ECON 703 - ANSWER KEY TO HOMEWORK 2

1. There are many examples. Let $\{x_n\}$ in \mathbb{R} be given by

$$x_n = \begin{cases} n & \text{, if n is even.} \\ \frac{1}{n} & \text{, if n is odd.} \end{cases}$$

Then $\{x_n\}$ has a convergent subsequence $\{x_{2n-1}\}$ and $x_{2n-1} \to 0$. However, $\{x_n\}$ does not converge because it contains a divergent subsequence $\{x_{2n}\}$.

Some other convergent subsequences are $\{x_{4n-1}\}$, $\{1,2,1/3,4,1/5,6,1/7,....100,1/101,1/103,1/105,1/107...\}$. Any convergent subsequence $\{x_{n_k}\}$ must have a N, s.t for all $n_k \geq N$, $x_{n_k} = \frac{1}{n_k}$. Intuition: The tail of any convergent subsequence does not contain any element in the form of n. It only contains elements in the form of 1/n.

$$x_n = \begin{cases} 1 & \text{, if n is even.} \\ \frac{1}{n} & \text{, if n is odd.} \end{cases}$$

It is also an example that $\{x_n\}$ does not converge but has some convergent subsequence. But for this example, not every convergent subsequence converges to 0. Subsequence $\{x_{2n}\}$ converges to 1.

2. I will only show the statement about \limsup , since the proof for the statement about \liminf is quite similar.

Let
$$\alpha_n = \sup \{a_n, a_{n+1}, ...\}, \beta_n = \sup \{b_n, b_{n+1}, ...\},\$$

 $\gamma_n = \sup \{a_n + b_n, a_{n+1} + b_{n+1}, ...\}.$

First observe that $\alpha_n + \beta_n \ge a_i + b_i$, $\forall i \ge n$. So $\alpha_n + \beta_n$ is an upper bound of $\{a_n + b_n, a_{n+1} + b_{n+1}, ...\}$. This means that $\alpha_n + \beta_n \ge \gamma_n$. Limit operation remains weak inequality, so taking limits on both sides completes the proof.

Note: The above statement makes sense and is worth proving only if $\limsup a_n + \limsup b_n$ is well defined. That is, we want to avoid situations like $\infty - \infty$. Recall that $\limsup a_n + \limsup b_n$ is well defined. That is, we want to avoid situations like $\infty - \infty$.

The following is an example for which the strict inequality holds. Let $\{a_n\}$ and $\{b_n\}$ be given by

$$a_n = \begin{cases} 1 & \text{, if n is even.} \\ -1 & \text{, if n is odd.} \end{cases}$$

$$b_n = \begin{cases} -1 & \text{, if n is even.} \\ 1 & \text{, if n is odd.} \end{cases}$$

1

Note that $a_n + b_n = 0$ for all n. Then $\limsup a_n + \limsup b_n = 1 + 1 > 0 = \limsup a_n + b_n$. Furthermore, the strict inequality also holds for the \liminf case.

- 3. We can calculate them directly from definition. For example, in (a), $\lim \inf x_k = \lim_{n \to \infty} \inf \{ (-1)^k, (-1)^{k+1}, \ldots \} = \lim_{n \to \infty} (-1) = -1.$
 - (a) $\limsup x_k = 1$, $\liminf x_k = -1$.
 - (b) $\limsup x_k = \infty$, $\liminf x_k = -\infty$.
 - (c) $\limsup x_k = 1$, $\liminf x_k = -1$.
 - (d) $\limsup x_k = 1$, $\liminf x_k = -\infty$.
- 4. True. Let X be an open set and $Y = X \setminus \{x_1, x_2, ..., x_n\}$. Then Y is open. Take any $x \in Y$. Since X is open, there exists r > 0 such that $B(x, r) \subset X$. Let $r' = \min\{r, \min_{1 \le i \le n} x x_i\}$. Thus $r \ge r' > 0$, and $x_i \notin B(x, r'), 1 \le i \le n$, so $B(x, r') \subset Y$.

Another way to prove: $\{x\}$ is closed. Because finite union of closed sets is still closed, $\{x_1, x_2, ..., x_n\} = \{x_1\} \cup \{x_2\} ... \cup \{x_n\}$ is closed. So $\{x_1, x_2, ..., x_n\}^c$ is open. We also have X is open. Hence $X \cap \{x_1, x_2, ..., x_n\}^c$ is open.

It is not necessarily true if we remove countable and infinite elements. Let X=(-1,1), $x_n=\frac{1}{n}$, and $Y=X\setminus\{x_n\}$. Then Y is not open. Consider the point 0. For all r>0, there always exists N such that for all $n\geq N$, $x_n\in B(0,r)$, which implies $B(0,r)\notin Y$.

Another example: Q contains countable infinite points. $X = \mathbb{R} \subset \mathbb{R}$ is open. But after Q being removed, we have irrational number set, which is not open in \mathbb{R} .

5. By the definition of closed sets, to prove that [0,1] is a closed set is to show that the set $(-\infty,0) \cup (1,\infty)$ is open. For any $x \in (1,\infty)$, let r=x-1, then it is easy to check the open ball $B(x,r) \subset (1,\infty)$ (You must show $\forall z \in B(x,r) \Rightarrow z \in (1,\infty)$), hence $B(x,r) \subset (-\infty,0) \cup (1,\infty)$. The case $x \in (-\infty,0)$ is similar. So the set $(-\infty,0) \cup (1,\infty)$ is open.

To show that (0,1) is open, consider any $x \in (0,1)$. Let $r = \min\{x, 1-x\}$. Thus r > 0, and $B(x,r) \in (0,1)$.

Let C = [0, 1). If C were open, then there would have to exist an r > 0 such that $B(0, r) \subset C$. Now the point $y = -\frac{r}{2} \in B(0, r)$, but does not belong to C. Thus the presumption that C is open leads to a contradiction, and we can conclude that C is not open.

To show that C is not closed, we argue that $\mathbb{R} \setminus C$ is not open. Indeed, suppose that there existed a neighborhood B(1,r) of the point x=1 contained in $\mathbb{R} \setminus C$. Let $y = \max\{\frac{1}{2}, 1 - \frac{r}{2}\}$. Then $y \in B(1,r)$ but not in $\mathbb{R} \setminus C$, so the hypothesis that $\mathbb{R} \setminus C$ is open leads to a contradiction.

The case C = (0,1] is similar to C = [0,1).