PCT/GB00/03203

<u>CLAIMS</u>

3

	- 		
1	1.	A hydrocyclone, comprising:	
2		a body having an inlet at the periphery of the body, an adjacent	
3	back wall through which there is a central overflow connection and a central		
4	underflow connection at the opposite end of the body;		
5		the overflow back wall presenting an inclined face for redirecting	
6	the stream	of fluid entering the hydrocyclone to flow axially along the	
7	hydrocyclone in at least two different paths having at least two axial velocity		
8	components for improved phase separation performance.		
1	2.	The hydrocyclone of claim 1, wherein:	
2		said body having a longitudinal axis extending from said overflow	
3	connection to said underflow connection;		
4		said face comprises a radially inner portion and a radially outer	
5	portion, each defining a generally helical surface at a distinct slope extending		
6	from adjacent said inlet toward said underflow connection.		
1	3.	The hydrocyclone of claim 2, wherein:	
2		said inner radial portion extends at a shallower slope toward said	
3	underflow connection than said outer radial portion.		
1	4.	The hydrocyclone of claim 3, wherein:	
2		the slope of said outer radial portion extends at more than twice	

the slope of that of said inner radial portion.

1	5.	The hydrocyclone of claim 2, further comprising:
2		a wall disposed generally equidistant from said longitudinal axis
3	and marki	ng a boundary between said inner and outer portions of said face.
1	6 .	The hydrocyclone of claim 1, wherein:
2		the end wall face comprises three or more radial portions.
1	7.	The hydrocyclone of claim 6, wherein:
2		the slope of each radial portion is greater than that of the portion
3	spaced radially inwardly thereof.	
1	8.	The hydrocyclone of claim 1, wherein:
2		the end wall face presents a generally smooth, continuous sur-
3	face.	
1	9.	The hydrocyclone of claim 1, wherein:
2	•	at least a portion of the end wall face is inclined relative to the
3	longitudinal	axis of the hydrocyclone.
1	10.	The hydrocyclone of claim 2, wherein:
2		said helical surfaces are flat.
	11.	The hydrocyclone of claim 2, wherein:
		said helical surfaces are curved.