1 Introduction

The timber problem involves a log of wood that is divided into smaller logs of varying sizes. The goal is to find the maximum amount of timber that can be obtained by an individual. This problem can be solved using a recursive algorithm, which is the focus of this analysis.

2 Basic Recursive Algorithm

```
def timber_recursive(log_sizes):
    # Base Case
    if len(log_sizes) == 1:
        return log_sizes[0]

# Recursive Case
return sum(log_sizes) - min(timber_recursive(log_sizes[1:]),
timber_recursive(log_sizes[:-1]))
```

The timber problem is solvable using a recursive algorithm. With each recursive call, 2 subproblems are created, one with the first log removed and one with the last log removed. Thus the total operations for the recursive algorithm is: $O(2^n)$.

$$1 + 2 + 2^2 + 2^3 + \dots + 2^n = \Theta(2^n)$$
 (1)

3 Experimental Analysis

To validate the theoretical analysis, the recursive algorithm presented in Section 2 was implemented in Python ¹ and tested with various input sizes, $1 \le n \le 20$. The python random library was used to generate random log sizes for each input size ranging from 1 to 1000. The algorithm was run 100 times for each size and the average time taken to solve the timber problem was recorded for each input size in Table 1.

¹Simulation ran on Apple M2 Pro with 16GB unified RAM

3.1 Experimental Results

Table 1: Average time taken to solve the timber problem using the recursive algorithm

Size	Average Time (ms)	Size	Average Time (ms)
1	0.000128746	11	0.286386013
2	0.00074625	12	0.565309525
3	0.001773834	13	1.151502132
4	0.003342628	14	2.258636951
5	0.007317066	15	4.525690079
6	0.013577938	16	9.098799229
7	0.025353432	17	18.15497398
8	0.047571659	18	36.16346121
9	0.086071491	19	72.37869978
10	0.154359341	20	145.2968574

Figure 1: Average time taken to solve the timber problem using the recursive algorithm

3.2 Analysis

The experimental results depicted in Table 1 and Figure 1 showcase a clear trend: the average time taken to solve the timber problem using the recursive algorithm grows

exponentially with the input size. This observation aligns well with the recursive analysis, which predicts a time complexity of $\Theta(2^n)$.

As shown in Figure 1, the experimental data closely follows the theoretical analysis of $\Theta(2^n)^2$. Despite minor fluctuations in runtime, likely attributable to system variations and other factors, the overall trend exhibits exponential growth, confirming the scalability characteristics anticipated by the theoretical analysis.

²To provide a more illustrative comparison, a scaled line representing the theoretical complexity $(\Theta(2^n))$ is included in Figure 1. This scaled line, reduced by a factor of 10,000.

4 Appendix - Python Code

```
import sys
   import random
   import time
   def timber_recursive(log_sizes):
       # Base Case
       if len(log_sizes) == 1:
           return log_sizes[0]
       # Recursive Case
       return sum(log_sizes) - min(timber_recursive(log_sizes[1:]),
11
                                    timber_recursive(log_sizes[:-1]))
12
13
   def synthetic_test():
14
       # Test all log sizes from 1 to 20. Log files to an output file
       # Use a random number generator to generate the log sizes
16
       with open("output.csv", "w") as f:
17
           for i in range(1, 21):
               for j in range(100):
                    log_sizes = [random.randint(1, 1001) for _ in range(i)]
                    # Run and time the recursive algorithm
21
                    start_time = time.time()
22
                    timber_recursive(log_sizes)
                    end_time = time.time()
24
                   time_taken = (end_time - start_time) * 1000
                    # Write the results to the output file
26
                   f.write(f"{i}, {timber_recursive(log_sizes)}, {time_taken}\n")
27
       f.close()
29
   if __name__ == "__main__":
31
       synthetic_test()
32
```