Periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting by the dual least action principle

Sonia Acinas *

Dpto. de Matemática, Facultad de Ciencias Exactas y Naturales Universidad Nacional de La Pampa (L6300CLB) Santa Rosa, La Pampa, Argentina

sonia.acinas@gmail.com

Fernando D. Mazzone †

Dpto. de Matemática, Facultad de Ciencias Exactas, Físico-Químicas y Naturales Universidad Nacional de Río Cuarto (5800) Río Cuarto, Córdoba, Argentina,

fmazzone@exa.unrc.edu.ar

Abstract

1 Introduction

This paper deals with system of equations of the type:

$$\begin{cases} \frac{d}{dt} D_y \mathcal{L}(t, u(t), u'(t)) = D_x \mathcal{L}(t, u(t), u'(t)) & \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0, \end{cases}$$
(1)

where $\mathcal{L}:[0,T]\times\mathbb{R}^d\times\mathbb{R}^d\to\mathbb{R},\,d\geqslant 1$, is called the *Lagrange function* or *lagrangian* and the unknown function $u:[0,T]\to\mathbb{R}^d$ is absolutely continuous. In other words, we are interested in finding *periodic weak solutions* of *Euler-Lagrange system of ordinary equations*. This topic was deeply addressed for the *Lagrange function*

$$\mathcal{L}_{p,F}(t,x,y) = \frac{|y|^p}{p} + F(t,x), \tag{2}$$

2010 AMS Subject Classification. Primary: . Secondary: .

Keywords and phrases. .

^{*}SECyT-UNRC and FCEyN-UNLPam

[†]SECyT-UNRC, FCEyN-UNLPam and CONICET

for $1 . For example, the classic book [?] deals mainly with problem (1), for the lagrangian <math>\mathcal{L}_{2,F}$, through various methods: direct, dual action, minimax, etc. The results in [?] were extended and improved in several articles, see [?, ?, ?, ?] to cite some examples. Lagrange functions (2) for arbitrary 1 were considered in [?, ?] and in this case (1) is reduced to the <math>p-laplacian system

$$\begin{cases} \frac{d}{dt} \left(u'(t)|u'|^{p-2} \right) = \nabla F(t, u(t)) & \text{a.e. } t \in (0, T) \\ u(0) - u(T) = u'(0) - u'(T) = 0. \end{cases}$$
 (3)

In this context, it is customary to call F a potential function, and it is assumed that F(t,x) is differentiable with respect to x for a.e. $t \in [0,T]$ and the following conditions are verified:

- (C) F and its gradient ∇F , with respect to $x \in \mathbb{R}^d$, are Carathéodory functions, i.e. they are measurable functions with respect to $t \in [0,T]$, for every $x \in \mathbb{R}^d$, and they are continuous functions with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0,T]$.
- (A) For a.e. $t \in [0, T]$, it holds that

$$|F(t,x)| + |\nabla F(t,x)| \le a(|x|)b(t). \tag{4}$$

In this inequality we assume that the function $a:[0,+\infty) \to [0,+\infty)$ is continuous and non decreasing and $0 \le b \in L^1([0,T],\mathbb{R})$.

In [?] it was treated the case of a lagrangian $\mathcal L$ which is lower bounded by a Lagrange function

$$\mathcal{L}_{\Phi F}(t, x, y) = \Phi(|y|) + F(t, x), \tag{5}$$

where Φ is an N-function (see section 2 for the definition of this concept). In the paper [?] it was assumed a condition of *bounded oscillation* on F (see xxxxx below). In this paper we apply the dual method ([?, Ch. 3]) to obtain solutions of (1).

2 Anisotropic Orlicz and Orlicz-Sobolev spaces

In this section, we give a short introduction to known results on Orlicz and Orlicz-Sobolev spaces of vector valued functions (anisotropic Orlicz Spaces). References for these topics are [?, ?, ?].

Hereafter we denote by \mathbb{R}^+ the set of all non negative real numbers. A function $\Phi: \mathbb{R}^d \to \mathbb{R}_+$ is called an *Young's function* if Φ is convex, $\Phi(0) = 0$, $\Phi(-x) = \Phi(x)$ and $\Phi(x) \to +\infty$, when $|x| \to +\infty$.

Following [?] we say that Φ is *coercive* if

$$\lim_{|x|\to\infty}\frac{\Phi(x)}{|x|}=+\infty.$$

We define the function G by

$$G(s) = \min\{\Phi(x) : |x| \le s\},\tag{6}$$

where Φ is a Young's function.

We point out that the function G(|x|) has the following properties, as reader can easily check,

- (G1) G is monotonous increasing, continuous and $G(s) \to \infty$ as $s \to \infty$.
- (G2) G is the greatest radial minorant of $\Phi(x)$, i.e. $G(|x|) \leq \Phi(x)$ and G(|x|) is the biggest radial function with this property.
- (G3) There exists G^{-1} and $G^{-1}(\Phi(x)) \ge |x|$.
- (G4) As $\Phi(\alpha x)/\alpha$ is increasing with respect to α for evey x > 0, $G(\alpha s)/\alpha$ is also increasing with respect to α for every s > 0. Alternatively $\beta G^{-1}(t/\beta)$ is an increasing function with respect to β for every t > 0.
- (G5) In the event that Φ is coervive, then G is also coercive. Alternatively $G^{-1}(s)/s \to 0$ when $s \to +\infty$.

We also say that $\Phi: \mathbb{R}^d \to \mathbb{R}^+$ satisfies the Δ_2^∞ -condition, denoted by $\Phi \in \Delta_2^\infty$, if there exist constants K > 0 and $M \geqslant 0$ such that

$$\Phi(2x) \leqslant KH(x),\tag{7}$$

for every $|x| \ge M$.

If Φ is a Young's function we define its *Fenchel conjugate* $\Phi^* : \mathbb{R}^d \to \mathbb{R}^+$ by:

$$\Phi^*(y) = \sup_{x \in \mathbb{R}^d} x \cdot y - \Phi(x) \tag{8}$$

We denote by $\mathcal{M} := \mathcal{M}([0,T],\mathbb{R}^d)$, with $d \geqslant 1$, the set of all measurable functions (i.e. functions which are limits of simple functions) defined on [0,T] with values on \mathbb{R}^d and we write $u = (u_1,\ldots,u_d)$ for $u \in \mathcal{M}$. For the set of functions \mathcal{M} , as for other similar sets, we will omit the reference to codomain \mathbb{R}^d when d = 1.

Given an N-function Φ we define the modular function $\rho_{\Phi}: \mathcal{M} \to \mathbb{R}^+ \cup \{+\infty\}$ by

$$\rho_{\Phi}(u) \coloneqq \int_0^T \Phi(u) \ dt.$$

Here $|\cdot|$ is the euclidean norm of \mathbb{R}^d . Now, we introduce the *Orlicz class* $C^{\Phi} = C^{\Phi}([0,T],\mathbb{R}^d)$ by setting

$$C^{\Phi} := \{ u \in \mathcal{M} | \rho_{\Phi}(u) < \infty \}. \tag{9}$$

The Orlicz space $L^{\Phi} = L^{\Phi}([0,T],\mathbb{R}^d)$ is the linear hull of C^{Φ} ; equivalently,

$$L^{\Phi} := \{ u \in \mathcal{M} | \exists \lambda > 0 : \rho_{\Phi}(\lambda u) < \infty \}. \tag{10}$$

The Orlicz space L^{Φ} equipped with the Luxemburg norm

$$\|u\|_{L^\Phi}\coloneqq\inf\left\{\lambda\left|\rho_\Phi\left(\frac{v}{\lambda}\right)dt\leqslant1\right\},$$

is a Banach space. By $u \cdot v$ we denote the usual dot product in \mathbb{R}^d between u and v.

The subspace $E^{\Phi} = E^{\Phi}([0,T],\mathbb{R}^d)$ is defined as the closure in L^{Φ} of the subspace $L^{\infty}([0,T],\mathbb{R}^d)$ of all \mathbb{R}^d -valued essentially bounded functions. It is shown that (see [?, Thm. 5.1]) $u \in E^{\Phi}$ if and only if $\rho_{\Phi}(\lambda u) < \infty$ for any $\lambda > 0$. The equality $L^{\Phi} = E^{\Phi}$ is true if and only if $\Phi \in \Delta_2^{\infty}$ (see [?, Thm. 5.2]). Another alternative characterization of E^{Φ} , which is particularly useful for us, is that $u \in E^{\Phi}$ if and only if u has absolutely continuous norm, i.e. if $E_n \subset [0,T]$, $n=1,2,\ldots$ then $\|\chi_{E_n}u\| \to 0$ when $|E_n| \to 0$.

A generalized version of *Hölder's inequality* holds in Orlicz spaces (see [?, Thm. 4.1]). Namely, if $u \in L^{\Phi}$ and $v \in L^{\Phi^*}$ then $u \cdot v \in L^1$ and

$$\int_{0}^{T} v \cdot u \, dt \le 2 \|u\|_{L^{\Phi}} \|v\|_{L^{\Phi^{*}}}.$$
(11)

Like in [?] we will consider the subset $\Pi(E^{\Phi}, r)$ of L^{Φ} given by

$$\Pi(E^{\Phi}, r) \coloneqq \{ u \in L^{\Phi} | d(u, E^{\Phi}) < r \}.$$

This set is related to the Orlicz class C^{Φ} by means of inclusions, namely,

$$\Pi(E^{\Phi}, r) \subset rC^{\Phi} \subset \overline{\Pi(E^{\Phi}, r)} \tag{12}$$

for any positive r (see [?, Thm. 5.6]). If $\Phi \in \Delta_2^{\infty}$, then the sets L^{Φ} , E^{Φ} , $\Pi(E^{\Phi}, r)$ and C^{Φ} are equal.

Following to [?] we introduce the next definition.

Definition 2.1. Let $u_n, u \in L^{\Phi}([0,T], \mathbb{R}^d)$. We say that u_n converges monotonically to u if there exists $\alpha_n \in L^{\infty}([0,T], \mathbb{R})$, n = 1, 2, ..., such that $0 \le \alpha_n(t) \le \alpha_{n+1}(t)$, $\alpha_n(t) \to 1$ a.e., when $n \to \infty$ and $u_n(t) = \alpha_n(t)u(t)$.

As usual, if $(X,\|\cdot\|_X)$ is a normed space and $(Y,\|\cdot\|_Y)$ is a linear subspace of X, we write $Y \hookrightarrow X$ and we say that Y is *embedded* in X when there exists C > 0 such that $\|y\|_X \leqslant C\|y\|_Y$ for any $y \in Y$. With this notation, Hölder's inequality states that $L^{\Phi^*} \hookrightarrow \left[L^{\Phi}\right]^*$, where a function $v \in L^{\Phi^*}$ is associated to $\xi_v \in \left[L^{\Phi}\right]^*$ being

$$\xi_v(u) = \langle \xi_v, u \rangle = \int_0^T v \cdot u \, dt, \tag{13}$$

In [?, Thm 2.9] it was characterized a subspace of $\left[L^{\Phi}\right]^*$ which can be identified with L^{Φ^*}

Proposition 2.2. Let $F \in [L^{\Phi}([0,T],\mathbb{R}^d)]^*$. Then the following statements are equivalent

1.
$$\xi \in L^{\Phi^*}([0,T],\mathbb{R}^d)$$

2. ξ satisfies the monotone convergence property, which is if u_n converges monotonically to u then $\langle \xi, u_n \rangle \rightarrow \langle \xi, u \rangle$.

If $\Phi \in \Delta_2^{\infty}$ and Φ is coercive then $L^{\Phi^*}([0,T],\mathbb{R}^d) = [L^{\Phi}([0,T],\mathbb{R}^d)]^*$ (see [?, Thm. 2.9 , Thm. 2.10]).

We define the Sobolev-Orlicz space W^1L^{Φ} by

 $W^1L^{\Phi}([0,T],\mathbb{R}^d)\coloneqq\{u|u\text{ is absolutely continuous on }[0,T]\text{ and }u'\in L^{\Phi}([0,T],\mathbb{R}^d)\}.$

 $W^1L^{\Phi}([0,T],\mathbb{R}^d)$ is a Banach space when equipped with the norm

$$||u||_{W^1L^{\Phi}} = ||u||_{L^{\Phi}} + ||u'||_{L^{\Phi}}. \tag{14}$$

And, we introduce the following subspaces of W^1L^{Φ}

$$W^{1}E^{\Phi} = \{u \in W^{1}L^{\Phi} | u' \in E^{\Phi}\},$$

$$W^{1}E^{\Phi}_{T} = \{u \in W^{1}E^{\Phi} | u(0) = u(T)\}.$$
(15)

We will use repeatedly the decomposition $u = \overline{u} + \widetilde{u}$ for a function $u \in L^1([0,T])$ where $\overline{u} = \frac{1}{T} \int_0^T u(t) dt$ and $\widetilde{u} = u - \overline{u}$.

The following lemma is an elementary generalization to anisotropic Sobolev-Orlicz spaces of known results of Sobolev spaces.

Lemma 2.3. Let $\Phi : \mathbb{R}^d \to [0, +\infty)$ be a Young's function and let $u \in W^1L^{\Phi}([0, T], \mathbb{R}^d)$. Let $G : \mathbb{R}^+ \to \mathbb{R}^+$ be the function defined by (6). Then

1. For every $s, t \in [0, T]$, $s \neq t$,

$$|u(t) - u(s)| \le ||u'||_{L^{\Phi}} |s - t|G^{-1}\left(\frac{1}{|s - t|}\right)$$
 (Morrey's inequality)

$$||u||_{L^{\infty}} \leqslant G^{-1}\left(\frac{1}{T}\right) \max\{1, T\} ||u||_{W^1L^{\Phi}}$$
 (Sobolev's inequality)

2. We have $\widetilde{u} \in L^{\infty}([0,T],\mathbb{R}^d)$ and

$$\|\widetilde{u}\|_{L^{\infty}} \le TG^{-1}\left(\frac{1}{T}\right)\|u'\|_{L^{\Phi}}$$
 (Sobolev-Wirtinger's inequality)

3. If Φ is coercive then the space $W^1L^{\Phi}([0,T],\mathbb{R}^d)$ is compactly embedded in the space of continuous functions $C([0,T],\mathbb{R}^d)$.

Proof. By the absolutely continuity of u, Jensen's inequality and the definition of the Luxemburg norm, we have

$$\Phi\left(\frac{u(t) - u(s)}{\|u'\|_{L^{\Phi}}|s - t|}\right) \leqslant \Phi\left(\frac{1}{|s - t|} \int_{s}^{t} \frac{u'(r)}{\|u'\|_{L^{\Phi}}} dr\right)
\leqslant \frac{1}{|s - t|} \int_{s}^{t} \Phi\left(\frac{u'(r)}{\|u'\|_{L^{\Phi}}}\right) dr \leqslant \frac{1}{|s - t|}.$$

By (G1) and (G3) we get

$$\frac{|u(t) - u(s)|}{\|u'\|_{L^{\Phi}}|s - t|} \le G^{-1} \left(\frac{1}{|s - t|}\right),$$

then 1 holds.

Morrey's inequality implies Sobolev-Wirtinger's inequality according to the following argument. Taking into account that $\alpha G^{-1}(1/\alpha)$ is an increasing function with respect to $\alpha \in (0, \infty)$ we have

$$|u(t)-\overline{u}| \leq ||u'||_{L^{\Phi}}TG^{-1}\left(\frac{1}{T}\right),$$

and Sobolev-Wirtinger's inequality follows easily.

In order to prove the Sobolev's inequality, we note that, using Jensen's inequality and the definition of $\|u\|_{L^{\Phi}}$, we obtain

$$\Phi\left(\frac{\overline{u}}{\|u\|_{L^{\Phi}}}\right) \leqslant \frac{1}{T} \int_{0}^{T} \Phi\left(\frac{u(s)}{\|u\|_{L^{\Phi}}}\right) ds \leqslant \frac{1}{T}$$

Then by (G1) and (G3)

$$|\overline{u}| \leqslant G^{-1}\left(\frac{1}{T}\right) \|u\|_{L^{\Phi}}.$$

Therefore, from this and (Sobolev-Wirtinger's inequality) we get

$$||u||_{L^{\infty}} \leq |\overline{u}| + ||\tilde{u}||_{L^{\infty}}$$

$$\leq G^{-1} \left(\frac{1}{T}\right) ||u||_{L^{\Phi}} + TG^{-1} \left(\frac{1}{T}\right) ||u'||_{L^{\Phi}}$$

$$\leq G^{-1} \left(\frac{1}{T}\right) \max\{1, T\} ||u||_{W^{1}L^{\Phi}}$$

In order to prove item 3, we take a bounded sequence u_n in $W^1L^{\Phi}([0,T],\mathbb{R}^d)$. From (Morrey's inequality) and (G5) we infer that u_n are equicontinuous. Furthermore (Sobolev's inequality) implies that u_n is bounded in $C([0,T],\mathbb{R}^d)$. Therefore by the Arzela-Ascoli Theorem we obtain a subsequence n_k and $u \in C([0,T],\mathbb{R}^d)$ with $u_{n_k} \to u$ in $C([0,T],\mathbb{R}^d)$.

3 Superposition operators in anisotropic Orlicz spaces

In this section we give a brief introduction to superposition operators between anistropic Orlicz Spaces. We apply these results to obtain Gateâux differentiability of action integrals associated to lagrangian functions defined in Sobolev-Orlicz spaces.

Henceforth we assume that f is a Carathéodory function,

(C) f is measurable with respect to $t \in [0,T]$ for every $x \in \mathbb{R}^d$, and f is a continuous function with respect to $x \in \mathbb{R}^d$ for a.e. $t \in [0,T]$.

Definition 3.1. For $f:[0,T]\times\mathbb{R}^d\to\mathbb{R}$ we denote by \boldsymbol{f} the Nemytskii (o superposition) operator defined for functions $u:[0,T]\to\mathbb{R}^d$ by

$$fu(t) = f(t, u(t))$$

In the following Theorem we enumerate some known properties for superposition operators definied in anisotropic Orlicz spaces of vectorial functions. For the proofs of these results and additional discussions see [?, ?, ?].

Theorem 3.2. We assume that f satisfies condition ((C)). Then

- Measurability. The operator f maps masurable function into measurable functions
- 2. Extensibility.? If
- 3. Continuity.? If

Acknowledgments

The authors are partially supported by a UNRC grant number 18/C417. The first author is partially supported by a UNSL grant number 22/F223.

References

- [Acinas et al., 2015] Acinas, S., Buri, L., Giubergia, G., Mazzone, F., and Schwindt, E. (2015). Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting. *Nonlinear Analysis, TMA.*, 125:681 698.
- [Desch and Grimmer, 2001] Desch, W. and Grimmer, R. (2001). On the well-posedness of constitutive laws involving dissipation potentials. *Trans. Amer. Math. Soc*, (353):5095–5120.
- [Krasnosel'skiĭ and Rutickiĭ, 1961] Krasnosel'skiĭ, M. A. and Rutickiĭ, J. B. (1961). *Convex functions and Orlicz spaces*. P. Noordhoff Ltd., Groningen.
- [Mawhin and Willem, 1989] Mawhin, J. and Willem, M. (1989). *Critical point theory and Hamiltonian systems*. Springer-Verlag, New York.
- [Płuciennik, 1985a] Płuciennik, R. (1985a). Boundedness of the superposition operator in generalized Orlicz spaces of vector-valued functions. *Bull. Pol. Acad. Sci., Math.*, 33:531â540.
- [Płuciennik, 1985b] Płuciennik, R. (1985b). On some properties of the superposition operator in generalized Orlicz spaces of vector-valued functions. *Ann. Soc. Math. Pol., Ser. I, Commentat. Math.*, 25:321â337.

- [Płuciennik, 1987] Płuciennik, R. (1987). The superposition operator in Musielak-Orlicz spaces of vector-valfued functions. Abstract analysis, Proc. 14th Winter Sch., Srní/Czech. 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 14, 411-417 (1987).
- [Schappacher, 2005] Schappacher, G. (2005). A notion of Orlicz spaces for vector valued functions. *Appl. Math.*, 50(4):355–386.
- [Skaff, 1969] Skaff, M. S. (1969). Vector valued orlicz spaces. ii. *Pacific J. Math.*, 28(2):413–430.
- [Tang, 1995] Tang, C.-L. (1995). Periodic solutions of non-autonomous second-order systems with γ -quasisubadditive potential. *Journal of Mathematical Analysis and Applications*, 189(3):671–675.
- [Tang, 1998] Tang, C.-L. (1998). Periodic solutions for nonautonomous second order systems with sublinear nonlinearity. *Proc. Amer. Math. Soc.*, 126(11):3263–3270.
- [Tang and Wu, 2001] Tang, C. L. and Wu, X.-P. (2001). Periodic solutions for second order systems with not uniformly coercive potential. *J. Math. Anal. Appl.*, 259(2):386–397.
- [Tang and Zhang, 2010] Tang, X. and Zhang, X. (2010). Periodic solutions for second-order Hamiltonian systems with a *p*-Laplacian. *Ann. Univ. Mariae Curie-Skłodowska Sect. A*, 64(1):93–113.
- [Tian and Ge, 2007] Tian, Y. and Ge, W. (2007). Periodic solutions of non-autonomous second-order systems with a *p*-Laplacian. *Nonlinear Anal.*, 66(1):192–203.
- [Wu and Tang, 1999] Wu, X.-P. and Tang, C.-L. (1999). Periodic solutions of a class of non-autonomous second-order systems. *J. Math. Anal. Appl.*, 236(2):227–235.
- [Zhao and Wu, 2004] Zhao, F. and Wu, X. (2004). Periodic solutions for a class of non-autonomous second order systems. *J. Math. Anal. Appl.*, 296(2):422–434.