Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Системы обработки информации и управления»

Лабораторная работа №4 по дисциплине «Методы машинного обучения» «Создание рекомендательной системы»

Цель работы: изучение разработки рекомендательных моделей

Исходные данные ratings:

	DOOK	user	rating
0	1	314	5
1	1	439	3
2	1	588	5
3	1	1169	4
4	1	1185	4

```
min = ratings['rating'].min()
max = ratings['rating'].max()
median = ratings['rating'].median()
mean = ratings['rating'].mean()
print(" Минимальная оценка: {0}\n Максимальная оценка: {1}\n Медианное значение: {2}\n Среднее значение {3}"
      .format(min, max, median, mean))
 Минимальная оценка: 1
 Максимальная оценка: 5
 Медианное значение: 4.0
```

Среднее значение 3.8565335989797873

```
SVD-разложение
  In [16]: from sklearn.model_selection import train_test_split
              train ratings, test ratings = train test split(ratings, test size=0.3)
             print('Pasmep обучающей выборки: {}'.format(train_ratings.shape))
print('Pasmep тестовой выборки: {}'.format(test_ratings.shape))
             Размер обучающей выборки: (687229, 3)
              Размер тестовой выборки: (294527, 3)
 In [161]: train_matrix = np.zeros((cnt_users, cnt_books))
             for line in train_ratings.itertuples():
    train_matrix[line.user - 1, line.book - 1 ] = line.rating - 1
              test_matrix = np.zeros((cnt_users, cnt_books))
              for line in test_ratings.itertuples():
    test_matrix[line.user - 1, line.book - 1] = line.rating - 1
 In [162]: test_matrix.shape
Out[162]: (53424, 10000)
 In [163]: train_matrix
 Out[163]: array([[0., 0., 0., ..., 0., 0., 0.],
                      [0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]
                      [0., 0., 0., ..., 0., 0., 0.],
                      [0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
 In [164]: u, s, vt = svds(train_matrix, k=250)
s_diag_matrix = np.diag(s)
              X_pred = np.dot(np.dot(u, s_diag_matrix), vt)
              print (X_pred.shape, test_matrix.shape)
              print('User-based CF MSE: ' + str(rmse(X_pred, test_matrix)))
              (53424, 10000) (53424, 10000)
             User-based CF MSE: 2.7622900204837655
 In [165]: u, s, vt = svds(train_matrix, k=100)
s_diag_matrix = np.diag(s)
              X_pred = np.dot(np.dot(u, s_diag_matrix), vt)
              print (X_pred.shape, test_matrix.shape)
              print('User-based CF MSE: ' + str(rmse(X_pred, test_matrix)))
              (53424, 10000) (53424, 10000)
User-based CF MSE: 2.832179678621353
```

Заполним пропуски в матрице средней оценкой

```
In [149]: r_average = ratings['rating'].mean()
train_matrix[train_matrix == 0] = np.NaN
  In [150]: r average
   Out[150]: 3.8565335989797873
   In [153]: train_matrix = pd.DataFrame(train_matrix).fillna(r_average).to_numpy()
   In [154]: train_matrix
   Out[154]: array([[3.8565336, 3.8565336, 3.8565336, ..., 3.8565336, 3.8565336,
                                                             [3.8565336],

[3.8565336],

[3.8565336],

3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.8565336],

[3.856536],

[3.856536],

[3.856536],

[3.856536],

[3.856536],

[3.85653
                                                                  3.85653361,
                                                               [3.8565336, 3.8565336, 3.8565336, ..., 3.8565336, 3.8565336,
                                                               3.8565336],
[3.8565336, 3.8565336, 3.8565336, ..., 3.8565336, 3.8565336,
                                                               [3.8565336],
[3.8565336], 3.8565336, 3.8565336, ..., 3.8565336, 3.8565336,
3.8565336]])
   In [156]: test_matrix
  Out[156]: array([[0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.], [0., 0., 0., ..., 0., 0., 0.],
                                                               [0., 0., 0., ..., 0., 0., 0.],
                                                               [0., 0., 0., ..., 0., 0., 0.],
[0., 0., 0., ..., 0., 0., 0.]])
In [160]: u, s, vt = svds(train_matrix, k=250)
s_diag_matrix = np.diag(s)
                                    X_pred = np.dot(np.dot(u, s_diag_matrix), vt)
                                    print (X_pred.shape, test_matrix.shape)
                                   print('User-based CF MSE: ' + str(rmse(X_pred, test_matrix)))
                                  (53424, 10000) (53424, 10000)
User-based CF MSE: 1.244571565908985
```

Для каждой строчки заполняем пропуски средней оценкой по строке – это учитывает манеру проставления оценок.

```
In [146]: u, s, vt = svds(train_matrix, k=250)
s_diag_matrix = np.diag(s)
# npecksassaem
X_pred = np.dot(np.dot(u, s_diag_matrix), vt)

print (X_pred.shape, test_matrix.shape)

# выводим метрику
print('User-based CF MSE: ' + str(rmse(X_pred, test_matrix)))

(53424, 10000) (53424, 10000)
User-based CF MSE: 0.8080460521776914
```

Рекомендации с помощью TfidfVectorizer по ключевым словам для книг

books_result.head()

	book_id	title	original_title	authors	average_rating	tags	book_desc	genres
0	2767052	The Hunger Games (The Hunger Games, #1)	The Hunger Games	Suzanne Collins	4.34	to-read fantasy favorites currently-reading yo	None	None
1	3	Harry Potter and the Sorcerer's Stone (Harry P	Harry Potter and the Philosopher's Stone	J.K. Rowling, Mary GrandPré	4.44	to-read fantasy favorites currently-reading yo	None	None
2	41865	Twilight (Twilight, #1)	Twilight	Stephenie Meyer	3.57	to-read fantasy favorites currently-reading yo	None	None
3	2657	To Kill a Mockingbird	To Kill a Mockingbird	Harper Lee	4.25	to-read favorites currently-reading young-adul	The unforgettable novel of a childhood in a sl	Classics Fiction Historical Historical Fiction
4	4671	The Great Gatsby	The Great Gatsby	F. Scott Fitzgerald	3.89	to-read favorites currently-reading young-adul	Alternate Cover Edition ISBN: 0743273567 (ISBN	Classics Fiction Academic School Literature Hi

Out[189]:

	title	corr
242	Misery	0.656433
552	Needful Things	0.654482
304	Pet Sematary	0.646338
674	Firestarter	0.642161
348	'Salem's Lot	0.640320
704	Thinner	0.632258
669	The Dead Zone	0.617296
910	Gerald's Game	0.595837
1338	The Mist	0.582776
1138	The Tommyknockers	0.582351
943	Desperation	0.577643
914	Insomnia	0.575003
793	Doctor Sleep (The Shining, #2)	0.568818
236	Carrie	0.565448