- 1: True or False: Let R be a ring, and $R \to Q$ is a surjective map of abelian groups. Is it true that Q has an induced ring structure if and only if it has an induced R-module structure?
- 2: Short answer: Explain why the following modules are or are not free:
 - (a) $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ as a \mathbb{Z} -module.
 - (b) $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ as a $\mathbb{Z}/5\mathbb{Z}$ -module.
 - (c) \mathbb{C} as an $\mathbb{R}[x]$ -module, with the action $x \cdot z = iz$.
 - (d) $\mathbb{C}[x]$ as a $\mathbb{C}[x^2]$ -module by the usual multiplication.
- **3:** Consider a polynomial $f(x) = f_0 x^n + \dots + f_n \in R[x]$.
 - (a) Prove that the structure of an R[x]/(f(x))-module on an abelian group M is equivalent to:
 - An R-module structure and
 - An R-module homomorphism $\phi: M \to M$ which satisfies $\sum_{i=0}^n f_i \phi^i(m) = 0$ for all $m \in M$.
 - (b) Prove that the structure of a \mathbb{C} -vector space on an abelian group M is equivalent to the structure of an \mathbb{R} -vector space together with an \mathbb{R} -linear map $I: M \to M$ satisfying $I^2 = -1$.
 - (c) Recall that $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$. Prove that if $M = \mathbb{F}_2 \oplus \mathbb{F}_2$ is a faithful module over a commutative ring R which we can write as a quotient of $\mathbb{Z}[x]$, then $R \cong \mathbb{F}_2$, $\mathbb{F}_2 \oplus \mathbb{F}_2$, $\mathbb{F}_2[x]/(x^2)$, or \mathbb{F}_4 .
 - (d) Bonus: Prove Q3(3) for R an arbitrary commutative ring.
- **4:** Recall that we have defined a $\mathbb{C}[x]$ -module $\mathbb{C}*A^n$ for any $n \times n$ matrix A by the action $x \cdot v = Av$. (We'll abuse notation and let $A: \mathbb{C}^n \to \mathbb{C}^n$ denote the linear map of multiplication by A.)
 - (a) Show that the linear map $B: \mathbb{C}*A^n \to \mathbb{C}*A'^n$ defines a module homomorphism if and only if A'B=BA as matrices.
 - (b) Show that if B is invertible, then B defines a module isomorphism if and only if $B^{-1}A'B = A$.
 - (c) Show that A is diagonalizable if and only if we have an isomorphism of $\mathbb{C}[x]$ -module $\mathbb{C} * A^n \cong \mathbb{C} * [z_1]^1 \oplus \cdots \oplus \mathbb{C} * [z_n]^1$ for $z_i \in \mathbb{C}$.