

MACHINE

LEARNING

Model Selection Cheat Sheet

Save for later reference

TYPE OF PROBLEM

SIZE & LINEARITY OF DATASET

Regression:

- Linear Regression
- Ridge Regression
- Lasso Regression
- Decision Trees
- Random Forest
- Gradient Boosting

Classification:

- Logistic Regression
- Decision Trees
- Random Forest
- Gradient Boosting
- Support Vector Machines
- k-Nearest Neighbors

<u>Clustering:</u>

- K-Means
- Hierarchical Clustering
- DBSCAN

Time Series Forecasting:

- ARIMA
- SARIMA
- Prophet (for seasonality)

Size of Dataset

- Large Dataset:
 - Gradient Boosting
 - Random Forest
 - Deep Learning (Neural Networks)

• Small/Medium Dataset:

- Linear Regression
- Support Vector Machines
- k-Nearest Neighbors
- Naive Bayes

Linearity of Data:

- Linear Relationship:
 - Linear Regression
 - Ridge Regression
 - Lasso Regression
 - Support Vector Machines (linear kernel)

Non-linear Relationship:

- Decision Trees
- Random Forest
- Gradient Boosting
- Support Vector
 Machines (non-linear kernel)
- Neural Networks

HANDLING

Interpretability:

- High Interpretability:
 - Linear Regression
 - Logistic Regression
 - Decision Trees
- Medium Interpretability:
 - Random Forest
 - Support Vector Machines
- Low Interpretability:
 - Neural Networks
 - Gradient Boosting

<u> Handling High-</u> <u>Dimensional Data:</u>

- Feature Importance is Crucial:
 - Random Forest
 - Gradient Boosting
 - Lasso Regression (for feature selection)
- Many Features, Nonlinearity:
 - Support Vector Machines
 - Neural Networks

Handling Categorical Variables:

- Categorical Features:
 - Decision Trees
 - Random Forest
 - Gradient Boosting
 - CatBoost (handles categorical features well)

Handling Imbalanced Classes:

- Imbalanced Classes:
 - Random Forest
 - Gradient Boosting
 - Resampling
 Techniques
 (oversampling, undersampling)

Computational Efficiency:

- Fast Training/Prediction:
 - Linear Regression
 - Naive Bayes
 - k-NearestNeighbors
- Slower Training, High Accuracy:
 - Random Forest
 - Gradient Boosting
 - Neural Networks (with GPU)

Ensemble Methods:

- High Accuracy, Robustness:
 - Random Forest
 - Gradient Boosting
 - XGBoost, LightGBM

Fast Training/Prediction:

- Linear Regression
- Naive Bayes

Moderate Time Complexity:

- Decision Trees
- Random Forest
- Gradient Boosting

High Time Complexity:

- Support Vector Machines
- Neural Networks

Continuous Learning:

- Stochastic Gradient Descent
- Online Random
 Forest (if available)

HANDLING NON-NUMERIC DATA

<u>Non-Numeric</u> <u>Features:</u>

- Decision Trees
- Random Forest
- Gradient Boosting
- Naive Bayes

Ease of Deployment:

- Simpler Models (Linear Regression, Decision Trees)
- Frameworks with Low Latency Requirements (XGBoost, LightGBM)

<u>Challenging</u> <u>Deployment:</u>

 Complex Models (Neural Networks, Gradient Boosting)

Never Miss a Post!Turn on the Notifications

Was it helpful?

Follow Us For More Amazing Data Science & Programming Related Posts

OMMENT

RE Y

Checkout Our Other Posts

07 Killer Data Science Project ideas

With Description

Actual Projects
That Data
Scientists Work

On In Companies

Data Science Concepts Explained

Overfitting & Underfitting

Data Science Interview

Questions & Answers

Save for later reference

