第六章 图论

6.3 最短路问题

修贤超

机电工程与自动化学院 上海大学

xcxiu@shu.edu.cn

■ 问题描述

□ 最短路问题是网络理论中应用最广泛的问题之一,例如设备更新、 管道铺设、线路安排、厂区布局等。

■ 问题描述

- □ 最短路问题是网络理论中应用最广泛的问题之一,例如设备更新、 管道铺设、线路安排、厂区布局等。
- ② 设 G=(V,E) 为连通图,图中各边 (v_i,v_j) 有权 l_{ij} $(l_{ij}=\infty$ 表示 v_i,v_j 之间没有边), v_s,v_t 为图中任意两点,求一条路 μ ,使它为从 v_s 到 v_t 的所有路中总权最短。即: $L(\mu)=\sum\limits_{(v_i,v_j)\in\mu}l_{ij}$ 最小。

■ 问题描述

- 最短路问题是网络理论中应用最广泛的问题之一,例如设备更新、 管道铺设、线路安排、厂区布局等。
- ① 设 G=(V,E) 为连通图,图中各边 (v_i,v_j) 有权 l_{ij} $(l_{ij}=\infty$ 表示 v_i,v_j 之间没有边), v_s,v_t 为图中任意两点,求一条路 μ ,使它为从 v_s 到 v_t 的所有路中总权最短。即: $L(\mu)=\sum\limits_{(v_i,v_j)\in\mu}l_{ij}$ 最小。
- $lue{lue{lue{0}}}$ Dijkstra 算法是在 1959 年提出来的。目前公认,在所有的权 $w_{ij}\geq 0$ 时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点 v_s 到任意一个点 v_j 的最短路。

■ Dijkstra 算法

② 给始点 v_s 以 P 标号 $P(v_s)=0$,这表示从 v_s 到 v_s 的最短距离为 0,其余节点均给 T 标号, $T(v_i)=+\infty$ $(i=2,3,\ldots,n)$ 。

■ Dijkstra 算法

- ② 给始点 v_s 以 P 标号 $P(v_s)=0$,这表示从 v_s 到 v_s 的最短距离为 0,其余节点均给 T 标号, $T(v_i)=+\infty$ $(i=2,3,\ldots,n)$ 。
- ② 设节点 v_i 为刚得到 P 标号的点,考虑点 v_j ,其中 $(v_i,v_j)\in E$,且 v_j 为 T 标号。对 v_j 的 T 标号进行如下修改:

$$T(v_j) = \min[T(v_j), P(v_j) + l_{ij}]$$

 \square 比较所有具有 T 标号的节点, 把最小者改为 P 标号, 即:

$$P(v_k) = \min[T(v_i)]$$

当存在两个以上最小者时,可同时改为 P 标号。若全部节点均为 P 标号,则停止,否则用 v_k 代替 v_i ,返回上一步。

■ 求下图从 v_1 到 v_8 的最短路

■ 求下图从 v_1 到 v_8 的最短路

- © 首先给 v_1 以 P 标号, $P(v_1) = 0$; 给其余所有点 T 标号, $T(v_i) = +\infty$ (i = 2, 3, ..., 8)。
- © $T(v_2) = \min[T(v_2), P(v_1) + l_{12}] = \min[+\infty, 0 + 4] = 4$ $T(v_3) = \min[T(v_3), P(v_1) + l_{13}] = \min[+\infty, 0 + 6] = 6$ 比较所有 T 标号, $T(v_2)$ 最小,令 $P(v_2) = 4$,并记录路径 (v_1, v_2) 。
- © $T(v_4) = \min[T(v_4), P(v_2) + l_{24}] = \min[+\infty, 4+5] = 9$ $T(v_5) = \min[T(v_5), P(v_2) + l_{25}] = \min[+\infty, 4+4] = 8$ 比较所有 T 标号, $T(v_3)$ 最小,令 $P(v_3) = 6$,并记录路径 (v_1, v_3) 。

■ 求下图从 v_1 到 v_8 的最短路

- ② $T(v_4) = \min[T(v_4), P(v_3) + l_{34}] = \min[9, 4+9] = 9$ $T(v_5) = \min[T(v_5), P(v_3) + l_{35}] = \min[8, 6+7] = 8$ 比较所有 T 标号, $T(v_5)$ 最小,令 $P(v_5) = 8$,并记录路径 (v_2, v_3) 。
- □ $T(v_6) = \min[T(v_6), P(v_5) + l_{56}] = \min[+\infty, 8+5] = 13$ $T(v_7) = \min[T(v_7), P(v_5) + l_{57}] = \min[+\infty, 8+6] = 14$ 比较所有 T 标号, $T(v_4)$ 最小,令 $P(v_4) = 9$,并记录路径 (v_2, v_4) 。
- © $T(v_6) = \min[T(v_6), P(v_4) + l_{46}] = \min[13, 9 + 9] = 13$ $T(v_7) = \min[T(v_7), P(v_4) + l_{47}] = \min[14, 9 + 7] = 14$ 比较所有 T 标号, $T(v_6)$ 最小,令 $P(v_6) = 13$,并记录路径 (v_5, v_6) 。
- □ $T(v_7) = \min[T(v_6), P(v_6) + l_{67}] = \min[14, 13 + 5] = 14$ $T(v_8) = \min[T(v_8), P(v_6) + l_{68}] = \min[+\infty, 13 + 4] = 17$ 比较所有 T 标号, $T(v_7)$ 最小,令 $P(v_7) = 14$,并记录路径 (v_7, v_8) 。
- © $T(v_8) = \min[T(v_8), P(v_7) + l_{78}] = \min[17, 14 + 1] = 15$ 因为只有一个 T 标号 $T(v_8)$ 最小,令 $P(v_8) = 15$,并记录路径 (v_7, v_8) , v_1 到 v_8 之最短路为: $v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_7 \rightarrow v_8$

- Floyd 算法
 - □ 可直接求出网络中任意两点间的最短路。

- Floyd 算法
 - □ 可直接求出网络中任意两点间的最短路。
 - lue 令网路的权矩阵为 $D=(d_{ij})_{n imes n},\ l_{ij}$ 为 v_i 到 v_j 的距离

$$d_{ij} = \begin{cases} l_{ij} \, \stackrel{\text{def}}{=} (v_i, v_j) \in E \\ \infty \, \stackrel{\text{def}}{=} \end{cases}$$

- Floyd 算法
 - □ 可直接求出网络中任意两点间的最短路。
 - \square 令网路的权矩阵为 $D=(d_{ij})_{n\times n},\ l_{ij}$ 为 v_i 到 v_j 的距离

$$d_{ij} = \begin{cases} l_{ij} \, \stackrel{\text{def}}{=} (v_i, v_j) \in E \\ \infty \, \stackrel{\text{def}}{=} \end{cases}$$

- □ 算法基本步骤
 - 输入权矩阵 $D^{(0)} = D$
 - 计算 $D^{(k)} = (d_{ij}^{(k)})_{n \times n} \ (k = 1, 2, \dots, n)$,其中 $d_{ij} = \min[d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{k-1}]$
 - $D^{(n)} = (d_{ij}^{(n)})_{n \times n}$ 中元素 $d_{ij}^{(n)}$ 就是 v_i 到 v_j 的最短路长。

■ 小结

- □ Dijkstra 算法
 - 求无负权网络最短路问题的最好方法
 - 指定两点间的最短路
 - 标号法
- □ Floyd 算法
 - 任意两点间的最短路

$Q\&\mathcal{A}$

Thank you! 感谢您的聆听和反馈