Extreme Gradient Boosting (XGBoost)

Group 6:

Armin Nouri Chris Kusha Jassleen Bhullar Sara Douglas

Algorithm

- Basic structure:
 - Random forest
 - Decision trees
- Boosting:
 - o ensemble modelling
 - Strong > weak
- Gradient Boosting

Advantages

- Consists of hyperparameters than can be tuned
- Handles missing values
- Tree pruning
- Provides intuitive features, including parallelisation, distributed computing, and cache optimization
- Core algorithm is parallelizable high speed and performance
- Can be used with multiple base learners Tree Base learner is most used
- High flexibility can define custom optimization objectives and evaluation criteria
- Built in cross-validation

Parameter Tuning

Tree specific
Regularization
General (Booster, Multithreading)

Built-in Cross Validation & Model Tuning

k-fold CV GridSearchCV RandomizedSearchCV

Extendibility

Regression
Binary & Multiclass classification
Recommendation & Ranking
Language API - Early Stopping

Interface compatibility

Python, Java, R, C++, Julia, Scala, Hadoop

↑ Algorithm

- Tree pruning
- Sparsity Aware Split Finding (Handles missing data)

System

- √ Parallelization
- √ Cache Aware
- ✓ Distributed and Scalable computing for large datasets.

High Flexibility

Custom objective function and custom evaluation metrics

Ranks relative importance of each variable

Disadvantages

- Sensitive to outliers
- Must manually create dummy variables for categorical features before feeding into models
- Overfits if the model is not stopped early
- Can be less effective on smaller datasets
- Less effective on sparse and unstructured data
- Training time high for large dataset

How does XGBoost compare?

- Uses the same model representation and inference as Random Forest
- An upgrade of gradient boosting, improving on bagging techniques
- It's trained models are decision trees
- A more regularized form of gradient boosting
- Depends on data/needs other models can work better accuracy may not be the only goal

Data Pre-Processing

- Requires the same level of normalization that most ML algorithms require
- Super sensitive to outliers
- Data must be structured as a table of feature vectors
 - Features can be numeric or categorical
 - Numeric features should be scaled (Z-scored)
 - Categorical features should be encoded using one hot encoding (dummy variables)

Hyperparameters (for tree learners)

Learning_rate / eta

- Affects how quickly the model fits the residual error using additional base learners
- A lower learning rate needs a higher number of boosting rounds

Num_boosting_rounds

Number of estimators

Max_depth

Maximum number of decision points in a branch of a decision tree

Hyperparameters pt.2

Colsample_bytree (between 0 and 1)

- Percentage of features used per tree
- Smaller colsample causes higher regularization

Subsample

- Percentage of samples used per tree in a boosting round
- Be careful of overfitting or underfitting!

Hyperparameters pt.3

Regularization: Places a limit on model complexity, aiming to reduce variance, while limiting increase in bias.

- Gamma: minimum loss reduction allowed for a split to occur
 - Sets the threshold for gain needed to create new nodes in a tree
- Alpha: L1 regularization on leaf weights
 - L1 Penalty: absolute value of magnitude of coefficients (causes some to go to 0 and drop out)
 - Larger values mean more regularization
- Lambda: L2 regularization on leaf weights
 - L2 Penalty: square of the coefficients, will reduce all of them by a degree but not eliminate any
 - Causes leaf weights to smooth out

How can we tune them?

Two main methods:

- Grid Search: checks every combination of hyperparameters to find the combination with the best score.
 - Additional options and parameters cause grid searches to increase exponentially

- Random Search: user specifies how many random combinations of hyper parameter values to check.
 - Good for large hyperparameter spaces but can take a long time to find a good fit.