Национальный исследовательский университет «МЭИ» Институт радиотехники и электроники им. В.А. Котельникова Кафедра электроники и наноэлектроники

Расчетное задание №1 по курсу «Автоматизация анализа электронных схем»

Группа: _	ЭР-05-20		
Студент: _	Волчков Д. Н.		
Преподаватель: _	Баринов А. Д.		
Оценка:_			

Для расчёта характеристик диода, воспользуемся данными из расчётного задания по дисциплине «Твердотельная электроника», исходные данные которой:

Мате	Толщина	Толщина	Площадь	Легирован	Легиро	Время	Время
риал	сильнолег	базы, мкм	pn-	ие	вание	жизни	жизни
	ированной		перехода,	сильнолег	базы,	дырок	электр
	области,		MM^2	ированной	см ⁻³	, мкс	онов,
	MKM			области,			мкс
				c M ⁻³			
Si	0.4	100	4	5.10^{18}	5·10 ¹⁶	0.5	0.005

С помощью средств математической программы Mathcad Prime получим недостающие характеристики для SPICE-модели диода(Рисунки 1-4):

$$T_0 := 300$$
 $E_g(T_0) = 1.053$ $R_E(0, T_0) = 0.086$
 $T_1 := 213$ $E_g(T_1) = 1.087$ $R_E(0, T_1) = 0.053$
 $T_2 := 298$ $E_g(T_2) = 1.054$ $R_E(0, T_2) = 0.085$
 $T_3 := 358$ $E_g(T_3) = 1.03$ $R_E(0, T_3) = 0.119$

Рисунок 1 – Расчет ширины запрещенной зоны и сопротивления базы

$$I_{z}(T_{0}) = 5.191 \cdot 10^{-12}$$
 $\varphi_{k}(T_{2}) = 0.032$
 $I_{z}(T_{1}) = 1.791 \cdot 10^{-20}$
 $I_{z}(T_{2}) = 3.76 \cdot 10^{-12}$
 $I_{z}(T_{3}) = 1.285 \cdot 10^{-8}$

Рисунок 2 – Расчет тока насыщения

TRS1:=1 TRS2:=1

$$R_{E}(0,T_{1}) = R_{E}(0,T_{2}) \cdot (1 + TRS1 \cdot (T_{1} - TNOM) + TRS2 \cdot (T_{1} - TNOM)^{2})$$

$$R_{E}(0,T_{3}) = R_{E}(0,T_{2}) \cdot (1 + TRS1 \cdot (T_{3} - TNOM) + TRS2 \cdot (T_{3} - TNOM)^{2})$$
Find $(TRS1,TRS2) = \begin{bmatrix} 0.006 \\ 1.606 \cdot 10^{-5} \end{bmatrix}$

Рисунок 3 – Расчет TRS1 и TRS2

$$U_{npo6}(T) := 60 \cdot \left(\frac{E_g(T)}{1.1}\right)^{\frac{3}{2}} \cdot \left(\frac{p_{p0}}{10^{16}}\right)^{\frac{-3}{4}}$$

$$TBVI := 1 \quad TBV2 := 1$$

$$U_{npo6}(T_1) = U_{npo6}(T_2) \cdot \left(1 + TBVI \cdot (T_1 - TNOM) + TBV2 \cdot (T_1 - TNOM)^2\right)$$

$$U_{npo6}(T_3) = U_{npo6}(T_2) \cdot \left(1 + TBVI \cdot (T_3 - TNOM) + TBV2 \cdot (T_3 - TNOM)^2\right)$$

$$Find(TBVI, TBV2) = \begin{bmatrix} -5.613 \cdot 10^{-4} \\ -1.687 \cdot 10^{-7} \end{bmatrix}$$

$$U_{npo6}(T_2) = 16.825$$

Рисунок 4 – Расчет TBV1 и TBV2

BV	TBV1	TBV2	CJO	EG	IBV	IKF	IS
16,825	-5,6·10- ⁴	$-1,7\cdot10^{-7}$	$1,5\cdot10^{-8}$	1,054	-4E·10 ⁻⁸	1	1.10-11
ISR	RS	TRS1	TRS2	VJ	TT		
9.10-9	0,085	0,006	1,61·10 ⁻⁵	0,874	2,3·10-7		

С помощью полученных характеристик смоделируем BAX диода в MicroCap (Рисунки 5-8).

```
Моделирование ВАХ диода
V1 1 0 DC 5
D1 1 0 MyDiod
.MODEL MyDiod D
+(IS=1E-11 N=1 ISR=9E-9 NR=2 RS=0.085 TRS1=0.006 TRS2=1.606E-5 IKF=1 BV=16.825
+TBV1=-5.613E-4 TBV2=-1.687E-7 CJO=1.5E-8 VJ=0.874 M=0.333 EG=1.054 TT=2.303E-7 IBV=3.972E-8)
.OPTIONS GMIN=1E-34
.DC LIN V1 0 2.4 0.01 TEMP LIST -60 25 85
.TEMP 25
.PLOT DC I(D1)
.END
```

Рисунок 5 – Листинг программы

Рисунок 7 – Обратная ветвь ВАХ диода

Рисунок 8 – Обратная ветвь ВАХ диода до напряжения пробоя

С помощью средств Mathcad Prime получим BAX диода (Рисунок 9).

Рисунок 9 – Аналитическая модель ВАХ диода

Обе полученные модели схожи по своим характеристикам С помощью MicroCap получим осциллограмму для диодного выпрямителя (Рисунки 10 и 11).

Рисунок 10 – Листинг программы

Рисунок 11 – Осциллограмма диодного выпрямителя