Product Buyed or Not

Import Necessary Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

Import Dataset

In [2]:

```
df=pd.read_csv("Social_Network_Ads.csv")
```

In [3]:

df

Out[3]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

Data Exploration

Summary of Data

In [4]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	User ID	400 non-null	int64
1	Gender	400 non-null	object
2	Age	400 non-null	int64
3	EstimatedSalary	400 non-null	int64
4	Purchased	400 non-null	int64

dtypes: int64(4), object(1)
memory usage: 15.8+ KB

Descriptive Summary of Data

In [5]:

df.describe()

Out[5]:

	User ID	Age	EstimatedSalary	Purchased
count	4.000000e+02	400.000000	400.000000	400.000000
mean	1.569154e+07	37.655000	69742.500000	0.357500
std	7.165832e+04	10.482877	34096.960282	0.479864
min	1.556669e+07	18.000000	15000.000000	0.000000
25%	1.562676e+07	29.750000	43000.000000	0.000000
50%	1.569434e+07	37.000000	70000.000000	0.000000
75%	1.575036e+07	46.000000	88000.000000	1.000000
max	1.581524e+07	60.000000	150000.000000	1.000000

Check for any Null Values

Check for any Duplicate Values

```
In [7]:

df.duplicated().sum()

Out[7]:
0
```

Check for Imbalanced Data

```
In [8]:
zeros=df[df["Purchased"]==0]
ones=df[df["Purchased"]==1]

In [9]:
len(zeros),len(ones)

Out[9]:
(257, 143)
In [10]:
from sklearn.utils import resample

In [11]:
```

ones_resample=resample(ones,replace=True,n_samples=len(zeros),random_state=42)

In [12]:

ones_resample

Out[12]:

	User ID	Gender	Age	EstimatedSalary	Purchased
340	15588080	Female	53	104000	1
320	15774872	Female	52	138000	1
48	15727696	Male	30	135000	1
347	15768151	Female	54	108000	1
283	15663249	Female	52	21000	1
364	15654456	Male	42	104000	1
20	15649487	Male	45	22000	1
331	15589715	Female	48	119000	1
373	15708791	Male	59	130000	1
223	15593715	Male	60	102000	1

257 rows × 5 columns

In [13]:

```
df=pd.concat([ones_resample,zeros])
```

In [14]:

df

Out[14]:

	User ID	Gender	Age	EstimatedSalary	Purchased
340	15588080	Female	53	104000	1
320	15774872	Female	52	138000	1
48	15727696	Male	30	135000	1
347	15768151	Female	54	108000	1
283	15663249	Female	52	21000	1
377	15800215	Female	42	53000	0
380	15683758	Male	42	64000	0
387	15627220	Male	39	71000	0
394	15757632	Female	39	59000	0
398	15755018	Male	36	33000	0

514 rows × 5 columns

```
In [15]:
```

```
zeros=df[df["Purchased"]==0]
ones=df[df["Purchased"]==1]
```

In [16]:

```
len(zeros),len(ones)
```

Out[16]:

(257, 257)

In [17]:

```
df=df.sample(frac=1)
```

In [18]:

df

Out[18]:

	User ID	Gender	Age	EstimatedSalary	Purchased
31	15729054	Female	27	137000	1
197	15680243	Female	20	36000	0
32	15573452	Female	21	16000	0
299	15747043	Male	46	117000	1
337	15612465	Male	35	79000	0
397	15654296	Female	50	20000	1
17	15617482	Male	45	26000	1
129	15792102	Female	26	84000	0
245	15722061	Female	51	146000	1
128	15722758	Male	30	17000	0

514 rows × 5 columns

In [19]:

```
df=df.reset_index()
```

In [20]:

```
df.drop("index",axis=1,inplace=True)
```

In [21]:

df

Out[21]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15729054	Female	27	137000	1
1	15680243	Female	20	36000	0
2	15573452	Female	21	16000	0
3	15747043	Male	46	117000	1
4	15612465	Male	35	79000	0
509	15654296	Female	50	20000	1
510	15617482	Male	45	26000	1
511	15792102	Female	26	84000	0
512	15722061	Female	51	146000	1
513	15722758	Male	30	17000	0

514 rows × 5 columns

Convert Categorical Columns to Numericals

In [22]:

from sklearn.preprocessing import LabelEncoder

In [23]:

encoder=LabelEncoder()

In [24]:

df["Sex"]=encoder.fit_transform(df[["Gender"]])

In [25]:

df

Out[25]:

	User ID	Gender	Age	EstimatedSalary	Purchased	Sex
0	15729054	Female	27	137000	1	0
1	15680243	Female	20	36000	0	0
2	15573452	Female	21	16000	0	0
3	15747043	Male	46	117000	1	1
4	15612465	Male	35	79000	0	1
509	15654296	Female	50	20000	1	0
510	15617482	Male	45	26000	1	1
511	15792102	Female	26	84000	0	0
512	15722061	Female	51	146000	1	0
513	15722758	Male	30	17000	0	1

514 rows × 6 columns

EDA

Check for Outliers

In [26]:

```
for i in df.columns:
    if i not in ["User ID","Gender"]:
        sns.boxplot(df[i],color="y")
        plt.title("Outliers in "+str(i))
        plt.show()
```

Outliers in Age

Check the Spread of the Data

In [27]:

```
for i in df.columns:
    if i not in ["User ID", "Gender"]:
        sns.histplot(df[i],kde=True,color="g")
        plt.title("Spread of "+str(i))
        plt.show()
```


Releationship between Age and Estimated salary W.R.T Gender

In [28]:

```
sns.scatterplot(x=df["Age"],y=df["EstimatedSalary"],hue=df["Gender"])
plt.xlabel("Age")
plt.ylabel("Salary")
plt.title("Age vs Salary")
```

Out[28]:

Text(0.5, 1.0, 'Age vs Salary')

Releationship between Age and Estimated salary W.R.T Gender

In [29]:

```
sns.scatterplot(x=df["Age"],y=df["EstimatedSalary"],hue=df["Purchased"])
plt.xlabel("Age")
plt.ylabel("Salary")
plt.title("Age vs Salary")
```

Out[29]:

Text(0.5, 1.0, 'Age vs Salary')

Observations:

• If Age is more or If salary is more, then Purchasing power Presents

Feature Engineering

Check Co Releations and drop unnecessary columns

In [30]:

```
plt.figure(figsize=(10,6))
sns.heatmap(df.corr(method="spearman"),annot=True)
```

Out[30]:

<Axes: >

Observations:

• Sex and User ID doesn't impact Purchasing, so we can remove them.

In [31]:

```
df.drop(["Gender","Sex","User ID"],axis=1,inplace=True)
```

In [32]:

df

Out[32]:

	Age	EstimatedSalary	Purchased
0	27	137000	1
1	20	36000	0
2	21	16000	0
3	46	117000	1
4	35	79000	0
509	50	20000	1
510	45	26000	1
511	26	84000	0
512	51	146000	1
513	30	17000	0

514 rows × 3 columns

Split Data between Independent and Dependent Features

X Data

In [33]:

```
x=df.drop("Purchased",axis=1)
```

In [34]:

x.head()

Out[34]:

	Age	EstimatedSalary
0	27	137000
1	20	36000
2	21	16000
3	46	117000
4	35	79000

Scale X Data

```
In [35]:
from sklearn.preprocessing import MinMaxScaler
In [36]:
scaler=MinMaxScaler()
In [37]:
x_new=scaler.fit_transform(x)
In [38]:
x_new
Out[38]:
array([[0.21428571, 0.9037037],
       [0.04761905, 0.15555556],
       [0.07142857, 0.00740741],
       [0.19047619, 0.51111111],
       [0.78571429, 0.97037037],
       [0.28571429, 0.01481481]])
In [39]:
x=pd.DataFrame(x_new,columns=x.columns)
```

In [40]:

Χ

Out[40]:

	Age	EstimatedSalary
0	0.214286	0.903704
1	0.047619	0.155556
2	0.071429	0.007407
3	0.666667	0.755556
4	0.404762	0.474074
509	0.761905	0.037037
510	0.642857	0.081481
511	0.190476	0.511111
512	0.785714	0.970370
513	0.285714	0.014815

514 rows × 2 columns

Save scaler to use it in Flask web API

```
In [41]:
```

```
import pickle
pickle.dump(scaler_open("scaler_purchase.pkl","wb"))
```

Y Data

```
In [42]:
```

```
y=df["Purchased"]
```

```
In [43]:
У
Out[43]:
0
       1
1
        0
2
       0
        1
509
       1
510
       1
511
       0
512
       1
Name: Purchased, Length: 514, dtype: int64
```

Split the Data into Train and Test

```
In [44]:
from sklearn.model_selection import train_test_split

In [45]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)

In [46]:
x_train.shape,y_train.shape,x_test.shape,y_test.shape

Out[46]:
((385, 2), (385,), (129, 2), (129,))
```

Build the Model

```
In [47]:
from sklearn.svm import SVC

In [48]:
model=SVC()

In [49]:
model.fit(x_train,y_train)
Out[49]:
SVC()
```

```
In [50]:
```

```
y_pred=model.predict(x_test)
```

In [51]:

```
y_pred
```

Out[51]:

Accuracy Metrics

In [52]:

from sklearn.metrics import confusion_matrix,classification_report

In [53]:

```
sns.heatmap(confusion_matrix(y_test,y_pred),annot=True)
plt.xlabel("Actual")
plt.ylabel("Predicted")
```

Out[53]:

Text(50.7222222222214, 0.5, 'Predicted')

In [54]:

print(classi	<pre>ification_report(y_test,y_pred))</pre>	
print(classi	ification_report(y_test,y_pred))	

support	f1-score	recall	precision	
67	0.92	0.93	0.91	0
62	0.91	0.90	0.92	1
129	0.91			accuracy
129	0.91	0.91	0.91	macro avg
129	0.91	0.91	0.91	weighted avg

Hyperparameter Tuning

```
In [55]:
grid={
    "degree":[3,6,9,12],
    "gamma":("scale","auto"),
    "shrinking":[True,False],
    "probability":[True,False],
    "random_state":[1,5,10,15,25],
    "coef0":[0.0,1.2,3.4,5.6,77.3]
}
In [56]:
from sklearn.model_selection import GridSearchCV
In [57]:
model=SVC()
In [58]:
clf=GridSearchCV(model,param_grid=grid,cv=6)
In [59]:
clf.fit(x_train,y_train)
Out[59]:
GridSearchCV(cv=6, estimator=SVC(),
             param_grid={'coef0': [0.0, 1.2, 3.4, 5.6, 77.3],
                          'degree': [3, 6, 9, 12], 'gamma': ('scale', 'aut
o'),
                          'probability': [True, False],
                          'random_state': [1, 5, 10, 15, 25],
                          'shrinking': [True, False]})
In [60]:
clf.best_params_
Out[60]:
{'coef0': 0.0,
 'degree': 3,
 'gamma': 'scale',
 'probability': True,
 'random_state': 1,
 'shrinking': True}
In [61]:
model=SVC(degree=3,gamma="scale",probability=True,shrinking=True,random_state=1,coef0=0.
```

```
localhost:8888/notebooks/Untitled Folder 3/SVC.ipynb
```

```
In [62]:
model.fit(x_train,y_train)
Out[62]:
SVC(probability=True, random_state=1)
In [63]:
y_pred=model.predict(x_test)
In [64]:
y_pred
Out[64]:
array([1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1,
       0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,
       0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1,
       1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0,
       1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,
       1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1],
      dtype=int64)
```

Accuracy Metrics

In [65]:

```
sns.heatmap(confusion_matrix(y_test,y_pred),annot=True)
plt.xlabel("Actual")
plt.ylabel("Predicted")
```

Out[65]:

Text(50.7222222222214, 0.5, 'Predicted')

In [66]:

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
(0.91	0.93	0.92	67
-	0.92	0.90	0.91	62
accuracy	,		0.91	129
macro av	0.91	0.91	0.91	129
weighted av	0.91	0.91	0.91	129

Observation:

· Our Default Parameters were the Best Parameters

Save our Model

```
In [67]:
```

pickle.dump(model,open("model_purchase.pkl","wb"))