1. Para un hipercubo de dimensión 6, ¿Cuántos nodos tiene el nodo 13 a distancia 2?

Nodo 13 = 001101 al ser 6 dimensiones, trataremos con 6 dígitos

Por lo tanto, queremos calcular todos los nodos que estén a distancia hamming de 2. Para ello:

$$\binom{n}{d} = \frac{n!}{d! (n-d)!}$$

n = Numero de dimensiones

d = Distancia buscada

$$\binom{6}{2} = \frac{6!}{2! \, (6-2)!} = \textbf{15}$$

El nodo 13 del hipercubo tiene 15 nodos a distancia 2.

2. Un multicomputador utiliza una red de comunicación en la que los enlaces son de 1Gb/s. La técnica de comunicación es almacenamiento y reenvío. Mandar un paquete de 32 bytes a una distancia de 6 cuesta 1.56µs. ¿Cuántas veces sería más rápida la comunicación si la técnica de comunicación/conmutación fuera Virtual Cut-Through (VCT)? Se supone tráfico 0, flits de 8 bits y un flit de cabecera.

$$s\&f \rightarrow t_{s\&f} = D(tr + tw) + D*tw[L/W]$$
 $vct \rightarrow t_{vct} = D(tr + tw) + tw[L/W]$
 $t_{s\&f} = 1.56\mu s \rightarrow 1560 \text{ ns}$
 $D = 6$
 $tr ??$
 $tw ?? \rightarrow (numero bits del flit) * 1/AnchoBanda$
 $1Gb/s \rightarrow 10^9 \text{ bits/s}$
 $tw (para un flit) = 8 * (1/10^9) = 8 \text{ ns};$

De los 32 bytes que enviamos omitimos la cabecera, trabajamos en bytes ya que t_r y t_w es tiempo por flit, y un flit son 8 bits -> 1 byte.

```
1560 ns = 6(tr + 8ns) + 6 * 8 * (31)

tr = 4 ns
```

¿Ahora bien cuanto es más rápido?

$$t_{vct} = 6(4 + 8) + 8*(31) = 320 \text{ ns}$$

$$SP = t_{s\&f} / t_{vct} \rightarrow 1560 / 320 \approx 4$$

3. Tengo una arquitectura SMP p+1 centralizado con caches. Disponemos de 32 clusters snoopy (1 por directorio) en los cuales tenemos 16 procesadores por clúster. Los clusters disponen de 1GByte de memoria y 1 Mbyte de caché, siendo las líneas de ésta última de 128 bytes, además necesitaremos 2 bits por cada línea de caché para que ésta pueda ser referenciada. ¿Cuál será la sobrecarga de memoria necesaria para mantener este sistema?

EN CACHÉ:

- Líneas de caché: $\frac{1 \, Mbyte}{128 \, bytes} = \frac{2^{20}}{2^7} = 2^{13} = 2^{10} + 2^3 = 8K$ líneas
- Numero de cachés: 32 * 16 = 512. Cada procesador tiene su caché.
- 512 caches * 8k líneas * 2 bits/lineacache = 2²³ = 1MByte extra por cache.

EN DIRECTORIO:

• P+1 = 32+1 (un bit por nodo + 1 adicional) = 33 bits por directorio

Característica del p+1 centralizado, un bit por nodo más uno adicional. Recordamos que estamos en el directorio.

- Bloques de RAM: $\frac{1 \, Gbyte}{128 \, bytes} = 8$ MBloques por directorio.
- 8 MB/directorio * 33 bits/directorio * 32 directorios = 8448 Mbits

4. Disponemos de un multiprocesador con 4 nodos, cada nodo tiene caché, el protocolo snoopy (o de sondeo) elegido es el Illinois (NOTA: Llamado también MESI, pero tened cuidado y aprenderos los dos nombres). Las caches pueden alojar un máximo de 2 palabras, siendo el tamaño de bloque de 1 palabra y la política de reemplazo aleatoria. Dadas las siguientes referencias a memoria, indique cómo evoluciona el estado de las cachés y de la memoria principal.

			_										IVIEIVI	UKIA	PRINCI	AL
Cache 1			Cache 2			Cache 3			Cache 4			@1	5	@2	9	
@1	5	Ε		@1	-3	1	@2	9	S	@2	9	S	@3	10	@4	10
@2	9	S		@5	2	Ε	@3	6	М	@4	10	М	@5	2	@6	9

Lo primero, dibujamos el diagrama MESI

1. Acceso 1. rd1 @1

Se accede a la línea 1 de la caché 1. ¿Se produce fallo de caché?

Cad	che 1		Cad	che 2)	Ca	che	3	С	ache 4	ļ
@1	5	Ε	@1	-3	1	@2	9	S	@2	9	
@2	9	S	@5	2	Ε	@3	6	М	@4	10	

 MEMORIA PRINCIPAL

 @1
 5
 @2
 9

 @3
 10
 @4
 10

 @5
 2
 @6
 9

→ Acierto en lectura

 $Pr1Rd/- \rightarrow P1$ lee, no se inyecta nada en el bus

Pasa de estado E a estado E.

2. Acceso 2. Wr1 (@1, 22)

Se accede a la línea 1 de la caché 1. ¿Se produce fallo de caché? Se escribe en la línea 1 de la caché 1 el valor 22. (El @ indica la línea, el numero detrás de la instrucción el número de caché)

												MEM	ORIA	PRINCI	PAL
Cache 1			Cache 2			Cache 3			Cache 4			@1	22	@2	9
@1	22	M	@1	-3	1	@2	9	S	@2	9	S	@3	10	@4	10
@2	9	S	@5	2	Ε	@3	6	М	@4	10	М	@5	2	@6	9

Al actualizar la caché 1, se actualiza también la memoria principal.

3. Acceso 3. Wr3 (@2, -11)

Se accede a la línea 1 de la caché 3 y se escribe un -11.

									-			MFM	ORIA	PRINCI	ΡΔΙ	
Cache 1			Cache 2			Cache 3			Cache 4				22		44	
@1	22	М	@1	-3	1	@2	-11	М	@2	9	1	@1	22	@2	-11	
@2	a		@5	2	E	@3		М	@4	10	М	@3	10	@4	10	
س ک	9	•	دس			ധാ	U	IVI	<u></u> <u></u> <u> </u> <u> </u> <u> </u> <u> </u>	10	IVI	@5	2	@6	9	

4. Acceso 4. Rd2 @4

Se accede a la línea 4 de la caché 2 y se lee el contenido de la misma. Como la línea 4 en la caché 2 no existe, tenemos que referencia a la política de reemplazo expuesta en el enunciado, en este caso, aleatoria.

												MEM	ORIA	PRINCI	PAL
Cache 1			C	ache 2		Cache 3			Cache 4			@1	22	@2	11
@1	22	Μ	@4	10	9	@2	-11	Μ	@2	g	_	س ـ	22	w ₂	-11
	22	171		10	,		- 11	171	-	,	•	@3	10	@4	10
@2	9	- 1	@5	2	Ε	@3	6	M	@4	10	S				
	l									l.		@5	2	@6	9