG CGTGTACGGT GGGGAGGCTA TATAAGCAGA GCTCGTTAG
 361 TGAACCGTCA GATCGCCTGG AGACGCCATC CACGCTGTT TGACCTCCAT AGAACGACACC
 421 GGGACCGATC CAGCCTCCGC GGCCCCGAAT TCGAGCTCGG TACCCGGGA TCCTCTAGAG
 481 TCGAGGTCGA CGGTATCGAT AAGCTTGATA TCAACAAGTT TGTACAAAAA AGCTGAACGA
 541 GAAACGTAAA ATGATATAAA TATCAATATA TTAAATTAGA TTTTCATCAA AAAACAGACT
 601 ACATAATACT GTAAAACACA ACATATCCAG TCACTATGGC GGCGCTAAG TTGGCAGCAT
 661 CACCCGACGC ACTTTGCCGC GAATAAAATAC CTGTGACCGA AGATCACTTC GCAGAATAAA
 721 TAAATCCTGG TGTCCTGTT GATACCGGGAG AGCCCTGGC CAACCTTTGG CGAAAATGAG
 781 ACAGTTGATCG GCACGTAAGA GGTTCCAAGT TTCACCATAA TGAAATAAGA TCACTACCGG
 841 GCGTATTTTG TGAGTTATCG AGATTTTCAG GAGCTAAGGA AGCTAAAATG GAGAAAAAAA
 901 TCACTGGATA TACCAACGTT GATATATCCC AATGGCATCG TAAAGAACAT TTTGAGGCAT
 961 TTCAGTCAGT TGCTCAATGT ACCTATAACC AGACCGTCA GCTGGATATT ACGGCCTTT
 1021 TAAAGACCGT AAAGAAAAAT AAGCACAAGT TTATCCGGC CTTTATTTCAC ATTCTTGCCC
 1081 GCCTGATGAA TGCTCATCCG GAATTCCGTA TGGCAATGAA AGACGGTGAG CTGGTGTAT
 1141 GGGATAGTGT TCACCCCTGT TACACCGTT TCCATGAGCA AACTGAAACG TTTTCATCGC
 1201 TCTGGAGTGA ATACCACGAC GATTCCGGC AGTTTCTACA CATATATTCG CAAGATGTGG
 1261 CGTGTACCGG TGAAAACCTG GCCTATTTC CCAAAGGGTT TATTGAGAAT ATGTTTTGCG
 1321 TCTCAGCCAA TCCCTGGGTG AGTTTCACCA GTTTGATTT AAACGTGGCC AATATGGACA
 1381 ACTTCTTCGC CCCCGTTTC ACCATGGGCA AATATTATAC GCAAGGCGAC AAGGTGCTGA
 1441 TGCGCCTGGC GATTCAAGTT CATCATGGCG TCTGTGATGG CTTCCATGTC GGCAGAACG
 1501 TTAATGAATT ACAACAGTAC TGCGATGAGT GGCAGGGCGG GGCGTAAAGA TCTGGATCCG
 1561 GCTTACTAAA AGCCAGATAA CAGTATGCGT ATTTGCGCG TGATTTTGCG GGTATAAGAA
 1621 TATATACTGA TATGTATACC CGAAGTATGT CAAAAAGAGG TGTGCTATGA AGCAGCGTAT
 1681 TACAGTGACA GTTGACAGCG ACAGCTATCA GTTGCTCAAG GCATATATGA TGTCAATATC
 1741 TCCGGTCTGG TAAGCACAAAC CATGCGAAAT GAAGCCCGTC GTCTGCGTGC CGAACGCTGG
 1801 AAAGCGGAAA ATCAGGAAGG GATGGCTGAG GTGCCCGGT TTATTGAAAT GAACGGCTCT
 1861 TTTGCTGACG AGAACAGGGAG CTGGTAAAT GCAGTTTAAG GTTACACCT ATAAAAGAGA
 1921 GAGCCGTTAT CGTCTGTTTG TGGATGTACA GAGTGATATT ATTGACACCGC CCGGGCGACG
 1981 GATGGTGATC CCCCTGGCCA GTGACAGTCT GCTGTCAGAT AAAGTCTCCC GTGAACCTTA
 2041 CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG ACCACCGATA TGGCCAGTGT
 2101 GCCGGTCTCC GTTATCGGGG AAGAAGTGGC TGATCTCAGC CACCGCGAAA ATGACATCAA
 2161 AAACGCCATT AACCTGATGT TCTGGGAAT ATAAATGTCA GGCTCCCTTA TACACAGCCA
 2221 GTCTGCGAGGT CGACCATAGT GACTGGATAT GTTGTGTTTT ACAGTATTAT GTAGTCTGTT
 2281 TTTTATGCAA AATCTAATTG AATATATTGA TATTTATATC ATTTTACGTT TCTCGTTAG
 2341 CTTTCTTGTA CAAAGTGGTT GATATCGAAT TCCTGCAGCC CGGGGGATCC ACTAGTTCTA
 2401 GAGCACTGCG ATGAGTGGCA GGGCGGGCG TAATTTTTT AAGGCAGTTA TTGGTGCCCT
 2461 TAAACGCCCTG GTGCTACGCC TGAATAAGTG ATAATAAGCG GATGAATGGC AGAAATTGCG
 2521 CGGATCTTTG TGAAGGAACC TTACTTCTGT GGTGTGACAT AATTGGACAA ACTACCTACA-

FIGURE 31B

74/240

2581 GAGATTAAA GCTCTAAGGT AAATATAAAA TTTTAAGTG TATAATGTGT TAAACTACTG
 2641 ATTCTAATTG TTTGTGTATT TTAGATTCCA ACCTATGGAA CTGATGAATG GGAGCAGTGG
 2701 TGGAATGCCT TTAATGAGGA AAACCTGTT TGCTCAGAAG AAATGCCATC TAGTGATGAT
 2761 GAGGCTACTG CTGACTCTCA ACATTCTACT CCTCCAAAAA AGAAGAGAAA GGTAGAACAC
 2821 CCCAAGGACT TTCCTTCAGA ATTGCTAAGT TTTTGAGTC ATGCTGTGTT TAGTAATAGA
 2881 ACTCTTGCTT GCTTTGCTAT TTACACCACA AAGGAAAAAG CTGCACTGCT ATACAAGAAA
 2941 ATTATGGAAA AATATTCTGT AACCTTTATA AGTAGGCATA ACAGTTATAA TCATAACATA
 3001 CTGTTTTTC TTACTCCACA CAGGCATAGA GTGTCTGCTA TTAATAACTA TGCTCAAAA
 3061 TTGTTGACCT TTAGCTTTT AATTGTAAA GGGGTTAATA AGGAATATT GATGTATAGT
 3121 GCCTTGACTA GAGATCATAA TCAGCCATAC CACATTGTA GAGGTTTTAC TTGCTTAAA
 3181 AAACCTCCC CACCTCCCCC TGAAACCTGAA ACATAAAATG AATGCAATTG TTGTTGTTAA
 3241 CTTGTTATT GCAGCTTATA ATGGTTACAA ATAAAGCAAT AGCATCACAA ATTCACAAA
 3301 TAAAGCATT TTTTCACTGC ATTCTAGTTG TGGTTGTCC AAACTCATCA ATGTATCTTA
 3361 TCATGTCTGG ATCCCCAGGA AGCTCCTCTG TGTCCTCATA AACCTTAACC TCCTCTACTT
 3421 GAGAGGACAT TCCAATCATA GGCTGCCAT CCACCCCTCTG TGTCCTCCTG TTAATTAGGT
 3481 CACTAACAA AAAGGAAATT GGGTAGGGGT TTTTCACAGA CCGCTTTCTA AGGGTAATTT
 3541 TAAAATATCT GGGAAAGTCCC TTCCACTGCT GTGTTCCAGA AGTGTGGTA AACAGCCAC
 3601 AAATGTCAAC AGCAGAAACA TACAAGCTGT CAGCTTGCA CAAGGGCCCA ACACCCCTGCT
 3661 CATCAAGAAG CACTGTGTT GCTGTGTTAG TAATGTGCAA AACAGGAGGC ACATTTTCCC
 3721 CACCTGTGA GGTTCCAAAAT TATCTAGTTG TTTCATTTT ACTTGGATCA GGAACCCAGC
 3781 ACTCCACTGG ATAAGCATT TA CTCCTATCCA AAACAGCCT GTGGTCAGTG TTCATCTGCT
 3841 GACTGTCAAC TGTAGCATT TTTGGGTTA CAGTTTGAGC AGGATATTG GTCCTGTAGT
 3901 TTGCTAACAC ACCCTGCAGC TCCAAAGGTT CCCCCACCAAC AGCAAAAAAA TGAAAATTG
 3961 ACCCTTGAAT GGTTTTCCA GCACCATTAA CATGAGTTT TTGTTCCCT GAATGCAAGT
 4021 TTAACATAGC AGTTACCCCA ATAACCTCAG TTTTAACAGT AACAGCTTCC CACATCAAA
 4081 TATTCCACA GGTTAAGTCC TCATTTAAAT TAGGCAAAGG AATTGCTCTA GAGCGGCCG
 4141 CACCGCGGT GAGCTCAAT TCGCCCTATA GTGAGTCGA TTACGCGCGC TCACTGGCCG
 4201 TCGTTTTACA ACGTCGTGAC TGGGAAAACC CTGGCGTTAC CCAACTTAAT CGCCTTGCAG
 4261 CACATCCCCC TTTCGCCAGC TGGCGTAATA GCGAAGAGGC CGCACCAGAT CGCCCTTCCC
 4321 AACAGTTGCG CAGCCTGAAT GGCGAATGGG ACGCCCTTG TAGCGCGCA TTAAGCGCG
 4381 CGGGTGTGGT GGTTACGCGC AGCGTGACCG CTACACTTG CAGCGCCCTA GCGCCCGCTC
 4441 CTTTCGCTTT CTTCCCTTCC TTTCTCGCCA CGTCGCCGG CTTTCCCCGT CAAGCTCTAA
 4501 ATCGGGGCT CCCTTTAGGG TTCCGATTAA GTGCTTACG GCACCTCGAC CCCAAAAAAC
 4561 TTGATTAGGG TGATGGTCA CGTAGTGGGC CATGCCCTG ATAGACGGTT TTTGCCCTT
 4621 TGACGTTGGA GTCCACGTT TTTAATAGTG GACTCTGTT CCAAACCTGGA ACAACACTCA
 4681 ACCCTATCTC GGTCTATTCT TTTGATTAAAGGGATTT GCGGATTTCG GCCTATTGGT
 4741 TAAAAAAATGA GCTGATTAA CAAAAATTAA AC CGAATTT TAACAAAATA TTAACGCTTA
 4801 CAATTAGGT GGCACTTTC GGGGAAATGT GCGCGGAACC CCTATTGTT TATTTTCTA
 4861 AATACATTCA AATATGTATC CGCTCATGAG ACAATAACCC TGATAAAATGC TTCAATAATA
 4921 TTGAAAAAGG AAGAGTATGA GTATTCAACA TTTCCGTGTC GCCCTTATT CCTTTTTGTC
 4981 GGCACTTTG CTTCCGTGTT TTGCTCACCC AGAAACGCTG GTGAAAGTAA AAGATGCTGA
 5041 AGATCAGTTG GGTGCACGAG TGGTTACAT CGAACTGGAT CTCAACAGCG GTAAGATCCT
 5101 TGAGAGTTT CGCCCCGAAG AACGTTTCC AATGATGAGC ACTTTAAAG TTCTGCTATG
 5161 TGGCGCGGT TTATCCCGTA TTGACGCCGG GCAAGAGCAA CTGGCTCGCC GCATACACTA
 5221 TTCTCAGAAT GACTGGTTG AGTACTCACC AGTCACAGAA AAGCATCTTA CGGATGGCAT
 5281 GACAGTAAGA GAATTATGCA GTGCTGCCAT AACCATGAGT GATAACACTG CGGCCAACTT
 5341 ACTTCTGACA ACGATCGAG GACCGAAGGA GCTAACCGCT TTTTGCTACA ACATGGGGGA
 5401 TCATGTAACT CGCCTTGATC GTTGGGAACC GGAGCTGAAT GAAGCCATAC CAAACGACGA
 5461 GCGTGACACC ACGATGCTG TAGCAATGGC AACAAACGTT CGCAAACACTAT TAACTGGCGA
 5521 ACTACTTACT CTAGCTTCCC GGCAACAATT AATAGACTGG ATGGAGGCAGG ATAAAGTTGC
 5581 AGGACCACTT CTGCGCTCGG CCCTCCGGC TGGCTGGTT ATTGCTGATA AATCTGGAGC
 5641 CGGTGAGCGT GGGTCTCGCG GTATCATTGC AGCACTGGGG CCAGATGGTA AGCCCTCCCG
 5701 TATCGTAGTT ATCTACACGA CGGGGAGTC GGCAACTATG GATGAACGAA ATAGACAGAT
 5761 CGCTGAGATA GGTGCCTCAC TGATTAAGCA TTGGTAAC TGACAGCAAG TTTACTCATA
 5821 TATACTTTAG ATTGATTAA AACTCATT TTAATTTAAAGGATCTAGG TGAAGATCCT
 5881 TTTTGATAAT CTCATGACCA AAATCCCTTA ACGTGAGTT TCGTTCCACT GAGCGTCAGA
 5941 CCCCGTAGAA AAGATCAAAG GATCTTCTTG AGATCCTTT TTTCTGCGCG TAATCTGCTG
 6001 CTTGCAAACA AAAAACACCG CGCTACCGAGC GGTGGTTGT TTGCCGGATC AAGAGCTACC-

FIGURE 3/C

75/240

6061 AACTCTTTT CCGAAGGTA CTGGCTTCAG CAGAGCGCAG ATACCAAATA CTGTCCTTCT
6121 AGTGTAGCCG TAGTTAGGCC ACCACTTCAA GAACTCTGTA GCACCGCCTA CATACTCGC
6181 TCTGCTAACG CTGTTACCA CGACTGCTGC CAGTGGCGAT AAGTCGTGTC TTACCGGGTT
6241 GGACTCAAGA CGATAGTTAC CGGATAAGGC GCAGCGGTG GGCTGAACGG GGGGTTCTG
6301 CACACAGCCC AGCTTGAGC GAACGCCCTA CACCGAACCTG AGATAACCTAC AGCGTGAGCT
6361 ATGAGAAAAGC CCCACGCTTC CCGAAGGGAG AAAGGGGAC AGGTATCCGG TAAGCGGAG
6421 GGTCGGAACA GGAGAGCGCA CGAGGGAGCT TCCAGGGGAA AACGCCCTGGT ATCTTTATAG
6481 TCCTGTCGGG TTTCGCCACC TCTGACTTGA CGCTCGATTT TTGTGATGCT CGTCAGGGGG
6541 GCGGAGCCTA TGGAAAAACG CCAGCAACGC GGCCCTTTTA CGGTTCCCTGG CCTTTGCTG
6601 GCCTTTTGCT CACATGTTCT TTCCTGCGTT ATCCCCCTGAT TCTGTGGATA ACCGTATTAC
6661 CGCCTTGAG TGAGCTGATA CCGCTCGCCG CAGCCGAACG ACCGAGCGCA GCGAGTCAGT
6721 GAGCGAGGAA GCGGAAGAGC GCCCAATACG CAAACCGCCT CTCCCCGCGC GTTGGCCGAT
6781 TCATTAATGC AGCTGGCACG ACAGGTTTCC CGACTGGAAA GCAGGCAGTG AGCGCAACGC
6841 AATTAATGTG AGTTAGCTCA CTCATTAGGC ACCCCAGGCT TTACACTTTA TGCTTCCGGC
6901 TCGTATGTTG TGTGGAATTG TGAGCGGATA ACAATTTCAC ACAGGAAACAA GCTATGACCA
6961 TGATTACGCC AAGCGCGCAA TTAACCCCTCA CTAAAGGGAA CAAAAGCTGG GTACCGGGCC
7021 CCCCCCT

FIGURE 31D

Figure 32A: pDEST12.2 CMV Promoter for Eukaryotic Expression, SV40 Promoter/ori for G418 Resistance

307 acc gtc aga tcg cct gga gac gcc atc cac gct gtt ttg acc tcc ata gaa
 → mRNA from CMV promoter
 tgg cag tct agc gga cct ctg cgg tag gtg cga caa aac tgg agg tat ctt

358 gac acc ggg acc gat cca gcc tcc gga ctc tag cct agg ccc cgg agc gga
 ctg tgg ccc tgg cta ggt cgg agg cct gag atc gga tcc ggc gcc tcc cct

409 taa caa ttt cac aca gga aac agc tat gac cat tag gcc ttt gca aaa agc
 att gtt aaa gtg tgt cct ttg tcg ata ctg gta atc cgg aaa cgt ttt tcg

460 tat tta ggt gac act ata gaa ggt acg cct gca ggt ~~acc~~ ~~gtt~~ ccg ~~gaa~~ ttc
 ata aat cca ctg tga tat ctt cca tgc gga cgt cca tgg cca ggc ctt aag

511 cca tca ~~aca~~ ~~agt~~ ~~ttg~~ ~~tat~~ ~~ada~~ ~~aaa~~ ~~gtt~~ ~~gaa~~ ~~cga~~ ~~gaa~~ ~~acg~~ ~~taa~~ ~~aat~~ ~~gat~~ ~~ata~~
~~ggt~~ ~~agt~~ ~~tgt~~ ~~tca~~ ~~aac~~ ~~atg~~ ~~ttt~~ ~~tat~~ ~~cga~~ ~~cct~~ ~~gtt~~ ~~ctt~~ ~~tgc~~ ~~att~~ ~~gtt~~ ~~cca~~ ~~tat~~

ApaI EcoRI
 Int attR1

pDEST12.2 7278 bp (rotated to position 3900)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
86..136	ori
220..742	CMV promoter
1059..935	attr1
1168..1827	CmR
1947..2031	inactivated ccdA
2169..2474	ccdB
2515..2639	attr2
2824..3186	small t & polyA
3310..3378	lac
4363..5157	neo
5680..6540	ampR

1 GGGGGCGGA GCCTATGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT
 61 TGCTGGCCTT TTGCTCACAT GTTCTTCCT GCGTTATCCC CTGATTCTGT GGATAACCGT
 121 ATTACCGCCT TTGAGTGAGC TGATACCGCT CGCCGCAGCC GAAGCACCAGA GCGCAGCGAG
 181 TCAGTGAGCG AGGAAGCGGA AGAGCTCGCG AATGCATGTC GTTACATAAC TTACGGTAAA
 241 TGGCCCGCCT GGCTGACCGC CCAACGACCC CCGCCCCATTG ACGTCAATAA TGACGTATGT
 301 TCCCATACTA ACGCCAATAG GGACTTCCA TTGACGTCAA TGGGTGGAGT ATTTACGGTA
 361 AACTGCCAAC TTGGCAGTAC ATCAAGTGT A TCATATGCCA AGTACGCCCT CTATTGACGT
 421 CAATGACGGT AAATGGCCCG CCTGGCATTA TGCCCAAGTAC ATGACCTTAT GGGACTTTC
 481 TACTTGGCAG TACATCTACG TATTAGTCAT CGCTATTAC ATGGTGATGC GGTTTGGCA
 541 GTACATCAAT GGGGGTGGAT AGCGGTTTG A CTCACGGGGA TTTCAGAGTC TCCACCCCAT
 601 TGACGTCAAT GGGAGTTGT TTTGGCACCA AAATCAACGG GACTTTCCA AATGTCGTAA
 661 CAACTCCGCC CCATTGACGC AAATGGGC GG TAGGCGTGT A CGGTGGGAGG TCTATATAAG
 721 CAGAGCTCGT TTAGTGAACC GTCAGATCGC CTGGAGACGC CATCCACGCT GTTTGACCT
 781 CCATAGAAGA CACCGGGAC GATCCAGCCT CCGGACTCTA GCCTAGGCCG CGGGACGGAT
 841 AACAAATTCA CACAGGAAAC AGCTATGACC ATTAGGCCTT TGCAAAAGC TATTTAGGTG
 901 ACACATATAGA AGGTACGCC GCAGGTACCG GATCACAAGT TTGTACAAAA AAGCTGAACG
 961 AGAAACGTA AATGATATAA ATATCAATAT ATTAAATTAG ATTTGCATA AAAAACAGAC
 1021 TACATAATAC TGTAAAACAC AACATATCCA GTCACATAGG CGGGCGCATT AGGCACCCCA
 1081 GGCTTTACAC TTTATGCTT CCGCTCGTAT AATGTGTGGA TTTTGAGTTA GGATCCGTG
 1141 AGATTTTCAG GAGCTAAGGA AGCTAAAATG GAGAAAAAAA TCACTGGATA TACCACCGTT
 1201 GATATATCCC AATGGCATCG TAAAGAACAT TTTGAGGCAT TTCAGTCAGT TGCTCAATGT
 1261 ACCTATAACC AGACCGTTCA GCTGGATATT ACGGCCTTT TAAAGACCGT AAAGAAAAAT
 1321 AAGCACAAGT TTTATCCGGC CTTTATTCA C ATTCTTGCCT GCCTGATGAA TGCTCATCCG
 1381 GAATTCCGTA TGGCAATGAA AGACGGTGGAG CTGGTGATAT GGGATAGTGT TCACCCCTGT
 1441 TACACCGTTT TCCATGAGCA AACTGAAACG TTTTCATCGC TCTGGAGTGA ATACCACGAC
 1501 GATTTCGGC AGTTTCTACA CATATATTTCG CAAGATGTGG CGTGTACGG TGAAAACCTG
 1561 GCCTATTCC CTAAAGGGTT TATTGAGAAT ATGTTTTCG TCTCAGCCAA TCCCTGGGTG
 1621 AGTTTCACCA GTTTTGATT AAACGTGGCC AATATGGACA ACTTCTTCGC CCCC GTTTTC
 1681 ACCATGGCA AATATTATAC GCAAGGCGAC AAGGTGCTGA TGCCGCTGGC GATTCAAGGTT
 1741 CATCATGCCG TCTGTGATGG CTTCCATGTC GGCAGAAATGC TTAATGAATT ACAACAGTAC
 1801 TGCAGATGAGT GGCAGGGCGG GGCCTAAACG CGTGGATCCG GCTTACTAAA AGCCAGATAA
 1861 CAGTATGCGT ATTGCGCGC TGATTTTG GGTATAAGAA TATATACTGA TATGTATAACC
 1921 CGAAGTATGT CAAAAAGAGG TGTGCTATGA AGCAGCGTAT TACAGTGACA GTTGACAGCG
 1981 ACAGCTTATCA GTTGCTCAAG GCATATATGA TGTCAATATC TCCGGTCTGG TAAGCACAAC
 2041 CATGCAGAAAT GAAGCCCGTC GTCTGCGTGC CGAACGCTGG AAAGCGGAAA ATCAGGAAGG
 2101 GATGGCTGAG GTCGCCCGGT TTATTGAAAT GAACGGCTCT TTTGCTGACG AGAACAGGGA
 2161 CTGGTGAAT GCAGTTTAAG GTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTTG
 2221 TGGATGTACA GAGTGATATT ATTGACACCGC CGGGGGGACG GATGGTGATC CCCCTGGCCA
 2281 GTGCACGTCT GCTGTCAGAT AAAGTCTCCC GTGAACCTTA CCCGGTGGTG CATATCAGGG
 2341 ATGAAAGCTG GCGCATGATG ACCACCGATA TGGCCAGTGT GCCGGTCTCC GTTATCAGGG
 2401 AAGAAGTGGC TGATCTCAGC CACCGCGAAA ATGACATCAA AAACGCCATT AACCTGATGT-

FIGURE 32B

78/240

2461 TCTGGGGAAT ATAAATGTCA GGCTCCCTTA TACACAGCCA GTCTGCAGGT CGACCATACT
 2521 GACTGGATAT GTTGTGTTT ACAGTATTAT GTAGTCTGTT TTTTATGCAA AATCTAATTT
 2581 AATATATTGA TATTTATATC ATTTTACGTT TCTCGTTCA CTTTCCTGTA CAAAGTGGTG
 2641 ATCCGCGTCA TGCGACGTC TAGCTCTCTC CCTATAGTGA GTCTGATTAT AAGCTAGGCA
 2701 CTGGCCGTG TTTTACAACG TCGTGACTGG GAAAAGTGC AGCTTGGGAT CTTTGTGAAG
 2761 GAACCTTACT TCTGTGGTGT GACATAATTG GACAAACTAC CTACAGAGAT TTAAAGCTCT
 2821 AAGGTAAATA TAAAATTTT AAGTGTATAA TGTGTTAAC TAGCTGCATA TGCTGCTGC
 2881 TTGAGAGTT TGCTTACTGA GTATGATTAA TGAAAATATT ATACACAGGA GCTAGTGATT
 2941 CTAATTGTTT GTGTATTAA GATTACAGT CCCAAGGCTC ATTTCAAGGCC CCTCAGTCCT
 3001 CACAGTCTGT TCATGATCAT AATCAGCCAT ACCACATTG TAGAGGTTT ACTTGCTTTA
 3061 AAAAACCTCC CACACCTCCC CCTGAAACCTG AAACATAAAA TGAATGCAAT TGTTGTTGTT
 3121 AACTTGTTA TTGCAAGCTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTCACA
 3181 AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACATCA CAATGTATCT
 3241 TATCATGTCT GGATCGATCC TGCATTAATG AATCGGCCAA CGCGCGGGGA GAGGCGGTTT
 3301 GCGTATTGGC TGGCGTAATA CGGAAGAGGC CCGCACCGAT CGCCCTTCCC AACAGTTGCG
 3361 CAGCCTGAAT GGCAGATGGG ACGCGCCCTG TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT
 3421 GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC CTTTCGCTTT
 3481 CTTCCCTTCC TTTCTCGCCA CGITTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGCT
 3541 CCCTTTAGGG TTCCGATTAA GTGCTTACG GCACCTCGAC CCCAAAAAAC TTGATTAGGG
 3601 TGATGGTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT TTTGCCCTT TGACGTTGGA
 3661 GTCCACGTTT TTAAATAGTG GACTCTGTT CCAAACCTGGA ACAACACTCA ACCCTATCTC
 3721 GGTCTATTCT TTTGATTAAAGGGATTG GCCGATTTCG GCCTATTGGT TAAAAAATGA
 3781 GCTGATTAA CAAATATTAA ACGCGAATTAA TAAACAAAATA TTAACGTTTA CAATTCGCC
 3841 TGATCGGGTA TTTCTCCTT ACGCATCTGT GCGGTATTTC ACACCGCATA CGCGGATCTG
 3901 CGCAGCACCA TGGCCTGAAA TAACCTCTGA AAGAGGAAC TGTTAGGTA CCTTCTGAGG
 3961 CGGAAAGAAC CAGCTGTGGA ATGTGTGTC GTTAGGGTGT GGAAAGTCCC CAGGCTCCCC
 4021 AGCAGGCAGA AGTATGCAA GCATGCATCT CAATTAGTCA GCAACCAGGT GTGGAAAGTC
 4081 CCCAGGCTCC CCAGCAGGCA GAAGTATGCA AAGCATGCAT CTCAATTAGT CAGCAACCAT
 4141 AGTCCCGCCC CTAACTCCGC CCATCCCGCC CCTAACTCCG CCCAGTCCG CCCATTCTCC
 4201 GCCCCATGGC TGACTAATT TTTTATTAA TGCAAGAGGCC GAGGCCGCCT CGGCCTCTGA
 4261 GCTATTCCAG AAGTAGTGAG GAGGCTTTT TGGAGGCCTA GGCTTTGCA AAAAGCTTGA
 4321 TTCTTCTGAC ACAACAGTCT CGAACCTTAAG GCTAGAGCCA CCATGATTGA ACAAGATGGA
 4381 TTGACACGAG GTTCTCCGGC CGCTTGGGTG GAGAGGCTAT TCGGCTATGA CTGGCACAA
 4441 CAGACAATCG GCTGCTCTGA TGCCGCCGTG TTCCGGCTGT CAGCGCAGGG GCGCCCGGTT
 4501 CTTTTGTCA AGACCGACT GTCCGGTGCC CTGAATGAAC TGCAGGACGA GGCAGCGCG
 4561 CTATCGTGGC TGGCCACGAC GGGCGTTCCCT TGCGCAGCTG TGCTCGACGT TGTCACTGAA
 4621 GCGGAAAGGG ACTGGCTGCT ATTGGGCGAA GTGCCGGGGC AGGATCTCCT GTCATCTCAC
 4681 CTTGCTCCTG CCGAGAAAGT ATCCATCATG GCTGATGCAA TGCGCGGCT GCATACGCTT
 4741 GATCCGGCTA CCTGCCATT CGACCAACAA GCGAACATC GCATCGAGCG AGCACGTACT
 4801 CGGATGGAAG CCGGTCTTGT CGATCAGGAT GATCTGGACG AAGAGCATCA GGGGCTCGCG
 4861 CCAGCCGAAC TGTTCGCCAG GCTCAAGGCG CGCATGCCCG ACGCGAGGA TCTCGTCGTG
 4921 ACCCATGGCG ATGCCGTGTT GCCGAATATC ATGGTGGAAA ATGCCGCCTT TTCTGGATTC
 4981 ATCGACTGTG GCCGGCTGGG TGTGGCGGAC CGCTATCAGG ACATAGCGTT GGCTACCCGT
 5041 GATATTGCTG AAGAGCTTGG CGGCGAATGG GCTGACCGCT TCCTCGTGCT TTACGGTATC
 5101 GCCGCTCCCG ATTGCGACGC CATGCCCTTC TATGCCCTTC TTGACGAGTT CTTCTGAGCG
 5161 GGACTCTGGG GTTCGAAATG ACCGACCAAG CGACGCCAA CCTGCCATCA CGATGGCCGC
 5221 AATAAAATAT CTTTATTAAATG ATTACATCTG TGTGTTGGTT TTTTGTGTGA ATCGATAGCG
 5281 ATAAGGATCC GCGTATGGTG CACTCTCAGT ACAATCTGCT CTGATGCCGC ATAGTTAAC
 5341 CAGCCCGAC ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC GGGCTTGTCT GCTCCCGCA
 5401 TCCGCTTACA GACAAGCTGT GACCGTCTCC GGGAGCTGCA TGTGTCAGAG GTTTCACCG
 5461 TCATCACCGA AACCGCGCGAG ACGAAAGGGC CTCGTGATAC GCCTATTTC ATAGGTTAAT
 5521 GTCATGATAA TAATGGTTT TTAGACGTCA GGTGGCAGCTT TTCGGGGAAA TGTGCGCGGA
 5581 ACCCTATTTT GTTTATTAACT CAAATACAT TCAAATATGT ATCCGCTCAT GAGACAATAA
 5641 CCCTGATAAA TGCTTCAATA ATATTGAAAA AGGAAGAGTA TGAGTATTCA ACATTTCCGT
 5701 GTCGCCCTTA TTCCCTTTT TCGCGCATTG TGCCCTCCTG TTTTGCTCA CCCAGAAACG
 5761 CTGGTGAAG TAAAAGATGC TGAAGATCAG TTGGGTGCA GAGTGGGTTA CATCGAACTG
 5821 GATCTCAACA GCGGTAAGAT CCTTGAGAGT TTGCGCCCCG AAGAACGTTT TCCAATGATG
 5881 AGCACTTTA AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTATTGACGC CGGGCAAGAG-

FIGURE 32C

79/260

5941 CAACTCGGTC GCCGCATACA CTATTCTAG AATGACTTGG TTGAGTACTC ACCAGTCACA
6001 GAAAAGCATC TTACGGATGG CATGACAGTA AGAGAATTAT GCAGTGCTGC CATAACCATC
6061 AGTGATAACA CTGCGGCCAA CTTACTTCTG ACAACGATCG GAGGACCGAA GGAGCTAAC
6121 GCTTTTTGCA ACAACATGGG GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG
6181 AATGAAGCCA TACCAAACGA CGAGCGTGAC ACCACGATGC CTGTAGCAAT GGCAACAAAC
6241 TTGCGCAAAC TATTAACCTGG CGAACTACTT ACTCTAGCTT CCCGCAACA ATTAATAGAC
6301 TGGATGGAGG CGGATAAAAGT TGCAAGGACCA CTTCTGCCT CGGCCCTTC GGCTGGCTGG
6361 TTTATTGCTG ATAAATCTGG AGCCGGTGAG CGTGGGTCTC GCGGTATCAT TGCAAGCACTG
6421 GGGCCAGATG GTAAGCCCTC CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT
6481 ATGGATGAAC GAAATAGACA GATCGCTGAG ATAGGTGCTT CACTGATTAA GCATTGGTAA
6541 CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT TAAAACTTCA TTTTTAATT
6601 AAAAGGATCT AGGTGAAGAT CCTTTTGAT AATCTCATGA CCAAAATCCC TTAACGTGAG
6661 TTTTCGTTCC ACTGAGCGTC AGACCCCGTA GAAAAGATCA AAGGATCTC TTGAGATCCT
6721 TTTTTCTGC CGTAACTCG CTGCTTGCAA AAAAAAAAC CACCGCTACC AGGGTGGTT
6781 TGTTTGCAGG ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT CAGCAGAGCG
6841 CAGATACCAA ATACTGTCTT TCTAGTGTAG CCGTAGTTAG GCCACCACTT CAAGAACTCT
6901 GTAGCACCGC CTACATACCT CGCTCTGCTA ATCCTGTTAC CAGTGGCTGC TGCCAGTGGC
6961 GATAAGTCGT GTCTTACCGG GTTGGACTCA AGACGATAGT TACCGGATAA GGGCAGCGG
7021 TCGGGCTGAA CGGGGGGTTG GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA
7081 CTGAGATACC TACAGCGTGA GCATTGAGAA AGCGCCACGC TTCCCGAAGG GAGAAAGGCG
7141 GACAGGTATC CGGTAAGCGG CAGGTCGGA ACAGGAGAGC GCACGGAGGA GCTTCCAGGG
7201 GGAAACGCCCT GGTATCTTA TAGTCCTGTC GGGTTTCGCC ACCTCTGACT TGAGCGTCGA
7261 TTTTGTTGAT GCTCGTCA

FIGURE 32D

80/240

Figure 33A:

pDEST13

Native protein in E. coli: λPL promoter

BglII

3721 tggccaaacc aagacagcta aagatctctc acctacccaa caatcccccc ctgcaaaaaaa
 acccgtttgg ttctgtcgat ttcttagagag tggatggttt gttacggggg gacgtttttt

3781 taaaattcata taaaaaacat acagataacc atctgcggtg ataaattatc tctggcggtg
 attttaagtat attttttgta tgtctattgg tagacgccac tatttaatag agaccgcccac
 -35 λPL Promoter -10 mRNA

3841 ttgacataaa taccactggc ggtgatactg agcacatcg caggacgcac tgaccaccat
 aactgtattt atggtgaccg ccactatgac tcgtgttagtc gcctgcgtg actgggtggta

EcoNI

3901 gaagggtgacg ctcttaaaaaa ttaagecctg aagaaggca gcattcaaag cagaaggctt
 cttccactgc gagaattttt aattcgggac ttcttccgt cgtaagtttgcgttccgaa

3961 tgggtgtgt gatacggaaac gaagcattgg gatcatcaca agttgtaca aaaaagctga
 accccacaca ctatgcttg ctgcgtacc ctagtagtgc tcaaacatgt ttccgact

81/240

pDEST13 5848 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
599..1458	ampR
4123..3998	attR1
4372..5031	CmR
5151..5235	inactivated ccdA
5373..5678	ccdB
5719..5843	attR2

1 TTCACTGGCC GTCGTTTAC AACGTCGTGA CTGGGAAAAC CCTGGCGTTA CCCAACTTAA
 61 TCGCCTTGCA GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA
 121 TCGCCCTTCC CAACAGTGC GCAGCCTGAA TGGCGAATGG CGCCTGATGC GGTATTTC
 181 CCTTACGCAT CTGTGCGGT TTTCACACCG CATATGGTC ACTCTCAGTA CAATCTGCTC
 241 TGATGCCGCA TAGTTAACGCC AGCCCCGACA CCCGCCAACA CCCGCTGACG CGCCCTGACG
 301 GGCTTGTCTG CTCCCGGCAT CCGCTTACAG ACAAGCTGTG ACCGCTCTCG GGAGCTGCAT
 361 GTGTCAAGAGG TTTTCACCGT CATCACCGAA ACGCGCGAGA CGAAAGGGCC TCGTGATACG
 421 CCTATTTTA TAGGTTAATG TCATGATAAT AATGGTTCT TAGACGTCAG GTGGCACTTT
 481 TCGGGGAAAT GTGCGCGGAA CCCCTATTG TTTATTTTC TAAATACATT CAAATATGTA
 541 TCCGCTCATG AGACAATAAC CCTGATAAAAT GCTTCATAAA TATTGAAAAA GGAAGAGTAT
 601 GAGTATTCAA CATTTCCTGT TCGCCCTTAT TCCCTTTTTT GCGGCATTTC GCCTTCCTGT
 661 TTTTGCTCAC CCAGAAACGC TGGTGAAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG
 721 AGTGGGTTAC ATCGAACTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT TTCGCCCGA
 781 AGAACGTTT CCAATGATGA GCACTTTAA AGTCTGCTA TGTGGCGCGG TATTATCCC
 841 TATTGACGCC GGGCAAGAGC AACTCGGTGC CGCGATACAC TATTCTCAGA ATGACTTGGT
 901 TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG
 961 CAGTGCTGCC ATAACCATGA GTGATAACAC TGCGGCCAAC TTACTTCTGA CAACGATCGG
 1021 AGGACCGAAG GAGCTAACCG CTTTTTGCA CAACATGGGG GATCATGTAA CTCGCCTTGA
 1081 TCGTGGGAA CCGGAGCTGA ATGAAGCCAT ACCAACGAC GAGCGTGACA CCACGATGCC
 1141 TGTAGCAATG GCAACAAACGT TGCGCAAACCT ATTAACCTGGC GAACTACTTA CTCTAGCTTC
 1201 CGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAAGTT GCAGGACCAAC TTCTGGCTC
 1261 GCCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCCGGTGAGC GTGGGTCTCG
 1321 CGGTATCATT GCAGCACTGG GGGCAGATGG TAAGCCTCC CGTATCGTAG TTATCTACAC
 1381 GACGGGGAGT CAGGCAACTA TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC
 1441 ACTGATTAAG CATTGGTAAC TGTCAAGACCA AGTTTACTCA TATATACATT AGATTGATT
 1501 AAAACTTCAT TTTTAATTTA AAAGGATCTA GGTGAAGATC CTTTTTGATA ATCTCATGAC
 1561 CAAAATCCCT TAACGTGAGT TTTCTTCCA CTGAGCGTC GACCCCCGTAG AAAAGATCAA
 1621 AGGATCTTCT TGAGATCCTT TTTTCTGCG CGTAATCTGC TGCTTGCAAA CAAAAAAACC
 1681 ACCGCTACCA GCGGTGGTT GTTTGCCGGA TCAAGAGCTA CCAACTCTT TTCCGAAGGT
 1741 AACTGGCTTC AGCAGAGCGC AGATACCAAA TACTGTTCTT CTAGTGTAGC CGTAGTTAGG
 1801 CCACCACTTC AAGAACCTCG TAGCACCGCC TACATACCTC GCTCTGCTAA TCCTGTTACC
 1861 AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAGTT
 1921 ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGACACAGC CCAGCTGGGA
 1981 GCGAACGACC TACACCGAAC TGAGATACCT ACAGCGTGAG CATTGAGAAA GCGCCACGCT
 2041 TCCCGAAGGG AGAAAGCGGG ACAGGTATCC GGTAAGCGGC AGGGTCGGAA CAGGAGAGCG
 2101 CACGAGGGAG CTTCCAGGGG GAAACGCCCTG GTATCTTAT AGTCTGTCG GTTTCGCC
 2161 CCTCTGACTT GAGCGTCGAT TTTGTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAAA
 2221 CGCCAGCAAC GCGGCCCTTT TACGGTTCTC GGCCTTTGC TGGCCTTTTG CTCACATGTT
 2281 CTTTCCTGCG TTATCCCTG ATTCGTGGA TAACCGTATT ACCGCCTTTC AGTGAGCTGA
 2341 TACCGCTCGC CGCAGCGAA CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA
 2401 GCGCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCTTAAT GCAGCTGGCA
 2461 CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGAAC GCAATTAATG TGAGTTAGT
 2521 CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT
 2581 TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTTGG
 2641 CTGCAGGTGA TGATTATCAG CCAGCAGAGA TTAAGAAAA CAGACAGGTT TATTGAGCGC
 2701 TTATCTTCTC CTTTATTTT GCTGCGGTAA GTCGCATAAA AACCATTCTT CATAATTCAA-

FIGURE 33B

87/240

2761 TCCATTTACT ATGTTATGTT CTGAGGGAG TGAAAATTCC CCTAATTGCA TGAAGATTCT
 2821 TGCTCAATTG TTATCAGCTA TGCAGCGACC AGAACACCTT GCGGATCAGC CAAACGTCTC
 2881 TTCAGGCCAC TGACTAGCGA TAACTTTCCC CACAACGAA CAACTCTCAT TGCATGGGAT
 2941 CATTGGGTAC TGTGGGTTTA GTGGTTGTA AAACACCTGA CCGCTATCCC TGATCAGTTT
 3001 CTTGAAGGTA AACTCATCAC CCCCAAGTCT GGCTATGCGAG AAATCACCTG GCTCAACAGC
 3061 CTGCTCAGGG TCAACGAGAA TTAACATTCC GTCAGGAAAG CTTGGCTTGG AGCCTGTTGG
 3121 TGCAGGTACG GAATTACCTT CAACCTCAAG CCAGAATGCA GAATCACTGG CTTTTTGTTG
 3181 TGTGCTTACG CATCTCTCCG CATCACCTTT GGTAAAGGTT CTAAGCTTAG GTGAGAACAT
 3241 CCCTGCCTGA ACATGAGAAA AAACAGGGTA CTCATACTCA CTTCTAAAGTG ACGGCTGCAT
 3301 ACTAACCGCT TCATACATCGT CGTAGATTTC TCTGGCGATT GAAGGGCTAA ATTCTTCAAC
 3361 GCTAACTTTG AGAATTTTTG CAAGCAATGC GGCGTTATAA GCATTTAATG CATTGATGCC
 3421 ATTAATAAAA GCACCAACGC CTGACTGCC C ATCCCCTAC TTGCTGCGA CAGATTCTG
 3481 GGATAAGCCA AGTTCATTT TCTTTTTTC ATAAATTGCT TTAAGGCAG GTGCGTCTC
 3541 AAGCTGCTCT TGTGTTAATG GTTCTTTTGTGCTCATA CGTTAAATCT ATCACCGCAA
 3601 GGGATAAATA TCTAACACCG TGCGTGTGTA CTATTTTAC TCTGGCGGTG ATAATGGTTG
 3661 CATGACTAA GGAGGTTGTA TGGAAACAACG CATAACCCCTG AAAGATTATG CAATGCGCTT
 3721 TGGGCAAACC AAGACAGCTA AAGATCTCTC ACCTACCAAA CAATGCCCTC CTGCAAAAAA
 3781 TAAATTCTATA TAAAAAACAT ACAGATAACC ATCTGGCGGTG ATAAATTATC TCTGGCGGTG
 3841 TTGACATATA TACCACTGGC GGTGATACTG AGCACATCAG CAGGACGCAC TGACCACCAT
 3901 GAAGGTGACG CTCTAAAAA TTAAGCCCTG AAGAAGGGCA GCATTCAAAG CAGAAGGCTT
 3961 TGGGTGTGT GATACGAAAC GAAGCATTGG GATCATCACA AGTTGTACA AAAAGCTGA
 4021 ACGAGAAACG TAAAATGATA TAAATATCAA TATATTAAAT TAGATTTGC ATAAAAAAACA
 4081 GACTACATAA TACTGTAAAA CACAACATAT CCAGTCACTA TGGCGGCCGC TAAGTTGGCA
 4141 GCATCACCCG ACGCACTTTG CGCGAATAA ATACCTGTGA CGGAAGATCA CTTCGCAGAA
 4201 TAAATAAATC CTGGTGTCCC TGTGATACC GGGAAAGCCCT GGGCCAACCTT TTGGCGAAAA
 4261 TGAGACGTTG ATCGGCACGT AAGAGGTTCC AACTTCACC ATAATGAAAT AAGATCACTA
 4321 CGGGCGTAT TTTTGAGTT ATCGAGATT TCAGGAGCTA AGGAAGCTAA AATGGAGAAA
 4381 AAAATCACTG GATATACCAC CGTTGATATA TCCCAATGGC ATCGTAAAGA ACATTTTGAG
 4441 GCATTCAGT CAGTTGCTCA ATGTACCTAT AACCAAGACCG TTCAGCTGGA TATTACGGCC
 4501 TTTTAAAGA CCGTAAAGAA AAATAAGCAC AAGTTTATC CGGCCTTAT TCACATTCTT
 4561 GCCCGCTGA TGAATGCTCA TCCCGAATTG CGTATGGCAA TGAAAGACGG TGAGCTGGTG
 4621 ATATGGGATA GTGTTCACCC TTGTTACACC GTTTCCATG AGCAAACCTGA AACGTTTCA
 4681 TCGCTCTGGA GTGAATACCA CGACGATTTC CGGCAGTTTC TACACATATA TTCGCAAGAT
 4741 GTGGCGTGT ACAGTGAAAA CCTGGCCTAT TTCCCTAAAG GTTTATTGA GAATATGTTT
 4801 TTCGCTCTAG CCAATCCCTG GGTGAGTTTC ACCAGTTTG ATTTAACGT GGCAATATG
 4861 GACAACCTCT TCGCCCCCGT TTTCACCATG GGAAATATT ATACGCAAGG CGACAAGGTG
 4921 CTGATGCCG TGGCGATTCA GTTGTACATCAT GCCGCTGTG ATGGCTTCCA TGTGGCAGA
 4981 ATGCTTAATG AATTACAACA GTACTGCGAT GAGTGGCAGG GCGGGCGTA AACCGTGG
 5041 TCCGGCTTAC TAAAAGCCAG ATAACAGTAT GCGTATTG GCGCTGATTT TTGCGGTATA
 5101 AGAATATATA CTGATATGTA TACCGAAGT ATGTAAAAAA GAGGTGTGCT ATGAAGCAGC
 5161 GTATTACAGT GACAGTTGAC AGCGACAGCT ATCAGTTGCT CAAGGCATAT ATGATGTCAA
 5221 TATCTCCGGT CTGGTAAGCA CAACCATGCA GAATGAAGCC CGTCGCTCTGC GTGCCGAACG
 5281 CTGAAAGCG GAAAATCAGG AAGGGATGGC TGAGGTCGCC CGTTTATTG AAATGAACGG
 5341 CTCTTTGCT GACGAGAAC GGGACTGGTG AAATGCAGTT TAAGTTTAC ACCTATAAAA
 5401 GAGAGAGCCG TTATCGCTG TTTGTGGATG TACAGAGTGA TATTATTGAC ACGCCCGGGC
 5461 GACGGATGGT GATCCCCCTG GCCAGTGCAC GTCTGCTGTC AGATAAAGTC TCCCGTGAAC
 5521 TTTACCCGGT GGTGCATATC GGGGATGAAA GCTGGCGCAT GATGACCAC GATATGGCCA
 5581 GTGTGCCGGT CTCCGTTATC GGGGAAGAAG TGGCTGATCT CAGCCACCGC GAAAATGACA
 5641 TCAAAACGC CATTAAACCTG ATGTTCTGGG GAATATAAT GTCAAGGCTCC GTTATACACA
 5701 GCCAGTCTGC AGGTGACCA TAGTGAATGG ATATGTTGTTG TTTTACAGTA TTATGTAGTC
 5761 TGTTTTTAT GCAAAATCTA ATTTAATATA TTGATATTAA TATCATTAA CGTTCTCGT
 5821 TCAGCTTTCT TGTACAAAGT GGTGATAA

FIGURE 33C

83/240

Figure 34A: pDEST14 Native Protein Expression in *E. coli*, T7 Promoter

3961 tgccggccac gatgcgtccg gcgttagagga tcgagatctc gatcccgcga aatttaatacg
 acggccggtg ctacgcaggc cgcacatctcct agctcttagt ctagggcgct ttaatttatgc
 m_{RNA} Bgl II Ase I PT7 →
 4021 // actcaactata gggagaccac aacggtttcc ctcttagatca caagtttgtt caaaaaaagct
 tgagtgtatat ccctctggtg ttgccaaagg gagatgttgtt gttcaaacat gttttttcga //

84/240

pDEST14 6422 bp (rotated to position 4000)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
185..61	attR1
435..1094	CmR
1214..1298	inactivated ccdA
1436..1741	ccdB
1782..1906	attr2
2632..3489	ampR

1 CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC CCTCTAGATC
 61 ACAAGTTGT ACAAAAAAGC TGAACGAGAA ACGTAAAATG ATATAAATAT CAATATATTA
 121 AATTAGATTG TGCATAAAAA ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCA
 181 CTATGGCGGC CGCTAAGTTG GCAGCATCAC CCGACGCACT TTGCGCCGAA TAAATACCTG
 241 TGACGGAAGA TCACCTCGCA GAATAAATAA ATCCTGGTGT CCCTGTTGAT ACCGGGAAGC
 301 CCTGGGCCAA CTTTGGCGA AAATGAGACG TTGATGGCA CGTAAGAGGT TCCAACTTTC
 361 ACCATAATGA AATAAGATCA CTACCGGGCG TATTTTTGTA GTTATCGAGA TTTTCAGGAG
 421 CTAAGGAAGC TAAAATGGAG AAAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCCAAT
 481 GGCATCGTAA AGAACATTT GAGGCATTT AGTCAGTTG TCAATGTACC TATAACCAGA
 541 CGGTTCAAGCT GGATATTACG GCCTTTTAA AGACCGTAA GAAAATAAG CACAAGTTTT
 601 ATCCGGCCTT TATTCACTT CTTGCCCCGC TGATGAATGC TCATCCGGAA TTCCGTATGG
 661 CAATGAAAGA CGGTGAGCTG GTGATATGGG ATAGTGTTCAG CCGTTTGTAC ACCGTTTTCC
 721 ATGAGCAAC TGAAACGTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT
 781 TTCTACACAT ATATTCGCAA GATGTGGCGT GTTACGGTGA AAACCTGGCC TATTTCCCTA
 841 AAGGGTTTAT TGAGAATATG TTTTCCGTCT CAGCCAAATCC CTGGGTGAGT TTCACCAAGTT
 901 TTGATTAAAGT CGTGGCCAAT ATGGACAAC TCTTCGCCCC CGTTTCACC ATGGGCAAAT
 961 ATTATACGCA AGGCGACAAG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT
 1021 GTGATGGCTT CCATGTCCGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC
 1081 AGGGCGGGGC GTAAACGGCT GGATCCGGCT TACTAAAAGC CAGATAACAG TATGGTATT
 1141 TGCGCCTGTA TTTTGCCTG ATAAGAATAT ATACTGATAT GTATACCGA AGTATGTC
 1201 AAAGAGGTGT GCTATGAAGC AGCGTATTAC AGTGCAGCTT GACAGCGACA GCTATCAGTT
 1261 GCTCAAGGCA TATATGATGT CAATATCTCC GGTCTGGTAA GCACAACCAT GCAGAATGAA
 1321 GCCCGTCGTC TCGTGCCTG ACCTGGAAA GCGGAAAATC AGGAAGGGAT GGCTGAGGTC
 1381 GCCCGTTTA TTGAAATGAA CGGCCTTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA
 1441 GTTTAAGGTT TACACCTATA AAAGAGAGAG CGGTATCGT CTGTTGTGG ATGTACAGAG
 1501 TGATATTATT GACACGCCCG GGGGACGGAT GGTGATCCCC CTGGCCAGTG CACGTCTGCT
 1561 GTCAGATAAA GTCTCCCCTG AACTTACCC GGTCTGGCAT ATCGGGGATG AAAGCTGGCG
 1621 CATGATGACC ACCGATATGG CCAGTGTGCC GGTCTCCGTT ATCGGGGAAAG AAGTGGCTGA
 1681 TCTCAGGCCAC CGCAGAAATG ACATCAAAA CGCCATTAAAC CTGATGTTCT GGGGAATATA
 1741 AATGTCAGGC TCCCTTATAC ACAGCCAGTC TGCAGGTGCA CCATAGTGAC TGGATATGTT
 1801 GTGTTTACA GTATTATGTA GTCTGTTTT TATGCAAAT CTAATTAAAT ATATTGATAT
 1861 TTATATCATT TTACGTTCT CGTTCAGCTT TCTGTACAA AGTGGTGATG ATCCGGCTGC
 1921 TAACAAAGCC CGAAAGGAAG CTGAGTTGGC TGCTGCCACC GCTGAGCAAT AACTAGCATA
 1981 ACCCCTTGGG GCCTCTAAC GGGTCTTGAG GGGTTTTG CTGAAAGGAG GAACTATATC
 2041 CGGATATCCA CAGGACGGGT GTGGTCGCCA TGATCGCTA GTCGATAGTG GCTCCAAGTA
 2101 GCGAAGCGAG CAGGACTGGG CGGGGCCAA AGCGGTCGGA CAGTGTCCG AGAACGGGTG
 2161 CGCATAGAAA TTGCATCAAC GCATATAGCG CTAGCAGCAC GCCATAGTG CTGGCGATGC
 2221 TGTCGGAATG GACGATATCC CGCAAGAGGC CGGGCAGTAC CGGCATAACC AAGCCTATGC
 2281 CTACAGCATC CAGGGTGACG GTGCCGAGGA TGACGATGAG CGCATTGTTA GATTTCATAC
 2341 ACGGTGCCTG ACTGCGTTAG CAATTAAACT GTGATAAAACT ACCGCATTA AGCTTATCGA
 2401 TGATAAGCTG TCAAACATGA GAATTCTTGA AGACGAAAGG GCCTCGTGTACG CCGCTATTT
 2461 TTATAGGTTA ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCGGGGA
 2521 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC
 2581 ATGAGACAAT AACCCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT
 2641 CAACATTTCG GTGTCGCCCT TATTCCTTT TTTGCGGCAT TTTGCTTCC TGTTTTGCT
 2701 CACCCAGAAA CGCTGGTGAAGT AAAAGAT GCTGAAGATC AGTGGGTGCA ACGAGTGGGT-

FIGURE 34B

2761 TACATCGAAC TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTCGCC CGAAGAACGT
 2821 TTTCCAATGA TGAGCACTT TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTGGTGC
 2881 GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC
 2941 TCACCCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT ATGCAGTGCT
 3001 GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC TGACAAAGAT CGGAGGACCG
 3061 AAGGAGCTAA CCGCTTTTT GCACAAACATG GGGGATCATG TAACTCGCC TGATCGTTGG
 3121 GAACCCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGCAGCA
 3181 ATGGCAACAA CGTTGCGCAA ACTATTAACG GGCGAATAC TTACTCTAGC TTCCCGGCAA
 3241 CAATTAAATAG ACTGGATGGA GGCAGATAAA GTTGCAGGAC CACTTCTGCG CTCGGCCCTT
 3301 CCGGCTGGCT GGTTTATTGC TGATAAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC
 3361 ATTGCAAGCAC TGGGGCCAGA TGGTAAGCCC TCCCCTATCG TAGTTATCTA CACGACGGG
 3421 AGTCAGGCAA CTATGGATGA ACAGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT
 3481 AAGCATTGGT AACTGTCAGA CCAAGTTAC TCATATATAC TTTAGATTGA TTTAAAACCTT
 3541 CATTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTG ATAATCTCAT GACCAAAATC
 3601 CCTTAACGTG AGTTTTCGTT CCACGTAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT
 3661 TCTTGAGATC CTTTTTTCT GCGCGTAATC TGCTGTTGC AAACAAAAAA ACCACCGCTA
 3721 CCAGCGGTGG TTTGTTGCC GGATCAAGAG CTACCAACTC TTTTCCGAA GTTAACGGC
 3781 TTCAGCAGAG CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACAC
 3841 TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCTGTT ACCAGTGGCT
 3901 GCTGCCAGTG GCGATAAGTC GTGCTTACGGGGTGGACT CAAGACGATA GTTACCGGAT
 3961 AAGGCGCAGC GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCAGCTT GGAGCGAACG
 4021 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCGAA
 4081 GGGAGAAAGG CGGACAGGTA TCCGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG
 4141 GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCTG TCGGGTTTCG CCACCTCTGA
 4201 CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGGCGGA GCCTATGGAA AAACGCCAGC
 4261 AACCGGGCCT TTTTACGGTT CCTGCCCTT TGCTGCCCTT TTGCTCACAT GTTCTTCC
 4321 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC TGATACCGCT
 4381 CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGCGCTG
 4441 ATGCGGTATT TTCTCCTTAC GCATCTGTG GGTATTTCAC ACCGCATATA TGGTGCAC
 4501 TCAGTACAAT CTGCTCTGAT GCCGCATAGT TAAGCCAGTA TACACTCCGC TATCGCTAC
 4561 TGACTGGTC ATGGCTGCG CCCGACACCC GCCAACACCC GCTGACGCGC CCTGACGGG
 4621 TTGCTCTGTC CCGGCATCCG CTTACAGACA AGCTGTGACC GTCTCCGGGA GTCATGTG
 4681 TCAGAGGTTT TCACCGTCAT CACCGAAACG CGCGAGGAG CTGCGGTAAA GTCATCAGC
 4741 GTGTCGTGA AGCGATTAC AGATGCTGC CTGTTCATCC CGTCCAGCT CGTTGAGTTT
 4801 CTCCAGAACG GTTAATGTCT GGCTCTGAT AAAGCGGGCC ATGTTAAGGG CGGTTTTTC
 4861 CTGTTGGTC ACTGATGCTC CCGTGTAAAGG GGGGATTTCTG TTCATGGGG TAATGATACC
 4921 GATGAAACGA GAGAGGATGC TCACGATACGGGGTACTGAT GATGAACATG CCCGGTTACT
 4981 GGAACGTTGT GAGGGTAAAC AACTGGCGGT ATGGATGCGG CGGGACCAGA GAAAATCAC
 5041 TCAGGGTCAA TGCCAGCGCT TCGTTAATAC AGATGTTAGGT GTTCCACAGG GTAGCCAGCA
 5101 GCATCCTGCG ATGCAGATCC GGAACATAAT GGTGCAGGGC GCTGACTTCC GCGTTCCAG
 5161 ACTTTACGAA ACACGGAAAC CGAAGACCAT TCATGTTGT GCTCAGGTGCG CAGACGTTT
 5221 GCAGCAGCAG TCGCTTCACG TTGCTCGCG TATCGGTGAT TCATTCTGCT AACCACTAAG
 5281 GCAACCCCGC CAGCCTAGCC GGGTCTCAA CGACAGGAGC ACGATCATGC GCACCCGTGG
 5341 CCAGGACCCA ACGCTGCCG AGATGCGCCG CGTGCAGGTG CTGGAGATGG CGGACGCGAT
 5401 GGATATGTT TGCCAAGGGT TGTTTGCAC ATTACAGTT CTCCGCAAGA ATTGATTGGC
 5461 TCCAATTCTT GGAGTGGTGA ATCCGTTAGC GAGGTGCGC CGGCTTCCAT TCAGGTGAG
 5521 GTGGCCCGGC TCCATGCAAC GCGACGCAAC CGGGGGAGGC AGACAAGGTA TAGGGCGGC
 5581 CCTACAATCC ATGCCAACCC GTTCCATGTG CTCGCCGAGG CGGCATAAAT CGCCGTGAC
 5641 ATCAGCGGTG CAGTGTGATCG AGTTAGGCTG GTAAGAGCCG CGAGCGATCC TTGAAGCTGT
 5701 CCCTGATGGT CGTCATCTAC CTGCTGGAC AGCATGGCCT GCAACGCGGG CATCCCGATG
 5761 CCGCCGGAAG CGAGAAGAAAT CATAATGGGG AAGGCCATCC AGCCTCGCGT CGCGAACGCC
 5821 AGCAAGACGT AGCCCGAGCGC GTCCGGCCGC ATGCCGGCGA TAATGGCCTG CTTCTCGCC
 5881 AAACGTTGG TGGCGGGACC AGTGACGAAG GCTTGAGCGA GGGCGTGCAA GATTCCGAAT
 5941 ACCGCAAGCG ACAGGGCGAT CATCGTCGCG CTCCAGCGAA AGCGGTCTC GCGAAAATG
 6001 ACCCAGAGCG CTGCCGGCAC CTGTCCTACG AGTTGATGAA TAAAGAAGAC AGTCATAAGT
 6061 GCGGCGACGA TAGTCATGCC CCGCGCCAC CGGAAGGAGC TGACTGGGTT GAAGGCTCTC
 6121 AAGGGCATCG GTCGATCGAC GCTCTCCCTT ATGCGACTCC TGCAATTAGGA AGCAGCCAG
 6181 TAGTAGGTT AGGCCGTTGA GCACCGCCGC CGCAAGGAAT GGTGCATGCA AGGAGATGGC

FIGURE 34C

86/240

6241 GCCCAACAGT CCCCCGGCCA CGGGGCCTGC CACCATAACCC ACGCCGAAAC AAGCGCTCAT
6301 GAGCCCGAAG TGGCGAGCCC GATCTTCCCC ATCGGTGATG TCGGCGATAT AGGCGCCAGC
6361 AACCGCACCT GTGGCGCCGG TGATGCCGGC CACGATGCGT CCGGCGTAGA GGATCGAGAT
6421 CT

FIGURE 34D

87/240

Figure 35A: pDEST15 Glutathione-S-transferase Fusion in *E. coli*, T7 Promoter

mRNA

T7 Promoter

1 nat cga gat ctc gat ccc gcg aaa tta ata cga ctc act ata [ggg] aga cca
 nta gct cta gag cta ggg cgc ttt aat tat gct gag tga tat ccc tct ggt

52 caa cgg ttt ccc tct aga aat aat ttt gtt taa ctt taa gaa gga gat ata
 gtt gcc aaa ggg aga tct tta tta aaa caa att gaa att ctt cct cta tat

103 NdeI M S P I L — cat atg tcc cct ata cta ggt tat tgg aaa att aag ggc ctt gtg caa ccc
 gta dac agg gga tat gat cca ata acc ttt taa ttc ccg gaa cac ac gtt ggg
 ↓ Start Translation GST

154 act cga ctt ctt ttg gaa tat ctt gaa gaa aaa tat gaa gag 'cat ttg tat
 tga gct gaa aac ctt ata gaa ctt ctt ttt ata ctt ctc gta aac ata

715 cag ggc tgg caa gec acg ttt ggt ggt ggc gac cat cct cca aaa tcg gat
 gtc ccc acc gtt cgg tgc aaa cca cca ccc ctg gta gga ggt ttt agc cta

766 ctg gtt ccc cgt cca tgg tgg aat caa aca agt ttg tac aaa aaa gct gaa //
 gac cca ggc gca ggt acc acc tta gtt tgt tca aac atg ttt ttt cga ctt //

817 cga gaa acg taa aat gat ata aat atc aat ata tta aat tag att ttg cat
 gct ctt tgc att tta cta tat tta tag tta tat aat tta atc taa aac gta

88/240

pDEST15 7013 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
108..776	GST
916..792	attr1
1025..1537	CmR
1804..1888	inactivated ccdA
2026..2331	ccdB
2372..2496	attr2
3233..4093	ampR

1 ATCGAGATCT CGATCCCGCG AAATAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC
 61 CCTCTAGAAA TAATTGTT TAACTTAAG AAGGAGATAT ACATATGTCC CCTATACTAG
 121 GTTATTGGAA AATTAAGGGC CTTGTGCAAC CCACTCGACT TCTTTGGAA TATCTTGAAG
 181 AAAAATATGA AGAGCATTG TATGAGCGCG ATGAAGGTGA TAAATGGCGA AACAAAAAGT
 241 TTGAATTGGG TTTGGAGTT CCCAATCTTC CTTATTATAT TGATGGTGAT GTTAAATTAA
 301 CACAGTCTAT GCCATCATA CGTTATATAG CTGACAAGCA CAACATGTTG GGTGGTTGTC
 361 CAAAAGAGCG TGCAGAGATT TCAATGTTG AAGGAGCGT TTTGGATATT AGATACGGTG
 421 TTTCGAGAAT TGCATATACTT AAAGACTTTG AAACCTCTAA AGTTGATTTT CTTAGCAAGC
 481 TACCTGAAAT GCTGAAATG TTCGAAGATC GTTTATGTCA TAAAACATAT TTAAATGGTG
 541 ATCATGTAAC CCATCCTGAC TTCAATGTTGT ATGACGCTCT TGATGTTGTT TTATACATGG
 601 ACCCAATGTC CTCGGATGCG TTCCCAAAT TAGTTGTTT TAAAAAACGT ATTGAAGCTA
 661 TCCCCAAAT TGATAAGTAC TTGAAATCCA GCAAGTATAT AGCATGGCCT TTGCAGGGCT
 721 GGCAAGCCAC GTTGGTGGT GGCGACCATC CTCCAAAATC GGATCTGGTT CCGCGTCCAT
 781 GGTGAAATCA ACAAGTTG TACAAAAAAG CTGAACGAGA AACGAAAAT GATATAAAATA
 841 TCAATATATT AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT AAAACACAAC
 901 ATATCCAGTC ACTATGGCGG CGCGCATTAGG CACCCCAGGC TTTACACTTT ATGCTTCCGG
 961 CTCGTATAAT GTGTGGATT TGAGTTAGGA TCCGTCGAGA TTTTCAGGAG CTAAGGAAGC
 1021 TAAAATGGAG AAAAAAATCA CTGGATATAC CACCGTTGAT ATATCCAAT GGCATCGTAA
 1081 AGAACATTTT GAGGCATTTC AGTCAGTTGC TCAATGTACC TATAACCAGA CCGTTCAGCT
 1141 GGATATTACG GCCTTTTAA AGACCGTAAA GAAAAATAAG CACAAGTTT ATCCGGCCTT
 1201 TATTACATT CTTGCCCGCC TGATGAATGC TCATCCGAA TTCCGTATGG CAATGAAAGA
 1261 CGGTGAGCTG GTGATATGGG ATAGTGTCA CCCTTGTAC ACCGTTTCC ATGAGCAAAC
 1321 TGAAACGTTT TCATCGCTCT GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT
 1381 ATATTGCAA GATGTGGCGT GTTACGGTGA AAACCTGGCC TATTTCCTA AAGGGTTTAT
 1441 TGAGAATATG TTTTCGCT CAGCCAATCC CTGGGTGAGT TTCACCAAGT TTGATTTAAA
 1501 CGTGGCAAT ATGGACAAC TCTTCGCCCG CGTTTCAAC ATGGCAAAT ATTATACGCA
 1561 AGGCAGACAAG GTGCTGATGC CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT
 1621 CCATGCGGC AGAATGCTTA ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGCGGGC
 1681 GTAATCTAGA GGATCCGGCT TACTAAAAGC CAGATAACAG TATGCGTATT TGCGCGTGA
 1741 TTTTGCGGT ATAAGAATAT ATACTGATAT GTATACCGA AGTATGTCAA AAAGAGGTGT
 1801 GCTATGAAGC AGCGTATTAC AGTGACAGTT GACAGCGACA GCTATCAGTT GCTCAAGGCA
 1861 TATATGATGT CAATATCTCC GGTCTGGTAA GCACAAACAT GCAGAAATGAA GCCCGTCGTC
 1921 TGCCTGCCGA ACGCTGGAAA GCGGAAAATC AGGAAGGGAT GGCTGAGGTC GCCCGGTTA
 1981 TTGAATGAA CGGCTTTT GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTTAAGGTT
 2041 TACACCTATA AAAGAGAGAG CGGTTATCGT CTGTTGTTG ATGTACAGAG TGATATTATT
 2101 GACACGCCCG GGCGACGGAT GGTGATCCCC CTGGCCAGTG CACGCTGCT GTCAGATAAA
 2161 GTCTCCCGTG AACTTACCC GGTGGTGAT ATCAGGGATG AAAGCTGGCG CATGATGACC
 2221 ACCGATATGG CCAGTGTGCC GGTCTCCGTT ATCAGGGAAAG AAGTGGCTGA TCTCAGCCAC
 2281 CGCGAAAATG ACATCAAAAA CGCCATTAAC CTGATGTTCT GGGGAATATA AATGTCAGGC
 2341 TCCCTTATAC ACAGCCAGTC TGCAGTCGA CCATAGTGAC TGGATATGTT GTGTTTACA
 2401 GTATTATGTA GTCTGTTTT TATGCAAAAT CTAATTAAAT ATATTGATAT TTATATCATT
 2461 TTACGTTCT CGTTCACTT TCTTGTACAA AGTGGTTGA TTGACCCGG GATCCGGCTG
 2521 CTAACAAAGC CGGAAAGGAA GCTGAGTTGG CTGCTGCCAC CGCTGAGCAA TAACTAGCAT
 2581 AACCCCTTGG GGCTCTAAA CGGGTCTTGA GGGGTTTTT GCTGAAAGGA GGAACATATA
 2641 CGGGATATCC ACAGGACGGG TGTGGTCGCC ATGATCGCGT AGTCGATAGT GGCTCCAAGT-

FIGURE 35B

89/240

2701 AGCGAAGCGA GCAGGACTGG GCGGCAGGCC AAGCGGTGCG ACAGTGCTCC GAGAACGGGT
 2761 GCGCATAGAA ATTGCATCAA CGCATATAGC GCTAGCAGCA CGCCATAGTG ACTGGCGATG
 2821 CTGTCGGAAT GGACGATATC CCGCAAGAGG CCCGGCAGTA CGGCATAAC CAAGCCTATG
 2881 CCTACAGCAT CCAGGGTGAC GGTGCCGAGG ATGACGATGA CGGCATTGTT AGATTCATA
 2941 CACGGTGCCT GACTGCGTTA GCAATTAAAC TGTGATAAAC TACCGCATTA AAGCTTATCG
 3001 ATGATAAGCT GTCAAACATG AGAATTCTTG AAGACGAAAG GGCCTCGTGA TACGCCATT
 3061 TTTATAGGTT AATGTCATGA TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTCGGGG
 3121 AAATGTGCGC GGAACCCCTA TTTGTTTATT TTTCTAAATA CATTCAAATA TGTATCCGCT
 3181 CATGAGACAA TAACCCTGAT AAATGCTTCATA ATAATATTGA AAAAGGAAGA GTATGAGTAT
 3241 TCAACATTTG CGTGTGCCCT TTATCCCTT TTTTGCAGCA TTTTGCCTTC CTGTTTTGCG
 3301 TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTGGGTG CACGAGTGGG
 3361 TTACATCGAA CTGGATCTCA ACAGCGGTAA GATCCTTGAG AGTTTCGCC CGGAAGAACG
 3421 TTTTCCAATG ATGAGCACTT TAAAGTTCT GCTATGTGGC GCGGTATTAT CCCGTGTTGA
 3481 CGCCGGCAA GAGCAACTG GTGCCCGCAT ACACATTCT CAGAATGACT TGGTTGAGTA
 3541 CTCACCACTG ACAGAAAAGC ATCTTACGGG TGGCATGACA GTAAGAGAAT TATGCAGTGC
 3601 TGCCATAACC ATGAGTGATA ACACTGCGGC CAACTTACTT CTGACAACGA TCGGAGGACC
 3661 GAAGGAGCTA ACCGCTTTT TGCAACACAT GGGGGATCAT GTAACTCGCC TTGATCGTTG
 3721 GGAACCGGAG CTGAATGAAG CCATACCAAA CGACGAGCGT GACACACGA TGCCTGCAGC
 3781 AATGGCAACA ACGTTGCGCA AACTATTAAAC TGGCGAACTA CTTACTCTAG CTTCCGGCA
 3841 ACAATTAAATA GACTGGATGG AGGCGGATAA AGTTGCAGGA CCACCTCTGC GCTCGGCCCT
 3901 TCCGGCTGGC TGGTTTATTG CTGATAAAATC TGGAGCGGGT GAGCGTGGGT CTCGCGGTAT
 3961 CATTGCAGCA CTGGGGCCAG ATGGTAAGCC CTCGGTATC GTAGTTATCT ACACGACGGG
 4021 GAGTCAGGCA ACTATGGAT AACGAAATAG ACAGATCGCT GAGATAGGTG CCTCACTGAT
 4081 TAAGCATTGG TAACTGTCAG ACCAAGTTA CTCATATATA CTTTAGATTG ATTTAAAATC
 4141 TCATTTTAA TTTAAAAGGA TCTAGGTGAA GATCCTTTT GATAATCTCA TGACAAAATC
 4201 CCCTTAACGT GAGTTTCTG TCCACTGAGC GTCAGACCCCC GTAGAAAAGA TCAAAGGATC
 4261 TTCTTGAGAT CCTTTTTTC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCACCGCT
 4321 ACCAGCGGTG GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACTGG
 4381 CTTCAGCAGA GCGCAGATAC CAAATACTGT CCTTCTAGTG TAGCCGTAGT TAGGCCACCA
 4441 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCACTGGC
 4501 TGCTGCCAGT GGCATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA
 4561 TAAGGCGCAG CGGTGCGGCT GAACGGGGGG TTCGTGACA CAGCCAGCT TGGAGCGAAC
 4621 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA
 4681 AGGGAGAAAG GGGGACAGGT ATCCCGTAAG CGGCAGGGTC GGAACAGGGAG AGCGCACGGAG
 4741 GGAGCTTCCA GGGGAAACAG CCTGGTATCT TTATAGTCT GTCCGGTTTC GCCACCTCTG
 4801 ACTTGAGCGT CGATTTTTGT GATGCTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG
 4861 CAACCGGGCC TTTTACGGT TCCTGGCCTT TTGCTGCCC TTTGCTCACA TGTTCTTCC
 4921 TGCGTTATCC CCTGATTCTG TGGATAACCG TATTACGCC TTTGAGTGAG CTGATACCGC
 4981 TCGCCGCAGC CGAACGACCG AGCGCAGCGA GTCAAGTGAGC GAGGAAGCGG AAGAGCGCCT
 5041 GATGCGGTAT TTTCTCCTTA CGCATCTGTG CGGTATTTC CACCGCATAT ATGGTGCACT
 5101 CTCAGTACAA TCTGCTCTGA TGCCGCATAG TTAAGCCAGT ATACACTCCG CTATCGCTAC
 5161 GTGACTGGGT CATGGCTGCG CCCCCGACACC CGCCAACACC CGCTGACGGC CCCTGACGGG
 5221 CTTGCTCTGCT CCCGGCATCC GCTTACAGAC AAGCTGTGAC CGTCTCCGGG AGCTGCATGT
 5281 GTCAGAGGTT TTCACCGTCA TCACCGAAAC CGCGGAGGCA GCTGCGGTAA AGCTCATCAG
 5341 CGTGGTCTG AAGCGATTCA CAGATGTCTG CCTGTTCATC CGCGTCCAGC TCGTTGAGTT
 5401 TCTCCAGAAC CGTTAATGTC TGGCTCTGA TAAAGCGGGC CATGTTAAGG GCGGTTTTTT
 5461 CCTGTTGGT CACTGATGCC TCCGTGTAAG GGGGATTCT GTTCATGGGG GTAATGATAC
 5521 CGATGAAACG AGAGAGGATG CTCACGATAC GGGTTACTGA TGATGAAACAT GCCC GGTTAC
 5581 TGGAACGTTG TGAGGGTAA CAACTGGCGG TATGGATGCG GCGGGACAG AGAAAAAATCA
 5641 CTCAGGGTCA ATGCCAGCGC TTGCTTAATA CAGATGTAGG TGTTCCACAG GGTAGCCAGC
 5701 AGCATCCTGC GATGCGAGTC CGGAACATAA TGGTGCAGGG CGCTGACTTC CGCGTTTCCA
 5761 GACTTACGA AACACGGAAA CGGAAGACCA TTGATGTTGT TGCTCAGGTC GCAGACGTTT
 5821 TGCAGCAGCA GTCGCTTCAC GTTCGCTCGC GTATCGGTGA TTCATTCTGC TAACCAGTAA
 5881 GGCAACCCCG CCAGCCTAGC CGGGTCCCTA ACGACAGGAG CACGATCATG CGCACCCGTG
 5941 GCCAGGACCC AACGCTGCC GAGATGCGCC GCGTGCAGCT GCTGGAGATG CGGGACGCGA
 6001 TGGATATGTT CTGCCAAGGG TTGGTTTGC CATTCAAGT TCTCCGCAAG AATTGATGG
 6061 CTCCAATTCT TGGAGTGGTG AATCCGTTAG CGAGGTGGCG CGGGCTTCCA TTCAGGTGCA
 6121 GGTGGCCCGG CTCCATGCAC CGCGACGCAA CGCGGGGAGG CAGACAAGGT ATAGGGCGGC-

FIGURE 35c

90/240

6181 GCCTACAATC CATGCCAACCGTTCCATGT GCTCGCCGAG CGGGCATAAA TCGCCGTGAC
6241 GATCAGCGGT CCAGTGATCG AAGTTAGGCT GTAAAGAGCC CGAGCGATC CTTGAAGCTG
6301 TCCCTGATGG TCGTCATCTA CCTGCCTGGA CAGCATGGCC TGCAACGCG GCATCCCGAT
6361 GCCGCCGGAA GCGAGAAGAA TCATAATGGG GAAGGCCATC CAGCCTCGCG TCGCGAACGC
6421 CAGCAAGACG TAGCCCAGCG CGTGGCCGC CATGCCGGCG ATAATGGCCT GCTTCTCGCC
6481 GAAACGTTTG GTGGCGGGAC CAGTGACGAA GGCTTGAGCG AGGGCGTGCA AGATTCCGAA
6541 TACCGCAAGC GACAGGCCGA TCATCGTCGC GCTCCAGCGA AAGCGGTCT CGCCGAAAAT
6601 GACCCAGAGC GCTGCCGGCA CCTGTCCTAC GAGTTGCATG ATAAAGAAGA CAGTCATAAG
6661 TGCGGCGACG ATAGTCATGC CCCGCGCCCA CCGGAAGGAG CTGACTGGGT TGAAGGCTCT
6721 CAAGGGCATC GGTGCGATCGA CGCTCTCCCT TATGCGACTC CTGCATTAGG AAGCAGCCCA
6781 GTAGTAGGTT GAGGCCGTTG AGCACCGCCG CCGCAAGGAA TGGTGCATGC AAGGAGATGG
6841 CGCCCAACAG TCCCCCGGGCC ACGGGGCCTG CCACCATACC CACGCCGAAA CAAGCGCTCA
6901 TGAGCCGAA GTGGCGAGCC CGATCTTCCC CATCGGTGAT GTCGGCGATA TAGGCGCCAG
6961 CAACCGCACC TGTGGCGCCG GTGATGCCGG CCACGATGCG TCCGGCGTAG AGG

FIGURE 351)

91/240

Figure 36A: pDEST16**Thioredoxin N-Fusion Protein
in E. coli with T7 Promoter**

mRNA →

T7 Promoter

1 gat ctc gat ccc gcg aaa tta ata cga ctc act ata ggg aga cca caa cgg
 cta gag cta ggg cgc ttt aat tat gct gag tga tat ccc tct ggt gtt gcc

52 ttt ccc tct aga aat aat ttt gtt taa ctt taa gaa gga gat ata cat atg Start
 aaa ggg aga tct tta tta aaa caa att gaa att ctt cct cta tat gta atc Translation Trx

103 S D K — — —
 agc gat aaa att att cac ctg act gac gac agt ttt gac acg gat gta ctc
 tgc cta ttt taa gtg gac tga ctg ctg tca aaa ctg tgc cta cat gag → //

//—358 gtg gcg gca acc aaa gtg ggt gca ctg tct aaa ggt cag ttg aaa gag ttc
 cac cgc cgt tgg ttt cac cca cgt gac aga ttt cca gtc aac ttt ctc aag

409 ctc gac gct aac ctg gcc ggt tct ggt ggt gat gac gat gac aag atc
 gag ctg cga ttg gac cgg cca aga cca cta ctg cta ctg ttc tag

460 T S L Y K K A attR1
 aca agt ttc tac aaa aaa gct gaa cga gaa acg taa aat gat ata aat atc
 tgt tca aac atg ttt ttt cga ctt gct ctt tgc att tta cta tat tta tag //

Int

92/240

pDEST16 6675 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
104..457	trxA
585..461	attr1
694..1353	CmR
1473..1557	inactivated ccdA
1695..2000	ccdB
2041..2165	attr2

1 AGATCTCGAT CCCCGCAAAT TAATACGACT CACTATAGGG AGACCACAAC GGTTTCCCTC
 61 TAGAAATAAT TTTGTTAAC TTTAAGAAGG AGATATAACAT ATGAGCGATA AAATTATTCA
 121 CCTGACTGAC GACAGTTTG ACACGGATGT ACTCAAAGCG GACGGGGCGA TCCTCGTCGA
 181 TTTCTGGCA GAGTGGTGC GTCGGTCAA AATGATGCC CCGATTCTGG ATGAAATCGC
 241 TGACCAATAT CAGGGCAAAC TGACCGTTGC AAAACTGAAC ATCGATCAAA ACCCTGGCAC
 301 TGCGCCGAAA TATGGCATCC GTGGTATCCC GACTCTGCTG CTGTTCAAAA ACGGTGAAGT
 361 GCGGCCAACC AAAGTGGGTG CACTGTCTAA AGGTCAGTTG AAAGAGTTCC TCGACGCTAA
 421 CCTGGCCGGT TCTGGTTCTG GTGATGACGA TGACAAGATC ACAAGTTGT ACAAAAAAGC
 481 TGAACGAGAA ACGTAAAATG ATATAAAATAT CAATATATTA AATTAGATTT TGCATAAAA
 541 ACAGACTACA TAATACTGTA AAACACAACA TATCCAGTCA CTATGGCGGC CGCATTAGGC
 601 ACCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATAATG TGTGGATTTT GAGTTAGGAT
 661 CCGGGCAGAT TTTCAGGAGC TAAGGAAGCT AAAATGGAGA AAAAAATCAC TGGATATACC
 721 ACCGTTGATA TATCCAATG GCATCGTAA GAACATTG AGGCATTCA GTCAGTTGCT
 781 CAATGTACCT ATAACCAGAC CGTTCAGCTG GATATTACGG CCTTTTAAA GACCGTAAAG
 841 AAAATAAAGC ACAAGTTTA TCCGGCCTT ATTACACATTC TTGCCGCCT GATGAATGCT
 901 CATCCGAAT TCCGTATGGC AATGAAAGAC GGTGAGCTGG TGATATGGGA TAGTGTTCAC
 961 CCTTGTACCA CCGTTTCCA TGAGCAAAC GAAACGTTT CATCGCTCTG GAGTGAATAC
 1021 CACGACGATT TCCGGCAGTT TCTACACATA TATTCGCAAG ATGTGGCGTG TTACGGTGA
 1081 AACCTGGCCT ATTTCCCTAA AGGGTTTATT GAGAATATGT TTTTCGTCTC AGCCAATCCC
 1141 TGGGTGAGTT TCACCAAGTT TGATTAAAC GTGGCCAATA TGGACAACCTT CTTGCC
 1201 GTTTTCACCA TGGGCAAATA TTATACGCAA GGCGACAAGG TGCTGATGCC GCTGGCGATT
 1261 CAGGTTCATC ATGCCGTCTG TGATGGCTTC CATGTCGGCA GAATGCTTAA TGAATTACAA
 1321 CAGTACTGCG ATGAGTGGCA GGGCGGGCG TAAACGCGTG GATCCGGCTT ACTAAAAGCC
 1381 AGATAACAGT ATGCGTATTT GCGCGCTGAT TTTTGCCTA TAAGAATATA TACTGATATG
 1441 TATACCCGAA GTATGTCAA AAGAGGTGTG CTATGAAGCA GCGTATTACA GTGACAGTTG
 1501 ACAGCGACAG CTATCAAGTT CTCAAGGCAT ATATGATGTC AATATCTCCG GTCTGGTAAG
 1561 CACAACCATG CAGAATGAAG CCCGTGCTC GCGTGCCGAA CGCTGGAAAG CGGAAAATCA
 1621 GGAAGGGATG GCTGAGGTCG CCCGGTTAT TGAAATGAAC GGCTCTTTG CTGACGAGAA
 1681 CAGGGACTGG TGAAATGCAG TTTAAGGTTT ACACCTATAA AAGAGAGAGC CGTTATCGTC
 1741 TGTTTGTTGGA TGTACAGAGT GATATTATTG ACACGCCGG GCGACGGATG GTGATCCCC
 1801 TGGCCAGTGC ACGTCTGCTG TCAGATAAAG TCTCCCGTGA ACTTTACCCG GTGGTGCATA
 1861 TCGGGGATGA AAGCTGGCCG ATGATGACCA CCGATATGGC CAGTGTGCCG GTCTCCGTTA
 1921 TCGGGGAAGA AGTGGCTGAT CTCAGCCACC GCGAAAATGA CATAAAAAAC GCCATTAACC
 1981 TGATGTTCTG GGGAAATATAA ATGTCAGGCT CCCTTATACA CAGCCAGTCT GCAGGTCGAC
 2041 CATAGTGACT GGATATGTT TGTTTACAG TATTATGTAG TCTGTTTTT ATGAAAATC
 2101 TAATTTAATA TATTGATATT TATATCATT TACGTTCTC GTTCAGCTTT CTTGTACAAA
 2161 GTGGTGATGA TCCGGCTGCT AACAAAGCCC GAAAGGAAGC TGAGTTGGCT GCTGCCACCG
 2221 CTGAGCAATA ACTAGCATAA CCCCTGGGG CCTCTAAACG GGTCTGAGG GTTTTTTGC
 2281 TGAAAGGAGG AACTATATCC GGATATCCAC AGGACGGGTG TGGTGCCT GATCGCGTAG
 2341 TCGATAGTGG CTCCAAGTAG CGAACGAGC AGGACTGGGC GGCGCCAAA CGGGTCGGAC
 2401 AGTGCTCCGA GAACGGGTGC GCATAGAAAT TGCATCAACG CATATAGCGC TAGCAGCACG
 2461 CCATAGTGAC TGGCGATGCT GTCGGAATGG ACGATATCCC GCAAGAGGCC CGGCAGTACC
 2521 GGCATAACCA AGCCTATGCC TACAGCATCC AGGGTGACGG TGCCGAGGAT GACGATGAGC
 2581 GCATTGTTAG ATTICATACA CGGTGCCTGA CTGCGTTAGC AATTAACTG TGATAAACTA
 2641 CCGCATTAAA GCTTATCGAT GATAAGCTGT CAAACATGAG AATTCTGAA GACGAAAGGG
 2701 CCTCGTGATA CGCCTATTTT TATAGGTTAA TGTGATGATA ATAATGGTTT CTTAGACGTC
 2761 AGGTGGCACT TTTCGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTT TCTAAATACA-

FIGURE 36B

93/240

2821 TTCAAATATG TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA
 2881 AAGGAAGAGT ATGAGTATTG AACATTTCCG TGTGCCCTT ATTCCCTTT TTGCGGCATT
 2941 TTGCCTTCCT GTTTTGCTC ACCCAGAAAC GCTGGTGAAA GTAAAAGATG CTGAAGATCA
 3001 GTTGGGTGCA CGAGTGGGTT ACATCGAAT GGATCTCAAC AGCGGTAAAGA TCCTTGAGAG
 3061 TTTTCGCCCC GAAGAACGTT TTCCAATGAT GAGCACTTT AAAGTTCTGC TATGTGGCGC
 3121 GGTATTATCC CGTGGTACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA
 3181 GAATGACTTG GTTGAGTACT CACCAAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT
 3241 AAGAGAATTA TGCACTGCTG CCATAACCAT GAGTGATAAC ACTGCGGCCA ACTTACTTCT
 3301 GACAACGATC GGAGGACCGA AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT
 3361 AACTCGCCTT GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA
 3421 CACCAACGATC CCTGCAGCAA TGGCAACAAAC GTTGCAGCAA CTATTAACCTG GCGAACTACT
 3481 TACTCTAGCT TCCCAGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAG TTGCAGGACC
 3541 ACTTCTGCGC TCGGGCCTTC CGGGTGGCTG GTTATTGCT GATAAAATCTG GAGCCGGTGA
 3601 GCGTGGGTCT CGCGGTATCA TTGCAGCACT GGGGCCAGAT GTAAAGCCCT CCCGTATCGT
 3661 AGTTATCTAC ACGACGGGAA GTCAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA
 3721 GATAGGTGCC TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTACT CATATATACT
 3781 TTAGATTGAT TAAAAACTTC ATTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTGA
 3841 TAATCTCATG ACCAAAAATCC CTTAACGTGA GTTTTCGTT CACTGAGCGT CAGACCCCGT
 3901 AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA
 3961 AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTGCGG GATCAAGAGC TACCAACTCT
 4021 TTTTCGAAG GTAACCTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT
 4081 GCCCTAGTTA GGCCACCACT TCAAGAACCTC TGTAGCACCG CCTACATACC TCGCTCTGCT
 4141 AATCCTGTTA CCAGTGGCTG CTGCGAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC
 4201 AAGACGATAG TTACCGGATA AGGCGCAGCG GTGCGGTGA ACGGGGGGTT CGTGCACACA
 4261 GCCCAGCTTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA
 4321 AAGGCCACCG CTTCCGAAG GGAGAAAGGC GGACAGGTAT CGCGTAAGCG GCAGGGTCGG
 4381 AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACAGCC TGGTATCTTT ATAGCCTGT
 4441 CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTTGTA TGCTCGTCAG GGGGGCGGAG
 4501 CCTATGGAAA AACGCCAGCA ACGCGGCCCTT TTACCGGTT CTGGCCTTT GCTGGCCTTT
 4561 TGCTCACATG TTCTTCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT
 4621 TGAGTGAGCT GATACCGCTC GCCCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA
 4681 GGAAGCGGAA GAGCGCCTGA TGCGGTATTT TCTCCTTACG CATCTGTGCG GTATTTCAC
 4741 CCGCATATAT GGTGCACTCT CAGTACAATC TGCTCTGATG CCGCATAGTT AAGCCAGTAT
 4801 ACACCTCGCT ATCGCTACGT GACTGGTCA TGGCTGCGCC CCGACACCCG CCAACACCCG
 4861 CTGACGCC CGTACGGCT TGTCTGCTCC CGGCATCCGC TTACAGACAA GCTGTGACCG
 4921 TCTCCGGAG CTGCATGTGT CAGAGGTTTT CACCGTCATC ACCGAAACGC GCGAGGCAGC
 4981 TGCGTAAAG CTCATCAGCG TGGCTGTGA GCGATTACAA GATGTCTGCC TGTTCATCCG
 5041 CGTCAGCTC GTTGAGTTTC TCCAGAAGCG TTAATGTCTG GCTTCTGATA AAGCGGGCCA
 5101 TGTTAAAGGGC GGTTTTTCC TGTTGGTCA CTGATGCCCT CGTGTAAAGGG GGATTTCTGT
 5161 TCATGGGGGT AATGATACCG ATGAAACAGAG AGAGGATGCT CACGATAACGG GTTACTGTATG
 5221 ATGAACATGC CGGGTTACTG GAACGTTGTG AGGGTAAACA ACTGGCGGTA TGGATGCC
 5281 GGGACCAAGAG AAAAATCACT CAGGGTCAAT GCCAGCGCTT CGTTAATACA GATGTAGGT
 5341 TTCCACAGGG TAGCCAGCAG CATCCTGCGA TGCGATCCG GAACATAATG GTGCAGGGCG
 5401 CTGACTTCCG CGTTTCCAGA CTTTACGAAA CACGAAACCG GAAGACCATT CATGTTGTTG
 5461 CTCAGGTGCGC AGACGTTTG CAGCAGCAGT CGCTTCACGT TCGCTCGCGT ATCGGTGATT
 5521 CATTCTGCTA ACCAGTAAGG CAACCCCGCC AGCCTAGCG GGTCTCAAC GACAGGAGCA
 5581 CGATCATGCG CACCCGTGGC CAGGACCCAA CGCTGCCGA GATGCGCCGC GTGCGGCTGC
 5641 TGGAGATGGC GGACGCGATG GATATGTTCT GCCAAGGGTT GGTTTGCAGA TTCACAGTTC
 5701. TCCGCAAGAA TTGATTGGCT CCAATTCTTG GAGTGGTGA TCCGTTAGCG AGGTGCC
 5761 GGCTTCCATT CAGGTCGAGG TGGCCGGCT CCATGCACCG CGACGCAACG CGGGGAGGCA
 5821 GACAAGGTAT AGGGCGGCC CTACAATCCA TGCCAACCCG TTCCATGTGC TCGCCGAGGC
 5881 GGCATAAATC GCCGTGACGA TCAGCGGTCC AGTGATCGAA GTTAGGCTGG TAAGAGCC
 5941 GAGCGATCCT TGAAGCTGTC CCTGATGGTC GTCATCTACC TGCCTGGACA GCATGGCCTG
 6001 CAACCGGGGCA ATCCCGATGC CGCCCGAAGC GAGAAGAATC ATAATGGGA AGGCCATCCA
 6061 GCCTCGCGTC GCGAACGCCA GCAAGACGTA GCCCAGCGCG TCGGCCGCCA TGCCGGCGAT
 6121 AATGGCCTGC TTCTCGCCGA AACGTTGGT GGCGGGACCA GTGACGAAGG CTTGAGCGAG
 6181 GCGTGCAAG ATTCCGAATA CCGCAAGCGA CAGGCCGATC ATCGTCGCGC TCCAGCGAAA
 6241 CGGGTCTCG CGAATATGA CCCAGAGCGC TGCCGGCACC TGTCTACGA GTTGCATGAT-

FIGURE 36C

94/240

6301 AAAGAAGACA GTCATAAGTG CGCGGACGAT AGTCATGCC CGCGCCACC GGAAGGAGCT
6361 GACTGGTTG AAGGCTCTCA AGGCATCGG TCGATCGACG CTCTCCCTTA TGCGACTCCT
6421 GCATTAGGAA GCAGCCCAGT AGTAGGTTGA GGCGTTGAG CACCGCCGCC GCAAGGAATG
6481 GTGCATGCAA GGAGATGGCG CCCAACAGTC CCCCGGCCAC GGGGCCTGCC ACCATACCCA
6541 CGCCGAAACA AGCGCTCATG AGCCCGAAGT GGCGAGCCCG ATCTTCCCCA TCGGTGATGT
6601 CGGCGATATA GGCGCCAGCA ACCGCACCTG TGGCGCCGGT GATGCCGGCC ACGATGCC
6661 CGGCGTAGAG GATCG

FIGURE 36D

95/240

mRNA

T7 Promoter

1 gat ccc gcg aaa tta ata cga ctc act ata **ggg** aga cca caa cgg ttt ccc
ctt ggg cgc ttt **aat tat gct gag tga** tat **ccc** tct ggt gtt gcc aaa ggg

52 tct aga aat aat ttt gtt taa ctt taa gaa gga gat ata cat **atg tgg tac**
aga tct tta tta aaa caa att gaa att ctt cct cta tat gta tac agc atg

103 **H H H H L E S T S L Y K K A**
tac cat cac cat cac cat cac ctc gaa tca aca agt tgg tac aaa aaa gct
atg gta gtg gta gtg gta gtg gag ctt agt tgt tca aac atg ttt ttt cga

Start Translation

attR1 Int

96/240

pDEST17 6354 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
-----------------------------	---------------------

258..134	attr1
367..1026	CmR
1146..1230	inactivated ccdA
1368..1673	ccdB
1714..1838	attr2
2564..3421	ampR

1 CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC CCTCTAGAAA
 61 TAATTGTT TAACTTAAG AAGGAGATAT ACATATGTCG TACTACCATC ACCATCACCA
 121 TCACCTCGAA TCAACAAGTT TGTACAAAAA AGCTGAACGA GAAAAGTAA ATGATATAAA
 181 TATCAATATA TTAAATTAGA TTTTGATCAA AAAACAGACT ACATAATACT GTAAAACACA
 241 ACATATCCAG TCACTATGGC GGCGCATTAA GGCACCCAG GCTTTACACT TTATGCTTCC
 301 GGCTCGTATA ATGTGTGGAT TTTGAGTTAG GATCCGTCGA GATTTTCAGG AGCTAAGGAA
 361 GCTAAAATGG AGAAAAAAAT CACTGGATAT ACCACCGTTG ATATATCCCA ATGGCATCGT
 421 AAAGAACATT TTGAGGCATT TCAGTCAGTT GCTCAATGTA CCTATAACCA GACCCTTCAG
 481 CTGGATATTA CGGCCCTTTT AAAGACCGTA AAGAAAATA AGCACAAGTT TTATCCGGCC
 541 TTTATTCAACA TTCTGCCCG CCTGATGAAT GCTCATCCGG AATTCCGTAT GGCAATGAAA
 601 GACGGTGAGC TGGTGATATG GGATAGTGTG CACCCCTGTT ACACCGTTT CCATGAGCAA
 661 ACTGAAACGT TTTCATCGCT CTGGAGTGA TACACGACG ATTCCGGCA GTTTCTACAC
 721 ATATATTGCG AAGATGTGGC GTGTTACGGT GAAAACCTGG CCTATTCCC TAAAGGTTT
 781 ATTGAGAATA TGTTTTCGT CTCAGCCAAT CCCTGGGTGA GTTTCACCAG TTTTGATTTA
 841 AACGTGGCCA ATATGGACAA CTTCTTCGCC CCCGTTTCA CCATGGGCAA ATATTATACG
 901 CAAGGCACAA AGGTGCTGAT GCCGCTGGCG ATTCAAGGTT ATCATGCCGT CTGTGATGGC
 961 TTCCATGTCG GCAGAATGCT TAATGAATTA CAACAGTACT GCGATGAGTG GCAGGGCGGG
 1021 GCGTAAAGAT CTGGATCCGG CTTACTAAAA GCCAGATAAC AGTATGCGTA TTTGCGCGCT
 1081 GATTGTTGCG GTATAAGAAT ATATACTGAT ATGTATACCC GAAGTATGTC AAAAAGAGGT
 1141 GTGCTATGAA GCAGCGTATT ACAGTGACAG TTGACAGCGA CAGCTATCAG TTGCTCAAGG
 1201 CATATATGAT GTCAATATCT CCGGTCTGGT AAGCACAAAC ATGCAGAATG AAGCCCGTCG
 1261 TCTGCGTGC GAACGCTGGA AAGCGGAAAA TCAGGAAGGG ATGGCTGAGG TCGCCCCGTT
 1321 TATTGAAATG AACGGCTCTT TTGCTGACGA GAACAGGGAC TGGTGAATG CAGTTAAGG
 1381 TTTACACCTA TAAAAGAGAG AGCCGTTATC GTCTGTTGT GGATGTACAG AGTGTATATTA
 1441 TTGACACGCC CGGGCAGCG ATGGTATGCC CCCTGGCCAG TGACACGCTG CTGTCAGATA
 1501 AAGTCTCCCG TGAACCTTAC CCGGTGGTGC ATATCGGGGA TGAAAGCTGG CGCATGATGA
 1561 CCACCGATAT GGCCAGTGT CCGGTCTCCG TTATCGGGGA AGAAGTGGCT GATCTCAGCC
 1621 ACCGCACAA TGACATCAA AACGCCATTA ACCTGATGTT CTGGGGAAATA TAAATGTCAG
 1681 GCTCCCTTAT ACACAGCCAG TCTGCAAGGTC GACCATACTG ACTGGATATG TTGTGTTTTA
 1741 CAGTATTATG TAGTCTGTT TTTATGCAA ATCTAATTAA ATATATTGAT ATTTATATCA
 1801 TTTTACGTTT CTCGTTCAAGC TTTCTTGTAC AAAGTGGTTG ATTCGAGGCT GCTAACAAAG
 1861 CCCGAAAGGA AGCTGAGTT GCTGCTGCC CCGCTGAGCA ATAACTAGCA TAACCCCTTG
 1921 GGGCCTCTAA ACGGGTCTTG AGGGGTTTT TGCTGAAAGG AGGAACATATA TCCGGATATC
 1981 CACAGGACGG GTGTGGTCGC CATGATCGCG TAGTCGATAG TGGCTCCAAG TAGCGAAGCG
 2041 AGCAGGACTG GGCAGCGGCC AAAGCGGTCG GACAGTGCTC CGAGAACGGG TCGCATAGA
 2101 AATTGCATCA ACGCATATAG CGCTAGCAGC ACGCCATAGT GACTGGCGAT GCTGTCGGAA
 2161 TGGACGATAT CCCGCAAGAG GCCCGCAGT ACCGGCATAA CCAAGCCTAT GCCTACAGCA
 2221 TCCAGGGTGA CGGTGCCAG GATGACGATG AGCGCATTGT TAGATTTCAT ACACGGTGCC
 2281 TGACTGCGTT AGCAATTAA CTGTGATAAA CTACCGCATT AAAGCTTATC GATGATAAGC
 2341 TGTCAAACAT GAGAATTCTT GAAGACGAAA GGGCCTCGTG ATACGCCCTAT TTTTATAGGT
 2401 TAATGTCATG ATAATAATGG TTTCTTAGAC GTCAGGTGGC ACTTTTCGGG GAAATGTGCG
 2461 CGGAACCCCT ATTTGTTAT TTTTCTAAAT ACATTCAAAT ATGTATCCGC TCATGAGACA
 2521 ATAACCCCTGA TAAATGCTTC AATAATATTG AAAAAGGAAG AGTATGAGTA TTCAACATTT
 2581 CGGTGTCGCC CTTATTCCCT TTTTGCAGG ATTTTGCTT CCTGTTTTG CTCACCCAGA
 2641 AACGCTGGTG AAAGTAAAG ATGCTGAAGA TCAGTTGGGT GCACGAGTGG GTTACATCGA-

FIGURE 37B

97/240

2701 ACTGGATCTC AACAGCGGTA AGATCCTTGA GAGTTTCGC CCCGAAGAAC GTTTCCAAT
 2761 GATGAGCACT TTTAAAGTTC TGCTATGTGG CGCGGTATTA TCCCGTGTG ACGCCGGCA
 2821 AGAGCAACTC GGTGCCGCA TACACTATTG TCAGAATGAC TTGGTTGAGT ACTCACCACT
 2881 CACAGAAAAG CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCAGTG CTGCCATAAC
 2941 CATGAGTGAT AACACTGCGG CCAACTACT TCTGACAACG ATCGGAGGAC CGAAGGAGCT
 3001 AACCGCTTT TTGCACAAAC TGGGGATCA TGTAACTCGC CTTGATCGTT GGGAACCGGA
 3061 GCTGAATGAA GCCATACCAA ACGACGAGCG TGACACCACG ATGCCTGCAG CAATGGCAAC
 3121 AACGTTGCGC AAACATTAA CTGGCGAAGT ACTTACTCTA GCTTCCCGGC AACAAATTAA
 3181 AGACTGGATG GAGGCGGATA AAGTGCAGG ACCACTCTG CGCTCGGCC TTCCGGCTGG
 3241 CTGGTTTATT GCTGATAAT CTGGAGCCGG TGAGCGTGGG TCTCGCGTA TCATTGCAGC
 3301 ACTGGGGCCA GATGGTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG GGAGTCAGGC
 3361 AACTATGGAT GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA TTAAGCATTG
 3421 GTAACGTCA GACCAAGTTT ACTCATATAT ACTTTAGATT GATTAAAAC TTCATTTTA
 3481 ATTTAAAAGG ATCTAGTGA AGATCCTTT TGATAATCTC ATGACCAAAA TCCCTTAACG
 3541 TGAGTTTCG TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT CTTCTTGAGA
 3601 TCCTTTTTT CTGCGCGTAA TCTGCTGCTT GCAAACAAA AAACCCACCGC TACCAGCGGT
 3661 GGTTTGTGG CC GGATCAAG AGCTACCAAC TCTTTTCCG AAGGTAACGT GCTTCAGCAG
 3721 AGCGCAGATA CCAAATACTG TCCTTCTAGT GTAGCGTAG TTAGGCCACC ACTTCAAGAA
 3781 CTCTGTAGCA CGCCCTACAT ACCTCGCTCT GCTAATCTG TTACCAAGTGG CTGCTGCCAG
 3841 TGGCGATAAG TCGTGTCTTA CCGGGTTGGA CTCAAGACGA TAGTTACCGG ATAAGGCGCA
 3901 GCGGTCGGGC TGAACGGGGG GTTGTGCAC ACAGCCCAGC TTGGAGCGAA CGACCTACAC
 3961 CGAACTGAGA TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTTCCCG AAGGGAGAAA
 4021 GGCAGACAGG TATCCGGTAA CGGGCAGGGT CGGAACAGGA GAGCGCACGA GGGAGCTTCC
 4081 AGGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGTTT CGCCACCTCT GACTTGAGCG
 4141 TCGATTTTG TGATGCTCGT CAGGGGGGGC GAGCCTATGG AAAAACGCCA GCAACCGGC
 4201 CTTTTACGG TTCCGGCCT TTGCTGGCC TTTGCTCAC ATGTTCTTTC CTGCGTTATC
 4261 CCCTGATTCT GTGGATAACC GTATTACCGC CTTTGAGTGA GCTGATACCG CTGCGCCAG
 4321 CGGAACGACC GAGCGCAGCG AGTCAGTGA CGAGGAAGCG GAAGAGCGCC TGATGCGTA
 4381 TTTTCTCCTT ACGCATCTG CGGGTATTT ACACCGCATA TATGGTGCAC TCTCAGTACA
 4441 ATCTGCTCTG ATGCCGCATA GTTAAGCCAG TATACACTCC GCTATCGCTA CGTGAAGGG
 4501 TCATGGCTGC GCCCCGACAC CGCGAACAC CCGCTGACGC GCCCTGACGG GCTTGTCTGC
 4561 TCCCCGCATC CGCTTACAGA CAAGCTGTGA CGCTCTCCG GAGCTGCATG TGTCAGAGGT
 4621 TTTCACCGTC ATCACCGAAA CGCGCGAGGC AGCTGCGGTA AAGCTCATCA GCGTGGTCGT
 4681 GAAGCGATT ACAGATGTCG CGCTGTTCAT CGCGTCCAG CTCGTTGAGT TTCTCCAGAA
 4741 GCGTTAATGT CTGGCTCTG ATAAAGCGGG CCATGTTAAG GGCGGTTTTT TCCTGTTGG
 4801 TCACTGATGC CTCCGTGAA GGGGGATTTC TGTTCATGGG GGTAATGATA CCGATGAAAC
 4861 GAGAGAGGAT GCTCACGATA CGGGTTACTG ATGATGAACA TGCCCGGTTA CTGGAACGTT
 4921 GTGAGGGTAA ACAACTGGCG GTATGGATGC GGCGGGACCA GAGAAAATC ACTCAGGGTC
 4981 AATGCCAGCG CTTCGTTAAT ACAGATGTCG GTGTTCCACA GGGTAGCCAG CAGCATCTG
 5041 CGATGCAGAT CCGGAACATA ATGGTGCAGG GCGCTGACTT CCGCGTTTCC AGACTTTACG
 5101 AAACACGGAA ACCGAAGACC ATTCACTGTT TGCTCAGGT CGCAGACGTT TTGCAGCAGC
 5161 AGTCGCTTCA CGITCGCTCG CGTATCGGTG ATTCAATTCTG CTAACCAGTA AGGCAACCCC
 5221 GCCAGCCTAG CGGGGTCCTC AACGACAGGA GCACGATCAT GCGCACCCGT GGCCAGGACC
 5281 CAACCGCTGCC CGAGATGCGC CGCGTGCAGG TGCTGGAGAT GGCAGACGCG ATGGATATGT
 5341 TCTGCCAAGG GTTGGTTTG GCATTACAG TTCTCCGCAA GAATTGATTG GCTCCAATTC
 5401 TTGGAGTGGT GAATCCGTTA CGCAGGTGCC GCCGGCTTCC ATTCAAGGTCG AGGTGGCCCG
 5461 GCTCCATGCA CGCGACGCA ACAGCGGGAG GCAGACAAGG TATAGGGCGG CGCCTACAAT
 5521 CCATGCCAAC CGCTTCCATG TGCTCGCCGA GGCAGCATAA ATCGCCGTGA CGATCAGCGG
 5581 TCCAGTGATC GAAGTTAGGC TGGTAAGAGC CGCGAGCGAT CCTTGAAGCT GTCCCTGATG
 5641 GTCGTCATCT ACCTGCGCTGG ACAGCATGGC CTGCAACCGC GGCATCCCGA TGCCGCGGAA
 5701 AGCGAGAAGA ATCATAATGG GGAAGGCCAT CCAGCCTCGC GTCGCGAACG CCAGCAAGAC
 5761 GTAGCCCAGC CGCTCGGCCG CCATGCCGGC GATAATGGCC TGCTTCTCGC CGAAACGTTT
 5821 GGTGGCGGGC CCGATGACGA AGGCTTGAGC GAGGGCGTGC AAGATTCCGA ATACCGCAAG
 5881 CGACAGGCCG ATCATGTCG CGCTCCAGCG AAAGCGGTCC TCGCCGAAAA TGACCCAGAG
 5941 CGCTGCCGGC ACCTGTCCTA CGAGTTGCAT GATAAAGAAG ACAGTCATAA GTGCGGCCAG
 6001 GATAGTCATG CCCCCGCGCC ACCGGAAGGA GCTGACTGGG TTGAAGGCTC TCAAGGGCAT
 6061 CGGTGCGATCG ACGCTCTCCC TTATGCGACT CCTGCATTAG GAAGCAGCCCG AGTAGTAGGT
 6121 TGAGGCCGTT GAGCACCAGG GCCGCAAGGA ATGGTGCATG CAAGGAGATG GCGCCAAACA-

FIGURE 37C

98/240

6181 GTCCCCCGGC CACGGGCCT GCCACCATA CCACGCCGAA ACAAGCGCTC ATGAGCCGA
6241 AGTGGCGAGC CCGATCTTCC CCATCGGTGA TGTCGGCGAT ATAGGCGCCA GCAACCGCAC
6301 CTGTGGCGCC GGTGATGCCG GCCACGATGC GTCCGGCGTA GAGGATCGAG ATCT

FIGURE 37D

Figure 38A: pDEST18

FastBac Transfer Vector with p10 Baculovirus Promoter

1 gaagacctcg gcccgtcgccgg cgcttgcggg tggtgctgac cccggatgaa gtggttcgca
 cttctggagc cggcagcgcc gcaacggcc accacgactg gggctactt cacaaggct
 61 tcctcggttt tctggaaaggc gggcatcggt tggtcgccca ggactctagc tatagttcta
 agggccaaa agacctccg ctcgtacaa acaaggcggt cctgagatcg atatcaagat
 121 gttttggct acgtatcgag caagaaaaaa aaacggccaaa /cgggtggag ttttgtgt
 caccacccga tgcatacgcc ttgtttat ttgtgggtt gggaaaccc /agaacacacg
 181 //tatatttaca aatggatcaga aatggatcaga acttacaaca aaaaaaaaaaaaaatatgt
 //aaaaaaatgt ttgttaatgt ttatgtatgt tgaatgttgt tccccctgtt actttataac
 241 //cattttggggatgccccggac ctttatcca acccaacacca atatattataa gtaaaaatgg mRNA
 //aaaaaaatcc tacggccctgt gaaatataatgt tgggttgtgt tatataatataatcc
 301 //atattatattat caaatcattt gtatattatataatataacta tactgtttat tacatattat
 //atataataata gtttagtataa catataatatta attttatgtat atgacattttat atgtaaaata
 361 ttacaatgag gatcatcaca agtttgtaca aaaaagctga acggaaaaacg taaaatgata
 aatgttactc ctatgtgt tcaaacatgt ttttcgact tgctttgc attttactat
 Int ↓ atERI

100 / 240

pDEST18 6613 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
-----------------------------	---------------------

474..1449	ampR
1590..2244	ori
2738..3850	genR
4251..4127	attR1
4501..5160	CmR
5280..5364	inactivated ccdA
5502..5807	ccdB
5848..5972	attR2
6595..25	lacZ

1 GACCGGCCCT GTAGCGGC G ATTAAGCGCG GC GG GTGTGG TGGTTACGCG CAGCGTGACC
 61 GCTACACTTG CCAGCGCCCT AGCGCCCGCT CCTTTCGCTT TCTTCCCTTC CTTTCTCGCC
 121 ACGTTGCCG GCTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTTAGG GTTCCGATTT
 181 AGTGCTTAC GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTT ACGTAGTGGG
 241 CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT
 301 GGACTCTTGT TCCAAACTGG AACAAACACTC AACCCATATCT CGGTCTATTTC TTTTGATTAA
 361 TAAGGGATT TGCCGATTTG GGCCTATTGG TTAAAAAAATG AGCTGATTTA ACAAAAATTT
 421 AACCGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG GTGGCACTTT TCAGGGAAAT
 481 GTGCGCGGAA CCCCTATTTG TTTATTTTTT TAAATACATT CAAATATGTA TCCGCTCATG
 541 AGACAATAAC CCTGATAAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA
 601 CATTTCCGTG TCGCCCTTAT TCCCTTTTTT CGGGCATTTT GCCTTCCTGT TTTTGCTCAC
 661 CCAGAAACGC TGGTGAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG AGTGGGTTAC
 721 ATCGAACTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT TTCGCCCCGA AGAACGTTTT
 781 CCAATGATGA GCACCTTTAA AGTTCTGCTA TGTGGCGCGG TATTATCCCG TATTGACGCC
 841 GGGCAAGAGC AACTCGGTG CGCATAACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA
 901 CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGCTGCC
 961 ATAACCATGA GTGATAACAC TGGGGCCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG
 1021 GAGCTAACCG CT TTTTGCA CAACATGGGG GATCATGTAA CTCGCCTTGA TCGTTGGAA
 1081 CCGGAGCTGA ATGAAGCCAT ACCAAACGAC GAGCGTGACA CCACGATGCC TGTAGCAATG
 1141 GCAACAACGT TCGC CAAACT ATTAACTGGC GAACTACTTA CTCTAGCTTC CCGGCAACAA
 1201 TTAATAGACT GGATGGAGGC GGATAAAGTT GCAGGACCAC TTCTGCGCTC GGCCCTCCG
 1261 GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCCGGTGAGC GTGGGTCTCG CGGTATCATT
 1321 GCAGCACTGG GGCCAGATGG TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT
 1381 CAGGCAACTA TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC ACTGATTAAG
 1441 CATTGGTAAC TGTCA GACCA AGTTTACTCA TATATACTTT AGATTGATTT AAAACTTCAT
 1501 TTTTAATTAA AAAGGATCTA GGTGAAGATC CTTTTGATA ATCTCATGAC CAAATCCCT
 1561 TAACTGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCGTAG AAAAGATCAA AGGATCTTCT
 1621 TGAGATCCTT TTTTCTGCG CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA
 1681 GCGGTGGTTT GTTTGC CGGA TCAAGAGCTA CCAACTCTT TTCCGAAGGT AACTGGCTTC
 1741 AGCAGAGCGC AGATACAAA TACTGTCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC
 1801 AAGAACTCTG TAGCACC G G TACATACCTC GCTCTGCTAA TCC TGT TACC AGTGGCTGCT
 1861 GCCAGTGGCG ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG
 1921 GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGCAACACAGC CCAGCTGGA GCGAACGACC
 1981 TACACCGAAC TGAGATACCT ACAGCGTGAG CATTGAGAAA GCGCCACGCT TCCCAGGG
 2041 AGAAAGGC GG ACAGGTATCC GGTAAAGCGGC AGGGTGGAA CAGGAGAGCG CACGAGGGAG
 2101 CTTCCAGGGG GAAACGCTG GTATCTTAT AGTCCTGCTG GTTTCGCCA CCTCTGACTT
 2161 GAGCGTCGAT TTTTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC
 2221 GCGGCCTTTT TACGGTTCC GGCCTTTGC TGGCCTTTG CTACATGTT CTTTCTGCG
 2281 TTATCCCCGT ATTCTGTGGA TAACCGTATT ACCGCCTTG AGTGAGCTGA TACCGCTCGC
 2341 CGCAGGCCAA CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCGCCTGATG
 2401 CGGTATTTC TCCTTACGCA TCTGTGCGGT ATTTCACACC GCAGACCGAGC CGCGTAACCT
 2461 GGCAAAATCG GTTACGTTG AGTAATAAT GGATGCCCTG CGTAAGCGGG TGTGGCGGA-

FIGURE 38B

2521 CAATAAAGTC TTAAACTGAA CAAAATAGAT CTAAACTATG ACAATAAAGT CTTAAACTAG
 2581 ACAGAATAGT TGTAAACTGA AATCAGTCCA GTTATGCTGT GAAAAAGCAT ACTGGACTTT
 2641 TGTTATGGCT AAAGCAAAC CTTCATTTTC TGAAGTGCAA ATTGCCCGTC GTATTAAAGA
 2701 GGGGCGTGGC CAAGGGCATG GTAAAGACTA TATTCGCGGC GTTGTGACAA TTTACCGAAC
 2761 AACTCCGCGG CGGGGAAGCC GATCTCGGCT TGAACGAATT GTTAGGTGGC GGTACTTGGG
 2821 TCGATATCAA AGTGCATCAC TTCTTCCGT ATGCCAACT TTGTATAGAG AGCCACTGCG
 2881 GGATCGTCAC CGTAATCTGC TTGCACTGTAG ATCACATAAG CACCAAGCGC GTTGGCCTCA
 2941 TGCTTGAGGA GATTGATGAG CGCGGTGGCA ATGCCCTGCC TCCGGTGTCT GCCGGASACT
 3001 GCGAGATCAT AGATATAGAT CTCACTACGC GGCTGCTCAA ACCTGGCAG AACGTAAGCC
 3061 GCGAGAGCGC CAACAAACCGC TTCTTGGTCG AAGGCAGCAA GCGCGATGAA TGTCTTAAC
 3121 CGGAGCAAGT TCCCAGGTTA ATCGGAGTCC GGCTGATGTT GGGAGTAGGT GGCTACGTCT
 3181 CCGAACTCAC GACCGAAAAG ATCAAGAGCA GCCCGCATGG ATTTGACTTG GTCAGG3CCG
 3241 AGCCTACATG TGCAGATGAT GCCCATACTT GAGCCACCTA ACTTTGTTT AGGGCGACTG
 3301 CCCTGCTGCG TAACATCGTT GCTGCTGCGT AACATCGTTG CTGCTCCATA ACATCA-AACA
 3361 TCGACCCACG GCGTAACCGC CTTGCTGCTT GGATGCCCGA GGCATAGACT GTACAAA
 3421 ACAGTCATAA CAAGCCATGA AAACCGCCAC TGCGCGTTA CCACCGCTGC GTTCGGTCAA
 3481 GGTTCTGGAC CAGTTGCGTG AGCGCATAACG CTACTTGCAT TACAGTTTAC GAACCG-AACA
 3541 GGCTTATGTC AACTGGGTTG GTGCCCTCAT CCGTTTCCAC GGTGTCGCGC ACCCGG-CAAC
 3601 CTTGGGCAGC AGCGAAGTCG AGGCATTCTC GTCCCTGGCTG GCGAACGAGC GCAAGGTTTC
 3661 GGTCTCCACG CATCGTCAGG CATTGGCGGC CTTGCTGTT TCCTACGGCA AGGTGCTGTG
 3721 CACGGATCTG CCCTGGCTTC AGGAGATCGG AAGACCTCGG CCGTCGCGGC GCTTGGGTT
 3781 GGTGCTGACC CCGGATGAAG TGGTTCGAT CCTCGGTTT CTGGAAGGGC AGCATCGTTT
 3841 GTTGGCCAG GACTCTAGCT ATAGTTCTAG TGGTTGGCTA CGTATCGAGC AAGAAAATAA
 3901 AACGCCAAC GCGTTGGAGT CTTGTTGCT ATTTTTACAA AGATTTCAGAA ATACGCATCA
 3961 CTTACAACAA GGGGGACTAT GAAATTATGC ATTTTGAGGA TGCCGGGACC TTTAATTCAA
 4021 CCCAACACAA TATATTATAG TTAATAAAGA ATTATTTATC AAATCATTG TATATTAAATT
 4081 AAAATACTAT ACTGTAAATT ACATTTTATT TACAATGAGG ATCATCACA GTTTGTACAA
 4141 AAAAGCTGAA CGAGAAACGT AAAATGATAT AAATATCAAT ATTTAAATT AGATTTTGCA
 4201 TAAAAAACAG ACTACATAAT ACTGTAAAAC ACAACATATC CAGTCACTAT GCGGGC3GCT
 4261 AAGTGGCAG CATCACCCGA CGCACTTGC GCCGAATAAA TACCTGTGAC GGAAGATCAC
 4321 TTCGAGAAT AAATAAATCC TGGTGTCCCT GTTGATACCG GGAAGCCCTG GGCAACTTT
 4381 TGGCAAAAT GAGACGTTGA TCGGCACGTA AGAGGTTCCA ACTTTCACCA TAATGAA
 4441 AGATCACTAC CGGGCGTATT TTTTGAGTTA TCGAGATTTT CAGGAGCTAA GGAAGCTAAA
 4501 ATGGAGAAAA AAATCACTGG ATATAACCAC GTTGATAT CCCAATGGCA TCGTAAGGAA
 4561 CATTGGAGG CATTTCAGTC AGTTGCTCAA TGTACCTATA ACCAGACCGT TCAGCTGGAT
 4621 ATTACGGCCT TTTTAAAGAC CGTAAAGAAA AATAAGCACA AGTTTATCC GGCTTTATT
 4681 CACATTCTTG CCCGCCTGAT GAATGCTCAT CGGAAATTCC GTATGGCAAT GAAAGACGGT
 4741 GAGCTGGTGA TATGGGATAG TGTTCACCCCT GTTACACCG TTTTCCATGA GCAAACGTGAA
 4801 ACGTTTCAT CGCTCTGGAG TGAATACAC GACGATTCTC GGCAGTTCT ACACATATAT
 4861 TCGCAAGATG TGGCGTGTG CCGTGAAAC CTGGCCTATT TCCCTAAAGG GTTTATTGAG
 4921 AATATGTTT TCGTCTCAGC CAATCCCTGG GTGAGTTCA CCAGTTTGA TTTAAACGTG
 4981 GCCAATATGG ACAACTCTT CGCCCCCGTT TTCACCATGG GCAAATATTA TACGCCAGGC
 5041 GACAAGGTGC TGATGCCGT GGCGATTCTAG GTTCATCATG CCGCTGTGA TGGCTTCCAT
 5101 GTCGGCAGAA TGCTTAATGA ATTACAACAG TACTGCGATG AGTGGCAGGG CGGGGCGTAA
 5161 ACGCGTGGAT CGGGCTTAAC AAAAGCCAGA TAACAGTATG CGTATTGCG CGCTGATT
 5221 TCGGTATAA GAATATATAC TGATATGTAT ACCCGAAGTA TGTAAAAAG AGGTGTCGCTA
 5281 TGAAGCAGCG TATTACAGTG ACAGTTGACA GCGACAGCTA TCAGTTGCTC AAGGCATATA
 5341 TGATGTCAAT ATCTCCGTC TGGTAAGCAC AACCATGCG AATGAAGGCC GTCGTCTGCG
 5401 TGCGAACGC TGGAAAGCGG AAAATCAGGA AGGGATGGCT GAGGTCGCC GGTATTGAG
 5461 AATGAACGGC TCTTTTGTG ACGAGAACAG GGACTGGTGA AATCGAGTTT AAGGTTTACA
 5521 CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTGGATGT ACAGAGTGT ATTATTGACA
 5581 CGCCCGGGCG ACGGATGGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA GATAAAAGTCT
 5641 CCCGTGAAC TTAACCGGT GTGCATATCG GGGATGAAAG CTGGCGCATG ATGACCACCG
 5701 ATATGGCCAG TGTGCCGT TCCGTTATCG GGGAGAAGT GGCTGATCTC AGCCACCGCG
 5761 AAAATGACAT CAAAAACGCC ATTAACCTGA TGTTCTGGGG AATATAAATG TCAGGCTCCC
 5821 TTATACACAG CCAGTCTGCA GGTGACCAT AGTGAATGGA TATGTTGTGT TTTACAGTAT
 5881 TATGTAGTCT GTTTTTATG CAAAATCTAA TTTAATATAT TGATATTAT ATCATTTCAC
 5941 GTTCTCGTT CAGCTTCTT GTACAAAGTG GTGATAGCTT GTCGAGAAGT ACTAGAGGAT-

102/240

6001 CATAATCAGC CATAACCACAT TTGTAGAGGT TTTACTTGCT TTAAAAAAACC TCCCACACCT
6061 CCCCCCTGAAC CTGAAACATA AAATGAATGC AATTGTTGTT GTTAACTTGT TTATTGCAGC
6121 TTATAATGGT TACAAATAAA GCAATAGCAT CACAAATTTC ACAAAATAAG CATTTTTTTC
6181 ACTGCATTCT AGTTGTGGTT TGTCCAAACT CATCAATGTA TCTTATCATG TCTGGATCTG
6241 ATCACTGCTT GAGCCTAGGA GATCCGAACC AGATAAGTGA AATCTAGTTC CAAACTATTT
6301 TGTCACTTTT AATTTTCGTA TTAGCTTACG ACGCTACACC CAGTCCCCAT CTATTTGTC
6361 ACTCTTCCCT AAATAATCCT TAAAAACTCC ATTTCCACCC CTCCCAAGTTC CCAACTATTT
6421 TGTCCGCCCA CAGCGGGGCA TTTTCTTCC TGTTATGTT TTAATCAAAC ATCCTGCCAA
6481 CTCCATGTGA CAAACCGTCA TCTTCGGCTA CTTTTCTCT GTCAACAGAAT GAAAATTTT
6541 CTGTCATCTC TTCGTTATTA ATGTTTGTA TTGACTGAAT ATCAACGCTT ATTTGCAGCC
6601 TGAATGGCGA ATG

FIGURE 38D

103/240

1 ggtgacgcgg tcatcttcc attgtaacgt aaatggcaac tttagatga acgcgcgtgc
ccactgcggc agtagaaaagg taacattgca tttaccgttg aacatctact tgccgcacag

61 aaaaaacccgg ccagtttttt ccacaaaactc ggcgcacggct gtctcgtaaa cttttgcgtc
ttttttggcc ggtcaaagaa ggtgttttag cgcgtgcga cagagcattt gaaaacgcag

121 // gcaacaatcg cgatgaccc tcgttatgga aatttttct aaaaaagtgt cgttcatgtc
// cggtttagc gctactggag caccataacct ttttttcaca gcaagtacag

181 // ggcggcggcg ttgcgcgtcc gbtacgcgcg acggcacac agcaggacac ctttgcgg
// ccggccgcgc aagcgcgagg ctatgcgcgc tgccgtgtg tcgttcgtt ggaacaggcc
// atgt

241 ctcgattatc ataaaacaatc ctgcaggcat gcaagctggta tcatccacaag tttgtacaaa
gagctaatacg tattttgttag gacgtccgtt cgttcgcacct agtagtgttc aaacatgtt
Int V

104/240

pDEST19 6668 bp (rotated to position 1000)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
515..391	attR1
765..1424	CmR
1544..1628	inactivated ccdA
1766..2071	ccdB
2112..2236	attR2
2852..2895	lacZ
3344..4319	ampR
4460..5114	ori
5608..52	genR

1 AGTGGTTCGC ATCCTCGGTT TTCTGGAAGG CGAGCATCGT TTGTTGCC AGGACTCTAG
 61 CTATAGTTCT AGTGGTGGC TACGTATATC AAATACTGT AGGTGACGCC GTCATCTTC
 121 CATTGTAACG TAAATGGCAA CTTGTAGATG AACCGCCTGT CAAAAAACCG GCCAGTTCT
 181 TCCACAAACT CGCGCACGGC TGTCCTGAA ACTTTTGCGT CGCAACAATC GCGATGACCT
 241 CGTGGTATGG AAATTITTTTC TAAAAAAAGTG TCGTTCATGT CGCGGGCGGG CGCGTTCGCG
 301 CTCCGGTAGC CGCGACGGGC ACACAGCAGG ACAGCCTGT CGGCTCGAT TATCATAAAC
 361 AATCCTGCAG GCATGCAAGC TCGGATCATC ACAAGTTGT ACAAAAAAGC TGAACGAGAA
 421 ACGTAAAATG ATATAAATAT CAATATATA AATTAGATTT TGCATAAAAA ACAGACTACA
 481 TAATACTGTA AAACACAAACA TATCCAGTCA CTATGGCGGC CGCTAAGTTG GCAGCATCAC
 541 CCGACGCACT TTGCGCCGAA TAAATACCTG TGACGGAAGA TCACCTCGCA GAATAAATAA
 601 ATCCTGGTGT CCTGTGAT ACCGGGAAGC CCTGGGCAA CTTTGGCGA AAATGAGACG
 661 TTGATCGGCA CGTAAGAGGT TCCAACTTT ACCATAATGA AATAAGATCA CTACCGGGCG
 721 TATTTTTTGA GTTATCGAGA TTTTCAGGAG CTAAGGAAGC TAAAATGGAG AAAAAAATCA
 781 CTGGATATAC CACCGTTGAT ATATCCAAT GGCACTCGAA AGAACATTTT GAGGCATTTC
 841 AGTCAGTTGC TCAATGTACC TATAACCAGA CCGTTCAAGCT GGATATTACG GCCTTTTAA
 901 AGACCGTAAA GAAAAATAAG CACAAGTTT ATCCGGCCTT TATTACACATT CTTGCCGCC
 961 TGATGAATGC TCATCCGAA TTCCGTATGG CAATGAAAGA CGGTGAGCTG GTGATATGGG
 1021 ATAGTGTCA CCCTTGTAC ACCGTTTCC ATGAGCAAAC TGAAACGTTT TCATCGCTCT
 1081 GGAGTGAATA CCACGACGAT TTCCGGCAGT TTCTACACAT ATATCGCAA GATGTGGCGT
 1141 GTTACGGTGA AAACCTGGCC TATTCCCTA AAGGGTTTAT TGAGAAATATG TTTTCGTCT
 1201 CAGCCAATCC CTGGGTGAGT TTCACCAAGT TTGATTAAA CGTGGCCAAT ATGGACAAC
 1261 TCTTCGCCCC CGTTTCAAC ATGGGCAAAT ATTATACGCA AGGCGACAAG GTGCTGATGC
 1321 CGCTGGCGAT TCAGGTTCAT CATGCCGTCT GTGATGGCTT CCATGTCGGC AGAATGCTTA
 1381 ATGAATTACA ACAGTACTGC GATGAGTGGC AGGGCGGGC GTAAACGCGT GGATCCGGCT
 1441 TACTAAAAGC CAGATAACAG TATGGTATT TGCGCGTGA TTTTGGCGGT ATAAGAATAT
 1501 ATACTGATAT GTATACCGA AGTATGTCAA AAAGAGGTGT GCTATGAAGC AGCGTATTAC
 1561 AGTGCAGTT GACAGCGACA GCTATCAGTT GCTCAAGGCA TATATGATGT CAATATCTCC
 1621 GGTCTGGTAA GCACAACCAT GCAGAATGAA GCCCCTCGTC TCGCTGCCGA ACGCTGGAAA
 1681 GCGGAAAATC AGGAAGGGAT GGCTGAGGTC GCGCGGTTA TTGAAATGAA CGGCTTTTT
 1741 GCTGACGAGA ACAGGGACTG GTGAAATGCA GTTTAAGGTT TACACCTATA AAAGAGAGAG
 1801 CCGTTATCGT CTGTTGTGG ATGTACAGAG TGATATTATT GACACGCCCG GGCGACGGAT
 1861 GGTGATCCCC CTGGCCAGTG CACGTCTGCT GTCAGATAAA GTCTCCCGTG AACTTTACCC
 1921 GGTGGTGCAT ATCGGGGATG AAAGCTGGCG CATGATGACC ACCGATATGG CCAGTGTGCC
 1981 GGTCTCCGTT ATCGGGGAAG AAGTGGCTGA TCTCAGGCCAC CGCGAAAATG ACATAAAAAA
 2041 CGCCATTAAC CTGATGTTCT GGGGAATATA AATGTCAGGC TCCCTTATAC ACAGCCAGTC
 2101 TGCAGGTGCA CCATAGTGAC TGGATATGTT GTGTTTACA GTATTATGTA GTCTGTTTT
 2161 TATGCAAAAT CTAATTTAAT ATATTGATAT TTATATCATT TTACGTTCT CGTCAGCTT
 2221 TCTGTACAA AGTGGTGATC GAGAAGTACT AGAGGATCAT AATCAGCCAT ACCACATTTG
 2281 TAGAGTTTT ACTTGCTTTA AAAAACCTCC CACACCTCCC CCTGAACCTG AAACATAAAA
 2341 TGAATGCAAT TGTTGTTGTT AACTTGTGTT TTGCACTTA TAATGGTTAC AAATAAAGCA
 2401 ATAGCATCAC AAATTTCACA AATAAAGCAT TTTTTCACT GCATTCTAGT TGTGGTTGT
 2461 CCAAACATCAT CAATGTATCT TATCATGTCT GGATCTGATC ACTGCTTGAG CCTAGGAGAT
 2521 CGGAACCAGA TAAAGTGAAT CTAGTTCCAA ACTATTGT CATTGTTAAT TTTCGTATTA
 2581 GCTTACGACG CTACACCCAG TTCCCATCTA TTTTGTCACT CTTCCCTAAA TAATCCTTAA-

FIGURE 39B

105/240

2641 AAACCTCCATT TCCACCCCTC CCAGTTCCCA ACTATTTGT CCGCCCACAG CGGGGCATTT
 2701 TTCTTCCTGT TATGTTTTA ATCAAACATC CTGCCAACTC CATGTGACAA ACCGTCATCT
 2761 TCGGCTACTT TTTCTCTGTC ACAGAATGAA AATTTTTCTG TCATCTCTTC GTTATTAATG
 2821 TTTGTAATTG ACTGAATATC AACGCTTATT TGAGCCCTGA ATGGCGAATG GACGCGCCCT
 2881 GTAGCGGCGC ATTAAGCGCG GCAGGTGTGG TGGTTACCGC CAGCGTGACC GCTACACTG
 2941 CCAGCGCCCT AGCGCCCGCT CCTTCGCTT TCTTCCCTTC CTTCTCGCC ACGTTGCCG
 3001 GCTTCCCCG TCAAGCTCTA AATCGGGGGC TCCCTTAGG GTTCCGATTT AGTGCCTTAC
 3061 GGCACCTCGA CCCCAAAAAA CTTGATTAGG GTGATGGTC ACGTAGTGGG CCATGCCCT
 3121 GATAGACGGT TTTTCGCCCT TTGACGTTGG AGTCCACGTT CTTTAATAGT GGACTCTTGT
 3181 TCCAAACTGG AACAAACACTC AACCTATCT CGGTCTATT CTTTGATT TAAGGGATT
 3241 TGCCTATTG GGCCTATTGG TAAAAAAATG AGCTGATTA ACAAAAATTT AACGCGAATT
 3301 TTAACAAAAT ATTAACGTT ACAATTCAG GTGGCACTT TCGGGAAAT GTGCGCGGAA
 3361 CCCCTATTG TTTATTTTC TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC
 3421 CCTGATAAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTCCGTG
 3481 TCGCCCTTAT TCCCTTTTGC GCGCATTTC GCCTTCCTGT TTTGCTCAC CCAGAAACGC
 3541 TGGTGAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG AGTGGGTTAC ATCGAACTGG
 3601 ATCTAACAG CGGTAAGATC CTTGAGAGTT TTCGCCCGA AGAACGTTT CCAATGATGA
 3661 GCACTTTAA AGTTCTGTA TGTCGCGGG TATTATCCCG TATTGACGCC GGGCAAGAGC
 3721 AACTCGGTCG CGCATAACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG
 3781 AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGCTGCC ATAACCATGA
 3841 GTGATAACAC TGCGGCCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG
 3901 CTTTTTGCA CAACATGGGG GATCATGTAA CTCGCCTGTA TCGTTGGAA CGGGAGCTGA
 3961 ATGAAGCCAT ACCAAACGAC GAGCGTGACA CCACGATGCC TGAGCAATG GCAACAAACGT
 4021 TGCGCAAAC ATTAACTGGC GAAACTACTTA CTCTAGCTTC CCGCAACAA TTAATAGACT
 4081 GGATGGAGGC GGATAAAAGTT GCAGGACCAC TTCTGCGCTC GCCCTTCGG GCTGGCTGGT
 4141 TTATTGCTGA TAAATCTGGA GCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG
 4201 GGCCAGATGG TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA
 4261 TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC ACTGATTAAG CATTGGTAAC
 4321 TGTCAGACCA AGTTTACTCA TATATACTTT AGATTGATTT AAAACTTCAT TTTTAATT
 4381 AAAGGATCTA GGTGAAGATC CTTTTGATA ATCTCATGAC CAAATCCCT TAACGTGAGT
 4441 TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT
 4501 TTTTCTCGC CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTT
 4561 GTTGCCGGA TCAAGAGCTA CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC
 4621 AGATACCAA TACTGCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACTCTG
 4681 TAGCACCGCC TACATACCTC GCTCTGCTAA TCCTGTTACC AGTGGCTGCT GCCAGTGGCG
 4741 ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGG
 4801 CGGGCTGAAC GGGGGGTTCG TGACACACAGC CCAGCTTGGA GCGAACGACC TACACCGAAC
 4861 TGAGATACCT ACAGCGTGGAG CATTGAGAAA GCGCCACGCT TCCCGAAGGG AGAAAGGCCG
 4921 ACAGGTATCC GGTAAGCGGC AGGGTCGGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGGG
 4981 GAAACGCCTG GTATCTTTAT AGTCCCTGTCG GTTTCGCCA CCTCTGACTT GAGCGTCGAT
 5041 TTTTGTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCAGCAAC GCGGCCCTTT
 5101 TACGGTTCCTT GGCCTTTGC TGGCCTTTTG CTCACATGTT CTTCCTGCG TTATCCCTG
 5161 ATTCTGTGGA TAACCGTATT ACCGCCTTTG AGTGAAGCTGA TACCGCTCGC CGCAGCCGAA
 5221 CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCCCCTGATG CGGTATTT
 5281 TCCTTACGCA TCTGTGCGGT ATTCACACC GCAGACCAAGC CGCGTAACCT GGCAAAATCG
 5341 GTTACGGTT AGTAATAAAAT GGATGCCCTG CGTAAGCGGG TGTGGCGGA CAATAAAGTC
 5401 TTAAACTGAA CAAAATAGAT CAAACTATG ACAATAAAGT CTTAAACTAG ACAGAAATAGT
 5461 TGTAAGCTGA AATCAGTCCA GTTATGCTGT GAAAAGCAT ACTGGACTTT TGTTATGGCT
 5521 AAAGCAAACCT CTTCATTTC TGAAGTGCAC ATTGCCCTG TGATTAAGA GGGCGTGGC
 5581 CAAGGGCATG GTAAAGACTA TATTCGCGGC GTTGTGACAA TTACCGAAC AACTCCCGGG
 5641 CCGGGAAAGCC GATCTCGGCT TGAACGAATT GTTAGGTGGC GGTACTTGGG TCGATATCAA
 5701 AGTGCATCAC TTCTTCCCGT ATGCCCAACT TTGTATAGAG AGCCACTGCG GGATCGTCAC
 5761 CGTAATCTGC TTGCACCGTAG ATCACATAAG CACCAAGCGC GTTGGCCTCA TGCTTGAGGA
 5821 GATTGATGAG CGCGGTGGCA ATGCCCTGCC TCCGGTCTC GCCGGAGACT GCGAGATCAT
 5881 AGATATAGAT CTCACACGC GGCTGCTCAA ACCTGGCAG AACGTAAGCC GCGAGAGCGC
 5941 CAACAACCGC TTCTTGGTCG AAGGCAGCAA GCGCGATGAA TGCTTACTA CGGAGCAAGT
 6001 TCCCGAGGTA ATCGGAGTCC GGCTGATGTT GGGAGTAGGT GGCTACGTCT CCGAACTCAC
 6061 GACCGAAAAG ATCAAGAGCA GCGCGCATGG ATTTGACTTG GTCAAGGGCCG AGCCTACATG-

FIGURE 39C

106/240

6121 TGCAGATGAT GCCCATACTT GAGCCACCTA ACTTTGTTT AGGGCGACTG CCCTGCTGCG
6181 TAACATCGTT GCTGCTGCGT AACATCGTT CTGCTCCATA ACATCAAACA TCGACCCACG
6241 GCGTAACGCG CTTGCTGCTT GGATGCCGA GGCATAGACT GTACAAAAAA ACAGTCATAA
6301 CAAGCCATGA AAACCGCCAC TGCGCCGTTA CCACCGCTGC GTTCGGTCAA GGTTCTGGAC
6361 CAGTTGCGTG AGCGCATACG CTACTTGCAT TACAGTTTAC GAACCGAACAA GGCTTATGTC
6421 AACTGGGTTC GTGCCTTCAT CCGTTTCCAC GGTGTGCGTC ACCCGGCAAC CTTGGGCAGC
6481 AGCGAAGTCG AGGCATTCT GTCCCTGGCTG GCGAACGAGC GCAAGGTTTC GGTCTCCACG
6541 CATCGTCAGG CATTGGCGGC CTTGCTGTTT TTCTACGGCA AGGTGCTGTG CACGGATCTG
6601 CCCTGGCTTC AGGAGATCGG AAGACCTCGG CCGTCGCGGC GCTTGCCGGT GGTGCTGACC
6661 CCGGATGA

FIGURE 39D

107/240

Figure 40A: pDEST20 Glutathione-S-transferase Fusion with Polyhedron Promoter for Baculovirus Expression

430 ggc tac gta tac tcc gga ata tta ata gat cat gga gat aat taa aat gat
 ccg atg cat atg agg cct tat aat tat cta gta cct cta tta att tta cta //

481 // aac cat ctc gca aat aaa taa gta ttt tac tgt ttt cgt aac agt ttt gta
 // ttg gta gag cgt tta ttt att cat aaa atg aca aaa gca ttg tca aaa cat //

532 // ata aaa aaa cct ata aat att ccg gat tat tca tac cgt ccc acc atc ggg
 // tat ttt ttt gga tat tta taa ggc cta ata agt atg gca ggg tgg tag ccc
 Start Transltn. → A P I - - - GST -
 583 cgc gga tcc atg gct cct ata cta ggt tat tgg aaa att aag ggc ctt gtg
 gcg cct agg tac cgg gga tat gat cca ata acc ttt taa ttc cgg gaa cac //

1246 // S D L V P R H N Q T S L Y K K A
 tcg gat ctg gtt ccg cgt cat aat caa aca agt ttg tac aaa aaa gct gaa
 agc cta gac caa ggc gca gta tta gtt tgt tca aac atg ttt cga ctt
 1297 cga gaa acg taa aat gat ata aat atc aat ata tta aat tag at
 gct ctt tgc att tta cta tat tta tag tta tat aat tta atc ta

108/240

pDEST20 7066 bp (rotated to position 5800)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
592..1263	GST
1397..1273	attR1
1506..2165	CmR
2285..2369	inactivated ccdA
2507..2812	ccdB
2853..2977	attR2
4214..5064	ampR
5263..5843	ori

1 CCACTGCGCC GTTACCACCG CTGCCTTCGG TCAAGGTTCT GGACCAGTTG CGTGAGCGCA
 61 TACGCTACTT GCATTACAGT TTACGAACCG AACAGGCTTA TGTCAACTGG GTTCGTGCC
 121 TCATCCGTT CCACGGTGTG CGTCACCCGG CAACCTTGGG CAGCAGCGAA GTCGAGGCAT
 181 TTCTGTCCTG GCTGGCAAC GAGCGCAAGG TTTCGGTCTC CACCGCATCGT CAGGCATTGG
 241 CGGCCTTGCT GTTCTTCTAC GGCAAGGTGC TGTGCACGGA TCTGCCCTGG CTTCAGGAGA
 301 TCGGAAGACC TCGGCCGTCG CGGCCTTGC CGGTGGTGT GACCCCGGAT GAAGTGGTTC
 361 GCATCCTCGG TTTTCTGGAA GGCGAGCATC GTTGTTCGC CCAGGACTCT AGCTATACTT
 421 CTAGTGGTTG GCTACGTATA CTCCGGAATA TTAATAGATC ATGGAGATAA TTAAAATGAT
 481 AACCATCTCG CAAATAAATA AGTATTTAC TGTTTCGTA ACAGTTTGT AAAAAAAA
 541 CCTATAAATA TTCCGGATTA TTCATACCGT CCCACCACCG GGCGCGGATC CATGGCCCT
 601 ATACTAGGTT ATTGGAAAAT TAAGGGCCTT GTGCAACCCA CTCGACTTCT TTTGGAATAT
 661 CTTGAAGAAA AATATGAAGA GCATTTGTAT GAGCGCGATG AAGGTGATAA ATGGCGAAC
 721 AAAAAGTTTG AATTGGTTT GGAGTTTCCC AATCTTCCTT ATTATATTGA TGGTGATGTT
 781 AAATTAACAC AGTCTATGGC CATCATACGT TATATAGCTG ACAAGCACAA CATGTTGGGT
 841 GGTTGTCCAA AAGAGCGTGC AGAGATTCA ATGCTTGAAG GAGCGGTTTT GGATATTAGA
 901 TACGGTGTTC CGAGAATTGC ATATAGTAA GACTTTGAAA CTCTCAAAGT TGATTTCTT
 961 AGCAAGCTAC CTGAAATGCT GAAAATGTT GAAAGATCGTT TATGTCATAA AACATATTTA
 1021 AATGGTGTAC ATGTAACCCA TCCTGACTTC ATGTTGTATG ACGCTCTTGA TGTTGTTTA
 1081 TACATGGACC CAATGTGCCT GGATGCGTT CCAAAATTAG TTTGTTTTAA AAAACGTATT
 1141 GAAGCTATCC CACAAATTGA TAAGTACTTG AAATCCAGCA AGTATATAGC ATGGCCTTTG
 1201 CAGGGCTGGC AAGCCACGTT TGGTGGTGGC GACCACCTC CAAAATCGGA TCTGGTCCG
 1261 CGTCATAATC AAACAAGTTT GTACAAAAAA GCTGAACGAG AAACGTAAAA TGATATAAT
 1321 ATCAATATAT TAAATTAGAT TTTGCATAAA AAACAGACTA CATAATACTG TAAAACACAA
 1381 CATATCCAGT CACTATGGCG GCCGCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG
 1441 GCTCGTATGT TGTGTGGATT TTGAGTTAGG ATCCGGCAG ATTTCAGGA GCTAAGGAAG
 1501 CTAAAATGGA GAAAAAAATC ACTGGATATA CCACCGTTGA TATATCCAA TGGCATCGTA
 1561 AAGAACATTT TGAGGCATTT CAGTCAGTTG CTCAATGTAC CTATAACCAG ACCGTTCA
 1621 TGGATATTAC GGCCTTTTA AAGACCGTAA AGAAAAATAA GCACAAGTTT TATCCGGCCT
 1681 TTATTACAT TCTTGGCCGC CTGATGAATG CTCATCCGGA ATTCCGTATG GCAATGAAAG
 1741 ACGGTGAGCT GGTGATATGG GATAGTGTTC ACCCTTGTGA CACCGTTTC CATGAGCAA
 1801 CTGAAACGTT TTCATCGCTC TGGAGTGAAT ACCACGACGA TTTCCGGCAG TTTCTACACA
 1861 TATATTGCA AGATGTGGCG TGTACGGTG AAAACCTGGC CTATTCCTT AAAGGGTTTA
 1921 TTGAGAATAT GTTTTCGTC TCAGCCAATC CCTGGGTGAG TTTCACCAAGT TTTGATTAA
 1981 ACGTGGCCAA TATGGACAC TTCTCGCCC CGGTTTAC CATGGGCAA TATTATACGC
 2041 AAGGCACAA GGTGCTGATG CCGCTGGCGA TTCAAGGTTCA TCATGCCGTC TGTGATGGCT
 2101 TCCATGTCGG CAGAATGCTT AATGAATTAC AACAGTACTG CGATGAGTGG CAGGGCGGGG
 2161 CGTAATCTAG AGGATCCGGC TTACTAAAAG CCAGATAACA GTATCGTAT TTGCGCGCTG
 2221 ATTTTGCGG TATAAGAATA TATACTGATA TGTATACCG AAGTATGTCA AAAAGAGGTG
 2281 TGCTATGAAG CAGCGTATTA CAGTGCAGT TGACAGCGAC AGCTATCAGT TGCTCAAGGC
 2341 ATATATGATG TCAATATCTC CGGTCTGGTA AGCACAACCA TGCAGAATGA AGCCCCTCGT
 2401 CTGCGTGGCG AACGCTGGAA AGCGGAAAT CAGGAAGGGA TGGCTGAGGT CGCCCGGTTT
 2461 ATTGAAATGA ACGGCTCTT TGCTGACGAG AACAGGGACT GGTGAAATGC AGTTAAGGT
 2521 TTACACCTAT AAAAGAGAGA GCCGTTATCG TCTGTTGTG GATGTACAGA GTGATATTAT
 2581 TGACACGCC GGGCGACGGA TGGTGTACCC CCTGGCCAGT GCACGTCTGC TGTCAGATAA
 2641 AGTCTCCCGT GAACTTTACC CGGTGGTGC TATCAGGAGT GAAAGCTGGC GCATGATGAC-

Figure 40B

109/240

2701 CACCGATATG GCCAGTGTGC CGGTCTCCGT TATCGGGAA GAAGTGGCTG ATCTCAGCCA
 2761 CCGCGAAAAT GACATCAAAA ACGCCATTAA CCTGATGTTG TGGGAATAT AAATGTCAGG
 2821 CTCCCTTATA CACAGCCAGT CTGCAGGTGCG ACCATAGTGA CTGGATATGT TGTGTTTAC
 2881 AGTATTATGT AGTCTGTTT TTATGCAAAA TCTAATTAA TATATTGATA TTTATATCAT
 2941 TTTACGTTTC TCGTTCAGCT TTCTTGTACA AAGTGGTTG ATAGCTTGTC GAGAAGTACT
 3001 AGAGGATCAT AATCAGCCAT ACCACATTG TAGAGGTTT ACTGCTTTA AAAAACCTCC
 3061 CACACCTCCC CCTGAACCTG AACATAAAAA TGAATGCAAT TGTTGTTGTT AACTTGTAA
 3121 TTGCAGCTTA TAATGGTTAC AAATAAAGCA ATAGCATCAC AAATTTACA AATAAAAGCAT
 3181 TTTTTTCACT GCATTCTAGT TGTGGTTGT CCAAACCTCAT CAATGTATCT TATCATGTCT
 3241 GGATCTGATC ACTGCTTGAG CCTAGGAGAT CCGAACAGA TAAGTGAAT CTAGTTCCAA
 3301 ACTATTTGT CATTTTAAT TTTCGTATTA GCTTACGACG CTACACCCAG TTCCCACATCTA
 3361 TTTTGTCACT CTTCCCTAAA TAATCCTTAA AAACCTCATT TCCACCCCTC CCAGTTCCCA
 3421 ACTATTTGT CCGCCCCACAG CGGGGCATT TTCTTCTGT TATGTTTTA ATCAAACATC
 3481 CTGCCAACTC CATGTGACAA ACCGTCATCT TCGGCTACTT TTTCTCTGTC ACAGAATGAA
 3541 AATTTTCTG TCATCTCTTC GTTATTAATG TTTGTAATTG ACTGAATATC AACGCTTATT
 3601 TGCAGCCTGA ATGGCGAATG GACCGCCCT GTAGCAGCAG ATTAAAGCAG GCGGGTGTGG
 3661 TGGTTACGCG CAGCGTGACC GCTACACTTG CCAGCAGCCT AGCGCCCGCT CCTTTCGCTT
 3721 TCTCCCTTC CTTTCTCGCC ACGTTCGCCG GCTTCCCCG TCAAGCTCTA AATCGGGGGC
 3781 TCCCTTTAGG GTTCCGATTG AGTGTCTTAC GGCACCTCGA CCCCCAAAAAA CTTGATTAGG
 3841 GTGATGGTTC ACGTAGTGGG CCATCGCCCT GATAGACGGT TTTTCGCCCT TTGACGTTGG
 3901 AGTCCACGTT CTTTAATAGT GGACTCTTGT TCCAAACTGG ACAAACACTC AACCTATCT
 3961 CGGTCTATTG TTTGATTAA TAAGGGATTG TGCGGATTG GCCTATTGG TTAAAAAATG
 4021 AGCTGATTAA ACAAAAATTT AACCGGAATT TTAACAAAAT ATTAACGTTT ACAATTTCAG
 4081 GTGGCACTTT TCGGGGAAAT GTGCGCGGAA CCCCTATTG TTATTTTTC TAAATACATT
 4141 CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAAAT GCTTCAATAA TATTGAAAAA
 4201 GGAAGAGTAT GAGTATTCAA CATTCCGTG TCGCCCTTAT TCCCTTTTT GCGGCATTGTT
 4261 GCCTTCCCTGT TTTGCTCAC CCAGAAACGC TGGTAAAAGT AAAAGATGCT GAAGATCAGT
 4321 TGGGTGCACG AGTGGTTAC ATCGAACTGG ATCTCAACAG CGTAAGATC CTTGAGAGTT
 4381 TTCGCCCGA AGAACGTTT CCAATGATGA GCACTTTAA AGTTCTGCTA TGTGGCGCG
 4441 TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGTCG CGCATAACAC TATTCTCAGA
 4501 ATGACTTGGT TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA
 4561 GAGAATTATG CAGTGCTGCC ATAACCATGA GTGATAAACAC TCGGGCCAAC TTACTTCTGA
 4621 CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTGCA CAACATGGG GATCATGTAA
 4681 CTCGCCTTGA TCGTTGGAA CCGGAGCTGA ATGAAGCCAT ACCAACGAC GAGCGTGACA
 4741 CCACGATGCC TGTAGCAATG GCAACAACGT TGCACAAACT ATTAACGTTG GAAACTACTTA
 4801 CTCTAGCTTC CCGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAAGTT GCAGGACCAC
 4861 TTCTGCGCTC GGCCTTCCG GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCCGGTGAGC
 4921 GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC CGTATCGTAG
 4981 TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG AAATAGACAG ATCGCTGAGA
 5041 TAGGTGCCTC ACTGATTAAG CATTGGTAAC TGTCAAGACCA AGTTTACTCA TATATACTTT
 5101 AGATTGATTT AAAACTTCAT TTTTAATTAA AAAGGATCTA GGTGAAGATC CTTTTGATA
 5161 ATCTCATGAC CAAAATCCCT TAACGTGAGT TTCTGTTCCA CTGAGCGTCA GACCCCGTAG
 5221 AAAAGATCAA AGGATCTTCT TGAGATCCTT TTTTCTGCG CGTAATCTGC TGCTTGCAAA
 5281 CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTGGCCGA TCAAGAGCTA CCAACTCTTT
 5341 TTCCGAAGGT AACTGGCTTC AGCAGAGCAG AGATACAAA TACTGCTCTT CTAGTGTAGC
 5401 CGTAGTTAGG CCACCACTTC AAGAACTCTG TAGCACGCC TACATACCTC GCTCTGCTAA
 5461 TCTCTGTTACC AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG TCTTACCGGG TTGGACTCAA
 5521 GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGCACACAGC
 5581 CCAGCTTGA GCGAACGACC TACACCGAAC TGAGATACCT ACAGCGTGAG CATTGAGAAA
 5641 GCGCCACGCT TCCCGAAGGG AGAAAGGCGG ACAGGTATCC GTAAAGCGGC AGGGTCGGAA
 5701 CAGGAGAGCG CACGAGGGAG CTTCCAGGGG GAAACGCCCTG GTATCTTTAT AGTCCCTGTCG
 5761 GTTGGCCCA CCTCTGACTT GAGCGTCGAT TTTTGTGATG CTCGTCAGGG GGGCGGAGCC
 5821 TATGGAAAAA CGCCAGCAAC GCGGCCTTT TACGGTTCTT GGCCTTTGC TGGCCTTTG
 5881 CTCACATGTT CTTTCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT ACCGCTTTG
 5941 AGTGAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG CAGCGAGTC GTGAGCGAGG
 6001 AAGCGGAAGA GCGCCTGATG CGGTATTTTC TCCTTACGCA TCTGTGCGGT ATTTCACACC
 6061 GCAGACCAGC CGCGTAACCT GGCAAAATCG GTTACGGTT AGTAATAAAAT GGATGCCCTG
 6121 CGTAAGCGGG TGTGGCGGA CAATAAGTC TTAAACTGAA CAAAATAGAT CTAAACTATG-

FIGURE 40C

110/260

6181 ACAATAAAAGT CTTAAACTAG ACAGAATAGT TGTAAACTGA AATCAGTCCA GTTATGCTGT
6241 GAAAAAGCAT ACTGGACTTT TGTTATGGCT AAAGCAAAC TCTCATTTC TGAAGTGCCTA
6301 ATTGCCCGTC GTATTAAAGA GGGCGTGGC CAAGGGCATG GTAAAGACTA TATTGCGGCC
6361 GTTGTGACAA TTTACCGAAC AACTCCGCGG CGGGGAAGCC GATCTCGGCT TGAACGAATT
6421 GTTAGGTGGC GGTACTTGGG TCGATATCAA AGTCATCAC TTCTTCCCGT ATGCCCAACT
6481 TTGTATAGAG AGCCACTGCG GGATCGTCAC CGTAATCTGC TTGCACGTAG ATCACATAAG
6541 CACCAAGCGC GTTGGCCTCA TGCTTGAGGA GATTGATGAG CGCGGTGGCA ATGCCCTGCC
6601 TCCGGTGCTC GCCGGAGACT GCGAGATCAT AGATATAGAT CTCACTACGC GGCTGCTCAA
6661 ACCTGGGCAG AACGTAAGCC GCGAGAGCGC CAACAACCGC TTCTTGGTCG AAGGCAGCAA
6721 GCGCGATGAA TGTCTTAACCA CGGAGCAAGT TCCCAGGTA ATCGGAGTCC GGCTGATGTT
6781 GGGAGTAGGT GGCTACGTCT CGGAACTCAC GACCAGAAAG ATCAAGAGCA GCCCGCATGG
6841 ATTTGACTTG GTCAGGGCCG AGCCTACATG TGCGAATGAT CCCCATACTT GAGCCACCTA
6901 ACTTTGTTTT AGGGCGACTG CCCTGCTGCG TAACATCGTT GCTGCTGCGT AACATCGTTG
6961 CTGCTCCATA ACATCAAACA TCGACCCACG GCGTAACGCG CTTGCTGCTT GGATGCCCGA
7021 GGCATAGACT GTACAAAAAA ACAGTCATAA CAAGCCATGA AAACCG

FIGURE 40D

111 / 240

Figure 4(1A):

PDEST21

**2-Hybrid Vector with
DNA-Binding Domain**

ADH Promoter

700 ttg gcg ctz tgc tat caa gta taa ata gac ctg caa tta tta atc ttt tgt//
aac ggc gaa acg ata gtt cat att tat ctg gac gtt aat aat tag aaa aca,
751 " ttc ctc gtc att gtt ctc gtt ccc ttt ctt cct tgt ttc ttt ttc tgc aca//
aac gag caa cag gag caa ggg aaa gaa gga aca aag aag aag acg tgt,,
802 ata ttt caa gct ata cca agc ata caa tca act cca agc ttg aag caa gcc
tat aaa gtt cca tat ggt tcc tat gtt agt tca ggt tcc aac ttc gtt cgg
Start Transl M K L L S S Gal4 - DE
853 tcc tga aag atg aag cta ctg tct tct atc gaa caa gca tgc gat att tgg//
agg act ttc tac ttc gat gac aga tag ctt gtt cgt acg cta taa acg//
...
1261 gaa gag agt agt aac aaa ggt caa aga cag ttg act gta tgg tgg agg tgg
ctt ctc tca tca ttg ttt cca gtt tct gtc aac tga cat agc agc tcc agc
1312 N Q I S L Y K K A CCR1
aat caa aca agt tgg tac aaa aaa gct gaa cga gaa acg taa aat gat ata
tta gtt tgt tca aac atg ttt ttt cga ctt gct ctt tgc att tta cta tat
IN+

112/240

pDEST21 11713 bp (rotated to position 11000)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
857..1322	GAL4DB
1456..1332	attR1
1706..2365	CmR
2485..2569	inactivated ccdA
2707..3012	ccdB
3053..3177	attR2
3716..3735	pT7 (T7 promoter)
3899..4354	f1 (f1 intergenic region)
4414..6642	Leu2
7541..8515	kanR
9668..10958	CYH2
11118..848	pADH (ADH promoter)

1 TTTATTATGT TACAATATGG AAGGAACTT TACACTTCCTC CTATGCACAT ATATTAATTA
 61 AAGTCCAATG CTAGTAGAGA AGGGGGTAA CACCCCTCCG CGCTCTTTTC CGATTTTTT
 121 CTAAACCCTG GAATATTTCG GATATCCTTT TTGTTGTTCC GGGTGTACAA TATGGACTTC
 181 CTCTTTCTG GCAACCAAAC CCATACATCG GGATTCCCTAT AATACCTTCG TTGGTCTCCC
 241 TAACATGTAG GTGGCGGAGG GGAGATATAC AATAGAACAG ATACCAGACA AGACATAATG
 301 GGCTAACAA GACTACACCA ATTACACTGC CTCATTGATG GTGGTACATA ACGAACTAAT
 361 ACTGTAGCCC TAGACTTGAT AGCCATCATC ATATCGAAGT TTCACTACCC TTTTTCCATT
 421 TGCCATCTAT TGAAGTAATA ATAGGCGCAT GCAACTTCTT TTCTTTTTT TTCTTTCTC
 481 TCTCCCCCGT TGTTGTCTCA CCATATCCGC AATGACAAAA AAAATGATGG AAGACACTAA
 541 AGGAAAAAAAT TAACGACAAA GACAGCACCA ACAGATGTCG TTGTTCCAGA GCTGATGAGG
 601 GGTATCTTCG AACACACGAA ACTTTTTCTT TCCTTCATTAC ACGCACACTA CTCTCTAAATG
 661 AGCAACGGTA TACGGCCTTC CTTCCAGTTA CTTGAATTG AAATAAAAAA AGTTTGCCGC
 721 TTTGCTATCA AGTATAAATA GACCTGCAAT TATTAATCTT TTGTTTCCTC GTCATTGTT
 781 TCGTTCCCTT TCTTCCCTGT TTCTTTTTCT GCACAATATT TCAAGCTATA CCAAGCATAAC
 841 AATCAACTCC AAGCTTGAAG CAAGCCTCCT GAAAGATGAA GCTACTGTCT TCTATCGAAC
 901 AAGCATGCGA TATTGCCCCA CTTAAAAAAGC TCAAGTGCTC CAAAGAAAAA CCGAAGTGC
 961 CCAAGTGTCT GAAGAACAAAC TGGGAGTGTG CACTACTCTCC CAAACACAAAGGTCTCCGC
 1021 TGACTAGGGC ACATCTGACA GAAGTGGAAAT CAAGGCTAGA AAGACTGGAA CAGCTATTTC
 1081 TACTGATTTT TCCTCGAGAA GACCTTGACA TGATTTTGAA AATGGATTCT TTACAGGATA
 1141 TAAAAGCATT GTTAACAGGA TTATTGTCAG AAGATAATGT GAATAAAGAT GCCGTCACAG
 1201 ATAGATTGGC TTCAGTGGAG ACTGATATGC CTCTAACATT GAGACAGCAT AGAATAAGTG
 1261 CGACATCATC ATCGGAAGAG AGTAGTAACA AAGGTCAAAG ACAGTTGACT GTATCGTCGA
 1321 GGTGAAATCA AACAAAGTTTG TACAAAAAAG CTGAACGAGA AACGTAAGGAAAT GATATAAAATA
 1381 TCAATATATT AAATTAGATT TTGCATAAAA AACAGACTAC ATAATACTGT AAAACACAAAC
 1441 ATATCCAGTC ACTATGGGGC CCGCTAAGTT GGCAGCATCA CCCGACGCAC TTTGCGCCGA
 1501 ATAAATACCT GTGACGGAAAG ATCACTTCGC AGAATAAAATA AATCTGGTG TCCCTGTTGA
 1561 TACCGGGAAAG CCCTGGGCCA ACTTTTGGCG AAAATGAGAC GTTGTACGGC ACGTAAGAGG
 1621 TTCCAACCTT CACCATAATG AAATAAGATC ACTACCGGGC GTATTTTTTG AGTTATCGAG
 1681 ATTTTCAGGA GCTAAGGAAG CTAAAATGGA GAAAAAAATC ACTGGATATA CCACCGTTGA
 1741 TATATCCCAA TGGCATCGTA AAGAACATTG TGAGGCATTG CAGTCAGTTG CTCATGTAC
 1801 CTATAACCAG ACCGTTCAGC TGGATATTAC GGCCTTTTA AAGACCGTAA AGAAAAAAATAA
 1861 GCACAAAGTTT TATCCGGCCT TTATTTCAC TCTTGCCCCG CTGATGAATG CTCATCCGGA
 1921 ATTCCGTATG GCAATGAAAG ACGGTGAGCT GGTGATATGG GATACTGTT ACCCTGTTA
 1981 CACCGTTTC CATGAGCAA CTGAAACGTT TTCATCGCTC TGGAGTGAAT ACCACGACGA
 2041 TTTCCGGCAG TTTCTACACA TATATTGCA AGATGTGGCG TGTTACGGTG AAAACCTGGC
 2101 CTATTTCCCT AAAGGGTTTA TTGAGAATAT GTTTTCGTC TCAGCCAATC CCTGGGTGAG
 2161 TTTCACCAAGT TTGATTTAA ACGTGGCCAA TATGGACAAAC TTCTTCGCCC CCGTTTTCAC
 2221 CATGGCAAA TATTATACGC AAGGGCACAA GGTGCTGATG CCGCTGGCGA TTCAAGGTTCA
 2281 TCATGCCGTC TGTGATGGCT TCCATGTCGG CAGAATGCTT AATGAATTAC AACAGTACTG
 2341 CGATGAGTGG CAGGGCGGGG CGTAATCTAG AGGATCCGGC TTACTAAAAG CCAGATAACA
 2401 GTATGCGTAT TTGCGCGCTG ATTTTGCGG TATAAGAATA TATAACTGATA TGTATACCCG-

FIGURE 41B

113/260

2461 AAGTATGTCA AAAAGAGGTG TGCTATGAAG CAGCGTATTA CAGTGACAGT TGACAGCGAC
 2521 AGCTATCAGT TGCTCAAGGC ATATATGATG TCAATATCTC CGGTCTGGTA AGCACAAACCA
 2581 TGCAGAATGA AGCCCCTCGT CTGCGTCCCG AACGCTGGAA AGCGGAAAAT CAGGAAGGGA
 2641 TGGCTGAGGT CGCCCGGTTT ATTGAAATGA ACGGCTCTT TGCTGACGAG AACAGGGACT
 2701 GGTGAAATGC AGTTAACGGT TTACACCTAT AAAAGAGAGA GCCGTTATCG TCTGTTTGTG
 2761 GATGTACAGA GTGATATTAT TGACACGCC GGGCGACGGA TGGTGATCCC CCTGGCCAGT
 2821 GCACGCTGTC TGTCAGATAA AGTCTCCGT GAACTTTACC CGGTGGTGA TATCBBBBB
 2881 GAAAGCTGGC GCATGATGAC CACCGATATG GCCAGTGTGC CGGTCTCCGT TATCBBBBB
 2941 GAAGTGGCTG ATCTCAGCCA CCGCGAAAAT GACATAAAA ACCGCAATTAA CCTGATGTT
 3001 TGGGAAATAT AAATGTCAGG CTCCCTTATA CACAGCCAGT CTGCAAGGTCG ACCATAGTGA
 3061 CTGGATATGT TGTGTTTAC AGTATTATGT AGTCTGTTT TTATGAAAAA TCTAATTAA
 3121 TATATTGATA TTTATATCAT TTTACGTTTC TCGTTCAAGT TTCTTGTA CA AAGTGGTTG
 3181 ATGGCCGCTA AGTAAGTAAG ACGTCGAGCT CTAAGTAAGT AACGGCCGCC ACCGCGGTGG
 3241 AGCTTGGAC TTCTCAGCA GAGGTTTGGT CAAGTCTCA ATCAAGGTTG TCGGCTTGT
 3301 TACCTTGCCA GAAATTACG AAAAGATGGA AAAGGGTCAA ATCGTTGGTA GATACTTGT
 3361 TGACACTTCT AAATAAGCGA ATTTCTTATG ATTTATGATT TTTATTATTA AATAAGTTAT
 3421 AAAAAAAATA AGTGTATACA AATTAAAG TGACTCTTAG GTTTAAAAC GAAAATTCTT
 3481 ATTCTTGAGT AACTCTTCC TGTAGGTCAG GTGCTTCT CAGGTATAGC ATGAGGTCGC
 3541 TCTTATTGAC CACACCTCTA CCGGCATGCC GAGCAAATGC CTGCAATCG CTCCCCATTT
 3601 CACCCAATTG TAGATATGCT AACTCCAGCA ATGAGTTGAT GAATCTCGGT GTGTATTAA
 3661 TGTCCCTCAGA GGACAATACC TGTGTAATC GTTCTTCAC ACGGATCCCA ATTGCCCCA
 3721 TAGTGAGTC TATTACAATT CACTGGCCGT CGTTTACAA CGTCTGACT GGGAAAACCC
 3781 TGGCGTTACC CAACTTAATC GCCTTGCAGC ACATCCCCCT TTGCGCAGCT GCGTAATAG
 3841 CGAACAGGCC CGCACCGATC GCCCTTCCCA ACAGTTGCGC AGCCTGAATG GCGAATGGAC
 3901 GCGCCCTGTA GCGCGCATT AAGCGGGCG GGTGTTGGG TTACGCGCAG CGTACCGCT
 3961 ACACCTGCCA GCGCCCTAGC GCCCGCTCTT TTGCTTCT CTCCTTCTT TCTGCCACG
 4021 TTCCCGGGCT TTCCCGGTCA AGCTCTAAAT CGGGGGCTCC CTTAGGGTT CCGATTAGT
 4081 GCTTTACGGC ACCTCGACCC CAAAAAACTT GATTAGGGT ATGAGTTCACG TAGTGGCCA
 4141 TCGCCCTGAT AGACGGTTT TCAGCCCTTG ACAGTTGGAGT CCACGTTCTT TAATAGTGA
 4201 CTCTTGTCC AAACCTGGAA AACACTCAAC CCTATCTCG TCTATTCTT TGATTATAA
 4261 GGGATTTCGCG CGATTTCGGC CTATTGGTA AAAATGAGC TGATTTAAC AAAATTAAAC
 4321 GCGAATTAA ACAAAATATT AACGTTTACA ATTTCTGAT GCGGTATTCTT CTCCCTACGC
 4381 ATCTGTGCCG TATTTCACAC CGCATATCGA CGGTCGAGG AGAAACTCTA GTATATCCAC
 4441 ATACCTAATA TTATTGCCCTT ATTAAAAATG GAACTGGAAAC AATTACATCA AAATCCACAT
 4501 TCTCTCAAA ATCAATTGTC CTGACTTCC TTGTTCATGT GTGTTCAAA ACGTTATATT
 4561 TATAGGATAA TTACTCTCA TTTCTCAACA AGTAATTGGT TGTTGGCCG AGCGGTCTAA
 4621 GGCGCTGAT TCAAGAAATA TCTTGACCGC AGTTAACTGT GGGAAACTCTC AGGTATCGTA
 4681 AGATGCAAGA GTTCAAGT CTTAGCAACC ATTATTTTT TCCTCAACAT AACGAGAACAA
 4741 CACAGGGCG CTATCGCACA GAATCAAATT CGATGACTGG AAATTTTTTG TTAATTCTAG
 4801 AGTCGCCTG ACACATATAC CTTTTCAAC TGAAAAAATTG GGAGAAAAAG GAAAGGTGAG
 4861 AGGCGGAAC CGGCTTTCA TATAGAATAG AGAACGGTTC ATGACTAAAT GCTTGCATCA
 4921 CAATACTTGA AGTTGACAA ATTATTTAAG GACCTATTGT TTTTCCAAT AGGTGGTTAG
 4981 CAATCGTCTT ACTTTCTAAC TTTTCTTAC TTTTACATTT CAGCAATATA TATATATATT
 5041 TCAAGGATAT ACCATTCTAA TGTCTGCCCG TATGCTGCC CCTAAGAAGA TCGTCGTTT
 5101 GCCAGGTGAC CACGTTGGTC AAGAAATCAC AGCCGAAGCC ATTAAGGTTT TTAAAGCTAT
 5161 TTCTGATGTT CGTTCCAATG TCAAGTTCA TTTCGAAAAT CATTAAATTG GTGGTCTGC
 5221 TATCGATGCT ACAGGTGTCC CACTCCAGA TGAGGCCCTG GAAGCCTCCA AGAAGGGTGA
 5281 TGCGTTTG TTAGGTGCTG TGGGTGGTCC TAAATGGGGT ACCGGTAGTG TTAGACCTGA
 5341 ACAAGGTTA CTAAAAATCC GTAAAGAACT TCAATTGTAC GCCAACTTAA GACCATGTA
 5401 CTTGCATCC GACTCTTT TAGACTTATC TCCAATCAAG CCACAAATTG CTAAAGGTAC
 5461 TGACTTCGTT GTTGTCAAGAG AATTAGTGGG AGGTATTAC TTTGTTAAGA GAAAGGAAGA
 5521 CGATGGTGTGAT GGTGTGCTT GGGATAGTGA ACAATACACC GTTCCAGAAG TGCAAAAGAAT
 5581 CACAAGAATG GCCGCTTCA TGGCCCTACA ACATGAGCCA CCATTGCCTA TTTGGTCTT
 5641 GGATAAAGCT AATGTTTGG CCTCTTCAAG ATTATGGAGA AAAACTGTGG AGGAAACCAT
 5701 CAAGAACGAA TTCCCTACAT TGAAGGTTCA ACATCAATTG ATTGATTCTG CCGCCATGAT
 5761 CCTAGTTAAG AACCCAAACCC ACCTAAATGG TATTATAATC ACCAGCAACA TGTGTTGGTGA
 5821 TATCATCTCC GATGAAGCCT CGGTATCCC AGGTTCTTG GTGGTGGTGC CATCTGCCTC
 5881 CTTGGCCTCT TTGCCAGACA AGAACACCCGC ATTTGGTTG TACGAACCAT GCCACGGTTC-

FIGURE 41C

114/260

5941 TGCTCCAGAT TTGCCAAAGA ATAAGGTTGA CCCTATCGCC ACTATCTTGT CTGCTGCAAT
 6001 GATGTTGAAA TTGTCATTGA ACTTGCCTGA AGAAGGTAAG GCCATTGAAG ATGCAGTTAA
 6061 AAAGGTTTG GATGCAGGTA TCAGAACTGG TGATTTAGGT GGTTCCAACA GTACCACCGA
 6121 AGTCGGTGAT GCTGTCGCCG AAGAAGTTAA GAAAATCCTT GCTTAAAAAG ATTCTCTTTT
 6181 TTTATGATAT TTGTCATCAA ACTTTATAAA TGAAATTCTAT AATAGAAACG ACACGAAATT
 6241 ACAAAATGGA ATATGTTCAT AGGGTAGACG AAACTATATA CGCAATCTAC ATACATTAT
 6301 CAAGAAGGAG AAAAAGGAGG ATAGTAAAGG AATACAGGTA AGCAAATTGA TACTAATGGC
 6361 TCAACGTGAT AAGGAAAAAG AATTGCACTT TAACATTAAT ATTGACAAGG AGGAGGGCAC
 6421 CACACAAAAA GTTAGGTGA ACAGAAAATC ATGAAACTAC GATTCTAAT TTGATATTGG
 6481 AGGATTTCT CTAAAAAAA AAAAATACAA CAAATAAAA ACACTCAATG ACCTGACCAT
 6541 TTGATGGAGT TTAAGTCAT ACCTCTTGA ACCATTTCCC ATAATGGTGA AAGTTCCCTC
 6601 AAGAATTAA CTCTGTCAGA AACGGCCTTA CGACGTAGTC GATATGGTGC ACTCTCAGTA
 6661 CAATCTGCTC TGATGCCGA TAGTTAACCC AGCCCCGACA CCCGCCAACA CCCGCTGACG
 6721 CGCCCTGACG GGCTTGCTG CTCCCGCAT CCGCTTACAG ACAAGCTGTG ACCGTCTCCG
 6781 GGAGCTGCAT GTGTCAGAGG TTTTACCGT CATCACCGAA ACCGCGGAGA CGAAAGGGCC
 6841 TCGTGTACAG CCTATTNTTA TAGGTTAATG TCATGATAAT AATGGTTCT TAGGACGGAT
 6901 CGCTGCCCTG TAACTTACAC GCGCCTCGTA TCTTTTAATG ATGAAATAAT TTGGAATT
 6961 ACTCTGTGTT TATTTATTT TATGTTTGT ATTGGATT TAGAAAGTAA ATAAAGAAGG
 7021 TAGAAGAGTT ACGGAATGAA GAAAAAAA TAAACAAAGG TTTAAAAAAT TTCAACAAAAA
 7081 AGCGTACTTT ACATATATAT TTATTAGACA AGAAAAGCAG ATTAATAGA TATACATTG
 7141 ATTAACGATA AGTAAAATGT AAAATCACAG GATTTCTGT TGTGGTCTTC TACACAGACA
 7201 AGATGAAACA ATTCCGATT AATACCTGAG AGCAGGAAGA GCAAGATAAA AGGTAGTATT
 7261 TGTTGGCGAT CCCCTAGAG TCTTTACAT CTTCGGAAA CAAAAACTAT TTTTCTTTA
 7321 ATTTCTTTT TTACTTTCTA TTTTAATT ATATATTAT ATTAAAAAAT TTAAATTATA
 7381 ATTATTTTA TAGCACGTGA TGAAAAGGAC CCAGGTGGCA CTTTCGGGG AAATGTGCGC
 7441 GGAACCCCTA TTGTTTATT TTCTAAATA CATTCAATA TGTATCCGCT CATGAGACAA
 7501 TAACCTGAT AAATGTTCA ATAATCTGCA GCTCTGGCCC GTGTCCTAAA ATCTCTGATG
 7561 TTACATTGCA CAAGATAAAA ATATATCATC ATGAAACAATA AAACGTCTG CTTACATAAA
 7621 CAGTAATACA AGGGGTGTTA TGAGCCATAT TCAACGGGAA ACGTCTTGCT GGAGGCCG
 7681 ATTAATTCC AACATGGATG CTGATTATA TGGGTATAAA TGGGCTCGCG ATAATGTCGG
 7741 GCAATCAGGT GCGACAATCT TTGATTGTA TGGGAAGCCC GATGCGCCAG AGTTGTTCT
 7801 GAAACATGGC AAAGGTAGCG TTGCCAATGA TGTTACAGAT GAGATGGTCA GACTAAACTG
 7861 GCTGACGGAA TTTATGCCCT TTCCGACCAT CAAGCATTAT ATCCGTACTC CTGATGATGC
 7921 ATGGTTACTC ACCACTGCGA TCCCGGGAA AACACCATTC CAGGTATTAG AAGAATATCC
 7981 TGATTTCAGGT GAAAATATTG TTGATGCGCT GGCAGTGGTC CTGCGCCGGT TGCATTGAT
 8041 TCCTGTTGT AATTGTCCTT TTAACAGCGA TCGCGTATTT CGTCTCGCTC AGGCGCAATC
 8101 ACGAATGAAT AACGGTTTGG TTGATGCGAG TGATTTGAT GACCGAGCGTA ATGGCTGGCC
 8161 TGTTGAACAA GTCTGGAAAG AAATGCATAC GCTTTGCCA TTCTCACCGG ATTCACTCGT
 8221 CACTCATGGT GATTCTCAC TTGATAACCT TATTTTGAC GAGGGAAAT TAATAGGTTG
 8281 TATTGATGTT GGACGAGTCG GAATCGCAGA CCGATACCG GATCTTGCCA TCCTATGGAA
 8341 CTGCTCGGT GAGTTTCTC CTTCAATTACA GAAACGGCTT TTCAAAAT ATGGTATTGA
 8401 TAATCCTGAT ATGAATAAT TGCAGTTCA TTTGATGCTC GATGAGTTTT TCTAATCAGA
 8461 ATTGGTTAAT TGGTTGTAAC ACTGGCAGAG CATTACGCTG ACTTGACGGG ACGGCGCATG
 8521 ACCAAAATCC CTTAACGTGA GTTTCGTTT CACTGAGCGT CAGACCCCGT AGAAAAGATC
 8581 AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA AACAAAAAAA
 8641 CCACCGCTAC CAGCGGTGGT TTGTTGCCG GATCAAGAGC TACCAACTCT TTTCCGAAAG
 8701 GTAACGGCT TCAGCAGAGC GCAGATACCA AATACTGTC TTCTAGTGT GCGTAGTTA
 8761 GGCCACCACT TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA
 8821 CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC AAGACGATAG
 8881 TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGTT CGTGCACACA GCCCAGCTTG
 8941 GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCATTGAGA AAGCGCACG
 9001 CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CGGTTAACCG GCAGGGTCGG AACAGGAGAG
 9061 CGCACGAGGG AGCTTCCAGG GGGGAACGCC TGTTATCTT ATAGTCCTGT CGGGTTTCGC
 9121 CACCTCTGAC TTGAGCGTCG ATTGTTGTGA TGCTCGTCAG GGGGGCCGAG CCTATGGAAA
 9181 AACGCCAGCA ACGCGGCCCT TTTACGGTTA CTGGCTTTT GCTGGCCTTT TGCTCACATG
 9241 TTCTTCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT
 9301 GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGAA
 9361 GAGGCCCAA TACGCAAACC GCCTCTCCCC GCGCGTTGGC CGATTCAATTA ATGCAGCTGG-

FIGURE 41D

115/250

9421 CACGACAGGT TTCCCGACTG GAAAGCGGGC AGTGAGCGCA ACGCAATTAA TGTGAGTTAC
 9481 CTCACTCATT AGGCACCCCA GGCTTACAC TTTATGCTTC CGGCTCCTAT GTTGTGTGGA
 9541 ATTGTGAGCG GATAACAATT TCACACAGGA AACAGCTATG ACCATGATTA CGCCAAGCTC
 9601 GGAATTAACC CTCACTAAAG GGAACAAAAG CTGGTACCGA TCCCGAGCTT TGCAAATTAA
 9661 AGCCTTCGAG CGTCCCAAAA CCTTCTCAAG CAAGGTTTC AGTATAATGT TACATGCGTA
 9721 CACCGGTCTG TACAGAAAAA AAAGAAAAAT TTGAAATATA AATAACGTTT TTAATACTAA
 9781 CATAACTATA AAAAAATAAA TAGGGACCTA GACTTCAGGT TGCTAACTC CTTCCCTTTTC
 9841 GGTTAGAGCG GATGTGGGG GAGGGCGTGA ATGTAAGCGT GACATAACTA ATTACATGAT
 9901 ATCGACAAAG GAAAAGGGC CTGTTACTC ACAGGTTTT TTCAAGTAGG TAATTAAGTC
 9961 GTTTCTGTCT TTTTCCITCT TCAACCCACC AAAGGCCATC TTGGTACTTT TTTTTTTTTT
 10021 TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT TTTTTTTTTT
 10081 TTTTTTTTTT TTTTTTTTTT TCATAGAAAT AATACAGAAG TAGATGTTGA ATTAGATTAA
 10141 ACTGAAGATA TATAATTAT TGAAAATAC ATAGAGCTTT TTGTTGATGC GCTTAAGCGA
 10201 TCAATTCAAC AACACCACCA GCAGCTCTGA TTTTTTCTTC AGCCAACCTG GAGACGAATC
 10261 TAGCTTGAC GATAACTGGA ACATTTGGAA TTCTACCCCTT ACCAAGATC TTACCGTAAC
 10321 CGGCTGCCAA AGTGTCAATA ACTGGAGCAG TTTCCTTAGA AGCAGATTTC AAGTATTGGT
 10381 CTCTCTTGTCT TTCTGGGATC AATGTCACAA ATTTGTCCAA GTTCAAGACT GGCTTCAGA
 10441 AATGAGCTTG TTGCTTGTGG AAGTATCTCA TACCAACCTT ACCGAAATAA CCTGGATGGT
 10501 ATTTATCCAT GTTAATTCTG TGGTGATGTT GACCACCGGC CATACTCTA CCACCGGGGT
 10561 GCTTTCTGTCT CTTACCGATA CGACCTTTAC CGGCTGAGAC GTGACCTCTG TGCTTTCTAG
 10621 TCTTAGTGA TCTGGAAGGC ATTCTTGATT AGTTGGATGA TTGTTCTGGG ATTTAATGCA
 10681 AAAATCACTT AAGAAGGGAA ATCAACGGAG AAAGCAAACG CCATCTTAAA TATACGGGAT
 10741 ACAGATGAAA GGGTTGAAAC CTATCTGGAA AATAGCATTAA ACAAGCGAA AACTGCGAG
 10801 GAAAATTGTT TCGGTCTCTG CGGGCTATTG ACGCGCCAGA GGAAAATAGG AAAAATAAAC
 10861 GGGCATTAGA AAAATAATT TGATTTGGT AATGTGTGGG TCCTGGTGTAA CAGATGTTAC
 10921 ATTGGTTACA GTACTCTTGT TTTTGCTGTG TTTTTCGATG AATCTCCAAA ATGGTTGTTA
 10981 GCACATGGAA GAGTCACCGA TGCTAAGTTA TCTCTATGTA AGCTACGTGG CGTGACTION
 11041 GATGAAGCCG CACAAGAGAT ACAGGATTGG CAACTGCAA TAGAATCTGG GGATCCCCC
 11101 TCGAGATCCG GGATCGAAGA AATGATGGTA AATGAAATAG GAAATCAAGG AGCATGAAGG
 11161 CAAAAGACAA ATATAAGGGT CGAACGAAAA ATAAAGTGA AAGTGTGAT ATGATGTATT
 11221 TGGCTTGCG GCGCCGAAAA AACAGGTTTA CGCAATTGCA CAATCATGCT GACTCTGTGG
 11281 CGGACCCCGCG CTCTTGGCGG CCCGGCGATA ACGCTGGCG TGAGGCTGTG CCCGGCGGAG
 11341 TTTTTGCGC CTGCATTTC CAAGGTTTAC CCTGCGCTAA GGGCGAGAT TGGAGAAGCA
 11401 ATAAGAATGC CGGTTGGGT TGGATGATG ACGACACGA CAACTGGTGT CATTATTAA
 11461 GTTGGCGAAA GAACCTGAGT GCATTGCAA CATGAGTATA CTAGAAGAAT GAGCCAAGAC
 11521 TTGCGAGACG CGAGTTTGCC GGTGGTGCAGA ACAATAGAGC GACCATGACC TTGAAGGTGA
 11581 GACCGCGATA ACCGCTAGAG TACCTTGAAAG AGGAAACAGC AATAGGGTTG CTACCAAGTAT
 11641 AAATAGACAG GTACATACAA CACTGGAAAT GGTTGCTGT TTGAGTACGC TTTCAATTCA
 11701 TTTGGGTGTG CAC

FIGURE 415

116/260

Figure 42A:

pDEST22

2-Hybrid Vector with Activation Domain

657 acg cac act act ctc taa tga gca acg gta tac ggc ctt cct tcc agt tac
 tgc gtg tga tga gag att act cgt tgc cat atg ccg gaa gga agg tca atg
 708 ttg aat ttg aaa taa aaa aag ttt gcc gct ttg cta tca agt ata aat aga
 aac tta aac ttt att ttt ttc aaa cgg cga aac gat agt tca tat tta tct
 759 cct gca att att aat ctt ttg ttt cct cgt cat tgt tct cgt tcc ctt tct
 gga cgt taa taa tta gaa aac aaa gga gca gta aca aga gca agg gaa aga
 ADH Promoter
 810 // tcc/ttg ttt ctt ttt ctg cat aat att tca agc tat acc aag cat aca atc //
 // aac/aac aac/gaa aaa/gac/gtg tta aat agt tcc gta ttt ttc gta tat taa //
 861 // aac/tcc aag ctt atg ccc aag aag cgg aag gtc tcg agc ggc gcc aat //
 // ttg agg ttc gaa tac ggg ttc ttc gcc ttc cag agc tcg ccc cgg ttg //
 Start Translation
 1218 gaa gat acc cca cca aac cca aaa aaa gag ggt ggg tgg aat caa aca agt D G G S N Q T S
 ctt cta tgg ggt ggt ttg ggt ttt ttt ctc cca ccc agc tta gtt tgt tca
 1269 // L Y K K A attR1
 // ttg tac aaa aaa gct gaa cga aac agc taa a aac atg ttt ttt cga ctt gct ctt tgc att t //
 Intv

117/240

pDEST22 8923 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
904..1248	GAL4 AD
1388..1264	attR1
1638..2297	CmR
2417..2501	inactivated ccdA
2639..2944	ccdB
2985..3109	attR2
3831..4318	f1 (f1 intergenic region)
4334..5176	TRP1
6110..7194	ampR
8344..866	pADH (yeast ADH promoter)

1 TTCAATTGGG TGTGCACTTT ATTATGTTAC AATATGGAAG GGAACTTTAC ACTTCTCCTA
 61 TGACATATA TTAATTAAAG TCCAATGCTA GTAGAGAAGG GGGGTAACAC CCCTCCGCGC
 121 TCTTTTCCGA TTTTTTCTA AACCGTGGAA TATTCGGAT ATCCTTTGT TGTTTCCGGG
 181 TGTACAATAT GGACTTCCTC TTTCTGGCA ACCAAACCCA TACATCGGGA TTCTATAAT
 241 ACCTTCGTTG GTCTCCCTAA CATGTAGGTG GCGGAGGGGA GATATACAAT AGAACAGATA
 301 CCAGACAAGA CATAATGGGC TAAACAAGAC TACACCAATT ACACTGCCTC ATTGATGGTG
 361 GTACATAACG AACTAATACT GTAGCCCTAG ACTTGATAGC CATCATCATA TCGAAGTTTC
 421 ACTACCCTTT TTCCATTGTC CATCTAATTGA AGTAATAATA GGCACATGCA ACTTCTTTTC
 481 TTTTTTTTTC TTTCTCTCT CCCCGTTGTG TGTCTCACCA TATCCGCAAT GACAAAAAAA
 541 ATGATGGAAG ACACTAAAGG AAAAATTAA CGACAAAGAC AGCACCAACA GATGTCGTTG
 601 TTCCAGAGCT GATGAGGGGT ATCTTCGAAC ACACGAAACT TTTCTCTTC TTCATTCAACG
 661 CACACTACTC TCTAATGAGC AACGGTATAAC GGCCCTCCT CCAGTTACTT GAATTGAAA
 721 TAAAAAAAGT TTGCGCTTT GCTATCAAGT ATAAATAGAC CTGCAATTAT TAATCTTTG
 781 TTTCCTCGTC ATTGTTCTCG TTCCCTTTCT TCCTTGTTC TTTTCTGCA CAATATTCA
 841 AGCTATACCA AGCATAACAAT CAACTCCAAG CTTATGCCCA AGAAGAAGCG GAAGGTCTCG
 901 AGCGCGCCA ATTTTAATCA AAGTGGGAAT ATTGCTGATA GCTCATTGTC TTTCACITTC
 961 ACTAACAGTA GCAACGGTCC GAACCTCAT ACAAACCTAA CAAATTCTCA AGCGCTTTCA
 1021 CAACCAATTG CCTCCTCTAA CGTTCATGAT AACCTTCATGA ATAATGAAAT CACGGCTAGT
 1081 AAAATTGATG ATGGTAATAA TTCAAAACCA CTGTCACCTG GTGGACGGA CCAAACGTGCG
 1141 TATAACCGT TTGGAATCAC TACAGGGATG TTTAATACCA CTACAATGGA TGATGTATAT
 1201 AACTATCTAT TCGATGATGA AGATAACCCA CCAAACCCAA AAAAGAGGG TGGGTCGAAT
 1261 CAAACAAGTT TGTACAAAAA AGCTGAACGA GAAACGTAAGG ATGATATAAA TATCAATATA
 1321 TAAATTAGA TTTGCATAA AAAACAGACT ACATAATACT GTAAAACACA ACATATCCAG
 1381 TCACTATGGC GGCGCTAAG TTGGCAGCAT CACCCGACGC ACTTTGCGCC GAATAATAC
 1441 CTGTGACGGA AGATCACTC GCAGAATAAA TAAATCCTGG TGTCCCTGTT GATACCGGGAA
 1501 AGCCCTGGGC CAACTTTGG CGAAAATGAG ACGTTGATCG GCACGTAAGA GGTTCCAAC
 1561 TTCACCATAA TGAAATAAGA TCACTACCGG GCGTATTGTT TGAGTTATCG AGATTTTCAG
 1621 GAGCTAAGGA AGCTAAAATG GAGAAAAAAA TCACTGGATA TACCAACCGTT GATATATCCC
 1681 AATGGCATCG TAAAGAACAT TTTGAGGCAT TTCAGTCAGT TGCTCAATGT ACCTATAACC
 1741 AGACCGTTCA GCTGGATATT ACGGCCTTTT TAAAGACCGT AAAGAAAAAT AAGCACAAGT
 1801 TTTATCCGGC CTTTATTAC TTTCTTGCCC GCCTGATGAA TGCTCATCCG GAATTCCGTA
 1861 TGGCAATGAA AGACGGTGAG CTGGTGATAT GGGATAGTGT TCACCCCTGTT TACACCGTTT
 1921 TCCATGAGCA AACTGAAACG TTTTCATCGC TCTGGAGTGA ATACCACGAC GATTTCCGGC
 1981 AGTTTCTACA CATATATTG CAAAGATGTGG CGTGTACGG TGAAAACCTG GCCTATTCTC
 2041 CTAAAGGGTT TATTGAGAAT ATGTTTTGCG TCTCAGCCAA TCCCTGGGTG AGTTTCACCA
 2101 GTTTTGATTT AAACGTGGCC AATATGGACA ACTTCCTCGC CCCCCTTTTC ACCATGGGCA
 2161 AATATTATAC GCAAGCGAC AAGGTGCTGA TGCCGCTGGC GATTCAAGGTT CATCATGCCG
 2221 TCTGTGATGG CTTCCATGTC GGCAGAAATGC TTAATGAATT ACAACAGTAC TGCGATGAGT
 2281 GGCAGGGCGG GGCAGTAATCT AGAGGATCCG GCTTACTAAA AGCCAGATAA CAGTATGCGT
 2341 ATTTGCGCGC TGATTTTGCG GGTATAAGAA TATATACTGA TATGTATACC CGAAGTATGT
 2401 CAAAAAGAGG TGTGCTATGA AGCAGCGTAT TACAGTGACA GTTGACAGCG ACAGCTATCA
 2461 GTTGCTCAAG GCATATATGA TGTCAATATC TCCGGTCTGG TAAGCACAAC CATGCAGAAAT
 2521 GAAGCCCGTC GTCTGCGTGC CGAACGCTGG AAAGCGAAA ATCAGGAAGG GATGGCTGAG-

FIGURE 425

118/240

2581 GTCGCCGGT TTATTGAAAT GAACGGCTCT TTTGCTGACG AGAACAGGGA CTGGTCAAAT
 2641 GCAGTTAAG GTTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTTTG TGGATGTACA
 2701 GAGTGATATT ATTGACACGC CCGGGCGACG GATGGTGATC CCCCTGGCCA GTGCACGTCT
 2761 GCTGTCAGAT AAAGTCTCCC GTGAACCTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG
 2821 GCGCATGATG ACCACCGATA TGCCAGTGT GCCGGTCTCC GTTATCGGGG AAGAAGTGGC
 2881 TGATCTCAGC CACCGCGAAA ATGACATCAA AACGCCATT AACCTGATGT TCTGGGAAT
 2941 ATAATATGTCA GGCTCCCTTA TACACAGCCA GTCTGCAGGT CGACCATACT GACTGGATAT
 3001 GTTGTGTTT ACAGTATTAT GTAGTCTGTT TTTTATGAA AATCTAATTT AATATATTGA
 3061 TATTATATAC ATTTTACGTT TCTCGTTCA CTTTCTGTA CAAAGTGGTT TGATGGCCGC
 3121 TAAGTAAGTA AGACGTCGAG CTCTAAGTAA GTAACGGCCG CCACCGCGGT GGAGCTTGG
 3181 ACTTCTCGC CAGAGGTTTG GTCAAGTCTC CAATCAAGGT TGTCGGCTTG TCTACCTTGC
 3241 CAGAAATTAA CGAAAAGATG GAAAAGGGTC AAATCGTGG TAGATACGTT GTTGACACTT
 3301 CTAATAAAGC GAATTCTTA TGATTTATGA TTTTATTAT TAAATAAGTT ATAAAAAAA
 3361 TAAGTGTATA CAAATTTAA AGTGAATCTT AGGTTTTAA ACGAAAATTC TTATTCTTGA
 3421 GTAATCTTT CCTGTAGGTC AGGTTGCTTT CTCAGGTATA GCATGAGGTC GCTCTTATTG
 3481 ACCACACCTC TACCGGCATG CCGAGCAAAT GCCTGCAAAT CGCTCCCCAT TTCACCCAAAT
 3541 TGTAGATATG CTAACCTCAG CAATGAGTTG ATGAATCTG GTGTGTATT TATGTCCTCA
 3601 GAGGACAATA CCTGTTGAA TCGTTCTTCC ACACGGATCC CAATTGCCC TATAGTGAGT
 3661 CGTATTACAA TTCACTGGCC GTCGTTTAC AACGTCGTGA CTGGGAAAC CCTGGCGTTA
 3721 CCCAATTAA TCGCCTTGCA GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAGAGG
 3781 CCCGCACCAGA TCGCCCTTCC CAACAGTTGC GCAGCCTGAA TGGCGAATGG ACGCGCCCTG
 3841 TAGCGCGCA TTAAGCGCGG CGGGTGTGGT GGTTACGCGC AGCGTACCG CTACACTTGC
 3901 CAGGCCCTA GCGCCCGCTC CTTTCGCTTT CTTCCCTTCC TTTCTCGCCA CGTTCGCCGG
 3961 CTTTCCCCGT CAAGCTCTAA ATCGGGGGCT CCCTTTAGGG TTCCGATTAA GTGCTTACG
 4021 GCACCTCGAC CCCAAAAAAC TTGATTAGGG TGATGGTCA CGTAGTGGC CATCGCCCTG
 4081 ATAGACGGTT TTTCGCCCT TGACGTTGGA GTCCACGTT TTTAATAGTG GACTCTTGT
 4141 CCAAACCTGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTAT AAGGGATTTT
 4201 GCCGATTTCG GCCTATTGGT TAAAAAAATGA GCTGATTAA CAAAAATTAA ACGCGAATTT
 4261 TAACAAAATA TTAACGTTA CAATTCTCTG ATGCGGTATT TTCTCCTTAC GCATCTGTGC
 4321 GGTATTTCAC ACCCGCAGGCA AGTGCACAAA CAATACTAA ATAAATACTA CTCAGTAATA
 4381 ACCTATTTCT TAGCATTTT GACGAAATT TGTCTATTGT TAGAGTCTTT TACACCAATT
 4441 GTCTCCACAC CTCCGTTAC ATCAACACCA ATAACGCCAT TTAATCTAAG CGCATTACCA
 4501 ACATTTCTG GCGTCAGTCC ACCAGCTAAC ATAAAATGTA AGCTTCGGG GCTCTTGC
 4561 CTTCCAACCC AGTCAGAAAT CGAGTTCCAA TCCAAAAGTT CACCTGCCC ACCTGCTTCT
 4621 GAATCAAACA AGGGAAATAA CGAATGAGGT TTCTGTGAAG CTGCACTGAG TAGTATGTT
 4681 CAGTCTTTG GAAATACGAG TCTTTTAATA ACTGGCAAC CGAGGAACCT TTGGTATTCT
 4741 TGCCACGACT CATCTCCATG CAGTTGGACG ATATCAATGC CGTAATCATT GACCAGAGCC
 4801 AAAACATCCT CCTTAGGTT ATTACGAAAC ACGCCAACCA AGTATTCGG AGTGCCTGAA
 4861 CTATTTTTAT ATGCTTTAC AAGACTTGAA ATTTTCCTTG CAATAACCGG GTCAATTGTT
 4921 CTCTTTCTAT TGGGCACACA TATAATACCC AGCAAGTCAG CATCGGAATC TAGAGCACAT
 4981 TCTGCGGCCT CTGTGCTCTG CAAGCCGCAA ACTTTCACCA ATGGACCAGA ACTACCTGTG
 5041 AAATTAAATAA CAGACATACT CCAAGCTGCC TTTGTGTGCT TAATCACGTA TACTCACGTG
 5101 CTCAATAGTC ACCAATGCC TCCCTCTTGG CCCTCTCCTT TTCTTTTTTC GACCGAATTA
 5161 ATTCTTAATC GGCAAAAAAA GAAAAGCTCC GGATCAAGAT TGACGTAAG GTGACAAGCT
 5221 ATTTTCAAT AAAGAATATC TTCCACTACT GCCATCTGGC GTCTAACTG CAAAGTACAC
 5281 ATATATTACG ATGCTGCTA TTAAATGCTT CCTATATTAT ATATATAGTA ATGTCGTTA
 5341 TGGTGCACTC TCAGTACAAT CTGCTCTGAT GCCGCATAGT TAAGCCAGCC CCGACACCCG
 5401 CCAACACCCG CTGACCGCC CTGACGGGCT TGTCTGCTCC CGGCATCCGC TTACAGACAA
 5461 GCTGTGACCG TCTCCGGAG CTGCTGTGT CAGAGTTTT CACCGTCATC ACCGAAACGC
 5521 GCGAGACGAA AGGGCCTCGT GATACGCCA TTTTTATAGG TTAATGTCAT GATAATAATG
 5581 GTTCTTAGG ACGGATCGCT TGCTGTAAC TTACACGCGC CTCGTATCTT TTAATGATGG
 5641 AATAATTGGA GAATTTACTC TGTGTTTATT TATTTTATG TTTGTTATT GGATTTAGA
 5701 AAGTAAATAA AGAAGGTAGA AGAGTTACGG AATGAAGAAA AAAAAATAAA CAAAGGTTA
 5761 AAAAATTCA AAAAAAGCG TACTTTACAT ATATATTAT TAGACAAGAA AAGCAGATTA
 5821 AATAGATATA CATTGATTA ACGATAAGTA AAATGAAAA TCACAGGATT TTCGTGTTG
 5881 GTCTTCTACA CAGACAAAGAT GAAACAATTG GGCATTAATA CCTGAGAGCA GGAAGAGCAA
 5941 GATAAAAGGT AGTATTGTT GGCGATCCCC CTAGAGTCTT TTACATCTTC GGAAAACAAA
 6001 AACTATTTT TCTTTAATTT CTTTTTAC TTTCTATTAA TAATTTATAT ATTATATATTA-

FIGURE 42c

119/260

6061 AAAAATTAA ATTATAATTA TTTTATAGC ACGTGATGAA AAGGACCCAG GTGGCACTTT
 6121 TCGGGGAAAT GTGCGCGGA CCCCTATTTG TTTATTTTC TAAATACATT CAAATATGTA
 6181 TCCGCTCATG AGACAATAAC CCTGATAAAAT GCTTCAATAA TATTGAAAAA GGAAGAGTAT
 6241 GAGTATTCAA CATTTCGTG TCGCCCTTAT TCCCTTTTT GC GG CATT TT GC CTT CCGT
 6301 TTTGCTCAC CCAGAACGC TGGTAAAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG
 6361 AGTGGTTAC ATCGAACTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT TCGCCCCGA
 6421 AGAACGTTT CCAATGATGA GCACCTTAA AGTTCTGCTA TGTGGCGCG TATTATCCCG
 6481 TATTGACGCC GGGCAAGAGC AACTCGGTG CCGCATAAC TATTCTCAGA ATGACTTGGT
 6541 TGAGTACTCA CCAGTCACAG AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG
 6601 CAGTGCTGCC ATAACCATGA GTGATAACAC TGCGGCCAAC TTACTTCTGA CAACGATCGG
 6661 AGGACCGAAG GAGCTAACCG CTTTTTTCA CAACATGGG GATCATGTA CTCGCCTTGA
 6721 TCGTGGAA CGGGAGCTGA ATGAAGCCAT ACCAAACGAC GAGCGTGACA CCACGATGCC
 6781 TGTAGCAATG GCAACAAACGT TGCGCAAAC TTTAACTGGC GAACTACTTA CTCTAGCTTC
 6841 CCGGCAACAA TTAATAGACT GGATGGAGGC GGATAAAAGTT GCAGGACCA TTCTGGCCTC
 6901 GGCCTTCCG GCTGGCTGG TTATTGCTGA TAAATCTGGA GCCGGTGAGC GTGGGTCTCG
 6961 CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC CGTATCGTAG TTATCTACAC
 7021 GACGGGCAGT CAGGCAACTA TGGATGAACG AAATAGACAG ATCGCTGAGA TAGGTGCCTC
 7081 ACTGATTAAG CATTGGTAACT GTGAGACCA AGTTTACTCA TATATACTTT AGATTGATT
 7141 AAAACTTCAT TTTTAATTAA AAAGGATCTA GGTGAAGATC CTTTTGATA ATCTCATGAC
 7201 CAAAATCCCT TAACGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA
 7261 AGGATCTTCT TGAGATCCTT TTTTCTGCG CGTAATCTGC TGCTTGCAA CAAAAAAACC
 7321 ACCGCTACCA GCGGTGGTT GTTGCCGGA TCAAGAGCTA CCAACTCTTT TTCCGAAGGT
 7381 AACTGGCTTC AGCAGAGCGC AGATACCAAA TACTGTCCTT CTAGTGTAGC CGTAGTTAGG
 7441 CCACCCTTC AAGAACTCTG TAGCACCGCC TACATACTC GCTCTGCTAA TCCTGTTACC
 7501 AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAGTT
 7561 ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGTTTCG TGACACACAGC CCAGCTGGA
 7621 GCGAACGACC TACACCGAAC TGAGATACCT ACAGCGTGAG CATTGAGAAA GCGCCACGCT
 7681 TCCCGAAGGG AGAAAGGCGG ACAGGTATCC GGTAAGCGGC AGGGTCGGAA CAGGAGAGCG
 7741 CACGAGGGAG CTTCCAGGGG GGAACGCCCTG GTATCTTTAT AGTCTGTGCG GTTTGCCA
 7801 CCTCTGACTT GAGCGTCGAT TTTTGTGATG CTCGTCAGGG GGGCGAGCC TATGGAAAAAA
 7861 CGCCAGCAAC GCGGCCTTT TACGGTTCCCT GGCCTTTGC TGGCCTTTG CTCACATGTT
 7921 CTTTCCTGCG TTATCCCCGT ATTCTGTGGA TAACCGTATT ACCGCCCTTG AGTGAGCTGA
 7981 TACCGCTCGC CGCAGCCGAA CGACCGAGCG CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA
 8041 GCGCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGCCG ATTCAATTAT GCAGCTGGCA
 8101 CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGCAAC GCAATTATG TGAGTTACCT
 8161 CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCG GCTCTATGT TGTGTGGAAT
 8221 TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTCGG
 8281 AATTAAACCT CACTAAAGGG AACAAAAGCT GGGTACCGGG CCCCCCTCG AGATCCGGGA
 8341 TCGAAGAAAT GATGGTAAAT GAAATAGGAA ATCAAGGAGC ATGAAGGCAA AAGACAAATA
 8401 TAAGGGTCGA ACGAAAAATA AAGTAAAAG TGTTGATATG ATGTATTG TGTTGCGCG
 8461 CGGAAAAAAC GAGTTACGC AATTGCACAA TCATGCTGAC TCTGTGGCGG ACCCGCGCTC
 8521 TTGCCGGCCC GGCATAACG CTGGCGTGA GGCTGTGCCG GCGGGAGTTT TTGCGCCTG
 8581 CATTTCCAA GTTTACCCCT GCGCTAAGGG GCGAGATTGG AGAAGCAATA AGAATGCCGG
 8641 TTGGGGTTGC GATGATGACG ACCACGACAA CTGGTGTGAT TATTAAGTT GCCGAAAGAA
 8701 CCTGAGTGCA TTTGCAACAT GAGTATACTA GAAGAATGAG CCAAGACTTG CGAGACGCGA
 8761 GTTGCCGGT GGTGCGAACAA ATAGAGCGAC CATGACTTG AAGGTGAGAC GCGCATAACC
 8821 GCTAGAGTAC TTTGAAGAGG AAACAGCAAT AGGGTTGCTA CCAGTATAAA TAGACAGGTA
 8881 CATAAACAC TGGAAATGGT TGTCTGTTG AGTACGCTTT CAA

FIGURE 4²⁰

120/240

pDEST23

His6 carboxy-fusion vector, T7 promoter

T7 Promoter → mRNA
 205 atc ccg cga aat taa tac gac tca cta tag gga gac cac aac ggt ttc cct
 tag ggc gct tta att atg ctg agt gat atc cgt ctg gtg ttg cca aag gga
 256 cta gat cac aag ttt gta caa aaa agc tga acg aga aac gta aaa tga tat //
 gat cta ctg tcc aaa cat gtt ttt tcg act tgc tct ttg cat ttt act ata //

// CmR — ccdB — //

1888 ttt tta tgc aaa atc taa ttt aat ata ttg ata ttt ata tca ttt tac gtt
 aaa aat acg ttt tag att aaa tta tat aac tat aaa tat agt aaa atg caa
 attR2 A F L Y K V Y I M S Y Y H H
 1939 tct cgt tca gct ttc ttg tac aaa gtg gtg att atg tcg tac tac cat cac
 aga gca agt cga aag aac atg ttt cac cac taa tac aca atg atg gta gtg
 1990 H H H H L D E term HIS6
 cat cac cat cac ctc gat gag caa taa cta gca taa ccc ctt ggg gcc tct
 gta gtg gta gtg gag cta ctc gtt att gat cgt att ggg gaa ccc cgg aga

FIGURE 43A

121/240

pDEST23 6264 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
285..161	attR1
394..1053	CmR
1173..1257	inactivated ccdA
1395..1700	ccdB
1741..1865	attR2
1883..1911	hisG
2574..3434	ampR
3583..4222	ori

1 TCTTCCCCAT CGGTGATGTC GGCGATATAG GCGCCAGCAA CCGCACCTGT GGCGCCGGTG
 61 ATGCCGGCCA CGATGCGTCC GGCCTAGAGG ATCGAGATCT CGATCCCGCG AAATTAATAC
 121 GACTCACTAT AGGGAGACCA CAACGGTTTC CCTCTAGATC ACAAGTTTGT ACAAAAAAAGC
 181 TGAACGAGAA ACGTAAAATG ATATAAAATAT CAATATATTA AATTAGATTT TGCAATAAAA
 241 ACAGACTACA TAATACTGTA AAACACAAACA TATCCAGTCA CTATGGCGGC CGCATTAGGC
 301 ACCCCCAGGCT TTACACTTTA TGCTTCCGGC TCGTATAATG TGTGGATTT GAGTTAGGAT
 361 CCGGCGAGAT TTTCAGGAGC TAAGGAAGCT AAAATGGAGA AAAAAATCAC TGGATATACC
 421 ACCGTTGATA TATCCAATG GCATCGTAA GAACATTTG AGGCATTCA GTCAGTTGCT
 481 CAATGTACCT ATAACCAGAC CGTTCAAGCTG GATATTACGG CCTTTTAAAG GACCGTAAAG
 541 AAAATAAAGC ACAAGTTTA TCCGGCCTTT ATTACACATTC TTGCCCCGCT GATGAATGCT
 601 CATCCGGAAT TCCGTATGGC AATGAAAGAC GGTGAGCTGG TGATATGGGA TAGTGTTCAC
 661 CCTTGTACCA CCGTTTTCCA TGAGCAAACG GAAACGTTT CATCGCTCTG GAGTGAAATAC
 721 CACGACGATT TCCGGCAGTT TCTACACATA TATTGCAAG ATGTGGCGTG TTACGGTGA
 781 AACCTGGCCT ATTTCCCTAA AGGTTTATT GAGAATATGT TTTTGTCTC AGCCAATCCC
 841 TGGGTGAGTT TCACCAAGTT TGATTTAAC GTGGCCAATA TGGACAACCTT CTTCGCCCC
 901 GTTTTACCA TGGGCAAATA TTATACGAA GGCGACAAGG TGCTGATGCC GCTGGCGATT
 961 CAGGTTCATC ATGCCGCTG TGATGGCTTC CATGCGGCCA GAATGCTTAA TGAATTACAA
 1021 CAGTACTGCG ATGAGTGGCA GGGCGGGGCG TAAACCGCTG GATCCGGCTT ACTAAAAGCC
 1081 AGATAAACAGT ATGCGTATTG GCGCCTGAT TTTTGCCTTA TAAGAATATA TACTGATATG
 1141 TATAACCGAA GTATGTCAA AAGAGGTGTG CTATGAAGCA GCGTATTACCA GTGACAGTTG
 1201 ACAGCGACAG CTATCAGTTG CTCAAGGCAT ATATGATGTC AATATCTCCG GTCTGGTAAG
 1261 CACAACCATG CAGAATGAAG CCCGTCGTCT CGCGGCCAA CGCTGGAAAG CGGAAATCA
 1321 GGAAGGGATG GCTGAGGTCG CCCGGTTTAT TGAAATGAAC GGCTCTTTG CTGACGAGAA
 1381 CAGGGACTGG TGAAATGCAG TTTAAGGTTT ACACCTATAA AAGAGAGAGC CGTTATCGTC
 1441 TGTTTGTGGA TGTACAGAGT GATATTATTG ACACGCCGG GCGACGGATG GTGATCCCC
 1501 TGGCCAGTGC ACGTCTGCTG TCAGATAAAG TCTCCCGTGA ACTTTACCCG GTGGTGCATA
 1561 TCAGGGGATGA AAGCTGGCGC ATGATGACCA CCGATATGGC CAGTGTGCCG GTCTCCGTTA
 1621 TCAGGGGAAGA AGTGGCTGAT CTCAGCCACC GCGAAAATGA CATCAAAAC ACCATTAAACC
 1681 TGATGTTCTG GGGAAATATAA ATGTCAGGCT CCCTTATACCA CAGCCAGTCT GCAGGTCGAC
 1741 CATACTGACT GGATATGTTG TGTTTACAG TATTATGTTG TCTGTTTTT ATGCAAAATC
 1801 TAATTTAATA TATTGATATT TATATCATT TACGTTCTC GTTCAGCTTT CTTGTACAAA
 1861 GTGGTGATTA TGTCGACTA CCATCACCAT CACCATCACC TCGATGAGCA ATAACTAGCA
 1921 TAACCCCTTG GGGCCTCTAA ACGGGTCTTG AGGGGTTTT TGCTGAAAGG AGGAACATA
 1981 TCCGGATATC CACAGGACGG GTGTGGTCGC CATGATGCCG TAGTCGATAG TGGCTCAAAG
 2041 TAGCGAAGCG AGCAGGACTG GGCGCGGCC AAAGCGCTCG GACAGTGCTC CGAGAACGGG
 2101 TGCACATAGA AATTGACATCA ACGCATATAG CGCTAGCAGC ACGCCATAGT GACTGGCGAT
 2161 GCTGTCGGAA TGGACGATAT CCCGCAAGAG GCGCCGAGT ACCGGCATAA CCAAGCCTAT
 2221 GCCTACAGCA TCCAGGGTGA CGGTGCCAG GATGACGATG AGCCGATTGT TAGATTTCAT
 2281 ACACGGGTGCC TGACTGCGTT AGCAATTAA CTGTGATAAA CTACCGCATT AAAGCTTATC
 2341 GATGATAAGC TGTCAAACAT GAGAATCTT GAAGACGAAA GGGCCTCGTG ATACGCCTAT
 2401 TTTTATAGGT TAATGTCATG ATAATAATGG TTTCTTAGAC GTCAGGTGGC ACTTTTCGGG
 2461 GAAATGTGCG CGGAACCCCT ATTGTTTAT TTTCTAAAT ACATTCAGG ATGTATCCGC
 2521 TCATGAGACA ATAACCCCTGA TAAATGCTTC AATAATATG AAAAAGGAAG AGTATGAGTA
 2581 TTCAACATTT CCGTGTGCC CTTATCCCT TTTTGCGGC ATTTTGCCTT CCTGTTTTG
 2641 CTCACCCAGA AACGCTGGTG AAAGTAAAAG ATGCTGAAGA TCAGTTGGT GCACGAGTGG-

FIGURE 43B

122/240

2701 GTTACATCGA ACTGGATCTC AACAGCGGT A GATCCTGA GAGTTTCGC CCCGAAGAAC
 2761 GTTTCCAAT GATGAGCACT TTTAAAGTT TGCTATGTGG CGCGGTATTA TCCCGTGTG
 2821 ACGCCGGCA AGAGCAACTC GGTGCCGCA TACACTATTC TCAGAATGAC TTGGTTGAGT
 2881 ACTCACCACT CACAGAAAAG CATCTTACGG ATGGCATGAC AGTAAGAGAA TTATGCAGTG
 2941 CTGCCATAAC CATGAGTGAT AACACTGCGG CCAACTTACT TCTGACAACG ATCGGAGGAC
 3001 CGAAGGAGCT AACCGCTTT TTGACAACA TGGGGGATCA TGTAACTCGC CTTGATCGTT
 3061 GGGAACCGGA GCTGAATGAA GCCATACCAA ACAGACGAGCG TGACACCACG ATGCCTGCAG
 3121 CAATGGCAAC AACGTTGCGC AAACATTAA CTGGCGAAGT ACTTACTCTA GCTTCCGGC
 3181 AACAAATTAAAGT AGACTGGATG GAGGCGGATA AAGTTGCAGG ACCACTTCTG CGCTCGGGCC
 3241 TTCCGGCTGG CTGGTTTATT GCTGATAAAAT CTGGAGCCGG TGAGCGTGGG TCTCGGGTA
 3301 TCATTGCAGC ACTGGGGCCA GATGTTAAGC CCTCCCGTAT CGTAGTTATC TACACGACGG
 3361 GGAGTCAGGC AACTATGGAT GAACGAAATA GACAGATCGC TGAGATAGGT GCCTCACTGA
 3421 TTAAGCATTG GTAACGTCA GACCAAGTTT ACTCATATAT ACTTTAGATT GATTAAAAC
 3481 TTCATTTTA ATTAAAAGG ATCTAGGTGA AGATCCTTT TGATAATCTC ATGACAAAAA
 3541 TCCCTTAACG TGAGTTTCG TTCCACTGAG CGTCAGACCC CGTAGAAAAG ATCAAAGGAT
 3601 CTTCTTGAGA TCCCTTTTTT CTGCGCGTAA TCTGCTGTT GCAAACAAAA AAACACCAGC
 3661 TACCAGCGGT GGTTGTTTG CCGGATCAAG AGCTACCAAC TCTTTTCCG AAGGTAACTG
 3721 GCTTCAGCAG AGCGCAGATA CCAAATACTG TCCCTCTAGT GTAGCCGTAG TTAGGCCACC
 3781 ACTTCAAGAA CTCTGTAGCA CCGCCTACAT ACCTCGCTCT GCTAATCCTG TTACCAAGTGG
 3841 CTGCTGCCAG TGGCGATAAG TCGTGTCTTA CCGGGTTGGA CTCAAGACGA TAGTTACCGG
 3901 ATAAGGCGCA GCGGTGGGG TGAAACGGGG GTTCGTGCAC ACAGCCCAGC TTGGAGCGAA
 3961 CGACCTACAC CGAACGTGAGA TACCTACAGC GTGAGCTATG AGAAAGCGCC ACGCTTCCCG
 4021 AAGGGAGAAA GCGGGACAGG TATCCGGTAA GCGGCAGGGT CGAAACAGGA GAGCGCACGA
 4081 GGGAGCTTCC AGGGGGAAAC GCCTGGTATC TTTATAGTCC TGTCGGTTT CGCCACCTCT
 4141 GACTTGAGCG TCGATTTTG TGATGCTCGT CAGGGGGGG GAGCCTATGG AAAAACGCCA
 4201 GCAACCGGGC CTTTTTACGG TTCTGGCCT TTTGCTGCC TTTTGTCTCAC ATGTTCTTC
 4261 CTGCGTTATC CCCTGATTCT GTGGATAACC GTATTACCGC CTTTGAGTGA GCTGATACCG
 4321 CTCGCCGCAG CCGAACGACC GAGCGCAGCG AGTCAGTGA CGAGGAAGCG GAAGAGCGCC
 4381 TGATGCGGTA TTTCTCCTT ACGCATCTGT GCGGTATTTC ACACCGCATA TATGGTGAC
 4441 TCTCAGTACA ATCTGCTCTG ATGCGCATA GTTAAGCCAG TATACACTCC GCTATCGCTA
 4501 CGTGACTGGG TCATGGCTGC GCCCGACAC CCGCCAACAC CCGCTGACGC GCCCTGACGG
 4561 GCTTGTCTGC TCCCGGCATC CGCTTACAGA CAAGCTGTGA CGCTCTCCGG GAGCTGCATG
 4621 TGTCAAGAGGT TTTCACCGC ATCACCGAA CGCGCGAGGC AGCTGCGGTA AAGCTCATCA
 4681 GCGTGGTCGT GAAGCGATTC ACAGATGTCT GCCTGTTCAT CCGCGTCCAG CTCGTTGAGT
 4741 TTCTCCAGAA GCGTTAATGT CTGGCTCTG ATAAAGCGGG CCATGTTAAG GGCGGTTTTT
 4801 TCCTGTTTGG TCACTGATGC CTCCGTGAA GGGGGATTTC TGTCATGGG GGTAATGATA
 4861 CCGATGAAAC GAGAGAGGAT GCTCACGATA CGGGTTACTG ATGATGAACA TGCCCGGTTA
 4921 CTGGAACGTT GTGAGGGTAA ACAACTGGCG GTATGGATGC GGCAGGGACCA GAGAAAAATC
 4981 ACTCAGGGTC AATGCCAGCG CTTCGTTAAT ACAGATGTAG GTGTTCCACA GGGTAGCCAG
 5041 CAGCATCCTG CGATGCAAGAT CCGGAACATA ATGGTGCAAG GCGCTGACTT CCGCGTTTCC
 5101 AGACTTTACG AAACACGGAA ACCGAAGACC ATTCACTGTT TGCTCAGGT CGCAGACGTT
 5161 TTGCAGCAGC AGTCGCTTC CGTTCGCTCG CGTATCGGTG ATTCAATTCTG CTAACCAGTA
 5221 AGGCAACCCC GCCAGCCTAG CCGGGTCTC AACGACAGGA GCACGATCAT GCGCACCCGT
 5281 GGCCAGGACC CAACGCTGCC CGAGATGCGC CGCGTGCAGGC TGCTGGAGAT GGCAGGACCG
 5341 ATGGATATGT TCTGCCAAGG GTTGGTTTGC GCATTCACAG TTCTCCGCAA GAATTGATTG
 5401 GCTCCAATTG TTGGAGTGGT GAATCCGTTA GCGAGGTGCC GCCGGCTTCC ATTCAAGGTG
 5461 AGGTGGCCCG GCTCCATGCA CCGCGACGCA ACAGCGGGAG GCAGACAAGG TATAGGGCGG
 5521 CGCCTACAAT CCATGCCAAC CCGTCCATG TGCTGCCGA GCGGCATAA ATGCCCGTGA
 5581 CGATCAGCGG TCCAGTGTAC GAAGTTAGGC TGGTAAGAGC CGCGAGCGAT CCTTGAAGCT
 5641 GTCCCTGATG GTCGTCACT ACCTGCGCTGG ACAGCATGGC CTGCAACGCG GGCATCCCGA
 5701 TGCCGCCGGA AGCGAGAAGA ATCATAATGG GGAAGGCCAT CCAGCCTCGC GTCGCGAACG
 5761 CCAGCAAGAC GTAGCCCAGC GCGTCGGCCG CCATGCCGGC GATAATGGCC TGCTTCTCGC
 5821 CGAAACGTTT GGTGGCGGGC CCAGTGACGA AGGCTTGAGC GAGGGCGTGC AAGATTCCGA
 5881 ATACCCGAAG CGACAGGCCG ATCATCGTC CGCTCCAGCG AAAGCGGTCC TCGCCGAAAAA
 5941 TGACCCAGAG CGCTGCCGGC ACCTGTCCTA CGAGTTGCAT GATAAGAAAG ACAGTCATAA
 6001 GTGCGGCAGC GATAGTCATG CCCCCGCCCC ACCGGAAGGA GCTGACTGGG TTGAAGGCTC
 6061 TCAAGGGCAT CGGTCGATCG ACGCTCTCCC TTATGCGACT CCTGCAATTAG GAAGCAGCCC
 6121 AGTAGTAGGT TGAGGCCGTT GAGCACGCC GCCGCAAGGA ATGGTGCATG CAAGGAGATG -

FIGURE 43C

123/240

6181 GCGCCCAACA GTCCCCCGGC CACGGGCCT GCCACCATAAC CCACGCCGAA ACAAGCGCTC
6241 ATGAGCCCCGA AGTGGCGAGC CCGA

FIGURE 43D

174/260

pDEST24

GST carboxy-fusion vector, T7 promoter

T7 Promoter → mRNA
 1 atc gag atc tcc atc ccc cga aat taa tac gac tca cta tag gga gac cac
 tag ctc tag agc tag ggc gct tta att atg ctg agt gat atc cgt ctg gtg
 T7I ↓ *attP1*
 52 aac ggt ttc ccc cta gat cac aag ttt gta caa aaa agc tga acg aga aac
 ttg cca aag gga gat cta gtc ttc aaa cat gtt ttg act tgc tct ttg //
 ↓
 11 CmR — ccdB — //

attR2 A F L Y K V V I M S
 1735 // tca ttt tac gtt tct cgt tca gct ttc tgg tac aaa gtt gtt att atg tcc
 agt aaa atg caa aca qca agt cga aag aac atg ttt ccc ccc taa tac agg
 // P I L GST Protein → (~ 223 kDa)
 1786 cct ata cta ggt tat tgg aaa att aag ggc ctt gtt cca ccc act cga ctt
 gga tat gat cca ata acc ttt taa ttc ccc gaa cac gtt ggg tga gct gaa

FIGURE 44A

125/240

pDEST24 6961 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
195..71	attR1
304..963	CmR
1083..1167	inactivated ccdA
1305..1610	ccdB
1651..1775	attR2
1783..2451	GST
3181..4041	ampR
4190..4829	ori

1 ATCGAGATCT CGATCCCGCG AAATTAATAC GACTCACTAT AGGGAGACCA CAACGGTTTC
 61 CCTCTAGATC ACAAGTTTGT ACAAAAAAGC TGAAACGAGAA ACGTAAAATG ATATAAAATAT
 121 CAATATATTA AATTAGATTG TGCAATTTAA ACAGACTACA TAATACTGTA AAACACAAACA
 181 TATCCAGTCA CTATGGCCGC CGCATTAGGC ACCCCAGGCT TTACACTTTA TGCTTCCGGC
 241 TCGTATAATG TGTGGATTGAGTTAGGAT CCGGCGAGAT TTTCAGGAGC TAAGGAAGCT
 301 AAAATGGAGA AAAAATCAC TGGATATACC ACCGTTGATA TATCCCAATG GCATCGTAAA
 361 GAACATTTTG AGGCATTTCA GTCAGTTGCT CAATGTACCT ATAACCAGAC CGTTCAGCTG
 421 GATATTACGG CCTTTTTAAA GACCGTAAAG AAAAATAAGC ACAAGTTTA TCCGGCCCTTT
 481 ATTACACATTC TTGCCCGCCT GATGAATGCT CATCCGGAAT TCCGTATGGC AATGAAAGAC
 541 GGTGAGCTGG TGATATGGGA TAGTGTTCAC CCTTGTACA CCGTTTCCA TGAGCAAAC
 601 GAAACGTTTT CATCGCTCTG GAGTGAATAC CACGACGATT TCCGGCAGTT TCTACACATA
 661 TATTCGCAAG ATGTGGCGTG TTACGGTGA AACCTGGCCT ATTTCCCTAA AGGGTTTATT
 721 GAGAATATGT TTTTCGTCTC AGCCAATCCC TGGGTGAGTT TCACCAAGTT TGATTTAAC
 781 GTGGCCAATA TGGACAACCT CTTCGCCCCC GTTTTCACCA TGGGCAAATA TTATACGCAA
 841 GGCAGACAAGG TGCTGATGCC GCTGGCGATT CAGGTTCATC ATGCCGTCTG TGATGGCTTC
 901 CATGTCGGCA GAATGCTTAA TGAATTACAA CAGTACTGCG ATGAGTGGCA GGGCGGGCG
 961 TAAACGCGTG GATCCGGCCT ACTAAAAGCC AGATAACAGT ATCCGTATTT GCGCGCTGAT
 1021 TTTTGCCTGTA TAAGAATATA TACTGATATG TATACCCGAA GTATGTCAA AAGAGGTGTG
 1081 CTATGAAGCA GCGTATTACA GTGACAGTTG ACAGCGACAG CTATCAGTTG CTCAAGGCAT
 1141 ATATGATGTC AATATCTCCG GTCTGGTAAG CACAACCATG CAGAATGAAG CCCGTCGTCT
 1201 GCGTCCGAA CGCTGGAAAG CGGAAAATCA GGAAGGGATG GCTGAGGTGCG CCCGGTTTAT
 1261 TGAAATGAAC GGCTCTTTG CTGACGAGAA CAGGGACTGG TGAAATGCAG TTAAAGGTTT
 1321 ACACCTATAA AAGAGAGAGC CGTTATCGTC TGGTTGTGGA TGTACAGAGT GATATTATTG
 1381 ACACGCCCGG GCGACGGATG GTGATCCCCC TGGCCAGTGC ACGTCTGCTG TCAGATAAAAG
 1441 TCTCCCGTGA ACTTTACCCG GTGGTGCATA TCGGGGATGA AAGCTGGCGC ATGATGACCA
 1501 CCGATATGGC CAGTGTGCCG GTCTCCGTTA TCGGGGAAGA AGTGGCTGAT CTCAGGCCACC
 1561 GCGAAAATGA CATAAAAAAC GCCATTAACC TGATGTTCTG GGGAAATATAA ATGTCAGGCT
 1621 CCCTTATACA CAGCCAGTCT GCAGGTGAC CATACTGACT GGATATGTTG TGTTTTACAG
 1681 TATTATGTAG TCTGTTTTT ATGCAAATC TAATTTAATA TATTGATATT TATATCATT
 1741 TACGTTCTC GTTCAGCTTT CTTGTACAAA GTGGTGATTA TGTCCTCTAT ACTAGGTTAT
 1801 TGGAAAATTA AGGGCCTTGT GCAACCCACT CGACTTCTT TGAAATATCT TGAAGAAAAA
 1861 TATGAAGAGC ATTTGTATGA GCGCGATGAA GGTGATAAAT GGGCAAACAA AAAGTTTGAA
 1921 TTGGGTTTGG AGTTTCCCA TCTTCCTTAT TATATTGATG GTGATGTTAA ATTAACACAG
 1981 TCTATGGCCA TCATACGTTA TATAGCTGAC AAGCACAAACA TGTGGGTGG TTGTCCAAAA
 2041 GAGCGTGCAG AGATTTCAAT GCTTGAAGGA CGGGTTTGG ATATTAGATA CGGTGTTTCG
 2101 AGAATTGCAAT ATAGTAAAGA CTTTGAAACT CTCAAAGTTG ATTTTCTTAG CAAGCTACCT
 2161 GAAATGCTGA AAATGTCGA AGATCGTTA TGTCATAAAA CATATTAA TGGTGATCAT
 2221 GTAACCCATC CTGACTTCAT GTTGTATGAC GCTCTTGATG TTGTTTTATA CATGGACCCA
 2281 ATGTGCCTGG ATGCGTTCCC AAAATTAGTT TGTTTAAAG AACGTATTGA AGCTATCCCA
 2341 CAAATTGATA AGTACTTGAA ATCCAGCAAG TATATAGCAT GGCCTTGC GGGCTGGCAA
 2401 GCCACGTTTG GTGGTGGCGA CCATCCTCCA AAATCGGATC TGGTTCCGGC TCCATGGGGA
 2461 TCCGGCTGCT AACAAAGCCC GAAAGGAAGC TGAGTTGGCT GCTGCCACCG CTGAGCAATA
 2521 ACTAGCATAA CCCCTTGGGG CCTCTAAACG GGTCTTGAGG GGTTTTTGC TGAAAGGAGG
 2581 AACTATATCC GGATATCCAC AGGACGGGTG TGGTCGCCAT GATCGCGTAG TCGATAGTGG
 2641 CTCCAAGTAG CGAAGCGAGC AGGACTGGC GGCAGGCCAAA GCGGTCGGAC AGTGCCTCGA-

FIGURE 44B

126/240

2701 GAACGGGTGC GCATAGAAAT TGCATCAACG CATATAGCGC TAGCAGCACG CCATAGTGAC
 2761 TGGCGATGCT GTCGGAATGG ACGATATCCC GCAAGAGGCC CGGCAGTACC GGCATAACCA
 2821 AGCCTATGCC TACAGCATCC AGGGTGACGG TGCGCAGGAT GACGATGAGC GCATTGTTAG
 2881 ATTTCATACA CGGTGCGTGA CTGCGTTAGC AATTAACTG TGATAAAACTA CCGCATTAAA
 2941 GCTTATCGAT GATAAGCTGT CAAACATGAG AATTCTTGA GACGAAAGGG CCTCGTGATA
 3001 CGCCTATTTT TATAGGTAA TGTCACTGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT
 3061 TTTGGGGAA ATGTGCGCGG AACCCCTATT TGTTTATTTC TCTAAATACA TTCAAATATG
 3121 TATCCGCTCA TGAGACAATA ACCCTGATAA ATGCTTCAAT AATATTGAAA AAGGAAGAGT
 3181 ATGAGTATTG AACATTCGG TGTCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCGCTTCCT
 3241 GTTTTGCTC ACCCAGAAC GCTGGTAAA GTAAAAGATG CTGAAGATCA GTTGGGTGCA
 3301 CGAGTGGGTT ACATCGAACT GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCC
 3361 GAAGAACGTT TTCCAATGAT GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC
 3421 CGTGGTGACG CCGGGCAAGA GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG
 3481 GTTGAGTACT CACCAGTCAC AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATT
 3541 TGCAGTGTG CCATAACCAC GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC
 3601 GGAGGACCGA AGGAGCTAAC CGCTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT
 3661 GATCGTTGGG AACCGGAGCT GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG
 3721 CCTGCAGCAA TGGCAACAAAC GTTGGCAGAA CTATTAACTG GCGAACTACT TACTCTAGCT
 3781 TCCCCGCAAC AATTAATAGA CTGGATGGAG GCGGATAAAAG TTGCAAGGACC ACTTCTGCGC
 3841 TCGGCCCTTC CGGCTGGCTG GTTTATTGCT GATAAAATCTG GAGCCGGTGA GCGTGGGTCT
 3901 CGCGGTATCA TTGCACTGGG GGGGCCAGAT GGTAAGCCCT CCCGTATCGT AGTTATCTAC
 3961 ACGACGGGG A GTCAAGGCAAC TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC
 4021 TCACTGATTA AGCATTGGTA ACTGTCAGAC CAAGTTTACT CATATATACT TTAGATTGAT
 4081 TTAAAACCTTC ATTTTTAATT TAAAAGGATC TAGGTGAAGA TCCTTTTGA TAATCTCATG
 4141 ACCAAAATCC CTTAACGTGA GTTTCTGTC CACTGAGCGT CAGACCCCGT AGAAAAGATC
 4201 AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGTTGCA AACAAAAAAA
 4261 CCACCGCTAC CAGCGGTGGT TTGTTGCG GATCAAGAGC TACCAACTCT TTTTCCGAAG
 4321 GTAACGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT GCGTAGTTA
 4381 GGCCACCACT TCAAGAACCTC TGTAGCACC CGCTACATACC TCGCTCTGCT AATCCTGTTA
 4441 CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTGGACTC AAGACGATAG
 4501 TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGGTT CGTGACACACA GCCCAGCTTG
 4561 GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGGCCACG
 4621 CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG AACAGGAGAG
 4681 CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCCCTGT CGGGTTTCGC
 4741 CACCTCTGAC TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA
 4801 AACGCCAGCA ACAGCGGCCCTT TTTACGGTTC CTGGCCTTTT GCTGGCCTTT TGCTCACATG
 4861 TTCTTTCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT
 4921 GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA
 4981 GAGGCCCTGA TGCAGGTATT TCTCCTTACG CATCTGTGCG GTATTTCACA CCGCATATAT
 5041 GGTGCACTCT CAGTACAATC TGCTCTGATG CCGCATAGTT AAGCCAGTAT ACACCCGCT
 5101 ATCGCTACGT GACTGGGTCA TGGCTGCGCC CCGACACCCCG CCAACACCCCG CTGACCGGCC
 5161 CTGACGGGCT TGTCTGCTCC CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGAG
 5221 CTGCATGTG CAGAGGTTT CACCGTCATC ACCGAAACGC GCGAGGCAGC TGCGTAAAG
 5281 CTCATCAGCG TGGTCGTGAA GCGATTACA GATGTCTGCC TGTTCATCCG CGTCCAGCTC
 5341 GTTGAGTTT TCCAGAACCG TTAATGTCTG GCTTCTGATA AAGCGGGCCA TGTAAAGGG
 5401 GGTTTTTCC TGTGGTCA CTGATGCCCT CGTGTAAAGGG GGATTCTGT TCATGGGGT
 5461 AATGATACCG ATGAAACGAG AGAGGATGCT CACGATACCG GTTACTGATG ATGAACATGC
 5521 CCGGTTACTG GAACGTTGTG AGGGTAAACA ACTGGCGGTA TGGATGCGGC GGGACCAGAG
 5581 AAAAATCACT CAGGGTCAAT GCCAGCGCTT CGTTAATACA GATGTAGGTG TTCCACAGGG
 5641 TAGCCAGCAG CATCCTGCGA TGCAGATCCG GAACATAATG GTGCAGGGCG CTGACTTCCG
 5701 CGTTTCCAGA CTTTACGAAA CACGGAAACCG GAAGACCAATT CATGTTGTTG CTCAGGTCGC
 5761 AGACGTTTTG CAGCAGCAGT CGCTTCACGT TCGCTCGCGT ATCGGTGATT CATTCTGCTA
 5821 ACCAGTAAGG CAACCCCGCC AGCCTAGCCG GGTCTCAAC GACAGGAGCA CGATCATGCG
 5881 CACCCGTGGC CAGGACCCAA CGCTGCCGA GATGCGCCGC GTGCGGCTGC TGGAGATGGC
 5941 GGACCGCATG GATATGTTCT GCCAAGGGTT GGTTTGCAGCA TTCACAGTTC TCCGCAAGAA
 6001 TTGATTGGCT CCAATTCTG GAGTGGTGA TCCGTTAGCG AGGTGCGGCC GGCTTCCATT
 6061 CAGGTCGAGG TGGCCCGGCT CCATGCACCG CGACGCAACG CGGGGAGGCA GACAAGGTAT
 6121 AGGGCGGCCTC CTACAATCCA TGCCAACCCG TTCCATGTGC TCGCCGAGGC GGCATAAAATC-

FIGURE 44C

127/240

6181 GCCGTGACGA TCAGCGGTCC AGTGATCGAA GTTAGGCTGG TAAGAGCCGC GAGCGATCCT
6241 TGAAGCTGTC CCTGATGGTC GTCATCTACC TGCCTGGACA GCATGGCCTG CAACCGGGC
6301 ATCCCAGATGC CGCCCGGAAGC GAGAAGAAC ATAATGGGGA AGGCCATCCA GCCTCGCGTC
6361 GCGAACGCCA GCAAGACGTA GCCCCAGCGCG TCGGCCGCCA TGCCGGCGAT AATGGCCTGC
6421 TTCTCGCCGA AACGTTTGGT GGCGGGACCA GTGACGAAGG CTTGAGCGAG GGCGTGCAG
6481 ATTCCGAATA CCGCAAGCGA CAGGGCGATC ATCGTCGGC TCCAGCGAAA GCGGTCCCTCG
6541 CCGAAAATGA CCCAGAGCGC TGCCGGCACC TGTCCCTACGA GTTGATGAT AAAGAAGACA
6601 GTCATAAGTG CGGCGACGAT AGTCATGCC CGCGCCACC GGAAGGGAGCT GACTGGGTTG
6661 AAGGCTCTCA AGGGCATCGG TCGATCGACG CTCTCCCTTA TGCGACTCCT GCATTAGGAA
6721 GCAGCCCCAGT AGTAGGTTGA GGCCGTTGAG CACCGCCGCC GCAAGGAATG GTGCATGCAA
6781 GGAGATGGCG CCCAACAGTC CCCCCGCCAC GGGGCCTGCC ACCATACCCA CGCCGAAACA
6841 AGCGCTCATG AGCCCCGAAGT GGCGAGCCCG ATCTTCCCCA TCGGTGATGT CGGCGATATA
6901 GGCGCCAGCA ACCGCACCTG TGGCGCCGGT GATGCCGCC ACAGATGCGTC CGGCGTAGAG
6961 G

FIGURE 44D

128/260
FIGURE 45A

pDEST25

Thioredoxin carboxy-fusion vector, T7 promoter

T7 Promoter → mRNA

1 nag atc tcg atc ccg cga aat taa tac gac tca cta tag gga gac cac aac
 ntc tag agc tag ggc gct tta att atg ctg aqt gat atc cct ctg gtg ttg
 52 ggt ttc cct cta gat cac aag ttt gta caa aaa agc tga acg aga aac gta //
 cca aag gga gat cta ctg ttc aaa cat gtt tt tct tcg act tgg tct ttg cat //

CmR — ccdB — //

1735 attR2 — A F ^W L Y K V V I M S D
 ttt tac gtt tct cgt tca gct ttc ttg tac aaa gta gta att atg ago gat
 aaa atg caa aga gca agt cga aag aac atg ttt cac cac taa tac tcg cta
 1786 K I I Trx Protein (~120 aa) →
 aaaa att att cac ctg act gac gac agt ttt gac aeg gat gta ctc aaa gcg
 ttt taa taa gta gac tga ctg ctg tca aaa ctg tgc cta cat gag ttt cgc

129/260

pDEST25 6652 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
844..720	attR1
953..1612	CmR
1732..1816	inactivated ccdA
1954..2259	ccdB
2300..2424	attR2
2432..2794	trx

1 CCGGAAGCGA GAAGAACAT AATGGGAAAG GCCATCCAGC CTCGCGTCGC GAACGCCAGC
 61 AAGACGTAGC CCAGCGCGTC GGCGGCCATG CGGGCGATAA TGGCCTGCTT CTCGCCGAAA
 121 CGTTGGTGG CGGGACCACT GACGAAGGCT TGAGCGAGGG CGTGAAGAT TCCGAATACC
 181 GCAAGCGACA GGCGCATCAT CGTCGCGCTC CAGCGAAAGC GGTCTCGCC GAAAATGACC
 241 CAGAGCGCTG CGGGCACCTG TCCTACGAGT TGCATGATAA AGAACAGACT CATAAGTGC
 301 GCGACGATAG TCATGCCCG CGCCACCGG AAGGAGCTGA CTGGGTTGAA GGCTCTCAAG
 361 GGCATCGGTC GATCGACGCT CTCCCTTAGT CGACTCCCTGC ATTAGGAAGC AGCCCAGTAG
 421 TAGTTGAGG CCGTTGAGCA CGCCGCCGCG AAGGAATTGG GCATGCAAGG AGATGGCGCC
 481 CAACAGTCCC CGGGCCACGG GGCCTGCCAC CATACCCACG CGAAACAAG CGCTCATGAG
 541 CCCGAAGTGG CGAGCCCGAT CTTCCCCATC GGTGATGTCG GCGATATAGG CGCCAGCAAC
 601 CGCACCTGTG GCGCCGGTGA TGCCGGCCAC GATGCGTCCG GCGTAGAGGA TCGAGATCTC
 661 GATCCCGCGA AATTAATACG ACTCACTATA GGGAGACAC AACGGTTTCC CTCTAGATCA
 721 CAAGTTTGTG CAAAAAAAGCT GAACGAGAAA CGTAAAATGA TATAAATATC AATATATCAA
 781 ATTAGATTTT GCATAAAAAA CAGACTACAT AATACTGTAA AACACAACAT ATCCAGTCAC
 841 TATGGCGGCC GCATTAGGCA CCCCAGGCTT TACACTTTAT GCTTCCGGCT CGTATAATGT
 901 GTGGATTTTG AGTTAGGATC CGGGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA
 961 AAAAATCACT GGATATACCA CGGTTGATAT ATCCCAATGG CATCGAAAG AACATTTGA
 1021 GGCATTTCAAG TCAGTTGCTC AATGTACCTA TAACCAGACC GTTCAGCTGG ATATTACGGC
 1081 CTTTTTAAAG ACCGTAAGA AAAATAAGCA CAAGTTTAT CGGGCCTTTA TTCACATTCT
 1141 TGCCCGCCTG ATGAATGCTC ATCCGGAAATT CGTATGGCA ATGAAAGACG GTGAGCTGGT
 1201 GATATGGGAT AGTGTTCACC CTTGTTACAC CGTTTCCAT GAGCAAATG AAACGTTTC
 1261 ATCGCTCTGG AGTGAATACC ACAGACGATTT CGGGCAGTTT CTACACATAT ATTCGCAAGA
 1321 TGTGGCGTGT TACGGTGAAA ACCTGGCCTA TTCCCTAAAG GGGTTTATTG AGAATATGTT
 1381 TTTCGTCTCA GCCAATCCCT GGGTGAGTTT CACCAAGTTT GATTTAAACG TGGCAATAT
 1441 GGACAACCTC TTGCCCCCG TTTTCACCAT GGGCAAATAT TATACGCAAG GCGACAAGGT
 1501 GCTGATGCCG CTGGCGATTG AGGTTCATCA TGCCGCTGTG GATGGCTTCC ATGTCGGCAG
 1561 AATGCTTAAT GAATTACAAAC AGTACTGCGA TGAGTGGCAG GGCAGGGCGT AAACGCGTGG
 1621 ATCCGGCTTA CTAAAAGCCA GATAACAGTA TGCATTTTG CGCGCTGATT TTTGCGGTAT
 1681 AAGAATATAT ACTGATATGT ATACCCGAAG TATGTCAAA AGAGGTGTGC TATGAAGCAG
 1741 CGTATTACAG TGACAGTTGA CAGCGACAGC TATCAGTTGC TCAAGGCATA TATGATGTCA
 1801 ATATCTCCGG TCTGGTAAGC ACAACCATGC AGAATGAAAGC CCGTCGCTG CGTGGCAAC
 1861 GCTGGAAAGC GGAAAATCAG GAAGGGATGG CTGAGGTGCG CCGGTTTATT GAAATGAAAGC
 1921 GCTCTTTGTC TGACGAGAAC AGGGACTGGT GAAATGAGT TTAAGGTTA CACCTATAAA
 1981 AGAGAGAGCC GTTATCGTCT GTTGTGGAT GTACAGAGTG ATATTATTGA CACGCCCGGG
 2041 CGACGGATGG TGATCCCCCT GGCCAGTGCA CGTCTGCTGT CAGATAAAAGT CTCCCGTGAA
 2101 CTTTACCCGG TGGTGACATAT CGGGGATGAA AGCTGGCGCA TGATGACCAAC CGATATGGCC
 2161 AGTGTGCCGG TCTCGTTAT CGGGGAAGAA GTGGCTGATC TCAGCCACCG CGAAAATGAC
 2221 ATCAAAAACG CCATTAACCT GATGTTCTGG GGAATATAAA TGTCAAGGCTC CCTTATACAC
 2281 AGCCAGTCTG CAGGTGACCC ATAGTGAETG GATATGTTGT GTTTACAGT ATTATGTAGT
 2341 CTGTTTTTA TGCAAAATCT AATTTAATAT ATTGATATTT ATATCATTTC ACGTTCTCG
 2401 TTCAGCTTTC TTGTACAAAG TGGTGATTAT GAGCGATAAA ATTATTCACC TGACTGACGA
 2461 CAGTTTGAC ACGGATGTAC TCAAAGCGGA CGGGCGATC CTCGTCGATT TCTGGCAGA
 2521 GTGGTGCCTG CGGTGCAAAA TGATGCCCG GATTCTGGAT GAAATGCTG ACGAATATCA
 2581 GGGCAAACGT ACCGTTGCAA AACTGAACAT CGATAAAAC CCTGGCACTG CGCCGAAACAA
 2641 TGGCATCCGT GGTATCCGA CTCTGCTGCT GTTCAAAAC GGTGAAGTGG CGGCAACCAA
 2701 AGTGGGTGCA CTGTCTAAAG GTCAAGTTGAA AGAGTTCCTC GACGCTAAC TGGCCGGTTC
 2761 TGGTTCTGGT GATGACGATG ACAAGGTACG CGGGGATCGA TCCGGCTGCT AACAAAGCCC -

FIGURE 45B

130/240

2821 GAAAGGAAGC TGAGTTGGCT GCTGCCACCG CTGAGCAATA ACTAGCATAA CCCCTTGGGG
 2881 CCTCTAACG GGTCTTGAGG GGTTTTTGCG TGAAAGGAGG AACTATATCC GGATATCCAC
 2941 AGGACGGGTG TGGTCGCCAT GATCGCGTAG TCGATAGTGG CTCCAAGTAG CGAAGCGAGC
 3001 AGGACTGGGC GGCGGCCAAA CGCGTCGGAC AGTGCCTCGA GAACGGGTGC GCATAGAAAT
 3061 TGCATCAACG CATATAGCGC TAGCAGCACG CCATAGTGAC TGGCGATGCT GTCGGAATGG
 3121 ACGATATCCC GCAAGAGGCC CGGCAGTACC GGCATAACCA AGCTATGCC TACAGCATCC
 3181 AGGGTGACGG TGCGGAGGAT GACGATGAGC GCATTGTTAG ATTCATACA CGGTGCCTGA
 3241 CTGCGTTAGC AATTTAAGTG TGATAAACTA CGCGATTAAGA GCTTATCGAT GATAAGCTGT
 3301 CAAACATGAG AATTCTTGAA GACGAAAGGG CCTCGTGATA CGCCTATTTT TATAGGTTAA
 3361 TGTCTATGATA ATAATGGTTT CTTAGACGTC AGGTGGCACT TTTGGGGAA ATGTGGCGGG
 3421 AACCCCTATT TGTTTATTTT TCTAAATACA TTCAAATATG TATCCGCTCA TGAGACAATA
 3481 ACCCTGATAA ATGCTTCAT AATATTGAAA AAGGAAGAGT ATGAGTATTG AACATTTCCG
 3541 TGTGCGCCCTT ATTCCCTTTT TTGCGGCATT TTGCGCTCCT GTTTTGCTC ACCCAGAAAC
 3601 GCTGGTGAAGA GTAAAAGATG CTGAAAGATCA GTTGGGTGCA CGAGTGGGTT ACATCGAACT
 3661 GGATCTCAAC AGCGGTAAGA TCCTTGAGAG TTTTCGCCCC GAAGAACGTT TTCCAATGAT
 3721 GAGCACTTTT AAAGTTCTGC TATGTGGCGC GGTATTATCC CGTGTGACG CGGGCAAGA
 3781 GCAACTCGGT CGCCGCATAC ACTATTCTCA GAATGACTTG GTTGAGTACT CACCAAGTCAC
 3841 AGAAAAGCAT CTTACGGATG GCATGACAGT AAGAGAATTA TGCACTGCTG CCATAACCAC
 3901 GAGTGATAAC ACTGCGGCCA ACTTACTTCT GACAACGATC GGAGGACCGA AGGAGCTAAC
 3961 CGCTTTTTG CACAACATGG GGGATCATGT AACTCGCCTT GATCGTTGGG AACCGGAGCT
 4021 GAATGAAGCC ATACCAAACG ACGAGCGTGA CACCACGATG CCTGCAGCAA TGGCAACAAAC
 4081 GTTGGCGAAA CTATTAACG GCGAACTACT TACTCTAGCT TCCCGGCAAC AATTAATAGA
 4141 CTGGATGGAG GCGGATAAAG TTGCAAGGACC ACTTCTGCGC TGCGCCCTTC CGGCTGGCTG
 4201 GTTTATTGCT GATAAACTCG GAGCCGGTGA GCGTGGGTCT CGCGGTATCA TTGCAAGCACT
 4261 GGGGCCAGAT GGTAAGCCT CCCGTATCGT AGTTATCTAC ACGACGGGGA GTCAGGCAAC
 4321 TATGGATGAA CGAAATAGAC AGATCGCTGA GATAGGTGCC TCAC TGATTA AGCATTGGTA
 4381 ACTGTCAGAC CAAGTTACT CATATATACT TTAGATTGAT TTAAAACCTTC ATTTTTAATT
 4441 TAAAAGGATC TAGGTGAAGA TCCTTTTGTA TAATCTCATG ACCAAAATCC CTTAACGTGA
 4501 GTTTTCGTC CACTGAGCGT CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC
 4561 TTTTTTCG CGCGTAATCT GCTGCTTGCA AACAAAAAAA CCACCGCTAC CAGCGGTGGT
 4621 TTGTTGCGG GATCAAGAGC TACCAACTCT TTTCCGAAG GTAACTGGCT TCAGCAGAGC
 4681 GCAGATACCA AATACTGTCC TTCTAGTGT GCGTAGTTA GGCCACCACT TCAAGAACTC
 4741 TGTAGCACCG CCTACATACC TCGCTCTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG
 4801 CGATAAGTCG TGTCTTACCG GGTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG
 4861 GTCGGGCTGA ACGGGGGGTT CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA
 4921 ACTGAGATAC CTACAGCGTG AGCTATGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC
 4981 GGACAGGTAT CGGTAAGCG GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCAGG
 5041 GGGAAACGCC TGGTATCTT ATAGCTCTGT CGGGTTTCG CACCTCTGAC TTGAGCGTCG
 5101 ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG CCTATGGAAA AACGCCAGCA ACAGCGCCCTT
 5161 TTTACGGTTC CTGGCCTTT GCTGGCCTT TGCTCACATG TTCTTCTG CGTTATCCCC
 5221 TGATTCTGTG GATAACCGTA TTACCGCCTT TGAGTGAGCT GATACCGCTC GCCGCAGCCG
 5281 AACGACCGAG CGCAGCGAGT CAGTGAGCGA GGAAGCGGAA GAGCGCCTGA TCGGGTATTT
 5341 TCTCCTTACG CATCTGTGCG GTATTCACA CGCGCATATAT GGTGCACTCT CAGTACAATC
 5401 TGCTCTGATG CGCGCATAGTT AAGCCAGTAT AACTCCGCT ATCGCTACGT GACTGGTCA
 5461 TGGCTGCGCC CCGACACCCG CCAACACCCG CTGACGCGCC CTGACGGGCT TGTCTGCTCC
 5521 CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGAG CTGCATGTGT CAGAGGTTTT
 5581 CACCGTCATC ACCGAAACGC GCGAGGCAGC TGCGGTAAG CTCATCAGCG TGTCGTGAA
 5641 GCGATTACCA GATGTCTGCC TGTTCATCCG CGTCCAGCTC GTTGAGTTTC TCCAGAACGCG
 5701 TTAATGTCTG GCTTCTGATA AAGCGGGCA TGTTAAGGGC GGTTTTTCC TGTTGGTCA
 5761 CTGATGCCCTC CGTGTAAGGG GGATTTCTGT TCATGGGGT AATGATAACG ATGAAACGAG
 5821 AGAGGATGCT CACGATAACGG GTTACTGATG ATGAACATGC CCCGTTACTG GAACGTTGTG
 5881 AGGGTAAACA ACTGGCGGT A GGATGCGGGC GGGACCGAG AAAAATCACT CAGGGTCAAT
 5941 GCCAGCGCTT CGTTAATACA GATGTAGGTG TTCCACAGGG TAGCCAGCAG CATCCTGCGA
 6001 TGCAGATCCG GAACATAATG GTGCAGGGCG CTGACTTCCG CGTTTCCAGA CTTTACGAAA
 6061 CACGGAAACC GAAGACCACT CATGTTGTTG CTCAGGTGCG AGACGTTTG CAGCAGCAGT
 6121 CGCTTCACGT TCGCTCGCT ATCGGTGATT CATTCTGCTA ACCAGTAAGG CAACCCCGCC
 6181 AGCCTAGCCG GGTCTCAAC GACAGGAGCA CGATCATGCG CACCCGTGGC CAGGACCCAA
 6241 CGCTGCCGA GATGCCCGC GTGCGGCTGC TGGAGATGGC GGACGCGATG GATATGTTCT-

R6 U26 45C

131/240

6301 GCCAAGGGTT GGTTTGCAGCA TTACAGTTC TCCGCAAGAA TTGATTGGCT CCAATTCTTG
6361 GAGTGGTGAA TCCGTTAGCG AGGTGCCGCC GGCTTCCATT CAGGTCGAGG TGGCCCGGCT
6421 CCATGCACCG CGACGCAACG CGGGGAGGCA GACAAGGTAT AGGGCGGCAGC CTACAATCCA
6481 TGCCAACCCG TTCCATGTGC TCGCCGAGGC GGCATAAACATC GCCGTGACGA TCAGCGGTCC
6541 AGTGATCGAA GTTAGGCTGG TAAGAGCCGC GAGCGATCCT TGAAGCTGTC CCTGATGGTC
6601 GTCATCTACC TGCCTGGACA GCATGGCCTG CAAACGCGGGC ATCCCGATGC CG

FIGURE 45D

FIGURE 46A

pDEST26 His6 Amino Fusion in pCMV Sport-neo Vector

600 ttg acg tca atg gga gtt ttt ggc acc aaa atc aac ggg act ttc caa
 aac tgc agt tac cct caa aca aaa ccg tgg ttt tag ttg ccc tga aag gtt
 651 aat gtc gta aca act ccg ccc cat tga cgc aaa tgg gcg gta ggc gtg tac
 tta cag cat tgt tga ggc ggg gta act ggg ttt acc cgc cat ccg cac atg
 702 CMV PROMOTER → MLMV
 ggt ggg agg tct ata taa gca gag ctc gtt tag tga acc gtc aga tcc tct
 // cca ccc tcc aga tat att cgt ctc gag caa atc act tgg cag tct agc gga
 753 gga gac gcc atc cac gct gtt tgg acc tcc ata gaa gac acc ggg acc gat
 cct ctg cgg tag gtg cga caa aac tgg agg tat ctt ctg tgg ccc tgg cta
 804 Start Transl. M A Y Y H H
 cca gcc tcc gga ctc tag cct agg ccg cgg acc atg gcg tac tac dat cac
 ggt cgg agg cct gag atc gga tcc ggc gcc tgg tac cgc atg atg gta gtg
 H H H H S R S T I Y K K A *(Init)*
 855 dat cac dat cac tct aga tca aca agt ttg tac aaa aaa gct gaa cga gaa
 gta gtg gta gtg aga tct agt ttg tca aac atg ttt ttt cga ctt gct ctt
 Int Y

pDEST26 7481 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
492..509	his6
619..519	attR1
752..1411	CmR
1531..1615	inactivated ccdA
1753..2058	ccdB
2099..2223	attR2
2409..2771	SV40 polyA
2966..3421	f1 intergenic region
3485..3903	SV40 promoter
3948..4742	neo
4806..4854	polyA
5265..6125	Apr
6274..6913	ori
7344..385	CMV promoter

1 GTAAACTGCC CACTTGGCAG TACATCAAGT GTATCATATG CCAAGTACGC CCCCTATTGA
 61 CGTCAATGAC GGTAAATGGC CCGCCTGGCA TTATGCCAG TACATGACCT TATGGGACTT
 121 TCCTACTTGG CAGTACATCT ACGTATTAGT CATCGCTATT ACCATGGTGA TGCGGTTTG
 181 GCAGTACATC AATGGCGTG GATAGCGGTT TGACTCACGG GGATTTCAA GTCTCACCC
 241 CATTGACGTC AATGGGAGTT TGTTTGGCA CAAAATCAA CGGGACTTTC CAAAATGTCG
 301 TAACAACCTCC GCCCCATTGA CGCAAATGGG CGGTAGGCCT GTACGGTGGG AGGTCTATAT
 361 AAGCAGAGCT CGTTTAGTGA ACCGTCAGAT CGCCTGGAGA CGCCATCCAC GCTGTTTGA
 421 CCTCCATAGA AGACACCGGG ACCGATCCAG CCTCCGGACT CTAGCCTAGG CCGCGGACCA
 481 TGGCGTACTA CCATCACCAT CACCATCACT CTAGATCAAC AAGTTTGTAC AAAAAAGCTG
 541 AACGAGAAC GTAAAATGAT ATAAATATCA ATATATTAAA TTAGATTTG CATAAAAAAC
 601 AGACTACATA ATACTGTAAA ACACAACATA TCCAGTCACT ATGGCGGCCG CATTAGGCAC
 661 CCCAGGCTTT ACACTTTATG CTTCCGGCTC GTATAATGTG TGGATTTGA GTTAGGATCC
 721 GGCGAGATT TCAGGAGCTA AGGAAGCTAA AATGGAGAAA AAAATCACTG GATATACCAC
 781 CGTTGATATA TCCCAATGGC ATCGTAAAGA ACATTTGAG GCATTTCACT CAGTTGCTCA
 841 ATGTACCTAT AACAGACCG TTCAGCTGGA TATTACGGCC TTTTAAAGA CCGTAAAGAA
 901 AAATAAGCAC AAGTTTATC CGGCCCTTAT TCACATTCTT GCCCGCCTGA TGAATGCTCA
 961 TCCGGAATT CGTATGGCAA TGAAAGACGG TGAGCTGGTG ATATGGGATA GTGTTCACCC
 1021 TTGTTACACC GTTTTCCATG AGCAAACCTGA AACGTTTCA TCGCTCTGGA GTGAATACCA
 1081 CGACGATTTC CGGCAGTTTC TACACATATA TTGCAAGAT GTGGCGTGT ACAGGTGAAA
 1141 CCTGGCCTAT TTCCCTAAAG GGTTTATTGA GAATATGTTT TTGCTCTAG CCAATCCCTG
 1201 GGTGAGTTTC ACCAGTTTG ATTAAACGT GGCCAATATG GACAACCTCT TCGCCCCCGT
 1261 TTTCACCATG GGCAAATATT ATACGCAAGG CGACAAGGTG CTGATGCCGC TGGCGATTCA
 1321 GGTCATCAT GCCGTCTGTG ATGGCTTCCA TGTCGGCAGA ATGCTTAATG AATTACAACA
 1381 GTACTGCGAT GAGTGGCAGG GCGGGCGTA AAGATCTGGA TCCGGCTTAC TAAAAGCCAG
 1441 ATAACAGTAT GCGTATTTCG GCGCTGATT TTGCGGTATA AGAATATATA CTGATATGTA
 1501 TACCCGAAGT ATGTCAAAAA GAGGTGTGCT ATGAAGCAGC GTATTACAGT GACAGTTGAC
 1561 AGGGACAGCT ATCAGTTGCT CAAGGCATAT ATGATGTCAA TATCTCCGGT CTGGTAAGCA
 1621 CAACCATGCA GAATGAAGCC CGTCGCTCTGC GTGCCGAAACG CTGGAAAGCG GAAAATCAGG
 1681 AAGGGATGGC TGAGGTCGCC CGGTTTATTG AAATGAACGG CTCTTTGCT GACGAGAACAA
 1741 GGGACTGGTG AAATGCAGTT TAAGGTTTAC ACCTATAAAA GAGAGAGCCG TTATCGTCTG
 1801 TTTGTGGATG TACAGAGTGA TATTATTGAC ACGCCCCGGC GACGGATGGT GATCCCCCTG
 1861 GCCAGTGCAC GTCTGCTGTC AGATAAAGTC TCCCGTGAAC TTTACCCGGT GGTGCATATC
 1921 GGGGATGAAA GCTGGCGCAT GATGACCAC GATATGCCA GTGTGCCGGT CTCCGTTATC
 1981 GGGGAAGAAG TGGCTGATCT CAGCCACCGC GAAAATGACA TCAAAAACGC CATTAACCTG
 2041 ATGTTCTGGG GAATATAAAAT GTCAGGCTCC CTTATACACA GCCAGTCTGC AGGTCGACCA
 2101 TAGTGAATGG ATATGTTGTG TTTACAGTA TTATGTAGTC TGTTTTTAT GCAAAATCTA
 2161 ATTTAATATA TTGATATTAA TATCATTAA CGTTTCTCGT TCAGCTTCT TGTACAAAGT
 2221 GGTTGATCGC GTGCATGCGA CGTCATAGCT CTCTCCCTAT AGTGAGTCGT ATTATAAGCT
 2281 AGGCACTGGC CGTCGTTTA CAACGTCGTG ACTGGGAAAA CTGCTAGCTT GGGATCTTG -

FIGURE 46B

134/260

2341 TGAAGGAACC TTACTTCTGT GGTGTGACAT AATTGGACAA ACTACCTACA GAGATTTAAA
 2401 GCTCTAAGGT AAATATAAAA TTTTTAAGTG TATAATGTGT TAAACTAGCT GCATATGCTT
 2461 GCTGCTTGAG AGTTTTGCTT ACTGAGTATG ATTTATGAAA ATATTATACA CAGGAGCTAG
 2521 TGATTCTAAT TGTTTGTGTA TTTTAGATTC ACAGTCCCAA GGCTCATTTCA AGGCCCTCA
 2581 GTCCTCACAG TCTGTTCATG ATCATAATCA GCCATACAC ACCTGAACAA TAAAATGAAT GCAATTGTTG
 2641 CTTTAAAAAA CCTCCCACAC CTCCCCCTGA ATCATAATCA GCCATACAC ACCTGAACAA TAAAATGAAT GCAATTGTTG
 2701 TTGTTAACCT GTTTATTGCA GCTTATAATG GTTACAAATA AAGCAATAGC ATCACAAATT
 2761 TCACAAATAA AGCATTTTT TCACTGCATT CTAGTTGTGG TTTGTCCAAA CTCATCAATG
 2821 TATCTTATCA TGTCTGGATC GATCTGCAT TAATGAATCG GCCAACGCGC GGGGAGAGGC
 2881 GGTTCGCGTA TTGGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATCGCCC TTCCCAACAG
 2941 TTGCGCAGCC TGAATGGCGA ATGGGACGCG CCCTGTAGCG GCGCATTAAAG CGCGGCGGGT
 3001 GTGGTGGTTA CGCGCAGCGT GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC
 3061 GCTTTCTTCC CTTCCCTTCT CGCCACGTT GCGGGTTTC CCCGTCAAGC TCTAAATCGG
 3121 GGGCTCCCTT TAGGGTTCCG ATTTAGTGTCT TTACGGCAC CTCGACCCAA AAAACTTGAT
 3181 TAGGGTGTATG GTTCACGTAG TGGGCCATCG CCCTGATAGA CGGTTTTTCG CCCTTGACG
 3241 TTGGAGTCCA CGTTCTTAA TAGTGGACTC TTGTTCCAAA CTGGAACAAAC ACTCAACCT
 3301 ATCTCGGTCT ATTCTTTGA TTTATAAGGG ATTTTGCAG TTTCCGCTA TTGGTTAAAAA
 3361 AATGAGCTGA TTTAACAAAT ATTTAACCGC ATTTTAACA AAATATTAAC GTTTACAATT
 3421 TCGCCTGATG CGGTATTTTC TCCTTACGCA TCTGTGCGGT ATTTCACACC GCATACGCGG
 3481 ATCTGCGCAG CACCATGGCC TGAAATAACC TCTGAAAGAG GAACTTGGTT AGGTACCTTC
 3541 TGAGGCGGAA AGAACCGACT GTGGAATGTG TGTCAAGTAA GGTGTGGAAA GTCCCCAGGC
 3601 TCCCCAGCAG GCAGAACGATG GCAAAGCATG CATCTCAATT AGTCAGCAAC CAGGTGTGGA
 3661 AAGTCCCCAG GCTCCCCAGC AGGCAGAAAGT ATGCAAAGCA TGCACTCAA TTAGTCAGCA
 3721 ACCATAGTCC CGCCCCCTAAC TCCGCCCATC CCGCCCCCTAA CTCCGCCAG TTCCGCCAT
 3781 TCTCCGCCCC ATGGCTGACT ATTTTTTTT ATTTATGCAG AGGCCGAGGC CGCCTCGGCC
 3841 TCTGAGCTAT TCCAGAAAGTA GTGAGGAGGC TTTTTTGAG GCCTAGGCTT TTGCAAAAG
 3901 CTTGATTCTT CTGACACAAAC AGTCTGAAAC TTAAGGCTAG AGCCACCATG ATTGAACAAG
 3961 ATGGATTGCA CGCAGGTCTT CGGCCGCTT GGGTGGAGAG GCTATTGGC TATGACTGGG
 4021 CACAACAGAC AATCGGCTGC TCTGATGCCG CCGTGTCCG GCTGTCAGCG CAGGGCGCC
 4081 CGGTTCTTT TGTCAAGACC GACCTGTCCG GTGCCCTGAA TGAACTGCAG GACGAGGCAG
 4141 CGGGCTATC GTGGCTGGCC ACGACGGCG TTCTTGCGC AGCTGTGCTC GACGTTGTCA
 4201 CTGAAGCGGG AAGGGACTGG CTGCTATTGG GCGAAGTGCC GGGGCAGGAT CTCTGTCAT
 4261 CTCACCTTGC TCCTGCCGAG AAAGTATCCA TCATGGCTGA TGCAATGCCG CGGCTGCATA
 4321 CGTTGATCC GGCTACCTGC CCATTGACCA ACCAACGCAA ACATCGCATE GAGCGAGCAC
 4381 GTACTCGGAT GGAAGCGGT CTTGTCGATC AGGATGATCT GGACGAAGAG CATCAGGGC
 4441 TCGCGCCAGC CGAACTGTT GCCAGGCTCA AGGCGCGCAT GCCGACGGC GAGGATCTCG
 4501 TCGTGACCCA TGGCGATGCC TGCTTGCCGA ATATCATGGT GGAAAATGGC CGCTTTCTG
 4561 GATTCATCGA CTGTGCCGG CTGGGTGTGG CGGACCGCTA TCAGGACATA GCGTTGGCTA
 4621 CCCGTGATAT TGCTGAAGAG CTTGGCGGCG AATGGGCTGA CCGCTTCCTC GTGCTTACG
 4681 GTATGCCGC TCCCGATTG CAGCGCATCG CCTTCTATCG CCTTCTTGAC GAGTTCTTCT
 4741 GAGCGGGACT CTGGGGTTCG AAATGACCGA CCAAGCGACG CCCAACCTGC CATCACGATG
 4801 GCGCAATAA AATATCTTTA TTTTCATTAC ATCTGTGTG TGGTTTTTG TGTGAATCGA
 4861 TAGCGATAAG GATCCCGTA TGGTGCACTC TCAGTACAAT CTGCTCTGAT GCCGCATAGT
 4921 TAAGCCAGCC CCGACACCCG CCAACACCCG CTGACGGGCC CTGACGGGCT TGTCTGCTCC
 4981 CGGCATCCGC TTACAGACAA GCTGTGACCG TCTCCGGAG CTGCATGTGT CAGAGGTTT
 5041 CACCGTCATC ACCGAAACGC GCGAGACGAA AGGGCCTCGT GATACGCCATA TTTTTATAGG
 5101 TTAATGTCAT GATAATAATG GTTCTTCTAGA CGTCAGGTGG CACTTTTCGG GGAAATGTGC
 5161 GCGGAACCCC TATTGTTTA TTTTCTAAA TACATTCAA TATGTATCCG CTCATGAGAC
 5221 AATAACCCCTG ATAAATGCTT CAATAATATT GAAAAGGAA GAGTATGAGT ATTCAACATT
 5281 TCCGTGTCGC CCTTATTCCC TTTTTGCGG CATTGGCTT CCTGTTTTT GCTCACCCAG
 5341 AAACGCTGGT GAAAGTAAA GATGCTGAAG ATCAGTTGGG TGCACGAGTG GGTTACATCG
 5401 AACTGGATCT CAACAGCGGT AAGATCCTTG AGAGTTTCG CCCCCGAAGAA CGTTTCCAA
 5461 TGATGAGCAC TTTTAAAGTT CTGCTATGTG GCGCGGTATT ATCCCGTATT GACGCCGGC
 5521 AAGAGCAACT CGGTGCCGC ATACACTATT CTCAGAATGA CTTGGTTGAG TACTCACCAG
 5581 TCACAGAAAA GCATCTTACG GATGGCATGA CAGTAAGAGA ATTATGCACT GCTGCCATAA
 5641 CCATGAGTGA TAACACTGCG GCCAACTTAC TTCTGACAAC GATCGGAGGA CCGAAGGAGC
 5701 TAACCGCTTT TTTGCACAAC ATGGGGGATC ATGTAACCTG CTTGATCGT TGGGAACCGG
 5761 AGCTGAATGA AGCCATACCA AACGACGAGC GTGACACCAC GATGCCTGTA GCAATGGCAA -

FIGURE 4bC

135/240

5821 CAACGTTGCG CAAACTATTA ACTGGCGAAC TACTTACTCT AGCTTCCCGG CAACAATTAA
5881 TAGACTGGAT GGAGGCAGGAT AAAGTTGCAG GACCACTTCT GCGCTCGGCC CTTCCGGCTG
5941 GCTGGTTAT TGCTGATAAA TCTGGAGCCG GTGAGCGTGG GTCTCGCGGT ATCATTGCAG
6001 CACTGGGGCC AGATGGTAAG CCCTCCCGTA TCCTAGTTAT CTACACGACG GGGAGTCAGG
6061 CAACTATGGA TGAACGAAAT AGACAGATCG CTGAGATAGG TGCCTCACTG ATTAAGCATT
6121 GGTAACTGTC AGACCAAGTT TACTCATATA TACTTTAGAT TGATTTAAAA CTTCATTTTT
6181 AATTAAAAG GATCTAGGTG AAGATCCTTT TTGATAATCT CATGACCAAA ATCCCTTAAC
6241 GTGAGTTTC GTTCCACTGA GCGTCAGACC CGCTAGAAAA GATCAAAGGA TCTTCTTGAG
6301 ATCCCTTTTT TCTGCGCGTA ATCTGCTGCT TGCAAACAAA AAAACCCACCG CTACCAGCGG
6361 TGGTTTGTGTT GCCGGATCAA GAGCTACCAA CTCTTTTCC GAAGGTAAC GGCTTCAGCA
6421 GAGGCGCAGAT ACCAAATACT GTCCTTCTAG TGTAGCCGTA GTTAGGCCAC CACTTCAAGA
6481 ACTCTGTAGC ACCGCCTACA TACCTCGCTC TGCTAATCCT GTTACCAAGTG GCTGCTGCCA
6541 GTGGCGATAA GTCGTGTCTT ACCGGGTTGG ACTCAAGACG ATAGTTACCG GATAAGGCAC
6601 AGCGGTCGGG CTGAACGGGG GGTCGTGCA CACAGCCAG CTGGAGCGA ACGACCTACA
6661 CCGAACTGAG ATACCTACAG CGTGAGCATT GAGAAAGCGC CACGCTTCCC GAAGGGAGAA
6721 AGGCGGACAG GTATCCGGTA AGCGGCAGGG TCGGAACAGG AGAGCGCACG AGGGAGCTTC
6781 CAGGGGGAAA CGCCTGGTAT CTTTATAGTC CTGTCGGGTT TCGCCACCTC TGACTTGAGC
6841 GTCGATTTTT GTGATGCTCG TCAGGGGGGC GGAGCCTATG GAAAAACGCC AGCAACCCGG
6901 CCTTTTACG GTTCCTGGCC TTTGCTGGC CTTTGCTCA CATGTTCTTT CCTGCGTTAT
6961 CCCCTGATTG TGTGGATAAC CGTATTACCG CTTTGAGTG AGCTGATACC GCTCGCCGCA
7021 GCCGAACGAC CGAGCGCAGC GAGTCAGTGA GCGAGGAAGC GGAAGAGCGC CCAATACGCA
7081 AACCGCCTCT CCCCCGCGGT TGGCCGATTC ATTAATGCAG AGCTTGCAAT TCGCGCGTTT
7141 TTCAATATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTTGAAT
7201 GTATTTAGAA AAATAAACAA ATAGGGGTTG CGCGCACATT TCCCCGAAAA GTGCCACCTG
7261 ACGTCTAAGA AACCATTATT ATCATGACAT TAACCTATAA AAATAGGCCT AGTACGAGGC
7321 CCTTCACTC ATTAGATGCA TGTGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA
7381 CCGCCCAACG ACCCCCGCCC ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA
7441 ATAGGGACTT TCCATTGACG TCAATGGGTG GAGTATTAC G

FIGURE 460

136/240

Fourie 47A

pDEST 27 GST Amino Fusion in pCMV Sport-neo Vector

CMV Promoter

600 // nac ggt ggg agg tct ata taa gca gag ctc gtt tag tga acc gtc aga tcg
 ntg cca ccc tcc aga tat att cgt ctc gag caa atc act tgg dag tct agc //

651 cct gga gac gcc atc cac gct gtt ttg acc tcc ata gaa gac acc ggg acc
 gga cct ctg cgg tag gtg cga caa aac tgg agg tat ctt ctg tgg ccc tgg

702 gat cca gcc tcc gga ctc tag cct agg ccg cgg acc atg gcc cct ata cta
 cta ggt cgg agg cct gag atc gga tcc ggc gcc tgg tac cgg gga tat gat
 Start Transl' GST

753 ggt tat tgg aaa att aag ggc ctt gtg caa ccc act ega ott ctt ttg gaa
 cca ata acc ttt taa ttc cgg gaa cac gtt ggg tga gct gaa gaa aac ctt

— GST Protein —

804 tat ctt gaa gaa aaa tat gaa gag cat ttg tat gag cgc gat gaa ggt gat
 ata gaa ctt ctt ttt ata ctt ctc gta aac ata ctc geg cta ctt cca cta

1365 // ttt ggt ggt ggc gac cat cct cca aaa tcg gat ctg gtt ccc cgt Ect aga
 aaa cca cca ccc ctg gta gga ggt ttt agc cta gac caa ggc gca aga tct
 S T S L Y K K A //

1416 Eca aca agt ttg tac aaa aaa gct gaa cga gaa acg
 agt tgt tca aac atg ttg ttt cga ctt gct ctt tcc
 Int attrI //

137/240

pDEST27 8123 bp (rotated to position 7800)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
130..793	GST
803..927	attR1
1036..1695	CmR
1815..1899	inactivated ccdA
2037..2342	ccdB
2383..2507	attR2
2693..3055	SV40 polyA
3250..3705	f1 intergenic region
3769..4187	SV40 promoter
4232..5026	neo
5090..5138	polyA
5549..6409	Apr
6558..7197	ori
7628..27	CMV promoter

1 ATAAGCAGAG CTCGTTAGT GAACCGTCAG ATCGCCTGG A GACGCCATCC ACGCTGTTTT
 61 GACCTCCATA GAAGACACCG GGACCGATCC AGCCTCCGG A CTCTAGCCTA GGCCGCGGAC
 121 CATGGCCCT ATACTAGGTT ATTGGAAAAT TAAGGGCCTT GTGCAACCCA CTCGACTTCT
 181 TTTGGAATAT CTTGAAGAAA AATATGAAGA GCATTGTAT GAGCGCGATG AAGGTGATAA
 241 ATGGCGAAAC AAAAAGTTG AATTGGGTTT GGAGTTTCCC AATCTTCCTT ATTATATTGA
 301 TGGTGTGTT AAATTAACAC AGTCTATGGC CATCATACGT TATATAGCTG ACAAGCACAA
 361 CATGTTGGGT GGTTGTCCTA AAGAGCGTGC AGAGATTCA ATGCTTGAAG GAGCGGTTTT
 421 GGATATTAGA TACGGTGTG CGAGAATTGC ATATAGTAAA GACTTTGAAA CTCTCAAAGT
 481 TGATTTCTT AGCAAGCTAC CTGAAATGCT GAAAATGTT GAAGATCGTT TATGTCATAA
 541 AACATATTAA AATGGTGATC ATGTAACCCA TCCTGACTTC ATGTTGTATG ACGCTTGTG
 601 TGTTGTTTA TACATGGACC CAATGTGCCG GGATGCGTTC CCAAATTAG TTTGTTTTAA
 661 AAAACGTATT GAAGCTATCC CACAAATTGA TAAGTACTTG AAATCCAGCA AGTATATAGC
 721 ATGGCCTTTG CAGGGCTGGC AAGCCACGTT TGGTGGTGGC GACCATCCTC CAAAATCGGA
 781 TCTGGTTCCG CGTTCTAGAT CAACAAGTTT GTACAAAAAA GCTGAACGAG AAACGTAAAA
 841 TGATATAAAAT ATCAATATAT TAAATTAGAT TTTGCATAAA AAACAGACTA CATAATACTG
 901 TAAAACACAA CATATCCAGT CACTATGGCG GCCGCATTAG GCACCCCAGG CTTTACACTT
 961 TATGCTTCCG GCTCGTATAA TGTGTGGATT TTGAGTTAGG ATCCGGCGAG ATTTTCAGGA
 1021 GCTAAGGAAG CTAAAATGGA GAAAAAAATC ACTGGGATATA CCACCGTTGA TATATCCAA
 1081 TGGCATCGTA AAGAACATT TGAGGCATT CAGTCAGTTG CTCATGTAC CTATAACCG
 1141 ACCGTTCAAGC TGGATATTAC GGCTTTTA AAGACCGTAA AGAAAAATAA GCACAAAGTTT
 1201 TATCCGGCCT TTATTACACAT TCTTGCCCCG CTGATGAATG CTCATCCGGA ATTCCGTATG
 1261 GCAATGAAAG ACGGTGAGCT GGTGATATGG GATAGTGTTC ACCCTGTTA CACCGTTTT
 1321 CATGAGCAA CTGAAACGTT TTCATCGCTC TGGAGTGAAT ACCACGACGA TTTCCGGCAG
 1381 TTTCTACACA TATATCGCA AGATGTGGCG TGTTACGGTG AAAACCTGGC CTATTCCCT
 1441 AAAGGGTTTA TTGAGAATAT GTTTTCGTC TCAGCCAATC CCTGGGTGAG TTTCACCAGT
 1501 TTTGATTTAA ACGTGGCCAA TATGGACAA TTCTTCGCCC CCGTTTTAC CATGGGCAA
 1561 TATTATACGC AAGGCACAA GGTGCTGATG CCGCTGGCGA TTCAGGTTCA TCATGCCGTC
 1621 TGTGATGGCT TCCATGTCGG CAGAATGCTT AATGAATTAC AACAGTACTG CGATGAGTGG
 1681 CAGGGCGGGG CGTAAAGATC TGGATCCGGC TTACTAAAAG CCAGATAACA GTATCGTAT
 1741 TTGCGCGCTG ATTTTGCGG TATAAGAATA TATACTGATA TGTATACCCG AAGTATGTCA
 1801 AAAAGAGGTG TGCTATGAAG CAGCGTATT CAGTGACAGT TGACAGCGAC AGCTATCAGT
 1861 TGCTCAAGGC ATATATGATG TCAATATCTC CGGCTGGTA AGCACAAACCA TGAGAATGA
 1921 AGCCCGTCGT CTGCGTGGCG AACGCTGGAA AGCGGAAAAT CAGGAAGGGGA TGGCTGAGGT
 1981 CGCCCGGTTT ATTGAAATGA ACGGCTCTT TGCTGACGAG AACAGGGACT GGTGAAATGC
 2041 AGTTTAAGGT TTACACCTAT AAAAGAGAGA GCGTTATCG TCTGTTGTG GATGTACAGA
 2101 GTGATATTAT TGACACGCC GGGCGACCGA TGGTGTATCCC CCTGGCCAGT GCACGTCTGC
 2161 TGTCAGATAA AGTCTCCCGT GAACTTTACC CGGTGGTGCA TATCGGGGAT GAAAGCTGGC
 2221 GCATGATGAC CACCGATATG GCCAGTGTGC CGGTCTCCGT TATCGGGGAA GAAGTGGCTG
 2281 ATCTCAGCCA CCGCGAAAAT GACATCAAAA ACGCCATTAA CCTGATGTTG TGGGAATAT-

FIGURE 47B

138/240

2341 AAATGTCAGG CTCCCTTATA CACAGCCAGT CTGCAGGTG ACCATAGTGA CTGGATATGT
 2401 TGTGTTTAC AGTATTATGT AGTCTGTTT TTATGCAAA TCTAATTAA TATATTGATA
 2461 TTTATATCAT TTTACGTTTC TCAGTCAGCT TTCTTGAC AAGTGGTTGA TCGCGTCAT
 2521 GCGACGTCAT AGCTCTCTCC CTATAGTGG AGCTAGGCAC TCGTATTATA AGCTAGGCAC TGGCCGTCGT
 2581 TTTACAACGT CGTGACTGGG AAAACTGCTA GCTTGGGATC TTTGTGAAGG AACCTTACTT
 2641 CTGTGGTGTG ACATAATTGG ACAAACTACC TACAGAGATT TAAAGCTCTA AGGTAAATAT
 2701 AAAATTTTA AGTGTATAAT GTGTTAAACT AGCTGCATAT GCTGCTGCT TGAGAGTTT
 2761 GCTTACTGAG TATGATTAT GAAAATATTA TACACAGGAG CTAGTGTTC TAATTGTTG
 2821 TGTATTTAG ATTACAGTC CCAAGGCTCA TTTCAGGCC CTCAGTCCTC ACAGTCTGTT
 2881 CATGATCATA ATCAGCCATA CCACATTGT AGAGGTTTA CTTGCTTTAA AAAACCTCCC
 2941 ACACCTCCCC CTGAACCTGA AACATAAAAT GAATGCAATT GTGTTGTTA ACTTGTTTAT
 3001 TGCAGCTTAT AATGGTTACA AATAAAGCAA TAGCATCACA AATTTCACAA ATAAAGCATT
 3061 TTTTCACTG CATTCTAGTT GTGGTTGTC CAAACTCATC AATGTATCTT ATCATGTCG
 3121 GATCGATCCT GCATTAATGA ATCGGCCAAC GCGCGGGAG AGCGGTTTG CGTATTGGCT
 3181 GGCGTAATAG CGAAGAGGCC CGCACCGATC GCCCTTCCA ACAGTTGCGC AGCCTGAATG
 3241 GCGAATGGGA CGCGCCCTGT AGCGGCCGATC TAAGCGGGC GGGTGTGGTG GTTACGCGCA
 3301 GCGTGACCGC TACACTTGCC AGCGGCCCTAG CGCCCGCTCC TTTCGCTTTC TTCCCTTCC
 3361 TTCTCGCCAC GTTCGCCCCG TTTCCCGTC AAGCTCTAAA TCAGGGGCTC CCTTTAGGGT
 3421 TCCGATTTAG TGCTTACGG CACCTCGACC CAAAAAAACT TGATTAGGGT GATGGTTAC
 3481 GTAGTGGGCC ATCGCCCTGA TAGACGGTTT TTCGCCCTT GACGTTGGAG TCCACGTTCT
 3541 TTAATAGTGG ACTCTTGTTC CAAACTGGAA CAACACTCAA CCCTATCTCG GTCTATTCTT
 3601 TTGATTTATA AGGGATTTG CCGATTTCGG CCTATTGGTT AAAAAATGAG CTGATTTAAC
 3661 AAATATTTAA CGCGAATTAA AACAAAATAT TAACGTTTAC AATTTCGCCT GATGCGGTAT
 3721 TTTCTCCCTA CGCATCTGT CGGTATTTCA CACCGCATAC GCGGATCTGC GCAGCACCAT
 3781 GGCCTGAAAT AACCTCTGAA AGAGGAACCT GGTAGGTAC CTCTGAGGC GGAAAGAAC
 3841 AGCTGTGGAA TGTGTGTCAG TTAGGGTGTG GAAAGTCCC AGGCTCCCCA GCAGGCAGAA
 3901 GTATGCAAAG CATGCATCTC AATTAGTCAG CAACCAGGTG TGGAAAGTCC CCAGGCTCCC
 3961 CAGCAGGCAG AAGTATGCAA AGCATGCATC TCAATTAGTC AGCAACCATA GTCCCAGCCC
 4021 TAACTCCGCC CATCCCGCCC CTAACCTCCGC CCAGTTCCGC CCATTCTCCG CCCCATGGCT
 4081 GACTAATTTT TTTTATTAT GCAGAGGCC AGGCCGCCTC GGCTCTGAG CTATTCCAGA
 4141 AGTAGTGAGG AGGCTTTTT GGAGGCCAG GCTTTGCAA AAAGCTTGAT TCTTCTGACA
 4201 CAACAGTCCTC GAACTTAAGG CTAGAGCCAC CATGATTGAA CAAGATGGAT TGCACGCAAG
 4261 TTCTCCGGCC GCTTGGGTGG AGAGGCTATT CGGCTATGAC TGGGCACAAC AGACAATCGG
 4321 CTGCTCTGAT GCCCGCGTGT TCCGGCTGTC AGCGCAGGG CGCCCGGTTC TTTTGTCAA
 4381 GACCGACCTG TCCGGTGCCCG TGAATGAAC GCAGGACGAG GCAGCGCGC TATCGTGGCT
 4441 GGCCACGACG GGCCTTCCTT GCGCAGCTGT GCTCGACGTT GTCACTGAAG CGGGAAGGGA
 4501 CTGGCTGCTA TTGGCGAAG TGCCGGGCCA GGATCTCTG TCATCTCACC TTGCTCCTGC
 4561 CGAGAAAGTA TCCATCATGG CTGATGCAAT GCGCGGCTG CATACTGTT ATCCGGCTAC
 4621 CTGCCCATTC GACCACCAAG CGAAACATCG CATCGAGCGA GCACGTACTC GGATGGAAGC
 4681 CGGTCTTGTG GATCAGGATG ATCTGGACGA AGAGCATCAG GGGCTCGCGC CAGCCGAAC
 4741 GTTCCGCCAGG CTCAAGGCCG GCATGCCGA CGCGGAGGAT CTGCTGTGA CCCATGGCGA
 4801 TGCGCTGTTG CCGAATATCA TGGTGGAAA TGGCGCTTT TCTGGATTCA TCGACTGTGG
 4861 CCGGCTGGGT GTGGCGGACC GCTATCAGGA CATAGCGTT GCTACCGTG ATATTGCTGA
 4921 AGAGCTTGGC GCGAATGGG CTGACCGCTT CCTCGTGTCTT TACGGTATCG CCGCTCCCGA
 4981 TTCGCAGCGC ATCGCCTCT ATCGCCTCT TGACGAGTT TCCTGAGCGG GACTCTGGGG
 5041 TTCGAAATGA CGCACCAAG GACGCCAAC CTGCCATCAC GATGGCCGCA ATAAAATATC
 5101 TTTATTTCA TTACATCTGT GTGTTGGTT TTTGTGTGAA TCGATAGCGA TAAGGATCCG
 5161 CGTATGGTGC ACTCTCAGTA CAATCTGCTC TGATGCCGA TAGTTAAGCC AGCCCCGACA
 5221 CCCGCCAACCA CCCGCTGACG CGCCCTGACG GGCTTGTCTG CTCCCGGCAT CCGCTTACAG
 5281 ACAAGCTGTG ACCGTCTCCG GGAGCTGCAT GTGTCAGAGG TTTTCACCGT CATCACCGAA
 5341 ACAGCGGAGA CGAAAGGCC TCGTGATACG CCTATTGTTA TAGGTTAATG TCATGATAAT
 5401 AATGGTTCT TAGACGTGAG GTGGCACTTT CGGGGAAAT GTGCGCGGAA CCCCTATTG
 5461 TTTATTTTC TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAT
 5521 GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTCCGTG TCGCCCTTAT
 5581 TCCCTTTTT GCAGGCTTTT GCCTTCTGT TTTTGCTCAC CCAGAAACGC TGGTGAAAGT
 5641 AAAAGATGCT GAAGATCAGT TGGTGCACG AGTGGTTAC ATCGAACTGG ATCTCAACAG
 5701 CGGTAAGATC CTTGAGAGTT TTGCCCCGA AGAACGTTT CCAATGATGA GCACCTTTAA
 5761 AGTTCTGCTA TGCGCGGG TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGGTCG -

FIGURE 47c

139/240

5821 CCGCATAACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG AAAAGCATCT
 5881 TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGCTGCC ATAACCATGA GTGATAACAC
 5941 TGCGCCAAC TTACTTCTGA CAACGATCGG AGGACCGAAG GAGCTAACCG CTTTTTGCA
 6001 CAACATGGGG GATCATGTAA CTCGCCCTGA TCGTTGGGAA CCGGAGCTGA ATGAAGCCAT
 6061 ACCAAACGAC GAGCGTGACA CCACGATGCC TGTAGCAATG GCAACAAACGT TGCGCAAAC
 6121 ATTAACTGGC GAACTACTTA CTCTAGCTTC CGGGCAACAA TTAATAGACT GGATGGAGGC
 6181 GGATAAAAGTT GCAGGACAC TTCTGCGCTC GGCCCTTCCG GCTGGCTGGT TTATTGCTGA
 6241 TAAATCTGGA GCCGGTGAGC GTGGGTCTCG CGGTATCATT GCAGCACTGG GGCCAGATGG
 6301 TAAGCCCTCC CGTATCGTAG TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG
 6361 AAATAGACAG ATCGCTGAGA TAGGTGCCTC ACTGATTAAG CATTGGTAAC TGTCAGACCA
 6421 AGTTTACTCA TATATACTTT AGATTGATTT AAAACTTCAT TTTTAATTAA AAAGGATCTA
 6481 GGTGAAGATC CTTTTGATA ATCTCATGAC CAAAATCCCT TAACGTGAGT TTTCGTTCCA
 6541 CTGAGCGTCA GACCCCGTAG AAAAGATCAA AGGATCTTCT TGAGATCCTT TTTTTCTGCG
 6601 CGTAATCTGC TGCTTGCAAA CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTTGCCGGA
 6661 TCAAGAGCTA CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATACCAAA
 6721 TACTGTCCTT CTAGTGTAGC CGTAGTTAGG CCACCACCTC AAGAACTCTG TAGCACCGCC
 6781 TACATACCTC GCTCTGCTAA TCCTGTTACC AGTGGCTGCT GCCAGTGGCG ATAAGTCGTG
 6841 TCTTACCGGG TTGGACTCAA GACGATAGTT ACCGGATAAG GCGCAGCGGT CGGGCTGAAC
 6901 GGGGGTTCG TGCACACAGC CCAGCTTGGA GCGAACGACC TACACCGAAC TGAGATACCT
 6961 ACAGCGTGAG CATTGAGAAA GCGCCACGCT TCCCAGGG AGAAAGGCAG ACAGGTATCC
 7021 GGTAAAGCGGC AGGGTCGGAA CAGGAGAGCG CACGAGGGAG CTTCCAGGG GAAACGCCTG
 7081 GTATCTTAT AGTCCCTGTCG GGTTCGCCA CCTCTGACTT GAGCGTCGAT TTTTGTGATG
 7141 CTCGTCAGGG GGGCGGAGCC TATGGAAAAA CGCCAGCAAC GCGGCCTTT TACGGTTCC
 7201 GGCCTTTG CTTGGCTTTG CTCACATGTT CTTTCTGCG TTATCCCCTG ATTCTGTGGA
 7261 TAACCGTATT ACCGCCTTG AGTGAGCTGA TACCGCTCG CGCAGCCGAA CGACCGAGCG
 7321 CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCGCCCAATA CGCAAACCGC CTCTCCCCGC
 7381 GCGTGGCCG ATTCAATTAT GCAGAGCTTG CAATTGCGC GTTTTCAAT ATTATTGAAG
 7441 CATTATTCAG GGTATTGTC TCATGAGCGG ATACATATTT GAATGTATTT AGAAAAATAA
 7501 ACAAAATAGGG GTTCCCGCGA CATTCCCCG AAAAGTGCCA CCTGACGTCT AAGAAACCAT
 7561 TATTATCATG ACATTAACCT ATAAAAATAG GCGTAGTACG AGGCCCTTC ACTCATTAGA
 7621 TGCATGTCGT TACATAACTT ACGGTAATG GCCCCTGG CTGACCGCCC AACGACCCCC
 7681 GCCCATTGAC GTCAATAATG ACGTATGTT CCATAGTAAC GCCAATAGGG ACTTTCCATT
 7741 GACGTCAATG GGTGGAGTAT TTACGGTAA CTGCCCACCT GGCAGTACAT CAAGTGTATC
 7801 ATATGCCAAG TACGCCCTT ATTGACGTCA ATGACGGTAA ATGGCCCGCC TGGCATTATG
 7861 CCCAGTACAT GACCTTATGG GACTTCCCTA CTTGGCAGTA CATCTACGTA TTAGTCATCG
 7921 CTATTACCAT GGTGATGCGG TTTTGGCAGT ACATCAATGG GCGTGGATAG CGGTTTGACT
 7981 CACGGGGATT TCCAAGTCTC CACCCCATTG ACGTCAATGG GAGTTTGTGTT TGGCACCAAA
 8041 ATCAAACGGGA CTTTCCAAAA TGTCGTAACA ACTCCGCCCTT ATTGACGCAA ATGGGCAGGTA
 8101 GGCGTGTACG GTGGGAGGTC TAT

FIGURE 47)

Figure 4B A: pEXP501: pCMV-SPORT 6 host for attB Libraries

161/260

Figure 4B: pEXP5D1 (cont'd). Features of the att B cloning vector, pEXP5D1. Bases within hatched area are replaced by cDNA in some LTI cDNA libraries.

pEXP501 4396 bp

1 CCATTGCGCA TTCAGGCTGC GCAACTGTTG GGAAGGGCGA TCGGTGCGGG CCTCTTCGCT
 61 ATTACGCCAG CCAATACGCA AACC GCCCTCT CCCCGCGCGT TGGCCGATTC ATTAATGCAG
 121 GATCGATCCA GACATGATAA GATACATTGA TGAGTTGGA CAAACCACAA CTAGAATGCA
 181 GTGAAAAAAA TGCTTTATTT TGGAATTTG TGATGCTATT GCTTTATTTG TAACCATTAT
 241 AAGCTGCAAT AAACAAGTT ACAACAAACAA TTGCATTCAAT TTTATGTTTC AGGTTCAGGG
 301 GGAGGTGTGG GAGGTTTTTG AAAGCAAGTA AAACCTCTAC AAATGTGGTA TGGCTGATTA
 361 TGATCATGAA CAGACTGTGA GGACTGAGGG GCCTGAAATG AGCCTTGGGA CTGTGAATCT
 421 AAAATACACA ACAAAATTAGA ATCACTAGCT CCTGTGTATA ATATTTCAT AAATCATACT
 481 CAGTAAGCAA AACTCTCAAG CAGCAAGCAT ATGCAGCTAG TTTAACACAT TATACACTTA
 541 AAAATTTAT ATTTACCTTA GAGCTTTAAA TCTCTGTAGG TAGTTTGTCC AATTATGTCA
 601 CACCACAGAA GTAAGGTTCC TTCACAAAGA TCCCAGCTA GCAGTTTCC CAGTCACGAC
 661 GTTGTAAAAC GACGGCCAGT GCCTAGCTTA TAATCAGCT CACTATAGGG ACCACTTGT
 721 ACAAGAAAGC TGGGTACCGG TAAGCTTGGG CCCCTCGAGG GATCCTCTAG AGCGGCCGCC
 781 GACTAGTGAG CTCGTCGACG ATATCCCGGG AATTCCGGAC CGGTACCCAGC CTGCTTTTT
 841 GTACAAACTT GTTCTATAGT GTCACCTAAA TAGGCTTAAT GGTCACTAGCT GTTTCTGTG
 901 TGAAATTGTT ATCCGCTCCG CGGCCCTAGGC TAGAGTCCGG AGGCTGGATC GGTCCCAGTG
 961 TCTTCTATGG AGGTCAAAC AGCGTGGATG GCGTCTCCAG GCGATCTGAC GGTTCACTAA
 1021 ACGAGCTCTG CTTATATAGA CCTCCCACCG TACACGCCCTA CCGCCCATTT GGTCATAGG
 1081 GGCGGAGTTG TTACGACATT TTGGAAAGTC CCGTTGATT TGTTGCCAAA ACAAACTCCC
 1141 ATTGACGTCA ATGGGGTGG AACTTGGAAA TCCCCGTGAG TCAAACCGCT ATCCACGCC
 1201 ATTGATGTAC TGCCAAAACC GCATCACCAT GGTAAATAGCG ATGACTAATA CGTAGATGTA
 1261 CTGCCAAGTA GGAAAGTCCC ATAAGGTCACT GACTCTGGCA TAATGCCAGG CGGCCATTT
 1321 ACCGTCAATTG ACGTCAATAG GGGCGTACT TGGCATATGA TACACTTGAT GTACTGCCA
 1381 GTGGCAGTT TACCGTAAAT ACTCCACCCA TTGACGTCAA TGGAAAGTCC CTATTGGGT
 1441 TACTATGGGA ACATACGTCA TTATTGACGT CAATGGCGG GGGTCGTTGG GCGGTCAGCC
 1501 AGGCGGGCCA TTTACCGTAA GTTATGTAAC GACATGCATC TAATGAGTGA AAGGGCTCG
 1561 TACTACGCCT ATTTTATAG GTTAATGTCA TGATAATAAT GGTTCTTAG ACGTCAGGTG
 1621 GCACCTTCG GGGAAATGTG CGCGGAACCC CTATTGTTT ATTTTCTAA ATACATTCAA
 1681 ATATGTATCC GCTCATGAGA CAATAACCCCT GATAAAATGCT TCAATAATAT TGAAAAACGC
 1741 GCGAATTGCA AGCTCTGCAT TAATGAATCG GCCAACGCCG GGGGAGAGGC GGTTTGCFTA
 1801 TTGGGCGCTC TTCCGCTTCC TCGCTCACTG ACTCGCTGCG CTCGGTCTGTT CGGCTCGGC
 1861 GAGCGGTATC AGCTCACTCA AAGGGGGTAA TACGGTTATC CACAGAATCA GGGGATAACG
 1921 CAGGAAAGAA CATGTGAGA AAAGGCCAGC AAAAGGCCAG GAACCGTAA AAGGCCCGT
 1981 TGCTGGCGTT TTTCCATAGG CTCCGCCCTC CTGACGAGCA TCACAAAAAT CGACGCTCAA
 2041 GTCAAGGGTG GCGAAACCCG ACAGGACTAT AAAGATAACCA GGCCTTCCC CCTGGAAGCT
 2101 CCCTCGTGCCT CTCTCCTGTT CCGACCCCTGC CGCTTACCGG ATACCTGTCC GCCTTCTCC
 2161 CTTCGGGAAG CGTGGCGCTT TCTCAATGCT CACGCTGTAG GTATCTCAGT TCGGTGTA
 2221 TCGTCGCTC CAAGCTGGC TGTGTCGACG AACCCCCCGT TCAGCCCGAC CGCTGCCCT
 2281 TATCCGGTAA CTATCGTCTT GAGTCCAACC CGGTAAGACA CGACTTATCG CCACTGGCAG
 2341 CAGCCACTGG TAACAGGATT AGCAGAGCGA GGTATGTAGG CGGTGCTACA GAGTTCTGTA
 2401 AGTGGTGGCC TAACTACGGC TACACTAGAA GGACAGTATT TGGTATCTGC GCTCTGCTGA
 2461 AGCCAGTTAC CTTCGGAAA AGAGTTGGTA GCTCTTGATC CGGCAAACAA ACCACCGCTG
 2521 GTAGCGGTGG TTTTTTGTT TGCAAGCAGC AGATTACGCG CAGAAAAAAA GGATCTCAAG
 2581 AAGATCCTTT GATCTTTCT ACGGGGCTG ACGCTCAGTG GAACGAAAAC TCACGTTAAG
 2641 GGATTTGGT CATGCCATAA CTTCGTATAG CATACATTAT ACGAAGTTAT GGCATGAGAT
 2701 TATCAAAAAG GATCTTCACC TAGATCCTTT TAAATAAAAA ATGAAGTTTT AAATCAATCT
 2761 AAAGTATATA TGAGTAAACT TGGCTGACA GTTACCAATG CTTAATCAGT GAGGCACCTA
 2821 TCTCAGCGAT CTGCTATTG CGTCTATCCA TAGTTGCTG ACTCCCCGTC GTGTAGATAA
 2881 CTACGATACG GGAGGGCTTA CCATCTGGCC CCAGTGCTGC AATGATACCG CGAGACCCAC
 2941 GCTCACCGGC TCCAGATTTA TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA
 3001 GTGGTCCTGC AACTTTATCC GCCTCCATCC AGTCTATTAA TTGGTGCAGG GAAGCTAGAG
 3061 TAAGTAGTTC GCCAGTTAAT AGTTGCGCA ACGTTGTTGC CATTGCTACA GGCATCGTGG
 3121 TGTCACTGCTC GTGCTTGGT ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCAG-

FIGURE 48C

143/240

3181 TTACATGATC CCCCAGTTG TGCAAAAAG CGGTTAGCTC CTTGGTCCT CCGATCGTTG
3241 TCAGAAGTAA GTTGGCCGCA GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC
3301 TTACTGTCAAT GCCATCCGTA AGATGCTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT
3361 TCTGAGAATA GTGTATGCCGG CGACCGAGTT GCTCTTGCCC GGCCTCAATA CGGGATAATA
3421 CCGGCCACAA TAGCAGAACT TTAAAAGTGC TCATCATGG AAAACGTTCT TCAGGGCGAA
3481 AACTCTCAAG GATCTTACCG CTGTTGAGAT CCAGTTCGAT GTAAACCCACT CGTGCACCCA
3541 ACTGATCTTC AGCATCTTT ACTTTCACCA GCGTTTCTGG GTGAGCAAAA ACAGGAAGGC
3601 AAAATGCCGC AAAAAAGGGA ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTCC
3661 TTTTCAATA TTATTGAAGC ATTTATCAGG GTTATTGCT CATGCCAGGG GTGGGCACAC
3721 ATATTGATA CCAGCGATCC CTACACAGCA CATAATTCAA TGCAGTTCC CTCTATCGCA
3781 CATCTTAGAC CTTTATTCTC CCTCCAGCAC ACATCGAAC TGCCGAGCAA GCCGTTCTCA
3841 CCAGTCCAAG ACCTGGCATG AGCGGATAACA TATTTGAATG TATTTAGAAA AATAAACAAA
3901 TAGGGGTTCC GCGCACATT CCCCGAAAAG TGCCACCTGA AATTGTAACAC GTTAATATTT
3961 TGTAAAATT CGCGTTAAAT TTTTGTAAAA TCAGCTCATT TTTTAACCAA TAGGCCGAAA
4021 TCGGCAAAAT CCCTTATAAA TCAAAAGAAT AGACCGAGAT AGGGTTGAGT GTTGTTCAG
4081 TTTGAAACAA GAGTCCACTA TTAAAGAACG TGGACTCCAA CGTCAAAGGG CGAAAAACCG
4141 TCTATCAGGG CGATGGCCA CTACGTGAAC CATCACCCCTA ATCAAGTTT TTGGGGTCTGA
4201 GGTGCCGTAAG AGCACTAAAT CGGAACCCCTA AAGGGAGCCC CCGATTAGA GCTTGACGGG
4261 GAAAGCCGGC GAACGTGGCG AGAAAGGAAG GGAAGAAAGC GAAAGGAGCG GGCGCTAGGG
4321 CGCTGGCAAG TGTAGCGGTC ACGCTGCGCG TAACCACAC ACCCGCCGCG CTTAATGCGC
4381 CGCTACAGGG CGCGTC

FIGURE 48D

144/240

145/240

pDONR201 4470 bp (rotated to position 3516)

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
260..29	attP1
656..961	ccdB
1099..1184	ccdA
1303..1962	CmR
2210..2442	attP2
2565..3374	Kmr
3495..4134	ori

1 GTTAACGCTA GCATGGATCT CGGGCCCCAA ATAATGATT TATTTGACT GATA GTGACC
 61 TGTTCGTTGC AACAAATTGA TGAGCAATGC TTTTTTATAA TGCCAAC TTTT GTACAAAAAA
 121 GCTGAACGAG AAACGTAAAA TGATATAAAT ATCAATATAAAT TAAATTAGAT TTTGCATAAA
 181 AAACAGACTA CATAATACTG TAAAACACAA CATATCCAGT CACTATGAAT CAACTACTTA
 241 GATGGTATTG GTGACCTGTA GTGACCCGAC AGCCTTCAA ATGTTCTCG GGTGATGCTG
 301 CCAACTTAGT CGACCGACAG CCTTCCAAAT GTCCTTCTCA AACGGAATCG TCGTATCCAG
 361 CCTACTCGCT ATTGTCCTCA ATGCCGTATT AAATCATAAA AAGAAATAAG AAAAAGAGGT
 421 GCGAGCCTCT TTTTGTTGTG ACAAAATAAA AACATCTACC TATTCTATATA CGCTAGTGTG
 481 ATAGTCCTGA AAATCATCTG CATCAAGAAC AATTTCACAA CTCTTATACT TTTCTCTTAC
 541 AAGTCGTTG GCTTCATCTG GATTTCACTG CTCTATACTT ACTAAACGTG ATAAAGTTTC
 601 TGTAAATTCT ACTGTATCGA CCTGCAGACT GGCTGTGTAT AAGGGAGCCT GACATTATA
 661 TTCCCCAGAA CATCAGGTTA ATGGCGTTT TGATGTCTT TTGCGGGTGG CTGAGATCAG
 721 CCACCTCTTC CCCGATAAACG GAGACCGGC AACTGGCCAT ATCGGTGGTC ATCATGCGCC
 781 AGCTTCATC CCCGATATGC ACCACCGGGT AAAGTTCACG GGAGACTTTA TCTGACAGCA
 841 GACGTGCACT GGCCAGGGGG ATCACCATCC GTGCCCGGG CGTGTCAATA ATATCACTCT
 901 GTACATCCAC AAACAGACGA TAACGGCTCT CTCTTTATA GGTGTAAACC TTAAACTGCA
 961 TTTCACCAAGT CCCTGTTCTC GTCAAGCAAA GAGCGTTCA TTTCAATAAA CGGGCGACC
 1021 TCAGCCATCC CTTCTGATT TTCCGTTTC CAGCGTTGG CACGCAGACG ACGGGCTTCA
 1081 TTCTGCATGG TTGTGCTTAC CAGACCGGGAG ATATTGACAT CATATATGCC TTGAGCAACT
 1141 GATAGCTGTC GCTGTCAACT GTCACTGTAA TACGCTGCTT CATAGCACAC CTCTTTTGA
 1201 CATACTTCGG GTATACATAT CAGTATATAAT TCTTATACCG CAAAATCAG CGCGAAATA
 1261 CGCATACTGT TATCTGGCTT TTAGTAAGCC GGATCCACGC GATTACGCC CGCCCTGCCA
 1321 CTCATCGCAG TACTGTGTA ATTCAATTAG CATTCTGCCG ACATGGAAGC CATCACAGAC
 1381 GGCATGATGA ACCTGAATCG CCAGCGGCAT CAGCACCTTG TCGCCTGCG TATAATATTT
 1441 GCCCATGGTG AAAACGGGGG CGAAGAAGTT GTCCCATATTG GCCACGTTA AATCAAAACT
 1501 GGTGAAACTC ACCCAGGGAT TGGCTGAGAC GAAAACATA TTCTCAATAA ACCCTTTAGG
 1561 GAAATAGGCC AGGTTTAC CGTAACACGC CACATCTGC GAATATATGT GTAGAAACTG
 1621 CCGGAAATCG TCGTGGTATT CACTCCAGAG CGATGAAAAC GTTTCAGTTT GCTCATGGAA
 1681 AACGGTGTAA CAAGGGTGA CACTATCCC TATCACCAGC TCACCGTCTT TCATTGCCAT
 1741 ACGGAATTCC GGATGAGCAT TCATCAGGGC GGCAAGAATG TGAATAAAGG CGGGATAAAA
 1801 CTTGTGCTTA TTTTCTTTA CGGTCTTTAA AAAGGCCGTA ATATCCAGCT GAACGGCTCG
 1861 GTTATAGGT AATTGAGCAA CTGACTGAAA TGCCTCAAAA TGTTCCTTAC GATGCCATTG
 1921 GGATATATCA ACGGTGGTAT ATCCAGTGAT TTTTTCTCC ATTTTAGCTT CCTTAGCTCC
 1981 TGAAAATCTC GATAACTAA AAAATACGCC CGGTAGTGAT CTATTTCAT TATGGTAAA
 2041 GTTGGAACCT CTTACGTGCC GATCAACGTC TCATTTCTGC CAAAAGTTGG CCCAGGGCTT
 2101 CCCGGTATCA ACAGGGACAC CAGGATTAT TTATTCTGCC AAGTGATCTT CCGTCACAGG
 2161 TATTATTCG GCGCAAAGTG CGTGGGGTGA TGCTGCCAAC TTAGTCGACT ACAGGTCACT
 2221 AATACCATCT AAGTÀAGTTGA TTCA TAGTGTA CTGGATATGT TGTGTTTAC AGTATTATGT
 2281 AGCTGTGTTT TTATGCAAAA TCTAATTAA TATATTGATA TTATATCAT TTTACGTTTC
 2341 TCGTTCAGCT TTCTTGAC AAGTTGGCAT TATAAGAAAG CATTGCTTAT CAATTGTTG
 2401 CAACGAACAG GTCACTATCA GTCAAAATAA AATCATATT TGCCATCCAG CTGCAGCTCT
 2461 GGCCCGTGTC TCAAAATCTC TGATGTTACA TTGCACAAAGA TAAAATATA TCATCATGAA
 2521 CAATAAAAGT GTCTGCTTAC ATAAACAGTA ATACAAGGGG TGTATGAGC CATATTCAAC
 2581 GGGAAACGTC GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTTATAT GGGTATAAAT
 2641 GGGCTCGCGA TAATGTCGGG CAATCAGGTG CGACAACTA TCGCTGTAT GGGAAAGCCCG
 2701 ATGCGCCAGA GTTGTCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT GTTACAGATG ~

FIGURE 49B

16/240

2761 AGATGGTCAG ACTAAACTGG CTGACGGAAT TTATGCCTCT TCCGACCATC AAGCATTAA
2821 TCCGTACTCC TGATGATGCA TGGTTACTCA CCACTGGAT CCCCGGAAAA ACAGCATTCC
2881 AGGTATTAGA AGAATATCCT GATTCAAGTG AAAATATTGT TGATGCGCTG GCAGTGGTCC
2941 TGCGCCGGTT GCATTCGATT CCTGTTGTA ATTGTCTTT TAACAGCGAT CGCGTATTTC
3001 GTCTCGCTCA GGCGCAATCA CGAATGAATA ACGGTTGGT TGATGCGAGT GATTTTGATG
3061 ACGAGCGTAA TGGCTGGCCT GTGAACAAG TCTGAAAGA AATGCATAAAA CTTTTGCCAT
3121 TCTCACCGGA TTCAGTCGTC ACTCATGGTG ATTTCTCACT TGATAACCTT ATTTTTGACG
3181 AGGGGAAATT AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC CGATACCAAGG
3241 ATCTTGCCAT CCTATGGAAC TGCTCGGTG AGTTTCTCC TTCATTACAG AAACGGCTTT
3301 TTCAAAAATA TGGTATTGAT AATCCTGATA TGAATAAATT GCAGTTTCAT TTGATGCTCG
3361 ATGAGTTTTT CTAATCAGAA TTGGTTAATT GGTTGTAACA CTGGCAGAGC ATTACGCTGA
3421 CTTGACGGGA CGCGCAGAC TCATGACCAA AATCCCTAA CGTAGTTTT CGTTCCACTG
3481 AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT TTCTGCGGT
3541 AATCTGCTGC TTGAAACAA AAAAACACC GCTACCAAGC GTGGTTTGTG TGCCGGATCA
3601 AGAGCTACCA ACTCTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA TACCAAATAC
3661 TGTCTTCTA GTGTAGCCGT AGTTAGGCCA CCACCTCAAG AACTCTGTAG CACCGCTAC
3721 ATACCTCGCT CTGCTAATCC TGTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT
3781 TACCGGGTTG GACTCAAGAC GATAAGTAC GGATAAGGCG CAGCGGTGG GCTGAACGGG
3841 GGGTTCTGTC ACACAGCCC GCTGGAGCG AACGACCTAC ACCGAACCTGA GATACCTACA
3901 GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGGCGGACA GGTATCCGGT
3961 AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA
4021 TCTTTATAGT CCTGTCGGGT TTGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC
4081 GTCAGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACCGC GCCTTTTAC GGTTCTGGC
4141 CTTTGCTGG CCTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCCTGATT CTGTGGATAA
4201 CCGTATTACC GCTAGCCAGG AAGAGTTGT AGAAACGCAA AAAGGCCATC CGTCAGGATG
4261 GCCTTCTGCT TAGTTGATG CCTGGCAGTT TATGGGGGGC GTCCCTGCCG CCACCCCTCCG
4321 GGCGTTGCT TCACAACGTT CAAATCCGCT CCCGGGGAT TTGTCCTACT CAGGAGAGCG
4381 TTCACCGACA AACAACAGAT AAAACGAAAG GCCCAGTCTT CCGACTGAGC CTTTCGTTT
4441 ATTTGATGCC TGGCAGTTCC CTACTCTCGC

FIGURE 49C

147/240

FIGURE 50A: pDONR202 (KanR)

148/240

pDONR202 4204 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
369..127	attP1
486..1059	ori
1228..2107	KmR
2381..2140	attP2
2629..3288	CmR
3408..3492	inactivated ccdA
3630..3935	ccdB

1 CGGCATTGAG GACAATAGCG AGTAGGCTGG ATACGACGAT TCCGTTTGAG AAGAACATTT
 61 GGAAGGCTGT CGGTCGACTA AGTTGGCAGC ATCACCCGAA GAACATTTGG AAGGCTGTCG
 121 GTCGACTACA GGTCACTAAT ACCATCTAAC TAGTTGATTC ATAGTACTG GATATGTTGT
 181 GTTTTACAGT ATTATGTAGT CTGTTTTTTA TGCAAAATCT AATTTAATAT ATTGATATTT
 241 ATATCATTTT ACGTTCTCG TTCAGCTTT TTGTACAAAG TTGGCATTAT AAAAAAGCAT
 301 TGCTCATCAA TTTGTTGCAA CGAACAGGTC ACTATCAGTC AAAATAAAAT CATTATTGG
 361 GGCCCGAGAT CCATGCTAGC GGTAAATACGG TTATCCACAG AATCAGGGGA TAACGCAGGA
 421 AAGAACATGT GAGCAAAAGG CCAGCAAAAG GCCAGGAACC GTAAAAGGC CGCGTTGCTG
 481 GCGTTTTCC ATAGGCTCCG CCCCCCTGAC GAGCCTACAA AAAATCGACG CTCAGTCAG
 541 AGGTGGCGAA ACCCGACAGG ACTATAAAGA TACCAGGCGT TTCCCCCTGG AAGCTCCCTC
 601 GTGCCGCTCTC CTGTTCCCAC CCTGCCGCTT ACCGGATACC TGTCCGCCTT TCTCCCTTCG
 661 GGAAGCGTGG CGCTTTCTCA TAGCTCACGC TGTAGGTATC TCAGTTCGGT GTAGGTGCTT
 721 CGCTCCAAGC TGGGCTGTGT GCACGAACCC CCCGTTCAAG CCGACCGCTG CGCCTTATCC
 781 GGTAACTATC GTCTTGAGTC CAACCCGGTA AGACACGACT TATGCCACT GGCAGCAGCC
 841 ACTGTTAACCA GGATTAGCAG AGCGAGGTAT GTAGGCGGTG CTACAGAGTT CTTGAAGTGG
 901 TGGCCTAACT ACGGCTACAC TAGAAGGACA GTATTTGGTA TCTGCGCTCT GCTGAAGCCA
 961 GTTACCTTCG GAAAAAGAGT TGGTAGCTCT TGATCCGGCA AACAAACCAC CGCTGGTAGC
 1021 GGTGGTTTTT TTGTTTGCNA GCAGCAGATT ACAGCAGAA AAAAGGATC TCAAGAAGAT
 1081 CCTTTGATCT TTTCTACGGG GTCTGACGCT CAGTGGAAACG AAAACTCAGC TTAAGGGATT
 1141 TTGGTCATGA GCTTGCAGCG TCCCGTCAAG TCAGCGTAAT GCTCTGCCAG TGTTACAACC
 1201 AATTAACCAA TTCTGATTAG AAAAACTCAT CGAGCATCAA ATGAAACTGC AATTTATTCA
 1261 TATCAGGATT ATCAATACCA TATTTTGAA AAAGCCGTTT CTGTAATGAA GGAGAAAATC
 1321 CACCGAGGCA GTTCCATAGG ATGGCAAGAT CCTGGTATCG GTCTGCGATT CCGACTCGTC
 1381 CAACATCAAT ACAACCTATT AATTCCCCCT CGTCAAAAT AAGGTTATCA AGTGAGAAAT
 1441 CACCATGAGT GACGACTGAA TCCGGTGAGA ATGGCAAAAG TTTATGCATT TCTTTCCAGA
 1501 CTTGTTCAAC AGGCCAGCCA TTACGCTCGT CATCAAAATC ACTCGCATCA ACCAAACCGT
 1561 TATTCCATTG TGATTGCGCC TGAGCGAGAC GAAATACCGC ATCGCTGTTA AAAGGACAAT
 1621 TACAAACAGG AATCGAATGC AACCGGCGCA GGAACACTGC CAGCGCATCA ACAATATTTT
 1681 CACCTGAATC AGGATATTCT TCTAATACCT GGAATGCTGT TTTTCCGGGG ATCGCAGTGG
 1741 TGAGTAACCA TGCATCATCA GGAGTACGGA TAAAATGCTT GATGGTCGGA AGAGGCATAA
 1801 ATTCCGTCAG CCAGTTAGT CTGACCACATCT CATCTGTAAC ATCATTGGCA ACGCTACCTT
 1861 TGCCATGTTT CAGAAACAAAC TCTGGCGCAT CGGGCTTCCC ATACAAGCGA TAGATTGTCG
 1921 CACCTGATTG CCCGACATTA TCGCGAGGCC ATTTATAACCC ATATAAAATCA GCATCCATGT
 1981 TGGAATTAA TCGGGCCCTC GACGTTTCCC GTTGAATATG GCTCATAAACA CCCCTTGAT
 2041 TACTGTTTAT GTAAGCAGAC AGTTTATTG TTCATGATGA TATATTTTA TCTTGTGCAA
 2101 TGTAACATCA GAGATTTGA GACACGGGCC AGAGCTGAG CTGGATGGCA AATAATGATT
 2161 TTATTTGAC TGATAGTGCAC CTGTTGCTTG CAACAAATTG ATAAGCAATG CTTTCTTATA
 2221 ATGCCAACTT TGTACAAGAA AGCTGAACGA GAAACGTTAA ATGATATAAA TATCAATATA
 2281 TTAAATTAGA TTTGCATAA AAAACAGACT ACATAATACT GTAAAACACA ACATATCCAG
 2341 TCACTATGAA TCAACTACTT AGATGGTATT AGTGACCTGT AGTCGACTAA GTTGGCAGCA
 2401 TCACCCGACG CACTTGCAGC CGAATAAAATA CCTGTGACGG AAGATCACTT CGCAGAATAA
 2461 ATAAATCCTG GTGTCCTGT TGATACCGGG AAGCCCTGGG CCAACTTTG GCGAAAATGA
 2521 GACGTTGATC GGCACGTAAG AGGTCCAAC TTTCACCATA ATGAAATAAG ATCACTACCG
 2581 GGCATTTTT TTGAGTTATC GAGATTTCA GGAGCTAAGG AAGCTAAAAT GGAGAAAAAA
 2641 ATCACTGGAT ATACCACCGT TGATATATCC CAATGGCATC GTAAAGAACA TTTTGAGGCA
 2701 TTTCAGTCAG TTGCTCAATG TACCTATAAC CAGACCGTTC AGCTGGATAT TACGGCCTT -

Figure 50B

149/240

2761 TTAAAGACCG TAAAGAAAAA TAAGCACAAG TTTTATCCGG CCTTTATTCA CATTCTTGCC
2821 CGCCTGATGA ATGCTCATCC GGAATTCCGT ATGGCAATGA AAGACGGTGA GCTGGTGATA
2881 TGGGATAGTG TTCACCCCTG TTACACCGTT TTCCATGAGC AAAC TGAAAC GTTTTCATCG
2941 CTCTGGAGTG AATACCAACGA CGATTCCGG CAGTTCTAC ACATATATTG GCAAGATGTG
3001 GCGTGTACG GTGAAAACCT GGCCTATTTC CCTAAAGGGT TTATTGAGAA TATGTTTTG
3061 GTCTCAGCCA ATCCCCTGGT GAGTTTCACC AGTTTGATT TAAACGTGGC CAATATGGAC
3121 AACTCTTCG CCCCCGTTT CACCATGGGC AAATATTATA CGCAAGGCGA CAAGGTGCTG
3181 ATGCCGCTGG CGATTCAAGGT TCATCATGCC GTCTGTGATG GCTTCCATGT CGGCAGAATG
3241 CTTAATGAAT TACAACAGTA CTGGATGAG TGGCAGGGCG GGGCGTAATC GCGTGGATCC
3301 GGCTTACTAA AAGCCAGATA ACAGTATGCG TATTTGCGCG CTGATTTTG CGGTATAAGA
3361 ATATATACTG ATATGTATAC CCGAAGTATG TCAAAAAGAG GTGTGCTATG AAGCAGCGTA
3421 TTACAGTGAC AGTTGACAGC GACAGCTATC AGTTGCTCAA GGCATATATG ATGTCAATAT
3481 CTCCGGTCTG GTAAGCACA CCATGCAGAA TGAAGCCGT CGTCTCGTG CGAACGCTG
3541 GAAAGCGGAA AATCAGGAAG GGATGGCTGA GTGCGCCCGG TTTATTGAAA TGAACGGCTC
3601 TTTTGCTGAC GAGAACAGGG ACTGGTGAAA TGCAGTTAA GGTTTACACC TATAAAAGAG
3661 AGAGCCGTTA TCGTCTGTT GTGGATGTAC AGAGTGATAT TATTGACACG CCCGGCGAC
3721 GGATGGTGAT CCCCCCTGGCC AGTGCACGTC TGCTGTCAGA TAAAGTCTCC CGTGAACATT
3781 ACCCGGTGGT GCATATCGGG GATGAAAGCT GGCGCATGAT GACCACCGAT ATGCCAGTG
3841 TGCCGGTCTC CGTTATCGGG GAAGAAGTGG CTGATCTCAG CCACCGCGAA AATGACATCA
3901 AAAACGCCAT TAACCTGATG TTCTGGGAA TATAAAATGTC AGGCTCCCTT ATACACAGCC
3961 AGTCTGCAGG TCGATAACAGT AGAAATTACA GAAACTTTAT CACGTTAGT AAGTATAGAG
4021 GCTGAAAATC CAGATGAAGC CGAACGACTT GTAAGAGAAA AGTATAAGAG TTGTGAAATT
4081 GTTCTTGATG CAGATGATTT TCAGGGACTAT GACACTAGCG TATATGAATA GGTAGATGTT
4141 TTTATTTTGT CACACAAAAA AGAGGCTCGC ACCTCTTTT CTTATTTCTT TTTATGATTT
4201 AATA

FIGURE 50C

FIGURE 51A

pDONR 203 (*kanR*)

151/240

pDONR203 4208 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
47..131	inactivated ccdA
251..910	CmR
1158..1398	attP2
1509..2082	ori
2251..3130	KmR
3464..3174	attP1
3812..4117	ccdB

1 GCGTTGGCA CGCAGACGAC GGGCTTCATT CTGCATGGTT GTGCTTACCA GACCGGAGAT
 61 ATTGACATCA TATATGCCCT GAGCAACTGA TAGCTGTCGC TGTCAACTGT CACTGTAATA
 121 CGCTGCTTCA TAGCACACCT CTTTGACA TACTTCGGGT ATACATATCA GTATATATTG
 181 TTATACCGCA AAAATCAGCG CGCAAATACG CATACTGTTA TCTGGCTTT AGTAAGCCGG
 241 ATCCACGCGT TTACGCCCCG CCCTGCCACT CATCGCAGTA CTGTTGTAAT TCATTAAGCA
 301 TTCTGCGGAC ATGGAAGCCA TCACAGACGG CATGATGAAC CTGAATCGCC AGCGGCATCA
 361 GCACCTGTC GCCTGCGTA TAATATTTGC CCATGGTGA AACGGGGGCG AAGAAGTTGT
 421 CCATATTGGC CACGTTAAA TCAAAACTGG TGAAACTCAC CCAGGGATTG GCTGAGACGA
 481 AAAACATATT CTCAATAAAC CCTTTAGGGA AATAGGCCAG GTTTTCACCG TAACACGCCA
 541 CATCTTGCAG ATATATGTGT AGAAACTGCC GGAAATCGTC GTGGTATTCA CTCCAGAGCG
 601 ATGAAAACGT TTCAGTTGC TCATGGAAAA CGGTGTAACA AGGGTGAACA CTATCCCATA
 661 TCACCAGCTC ACCGTCTTC ATTGCCATAC GGAATTCCGG ATGAGCATTC ATCAGGCCGG
 721 CAAGAATGTG AATAAAGGCC GGATAAAAATC TGTGCTTATT TTTCTTTACG GTCTTTAAAA
 781 AGGCCGTAAT ATCCAGCTGA ACGGTCTGGT TATAGGTACA TTGAGCAACT GACTGAAATG
 841 CCTCAAAATG TTCTTACGA TGCCATTGGG ATATATCAAC GGTGGTATAT CCAGTGATTT
 901 TTTTCTCCAT TTTAGCTCC TTAGCTCCTG AAAATCTCGA TAACTCAAAA AATACGCCCG
 961 GTAGTGATCT TATTTCATTA TGGTGAAGT TGGAACCTCT TACGTGCCGA TCAACGTCTC
 1021 ATTTTCGCCA AAAGTTGCC CAGGGCTTCC CGGTATCAAC AGGGACACCA GGATTTATTT
 1081 ATTCTGCGAA GTGATCTCC GTCACAGGT TTTATTCCGC GCAAAGTGCG TCGGGTGATG
 1141 CTGCCAACTT AGTCGACTAC AGGTCACTAA TACCATCTAA GTAGTTGATT CATAGTGACT
 1201 GGATATGTTG TGTTTACAG TATTATGTAG TCTGTTTTT ATGCAAAATC TAATTAAATA
 1261 TATTGATATT TATATCATT TACGTTCTC GTTCAGCTT CTTGTACAAA GTTGGCATTAA
 1321 TAAGAAAGCA TTGCTTATCA ATTGTTGCA ACGAACAGGT CACTATCAGT CAAAATAAAA
 1381 TCATTATTTG CCATCCAGCT AGGGTAATA CGGTTATCCA CAGAACAGG GGATAACGCA
 1441 GGAAAGAACAA TGTGAGCAAA AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG
 1501 CTGGCGTTT TCCATAGGCT CCCGCCCCCT GACGAGCATC ACAAAATCG ACGCTCAAGT
 1561 CAGAGGTGGC GAAACCGAC AGGACTATAA AGATACCAAGG CGTTTCCCCC TGGAGCTCC
 1621 CTCGTGCGCT CTCCTGTTCC GACCCCTGCCG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT
 1681 TCAGGGAAAGCG TGGCGTTTC TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC
 1741 GTTCGCTCCA AGCTGGCTG TGTGCACGAA CCCCCCGTT AGCCCGACCG CTGCGCCTTA
 1801 TCCGGTAAC TCGTCTTGA GTCCAACCCG GTAAGACACG ACTTATCGCC ACTGGCAGCA
 1861 GCCACTGGTA ACAGGATTAG CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG
 1921 TGGTGGCCTA ACTACGGCTA CACTAGAAGA ACAGTATTTG GTATCTGCGC TCTGCTGAAG
 1981 CCAGTTACCT TCGGAAAAAG AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT
 2041 AGGGTGGTT TTTTGTGGT CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA
 2101 GATCCTTGTGA TCTTTCTAC GGGGTCTGAC GCTCAGTGGA ACGAAAATC ACGTTAAGGG
 2161 ATTTTGGTCA TGAGCTTGC CCGTCCCCGT AAGTCAGCGT AATGCTCTGC CAGTGTACAA
 2221 ACCAATTAAAC CAATTCTGAT TAGAAAAACT CATCGAGCAT CAAATGAAAC TGCAATTAT
 2281 TCATATCAGG ATTATCAATA CCATATTTT GAAAAAGCCG TTTCTGTAAT GAAGGAGAAA
 2341 ACTCACCGAG GCAGTTCCAT AGGATGGCAA GATCCTGGTA TCGGTCTGCG ATTCCGACTC
 2401 GTCCAACATC AATACAACCT ATTAATTCC CCTCGTCAA AATAAGGTTA TCAAGTGAGA
 2461 AATCACCAGT AGTGACGACT GAATCCGGTG AGAATGGCAA AAGTTTATGC ATTTCTTCC
 2521 AGACTTGTTC AACAGGCCAG CCATTACGCT CGTCATCAA ATCACTCGCA TCAACCAAAC
 2581 CGTTATTCTAT TCGTGATTGC GCCTGAGCGA GACGAAATAC GCGATCGCTG TTAAAAGGAC
 2641 AATTACAAAC AGGAATCGAA TGCAACCGGC GCAGGAACAC TGCCAGCGCA TCAACAAATAT
 2701 TTTCACCTGA ATCAGGATAT TCTCTAATA CCTGGAATGC TGTTTTCCG GGGATCGCAG-

FIGURE 51B

2761 TGGTGAGTAA CCATGCATCA TCAGGAGTAC GGATAAAAATG CTTGATGGTC GGAAGAGGCA
2821 TAAATTCCGT CAGCCAGTTT AGCTGACCA TCTCATCTGT AACATCATTG GCAACGCTAC
2881 CTTGCCATG TTTCAGAAAAC AACTCTGGCG CATCGGGCTT CCCATACAAG CGATAGATTG
2941 TCGCACCTGA TTGCCCAGACA TTATCGCGAG CCCATTATA CCCATATAAA TCAGCATCCA
3001 TGTTGGAATT TAATCGCGGC CTCGACGTTT CCCGTTGAAT ATGGCTCATA ACACCCCTTG
3061 TATTACTGTT TATGTAAGCA GACAGTTTA TTGTTCATGA TGATATATTT TTATCTTGTG
3121 CAATGTAACA TCAGAGATT TGAGACACGG GCCAGAGCTG CAGCTAGCAT GGATCTCGGG
3181 CCCCAAATAA TGATTTTATT TTGACTGATA GTGACCTGTT CGTGCAACA AATTGATGAG
3241 CAATGCTTT TTATAATGCC AACTTGTAC AAAAAAGCTG AACGAGAAAC GTAAAATGAT
3301 ATAAATATCA ATATATTAAGA TTAGATTTTG CATAAAAAC AGACTACATA ATACTGTAAA
3361 ACACAACATA TCCAGTCACT ATGAATCAAC TACTTAGATG GTATTAGTGA CCTGTAGTCG
3421 ACCGACAGCC TTCCAAATGT TCTTCGGGTG ATGCTGCCAA CTTAGTCGAC CGACAGCCTT
3481 CCAAATGTT TTCTCAAACG GAATCGTCGT ATCCAGCCTA CTCGCTATTG TCCTCAATGC
3541 CGTATTAAT CATAAAAAGA AATAAGAAAA AGAGGTGCGA GCCTCTTTT TGTGTGACAA
3601 AATAAAAACA TCTACCTATT CATATACGCT AGTGTCA TAG TCCTGAAAAT CATCTGCATC
3661 AAGAACAAATT TCACAACCTCT TATACTTTTC TCTTACAAGT CGTCGGCTT CATCTGGATT
3721 TTCAGCCTCT ATACTTACTA AACGTGATAA AGTTCTGTA ATTCTACTG TATCGACCTG
3781 CAGACTGGCT GTGTATAAGG GAGCCTGACA TTTATATTC CCAGAACATC AGGTTAATGG
3841 CGTTTTGAT GTCATTTCG CGGTGGCTGA GATCAGCCAC TTCTTCCCCG ATAACGGAGA
3901 CCGGCACACT GGCCATATCG GTGGTCATCA TGCGCCAGCT TTCACTCCCCG ATATGCACCA
3961 CCGGGTAAAG TTCACGGAG ACTTTATCTG ACAGCAGACG TGCACTGGCC AGGGGGATCA
4021 CCATCCGTCG CCCGGCGTG TCAATAATAT CACTCTGTAC ATCCACAAAC AGACGATAAC
4081 GGCTCTCTCT TTTATAGGTG TAAACCTTAA ACTGCATTTC ACCAGTCCCT GTTCTCGTCA
4141 GCAAAAGAGC CGTTCATTTCA AATAAACCGG GCGACCTCAG CCATCCCTTC CTGATTTCC
4201 GCTTTCCA

FIGURE 51C

FIGURE 52A pDONR204 (kan R)

156/740

pDONR204 4165 bp

1 CGGCATTGAG GACAATAGCG AGTAGGCTGG ATACGACGAT TCCGTTGAG AAGAACATT
 61 GGAAGGCTGT CGGTGACTA CAGGTCACTA ATACCATCTA AGTATTGAA TCATAGTGAC
 121 TGGATATGTT GTGTTTTACA GTATTATGTA GTCTGTTTT TATGCAAAAT CTAATTTAAT
 181 ATATTGATAT TTATATCATT TTACGTTCT CGTTCAGCTT TTTTGACAA AGTTGGCATT
 241 ATAAAAAAAGC ATTGCTTATC AATTGTTGC AACGAACAGG TCACTATCAG TCAAATAAA
 301 ATCATTATTT GGGGCCGAG ATCCATGCTA GCTGCAGTGC GCAGGCCG TGCTCAAAA
 361 TCTCTGATGT TACATTGCAC AAGATAAAAA TATATCATCA TGAACAATAA AACTGTCTGC
 421 TTACATAAAC AGTAATACAA GGGGTGTTAT GAGCCATATT CAACGGAAA CGTCCTGCTG
 481 GAGGCCGCGA TTAAATTCCA ACATGGATGC TGATTTATAT GGGTATAAAT GGGCTCGCGA
 541 TAATGTCGGG CAATCAGGTG CGACAATCTT TCGATTGATG GGGAAAGCCG ATGCGCCAGA
 601 GTTGTTCCTG AAACATGGCA AAGGTAGCGT TGCCAATGAT GTTACAGATG AGATGGTCAG
 661 ACTAAACTGG CTGACGGAAT TTATGCCTCT TCCGACCATC AAGCATTAA TCCGTACTCC
 721 TGATGATGCA TGTTTACTCA CCACTGCGAT CCCGGGGAAA ACAGCATTCC AGGTATTAGA
 781 AGAATATCCT GATTCAAGGTG AAAATATTGT TGATGCGTG GCAGTGTCC TGCGCCGGTT
 841 GCATTGCGATT CCTGTTGTA ATTGTCCTTT TAACAGCGAT CGCGTATTC GTCTCGCTCA
 901 GGCGCATCA CGAATGAATA ACGGTTGGT TGATGCGAGT GATTTGATG ACGAGCGTAA
 961 TGGCTGGCCT GTTGAACAAG TCTGGAAAGA AATGCATACG CTTTTGCCAT TCTCACCGGA
 1021 TTCAGTCGTC ACTCATGGTG ATTTCTCACT TGATAACCTT ATTTTGACG AGGGGAAATT
 1081 AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC CGATACCAGG ATCTTGCCAT
 1141 CCTATGGAAC TGCCCTCGGTG AGTTTCTCC TTCATTACAG AAACGGCTTT TTCAAAATA
 1201 TGGTATTGAT AATCCTGATA TGAATAAATT GCAGTTTCAT TTGATGCTCG ATGAGTTTT
 1261 CTAATCAGAA TTGGTTAATT GGTTGTAACA CTGGCAGAGC ATTACGCTGA CTTGACGGGA
 1321 CGGCGNCATG ACCAAAATCC CTTAACGTGA GTTTTCGTTG CACTGAGCGT CAGACCCCGT
 1381 AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTCTG CGCGTAATCT GCTGCTTGCA
 1441 AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGCAG GATCAAGAGC TACCAACTCT
 1501 TTTTCCGAAG GTAACGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC TTCTAGTGT
 1561 GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG CCTACATACC TCGCTCTGCT
 1621 AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG GGTTGGACTC
 1681 AAGACGATAG TTACCGGATA AGGCGCAGCG GTGGGGCTGA ACGGGGGGTT CGTGCACACA
 1741 GCCCAGCTTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG AGCTATGAGA
 1801 AAGGCCACG CTTCGGAAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG GCAGGGTCGG
 1861 AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT ATAGTCCTGT
 1921 CGGGTTTCGC CACCTCTGAC TTGAGCGTGC ATTTTTGTGA TGCTCGTCAG GGGGGCGGAG
 1981 CCTATGGAAC AACGCCAGCA ACAGCGCCTT TTTACGGTT CTGGCCTTT GCTGGCCTTT
 2041 TGCTCACATG TTCTTCTG CGTTATCCCC TGATTCTGTG GATAACCGTA TTACCGCTAG
 2101 CTGGATCGGC AAATAATGAT TTTATTTGA CTGATAGTGA CCTGTCGTT GCAACAAATT
 2161 GATAAGCAAT GCTTTTTAT AATGCCAACT TTGTACAAGA AAGCTGAACG AGAAACGTA
 2221 AATGATATAA ATATCAATAT ATTAATTAG ATTTGCATA AAAAACAGAC TACATAATAC
 2281 TGTAAAACAC AACATATCCA GTCACTATGA TTCAACTACT TAGATGGTAT TAGTGACCTG
 2341 TAGTCGACTA AGTTGGCAGC ATCACCCGAC GCACTTGC CGAATAAAAT ACCTGTGACG
 2401 GAAGATCACT TCGCAGAATA AATAATCCT GGTGTCCCTG TTGATACCGG GAAGCCCTGG
 2461 GCCAACCTTT GCGAAAATG AGACGGTGT CGGCACATT CACAACCTTT ATACTTTCT
 2521 CTTACAAGTC GTTGGCTTC ATCTGGATT TCAGCCTCTA TACTTACTAA ACGTGATAAA
 2581 GTTCTGTAA TTCTACTGT ATCGACCTGC AGACTGGCTG TGTATAACGG AGCCTGACAT
 2641 TTATATTCCC CAGAACATCA GGTTAATGGC GTTTTGATG TCATTTCGCG GGTGGCTGAG
 2701 ATCAGCCACT TCTTCCCCGA TAACGGAGAC CGGCACACTG GCCATATCGG TGGTCATCAT
 2761 GCGCCAGCTT TCATCCCCGA TATGCACCA CGGGTAAAGT TCACGGGAGA CTTTATCTGA
 2821 CAGCAGACGT GCACTGGCCA GGGGGATCAC CATCCGTCGC CGGGCGTGT CAATAATATC
 2881 ACTCTGTACA TCCACAAACA GACGATAACG GCTCTCTCTT TTATAGGTGT AAACCTTAA
 2941 CTGCATTCA CCAGTCCCTG TTCTCGTCAG CAAAGAGCC GTTCATTCA ATAAACCGGG
 3001 CGACCTCAGC CATCCCTTCC TGATTTCCG CTTTCCAGCG TTCGGCACGC AGACGACGGG
 3061 CTTCAATTCTG CATGGTTGTG CTTACCAAGAC CGGAGATATT GACATCATAT ATGCCTTGAG
 3121 CAACTGATAG CTGTCGCTGT CAACTGTCAC TGTAATACGC TGCTTCATAG CACACCTCTT-

FIGURE 52B

155/240

3181 TTTGACATAC TTCGGGTATA CATATCAGTA TATATTCTTA TACCGCAAAA ATCAGCGCGC
3241 AAATACGCAT ACTGTTATCT GGCTTTAGT AAGCCGGATC CACCGGTTA CGCCCCGCC
3301 TGCCACTCAT CGCAGTACTG TTGTAATTCA TTAAGCATTG TGCCGACATG GAAGCCATCA
3361 CAGACGGCAT GATGAACCTG AATGCCAGC GGCATCAGCA CCTTGTGCGCC TTGCGTATAA
3421 TATTTGCCCA TGGTGAAAC GGGGGCGAAG AAGTTGTCCA TATTGGCCAC GTTTAAATCA
3481 AAACTGGTGA AACTCACCCA GGGATTGGCT GAGACGAAAA ACATATTCTC AATAAACCT
3541 TTAGGGAAAT AGGCCAGGT TTCACCGTAA CACGCCACAT CTTGCGAATA TATGTGAGA
3601 AACTGCCGGA AATCGTCGT GTATTCACTC CAGAGCGATG AAAACGTTTC AGTTTGCTCA
3661 TGGAAAACGG TGTAACAAGG GTGAACACTA TCCCATATCA CCAGCTCACC GTCTTCATT
3721 GCCATACGGA ATTCCGGATG AGCATTCACTC AGGCAGGGCAA GAATGTGAAT AAAGGCCGGA
3781 TAAAACTTGT GCTTATTTTT CTTCACGGTC TTTAAAAAGG CCGTAATATC CAGCTGAACG
3841 GTCTGGTTAT AGGTACATTG AGCAACTGAC TGAAATGCCT CAAATGTTT TTTACGATGC
3901 CATTGGGATA TATCAACGGT GGTATATCCA GTGATTTTT TCTCCATTAGT AGCTTCCTTA
3961 GCTCCTGAAA ATCTCGATAA CTCAAAAAAT ACGCCCGGT A GTGATCTTAT TTCATTATGG
4021 TGAAAGTTGG AACCTCTTAC TGTTCTTGAT GCAGATGATT TTCAGGACTA TGACACTAGC
4081 ATATATGAAT AGGTAGATGT TTTTATTTTG TCACACAAAA AAGAGGCTCG CACCTCTTT
4141 TCTTATTTCT TTTTATGATT TAATA

FIGURE 52C

156/240

Figure S3A: pDONR205 (tetR)

157/260

pDONR205 4939 bp

GGCATCAGCACCTTGTGCCCTGCGTATAATATTGCCCATGGTGAAAACGGGGCGAAG
 AAGTTGTCATATTGCCACGTTAAATCAAAACTGGTGAACACTCACCCAGGGATTGGCT
 GAGACGAAAAACATATTCTCAATAAACCCCTTAGGGAAATAGGCCAGGTTTACCGTAA
 CACGCCACATCTTGCAGATATATGTGTAGAAACTGCCGAAATCGTCGTGGTATTCACTC
 CAGAGCGATGAAAACGTTCAGTTGCTCATGGAAAACGGTGAACAAGGGTGAACACTA
 TCCCATACTCACCAGCTACCGCTTCTATGCCATACCGAATCCGGATGAGCATTCACTC
 AGGCGGGCAAGAATGTGAATAAAGGCCGATAAAACTTGTGCTATTTCCTTACGGTC
 TTTAAAAGGCCGTAATATCCAGCTGAACGGCTGGTTAGGTACATTGAGCAACTGAC
 TGAAATGCCCTAAAATGTTCTTACGATGCCATTGGATATATCACCGTGGTATATCCA
 GTGATTTTCTCATTAGCTTCTTAGCTCTGAAAATCTCGATAACTAAAAAT
 ACGCCCGGTAGTGTATTCATTATGGTGAAGTTGGAAACTCTTACGTGCCGATCA
 ACGTCTCATTTGCCAAAAGTTGGCCAGGGCTCCCGGTATCAACAGGGACACCAGGA
 TTTATTATTCTGCGAAGTGATCTTCCGTACAGGTATTATTCCGGCGCAAAGTGCCTG
 GGTGATGCTGCCAACTTAGTGCACACTACAGGTACTAATACCATCTAAGTAGTTGATTCA
 AGTGACTGGATATGTTGTGTTTACAGTATTATGTAGTCTGTTTATGCAAATCTAA
 TTTAATATATTGATATTATCATTTACGTTCTCGTCAGCTTCTGTACAAAGTT
 GGCATTATAAGAAAGCATTGCTTATCAATTGTTGCAACGAACAGGTCACTATCAGTCAA
 AATAAAATCATTATTGCCATCCAGCTGCAGCTCTGGCCGTGTCCTAAATCTGATG
 TTACATTGCACAAGATAAAAATATCATCATGAATTCTCATGTTGACAGCTTATCATC
 GATAAGCTTAAATGCGGTAGTTACAGTTAAATGCTAACGCAGTCAGGCACCGTGT
 ATGAAATCTAACATGCGCTCATCGTCACTCCCGCACCGTCAACCTGGATGCTGTAGGC
 ATAGGCTGGTATGCCGGTACTGCCGGCTTGGGGATATCGTCCATTCCGACAGC
 ATCGCCAGTCACTATGGCGTGTCTAGCGCTATATGCGTTGATGCAATTCTATGCGCA
 CCCGTTCTCGGAGCAGTGTCCGACCGCTTGGCGCCGCCCCAGTCCTGCTCGCTCGCTA
 CTTGGAGCCACTATCGACTACCGCAGTCATGGCACCACACCGTCCGTGGATCCTCTAC
 GCCGGACGCATCGTGGCCGCACTACCGGCCACAGGTGCGGGTCTGGCGCTATATC
 GCCGACATCACCGATGGGGAAAGATCGGGCTGCCACTTCGGGCTCATGAGCGCTTGTTC
 GGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGACTGTTGGCGCCATCTCCTTGCA
 GCACCATCCTGGCGGGCGGTGCTCAACGGCCTCAACCTACTACTGGCTGCTTCCTA
 ATGCAGGAGTCGCATAAGGGAGAGCGTCAACCGATGCCCTTGAGAGCCTCAACCCAGTC
 AGCTCCTCCGGTGGCGCGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTT
 ATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCGGGTCAATTTCGGCGAGGACCGC
 TTTCGCTGGAGCGCAGCGATGATCGGCCCTGCGCTTGCGGTATTGGAATCTGCACGCC
 CTCGCTCAAGCCCTCGTCACTGGTCCGCCACAAACGTTTGGCGAGAAGCAGGCCATT
 ATCGCCGGCATGGCGGCCACCGCCTGGGCTACGTCTTGTGGCGTGGCGACCGAGGC
 TGGATGGCCCTCCCCATTATGATTCTCTCGCTTCCGGCGGATCGGGATGCCCGCGTTG
 CAGGCCATGCTGTCAGGCAGGTAGATGACGACCATCAGGGACAGCTCAAGGATCGCTC
 GCGGCTTACCGCCTAACCGATCAACTTCGATCATGGACCGCTGATGTCACGGGATTTATGCC
 GCCTCGGCGAGCACATGAAACGGGTTGGCATGGATTGTTAGGCGCCGCCCCATACCTTGT
 TGCCTCCCCGCGTGCCTCGCGGTGCATGGAGCCGGCACCTGACCTGAATGGAAGCC
 GCGGGCACCTCGCTAACGGATTCAACCACTCCAAGAAATTGGAGCAATCAATTCTGCGGA
 GAACTGTGAATGCCAAACCAACCCCTGGCAGAACATATCCATCGCATGACCAAAATCCC
 TTAACGTGAGTTTGTGTTCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTC
 TTGAGATCCTTTTCTGCGCGTAATCTGCTGCTTGCAAAACAAAAACCCACCGCTACC
 AGCGGTGGTTGTTGCCGGATCAAGAGCTACCAACTCTTCCGAAGGTAACTGGCTT
 CAGCAGAGCGCAGATAACCAAACACTGTCCTCTAGTGTAGCCGTAGTTAGGCCACCACTT
 CAAGAAACTCTGTAGCACCGCCTACATACCTCGCTCGCTAATCTGTTACCAAGTGGCTGC
 TGCCAGTGGCGATAAGTCGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAA
 GCGCGAGCGGTGGCTGAACGGGGGTTCGTGCACACAGCCCAGCTGGAGCGAACGAC
 CTACACCGAAGTACGAGATACCTACAGCGTGAGCTATGAGAAAGGCCACGCCAGCTCCGAAGG
 GAGAAAGGCCAGGGTACCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCAGGAG
 GCTTCCAGGGGGAAACGCCCTGGTATCTTATAGTCCTGTCGGTTGCCACCTGACT
 TGAGCGTCGATTTTGTGATGCTCGTCAGGGGGCGAGCCTATGAAAAACGCCAGCAA-

FIGURE 53B

158/260

CGCGGCCTTTTACGGTCCCTGGCCTTTGCTGGCCTTTGCTCACATGTTCTTCCTGC
GTTATCCCCTGATTCTGTGGATAACCGTATTACCGTAGCCAGGAAGAGTTGTAGAAAC
GCAAAAAGGCCATCGTCAGGATGGCCTCTGCTTAGTTGATGCCAGTTATGGC
GGCGTCTGCCCCGCACCCCTCCGGGCCGTTGCTTACAACGTTCAAATCCGCTCCCGGC
GGATTGTCCTACTCAGGAGAGCGTCACCGACAAACAACAGATAAAACGAAAGGCCAG
TCTTCCGACTGAGCCTTGTGTTATTTGATGCCAGTTCTACTCTCGCGTTAAC
GCTAGCATGGATCTGGGCCCCAATAATGATTTATTTGACTGATAGTGACCTGTTG
TTGCAACAAATTGATGAGCAATGCTTTTATAATGCCAACTTGTACAAAAAGCTGAA
CGAGAAACGTAACATGATATAATATCAATATATTAAATTAGATTTGCATAAAAACAG
ACTACATAAACTGTAAAACACAATATCCAGTCACTATGAATCAACTACTAGATGGT
ATTAGTGACCTGTAGTCGACCGACAGCCTCCAAATGTTCTCGGGTATGCTGCCAACT
TAGTCGACCGACAGCCTCCAATGTTCTCAAACGGAATCGTGTATCAGCCTACT
CGCTATTGTCTCAATGCCGTATAATCATAAAAAGAAATAAGAAAAAGAGGTGCGAGC
CTCTTTTTGTGTGACAAAATAAAACATCTACCTATTCAATACGCTAGTGTATAGTC
CTGAAAATCATCTGCATCAAGAACAAATTCAAACTTCTATACTTTCTTCTACAAGTC
TTCGGCTTCATCTGGATTTCAAGCCTCTATACTTAAACGTGATAAGGGAGCCTGACATT
TTCTACTGTATCGACCTGCAGACTGGCTGTGTATAAGGGAGCCTGACATTATTC
AGAACATCAGGTTAATGGCGTTTGATGTCAATTTCGCCTGGCTGAGATCAGCCACTT
CTTCCCGATAACGGAGACCGGCACACTGCCATATCGTGTATCATGCCAGCTT
CATCCCGATATGCACCACCGGGTAAAGTCACGGGAGACTTTATCTGACAGCAGACGTG
CACTGGCCAGGGGGATCACCATCGTCGCCGGCGTGTCAATAATATCACTGTACAT
CCACAAACAGACGATAACGGCTCTCTTTATAGGTGTAAACCTTAAACTGCATT
CAGTCCCTGTTCTCGTCAGCAAAGAGCGTTCAATTCAATAAAACCGGGGACCTCAGCC
ATCCCTTCTGATTTCCGCTTCCAGCGTTCCAGCACGCAGACGACGGGCTTCATT
ATGGTTGTGCTTACCAAGACGGAGATATTGACATCATATATGCCCTGAGCAACTGATAGC
TGTCGCTGTCAACTGTCAGTAAACGCTGCTTCAAGCACACCTCTTTTGACATACT
TCGGGTATACATATCAGTATATATTCTTATACCGAAAAATCAGCGCAGAACACGATA
CTGTTATCTGGCTTTAGTAAGCCGGATCCACCGCATTACGCCCCGCCACTCATC
GCAGTACTGTTGTAATTCAATTAAAGCATTCTGCCGACATGGAAGCCATCACAGACGGCATG
ATGAACCTGAATGCCAGC

FIGURE 53C

159/240

160/240

pDONR206 4415 bp

CGGCATTGAGGACAATAGCGAGTAGGCTGGATACGACGATTCCGTTGAGAAGAACATT
GGAAGGCTGTCGGTCACTACAGGTCACTAATACCCTAAGTGTAGTTGAACTAGTGAC
TGGATATGTTGTTTACAGTATTATGTTAGTCTGTTTATGAAAATCTAATTAAAT
ATATTGATATTATCATTTCAGTTCTGTTCAAGCTTTTGACAAAGTGGCATT
ATAAAAAAGCATTGCTTATCAATTGTTGCAACGAAACAGGTCACTATCAGTCAAATAAA
ATCATTATTGGGGCCCGAGATCCATGCTAGCGGTAAACGGTTATCCACAGAACAGGG
GATAACGCCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAG
GCCGCGTTGCTGGCTTTCCATAGGCTCCGCCCTGACGGAGCATCACAAAATCGA
CGCTCAACTCAGAGGTGGCAGAACCCGACAGGACTATAAAGATACCAGGCTTCCCCCT
GGAAGGCTCCCTCGTGCCTCTCGTGTCCGACCCCTGCCGTTACGGATACTGTCCGCC
TTCTCCCTCGGGAGCGTGGCGTTCTCATAGCTCACGCTGTAGGTATCTCAGTTG
GTGTAGGTCGTTGCTCCAAGCTGGCTGTGTGCAAGAACCCCCGGTCAAGCCGACCGC
TGCCTTATCGGTAACATCGTCTGAGTCAACCCGGTAAGACACGACTTATGCCA
CTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGGGTATGTAGGCGGTGCTACAGAG
TTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCC
CTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTCTGATCCGGCAAACAAACC
ACCGCTGGTAGCGGGTTTTTGTGTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGA
TCTCAAGAAGATCCTTGATCTTCTACGGGGTCTGACGCTCAGTGGAAACGAAAACCTCA
CGTTAAGGGATTTGGTATGNGCCTGGCTCCGTCAGTCAGCGTAATGCTCTGCCAGTGT
TACAACCAATTAAACCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAAT
TTATTCATATCAGGATTATCAATACCATATTTGAAAAAGCCGTTCTGTAATGAAGGA
GAAAACTCACCGAGGCAGTTCCATAGGATGGCAAGATCCTGGTATCGGCTCGGATTCG
ACTCGTCAACATCAATACAACCTATTAGCCGAGGTCTCCGATCTCTGAAGCCAGGGC
AGATCCGTGCACAGCACCTGCCGTAGAAGAACAGCAAGGCCCAATGCCGACGATGC
GTGGAGACGAAACCTTGCCTCGTCCAGCCAGGACAGAAATGCCCGACTTCGCTG
CTGCCAAGGTTGCCGGGTGACGCACACCGTGGAAACGGATGAAGGCACCAACCCAGTTG
ACATAAGCCTGTTGGTCTGTAACCTGTAATGCAAGTAGCGTATGCCCTACGCAACTGG
TCCAGAACCTTGACCGAACGACGGTGGTAACGGCGAGTGGCTTTCATGGCTTGT
TATGACTGTTTTTGACAGTCTATGCCCTGGCATCCAAGCAGCAAGCGCGTTACGCC
GTGGCTCGATGTTGATGTTATGGAGCAGCAACGATGTTACGCGAGCAACGATGTTAC
GCAGCAGGGCAGTCGCCCTAAACAAAGTTAGGTGGCTCAAGTATGGCATATTGCCAC
ATGTAGGCTCGGCCCTGACCAAGTCAAATCCATGCCGCTGCTCTGATCTTCGCTCG
TGAGTTGGAGACGCTAGCCACCTACTCCAACATCAGCCGACTCCGATTACCTCGGAA
CTTGCTCGTAGTAAGACATTCACTCGCCTGCTGCCCTCGACCAAGAAGCGGTTGG
CGCTCTCGGGCTTACGTTCTGCCAGGTTGAGCAGCCGCTAGTGTGAGATCTATATCTA
TGATCTCGCAGTCGCCGAGCACCGGAGGCAGGGCATTGCCACCGCGCTCATCAATCT
CCTCAAGCATGAGGCCAACCGCTGGTCTTATGTGATCTACGTGCAAGCAGATTACGG
TGACGATCCCAGTGGCTCTCTATACAAAGTTGGCATACTGGAAAGAAGTGTGCACTT
TGATATCGACCCAAAGTACCGCCACCTAACAAATTGTTCAAGCCGAGATCGGCTCCCGC
CTAATTCCCCCTCGTCAAAATAAGGTTATCAAGTGTGAGAAATCACCAGTGTGACGACTG
AATCCGGTGAGAATGGCAAAGCGTATGCAATTCTTCCAGACTGTTCAACAGGCCAGC
CATTACGCTCGTCATCAAATCACTCGCATCAACCAAACCGTATTCTCGTATTGCG
CTGAGCGAGACGAAATACCGGATCGCTGTTAAAGGACAATTACAAACAGGAATCGAAT
GCAACCGGCGCAGGAACACTGCCAGCGCATCAACAAATTTCACCTGAAATCGGATATT
CTTCTAATACCTGGAATGCTTTCCCGGATCGCAGTGGTAGTAACCATGCACTCAT
CAGGAGTACGGATAAAATGCTGATGGCTGGAAGAGGCATAAAATTCCGTCAGCCAGTTA
GTCTGACCATCTCATCTGTAACATCATTGCAACGCTACCTTGCCATGTTGAGAAACA
ACTCTGGCGCATCGGCCATCAACATCGAAAGATTGTCGACCTGATTGCCGACAT
TATCGGAGGCCATTATACCCATATAAACTGCACTCCATGTTGAAATTAAATCGGGCC
TCCAGCAAGACGTTCCCGTTGAATATGGCTCATAAACACCCCTGTATTACTGTTATGT
AAGCAGACAGTTTATTGTTGATGATGATATATTGTTATCTTGTGCAATGTAACATCAGA
GATTTTGAGACACGGGCCNGCGCACTGCGAGCTGGATCGGAAATAATGATTATTG
ACTGATAGTGACCTGTTGTCGCAACAAATTGATAAGCAATGCTTTTATAATGCCAAC

FIGURE 54B

(61/240)

TTTGTACAAGAAAGCTGAACGAGAACGTAAGATATAAATATCAATATATTAAATTA
GATTTGCATAAAAACAGACTACATAATACTGTAAAACACAATATCCAGTCACTATG
ATTCAACTACTTAGATGGTATTAGTGACCTGTAGTCAGTAAGTGGCAGCATACCCGA
CGCACTTTGCCGAATAAAATACCTGTGACGGAAGATCACTTCGAGAATAAAATACCC
TGGGTCCCCTGTTGATACCGGAAGCCCTGGGCCAACCTTGGCGAAATGAGACGTTGA
TCGGCACGTAAGAGGTTCCAACCTTCACCCATAATGAAATAAGATCACTACCGGGCGTATT
TTTGAGTTATCGAGATTTCAGGAGCTAAGGAAGCTAAAGAACATTGGAGAAAAAAATCACTGG
ATATACCACCGTTGATATATCCAATGGCATCGTAAAGAACATTGAGGCATTCAGTC
AGTTGCTCAATGTACCTATAACCAAGACCGTTCAGCTGGATATTACGGCCTTTAAAGAC
CGTAAAGAAAAATAAGCACAAAGTTTATCCGGCTTATTACACATTCTGGCCCTGAT
GAATGCTCATCCGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTATATGGGATAG
TGTTCACCTTGTACACCGTTTCCATGAGCAAACCTGAAACGTTTATCGCTCTGGAG
TGAATACACGACGATTCCGGCAGTTCTACACATATTCGCAAGATGTGGCGTGT
CGGTGAAAACCTGGCTTATTCCCTAAAGGGTTATTGAGAATATGTTTCTCAGC
CAATCCCTGGGTGAGTTTACCCAGTTTGATTTAACGCTGGCAATATGGACAACCTCTT
CGCCCCCGTTTACCATGGGAAATATTACGCAAGGCAGAAAGGTGCTGATGCCGCT
GGCGATTCTAGGTTCATCATGCCGTCTGTGATGGCTTACGTCGGCAGAATGCTTAATGA
ATTACACAGTACTGCATGAGTGGCAGGGCGGGCGTAAACGGGTGGATCCGGCTTACT
AAAAGCCAGATAACAGTATGCGTATTGCGCGCTGATTTTGGGTATAAGAATATATAC
TGATATGTATACCGAAGTATGTCAAAAGAGGTGCTATGAAGCAGCGTATTACAGTG
ACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTC
TGGTAAGCACAAACCATGCAGAAATGAAGCCCGTCTGGCAGGGCGTGGAAAGCGG
AAAATCAGGAAGGGATGGCTGAGGTCGCCGGTTATTGAAATGAACGGCTTTGCTG
ACGAGAACAGGGACTGGTGAATGCAGTTAAGGTTACACCTATAAAAGAGAGAGGCC
TATCGTCTGTTGGATGTACAGAGTGTATTATTGACACGCCGGCGACGGATGGTG
ATCCCCCTGGCCAGTGCACGTCTGCTGAGATAAGCTCCCGTGAACCTTACCCGGTG
GTGCATATCGGGGATGAAAGCTGGCGATGATGACCACCGATATGCCAGTGTGCCGGTC
TCCGTTATCGGGGAAAGAAGTGGCTGATCTCAGCCACCGCGAAATGACATCAAAACGCC
ATTAACCTGATGTTCTGGGAATATAAATGTCAGGCTCCGGTATACACAGCCAGTCTGCA
GGTCGATACAGTAGAAATTACAGAAACTTATCACGTTAGTAAGTATAGAGGCTGAAA
TCCAGATGAAGCCGAACGACTTGTAAAGAGAAAAGTATAAGAGTGTGAAATTGTTCTTGA
TGCAGATGATTTCAGGACTATGACACTAGCATATATGAATAGGTAGATGTTTATT
GTCACACAAAAAGAGGCTCGCACCTCTTTCTTATTGATTAAATA

FIGURE 54 C

162/260

Figure 55 An Entry (PENTR7) Clone of CAT Subcloned into pDEST2

1021 cggtataacaatttcaacaggaaa... → Start translation
 Met Ser Tyr Tyr His His His
 gcc tat tgt taa agt gtc tcc ttt gtc tgg tac agc atg atg gta gtc gta

1022 His6 ← attB1 His His His Gly Ile Thr Ser Leu Tyr Lys Lys Ala Gly Phe Gly Asn Leu
 cac cat cac ggc atc taca agt tgg tac aaa aaa gca ggc ttt gaa aac ctg
 gtg gta gtc ccg tag tgg tca aac atg ttt ctt cgt ccg aaa ctt ttg gac
 From pDEST2 → From PENTR7

1123 TEV protease → start CAT
 Tyr Phe Gln[↓] Gly Thr Met Gly Lys Lys Ile Thr Gly Tyr Thr Thr Val Asp
 tat ttt caa gga acc atg gag aaa aaa atc act gga tat acc acc acc gtt gat
 ata aaa gtt cct tgg tac ctc ttc ttt tag tga cct ata tgg tgg caa cta

163/240

FIGURE 56

164/240

FIGURE 57

165/260

FIGURE 58

166/260

FIGURE 59

167/240

FIGURE 60

168/240

FIGURE 61

169/240

Native Protein Expression:**Fusion Protein Expression:**

FIGURE 62

170/240

FIGURE 63

171/240

FIGURE 64A

172/240

FIGURE CetB

FIGURE 64C

174/260

Primers for Amplifying *tetR* and *ampR*
for Cloning by Recombination

FIGURE 65

175/260

**Results of Cloning
tet and amp PCR Products
by Recombination**

PCR Product Used in GCS Reactions	No. Colonies Obtained (100 µl plated)	Form of DNA Analyzed	Colonies Obtained of Predicted Size
tet	6, 10	SC	0 of 8
attB-tet	9, 6	SC	1 of 8
attB+4G-tet	824, 1064	SC AvaI+Bam	7 of 7 7 of 7
amp	7, 13	SC	0 of 8
attB-amp	18, 22	SC	3 of 8
attB+4G-amp	3020, 3540	SC PstI	8 of 8 8 of 8
attB Plasmid (Pos. Control)	320, 394		

FIGURE 66

176/260

FIGURE 67

177/260

FIGURE 68

178/240

FIGURE
69

179/260

FIGURE
70

A

B

C

180/260

FIGURE 7

A

Titration of 1.4 kb PCR in $B \times P$ Reaction

B

Titration of 1.4 kb PCR in $B \times P$ Reaction

C

Efficiency of cloning of 1.4kb PCR into a Destination Vector

181/240

FIGURE 72

A

B

C

182/240

FIGURE 73

A

B

C

183/260

6.9 kb PCR DNA Titration in a BxP Reaction

FIGURE 74

184/240

FIGURE 75-

185/240

10.1 kb PCR DNA Titration in BxP Reaction

FIGURE 76

186/240

**Cloning of PCR Products of Different Sizes with the
GATEWAY™ PCR Cloning System**

Size	fmols PCR DNA	ng PCR DNA	Cols/ml Transformation (pUC=10 ⁸ CFU/ml)	Correct Clones/Total Examined**
0.26 kb*	15	3	1223	10/10 (a)
	37.5	7.5	2815	
1.0 kb	15	10	507	49/50 (b)
	37.5	25	1447	
1.4 kb	15	14	271	48/50 (c)
	37.5	35	683	
3.4 kb	15	34	478	9/10 (a)
	37.5	85	976	
4.6 kb	15	46	190	10/10 (a)
	37.5	115	195	
6.9 kb	15	69	30 (235)**	47/50 (b)
	37.5	173	54 (463)**	

*The 0.26 kb PCR product was used unpurified; all the others were purified by precipitation with PEG/MgCl₂ as described in the text of Example 9, to remove primer dimers potentially present. Standard incubations were for 60 min.

**overnight incubation

- (a) DNA minipreps
- (b) ampR/kanR
- (c) tetR/kanR

Figure 77

187/240

Reading frame C: (Alternative)
B

FIGURE 78

188/260

FIGURE 79

189/240

FIGURE 80

190/240

FIGURE 81

191/240

(A)

rfC Cassette (1856 bps)

(B)

rfC cassette (1715 bps)

FIGURE 82

FIGURE 83 A

prfC Parent III 4554 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
410..286	attR1
660..1319	CmR
1439..1523	inactivated ccdA
1661..1966	ccdB
2007..2131	attR2
2753..3613	amp

1 GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCATTAAT GCAGCTGGCA
 61 CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGAAC GCAATTAAATG TGAGTTAGCT
 121 CACTCATTAG GCACCCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT
 181 TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTTGC
 241 ATGCCCTGAG GTCGACTCTA GAGGATCCCC GGGTACCGAT ATCAAACAAG TTTGTACAAA
 301 AAAGCTGAAC GAGAAACGTA AAATGATATA AATATCAATA TATTAATTAA GATTTTGAT
 361 AAAAAACAGA CTACATAATA CTGTAAAACA CAACATATCC AGTCACTATG GCGGCGCTA
 421 AGTGGCAGC ATCACCCGAC GCACCTTGC CGAATAAAAT ACCTGTGACG GAAGATCACT
 481 TCGCAGAATA AATAAATCCT GGTGTCCTG TTGATACCGG GAAGCCCTGG GCCAACTTTT
 541 GGGAAAATG AGACGTTGAT CGGCACGTTA GAGGTTCCAA CTTTCACCAT AATGAAATAA
 601 GATCACTACC GGGCGTATTT TTTGAGTTAT CGAGATTTC AGGAGCTAAG GAAGCTAAA
 661 TGGAGAAAAA AATCACTGGA TATACCACCG TTGATATATC CCAATGGCAT CGTAAAGAAC
 721 ATTTTGAGGC ATTCAGTCA GTTGCTCAAT GTACCTATAA CCAGACCGTT CAGCTGGATA
 781 TTACGGCCTT TTTAAAGACC GTAAAGAAAA ATAAGCACAA GTTTTATCCG GCCTTTATTC
 841 ACATTCTTC CCGCCTGATG AATGCTCATC CGGAATTCCG TATGGCAATG AAAGACGGTG
 901 AGCTGGTGTATG ATGGGATAGT GTTACCCCTT GTTACACCGT TTTCCATGAG CAAACTGAAA
 961 CGTTTCATC GCTCTGGAGT GAATACACCG ACGATTTCCG GCAGTTCTA CACATATATT
 1021 CGCAAGATGT GGCCTGTTAC GGTGAAAACC TGGCCTATTT CCCTAAAGGG TTTATTGAGA
 1081 ATATGTTTTT CGTCTCAGCC AATCCCTGGG TGAGTTTCAC CAGTTTGAT TTAAACGTGG
 1141 CCAATATGGA CAACTTCTTC GCCCCCGTT TCACCATGGG CAAATATTAT ACGCAAGGCG
 1201 ACAAGGTGCT GATGCCGCTG GCGATTCAAGG TTCATCATGC CGTCTGTGAT GGCTTCATG
 1261 TCGGCAGAAT GCTTAATGAA TTACAACAGT ACTGCGATGA GTGGCAGGGC GGGCGTAAT
 1321 CTAGAGGATC CGGCTTACTA AAAGCCAGAT AACAGTATGC GTATTGCGC GCTGATTTT
 1381 GCGGTATAAG AATATATACT GATATGTATA CCCGAAGTAT GTAAAAAGA GGTGTGCTAT
 1441 GAAGCAGCGT ATTACAGTGA CAGTTGACAG CGACAGCTAT CAGTTGCTCA AGGCATATAT
 1501 GATGTCAATA TCTCCGGTCT GGTAAAGCACA ACCATGCGAGA ATGAAGCCCG TCGTCTGCGT
 1561 GCCGAACGCT GGAAAGCGGA AAATCAGGAA GGATGGCTG AGGTCGCCCG GTTTATTGAA
 1621 ATGAACGGCT CTTTGTGTA CGAGAACAGG GACTGGTAA ATGCAGTTA AGGTTTACAC
 1681 CTATAAAAGA GAGAGCCGTT ATCGTCTGTT TGTGGATGTA CAGAGTGTAA TTATTGACAC
 1741 GCCCGGGCGA CCGATGGTGA TCCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGCTC
 1801 CCGTGAACCT TACCCGGTGG TGATATCGG GGATGAAAGC TGCGCATGA TGACCAACGA
 1861 TATGGCCAGT GTGCCGGTCT CCCTTATCGG GGAAGAAGTG GCTGATCTA GCCACCGCGA
 1921 AAATGACATC AAAAACGCCA TTAACCTGAT GTTCTGGGA ATATAAATGT CAGGCTCCGT
 1981 TATACACAGC CAGTCTGAG GTGACCCATA GTGACTGGAT ATGTTGTGTT TTACAGTATT
 2041 ATGTAGTCTG TTTTTTATGC AAAATCTAAT TTAATATATT GATATTATA TCATTTACG
 2101 TTTCTCGTT AGCTTTCTG TACAAAGTGG TTCGATATCG GTACCGAGCT CGAATTCACT
 2161 GCCGCTCGTT TTACAACGTC GTGACTGGGA AAACCCCTGGC GTTACCCAAAC TTAATCGCCT
 2221 TGAGCACAT CCCCCCTTCG CCAGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATCGCCC
 2281 TTCCCAACAG TTGCGCAGCG TGAATGGCGA ATGGCGCTG ATGCGGTATT TTCTCCTTAC
 2341 GCATCTGTGC GGTATTTCAC ACCGCATATG GTGCACTCTC AGTACAATCT GCTCTGATGC
 2401 CGCATAGTTA AGCCAGCCCC GACACCCGCC AACACCCGCT GACGCCGCC GACGGGCTTG
 2461 TCTGCTCCCG GCATCCGCTT ACAGACAAGC TGTGACCGTC TCCGGGAGCT GCATGTGTCA
 2521 GAGGTTTCA CCGTCATCAC CGAAACGCGC GAGACGAAAG GGCTCGTGA TACGCCATT
 2581 TTATAGGTT AATGTCATGA TAATAATGGT TTCTTAGACG TCAGGTGGCA CTTTCGGGG
 2641 AAATGTGCGC GGAACCCCTA TTGTTTATT TTTCTAAATA CATTCAAATA TGTATCCGCT
 2701 CATGAGACAA TAACCCGTAT AAATGCTTCATAAATATTGA AAAAGGAAGA GTATGAGTAT
 2761 TCAACATTTTC CGTGTGCCCC TTATCCCTT TTTTGCGGCA TTTTGCCCTC CTGTTTTGCA-

FIGURE 83B

2821 TCACCCAGAA ACGCTGGTGA AAGTAAAAGA TGCTGAAGAT CAGTTGGGTG CACGAGTGGG
2881 TTACATCGAA CTGGATCTCA ACAGCGGTAA GATCCTTGAG AGTTTTCGCC CCGAAGAACG
2941 TTTTCCAATG ATGAGCACTT TTAAAGTTCT GCTATGTGGC GCGGTATTAT CCCGTATTGA
3001 CGCCGGGCAA GAGCAACTCG GTGCCGCAT ACACTATTCT CAGAATGACT TGGTTGAGTA
3061 CTCACCAGTC ACAGAAAAGC ATCTTACGGA TGGCATGACA GTAAGAGAAT TATGCAGTGC
3121 TGCCATAACC ATGAGTGATA ACAC TGCGGC CAACTTACCTT CTGACAACGA TCGGAGGACC
3181 GAAGGAGCTA ACCGCTTTTG TGCAACACAT GGGGGATCAT GTAAC TCGCC TTGATCGTTG
3241 GGAACCGGAG CTGAATGAAG CCATACCAAA CGACGAGCGT GACACCACGA TGCCTGTAGC
3301 AATGGCAACA ACGTTGCGCA AACTATTAAC TGGCGAACTA CTTACTCTAG CTTCCGGCA
3361 ACAATTAATA GACTGGATGG AGGCGGATAA AGTTGCAGGA CCAC TTCTGC GCTCGGCCCT
3421 TCCGGCTGGC TGGTTTATTG CTGATAAAATC TGGAGCCGGT GAGCGTGGGT CTCGCCTAT
3481 CATTGCAGCA CTGGGGCCAG ATGGTAAGCC CTCCC GTATC GTAGTTATCT ACACGACGGG
3541 GAGTCAGGCA ACTATGGATG AACGAAATAG ACAGATCGCT GAGATAGGTG CCTCACTGAT
3601 TAAGCATTGG TAATGTCAG ACCAAGTTA CTCATATATA CTTTAGATTG ATTTAAAATC
3661 TCATTTTTAA TTTAAAAGGA TCTAGGTGAA GATCCTTTT GATAATCTCA TGACCAAAAT
3721 CCCTTAACGT GAGTTTCGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC
3781 TTCTTGAGAT CTTTTTTTC TGCGCGTAAT CTGCTGTTG CAAACAAAAA AACCACCGCT
3841 ACCAGCGGTG GTTGTGTTGC CGGATCAAGA GCTACCAACT CTTTTCCGA AGGTAACGG
3901 CTTCAAGCAGA GCGCAGATAAC CAAATACTGT CCTTCTAGTG TAGCCGTAGT TAGGCCACCA
3961 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAAGTGGC
4021 TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGA
4081 TAAGGCGCAG CGGTGGGCT GAACGGGGGG TTCGTGCACA CAGCCCAGCT TGGAGCGAAC
4141 GACCTACACC GAACTGAGAT ACCTACAGCG TGAGCTATGA GAAAGCGCCA CGCTTCCCGA
4201 AGGGAGAAAG GCGGACAGGT ATCCGGTAAG CGGCAGGGTC GGAACAGGAG AGCGCACGAG
4261 GGAGCTTCCA GGGGGAAACG CCTGGTATCT TTATAGTCCT GTCGGGTTTC GCCACCTCTG
4321 ACTTGAGCGT CGATTTTGT GATGTCGTC AGGGGGCGG AGCCTATGGA AAAACGCCAG
4381 CAACCGGCC TTTTACGGT TCCTGGCCTT TTGCTGCCCT TTTGCTCACA TGTTCTTCC
4441 TGCCTTATCC CCTGATTCTG TGGATAACCG TATTACCGCC TTTGAGTGAG CTGATACCGC
4501 TCGCCGCAGC CGAACGACCG AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG AAGA

FIGURE 84

196/240

FIGURE 85

97/240

FIGURE 86

198/240

FIGURE 87

FIGURE 88

200/240

DNA to be amplified ($5' \rightarrow 3'$):

\downarrow Denature, anneal
 \downarrow hybrid primers,
 \downarrow extend with polymerase

\downarrow amplification cycles

\downarrow Denature, anneal
 \downarrow attB primers,
 \downarrow extend with polymerase

\downarrow amplification cycles

attB1 primer:

attB2 primer:

Hybrid primers (part attB, part gene specific):

FIGURE 89

201/240

FIGURE 90A

202/240

pDEST28 7141 bp

ATGCATGTCGTTACATAACTACGGTAAATGGCCGCCCTGGCTGACCGCCCAACGACCCCC
 CGCCCATGTACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCGCCCTGGCATTAT
 GCCCAGTACATGACCTTATGGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATC
 GCTATTACCATGGTGTACGGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGAC
 TCACGGGATTTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAA
 AATCAACGGGACTTCCAAAATGTCGTAACAACCTCGCCCCATTGACGCAAATGGCGGT
 AGGCCTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCCCTACAGTGATAGAGATCTC
 CCTATCAGTGATAGAGATCGTCACGAGCTCGTTAGTGAACCCTCAGATCGCCTGGAGA
 CGCCATCCACGCTTTGACCTCCATAGAACAGACCCGGGACCGATCCAGCCTCCGGACT
 CTAGAGGATCCCTACCGGTGATATCCTCGAGCCATCAACAAGTTGTACAAAAAAGCTG
 AACGAGAAACGTAAAATGATATAAATATCAATATATTAAATTAGATTTGCATAAAAAC
 AGACTACATAATACTGTAAAACACAACATATCCAGTCACTATGGCGGCCGATTAGGCAC
 CCCAGGCTTACACTTATGCTTCCGGCTCGTATAATGTGTGGATTTGAGTTAGGATCC
 GGCAGAGATTTCAAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAACTGGATATACCAC
 CGTTGATATATCCAATGGCATCGTAAAGAACATTGAGGCTTCAGTCAGTTGCTCA
 ATGTACCTATAACCAGACCGTTAGCTGGATATTACGGCTTTAAAGACCGTAAAGAA
 AAATAAGCACAAGTTTATCCGGCTTATTACATTCTGCCGCCTGATGAATGCTCA
 TCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTATGGGATAGTGTTCACCC
 TTGTTACACCGTTTCCATGAGCAAACACTGAAACGTTTATCGCTCTGGAGTGAAATACCA
 CGACGATTCCGGCAGTTCTACACATATTCGCAAGATGTGGCGTGTACGGTAAAA
 CCTGGCTTATTCCTAAAGGTTATTGAGAATATGTTTCTGCTCAGCCAATCCCTG
 GGTGAGTTTACCCAGTTTGATTTAAACGTGGCCAATATGGACAACCTTCGCCCCCGT
 TTTCACCATGGGAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCA
 GGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACA
 GTACTGCGATGAGTGGCAGGGCGGGCGTAAAGATCTGGATCCGGCTTACTAAAAGCCAG
 ATAACAGTATGCGTATTTGCGCGCTGATTTTGCGGTATAAGAATATACTGATATGTA
 TACCCGAAGTATGTCAAAAAGAGGTGTGCTATGAAGCAGCGTATTACAGTGACAGTTGAC
 AGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCATATCTCCGGTCTGGTAAGCA
 CAACCATGCGAGAATGAAGCCGTCGCTGCCGAACGCTGGAAAGCGGGAAATCAGG
 AAGGGATGGCTGAGGTGCCCGGTTATTGAAATGAACGGCTTTGCTGACGAGAACAA
 GGGACTGGTGAATGCAGTTAAGGTTACACCTATAAAAGAGAGAGCGTATCGTCTG
 TTTGTGGATGTACAGAGTGATATTATTGACACGCCGGCGACGGATGGTATCCCCCTG
 GCCAGTGCACGCTGCTGTCAGATAAGCTCCCGTGAACCTTACCCGGTGGTCATATC
 GGGGATGAAAGCTGGCGCATGATGACCAACGGGATATGCCAGTGTGCCGGTCTCCGTTATC
 GGGGAAGAAGTGGCTGATCTCAGCCACCGGAAAATGACATCAAAACGCCATTAAACCTG
 ATGTTCTGGGAATATAATGTCAGGCTCCCTATACACAGCAGTCTGCAGGTGACCA
 TAGTGACTGGATATGTTGTTACAGTATTGAGTCTGTTTATGCAAATCTA
 ATTTAATATATTGATATTATCATTTCAGTTCTCGTTCTGCTCAGTTCTTGATCAAAGT
 GGTTGATGGCGGCCGCTCTAGAGGGCCAAGCTTACGCGTGCATGCGACGTAGCTC
 TCTCCCTATAGTGAGTCGTTAGTCTGAGGCTAGTCAATTGTTGTTGATTTAGATTCA
 CTGGGAAAATGCTGAGTGGATCTTGTGAAGGAACCTTACTTCTGTTGACATA
 ATTGGACAAACTACCTACAGAGATTTAAAGCTCAAGGTAATATAAAATTGTTAAGTGT
 ATAATGTTAAACTAGCTGCATATGCTGCTGTTGAGAGTTGCTACTGAGTATGA
 TTTATGAAAATATTATACACAGGAGCTAGTGATTCTAATTGTTGTTGATTTAGATTCA
 CAGTCCCAAGGCTCATTTCAGGCCCTCAGCTCAGTCTGTTCATGATCATTAATCAG
 CCATACACATTGAGGGTTTACTGCTTAAAAACCTCCCACACCTCCCCCTGAA
 CCTGAAACATAAAATGAATGCAATTGTTGTTAAGCTTGTGTTATTGCAAGCTATAATGG
 TTACAAATAAGCAATAGCATCACAAATTTCACAAATAAGCATTTCAGTGCATTC
 TAGTTGTGGTTGTCAGTCAACTCATCAATGTACTTATCATGCTGGATCGATCTGCATT
 AATGAATGGCCAACGCGGGGAGAGGCCTGGTATTGGCTGGCGTAATAGCGAAG
 AGGCCCGCACCAGTCGCCCTCCCAACAGTGTGCGAGCCTGAATGGCGAATGGGACGCGC
 CCTGTAAGCGCGCATTAAAGCGCGGGGTGTGGTGGTTACGCGCAGCGTACCGCTACAC
 TTGCCAGGCCCTAGGCCGCTCTTCGCTTCTCCCTCCTTCGCCCCACGTTCG
 CGGCTTCCCCGTCAAGCTAAATCGGGGCTCCCTTAGGGTCCGATTAGTGCTT-

FIGURE 90B

TACGGCACCTCGACCCAAAAACTGATTAGGGTGTGGTTACGTAGTGGCCATCGC
 CCTGATAGACGGTTTCGCCCTTGACGTTGGACTCCACGTTCTTAATAGTGGACTCT
 TGTCCAAACTGGAACAAACACTCAACCCTATCTCGGTCTATTCTTTGATTATAAGGGA
 TTTGCCGATTCGGCCTATTGGTAAAAAATGAGCTGATTTAACAAATATTAACGC
 ATTTAACAAATATTAACGTTACAATTTCGCTGATGCGGTATTTCTCCTTACGCAT
 CTGTCGGTATTCACACCGCATACGCGATCTGCGCAGCACCAGGCCGAAATAACCT
 CTGAAAGAGGAACCTGGTAGGTACCTCTGAGGCGGAAAGAACCCAGCTGTGGAATGTGT
 GTCAGTTAGGGTGTGAAAGTCCCAGGCTCCCAGCAGGCAGAAGTATGCAAAGCATGC
 ATCTCAATTAGTCAGCAACCAGGTGTGAAAGTCCCAGGCTCCCAGCAGGCAGAAGTA
 TGCAAAGCATGCACTCAATTAGTCAGCAACCAGTCCCAGGCCATTCTCCGCCCCATGGCTGACTAATT
 CGCCCCTAACCTCCGCCAGTTCCGCCATTCTCCGCCCCATGGCTGACTAATT
 TTTATGCAGAGGCCGAGGCCGCTGGCCTGAGCTATTCCAGAAGTAGTGAGGAGGCT
 TTTTGAGGCCAGGCTTTGCAAAAAGCTTGATTCTCTGACACAACAGTCTCGA
 TAAGACCATGGCCAAGCCTTGTCAAGAAGAACCTCAGCTGAAAGAGCAACGGC
 TACAATCAACAGCATCCCATCTCTGAAGACTACAGCGTCGCCAGCGCAGCTCTCTAG
 CGACGGCCGCATCTCACTGGTGTCAATGTATATCATTACTGGGGGACCTTGTG
 ACTCGTGGTGTGGCACTGCTGCTGCCAGCTGGCACACTGACTTGTATCGTC
 GATCGGAAATGAGAACAGGGCATCTTGAGGCCCTGCGGACGGTGGCAGAGGTG
 CGATCTGCATCCTGGATCAAAGCCATAGTGAAGGACAGTGTGAGGACAGCCGACGGCAGT
 TGGGATTCTGTAATTGCTGCCCTGGTTATGTGTGGGAGGGCTAACGACTTCGTGGCG
 AGTTGAAATGACCGACCAAGCGACGCCAACCTGCATCACGATGGCCGAAATAAAATA
 TCTTATTTCATTACATCTGTGTGGTTTTGTGTGAATCGATAGCGATAAGGATC
 CGCGTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGATAGTTAGCCAGGCC
 CACCCGCCAACACCCGCTGACGCCCTGACGGGCTGCTGCTGCCGATCCGCTTAC
 AGACAAGCTGTGACCGTCTCGGGAGCTGCATGTGTAGAGGTTTCAACCGTACACCG
 AAACCGCGAGACGAAAGGGCCTCGTGATACGCCATTAGGTTATAGGTTATGTCATGATA
 ATAATGGTTCTAGACGTCAAGTGGCACTTTGGGAAATGTGCGGGAACCCCTATT
 TGTTTATTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCTGATAAA
 ATGCTTCATAATATTGAAAAGAGTATGAGTATTCAACATTCTCGTGTGCCCTT
 ATTCCCTTTTGCGGCATTGCTTCTGTTGCTCACCCAGAAACGCTGGTGAAA
 GTAAAAGATGCTGAAGATCAGTGGTGACGAGTGGGTACATCGAACTGGATCTCAAC
 AGCGGTAAGATCCTGAGAGTTCTGCCCGAAGAACGTTTCAATGATGAGCAGCTT
 AAAGTTCTGCTATGTGGCGGGTATTATCCGTATTGACGCCGGCAAGAGCAACTCGG
 CGCCGCATACACTATTCTCAGAATGACTTGGTGAGTACTCACCAGTCACAGAAAAGCAT
 CTTACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAAC
 ACTGCCGCCAACCTACTCTGACAAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTG
 CACAACATGGGGGATCATGTAACTGCCATTGATCGTGGGAACCGGAGCTGAATGAGCC
 ATACCAAACGACGAGCGTGACACCACGATGCCCTGACGAAACACGTTGCCAAA
 CTATTAACTGGCAACTACTTACTCTAGCTTCCGCCAACAAATTAGACTGGATGGAG
 GCGGATAAAAGTTGCAGGACCACCTCTGCGCTGCCCTCCGGCTGGCTGGTTATTGCT
 GATAAAATCTGGAGCGGGTACGCTGGGTCTCGCGGTATCATTGCACTGGGGCAGAT
 GGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGAGCTCAGGCAACTATGGATGAA
 CGAAATAGACAGATCGCTGAGATAGGTGCCACTGATTAAGCATTGGTAACTGTCAGAC
 CAAGTTACTCATATACTTTAGATTGATTTAAACTTCATTAAATTAAAGGATC
 TAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCGTT
 CACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTCTTGTGAGATCCTTTCTG
 CGCGTAATCTGCTGCTGCAACACAGCCAGCTGGCTCAGCAGCGGTGGCTGA
 GATCAAGAGCTACCAACTTTTCCGAAGGTAACTGGCTCAGCAGAGCGCAGATACCA
 AATACTGTCCTCTAGTGTAGCCGTAGTTAGGCCACACTCAAGAACCTGTAGCACCG
 CCTACATACCTCGCTGCTAATCCTGTTACCGATGGCTGCCAGTGGCGATAAGTC
 TGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGA
 ACGGGGGGTTCGTGCACACAGCCAGCTGGAGCGAACGACCTACACCGAACTGAGATAC
 CTACAGCGTGAGCATTGAGAAACGCCAGCTCCGAAGGGAGAAAGGCCAGAGGTAT
 CCGGTAAGCGGCAGGGTGGAACAGGAGAGCGCAGGAGGGAGCTCCAGGGGAAACGCC
 TGGTATCTTATAGTCCTGTCGGTTGCCACCTCTGACTTGAGCGTCGATTGTGA
 TGCTCGTCAGGGGGCGGAGCCTATGGAAAAACGCCAGCAACCGCCCTTTACGGTT
 CTGGCCTTTGCTGGCTTTGCTCACATGTTCTCGCTTACCGTGTGATTCTGTG
 GATAACCGTATTACCGCCTTGAGTGTGAGCTGATACCGCTGCCAGCCGACGACCGAG-

FIGURE 90C

CGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCAATACGCAAACCGCCTCTCCCC
GCGCGTTGGCCGATTCAATTAAATGCAGAGCTTGCATTGCCTTTCAATATTATTGA
AGCATTATCAGGGTTATTGTCTCATGAGCGGATAACATATTGAATGTATTAGAAAAAT
AAACAAATAGGGGTTCCCGCACATTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACC
ATTATTATCATGACATTAACCTATAAAAATAGGCGTAGTACGAGGCCCTTCACTCATTA
G

FIGURE 90D

FIGURE 91 A

206/240

pDEST29 7156 bp

ATGCATGCGTTACATAACTTACGGTAAATGGCCCGCTGGCTGACCGCCCAACGACCCCC
 CGCCCATTGACGTCATAATGACGTATGTTCCCATAAGTAACGCCAATAGGGACTTCCAT
 TGACGTCATAATGGTGGAGTATTTACGGTAAACTGCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCATAAGCGGTAAATGGCCCTGGCATTAT
 GCCCAGTACATGACCTTATGGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATC
 GCTATTACCATGGTGTGATGGGTTTGGCAGTACATCAATGGCGTGGTAGCGGTTGAC
 TCACGGGATTCCAAGTCTCCACCCATTGACGTCATAAGGAGTTTGGCACCAA
 AATCAACGGGACTTCCAAAATGTCGAAACAACTCCGCCATTGACGCAAATGGCGGT
 AGCGTGTACGGGGAGGTCTATATAAGCAGAGCTCCCTATCAGTGATAGAGATCTC
 CCTATCAGTGATAGAGATCGTCGACGAGCTCGTTAGTGAACCGTCAGATGCCCTGGAGA
 CGCCATCCACGCTGTTTGACCTCCATAAGAACACCGGACCGATCCAGCCTCCGACC
 ATGGCGTACTACCATCACCACATCACACCGGTGATATCCTCGAGCCATCACAAGT
 TTGTACAAAAAGCTGAACGAGAAACGTAAGATATAATCAATATATTAAATTAG
 ATTGTCATAAAAACAGACTACATAACTGTAAACACACATATCCAGTCACATGG
 CGGCCGATTAGGCACCCAGGCTTACACTTATGCTTCCGGCTCGTATAATGTTGGA
 TTTGAGTTAGGATCCGGGAGATTTCAGGAGCTAAGGAAGCTAAATGGAGAAAAAA
 TCACTGGATATACCACCGTTGATATATCCCAATGGCATTGTAAGAACACATTGAGGCAT
 TTCAGTCAGTTGCTCAATGTACCTATAACCAAGACCGGTTAGCTGGATATTACGGCTTT
 TAAAGACCGTAAAGAAAATAAGCACAAGTTTATCCGGCTTATTACACATTCTGCC
 GCCTGATGAATGCTCATCCGGAAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGT
 GGGATAGTGTTCACCCCTGTTACACCGTTCCATGAGCAAACGAAACGTTTACCGC
 TCTGGAGTGAATACCACGACGATTCCGGCAGTTCTACACATATATTGCAAGATGTGG
 CGTGTACGGTAAAACCTGGCTTACCTAAAGGGTTATTGAGAATATGTTTCG
 TCTCAGCCAATCCCTGGGTGAGTTTACCAAGTTTGTATTAAACGTCGGCAATATGGACA
 ACTTCTCGCCCCGTTTACCATGGCAAATATTACGCAAGGCACAAGGTGCTGA
 TGCGCTGGCATTAGGTTCATATGCCGCTGTGATGGCTTCCATGTCGGCAGAACG
 TTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGTAAACCGTGATCCG
 GCTTACTAAAAGCCAGATAACAGTATGCGTATTGCGCGCTGATTTCGCGTATAAGAA
 TATATACTGATATGTATACCGAAGTATGTCAAAAGAGGTGTGCTATGAAGCAGCGT
 TACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCA
 TCCGGTCTGGTAAGCACAACCATGCGAATGAAAGCCGTCGTGCGTGC
 AAAGCGAAAATCAGGAAGGGATGGCTGAGGTGAGGCGCCGTTATTGAAATGAACGGCT
 TTTGCTGAGAACAGGGACTGGTGAATGCAGTTAAGGTTACACCTATAAAAGAGA
 GAGCGTTATCGTCTGTTGAGTACAGAGTGTATTGACACGCCGGCGACG
 GATGGTGTACCGGCTGGCAGTGCACGTCTGCTGAGATAAGCTCCGTGAACTTTA
 CCCGGTGGTGATATCGGGGATGAAAGCTGGCGCATGATGACCGATATGCCAGTGT
 GCCGGTCTCGTTATCGGGGAGAACAGTGGCTGATCTCAGCCACCGCAAATGACATCAA
 AACGCCATTAACCTGATGTTCTGGGAATATAATGTCAGGCTCCGTATACACAGCCA
 GTCTGCAGGTGACCATAGTGACTGGATATGTTGTTACAGTATTATGATGCTGTT
 TTTTATGCAAAATCTAATTAAATATTGATATTATCATTTCAGTTCTCGTTCA
 CTTTCTGTCACAAAGTGGTGTGGCGCTCTAGAGGGCCAAGCTTACGCGTGC
 GCGACGTCATAGCTCTCCCTATAGTGAGTCGTTAGTCTGAGCTAGGCACTGGCG
 TTTACAACGTCGTGACTGGAAAAGTGTAGCTTGGATCTTGTGAGGAACCTTACTT
 CTGTTGAGTGTGACATAATTGACAAACTACCTACAGAGATTAAAGCTCAAGTAA
 AAAATTAAAGTGTATAATGTTAAACTAGCTGCATATGCTGCTGCTGAGAGTTT
 GCTTACTGAGTATGATTATGAAAATATTACACAGGAGCTAGTGATTCTAATTGTT
 TGTATTAGATTGACAGTCCCAAGGCTCATTGAGGCCCTCAGTCCTCACAGTCTGTT
 CATGATCATAATGCCATACCAACATTGAGGGTTACTTGCTTAAAAACCTCCC
 ACACCTCCCCCTGAACCTGAAACACATAAAATGAATGCAATTGTTGTTAACTTGT
 TGTGAGCTATAATGGTTACAAATAAGCAATAGCATCACAAATTGCAAAATAAGCATT
 TTTTCACTGCATTCTAGTTGTTGTCAGGCTTAAACTCATCAATGTATCTTATCATG
 GATCGATCCTGCATTAAATGAATCGGCCAACCGCGGGGAGAGGGCGGTTGCGT
 GCGTAAAGCGAAGAGGCCGCACCGATGCCCTCCAAACAGTTGCGCAGCGTGA
 GCGAATGGGACGCCGCTGTAGCGCGCATTAAAGCGCGGGGTGTGGTGGTTACGCG
 CGTGAACCGCTACACTTGCAGGCCCTAGCGCCGCTCCTTCGCTTCTCCCT
 TTCTGCCACGTTGCCGGCTTCCCGTCAAGCTAAATGGGGCTCCCTTGGGT-

FIGURE 91B

TCCGATTAGTGCCTACGGCACCTCGACCCAAAAACTGATTAGGGTATGGTCAC
 GTAGTGGCCATGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCT
 TTAATAGTGGACTCTTGTTCAAACTGGAACAACACTCAACCCTATCTGGTCTATTCTT
 TTGATTATAAGGGATTTGCCGATTCGGCTATTGGTAAAAAATGAGCTGATTTAAC
 AAATATTAAACGGAATTAAACAAATATTAAACGTTACAATTGCCCTGATGCCGTAT
 TTTCTCCTACGCATCTGCGGTATTCACACCGCATCGGGATCTGCCAGCACCCT
 GCCCTGAAATAACCTCTGAAAGAGGAACCTGGTAGGTACCTCTGAGGCCGAAAGAAC
 AGCTGTGGAATGTGTCAAGTTAGGGTGTGAAAGTCCCCAGCAGGCAGAA
 GTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGAAAGTCCCCAGGCTCCC
 CAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCCTAGTCCCC
 TAACCTCCGCCATCCGCCCTAACCTCCGCCAGTCCGCCATTCTCCGCCCATGGCT
 GACTAATTTTTATTATGCAGAGGCCGAGGCCCTCGGCCTCTGAGCTATTCCAGA
 AGTAGTGAGGAGGCTTTTGAGGCCCTAGGCTTTGCAAAAGCTTGATTCTTGACAA
 CAACAGTCTGAACTTAAGACCATGGCCAAGCCTTGTCTCAAGAAGAACATCCACCTCAT
 TGAAAGAGCAACGGCTACAATCAAACAGCATCCCCATCTGAAAGACTACAGCGTCGCCAG
 CGCAGCTCTCTAGCGACGGCCATCTCACTGGTGTCAAGTATATCATTAACTGG
 GGGACCTTGTGAGAACTCGTGGTGTGGCACTGCTGCTGCCAGCTGGCAACCT
 GACTTGTATCGTGGCGATCGGAAATGAGAACAGGGCATCTTGAGGCCCTGCCAGGTG
 CCGACAGGTGCTCTCGATCTGACATCTGGATCAAAGCCATAGTGAAGGACAGTGTGG
 ACAGCCGACGGCAGTGGGATTCTGAAATTGCTGCCCTCTGGTATGTGTGGAGGGCTA
 AGCACTCGTGGCGAGTCAAAATGACCGACCAAGCGACGCCAACCTGCCATCACGAT
 GGCGCAATAAAATATCTTATTTCATTACATCTGTTGTTGGTTTTGTGTGAATCG
 ATAGCGATAAGGATCCGCGTATGGTCACTCTGACTACAATCTGCTCTGATGCCCATAG
 TTAAGCCAGCCCCGACACCGCCAACACCCGCTGACGCCCTGACGGCTTGTCTGCTC
 CGGCATCCGCTACAGACAAGCTGTGACCGTCTCGGGAGCTGATGTGTAGAGGTTT
 TCACCGTCATCAGCGAAACGCGAGACGAAAGGCTCGTGTACGCCATTAACTTAG
 GTTAATGTCATGATAATAATGGTTCTTAGACGTCAGGTGGCACTTTGGGAAATGTG
 CGCGAACCCCTATTGTTATTCTAAATACATTCAAATATGTATCCGCTCATGAGA
 CAATAACCCCTGATAAAATGCTTCAATAATATTGAAAAGGAAGAGTATGAGTATTCAACAT
 TTCCGTGTCGCCCTTATTCCCTTTTGCGGCATTTGCCCTCTGTTTGCTCACCA
 GAAACGCTGGTAAAGTAAAGATGCTGAAGATCAGTTGGTGCACGAGTGGTTACATC
 GAACGGATCTCAACAGCGGTAAAGATCCTTGAGAGTTTCGCCCGAAGAACGTTCCA
 ATGATGAGCACTTTAAAGTTCTGCTATGGCGGGTATTATCCGTATTGACGCCGG
 CAAGAGCAACTCGTCGCCGCATACACTATTCTCAGAATGACTTGTTGAGTACTCACCA
 GTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATA
 ACCATGAGTGATAAACACTGCGGCCACTTACTCTGACAACGATCGGAGGACCGAAGGAG
 CTAACCGTTTTGACAAACATGGGGATCATGTAACTCGCTTGTACGTTGGGAACCG
 GAGCTGAATGAAGCCATACCAACGACGAGCGTACACCGATGCCCTGTAGCAATGGCA
 ACAACGTTGCCAAACTATTAACTGGGAACACTTACTCTAGCTCCGGCAACAATTAA
 ATAGACTGGATGGAGGGCGATAAAGATTGACAGATCGCTGAGATAGGTGCCTACTGATTAA
 GGCTGGTTATTGCTGATAAAATCTGGAGCCGGTGGAGCTGGCTCGCGTATCATTGCA
 GCACGGGCCAGATGGTAAGCCCTCCGTATCGTAGTTATCTACACGACGGGAGTCAG
 GCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTACTGATTAA
 TGGTAACTGTCAGACCAAGTTACTCATATATACTTGTGAGTTAAACTTCATT
 TAATTAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAA
 CGTAGGTTTGTCCACTGAGCGTCAGACCCGTAGAAAAGATCAAAGGATCTTCTG
 GATCCTTTTCTGCGCGTAATCTGCTGCTGCAAACAAAAACGCCGCTACAGCG
 GTGGTTGGCGATCAAGAGCTACCAACTCTTCCGAAGGTACTGGCTCAG
 AGAGCGCAGATACCAAATACTGTCCTCTAGTGAGCGTAGGCGTAGTTAGGCCACC
 AACCTGTAGCACCGCCTACATACTCGCTCTGCTAATCCTGTTACCGAGTGGCTG
 AGTGGCGATAAGTCGTCTTACCGGGTGGACTCAAGACGATAGTTACCGGATAAGGCG
 CAGCGCTGGCGTAACGGGGGGTCTGTCACACAGCCCAGCTGGAGCGAACGACCTAC
 ACCGAACGAGATACCTACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCGAAGGGAGA
 AAGGCGGACAGGTATCCGTAAGCGGAGGGTCGGAACAGGGAGAGCGCACGAGGGAGCTT
 CCAGGGGAAACGCCCTGGTATCTTATAGTCCTGTCGGGTTCGCCACCTCTGACTTGAG
 CGTCGATTGGATGCTCGTCAGGGGGCGGAGCCTATGAAAAACGCCAGCAACGCG
 GCCTTTTACGTTCTGGCTTTGCTGCCCTTGCTGACATGTTCTTCCTGCGTTA
 TCCCTGATTCTGAGATAACCGTATTACCGCCTTGAGTGTGAGCTGATACCGCTGCCGC-

208/240

AGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGGCCAATACGC
AAACCGCCTCTCCCCGCGTGGCCGATTCAATTAAATGCAGAGCTTGCATGCAGCGGATACATATTGAA
TTTCAATATTATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATACATATTGAA
TGTATTAGAAAAATAAACAAATAGGGTTCCCGCACATTCCCCGAAAAGTGCCACCT
GACGTCTAAGAAACCATTATTATGACATTAACCTATAAAAATAGGCGTAGTACGAGG
CCCTTCACTCATTAG

FIGURE 91D

FIGURE 92A

210/240

pDEST30 7544 bp

ATGCATGTC TTACATAACTTACGGTAAATGGCCCGCTGGCTGACCGCCCAACGACCCC
 CGCCCATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTAT
 GCCCAGTACATGACCTTATGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATC
 GCTATTACCATGGTATGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGAC
 TCACGGGGATTCCAAGTCTCCACCCATTGACGTCAATGGGAGTTGTTGGCACCAA
 AATCAACGGGACTTCCAAAATGTCGAACAACCTCCGCCATTGACGCAAATGGCGGT
 AGGC GTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCCCTATCAGTGTAGAGATCTC
 CCTATCAGTGTAGAGATCGTGACGAGCTCGTTAGTGAACCGTCAGATCGCCTGGAGA
 CGCCATCCACGCTTTGACCTCCATAGAACAGACCCGGACCGATCCAGCCTCCGGACT
 CTAGAGGATCCCTACCGGTGATATCCTCGAGCCATCAACAAGTTGTACAAAAAGCTG
 AACGAGAACGTAAAATGATATAAATATCAATATATTAAATTAGATTTGCATAAAAAC
 AGACTACATAATACTGTAAAACACAATATCCAGTCACTATGGCGGCCGATTAGGCAC
 CCCAGGCTTACACTTATGCTCCGGCTCGTATAATGTTGGATTTGAGTTAGGATCC
 GGCAGGATTTCAAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCAC
 CGTTGATATATCCAATGGCATCGTAAAGAACATTGAGGCACTTCAGTCAGTTGCTCA
 ATGTACCTATAACCAGACCGTTAGCTGGATATTACGGCTTTAAAGACCGTAAAGAA
 AAATAAGCACAAGTTTATCCGGCTTATTCACTTCTGCCCGCTGATGAATGCTCA
 TCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTATATGGGATAGTGTTCACCC
 TTGTTACACC GTTTCCATGAGCAAACCTGAAACGTTTATCGCTCTGGAGTGAATACCA
 CGACGATTTCCGGCAGTTCTACACATATATTGCAAGATGTGGCGTTACGGTAAAGAA
 CCTGGCCTATTCCCTAAAGGGTTATTGAGAATATGTTTCTGCTCAGCCAATCCCTG
 GGTGAGTTTCAACCAGTTTGATTAAACGTGGCAATATGGACAACCTCTCGCCCCGT
 TTTCACCATGGGAAATATTACGCAAGGCACAAGGTGCTGATGCCGCTGGCGATTCA
 GGTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGCTTAATGAATTACAACA
 GTACTGCGATGAGTGGCAGGGCGGGCGTAAAGATCTGGATCCGGCTACTAAAAGCCAG
 ATAACAGTATGCGTATTGCGCGCTGATTGGCGTATAAGAATATATACTGATATGTA
 TACCCGAAGTATGTCAAAAGAGGTGTGCTATGAAGCAGCGTATTACAGTGACAGTTGAC
 AGCGACAGCTATCAGTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCA
 CAACCATGCGAGAATGAAGCCGTCGTCGCGAACGCTGGAAAGCGGAAATCAGG
 AAGGGATGGCTGAGGTGCGCCGGTTATTGAAATGAACGGCTTTGCTGACGAGAAC
 GGGACTGGTAAATGCA GTTTAAGGTTACACCTATAAAAGAGAGAGGCCGTTATCGTCTG
 TTTGTGGATGTACAGAGTGTATTGACACGCCGGCGACGGATGGTATCGCTCG
 GCCAGTGCACGTCTGTCAGATAAGTCTCCGTGAACCTTACCCGGTGGTGCATATC
 GGGGATGAAAGCTGGCCATGATGACCACCGATATGCCAGTGTGCCGGTCTCGTCTAC
 GGGGAAGAAGTGGCTGATCTCAGCCACCGCAGAACATCAAAACGCCATTAAACCTG
 ATGTTCTGGGAATATAAATGTCAGGCTCCCTATACACAGCCAGTCGAGGTGACCA
 TAGTGACTGGATATGTTGTTACAGTATTATGAGTCTGTTTTATGCAAATCTA
 ATTTAATATATTGATATTATACATTTCAGTTCTCGTTCACTTCTGTCAGCTTCTGTACAAAGT
 GGTTGATGGCGGCCGCTTAGAGGGCCAAGCTTACGCGTGCATGCGACGTCTAGCTC
 TCTCCCTATAGTGAGTCGTATTATAAGCTAGGCACTGCCGTCGTTTACAACGTCGTGA
 CTGGAAAAGCTGCTAGTTGGATCTTGTAAGGAACCTACTCTGTTGTCAGATA
 ATTGGACAAACTACCTACAGAGATTAAAGCTCTAAGGTAATATAAAATTGTTAAGTGT
 ATAATGTTAAACTAGCTGCATATGCTGCTGCTGAGAGTTGCTTACTGAGTATGA
 TTTATGAAAATATTACACAGGAGCTAGTGTATTCTAATTGTTGTTAGTGTATTC
 CAGTCCCAAGGCTCATTCAGGCCCTCAGTCCTCACAGTCGTTGATGATCATAATCAG
 CCATACCACATTGTAAGGGTTTACTTGCTTTAAAAACCTCCCAACACCTCCCCCTGAA
 CCTGAAACATAAAATGAATGCAATTGTTGTTAACTTGTGTTATTGCAAGCTTATAATGG
 TTACAAATAAGCAATAGCATCACAAATTCAACAAATAAGCATTGTTACTGCATTC
 TAGTTGTGGTTGTCCAAACTCATCAATGTATCTATCATGTCGATCGATCCGCATT
 AATGAATGGCCAACGCGGGAGAGGGCGGTTGCGTATTGGCTGGCGTAATAGCGAAG
 AGGCCCGCACCAGTCGCCCTCCCAACAGTTGCGCAGCCTGAATGGCAATGGGACGCC
 CCTGTAGCGGCGCATTAAGCGCGGGGTGTGGTGGTTACCGCGAGCGTGAACCGCTACAC
 TTGCCAGGCCCTAGCGCCGCTCTTCGCTTCTCCCTTCTCGCACGTTCG
 CCGCTTCCCGTCAAGCTAAATGGGGCTCCCTTAGGGTCCGATTAGTGTCTT-

FIGURE 92B

211/240

TACGGCACCTGACCCAAAAACTGATTAGGGTGTGGTCACGTAGTGGCCATCGC
 CCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCT
 TGTTCAAACACTGAAACAACACTCAACCCTATCTCGGTCTATTCTTTGATTATAAGGGA
 TTTGCCGATTCGGCCTATTGGTAAAAAATGAGCTGATTAAACAAATATTAAACGCA
 ATTTAACAAAATATTACGTTACAATTTCGCCTGATGCGGTATTTCTCCTACGCAT
 CTGTGCGGTATTTCACACCGCATAACGCGGATCTGCGCAGCACCATGGCTGAAATAACCT
 CTGAAAGAGGAACCTGGTAGGTAACCTCTGAGGCGAAAGAACAGCTGTGGAATGTGT
 GTCAGTAGGGTGTGGAAAGTCCCAGGCTCCCAGCAGGCAGAAGTATGCAAAGCATGC
 ATCTCAATTAGTCAGCAACCAGGTGTGGAAAGTCCCAGGCTCCCAGCAGGCAGAAGTA
 TGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCAGGCTTAACCTCCGCCCAC
 CGCCCCTAACTCGGCCCAGTTCCGCCATTCTCCGCCATGCTGACTAATTTC
 TTTATGCAGAGGCCAGGGCCCTCGGCCTGAGCTATTCCAGAAGTAGTGTGAGGAGGCT
 TTTTGAGGCCAGGGCTTTGAAAAAGCTGATTCTCTGACACAAACAGTCTCGA
 TAAGGCTAGAGCCACCATGATTGAACAAGATGGATTGACGCAAGGTTCTCGGCCGCTTG
 GGTGGAGAGGCTATTGGCTATGACTGGGACAACAGACAATGGCTGCTGTG
 CGTGTCCGGCTGTCAGGCAGGGCGCCGGTTCTTTGTCAGAACACGACCTGTCCGG
 TGCCCTGAATGAACAGCAGGACAGGGCAGCGCGCTATCGTGGCTGGCACGACGGCGT
 TCCTTGCGCAGCTGTGCTGACGTTGACTGAAGCGGAAGGGACTGGCTGCTATTGGG
 CGAAGTGCAGGGCAGGATCTCTGTCATCTCACCTGCTGCCAGAAAGTATCCAT
 CATGGCTGATGCAATGCAGGCGCTGCATACGCTTGACCGCTACCTGCCATTGACCA
 CCAAGCGAACATCGCATCGAGCAGCACGTAACCGTGGAGGCCGCTTGTGATCA
 GGATGATCTGGACGAAGAGCATCAGGGCTCGCGCAGCGAACGTTGCCAGGCTCAA
 GGCAGCATGCCAGGGCAGGAGATCTGTCGTGACCCATGGCGATGCCCTGCGAA
 TATCATGGTGGAAAATGCCGCTTCTGGATTGACTGTGGCCGGCTGGGTGTGGC
 GGACCGCTACAGGACATAGCGTTGGCTACCGTGATATTGCTGAAGAGCTTGGCGCGA
 ATGGGCTGACCGCTTCTGCTTACGGTATGCCGCTCCGATTGCGCAGCGCATCGC
 CTTCTATGCCCTCTTGACGAGTTCTGAGCAGGACTCTGGGTTGAAATGACCGAC
 CAAGCGACGCCAACCTGCCATCACGATGCCGCAATAAAATATCTTATTTCATTACA
 TCTGTGTGTTGGTTTGTGAATCGATAGCGATAAGGATCCGCTATGGTGCAC
 CAGTACAATCTGCTCTGATGCCGATAGTTAACGCCAGCCCCGACACCCGCAACACCCG
 TGACGCCCTGACGGCTTGTCTGCCGATCCGCTTACAGACAAGCTGTGACCGT
 CTCCGGAGCTGCATGTGTCAGAGGTTTACCGTCATCACCGAACGCGAGACGAA
 GGGCCTCGTACGCCTATTAAATAGGTTAATGTCATGATAATAATGGTTCTTAGAC
 GTCAGGTGGCACTTTGGGAAATGTGCGCGGAACCCCTATTGTTATTCTAAAT
 ACATTCAAATATGTATCCGCTCATGAGACAATAACCCGATGTTCAATAATATTG
 AAAAGGAAGAGTATGAGTATTCAACATTCCGTGTCGCCCTATTCCCTTTGGCGG
 ATTTCGCCCTCTGTTGTCACCCAGAAACGCTGGTGAAGTAAAGATGCTGAAGA
 TCAGTTGGGTGACGAGTGGTTACATCGAAGTGGATCTAACAGCGGTAAGATCCTTGA
 GAGTTTCGCCCGAAGAACGTTTCAATGATGAGCAGACTTTAAAGTCTGCTATGTGG
 CGCGTATTATCCGTATTGACGCCGGCAAGAGCAACTCGTGCAGGCCATACACTATT
 TCAGAATGACTGGTGTGAGTACTCACCGACTCACAGAAAAGCATTTACGGATGGCATGAC
 AGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACACTGCGGCCACT
 TCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTGTGACAAACATGGGGATCA
 TGATAACTGCCCTGATGTTGGGAAACCGGAGCTGAATGAAGCCATACAAACGACGAGCG
 TGACACCACGATGCCCTGACGAAACACGTTGCGCAAAACTATTAACTGGCGA
 ACTTACTCTAGCTCCGGCAACAAATTAAAGACTGGATGGAGGCGGATAAGTTGAGG
 ACCACTTCTGCCCTCGGGCTTCCGGCTGGTTATTGCTGATAAAATCTGGAGCCGG
 TGAGCGTGGGTCTCGCGTATCATTGACGACTGGGGCAGATGGTAAGGCCCTCCGTAT
 CGTAGTTATCTACGACGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGC
 TGAGATAGGTGCCCTACTGATGATTGAACTGTCAGACCAAGTTACTCATATAT
 ACTTTAGATTGATTAAACCTCATTAAATTAAAGGATCTAGGTGAAGATCCTTT
 TGATAATCTCATGACCAAATCCCTAACGTGAGTTCTGCTCCACTGAGCGTCAGACCC
 CGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTCTGCCGTAATCTGCTGCTT
 GCAAAACAAAAAACACCGCTACAGCGGTTGTTGCCGATCAAGAGCTACCAAC
 TCTTTTCCGAAGGTAACTGGCTCAGCAGAGCGCAGATACCAAAACTGTGCTTCTAGT
 GTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGTCAGCACCGCCTACATACCTCGCT
 GCTAATCCTGTTACCAAGTGGCTGCCAGTGGCGATAAGTCGTGCTTACCGGGTTGGA
 CTCAAGACGATAGTTACCGATAAGGCGCAGCGGTGGCTGAACGGGGGTTCGTCAC-

FIGURE 92C

ACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATAACCTACAGCGTGAGCATTG
AGAAAGGCCACGCTTCCGAAGGGAGAAAGGCAGGTATCCGGTAAGCGGCAGGGT
CGGAACAGGAGAGCGCAGGAGCTTCAAGGGGAAACGCCTGGTATCTTTATAGTCC
TGTGGGTTCGCCACCTCTGACTTGAGCGTCGATTTGTGATGCTCGTCAGGGGGCG
GAGCCTATGGAAAAACGCCAGCAACCGCCCTTTACGGTTCTGGCCTTTGCTGGCC
TTTGCTCACATGTTCTCCTGCCTATCCCCTGATTCTGTGGATAACCGTATTACCGC
CTTGAGTGAGCTGATACCGCTCGCCGAGCCGAACGACCGAGCGCAGCGAGTCAGTGAG
CGAGGAAGCGGAAGAGCGCCAATACGCAAACCGCCCTCTCCCGCGCGTTGGCCGATTCA
TTAATGCAGAGCTTGCATTGCGCTTTCAATATTATTGAAGCATTTATCAGGGTTA
TTGTCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAACAAATAGGGGTTCC
GCGCACATTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT
AACCTATAAAATAGGCGTAGTACGAGGCCCTTCACTCATTAG

FIGURE 92D

213/260

FIGURE 93A

214/240

pDEST31 7559 bp

ATGCATGTCGTTACATAACTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCC
 CGCCCATGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTCCAT
 TGACGTCAATGGGTGGAGTATTAACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTAT
 CATATGCCAAGTACGCCCTATTGACGTCAATGACGGTAAATGGCCCGCTGGCATTAT
 GCCCAGTACATGACCTTATGGACTTCTACTTGGCAGTACATCTACGTATTAGTCATC
 GCTATTACCATGGTGATGCGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGAC
 TCACGGGGATTCCAAGTCTCACCCATTGACGTCAATGGGAGTTGTTGGCACCAA
 AATCAACGGGACTTCCAAAATGTCGAACAACCTCCGCCATTGACGCAAATGGCGGT
 AGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCCCTATCAGTGTAGAGATCTC
 CCTATCAGTGTAGAGATCGTGACGAGCTCGTTAGTGAACCCTCAGATGCCCTGGAGA
 CGCCATCCACGCTGTTGACCTCCATAGAACGACACCGGGACGATCCAGCCTCCGGACC
 ATGGCGTACTACCATCACCATCACACCGGTGATATCCTCGAGCCATCACAAAGT
 TTGTACAAAAAGCTGAACGAGAACGTAATGATATAATCAATATATTAAATTAG
 ATTTGCATAAAAACAGACTACATAATACTGTAAAACACAATATCCAGTCATATGG
 CGGCCGATTAGGCACCCAGGCTTACACTTATGCTTCCGGCTCGTATAATGTGTGGA
 TTTTGAGTTAGGATCCGGCGAGATTTTCAAGGAGCTAAGGAAGCTAAAATGGAGAAAAAA
 TCACTGGATATACCACCGTTGATATATCCAATGGCATCGTAAAGAACATTTGAGGCAT
 TTCAGTCAGTTGCTCAATGTACCTATAACAGACCGTTCAGCTGGATATTACGCCCTTT
 TAAAGACCGTAAAGAAAAATAAGCACAAAGTTTATCCGGCTTTATTACATTCTGCC
 GCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGGCTGATAT
 GGGATAGTGTTCACCCTGTTACACCGTTTCCATGAGCAAACGAAACGTTTATCGC
 TCTGGAGTGAATACCAACGACGATTCCGGCAGTTCTACACATATATTGCAAGATGTGG
 CGTGTACGGTAAAACCTGGCTTACCTAAAGGGTTATTGAGAATATGTTTTCG
 TCTCAGCCAATCCCTGGGTGAGTTTACCAAGTTTAAACGTGGCCAATATGGACA
 ACTTCTCGCCCCCGTTTACCATGGGAAATATTATACGCAAGGCGACAAGGTGCTGA
 TGCCGCTGGCGATTCAAGGTTCATCATGCCGTCTGTGATGGCTTCCATGTCGGCAGAATGC
 TTAATGAATTACAACAGTACTCGCATGAGTGGCAGGGCGGGCGTAAACGCGTGGATCCG
 GCTTACTAAAAGCCAGATAACAGTATGCGTATTGCGCGCTGATTTTGCCTATAAGAA
 TATATACTGATATGTATACCGAAGTATGTCAAAAGAGGTGTGCTATGAAGCAGCGTAT
 TACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATC
 TCCGGTCTGGTAAGCACAACCATGCGAGAATGAAGCCCCTGCTGCGTCCGAAACGCTGG
 AAAGCGGAAATCAGGAAGGGATGGCTGAGGTGCCCCGGTTATTGAAATGAACGGCTCT
 TTTGCTGACGAGAACAGGGACTGGTAAATGCAAGTTAAGGTTACACCTATAAAAGAGA
 GAGCCGTTATCGTCTGTTGTGGATGTACAGAGTGTATTATTGACACGCCGGCGACG
 GATGGTGATCCCCCTGCCAGTCACGTCGCTGTCAGATAAGCTCCCGTGAACCTTA
 CCCGGTGGTGCATATCGGGGATGAAAGCTGGCGCATGATGACCAACCGATATGGCCAGTGT
 GCCGGTCTCCGTTATCGGGGAAAGAAGTGGCTGATCTCAGCCACCGGAAATGACATCAA
 AACGCCATTAACCTGATGTTCTGGGAATATAAATGTCAGGCTCCGTTATACACGCCA
 GTCTGCAGGTCGACCATAGTGACTGGATATGTTGTTTACAGTATTATGATGCTGTT
 TTTTATGCAAAATCTAATTAAATATTGATATTATCATTTCAGTTCTCGTTCA
 CTTTCTGTACAAAGTGGTGTGGCGCTTAGAGGGCCCAAGCTTACCGCGTGCAT
 GCGACGTCAAGCTCTCCCTATAGTGAGTCGTATTATAAGCTAGGCACTGGCGTCTG
 TTTACAACGTCGTGACTGGAAAAGTCTAGCTGGATCTTGTGAAGGAACCTTAC
 CTGTTGAGCATAATTGGACAAACTACCTACAGAGATTAAAGCTCTAAGGTAATAT
 AAAATTAAAGTGTATAATGTGTTAAACTAGCTGCATATGCTGCTGTTGAGAGTTT
 GCTTACTGAGTATGATTATGAAATATTACACAGGAGCTAGTGATTCTAATTGTTG
 TGTATTAGATTCACTGACGCTTACAGTCCCAAGGCTCATTCAAGGCCCTCAGTCTCACAGTCTG
 CATGATCATAATCAGCCATACCACTTGTAGAGGTTTACTTGCTTAAAAAACCTCC
 ACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTAACTTGT
 TGCAGCTTATAATGGTTACAAATAAGCAATAGCATCACAAATTCACAAATAAGCATT
 TTTTCACTGCATTCTAGTTGTTGCTCAAACCTACATCAATGATCTTATCATGTC
 GATCGATCCTGCATTAAATGAATCGGCCAACGCGCGGGGAGAGGCGGGTTGCGTATTGGCT
 GGCGTAATAGCGAAGAGGCCGCACCGATGCCCTCCCAACAGTTGCGCAGCCTGAATG
 GCGAATGGGACGCGCCCTGTAGCGCGCATTAAAGCGCGGGGTGTGGTGGTTACCGC
 GCGTGAACCGCTACACTGCCAGCGCCCTAGCGCCGCTCCTTCGCTTCTCCCT
 TTCTGCCACGTTGCCGGCTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTAGGGT-

FIGURE 93B

TCCGATTAGTGCCTTACGGCACCTCGACCCAAAAACTTGATTAGGGTATGGTTCAC
 GTAGTGGGCCATGCCCTGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCT
 TTAATAGTGGACTCTTGTCCAACCTGAAACAACACTCAACCCTATCTCGGTCTATTCTT
 TTGATTATAAGGGATTTGCCGATTCGGCTATTGGTTAAAAATGAGCTGATTAAC
 AAATATTAACCGAATTAAACAAAATTTAACGTTACAATTGCCGATGCCGTATGCCGTAT
 TTTCTCCTACGCATCTGCGGTATTCACACCGCATACGCCGATCTGCCGAGCACCAT
 GCCCTGAAATAACCTCTGAAAGAGGAACCTGGTAGGTACCTCTGAGGCCGAAAGAAC
 AGCTGTGGATGTGTCAAGTTAGGGTGTGAAAGTCCCCAGGCTCCCAGCAGGCAGAA
 GTATGCAAAGCATGCATCTCAATTAGTCAGCAACCAGGTGTGAAAGTCCCCAGGCTCCC
 CAGCAGGCAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCCTAGTCCC
 TAACCTCGCCCATTCCGCCCTAACCTCCGCCAGTCCGCCATTCTCGCCCCATGGCT
 GACTAATTTTTATTATGCAGAGGCCGAGGCCCTCGGCCCTGAGCTATTCCAGA
 AGTAGTGGAGGGCTTTTGAGGCCTAGGCTTTGCAAAAAGCTTGATTCTGACA
 CAACAGTCTGAACCTAAGGCTAGAGCCACCATGATTGAAACAAGATGGATTGCACGCAGG
 TTCTCCGGCCGCTTGGGTGGAGAGGCTATTGGCTATGACTGGCACAACAGACAATCGG
 CTGCTCTGATGCCCGTGTCCGCCGTCAAGCAGGCCGAGGGCGCCGGTCTTTGTCAA
 GACCGACCTGTCCGGTGCCTGAATGAACCTGCAGGACGAGGCAGCGCGCTATCGTGGCT
 GGCCACGACGGCGTTCCCTGCGCAGCTGTGCTGACGTTGTCAGGAAGCGGGAAAGGGA
 CTGGCTGCTATTGGCGAAGTGCCGGGGCAGGATCTCTGTCACTCACCTGCTCCTGC
 CGAGAAAGTATCCATCATGGCTGATGCAATGCCGCGCTGCATACGCTGATCCGGCTAC
 CTGCCATTGACCAACCGAAACATCGCATCGAGCGAGCACGTACTGGATGGAAGC
 CGGTCTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGGCCAGCGAACT
 GTTCGCCAGGCTCAAGGCCGATGCCGACGGCAGGATCTCGTGTGACCCATGGCGA
 TGCCTGCTGCCGAATATCATGGTAAAATGCCGCTTTCTGGATTATCGACTGTGG
 CCGGCTGGGTGTGGCGGACCGCTACAGGACATAGCGTTGGCTACCGTGATATTGCTGA
 AGAGCTTGGCGGGAATGGGCTGACCGCTTCTCGTGTGTTACGGTATGCCGCTCCCGA
 TTCGAGCGCATGCCCTCTATGCCCTCTGACGAGTTCTCTGAGCGGGACTCTGGGG
 TTCGAAATGACCGACCAAGCGACGCCAACCTGCCATCACGATGCCGCAATAAAATATC
 TTTATTTCATACATCTGTTGGTTTTGTGAATCGATAGCGATAAGGATCCG
 CGTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCCATAGTTAAGCCAGCCCCGACA
 CCCGCCAACACCCGCTGACGCCCTGACGGCTTGTCTGCCATCCGCTTACAG
 ACAAGCTGTGACCGTCTCCGGAGCTGCATGTGTAGAGGTTTACCGTCATACCGAA
 ACGCGAGACGAAAGGCCCTGTGATACGCCATTTTATAGGTTAATGTATGATAAT
 AATGGTTCTAGACGTCAGGTGGCACTTTGGGAAATGTGCGCGGAACCCCTATTG
 TTTATTTCTAAATACATTCAAATATGTATCCGTCATGAGACAATAACCTGATAAAT
 GCTTCAATAATATTGAAAAGGAAGAGTATGAGTATTCAACATTCCGTCGCCCTTAT
 TCCCTTTGCGCATTGCGCTTCTGTTGCTCACCCAGAAACGCTGGTGAAAGT
 AAAAGATGCTGAAGATCAGTTGGGTGCACCGAGTGGGTTACATCGAACTGGATCTCAACAG
 CGGTAAGATCCTTGAGAGTTTCCGCCGAAGAACGTTTCAATGATGAGCACTTTAA
 AGTTCTGCTATGTGGCGGGTATTATCCGTATTGACGCCGGCAAGAGCAACTCGGTG
 CCGCATAACACTATTCTCAGAATGACTGGTGAGTACTCACCAAGTCACAGAAAAGCATCT
 TACGGATGGCATGACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACAC
 TGCGCCAACCTACTCTGACAAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTGCA
 CAACATGGGGATCATGAACTGCCCTGATCGTGGGAACCGGAGCTGAATGAAGCCAT
 ACCAAACGAGCGTGCACACCACGATGCCGTAGCAATGCCAACACGTTGCCAAACT
 ATTAACCTGGCGAAACTACTACTCTAGCTTCCCGAACAAATTAAATAGACTGGATGGAGGC
 GGATAAAAGTTGAGGACCACTCTGCGCTGCCCTCGGCTGGTGGTTATTGCTGA
 TAAATCTGGAGGCCGGTGGAGCTGGTCTCGCGTATCATTGAGCACTGGGGCAGATGG
 TAAGCCCTCCCGTATCGTAGTTACACGACGGGAGTCAGGCAACTATGGATGAACG
 AAATAGACAGATCGCTGAGATAGGTGCTCACTGATTAAGCATTGGTAACTGTCAGACCA
 AGTTTACTCATATATACTTTAGATTAAACCTCATTAAATTAAAGGATCTA
 GGTGAAGATCCTTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCTG
 CTGAGCGTCAAGACCCCGTAGAAAAGATCAAAGGATCTTCTGAGATCTTTTCTG
 CGTAATCTGCTGCTGCAAACAAAAACACCGTACCGAGGGTGGTTGCTGCCGGA
 TCAAGAGCTACCAACTCTTCCGAAGGTAACCTGGCTCAGCAGAGCGCAGATACCAA
 TACTGCTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAAACTCTGTA
 TACATACCTCGCTCTGCTAATCCGTTACAGTGGCTGCTGCCAGTGGCGATAAGTC
 TCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTGGCTGAAC-

FIGURE 93C

216/240

GGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATAACCT
ACAGCGTGAGCATTGAGAAAGCGCCACGCTTCCCAGGGAGAAAGGCAGGATCC
GGTAAGCGGCAGGGTCGGAACAGGGAGAGCGCACGAGGGAGCTTCCAGGGGAAACGCCCTG
GTATCTTATAGTCCTGTCGGTTCGCCACCTCTGACTTGAGCGTCGATTTGTGATG
CTCGTCAGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCCCTTTACGGTTCCCT
GGCCTTTGCTGGCCTTTGCTCACATGTTCTTCCTGCGTTATCCCTGATTCTGTGGA
TAACCGTATTACCGCCTTGAGTGAGCTGATACCGCTGCCGCAGCCAAACGACCGAGCG
CAGCGAGTCAGTGAGCGAGGAAGCGCCAATACGCAAACGCCCTCCCCGC
GCGTTGCCGATTCAATTGCAGAGCTTGCATTGGCGTTTCAATATTATTGAAG
CATTTATCAGGGTTATTGCTCATGAGCGGATACATATTGAATGTATTAGAAAAATAA
ACAAATAGGGTTCCCGCACATTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCAT
TATTATCATGACATTAACCTATAAAAATAGCGTAGTACGAGGCCCTTCACTCATTAG

FIGURE 93D

217/240

FIGURE 94A

pDEST32 12288 bp

GACGAAAGGGCCTCGTATCGCTATTAGTTAATGTCATGATAATAATGGTT
 CTTAGGACGGATCGCTTGCCTGTAACCTACACGCGCTCGTATCTTTAATGATGGAATA
 ATTTGGGAATTACTCTGTGTTATTATTATTTATGTTTGATTTGGATTAGAAAGT
 AAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAATAACAAAGGTTAAAAA
 ATTTCAACAAAAGCGTACCTTACATATATATTATAGACAAGAAAAGCAGATTAAATA
 GATATACATTGATTAACGATAAGTAAAATGTAACAGGATTTCGTGTGGTCT
 TCTACACAGACAAGATGAAACAATTGGCATTAATACCTGAGAGCAGGAAGAGCAAGATA
 AAAGGTAGTATTGTTGGCGATCCCCCTAGAGTCTTACATCTCGGAAACAAAAACT
 ATTTTTCTTAATTCTTTTACTTCTATTAAATTATATATTATTTAATTTAAAAA
 ATTTAAATTATAATTATTTATAGCACGTGATGAAAGGACCCAGGTGGCACTTTCGG
 GGAAATGTGCGCGGAACCCCTATTGTTATTTCTAAATACATTCAAATATGTATCCG
 CTCATGAGACAATAACCCCTGATAATGCTTCATAATCTGCAGTGCAGGCCGTGTC
 TCAAAATCTCTGATGTTACATTGACAAGATAAAATATCATCATGAACAATAAAACT
 GTCTGTTACATAAACAGTAATAACAGGGTGTATGAGCCATATTCAACGGAAACGTC
 TTGCTGGAGGCCGCGATTAATTCCAACATGGATGCTGATTATATGGTATAATGGGC
 TCGGTAGCCAACCCTAGAAACTATAGCTAGAGTCCTGGCGAACAAACGATGCTGCCCT
 CCAGAAAACCGAGGATGCGAACCACTTCATCCGGGTGAGCACCACGGCAAGCGCCGCG
 ACGGCCGAGGTCTTCCGATCTCTGAAGCAGGGCAGATCCGTGACAGCACCTGCCGT
 AGAAGAACAGCAAGGCCAATGCCATGCGATGCCGAGACCGAAACCTTGCCTCGT
 TCGCCAGCCAGGACAGAAATGCCCGACTTCGACTCGCTGCTGCCAAGGTTGCCGGTGACGCA
 CACCGTGGAAACGGATGAAGGACGAACCACTGAGCATAAGCCTGTTCGGTTCGTAAAC
 TGTAATGCAAGTAGCGTATGCGTCACGCAACTGGTCCAGAACCTTGACCGAACGCG
 GTGGTAACGGCCAGTGGCGTTTCATGGCTTGTATGACTGTTTTTGATGAGTCTA
 TGCCTCGGCATCCAAGCAGCAAGCGCTAACGCCGTTGGCTCGATGTTGATGTTATGGA
 GCAGCAACGATGTTACGCGAGCAACGATGTTACGCAGCAGGGCAGTCGCCCTAAAC
 AAGTTAGGTGGCTCAAGTATGGCATTCGACATGTAGTAGGCTGCCCTGACCAAGTC
 AAATCCATGCCGCTCTGATCTTCGGCTGAGTTGGAGACGTAGCCACCTAC
 TCCCACATCAGCCGACTCCGATTACCTCGGAACTTGCTCCGTAGTAAGACATTCATC
 GCGCTTGCCTTCGACCAAGAACGGTTGTTGGCGCTCTCGCCCTACGTTCTGCC
 AGGTTGAGCAGCCGCGTAGTGGAGATCTATATCTATGATCTCGCAGTCTCCGGAGC
 CGGAGGCAGGGCATTGCCACCGCGCTCATCAATCTCTCAAGCATGAGGCCAACCGCCT
 GGTGCTTATGTGATCTACGTGCAAGCAGATTACGGTGACGATCCCGCAGTGGCTCTCTAT
 ACAAAAGTTGGCATAACGGGAAGAACGAGTGGATGCACTTGTGATATCGACCCAAGTACCGCCACC
 TAACAATTGTTCAAGCCGAGATCGGCTTCCGGCTAATAGGTTGATTGATGTTGGAC
 GAGTCGGAATCGCAGACCGATAACAGGATCTGCCATCCTATGGAACTGCCCTGGTAGT
 TTTCTCCTTCATTACAGAAACGGCTTTCAAAAATATGGTATTGATAATCCTGATATGA
 ATAAATTGCAAGTTCTTGTGATGCTCGATGAGTTCTAATCAGAAATTGGTTAATTGGT
 TGTAACACTGGCAGAGCATTACGCTGACTTGACGGGACGGCGNATGACCAAAATCCCT
 AACGTGAGTTTCGTTCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT
 GAGATCCTTTCTGCGCGTAATCTGCTGCTGCCAAACAAAAACCCACCGCTACCA
 CGGTGGTTGTTGCCGGATCAAGAGCTACCAACTTTTCCGAAGGTAACTGGCTTCA
 GCAGAGCGCAGATAACAAACTGTCCTCTAGTGTAGCCGTAGTTAGGCCACCACTCA
 AGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAACCTCTGTTACCGAGTGGCTGCTG
 CCAGTGGCGATAAGTCGTGCTTACCGGGTTGGACTCAAGAGCATAGTTACCGGATAAGG
 CGCAGCGGTGGCTGAACGGGGGGTCTGACACAGGCCAGCTGGAGCGAACGACCT
 ACACCGAACTGAGATAACCTACAGCGTGAGCATTGAGAAAAGCGCCACGCCAGGGAG
 GAAAGGCGGACAGGTATCCGTAAGCGGACGGTCCGAACAGGAGAGCGCACGCCAGGGAG
 TTCCAGGGGGAAACGCGCTGGTATCTTATAGTCCTGCTGGTTGCTGCCACCTCTGACTTG
 AGCGTCGATTTGTGATGCTCGTCAGGGGGGGCAGCTATGGAAAAACGCCAGCAACG
 CGGCCCTTACGGTTCTGGCTTTGCTGGCCCTTGCTCACATGTTCTCTGCC
 TATCCCTGATTCTGTTGATAACCGTATACCGCTTGTAGTGAGCTGATACCGCTGCC
 GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATAC
 GCAAACCGCCCTCTCCCGCGCGTGGCCGATTCAATGAGCTGGCACGACAGGTTTC
 CCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTATGTGAGTTACCTCACTCATTAGG
 CACCCAGGCTTACACTTATGCTTCCGGCTCTATGTTGTGAGGAAATTGAGCGGAT
 AACAAATTTCACACAGGAAACAGCTATGACCATGATTACGCCAAGCTCGGAATTAAACCTC-

FIGURE 94B

219/260

ACTAAAGGGAACAAAAGCTGGTACCGATCCCAGCTTGCAAATTAAAGCCTCGAGCGT
CCCCAAACCTCTCAAGCAAGGTTTCAGTATAATGTTACATGCGTACACGCGTCTGTAC
AGAAAAAAAAGAAAAATTGAAATATAAATAACGTTCTTAATACTAACATAACTATAAAA
AAATAAAATAGGACCTAGACTTCAGGGTGTCTAACCTCCTCTTCCGGTAGAGCGGAT
GTGGGGGGAGGGCGTGAATGTAAGCGTGACATAACTAATTACATGATATCGACAAAGGAA
AAGGGGCCTGTTACTCACAGGTTTTCAAGTAGGTAATTAAAGTCGTTCTGTCTTT
TCCTCTTCAACCCACCAAAGGCCATCTGGTACTTTTTTTTTTTTTTTTTTTTT
TT
TTTTTTCATAGAAATAACAGAAGTAGATGTTGAATTAGATTAAACTGAAGATATAT
AATTATGGAAAATACATAGAGCTTTGTTGATGCGCTTAAGCGATCAATTCAACAAAC
ACCACAGCAGCTCTGATTTTCTCAGCCAACCTGGAGACGAATCTAGCTTGACGAT
AACTGGAACATTGGAATTCTACCCCTACCAAGATCTTACCGTAACCGGCTGCCAAAGT
GTCATAACTGGAGCAGTTCTAGAAGCAGATTCAAGTATTGGTCTCTCTGTCTTC
TGGGATCAATGTCCACAATTGTCAGGTTCAAGACTGGCTCCAGAAATGAGCTGTTG
CTTGTGGAAAGTATCTCATACCAACCTACCGAAATAACCTGGATGGTATTATCCATGTT
AATTCTGTGGTGTGACCTGACCCGGCATACCTCTACCAACCGGGTGCTTCTGTGCTT
ACCGATACGACCTTACCGCTGAGACGTGACCTCTGTGCTTCTAGCTTAGTGAATCT
GGAAGGCATTCTGATTAGTGGATGATTGTTCTGGGATTAAATGCAAAATCACTTAAG
AAGGAAAATCAACGGAGAAAGCAACGCCATCTAAATATAACGGGATACAGATGAAAGGG
TTGAAACCTATCTGGAAAATAGCATTAAACAAGCGAAAAACTGCGAGGAAATGTTGC
GTCTCTGGGCTATTACGCGCCAGAGGAAAATAGGAAAATAACAGGGATTAGAAAA
ATAATTGATTTGGTAATGTGGGTCTGGTGTACAGATGTTACATTGGTACAGTA
CTCTGTTTGTGTTCTGATGAATCTCAAAATGGTGTAGCACATGGAAGAG
TCACCGATGCTAAGTTATCTATGTAAGCTACGTGGCGTACTTTGATGAAGCGCAC
AAGAGATACAGGATTGCAACTGCAAATAGAATCTGGGATCCCCCTCGAGATCCGGGA
TCGAAGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATGAAGGCAAAAGACAAATA
TAAGGGTCAACGAAAATAAAGTAAAAGTGTGATATGATGTATTGGCTTGC GGCG
CCGAAAAAACGAGTTACGCAATTGCAACATGACTGACTCTGTGGCGGACCCCGCCTC
TTGCCGGCCGGCGATAACGCTGGCGTGAGGCTGTGCCGGAGTTTTGCGCTG
CATTTCCAAGGTTACCTCGCTAAGGGCGAGATTGGAGAAGCAATAAGAATGCCGG
TTGGGGTTGCCATGATGACGACCACGACAACGGTGTCTTAAAGTGTGCAAGGAA
CCTGAGTGCATTGCAACATGAGTATACTAGAAGAATGAGCCAAGACTGCGAGACGCGA
GTTTGCCGGTGTGCGAACAAATAGAGCGACCATGACCTGAAGGTGAGACGCGCATAACC
GCTAGAGTACTTGAAGAGGAAACAGCAATAGGGTGTACCGAGTATAATAGACAGGTA
CATACAACACTGAAATGGTGTCTGTTGAGTACGCTTCAATTGATGGCTTGCAC
TTTATTATGTTACAATATGAAAGGGAACTTACACTCTCTTATGACATATAATTAA
AAGTCAAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGCGCTTTTGCATT
CTAAACCGTGAATATTGGATATCCTTGTGTTCCGGGTGTACAATATGGACTTC
CTCTTTCTGCCAACCAAACCCATACATCGGATTCTATAATACCTCGTTGTCTCCC
TAACATGTAGGTGGCGAGGGGAGATATAACATAGAACAGATACCAGACAAGACATAATG
GGCTAAACAAGACTACACCAATTACACTGCCTCATTGATGGTGTACATAACGAACAA
ACTGTAGCCCTAGACTGATAGCCATCATCATGAAAGTTCACTACCCCTTTCCATT
TGCCATCTATTGAAGTAATAATAGCGCATGCAACTCTTTCTTTTTCTTTCTC
TCTCCCCGTGTTGTCACCATATCGCAATGACAAAAAAATGATGGAAGACACTAA
AGGAAAAAAATAACGACAAAGACGACCAACAGATGCGTTCCAGAGCTGATGAGG
GGTATCTCGAACACACGAAACTTTCCCTCCTCATTGACAGCAGACTCTCTAATG
AGCAACGGTATACGGCCTCCTCCAGTTACTGAAATTGAAATAAAAAAGTTGCCGC
TTGCTATCAAGTATAAAATAGACCTGCAATTATTAAATCTTTGTTCCCGTCAATTGTC
TCGTTCCCTTCTCCTGTTCTTCTGCACAAATTCAAGCTATACCAAGCATA
AATCAACTCCAAGCTGAAAGCAAGCCTCTGAAAGATGAAGCTACTGTCCTATCGAAC
AAGCATGCGATATTGCCACTAAAAAGCTCAAGTGTCAAAGAAAAACCGAAGTGC
CCAAGTGTCTGAAGAACAACTGGGAGTGTGCGTACTCTCCAAAACAAAAGGTCTCCGC
TGACTAGGGCACATCTGACAGAACAGTGGAAATCAAGGCTAGAAAGACTGGAACAGCTATT
TACTGATTTCTCGAGAACAGCTTGACATGATTTGAAATGGATTCTTACAGGATA
TAAAAGCATTGTTAACAGGATTATTGTACAAGATAATGTAATAAGATGCCGTACAG
ATAGATTGGCTTCAGTGGAGACTGATATGCCTCTAACATTGAGACAGCATAGAATAAGTG
CGACATCATCATCGGAAGAGAGTAGAACAAAGGTCAAAGACAGTTGACTGTATCGTCA
GGTCAATCAAACAAGTTGTACAAAAAGCTGAACGAGAACGTAAGTATAAAATA

FIGURE 94C

220/240

FIGURE 94D

221/240

AGGCCGGAACCGGGTTTCAATAGAATAGAGAACCGTTCATGACTAAATGCTGCATCA
CAATACTTGAGTTGACAATATTATTTAAGGACCTATTGTTTTCCAATAGGTGGTTAG
CAATCGTCTTACCTTCAACTTTCTTACCTTTACATTCAGCAATATATATATATT
TCAAGGATATACCATCTAATGTCGCCCTATGTCGCCCTAAGAACATCGTCGTTT
GCCAGGTGACCACGTTGGTCAAGAAAATCACAGCCGAAGCCATTAGGTCTAAAGCTAT
TTCTGATGTTGTTCCAATGTCAGGTCGATTCGAAAATCATTAAATTGGTGGTGC
TATCGATGCTACAGGTGCCCACCTCCAGATGAGGCCTGGAAGCCTCAAGAACGGTGA
TGCCGTTTGTAGGTGCTGTGGGTGCTTAAATGGGTACCGTAGTGTAGACCTGA
ACAAGGTTACTAAAAATCCGTAAGAACCTCAATTGACGCCACTTAAGACCATGTA
CTTGACATCCGACTCTTTAGACTATCTCCAATCAAGCCACAATTGCTAAAGGTAC
TGACTTCGTTGTTGTCAGAGAATTAGTGGGAGGTATTTACTTGGTAAGAGAAAGGAAGA
CGATGGTGTGGTGCCTGGGATAGTGAACAATACACCGTCCAGAACATGCAAAGAAT
CACAAGAATGGCCGTTTCAATGGCCCTACAACATGAGCCACCATTGCCTATTGGCCTT
GGATAAAAGCTAATGTTTGGCCTCTCAAGATTATGGAGAAAAGTGTGGAGGAAACCAT
CAAGAACGAAATTCCCTACATTGAAGGTTCAACATCAATTGATTGATTCTGCCGCATGAT
CCTAGTTAAGAACCCAACCCACCTAAATGGTATTATAATCACCAGAACATGTTGGTGA
TATCATCTCCGATGAAGCCTCCGTTATCCAGGTTCTGGGTTGTGCCATCTGCGTC
CTTGGCCTTTGCCAGACAAGAACACCGCATTGGTTGTACGAAACCATGCCACGGTTC
TGCTCCAGATTGCCAAGAATAAGGTTGACCCATCGCCACTATCTTGTCTGCTGCAAT
GATGTTGAAATTGTCATTGAACTTGCCTGAAGAACGGTAAAGGCAATTGAAGATGCA
AAAGGTTTGGATGCAGGTATCAGAACTGGTATTAGGTGGTCCAACAGTACCAACCGA
AGTCGGTGTGCTGCCGAAGAACGTTAAGAAAATCCTGCTTAAAAGATTCTCTTT
TTTATGATATTGTACATAAAACTTATAAATGAAATTCAATAAGAACGACACGAAATT
ACAAAATGGAATATGTTCATAGGTAGACGAAACTATATACCGAACATCTACATACTTAT
CAAGAAGGAGAAAAGGAGGATAGTAAAGGAATACAGGTAAAGCAAATTGATACTAATGGC
TCAACGTGATAAGGAAAAGAACATTGCACTTTAACATTAATATTGACAAGGAGGAGGGCAC
CACACAAAAAGTTAGGTGTAACAGAAAATCATGAAACTACGATTCTAATTGATATTGG
AGGATTTCTCTAAAAAAATACAACAAATAAAAACACTCAATGACCTGACCAT
TTGATGGAGTTAAGTCATACTTCTGAAACCATTCCCATAATGGTGAAGTCCCTC
AAGAATTTCATCTGTCAGAAACGGCCTAACGACGTAGTCGATATTGGTGCAC
CAATCTGCTCTGATGCCCATAGTTAACGCAAGCCCCAACACCGCTGACG
CGCCCTGACGGGCTTGTCTGCTCCGGCATCCGCTACAGACAAGCTGTGACCGTCTCCG
GGAGCTGCATGTGTCAGAGGTTTCACCGTCATCACCGAACACGGCGCGA

FIGURE 94E

222/240

FIGURE 95A

pDEST33 8815 bp

GCCTTACGCATCTGTGCGGTATTCACACCGCAGGCAAGTGCACAAACAATACTTAAATA
 AATAACTACTCAGTAATAACCTATTCTTAGCATTTGACGAAATTGCTATTGTTAG
 AGTCTTTACACCATTGCTCCACACCTCCGCTTACATCAACACCAATAACGCCATTAA
 ATCTAAGCGCATACCAACATTTCTGGCGTCAGTCACCAGCTAACATAAAATGTAAGC
 TTTCGGGGCTCTTGCCTCCAACCCAGTCAGAAATCGAGTCCAATCCAAAAGTTCAC
 CTGTCCCACCTGCTTGAATCAAACAAGGAAATAACGAATGAGGTTCTGTGAAGCTG
 CACTGAGTAGTATGTTGCACTTTGGAAATACGAGTCTTTAACAACTGGCAAACCGA
 GGAACCTTGTTATTCTGCCACGACTCATCTCCATGCAAGTGGACGATATCAATGCCGT
 AACATGACCAAGGAAACATCCTCCTAGGTTGATTACGAAACACGCCAACCAAGT
 ATTTGGAGTGCCTGAACTATTATGCTTTACAAGACTTGAAATTTCCTTGCAA
 TAACCGGGTCAATTGTTCTCTTCTATTGGCACACATATAAACCCAGCAAGTCAGCAT
 CGGAATCTAGAGCACATTCTGCCCTCTGTGCTGCAAGCGCAAACCTTCACCAATG
 GACCAGAACTACCTGTGAAATTAAACAGACATACTCAAGCTGCCCTTGTGCTTAA
 TCACGTATACTCACGTGCTCAATAGTCACCAATGCCCTCCCTTGGCCCTCTCTTTTC
 TTTTCGACCGAATTAAATTCTTAACTGGCAAAAAAGAAAAGCTCCGATCAAGATTGT
 ACGTAAGGTGACAAGCTATTTCATAAAAGAATATCTTCAACTACTGCCATCTGGCGTC
 ATAAC TGCAAAGTACACATATAATTACGATGCTGTCTATTAAATGCTTCTATATAATTATA
 TATAGTAATGTCGTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCATAGTTAA
 GCCAGCCCCGACACCCGCAACACCCGCTGACGCCCTGACGGGTTGTCTGCCCGG
 CATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTAC
 CGTCATCACGAAACGCCGAGACGAAAGGGCCTCGTGTACGCCATTAGTTAATAGGTTA
 ATGTCATGATAATAATGGTTCTTAGGACGGATCGCTTGCCTGTAACCTACACGCCCTC
 GTATCTTTAATGATGGAATAATTGGAAATTACTCTGTGTTATTATTTATGTTT
 TGTATTGGATTAGAAAGTAAATAAAGAAGGTAGAAGAGTACGGAATGAAGAAAAAA
 AAATAACAAAGGTTAAAAAATTCAACAAAAGCGTACTTACATATAATTAG
 ACAAGAAAAGCAGATTAAATAGATATACTCGATTAACGATAAGTAAATGTAACATCA
 CAGGATTTCTGCTGCTTCTACACAGACAAGGATAACCGCATTAAACCT
 GAGAGCAGGAAGAGCAAGATAAAAGGTTAGTATTGTTGGCAGATCCCCCTAGAGTCTTTA
 CATCTCGGAAACAAAACATTTTCTTAATTCTTTTACTTCTATTAAAG
 TTTATATATTATTTAATTTAAATTATAATTATTTATAGCACGTGATGAAAAG
 GACCCAGGTGGCACTTTGGGAAATGCGCGGAACCCCTATTGTTATTCTAA
 ATACATTCAAATATGTATCCGCTCATGAGACAATAACCTGATAAAATGCTCAATAAT
 TGAAAAGGAAGAGTATGAGTATTCAACATTCCGCTCGCCCTATTCCCTTTGCG
 GCATTGGCTTCTGTTTGCTCACCCAGAAACGCTGGTAAAGTAAAGATGCTGAA
 GATCAGTTGGGTGCAAGTGGTTACATCGAACCTGGATCTCAACAGCGGTAAAGATCCTT
 GAGAGTTTCCGCCCCGAAGAACGTTTCCAATGATGAGCACTTTAAAGTTCTGCTATGT
 GGCGGGTATTATCCCGTATTGACGCCGGCAAGAGCAACTCGGTGCCGATACACTAT
 TCTCAGAATGACTTGGTTGAGTACTCACCAAGAAAAGCATCTACGGATGGCATG
 ACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTATAACACTGCCAACTTA
 CTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTCAACACATGGGGAT
 CATGTAACTCGCTTGATCGTGGAAACGGAGCTGAATGAAGCCATACCAACGACGAG
 CGTGACACCACGATGCCGTAGCAATGGCAACACGTTGCGCAAACACTATTAACTGGCGAA
 CTACTACTCTAGCTTCCGGACAACATTAAATAGACTGGATGGAGGCGATAAAAGTTGCA
 GGACCACTCTGCGCTCGGCCCTCCGGCTGGTTATTGCTGATAAAATCTGGAGCC
 GGTGAGCGTAGGGTCTCGCGGTATCTGCACTGGGGCCAGATGGTAAGCCCTCCCGT
 ATCGTAGTTACTACACGACGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATC
 GCTGAGATAGTGCCTCACTGATAAGCATGGTAACTGTCAGACCAAGTTACTCATAT
 ATACTTTAGATTGATTTAAACTCATTTTAATTAAAGGATCTAGGTGAAGATCCTT
 TTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCTGTTCCACTGAGCGTCAGAC
 CCCGTAGAAAAGATCAAAGGATCTTCTGAGATCCTTCTGCGCGTAATCTGCTGC
 TTGCAAACAAAAACACCGTACCGAGCGGTGGTTGTTGCGCGATAAGTCGTCTTACCGGGTTG
 ACTCAAGACGATAGTACCGATAAGGCCAGCGTGGGCTGAACGGGGTTCGTGC
 ACACAGCCCAGCTGGAGCGAACGACCTACACCGAACTGAGATAACCTACAGCGTGAGCAT-

FIGURE 95B

224/240

TGAGAAAGGCCACGCTTCCGAAGGGAGAAAGCGGACAGGTATCCGTAAGCGGCAGG
 GTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAACGCCCTGGTATCTTATAGT
 CCTGTCGGTTGCCACCTCTGACTTGAGCGTCGATTTGTGATGCTCGTCAGGGGG
 CCGAGCCTATGAAAAACGCCAGCAACGCCCTTTACGGTCCTGCCCTTGCTGG
 CCTTTGCTCACATGTTCTTCTCGTTATCCCCGATTCTGTGGATAACCGTATTACC
 GCCTTGAGTGAAGCTGATAACGCCAGCGAACGACGGAGCGCAGCGAGTCAGTG
 AGCGAGGAAGCGGAAGAGGCCAATACGCAAACCGCTCTCCCGCGTGGCCGATT
 CATTAAATGCAAGCTGGCACGACAGGTTCCGACTGGAAAGCGGGAGTGAGCGAACGCA
 ATTAATGAGTACCTCACTCATTAGGCACCCAGGTTACACTTATGCTTCCGGCT
 CCTATGTTGTGGAATTGTGAGCGGATAACAATTACACAGGAAACAGCTATGACCAT
 GATTACGCCAAGCTCGGAATTAAACCTCACTAAAGGAAACAAAGCTGGTACCGGGCC
 CCCCTCGAGATCCGGATCGAAGAAATGATGGTAAATGAAATAGGAAATCAAGGAGCATG
 AAGGAAAAGACAAATATAAGGTCGAACGAAAATAAGTGAAGAAGTGTGATATGATG
 TATTTGGCTTGCAGCGCGAAAAAACGAGTTACGCAATTGCAATCATGCTGACTCT
 GTGGCGGACCCCGCCTTGCGGCCGGCGATAACGCTGGCGTAGGGCTGTGCCCGGC
 GGAGTTTTGCGCCTGCATTTCAAGGTTACCGCTCGCCTAAGGGCGAGATGGAGA
 AGCAATAAGAATGCCGGTGGGGTGCATGATGACGACCACGACAACGGTGTCAATTAT
 TTAAGTTGCCGAAAGAACCTGAGTGCATTGCAACATGAGTATACTAGAAGAATGAGCCA
 AGACTTGCAGACGCGAGTTGCCGGTGGCGAACAAATAGAGCGACCATGACCTTGAAG
 GTGAGACGCGCATAACCGCTAGAGTACTTGAAGAGGAAACAGCAATAGGTTGCTACCA
 GTATAAATAGACAGGTACATACAACACTGAAATGGTTGTCGTTGAGTACGCTTCAA
 TTCATTGGGTGTCACTTATTATGTTACAATATGAAAGGAACTTACACTTCTCCTA
 TGCACATATATTAAATTAAAGTCCAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGCGC
 TCTTTCCGATTTCTAAACCGTGGAAATATTCGGATATCCTTTGTTGTTCCGGG
 TGTACAATATGACTTCTCTTCTGGCAACCAAACCCATACATCGGATTCTATAAT
 ACCTTCGTTGGCTCCCTAACATGTTAGGTGGCGGAGGAGATAACATAGAACAGATA
 CCAGACAAGACATAATGGCTAAACAAGACTACACCAATTACACTGCCTCATTGATGGTG
 GTACATAACGAACTAATACTGTAGCCCTAGACTTGATAGCCATCATCATATCGAAGTTTC
 ACTACCCCTTCCATTGCCATCTATTGAAAGTAAATAGGCCATGCAACTTCTTCTT
 TTTTTTTCTTCTCTCCCCGTTGTCACCATAATCGCAATGACAAAAAA
 ATGATGGAAGACACTAAAGGAAAAATTAAACGACAAAGACAGCACCAACAGATGTCGTTG
 TTCCAGAGCTGATGAGGGTATCTCGAACACACGAAACTTTCTCCTTCATTCAAG
 CACACTACTCTTAATGAGCAACGGTATAACGGCTCCTTCAGTTACTGAAATTGAA
 TAAAAAAAGTTGCCGCTTGCTATCAAGTATAAATAGACCTGCAATTAAATCTTTG
 TTTCTCGTCATTGTTCTCGTTCCCTTCTGTTCTTTCTGCACAATATTC
 AGCTATAACCAAGCATACAATCCAAGCTTATGCCAAGAAGAACGGAAAGGTCTCG
 AGCGGCCAATTAAAGTGGAAATTGCTGATAGCTCATTGCTTCACTT
 ACTAACAGTAGCAACGGTCCGAACCTCATAACAACCAAATTCTCAAGCGCTTCA
 CAACCAATTGCCCTCTAACGTTCATGATAACTTCATGAATAATGAAATCACGGCTAGT
 AAAATTGATGATGGAATAATTCAAACCAACTGTACCTGGTTGGACGGACCAAACGCG
 TATAACGCGTTGGAATCACTACAGGGATGTTAAATACCACTACAATGGATGATGATAT
 AACTATCTATTGATGATGAGATACCCACCAAACCAAAAAAGAGGGTGGGTCGAAT
 CAAACAAGTTGTACAAAAAGCTGAACGGAGAAACGTAATGATATAAATATCAATATA
 TTAAATTAGATTTCGCATAAAAACAGACTACATAACTGTAACACATATCCAG
 TCACTATGCCGCCGCTAAGTTGCAGCATACCCGACGCACTTGGCCGAATAAATAC
 CTGTGACGGAAGATCACTCGCAGAATAAAATCCTGGTGCCTGTTGATACCGGG
 AGCCCTGGGCCAACTTTGGCGAAATGAGACGTTGATCGGCACGTAAGAGGTTCCA
 TTCACCATATGAAATAAGATCACTACCGGGCGTATTTTGAGTTATCGAGATTTCAG
 GAGCTAAGGAAGCTAAATGGAGAAAAAAACTGGATATACCACTGATATACCGTT
 AATGGCATCGTAAGAACATTGAGGCATTTCAGTCAGTGCTCAATGTACCTATAACC
 AGACCGTTAGCTGGATATTACGGCTTTAAAGACCGTAAGAACAAATAAGCACAAAGT
 TTTATCCGGCTTATTACATCTGCCGCTGATGAATGCTCATCGGAATTCCGTA
 TGGCAATGAAAGACGGTGAGCTGGTATGGGATAGTGTCAACCCCTGTTACACCGTT
 TCCATGAGCAAACGAACTGAGCTTTCATCGCTCTGGAGTGAATACACGACGATTCCGG
 AGTTTCTACACATATTGCAAGATGAGCTGGTACGGTGAACACCTGGCTATTCC
 CTAAGGGTTATTGAGAATATGTTCTCGCTCAGCCAATCCCTGGGTGAGTTCA
 GTTTGATTTAACGTTGGCCAATATGGACAACCTTCTGCCCGGTTTACCATGGCA
 AATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAAGGTT
 CATCATGCC-

FIGURE 95C

225/240

TCTGTGATGGCTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGT
GGCAGGGCGGGCGTAATCTAGAGGATCCGCTTACTAAAAGCCAGATAACAGTATGCGT
ATTTGCGCGCTGATTTGCGGTATAAGAATATATACTGATATGTATAACCGAAGTATGT
CAAAAAGAGGTGTGCTATGAAGCAGCGTATTACAGTGACAGCGACAGCTATCA
GTTGCTCAAGGCATATATGATGTCATATCTCCGGTCTGGTAAGCACAACCAGCAGAAT
GAAGCCCCTCGTCTCGTCCGAAACGCTGGAAAGCGAAAATCAGGAAGGGATGGCTGAG
GTCGCCGGTTATTGAATGAACGGCTCTTGCTGACGAGAACAGGGACTGGTGAAAT
GCAGTTAAGGTTACACCTATAAAAGAGAGAGCGTTATCGTCTGTTGTGGATGTACA
GAGTGATATTATTGACACGCCGGCGACGGATGGTATCCCCCTGGCAGTGCACGTCT
GCTGTCAGATAAAGTCTCCGTGAACTTACCCGGTGGTGCATATCGGGGATGAAAGCTG
GCGCATGATGACCAACCGATATGCCAGTGTGCCGTCTCCGTATCGGGGAAGAAGTGGC
TGATCTCAGCCACCGCAGAAATGACATCAAAACGCCATTAACCTGATGTTCTGGGAAT
ATAAAATGTCAGGCTCCGTTATACACAGCCAGTCTGCAGGTGACCATAGTGAETGGATAT
GTTGTTTACAGTATTATGTTAGCTGTTTATGCAAATCTAATTAAATATTGAA
TATTTATATCATTTACGTTCTCGTTCTGTCAGCTTCTGTACAAAGTGGTTGATGGCCGC
TAAGTAAGTAAGACGTCGAGCTCCCTATAGTGAGTCGTTACACTGGCGTCTTAC
AACGTCGTGACTGGAAAACACCGGTGAGCTCTAAGTAAGTAACGGCCGCCACCGCGGTG
GAGCTTGGACTCTTCGCCAGAGGTTGGTCAAGTCTCCAATCAAGGTTGTCGGCTTGT
CTACCTGCCAGAAATTACGAAAAGATGAAAAGGGTCAAATCGTGGTAGATACGTTG
TTGACACTTCTAAATAAGCGAATTCTTATGATTGATTATTAAATAAGTTA
TAAAAAAATAAGTGATACAAATTAAAGTGACTCTTAGGTTAAACGAAAATTCT
TGTTCTGAGTAACTCTTCCTGAGGTAGGTAGGTTCTCAGGTATAGCATGAGGTCG
CTCTTATTGACCACACCTCTACCGGATGCCAGCAAATGCCGAAATCGCTCCCCATT
TCACCCAATTGAGATATGCTAACCTCAGCAATGAGTTGATGAATCTCGGTGTGTT
ATGTCCTCAGAGGACAATACCTGTTGTAATCGTCTCCACACGGATCCGATCAGGCGA
AATTGTAACGTTAATATTGTTAAAATTGCGTTAAATATTGTTAAATCAGCTCATT
TTTAACCAATAGGCCGAAATCGGAAAATCCTTATAAAATCAAAGAATAGACCGAGAT
AGGGTTGAGTGTGTTCCAGTTGGAACAGACTCCACTATTAAAGAACGTGGACTCCAA
CGTCAAAGGGCGAAAACCGTCTACAGGGCGATGGCCCACTACGTGAACCATCACCTA
ATCAAGTTTTGGGTCGAGGTGCGTAAAGCACTAAATCGGAACCCCTAAAGGGAGCCC
CCGATTAGAGCTTGACGGGAAAGCCGGCAACGTGGCGAGAAAGGAAGGGAAAGAACG
GAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTACGCTGCGTAACCACAC
ACCCGCCCGCTTAATGCGCCGCTACAGGGCGTCCCATTGCCATTCACTGCA

FIGURE 95D

226/260

FIGURE 96A

pDEST34 7114 bp

<u>Location (Base Nos.)</u>	<u>Gene Encoded</u>
195..71	attr1
304..963	CmR
1305..1610	ccdB
1651..1775	attr2
1780..2472	GST
2675..2720	T7stop
3334..4194	ampR
4343..4982	ori

ATCGAGATCTGATCCCGCAAATTAAATACGACTCACTATAGGGAGACCACAACGGTTTC
 CCTCTAGATCACAAGTTGTACAAAAAAGCTGAACGAGAACGTAATGATAAATAT
 CAATATATTAAATTAGATTTCGATACAAAACAGACTACATAACTGTAAAACACAACA
 TATCCAGTCACTATGGCGGCCGCATTAGGCACCCCAGGCTTACACTTTATGCTTCCGGC
 TCGTATAATGTGTGGATTAGTGTAGGATCCGGCAGATTTCAGGAGCTAAGGAAGCT
 AAAATGGAGAAAAAAATCACTGGATATACCAACCGTTGATATATCCAATGGCATCGTAAA
 GAACATTTGAGGCATTCAGTCAGTGCTCAATGTACCTATAACCAGACCGTTCAGCTG
 GATATTACGGCTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTATCCGGCCTTT
 ATTACACATTCTGCCCGCTGATGAATGCTCATCCGAATTCCGTATGGCAATGAAAGAC
 GGTGAGCTGGTGTATGGGATAGTGTACCCCTGTTACACCGTTCCATGAGCAAAC
 GAAACGTTTCATCGCTCTGGAGTGAATACCAACGACGATTCCGGCAGTTCTACACATA
 TATTGCAAGATGTGGCGTGTACGGTAAAGAACCTGGCTATTCCCTAAAGGGTTATT
 GAGAATATGTTTCTGCTCTCAGCCAATCCCTGGGTGAGTTTACACAGTTTGAATTAAAC
 GTGGCCAATATGGACAACCTTCTGCCCGGTTTACCATGGGAAATTATACGCAA
 GGCAGACAAGGTGCTGATGCCGCTGGCGATTAGGTTCATCATGCCGCTGTGATGGCTTC
 CATGTCGGCAGAATGCTTAATGAATTACACAGTACTGCGATGAGTGGCAGGGCGGGCG
 TAAACGCGTGGATCCGGTTACTAAAGCCAGATAACAGTATGCGTATTGCGCGCTGAT
 TTTGCGGTATAAGAATATACGATATGTTACCCGAAGTATGTCAAAAGAGGTGTG
 CTATGAAGCAGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCAT
 ATATGATGTCATATCTCCGGTCTGGTAAGCACAACCATGCGAATGAAGCCGTCGTCT
 GCGTGCCGAACGCTGGAAAGCGAAAATCAGGAAGGGATGGTGAGGTGCGCCGGTTAT
 TGAAATGAACGGCTCTTGCTGACGAGAACAGGGACTGGTGAAATGCACTTAAAGGTT
 ACACCTATAAAAGAGAGAGCGTTATCGTCTGTTGTGGATGTACAGAGTGTATTATTG
 ACACGCCGGCGACGGATGGTGAATCCCCCTGGCCAGTCACGTCTGTCAGATAAAAG
 TCTCCCGTGAACCTTACCCGGTGGTGCATATCGGGGATGAAAGCTGGCGATGATGACCA
 CCGATATGCCAGTGTGCCGGTCTCCGTTATCGGGGAGAAGAAGTGGCTGATCTCAGCCACC
 GCGAAAATGACATCAAAAACGCCATTAAACCTGATGTTCTGGGAATATAATGTCAGGCT
 CCCTTATAACAGCCAGTCTGCAGGTGACCCATAGTGAACGATATTGTTACAG
 TATTATGTAAGTCTGTTTATGCAAATCTAATTAAATATTGATATTATCATTT
 TACGTTCTCGTTCAGTTCTTGATACAAAGTGGTGAATTATGTCCTTACGTT
 TGGAAAATTAAGGGCCTTGTGCAACCCACTCGACTTCTTGGATATCTGAAGAAAAAA
 TATGAAGAGCATTGATGAGCGCGATGAAGGTGATAAAATGGCGAAACAAAAAGTTGAA
 TTGGGTTGGAGTTCCAATCTCCTTATTATATTGATGGTGTAAATTAAACACAG
 TCTATGGCCATCATACGTTATATAGCTGACAGCACAACTGTTGGGTGGTGTCCAAAAA
 GAGCGTGCAGAGATTCAATGCTGAAGGAGCGGTTTGGATATTAGATACGGTGTTCG
 AGAATTGCAATAGTAAAGACTTGAACACTCTCAAAGTTGATTTCTAGCAAGCTACCT
 GAAATGCTGAAAATGTTGAAAGATCGTTATGTCAAAAACATATTAAATGGTGTACAT
 GTAACCCATCCTGACTTCATGTTGATGACGCTCTGATGTTGTTTATACATGGACCA
 ATGTGCCCTGGATGCGTCCAAAATTAGTTGTTTAAAAAACGTATTGAAGCTATCCCA
 CAAATTGATAAGTACTGAAATCCAGCAAGTATATAGCATGCCCTTGCAGGGCTGGCAA
 GCCACGTTGGTGGCGACCATCCTCCAAAATCGGATCTGGTTCGGCGTCCATGGGGA
 TCCGGCTGCTAACAAAGCCCAGGAAAGGAGCTGAGTTGGCTGCTGCCACCGCTGAGCGCTT
 CCCGATAAGGGAGCAGGCCAGTAAAGCATTACCGTGGTGGGGTTCCCGAGCGGCCAAA
 GGGAGCAGACTCTAAATCTGCCGTATCGACTTCGAAGGTTGCAATCCTCCCCCACCAC
 CATCACTTCAAAAGTGAATTGCTGAGCAATAACTAGCATAACCCCTGGGCCTCTAA-

FIGURE 96B

ACGGGTCTTGAGGGGTTTTGCTGAAAGGAGGAACATATCCGGATATCCACAGGACGG
 GTGTGGTCGCCATGATCGCGTAGTCGATAGTGGCTCCAAGTAGCGAAGCGAGCAGGACTG
 GGCAGGGCCAAAGCGGTGGACAGTGCCTGGAGAACGGGTGGCATAGAAATTGCATCA
 ACGCATATAGCGTAGCAGCACGCCATAGTGAUTGGCGATGCTGCGAATGGACGGATAT
 CCCGCAAGAGGCCGGCAGTACCGGCATAACCAAGCCTATGCCTACAGCAGTCCAGGGTGA
 CGGTGCCGAGGATGACGATGAGCGCATTGTTAGATTCATACACGGTGCCTGACTGCCT
 AGCAATTAACTGTGATAAACTACCGCATTAAAGCTTATCGATGATAAGCTGCAAACAT
 GAGAATTCTGAAGACGAAAGGGCTCGTGTACGCCTATTTTATAGGTTAATGTCATG
 ATAATAATGGTTCTTAGACGTCAAGGTGGCACTTTGGGAAATGTGCGCGAACCCCT
 ATTTGTTATTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCCTGA
 TAAATGCTTCAATAATATTGAAAAGGAGAGTATGAGTATTCAACATTCCGTGCGCC
 CTTATTCCCTTTTGCGGCATTTGCCTCCTGTTTGCTACCCAGAACGCTGGTG
 AAAGTAAAAGATGCTGAAGATCAGTTGGTGCACGAGTGGTTACATCGAAGTGGATCTC
 AACAGCGGTAAAGATCCTTGAGAGTTTCGCCCCGAAGAACGTTTCCAATGATGAGCACT
 TTAAAGTCTGCTATGTGGCGCGTATTATCCGTGTTGACGCCGGCAAGAGCAACTC
 GGTGCCGCATAACTATTCTAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAG
 CATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCCTGCCATAACCATGAGTGAT
 AACACTGCGGCCAACTTACTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTT
 TTGACAAACATGGGGATCATGTAACTCGCCTGATCGTGGGAAACGGAGCTGAATGAA
 GCCATACCAAACGACGAGCGTACACCAGATGCCCTGAGCAATGGCAACACGTTGCGC
 AAACATTTAACTGGCAACTACTTACTCTAGCTTCCCGCAACAATTAAAGACTGGATG
 GAGGCGATAAAAGTTGAGGACCACTCTCGCCTCGGCCCTTCCGGCTGGCTGGTTTATT
 GCTGATAAAATCTGGAGCCGGTGGAGCTGCTCGGGTATCATGAGCACTGGGGCCA
 GATGGTAAGCCCTCCGTATCGTAGTTATCACGACGGGAGTCAGGCAACTATGGAT
 GAACGAAATAGACAGATCGCTGAGATAGGTGCTCACTGATTAAGCATTGGTAACTGTCA
 GACCAAGTTACTCATATATACTTTAGATTGATTAAACTCATTTTAATTAAAGG
 ATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTTCG
 TTCCACTGAGCGTACAGACCCGTAGAAAAGATCAAAGGATCTTGTAGATCCTTTT
 CTGCGCTAATCTGCTGCTTGCAAACAAAAAACACCAGCTACAGCGGGTTGTTG
 CGGATCAAGAGCTACCAACTCTTCCGAAAGGTAACGGCTCAGCAGAGCGCAGATA
 CCAAATACTGTCCTCTAGTGTAGCGTAGTTAGGCCACCACTCAAGAACTCTGAGCA
 CGCCTACATACCTCGCTCTGCTAACCTGTGTTACAGTGGCTGCCAGTGGCGATAAG
 TCGTGTCTTACGGGTTGACTCAAGACGATAGTTACCGATAAGGCGCAGCGTCGGC
 TGAACGGGGGTTCGTGACACAGCCCAGCTGGAGCGAACGACCTACACCGAACTGAGA
 TACCTACAGCGTGAGCTATGAGAAAGGCCACGCTTCCGAAGGGAGAAAGGCGGACAGG
 TATCCGTAAGCGCAGGGTGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGAAAC
 GCCTGGTATCTTATAGTCTGCTGGGTTGCCACCTCTGACTTGAGCGTCGATTG
 TGATGCTCGTCAGGGGGCGGAGCCTATGGAAAACGCCAGCAACGCGCCCTTTACGG
 TTCCTGGCCTTTGCTGGCTTTGCTCACATGTTCTTCCGTTATCCCCTGATTCT
 GTGGATAACCGTATTACCGCCTTGAGTGAGCTGATACCGCTGCCGAGCCGAACGACC
 GAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCCGTTATTTCTCCTT
 ACGCATCTGTCGGTATTCACACCGCATATATGGTGCACCTCAGTACAATCTGCTCG
 ATGCCGATAGTTAACGCCAGTACACTCCGCTATCGCTACGTGACTGGGTATGGCTGC
 GCCCGACACCCGCCAACACCGCTGACGCCCTGACGGGCTTGTCTGCTCCGGCATC
 CGCTTACAGACAAGCTGACCGCTCCGGAGCTGATGTGAGGTTTACCGTC
 ATCACCGAAACGCGCAGGGCAGCTGCGTAAGCTCATCAGCGTGGTGTGAACCGATTC
 ACAGATGTCGCTGTTCATCCGCGTCCAGCTGTTGAGTTCTCCAGAACGCTTAATGT
 CTGGCTCTGATAAAAGCGGGGAGCTGTTACAGGCGGTTTCTGTTGGTCACTGATGC
 CTCCGTTAAGGGGATTCTGTTACGGGTTACTGATGATGAAACATGCCGTTACTGG
 ACGTACAGGATGGGTTACTGATGATGAAACATGCCGTTACTGGAACGTTGTGAGGGTAA
 ACAACTGGCGGTATGGATGCGGGGACAGAGAAAATCACTCAGGGTCAATGCCAGCG
 CTTCGTTAATACAGATGTTAGGTGCTCCACAGGGTAGCCAGCAGCATCTGCGATGC
 CCGGAACATAATGGTGCAGGGCGCTGACTTCCGCTTCCAGACTTACGAAACACGGAA
 ACCGAAGACCATTCATGTTGCTCAGGTCGAGACGTTTGAGCAGCAGTCGCTTCA
 CGTTCGCTCGCGTATGGTGTATTCTGCTAACAGTAAGGCAACCCGCCAGCCTAG
 CGGGGCTCTAACGACAGGAGCACGATCATGCGCACCGTGGCCAGGACCCAACGCTGCC
 CGAGATGCGCCGCGTGGGCTGCTGGAGATGGCGACGCGATGGATATGTTCTGCCAAGG
 GTTGGTTGCGCATTACAGTTCTCGCAAGAATTGATTGGCTCCAATTCTGGAGTGGT-

FIGURE 96C

229/260

GAATCCGTTAGCGAGGTGCCGCCGGCTTCCATTCAAGTCGAGGTGGCCCGGCTCCATGCA
CCCGCGACGCAACCGGGGAGGCAGACAAGGTATAGGGCGGCCCTACAATCCATGCCAAC
CCGTTCCATGTGCTCGCCGAGGCAGCATAAATCGCCGTGACGATCAGCGGTCCAGTGATC
GAAGTTAGGCTGTAAGAGCCGAGCGATCCTTGAAGCTGTCCTGATGGTCGTCACTCT
ACCTGCTGGACAGCATGGCCTGCAACCGGGCATCCCGATGCCGAAAGCGAGAAGA
ATCATAATGGGGAGGCCATCCAGCCTCGCGTGCAGAACGCCAGCAAGACGTAGCCCAGC
GCGTCGGCCGCCATGCCGGCGATAAATGGCCTGCTTCTCGCCGAAACGTTGGTGGCGGGA
CCAGTGACGAAGGCTTGAGCGAGGGCGTGCAGAAGATTCCGAATACCGCAAGCGACAGGCCG
ATCATCGCCTCCAGCGAAAGCGGTCCCGAAAATGACCCAGAGCGCTGCCGGC
ACCTGCTCTACGAGTTGCATGATAAAGAACAGTCATAAGTGCAGCGACGATAGTCATG
CCCCCGGCCACCGGAAGGAGCTGACTGGTTGAAGGCTCTCAAGGGCATCGTCGATCG
ACGCTCTCCCTATGCAGCTCCTGCATTAGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTT
GAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGGAGATGGCGCCCAACAGTCCCCCGGC
CACGGGGCCTGCCACCATAACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGGCGAGC
CCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCCAGCAACCGCACCTGTGGCGCC
GGTGTGCGGCCACGATGCGTCCGGTAGAGG

FIGURE 96D

230/260

FIGURE 97A

231/240

pDONR207 5584 bp

GCGAGAGTAGGAACTGCCAGGCATCAAATAAAACGAAAGGCTAGTCGAAGACTGGC
 CTTTGTATTCTGTTGTCGGTGAACGCTCTCTGAGTAGGACAAATCGCCGG
 AGCGGATTGAACGTTGAGCAACGGCCGGAGGGTGGCGGGCAGGACGCCATA
 AACTGCCAGGCATCAAACTAAGCAGAAGGCCATCCTGACGGATGGCCTTTGCGTTCT
 ACAAAACTCTCCTGGCTAGCGTAATACGGTATCCACAGAACAGGGATAACGCAGGA
 AAGAACATGTGAGCAAAGGCCAGGAACCGTAAAAGGCCGCGTGTGCTG
 CGTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAATCAGCCTCAAGTCAG
 AGGTGGCGAAACCGACAGGACTATAAGATACCAGGCGTTCCCGCTGGAAGCTCCCTC
 GTGCGCTCTCCTGTTCCGACCCCTGCGCTTACCGGATACCTGTCGCGCTTCTCCCTTCG
 GGAAGCGTGGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTCGTT
 CGCTCCAAGCTGGCTGTGACGAACCCCCGTTAGCCCACCGCTGCGCCTATCC
 GGTAACTATCGTCTTGAGTCCAACCCGTAAGACACGACTATCGCCACTGGCAGCAGCC
 ACTGGTAACAGGATTAGCAGAGCAGGGTATGTAGGCGGTGCTACAGAGTCTTGAAGTGG
 TGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTGCCTCTGCTGAAGCCA
 GTTACCTCGGAAAAGAGTTGGTAGCTTGATCCGCAAACAAACCCACCGCTGGTAGC
 GGTGGTTTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTAAGAAGAT
 CCTTGATCTTCTACGGGCTGACGCTCAGTGGAACGAAAACACGTTAAGGGATT
 TTGGTCATGAGCTTGCCTCGCCGTCAGTCAGCGTAATGCTCTGCCAGTGTACAACC
 AATTAACCAATTCTGATTAGAAAACATCGAGCATCAAATGAAACTGCAATTATTCA
 TATCAGGATTATCAATACCATATTTGAAAAAGCCGTTCTGTAATGAAGGAGAAAAC
 CACCGAGGCAGTCCATAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGC
 CAACATCAATACAACCTATTAGTAGCCAACCAACTAGAACATAGCTAGAGTCTGGCGA
 ACAAAACGATGCTGCCCTCCAGAAAACCGAGGATGCGAACCACTTCATCGGCTCAGCA
 CCACCGCAAGGCCGCGACGGCCAGGTCTCGATCTCCTGAAAGCCAGGGCAGATCCG
 TGCACAGCACCTGCCGTTAGAACAGCAAGGCCAGGACAGAAATGCCACTTCGCTGCTGCC
 CCGAAACCTTGCGCTCGTTGCCAGGCCAGGACAGAAATGCCACTTCGCTGCTGCC
 AGGTTGCCGGGTGACGCACCCGTGAAACGGATGAGGACAGAACCCAGTTGACATAAG
 CCTGTTGGTTCGTAACGTGTAATGCAAGTAGCGTATCGCCTACGCAACTGGTCCAGAA
 CCTTGACCGAACGCAGCGGTGTAACGGCGCAGTGGGGTTTATGGCTTATGACT
 GTTTTTTGACAGTCTATGCCCTGGGATCCAAGCAGCAAGCGCTTACGCCGTGGTC
 GATGTTGATGTTATGGAGCAGCAACGATGTTACGCAGCAACGATGTTACGCCAGCAG
 GGCAGTCGCCCTAAACAAAGTTAGGTGGCTCAAGTATGGCATCATTGCACTGTCAG
 CTGGCCCTGACCAAGTCAAATCCATGCCGCTCTGATCTTCCGGTGTGAGTTC
 GGAGACGTAGCCACCTACTCCAACATCAGCCGGACTCCGATTACCTGGGAACTGCTC
 CGTAGTAAGACATTACCGCCTGCTGCCCTCGACCAAGAAGCGGTTGTTGCCGCTCTC
 GCGGCTACGTTGCCAGGTTGAGCAGCCGCGTAGTGGAGATCTATATGATCTC
 GCAGTCGCCGGAGCACCGGAGGGCATTGCCACCGCGCTCATCAATCTCCTCAAG
 CATGAGGCCAACCGCCTGGTGTATGTGATCTACGTGCAAGCAGATTACGGTACGAT
 CCCGAGTGGCTCTATAACAAAGTTGGGCATACGGGAAGAAGTGTGACTTTGATATC
 GACCCAAGTACGCCACCTAACATTGTTCAAGCGAGATCGGCTTCCGGCTTAATT
 CCCCTCGTAAAAATAAGTTATGCAATTCTTCCAGACTTGTCAACAGGCCAGCCATTACG
 TGAGAACGGCAAAAGTTATGCAATTCTTCCAGACTTGTCAACAGGCCAGCCATTACG
 CTCGTCAAAATCACTCGCATCAACAAACGTTATTGATCGTGTGAGTGCACCTGAGC
 GAGACGAAATACCGCATCGCTGTTAAAGGACAATTACAAACAGGAATCGAATGCAACCG
 GCGCAGGAACACTGCCAGCGCATCAACAAATATTTCACCTGGAATCAGGATATTCTCTAA
 TACCTGGAATGCTGTTCCGGGATCGCAGTGGTAGTACCGATCATCAGGAGT
 ACGGATAAAATGCTGATGGTGGAGAGGATAAAATTCCGTAGCCAGTTAGTCTGAC
 CATCTCATCTGTAACATCGTGTGTTAAAGGACAATTACAAACAGGAATCGAATGCAACCG
 CGCATCGGGCTTCCATACAAGCGATAGATTGTCGACCTGATTGCCGACATTATCGCG
 AGCCCCATTATAACCCATATAAAATCAGCATCCATGTTGGAAATTAAATCGGGCTCGACGT
 TTCCCGTTGAATATGGCTCATACACCCCCGTATTACTGTTATGTAAGCAGACAGTT
 TATTGTTCATGATGATATTTTATCTTGTGCAATGTAACATCAGAGATTGAGACAC
 GGGCCAGAGCTGCAGCTGGATGGCAAATAATGATTGTTACTGATAGTGCACCTGTT
 CGTTGCAACAAATTGATAAGCAATGCTTCTTATAATGCCAACATTGTAACAAGAAAGCTG
 AACGAGAAACGTAAAATGATATAATCAATATAATTAGATTGATTTGATGATGATGAAAC
 AGACTACATAACTGTAAAACACAACATATCCAGTCACTATGCAACTACTAGATG-

FIGURE 97B

GTATTAGTGACCTGACTCGACTAAGTTGGCAGCATCACCCGACGCACTTGCGGCCGAAT
AAATAACCTGTGACGGAAGATCACTTCGAGAATAAATAAATCCTGGTGTCCCTGTTGATA
CCGGGAAGCCCTGGCCAACTTGGCAGAAATGAGACGTTGATCGGCACGTAAGAGGTT
CAACTTCACCATAATGAAATAAGATCACTACCGGGCGTATTTTGAGTTATCGAGATT
TTCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATAACCACCGTTGATAT
ATCCCAATGGCATCGTAAAGAACATTGAGGCATTTCAGTCAGTGCTCAATGTACCTA
TAACCAGACCGTTCAGCTGGATATTACGGCTTTAAAGACCGTAAAGAAAAATAAGCA
CAAGTTTATCCGGCTTTATTACACATTCTGGCCGCTGATGAATGCTCATCCGGAAATT
CCGTATGGCAATGAAAGACGGTGAGCTGGTATGGATAGTGTTCACCTTGTACAC
CGTTTCCATGAGCAAACGTAAACGTTTATCGCTCTGGAGTGAATACCACGACGATT
CCGGCAGTTCTACACATATTCGCAAGATGTGGCGTGTACGGTGAAAACCTGGCTA
TTTCCCTAAAGGGTTTATTGAGAATATGTTTCTGCTCTAGCCAATCCCTGGGTGAGTT
CACCAAGTTTGTAAACGTCGCAATATGGACAACCTCTTCGCCCCCGTTTCAACAT
GGCAGGAAATTACGCAAGGCGACAAGGTGCTGATGCCGCTGGCATTCAAGGTTCATCA
TGCGCTGTGATGGCTTCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGA
TGAGTGGCAGGGGGGGCGTAATCGCTGGATCCGGTTACTAAAAGCCAGATAACAGTA
TGGTATTGCGCGCTGATTTTGCCTATAAGAATATACTGATATGTATAACCGAAG
TATGTCAAAAGAGGTGTGCTATGAAGCAGCGTATTACAGTGACAGTGTGACAGCGACAGC
TATCAGTTGCTCAAGGCATATATGATGTCATATCTCCGGTCTGGTAAGCACAACCATGC
AGAATGAAGCCCGTCGCTCGTGGCAACGCTGGAAAGCGAAAATCAGGAAGGGATGG
CTGAGGTGCCCCGGTTATTGAAATGAACGGCTCTTGTGACGAGAACAGGGACTGGT
GAAATGCAGTTAACGGTTACACCTATAAAAGAGAGAGCGTATCGCTGTGTTGTGGAT
GTACAGAGTGTATTATTGACACGCCGGCGACGGATGGTATCCCCTGGCAGTGCA
CGTCTGCTGTCAAGATAAGTCTCCGTGAACATTACCCGGTGGTCATATCGGGATGAA
AGCTGGCGCATGATGACCAACGATAATGCCAGTGTGCCGGTCTCGTTATCGGGGAAGAA
GTGGCTGATCTCAGCCACCGGAAATGACATCAAAACGCCATTAAACCTGATGTTCTGG
GGAATATAAATGTCAAGGCTCCCTTATACACAGCCAGTCTGCAGGTGATACAGTAGAAAT
TACAGAAACTTATCACGTTAGTAAGTATAGAGGCTGAAAATCCAGATGAAGCCGAACG
ACTTGTAAAGAGAAAAGTATAAGAGTTGTGAAATTGTTCTGATGTCAGATGATTTCAGGA
CTATGACACTAGCGTATATGAATAGGTAGATGTTTATTTGTGACACAAAAAGAGGC
TCGCACCTCTTTCTTATGATTTAATACGGCATTGAGGACAATAGCGAG
TAGGCTGGATACGACGATTCCGTTGAGAAGAACATTGGAAGGCTGCGGTGACTAAG
TTGGCAGCATACCCGAAAGAACATTGGAAGGCTGCGTCGACTACAGGTCACTAATAC
CATCTAAGTAGTTGATTCAAGTGACTGGATATGTTGTTTACAGTATTATGAGTCT
GTTTTTATGCAAAATCTAATTAAATATATTGATATTATATCATTACGTTCTCGTT
CAGCTTTTGTCAGAAAGTTGGCATTATAAAAAGCATTGCTCATCAATTGTCAG
AACAGGTCACTATCAGTCAAATAAAATCATTATTGGGCCAGATCCATGCTAGCGT
TAAC

FIGURE 97C

233/240

pMAB85

FIGURE 98A

PMAB85 7038 bp

GCCTTACGCATCTGTGCGGTATTCACACCGCAGGCAAGTGCACAAACAATACTTAAATA
 AATACTACTCAGTAATAACCTATTCTTAGCATTTGACGAAATTGCTATTTGTTAG
 AGTCTTTACACCATTGCTCCACACCTCCGCTTACATCAACACCAATAACGCCATT
 ATCTAACGCGATCACCAACATTCTGGCGTCAGTCCACCAGCTAACATAAAATGTAAGC
 TTCGGGGCTCTCTGCCTCCAACCCAGTCAGAAATCGAGTTCAATCCAAAAGTTCAC
 CTGTCACCTGCTCTGAATCAAACAAGGGAATAACGAATGAGGTTCTGTGAAGCTG
 CACTGAGTAGTATGTTGCAGTCTTGAAATACGAGTCTTTAATAACTGGCAAACCGA
 GGAACCTTGGTATTCTGCCACGACTCATCTCCATGCAGTGGACGATATCAATGCCGT
 AATCATTGACCAGAGCCAAACATCCTCCTAGGTTGATTACGAAACACGCCAACCAAGT
 ATTCGGAGTGCCTGAACATTTTATATGCTTTACAAGACTTGAAATTTCCTTGCAA
 TAACCGGGTCAATTGTTCTCTTCTATTGGGCACACATATAACCCAGCAAGTCAGCAT
 CGGAATCTAGAGCACATTCTGCGGCCTCTGCTCTGCAAGCGCAAACCTTCACCAATG
 GACCAGAACTACCTGTGAAATTAAACAGACATACTCCAAGCTGCCTTGTGCTTAA
 TCACGTATACTCACGTGCTCAATAGTCACCAATGCCCTCCCTTGCCCCCTCTCCTTT
 TTTTTGACCGAATTAAATTCTTAATCGGAAAAAAAGAAAAGCTCCGGATCAAGATTGT
 ACGTAAGGTGACAAGCTATTTCATAAAAGAATATCTCCACTACTGCCATCTGGCGTC
 ATAAC TGCAAAGTACACATATATTACGATGCTGTCTTAAAGCTTCTATATTATATA
 TATAGTAATGTCGTTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCCATAGTTAA
 GCCAGCCCCGACACCCGCCAACACCCGCTGACGCCCTGACGGGCTTGTCTGCCCG
 CATCCGCTTACAGACAAGCTGTGACCGCTCCGGAGCTGCATGTTCAGAGGTTTAC
 CGTCATCACCGAAACGCCGAGACGAAAGGGCTCGTGATGCCCTATTAGTTAGGTTA
 ATGTCATGATAATAATGTTCTAGGACGGATCGCTTGCGCTGTAACCTACGCCCTC
 GTATTTTAATGATGGAATAATTGGGAAATTACTCTGTTTATTATTTATGTTT
 TGTATTGGATTTAGAAAGTAAATAAGAAGGTAGAAGAGGTTACGGAATGAAGAAAAAA
 AAATAACAAAGTTAAAAAATTCAACAAAAAGCGTACTTACATATATATTATTAG
 ACAAGAAAAGCAGATTAAATAGATATACTCGATAACGATAAGTAAAATGTAATCA
 CAGGATTTCGCGTGTGGCTTCTACACAGACAAGATGAAACAATTGGCATTAAACCT
 GAGAGCAGGAAGAGCAAGATAAAAGGTAGTATTGTTGGCGATCCCCTAGAGTCTTTA
 CATCTCGGAAACAAAAACTATTTCCTTAATTCTTTTACTTTCTATTAA
 TTTATATATTATATAAAATTAAATTATAATTATTTTATAGCACGTGATGAAAAG
 GACCCAGGTGGCACTTTCGGGGAAATGTGCGGAAACCCCTATTGTTATTCTAA
 ATACATTCAAATATGTATCCGCTCATGAGACAATAACCCCTGATAATGCTTCAATAATAT
 TGAAAAGGAAGAGTATGAGTATTCAACATTCCGTCGCCCTATTCCCTTTGCG
 GCATTTCGCTCCTGTTGCTCACCCAGAAACGCTGGTGAAGTAAAAGATGCTGAA
 GATCAGTTGGGTGCACGAGTGGGTTACATCGAACCTGGATCTCAACAGCGGTAAGATCCTT
 GAGAGTTTCGCCCCGAAGAACGTTTCCAATGATGAGCAGCTTTAAAGTTCTGCTATGT
 GGCGCGGTATTATCCCGTATTGACGCCGGCAAGAGCAACTCGTCGCCGCATACACTAT
 TCTCAGAATGACTGGTTGAGTACTCACCAAGTCACAGAAAAGCATCTACGGATGGCATG
 ACAGTAAGAGAATTATGCACTGCTGCCATAACCATGAGTGATAACACTGCCAACCTA
 CTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTCAACACATGGGGAT
 CATGTAACTCGCCTGATCGTTGGAACCGGAGCTGAATGAAGCCATACCAACGACGAG
 CGTGACACCACGATGCCGTAGCAATGCCAACACGTTGCCAAACTATTAACTGGCGAA
 CTACTTACTCTAGCTCCGCCAACAAATTAAATAGACTGGATGGAGGCGATAAAGTTGCA
 GGACCACTCTCGCGCTGCCCTCCGGCTGGTGGTTATTGCTGATAATCTGGAGGCC
 GGTGAGCGTGGGTCTCGGGTATCATTGCACTGGGCCAGATGGTAAGCCCTCCCGT
 ATCGTAGTTATCTACACGACGGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATC
 GCTGAGATAGGTGCCTCACTGATTAAGCATTGTAACTGTCAGACCAAGTTACTCATAT
 ATACTTTAGATTGATTAAAACCTCATTAAATTAAAGGATCTAGGTGAAGATCCTT
 TTTGATAATCTCATGACCAAAATCCCTAACGTGAGTTCTGTTCCACTGAGCGTCAGAC
 CCCGTAGAAAAGATCAAAGGATCTTCTGAGATCCTTTCTGCGCGTAATCTGCTGC
 TTGCAAACAAAAACACCACCGCTACCAAGCGGTGGTTGTTGCCGGATCAAGAGCTACCA
 ACTCTTTTCCGAAGGTAACTGGCTCAGCAGAGCGCAGATACCAAAACTGTCCTCTA
 GTGTAGCCGTAGTTAGGCCACCACTCAAGAACTCTGAGCACCCTACATACCTCGCT
 CTGCTAATCCTGTTACCAAGTGGCTGCTGCCAGTGGCGATAAGTCGTGCTTACCGGGTTG
 GACTCAAGACGATAGTTACCGGATAAGGGCAGCGGTGGCTGAACGGGGTTCGTGC-

FIGURE 98B

ACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACGTGAGATACTACAGCGTGAGCAT
 TGAGAAAGGCCACGCTTCCGAAGGGAGAAAGCGGACAGGTATCCGTAAGCGGCAGG
 GTCGGAACAGGAGAGCGCACGAGGGAGCTTCAGGGGGAACGCCCTGGTATCTTATAGT
 CCTGTCGGTTGCCACCTCTGACTTGAGCGTCATTGATGCTCGTAGGGGG
 CCGAGCCTATGGAAAACGCCAGCAACGCCCTTTACGGTCTGCCCTTGCTGG
 CCTTTGCTCACATGTTCTTCCTGCTTACCCCTGATTCTGTGGATAACCGTATTACC
 GCCTTGAGTGAAGCTGATACCGCTGCCGAACGACCGAGCGCAGCGAGTCAGTG
 AGCGAGGAAGCGGAAGAGGCCAATACGCAAACCGCCTCTCCCGCGTTGGCGATT
 CATTAAATGCAGCTGGCACGACAGGTTCCGACTGGAAAGCGGGCAGTGAGCGAACGCA
 ATTAATGTGAGTTACCTCACTCATTAGGCACCCAGGCTTACACTTATGCTTCCGGCT
 CCTATGTTGTGGAATTGTGAGCGGATAACAATTACACAGGAAACAGCTATGACCAT
 GATTACGCCAAGCTCGGAATTAAACCTCACTAAAGGGAACAAAGCTGGGTACCGGGCCC
 CCCCTCGAGATCCGGATCGAAGAAATGATGGTAATGAAATAGGAAATCAAGGAGCATG
 AAGGCAAAAGACAAATATAAGGGTGAACGAAAAATAAGTGAAGTGTGATATGATG
 TATTTGGCTTGC GGCGCGAAAAAACGAGTTACGCAATTGACAATCATGCTGACTCT
 GTGGCGGACCCCGCTCTGCCGCCGGGATAACGCTGGCGTAGGGCTGTGCCCGGC
 GGAGTTTTGCGCCTGCATTTCCAAGGTTACCGCTGCCTAAGGGCGAGATTGGAGA
 AGCAATAAGAATGCCGGTGGGGTTGCATGATGACGACCACGACAACGGTGTCAATTAT
 TTAAGTTGCCGAAAGAACCTGAGTGCATTGCAACATGAGTATACTAGAAGAATGAGCCA
 AGACTTGCAGACCGAGTTGCCGGTGGTGCAGAACATAGAGCACCAGACCTTGAAG
 GTGAGACGCGCATAACCGCTAGAGTACTTGAAGAGGAAACAGCAATAGGTTGCTACCA
 GTATAAAATAGACAGGTACATACAACACTGAAATGGTTGTCTGTTGAGTACGCTTCAA
 TTCATTGGGTGTGCACTTTATTATGTTACAATATGGAAGGAACTTACACTTCTCCTA
 TGCACATATATTAAAGTCCAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGC
 TCTTTCCGATTTCTAAACCGTGGAAATATTGGATATCCTTGTGTTCCGG
 TGTACAATATGGACTTCTCTTTCTGGCAACCAACCCATACATCGGGATTCTATAAT
 ACCTCGTTGGCTCCCTAACATGTTAGGTGGCGGAGGGAGATAACAATAGAACAGATA
 CCAGACAAGACATAATGGCTAAACAAGACTACACCAATTACACTGCCTCATTGATGGT
 GTACATAACGAACTAATACTGTAGCCCTAGACTTGAAGCCATCATCATATCGAAGTT
 ACTACCCCTTCCATTGCCATCTATTGAAGTAATAATAGCGCATGCAACTTCTT
 TTTTTTTCTCTCTCCCCGTTGTCACCATACTGCAATGACAAAAAA
 ATGATGGAAGACACTAAAGGAAAAATTAAACGACAAAGACAGCACCAACAGATGCG
 TTCCAGAGCTGATGAGGGTATCTCGAACACACGAAACTTTCTCCTCATTCA
 CACACTACTCTTAATGAGCAACGGTATAACGGCTCCTCAGTTACTGAAATTGAAA
 TAAAAAAAGTTGCCGCTTGCTATCAAGTATAAATAGACCTGCAATTAAATCTT
 TTTCTCGTATTGTTCTCGTCCCTTCTCCTGTTCTTCTGCACAATATTCA
 AGCTATAACCAAGCATACAATCAACTCCAAGCTTATGCCAAGAAGCGGAAGGTCTCG
 AGCGGCCAATTAAATCAAAGTGGAAATTGCTGATAGCTATTGCTCCTCATTTC
 ACTAACAGTAGCAACGGTCCGAACCTCATACAACACTAAACAAATTCTCAAGCGCTTCA
 CAACCAATTGCCTCCTAACGTTCATGATAACTCATGAATAATGAAATCACGGCTAGT
 AAAATTGATGATGGTAATAATTCAAACCAACTGTACCTGGTGGACGGACCAA
 ACTGCGTATAACCGTGGAAATCACTACAGGGATGTTAAATACCAACTACA
 ATGGATGATGTATACTATGCTGAGTACCTCTTCTCAGGTTGGTCAAGTC
 ACAAGTTGTACAAAAAGCAGGCTTGTGACCCGGGAATTAGATCTACTAGTGC
 CGCACCGTACCCAGCTTCTGTACAAAGTGGTACGTCAGCTCCCTATAGTGAGTC
 TATTACACTGGCGTGTGTTACAACGTCGTGACTGGAAAACACCGGTGAGCT
 AAGTAACGGCCGCCACCGCGGTGGAGCTTGGACTTCTGCCAGAGGTTGGTCAAGTC
 TCCAATCAAGGTTGTGGCTTGCTACCTGCCAGAAATTACGAAAGATGGAAGGG
 TCAAATCGTTGGTAGATACGTTGTGACACTTCTAAATAAGCGAATTCTTATGATT
 GATTTTATTAAATAAGTATAAAAAAAATAAGTGTATAACAAATTAAAGTGA
 CTCTAGGTTAAACGAAATTCTGTTCTGAGTAACCTCTCCTGTTAGGT
 CAGGGTGTGCTTCTCAGGTATAGCATGAGGTGCGCTTATTGACCACAC
 CTACCGGCATGCCAGCAA
 ATGCCTGCAAATCGCTCCCCATTCAACCAATTGTAGATATGCTAAC
 TGATGAATCTCGGTGTGTTATTTATGCTCCTCAGAGGACAATAC
 CTGTTGTAATCGTTCAACGAGTAACTTGTGTTAAATTCGCGTTA
 AATATTGTTAAATCAGCTATTAAACCAATAGGCGAAATCG
 GAAAATCCCTTAT
 AAATCAAAGAATAGACCGAGATAGGGTTGAGTGTGTTCCAGTT
 GGAACAAAGAGTCCA
 CTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAA
 ACCGTCTACAGGGCGATGGC-

CCACTACGTGAACCATCACCTAATCAAGTTTGCGGGTCGAGGTGCCGTAAAGCACTA
AATCGGAACCCTAAAGGGAGCCCCGATTAGAGCTTGACGGGAAAGCCGGCGAACGTG
GCGAGAAAGGAAGGGAAGAAAAGCGAAAGGAGCAGGGCCTAGGGCGCTGGCAAGTGTAGCG
GTCACGCTGCGCTAACCAACACCCGCCGCTTAATGCGCCGCTACAGGGCGCGTCC
CATTCGCCATTCACTGCA

FIGURE 98D

237/240

pMAB86

FIGURE 99A

pMAB86 7146 bp

GACGAAAGGGCTCGTATA CGCCTATTTTAGGTTAATGTCATGATAATAATGGTT
 CTTAGGACGGATCGCTGCCGTAACTTACACGCGCCCGTATCTTTAATGATGGAATA
 ATTTGGAAATTACTCTGTGTTATTTATTTATGTTTGATTTGGATTTAGAAAGT
 AAATAAAGAAGGTAGAAGAGTTACGGAATGAAGAAAAAAAATAAACAAAGGTTAAAAA
 ATTTCAACAAAAGCGTACTTACATATATTTATTAGACAAGAAAAGCAGATTAAATA
 GATATACATTGATTAACGATAAGTAAAATGAAAATCACAGGATTTCGTGTGGTCT
 TCTACACAGACAAGATGAAACAATTGGCATTAAATACACTGAGAGCAGGAAGAGAAGATA
 AAAGGTAGTATTGTTGGCGATCCCCCTAGAGTCTTTACATCTCGGAAACAAAAC
 ATTGTTCTTAATTCTTTTACTTCTATTAAATTATTTATTTAATTATATTATTTA
 ATTAAATTATAATTATTTATAGCACGTGATGAAAAGGACCCAGGTGGCACTTTCGG
 GGAAATGTGCGCGGAACCCCTATTGTTATTTCTAAATACATTCAAATATGTATCCG
 CTCATGAGACAATAACCCGTATAATGCTCAATAATATTGAAAAGGAAGAGTATGAGT
 ATTCAACATTCCGTGCGCCCTATTCCCTTTTGCAGGCACTTGCCTCTGTT
 GCTCACCCAGAAACGCTGGTGAAGTAAAAGATGCTGAAGATCAGTGGGTGACGAGTG
 GGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTGAGAGTTCGCCCCGAAGAA
 CGTTTCCAATGATGAGCACTTTAAAGTCTGCTATGTGGCGGGTATTATCCGTATT
 GACGCCGGCAAGAGCAACTCGTCGCCGCATAACTATTCTCAGAATGACTTGGTTGAG
 TACTCACCAGTCACAGAAAAGCATCTACGGATGGCATGACAGTAAGAGAATTATGCACT
 GCTGCCATAACCAGTGAACACTGGGCAACTTACTCTGACAACGATCGGAGGA
 CGAAGGAGCTAACCGCTTTTCAACACATGGGGATCATGTAACCGCCTGATCGT
 TGGGAACCGGAGCTGAATGAAGCCATACAAACGACGAGCGTACACACGATGCCGTA
 GCAATGGCAACAACGTTGCGCAAACATTAACTGGGAACACTACTACTCTAGCTCCC
 CAACAATTAAATAGACTGGATGGAGGCGGATAAAAGTTGCAGGACCACCTCTGC
 CTCGGCTGGCTGGTTATTGCTGATAAACTGGAGCCGGTGGCTCGCGGT
 ATCATGGCAGCACTGGGCCAGATGGTAAGCCCTCCGTATCGTAGTTATCACACGAC
 GGCAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGC
 CTACTAAGCATTGGTAACTGTCAGACCAAGTTACTCATATATACTTTAGATTAA
 CTTCATTTAAATTAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAA
 ATCCCTAACGTGAGTTTCGTTCACTGAGCGTACAGCCCCGTAGAAAAGATCAAAGGA
 TCTTCTGAGATCCTTTCTGCGCTAATCTGCTGCTTGCAAACAAAAACCACCG
 CTACCAAGCGGTGGTTGCTGCCGATCAAGAGCTACCAACTTTTCCGAAGGTAAC
 GGCTTCAGCAGAGCGCAGATACCAAAACTGTCCTCTAGTGTAGCCGTAGTTAGGCC
 CACTTCAAGAACTCTGTAGCACCCTACATACCTCGCTCTGCTAATCCTGTTAC
 GCTGCTGCCAGTGGCGATAAGTCGTCTTACGGGTTGGACTCAAGACGATAGTTAC
 GATAAGGCGCAGCGGTGGCTGAACGGGGGTTCGTGACACAGCCAGCTGGAGCGA
 ACGACCTACACCGAACTGAGACACTACAGCGTGGAGATTGAGAAAGGCCACGCT
 GAAGGGAGAAAGCGGACAGGTATCCGTAAGCGGCAAGGGTGGAACAGGAGAGCG
 AGGGAGCTCCAGGGGGAAACGCCCTGGTATCTTATAGTCCTGCGGTTGCGCAC
 TGACTTGAGCGTCGATTTGTGATGCTCGTCAGGGGGCCGAGCCTATGGAAAAGGCC
 AGCAACCGGGCTTTTACGGTCTGCCCTTTGCTGGCCTTTGCTCACATGTTCTT
 CCTGCGTTATCCCTGATCTGTGGATAACCGTATTACGCCCTTGAGTGAGCTGATACC
 GCTGCGCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCG
 CCAATACGCAAACCGCTCTCCCCCGCGTGGCGATTCAATGCAAGCTGGCAC
 AGGTTTCCGACTGGAAAGCGGGAGTGGAGCGCAACGCAATTATGTGAGTTAC
 CATTAGGCACCCAGGTTACACTTATGCTCCGCTCTATGTTGTTGGAATTG
 AGCGATAACAAATTACACAGGAACAGCTATGACCATGATACGCCAGCTCG
 AACCCACTAAAGGAAACAAAGCTGGTACCGGGCCCCCTCGAGATCCGGGATCGA
 AGAAATGATGGAAATGAAATAGGAAATCAAGGAGCATGAAGGAAAGACAA
 AGGGTGAACGAAAATAAAGTGGAAAGTGTGATATGATGTTGGCTTGCG
 CGGCCGGCGATAACGCTGGCGTGGAGCTGCCCCGGAGTTTTGCGCCTGC
 ATTCCAAAGGTTACCCCTGCGTAAGGGGCGAGATTGGAGAAGCAATAAG
 AGTTGCGATGATGACGACCACGACAACGACTGGTGTATTAAAGTTG
 AGTGCATTGCAACATGAGTATACTAGAAGAATGAGCCAAGACTTGCG
 GAGACGCGAGTTGGCGAGACGCGCATAACCGCTA-

FIGURE 99B

239 / 260

GAGTACTTTGAAGAGGAAACAGCAATAGGGTTGCTACCAGTATAAATAGACAGGTACATA
 CAACACTGGAAATGGTTGCTGTTGAGTACGCTTCATTCAATTGCGGTGCACTTTA
 TTATGTTACAATATGGAAGGGAACCTTACACTTCTCCTATGCACATATAATTAAAGT
 CCAATGCTAGTAGAGAAGGGGGTAACACCCCTCCGCGCTCTTCCGATTTTTCTAA
 ACCGTGGAATATTCGGATATCCTTTGTTGTTCCGGGTGACAATATGGACTCCTCT
 TTTCTGGCAACCAAACCCATACATCGGGATTCCCTATAATACCTTCGTTGGTCTCCCTAAC
 ATGTAGGTGGCGGAGGGAGATATAACAATAGAACAGATACCAGACAAGACATAATGGGCT
 AAACAAGACTACACCAATTACACTGCCTCATTGATGGTGGTACATAACGAACTAATACTG
 TAGCCCTAGACTGTAGGCCATCATCATCGAAGTTCACTACCCTTTCCATTGCC
 ATCTATTGAAGTAATAATAGGCGATGCAACTTCTTTCTTTCTTTCTCTCTC
 CCCCGTGTGTCACCATATCCGCAATGACAAAAAAATGATGGAAGACACTAAAGGA
 AAAAATTAAACGACAAAGACAGCACCAACAGATGTCGTTCCAGAGCTGATGAGGGTA
 TCTTCGAACACACGAAACTTTCCCTCATTCACGCACACTACTCTCTAATGAGCA
 ACGGTATACGGCCTCCTCCAGTTACTTGAAATTGAAATAAAAAAAGTTGCCGCTTG
 CTATCAAGTATAAATAGACCTGCAATTATTAAATCTTTGTTCCCTCGTATTGTTCTCGT
 TCCCTTCTCCTGTTCTTGCAACATATTCAAGCTATAACAGCATACAATC
 AACTCCAAGCTATGCCAAGAAGAAGCGGAAGGTCTCGAGCGCGCCAATTAAATCAA
 AGTGGGAATATTGCTGATAGCTCATTGTCCTTCACTTCACTAACAGTAGCAACGGTCCG
 AACCTCATAACAACCTAAACAAATTCTCAAGCGCTTCACAACCAATTGCCTCTAAC
 GTTCATGATAACTCATGAATAATGAAATCACGGCTAGTAAAATTGATGATGGTAATAAT
 TCAAAACCACTGTCACCTGGTTGGACGGACCAAACCTGCGTATAACGCGTTGGAATCACT
 ACAGGGATGTTAATACCACTACAATGGATGATGTATAACTATCTATTGATGATGAA
 GATACCCCACCAAACCCAAAAAGAGGGTGGGTGATCACAAGTTGACAAAAAGCA
 GGCTTGTGACCCCCGGGAATTCAAGACTACTAGTGCAGCGCACCGTACCCAGCTTCT
 TGTACAAAGTGGTGACGTCAGCTCTAAGTAAGTAACGGCCGCCACCGCGGTGGAGCTTT
 GGACTTCTCGCCAGAGGTTGGTCAAGTCTCCAATCAAGGTTGTCGGCTTGTCTACCTT
 GCCAGAAAATTACGAAAAGATGAAAAGGGTCAAATCGTTGGTAGATACGTTGTTGACAC
 TTCTAAATAAGCGAATTCTTATGATTGATTATTATTAAATAAGTTATAAAAAAA
 AATAAGTGTATAAAATTAAAGTGACTCTTAGGTTAAAACGAAAATTCTTGTCTT
 GAGTAACCTTCTGTAGGTCAAGGTTGCTTCTCAGGTATAGCATGAGGTCGCTCTTAT
 TGACCACACCTCTACCGCATGCCAGCAAATGCCTGCAAATCGCTCCCCATTACCCA
 ATTGTAGATATGCTAATCCAGCAATGAGTTGATGAATCTCGGTGTATTATTGTCCT
 CAGAGGACAATACCTGTTGTAATCGTTCTCACCGATCCAATTGCCCTATAGTGA
 GTCGTATTACAATTCACTGGCGTCGTTTACAACGTCGTACTGGAAAACCTGGCGT
 TACCCAACCTTAATGCCCTGCAAGCACATCCCCCTTCGCCAGCTGGCGTAATAGCGAAGA
 GGCCCCCACCGATGCCCTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCC
 TGTAGCGCGCATTAAGCGCGGGGTGTTGAGTCCACGTTCTTAATAGTGGACTCTT
 GCCAGCGCCCTAGCGCCGCTCCTTCGCTTCTCCCTTCGCCACGTTGCGC
 GGCTTCCCGTCAAGCTCTAAATCGGGGCTCCCTTAGGGTTCCGATTAGTGTCTT
 CGCACCTCGACCCCCAAAAACTGATTAGGGTGATGGTTACGTAGTGGCCATGCC
 TGATAGACGGTTTCGCCCTTGACGTTGGAGTCCACGTTCTTAATAGTGGACTCTT
 TTCCAAACTGGAACAAACACTCAACCCCTATCTCGGTCTATTCTTTGATTATAAGGGATT
 TTGCGGATTTCGGCTATTGGTTAAAAAATGAGCTGATTAAACAAAATTAAACGCGAAT
 TTAAACAAAATTAAACGTTTACAATTCTGATGCCGTATTCTCCTTACGCATCTGT
 GCGGTATTCTCACACCGCAGGCAAGTGCACAAACAAACTTAATAAATACTACTCAGTAA
 TAACCTATTCTTAGCATTGACGAAATTGCTATTGTTAGAGTCTTTACACCAT
 TTGTCCTCACACCTCCGCTTACATCAACACCAATAACGCCATTAACTAAGGCCATCAC
 CAACATTCTGGCGTCAGTCCACCGAGCTAACATAAAATGTAAGCTTCCGGGGCTCTCTT
 GCCTTCCAACCCAGTCAGAAATCGAGTTCCAATCCAAAAGTCACCTGCTCCACCTGCTT
 CTGAATCAAACAAAGGGAAATAACGAATGAGGTTCTGTAAGGCTGCACGACTGAGTAGTATGT
 TGCAGTCTTTGGAAATACGAGTCTTTAATAACTGGCAACCCAGGAGGAACCTTGGTATT
 CTTGCCACGACTCATCTCCATGCAGTTGGACGATATCAATGCCGTAATCATTGACCAGAG
 CCAAAACATCTCCTTAGGGTATTACGAAACACGCCAACAGTATTGCGAGTGCCTG
 AACTATTATTATGCTTTACAAGACTTGAATTTCTTGCATAACCGGGTCAATTG
 TTCTCTTCTATTGGGACACATATAATACCCAGCAAGTCAGCATGCCAATCTAGAGCAC
 ATTCTGCGGCCCTGTGCTGCAAGCCAAACTTCCACCAATGGACCAGAACACTACCTG
 TGAAATTAAATAACAGACATACTCCAAGCTGCCCTTGTGCTTAATCACGTATACTCACG
 TGCTCAATAGTCACCAATGCCCTCCCTTGGCCCTCTCCTTTTCGACCGAAT-

FIGURE 99C

TAATTCTTAATCGGCAAAAAAGAAAAGCTCCGGATCAAGATTGTACGTAAGGTGACAAG
CTATTTTCATAAAGAAATATCTTCCACTACTGCCATCTGGCGTCATAACTGCAAAGTAC
ACATATATTACGATGCTGTCTATTAAATGCTCCTATATTATATATAGTAATGTCGTT
TATGGTGCACACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGCCCCGACACC
CGCCAACACCCGCTGACGCCCTGACGGGCTTGTCTGCTCCGGCATCCGCTTACAGAC
AAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTCACCGTCATCACCGAAAC
GCGCGA

FIGURE 99D

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

REC'D

A. The indications made below relate to the microorganism referred to in the description on page <u>54</u> , line <u>8</u>	
B. IDENTIFICATION OF DEPOSIT	
Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>	
Name of depositary institution	
Agricultural Research Culture Collection (NRRL) International Depository Authority	
Address of depositary institution (<i>including postal code and country</i>)	
1815 N. University Street Peoria, Illinois 61604 United States of America	
Date of deposit	February 27, 1999
Accession Number	NRRL B-30103
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)	
This information is continued on an additional sheet <input type="checkbox"/>	
Escherichia coli DB3.1(pEZC15101)	
In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).	
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)	
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)	
The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)	

For receiving Office use only	For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application	<input type="checkbox"/> This sheet was received by the International Bureau on:
Authorized officer	Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 55, line 16.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depositary institution

Agricultural Research Culture Collection (NRRL)
 International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
 Peoria, Illinois 61604
 United States of America

Date of deposit February 27, 1999

Accession Number

NRRL B-30100

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)

This information is continued on an additional sheet

Escherichia coli DB3.1(pENTR-1A)

In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)**E. SEPARATE FURNISHING OF INDICATIONS** (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

This sheet was received with the international application

Authorized officer

For International Bureau use only

This sheet was received by the International Bureau on:

Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>55</u>, line <u>16</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30102
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		This information is continued on an additional sheet <input type="checkbox"/>
<p>Escherichia coli DB3.1(pENTR-3C)</p> <p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p> </p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

<p>For receiving Office use only</p>	<p>For International Bureau use only</p>
<p><input checked="" type="checkbox"/> This sheet was received with the international application</p>	
<p>Authorized officer</p>	
<p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>	
<p>Authorized officer</p>	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>55</u>, line <u>16</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30101
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		This information is continued on an additional sheet <input type="checkbox"/>
<p>Escherichia coli DB3.1(pENTR-2B)</p> <p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p> <p>The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

<p>For receiving Office use only</p>	<p>For International Bureau use only</p>
<p><input checked="" type="checkbox"/> This sheet was received with the international application</p>	
<p>Authorized officer</p>	
<p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>	
<p>Authorized officer</p>	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page <u>20-21</u>.		WIPO PCT
B. IDENTIFICATION OF DEPOSIT		
Further deposits are identified on an additional sheet <input checked="" type="checkbox"/>		
Name of depositary institution		
Agricultural Research Culture Collection (NRRL) International Depository Authority		
Address of depositary institution (<i>including postal code and country</i>)		
1815 N. University Street Peoria, Illinois 61604 United States of America		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30108
C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)		
This information is continued on an additional sheet <input type="checkbox"/>		
Escherichia coli DB10B(pCMVSPORT6)		
In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).		
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)		
E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)		
The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)		

For receiving Office use only	For International Bureau use only
<input checked="" type="checkbox"/> This sheet was received with the international application	<input type="checkbox"/> This sheet was received by the International Bureau on:
Authorized officer	Authorized officer

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>54</u>, line <u>9</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<input checked="" type="checkbox"/> Further deposits are identified on an additional sheet
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number
		NRRL B-30105
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<input type="checkbox"/> This information is continued on an additional sheet
<p>Escherichia coli DB3.1(pEYC15103)</p>		
<p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p>		
<p>The indications listed below will be submitted to the international Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

For receiving Office use only	
<input checked="" type="checkbox"/> This sheet was received with the international application	
Authorized officer 	
For International Bureau use only	
<input type="checkbox"/> This sheet was received by the International Bureau on:	
Authorized officer	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

<p>A. The indications made below relate to the microorganism referred to in the description on page <u>54</u>, line <u>9</u>.</p>		
<p>B. IDENTIFICATION OF DEPOSIT</p>		<p>Further deposits are identified on an additional sheet <input checked="" type="checkbox"/></p>
<p>Name of depositary institution Agricultural Research Culture Collection (NRRL) International Depository Authority</p>		
<p>Address of depositary institution (<i>including postal code and country</i>) 1815 N. University Street Peoria, Illinois 61604 United States of America</p>		
Date of deposit	February 27, 1999	Accession Number NRRL B-30104
<p>C. ADDITIONAL INDICATIONS (<i>leave blank if not applicable</i>)</p>		<p>This information is continued on an additional sheet <input type="checkbox"/></p>
<p>Escherichia coli DB3.1(pEYC15102)</p>		
<p>In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).</p>		
<p>D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (<i>if the indications are not for all designated States</i>)</p>		
<p> </p>		
<p>E. SEPARATE FURNISHING OF INDICATIONS (<i>leave blank if not applicable</i>)</p>		
<p>The indications listed below will be submitted to the International Bureau later (<i>specify the general nature of the indications, e.g., "Accession Number of Deposit"</i>)</p>		

<p>For receiving Office use only</p>		<p>For International Bureau use only</p>	
<p><input checked="" type="checkbox"/> This sheet was received with the international application</p>		<p><input type="checkbox"/> This sheet was received by the International Bureau on:</p>	
<p>Authorized officer</p>		<p>Authorized officer</p>	
		<p> </p>	

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM
(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in the description on page 52, line 31.

B. IDENTIFICATION OF DEPOSIT

Further deposits are identified on an additional sheet

Name of depositary institution

Agricultural Research Culture Collection (NRRL)
 International Depository Authority

Address of depositary institution (*including postal code and country*)

1815 N. University Street
 Peoria, Illinois 61604
 United States of America

Date of deposit February 27, 1999

Accession Number

NRRL B-30099

C. ADDITIONAL INDICATIONS (*leave blank if not applicable*)

This information is continued on an additional sheet

Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)

In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (*if the indications are not for all designated States*)

E. SEPARATE FURNISHING OF INDICATIONS (*leave blank if not applicable*)

The indications listed below will be submitted to the international Bureau later (*specify the general nature of the indications, e.g., "Accession Number of Deposit"*)

For receiving Office use only

This sheet was received with the international application

Authorized officer Barbara Fridie
PTC Operations - I/PD Team 1
703) 305-3741 (703) 305-3230 (FAX)

For International Bureau use only

This sheet was received by the International Bureau on:

Authorized officer

*Escherichia coli DB3.1(pENTR-3C)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-3C)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-2B)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pENTR-2B)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-2B)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-1A)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pENTR-1A)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pENTR-1A)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB10B(pCMVSport6)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pAHPKan) or Escherichia coli DB3.1(pAttPKan)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB10B(pCMV Sport6)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB10B(pCMV Sport6)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15103)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pEZC15103)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15103)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15102)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pEZC15102)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15102)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15101)***AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

*Escherichia coli DB3.1(pEZR15101)***ICELAND**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Icelandic Patent Office), or has been finally decided upon by the Icelandic Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art.

NETHERLANDS

The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in Rule 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Kingdom of the Netherlands, whichever of the two dates occurs earlier.

NORWAY

The applicant hereby requests that, until the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Norwegian Patent office or any person approved by the applicant in the individual case.

SINGAPORE

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

*Escherichia coli DB3.1(pEZC15101)***SWEDEN**

The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent office or any person approved by the applicant in the individual case.

UNITED KINGDOM

The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the International Bureau before the completion of the technical preparations for international publication of the application.

Escherichia coli DB3.1(pENTR-3C)**AUSTRALIA**

The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).

CANADA

The applicant hereby requests that, until either a Canadian patent has been issued on the basis of the application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the furnishing of a sample of deposited biological material referred to in the application only be effected to an independent expert nominated by the Commissioner of Patents.

DENMARK

The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent office or any person approved by the applicant in the individual case.

FINLAND

The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Registration), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT/RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the National Board of Patents and Registration or any person approved by the applicant in the individual case.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/05432

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) :Please See Extra Sheet.

US CL :435/91.2, 252.3, 320.1; 530/350; 536/ 23.1, 24.1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/91.2, 252.3, 320.1; 530/350; 536/ 23.1, 24.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X,P ----	US 5,888,732 A (HARTLEY et al.) 30 March 1999, see entire document.	1-21, 25-30 36-38 -----
Y,P		22-24, 31-35
X - Y	HASAN et al. Escherichia coli genome targeting, I. Cre-lox-mediated in vitro generation of ori- plasmids and their in vivo chromosomal integration and retrieval. Gene. 1994, Vol. 150, pages 51-56, see entire document.	1-5, 10, 11, 19-21 ----- 15-18, 22-38
X - Y	KATZ et al. Site-specific recombination in Esherichia coli between the att sites of plasmid pSE211 from Saccharopolyspora erythraea. Mol. Genet. 1991, Vol. 227, pages 155-159, see entire document.	1-11, 19-21 ----- 15-18, 22-38

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

08 MAY 2000

Date of mailing of the international search report

23 MAY 2000

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT

Washington, D.C. 20231

Faxsimile No. (703) 305-3230

Authorized officer
Christina Lawrence Fox
IREM YUCEL
Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORTInternational application No.
PCT/US00/05432

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X - Y	ASTUMIAN et al. Site-specific recombination between cloned attP and attB sites from the Haemophilus influenzae bacteriophage HP1 propagated in recombination deficient Escherichia coli. J of Bacteriology. March 1989, Vol. 171, No. 3, pages 1747-1750, see entire document.	1-11, 19-21 ----- 15-18, 22-38

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/05432

A. CLASSIFICATION OF SUBJECT MATTER:
IPC (7):

C07H 21/04; C07K 1/00, 14/00; C12N 1/21, 15/00, 15/09, 15/63, 15/70; C12P 19/34

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

WEST, STN (CAPLUS); DIALOG (MEDLINE, BIOSIS, SCISEARCH, PASCAL)

Terms: att (B?, P?, R?, L?), MCS, POLYLINKER, PLASMID, VECTOR, LOCALIZATION, SIGNAL, TRANSCRIPTION, TERMIN?, TRANSLATION?, ORI, REPLICON, GST, HEXHIST?, THIOREDOX?, CLEAVAGE, SITE?, SPECIF?, DIRECT?, RECOMBIN?, CLON?, INSERT?