Course 2318 2012

Sheet 4

Due: see www.maths.tcd.ie/~rtange/teaching/algebraic_geometry/algebraic_geometry.html

Exercise 1

For the ideal J determine whether V(J) is irreducible, find its components if not:

- (i) $J = (X^2Y^3) \subset \mathbb{C}[X,Y]$, i.e. J is generated by the polynomial X^2Y^3 ;
- (ii) $J = (XY, YZ, XZ) \subset \mathbb{C}[X, Y, Z].$

Is it true that J = I(V(J))? Calculate \sqrt{J} .

Exercise 2

Let C be the affine curve given by the irreducible equation $y^2 = \prod_{i=1}^{2g+1} (x - a_i)$, g an integer ≥ 2 and the $a_i \in \mathbb{C}$ distinct. Show that the projectivization of C has a singular point at infinity.

Exercise 3

Let S be the surface in \mathbb{P}^3 defined by the (irreducible) equation XV = YU in the homogeneous coordinates (X, Y, U, V).

- (i) Consider the rational map $\varphi = X/Y : S - > \mathbb{A}^1$. What is the domain of φ ? What is the domain of φ when we consider it as a rational map $S - > \mathbb{P}^1$?
- (ii) Use the map $\varphi: S - > \mathbb{P}^1$ and an analogous map to construct an isomorphism $S \xrightarrow{\sim} \mathbb{P}^1 \times \mathbb{P}^1$. This is nothing but the inverse of the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$ in \mathbb{P}^3 .

Exercise 4

Denote the singular locus of a variety X by $\operatorname{Sing}(X)$. Let $f, g \in \mathbb{C}[X_1, \dots, X_n]$ be coprime (recall that $\mathbb{C}[X_1, \dots, X_n]$ is a unique factorisation domain). Show that

$$\operatorname{Sing}(V(fg)) = \operatorname{Sing}(V(f)) \cup \operatorname{Sing}(V(g)) \cup (V(f) \cap V(g)).$$

Hint. Observe that the statement doesn't change if we replace f and g by their "square-free versions".

Exercise 5

Show that a nonempty open subset of an irreducible affine or projective algebraic set X is dense in X.