

Universidad Tecnológica de la Mixteca 00134

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Sistemas Complejos		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Décimo	172101FC	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Dar una introducción a los métodos de análisis de la dinámica no lineal y sistemas caóticos basada en ejemplos para obtener una visión accesible y aplicada.

TEMAS Y SUBTEMAS

1. Bifurcaciones.

- 1.1. Puntos fijos y estabilidad.
- 1.2. Análisis lineal de la estabilidad.
- 1.3. Potenciales.
- 1.4. Bifurcaciones: punto de silla, transcrítica, Pitchfork e imperfectas.

2. Espacio fase.

- 2.1. Sistemas lineales.
- 2.2. Puntos fijos y linealización.
- 2.3. Sistemas conservativos.
- 2.4. Ciclos límite.
- 2.5. Órbitas cerradas.
- 2.6. Teorema de Poincaré-Bendixon.
- 2.7. Sistemas de Liénard.
- 2.8. Oscilaciones no lineales débiles.

3. Mapeos.

- 3.1. Ecuación de Lorenz.
- 3.2. Caos y atractores.
- 3.3. Mapeo de Lorenz.
- 3.4. Mapeo logístico.
- 3.5. Ventanas periódicas.
- 3.6. Exponente de Liapunov.
- 3.7.Universalidad.
- 3.8. Renormalización.

4. Fractales.

- 4.1. Conjuntos numerables y no numerables.
- 4.2. Conjunto de Cantor.
- 4.3. Dimensión de fractales autosimilares.
- 4.4. Dimensión de caja.
- 4.5. Dimensiones local y de correlación.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora y los proyectores. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final

Además, se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

00135

PROGRAMA DE ESTUDIOS

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- 1. Complex Systems. Teory and Applications. Rzveski G., Brebbia C. A., WIT Press, 2017.
- Nonlinear Dynamics and Chaos Advaces and Perspectives. First Edition, Thiel M., et al., Springer, 2010.
- Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemestry and Engineering. Second Edition, Strogratz S. H., CRC Press, 1994.
- 4. Complex Syste,s Theory and Development Practice. Rihani S., Zed Books, 2002.

Consulta:

- Orden y caos en sistemas complejos. Aplicaciones. Solé R. V. Manrrubia S. C., Ediciones UPC, 2001.
- Chaos and Nonlinear Dynamics. An Introduction for Scientists and Engineers. Hilborn R. C., Oxford University Press, 2004.
- 3. An introduction to complex systems. Fieguth P., Springer, 2017.
- 4. Control of complex systems: Theory and applications. Vamvoudakis K. G., Butterworth, 2016.

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física o Matemáticas, o Doctorado en Física o Matemáticas, con especialidad en Cálculo

. Bo JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

OAXACA

DR. SALOMÓN GONZÁLEZ MARTÍNEZ JEFE DE CARRERA AUTORIZÓ

DR. AGUSTÍN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO