Question	Scheme	Marks				
Number						
10 (a)	$f(2) = 2 \times 2^3 - p \times 2^2 - 13 \times 2 - q = -20 \ (\Rightarrow 10 = 4p + q)$	M1A1				
	$f(3) = 2 \times 3^3 - p \times 3^2 - 13 \times 3 - q = 0 \ (\Rightarrow 15 = 9p + q)$	M1A1				
	Solves simultaneous equations by elimination or substitution; $\Rightarrow 5 = 5p \Rightarrow p = 1,$ so $q = 6$	M1 A1 A1 (7)				
(b)	$(2x^3 - x^2 - 13x - 6) \div (x - 3) = 2x^2 + 5x + 2$	M1A1				
	$(2x^3 - x^2 - 13x - 6) = (x - 3)(2x + 1)(x + 2) $ (Factorises $2x^2 + 5x + 2$)	M1				
	$x = 3, -\frac{1}{2}, -2$ (all three roots)	A1A1 (5) (12)				
(a) M1 A1 M1 A1	Substitute ± 2 in $f(x)$ Correct equation using remainder -20 Need not be simplified Substitute ± 3 in $f(x)$ Correct equation using remainder 0 Need not be simplified First 4 marks can be given for long division: Divide by $(x\pm 2)$ M1 Equate correct remainder to - 20 A1					
M1 A1 A1	Divide by $(x\pm 3)$ M1 Equate correct remainder to 0 A1 Solve the simultaneous equations, any valid method p or q correct Second unknown correct					
(b) M1	Obtain the quadratic factor by division or inspection. Factor need not be fully correct but must be of form $2x^2 + kx \pm \frac{\text{their } q}{3}$ If by division, remainder need no be 0					
A1 M1 A1A1	Correct quadratic factor Attempt to factorise their quadratic factor A1A1 all three roots correct; A1A0 two roots correct					

Question Number				Schen	ne			Marks
11(a)	f(x)	-2 2.05	-1 2.14	0 2.37	3	2 4.72	9.39	B1B1 (2)
(b) (c) (d)	Correct po $4 = e^{(x-1)} =$ Line $y = 6$	$\Rightarrow 6 = e^{(x-1)}$	$x^{-1} + 2$ y	y = 6	'n			B1ftB1ft (2) M1 A1 (2)
	$\ln(4x-4)$ $\Rightarrow 4x-2 = y = 4x-2$ $\text{accept } x = 0$	= e ^(x-1) + drawn c	2	$= e^{(x-1)},$				M1,A1 A1ft dM1 A1cso(5) (11)
(a) B1B1 (b) B1ft B1ft (c) M1 A1 (d) M1 A1 A1ft dM1 A1cso	NB Read rounding rules at start of this document B1B1 three correct values; B1B0 two correct values Plot their points correctly Draw a smooth curve through their points. $-2 \le x \le 3$ only needed - ignore any points/graph outside this range. Attempt to deduce the value of y corresponding to the given equation, $y = 4 \pm 2$ should be seen Using $y = 6$ to obtain $x = 2.4$ Must be 1 dp unless already penalised (2.3862) If the M mark is gained and $y = 6$ or $e^{(x-1)} + 2 = 6$ is seen this mark can be given without the line being drawn. If the line $y = 6$ is seen on the graph and correct answer given, award M1A1 Change equation from log to exponential form Correct exponential equation Add 2 to each side of their equation Draw their line on their graph Obtain $x = 1.3$ or 1.4 Must be 1 dp unless already penalised (1.355) Correct answers from incorrect lines score A0.							

Question Number	Scheme	Marks					
12(a)	$BM = \sqrt{8^2 - 4^2}, = 4\sqrt{3} \text{ (oe eg } \sqrt{24} \times \sqrt{2} \text{)}$ p = 4 $q = 3$	M1,A1A1 (3)					
(b)	$\cos BAM = \frac{4}{8} \Rightarrow BAM = 60^{\circ}$	M1A1					
(c)	$EM = \sqrt{12^2 + 20^2} \left(= \sqrt{544} = 4\sqrt{34} \right)$	(2) M1A1					
(d)	$MEB = \tan^{-1} \left(\frac{4\sqrt{3}}{4\sqrt{34}} \right) = 16.5437$ $\Rightarrow MEB = 16.5^{\circ}$	dM1A1(4)					
	Angle between plane <i>BCEH</i> and <i>ADEH</i> = $\tan^{-1} \left[\frac{4\sqrt{3}}{20} \right] = 19.1066 = 19.1^{\circ}$	M1 dM1A1 (3) (12)					
(a) M1 A1 A1	Use Pythagoras Must have minus sign A1A1 for correct p and q equivalent values allowed as long as one is prime. A1A0 for one correct. Values need not be shown explicitly.						
(b) M1	Use any trig function correctly (eg sin = $\frac{\text{opp}}{\text{hyp}}$) to find $\angle BAM$ If cos or tan used then AM must = 4 or working for length AM must be seen. Their BM if						
A1	used Correct answer. 60° without working scores M1A1						
(c) M1	Use Pythagoras to find length EM . Must have + sign. If BE found without first finding EM this mark requires a complete method. Award M1 for $EM^2 = 16^2 + 20^2$ provided this is stated to be EM or implied by subsequent working.						
A1 dM1 A1	Correct length <i>EM</i> (need not be simplified) (or $BE = 24.33$) Use any trig function correctly with their values to find $\angle MEB$ Correct answer. Must be to nearest 0.1°						
(d) M1	Identify the required angle. Can be stated explicitly or implied working.	d by subsequent					
dM1 A1	Use any trig function correctly to obtain the size of a correct angle Correct answer. Must be to nearest 0.1°unless already penalised.						