

Università degli Studi di Padova

PAC Learning

Machine Learning 2023-24
UML Book Chapter 3
Slides P. Zanuttigh (some material from F. Vandin slides)

Supervised Learning

Training data with labels

In most of the course we will focus on supervised learning

PAC Learning

Probably Approximately Correct (PAC) learning

- Since the training data is sampled accordingly to D:
- we can only be approximately correct
- we can only be probably correct

Parameters:

- lacktriangle accuracy parameter ϵ : we are satisfied with a good h_{S} for which $L_{D,f}(h_{S}) \leq \epsilon$
- ightharpoonup confidence parameter δ : want h_s to be a good hypothesis with probability $\geq 1-\delta$

Theorem

(Finite Hypothesis Classes are PAC Learnable)

Let H be a finite hypothesis class. Let $\delta \in (0,1)$, $\epsilon \in (0,1)$ and $m \in \mathbb{N}$ such that:

$$m \ge \frac{\log\left(\frac{|H|}{\delta}\right)}{\epsilon}$$

Notice: m grows with $|\mathcal{H}|$ and is inversely proportional to δ and ϵ

Then for any f and any D for which the realizability assumption holds, with probability $\geq 1 - \delta$ we have that for every ERM hypothesis h_s it

holds that

$$L_{D,f}(h_s) \leq \epsilon$$
 probably approximately correct

m: size of the training set (i.e., S contains m I.I.D. samples)

Definition: PAC Learnability

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \epsilon \in (0,1)$, for every distribution D over \mathcal{X} and for every labeling function $f: x \to \{0,1\}$, if the realizability assumption holds with respect to \mathcal{H}, D, f when running the algorithm on $m \ge m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by D and labeled by f the algorithm returns a hypothesis f such that, with probability f (over the choice of the f training examples): f (over the choice of the f (over the choice of f (over the choice of f (over th

Notes:

- It is a property of the hypothesis class
- Must be satisfied for every δ , ϵ , D, f
- $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$: sample complexity of learning \mathcal{H} (depends on ϵ and δ)
- $m_{\mathcal{H}}$ is the minimum integer that satisfies the requirements
- Sample complexity: minimum size of training set to be sure to satisfy requirements (sufficient but not necessary condition)
- Only if realizability assumption holds
- PAC: Good probability (1δ) of having a good predictor $(L_{D,f}(h) \le \epsilon)$

Corollary (PAC)

A hypothesis class \mathcal{H} is PAC learnable if there exist a function $m_{\mathcal{H}} \colon (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \epsilon \in (0,1)$, for every distribution D over \mathcal{X} and for every labeling function $f \colon x \to \{0,1\}$, if the realizability assumption holds with respect to \mathcal{H}, D, f when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by D and labeled by f the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the m training examples): $L_{D,f}(h) \leq \epsilon$

From the previous theorem and from the definition of PAC:

Corollary (PAC)

Every finite hypothesis class is PAC learnable with sample complexity

$$m_H(\epsilon, \delta) \le \frac{\log\left(\frac{|H|}{\delta}\right)}{\epsilon}$$

- Larger hypothesis class $|H| \rightarrow$ need a larger training set
- Smaller training error $\epsilon \rightarrow$ need a larger training set

• Better probability of a good solution $1 - \delta \rightarrow$ need a larger training set

sufficient condition (not necessary)

Drop Some Assumptions

 $(w,h) \rightarrow M \text{ or } F ? ?$

1. Realizability Assumption: there exists $h^* \in \mathcal{H}$ such that

$$L_{D,f}(h)=0$$

- ☐ Too strong in many real-world applications! *no "perfect" predictor*
- 2. Function f: in many applications it is not too realistic that the labeling is fully determined by the features we measure
 - ☐ *Relaxation*: replace target labeling function...
 - lacksquare .. and assume D is a probability distribution over $\mathcal{X}x\mathcal{Y}$
 - i.e., D is the joint distribution over domain points and labels
 - \square For example, two components of D:
 - D_x : (marginal) distribution over domain points
 - D((x,y)|x): conditional distribution over labels for each domain point
- 3. Binary classification \rightarrow move to a more general setting
 - ☐ Multi-class classification and regression problems

Empirical and True Error

Assuming D is a probability distribution over $X \times Y$, the *true error* (or risk) is:

$$L_D(h) \triangleq \mathbb{P}_{(x,y)\sim D}[h(x) \neq y] \stackrel{\text{def}}{=} D(\{(x,y):h(x) \neq y\})$$
Recall: previously $\mathbb{P}_{x\sim D}[h(x) \neq f(x)]$

As before *D* is not known to the ML algorithm (learner): the learner only knows the training data S

The *Empirical Risk* is as before:

$$L_S(h) \stackrel{\text{def}}{=} \frac{|\{i: h(x_i) \neq y_i , 1 \leq i \leq m\}|}{m}$$

Note: $L_s(h)$ = probability for a pair taken uniformly (x_i, y_i) at random from S the event $h(x_i) \neq y_i$ holds

Bayes Optimal Predictor

Learner's goal: find $h: \mathcal{X} \to \mathcal{Y}$ minimizing $L_D(h)$

Question: Is there a best predictor (for binary classification)?

Given a probability distribution D over $Xx\{0,1\}$, the best predictor is the *Bayes Optimal Predictor:* binary classification

$$f_D(x) = \begin{cases} 1 & if \ P[y = 1 \mid x] \ge \frac{1}{2} \\ 0 & otherwise \end{cases}$$

Proposition:

For any classifier $g: \mathcal{X} \to \{0,1\}$, it holds $L_D(f_D) \leq L_D(g)$

Can we use such predictor?

D (and consequently $\mathbb{P}[y=1 | x]$) is not known!

Definition:

Agnostic PAC Learnability

- Idea: We drop the requirement of finding the best predictor, but we do not want to be too far from it
- ☐ Definition (*agnostic* PAC learnability):

A hypothesis class $\mathcal H$ is agnostic PAC learnable if there exist a function $m_{\mathcal H} \colon (0,1)^2 \to \mathbb N$ and a learning algorithm such that for every $\delta, \epsilon \in (0,1)$ and for every distribution D over $\mathcal X x \mathcal Y$, when running the algorithm on $m \geq m_{\mathcal H}(\epsilon, \delta)$ i.i.d. examples generated by D the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the m training examples):

$$L_D(h) \leq \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$$

Not farther than ϵ from the best predictor in $\mathcal H$

- $oldsymbol{\square}$ This is a generalization of the previous learning model
- Realizability is not required

Multiclass Classification and Regression

We consider 3 possible learning problems:

- Domain set and training data have the same structure for all problems
- Learner output: h: $X \rightarrow Y$ (Y is different for the 3 problems)
- Binary classification: (it is the one we were considering before)
 - Target set: $y = \{0,1\}$ (target set size = 2)

- 2. Multiclass classification with K > 2 classes
 - Target set: $\mathcal{Y} = \{0,1,...,K-1\}$ (target set size = K)
 - Loss: as for the binary case
- Regression $\mathcal{Y} = \mathbb{R}$
 - Target set has an infinite size
 - Need a new loss function!

300k€ 50k€

Generalized Loss Function

Given:

- \mathcal{H} : hypothesis class
- Z: domain (XxY)

A loss function is any function $l: \mathcal{H}xZ \to \mathbb{R}_+$

Risk function: expected loss of an hypothesis $h \in \mathcal{H}$ with respect to D over Z:

$$L_D(h) \stackrel{\text{def}}{=} \mathbb{E}_{z \sim D}[l(h, z)]$$

Empirical risk: expected loss over a given training set $S = (z_1, ..., z_m) \in Z^m$:

$$L_{S}(h) \stackrel{\text{def}}{=} \frac{1}{m} \sum_{i=1}^{m} l(h, z_{i})$$

Common Loss Functions

O-1 loss: Commonly used in binary or multiclass classification

$$l_{0-1}(h,(x,y)) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } h(x) = y \\ 1 & \text{if } h(x) \neq y \end{cases}$$

- Cross Entropy is also used in classification (presented later in the course)
- Squared loss (L2): Commonly used in regression, penalize few large errors

$$l_{sq}(h,(x,y)) \stackrel{\text{def}}{=} (h(x)-y)^2$$

Absolute value loss (L1): Commonly used in regression, penalize many small errors

$$l_{abs}(h,(x,y)) \stackrel{\text{def}}{=} |h(x) - y|$$

- In general, the loss function depends on the application!
 - But computational considerations must also be taken into account..

Optimal Loss Depends on Application

The relevance of different error types depends on the application

Example: fingerprints classification/verification

- False accept: accept an unauthorized user
- False reject: do not accept an authorized user

Optimal Loss: Discount Verification

The error measure - for supermarkets

Supermarket verifies fingerprint for discounts

False reject is costly; customer gets annoyed!

False accept is minor; gave away a discount and intruder left their fingerprint \odot

Optimal Loss: CIA Data Center

The error measure - for the CIA

CIA verifies fingerprint for security

False accept is a disaster!

Agnostic PAC Learnability: General Loss Functions

Definition

A hypothesis class \mathcal{H} is agnostic PAC learnable with respect to a set Z and a loss function $clidet L: HxZ \to \mathbb{R}_+$ if there exist a function $m_{\mathcal{H}}: (0,1)^2 \to \mathbb{N}$ and a learning algorithm such that for every $\delta, \epsilon \in (0,1)$ and for every distribution D over Z, when running the algorithm on $m \geq m_{\mathcal{H}}(\epsilon, \delta)$ i.i.d. examples generated by D the algorithm returns a hypothesis h such that, with probability $\geq 1 - \delta$ (over the choice of the m training examples):

$$L_D(h) \le \min_{h' \in \mathcal{H}} L_D(h') + \epsilon$$

where $L_d(h) = \mathbb{E}_{z \sim D}[l(h, z)]$