

FACULTAD DE CIENCIAS EXACTAS, NATURALES Y AMBIENTALE CATÁLOGO STEM • ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA

RESUMEN NO. 3: DETERMINANTES Y MATRIZ INVERSA Andrés Merino • Semestre 2025-1

1. DETERMINANTES

En esta sección tomaremos $n \in \mathbb{N}$, con n > 0, e $I = \{1, 2, ..., n\}$.

DEFINICIÓN 1: Menor.

Sean $A \in \mathbb{R}^{n \times n}$ e $i, j \in I$. A la matriz de $\mathbb{R}^{(n-1) \times (n-1)}$ que se obtiene eliminar la fila i y la columna j de A se la llama el menor ij de A, denotado por A_{ij} .

En la literatura se puede encontrar la notación de M_{ij} para el menor de ij de A.

DEFINICIÓN 2: Menor principal.

Sean $A \in \mathbb{R}^{n \times n}$ y $k \in I$. A la matriz de $\mathbb{R}^{k \times k}$ que se obtiene eliminar las n - k últimas filas y columnas de A, se la llama el menor principal k de A, denotado por M_k .

A

En la literatura se puede encontrar la notación de A_k para el menor principal k de A.

DEFINICIÓN 3: Determinantes.

Sea $A \in \mathbb{R}^{n \times n}$ se define el determinante de A, denotado por det(A) (o por |A|), de manera inductiva, como sigue:

- Si n = 1 y $A = (a_{11})$, entonces $det(A) = a_{11}$.
- Si n > 1, entonces

$$\begin{split} \det(A) &= \sum_{k=1}^n a_{1k} (-1)^{1+k} \det(A_{1k}) \\ &= a_{11} \det(A_{11}) - a_{12} \det(A_{12}) + \ldots + (-1)^{1+n} a_{1n} \det(A_{1n}). \end{split}$$

Ejemplos:

• Sea A una matriz de orden 2 × 2 de la forma

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix},$$

se tiene que

$$A_{11} = (a_{22})$$
 y $A_{12} = (a_{21})$,

por lo tanto

$$det(A_{11}) = a_{11}$$
 y $det(A_{12}) = a_{12}$,

de esta forma,

$$det(A) = a_{11} det(A_{11}) - a_{12} det(A_{12}) = a_{11} a_{22} - a_{12} a_{21},$$

es decir,

$$det(A) = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

• Sea A una matriz de orden 3 × 3 de la forma

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

el determinante de la matriz A está dado por:

$$\text{det}(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

1.1 Propiedades de los determinantes

TEOREMA 1.

Sea $A \in \mathbb{R}^{n \times n}$. Si una fila o columna de A contiene solo ceros, entonces det(A) = 0.

TEOREMA 2.

Sea $A \in \mathbb{R}^{n \times n}$ una matriz triangular superior o triangular inferior, entonces

$$det(A) = a_{11}a_{22}\cdots a_{nn},$$

es decir, el determinante de una matriz triangular es el producto de los elementos de su diagonal principal.

TEOREMA 3.

Sea $A \in \mathbb{R}^{n \times n}$. El determinante de una matriz A y de su transpuesta son iguales, es decir,

$$det(A^{\intercal}) = det(A)$$
.

TEOREMA 4.

Sean A, B $\in \mathbb{R}^{n \times n}$, se tiene que:

$$det(AB) = det(A) det(B)$$
.

TEOREMA 5.

Sean A, B $\in \mathbb{R}^{n \times n}$. Si la matriz B se obtiene intercambiando dos filas o columnas de A entonces

$$det(B) = -det(A)$$
.

TEOREMA 6.

Sea $A \in \mathbb{R}^{n \times n}$. Si dos filas o columnas de A son iguales, entonces

$$det(A) = 0$$

TEOREMA 7.

Sean A, $B \in \mathbb{R}^{n \times n}$. Si B se obtiene al multiplicar una fila o columna de A por un escalar $\alpha \in \mathbb{R}$, entonces

$$det(B) = \alpha det(A)$$
.

TEOREMA 8.

Sean $A \in \mathbb{R}^{n \times n}$ y $\alpha \in \mathbb{R}$. Se tiene que

$$det(\alpha A) = \alpha^n det(A).$$

TEOREMA 9.

Sean $A, B \in \mathbb{R}^{n \times n}$, $\alpha \in \mathbb{R}$ e $i, j \in I$, con $i \neq j$. Si B se obtiene al aplicar una operación de fila $\alpha F_i + F_j \to F_j$, entonces

$$det(B) = det(A)$$
.

1.2 Cofactores

DEFINICIÓN 4: Cofactores.

Sean $A \in \mathbb{R}^{n \times n}$ e i, $j \in I$. El cofactor ij de A, denotado C_{ij} , está dado por

$$C_{ij} = (-1)^{i+j} \det(A_{ij})$$

donde A_{ij} es el menor ij de A.

En la literatura, también se suele llamar menor al determinante de A_{ij} en lugar de a la matriz, como lo haremos en este texto. Además, al cofactor, se lo suele denotar por A_{ij} .

TEOREMA 10.

Sea $A \in \mathbb{R}^{n \times n}$. Se tiene que para todo $i \in I$,

$$\det(A) = \sum_{k=1}^{n} \alpha_{ik} C_{ik} = \alpha_{i1} C_{i1} + \alpha_{i2} C_{i2} + \ldots + \alpha_{in} C_{in}$$

У

$$\text{det}(A) = \sum_{k=1}^n \alpha_{ki} C_{ki} = \alpha_{li} C_{li} + \alpha_{2i} C_{2i} + \ldots + \alpha_{ni} C_{ni}.$$

El lado derecho de las igualdades toma el nombre de expansión por cofactores del determinante de A.

2. INVERSA DE UNA MATRIZ

DEFINICIÓN 5.

Sea $A \in \mathbb{R}^{n \times n}$ es no singular o invertible si existe una matriz $B \in \mathbb{R}^{n \times n}$ tal que

$$AB = BA = I_n$$
.

A la matriz B se la denomina inversa de A y se la denota por A^{-1} . Si no existe tal matriz, entonces se dice que A es singular o no invertible.

TEOREMA 11.

Si una matriz tiene inversa, la inversa es única.

TEOREMA 12.

Sea $A \in \mathbb{R}^{n \times n}$.

• Si A es una matriz no singular, entonces A^{-1} es no singular y

$$(A^{-1})^{-1} = A.$$

• Si A y B son matrices no singulares, entonces AB es no singular y

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

• Si A es una matriz no singular, entonces

$$(A^{\intercal})^{-1} = (A^{-1})^{\intercal}.$$

TEOREMA 13.

Sean $p \in \mathbb{N}^*$ y $A_1, A_2, \dots, A_p \in \mathbb{R}^{n \times n}$ matrices no singulares. Se tiene que $A_1 A_2 \cdots A_p$ es no singular y

$$(A_1A_2\cdots A_{\mathfrak{p}})^{-1}=A_{\mathfrak{p}}^{-1}A_{\mathfrak{p}-1}^{-1}\cdots A_1^{-1}.$$

TEOREMA 14.

Sean A, B $\in \mathbb{R}^{n \times n}$. Se tiene que si AB = I_n , entonces BA = I_n .

TEOREMA 15.

Sea $A \in \mathbb{R}^{n \times n}$, se tiene que A es no singular si y solo si es equivalente por filas a I_n . Es más

$$(A|I_n) \sim (I_n|A^{-1}).$$

TEOREMA 16.

Sea $A \in \mathbb{R}^{n \times n}$, el sistema homogéneo

$$Ax = 0$$

tiene una solución no trivial si y solo si A es singular.

TEOREMA 17.

Sea $A \in \mathbb{R}^{n \times n}$. Se tiene que A es no singular si y solo si el sistema lineal Ax = b tiene una solución única para cada vector $b \in \mathbb{R}^n$.

TEOREMA 18.

Sea $A \in \mathbb{R}^{n \times n}$, se tienen que las siguientes son equivalentes:

- I. A es no singular;
- II. el sistema Ax = 0 solamente tiene la solución trivial;
- III. A es equivalente por filas a I_n ;
- IV. rang(A) = n; y
- v. el sistema lineal Ax = b tiene una solución única para cada vector $b \in \mathbb{R}^n$.

DEFINICIÓN 6: Matriz de cofactores.

Sea $A \in \mathbb{R}^{n \times n}$. La matriz de cofactores de A, que se denota por cof(A), es la matriz de $\mathbb{R}^{n \times n}$ que está formada por los cofactores de A, es decir,

$$\mathsf{cof}(A) = (C_{ij}) = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \end{pmatrix}.$$

DEFINICIÓN 7.

Sea $A \in \mathbb{R}^{n \times n}$. La matriz adjunta de A, que se denota por adj(A), es la matriz de $\mathbb{R}^{n \times n}$ que está formada por la transpuesta de la matriz de los cofactores de A, es decir,

$$adj(A) = cof(A)^{\intercal}$$
.

TEOREMA 19.

Sea $A \in \mathbb{R}^{n \times n}$, entonces

$$A(adj(A)) = (adj(A))A = det(A)I_n$$
.

COROLARIO 20. Sea $A \in \mathbb{R}^{n \times n}$. Si $det(A) \neq 0$, entonces A es invertible y

$$A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A).$$

TEOREMA 21.

Sea $A \in \mathbb{R}^{n \times n}$. Una matriz A es no singular si y sólo si $det(A) \neq 0$.

TEOREMA 22.

Sea $A \in \mathbb{R}^{n \times n}$. Si A es no singular, entonces $det(A) \neq 0$ y

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

TEOREMA 23.

Sea $A \in \mathbb{R}^{n \times n}$. El sistema homogéneo Ax = 0 tiene una solución no trivial si y sólo si det(A) = 0.

TEOREMA 24.

Sean $A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$. El sistema Ax = b tiene una solución única si y sólo si $det(A) \neq 0$ y su solución es

$$A^{-1}b$$
.

TEOREMA 25: Equivalencias no singulares.

Sea $A \in \mathbb{R}^{n \times n}$, se tienen que las siguientes son equivalentes:

- I. A es no singular;
- II. el sistema Ax = 0 tiene solamente la solución trivial;
- III. A es equivalente por filas a I_n ;
- IV. rang(A) = n;
- v. el sistema lineal Ax = b tiene una solución única para cada vector $b \in \mathbb{R}^n$; y
- VI. $det(A) \neq 0$.