Simulación practica del movimiento Browniano y examinación de los efectos de las dimenciones en los tiempos de regreso al origen de una partícula

Isaac Estrada García

16 de septiembre de 2020

1. Introducción

El movimiento Browniano es un modelo matemático de una partícula que describe la danza aleatoria de las partículas que se debe a la agitación molecular en la que se hayan inmersas.

En este trabajo los objetivos principales son modelar sistemáticamente el movimiento browniano de una partícula de una a ocho dimensiones del espacio, así como también examinar el tiempo de regreso al origen de la partícula analizando su caminata pseudoaleatoria.

2. Hipótesis

Es posible que la probabilidad sea nula conforme las dimensiones vayan aumentando, provocando que la partícula no regrese al origen.

3. Objetivos

Simular el movimiento Browniano de una partícula examinando los efectos de la dimensión en el tiempo de regreso al origen, así como también la probabilidad para dimensiones de 1 a 8 en incrementos lineales de uno, variando el número de pasos de la caminata como potencias de dos con exponentes de 5 a 10 en incrementos lineales de uno, con 50 repeticiones del experimento para cade combinación.

- 4. Simulación y resultados
- 5. Conclusiones
- 6. Anexo