Absolutely amazing thesis title

Author's Full Name

Intitute name
University name
year

The thesis is submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of the University of Portsmouth.

Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award.

Ethical review number: ETHICS CODE.

Approximate word count: MANY NUMBERS

ABSTRACT

I don't want the first paragraph to be indented. Lots of text that all holds in one page. Some times I mention codes I use with the code font, sometimes I have a bit of maths 1+1=2. But nice overall summary with key messages, one aspect discussed in each paragraph... I do not put references or links or acronyms in the abstract.

ACKNOWLEDGEMENTS

I am grateful to everybody.

Thank you to all the academic people.

Thank you to all the family and friends.

Dissemination

Papers

❖ R. L. Munoz and M. Bruni. In: Classical and Quantum Gravity 40.13 (June 2023), p. 135010.

"EBWeyl: a Code to Invariantly Characterize Numerical Spacetimes".

DOI: 10.1088/1361-6382/acd6cf. arXiv: gr-qc/2211.08133

(Munoz and Bruni, 2023a) see Chapter 5.

R. L. Munoz and M. Bruni. In: *Physical Review D* 107.12 (June 2023), p. 123536.

"Structure formation and quasispherical collapse from initial curvature perturbations with numerical relativity simulations".

DOI: 10.1103/PhysRevD.107.123536. arXiv: astro-ph/2302.09033

(Munoz and Bruni, 2023b) see Chapter 6.

Codes

❖ EBWeyl GitHub

(Munoz, 2022; Munoz and Bruni, 2023a), see Chapter 5

❖ ICPertFLRW GitHub

(Munoz, 2023a; Munoz and Bruni, 2023b), see Section ?? and Appendix ??

❖ sphereint GitHub

(Munoz, 2023b; Munoz and Bruni, 2023b), see Appendix ??

CONTENTS

ΑD	strac	τ	V
Ac	knov	vledgements	vii
Di	ssem	ination	ix
	Pape	ers	ix
	Code	es	ix
Co	nten	ts	X
Lis	st of I	Figures	xi
Lis	st of T	Tables	xii
No	tatio	n	xiii
Ac	rony	m	xvi
1	Intr	oduction	1
	1.1	Structure	1
2	Gen	eral Relativity	3
	2.1	Section	3
		2.1.1 Sub Section	3
		2.1.1.1 Sub Sub Section, the & symbol in a title is nice	3
		2.1.1.2 Cosmological constant in a title Λ	3
3	Nun	nerical Relativity	5
4	Cosı	mology	7
5	EBW	Veyl	9
	5.1	Test-bed spacetimes	9
		5.1.1 The Λ -Szekeres models of Barrow and Stein-Schabes	9
	5.2	Results	10
	5.3	Summary	10
6	Qua	si-spherical collapse	11
	6.1	Initial conditions	11
	6.2	Simulation results	11
	6.3	Summary	11
7	Futu	are prospects	13
A	Fini	te differencing tests	15
B	Ana	lytic expressions	16
	B.1	The Λ -Szekeres models of Barrow and Stein-Schabes	16
	B.2	A non-diagonal inhomogeneous test metric	16
	B.3	Bianchi II Collins-Stewart	16
Bil	bliogi	raphy	17

List of Figures

5.1	δ for the Λ -Szekeres spacetime	9
6.1	Initial δ in the simulation box	12
6.2	Radial profile of initial δ	12
6.3	Isosurface of initial δ	12

T					
	IST	\mathbf{OF}	A	RI	.F.S

3.1	Finite differencing coefficients															5

Notation

The speed of light and the gravitational constant are taken to be one: c=G=1. Greek indices are used for spacetime components $\{0,\ 1,\ 2,\ 3\}$, while Latin indices are used for space components $\{1,\ 2,\ 3\}$.

GENERAL RELATIVITY

Spacetime

au	Proper time, $\frac{da}{d au}=\dot{a}$	Eq. (??)
$\delta_{lphaeta}$	Kronecker delta	
$g_{\mu u}$	Spacetime metric	Eq. (??), $\{-, +, +, +\}$
$A_{(\mu u)}$	Symmetrisation of the tensor $A_{\mu\nu}$	Eq. (??)
$A_{[\mu u]}$	Anti-symmetrisation of the tensor $A_{\mu u}$	Eq. (??)
$ar{ar{A}}^{lpha}{}_{eta}$ & $ ilde{ar{A}}^{lpha}{}_{eta}$	Tensor density & pseudo-tensor respectively	Eq. (??) & Eq. (??)
$\epsilon_{lphaeta\mu u}$	Levi-Civita tensor	Eq. (??)
∂_{lpha}	Partial derivative	$\partial_{\alpha} = \frac{\partial}{\partial x^{\alpha}}$
$ abla_{lpha}$	Covariant derivative w.r.t. $g_{\mu\nu}$	Eq. (??)
$\Gamma^{lpha}{}_{\mu u}$	Christoffel symbols	Eq. (??)
$R^{\alpha}_{\sigma\mu\nu}$	Riemann tensor	Eq. (??)
$R_{\alpha\beta} \& R$	Ricci tensor & Ricci scalar (also $^{(4)}R$)	Eq. (??) & Eq. (??)
$C_{lphaeta\mu u}$	Weyl tensor	Eq. (??)

Projection along or orthogonally to a vector

The superscript $\{v\}$ denotes a variable defined in the frame of said timelike vector v^{α} .

The pre-superscript (3) applies for 3-dimensional quantities built from the spatial metric $P_{\alpha\beta}^{\{v\}}$.

For simplicity, quantities with (3) are not given the $\{v\}$ superscript; instead, the relevant frame should be determined based on context.

$P_{lphaeta}^{\{v\}}$	Projection tensor of v^{α} or Spatial metric	Eq. (??), $\{+, +, +\}$
$P_{lphaeta}^{\{v\}} \ A_{\langle\mu u angle}^{\{v\}}$	Spatially projected, symmetric and tracefree	Eq. (??)
,	part of $A_{\mu u}$	
\mathcal{L}_v	Lie derivative along the vector v^{α}	Eq. (??)
$D_{lpha}^{\{v\}}$	Spatial covariant derivative w.r.t. $P_{lphaeta}^{\{v\}}$	Eq. (??)
$D^{\{v\}} \times$	Spatial curl operator	Eq. (??)
$\epsilon^{\{v\}}_{eta\mu u}$	Spatial Levi-Civita tensor	Eq. (??)
$^{(3)}\Gamma^{\alpha}_{\mu\nu}$	Spatial Christoffel symbols	
$^{(3)}R^{\alpha}{}_{\sigma\mu\nu}$	Spatial Riemann tensor	Eq. (??)
$^{(3)}R_{\sigma\nu} \& ^{(3)}R$	Spatial Ricci tensor & scalar respectively	

XiV NOTATION

Einstein's field equations

Λ	Cosmological constant	
$G_{lphaeta}$	Einstein tensor	Eq. (??)
κ	Einstein's gravitational constant	$\kappa = 8\pi G c^{-4} = 8\pi$
$T_{lphaeta}$	Energy stress tensor	Eq. (??)
T	Trace of the energy stress tensor	Eq. (??)
Matter		
$ ho^{\{v\}}$	Energy density	Eq. (??)
$q_{lpha}^{\{v\}}$	Energy flux or momentum density	Eq. (??)
$S_{lphaeta}^{\{v\}}$	Stress tensor	Eq. (??)
$S^{\{v\}}$	Trace of the stress tensor	Eq. (??)
$p^{\{v\}}$	Pressure	Eq. (??)
$\pi^{\{v\}}_{lphaeta}$	Anisotropic pressure	Eq. (??)
$arrho^{\{v\}}$	Rest mass energy density	Eq. (??)
$arepsilon^{\{v\}}$	Specific internal energy	Eq. (??)
$h^{\{v\}}$	Specific enthalpy	Eq. (??)

Kinematical rest-energy frame

K, L, N

All of the following are uniquely defined in the frame of the fluid flow u^{α} . u^{α} Fluid 4-velocity

Fluid 4-velocity	
Projection tensor of u^{α} or Spatial metric	Eq. (??), $\{+, +, +\}$
Expansion tensor	Eq. (??)
Vorticity tensor	Eq. (??)
Acceleration	Eq. (??)
Expansion scalar	Eq. (??)
Shear	Eq. (??)
Electric part of the Weyl tensor in the frame v^{α}	Eq. (??)
Magnetic part of the Weyl tensor in the frame v^α	Eq. (??)
Complex combination of $E_{lphaeta}^{\{v\}}$ and $B_{lphaeta}^{\{v\}}$	Eq. (??)
Weyl scalars in the frame of the null tetrad	Eq. (??)
$l^{\alpha}, \ k^{\alpha}, \ m^{\alpha}, \ \bar{m}^{\alpha}$	
Frame independent invariants from $C_{lphaeta\mu u}$	Eq. (??, ??, ??, ??)
	Projection tensor of u^{α} or Spatial metric Expansion tensor

Frame dependent invariants from $C_{\alpha\beta\mu\nu}$ Eq. (??)

Numerical Relativity

γ_{ij}	Projection tensor of n^{α} or Spatial metric	Eq. (??), $\{+, +, +\}$
α	Lapse	
eta^i	Shift	Eq. (??)
n^i	Timelike vector normal to γ_{ij}	Eq. (??)
\mathfrak{a}^i	Acceleration of n^i	Eq. (??)
t	Coordinate time	Eq. (??)
K_{ij}	Extrinsic curvature	Eq. (??)
K	Trace of extrinsic curvature	Eq. (??)
A_{ij}	Traceless part of the extrinsic curvature	Eq. (??)

Cosmology

Homogeneous & isotropic universe

The overhead bar identifies background quantities.

a	Scale factor	Section ??
η	Conformal time, $\frac{dg}{d\eta} = g'$	Eq. (??)
H	Hubble's scalar	Eq. (??)
\mathcal{H}	Conformal Hubble's scalar	Eq. (??)
z	Redshift	Eq. (??)
$ar{\Theta}$	FLRW expansion scalar	Eq. (??)
$ar{ ho}$	FLRW energy density in the u^μ frame \ldots	Eq. (??)
Ω_k , Ω_m , Ω_{Λ}	Dimensionless density parameters of curvature,	Eq. (??)
	matter and dark energy	

Perturbation theory & structure formation

The (1) superscript identifies a first-order perturbative term.

` '	-	
ϕ , ω , ψ , χ	Scalar perturbations to the spacetime metric	Eq. (??, ??, ??)
ω_i^S , χ_i^S	Vector perturbations to the spacetime metric	Eq. (??, ??, ??)
χ_{ij}^{TT}	Tensor perturbations to the spacetime metric	Eq. (??, ??)
δ	Density contrast	Eq. (??)
$\delta_C^{(1)}$	Linear density contrast a collapse	Eq. (??)
f_1	Growth factor	Eq. (??)
ϑ_{ij}	Deformation tensor	Eq. (??)
ϑ	Deformation scalar, trace of ϑ_{ij}	Eq. (??)
\square_{ij}	Traceless operator	$\Box_{ij} = \partial_i \partial_j - \frac{1}{3} \delta_{ij} \delta^{kl} \partial_k \partial_l$
$ abla^2$	Laplacian operator	$\nabla^2 = g^{\alpha\beta} \nabla_\alpha \nabla_\beta$
\mathcal{R}_c	Comoving curvature perturbation	Eq. (??)
ζ	Uniform-density curvature perturbation	Eq. (??)
Φ , Ψ	Bardeen potentials: Newtonian potential and	Eq. (??)
	conformal Newtonian curvature perturbation	
$\langle \phi angle_{\mathcal{D}^{\{v\}}}$	Average of ϕ on the domain $\mathcal{D}^{\{v\}}$ which is de-	Eq. (??)
	fined on the $P_{lphaeta}^{\{v\}}$ spatial hypersurface	
$\mathcal{Q}_{\mathcal{D}^{\{u\}}}$	Backreaction	Eq. (??)

ACRONYM

ADM	Arnowitt, Deser and Misner
BSSNOK	Baumgarte, Shapiro, Shibata, Nakamura, Ookara and Kojima
CDM	Cold Dark Matter
CMB	Cosmic Microwave Background
EdS	Einstein-de Sitter
FD	Finite Difference
FLRW	Friedmann Lemaître Robertson Walker
GR	General Relativity
LSS	Large-Scale Structure
LTB	Lemaître Tolman Bondi
NP	Newmann-Penrose
NR	Numerical Relativity
OD	Over Density
PDE	Partial Differential Equation
TA	Turn Around
UD	Under Density

1 - Introduction

To site someone I use either: (Newton, 1687) if I just need to include a reference or Newton (1687) if I mention this in the sentence. I create links like this: Eq. (2.1) Fig. (5.1) Table (3.1) Chapter 2 Section 2.1 Appendix B but if I want to reference multiple things at the same time I need to write it out in full: Eq. (2.1, 2.2) or Chapter 2, 3 and 4 and to have footnotes¹. The first time I use an accronym I give the full name: General Relativity (GR).

1.1 Structure

Here I explain what happens in the chapters: the introduction chapters are: Chapter 2, 3 and 4, research chapters based on papers are Chapter 5 and 6, and in particular I tell you exactly which parts have my original contributions.

¹This is what I do. And I make sure these are full sentences.

2 - GENERAL RELATIVITY

I put punctuation around equations because they are part of a sentence. I shall show you a beautiful equation

$$G_{\alpha\beta} = \kappa T_{\alpha\beta},\tag{2.1}$$

that is very beautiful. And how are each of these defined?

$$2\nabla_{[\mu}\nabla_{\nu]}u^{\alpha} = R^{\alpha}{}_{\beta\mu\nu}u^{\beta}, \qquad \nabla_{\alpha}T^{\alpha\beta} = 0, \tag{2.2}$$

and with faerie dust.

2.1 Section

2.1.1 Sub Section

2.1.1.1 Sub Sub Section, the & symbol in a title is nice

2.1.1.2 Cosmological constant in a title Λ

To separate things more I use bullet points. Pretty symbol, pifont ding 118, to make clear that these

- ❖ are the points I am making.

For a sub bullet I use the ding 70 bullet point and define the leftmargin to give a hierarchal look. I can also define itemindent such that there is no indentation should the text following the bullet be long

- - **♦ Second:** point

Or if I want a more title like look I can separate them out

❖ sub sub section

and put some text in between

sub sub section

3 - Numerical Relativity

This is a table. In caption [Text for table list] Actual caption

Order	-6		-4	-3	-2	-1	0	1	2	3	4	5	6
	Back	wards											
1						-1	1						
2					$\frac{1}{2}$	-2	$\frac{3}{2}$						
4			$\frac{1}{4}$	$-\frac{4}{3}$	3	-4	$\frac{25}{12}$						
6	$\frac{1}{6}$	$-\frac{6}{5}$	$\frac{15}{4}$	$-\frac{20}{3}$	$\frac{15}{2}$	-6	$\frac{49}{20}$						
	Cent	red											
2						$-\frac{1}{2}$	0	$\frac{1}{2}$					
4					$\frac{1}{12}$	$-\frac{1}{2}$ $-\frac{2}{3}$ $-\frac{3}{4}$	0	$\frac{2}{3}$	$-\frac{1}{12}$				
6				$-\frac{1}{60}$	$\frac{3}{20}$	$-\frac{3}{4}$	0	$\frac{3}{4}$	$-\frac{3}{20}$	$\frac{1}{60}$			
	Forw	ards											
1							-1	1					
2							$-\frac{3}{2}$	2	$-\frac{1}{2}$				
4							$-\frac{25}{12}$	4	-3	$\frac{4}{3}$	$-\frac{1}{4}$		
6							$-\frac{49}{20}$	6	$-\frac{15}{2}$	$\frac{20}{3}$	$-\frac{15}{4}$	$\frac{6}{5}$	$-\frac{1}{6}$

Table 3.1: Coefficients of backward, centred and forward finite differencing schemes at second, fourth and sixth order (Fornberg, 1988).

4 - Cosmology

5 - EBWEYL

5.1 Test-bed spacetimes

5.1.1 The Λ -Szekeres models of Barrow and Stein-Schabes

This is a figure. I make sure the plot isn't too heavy or the pdf buffers when scrolling through it. In caption [Text for figure list] { Actual caption }

Figure 5.1: Space distribution of the density contrast δ in Eq. (??) indicated by colour coding (the top plot ranges from -0.8 to 0 and the bottom plot ranges from -0.7705 to -0.7701) for the Λ -Szekeres spacetime on the z-x and y-x planes (with $y/\lambda=0$ and $z/\lambda=0$ respectively) of a data box of size $\lambda=20$ Mpc with 64^3 grid points, at redshift 230.

CHAPTER 5. EBWEYL

5.2 Results

5.3 Summary

6 - Quasi-spherical collapse

6.1 Initial conditions

Here's three figures together using minipage

6.2 Simulation results

6.3 Summary

0.03

0.02

0.01

-0.01

-0.02

-0.03

0 1 2 3 4 5

Figure 6.1: Initial distribution at $z_{IN}=302.5$ of the density contrast δ in the simulation box, for a Λ CDM universe. The x, y, and $z>-0.25\lambda_{pert}$ region is removed exposing the centre of the over-density at $x=y=z=-0.25\lambda_{pert}$, where $\delta_{IN,\;OD}=0.03$. The full lines go through the vertices and dash-dotted lines through the centre of the edges of an octahedron centred at the over-density.

Figure 6.2: Initial radial profile at $z_{IN}=302.5$ of the initial density contrast δ starting from the centre of the over-density to its minimum in three different directions, towards the vertices, edges, and faces of the octahedral distribution in Eq. (??) plotted against the proper radius from the over-dense peak. Error bars, when visible, are indicated as shaded regions.

-0.5

0.5

0.0 y [λ_{pert}]

Figure 6.3: Isosurface for $\delta=0.01$ in the initial distribution of the matter density contrast at $z_{IN}=302.5$. The two different panels show different points of view. The periodic boundary conditions insure that this distribution is a lattice of over-densities connected by filaments and separated by voids.

7 - Future prospects

One paragraph summary of conclusions, I don't make it long because I already put summaries in the previous chapters. Then I make a list of ideas to pursue and give their relevance in the field.

A - Finite differencing tests

B - Analytic expressions

- B.1 The Λ -Szekeres models of Barrow and Stein-Schabes
- B.2 A non-diagonal inhomogeneous test metric
- **B.3** Bianchi II Collins-Stewart

BIBLIOGRAPHY

Fornberg, B. (1988). "Generation of finite difference formulas on arbitrarily spaced grids". In: *Mathematics of computation* 51, pp. 699–706. DOI: 10.1090/S0025-5718-1988-0935077-0 (cit. on p. 5).

Munoz, R. L. (2022). EBWeyl. url: https://github.com/robynlm/ebweyl (cit. on p. ix).

- (2023a). ICPertFLRW. url: https://github.com/robynlm/ICPertFLRW (cit. on p. ix).
- (2023b). sphereint. url: https://github.com/robynlm/sphereint (cit. on p. ix).
- Munoz, R. L. and M. Bruni (June 2023a). "EBWeyl: a Code to Invariantly Characterize Numerical Spacetimes". In: *Classical and Quantum Gravity* 40.13, p. 135010. DOI: 10.1088/1361-6382/acd6cf. arXiv: gr-qc/2211.08133 (cit. on p. ix).
- (June 2023b). "Structure formation and quasispherical collapse from initial curvature perturbations with numerical relativity simulations". In: *Physical Review D* 107.12, p. 123536. DOI: 10.1103/PhysRevD.107.123536. arXiv: astro-ph/2302.09033 (cit. on p. ix).

Newton, I. (1687). *Philosophiæ Naturalis Principia Mathematica*. Jussu Societatis Regiae ac Typis Joseph Streater (cit. on p. 1).