Date: 2011-01-10 Page 1 of 31 No.: MH184782

Applicant (SZH001): I-STAR ENTERPRISE (HONG KONG) LIMITED

12/F, A T TOWER 180 ELECTRONIC ROAD NORTH

POINT, HONG KONG

Manufacturer: SHENZHEN HAIS ELECTRONIC CO., LTD

14 BUILDING, CHEN TIAN INDUSTRIAL ZONE, BAOMIN 2/R, BAO'AN, SHENZHEN, CHINA

Description of Samples: Product: Wii Remote with Built-in Motion plus

Brand Name: N/A

Model Number: 4384376R FCC ID: Y5L4384376R

Date Samples Received: 2010-11-30

Date Tested: 2010-12-02

Investigation Requested: Perform ElectroMagnetic Interference measurement in

accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2009 and ANSI C63.4:2009 for FCC Certification.

Conclusions: The submitted product <u>COMPLIED</u> with the requirements of

Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this

Test Report.

Remarks: ---

Dr. LEE Kam Chuen
Authorized Signatory
ElectroMagnetic Compatibility Department
For and on behalf of
The Hong Kong Standards and Testing Centre Ltd.

CONT	ENT:	
	Cover Content	Page 1 of 31 Page 2 of 31
<u>1.0</u>	General Details	
1.1	Test Laboratory	Page 3 of 31
1.2	Equipment Under Test [EUT] Description of EUT operation	Page 3 of 31
1.3	Date of Order	Page 3 of 31
1.4	Submitted Sample	Page 3 of 31
1.5	Test Duration	Page 3 of 31
1.6	Country of Origin	Page 3 of 31
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 4 of 31
2.2	Test Standards and Results Summary	Page 4 of 31
<u>3.0</u>	<u>Test Results</u>	
3.1	Emission	Page 5 – 27 of 31
	Appendix A	
	List of Measurement Equipment	Page 28 of 31
	Appendix B	
	Photographs	Page 29 -31 of 31

Page 2 of 31

Date: 2011-01-10

No.: MH184782

Date: 2011-01-10 Page 3 of 31

No.: MH184782

General Details <u>1.0</u>

1.1 **Test Laboratory**

The Hong Kong Standards and Testing Centre Ltd. **EMC Laboratory**

10 Dai Wang Street, Taipo Industrial Estate

New Territories, Hong Kong

1.2 **Equipment Under Test [EUT]**

Description of Sample

Product: Wii Remote with built-in Motion plus

Manufacturer: SHENZHEN HAIS ELECTRONIC CO., LTD

Brand Name: N/A

Model Number: 4384376R

Input Voltage: 3Vd.c.("AA" size battery×2)

Description of EUT Operation 1.2.1

The Equipment Under Test (EUT) is an I-STAR ENTERPRISE (HONG KONG) LIMITED, it is game controller, modulation by IC; and type is frequency hopping speed spectrum Modulation.

1.3 **Date of Order**

2010-11-30

1.4 **Submitted Sample(s):**

1 Sample

1.5 **Test Duration**

2010-12-02

1.6 **Country of Origin**

China

Date: 2011-01-10 Page 4 of 31

No.: MH184782

<u>2.0</u> Technical Details

2.1 Investigations Requested

Perform Electromagnetic Interference measurements in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2009 Regulations and ANSI C63.4:2009 for FCC Certification.

2.2 Test Standards and Results Summary Tables

EMISSION Results Summary								
Test Condition	Test Requirement	irement Test Method Class / Test		est Resu	ılt			
			Severity	Pass	Fail	N/A		
Output Power of Fundamental Emissions	FCC 47CFR 15.247(b)(1)	ANSI C63.4:2009	N/A					
Radiated Emissions	FCC 47CFR 15.209	ANSI C63.4:2009	N/A	\boxtimes				
Number of Operating Channel	FCC 47CFR 15.247(a)(2)(b)(1)	N/A	N/A					
Channel Separation	FCC 47CFR 15.247(a)(1)	N/A	N/A	\boxtimes				
Pseudorandom Hopping Algorithm	FCC 47CFR 15.247(a)(1)	N/A	N/A					
Time of Occupancy	FCC 47CFR 15.247(a)(1)(iii)	N/A	N/A					
Bandwidth	FCC 47CFR 15.247(a)(2)	N/A	N/A	\boxtimes				
Antenna requirement	FCC 47CFR 15.203	N/A	N/A					

Note: N/A - Not Applicable

Date: 2011-01-10 Page 5 of 31

No.: MH184782

3.0 Test Results

3.1 Emission

3.1.1 Maximum Peak Output Power

Test Requirement: FCC 47CFR 15.247(b)(1)

Test Method: N/A
Test Date: 2010-12-02
Mode of Operation: Tx mode

Test Method:

The RF output of the EUT was connected to the spectrum analyzer. All the attenuation or cable loss will be added to the measured maximum output power. The results are recorded in dBm.

Test Setup:

Date: 2011-01-10 Page 6 of 31

No.: MH184782

Limits for Peak Output Power of Fundamental & Harmonics Emissions [FCC 47CFR 15.247]:

The maximum peak output power shall not exceeded the following limits:

For frequency hopping systems employing at least 75 hopping channels: 1 Watt For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 Watts

For Digital Transmission systems in 2400-2483.5 MHz Band: 1 Watt

Results of Tx Mode (2402.0 MHz to 2480.0MHz) : Pass (TX Unit) Maximum conducted output power

Transmitter Frequency (MHz)	Maximum conducted output power (mW)
2402	0.4

Transmitter Frequency (MHz)	Maximum conducted output power (mW)
2440	0.4

Transmitter Frequency (MHz)	Maximum conducted output power (mW)
2480	0.6

Calculated measurement uncertainty : 30MHz to 1GHz 1.7dB

1GHz to 18GHz 1.7dB

Date: 2011-01-10 Page 7 of 31

No.: MH184782

3.1.2 Radiated Emissions

Test Requirement: FCC 47CFR 15.209
Test Method: ANSI C63.4:2009
Test Date: 2010-12-02

Mode of Operation: Tx mode, Communication mode

Test Method:

The sample was placed 0.8m above the ground plane of semi-anechoic Chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

* Semi-anechoic chamber located on the G/F of "The Hong Kong Standards and Testing Centre Ltd." with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 607756.

Test Setup:

Absorbers placed on top of the ground plane are for measurements above 1000MHz only.

Date: 2011-01-10 Page 8 of 31 No.: MH184782

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:					
Frequency Range [MHz]	Quasi-Peak Limits [μV/m]				
30-88	100				
88-216	150				
216-960	200				
Above960	500				

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of Tx Mode(2402MHz): Pass

esult of 1x Mode(2402MHz): Pass						
	Field Strength of Harmonic Emissions					
PeakValue						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field
	Level @3m	Factor	Strength	@3m		Polarity
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m	
4804.0	22.3	41.9	64.2	74.0	-9.8	Horizontal
4804.0	20.2	41.9	62.1	74.0	-11.9	Vertical
7206.00	3.4	47.8	51.2	74.0	-22.8	Horizontal
7206.00	1.4	47.8	49.2	74.0	-24.8	Vertical

Field Strength of Harmonic Emissions AverageValue						
Frequency						
	Level @3m	Factor	Strength	@3m		Polarity
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m	_
4804.0	2.3	41.9	44.2	54.0	-9.8	Horizontal
4804.0	0.2	41.9	42.1	54.0	-11.9	Vertical
7206.00	-16.6	47.8	31.2	54.0	-22.8	Horizontal
7206.00	-18.6	47.8	29.2	54.0	-24.8	Vertical

Remarks:

* Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation.

Date: 2011-01-10 Page 9 of 31

No.: MH184782

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
[MHz]	$[\mu V/m]$
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of Tx Mode(2440MHz): Pass

Result of 1x Mode(2440MHz): Pass							
	Field Strength of Harmonic Emissions						
	PeakValue						
Frequency	Measured	Correction	Field	Limit	Margin	E-Field	
	Level @3m	Factor	Strength	@3m		Polarity	
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m		
4880.0	22.7	42	64.7	74.0	-9.3	Horizontal	
4880.0	20.1	42	62.1	74.0	-11.9	vertical	
7320.00	3.7	48	51.7	74.0	-22.3	Horizontal	
7320.00	2.4	48	50.4	74.0	-23.6	vertical	

Field Strength of Harmonic Emissions						
	AverageValue					
Frequency	Measured	Correction	Field	Limit	Margin	E-Field
	Level @3m	Factor	Strength	@3m		Polarity
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m	
4880.0	2.7	42.0	44.7	54.0	-9.3	Horizontal
4880.0	0.1	42.0	42.1	54.0	-11.9	Vertical
7320.00	-16.3	48.0	31.7	54.0	-22.3	Horizontal
7320.00	-17.6	48.0	30.4	54.0	-23.6	Vertical

Remarks:

* Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

1GHz to 18GHz 5.1dB

Date: 2011-01-10 Page 10 of 31

No.: MH184782

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
[MHz]	$[\mu V/m]$
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of Tx Mode(2480MHz): Pass

Result of 1x Mode(2480Miliz): Pass								
Field Strength of Harmonic Emissions								
PeakValue								
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m			
4960.0	22.7	42.0	64.7	74.0	-9.3	Horizontal		
4960.0	19.7	42.0	61.7	74.0	-12.3	Vertical		
7440.00	2.9	48.2	51.1	74.0	-22.9	Horizontal		
7440.00	2.1	48.2	50.3	74.0	-23.7	Vertical		

Field Strength of Harmonic Emissions								
AverageValue								
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m			
4960.0	2.7	42.0	44.7	54.0	-9.3	Horizontal		
4960.0	-0.3	42.0	41.7	54.0	-12.3	Vertical		
7440.00	-17.1	48.2	31.1	54.0	-22.9	Horizontal		
7440.00	-17.9	48.2	30.3	54.0	-23.7	Vertical		

Remarks:

* Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

1GHz to 18GHz 5.1dB

Date: 2011-01-10 Page 11 of 31

No.: MH184782

Limits for Radiated Emissions [FCC 47 CFR 15.209 Class B]:

Frequency Range	Quasi-Peak Limits
[MHz]	$[\mu V/m]$
30-88	100
88-216	150
216-960	200
Above960	500

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result of Communication Mode: Pass

Result of Communication Mode: Pass								
Field Strength of Fundamental Emissions								
Quasi-Peak Value								
Frequency	Measured	Correction	Field	Limit	Margin	E-Field		
	Level @3m	Factor	Strength	@3m		Polarity		
MHz	$dB\mu V$	dB/m	dBμV/m	dBμV/m	dBμV/m			
168.0	29.9	10.2	40.1	43.5	-3.4	Vertical		
192.0	29.6	10.3	39.9	43.5	-3.6	Vertical		
840.0	18.6	26.9	45.5	46.0	-0.5	Horizontal		
648.0	21.3	23.7	45.0	46.0	-1.0	Horizontal		
888.0	17.4	27.0	44.4	46.0	-1.6	Horizontal		

Remarks:

* Denotes restricted band of operation.

Measurements were made using a peak detector. Any emission less than 1000MHz and falling within the restricted bands of FCC Rules Part 15 Section 15.205 and the limits of FCC Rules Part 15 Section 15.209 were applied.

Correction Factor included Antenna Factor and Cable Attenuation.

Calculated measurement uncertainty : 30MHz to 1GHz 5.1dB

1GHz to 18GHz 5.1dB

Date: 2011-01-10 Page 12 of 31

No.: MH184782

3.1.3 Frequency Range Measurement

Test Requirement: FCC 47CFR 15.247(a)(1)

Test Method: ANSI C63.4:2009
Test Date: 2010-12-02

Mode of Operation: Tx Mode

Test Method:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Test Setup:

As Test Setup of clause 3.1.1 in this test report.

Date: 2011-01-10 Page 13 of 31 No.: MH184782

Frequency Range	20dB Bandwidth	FCC Limits
[MHz]	[kHz]	[MHz]
2402.03	930.0	Within 2400-2483.5

(Lowest Operating Frequency) *RBW 100 kHz Marker 1 [T1] 94.42 dBµV *VBW 300 kHz Ref 120 dBµV *Att 10 dB *SWT 10 ms 2.402030000 GHz ndB [T1] 20.00 dB BW 930 .000000000 kHz Temp 1 [T1 nd8] 74.40 dBµV 1 PK VIEW 2.401560000 GHz [T1 ndB] 74.55 dBµV 2.402490000 GHz PS 3DB to the the theory of the transfer of the trans -Maritaryayaadidaa jobaharrad Center 2.402 GHz 500 kHz/ Span 5 MHz

Date: 2011-01-10 Page 14 of 31 No.: MH184782

Frequency Range 20dB Bandwidth FCC Limits

[MHz] [kHz] [MHz]

950.0

Within 2400-2483.5

2440.09

		*VBW 300 kHz	Marker 1 [T1] 90.56 dBμ ^v
Ref 120 dBµV	*Att 10 dB	*SWT 10 ms	2.440090000 GE:
			ndB [T1] 20.00 dB
			BW 950 0000000000 kH:
-110-		F 0	Temp 1 [T1 ndB]
			70.97 dBμ ^r
-100			2.439560000 GH:
			Temp 2 [T1 ndB] 70.05 dBu
		1	2.440510000 GH:
-90-		1 1 *	
		₁ ν ^ε \	
-80		1	
-70	Ţ.p.p.p.p.	T2	
-/0-		M.	
-60-			
tilling the way to be of the state of the st	Harris Boulder John Land	Lay Lay	restaurant r
no other and a set all the an	10 -0		1.40 C 4.11 100 HOW CO.
-40			
7.5			
-30-			

Date: 2011-01-10 Page 15 of 31

No.: MH184782

Frequency Range	20dB Bandwidth	FCC Limits
[MHz]	[kHz]	[MHz]
2479.86	950.0	Within 2400-2483.5

Date: 2011-01-10 Page 16 of 31

No.: MH184782

Channel Centre Frequency

Requirements:

Frequency hopping system in the 2400-2483.5MHz band shall use at least 15 non-overlapping channels.

	Frequenc		Frequenc		Frequenc
Item	y (MHz)	Item	y (MHz)	Item	y (MHz)
1	2402	31	2432	61	2462
2	2403	32	2433	62	2463
3	2404	33	2434	63	2464
4	2405	34	2435	64	2465
5	2406	35	2436	65	2466
6	2407	36	2437	66	2467
7	2408	37	2438	67	2468
8	2409	38	2439	68	2469
9	2410	39	2440	69	2470
10	2411	40	2441	70	2471
11	2412	41	2442	71	2472
12	2413	42	2443	72	2473
13	2414	43	2444	73	2474
14	2415	44	2445	74	2475
15	2416	45	2446	75	2476
16	2417	46	2447	76	2477
17	2418	47	2448	77	2478
18	2419	48	2449	78	2479
19	2420	49	2450	79	2480
20	2421	50	2451		
21	2422	51	2452		
22	2423	52	2453		
23	2424	53	2454		
24	2425	54	2455		
25	2426	55	2456		
26	2427	56	2457		
27	2428	57	2458		
28	2429	58	2459		
29	2430	59	2460		

Date: 2011-01-10 Page 17 of 31

No.: MH184782

30 2431 60 2461

Number of Hopping frequencies = 79 Channels

Date: 2011-01-10 Page 18 of 31

No.: MH184782

Lowest Frequency Separation (1040.0KHz)

Date: 2011-01-10 Page 19 of 31

No.: MH184782

Mid Frequency Separation (1040.0KHz)

Date: 2011-01-10 Page 20 of 31

No.: MH184782

Highest Frequency Separation (1040.0KHz)

Page 21 of 31 Date: 2011-01-10 No.: MH184782

Band-edge Compliance of RF Radiated Emissions (Lowest)

Date: 2011-01-10 Page 22 of 31

No.: MH184782

Date: 2011-01-10 Page 23 of 31

No.: MH184782

Antenna Requirement

Test Requirements: § 15.203

Test Specification:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Results:

The EUT has 1 Antenna which is permanently attached to the main unit and attached on PCB board, the antenna gain = 0dBi. All component install on inside of EUT. User unable to remove or changed the Antenna.

Date: 2011-01-10 Page 24 of 31

No.: MH184782

Pseudorandom Hopping Algorithm

Requirements:

The channel frequencies shall be selected from a pseudorandom ordered list of hopping frequencies. Each frequency must be used equally by the transmitter.

Pseudorandom Frequency Hopping

The embedded FHSS engine uses 79 hopping frequencies. Each channel frequency is selected from a pseudorandom ordered list of hopping frequencies, from 2402.0MHz to 2480.0MHz with separating in 1005.0 kHz apart from each of the channels. A single data frame is transmitted on each frequency location before skipping to the next hopping frequency in the list. Each channel is occupied 8 milliseconds.

Typically, the initiation of an FHSS communication is as follows

- 1. The initiating party sends a request via a predefined frequency or control channel.
- 2. The receiving party sends a number, known as a seed back to the initiating party.
- 3. The initiating party sends a synchronization signal acknowledging to the receiving party as it has successfully established a transmission link.
- 4. The communication begins, and both the receiving and the sending party change their frequencies along an unpredictable hopping sequence with pseudorandom properties.

System Receiver Input Bandwidth

The receiver bandwidth is equal to the receiver bandwidth in the 79 hopping channel mode, which is 1005. 0 kHz. The receiver bandwidth was verified during RF hopping to the relative channel.

Receiver Hopping Capability

The associated receiver has the ability to shift frequencies in synchronization with the transmitted signals, with they start connect with a same channel and then hop to next channel with a same formula among each other.

Date: 2011-01-10 Page 25 of 31 No.: MH184782

Occupancy Time

Requirements:

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed. No requirements for Digital Transmission System.

Measurement Data: Number of RF channel: 79

Observed duration of occupancy: 0.4x75=31.6s

Period observed: 2s Duration of a burst: 164µs

Time of occupancy: $((40x0.000164)/2s \times 31.6 = 0.104)$

See fig. A and B.

Remark: The Occupancy Time of the Lowest, Middle and Highest operating frequency has been examined and the worst case test result is recorded in this test report.

Fig. A Time between RF Burst

Date: 2011-01-10 Page 26 of 31

No.: MH184782

Date: 2011-01-10 Page 27 of 31

No.: MH184782

RF Exposure

Test Requirement: FCC 47CFR 15.247(b)(5)

Test Date: 2010-12-02 Mode of Operation: Tx mode

Test Method:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines.

Test Results:

The EUT complied with the requirement(s) of this section. EUT meets the requirements of these sections as proven through MPE calculation The MPE calculation for EUT @ 20cm Based on the highest P=10 mW

```
Pd = PG/4pi*R<sup>2</sup> = (0.6 \times 1.0)/12.566* (20)^2
= (0.6)/12.56637 \times 400 = 17.0 / 5026.55
= 0.00012 \text{ mW/cm}^2
```

where:

- *Pd = power density in mW/cm2
- * G = Antenna numeric gain (1.0); Log G = g/10 (g = 0).
- * P = Conducted RF power to antenna (0.6 mW).
- * R = Minimum allowable distance.(20 cm)
- *The power density $Pd = 0.00012 \text{ mW/cm}^2$ is less than 1 mW/cm² (listed MPE limit)
- *The SAR evaluation is not needed (this is a desk top device, R > 20 cm)
- $\ensuremath{^{*}}$ The EUT(antenna) must be 0.2 meters away from the General Population.

Date: 2011-01-10 Page 28 of 31

No.: MH184782

Appendix A

List of Measurement Equipment

Radiated Emission

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM020	HORN ANTENNA	EMCO	3115	4032	2009/09/02	2011/09/02
EM215	MULTIDEVICE CONTROLLER	EMCO	2090	00024676	N/A	N/A
EM216	MINI MAST SYSTEM	EMCO	2075	00026842	N/A	N/A
EM217	ELECTRIC POWERED TURNTABLE	EMCO	2088	00029144	N/A	N/A
EM218	ANECHOIC CHAMBER	ETS-Linggren	FACT-3		2010/10/25	2011/11/25
EM174	BICONILOG ANTENNA	EMCO	3142B	1671	2010/02/09	2012/02/09
EM229	EMI Test Receiver	R&S	ESIB40	100248	2010/11/02	2011/11/02

Line Conducted

EQP NO.	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CAL	DUE CAL
EM197	LISN	EMCO	4825/2	1193	2010/10/13	2011/10/13
EM181	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESIB7	100072	2010/07/01	2011/07/01
EM154	SHIELDING ROOM	SIEMENS MATSUSHITA COMPONENTS	N/A	803-740-057- 99A	2010/01/23	2011/01/23

Remarks:-

CM Corrective Maintenance

N/A Not Applicable or Not Available

TBD To Be Determined

Date: 2011-01-10 Page 29 of 31

No.: MH184782

Appendix B

Photographs of EUT

Rear View of the product

Inner Circuit Top View

Inner Circuit Bottom View

Date: 2011-01-10 Page 30 of 31

No.: MH184782

Photographs of EUT

Date: 2011-01-10 Page 31 of 31

No.: MH184782

Photographs of EUT

***** End of Test Report *****