Class 14: RNASeq Mini-Project

Yvonne Yu A16333006

Table of contents

Data Import
Setup for DESeq
Running DESeq
Save the file at current progress
Add gene annotation data (gene names etc.)
Results visualization
Save our Results
Pathway analysis (KEGG, GO, Reactome)
KEGG
GO
Reactome
GO Online Results

A complete RNASeq analysis from counts to pathways and biological insight would be conducted.

Data Import

```
#Assigns the files to the object
counts <- read.csv("GSE37704_featurecounts.csv", row.names = 1)
metadata <- read.csv("GSE37704_metadata.csv")

#Visualizes the files
head(counts)</pre>
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0

ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212
	SRR493371					
ENSG00000186092	0					
ENSG00000279928	0					
ENSG00000279457	46					
ENSG00000278566	0					
ENSG00000273547	0					
ENSG00000187634	258					

head(metadata)

```
id condition
1 SRR493366 control_sirna
2 SRR493367 control_sirna
3 SRR493368 control_sirna
4 SRR493369 hoxa1_kd
5 SRR493370 hoxa1_kd
6 SRR493371 hoxa1_kd
```

The following would delete the first column that identifies the length, and turn the counts into matrix.

```
#Deletes the first column as it is not a count
counts <- as.matrix(counts[,-1])
head(counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

The following code removes the rows that has 0 counts through all of the samples. There was an identified of 15975 genes that remains after the removal.

```
#Determines the rows that don't have a sum of zero
x <- rowSums(counts) != 0

#Extracts those rows from the count dataset and assigns it to a new object
new_counts <- counts[x,]
head(new_counts)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46
ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

#Compares the dimensions to ensure that the rows were removed dim(counts)

[1] 19808 6

dim(new_counts)

[1] 15975 6

Setup for DESeq

Load in the necessary libraries for the project

library(DESeq2)

Running DESeq

DESeq analysis is conducted by creating the DESeq object and visual outputs the results.

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
#Assigns the DESeq object to dds
dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

dds
```

class: DESeqDataSet

dim: 15975 6

metadata(1): version

assays(4): counts mu H cooks

rownames(15975): ENSG00000279457 ENSG00000187634 ... ENSG00000276345

ENSG00000271254

rowData names(22): baseMean baseVar ... deviance maxCooks colnames(6): SRR493366 SRR493367 ... SRR493370 SRR493371 colData names(3): id condition sizeFactor

Provides a summary of the results, contrasting based on the condition.

```
res <- results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
summary(res)</pre>
```

```
out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>
```

Save the file at current progress

```
write.csv(res, "myresults.csv")
```

Add gene annotation data (gene names etc.)

Adds the gene annotation data by adding the symbol, entrezID, and the gene name.

```
#Pulls the libraries that would be utilized
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
#Visualizes the columns that are identified in the `org.Hs.eg.db` package columns(org.Hs.eg.db)
```

```
[1] "ACCNUM"
                    "ALIAS"
                                    "ENSEMBL"
                                                    "ENSEMBLPROT"
                                                                   "ENSEMBLTRANS"
 [6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                    "EVIDENCEALL"
                                                                   "GENENAME"
                    "GO"
                                                    "IPI"
                                                                   "MAP"
[11] "GENETYPE"
                                    "GOALL"
[16] "OMIM"
                                    "ONTOLOGYALL"
                    "ONTOLOGY"
                                                    "PATH"
                                                                   "PFAM"
                    "PROSITE"
[21] "PMID"
                                    "REFSEQ"
                                                    "SYMBOL"
                                                                   "UCSCKG"
[26] "UNIPROT"
```

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

'select()' returned 1:many mapping between keys and columns

```
head(res, 10)
```

```
log2 fold change (MLE): condition hoxa1_kd vs control_sirna Wald test p-value: condition hoxa1 kd vs control sirna DataFrame with 10 rows and 9 columns
```

```
ENSG00000188976 1651.188076
                                -0.6927205 0.0548465 -12.630158 1.43990e-36
                                 0.7297556 0.1318599
ENSG00000187961 209.637938
                                                       5.534326 3.12428e-08
                 47.255123
ENSG00000187583
                                 0.0405765 0.2718928
                                                       0.149237 8.81366e-01
                11.979750
                                 0.5428105 0.5215598 1.040744 2.97994e-01
ENSG00000187642
                                 2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000188290 108.922128
ENSG00000187608 350.716868
                                 0.2573837 0.1027266 2.505522 1.22271e-02
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163 8.346304 7.04321e-17
ENSG00000237330
                   0.158192
                                 0.7859552 4.0804729
                                                       0.192614 8.47261e-01
                                 symbol
                       padj
                                             entrez
                                                                      name
                  <numeric> <character> <character>
                                                               <character>
ENSG00000279457 6.86555e-01
                                     NA
                                                                        NA
ENSG00000187634 5.15718e-03
                                 SAMD11
                                             148398 sterile alpha motif ...
ENSG00000188976 1.76549e-35
                                  NOC2L
                                              26155 NOC2 like nucleolar ...
                                             339451 kelch like family me..
ENSG00000187961 1.13413e-07
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                  PERM1
                                              84808 PPARGC1 and ESRR ind..
ENSG00000188290 1.30538e-24
                                   HES4
                                              57801 hes family bHLH tran..
ENSG00000187608 2.37452e-02
                                  ISG15
                                               9636 ISG15 ubiquitin like..
ENSG00000188157 4.21963e-16
                                             375790
                                   AGRN
                                                                     agrin
ENSG00000237330
                         NA
                                 RNF223
                                             401934 ring finger protein ...
```

Results visualization

The Following would create a volcano plot, with the addition of the cut off lines and color coding the significant dataplots.

```
#Creates the lines at -2 and 2 (which is basically the cut off for significant points) abline(v = -2, col = "gray") abline(v = 2, col = "gray")

#Cut off for the p-value less than 0.05 abline(h = -\log(0.05), col = "gray")
```


Save our Results

```
#Orders the res dataset based on the p-value
res <- res[order(res$pvalue),]

#Saves the res file into a csv file
write.csv(res, file = "deseq_results.csv")</pre>
```

Pathway analysis (KEGG, GO, Reactome)

KEGG

Load the libraries that are needed for the pathway analysis

```
library(pathview)
library(gage)
library(gageData)
data(kegg.sets.hs)
# Examine the first 3 pathways
head(kegg.sets.hs, 2)
$`hsa00232 Caffeine metabolism`
[1] "10"
          "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
             "1066" "10720" "10941" "151531" "1548"
                                                          "1549"
                                                                   "1551"
              "1576"
                                        "1807"
 [9] "1553"
                      "1577"
                               "1806"
                                                 "1890"
                                                          "221223" "2990"
[17] "3251"
              "3614" "3615"
                               "3704"
                                        "51733" "54490"
                                                          "54575"
                                                                   "54576"
[25] "54577" "54578" "54579" "54600" "54657" "54658"
                                                          "54659"
                                                                   "54963"
[33] "574537" "64816" "7083"
                               "7084"
                                        "7172"
                                                 "7363"
                                                           "7364"
                                                                   "7365"
[41] "7366"
              "7367"
                      "7371"
                               "7372"
                                        "7378"
                                                 "7498"
                                                          "79799"
                                                                   "83549"
                       "9"
                                "978"
[49] "8824"
              "8833"
#Identifies the entrez ids with the log2foldchange values
foldchanges <- res$log2FoldChange</pre>
names(foldchanges) <- res$entrez</pre>
head(foldchanges)
     1266
              54855
                                  51232
                                            2034
                         1465
                                                      2317
-2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
#utilizes the gage analysis to pull the more significant of the pathways
keggres <- gage(foldchanges, gsets=kegg.sets.hs)</pre>
attributes(keggres)
$names
[1] "greater" "less"
                        "stats"
head(keggres$less)
```

```
p.geomean stat.mean
hsa04110 Cell cycle
                                              8.995727e-06 -4.378644
                                              9.424076e-05 -3.951803
hsa03030 DNA replication
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 -3.765330
hsa03013 RNA transport
                                              1.375901e-03 -3.028500
hsa03440 Homologous recombination
                                              3.066756e-03 -2.852899
hsa04114 Oocyte meiosis
                                              3.784520e-03 -2.698128
                                                     p.val
                                                                 q.val
hsa04110 Cell cycle
                                              8.995727e-06 0.001889103
hsa03030 DNA replication
                                              9.424076e-05 0.009841047
hsa05130 Pathogenic Escherichia coli infection 1.405864e-04 0.009841047
hsa03013 RNA transport
                                              1.375901e-03 0.072234819
hsa03440 Homologous recombination
                                              3.066756e-03 0.128803765
hsa04114 Oocyte meiosis
                                              3.784520e-03 0.132458191
                                              set.size
                                                                exp1
hsa04110 Cell cycle
                                                   121 8.995727e-06
hsa03030 DNA replication
                                                    36 9.424076e-05
hsa05130 Pathogenic Escherichia coli infection
                                                   53 1.405864e-04
hsa03013 RNA transport
                                                   144 1.375901e-03
hsa03440 Homologous recombination
                                                   28 3.066756e-03
hsa04114 Oocyte meiosis
                                                   102 3.784520e-03
```

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14

Info: Writing image file hsa04110.pathview.png

Identifies the top 5 up regulated path-

ways

```
#Extracting the pathways for the top 5 up-regulated pathways
up_keggrespathways <- rownames(keggres$greater)[1:5]

# Extract the 8 character long IDs part of each string
up_keggresids = substr(up_keggrespathways, start=1, stop=8)
up_keggresids</pre>
```

[1] "hsa04060" "hsa05323" "hsa05146" "hsa05332" "hsa04640"

```
pathview(gene.data=foldchanges, pathway.id=up_keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14

Info: Writing image file hsa04060.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14

Info: Writing image file hsa05323.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14

Info: Writing image file hsa05146.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14

Info: Writing image file hsa05332.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14

Info: Writing image file hsa04640.pathview.png

The following figures are pathways that are found to up-regulate.

Figure 1: HSA04640

Figure 2: hsa05323

Figure 3: hsa05146

Figure 4: hsa05332

Identifies the Top 5 Down

Regulated Pathways

```
#Extracting the pathways for the top 5 down-regulated pathways
low_keggrespathways <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
low_keggresids = substr(low_keggrespathways, start=1, stop=8)
low_keggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa05130" "hsa03013" "hsa03440"

```
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14
Info: Writing image file hsa04110.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14
Info: Writing image file hsa03030.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14
Info: Writing image file hsa05130.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14
Info: Writing image file hsa03013.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/Yuyvo/OneDrive/Documents/BIMM143/Class14
Info: Writing image file hsa03440.pathview.png
```


Figure 5: hsa04110

Figure 6: hsa03030

Figure 7: hsa05130

Figure 8: hsa03013

Figure 9: hsa03440

GO

The following code chunk utilizes GO to identify significant pathways.

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets <- go.sets.hs[go.subs.hs$BP]

gobpres <- gage(foldchanges, gsets=gobpsets)</pre>
```

```
head(gobpres$less)
```

```
p.geomean stat.mean
                                                                       p.val
GO:0048285 organelle fission
                                         1.536227e-15 -8.063910 1.536227e-15
GO:0000280 nuclear division
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0007067 mitosis
                                         4.286961e-15 -7.939217 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.169934e-14 -7.797496 1.169934e-14
GO:0007059 chromosome segregation
                                         2.028624e-11 -6.878340 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.729553e-10 -6.695966 1.729553e-10
                                                q.val set.size
                                                                       exp1
GO:0048285 organelle fission
                                         5.843127e-12
                                                           376 1.536227e-15
GO:0000280 nuclear division
                                         5.843127e-12
                                                           352 4.286961e-15
GO:0007067 mitosis
                                         5.843127e-12
                                                           352 4.286961e-15
GO:0000087 M phase of mitotic cell cycle 1.195965e-11
                                                           362 1.169934e-14
GO:0007059 chromosome segregation
                                        1.659009e-08
                                                           142 2.028624e-11
GO:0000236 mitotic prometaphase
                                         1.178690e-07
                                                            84 1.729553e-10
```

Reactome

The utilization of reactome is possible through an R package or through the online version, which allows for a more user friendly digital workflow on interactive visualization features. The following would be utilizing the web version.

First the creation of significant genes is necessary.

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

```
[1] "Total number of significant genes: 8147"
```


Figure 10: Output for the Reactome

Figure 11: Pathway of the Most Significant Entities P-value

The most significant pathway that was identified through Reactome was the Cell Cycle, which

is similar to what was identified through KEGG.

GO Online Results

The following outputs the reuslts that was found from using the GO Online Pathway.

8							
	Homo sapiens (REF)		<u>u</u>	pload_1 (Hierarch	<u>1y_</u>)	NEWI (2)	
GO biological process complete	#	#	expected	Fold Enrichment	+/-	raw P value	▼ FDR
regulation of actin filament depolymerization	<u>53</u>	31	21.07	1.47	+	7.07E-03	4.99E-02
hematopoietic progenitor cell differentiation	<u>106</u>	<u>56</u>	42.14	1.33	+	7.02E-03	4.95E-02
cellular response to biotic stimulus	233	113	92.63	1.22	+	6.99E-03	4.94E-02
endoderm development	<u>84</u>	<u>46</u>	33.39	1.38	+	6.96E-03	4.91E-02
potassium ion transport	<u>178</u>	53	70.76	.75	-	6.93E-03	4.90E-02
meiotic cell cycle	256	123	101.77	1.21	+	6.92E-03	4.89E-02
positive regulation of telomerase activity	<u>33</u>	21	13.12	1.60	+	6.85E-03	4.85E-02
regulation of oligodendrocyte differentiation	<u>47</u>	28	18.68	1.50	+	6.84E-03	4.85E-02
cytokine production	<u>29</u>	19	11.53	1.65	+	6.82E-03	4.85E-02
regulation of intrinsic apoptotic signaling pathway by p53 class mediator	<u>33</u>	21	13.12	1.60	+	6.85E-03	4.85E-02
positive regulation of gluconeogenesis	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.85E-02
membrane lipid catabolic process	<u>47</u>	28	18.68	1.50	+	6.84E-03	4.84E-02
regulation of astrocyte differentiation	<u>29</u>	<u>19</u>	11.53	1.65	+	6.82E-03	4.84E-02
regulation of spindle assembly	<u>33</u>	21	13.12	1.60	+	6.85E-03	4.84E-02
nucleobase biosynthetic process	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.84E-02
negative regulation of stress fiber assembly	<u>29</u>	<u>19</u>	11.53	1.65	+	6.82E-03	4.84E-02
heart trabecula morphogenesis	<u>33</u>	21	13.12	1.60	+	6.85E-03	4.84E-02
nucleophagy.	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.84E-02
regulation of androgen receptor signaling pathway	29	19	11.53	1.65	+	6.82E-03	4.84E-02
cellular response to cholesterol	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.84E-02
cardiac atrium morphogenesis	29	19	11.53	1.65	+	6.82E-03	4.84E-02
cellular response to prostaglandin E stimulus	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.84E-02
anatomical structure arrangement	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.83E-02
clathrin coat assembly	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.83E-02
hippo signaling	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.83E-02
piecemeal microautophagy of the nucleus	<u>18</u>	<u>13</u>	7.16	1.82	+	6.79E-03	4.83E-02
regulation of plasma membrane organization	<u>18</u>	13	7.16	1.82	+	6.79E-03	4.83E-02
tetrahydrofolate metabolic process	<u>18</u>	<u>13</u>	7.16	1.82	+	6.79E-03	4.82E-02
negative regulation of intracellular steroid hormone receptor signaling pathway	<u>37</u>	23	14.71	1.56	+	6.70E-03	4.79E-02
negative regulation of striated muscle cell differentiation	<u>37</u>	23	14.71	1.56	+	6.70E-03	4.79E-02
lamellipodium assembly	<u>37</u>	23	14.71	1.56	+	6.70E-03	4.79E-02
cardiac atrium development	<u>37</u>	23	14.71	1.56	+	6.70E-03	4.78E-02
regulation of carbohydrate biosynthetic process	97	52	38.56	1.35	+	6.59E-03	4.72E-02

From the utilization of GO, it was identified that the regulation of the actin filament polymerization was found to be the most significant, through FDR calculated p-value.