Eigenfaces for Face Detection/Recognition

(M. Turk and A. Pentland, "Eigenfaces for Recognition", *Journal of Cognitive Neuroscience*, vol. 3, no. 1, pp. 71-86, 1991, hard copy)

• Face Recognition

- The simplest approach is to think of it as a template matching problem:

- Problems arise when performing recognition in a high-dimensional space.
- Significant improvements can be achieved by first mapping the data into a *lower-dimensionality* space.
- How to find this lower-dimensional space?

• Main idea behind eigenfaces

- Suppose Γ is an N^2 x1 vector, corresponding to an NxN face image I.
- The idea is to represent Γ (Φ = Γ mean face) into a low-dimensional space:

$$\hat{\Phi} - mean = w_1 u_1 + w_2 u_2 + \cdots + w_K u_K (K << N^2)$$

_

Computation of the eigenfaces

Step 1: obtain face images $I_1, I_2, ..., I_M$ (training faces)

(very important: the face images must be *centered* and of the same *size*)

Step 2: represent every image I_i as a vector Γ_i

Step 3: compute the average face vector Ψ :

$$\Psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i$$

Step 4: subtract the mean face:

$$\Phi_i = \Gamma_i - \Psi$$

Step 5: compute the covariance matrix C:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = AA^T \quad (N^2 \times N^2 \text{ matrix})$$

where $A = [\Phi_1 \ \Phi_2 \cdots \Phi_M]$ $(N^2 x M \text{ matrix})$

Step 6: compute the eigenvectors u_i of AA^T

The matrix AA^T is very large --> not practical !!

Step 6.1: consider the matrix $A^T A$ ($M \times M$ matrix)

Step 6.2: compute the eigenvectors v_i of $A^T A$

$$A^T A v_i = \mu_i v_i$$

What is the relationship between us_i and v_i ?

$$A^T A v_i = \mu_i v_i \Longrightarrow A A^T A v_i = \mu_i A v_i \Longrightarrow$$

$$CAv_i = \mu_i Av_i$$
 or $Cu_i = \mu_i u_i$ where $u_i = Av_i$

Thus, AA^T and A^TA have the same eigenvalues and their eigenvectors are related as follows: $u_i = Av_i$!!

Note 1: AA^T can have up to N^2 eigenvalues and eigenvectors.

Note 2: $A^T A$ can have up to M eigenvalues and eigenvectors.

Note 3: The M eigenvalues of A^TA (along with their corresponding eigenvectors) correspond to the M largest eigenvalues of AA^T (along with their corresponding eigenvectors).

Step 6.3: compute the M best eigenvectors of AA^T : $u_i = Av_i$

(**important:** normalize u_i such that $||u_i|| = 1$)

Step 7: keep only K eigenvectors (corresponding to the K largest eigenvalues)

Representing faces onto this basis

- Each face (minus the mean) Φ_i in the training set can be represented as a linear combination of the best K eigenvectors:

$$\hat{\Phi}_i - mean = \sum_{j=1}^K w_j u_j, \quad (w_j = u_j^T \Phi_i)$$

(we call the u_j 's eigenfaces)

- Each normalized training face Φ_i is represented in this basis by a vector:

$$\Omega_i = \begin{bmatrix} w_1^i \\ w_2^i \\ \dots \\ w_K^i \end{bmatrix}, \quad i = 1, 2, \dots, M$$

9

Face Recognition Using Eigenfaces

- Given an unknown face image Γ (centered and of the same size like the training faces) follow these steps:

Step 1: normalize
$$\Gamma$$
: $\Phi = \Gamma - \Psi$

Step 2: project on the eigenspace

$$\hat{\Phi} = \sum_{i=1}^K w_i u_i \quad (w_i = u_i^T \Phi)$$

Step 3: represent
$$\Phi$$
 as: $\Omega = \begin{bmatrix} w_1 \\ w_2 \\ ... \\ w_K \end{bmatrix}$

Step 4: find
$$e_r = \min_l \|\Omega - \Omega^l\|$$

Step 5: if $e_r < T_r$, then Γ is recognized as face l from the training set.

- The distance e_r is called distance within the face space (difs)

<u>Comment:</u> we can use the common Euclidean distance to compute e_r , however, it has been reported that the *Mahalanobis distance* performs better:

$$\|\Omega - \Omega^k\| = \sum_{i=1}^K \frac{1}{\lambda_i} (w_i - w_i^k)^2$$

(variations along all axes are treated as equally significant)

Face Detection Using Eigenfaces

- Given an unknown image Γ

Step 1: compute
$$\Phi = \Gamma - \Psi$$

Step 2: compute
$$\hat{\Phi} = \sum_{i=1}^{K} w_i u_i \quad (w_i = u_i^T \Phi)$$

Step 3: compute
$$e_d = \|\Phi - \hat{\Phi}\|$$

Step 4: if
$$e_d < T_d$$
, then Γ is a face.

- The distance \boldsymbol{e}_d is called <u>distance from face space (dffs)</u>

- Reconstruction of faces and non-faces

O

• Time requirements

- About 400 msec (Lisp, Sun4, 128x128 images)

Applications

- Face detection, tracking, and recognition

Problems

- Background (deemphasize the outside of the face, e.g., by multiplying the input image by a 2D Gaussian window centered on the face)
- Lighting conditions (performance degrades with light changes)
- Scale (performance decreases quickly with changes to the head size)
 - * multiscale eigenspaces
 - * scale input image to multiple sizes)
- Orientation (perfomance decreases but not as fast as with scale changes)
 - * plane rotations can be handled
 - * out-of-plane rotations more diffi cult to handle

• Experiments

- 16 subjects, 3 orientations, 3 sizes

- 3 lighting conditions, 6 resolutions (512x512 ... 16x16)

- Total number of images: 2,592

10

Experiment 1

- * Used various sets of 16 images for training
- * One image/person, taken under the same conditions
- * Eigenfaces were computed offline (7 eigenfaces were used)
- * Classify the rest images as one of the 16 individuals
- * No rejections (i.e., no threshold for *difs*)

- Performed a large number of experiments and averaged the results:

96% correct averaged over light variation

85% correct averaged over orientation variation

64% correct averaged over size variation

11

Experiment 2

- They considered rejections (i.e., by thresholding *difs*)
- There is a tradeoff between correct recognition and rejections.
- Adjusting the threshold to achieve 100% recognition acurracy resulted in:
 - * 19% rejections while varying lighting
 - * 39% rejections while varying orientation
 - * 60% rejections while varying size

Experiment 3

- Reconstruction using partial information

