20104016

DEENA

Importing Libraries

In [1]: import numpy as np
import pandas as pd
import seaborn as sns

Importing Datasets

In [2]: df=pd.read_csv("madrid_2002.csv")

Out[2]:

	date	BEN	со	EBE	MXY	NMHC	NO_2	NOx	ОХҮ	0_3	PN
0	2002-04-01 01:00:00	NaN	1.39	NaN	NaN	NaN	145.100006	352.100006	NaN	6.54	41.990(
1	2002-04-01 01:00:00	1.93	0.71	2.33	6.20	0.15	98.150002	153.399994	2.67	6.85	20.9800
2	2002-04-01 01:00:00	NaN	0.80	NaN	NaN	NaN	103.699997	134.000000	NaN	13.01	28.4400
3	2002-04-01 01:00:00	NaN	1.61	NaN	NaN	NaN	97.599998	268.000000	NaN	5.12	42.1800
4	2002-04-01 01:00:00	NaN	1.90	NaN	NaN	NaN	92.089996	237.199997	NaN	7.28	76.3300
217291	2002-11-01 00:00:00	4.16	1.14	NaN	NaN	NaN	81.080002	265.700012	NaN	7.21	36.7500
217292	2002-11-01 00:00:00	3.67	1.73	2.89	NaN	0.38	113.900002	373.100006	NaN	5.66	63.3899
217293	2002-11-01 00:00:00	1.37	0.58	1.17	2.37	0.15	65.389999	107.699997	1.30	9.11	9.640(
217294	2002-11-01 00:00:00	4.51	0.91	4.83	10.99	NaN	149.800003	202.199997	1.00	5.75	N
217295	2002-11-01 00:00:00	3.11	1.17	3.00	7.77	0.26	80.110001	180.300003	2.25	7.38	29.2400

217296 rows × 16 columns

Data Cleaning and Data Preprocessing

```
Out[4]: Index(['date', 'BEN', 'CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx', 'OXY', '0_3
                                     'PM10', 'PXY', 'SO_2', 'TCH', 'TOL', 'station'],
                                  dtype='object')
In [5]: ( )
                    <class 'pandas.core.frame.DataFrame'>
                    Int64Index: 32381 entries, 1 to 217295
                    Data columns (total 16 columns):
                                Column Non-Null Count Dtype
                     --- ----- ------ -----

      0
      date
      32381 non-null object

      1
      BEN
      32381 non-null float64

      2
      CO
      32381 non-null float64

      3
      EBE
      32381 non-null float64

      4
      MXY
      32381 non-null float64

      5
      NMHC
      32381 non-null float64

      6
      NO_2
      32381 non-null float64

      7
      NOx
      32381 non-null float64

      8
      OXY
      32381 non-null float64

      9
      O_3
      32381 non-null float64

      10
      PM10
      32381 non-null float64

      11
      PXY
      32381 non-null float64

      12
      SO_2
      32381 non-null float64

      13
      TCH
      32381 non-null float64

                      13 TCH
                                                 32381 non-null float64
                                                    32381 non-null float64
                      14 TOL
                       15 station 32381 non-null int64
                    dtypes: float64(14), int64(1), object(1)
                    memory usage: 4.2+ MB
```

In [6]: data=df[['CO' ,'station']]

Out[6]:

	СО	station
1	0.71	28079035
5	0.72	28079006
22	0.80	28079024
24	1.04	28079099
26	0.53	28079035
217269	0.28	28079024
217271	1.30	28079099
217273	0.97	28079035
217293	0.58	28079024
217295	1.17	28079099

32381 rows × 2 columns

Line chart

In [7]: (1)

Out[7]: array([<AxesSubplot:>, <AxesSubplot:>], dtype=object)

Line chart

Out[8]: <AxesSubplot:>

Bar chart

Out[10]: <AxesSubplot:>

Histogram

Out[11]: <AxesSubplot:ylabel='Frequency'>

Area chart

```
In [12]: ( )
```

Out[12]: <AxesSubplot:>

Box chart

station

Pie chart

0.0

In [14]:

Out[14]: <AxesSubplot:ylabel='station'>

Scatter chart

```
In [15]:
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='station'>

In [16]:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 32381 entries, 1 to 217295
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	date	32381 non-null	object
1	BEN	32381 non-null	float64
2	CO	32381 non-null	float64
3	EBE	32381 non-null	float64
4	MXY	32381 non-null	float64
5	NMHC	32381 non-null	float64
6	NO_2	32381 non-null	float64
7	NOx	32381 non-null	float64
8	OXY	32381 non-null	float64
9	0_3	32381 non-null	float64
10	PM10	32381 non-null	float64
11	PXY	32381 non-null	float64
12	S0_2	32381 non-null	float64
13	TCH	32381 non-null	float64
4.4	TOI	2220411	C1 + C 4

Out[17]:								
		BEN	СО	EBE	MXY	NMHC	NO_2	
	count	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	32381.000000	323
	mean	2.479155	0.787323	2.914004	7.013636	0.155827	58.936796	1
	std	2.280959	0.610810	2.667881	6.774365	0.135731	31.472733	1
	min	0.180000	0.000000	0.180000	0.190000	0.000000	0.890000	
	25%	0.970000	0.420000	1.140000	2.420000	0.080000	35.660000	
	50%	1.840000	0.620000	2.130000	5.140000	0.130000	57.160000	
	75%	3.250000	0.980000	3.830000	9.420000	0.200000	78.769997	1
	max	32.660000	8.460000	41.740002	99.879997	2.700000	263.600006	13
In [18]:	df1=df	[['BEN', 'C	D', 'EBE', '	MXY', 'NMHC	', 'NO_2', '	NOx', 'OXY'	, '0_3',	

EDA AND VISUALIZATION

In [19]:

Out[19]: <seaborn.axisgrid.PairGrid at 0x17306ba3400>


```
In [20]:
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]: <AxesSubplot:xlabel='station', ylabel='Density'>

In [21]:

TO TRAIN THE MODEL AND MODEL BULDING

Linear Regression

```
In [24]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
Out[24]: LinearRegression()
In [25]:
Out[25]: 28078992.450676896
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[26]:
                  Co-efficient
            BEN
                    1.575128
             CO
                  -14.345509
            EBE
                  -11.362526
            MXY
                    4.113362
           NMHC
                   85.707203
           NO_2
                    0.240931
            NOx
                   -0.082249
            OXY
                   -5.360800
             O_3
                   -0.024806
           PM10
                   -0.130848
             PXY
                    7.964753
            SO_2
                    0.535164
            TCH
                   40.106519
             TOL
                   -1.429867
```

```
In [27]: prediction =lr.predict(x_test)
```

Out[27]: <matplotlib.collections.PathCollection at 0x173163e7580>

ACCURACY

```
In [28]: 0.20540165394087107

In [29]: 0.20540165394087107
```

Out[29]: 0.1956676790822448

Ridge and Lasso

```
In [30]:
In [31]: rr=Ridge(alpha=10)
Out[31]: Ridge(alpha=10)
```

Accuracy(Ridge)

```
In [34]: | la=Lasso(alpha=10)
Out[34]: Lasso(alpha=10)
In [35]:
Out[35]: 0.05493421515458763
        Accuracy(Lasso)
In [36]:
Out[36]: 0.05934587551963111
In [37]: from sklearn.linear_model import ElasticNet
        en=ElasticNet()
Out[37]: ElasticNet()
In [38]:
Out[38]: array([ 8.09427428e-01, 0.00000000e+00, -2.87739088e+00, 1.60918497e+00,
               2.05569488e-01, 2.18276131e-01, -1.96678093e-02, -2.48125952e+00,
               -1.95233114e-02, 1.48769312e-04, 2.28771347e+00, 3.37465269e-01,
               1.06777271e+00, -1.15488619e+00])
In [39]:
Out[39]: 28079038.695838805
In [41]:
Out[41]: 0.10366792051069895
        Evaluation Metrics
In [42]: from sklearn import metrics
        print(metrics.mean_absolute_error(y_test,prediction))
        print(metrics.mean_squared_error(y_test,prediction))
        28.6890120557367
        1122.34559538234
        33.501426766368326
```

Logistic Regression

```
In [45]:
Out[45]: (32381, 14)
Out[46]: (32381,)
In [47]:
In [49]: logr=LogisticRegression(max_iter=10000)
Out[49]: LogisticRegression(max_iter=10000)
In [51]: prediction=logr.predict(observation)
     [28079035]
In [52]:
Out[52]: array([28079006, 28079024, 28079035, 28079099], dtype=int64)
Out[53]: 0.8480899292795158
In [54]:
Out[54]: 2.5638972732451705e-10
In [55]:
Out[55]: array([[2.56389727e-10, 3.44199742e-71, 1.00000000e+00, 1.43898646e-13]])
     Random Forest
In [57]: rfc=RandomForestClassifier()
out[57]: RandomForestClassifier()
```

```
In [62]: from sklearn.tree import plot_tree
         plt.figure(figsize=(80,40))
Out[62]: [Text(2166.9, 1993.2, 'SO_2 <= 5.795\ngini = 0.748\nsamples = 14363\nvalue =</pre>
         [4909, 5679, 5969, 6109]\nclass = d'),
          Text(1060.2, 1630.8000000000002, 'PXY <= 1.015\ngini = 0.136\nsamples = 323
         4\nvalue = [135, 4800, 0, 236]\nclass = b'),
          Text(595.2, 1268.4, 'MXY <= 1.125\ngini = 0.065\nsamples = 2372\nvalue = [3
         9, 3651, 0, 87]\nclass = b'),
          Text(297.6, 906.0, 'SO_2 <= 5.005\ngini = 0.009\nsamples = 1457\nvalue = [2,
         2303, 0, 8]\nclass = b'),
          Text(148.8, 543.599999999999, 'TCH <= 1.175\ngini = 0.003\nsamples = 1393\n
         value = [2, 2210, 0, 1]\nclass = b'),
          Text(74.4, 181.199999999999, 'gini = 0.346\nsamples = 9\nvalue = [2, 7, 0,
         0] \nclass = b'),
          Text(223.20000000000000, 181.19999999999982, 'gini = 0.001\nsamples = 1384\n
         value = [0, 2203, 0, 1]\nclass = b'),
          Text(446.4000000000003, 543.59999999999, 'BEN <= 0.395\ngini = 0.13\nsamp
         les = 64\nvalue = [0, 93, 0, 7]\nclass = b'),
          Text(372.0, 181.199999999999, 'gini = 0.355\nsamples = 18\nvalue = [0, 20,
         0, 6]\nclass = b'),
          Text(520.800000000001, 181.1999999999982, 'gini = 0.027\nsamples = 46\nval
         ue = [0, 73, 0, 1] \setminus nclass = b'),
          Text(892.800000000001, 906.0, 'TCH <= 1.255\ngini = 0.149\nsamples = 915\nv
         alue = [37, 1348, 0, 79] \setminus class = b'),
          Text(744.0, 543.59999999999, 'TCH <= 1.185\ngini = 0.655\nsamples = 93\nva
         lue = [37, 56, 0, 58]\nclass = d'),
          Text(669.6, 181.199999999999, 'gini = 0.101\nsamples = 20\nvalue = [36, 1,
         0, 1] \setminus ass = a'),
          Text(818.4000000000001, 181.19999999999999, 'gini = 0.509\nsamples = 73\nval
         ue = [1, 55, 0, 57] \setminus act = d'),
          Text(1041.600000000001, 543.59999999999, 'TOL <= 2.425\ngini = 0.031\nsam
         ples = 822\nvalue = [0, 1292, 0, 21]\nclass = b'),
          Text(967.2, 181.199999999999, 'gini = 0.186\nsamples = 45\nvalue = [0, 69,
         0, 8]\nclass = b'),
          Text(1116.0, 181.199999999999, 'gini = 0.021\nsamples = 777\nvalue = [0, 1
         223, 0, 13]\nclass = b'),
          Text(1525.2, 1268.4, 'NMHC <= 0.085\ngini = 0.304\nsamples = 862\nvalue = [9
         6, 1149, 0, 149\ \nclass = b'),
          Text(1264.800000000000, 906.0, 'NMHC <= 0.015\ngini = 0.617\nsamples = 158\
         nvalue = [96, 39, 0, 115] \setminus nclass = d'),
          Text(1190.4, 543.599999999999, 'gini = 0.0\nsamples = 63\nvalue = [96, 0,
         0, 0]\nclass = a'),
          Text(1339.2, 543.59999999999, 'OXY <= 0.855\ngini = 0.378\nsamples = 95\nv
         alue = [0, 39, 0, 115] \setminus class = d'),
          Text(1264.8000000000002, 181.1999999999982, 'gini = 0.0\nsamples = 10\nvalu
         e = [0, 12, 0, 0] \setminus class = b'),
          Text(1413.600000000001, 181.199999999982, 'gini = 0.308\nsamples = 85\nva
         lue = [0, 27, 0, 115] \setminus nclass = d'),
          Text(1785.6000000000001, 906.0, 'CO <= 0.395 / ngini = 0.058 / nsamples = 704 / nv
         alue = [0, 1110, 0, 34] \setminus class = b'),
          Text(1636.8000000000002, 543.59999999999, 'SO_2 <= 5.285\ngini = 0.242\nsa
         mples = 133\nvalue = [0, 183, 0, 30]\nclass = b'),
          Text(1562.4, 181.199999999999, 'gini = 0.046\nsamples = 108\nvalue = [0, 1
         66, 0, 4]\nclass = b'),
```

```
7, 0, 26]\n = d'),
Text(1934.4, 543.599999999999, 'CO \leftarrow 0.515\ngini = 0.009\nsamples = 571\nv
alue = [0, 927, 0, 4] \setminus class = b'),
Text(1860.0000000000002, 181.1999999999982, 'gini = 0.06\nsamples = 89\nval
ue = [0, 125, 0, 4] \setminus class = b'),
 Text(2008.8000000000002, 181.19999999999982, 'gini = 0.0 \nsamples = 482 \nval
ue = [0, 802, 0, 0] \setminus class = b'),
Text(3273.600000000004, 1630.8000000000002, 'TCH <= 1.245\ngini = 0.694\nsa
mples = 11129\nvalue = [4774, 879, 5969, 5873]\nclass = c'),
Text(2678.4, 1268.4, 'BEN <= 0.895\ngini = 0.451\nsamples = 2158\nvalue = [8
81, 2, 2338, 158]\nclass = c'),
Text(2380.8, 906.0, 'BEN <= 0.615\ngini = 0.338\nsamples = 704\nvalue = [91,
2, 881, 125]\nclass = c'),
Text(2232.0, 543.59999999999, 'PXY <= 0.585\ngini = 0.24\nsamples = 285\nv
alue = [8, 2, 387, 51] \setminus class = c'),
Text(2157.600000000004, 181.1999999999982, 'gini = 0.065\nsamples = 92\nva
lue = [1, 2, 145, 2] \setminus class = c'),
Text(2306.4, 181.1999999999982, 'gini = 0.313\nsamples = 193\nvalue = [7,
0, 242, 49]\nclass = c'),
Text(2529.600000000004, 543.59999999999, '0_3 <= 23.83\ngini = 0.395\nsam
ples = 419\nvalue = [83, 0, 494, 74]\nclass = c'),
Text(2455.2000000000003, 181.1999999999982, 'gini = 0.0\nsamples = 49\nvalu
e = [0, 0, 87, 0] \setminus class = c'),
Text(2604.0, 181.199999999999, 'gini = 0.44\nsamples = 370\nvalue = [83,
0, 407, 74]\nclass = c'),
Text(2976.0, 906.0, 'SO_2 <= 7.115\ngini = 0.471\nsamples = 1454\nvalue = [7
90, 0, 1457, 33]\nclass = c'),
Text(2827.200000000003, 543.59999999999, 'MXY <= 3.02\ngini = 0.459\nsamp
les = 191\nvalue = [216, 0, 68, 26]\nclass = a'),
31, 15]\nclass = c'),
Text(2901.600000000004, 181.199999999982, 'gini = 0.318\nsamples = 157\nv
alue = [207, 0, 37, 11] \setminus nclass = a'),
Text(3124.8, 543.59999999999, 'EBE <= 1.875\ngini = 0.418\nsamples = 1263\
nvalue = [574, 0, 1389, 7]\nclass = c'),
Text(3050.4, 181.199999999999, 'gini = 0.228\nsamples = 554\nvalue = [105,
0, 750, 7]\nclass = c'),
Text(3199.200000000003, 181.1999999999982, 'gini = 0.488\nsamples = 709\nv
alue = [469, 0, 639, 0] \setminus class = c'),
Text(3868.8, 1268.4, 'OXY <= 4.095\ngini = 0.69\nsamples = 8971\nvalue = [38
93, 877, 3631, 5715]\nclass = d'),
Text(3571.200000000003, 906.0, 'NMHC <= 0.055\ngini = 0.618\nsamples = 558
2\nvalue = [1035, 768, 2165, 4804]\nclass = d'),
Text(3422.4, 543.59999999999, 'TOL <= 4.855\ngini = 0.588\nsamples = 534\n
value = [458, 0, 257, 127]\nclass = a'),
Text(3348.0000000000005, 181.1999999999982, 'gini = 0.489 \nsamples = 93 \nva
lue = [11, 0, 41, 100]\nclass = d'),
Text(3496.8, 181.199999999999, 'gini = 0.481\nsamples = 441\nvalue = [447,
0, 216, 27 \setminus nclass = a'),
Text(3720.000000000005, 543.59999999999, 'TCH <= 1.285\ngini = 0.58\nsamp
les = 5048\nvalue = [577, 768, 1908, 4677]\nclass = d'),
Text(3645.6000000000004, 181.1999999999982, 'gini = 0.556\nsamples = 697\nv
alue = [36, 30, 529, 514] \setminus class = c'),
Text(3794.4, 181.199999999999, 'gini = 0.569\nsamples = 4351\nvalue = [54
1, 738, 1379, 4163]\nclass = d'),
```

```
Text(4166.400000000001, 906.0, 'OXY <= 5.565\ngini = 0.609\nsamples = 3389\n
value = [2858, 109, 1466, 911]\nclass = a'),
    Text(4017.60000000000004, 543.599999999999, 'MXY <= 12.015\ngini = 0.679\nsa
mples = 1302\nvalue = [822, 75, 637, 526]\nclass = a'),
    Text(3943.2000000000003, 181.199999999982, 'gini = 0.644\nsamples = 1017\n
value = [785, 58, 447, 316]\nclass = a'),
    Text(4092.0000000000005, 181.1999999999982, 'gini = 0.603\nsamples = 285\nv
alue = [37, 17, 190, 210]\nclass = d'),
    Text(4315.200000000001, 543.599999999999, 'CO <= 1.165\ngini = 0.538\nsamples = 2087\nvalue = [2036, 34, 829, 385]\nclass = a'),
    Text(4240.8, 181.19999999999982, 'gini = 0.338\nsamples = 763\nvalue = [947,</pre>
```

3, 130, 101]\nclass = a'),
Text(4389.6, 181.199999999999, 'gini = 0.603\nsamples = 1324\nvalue = [108
9, 31, 699, 284]\nclass = a')]

Conclusion

Accuracy

Linear Regression: 0.1956676790822448

Ridge Regression: 0.05493421515458763

Lasso Regression: 0.10366792051069895

ElasticNet Regression: 28079038.695838805

Logistic Regression: 0.8480899292795158

Random Forest: 0.7756992852730963

Logistic Regression is suitable for this dataset

20 of 20