ITSRUNTYM

Dynamic Programming (DP) is a powerful algorithmic technique used to **solve problems by breaking them down into smaller subproblems, solving each subproblem only once, and storing their results (memoization)** to avoid redundant work.

WHY USE DYNAMIC PROGRAMMING?

• When to use DP:

Use DP when a problem has:

- 1. Overlapping Subproblems
 - → Subproblems are solved multiple times (e.g., Fibonacci).
- 2. Optimal Substructure
 - → Optimal solution of the problem depends on the optimal solutions of its subproblems.

• Why it helps:

Instead of recalculating the result for the same input multiple times (like in plain recursion), **DP saves the result in memory and reuses it**, leading to a significant performance boost.

TYPES OF DP APPROACHES

Туре	Description	Example Problem
Top-Down (Memoization)	Use recursion + store results in a table	Fibonacci using recursion and dp[]
Bottom-Up (Tabulation)	Solve subproblems iteratively, build solution from base	Fibonacci using a loop and dp[]
Space Optimization	Optimize space by storing only required results	Fibonacci using two variables

- 1. Top-Down (Memoization)
- 2. Bottom-Up (Tabulation)
- 3. Space Optimization

We will explain:

- 1. Why it's named like that
- 2. The difference between the three
- 3. When to use each
- 4. With diagrams and code for each

1. Top-Down Approach (Memoization)

Why this name?

- "Top-Down": We start from the main problem and break it down into subproblems recursively.
- "Memoization": We store answers to subproblems in a table (dp[]) to avoid recomputation.

Characteristics:

- Uses recursion
- Uses a cache (dp[]) to save results of subproblems
- Useful when you're comfortable thinking recursively

General Template (Recursive + Cache)

```
int solve(int n, int[] dp) {
    if (n == 0 || n == 1) return n;
    if (dp[n] != -1) return dp[n]; // already solved
    return dp[n] = solve(n - 1, dp) + solve(n - 2, dp);
}
```

Diagram (Top-Down Flow)

```
Start from fib(5)

|
fib(5) = fib(4) + fib(3)

|
recurse on fib(4), fib(3), ...

Store in dp[] during the way down
```

2. Bottom-Up Approach (Tabulation)

Why this name?

- "Bottom-Up": We solve smaller subproblems first, and use them to solve bigger problems.
- "Tabulation": We use a table (array) to store the result in a bottom-up fashion.

Characteristics:

- Uses **loops (iteration)**, no recursion
- Builds the solution from base cases upward

• More memory efficient than top-down (no call stack overhead)

General Template

```
int fib(int n) {
   int[] dp = new int[n + 1];
   dp[0] = 0;
   dp[1] = 1;
   for (int i = 2; i <= n; i++) {
      dp[i] = dp[i - 1] + dp[i - 2];
   }
   return dp[n];
}</pre>
```

Diagram (Bottom-Up Flow)

```
Build from dp[0] \rightarrow dp[1] \rightarrow dp[2] \rightarrow dp[3] ... up to dp[n] dp[0] = 0 dp[1] = 1 dp[2] = dp[1] + dp[0] = 1 ... dp[n] = result
```

3. Space Optimization

Why this name?

 We optimize space usage by noticing that we don't need the whole dp[] table – only a few previous values.

Characteristics:

- Applies only when current state depends on few previous states
- Reduces space from $O(n) \rightarrow O(1)$ in some cases

General Template

```
int fib(int n) {
    if (n <= 1) return n;
    int prev2 = 0, prev1 = 1;
    for (int i = 2; i <= n; i++) {
        int curr = prev1 + prev2;
        prev2 = prev1;
        prev1 = curr;
    }
    return prev1;
}</pre>
```

Approach	Time Complexity	Space Complexity	Notes
Top-Down (Memoization)	O(n)	O(n)	Uses recursion + dp[]
Bottom-Up (Tabulation)	O(n)	O(n)	Iterative, no recursion
Space Optimization	O(n)	O(1)	Best for linear recurrence problems

Problem	DP Type	LeetCode Link
Fibonacci Number	1D DP	<u>P Link</u>
Climbing Stairs	1D DP	<u>D Link</u>
Min Cost Climbing Stairs	1D DP	<u> Link</u>
House Robber	1D DP	<u> </u>
Unique Paths	2D Grid DP	<u> Link</u>
Minimum Path Sum	2D Grid DP	<u> </u>
Longest Common Subsequence	2D DP on Strings	<u> Link</u>
Longest Palindromic Subsequence	2D DP on Strings	<u> Link</u>
Partition Equal Subset Sum	0/1 Knapsack (1D DP)	<u> Link</u>
Combination Sum IV	Subset Sum / Count Ways	<u> Link</u>
Target Sum	0/1 Knapsack / Subset Sum	<u> Link</u>
Edit Distance	2D DP on Strings	<u> </u>
Dungeon Game	2D DP (Reverse Build)	<u> </u>
Jump Game II	1D DP + Greedy	<u> </u>
Cherry Pickup II	3D DP (Advanced Grid)	<u>S Link</u>