

A Level · OCR · Physics

4 mins

Multiple Choice Questions

Photons & Wave-Particle Duality

The Photon / The Electronvolt / Determining the Planck Constant / Electron Diffraction / The de Broglie Equation

Easy (1 question) /1 Medium (3 questions) /3 **Total Marks** 14

Scan here to return to the course

or visit savemyexams.com

Easy Questions

- 1 What can be deduced from the diffraction of electrons by a thin film of graphite?
 - **A.** Electrons are leptons.
 - **B.** Electrons are negatively charged.
 - **C.** Electrons interact with atoms on a one-to-one basis.
 - **D.** Electrons travel as waves.

(1 mark)

Medium Questions

1 An electron has a de Broglie wavelength equal to the wavelength of X-rays.

What is the **best** estimate of the momentum of this electron?

- **A.** $10^{-30} \text{ kg ms}^{-1}$
- **B.** $10^{-27} \text{ kg ms}^{-1}$
- $C. 10^{-23} \text{ kg ms}^{-1}$
- **D.** $10^{-18} \text{ kg ms}^{-1}$

(1 mark)

2 In an experiment the de Broglie wavelength of an electron after being accelerated through a potential difference (p.d) V is λ_1 .

The accelerating p.d is now tripled.

What is the new de Broglie wavelength of the electron in terms of λ_1 ?

- A. $\frac{\lambda_1}{3}$
- $\mathbf{B.} \; \frac{\lambda_1}{\sqrt{3}}$
- $\mathbf{C}.\sqrt{3}\lambda_1$
- **D.** $3\lambda_1$

(1 mark)

3 A neutron has a kinetic energy of 9.00×10^{-18} J.

Which is the correct expression for the de Broglie wavelength λ of the neutron?

A.
$$\lambda = \frac{6.63 \times 10^{-34}}{2 \times 1.675 \times 10^{-27} \times 9.00 \times 10^{-18}}$$

B.
$$\lambda = \frac{6.63 \times 10^{-34}}{2 \times 9.11 \times 10^{-31} \times 9.00 \times 10^{-18}}$$

C.
$$\lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 1.675 \times 10^{-27} \times 9.00 \times 10^{-18}}}$$

D.
$$\lambda = \frac{6.63 \times 10^{-34}}{\sqrt{2 \times 9.11 \times 10^{-31} \times 9.00 \times 10^{-18}}}$$

(1 mark)