

FACULTY of SCIENCE and ENGINEERING

Department of Computer Science and Information Systems

SAMPLE QUESTIONS MIDTERM PAPER

Academic Year: 2022-2023 Semester: Autumn Module Title: Neural Computing Module Code: CS4287

Duration of Exam: 1 Hours Percent of Total Marks: X Lecturer(s): J.J. Collins Paper marked out of: Y

Instructions to Candidates:

- Answer all questions.
- Each question is worth 2 marks
- Q1 a) Discuss the challenges that arise in a traditional Sense-Plan-Act (SPA) cycle as shown in Figure-Q-1-a. What is the solution suggested in subsumption architectures?

1 mark.

b) What is machine learning? What are the challenges faced by an ML implementation?

1 mark.

Figure Q-1-a.

Q2	a)	What is the update rule for a linear perceptron	1 mark.
	b)	Write the code for a perceptron with fixed weights $w1 = w2 = 1$, and bias -0.5. Name the logical gate modelled by this perceptron.	
			1 mark.
Q3	a)	Why are differentiable activation units used in Multi-Layered Perceptrons (MLPs)	1 mark.
	b)	What is δ , η , and α in the following weight update rule used in backpropagation. $\Delta w_{i,j}(n) = \eta \delta_j x_{i,j} + \alpha \Delta w_{i,j}(n-1)$	
			1 mark.
Q4	a)	What is underfitting? Draw a plot to illustrate.	1 mark.
	b)	What is overfitting? Draw a plot to illustrate.	1 mark.
Q5	a)	Which is the better loss function: Mean Squared Error (MSE) or Cross Entropy?	1 mark.
	b)	Describe three regularisation techniques that can help reduce overfitting	1 mark.
Q6	a)	Describe the concept of convolution in a Convolutional Neural Network (CNN). Illustrate the discussion with a diagram of a kernel being applied to an input layer.	1 mark.
	b)	Write the code for a convolutional layer in a CNN.	
		Briefly describe the loss function and optimiser used.	1 mark.
Q7	a)	How does one ensure that compositions in train and test sets are representative of the dataset	1 morts
	b)	Write the code for the output layer of a CNN used to clossify MNIST10 detect	1 mark.
	b)	Write the code for the output layer of a CNN used to classify MNIST10 dataset.	1 mark.
Q8	a)	What is a vanishing gradient and identify common causes.	1 mark.
	b)	Briefly describe the approaches used to reduce the impact of vanishing gradients	1 mark.

And more