Lösung 1

Korrekturhinweise (streng):

- Aufteilung in L_i^M fehlt oder garnicht verstanden [-10 Pkt]
- OFF-Menge benutzt [-8 Pkt]
- Prim_i fehlt /-3 Pkt/
- L_0 fehlt [-2.5 Pkt]
- Partitionierung innerhalb L_i^M 's fehlt [-2.5 Pkt]
- Schleifendurchlauf 4 nicht angegeben /-2 Pkt/
- Primimplikanten zu falschem Zeitpunkt hinzugefügt [-2 Pkt]
- Einzeln fehlende L_i^M , einmalig [-1.5 Pkt]
- Minimal polynom nicht angegeben /-1 Pkt/
- $Prim_i$ fortlaufend erweitert /-1 Pkt/
- Pro Fehler bei OFF-Mengen überführung /-0.5 Pkt/
- \bullet Pro falschem/fehlenden Implikanten, auch für Folgefehler innerhalb des Algorithmus /-0.5 Pkt/
- Abbruch Bedingung fehlt /-0.5 Pkt/
- Sonstige leichte Notationsfehler [-0.5 Pkt]

Initialisierung

$L_0^{\{x_1, x_2, x_3, x_4\}}$	$Prim_f = \emptyset$
0000	
0001	
0100	
1000	
0011	
0101	
1001	
1010	
1100	
0111	
1101	
1110	

1. Schleifendurchlauf

$L_1^{\{x_1,x_2,x_3\}}$	$L_1^{\{x_1,x_2,x_4\}}$	$L_1^{\{x_1,x_3,x_4\}}$	$L_1^{\{x_2,x_3,x_4\}}$
000-	00-1	0-00	-000
010-	10-0	0-01	-001
100-	01-1	1-00	-100
110-	11-0	0-11	-101
		1-01	
		1-10	

$$Prim_f = \emptyset$$

2. Schleifendurchlauf

3. Schleifendurchlauf

4. Schleifendurchlauf

$$L_{4}^{\{\}}$$

$$Prim_f = \{0 - -1, 1 - -0, - -0 - \}$$

Abbruch

$$\bigcup_{M} L_{4}^{M}(f) = \emptyset$$
 \Rightarrow Abbruch der Schleife und $return\ Prim(f)$

Lösung 2

Korrekturhinweise (streng):

- a) Nachkommastellen nicht mitangegeben [-1.5 Pkt.]
 - n Vorkomma stellen benutzt [-1] Pkt
 - Einerkomplement hingeschrieben [-1.5 Pkt.]
 - Klammerung nicht eindeutig /-0.5 Pkt/
 - Kleine Fehler /-1 Pkt./
- b) Jeweils [1.5 Pkt], Richtig/Falsch, keine Teilpunkte
- c) -d statt a benutzt /-1 Pkt./
 - Klammerung nicht eindeutig, jeweils /-0.5 Pkt/ maximal /-1 Pkt./
 - Für jeden fehlenden Schritt (vgl. Musterlösung), der nicht klar herausgestellt wurde /-1 Pkt./
 - Für n+1 Vorkomma stellen gezeigt [-1 Pkt.]
 - Lösungen mit falscher Definitionen von Zweierkomplement können maximal
 2.5 Punkte erhalten.
 - Nicht k = 0 gesetzt [-1 Pkt]
 - Die −1 nicht heraus gezogen /-1 Pkt./

 $L\ddot{o}sungen$

a)

$$[d]_2 := \left(\sum_{i=-k}^n d_i \cdot 2^i\right) - d_{n+1} \cdot 2^{n+1}$$

b)

$$[0101.10]_2 = 5.5_{dez}$$

 $[1001.01]_2 = -6.75_{dez}$

c)

$$\begin{split} [\bar{a}]_2 &= \left(\sum_{i=0}^{n-1} (1-a_i) \cdot 2^i\right) - (1-a_n) \cdot 2^n \\ &= \left(\sum_{i=0}^{n-1} 2^i - a_i \cdot 2^i\right) - (2^n - a_n \cdot 2^n) \\ &= \left(\sum_{i=0}^{n-1} 2^i\right) - \left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) - (2^n - a_n \cdot 2^n) \\ &\stackrel{GS}{=} (2^n - 1) - \left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) - (2^n - a_n \cdot 2^n) \\ &= - \left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) - (-a_n \cdot 2^n) - 1 \\ &= - \left(\left(\sum_{i=0}^{n-1} a_i \cdot 2^i\right) - a_n \cdot 2^n\right) - 1 \\ &\stackrel{Def}{=} -[a]_2 - 1 \end{split}$$