1. Time Complexity

Time complexity is the measure of the number of operations an algorithm performs as a function of input size n.

Detailed Steps to Analyze Time Complexity

1. Break Down the Code:

- Divide your program into individual operations (loops, function calls, conditions, etc.)
- o Assign complexity to each operation.

2. Consider Iterations of Loops:

- \circ Single loop over n elements \rightarrow O(n)
- o Nested loops → Multiply complexities of each loop.

3. Analyze Recursion:

- o Determine the number of recursive calls.
- Derive the recurrence relation and solve it (e.g., using the Master Theorem or substitution).

4. Drop Constants and Non-Dominant Terms:

- o Focus on the fastest-growing term as n increases.
- Example: If complexity is $5n^2 + 3n + 7$, simplify to $O(n^2)$.

Common Scenarios and Their Complexities

Operation	Time Complexity
Accessing an array element	O(1)
Traversing a list with a loop	O(n)
Searching in a sorted array (binary search)	O(log n)
Nested loops (double traversal)	O(n ²)
Sorting (merge sort, quick sort)	O(nlog n)
Recursive Fibonacci calculation	O(2 ⁿ)

Examples

```
Example 1: Single Loop
```

```
def sum_of_elements(arr):
total = 0
for num in arr:
  total += num
return total
```

- Steps to analyze:
 - o for num in arr \rightarrow Loop runs n times (where nn is the size of arr).
 - o Inside loop: total += num is O(1).
- Total Complexity: O(n)

Example 2: Nested Loop

```
def find_duplicates(arr):
  duplicates = []
  for i in range(len(arr)):
      for j in range(i + 1, len(arr)):
      if arr[i] == arr[j]:
          duplicates.append(arr[i])
      return duplicates
```

- Steps to analyze:
 - o Outer loop runs n times.
 - o Inner loop runs $n-1,n-2,...,1n-1, n-2, \dots, 1 times.$
 - o Total iterations: $n(n-1)/2=O(n^2)$.
- Total Complexity: O(n²)

Example 3: Recursion

Example 4: Divide-and-Conquer

• Total Complexity: O(n)

```
def merge_sort(arr):
  if len(arr) <= 1:
      return arr
  mid = len(arr) // 2
  left = merge_sort(arr[:mid])
  right = merge_sort(arr[mid:])
  return merge(left, right)</pre>
```

- Steps to analyze:
 - o Divide array into two halves \rightarrow O(log n) levels of recursion.
 - \circ Merging arrays \rightarrow O(n) work at each level.
- Total Complexity: O(nlog n)

Advanced Time Complexity Tools

- 1. Recurrence Relations (for recursive functions):
 - \circ Example: T(n)=2T(n/2)+O(n)
 - This simplifies to O(n log n) using the Master Theorem.
- 2. Master Theorem:
 - For recurrence relations of the form $T(n)=aT(n/b)+O(n^d)$:

- a: Number of subproblems.
- b: Factor by which input size is reduced.
- d: Complexity of the division/merge step.
- o Use $log_b(a)$ to compare with d.

2. Space Complexity

Space complexity measures the memory consumed by your program.

Detailed Steps to Analyze Space Complexity

1. Account for Variables and Data Structures:

- o Scalar variables (e.g., x, count) \rightarrow O(1).
- o Arrays/lists \rightarrow O(n), where nn is the size of the list.
- Nested data structures (e.g., lists of lists) → Multiply dimensions.

2. Account for Recursion:

- o Recursive calls take stack space.
- o Depth of recursion determines space complexity.

3. Separate Input vs. Auxiliary Space:

o Input space is usually not included in the calculation.

Examples

Example 1: Iterative Function

```
def sum_array(arr):
total = 0
for num in arr:
  total += num
return total
```

• Space Complexity:

Variables: total → O(1)

o Input: arrarr is not counted.

o Total: O(1)

Example 2: Recursive Function

```
def factorial(n):
```

```
if n == 0:
```

return 1

return n * factorial(n - 1)

- Space Complexity:
 - o **Base case**: When n=0, the recursion stops.
 - o **Recursive depth**: The function keeps calling itself until n reaches 0.
 - o For n=5:
 - Recursive calls: factorial(5),factorial(4),factorial(3),factorial(2),factorial(1)
 - o Depth: 5.
- Space Complexity of Depth: O(n), because the call stack grows linearly with nnn.

Example 3: Data Structures

def reverse_array(arr):

return arr[::-1]

- Space Complexity:
 - o Input: arr is not counted.
 - Output: New array of size $n \rightarrow O(n)$.
 - o Total: O(n)

Summary of Space Complexity

Scenario	Space Complexity
Single scalar variable	O(1)
Single loop (no additional array)	O(1)
Recursive function	O(depth)
Additional list of size nn	O(n)