# Escalamiento Multidimensional



José A. Perusquía Cortés Análisis Multivariado, Semestre 2025-II



 Un conjunto de métodos enfocados en reducir la dimensión usando como criterio preservar la "distancia" entre observaciones

#### Tipos

Escalamiento multidimensional clásico (lineal)

Escalamiento multidimensional métrico (no lineal)

Escalamiento multidimensional no métrico (no lineal)

Par Reconstrucción de un mapa a través de las distancias entre ciudades



#### Distancia en avión

|         | Atl. | Chic. | Denv. | Houston | LA   | Miami | NY   | SF   | Seat. | Wash. |
|---------|------|-------|-------|---------|------|-------|------|------|-------|-------|
| Atlanta | _    |       |       |         |      |       |      |      |       |       |
| Chicago | 587  | _     |       |         |      |       |      |      |       |       |
| Denver  | 1212 | 920   | _     |         |      |       |      |      |       |       |
| Houston | 701  | 940   | 879   | _       |      |       |      |      |       |       |
| LA      | 1936 | 1745  | 831   | 1374    | _    |       |      |      |       |       |
| Miami   | 604  | 1188  | 1726  | 968     | 2339 | _     |      |      |       |       |
| NY      | 748  | 713   | 1631  | 1420    | 2451 | 1092  | _    |      |       |       |
| SF      | 2139 | 1858  | 949   | 1645    | 347  | 2594  | 2571 | _    |       |       |
| Seattle | 2182 | 1737  | 1021  | 1891    | 959  | 2734  | 2408 | 678  | _     |       |
| Wash.   | 543  | 597   | 1494  | 1220    | 2300 | 923   | 205  | 2442 | 2329  | _     |

Utilizando el escalamiento multidimensional clásico



#### Rotando la solución



Problema similar: identificar las ciudades

| _    |      |      |      |      |      |      |      |      |   |
|------|------|------|------|------|------|------|------|------|---|
| 587  | _    |      |      |      |      |      |      |      |   |
| 1212 | 920  | _    |      |      |      |      |      |      |   |
| 701  | 940  | 879  | _    |      |      |      |      |      |   |
| 1936 | 1745 | 831  | 1374 | _    |      |      |      |      |   |
| 604  | 1188 | 1726 | 968  | 2339 | _    |      |      |      |   |
| 748  | 713  | 1631 | 1420 | 2451 | 1092 | _    |      |      |   |
| 2139 | 1858 | 949  | 1645 | 347  | 2594 | 2571 | _    |      |   |
| 2182 | 1737 | 1021 | 1891 | 959  | 2734 | 2408 | 678  | _    |   |
| 543  | 597  | 1494 | 1220 | 2300 | 923  | 205  | 2442 | 2329 | _ |



# Ejemplo capitales Europa

No siempre es fácil!



# Escalamiento Multidimensional Métrico (Clásico)

## Procedimiento

- Construir una matriz de distancias/disimilitudes D
  - 1.  $d_{i,j} \ge 0$  para toda i, j = 1, ..., n
  - $2. d_{i.i} = 0$
  - $3. \mathbf{D} = \mathbf{D}^T$
- Encontrar un conjunto de vectores  $\mathbf{y}_1, ..., \mathbf{y}_n \in \mathbb{R}^k$  tales que  $d_{\mathbf{x}}(i,j) \approx d_{\mathbf{y}}(i,j)$

#### Observación 1

- 1.  $\mathbf{D}$  es euclidiana si existe una configuración tal que  $d_{\mathbf{x}}(i,j) = d_{\mathbf{y}}(i,j)$
- 2. En ocasiones D es una medición con error.

## Construcción

#### Definición 1 (matriz doblemente centrada)

Sea D una matriz de "distancias" entonces la matriz doblemente centrada está definida como

$$B = HAH$$

donde,

$$\mathbf{A} = -\frac{1}{2}\mathbf{D}\odot\mathbf{D} \qquad a_{ij} = -\frac{d_{ij}^2}{2}$$

#### Construcción

#### **Teorema 1**

Sea  $\mathbf{D}_{n imes n}$  una matriz de distancias con matriz doblemente centrada

$$\mathbf{B} = -\frac{1}{2}\mathbf{H}(\mathbf{D} \odot \mathbf{D})\mathbf{H} \text{ entonces}$$

- 1. Si  $\mathbf{D}_{n \times n}$  es euclidiana entonces  $\mathbf{B} = (\mathbf{H}\mathbf{X})(\mathbf{H}\mathbf{X})^T$  y así  $\mathbf{B}$  es semi-definida positiva.
- 2.Si  ${\bf B}$  es semi-definida positiva con eigenvalores  $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0$  y descomposición espectral  ${\bf B} = {\bf U} \Lambda {\bf U}^T$  entonces

$$\mathbf{X} = \mathbf{U}\Lambda^{\frac{1}{2}}$$

es una matriz de datos de dimensión  $n \times k$  con matriz euclidiana de distancias **D**.

## Propiedades

1. La solución no es única (invariante ante cambios de origen, rotaciones y reflexiones)

$$2.\,\bar{\mathbf{y}}=\mathbf{0}$$

- 3. Robusto ante perturbaciones [e.g. Sibson (1978, 1979, 1981) y Mardia (1978)]
- 4. Si  $\lambda_1$  y  $\lambda_2$  son mucho más grandes que  $\lambda_3, \ldots, \lambda_n$  y los elementos de  $\mathbf{y}^{(1)}$  y  $\mathbf{y}^{(2)}$  son diferentes entonces si  $\sum_{k=1}^2 (y_{ik} y_{jk})^2 \approx d_{ij}^2$  se tiene una buena representación en  $\mathbb{R}^2$
- 5. Si la matriz es no euclidiana podemos hacer uso de los primeros l eigenvalores positivos y así, se tiene una configuración razonable con  $(\mathbf{y}^{(1)}, ..., \mathbf{y}^{(l)})$

# Algoritmo

1. Construir la matriz A

2. Obtener la matriz doblemente centrada B

3. Obtener los k valores propios positivos y los vectores propios asociados

4. Si k=2 o k=3 se tiene una configuración que se puede graficar

En R: cmdscale()

Distancia en avión de 10 ciudades de Estados Unidos

|         | Atl. | Chic. | Denv. | Houston | LA   | Miami | NY   | SF   | Seat. | Wash. |
|---------|------|-------|-------|---------|------|-------|------|------|-------|-------|
| Atlanta | _    |       |       |         |      |       |      |      |       |       |
| Chicago | 587  | _     |       |         |      |       |      |      |       |       |
| Denver  | 1212 | 920   | _     |         |      |       |      |      |       |       |
| Houston | 701  | 940   | 879   | _       |      |       |      |      |       |       |
| LA      | 1936 | 1745  | 831   | 1374    | _    |       |      |      |       |       |
| Miami   | 604  | 1188  | 1726  | 968     | 2339 | _     |      |      |       |       |
| NY      | 748  | 713   | 1631  | 1420    | 2451 | 1092  | _    |      |       |       |
| SF      | 2139 | 1858  | 949   | 1645    | 347  | 2594  | 2571 | _    |       |       |
| Seattle | 2182 | 1737  | 1021  | 1891    | 959  | 2734  | 2408 | 678  | _     |       |
| Wash.   | 543  | 597   | 1494  | 1220    | 2300 | 923   | 205  | 2442 | 2329  | _     |

Los eigenvalores de **B** están dados por

$$\lambda_{1} = 9582144$$

$$\lambda_{2} = 1686820$$

$$\lambda_{3} = 8157.298$$

$$\lambda_{4} = 1432.87$$

$$\lambda_{5} = 508.6687$$

$$\lambda_{6} = 25.14349$$

$$\lambda_{7} = -6.218108e - 10$$

$$\lambda_{8} = -897.7013$$

$$\lambda_{9} = -5467.577$$

$$\lambda_{10} = -35478.89$$

D no es Euclidiana

 $\,^{ullet}\,$  Nos quedamos con los 6 valores propios positivos y construimos Y

| $\mathbf{y}^{(1)}$ | $\mathbf{y}^{(2)}$ | $\mathbf{y}^{(3)}$ | $\mathbf{y}^{(4)}$ | $\mathbf{y}^{(5)}$ | $\mathbf{y}^{(6)}$ |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| -718.7594          | 142.99427          | 35.102499          | -1.224963          | -7.4094776         | 1.5046461          |
| -382.0558          | -340.83962         | 29.602228          | -8.237885          | -12.0242975        | -2.3383016         |
| 481.6023           | -25.28504          | 53.393802          | 1.339279           | 15.6658897         | -0.9526963         |
| -161.4663          | 572.76991          | 1.452571           | -1.762318          | -0.6718656         | 2.7007621          |
| 1203.7380          | 390.10029          | -18.635065         | 14.974864          | -3.1692006         | -1.6561488         |
| -1133.5271         | 581.90731          | -32.268842         | -2.375685          | 2.9718537          | -2.0471878         |
| -1072.2357         | -519.02423         | -34.341878         | -14.253857         | 6.4473289          | 0.2709088          |
| 1420.6033          | 112.58920          | -7.754755          | -18.120276         | -0.8054123         | 0.8695197          |
| 1341.7225          | -579.73928         | -23.650787         | 5.961453           | -1.4286322         | 0.6143794          |
| -979.6220          | -335.47281         | -2.899773          | 23.699388          | 0.4238136          | 1.0341183          |

Podemos quedarnos con las primeras dos columnas

#### Otras consideraciones

- 1. Si se tienen similitudes con las siguientes condiciones:
  - $S_{ij} \leq S_{ii}$
  - $rac{1}{2} S_{ij} = S_{ji}$

Se puede crear una matriz de disimilitudes

$$d_{ij} = (s_{ii} - 2s_{ij} + s_{jj})^{\frac{1}{2}}$$

- 2.Relación cercana entre el escalamiento multidimensional clásico y los componentes principales
- 3. Se puede considerar la formulación:  $d_{\mathbf{x}}(i,j) \approx d_{\mathbf{y}}(i,j) + a$  (additive constant problem)

## MDS vs PCA

1. Si D es euclidiana entonces el MDS clásico (o análisis de coordenadas principales) da los mismos resultados que PCA.

2. MDS es más flexible ya que acepta a las observaciones X o a una matriz de distancias/disimilitudes D.

3. MDS es computacionalmente más demandante.

## Ejemplo calificaciones

Los eigenvalores de S son

$$\lambda_1 = 60000.28$$
 $\lambda_2 = 17478.45$ 
 $\lambda_3 = 9006.942$ 
 $\lambda_4 = 7511.62$ 
 $\lambda_5 = 2805.543$ 

lguales a los 5 eigenvalores de B distintos de cero

## Ejemplo calificaciones

Aplicando las transformaciones a los alumnos 1, 2, 3, 4, 86, 87 y 88

| Alumno | PCA1   | PCA2  | MDS1   | MDS2  |
|--------|--------|-------|--------|-------|
| 1      | -66.28 | -6.48 | -66.28 | 6.48  |
| 2      | -63.60 | 6.79  | -63.60 | -6.79 |
| 3      | -62.86 | -3.26 | -62.86 | 3.26  |
| 4      | -44.51 | 5.65  | -44.51 | -5.65 |
| 86     | 44.35  | 7.86  | 44.35  | -7.86 |
| 87     | 62.54  | 7.58  | 62.54  | -7.58 |
| 88     | 65.93  | 2.66  | 65.93  | -2.66 |

## Constante aditiva

Se busca encontrar la constante c más pequeña tal que un conjunto de disimilitudes tengan una representación euclidiana mediante,

$$d_{i,j}^c = d_{i,j} + c \qquad \qquad i \neq j$$

- Problema estudiado por muchos autores (e.g. Messick & Abelson, 1956; Saito, 1978;
   Cailliez, 1983)
- La solución de Cailliez se utiliza en R: cmdscale(...,add=T)
- Por cuestiones numéricas no se puede garantizar que todos los valores propios sean no negativos

Los valores propios de **B** al sumarle la constante aditiva c=39.12509

$$\lambda_1 = 9851759$$
 $\lambda_2 = 1760672$ 
 $\lambda_3 = 49961.61$ 
 $\lambda_4 = 23925.69$ 
 $\lambda_5 = 22217.78$ 
 $\lambda_6 = 15077.03$ 
 $\lambda_7 = 11721.03$ 
 $\lambda_8 = 7807.841$ 
 $\lambda_9 = 1.55739e - 10$ 
 $\lambda_{10} = -5.297162e - 10$ 

Figure 20 Figur



# Escalamiento Multidimensional Métrico

# Ejemplo rollo suizo (chocorol)



# Ejemplo rollo suizo (chocorol)





 Una generalización no lineal del escalamiento clásico en donde se busca preservar las distancias y no solo los productos interiores

 Una generalización no lineal del escalamiento clásico en donde se busca preservar las distancias y no solo los productos interiores

#### Objetivo

Minimizar una función objetivo conocida coloquialmente como "Stress"

Stress = 
$$\frac{1}{2} \sum_{i,j} w_{ij} \left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2$$

 Una generalización no lineal del escalamiento clásico en donde se busca preservar las distancias y no solo los productos interiores

#### Objetivo

Minimizar una función objetivo conocida coloquialmente como "Stress"

Stress = 
$$\frac{1}{2} \sum_{i,j} w_{ij} \left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2$$

• En la práctica,  $w_{ij} = 1$  y  $w_{ij} = 0$  (valores faltantes)

Stress = 
$$\frac{1}{c} \sum_{i,j} \frac{\left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2}{d_{\mathbf{x}}(i,j)} \qquad c = \sum_{i < j} d_{\mathbf{x}}(i,j)$$

NLM: Mapeo no-lineal de Sammon (1969)

$$\text{Stress} = \frac{1}{c} \sum_{i,j} \frac{\left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2}{d_{\mathbf{x}}(i,j)} \qquad \qquad c = \sum_{i < j} d_{\mathbf{x}}(i,j)$$

Por lo general,  $d_{\mathbf{x}}(i,j)$  es la distancia Euclidiana (no necesariamente)

$$\text{Stress} = \frac{1}{c} \sum_{i,j} \frac{\left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2}{d_{\mathbf{x}}(i,j)} \qquad c = \sum_{i < j} d_{\mathbf{x}}(i,j)$$

- Por lo general,  $d_{\mathbf{x}}(i,j)$  es la distancia Euclidiana (no necesariamente)
- Da más importancia a distancias cortas

Stress = 
$$\frac{1}{c} \sum_{i,j} \frac{\left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2}{d_{\mathbf{x}}(i,j)} \qquad c = \sum_{i < j} d_{\mathbf{x}}(i,j)$$

- Por lo general,  $d_{\mathbf{x}}(i,j)$  es la distancia Euclidiana (no necesariamente)
- Da más importancia a distancias cortas
- Requiere una rutina numérica (quasi-Newton) y de un parámetro "magic" (recomendado entre .3 y .4)

Stress = 
$$\frac{1}{c} \sum_{i,j} \frac{\left[ d_{\mathbf{x}}(i,j) - d_{\mathbf{y}}(i,j) \right]^2}{d_{\mathbf{x}}(i,j)} \qquad c = \sum_{i < j} d_{\mathbf{x}}(i,j)$$

- Por lo general,  $d_{\mathbf{x}}(i,j)$  es la distancia Euclidiana (no necesariamente)
- Da más importancia a distancias cortas
- Requiere una rutina numérica (quasi-Newton) y de un parámetro "magic" (recomendado entre .3 y .4)
- En R: función sammon en librería MASS



#### Sammon NLM



# Escalamiento Multidimensional No Métrico

## Motivación

Alternativa menos rígida al MDS utilizando una función monótona desconocida de las distancias/proximidades, i.e.

$$d_{x}(i,j) = f(d_{y}(i,j))$$

#### Motivación

 Alternativa menos rígida al MDS utilizando una función monótona desconocida de las distancias/proximidades, i.e.

$$d_{x}(i,j) = f(d_{y}(i,j))$$

- Para el MDS no métrico, construimos  $d_{\mathbf{y}}(i,j)$  utilizando solo los rangos de  $d_{\mathbf{x}}(i,j)$ , e.g. para las ciudades de Estados Unidos usamos:
  - El viaje más corto es entre NY y Washington D.C.
  - El segundo viaje más corto es entre Seattle y Atlanta.

•••

- El viaje más largo es entre Seattle y Miami

#### MDS no métrico

#### Objetivo

Optimizar la función "stress"

Stress = 
$$\sqrt{\frac{\sum_{ij} w_{ij} \left[ f(\delta_{\mathbf{x}}(i,j)) - d_{\mathbf{y}}(i,j) \right]^2}{c}}$$

#### MDS no métrico

#### Objetivo

Optimizar la función "stress"

Stress = 
$$\sqrt{\frac{\sum_{ij} w_{ij} \left[ f(\delta_{\mathbf{x}}(i,j)) - d_{\mathbf{y}}(i,j) \right]^2}{c}}$$

#### donde

- $\delta_{\mathbf{x}}(i,j)$  son proximidades
- fes una función monótona tal que $f(\delta_{\mathbf{x}}(i,j)) \approx d_{\mathbf{x}}(i,j)$  (distancia Euclidiana)
- c es un factor de escala
- $w_{ij}$  son pesos no negativos como en el escalamiento multidimensional métrico

#### isoMDS

- Algoritmo dado por Shepard (1962) y Kruskal (1964)
  - 1. Dada una matriz de disimilitudes  ${f D}$  ordenar las entradas fuera de la diagonal.
  - 2. Para una configuración k-dimensional, minimizar la función Stress dada por

Stress = 
$$\frac{\sum_{i < j} [d_{ij}^* - d_{\mathbf{y}}(i, j)]^2}{\sum_{i < j} d_{\mathbf{y}}(i, j)^2}$$

con respecto a valores  $d_{ij}^*$  tal que  $d_{ij}^*$  esté relacionada de forma monótona con  $d_{\mathbf{x}}(i,j)$ ,

i.e., 
$$d_{\mathbf{x}}(i,j) < d_{\mathbf{x}}(k,l) \Rightarrow d_{ij}^* \leq d_{kl}^*$$
.

Los  $d_{ij}^*$  se encuentran a través de una regresión monótona (isotonic regression).

Los  $d_{ij}^*$  se encuentran a través de una regresión monótona (isotonic regression).

Requiere de rutinas numéricas.

- Los  $d_{ij}^*$  se encuentran a través de una regresión monótona (isotonic regression).
- Requiere de rutinas numéricas.
- Para encontrar la dimensión adecuada calcular para cada k

$$S_k = \min \text{Stress}^2$$

detenerse hasta que  $S_k$  sea pequeño para  $k=k_0$  o una regla de dedo de Kruskal donde

 $S_k \ge 20\%$  es pobre,  $S_k = 10\%$  es justo,  $S_k \le 5\%$  es bueno y  $S_k = 0$  es perfecto.

- Los  $d_{ij}^*$  se encuentran a través de una regresión monótona (isotonic regression).
- Requiere de rutinas numéricas.
- Para encontrar la dimensión adecuada calcular para cada k

$$S_k = \min \text{Stress}^2$$

detenerse hasta que  $S_k$  sea pequeño para  $k=k_0$  o una regla de dedo de Kruskal donde  $S_k \geq 20 \%$  es pobre,  $S_k=10 \%$  es justo,  $S_k \leq 5 \%$  es bueno y  $S_k=0$  es perfecto.

En **R**: isoMDS/Shepard de la librería MASS utilizando una configuración inicial (e.g. solución clásica).



## Variantes

Hacer uso de otras distancias, e.g. distancia geodésica en la variedad

#### Variantes

- Hacer uso de otras distancias, e.g. distancia geodésica en la variedad
- Si la distancia geodésica es difícil de calcular (común) hacer uso de aproximaciones discretas usando grafos.

#### Variantes

- Hacer uso de otras distancias, e.g. distancia geodésica en la variedad
- Si la distancia geodésica es difícil de calcular (común) hacer uso de aproximaciones discretas usando grafos.
- Por ejemplo, Isomap (en R isomap en librería MASS):
  - 1. Conectamos cada punto con sus K vecinos más cercanos (o los que caigan en una bola de radio  $\epsilon$ ).
  - 2. Aproximamos la matriz de distancias geodésicas a través del camino más corto en la red (algoritmo de Dijkstra o Floyd-Warshall)
  - 3. Usamos escalamiento multidimensional clásico en la matriz de distancias.



