# The plugin otagrum: learning nonparametric Copula Bayesian Networks

#### Marvin LASSERRE

supervised by Pierre-Henri WUILLEMIN (LIP6) and Régis LEBRUN (Airbus CRT)

June 10, 2022





 Why distributions? Because we are faced with uncertainties (lack of information, inherently uncertain problems),

- Why distributions ? Because we are faced with uncertainties (lack of information, inherently uncertain problems),
- Why continuous? Because in applications such as physics, engineering or finance variables are often continuous,

- Why distributions? Because we are faced with uncertainties (lack of information, inherently uncertain problems),
- Why continuous? Because in applications such as physics, engineering or finance variables are often continuous,
- Why non-parametric? Because parametric models such as Gaussian are too restrictive for certain applications such as anomaly detection, risk analysis or reliability analysis.

- Why distributions? Because we are faced with uncertainties (lack of information, inherently uncertain problems),
- Why continuous? Because in applications such as physics, engineering or finance variables are often continuous,
- Why non-parametric? Because parametric models such as Gaussian are too restrictive for certain applications such as anomaly detection, risk analysis or reliability analysis.
- Why high-dimensional? Because complex systems involve a large number of variables,

- Why distributions? Because we are faced with uncertainties (lack of information, inherently uncertain problems),
- Why continuous? Because in applications such as physics, engineering or finance variables are often continuous.
- Why non-parametric? Because parametric models such as Gaussian are too restrictive for certain applications such as anomaly detection, risk analysis or reliability analysis.
- Why high-dimensional? Because complex systems involve a large number of variables,
- Challenge: Various non-parametric models exists to estimate a density but they are limited to a few dimensions ( $\sim$  5 variables),

- Why distributions? Because we are faced with uncertainties (lack of information, inherently uncertain problems),
- Why continuous? Because in applications such as physics, engineering or finance variables are often continuous,
- Why non-parametric? Because parametric models such as Gaussian are too restrictive for certain applications such as anomaly detection, risk analysis or reliability analysis.
- Why high-dimensional? Because complex systems involve a large number of variables,
- Challenge: Various non-parametric models exists to estimate a density but they
  are limited to a few dimensions (~ 5 variables),
- Solution: Use of Probabilistic Graphical Models (PGM) to break the joint distribution into a product of conditional distributions of lesser dimensions.

Modeling with copulas

•  $U = (U_1, \dots, U_n)$ , **continuous** random variable over  $[0, 1]^n$ ,

•  $U = (U_1, \dots, U_n)$ , **continuous** random variable over  $[0, 1]^n$ ,

### Definition (Copula Nelsen 2007)

A copula function is a cumulative distribution function on  $[0,1]^n$ :

$$C(u_1,\ldots,u_n)=\mathbb{P}(U_1\leq u_1,\ldots,U_n\leq u_n)$$

with uniform one-dimensional marginals:

$$C(1,\ldots,u_i,\ldots,1)=u_i.$$

•  $U = (U_1, \dots, U_n)$ , **continuous** random variable over  $[0, 1]^n$ ,

#### **Definition (Copula Nelsen 2007)**

A copula function is a cumulative distribution function on  $[0,1]^n$ :

$$C(u_1,\ldots,u_n)=\mathbb{P}(U_1\leq u_1,\ldots,U_n\leq u_n)$$

with uniform one-dimensional marginals:

$$C(1,\ldots,u_i,\ldots,1)=u_i.$$

• If C is **absolutely continuous**, a copula density function c exists :

$$c(x) = \frac{\partial^n C}{\partial x_1 \cdots \partial x_n} (x_1, \cdots, x_n)$$



# Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

# Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

$$F(x_1,\cdots,x_n)=C(F_1(x_1),\cdots,F_n(x_n))$$

# Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

$$F(x_1, \cdots, x_n) = C(F_1(x_1), \cdots, F_n(x_n))$$

Moreover, if F is **absolutely** continuous,

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i)$$

# Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

$$F(x_1, \cdots, x_n) = C(F_1(x_1), \cdots, F_n(x_n))$$

Moreover, if F is **absolutely** continuous,

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i)$$

 Decomposition of the joint distribution into a copula function and a set of marginals: more freedom for modeling.

### Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

$$F(x_1, \cdots, x_n) = C(F_1(x_1), \cdots, F_n(x_n))$$

Moreover, if F is **absolutely** continuous,

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i)$$

- Decomposition of the joint distribution into a copula function and a set of marginals: more freedom for modeling.
- C encodes all the information about the dependencies between the variables: interesting for independence tests.

### Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

$$F(x_1,\cdots,x_n)=C(F_1(x_1),\cdots,F_n(x_n))$$

Moreover, if F is **absolutely** continuous,

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i)$$

- Decomposition of the joint distribution into a copula function and a set of marginals: more freedom for modeling.
- C encodes all the information about the dependencies between the variables: interesting for independence tests.
- Non-parametric estimation of the copula with the Empirical Bernstein Copula (EBC),

### Theorem (Sklar, 1959)

For any **continuous** distribution F over  $X_1, \dots, X_n$ , there exists a **unique** copula function C, such that:

$$F(x_1, \dots, x_n) = C(F_1(x_1), \dots, F_n(x_n))$$

Moreover, if F is **absolutely** continuous,

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i)$$

- Decomposition of the joint distribution into a copula function and a set of marginals: more freedom for modeling.
- C encodes all the information about the dependencies between the variables: interesting for independence tests.
- Non-parametric estimation of the copula with the Empirical Bernstein Copula (EBC),

 $\triangle$  C becomes hard to model for high dimensions!

Modeling with Bayesian

**Networks** 

• **Compact** representation of a joint probability distribution over a set of variables **X** using :

- Compact representation of a joint probability distribution over a set of variables X using:
  - A Directed Acyclic Graph (DAG),



$$\mathcal{I}_I(\mathcal{G}) = \{(X_i \perp \mathsf{ND}_i | \mathsf{Pa}_i)\}.$$

- Compact representation of a joint probability distribution over a set of variables X using:
  - A Directed Acyclic Graph (DAG),
  - A set of Conditional Probability Distributions (CPD).



- Compact representation of a joint probability distribution over a set of variables X using:
  - A Directed Acyclic Graph (DAG),
  - A set of Conditional Probability Distributions (CPD).



Discrete case: Conditional Probability Tables.

- Compact representation of a joint probability distribution over a set of variables X using:
  - A Directed Acyclic Graph (DAG),
  - A set of Conditional Probability Distributions (CPD).



Discrete case: Conditional Probability Tables.

Continuous case: ???

# Bayesian Networks and continuous data

#### • Discretization :

- 1. Limited to only a few bins for fast inference and learning algorithms.
- 2. Which one do we chose to minimize the loss of information?
- 3. How to a continuous model from there ?

# Bayesian Networks and continuous data

#### Discretization :

- 1. Limited to only a few bins for fast inference and learning algorithms.
- 2. Which one do we chose to minimize the loss of information?
- 3. How to a continuous model from there?
- Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.

1989: 
$$f(y|\mathbf{x}) = \mathcal{N}(y; \beta_0 + \sum_{i=1}^k \beta_i x_i, \sigma_y^2)$$

- 1. Good: Fast inference and learning algorithms,
- 2. Bad: Strong model assumptions (Gaussian),

# Bayesian Networks and continuous data

#### Discretization :

- 1. Limited to only a few bins for fast inference and learning algorithms.
- 2. Which one do we chose to minimize the loss of information?
- 3. How to a continuous model from there?
- Linear Gaussian Bayesian Networks (LGBN) Lauritzen et al.

1989: 
$$f(y|\mathbf{x}) = \mathcal{N}(y; \beta_0 + \sum_{i=1}^k \beta_i x_i, \sigma_y^2)$$

- 1. Good: Fast inference and learning algorithms,
- 2. Bad: Strong model assumptions (Gaussian),
- Mixture models: Langseth et al. 2012; Cortijo et al. 2016
  - 1. Good: Expressive models,
  - 2. Bad: Hard to learn

Copula Bayesian Networks

(CBNs)



# Definition (Copula Bayesian Network, Elidan 2010)

•  $\mathcal{G}$ : DAG over  $\boldsymbol{X}$ ,

# Definition (Copula Bayesian Network, Elidan 2010)

- $\mathcal{G}$ : DAG over  $\boldsymbol{X}$ ,
- $\Theta_C$ : set of (local) copula densities  $c_i$ ,

# Definition (Copula Bayesian Network, Elidan 2010)

- $\mathcal{G}$ : DAG over  $\boldsymbol{X}$ ,
- $\Theta_C$ : set of (local) copula densities  $c_i$ ,
- $\Theta_f$  set of marginal densities  $f_i$

# Definition (Copula Bayesian Network, Elidan 2010)

- $\mathcal{G}$ : DAG over  $\boldsymbol{X}$ ,
- $\Theta_C$ : set of (local) copula densities  $c_i$ ,
- $\Theta_f$  set of marginal densities  $f_i$

A Copula Bayesian Network (CBN) is a triplet  $(\mathcal{G}, \Theta_C, \Theta_f)$ 

# Definition (Copula Bayesian Network, Elidan 2010)

- $\mathcal{G}$ : DAG over  $\boldsymbol{X}$ ,
- $\Theta_C$ : set of (local) copula densities  $c_i$ ,
- $\Theta_f$  set of marginal densities  $f_i$

A Copula Bayesian Network (CBN) is a triplet  $(\mathcal{G}, \Theta_C, \Theta_f)$  which encodes a joint density  $f(\mathbf{X})$  that factorizes over  $\mathcal{G}$ :

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i) \text{ (Sklar)}$$
$$= \prod_{i=1}^n R_i(F_i(x_i)|\mathbf{F}(pa_{X_i})) \cdot f_i(x_i)$$

where 
$$R_i(u_i|\pi_i) = \frac{c_i(u_i,\pi_i)}{c_i(\pi_i)}$$
.

## Copula Bayesian Networks: definition

#### Definition (Copula Bayesian Network, Elidan 2010)

- *G* : DAG over *X*,
- $\Theta_C$ : set of (local) copula densities  $c_i$ ,
- $\Theta_f$  set of marginal densities  $f_i$

A Copula Bayesian Network (CBN) is a triplet  $(\mathcal{G}, \Theta_C, \Theta_f)$  which encodes a joint density  $f(\mathbf{X})$  that factorizes over  $\mathcal{G}$ :

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i) \text{ (Sklar)}$$
$$= \prod_{i=1}^n R_i(F_i(x_i)|\mathbf{F}(pa_{X_i})) \cdot f_i(x_i)$$

where 
$$R_i(u_i|\pi_i) = \frac{c_i(u_i,\pi_i)}{c_i(\pi_i)}$$
.

• Same graphical language than classical BNs (same independences)

## Copula Bayesian Networks: definition

## Definition (Copula Bayesian Network, Elidan 2010)

- $\mathcal{G}$ : DAG over  $\boldsymbol{X}$ ,
- $\Theta_C$ : set of (local) copula densities  $c_i$ ,
- $\Theta_f$  set of marginal densities  $f_i$

A Copula Bayesian Network (CBN) is a triplet  $(\mathcal{G}, \Theta_C, \Theta_f)$  which encodes a joint density  $f(\mathbf{X})$  that factorizes over  $\mathcal{G}$ :

$$f(x_1, \dots, x_n) = c(F_1(x_1), \dots, F_n(x_n)) \prod_{i=1}^n f_i(x_i) \text{ (Sklar)}$$
$$= \prod_{i=1}^n R_i(F_i(x_i)|\mathbf{F}(pa_{X_i})) \cdot f_i(x_i)$$

where 
$$R_i(u_i|\pi_i) = \frac{c_i(u_i,\pi_i)}{c_i(\pi_i)}$$
.

- Same graphical language than classical BNs (same independences)
- Classic algorithms can be adapted for structural learning.









- $\Theta_C = \{c_1(u_1) \equiv 1, c_2(u_2) \equiv 1, c_3(u_3, u_1, u_2), c_4(u_4, u_3)\}$
- $\Theta_f = \{f_1(x_1), f_2(x_2), f_3(x_3), f_4(x_4)\}$



- $\Theta_C = \{c_1(u_1) \equiv 1, c_2(u_2) \equiv 1, c_3(u_3, u_1, u_2), c_4(u_4, u_3)\}$
- $\Theta_f = \{f_1(x_1), f_2(x_2), f_3(x_3), f_4(x_4)\}$
- $f(x_1, x_2, x_3, x_4) = [R_1(F_1(x_1))f_1(x_1)][R_2(F_2(x_2))f_2(x_2)]$   $\times [R_3(F_3(x_3)|F_1(x_1), F_2(x_2))f_3(x_3)]$  $\times [R_4(F_4(x_4)|F_3(x_3))f_4(x_4)]$



- $\Theta_C = \{c_1(u_1) \equiv 1, c_2(u_2) \equiv 1, c_3(u_3, u_1, u_2), c_4(u_4, u_3)\}$
- $\Theta_f = \{f_1(x_1), f_2(x_2), f_3(x_3), f_4(x_4)\}$
- $f(x_1, x_2, x_3, x_4) = [R_1(F_1(x_1))f_1(x_1)][R_2(F_2(x_2))f_2(x_2)]$   $\times [R_3(F_3(x_3)|F_1(x_1), F_2(x_2))f_3(x_3)]$  $\times [R_4(F_4(x_4)|F_3(x_3))f_4(x_4)]$
- Parametric copulas: Gaussian, Student, Dirichlet, ...



- $\Theta_C = \{c_1(u_1) \equiv 1, c_2(u_2) \equiv 1, c_3(u_3, u_1, u_2), c_4(u_4, u_3)\}$
- $\Theta_f = \{f_1(x_1), f_2(x_2), f_3(x_3), f_4(x_4)\}$
- $f(x_1, x_2, x_3, x_4) = [R_1(F_1(x_1))f_1(x_1)][R_2(F_2(x_2))f_2(x_2)]$   $\times [R_3(F_3(x_3)|F_1(x_1), F_2(x_2))f_3(x_3)]$  $\times [R_4(F_4(x_4)|F_3(x_3))f_4(x_4)]$
- Parametric copulas: Gaussian, Student, Dirichlet, . . .
- Non-parametric copulas: Empirical Bernstein Copula (EBC)

Structure learning for CBNs

## Learning algorithms

- CPC a continuous PC algorithm based on an independence test using Hellinger distance:
  - M. Lasserre et al. (May 2020). "Constraint-Based Learning for Non-Parametric Continuous Bayesian Networks". In: FLAIRS 33 -33rd Florida Artificial Intelligence Research Society Conference. Miami, United States: AAAI, pp. 581–586
  - M. Lasserre et al. (2021a). "Constraint-based learning for non-parametric continuous bayesian networks". In: Annals of Mathematics and Artificial Intelligence, pp. 1–18

## Learning algorithms

- CPC a continuous PC algorithm based on an independence test using Hellinger distance:
  - M. Lasserre et al. (May 2020). "Constraint-Based Learning for Non-Parametric Continuous Bayesian Networks". In: FLAIRS 33 -33rd Florida Artificial Intelligence Research Society Conference. Miami, United States: AAAI, pp. 581–586
  - M. Lasserre et al. (2021a). "Constraint-based learning for non-parametric continuous bayesian networks". In: Annals of Mathematics and Artificial Intelligence, pp. 1–18
- CMIIC, an algorithm based on information theory:
  - M. Lasserre et al. (2021b). "Learning Continuous High-Dimensional Models using Mutual Information and Copula Bayesian Networks".
     In: Proceedings of the AAAI Conference on Artificial Intelligence.
     Vol. 35. 13, pp. 12139–12146

## Learning algorithms

- CPC a continuous PC algorithm based on an independence test using Hellinger distance:
  - M. Lasserre et al. (May 2020). "Constraint-Based Learning for Non-Parametric Continuous Bayesian Networks". In: FLAIRS 33 -33rd Florida Artificial Intelligence Research Society Conference. Miami, United States: AAAI, pp. 581–586
  - M. Lasserre et al. (2021a). "Constraint-based learning for non-parametric continuous bayesian networks". In: Annals of Mathematics and Artificial Intelligence, pp. 1–18
- CMIIC, an algorithm based on information theory:
  - M. Lasserre et al. (2021b). "Learning Continuous High-Dimensional Models using Mutual Information and Copula Bayesian Networks".
     In: Proceedings of the AAAI Conference on Artificial Intelligence.
     Vol. 35. 13, pp. 12139–12146
- Improvement of the state of the art algorithm (CBIC) by using mutual information to speed up the calculations.

- 1. We generate random reference structures,
- 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- 5. Structural scores are computed: F-score et SHD.

- ightarrow 1. We generate random reference structures,
  - 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
  - 3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.

- ightarrow 1. We generate **random** reference structures,
  - 2. Copulas are parametrized : Gaussian, Student or Dirichlet,
  - 3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.



- 1. We generate random reference structures,
- $\rightarrow$  2. Copulas are parametrized : Gaussian, Student or Dirichlet,
  - 3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.

- 1. We generate random reference structures,
- $\rightarrow$  2. Copulas are parametrized : **Gaussian**, Student or Dirichlet,
  - 3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.



- 1. We generate random reference structures,
- $\rightarrow$  2. Copulas are parametrized : Gaussian, **Student** or Dirichlet,
  - 3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.



- 1. We generate random reference structures,
- $\rightarrow$  2. Copulas are parametrized : Gaussian, Student or **Dirichlet**,
  - 3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.



- 1. We generate random reference structures,
- 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
- $\rightarrow$  3. Samples are generated from the CBN: forward-sampling,
  - 4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.

- 1. We generate random reference structures,
- 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- $\rightarrow$  4. A structure is learned from the generated data,
  - 5. Structural scores are computed: F-score et SHD.

- 1. We generate random reference structures,
- 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- ightarrow 5. Structural scores are computed : F-score et SHD.

- 1. We generate random reference structures,
- 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- ightarrow 5. Structural scores are computed : **F-score** et SHD.

- 1. We generate random reference structures,
- 2. Copulas are parametrized: Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- $\rightarrow$  5. Structural scores are computed : **F-score** et SHD.

• F-score : skeleton (undirected structure)

- 1. We generate random reference structures,
- 2. Copulas are parametrized : Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- $\rightarrow$  5. Structural scores are computed : F-score et **SHD**.
  - F-score : skeleton (undirected structure)
    - Skeleton perfectly retrieved : F-score = 1

- 1. We generate random reference structures,
- 2. Copulas are parametrized : Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- $\rightarrow$  5. Structural scores are computed : F-score et **SHD**.
  - F-score : skeleton (undirected structure)
    - Skeleton perfectly retrieved : F-score = 1

• **Structural Hamming Distance** (SHD) : CPDAG (skeleton + v-structures)

- 1. We generate random reference structures,
- 2. Copulas are parametrized : Gaussian, Student or Dirichlet,
- 3. Samples are generated from the CBN: forward-sampling,
- 4. A structure is learned from the generated data,
- ightarrow 5. Structural scores are computed : F-score et SHD.
  - F-score : skeleton (undirected structure)
    - Skeleton perfectly retrieved : F-score = 1

- Structural Hamming Distance (SHD) : CPDAG (skeleton + v-structures)
  - CPDAG perfectly retrieved : SHD=0

#### F-score evolution: random structures



**F-score** evolution for **CBIC**, **CPC**, **G-CMIIC** and **B-CMIIC** methods with respect to the **dimension** of the random structures. The results are averaged over 2 random structures of same dimension and over 5 different samples of size  $m = 10^4$ .

#### SHD evolution: random structures



SHD evolution for CBIC, CPC, G-CMIIC and B-CMIIC methods with respect to the dimension of the random structure. The results are averaged over 2 different structures of same dimension and over 5 different samples of size  $m = 10^4$ .

# Temporal complexity



**Learning time in seconds** for CBIC, CPC, G-CMIIC et B-CMIIC with respect to the dimension of the random structures. The results are averaged over 2 different random structures of same dimension and over 5 different samples of size  $m=10^4$ .

The otagrum module

Two similar libraries (C++, python wrappers, open source):

Two similar libraries (C++, python wrappers, open source):

• **OpenTURNS** deals with copulas and continuous distributions (available on GitHub, pip and conda).

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: **otagrum**.

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: otagrum.

What does it contain?

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: otagrum.

### What does it contain?

A CBN class,

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: otagrum.

### What does it contain?

- A CBN class,
- Several learning algorithms,

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: otagrum.

### What does it contain?

- A CBN class.
- Several learning algorithms,
- A detailed documentation.

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: otagrum.

### What does it contain?

- A CBN class,
- Several learning algorithms,
- A detailed documentation.

### Where to find it?

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: otagrum.

### What does it contain?

- A CBN class,
- Several learning algorithms,
- A detailed documentation.

### Where to find it?

• Module : openturns/otagrum (GitHub)

Two similar libraries (C++, python wrappers, open source):

- OpenTURNS deals with copulas and continuous distributions (available on GitHub, pip and conda).
- aGrUM deals with (discrete) graphical models (available on GitLab, pip and conda).

A module to rule them all: **otagrum**.

### What does it contain?

- A CBN class,
- Several learning algorithms,
- A detailed documentation.

### Where to find it?

- Module : openturns/otagrum (GitHub)
- Experiments : MLasserre/otagrum-experiments (GitHub)

### otagrum: installation

• Online website: https://openturns.github.io/otagrum/master/index.html



Can be easily installed using conda:

\$ conda install -c conda-forge otagrum

• Or manually to have the development version.

## Using OTaGrUM: The wine data set Importing modules Entrée [1]: import openturns as ot import openturns.viewer as otv import pyAgrum as gum import pyAgrum.lib.notebook as gnb import otagrum as otagr Loading data Entrée [2]: data\_ref = ot.Sample.ImportFromTextFile('winequality-red.csv', ";")

# Structure learning with CBIC algorithm Entrée [3]: learner = otagr.TabuList(data\_ref, 2, 10, 2) # Creating a TabuList learner chic\_dag = learner\_learnbAg() # Learning DAG gnb.ShowDot(cbic\_dag-tobot()) # Learning DAG readed subject to the state of th





### 



Conclusion & Future Works

### Conclusion

### Summary:

- CBNs allow to take advantage of conditional independences to reduce the global complexity,
- Using the Empirical Bernstein Copula we obtained non-parametric independence tests and non-parametric CBNs,
- We implemented learning algorithms for CBNs in the plugin otagrum,

### Future works: Inference in CBNs

• It consists in finding:

$$f(T|E=e)$$

where  $T, E \subset X$  such that  $T \cap E$ .

- Use of sampling to make approximate inferences,
- Use of junction trees to make numerical integrations.

Thank you for your attention!

Bibliography

- Cortijo, S. and C. Gonzales (2016). "Bayesian networks with conditional truncated densities". In: *The Twenty-Ninth International Flairs Conference* (cit. on pp. 27–29).
- Elidan, G. (2010). "Copula bayesian networks". In: *Advances in neural information processing systems*, pp. 559–567 (cit. on pp. 31–38).
- Langseth, H., T. D. Nielsen, R. Rumı, and A. Salmerón (2012). "Mixtures of truncated basis functions". In: *International Journal of Approximate Reasoning* 53.2, pp. 212–227 (cit. on pp. 27–29).
- Lasserre, M., R. Lebrun, and P.-H. Wuillemin (May 2020). "Constraint-Based Learning for Non-Parametric Continuous Bayesian Networks". In: *FLAIRS 33 - 33rd Florida Artificial Intelligence Research Society Conference*. Miami, United States: AAAI, pp. 581–586 (cit. on pp. 47–49).
  - Lasserre, M., R. Lebrun, and P.-H. Wuillemin (2021a). "Constraint-based learning for non-parametric continuous bayesian networks". In: *Annals of Mathematics and Artificial Intelligence*, pp. 1–18 (cit. on pp. 47–49).

- Lasserre, M., R. Lebrun, and P.-H. Wuillemin (2021b). "Learning Continuous High-Dimensional Models using Mutual Information and Copula Bayesian Networks". In: *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 35. 13, pp. 12139–12146 (cit. on pp. 47–49).
- Lauritzen, S. L. and N. Wermuth (1989). "Graphical models for associations between variables, some of which are qualitative and some quantitative". In: *The annals of Statistics*, pp. 31–57 (cit. on pp. 27–29).
- Nelsen, R. B. (2007). *An introduction to copulas*. Springer Science & Business Media (cit. on pp. 9–12).