PWDFT.jl

Electronic Structure Calculations with Julia

Fadjar Fathurrahman

Program Studi Teknik Fisika Fakultas Teknologi Industri Institut Teknologi Bandung

E-mail: fadjar.fathurrahman@gmail.com, fadjar@tf.itb.ac.id

Contents

I	Introduction	1
1	Overview	1
2	Installation	1
II	I Implementation	5
3	Design overview	5
4	Atomic structure	5
5	Plane wave basis set, real space grid, and k-points	7
6	Electronic states	10
7	Potentials and energies	10
	7.1 Electron density	11
	7.2 Kinetic energy	11
	7.3 Local and nonlocal pseudopotential energy	11
	7.4 Hartree energy	11
	7.5 XC energy and potential	12
	7.5.1 Calculation of E_{xc} in PWDFT.jl using Libxc	12
	7.5.2 Calculation of V_{xc} in PWDFT.jl using Libxc	14
8	Pseudopotentials	17
	8.1 Local pseudopotential	18
	8.2 Nonlocal pseudopotential	18
9	Hamiltonian operators	20
	9.1 Iterative diagonalization of Hamiltonian	20
10	0 Self-consistent field	20
11	1 Direct minimization	0.1

12 Calculation of atomic forces			
II	(O	ther things	23
A	How	vtos	23
	A.1	Referring or including files in sandbox (or other dirs in PWDFT.jl)	23
	A.2	Using Babel to generate xyz file from SMILES	23
	A.3	Setting up pseudopotentials	23
	A.4	Initializing Hamiltonian	23
	A.5	Iterative diagonalization of Hamiltonian	24
	A.6	Calculating electron density	24
	A.7	Read and write array (binary file)	24

PART

Ι

Introduction

1 Overview

PWDFT.jl is a package to solve electronic structure problems based on density functional theory (DFT) and Kohn-Sham equations It is written in Julia programming language. The Kohn-Sham orbitals are expanded using plane wave basis. This basis set is very popular within solid-state community and is also used in several electronic structure package such as Quantum ESPRESSO, ABINIT, VASP, etc.

Some of implemented features are:

- Total energy calculation of molecules, surfaces, and crystalline system within periodic unit cell (however, no corrections are implemented for non-periodic systems yet).
- SCF with electron density mixing (for semiconducting and metallic systems)
- Direct minimization method using conjugate gradient (for semiconducting systems)
- GTH pseudopotentials (included in the repository)
- LDA-VWN and GGA-PBE functionals (via Libxc.jl)

We would be very grateful if you cite the following reference if you find PWDFT.jl useful for your works:

Fadjar Fathurrahman, Mohammad Kemal Agusta, Adhitya Gandaryus Saputro, and Hermawan Kresno Dipojono. PWDFT.jl: A Julia package for electronic structure calculation using density functional theory and plane wave basis. https://doi.org/10.1016/j.cpc.2020.107372. Comp. Phys. Comm. **256** 107372 (2020).

2 Installation

Requirements Julia version >= 0.7, with the following packages installed:

- FFTW
- SpecialFunctions
- Libxc (a wrapper to Libxc https://gitlab.com/libxc/libxc
- LibSymspg (a wrapper to spglib https://github.com/atztogo/spglib

These packages are registered so they can be installed by using Julia's package manager.

```
using Pkg
Pkg.add("FFTW")
Pkg.add("SpecialFunctions")
Pkg.add("Libxc")
Pkg.add("LibSymspg")
```

These packages should be automatically installed when PWDFT.jl is installed as local package (see below).

Currently, this package is not yet registered. So, Pkg.add("PWDFT") will not work (yet).

We have several alternatives:

Using Julia's package manager to install directly from the repository URL:

```
Pkg.add(PackageSpec(url="https://github.com/f-fathurrahman/PWDFT.jl"))
```

Using Julia development directory. We will use \$HOME/.julia/dev for this. To enable \$HOME/.julia/dev directory, we need to modify the Julia's LOAD_PATH variable. Add the following line in your \$HOME/.julia/config/startup.jl.

```
push!(LOAD_PATH, expanduser("~/.julia/dev"))
```

After this has been set, you can download the the package as zip file (using Github) or clone this repository to your computer.

If you download the zip file, extract the zip file under \$HOME/.julia/dev. You need to rename the extracted directory to PWDFT (with no .jl extension).

Alternatively, create symlink under \$HOME/.julia/dev to point to you cloned (or extracted) PWDFT.jl directory. The link name should not contain the .jl part. For example:

```
ln -fs /path/to/PWDFT.jl $HOME/.julia/dev/PWDFT
```

(Alternative) Install PWDFT.jl as local package. Firstly, get into Pkg's REPL mode by tapping], and activate a independent environment 'activate .'

Install the PWDFT.jl package in this environment:

```
(PWDFT) pkg> develop <path/to/PWDFT.jl>
```

To make sure that the package is installed correctly, you can load the package and verify that there are no error messages during precompilation step. You can do this by typing the following in the Julia console.

```
using PWDFT
```

Change directory to examples/Si_fcc and run the following in the terminal.

```
julia run.jl
```

The above command will calculate total energy of hydrogen atom by SCF method.

The script will calculate total energy per unit cell of silicon crystal using self-consistent field iteration and direct energy minimization.

Units

PWDFT. jl internally uses Hartree atomic units (energy in Hartree and length in bohr).

A simple work flow

- create an instance of 'Atoms':

```
atoms = Atoms(xyz_file="CH4.xyz", LatVecs=gen_lattice_sc(16.0))
```

- create an instance of 'Hamiltonian':

- solve the Kohn-Sham problem

More examples on creating an instance of Atoms

GaAs crystal (primitive unit cell), using keyword xyz_string_frac:

```
# Atoms
atoms = Atoms( xyz_string_frac=

"""
2

Ga  0.0  0.0  0.0
As  0.25  0.25  0.25
""",
  in_bohr=true,
  LatVecs = gen_lattice_fcc(10.6839444516)
)
```

Hydrazine molecule in extended xyz file

```
atoms = Atoms(ext_xyz_file="N2H4.xyz")
```

with the following N2H4.xyz file (generated using Atomic Simulation Environment) https://wiki.fysik.dtu.dk/ase/):

```
6
Lattice="11.896428 0.0 0.0 0.0 12.185504 0.0 0.0 0.0 11.151965"
    Properties=species:S:1:pos:R:3:Z:I:1 pbc="T T T"
N
                                                            7
       5.94821400
                        6.81171100
                                         5.22639100
N
        5.94821400
                        5.37379300
                                         5.22639100
                                                            7
Н
       6.15929600
                        7.18550400
                                         6.15196500
                                                            1
        5.00000000
                        7.09777800
                                         5.00000000
Н
                                                            1
Н
        5.73713200
                        5.00000000
                                          6.15196500
                                                            1
                         5.08772600
Н
        6.89642800
                                          5.00000000
                                                            1
```

Lattice vectors information is taken from the xyz file.

More examples on creating an instance of Hamiltonian

Using 3x3x3 Monkhorst-Pack kpoint grid (usually used for crystalline systems):

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc, meshk=[3,3,3] )
```

Include 4 extra states:

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc, meshk=[3,3,3], extra_states=4 \hookrightarrow )
```

Using spin-polarized (Nspin=2):

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc, meshk=[3,3,3],
    Nspin=2, extra_states=4 )
```

NOTES: Currently spin-polarized calculations are only supported by specifying calculations with smearing scheme (no fixed magnetization yet), so extra_states should also be specified. Using PBE exchange-correlation functional:

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc, meshk=[3,3,3],
    Nspin=2, extra_states=4, xcfunc="PBE" )
```

Currently, only two XC functional is supported, namely xcfunc="VWN" (default) and xcfunc="PBE". Future developments should support all functionals included in LibXC.

More examples on solving the Kohn-Sham problem

Several solvers are available:

- KS_solve_SCF!: SCF algorithm with density mixing
- KS_solve_SCF_potmix!: SCF algorithm with XC and Hartree potential mixing
- KS_solve_Emin_PCG!: using direct total energy minimization by preconditioned conjugate gradient method (proposed by Prof. Arias, et al.). Only the version which works with systems with band gap is implemented.

Stopping criteria is based on difference in total energy.

The following example will use Emin_PCG. It will stop if the difference in total energy is less than etot_conv_thr and it occurs twice in a row.

```
KS_solve_Emin_PCG!( Ham, etot_conv_thr=1e-6, NiterMax=150 )
```

Using SCF with betamix (mixing parameter) 0.1:

```
KS_solve_SCF!( Ham, betamix=0.1 )
```

Smaller betamix usually will lead to slower convergence but more stable. Larger betamix will give faster convergence but might result in unstable SCF.

Several mixing methods are available in KS_solve_SCF!:

- simple or linear mixing
- linear_adaptive
- anderson
- broyden
- pulay
- ppulay: periodic Pulay mixing
- rpulay: restarted Pulay mixing

For metallic system, we use Fermi smearing scheme for occupation numbers of electrons. This is activated by setting use_smearing=true and specifying a small smearing parameter kT (in Hartree, default kT=0.001).

```
KS_solve_SCF!( Ham, mix_method="rpulay", use_smearing=true, kT=0.001 )
```

Implementation

Π

PART

This document is a work in progress

In this part I will describe my design choices in implementing PWDFT.jl. This design is by no means perfect and it might change in the future to accomodate more complex use cases.

3 Design overview

The design of PWDFT.jl is intended to be rather simple. One constraint that is set to the code is that it should be possible to perform application of Hamiltonian operator to wave function as simple as:

```
Hpsi = Ham*psi # or
Hpsi = op_H(Ham, psi)
```

where psi is, currently, of type Array{ComplexF64,2} ¹. This comes with an important consequences: all other pieces of information about how this operation is done should be present in the type of Ham. ².

In PWDFT.jl, the type of Ham is Hamiltonian. Several important fields of Hamiltonian are instances of the following types (please refer to the source code for more details about this):

- Atoms: contains information about atomic structure: cell vectors, atomic species and atomic coordinates.
- PsPot_GTH: contains information about atomic pseudopotentials.
- Electrons: contains information about electronic states.
- PWGrid: contains information about plane wave basis set.
- Potentials: contains information about local potentials such as local pseudopotential, Hartree and exchange-correlation potential.
- PsPotNL: contains information about nonlocal pseudopotential terms.
- Energies: contains information about components of Kohn-Sham energy.
- SymmetryInfo: contains information about symmetry operations.

4 Atomic structure

The type Atoms contains the following information:

- Number of atoms: Natoms::Int64
- Number of atomic species: Nspecies::Int64
- Atomic coordinates: positions:::Array{Float64,2}
- Unit cell vectors (lattice vectors): LatVecs::Array{Float64,2}

- ¹ This function may be extended take other types other than plain Julia array for more complex case.
- We will also see some quirks related to this design choice later, such as applying Hamiltonian to several k-points or spinpolarized case

Atoms also contains several other fields such as Zvals which will be set according to the pseudopotentials assigned to the instance of Atoms.

```
mutable struct Atoms
  Natoms::Int64
  Nspecies::Int64
  positions::Array{Float64,2}
  atm2species::Array{Int64,1}
  atsymbs::Array{String,1}
  SpeciesSymbols::Array{String,1}
  LatVecs::Array{Float64,2}
  Zvals::Array{Float64,1}
end
```

³ Not all fields of Atoms (or any custom types defined in PWDFT.jl) are listed. The most up to date definition can be consulted in the corresping source code.

Figure 1. Definition of Atoms struct which contains variables needed to describe crystalline of molecular structure.

LatVecs is a 3×3 matrix. The vectors are stored column-wise which is opposite to the PWSCF input convention. Several convenience functions to generate lattice vectors for Bravais lattices are provided in PWDFT.jl. These functions adopt PWSCF definition. Some examples are listed below.

- gen_lattice_sc or gen_lattice_cubic for generating simple cubic lattice vectors.
- gen_lattice_fcc: for fcc structure
- gen_lattice_bcc: for bcc structure
- gen_lattice_hcp: for hcp structure

Please see file gen_lattice.jl for more information.

There are several ways to initialize an instance of Atoms. The following are typical cases.

• From xyz file. We need to supply the path to xyz file as string and set the lattice vectors:

```
atoms = Atoms(xyz_file="file.xyz", LatVecs=gen_lattice_sc(16.0))
```

For crystalline systems, using keyword argument xyz_string_frac is sometimes convenient:

```
atoms = Atoms(xyz_string_frac=
"""

2

Si  0.0  0.0  0.0
Si  0.25  0.25
""", in_bohr=true,
LatVecs=gen_lattice_fcc(10.2631))
```

IMPORTANT We need to be careful to also specify in_bohr keyword to get the correct coordinates in bohr (which is used internally in PWDFT.jl).

• From extended xyz file, the lattice vectors information is included along with several others information, if any, however they are ignored):

```
atoms = Atoms(ext_xyz_file="file.xyz")
```

5 Plane wave basis set, real space grid, and k-points

The type PWGrid wraps various variables related to plane wave basis set. This has two fields of type GVectors and GVectorsW for storing information about G-vectors that are used in potential and wave functions, respectively.

```
struct PWGrid
ecutwfc::Float64
ecutrho::Float64
Ns::Tuple{Int64,Int64,Int64}
LatVecs::Array{Float64,2}
RecVecs::Array{Float64,2}
CellVolume::Float64
gvec::GVectors
gvecw::GVectorsW
planfw
planbw
end
```

Figure 2. Definition of PWGrid. The type annotation of planfw and planbw is omitted because they are too long.

We can define grid points over unit cell as:

$$\mathbf{r} = \frac{i}{N_{s1}} \mathbf{a}_1 + \frac{j}{N_{s2}} \mathbf{a}_2 + \frac{k}{N_{s3}} \mathbf{a}_3$$

where $i = 0, 1, ..., N_{s1} - 1, j = 0, 1, ..., N_{s2} - 1, k = 0, 1, ..., N_{s3} - 1$

```
struct GVectors
   Ng::Int64
   G::Array{Float64,2}
   G2::Array{Float64,1}
   idx_g2r::Array{Int64,1}
   idx_g2shells::Array{Int64,1}
   idx_g2shells::Array{Int64,1}
```

Figure 3. Definition of GVectors.

```
struct GVectorsW

Ngwx::Int64

Ngw::Array{Int64,1}

idx_gw2g::Array{Array{Int64,1},1}

idx_gw2r::Array{Array{Int64,1},1}

kpoints::KPoints

end
```

Figure 4. Definition of GVectorsW.

The G-vectors can be defined as:

$$G = n_1 \mathbf{b}_1 + n_2 \mathbf{b}_2 + n_3 \mathbf{b}_3 \tag{5.1}$$

where n_1 , n_2 , n_3 are integer numbers and \mathbf{b}_1 , \mathbf{b}_2 , \mathbf{b}_3 are three vectors describing unit cell of reciprocal lattice or *unit reciprocal lattice vectors*. They satisfy the following relations:

$$\mathbf{a}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\Omega}$$
$$\mathbf{a}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\Omega}$$
$$\mathbf{a}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\Omega}$$

A periodic function

$$f(\mathbf{r}) = f(\mathbf{r} + \mathbf{L}), \ \mathbf{L} = n_1 a_1 + n_2 a_2 + n_3 a_3$$
 (5.2)

can be expanded using plane wave basis basis functions as:

$$f(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{G} C_{G} \exp(i\mathbf{G} \cdot \mathbf{r})$$
 (5.3)

where C_G are expansion coefficients. This sum is usually truncated at a certain maximum value of G-vector, G_{max} .

Kohn-Sham wave function:

$$\psi_{i,\mathbf{k}}(\mathbf{r}) = u_{i,\mathbf{k}}(\mathbf{r}) \exp\left[i\mathbf{k} \cdot \mathbf{r}\right] \tag{5.4}$$

where $u_{i,k}(\mathbf{r}) = u_{i,k}(\mathbf{r} + \mathbf{L})$

Using plane wave expansion:

$$u_{i,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{\mathbf{G}} C_{i,\mathbf{k},\mathbf{G}} \exp(i\mathbf{G} \cdot \mathbf{r}), \tag{5.5}$$

we have:

$$\psi_{i,\mathbf{k}}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{G} C_{i,G+\mathbf{k}} \exp\left[i(G+\mathbf{k}) \cdot \mathbf{r}\right]$$
(5.6)

With this expression we can expand electronic density in plane wave basis:

$$\begin{split} \rho(\mathbf{r}) &= \sum_{i} \int f_{i,\mathbf{k}} \psi_{i,\mathbf{k}}^{*}(\mathbf{r}) \psi_{i,\mathbf{k}}(\mathbf{r}) \, \mathrm{d}\mathbf{k} \\ &= \frac{1}{\Omega} \sum_{i} \int f_{i,\mathbf{k}} \left(\sum_{\mathbf{G}'} C_{i,\mathbf{G}'+\mathbf{k}} \exp\left[-\mathrm{i}(\mathbf{G}'+\mathbf{k}) \cdot \mathbf{r}\right] \right) \left(\sum_{\mathbf{G}} C_{i,\mathbf{G}+\mathbf{k}} \exp\left[\mathrm{i}(\mathbf{G}+\mathbf{k}) \cdot \mathbf{r}\right] \right) \, \mathrm{d}\mathbf{k} \\ &= \frac{1}{\Omega} \sum_{i} \int f_{i,\mathbf{k}} \sum_{\mathbf{G}} \sum_{\mathbf{G}'} C_{i,\mathbf{G}+\mathbf{k}} C_{i,\mathbf{G}'+\mathbf{k}} \exp\left[\mathrm{i}(\mathbf{G}-\mathbf{G}') \cdot \mathbf{r}\right] \, \mathrm{d}\mathbf{k} \\ &= \frac{1}{\Omega} \sum_{\mathbf{G}''} C_{\mathbf{G}''} \exp\left[\mathrm{i}\mathbf{G}'' \cdot \mathbf{r}\right] \, \mathrm{d}\mathbf{k} \end{split}$$

The sum over G'' extends twice the range over the range needed by the wave function expansion

For wave function expansion we use plane wave expansion over G vectors defined by:

$$\frac{1}{2}\left|\mathbf{G} + \mathbf{k}\right|^2 \le E_{\text{cut}} \tag{5.7}$$

where E_{cut} is a given cutoff energy which corresponds to ecutwfc field of PWGrid. For electronic density (and potentials) we have:

$$\frac{1}{2}G^2 \le 4E_{\text{cut}} \tag{5.8}$$

The value of $4E_{\rm cut}$ corresponds to ecutrho field of of PWGrid.

In the implementation, we first generate a set of G-vectors which satisfies Equation (5.8) and derives several subsets from it which satisfy Equation (5.7) for a given k-points.

An instance of PWGrid can be initialized by using its constructor which has the following signature:

```
function PWGrid( ecutwfc::Float64, LatVecs::Array{Float64,2};
   kpoints=nothing, Ns_=(0,0,0))
```

There are two mandatory arguments: ecutwfc and LatVecs. ecutwf is cutoff energy for kinetic energy (in Hartree) and LatVecs is usually correspond to the one used in an instance of Atoms. Structure factor for atomic species I_s is calculated as

$$S_f(\mathbf{G}, I_s) = \sum_{I} \exp\left[\mathbf{G} \cdot \mathbf{R}_{I_s}\right]$$
 (5.9)

where the summation is done over all atoms of species I_s .

Fast Fourier transforms are used to change the representation of a quantity from real space to reciprocal space and *vice versa*. They are:

- R_to_G
- G_to_R

and also their inplace counterparts (R_to_G! and G_to_R!). operators op nabla op nabla 2

The KPoints struct stores variables related to k-points list.

```
struct KPoints
   Nkpt::Int64
   mesh::Tuple{Int64,Int64,Int64}
   k::Array{Float64,2}
   wk::Array{Float64,1}
   RecVecs::Array{Float64,2}
end
```

Figure 5. Definition of KPoints.

For a total energy calculation, the list of k-points is generated using Monkhorst-Pack scheme.

6 Electronic states

```
mutable struct Electrons
Nelectrons::Float64
Nstates::Int64
Nstates_occ::Int64
Focc::Array{Float64,2}
ebands::Array{Float64,2}
Nspin::Int64
end
```

Figure 6. Definition of Electrons.

7 Potentials and energies

Total energy per unit cell system $E_{\rm total}^{\rm KS}$ can be written as

$$E_{\text{total}}^{\text{KS}} = E_{\text{kin}} + E_{\text{ele-nuc}} + E_{\text{Ha}} + E_{\text{xc}} + E_{\text{nuc-nuc}}$$

$$(7.1)$$

Kohn-Sham equations:

$$H_{KS}\psi_{ik}(\mathbf{r}) = \epsilon_{ik}\psi_{ik}(\mathbf{r}) \tag{7.2}$$

```
mutable struct Potentials
Ps_loc::Array{Float64,1}
Hartree::Array{Float64,1}
XC::Array{Float64,2}
Total::Array{Float64,2}
end
```

Figure 7. Definition of Potentials.

mutable struct Energies Kinetic::Float64 Ps_loc::Float64 Ps_nloc::Float64 Hartree::Float64 XC::Float64 NN::Float64 PspCore::Float64 end

Figure 8. Definition of Energies.

7.1 Electron density

Electron density $\rho(\mathbf{r})$ is calculated as:

$$\rho(\mathbf{r}) = \sum_{i=1}^{N_{\text{occ}}} f_i \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r})$$
(7.3)

Function: calc_rhoe! and calc_rhoe.

7.2 Kinetic energy

Kinetic energy:

$$E_{\rm kin} = -\frac{1}{2} \sum_{\mathbf{k}} \sum_{i} w_{\mathbf{k}} f_{i\mathbf{k}} \int_{\Omega} \psi_{i\mathbf{k}}^{*}(\mathbf{r}) \nabla^{2} \psi_{i\mathbf{k}}(\mathbf{r}) \, d\mathbf{r}$$
(7.4)

In reciprocal space:

$$E_{\rm kin} = \frac{1}{2} \sum_{\mathbf{k}} \sum_{i=1}^{N_{\rm occ}} w_{\mathbf{k}} f_{i\mathbf{k}} \sum_{\mathbf{G}} |\mathbf{G} + \mathbf{k}|^2 |c_{i,\mathbf{G}+\mathbf{k}}|^2$$
(7.5)

7.3 Local and nonlocal pseudopotential energy

The local pseudopotential contribution is

$$E_{\text{loc}}^{\text{PS}} = \int_{\Omega} \rho(\mathbf{r}) V_{\text{loc}}^{\text{PS}}(\mathbf{r}) d\mathbf{r}$$
 (7.6)

and the non-local contribution is

$$E_{\text{nloc}}^{\text{PS}} = \sum_{\mathbf{k}} \sum_{i} w_{\mathbf{k}} f_{i\mathbf{k}} \int_{\Omega} \psi_{i\mathbf{k}}^{*}(\mathbf{r}) \left[\sum_{I} \sum_{l=0}^{l_{\text{max}}} V_{l}^{\text{PS}}(\mathbf{r} - \mathbf{R}_{I}, \mathbf{r}' - \mathbf{R}_{I}) \right] \psi_{i\mathbf{k}}(\mathbf{r}) d\mathbf{r}.$$
(7.7)

7.4 Hartree energy

$$E_{\text{Ha}} = \frac{1}{2} \int_{\Omega} V_{\text{Ha}}(\mathbf{r}) \rho(\mathbf{r}) \, d\mathbf{r}$$
 (7.8)

where the Hartree potential $V_{\rm Ha}$ is defined as

$$V_{\text{Ha}}(\mathbf{r}) = \int_{\Omega} \frac{\rho(\mathbf{r}')}{\mathbf{r} - \mathbf{r}'} d\mathbf{r}'$$
(7.9)

Alternatively, V_{Ha} can be calculated as the solution of Poisson equation

$$\nabla^2 V_{\text{Ha}}(\mathbf{r}) = -4\pi \rho(\mathbf{r}) \tag{7.10}$$

7.5 XC energy and potential

PWDFT.jl uses Libxc.jl[1], a Julia wrapper to Libxc[2, 3], to calculate exchange correlation energy and potentials.

For LDA we have:

$$E_{\rm xc}\left[\rho_{\sigma}\right] = \int \epsilon_{\rm xc}^{\rm HEG}\left[\rho_{\sigma}(\mathbf{r})\right] \rho_{\rm tot}(\mathbf{r}) \,\mathrm{d}\mathbf{r} \tag{7.11}$$

$$= \int \left\{ \epsilon_{\mathbf{x}}^{\text{HEG}} \left[\rho_{\sigma}(\mathbf{r}) \right] + \epsilon_{\mathbf{c}}^{\text{HEG}} \left[\rho_{\sigma}(\mathbf{r}) \right] \right\} \rho(\mathbf{r}) \, d\mathbf{r}$$
 (7.12)

$$\delta E_{\rm xc} \left[\rho_{\sigma} \right] = \sum_{\sigma} \int \left(\epsilon_{\rm xc}^{\rm HEG} + \rho_{\rm tot} \frac{\partial}{\partial \rho_{\sigma}} \epsilon_{\rm xc}^{\rm HEG} \right) \, d\mathbf{r} \, \delta \rho_{\sigma} \tag{7.13}$$

7.5.1 Calculation of E_{xc} in PWDFT.jl using Libxc

Note:

For VWN functional (should be applicable to other LDA functionals), we have the following for non-spin-polarized case:

```
function calc_epsxc_VWN( Rhoe::Array{Float64,1} )
 Npoints = size(Rhoe)[1]
 Nspin = 1
 eps_x = zeros(Float64, Npoints)
 eps_c = zeros(Float64, Npoints)
 ptr = Libxc.xc_func_alloc()
 # exchange part
 Libxc.xc_func_init(ptr, Libxc.LDA_X, Nspin)
 Libxc.xc_lda_exc!(ptr, Npoints, Rhoe, eps_x)
 Libxc.xc_func_end(ptr)
 # correlation part
 Libxc.xc_func_init(ptr, Libxc.LDA_C_VWN, Nspin)
 Libxc.xc_lda_exc!(ptr, Npoints, Rhoe, eps_c)
 Libxc.xc_func_end(ptr)
 Libxc.xc_func_free(ptr)
  return eps_x + eps_c
end
```

```
function calc_epsxc_VWN( Rhoe::Array{Float64,2} )
  Nspin = size(Rhoe)[2]
  Npoints = size(Rhoe)[1]
  if Nspin == 1
    return calc_epsxc_VWN( Rhoe[:,1] )
  end

# Do the transpose manually
  Rhoe_tmp = zeros(2*Npoints)
  ipp = 0
  for ip = 1:2:2*Npoints
    ipp = ipp + 1
```

```
Rhoe_tmp[ip] = Rhoe[ipp,1]
Rhoe_tmp[ip+1] = Rhoe[ipp,2]
end

# ...
# The rest of the code are similar to non-spin polarized case,
# however now we use `Nspin=2` and pass `Rhoe_tmp` instead of `Rhoe` end
```

For PBE or any gradient-corrected functionals:

```
function calc_epsxc_PBE( pw::PWGrid, Rhoe::Array{Float64,1} )
 Npoints = size(Rhoe)[1]
 Nspin = 1
 # calculate gRhoe2
 gRhoe = op_nabla( pw, Rhoe )
 gRhoe2 = zeros( Float64, Npoints )
 for ip = 1:Npoints
   gRhoe2[ip] = dot( gRhoe[:,ip], gRhoe[:,ip] )
 end
 eps_x = zeros(Float64, Npoints)
 eps_c = zeros(Float64, Npoints)
 ptr = Libxc.xc_func_alloc()
 # exchange part
 Libxc.xc_func_init(ptr, Libxc.GGA_X_PBE, Nspin)
 Libxc.xc_gga_exc!(ptr, Npoints, Rhoe, gRhoe2, eps_x)
 Libxc.xc_func_end(ptr)
 # correlation part
 Libxc.xc_func_init(ptr, Libxc.GGA_C_PBE, Nspin)
 Libxc.xc_gga_exc!(ptr, Npoints, Rhoe, gRhoe2, eps_c)
 Libxc.xc_func_end(ptr)
 Libxc.xc_func_free(ptr)
 return eps_x + eps_c
```

For PBE spin-polarized case

```
function calc_epsxc_PBE( pw::PWGrid, Rhoe::Array{Float64,2} )
   Nspin = size(Rhoe)[2]
   if Nspin == 1
        return calc_epsxc_PBE( pw, Rhoe[:,1] )
   end

Npoints = size(Rhoe)[1]

# calculate gRhoe2
gRhoe_up = op_nabla( pw, Rhoe[:,1] )
gRhoe_dn = op_nabla( pw, Rhoe[:,2] )
gRhoe2 = zeros( Float64, 3*Npoints )
   ipp = 0
   for ip = 1:3:3*Npoints
        ipp = ipp + 1
        gRhoe2[ip] = dot( gRhoe_up[:,ipp], gRhoe_up[:,ipp] )
        gRhoe2[ip+1] = dot( gRhoe_up[:,ipp], gRhoe_dn[:,ipp] )
        gRhoe2[ip+2] = dot( gRhoe_dn[:,ipp], gRhoe_dn[:,ipp] )
end
```

```
Rhoe_tmp = zeros(2*Npoints)
ipp = 0
for ip = 1:2:2*Npoints
  ipp = ipp + 1
  Rhoe_tmp[ip] = Rhoe[ipp,1]
  Rhoe_tmp[ip+1] = Rhoe[ipp,2]
end

# ....
# The rest of the code are similar to non-spin polarized case,
# however now we use `Nspin=2` and pass `Rhoe_tmp` instead of `Rhoe` end
```

7.5.2 Calculation of V_{xc} in PWDFT.jl using Libxc

VWN non-spin polarized:

```
function calc_Vxc_VWN( Rhoe::Array{Float64,1} )
  Npoints = size(Rhoe)[1]
  Nspin = 1
  v_x = zeros(Float64, Npoints)
  v_c = zeros(Float64, Npoints)
  ptr = Libxc.xc_func_alloc()
  # exchange part
  Libxc.xc_func_init(ptr, Libxc.LDA_X, Nspin)
  Libxc.xc_lda_vxc!(ptr, Npoints, Rhoe, v_x)
  Libxc.xc_func_end(ptr)
  # correlation part
  Libxc.xc_func_init(ptr, Libxc.LDA_C_VWN, Nspin)
  Libxc.xc_lda_vxc!(ptr, Npoints, Rhoe, v_c)
  Libxc.xc_func_end(ptr)
  Libxc.xc_func_free(ptr)
  return v_x + v_c
end
```

VWN spin-polarized:

```
function calc_Vxc_VWN( Rhoe::Array{Float64,2} )
 Nspin = size(Rhoe)[2]
 if Nspin == 1
   return calc_Vxc_VWN( Rhoe[:,1] )
 Npoints = size(Rhoe)[1]
 Vxc = zeros( Float64, Npoints, 2 )
 V_x = zeros( Float64, 2*Npoints )
 V_c = zeros( Float64, 2*Npoints )
 # This is the transposed version of Rhoe, use copy
 Rhoe_tmp = zeros(2*Npoints)
 ipp = 0
 for ip = 1:2:2*Npoints
   ipp = ipp + 1
   Rhoe_tmp[ip] = Rhoe[ipp,1]
   Rhoe_tmp[ip+1] = Rhoe[ipp,2]
 end
 ptr = Libxc.xc_func_alloc()
```

```
# exchange part
 Libxc.xc_func_init(ptr, Libxc.LDA_X, Nspin)
 Libxc.xc_lda_vxc!(ptr, Npoints, Rhoe_tmp, V_x)
 Libxc.xc_func_end(ptr)
 # correlation part
 Libxc.xc_func_init(ptr, Libxc.LDA_C_VWN, Nspin)
 Libxc.xc_lda_vxc!(ptr, Npoints, Rhoe_tmp, V_c)
 Libxc.xc_func_end(ptr)
 Libxc.xc_func_free(ptr)
 ipp = 0
  for ip = 1:2:2*Npoints
   ipp = ipp + 1
   Vxc[ipp,1] = V_x[ip] + V_c[ip]
   Vxc[ipp,2] = V_x[ip+1] + V_c[ip+1]
 return Vxc
end
```

PBE non-spin-polarized:

```
function calc_Vxc_PBE( pw::PWGrid, Rhoe::Array{Float64,1} )
 Npoints = size(Rhoe)[1]
 Nspin = 1
 # calculate gRhoe2
 gRhoe = op_nabla( pw, Rhoe )
 gRhoe2 = zeros( Float64, Npoints )
  for ip = 1:Npoints
   gRhoe2[ip] = dot( gRhoe[:,ip], gRhoe[:,ip] )
 end
 V_x = zeros(Float64, Npoints)
 V_c = zeros(Float64, Npoints)
 V_xc = zeros(Float64, Npoints)
 Vg_x = zeros(Float64, Npoints)
 Vg_c = zeros(Float64, Npoints)
 Vg_xc = zeros(Float64, Npoints)
 ptr = Libxc.xc_func_alloc()
 # exchange part
 Libxc.xc_func_init(ptr, Libxc.GGA_X_PBE, Nspin)
 Libxc.xc_gga_vxc!(ptr, Npoints, Rhoe, gRhoe2, V_x, Vg_x)
 Libxc.xc_func_end(ptr)
 # correlation part
 Libxc.xc_func_init(ptr, Libxc.GGA_C_PBE, Nspin)
 Libxc.xc_gga_vxc!(ptr, Npoints, Rhoe, gRhoe2, V_c, Vg_c)
 Libxc.xc_func_end(ptr)
 V_xc = V_x + V_c
 Vg_xc = Vg_x + Vg_c
 # gradient correction
 h = zeros(Float64,3,Npoints)
 divh = zeros(Float64, Npoints)
  for ip = 1:Npoints
    h[1,ip] = Vg\_xc[ip] * gRhoe[1,ip]
    h[2,ip] = Vg\_xc[ip] * gRhoe[2,ip]
```

```
h[3,ip] = Vg_xc[ip] * gRhoe[3,ip]
end
# div ( vgrho * gRhoe )
divh = op_nabla_dot( pw, h )
for ip = 1:Npoints
    V_xc[ip] = V_xc[ip] - 2.0*divh[ip]
end

return V_xc
end
```

PBE spin-polarized:

```
function calc_Vxc_PBE( pw::PWGrid, Rhoe::Array{Float64,2} )
 Nspin = size(Rhoe)[2]
 if Nspin == 1
   return calc_Vxc_PBE( pw, Rhoe[:,1] )
 Npoints = size(Rhoe)[1]
 # calculate gRhoe2
 gRhoe_up = op_nabla( pw, Rhoe[:,1] ) # gRhoe = \nabla \cdotRhoe
 gRhoe_dn = op_nabla( pw, Rhoe[:,2] )
 gRhoe2 = zeros( Float64, 3*Npoints )
 ipp = 0
 for ip = 1:3:3*Npoints
   ipp = ipp + 1
   gRhoe2[ip]
               = dot( gRhoe_up[:,ipp], gRhoe_up[:,ipp] )
   gRhoe2[ip+1] = dot( gRhoe_up[:,ipp], gRhoe_dn[:,ipp] )
   gRhoe2[ip+2] = dot( gRhoe_dn[:,ipp], gRhoe_dn[:,ipp] )
 V_xc = zeros(Float64, Npoints, 2)
 V_x = zeros(Float64, Npoints*2)
 V_c = zeros(Float64, Npoints*2)
 Vg_xc = zeros(Float64, 3, Npoints)
 Vg_x = zeros(Float64, 3*Npoints)
 Vg_c = zeros(Float64, 3*Npoints)
 Rhoe_tmp = zeros(2*Npoints)
 ipp = 0
  for ip = 1:2:2*Npoints
   ipp = ipp + 1
   Rhoe_tmp[ip] = Rhoe[ipp,1]
   Rhoe_tmp[ip+1] = Rhoe[ipp,2]
 end
 ptr = Libxc.xc_func_alloc()
 # exchange part
 Libxc.xc_func_init(ptr, Libxc.GGA_X_PBE, Nspin)
 Libxc.xc_gga_vxc!(ptr, Npoints, Rhoe_tmp, gRhoe2, V_x, Vg_x)
 Libxc.xc_func_end(ptr)
 # correlation part
 Libxc.xc_func_init(ptr, Libxc.GGA_C_PBE, Nspin)
 Libxc.xc_gga_vxc!(ptr, Npoints, Rhoe_tmp, gRhoe2, V_c, Vg_c)
 Libxc.xc_func_end(ptr)
 ipp = 0
 for ip = 1:2:2*Npoints
   ipp = ipp + 1
```

```
V_xc[ipp,1] = V_x[ip] + V_c[ip]
    V_xc[ipp,2] = V_x[ip+1] + V_c[ip+1]
 Vg_xc = reshape(Vg_x + Vg_c, (3,Npoints))
 h = zeros(Float64,3,Npoints)
 divh = zeros(Float64, Npoints)
  # spin up
  for ip = 1:Npoints
    h[1,ip] = 2*Vg_xc[1,ip]*gRhoe_up[1,ip] + Vg_xc[2,ip]*gRhoe_dn[1,ip]
    h[2,ip] = 2*Vg_xc[1,ip]*gRhoe_up[2,ip] + Vg_xc[2,ip]*gRhoe_dn[2,ip]
    h[3,ip] = 2*Vg_xc[1,ip]*gRhoe_up[3,ip] + Vg_xc[2,ip]*gRhoe_dn[3,ip]
 divh = op_nabla_dot( pw, h )
  for ip = 1:Npoints
   V_xc[ip,1] = V_xc[ip,1] - divh[ip]
 # Spin down
  for ip = 1:Npoints
    h[1,ip] = 2*Vg_xc[3,ip]*gRhoe_dn[1,ip] + Vg_xc[2,ip]*gRhoe_up[1,ip]
    h[2,ip] = 2*Vg_xc[3,ip]*gRhoe_dn[2,ip] + Vg_xc[2,ip]*gRhoe_up[2,ip]
    h[3,ip] = 2*Vg_xc[3,ip]*gRhoe_dn[3,ip] + Vg_xc[2,ip]*gRhoe_up[3,ip]
 divh = op_nabla_dot( pw, h )
  for ip = 1:Npoints
   V_xc[ip,2] = V_xc[ip,2] - divh[ip]
  return V_xc
end
```

8 Pseudopotentials

Currently, PWDFT.jl supports a subset of GTH (Goedecker-Teter-Hutter) pseudopotentials. This type of pseudopotential is analytic and thus is somewhat easier to program. PWDFT.jl distribution contains several parameters of GTH pseudopotentials for LDA and GGA functionals.

These pseudopotentials can be written in terms of local $V_{\mathrm{loc}}^{\mathrm{PS}}$ and angular momentum l dependent nonlocal components $\Delta V_{l}^{\mathrm{PS}}$:

$$V_{\text{ene-nuc}}(\mathbf{r}) = \sum_{I} \left[V_{\text{loc}}^{\text{PS}}(\mathbf{r} - \mathbf{R}_I) + \sum_{I=0}^{l_{\text{max}}} V_I^{\text{PS}}(\mathbf{r} - \mathbf{R}_I, \mathbf{r}' - \mathbf{R}_I) \right]$$
(8.1)

```
struct PsPot_GTH

pspfile::String
atsymb::String
zval::Int64
rlocal::Float64,1}
c::Array{Float64,1}
h::Array{Float64,3}
lmax::Int64
Nproj_l::Array{Int64,1}
end
```

Figure 9. Definition of PsPot_GTH.

8.1 Local pseudopotential

The local pseudopotential for *I*-th atom, $V_{\text{loc}}^{\text{PS}}(\mathbf{r} - \mathbf{R}_I)$, is radially symmetric function with the following radial form

$$V_{\text{loc}}^{\text{PS}}(r) = -\frac{Z_{\text{val}}}{r} \operatorname{erf} \left[\frac{\bar{r}}{\sqrt{2}} \right] + \exp \left[-\frac{1}{2} \bar{r}^2 \right] \left(C_1 + C_2 \bar{r}^2 + C_3 \bar{r}^4 + C_4 \bar{r}^6 \right)$$
(8.2)

with $\bar{r} = r/r_{\rm loc}$ and $r_{\rm loc}$, $Z_{\rm val}$, C_1 , C_2 , C_3 and C_4 are the corresponding pseudopotential parameters. In G-space, the GTH local pseudopotential can be written as

$$V_{\text{loc}}^{\text{PS}}(G) = -\frac{4\pi}{\Omega} \frac{Z_{\text{val}}}{G^2} \exp\left[-\frac{x^2}{2}\right] + \sqrt{8\pi^3} \frac{r_{\text{loc}}^3}{\Omega} \exp\left[-\frac{x^2}{2}\right] \times \left(C_1 + C_2(3 - x^2) + C_3(15 - 10x^2 + x^4) + C_4(105 - 105x^2 + 21x^4 - x^6)\right)$$
(8.3)

where $x = Gr_{loc}$.

8.2 Nonlocal pseudopotential

Figure 10. Definition of PsPotNL.

The nonlocal component of GTH pseudopotential can written in real space as

$$V_l^{\text{PS}}(\mathbf{r} - \mathbf{R}_I, \mathbf{r}' - \mathbf{R}_I) = \sum_{\mu=1}^{N_I} \sum_{\nu=1}^{N_I} \sum_{m=-l}^{l} \beta_{\mu l m}(\mathbf{r} - \mathbf{R}_I) h_{\mu\nu}^l \, \beta_{\nu l m}^*(\mathbf{r}' - \mathbf{R}_I)$$
(8.4)

where $\beta_{\mu lm}(\mathbf{r})$ are atomic-centered projector functions

$$\beta_{\mu lm}(\mathbf{r}) = p_{\mu}^{l}(r)Y_{lm}(\hat{\mathbf{r}}) \tag{8.5}$$

and $h_{\mu\nu}^l$ are the pseudopotential parameters and Y_{lm} are the spherical harmonics. Number of projectors per angular momentum N_l may take value up to 3 projectors. In G-space, the nonlocal part of GTH pseudopotential can be described by the following equation.

$$V_l^{\rm PS}(\mathbf{G}, \mathbf{G}') = (-1)^l \sum_{\mu}^3 \sum_{\nu}^3 \sum_{m=-l}^l \beta_{\mu l m}(\mathbf{G}) h_{\mu \nu}^l \beta_{\nu l m}^*(\mathbf{G}')$$
(8.6)

with the projector functions

$$\beta_{ulm}(\mathbf{G}) = p_u^l(G)Y_{lm}(\hat{\mathbf{G}}) \tag{8.7}$$

The radial part of projector functions take the following form

$$p_{\mu}^{l}(G) = q_{\mu}^{l}(Gr_{l}) \frac{\pi^{5/4}G^{l}\sqrt{r_{l}^{2l+3}}}{\sqrt{\Omega}} \exp\left[-\frac{1}{2}G^{2}r_{l}^{2}\right]$$
(8.8)

For l = 0, we consider up to $N_l = 3$ projectors:

$$q_1^0(x) = 4\sqrt{2} (8.9)$$

$$q_2^0(x) = 8\sqrt{\frac{2}{15}}(3 - x^2) \tag{8.10}$$

$$q_3^0(x) = \frac{16}{3} \sqrt{\frac{2}{105}} (15 - 20x^2 + 4x^4)$$
 (8.11)

For l = 1, we consider up to $N_l = 3$ projectors:

$$q_1^1(x) = 8\sqrt{\frac{1}{3}} \tag{8.12}$$

$$q_2^1(x) = 16\sqrt{\frac{1}{105}}(5 - x^2) \tag{8.13}$$

$$q_3^1(x) = 8\sqrt{\frac{1}{1155}}(35 - 28x^2 + 4x^4)$$
(8.14)

For l = 2, we consider up to $N_l = 2$ projectors:

$$q_1^2(x) = 8\sqrt{\frac{2}{15}} \tag{8.15}$$

$$q_2^2(x) = \frac{16}{3} \sqrt{\frac{2}{105}} (7 - x^2) \tag{8.16}$$

For l = 3, we only consider up to $N_l = 1$ projector:

$$q_1^3(x) = 16\sqrt{\frac{1}{105}}\tag{8.17}$$

In the present implementation, we construct the local and nonlocal components of pseudopotential in the G-space using their Fourier-transformed expressions and transformed them back to real space if needed. We refer the readers to the original reference [4] and the book [5] for more information about GTH pseudopotentials.

Due to the separation of local and non-local components of electrons-nuclei interaction, the electron-nuclei interaction energy can be written as

$$E_{\text{ele-nuc}} = E_{\text{loc}}^{\text{PS}} + E_{\text{nloc}}^{\text{PS}} \tag{8.18}$$

The local pseudopotential contribution is

$$E_{\text{loc}}^{\text{PS}} = \int_{\mathcal{O}} \rho(\mathbf{r}) V_{\text{loc}}^{\text{PS}}(\mathbf{r}) d\mathbf{r}$$
(8.19)

and the non-local contribution is

$$E_{\text{nloc}}^{\text{PS}} = \sum_{\mathbf{k}} \sum_{i} w_{\mathbf{k}} f_{i\mathbf{k}} \int_{\Omega} \psi_{i\mathbf{k}}^{*}(\mathbf{r}) \left[\sum_{I} \sum_{l=0}^{l_{\text{max}}} V_{l}^{\text{PS}}(\mathbf{r} - \mathbf{R}_{I}, \mathbf{r}' - \mathbf{R}_{I}) \right] \psi_{i\mathbf{k}}(\mathbf{r}) \, d\mathbf{r}.$$
(8.20)

9 Hamiltonian operators

```
mutable struct Hamiltonian
pw::PWGrid
potentials::Potentials
energies::Energies
rhoe::Array{Float64,2}
electrons::Electrons
atoms::Atoms
sym_info::SymmetryInfo
rhoe_symmetrizer::RhoeSymmetrizer
pspots::Array{PsPot_GTH,1}
pspotNL::PsPotNL
xcfunc::String
ik::Int64
ispin::Int64
end
```

Figure 11. Definition of Hamiltonian.

Operators:

- op_H
- op_K
- op_V_loc
- op_V_Ps_loc
- op_V_Ps_nloc

9.1 Iterative diagonalization of Hamiltonian

- diag_LOBPCG
- diag_davidson
- diag_Emin_PCG

10 Self-consistent field

Density vs potential mix

KS_solve_SCF

KS_solve_SCF_potmix

In the mean time, they are separated. They might be combined into one function in the future development.

Mixing algorithms:

- · Simple or linear mixing
- · Adaptive linear mixing
- · Anderson mixing
- · Broyden mixing
- · Pulay mixing
- · Restarted Pulay mixing
- · Periodic Pulay mixing

11 Direct minimization

KS_solve_Emin_PCG

12 Calculation of atomic forces

These notes are adapted from Kohanoff2006.

The forces on the nuclei of atomic species s are given by

$$\mathbf{F}_{I}^{s} = -\frac{\partial E_{\mathrm{KS}}}{\partial \mathbf{R}_{I}^{s}} \tag{12.1}$$

Specifically:

$$\mathbf{F}_{I}^{s} = \int \rho(\mathbf{r}) \left(V_{s}^{\text{Ps,loc}} \right)' (|\mathbf{r} - \mathbf{R}_{I}|) \frac{\mathbf{r} - \mathbf{R}_{I}}{|\mathbf{r} - \mathbf{R}_{I}|} d\mathbf{r} + \frac{Z_{I}}{2} \sum_{I \neq I} Z_{J} \frac{\mathbf{R}_{I} - \mathbf{R}_{J}}{|\mathbf{R}_{I} - \mathbf{R}_{I}|^{3}} + \mathbf{F}_{s,I}^{\text{Ps,nloc}}$$
(12.2)

 $\left(V_s^{\mathrm{Ps,loc}}\right)'$ is the derivative of the local part of the pseudopotential

 $\mathbf{F}_{Ps,nloc}^{s}$: nonlocal pseudopotential contribution to the force

Using plane wave basis set.

Nuclear-nuclear contribution:

$$F_{s,I}^{NN} = \frac{Z_I}{2} \sum_{J \neq I}^{P} Z_J \sum_{L=-L_{\text{max}}}^{L_{\text{max}}} \left(\mathbf{R}_I + l - \mathbf{R}_J \right) \times \left[\frac{\text{erfc} \left(\left| \mathbf{R}_I + l - \mathbf{R}_J \right| \eta \right)}{\left| \mathbf{R}_I + l - \mathbf{R}_J \right|^3} + \frac{\eta e^{-\eta^2} \left| \mathbf{R}_I + l - \mathbf{R}_J \right|^2}{\left| \mathbf{R}_I + l - \mathbf{R}_J \right|} \right]$$
(12.3)

Local pseudopotential contribution:

$$F_{s,I}^{\text{Ps,loc}} = \Omega \sum_{G \neq 0} iG \, e^{G \cdot R_I} V_s^{\text{Ps,loc}}(G) \rho(G)$$
(12.4)

Nonlocal pseudopotential contribution:

$$F_{s,I}^{\text{Ps,nloc}} = 2\text{Re}\left\{\sum_{\mathbf{k}} \omega_{\mathbf{k}} \sum_{lm} \sum_{i=1}^{N_{\mathbf{k}}} f_{i}^{(\mathbf{k})} \alpha_{lm}^{s} F_{I,i}^{lm,s*} D_{I,i}^{lm,s*} \right\}$$
(12.5)

where

$$D_{I,i}^{lm,s*} = \sum_{\mathbf{G}} i\mathbf{G}e^{i\mathbf{G}\cdot\mathbf{R}_I} f_{lm}^s(\mathbf{G} + \mathbf{k}) C_{i\mathbf{k}}(\mathbf{G})$$
(12.6)

PART

Other things

A Howtos

This part contains miscellaneous info.

TODO: Some of the should be moved into main text.

A.1 Referring or including files in sandbox (or other dirs in PWDFT.jl)

```
using PWDFT
const DIR_PWDFT = joinpath(dirname(pathof(PWDFT)),"..")
const DIR_PSP = joinpath(DIR_PWDFT,"pseudopotentials","pade_gth")
const DIR_STRUCTURES = joinpath(DIR_PWDFT, "structures")

pspfiles = [joinpath(DIR_PSP,"Ag-q11.gth")]
```

A.2 Using Babel to generate xyz file from SMILES

```
babel file.smi file.sdf
babel file.sdf file.xyz
```

Use babel -h to autogenerate hydrogens.

A.3 Setting up pseudopotentials

One can use the function get_default_psp(::Atoms) to get default pseudopotentials set for a given instance of Atoms.

Currently, it is not part of main PWDFT.jl package. It is located under sandbox subdirectory of PWDFT.jl distribution.

```
using PWDFT

DIR_PWDFT = jointpath(dirname(pathof(PWDFT)),"..")
include(jointpath(DIRPWDFT,"sandbox","get_default_psp.jl"))

atoms = Atoms(ext_xyz_file="atoms.xyz")
pspfiles = get_default_psp(atoms)
```

Alternatively, one can set pspfiles manually because it is simply an array of String:

```
pspfiles = ["Al-q3.gth", "O-q6.gth"]
```

IMPORTANT Be careful to set the order of species to be same as atoms. SpeciesSymbols. For example, if

```
atoms.SpeciesSymbols = ["Al", "O", "H"]
```

then

```
pspfiles = ["Al-q3.gth", "0-q6.gth", "H-q1.gth"]
```

A.4 Initializing Hamiltonian

For molecular systems:

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc )
```

For insulator and semiconductor solids:

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc, meshk=[3,3,3] )
```

For metallic systems:

```
Ham = Hamiltonian( atoms, pspfiles, ecutwfc, meshk=[3,3,3], extra_states=4 \hookrightarrow )
```

Empty extra states can be specified by using extra_states keyword.

For spin-polarized systems, Nspin keyword can be used.

A.5 Iterative diagonalization of Hamiltonian

A.6 Calculating electron density

Several ways:

```
Rhoe = calc_rhoe( Nelectrons, pw, Focc, psiks, Nspin )
# or
Rhoe = calc_rhoe( Ham, psiks )
# or
calc_rhoe!( Ham, psiks, Rhoe )
```

A.7 Read and write array (binary file)

Write to binary files:

```
for ikspin = 1:Nkpt*Nspin
  wfc_file = open("WFC_ikspin_"*string(ikspin)*".data","w")
  write( wfc_file, psiks[ikspin] )
  close( wfc_file )
end
```

Read from binary files:

```
psiks = BlochWavefunc(undef,Nkpt)
for ispin = 1:Nspin, ik = 1:Nkpt
  ikspin = ik + (ispin-1)*Nkpt
  # Don't forget to use read mode
  wfc_file = open("WFC_ikspin_"*string(ikspin)*".data","r")
  psiks[ikspin] = Array{ComplexF64}(undef,Ngw[ik],Nstates)
  psiks[ikspin] = read!( wfc_file, psiks[ikspin] )
  close( wfc_file )
end
```

Subspace rotation

In case need sorting:

```
Hr = psiks[ikspin]' * op_H( Ham, psiks[ikspin] )
evals, evecs = eigen(Hr)
evals = real(evals[:])

# Sort in ascending order based on evals
idx_sorted = sortperm(evals)
```

```
# Copy to Hamiltonian
Ham.electrons.ebands[:,ikspin] = evals[idx_sorted]

# and rotate
psiks[ikspin] = psiks[ikspin]*evecs[:,idx_sorted]
```

Usually we don't need to sort the eigenvalues if we use Hermitian matrix. We can calculate the subspace Hamiltonian by:

```
evals, evecs = eigen(Hermitian(Hr))
```

Status

29 July 2019 Total energy results are now similar to ABINIT and Quantum ESPRESSO. A rather comprehensive test has been added for SCF and Emin PCG for several simple systems.

28 May 2018 The following features are working now:

- LDA and GGA, spin-paired and spin polarized calculations
- Calculation with k-points (for periodic solids). SPGLIB is used to reduce the Monkhorst-Pack grid points for integration over Brillouin zone.

Band structure calculation is possible in principle as this can be done by simply solving Schrodinger equation with converged Kohn-Sham potentials, however there is currently no tidy script or function to do that.

Total energy result for isolated systems (atoms and molecules) agrees quite well with ABINIT and PWSCF results.

Total energy result for periodic solid is quite different from ABINIT and PWSCF. I suspect that this is related to treatment of electrostatic terms in periodic system.

These discrepancies have been minimized. For several systems the agreement is very good even though I did not use the same algorithm as ABINIT.

SCF is rather shaky for several systems, however it is working in quite well in nonmetallic system.

SCF stability has been improved with Pulay mixing and its variants.

References

- [1] Libxc.jl. https://github.com/unkcpz/Libxc.jl.
- [2] Miguel A.L. Marques, Micael J.T. Oliveira, and Tobias Burnus. Libxc: A library of exchange and correlation functionals for density functional theory. *Comput. Phys. Commun.*, 183(10):2272 2281, 2012
- [3] Susi Lehtola, Conrad Steigemann, Micael J.T. Oliveira, and Miguel A.L. Marques. Recent developments in Libxc a comprehensive library of functionals for density functional theory. *SoftwareX*, 7:1–5, 2018.
- [4] S. Goedecker, M. Teter, and J. Hutter. Separable dual-space Gaussian pseudopotentials. *Phys. Rev. B*, 54:1703–1710, 1996.
- [5] Dominik Marx and Jürg Hutter. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge University Press, 2009.