Beispiel 4.2: Rechteckimpulsfolge

Eine Rechteckimpulsfolge ist definiert als die periodische Abfolge von Rechteckimpulsen. Die Periode sei gegeben durch T, die Impulslänge durch τ . Analog zum Dirac-Stoß hat die Fläche des Stoßes per Definition den Wert 1.

Es liegt eine gerade Funktion vor. Die Berechnung der Fourierkoeffizienten liefert

$$S_{k} = 0, k \in \mathbb{N}_{0}, \tag{4.23}$$

$$C_{0} = \frac{1}{T} \int_{0}^{T/2} x(t) dt = \frac{1}{T} \tag{4.24}$$

$$C_{k} = \frac{2}{T} \int_{0}^{T} x(t) \cos(k\omega_{0}t) dt = \frac{2}{T} \left(\int_{-\tau/2}^{\tau/2} \frac{1}{\tau} \cos(k\omega_{0}t) dt + \int_{\tau/2}^{T-\tau/2} 0 dt \right) \tag{4.25}$$

$$= 2 \cdot \frac{2}{Tk\omega_{0}} \frac{1}{\tau} \left(\sin\left(k\omega_{0}\frac{\tau}{2}\right) \right) \tag{4.26}$$

$$= \frac{2}{k\pi\tau} \sin\left(k\pi\frac{\tau}{T}\right) \tag{4.27}$$

Somit lautet die Fourierreihe der Rechteckimpulsfolge

$$x(t) = \frac{1}{T} + \sum_{k=1}^{\infty} \frac{2}{k\pi\tau} \sin\left(k\pi\frac{\tau}{T}\right) \cos(k\omega_0 t)$$
(4.28)

Der Stoßcharakter wird unterschieden nach Verhältnis von τ und T: Bei einem kleinen Wert von τ (kurzer Stoßdauer) ist die Amplitude $\frac{2}{k\pi\tau}$ groß. Die erste Nullstelle der C_k liegt bei $\frac{\tau}{T}=\frac{1}{k}$. Es liegt viel Energie bei hohen Frequenzen vor. Man spricht vom harten Stoß. Im Gegensatz dazu kommt die erste Nullstelle der C_k umso früher, je größer das Verhältnis τ/T . Es liegt viel Energie bei den kleinen Frequenzen. Die Verteilung der Amplituden in Abhängigkeit der Frequenz ist in der folgenden Abbildung zu sehen.