# Задача А. Диаметр графа

Имя входного файла: diameter.in Имя выходного файла: diameter.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дан связный взвешенный неориентированный граф.

Расстояние между ними называется диаметром графа. Эксцентриситетом вершины v называется максимальное расстояние от вершины v до других вершин графа. Радиусом графа называется наименьший из эксцентриситетов вершин. Найдите диаметр и радиус графа.

#### Формат входных данных

В первой строке входного файла единственное число: N ( $1 \le N \le 100$ ) — количество вершин графа. В следующих N строках по N чисел — матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число — присутствие ребра данного веса. На главной диагонали матрицы всегда нули; веса рёбер не превышают 1000.

#### Формат выходных данных

В выходной файл выведите два числа — диаметр и радиус графа.

#### Пример

| diameter.in | diameter.out |
|-------------|--------------|
| 4           | 8            |
| 0 -1 1 2    | 5            |
| -1 0 -1 5   |              |
| 1 -1 0 4    |              |
| 2 5 4 0     |              |

# Задача В. Unionday. День Объединения

Имя входного файла: unionday.in Имя выходного файла: unionday.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

В Байтландии есть целых n городов, но нет ни одной дороги. Король решил исправить эту ситуацию и соединить некоторые города дорогами так, чтобы по этим дорогам можно было бы добраться от любого города до любого другого. Когда строительство будет завершено, Король планирует отпраздновать День Объединения. К сожалению, казна Байтландии почти пуста, поэтому Король требует сэкономить деньги, минимизировав суммарную длину всех построенных дорог.

#### Формат входных данных

Первая строка входного файла содержит натуральное число n ( $1 \le n \le 5000$ ) — количество городов в Байтландии. Каждая из следующих n строк содержит два целых числа  $x_i, y_i$  — координаты i-го города ( $-10\,000 \le x_i, y_i \le 10\,000$ ). Никакие два города не расположены в одной точке.

#### Формат выходных данных

Первая строка выходного файла должна содержать минимальную суммарную длину дорог. Выведите число с точностью не менее  $10^{-3}$ .

#### Примеры

| unionday.in | unionday.out |
|-------------|--------------|
| 6           | 9.65685      |
| 1 1         |              |
| 7 1         |              |
| 2 2         |              |
| 6 2         |              |
| 1 3         |              |
| 7 3         |              |

# Задача С. Остовное дерево 2

Имя входного файла: spantree2.in Имя выходного файла: spantree2.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Требуется найти в связном графе остовное дерево минимального веса.

#### Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно. Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя натуральными числами  $b_i$ ,  $e_i$  и  $w_i$  — номера концов ребра и его вес соответственно ( $1 \le b_i$ ,  $e_i \le n$ ,  $0 \le w_i \le 100\,000$ ).  $n \le 20\,000$ ,  $m \le 100\,000$ .

Граф является связным.

#### Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число — вес минимального остовного дерева.

#### Примеры

| spantree2.in | spantree2.out |
|--------------|---------------|
| 4 4          | 7             |
| 1 2 1        |               |
| 2 3 2        |               |
| 3 4 5        |               |
| 4 1 4        |               |

## Задача D. Разрезание графа

Имя входного файла: cutting.in Имя выходного файла: cutting.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 МВ

Дан неориентированный граф. Над ним в заданном порядке производят операции следующих двух типов:

- cut разрезать граф, то есть удалить из него ребро;
- ask проверить, лежат ли две вершины графа в одной компоненте связности.

Известно, что после выполнения всех операций типа **cut** рёбер в графе не осталось. Найдите результат выполнения каждой из операций типа **ask**.

### Формат входных данных

Первая строка входного файла содержит три целых числа, разделённые пробелами — количество вершин графа n, количество рёбер m и количество операций k ( $1 \le n \le 50\,000,\ 0 \le m \le 100\,000,\ m \le k \le 150\,000$ ).

Следующие m строк задают рёбра графа; i-ая из этих строк содержит два числа  $u_i$  и  $v_i$  ( $1 \le u_i, v_i \le n$ ), разделённые пробелами — номера концов i-го ребра. Вершины нумеруются с единицы; граф не содержит петель и кратных рёбер.

Далее следуют k строк, описывающих операции. Операция типа  $\operatorname{cut}$  задаётся строкой " $\operatorname{cut}$  u v"  $(1 \leq u, v \leq n)$ , которая означает, что из графа удаляют ребро между вершинами u и v. Операция типа  $\operatorname{ask}$  задаётся строкой " $\operatorname{ask}$  u v"  $(1 \leq u, v \leq n)$ , которая означает, что необходимо узнать, лежат ли в данный момент вершины u и v в одной компоненте связности. Гарантируется, что каждое ребро графа встретится в операциях типа  $\operatorname{cut}$  ровно один раз.

#### Формат выходных данных

Для каждой операции **ask** во входном файле выведите на отдельной строке слово "YES", если две указанные вершины лежат в одной компоненте связности, и "NO" в противном случае. Порядок ответов должен соответствовать порядку операций **ask** во входном файле.

#### Пример

| cutting.in | cutting.out |
|------------|-------------|
| 3 3 7      | YES         |
| 1 2        | YES         |
| 2 3        | NO          |
| 3 1        | NO          |
| ask 3 3    |             |
| cut 1 2    |             |
| ask 1 2    |             |
| cut 1 3    |             |
| ask 2 1    |             |
| cut 2 3    |             |
| ask 3 1    |             |

# Задача Е. Болото

Имя входного файла: swamp.in
Имя выходного файла: swamp.out
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

Иван-Царевич хочет спасти из плена Василису Прекрасную. По пути к темнице, где Кощей Бессмертный держит пленницу, есть болото с параллельными бесконечно длинными берегами ширины H. В болоте имеется N кочек, i –я кочка имеет координаты  $x_i$ ,  $y_i$ . Ось OX направлена параллельно берегу болота, а ось OY направлена перпендикулярно берегу болота от начального берега к конечному, точки начального берега имеют координату Y = 0.

Требуется определить, какой минимальной длиной прыжка должен обладать Иван –Царевич, чтобы перебраться через болото.

#### Формат входных данных

Во входном файле в первой строке находятся числа H ( $1\leqslant H\leqslant 30\,000$ ) и N ( $1\leqslant N\leqslant 100$ ). В следующих N строках записаны координаты кочек  $x_i,\ y_i\ (1\leqslant x_i,y_i\leqslant 30\,000)$ . Число H и все координаты — целые числа.

#### Формат выходных данных

В выходной файл нужно вывести единственное число — минимальную длину прыжка с точностью до 6 знаков после точки.

| swamp.in | swamp.out   |
|----------|-------------|
| 10 3     | 4.472135955 |
| 1 3      |             |
| 3 7      |             |
| 6 6      |             |

## Задача F. Pink Floyd

Имя входного файла: pinkfloyd.in Имя выходного файла: pinkfloyd.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Группа *Pink Floyd* собирается отправиться в новый концертный тур по всему миру. По предыдущему опыту группа знает, что солист *Роджер Уотерс* постоянно нервничает при перелетах. На некоторых маршрутах он теряет вес от волнения, а на других — много ест и набирает вес.

Известно, что чем больше весит Роджер, тем лучше выступает группа, поэтому требуется спланировать перелеты так, чтобы вес Роджера на каждом концерте был максимально возможным.

Группа должна посещать города в том же порядке, в котором она дает концерты. При этом между концертами группа может посещать промежуточные города.

#### Формат входных данных

Первая строка входного файла содержит три натуральных числа n, m и k — количество городов в мире, количество рейсов и количество концертов, которые должна дать группа соответственно  $(n \le 100, m \le 10\,000, 2 \le k \le 10\,000)$ . Города пронумерованы числами от 1 до n.

Следующие m строк содержат описание рейсов, по одному на строке. Рейс номер i описывается тремя числами  $b_i$ ,  $e_i$  и  $w_i$  — номер начального и конечного города рейса и предполагаемое изменение веса Роджера в миллиграммах ( $1 \le b_i$ ,  $e_i \le n$ ,  $-100\,000 \le w_i \le 100\,000$ ).

Последняя строка содержит числа  $a_1, a_2, ..., a_k$  — номера городов, в которых проводятся концерты  $(a_i \neq a_{i+1})$ . В начале концертного тура группа находится в городе  $a_1$ .

Гарантируется, что группа может дать все концерты.

### Формат выходных данных

Первая строка выходного файла должна содержать число l — количество рейсов, которые должна сделать группа. Вторая строка должна содержать l чисел — номера используемых рейсов.

Если существует такая последовательность маршрутов между концертами, что Роджер будет набирать вес неограниченно, то первая строка выходного файла должна содержать строку «infinitely kind».

## СПбГУ, 344 группа, Алгоритмы анализа графов ДЗ 3 (Floyd, MST), 4/7

# Примеры

| •            |                 |
|--------------|-----------------|
| pinkfloyd.in | pinkfloyd.out   |
| 4 8 5        | 6               |
| 1 2 -2       | 5 6 5 7 2 3     |
| 2 3 3        |                 |
| 3 4 -5       |                 |
| 4 1 3        |                 |
| 1 3 2        |                 |
| 3 1 -2       |                 |
| 3 2 -3       |                 |
| 2 4 -10      |                 |
| 1 3 1 2 4    |                 |
| 4 8 5        | infinitely kind |
| 1 2 -2       |                 |
| 2 3 3        |                 |
| 3 4 -5       |                 |
| 4 1 3        |                 |
| 1 3 2        |                 |
| 3 1 -2       |                 |
| 3 2 -3       |                 |
| 2 4 10       |                 |
| 1 3 1 2 4    |                 |
|              |                 |

# Задача G. MST случайных точек

Имя входного файла: randommst.in Имя выходного файла: randommst.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Даны n различных точек на плоскости. Координаты точек — целые числа от 0 до  $30\,000$  включительно. Точки выбраны cлучайно в следующем смысле: рассмотрим все возможные наборы из n различных точек на плоскости с заданными ограничениями на координаты и выберем из них случайно и равновероятно один набор.

Вы можете провести отрезок между любыми двумя заданными точками. Длина отрезка между точками с координатами  $(x_1, y_1)$  и  $(x_2, y_2)$  равна  $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ . Будем говорить, что точки a и b связаны, если они соединены отрезком, или же существует точка d, которая связана и с a, и с b. Ваша задача — провести отрезки минимальной суммарной длины так, чтобы все точки были связаны.

#### Формат входных данных

В первой строке ввода задано целое число n ( $2 \le n \le 50\,000$ ). Следующие n строк содержат координаты точек. Гарантируется, что все точки различны. Кроме того, во всех тестах, кроме примера, гарантируется, что точки выбраны случайно, как описано в условии.

#### Формат выходных данных

В первой строке выведите вещественное число w—суммарную длину отрезков. В следующих (n-1) строках выведите отрезки, по одному на строке. Каждый отрезок следует выводить как два числа от 1 до n, обозначающие номера точек, являющихся концами этого отрезка.

Пусть на самом деле суммарная длина выведенных вами отрезков равна  $w^*$ , а суммарная длина отрезков в оптимальном ответе равна  $w_{\text{opt}}$ . Тогда ваш ответ будет считаться верным, если

$$\max\left(\left|\frac{w}{w^*} - 1\right|, \left|\frac{w^*}{w_{\text{opt}}} - 1\right|\right) < 10^{-12}.$$

## Пример

| randommst.in | randommst.out     |
|--------------|-------------------|
| 4            | 22.02362358924615 |
| 0 10         | 1 2               |
| 5 6          | 2 3               |
| 10 0         | 4 2               |
| 0 0          |                   |

## Иллюстрация

