

ASE374K CONOPS and Attitude Control by Operation Modes

2/29/2024
Hongseok Kim
UT Austin Aerospace Engineering redstone@utexas.edu

Contents

- I. Review of Mission Scope
- II. Concept of Operation of Satellite
- III. Operation Mode Definition
- IV. Satellite Dynamics Modeling
- V. Satellite Controller Modeling
- VI. Simulation Parameters Modeling
- VII. Simulation Results and Discussion
- VIII. Conclusion and Future Research

Mission Patch

I. Review of Mission Scope

Mission Statement:

• Design Low-Earth-Orbit Solar Power Satellite 'Redstone' operation concept which receives solar power via solar panel and transmit energy to designated ground plant.

Primary Mission Objectives

- Satellite shall receive solar energy from sun more than [1,TBD] kJ per [1, TBD] orbit .
- Satellite shall transmit stored solar energy to [3, TBD] ground stations [1,TBD]kJ each per [1, TBD]week.

Secondary Mission Objective

- Satellite can transmit stored solar energy to cislunar orbit satellite or other satellites. [Concept Study]
- Propose constellation strategy for continuous solar power reception and transmission. [Concept Study]

II. Satellite Concept of Operations

III. Operation Mode Definition (1/4)

III. Operation Mode Definition (2/4)

Separation Mode

- Pre-Launch Condition: No power will be provided before separation from launch vehicle
- After separation from launch vehicle, the max tip-off rate of 10deg/sec is anticipated and satellite OBC will wake up and start to send beacon signal
- Solar array will be deployed for the generation of solar power
- B-dot Controller will autonomously start to run to damp out high tip-off rate of 10deg/sec to 0.3deg/sec: predicted time duration for detumbling is less than about 4.2 hrs.
- After settling down to satellite rate of 0.3deg/sec, the sun pointing controller will autonomously start to run to make solar array face to the sun for taking solar power by three-axis control method

Sun Pointing Mode

- The sun pointing mode requires aligning –y body axis to sun vector
- The sun-pointing controller will autonomously start from the "Post-Launch Mode" to make solar array face to the sun for taking solar power by three-axis control method.
- If no anomaly, most of the lifetime of satellite will be operated with "Sun Pointing Mode"
- Sun sensors, star tracker, gyro, three-axis magnetometer as sensors and RWAs, magnetic torque rod will be utilized for three axis control and momentum dumping
- Estimation algorithm will run to estimate to attitude and rate information

III. Operation Mode Definition (3/4)

Nadir Pointing Mode

- The Nadir Pointing Mode is aligning z vector to center of earth, and x vector to velocity of spacecraft
- Between transition to any normal operation mode (solar pointing mode, Nadir Pointing Mode, GS
 contact mode, Satellite Energy transmission mode), the satellite should transit to Nadir Pointing Mode
- The RWA shall comply performance requirements to transit from Nadir Point Mode to any operation mode and vice versa

GS contact Mode

- Since we are using S-band transceiver for TM/TC operation, the satellite will maintain Nadir Pointing mode while making communication with ground station.
- The S-band transceiver turns on this operation mode

Satellite Energy Transmit Mode

- Satellite z-axis will point designated ground energy plant and transmit the stored solar energy
- When this mode is planed, the satellite will point nadir direction and do roll-off and pitch-off maneuver
 if necessary
- Mode transition from "Sun-Pointing Mode" to "Satellite Energy Transmit Mode" will be performed by ground commands, NOT autonomously

III. Operation Mode Definition (4/4)

Safe-Hold Mode

- If there are some kinds of anomaly at hardware of software by unknown reason or SEU, satellite will
 enter from any mode to "Safe-Hold Mode" autonomously
- Once abnormal condition is detected, the satellite will be transition to the "Safe-Hold Mode" for survival of satellite, which makes first OBC power-reset and power-off unnecessary hardware for power-saving and satellite survival.
- Magnetic torque rods, sun sensors and magnetometer will used for two axis control to save power.
 [TBD]
- Estimation algorithm will run to estimate the attitude and rate information. [TBD]
- Recovery from "Safe-Hold Mode" to "Sun-Pointing Mode" will be done by ground commands.

IV. Satellite Dynamics Modeling [1/4]

Satellite Body Frame Definition

Satellite Orbit Frame Definition

MJ2000 Frame

LVLH Frame

https://ai-solutions.com/ freeflyeruniversityguide/attitude reference frames.htm

- We are using Euler Angle 3-1-2 Rotation System for generating Direction-Cosine-Matrix (DCM)
- We are using ECI Frame as MJ2000 Equatorial Frame to get satellite, sun, star locations
- We are using LVLH frame to get Nadir direction
- Since our proposed orbit is circular orbit x axis of LVLH frame = velocity vector of satellite

IV. Satellite Dynamics Modeling [2/4]

Important Assumptions

J2 Perturbation

- J2 Perturbation by earth oblateness is the single perturbation factor calculating satellite orbit trajectory
- We assume the Satellite maintain two-body dynamics except J2 Perturbation

Low-Earth-Orbit Circular Orbit

- We assume satellite's orbit is LEO perfect Circular Orbit
- We assume Geodetic frame of satellite is exactly same as LVLH frame, and x axis of LVLH frame is same as velocity vector of satellite since it is circular orbit

Perfect Sphere Earth

- We assume Earth is perfect sphere with 6378km radius, but only assume oblateness for J2 perturbation
- Nadir pointing of the Earth is same as Satellite pointing to center of earth, and z body axis is normal to tangent plane of nadir pointing ground location

Ignorance of Precession and Nutation of Satellite

 We assume satellite's MOI is diagonal matrix which indicate one axis of rotation does not impact another axis rotation

IV. Satellite Dynamics Modeling [3/4]

Satellite State Vector

$$X_{\text{SAT}} = \begin{bmatrix} \rightarrow \\ r_I \\ \rightarrow \\ v_I \\ R_{\text{BI}} \\ \rightarrow \\ \omega_B \\ \rightarrow \\ \omega_{\text{RWA}} \end{bmatrix}$$

 \overrightarrow{r}_I : Satellite Position Vector in ECI frame

 \overrightarrow{v}_I : Setellite Velocity Vector in ECI frame

R_{BI}: Rotation Matrix from ECI frame to Body Frame

 $\overrightarrow{\omega}_B$: Satellite Angular Velocity Vector w.r.t Body Frame

 $\overrightarrow{\omega}_{\text{RWA}}$: Satellite Reaction Wheels Angular Velocity vector

Satellite Dynamic Model

$$\dot{X}_{SAT} = f_{SAT}(t, X_{SAT}, \overrightarrow{e}_a, \overrightarrow{d}_I, P)$$
: Non – linear dynamic Model of \dot{X}_{sat}

t: Time

 X_{SAT} : Satellite State Vector

 \overrightarrow{e}_a : Satellite Reaction Wheels Motor Voltage (Control input)

 d_I : Satellite Disturbance Force Vector (Disturbance)

P: Satellite Paramter Structure

m: Mass of Satellite

J: Satellite's Moment of Inertia

 τ_m : Time constant for Motor Dynamics

 c_m : Steady – State Paramter: voltage to angular rate ω (rad/s)

 I_{RWA} : Momentum of Inertia of Reaction Wheel

IV. Satellite Dynamics Modeling [4/4]

Satellite Dynamic Model

$$\dot{X}_{SAT} = f_{SAT}(t, X_{SAT}, \overrightarrow{e}_a, \overrightarrow{d}_I, P)$$
: Non – linear dynamic Model of \dot{X}_{sat}

$$X_{\text{SAT}} = \begin{bmatrix} \rightarrow \\ r_I \\ \rightarrow \\ v_I \\ R_{\text{BI}} \\ \rightarrow \\ \omega_B \\ \rightarrow \\ \omega_{\text{RWA}} \end{bmatrix}$$

 \overrightarrow{r}_I : Satellite Position Vector in ECI frame

 \overrightarrow{v}_I : Setellite Velocity Vector in ECI frame

R_{BI}: Rotation Matrix from ECI frame to Body Frame

 $\overrightarrow{\omega}_B$: Satellite Angular Velocity Vector w. r. t Body Frame

 $\overline{\omega}_{RWA}$: Satellite Reaction Wheels Angular Velocity vector

$\dot{r}_I = v_I$ $\dot{v}_{I} = \begin{bmatrix} -\mu \frac{r_{xI}}{r^{3}} \left[1 - \frac{3}{2} J_{2} \left(\frac{R_{\text{Earth}}}{r} \right)^{2} \left(5 \left(\frac{r_{zI}}{r} \right)^{2} - 1 \right) \right] \\ -\mu \frac{r_{yI}}{r^{3}} \left[1 - \frac{3}{2} J_{2} \left(\frac{R_{\text{Earth}}}{r} \right)^{2} \left(5 \left(\frac{r_{zI}}{r} \right)^{2} - 1 \right) \right] \\ -\mu \frac{r_{zI}}{r^{3}} \left[1 - \frac{3}{2} J_{2} \left(\frac{R_{\text{Earth}}}{r} \right)^{2} \left(5 \left(\frac{r_{zI}}{r} \right)^{2} - 3 \right) \right] \end{bmatrix}$

$$\left[-\mu \frac{r_{\rm zI}}{r^3} \left[1 - \frac{3}{2} J_2 \left(\frac{R_{\rm Earth}}{r}\right)^2 \left(5 \left(\frac{r_{\rm zI}}{r}\right)^2 - 3\right)\right]$$

$$\dot{R}_{\rm BI} = -\omega_B \times R_{\rm BI}$$

$$\dot{\omega}_B = J^{-1} \left(\overrightarrow{N}_B - [\omega_B \times] J \omega_B \right)$$

$$\dot{\omega}_{\text{RWA}} = -\frac{\overrightarrow{\omega}_{\text{RWA}}}{\tau_m} + \frac{c_m}{\tau_m} \stackrel{\longrightarrow}{e}_a$$

Assumption: Reaction Wheel is Mounted parallel to Each Body Axis

J₂ Purturbation Model

 $J_2: J_2$ Purturbation Constant

 μ : Gravity Constant

R_{Earth}: Earth Radius

$$r = |\mathbf{r}_I|$$

$$\mathbf{r}_I = (r_{\rm xI}, r_{\rm yI}, r_{\rm zI})^T$$

Body Torque Calculation RWA Dynamics

 N_B : Body Torque Vector

$$\overrightarrow{N}_{B} = -I_{\text{RWA}} \dot{\omega}_{\text{RWA}} = I_{\text{RWA}} \left(-\frac{\overrightarrow{\omega}_{\text{RWA}}}{\tau_{m}} + \frac{c_{m}}{\tau_{m}} \overrightarrow{e}_{a} \right)$$

V. Satellite Controller Modeling [1/6]

V. Satellite Controller Modeling [2/6]

1. On-orbit Propagator

r₀, v₀

Orbit Propagator
(Trajectory Gen)
SGP4 / J2

Input: Current Estimated r,v Output: Propagated Trajectory Using Existing J2 Model

- Can be substituted by SGP4 Model with TLE telemetry information
- Or can use more precise Propagation Model

2. Reference Attitude Generator

I/O Structure

Input: Propagated Trajectory r_I^*, v_I^*

Output : Reference Attitude Body Axis \overrightarrow{z}_{I} , \overrightarrow{x}_{I}

cf:
$$\overrightarrow{z}_I = R_{\text{RI}}^T \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T, \overrightarrow{x}_I = R_{\text{RI}}^T \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$$

Different Attitude Generation by Operating Mode

1) Nadir Pointing Mode

$$\Rightarrow \overrightarrow{x}_{I} = \frac{\overrightarrow{v}_{I}}{\begin{vmatrix} \overrightarrow{v}_{I} \\ \overrightarrow{v}_{I} \end{vmatrix}}, \overrightarrow{z}_{I} = -\frac{\overrightarrow{r}_{I}}{\begin{vmatrix} \overrightarrow{v}_{I} \\ \overrightarrow{r}_{I} \end{vmatrix}}$$

2) Energy Transmitting Mode

$$\Rightarrow$$
 Ground Location Vector \overrightarrow{r}_{GS}

$$\Rightarrow \overrightarrow{z}_{I} = \frac{\overrightarrow{r}_{GS} - \overrightarrow{r}_{I}}{\left|\overrightarrow{r}_{GS} - \overrightarrow{r}_{I}\right|}, \overrightarrow{y}_{I} = \frac{\overrightarrow{z}_{I} \times \overrightarrow{v}_{I}}{\left|\overrightarrow{z}_{I} \times \overrightarrow{v}_{I}\right|}$$

$$\Rightarrow \overrightarrow{x}_{I} = \overrightarrow{y}_{I} \times \overrightarrow{z}_{I}$$

3) Sun Pointing Mode

 \Rightarrow Sun direction vector \hat{r}_{sun}

$$\Rightarrow \overrightarrow{y}_{I}^{*} = -\widehat{r}_{sun}, \overrightarrow{z}_{I}^{*} = \frac{\overrightarrow{v}_{I}^{*} \times \overrightarrow{y}_{I}^{*}}{|\overrightarrow{v}_{I}^{*} \times \overrightarrow{y}_{I}^{*}|}$$

$$\Rightarrow \overrightarrow{x}_{I} = \overrightarrow{y}_{I} \times \overrightarrow{z}$$

V. Satellite Controller Modeling [3/6]

3. Attitude Controller

 $\overrightarrow{b} = \frac{\overrightarrow{z}_I \times \overrightarrow{x}_I}{\begin{vmatrix} \overrightarrow{z}_I \times \overrightarrow{x}_I \end{vmatrix}}$

 $\overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{z}_{I}$

if $\overrightarrow{z}_I \times \overrightarrow{x}_I = 0 \Rightarrow \overrightarrow{b} = \overrightarrow{0}$

 $R_{\mathrm{BI}}^* = \begin{bmatrix} | & | & | \\ \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{z}_I \end{bmatrix}$

4. Reaction Wheel Voltage Converter

Calculate error vector \vec{e}

Use TRIAD Method to Determine $R_{\rm BI}^*$ $R_{\rm BI}^*$: Reference Direction Cosine Matrix

 R_E : Error Direction Cosine Matrix $\overrightarrow{x}_{I}, \overrightarrow{z}_{I}$: Reference AttiudeInput

 $R_{\mathrm{BI}}^* = R_E R_{\mathrm{BI}} \Leftrightarrow R_E = R_{\mathrm{BI}}^* R_{\mathrm{BI}}^T$

$$R_E = \begin{bmatrix} e_{11} & e_{12} & e_{13} \\ e_{21} & e_{22} & e_{23} \end{bmatrix} \Rightarrow \overrightarrow{e} = \begin{bmatrix} e_{23} - e_{32} \\ e_{31} - e_{13} \end{bmatrix}$$

We assume $\overrightarrow{e} = -\overrightarrow{\omega}_R$

Design PD Controller $\overrightarrow{N_B} = K_p \overrightarrow{e} - K_d \overrightarrow{\omega}_B + \left[\overrightarrow{\omega}_B \times \right] J \overrightarrow{\omega}_B$

 K_n, K_d : PD gain matrix

 N_B : Required body torque (Control Input)

Reaction Wheel Motor Dynamics

 $\frac{\Omega(s)}{E_a(s)} = \frac{c_m}{\tau_m s + 1}$: 1st order system

 $\Omega(s)$: RWA Angular Rate in s domain

$$\Omega(s)(\tau_m s + 1) = c_m E_a(s)$$

$$s\Omega(s) = \frac{1}{\tau_m} (c_m E_a(s) - \Omega(s))$$

$$\therefore \dot{\omega}_{\text{RWA}}(t) = \frac{1}{\tau_m} (c_m e_a(t) - \omega_{\text{RWA}}(t)) \qquad \therefore \vec{e}_a = \frac{1}{c_m} \left[-I_{\text{RWA}}^{-1} \overset{\rightarrow}{N_B} \tau_m + \overset{\rightarrow}{\omega}_{\text{RWA}} \right]$$

Reaction Wheel Voltage Converter Design

Input : N_B : Required body torque (Attitude Control output)

 ω_{RWA} : Reaction wheel angular rate (From Estimator)

 $E_a(s)$: RWA Input Voltage in s domain Output: \overrightarrow{e}_a Required motor voltage (Control Input to SAT)

$$\stackrel{\rightarrow}{N_B} = -I_{\rm RWA} \dot{\omega}_{\rm RWA} \Rightarrow -I_{\rm RWA}^{-1} \stackrel{\rightarrow}{N_B} = \dot{\omega}_{\rm RWA}$$

$$-I_{\text{RWA}}^{-1} \overrightarrow{N_B} = \frac{1}{\tau_m} \left(c_m e_a - \overrightarrow{\omega}_{\text{RWA}} \right)$$

$$\therefore \overrightarrow{e}_a = \frac{1}{C_{w}} \left[-I_{\text{RWA}}^{-1} \overrightarrow{N}_B \tau_m + \overrightarrow{\omega}_{\text{RWA}} \right]$$

V. Satellite Controller Modeling [4/6]


```
function [Xdot] = SATOdeFunctionHF(t, X, eaVec, distVec, P
                -- Scalar time input, as required by Matlab's ODE function
                -- Nx-by-1 SAT state, arranged as
                  X = [rI', vI', RBI(1,1), RBI(2,1), ..., RBI(2,3), RBI(3,3), ...
                       omegaB',omegaVec']'
                  rI = 3x1 position vector in I in meters
                  vI = 3x1 velocity vector wrt I and in I, in meters/sec
                 RBI = 3x3 attitude matrix from I to B frame
               omegaB = 3x1 angular rate vector of body wrt I, expressed in B
            omegaVec = 4x1 vector of rotor angular rates, in rad/sec.
                       omegaVec(i) is the angular rate of the ith rotor.
        eaVec --- 4x1 vector of voltages applied to motors, in volts. eaVec(i)
                  is the constant voltage setpoint for the ith rotor.
      distVec --- 3x1 vector of constant disturbance forces acting on the SAT's
                  center of mass, expressed in Newtons in I.
     Xdot ----- Nx-by-1 time derivative of the input vector X
```

```
Generate oversampled, updated satellite dynamics using integrator function (ODE45 or RK4)

eak = voltageConverterSAT(NBk,omegaVec_k,P_voltage);

Xk = [r_k;v_k;RBI_k(:);omegaB_k;omegaVec_k];

[tVeck, xMatk] = ode45(@(t,X) SATOdeFunctionHF(t,X,eak,distMat_k,Parameters),tspan,Xk);
```

Then Store the simulation output [tVeck, xMatk]

V. Satellite Controller Modeling [5/6]

6. Output Generator

SAT dynamics output

List of Available Output

- 1. Satellite Trajectory with Body Axis Vector display
- \Rightarrow Reference Trajectory and attitude : \mathbf{r}^* , $\overset{\rightarrow}{\mathbf{x}}_I$, $\overset{\rightarrow}{\mathbf{z}}_I$, $\overset{\rightarrow}{\mathbf{y}}_I$ (= $\overset{\rightarrow}{\mathbf{z}}_I$, $\overset{\rightarrow}{\mathbf{x}}_I$)
- \Rightarrow Output Trajectory and attitude : r, $\overrightarrow{x}_I = R_{\rm BI}^T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\overrightarrow{y}_I = R_{\rm BI}^T \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\overrightarrow{z}_I = R_{\rm BI}^T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
- ⇒ We can use quiver function for display trajectory and attitude vector

2. Satellite Euler angle (Roll, Pitch, Yaw) display

$$\Rightarrow \text{Reference Euler Angle}: R_{\text{BI}}^* = \begin{bmatrix} | & | & | \\ | & | & | \\ | & | & | \end{bmatrix}, \begin{cases} \overrightarrow{b} = \frac{\overrightarrow{z}_I \times \overrightarrow{x}_I}{|\overrightarrow{z}_I \times \overrightarrow{x}_I|}, & \overrightarrow{\text{if }} \overrightarrow{z}_I \times \overrightarrow{x}_I = 0 \Rightarrow \overrightarrow{b} = \overrightarrow{0} \\ | \overrightarrow{z}_I \times \overrightarrow{x}_I | & \overrightarrow{z}_I \times \overrightarrow{x}_I = 0 \end{cases}$$

$$\phi^* = \sin^{-1}(R_{\rm BI}^*(2,3)), \ \theta^* = \tan^{-1}\left(-\frac{R_{\rm BI}^*(1,3)}{R_{\rm BI}^*(3,3)}\right), \psi^* = \tan^{-1}\left(-\frac{R_{\rm BI}^*(2,1)}{R_{\rm BI}^*(2,2)}\right)$$

 \Rightarrow Output Euler Angle : Using R_{BI} from X_{SAT}

$$\phi = \sin^{-1}(R_{\rm BI}(2,3)), \ \theta = \tan^{-1}\left(-\frac{R_{\rm BI}(1,3)}{R_{\rm BI}(3,3)}\right), \psi = \tan^{-1}\left(-\frac{R_{\rm BI}(2,1)}{R_{\rm BI}(2,2)}\right)$$

- 3. Reaction Wheel Angular Rate display
- \Rightarrow Use $\overrightarrow{\omega}_{RWA}$ from X_{SAT}
- We can make more visualized output from given dataset
- ECI to LLA map display, Pointing Display for GS Contact
- Sun Pointing Display, Nadir Pointing Display

V. Satellite Controller Modeling [6/6]

8. State Estimator

- Currently, assuming we have perfect estimation, so estimated dataset is same with True Dataset with no noise model
- In the future research we will develop the onboard sensor measurement model and estimation model

- Since the satellite does not receive the perfectly accurate dataset, for high-fidelity simulation, we should model the noised / biased state signal and sensor dynamics model
- The satellite uses multiple sensors for trajectory and attitude (GNSS, Star Tracker, IMU, Sun Sensor, TLE Telemetry, Magnetometer, etc.)
- By sensor fusion technique like Unscented Kalman Filter, satellite optimizes the state signal
- By optimization methodology such as Gaussian Process or Bayesian Optimization, Satellite Develops innate dynamic model for advanced adaptive control

VI. Simulation Parameters Modeling

Epoch :

Satellite Initial Operation Mode: Nadir

Mar 21, 2024

Satellite Initial Location : Nadir Mode Simulation Specification :

SMA = 7640km eccentricity e = 1.6e - 5

Total Elapsed Time: 3600 sec

inclination $i = 100.7 \deg$

Total Elapsed Time: 1000 sec

 $RAAN \Omega = 90 \deg$

AOP $\omega = 0 \deg$

Slant Range Calculation Include

True Anomaly $\theta = 0 \deg$

Sun Pointing Mode Simulation Specification

Designated Ground Station: Austin, Texas:

Total Elapsed Time: 3600 sec

Latitude = $30.285 \deg$

Sun vector on 3/21/2024: $(1,0,0) \Rightarrow$ Changed by Day

Energy Transmission Mode Simulation Specification:

Longitude = $-97.735 \deg$

Altitude = 70m

VII. Simulation Results and Discussion [1/3]

Result 1: Nadir Pointing Mode

- The satellite has good tracking performance for Nadir Pointing Mode
- RWA #2 maintains steady-state non-zero angular velocity, which indicates there exist constant momentum for Nadir pointing mode
- RWA #1 and #3 almost remains zero rotational speed

VII. Simulation Results and Discussion [2/3]

Result 2: Energy Transmission Mode

- The satellite requires 100 seconds to transit from Nadir pointing mode for Energy Transmission mode in given condition
- The satellite has good ground plant tracking performance after transition to Energy Transmission mode
- The Yaw-axis maneuver exists in Energy transmission mode
- The shortest slant range occurs around elapsed time 550 seconds

VII. Simulation Results and Discussion [3/3]

Result 3: Sun Pointing Mode

- The tracking performance of Sun-Pointing mode is good, maintaining constant roll and yaw angle.
- The satellite requires around 250 seconds for transition from nadir pointing mode to sun pointing mode in given simulation environment
- The RWA #1 and #2 maintains non-zero steady state angular rate, which indicates there exist steadystate angular momentum

VIII. Conclusion and Future Research

- In this session, we have discussed the Redstone-1's concept of operations and defined operation mode
- We have discussed the Redstone-1's attitude control mechanism.
- We have discussed simulation of transition between normal operation modes in given initial condition
- In future research, we will investigate the satellite Sensor Measurement and Estimation Method

