Long-term and recent trends in serum cholesterol awareness, treatment, and control in 12 high-income countries: an analysis of 90 nationally representative surveys*

NCD Risk Factor Collaboration (NCD-RisC) [†]
January 28, 2022

Abstract

Placeholder

Keywords: key1, key2, key3

^{*}abc

[†]Christopher B. Boyer (Harvard TH Chan School of Public Health, Boston, MA, USA); Bin Zhou (Imperial College London, London, UK); Goodarz Danaei (Harvard TH Chan School of Public Health, Boston, MA, USA); Majid Ezzati (Imperial College London, London, UK); ...

- 1 Introduction
- 2 Methods
- 3 Results
- 4 Discussion

Tables

	Non-HDL-C	Eligible	Treated
woman	-0.040	-0.145***	0.043*
	(0.037)	(0.021)	(0.018)
age50-59 years	0.255***	0.182***	0.071***
	(0.021)	(0.020)	(0.008)
age60-69 years	0.244***	0.405***	0.090***
	(0.038)	(0.031)	(0.015)
age70-79 years	0.131*	0.634***	0.037
	(0.051)	(0.028)	(0.029)
woman \times post2010	-0.418***	0.018	0.126***
	(0.043)	(0.015)	(0.017)
age 50-59 years \times post 2010	-0.345***	-0.019	0.034+
	(0.029)	(0.013)	(0.016)
age 60-69 years \times post 2010	-0.620***	-0.119***	0.125**
	(0.049)	(0.015)	(0.035)
age 70-79 years \times post 2010	-0.765***	-0.171***	0.127*
	(0.068)	(0.018)	(0.042)
woman \times age 50-59 years \times post 2010	0.480***	-0.002	-0.017
	(0.023)	(0.018)	(0.031)
woman × age 60-69 years × post 2010	0.692***	0.059 +	-0.094**
	(0.063)	(0.030)	(0.023)
woman \times age 70-79 years \times post 2010	0.779***	0.142***	-0.190***
	(0.049)	(0.027)	(0.019)
Observations	314 368	255 369	107 879
R^2 Adj.	0.074	0.237	0.192
FE: Country	Yes	Yes	Yes
FE: Year	Yes	Yes	Yes

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Figures

Figure 1: Trends in mean non-HDL serum cholesterol level, by country, sex, and age group.

Figure 2: Trends in eligibility for cholesterol treatment, by country, sex, and age group.

Figure 3: Trends in cholesterol treatment among people with elevated serum cholesterol, by country, sex, and age group.

Figure 4: Trends in uncontrolled dyslipidemia by country, sex, and age group.

Figure 5: Trends in uncontrolled dyslipidemia among those on treatment, by country, sex, and age group.

References

- Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation 106, 3143-3143. doi:10.1161/circ. 106.25.3143 (2002).
- Grundy Scott M. et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/N Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e1082–e1143. doi:10.1161/CIR.0000000000000625 (2019).
- 3. Mach, F. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular riskThe Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J 41, 111–188. doi:10.1093/eurheartj/ehz455 (2020).
- 4. Rabar, S., Harker, M., O'Flynn, N., Wierzbicki, A. S. & Group, G. D. Lipid modification and cardiovascular risk assessment for the primary and secondary prevention of cardiovascular disease: summary of updated NICE guidance. *BMJ: British Medical Journal* **349** (2014).
- Anderson, T. J. et al. 2012 Update of the Canadian Cardiovascular Society Guidelines for the Diagnosis and Treatment of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult. Canadian Journal of Cardiology 29, 151–167. doi:10.1016/j. cjca.2012.11.032 (2013).
- 6. Hajifathalian, K. et al. A novel risk score to predict cardiovascular disease risk in national populations (Globorisk): a pooled analysis of prospective cohorts and health examination surveys. The Lancet Diabetes & Endocrinology 3, 339–355. doi:10.1016/S2213-8587(15)00081-9 (2015).
- 7. Ueda, P. et al. Laboratory-based and office-based risk scores and charts to predict 10-year risk of cardiovascular disease in 182 countries: a pooled analysis of prospective cohorts and health surveys. The Lancet Diabetes & Endocrinology 5, 196–213. doi:10.1016/S2213-8587(17)30015-3 (2017).
- 8. Boyer, C., Danaei, G., Hajifathalian, K., Ueda, P. & Larco, R. M. C. globorisk: Global CVD Risk Calculator 2022.

A Appendix

A.1 Data sources

Using the NCDRisC database, we assembled data from 90 national health examination surveys completed between 1978 and 2018 in 12 high and middle-income countries: Australia, Chile, Costa Rica, Czech Republic, Germany, Italy, Poland, Romania, South Korea, Spain, United Kingdom, United States of America. These surveys included a lipid panel for a random sample of the general population. A list of surveys used and information about their design, including the age range and number of participants, whether LDL-C was calculated, and the devices used, is included in Table A.1.

Table A1: Data sources from 12 high-income countries with laboratory lipid values

					Age ra	ange	Sample	size
	Country	Start	End	Survey name	Women	Men	Women	Men
1	Australia	1980	1980	Risk Factor Prevalence Study (RFPS)	25-64	25-64	2756	2739
2	Australia	1983	1983	Risk Factor Prevalence Study (RFPS)	25-64	25-64	3732	3655
3	Australia	1989	1989	Risk Factor Prevalence Study (RFPS)	20-69	20-69	4611	4501
4	Australia	1999	2000	The Australian Diabetes, Obesity and Lifestyle Study 1999-2000 (AusDiab)	25+	25+	6138	5047
5	Australia	2004	2005	The Australian Diabetes, Obesity and Lifestyle Study 2004-2005 (AusDiab)	30+	30+	3444	2852
6	Australia	2012	2012	The Australian Diabetes, Obesity and Lifestyle Study 2012 (AusDiab)	37+	37+	2535	2046
7	Chile	2003	2003	Encuesta Nacional de Salud (ENS)	17+	17+	1067	909
8	Chile	2009	2010	Encuesta Nacional de Salud (ENS)	15+	15+	1600	1122
9	Chile	2016	2017	Encuesta Nacional de Salud (ENS)	15+	15+	2349	1366
10	Costa Rica	2004	2006	Costa Rican Longevity and Healthy Aging Study Pre-1945 Cohort Wave 1 (CRELES)	60+	60+	1448	1208
11	Costa Rica	2006	2008	Costa Rican Longevity and Healthy Aging Study Pre-1945 Cohort Wave 2 (CRELES)	62+	62+	1215	1018
12	Costa Rica	2010	2011	Costa Rican Longevity and Healthy Aging Study 1945-1955 Cohort Wave 1 (CRELES)	54-66	54-66	1590	1029
13	Costa Rica	2010	2010	Costa Rican National Cardiovascular Risk Factors Survey, 2010 (CRFS)	20+	20+	1937	725
14	Costa Rica	2014	2014	Costa Rican National Cardiovascular Risk Factors Survey, 2014 (CRFS)	20+	20+	1671	706
15	Czech Republic	1992	1992	MONICA, Czech Republic	25-64	25-64	1189	1127
16	Czech Republic	1997	1998	Czech post-MONICA (postMONICA)	25-64	25-64	1664	1527
17	Czech Republic	2000	2001	Czech post-MONICA (postMONICA)	25-64	25-64	1661	1612
18	Czech Republic	2006	2009	Czech post-MONICA (postMONICA)	25-64	25-64	1860	1718
19	Czech Republic	2014	2015	European Heath Examination Survey (EHES)		25-64	681	472
20	Czech Republic	2015	2018	MONICA		25-65	1361	1239
21	Germany	2000	2002	ESTHER	50-75	50-75	5270	4340
22	Germany	2000	2003	Heinz Nixdorf Recall Study (HNRS)	45-75	45 - 75	2402	2381
23	Germany	2005	2008	Heinz Nixdorf Recall Study (HNRS)	50-80	50-80	2082	2045
24	Germany	2008	2011	ESTHER	58-84	58-84	2488	2082
25	Germany	2008	2012	Study of Health in Pomerania, second cohort (SHIP-TREND)	20-79	20-79	2233	2098
26	Germany	2011	2014	Heinz Nixdorf Recall Study (HNRS)	56-85	56-85	1557	1492
27	Italy	1998	2002	Osservatorio Epidemiologico Cardiovascolare (OEC)	35-74	35-74	4705	4831
28	Italy	2008	2012	Osservatorio Epidemiologico Cardiovascolare/Health Examination Survey (OEC)	35-80	35-80	4302	4331
29	Poland	2003	2005	National Multicenter Health Survey in Poland. Project WOBASZ	20-74	20-74	6809	6119
30	Poland	2004	2004	LIPIDOGRAM2004 Study	30+	30+	9920	6672
31	Poland	2006	2006	LIPIDOGRAM2006 Study	32+	32+	10640	6440
32	Poland	2007	2011	Medical, psychological and socioeconomic aspects of aging in Poland (PolSenior)	55+	55+	2306	2427
33	Poland	2011	2011	NATPOL	18-79	18-79	1213	1147
34	Poland	2013	2014	National Multicenter Health Survey in Poland. Project WOBASZ II	20+	20+	3233	2633
35	Poland	2015	2016	LIPIDOGRAM2015 & LIPIDOGEN2015 Study	18+	18+	8688	5032
36	Romania	2011	2012	SEPHAR II	18-80	18-80	1037	931
37	Romania	2015	2016	SEPHAR III	18-80	18-80	1033	935
38	South Korea	2005	2005	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3475	2755
39	South Korea	2007	2007	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	1813	1388
40	South Korea	2008	2008	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	4142	3203

 $\begin{tabular}{ll} Table A1: Data sources from 12 high-income countries with laboratory lipid values \it{(continued)} \\ \end{tabular}$

	Country	Start	End	Survey name	Women	Men	Women	Men
41	South Korea	2009	2009	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	4438	3606
42	South Korea	2010	2010	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3661	2976
43	South Korea	2011	2011	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3670	2888
44	South Korea	2012	2012	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3461	2691
45	South Korea	2013	2013	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3219	2635
46	South Korea	2014	2014	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3025	2365
47	South Korea	2015	2015	Korea National Health and Nutrition Examination Survey (KNHANES)	10+	10+	3080	2568
48	Spain	1991	1993	Cardiovascular Risk Factors Survey in Murcia (CVDRF)	18-69	18-69	1268	1151
49	Spain	2003	2005	Registre Gironi del Cor (REGICOR)	35-79	35 - 79	3280	2951
50	Spain	2004	2006	PREVICTUS	60+	60+	3834	3350
51	Spain	2004	2004	Cardiovascular Risk Study in Castilla y León (RECCyL)	15+	15+	2069	1897
52	Spain	2007	2009	Harmonizing Equation of Risk in Mediterraneon countries EXtremadura (HERMEX)	25-79	25-79	1498	1297
53	Spain	2008	2010	Study on Nutrition and Cardiovascular Risk in Spain (ENRICA)	18+	18+	6858	6193
54	Spain	2009	2009	Cardiovascular Risk Study in Castilla y León (RECCyL)	20+	20+	1572	1291
55	Spain	2014	2014	Cardiovascular Risk Study in Castilla y León (RECCyL)	20+	20+	1509	1220
56	Spain	2015	2015	Study on Nutrition and Cardiovascular Risk in Spain (ENRICA)	65+	65+	770	704
57	United Kingdom	1986	1987	Dietary and Nutritional Survey of British Adults 1986-1987 (DNS)	16-64	16-64	937	936
58	United Kingdom	1998	1998	Health Survey for England (HSE)	16+	16+	5565	5000
59	United Kingdom	2003	2003	Health Survey for England (HSE)	16+	16+	4460	3814
60	United Kingdom	2005	2005	Health Survey for England (HSE)	65+	65+	1190	1008
61	United Kingdom	2006	2006	Health Survey for England (HSE)	16+	16+	4061	3409
62	United Kingdom	2008	2008	Health Survey for England (HSE)	16+	16+	3922	3348
63	United Kingdom	2008	2012	National Diet and Nutrition Survey (NDNS)	10+	10+	1266	1008
64	United Kingdom	2009	2009	Health Survey for England (HSE)	16+	16+	1227	1075
65	United Kingdom	2010	2010	Health Survey for England (HSE)	16+	16+	2158	1720
66	United Kingdom	2011	2011	Health Survey for England (HSE)	16+	16+	2201	1738
67	United Kingdom	2012	2012	Health Survey for England (HSE)	16+	16+	2192	1745
68	United Kingdom	2013	2013	Health Survey for England (HSE)	16+	16+	2438	2080
69	United Kingdom	2013	2014	National Diet and Nutrition Survey (NDNS)	10+	10+	520	386
70	United Kingdom	2014	2014	Health Survey for England (HSE)	16+	16+	2085	1816
71	United Kingdom	2015	2015	Health Survey for England (HSE)	16+	16+	2130	1777
72	United Kingdom	2015	2016	National Diet and Nutrition Survey (NDNS)	10+	10+	485	391
73	United Kingdom	2016	2016	Health Survey for England (HSE)	16+	16+	2083	1682
74	United Kingdom	2016	2017	National Diet and Nutrition Survey (NDNS)	10+	10+	204	174
75	United Kingdom	2017	2017	Health Survey for England (HSE)	16+	16+	2160	1711
76	United Kingdom	2018	2018	Health Survey for England (HSE)	16+	16+	1947	1600
77	United States of America	1976	1980	US NHANES II	20-74	20-74	6245	5601
78	United States of America	1988	1994	US NHANES III	10+	10+	10275	9408
79	United States of America	1999	2000	US NHANES 1999-2000	10+	10+	3123	3150
80	United States of America	2001	2002	US NHANES 2001-2002	10+	10+	3402	3496
81	United States of America	2003	2004	US NHANES 2003-2004	10+	10+	3202	3361
82	United States of America	2005	2006	US NHANES 2005-2006	10+	10+	3128	3302
83	United States of America	2007	2008	US NHANES 2007-2008	10+	10+	3333	3367
84	United States of America	2009	2010	US NHANES 2009-2010	10+	10+	3599	3558
85	United States of America	2011	2012	US NHANES 2011-2012	10+	10+	3131	3155
86	United States of America	2013	2014	US NHANES 2013-2014	10+	10+	3535	3350
	Carried States of Timerica	-010	-0-1	~ ~ · · · · · · · · · · · · · · · · · ·	-01	-01	3330	0000

 $\begin{tabular}{ll} Table A1: Data sources from 12 high-income countries with laboratory lipid values \it{(continued)} \\ \end{tabular}$

	Country	Start	End	Survey name	Women	Men	Women	Men
87 88	United States of America United States of America	$2015 \\ 2017$	2016 2018	US NHANES 2015-2016 US NHANES 2017-2018	10+ 10+	10+ 10+	$3320 \\ 3153$	3218 3011

A.2 Data cleaning

Given the heterogeneity in the data collection procedures and cleaning across surveys, we implemented a secondary data cleaning protocol, developed for NCD-RisC, and applied it to the pooled data from all 90 surveys. The basic steps were as follows, we evaluated:

- 1. univariate plausibility ranges
- 2. multivariate plausibility constraints
- 3. multivariate outlier detection

A.2.1 Univariate plausibility ranges

We removed values of certain laboratory and examination measurements that were outside the range of biological plausibility, as determined by expert consensus. Table A2 below shows the plausibility ranges used for each variable.

Table A2: Univariate plausibility ranges for select variables from national surveys.

Variable	Ages	Plausibility range
height (cm)	5 to 9 years	60 - 180
height (cm)	10 to 14 years	80 - 200
height (cm)	$\geq 15 \text{ years}$	100 - 250
weight (kg)	5 to 9 years	5 - 90
weight (kg)	10 to 14 years	8 - 150
weight (kg)	$\geq 15 \text{ years}$	12 - 300
$BMI (kg/m^2)$	5 to 9 years	6 - 40
$BMI (kg/m^2)$	10 to 14 years	8 - 60
$BMI (kg/m^2)$	$\geq 15 \text{ years}$	10 - 80
SBP (mmHg)	all	70 - 270
DBP (mmHg)	all	30 - 150
TC (mmol/L)	all	1.75 - 20
$LDL \ (mmol/L)$	all	0.5 - 10
$\mathrm{HDL}\ (\mathrm{mmol/L})$	all	0.4 - 5
Triglycerides (mmol/L)	all	0.2 - 20

A.2.2 Multivariate plausibility constraints

After removing data outside the univariate plausibilty ranges, we also apply logical multivariate biological plausibility constraints such as checking that the reported systolic blood pressure measurement is greater than the diastolic measurement. We evaluated the following constraints:

- SBP > DBP (before calculating average BP)
- TC > LDL
- TC > HDL
- $TC (LDL + HDL) \ge margin of error^1$

Table A3 below shows the number of implausible observations identified and set to missing.

Table A3: Implausible values detected using mulitvariate biological plausibility constraints.

Constraint	Evaluated (N)	Implausible (N)	%
DBP > SPB	478,407	8	0.002
LDL > TC	274,214	36	0.013
$\mathrm{HDL} > \mathrm{TC}$	459,919	4	0.001
$TC - (LDL + HDL) \ge margin of error$	273,547	209	0.076

A.2.3 Multivariate outlier detection

Finally, we identify multivariate outliers across pairwise combinations of risk factors based on the Mahalanobis distance. That is for vectors of observations for variables \mathbf{x} and \mathbf{y} we calculate the distance

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^t \Sigma(\mathbf{x} - \mathbf{y})}$$

where Σ is the covariance matrix, which gives a sense for how far a paired set of values is from the multivariate center. For skewed variables we apply a log transformation prior to the calculation of the Mahalanobis distance. To identify potentially implausible combinations of values, we use a cut-off based on quantiles of the χ^2 distribution, corresponding to a combination being more the 6 standard deviations from the center. Figure A1 below plots the pairwise distributions and highlights the possible outliers identified.

¹ "margin of error" is determined by using the Cholesterol Reference Method Laboratory Network permitted measurement error limits for TC (8.9%), HDL (13%) and LDL (12%) as follows: Calculate errors in worst case scenario, i.e., TC underestimated, and HDL/LDL overestimated, each by the largest error permitted.

Figure A1: Pairwise outliers based on Mahalanobis distance

Table A4: Pairwise outliers detected using Mahalanobis distance.

Variable Pair	Evaluated (N)	Outliers (N)	%
HEIGHT vs. WEIGHT	530,247	45	0.0084
HEIGHT vs. BMI	530,223	32	0.0060
HEIGHT vs. WAIST	441,684	32	0.0072
HEIGHT vs. HIP	259,229	71	0.0273
WEIGHT vs. BMI	$530,\!223$	36	0.0067
WEIGHT vs. WAIST	441,837	410	0.0927
WEIGHT vs. HIP	259,232	179	0.0690
BMI vs. WAIST	$439,\!276$	493	0.1122
BMI vs. HIP	257,094	246	0.0956
WAIST vs. HIP	265,771	115	0.0432
SBP vs. DBP	476,122	100	0.0210
TC vs. HDL	459,027	6	0.0013
LDL vs. HDL	273,370	13	0.0047

A.3 Exclusion criteria

The flow diagram below shows how we arrived at our final analytic sample. First, we excluded 191,912 subjects outside our target age range of 40-79 years of age, as this population is generally the focus of cholesterol treatment guidelines for primary and secondary prevention. Next, we excluded 9,120 subjects in 10-year age groups from surveys in which we had less than 5 of the 10 ages observed. Finally, we excluded 77,165 subjects with missing data on cholesterol levels and 58,999 subjects with missing data on key risk factors for calculating risk thresholds, leaving a final sample of 255,369.

Figure A2: Exclusion criteria.

A.4 Cholesterol Treatment Guidelines

We compiled a list of cholesterol treatment guidelines from official sources that have been published and discussed in the academic literature. Most of these come from a review conducted by the World Heart Foundation in 2019. They will be used, possibly, as criteria for determining who should be on treatment in assembled surveys. Note that many of these same sources have guidance about control as well (i.e. ideal reductions in LDL or absolute level attained while on treatment). Table A5 below summarizes the specific treatment guidance from the US, Europe, the UK, Canada, China, Brazil, South Africa, and the WHO.

Table A5: Cholesterol treatment guidelines and recommendations for primary prevention.

Source	Year	Treatment recommendation	Goal of therapy
NHLBI NCEP ATP III [1]	2013	LDL \geq 100 mg/dL and 10-year risk* \geq 20% LDL \geq 130 mg/dL and 10-year risk* \geq 10% (2+ risk factors) LDL \geq 160 mg/dL and 10-year risk* $<$ 10% (2+ risk factors) LDL \geq 190 mg/dL (0-1 risk factors)	LDL < 100 mg/dL LDL < 130 mg/dL LDL < 130 mg/dL LDL < 160 mg/dL
AHA/ACC Statement [2]	2018	LDL \geq 190 mg/dL (severe hypercholesterolemia) LDL \geq 70 mg/dL and 10-year risk* \geq 7.5% LDL \geq 70 mg/dL and 10-year risk* \geq 20% LDL \geq 70 mg/dL and diabetes mellitus	LDL < 100 mg/dL LDL reduced 30% to 49% LDL reduced \geq 50% LDL reduced \geq 50%
ESC/EAS Guidelines [3]	2019	LDL \geq 70 mg/dL and 10-year risk [†] \geq 10% (very-high) LDL \geq 100 mg/dL and 10-year risk [†] \geq 5% (high) LDL \geq 190 mg/dL and 10-year risk [†] \geq 1% (moderate) LDL \geq 190 mg/dL and 10-year risk [†] $<$ 1% (low)	LDL reduced \geq 50% or $<$ 55 mg/dL LDL reduced \geq 50% or $<$ 70 mg/dL LDL $<$ 100 mg/dL LDL $<$ 116 mg/dL
NICE Guidelines [4]	2014	10-year risk $^{\ddagger} \geq 10\%$ or CKD diabetes mellitus (type-2) and 10-year risk $^{\ddagger} \geq 10\%$ diabetes mellitus (type-1), >40 years-old, duration >10 years	
CCS Guidelines [5]	2012	LDL \geq 75 mg/dL and 10-year risk $^\S \geq$ 20% LDL \geq 130 mg/dL and 10-year risk $^\S \geq$ 10% LDL \geq 130 mg/dL and 10-year risk $^\S \geq$ 5% (optional) LDL \geq 190 mg/dL and 10-year risk $^\S <$ 1%	$\begin{split} \mathrm{LDL} &< 75~\mathrm{mg/dL} \\ \mathrm{LDL} &< 130~\mathrm{mg/dL} \\ \mathrm{LDL} &< 190~\mathrm{mg/dL} \\ \mathrm{LDL} &< 190~\mathrm{mg/dL} \\ \end{split}$
China Guidelines [5]	2016	10-year risk $\geq 10\%$ 10-year risk $\geq 5\%$ diabetes mellitus and LDL ≥ 70 mg/dL or TC ≥ 120 LDL ≥ 190 mg/dL or TC ≥ 280	$\begin{aligned} \text{LDL} &< 130 \text{ mg/dL} \\ \text{LDL} &< 130 \text{ mg/dL} \\ \text{LDL} &< 100 \text{ mg/dL} \\ \text{LDL} &< 100 \text{ mg/dL} \\ \end{aligned}$
Brazil Guidelines [5]	2013	10-year risk§ $\geq 10\%$ (women) $\geq 20\%$ (men) diabetes mellitus or CKD or FH	m LDL < 100~mg/dL $ m LDL < 70~mg/dL$
South Africa Guidelines [5]	2012	10-year risk $^\S \ge 30\%$ (very high) LDL ≥ 100 mg/dL and 10-year risk $^\S \ge 15\%$ (high) diabetes mellitus or CKD or FH	$\begin{split} \mathrm{LDL} &< 70 \mathrm{\ mg/dL} \\ \mathrm{LDL} &< 100 \mathrm{\ mg/dL} \\ \mathrm{LDL} &< 70 \mathrm{\ mg/dL} \end{split}$
WHO Guidelines [5]	2007	TC \geq 320 mg/dL or LDL \geq 240 mg/dL or TC/HDL ratio $>$ 8 diabetes mellitus 10-year risk $\P \geq$ 30% LDL \geq 115 mg/dL or TC \geq 193 mg/dL and 10-year risk $\P \geq$ 20%	$\begin{split} \mathrm{LDL} &< 77~\mathrm{mg/dL}~\mathrm{or}~\mathrm{TC} < 152~\mathrm{mg/dL} \\ \mathrm{LDL} &< 77~\mathrm{mg/dL}~\mathrm{or}~\mathrm{TC} < 152~\mathrm{mg/d} \\ \mathrm{LDL} &< 77~\mathrm{mg/dL}~\mathrm{or}~\mathrm{TC} < 152~\mathrm{mg/dL} \\ \mathrm{LDL} &< 70~\mathrm{mg/dL} \end{split}$

^{*} Based on Pooled Cohort Equations

 $^{^\}dagger$ Based on SCORE

 $^{^\}ddagger$ Based on QRISK2

[§] Based on Framingham Risk Score

^{||} Based on CMCS re-callibration

 $[\]P$ Based on WHO/ISH risk charts

A.5 Calibrating Non-HDL-C to LDL-C

In this study, we use non-HDL-C to define those who are elligible for treatment with lipid-lowering drugs as well as those whose serum cholesterol levels are "controlled". However, most national guidelines use LDL-C targets rather than non-HDL-C. We chose to use non-HDL-C because many surveys, especially those conducted several decades ago, did not measure LDL-C or did not measure the necessary components² to calculate LDL-C. In the main text, we use a correction factor to convert LDL-C targets in guidelines to non-HDL-C derived from more recent guidelines in Europe and North America.

Here we validate this correction factor in our sample by looking at the relationship between non-HDL-C and LDL-C among studies in which both were measured (N = 198,761 observations). Figure A3 below plots non-HDL-C levels versus LDL-C levels. We fit both a linear as well as a more flexbile GAM regression model to the data and find evidence that the relationship is linear across the full range. We find a high degree of linear correlation between non-HDL-C and LDL-C (ρ = 0.916) with an estimated bias/correction factor of 0.65 mmol/L (25.2 mg/dL) which compares favorably with the one in the literature of 0.78 mmol/L (30 mg/dL).

²Roughly speaking total cholesterol is composed of HDL-C, LDL-C, and Triglycerides

Figure A3: Callibrating non-HDL-C levels with LDL-C among those surveys which collected data on both.

A.6 Calculation of risk scores

For risk-based guidelines about treatment eligibility, we used Globorisk [6] to calculate risk scores for all individuals with complete risk factor data. Globorisk is a cardiovascual disease risk prediction equation that can be recalibrated and updated for use in different countries with routinely available information. Currently it supports risk estimates for 182 countries from 2000 to 2020 [7]. Coefficients were estimated in original study using Cox propostional hazards model with age as the time scale. Thus the risk equation is of the form:

```
h(t \mid sex, sbp, tc, dm, smk) = h_0(t) \exp \left\{ \beta_1(sbp - \overline{sbp}) + \beta_2(tc - \overline{tc}) + \beta_3(dm - \overline{dm}) + \beta_4(smk - \overline{smk}) + \beta_5(dm - \overline{dm}) \times sex + \beta_6(smk - \overline{smk}) \times sex + \beta_7(sbp - \overline{sbp}) \times t + \beta_8(tc - \overline{tc}) \times t + \beta_9(dm - \overline{dm}) \times t + \beta_{10}(smk - \overline{smk}) \times t \right\}
```

where $(\beta_1, \ldots, \beta_{10})$ are constant across countries but the mean risk factor levels $(\overline{sbp}, \ldots, \overline{smk})$ and baseline hazard $h_0(t)$ are country-specific and thus can be re-callibrated to local conditions. The values of $(\beta_1, \ldots, \beta_{10})$ are provided in table below.

Table A6:	Coefficient	values	for	Glob	oorisk	risk	equations.

Coefficient	Estimate
β_1	0.3070129
eta_2	0.6149061
eta_3	1.475305
eta_4	1.846684
eta_5	0.4050458
eta_6	0.3253832
eta_7	-0.002247118
eta_8	-0.006865652
eta_9	-0.01320953
β_{10}	-0.02205285

Country-specific risk factor values and baseline hazards were the same as those used in a prior study [7]. The estimated risk for each subject is calculated as 10-year cumulative incidence based on the formula

$$CI = 1 - \prod_{t=0}^{T} \exp\{h(t \mid sex, sbp, tc, dm, smk)\}.$$

All calculations were performed using the globorisk package [8] in R. For reference, below are the trends in mean risk score by country, sex, and age group.

Figure A4: Trends in mean risk score by country, sex, and age group.

A.7 Linear trends

Figure A5: Linear trends in mean Non-HDL-C level by country, age, and sex.

A.8 Example distributional changes

Figure A6: Changes in distribution of Non-HDL-C in United States by sex and age group.

Figure A7: Australia

Figure A8: Chile

Men

Men

Men

Men

Women

Women

Women

Figure A9: Costa Rica

Figure A10: Czechia

Figure A11: Germany

Figure A12: Italy

Figure A13: Poland

Figure A14: Romania

Figure A15: South Korea

Figure A16: Spain

Figure A17: United Kingdom

Figure A18: United States of America