2022 CCF 非专业级软件能力认证

CSP-J/S 2022 **第二轮认证**

入门级

时间: 2022 年 10 月 29 日 08:30 ~ 12:00

题目名称	乘方	解密	逻辑表达式	上升点列
题目类型	传统型	传统型	传统型	传统型
目录	ром	decode	expr	point
可执行文件名	pow	decode	expr	point
输入文件名	pow.in	decode.in	expr.in	point.in
输出文件名	pow.out	decode.out	expr.out	point.out
每个测试点时限	1.0 秒	1.0 秒	1.0 秒	1.0 秒
内存限制	512 MiB	512 MiB	512 MiB	512 MiB
测试点数目	10	10	20	20
测试点是否等分	是	是	是	是

提交源程序文件名

$1 \times 1 \times$	对于 C++ 语言	pow.cpp	decode.cpp	expr.cpp	point.cpp
---	-----------	---------	------------	----------	-----------

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题, 申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 全国统一评测时采用的机器配置为: Inter(R) Core(TM) i7-8700K CPU @3.70GHz, 内存 32GB。上述时限以此配置为准。
- 9. 只提供 Linux 格式附加样例文件。
- 10. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

乘方 (pow)

【题目描述】

小文同学刚刚接触了信息学竞赛,有一天她遇到了这样一个题:给定正整数 a 和 b ,求 a^b 的值是多少。

 a^b 即 $b \uparrow a$ 相乘的值,例如 2^3 即为 $3 \uparrow 2$ 相乘,结果为 $2 \times 2 \times 2 = 8$ 。

"简单!"小文心想,同时很快就写出了一份程序,可是测试时却出现了错误。

小文很快意识到,她的程序里的变量都是 int 类型的。在大多数机器上,int 类型能表示的最大数为 $2^{31}-1$,因此只要计算结果超过这个数,她的程序就会出现错误。

由于小文刚刚学会编程,她担心使用 **int** 计算会出现问题。因此她希望你在 a^b 的值超过 10^9 时,输出一个 **-1** 进行警示,否则就输出正确的 a^b 的值。

然而小文还是不知道怎么实现这份程序,因此她想请你帮忙。

【输入格式】

从文件 pow.in 中读入数据。 输入共一行,两个正整数 a.b。

【输出格式】

输出到文件 pow.out 中。

输出共一行,如果 a^b 的值不超过 10^9 ,则输出 a^b 的值,否则输出 **-1** 。

【样例1输入】

. 10 9

【样例1输出】

1000000000

【样例 2 输入】

23333 66666

【样例 2 输出】

ı **-1**

【数据范围】

对于 10% 的数据,保证 b=1。

对于 30% 的数据,保证 $b \le 2$ 。

对于 60% 的数据,保证 $b \le 30$, $a^b \le 10^{18}$ 。

对于 100% 的数据,保证 $1 \le a, b \le 10^9$ 。

解密 (decode)

【题目描述】

给定一个正整数 k, 有 k 次询问, 每次给定三个正整数 n_i , e_i , d_i , 求两个正整数 p_i , q_i , 使 $n_i = p_i \times q_i$, $e_i \times d_i = (p_i - 1)(q_i - 1) + 1$ 。

【输入格式】

从文件 decode.in 中读入数据。

第一行一个正整数 k,表示有 k 次询问。

接下来 k 行, 第 i 行三个正整数 n_i, d_i, e_i 。

【输出格式】

输出到文件 decode.out 中。

输出 k 行,每行两个正整数 p_i,q_i 表示答案。

为使输出统一, 你应当保证 $p_i \leq q_i$ 。

如果无解,请输出 NO。

【样例1输入】

```
1 10
```

2 770 77 5

3 **633 1 211**

4 545 1 499

5 683 3 227

6 858 3 257

7 723 37 13

8 572 26 11

9 867 17 17

10 829 3 263

11 528 4 109

【样例1输出】

```
1 2 385
```

2 **NO**

3 **NO**

```
4 NO
5 11 78
6 3 241
7 2 286
8 NO
9 NO
10 6 88
```

【样例 2】

见选手目录下的 decode/decode2.in 与 decode/decode2.ans。

【样例 3】

见选手目录下的 decode/decode3.in 与 decode/decode3.ans。

【样例 4】

见选手目录下的 decode/decode4.in 与 decode/decode4.ans。

【数据范围】

以下记 $m = n - e \times d + 2$ 。

保证对于 100% 的数据, $1 \le k \le 10^5$,对于任意的 $1 \le i \le k$, $1 \le n_i \le 10^{18}, 1 \le e_i \times d_i \le 10^{18}, 1 \le m \le 10^9$ 。

$k \leq$	$n \leq$	$m \leq$	特殊性质
10^{3}	10^{3}	10^{3}	保证有解
			无
	109	6×10^4 10^9	保证有解
			无
			保证有解
			无
10^{5}	10 ¹⁸		保证若有解则 $p=q$
			保证有解
			无
			儿
	10^{3}	10^3 10^9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

逻辑表达式(expr)

【题目描述】

逻辑表达式是计算机科学中的重要概念和工具,包含逻辑值、逻辑运算、逻辑运算 优先级等内容。

在一个逻辑表达式中,元素的值只有两种可能: 0 (表示假)和 1 (表示真)。元素之间有多种可能的逻辑运算,本题中只需考虑如下两种: "与"(符号为&)和"或"(符号为|)。其运算规则如下:

0&0 = 0&1 = 1&0 = 0, 1&1 = 1;

0|0=0, 0|1=1|0=1|1=1.

在一个逻辑表达式中还可能有括号。规定在运算时,括号内的部分先运算;两种运算并列时, & 运算优先于 | 运算;同种运算并列时,从左向右运算。

比如,表达式 0|180 的运算顺序等同于0|(180) ; 表达式 08180|1 的运算顺序等同于 ((081)80)|1。

此外,在 C++ 等语言的有些编译器中,对逻辑表达式的计算会采用一种"短路"的策略。: 在形如 a&b 的逻辑表达式中,会先计算 a 部分的值,如果 a=0 ,那么整个逻辑表达式的值就一定为 0,故无需再计算 b 部分的值;同理,在形如 a|b 的逻辑表达式中,会先计算 a 部分的值,如果 a=1 ,那么整个逻辑表达式的值就一定为 1,无需再计算 b 部分的值。

现在给你一个逻辑表达式,你需要计算出它的值,并且统计出在计算过程中,两种类型的"短路"各出现了多少次。需要注意的是,如果某处"短路"包含在更外层被"短路"的部分内则不被统计,如表达式 1 | (0&1) 中,尽管 0&1 是一处"短路",但由于外层的 1 | (0&1) 本身就是一处"短路",无需再计算 0&1 部分的值,因此不应当把这里的 0&1 计入一处"短路"。

【输入格式】

从文件 expr.in 中读入数据。

输入共一行,一个非空字符串 s 表示待计算的逻辑表达式。

【输出格式】

输出到文件 expr.out 中。

输出共两行,第一行输出一个字符 Ø 或 1 ,表示这个逻辑表达式的值;第二行输出两个非负整数,分别表示计算上述逻辑表达式的过程中,形如 a&b 和 a|b 的"短路"各出现了多少次。

【样例1输入】

0&(1|0)|(1|1|1&0)

【样例1输出】

```
1 1
```

2 1 2

【样例1解释】

该逻辑表达式的计算过程如下,每一行的注释表示上一行计算的过程:

```
      1
      0&(1|0)|(1|1|1&0)

      2
      =(0&(1|0))|((1|1)|(1&0)) //用括号标明计算顺序

      3
      =0|((1|1)|(1&0)) //先计算最左侧的&,是一次形如a&b的"短路"

      4
      =0|(1|(1&0)) //再计算中间的|,是一次形如a|b的"短路"

      5
      =0|1 //再计算中间的|,是一次形如a|b的"短路"

      6
      =1
```

【样例 2 输入】

(0|1&0|1|1|(1|1))&(0&1&(1|0)|0|1|0)&0

【样例 2 输出】

```
1 Ø 2 3
```

【样例 3】

见选手目录下的 *expr/expr3.in* 与 *expr/expr3.ans*。

【样例 4】

见选手目录下的 *expr/expr4.in* 与 *expr/expr4.ans*。

【数据范围】

设 |s| 为字符串 s 的长度。

对于所有数据, $1 \le |s| \le 10^6$ 。保证 s 中仅含有字符 0、1、8、|、(、) 且是一个符合规范的逻辑表达式。保证输入字符串的开头、中间和结尾均无额外的空格。保证 s 中没有重复的括号嵌套(即没有形如 ((a)) 形式的子串,其中 a 是符合规范的逻辑表达式)。

测试点编号	$ s \le$	特殊条件	
$1 \sim 2$	3	无	
$3 \sim 4$	5		
5		1	
6	2000	2	
7	2000	3	
$8 \sim 10$		无	
$11 \sim 12$		1	
$13 \sim 14$	10^{6}	2	
$15 \sim 17$	10	3	
$18 \sim 20$		无	

其中:

特殊性质 1 为: 保证 s 中没有字符 &。

特殊性质 2 为: 保证 s 中没有字符 1。

特殊性质 3 为: 保证 s 中没有字符 (和)。

【提示】

以下给出一个"符合规范的逻辑表达式"的形式化定义:

- 字符串 0 和 1 是符合规范的;
- 如果字符串 s 是符合规范的,且 s 不是形如 (t) 的字符串(其中t是符合规范的),那么字符串(s) 也是符合规范的;
- 如果字符串 a 和 b 均是符合规范的,那么字符串 a&b、a|b 均是符合规范的;
- 所有符合规范的逻辑表达式均可由以上方法生成。

上升点列 (point)

【题目描述】

在一个二维平面内,给定 n 个整数点 (x_i, y_i) ,此外你还可以自由添加 k 个整数点。你在自由添加 k 个点后,还需要从 n+k 个点中选出若干个整数点并组成一个序列,使得序列中任意相邻两点间的欧几里得距离恰好为 1 而且横坐标、纵坐标值均单调不减,即 $x_{i+1}-x_i=1, y_{i+1}=y_i$ 或 $y_{i+1}-y_i=1, x_{i+1}=x_i$ 。请给出满足条件的序列的最大长度。

【输入格式】

从文件 point.in 中读入数据。

第一行两个正整数 n,k 分别表示给定的整点个数、可自由添加的整点个数。接下来 n 行,第 i 行两个正整数 x_i,y_i 表示给定的第 i 个点的横纵坐标。

【输出格式】

输出到文件 point.out 中。

输出一个整数表示满足要求的序列的最大长度。

【样例1输入】

```
      1
      8
      2

      2
      3
      1

      3
      3
      2

      4
      3
      3

      5
      3
      6

      6
      1
      2

      7
      2
      2

      8
      5
      5

      9
      5
      3
```

【样例1输出】

1 8

【样例 2 输入】

1 4 100

2 10 10

3 **15 25**

4 20 20

5 30 30

【样例 2 输出】

1 103

【样例 3】

见选手目录下的 point/point3.in 与 point/point3.ans。 第三个样例满足 k=0。

【样例 4】

见选手目录下的 *point/point4.in* 与 *point/point4.ans*。

【数据范围】

保证对于所有数据满足: $1 \le n \le 500$, $0 \le k \le 100$ 。对于所有给定的整点,其横 纵坐标 $1 \le x_i, y_i \le 10^9$,且保证所有给定的点互不重合。对于自由添加的整点,其横纵 坐标不受限制。

测试点编号	$n \leq$	$k \leq$	$x_i, y_i \le$
$1 \sim 2$	10	0	10
$3 \sim 4$	10	100	100
$\phantom{00000000000000000000000000000000000$		0	100
$8 \sim 10$	500		10^{9}
$\boxed{11 \sim 15}$	500	100	100
$\boxed{15 \sim 20}$			10^{9}