

Natural Language Processing IN2361

PD Dr. Georg Groh

Social Computing Research Group

Chapter 4: Naïve Bayes and Sentiment Classification

- content is based on [1] and [2]
- certain elements (e.g. equations or tables) were taken over or taken over in a modified form from [1] or [2]
- citations of [1] and [2] or from [1] or [2] are omitted for legibility
- errors are fully in the responsibility of Georg Groh
- BIG thanks to Dan and James for a great book!

$$\mathcal{D} = \{(x^{(1)}, y^{(1)}), (x^{(1)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)})\}$$

$$p(\mathcal{D}|\Theta) = \prod_{n=1}^{N} p(x^{(n)}, y^{(n)}|\theta, \pi)$$

$$= \prod_{n=1}^{N} p(x^{(n)}|y^{(n)}, \theta)p(y^{(n)}|\pi)$$

$$= \prod_{n=1}^{N} \prod_{v=1}^{V} p(x_{v}^{(n)}|y^{(n)}, \theta)p(y^{(n)}|\pi)$$

$$= \prod_{n=1}^{N} \prod_{c=1}^{C} \prod_{v=1}^{V} p(x_{v}^{(n)}|\theta_{vc})^{\mathbb{1}(y^{(n)}=c)} \prod_{c'=1}^{C} \pi_{c'}^{\mathbb{1}(y^{(n)}=c')}$$

$$\widetilde{\mathcal{D}} = ((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(N)}, y^{(N)}))$$

likelihood for model parameters
$$p(\mathcal{D}|\Theta) = \prod_{n=1}^{N} p(x^{(n)}, y^{(n)}|\theta, \pi)$$
 class conditional density class prior generative $= \prod_{n=1}^{N} p(x^{(n)}|y^{(n)}, \theta)p(y^{(n)}|\pi)$ "naïve" $= \prod_{n=1}^{N} \prod_{v=1}^{V} p(x^{(n)}_v|y^{(n)}, \theta)p(y^{(n)}|\pi)$ categorical $= \prod_{n=1}^{N} \prod_{c=1}^{C} \prod_{v=1}^{V} p(x^{(n)}_v|\theta_{vc})^{\mathbf{1}(y^{(n)}=c)} \prod_{c'=1}^{C} \pi^{\mathbf{1}(y^{(n)}=c')}_{c'}$ categorical class priors

- bag of words model: position in document / word sequence does not matter in determining feature(s) for a word
- naïve assumption: conditional independence of features

feature vector $x^{(n)}$: e.g. V-dim. vector of term-frequencies (notation in Jurafksy: $x^{(n)}$: = d (a representation of a document))

$$\log p(\mathcal{D}|\Theta) = \sum_{c=1}^{C} \sum_{v=1}^{V} \sum_{\{n|y^{(n)}=c\}} \log p(x_v^{(n)}|\theta_{vc}) + \sum_{c=1}^{C} N_c \log \pi_c$$

• Simple MLE solution for π_c :

$$0 = \partial/\partial \pi_c log p(\mathcal{D}|\Theta) + Lagrange multiplier$$

$$\pi_c^{MLE} = \frac{N_c}{N}$$
 as usual for a categorical class prior

Jurafsky notation:

$$\hat{P}(c) = \frac{N_c}{N_{doc}}$$

$$log_{\cdot} p(\mathcal{D}|\Theta) = \sum_{c=1}^{C} \sum_{v=1}^{V} \sum_{\{n|y^{(n)}=c\}} log \; p(x_{v}^{(n)}|\theta_{vc}) + \sum_{c=1}^{C} N_{c} log \; \pi_{c}$$

• Simple MLE solution for π_c :

$$0 = \partial/\partial \pi_c log \ p(\mathcal{D}|\Theta)$$
 + Lagrange multiplier \Longrightarrow

$$\pi_c^{MLE} = \frac{N_c}{N}$$
 as usual for a categorical class prior

Jurafsky notation:

$$\hat{P}(c) = \frac{N_c}{N_{doc}}$$

• Simple MLE solution for θ_{vc} :

Multinomial distribution: (Rolling a class-specific V-sided dice $M^{(n)}$ times to create a document $x^{(n)}$ of length $M^{(n)}$)

$$p(x^{(n)}|y^{(n)} = c, \theta) = Mu(x_1^{(n)}, \dots, x_V^{(n)}|\theta_{1c}, \dots, \theta_{Vc}) = \frac{M^{(n)}!}{\prod_{v=1}^V x_v^{(n)}!} \prod_{v=1}^V \theta_{vc}^{x_v^{(n)}}$$

• Simple MLE solution for θ_{vc} (contd.):

(for better understanding (no change in model / results): conceptually concatenate all documents in class c into one big document \widetilde{d} of length $\widetilde{N_c}$ \rightarrow words in \widetilde{d} have multinomial distribution)

$$0 = \partial/\partial \theta_{vc} log \ p(\mathcal{D}|\Theta) + \text{Lagrange multiplier}$$

$$\theta_{vc}^{MLE} = \frac{N_{vc}}{\widetilde{N_c}} = \frac{\sum_{\{n|x^{(n)} \in c\}} x_v^{(n)}}{\sum_{\{n|x^{(n)} \in c\}} M^{(n)}} = \frac{\sum_{\{n|x^{(n)} \in c\}} x_v^{(n)}}{\sum_{\{n|x^{(n)} \in c\}} \sum_{v=1}^{V} x_v^{(n)}} = \frac{N_{vc}}{\sum_{v=1}^{V} N_{vc}}$$

(as usual for a multinomial class conditional density)

Jurafsky notation (v = "i"):

$$\hat{P}(w_i|c) = \frac{count(w_i,c)}{\sum_{w \in V} count(w,c)}$$

• Simple MAP solution for $heta_{vc}$ using a Dirichlet prior:)

$$p(\theta_c|D) \propto p(D|\theta_c) p(\theta_c|\alpha)$$

$$\propto \prod_{v=1}^{V} \theta_{vc}^{N_{vc}} \theta_{vc}^{\alpha_v - 1}$$

$$\propto \prod_{v=1}^{V} \theta_{vc}^{N_{vc} + \alpha_v - 1}$$

$$\propto Dir(\theta|(\alpha_1 + N_{1c}, \alpha_2 + N_{2c}, \dots, \alpha_V + N_{Vc})$$

$$0 = \partial/\partial \theta_{vc} log p(\theta_c | \mathcal{D}) + Lagrange multiplier$$

$$\theta_{vc}^{MAP} = \frac{N_{vc} + \alpha_v - 1}{\widetilde{N_c} + (\sum_{v=1}^{V} \alpha_v) - V}$$
 as usual for a Dirichlet posterior

Special MAP = Add One Smoothing

• Using weak prior $\alpha = (2,2,2,2,...)$ we get Add-One-Smoothing (Laplace smoothing)

in Jurafsky notation:

$$\hat{P}(w_i|c) = \frac{count(w_i,c) + 1}{\left(\sum_{w \in V} count(w,c)\right) + |V|}$$

 Using the trained classifier (trained == model parameters have been determined) on a new unseen document x is simple:

$$\begin{aligned} argmax_c \ \ p(y = c | x, \Theta_{MAP/MLE}) \\ &= argmax_c \ \ p(x | y = c, \Theta_{MAP/MLE}) * p(y | \Theta_{MAP/MLE}) \end{aligned}$$

Very Simple Sentiment Classifiers

- For whole documents (e.g. a Facebook comment) or (better) individual sentences: classify into two (positive, negative) or three (positive, neutral, negative) classes of sentiment
- unknown words (words in test set but not in training set): ignore ©
- stop words (I, at, in, can (?!),....): maybe remove them

	Cat	Documents
Training	-	just plain boring
	-	entirely predictable and lacks energy
	-	no surprises and very few laughs
	+	very powerful
	+	the most fun film of the summer
Test	?	predictable with no fun

Very Simple Sentiment Classifiers

Instead of term-frequencies for words also possible: binary features (word present (=1) or not (=0))

 \rightarrow generative process: instead of assuming rolling a V-sided dice M_n times to "create" a document, for each word toss a θ_{vc} coin to determine if present in the document.

principal form of MLE solution for θ_{vc} does not change (it's a linear model)

Binary Naïve Bayes: often works better for sentiment analysis

Four original documents:	N Cou +			Binary Counts + -	
 it was pathetic the worst part was the 	and	2	0	1	0
boxing scenes	boxing	0	1	0	1
	film	1	0	1	0
 no plot twists or great scenes 	great	3	1	2	1
+ and satire and great plot twists	it	0	1	0	1
+ great scenes great film	no	0	1	0	1
A.C. 1	or	0	1	0	1
After per-document binarization:	part	0	1	0	1
 it was pathetic the worst part boxing 	pathetic	0	1	0	1
	plot	1	1	1	1
scenes	satire	1	0	1	0
 no plot twists or great scenes 	scenes	1	2	1	2
+ and satire great plot twists	the	0	2	0	1
+ great scenes film	twists	1	1	1	1
9.000 000000	was	0	2	0	1
	worst	0	1	0	1

Very Simple Sentiment Classifiers

 Dealing with Negations: prepend the prefix NOT to every word after a token of logical negation (n't, not, no, never) until the next punctuation mark → new words that indicate opposite sentiment

```
...didn't like this movie, but I... :
```

- Further possibility: work with only two features per document: number of words with (a priori) positive sentiment, number of words with (a priori) negative sentiment
 - o (a priori) word sentiment: from sentiment lexica (e.g. LWIC (2007), MPQA (2005))
 - + : admirable, beautiful, confident, dazzling, ecstatic, favor, glee, great
 - : awful, bad, bias, catastrophe, cheat, deny, envious, foul, harsh, hate

Naïve Bayes as Set of Class-Specific Unigram Language Models

having learned the $\theta_{vc} = P(w_v|c)$, computing the probability of a sentence S in our model is easy:

$$P(S = (w_{v_1}, w_{v_2}, \dots, w_{v_{|S|}}) | \theta, c) = \prod_{i=1}^{|S|} P(w_{v_i}, | \theta, c) = \prod_{i=1}^{|S|} \theta_{v_i c} = \prod_{v=1}^{V} \theta_{v_i c}^{N_{v_c}}$$

 example: for a two class sentiment classifier (using termfrequencies or binary word features) the class likelihoods for a sentence are

$$P("I love this fun film"|+) = 0.1 \times 0.1 \times 0.01 \times 0.05 \times 0.1 = 0.0000005$$

 $P("I love this fun film"|-) = 0.2 \times 0.001 \times 0.01 \times 0.005 \times 0.1 = .0000000010$

assuming

W	P(w +)	P(w -)
I	0.1	0.2
love	0.1	0.001
this	0.01	0.01
fun	0.05	0.005
film	0.1	0.1

Classifiers: Error / Performance Measures: Confusion Matrix

		Actual class			
		Cat	Non-cat		
icted	Cat	5 True Positives	2 False Positives		
Predicte class	Non-cat	3 False Negatives	17 True Negatives		

		Actual class			
		Cat	Dog	Rabbit	
pe	Cat	5	2	0	
redictec	Dog	3	3	2	
ag o	Rabbit	0	1	11	

Classifiers: Error / Performance Measures: Two Classes

y=1

type II error

Actual	

y=0

Predicted	y=1	TP	FP type I error
rieuicteu	y=0	FN	TN

Precision (positive predictive value):

$$PREC = \frac{TP}{TP + FP}$$

Recall (sensitivity, true positive rate):

$$REC = \frac{TP}{TP + FN}$$

Specifity (true negative rate):

$$TNR = \frac{TN}{FP + TN}$$

False Negative Rate (miss rate):

$$FNR = \frac{FN}{TP + FN}$$
 $FPR = \frac{FP}{FP + TN}$

False Positive Rate (fall out):

$$FPR = \frac{FP}{FP + TN}$$

F1 Score (harmonic mean of Recall and Precision):

$$F1 = \frac{2 * PREC * REC}{PREC + REC}$$

Classifiers: Error / Performance Measures: >2 Classes

usually: use average of one vs rest (macro averaging): example:

Accuracy:

$$ACC = \frac{1}{C} \sum_{c=1}^{C} \frac{TP_c + TN_c}{TP_c + FP_c + FN_c + TN_c} = \frac{1}{C} \sum_{c=1}^{C} ACC_c$$

• possible: weighted approach (e.g. using class-priors / inverse class priors to emphasize importance of frequent / infrequent classes): example:

Accuracy:
$$ACC = \sum_{c=1}^{C} \pi_c ACC_c$$

• micro-averaging μ vs macro-averaging M example:

Precision_{$$\mu$$}

$$PREC = \frac{\sum_{c=1}^{C} TP_c}{\sum_{c=1}^{C} TP_c + FP_c}$$

Precision_M:
$$PREC = \frac{1}{C} \sum_{c=1}^{C} \frac{TP_c}{TP_c + FP_c} = \frac{1}{C} \sum_{c=1}^{C} PREC_c$$

Classifiers: Error / Performance Measures: >2 Classes

gold labels example urgent normal spam 10 urgent system $\mathbf{precision}_{n} = \frac{1}{5 + 60 + 50}$ 50 60 output normal $\mathbf{precisions} = \frac{}{3+30+200}$ 200 3 30 spam recallu = recalln = recalls = 8+5+3 10+60+30 1+50+200

Class 1: Urgent		t Cl	Class 2: Normal		l C	Class 3: Spam			Pooled			
	true	true		true	true		true	true		true	true	
	urgent	not		normal	not		spam	not		yes	no	
system urgent	8	11	system normal	60	55	system spam	200	33	system yes	268	99	
system not	8	340	system not	40	212	system not	51	83	system no	99	635	
precision	$n = \frac{8}{8+1}$	= .42	precision =	60+5	= .52	precision =	= \frac{200}{200+}		6 microaverage precision	´ =	68 3+99	= .73

$$\frac{\text{macroaverage}}{\text{precision}} = \frac{.42 + .52 + .86}{3} = .60$$

Classifiers: Error / Performance Measures: ROC / AUC

Statistical Significance Testing

• Compare two classifiers A and B: use F1 score on test set x, yielding e.g. the result $\delta(x) = F1(A) - F1(B) > 0$. ("A better than B") But: is result statistically significant?

- Null Hypothesis H_0 : "result 'A better than B' was achieved by chance" \rightarrow if X is random variable over all conceivable test-sets, H_0 expects $P(\delta(X) > \delta(x)|H_0)$ to be high. Reject $H_0 \leftrightarrow$ p-Value $P(\delta(X) > \delta(x)|H_0) < 0.05$.
- Performance measures are rarely normally distributed → paired T-test not applicable; furthermore: test data is scarce → use bootstrap testing (can be applied to any performance measure)

Bootstrap Testing

• two classes: for each element of x, we can have four cases: A and B are right (AB), A is right and B wrong (AB), A is wrong and B right (AB), A and B are wrong (AB)

assuming accuracy instead of F1 for the sake of simplicity

Figure 6.8 The bootstrap: Examples of b pseudo test sets being created from an initial true test set x. Each pseudo test set is created by sampling n = 10 times with replacement; thus an individual sample is a single cell, a document with its gold label and the correct or incorrect performance of classifiers A and B.

then apply $(1.96\sigma =) 2\sigma$ -rule <-> t-Test:

```
function BOOTSTRAP(x, b) returns p-value(x)

Calculate \delta(x)

for i=1 to b do

for j=1 to n do # Draw a bootstrap sample x^{*(i)} of size n

Select a member of x at random and add it to x^{*(i)}

Calculate \delta(x^{*(i)})

for each x^{*(i)}

s \leftarrow s+1 if \delta(x^{*(i)}) > 2\delta(x)

p-value(x) \approx \frac{s}{b}

return p-value(x)
```

Feature Selection

- "per feature" feature selection (unlike PCA etc.): compare decision trees: rank features according to their discriminative power:
 - Entropy-based (Information Gain)

$$G(w) = -\sum_{i=1}^{C} P(c_i) \log P(c_i)$$

$$+P(w) \sum_{i=1}^{C} P(c_i|w) \log P(c_i|w)$$

$$+P(\bar{w}) \sum_{i=1}^{C} P(c_i|\bar{w}) \log P(c_i|\bar{w})$$

o GINI Index

$$G(w) = 1 - \sum_{i=1}^{C} P(c_i|w)^2$$

or select skew directions in feature space: e.g. via PCA, pPCA, Factor Analysis,
 SVD etc. (compare Murphy chapter 12)

Bibliography

- (1) Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft, version Oct. 2019); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL Oct 2019) (this slideset is especially based on chapter 4)
- (2) Powerpoint slides from Dan Jurafsky and James Martin: Speech and Language Processing (3rd ed. draft); Online: https://web.stanford.edu/~jurafsky/slp3/ (URL, Oct 2018)
- (3) K. Murphy: Machine Learning a Probabilistic Perspective, MIT Press 2012 (especially section 3.5)

Recommendations for Studying

minimal approach:

work with the slides and understand their contents! Think beyond instead of merely memorizing the contents

standard approach:

minimal approach + read the corresponding pages in Jurafsky [1]

interested students

== standard approach