Geometría Diferencial

Ejercicios para Entregar - Práctica 2

Guido Arnone

Sobre los Ejercicios

Además del ejercicio (9), elejí resolver los ejercicios () y (12). Con la intención de hacer más legibles a las resoluciones, algunos argumentos están escritos en forma de lemas que preceden a cada ejercicio.

Ejercicio 9. Sea M una variedad diferenciable de dimensión n y \mathcal{A} su atlas maximal. Sea TM = $\bigcup_{p \in M} M_p$ y sea $\pi : TM \to M$ la función tal que $\pi(v) = p$ si $v \in M_p$. Para cada $(U, x) \in \mathcal{A}$, sea $TU = \bigcup_{p \in U} M_p \subset TM$ y $\overline{x} : TU \to x(U) \times \mathbb{R}^n$ la función tal que

$$\overline{\mathbf{x}}(\mathbf{v}) = (\mathbf{x}(\pi(\mathbf{v})), \mathbf{v}(\mathbf{x}^1), \dots, \mathbf{v}(\mathbf{x}^n))$$

cada vez que $v \in TU$.

(a) La función $\overline{x}: TU \to x(U) \times \mathbb{R}^n$ es una biyección con inversa tal que

$$\overline{x}^{-1}(a,b^1,\ldots,b^n) = \sum_{i=1}^n b^i \frac{\partial}{\partial x^i} \Big|_{x^{-1}(a)}$$

para cada $a \in x(U)$.

- (b) Si (U,x), $(V,y) \in \mathcal{A}$ y $U \cap V \neq \emptyset$, entonces $\overline{x}(TU \cap TV) = x(U \cap V) \times \mathbb{R}^n$ es un abierto de \mathbb{R}^{2n} y la biyección $\overline{x} \circ \overline{y}^{-1} : y(U \cap V) \times \mathbb{R}^n \to x(U \cap V) \times \mathbb{R}^n$ es un difeomorfismo.
- (c) El conjunto TM admite una estructura diferenciable que lo transforma en una variedad diferenciable de dimensión 2n, con atlas

$$\overline{\mathcal{A}} = \{(\mathsf{TU}, \overline{\mathsf{x}}) : (\mathsf{U}, \mathsf{x}) \in \mathcal{A}\}.$$

(d) Con respecto a esta estructura diferenciable, la proyección π : TM \rightarrow M es diferenciable.

Demostración. Hacemos cada inciso por separado,

(a) Sean $(a,b)=(a,b^1,\ldots,b^n)\in x(U)\times\mathbb{R}^n$ y $h(a,b):=\sum_{i=1}^n b^i\frac{\partial}{\partial x_i}|_{x^{-1}(a)}$. Como esta última expresión es una combinación lineal de derivaciones en $x^{-1}(a)$, luego h(a,b) es una derivación en $x^{-1}(a)$. Por lo tanto, $h(a,b)\in M_{x^{-1}(a)}$ y así $x\pi(h(a,b))=xx^{-1}(a)=a$. Además, si

1

Guido Arnone Práctica 2

 $\pi_j: \mathbb{R}^n \to \mathbb{R}$ es la proyección en la j-ésima coordenada, luego para cada $j \in [n]$ es $x^j = \pi_j x$ y entonces

$$\begin{split} h(\alpha,b)(x^j) &= \left(\sum_{i=1}^n b^i \frac{\partial}{\partial x_i}\Big|_{x^{-1}(\alpha)}\right)(x^j) = \sum_{i=1}^n b^i \frac{\partial}{\partial x_i}\Big|_{x^{-1}(\alpha)}(x^j) = \sum_{i=1}^n b^i \frac{\partial (x^j x^{-1})}{\partial x_i}\Big|_{\alpha} \\ &= \sum_{i=1}^n b^i \frac{\partial \pi_j}{\partial x_i}\Big|_{\alpha} = \sum_{i=1}^n b^i \delta_{ij} = b^j. \end{split}$$

Concluimos así que $\overline{x}(h(a,b))=(a,b)\in x(U)\times \mathbb{R}^n$. Recíprocamente si $\nu\in M_p$ con $p\in U$, luego

$$\begin{split} h(\overline{x}(\nu)) &= h(x\pi(\nu), \nu(x^1), \dots, \nu(x^n)) = \sum_{i=1}^n \nu(x^i) \frac{\partial}{\partial x_i} \Big|_{x^{-1}(x\pi(\nu))} = \\ &= \sum_{i=1}^n \nu(x^i) \frac{\partial}{\partial x_i} \Big|_p. \end{split}$$

Esto último coincide justamente la expresión de ν en la base $\left\{\frac{\partial}{\partial x_i}\Big|_p\right\}_{i=1}^n$, lo que termina de probar que en efecto $h = \overline{x}^{-1}$.

(b) Notemos en primer lugar que como $U\cap V$ es abierto y x homeomorfismo, luego $x(U\cap V)$ es <u>abierto</u>, y así $x(U\cap V)\times\mathbb{R}^n$ es <u>abierto</u> en \mathbb{R}^{2n} . Por definición, es $TU\cap TV=T(U\cap V)$ y $\overline{x|_{U\cap V}}=\overline{x}|_{T(U\cap V)}$ así que como $\overline{x|_{U\cap V}}$ es sobreyectiva (pues $x|_{U\cap V}$ es otra carta de M), por (b) en efecto es $\overline{x}(TU\cap TV)=x(U\cap V)\times\mathbb{R}^n$. Veamos ahora que \overline{xy}^{-1} es un difeomorfismo. Como \overline{x} e \overline{y} son biyectivas, basta ver que las composiciones \overline{xy}^{-1} y \overline{yx}^{-1} son diferenciables. Por simetría (ya que podemos intercambiar los roles de x e y) basta probar una, lo hacemos para \overline{xy}^{-1} . Por un cálculo directo, si $(a,b)\in y(U\cap V)\times\mathbb{R}^n$ y $\pi_j:\mathbb{R}^n\to\mathbb{R}$ una vez más es la proyección en la j-ésima coordenada, luego para cada $y\in\mathbb{R}^n$ es $x^yy^{-1}=\pi_yxy^{-1}=(xy^{-1})^y$, y entonces

$$\begin{split} \overline{y}^{-1}(a,b)(x^{j}) &= \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial y_{i}} \Big|_{y^{-1}(a)} (x^{j}) = \sum_{i=1}^{n} b^{i} \frac{\partial x^{j} y^{-1}}{\partial x_{i}} \Big|_{a} \\ &= \sum_{i=1}^{n} b^{i} \frac{\partial (x y^{-1})^{j}}{\partial x_{i}} \Big|_{a} = [J(x y^{-1})_{a} \cdot b]_{j}. \end{split}$$

con $\mathbb{J}(xy^{-1})_a$ la matriz jacobiana de $xy^{-1}:y(U\cap V)\subset\mathbb{R}^n\to x(U\cap V)\subset\mathbb{R}^n$ en el punto $a\in y(U\cap V)$. Por lo tanto, usando que por (a) es $\pi\overline{y}^{-1}(a,b)=y^{-1}(a)$, luego

$$\begin{split} x\overline{y}^{-1}(a,b) &= (x\pi(\overline{y}^{-1}(a,b)), \overline{y}^{-1}(a,b)(x^{1}), \dots, \overline{y}^{-1}(a,b)(x^{n})) \\ &= (xy^{-1}(a), [J(xy^{-1})_{a} \cdot b]_{1}, \dots, [J(xy^{-1})_{a} \cdot b]_{n}) \\ &= (xy^{-1}(a), J(xy^{-1})_{a} \cdot b). \end{split}$$

Como M es variedad diferenciable, luego xy^{-1} es suave y entonces $a \mapsto \mathbb{J}(xy^{-1})_a$ es suave. De ésto último tenemos que $(a,b) \mapsto \mathbb{J}(xy^{-1})_a \cdot b$ es suave¹, por lo que concluimos que \overline{xy}^{-1} es diferenciable.

¹Esto es porque en cada componente $(a,b) \mapsto \mathbb{J}(xy^{-1})_a \cdot b$ coincide con $(a,b) \mapsto \sum_{i=1}^n b^i \frac{\partial (xy^{-1})^j}{\partial x_i} \Big|_a$ que es una suma de productos de proyectar a $\mathbb{J}(xy^{-1})$ o $(a,b) \mapsto b$ en alguna coordenada, y todas las funciones involucradas son suaves.

Guido Arnone Práctica 2

(c) En primer lugar, veamos que la colección $\mathcal{T} = \{TU : U \subset M \text{ abierto}\}$ es una topología que hace de TM una variedad topológica. Antes que nada, observemos que si $(U_i)_{i \in I}$ es una familia de abiertos de M, luego por definición es $T(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} TU_i$ y $T(\bigcap_{i \in I} U_i) = \bigcap_{i \in I} TU_i$. En particular, como $M = \bigcup_{(x,U)\in\mathcal{A}} U$ luego $TM = \bigcup_{(x,U)\in\mathcal{A}} TU$ y además los conjuntos TU son cerrados por interesecciones finitas y uniones arbitrarias, ya que los abiertos de M lo son. Así,

(d) Sea $v \in TM$ con $p \in M$ tal que $v \in M_p$. Ahora, tomemos una carta (U,x) de M con $\pi(v) = p \in U$. Por (c) sabemos que (TU, \overline{x}) es una carta de v, y por definición de TU es también $\pi(TU) = U$. Por lo tanto, resta ver que *bajando* con estas cartas la función que resulta es diferenciable entre abiertos euclídeos. Es decir, basta con probar que la flecha punteada del siguiente diagrama conmutativo es diferenciable:

Notemos que para todo $\nu \in TU$, el vector $x \circ \pi(\nu)$ coincide exactamente con las primeras n coordenadas de $\overline{x}(\nu)$ por definición de ésta última. Notando $\pi_1:(p,q)\in\mathbb{R}^n\times\mathbb{R}^n\mapsto p\in\mathbb{R}^n$ es entonces $x\circ\pi\circ\overline{x}^{-1}=\pi_1|_{x(U)\times\mathbb{R}^n}\circ\overline{x}\circ\overline{x}^{-1}=\pi_1|_{x(U)\times\mathbb{R}^n}$, y esta última es diferenciable ya que es la restricción al abierto $x(U)\times\mathbb{R}^n$ de la función diferenciable π_1 .

Observación 1. Sea M una variedad diferenciable, $f \in C^{\infty}(M)$ una función constante $y : C^{\infty}(M) \to \mathbb{R}$ una derivación en $p \in M$. Entonces, v(f) = 0. En efecto, si notamos $1 : M \to \mathbb{R}$ a la función constantemente 1, luego

$$\nu(1) = \nu(1\cdot 1) \stackrel{(Leibniz)}{=} 1(p)\nu(1) + 1(p)\nu(1) = 2\nu(1).$$

Esto implica v(1) = 0. Si ahora f vale constantemente $\mu \in \mathbb{R}$, entonces

$$v(f) = v(\mu \cdot 1) = \mu v(1) = 0$$

como afirmamos.

Lema 2. Sea $f: X \to Y$ una función con X un espacio topológico conexo. Si f es localmente constante, entonces es constante.

Demostración. Notemos que si $y \in \text{im } f$, el conjunto $E_y := f^{-1}(y) = \{x \in X : f(x) = y\}$ es abierto: si $z \in E_y$, por hipótesis existe un abierto $U \ni z$ donde f es constante, y como f(z) = y luego f es constantemente y en todo U. Por lo tanto, es $z \in U \subset E_y$. Es claro además que estos conjuntos son disjuntos, pues si $z \in E_y \cap E_{y'}$ luego y = f(z) = y'. Por último, como

$$X = \bigsqcup_{y \in \operatorname{im} f} E_y$$

es una escritura de X como unión de abiertos disjuntos no vacíos y X es conexo, necesariamente es # im f = 1. Esto dice que f es una función constante.

Guido Arnone Práctica 2

Ejercicio 12. Sean M y N variedades diferenciables y sea $f: M \to N$ una función diferenciable.

- Si f es constante, entonces $f_{*p} = 0$ para todo $p \in M$.
- Si M es conexa y $f_{*p} = 0$ para todo $p \in M$, entonces f es constante.

Demostración. Notaremos $c_q: M \to N$ a la función que vale constantemente q. Definimos también $m := \dim M$ y $n := \dim N$. Supongamos en primer lugar que $f = c_q$. Sea $p \in M$ y veamos que f_{*p} es nula. Dada una derivación $v : C^{\infty}(M) \to \mathbb{R}$ en $p y g \in C^{\infty}(M)$, luego es

$$f_{*p}(v)(g) = v(-\circ f)(g) = v(gf) = v(gc_g) = v(c_{g(g)}) = 0,$$

con esta última igualdad dada por la Observación 1. Como la derivación $f_{*p}(\nu)$ se anula en toda función, tenemos que $f_{*p}(\nu)=0$. Como f_{*p} se anula en toda derivación, luego $f_{*p}=0$ y esto vale para cualquier punto $p\in M$. Supongamos ahora que M es conexa y veamos para este caso la afirmación recíproca. Sea entonces $p\in M$ y veamos que existe un entorno abierto de p donde f es constante. Consideramos ahora una carta (V,ψ) de N con $f(p)\in V$ y una carta (U,ϕ) de M con $p\in U\subset f^{-1}(V)$ y U conexo². Luego, los ganchos $\left\{\frac{\partial}{\partial x_i}\Big|_q^\phi\right\}_{i=1}^n$ son una base de T_qM para cada $q\in U$. Por hipótesis, si $g\in C^\infty(N)$ y ν es una derivación en q, luego $\nu(gf)=f_{*q}(\nu)(g)=0$. En particular, tenemos entonces que

$$\frac{\partial}{\partial x_i}\Big|_q^{\varphi}(gf) = \frac{\partial gf\varphi^{-1}}{\partial x_i}\Big|_{\varphi^{-1}(g)} = 0$$

para todo $i \in [m]$ y $q \in U$. Es decir, la función diferenciable $gf\phi^{-1}: \phi^{-1}(U) \to \mathbb{R}$ tiene gradiente nulo. Como U es conexo y ϕ es homeomorfismo, luego $\phi^{-1}(U)$ es conexo. Como $gf\phi^{-1}$ tiene gradiente nulo y dominio conexo luego es constante:

$$gf\phi^{-1}(x)=\mu_q\in\mathbb{R}\quad (\forall x\in\phi^{-1}(U)).$$

Equivalentemente, es $gf \equiv c_{\phi(\mu_g)}$ en U para cada $g \in C^{\infty}(N)$. Ahora, para cada $i \in [\![n]\!]$ consideramos $\overline{\psi}^i \in C^{\infty}(N)$ tal que $\overline{\psi}^i|_V = \psi^i$. Así, existen constantes $c_1,\ldots,c_n \in \mathbb{R}$ tales que $\overline{\psi}^i f \equiv c_i$ en U y como $f(U) \subset V$ es entonces

$$c_{\mathfrak{i}} \equiv \overline{\psi}^{\mathfrak{i}}|_{V} \circ f \Big|_{U}^{V} = \psi^{\mathfrak{i}} \circ f \Big|_{U}^{V}$$

en U para cada $i \in [n]$. Por lo tanto, es $\psi f|_U^V \equiv c$. Como ψ es homeomorfismo, luego $f|_U^V \equiv \psi(c)$. Así, vemos que f es constante en el abierto $U \ni p$. Como p era arbitrario, concluimos que f es localmente constante y como M es conexa, el Lema 2 nos dice que f resulta constante.

²Como f es continua luego f⁻¹(V) es abierto y entonces f⁻¹(V) ∩ U es un abierto de M que contiene a p. Luego f⁻¹(V) ∩ U es un abierto en U, y como éste es homeomorfo a un abierto euclídeo, luego f⁻¹(V) ∩ U lo es también. En particular tenemos un entorno conexo \tilde{U} de p contenido en f⁻¹(V) ∩ U. Luego la restricción de la carta a \tilde{U} es una carta que cumple lo que pedimos. Por lo tanto, podemos sin pérdida de generalidad asumir directamente a U conexo con $U \subset f^{-1}(V)$.