

Preparation of Denaturing Agarose Gel for RNA Analysis

David Dunigan and Irina Agarkova

Abstract

Citation: David Dunigan and Irina Agarkova Preparation of Denaturing Agarose Gel for RNA Analysis. protocols.io

dx.doi.org/10.17504/protocols.io.es4begw

Published: 13 Jun 2016

Protocol

Gel Preparation

Step 1.

Melt 1.0 g agarose in 87 ml of DEPC water, by dispersing the agarose uniformly and heating in a microwave until all particles are dissolved.

Gel Preparation

Step 2.

Bring the melted agarose to 60 °C.

Gel Preparation

Step 3.

Add 10 ml 10X MOPS Buffer and 3 ml 37% formaldehyde.

№ PROTOCOL

. 10X MOPS Buffer

CONTACT: Irina Agarkova

NOTES

Irina Agarkova 31 Mar 2016

Use DEPC treated water and RNase free reagents.

Step 3.1.

10X MOPS consists of the following (per liter):

Step 3.2.

0.2 M MOPS pH 7 with NaOH

Step 3.3.

50 mM sodium acetate

Step 3.4.

10 mM EDTA

Gel Preparation

Step 4.

FORMALDEHYDE IS VOLATILE AND TOXIC. WORK IN A HOOD FROM THIS POINT FORWARD.

Gel Preparation

Step 5.

Pour standard agarose gel gel. USE A FUME HOOD!

Gel Preparation

Step 6.

Allow gel to set for 1 hour.

O DURATION

01:00:00

Gel Preparation

Step 7.

Run gel in 1X MOPS Buffer.

. 10X MOPS Buffer

CONTACT: Irina Agarkova

Step 7.1.

10X MOPS consists of the following (per liter):

Step 7.2.

0.2 M MOPS pH 7 with NaOH

Step 7.3.

50 mM sodium acetate

Step 7.4.

10 mM EDTA

Sample Preparation

Step 8.

Mix 40 μl sample buffer with 10 μl sample, heat to 55 °C 15 minutes.

O DURATION

00:15:00

NOTES

Irina Agarkova 31 Mar 2016

The sample buffer is comprised of 65% formamide, 22% formalin (37% formaldehyde) and 13% 10X MOPS.

Sample Preparation

Step 9.

Add 10µl of the following:

- 50% glycerol
- 1 mM EDTA
- 0.3% each bromophenol blue and 0.3% xylene cyanol.

Warnings

Note: RNA is subject to rapid degradation by RNase present in the environment. For optimal results, use water treated with DEPC.