

The Capacity Region of the Deterministic Interference Channel with a Jammer

Fatemeh Hosseinigoki, Oliver Kosut Arizona State University

Introduction

- ▶ The open nature of wireless communication makes it susceptible to a malicious and intelligent jammer.
- ▶ We consider the two-user interference channel in the presence of one adversarial jammer.
- ▶ We find the capacity region of the simplified deterministic model for this problem.

Model for Gaussian Interference Channel with a Jammer

Signal y_i at the receiver D_i :

$$y_1 = h_{11}x_1 + h_{12}x_2 + g_1v + z_1$$

$$y_2 = h_{21}x_1 + h_{22}x_2 + g_2v + z_2$$

where

- \rightarrow x_1 and x_2 are N-length vectors representing the user's signal.
- \blacktriangleright h_{ij} 's and g_i 's are channel gains.
- $z_i \sim (0,1)$ is AWGN independent of x_1 , x_2 and v (for i=1,2).
- v is the adversarial jammer signal.
- Jammer is independent of the users.

Power Constraints

- $\sum_{n=1}^{N} ||x_{i,n}||^2 \le NP_i$, for i = 1, 2
- ▶ $||v||^2 \le NK$

The power-to-noise ratios are defined as:

$$SNR_1 = |h_{11}|^2 P_1$$
, $SNR_2 = |h_{22}|^2 P_2$, $INR_1 = |h_{21}|^2 P_1$, and $INR_2 = |h_{12}|^2 P_2$

Deterministic Model for Interference Channel with a Jammer

We adopt the deterministic model approach of [1].

- ▶ The inputs X_1 and X_2 and the jammer V are written in binary.
- ▶ The outputs Y_1 and Y_2 are given by:

$$Y_1 = \lfloor 2^{n_{11}} X_1 \rfloor \oplus \lfloor 2^{n_{12}} X_2 \rfloor \oplus \lfloor 2^{n_{13}} V \rfloor$$
 $Y_2 = \lfloor 2^{n_{21}} X_1 \rfloor \oplus \lfloor 2^{n_{22}} X_2 \rfloor \oplus \lfloor 2^{n_{23}} V \rfloor$

where

- ▶ | · | is the integer-part function.
- ▶ ⊕ denotes module-2 addition.
- $n_{11} = \lfloor \log SNR_1 \rfloor$
- $n_{12} = \lfloor \log INR_2 \rfloor$
- $n_{21} = \lfloor \log INR_1 \rfloor$
- $n_{13} = \lfloor \log \left(|g_1|^2 K \right) \rfloor$
- $n_{23} = \lfloor \log (|g_2|^2 K) \rfloor$

Linear Description of Deterministic Model

The channel outputs at receivers D_1 and D_2 :

$$Y_1 = S^{q-n_{11}}X_1 + S^{q-n_{12}}X_2 + S^{q-n_{13}}V$$

 $Y_2 = S^{q-n_{21}}X_1 + S^{q-n_{22}}X_2 + S^{q-n_{23}}V$

- ▶ Input vector X_i , jammer vector V and output vector Y_i are from binary field \mathbb{F}_2^q .
- $q = \max_{ij} n_{ij}$ for i = 1, 2.
- Matrix S is defined by

$$S = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \vdots & \dots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}.$$

▶ n_{ij} is the rank of matrix $S^{q-n_{ij}}$.

Noise Level Interpretation

For each signal (legitimate or jamming) the number of bits above noise level is given by its SNR.

Capacity Region of Deterministic Model without jammer

Theorem 1. (proved in [2]) The capacity region of two-user deterministic IC without jammer is the set of all non-negative rates satisfying

$$r_{1} \leq n_{11}$$
 $r_{2} \leq n_{22}$
 $r_{1} + r_{2} \leq (n_{11} - n_{12})^{+} + \max(n_{22}, n_{12})$
 $r_{1} + r_{2} \leq (n_{22} - n_{21})^{+} + \max(n_{11}, n_{21})$
 $r_{1} + r_{2} \leq \max(n_{21}, (n_{11} - n_{12})^{+}) + \max(n_{12}, (n_{22} - n_{21})^{+})$
 $2r_{1} + r_{2} \leq \max(n_{11}, n_{21}) + (n_{11} - n_{12})^{+} + \max(n_{12}, (n_{22} - n_{21})^{+})$
 $r_{1} + 2r_{2} \leq \max(n_{22}, n_{12}) + (n_{22} - n_{21})^{+} + \max(n_{21}, (n_{11} - n_{12})^{+})$

Capacity Region of Deterministic Model with a jammer

Theorem 2. Two-user deterministic interference channel capacity region is given by:

Theorem 2. Two-user deterministic interference channel capacity region is given by:
$$r_1 \leq n_{11} - n_{13} \\ r_2 \leq n_{22} - n_{23} \\ r_1 + r_2 \leq (n_{11} - n_{12})^+ + \max(n_{22} - n_{23}, n_{12} - n_{13}) \\ r_1 + r_2 \leq (n_{22} - n_{21})^+ + \max(n_{11} - n_{13}, n_{21} - n_{23}) \\ r_1 + r_2 \leq \max(n_{21} - n_{23}, (n_{11} - n_{12})^+) + \max(n_{12} - n_{13}, (n_{22} - n_{21})^+) \\ 2r_1 + r_2 \leq \max(n_{11} - n_{13}, n_{21} - n_{23}) + (n_{11} - n_{12})^+ + \max(n_{12} - n_{13}, (n_{22} - n_{21})^+) \\ r_1 + 2r_2 \leq \max(n_{22} - n_{23}, n_{12} - n_{13}) + (n_{22} - n_{21})^+ + \max(n_{21} - n_{23}, (n_{11} - n_{12})^+)$$

Achievability Proof

- ▶ We assume that (r_1,r_2) satisfy the capacity region.
- ► Each receiver ignores bits that jammer has access to (below red line).
- ▶ Bits above the jammer level behave like a deterministic interference channel with no jammer.
- ▶ The proof follows from the achievability proof given in [2].

Converse Proof

- ▶ Assume that the rate pair (r_1,r_2) is achievable.
- ▶ No matter what the jammer does, each receiver can decode its own message with high probability.
- ▶ We may assume the adversary transmits random Bernoulli $(\frac{1}{2})$ bits

Lemma 1. If the jammer transmits Bernoulli $(\frac{1}{2})$ bits independent of X_1^N and X_2^N , then

$$I(X_1^N; Y_1^N) = I(X_1^N; Y_1'^N)$$

 $I(X_2^N; Y_2^N) = I(X_2^N; Y_2'^N)$

The output Y_1 includes Y_1 and Y_1 .

Lemma 2. (proved in [2]) The rate point (r_1, r_2) is achievable if and only if for every $\epsilon > 0$ there exists a block length N and a factorized joint distribution $p(x_1^N)p(x_2^N)$ with

$$r_1 - \epsilon \le \frac{1}{N} I(x_1^N, y_1^N)$$

 $r_2 - \epsilon \le \frac{1}{N} I(x_2^N, y_2^N)$

From Lemma 1 and Lemma 2, we conclude that the multiletter characterization of the capacity region for the deterministic IC with a jammer is equal to that of the equivalent deterministic IC with the noise level increased by the jammer's signal.

Note: Even if the jammer knows the transmitted signals perfectly, the capacity region does not change because no transmission is more damaging than Bernoulli noise.

References

[1] A. S. Avestimehr, S. N. Diggavi, and D. Tse, Wireless Network Information Flow: A Deterministic Approach, IEEE Trans. Info. Theory, vol. 57, no. 4, pp. 1872-1905, Apr. 2011.

[2] G. Bresler, and D. Tse, The two-user Gaussian interference channel: a deterministic view, Eur. Trans. Telecomms, vol. 19, pp. 333-354, Apr. 2008.