ЭТАП 2 ПРОЕКТА НА ТЕМУ

ТЕПЛОПРОВОДНОСТЬ, ДЕТЕРМИНИРОВАННОЕ ГОРЕНИЕ

Зыполнили: Давтян Артур 1032183382

Левкович Константин 1032182533

Якушевич Артём 1032186801

Федотов Дмитрий 1032183383

Ефремова Ангелина 1032185215

Подмогильный Иван 1032182536

ВВЕДЕНИЕ

- Один из методов решения одномерного уравнения теплопроводности метод Эйлера.
- Разберем алгоритм решения одномерного уравнения теплопроводности по методу Эйлера.

ТЕОРЕТИЧЕСКОЕ ОПИСАНИЕ ЗАДАЧИ

Нам требуется:

- 1. Решить одномерное уравнение теплопроводности с адиабатическими граничными условиями, используя явную разностную схему.
- 2. Исследовать поведение численного решения при различных значениях $\chi \frac{\Delta t}{h^2}$.

АЛГОРИТМ РЕШЕНИЯ ОДНОМЕРНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ ПО МЕТОДУ ЭЙЛЕРА

1. Первым шагом в процедуре дискретизации является замена области $[\mathsf{o},\mathsf{L}] \times [\mathsf{o},\mathsf{T}]$ множеством узлов сетки. Здесь мы применяем равноотдалённые точки сетки $x_i = i\Delta x, i = 0,...,N_x$ и $t_n = n\Delta t, n = 0,...,N_t$.

2. Кроме того, u_i^n обозначает сеточную функцию, которая аппроксимирует $u(x_i,t_n)$ для $i=0,\dots,N_x$ и $n=0,\dots,N_t$. Нужно, чтобы выполнялось начальное дифференциальное уравнение теплопроводности: $\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \quad x \in (0,L), \ t \in (0,T]$ в узле x_i,t_n .

3. Составляем уравнение:

$$\frac{\partial}{\partial t}u(x_i, t_n) = \alpha \frac{\partial^2}{\partial x^2}u(x_i, t_n).$$

Следующим шагом является замена производных методом аппроксимации конечными разностями.
Проще всего для написания кода использовать пространство

$$[D_t^+ u = \alpha D_x D_x u]_i^n.$$

4. Расписывая,
$$\frac{u_i^{n+1}-u_i^n}{\Delta t}=lpha \frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{\Delta x^2}$$
 .

5. Мы превратили дифференциальное уравнение в алгебраическое (или дискретное) для простоты решения. Как обычно, мы ожидаем, что u_i^n уже вычислен таким образом, что u_i^{n+1} является единственным неизвестным. Решаем относительно этого неизвестного:

$$u_i^{n+1} = u_i^n + F\left(u_{i+1}^n - 2u_i^n + u_{i-1}^n\right).$$

6. F — ключевой параметр в дискретном уравнении теплопроводности.

При этом F - безразмерное число, которое объединяет ключевой физический параметр задачи α и параметры дискретизации Δx и Δt в один параметр. Все свойства численного метода критически зависят от величины F.

- Тогда наш алгоритм выглядит следующим образом:
- Вычислить $u_i^0 = I(x_i)$ для $i=0,\ldots,N_x$
- Для $n=0,1,\ldots,N_t$:
 - Применяем последнее получившееся $\label{eq:particle}$ уравнение для всех внутренних $\label{eq:particle}$ пространственных точек $i=1,\dots,N_x-1$
 - Установим граничные значения $u_i^{n+1}=0$ для i=0 и $i=N_r$

выводы

Метод Эйлера - наиболее удобный для написания кода, потому что преобразовывает дифференциальное уравнение в дискретное, при этом учитывая критическое значение F для всей модели.