Istituzioni di Matematica

Docente: Prof. M.D. Rosini

email: massimilianodaniele.rosini@unife.it

Corso di Laurea in Informatica Università Degli Studi Di Ferrara

a.a. 2022-2023

Funzioni

Indice

1. Definizioni e proprietà generali

2. Alcune funzioni elementari

Sezione 1 Definizioni e proprietà generali

In maniera $non\ rigorosa$, una legge f definita in tutto $\mathbb R$ ed a valori in $\mathbb R$ è una funzione se è possibile disegnarne il grafico muovendosi sempre verso destra con la penna.

In altri termini, f è una funzione se ad ogni x in $\mathbb R$ corrisponde un unico valore f(x) in $\mathbb R.$

Ricordiamo che il grafico di f è ottenuto disegnando nel piano $\mathbb{R} \times \mathbb{R}$ tutti punti (x,f(x)) al variare di x in \mathbb{R} .

In maniera $non\ rigorosa$, una legge f definita in tutto $\mathbb R$ ed a valori in $\mathbb R$ è una funzione se è possibile disegnarne il grafico muovendosi sempre verso destra con la penna.

In altri termini, f è una funzione se ad ogni x in $\mathbb R$ corrisponde un unico valore f(x) in $\mathbb R$.

Ricordiamo che il grafico di f è ottenuto disegnando nel piano $\mathbb{R} \times \mathbb{R}$ tutti punti (x,f(x)) al variare di x in \mathbb{R} .

Esercizio

Quale dei due grafici qui sotto corrisponde al grafico di una funzione?

Chiaramente solo il grafico di sinistra corrisponde a quello di una funzione, mentre quello a destra no visto che, ad esempio, ad x_0 corrispondono ben tre punti.

Definizione

lacktriangle Una funzione f con dominio A e codominio B, o più brevemente

$$f \colon A \to B$$
,

è un processo o una relazione che ad ogni elemento x di A associa uno ed un solo elemento y di B , ossia

$$\forall x \in A \quad \exists ! y \in B \quad \text{t.c.} \quad y = f(x).$$

Definizione

ullet L'immagine di f è il sottoinsieme f(A) di B dato da

$$f(A) = \{ y \in B : \exists x \in A \text{ t.c. } y = f(x) \} = \{ f(x) : x \in A \}.$$

Definizione

 $\bullet\,$ Il grafico di f è il sottoinsieme G di $A\times B$ dato da

$$G = \{(x, y) \in A \times B : y = f(x)\} = \{(x, f(x)) : x \in A\}.$$

Definizione

• L'immagine di $X \subseteq A$ tramite f è dato da

$$f(X) = \{ y \in B : \exists x \in X \text{ t.c. } y = f(x) \} = \{ f(x) : x \in X \}.$$

Definizione

ullet La controlmmagine di $Y\subseteq B$ tramite f è dato da

$$f^{-1}(Y) = \{x \in A : \exists y \in Y \text{ t.c. } y = f(x)\} = \{x \in A : f(x) \in Y\}.$$

Definizione

lacktriangle La funzione f è iniettiva se per ogni $x_1,x_2\in A$ si ha

$$x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2),$$

ovvero

$$f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$$

Definizione

ullet La funzione f è suriettiva se

$$f(A) = B$$

ovvero

$$\forall y \in B \ \exists x \in A \ \mathrm{t.c.} \ y = f(x).$$

Definizione

- La funzione f è biettiva se f è iniettiva e suriettiva.
- Se f biettiva, allora la sua funzione inversa $f^{-1} \colon B \to A$ è definita per ogni $y \in B$ come segue

$$x = f^{-1}(y) \iff f(x) = y.$$

Definizione

• La funzione composta di $f\colon A\to B$ e $g\colon B\to C$ è la funzione $g\circ f\colon A\to C$ definita per ogni $x\in A$ da

$$(g \circ f)(x) = g(f(x)).$$

Δ

Definizione

• L'insieme di definizione di f è il più grande insieme D per cui f(x) è ben definita per ogni $x \in D$.

Proposizione

Se $f: A \to B$ è biettiva, allora si ha che:

$$(f \circ f^{-1})(y) = f(f^{-1}(y)) = y$$
 $\forall y \in B,$
 $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$ $\forall x \in A.$

Nella seguente definizione utilizziamo l'ordinamento di \mathbb{R} , e per questo consideriamo A e B sottoinsiemi di \mathbb{R} .

Definizione

Siano $A, B \subseteq \mathbb{R}$ non vuoti ed $f: A \to B$ una funzione.

ullet f è crescente se per ogni $x_1,x_2\in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) \leqslant f(x_2).$$

ullet f è strettamente crescente se per ogni $x_1,x_2\in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) < f(x_2).$$

lacktriangle f è decrescente se per ogni $x_1, x_2 \in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) \geqslant f(x_2).$$

ullet è strettamente decrescente se per ogni $x_1,x_2\in A$ si ha

$$x_1 < x_2 \Longrightarrow f(x_1) > f(x_2).$$

Nella seguente definizione utilizziamo l'ordinamento di \mathbb{R} , e per questo consideriamo A e B sottoinsiemi di \mathbb{R} .

Definizione

Siano $A, B \subseteq \mathbb{R}$ non vuoti ed $f: A \to B$ una funzione.

- \bullet f è monotona se è crescente o decrescente.
- f è strettamente monotona se è strettamente crescente o strettamente decrescente.

Nella seguente definizione utilizziamo l'ordinamento di \mathbb{R} , e per questo consideriamo A e B sottoinsiemi di \mathbb{R} .

Definizione

Siano $A, B \subseteq \mathbb{R}$ non vuoti ed $f: A \to B$ una funzione.

• f è pari se per ogni $x \in A$ si ha

$$f(-x) = f(x).$$

ullet f è dispari se per ogni $x \in A$ si ha

$$f(-x) = -f(x).$$

ullet f è periodica se esiste T>0 tale che per ogni $x\in A$ si ha

$$f(x+T) = f(x).$$

In tal caso il più piccolo T>0 per cui vale l'uguaglianza precedente e detto periodo.

Esempio

Vedremo in seguito che tutte le funzioni trigonometriche sono periodiche.

Esercizio Quali dei seguenti grafici corrispondono a funzioni monotone? \boldsymbol{x} \boldsymbol{x} NO

Quali dei seguenti grafici corrispondono a funzioni strettamente monotone?

Quali dei seguenti grafici corrispondono a funzioni strettamente monotone?

Quale dei seguenti grafici corrisponde ad una funzione pari e quale ad una funzione dispari?

Quale dei seguenti grafici corrisponde ad una funzione pari e quale ad una funzione dispari?

funzione pari

funzione dispari

Proposizione

Una funzione strettamente monotona è iniettiva.

Osservazione

Ruotando il grafico di una funzione (biettiva) f rispetto alla bisettrice del primo e terzo quadrante si ottiene il grafico della funzione inversa f^{-1} .

Una volta disegnato su di un foglio il grafico di f, se ruotiamo il foglio tenendo le mani sull'angolo in basso a sinistra ed in alto a destra, quello che si vede in controluce è il grafico della funzione inversa f^{-1} .

Proposizione

Se f è invertibile allora:

- ullet f strettamente crescente $\iff f^{-1}$ strettamente crescente;
- ullet f strettamente decrescente $\iff f^{-1}$ strettamente decrescente.

Disegnare il grafico di

$$f(x) = x + 1.$$

Disegnare il grafico di

$$f(x) = x + 1.$$

Fissati $a, b \in \mathbb{R}$, abbiamo che

$$f(x) = ax + b$$

ha come insieme di definizione $D = \mathbb{R}$ e come grafico una retta.

Fissati $a, b \in \mathbb{R}$, abbiamo che

$$f(x) = ax + b$$

ha come insieme di definizione $D=\mathbb{R}$ e come grafico una retta.

Se $a \neq 0$ allora l'immagine è $f(\mathbb{R}) = \mathbb{R}$.

Fissati $a, b \in \mathbb{R}$, abbiamo che

$$f(x) = ax + b$$

ha come insieme di definizione $D=\mathbb{R}$ e come grafico una retta.

f è strettamente crescente \iff se a > 0.

f è strettamente decrescente \iff se a < 0.

a ci dà la rapidità con cui la funzione cresce se a > 0, o decresce se a < 0.

Fissati $a, b \in \mathbb{R}$, abbiamo che

$$f(x) = ax + b$$

ha come insieme di definizione $D=\mathbb{R}$ e come grafico una retta.

Infine f è iniettiva se e solo se $a \neq 0$ ed in tal caso $f \colon \mathbb{R} \to \mathbb{R}$ è biettiva e la funzione inversa è

$$f^{-1}(y) = \frac{y}{a} - \frac{b}{a}.$$

La funzione

$$f(x) = x^2$$

ha come insieme di definizione D=?

La funzione

$$f(x) = x^2$$

ha come insieme di definizione $D=\mathbb{R}$, è una funzione pari o dispari?

La funzione

$$f(x) = x^2$$

ha come insieme di definizione $D=\mathbb{R}$, è una funzione pari e ha come grafico la parabola. Inoltre $f\colon \mathbb{R} \to \mathbb{R}$ ha come immagine f(D)=?

La funzione

$$f(x) = x^2$$

ha come insieme di definizione $D=\mathbb{R}$, è una funzione pari e ha come grafico la parabola. Inoltre $f\colon \mathbb{R} \to \mathbb{R}$ ha come immagine $f(D)=[0,+\infty)$ è iniettiva in \mathbb{R} ?

La funzione

$$f(x) = x^2$$

ha come insieme di definizione $D=\mathbb{R}$, è una funzione pari e ha come grafico la parabola. Inoltre $f\colon \mathbb{R} \to \mathbb{R}$ ha come immagine $f(D)=[0,+\infty)$ e non è iniettiva in \mathbb{R} .

La funzione

$$f(x) = x^2$$

ha come insieme di definizione $D=\mathbb{R}$, è una funzione pari e ha come grafico la parabola. Inoltre $f\colon \mathbb{R} \to \mathbb{R}$ ha come immagine $f(D)=[0,+\infty)$ e non è iniettiva in \mathbb{R} .

 $f\colon [0,+\infty) \to [0,+\infty)$ è biettiva e la sua funzione inversa è $f^{-1}(y)=\ref{eq:constraint}$

 $f\colon (-\infty,0]\to [0,+\infty)$ è biettiva e la sua funzione inversa è $f^{-1}(y)=\ref{eq:constraint}$

La funzione

$$f(x) = x^2$$

ha come insieme di definizione $D=\mathbb{R}$, è una funzione pari e ha come grafico la parabola. Inoltre $f\colon \mathbb{R} \to \mathbb{R}$ ha come immagine $f(D)=[0,+\infty)$ e non è iniettiva in \mathbb{R} .

 $f\colon [0,+\infty) \to [0,+\infty)$ è biettiva e la sua funzione inversa è $f^{-1}(y)=\sqrt{y}.$

 $f\colon (-\infty,0]\to [0,+\infty)$ è biettiva e la sua funzione inversa è $f^{-1}(y)=-\sqrt{y}.$

Consideriamo la funzione

$$f(x) = x^3.$$

Insieme di definizione D=?

f è una funzione pari o dispari?

Disegnare il grafico.

Immagine f(D) = ?

f è monotona in D?

f è invertibile?

Consideriamo la funzione

$$f(x) = x^3.$$

Insieme di definizione D=?

$$D = \mathbb{R}$$

f è una funzione pari o dispari?

Dispari.

Disegnare il grafico.

Immagine f(D) = ?

$$f(D) = \mathbb{R}$$

f è monotona in D?

f è strettamente crescente.

f è invertibile?

Sì, e la sua funzione inversa è $f^{-1}(y) = \sqrt[3]{y}$.

Consideriamo la funzione

$$f(x) = \sqrt{1 - x^2}.$$

Insieme di definizione D=?

f è una funzione pari o dispari?

Immagine f(D) = ?

f è monotona in D?

Disegnare il grafico. f è invertibile?

Consideriamo la funzione

$$f(x) = \sqrt{1 - x^2}.$$

Insieme di definizione D=?

$$D = [-1, 1]$$

f è una funzione pari o dispari?

Pari.

Immagine
$$f(D) = ?$$

$$f(D) = [0, 1]$$

$$f$$
 è monotona in D ?

f non è monotona in $D,\ \mathrm{ma}$ è strettamente crescente in [-1,0] ed è strettamente decrescente in

[0,1].

f è invertibile?

f non è invertibile in D. Lo è però $f\colon [-1,0]\to [0,1]$ e la sua funzione inversa è $f^{-1}\equiv -f$. Anche $f\colon [0,1]\to [0,1]$ è invertibile e la sua funzione inversa è $f^{-1}\equiv f$.

Consideriamo la funzione

$$f(x) = \frac{1}{x}.$$

Insieme di definizione D=?

f è una funzione pari o dispari?

Immagine f(D) = ?

f è monotona in D?

f è invertibile?

Consideriamo la funzione

$$f(x) = \frac{1}{x}.$$

Insieme di definizione D=?

$$D = \mathbb{R} \setminus \{0\}$$

f è una funzione pari o dispari?

Dispari.

Immagine
$$f(D) = ?$$

$$f(D) = \mathbb{R} \setminus \{0\}$$

f è monotona in D?

f non è monotona in D, ma è strettamente decrescente in $(-\infty,0)$ ed in $(0,+\infty)$.

f è invertibile?

f è invertibile in D e coincide con la sua inversa.

Disegnare il grafico.

Iperbole equilatera riferita ai propri asintoti.

Consideriamo la funzione

$$f(x) = \frac{2x+1}{x+2}.$$

Insieme di definizione D=?

f è una funzione pari o dispari?

Immagine f(D) = ?

f è monotona in D?

f è invertibile?

Consideriamo la funzione

$$f(x) = \frac{2x+1}{x+2}.$$

Insieme di definizione D=?

$$D = \{x \in \mathbb{R} : x \neq -2\} = \mathbb{R} \setminus \{-2\}$$

f è una funzione pari o dispari?

Né pari né dispari.

Immagine
$$f(D) = ?$$

$$f(D) = \mathbb{R} \setminus \{2\}$$

$$f$$
 è monotona in D ?

f non è monotona in D, ma è strettamente crescente in $(-\infty, -2)$ ed in $(-2, +\infty)$.

f è invertibile?

f è invertibile in D e la sua funzione inversa $f^{-1}\colon \mathbb{R}\setminus\{2\}\to \mathbb{R}\setminus\{-2\}$ è definita da

$$f^{-1}(y) = \frac{2y - 1}{2 - y}.$$

Consideriamo la funzione

$$f(x) = x + \frac{1}{x}.$$

Insieme di definizione D=?

f è una funzione pari o dispari?

Immagine f(D) = ?

f è monotona in D?

f è invertibile?

Consideriamo la funzione

$$f(x) = x + \frac{1}{x}.$$

Insieme di definizione D=?

$$D = \mathbb{R} \setminus \{0\}$$

f è una funzione pari o dispari?

Dispari.

Immagine
$$f(D) = ?$$

$$f(D) = \mathbb{R} \setminus (-2, 2) = (-\infty, -2] \cup [2, +\infty)$$

f è monotona in D?

f non è monotona in D, ma è strettamente crescente in $(-\infty, -1)$ ed in $(1, +\infty)$, mentre è strettamente decrescente in [-1, 0) ed in (0, 1].

f è invertibile?

f non è invertibile in D.

Consideriamo la funzione

$$f(x) = \sqrt{x^2 + 1} - x.$$

Insieme di definizione D=?

f è una funzione pari o dispari?

Immagine f(D) = ?

f è monotona in D?

f è invertibile?

Consideriamo la funzione

$$f(x) = \sqrt{x^2 + 1} - x.$$

Insieme di definizione D=?

$$D = \mathbb{R}$$

f è una funzione pari o dispari?

Né pari né dispari.

Immagine
$$f(D) = ?$$

$$f(D) = (0, +\infty)$$

$$f$$
 è monotona in D ?

f è strettamente decrescente.

f è invertibile?

f è invertibile ed $f^{-1}(y) = \frac{1-y^2}{2u}$.

Sezione 2 Alcune funzioni elementari

Sia $n \in \mathbb{N}$. La funzione potenza n-esima $f \colon \mathbb{R} \to \mathbb{R}$ è definita da

$$f(x) = x^n.$$

ullet Se $n\in\mathbb{N}$ è dispari, allora

$$f: \mathbb{R} \to \mathbb{R}$$

è una funzione dispari, è strettamente crescente (quindi è anche iniettiva) ed è biettiva in quanto suriettiva, $f(\mathbb{R}) = \mathbb{R}$; la sua funzione inversa $f^{-1} \colon \mathbb{R} \to \mathbb{R}$ è la funzione radice n-esima definita da

$$f^{-1}(y) = \sqrt[n]{y}.$$

Sia $n \in \mathbb{N}$. La funzione potenza n-esima $f \colon \mathbb{R} \to \mathbb{R}$ è definita da

$$f(x) = x^n$$
.

 \bullet Se $n \in \mathbb{N}$ è pari, allora

$$f: \mathbb{R} \to [0, +\infty)$$

è una funzione pari, è suriettiva ma non è iniettiva.

Sia $n \in \mathbb{N}$. La funzione potenza n-esima $f \colon \mathbb{R} \to \mathbb{R}$ è definita da

$$f(x) = x^n.$$

ullet Se $n\in\mathbb{N}$ è pari, allora

$$f\colon [0,+\infty)\to [0,+\infty)$$

è strettamente crescente (quindi è anche iniettiva) e biettiva in quanto suriettiva, $f([0,+\infty))=[0,+\infty)$; la sua funzione inversa $f^{-1}\colon [0,+\infty) \to [0,+\infty)$ è la funzione radice n-esima $f^{-1}(y)=\sqrt[n]{y}$.

Sia $n \in \mathbb{N}$. La funzione potenza n-esima $f \colon \mathbb{R} \to \mathbb{R}$ è definita da

$$f(x) = x^n$$
.

ullet Se $n\in\mathbb{N}$ è pari, allora

$$f: (-\infty, 0] \to [0, +\infty)$$

è strettamente decrescente (quindi è anche iniettiva) e biettiva in quanto suriettiva, $f((-\infty,0])=[0,+\infty)$; la sua funzione inversa $f^{-1}\colon [0,+\infty)\to (-\infty,0]$ è definita da $f^{-1}(y)=-\sqrt[n]{y}$.

Funzione esponenziale

Prima di introdurre la funzione esponenziale, ricordiamo che se a>0, $m\in\mathbb{Z}$ ed $n\in\mathbb{N}$, allora $r=m/n\in\mathbb{Q}$ ed

$$a^r = a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m,$$

mentre per un generico $x \in \mathbb{R}$ si definisce

$$a^x = \sup \left\{ a^r : r \in \mathbb{Q}, \ r < x \right\}.$$

Funzione esponenziale

Sia $a \in (0, +\infty)$. La funzione esponenziale $f : \mathbb{R} \to (0, +\infty)$ è definita da

$$f(x) = a^x$$
.

Osserviamo che: • a > 1 f è strettamente crescente;

- a=1 f è costante;
- $a \in (0,1)$ f è strettamente decrescente.

Se $a\in (0,+\infty)\setminus \{1\}$, allora f è una funzione biettiva e la sua funzione inversa è

$$f^{-1}(x) = \log_a(x).$$

Sia $a \in \mathbb{R}$. La funzione potenza $f \colon (0, +\infty) \to (0, +\infty)$ è definita da

$$f(x) = x^a = 10^{a \log_{10}(x)} = e^{a \ln(x)}.$$

Osserviamo che:

- $a > 0 \implies f$ è strettamente crescente,
- $a = 0 \implies f$ è costante,
- $a < 0 \implies f$ è strettamente decrescente.

Dunque, se $a \neq 0$, allora f è una funzione biettiva e la sua funzione inversa è

$$f^{-1}(x) = x^{1/a}$$
.

Funzione modulo

La funzione modulo

$$|\cdot|:\mathbb{R}\to[0,+\infty)$$

è definita da

$$|x| = \begin{cases} x & \text{se } x \geqslant 0, \\ -x & \text{se } -x < 0. \end{cases}$$

Osserviamo che la funzione modulo $|\cdot|$ e una funzione pari.

Funzione modulo

Di seguito alcune proprietà del modulo, facilmente deducibili dal suo grafico, valide ogni costante a>0:

- $|x| \geqslant 0 \ \forall x \in \mathbb{R}$,
- $\bullet |x| = 0 \iff x = 0,$
- $|x \cdot y| = |x| \cdot |y| \quad \forall x, y \in \mathbb{R},$
- $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R},$
- $\bullet |x| < a \Longleftrightarrow -a < x < a,$
- $|x| \leqslant a \iff -a \leqslant x \leqslant a$,
- $\bullet |x| > a \iff x < -a \lor x > a$
- $|x| \geqslant a \iff x \leqslant -a \lor x \geqslant a$.

(disuguaglianza triangolare)

Verificare che

$$\left\{x\in\mathbb{R}: \left|\frac{x+1}{x-1}\right|\leqslant 2\right\}=\left(-\infty,\frac{1}{3}\right]\cup[3,+\infty).$$

Verificare che

$$\left\{x\in\mathbb{R}:\left|x^2+x\right|\geqslant 2x+1\right\}=\left(-\infty,\frac{-3+\sqrt{5}}{2}\right]\cup\left[\frac{1+\sqrt{5}}{2},+\infty\right).$$

Disegnare il grafico della funzione $f \colon \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \sqrt{x^2 + 4x + 4} - \sqrt{x^2 + 2x + 1}, \quad x \in \mathbb{R}.$$

Disegnare il grafico della funzione $f \colon \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) = \sqrt{x^2 + 4x + 4} - \sqrt{x^2 + 2x + 1}, \quad x \in \mathbb{R}.$$

f non è iniettiva in $\mathbb R$ (ma solo in [-2,-1]), è crescente in $\mathbb R$ (ma strettamente crescente solo in [-2,-1]) e l'immagine è [-1,1].

Funzione parte intera

La funzione parte intera

$$[\,\cdot\,]\colon\mathbb{R}\to\mathbb{Z}$$

è definita da

$$[x] = \max\{z \in \mathbb{Z} : z \leqslant x\}.$$

Osserviamo che la funzione parte intera $[\cdot]$ è crescente, ma non strettamente crescente visto che è costante a tratti.

Esempio

La funzione mantissa $\{x\}=x-[x]$ è periodica con periodo T=1 ed è strettamente crescente a tratti.

Si noti che $\{x\}$ è la parte frazionaria di x.

Grafici deducibili da quello della funzione f

Dal grafico della funzione f possiamo facilmente dedurre quelli delle seguenti funzioni:

•
$$x \mapsto f(-x)$$
, • $x \mapsto f(|x|)$, • $x \mapsto -f(x)$,

$$\bullet \ x \mapsto f(|x|)$$

$$\bullet \ x \mapsto -f(x)$$

$$\bullet x \mapsto |f(x)|,$$

•
$$x \mapsto |f(|x|)|$$

$$\bullet \ x \mapsto |f(x)|, \qquad \quad \bullet \ x \mapsto |f(|x|)|, \qquad \quad \bullet \ x \mapsto a \cdot f(b \cdot x + c).$$

Infatti per l'ultima funzione basta fare quanto segue:

- considerare il grafico di f;
- traslarlo orizzontalmente di -c;
- "riscalare" l'asse delle x di un fattore $\frac{1}{h}$ e l'asse delle y di un fattore a.

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(-x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(-x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di -f(x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di -f(x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(|x|).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(|x|).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di |f(x)|.

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di |f(x)|.

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di |f(|x|)|.

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di |f(|x|)|.

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(x-2).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(x-2).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di 2f(x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di 2f(x).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(x/2).

Ad esempio, consideriamo la funzione $f(x) = \ln(x)$. Disegnare il grafico di f(x/2).

TUTTO CHIARO?