Calculates groebner basis of

•
$$x^3 + (-2)xy$$

•
$$x^2y + (-2)y^2 + x$$

$$S(x^3 + (-2)xy, x^2y + (-2)y^2 + x) = (-1)x^2.$$

Not enough. Appends

•
$$(-1)x^2$$

$$S(x^3 + (-2)xy, (-1)x^2) = (-2)xy.$$

$$S(x^2y + (-2)y^2 + x, (-1)x^2) = (-2)y^2 + x.$$

Not enough. Appends

$$\bullet$$
 $(-2)xy$

$$S(x^3 + (-2)xy, (-2)xy) = 0.$$

$$S(x^2y + (-2)y^2 + x, (-2)xy) = (-2)y^2 + x.$$

$$S((-1)x^2, (-2)xy) = 0.$$

Not enough. Appends

•
$$(-2)y^2 + x$$

$$S(x^3 + (-2)xy, (-2)y^2 + x) = 0.$$

$$S(x^2y + (-2)y^2 + x, (-2)y^2 + x) = 0.$$

$$S((-1)x^2, (-2)y^2 + x) = 0.$$

$$S((-2)xy, (-2)y^2 + x) = 0.$$

Enough for groebner basis. Result is

•
$$x^3 + (-2)xy$$

•
$$x^2y + (-2)y^2 + x$$

•
$$(-1)x^2$$

$$\bullet$$
 $(-2)xy$

•
$$(-2)y^2 + x$$

. \blacksquare Minimalizes groebner basis

•
$$x^3 + (-2)xy$$

•
$$x^2y + (-2)y^2 + x$$

•
$$(-1)x^2$$

$$\bullet$$
 $(-2)xy$

•
$$(-2)y^2 + x$$

 $x^3 + (-2)xy$ is removed by $(-1)x^2$. $x^2y + (-2)y^2 + x$ is removed by $(-1)x^2$. Minimalized groebner basis is

- - x²
- $\bullet \ y^2 + (\frac{-1}{2})x$

2