Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики N 3.1.3

name of your labwork

Автор:

your name *groupname*

Долгопрудный, 2021

Измерим параметры магнитных шариков: $m_1 = 820$ г, $m_2 = 815$ г, d = 5,9 мм. Величину магнитного момента двух одинаковых шариков можно расчитать, зная их массу и определив максимальное расстояние r_{max} , на котором они удерживают друг друга.

$$P_m = \sqrt{\frac{4\pi mgr_{max}^4}{6\mu_0}}$$

Перепишем выражение с учетом $\mu_0 = 4\pi \cdot 10^{-7}$

$$P_m = \sqrt{\frac{mgr_{max}^4}{6} \cdot 10^7}$$

В процессе эксперемента получено $r_{max} = 23$ мм.

$$P_m = 61,84 \text{ A} \cdot \text{m}^2$$

Горизонтальную составляющую магнитного поля Земли можно найти, используя период крутильных колебаний.

$$T = 2\pi \sqrt{\frac{J_n}{P_{mn}B_{||}}}$$

где J_n – момент инерции стрелки из n шариков, $P_{mn} = P_m \cdot n$ – магнитный момент стрелки. Момент инерции стрелки приближенно можно считать

$$J_n \approx \frac{1}{3}n^3 mR^2$$

тогда

$$T = 2\pi \sqrt{\frac{mR^2}{3P_mB_{||}}}n$$

Снимем зависимость и построим график T(n), тогда угловой коэффициент наклона будет равен $k=2\pi\sqrt{\frac{mR^2}{3P_mB_{||}}}$. От сюда найдем горизонтальную составляющую магнитного поля Земли: $B_{||}=\frac{mR^2}{3P_mk^2}$.

\overline{n}	11	10	9	8	7	
T	2,86	2,67	2,4	2,23	1,95	

$$B_{||}=19,6\,\,\mathrm{mkT}$$
л

Измерить вертикальную составляющую магнитного поля Земли можно с помощью той же установки, используя уравнение моментов.

$$mgr_{rp} = nP_mB_{\perp}$$

$$B_{\perp}=47$$
 мкТл

Рис. 1

ſ	n	1	2	3	4	5	6	7	8
ſ	В, мТл	232	314	349	355	362	363	364	369

Рис. 2

Найдем польный модуль магнитного поля Земли на текущей широте.

$$B_0 = \sqrt{B_{||}^2 + B_{\perp}^2} = 44{,}2$$
 мкТл

Исследуем индукцию соленоида. Параметры шайбы: d=9 мм, h=4 мм. Магнитное поле в произвольной точке A на оси соленоида расчитывается по формуле

$$B_A = \frac{\mu_0}{4\pi} 2\pi i (\cos \alpha - \cos \beta)$$

Для точки O на торце соленоида $\cos \beta = 0$, так что для соленоида высотой h, радиусом R, и магнитным моментом P_m поле на торце расчитывается по формуле

$$B(h) = \frac{\mu_0}{2} P_m \frac{h}{\sqrt{R^2 + h^2}}$$

Проведем небольшое исследование функции B(h).

$$\lim_{h \to \infty} \frac{\mu_0}{2} P_m \frac{h}{\sqrt{R^2 + h^2}} = \frac{\mu_0}{2} P_m$$

Таким образом, график функции B(h) должен иметь горизонтальную асимптоту $B_0=\frac{\mu_0}{2}P_m$, что мы и можем наблюдать на практике.

Рис. 3