18.303 Midterm, Fall 2012

Problem 1: Adjoints and operators (20 points)

Consider the operator $\hat{A} = \frac{\partial^2}{\partial x^2}$ on functions u(x) over the interval [0, L], with the boundary conditions u(0) = 0 and $u'(L) - \alpha u(L) = 0$ for some real number α (where u' is the derivative).

- (a) Show that $\hat{A}^* = \hat{A}$ under $\langle u, v \rangle = \int_0^L \bar{u}(x)v(x) \, dx$.
- (b) For what values of α , if any, can you show that $\hat{A}u = \frac{\partial u}{\partial t}$ will have decaying solutions as $t \to \infty$?

Problem 2: Finite differences (20 points)

Suppose we have a 1d diffusion-like equation $\hat{A}u = \frac{\partial^2 u}{\partial x^2} - cu = \frac{\partial u}{\partial t}$, for some c(x) > 0, on the domain $\Omega = [0, L]$ in a system with a solute flux u'(0) = 1 entering Ω from the left, and the solute is removed immediately when it reaches the right, i.e. u(L) = 0.

Suppose we are solving for the steady-state solution u(x) with $\partial u/\partial t=0$. Using the center-difference approximation $u_m''\approx \frac{u_{m+1}-2u_m+u_{m-1}}{\Delta x^2}$, write down a matrix approximation of this problem Au=b, for $u_m\approx u(m\Delta x)$. Let $c_m=c(m\Delta x)$. That is, what is the matrix A and what is the right-hand side vector b? ($b\neq 0$ due to the boundary conditions!)

Problem 3: Green-ish functions (20 points)

Consider $\hat{A} = -\frac{\partial^2}{\partial x^2}$ on [0, L] with Dirichlet boundaries u(0) = u(L) = 0.

- (a) Find the solution u(x) to $\hat{A}u = \delta'(x-y)$ for any 0 < y < L. [Hint: first solve for u at $x \neq y$ in terms of some unknown coefficient(s), and then plug your coefficients into $\hat{A}u = \delta'(x-y)$ to find the coefficients.] Recall that the distributional derivative is $f'\{\phi\} = f\{-\phi'\}$, so that $\delta'(x-y)\{\phi(x)\} = \delta(x-y)\{-\phi'\} = -\phi'(y)$, and that the derivative of a discontinuous function gives a delta function at the discontinuity multiplied by the amplitude of the discontinuity.
- (b) Since your solution to the previous part depends on both x and y, call it D(x, y). Now, suppose we are solving $\hat{A}u = f'$ for some f'(x) which is the derivative of a function f'(x). Show that you can write u(x) as some integral of D and f.