Тема 7. Визначений інтеграл. Застосування визначеного інтегралу

Лекція 7.1. Визначений інтеграл як границя інтегральної суми. Властивості визначеного інтегралу, геометричний зміст. Формула Ньютона-Лейбніца. Теореми про середнє. Заміна змінної та інтегрування частинами у визначеному інтегралі. Застосування визначеного інтегралу до обчислення площ плоских фігур в декартовій і полярній системі координат, до обчислення довжин дуг та об'ємів тіл обертання. Невластиві інтеграли першого і другого роду. Їх означення, збіжність та способи обчислення.

Визначений інтеграл як границя інтегральної суми

Нехай на відрізку [a, b] задана неперервна функція f(x).

Позначимо m і M найменше і найбільше значення функції на відрізку [a, b]. Розіб'ємо відрізок [a, b] на частини n точками.

$$x_0 < x_1 < x_2 < \dots < x_n$$
.

Тоді
$$x_1 - x_0 = \Delta x_1$$
, $x_2 - x_1 = \Delta x_2$, ..., $x_n - x_{n-1} = \Delta x_n$.

На кожному з отриманих відрізків знайдемо найменше та найбільше значення функції.

$$[x_0, x_1] \to m_I, M_I; [x_1, x_2] \to m_2, M_2; \dots [x_{n-1}, x_n] \to m_n, M_n.$$
 Складемо суми:

$$\underline{S}_n = m_1 \Delta x_1 + m_2 \Delta x_2 + \dots + m_n \Delta x_n = \sum_{i=1}^n m_i \Delta x_i,$$

$$\overline{S}_n = M_1 \Delta x_1 + M_2 \Delta x_2 + \dots + M_n \Delta x_n = \sum_{i=1}^n M_i \Delta x_i.$$

Сума \underline{S} називається **нижньою інтегральною сумою**, а сума \overline{S} — **верхньою інтегральною сумою**.

Оскільки
$$m_i \le M_i$$
, то $\underline{S}_n \le \overline{S}_n$, а $m(b-a) \le \underline{S}_n \le \overline{S}_n \le M(b-a)$.

Всередині кожного відрізка виберемо деяку точку є.

$$x_0 < \varepsilon_1 < x_1, \quad x_1 < \varepsilon < x_2, \dots, x_{n-1} < \varepsilon < x_n.$$

Знайдемо значення функції в цих точках і складемо вираз, який називається і**нтегральною сумою** для функції f(x) на відрізку [a, b].

$$S_n = f(\varepsilon_1) \Delta x_1 + f(\varepsilon_2) \Delta x_2 + \dots + f(\varepsilon_n) \Delta x_n = \sum_{i=1}^n f(\varepsilon_i) \Delta x_i.$$

Тоді можна записати: $m_i \Delta x_i \leq f(\varepsilon_i) \Delta x_i \leq M_i \Delta x_i$.

Отже,
$$\sum\limits_{i=1}^n m_i \Delta x_i \leq \sum\limits_{i=1}^n f(\boldsymbol{\varepsilon}_i) \Delta x_i \leq \sum\limits_{i=1}^n M_i \Delta x_i$$
.
$$\underline{S_n} \leq S_n \leq \overline{S_n} \;.$$

Позначимо $max\Delta x_i$ — найбільший відрізок розбиття, а $min\Delta x_i$ — найменший. Якщо $max \Delta x_i \to 0$, то число відрізків розбиття відрізка [a, b] прямує до нескінченності.

Якщо
$$S_n = \sum\limits_{i=1}^n f(\boldsymbol{\varepsilon}_i) \Delta x_i$$
, то $\lim_{\max \Delta x_i \to 0} \sum\limits_{i=1}^n f(\boldsymbol{\varepsilon}_i) \Delta x_i = S$.

Означення. Якщо при будь-якому розбитті відрізка [a, b] таких відрізків, що $\max \Delta x_i \to 0$ і довільному виборі точок ε_i інтегральна сума $S_n = \sum_{i=1}^n f(\boldsymbol{\varepsilon}_i) \Delta x_i$ прямує до границі S, яка називається визначеним інтегралом від f(x) на відрізку [a, b].

Позначимо визначений інтеграл: $\int_{a}^{b} f(x)dx$,

a – нижня межа, b – верхня межа, x – змінна інтегрування, [a, b] – відрізок інтегрування.

<u>Означення.</u> Якщо для функції f(x) існує границя $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(\boldsymbol{\varepsilon}_i) \Delta x_i =$

 $\int f(x)dx$, то функція називається і**нтегрованою** на відрізку [*a*,*b*].

Вірні твердження: $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n m_i \Delta x_i = \int_a^b f(x) dx;$ $\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n M_i \Delta x_i = \int_a^b f(x) dx.$

$$\lim_{\max \Delta x_i \to 0} \sum_{i=1}^n M_i \Delta x_i = \int_a^b f(x) dx.$$

Теорема. Якщо функція f(x) неперервна на відрізку [a, b], то вона інтегрована на цьому відрізку.

Властивості визначеного інтегралу

1)
$$\int_{a}^{b} Af(x)dx = A \int_{a}^{b} f(x)dx.$$

1)
$$\int_{a}^{b} Af(x)dx = A\int_{a}^{b} f(x)dx.$$
2)
$$\int_{a}^{b} (f_{1}(x) \pm f_{2}(x))dx = \int_{a}^{b} f_{1}(x)dx \pm \int_{a}^{b} f_{2}(x)dx.$$

3)
$$\int_{a}^{a} f(x)dx = 0.$$

- 4) Якщо $f(x) \le \varphi(x)$ на відрізку [a, b] a < b, то $\int_a^b f(x) dx \le \int_a^b \varphi(x) dx$.
- 5) Якщо m і M відповідно найменше та найбільше значення функції f(x) на відрізку [a, b], то:

$$m(b-a) \le \int_{a}^{b} f(x)dx \le M(b-a).$$

6) **Теорема про середнє.** Якщо функція f(x) неперервна на відрізку [a, b], то на цьому відрізку існує точка ε така, що

$$\int_{a}^{b} f(x)dx = (b-a)f(\varepsilon).$$

7) Для довільних чисел a, b, c справедлива рівність:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

8)
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

Формула Ньютона-Лейбніца

Теорема. (Теорема Ньютона – Лейбніца).

Якщо функція F(x) — будь-яка первісна від неперервної функція f(x), то

$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$

Цей вираз називають формулою Ньютона – Лейбніца.

Застосовують позначення $F(b) - F(a) = F(x) \Big|_a^b$.

Теореми про середнє

Узагальнена теорема про середнє. Якщо функції f(x) і $\phi(x)$ неперервні на відрізку [a, b], і функція $\phi(x)$ знакостала на ньому, то на цьому відрізку існує точка ε , така, що

$$\int_{a}^{b} f(x)\varphi(x)dx = f(\varepsilon)\int_{a}^{b} \varphi(x)dx.$$

Нехай в інтегралі $\int\limits_a^b f(x)dx$ нижня межа a= const, а верхня межа b= змінюється.

Позначимо $\int\limits_a^x f(t)dt = \Phi(x)$. Знайдемо похідну функції $\Phi(x)$ по змінній верхній межі x.

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x).$$

Теорема. Для будь-якої функції f(x), неперервної на відрізку [a, b], існує на цьому відрізку первісна, а отже, існує невизначений інтеграл.

Заміна змінної та інтегрування частинами у визначеному інтегралі

Нехай задано інтеграл $\int_a^b f(x)dx$, де f(x) — неперервна функція на відрізку [a,

b].

Введемо нову змінну у відповідності з формулою $x = \varphi(t)$.

Тоді якщо

- 1) $\varphi(\alpha) = a$, $\varphi(\beta) = b$.
- 2) $\varphi(t)$ і $\varphi'(t)$ неперервні на відрізку [α , β].
- 3) $f(\varphi(t))$ визначена на відрізку $[\alpha, \beta]$, то

Приклад.

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \begin{cases} x = \sin t; \\ \boldsymbol{\alpha} = 0; \, \boldsymbol{\beta} = \pi/2 \end{cases} = \int_{0}^{\pi/2} \sqrt{1 - \sin^{2} t} \cos t dt = \int_{0}^{\pi/2} \cos^{2} t dt = \frac{1}{2} \int_{0}^{\pi/2} (1 + \cos 2t) dt = \frac{1}{2} \left[(1 + \cos 2t) dt + \frac{1}{2} \sin 2t \right]_{0}^{\pi/2} = \frac{\pi}{4} + \frac{1}{4} \sin \pi = \frac{\pi}{4}.$$

Інтегрування частинами.

Якщо функції $u = \varphi(x)$ і $v = \psi(x)$ неперервні на відрізку [a, b], а також неперервні на цьому відрізку їх похідні, то справедлива формула інтегрування за частинами:

$$\int_{a}^{b} u dv = uv \Big|_{a}^{b} - \int_{a}^{b} v du.$$

<u>Приклад.</u> Обчислити визначений інтеграл $\int_{1}^{e} x \ln x dx$.

Розв'язування

$$\int_{1}^{e} x \ln x dx = \begin{vmatrix} u = \ln x, & dv = x dx \\ du = \frac{1}{x} dx, & v = \frac{1}{2} x^{2} \end{vmatrix} = \frac{1}{2} x^{2} \ln x \Big|_{1}^{e} - \frac{1}{2} \int_{1}^{e} x dx = \frac{1}{4} (e^{2} + 1).$$

Невласні інтеграли

Нехай функція f(x) визначена та неперервна на інтервалі $[a, \infty)$. Тоді вона неперервна на будь-якому відрізку [a, b].

<u>Означення.</u> Якщо існує скінченна границя $\lim_{b\to\infty} \int_a^b f(x)dx$, то ця границя називається **невласним інтегралом** від функції f(x) на інтервалі $[a, \infty)$ і позначається: $\lim_{b\to\infty} \int_a^b f(x)dx = \int_a^\infty f(x)dx$.

Якщо ця границя існує і є скінченною, то говорять, що невласний інтеграл

Якщо границя не існує або нескінченна, то невласний інтеграл **розбіжний.** Аналогічні міркування можна привести для невласних інтегралів виду:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx;$$
$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx.$$

Ці твердження справедливі, якщо інтеграли існують.

Приклад.

$$\int\limits_0^\infty \cos x dx = \lim\limits_{b \to \infty} \int\limits_0^b \cos x dx = \lim\limits_{b \to \infty} \sin x \Big|_0^b = \lim\limits_{b \to \infty} (\sin b - \sin 0) = \lim\limits_{b \to \infty} \sin b$$
- не існує. Невласний інтеграл розбіжний.

Приклад.

$$\int_{-\infty}^{-1} \frac{dx}{x^2} = \lim_{b \to -\infty} \int_{h}^{-1} \frac{dx}{x^2} = \lim_{b \to -\infty} \left[-\frac{1}{x} \right]_{h}^{-1} = \lim_{b \to -\infty} \left(1 + \frac{1}{b} \right) = 1 -$$
інтеграл збігається.

Теорема: Якщо для усіх x ($x \ge a$) виконується умова $0 \le \varphi(x) \le f(x)$ і інтеграл $\int\limits_a^\infty \varphi(x) dx$ розбігається, то $\int\limits_a^\infty f(x) dx$ також розбігається.

Теорема: Якщо $\int_{a}^{\infty} |f(x)| dx$ збігається, то збігається і інтеграл $\int_{a}^{\infty} f(x) dx$.

В цьому випадку інтеграл $\int_{a}^{\infty} f(x)dx$ називається **абсолютно збіжним**.

Обчислення площ плоских фігур

Відомо, що визначений інтеграл на відрізку представляє собою площу криволінійної трапеції, обмеженої графіком функції f(x). Якщо графік розміщений нижче осі Ox, тобто f(x) < 0, то площа має знак "-", Якщо графік розміщений вище осі Ox, тобто f(x) > 0, то площа має знак "+".

Для знаходження сумарної площі використовується формула
$$S = \int_a^b f(x) dx$$
.

Площа фігури, обмеженої деякими лініями може бути знайдена за допомогою визначених інтегралів, якщо відомі рівняння цих ліній.

Знаходження площі криволінійного сектора

Для знаходження площі криволінійного сектора введемо полярну систему координат. Рівняння кривої, яка обмежую сектор в цій системі координат, має вигляд $\rho = f(\varphi)$, де ρ - довжина радіус-вектора, який сполучає полюс з довільною точкою кривої, а φ - кут нахилу цього радіус-вектора до полярної осі.

Площа криволінійного сектора може бути знайдена за формулою:

$$S = \frac{1}{2} \int_{\alpha}^{\beta} f^{2}(\varphi) d\varphi.$$

Обчислення довжини дуги кривої

Довжина ламаної лінії, яка відповідає дузі, може бути знайдена як: $S_n = \sum_{i=1}^n \Delta S_i$.

Тоді довжина дуги дорівнює: $S = \lim_{\max \Delta S_i \to 0} \sum_{i=1}^n \Delta S_i$.

3 геометричних міркувань: $\Delta S_i = \sqrt{(\Delta x_i)^2 + (\Delta y_i)^2} = \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \cdot \Delta x_i$.

B той же час: $\frac{\Delta y_i}{\Delta x_i} = \frac{f(x_i) - f(x_{i-1})}{\Delta x_i}$.

Тоді можна заказати, що

$$S = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n \Delta S_i = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx.$$

Тобто:
$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$
.

Якщо рівняння кривої задано параметрично, то з врахуванням правил обчислення похідної параметрично заданої функції, отримуємо

$$S = \int_{\alpha}^{\beta} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2} dt,$$

де $x = \varphi(t)$ і $y = \psi(t)$.

Якщо задана **просторова крива**, $x=\varphi(t)$, $y=\psi(t)$ і z=Z(t), то

$$S = \int_{\alpha}^{\beta} \sqrt{\left[\varphi'(t)\right]^2 + \left[\psi'(t)\right]^2 + \left[Z'(t)\right]^2} dt.$$

Якщо крива задана в полярних координатах, то

$$S = \int_{\alpha}^{\beta} \sqrt{{\rho'}^2 + {\rho}^2} d\varphi, \quad \rho = f(\varphi).$$

<u>Приклад.</u> Знайти довжину кола, заданого рівнянням $x^2 + y^2 = r^2$.

1 спосіб. Виразимо з рівняння змінну *y*. $y = \sqrt{r^2 - x^2}$.

Знайдемо похідну $y' = -\frac{x}{\sqrt{r^2 - x^2}}$.

Тоді
$$\frac{1}{4}S = \int_{0}^{r} \sqrt{1 + \frac{x^2}{r^2 - x^2}} dx = \int_{0}^{r} \frac{r}{\sqrt{r^2 - x^2}} dx = r \cdot \arcsin \frac{x}{r} \Big|_{0}^{r} = r \frac{\pi}{2}.$$

Тоді $S = 2\pi r$. Отримали відому формулу довжини кола.

2 спосіб. Якщо представити задане рівняння в полярній системі координат, то отримаємо: $r^2cos^2\varphi + r^2sin^2\varphi = r^2$, тобто функція $\rho = f(\varphi) = r$, $\rho' = \frac{df(\varphi)}{d\varphi} = 0$, тоді

$$S = \int_{0}^{2\pi} \sqrt{0 + r^2} d\varphi = r \int_{0}^{2\pi} d\varphi = 2\pi r.$$

Обчислення об'ємів тіл

Обчислення об'єму тіла за відомими площами його паралельних перерізів.

Нехай є тіло об'єму V. Площа будь-якого заперечного перерізу тіла Q, відома як неперервна функція Q = Q(x). Розіб'ємо тіло на "шари" заперечними перерізами, які проходять через точки x_i розбиття відрізка [a, b]. Оскільки на якому-небудь проміжному відрізку розбиття $[x_{i-1}, x_i]$ функція Q(x) неперервна, то набуває на ньому найбільшого та найменшого значень. Позначимо їх відповідно M_i і m_i .

Якщо на цих найбільшому та найменшому перерізах побудувати циліндри з твірними, які паралельні осі x, то об'єми цих циліндрів будуть відповідно дорівнювати $M_i \Delta x_i$ і $m_i \Delta x_i$, тут $\Delta x_i = x_i - x_{i-1}$.

Виконуючи такі дії для усіх відрізків розбиття, отримаємо циліндри, об'єми яких дорівнюють відповідно $\sum_{i=1}^n M_i \Delta x_i$ і $\sum_{i=1}^n m_i \Delta x_i$.

При прямуванні до нуля кроку розбиття λ , ці суми мають загальну границю:

$$\lim_{\lambda \to 0} \sum_{i=1}^{n} M_i \Delta x_i = \lim_{\lambda \to 0} \sum_{i=1}^{n} m_i \Delta x_i = \int_a^b Q(x) dx.$$

Таким чином, об'єм тіла може бути знайдено за формулою:

$$V = \int_{a}^{b} Q(x) dx.$$

<u>Приклад.</u> Знайти об'єм шара радіуса R.

За поперечні перерізи кулі розглядаються кола змінного радіуса y. В залежності від біжучої координати x цей радіус виражається за формулою $\sqrt{R^2-x^2}$. Тоді функція площ перетинів має вигляд: $Q(x)=\pi \left(R^2-x^2\right)$. Маємо об'єм кулі:

$$V = \int_{-R}^{R} \pi (R^2 - x^2) dx = \pi (R^2 x - \frac{x^3}{3}) \Big|_{-R}^{R} = \pi \left(R^3 - \frac{R^3}{3} \right) - \pi \left(-R^3 + \frac{R^3}{3} \right) = \frac{4\pi R^3}{3}.$$

<u>Приклад.</u> Знайти об'єм довільної піраміди з висотою H і площею основи S.

При перетині піраміди площинами перпендикулярними висоті, в перетині отримуємо фігури, подібні основі. Коефіцієнт подібності цих фігур дорівнює відношенню x/H, де x – відстань від площі перерізу до вершини піраміди.

3 геометрії відомо, що відношення площ подібних фігур дорівнює коефіцієнту подібності в квадраті, тобто

$$\frac{Q}{S} = \left(\frac{x}{H}\right)^2$$
.

Звідси отримуємо функцію площ перерізів: $Q(x) = \frac{S}{H^2}x^2$.

Знаходимо об'єм піраміди:
$$V = \int_0^H \frac{S}{H^2} x^2 dx = \frac{Sx^3}{3H^2} \Big|_0^H = \frac{1}{3}SH$$
.

Об'єм тіла обертання

Розглянемо криву, задану рівнянням y = f(x). Припустимо, що функція f(x) неперервна на відрізку [a, b]. Якщо відповідну їй криволінійну трапецію з основами a і b обертати навколо осі Ox, то отримаємо **тіло обертання**.

Оскільки кожен переріз тіла площиною x = const представляє собою круг радіуса R = |f(x)|, то об'єм тіла обертання може бути легко знайдений за отриманою вище формулою:

$$V = \pi \int_{a}^{b} f^{2}(x) dx.$$

Площа поверхні тіла обертання

<u>Означення.</u> Площею поверхні обертання кривої AB навколо даної осі називають границю, до якої прямують площі поверхонь обертання ламаних, вписаних у криву AB, при прямуванні до нуля найбільших з довжин ланок цих ламаних.

Розіб'ємо дугу AB на n частин точками M_0 , M_1 , M_2 , ..., M_n . Координати вершин отриманої ламаної мають координати x_i і y_i . При обертанні ламаної навколо осі отримуємо поверхню, яка складається з бокових поверхонь зрізаних конусів, площа яких дорівнює ΔP_i . Ця площа може бути знайдена за формулою:

$$\Delta P_i = 2\pi \frac{y_{i-1} + y_i}{2} \Delta S_i.$$

Тут ΔS_i – довжина кожної хорди.

$$\Delta S_i = \sqrt{\Delta x_i^2 + \Delta y_i^2} = \sqrt{1 + \left(\frac{\Delta y_i}{\Delta x_i}\right)^2} \, \Delta x_i.$$

Застосовуємо теорему Лагранжа до відношення $\frac{\Delta y_i}{\Delta x_i}$.

Отримуємо:
$$\frac{\Delta y_i}{\Delta x_i} = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} = f(\varepsilon_i), \qquad x_{i-1} < \varepsilon < x_i$$
.

Тоді
$$\Delta S_i = \sqrt{1 + f'^2(\varepsilon_i)} \Delta x_i;$$

$$\Delta P_i = 2\pi \frac{y_{i-1} + y_i}{2} \sqrt{1 + {f'}^2(\varepsilon_i)} \Delta x_i \,.$$

Площа поверхні, описаної ламаною дорівнює:

$$P_n = \pi \sum_{i=1}^n (f(x_{i-1}) + f(x_i)) \sqrt{1 + f'^2(\varepsilon_i)} \Delta x_i.$$

Ця сума не ε інтегральною, але можна показати, що

$$P = \lim_{\max \Delta x_i \to 0} \pi \sum_{i=1}^{n} (f(x_{i-1}) + f(x_i)) \sqrt{1 + f'^2(\varepsilon_i)} \Delta x_i = \lim_{\max \Delta x_i \to 0} \pi \sum_{i=1}^{n} 2f(\varepsilon_i) \sqrt{1 + f'^2(\varepsilon_i)} \Delta x_i.$$

Тоді $P = 2\pi \int_a^b f(x) \sqrt{1 + f'^2(x)} dx$ - формула обчислення **площі поверхні тіла обертання.**