Cybersecurity CSCS Introduction to Networks Part 2

Today's Adenda

- A basic intro to how data is delivered from one hop to another.
- Specifically, we will discuss the working of ARP

· Hosts connected directly to each other:

Hosts communicating to another host in the **same** network

Host A and B are directly connected

- Host A and B are directly connected
 - Both hosts have a NIC, and therefore a MAC address

- Host A and B are directly connected
 - · Both hosts have a NIC, and therefore a MAC address
 - Both hosts are configured with an IP address and a Subnet Mask

- Host A has some Data to send to Host B
 - Networking doesn't care what this data is it's just $\, {f 1} \,$ and $\, {f 0} \,$

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B
 - Maybe user typed: ping 10.1.1.33
 - Maybe IP address was acquired from DNS
 - DNS converts Domain Name into an IP address
 - example: www.PracticalNetworking.net --> 192.249.124.38

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B
 - Maybe user typed: ping 10.1.1.33
 - Maybe IP address was acquired from DNS
 - · DNS converts Domain Name into an IP address
 - example: www.PracticalNetworking.net --> 192.249.124.38
 - Host A knows 10.1.1.33 is in its own IP Network

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B
- Host A can create the L3 header to attach to the Data

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B
- Host A can create the L3 header to attach to the Data
 - Layer 3 End to End

SRC 10.1.1.22 DST 10.1.1.33

Data /L3/

10.1.1.22 255.255.255.0 b3b3 10.1.1.33 255.255.255.0

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B
- Host A can create the L3 header to attach to the Data
- Host A does not know Host B's MAC address

- Host A has some Data to send to Host B
- Host A knows the IP address of Host B

255.255.255.0

- Host A can create the L3 header to attach to the Data
- Host A does not know Host B's MAC address
 - Host A must use Address Resolution Protocol (ARP)

255.255.255.0

Host A uses ARP to resolve target's MAC address

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with target IP
 - ARP Request includes sender's MAC address

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with target IP
 - ARP Request includes sender's MAC address
 - ARP Request is a Broadcast sent to everyone on the network

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with target IP
 - ARP Request includes sender's MAC address
 - ARP Request is a Broadcast sent to everyone on the network
 - Destination MAC address: ffff.ffff.ffff
 - · Reserved MAC address to send a packet to everyone on the local network

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with known IP
 - ARP Mappings are stored in an ARP Cache

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with known IP
 - ARP Mappings are stored in an ARP Cache

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with known IP
 - ARP Mappings are stored in an ARP Cache
 - Host B responds by sending an ARP Response

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with known IP
 - ARP Mappings are stored in an ARP Cache
 - Host B responds by sending an ARP Response
 - Response is sent Unicast (directly to Host A)

- Host A uses ARP to resolve target's MAC address
 - ARP Request asks for the MAC address associated with known IP
 - ARP Mappings are stored in an ARP Cache
 - Host B responds by sending an ARP Response
 - Response is sent Unicast (directly to Host A)
 - Host A populates it's ARP cache with Host B's IP/MAC mapping

- Host A uses ARP to resolve target's MAC address
- Host A creates L2 header

- Host A uses ARP to resolve target's MAC address
- Host A creates L2 header
- Data is sent to Host B

- Host A uses ARP to resolve target's MAC address
- Host A creates L2 header
- Data is sent to Host B
 - L2 header is discarded

- Host A uses ARP to resolve target's MAC address
- Host A creates L2 header
- Data is sent to Host B
 - L2 header is discarded
 - L3 header is discarded

- Host A uses ARP to resolve target's MAC address
- Host A creates L2 header
- Data is sent to Host B
 - L2 header is discarded
 - L3 header is discarded
 - Data is processed by Application

Host B has necessary information to respond

Host B has necessary information to respond

- Host B has necessary information to respond
 - ARP cache is already populated

- Host B has necessary information to respond
 - ARP cache is already populated
- Further data exchange between hosts is simple
 - Both hosts have what they need to create L3 and L2 headers

