

Kubebench: Benchmarking ML Workloads on Kubernetes

Xinyuan Huang (Cisco) Ce Gao (Caicloud)

Why Kubebench?

- Understanding system performance is essential for moving ML from lab to production.
- Benchmarking and analyzing ML workloads on Kubernetes is not an easy job today.
- Many requirements for a good benchmark: compliance, consistency, reproducibility, ...

What is Kubebench?

Kubebench is a harness for benchmarking and analyzing Machine Learning workloads on Kubernetes.

Goals of Kubebench

China 2018

- Support benchmarking in various circumstances
 - Multi-cloud and various infrastructure
 - Different ML frameworks
 - Distributed workloads
 - •

- Make it easier to manage benchmarks
 - Consistent workloads
 - Reproducible results
 - Integrable with the rest of ML lifecycle
 - •

Kubebench

Benchmark config/result management; Benchmark workflow deployment

ML job deployment / lifecycle management

kubernetes

Production grade container orchestration

Infrastructure

Cloud/On-premise infrastructure environment

Architecture

User's Perspective

Job Developer

Experiment Runner

Where we are

Current release (V0.3):

- Support local/distributed training workloads
- Support multiple frameworks
 - TFJob
 - PyTorchJob
 - (more planned)
- Support result aggregation for multi-experiments
 - Stored in filesystem
 - (Remote/Cloud DB planned)
- Quick starter package
 - Parameter-less e2e example for quick start
 - Example workloads (TF-CNN)

Upcoming and Future releases:

- UI/UX
 - Dashboard
 - Results/metrics visualizations
- API
 - Kubebench CRD
- More benchmarking scenarios
 - Serving/inference benchmarks
 - Mixed/scaled workloads
- •

Demo

Kirill Prosvirov, Andrey Velichkevich

Case Study

Ce Gao

Local Training Benchmark

TensorFlow CNN Benchmark

Dataset: imagenet (synthetic)

Mode: forward-only

SingleSess: False

Num batches: 100

Num epochs: 0.00 Data format: NCHW

Optimizer: sgd

Variables: parameter server

Training performance among different GPU numbers, batch sizes, and platforms

Distributed Training Benchmark

China 2018

TensorFlow CNN Benchmark

Dataset: imagenet (synthetic)

Mode: forward-only

SingleSess: False

Num batches: 100 Num epochs: 0.00 Data format: NCHW

Optimizer: sgd

Variables: parameter_server

1 PS

2 workers (2 GPU per worker)

Training performance between different platforms

Testbed

Dependency	Version
Cuda	9.0
CuDNN	7.1
GPU	GTX 1080ti
TensorFlow	1.10
Kernel Version	3.10.0-862.11.6.el7.x86_64
OS Image	CentOS Linux 7 (Core)
Operating System	linux
Architecture	amd64
Container Runtime Version	Docker 18.03.0-ce
Kubernetes Version	v1.10.1

Thanks!

Contributors & Advisors

(alphabetical order)

Adhita Selvaraj

Amit Kumar Saha

Andrey Velichkevich