

Universidade Federal de Viçosa Departamento de Informática Centro de Ciências Exatas e Tecnológicas

INF 112 - Programação 2 Aula 3

Introdução à Análise de Algoritmos

Aula baseada nos slides disponibilizados por Anany Levitin (autor do livro: *The Design and Analysis of Algorithms*) e nas aulas do Prof. Fabio Ribeiro

- · Dado um algoritmo, o que podemos analisar nele?
 - Corretude
 - Eficiência de tempo
 - Eficiência de espaço
 - Otimalidade
 - ...
- · Possíveis abordagens:
 - Análise teórica
 - Análise empírica

 Nosso foco será a análise teórica de tempo de processamento.

· Em geral, quanto maior o tamanho da "entrada" do algoritmo, maior o tempo de processamento.

· Assim, vamos analisar o algoritmo em função do "tamanho" *n* da entrada.

- Como avaliamos o tempo de processamento? Poderíamos estimar o tempo (segundos, milisegundos, etc) de processamento de uma implementação do algoritmo.
- · Problemas:
 - Dependência do computador onde o programa seria executado.
 - Dependência da qualidade implementação do programa.
 - Dependência da linguagem de programação/compilador.
 - Como medir o tempo de execução? cpu time? wall time?
 - etc.

- Outra solução: contar quantas vezes cada operação do algoritmo é executada.
- Poderia ser uma forma bem precisa de se analisar o algoritmo, mas é trabalhosa!
- Normalmente se deseja apenas uma estimativa do comportamento do algoritmo em função do tamanho da entrada. Para isso, normalmente não é necessário avaliar todas as operações.

- Assim, o que se faz é calcular o número de vezes que a operação básica do algoritmo é executada.
 - Operação básica: a mais importante e que mais contribui para o tempo de processamento.
- Exercício: no código abaixo, qual é a operação básica?

```
double x = 3.14*5.2*sqrt(10.5)*pow(23.2,44.2);
int soma = 0;
for(int i=0;i<10000;i++) {
    double y = 3.14*5.2*sqrt(10.5)*pow(23.2,44.2);
    for(int j=0;j<10000;j++)
         soma++;
```


- · A operação básica é a operação mais executada no algoritmo (em algoritmos iterativos, é a que está no laço mais interno).
- Em geral, é ela que pesa mais (MUITO MAIS!!!) no tempo de execução do algoritmo. Veja o exemplo no próximo slide!


```
int soma = 0;
t0 = clock();
for(int i=0;i<2000;i++)
     for(int j=0;j<2000;j++)
          soma += 3.14*5.2*sqrt(soma)*pow(soma/100,44.2);
cout << "Tempo 1 (ms): " << ((clock()-t0)*1.0/CLOCKS_PER_SEC)*1000 << endl;
soma = 0;
t0 = clock();
for(int i=0;i<2000;i++)
     for(int j=0;j<2000;j++)
          for(int k=0;k<2000;k++)
               soma++;
cout << "Tempo 2 (ms): " << ((clock()-t0)*1.0/CLOCKS_PER_SEC)*1000 << endl;
```

```
int soma = 0;
t0 = clock();
for(int i=0;i<2000;i++)
     for(int j=0;j<2000;j++)
          soma += 3.14*5.2*sqrt(soma)*pow(soma/100,44.2);
cout << "Tempo 1 (ms): " << ((clock()-t0)*1.0/CLOCKS_PER_SEC)*1000 << endl;
soma = 0;
t0 = clock();
for(int i=0;i<2000;i++)
     for(int j=0;j<2000;j++)
          for(int k=0;k<2000;k++)
               soma++;
cout << "Tempo 2 (ms): " << ((clock()-t0)*1.0/CLOCKS_PER_SEC)*1000 << endl;
```

Tempo 1 (ms): 140 Tempo 2 (ms): 19850

Problema	Medida típica da entrada	Operação básica
Buscar por uma chave em uma lista	Número de elementos na lista: n	Comparação das chaves
Multiplicação de duas matrizes	Dimensões das matrizes ou número de células	Multiplicação dos dois números
Verificar a primalidade de um número n	Tamanho de n: número de dígitos (na representação binária)	Divisão
Problema de grafos	Número de vértices e/ou arestas	Visitar um vértice e/ou atravessar uma aresta

· Assim, o tempo de execução do algoritmo pode ser estimado da seguinte forma:

Tamanho da entrada

$$T(n) \approx t_{op}C(n)$$

Tempo de execução

Tempo da op. básica

Número de vezes que a op. básica é executada

· Suponha o seguinte código:

```
for(int i=0;i<n;i++)

for(int j=0;j<i;j++)

soma++;
```

- · Qual é a operação básica dele?
- Quanto vale C(n) ? (ou seja, quantas vezes a operação básica é executada)
- · Quanto vale t_{op}?

· Suponha o seguinte código:

```
for(int i=0;i<n;i++)

for(int j=0;j<i;j++)

soma++;
```

- · Qual é a operação básica dele? R: incremento da soma
- Quanto vale C(n) ? (ou seja, quantas vezes a operação básica é executada)
 R: n(n-1)/2
- · Quanto vale t_{op}? R: ???

Suponha o seguinte código:

```
for(int i=0;i<n;i++)
     for(int j=0;j<i;j++)
          soma++;
```

- Qual é a operação básica dele? R: incremento da soma
- Quanto vale C(n)? (ou seja, quantas vezes a operação básica é executada) R: n(n-1)/2
- Quanto vale t_{on}? R: ???
- Se dobrarmos o tamanho da entrada, quantas vezes mais tempo o algoritmo gasta?

Departamento de Informática

- Se dobrarmos o tamanho da entrada, quantas vezes mais tempo o algoritmo gasta?
- $n(n-1)/2 = \frac{1}{2}(n^2 n)$
- Para n grande, o n² "pesa" muito mais no tempo de execução! podemos considerar apenas o ½n² nos cálculos!
- · Assim, podemos ver que o tempo fica 4 vezes maior! (faça os cálculos!)
- Note que isso independe do valor de t_{op} !

- Na análise de algoritmos estamos preocupados apenas com a taxa de crescimento do mesmo (ou "ordem de complexidade")...
 Isso é analisado supondo que a entrada é muito grande.
- · Ao analisar a taxa de crescimento, desconsideramos constantes e monômios de grau menor.
- Assim, se C(n) = $5n^3 + 3n^2 + n + 100000$, aproximamos C(n) assim: C(n) $\approx n^3$
- Se n for pequeno, essa aproximação não fica muito boa... mas normalmente estamos interessados em valores grandes de n. Por que?

- · Exemplo de como essa aproximação é válida.
- C(n) = n(n-1)/2 + 2n + 1

```
int soma =0;
soma++;
for(int i=0;i<n;i++) {
        soma++;
        soma++;
}
for(int i=0;i<n;i++)
        for(int j=0;j<i;j++)
        soma++;</pre>
```

n	Tempo (s)	Tempo estimado de forma "grosseira"*
10	0	1
100	0	-
1000	0	-
10000	0.130	0.130
20000	0.490	0.520
40000	1.950	2.080
80000	7.800	8.320
160000	31.720	33.280

- · Exemplo de como essa aproximação é válida.
- C(n) = n(n-1)/2 + 2n + 1

```
int soma =0;
soma++;
for(int i=0;i<n;i++) {
        soma++;
        soma++;
}
for(int i=0;i<n;i++)
        for(int j=0;j<i;j++)
        soma++;</pre>
```

n	Tempo (s)	Tempo estimado de forma "grosseira"*
10	0	-
100	0	-
1000	0	-
10000	0.130	0.130
20000	0.490	0.520
40000	1.950	2.080
80000	7.800	8.320
160000	31.720	33.280

*Com base no tempo de 100000 e supondo que quando n dobra, o tempo quadruplica

A seguinte tabela (do livro do Levitin) mostra o crescimento de várias funções

TABLE 2.1 Values (some approximate) of several functions important for analysis of algorithms

n	$\log_2 n$	n	$n \log_2 n$	n^2	n^3	2^n	n!
$ \begin{array}{r} 10 \\ 10^2 \\ 10^3 \\ 10^4 \\ 10^5 \\ 10^6 \end{array} $	3.3 6.6 10 13 17 20	10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6}	$3.3 \cdot 10^{1}$ $6.6 \cdot 10^{2}$ $1.0 \cdot 10^{4}$ $1.3 \cdot 10^{5}$ $1.7 \cdot 10^{6}$ $2.0 \cdot 10^{7}$	10^{2} 10^{4} 10^{6} 10^{8} 10^{10} 10^{12}	10^{3} 10^{6} 10^{9} 10^{12} 10^{15} 10^{18}	$10^{3} \\ 1.3 \cdot 10^{30}$	3.6·10 ⁶ 9.3·10 ¹⁵⁷

Exemplo: suponha que um computador execute 1 bilhão de operações por segundo (um valor razoável) e que a operação básica seja executada 2ⁿ vezes. Temos que:

$$T(n) \approx 10^{-9} \times 2^{-1}$$

Assim:

n	Tempo
10	~0s
20	0.001s
30	1s
40	1099s
50	13 dias!
100	4x10 ¹³ anos!

Departamento de Informática

Note que o algoritmo do exemplo é tão ineficiente que se conseguíssemos juntar o poder de processamento de 1000 computadores (supondo que cada um deles seja 1000 vezes mais rápido do que o computador do exemplo), ainda assim o algoritmo levaria 4000000 anos para terminar!

n	Tempo
10	~0s
20	0.001s
30	1s
40	1099s
50	13 dias!
100	4x10 ¹³ anos!

Departamento de Informática

- Dependendo do algoritmo, o tempo de execução pode variar em função da entrada (não apenas do tamanho dela).
- · Assim, avaliamos o tempo de execução em cenários de "melhor caso", "caso médio" e "pior caso".
- O melhor caso representa quantas vezes a operação básica será executada na entrada "mais fácil de ser processada".
- · O pior caso é para a entrada mais difícil.
- O caso médio é o tempo esperado supondo uma entrada qualquer (supondo que todas as entradas possuem uma probabilidade igual de ocorrer).

- · Exemplo:
- Busca sequencial de um elemento em um vetor (suponha que o elemento buscado sempre esteja no vetor).
- · Qual seria o número de operações no melhor caso?
- · Qual seria o número de operações no pior caso?
- · Qual seria o número de operações no caso médio?

