Construction and Implementation of Flip-flops, Counters, and Shift Registers **LAB A-06 (Week 7)**

Objectives

- To get familiarity with the flip-flops, asynchronous counters, and shift registers by the construction of the circuit and studying the operation.
- To design and construct the synchronous counter and verify the counting sequence.

Tasks

- Verify the function table for 7476 Dual Negative Edge Triggered JK Flip-flop
 - b. Construct the following flip-flops using JK Flip-Flop andverify their truth tables
 - D (Data) Flip-Flop
 - T (Toggle) Flip-Flop
- 2. Design a 2-bit synchronous counter that can go through the following sequence in binary.
 - 1, 3, 2, 0 and repeat
 - Use J-K Flip-flops for the design. Verify your design experimentally.
- 3. Construct and explain the operation of the following ripple counters with positive edge triggered D Flip-flops.
 - 4 bit binary asynchronous UP counter
 - 4 bit binary asynchronous DOWN counter Asynchronous BCD Counter

 - Asynchronous MOD-12 Counter
 - Ripple divide by 14 Counter
- 4. Design and Construct a parallel counter that has the following sequence. If the input (UP)/(DOWN)' = 1, it will count up, 000-010-100-110 and then recycle to 000 If the input (UP)/(DOWN)' = 0, it will count down, 110-100-010-000 and then recycle to 110. Undesired states are don't care states.
 - (i) Use T flip-flops for the design.
 - (ii) Use D flip-flops for the design.

Report Format

Show all steps for each question and be self explanatory.

Assessment:

Total marks = 20/10=2%

Construction/Connections of the Circuit and Result during lab session= Tutor to pick questions for students to do and submit via CircuitVerse = 10 marks, Report =5 Questions \times 2 marks = 10 marks

Pin Configurations:

SN5476, SN54LS76A . . . J PACKAGE SN7476 . . . N PACKAGE SN74LS76A . . . D OR N PACKAGE (TOP VIEW) 1CLK 1 U16 1K 15 1Q 1 PRE 2 14 10 1 CLR 3 1 J 4 13 GND 12 2K VCC 5 11 20 2CLK 6 10 20 2 PRE 7 9 2J 2 CLR B

'LS76A FUNCTION TABLE

PUTS	OUTP	INPUTS				
ā	Q	К	J	CLK	CLR	PRE
L	н	×	×	×	н	L
Н	L	×	×	×	L	н
HT	H†	×	×	×	L	L
Q0	Q ₀	L	L	4	H	H
L	н	L	н	33	н	H
H	E.	H	L	4	H	H
TOGGLE		н	н	3	H	H
$\overline{\alpha}_0$	00	X	×	н	н	H

† This configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

