LIMBAJE FORMALE SI AUTOMATE

EXERCITII PROPUSE

- 1. Fie $G = (\Omega, \Sigma, S, P)$ o gramatica independenta de context si $w \in L(G)$, n numarul derivarilor stangi ale lui w din S, iar m numarul derivarilor drepte ale lui w din S. Ce relatie exista intre m si m? m = n 2. Fie L un limbaj acceptat de un automat finit determinist cu m stari. Atunci m exista m exis
- 3. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta, dar cu numar minim de simboluri neterminale, pentru a genera limbajul L format din siruri de biti (literele 0 si 1) a caror lungime este multiplu de trei.
- a. $\Omega = \{S\}, \Sigma = \{0, 1\}, P = \{S ::= S000, S ::= S001, S ::= S010, S ::= 011S, S ::= 100S, S ::= S101, S ::= 110S, S ::= 111S, S ::= \lambda \}$
- b. $\Omega = \{S\}, \Sigma = \{0, 1\}, P = \{S ::= 000S, S ::= 001S, S ::= 010S, S ::= 011S, S ::= 100S, S ::= 101S, S ::= 111S, S ::= 111S,$
- c. $\Omega = \{S, A, B\}, \Sigma = \{0, 1\}, P = \{S ::= 0A, S ::= 1A, S ::= \lambda, A ::= \lambda, A ::= 0B, A ::= 1B, B ::= 0S, B ::= 1S, B ::= \lambda \}$
- 1B, B ::= 08, B ::= 18, B ::= λ }

 d. $\Omega = \{S, X, T\}, \Sigma = \{0, 1\}, P = \{S ::= XT, X ::= 0X1, X ::= 01, T ::= 011, T ::= 01\}$ 4. Fie $L = \{a^{n^2} | n > 1\}$. Atunci L este <u>limbaj infinit</u>
 - 5. Unui automat pushdown ii corespunde o gramatica
- a. liniara la stinga
- b. liniara la dreapta
- c. independenta de context
 - 6.Sa se verifice daca limbajul $L = \{a^n b^n c^n | n > 0\}$ este independent de context.
- a. adevarat
- b. fals
 - 7. Fie expresiile regulate A = (r*s)*, $B = \lambda + (r+s)*s$, C = (rs*)*, $D = \lambda + r(r+s)*$. Atunci A = C si B = D

$$A = B si C = D$$

$$A = D \operatorname{si} B = C$$

$$A = B = C = D$$

- 8. Daca L este un limbaj independent de context si R este un limbaj regulat atunci L \(\cap \) R este un limbaj independent de context
- 9. Orice gramatica liniara la dreapta este echivalenta cu o gramatica de acelasi tip, dar cu reguli de forma: A::=aB sau A::=a
- 10. Fie $G = (\Omega, \Sigma, S, P)$ o gramatica liniara la dreapta. Atunci exista un automat finit nedeterminist M astfel incat L(M)=L(G)
- 11. Un limbaj recunoscut de un sistem APD cu memoria pushdown vida poate fi recunoscut de un APD cu stari finale .
- 12. Familia limbajelor independente de context este inchisa la operatia <u>reuniune</u>, produs, stelare 13. Valoarea de adevar a propozitiei "Familia limbajelor regulate nu este inchisa la reuniune" este:
- a. Adevarat
- b. Fals
 - 14. Sa se verifice daca limbajul $L = \{a^n \mid n = k^2, k \ge 0\}$ este independent de context.

a. Fals	

b. Adevarat

- 15. Familia limbajelor independente de context este inchisa la substitutii, homomorfisme
- 15 ½. Indicati valoarea de adevar a propozitiei: "Daca L este un limbaj de tip i (i = 2 sau 3) atunci L⁺ este de tip i". adevarat
- 16. Fie afirmatia: "Daca Σ este un alfabet, atunci Σ^* este multime numarabila". Aceasta este Adevarata/Falsa adevarat
- 17. Fie $\Sigma = \{a, b, c\}$ si w = aabca. Care este numarul natural f(w) asociat cuvantului w prin aplicatia biunivoca dintre Σ^* si multimea numerelor naturale. 184
- 18. Fie Σ un alfabet total ordonat. Ordinea de pe Σ induce pe Σ^* ordinea lexicografica "<". Atunci produsul (concatenarea) de cuvinte peste Σ este monoton la dreapta. Afirmatia din urma este adevarata? adevarat
- 19. Se considera $E = \lambda + (r+s)*s$. Atunci E = (r*s)*
- 20. Se considera limbajul format din toate cuvintele peste {a, b}. Alegeti expresia regulata corespunzatoare:
- a. (a+b)*(aa+bb)(a+b)*
- b. (a+b)*
- c. a*ba*ba*
- d. ba*
 - 21. Se considera limbajul format din toate cuvintele peste $\{a, b\}$ care contin consecutiv doua simboluri a sau doua simboluri b. Alegeti expresia regulata corespunzatoare:
- a. (a+b)*

c. ba*

b. a*ba*ba*

- d. (a+b)*(aa+bb)(a+b)*
- 22. Fie expresia regulata $E = \lambda + rr^*$. Forma simplificata a expreiei este $E = r^*$
- 23. Fie expresia regulata $E = (r+s)^*$. Care din urmatoarele afirmatii este falsa?

$$E = r^* + s^*$$

$$E = (r* + s*)*$$

$$E = (r*s*)*$$

$$E = (r*s)*r*$$

$$E = r^*(sr^*)^*$$

24. Fie expresia regulata $E = \lambda + r + r^2 + r^3 + ... + r^k + r^{k+1}r^*$, $k \ge 0$. Forma cea mai simpla a expresiei E este:

$$(\lambda + r)r^*$$
 $(\lambda + r)^*r$

r* λ+r*r

25. Fie expresia regulata $E = (\lambda + r)^*$. Care din urmatoarele afirmatii este falsa?

$$E = r*$$

$$E = r*r*$$

$$E = (r^*)^*$$

$$E = \lambda * r$$

26. Numai una din urmatoarele multimi poate fi recunoscuta de catre un sistem AFD.

Multimea cuvintelor peste a, b cu un numar par de a si impar de b.

Multimea secentelor a^p , unde p parcurge multimea numerelor prime.

Multimea secventelor $a^n b^n$, n>0.

Multimea secventelor de litere *a*, in care numarul aparitiilor lui *a* este cub perfect.

27. Fie L = $\{a^nb^n \mid n \ge 1\} \cup \{a^n \mid n \ge 1\} \cup \{a^nb^nc^n \mid n \ge 1\}$. Atunci: L este limbaj regulat

L este limbaj independent de context

L este limbaj dependent de context.

28. Se poate da o gramatica independenta de context G in care un cuvint w generat de G are mai multe derivari stangi decat drepte?

Da, orice gramatica ambigua.

Nu.

- 29. Indicati valoarea de adevar a afirmatiei: "Familia limbajelor regulate este cea mai mica familie de limbaje care contine limbajele finite si este inchisa la reuniune, produs (de limbaje) si la operatia *(inchiderea Kleene)". adevarat
- 30. Fie gramatica G cu productiile S ::= $aAB \mid b$, A ::= $bSS \mid c$, B ::= $cSA \mid a$. Cate cuvinte de lungime 36 contine L(G)?

12 96 64 0 (zero)

31. Care din formele urmatoare (A fiind simbol util) nu confera unei gramatici independente de context proprietatea de ambiguitate?

A := AA

A := A w A;

A := u A | A v

 $A ::= u A \mid uAvA$

A ::= wB unde B este diferit de A, iar A nu apare prima pozitie a lui w.

32. La un interviu pentru obtinerea unui loc de munca pentru proiectarea analizoarelor lexicale se pune urmatoarea intrebare: "Este necesar un algoritm pentru eliminarea ambiguitatii limbajelor regulate?" Care este raspunsul corect?

Da

Nu

33. Fie $G = (\Omega, \Sigma, S, P)$ gramatica in care $\Omega = \{A, B, S\}$, $\Sigma = \{a, b\}$ si care are urmatoarele reguli (productii): $S := bS \mid aA$; A := bS; $B := aB \mid bS \mid a$. Atunci:

$$Var(G) = 3$$
, $Prod(G) = 3$ si $Simb(G) = 23$

$$Var(G) = 3$$
, $Prod(G) = 6$ si $Simb(G) = 23$

$$Var(G) = 3$$
, $Prod(G) = 3$ si $Simb(G) = 5$

	Var(G)	= 3, Prod((G) = 6	si Simb	(G)	= 5
--	--------	------------	---------	---------	-----	-----

34. Sa se studieze natura limbajului $L = \{$	$w \mid w \in \{0, 1\}^*$, w contine un numar egal de
simboluri 0 si 1, adica $N_0(w) = N_1(w)$.	
1 /	

- a. regulat
- b. independent de context
- c. dependent de context
 - 35. Sa se studieze natura limbajului $L = \{ w \in \{a, b\}^* \mid \text{simbolul } a \text{ apare de un numar par de ori} \}$.
- a. regulat
- b. independent de context
- c. dependent de context
 - 36. Se considera gramatica cu regulile S ::= if c then S else S | if c then S | a. Atunci: Gramatica G este ambigua

Gramatica G nu este ambigua

- 37. Sa se studieze natura limbajului $L = \{ab, aabb, aaabb\}$.
- a. regulat
- b. independent de context
- c. dependent de context
 - 38. Sa se studieze natura limbajului $L = \{a^n b^n c^n \mid n \ge 1\}$.
- a. regulat
- b. independent de context
- c. dependent de context
 - 39. Fie gramatica G cu regulile S ::= B | D, B ::= BCC | x, C ::= yx, D ::= xCyD | xy. Cate cuvinte din L(G) contin subsirul $(yx)^3$, adica pe yxyxyx ca subsir?

O infinitate 3

Nici unul 6

40. Fie G o gramatica in forma normala Chomsky si $w \in L(G)$ obtinut printr-o derivare de lungime 5. <u>Care</u> este lungimea lui w?

5 3 6 4

41. Fie o gramatica G in forma normala Chomsky si un cuvant w din L(G), de lungime 10. Care va fi lungime unei derivari stangi pentru a genera w?

10 21

20 19

42. Fie L = $\{a^nb^n \mid n>0\}$ - $\{a^n \mid n>0\}$. Atunci L este: limbaj dependent de context

limbaj independent de context

limbaj regulat

43. Fie L limbajul generat de gramatica cu regulile: S := A, $A := xAx \mid y$. Atunci L - $\{x^nyx^n \mid n \ge 0\}$ dependent de context regulat infinit independent de context 44. Fie L = $\{a^n x b^n \mid n \ge 0\} \cup \{a^n y b^n \mid n \ge 0\}$. Atunci L este limbaj regulat limbaj independent de context limbaj dependent de context 45. Sa se studieze natura limbajului $L = \{a^n b^n \mid n \ge 1\}$. a. regulat b. independent de context dependent de context 46. Sa se studieze natura limbajului $L = \{a^n | n \ge 1\}$. a. regulat b. independent de context c. dependent de context 47. Fie A = 1 + 0(10)*(11+0) si B = (01)*(1+00). Atunci A si B sunt expresii regulate echivalente A descrie un limbaj diferit de limbajul descris de B. 48. Prin n! notam produsul numerelor 1, 2, 3, ..., n. Se considera $L = \{a^{n!} \mid n \ge 1\}$. Atunci: L este limbaj regulat L nu poate fi recunoscut de un sistem tranzitional. 49. Fie gramatica cu regulile: $S := a \mid aAB, A := b \mid bBS, B := c \mid cSA$. Atunci: G este recursiva la stanga G este recursiva la dreapta G este ambigua 50. Fie G_1 gramatica cu regulile: $S := AS \mid A, A := aB \mid bA$ si G_2 gramatica avand regulile $S := aB \mid bA$ ABC; A ::= $BB \mid \lambda$; B ::= $CC \mid a$; C ::= $AA \mid b$, $L_1 = L(G_1)$ si $L_2 = L(G_2)$. Atunci: $L_1 \cap L_2 = \emptyset$ $L_2 \subseteq L_1$ L_1 este limbaj independent de context si L_2 este limbaj regulat 51. Care este numarul minim de stari al unui AFD pentru a recunoaste limbajul {a, aa, aaa}. 1 2 4

52. Fie G_1 gramatica ce are urmatoarele reguli P_1 : $E := E + T \mid T$, $T := T*F \mid F$; $F := (E) \mid a$ si G_2 gramatica cu regulile P_2 : $E := E + T \mid T*F \mid (E) \mid a$, $T := T*F \mid (E) \mid a$. Doi informaticieni se cearta privind echivalenta celor doua gramatici. Ce parere aveti?

Gramaticile nu sunt echivalente

Gramaticile sunt echivalente.

- 53. Fie G o gramatica in care productiile sunt de forma A ::= Ba si A ::= a. Atunci exista o gramatica G' echivalenta cu G pentru care productiile sunt de forma A::=aB si A::=a
- 54. Fie L un limbaj acceptat de un automat finit nedeterminist. Este posibil/imposibil de construit un automat finit determinist, notat cu M, astfel incat L(M) = L. Este posibil.
- 55. Multimile regulate pot fi recunoscute de sisteme tranzitionale
- 56. Fie r si s expresii regulate. Care din urmatoarele afirmatii este adevarata: $(r+s)^* = r^* + s^*$

```
s(rs+s)*r = rr*s(rr*s)*
(rs+r)*r = r(sr+r)*s
```

- 57. Un coleg iti spune ca: "Familia limbajelor independente de context este inchisa la intersectie". Care este valoarea de adevar a afirmatiei lui?
- a. Adevarat
- b. Fals
- 58. Se considera afirmatia: "Familia limbajelor regulate este inchisa la intersectie". Aceasta este:
- a. Adevarata
- b. Falsa
- 59. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul $L = \{a^n b^n \mid n \ge 0\}$.
- a. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{aSb ::= S, \lambda ::= S\}$
- b. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{S ::= aSb, S ::= \lambda\}$
- c. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{S := aSb, S := ab\}$
- d. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{aSb ::= S, ab ::= S\}$
- 60. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul $L = \{a^nb^n \mid n > 0\}$.
- a. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{aSb ::= S, \lambda ::= S\}$
- b. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{S ::= aSb, S ::= \lambda\}$
- c. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{S ::= aSb, S ::= ab\}$
- d. $\Omega = \{S\}, \Sigma = \{a, b\}, P = \{aSb ::= S, ab ::= S\}$
- 61. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul $L = \{a^n b^n c^m d^m \mid n \ge 1, m \ge 1\} \cup \{\lambda\}.$
- a. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{aAb ::= A, ab ::= A, cBd ::= B, cd ::= B, AB ::= S, \lambda ::= S\}$
- b. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, A ::= \lambda, B ::= cBd, B ::= cd, B ::= \lambda\}$
- c. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, B ::= cBd, B ::= cd, S ::= \lambda\}$
- d. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, B ::= cBd, B ::= cd\}$
 - 62. Sa se studieze natura limbajului $L = \{a^m b^n c^p d^q \mid m+n=p+q, m, n, p, q \ge 0\}.$

- a. regulat
- b. independent de context
- c. dependent de context
 - 63. Sa se studieze natura limbajului $L = \{a^m b^n \mid n \le m \le 2^* n, n, m \ge 1\}$.
- a. regulat
- b. independent de context
- c. dependent de context
- 64. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul L format din siruri de biti (literele 0 si 1) a caror lungime este multiplu de trei.
- a. $\Omega = \{S, A, B\}, \Sigma = \{0, 1\}, P = \{S ::= 0A, S ::= 1A, S ::= \lambda, A ::= 0B, A ::= 1B, B ::= 0S, B ::= 1S\}$
- b. $\Omega = \{S, A, B\}, \Sigma = \{0, 1\}, P = \{S ::= 0A, S ::= 1A, A ::= \lambda, A ::= 0B, A ::= 1B, B ::= 0S, B ::= 1S, B ::= \lambda \}$
- c. $\Omega = \{S, A, B\}, \Sigma = \{0, 1\}, P = \{S ::= 0A, S ::= 1A, S ::= \lambda, A ::= \lambda, A ::= 0B, A ::= 1B, B ::= 0S, B ::= 1S, B ::= \lambda \}$
- d. $\Omega = \{S, X, T\}, \Sigma = \{0, 1\}, P = \{S ::= XT, X ::= 0X1, X ::= 01, T ::= 0T1, T ::= 01\}$
- 65. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul $L = \{a^nb^nc^md^m \mid n > 0, m > 0\}.$
- a. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{aAb ::= A, ab ::= A, cBd ::= B, cd ::= B, AB ::= S, \lambda ::= S\}$
- b. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, A ::= \lambda, B ::= cBd, B ::= cd, B ::= \lambda\}$
- c. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, B ::= cBd, B ::= cd, S ::= \lambda\}$
- d. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, B ::= cBd, B ::= cd\}$
 - 66. Sa se studieze natura limbajului $L = \{a^n b^m c^m d^n \mid n \ge 1, m \ge 1\}$.
- a. regulat
- b. independent de context
- c. dependent de context
- 67. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul $L = \{a^nb^mc^md^n \mid n \ge 1 , m \ge 1\}$.
- a. $\Omega = \{S, X\}, \Sigma = \{a, b, c, d\}, P = \{bXc ::= X, bc ::= X, aSd ::= S, ad ::= S, \lambda ::= S\}$
- b. $\Omega = \{S, A\}, \Sigma = \{a, b, c, d\}, P = \{S ::= aSd, S ::= aAd, A ::= bAc, A ::= bc\}$
- c. $\Omega = \{S, X, Y\}, \Sigma = \{a, b, c, d\}, P = \{S ::= XY, X ::= aXb, X ::= ab, Y ::= cYd, Y ::= cd, S ::= \lambda\}$
- d. $\Omega = \{S, X, T\}, \Sigma = \{a, b, c, d\}, P = \{S ::= XT, X ::= aXb, X ::= ab, T ::= cTd, T ::= cd\}$
 - 68. Fie L un limbaj regulat si "s" un simbol arbitrar. Se considera afirmatia: "sL = $\{sw \mid w \in L\}$ este un limbaj regulat". Afirmatia este:

Adevarata

Falsa

69. Fie gramatica G cu regulile S ::= 0A | 1S | 1, A ::= 0B | 1A, B ::= 0S | 1B | 0. Atunci L este: $\{0,1\}^*$

Multimea secventelor formate numai cu $\{0\}$, iar lungimea secventeloe este multiplu de 3

Multimea secventelor formate numai cu {1}, iar lungimea secventelor este numar impar.

Multimea secventelor peste {0, 1} in care numarul simbolurilor 0 (zero) este multiplu de 3.

70. Fie gramatica cu regulile: $S := aA \mid aB, A := Sb; B := b si L = L(G)$. Atunci: L este limbaj regulat

L este limbaj independent de context

L este limbaj dependent de context

- 71. Un programator se prezinta la un interviu pentru a fi angajat in domeniul elaborarii interfetelor in limbaj natural. I se pune urmatoarea intrebare: "Fie G o gramatica regulata. Exista un algoritm care sa verifice daca limbajul generat de G este infinit?" Care este raspunsul corect pe care trebuie sa-l dea candidatul? Da. Exista un asemenea algoritm
- 72. Se considera mesajul: "Fie L_1 , L_2 si L_3 limbaje regulate. A cere sa se elaboreze un algoritm si sa scrie un program C/Java pentru a verifica daca $L_1 \subseteq L_2 \subseteq L_3$ nu are sens. Asa ceva este imposibil." Din punct de vedere teoretic:

Vorbitorul are dreptate

Vorbitorul nu are dreptate

- 73. Sa se studieze natura limbajului $L = \{w \mid w \in \{0, 1\}^*, w \text{ nu contine substrul } 011\}$.
- a. regulat
- b. independent de context
- c. dependent de context
 - 74. Sa se studieze natura limbajului $L = \{a^n b^n c^n d \mid n \ge 1\}$.
- a. regulat
- b. independent de context
- c. dependent de context

75. Se considera gramatica $G = (\{S, A, B\}, \{a, b\}, S, P)$, unde $P = \{S := bA \mid aB, A := bAA \mid aS \mid a, B := aBB \mid bS \mid b\}$. G este in forma normala

- a. Chomsky
- b. Greibach
- c. Nici una din formele mentionate
 - 76. Sa se studieze natura limbajului $L = \{x^m y^n | n \le m \text{ sau } 2^m \le n, n, m \ge 0\}$.
- a. regulat
- b. independent de context
- c. dependent de context

77. Sa se studieze natura limbajului $L = \{w \in \{a, b\}^* \mid w = Rasturnat(w)\}$. Notatie: daca w = abcd, atunci Rasturnat(w) = dcba.

- a. regulat
- b. independent de context
- c. dependent de context
- 78. Se considera limbajul format din toate cuvintele peste {a, b} care contin simbolul b exact de doua ori. Alegeti expresia regulata corespunzatoare:
- a. a*ba*ba*

 c. (a+b)*(aa+bb)(a+b)*
- b. ba* d. (a+b)*
 - 79. Sa se verifice daca limbajul $L = \{a^n \mid n = 10^k, k \ge 0\}$ este de tip 3 (regulat).
- a. Adevarat

- h Fals
 - 80. Sa se verifice daca limbajul $L = \{a^n \mid n = k^2, k \ge 0\}$ este de tip 3 (regulat).
- a. Adevarat
- b. Fals
 - 81. Sa se studieze natura limbajului $L = \{a^m b^n c^m d^n \mid m, n \ge 1\}$
- a. regulat
- b. independent de context
- c. dependent de context
 - 82. Sa se verifice daca limbajul $L = \{a^n \mid n = 2^k, k > 0\}$ este independent de context.
- a. adevarat
- b. fals
- 83. Sa se verifice daca limbajul $L = \{a^nb^nc^m \mid n \le m \le n+n, n \ge 0\}$ este independent de context.
- a. adevarat
- b. fals
 - 84. Sa se verifice daca limbajul $L = \{a^n \mid n = 10^k, k \ge 0\}$ este independent de context.
- a. Fals
- b. Adevarat
- 85. Sa se verifice daca limbajul $L = \{w \# Rasturnat(w) \mid w \in \{a, b\}^+, iar \# \notin \{a, b\}\}$ este independent de context, unde Rasturnat(w) desemneaza oglinditul lui w, adica: Rasturnat(abcd) = dcba.
- a. Fals
- b. Adevarat
 - 86. Sa se verifice daca limbajul $L = \{a^n \mid n \ge 0\}$ este de tip 3 (regulat).
- a. Adevarat
- b. Fals
 - 87. Sa se verifice daca limbajul $L = \{a^p \mid p \text{ numar prim}\}\$ nu este de tip 3 (regulat).
- a. Adevarat
- b. Fals
- 88. Sa se verifice daca limbajul $L = \{a^m b^n \mid m \text{ si n relativ prime, adica cmmdc}(m, n) = 1\}$ nu este de tip 3 (regulat).
- a. Fals
- b. Adevarat
- 89. Un limbaj recunoscut de un automat pushdown cu stari finale nu poate fi recunoscut de nici un automat pushdown cu stiva vida.
- a. De acord
- b. Nu sunt de acord
- 90. Pentru orice gramatica independenta de context care genereaza un limbaj L, se poate construi un automat pushdown care recunoaste limbajul L.
- a. Nu sunt de acord.
- b. Adevarat.
- 91. Sa se studieze natura limbajului L = { $w \in \{a, b\}^* \mid \text{simbolul } a \text{ apare de doua ori mai des decat simbolul } b$ }
- a. regulat
- b. independent de context
- c. dependent de context
- 92. Se considera limbajul format din toate cuvintele peste {a, b} care incep cu b si dupa care urmeaza 0, 1, 2 sau mai multe simboluri a. Alegeti expresia regulata corespunzatoare:
- a. (a+b)*(aa+bb)(a+b)*
- b. (a+b)*

- c. a*ba*ba*
- d. ba*
- 93. La un examen oral se afirma ca " Nu exista un algoritm care verifica daca limbajul recunoscut de un automat finit determinist este infinit". Ce parere aveti?
- a. Adevarat
- b. Fals
 - 94. Sa se verifice daca limbajul $L = \{a^n(bc)^n \mid n \ge 1\}$ este independent de context.
- a. Fals
- b. Adevarat
- 95. Fie afirmatia: "Un limbaj recunoscut de un sistem AFN este recunoscut și de un sistem AFD". Valoarea de adevar a acestei afirmatii este:
- a. Adevarat
- b. Fals
- 96. Se considera propozitia: "Un limbaj recunoscut de un automat pushdown cu stiva vida nu poate fi recunoscut si de un automat pushdown cu stari finale." Aceasta este:
- a. Adevarata
- b. Falsa
 - 97. Fie Σ un alfabet nevid. Atunci card (Σ^*) < ∞ daca si numai daca:

$$\Sigma = {\lambda}$$

 $\operatorname{card}(\Sigma) < \infty$

$$card(\Sigma) = 1$$

$$\Sigma = \{0, 1\}$$

- 98. Exista si limbaje recunoscute de automate pushdown care nu pot fi generate de gramatici independente de context.
- a. Fals
- b. Adevarat
- 99. Alegeti gramatica formala $G = (\Omega, \Sigma, S, P)$ corecta pentru a genera limbajul $L = \{a^nb^nc^md^m \mid n \ge 0 \text{ , } m \ge 0\}.$
- a. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{aAb ::= A, ab ::= A, cBd ::= B, cd ::= B, AB ::= S, \lambda ::= S\}$
- b. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, A ::= \lambda, B ::= cBd, B ::= cd, B ::= \lambda\}$
- c. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, B ::= cBd, B ::= cd, S ::= \lambda\}$
- d. $\Omega = \{S, A, B\}, \Sigma = \{a, b, c, d\}, P = \{S ::= AB, A ::= aAb, A ::= ab, B ::= cBd, B ::= cd\}$
- 100. Algoritmi in analiza gramaticilor si automatelor