CMSC 471 Spring 2014

Class #10

Thursday, February 27, 2014 Probabilistic Reasoning

Professor Marie des Jardins, mariedj@cs.umbc.edu

Today's Class

- Probability theory
- Bayesian inference
 - From the joint distribution
 - Using independence/factoring
 - From sources of evidence

Bayesian Reasoning

Chapter 13

Sources of Uncertainty

- Uncertain inputs
 - Missing data
 - Noisy data
- Uncertain knowledge
 - Multiple causes lead to multiple effects
 - Incomplete enumeration of conditions or effects
 - Incomplete knowledge of causality in the domain
 - Probabilistic/stochastic effects
- Uncertain outputs
 - Abduction and induction are inherently uncertain
 - Default reasoning, even in deductive fashion, is uncertain
 - Incomplete deductive inference may be uncertain
- □ Probabilistic reasoning only gives probabilistic results (summarizes uncertainty from various sources)

Decision Making with Uncertainty

• **Rational** behavior:

- For each possible action, identify the possible outcomes
- Compute the probability of each outcome
- Compute the utility of each outcome
- Compute the probability-weighted (expected) utility
 over possible outcomes for each action
- Select the action with the highest expected utility
 (principle of Maximum Expected Utility)

Why Probabilities Anyway?

- Kolmogorov showed that three simple axioms lead to the rules of probability theory
 - De Finetti, Cox, and Carnap have also provided compelling arguments for these axioms
- 1. All probabilities are between 0 and 1:
 - $0 \le P(a) \le 1$
- 2. Valid propositions (tautologies) have probability 1, and unsatisfiable propositions have probability 0:
 - P(true) = 1; P(false) = 0
- 3. The probability of a disjunction is given by:
 - $P(a \lor b) = P(a) + P(b) P(a \land b)$

Probability Theory

- Random variables
 - Domain
- Atomic event: complete specification of state
- **Prior probability**: degree of belief without any other evidence
- Joint probability: matrix of combined probabilities of a set of variables

- Alarm, Burglary, Earthquake
 - Boolean (like these), discrete, continuous
- Alarm=True ∧ Burglary=True ∧ Earthquake=False alarm ∧ burglary ∧ ¬earthquake
- P(Burglary) = .1
- P(Alarm, Burglary) =

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

Probability Theory: Definitions

- Conditional probability: probability of effect given causes
- Computing conditional prob:
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): **normalizing** constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \sum_{a} P(B, a)$
 - $P(B) = \sum_{a} P(B \mid a) P(a)$ (conditioning)

Try It...

	alarm	¬alarm
burglary	.09	.01
¬burglary	.1	.8

Computing conditional prob:

$$- P(a \mid b) = P(a \land b) / P(b)$$

- P(b): **normalizing** constant

• Product rule:

$$- P(a \land b) = P(a \mid b) P(b)$$

• Marginalizing:

$$- P(B) = \sum_{a} P(B, a)$$

-
$$P(B) = \sum_{a} P(B \mid a) P(a)$$

(conditioning)

- P(alarm | burglary) = ??
- P(burglary | alarm) = ??
- P(burglary \land alarm) = ??
- P(alarm) = ??

Probability Theory (cont.)

- Conditional probability: probability of effect given causes
- Computing conditional probs:
 - $P(a \mid b) = P(a \land b) / P(b)$
 - P(b): **normalizing** constant
- Product rule:
 - $P(a \land b) = P(a \mid b) P(b)$
- Marginalizing:
 - $P(B) = \sum_{a} P(B, a)$
 - $P(B) = \sum_{a} P(B \mid a) P(a)$ (conditioning)

- P(burglary | alarm) = .47 P(alarm | burglary) = .9
- P(burglary | alarm) = P(burglary ∧ alarm) / P(alarm) = .09 / .19 = .47
- P(burglary ∧ alarm) = P(burglary | alarm) P(alarm) = .47 * .19 = .09
- P(alarm) =
 P(alarm ∧ burglary) +
 P(alarm ∧ ¬burglary) =
 .09+.1 = .19

Example: Inference from the Joint

	alarm		¬alarm	
	earthquake	¬earthquake	earthquake	¬earthquake
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

```
P(Burglary | alarm) = \alpha P(Burglary, alarm)
= \alpha [P(Burglary, alarm, earthquake) + P(Burglary, alarm, ¬earthquake)
= \alpha [ (.01, .01) + (.08, .09) ]
= \alpha [ (.09, .1) ]
```

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19$ – **quizlet**: how can you verify this?)

$$P(burglary | alarm) = .09 * 5.26 = .474$$

$$P(\neg burglary | alarm) = .1 * 5.26 = .526$$

Exercise: Inference from the Joint

p(smart \(\lambda \)	smart		¬smart	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

• Queries:

- What is the prior probability of *smart*?
- What is the prior probability of study?
- What is the conditional probability of *prepared*, given *study* and *smart*?
- Save these answers for later! ⊚

Independence

- When two sets of propositions do not affect each others' probabilities, we call them **independent**, and can easily compute their joint and conditional probability:
 - Independent (A, B) \Leftrightarrow P(A \land B) = P(A) P(B), P(A | B) = P(A)
- For example, {moon-phase, light-level} might be independent of {burglary, alarm, earthquake}
 - Then again, it might not: Burglars might be more likely to burglarize houses when there's a new moon (and hence little light)
 - But if we know the light level, the moon phase doesn't affect whether we are burglarized
 - Once we're burglarized, light level doesn't affect whether the alarm goes off
- We need a more complex notion of independence, and methods for reasoning about these kinds of relationships

Exercise: Independence

p(smart \(\)	smart		¬smart	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

• Queries:

- Is smart independent of study?
- Is prepared independent of study?

Conditional Independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) P(B)$; equivalently, $P(A) = P(A \mid B)$ and $P(B) = P(B \mid A)$
- A and B are **conditionally independent** given C if
 - $P(A \land B \mid C) = P(A \mid C) P(B \mid C)$
- This lets us decompose the joint distribution:
 - $P(A \land B \land C) = P(A \mid C) P(B \mid C) P(C)$
- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but still useful in decomposing the full joint probability distribution

Exercise: Conditional Independence

p(smart \(\lambda \)	smart		¬smart	
study ∧ prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
¬prepared	.048	.16	.036	.072

• Queries:

- Is smart conditionally independent of prepared, given study?
- Is *study* conditionally independent of *prepared*, given *smart*?

Bayes's Rule

- Bayes's rule is derived from the product rule:
 - P(Y | X) = P(X | Y) P(Y) / P(X)
- Often useful for diagnosis:
 - If X are (observed) effects and Y are (hidden) causes,
 - We may have a model for how causes lead to effects (P(X | Y))
 - We may also have prior beliefs (based on experience) about the frequency of occurrence of effects (P(Y))
 - Which allows us to reason abductively from effects to causes $(P(Y \mid X))$.

Bayesian Inference

• In the setting of diagnostic/evidential reasoning

hypotheses

evidence/manifestations

- Know prior probability of hypothesis conditional probability
- Want to compute the *posterior probability*
- Bayes's theorem (formula 1):

$$egin{aligned} oldsymbol{P}(oldsymbol{H}_i) \ oldsymbol{P}(oldsymbol{E}_j \,|\, oldsymbol{H}_i) \ oldsymbol{P}(oldsymbol{H}_i \,|\, oldsymbol{E}_i) \end{aligned}$$

$$P(H_i | E_j) \square P(H_i) P(E_j | H_i) / P(E_j)$$

Simple Bayesian Diagnostic Reasoning

- Knowledge base:
 - Evidence / manifestations: $E_1, \dots E_m$
 - Hypotheses / disorders: H₁, ... H_n
 - E_j and H_i are **binary**; hypotheses are **mutually exclusive** (non-overlapping) and **exhaustive** (cover all possible cases)
 - Conditional probabilities: $P(E_j | H_i)$, i = 1, ..., n; j = 1, ..., m
- Cases (evidence for a particular instance): E₁, ..., E₁
- Goal: Find the hypothesis H_i with the highest posterior
 - $\text{Max}_{i} P(H_{i} | E_{1}, ..., E_{l})$

Bayesian Diagnostic Reasoning II

• Bayes' rule says that

$$-P(H_{i} | E_{1}, ..., E_{l}) = P(E_{1}, ..., E_{l} | H_{i}) P(H_{i}) / P(E_{1}, ..., E_{l})$$

• Assume each piece of evidence E_i is conditionally independent of the others, *given* a hypothesis H_i , then:

$$- P(E_1, ..., E_1 | H_i) = \prod_{j=1}^{l} P(E_j | H_i)$$

• If we only care about relative probabilities for the H_i, then we have:

$$- P(H_i | E_1, ..., E_l) = \alpha P(H_i) \prod_{j=1}^{l} P(E_j | H_i)$$

Limitations of Simple Bayesian Inference

- Cannot easily handle multi-fault situations, nor cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider a composite hypothesis $H_1 \wedge H_2$, where H_1 and H_2 are independent. What is the relative posterior?

$$\begin{array}{l} - \ P(H_1 \ \wedge \ H_2 \ | \ E_1, \ ..., \ E_1) = \alpha \ P(E_1, \ ..., \ E_1 \ | \ H_1 \ \wedge \ H_2) \ P(H_1 \ \wedge \ H_2) \\ = \alpha \ P(E_1, \ ..., \ E_1 \ | \ H_1 \ \wedge \ H_2) \ P(H_1) \ P(H_2) \\ = \alpha \ \prod_{i=1}^{l} P(E_i \ | \ H_1 \ \wedge \ H_2) \ P(H_1) \ P(H_2) \end{array}$$

• How do we compute $P(E_i | H_1 \wedge H_2)$??

Limitations of Simple Bayesian Inference II

- Assume H1 and H2 are independent, given E1, ..., El?
 - $P(H_1 \land H_2 \mid E_1, ..., E_l) = P(H_1 \mid E_1, ..., E_l) P(H_2 \mid E_1, ..., E_l)$
- This is a very unreasonable assumption
 - Earthquake and Burglar are independent, but *not* given Alarm:
 - P(burglar | alarm, earthquake) << P(burglar | alarm)
- Another limitation is that simple application of Bayes's rule doesn't allow us to handle causal chaining:
 - A: this year's weather; B: cotton production; C: next year's cotton price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - P(C | B, A) = P(C | B)
- Need a richer representation to model interacting hypotheses, conditional independence, and causal chaining
- Next time: conditional independence and Bayesian networks!