

Academia Clínica do saber
Pedro Rafael Afonso
Sebenta de matemática
Exames de Acesso 2007-2020
Universidade Agostínho Neto
Faculdade de ciêcias e Engenharía

180 Exames solucionados 2º Edição

QUEM SOMOS / NOSSA MISSÃO

ACADEMIA CLÍNICA DO SABER é um centro Preparatório que tem como missão oferecer orientações, habilidades e conhecimentos que permitem que estudantes superem os desafios e melhorarem o seu desempenho académico em qualquer instituição de ensino. As aulas são direcionadas para todos os níveis de ensino.

PREFÁCIO

PARA O ESTUDANTE.

O propósito deste manual é de ajudar os estudantes na resolução dos exercícios dos testes de matemática na área de engenharias. Portanto, recomendamos a utilizar o seu maior tempo em resolver os exercícios.

Quando se resolve um exercício, se aprende muito mais do que só se lê a resolução. É bem sabido que, a prática leva a perfeição, onde a verdadeira aprendizagem requer uma participação activa de sua parte.

Utilize este manual como incentivo para resolver problemas, não como uma forma de evitar a sua resolução.

As suas críticas, sugestão ou dificuldades que tenha encontrado na hora da resolução, pedimos que entre em contacto connosco urgentemente, afim de aperfeiçoamento do manual e suas ideias são fundamentais para o nosso trabalho.

Facebook: Página Academia Clínica do Saber

E-mail: delarafapedro@gmail.com

Obs: A venda do presente material sem autorização do autor é punível pela Lei nº 4/19, de março, lei dos direitos do autor, que regula a protecção de Autor e conexos nas áreas das artes, literatura, ciência ou outra forma de reconhecimento. Respeite a lei.

Índice

Sumário

PARA O ESTUDANTE	2
I-Exames de Acesso 2020	4
Exames de Acesso 2019	16
Exame de Acesso 2018	33
Exames de Acesso 2017	40
Exame de Acesso 2016	52
Exame de Acesso 2015	59
Exame de Acesso 2014	69
Exame de Acesso 2013	74
Exame de Acesso 2012	77
Exame de Acesso 2011	80
Exames de Acesso 2010	95
Exame de Acesso 2009	104
Exames de Acesso 2008	120
Exame de Acesso 2007	123

I-Exames de Acesso 2020

1°) (Exame 2020) Simplique a expressão:
$$\frac{\sqrt{x+1}}{x\sqrt{x}+x+\sqrt{x}} \div \frac{1}{\sqrt{x}-x^2} + x$$

Resp:
$$a$$
) -1 B) \sqrt{x} c) 1 d) x e) outro

Resolução:
$$\frac{\sqrt{x+1}}{x\sqrt{x}+x+\sqrt{x}} \div \frac{1}{\sqrt{x}-x^2} + x$$
, supondo que: $\sqrt{x} = t$, $x = t^2$

$$\frac{\sqrt{x+1}}{\sqrt{x+x+\sqrt{x}}} \div \frac{1}{\sqrt{x-x^2}} + x$$
, supondo que: $\sqrt{x} = t$, $x = t^2$

$$\frac{t+1}{t^3+t^2+t} \div \frac{1}{t-t^4} + t^2 = \frac{t+1}{t(t^2+t+1)} \div \frac{1}{t(1-t^3)} + t^2 = \frac{t+1}{t(t^2+t+1)} \times t(1-t^3) + t^2$$

$$= \frac{t+1}{(t^2+t+1)} \times (1-t)(1+t+t^2) + t^2 = (t+1)(1-t) + t^2$$

$$= 1 - t^2 + t^2 = 1$$
, Línea c)

2°) (**Exame 2020**) Simplifique a expressão:
$$\left(\frac{a-b}{a+b+2\sqrt{ab}}\right): \left(\frac{a^{-\frac{1}{2}}-b^{-\frac{1}{2}}}{a^{-\frac{1}{2}}+b^{-\frac{1}{2}}}\right)$$

Resp:
$$a$$
) -1 B) $a-b$ c) 1 d) $\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$ e) outro

Resolução:
$$\left(\frac{a-b}{a+b+2\sqrt{ab}}\right)$$
: $\left(\frac{a^{-\frac{1}{2}}-b^{-\frac{1}{2}}}{a^{-\frac{1}{2}}+b^{-\frac{1}{2}}}\right)$

Vamos tranformar todos os expoentes negativo em radicais

$$\left(\frac{a-b}{a+b+2\sqrt{ab}}\right) \div \left(\frac{\frac{1}{\sqrt{a}} - \frac{1}{\sqrt{b}}}{\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}}\right) = \left(\frac{a-b}{a+b+2\sqrt{ab}}\right) \div \left(\frac{\frac{\sqrt{b}-\sqrt{a}}{\sqrt{ab}}}{\frac{\sqrt{b}+\sqrt{a}}{\sqrt{ab}}}\right) = \left(\frac{a-b}{a+b+2\sqrt{ab}}\right) \div \left(\frac{\sqrt{b}-\sqrt{a}}{\sqrt{b}+\sqrt{a}}\right)$$

Nota:
$$a + b + 2\sqrt{ab} = (\sqrt{a} + \sqrt{b})^2$$

$$= -\left[\frac{(a-b)}{\left(\sqrt{a}+\sqrt{b}\right)^2}\right] \left[\frac{(\sqrt{a}+\sqrt{b})}{(\sqrt{a}-\sqrt{b})}\right] = -\left[\frac{(a-b)}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}\right], \text{ nota: } \sqrt{a^2} - \sqrt{b^2} = (\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})$$

$$\left[(\sqrt{a} - \sqrt{h})(\sqrt{a} + \sqrt{h}) \right]$$

$$= -\left[\frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})}\right] = -1, \text{ Línea a}$$

3°) (**Exame 2020**) Simplifique a expressão:
$$\left(\frac{\sqrt{x}+1}{\sqrt{x}-1} - \frac{\sqrt{x}-1}{\sqrt{x}+1} + 4\sqrt{x}\right) \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)$$

Resp: a)
$$\sqrt{x}$$
 B) $4x$ c) $\sqrt{x} + 1$ d) $\frac{1}{\sqrt{x}}$ e) outro

Resolução:
$$\left(\frac{\sqrt{x}+1}{\sqrt{x}-1} - \frac{\sqrt{x}-1}{\sqrt{x}+1} + 4\sqrt{x}\right) \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)$$
, supondo que: $\sqrt{x} = t$

$$\left(\frac{\sqrt{x}+1}{\sqrt{x}-1} - \frac{\sqrt{x}-1}{\sqrt{x}+1} + 4\sqrt{x}\right) \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)$$
, supondo que: $\sqrt{x} = t$

$$\left(\frac{t+1}{t-1} - \frac{t-1}{t+1} + 4t\right) \left(t - \frac{1}{t}\right) = \left[\frac{(t+1)(t+1) - (t-1)(t-1)}{(t-1)(t+1)} + 4t\right] \left(\frac{t^2 - 1}{t}\right)$$

$$\begin{bmatrix} \frac{t^2 + 2t + 1 - \left(t^2 - 2t + 1\right)}{t^2 - 1} + 4t \end{bmatrix} \begin{pmatrix} \frac{t^2 - 1}{t} \end{pmatrix} = \begin{bmatrix} \frac{t^2 + 2t + 1 - t^2 + 2t - 1}{t^2 - 1} + 4t \end{bmatrix} \begin{pmatrix} \frac{t^2 - 1}{t} \end{pmatrix}$$

$$\begin{bmatrix} \frac{4t}{t^2 - 1} + 4t \end{bmatrix} \begin{pmatrix} \frac{t^2 - 1}{t} \end{pmatrix} = 4t \begin{pmatrix} \frac{1 + t^2 - 1}{t^2 - 1} \end{pmatrix} \begin{pmatrix} \frac{t^2 - 1}{t} \end{pmatrix} = 4t^2, \text{ voltando na suposição: } 4x, \text{ Línea B}$$

$$4^o) \text{ (Exame 2020) Simplifique a expressão: } \begin{pmatrix} \frac{a + 2}{\sqrt{2a}} - \frac{a}{\sqrt{2a} + 2} + \frac{2}{a - \sqrt{2a}} \end{pmatrix} \cdot \frac{\sqrt{a} - \sqrt{2}}{a + 2}$$

$$\text{Resp: } a) \frac{1}{\sqrt{a}} \quad b) \frac{1}{\sqrt{a} + \sqrt{2}} \quad c) \frac{1}{\sqrt{a} - \sqrt{2}} \quad d) \frac{\sqrt{a} - \sqrt{2}}{2} \quad e) \text{ outro}$$

$$\text{Resolução: } \begin{pmatrix} \frac{a + 2}{\sqrt{2a}} - \frac{a}{\sqrt{2a} + 2} + \frac{2}{a - \sqrt{2a}} \end{pmatrix} \cdot \frac{\sqrt{a} - \sqrt{2}}{a + 2}, \text{ supondo que: } \sqrt{a} = Ae \sqrt{2} = B$$

$$\begin{pmatrix} \frac{A^2 + B^2}{AB} - \frac{A^2}{AB + B^2} + \frac{B^2}{A^2 - AB} \end{pmatrix} \cdot \frac{(A - B)}{A^2 + B^2} = \begin{bmatrix} \frac{A^2 + B^2}{AB} - \frac{A^2}{B(A + B)} + \frac{B^2}{A(A - B)} \end{bmatrix} .$$

$$= \begin{bmatrix} \frac{A^2 + B^2}{AB} - \frac{A^3(A - B) + B^3(A + B)}{AB(A^2 - B^2)} \end{bmatrix} \frac{(A - B)}{A^2 + B^2} = \frac{1}{AB} \begin{bmatrix} \frac{A^4 - B^4 - A^4 + A^3 B + AB^3 + B^4}{(A^2 - B^2)} \end{bmatrix} \frac{(A - B)}{A^2 + B^2}$$

$$= \frac{1}{AB} \begin{bmatrix} \frac{A^3 B + AB^3}{(A^2 - B^2)} \end{bmatrix} \frac{(A - B)}{A^2 + B^2} = \frac{1}{AB} \begin{bmatrix} \frac{AB(A^2 + B^2)}{(A^2 - B^2)} \end{bmatrix} \frac{(A - B)}{A^2 + B^2} = \begin{bmatrix} \frac{1}{(A^2 - B^2)} \end{bmatrix} [A - B]$$

$$\begin{bmatrix} \frac{1}{(A - B)(A + B)} \end{bmatrix} [A - B] = \frac{1}{A + B}, \text{ voltando na suposição: } \frac{1}{\sqrt{a} + \sqrt{2}}, \text{ Línea B}$$

$$5^o) \text{ (Exame 2020) Simplifique a expressão: } \sqrt{\frac{\sqrt{2}}{a} + \frac{a}{\sqrt{2}} + 2} - \frac{a^2 \sqrt[4]{2} - 2\sqrt{a}}{a\sqrt{2a} - \sqrt[4]{8a^4}}$$

Resolução:
$$\sqrt{\frac{\sqrt{2}}{a} + \frac{a}{\sqrt{2}} + 2} - \frac{a^2 \sqrt[4]{2} - 2\sqrt{a}}{a\sqrt{2a} - \sqrt[4]{8a^4}}$$

Resp:
$$a$$
) -1 b) $\sqrt{2}/a$ c) $\sqrt{2a}$ d) \sqrt{a} e) outro

$$\sqrt{\frac{a^{2}+2a\sqrt{2}+2}{a\sqrt{2}}} - \left[\frac{\sqrt[4]{a^{8}}\sqrt[4]{2}-\sqrt[4]{2^{4}}\sqrt[4]{a^{2}}}{\sqrt[4]{2^{2}}\sqrt[4]{a^{4}}\sqrt[4]{a^{2}}-\sqrt[4]{a^{4}}\sqrt[4]{2^{3}}}\right] = \sqrt{\frac{(a+\sqrt{2})^{2}}{a\sqrt{2}}} - \left[\frac{\sqrt[4]{a^{8}}\sqrt[4]{2}-\sqrt[4]{2^{4}}\sqrt[4]{a^{2}}}{\sqrt[4]{2^{2}}\sqrt[4]{a^{6}}-\sqrt[4]{a^{4}}\sqrt[4]{2^{3}}}\right] \\
= \frac{a+\sqrt{2}}{\sqrt[4]{2a^{2}}} - \frac{\sqrt[4]{2}\sqrt[4]{a^{2}}}{\sqrt[4]{2^{2}}\sqrt[4]{a^{4}}} \left[\frac{\sqrt[4]{a^{2}}-\sqrt[4]{2}}{\sqrt[4]{a^{2}}-\sqrt[4]{2}}\right] = \frac{a+\sqrt{2}}{\sqrt[4]{2a^{2}}} - \frac{1}{\sqrt[4]{2}\sqrt[4]{a^{2}}} \left[\frac{\left(\sqrt[4]{a^{2}}-\sqrt[4]{2}\right)^{3}-\left(\sqrt[4]{2}\right)^{3}}{\left(\sqrt[4]{a^{2}}-\sqrt[4]{2}\right)}\right] \\
= \frac{a+\sqrt{2}}{\sqrt[4]{2a^{2}}} - \frac{1}{\sqrt[4]{2}\sqrt[4]{a^{2}}} \left[\frac{\left(\sqrt[4]{a^{2}}-\sqrt[4]{2}\right)\left(\left(\sqrt[4]{a^{4}}+\sqrt[4]{2}\sqrt[4]{a^{2}}+\sqrt[4]{2^{2}}\right)\right)\right)}{\left(\sqrt[4]{a^{2}}-\sqrt[4]{2}\right)} = \frac{a+\sqrt{2}}{\sqrt[4]{2a^{2}}} - \frac{\left(\sqrt[4]{a^{4}}+\sqrt[4]{2}\sqrt[4]{a^{2}}+\sqrt[4]{2^{2}}\right)}{\sqrt[4]{2a^{2}}} - \frac{a+\sqrt{2}}{\sqrt[4]{2}\sqrt[4]{a^{2}}} - \frac{a+\sqrt{2}}{\sqrt[4]{2}} - \frac{a$$

$$=\frac{a+\sqrt{2}}{\sqrt[4]{2}\sqrt[4]{a^2}}-\frac{\left(\sqrt[4]{a^4}+\sqrt[4]{2}\sqrt[4]{a^2}+\sqrt[4]{2^2}\right)}{\sqrt[4]{2}\sqrt[4]{a^2}}=\frac{a+\sqrt{2}-\sqrt[4]{a^4}-\sqrt[4]{2}\sqrt[4]{a^2}-\sqrt[4]{2^2}}{\sqrt[4]{2}\sqrt[4]{a^2}}$$

$$=\frac{a+\sqrt{2}-a-\sqrt[4]{2}\sqrt[4]{a^2}-\sqrt{2}}{\sqrt[4]{2}\sqrt[4]{a^2}}=-\frac{\sqrt[4]{2}\sqrt[4]{a^2}}{\sqrt[4]{2}\sqrt[4]{a^2}}=-1 \text{ , Linea a)}$$

6°) (Exame 2020) A equação da parabola com vértice na origem das coordenadas, simétrtia em relação ao eixo oy e que passa pelo ponto A(1;1) é:

Resp: a)
$$x^2 + 1 = 2y$$
 b) $(y - 1)^2 = 2(x - 1)$ c) $x^2 = y$ d) $y^2 = x$ e) outro

Resolução: A equação de uma parabola com vértice na origem e simétria em relação ao eixo oy é: $x = p y^2$. Vamos encontrar o valor de p.

$$A(1;1) \rightarrow x = p v^2 \rightarrow 1 = p (1)^2 \rightarrow p = 1$$

A equação pedida é: $y^2 = x$, Línea d)

7º) (Exame 2020) A equação da parabola com vértice na origem das coordenadas, simétrtia em relação ao eixo ox e que passa pelo ponto A(-1;3) é:

Resp: a)
$$y^2 = 3(x+5)$$
 b) $y^2 = -9x$ c) $y^2 = 2x$ d) $x^2 = \frac{y}{3}$ e) outro

Resolução: A equação de uma parabola com vértice na origem e simétria em relação ao eixo ox é: $y = p x^2$. Vamos encontrar o valor de p.

$$A(-1;3) \rightarrow x = p \ y^2 \rightarrow 3 = p \ (-1)^2 \rightarrow p = 3$$

A equação pedida é: $y = 3x^2 \rightarrow x^2 = \frac{y}{3}$, Línea d)

8°) (Exame 2020) Determine o valor de $sen2\alpha$, sabendo que $\sin \alpha - \cos \alpha = p$

Resp: a)
$$2p \ b) 1 - p^2 \ c) p \ d) p^2 \ e) outro$$

Resolução:
$$\sin \alpha - \cos \alpha = p / ()^2$$
, $sen^2 \alpha + cos^2 \alpha - 2sen\alpha \cos \alpha = p^2$

Sabe-se que: $sen^2\alpha + cos^2\alpha = 1$ e $2sen\alpha cos\alpha = sen2\alpha$,

$$1 + sen2\alpha = p^2 \rightarrow sen2\alpha = p^2 - 1$$
, Línea b)

9°) (Exame 2020) Determine o valor $2-13\cos 2a+\frac{1}{\sin 2a}$, sabendo que $cotga = -\frac{1}{5}$.

Resp:
$$a)\frac{57}{5}$$
 $b)\frac{7}{3}$ $c)\frac{5}{9}$ $d)\frac{27}{2}$ $e)$ outro

Resolução:
$$2 - 13 \cos 2a + \frac{1}{\sin 2a} = ?(1)$$
 $\cot ga = -\frac{1}{5}$

$$cotga = -\frac{1}{5} \rightarrow tga = -5 \rightarrow a = arct(-5) = -arctg(5)$$

Nota:
$$sen(arctgx) = \frac{x}{\sqrt{1+x^2}} e cos(arctgx) = \frac{1}{\sqrt{1+x^2}}$$

$$cos2a = cos^2a - sen^2a = cos^2(-arctg(5)) - sen^2(-arctg(5)) =$$

$$= \left(\frac{1}{\sqrt{26}}\right)^2 - \left(\frac{5}{\sqrt{26}}\right)^2 = -\frac{24}{26} = -\frac{12}{13} \quad (2)$$

$$sen2a = 2 sena cosa = 2 sen(-arctg(5))cos(-arctg(5)) = -\frac{10}{\sqrt{26}} \times \frac{1}{\sqrt{26}} = -\frac{5}{13}$$
(3)

Substituindo (2) e (3) em (1), vem:

$$2 - 13\cos 2a + \frac{1}{\sin 2a} = 2 - 13\left(-\frac{12}{13}\right) + \frac{1}{\left(-\frac{5}{13}\right)} = 2 + 12 - \frac{13}{5} = \frac{57}{5}$$
, Línea a)

10°) (**Exame 2020**) A distância entre o planos:
$$\pi_1$$
: $x - 2y - 2z - 12 = 0$ e π_2 : $x - 2y - 2z - 6 = 0$ é: a) 5 b) 4 c) 2 d) 12 e) outro

Resolução:
$$\pi_1$$
: $x - 2y - 2z - 12 = 0$ e π_2 : $x - 2y - 2z - 6 = 0$

A distância entre dois planos é: $d(P, \pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$

Onde $P(a_o; b_o; c_o)$ é um dponto que pertence a um planos.

Considerando um ponto que pertence ao plano π_1 , P(0; 0; -6), temos:

$$d(P,\pi) = \frac{|1(0) + (-2)(0) + (-2)(-6) + (-6)|}{\sqrt{(1)^2 + (-2)^2 + (-2)^2}} = \frac{6}{3} = 2$$
, Línea c)

11°) (Exame 2020) Resolve a inequação:
$$\log_{(x+1)} \left(\frac{x^2 + 3x - 4}{2x - 4} \right) \le 1$$

Resp:

Resolução:
$$\log_{(x+1)} \left(\frac{x^2 + 3x - 4}{2x - 4} \right) \le 1 \rightarrow \log_{(x+1)} \left(\frac{x^2 + 3x - 4}{2x - 4} \right) \le \log_{(x+1)} (x+1)$$

A inequação é válida nas seguintes condições:

$$I) \begin{cases} x+1 > 1 \ (base) \\ \left(\frac{x^2+3x-4}{2x-4}\right) > 0 \ (logaritmando) \\ x+1 > 0 \ (logaritmando) \\ \left(\frac{x^2+3x-4}{2x-4}\right) \leq x+1 \end{cases} \qquad II) \begin{cases} 0 < x+1 < 1 \ (base) \\ \left(\frac{x^2+3x-4}{2x-4}\right) > 0 \ (logaritmando) \\ x+1 > 0 \ (logaritmando) \\ \left(\frac{x^2+3x-4}{2x-4}\right) \geq x+1 \end{cases}$$

Resolvendo as inequações por parte:

I°)
$$x + 1 > 1 \to x > 0$$
, $x \in [0; +\infty[$

II°)
$$0 < x + 1 < 1 \rightarrow \begin{cases} x + 1 > 0 \rightarrow x > -1, \ x \in]-1; \ +\infty[\\ x + 1 < 1 \rightarrow x < 0, \quad x \in]-\infty; \ 0[\end{cases}$$

$$x \in]-1; +\infty[\cap x \in]-\infty; 0[=]-1;0[$$

I°) e II°)
$$\left(\frac{x^2 + 3x - 4}{2x - 4}\right) > 0 \rightarrow \begin{cases} x^2 + 3x - 4 = 0 \ (x_1 = -4 \ e \ x_2 = 1) \\ 2x - 4 = 0 \rightarrow x = 2 \end{cases}$$

f(x)	+∞ +∞	-4	1	2	
$x^2 + 3x - 4$	+	О –	0 +	+	
2x - 4	_	-	-	_	
S	_	+	_	_	

$$x \in]-4;1[$$

I°)
$$x + 1 > 0 \rightarrow x > -1$$
, $x \in]-1$; $+\infty[$

I°)
$$\left(\frac{x^2 + 3x - 4}{2x - 4}\right) \le x + 1 \to \frac{x^2 - 5x}{2x - 4} \ge 0 \to \begin{cases} x^2 - 5x = 0 \ (x_1 = 0 \ e \ x_2 = 5) \\ 2x - 4 = 0 \to x = 2 \end{cases}$$

f(x)	_∞ +∞	0	2	5
	+ω			
$x^2 - 5x$	+	О –	_	O +
2x - 4	_	_	+	+
S	_	+	_	+

$$x \in [0; 2[\cup [5; +\infty[$$

II°) $\left(\frac{x^2+3x-4}{2x-4}\right) \ge x+1 \to \frac{x^2-5x}{2x-4} \le 0$, esta inequação é análoga a anterior, so inverte-se na desigualdade, solução é: $]-\infty;0] \cup]2;5]$

Voltando nos sistemas de inequações acima, temos:

I°)
$$\begin{cases} x \in]0; +\infty[\\ x \in]-4; 1[\\ x \in]-1; +\infty[\\ x \in [0; 2[\cup [5; +\infty[$$

II°)
$$\begin{cases} x \in]-1; 0[\\ x \in]-4; 1[\\ x \in]-1; +\infty[\\]-\infty; 0] \cup]2; 5] \end{cases}$$

Intercedendo a 1°), a 2°) e 3°) solução do sistema de Inequação I°) vem:

$$]0;1[\cup]1;+\infty[$$

Intercedendo a 1°), a 2°) e 3°) solução do sistema de Inequação II°) vem:]-1; 0[

$$I^{\circ}$$
 $\begin{cases}]0; 1[\cup]0; +\infty[\\ x \in [0; 2[\cup [5; +\infty[$

II°)
$$\begin{cases}]-1; 0[\\]-\infty; 0] \cup [2; 5] \end{cases}$$

Intercedendo as duas últimas soluções do Sistema Iº):

$$S(I) =]0; 1[\cup [5; +\infty[$$

Intercedendo as duas últimas soluções do Sistema II°): S(II) =]-1; 0[

A solução da inequação é: $S = S(I) \cup S(II)$, $S =]-1; 0[]0; 1[\cup [5; +\infty[$

12°) (Exame 2020) Resolve a inequação:
$$\log_{(9x^2-6x+1)} \left(\frac{1}{9x^2-18x+8}\right) < -1$$

Resp: a)]-1; 0[
$$\cup$$
]5; + ∞ [b)]-1; 0[]0; 1[\cup [5; + ∞ [c)]2; + ∞ [d)]- ∞ ; 0[\cup $\frac{7}{12}$; $\frac{2}{3}$

e) outro

Resolução:

$$\log_{(9x^2-6x+1)}\left(\frac{1}{9x^2-18x+8}\right) < -1 \to \log_{(9x^2-6x+1)}\left(\frac{1}{9x^2-18x+8}\right) < \log_{9x^2-6x+1}\left(\frac{1}{9x^2-6x+1}\right)$$

A inequação é válida nas seguintes condições:

$$I) \begin{cases} \frac{9x^2 - 6x + 1 > 1 \ (base)}{\frac{1}{9x^2 - 18x + 8}} > 0 \ (logaritmando) \\ \frac{1}{9x^2 - 6x + 1} > 0 \ (logaritmando) \\ \frac{1}{9x^2 - 18x + 8} < \left(\frac{1}{9x^2 - 6x + 1}\right) \end{cases}$$

$$II) \begin{cases} 0 < 9x^2 - 6x + 1 < 1 \ (base) \\ \frac{1}{9x^2 - 18x + 8} > 0 \ (logaritmando) \\ \frac{1}{9x^2 - 6x + 1} > 0 \ (logaritmando) \\ \frac{1}{9x^2 - 18x + 8} > \left(\frac{1}{9x^2 - 6x + 1}\right) \end{cases}$$

Resolvendo as inequações por parte:

I°)
$$9x^2 - 6x + 1 > 1 \rightarrow 9x^2 - 6x > 0 \left(x_1 = 0 \ e \ x_2 = \frac{2}{3}\right)$$

f(x)	-∞ +∞		0	2 3	
$9x^2 - 6x$		+	О	- O	+
S		+		_	+

$$x \in]-\infty; 0[\cup]^{\frac{2}{3}}; +\infty[$$

I°) e II°)
$$\frac{1}{9x^2-18x+8} > 0$$
 (se $1 > 0$ então $9x^2 - 18x + 8 > 0$ $\left(x_1 = \frac{2}{3} e x_2 = \frac{4}{3}\right)$

f(x)	-∞		2 3	3	+∞
$9x^2 - 18x + 8$		+	O - C	+	
S		+	_	+	

$$x \in \left[-\infty; \frac{2}{3}\right] \cup \left[\frac{4}{3}; +\infty\right]$$

I°) e II°)
$$\frac{1}{9x^2 - 6x + 1} > 0$$
, $9x^2 - 6x + 1 > 0 \rightarrow \left(x_1 = x_2 = \frac{1}{3}\right)$

f(x)	-∞ +∞	<u>1</u> 3		
$9x^2 - 18x + 8$	+	0	+	
S	+		+	

$$x \in \left] -\infty; \frac{1}{3} \left[\cup \right] \frac{1}{3}; +\infty \right[$$

II°)
$$0 < 9x^2 - 6x + 1 < 1 \rightarrow \begin{cases} 9x^2 - 6x + 1 > 0, & x \in]-\infty; \frac{1}{3}[\cup] \frac{1}{3}; +\infty[\\ 9x^2 - 6x + 1 < 1 \rightarrow 9x^2 - 6x < 0, & x \in]0; \frac{2}{3}[$$

Intercedendo
$$\left] -\infty; \frac{1}{3} \right[\cup \left] \frac{1}{3}; +\infty \right[\cap \left] 0; \frac{2}{3} \right[= x \in \left] 0; \frac{1}{3} \right[\cup \left] \frac{1}{3}; \frac{2}{3} \right[$$

$$-\infty$$
 0 $\frac{1}{3}$ $\frac{2}{3}$ $+\infty$

$$\begin{split} & \Gamma^{0}) \frac{1}{9x^{2} - 18x + 8} < \frac{1}{9x^{2} - 6x + 1} \to \frac{9x^{2} - 6x + 1}{9x^{2} - 18x + 8} < 1 \to \frac{12x - 7}{9x^{2} - 18x + 8} < 0 , \\ & \left\{ \begin{array}{c} 12x - 7 = 0 \to x = \frac{7}{12} , \left(x = \frac{7}{12}\right) \\ 9x^{2} - 18x + 8 \neq 0 \left(x_{1} = \frac{2}{3} e x_{2} = \frac{4}{3}\right) \end{array} \right. \end{split}$$

f(x)	+∞ -∞		<u>7</u> 12		2 3		4 3	
12x - 7 = 0		_	О	+		+	+	
$9x^2 - 18x + 8$ $\neq 0$		+		+		_	+	
S		_		+		_	+	

$$x \in \left] -\infty; \frac{7}{12} \left[\cup \right] \frac{2}{3}; \frac{4}{3} \left[\Pi^{\circ} \right] \frac{1}{9x^{2} - 18x + 8} > \left(\frac{1}{9x^{2} - 6x + 1} \right) \rightarrow \frac{9x^{2} - 6x + 1}{9x^{2} - 18x + 8} > 1 \rightarrow \frac{12x - 7}{9x^{2} - 18x + 8} > 0$$
Análoga a inequação anterior: $x \in \left[\frac{7}{12}; \frac{2}{3} \right] \cup \left[\frac{4}{3}; +\infty \right[$

Colocando no sistemas acima:

$$I^{o} \begin{cases} x \in]-\infty; 0[\cup]_{\frac{2}{3}}^{2}; +\infty[\\ x \in]-\infty; \frac{2}{3}[\cup]_{\frac{4}{3}}^{4}; +\infty[\\ x \in]-\infty; \frac{1}{3}[\cup]_{\frac{1}{3}}^{1}; +\infty[\\ x \in]-\infty; \frac{7}{12}[\cup]_{\frac{2}{3}}^{2}; \frac{4}{3}[\\ \end{cases} \qquad II^{o} \begin{cases} x \in]0; \frac{1}{3}[\cup]_{\frac{1}{3}}^{1}; \frac{2}{3}[\\ x \in]-\infty; \frac{2}{3}[\cup]_{\frac{4}{3}}^{4}; +\infty[\\ x \in]-\infty; \frac{1}{3}[\cup]_{\frac{1}{3}}^{1}; +\infty[\\ x \in]\frac{7}{12}; \frac{2}{3}[\cup]_{\frac{4}{3}}^{4}; +\infty[\\ x \in]\frac{7}{12}; \frac{2}{3}[\cup]_{\frac{4}{3}}^{$$

$$II^{o} \begin{cases}
 x \in]0; \frac{1}{3}[\cup]\frac{1}{3}; \frac{2}{3}[\\
 x \in]-\infty; \frac{2}{3}[\cup]\frac{4}{3}; +\infty[\\
 x \in]-\infty; \frac{1}{3}[\cup]\frac{1}{3}; +\infty[\\
 x \in]\frac{7}{12}; \frac{2}{3}[\cup]\frac{4}{3}; +\infty[\\
 x \in]\frac{2}[\cup]\frac{4}{3}; +\infty[]\frac{4}{3}; +\infty[\\
 x \in]\frac{4}{3}; +\infty[\\
 x$$

Intercedendo a 1°), a 2°) e a terceira solução do sistema I°): $x \in]-\infty; 0[\cup]\frac{4}{3}; +\infty[$

Intercedendo a 1°), a 2°) e a terceira solução do sistema II°): $x \in \left]0; \frac{1}{3}\right[\cup \left[\frac{1}{3}; \frac{2}{3}\right]\right]$

Intercedendo as duas últimas solução do sistem I°): $S(I) =]-\infty$;

Intercedendo as duas últimas solução do sistem II°): $S(II) = \frac{7}{12}; \frac{2}{3}$

A solução da inequação é: $S = S(I) \cup S(II), S =]-\infty; 0[\cup]\frac{7}{12}; \frac{2}{3}[$, Línea d)

13°) (Exame 2020) Resolve a inequação:
$$\log_{(2x-x^2)} \left(x - \frac{3}{2}\right)^2 > 0$$

Resolução:

$$\log_{(2x-x^2)}\left(x-\frac{3}{2}\right)^2 > 0 \to \log_{(2x-x^2)}\left(x-\frac{3}{2}\right)^2 > \log_{(2x-x^2)}1$$

A inequação é válida nas seguintes condições:

$$I^{o}) \begin{cases} (2x - x^{2}) > 1 \ (base \\ \left(x - \frac{3}{2}\right)^{2} > 0 \ (logaritmando) \end{cases} \qquad II^{o}) \begin{cases} 0 < (2x - x^{2}) < 1 \ (base) \\ \left(x - \frac{3}{2}\right)^{2} > 0 \ (logaritmando) \end{cases} \\ \left(x - \frac{3}{2}\right)^{2} > 1 \end{cases}$$

Resolvendo as inequações por parte:

I°)
$$(2x - x^2) > 1 \rightarrow x^2 - 2x + 1 < 0$$
, $(x_1 = x_2 = 1)$

$$s = \emptyset$$

I°) e II°)
$$\left(x - \frac{3}{2}\right)^2 > 0$$
, $\left(x_1 = x_2 = \frac{3}{2}\right)$, $x \in \left] -\infty; \frac{3}{2} \left[\cup \right] \frac{3}{2}; +\infty \right[$

II°)
$$0 < (2x - x^2) < 1 \rightarrow$$

$$\begin{cases} x^2 - 2x + 1 > 0, (x_1 = x_2 = 1), x \in] -\infty; 1[\cup]1; +\infty[\\ x^2 - 2x < 0 \to (x_1 = 0 e x_2 = 2) x \in]0; 2[\end{cases}$$

Intercedendo: $]-\infty$; 1[\cup]1; $+\infty$ [\cap]0; 2[=]0; 1[\cup]1; 2[

I°)
$$\left(x - \frac{3}{2}\right)^2 > 1 \rightarrow 4x^2 - 12x + 5 > 0$$
, $\left(x_1 = \frac{1}{2} e \ x_2 = \frac{5}{2}\right)$

f(x)	-∞ +∞		$\frac{1}{2}$	<u>5</u> 2	
$4x^2 - 12x + 5$		+	O	- O	+
S		+		_	+

$$x \in \left[-\infty; \frac{1}{2}\right] \cup \left[\frac{5}{2}; +\infty\right]$$

II°) I°)
$$\left(x - \frac{3}{2}\right)^2 < 1 \rightarrow 4x^2 - 12x + 5 > 0$$
, $\left(x_1 = \frac{1}{2} e \ x_2 = \frac{5}{2}\right)$

Análogo a inequação anterior: $x \in \left[\frac{1}{2}; \frac{5}{2}\right]$

Voltando nos sistemas acima:

$$I^{0} \begin{cases} S = \emptyset \\ x \in]-\infty; \frac{3}{2}[\cup] \frac{3}{2}; +\infty[\\ x \in]-\infty; \frac{1}{2}[\cup] \frac{5}{2}; +\infty[\\ x \in]-\infty; \frac{1}{2}[\cup] \frac{5}{2}; +\infty[\\ x \in]-\infty; \frac{1}{2}[\cup] \frac{3}{2}; +\infty[\\ x \in]\frac{1}{2}; \frac{5}{2}[\\ x \in]-\infty; \frac{1}{2}[\cup] \frac{3}{2}; +\infty[\\ x \in]-\infty; \frac{3}{2}[\cup] \frac{3}{2}; +\infty[\\ x \in]-\infty;$$

Intercedendo todas as soluções do sistema I°): $S(I) = \emptyset$

Intercedendo a 1°) e a 2°) solução do sistema II°): $]0; 1[\cup]1; \frac{3}{2}[\cup]\frac{3}{2}; 2[$

II°)
$$\begin{cases}]0; 1[\cup]1; \frac{3}{2}[\cup]\frac{3}{2}; 2[\\ x \in]\frac{1}{2}; \frac{5}{2}[\end{cases}$$

Intercedendo as duas últimas soluções do Sistema II°): $S(II) = \frac{1}{2}$; $1 \left[\cup \right] 1; \frac{3}{2} \left[\cup \right] \frac{3}{2}$; $2 \left[\cup \right] \frac{3}{2}$

A solução da inequação é: = $S(I) \cup S(II)$, $S = \left| \frac{1}{2} \right|$; $1 \left| \bigcup \left| 1; \frac{3}{2} \right| \cup \left| \frac{3}{2} \right|$; $2 \left| \bigcup \left| \frac{3}{2} \right| \right|$

14°) (Exame 2020/2016) A solução da inequação $\log_{\left(\frac{\chi^2-\chi}{5}\right)}\left(\frac{\chi-1}{2}\right) \geq 0$ é:

Resp:)]-1; 0[
$$\cup$$
 [5, + ∞ [B)]-1; 0[\cup]0; 1[\cup [5, + ∞ [C)]1, $\frac{1+\sqrt{21}}{2}$ [U [3, + ∞ [

D)
$$]-\infty$$
; $-4 [U]1$; $+\infty [E)$ outro

Resolução:

$$\log_{\left(\frac{x^2-x}{5}\right)}\left(\frac{x-1}{2}\right) \ge 0 \to \log_{\left(\frac{x^2-x}{5}\right)}\left(\frac{x-1}{2}\right) \ge \log_{\left(\frac{x^2-x}{5}\right)} 1$$

A inequação tem sentido quando:

$$\begin{cases}
\frac{x-1}{2} > 0 \\
\left(\frac{x^2-x}{5}\right) > 0 \\
\left(\frac{x^2-x}{5}\right) > 0 \text{ base }) \\
\left(\frac{x-1}{2}\right) \ge 1
\end{cases}$$

$$\begin{cases}
x > 1 \\
x^2 - x > 0 \\
x \ge 3
\end{cases}$$

$$\begin{cases}
x > 1 \\
x^2 - x > 0 \\
x \ge 3
\end{cases}$$

$$\begin{cases}
\frac{x^2-x}{5} > 0 \\
\left(\frac{x-1}{2}\right) > 0 \\
\left(\frac{x-1}{2}\right) \le 1
\end{cases}$$

$$\begin{cases}
\left(\frac{x^2-x}{5}\right) > 0 \text{ e } \left(\frac{x^2-x}{5}\right) < 1 \\
x^2 - x > 0 \\
x > 1 \\
x < 3
\end{cases}$$

Resolução das inequações por parte:

I.2) e II.2
$$x^2 - x > 0 \rightarrow x(x - 1) > 0 (x_1 = 0 e x_2 = 1)$$

x	-∞	0	1	+∞
$x^2 - x$	+	O	- 0	+

I.2) e II.2)
$$x \in]-\infty; 0[\cup]1; +\infty[$$

II.)
$$\left(\frac{x^2 - x}{5}\right) > 0 \ e^{\left(\frac{x^2 - x}{5}\right)} < 1$$

1°)
$$\left(\frac{x^2 - x}{5}\right) > 0 \to x^2 - x > 0 \to x \in]-\infty; 0[\cup]1; +\infty[$$

2°)
$$\left(\frac{x^2-x}{5}\right) < 1 \rightarrow x^2 - x - 5 < 0 \ (a = 1; b = -1; c = -5)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-5)}}{2(1)} = \frac{1 \pm \sqrt{21}}{2}$$

$$x_1 = \frac{1+\sqrt{21}}{2} e x_2 = \frac{1-\sqrt{21}}{2}$$

x	-∞		$\frac{1-\sqrt{21}}{2}$		$\frac{1+\sqrt{21}}{2}$		+ ∞
$x^2 - x$		+	O	_	O	+	

 $x \in \left] \frac{1-\sqrt{21}}{2}; \frac{1+\sqrt{21}}{2} \right[$, Agora vamos encontrar uma solução única, intercedendo:

$$]-\infty;0[\ \cup\]1;+\infty[\ \cap\ \left]\frac{1-\sqrt{21}}{2};\frac{1+\sqrt{21}}{2}\right]=\ \left]\frac{1-\sqrt{21}}{2};0[\ \cup\]1;\frac{1+\sqrt{21}}{2}\right[$$

Colocando nos sistemas de inequações, temos:

$$\begin{array}{c}
1; +\infty \\
]-\infty; 0[\cup]1; +\infty[]\\
 [3; +\infty[]
\end{array}$$

$$\left\{ \begin{array}{c}
]\frac{1-\sqrt{21}}{2}; 0[\cup]1; \frac{1+\sqrt{21}}{2}[\\
]-\infty; 0[\cup]1; +\infty[\\
]1; +\infty[\\
]-\infty, 3]
\end{array} \right\}$$

Intercedendo todas as soluções do sistema I), temos:

$$S_1 = [3; +\infty[$$

Intercedendo a 1º a 2º solução do sistema II), temos:

Intercedendo no sistema II) :
$$\left]\frac{1-\sqrt{21}}{2}; 0\right[\cup \left]1; \frac{1+\sqrt{21}}{2}\right[\cap \left]1; +\infty\right[$$

$$x \in \left]1; \frac{1+\sqrt{21}}{2} \right[\rightarrow II) \left\{ \begin{array}{l} 1; \frac{1+\sqrt{21}}{2} \\]-\infty, 3 \end{array} \right] \right\} \, ,$$

Intercedendo finalmente as duas últimas soluções do sistema II), temos:

$$S_2 = \left]1; \frac{1+\sqrt{21}}{2}\right[$$

A solução da inequação é: $S = S_1 \cup S_2$

$$S = \left]1; \frac{1+\sqrt{21}}{2} \right[\cup \left[3; +\infty\right[, \text{Línea C})\right]$$

Exames de Acesso 2019

$$2(1-sen^2\alpha\cos^2\alpha)^2-sen^8\alpha-\cos^8\alpha$$

Resp: A) 2 B) 0 C)
$$2 sen^2 \alpha$$
 D) $\frac{1}{2} cos^2 \alpha$ E) 1 F) $sen^2 \alpha cos^2 \alpha$

G) $cos2\alpha$ H) outro

Resolução:

$$2(1-sen^2\alpha\cos^2\alpha)^2-(sen^8\alpha+\cos^8\alpha)$$

Aplicando a transformação: $a^8 + b^8 = (a^4 + b^4)^2 - 2a^4b^4$ na segunda expressão, fica:

$$sen^8\alpha + cos^8\alpha = (sen^4\alpha + cos^4\alpha)^2 - 2sen^4\alpha \cos^4\alpha$$

Aplicando novamente a transformação: $a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2$; fica:

$$sen^4\alpha + cos^4\alpha = (sen^2\alpha + cos^2\alpha)^2 - 2sen^2\alpha \cos^2\alpha$$
, Substituindo fica:

$$sen^{8}\alpha + cos^{8}\alpha = [(sen^{2}\alpha + cos^{2}\alpha)^{2} - 2sen^{2}\alpha \cos^{2}\alpha]^{2} - 2sen^{4}\alpha \cos^{4}\alpha$$

Obs.:
$$sen^2\alpha + cos^2\alpha = 1$$

 $sen^8\alpha+cos^8\alpha=[1-2sen^2\alpha\,cos^2\alpha]^2-2sen^4\alpha\,cos^4\alpha$, Voltando na expressão inicial, vem:

$$2(1 - sen^2\alpha \cos^2\alpha)^2 - ([1 - 2sen^2\alpha \cos^2\alpha]^2 - 2sen^4\alpha \cos^4\alpha)$$

Desenvolvendo os quadrados da soma vem:

$$2(1-2sen^2\alpha\cos^2\alpha+sen^4\alpha\cos^4\alpha)-((1-4sen^2\alpha\cos^2\alpha+4sen^4\alpha\cos^4\alpha)-2sen^4\alpha\cos^4\alpha)$$

Eliminando os parênteses:

$$2-4sen^2\alpha\cos^2\alpha+2sen^4\alpha\cos^4\alpha-1+4sen^2\alpha\cos^2\alpha-4sen^4\alpha\cos^4\alpha+2sen^4\alpha\cos^4\alpha$$

Reduzindo os termos semelhantes:

16°) (Exame 2019/2008) Simplifique a expressão:

$$(1 + sen\alpha + cos\alpha)(1 - sen\alpha + cos\alpha)(1 + sen\alpha - cos\alpha)(sen\alpha + cos\alpha - 1)$$

Resp: A)
$$sen^2 2\alpha$$
 B) 1 C) 0 D) $cos^2 2\alpha$ E) $\frac{1}{2} cos^2 \alpha$ F) $2 cos^2 \alpha$ G) $sen\alpha cos\alpha$

H) outroResolução:

$$[(1 + sen\alpha + cos\alpha)(sen\alpha + cos\alpha - 1)][(1 - sen\alpha + cos\alpha)(1 + sen\alpha - cos\alpha)]$$

Multiplicando termo à termos os dois produtos em parentes rectos fica:

$$(sen\alpha + cos\alpha - 1 + sen^2\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha + cos^2\alpha - cos\alpha) \times (1 + sen\alpha - cos\alpha - sen\alpha - sen^2\alpha + sen\alpha \cos\alpha + cos\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(1 + sen\alpha - cos\alpha - sen\alpha - sen^2\alpha + sen\alpha \cos\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha + 1)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha + 1)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen\alpha \cos\alpha - sen\alpha + sen\alpha \cos\alpha - cos^2\alpha)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha + 1)$$

$$(2 + sen\alpha \cos\alpha + sen^2\alpha + cos^2\alpha + 1)$$

$$(3 + sen^2\alpha + sen^2\alpha + cos^2\alpha - 1)$$

$$(3 + sen^2\alpha + sen^2\alpha + cos^2\alpha + sen^2\alpha + cos^2\alpha + 1)$$

$$(3 + sen^2\alpha + sen^2\alpha + cos^2\alpha + sen^2\alpha + cos^2\alpha + sen^2\alpha + sen^$$

$$(2sen\alpha cos\alpha + 1 - 1)(2sen\alpha cos\alpha - 1 + 1)$$

$$(2sen\alpha \cos\alpha)(2sen\alpha \cos\alpha)$$
; $obs: 2sen\alpha \cos\alpha = sen2\alpha$
 $(sen2\alpha)(sen2\alpha) = sen^22\alpha$, Línea A)

17°) (Exame 2019/2008) Simplifique a expressão:
$$\frac{1-sen^6\alpha-cos^6\alpha}{1-sen^4-cos^4\alpha}$$

Resp: A)
$$tg^2\alpha$$
 B) 1 C) $\frac{1}{2}$ D) $\frac{3}{2}$ E) $sen^2\alpha$ F) $2sec^2\alpha$ G) $sen^22\alpha$ H) outro

Resolução:

$$\frac{1-(sen^6\alpha+cos^6\alpha)}{1-(sen^4+cos^4\alpha)}$$

Aplicando as transformações:

$$a^6 + b^6 = (a^3 + b^3)^2 - 2a^3b^3 e$$
 $a^4 + b^4 = (a^2 + b^2)^2 - 2a^2b^2$
 $sen^6\alpha + cos^6\alpha = (sen^3\alpha + cos^3\alpha)^2 - 2sen^3\alpha cos^3\alpha$

Sabe-se que:
$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$
, então:

$$sen^3\alpha + cos^3\alpha = (sen\alpha + cos\alpha)(sen^2\alpha - sen\alpha cos\alpha + cos^2\alpha)$$

$$sen^6\alpha + cos^6\alpha = [(sen\alpha + cos\alpha)(sen^2\alpha - sen\alpha \cos\alpha + cos^2\alpha)]^2 - 2sen^3\alpha \cos^3\alpha$$

$$sen^6\alpha + cos^6\alpha = [(sen\alpha + cos\alpha)(1 - sen\alpha \, cos\alpha)]^2 - 2sen^3\alpha \, cos^3\alpha$$

$$sen^6\alpha + cos^6\alpha = (sen\alpha + cos\alpha)^2(1 - sen\alpha cos\alpha)^2 - 2sen^3\alpha cos^3\alpha$$

Desenvolvendo os quadrados da soma vem:

$$= (1 + 2sen\alpha \cos\alpha)(1 - 2sen\alpha \cos\alpha + sen^2\alpha \cos^2\alpha) - 2sen^3\alpha \cos^3\alpha.$$

Desenvolvendo o producto em parenteses:

=
$$1 - 2sen\alpha \cdot cos\alpha + sen^2\alpha \cos^2\alpha + 2sen\alpha \cdot cos\alpha - 4sen^2\alpha \cos^2\alpha + 2sen^3\alpha \cos^3\alpha - 2sen^3\alpha \cos^3\alpha$$

Reduzindo os termos semelhante:

$$sen^6\alpha + cos^6\alpha = 1 - 3sen^2\alpha cos^2\alpha$$

$$sen^4\alpha + cos^4\alpha = (sen^2\alpha + cos^2\alpha)^2 - 2sen^2\alpha \cos^2\alpha$$

Obs.:
$$sen^2\alpha + cos^2\alpha = 1$$
; $sen^4\alpha + cos^4\alpha = 1 - 2sen^2\alpha cos^2\alpha$

Voltando na expressão inicial, temos:

$$\frac{1-(1-3sen^2\alpha\cos^2\alpha)}{1-(1-2sen^2\alpha\cos^2\alpha)}$$
, Eliminando os parênteses fica:

$$\frac{1-1+3sen^2\alpha\cos^2\alpha}{1-1+2sen^2\alpha\cos^2\alpha} = \frac{3sen^2\alpha\cos^2\alpha}{2sen^2\alpha\cos^2\alpha} = \frac{3}{2}, \text{ Linea D}$$

18°) (Exame 2019/2008) Simplifique a expressão: $sen3\alpha sen^3\alpha +$ $\cos 3\alpha \cos^3 \alpha$

Resp:

A)
$$\cos^3 2\alpha$$
 B) 1 C) 0 D) $\frac{1}{2} \sin^3 2\alpha$ E) $\cos^2 \alpha$ F) $2 \sin^2 \alpha$ G) $\sin \alpha \cos \alpha$ H) outro

Resolução:

sabe-se que:
$$sen3\alpha = 3sen\alpha - 4sen^3\alpha$$
 e $cos3\alpha = 4cos^3\alpha - 3cos\alpha$

$$(3sen\alpha - 4sen^3\alpha)sen^3\alpha + (4cos^3\alpha - 3cos\alpha)cos^3\alpha$$
 eliminando os parenteses, vem:

$$3sen^4\alpha - 4sen^6\alpha + 4cos^6\alpha - 3cos^4\alpha \rightarrow Agrupando$$

$$(3sen^4\alpha - 3cos^4\alpha) + (-4sen^6\alpha + 4cos^6\alpha)$$
 factorizando os termos comuns, vem:

$$3(sen^4\alpha - cos^4\alpha) - 4(sen^6\alpha - cos^6\alpha)$$

Sabe-se que:
$$a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) e a^6 - b^6 = (a^3 - b^3)(a^3 + b^3)$$

$$3(sen^2\alpha+cos^2\alpha)(sen^2\alpha-cos^2\alpha)-4(sen^3\alpha-cos^3\alpha)(sen^3\alpha+cos^3\alpha)$$

Note que:
$$sen^2\alpha + cos^2\alpha = 1$$
; $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

$$a^3 + b^3 = (a + b)(a^2 - ab + b^2)$$

$$3(sen^2\alpha - cos^2\alpha) - 4(sen\alpha - cos\alpha)(sen^2\alpha + sen\alpha cos\alpha + cos^2\alpha)(sen\alpha + cos\alpha)(sen^2\alpha - sen\alpha cos\alpha + cos^2\alpha)$$

$$3(sen^2\alpha - cos^2\alpha) - 4[(sen\alpha - cos\alpha)(sen\alpha + cos\alpha)] \times [(sen^2\alpha + cos^2\alpha + sen\alpha cos\alpha)(sen^2\alpha + cos^2\alpha - sen\alpha cos\alpha)]$$

$$3(sen^2\alpha - cos^2\alpha) - 4(sen^2\alpha - cos^2\alpha)[(1 + sen\alpha cos\alpha)(1 - sen\alpha cos\alpha)]$$

$$3(sen^2\alpha - cos^2\alpha) - 4(sen^2\alpha - cos^2\alpha)(1 - sen^2\alpha cos^2\alpha)$$

Factorizando a expressão ($sen^2\alpha - cos^2\alpha$), temos:

$$(sen^2\alpha - cos^2\alpha)[3 - 4(1 - sen^2\alpha \cos^2\alpha)] \rightarrow$$

$$(sen^2\alpha - cos^2\alpha)(3 - 4 + 4sen^2\alpha \cos^2\alpha)$$
 factorizando os sinais , temos:

$$(sen^2\alpha - cos^2\alpha)(-1 + 2^2(sen\alpha cos\alpha)^2) \rightarrow$$

$$[-(\cos^2\alpha - \sin^2\alpha)][-(1 - (2\sin\alpha\cos\alpha)^2)]$$

$$(\cos^2\alpha - \sin^2\alpha)[-(1 - (2\sin\alpha\cos\alpha)^2)],$$

Note: $cos^2\alpha - sen^2\alpha = cos2\alpha$ e $sen2\alpha = 2sen\alpha$ $cos\alpha$ $cos2\alpha(1 - sen^22\alpha)$, sabe - se que : $1 - sen^22\alpha = cos^22\alpha$ $cos2\alpha \times cos^22\alpha = cos^32\alpha$, Línea A)

19°) (Exame 2019/2008) Simplifique a expressão:

$$\frac{\sqrt{\frac{4\sqrt{x^3} - 1}{4\sqrt{x} - 1}} + \sqrt[4]{x} - \left(\frac{\sqrt[4]{x^3} + 1}{\sqrt[4]{x} + 1} - \sqrt{x}\right)}{x - \sqrt{x^3}}$$

Resp: A) \sqrt{x} B) 1 C) $\frac{1}{1+\sqrt{x}}$ D) $\frac{1}{x}$ E) $\sqrt[4]{x} - 1$

F)
$$\frac{x}{\sqrt{x}-1}$$
 G) $\frac{\sqrt{x}-1}{\sqrt[4]{x}+1}$ H) outro

Resolução: Igualando os índices de todos os radicais com denominador 4, vem:

$$\frac{\sqrt{\frac{\sqrt[4]{x^3}-1}{\sqrt[4]{x^2}-1}} + \sqrt[4]{x} \cdot \left(\sqrt[4]{\frac{x^3}{\sqrt[4]{x}+1}} - \sqrt[4]{x^2} \right)}{\sqrt[4]{x^4}-\sqrt[4]{x^6}} \qquad \text{Fazendo: } \sqrt[4]{x} = t \text{ , Temos:}$$

$$=\frac{\sqrt{\frac{t^3-1}{t-1}+t}\binom{t^3+1}{t+1}-t^2}}{t^4-t^6}=\frac{\sqrt{\frac{(t-1)(t^2+t+1)}{t-1}+t}\binom{(t+1)(t^2-t+1)}{t+1}-t^2}}{t^4(1-t^2)}=\frac{\sqrt{t^2+t+1+t}\left(t^2-t+1-t^2\right)}{t^4(1-t^2)}\\ =\frac{\sqrt{t^2+2t+1}\left(-t+1\right)}{t^4(1-t^2)}=-\frac{\sqrt{(t+1)^2}\left(t-1\right)}{-t^4(t^2-1)}=\frac{(t+1)(t-1)}{t^4(t^2-1)}=\frac{(t^2-1)}{t^4(t^2-1)}=\frac{1}{t^4}$$

Voltando, temos: $\frac{1}{(\sqrt[4]{x})^4} = \frac{1}{x}$. Resposta: $\frac{1}{x}$, Línea D)

20°) (Exame 2019/2008) Simplifique a expressão:

$$\sqrt{\frac{a^3 + 3b}{2a} + \sqrt{3ab}} - \sqrt{\frac{a^3 + 3b}{2a} - \sqrt{3ab}} \qquad \forall \ 3b > a^3 > 0$$

Resp: A)
$$\frac{\sqrt{6ab}}{a}$$
 B) $\sqrt{2} a$ C) $\frac{\sqrt{6ab}}{b}$ D) $\frac{b}{2}$ E) $\frac{2a}{\sqrt{b}}$ F) $\frac{b}{\sqrt{2}a}$ G) 2 \sqrt{ab}

H) outro

Resolução:

Fazendo: A =
$$\sqrt{\frac{a^3+3b}{2a} + \sqrt{3ab}} - \sqrt{\frac{a^3+3b}{2a} - \sqrt{3ab}} / ()^2$$

Sabe-se que: $(a - b)^2 = a^2 - 2ab + b^2$, Aplicando temos:

$$A^{2} = \frac{a^{3} + 3b}{2a} + \sqrt{3ab} + \frac{a^{3} - 3b}{2a} - \sqrt{3ab} - 2\sqrt{\left(\frac{a^{3} + 3b}{2a} + \sqrt{3ab}\right)\left(\frac{a^{3} + 3b}{2a} - \sqrt{3ab}\right)}$$

$$A^{2} = \frac{a^{3} + 3b + a^{3} + 3b}{2a} - 2\sqrt{\left(\frac{a^{3} + 3b}{2a}\right)^{2} - \left(\sqrt{3ab}\right)^{2}}$$

$$A^{2} = \frac{2a^{3} + 6b}{2a} - 2\sqrt{\left[\frac{a^{6} + 6a^{3}b + 9b^{2}}{4a^{2}} - 3ab\right]}$$

$$A^{2} = \frac{a^{3} + 3b}{a} - 2\sqrt{\left[\frac{a^{6} + 6a^{3} + 9b^{2} - 12a^{3}b}{4a^{2}}\right]}$$

$$A^{2} = \frac{a^{3} + 3b}{a} - 2\sqrt{\left[\frac{a^{6} - 6a^{3}b + 9b^{2}}{4a^{2}}\right]}$$

$$A^{2} = \frac{a^{3} + 3b}{a} - 2\sqrt{\frac{(a^{3} - 3b)^{2}}{4a^{2}}} = \frac{a^{3} + 3b}{a} - 2\frac{\sqrt{(a^{3} - 3b)^{2}}}{\sqrt{4a^{2}}} = \frac{a^{3} + 3b}{a} - \frac{2(a^{3} - 3b)}{2a} = \frac{a^{3} + 3b}{a} - \frac{(a^{3} - 3b)}{a}$$

pela condição dada, $3b > a^3 > 0$, $|(a^3 - 3b)| = 3b - a^3$

$$A^{2} = \frac{a^{3}+3b-(3b-a^{3})}{a} = \frac{a^{3}+3b-3b+a^{3}}{a} = \frac{2a^{3}}{a} = 2a^{2}$$

$$A^2 = 2a^2$$
, $A = \sqrt{2} a$. Resposta: $\sqrt{2} a$, Línea B)

21°) (Exame 2019/2008) Simplifique a expressão:

$$\frac{1 - \frac{1 + xy}{1 + \sqrt[3]{xy}}}{\sqrt{xy}(1 - \sqrt[3]{xy}) - \frac{(1 - xy)(\sqrt[3]{xy} - 1)}{1 + \sqrt{xy}}} \quad \forall xy \ge 0, e \ xy \ne 1$$

Resp: *A*) *xy B*) 1 *C*) 0 *D*)
$$2\sqrt{xy}$$
 E) $1 - \sqrt{xy}$

F)
$$1 + \sqrt[3]{xy}$$
 G) $\sqrt[3]{xy}$ H) outro

Resolução:

$$\frac{\frac{1+\sqrt[3]{xy}-(1-xy)}{1+\sqrt[3]{xy}}}{\frac{\sqrt{xy}\left(1-\sqrt[3]{xy}\right)\left(1+\sqrt{xy}\right)-(1-xy)\left(\sqrt[3]{xy}-1\right)}{1+\sqrt{xy}}} = \frac{\frac{1+\binom{6}{(xy)^2}-(1-xy)}{1+\binom{6}{(xy)^2}}}{\frac{6\sqrt{(xy)^3}\left(1-\binom{6}{(xy)^2}\right)\left(1+\binom{6}{(xy)^3}\right)-(1-xy)\left(\binom{6}{(xy)^2}-1\right)}{1+\binom{6}{(xy)^3}}}$$

Supondo que: $\sqrt[6]{xy} = t$, $xy = t^6$

$$\frac{\frac{1+t^2-(1-t^6)}{1+t^2}}{\frac{t^3(1-t^2)(1+t^3)-(1-t^6)(t^2-1)}{1+t^3}} = \frac{\frac{1+t^2-1+t^6}{1+t^2}}{\frac{t^3(1-t^2)(1+t^3)+(1-t^6)(1-t^2)}{1+t^3}} = \frac{\frac{t^2(t^4+1)}{1+t^2}}{\frac{(1-t^2)(t^3+t^6+1-t^6)}{1+t^3}} = \frac{\frac{t^2(t^4+1)}{1+t^2}}{\frac{(1-t^2)(1+t^3)}{1+t^3}}$$

$$= \frac{\frac{t^2(t^4+1)}{1+t^2}}{1-t^2} = \frac{t^2(t^4+1)}{(1+t^2)(1-t^2)} = \frac{t^2(t^4+1)}{1-t^4}, \text{ pela condição dada: } xy \ge 0, |-t^4| = t^4, \text{ temos:}$$

$$=\frac{t^2(t^4+1)}{1+t^4}=t^2$$
, voltando, temos:

$$\sqrt[6]{xy} = t$$
, $\sqrt[8]{xy}$ = $\sqrt[3]{xy}$. R: $\sqrt[3]{xy}$, Línea G)

22º) (**Exame 2019/2008**) Resolve a inequação: $\log_2 |x^2 - x| < 1$

Resp: A)
$$]-1;1[\cup]1;2[B)]-1;0[\cup]0;1[\cup]1;2[C)]-\infty;0[\cup]1;2[$$

D)
$$]0;1[\cup]2;+\infty[E)]0;1[\cup]1;+\infty[$$

$$F)]-1; 0[\cup]1; 2[G)]-\infty; -1[\cup]0; 1[\cup]2; +\infty[H) outro$$

Resolução:

Pela condição de uma expressão modular, temos:

$$|x^2 - x| = \begin{cases} x^2 - x \operatorname{se} x^2 - x \ge 0 \\ -(x^2 - x)\operatorname{se} x^2 - x < 0 \end{cases}$$

A inequação é válida em dois sentidos:

$$I) \begin{cases} x^2 - x \ge 0 \\ x^2 - x > 0 \\ \log_2 x^2 - x < 1 \end{cases}$$

$$II) \begin{cases} x^2 - x < 0 \\ -(x^2 - x) > 0 / \times (-1) \\ \log_2 - (x^2 - x) < 1 \end{cases}$$

$$\begin{cases} x(x-1) \ge 0 \\ x(x-1) > 0 \\ \log_2 x^2 - x < \log_2 2 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \\ \log_2(-x^2 + x) < \log_2 2 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

$$\begin{cases} x(x-1) < 0 \\ x(x-1) < 0 \end{cases}$$

- I.1) $x(x-1) \ge 0$ (inequação do 2° grau)
- II.1) x(x-1) < 0 (Inequação Do 2º grau)

I.2, II.2
$$x(x-1) > 0$$
 (inequção do 2° grau)

Aplicando a lei do anulamento do produto para achar as raízes das três inequações acimas obtemos: $(x_1 = 0 \ e \ x_2 = 1)$

x	-∞	0	1	+∞
I.1) $x(x-1) \ge 0 \ (a > 0)$	+	О -	O +	
II.1) $x(x-1) < 0 (a > 0)$	+	О -	O +	
I.2, II.2 $x(x-1) > 0 (a > 0)$	+	0 -	O +	

I.1)
$$x(x-1) \ge 0 \rightarrow x \in]-\infty; 0] \cup [1; +\infty[$$

II.1)
$$x(x-1) < 0 \rightarrow x \in]0;1[$$

I.2, II.2
$$x(x-1) > 0 \to x \in]-\infty; 0[\cup]1; +\infty[$$

I.3)
$$x^2 - x - 2 < 0$$
 (inequação do 2° grau)

Aplicando Vieth para achas as raízes da inequação, temos:

$$x_1 = 2 e x_2 = -1$$

x	-∞	- 1	2		+ ∞
$x^2 - x - 2 < 0$	+	O	- O	+	

I.3)
$$x^2 - x - 2 < 0 \rightarrow x \in]-1; 2[$$

II.3)
$$x^2 - x + 2 > 0$$
 (inequação do 2º grau)

Aplicando a fórmula resolvente: a = 1, b = -1, c = 2

$$\Delta = (-1)^2 - 4(1)(2) = 1 - 8 = -7 \ \rightarrow \ \Delta < 0$$
, Não existe $x_1 \ e \ x_2$

I)
$$\begin{cases} x \in]-\infty; 0] \cup [1; +\infty[\\ x \in]-\infty; 0[\cup]1; +\infty[\\ x \in]-1; 2[\end{cases}$$
 II)
$$\begin{cases} x \in]0; 1[\\ x \in]0; 1[\end{cases}$$

$$S(I) =]-1;0[\cup]1;2[$$

$$S(II) = [0; 1[$$

$$S = S(I) \cup S(II) =]-1; 0[\cup]0; 1[\cup]1; 2[, Linea B)$$

23°) (Exame 2019/2008) Resolva a inequação:

$$\log_{3x+4} x^2 < 1$$

Resp: A)
$$\left[-\infty; -\frac{4}{3}\right] \cup \left[-1; 0\right] \cup \left[4; +\infty\right] B) \left[-1; 0\right] \cup \left[1; 4\right]$$

C)]-1; 12[
$$\cup$$
]1; 4[D)]- $\frac{4}{3}$; 0[\cup]0; 1[\cup]1; 4[

E)
$$\left] -\frac{4}{3}; -1 \right[\cup]0; 4[F] \right] -\frac{4}{3}; -1 \left[\cup]-1; 0[\cup]0; 4[F] \right]$$

$$G)$$
]-1;0[\cup]0;1[H) outro

Resolução:

$$\log_{3x+4} x^2 < 1 \to \log_{(3x+4)}(3x+4)$$

A inequação será válida nas seguintes condições:

I)
$$\begin{cases} x^2 > 0 \\ 3x + 4 > 0 \\ 3x + 4 > 0 \\ x^2 < 3x + 4 \end{cases}$$

$$II) \begin{cases} 0 < 3x + 4 < 1 \\ 3x + 4 > 0 \\ x^2 > 0 \\ x^2 > 3x + 4 \end{cases}$$

$$\begin{cases}
 x^2 > 0 \\
 3x + 4 > 0 \\
 3x + 4 > 0 \\
 x^2 - 3x - 4 < 0
\end{cases}$$

$$\begin{cases} 0 < 3x + 4 < 1 \\ 3x + 4 > 0 \\ x^2 > 0 \\ x^2 - 3x - 4 > 0 \end{cases}$$

I.1) e II.3)
$$x^2 > 0 \rightarrow x \in]-\infty; 0[\cup]0; +\infty[$$

I.2) e II.2)
$$3x + 4 > 0 \rightarrow x > -\frac{4}{3} \rightarrow x \in \left[-\frac{4}{3}; +\infty \right[$$

II.1)
$$0 < 3x + 4 < 1$$
; $3x + 4 > 0$ e $3x + 4 < 1$

$$3x + 4 > 0 \rightarrow x > -\frac{4}{3} \rightarrow x \in \left] -\frac{4}{3}; +\infty \right[$$

$$3x + 4 < 1 \rightarrow x < -1 \rightarrow x \in]-\infty; -1[$$

Solução verdadeira:

II.1)
$$x \in \left] -\frac{4}{3}; -1 \right[$$

I.3)
$$x^2 - 3x - 4 < 0$$
 (pelo método de vieth $x_1 = 4$ e $x_2 = -1$)

II.4)
$$x^2 - 3x - 4 > 0$$
 (pelo método de vieth $x_1 = 4$ e $x_2 = -1$)

<i>a</i> > 0	-∞	- 1		4	+ ∞	
$x^2 - 3x - 4 < 0$	+	O	_	O	+	
$x^2 - 3x - 4 > 0$	+	О	_	О	+	

$$I.3) x^2 - 3x - 4 < 0 \rightarrow x \in]-1;4[$$

$$II.4) x^2 - 3x - 4 > 0 \rightarrow x \in]-\infty; -1[\cup]4; +\infty[$$

$$I) \begin{cases} x \in]-\infty; 0[\cup]0; +\infty[) \\ x \in]-\frac{4}{3}; +\infty[] \\ x \in]-1; 4[\end{cases} \qquad II) \begin{cases} x \in]-\frac{4}{3}; -1[] \\ x \in]-\frac{4}{3}; +\infty[] \\ x \in]-\infty; 0[\cup]0; +\infty[] \\ x \in]-\infty; -1[\cup]4; +\infty[] \end{cases}$$

Intersecção I.1) e I.2):

I.4)
$$x \in \left] -\frac{4}{3}; 0 \right[\cup]0; +\infty[$$

Intersecção II .1) e II.2)

II.5)
$$x \in x \in \left[-\frac{4}{3}; -1 \right]$$

$$I) \left\{ x \in \left] -\frac{4}{3}; 0 \right[\cup]0; +\infty[\right\}$$

$$x \in \left] -1; 4 \right[$$

$$II) \left\{ x \in \left] -\infty; 0 \right[\cup]0; +\infty[\right\}$$

$$x \in \left] -\infty; -1 \right[\cup]4; +\infty[\right\}$$

Intersecção I.4) e I.3):

$$S(I) =]-1;0[\cup]0;4[$$

Intersecção II.5) e II.3):

II.6)

$$x \in \left] -\frac{4}{3}; -1 \right[$$

II)
$$\left\{ x \in \left] -\frac{4}{3}; -1 \right[\\ x \in \left] -\infty; -1 \right[\cup \left] 4; +\infty \right[\right\}$$

Intersecção II.4) e II.6):

$$S(II) = \left] -\frac{4}{3}; -1 \right[$$

A solução geral da inequação será: $S = S(I) \cup S(II)$

$$S = \left] -\frac{4}{3}; -1 \right[\cup]-1; 0 \left[\cup]0; 4 \right[, \text{Línea F})$$

24°) (**Exame 2019/2008**) Resolve a inequação:

$$x^{2-\log_2^2 x - \log_2 x^2} - \frac{1}{x} > 0$$

Resp: A)
$$\left[0; \frac{1}{8}\right] \cup [1; +\infty[B)]0; 1[\cup]2; +\infty[C) \left[0; \frac{1}{8}[\cup]1; 2[A]\right]$$

D)]0; 1[
$$\cup$$
]1; + ∞ [E)] $\frac{1}{8}$; 1[\cup]1; 2[F)] $\frac{1}{8}$; 1] \cup]2; + ∞ [

G)
$$]0; 1[\cup]1; 2[H) outro$$

Resolução:

$$x^{2-\log_2^2 x - \log_2 x^2} - \frac{1}{x} > 0 \to x^{2-\log_2^2 x - \log_2 x^2} > \frac{1}{x}$$

$$x^{2-\log_2^2 x - \log_2 x^2} > x^{-1}$$
 (Inequação exponencial)

A inequação será válida em dois sentidos:

I)
$$\begin{cases} x > 1 \\ x > 0 \\ 2 - \log_2^2 x - \log_2 x^2 > -1 \end{cases}$$
 II)
$$\begin{cases} 0 < x < 1 \\ x > 0 \\ 2 - \log_2^2 x - \log_2 x^2 < -1 \end{cases}$$

I.3)
$$2 - log_2^2 x - log_2 x^2 > -1$$
 (inequação logarítmica)

Multiplicando por (-1) todos os termos da inequação, vem:

$$log_2^2x + 2log_2 x - 2 < 1 \rightarrow log_2^2x + 2log_2 x - 3 < 0$$

Fazendo:
$$\log_2 x = t$$
, $t^2 + 2t - 3 < 0$ (inequação do 2º grau)

Resolvendo pelo método de Vieth para encontrares as raízes, achamos:

$$t_1 = 1 e \ t_2 = -3$$

x	$-\infty$		-3		1	+∞
$t^2 + 2t - 3 < 0$		+	O	_	O	+

 $t \in]-3;1[\ ou\ t > -3\ e\ t < 1\ ,$ Voltando na suposição:

$$t > -3 \rightarrow \log_2 x > -3 \rightarrow \log_2 x > \log_2 2^{-3} \rightarrow x > 2^{-3} \rightarrow x > \frac{1}{8}$$

$$t < 1 \rightarrow \log_2 x < 1 \rightarrow \log_2 x < \log_2 2 \rightarrow x < 2$$

Intercedendo as desigualdades: $x > \frac{1}{8} e x < 2$

I.3)
$$x \in \left] \frac{1}{8} ; 2 \right[$$

II.3)
$$2 - log_2^2 x - log_2 x^2 < -1$$
 (inequação logarítmica)

Multiplicando por (-1) todos os termos da inequação, vem:

$$log_2^2x + 2log_2x - 2 > 1 \rightarrow log_2^2x + 2log_2x - 3 > 0$$

Fazendo:
$$\log_2 x = t$$
, $t^2 + 2t - 3 > 0$ (inequação do 2º grau)

Resolvendo pelo método de Vieth para encontrares as raízes, achamos:

$$t_1 = 1 e t_2 = -3$$

x	$-\infty$		-3		1	+0	0
$t^2 + 2t - 3 > 0$		+	О	_	O	+	

$$t \in \left] - \infty; - 3 \right[\cup \left] 1; \right. + \infty \left[\right. ou \left. t \right. < - 3 \left. e \left. t \right. > 1 \right. ,$$
 Voltando na suposição:

$$t < -3 \rightarrow \log_2 x < -3 \rightarrow \log_2 x < \log_2 2^{-3} \rightarrow x < 2^{-3} \rightarrow x < \frac{1}{8}$$

$$t > 1 \to \log_2 x > 1 \to \log_2 x > \log_2 2 \to x > 2$$

II.3)
$$x \in \left] -\infty; \frac{1}{8} \left[\cup \right] 1; +\infty \right[$$

I)
$$\begin{cases}]1; +\infty[\\]0; +\infty[\\]\frac{1}{8}; 2[\\ \\]0; 1[\\]0; +\infty[\\]-\infty; \frac{1}{8}[\ \cup \]2; +\infty[\end{cases}$$

Interceder aos intervalos: $]1; +\infty[\cap]0; +\infty[=]1; +\infty[$

Interceder os intervalos: $]0; +\infty[\cap]0; 1[=]0; 1[$

I)
$$\begin{cases} \left[1; +\infty\right[\\ \left[\frac{1}{8}; 2\right[\right] \right] \end{cases}$$
 II)
$$\left\{ \left[-\infty; \frac{1}{8}\right[\cup]2; +\infty\left[\right] \right]$$

Intercedendo finalmente as duas soluções de cada sistema, vem:

$$S_1 =]1;2[$$

$$S_2 = \left]0; \frac{1}{8}\right[$$

A solução da inequação será: $S = S_1 \cup S_2$

$$S = \left]0; \frac{1}{8}\right[\cup]1; 2[, Línea C)$$

25°) (**Exame 2019**) O valor de sen
$$\left(2\alpha + \frac{5\pi}{4}\right)$$
 dado que $tg\alpha = \frac{2}{3}$ é:

Resp: A)
$$\frac{7\sqrt{7}}{6}$$
 B) $-\frac{17\sqrt{2}}{26}$ C) $-\frac{17\sqrt{3}}{13}$ D) $\frac{17\sqrt{2}}{26}$ E) $\frac{17\sqrt{2}}{13}$

Resolução:

Sabe-se que:

sen(a + b) = sen a cosb + senb cos a, então:

$$sen\left(2\alpha + \frac{5\pi}{4}\right) = sen2\alpha\cos\left(\frac{5\pi}{4}\right) + sen\left(\frac{5\pi}{4}\right)\cos 2\alpha$$

$$sen\left(2\alpha + \frac{5\pi}{4}\right) = sen2\alpha\left(-\frac{\sqrt{2}}{2}\right) + \left(-\frac{\sqrt{2}}{2}\right)cos2\alpha$$

$$sen\left(2\alpha + \frac{5\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}\right)(sen2\alpha + cos2\alpha)$$
 (*)

Sabe-se que:
$$sen^2\alpha = \frac{tg^2\alpha}{1+tg^2\alpha} \to sen^2\alpha = \frac{\left(\frac{2}{3}\right)^2}{1+\left(\frac{2}{3}\right)^2} = \frac{\frac{4}{9}}{\frac{13}{9}} = \frac{4}{13} \to sen^2\alpha = \frac{4}{13} \to sen^2\alpha$$

$$sen\alpha = \frac{2}{\sqrt{13}}$$

$$\cos^2 \alpha = \frac{1}{1 + tg^2 \alpha} \rightarrow sen^2 \alpha = \frac{1}{1 + \left(\frac{2}{3}\right)^2} = \frac{1}{\frac{13}{9}} = \frac{9}{13} \rightarrow cos^2 \alpha = \frac{9}{13} \rightarrow cos^2 \alpha = \frac{9}{13}$$

$$cos\alpha = \frac{3}{\sqrt{13}}$$

Sabe-se também que:

$$sen2\alpha = 2sen\alpha \ cos\alpha \rightarrow sen2\alpha = 2\left(\frac{2}{\sqrt{13}}\right)\left(\frac{3}{\sqrt{13}}\right) = \frac{12}{13} \ (**)$$

$$cos2\alpha = cos^2 \alpha - sen^2 \alpha \rightarrow cos2\alpha = \left(\frac{3}{\sqrt{13}}\right)^2 - \left(\frac{2}{\sqrt{13}}\right)^2 = \frac{5}{13} (***)$$

Substituindo (**) e (***) em (*), vem:

$$sen\left(2\alpha + \frac{5\pi}{4}\right) = \left(-\frac{\sqrt{2}}{2}\right)\left(\frac{12}{13} + \frac{5}{13}\right) = -\frac{17\sqrt{2}}{26}$$
, Línea B)

26°) (Exame 2019) A área limitada pelas curvas $x + y = 2y^2$ e $y = x^3$ é:

A) 0,5 B)
$$\frac{7}{12}$$
 C) 1 D) $\frac{11}{4}$ E) 0,45

Resolução:

1º) Passo: Achar a intersecção entre as curvas:

$$x + y = 2y^2 \rightarrow x = 2y^2 - y$$
, $y = x^3 \rightarrow x = \sqrt[3]{y}$

Fazendo:
$$x = x \to 2y^2 - y = \sqrt[3]{y} \to 2y^2 - y - \sqrt[3]{y} = 0$$
 (*)

Supondo que: $\sqrt[3]{y} = t \rightarrow y = t^3$, Colocando na equação (*), vem:

$$2t^6 - t^3 - t = 0 \rightarrow t(2t^5 - t^2 - 1) = 0 \rightarrow t_1 = 0$$
 e

 $2t^5-t^2-1=0\,$, Considerando que $P(t)=2t^5-t^2-1,$ pelo teorema do resto : Se $t=1\,$

$$P(1) = 2(1)^5 - (1)^2 - 1 \rightarrow P(1) = 0$$

 $t_2 = 1$ é uma das raízes da equação

Voltando na suposição:

$$y = t^3 \text{ se } t_1 = 0 \rightarrow y_1 = 0, \text{ se } t_2 = 1 \rightarrow y_2 = 1$$

2°) construir o gráfico:

$$x = 2y^2 - y$$
 (Parábola)

$$ox: y = 0$$
, $x = 0$, $oy: x = 0$, $y = 0$ e $y = \frac{1}{2}$

$$y = x^3$$
 (Parábola cúbica)

Intersecta o eixo das ordenadas e das abcissas na origem (0;0)

3°) Calcular a área: Vamos integrar em relação ao eixo oy

$$A = \int_{a}^{b} (x_{2} - x_{1}) dy$$

$$A = \int_{0}^{1} \left(\sqrt[3]{y} - (2y^{2} - y) \right) dy = \int_{0}^{1} \left(\sqrt[3]{y} - 2y^{2} + y \right) dy A = \int_{0}^{1} y^{\frac{1}{3}} dy - 2y^{2} + y dy A = \int_{0}^{0} y^{\frac{1}{3}} dy - 2y^{2} + y dy A = \int_{0}^{1} y^{\frac{1}{3}} dy -$$

27°) (**Exame 2019**) A área limitada pelas curvas
$$x + y^2 - 4 = 0$$
 e $x + y = 2$ é: A) 2,3 B)2,5 C) 2 D)0,5 E) $\frac{9}{2}$

Resolução:

1°) passo: Achar a intersecção entre as curvas:

$$x + y^{2} - 4 = 0 \rightarrow x = 4 - y^{2} e \quad x + y = 2 \rightarrow x = 2 - y$$
Fazendo: $x = x \rightarrow 4 - y^{2} = 2 - y \rightarrow y^{2} - y - 2 = 0$

$$y^{2} - y - 2 = 0 \rightarrow y^{2} - y - 2 = (y - 2)(y + 1) = 0$$

$$(y - 2)(y + 1) = 0 \rightarrow y_{1} = 2 e y_{2} = -1$$

2º) Passo: construir o gráfico:

$$x + y^2 - 4 = 0$$
 (Parábola)
 $ox: y = 0$, $x = 4$; $oy: x = 0$, $y = \pm 2$
 $x + y = 2$ (Recta)

$$ox: y = 0$$
, $x = 2$; $oy: x = 0$, $y = 2$

3°) Passo: Calcular a área (Vamos integrar em relação ao eixo oy)

$$A = \int_{a}^{b} (x_{2} - x_{1}) dy$$

$$A = \int_{-1}^{2} ((4 - y^{2}) - (2 - y)) dy = \int_{-1}^{2} (4 - y^{2} - 2 + y) dy$$

$$A = \int_{-1}^{2} (2 + y - y^{2}) dy = 2 \int_{-1}^{2} dy + \int_{-1}^{2} y dy - \int_{-1}^{2} y^{2} dy$$

$$A = 2 (y) \frac{2}{-1} + \frac{1}{2} (y^{2}) \frac{2}{-1} - \frac{1}{3} (y^{3}) \frac{2}{-1}$$

$$A = 2(2 - (-1)) + \frac{1}{2} [(2^{2}) - ((-1)^{2})] - \frac{1}{3} [(2^{3}) - ((-1)^{3})]$$

$$A = 6 + \frac{3}{2} - 3 \rightarrow A = \frac{9}{2} \text{, Linea E}$$

28°) (**Exame – 2019**) Dado um plano π : x - 4y + 5z + 3 = 0, um plano que contém o ponto A (2; 0; 1) e é paralelo o π é:

Resp:
$$A(x) + 3y - z - 1 = 0$$
 $B(x) - 6y + 5z - 17 = 0$
 $C(x) - 4y + 5z - 7 = 0$ $D(x) - 5z - 5 = 0$
 $E(x) - 3x + y + 5z + 1 = 0$

Resolução:

A equação de um plano é: π' : ax + by + cz + d = 0

Onde: v' = (a; b; c) é o vector director do plano π'

O vector director do plano π é: v = (1, -4, 5)

O plano π é paralelo ao plano π' ($\pi' \parallel \pi$), Logo terão o mesmo vector director, ou seja:

$$v' = v = (1; -4; 5)$$

 $v' = (1; -4; 5) = (a; b; c)$

Teremos: π' : x - 4y + 5z + d = 0

Falta encontrar o parâmetro (d)

Como o plano π' contém o ponto A(2; 0; 1) temos:

$$2 - 4(0) + 5(1) + d = 0$$

$$2 + 5 + d = 0$$

$$d = -7$$

Finalmente temos: π' : x - 4y + 5z - 7 = 0, Línea C)

29°) (**Exame 2019 – Variante 8E**) O valor de $\cos\left(2\alpha + \frac{7\pi}{4}\right)$ se $\cot g\alpha = \frac{1}{2}$ é:

Resolução:
$$\cos\left(2\alpha + \frac{7\pi}{4}\right) = ?$$
 se $\cot \alpha = \frac{1}{2}$

OBS.:
$$cos(a + b) = cos a \cdot cos b - sin a \cdot sin b$$

$$\cos\left(2\alpha + \frac{7\pi}{4}\right) = \cos 2\alpha \cdot \cos\frac{7\pi}{4} - \sin 2\alpha \cdot \sin\frac{7\pi}{4}$$

$$=\frac{\sqrt{2}}{2}\cos 2\alpha - \left(-\frac{\sqrt{2}}{2}\right)\sin 2\alpha$$

$$=\frac{\sqrt{2}}{2}\cos 2\alpha + \frac{\sqrt{2}}{2}\sin 2\alpha$$

$$=\frac{\sqrt{2}}{2}(\cos 2\alpha + \sin 2\alpha)$$

Sabe-se que que:

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$
 e $\sin 2\alpha = 2 \sin \alpha \cdot \cos \alpha$

$$\frac{\sqrt{2}}{2}(\cos^2\alpha - \sin^2\alpha + 2\sin\alpha \cdot \cos\alpha)$$
 (*)

$$cos^2\alpha = \frac{cot^2\alpha}{1+cot^2\alpha} \rightarrow cos^2\alpha = \frac{\left(\frac{1}{2}\right)^2}{1+\left(\frac{1}{2}\right)^2} \rightarrow cos\alpha = \frac{1}{\sqrt{5}}$$

$$sin^2\alpha = \frac{1}{1+cot^2\alpha} \rightarrow sin^2\alpha = \frac{1}{1+\left(\frac{1}{2}\right)^2} \rightarrow sin\alpha = \frac{2}{\sqrt{5}}$$

Substituindo em (*):

$$= \frac{\sqrt{2}}{2} \left[\left(\frac{1}{5} \right) - \left(\frac{4}{5} \right) + 2 \left(\frac{1}{\sqrt{5}} \right) \left(\frac{2}{\sqrt{5}} \right) \right] = \frac{\sqrt{2}}{2} \left[\left(\frac{-3}{5} \right) + \left(\frac{4}{5} \right) \right] = \frac{\sqrt{2}}{2} \left[\left(\frac{1}{5} \right) \right]$$

$$\cos\left(2\alpha + \frac{7\pi}{4}\right) = \frac{\sqrt{2}}{10}$$

 30°) (Exame – 2019 – segunda chamada) Em um triângulo rectângulo, a hipotenusa mede 25~cm e a soma dos catetos é 35~cm. Determina a medida de cada cateto

$$c = 25 cm$$

$$a + b = 35 cm$$
, $b = 35 cm - a$

Condição de existência: a < 25 cm e b < 25 cm

Teorema de Pitágoras:

$$a^{2} + b^{2} = c^{2} \rightarrow a^{2} + (35 - a)^{2} = (25)^{2} \rightarrow a^{2} + 1225 - 70 a + a^{2} = 625$$

 $2a^{2} - 70a + 1225 - 625 = 0 \rightarrow 2a^{2} - 70 a + 1225 - 625 = 0$
 $2a^{2} - 70 a + 600 = 0 \div (2)$

$$a^{2} - 35 a + 300 = 0$$

 $\Delta = b^{2} - 4ac$, $\Delta = (-35)^{2} - 4(1)(300)$, $\Delta = 1225 - 1200$, $\Delta = 25$
 $a_{1/2} = \frac{-b \pm \sqrt{\Delta}}{2a} \rightarrow a_{1/2} = \frac{-b \pm \sqrt{25}}{2a} \rightarrow a_{1/2} = \frac{35 \pm 5}{2}$
 $a_{1} = \frac{35 + 5}{2} \rightarrow a_{1} = \frac{40}{2} \rightarrow a_{1} = 20 \text{ cm}$
 $a_{2} = \frac{35 - 5}{2} \rightarrow a_{2} = \frac{30}{2} \rightarrow a_{2} = 10 \text{ cm}$
 $b = 35 \text{ cm} - a$
 $se \ a = 20 \text{ cm} \rightarrow b = 15 \text{ cm}$
 $se \ a = 10 \text{ cm} \rightarrow b = 25 \text{ cm}$ (não satisfaz a condição)

Logo, os catetos do triângulo são: 20 cm e 15 cm

31º) (Exame 2019) calcular a área limitada pela curva

$$x + y^2 = 0$$
 e a recta $x + y = 0$

Resp: A) 2,25 B) 2,5 C) 0,5 D) 2 E) outro

Resolução:

1º) Achar os pontos de intersecção entre a curva e a recta

$$x + y^2 = 0 \rightarrow x = -y^2$$
 $ex + y = 0 \rightarrow x = -y$, fazendo: $x = x$
 $-y^2 = -y \rightarrow y^2 - y = 0 \rightarrow y(y - 1) = 0 \rightarrow y_1 = 0$ $ex = y_2 = 1$

2°) Construir o gráfico:

$$x + y^2 = 0$$
 (função par)

$$ox: y = 0 \rightarrow x = 0$$
, $(0; 0)$; $oy: x = 0 \rightarrow y = 0$, $(0; 0)$

 $x + y = 0 \rightarrow y = -x$ (função ímpar, recta que passa na origem)

3°) Passo: calcular a área: $A = \int_a^b (x_2 - x_1) dy$, integrando em relação ao eixo oy

$$A = \int_0^1 [-y^2 - (-y)] dy = \int_0^1 (y - y^2) dy = \int_0^1 y dy - \int_0^1 y^2 dy$$
, integrando:

$$A = \frac{1}{2}(y^2)_0^1 - \frac{1}{3}(y^3)_0^1 = \frac{1}{2}[(1)^2 - (0)^2] - \frac{1}{3}[(1)^3 - (0)^3] = \frac{1}{2} - \frac{1}{3}$$

$$A = \frac{1}{6}$$
, Línea E)

32°) (Exame 2019) Simplificar a expressão:

$$\left[\frac{\left(x+\sqrt[3]{2ax^2}\right)(2a+\sqrt[3]{4a^2x})^{-1}-1}{\sqrt[3]{x}-\sqrt[3]{2a}}-(2a)^{-\frac{1}{3}}\right]^{-6}$$

Resp:

A)
$$12a^2x^2$$
 B) $15 a^2x^4$ C) $16 \frac{a^4}{x^2}$ D) $10 \frac{a^2}{x^4}$ E) $12 \frac{a^3}{x^2}$ F) $10 \frac{a^2}{x^2}$ G) $16a^4x^2$ H)outro

Resolução:

$$\left[\frac{\left((\sqrt[3]{x})^3 + \sqrt[3]{2ax^2} \right) ((\sqrt[3]{2a})^3 + \sqrt[3]{4a^2x})^{-1} - 1}{\sqrt[3]{x^2}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - 1}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - 1}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - 1}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - 1}{\sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - 1}{\sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{2a} \right)}{\sqrt[3]{x^2} \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{x^2} \sqrt[3]{a^2}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \left(\sqrt[3]{x} + \sqrt[3]{a^2} \right)}{\sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{1}{\sqrt[3]{x^2} \sqrt[3]{a^2}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{\sqrt[3]{x^2} \sqrt[3]{a^2}}{\sqrt[3]{x^2} \sqrt[3]{a^2}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{\sqrt[3]{x^2} \sqrt[3]{a^2}}{\sqrt[3]{x^2} \sqrt[3]{a^2}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{\sqrt[3]{x^2} \sqrt[3]{a^2}}{\sqrt[3]{x^2} \sqrt[3]{a^2}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} \sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{\sqrt[3]{x^2} \sqrt[3]{a^2}} - \frac{\sqrt[3]{$$

$$\left[\frac{\frac{\sqrt[3]{x^2}(\sqrt[3]{x} + \sqrt[3]{2a})}{\sqrt[3]{4a^2}(\sqrt[3]{2a} + \sqrt[3]{x})} - 1}{\sqrt[3]{x^2} - \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2}}{\sqrt[3]{4a^2}} - 1}{\sqrt[3]{x^2} - \sqrt[3]{2a}} - \frac{1}{\sqrt[3]{2a}} \right]^{-6} = \left[\frac{\sqrt[3]{x^2} - \sqrt[3]{4a^2}}{\sqrt[3]{4a^2}(\sqrt[3]{x} - \sqrt[3]{2a})} - \frac{1}{\sqrt[3]{2a}} \right]^{-6}$$

$$\left[\frac{(\sqrt[3]{x})^2 - (\sqrt[3]{2a})^2}{\sqrt[3]{4a^2}(\sqrt[3]{x} - \sqrt[3]{2a})} - \frac{1}{\sqrt[3]{2a}}\right]^{-6} = \left[\frac{(\sqrt[3]{x} - \sqrt[3]{2a})(\sqrt[3]{x} + \sqrt[3]{2a})}{\sqrt[3]{4a^2}(\sqrt[3]{x} - \sqrt[3]{2a})} - \frac{1}{\sqrt[3]{2a}}\right]^{-6}$$

$$\left[\frac{\left(\sqrt[3]{x}+\sqrt[3]{2a}\right)}{\sqrt[3]{4a^2}} - \frac{1}{\sqrt[3]{2a}}\right]^{-6} = \left[\frac{\sqrt[3]{x}+\sqrt[3]{2a}-\sqrt[3]{2a}}{\sqrt[3]{4a^2}}\right]^{-6} = \left[\frac{\sqrt[3]{x}+\sqrt[3]{a^2}-\sqrt[3]{a$$

Simplificando os expoentes temos finalmente: $\frac{16 a^4}{x^2}$, Línea C)

Exame de Acesso 2018

33°) (Exame 2018) Resolve a equação:

$$tg^{2}\left(\frac{x}{2}\right) + cotg^{2}\left(\frac{x}{2}\right) - 2 = 4tgx$$

Resp: A)
$$x = \pi k$$
 B) $x = \pi k - \frac{\pi}{4}$ C) $x = \pi k - \frac{\pi}{2}$ D) $x = 2\pi k - \frac{\pi}{2}$

E)
$$x = \pi k + \frac{\pi}{4}$$
 F) $x = \frac{\pi k}{2} - \frac{\pi}{4}$ G) $x = \frac{\pi k}{2} + \frac{\pi}{4}$ H) outro

Resolução:

Obs.:

$$tg^2\frac{x}{2} = \frac{1-\cos x}{1+\cos x}$$
, $\cot g^2\frac{x}{2} = \frac{1+\cos x}{1-\cos x}$, $tgx = \frac{\sin x}{\cos x}$

Voltando na expressão inicial:

 $\frac{1-\cos x}{1+\cos x} + \frac{1+\cos x}{1-\cos x} - 2 = 4\frac{\sin x}{\cos x}$, achando o denominador comum vem:

$$\frac{1-2\cos x + \cos^2 x + 1 + 2\cos x + \cos^2 x - 2 + 2\cos^2 x}{1-\cos^2 x} = \frac{4 \operatorname{senx}}{\cos x},$$

reduzindo os termos semelhantes:

$$\frac{4\cos^2 x}{\sin^2 x} = \frac{4 \operatorname{sen} x}{\cos x} \to \cos^3 x = \operatorname{sen}^3 x \to \operatorname{sen}^3 x = \cos^3 x$$

Dividindo ambos os membros da igualdade por $\cos^3 x$, fica:

$$tg^3x = 1 \rightarrow tgx = \sqrt[3]{x} \rightarrow tgx = 1$$

$$tgx = 1 \rightarrow tgx = tg(1)$$
, o arco cujo tangente vale 1 é: $\alpha = \frac{\pi}{4}$

Expressão geral para as tangentes: $x = \alpha + \pi k$

$$x = \frac{\pi}{4} + \pi k$$

Condição de existência:

$$1 + cosx \neq 0 \rightarrow cosx \neq -1 \rightarrow x \neq \pi + 2\pi k$$

$$1 - \cos x \neq 0 \rightarrow \cos x \neq 1 \rightarrow x \neq 2\pi k$$

$$cosx \neq 0 \rightarrow x \neq \frac{\pi}{2} + \pi k$$

A solução $x = \frac{\pi}{4} + \pi k$ satisfaz a condição de existência, logo:

$$S = \left\{ x = \frac{\pi}{4} + \pi k \right\} k \in \mathbb{Z}$$
, Línea E)

34°) (Exame 2018) Resolver a equação:

$$(senx - cosx)^2 + tgx = 2sen^2x$$

Resp: A)
$$x = \frac{\pi k}{2} + \frac{\pi}{4}$$
 B) $x = \pi k - \frac{\pi}{4}$ C) $x = 2\pi k - \frac{\pi}{4}$ D) $x = 2\pi k + \frac{\pi}{4}$

E)
$$x = \frac{\pi k}{4} - \frac{\pi}{8}$$
 F) $x = \frac{\pi k}{2} + \frac{\pi}{8}$ G) $x = \pi k + \frac{\pi}{2}$ H) outro

Resolução:

Desenvolvendo o quadrado da diferença do primeiro termo:

$$sen^2x - 2senx cosx + cos^2x + tgx = 2 sen^2x$$

$$(sen^2x + cos^2x) - 2senx cosx + tgx = 2sen^2x (2sen^2x = 1 - cos2x)$$

$$1 - 2senx cosx + \frac{senx}{cosx} = 1 - cos2x$$
, $-2senx cosx + \frac{senx}{cosx} = -cos2x$

Factorizando a expressão senx

$$senx\left(-2cosx + \frac{1}{cosx}\right) = -cos2x \rightarrow senx\left(\frac{-2cos^2x + 1}{cosx}\right) = -cos2x$$

$$senx\left(\frac{1-2cos^2x}{cosx}\right) = -cos2x$$
, $-senx\left(\frac{2cos^2x-1}{cosx}\right) = -cos2x$

Sabe-se que: $(2\cos^2 x - 1 = \cos 2x)$

 $\frac{senx \cos 2x}{\cos x} - \cos 2x = 0$ (Factorizando a expressão $\cos 2x$)

$$cos2x \left(\frac{senx}{cosx} - 1\right) = 0 \rightarrow cos2x \left(\frac{senx - cosx}{cosx}\right) = 0$$

Aplicando a lei do anulamento do produto:

$$cos2x = 0 \rightarrow cos2x = cos0 \rightarrow \left(\alpha = \frac{\pi}{2}\right), 2x = \frac{\pi}{2} + \pi k \rightarrow x_1 = \frac{\pi}{4} + \frac{\pi k}{2}$$

$$senx - cosx = 0 \rightarrow senx = cosx \rightarrow \left(\frac{senx}{cosx}\right) = \left(\frac{cosx}{cosx}\right) \rightarrow tgx = 1$$

$$tgx = 1 \rightarrow tgx = tg(1) \rightarrow \alpha = \frac{\pi}{4}$$

$$x_2 = \frac{\pi}{4} + \pi k$$
, Condição de existência: $cosx \neq 0 \rightarrow x \neq \frac{\pi}{2} + \pi k$

As soluções $x_1 = \frac{\pi}{4} + \frac{\pi k}{2}$ e $x_2 = \frac{\pi}{4} + \pi k$ Satisfazem a condição de existência. Como a solução x_2 está contida na solução x_1 , a solução da equação será:

$$S = \left\{ x_1 = \frac{\pi}{4} + \frac{\pi k}{2} \right\}$$
, Línea A)

35°) (Exame 2018) Resolva a seguinte inequação:

$$|2x-6|+|x| \le 4-x$$

$$F) [-5; 2[G) [-1; 4] H) outro$$

Resolução:

Pela condição de uma expressão modular:

$$|2x - 6| = \begin{cases} 2x - 6 \sec 2x - 6 \ge 0 \\ -(2x - 6) \sec 2x - 6 < 0 \end{cases} \to \begin{cases} 2x - 6 \sec x \ge 3 \\ -2x + 6 \sec x < 3 \end{cases}$$

$$|x| = \begin{cases} x \operatorname{se} x \ge 0 \\ -x \operatorname{se} x < 0 \end{cases}$$

Somando as expressões por meio da tabela:

x	0	3	
2x - 6	-2x + 6	-2x + 6	2x + 6
x	-x	x	x
+S	-3x + 6	-x + 6	3x - 6

$$\begin{cases} I =]-\infty; 0[; -3x + 6 \le 4 - x \\ I = [0; 3]; -x + 6 \le 4 - x \\ I = [3; +\infty[; 3x - 6 \le 4 - x] \end{cases} \rightarrow \begin{cases} I =]-\infty; 0[; x \ge 1 \\ I = [0; 3]; 6 \le 4 \\ I = [3; +\infty[; x \le \frac{5}{3}] \end{cases}$$

 $I =]-\infty; 0[; \ x \ge 1(1 \text{ não pertence ao intervalo } I, \log o \ x \ge 1 \text{ não \'e uma das soluções da inequação})$

 $I = [0; 3]; 6 \le 4$ (esta desigualdade é falsa, 6 > 4, logo neste intervalo não temos soluções)

$$I = [3; +\infty[; x \le \frac{5}{2} \left(\frac{5}{2} \text{ não pertence ao intervalo } I, \log o \text{ } x \le \frac{5}{2}\right)$$
 não é uma das soluções da equação

A solução da inequação é:

$$S = \{\emptyset\}$$
, Línea H)

36°) (**Exame 2018**) Seja
$$f(x) = sen^4 x - cos^4 x$$
 calcular $f'(\frac{\pi}{12})$

Resp: A) - 1 B) 0 C) 1 D)
$$\frac{1}{2}$$
 E) 2 F) - π

Resolução:

Sabe-se quê:
$$a^4 - b^4 = (a^2 - b^2)(a^2 + b^2)$$
 e $(sen^2x + cos^2x) = 1$

$$f(x) = sen^4x - cos^4x = (sen^2x - cos^2x)(sen^2x + cos^2x)$$

$$f(x) = (sen2x - cos2x) = -(cos2x - sen2x)$$

Nota que: $cos^2x - sen^2x = cos2x$

$$f(x) = -\cos 2x$$

Derivando, teremos:

$$f'(x) = -(-2sen2x) = 2 sen2x$$

Achando a derivada no ponto $x = \frac{\pi}{12}$

$$f'\left(\frac{\pi}{12}\right) = 2 \operatorname{sen}\left(2 \frac{\pi}{12}\right) = 2 \operatorname{sen}\left(\frac{\pi}{6}\right), \operatorname{sen}\left(\frac{\pi}{6}\right) = \frac{1}{2}$$

$$f'\left(\frac{\pi}{12}\right) = 2\left(\frac{1}{2}\right) \to f'\left(\frac{\pi}{12}\right) = 1$$
, Línea C)

37°) (Exame 2018) Dado o sistema : $\begin{cases} x + 2y + 3z = 1 \\ 2x + y - z = 2 \end{cases}$ se adicionarmos ao sistema a equação: $5x + y + \alpha z = \beta$, obtemos o sitema seguinte:

$$\begin{cases} x+2y+3z=1 \\ 2x+y-z=2 \\ 5x+y+\alpha z=\beta \end{cases} \text{, os valores de } \alpha \ e \ \beta \text{ para que este sistema compatível}$$

indeterminado são:

Resolução:

Formando uma matriz A e uma matriz B, calculando os seus respectivos determinantes aplicando o método de crammer, teremos.

$$\Delta = \begin{vmatrix} 1 & 2 & 3 & 1 & 2 \\ 2 & 1 & -1 & 2 & 1 \\ 5 & 1 & \alpha & 5 & 1 \end{vmatrix}$$

$$\Delta = (\alpha - 10 + 6) - (15 - 1 + 4\alpha) = \alpha - 4 - 14 - 4\alpha \rightarrow \Delta = -3\alpha - 18$$

Se $\Delta = 0$ o sistema torna-se compatível indeterminado, ou seja:

$$-3\alpha - 18 = 0 \rightarrow \alpha = -\frac{18}{3} \rightarrow \alpha = -6$$

$$\Delta_1 = \begin{vmatrix} 2 & 3 & 1 & 2 & 3 \\ 1 & -1 & 2 & 1 & -1 \\ 1 & \alpha & \beta & 1 & \alpha \end{vmatrix}$$

$$\Delta_1 = (-2\beta + 6 + \alpha) - (-1 + 4\alpha + 3\beta), \alpha = -6$$

$$\Delta_1 = (-2\beta + 6 - 6) - (-1 + 4(-6) + 3\beta) \rightarrow \Delta_1 = -2\beta + 25 - 3\beta \rightarrow$$

 $\Delta_1 = -5\beta + 25 = 0$, $\Delta_1 = 0$ o sistema torna-se compatível indeterminado

$$-5\beta + 25 = 0 \rightarrow -5\beta = -25 \rightarrow \beta = \frac{25}{5} \rightarrow \beta = 5$$

Os valores de α e β são: $S = \{ \alpha = -6; \beta = 5 \}$

38°) (Exame 2018) calcular a área da figura limitada pelas linhas:

$$y = \frac{7}{9} x^2 + 1; y = \frac{5}{9} x^2 + 3$$

Resolução:

1°) passo: Achar a intersecção entre as curvas:

Fazendo
$$y = y \rightarrow \frac{7}{9} x^2 + 1 = \frac{5}{9} x^2 + 3 \rightarrow 7x^2 + 9 = 5x^2 + 27$$

$$7x^2 + 9 = 5x^2 + 27 \rightarrow 2x^2 = 18 \rightarrow x^2 = 9 \rightarrow x = \pm \sqrt{9} \rightarrow x = \pm 3$$

2°) Passo: construir o gráfico:

$$y = \frac{7}{9} x^2 + 1$$
 (Parábola)

 $ox: y = 0 \rightarrow \nexists intersecção com o eixo ox$

$$oy: x = 0, y = 1$$

$$y = \frac{5}{9} x^2 + 3$$
 (Parábola)

 $ox: y = 0 \rightarrow \exists intersecção com o eixo ox$

$$oy: x = 0, y = 3$$

3°) Passo: Calcular a área (Vamos integrar em relação ao eixo ox)

$$A = \int_a^b (y_2 - y_1) dx$$

$$A = \int_{-3}^{3} \left(\frac{5}{9} x^2 + 3 - \left(\frac{7}{9} x^2 + 1 \right) \right) dx =$$

$$A = \int_{-3}^{3} \left(\frac{5}{9} x^2 + 3 - \frac{7}{9} x^2 - 1 \right) dx = \int_{-3}^{3} \left(2 - \frac{2x^2}{9} \right) dx$$

Obs.:
$$\int_{-a}^{a} f(x) = 2 \int_{0}^{a} f(x)$$

$$A = 2 \int_0^3 \left(2 - \frac{2x^2}{9} \right) dx = 2 \left[2 \int_0^3 dx - \frac{2}{9} \int_0^3 x^2 dx \right]$$

$$A = 2 \left[(2x)_0^3 - \frac{2}{9} \left(\frac{1}{3} \right) (x^3)_0^3 \right], \ A = 2 \left[(2x)_0^3 - \frac{2}{27} (x^3)_0^3 \right]$$

$$A = 2\left[2(3-0) - \frac{2}{27}(3^3 - 0^3)\right] = 2(6-2), A = 8$$
, Línea G

39°) (Exame -2018) Resolve a equação:

$$sen 2x - 2 cos^2 x + 4 (senx - cosx + tgx - 1)$$

Resp: A)
$$x = \pi k$$
 B) $x = \pi k - \frac{\pi}{3}$ C) $x = \pi k - \frac{\pi}{3}$ D) $x = 2\pi k + \frac{\pi}{2}$

E)
$$x = \pi k + \frac{\pi}{4}$$
 F) $x = \frac{\pi k}{2} + \frac{\pi}{3}$ G) $x = \frac{\pi k}{2} - \frac{\pi}{4}$ H) outro

Resolução:

Obs.:
$$sen2x = 2senx cosx e tgx = \frac{senx}{cosx}$$

$$2senx \cos x - 2\cos^2 x + 4\left(senx - \cos x + \frac{senx}{\cos x} - 1\right) = 0$$

$$2senx \cos x - 2\cos^2 x + 4\left(\frac{senx \cos x - \cos^2 x + senx - \cos x}{\cos x}\right) = 0$$

$$2\cos x(senx-cosx)+4\left[\frac{(senxcosx-cos^2x)+(senx-cosx)}{cosx}\right]=0$$

$$2cosx(senx - cosx) + 4\left[\frac{cosx(senx - cosx) + (senx - cosx)}{cosx}\right] = 0$$

Factorizando a expressão: (senx - cosx)

$$(senx - cosx) \left[2cosx + 4 \left(\frac{cosx + 1}{cosx} \right) \right] = 0 \rightarrow (senx - cosx) \left[\frac{2cos^2x + 4cosx + 4}{cosx} \right] = 0$$

Aplicando o anulamento do produto, temos:

$$(senx - cosx) = 0$$
 e $\left[\frac{2cos^2x + 4cosx + 4}{cosx}\right] = 0$ (Equação fraccionária)

 $(senx - cosx) = 0 \rightarrow senx = cosx$ (dividindo ambos membros por cosx), vem:

$$tgx = 1 \rightarrow tgx = tg(1)$$
, o arco cujo tangente equivale a 1 é $\alpha = \frac{\pi}{4}$

Fórmulas das tangentes: $x = \alpha + \pi k \rightarrow x = \frac{\pi}{4} + \pi k$

$$\left[\frac{2\cos^2 x + 4\cos x + 4}{\cos x}\right] = 0$$
, $2\cos^2 x + 4\cos x + 4 = 0$ e $\cos x \neq 0 \rightarrow x \neq \frac{\pi}{2} + \pi k$

 $2\cos^2 x + 4\cos x + 4 = 0$ (dividir todos os termos da equação por 2)

$$\cos^2 x + 2\cos x + 2 = 0$$

fazendo cosx = t onde $t \in [-1; 1]$

$$t^2 + 2t + 2 = 0$$
 ($a = 1$; $b = 2$; $c = 2$)

$$\Delta = (2)^2 - 4(1)(2) \rightarrow \Delta = -4 \rightarrow \nexists t$$

A solução $x=\frac{\pi}{4}+\pi k$, satisfaz a condição, logo a solução da equação é:

$$S = \left\{ x = \frac{\pi}{4} + \pi k ; k \in z \right\}$$
, Línea E)

40°) (Exame 2018) Resolva a equação:

$$\log_{(x+3)}(5x^2 - 7x - 9) = \log_{(x+3)}(x^2 - 2x - 3)$$

Resp:
$$A$$
) $-\frac{3}{2}$ B) $\frac{3}{2}$ C) $\frac{3}{4}$ D) -3 E) $-\frac{4}{3}$ F) $\frac{4}{3}$ G) $-\frac{3}{4}$ H) outro

Resolução:

$$\log_{(x+3)}(5x^2 - 7x - 9) = \log_{(x+3)}(x^2 - 2x - 3)$$
, Simplificando as bases:

$$5x^2 - 7x - 9 = x^2 - 2x - 3 \rightarrow 4x^2 - 5x - 6 = 0 (a = 4, b = -5, c = -6)$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(4)(-6)}}{2(4)} = \frac{5 \pm 11}{8}$$

$$x_1 = \frac{5+11}{8} = \frac{16}{8} \rightarrow x_1 = 2$$
 ; $x_2 = \frac{5-11}{8} = -\frac{6}{8} \rightarrow x_2 = -\frac{3}{4}$

Verificação para $x_1 = 2$

$$\log_{(2+3)}(5(2)^2 - 7(2) - 9) = \log_{(2+3)}((2)^2 - 2(2) - 3)$$

 $\log_{(5)}(-3)=\log_{(5)}(-3)$, O logaritmando não pode ser negativo, logo $x_1=2$ não é solução da equação

Verificação para $x_2 = -\frac{3}{4}$

$$\log_{\left(-\frac{3}{4}+3\right)}\left(5\left(-\frac{3}{4}\right)^2 - 7\left(-\frac{3}{4}\right) - 9\right) = \log_{\left(-\frac{3}{4}+3\right)}\left(\left(-\frac{3}{4}\right)^2 - 2\left(-\frac{3}{4}\right) - 3\right)$$

 $\log_{\left(\frac{9}{4}\right)}\left(-\frac{15}{16}\right)=\log_{\left(\frac{9}{4}\right)}\left(-\frac{15}{16}\right)$, como o logaritmando não pode ser negativo, $x_2=-\frac{3}{4}$, Também não é solução da equação. A solução da equação é: $S=\{\emptyset\}$, Línea H)

Exames de Acesso 2017

41°) (Exame 2017) Resolver:

$$\frac{4x}{|x-2|-1} \ge 3$$

Resp:A)
$$\left[\frac{3}{7}; 1 \begin{bmatrix} B \end{bmatrix}\right] - \infty; \frac{3}{7}$$
 C) $\left[\frac{3}{7}; 1 \begin{bmatrix} U \end{bmatrix} 3; + \infty \begin{bmatrix} D \end{bmatrix}\right] \left[\frac{3}{7}; 3 \begin{bmatrix} E \end{bmatrix}\right] \left[\frac{2}{7}; + \infty \begin{bmatrix} B \end{bmatrix}\right]$
F) $\left[\frac{3}{7}, 1 \begin{bmatrix} U \end{bmatrix} 3; + \infty \begin{bmatrix} G \end{bmatrix}\right] 3; + \infty \begin{bmatrix} H \end{bmatrix}$ outro

Resolução:

Pela propriedade de uma expressão modular temos:

$$|x-2| = \begin{cases} x-2 \ se \ x-2 \ge 0 \\ -(x-2) < 0 \end{cases} \to \begin{cases} x-2 \ se \ x \ge 2 \\ -x+2 \ se \ x < 2 \end{cases}$$

Formando um sistema de inequações para as duas expressões, temos:

$$I) \begin{cases} x \ge 2 \\ \frac{4x}{x - 2 - 1} \ge 3 \end{cases}$$

$$\begin{cases} x \ge 2 \\ \frac{4x}{x - 3} - 3 \ge 0 \end{cases}$$

$$\begin{cases} x \ge 2 \\ \frac{4x}{x - 3} - 3 \ge 0 \end{cases}$$

$$\begin{cases} x < 2 \\ \frac{4x}{-x + 2 - 1} \ge 3 \end{cases}$$

$$\begin{cases} x < 2 \\ \frac{4x}{-x + 1} - 3 \ge 0 \end{cases}$$

$$\begin{cases} x < 2 \\ \frac{4x}{-x + 1} \ge 0 \end{cases}$$

 $\frac{x+9}{x-3} \ge 0$ (inequação racional fraccionária)

$$x + 9 = 0 \rightarrow x = -9 e \ x - 3 \neq 0 \rightarrow x \neq 3$$

	-∞	– 9	3	+ ∞
x + 9 = 0	_	O +	+	
$x-3 \neq 0$	_	_	+	
S	+	_	+	

$$x \in]-\infty; -9] \cup [3; +\infty[$$

 $\frac{7x-3}{-x+1} \ge 0$ (inequação racional fraccionária)

$$7x - 3 = 0 \rightarrow x = \frac{3}{7} \ e \ -x + 1 \neq 0 \rightarrow x \neq 1$$

-∞	$\frac{3}{7}$	1	+ ∞	
----	---------------	---	-----	--

7x - 3 = 0	_	O +	+	
$-x+1\neq 0$	+	+		
S	_	+	1 <u>1</u>	

$$x \in \left[\frac{3}{7}; 1\right[$$

Voltando nos sistemas de inequações I) e II) temos:

$$I\left\{x \in \left[-\infty; -9\right] \cup \left[3; +\infty\right[\right\}\right\}$$

II)
$$\begin{cases} x < 2 \\ x \in \left[\frac{3}{7}; 1\right] \end{cases}$$

Interceder as duas soluções do sistema I), temos:

$$S_1 =]3; +\infty[$$

Interceder as duas soluções do sistema II), temos:

$$S_2 = \left[\frac{3}{7} ; 1 \right]$$

A solução da inequação é: $S = S_1 \cup S_2$

$$S = \begin{bmatrix} \frac{3}{7} \\ \end{bmatrix}; 1 \cup]3; +\infty[$$
, Línea C)

42°) (**Exame 2017**) A área limitada pelas curvas
$$y = x - x^2 e y = x\sqrt{1-x}$$
 é A) 0,5 B) 0,1 C) 1 D) 6 E) 0,45 F) 10 G) 0,75 H) outro

Resolução:

1°) passo : Achar os pontos de intersecção entre as curvas:

$$y = y \rightarrow x - x^2 = x\sqrt{1 - x}$$

 $x - x^2 - x\sqrt{1 - x} = 0 \rightarrow x(1 - x + \sqrt{1 - x}) = 0$

Aplicando a lei do anulamento do produto:

$$x_{1} = 0 \ e \left(1 - x + \sqrt{1 - x} \right) = 0$$

$$\left(1 - x + \sqrt{1 - x} \right) = 0 \ \to \left(\sqrt{1 - x} \right) = x - 1 \ \to$$

$$\left(\sqrt{1 - x} \right)^{2} = (x - 1)^{2} \to 1 - x = x^{2} - 2x + 1 \to x^{2} - x = 0$$

$$x^{2} - x = 0 \to x(x - 1) = 0 \ \to x_{2} = 0 \ e \ x_{3} = 1$$

Limites de integração em relação ao eixo $ox : 0 \le x \le 1$

2º) Passo: Traçar o gráfico para visualizar a área a calcular:

$$y = x - x^{2}$$
, $ox: y = 0$, $x - x^{2} = 0$, $x = 0$ $ex = 1$
 $y = x - x^{2}$, $oy: x = 0$, $y = 0$
 $y = x\sqrt{1 - x}$ $Df =]-\infty; 1]$
 $ox: y = 0$, $x\sqrt{1 - x} = 0$, $x = 0$ $ex = 1$

3°) Passo: calcular a área:

oy: x = 0; y = 0

$$A = \int_{a}^{b} (y_{2} - y_{1}) dx$$

$$A = \int_{0}^{1} [x\sqrt{1 - x} - (x - x^{2})] dx = \int_{0}^{1} x\sqrt{1 - x} dx - \int_{0}^{1} (x - x^{2}) dx$$

$$I_{1} = \int_{0}^{1} x\sqrt{1 - x} dx \quad \text{, fazendo: } \sqrt{1 - x} = t \text{,}$$

$$1 - x = t^{2} \rightarrow x = 1 - t^{2}, dx = -2t dt$$

$$I_{1} = \int_{0}^{1} (1 - t^{2})t(-2t) dt = \int_{0}^{1} (t^{2} - 1) 2t^{2} dt = 2 \int_{0}^{1} (t^{4} - t^{2}) dt$$

$$I_{1} = 2 \left[\int_{0}^{1} t^{4} dt - \int_{0}^{1} t^{2} dt \right] = 2 \left[\left(\frac{1}{5} t^{5} \right) \int_{0}^{1} - \left(\frac{1}{3} t^{3} \right) \int_{0}^{1} dt \right]$$

$$I_{1} = 2 \left[\left(\frac{1}{5} (\sqrt{1 - x})^{5} \right) \int_{0}^{1} - \left(\frac{1}{3} (\sqrt{1 - x})^{3} \right) \int_{0}^{1} dt \right]$$

$$I_1 = 2\left[\frac{1}{5}\left(\left(\sqrt{1-1}\right)^5 - \left(\sqrt{1-0}\right)^5\right) - \frac{1}{3}\left(\left(\sqrt{1-1}\right)^3 - \left(\sqrt{1-0}\right)^3\right)\right]$$

$$I_1 = \frac{4}{15}$$

$$I_2 = \int_0^1 (x - x^2) dx = \int_0^1 x \, dx - \int_0^1 x^2 dx = \left(\frac{x^2}{2}\right) \frac{1}{0} - \left(\frac{x^3}{3}\right) \frac{1}{0}$$

$$I_2 = \left[\left(\frac{1^2}{2} \right) - \left(\frac{0^2}{2} \right) \right] - \left[\left(\frac{1^3}{3} \right) - \left(\frac{0^3}{3} \right) \right] = \frac{1}{6}$$

A área finalmente será: $A = I_1 - I_2$

$$A = \frac{4}{15} - \frac{1}{6} \rightarrow A = \frac{1}{10} \rightarrow A = 0,1 u^2$$
, Linea B)

43°) (Exame 2017) Simplifica a expressão:

$$sen \alpha sen^2(\alpha - 270^\circ)(1 + tg^2\alpha) + cos\alpha cos^2(\alpha - 270^\circ)(1 + cotg^2\alpha)$$

Resp: A)
$$\sqrt{2}\cos(\alpha + 15^{\circ})$$
 B) $\sqrt{3}\sin^{2}(\alpha + 270^{\circ})$ C) $\sqrt{3}\tan(\alpha + 225^{\circ})$

D)
$$\sqrt{2}$$
 sen($\alpha + 45^{\circ}$) E) cotg($\alpha + 75^{\circ}$) F) $\sqrt{2}$ cos($\alpha + 215^{\circ}$)

G)
$$\sqrt{3}$$
 sen(2 α + 85°) H) outro

Resolução:

$$sen(a - b) = sena \times cosb - senb \times cos a$$

$$sen(\alpha-270^{\circ})=sen\alpha\;cos270^{\circ}-sen270^{\circ}\cos\alpha=\cos\alpha$$

$$cos(a - b) = cos a cos b + sena senb$$

$$\cos(\alpha - 270^{\circ}) = \cos\alpha \cos 270^{\circ} + \sin\alpha \sin 270^{\circ} = -\sin\alpha$$

Voltando na expressão inicial:

$$sen\alpha \ cos^2\alpha \left(1+\frac{sen^2\alpha}{cos^2\alpha}\right)+cos\alpha \ sen^2\alpha \left(1+\frac{cos^2\alpha}{sen^2\alpha}\right)$$

$$sen\alpha \ cos^2\alpha \left(\frac{sen^2\alpha+cos^2\alpha}{cos^2\alpha}\right) + cos\alpha \ sen^2\alpha \left(\frac{sen^2\alpha+cos^2\alpha}{sen^2\alpha}\right)$$

 $sen \alpha + cos\alpha$

Nota que :
$$cos\alpha = sen\left(x + \frac{\pi}{2}\right)$$

$$sen \alpha + sen \left(x + \frac{\pi}{2}\right)$$

Nota que:
$$sen \ a + senb = 2 \ sen \left(\frac{a+b}{2}\right) \cos \left(\frac{a-b}{2}\right)$$

$$sen \ \alpha + sen \ \left(x + \frac{\pi}{2}\right) = 2 \ sen \left(\frac{\alpha + \alpha + \frac{\pi}{2}}{2}\right) \cos \left(\frac{\alpha - \alpha - \frac{\pi}{2}}{2}\right)$$

$$sen \alpha + sen \left(x + \frac{\pi}{2}\right) = 2 sen \left(\alpha + \frac{\pi}{4}\right) cos \left(-\frac{\pi}{4}\right)$$

$$sen \alpha + sen \left(x + \frac{\pi}{4}\right) = 2 sen \left(\alpha + \frac{\pi}{4}\right) \left(\frac{\sqrt{2}}{2}\right)$$

$$sen \alpha + sen \left(x + \frac{\pi}{4}\right) = \sqrt{2} sen \left(\alpha + \frac{\pi}{4}\right), \frac{\pi}{4} = 45^{\circ}$$

$$sen \alpha + sen \left(x + \frac{\pi}{4}\right) = \sqrt{2} sen(\alpha + 45^{\circ})$$
, Línea D)

44°) (**Exame 2017**) Resolve a equação: $\frac{x-2}{|x-2|} \le 4 - x^2$

Resp: A)
$$(-1; \infty)$$
 B) $[0; 2[C) \left[-\sqrt{5}; 2[D) \left(-2; \frac{1}{4}\right) \cup \left[\frac{1}{4}; \frac{3}{2}\right]\right]$

E) [2; 5[
$$\cup$$
 (4; ∞) F) (4; ∞) G) $\left|-4;\frac{1}{4}\right|$ H) outro

Resolução:

Pela condição de uma expressão modular, temos:

$$|x-2| = \begin{cases} x-2 \ se \ x-2 \ge 0 \\ -(x-2) se \ x-2 < 0 \end{cases} \to \begin{cases} x-2 \ se \ x \ge 2 \\ -(x-2) se \ x < 2 \end{cases}$$

A inequação será válida em dois sentidos:

$$I) \left\{ \begin{array}{l} x \ge 2 \\ \frac{x-2}{x-2} \le 4 - x^2 \end{array} \right\}$$

II)
$$\left\{ \frac{x < 2}{\frac{x-2}{-(x-2)}} \le 4 - x^2 \right\}$$

$$\begin{cases} x \ge 2 \\ 1 < 4 - x^2 \end{cases}$$

$$\begin{cases} x < 2 \\ -1 < 4 - x^2 \end{cases}$$

$$\begin{cases} x \ge 2 \\ x^2 \le 3 \end{cases}$$

$$\begin{cases} x < 2 \\ x^2 < 5 \end{cases}$$

$$x^2 \le 3 (x^2 = 3, x = \pm \sqrt{3})$$

a > 0	-8		$-\sqrt{3}$	$\sqrt{3}$		+ ∞
$x^2 \le 3$		+	O	– 0	+	

$$x \in \left[-\sqrt{3}; \sqrt{3}\right]$$

$$x^2 \le 5 (x^2 = 5, x = \pm \sqrt{5})$$

a > 0	-∞	=	$-\sqrt{5}$		$\sqrt{5}$		+∞
$x^2 \le 3$		+	O	_	O	+	

$$x \in \left[-\sqrt{5}; \sqrt{5}\right]$$

I)
$$\begin{cases} [2; +\infty[\\ x \in [-\sqrt{3}; \sqrt{3}] \end{cases}$$

II)
$$\begin{cases}]-\infty; 2[\\ x \in [-\sqrt{5}; \sqrt{5}] \end{cases}$$

A solução geral da inequação será: $S = S(I) \cup S(II)$

$$S = \left[-\sqrt{5}; 2 \right]$$
, Línea C)

45°) (Exame 2017) Simplifique a expressão:

$$\cos\left(\frac{5\pi}{2}-6\alpha\right)sen^3(\pi-2\alpha)-\cos(6\alpha-\pi)sen^3\left(\frac{\pi}{2}-2\alpha\right)$$

Resp: A) $cos^3 4\alpha$ B) $sen 2\alpha$ C) $cos 6\alpha$ D) $sen^2 3\alpha$ E) $sen^3 3\alpha$

F) $sen2\alpha cos4\alpha$ G) $cos^22\alpha sen\alpha$ H) outro

Resolução:

Aplicando as fórmulas:

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\cos\left(\frac{5\pi}{2} - 6\alpha\right) = \cos\left(\frac{5\pi}{2}\right)\cos 6\alpha + \sin\left(\frac{5\pi}{2}\right)\sin 6\alpha = \sin 6\alpha$$

$$cos(6\alpha - \pi) = cos65\alpha cos\pi + sen6\alpha sen\pi = -cos65\alpha$$

$$sen(\alpha - \beta) = sen\alpha cos\beta - sen\beta cos\alpha$$

$$sen(\pi - 2\alpha) = sen \pi cos 2\alpha - sen 2\alpha cos \pi = sen 2\alpha$$

$$sen\left(\frac{\pi}{2}-2\alpha\right)=sen\frac{\pi}{2}\cos 2\alpha-sen2\alpha\cos\frac{\pi}{2}=\cos 2\alpha$$

Voltando na expressão inicial, temos:

 $sen6\alpha sen^32\alpha + cos6\alpha cos^32\alpha$

 $(sen6\alpha sen2\alpha)sen^22\alpha + (cos6\alpha cos2\alpha)cos^22\alpha (*)$

Aplicando as fórmulas:

$$sena\ senb = \frac{\cos(a-b)-\cos(a+b)}{2} \rightarrow sen6\alpha\ sen2\alpha = \frac{\cos4\alpha-\cos8\alpha}{2}\ cosa\ cosb = \frac{\cos(a-b)+\cos(a+b)}{2} \rightarrow cos6\alpha\ cos2\alpha = \frac{\cos4\alpha+\cos6\alpha}{2}$$

Voltando em (*), temos:

$$\left(\frac{\cos 4\alpha - \cos 8\alpha}{2}\right) \sin^2 2\alpha + \left(\frac{\cos 4\alpha + \cos 8\alpha}{2}\right) \cos^2 2\alpha$$

Multiplicando os termos fora dos parênteses e mantendo o denominador:

$$\left(\frac{sen^22\alpha\cos 4\alpha - sen^22\alpha\cos 8\alpha + \cos^22\alpha\cos 4\alpha + \cos^22\alpha\cos 8\alpha}{2}\right)$$

$$\left[\frac{\left(sen^22\alpha\cos4\alpha+\cos^22\alpha\cos4\alpha\right)+\left(\cos^22\alpha\cos8\alpha-\sin^22\alpha\cos8\alpha\right)}{2}\right]$$

$$\left[\frac{\cos 4\alpha \left(sen^2 2\alpha + \cos^2 2\alpha \right) + \cos 8 \left(\cos^2 2\alpha - sen^2 2\alpha \right)}{2}\right] \ \left(** \right)$$

Sabe-se que: $cos8\alpha = cos^24\alpha - sen^24\alpha$

Voltando em (**), temos:
$$\left[\frac{\cos 4\alpha + (\cos^2 4\alpha - \sin^2 4\alpha)\cos 4\alpha}{2}\right] = \left[\frac{\cos 4\alpha + \cos^3 4\alpha - \cos 4\alpha \sin^2 4\alpha}{2}\right]$$

$$\left[\frac{(\cos 4\alpha - \cos 4\alpha \sin^2 4\alpha) + \cos^3 4\alpha}{2}\right] = \left[\frac{\cos 4\alpha (1 - \sin^2 4\alpha) + \cos^3 4\alpha}{2}\right] \ (***)$$

$$sabe - se \ que: 1 - sen^2 4\alpha = \cos^2 4\alpha$$

Voltando em (***), finalmente temos:

$$\left[\frac{\cos 4\alpha(\cos^2 4\alpha) + \cos^3 4\alpha}{2}\right] = \left(\frac{\cos^3 4\alpha + \cos^3 4\alpha}{2}\right) = \left(\frac{2\cos^3 4\alpha}{2}\right)$$

$$= cos^3 4\alpha$$
 , Línea A

46°) (**Exame 2017**) Resolva inequação:

$$(|x| - 1)(2x^2 + x - 1) \le 1$$

Resp: A)
$$[-1; 1]$$
 B) $\{-1\} \cup \left[\frac{1}{2}; 1\right]$ C) $\left[\frac{1}{4}; 1\right]$ D) $(0; 1)$ E) $[0; 1]$

F)
$$\left[-1; \frac{1}{4}\right]$$
 G) $\left[\frac{1}{2}; 1\right]$ H) outro

Resolução:

Aplicando a lei do anulamento do produto para encontrar as raízes da inequação:

$$(|x| - 1) = 0 \rightarrow |x| = 1 \rightarrow x^2 = 1 \rightarrow x_{1,2} = \pm 1$$

$$(2x^2 + x - 1) = 0$$
 ($a = 2$; $b = 1$; $c = -1$)

$$\Delta = b^2 - 4ac \rightarrow \Delta = (1)^2 - 4(2)(-1) = 9 \rightarrow \sqrt{\Delta} = 3$$

$$x_{3,4} = \frac{-b \pm \sqrt{\Delta}}{2a} \rightarrow x_{3,4} = \frac{-1 \pm 3}{2(2)} = \frac{-1 \pm 3}{4}$$

$$x_3 = \frac{1}{2} e x_4 = -1$$

x	-∞	-1	$\frac{1}{2}$	1	+ ∞
(x - 1) = 0	+	O –	O – O	+	
$(2x^2 + x - 1)$	+	O –	O +	+	
S	+	+	_	+	

$$S = \{-1\} \cup \left[\frac{1}{2}; 1\right]$$
, Línea B)

47°) (**Exame 2017**) Resolva inequação:
$$\frac{x+1}{|x-1|} + \frac{1-2x}{x-1} \ge 0$$

Resp:
$$A$$
) $(-\infty; 1) \cup (1; \infty)$ B) $[2; \infty[C) \left[\frac{1}{2}; 1\right] \cup (1; \infty)$

D)
$$\left[\frac{1}{2}; 2\right[E) [0; 1[\cup]1; 2] F)]1; 2] G) \left[\frac{1}{2}; 1[H) outro\right]$$

Resolução:

Pela condição da expressão modular, teremos:

$$|x-1| = \begin{cases} x-1 \ se \ x-1 > 0 \\ -(x-1) \ se \ x-1 < 0 \end{cases} \rightarrow \begin{cases} x-1 \ se \ x > 1 \\ -(x-1) \ se \ x < 1 \end{cases}$$

A inequação será válida nas seguintes condições:

I)
$$\begin{cases} x > 1 \\ \frac{x+1}{x-1} + \frac{1-2x}{x-1} \ge 0 \end{cases}$$
II)
$$\begin{cases} x < 1 \\ -\frac{x-1}{x-1} + \frac{1-2x}{x-1} \ge 0 \end{cases}$$
II)
$$\begin{cases} x < 1 \\ \frac{-x-1}{x-1} + \frac{1-2x}{x-1} \ge 0 \end{cases}$$
II)
$$\begin{cases} x < 1 \\ \frac{-3x}{x-1} \ge 0 \end{cases}$$

Multiplicando as segundas equações dos dois sistemas por (-1), temos:

$$\begin{cases} x > 1 \\ \frac{x-2}{x-1} \le 0 \end{cases}$$

$$\begin{cases} \frac{x}{x-1} \le 0 \end{cases}$$

I.2) $\frac{x-2}{x-1} \le 0$ (inequação racional fraccionária)

$$x-2=0 \rightarrow x=2$$
 e $x-1 \neq 0 \rightarrow x \neq 1$

x	-∞	1	2	+∞
x-1	_	+	+	
x-2	_	-	O +	
S	+	_	+	

I.2)
$$x \in [1; 2]$$

II.2) $\frac{3x}{x-1} \le 0$ (inequação racional fraccionária)

$$3x = 0 \rightarrow x = 0 \ e \ x - 1 \neq 0 \rightarrow x \neq 1$$

x	-∞	0	1	+∞
x-1	_	+	+	
x-2	_	_	O +	
S	+	_	+	

II.2)
$$x \in [0; 1[$$

I)
$$\begin{cases} [1; +\infty[] \\ x \in [1; 2] \end{cases}$$

II)
$$\begin{cases}]-\infty; 1 [\\ x \in [0; 1] \end{cases}$$

Intercedendo as soluções dos dois sistemas:

$$S(I) = x \in [1; 2]$$

$$S(II) = x \in [0; 1[$$

A solução da inequação será: $S = S(I) \cup S(II)$

$$S = [0; 1[\cup]1; 2], Línea E)$$

48°) (Exame 2017) Simplifique a expressão:

$$\cot g(270^{\circ} - 2\alpha) + \cot g(210^{\circ} - 2\alpha) + \cot g(150^{\circ} - 2\alpha)$$

Resp: A) $cotg2\alpha$ B) $2tg4\alpha$ C) $tg^23\alpha$ D) $tg2\alpha cotg2\alpha$

E) $cotg6\alpha$ F) $cotg4\alpha$ G) $3tg6\alpha$ H) outro

Resolução:

$$\cot(270^{\circ} - 2\alpha) + [\cot g(210^{\circ} - 2\alpha) + \cot g(150^{\circ} - 2\alpha)]$$

Aplicando a fórmula:

$$cotg(a-b) = \frac{cotga cotg b+1}{cotgb-cotga}$$

$$\cot g(270^{\circ} - 2a) = \frac{\cot g270^{\circ} \cot g + 1}{\cot g2\alpha - \cot g270^{\circ}} = \frac{1}{\cot g2\alpha} = \frac{\sec n2\alpha}{\cos 2\alpha}$$

$$cotga + cotgb = \frac{sen(a+b)}{sena\ senb}$$

$$[cotg(210^{\circ} - 2\alpha) + cotg(150^{\circ} - 2\alpha)] = \frac{sen(210^{\circ} - 2\alpha + 150^{\circ} - 2\alpha)}{sen(210^{\circ} - 2\alpha)sen(150^{\circ} - 2\alpha)}[cotg(210^{\circ} - 2\alpha)]$$

$$2\alpha) + cotg (150^{\circ} - 2\alpha)] = \frac{sen(360^{\circ} - 4\alpha)}{sen(210^{\circ} - 2\alpha)sen(150^{\circ} - 2\alpha)} (*)$$

$$sen(\alpha - \beta) = sen\alpha \cos\beta - sen\beta \cos\alpha$$

$$sen(360^{\circ} - 4\alpha) = sen360^{\circ} cos4\alpha - sen4\alpha cos360^{\circ} = -sen4\alpha$$

$$sena senb = \frac{\cos(a-b)-\cos(a+b)}{2}$$

$$sen(210^{\circ} - 2\alpha)sen(150^{\circ} - 2\alpha) = \frac{cos60^{\circ} - cos(360^{\circ} - 4\alpha)}{2}$$

Sabe-se que:
$$cos(a - b) = cos a cosb + sena senb$$

$$cos(360^{\circ} - 4\alpha) = cos 360^{\circ} cos 4\alpha + sen 360^{\circ} sen 4\alpha = cos 4\alpha$$

Então:

$$sen(210^{\circ} - 2\alpha)sen(150^{\circ} - 2\alpha) = \frac{\frac{1}{2} - \cos 4\alpha}{\frac{2}{3}} = \frac{1 - 2\cos 4\alpha}{\frac{4}{3}}$$

Voltando em (*), temos:

$$\left[\cot g(210^{\circ}-2\alpha)+\cot g\left(150^{\circ}-2\alpha\right)\right]=\frac{-sen4\alpha}{\frac{1-2cos4\alpha}{4}}=-\frac{4\,sen4\alpha}{1-2cos4\alpha}$$

Voltando na expressão inicial e achando o denominador comum, teremos:

$$\frac{sen2\alpha}{cos2\alpha} - \frac{4 sen4\alpha}{1 - 2cos4\alpha} = \frac{sen2\alpha - 2sen2\alpha \cos 4\alpha - 4sen4\alpha \cos 2\alpha}{\cos 2\alpha \left(1 - 2cos4\alpha\right)}$$

$$sen2\alpha-2sen2\alpha$$
 $cos4\alpha-2sen4\alpha$ $cos2\alpha-2sen4\alpha$ $cos2\alpha$

 $cos2\alpha - 2cos4\alpha cos2\alpha$

$$\frac{sen2\alpha - 2(sen4\alpha\cos 2\alpha + sen2\alpha\cos 4\alpha) - 2sen4\alpha\cos 2\alpha}{\cos 2\alpha - 2\cos 4\alpha\cos 2\alpha} \ (**)$$

Sabe-se que:

$$sena\ cosb = \frac{sen(a-b)+sen(a+b)}{2}$$

 $2sen4\alpha cos2\alpha = sen2\alpha + sen6\alpha$

$$cosa \ cosb = \frac{\cos(a-b) + \cos(a+b)}{2}$$

 $2\cos 4\alpha \cos 2\alpha = \cos 2\alpha + \cos 6\alpha$

 $(sen4\alpha cos2\alpha + sen2\alpha cos4\alpha) = sen6\alpha$

Voltando em (**), temos:

$$\frac{sen2\alpha-2sen6\alpha-(sen2\alpha+sen6\alpha)}{cos2\alpha-(cos2\alpha+cos6\alpha)} = \frac{sen2\alpha-2sen6\alpha-sen2\alpha-sen8\alpha}{cos2\alpha-cos2\alpha-cos6\alpha} = \frac{1}{cos6\alpha} = \frac{1}{cos6\alpha$$

49°) (Exame 2017) Resolver:

$$\frac{4x}{|x-2|-1} \ge 3$$

Resp:A)
$$\left[\frac{3}{7}; 1 \left[B \right] \right] - \infty; \frac{3}{7} C$$
 $\left[\frac{3}{7}; 1 \left[U \right] 3; + \infty \left[D \right] \left[\frac{3}{7}; 3 \left[E \right] \right] \right] + \infty \left[E \right]$
F) $\left[\frac{3}{7}, 1 \left[U \right] 3; + \infty \left[G \right] \right] 3; + \infty \left[H \right] outro$

Resolução:

Pela propriedade de uma expressão modular temos:

$$|x-2| = \begin{cases} x-2 & \text{se } x-2 \ge 0 \\ -(x-2) < 0 \end{cases} \to \begin{cases} x-2 & \text{se } x \ge 2 \\ -x+2 & \text{se } x < 2 \end{cases}$$

Formando um sistema de inequações para as duas expressões, temos:

$$I) \begin{cases} x \ge 2 \\ \frac{4x}{x - 2 - 1} \ge 3 \end{cases}$$

$$II) \begin{cases} x < 2 \\ \frac{4x}{-x + 2 - 1} \ge 3 \end{cases}$$

$$\begin{cases} x \ge 2 \\ \frac{4x}{x - 3} - 3 \ge 0 \end{cases}$$

$$\begin{cases} x \ge 2 \\ \frac{4x}{-x + 1} - 3 \ge 0 \end{cases}$$

$$\begin{cases} x \le 2 \\ \frac{4x}{-x + 1} \ge 0 \end{cases}$$

 $\frac{x+9}{x-2} \ge 0$ (inequação racional fraccionária)

$$x + 9 = 0 \rightarrow x = -9 e \ x - 3 \neq 0 \rightarrow x \neq 3$$

	-∞	– 9	3	+ ∞
x + 9 = 0		0 +	+	

$x-3 \neq 0$	_	_	+	
S	+	_	+	

$$x \in]-\infty; -9] \cup]3; +\infty[$$

 $\frac{7x-3}{-x+1} \ge 0$ (inequação racional fraccionária)

$$7x - 3 = 0 \rightarrow x = \frac{3}{7} \ e \ -x + 1 \neq 0 \rightarrow x \neq 1$$

	-∞	$\frac{3}{7}$	1	+ ∞
7x - 3 = 0	-	O +	+	
$-x+1\neq 0$	+	+		
S	_	+	111	

$$x \in \left[\frac{3}{7}; 1\right]$$

Voltando nos sistemas de inequações I) e II) temos:

$$I\left\{x \in \left[-\infty; -9\right] \cup \left[3; +\infty\right]\right\}$$

II)
$$\begin{cases} x < 2 \\ x \in \left[\frac{3}{7}; 1\right] \end{cases}$$

Interceder as duas soluções do sistema I), temos:

$$S_1 = [3; +\infty[$$

Interceder as duas soluções do sistema II), temos:

$$S_2 = \left[\frac{3}{7} ; 1 \right]$$

A solução da inequação é: $S = S_1 \cup S_2$

$$S = \left[\frac{3}{7}; 1\right[\cup]3; +\infty[, Linea C)$$

Exame de Acesso 2016

50°) (Exame 2016) A área da região limitada pelo gráfico da função

$$y = \frac{|x|}{1+x^2}$$
, o eixo ox e as rectas $x = -2$ e $x = 1$ é:

A)
$$\ln 10 u^2$$
 B) $\frac{\ln 10}{3} u^2$ C) $\ln \left(\frac{2}{3}\right) u^2$ D) $\arctan 2 u^2$ E) $\arctan \left(\frac{5}{2}\right) u^2$

F) $arctg(10)u^2$ G) outro

Resolução:

1°) passo:
$$y = \frac{|x|}{1+x^2} = \begin{cases} \frac{x}{1+x^2} ; se \ x \ge 0 \\ -\frac{x}{1+x^2} se \ x < 0 \end{cases}$$

2°) Passo: Achar os interceptos e construir o gráfico para visualizar a área a calcular e os seus limites de integração:

$$y = \frac{x}{1+x^2}$$
, ox: $y = 0$, $x = 0$; oy: $x = 0$, $y = 0$ ($f(x)$ passa na origem)

$$\forall x \geq 0; \ x \to +\infty, y \to 0$$

$$y = -\frac{x}{1+x^2}$$
, ox: $y = 0$, $x = 0$; oy: $x = 0$, $y = 0$ ($f(x)$ passa na origem)

$$\forall x < 0; x \rightarrow -\infty; y \rightarrow 0$$

3°) Passo: calcular a área:

$$A = A_1 + A_2$$

$$A_1 = \int_{-2}^{0} -\frac{xdx}{1+x^2} = -\frac{1}{2} \ln(1+x^2) \frac{0}{-2} =$$

$$A_1 = -\frac{1}{2} \left[\ln(1+0^2) - \ln(1+(-2)^2) \right] \to A_1 = \frac{\ln 5}{2}$$

$$A_2 = \int_0^1 \frac{x dx}{1 + x^2} = \frac{1}{2} \ln(1 + x^2) \frac{1}{0}$$

$$A_2 = \frac{1}{2} \left[\ln(1+1^2) - \ln(1+(0)^2) \right] \rightarrow A_2 = \frac{\ln 2}{2}$$

Então a área cera: $A = A_1 + A_2 = \frac{\ln 5}{2} + \frac{\ln 2}{2} = \frac{1}{2} (\ln 5 + \ln 2)$

$$A = \frac{1}{2} \ln(5 \times 2) \rightarrow A = \frac{1}{2} \ln 10$$
, Línea H)

51°) (**Exame 2016**) A área limitada pela curva $y = \frac{\sqrt{x}}{1+x^3}$ e as rectas y = 0 e x = 1 é:

A)
$$\frac{\pi}{4}$$
 B) $\frac{3\pi}{4}$ C) $\frac{5\pi}{3}$ D) $\frac{\pi}{6}$ E) π F) 3 G) 6 H) outro

Resolução:

1°) Passo: Achar o domínio, os interceptos e construir o gráfico para visualizar a área a calcular e os seus limites de integração:

$$D_f = [0; \, + \infty[$$

$$y = \frac{\sqrt{x}}{1+x^3}$$
, ox: $y = 0$, $x = 0$; oy: $x = 0$, $y = 0$ ($f(x)$ passa na origem)

$$\forall x \geq 0; \ x \to +\infty, y \to 0$$

se
$$x = 1$$
, $y = \frac{1}{2}$, se $x = 0$, $y = 0$

2°) Passo: calcular a área

$$A = \int_0^1 f(x) dx = \int_0^1 \frac{\sqrt{x}}{1+x^3} dx$$
, fazendo: $x = t^2 \to dx = 2 t dt$

Trocando os limites de integração em relação a t:

$$se \ x = 1 \to t = 1, se \ x = 0 \to t = 0$$

$$A = \int_0^1 \frac{t(2t)dt}{1+(t^2)^3} = 2 \int_0^1 \frac{t^2dt}{1+(t^3)^2}$$

supondo novamente que: $t^3 = y \rightarrow 3t^2dt = dy \rightarrow t^2dt = \frac{dy}{3}$

Trocando os limites de integração em relação:

$$se \ t = 1 \rightarrow y = 1, se \ t = 0 \rightarrow y = 0$$

$$A = 2 \int_0^1 \left(\frac{1}{1+t^2}\right) \left(\frac{dy}{3}\right) = \frac{2}{3} \int_0^1 \frac{dy}{1+t^2} = \frac{2}{3} \arctan(y) \int_0^1 \frac{dy}{1+t^2} dy$$

$$A = \frac{2}{3} \left(arct (1) - arctg(0) \right) = \frac{2}{3} \left(\frac{\pi}{4} - 0 \right)$$
$$A = \frac{\pi}{6}, \text{ Línea D}$$

52°) (Exame 2016) Seja
$$f(x) = \frac{2^{2x}}{\sqrt{2-2^{2x}}}$$
, Calcule $f'(0)$
A) $-2 \ln 3$ B) $-\frac{1}{3} \ln 2$ C) $\frac{1}{2} \ln 3$ D) $2 \log 3$ E) $-3 \log 2$ F) $3 \ln 2$ G) 1 H) outro

Aplicando da derivada do cociente:

$$y = \frac{u}{v} \to y' = \frac{u'v - uv'}{v^2}$$

Derivando a função temos:

$$f'(x) = \frac{(2^{2x})'\sqrt{2-2^{2x}} - (2^{2x})(\sqrt{2-2^{2x}})'}{(\sqrt{2-2^{2x}})^2} (*)$$

Sabe-se que:

se
$$y = a^x \rightarrow y' = (x)' a^x \ln a$$

se
$$y = \sqrt{u} \rightarrow y' = \frac{u'}{2\sqrt{u}}$$

Voltando em (*), temos:

$$f'(x) = \frac{\frac{(2.2^x \ln 2)\sqrt{2 - 2^{2x}} - (2^{2x})\frac{(2 - 2^{2x})}{2\left(\sqrt{(2 - 2^{2x})}\right)}}{(\sqrt{2 - 2^{2x}})^2} = \frac{\frac{(4.2^x \ln 2)(2 - 2^{2x}) - 2^{2x}(-2.2^{2x} \ln 2)}{2\left(\sqrt{(2 - 2^{2x})}\right)}}{(\sqrt{2 - 2^{2x}})^2}$$

$$f'(x) = \frac{(4.2^x \ln 2)(2-2^{2x}) + 2.2^{2x}(2^{2x} \ln 2)}{2(\sqrt{(2-2^{2x})})(\sqrt{2-2^{2x}})^2}, \text{ factorizando } 2.2^{2x} \ln 2, \text{ temos:}$$

$$f'(x) = \frac{2 \cdot 2^{2x} \ln 2[2(2-2^{2x})+2^{2x}]}{2(\sqrt{2-2^{2x}})^3}$$
, desfazendo o produto e reduzindo os termos

semelhantes, fica:

$$f'(x) = \frac{2 \cdot 2^{2x} \ln 2 (4 - 2^{2x})}{2 (\sqrt{2 - 2^{2x}})^3}$$
, substituindo o ponto $x = 0$

$$f'(0) = \frac{2 \cdot 2^{2 \times 0} \ln 2 \left(3 - 2^{2 \times 0}\right)}{2 \left(\sqrt{2 - 2^{2 \times 0}}\right)^3} = \frac{2 \ln 2 \left(3\right)}{2} = \frac{(2 \times 3) \ln 2}{2} = \frac{6 \ln 2}{2}$$

$$f'(0) = 3 \ln 2$$
, Línea F)

53°) (Exame 2016) Resolva a equação:

$$tg(x+1) \cot g(2x+3) = 0$$

Resp:

$$x = \frac{\pi k}{2} - 3$$
 B) $x = \frac{\pi k}{2} + 2$ C) $x = 2\pi k + 1$ D) $x = 2\pi k - 2$ E) $x = \pi k + 1$

F)
$$x = \pi k - 2$$
 G) $x = 4\pi k - 1$ H) outro

$$tg(x+1) cotg(2x+3) = 0 \rightarrow tg(x+1) \frac{1}{tg(2x+3)} = 1 \rightarrow tg(x+1) = tg(2x+3)$$

$$tg(2x+3) = tg(x+1)$$

A equação torna-se mais simples Aplicando o seguinte conceito:

Se
$$tga = tgb \rightarrow a = b + \pi k$$

$$x = -2 + \pi k \rightarrow x = \pi k - 2$$

CE: condição de existência:

$$tg(2x+3) \neq 0 \to 2x+3 \neq \pi k \to x \neq \frac{\pi k}{2} - \frac{3}{2} \to x \neq \frac{\pi k - 3}{2}$$

A solução $x = \pi k - 2$ satisfaz a condição de existência, logo, a solução da equação é:

$$S = \{x = \pi k - 2\}$$
, Línea F)

54°) (**Exame 2016**) Seja
$$f(x) = \frac{\sqrt{x-1} + \sqrt[5]{x-1}}{\sqrt[3]{x-1}}$$
, Calcule $f'(2)$

A)
$$-\frac{1}{20}$$
 B) $\frac{1}{10}$ C) $\frac{2}{3}$ D) $\frac{2}{5}$ E) 1 F) 0 G) $\frac{1}{30}$

Resolução:

Transformando todos os radicais em potência:

$$f(x) = \frac{(x-1)^{\frac{1}{2}} + (x-1)^{\frac{1}{5}}}{(x-1)^{\frac{1}{3}}},$$

Aplicando a derivada do cociente: $y = \frac{u}{v} \rightarrow y' = \frac{u'v - uv'}{v^2}$, Temos:

$$f'(x) = \frac{\left[(x-1)^{\frac{1}{2}} + (x-1)^{\frac{1}{5}} \right]' (x-1)^{\frac{1}{3}} - \left[(x-1)^{\frac{1}{2}} + (x-1)^{\frac{1}{5}} \right] \left[(x-1)^{\frac{1}{3}} \right]'}{\left[(x-1)^{\frac{1}{3}} \right]^2}$$

Aplicando a derivada da potência no numerador : $se y = u^n \rightarrow y' = n u^{n-1}$

$$f'(x) = \frac{\left[\frac{1}{2}(x-1)^{-\frac{1}{2}} + \frac{1}{5}(x-1)^{-\frac{4}{5}}\right](x-1)^{\frac{1}{3}} - \left[(x-1)^{\frac{1}{2}} + (x-1)^{\frac{1}{5}}\right]\left[\frac{1}{3}(x-1)^{-\frac{2}{3}}\right]}{(x-1)^{\frac{2}{3}}}$$

Transformando todas as potenciais em radicais, temos:

$$f'(x) = \frac{\left[\frac{1}{2\sqrt{x-1}} + \frac{1}{5\sqrt[5]{(x-1)^4}}\right] \left[\sqrt[3]{x-1}\right] - \left[\sqrt{x-1} + \sqrt[5]{x-1}\right] \left[\frac{1}{3\left(\sqrt[3]{(x-1)^2}\right)}\right]}{\sqrt[3]{(x-1)^2}}$$

Substituindo o ponto x = 2

$$f'(2) = \frac{\left[\frac{1}{2\sqrt{2-1}} + \frac{1}{5\sqrt[5]{(2-1)^4}}\right] \left[\sqrt[3]{2-1}\right] - \left[\sqrt{2-1} + \sqrt[5]{2-1}\right] \left[\frac{1}{3\sqrt[3]{(2-1)^2}}\right]}{\sqrt[3]{(2-1)^2}}$$

$$f'(2) = \frac{\left(\frac{1}{2} + \frac{1}{5}\right) - (2)\left(\frac{1}{3}\right)}{1} = \frac{1}{2} + \frac{1}{5} - \frac{2}{3} = \frac{15 + 6 - 20}{30} = \frac{1}{30}$$

$$f'(2) = \frac{1}{30}$$
, Línea G)

55°) (**Exame 2016**) Seja
$$f(x) = \sqrt{x^2 - 1 + \sqrt[3]{x}}$$
, calcule $f'(1)$

A)
$$\frac{6}{5}$$
 B) $\frac{7}{6}$ C) $\frac{8}{7}$ D) $\frac{6}{7}$ E) $\frac{5}{6}$ F) 1 G) $\frac{7}{8}$ H) outro

$$f(x) = \sqrt{x^2 - 1 + \sqrt[3]{x}} \to f(x) = \sqrt{x^2 - 1 + (x)^{\frac{1}{3}}}$$

Para derivar aplicar a fórmula: se $y = \sqrt{u} \rightarrow y' = \frac{u'}{2\sqrt{u}}$

$$f'(x) = \frac{\left[x^2 - 1 + (x)^{\frac{1}{3}}\right]'}{2\sqrt{x^2 - 1 + (x)^{\frac{1}{3}}}}, \text{ Aplicando a derivar da potência:}$$

$$y = u^n \to y' = n u^{n-1}$$

$$f'(x) = \frac{2x + \frac{x^{-\frac{2}{3}}}{3}}{6\sqrt{x^2 - 1 + (x)^{\frac{1}{3}}}} = \frac{6x + \frac{1}{3\sqrt{x^2}}}{2\sqrt{x^2 - 1 + (x)^{\frac{1}{3}}}} = \frac{6x^{\frac{3}{3}\sqrt{x^2} + 1}}{6^{\frac{3}{3}\sqrt{x^2}}\sqrt{x^2 - 1 + \frac{3}{3}\sqrt{x}}}, \text{ Substituindo o ponto} x = 1$$

$$f'(1) = \frac{6(1)\sqrt[3]{(1)^2 + 1}}{6\sqrt[3]{(1)^2} \sqrt{(1)^2 - 1 + \sqrt[3]{1}}} = \frac{7}{6} \to f'(1) = \frac{7}{6} \text{ , Linea B}$$

56°) (Exame 2016) A área da região compreendida entre a curva $y = 2x^2 - 2x^2$ 2x - 1 e as rectas x = 1 e x = 10 e o eixo ox é:

Resp: A)
$$\left(\frac{13\sqrt{2}}{9} - \frac{1}{9}\right)$$

4)
$$u^2 B$$
) $28u^2 C$) $12 u^2 D$) $2016 u^2 E$) $\frac{\sqrt{2}}{6} u^2 F$) $57 u^2 \sqrt{2} u^2 G$) outro

Resolução:

A área da figura será:
$$A = \int_{1}^{10} (2x^2 - 2x - 1) dx$$

$$A = 2 \int_{1}^{10} x^{2} dx - 2 \int_{1}^{10} x dx - \int_{1}^{10} dx$$
, Integrando temos:

$$A = \frac{2}{3} (x^3)_{1}^{10} - 2 \left(\frac{1}{2}\right) (x^2)_{1}^{10} - (x)_{1}^{10} = \frac{2}{3} (x^3)_{1}^{10} - (x^2)_{1}^{10} - (x)_{1}^{10}$$

$$A = \frac{2}{3} [(10)^3 - (1)^3] - [(10)^2 - (1)^2] - (10 - 1)$$

$$A = (666 - 99 - 9) \rightarrow A = 558 u^2$$
, Línea G

57°) (**Exame 2016**) A área da região compreendida entre o eixo OX e o gráfico da função: $f(x) = x e^{2x}$ entre -1 < x < 1, é:

Resp: A)
$$\frac{e^4 + 2e^2}{4e^2}u^2$$
 B) $\frac{e^4 - 1}{4e^2}u^2$ C) $\frac{e^{-4} + 2e^2}{4e^2}u^2$ D) $\frac{e^4 + 2e^2 - 3}{e^2}u^2$ E) $\frac{e^4 - e^2 - 3}{4e^2}u^2$

F)
$$\frac{e^4+2e^2-3}{4e^2} u^2$$
 G) outro

Resolução:

A área da região será: $A = \int_{-1}^{1} xe^{2x} dx$, Sabe-se que: $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

$$A = \int_{-1}^{1} xe^{2x} dx = 2 \int_{0}^{1} xe^{2x} dx$$
, Integrando por parte:

$$A = 2\left[(u\ v)_0^1 - \int_0^1 v\ du \right]$$

$$u = x \rightarrow du = dx$$
; $v = \int e^{2x} dx = \frac{1}{2} e^{2x}$

$$A = 2\left[\left(\frac{1}{2}x e^{2x}\right) \frac{1}{0} - \frac{1}{2} \int_0^1 e^{2x} dx\right] = 2\left[\frac{1}{2} \left\{x e^{2x}\right\}_0^1 - \frac{1}{4} \left(e^{2x}\right)_0^1\right],$$

Substituindo os limites de integração vem:

$$A = 2\left[\frac{1}{2}\left\{1 \times e^{2(1)} - (0 \times e^{2(0)}\right\} - \frac{1}{4}\left\{\left(e^{2(1)}\right) - \left(e^{2(0)}\right)\right\}\right]$$

$$A = 2\left(\frac{e^2}{2} - \frac{e^2 - 1}{4}\right) \to A = \left(\frac{e^2 + 1}{2}\right) u^2$$
, Línea G)

58°) (**Exame 2016**) A solução da inequação $\log_7 \frac{|x^2+4x|+3}{x^2+|x-5|} \ge 0$ é:

Resp: a)
$$\left[\frac{2}{5}; +\infty\right[$$
 b) $[0;1[\cup]3;4]$ c) $[-1;0] \cup]3;4]$ d) $\left[-\frac{2}{5}; +\infty\right[\cup [3;4]$ e) $\left[-\frac{2}{5};2\right[$ f) outro

Resolução:
$$\log_7 \frac{|x^2+4x|+3}{x^2+|x-5|} \ge 0$$

Condição de existência: $\frac{|x^2+4x|+3}{x^2+|x-5|} > 0$, designaldade verifica-se para todos os valores reais:

Condição de exitência: $]-\infty$; $+\infty$ [

$$\log_7 \frac{|x^2 + 4x| + 3}{x^2 + |x - 5|} \ge 0 \to \frac{|x^2 + 4x| + 3}{x^2 + |x - 5|} \ge 1 \to |x^2 + 4x| - |x - 5| \ge |x^2 - 3|$$

$$|x^2 + 4x| = |x| |x + 4|$$

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x > 0 \end{cases}, |x + 4| = \begin{cases} -x - 4, & x < -4 \\ x + 4, & x > -4 \end{cases}; |x - 5| = \begin{cases} -x + 5, & x < 5 \\ x - 5, & x > 5 \end{cases}$$

$$f(x)$$
 $-\infty$ -4 0 5

x + 4	-x - 4	x + 4	x + 4	x + 4
x	-x	-x	x	x
x - 5	-x + 5	-x + 5	-x + 5	x-5
S	$x^2 + 5x - 5$	$-x^2 - 3x - 5$	$x^2 + 5x - 5$	$x^2 + 3x + 5$

$$\begin{cases} x < -4; \ x^2 + 5x - 5 \ge x^2 - 3 \ \rightarrow x \ge \frac{2}{5}, S_1: \left[\frac{2}{5}; \right. + \infty \right[\\ -4 \le x \le 0, -x^2 - 3x - 5 \ge x^2 - 3 \rightarrow 2x^2 + 3x + 2 \le 0, (\Delta < 0), S_2 = \emptyset \\ 0 \le x \le 5, \ x^2 + 5x - 5 \ge x^2 - 3 \ \rightarrow x \ge \frac{2}{5}, S_3: \left[\frac{2}{5}; \right. + \infty \right[\\ x > 5; \ x^2 + 3x + 5 \ge x^2 - 3 \rightarrow x \ge -1; (Nota: -1 < 5), S_4 = \emptyset \end{cases}$$

A solução da inequação é: $S: \left[\frac{2}{5}; +\infty\right[$; Línea a)

59°) (Exame 2016) As equações paramétricas da recta que passa pelo ponto (1; -1; 0) e é paralela aos planos x + y = 1, x + z = 1 são:

Resp: A)
$$\begin{cases} x = 3 + \lambda \\ y = -2 - \lambda \\ z = 1 \end{cases}$$
 B) $\frac{x-9}{1} = \frac{y+2}{-3} = \frac{z-4}{13}$ C)
$$\begin{cases} x = -2\lambda \\ y = 3 + 2\lambda \\ z = -1 \end{cases}$$
 D)
$$\begin{cases} x = 3 + 2\lambda \\ y = 2 + \lambda \\ z = 2 \end{cases}$$
 E)
$$\begin{cases} x = 1 + t \\ y = -1 - t \\ z = -t \end{cases}$$
 F)
$$\begin{cases} x = 6 + 2\lambda \\ y = -4 - 2\lambda \\ z = 2 \end{cases}$$
 G) outro

E)
$$\begin{cases} x = 1 + t \\ y = -1 - t \end{cases}$$
 F)
$$\begin{cases} x = 6 + 2\lambda \\ y = -4 - 2\lambda \end{cases}$$
 G) outro

Resolução:
$$P(1; -1; 0), x_1 = 1; y_1 = -1 e z_1 = 0$$

A equação paramétrica da recta é:
$$\begin{cases} x = x_1 + at \\ y = y_1 + bt \\ z = z_1 + ct \end{cases}$$

Onde $\vec{n} = (a, b, c)$ é um vector director da recta

O plano π_1 : x + y = 1 tem vector director $\overrightarrow{n_1} = (1; 1; 0)$

O plano π_2 : x + z = 1 tem vector director $\overrightarrow{n_2} = (1; 0; 1)$

O vector director da recta é: $\vec{n} = \overrightarrow{n_1} \times \overrightarrow{n_2} = \begin{bmatrix} l & j & k \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

$$\vec{n} = (-1)^{1+1}i \, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} + (-1)^{1+2}j \, \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + (-1)^{1+3}k \, \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \, \rightarrow \vec{n} = \vec{i} - \vec{k} - \, \vec{k}$$

$$\vec{n}=(1;-1;-1)$$
, a equação paramétrica pedida é:
$$\begin{cases} x=1+t\\ y=-1-t, \text{ Línea E} \end{cases}$$
 60°) (**Exame 2016**) A solução da inequação $\log_{\frac{1}{3}}(x^2-4x+3) \geq -1$ é:

Resp: A) $[0; 1] \cup [3; 4] B) [0; 1] \cup [-3; 4] C) [0; 1] \cup [3; 4] D) [0; 1[\cup [3; 4]$ $E) [0;1] \cup [3;4] F) [0;1[\cup]3;4[$

Resolução: $\log_{\frac{1}{3}}(x^2 - 4x + 3) \ge -1$

Condição de existência: $x^2 - 4x + 3 > 0$ ($x_1 = 3 e x_2 = 1$)

f(x)	-∞		1		3	
	+∞					
$x^2 - 4x + 3 > 0$		+	O	_	О	+

$$S_1 =]-\infty; 1[\cup]3; +\infty[$$

Resolvendo a inequação: $\log_{\frac{1}{3}}(x^2 - 4x + 3) \ge -1 \rightarrow -1 \log_3(x^2 - 4x + 3) \ge -1$

$$(x^2 - 4x + 3) \le 3 \rightarrow x^2 - 4x + 3 \le 3$$
, $x^2 - 4x \le 0$ ($x_1 = 4 e x_2 = 0$)

f(x)	-∞		0		4	
	+∞					
$x^2 - 4 > 0$		+	О	_	О	+

$$S_2 = [0; 4]$$

A solução da inequação é: $S = S_1 \cap S_2$

$$S = [0; 1[\cup]3; 4]$$
, Línea A)

Exame de Acesso 2015

61°) (Exame 2015) Simplifique a expressão: $\frac{sen(2a)+sen(5a)-sen(3a)}{\cos(a)+1-2sen^2(2a)}$

Resolução: $\frac{sen(2a)+[sen(5a)-sen(3a)]}{\cos(a)+1-2sen^2(2a)}$

Nota que:

sen(2a) = 2 sena cos a

$$sen^2 2a = \frac{1}{2}(1 - cos4a) \rightarrow 1 - 2sen^2 2a = cos4a$$

$$sen(5a) - sen(3a) = 2sen\left(\frac{5a - 3a}{2}\right)\cos\left(\frac{5a + 3a}{2}\right) = 2sena\cos 4a$$

Voltando na expressão inicial:

$$\frac{2 \operatorname{sena} \cos a + 2 \operatorname{sena} \cos 4a}{\cos(a) + \cos 4a} = \frac{2 \operatorname{sena} (\cos a + \cos 4a)}{[\cos(a) + \cos 4a]} = 2 \operatorname{sena}$$

62°) (**Exame 2015**) Resolver a inequação:
$$\frac{|x-3|}{x^2-5x+6} \ge 2$$

Resp: A)
$$x \in]-\infty; 1,5]$$
 B) $x \in [1,5; 2[$ C) $x \in]2; +\infty[$ D) $x \in]-\infty; 1,5] \cup]2; +\infty[$ E) $x \in]-\infty; 2[$ F) $x \in [1,5; +\infty[$

$$G(x \in]2; 3[H)$$
 outro

Resolução:

E-mail:delarafapedro@gmail.com

Pela definição do módulo:

$$|x-3| = \begin{cases} x-3 \text{ se } x-3 \ge 0 \\ -(x-3) \text{ se } x-3 < 0 \end{cases} \rightarrow \begin{cases} x-3 \text{ se } x \ge 3 \\ -(x-3) \text{ se } x < 3 \end{cases}$$

$$|x-3| = \begin{cases} x \ge 3 \\ \frac{x-3}{x^2-5x+6} \ge 2 \end{cases}$$

$$|x-3| = \begin{cases} x \ge 3 \\ \frac{x-3}{x^2-5x+6} \ge 2 \end{cases}$$

$$|x-3| = \begin{cases} x < 3 \\ \frac{-x+3}{x^2-5x+6} \ge 2 \end{cases}$$

$$|x-3| = \begin{cases} x < 3 \\ \frac{-x+3}{x^2-5x+6} \ge 2 \end{cases}$$

$$|x-3| = \begin{cases} x < 3 \\ \frac{-x+3}{x^2-5x+6} \ge 0 \end{cases}$$

$$|x-3| = \begin{cases} x < 3 \\ \frac{-x+3-2x^2+10x-12}{x^2-5x+6} \ge 0 \end{cases}$$

$$|x-3| = \begin{cases} x < 3 \\ \frac{-x+3-2x^2+10x-12}{x^2-5x+6} \ge 0 \end{cases}$$

$$|x-3| = \begin{cases} x < 3 \\ \frac{-2x^2+9x-9}{x^2-5x+6} \ge 0 \end{cases}$$

Multiplicando as segundas equações dos dois sistemas de inequações por (-1), as desigualdades invertem-se fica:

$$\left\{ \frac{x \ge 3}{\frac{2x^2 - 11x + 15}{x^2 - 5x + 6}} \le 0 \right\}$$

$$\left\{ \frac{x < 3}{\frac{2x^2 - 9x + 9}{x^2 - 5x + 6}} \ge 0 \right\}$$

$$\frac{2x^2 - 11x + 15}{x^2 - 5x + 6} \le 0 \text{ (Inequação racional fraccionária)}$$

$$2x^2 - 11x + 15 = 0$$
 Pelo método de Vieth: $x = \frac{5}{2}$ $e x = 3$

$$x^2 - 5x + 6 \neq 0$$
 Pelo método de Vieth: $x = 2$ e $x = 3$

x	- ∞	2		<u>5</u> 2	3	+∞
$2x^2 - 11x + 15$	-	+	+		_	+
$x^2 - 5x + 6$		+	_	_		+
S	-	+ "	-	+		Π+

I.2)
$$x \in \left[2; \frac{5}{2}\right]$$

II.2)
$$\frac{2x^2-9x+9}{x^2-5x+6} \ge 0$$
 (inequação racional fraccionária)

$$2x^2 - 9x + 9 = 0$$
 Pelo método de Vieth $x = \frac{3}{2}$ $e x = 3$

$$x^2 - 5x + 6 \neq 0$$
 Pelo método de Vieth: $x = 2$ e $x = 3$

x	- ∞	3 2		2	3	+∞
$2x^2 - 11x + 15$		+	_		_	+

$x^2 - 5x + 6$	+	+	_	+	
S	+	_	+	+	

II.2)
$$x \in \left[\frac{3}{2}; 2\right]$$

I)
$$\left\{ x \in \left[2; \frac{5}{2} \right] \right\}$$

II)
$$\begin{cases}]-\infty; 3[\\ x \in \left[\frac{3}{2}; 2\right[\right] \end{cases}$$

Achando a intersecção das soluções de cada sistema:

$$S(I) = \emptyset$$

$$S(II) = \left[\frac{3}{2}; 2\right]$$

A solução do sistema será: $S = S(I) \cup S(II)$

$$S = \left[\frac{3}{2}; 2\right] ou \quad S = [1,5; 2], \text{ Línea B}$$

63°) (Exame 2015) Achar a equação da circunferência que passa pela origem e tem o centro em ponto (6; -8)

Resp: A)
$$x^2 + y^2 = 36$$
 B) $(x - 6)^2 + (y + 8)^2 = 100$

C)
$$x^2 + y^2 = 64$$
 D) $(x - 6)^2 + (y + 8)^2 = 10$

E)
$$(x-8)^2 + (y+6)^2 = 4$$
 F) $(x+8)^2 + (y-6)^2 = 4$

G)
$$x^2 + y^2 = 4$$
 H) outro

Resolução:

A equação de uma circunferência é:

$$(x - \alpha)^2 + (y - \beta)^2 = R^2$$

O centro é ponto P(6; -8), $\alpha = 6 e \beta = -8$

$$(x-6)^2 + (y+8)^2 = R^2$$

Quando passa pela origem temos: A(0;0)

Vamos determinar o raio da circunferência:

$$R = d_{AP} = \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

$$R = \sqrt{(6-0)^2 + (-8-0)^2} = \sqrt{100} = 10$$

A equação da circunferência será:

$$(x-6)^2 + (y+8)^2 = (10)^2 \rightarrow (x-6)^2 + (y+8)^2 = 100$$
, linea B)

64°) (Exame 2015) Calcular a área da figura limitada pelas linhas:

$$y = x^4$$
; $y = x$

Resp:
$$A(A) = \frac{1}{5} (B) = \frac{2}{5} (C) = \frac{1}{2} (D) = \frac{3}{5} (E) = \frac{7}{10} (E) = \frac{4}{5} (E) = \frac{3}{10} (E$$

Resolução:

1º) Passo: Achar a intersecção entre as linhas:

$$y = y \rightarrow x^4 = x = 0 \rightarrow x^4 - x = 0 \rightarrow x(x^3 - 1) = 0$$

 $x(x^3 - 1) = 0$, pelo anulamento do produto, temos:

$$x = 0$$
 $e^{-x^3 - 1} = 0 \rightarrow x^3 = 1 \rightarrow x = \sqrt[3]{1} \rightarrow x = 1$

2º) Passo: construir o gráfico para visualizar a área a calcular e os limites de integração:

$$y = x^4$$
 (função par), $ox: y = 0$; $x = 0$, $oy: x = 0$ e $y = 0$

$$y = x$$
 (função ímpar), $ox: y = 0$; $x = 0$, $oy: x = 0$; $y = 0$

3°) Passo: calcular a área

$$A = \int_a^b (y_2 - y_1) dx$$

$$A = \int_0^1 (x - x^4) dx = \int_0^1 x dx - \int_0^1 x^4 dx = \left(\frac{x^2}{2}\right) \frac{1}{0} - \left(\frac{x^5}{5}\right) \frac{1}{0}$$

$$A = \left[\left(\frac{1^2}{2} \right) - \left(\frac{0^2}{2} \right) \right] - \left[\left(\frac{1^5}{5} \right) - \left(\frac{0^5}{5} \right) \right] = \frac{1}{2} - \frac{1}{5} \rightarrow A = \frac{3}{10}, \text{ Línea G})$$

65°) (Exame 2015) Resolva a equação:

$$\frac{\cot 2x}{\cot x} + \frac{\cot x}{\cot g2x} + 2 = 0$$

Resp: A)
$$x = \frac{\pi}{3} + \frac{\pi k}{2}$$
 B) $x = \frac{\pi}{3} + 2\pi k$ C) $x = \pm \frac{\pi}{3} + \pi k$

D)
$$x = \frac{\pi}{6} + \pi k$$
 E) $x = \pm \frac{\pi}{6} + 2\pi k$ F) $x = (-1)^k \frac{\pi}{6} + \pi k$

G)
$$x = x = (-1)^k \frac{\pi}{3} \pi k$$
 H) outro

$$\frac{\cot 2x}{\cot x} + \frac{\cot x}{\cot g2x} + 2 = 0$$
, Achando o denominador comum :

$$\frac{\cot g^2 2x + \cot g^2 x + 2\cot g 2x \cot g x}{\cot g 2x \cot g x} = 0 \rightarrow \frac{\cot g^2 2x + 2\cot g 2x \cot g x + \cot g^2 x}{\cot g 2x \cot g x} = 0$$

Obs.:
$$cotg^22x + 2cotg2x cotgx + cotg^2x = (cotg2x + cotgx)^2$$

$$\frac{(\cot g2x + \cot gx)^2}{\cot g2x \cot gx} = 0 \text{ (equação racional fraccionária)}$$

$$(\cot g2x + \cot gx)^2 = 0 \ e \cot g2x \cot gx \neq 0$$

$$(\cot g2x + \cot gx)^2 = 0 \rightarrow \cot g2x + \cot gx = 0 \ (*)$$

Sabe-se que:
$$cotg2x = \frac{cotg^2x-1}{2cotgx}$$

Substituindo em (*), temos:

$$\frac{\cot g^2 x - 1}{2\cot gx} + \cot gx = 0$$
, achando o denominador comum, fica:

$$\frac{3\cot g^2 x - 1}{2\cot g x} = 0$$

$$3cotg^2x - 1 = 0 \rightarrow cotgx = \pm \frac{\sqrt{3}}{3}$$

$$cotgx = \frac{\sqrt{3}}{3} \rightarrow cotgx = cotg\left(\frac{\sqrt{3}}{3}\right), \alpha = \frac{\pi}{3}$$

$$x = \alpha + \pi k \rightarrow x = \frac{\pi}{3} + \pi k$$

$$cotgx = -\frac{\sqrt{3}}{3} \rightarrow cotgx = cotg\left(-\frac{\sqrt{3}}{3}\right) \rightarrow cotgx = -cotg\left(\frac{\sqrt{3}}{3}\right), \alpha = -\frac{\pi}{3}$$

$$x = \alpha + \pi k \rightarrow x = -\frac{\pi}{3} + \pi k$$

Condição de existência:

$$cot gx \neq 0 \rightarrow x \neq \pi k$$

$$cotg2x \neq 0 \rightarrow 2x \neq \pi k \rightarrow x \neq \frac{\pi k}{2}$$

As soluções $x = -\frac{\pi}{3} + \pi k$ e $x = \frac{\pi}{3} + \pi k$ satisfazem a condição de existência, logo a solução da equação é:

$$S = \left\{ x = \pm \frac{\pi}{3} + \pi k \right\}$$
, Línea C

66°) (Exame 2015) Resolva a equação:

$$cotgx - tgx = \frac{cosx - senx}{0.5 sen2x}$$

Resp: A)
$$x = \frac{\pi}{4} + 2\pi k$$
 B) $x = \pm \frac{\pi}{4} + 2\pi k$ C) $(-1)^k \frac{\pi}{4} + \pi k$

D)
$$x = \frac{\pi}{2} + 2\pi k$$
 E) $x = \frac{\pi}{2} + \pi k$ F) $x = \frac{\pi}{4} + \pi k$

G)
$$x = \pm \frac{\pi}{4} + \pi k$$
 H) outro

$$\frac{\cos x}{senx} - \frac{senx}{\cos x} = \frac{\cos x - senx}{\frac{1}{2}sen2x} \to \frac{(\cos x - senx)(\cos x + senx)}{senx\cos x} - \frac{2(\cos x - senx)}{sen2x} = 0$$

OBs:
$$2senx cosx = sen2x \rightarrow senx cosx = \frac{sen2x}{2}$$

$$\frac{(\cos x - \sin x)(\cos x + \sin x)}{\frac{\sec 2x}{2}} - \frac{2(\cos x - \sin x)}{\sec 2x} = 0$$

$$\frac{2(\cos x - \sin x)(\cos x + \sin x)}{\sin 2x} - \frac{2(\cos x - \sin x)}{\sin 2x} = 0 \text{, factorizando } 2(\cos x - \sin x)$$

$$2(\cos x - \sin x) \left(\frac{\cos x + \sin x - 1}{\sin 2x} \right) = 0$$

Anulando os produtos temos:

$$2(\cos x - \sin x) = 0, \cos x + \sin x - 1 = 0, \sin 2x \neq 0$$

$$2(\cos x - \sin x) = 0 \rightarrow \sin x = \cos x (\operatorname{dividir} \operatorname{por} \cos x) \rightarrow t \operatorname{g} x = 1$$

$$tgx = 1 \rightarrow tgx = tg(1), \alpha = \frac{\pi}{4}$$

$$x = \alpha + \pi k \rightarrow x = \frac{\pi}{4} + \pi k$$

$$cosx + senx - 1 = 0 \rightarrow cosx + senx = 1$$
, Elevar ambos membos ()²

$$1 + 2sen2x = 1 \rightarrow sen2x = 0 \rightarrow sen2x = sen(0), \alpha = 0^{\circ}$$

$$2x = \pi k \to x = \frac{\pi k}{2}$$

$$sen2x \neq 0 \rightarrow 2x \neq \pi k \rightarrow x \neq \frac{\pi k}{2}$$

A solução $x = \frac{\pi}{4} + \pi k$ satisfaz e a solução $x = \frac{\pi k}{2}$ não satisfaz, logo a solução da equação é: $S = \left\{ x = \frac{\pi}{4} + \pi k , \ k \in Z \right\}$, Línea F)

67°) (Exame 2015) Calcular a área da figura limitada pelas linhas

$$y = \frac{1}{x^2}$$
; $y = 0$: $x = 0.5$ e $x = 2.5$

Resolução:

1º) construir o gráfico para visualiza a área a calcular e os limites de integração:

$$y = \frac{1}{x^2}$$
 (Função par), $x = 0.5 \rightarrow x = \frac{1}{2}$ $ex = 2.5 \rightarrow x = \frac{5}{2}$

Quando
$$x \to +\infty$$
, $y \to 0$

se
$$x = 0.5$$
, $y = 4$; se $x = 2.5$, $y = \frac{4}{2.5}$

2°) Passo: calcular a área:

$$A = \int_{a}^{b} f(x) dx$$

$$A = \int_{\frac{1}{2}}^{\frac{5}{2}} \frac{1}{x^2} dx = \int_{\frac{1}{2}}^{\frac{5}{2}} x^{-2} dx = -\frac{1}{x} \frac{\frac{5}{2}}{\frac{1}{2}} = -\left(\frac{1}{\frac{5}{2}} - \frac{1}{\frac{1}{2}}\right) = -\left(\frac{2}{5} - 2\right)$$

$$A = -\left(-\frac{8}{5}\right) \rightarrow A = 1,6$$
 Línea B)

68°) (**Exame 2015**) Encontre a função F(x) cujo gráfico passa pelo ponto M(3; -2) e $F'(x) = 4x^2 + 9x^{-2}$

Resp: A)
$$x + 1$$
 B) $\frac{4x}{3} + x + 10$ C) $\frac{x^3}{3} - \frac{1}{x}$ D) $4x^3 - \frac{9}{x^3}$

E)
$$\frac{4}{3}x^3 - \frac{9}{x} - 35$$
 F) $\frac{x^{-1}}{2} + x^{-2} - 3$ G) $3x + x^2 + 2$ H) outro

Resolução:

Vamos encontrar a primitiva de F'(x) aplicando integral indefinida:

$$F(x) = I = \int F'(x) dx$$

$$I = \int (4x^2 + 9x^{-2}) dx = \int 4x^2 dx + \int 9x^{-2} dx = 4 \int x^2 dx + 9 \int x^{-2} dx$$

$$I = \frac{4}{3} x^3 - \frac{9}{x} + c \rightarrow F(x) = \frac{4}{3} x^3 - \frac{9}{x} + c$$

Vamos achar a constante c:

Como o gráfico de F(x) passa pelo ponto M(3; -2), então:

$$F(x) = \frac{4}{3} x^3 - \frac{9}{x} + c \rightarrow$$

$$-2 = \frac{4}{3} (3)^3 - \frac{9}{3} + c \rightarrow -2 = 33 + c \rightarrow c = -35$$

Então a função F(x) procurada será:

$$F(x) = \frac{4}{3} x^3 - \frac{9}{x} - 35$$
, Línea E)

69°) (Exame 2015) Simplificar a expressão:

$$36^{\log_6 5} + 10^{1-\log 2} - 3^{\log_9 36}$$

Resp:
$$A$$
) 0 B) 1 C) 25 D) $-$ 1 E) 49 F) 4 G) 24 H) outro

Resolução:

$$36^{\log_6 5} + 10^{1-\log 2} - 3^{\log_9 36} \rightarrow (6^2)^{\log_6 5} + 10.10^{-\log 2} - 3^{\log_{(3^2)}(36)} \rightarrow$$

$$6^{2\log_6 5} + 10.10^{\log(2^{-1})} - 3^{\frac{1}{2}\log_3 36} \rightarrow 6^{\log_6(5^2)} + 10.10^{\log(\frac{1}{2})} - 3^{\log_3(36^{\frac{1}{2}})} \rightarrow$$

$$6^{\log_6 25} + 10.10^{\log(\frac{1}{2})} - 3^{\log_3(\sqrt{36})} \rightarrow 6^{\log_6 25} + 10.10^{\log(\frac{1}{2})} - 3^{\log_3(6)}$$
 (*)

Nota que:
$$6^{\log_6 25} = 25$$
; $10^{\log(\frac{1}{2})} = \frac{1}{2}$; $3^{\log_3(6)} = 6$, substituindo em (*):

$$25 + 10\left(\frac{1}{2}\right) - 6 \rightarrow 25 + 5 - 6 \rightarrow 25 - 10 = 24$$
, Línea G)

70°) (Exame 2015) Resolva a inequação:

$$5^{2\sqrt{x}} + 5 < 5^{\sqrt{x}+1} + 5^{\sqrt{x}}$$

Resp:
$$A$$
) $(0:10)$ B) $[-1;0[C)]-1;1]$ D) $[2,5;7,5]$ E) $(0;1)$

$$F$$
) $(-1.5; 2) G$) $(-\infty; 0) \cup [1; 2]$

Resolução:

$$5^{2\sqrt{x}} + 5 < 5^{\sqrt{x}+1} + 5^{\sqrt{x}} \rightarrow (5^{\sqrt{x}})^2 + 5 < 5.5^{\sqrt{x}} + 5^{\sqrt{x}}$$
, Fazendo: $5^{\sqrt{x}} = t$, temos:

Condição de existência: $x \ge 0 \rightarrow S_1 = [0; +\infty[$

$$t^2+5 < 5t+t \ \rightarrow \ t^2+5 < 6t \ \rightarrow \ t^2-6t+5 \ < 0 \ \ \mbox{(inequação do 2° grau)}$$

$$(a = 1; b = -6; c = 5)$$

Aplicando a fórmula resolvente, temos:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(5)}}{2(1)} = \frac{6 \pm 4}{2}$$

$$t_1 = \frac{6+4}{2} \rightarrow t_1 = 5$$
 ; $t_2 = \frac{6-4}{2} \rightarrow t_2 = 1$

t	-∞	1	5	+∞
$t^2 - 6t + 5 < 0$	+	O –	O	+

 $t \in [1;5]$ ou 1 < t < 5 ou ainda t > 1 e t < 5

Voltando na suposição:

$$\left\{ \begin{array}{l} t > 1 \to 5^{\sqrt{x}} > 1 \to 5^{\sqrt{x}} > 5^0 \to \sqrt{x} > 0 \to (\sqrt{x})^2 > 0^2 \to x > 0 \to x \in]0; \infty[\\ t < 5 \to 5^{\sqrt{x}} < 5^1 \to \sqrt{x} < 1 \to (\sqrt{x})^2 < (1)^2 \to x < 1 \to x \in]-\infty; 1[\end{array} \right.$$

A solução do sistema de inequação é: $S_2=x\in]0; \infty[\ \cap\ x\in]-\infty;\ 1[=]0;1[$

A solução da inequação é: $S = S_1 \cap S_2$

S = (0; 1), Línea E)

71°) (**Exame 2015**) A equação $x^2 - 2x + c = 0$ tem raízes $x_1 e x_2$ que gozam à condição $7x_2 - 4x_1 = 47$. Determine o valor de c.

Resp: A) 20 B)
$$-$$
 15 C) 0 D) 1 E) 10 F) $-$ 1 G) $-$ 5 H) outro

Resolução:

$$7x_2 - 4x_1 = 47$$
 (*)

Pela fórmula de composição de uma equação quadrática:

$$x^2-sx+p=0$$
onde $s=x_1+x_2\ e\ p=x_1\times x_2$, na equação dada: $x^2-2x+c=0$ $s=2\ e\ p=c$

$$s = x_1 + x_2 = 2 \rightarrow x_1 + x_2 = 2 \rightarrow x_1 = 2 - x_2$$
 (**)

$$p = x_1 \times x_2 \rightarrow x_1 \times x_2 = c \ (***)$$

Substituindo a equação (**) em (*) temos:

$$7x_2 - 4x_1 = 47 \rightarrow 7x_2 - 4(2 - x_2) = 47 \rightarrow 7x_2 - 8 + 4x_2 = 47 \rightarrow 7x_2 - 8 + 4x_3 = 47 \rightarrow 7x_2 - 8 + 4x_3 = 47 \rightarrow 7x_3 - 8 + 4x_4 = 47 \rightarrow 7x_4 - 8 + 4x_5 = 47 \rightarrow 7x_5 = 47 \rightarrow 7x$$

$$11x_2 = 47 + 8 \rightarrow 11x_2 = 55 \rightarrow x_2 = \frac{55}{11} \rightarrow x_2 = 5$$

Substituindo $x_2 = 5$ na equação (**) para encontrar x_1 temos:

$$x_1 = 2 - x_2 \rightarrow x_1 = 2 - 5 \rightarrow x_1 = -3$$

Pela equação (***) sabe-se que: $x_1 \times x_2 = c$

$$(-3) \times (5) = c \rightarrow c = -15$$
, Línea B)

72°) (**Exame 2015**) para qual valor de x a função: $y = \sqrt[4]{10 + x} - \sqrt{2 - x}$ seja positiva:

Resp:
$$A$$
) $(-1; 1)$ B) $[0; 2]$ C) $[-5; 0[$ D) $(-2; 3)$ E) $]-1; 2]$ F) -5 G) 4 H) outro

Condição de existência:

$$10 + x \ge 0 \to x \ge -10 \to x \in [-10; +\infty[$$

 $2 - x \ge 0$ (multiplicando pela constante -1);

$$x-2 \le 0 \rightarrow x \le 2 \rightarrow x \in]-\infty;2]$$

A solução verdadeira da condição de existência é:

$$S_1 = x \in [-10; +\infty[\cap x \in]-\infty; 2] \rightarrow S_1 = [-10; 2]$$

O valor de x na função será positivo se:

$$\sqrt[4]{10+x} > \sqrt{2-x}$$
 (inequação irracional)

Elevando ambos os membros da desigualdade a quarta: ()⁴, temos:

$$(\sqrt[4]{10+x})^4 > (\sqrt{2-x})^2 \to 10+x > (2-x)^2 \to 10+x > 4-4x+x^2 \to 10+x+x^2 \to 10+x^2 \to 10+x^2$$

$$10 + x > 4 - 4x + x^2 \rightarrow x^2 - 5x - 6 < 0$$
, pelo método de vieth, temos:

$$x^2 - 5x - 6 = (x - 6)(x + 1) < 0 \rightarrow (x_1 = 6 e x_2 = -1)$$

x	-∞	-1	6		+∞
$x^2 - 5x - 6 < 0 (a > 0)$		+ 0 -	- O	+	

A solução da inequação do 2º grau é: $s_2 =]-1$; 6[

O valor de x na função para que seja positiva, é encontrado, fazendo:

$$S = S_1 \cap S_2$$

$$S =]-1; 2]$$
, Línea E)

73°) (Exame 2015) Calcule a área limitada pelas linhas $y = 2x - x^2$; $y = \frac{3}{4}$

Resp:
$$A)\frac{1}{3} B)\frac{1}{6} C)\frac{5}{6} D)\frac{1}{2} E) 1 F)\frac{2}{3} G)\frac{7}{6} G$$
 outro

Resolução:

1°) Achar a intersecção entre as linhas fazendo: y = y

$$2x - x^2 = \frac{3}{4} \rightarrow 8x - 4x^2 - 3 = 0$$
, Multiplicando pela constante (-1), temos.

$$4x^2 - 8x + 3 = 0 \rightarrow (2x - 1)(2x - 3) = 0 \rightarrow \left(x_1 = \frac{1}{2} \ e \ x_2 = \frac{3}{2}\right)$$

2º) Construir o gráfico:

$$y = 2x - x^2$$
, ox: $y = 0$, $x = 0$ e $x = \frac{1}{2}$; oy: $x = 0$ e $y = 0$

 $y = \frac{3}{4}(Recta\ horizontal)$

3°) Calcular a área:

$$A = \int_a^b (y_2 - y_1) dx$$

$$A = \int_{\frac{1}{2}}^{\frac{3}{2}} \left[2x - x^2 - \left(\frac{3}{4} \right) \right] dx = \frac{1}{4} \int_{\frac{1}{2}}^{\frac{3}{2}} (8x - 4x^2 - 3) dx$$

$$A = \frac{1}{4} \left[8 \int_{\frac{1}{2}}^{\frac{3}{2}} x \, dx - 4 \int_{\frac{1}{2}}^{\frac{3}{2}} x^2 \, dx - 3 \int_{\frac{1}{2}}^{\frac{3}{2}} dx \right], \text{ Integrando, temos: } \int x^n \, dx = \frac{x^{n+1}}{n+1}$$

$$A = \frac{1}{4} \left[8.\frac{1}{2} (x^2)_{\frac{1}{2}}^{\frac{3}{2}} - 4.\frac{1}{3} (x)_{\frac{1}{2}}^{\frac{3}{2}} - 3(x)_{\frac{1}{2}}^{\frac{3}{2}} \right] =$$

$$A = \frac{1}{4} \left[4 \left\{ \left(\frac{3}{2} \right)^2 - \left(\frac{1}{2} \right)^2 \right\} - \frac{4}{3} \left\{ \left(\frac{3}{2} \right)^3 - \left(\frac{1}{2} \right)^3 \right\} - 3 \left(\frac{3}{2} - \frac{1}{2} \right) \right] = \frac{1}{4} \left[8 - \frac{13}{3} - 3 \right]$$

$$A = \frac{2}{3}$$
, Línea F)

Exame de Acesso 2014

74°) (Exame 2014) Resolve a equação:

$$4x^4 - 16x^3 + 3x^2 + 4x - 1 = 0$$

Resp: A)
$$x_1 = \frac{1}{3}$$
, $x_2 = -\frac{1}{2}$, $x_3 = 2 + \sqrt{3}$, $x_4 = 2 - \sqrt{3}$

B)
$$x_1 = \frac{1}{2}$$
, $x_2 = -\frac{1}{3}$, $x_3 = 2 + \sqrt{3}$, $x_4 = 2 - \sqrt{3}$

C)
$$x_1 = \frac{1}{2}$$
, $x_2 = -\frac{1}{2}$, $x_3 = 3 + \sqrt{2}$, $x_4 = 3 - \sqrt{2}$

D)
$$x_1 = \frac{1}{2}$$
, $x_2 = -\frac{1}{2}$, $x_3 = 2 + \sqrt{3}$, $x_4 = 2 - \sqrt{3}$

E)
$$x_1 = \frac{1}{3}$$
, $x_2 = -\frac{1}{3}$, $x_3 = 3 + 2$, $x_4 = 3 - \sqrt{2}$

F)
$$x_1 = \frac{1}{3}$$
, $x_2 = -\frac{1}{2}$, $x_3 = 3 + \sqrt{2}$, $x_4 = 3 - \sqrt{2}$

G)
$$x_1 = 2 + \sqrt{3}$$
, $x_2 = 2 - \sqrt{3}$, $x_3 = 3 + \sqrt{2}$, $x_4 = 3 - \sqrt{2}$

Res.:
$$p(x) = 4x^4 - 16x^3 + 3x^2 + 4x - 1$$
 (Teorema do resto)

$$p(1/2) = 4(1/2)^4 - 16(1/2)^3 + 3(1/2)^2 + 4(1/2) - 1$$

p(1/2) = 0 , isto quer dizer $x_1 = 1/2$ é uma das raizes do polinómio

 $(x - \frac{1}{2}) = 0 \rightarrow D(x) = (x - \frac{1}{2})$ (Método dos coeficientes indeterminados)

$$p(x) = D(x).Q(x) + R(x)$$

$$gr(Q(x)) = gr(P(x)) - 1 = 4 - 1 = 3$$

$$Q(x) = ax^3 + bx^2 + cx + d$$

$$4x^4 - 16x^3 + 3x^2 + 4x - 1 = (x - \frac{1}{2})(ax^3 + bx^2 + cx + d)$$

$$4x^4 - 16x^3 + 3x^2 + 4x - 1 = ax^4 + x^3\left(b - \frac{a}{2}\right) + x^2\left(c - \frac{b}{2}\right) + x\left(d - \frac{c}{2}\right) - \frac{d}{2}$$

$$a = 4$$
, $b - \frac{a}{2} = -16 \rightarrow b = -14$, $c - \frac{b}{2} = 3 \rightarrow c = -4$, $d - \frac{c}{2} = 4 \rightarrow d = 2$

$$gr(R(x)) = gr(D(x)) - 1 = 1 - 1 = 0$$

Substituindo os coeficientes encontrados no Q(x) temos:

$$(x-1/2)(4x^3-14x^2-4x+2)=0$$
, $x_1=1/2$ $e^2 4x^3-14x^2-4x+2=0$

$$p(x)_1 = 4x^3 - 14x^2 - 4x + 2$$

$$p(-\frac{1}{2})_1 = 4(-\frac{1}{2})^3 - 14(-\frac{1}{2})^2 - 4(-\frac{1}{2}) + 2$$

 $p(-\frac{1}{2})_1 = 0$, isto quer dizer $x_2 = -\frac{1}{2}$ é uma das raizes do polinómio

$$x + \frac{1}{2} = 0 \rightarrow D(x)_1 = x + \frac{1}{2}$$

$$p(x)_1 = D(x)_1 \cdot Q(x)_1 + R(x)_1$$

$$gr(Q(x)_1) = 3 - 1 = 2$$
, $gr(R(x)_1) = 1 - 1 = 0$

$$4x^3 - 14x^2 - 4x + 2 = (x + \frac{1}{2})(a_1x^2 + b_1x + c_1)$$

$$4x^3 - 14x^2 - 4x + 2 = ax^3 + x^2 \left(b_1 + \frac{a_1}{2}\right) + x\left(c_1 + \frac{b_1}{2}\right) + \frac{c_1}{2}$$

$$a_1 = 4$$
, $b_1 + \frac{a}{2} = -14 \rightarrow b_1 = -16$, $c_1 + \frac{b_1}{2} = -4 \rightarrow c_1 = 4$

Substituindo os coeficientes encontrados no $Q(x)_1$, temos:

$$p(x) = (x + \frac{1}{2})(4x^2 - 16x + 4) = 0$$
, $x_2 = -\frac{1}{2}e^2 + 4x^2 - 16x + 4 = 0$

$$4x^2 - 16x + 4 = 0$$
, $\Delta = 192$, $x_{1/2} = \frac{16 \pm \sqrt{192}}{8} = \frac{16 \pm 16\sqrt{3}}{8}$

$$x_3 = 2 + \sqrt{3} e x_4 = 2 - \sqrt{3}$$

$$S: \left(\frac{1}{2}; -\frac{1}{2}; 2+\sqrt{3}; 2-\sqrt{3}\right)$$

75°) (Exame 2014) Resolva a equação:

$$sen2x + 2cotgx = 3$$

Resp: A)
$$x = \pm \frac{\pi}{4} + 2\pi k$$
 B) $x = \pm \frac{\pi}{4} + \pi k$ C) $x = \frac{3\pi}{4} + 2\pi k$

$$D(x) = \frac{\pi}{4} + \frac{\pi k}{2}$$
 $E(x) = \frac{\pi}{4} + 2\pi k$ $E(x) = \frac{\pi}{4} + \pi k$ $E(x) = \frac{\pi}{4} + 2\pi k$

H) outro

Resolução:

$$2senx cos x + 2cot g x = 3$$

Sabe-se que:
$$senx = \frac{tgx}{\sqrt{1+ta^2x}}$$
, $cosx = \frac{1}{\sqrt{1+ta^2x}}$, $cotgx = \frac{1}{tax}$

$$2\frac{tgx}{\sqrt{1+tg^2x}} \times \frac{1}{\sqrt{1+tg^2x}} + \frac{2}{tgx} = 3 \rightarrow \frac{2tgx}{1+tg^2x} + \frac{2}{tgx} = 3$$

$$\frac{2tg^2x + 2 + 2tg^2x}{tax + ta^3x} = 3 \rightarrow \frac{4tg^2x + 2}{tax + ta^3x} = 3 \rightarrow 4tg^2x + 2 = 3tgx + 3tg^3x$$

$$3tg^3x - 4tg^2x + 3tgx - 2 = 0$$
, $fazendo: tgx = t$

$$3t^3 - 4t^2 + 3t - 2 = 0$$

Decompondo e factorizando os termos:

$$3t^3 - 3t^2 - t^2 + 2t + t - 2 = 0$$

$$(3t^3 - 3t^2) + (-t^2 + t) + (2t - 2) = 0$$

$$3t^{2}(t-1) - t(t-1) + 2(t-1) = 0$$

 $(t-1)(3t^2-t+2)=0$, Aplicando o anulamento do produto:

$$(t-1) = 0 e (3t^2 - t + 2) = 0$$

$$(t-1) = 0 \rightarrow t_1 = 1$$

$$3t^2 - t + 2 = 0 \ (\Delta < 0, \nexists t)$$

Voltando na suposição:

$$tgx = t \rightarrow tgx = 1 \rightarrow tgx = tg$$
 (1), $\alpha = \frac{\pi}{4}$

$$x = \alpha + \pi k \to x = \frac{\pi}{4} + \pi k$$

Condição de existência:

$$tgx \neq 0 \rightarrow x \neq \pi k$$

A solução $x = \frac{\pi}{4} + \pi k$ Satisfaz a condição de existência, o logo:

$$S = \left\{ x = \frac{\pi}{4} + \pi k \right\}$$
, Línea F

76°) (**Exame 2014**) A recta que passa pelo ponto P(1; 5; 2) e é paralela ao vector $\vec{v} = (4; 3; 7)$, tem como equação paramétrica:

A)
$$x - 3 = 2t$$
; $y - 5 = t e z - 1 = 7t B$) $x - 2 = 2t$; $y - 3 = t e z - 7 = 7t$

C)
$$x - 1 = 4t$$
; $y - 5 = 3t$ e $z - 2 = 7t$ D) $x - 8 = 5t$; $y - 15 = 3t$ e $z - 11 = 17t$

E)
$$x - 7 = 5t$$
; $y - 1 = 3t$ e $z - 18 = 17t$ F) $x - 4 = 5t$; $y - 6 = 3t$ e $z - 8 = 17t$

G)
$$x - 8 = 11t$$
; $y - 15 = 7t$ e $z - 11 = 3t$ H) outro

Resolução:

A equação paramétrica de uma recta que passa pelo ponto $P(x_1; y_1; z_1)$ e é paralela ao vector $\vec{v} = (a; b; c)$ tem como equação paramétrica:

$$\begin{cases} x = x_1 + at \\ y = y_1 + bt \\ z = z_1 + ct \end{cases}$$
 em que no ponto $P(1; 5; 2)$, $x_1 = 1$; $y_1 = 5$ e $z_1 = 2$

E no vector $\vec{v} = (4; 3; 7)$, a = 4; b = 3 e c = 7, Substituindo temos:

$$\begin{cases} x = 1 + 4t \\ y = 5 + 3t \\ z = 2 + 7t \end{cases} \rightarrow \begin{cases} x - 1 = 4t \\ y - 5 = 3t \\ z - 2 = 7t \end{cases} ;$$

$$x - 1 = 4t$$
; $y - 5 = 3t e z - 2 = 7t$, Linea C

77°) (Exame 2014) Calcular a área da figura limitada pelas linhas

$$y = x^3$$
; $y = 1$; $x = 2$

Resolução:

1°) passo: Achar a intersecção entre as líneas:

$$y = y \rightarrow x^3 = 1 \rightarrow x = \sqrt[3]{1} \rightarrow x = 1$$
, se $x = 1$, $y = 1$
se $x = 2 \rightarrow y = (2)^3 \rightarrow y = 8$

2º) Passo: construir o gráfico para visualizar a área a calcular e os limites de integração:

$$y = x^3(parábola cúbica)$$

 $y = 1(recta\ horizontal), x = 2\ (recta\ vertical)$

3°) Passo calcular a área:

$$A = \int_a^b (y_2 - y_1) dx$$

$$A = \int_{1}^{2} (x^{3} - 1) dx = \int_{1}^{2} x^{3} dx - \int_{1}^{2} dx = \left(\frac{x^{4}}{4}\right)_{1}^{2} - (x)_{1}^{2}$$

$$A = \frac{1}{4}[(2)^4 - (1)^4] - (2 - 1) = \frac{15}{4} - 1 = \frac{11}{4} \rightarrow A = 2,75 \ line \ C)$$

78°) (Exame 2014) Resolva a equação:

$$sen^3x(1 + cotgx) + cos^3x(1 + tgx) = 2\sqrt{senx cosx}$$

Resp: a)
$$x = \frac{\pi}{4} + \pi k$$
 b) $x = \pm \frac{\pi}{4} + 2\pi k$ c) $x = \pm \frac{\pi}{4} + \pi k$ d) $x = \frac{\pi}{4} + 2\pi k$

e)
$$x = (-1)^k \frac{\pi}{4} + \pi k$$
 f) $x = \frac{\pi}{2} + \pi k$ g) $x = \frac{\pi}{2} + 2\pi k$ h) outro

Resolução:
$$sen^3x(1 + cotgx) + cos^3x(1 + tgx) = 2\sqrt{senx cosx}$$

Condição de existência:
$$\sqrt{sen2x} \ge 0 \rightarrow \left(\pi k \le x \le \frac{\pi}{2} + \pi k\right)$$

$$sen^3x\left(1+\frac{cosx}{senx}\right)+cos^3x\left(1+\frac{senx}{cosx}\right)=2\sqrt{senx\;cosx}$$

$$sen^3x\left(\frac{cosx+senx}{senx}\right) + cos^3x\left(\frac{cosx+senx}{cosx}\right) = 2\sqrt{senx cosx}$$

 $senx + cosx = 2\sqrt{senx cosx}$ / elevando ambo os membros da igualdade ao quadrado, vem:

$$sen^2x + cos^2x + 2enx \ cosx = 4senx \ cosx \rightarrow (senx - cosx)^2 = 0$$

 $senx - cosx = 0$, nota: $sen\left(\frac{\pi}{2} - x\right) = cosx$
 $senx - sen\left(\frac{\pi}{2} - x\right) = 0 \rightarrow sen\left(x - \frac{\pi}{4}\right) = 0 \rightarrow x - \frac{\pi}{4} = 2\pi k \rightarrow x = \frac{\pi}{4} + 2\pi k$, Línea d)

Exame de Acesso 2013

79°) (**Exame 2013**) simplifique a expressão:

$$\sqrt{(\sqrt{a} + 2)^2 - 8\sqrt{a}} + \sqrt{(\sqrt{a} - 2)^2 + 8\sqrt{a}} , 0 \le a \le 4$$

Resolução: Desenvolvendo os quadrados da soma vem:

$$\sqrt{a + 4\sqrt{a} + 4 - 8\sqrt{a}} + \sqrt{a - 4\sqrt{a} + 4 + 8\sqrt{a}}$$

$$\sqrt{a - 4\sqrt{a} + 4} + \sqrt{a + 4\sqrt{a} + 4}$$

$$\sqrt{(\sqrt{a})^2 - 2(2\sqrt{a}) + 2^2} + \sqrt{(\sqrt{a})^2 + 2(2\sqrt{a}) + 2^2}$$
Nota que: $x^2 \pm 2xy + y^2 = (x \pm y)^2$

$$\sqrt{(\sqrt{a} - 2)^2} + \sqrt{(\sqrt{a} + 2)^2}$$

Pela condição: $0 \le a \le 4$; $|\sqrt{a} - 2| = (2 - \sqrt{a})$

$$\sqrt{\left(2-\sqrt{a}\right)^2}+\sqrt{\left(\sqrt{a}+2\right)^2}$$

$$2 - \sqrt{a} + \sqrt{a} + 2 = 4$$

80°) (**Exame 2013**) Resolva a equação: $3^{\log_3^2 x} + x^{\log_3 x} = 162$

Resp: A)
$$x_1 = 9$$
 B) $x_2 = \frac{1}{9}$ C) $x_1 = 9$; $x_2 = \frac{1}{9}$ D) $x_1 = \frac{1}{3}$; $x_2 = 9$

E)
$$x_1 = 3$$
; $x_2 = \frac{1}{9}$ F) $x_1 = \frac{1}{3}$ G) $x_1 = 0$ H) outro

Resolução:

$$3^{\log_3^2 x} + x^{\log_3 x} = 162 \rightarrow 3^{(\log_3 x)^2} + x^{\log_3 x} = 162$$

Fazendo:
$$\log_3 x = t \rightarrow x = 3^t$$

Condição de existência: $(x > 0 e 0 < x \neq 1)$

$$3^{t^2} + (3^t)^t = 162 \rightarrow 3^{t^2} + 3^{t^2} = 162 \rightarrow 2.3^{t^2} = 162 \rightarrow 3^{t^2} = \frac{162}{2} \rightarrow 3^{t^2} = 81$$

$$3^{t^2} = 3^4 \rightarrow t^2 = 4 \rightarrow t = \pm \sqrt{4} \rightarrow t = \pm 2 \rightarrow t_1 = 2~e~t_2 = -2$$

Voltando na suposição:

$$\begin{cases} \log_3 x = 2 \to x_1 = 3^2 \to x_1 = 9\\ \log_3 x = -2 \to x_2 = 3^{-2} \to x_2 = \frac{1}{3^2} \to x_2 = \frac{1}{9} \end{cases}$$

A solução $x_1 = 9$ e $x_2 = \frac{1}{9}$ satisfazem a condição logo:

$$S = \left\{ x_1 = 9 ; \ x_2 = \frac{1}{9} \right\}, \text{Línea C})$$

81°) (Exame 2013) Simplifique a expressão:

$$\sqrt{a+2\sqrt{a+4}+5} + \sqrt{a-2\sqrt{a+4}+5}$$
 $se-4 \le a \le -3$

Resp: *A*) 1 *B*)
$$2\sqrt{a+4}$$
 C) $\sqrt{a+4}$ *D*) 4 *E*) $2+\sqrt{a+4}$ *F*) 1 $-\sqrt{a+4}$ *G*) 2 *H*) outro

Resolução:

Fazendo: $A = \sqrt{a + 2\sqrt{a + 4} + 5} + \sqrt{a - 2\sqrt{a + 4} + 5}$, elevando ao quandrado, temos:

$$A^{2} = \left(\sqrt{a + 2\sqrt{a + 4} + 5} + \sqrt{a - 2\sqrt{a + 4} + 5}\right)^{2}$$

$$A^2 = a + 2\sqrt{a+4} + 5 + 2\sqrt{(a+2\sqrt{a+4}+5)(a-2\sqrt{a+4}+5)} + a -$$

$$2\sqrt{a+4} + 5$$

$$A^2 = 2a + 10 +$$

$$2\sqrt{a^2 - 2a\sqrt{a+4} + 5a + 2a\sqrt{a+4} - 4(a+4) + 10\sqrt{a+4} + 5a - 10\sqrt{a+5} + 25}$$

$$A^2 = 2a + 10 + 2\sqrt{a^2 + 10a - 4(a + 4) + 25}$$

$$A^{2} = 2a + 10 + 2\sqrt{a^{2} + 10a - 4a + 25 - 16} = 2a + 10 + 2\sqrt{a^{2} + 6a + 9}$$

$$A^2 = 2a + 10 + 2\sqrt{a^2 + 6a + 9}$$

Nota: $a^2 + 6a + 9 = (a + 3)^2$ (quadrado da soma)

$$A^2 = 2a + 10 + 2\sqrt{(a+3)^2}$$
 (*)

Pela condição: $-4 \le a \le -3$; $\sqrt{(a+3)^2} = -(a+3)$, substituindo em (*), temos:

$$A^2 = 2a + 10 - 2(a + 3) = 2a + 10 - 2a - 6 = 4 \rightarrow A^2 = 4 \rightarrow A = \sqrt{4} \rightarrow$$

A = 2, Línea G

82°) (Exame 2013) Resolva a equação:

$$\sqrt{senx} \left(4 - 5cosx - 2sen^2 x \right) = 0$$

Resp: A)
$$x_1 = \frac{\pi}{3} + \pi k$$
; $x_2 = \pi k$ B) $x_1 = \pm \frac{\pi}{3} + 2\pi k$ C) $x_1 = \frac{\pi}{3} + 2\pi k$; $x_2 = \pi k$

D)
$$x_1 = \frac{\pi}{3} + \pi k \ E$$
) $x_1 = \frac{\pi}{3} + \pi k \$; $x_2 = 2\pi k \ F$) $x_1 = \pm \frac{\pi}{3} + \pi k \ G$) $x_1 = \pi k \ H$) outro

Resolução:

Condição de existência:

$$senx \ge 0 \rightarrow 0^{\circ} + 2\pi k \le x \le \pi + 2\pi k \rightarrow 2\pi k \le x \le \pi + 2\pi k$$

 \sqrt{senx} $(4 - 5cosx - 2sen^2x) = 0$, aplicando a lei do anulamento do produto:

$$\sqrt{senx} = 0 \rightarrow (\sqrt{senx})^2 = (0)^2 \rightarrow senx = 0 \ (\alpha = 0^\circ)$$

, caso particular de equações do tipo senx $\,$, $x=\alpha+\pi k \,$ $\to x_2=\pi k$

$$(4 - 5\cos x - 2\sin^2 x) = 0 \rightarrow 4 - 5\cos x - 2(1 - \cos^2 x) = 0 \rightarrow$$

$$4 - 5\cos x - 2 + 2\cos^2 x = 0 \rightarrow 2\cos^2 x - 5\cos x + 2 = 0$$

Fazendo: cosx = t, $t \in [-1; 1]$

$$2t^2-5t+2=0$$
 (equação do 2° ; $a=2$; $b=-5$; $c=2$)

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(2)}}{2(2)} = \frac{5 \pm 3}{4}$$

$$t_1 = \frac{5-3}{4} \to t_1 = \frac{1}{2} \text{ (satisfaz)}; \quad t_2 = \frac{5+3}{4} \to t_2 = 2(\text{não satisfaz})$$

A única raiz que pertence no intervalo de [-1; 1] é $t_1 = \frac{1}{2}$

Voltando na suposição:

$$cosx = t_2 \rightarrow cosx = \frac{1}{2} \rightarrow cosx = cos(\frac{1}{2}) \rightarrow (\alpha = 60^\circ = \frac{\pi}{3})$$

Formula dos cossenos: $x = \pm \alpha + 2\pi k$

$$x_1 = \pm \frac{\pi}{3} + 2\pi k \ ou - \frac{\pi}{3} + 2\pi k \ \cup \frac{\pi}{3} + 2\pi k$$

A solução $-\frac{\pi}{3}+2\pi k$ não satisfaz a condição de existência, logo a solução verdadeira da equação é: $S=\left\{x_1=\frac{\pi}{3}+2\pi k\; ;\;\; x_2=\pi k\right\}$, Línea C)

83°) (**Exame 2013**) Seja π o plano que contém os pontos P = (1; 0; 0;), Q = (0; 2; 0)e R = (0; 0; 3), o volume do tetraedro formado pela origem de coordenadas e os pontos $P, Q \in R$ é:

Resp: A) $10 u^3$ B) $5 u^3$ C) $1 u^3$ D) $0 u^3$ E) nenhum ds anteriores

Resolução:
$$P = (1; 0; 0;), Q = (0; 2; 0)e R = (0; 0; 3)$$

Vamos considerar a origem de coordenadas um ponto A(0; 0; 0)

$$\overline{AP} = (1; 0; 0), \overline{AQ} = (0; 2; 0), \overline{AR} = (0; 0; 3)$$

O volume do tetraedro será um sexto do módulo do producto misto de \overline{AP} , \overline{AQ} e \overline{AR} , ou seja:

$$V = \frac{1}{6} |\Delta|, \Delta = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{vmatrix} = 6, V = \frac{1}{6} |6| \rightarrow V = 1u^3, \text{ Línea C}$$

Exame de Acesso 2012

84°) (Exame 2012) Simplifique a expressão:

$$\left(a^{1/3} + b + \frac{4b^2 - a^{2/3}}{\sqrt[3]{a-b}}\right) : \left(\frac{a^{1/3}}{\sqrt[3]{a^2 - b^2}} - \frac{2}{\sqrt[3]{a+b}} + \frac{1}{\sqrt[3]{a-b}}\right)$$

Resp: A)
$$\sqrt[3]{a^2} - b^2$$
 B) $b(\sqrt[3]{a^2} - b^2)$ C) $b(b + \sqrt[3]{a})$ D) $\sqrt[3]{a^2} + b^2$

E)
$$\sqrt[3]{a} (b - \sqrt[3]{a})$$
 F) $\frac{a^{\frac{1}{3}}}{\sqrt[3]{a}+b}$ G) $\frac{\sqrt[3]{a}-b}{b}$ H) outro

Resolução:

$$\left(\sqrt[3]{a} + b + \frac{4b^2 - \sqrt[3]{a^2}}{\sqrt[3]{a} - b}\right) : \left[\frac{\sqrt[3]{a}}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)} - \frac{2}{\sqrt[3]{a} + b} + \frac{1}{\sqrt[3]{a} - b}\right]$$

$$\left[\frac{(\sqrt[3]{a}-b)(\sqrt[3]{a}+b)+4b^2-\sqrt[3]{a^2}}{\sqrt[3]{a}-b}\right]:\left[\frac{\sqrt[3]{a}-2(\sqrt[3]{a}-b)+\sqrt[3]{a}+b}{(\sqrt[3]{a}-b)(\sqrt[3]{a}+b)}\right]=$$

$$\left[\frac{\sqrt[3]{a^2} - b\sqrt[3]{a} + b\sqrt[3]{a} - b^2 + 4b^2 - \sqrt[3]{a^2}}{\sqrt[3]{a} - b}\right] \left[\frac{\sqrt[3]{a} - 2\sqrt[3]{a} + 2b + \sqrt[3]{a} + b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b^2}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b}{\sqrt[3]{a} - b}\right] : \left[\frac{3b}{(\sqrt[3]{a} - b)(\sqrt[3]{a} + b)}\right] = \\ \left[\frac{3b}{\sqrt[3]{a} - b}\right] : \left[$$

$$\left[\frac{3b^2}{\sqrt[3]{a}-b}\right] \times \left[\frac{\left(\sqrt[3]{a}-b\right)\left(\sqrt[3]{a}+b\right)}{3b}\right] = b\left(\sqrt[3]{a}+b\right)$$

85°) (Exame 2012/2010) Ache a solução da equação:

$$x^{2} \cdot 2^{x+1} + 2^{|x-3|+2} = x^{2} \cdot 2^{|x-3|+4} + 2^{x-1}$$

Resp: A)
$$x_1 = \frac{1}{2} \cup x_2 \in [3; +\infty[B] x_{1,2} = \pm \frac{1}{2}; x_3 = 3$$

C)
$$x_1 = \frac{1}{2}$$
; $x_2 = 3$ D) $x_{1,2} = \pm \frac{1}{2} \cup x_2 \in [3; 4]$

E)
$$x_1 = -\frac{1}{2} \cup x_2 \in [-3; 3]$$
 F) $x_{1,2} = \pm \frac{1}{2} \cup x_2 \in [3; +\infty]$

G)
$$x_{1,2} = \pm \frac{1}{2}$$
 H) outro

Resolução:
$$2x^2 \cdot 2^x + 2^{|x-3|+2} = 4x^2 2^{|x-3|+2} + \frac{2^x}{2}$$

$$2x^{2} \cdot 2^{x} - \frac{2^{x}}{2} = 4x^{2} 2^{|x-3|+2} - 2^{|x-3|+2} \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{|x-3|+2} (4x^{2} - 1) \to 2^{x} \left(2x^{2} - \frac{1}{2}\right) = 2^{x} \left(2x^{2} - \frac{1}{2}\right)$$

$$\rightarrow \frac{2^{x}}{2}(4x^{2}-1) = 2^{|x-3|+2}(4x^{2}-1) \rightarrow 2^{x-1}(4x^{2}-1) - 2^{|x-3|+2}(4x^{2}-1)$$

$$(4x^2 - 1)(2^{x-1} - 2^{|x-3|+2}) = 0$$

$$4x^2 - 1 = 0 \rightarrow x^2 = \frac{1}{4} \rightarrow x = \pm \sqrt{\frac{1}{4}} \rightarrow x_{1,2} = \pm \frac{1}{2}$$

$$2^{x-1} - 2^{|x-3|+2} = 0 \rightarrow 2^{x-1} = 2^{|x-3|+2} \rightarrow x - 1 = |x-3| + 2$$

$$|x - 3| = x - 3$$

condição de existência da expressão modular:

$$|x-3| = (x-3 \text{ se } x-3 \ge 0, x-3 \text{ se } x \ge 3) \text{ e } (-x+3 \text{ se } x-3 < 0, -x+3 \text{ se } x < 3)$$

1°) x - 3 = x - 3, é válida a desigualdade $x \ge 3$, ($x \ge 3$ é uma das soluções)

2°)
$$x - 3 = -x + 3 \rightarrow 2x = 6 \rightarrow x_3 = 3$$
 (pela CE 3 < 3 não satisfaz)

$$S: \left\{ \pm \frac{1}{2}; \cup x \in [3; +\infty[\right\}, \text{Línea F}) \right\}$$

86°) (**Exame 2012/2011**) Determine a equação da circunferência com o centro sobre ox e que passa pelos pontos A(3; 2) e B(-1; 6)

Resp: A)
$$(x + 1)^2 + (y - 6)^2 = 32$$
 B) $x^2 + (y + 2)^2 = 40$

C)
$$(x+3)^2 + (y+2)^2 = 52$$
 D) $(x-3)^2 + (y-2)^2 = 36$

E)
$$(x+3)^2 + y^2 = 40$$
 F) $(x-3)^2 + y^2 = 4$

G)
$$x^2 + (y - 6)^2 = 25$$
 H) outro

Resolução: Equação geral da circunferência:

$$x^{2} + y^{2} + Dx + Ey + F = 0 \rightarrow \left(x + \frac{D}{2}\right)^{2} + \left(y + \frac{E}{2}\right)^{2} = \frac{D^{2} + E^{2} - 4F}{4}$$

Centro : C=
$$\left(-\frac{D}{2}; -\frac{E}{2}\right)$$

Como o centro está sobre o eixo ox, uma das suas coordenadas do centro é nula, ou seja: E=0

$$C = \left(-\frac{D}{2}; 0\right)$$

$$A(3; 2) \rightarrow 3^2 + 2^2 + 3D + 0 \times 2 = 0 \rightarrow 13 + 3D + F = 0$$
 (I)

$$B(-1;6) \rightarrow (-1)^2 + 6^2 - D + 0 \times 6 = 0 \rightarrow 37 - D + F = 0$$
 (II)

Formando um sistema de duas equações a duas incógnitas com as equações (I) e (II), vem:

$${13 + 3D + F \leq 0 \choose 37 - D + F \leq 0}$$
, mutiplicando a 1° por (-1)

 $\begin{cases} -13 - 3D - F = 0 \\ 37 - D + F = 0 \end{cases}$, Resolvendo pelo método de redução temos:

$$24 - 4D = 0 \rightarrow D = \frac{24}{4} \rightarrow D = 6$$

II)
$$37 - 6 + F = 0 \rightarrow F = -31$$

A equação da circunferência será:

$$\left(x + \frac{6}{2}\right)^2 + \left(y + \frac{0}{2}\right)^2 = \frac{(6)^2 + (0)^2 - 4(-31)}{4}$$

$$(x+3)^2 + y^2 = 40$$
, Línea E)

87°) (**Exame 2012/2010**) Determinar a distância do ponto P(1;2) à recta y = -2x - 1

Resp: A)
$$3\sqrt{2}$$
 B) $2\sqrt{3}$ C) $\sqrt{5}$ D) $\sqrt{6}$ E) 2,5 F) 3 G) 2 H) outro

Resolução:

$$P(1; 2), x_0 = 1 e y_0 = 2$$

A distância de um ponto à uma recta é determinada pela expressão:

$$d_{P,r} = \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}$$

na recta
$$y = -2x - 1 \rightarrow 2x + y + 1 = 0$$
 ($a = 2$; $b = 1$ e $c = 1$)

$$d_{P,r} = \frac{2(1)+1(2)+1}{\sqrt{2^2+1^2}} = \frac{5}{\sqrt{5}} \rightarrow d_{P,r} = \frac{5}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{5\sqrt{5}}{5} \rightarrow d_{P,r} = \sqrt{5}$$
, Línea C)

88°) (Exame 2012) Resolva a equação:

$$\log_{25} x = 0.25^{\log 2} \cdot 0.4^{\log 2} - 81^{0.5 \log_9 7} + 5^{\log_{25} 49}$$

Resp: A)
$$x = 25 B$$
) $x = 2 C$) $x = 5 D$) $x = 7 E$) $x = 9 F$) $x = \frac{1}{5} G$) $x = 1 D$ out to

1 H) outro

Resolução: Condição de existência: (x > 0)

$$\log_{25} x = (0.25 \times 0.4)^{\log 2} - (3^4)^{\frac{1}{2} \log_{(3^2)} 7} + 5^{\log_{(5^2)} (7^2)}$$

$$\log_{25} x = (0.1)^{\log 2} - (3^4)^{\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\log_3 7} + 5^{(2)\left(\frac{1}{2}\right)\log_5 7}$$

$$\log_{25} x = (10^{-1})^{\log 2} - (3^4)^{\left(\frac{1}{4}\right) \log_3 7} + 5^{\log_5 7}$$

$$\log_{25} x = 10^{\log(2^{-1})} - 3^{\log_3 7} + 5^{\log_5 7}$$

$$\log_{25} x = 2^{-1} - 7 + 7 \rightarrow \log_{25} x = \frac{1}{2} \rightarrow x = 25^{\frac{1}{2}} \rightarrow x = \sqrt{25} \rightarrow x = 5$$

$$S = \{x = 5\}$$
, Línea C

89°) (Exame 2012/2008) Resolva a equação:

$$8\cos^4 x - 8\cos^2 x - \cos x + 1 = 0$$

Resp: A)
$$x = \frac{\pi k}{2} \cup x = \frac{2\pi k}{3}$$
 B) $\frac{\pi k}{3}$ C) $x = \frac{\pi k}{6} \cup x = \frac{2\pi k}{5}$
D) $x = \frac{\pi k}{3} \cup x = \frac{\pi k}{5}$ E) $x = \frac{\pi k}{6}$ F) $x = \frac{3\pi k}{5}$ G) $x = \frac{2\pi k}{5} \cup x = \frac{2\pi k}{3}$

H) outro

Resolução:
$$(8\cos^4 x - 8\cos^2 x + 1) - \cos x = 0$$
 (1)

Sabe-se que:
$$cos4x = cos^22x - sen^22x$$

$$cos2x = (2scos^2x - 1)$$
 $e sen2x = 2 senx cosx$

$$cos4x = (2scos^2x - 1)^2 - (2senx cosx)^2$$

$$\cos 4x = 4\cos^4 x - 4\cos^2 x + 1 - 4\sin^2 x \cos^2 x$$
, nota: $\sin^2 x = 1 - \cos^2 x$

$$\cos 4x = 4\cos^4 x - 4\cos^2 x + 1 - 4(1 - \cos^2 x)\cos^2 x$$

$$\cos 4x = 4\cos^4 x - 4\cos^2 x + 1 + 4\cos^4 x - 4\cos^2 x$$

$$\cos 4x = 8\cos^4 x - 8\cos^2 x + 1 \quad (2)$$

Subsituindo (2) em (1)

$$cos4x - cosx = 0$$
, nota: $cosa - cosb = -2 sen\left(\frac{a-b}{2}\right) sen\left(\frac{a+b}{2}\right)$

$$\cos 4x - \cos x = -2 \operatorname{sen}\left(\frac{3x}{2}\right) \operatorname{sen}\left(\frac{5x}{2}\right) = 0$$

Anulando os productos:

$$-2 \operatorname{sen}\left(\frac{3x}{2}\right) = 0 \rightarrow \operatorname{sen}\left(\frac{3x}{2}\right) = 0 \rightarrow \frac{3x}{2} = \pi k \rightarrow x = \frac{2\pi k}{3}$$

$$sen\left(\frac{5x}{2}\right) = 0 \to \frac{5x}{2} = \pi k \to x = \frac{2\pi k}{5}$$

$$s = \left(x = \frac{2\pi k}{5} \cup x = \frac{2\pi k}{3}\right)$$
, Línea G)

Exame de Acesso 2011

90°) (Exame 2011) Compor a equação da circunferência que passa pelos pontos A(2;0) e B(5;0) e toca o eixo oy.

Resp: A)
$$(x-3)^2 + (y-\sqrt{8})^2 = 9$$
 B) $(x-\frac{5}{2})^2 + (y-\sqrt{10})^2 = 8$

C)
$$\left(x - \frac{7}{2}\right)^2 + \left(y \pm \sqrt{10}\right)^2 = \frac{49}{4}$$
 D) $\left(x - \frac{5}{2}\right)^2 + \left(y - \sqrt{10}\right)^2 = 12$

E)
$$(x-4)^2 + (y-3)^2 = 8$$
 F) $(x-3)^2 + (y \pm \sqrt{8})^2 = 11$

G)
$$\left(x - \frac{7}{2}\right)^2 + (y - 3)^2 = 12$$
 H) outro

Resolução: A equação de uma circunferência é: $(x - \alpha)^2 + (y - \beta)^2 = R^2$

$$A(2;0) \rightarrow (2-\alpha)^2 + (0-\beta)^2 = R^2$$
,

Desenvolvendo os quadrados da soma, vem:

$$4 - 4\alpha + \alpha^2 + \beta^2 = R^2$$
 (*)

$$B(5;0) \rightarrow (5-\alpha)^2 + (0-\beta)^2 = R^2$$

Desenvolvendo os quadrados da soma, vem:

$$25 - 10\alpha + \alpha^2 + \beta^2 = R^2$$
 (**)

Igualando as equações (*) e (**), vem:

$$4 - 4\alpha + \alpha^2 + \beta^2 = 25 - 10\alpha + \alpha^2 + \beta^2 \rightarrow 6\alpha = 21 \rightarrow \alpha = \frac{7}{2}$$

Quando toca o eixo oy uma das coordenadas do centro é nula: $(0; \beta)$

$$(0; \beta) \to (0 - \alpha)^2 + (\beta - \beta)^2 = R^2 \to \alpha^2 = R^2 \to R^2 = \left(\frac{7}{2}\right)^2$$

$$R^2 = \left(\frac{7}{2}\right)^2 \to R^2 = \frac{49}{4}$$

$$4 - 4\alpha + \alpha^2 + \beta^2 = R^2 \ (*) \, , R^2 = \frac{49}{4} \, e \ \alpha = \frac{7}{2}$$

$$4 - 4\left(\frac{7}{2}\right) + \left(\frac{7}{2}\right)^2 + \beta^2 = \frac{49}{4} \rightarrow \beta^2 = 10 \rightarrow \beta = \pm\sqrt{10}$$

Então, a equação da circunferência será:

$$\left(x - \frac{7}{2}\right)^2 + (y \pm \sqrt{10})^2 = \frac{49}{4}$$
, Línea C)

91°) (Exame 2011) Compor a equação da circunferência que passa pelo ponto A(2; 1) toca o eixo de coordenadas.

Resp: A)
$$(x-3)^2 + (y-1)^2 = 1$$
 ou $(x+1)^2 + (y-5)^2 = 25$

B)
$$(x-1)^2 + (y-1)^2 = 1$$
 ou $(x-5)^2 + (y-5)^2 = 25$

C)
$$(x+2)^2 + (y-1)^2 = 16$$
 ou $(x+2)^2 + (y-2)^2 = 1$

$$D) (x-2)^2 + (y+1)^2 = 4 ou (x-1)^2 + (y-1)^2 = 1$$

E)
$$(x-4)^2 + (y+1)^2 = 8$$
 F) $(x+1)^2 + (y-1)^2 = 9$

G)
$$(x-3)^2 + (y+1)^2 = 5$$
 H) outro

Resolução: A equação de uma circunferência é:

$$(x - \alpha)^2 + (y - \beta)^2 = R^2$$

$$A(2;1) \rightarrow (2-\alpha)^2 + (1-\beta)^2 = R^2$$

Desenvolvendo os quadrados da soma, vem:

$$4 - 4\alpha + \alpha^2 + 1 - 2\beta + \beta^2 = R^2$$

$$\alpha^2 + \beta^2 - 4\alpha - 2\beta + 5 = R^2 (*)$$

- I) Quando toca o eixo de coordenadas:
- I.1) Quando toca o eixo OX: $(\alpha; 0)$

$$(\alpha; 0) \rightarrow (\alpha - \alpha)^2 + (0 - \beta)^2 = R^2 \rightarrow \beta^2 = R^2 (**)$$

I.2) Quando toca o eixo OY: $(0; \beta)$

$$(0;\beta) \to (0-\alpha)^2 + (\beta-\beta)^2 = R^2 \to \alpha^2 = R^2 (***)$$

Igualando as equações (**) e (***), vem:

$$\alpha^2 = \beta^2 = R^2 \rightarrow |\alpha| = |\beta| = |R|$$

Pela equação (*), temos:

$$\alpha^2 + \alpha^2 - 4\alpha - 2\alpha + 5 = \alpha^2 \rightarrow$$

$$\alpha^2 - 6\alpha + 5 = 0 \rightarrow (\alpha - 5)(\alpha - 1) = 0$$

Pela lei do anulamento do produto:

$$(\alpha - 5) = 0 \rightarrow \alpha_1 = 5$$
, $(\alpha - 1) = 0 \rightarrow \alpha_2 = 1$

 $\alpha_1 = 5 \rightarrow \beta_1 = 5 \ e \ R_1 = 5$, A equação da circunferência será:

$$(x - \alpha_1)^2 + (y - \beta_1)^2 = R_1^2 \rightarrow (x - 5)^2 + (y - 5)^2 = 25$$

 $\alpha_2 = 1 \rightarrow \beta_2 = 1 \ e \ R_2 = 1$, A equação da circunferência será:

$$(x - \alpha_2)^2 + (y - \beta_2)^2 = R_2^2 \rightarrow (x - 1)^2 + (y - 1)^2 = 1$$

A equação da circunferência pedida será:

$$(x-1)^2 + (y-1)^2 = 1$$
 ou $(x-5)^2 + (y-5)^2 = 25$, Línea B)

92°) (**Exame 2011**) Compor a equação da esfera que passa pelo ponto A(1; -1; 4) e toca os planos de coordenadas

Resp: A)
$$(x-3)^2 + (y+3)^2 + (z-3)^2 = 9$$

B)
$$(x + 2)^2 + (y + 2)^2 + (z - 3)^2 = 11$$

C)
$$(x-2)^2 + (y+2)^2 + (z-2)^2 = 6$$

D)
$$(x + 3)^2 + (y + 1)^2 + (z - 4)^2 = 16$$

E)
$$(x-1)^2 + (y-1)^2 + (z-2)^2 = 8$$

F)
$$(x + 1)^2 + (y + 2)^2 + (z - 2)^2 = 9$$

G)
$$(x-3)^2 + (y+1)^2 + (z-2)^2 = 9$$

H) outro

Resolução: A equação de uma esfera é dada pela fórmula: $(x - \alpha)^2 + (y - \beta)^2 + (z - \gamma)^2 = R^2$

$$A(1; -1; 4) \rightarrow (1 - \alpha)^2 + (-1 - \beta)^2 + (4 - \gamma)^2 = R^2$$

Desenvolvendo os quadrados da soma, fica:

$$\alpha^2 + \beta^2 + \gamma^2 - 2\alpha + 2\beta - 8\gamma + 18 = R^2$$
 (*)

I) Quando toca o plano coordenado oxy: (α ; β ; 0)

$$(\alpha; \beta; 0) \rightarrow (\alpha - \alpha)^2 + (\beta - \beta)^2 + (0 - \gamma)^2 = R^2 \rightarrow \gamma^2 = R^2$$

I) Quando toca o plano coordenado oyz: $(0; \beta; \gamma)$

II)
$$(0; \beta; \gamma) \rightarrow (0 - \alpha)^2 + (\beta - \beta)^2 + (\gamma - \gamma)^2 R^2 \rightarrow \alpha^2 = R^2$$

III) Quando toca o plano coordenado oxz: (α ; 0; γ)

$$(\alpha; 0; \gamma) \rightarrow (\alpha - \alpha)^2 + (0 - \beta)^2 + (\gamma - \gamma)^2 = R^2 \rightarrow \beta^2 = R^2$$

Igualando as equações obtidas em I) II) e III), vem:

$$\alpha^2 = \beta^2 = \gamma^2 = R^2 \ \rightarrow |\alpha| = |\beta| = |\gamma| = R$$

$$\alpha = -\beta = \gamma = R$$

Pela equação (*), temos:

$$\alpha^{2} + \alpha^{2} + \alpha^{2} - 2\alpha + 2\alpha - 8\alpha + 18 = \alpha^{2} \rightarrow 2\alpha^{2} - 12\alpha + 18 = 0$$

Dividindo toda a equação por dois (2), vem:

$$\alpha^2 - 6\alpha + 9 = 0 \rightarrow (\alpha - 3)^2 = 0 \rightarrow \alpha = 3$$

se
$$\alpha = 3 \rightarrow \beta = -3$$
, $\gamma = 3$, $R = 3$

A equação da esfera pedida será:

$$(x-3)^2 + (y+3)^2 + (z-3)^2 = 9$$
, Línea A)

93°) (Exame 2011) Simplifique a expressão trigonométrica:

$$tg\left(\frac{\pi}{2} + \alpha\right)tg\left(\pi + \alpha\right)$$

Resp:
$$A$$
) -1 B) $\frac{1}{2}$ C) $\frac{1}{sen\alpha}$ D) 1 E) $-sen\alpha$ F) outro

Resolução:

Sabe-se que:

$$tg \ a \ tg \ b = \frac{\cos(a-b)-\cos(a+b)}{\cos(a-b)+\cos(a+b)}$$
, Então:

$$tg\left(\frac{\pi}{2} + \alpha\right)tg\left(\pi + \alpha\right) = \frac{\cos\left(\frac{\pi}{2} + \alpha - \pi - \alpha\right) - \cos\left(\frac{\pi}{2} + \alpha + \pi + \alpha\right)}{\cos\left(\frac{\pi}{2} + \alpha - \pi - \alpha\right) + \cos\left(\frac{\pi}{2} + \alpha + \pi + \alpha\right)}$$

$$tg\left(\frac{\pi}{2} + \alpha\right)tg\left(\pi + \alpha\right) = \frac{\cos\left(-\frac{\pi}{2}\right) - \cos\left(2\alpha + \frac{3\pi}{2}\right)}{\cos\left(-\frac{\pi}{2}\right) + \cos\left(2\alpha + \frac{3\pi}{2}\right)} = -\frac{\cos\left(2\alpha + \frac{3\pi}{2}\right)}{\cos\left(2\alpha + \frac{3\pi}{2}\right)}$$

$$tg\left(\frac{\pi}{2} + \alpha\right)tg\left(\pi + \alpha\right) = -1$$
, Línea A)

94°) (Exame 2011) Resolver a equação:

$$iz^2 + 5z - 6i = 0$$

Resp: A)
$$z_1 = 3i$$
; $z_2 = -2i$ B) $z_1 = 3i$; $z_2 = 2i$ C) $z_1 = -3i$; $z_2 = 2i$

D)
$$z_1 = -3i$$
; $z_2 = -2i$ E) $z_1 = 3$; $z_2 = 2i$ F) $z_1 = 3i$; $z_2 = 2i$

G)
$$z_1 = 3$$
; $z_2 = -2i$ H) outro

Resolução:

$$i z^2 + 5 z - 6 i = 0$$
 (Equação complexa do 2º grau)

Aplicando a fórmula resolvente: a = i; b = 5 e c = -6i

$$\Delta = b^2 - 4 ac \rightarrow \Delta = (5)^2 - 4(i)(-6i) \rightarrow \Delta = 25 + 24 i^2$$

No conjunto dos números completos $i^2 = -1$

$$\Delta$$
= 25 + 24 (-1) \rightarrow Δ = 25 - 24 \rightarrow Δ = 1

$$z_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a} \rightarrow z = \frac{-5 \pm \sqrt{1}}{2i} = \frac{-5 \pm 1}{2i}$$

$$z_2 = \frac{-5+1}{2i} = -\frac{4}{2i} = -\frac{2}{i} = \frac{(-1)2}{i} \rightarrow z_2 = \frac{2i^2}{i} \rightarrow z_2 = 2i$$

$$z_1 = \frac{-5-1}{2i} = -\frac{6}{2i} = -\frac{3}{i} = \frac{(-1)3}{i} \to z_1 = \frac{3i^2}{i} \to z_1 = 3i$$

A solução da equação é : $S = \{z_1 = 3i; z_2 = 2i \}$, Línea B)

95°) (**Exame 2011**) Calcular:
$$\int_{-1}^{15} \frac{dx}{\sqrt{x+10}-\sqrt{x+1}}$$

Resp: A) 16 B) 10 C) 9 D) 15 E) 8 F) 12 G) 5 H) outro

Resolução: Racionalizando o denominar da integral:

$$\mathbf{I} = \int_{-1}^{15} \frac{\left[\sqrt{x+10} + \sqrt{x+1}\right] dx}{\left[\left(\sqrt{x+10} - \sqrt{x+1}\right)\left(\sqrt{x+10} + \sqrt{x+1}\right)\right]} = \int_{-1}^{15} \frac{\left[\sqrt{x+10} + \sqrt{x+1}\right] dx}{\left[\left(\sqrt{x+10}\right)^2 - \left(\sqrt{x+1}\right)^2\right]}$$

$$I = \int_{-1}^{15} \frac{(\sqrt{x+10} + \sqrt{x+1})}{x+10-x-1} = \int_{-1}^{15} \frac{(\sqrt{x+10} + \sqrt{x+1})}{9}$$

$$I = \frac{1}{9} \left[\int_{-1}^{15} \sqrt{x + 10} \, dx + \int_{-1}^{15} \sqrt{x + 1} \, dx \right]$$

$$I = \frac{1}{9} \left[\int_{-1}^{15} (x+10)^{\frac{1}{2}} dx + \int_{-1}^{15} (x+1)^{\frac{1}{2}} dx \right], \text{ Integrando:}$$

$$I = \frac{1}{9} \left[\left(\frac{(x+10)^{\frac{3}{2}}}{\frac{3}{2}} \right) \frac{15}{-1} + \left(\frac{(x+1)^{\frac{3}{2}}}{\frac{3}{2}} \right) \frac{15}{-1} \right] = \frac{1}{9} \left[\frac{2}{3} \left((x+10)^{\frac{3}{2}} \right) \frac{15}{-1} + \frac{2}{3} \left((x+1)^{\frac{3}{2}} \right) \frac{15}{-1} \right]$$

$$I = \frac{1}{9} \left[\frac{2}{3} \left(\sqrt{(x+10)^3} \right)_{-1}^{15} + \frac{2}{3} \left(\sqrt{(x+1)^3} \right)_{-1}^{15} \right]$$

$$I = \frac{1}{9} \times \frac{2}{3} \left[\left(\sqrt{(15+10)^3} - \sqrt{(-1+10)^3} \right) + \left(\sqrt{(15+1)^3} - \sqrt{(-1+1)^3} \right) \right]$$

$$I = \frac{2}{27} (125 - 27 + 64 - 0) = \frac{2}{27} (162)$$

I= 12, Línea F)

96°) (Exame 2011/2010) Resolva a inequação:

$$2\cos x(\cos x - \sqrt{8} tgx) < 5$$

Resp: A)
$$\left| 2\pi n - \frac{\pi}{4}; 2\pi n + \frac{\pi}{4} \right|$$

B)
$$\left] 2\pi n - \frac{\pi}{4}; \frac{\pi}{2} + 2\pi n \right[\cup \right] \frac{\pi}{2} + 2\pi n; \frac{\pi}{3} + 2\pi n \right[$$

C)
$$\left[\pi n - \frac{\pi}{3}; \frac{\pi}{6} + \pi n\right]$$

D)
$$\left] -\frac{\pi}{4} + 2\pi n ; \frac{\pi}{2} + 2\pi n \right[\cup \left] \frac{\pi}{2} + 2\pi n ; \frac{5\pi}{4} + 2\pi n \right[$$

E)
$$\left]\pi n - \frac{\pi}{8}; \frac{\pi}{4} + \pi n \right[\cup \left] \frac{\pi}{4} + \pi n; \frac{\pi}{2} + \pi n \right[$$

F)
$$\left] \frac{\pi n}{2} - \frac{\pi}{16}; \frac{\pi}{8} + \frac{\pi n}{2} \right[G) \right] \pi n + \frac{\pi}{6}; \pi n + \frac{\pi}{2} \left[H \right]$$
 outro

Resolução: $2\cos x(\cos x - \sqrt{8} tgx) < 5$

$$2cosx(cosx - \sqrt{8} \frac{senx}{cosx}) < 5 \rightarrow 2cosx\left(\frac{cos^2x - \sqrt{8} senx}{cosx}\right) < 5$$

$$2(\cos^2 x - \sqrt{8} \operatorname{sen} x < 5)$$
 CE: $\cos x \neq 0 \rightarrow x \neq \frac{\pi}{2} + \pi k$

Nota que: $cos^2x = 1 - sen^2x$

$$2(1 - sen^2x - \sqrt{8} senx < 5 \rightarrow 2 - 2sen^2x - 2\sqrt{8} senx - 3 < 0$$

Multiplicando todos os termos da inequação por (-1), vem:

$$2sen^2x + 2\sqrt{8} senx + 3 > 0$$
, fazendo $senx = t$, $t \in [-1; 1]$

$$2t^2 + 2\sqrt{8}t + 3 > 0$$
 (inequação do 2° grau, $a = 2$; $b = 2\sqrt{8}$; $c = 3$)

$$t_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(2\sqrt{8}) \pm \sqrt{\left(2\sqrt{8}\right)^2 - 4(2)(3)}}{2(2)} = \frac{-2\sqrt{8} \pm \sqrt{8}}{4} = \frac{-4\sqrt{2} \pm 2\sqrt{2}}{4}$$

$$t_1 = \frac{-4\sqrt{2} + 2\sqrt{2}}{4} \rightarrow t_1 = -\frac{\sqrt{2}}{2}; t_2 = \frac{-4\sqrt{2} - 2\sqrt{2}}{4} \rightarrow t_2 = -\frac{3\sqrt{2}}{2}$$

$$t \in \left] -\infty; -\frac{3\sqrt{2}}{2} \right[\cup \left] -\frac{\sqrt{2}}{2}; \infty \right[\quad ou \ t < -\frac{3\sqrt{2}}{2} \ e \ t > -\frac{\sqrt{2}}{2} \right]$$

$$\left[-\frac{3\sqrt{2}}{2} \ n\~{a}o \ pertence \ a \ [-1;1] \ e - \frac{\sqrt{2}}{2} \in \ [-1;1]\right]$$

Voltando na suposição:

$$senx = t \rightarrow senx = -\frac{\sqrt{2}}{2} \rightarrow$$

$$senx = sen\left(-\frac{\sqrt{2}}{2}\right) \rightarrow$$

$$senx = -sen\left(-\frac{\sqrt{2}}{2}\right)$$
, de acordo o ciclo

Trigonométrico, a solução da inequação é:

$$S = \left] -\frac{\pi}{4} + 2\pi n ; \frac{\pi}{2} + 2\pi n \right[\cup \left] \frac{\pi}{2} + 2\pi n ; \frac{5\pi}{4} + 2\pi n \right]$$

$$2\pi n \left[\text{ , Linea D} \right]$$

97°) (Exame 2011) Resolver a inequação:

$$\sqrt{3} (\cos x)^{-2} < 4 tgx$$

Resp: A)
$$\left] \frac{\pi}{6} + \pi n ; \frac{\pi}{3} + \pi n \left[B \right] \right] \frac{\pi}{6} + 2\pi n ; \frac{\pi}{3} + 2\pi n \left[C \right] \left[\frac{\pi}{6} + 2\pi n ; \frac{\pi}{2} + 2\pi n \right] \left[C \right]$$

D)
$$\frac{\pi}{3} + \pi n$$
; $\frac{\pi}{2} + \pi n$

E)
$$\left| \frac{\pi}{6} + \pi n \right| = \frac{\pi}{2} + \pi n$$

D)
$$\frac{1}{3} + \pi n$$
; $\frac{\pi}{2} + \pi n$ E $\frac{\pi}{6} + \pi n$; $\frac{\pi}{2} + \pi n$ E $\frac{\pi}{3} + 2\pi n$; $\frac{\pi}{2} + 2\pi n$

G)
$$\frac{\pi}{12} + \frac{\pi n}{2}$$
; $\frac{\pi}{6} + \frac{\pi n}{2}$ [H) outro

Resolução:

$$\sqrt{3} \frac{1}{\cos^2 x} < 4tgx$$

Nota que: $\frac{1}{\cos^2 x} = tg^2 x + 1$, Assim teremos:

$$\sqrt{3} (tg^2x + 1) < 4tgx \rightarrow \sqrt{3} tg^2x + \sqrt{3} < 4 tgx$$
, Agrupando;

$$\sqrt{3} tg^2x - 4tgx + \sqrt{3} < 0$$
; supondo que $tgx = t$

 $\sqrt{3} t^2 - 4t + \sqrt{3} < 0$; usando a fórmula resolvente, temos:

$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-4) \pm \sqrt{(4)^2 - 4(\sqrt{3})(\sqrt{3})}}{2(\sqrt{3})} = \frac{4 \pm 2}{2\sqrt{3}}$$

$$t_1 = \sqrt{3}$$
; $t_2 = \frac{\sqrt{3}}{3}$

t	-∞	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$		+ ∞
$\sqrt{3}t^2 - 4t + \sqrt{3} < 0$	+	О	- O	+	

$$t \in \left] \frac{\sqrt{3}}{3} ; \sqrt{3} \right[ou \ t > \frac{\sqrt{3}}{3} \ e \ t < \sqrt{3} \right]$$

Voltando na suposição:

$$\begin{cases} tgx > \frac{\sqrt{3}}{3} \to tgx > tg\left(\frac{\sqrt{3}}{3}\right) \to \alpha = \frac{\pi}{6} \\ tgx < \sqrt{3} \to tgx < tg\left(\sqrt{3}\right) \to \alpha = \frac{\pi}{3} \end{cases}$$

De acordo o trigométrico a solução da inequação é a área de intersecção sombreada no Iº quadrante ou seja:

$$S = x \in \left[\frac{\pi}{6} + \pi k \right], \frac{\pi}{3} + \pi k \left[\right], \text{ Línea A}$$

98°) (Exame 2011) Resolver a inequação:

$$2 + tg \ 2x + cotg \ 2x < 0$$

Resp: A)
$$\left| \frac{\pi}{2} (4n-1); 2\pi n \right[B) \right| \frac{\pi}{4} (2n-1); \frac{\pi n}{2} \left[C \right] \left| \frac{\pi}{8} (4n-1); \frac{\pi n}{2} \right[D) \left| \frac{\pi}{4} (2n-1); \frac{\pi}{6} (3n-1) \right| \left| C \right| \left| \frac{\pi}{6} (3n-1); \frac{\pi n}{2} \right|$$

E)
$$\frac{1}{3}(3n-1); \frac{\pi}{4}(4n-1)[\cup] \frac{\pi}{4}(2n-1); \pi n[$$

F)
$$\left] \frac{\pi}{3} (3n-1); \pi n \left[G \right] \right] \frac{\pi}{4} (2n-1); \frac{\pi}{8} (4n-1) \left[\bigcup \left[\frac{\pi}{8} (4n-1); \frac{\pi n}{2} \right] \right]$$

H) outro

Resolução:

$$2 + tg \ 2x + \frac{1}{tg \ 2x} < 0 \rightarrow \frac{tg^2 \ 2x + 2 \ tgx + 1}{tg \ 2x} < 0$$
, fazendo $tg2x = t$

$$\frac{t^2+2t+1}{t}<0$$
 $\rightarrow \frac{(t+1)^2}{t}<0$ (Inequação racional fraccionária)

$$t + 1 = 0 \rightarrow t = -1 e \ t \neq 0$$

t	-∞	- 1	0		+∞
t+1	+	О	_	+	
t	+		_	+	

$$t \in [-1:0] \ ou \ t > -1 \ e \ t < 0$$

Voltando na suposição:

$$\begin{cases} tgx \ 2x \ > -1 \ \rightarrow tgx > tg(-1) \rightarrow tgx > -tg(1) \rightarrow \alpha = -\frac{\pi}{4} \\ tgx \ < 0 \ \rightarrow tgx \ < tg(0) \rightarrow \alpha = 0^{\circ} \end{cases}$$

Obs.: tgx < 0 (os valores da tangente que são menores que zero encontram-se no II° quadrante e no IV $^{\circ}$ quando. Isto quer dizer que a intersecção da desigualdade tgx < 0 e tgx 2x > -1, pode ocorrer somente no II° e no IV° Q

Conforme o ciclo trigonométrico, teremos:

$$\begin{cases} -\frac{\pi}{2} + \pi k < 2x < -\frac{\pi}{4} + \pi k \\ -\frac{\pi}{4} + \pi k < 2x < 0 + \pi k \end{cases} \rightarrow \begin{cases} -\frac{\pi}{2} + \frac{\pi k}{2} < x < -\frac{\pi}{8} + \frac{\pi k}{2} \\ -\frac{\pi}{4} + \pi k < x < \frac{\pi k}{2} \end{cases}$$

$$\left\{ \begin{array}{l} \frac{\pi}{4}(2k-1) < x < \frac{\pi}{8}(4k-1) \\ \frac{\pi}{8}(4k-1) < x < \frac{\pi k}{2} \end{array} \right\}, \text{ A solução da inequação será:}$$

$$S = \left] \frac{\pi}{4} (2k-1); \frac{\pi}{8} (4k-1) \right[\cup \left] \frac{\pi}{8} (4k-1); \frac{\pi k}{2} \right[\text{ se } k = n \right]$$

$$S = \left] \frac{\pi}{4} (2n-1); \frac{\pi}{8} (4n-1) \right[\cup \left] \frac{\pi}{8} (4n-1); \frac{\pi n}{2} \right[, \text{Línea G})$$

99°) (Exame 2011) Resolver a inequação:

sen4x + cos4x cotg2x > 1

Resp: A)
$$\left| 2\pi n - \frac{\pi}{2} \right| ; 2\pi n \left[B \right] \left| \pi n \right| ; \pi n + \frac{\pi}{4} \left[C \right] \left| 2\pi n + \frac{\pi}{2} \right| ; 2\pi n \left[B \right] \right|$$

D)
$$\left| \frac{\pi n}{2} - \frac{\pi}{8}; \frac{\pi n}{2} \right| E$$
 $\left| \pi n - \frac{\pi}{4}; \pi n \right| F$ $\left| \frac{\pi n}{2}; \frac{\pi}{8} + n\pi \right|$

G)
$$\left| \pi n; \pi n + \frac{\pi}{2}; \right|$$
 H) outro

Resolução:

$$sen4x + cos4x \frac{cos2x}{sen2x} > 1 \rightarrow \frac{sen4x sen2x + cos4x cos2x}{sen2x} > 1 \quad (*)$$

Nota que: cos(4x - 2x) = cos2x = sen4x sen2x + cos4x cos2x

Voltando em (*), temos:

$$\frac{\cos 2x}{\sin 2x} > 1 \rightarrow \cot g \ 2x > 1 \rightarrow \frac{1}{tg^2x} > 1$$
, Multiplicar por (tg^2x)

$$tg\ 2x\ < 1\ (tgx\ < tg(1) \rightarrow \ \alpha = \frac{\pi}{4})$$

Conforme o ciclo trigonométrico:

$$0 + k\pi < 2x < \frac{\pi}{4} + k\pi \rightarrow \frac{k\pi}{2} < x < \frac{\pi}{8} + k\pi$$

A solução da inequação é:

$$S = \left] \frac{k\pi}{2}; \frac{\pi}{8} + k\pi \right[\text{ se } n = k, S = \left] \frac{n\pi}{2}; \frac{\pi}{8} + n\pi \right[, \text{ Línea F})$$

100°) (Exame 2011) Resolver a inequação:

$$(\cos x - \sin x)\sqrt{3x - x^2} \ge 0$$

Resp: A)
$$\left[0; \frac{\pi}{4}\right]$$
 B) $\left[0; \frac{\pi}{4}\right] \cup \{3\}$ C) $\left[0; \frac{\pi}{4}\right] \cup \{3\}$ D) $\left[\frac{\pi}{4}; \frac{\pi}{2}\right]$

$$E)\left[0; \frac{\pi}{4}\right] \cup \left[\frac{\pi}{3}; \frac{\pi}{2}\right] F) \left[0; \frac{\pi}{4}\right] \cup \left[\frac{\pi}{2}; 3\right] G)\left[0; 3\right] H) outro$$

Resolução:

$${\cos x - \sec x \ge 0 \atop 3x - x^2 > 0} ; \text{ sabe-se que } \cos\left(\frac{\pi}{2} - x\right) = \sec x$$

$$cosx - cos\left(\frac{\pi}{2} - x\right) \ge 0$$
; (*)

sabe-se que:
$$\cos \alpha - \cos \beta = -2 \operatorname{sen} \frac{1}{2} (\alpha - \beta) \operatorname{sen} \frac{1}{2} (\alpha + \beta)$$

$$cosx - cos\left(\frac{\pi}{2} - x\right) = -2 sen\frac{\pi}{4} sen\left(x - \frac{\pi}{4}\right)$$

Voltando em (*):

 $-2 \operatorname{sen} \frac{\pi}{4} \operatorname{sen} \left(x - \frac{\pi}{4} \right) \ge 0$ (Multiplicar todos os termos por -1), vem:

$$2 \frac{\sqrt{2}}{2} sen\left(x - \frac{\pi}{4}\right) \le 0 \to sen\left(x - \frac{\pi}{4}\right) \le 0$$

Conforme o ciclo

Trigonométrico, temos:

$$-\pi + 2k\pi \le x + \frac{\pi}{4} \le 0 + 2k\pi$$

$$-\frac{3\pi}{4} \le x \le \frac{\pi}{4} + 2k\pi$$

$$S_1 = x \in -\frac{3\pi}{4} \le x \le \frac{\pi}{4} + 2k\pi$$

 $3x - x^2 \ge 0$, multiplicar por -1 e factorizar x, temos:

$$x^2 - 3x \le 0 \to x(x - 3x) \le 0$$
 ($x_1 = 0$ e $x_2 = 3$)

t	-∞	0	3		+ ∞
$x^2 - 3x \le 0$	+	O	– 0	+	

$$S_2 = x \in [0; 3]$$

A solução da inequação é: $S = S_1 \cap S_2$

$$S = \left[0; \frac{\pi}{4}\right] \cup \{3\}$$
; Línea C

101°) (**Exame 2011**) Resolver a equação:
$$i z^2 - z + 2i = 0$$

$$Resp: A) z_1 = 2 ; z_2 = -i B) z_1 = 2i ; z_2 = -i C) z_1 = 2i ; z_2 = i$$

D)
$$z_1 = -2i$$
; $z_2 = -i$ E) $z_1 = 2$; $z_2 = i$ F) $z_1 = 2i$; $z_2 = 1$ G)) $z_1 = -2i$; $z_2 = i$ H) outro

Resolução:

$$i\,z^2\,-z\,+2i\,=0$$
 (equação complexa do 2º grau; $a=i$; $b=-1$; $c=2i$)

Aplicando a fórmula resolvente, temos:

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(i)(2i)}}{2i} = \frac{1 \pm \sqrt{1 - 8i^2}}{2i}$$
, sabe-se que: $i^2 = -1$

$$z = \frac{1 \pm \sqrt{1 - 8(-1)}}{2i} = \frac{1 \pm \sqrt{9}}{2i} = \frac{1 \pm 3}{2i}$$

$$z_1 = \frac{1+3}{2i} = \frac{4}{2i} = \frac{2}{i} = \left(\frac{2}{i}\right)\left(\frac{i}{i}\right) = \frac{2i}{i^2} = \frac{2i}{(-1)} \to z_1 = -2i$$

$$z_2 = \frac{1-3}{2i} = -\frac{2}{2i} = (-1)\frac{1}{i} = (\dot{k}^2)\left(\frac{1}{\dot{k}}\right) \rightarrow z_2 = i$$

A solução da equação é: $S = \{z_1 = -2i \mid e \mid z_2 = i\}$, Línea G)

102°) (Exame 2011) Calcular $\int_0^{\pi} (\cos x)^4 dx$

Resp: A)
$$\frac{5\pi}{9}$$
 B) $\frac{3\pi}{8}$ C) $\frac{2\pi}{7}$ D) $\frac{5\pi}{8}$ E) $\frac{4\pi}{9}$ F) $\frac{\pi}{2}$ G) $\frac{3\pi}{7}$ H) outro

Resolução:
$$I = \int_0^{\pi} (\cos x)^4 dx = \int_0^{\pi} (\cos^2 x) (\cos^2 x) dx$$

Sabe-se que:
$$\cos^2 x = \frac{1}{2} (1 + \cos 2x)$$

$$I = \int_0^{\pi} \left(\frac{1}{2} \left(1 + \cos 2x\right) \right) \left(\frac{1}{2} \left(1 + \cos 2x\right) dx = \frac{1}{4} \int_0^{\pi} \left(1 + 2 \cos 2x + \cos^2 2x\right) dx$$

$$I = \frac{1}{4} \left[\int_0^{\pi} dx + 2 \int_0^{\pi} \cos 2x \, dx + \int_0^{\pi} \cos^2 2x \, dx \right]$$

Sabe-se que:
$$cos^2 2x = \frac{1}{2} (1 + cos 4x)$$

$$I = \frac{1}{4} \left[\int_0^{\pi} dx + 2 \int_0^{\pi} \cos 2x \, dx + \int_0^{\pi} \frac{1}{2} (1 + \cos 4x) \, dx \right]$$

$$I = \frac{1}{4} \left[\int_0^{\pi} dx + 2 \int_0^{\pi} \cos 2x \, dx + \frac{1}{2} \left(\int_0^{\pi} dx + \int_0^{\pi} \cos 4x \, dx \right) \right]$$

Integrando todas as expressões temos:

$$I = \frac{1}{4} \left[(x)_0^{\pi} + 2 \left(\frac{1}{2} \right) (sen2x)_0^{\pi} + \frac{1}{2} \left\{ (x)_0^{\pi} + \frac{1}{4} (cos4x)_0^{\pi} \right\} \right]$$

$$I = \frac{1}{4} \left[(\pi - 0) + (sen2\pi - sen0) + \frac{1}{2} \left\{ (\pi - 0) + \frac{1}{4} (cos4\pi - cos0) \right\} \right]$$

$$I = \frac{1}{4} \left(\pi + \frac{\pi}{2} \right) = \frac{3\pi}{8} \rightarrow I = \frac{3\pi}{8}$$
, Línea B)

103°) (Exame 2011) Resolva a inequação logarítmica:

$$\log_{\frac{1}{8}}(3-x) < \log_{1/8} 5$$

Resp: A) $x \in [0; 2[B])$ $x \in [-\infty, -2[C])$ $x \in [2; 0[D])$ não tem soluções

$$E)$$
]-2; + ∞ [F) outro

Resolução: Condição de existência: $3 - x > 0 \rightarrow x < 3 \rightarrow S_1 = x \in]-\infty; 3[$

 $\log_{\frac{1}{2}}(3-x) < \log_{\frac{1}{2}}5$, Simplificando as bases temos:

$$3 - x < 5 \rightarrow x > -5 + 3 \rightarrow x > -2 \rightarrow S_2 = x \in]-2; +\infty[$$

A solução da inequação logarítmica é: $S = S_1 \cap S_2$

104°) (Exame 2011) Resolva a equação algébrica:

$$\sqrt{x-3} + \sqrt{x+5} = 4$$

Resp: A)
$$x = 6 \cup x = 4$$
 B) não tem soluções C) $x = 2$ D) $x = 4$

$$E) x = 6 \cup x = 14$$
 $F) outro$

Resolução: Elevando ambos os membros da igualdade ao quadrado: $(a \pm b)^2 = a^2 \pm a$ $2ab + b^2$

$$(\sqrt{x-3} + \sqrt{x+5})^2 = (4)^2 \to x - 3 + 2\sqrt{(x-3)(x+5)} + x + 5 = 16 \to 3$$

$$2\sqrt{x^2 + 2x - 15} + 2x + 2 = 16$$
, divindindo todos os termos da equação por (2)

$$\sqrt{x^2 + 2x - 15} + x + 1 = 8 \rightarrow \sqrt{x^2 + 2x - 15} = 7 - x$$
, elevando mais ao quadrado:

$$(\sqrt{x^2 + 2x - 15})^2 = (7 - x)^2 \rightarrow x^2 + 2x - 15 = 49 - 14x + x^2$$

$$2x + 14x = 49 + 15 \rightarrow 16x = 64 \rightarrow x = \frac{64}{16} \rightarrow x = 4$$

Verificação:
$$x = 4$$
, $\sqrt{4-3} + \sqrt{4+5} = 4$, $\sqrt{1} + \sqrt{9} = 4$, $1+3=4$, $4=4$

A solução da equação é: $S = \{x = 4\}$, Línea D

105°) (**Exame 2011**) Os três pontos A(2; 1); B(3; -1); C(-4; 0) são vértices do trapézio isóceles ABCD. Achar as coordenadas do ponto D se AB | CD

Resp:
$$A$$
)(1,5;5,5) B) (-1,5; -5,5) C) (-1,2; -5,4) D) (-1,4; -5,2)

$$(E)(1,5;-5,5) F(-1,1;-5,6) G(-1,8;-5,2) H) outro$$

Resolução.

É fácil notar a partir da figura que:

 $d_{AC} = d_{BD}$ e os declives das rectas

Que passa pontos AB e CD

Serão iguais ou seja: $m_{AB} = m_{CD}$

$$d_{AC} = \sqrt{(x_A - x_C)^2 + (y_C - y_A)^2} e$$

$$d_{BD} = \sqrt{(x_D - x_B)^2 + (y_D - y_B)^2}$$

Se $d_{AC} = d_{BD}$, teremos:

 $\sqrt{(x_A - x_C)^2 + (y_C - y_A)^2} = \sqrt{(x_D - x_B)^2 + (y_D - y_B)^2}$, Elevando ao quadrado temos:

$$(-4-2)^2 + (0-1)^2 = (x-3)^2 + (y+1)^2$$

$$37 = x^2 - 6x + 9 + y^2 + 2y + 1 \rightarrow x^2 + y^2 - 6x + 2y - 27 = 0$$
 (I)

A equação da recta que passa pelos Pontos: A(2; 1); B(3; -1) é:

$$\frac{x - x_1}{x_1 - x_2} = \frac{y - y_1}{y_1 - y_2} \to \frac{x - 2}{2 - 3} = \frac{y - 1}{1 - (-1)} \to 2x - 4 = -y + 3 \to 2x + y - 5 \ (r_1)$$

O declive da recta r_1 é: $m_{AB} = -\frac{2}{1} \rightarrow m_{AB} = -2$

A equação da recta que passa pelos pontos: C(-4; 0)e D é:

$$y - y_1 = m_{BC}(x - x_1) \rightarrow y - 0 = m_{BC}(x + 4)$$

$$y = m_{BC}(x+4) (r_2)$$

Como $r_1 \parallel r_2 \rightarrow m_{BC} = -2$

 $y = -2(x + 4) \rightarrow y = -2x - 8$ (II), substituindo (II) em (I), temos:

$$x^2 + (-2x - 8)^2 - 6x + 2(-2x - 8) - 27 = 0$$

$$x^{2} + 4x^{2} + 32x + 64 - 6x - 4x - 16 - 27 = 0 \rightarrow 5x^{2} + 22x + 21 = 0$$

Pelo método de Vieth: $5x^2 + 22x + 21 = (5x + 7)(x + 3) = 0$

$$(5x + 7)(x + 3) = 0 \rightarrow 5x + 7 = 0 \ e \ x + 3 = 0$$

$$5x + 7 = 0 \rightarrow x = -\frac{7}{5} \rightarrow x_1 = -1.4; x + 3 = 0 \rightarrow x_2 = -3$$

Para
$$x_1 = -1.4 \rightarrow y = -2(-1.4) - 8 \rightarrow y_1 = -5.2$$
 $P_1(-1.4; -5.2)$

Para
$$x_2 = -3 \rightarrow y = -2(-3) - 8 \rightarrow y_2 = -2$$
 $P_2(-3; -2)$

As coordenadas do ponto D são: (-1,4 ; -5,2) , Línea D

106°) (**Exame 2011**) Calcular:
$$\int_0^1 \frac{x dx}{\sqrt{9+16x}}$$

Resp:
$$A)_{\frac{11}{96}}^{\frac{11}{96}} B)_{\frac{96}{92}}^{\frac{13}{95}} C)_{\frac{92}{92}}^{\frac{15}{92}} E)_{\frac{95}{95}}^{\frac{11}{95}} G)_{\frac{92}{92}}^{\frac{13}{92}} H) outro$$

Resolução:
$$I = \int_0^1 \frac{x dx}{\sqrt{9+16x}}$$

Fazendo:

$$\sqrt{9+16x} = t \rightarrow 9+16x = t^2 \rightarrow x = \frac{t^2-9}{16}$$
 (*)

Derivando ambos membros da igualdade (*), temos:

$$(x)'dx = \left(\frac{t^2-9}{16}\right)'dt \to dx = \frac{2tdt}{16} \to dx = \frac{tdt}{8}$$
,

Mudando os limites de integração temos em função da nova variável : $\sqrt{9+16x}=t$

$$se \ x = 1 \rightarrow t = \sqrt{9 + 16(1)} \rightarrow t = 5$$

$$se \ x = 0 \ \rightarrow t = \sqrt{9 + 16(0)} \ \rightarrow t = 3$$

Novos limites de integração: $3 \le t \le 5$

Substituindo devidamente na integral, temos:

$$I = \int_3^5 \left(\frac{t^2 - 9}{16}\right) \frac{t dt}{8t} = \left(\frac{1}{16} \cdot \frac{1}{8}\right) \int_3^5 (t^2 - 9) dt = \frac{1}{128} \left[\int_3^5 t^2 dt - 9\int_3^5 dt\right]$$

Integrando pela fórmula da potência: $\int x^n dx = \frac{x^{n+1}}{n+1}$

$$I = \frac{1}{128} \left[\frac{1}{3} (t^3) \frac{5}{3} - 9 (t) \frac{5}{3} \right] = \frac{1}{128} \left[\frac{1}{3} (\{5^3\} - \{3^3\}) - 9(5 - 3) \right]$$

$$I = \frac{1}{128} \left[\frac{1}{3} (125 - 27) - 18 \right] = \frac{1}{128} \left(\frac{44}{3} \right) = \frac{44}{384} : \left(\frac{4}{4} \right) = \frac{11}{96}$$

$$I = \frac{11}{96}$$
, Línea A

107°) (**Exame 2011**) Calcular:
$$\int_0^1 \frac{x dx}{(x+1)^3}$$

Resp:
$$A)\frac{1}{9} B)\frac{3}{8} C)\frac{5}{8} D)\frac{1}{8} E)\frac{2}{9} F)\frac{4}{9} G)\frac{1}{2} H$$
) outro

Resolução:
$$I = \int_0^1 \frac{x dx}{(x+1)^3}$$

Fazendo: $x + 1 = t \rightarrow x = t - 1$, derivando ambos os membros:

$$(x)'dx = (t-1)'dt \rightarrow dx = dt$$

Trocando os limites de integração em função da nova variável, temos:

$$x + 1 = t$$

$$se \ x = 1 \rightarrow t = 1 + 1 \rightarrow t = 2$$

$$se \ x = 0 \ \to t = 0 + 1 \ \to t = 1$$

Novos limites de integração: $1 \le t \le 2$

Substituindo devidamente na integral, temos:

$$\begin{split} I &= \int_{1}^{2} \frac{(t-1)dt}{t^{3}} = \int_{1}^{2} \frac{tdt}{t^{3}} - \int_{1}^{2} \frac{dt}{t^{3}} \to I = \int_{1}^{2} \frac{dt}{t^{2}} - \int_{1}^{2} t^{-3} \, dt \\ I &= \int_{1}^{2} t^{-2} dt - \int_{1}^{2} t^{-3} \, dt \text{ , integrnado com a fórmula: } \int x^{n} dx = \frac{x^{n+1}}{n+1} \\ I &= -\left(t^{-1}\right)_{1}^{2} - \left(-\frac{1}{2}\right) \left(t^{-2}\right)_{1}^{2} = -\left(\frac{1}{t}\right)_{1}^{2} + \frac{1}{2} \left(\frac{1}{t^{2}}\right)_{1}^{0} \\ I &= -\left[\left(\frac{1}{2} - \frac{1}{1}\right)\right] + \frac{1}{2} \left[\left\{\left(\frac{1}{(2^{2})}\right) - \left(\frac{1}{(1^{2})}\right)\right\}\right] = -\left(\frac{1}{2} - 1\right) + \frac{1}{2} \left(\frac{1}{4} - 1\right) \\ I &= \frac{1}{2} - \frac{3}{8} = \frac{1}{8} \to I = \frac{1}{8} \text{ , Línea D)} \end{split}$$

Exames de Acesso 2010

108°) (Exame 2010) Simplifica a expressão:

$$\left(\frac{7}{b^{1/6}+7} + \frac{b^{1/3}+34}{b^{1/3}-49} - \frac{7}{b^{1/6}+7}\right) \left(\frac{b^{1/3}-14b^{1/6}+49}{\left(b^{1/6}+8\right)\left(b^{1/6}-8\right)}\right)$$

Resp: A)
$$b^{1/6} - 7$$
 B) $\frac{b^{1/6+7}}{b^{1/6}-7}$ C) $\frac{b^{1/6-7}}{b^{1/6+7}}$ D) 0 E)1 F) outro

Resolução:

Transformando todas as expressões com expoentes fraccionários em radicais, vem:

$$\left(\frac{7}{\sqrt[6]{b}+7} + \frac{\sqrt[3]{b}+34}{\sqrt[3]{b}-49} - \frac{7}{\sqrt[6]{b}}\right) \left(\frac{\sqrt[3]{b}-14\sqrt[6]{b}+49}{\left(\sqrt[6]{b}+8\right)\left(\sqrt[6]{b}-8\right)}\right),$$

achando um mínimo múltiplo comum para todos os radicais (neste 6 é o denominador comum para todos os radicais), vem:

$$\left(\frac{7}{\sqrt[6]{b}+7} + \frac{\sqrt[6]{b^2}+34}{\sqrt[6]{b^2}-49} - \frac{7}{\sqrt[6]{b}+7}\right) \left(\frac{\sqrt[6]{b^2}-14(\sqrt[6]{b})+49}{\sqrt[6]{b}+8}\right), \text{ Fazendo: } \sqrt[6]{b} = t$$

$$\left(\frac{7}{t+7} + \frac{t^2+34}{t^2-49} - \frac{7}{t-7}\right) \left(\frac{t^2-14t+49}{(t+8)(t-8)}\right) = \left[\frac{7(t-7)+t^2+34-7(t+7)}{t^2-49}\right] \left[\frac{(t-7)^2}{(t+8)(t-8)}\right]$$

$$= \left[\frac{7t-49+t^2+34-7t-49}{t^2-49}\right] \left[\frac{(t-7)^2}{(t+8)(t-8)}\right] = \left[\frac{t^2-64}{t^2-49}\right] \left[\frac{(t-7)^2}{(t+8)(t-8)}\right] = \left[\frac{t-7}{t+7}\right], \text{ Voltando, temos: }$$

$$= \left(\frac{b^{1/6}-7}{b^{1/6}+7}\right) \text{ .Resposta: } \left(\frac{b^{1/6}-7}{b^{1/6}+7}\right), \text{ Línea C)}$$

109°) (Exame 2010) Simplifica a expressão:

$$\left(\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2\right) \left[\frac{\sqrt[3]{m^4 - n^3 + n^2}\sqrt[3]{m} - mn}{mn^{-1} + n - n^4 m^{-1} - n^2} \right]$$

Resp:
$$A$$
) $\frac{m^2}{n}$ B) mn C) $2mn^2$ D) $\frac{m}{n^2}$ E) $\frac{1}{2}$ m^2n
 F) $-2mn$ G) $\frac{n}{m}$ H) outro
Resolução: $(\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{(\sqrt[3]{m^4} + n^2\sqrt[3]{m}) - (n^3 + mn)}{\frac{m+n^2}{n} - (\frac{n^4 + mn^2}{m})} \right]$
 $= (\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{\sqrt[3]{m}(m+n^2) - n(n^2 + nm)}{m^3 + mn^2 - n^5 - mn^3} \right] (mn)$
 $= (\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{(m+n^2)(\sqrt[3]{m} - n)}{m(m+n^2) - n^3(n^2 + m)} \right] (mn)$
 $(\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{(m+n^2)(\sqrt[3]{m} - n)}{(m+n^2)(m-n^3)} \right] (mn) = (\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{(\sqrt[3]{m} - n)}{(\sqrt[3]{m} - n)} \right] (mn)$
 $= (\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{(\sqrt[3]{m} - n)}{(\sqrt[3]{m} - n)} \right] (mn)$
 $= (\sqrt[3]{m^2} + n\sqrt[3]{m} + n^2) \left[\frac{(\sqrt[3]{m} - n)}{(\sqrt[3]{m} - n)} \right] (mn)$ Resposta: mn , Línea B

110°) (Exame 2010) Ache a solução da equação: 3^x . $8^{x/x+2} = 6$

Resp: A)
$$x_1 = 1$$
; $x_2 = 2\log_3 2$ B) $x_1 = 1$ C) $x_1 = 1$; $x_2 = 2\log_3 6$; D) $x_1 = -2\log_3 2$ E) $x_1 = 1$; $x_2 = -2\log_3 2$ F) $x_1 = 0$; $x_2 = 2\log_3 6$ G) $x_1 = 1$; $x_2 = -2\log_3 6$ H) outro

Resolução:
$$3^x \cdot (2^3)^{x/x+2} = 3.2 \rightarrow 3^x \cdot 2^{3x/x+2} = 3.2 \rightarrow \frac{3^x}{3} = \frac{2}{2^{3x/x+2}}$$

 $3^{x-1} = 2^{1-3x/x+2} \rightarrow 3^{x-1} = 2^{2-2x/x+2}$

Aplicando logaritmo natural em ambos membros da igualdade (ln), fica:

$$\ln 3^{x-1} = \ln 2^{2-2x}/x + 2 \to (x-1) \ln 3 = \frac{(2-2x)}{x+2} \ln 2$$

$$(x-1) \ln 3 = \frac{-2(x-1)\ln 2}{x+2} \to (x-1) \ln 3 + \frac{2(x-1)}{x+2} \ln 2 = 0$$

$$(x-1) \left[\ln 3 + \frac{2\ln 2}{x+2}\right] = 0 \to x - 1 = 0 \ e \left[\ln 3 + \frac{2\ln 2}{x+2}\right] = 0$$

$$x - 1 = 0 \to x_1 = 1$$

$$\left[\ln 3 + \frac{2\ln 2}{x+2}\right] = 0 \to x \ln 3 + 2\ln 3 + 2\ln 2 = 0 \to x \ln 3 + \ln 3^2 + \ln 2^2 = 0 \to x \ln 3 + \ln 3$$

 $x_2 = -2(\log_3 3 + \log_3 2) = -2\log_3(3.2)$

$$x_2 = -2 \log_3 6$$

$$S: (1; -2 \log_3 6)$$
, Línea G

111º) (Exame 2010) Resolva a equação:

$$\log_{0.5x} x^2 - 14 \log_{16x} x^3 + 40 \log_{4x} \sqrt{x} = 0$$

Resp: A)
$$x_1 = 1$$
; $x_2 = 4$; $x_{3,4} = \pm \frac{\sqrt{2}}{2}$ B) $x_1 = 1$; $x_2 = 4$

C)
$$x_1 = 4$$
; $x_2 = \frac{\sqrt{2}}{2}$ D) $x_1 = 1$; $x_{2,3} = \pm \frac{\sqrt{2}}{2}$ E) $x_1 = 1$; $x_2 = 4$; $x_{3,4} = 1$

$$\frac{\sqrt{2}}{2}$$
 F) $x_1 = 4$; $x_2 = \sqrt{2}$; G) $x_1 = 1$; $x_2 = \sqrt{2}$; $x_3 = \frac{\sqrt{2}}{2}$ H) outro

Resolução: condição de existência: $(x > 0 e 0 < x \ne 1)$

$$2\log_{\frac{x}{2}}(x) - 14.3 \log_{16x} x + 40\log_{4x} x^{\frac{1}{2}} = 0$$

$$2\log_{\frac{x}{2}}(x) - 42\log_{16x}x + \frac{40}{2}\log_{4x}x = 0$$

$$2\log_{\frac{x}{2}}(x) - 42\log_{16x}x + 20\log_{4x}x = 0$$

Fazendo a mudança de base em todos os termos da equação, vem:

$$\frac{\frac{2}{\log_{x_{\overline{x}}}^{x}} - \frac{42}{\log_{x} 16x} + \frac{20}{\log_{x} 4x} = 0 \to$$

$$\frac{2}{(\log_x x - \log_x 2)} - \frac{42}{(\log_x 16 + \log_x x)} + \frac{20}{\log_x 4 + \log_x x} = 0/:2 \to$$

$$\frac{1}{(1 - \log_x 2)} - \frac{21}{(\log_x 2^4 + 1)} + \frac{10}{(\log_x 2^2 + 1)} = 0 \rightarrow$$

 $\frac{1}{(1-\log_x 2)} - \frac{21}{(4\log_x 2+1)} + \frac{10}{(2\log_x 2+1)} = 0$ Fazendo mudança de base outra vez, vem:

$$\frac{1}{\left(1 - \frac{1}{\log_2 x}\right)} - \frac{21}{\left(\frac{4}{\log_2 x} + 1\right)} + \frac{10}{\left(\frac{2}{\log_2 x} + 1\right)} = 0 \rightarrow \frac{\log_2 x}{(\log_2 x - 1)} - \frac{21 \log_2 x}{(4 + \log_2 x)} + \frac{10 \log_2 x}{(2 + \log_2 x)} = 0,$$

 $fazendo: \log_2 x = t, vem:$

$$\frac{t}{(t-1)} - \frac{21t}{(4+t)} + \frac{10t}{(2+t)} = 0 \to t \left(\frac{1}{t-1} - \frac{21}{t+4} + \frac{10}{2+t} \right) = 0 \to$$

Aplicando a lei do anulamento do produto temos: t = 0 e

$$\left(\frac{1}{t-1} - \frac{21}{t+4} + \frac{10}{2+t}\right) = 0 \to \left(\frac{t+4-21t+21}{(t-1)(t+4)} + \frac{10}{2+t}\right) = 0 \to 0$$

$$\left(\frac{25-20t}{t^2+3t-4} + \frac{10}{2+t}\right) = 0 \to \left[\frac{(25-20t)(2+t)+10t^2+30t-40}{(t^2-3t-4)(2+t)}\right] \to$$

$$\left[\frac{50+25t-40t-20t^2+10t^2+30t-40}{(t^2-3t-4)(2+t)}\right]=0\to \left[\frac{-10t^2+15t+10}{(t^2-3t-4)(2+t)}\right]=0/\times(-1)\to$$

$$\left[\frac{2t^2 - 3t - 2}{(t^2 - 3t - 4)(2 + t)}\right] = 0 \to 2t^2 - 3t - 2 = 0 \ e \ (t^2 - 3t - 4)(2 + t) \neq 0$$

$$\begin{cases} (t^2 - 3t - 4)(2 + t) \neq 0 \to \\ (t + 4)(t - 1)(2 + t) \neq 0 \to t \neq -4; t \neq 1 \ e \ t \neq -2 \end{cases}$$

$$2t^2 - 3t - 2 = 0 \rightarrow \Delta = (-3)^2 - 4(2) \rightarrow \Delta = 25$$
,

$$t_{1,2} = \frac{3 \pm \sqrt{25}}{4} \rightarrow t_1 = -\frac{1}{2} e \ t_2 = 2$$
, os valores de t sao: $-\frac{1}{2}$, 0 e 2

$$\log_2 x = -\frac{1}{2} \to x = 2^{-\frac{1}{2}} \to x = \frac{1}{\sqrt{2}} \to x_1 = \frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{2} \to x_1 = \frac{\sqrt{2}}{2}$$

$$\log_2 x = 0 \to x = 2^0 \to x_2 = 1$$

$$\log_2 x = 2 \to x = 2^2 \to x_3 = 4$$
 $S: \left\{ \frac{\sqrt{2}}{2} ; 4 \right\}$, Línea C)

112°) (Exame 2010) Escrever uma equação reduzida da recta perpendicular à recta da equação y = -3x + 7 passando pelo ponto (0; 2)

Resp: A)
$$y = \frac{1}{3}x + 2B$$
) $y = -\frac{1}{3}x + 2C$) $y = 3x + 2D$) $y = 3x - 2$

E)
$$y = \frac{1}{3}x - \frac{1}{2}$$
 F) $y = x + 2$ G) $y = -\frac{1}{2}x - \frac{1}{3}$ H) outro

Resolução: A equação de uma recta que passa por um ponto é dada pela expressão:

$$y - y_0 = m(x - x_0)$$
, em que $x_0 = 0$ e $y_0 = 2$; $y - 2 = m(x - 0) \rightarrow y - 2 = mx$

Onde m é o declive ou coeficiente angular

Para que as rectas sejam perpendiculares é necessário que: m_1 . $m_2 = -1$, em que m_1 é o declive da recta procurada e m_2 é declive da recta dada.

$$m_2 = -\frac{a}{b}$$
, pela equação : $y = -3x + 7 \rightarrow y + 3x - 7 = 0$,

Na recta: a = 3, b = 1

$$m_2 = -\frac{3}{1} \rightarrow m_2 = -3$$
; $m_1 \cdot m_2 = -1 \rightarrow m_1(-3) = -1 \rightarrow m_1 = \frac{1}{3}$

$$y-2=mx \rightarrow y-2=\frac{1}{3}x \rightarrow y=\frac{1}{3}x+2$$
 é a equação procurada , Línea A)

113°)(Exame 2010) Determinar uma equação de uma circunferência de centro (3; -2) tangente a recta $y = -\frac{1}{2}x + 3$. R

Resp:
$$A(x + 3)^2 + (y - 2)^2 = 9$$
 B) $(x - 3)^2 + (y + 2)^2 = \frac{49}{25}$

C)
$$(x+3)^2 - (y-2)^2 = \frac{36}{25}$$
 D) $(x+3)^2 + (y-2)^2 = 9$

E)
$$(x-3)^2 - (y+2)^2 = \frac{49}{25}$$
 F) $(y+2)^2 - (x-3)^2 = \frac{36}{5}$

G)
$$(x-3)^2 + (y+2)^2 = \frac{49}{5}$$
 H) outro

Resolução:

C: (3; -2) A equação da circunferência é expressa pela equação:

$$(x-x_0)^2 + (y-y_0)^2 = R^2$$
 em que o centro é $C: (x_0; y_0)$ e R é o raio.

Como C:
$$(3; -2) \rightarrow x_0 = 3 \ e \ y_0 = -2 \ ; \ teremos$$
:

$$(x-3)^2 + (y+2)^2 = R^2$$

Vamos determinar o raio da circunferência:

Como a circunferência é tangente a recta, a distância do centro à recta corresponde ao raio da circunferência. Vamos determinar a distância de um ponto (neste caso o ponto é o centro C: (3; -2)) a uma recta:

$$R = d_{P,r} = \frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}$$

$$y = -\frac{1}{2}x + 3 \rightarrow 2y = -x + 6 \rightarrow x + 2y - 6 = 0$$
 ($a = 1$, $b = 2$ e $c = -6$), então:

$$d_{P,r}=\frac{1(3)+2(-2)-6}{\sqrt{1^2+2^2}}=-\frac{7}{\sqrt{5}}\rightarrow R=-\frac{7}{\sqrt{5}}$$
, a equação da circunferência será:

$$(x-3)^2 + (y+2)^2 = (-\frac{7}{\sqrt{5}})^{-2}$$

$$(x-3)^2 + (y+2)^2 = \frac{49}{5}$$
 é a equação procurada, Línea G)

114°) (*Exame* 2010) Resolva a inequação:

$$(senx - cosx)\sqrt{5x - 4 - x^2} \ge 0$$

Resp: A)
$$\left[1; \frac{5\pi}{4}\right] \cup \{4\} \ B$$
) $\left[1; \frac{5\pi}{4}\right] \cup \{4\} \ C$) $\left[1; 4\right] \ D$) $\left[\frac{\pi}{4}; 1\right]$

E)
$$\left[\frac{\pi}{4}; \frac{3\pi}{2}\right]$$
 F) $\left[\frac{\pi}{4}; \frac{3\pi}{4}\right]$ \cup [3; 4] G) $\left[\frac{5\pi}{4}; 4\right]$ H)outro

Resolução:

$$\begin{cases} senx - cosx \ge 0 \\ 5x - 4 - x^2 > 0 \end{cases}$$
; sabe-se que $senx\left(\frac{\pi}{2} - x\right) = cosx$

$$senx - senx\left(\frac{\pi}{2} - x\right) \ge 0$$
; (*)

sabe-se que:
$$\sin \alpha - \sin \beta = 2 \sin \frac{1}{2} (\alpha - \beta) \cos \frac{1}{2} (\alpha + \beta)$$

$$senx - sen\left(\frac{\pi}{2} - x\right) = -2cos\left(\frac{\pi}{4}\right)sen\left(x - \frac{\pi}{4}\right)$$

Voltando em (*):

 $-2\cos\left(\frac{\pi}{4}\right)$ sen $\left(x-\frac{\pi}{4}\right) \ge 0$ (Multiplicar todos os termos por -1), vem:

$$2\frac{\sqrt{2}}{2}\operatorname{sen}\left(x-\frac{\pi}{4}\right) \le 0 \to \operatorname{sen}\left(x-\frac{\pi}{4}\right) \le 0$$

Conforme o ciclo

Trigonométrico, temos:

$$\pi + 2k\pi \le x + \frac{\pi}{4} \le 0 + 2k\pi$$

$$\frac{\pi}{4} \le x \le \frac{5\pi}{4} + 2k\pi$$

$$S_1 = x \in \frac{\pi}{4} \le x \le \frac{5\pi}{4} + 2k\pi$$

 $5x - 4 - x^2 \ge 0$, multiplicar por -1 e factorizar x, temos:

$$x^2 - 5x + 4 \le 0 \to (x_1 = 1 e x_2 = 4)$$

x	-∞	1	4		+ ∞
$x^2 - 5x + 4 \le 0$	+	O	- O	+	

$$S_2 = x \in [1; 4]$$

A solução da inequação é: $S = S_1 \cap S_2$

$$S = \left[1; \frac{5\pi}{4}\right] \cup \{4\}$$
; Línea A)

115º) (Exame 2010) Resolva a equação:

$$\frac{3}{2}\log_{\frac{1}{4}}(x+2)^2 - 3 = \log_{\frac{1}{4}}(4-x)^3 + \log_{\frac{1}{4}}(x+6)^3$$

Resp: A)
$$x_1 = 2$$
; $x_2 = 1 - \sqrt{33}$; $x_3 = -8$ B) $x_1 = 2$; $x_2 = 1 \pm \sqrt{33}$

C)
$$x_1 = 2$$
; $x_2 = 1 - \sqrt{33} D$) $x_1 = 2$; $x_2 = -8$

E)
$$x_1 = 2$$
; $x_2 = 1 + \sqrt{33}$; $x_3 = -8$ F) $x_{1,2} = 1 \pm \sqrt{33}$; $x_2 = -8$

G)
$$x_{1,2} = 1 \pm \sqrt{33}$$
 H) outro

Resolução:

$$\frac{3}{2}\log_{\frac{1}{4}}(x+2)^2 - 3 = \log_{\frac{1}{4}}(4-x)^3 + \log_{\frac{1}{4}}(x+6)^3$$

Condição de existência:

$$(4-x>0 \to x<4 \ e \ x+6>0 \to x>-6, (x+2)^2 \to x \in R)$$

$$2 \times \left(\frac{3}{2}\right) \log_{\frac{1}{4}} |x+2| - 3 = 3 \log_{\frac{1}{4}} (4-x) + 3 \log_{\frac{1}{4}} (x+6)$$
, dividir todos os termos por (3):

$$\log_{\frac{1}{4}}|x+2|-1 = \log_{\frac{1}{4}}(4-x) + \log_{\frac{1}{4}}(x+6) \to$$

$$\log_{\frac{1}{4}}|x+2| - \log_{\frac{1}{4}}\left(\frac{1}{4}\right) = \log_{1/4}(4-x)(x+6)$$

$$\log_{\frac{1}{4}} \frac{|x+2|}{\frac{1}{4}} = \log_{\frac{1}{4}} (4x + 24 - x^2 - 6x) \to \log_{\frac{1}{4}} 4(x+2) = \log_{\frac{1}{4}} (-x^2 - 2x + 24)$$

$$4|x+2| = (-x^2 - 2x + 24) \rightarrow 4|x+2| = -x^2 - 2x + 24$$

$$|x + 2| =$$
$$\begin{cases} x + 2, se \ x \ge -2 \\ -x - 2, se \ x < -2 \end{cases}$$

Para $x \ge -2$

$$x^2 + 6x - 24 + 8 = 0 \rightarrow x^2 + 6x - 16 = 0$$
 (equação do 2° , $a = 1$; $b = 6$; $c = -16$)

$$\chi = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \chi = \frac{-6 \pm \sqrt{(6)^2 - 4(1)(-16)}}{2(1)} = \frac{-6 \pm 10}{2}$$

$$x_1 = \frac{-6+10}{2} \rightarrow x_1 = 2$$
; $x_2 = \frac{-6-10}{2} \rightarrow x_2 = -8$

Como $x_1 = 2$ é a única solução que satisfaz a condição de existência,

Para x < -2

$$x^2 - 2x - 32 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-32)}}{2(1)} = \frac{2 \pm 2\sqrt{33}}{2}$$

$$x_1 = \frac{2+2\sqrt{33}}{2} \rightarrow x_1 = 1 + \sqrt{33}; \quad x_2 = \frac{2-2\sqrt{33}}{2} \rightarrow x_2 = 1 - \sqrt{33}$$

 $x_2 = 1 - \sqrt{33}$ é a única solução que satisfaz a condição de existência

A solução da equação é: $x_1 = 2$; $x_2 = 1 - \sqrt{33}$, Línea C)

116°) (Exame 2010) Resolva a inequação:

sen2x + 1 > 2cosx + senx

Resp: A)
$$\left| \frac{\pi}{3} + \pi k \right| = \frac{\pi}{2} + \pi k \left[B \right] \left| \frac{\pi}{3} + 2\pi k \right| = \frac{5\pi}{3} + 2\pi k \left[B \right]$$

C)
$$\left] -\frac{\pi}{3} + 2\pi k; \ \frac{\pi}{2} + 2\pi k \right[\cup \left[\frac{\pi}{2} + 2\pi k; \ \frac{2\pi}{3} + \pi k \right] D) \right] -\frac{\pi}{3} + 2\pi k; \ \frac{\pi}{3} + 2\pi k \right[$$

E)
$$\left] \frac{\pi}{3} + \pi k; \ \frac{\pi}{2} + \pi k \right[\cup \left[\frac{\pi}{2} + \pi k; \ \frac{2\pi}{3} + \pi k \right[F) \right] - \frac{\pi}{3} + \pi k; \ \frac{\pi}{3} + \pi k \right[$$

G)
$$\left| \frac{\pi}{3} + 2\pi k \right| = \frac{\pi}{2} + 2\pi k \left[\bigcup \right] \frac{\pi}{2} + 2\pi k \left[H \right] outro$$

Resolução:

 $sen2x + 1 > 2cosx + senx \rightarrow 2senx cosx + 1 > 2cosx + senx$

$$2senx cosx + 1 - 2cosx - senx > 0 \rightarrow (2senx cosx - 2cosx) + (1 - senx) > 0$$

$$2\cos x (sen x - 1) - (sen x - 1) > 0 \rightarrow (sen x - 1)(2\cos x - 1) > 0$$

A inequação é válida nas seguintes condições:

$$I) \begin{cases} senx - 1 > 0 \\ 2cosx - 1 > 0 \end{cases}$$

$$\begin{cases} senx > 0 \rightarrow S = \{\emptyset\} \\ cosx > \frac{1}{2} \end{cases}$$

$$\begin{cases} senx < 1 \rightarrow x \in R - \left\{\frac{\pi}{2} + \pi k\right\} \\ cosx < \frac{1}{2} \rightarrow cosx < \cos\left(\frac{1}{2}\right) \rightarrow \alpha = \frac{\pi}{3} \end{cases}$$

O sistema I) não tem solução, pois não há intersecção das desigualdades

No sistema II) temos:

Conforme o ciclo trigonométrico

Ao lado, a solução da inequação

Trigonométrica será:

$$\frac{1}{3} + 2\pi k; \quad \frac{\pi}{2} + 2\pi k \left[\cup \right] \frac{\pi}{2} + 2\pi k; \quad \frac{5\pi}{3} + 2\pi k \left[, \text{ Linea G} \right]$$

II) $\begin{cases} senx - 1 < 0 \\ 2cosx - 1 < 0 \end{cases}$

117°) (Exame 2010)

Simplificar a expressão:

$$\frac{\left(a^{2}b\sqrt{b}-6a^{\frac{5}{3}}b^{\frac{5}{4}}+12ab^{3}\sqrt{a}-8ab^{\frac{3}{4}}\right)^{\frac{2}{3}}}{ab^{3}\sqrt{a}-4ab^{\frac{3}{4}}+4a^{\frac{2}{3}}\sqrt{b}}$$

Resp:
$$A)^{\frac{1}{2}} B) - 2 C) 1,5 D) - 0,5 E) 1 F) 2 G) - 1 H) outro$$

Resolução:

Transformando todas as potenciais em radicais, temos:

$$\frac{\left(a^2b\sqrt{b}-6\sqrt[3]{a^5}\sqrt[4]{b^5}+12ab\sqrt[3]{a}-8a\sqrt[4]{b^3}\right)^{\frac{2}{3}}}{ab\sqrt[3]{a}-4a\sqrt[4]{b^3}+4\sqrt[3]{a^2}\sqrt{b}},$$

Achando um mmc para todos os radicais: (neste caso 12)

$$\frac{\left(\frac{^{12}\sqrt{a^{24}} \ ^{12}\sqrt{b^{12}} - ^{12}\sqrt{b^{6}} - 6^{^{12}}\sqrt{a^{20}} \ ^{12}\sqrt{b^{15}} + 12^{^{12}}\sqrt{a^{12}} \ ^{12}\sqrt{b^{12}} - ^{12}\sqrt{a^{4}} - 8^{^{12}}\sqrt{a^{12}} \ ^{12}\sqrt{b^{9}}\right)^{\frac{2}{3}}}{^{12}\sqrt{a^{12}} \ ^{12}\sqrt{b^{12}} - ^{12}\sqrt{a^{4}} - 4^{^{12}}\sqrt{a^{12}} - ^{12}\sqrt{b^{9}} + 4^{^{12}}\sqrt{a^{8}} \ ^{12}\sqrt{b^{6}}}$$

$$\frac{\left(\sqrt[12]{a^{24}},\sqrt[12]{b^{18}}-6\sqrt[12]{a^{20}},\sqrt[12]{b^{15}}+12\sqrt[12]{a^{16}},\sqrt[12]{b^{12}}-8\sqrt[12]{a^{12}},\sqrt[12]{b^{9}}\right)^{\frac{2}{3}}}{\sqrt[12]{a^{16}},\sqrt[12]{b^{12}}-4\sqrt[12]{a^{12}},\sqrt[12]{b^{9}}+4\sqrt[12]{a^{8}},\sqrt[12]{b^{6}}}$$

Supondo que: $\sqrt[12]{a} = x e^{-\sqrt[12]{b}} = v$

$$\frac{\left(x^{24}y^{12} - 6x^{20}y^{15} + 12x^{16}y^{12} - 8x^{12}y^{9}\right)^{\frac{2}{3}}}{x^{16}y^{12} - 4x^{12}y^{9} + 4x^{8}y^{6}}$$

Factorizando $x^{12}y^9$ no numerador e x^8y^6 no denominador, temos:

$$\frac{\left[x^{12}y^{9}(x^{12}y^{3}-6x^{8}y^{6}+12x^{4}y^{3}-8)\right]^{\frac{2}{3}}}{x^{8}y^{6}(x^{8}y^{6}-4x^{4}y^{3}+4)}\tag{*}$$

Nota que:

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
 e

$$(xy-2)^3 = x^{12}y^3 - 6x^8y^6 + 12x^4y^3 - 8$$
 e

$$x^8y^6 - 4x^4y^3 + 4 = (xy - 2)^2$$

Voltando em (*):

 $\frac{\left[x^{12}y^9(xy-2)^3\right]^{\frac{2}{3}}}{x^8y^6(xy-2)^2}$, Separando os expoentes do numerador temos:

$$\frac{(x^{12})^{\frac{2}{3}}.(y^{9})^{\frac{2}{3}}.(xy-2)^{3\frac{2}{3}}}{x^{8}y^{6}(xy-2)^{2}} = \frac{x^{8}y^{6}(xy-2)^{2}}{x^{8}y^{6}(xy-2)^{2}} - 1, \text{ Línea E})$$

118°) (Exame 2010) Quantas saladas distintas são possível fazer de cinco espécies diferentes de verduras ?

Reolução: estamos diante de situação de combinação;(5; 1), (5;2), (5;3), (5;4) e

(5;5), Que reulta em:
$$n = C_{5,1} + C_{5,2} + C_{5,3} + C_{5,4} + C_{5,5}$$
, sabe-e que: $C_{n,k} = \frac{n!}{k!(n-k)!}$

$$C_{5,1} = \frac{5!}{1!(5-1)!} = 5$$
, $C_{5,2} = \frac{5!}{2!(5-2)!} = 10$, $C_{5,3} = \frac{5!}{3!(5-3)!} = 10$, $C_{5,4} = \frac{5!}{4!(5-4)!} = 5$,

 $C_{5,1} = \frac{5!}{5!(5-5)!} = 1$, então o número de saladas ditintas será:

$$n = 5 + 10 + 10 + 5 + 1 \rightarrow n = 31$$
, Línea F)

119º) (**Exame 2010**) Quantos números de 4 algarismo podem ser formados de 10 algarimos, 0,1,2,3,...,8,9 sem repetições.

Resp: A) 504 B) 9000 C) 4536 D) 6561 E) 10000 F) 7290 G) 5040 H) outro

Resolução: estamos diante de uma situação de arranjo sem repetição;

$$A_{n,k} = \frac{n!}{(n-k)!}$$
, onde: $n = 10 \ e \ k = 4$, $A_{10,4} = \frac{10!}{(10-4)!} = \frac{10!}{6!} = 5040$, Línea G)

120°) (**Exame 2010**) De 5 matemáticos e 7 físicos deve-se constituir uma comissão de 2 matemáticos e 3 físicos. De quantas maneiras é possível formar a comissão se os dois determinados matemáticos não podem pertencer a comissão?

Resolução: estamos diante de uma situação de combinação, podemos formar as comissões do seguinte modo (Tendo em conta que dois matemáticos não podem participar na comissão):

Matemáticos:
$$C_{3,2} = \frac{3!}{2!(3-2)!} = 3$$
, Físicos: $C_{7,3} = \frac{7!}{3!(7-3)!} = 35$

$$C_{3,2} \times C_{7,3} = 105$$
, Línea E)

Exame de Acesso 2009

121°) (Exame 2009) Simplifique a expressão:
$$\frac{1-(\log_a b)^3}{(\log_a b + \log_b a + 1)(\log_a \frac{a}{b})}$$

Resp: A)
$$\log_b a$$
 B) $\log_b a + 1$ C) $\sqrt{\log_a b}$ D) $2 \log_b a$

$$E) 1 - \log_a b$$
 $F) log_a^2 b$ $G) log_a b$ $H) outro$

Resolução:

obs: A expressão do numerador é uma diferença de cubos

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$= \frac{(1 - \log_a b) \left[1 + \log_a b + (\log_a b)^2 \right]}{\left(\log_a b + \frac{1}{\log_a b} + 1 \right) (\log_a a - \log_a b)} \quad \rightarrow$$

$$=\frac{(1-\log_a b)\left[1+\log_a b+(\log_a b)^2\right]}{\frac{\left[1+\log_a b+(\log_a b)^2\right](1-\log_a b)}{\log_a b}}\,,\, \text{Simplificando vem:}\ =\ \log_a b\,\,,\,\,\, \text{Línea G}$$

122°) (Exame 2009) Resolve a inequação:
$$\sqrt{x^2 - x - 12} < x$$

Resp: *A*)
$$]0; +\infty[B)[-12; -3] \cup]0; +\infty[$$

$$C)[-12; -3] \cup [4; +\infty[D)[4; +\infty[E)[-12; 4]$$

F) [−12; 0[
$$\cup$$
 [4; + ∞ [*G*)]0; 4[\cup]4; + ∞ [*H*) outro

Resolução:

Condição de existência CE:
$$\begin{cases} x^2 - x - 12 \ge 0 \\ x > 0 \end{cases}$$

$$x^2 - x - 12 \ge 0 \text{ (inequação do } 2^{\circ} \text{ grau)}$$

Aplicando Vieth para achar as raízes da inequação:

$$x^{2} - x - 12 = 0, x^{2} - x - 12 = (x - 4)(x + 3) = 0$$

$$(x-4)(x+3) = 0$$
, $x-4 = 0$ e $x + 3 = 0$ \rightarrow $(x_1 = 4$ e $x_2 = -3)$

a > 0	-∞	– 3	4	+ 8
$x^2 - x - 12 \ge 0$		+ O -	- O	+

$$x \in]-\infty; -3] \cup [4; +\infty[$$

 $x > 0 \rightarrow x \in]0; +\infty[$

O conjunto verdadeiro da C.E é a intersecção dos dois intervalos numéricos

$$S_1 = [4; +\infty[$$

Resolvendo a inequação: $()^2$

$$(\sqrt{x^2 - x - 12})^2 < (x)^2 \rightarrow x^2 - x - 12 < x^2$$

$$x^2 - x - 12 < x^2 \rightarrow x > -12$$

$$x > -12 \rightarrow x \epsilon$$
]-12; $+\infty$ [; $S_2 =$]-12; $+\infty$ [

A solução verdade da inequação será: $S = S_1 \cap S_2$

$$S = [4; +\infty[$$
, Línea D

123º) (Exame 2009) Resolva a equação:

$$1 + sen^3x + cos^3x = \frac{3}{2} sen2x \qquad R: x = -\frac{\pi}{4} + (-1)^{k+1} \frac{\pi}{4} + \pi k$$

Resolução:

Sabe-se que:
$$a^3 + b^3 = (a + b)^3 - 3ab(a + b)$$
 (*)

Ou
$$a^3 + b^3 = (a - b)(a^2 - ab + b^2)$$
 (**)

$$sen^3x + cos^3x = (senx + cosx)^3 - 3senxcosx(senx + cosx)$$

Sabe-se que: sen2x = 2senx cosx

Voltando na expressão inicial:

$$1 + (senx + cosx)^3 - 3senxcosx(senx + cosx) = \frac{3}{2} (2senx cosx)$$

$$[1^3 + (senx + cosx)^3] - 3senxcosx(senx + cosx) = 3senx cosx$$

Aplicando a fórmula (**) para a expressão: $[1^3 + (senx + cosx)^3]$, vem:

$$(1 + senx + cosx)[1^2 - (senx + cosx) + (senx + cosx)^2] -$$

$$-3senxcosx(senx + cosx) - 3senxcosx = 0$$

Factorizando a expressão 3senx cosx no 2º e no 3º produto:

$$(1 + senx + cosx)[1^2 - (senx + cosx) + (senx + cosx)^2] \rightarrow \rightarrow$$

$$-3senx cosx (senx + cosx + 1) = 0$$

Factorizando a expressão : (1 + senx + cosx)

$$(1 + senx + cosx)[1 - senx - cosx + sen2x + 2senx cosx + cos2x - 3senx cosx] = 0$$

$$(1 + senx + cosx)(1 - senx - cosx + 1 + sen2x - 3senx cosx) = 0$$

Aplicando a lei do anulamento do produto:

$$1^{\circ}$$
) $(1 + senx + cosx) = 0 e$

$$2^{\circ}$$
) $(1 - senx - cosx + 1 + sen2x - 3senx cosx) = 0$

1°)
$$(1 + senx + cosx) = 0 \rightarrow senx + cosx = -1$$

Obs.:
$$cos x = sen \left(x + \frac{\pi}{2} \right)$$

$$senx + sen\left(x + \frac{\pi}{2}\right) = -1$$

Sabe-se que:
$$sena + senb = 2 sen \left(\frac{a+b}{2}\right) cos \left(\frac{a-b}{2}\right)$$

$$senx + sen\left(x + \frac{\pi}{2}\right) = sen\left(x + \frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) = 2\left(\frac{\sqrt{2}}{2}\right)sen\left(x + \frac{\pi}{4}\right)$$

Voltando na expressão inicial:

$$\sqrt{2} \operatorname{sen}\left(x + \frac{\pi}{4}\right) = -1 \to \operatorname{sen}\left(x + \frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{2} \to$$

$$sen\left(x+\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2} \rightarrow sen\left(x+\frac{\pi}{4}\right) = sen\left(-\frac{\sqrt{2}}{2}\right)$$

$$sen\left(x+\frac{\pi}{4}\right)=-sen\left(\frac{\sqrt{2}}{2}\right)$$
; $\alpha=-\frac{\pi}{4}$

Como $\alpha < 0$, a expressão geral para os senos é:

$$x = \pi k + (-1)^{k+1} \alpha$$

$$x + \frac{\pi}{4} = \pi k + (-1)^{k+1} \frac{\pi}{4} \to x = -\frac{\pi}{4} + \pi k + (-1)^{k+1} \frac{\pi}{4}$$

$$2^{\circ}$$
) $(1 - senx - cosx + 1 + sen2x - 3senx cosx) = 0$

$$2 - senx - cosx + sen2x - 3senx cosx = 0 / (multiplica por 2)$$

$$4 - 2senx - 2cosx + 2sen2x - 3sen2x = 0 \rightarrow$$

4 - sen2x = 2(senx + cosx), elevar ambos membros ao quadrado:

$$(4 - sen2x)^2 = (2(senx + cosx))^2$$

$$16 - 8sen2x + sen^{2}2x = 4(sen^{2}x + 2senx cosx + cos^{2}x)$$

$$16 - 8sen2x + sen^22x = 4(1 + sen2x)$$

$$16 - 8sen2x + sen^22x = 1 + 4sen2x$$

$$sen^2 2x + 4 sen 2x + 12 = 0$$
, Fazendo $sen 2x = t, t \in [-1; 1]$

$$t^2 + 4t + 12 = 0$$
, $\Delta = (4)^2 - 4(1)(12) = -32 \rightarrow \Delta < 0 \not\exists t_1 \ e \ t_2$

$$S = \left\{ x = -\frac{\pi}{4} + \pi k + (-1)^{k+1} \frac{\pi}{4} \right\}$$

124°) (Exame -2009) Simplifique a expressão:

$$(\log_a b + \log_b a + 2)(\log_a b - \log_{ab} a)\log_b a - 1$$

Resolução:

Obs.:
$$\log_x y = \frac{1}{\log_y x}$$

$$\left(\frac{1}{\log_b a} + \log_b a + 2\right) \left(\log_a b - \frac{1}{\log_b ab}\right) \log_b a - 1$$

Achando o denominador comum no 1º produto e $\log_{\nu} xy = \log_{\nu} x + \log_{\nu} y$

$$\frac{\left[(\log_b a)^2 + 2\log_b a + 1\right]}{\log_b a} \left[\log_a b - \frac{1}{\log_b a + \log_b b}\right] \log_b a - 1$$

Obs.:
$$x^2 + 2xy + y^2 = (x + y)^2$$
 $e \log_b b = 1$

$$\frac{(\log_b a + 1)^2}{\log_b a} \bigg(\log_a b - \frac{1}{\log_b a + 1} \bigg) \log_b a - 1 \to \frac{(\log_b a + 1)^2}{\log_b a} \frac{(\log_a b \cdot \log_b a + \log_a b - 1) \log_b a - 1}{(\log_b a + 1)} \bigg)$$

$$(\log_b a + 1) \left(\frac{\log_b a}{\log_b a} + \log_a b - 1 \right) - 1 \rightarrow (\log_b a + 1)(1 + \log_a b - 1) - 1$$

$$(\log_b a + 1)(\log_a b) - 1 \rightarrow \log_a b \times \log_b a + \log_a b - 1$$

$$\frac{\log_b a}{\log_b a} + \log_a b - 1 = 1 + \log_a b - 1 = \log_a b$$

125°)(Exame 2009) Resolva a equação:

$$3tg^2x + 4tgx + 4 \cot gx + 3 \cot g^2x + 2 = 0$$

Resp: A)
$$\frac{\pi}{2} + 2\pi k \ B$$
) $\frac{\pi}{4} + 2\pi k \ C$) $\frac{\pi}{4} + \pi k \ D$) $\frac{\pi}{4} + 2\pi k \ D$

E)
$$\pm \frac{\pi}{4} + \pi k$$
 F) $-\frac{\pi}{4} + \pi k$ G) $\pm \frac{3\pi}{4} + \pi k$ H) outro

Resolução:
$$3tg^2x + 4tgx + 4\left(\frac{1}{tgx}\right) + 3\frac{1}{tg^2x} + 2 = 0$$

$$\frac{3tg^4x + 4tg^3x + 4tgx + 3 + 2tg^2x}{tg^2x} = 0 \rightarrow \frac{3tg^4 + 4tg^3x + 2tg^2x + 4tgx + 3}{tg^2x} = 0$$

Fazendo: tgx = t, $\frac{3t^4 + 4t^3 + 2t^2 + 4t + 3}{t^2} = 0$ (equação racional fraccionária)

$$3t^4 + 4t^3 + 2t^2 + 4t + 3 = 0e t^2 \neq 0 \rightarrow t \neq 0$$

$$3t^4 + 4t^3 + 2t^2 + 4t + 3 = 0$$
 (equação racional)

Considerando que
$$P(t) = 3t^4 + 4t^3 + 2t^2 + 4t + 3 = 0$$
, se $t = -1$

$$P(-1) = 3(-1)^4 + 4(-1)^3 + 2(-1)^2 + 4(-1) + 3 = 0$$

t = -1 é uma das raízes da equação racional

Dividindo pelo método de chave, onde:

$$P(t) = 3t^4 + 4t^3 + 2t^2 + 4t + 3$$
 e $D(t) = t + 1$ Obtemos:

O quociente
$$Q(t) = 3t^3 + t^2 + t + 1$$
 e o resto $R(t) = 0$ então:

$$P(t) = D(t)Q(t) + R(t) = (t+1)(3t^3 + t^2 + t + 1) = 0$$

Pelo anulamento do produto

$$t+1=0 \rightarrow t=-1$$

$$3t^3 + t^2 + t + 1 = 0$$
 (A Equação não tem raízes reais)

Voltando na suposição:

$$tgx = t \rightarrow tgx = tg(-1) \rightarrow tgx = -tg(1), \alpha = -\frac{\pi}{4}$$

$$x = \alpha + \pi k \rightarrow x = -\frac{\pi}{4} + \pi k$$
; CE: $tgx \neq 0 \rightarrow x \neq \pi k$

A solução da equação é:
$$S = \left\{-\frac{\pi}{4} + \pi k\right\}$$
, Línea F)

126°) (Exame 2009) No triângulo rectangular a altura traçada de um vértice do ângulo recto divide a hipotenusa em segmentos 3 cm e 9 cm. Então os catetos do triângulo são:

Resp: A) 6cm e 9cm B) 9cm e $6\sqrt{3}$ cm C) $3\sqrt{3}$ cm e 6 cm D) $3\sqrt{3}$ cm e 9cm

E) 9cm e 12 cm F) 6cm e 6 $\sqrt{3}$ cm

Resolução: m = 3 cm, n = 9 cm, b = ?, c = ?

$$a = m + n \rightarrow a = 3 + 9 \rightarrow a = 12 cm$$

$$c^2 = m \ a \rightarrow c^2 = 3 \times 12 \rightarrow c^2 = 36$$

$$c^2 = 36 \to c = \sqrt{36} \to c = 6 \text{ cm}$$

$$b^2 = n \ a \rightarrow b^2 = 9 \times 12 \rightarrow b^2 = 36 \times 3$$

$$b^2 = 36 \times 3 \rightarrow b = \sqrt{36} \times \sqrt{3} \rightarrow b = 6\sqrt{3} cm$$

3cm 9 cm

Os catetos dos triângulos são: 6 cm e 6 $\sqrt{3}$ cm . Línea F)

127°) (Exame 2009) A diagonal de um cubo é l. Então o volume do cubo é:

Resp:

A)
$$\frac{l^3}{3}$$
 B) $\frac{l^3\sqrt{2}}{3}$ C) $\frac{l^3\sqrt{3}}{9}$ D) $\frac{l^3\sqrt{3}}{3}$ E) $\frac{l^3\sqrt{2}}{9}$ F) $\frac{l^3}{9}$

Resolução: D = l, V = ?

Fórmula do volume do cubo: $V = a^3(*)$

Onde a é o cateto

No triângulo rectângulo ABC,

$$l^2=a^2+d^2$$
 (1) , E a diagonal do quadrado da Base é: $d^2=a^2+a^2 \rightarrow d^2=2a^2$ (2)

Substituindo (2) em (1), vem:
$$l^2 = a^2 + 2a^2 \rightarrow 3a^2 = l^3 \rightarrow a^2 = \frac{l^2}{3} \rightarrow a = \frac{l}{\sqrt{3}} \rightarrow a = \frac{l\sqrt{3}}{3}$$

Substituindo em (*),vem:
$$V = \left(\frac{l\sqrt{3}}{3}\right)^3 = \frac{l^3\sqrt{3}}{27} = \frac{3l^3\sqrt{3}}{27} \to V = \frac{l^3\sqrt{3}}{9}$$
, Línea C)

128°) (Exame 2009) O perímetro de um triângulo isósceles é igual à 90 cm e a sua altura é igual à 15 cm. Ache a área desse triângulo.

Resp: A) 200 cm² B) $30\sqrt{2}$ cm² C) 420 cm² D) 300 cm² E) $45\sqrt{3}$ cm² F) outro

Resolução:

$$P = 90 \ cm \ ; h = 15 \ cm \ ; a = b \ , A = ?$$

Conforme a figura; vem: c = 2m

$$\rightarrow m = \frac{c}{2}$$

$$P = a + b + c \rightarrow P = 2a + c \rightarrow 2a + c = 90$$
 (1)

Aplicando o teorema de Pitágoras no triângulo ATC

, vem:
$$a^2 = m^2 + h^2 e m = \frac{c}{2}$$

$$a^2 = \left(\frac{c}{2}\right)^2 + (15)^2 \to a^2 = \frac{c^2}{4} + (15)^2 \to 4a^2 = c^2 + 4 \times 225 \to 4a^2 = c^2 + 4a^$$

$$\to 4a^2 = c^2 + 900 \quad (2)$$

Formando um sistema de equações, com as equações (1) e (2), vem:

$$\begin{cases}
2a + c = 90 \to c = 90 - 2a (*) \\
4a^2 = c^2 + 900 (**)
\end{cases}$$

Substituindo (*) em (**), vem:

$$4a^2 = (90 - 2a)^2 + 900 \rightarrow 4a^2 = 8100 - 360a + 4a^2 + 900$$

$$360 \ a = 9000 \ \rightarrow a = \frac{9000}{360} \ \rightarrow a = 25$$

$$a = 25 \ e \ c = 90 - 2a \ \rightarrow c = 90 - 2(25) \rightarrow c = 90 - 25 \rightarrow c = 40$$

A área do triângulo é: $A = \frac{1}{2} c h$

$$A = \frac{1}{2} c h = \frac{1}{2} (40 \times 15) \rightarrow A = 300 \ cm^2$$
, Línea D

129°) (Exame 2009) No triângulo um lado é igual à 5 cm e dois ângulos adjacentes desse lado são respectivamente 30° e 60°. Então dois outros lados desse triângulo são:

В

Resp: A) 3 cm e 4 cm B) 2,5 cm e 2,5 $\sqrt{2}$ cm C) 2,5 cm e 2,5 $\sqrt{3}$ cm

D) 7 cm e 2,5
$$\sqrt{2}$$
 cm E) 2,5 cm e $\sqrt{11}$ cm F) 4 cm e $\sqrt{41}$ cm

Resolução:

O triângulo é rectângulo em B

$$\hat{A} + \hat{B} = 90^{\circ}$$

$$sen30^{\circ} = \frac{cateto\ oposto}{hipotenusa} = \frac{a}{5} \rightarrow a = 5\ sen30^{\circ}$$

$$a = 5\left(\frac{1}{2}\right) \rightarrow a = 2,5 \ cm$$

$$sen60^{\circ} = \frac{cateto\ oposto}{hipotenusa} = \frac{c}{5} \rightarrow c = 5\ sen60^{\circ}$$

$$a = 5\left(\frac{\sqrt{3}}{2}\right) \rightarrow a = 2.5\sqrt{3}cm$$

A solução é: $\{2,5 \ cm \ ; \ 2,5 \sqrt{3} \ cm \}$, Línea C)

130°) (**Exame 2009**) A geratriz de um cone truncado é igual à 2a e tem inclinação 60° em relação a maior base do cone. O raio de uma base desse cone é duas vezes maior do que o raio da outra base. Então os raios das bases são:

Resp: A)
$$\frac{\sqrt{3}}{2} a e \sqrt{3} a B) \frac{1}{2} a e a C) \frac{\sqrt{2}}{2} a e a D) a e 2a$$

E)
$$\sqrt{3}$$
 a e 2 $\sqrt{3}$ a F) a e 3a

Resolução: Conforme a figura ao lado, temos:

$$R = 2 r$$

$$cos60^{\circ} = \frac{cateto\ adjacente}{hipotenusa} = \frac{R}{2a} \rightarrow R = 2a\cos 60^{\circ} \rightarrow R = 2a\left(\frac{1}{2}\right) \rightarrow R = a$$

$$R = a \ e \ R = 2 \ r \rightarrow r = \frac{R}{2} \rightarrow r = \frac{a}{2}$$
, Então, os raios das bases desses cones são:

$$S = \left\{ r = \frac{1}{2} a ; R = a \right\}$$
, Línea B)

131°) (Exame 2009) Resolver a inequação:

$$x + 1 > \sqrt{x + 3}$$

Resp: A)
$$[-1; +\infty[B)[1; +\infty[C)[-3; 2] \cup [1; +\infty[D)[-3; +\infty[D]]$$

E)]1;
$$+\infty$$
[*F*) [-3; -2[\cup [1; $+\infty$ [*G*)]-1; 1[\cup]1; ∞ [*H*) outro

Resolução:
$$\sqrt{x+3} < x+1$$

Condição de existência:

$$\begin{cases} x+3 \ge 0 \to x \ge -3 \to x \in [-3; +\infty[) \\ x+1 > 0 \to x > -1 \to x \in]1; +\infty[\end{cases}$$

O conjunto verdadeiro da condição de existência é: $S_1 =]1; +\infty[$

Resolvendo a inequação: elevando ambos membros da igualdade ao quadrado

$$(\sqrt{x+3})^2 < (x+1)^2 \rightarrow x+3 < x^2+2x+1 \rightarrow x^2+x-2 > 0$$

Achando os zeros:
$$x^2 + x - 2 > 0$$
 ($a = 1; b = 1; c = -2$)

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = x = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-2)}}{2(1)} = \frac{-1 \pm 3}{2}$$

$$x_1 = 1 e x_2 = -2$$

x	-∞	– 2		1	+∞
$x^2 + x - 2 > 0$	+	О	_	O +	

$$s_2 = x \in]-\infty; -2[\cup]1; +\infty[$$

A solução da inequação é: $S = S_1 \cap S_2$

$$S =]1; + \infty[$$
, Línea E)

132°) (Exame 2009) Resolver a equação:

$$(\cos x - \sin x) \left(2 t g x + \frac{1}{\cos x} \right) + 2 = 0$$

Resp: A)
$$\frac{\pi}{3} + \pi k$$
 B) $\pm \frac{\pi}{3} + 2\pi k$ C) $(-1)^k \frac{\pi}{3} + \pi k$ D) $\frac{\pi}{3} + 2\pi k$

E)
$$(-1)^{k+1} \frac{\pi}{3} + \pi k$$
 F) $-\frac{\pi}{3} + 2\pi k$ G) $\pm \frac{\pi}{3} + \pi k$ H) outro

Resolução:
$$(\cos x - \sin x) \left(2 \frac{\sin x}{\cos x} + \frac{1}{\cos x} \right) + 2 = 0$$

Multiplicando todos os termos, vem:

$$\frac{2senx cosx + cosx - 2 sen^2x - senx + 2cosx}{cosx} = 0$$

$$2senx cos x + 3cos x - 2sen^2 x - sen x = 0e$$

$$cosx \neq 0 \rightarrow x \neq \frac{\pi}{2} + \pi k$$
, Sabe-se que: $sen^2x = 1 - cos^2x$

$$2senx cosx + 3cosx - 2(1 - cos^2x) - senx = 0$$

$$2 sex cosx + 3cosx - 2 + 2cos^2x - senx = 0$$

$$(2senx cosx - senx) + (2cos^2x + 3cosx - 2) = 0$$

$$senx(2cosx - 1) + (2cos^2x + 3cosx - 2) = 0$$

Nota que:
$$(2\cos^2 x + 3\cos x - 2) = (2\cos x - 1)(\cos x + 2)$$

$$senx(2cosx - 1) + (2cosx - 1)(cosx + 2) = 0$$

Factorizando:
$$(2\cos x - 1)$$
, $(2\cos x - 1)(\sin x + \cos x + 2) = 0$

Aplicando a lei do anulamento do produto, temos:

$$(2\cos x - 1) = 0 e (sen x + \cos x + 2) = 0$$

$$(2\cos x - 1) = 0 \rightarrow \cos x = \frac{1}{2} \rightarrow \cos x = \cos\left(\frac{1}{2}\right) \rightarrow \alpha = \frac{\pi}{3}$$

Fórmula geral dos cossenos:
$$x = \pm \alpha + 2k\pi$$
, $x = \pm \frac{\pi}{3} + 2k\pi$

$$(senx + cosx + 2) = 0 \rightarrow senx = -(2 + cosx)$$
, elevando ao quadrado

$$sen^2x = 4 + 4cosx + cos^2x$$

$$1 - \cos^2 x = 4 + 4 \cos x + \cos^2 x \rightarrow 2\cos^2 x + 4\cos x + 3 = 0$$

Fazendo:
$$cosx = t \rightarrow 2 t^2 + 4t + 3 = 0 (a = 2; b = 4; c = 3)$$

$$\Delta = b^2 - 4ac = (4)^2 - 4(2)(3) \rightarrow \Delta = -8 < 0 \not\exists t$$

$$x = \pm \frac{\pi}{3} + 2k\pi$$
 satisfaz a condição de existência $x \neq \frac{\pi}{2} + \pi k$, logo

A solução da equação é:

$$S = \left\{ \pm \frac{\pi}{3} + 2k\pi \right\}$$
, Línea B)

133°) (Exame 2009) Simplificar a expressão:

$$a^{\frac{2}{\log_b a}+1}$$
. $b - 2 a^{\log_a b + 1} \cdot b^{\log_b a + 1} + a \cdot b^{\frac{2}{\log_a b} + 1}$

A)
$$ab(a+b)$$
 B) $\frac{a-b}{ab}$ C) $\frac{ab}{a+b}$ D) $ab(a-b)$ E) $\frac{(a-b)^2}{ab}$ F) $ab(a-b)^2$

G)
$$(a - b)^2$$
 H) outro

Resolução:

$$a. a^{\frac{2}{\log_b a}}. b - (2 a. a^{\log_a b})(b. b^{\log_b a}) + a. b. b^{\frac{2}{\log_a b}}$$

Mudanças de base:
$$\frac{1}{\log_b a} = \log_a b$$
 e $\frac{1}{\log_a b} = \log_b a$

$$a. a^{2(\log_a b)} b - (2 a. a^{\log_a b}) (b. b^{\log_b a}) + a. b. b^{2(\log_b a)}$$

Sabe-se que: $a^{\log_a b} = b \ e \ b^{\log_b a} = a \ e \ n \log_y x = \log_y x^n$

$$a. a^{(\log_a b^2)} b - (2 a. b)(b. a) + a. b. b^{(\log_b a^2)}$$

Nota que:
$$a^{(\log_a b^2)} = b^2 e b^{(\log_b a^2)} = a^2$$

$$a b^2b - 2 a^2b^2 + aba^2 = ab^3 - 2a^2b^2 + a^3b$$

$$(ab^3 - a^2b^2) + (a^3b - a^2b^2)$$
, factorizando:

$$ab^{2}(b-a) + a^{2}b(a-b) = -ab^{2}(a-b) + a^{2}b(a-b)$$

Factorizando a expressão: (a - b), temos:

 $(a-b)(a^2b-ab^2)$, factorizando ab no segundo produto, temos:

$$ab(a-b)(a-b) = ab(a-b)^2$$
, Línea F)

134°) (Exame 2009) Simplifique a expressão:

$$\left(25^{\frac{1}{2\log_{49}25}} + 2^{\log_2\log_2\log_2\log_2^2\log_2a^2\log_2a}\right) \cdot 4^{-\frac{2}{\log_34}} - a^2$$

Resp:
$$A$$
) $a-1$ B) a C) a^2 D) $2a$ E) \sqrt{a} F) $1-a$ G) $a+1$ H) outro Resolução:

$$\frac{\left(25^{\frac{1}{2\log(7^2)}}^{\frac{1}{2\log(7^2)}} + 2^{\log_2\log_2\log_2\log_2a^{\log_2a^{\log_2a^{2}}}\right) \cdot 4^{-2\log_43} - a^2}{1-a} = \frac{\left(25^{\frac{1}{2}(\frac{1}{2})\log_7 25} + 2^{\log_2\log_2\log_2a^{\log_2a^{2}}}\right) \cdot 4^{\log_43^{-2}} - a^2}{1-a}$$

$$\frac{\left(25^{\frac{1}{\log 7}} \cdot 25 + 2^{\log_2 \log_2 \log_2 4^2}\right) \cdot 3^{-2} - a^2}{1 - a} = \frac{\left(25^{\log_2 5} \cdot 7 + 2^{\log_2 \log_2 \log_2 (2)^4}\right) \cdot 3^{-2} - a^2}{1 - a}$$

$$\frac{\left(7 + 2^{\log_2 \log_2 4^4}\right) \cdot 3^{-2} - a^2}{1 - a} = \frac{\left(7 + 2^{\log_2 \log_2 2^2}\right) \cdot 3^{-2} - a^2}{1 - a} = \frac{\left(7 + 2^{\log_2 2^2}\right) \cdot 3^{-2} - a^2}{1 - a}$$

 $\frac{(7+2^1) \cdot 3^{-2} - a^2}{1-a} = \frac{(9) \cdot 3^{-2} - a^2}{1-a} = \frac{(3^2) \cdot 3^{-2} - a^2}{1-a} = \frac{1-a^2}{1-a} = \frac{(1-a)(1+a)}{1-a} = 1 + a$

Línea G

135°) (Exame 2009) Resolva a equação:

$$sen^2x + \frac{1}{4} sen^23x = senx sen^23x$$

Resp: A)
$$2\pi k$$
; $\pm \frac{\pi}{6} + \pi k$ B) $2\pi k$; $\frac{\pi}{6} + \pi k$ C) πk ; $\pm \frac{\pi}{6} + \pi k$

D)
$$\pi k$$
; $\frac{\pi}{6} + \pi k$ E) $2\pi k$; $(-1)^{k+1} \frac{\pi}{6} + \pi k$ F) πk ; $(-1)^k \frac{\pi}{6} + \pi k$

G))
$$\pi k$$
; $(-1)^k \frac{\pi}{6} + \pi k$ H) outro

Resolução:
$$sen^2x + \frac{1}{4} sen^23x = senx sen^23x \rightarrow$$

$$4sen^2x + sen^23x = 4senx sen^23x$$

$$4sen^2x = sen^23x - 4senx \ sen^23x \rightarrow 4sen^2x = sen^23x(4senx - 1)$$

Sabe-se que:
$$sen^2 3x = 3sen x - 4 sen^3 x$$

$$4sen^2x = (3senx - 4 sen^3x)^2(4senx - 1),$$

Factorizando senx na segunda expressão:

$$4sen^2x = sen^2x(3 - 4sen^2x)^2(4senx - 1),$$

$$4sen^2x - sen^2x(3 - 4sen^2x)^2(4senx - 1) = 0$$

$$sen^2x[4 - (9 - 24sen^2x + 16sen^4x)(4senx - 1)] = 0$$

$$sen^2x \left[4 - \left(36senx - 9 - 96sen^3x + 24sen^2x + 64sen^5x - 16sen^4x \right) \right] = 0$$

$$sen^2x(4-36senx+9+96sen^3x-24sen^2x-64sen^5x+16sen^4x)$$

$$sen^2x(-64sen^5x + 16sen^4x + 96sen^3x + 24sen^2x + 36senx + 13) = 0$$

Multiplicar o segundo produto por (-1) temos:

$$sen^2x(64sen^5x - 16sen^4x - 96sen^3x + 24sen^2x + 36senx - 13) = 0$$

Fazendo: sen x = t

$$t^2(64t^5 - 16t^4 - 96t^3 + 24t^2 + 36t - 13) = 0$$
, Anulando os produtos temos:

$$t^2 = 0 \rightarrow t_1 = 0 \ (raiz \ dupla)$$

$$64t^5 - 16t^4 - 96t^3 + 24t^2 + 36t - 13 = 0$$

Considerando que: $p(t) = 64t^5 - 16t^4 - 96t^3 + 24t^2 + 36t - 13$ é um polinómio

$$p\left(\frac{1}{2}\right) = 64\left(\frac{1}{2}\right)^5 - 16\left(\frac{1}{2}\right)^4 - 96\left(\frac{1}{2}\right)^3 + 24\left(\frac{1}{2}\right)^2 + 36\left(\frac{1}{2}\right) - 13$$

$$p\left(\frac{1}{2}\right)=2-1-12+6+18-13 \rightarrow p\left(\frac{1}{2}\right)=0$$
, $t=\frac{1}{2}$ é uma das raízes da equação do 5° grau.

Dividindo pelo método de chave, onde:

$$p(t) = 64t^5 - 16t^4 - 96t^3 + 24t^2 + 36t - 13 e D(t) = t - \frac{1}{2}$$
, Obtemos:

$$Q(t) = 64t^4 + 16t^3 - 88t^2 - 20t + 26, R(t) = 0, p(t) = D(t).Q(t) + R(t)$$

$$p(t) = \left(t - \frac{1}{2}\right)(64t^4 + 16t^3 - 88t^2 - 20t + 26) = 0$$

Anulando o produto:

$$t - \frac{1}{2} = 0 \rightarrow t_2 = \frac{1}{2}$$

$$64t^4 + 16t^3 - 88t^2 - 20t + 26 = 0$$
 (A equação não tem raízes reais)

Voltando na suposição:

$$\begin{cases} senx = t_1 \rightarrow senx = 0 \rightarrow senx = sen(0) \rightarrow (\alpha = 0), x = \pi k \\ senx = t_2 \rightarrow senx = \frac{1}{2} \rightarrow senx = sen\left(\frac{1}{2}\right) \rightarrow \left(\alpha = \frac{\pi}{6}, \alpha > 0\right); x = (-1)^k \alpha + \pi k \end{cases}$$

$$\begin{cases} x_1 = \pi k \\ x_2 = (-1)^k \frac{\pi}{6} + \pi k \end{cases}$$
 A solução da equação é: $S = \left\{ \pi k \; ; \; (-1)^k \frac{\pi}{6} + \pi k \right\}$, Línea F)

136°) (Exame 2009) Seja dada $P(x) = ax^2 - ax - 2c$. Sabenso que a soma das raizes da equação P(x) = 0 iguala a $\log_a c$. Encontre o producto das raizes daquela equação.

Resp: A)
$$(x_1 x_2 = 1)$$
 B) $(x_1 x_2 = -2)$ C) $(x_1 x_2 = -1)$ D) $(x_1 x_2 = 0)$ E) $(x_1 x_2 = -\frac{5}{2})$ $(x_1 x_2 = -7)$

Resolução: $P(x) = ax^2 - ax - c$, a composição de uma equação quadrática é: $x^2 - x + p = 0$

na equação:
$$ax^2 - ax - c = 0 \rightarrow \begin{cases} s = -\frac{b}{a} = \log_a c = -\frac{(-a)}{a} = \log_a c \rightarrow c = a \\ x_1 x_2 = p \left(p = \frac{c}{a} = \frac{-2c}{a} \rightarrow p = \left(-\frac{2a}{a} \right) \rightarrow p = -2 \right) \end{cases}$$

Línea B)

137°) (Exame 2009) A soma dos n primeiros termos de uma progressão aritmética é $S_n = 3n^2$. Além disso o seu terceiro termo é 45. Então a razão desta progressão é:

Resp:a) 20 b) 16 c) 21 d) 5 e) outra solução

Resolução:
$$S_n = 3n^2 \ a_3 = 45, r = ?$$

O termo geral da PA é: $a_n = a_1 + (n-1)r$, se n = 3

$$a_3 = a_1 + 2r \rightarrow a_1 + 2r = 45$$
 (1)

, a soma de n termos da PA é: $S_n = \frac{n}{2}(a_n + a_1) \rightarrow 3n^2 = \frac{n}{2}(a_n + a_1)$

Para
$$n = 3 \rightarrow 3 \times 3^2 = \frac{3}{2}(a_3 + a_1) \rightarrow a_3 + a_1 = 18 \rightarrow 45 + a_1 = 18 \rightarrow a_1 = -27$$

Substituindo em (1): $-27 + 2r = 45 \rightarrow r = 36$, Línea e)

138°) (**Exame 2009**) Numa progressão aritmética (finita), o quarto termo é igual a catorze e a soma dos 20 primeiros termos é quatro vezes maior do que a soma dos dez primeiros ($S_n \neq 0$). Então o décimo termo desta progressão é igual a:

Resp: a) 24 b) 30 c) 36 d) 38 e) 40 f) outro valor

Resolução: $a_4 = 14$, $s_{20} = 4 s_{10}$, $a_{10} = ?$

O termo geral da PA é: $a_n=a_1+(n-1)r$, se n=4 , $a_4=a_1+3r \rightarrow a_1+3r=14(1)$

$$se \ n = 10$$
, $a_{10} = a_1 + 9r \ e \ se \ n = 20$, $a_{20} = a_1 + 19r$

A soma de n termos da PA é: $S_n = \frac{n}{2}(a_n + a_1)$

$$se n = 20 \rightarrow s_{20} = 10(a_{20} + a_1) \rightarrow s_{20} = 10(2a_1 + 19r)$$

$$se \; n = 10 \; \rightarrow s_{20} = 5(a_{10} + a_1) \; \rightarrow s_{10} = 5(2a_1 + 9r) \; \; \text{, sabe-se que:} \; s_{20} = 4 \; s_{10}$$

$$10(2a_1 + 19r) = 4 \times 5(2a_1 + 9r) \to 2a_1 - r = 0 \to r = 2a_1 \quad (2)$$

Resolvendo o sistema: $\begin{cases} 2a_1=r\\ 14=a_1+3r \end{cases},\, a_1=2\;e\;r=4,\, \text{o décimo termo será:}$

$$a_{10} = 2 + 9(4) \rightarrow a_{10} = 38$$
, Línea d)

139°) (**Exame 2009**) A diagonais de um trapézio são reciprocamente perpendiculares iguais a 12 cm e 16 cm. Qual a altura do trapézio ?

Resp:

Resolução:
$$d_1 = 16 \ cm, d_2 = 12 \ cm, h = ?$$

Pelo triângulo ADC:
$$sen x = \frac{h}{d_1}$$

Pelo Triângulo ADB:
$$cos x = \frac{h}{d_2}$$

Em trigonometria sabe-se que:

$$sen^2x + cos^2x = 1 \rightarrow \left(\frac{h}{d_1}\right)^2 + \left(\frac{h}{d_2}\right)^2 = 1 \rightarrow$$

Desdobrando vem:
$$h = \sqrt{\frac{d_1^2 \times d_2^2}{d_1^2 + d_2^2}} \rightarrow h = \sqrt{\frac{(16)^2 \times (12)^2}{[(16)^2 + (12)^2]}} \rightarrow h = 9,6 \text{ cm}$$
, Línea A)

140°) (**Exame 2009**) A bissetriz do ângulo de um triângulo rectangular divide a sua hipotenunsa em dois segmentos de comprimentos 2 cm e 6 cm. Qual é a área deste triângulo?

Resp

a)
$$\frac{28}{3}$$
 cm² b) $\frac{19}{2}$ cm² c) $\frac{48}{5}$ cm² d) $\frac{32}{3}$ cm² e) $\frac{52}{5}$ cm² f) $\frac{21}{2}$ cm² g) 10 cm² h) outro

Resolução:
$$m = 6 cm e n = 2 cm$$
, $A = ?$

A área do triângulo será dada por:

$$A = \frac{ab}{2}$$

Tendo em conta a relações métricas em um triângulo rectângulo:

$$\frac{m}{a} = \frac{n}{b} \rightarrow b = 3a$$

Pelo teorema de pitágora:
$$a^2 + b^2 = c^2 \rightarrow a^2 + (3a)^2 = (8)^2 \rightarrow a = \frac{8}{\sqrt{10}} \ e \ b = \frac{24}{\sqrt{10}}$$

$$A = \frac{ab}{2} \to A = \frac{1}{2} \times \frac{8}{\sqrt{10}} \times \frac{24}{\sqrt{10}} \to A = \frac{48}{5} cm^2$$
, Línea c)

141°) (Exame 2009) Resolva a inequação: $x + 4 < \sqrt{x + 46}$

Resp: *A*)]-4; 3[*B*) [-46; 3[*C*) [-46; 10]
$$\cup$$
]-4; 3[*D*) [-46; 3] *E*)]-10; -4] \cup]3; + ∞ [

F)]-10; 3[*G*)]-4;
$$\infty$$
[*H*) outro

Resolução:
$$x + 4 < \sqrt{x + 46} \rightarrow \sqrt{x + 46} > x + 4$$

A inequação cumpre-se nas seguintes condições:

$$I^{\circ}) \begin{cases} x + 46 \ge 0 \\ x + 4 < 0 \end{cases}$$

II°)
$$\begin{cases} x + 46 \ge 0 \\ x + 4 \ge 0 \\ \sqrt{x + 46} > x + 4 \end{cases}$$

$$I^{\circ}) \begin{cases} x \ge -46 \\ x < -4 \end{cases}$$

II°)
$$\begin{cases} x \ge -46 \\ x \ge -4 \\ (\sqrt{x+46})^2 > (x+4)^2 \to x^2 + 7x - 30 < 0 \end{cases}$$

I°) {
$$[-46; -4[$$
 II°) $\begin{cases} x \ge -46 \\ x \ge -4 \\ x^2 + 7x - 30 < 0 \ (x_1 = 3; \ x_2 = -10) \end{cases}$

I°) {
$$[-46; -4[$$
 II°) $\{ [-4; +\infty[$ $]-10; 3[$ I°) { $[-46; -4[$ II°) $\{ [-4; 3[$

A solução da inequação é: $S = S(I) \cup S(II) = [-46; -4] \cup [-4; 3]$, S =[-46; 3[, *L*ínea *B*)

> 142°) (Exame 2009) A altura do triângulo isóceles tracejada a base é igual a 20 cm e a altura tracejada ao lado lateral é igual a 24 cm. Qual é a área deste triângulo?

 I°) { [-46; -4[

a) 300 cm^2 b) 320 cm^2 c) 256 cm^2 d) 360 cm^2 e) 280 cm^2 f) 240 cm^2 g) 200 cm^2 h) outro

Resolução: $h_a = m_A = 20 \ cm$ $e \ h_c = 24 \ cm$

a,b e c são os lados do triângulo isóceles, c=b

Como o triângulo é isóceles, a altura tracejada a base de lado (a) é igual a mediana relativa ao vértice A:

$$m_A = \frac{\sqrt{2(b^2+c^2)-a^2}}{2} \rightarrow m_A = \frac{\sqrt{4b^2-a^2}}{2}$$

$$20 = \frac{\sqrt{4b^2 - a^2}}{2} \to 4b^2 - a^2 - 1600 = 0 \text{ (I)}$$

$$\frac{BC}{CA} = \frac{BI}{AH} \rightarrow \frac{a}{b} = \frac{h_c}{h_a} \rightarrow a = 1.2 \ b$$
, substituindo em (I)

$$4b^2 - (1,2b)^2 - 1600 = 0 \rightarrow b = 25 \text{ cm}$$

$$a = 1.2 \times 25 \rightarrow a = 30 \ cm$$

A área do triângulo é: $A = \frac{a h_a}{2}$

$$A = \frac{30 \times 20}{2} \rightarrow A = 300 \ cm^2$$
, Línea a)

143°) (**Exame 2009**) Os catetos de um triângulo rectângulos são iguais a 18 cm e 24 cm. Encontre a bissetriz do triângulo tracejada do vêrtice do ângulo agudo menor.

Resp:

a)
$$8\sqrt{10}\ cm\ b$$
) $12\sqrt{6}\ cm\ c$) $16\sqrt{3}\ cm\ d$) $16\sqrt{2}\ cm\ e$) $12\sqrt{5}\ cm\ f$) $24\ cm\ g$) $20\ cm\ h$) outro Resolução: $a=18\ cm$, $b=24\ cm$, $l_A=?$

A hipotenunsa do triângulo é:

$$c^2 = 18^2 + 24^2 \rightarrow c = 30 \ cm$$

A bissetriz relativa ao ângulo agudo menor (x) é:

$$l_A = \frac{\sqrt{bc[(b+c)^2 - a^2]}}{b+c}$$

$$l_A = \frac{\sqrt{24\times30[(24+30)^2-(18)^2]}}{24+30} \ \rightarrow$$
 , reduzindo as expresões vem:

$$l_A = 8\sqrt{10} \ cm$$
 , Línea a)

Exames de Acesso 2008

144º)(**Exame 2008**) As bases de um trapézio são iguais a 1,0 cm e 7,0 cm. Determinar o comprimento do segmento que é paralelo às bases e divide a área do trapézio em partes equivalentes.

R:

a)
$$\frac{5}{3}\sqrt{3}$$
 cm b) 7,5 cm c) $\frac{7}{2}\sqrt{2}$ cm d) 5,0 cm e) 6,25 cm f) 5,75 cm g) 6,0 cm H) outro

Resolução: $B = 7.0 cm \ e \ b = 1.0 cm \ , m = ? (m > 0)$

A área do trapézio : $A_t = 2 A$

$$A_t = \frac{(B+b)h}{2} \rightarrow A_t = 4 h$$
, $h = h_1 + h_2$

$$A_t = 4(h_1 + h_2)$$
 (1)

$$4(h_1 + h_2) = 2A \rightarrow A = 2(h_1 + h_2)$$

Na parte superior:
$$A_1 = \frac{(m+b)h_1}{2} \rightarrow h_1 = \frac{2A}{m+1}$$
 (2)

Na parte infeiror: $h_2 = \frac{2A}{m+7}$

$$A = 2\left(\frac{2A}{m+1} + \frac{2A}{m+7}\right) \rightarrow m^2 = 25 \rightarrow m = \pm 5, m = 5, \text{ Linea d}$$

Resp:

A)
$$600\sqrt{2}\ cm^2\ B)\ 840\ cm^2\ C)\ 644\sqrt{2}\ cm^2\ D)\ 485\sqrt{3}\ cm^2\ E)\ 828\ cm^2\ F)\ 860\ cm^2\ G)\ 450\sqrt{3}\ cm^2\ H)\ outrope (3)$$

Resolução:
$$\frac{a}{b}=1{,}05 \,\rightarrow a=1{,}05 \,b$$
 , $R_1-R_2=17 \,cm$

A área do triângulo é: $A_{\Delta} = \frac{a b}{2}$

1°) Triângulo incrito: Quando um triângulo rectângulo encontra-se inscrito numa circunferência , a hipotenunsa é igual ao dobro do raio circunscrito ou seja: c=

$$D, R_1 = \frac{D}{2} \rightarrow R_1 = \frac{c}{2}$$

b

2°)Triângulo circunscritos : Quando um triângulo rectângulo encontra-se circunscritos num circulo, o raio é dado pela relação:

$$c = b - R_2 + a - R_2 \rightarrow R_2 = \frac{a + b - c}{2}$$
.

Sabe-se que: $R_1 - R_2 = 17 \ cm$

$$\frac{c}{2} - \frac{a+b-c}{2} = 17 \rightarrow 2c - a - b = 34$$
 , sabe-se que: $a = 1,05\ b$, $2c - 2,05b = 34$ (1)

Pelo teorema de pitágora: $c^2=a^2+b^2$, onde: a=1,05 b, $b=\frac{c}{1,45}$ (2)

Subtituindo (2) em (1), vem: 0,85
$$c=49,3 \rightarrow c=58$$
, $b=40$ e $a=42$, logo a área do triângulo é: $A_{\Delta}=\frac{42\times40}{2} \rightarrow A_{\Delta}=840$ cm^2 , Línea B)

146°) (Exame 2008) Determine a área do triângulo se o seus doi lados são iguais a 1,0 cm e $\sqrt{15}$ cm e a mediana tracejada ao terceiro lado é 2,0 cm.

$$A) \ \sqrt{5} \ cm^2 \ B) \frac{3}{2} \sqrt{2} \ cm^2 \ C) \frac{5}{4} \ \sqrt{3} \ cm^2 \ D) \frac{3}{4} \ \sqrt{6} \ cm^2 \ E) \ 2,0 \ cm^2 \ F) \frac{1}{2} \sqrt{15} \ cm^2 \ G) \frac{3}{5} \sqrt{10} \ cm^2 \ H) \ outroperators$$

Resolução:
$$a = 1$$
, $b = \sqrt{15}$, $m_A = 2$, $A_{\Lambda} = ?$

A mediana tracejada ao terceiro vértice é dado pela relação:

A área do triângulo é dado pela relação:

$$A_{\Delta} = \sqrt{p(p-a)(p-b)(p-c)}$$
 (1), p - $\acute{\rm e}$ o perimetro

$$m_A = \frac{\sqrt{2(a^2+b^2)-c^2}}{2} \rightarrow 2 = \frac{\sqrt{2(1^2+15)-c^2}}{2} \rightarrow c = 4 \ cm$$

Semi perimetro:
$$p = \frac{1}{2}(a + b + c) = \frac{1}{2}(1 + \sqrt{15} + 4)$$

$$p = \frac{5+\sqrt{15}}{2}$$
 (2), substituindo (2) em (1), vem:

$$A_{\Delta} = \sqrt{\left(\frac{5+\sqrt{15}}{2}\right)\left(\frac{5+\sqrt{15}}{2} - 1\right)\left(\frac{5+\sqrt{15}}{2} - \sqrt{15}\right)\left(\frac{5+\sqrt{15}}{2} - 4\right)}$$

$$A_{\Delta} = \frac{1}{2}\sqrt{15} \ cm^2$$
, Línea F)

147°) (**Exame 2008**) Determina a área de um trapézio se o raios dos círculos inscrito e e circunscrito são iguais a 5,0 cm e 6,0 cm, respectivamente.

Resp:

A) $45\sqrt{5}$ cm^2 B) 90 cm^2 C) $50\sqrt{3}$ cm^2 D) $60\sqrt{2}$ cm^2 E) 96 cm^2 F) $45\sqrt{3}$ cm^2 G) $40\sqrt{5}$ cm^2 H) outro Resolução: $R_1 = 5.0$ cm , $R_2 = 6.0$ cm , A = ?

A área de um trapézio é determinado pela relação: $A = \frac{(B+b)h}{2}$ (1)

1°) Caso: Raio inscrito

B- base maior do trapézio, b- base menor do trapézio, h- altura do trapézio, D- diâmetro

 R_1 - Raio do circulo inscrito, x- é o comprimento do trapézio

Pela figura:
$$h = D = 2 R_1$$
, $h = 10 cm$

Para um quadrilátero circunscrtio é válida a relação:

$$x + x = B + b \rightarrow x = \frac{B+b}{2}$$
 (2)

2°) Caso: Raio circunscrito

Pela figura é fácil deduzir que:

$$AE = \frac{B+b}{2}$$

Pelo triângulo AEC, temos:

$$d^2 = (AE)^2 + h^2$$
, $d - é$ a diagonal

$$d^2 = 100 + \left(\frac{B+b}{2}\right)^2 \quad (3)$$

A área do triângulo ACB é:

$$A = \frac{Bh}{2} \rightarrow A = \frac{10 B}{2} \rightarrow A = 5 B$$

Como o centro da circunferência é um ponto interior do triângulo ACB, a área também pode ser determinada pela relação:

$$A = \frac{x dB}{4R_2} \rightarrow A = \frac{x d}{24}$$
, relacionado as áreas vem: $\frac{x dB}{24} = 5 B \rightarrow x d = 120$ (4)

Da equação (2), sabe-se que:
$$x = \frac{B+b}{2}$$
, $(\frac{B+b}{2})d = 120 \rightarrow d = \frac{240}{(B+b)}$ (5)

Substiuindo a equação (5) em (3), vem:

$$\frac{57600}{(B+b)^2} = 100 + \left(\frac{B+b}{2}\right)^2 \to (B+b)^4 + 400(B+b)^2 - 230400 = 0$$

Supondo que:
$$(B + b)^2 = A (A > 0)$$
, $A^2 + 400 B - 230400 = 0$

Resolvendo a equação: $A_1 = 320 \ e \ A_2 = -720$

Voltando na suposição: $(B+b)^2 = A \rightarrow (B+b)^2 = 320 \rightarrow (B+b) = 8\sqrt{5}$ (6)

Colocando (6) em (1), vem:

$$A = \frac{(B+b)h}{2} \rightarrow A = \frac{10 \times 8\sqrt{5}}{2} \rightarrow A = 40\sqrt{5} \ cm^2$$
, Línea G)

Exame de Acesso 2007

148°) (**Exame 2007**) Simplifique a expressão: $\frac{1+\cos(2\alpha-2\pi)+\cos(4\alpha+2\pi)-\cos(6\alpha-\pi)}{\cos(2\pi-2\alpha)+2\cos^2(2\alpha+\pi)-1}$

Resp: a) $-\cos \alpha$ b) $1/2 \cos 4\alpha c$) $\sin 2\alpha d$) $2 \sin \alpha f$) $-1/2 \sin 4\alpha g$) $2 \cos 2\alpha h$) outro

Resolução:
$$\frac{1+\cos(2\alpha-2\pi)+\cos(4\alpha+2\pi)-\cos(6\alpha-\pi)}{\cos(2\alpha-2\pi)+2\cos^2(2\alpha+\pi)-1}$$

$$\frac{1+\left[\cos(4\alpha+2\pi)+\cos(2\alpha-2\pi)\right]-\cos(6\alpha-\pi)}{\cos(2\alpha-2\pi)+2\left[\cos(2\alpha+\pi)\right]^2-1}\quad (*)$$

Aplicando a transformação, $cos\alpha + cos\beta = 2cos\left(\frac{\alpha+\beta}{2}\right).cos\left(\frac{\alpha-\beta}{2}\right)$ para a expressão em parenteses, teremos;

$$[\cos(4\alpha + 2\pi) + \cos(2\alpha - 2\pi)] = 2\cos 3\alpha\cos(\alpha + 2\pi)$$

$$cos(\alpha + 2\pi) = cos\alpha$$

$$\rightarrow [\cos(4\alpha + 2\pi) + \cos(2\alpha - 2\pi)] = 2\cos 3\alpha \cos \alpha$$

$$\cos(6\alpha - \pi) = \cos6\alpha \cdot \cos\pi + \sin6\alpha \cdot \sin\pi = -\cos6\alpha$$

$$cos6\alpha = cos^23\alpha - sen^23\alpha \rightarrow cos(6\alpha - \pi) = -(cos^23\alpha - sen^23\alpha)$$

Nota: $cos^2 3\alpha + sen^2 3\alpha = 1$

No denominador: $cos(2\alpha - 2\pi) = cos2\alpha . cos2\pi + sen2\alpha . sen2\pi = cos2\alpha$

$$cos(2\alpha + \pi) = cos2\alpha. cos \pi - sen2\alpha. sen \pi = -cos2\alpha$$

Substituindo em (*), vem;

$$\frac{\cos^2 3\alpha + \sin^2 3\alpha + 2\cos 3\alpha\cos \alpha - \left[-(\cos^2 3\alpha - \sin^2 3\alpha)\right]}{\cos 2\alpha + 2\cos^2 2\alpha - 1}$$

$$=\frac{\cos^2 3\alpha + \sin^2 3\alpha + 2\cos 3\alpha\cos\alpha + \cos^2 3\alpha - \sin^2 3\alpha}{\cos 2\alpha + 2\cos^2 2\alpha - 1} = \frac{2\cos^2 3\alpha + 2\cos 3\alpha\cos\alpha}{\cos 2\alpha + (2\cos^2 2\alpha - 1)}$$

Nota: $(2\cos^2 2\alpha - 1) = \cos 4\alpha$

 $\frac{2\cos 3\alpha \left(\cos 3\alpha + \cos \alpha\right)}{\cos 2\alpha + \cos 4\alpha}$ (**) , Pela transformação da soma em producto temos:

 $(\cos 3\alpha + \cos \alpha) = 2\cos 2\alpha\cos \alpha e \cos 2\alpha + \cos 4\alpha = 2\cos 3\alpha\cos \alpha$

Substituindo em (**), vem; $\frac{2\cos 3\alpha \cdot (2\cos 2\alpha\cos\alpha)}{2\cos 3\alpha\cos\alpha} = 2\cos 2\alpha$, Línea g)

149°) (**Exame 2007**) As medianas de um triângulo são 5, 6 e 5 m. Achar a área do triângulo.

Resp:

a)
$$18.5 m^2 b$$
) $16 m^2 c$) $20.5 m^2 d$) $20 m^2 e$) $15 m^2 f$) $16.25 m^2 g$) $20.25 m^2 h$) outro

Resolução: $m_A = 6m$; $m_B = 5 m$, $m_C = 5 m$, A = ?

a área do triângulo é: $A = \frac{base \times h}{2}$

onde a base $base = a e h = m_A = 6 m$

A mediana relativa a A é:

$$m_A = \frac{\sqrt{2(b^2 + c^2) - a^2}}{2} \rightarrow 6 = \frac{\sqrt{2(b^2 + c^2) - a^2}}{2}$$

$$2b^2 + 2c^2 - a^2 = 144$$
 (I)

A mediana relativa a B é:

$$m_B = \frac{\sqrt{2(a^2+c^2)-b^2}}{2} \to 5 = \frac{\sqrt{2(a^2+c^2)-b^2}}{2}$$

$$2a^2 + 2c^2 - b^2 = 100$$
 (II)

A mediana relativa a C é:

$$m_C = \frac{\sqrt{2(a^2+b^2)-C^2}}{2} \rightarrow 5 = \frac{\sqrt{2(a^2+b^2)-c^2}}{2}$$

$$2a^2 + 2b^2 - c^2 = 100$$
 (III)

Resolvendo o sistema:
$$\begin{cases} 2\ b^2 + 2c^2 - a^2 = 144 \\ 2a^2 + 2c^2 - b^2 = 100 \\ 2a^2 + 2b^2 - c^2 = 100 \end{cases}, \ a = \frac{16}{3}\ m\ , b = \frac{2\sqrt{97}}{3}\ e\ c = \frac{\sqrt{10}}{3}$$

Logor temos: $A = \frac{16}{3} \times \frac{1}{2} \times 6 \rightarrow A = 16 \ m^2$, Línea b)

150°) (**Exame 2007**) Resolver a equação:
$$\frac{24}{x^2+2x-8} - \frac{15}{x^2+2x-3} = 2$$

Resp: a)
$$x_1 = 0$$
, $x_2 = 2$, $x_{3,4} = \frac{-1 \pm \sqrt{66}}{4}$ b) $x_1 = 0$, $x_2 = -1$, $x_{3,4} = \frac{-1 \pm \sqrt{62}}{2}$

$$c)x_1=0$$
 , $x_2=-2$, $x_{3,4}=\frac{2\pm 3\sqrt{68}}{4}$ $d)$ $x_1=0$, $x_2=-2$, $x_{3,4}=\frac{-2\pm \sqrt{66}}{2}$

e)
$$x_1 = 0$$
, $x_2 = -2$, $x_{3,4} = \frac{-1 \pm 2\sqrt{62}}{2}$ f) $x_1 = 1$, $x_2 = 2$, $x_{3,4} = \frac{3 \pm 2\sqrt{68}}{4}$

g)
$$x_1 = -2$$
, $x_2 = -1$, $x_{3,4} = \frac{3 \pm 2\sqrt{62}}{4}$ h) outro

Resolução:
$$\frac{24}{x^2 + 2x - 8} - \frac{15}{x^2 + 2x - 3} = 2 \rightarrow \frac{24}{x^2 + 2x - 3 - 5} - \frac{15}{x^2 + 2x - 3} = 2$$

Supondo que:
$$x^2 + 2x - 3 = t$$
, $\frac{24}{t-5} - \frac{15}{t} = 2 \rightarrow 2t^2 - 19t - 75 = 0$ $\left(t_1 = \frac{25}{2} \ e \ t_2 = -3\right)$

Para
$$t_1 = \frac{25}{2}$$
, $x^2 + 2x - 3 = \frac{25}{2} \rightarrow 2x^2 + 4x - 31 = 0$

$$\chi_{1,2} = \frac{-(4)\pm\sqrt{(4)^2 - 4(2)(-31)}}{2(2)} = -\frac{4\pm\sqrt{264}}{4} = \frac{-4\pm2\sqrt{66}}{4} = \frac{-2\pm\sqrt{66}}{2}$$

Para
$$t_2 = -3$$
, $x^2 + 2x - 3 = -3$ $\rightarrow x^2 + 2x = 0$ $\rightarrow (x_3 = 0 \ e \ x_4 = -2)$

A solução da equação é:
$$x_1=0$$
 , $x_2=-2$, $x_{3,4}=\frac{-2\pm\sqrt{66}}{2}$, Línea d)

151°) (Exame 2007) Resolver a inequação: $\sqrt{x+61} < x+5$

Resp: *a*)
$$[-5;0[\cup]3;+\infty[b)]-5;+\infty[c)]-61;-5] \cup [3;+\infty[d) [-12;-5] \cup [3;+\infty[e)]3;+\infty[f) [-61;-5[\cup [0;3[g) [-5;0] \cup]3;5] h) outro$$

Resolução: $\sqrt{x+61} < x+5$

Condição de existência:
$$\begin{cases} x + 61 \ge 0 & \rightarrow x \ge -61 \\ x + 5 > 0 & \rightarrow x > -5 \end{cases} \rightarrow s_1 =]-5; +\infty[$$

Resolvendo a equação: Elevando ambos os membros da igualdade ao quadrado:

$$(\sqrt{x+61})^2 < (x+5)^2 \rightarrow x+61 < x^2+10x+25 \rightarrow x^2+9x-36 > 0$$

$$(x_1 = 3 e x_2 = -12)$$

x	-∞	- 12 + ∞		3	
$x^2 + 9x - 36 > 0$	+	0	_	0 -	+

$$s_2 =]-\infty; -12[\cup]3; +\infty[$$

A solução da inequação é: $s = s_1 \cap s_2$

$$s = 3; +\infty$$

152°) (Exame 2007) Simplificar a expressão:

$$(6\log_a b \cdot \log_b a + 3 + \log_a b^{-6} + \log_a^2 b)^{\frac{1}{2}} - \log_a b$$
, se $a > 1$, $0 < b < a^3$

Resp: a) $2 \log_a b - 3$ b) - 3 c) $2 - 3 \log_b a$ d) 0 e) $\log_a b + 3$ f) $3 - 2 \log_a b$

g) 3 h) outro

Resolução: $(6 \log_a b \cdot \log_b a + 3 + \log_a b^{-6} + \log_a^2 b)^{\frac{1}{2}} - \log_a b$

 $(6\log_a b \cdot \log_b a + 3 - 6\log_a b + \log_a^2 b)^{\frac{1}{2}} - \log_a b$, mudando as bases:

$$\left(6\log_a b \cdot \frac{1}{\log_a b} + 3 - 6\log_a b + \log_a^2 b\right)^{\frac{1}{2}} - \log_a b$$

$$(6+3-6\log_a b + \log_a^2 b)^{\frac{1}{2}} - \log_a b \rightarrow (9-6\log_a b + \log_a^2 b)^{\frac{1}{2}} - \log_a b$$

 $(log_a^2b - 6 log_a b + 9)^{\frac{1}{2}} - log_a b$, nota: quadrado perfeito:

$$log_a^2b - 6log_ab + 9 = (log_ab - 3)^2$$
, assim temos:

 $\left[(\log_a b - 3)^2\right]^{\frac{1}{2}} - \log_a b$, simplificando os expoentes, fica:

$$\log_a b - 3 - \log_a b = -3$$
 , Línea b)

153°) (**Exame 2007**) Simplificar a expressão:
$$\frac{sen(\frac{5\pi}{2} + \frac{\alpha}{2})\left(1 + tg^2(\frac{3}{4}\alpha - \frac{\pi}{2})\right)}{cos^{-2}\frac{\alpha}{4}\left(tg^2(\frac{3\pi}{2} - \frac{\alpha}{4}) - tg^2(\frac{3}{4}\alpha - \frac{7}{2}\pi)\right)}$$

115) Resp:
$$a) \frac{\sqrt{3}}{4} \quad b) - \frac{1}{4} \quad c) \frac{\sqrt{2}}{8} \quad d) \quad 0 \quad e) - \frac{\sqrt{2}}{4} \quad f) \quad 1 \quad g) \quad 1/8 \quad h) \quad outro$$

Resolução:

$$\frac{sen\left(\frac{5\pi}{2} + \frac{\alpha}{2}\right)\left[1 + tg^2\left(\frac{3}{4}\alpha - \frac{\pi}{2}\right)\right]}{cos^{-2}\left(\frac{\alpha}{4}\right)\left[tg^2\left(\frac{3\pi}{2} - \frac{\alpha}{4}\right) - tg^2\left(\frac{3}{4}\alpha - \frac{7\pi}{2}\right)\right]}$$

Pela transformação: $sen(\alpha + \beta) = sen\alpha.cos\beta + sen\beta.cos\alpha$

$$sen\left(\frac{5\pi}{2} + \frac{\alpha}{2}\right) = \cos\left(\frac{\alpha}{2}\right)$$

$$\begin{aligned} & \operatorname{Pela transformação:} tg\left(\frac{3}{4}\alpha - \frac{\pi}{2}\right) = -\frac{\cos\frac{\pi}{4}\alpha}{\sin\frac{\pi}{4}\alpha} \; ; tg\left(\frac{3\pi}{2} - \frac{\alpha}{4}\right) = \frac{\cos\frac{\pi}{2}}{\sin\frac{\pi}{4}} \; ; tg\left(\frac{3}{4}\alpha - \frac{7\pi}{2}\right) = \\ & -\frac{\cos\frac{\pi}{4}\alpha}{\sin\frac{\pi}{4}\alpha} \\ & \frac{\cos\left(\frac{\alpha}{2}\right)\left[1 + \frac{\cos^2\frac{3}{4}\alpha}{\sin\frac{\pi}{2}\alpha}\right]}{\sin\frac{\pi}{2}\alpha} = \frac{\cos\left(\frac{\alpha}{2}\right)\left[\frac{\sin^2\frac{3}{4}\alpha + \cos^2\frac{3}{4}\alpha}{\sin\frac{\pi}{2}\alpha}\right]}{\frac{1}{\cos^2\left(\frac{\alpha}{4}\right)}\left[\frac{\sin^2\frac{3}{4}\alpha + \cos^2\frac{3}{4}\alpha}{\sin\frac{\pi}{2}\alpha}\right]} = \frac{\cos\left(\frac{\alpha}{2}\right)\left[\frac{\sin^2\frac{3}{4}\alpha + \cos^2\frac{3}{4}\alpha}{\sin\frac{\pi}{2}\alpha}\right]}{\frac{1}{\cos^2\left(\frac{\alpha}{4}\right)}\left[\frac{\sin^2\frac{3}{4}\alpha + \cos^2\frac{3}{4}\alpha}{\sin\frac{\pi}{2}\alpha}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{2}\right)}{\frac{1}{\cos^2\left(\frac{\alpha}{4}\right)}\left[\frac{\left[\sin\left(\frac{\alpha}{4}\alpha\right)\cos\left(\frac{\alpha}{2}\right)\right]^2 - \left[\sin\left(\frac{\alpha}{4}\right)\cos\left(\frac{3}{4}\alpha\right)\right]^2}{\sin^2\frac{\pi}{4}}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{4}\right)\cos\left(\frac{\alpha}{4}\right)}{\frac{1}{\cos^2\left(\frac{\alpha}{4}\right)}\left[\frac{\sin\left(\frac{\alpha}{4}\alpha\right)\cos\left(\frac{\alpha}{4}\right)}{2} + \frac{\cos\left(\frac{\alpha}{4}\right)\cos\left(\frac{3}{4}\alpha\right)}{\cos^2\frac{\alpha}{4}}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{4}\right)\cos\left(\frac{\alpha}{4}\right)}{\frac{1}{\cos^2\left(\frac{\alpha}{4}\right)}\left[\frac{\sin\left(\frac{\alpha}{4}\alpha\right)\cos\left(\frac{\alpha}{4}\right) + \sin^2\alpha}{2} + \frac{\cos\left(\frac{\alpha}{4}\right)\cos\left(\frac{\alpha}{4}\right)}{\cos^2\frac{\alpha}{4}}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{2}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\left(\frac{\alpha}{4}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{2}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}} + \frac{\cos\left(\frac{\alpha}{4}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\left(\frac{\alpha}{4}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{2}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}} + \frac{\cos\left(\frac{\alpha}{4}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\left(\frac{\alpha}{4}\right)\cos^2\frac{\alpha}{4}}\right]} = \\ & \frac{\cos\left(\frac{\alpha}{2}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}} = \frac{\cos\left(\frac{\alpha}{4}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\frac{\alpha}{4}} = \frac{\cos\left(\frac{\alpha}{4}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}}{\sin^2\frac{\alpha}{4}} = \\ & \frac{\cos\left(\frac{\alpha}{2}\right)\cos^2\left(\frac{\alpha}{4}\right)\sin^2\frac{\alpha}{4}\sin^2\frac{\alpha}{4}}}{\sin^2\frac{\alpha}{4}\cos^2\frac{\alpha$$

154°) (**Exame 2007**) Resolver a equação: $cot^4x = cos^22x - 1$

Resp: a)
$$x = \frac{\pi}{4} + \pi k$$
 b) $x = (-1)^k \frac{\pi}{4} + \pi k$ c) $x = \frac{\pi}{2} + 2\pi k$ d) $x = \frac{\pi}{2} + \pi k$

e)
$$x = (-1)^k \frac{\pi}{4} + \frac{\pi k}{2}$$
 f) $x = \frac{\pi}{2} + \frac{\pi k}{2}$ g) $x = \pm \frac{\pi}{2} + 4\pi k$ h) outro

Resolução:
$$\cot^4 x = \cos^2 2x - 1$$
, $\cos 2x = 2\cos^2 x - 1$ e $\cot^4 x = \frac{\cos^4 x}{\sin^4 x}$

$$\frac{\cos^4 x}{\sin^4 x} = (2\cos^2 x - 1)^2 - 1 \rightarrow \frac{\cos^4 x}{\sin^4 x} = 4\cos^4 x - 4\cos^2 x + 1 - 1$$

$$\cos^4 x = 4\cos^2 x \; (\cos^2 x - 1)sen^4 x \rightarrow \cos^4 x = -4\cos^2 x \; (1-\cos^2 x)sen^4 x$$

$$cos^4x = -4 cos^2x sen^6x \rightarrow cos^4x + 4 cos^2x sen^6x = 0 \rightarrow$$

 $cos^2x[cos^2x + 4sen^6x] = 0$, anulando os productos:

$$cos^2 x = 0 \rightarrow cos x = 0 \rightarrow x = \frac{\pi}{2} + \pi k$$

$$cos^2x + 4sen^6x = 0 \rightarrow 1 - sen^2x + 4sen^6x = 0 \rightarrow 4sen^6x - sen^2x + 1 = 0$$

Supondo que: $sen^2x = t$, $4t^3 - t + 1 = 0$, esta equação cúbica não tem raízes reais.

A solução da equação é: $x = \frac{\pi}{2} + \pi k$, Línea d)

155°) (**Exame 2007**) Achar a área do triângulo se os seus lados são 35 e 14 cm e a bissetriz do ângulo entre estes dois lados é 12 cm.

$$resp: a) 242 cm^2$$
 b) 235,2 cm^2 c) 240,5 cm^2 d) 236 cm^2 e) 234,5 cm^2

$$f) 230,2 cm^2$$
 $g) 240 cm^2$ $h) outro$

Resolução:
$$c=35\ cm$$
 , $b=14\ cm$, $l_A=12\ cm$, $A=?$

A área do triângulo pode ser calculado pela relação:

$$A = \sqrt{p(p-a)(p-b)(p-c)}$$

Onde *p* é o semi perímetro

$$p = \frac{a+b+c}{2}$$

O comprimento da bissetriz do ângulo é:
$$l_A=\frac{\sqrt{bc[(b+c)^2-a^2]}}{b+c} \to 12=\frac{\sqrt{14\times35[(14+35)^2-a^2]}}$$

$$705.6 = 2401 - a^2 \rightarrow a \approx 41 \ cm$$

$$p = \frac{41 + 14 + 35}{2} \rightarrow p = 45 \ cm$$

$$A = \sqrt{45(45 - 41)(45 - 14)(45 - 35)} \rightarrow A = 236 \text{ cm}^2$$

156°) (Exame 2007) Simplificar a expressão:

$$\log_2 2x^2 + \log_2 x \cdot x^{\log_x(\log_2 x + 1)} + \frac{1}{2} \log_4^2 x^4 + 2^{-3 \log_\frac{1}{2} \log_2 x}$$

Resp: a)
$$(\log_2 x - 1)^2$$
 b) $2\log_2 x + 1$ c) $(2\log_2 x - 1)^{-1}$ d) $(\log_2 x + 1)^3$

e)
$$(2\log_2 x - 1)^2$$
 f) $(\log_2 x - 1)^3$ g) $(3\log_2 x + 2)^{-1}$ h) outro

Resolução:
$$\log_2 2x^2 + \log_2 x \cdot x^{\log_x(\log_2 x + 1)} + \frac{1}{2} \log_4^2 x^4 + 2^{-3 \log_{\frac{1}{2}} \log_2 x}$$

$$\log_2 2 + \log_2 x^2 + \log_2 x \cdot x^{\log_2(\log_2 x + 1)} + \frac{1}{2} \log_4^2 x^4 + 2^{3\log_2\log_2 x}$$

Nota:
$$2^{3\log_2\log_2 x} = \log_2^3 x$$
, $x^{\log_x(\log_2 x + 1)} = \log_2 x + 1$

$$\log_2 2 + 2\log_2 x + \log_2 x(\log_2 x + 1) + \frac{1}{2}\log_4^2 x^4 + \log_2^3 x$$

$$1 + 2\log_2 x + \log_2^2 x + \log_2 x + \frac{1}{2} \left(\frac{4}{2}\log_2 x\right)^2 + \log_2^3 x$$

$$\log_2^3 x + 3\log_2 x + \log_2^2 x + 2\log_2^2 x + 1 = \log_2^3 x + 3\log_2^2 x + 3\log_2 x + 1$$

Nota:
$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + 1$$
, logo:

$$log_2^3 x + 3 log_2 x + 3 log_2^2 x + 1 = (log_2 x + 1)^3$$
, Línea d)

157°) (Exame 2007) Simplificar a expressão:

$$\frac{sen^2(135^{\circ}-\alpha)-sen^2(210^{\circ}-\alpha)-sen195^{\circ}\cos(165^{\circ}-2\alpha)}{\cos^2(255^{\circ}+\alpha)-\cos^2(210^{\circ}-\alpha)+sen15^{\circ}sen(75^{\circ}-2\alpha)}$$

Resp: a) 1 b) 0 c) -2 d) 1,5 e) -1 f)
$$1/2$$
 g) -1/4 h) outro

Resolução:

$$\frac{sen^2(135^{\circ}-\alpha)-sen^2(210^{\circ}-\alpha)-sen195^{\circ}\cos(165^{\circ}-2\alpha)}{\cos^2(225^{\circ}+\alpha)-\cos^2(210^{\circ}-\alpha)+sen15^{\circ}sen(75^{\circ}-2\alpha)}$$

$$\frac{[sen(135^{\circ}-\alpha)]^2 - [sen(210^{\circ}-\alpha)]^2 - sen195^{\circ}\cos(165^{\circ}-2\alpha)}{[cos(225^{\circ}+\alpha)]^2 - [cos(210^{\circ}-\alpha)]^2 + sen15^{\circ}sen(75^{\circ}-2\alpha)} \quad (1)$$

Sabe-se que:

$$sen(135^{\circ} - \alpha) = \frac{\sqrt{2}}{2}(\cos\alpha + \sin\alpha) \quad (2), sen(210^{\circ} - \alpha) = -\frac{1}{2}(\cos\alpha - \sqrt{3}\sin\alpha)$$
(3)

$$cos(225^{\circ} + \alpha) = -\frac{\sqrt{2}}{2}(\cos\alpha - \sin\alpha) \quad (4)$$

$$cos(210^{\circ} - \alpha) = -\frac{1}{2} (\sqrt{3} \cos \alpha + \sin \alpha)$$

Pela transformação: $sen\alpha.cos\beta = \frac{sen(\alpha-\beta)+sen(\alpha+\beta)}{2}$

$$sen195^{\circ}\cos(165^{\circ}-2\alpha) = \frac{sen(30^{\circ}+2\alpha)+sen(360^{\circ}-2\alpha)}{2}$$

$$sen195^{\circ}\cos(165^{\circ}-2\alpha) = \frac{\frac{1}{2}\cos 2\alpha + \frac{\sqrt{3}}{2}sen2\alpha - sen(2\alpha)}{2}$$

$$sen195^{\circ}\cos(165^{\circ} - 2\alpha) = \frac{\cos 2\alpha + \sqrt{3} \operatorname{sen2}\alpha - 2\operatorname{sen}(2\alpha)}{4} \quad (5)$$

Pela transformação:
$$sen\alpha$$
. $sen\beta = \frac{\cos(\alpha-\beta)-\cos(\alpha+\beta)}{2}$

$$sen15^{\circ} \operatorname{sen}(75^{\circ} - 2\alpha) = \frac{\cos(-60^{\circ} + 2\alpha) - \cos(90^{\circ} - 2\alpha)}{2}$$

$$sen15^{\circ}\cos(75^{\circ}-2\alpha) = \frac{\cos[-(60^{\circ}-2\alpha)]-\cos(90^{\circ}-2\alpha)}{2}$$

$$sen15^{\circ}\cos(75^{\circ}-2\alpha) = \frac{\frac{1}{2}cos2\alpha + \frac{\sqrt{3}}{2}sen2\alpha - sen2\alpha}{2}$$

$$sen15^{\circ}\cos(75^{\circ} - 2\alpha) = \frac{\cos 2\alpha + \sqrt{3} \operatorname{sen2}\alpha - 2\operatorname{sen2}\alpha}{4}$$
 (6)

Substituindo (2), (3), (4), (5) e (6) em (1), vem;

$$\begin{split} & \left[\frac{\sqrt{2}}{2}(\cos\alpha + \sin\alpha)\right]^2 - \left[-\frac{1}{2}\left(\cos\alpha - \sqrt{3}\, sen\alpha\right)\right]^2 - \left[\frac{\cos2\alpha + \sqrt{3}\, sen2\alpha - 2sen(2\alpha)}{4}\right] \\ & \left[-\frac{\sqrt{2}}{2}(\cos\alpha - sen\alpha)\right]^2 - \left[-\frac{1}{2}\left(\sqrt{3}\, \cos\alpha + sen\alpha\right)\right]^2 + \left[\frac{\cos2\alpha + \sqrt{3}\, sen2\alpha - 2sen\alpha}{4}\right] \end{split}$$

$$=\frac{\frac{1+sen2\alpha}{2} \frac{\cos^{2}\alpha+\sqrt{3}sen2\alpha-3sen^{2}\alpha}{2} \frac{\cos2\alpha-\sqrt{3}sen2\alpha+2sen2\alpha}{4}}{\frac{1-sen2\alpha}{2} \frac{3\cos^{2}\alpha-2\sqrt{3}sen\alpha\cos\alpha-sen^{2}\alpha}{4} + \frac{\cos2\alpha+\sqrt{3}sen2\alpha-2sen2\alpha}{4}}$$

$$=\frac{\frac{2+2sen2\alpha-cos^2\alpha+\sqrt{3}sen2\alpha-3sen^2\alpha-cos2\alpha-\sqrt{3}sen2\alpha+2sen2\alpha}{4}}{\frac{2-2sen2\alpha-3cos^2\alpha-\sqrt{3}sen2\alpha-sen^2\alpha+cos2\alpha+\sqrt{3}sen2\alpha-2sen2\alpha}{4}}$$

$$= \frac{4sen2\alpha - cos^2\alpha - 3sen^2\alpha - cos2\alpha + 2}{-4sen2\alpha - 3cos^2\alpha - sen^2\alpha + cos2\alpha + 2}$$

$$=\frac{4sen2\alpha-cos^2\alpha-3sen^2\alpha-cos2\alpha+2}{-(4sen2\alpha+3cos^2\alpha+sen^2\alpha-cos2\alpha-2)}, sen^2\alpha=1-cos^2\alpha$$

$$= \frac{4sen2\alpha - cos^2\alpha - 3 + 3cos^2\alpha - cos2\alpha + 2}{-(4sen2\alpha + 3cos^2\alpha + 1 - cos^2\alpha - cos2\alpha - 2)}$$
$$= \frac{(4sen2\alpha + 2cos^2\alpha - cos2\alpha - 1)}{-(4sen2\alpha + 2cos^2\alpha - cos2\alpha - 1)} = -1$$

158°) (Exame 2007) Resolver a equação: sen6x + 2 = 2 cos4x

Resp:
$$a)x = (-1)^k \frac{\pi}{12} + \frac{\pi k}{2}$$
 $b) x = (-1)^{k+1} \frac{\pi}{6} + \pi k$ $c) x = \frac{\pi}{12} + \pi k$ $d) x = x = \pi k \cup x = \frac{\pi}{12} + \frac{\pi k}{2}$ $e) x = \frac{\pi}{6} + 2\pi k$ $f) x = \frac{\pi k}{2} \cup x = (-1)^{k+1} \frac{\pi}{12} + \frac{\pi k}{2} g) x = (-1)^k \frac{\pi}{12} + \pi k$ $h) outro$

Resolução: sen6x + 2 = 2 cos4x, sen6x = -2(1 - cos4x)

$$sen6x = sen(4x + 2x) = sen4x.cos2x + sen2x.cos4x e 1 - cos4x = 2sen^22x$$

$$sen4x.cos2x + sen2x.cos4x = -4sen^22x$$
, $sen4x = 2 sen2x cos2x$

$$2 \operatorname{sen2x} \cos^2 2x + \operatorname{sen2x} \cdot \cos 4x + 4 \operatorname{sen}^2 2x = 0 \rightarrow$$

 $sen2x(2cos^22x + cos4x + 2 sen2x) = 0$, anulando os productos,

$$sen2x = 0 \rightarrow 2x = \pi k \rightarrow x = \frac{\pi k}{2}$$

$$2\cos^2 2x + \cos 4x + 4 \sin 2x = 0$$
, $\cos 4x = \cos^2 2x - \sin^2 2x$

$$2\cos^2 2x + \cos^2 2x - \sin^2 2x + 4 \sin 2x = 0$$

$$3\cos^2 2x - \sin^2 2x + 2 \sin 2x = 0$$
, $\cos^2 2x = 1 - \sin^2 2x$

$$4sen^22x - 4sen2x - 3 = 0$$
 , supondo que: $sen2x = t \ (-1 \le t \le 1)$

$$4t^2 - 4t - 3 = 0 \rightarrow \left(t = -\frac{1}{2} \ e \ t = \frac{3}{2} \ regeitado\right)$$

$$sen2x = -\frac{1}{2}$$
, $\left(\alpha = \frac{\pi}{6}; \alpha < 0\right)$ fórmula dos seno para: $x = (-1)^{k+1}\alpha + \pi k$

$$2x = (-1)^{k+1} \frac{\pi}{6} + \pi k \to x = (-1)^{k+1} \frac{\pi}{12} + \frac{\pi k}{2}$$
, A solução da equação é:

$$x = \frac{\pi k}{2} \cup x = (-1)^{k+1} \frac{\pi}{12} + \frac{\pi k}{2}$$
, Línea f)

159°) (**Exame 2007**) No triângulo ABC o valor do ângulo A e maior em duas vezes que o valor do ângulo B e os seus comprimentos dos lados opostos a estes ângulo são iguais 12 e 8 cm correspondentemente. Achar o comprimento do terceiro lado do triângulo.

Resp: a) 9 cm b) 11,2 cm c) 10 cm d) 9,5 cm e) 10,25 cm f) 11,2 cm g) 9,25 cm h) outro

Resolução: $\hat{A}=2~\hat{B},\,b=12~cm~e~c=8~cm$, a=?

Pela lei do senos:

$$\frac{a}{\mathit{sen}\hat{c}} = \frac{b}{\mathit{sen}\hat{A}} = \frac{c}{\mathit{sen}\hat{B}}$$

$$\frac{b}{\operatorname{sen}\hat{A}} = \frac{c}{\operatorname{sen}\hat{B}} \to \frac{12}{\operatorname{sen}2\hat{B}} = \frac{8}{\operatorname{sen}\hat{B}}$$

$$\frac{12}{2 \operatorname{sen} \hat{B} \operatorname{cos} \hat{B}} = \frac{8}{\operatorname{sen} \hat{B}} \to \hat{B} = \operatorname{arcos} \left(\frac{12}{16}\right) \to \hat{B} \approx 41,4^{\circ}$$

$$\hat{C} + 3\hat{B} = 180 \rightarrow \hat{C} = 55.8^{\circ}$$

$$\frac{a}{sen\hat{c}} = \frac{c}{sen\hat{B}} \rightarrow a = \frac{c \ sen\hat{c}}{sen\hat{B}} \rightarrow a = \frac{8.sen55,8^{\circ}}{sen41,4^{\circ}} \rightarrow a = 10,0 \ cm$$
, Línea c)

160°) (**Exame 2007**) Resolver a equação: $(x^2 - 6x)^2 - 2(x - 3)^2 = 81$

Resp: a)
$$x_{1,2} = 3$$
; $x_{3,4} = 2 \pm 3\sqrt{5}$ b) $x_{1,2} = -3$; $x_{3,4} = 3 \pm \sqrt{5}$

c)
$$x_{1,2} = -3$$
; $x_{3,4} = 2 \pm \sqrt{5}$ d) $x_{1,2} = 3$; $x_{3,4} = 3\sqrt{5} \pm 2$ e) $x_{1,2} = \pm 3$; $x_{3,4} = \frac{\sqrt{5} \pm 1}{2}$

f)
$$x_{1,2} = 3$$
; $x_{3,4} = 3 \pm 2\sqrt{5}$ g) $x_{1,2} = 3$; $x_{3,4} = \frac{1 \pm 2\sqrt{5}}{2}$ h) outro

Resolução:
$$(x^2 - 6x)^2 - 2(x - 3)^2 = 81 \rightarrow (x^2 - 6x)^2 - 9^2 = 2(x - 3)^2$$

$$(x^2 - 6x - 9)(x^2 - 6x + 9) = 2(x - 3)^2$$

Diferença de quadrados no dois 1º membros da equação:

$$(x^2 - 6x - 9)(x^2 - 6x + 9) - 2(x - 3)^2 = 0 \rightarrow (x^2 - 6x - 9)(x - 3)^2 - 2(x - 3)^2 = 0$$

$$(x-3)^2[x^2-6x-9-2]=0 \rightarrow (x-3)(x^2-6x-11)=0$$

anulando os productos:

$$(x-3)^2 = 0 \rightarrow x_{1,2} = 3$$

$$(x^2 - 6x - 11) = 0 \rightarrow x_{3.4} = 3 \pm 2\sqrt{5}$$

A solução da equação é: $x_{1,2}=3$; $x_{3,4}=3\pm2\sqrt{5}$, Línea f)

161°) (Exame 2007) Resolver a inequação:
$$\sqrt{3x-x^2} < 4-x$$

Resp: a) $[0; 4[b] [0; 3[\cup]4; +\infty[c) [3; +\infty[d) [0; 3]e) [3; 4[\cup]4; +\infty[d) [0; 3]e)$

f)]4;
$$+\infty$$
[*g*)]0; 3[*h*) outro

Reolução: $\sqrt{3x - x^2} < 4 - x$, condição de existência:

$$\begin{cases} 3x - x^2 \ge 0 \to x^2 - 3x \le 0 \ (x_1 = 0 \ e \ x_2 = 3), \ x \in [0; 3] \\ 4 - x > 0 \to x - 4 < 0 \to x < 4, \ x \in] -\infty, 4[\end{cases}$$

$$s_1 = [0; 3]$$

Resolvendo a inequação: / ()²:

$$\left(\sqrt{3x-x^2}\right)^2 < (4-x)^2 \to 3x - x^2 < 16 - 8x + x^2 \to 2x^2 - 11x + 16 > 0$$

 $\Delta < 0$; $\not\equiv x_{1,2}$ em R, a solução da inequação é: S = [0; 3], Línea d)

162°) (**Exame 2007**) Simplificar a expressão:

$$\left((\log_b^4 a + \log_a^4 b + 2)^{\frac{1}{2}} + 2 \right)^{\frac{1}{2}} - \log_b a - \log_a b , (0 < a < 1; 0 < b < 1)$$

Resp:
$$a$$
) 1 b) $\log_a b + \log_b a$ c) -1 d) $-2 (\log_a b + \log_b a)$ e) 0 f) -2

$$g) \log_a b - \log_b a$$
 $h) outro$

Resolução:
$$\left((\log_b^4 a + \log_a^4 b + 2)^{\frac{1}{2}} + 2 \right)^{\frac{1}{2}} - \log_b a - \log_a b$$

Fazendo mudança de base:

$$\left(\left(\frac{1}{\log_a^4 b} + \log_a^4 b + 2 \right)^{\frac{1}{2}} + 2 \right)^{\frac{1}{2}} - \frac{1}{\log_a b} - \log_a b$$

$$\left(\left(\frac{\log_a^8 b + 2\log_a^4 b + 1}{\log_a^4 b} \right)^{\frac{1}{2}} + 2 \right)^{\frac{1}{2}} - \frac{1}{\log_a b} - \log_a b ,$$

nota:
$$log_a^8b + 2log_a^4b + 1 = (log_a^4b + 1)^2$$

$$\left(\left(\frac{\left(\log_a^4b+1\right)^2}{\log_a^4b}\right)^{\frac{1}{2}}+2\right)^{\frac{1}{2}}-\log_ba-\log_ab$$
, simplificando os expoentes, vem:

$$\left(\frac{\log_a^4 b + 1}{\log_a^2 b} + 2\right)^{\frac{1}{2}} - \log_b a - \log_a b = \left(\frac{\log_a^4 b + 2\log_a^2 b + 1}{\log_a^2 b}\right)^{\frac{1}{2}} - \frac{1}{\log_a b} - \log_a b$$

nota:
$$log_a^4b + 2log_a^2b + 1 = (log_a^2b + 1)^2$$

$$\left(\frac{(\log_a^2 b + 1)^2}{\log_a^2 b}\right)^{\frac{1}{2}} - \frac{1}{\log_a b} - \log_a b = \frac{\log_a^2 b + 1}{\log_a b} - \frac{1}{\log_a b} - \log_a b$$

$$= \frac{\log_a^2 b + 1 - 1 - \log_a^2 b}{\log_a b} = 0, \text{ Linea e}$$

163°) (Exame 2007) Simplificar a expressão:

$$sen^2\left(\frac{3}{2}\pi - \alpha\right)(tg^2\alpha - 1)cotg\left(\alpha - \frac{5}{4}\pi\right)sen^{-2}\left(\frac{5}{4}\pi + \alpha\right)$$

Resp: a) 2 b) 0 c)
$$-1$$
 d) $1/2$ e) $-1/4$ f) 1 g) $-1/2$ h) outro

Resolução:

$$sen^{2}\left(\frac{3\pi}{2}-\alpha\right).\left(tg^{2}\alpha-1\right)cotg\left(\alpha-\frac{5\pi}{4}\right)sen^{-2}\left(\alpha+\frac{5\pi}{4}\right)$$

$$\frac{\left[sen\left(\frac{3\pi}{2}-\alpha\right)\right]^2\left(tg^2\alpha-1\right)cotg\left(\alpha-\frac{5\pi}{4}\right)}{\left[sen\left(\alpha+\frac{5\pi}{4}\right)\right]^2}$$

Pela transformação: $sen(\alpha + \beta) = sen\alpha. cos\beta + sen\beta. cos\alpha$

$$sen\left(\frac{3\pi}{2} - \alpha\right) = -cos\alpha$$

Pela transformação:
$$cotg(\alpha - \beta) = \frac{cotg\alpha . cotg\beta + 1}{cot\beta - cotg}$$

$$\cot g \left(\alpha - \frac{5\pi}{4}\right) = \frac{\cot g \alpha \cdot \cot g \frac{5\pi}{4} + 1}{\cot g \frac{5\pi}{4} - \cot g \alpha} = \frac{\cot g \alpha + 1}{1 - \cot g \alpha}$$

$$sen\left(\alpha + \frac{5\pi}{4}\right) = -\frac{\sqrt{2}}{2} \left(sen\alpha + cos\alpha\right)$$

$$\frac{[-\cos\alpha]^2(tg^2\alpha-1)\binom{\cot g\alpha+1}{1-\cot g\alpha}}{\left[-\frac{\sqrt{2}}{2}(sen\alpha+\cos\alpha)\right]^2} = \frac{\cos^2\alpha(tg^2\alpha-1)\binom{\frac{\cos\alpha}{sen\alpha}+1}{\frac{1}{2}(sen^2\alpha+2sen\alpha\cos\alpha+\cos^2\alpha)}}{\frac{1}{2}(sen^2\alpha+2sen\alpha\cos\alpha+\cos^2\alpha)}$$

$$=\frac{2\cos^{2}\alpha\left(\frac{sen^{2}\alpha}{\cos^{2}\alpha}-1\right)\left(\frac{\frac{sen\alpha+\cos\alpha}{sen\alpha-\cos\alpha}}{\frac{sen\alpha}{sen\alpha}}\right)}{(1+2sen\alpha\cos\alpha)}=\frac{2\cos^{2}\alpha\left(\frac{sen^{2}\alpha-\cos^{2}\alpha}{\cos^{2}\alpha}\right)\left(\frac{sen\alpha+\cos\alpha}{sen\alpha-\cos\alpha}\right)}{(1+sen2\alpha)}=$$

$$=\frac{2[(sen^{2}\alpha-cos^{2}\alpha)][\frac{(sen\alpha+cos\alpha)}{(sen\alpha-cos\alpha)}]}{(1+sen2\alpha)}=\frac{2[(sen\alpha-cos\alpha)(sen\alpha+cos\alpha)][\frac{(sen\alpha+cos\alpha)}{(sen\alpha-cos\alpha)}]}{(1+sen2\alpha)}=$$

$$\frac{2(sen\alpha+cos\alpha)(sen\alpha+cos\alpha)}{(1+sen2\alpha)} = \frac{2((sen^2\alpha+2sen\alpha cos\alpha+cos^2\alpha))}{(1+sen2\alpha)}$$

$$=\frac{2(1+2\,sen\alpha\,cos\alpha)}{(1+\,sen2\alpha)}=\frac{2(1+\overline{sen2\alpha})}{(1+\,\overline{sen2\alpha})}=2$$
, Línea a)

164°) (Exame 2007) Resolver a equação: sen2x + 2cotgx = 3

Resp: a)
$$x = \pm \frac{\pi}{4} + 2\pi k$$
 b) $\pm \frac{\pi}{4} + \pi k$ c) $x = \frac{3\pi}{4} + 2\pi k$ d) $x = \frac{\pi}{4} + \frac{\pi k}{2}$ e) $x = \frac{\pi}{4} + 2\pi k$ f) $x = \frac{\pi}{4} + \pi k$ g) $x = \pm \frac{3\pi}{4} + 2\pi k$ h) outro

Resolução: sen2x + 2cotgx = 3, sen2x = 2 senx cosx e $cotgx = \frac{cosx}{senx}$

$$2 \operatorname{senx} \operatorname{cosx} + \frac{2 \operatorname{cosx}}{\operatorname{senx}} = 3 \to \operatorname{cosx} \left(\frac{2 \operatorname{sen}^2 x + 2}{\operatorname{senx}} \right) = 3$$

$$cosx(2sen^2x + 2) = 3 \ senx \rightarrow (2sen^2x + 2) = \frac{3 \ senx}{cosx} \rightarrow 2sen^2x + 2 = 3 \ tgx$$

Sabe-se que: $sen^2x = \frac{tg^2x}{1+tg^2x}$

$$\frac{2tg^2x}{1+tg^2x} + 2 = 3 tgx \rightarrow 4tg^2x + 2 = 3 tgx + 3tg^3x \rightarrow$$

$$3tg^3x - 4tg^2x + 3tgx - 2 = 0$$
, supondo que: $tgx = t$

 $3t^3 - 4t^2 + 3t - 2 = 0$, reduzindo pelo método de chaves:

 $(t-1)(3t^2-t+2)=0$, anulando os productos,

$$t-1=0 \to t=1$$
, $3t^2-t+2=0 \to (\Delta < 0, \nexists t_{1,2} em R)$

Voltando na suposição: $tgx = 1 \rightarrow x = \frac{\pi}{4} + \pi k$, Línea f)

165°) (Exame 2007) Calcular o comprimento da bissetriz do ângulo A do triângulo ABC se os comprimentos dos lados são a=18~cm, b=15~cm, c=12~cm.

Resp:

a)
$$16\ cm\ b)\ 15,5\ cm\ c)\ 12\ cm\ d)\ 13,5\ cm\ e)\ 10\ cm\ f)\ 11,5\ cm\ g)\ 14\ cm\ h)\ outro$$

Resolução: $a=18\ cm,\ b=15\ cm$, $c=12\ cm,l_A=?$

O comprimento da bissetriz do ângulo é:

$$l_A = \frac{\sqrt{bc[(b+c)^2 - a^2]}}{b+c} \rightarrow l_A = \frac{\sqrt{15 \times 12[(15+12)^2 - 18^2]}}{15+12}$$

 $l_A = 10 \ cm$, Línea e)

166°) (**Exame 2007**) Resolver a equação:
$$\frac{x}{x+1} + \frac{x+1}{x+2} + \frac{x+2}{x} = \frac{25}{6}$$

Resp: a)
$$x_1 = 2$$
; $x_{2,3} = 1 \pm \frac{\sqrt{5}}{5}$ b) $x_1 = 1$; $x_{2,3} = -1 \pm \frac{2\sqrt{2}}{7}$ c) $x_1 = 1$; $x_{2,3} = 1 \pm \frac{\sqrt{7}}{5}$

d)
$$x_1 = 1$$
; $x_{2,3} = -2 \pm \frac{2\sqrt{7}}{7}$ e) $x_1 = 1$; $x_{2,3} = 2 \pm \frac{\sqrt{5}}{7}$ f) $x_1 = 1$; $x_{2,3} = -1 \pm \frac{2\sqrt{7}}{5}$

$$g(x_1) = 1$$
; $x_{2,3} = \frac{1}{2} \pm \frac{\sqrt{7}}{3}$ h) outro

Resolução: $\frac{x}{x+1} + \frac{x+1}{x+2} + \frac{x+2}{x} = \frac{25}{6}$, vamos achar o denominador comum:

$$\frac{x(x+2)x+(x+1)x(x+1)+(x+2)(x+1)(x+2)}{x(x+1)(x+2)} = \frac{25}{6}$$

$$\frac{x^3 + 2x^2 + x^3 + 2x^2 + x + x^3 + 5x^2 + 8x + 4}{x^3 + 3x^2 + 2x} = \frac{25}{6} \rightarrow \frac{3x^3 + 9x^2 + 9x + 4}{x^3 + 3x^2 + 2x} = \frac{25}{6}$$

$$18x^3 + 54x^2 + 54x + 24 = 25x^3 + 75x^2 + 50x$$

 $7x^3 + 21x^2 - 4x - 24 = 0$, dividindo toda a expressão com o método de chave com o binómio (x - 1):

 $(x-1)(7x^2 + 28x + 24) = 0$, anulando os productos:

$$x - 1 = 0 \rightarrow x_1 = 1$$

$$7x^2 + 28x + 24 = 0 \rightarrow x_{2,3} = -2 \pm \frac{2\sqrt{7}}{7}$$

A solução da equação é: $x_1 = 1$; $x_{2,3} = -2 \pm \frac{2\sqrt{7}}{7}$, Línea d)

167°) (Exame 2007) Resolver a inequação: $x-3 < \sqrt{x-2}$

Resp: a)
$$\left[3; \frac{7+\sqrt{5}}{2} \right[b) \left[2; 3\right] \cup \left[\frac{7+\sqrt{5}}{2}; +\infty\right[c) \left[\frac{7-\sqrt{5}}{2}; +\infty\right[d) \left[2; 3\right] e\right]$$

$$\left[2; \frac{7+\sqrt{5}}{2} \left[f\right) \left[\frac{7-\sqrt{5}}{2}; 3 \right] \cup \left] \frac{7+\sqrt{5}}{2}; +\infty \left[g\right) \right] \frac{7+\sqrt{5}}{2}; +\infty \left[h\right) outro$$

A inequação cumpre-se nas seguintes condições:

I°)
$$\begin{cases} x-2 \ge 0 \\ x-3 < 0 \end{cases}$$
 II°) $\begin{cases} x-2 \ge 0 \\ x-3 \ge 0 \\ \sqrt{x+46} > x+4 \end{cases}$

II°)
$$\begin{cases} [3; +\infty[\\ x^2 - 7x + 11 < 0 \ (x_{1,2} = \frac{7 \pm \sqrt{5}}{2}) \end{cases}$$

х	-∞	$\frac{7-\sqrt{5}}{2} + \infty$		$\frac{7+\sqrt{5}}{2}$		
$x^2 + 9x - 36 > 0$	+	О	-	O	+	

$$II^{o}) \begin{cases} [3; +\infty[\\]\frac{7-\sqrt{5}}{2}; \frac{7+\sqrt{5}}{2}[\\ \\ S(I) = [3; \frac{7+\sqrt{5}}{2}] \end{cases} +\infty$$

A solução da inequação é: $S = S(I) \cup S(II)$, $S = \left[2; \frac{7+\sqrt{5}}{2}\right]$, Línea e)

168°) (Exame 2007) Simplificar a expressão:
$$\frac{\log_a b - \log_{\sqrt{a}} \sqrt{b}}{\log_{\frac{a}{b^4}} b - \log_{\frac{a}{b^6}} b} : \log_b(a^3 b^{-12})$$

Resp: a) $2 \log_a b - 1$ b) $\log_b a$ c) $\log_a b + \log_b a$ d) 1 e) 0 f) $\log_a b$ g) $\log_b a + 1$ h) outro

Resolução:
$$\frac{\log_a b - \log_{\sqrt{a}} \sqrt{b}}{\log_{\frac{a}{b^4}} b - \log_{\frac{a}{b^6}} b} : \log_b(a^3 b^{-12})$$

$$\frac{\log_a b - \log_{\frac{1}{2}} b^{1/2}}{\frac{\frac{a^{\frac{1}{2}}}{\log_b \frac{a}{4}} - \frac{1}{\log_b \frac{a}{4}}}{\frac{1}{\log_b \frac{a}{4}} - \frac{1}{\log_b \frac{a}{4}}} \times \left(\frac{1}{\log_b a^3 + \log_b b^{-12}}\right) = \frac{\frac{1}{\log_b a} - \frac{1}{\log_b \frac{1}{2}} \left(\frac{\frac{1}{2}}{b^3}\right)}{\frac{1}{\log_b a - 4} - \frac{1}{\log_b a - 6}} \times \left(\frac{1}{3 \log_b a - 12}\right)$$

$$= \frac{\frac{1}{\log_b a} - \frac{1}{\log_b a - 6}}{\frac{\log_b a - 6 - \log_b a + 4}{(\log_b a - 4)(\log_b a - 6)}} \times \left[\frac{1}{3} \left(\frac{1}{\log_b a - 4} \right) \right] = \frac{\frac{1}{\log_b a} - \frac{1}{\log_b a - 4}}{\frac{2}{(\log_b a - 4)(\log_b a - 6)}} \times \left[\frac{1}{3} \left(\frac{1}{\log_b a - 4} \right) \right]$$

$$= \frac{\frac{-6}{\log_b a(\log_b a - 6)}}{\frac{-2}{(\log_b a - 4)(\log_b a - 6)}} \times \left[\frac{1}{3} \left(\frac{1}{\log_b a - 4} \right) \right] = \frac{-6 (\log_b a - 4)(\log_b a - 6)}{-6 \log_b a(\log_b a - 6)(\log_b a - 4)}$$

$$= \frac{1}{\log_b a} = \log_a b \text{ , Linea f)}$$

169°) (**Exame 2007**) Resolver a inequação: $4^{\frac{1}{x}-1} - 2^{\frac{1}{x}-2} - 3 \le 0$

Resp: a)
$$]-\infty; 0] \cup \left[\frac{1}{2}; 1\right[b) \left[0; \frac{1}{2}\right] c) \right]-\infty; 0] \cup]1; +\infty[d) \left[\frac{1}{2}; +\infty\right[$$

e)
$$\left]0;\frac{1}{2}\right] \cup \left[1;+\infty[f]\right]0;+\infty[g]\right]-\infty;0[\cup\left[\frac{1}{2};+\infty[h]\right]$$
 outro

Resolução: $4^{\frac{1}{x}-1} - 2^{\frac{1}{x}-2} - 3 \le 0$

$$(2^{2})^{\frac{1}{x}-1} - 2^{\frac{1}{x}-2} - 3 \le 0 \to 2^{\frac{2}{x}-2} - 2^{\frac{1}{x}-2} - 3 \le 0 \to \frac{2^{\frac{2}{x}}}{2} - \frac{2^{\frac{1}{x}}}{4} - 3 \le 0$$

Supondo que:
$$2^{\frac{1}{x}} = t \ (t > 0)$$
, $\frac{t^2}{4} - \frac{t}{4} - 3 \le 0 \rightarrow t^2 - t - 12 \le 0 \ (t_1 = 4 \ e \ t_2 = -3)$

f(x)	-∞	- 3 + ∞		4		
$t^2 - t - 12 > 0$	+	O	_	О	+	

$$-3 \le t \le 4 \to \begin{cases} t \ge -3 \\ t \le 4 \end{cases}$$

$$t \le 4 \to 2^{\frac{1}{x}} \le 2^2 \to \frac{1}{x} \le 2 \to 2x \ge 0 \to x \ge \frac{1}{2} , s = \left[\frac{1}{2}; +\infty\right]$$

170°) (Exame 2007) Simplificar a expressão:

$$\frac{1+2a^{\frac{1}{4}}-a^{\frac{1}{2}}}{1-a+4a^{\frac{3}{4}}-4a^{\frac{1}{2}}}+\frac{a^{1/4}-2}{\left(a^{1/4}-1\right)^2}$$

Resp:
$$a$$
) $-\sqrt{a}$ b) $\sqrt[4]{a} + 1$ c) $2\sqrt[4]{a}$ d) $1/2 \sqrt{a}$ e) $\frac{2}{1+\sqrt{a}}$ f) $2\sqrt[4]{a} - 1$ g) $\frac{1}{\sqrt[4]{a-1}}$ h) outro

Resolução:
$$\frac{1+2a^{\frac{1}{4}}-a^{\frac{1}{2}}}{1-a+4a^{\frac{3}{4}}-4a^{\frac{1}{2}}} + \frac{a^{\frac{1}{4}}-2}{\left(a^{\frac{1}{4}}-1\right)^2}$$

$$\frac{1+2\sqrt[4]{a}-\sqrt{a}}{1-a+4\sqrt[8]{a^3}-4\sqrt{a}} + \frac{\sqrt[4]{a}-2}{\left(\sqrt[4]{a}-1\right)^2} = \frac{1+2\sqrt[4]{a}-\sqrt[4]{a^2}}{\left(1-a\right)+4\sqrt[4]{a^3}-4\sqrt[4]{a^2}} + \frac{\sqrt[4]{a}-2}{\left(\sqrt[4]{a}-1\right)^2}$$

supondo:
$$\sqrt[4]{a} = t$$

$$\frac{1+2t-t^2}{(1-t^4)+4(t^3-t^2)} + \frac{t-2}{(t-1)^2} = \frac{1+2t-t^2}{(1-t)(1+t)(1+t^2)-4t^2(t-1)} + \frac{(t-2)}{(1-t)^2}$$

$$= \frac{1}{(1-t)} \left[\frac{1+2t-t^2}{[(1+t)(1+t^2)-4t^2]} - \frac{t-2}{1-t} \right] = \frac{1}{(t-1)} \left[\frac{1+2t-t^2}{1+t^2+t+t^3-4t^2} + \frac{t-2}{1-t} \right]$$

$$= \frac{1}{(1-t)} \left[\frac{1+2t-t^2}{t^3-3t^2+t+1} + \frac{t-2}{1-t} \right] , \text{ nota: } t^3 - 3t^2 + t + 1 = -(1-t)(t^2 - 2t - 1)$$

$$= \frac{1}{(1-t)} \left[\frac{1+2t-t^2}{-(1-t)(t^2-2t-1)} + \frac{t-2}{1-t} \right] = -\frac{1}{(1-t)} \left[\frac{1+2t-t^2-(t-2)(t^2-2t-1)}{(1-t)(t^2-2t-1)} \right]$$

$$= -\frac{1}{(1-t)} \left[\frac{1+2t-t^2-t^3+2t^2+t+2t^2-4t-2}{(1-t)(t^2-2t-1)} \right] = -\frac{1}{(1-t)} \left[\frac{-t^3+3t^2-t-1}{(1-t)(t^2-2t-1)} \right]$$

$$-\frac{(-1)}{(1-t)} \left[\frac{t^3-3t^2+t+1}{(1-t)(t^2-2t-1)} \right] \text{ nota: } t^3 - 3t^2 + t + 1 = -(1-t)(t^2 - 2t - 1)$$

$$= \frac{1}{(1-t)} \left[\frac{-(1-t)(t^2-2t-1)}{(1-t)(t^2-2t-1)} \right] = \frac{1}{t-1} , \text{ voltando na suposição: } \frac{1}{\sqrt[4]{a-1}} , \text{ Línea g})$$

171°) (**Exame 2007**) Resolver a equação:
$$f'(x) - \frac{2}{x} f(x) = 0$$
 se $f(x) = x^3 \ln x$

Resp: a)
$$2e^{-2}b$$
) $e^{-2}c$) $e^{-2}d$) $1^{-2}e^{-1}f$) $\frac{1}{2}e^{-1}g$) $2e^{-2}h$) outro

Resolução:
$$f'(x) - \frac{2}{x} f(x) = 0$$
 se $f(x) = x^3 lnx$

Condição de existência: $x \neq 0$

Achando a 1º derivada de f(x), temos:

 $f'(x) = 3x^2 \ln x + x^2$, substituindo na equação:

$$3x^{2} \ln x + x^{2} - \frac{2}{x} x^{3} \ln x = 0 \rightarrow 3x^{2} \ln x + x^{2} + 2x^{2} = 0 \rightarrow 3x^{2} \ln x + 3x^{2} = 0$$

 $3x^2(\ln x + 1) = 0$, anulando os productos:

$$3x^2 = 0 \rightarrow x_1 = 0 \ e \ln x + 1 = 0 \rightarrow \ln x = -1 \rightarrow x_2 = e^{-1}$$

A solução da equação é: $x = e^{-1}$, Línea e)

172°) (**Exame 2007**) (Exame 2007) Resolve a inequação: $5^{2\sqrt{x}} + 5 < 5^{\sqrt{x}+1} + 5^{\sqrt{x}}$

Resp: *a*)
$$]-\infty$$
; $0[\cup]1; +\infty[b)[0;1[c)]0;1[\cup]1; +\infty[d)[0;1[e)]-\infty;0[\cup]0;1[$

$$f)]0; +\infty[g)]0; 1[\cup]4; +\infty[$$

Resolução:
$$5^{2\sqrt{x}} + 5 < 5^{\sqrt{x}+1} + 5^{\sqrt{x}}$$

Condição de exitência: s_1 : [0; $+\infty$ [

$$5^{2\sqrt{x}} + 5 < 5$$
. $5^{\sqrt{x}} + 5^{\sqrt{x}}$, supondo que: $5^{\sqrt{x}} = A \ (A > 0)$

$$A^2 + 5 < 5A + A \rightarrow A^2 - 6A + 5 < 0$$
 (Zeros da equação: $A_1 = 1$ e $A_2 = 5$)

f(x)	-∞	1	5		+∞
$A^2 - 6A + 5 < 0$	+	O	– O	+	

A solução da inequação é: 1 < t < 5, assim temos:

$$\begin{cases} t > 1 \to 5^{\sqrt{x}} > 1 \to 5^{\sqrt{x}} > 5^0 \to \sqrt{x} > 0 \to x > 0 , x \in]0; \ +\infty[\\ t < 1 \to 5^{\sqrt{x}} < 5 \to \sqrt{x} < 1 \to x < 1 , x \in]-\infty; \ 1[\end{cases}$$

Intercedendo a duas soluções: $s_2 =]0; 1[$

A solução verdadeira da inequação é: $s = s_1 \cap s_2$, s =]0; 1[, Línea d)

173°))(**Exame 2007**) Resolver a inequação: $f'(x) + \varphi'(x) \le 0$, se $f(x) = 2x^3 + 12x^2$; $\varphi(x) = 9x^2 + 72x$

Resp: A)
$$]-\infty; -4[\cup]-3; +\infty[B)]-\infty; -3]$$
 C) $[-4; -3]$ D) $[-4; +\infty[$

$$E)]-\infty; -4[\cup]-4; -3] \quad F) [-4; -3[\cup]3; +\infty[\quad G)]-4; -3[\quad H) \ outro$$

Resolução:
$$f'(x) + \varphi'(x) \le 0$$
, se $f(x) = 2x^3 + 12x^2$; $\varphi(x) = 9x^2 + 72x$

Achando a 1º derivada da função $\varphi(x)$, $\varphi'(x) = 18x + 72$

Achando a 1º derivada da função f(x), $f'(x) = 6x^2 + 24x$

Colocando na inequação acima, vem:

$$6x^2 + 24x + 18x + 72 \le 0 \rightarrow 6x^2 + 42x + 72 \le 0$$
 (as raízes são: $x_1 = -3$, $x_2 = -4$)

f(x)	-∞		-4	-3		+∞
$6x^2 + 42x + 72 \le 0$		+	O	– O	+	

A solução da inequação é: [-4; -3], Línea C)

174°) (**Exame 2007**) (Exame 2007) Resolver a inequação:

$$f'(x) < g'(x)$$
; se $f(x) = \frac{x^3 + 1}{x}$; $g(x) = 5x + \frac{1}{x}$

Resp: *a*)]
$$-\infty$$
; $-1[\cup]0$; 2,5[*b*)] $-\infty$; 2,5[*c*))] $-\infty$; 0[\cup]2,5; $+\infty$ [

d)
$$]-\infty; 0[\cup]0; 2,5[e)]0; 2,5[f)]-1; 0[\cup]0; 2,5[g)]0; +\infty[h) outro$$

Resolução:
$$f'(x) < g'(x)$$
; se $f(x) = \frac{x^3 + 1}{x}$; $g(x) = 5x + \frac{1}{x}$

Achando a 1º derivada de f(x), $f'(x) = \frac{2x^3 - 1}{x^2}$

Achando a 1º derivada de g(x), $g'(x) = \frac{5x^2-1}{x^2}$, colocando na desigualdade acima:

$$\frac{2x^3 - 1}{x^2} < \frac{5x^2 - 1}{x^2} \to \frac{2x^3 - 1 - 5x^2 + 1}{x^2} < 0 \to \frac{2x^3 - 5x^2}{x^2} < 0 \to \frac{x^2(2x - 5)}{x^2} < 0$$

$$\frac{x^2(2x-5)}{x^2}$$
 < 0 (inequação racional fraccionária)

$$\begin{cases} x^{2}(2x-5) = 0 \ \to \ x_{1,2} = 0 \ (raiz \ dupla), 2x-5 = 0 \ \to x = \frac{5}{2} \\ x^{2} \neq 0 \ \to x \neq 0 \ (raiz \ dupla) \end{cases}$$

f(x)	-∞ ($\frac{5}{2}$	= 2,5	+∞
x^2	+	+	+	
2x - 5	_	_	O +	
$x^2 \neq 0$	+	+	+	
S	-	_	+	

A solução da inequação é: $]-\infty$; $0[\cup]0$; 2,5[, Línea d)

175°) (Exame 2007) A área da base do prisma triangular recto é $4 cm^2$, as arestas das faces laterais são $9{,}10 \text{ e } 17 \text{ } cm^2$. Achar o volume do prisma.

Resp

10 cm³ b) 11,5 cm³ c) 12 cm³ d) 13,25 cm³ e) 9 cm³ f) 10,75 cm³ g) 11,25 cm³ h) outro

Resolução:
$$A_b = 4 cm^2$$
, $A_1 = 9 cm^2$, $A_2 = 10 cm^2$, $A_3 = 17 cm^2$, $V = ?$

O volume de um prisma é: $V = A_b h$, onde h é altura do prisma.

A área da base é:
$$A_b = \frac{a \times b}{2}$$
, onde: $A_1 = bh \rightarrow b = \frac{A_1}{h}$

$$A_2 = ah \rightarrow a = \frac{A_2}{h}, A_b = \frac{A_1 \times A_2}{2h^2} \rightarrow h^2 = \frac{9 \times 10}{2 \times 4} \rightarrow h = \sqrt{11,25} \rightarrow h \cong 3$$

$$V = A_h h \rightarrow V = 4 \times 3$$
, $V = 12$

$$V = 12 cm^3$$
, Línea c)

176°) (**Exame 2007**) Calcular o volume do pirâmide triangular se duas arestas opostas desta pirâmide são 4 e 12 m e todas outras arestas são 7 m.

Resp:

a)
$$18 \, m^3$$
 b) $20 \, \sqrt{2} \, m^3$ c) $21 \sqrt{3} \, m^3$ d) $24 \, m^3$ e) $20 \, m^3$ f) $32 \sqrt{2} \, m^3$ g) $36 \, m^3$ h) outro

Resolução:
$$a = 12 m$$
, $b = 4 m$, $d = 7 m$, $V = ?$

A área do pirâmide será dado por:
$$V = \frac{A_b h}{3}$$
 (1)

Pelo triângulo rectângulo ABC de lados *a, b e c*, onde *c* é a hipotenunsa e *b e c* são os os catetos, temos:

$$a^2 + b^2 = c^2 \rightarrow c = \sqrt{(12)^2 + (4)^2} \rightarrow$$

$$c = 4\sqrt{10} m$$

A base do pirâmide é o triângulo ABC, logo a área da base será:

$$A_b = \sqrt{p(p-a)(p-b)(p-c)},$$

onde p é o semi perímetro da base.

$$p = \frac{a+b+c}{2} \to p = \frac{12+4+4\sqrt{10}}{2} \to p = (2\sqrt{10}+8)m$$

$$A_b = \sqrt{(2\sqrt{10} + 8)(2\sqrt{10} + 8 - 12)(2\sqrt{10} + 8 - 4)(2\sqrt{10} + 8 - 4\sqrt{10})}$$

$$A_h = 24 m^2$$

Pelo triàngulo AVO de lados d, h e R podemos ir buscar a altura da pirâmide:

 $h = \sqrt{d^2 - R^2}$, onde R é o raio inscrito na base da pirâmide:

$$R = \frac{abc}{4A_b} \rightarrow R = \frac{12\times4\times4\sqrt{10}}{4\times24} \rightarrow R = 2\sqrt{10} \ m$$
, logo a altura da pirâmide será:

$$h = \sqrt{(7)^2 - (2\sqrt{10})^2} \to h = 3 m$$

Pela equação (1):
$$V = \frac{24 \times 3}{3} \rightarrow V = 24 \text{ m}^2$$
, Línea d)

177°) (**Exame 2007**) Nm círculo de raio 2 cm está inscrito um triângulo rectângulo de perímetro 10 cm. Ache a área do triângulo.

Resp

a)
$$4 cm^2$$
 b) $2 cm^2$ c) $2\pi cm^2$ d) $5 cm^2$ e) $1 cm^2$ f) outro

A área do triângulo é: $A = \frac{a b}{2}$

Resolução:
$$p = 10 cm$$
, $R = 2 cm$

Hipotenunsa é:
$$c = 2$$
 $R = 2 \times 2 \rightarrow c = 4$ cm

O perímeto é:
$$a + b + c = 10 \ cm \rightarrow a + b = 6 \ cm$$

Elevando ambos os membros da igualdade ao quadrado vem:

$$a^2 + b^2 + 2ab = 36$$
, pelo teorema de pitágora: $a^2 + b^2 = 16$

$$16 + 2ab = 36 \rightarrow ab = 10$$
, logo a área pedida é:

$$A = \frac{10}{2} \rightarrow A = 5 cm^2$$
, Línea d)

178°) (**Exame 2007**) Num losângulo o lado é 13 cm e uma diagonal é de 24 cm. A outra diagonal é:

Resp: a)
$$13\sqrt{2} \ cm \ b$$
) $10\sqrt{2} \ cm \ c$) $5\sqrt{2} \ cm \ d$) $10 \ cm \ e$) $9\sqrt{2} \ cm \ f$) outro

Resolução:
$$l = 13 cm$$
, $D = 24 cm$, $d = ?$

Pelo triângulo AOC, temos:

$$l^2 = \left(\frac{d}{2}\right)^2 + \left(\frac{D}{2}\right)^2 \to d = \sqrt{4l^2 - D^2}$$

$$d = \sqrt{4(13)^2 - (24)^2} \rightarrow l = 10 \ cm$$
, Línea d)

179°) (Exame 2007) A base do paralelepípedo recto é paralelogramo e um dos ângulos deste paralelogramo é igual 30°. A área da base é igual a $4dm^2$. As áreas das faces laterais do paralelepípedo são 6 e 12 dm^2 . Achar o volume do paralelepípedo.

Resp:

a)
$$10 \ dm^3 \ b$$
) $12 \ dm^3 \ c$) $11\sqrt{2} \ dm^3 \ d$) $10\sqrt{3} \ dm^3 \ e$) $11,5 \ dm^3 \ f$) $12,5 \ dm^3$

g)
$$9\sqrt{3} dm^3$$
 h) outro

Resolução:
$$A_b = 4dm^2$$
, $A_1 = 6 dm^2$, $A_2 = 12 dm^2$, $\alpha = 30^\circ$

O volume de um paralelepípedo é dado pela relação: V = a b c (1)

Como a base é um paralelogramo, a área da base pode ser determinado pela relação:

$$A_b = a \ b \ sen 30^\circ \rightarrow a \ b = 8 \ (2)$$

A área das face laterais é obtida multiplicando o dobro dos lado pela altura do paralelepípedo:

$$A_1 = 2b c e A_2 = 2a c$$

Multiplicando a equação das duas áreas membro a membro, temos:

$$A_1 \times A_2 = 4 \ a \ b \ c^2$$
, da equação (2) sabe-se que: $ab = 8$

6 × 12 = 4 × 8
$$c^2 \rightarrow c$$
 = 1,5 dm , colocando na equação (1), vem:

$$V=8 \times 1,5 \rightarrow V=12 \ dm^3$$
 , Línea b)

180°) (**Exame 2007**) A base do paralelepípedo recto é paralelogramo que tem ângulo 120° e os lados 3 e 4 cm. A diagonal menor do paralelepípedo é igual à diagonal maior da base. Achar o volume do paralelepípedo.

Resp: a)

$$24\sqrt{3} \ cm^3 \ b) \ 32 \ cm^3 \ c) \ 30 \ \sqrt{3} \ cm^3 \ d) \ 30 \ cm^3 \ e) \ 36 \ \sqrt{2} \ cm^3 \ f) \ 40 \ cm^3$$

g)
$$34\sqrt{2}$$
 cm³ h) outro

Resolução: a = 4 cm , b = 4 cm, $\beta = 120^{\circ}$, D = d, V = ?

O volume do paralelepípedo é: V = a b c (1)

A base do paralelepípedo é um paralelogramo:

a diagonal maior da base pela lei dos cosseno é:

$$d^2 = a^2 + b^2 - 2ab \cos 120^\circ$$

$$d^2 = (4)^2 + (3)^2 - 2(4)(3)\cos 120^\circ$$

$$d = \sqrt{37} cm$$

$$D = \sqrt{a^2 + b^2 + c^2}$$
, pelo enunciado, $D = d$

$$\sqrt{37} = \sqrt{(4)^2 + (3)^2 + c^2} \rightarrow c^2 = 37 - 25 \rightarrow c = 2\sqrt{3} \ cm$$
 , colocando em (1), vem:

$$V = 4 \times 3 \times 2\sqrt{3} \rightarrow V = 24\sqrt{3} \text{ cm}^3$$
, Línea a)

Pedro Rafael Afonso

Licenciado em Geofísica, Universidade Agostínho Neto, Faculdade de Ciências