Analízis 1. Programtervező informatikus szak

Az írásbeli vizsgán bitonyítással kért tételek 2021-2022. tanév 2. félév

Petrányi Bálint Gerber Lóránt Viktor 2022. június 8.

1. A szuprémum elv.

Tétel:

Legyen $H \subset \mathbb{R}$ és tegyük fel, hogy

I $H \neq \emptyset$ és

II H felűről korlátos.

Ekkor

$$\exists \min\{K \in \mathbb{R} \mid K \text{ felső korlátja } H\text{-nak}\},\$$

azaz \mathbb{R} minden nemüres, felülről korlátos részhalmazának felső korlátjai között van legkisebb.

Bizonyítás:

Legyen

$$A := H$$
 és $B := \{ K \in \mathbb{R} \mid K \text{ felső korlátja } H\text{-nak} \}$

A feltétel miatt $A \neq \emptyset$ és $B \neq \emptyset$, továbbá

$$\forall a \in A \quad \text{\'es} \quad \forall K \in B \quad \text{eset\'en } a \leq K.$$

A teljességi axiómából következik, hogy

$$\forall \xi \in \mathbb{R} : a \leq \xi \leq K \quad \forall a \in A \text{ \'es } \forall K \in B \text{ eset\'en.}$$

Erre a $\xi\text{-re}$ az teljesül, hogy

- ξ felső korlátja H-nak, hiszen $a \leq \xi \quad \forall a \in A$ esetén;
- ξ legkisebb felső korlát, u
i. ha K egy felső korlát (azaz $K \in B$), akkor
 $K \ge \xi$.

Ez pedig pontosan azt jelenti, hogy ξ a H halmaz legkisebb felső korlátja.

2. A teljes indukció elve.

Tétel:

Tegyük fel, hogy minden n természetes számra adott egy A(n) állítás, és azt tudjuk, hogy

I A(0) igaz,

II ha A(n) igaz, akkor A(n+1) is igaz.

Ekkor az A(n) állítás minden n természetes számra igaz

Bizonyítás:

Legyen

$$S := \{ n \in \mathbb{N} \mid A(n) \text{ igaz} \}.$$

Ekkor $S \subset \mathbb{N}$ és S induktív halmaz, hiszen $0 \in S$, és ha $n \in S$, azaz A(n) igaz, akkor A(n+1) is igaz, ezért $n+1 \in S$ teljesül, következésképen S induktív halmaz. Mivel \mathbb{N} a legszűkebb induktív halmaz, ezért az $\mathbb{N} \subset S$ tartalmazás is fennáll, tehát $S = \mathbb{N}$. Ez pedig azt jelenti, hogy az állítás minden n természetes számra igaz.

3. Az Archimedes-tétel.

Tétel:

Minden a > 0 és minden b valós számhoz létezik olyan n természetes szám, hogy $b < n \cdot a$.

$$\forall a > 0$$
 és $\forall b \in \mathbb{R}$ esetén $\exists n \in \mathbb{N}$, hogy $b < n \cdot a$

Bizonyítás:

Indirekt módon. Tegyük fel, hogy

$$\exists a > 0 \text{ és } \exists b \in \mathbb{R} \text{ esetén } \forall n \in \mathbb{N}, \text{ hogy } b \geq n \cdot a$$

Legyen

$$H := \{ n \cdot a \in \mathbb{R} \mid n \in \mathbb{N}.$$

Ekkor $H \neq \emptyset$ és H felülről korlátos, hiszen $n \cdot a \leq b$ minden $n \in \mathbb{N}$ -re. A szuprémum elv \Longrightarrow

$$\exists \sup H =: \xi$$

Ekkor ξ a legkisebb felső korlátja H-nak,tehát $\xi-a$ nem felső korlát. Ez azt jelenti, hogy

$$\exists n_0 \in \mathbb{N} : n_0 \cdot a > \xi - a \Longrightarrow (n_0 + 1) \cdot a > \xi.$$

Ez viszont ellentmondás, mert ξ felső korlát, azaz $(n_0 + 1) \cdot \leq \xi$.

4. A Cantor-féle közösrész-tétel.

Tétel:

Tegyük fel, hogy $\forall n \in \mathbb{N}$ természetes számra adott az $[a_n, b_n] \subset \mathbb{R}$ korlátos és zárt intervallum úgy, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \quad (\forall n \in \mathbb{N}).$$

Ekkor

$$\bigcap_{n=0}^{+\infty} [a_n, b_n] \neq \emptyset$$

Bizonyítás:

A teljességi axiómát fogjuk alkalmazni. Legyen

$$A := \{a_n \mid n \in \mathbb{N}\} \text{ és } B := \{b_n \mid n \in \mathbb{N}\}$$

Belátjuk, hogy ekkor

$$a_n \le b_m$$
 tetszöleges $n, m \in \mathbb{N}$ esetén. (*)

Valóban,

- 1. ha $n \leq m$, akkor $a_n \leq a_m \leq b_m$,
- 2. ha m < n, akkor $a_n \le b_n \le b_m$

Mivel $A \neq \emptyset$ és $B \neq \emptyset$, ezért (*) miatt a teljességi axióma feltételei teljesülnek, így

$$\exists \xi \in \mathbb{R} : a_n \leq \xi \leq b_m \quad \forall n, m \in \mathbb{N} \text{ indexre.}$$

Ha n = m, akkor azt kapjuk hogy

$$a_n \le \xi \le b_n \quad \Longleftrightarrow \quad \xi \in [a_n, b_n] \; \forall n \in \mathbb{N} \text{ eset\'en.}$$

és ez azt jelenti, hogy

$$\xi \in \bigcap_{n \in \mathbb{N}} [a_n, b_n] \neq \emptyset.$$

5. Konvergens sorozat határértéke egyértelmű.

Tétel:

Ha az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat konvergens, akkor a konvergencia definíciójában szereplő A szám egyértelműen létezik.

Bizonyítás:

Tegyük fel, hogy az (a_n) sorozatra $\exists A \in \mathbb{R}, \forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N}, \forall n > n_0$:

 $|a_n - A| < \varepsilon$ az A_1 és az A_2 is teljesül.

Indirekt módon tegyük fel azt is, hogy $A_1 \neq A_2$. Ekkor $\forall \varepsilon > 0$ számhoz

$$\exists n_1 \in \mathbb{N}, \ \forall n > n_1 : \ |a_n - A_1| < \varepsilon \text{ és}$$

 $\exists n_2 \in \mathbb{N}, \ \forall n > n_2 : \ |a_n - A_2| < \varepsilon$

Válasszuk itt speciálisan az

$$\varepsilon := \frac{|A_1 - A_2|}{2}$$

(pozitív) számot. Az ennek megfelelő n_1, n_2 indexeket figyelembe véve legyen

$$n_0 := \max\{n_1, n_2\}.$$

Ha $n \in \mathbb{N}$ és $n > n_0$, akkor nyilván $n > n_1$ és $n > n_2$ is fennáll, következésképpen

$$|A_1 - A_2| = |(A_1 - a_n) + (a_n - A_2)| \le |a_n - A_1| + |a_n - A_2| < \varepsilon + \varepsilon = |A_1 - A_2|,$$

amiből (a nyilván nem igaz) $|A_1 - A_2| < |A_1 - A_2|$ következne. Ezért csak $A_1 = A_2$ lehet.

6. A konvergencia és a korlátosság kapcsolata.

Tétel:

Ha az (a_n) sorozat konvergens, akkor korlátos is. **Bizonyítás:**

Tegyük fel, hogy (a_n) konvergens és $\lim(a_n) = A \in \mathbb{R}$. Válaszuk a konvergencia definíciója szerint jelöléssel ε -t 1-nek. Ehhez a hibakorláthoz

$$\exists n_0 \in \mathbb{N}, \quad \forall n > n_0 : \quad |a_n - A| < 1.$$

Így

$$|a_n| = |(a_n - A) + A| \le |a_n - A| + |A| < 1 + |A| \quad (n > n_0).$$

Ha $n \leq n_0$, akkor

$$|a_n| \le \max\{|a_0|, |a_1|, ..., |a_{n_0}|\}.$$

Legyen

$$K := \max\{|a_0|, |a_1|, ..., |a_{n_0}|, 1 + |A|\}.$$

Ekkor $|a_n| \leq K$ minden $n \in \mathbb{N}$ indexre, és ez azt jelenti, hogy az (a_n) sorozat korlátos.

7. Műveletek nullsorozatokkal.

Tétel:

Tegyük fel, hogy $\lim(a_n) = 0$ és $\lim(b_n) = 0$ Ekkor

I $(a_n + b_n)$ is nullsorozat

II ha (c_n) korlátos sorozat, akkor $(c_n \cdot a_n)$ is nullsorozat

III $(a_n \cdot b_n)$ is nullsorozat

Bizonyítás:

I. Mivel $\lim(a_n) = \lim(b_n) = 0$, ezért

$$\forall \varepsilon > 0$$
-hoz $\exists n_1 \in \mathbb{N}$, hogy $\forall n > n_1 : |a_n| < \frac{\varepsilon}{2}$ és $\forall \varepsilon > 0$ -hoz $\exists n_2 \in \mathbb{N}$, hogy $\forall n > n_2 : |b_n| < \frac{\varepsilon}{2}$

Legyen $n_0 := \max\{n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$|a_n + b_n| \le |a_n| + |b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

és ez azt, jelenti, hogy $\lim(a_n+b_n)=0$, azaz (a_n+b_n) valóban nullsorozat

II. A (c_n) sorozat korlátos, ezért

$$\exists K > 0: |c_n| < K \quad (n \in \mathbb{N})$$

Mivel (a_n) nullsorozat, ezért

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n| < \frac{\varepsilon}{K}$

következésképen minden $n > n_0$ indexre

$$|c_n \cdot a_n| < K \cdot \frac{\varepsilon}{K} = \varepsilon,$$

 $\operatorname{azaz} \lim (c_n \cdot a_n) = 0$

III. Mivel minden konvergens sorozat korlátos, ezért a $\lim(b_n) = 0$ feltételből következik, hogy (b_n) korlátos sorozat. Az állítás tehát II közvetlen következménye

8. Konvergens sorozatok szorzatára vonatkozó tétel.

Tétel:

Ha (a_n) és (b_n) konvergens és

$$\lim(a_n) =: A \in \mathbb{R}, \quad \lim(b_n) =: B \in \mathbb{R}$$

akkor: az $(a_n \cdot b_n)$ is konvergens és $\lim (a_n \cdot b_n) = A \cdot B$.

Bizonyítás:

Legyen (x_n) egy valós sorozat. Azt már tudjuk, hogy ha (x_n) konvergens, és $\alpha \in \mathbb{R}$ a határértéke $\iff (x_n - \alpha)$ nullsorozat. Emiatt elég azt megmutatni, hogy $(a_n \cdot b_n - AB)$ nullsorozat.

$$|a_{n}b_{n} - AB| = |a_{n}b_{n} - Ab_{n} + Ab_{n} - AB| = |b_{n}(a_{n} - A) + A(b_{n} - B)| \le \underbrace{|b_{n}| \cdot |a_{n} - A|}_{\text{korlátos}} + \underbrace{|A| \cdot |b_{n} - B|}_{\text{0-sorozat}} \underbrace{|a_{n}b_{n} - A|}_{\text{0-sorozat}} + \underbrace{|a_{n}b_{n} - B|}_{\text{0-sorozat}}$$

Így $(a_n \cdot b_n - AB)$ valóban nullsorozat, ezért az $(a_n \cdot b_n)$ szorzat-sorozat konvergens, és $A \cdot B$ a határértéke, azaz

$$\lim(a_n \cdot b_n) = A \cdot B = \lim(a_n) \cdot \lim(b_n).$$

9. Konvergens sorozatok hányadosára vonatkozó tétel.

Tétel:

Ha (a_n) és (b_n) konvergens és

$$\lim(a_n) =: A \in \mathbb{R}, \quad \lim(b_n) =: B \in \mathbb{R}$$

és ha

$$b_n \neq 0 \ (n \in \mathbb{N}) \text{ és } \lim(b_n) \neq 0$$

akkor: az

$$\frac{a_n}{b_n}$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B}$.

Bizonyítás:

A bizonyításhoz először egy segédtételt bizonyítunk.

<u>Segédtétel:</u> Ha $b_n \neq 0 \quad (n \in \mathbb{N})$ és (b_n) konvergens, továbbá $B := \overline{\lim(b_n) \neq 0}$ akkor az

$$\left(\frac{1}{|b_n|}\right)$$

reciprok sorozat korlátos. Segédtétel bizonyítása: Legyen $\varepsilon := |B|/2$. Ekkor egy alkalmas $n_0 \in \mathbb{N}$ küszöbindex mellet

$$|b_n - B| < \varepsilon = \frac{|B|}{2} \quad \forall n > n_0 \text{ indexre}$$

Így minden $n > n_0$ esetén

$$|b_n| = |B + b_n - B| \ge |B| - |b_n - B| > |B| - \frac{|B|}{2} = \frac{|B|}{2}$$

tehát

$$\left|\frac{1}{b_n}\right| < \frac{2}{|B|}, \quad \text{ha} n > n_0$$

következésképen az

$$\left| \frac{1}{b_n} \right| \le \max \left\{ \frac{1}{|b_0|}, \frac{1}{|b_1|, \dots, \frac{1}{|b_n|}}, \frac{2}{|B|} \right\}$$

egyenlőtlenség már minden $n \in \mathbb{N}$ száméra teljesül, ezért az $(1/|b_n|)$ sorozat valóban korlátos.

A segédtételt tehát bebizonyítottuk

Legyen (x_n) egy valós sorozat. Azt már tudjuk, hogy ha (x_n) konvergens, és $\alpha \in \mathbb{R}$ a határértéke $\iff (x_n - \alpha)$ nullsorozat. (*) Most azt látjuk be, hogy az

$$\left(\frac{1}{b_n}\right)$$
 sorozat konvergens és $\lim \left(\frac{1}{b_n}\right) = \frac{1}{B}$ (Δ)

tekintsük a következő átalakításokat:

$$\frac{1}{b_n} - \frac{1}{B} = \frac{B - b_n}{B \cdot b_n} =$$

$$= \underbrace{\frac{1}{B \cdot b_n} \cdot \underbrace{(B - b_n)}_{\text{0-sorozat}}}_{\text{0-sorozat}} \quad (n \in \mathbb{N})$$

Így (*) szerint a (Δ) állítás valóban igaz. Az tétel bizonyításának a befejezése már csupán azt kell figyelembe venni, hogy

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n} \quad (n \in \mathbb{N})$$

más szóval az (a_n/b_n) "hányados-sorozat" két konvergens sorozat szorzata. Így a konvergens sorozatok szorzatára vonatkozó tétel és a reciprok sorozatról az előbb mondottak miatt

$$\frac{a_n}{b_n}$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B} = \frac{\lim(a_n)}{\lim(b_n)}$.

10. A közrefogási elv.

Tétel:

Tegyük fel hogy az (a_n) , (b_n) és (c_n) sorozatokra teljesülnek a következők:

- $\exists N \in \mathbb{N} \text{ hogy } \forall n > N : a_n \leq b_n \leq c_n$,
- az (a_n) és a (c_n) sorozatoknak van határértéke, továbbá

$$\lim(a_n) = \lim(c_n) = A \in \overline{\mathbb{R}}.$$

Ekkor a (b_n) sorozatnak is van határértéke és $\lim(b_n) = A$

Bizonyítás:

Három eset lehetséges

<u>1. eset:</u> $A \in \mathbb{R}$ legyen $\varepsilon > 0$ tetszöleges valós szám. Ekkor $\lim(a_n) = \lim(c_n) = A \Longrightarrow$

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : A - \varepsilon < a_n < A + \varepsilon \text{ és}$$

 $\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : A - \varepsilon < c_n < A + \varepsilon$

Legyen $n_0 := \max\{N, n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$A - \varepsilon < a_n \le b_n \le c_n < A + \varepsilon$$

Ez azt jelenti, hogy

$$|b_n - A| < \varepsilon$$
, ha $n > n_0$,

azaz a (b_n) sorozatnak is van határértéke és $\lim(b_n) = A$

<u>2. eset:</u> $A=+\infty$ Tegyük fel, hogy P>0 tetszőleges valós szám. Ekkor $\lim(a_n)=+\infty\Longrightarrow$

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : a_n > P.$$

Legyen $n_0 := \max\{N, n_1\}$. Ekkor $\forall n > n_0$ indexre

$$P < a_n < b_n$$

és ez azt jelenti, hogy $\lim(b_n) = +\infty$

<u>3. eset:</u> $A = -\infty$ Tegyük fel, hogy P < 0 tetszőleges valós szám és most a (c_n) sorozatot. Mivel $\lim(c_n) = -\infty$, ezért P-hez

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : c_n < P.$$

Ha $n_0 := \max\{N, n_1\}$, akkor $\forall n > n_0$ indexre

$$P > c_n \ge b_n$$

Ez pedig azt jelenti, hogy $\lim(b_n) = -\infty$

11. A határérték és a rendezés kapcsolata.

Tétel:

Tegyük fel, hogy az (a_n) és a (b_n) sorozatnak van határértéke és

$$\lim(a_n) = A \in \overline{\mathbb{R}}, \quad \lim(b_n) = B \in \overline{\mathbb{R}}$$

Ekkor:

I Ha $A < B \longrightarrow \exists N \in \mathbb{N}$, hogy $\forall n > N : a_n < b_n$

II Ha $\exists N \in \mathbb{N}$, hogy $\forall n > N : a_n \leq b_n \to A \leq B$

Bizonyítás:

I Négy eset lehetséges

(a) $A, B \in \mathbb{R}$ és A < B vagyis (a_n) és (b_n) konvergens sorozatok. Ekkor az

$$\varepsilon := \frac{B - A}{2} > 0$$

számhoz $\lim(a_n) = A$ miatt

$$\exists n_1 \in \mathbb{N} :, \text{ hogy } \forall n > n_1 : A - \varepsilon < a_n < A + \varepsilon = \frac{A + B}{2}$$

továbbá $\lim(b_n) = B$ szerint

$$\exists n_2 \in \mathbb{N} :, \text{ hogy } \forall n > n_2 : B - \varepsilon = \frac{A+B}{2} < b_n < B + \varepsilon$$

így az $N := \max n1, n2$ küszöbindexszel azt kapjuk, hogy

$$a_n < \frac{A+B}{2} < b_n \forall n > N$$
 index re,

és ez az állítás bizonyítását jeleneti

(b) $A \in \mathbb{R}$ és $B = +\infty$ Mivel az (a_n) sorozat konvergens és $\lim(a_n) = A$, ezért $\varepsilon := 1$ -hez $\exists n_1 \mathbb{N}$, hogy minden $n > n_1$ indexre

$$A - 1 < a_n < A + 1$$

A $\lim(b_n) = +\infty$ feltételből pedig az következik, hogy az A + 1 számhoz $\exists n_2 \in \mathbb{N}$ hogy minden $n > n_2$ indexre

$$A + 1 < b_n$$

így $\forall n > N : \max n_1, n_2$ index esetén

$$a_n < A + 1 < b_n$$

egyenlőtlenség teljesü.

- (c) $A = -\infty$ és $B \in \mathbb{R}$ bizonyítása hasonló.
- (d) $A = -\infty$ és $B = +\infty$ bizonyítása hasonló.
- II Indirekt módon bizonyítunk. Tegyük fel, hogy A > B Ekkor az (I) állítás szerint $\forall N \in \mathbb{R}$, hogy minden n > N indexre $b_n < a_n$ ami ellentmond a feltételnek.
- 12 Monoton növő sorozat határértéke (véges és végtelen eset).

Tétel:

I Ha monoton növő és felülről korlátos, akkor (a_n) konvergens és

$$\lim(a_n) = \sup\{a_n \mid n \in \mathbb{N}\}\$$

II Ha monoton növő és felülről nem korlátos akkor

$$\lim(a_n) = +\infty$$

Bizonyítás:

I Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről korlátos. Legyen

$$A := \sup\{a_n \mid n \in \mathbb{N}\}\$$

Ez azt jelenti, hogy A a szóban forgó halmaznak a legkisebb felső korlátja, azaz

- $\forall n \in \mathbb{N} : a_n \le A \text{ \'es}$
- $\forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N} : A \varepsilon < a_{n_0} \leq A$

Mivel feltételezésünk szerint az (a_n) sorozat monoton növekedő, ezért az

$$A - \varepsilon < a_n < A$$

becslés is igaz minden $n > n_0$ indexre.

Azt kapjuk tehát, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n - A| < \varepsilon$

Ez pontosan azt jelenti hogy az (a_n) sorozat konvergens és $\lim(a_n) = A$.

II Tegyük fel, hogy az (a_n) sorozat monoton növekedő és felülről nem korlátos. Ekkor

$$\forall P \in \mathbb{R}\text{-hez } \exists n_0 \in \mathbb{N} : a_n > P$$

A monotonitás miatt ezért egyúttal az is igaz, hogy

$$\forall n > n_0 : a_n > P$$

ez pontosan azt jelenti, hogy $\lim(a_n) = +\infty$

13. Minden sorozatnak van monoton részsorozata.

Tétel:

Minden $a=(a_n)$ valós sorozatnak létezik monoton részsorozata, azaz létezik olyan $v=(v_n)$ indexsorozat, amellyel $a \circ v$ monoton növekedő vagy monoton csökken.

Bizonyítás:

Az állítás igazolásához bevezetjük a szóban forgó (a_n) sorozat csúcsának a fogalmát: Azt mondjuk, hogy $(a_{n_0}) \in \mathbb{N}$ az (a_n) sorozat csúcsa (vagy csúcseleme), ha

$$\forall n \geq n_0 \text{ indexre } a_n \leq a_{n_0}$$

két eset lehetséges

1. eset A sorozatnak végtelen sok csúcsa van. Ez azt jelenti, hogy

$$\forall v_0 \in \mathbb{N} : a_{v_0} \text{csúcselem}, \text{azaz } \forall n \geq v_0 : a_n \leq a_{v_0};$$

$$\forall v_0 < v_1 \in \mathbb{N} : a_{v_1} \text{csúcselem}, \text{azaz } \forall n \geq v_1 : a_n \leq a_{v_1} (\leq a_{v_0})$$

Ezek a lépések folytathatók, mert végtelen sok csúcselem van. Így egy olyan $v_0 < v_1 < v_2$... indexsorozatot kapunk, amelyre

$$a_{v_0} \ge a_{v_2} \ge a_{v_2} \ge ...,$$

ezért a csúcsok (a_{v_n}) sorozata (a_n) -nek egy monoton csökkenő részsorozata.

2. eset A sorozatnak véges sok csúcsa van. Ez pedig azt jelenti, hogy

$$\exists N \in \mathbb{N}, \forall n \geq N$$
 esetén a_n már nem csúcs.

Így a csúcs definíciója szerint

$$\exists v_0 > N : a_{v_0} > a_N$$

Mivel a_{v_0} sem csúcselem, ezért

$$\exists v_1 > v_0 : a_{v_1} > a_{v_0} (> a_N)$$

Az eljárást folytatva most olyan $N < v_0 < v_1 < v_2 < \dots$ indexsorozatot kapunk, amelyre

$$a_N < a_{v_0} < a_{v_1} < a_{v_2} < \dots$$

Ebben az esetben tehát (a_{v_n}) sorozat (a_n) -nek egy (szigorúan) monoton növekedő részsorozata.

14. Végtelen sorokra vonatkozó összehasonlító kritériumok.

Tétel:

Legyenek $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok. Tegyük fel, hogy

$$\exists N \in \mathbb{N} : 0 \le a_n \le b_n \quad \forall n \ge N \text{ index re}$$

Ekkor

- I Majoráns kritérium: ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ sor is konvergens.
- II Minoráns kritérium: ha a $\sum a_n$ sor divergens, akkor a $\sum b_n$ sor is divergens.

Bizonyítás:

Az általánosság megszorítása nélkül feltehetjük, hogy $a_n \leq b_n$ minden $n \in \mathbb{N}$ esetén, hiszen véges sok tag megváltozásával egy sor konvergenciája nem változik. Jelölje (s_n) . illetve (t_n) a $\sum a_n$ és $\sum b_n$ sorok részletösszegeiből álló sorozatokat. A feltevésünk miatt $s_n \leq t_n \quad (n \in \mathbb{N})$. Ekkor a nemnegatív tagú sorok konvergenciáról szóló tétel szerint.

- I ha a $\sum b_n$ sor konvergens, akkor (t_n) korlátos, így (s_n) is az. Ezért a $\sum a_n$ sor is konvergens.
- II ha a $\sum a_n$ sor divergens, akkor (s_n) nem korlátos, így (t_n) sem az. Ezért a $\sum b_n$ sor is divergens.
- 15. A Cauchy-féle gyökkritérium.

Tétel:

Tekintsük a $\sum a_n$ végtelen sort, és tegyük fel hogy létezik a az

$$A := \lim_{n \to +\infty} \sqrt[n]{|a_n|} \in \overline{\mathbb{R}}$$

határérték. Ekkor

I $0 \leq A < 1$ esetén a $\sum a_n$ sor abszolút konvergens

II A > 1 esetén a $\sum a_n$ sor divergens

III a=1 esetén a $\sum a_n$ sor lehet divergens és konvergens is

Bizonyítás:

Mivel $\sqrt[n]{|a_n|} \ge 0 \quad (n \in \mathbb{N})$, ezért $A \ge 0$.

I Tegyük fel, hogy $0 \le A < 1$. Vegyünk egy A és 1 közötti q számot!

$$\lim (\sqrt[n]{|a_n|}) \longleftrightarrow \exists n_0 \in \mathbb{N}, n > n_0 : \sqrt[n]{|a_n|} < q, \text{ azaz}$$
$$|a_n| < q^n \ \forall n > n_0.$$

Mivel $0 < q < 1 \longrightarrow \sum_{n=n_0} q^n$ mértani sor konvergens. A majoráns kritérium szerint $\sum |a_n|$ konvergens, vagyis $\sum a_n$ végtelen sor abszolút konvergens (tehát konvergens is).

II Tegyük fel, hogy A > 1. Vegyünk most egy 1 és A közötti q számot!

Mivel $A = \lim(\sqrt[n]{|a_n|})$, ezért $\exists n_0 \in \mathbb{N}$, hogy ha $n > n_0$, akkor $\sqrt[n]{|a_n|} > q$, azaz $|a_n| > q^n > 1$ Ebből következik, hogy $\lim(a_n) \neq 0$ és így a $\sum a_n$ sor divergens.

III Tegyük fel, hogy A = 1. Ekkor

- a $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = 1$;
- a $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n^2}} = 1$.
- 16. A D'Alembert-féle hányadoskritérium.

Tétel:

Tekintsük a $\sum a_n$ végtelen sor tagjai közül egyik sem 0 és létezik az

$$A := \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| \in \overline{\mathbb{R}}$$

határérték Ekkor

I $0 \le A < 1$ esetén a $\sum a_n$ sor abszolút konvergens

II A > 1 esetén a $\sum a_n$ sor divergens

III A=1 esetén a $\sum a_n$ sor lehet konvergens és divergens is

Bizonyítás:

Világos, hogy $A \ge 0$.

I Legyen $0 \le A < 1$ és vegyünk egy olyan q számot, amire $0 \le A < q < 1$ teljesül. Ekkor

$$A := \lim \left(\frac{|a_{n+1}|}{a_n} \right) \longrightarrow \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \frac{|a_{n+1}|}{a_n} < q, \ \text{azaz} \ |a_{n+1}| < q|a_n|.$$

Ez azt jelenti, hogy

$$|a_{n_0+1}| < q|a_{n_0}|, |a_{n_0+2}| < q|a_{n_0+1}|, \dots, |a_n| < q|a_{n-1}|$$

minden $n > n_0$ esetén. Így

$$|a_n| < q|a_{n-1}| < q^2|a_{n-2}| < q^3|a_{n-3}| < \dots < q^{n-n_0}|a_{n_0}| = q^{-n_0}|a_{n_0}|q^n = aq^n,$$

ahol $a=q^{-n_0}|a_{n_0}|$ egy n-től független konstans. A $\sum aq^n$ mértani sor konvergens, mert 0 < q < 1. Ezért a majoráns kritérium szerint a $\sum |a_n|$ sor konvergens, vagyis a $\sum a_n$ végtelen sor abszolút konvergens (tehát konvergens is).

II Legyen A>1 és vegyünk most egy olyan q számot, amire 1 < q < A teljesül. Ekkor

$$A := \lim_{n \to +\infty} \frac{|a_{n+1}|}{a_n} \longrightarrow \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \frac{|a_{n+1}|}{a_n} > q, \ \text{azaz} \ |a_{n+1}| > q|a_n| > |a_n|.$$

Ebből következik, hogy $\lim(a_n) \neq 0$, így $\sum a_n$ sor divergens.

- III Tegyük fel, hogy A = 1. Ekkor
 - a $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n}{n+1} = 1$;
 - a $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = 1$.
- 17. Abszolút konvergens sorok átrendezése.

Tétel:

Ha a $\sum_{n=0} a_n$ végtelen sor abszolút konvergens, akkor tetszőleges $(p_n): \mathbb{N} \to \mathbb{N}$ permutációval képzett $\sum_{n=0} a_{p_n}$ átrendezése is abszolút konvergens, és

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n$$

Tehát egy abszolút konvergens sor bármely átrendezése is abszolút konvergens sor, és összege ugyanaz, mint az eredeti soré. **Bizonyítás:** Legyen

$$s_n := \sum_{k=0}^n a_k$$
 és $\sigma_n := \sum_{k=0}^n a_{p_k}$

1. lépés. Igazoljuk, hogy a $\sum_{n=0}a_{p_n}$ sor abszolút konvergens. Valóban mivel $\sum_{n=0}a_n$ abszolút konvergens, ezért minden $n\in\mathbb{N}$ -re

$$\sum_{k=0}^{n} |a_{p_k}| = |a_{p_0}| + |a_{p_1}| + \dots + |a_{p_n}| \le \sum_{k=0}^{+\infty} |a_k| = K < +\infty$$

azaz a $\sum_{k=0}^{n} |a_{p_k}| (n \in \mathbb{N})$ sorozat felülről korlátos; de nyilván monoton növekedő is, következésképpen a $\sum_{n=0} |a_{p_n}|$ sor konvergens. Így a $\sum_{n=0} a_{p_n}$ sor valóban abszolút konvergens.

2. lépés. Igazoljuk, hogy

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Legyen $A:=\sum\limits_{n=0}^{+\infty}a_n=\lim\limits_{n\to+\infty}s_n$ és $B:=\sum\limits_{n=0}^{+\infty}a_{p_n}=\lim\limits_{n\to+\infty}\sigma_n$ Tudjuk, hogy a $\sum\limits_{n=0}^{}|a_n|$ sor konvergens, így a Cauchy-kritérium szerint $\forall \varepsilon>0$ -hoz $\exists n_0\in\mathbb{N},\quad \forall m>n\geq n_0$

$$|a_{n+1}| + |a_{n+2}| + . + |a_m| < \varepsilon$$

Ezért $(n=n_0)$, ha $m>n_0$ akkor $\sum\limits_{k=n_0+1}^m |a_k|<\varepsilon$ Adott $\varepsilon>0$ -ra tekintsük az $a_0,a_1,a_2,...,a_{n_0}$ tagokat, és legyen N_0 olyan index, amire az $a_{p_0}+a_{p_1}+...+a_{p_{n_0}}$ összeg már tartalmazza ezeket a tagokat. Ilyen N_0 nyilván létezik, és $N_0\geq n_0$. Legyen $n>N_0$

$$\sigma_n - s_n = \underbrace{\left(a_{p_0} + a_{p_1} + \dots a_{p_{n_0}} + a_{p_{n_0+1}} + \dots a_{p_n}\right) - \underbrace{\left(a_0 + a_1 + \dots + a_{n_0} + a_{n_0+1} + \dots + a_{n_0}\right)}_{} + a_{n_0+1} + \dots + a_{n_0} + a_{n_0+1} + \dots + a_{n$$

sem tartalmazza az $a_0, a_1, a_2, ..., a_{n_0}$ tagokat. Így

$$|\sigma_n - s_n| \le \sum_{k=n_0+1}^m |a_k| < \varepsilon$$

ahol $m:=\max\{p_0,p_1,...,p_n\}$, hiszen $m\geq n>N_0\geq n_0$. Ez azt jelenti, hogy (σ_n-s_n) nullasorozat. Ezért

$$\sigma_n = (\sigma_n - s_n) + s_n \xrightarrow[n \to +\infty]{} 0 + A = A,$$

azaz

$$\sum_{n=0}^{\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n = \lim_{n \to +\infty} s_n = \sum_{n=0}^{\infty} a_n$$

Ezzel a tételt bebizonyítottuk.

18. Hatványsorok konvergenciahalmaz intervallum.

Tétel:

Hatványsor konvergencia
sugara. Tetszőleges $\sum_{n=0}^{\infty} \alpha_n (x-a)^n (x \in \mathbb{R})$ hatványsor konvergencia
halmazára a következő három eset egyike áll fenn:

- I $\exists 0 < R < +\infty$, hogy a hatványsor $\forall x \in \mathbb{R} : |x a| < R$ esetén abszolút konvergens és $\forall x \in \mathbb{R} : |x a| > R$ pontban pedig divergens.
- II A hatványsor csak az x=a pontban konvergens. Ekkor legyen R:=0
- III A hatványsor abszolút konvergens $\forall x \in \mathbb{R}$ esetén. Ekkor legyen $R := \infty$. R-et a hatványsor konvergenciasugarának nevezzük.

Bizonyítás:

Az állítást elég a=0 esetén igazolni.

Segédtétel. Tegyük fel, hogy a $\sum \alpha_n x^n$ hatványsor konvergens egy $x_0 \neq 0$ pontban. Ekkor $\forall |x| < |x_0|$ esetén a hatványsor abszolút konvergens x-ben. A segédtétel bizonyítása. Mivel a $\sum \alpha_n x_0^n$ végtelen sor konvergens, ezért $\lim(\alpha_n x_0^n) = 0$ így az $(\alpha_n x_0^n)$ sorozat korlátos, azaz $\exists M > 0 : |\alpha_n x_0^n| \leq M < +\infty (n \in \mathbb{N})$.

Legyen $|x| < |x_0|$. Ekkor

$$|\alpha_n x^n| = |\alpha_n x_0^n| \cdot \left| \frac{x}{x_0} \right|^n \le M \cdot \left| \frac{x}{x_0} \right|^n \quad (n \in \mathbb{N})$$

A $\sum |\alpha_n x^n|$ végtelen sor tehát majorálható az $|\frac{x}{x_0}| < 1$ feltétel miatt konvergens $\sum M |\frac{x}{x_0}|^n$ geometriai sorral. Így a majoráns kritérium szerint a $\sum |\alpha_n x^n|$ sor konvergens, tehát a $\sum \alpha_n x^n$ végtelen sor abszolút konvergens. A tétel bizonyítása Tekintsük a $\sum \alpha_n x^n$ hatványsort. Ez x=0-ban nyilván konvergens, ezért KH $(\sum \alpha_n x^n) \neq \emptyset$, így

$$\exists \sup KH \left(\sum_{n=0} \alpha_n x^n\right) =: R \in \overline{\mathbb{R}} \text{ \'es } R \ge 0.$$
 (1)

A következő három eset lehetséges.

I $0 < R < +\infty$ Legyen |x| < R tetszőleges. Ekkor a szuprémum definíciója szerint $\exists x_0 : |x| < x_0 < R$, hogy $\sum \alpha_n x_0^n$ végtelen sor konvergens. A

Segédtétel szerint tehát a $\sum \alpha_n x^n$ sor abszolút konvergens. Ha |x| > R tetszőleges, akkor az R szám definíciója és a Segédtétel szerint a $\sum \alpha_n x^n$ sor divergens.

- II R=0 Ekkor a $\sum \alpha_n x^n$ hatványsor az x=0 pontban nyilván konvergens. Ha |x|>0 tetszőleges, akkor $\exists x_0:0< x_0<|x|$. Az R szám definíciója miatt ekkor a $\sum \alpha_n x_0^n$ végtelen sor divergens, így a Segédtétel szerint a $\sum \alpha_n x^n$ végtelen sor is divergens. A hatványsor tehát csak az x=a pontban konvergens.
- III $R = \infty$ Ha $x \in \mathbb{R}$ tetszőleges, akkor $\exists x_0 : |x| < x_0$, hogy a $\sum \alpha_n x_0^n$ sor konvergens, így a Segédtétel szerint a $\sum \alpha_n x^n$ sor abszolút konvergens. A hatványsor tehát $\forall x \in \mathbb{R}$ esetén abszolút konvergens.
- 19. A Cauchy-Hadamard-tétel.

Tétel:

Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \lim (\sqrt[n]{|\alpha_n|}) =: A \in \overline{\mathbb{R}}$$

Ekkor $A \geq 0$, és a hatványsor konvergenciasugara

$$R = \frac{1}{A} \quad \left(\frac{1}{+\infty} := 0, \frac{1}{0} := +\infty\right)$$

Ez azt jelenti, hogy

- I ha $0 < R < +\infty$ akkor a hatványsor (abszolút) konvergens az (a R, a + R) intervallum minden pontjában, és divergens az [a R, a + R] intervallumon kívül eső pontokban;
- II ha R=0, akkor a hatványsor csak az x=0 pontban konvergens;
- III ha $R = +\infty$, akkor a hatványsor az egész \mathbb{R} -en (abszolút) konvergens.

Bizonyítás:

Rögzítsük tetszőlegesen az $x \in \mathbb{R}$ számot és alkalmazzuk a Cauchy-féle gyökkritériumot a $\sum_{n=0} \alpha_n (x-a)^n$ végtelen számsorra:

$$\lim_{n \to +\infty} \sqrt[n]{|\alpha_n(x-a)^n|} = \left(\lim_{n \to +\infty} \sqrt[n]{|\alpha_n|}\right) \cdot |x-a| = A \cdot |x-a|.$$

I Tegyük fel, hogy $0 < A < +\infty$ vagyis $0 < R < +\infty$ Ha $A \cdot |x - a| < 1$, azaz $|x - a| < \frac{1}{A} = R$, akkor $\sum_{n=0}^{\infty} \alpha_n (x - a)^n$ végtelen számsor x-ben (abszolút) konvergens, és ez azt jelenti, hogy a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor (abszolút) konvergens az (a-R,a+R) intervallum minden pontjában.

Ha $A \cdot |x-a| > 1$, azaz $|x-a| > \frac{1}{A} = R$, akkor $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ végtelen számsor divergens x-ben, és ez azt jelenti, hogy a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor divergens az [a-R,a+R] intervallumon kívül eső pontokban.

- II Ha $A=+\infty$ vagyis R=0 akkor $(+\infty)\cdot |a-x|=+\infty>1$ minden $x\in\mathbb{R}\setminus\{a\}$ esetén, ezért a $\sum_{n=0}\alpha_n(x-a)^n$ végtelen sor divergens. Ez pedig azt jelenti, hogy $\sum_{n=0}\alpha_n(x-a)^n$ hat ványsor csak az x=a pontban konvergens.
- III Ha A=0 vagyis $R=+\infty$, akkor $0\cdot |x-a|=0<1$ minden $x\in\mathbb{R}$ esetén, ezért a $\sum_{n=0}^{\infty}\alpha_n(x-a)^n$ végtelen számsor minden $x\in\mathbb{R}$ pontban (abszolút) konvergens. Ez pedig azt jelenti, hogy a $\sum_{n=0}^{\infty}\alpha_n(x-a)^n$ hatványsor az egész \mathbb{R} -en (abszolút) konvergens.
- 20. Sorok téglány szorzata.

Tétel:

Tegyük fel, hogy a $\sum_{n=0}a_n$ és $\sum_{n=0}b_n$ végtelen sorok konvergensek. Ekkor a $\sum_{n=0}t_n$ téglányszorzatuk is konvergens, és

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n,$$

azaz konvergens sorok téglányszorzata is konvergens, és a téglányszorzat összege a két sor összegének szorzatával egyezik meg.

Bizonyítás:

A bizonyítás alapja a sorozatoknál tanult műveletek és a határátmenet felcserélhetőségére vonatkozó tétel. Jelöle A_n , B_n és T_n rendre a $\sum_{n=0} a_n$, $\sum_{n=0} b_n$ és $\sum_{n=0} t_n$ sorok n-edik részletösszegeit. Ekkor

$$T_n = \sum_{k=0}^n t_k = \sum_{k=0}^n \sum_{\max\{i,j\} \le n} a_i b_j = \sum_{\max\{i,j\} \le n} a_i b_j = (\sum_{i=0}^n a_i) \cdot (\sum_{j=0}^n b_j) = \sum_{\min\{i,j\} \le n} a_i b_j = (\sum_{j=0}^n a_j) \cdot (\sum_{j=0}^n a_j) \cdot (\sum_{j=0}^n a_j) = (\sum_{j=0}^n$$

$$=A_nB_n \to (\sum_{n=0}^{+\infty} a_n) \cdot (\sum_{n=0}^{+\infty} b_n)$$
, ha $n \to +\infty$.

Mivel a (T_n) sorozat konvergens, így a $\sum t_n$ végtelen sor is konvergens, és

$$\sum_{n=0}^{+\infty} t_n = \lim(T_n) = (\sum_{n=0}^{+\infty} a_n) \cdot (\sum_{n=0}^{+\infty} b_n).$$

21. Függvények határértékének egyértelműsége.

Tétel:

A határérték egyértelmű. Ha az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}'_f$ pontban van határértéke, akkor a 2. definícióban szereplő $A \in \overline{\mathbb{R}}$ egyértelműen létezik.

Bizonyítás:

Tegyük fel, hogy valamilyen $B \in \mathbb{R}$ is eleget tesz a definíció feltételeinek, és $A \neq B$. Ekkor

$$\exists \varepsilon > 0 : K_{\varepsilon}(A) \cap K_{\varepsilon}(B) \neq \emptyset.$$

Egy ilyen ε -hoz a határérték definíciója szerint

$$\exists \delta_1 > 0: \quad \forall x \in (K_{\delta_1}(a) \setminus \{a\}) \cap \mathcal{D}_f: \quad f(x) \in K_{\varepsilon}(A),$$

$$\exists \delta_2 > 0: \quad \forall x \in (K_{\delta_2}(a) \setminus \{a\}) \cap \mathcal{D}_f: \quad f(x) \in K_{\varepsilon}(B),$$

Legyen $\delta := \min\{\delta_1, \delta_2\}$. Ekkor

$$\forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : \quad f(x) \in K_{\varepsilon}(A) \cap K_{\varepsilon}(B) = \emptyset.$$

Ellentmondásra jutottunk, és ezzel a határérték egyértelműségét igazoltuk.

22. A határértékre vonatkozó átviteli elv.

Tétel:

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}, a \in \mathcal{D'}_f$ és $A \in \overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \Leftrightarrow \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{x \to +\infty} x_n = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = A.$$

Bizonyítás:

$$\Longrightarrow \lim_{a} f = A \Rightarrow \forall \varepsilon > 0 \text{-hoz } \exists \delta > 0, \forall x \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : f(x) \in K_{\varepsilon}(A).$$

Legyen (x_n) egy, a tételben szereplő sorozat és $\varepsilon > 0$ egy rögzített érték. Ekkor a $K_{\delta}(a)$ környezethez $\exists n_0 \in \mathbb{N}, \forall n > n_0 : x_n \in K_{\delta}(a)$. Így $f(x_n) \in K_{\varepsilon}(A)$ teljesül minden $n > n_0$ indexre, és ez azt jelenti, hogy az $(f(x_n))$ sorozatnak van határértéke, és $\lim_{n \to +\infty} f(x_n) = A$.

Tegyük fel, hogy $\forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}$, $\lim_{n \to +\infty} x_n = a$ esetén $\lim_{n \to +\infty} f(x_n) = A$. Megmutatjuk, hogy $\lim_a f = A$.

Az állítással ellentétben tegyük fel, hogy a $\lim_a f = A$ egyenlőség nem igaz. Ez részletesen azt jelenti, hogy

$$\exists \varepsilon > 0, \forall \delta > 0$$
-hoz $\exists x_{\delta} \in (K_{\delta}(a) \setminus \{a\}) \cap \mathcal{D}_f : f(x_{\delta}) \notin K_{\varepsilon}(A)$.

A $\delta = \frac{1}{n} \ (n \in \mathbb{N}^+)$ választással ez azt jelenti, hogy

$$\exists \varepsilon > 0, \forall n \in \mathbb{N}^+$$
-hoz $\exists x_n \in (K_{1/n}(a) \setminus \{a\}) \cap \mathcal{D}_f : f(x_n) \notin K_{\varepsilon}(A)$.

Ez az (x_n) sorozat nyilván a-hoz tart (hiszen $x_n \in K_{1/n}(a)$), de a függvényértékek $(f(x_n))$ sorozata nem tart A-hoz (hiszen $f(x_n) \notin K_{\varepsilon}(A)$), ami ellentmond a feltételünknek.

23. Monoton függvények határértéke.

Tétel:

Legyen $(\alpha, \beta) \subset \mathbb{R}$ tetszőleges (korlátos vagy nem korlátos) nyílt intervallum. Ha az f függvény monoton (α, β) -n, akkor f-nek $\forall a \in (\alpha, \beta)$ pontban létezik a jobb oldali, illetve a bal oldali határértéke.

1. Ha $f \nearrow (\alpha, \beta)$ -n, akkor:

$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x > a \}$$

$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}$$

2. Ha $f \searrow (\alpha, \beta)$ -n, akkor:

$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x > a \}$$

$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}$$

Bizonyítás:

Tegyük fel, hogy $f \nearrow (\alpha, \beta)$ -n. A jobb oldali határértékre vonatkozó állítást igazoljuk.

Legyen $m:=\inf f(x) \mid x \in (\alpha,\beta), \ x>0$. Világos, hogy $m \in \mathbb{R}$. Az infimum definíciójából következik, hogy

$$m \le f(x) \ \forall x \in (\alpha, \beta), \ x > 0;$$
 (2)

$$\forall \varepsilon > 0 \text{-hoz } \exists x_1 \in (\alpha, \beta), x_1 > 0 : \quad f(x_1) < m + \varepsilon$$
 (3)

Így $m \leq f(x_1) \leq m + \varepsilon$. Mivel $f \nearrow (\alpha, \beta)$ -n, ezért

$$m \le f(x) \le f(x_1) < m + \varepsilon \ \forall x \in (a, x_1) \text{ pontban.}$$

A $\delta := x_1 - a > 0$ választással tehát azt mutattuk meg, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0, \, \forall x \in (\alpha, \beta), \, a < x < a + \delta : \underbrace{0 \le f(x) - m < \varepsilon}_{f(x) \in K_{\varepsilon}(m)}$

Ez pedig azt jelenti, hogy f-nek a-ban van jobb oldali határértéke, és az m-mel egyenlő, azaz

$$\lim_{a \to 0} f = m = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x > a \}.$$

24. Az összetett függvények folytonossága.

alkalmazva az átviteli elvet az adódik, hogy

Tétel:

Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$, $g \in C\{a\}$ és $f \in C\{g(a)\}$. Ekkor $f \circ g \in C\{a\}$, azaz az összetett függvény örökli a belső- és a külső függvény folytonosságát.

Bizonyítás:

A feltételek szerint $g(a) \in \mathcal{D}_f$, ezért $\mathcal{R}_g \cap \mathcal{D}_f \neq \emptyset$, így valóban beszélhetünk az $f \circ g$ összetett függvényről, és $a \in \mathcal{D}_{f \circ g}$ is igaz, mert $\mathcal{D}_{f \circ g} \subset \mathcal{D}_g$. Legyen $(x_n) : \mathbb{N} \to \mathcal{D}_{f \circ g} \subset \mathcal{D}_g$ egy olyan sorozat, amelyre $\lim(x_n) = a$. Ekkor g-re a 7. tételt alkalmazva (folytonosságra vonatkozó átviteli elv) azt kapjuk, hogy $\lim(g(x_n)) = g(a)$. Ugyanakkor $(g(x_n)) : \mathbb{N} \to \mathcal{D}_f$, ezért f-re

$$\lim_{n \to +\infty} f(g(x_n)) = f(g(a)) = (f \circ g)(a).$$

Mivel ez utóbbi bármely $(x_n): \mathbb{N} \to \mathcal{D}_{f \circ g}$, $\lim(x_n) = a$ sorozat esetén igaz, ezért ismét az átviteli elvből következik, hogy $f \circ g \in C\{a\}$.

25. Korlátos és zárt intervallumon értelmezett folytonos függvény korlátos.

Tétel:

Ha $f \in C[a, b]$, akkor f korlátos az [a, b] intervallumon.

Bizonyítás:

f korlátos [a, b]-n, ha

$$\exists K > 0 : \forall x \in [a, b] \text{ esetén } |f(x)| \leq K.$$

Indirekt módon bizonyítunk: Tegyük fel, hogy f nem korlátos [a, b]-n, azaz

$$\forall K > 0$$
-hoz $\exists x \in [a, b]: |f(x)| > K$.

A $K=n\in\mathbb{N}$ választással azt kapjuk, hogy

$$\forall n \in \mathbb{N} \text{-hez } \exists x_n \in [a, b] : \quad |f(x_n)| \ge n. \tag{*}$$

Az $(f(x_n))$ sorozat tehát nem korlátos.

Mivel $(x_n) \subset [a, b]$ korlátos sorozat, ezért ennek a Bolzano-Weierstrass-féle kiválasztási tétel szerint létezik (x_{n_k}) konvergens részsorozata. Legyen $\alpha := \lim(x_{n_k})$. Indirekt módon igazolható, hogy $\alpha \in [a, b]$. Ugyanakkor $f \in C\{a\}$. Így a folytonosságra vonatkozó átviteli elv szerint létezik a

$$\lim(f(x_{n_k})) = f(\alpha)$$

véges határérték. Ebből következik az, hogy az $(f(x_{n_k}))$ sorozat korlátos, ami ellentmond (*)-nak. Ezzel a tétel állítását bebizonyítottuk.

26. Weierstrass tétele.

Tétel:

Legyen $-\infty < a < b < +\infty$. Ha az $f:[a,b] \to \mathbb{R}$ függvény folytonos az [a,b] intervallumon, akkor f-nek létezik abszolút maximum- és abszolút minimumhelye, azaz

$$\exists \alpha, \beta \in [a, b]: f(\beta) \le f(x) \le f(\alpha) \quad (\forall x \in [a, b])$$

Bizonyítás:

f folytonos [a,b]-n $\Longrightarrow f$ korlátos [a,b]-n. Ezért

$$\exists \sup \{f(x) \mid x \in [a, b]\} =: M \in \mathbb{R},$$
$$\exists \inf \{f(x) \mid x \in [a, b]\} =: m \in \mathbb{R},$$

Igazoljuk: az f függvénynek van abszolút maximumhelye, azaz $\exists \alpha \in [a, b]$: $f(\alpha) = M$. A szuprémum definíciójából következik, hogy

$$\forall n \in \mathbb{N}, \exists y_n \in \mathcal{R}_f : M - \frac{1}{n} y_n \leq M.$$

Viszont:

$$y_n \in \mathcal{R}_f \implies \exists x_n \in [a, b] : f(x_n) = y_n \quad (\forall n \in \mathbb{N}).$$

Az így definiált $(x_n): \mathbb{N} \to [a, b]$ sorozat kotlátos, ezért a Bolzano-Weierstrassféle kiválasztási tétel miatt az (x_n) sorozatnak létezik (x_{n_k}) konvergens részsorozata. Jelölje α ennek a határértékét, azaz legyen

$$\alpha := \lim(x_{n_k}) \tag{*}$$

Indirekt módon belátható, hogy $\alpha \in [a, b]$. f folytonos [a, b]-n $\Longrightarrow f \in C\{\alpha\} \xrightarrow{\text{átviteli}}$

(*) miatt
$$\lim_{n_k \to +\infty} f(x_{n_k}) = f(\alpha)$$

Mivel

$$M - \frac{1}{n_k} < f(x_{n_k}) = y_{n_k} \le M$$
 (minden n_k -ra),

ezért $\lim_{n_k\to+\infty}y_{n_k}=M$, így $f(\alpha)=M$. Megmutattuk tehát azt, hogy α az f függvénynek egy maximumhelye. Hasonlóan bizonyítható az abszolút maximum létezése.

27. A Bolzano-tétel.

Tétel:

Tegyük fel, hogy $f:[a,b] \to \mathbb{R}$ folytonos függvény $(a < b, a, b \in \mathbb{R})$. Ha f a két végpontban különböző előjelű értéket vesz fel, vagyis ha $f(a) \cdot f(b) < 0$, akkor van olyan $\xi \in (a,b)$ pont, amelyre $f(\xi) = 0$.

Bizonyítás:

Tegyük fel, hogy

$$f(a) < 0f(b)$$

A ξ számot egymásba skatulyázott zárt intervallumsorozat közös pontjaként fogjuk definiálni. Legyen

$$[x_0, y_0] := [a, b]$$

Az intervallumot megfelezzük. Legyen $z_0 = \frac{a+b}{2}$. Három eset lehetséges:

- 1. $f(z_0) = 0$, ekkor $\xi := z_0$ zérushelye f-nek.
- 2. $f(z_0) > 0$ esetén legyen $[x_1, y_1] := [a, z_0]$

3. $f(z_0) < 0$ esetén legyen $[x_1, y_1] := [z_0, b]$

Az $[x_1, y_1]$ intervallumot megfelezve három eset lehetséges.

Az eljárást folytatjuk.

Vagy véges sok lépésben találunk olyan ξ -t, amelyre $f(\xi) = 0$, vagy nem. Az utóbbi esetben $\exists [x_n, y_n] \ (n \in \mathbb{N})$ intervallumsorozat, amelyre

1.
$$[x_{n+1}, y_{n+1}] \subset [x_n, y_n] \ (\forall n \in \mathbb{N})$$

2.
$$f(x_n) < 0$$
, $f(y_n) > 0$ $(\forall n \in \mathbb{N})$

3.
$$y_n - x_n = \frac{b-a}{2^n} \ (\forall n \in \mathbb{N})$$

A valós számok Cantor-tulajdonságából és a 3. állításból következik, hogy fenti egymásba skatulyázott intervallumsorozatnak pontosan egy közös pontja van. Legyen ez ξ , azaz

egyértelműen
$$\exists \xi \in \bigcap_{n \in \mathbb{N}} [x_n, y_n] \neq \emptyset.$$

A konstrukcióból következik, hogy

$$\xi = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n.$$

Mivel f folytonos ξ -ben, ezért

$$\lim_{n \to +\infty} f(x_n) = f(\xi) = \lim_{n \to +\infty} f(y_n).$$

De a 2. állításból adódóan

$$\lim_{n \to +\infty} f(x_n) \le 0 \le \lim_{n \to +\infty} f(y_n)$$

azaz $f(\xi) \le 0$ és $f(\xi) \ge 0$, ami csak úgy teljesülhet, ha $f(\xi) = 0$. A bizonyítás hasonló, ha f(a) > 0 és f(b) < 0.