Topici speciale în logică și securitate l

Analiză variabilelor și adreselor de memorie

Paul Irofti

Master anul II, Sem. I, 2019-2020

Cum putem detecta buffer overflow

Tipul de defecte software ce sunt exploatate adesea iau forma:

```
char buf[10];
i = 0;
while (i < 20) {
   buf[i] = i;
   i = i + 1;
}</pre>
```

Cum se comportă tool-urile existente când întâlnesc o astfel de secvență?

Cum putem folosi analiza statică să găsim astfel de defecte?

Exemplu: rutină C

```
char *strings[] = { "Unu", "doi", "trei" };
char *s = NULL;
int i;

for (i = 0; i < 3; i++) {
    s = strings[i];
    printf("%s\n", s);
}

printf("%d\n", i);</pre>
```

Exemplu: Adaptare IMP și CFG

Convenții și notații

Notăm cu

- v_n^i valorile posibile ale variabilei i în nodurile $n = \overline{1,6}$
- v_n^s adresele de memorie către care s poate indica în nodurile $n = \overline{1,6}$

Descriem valorile lui i drept un interval și pe cele ale lui s drept un set abstract de adrese \mathcal{A} .

- strings[i] oferă adresa șirului i
- păstrăm această adresă drept $s_i \in \mathcal{A}$ pentru $i \in 1, 2, 3$
- ullet notăm cu NULL sau \emptyset adresa vidă, zero, neinițializată

În sistemul de constrângeri vom avea nevoie de operatorul

$$[l_1, u_1] \overline{\Upsilon} [l_2, u_2] = [\min (l_1, l_2), \max (u_1, u_2)]$$

ce calculează intervalul minim ce conține cele două intervale date.

Exemplu: intervale

$$\begin{array}{rcl} v_1^i &=& [0,0] \\ v_2^i &=& [0,0] \\ v_3^i &=& v_2^i \overline{\Upsilon} v_6^i \\ v_4^i &=& v_3^i \cap \left[-2^{31},2\right] \\ v_5^i &=& v_4^i \cap \left[-2^{31},2\right] \\ v_6^i &=& \left\{v+1 \mid v \in v_5^i\right\} \\ v_7^i &=& v_3^i \cap \left[3,2^{31}-1\right] \end{array}$$

Exemplu: adrese

$$\begin{array}{rcl} v_{1}^{s} & = & \emptyset \\ v_{2}^{s} & = & v_{1}^{s} \\ v_{3}^{s} & = & v_{2}^{s} \cup v_{6}^{s} \\ v_{4}^{s} & = & \left\{ s_{1} \mid 0 \in v_{4}^{i} \right\} \cup \\ & \left\{ s_{2} \mid 1 \in v_{4}^{i} \right\} \cup \\ & \left\{ s_{3} \mid 2 \in v_{4}^{i} \right\} \\ v_{5}^{s} & = & v_{4}^{s} \\ v_{6}^{s} & = & v_{5}^{s} \\ v_{7}^{s} & = & v_{3}^{s} \end{array}$$

Exemplu: ecuațiile rezultate

Observați legătura dintre domeniul valorilor lui i reprezentate drept intervale și cel al pointer-ului s reprezentat ca seturi de adrese.

Intervale

$$\begin{array}{rcl} v_1^i &=& [0,0] \\ v_2^i &=& [0,0] \\ v_3^i &=& v_2^i \overline{\Gamma} v_6^i \\ v_4^i &=& v_3^i \cap \left[-2^{31},2\right] \\ v_5^i &=& v_4^i \cap \left[-2^{31},2\right] \\ v_6^i &=& \left\{v+1 \mid v \in v_5^i\right\} \\ v_7^i &=& v_3^i \cap \left[3,2^{31}-1\right] \end{array}$$

Adrese

$$\begin{array}{rcl} v_{1}^{s} & = & \emptyset \\ v_{2}^{s} & = & v_{1}^{s} \\ v_{3}^{s} & = & v_{2}^{s} \cup v_{6}^{s} \\ v_{4}^{s} & = & \left\{ s_{1} \mid 0 \in v_{4}^{i} \right\} \cup \\ & & \left\{ s_{2} \mid 1 \in v_{4}^{i} \right\} \cup \\ & & \left\{ s_{3} \mid 2 \in v_{4}^{i} \right\} \end{array}$$

$$\begin{array}{rcl} v_{5}^{s} & = & v_{4}^{s} \\ v_{6}^{s} & = & v_{5}^{s} \\ v_{7}^{s} & = & v_{2}^{s} \end{array}$$

Rezolvarea folosind teorema de punct fix

Soluția ecuațiilor de mai sus poate fi obținută cu teorema de punct fix:

- pornim de la starea inițială $\bot = (\emptyset, ..., \emptyset)$
- iterăm către vârful laticei cu $F^n(\bot) = F(F^{n-1}(\bot))$
- aici fiecare necunoscută $x_j \in \{x_1, \dots, x_n\}$ reprezintă un tuplu alcătuit din intervalul x_i^i și setul adreselor x_i^s
- notăm starea inițială $x_j^i = \bot$ și $x_j^s = \emptyset$ astfel încât $x_j = \bot = \langle \bot, \emptyset \rangle$

Exercițiu: Determinarea celui mai mic punct fix:

	X_1^i	X_1^s	X_2^i	X_2^s	X_3^i	x_3^s	X_4^i	X_4^s	X_5^i	x_5^s	x_6^i	x_6^s	X_7^i	X_7^s
	1	Ø	1		1	Ø	1	Ø	1	Ø	1	Ø	1	Ø
$F(\perp)$		{NULL}		Ø	上	Ø	1	Ø	1	Ø	上	Ø	上	Ø
$F^{2}(\perp)$	_	{NULL}	[0, 0]	{NULL}	1	Ø	1	Ø	1	Ø	1	Ø	_	Ø
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

Soluție: Determinarea celui mai mic punct fix

	x_1^i	x_1^s	x_2^i	x_2^s	x_3^i	x_3^s	x_4^i	χ_4^s	x_5^i	<i>x</i> ₅ ^s	x_6^i	x_6^s	x_7^i	<i>x</i> ₇ ^s
	1	Ø	1	Ø	1	0	Τ	Ø	Τ	Ø	1	Ø	1	0
1	1	{NULL}	1	Ø	1	0	1	Ø	1	Ø	1	Ø	1	0
2	1	{NULL}	[0, 0]	{NULL}	1	0	1	Ø	1	Ø	1	Ø	1	0
3	1	{NULL}	[0, 0]	{NULL}	[0, 0]	{NULL}	1	Ø	1	Ø	1	Ø	1	0
4	1	{NULL}	[0, 0]	{NULL}	[0, 0]	{NULL}	[0, 0]	{s ₁ }	1	Ø	1	Ø	1	{NULL}
5	1	{NULL}	[0, 0]	{NULL}	[0, 0]	{NULL}	[0, 0]	{s ₁ }	[0, 0]	{s ₁ }	1	Ø	1	{NULL}
6	1	{NULL}	[0, 0]	{NULL}	[0, 0]	{NULL}	[0, 0]	{s ₁ }	[0, 0]	{s ₁ }	[1, 1]	{s ₁ }	1	{NULL}
7	1	{NULL}	[0, 0]	{NULL}	[0, 1]	$\{NULL, s_1\}$	[0, 0]	{s ₁ }	[0, 0]	{s ₁ }	[1, 1]	{s ₁ }	1	{NULL}
8	1	{NULL}	[0, 0]	{NULL}	[0, 1]	$\{NULL, s_1\}$	[0, 1]	$\{s_1, s_2\}$	[0, 1]	$\{s_1, s_2\}$	[1, 1]	$\{s_1, s_2\}$	1	$\{NULL, s_1\}$
9	1	{NULL}	[0, 0]	{NULL}	[0, 1]	$\{NULL, s_1\}$	[0, 1]	$\{s_1, s_2\}$	[0, 1]	$\{s_1, s_2\}$	[1, 2]	$\{s_1, s_2\}$	1	$\overline{\{\text{NULL}, s_1\}}$
10	1	{NULL}	[0, 0]	{NULL}	[0, 2]	$\{NULL, s_1, s_2\}$	[0, 2]	$\{s_1, s_2\}$	[0, 2]	$\{s_1, s_2\}$	[1, 2]	$\{s_1, s_2\}$	1	$\{NULL, s_1, s_2\}$
11	1	{NULL}	[0, 0]	{NULL}	[0, 2]	$\{NULL, s_1, s_2, s_3\}$	[0, 2]	$\{s_1, s_2, s_3\}$	[0, 2]	$\{s_1, s_2, s_3\}$	[1, 2]	$\{s_1, s_2, s_3\}$	1	$\{\mathtt{NULL}, s_1, s_2, s_3\}$
12	1	{NULL}	[0, 0]	{NULL}	[0, 2]	$\{\mathtt{NULL},s_1,s_2,s_3\}$	[0, 2]	$\{s_1, s_2, s_3\}$	[0, 2]	$\{s_1, s_2, s_3\}$	[1, 3]	$\{s_1, s_2, s_3\}$	1	$\{\mathtt{NULL}, s_1, s_2, s_3\}$
13	⊥	{NULL}	[0, 0]	{NULL}	[0, 3]	$\{\mathtt{NULL}, s_1, s_2, s_3\}$	[0, 2]	$\{s_1,s_2,s_3\}$	[0, 2]	$\{s_1,s_2,s_3\}$	[1, 3]	$\{s_1,s_2,s_3\}$	[3, 3]	$\{\mathtt{NULL}, s_1, s_2, s_3\}$

Observații

- execuția programului poate fi observată în semantica ecuaților
- o operație de join a două căi este regăsită drept o operație de reuniune în ecuații
- o operație de bifurcare (sau meet) a două căi este regăsită drept o operație de intersecție în ecuații
- simbolul ⊥ indică stări ce nu pot fi atinse (încă); acest punct în program se mai numește unreachable
- punctele x_7^s de la iterațiile 4–12 nu au sens deoarece codul aferent este unreachable datorită x_7^i care este \bot de la 4–12 $\Longrightarrow x_7^s = \bot$ pentru 4–12
- operațiile de *join* depind de domeniu: reuniune simplă de seturi pentru adrese sau operația complexă $\overline{\Upsilon}$ pentru intervale
- în exemplul anterior operațiile de *meet* sunt regăsite doar la intervale

Concluzie: utilizarea a două domenii simultan duce la noi observații și tipuri de analiză ce se bazează pe interacțiunea dintre cele două (*domain interaction*).

Latice

În general domeniile și operațiile aferente formează o latice.

Definiție: *Num* este domeniul numeric ce mărginește valorile posibile luate de o variabilă.

Definiție: *Pts* este domeniul indicatorilor către adrese (*points-to*) ce reprezintă zonele de memorie către care un *pointer* poate indica.

Teoremă: $(Num, \leq_N, \vee_N, \wedge_N)$ formează o latice.

- ≤_N este operatorul de incluziune ⊂
- $\vee_N = \overline{\Upsilon}$ este operația de *join* pentru intervale
- ∧_N este operația de *meet* pentru intervale

Teoremă: $(Pts, \leq_A, \vee_A, \wedge_A)$ formează o latice.

- cine este \leq_A ?
- $\vee_A = \cup$ este operația de *join* pentru adrese
- cine este ∧_A?

Domeniul abstract Pts

Definim X setul finit al variabilelor existente într-un program P și \mathcal{A} setul finit al adreselor către care pot indica aceste variabile.

Atunci $Pts = X \to \mathcal{P}(\mathcal{A})$ reprezintă funcția ce leagă fiecare variabilă $x \in X$ de un subset de adrese $A(x) \in \mathcal{A}$.

Fie $A_1, A_2, A' \in Pts$.

Actualizare: $A \in Pts$ devine $A' = \{A \cup [x \rightarrow a] \mid a \in \mathcal{A}\}$ astfel încât A'(x) = a și $A'(y) = A(y), \forall y \neq x$.

Ordine: $A_1 \leq_A A_2 \iff A_1(x) \subseteq A_2(x), \ \forall x \in \mathcal{X}$

Join: $A' = A_1 \vee_A A_2$ a.î. $A'(x) = A_1(x) \cup A_2(x)$, $\forall x \in X$.

Meet: Operația de *meet* poate fi privită ca o operație de actualizare cu ajutorul căreia filtrăm elementele din *A*.

Concluzie: (Pts, \leq_A) reprezintă un CPO: pentru orice configurație de subseturi $B \in \mathcal{P}(Pts)$ există $A \in Pts$ astfel încât $A = \bigvee_A B \Longrightarrow$ putem aplica iterații *Kleene*.

Exerciții

Ce putem spune despre p? Ce ne spune analiza statică?

```
int a, b, *p;
p = NULL;
if (rand())
    p = & a;
if (p)
    *p = 42;
```