See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266264454

Synthesis and metabolic studies of $1\alpha,2\alpha,25-$, $1\alpha,4\alpha,25-$ and $1\alpha,4\beta,25-$ trihydroxyvitamin D3

ARTICLE in THE JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY · SEPTEMBER 2014

Impact Factor: 3.63 · DOI: 10.1016/j.jsbmb.2014.09.021 · Source: PubMed

CITATION READS

11 AUTHORS, INCLUDING:

1

Kaori Yasuda

Toyama Prefectural University

32 PUBLICATIONS 534 CITATIONS

SEE PROFILE

Tai C Chen

Boston University

240 PUBLICATIONS 11,265 CITATIONS

SEE PROFILE

24

Kyohei Horie

Teijin

9 PUBLICATIONS 58 CITATIONS

SEE PROFILE

Atsushi Kittaka

Teikyo University

163 PUBLICATIONS 1,872 CITATIONS

SEE PROFILE

FISEVIER

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry & Molecular Biology

journal homepage: www.elsevier.com/locate/jsbmb

Review

Synthesis and metabolic studies of 1α , 2α , 25-, 1α , 4α , 25- and 1α , 4β , 25-trihydroxyvitamin D_3

Masashi Takano ^a, Daisuke Sawada ^{a,1}, Kaori Yasuda ^b, Miyu Nishikawa ^b, Akiko Takeuchi ^c, Ken-ichiro Takagi ^c, Kyohei Horie ^c, G. Satyanarayana Reddy ^d, Tai C. Chen ^e, Toshiyuki Sakaki ^b, Atsushi Kittaka ^{a,*}

- ^a Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
- ^b Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
- ^c Teijin Institute for Bio-medical Research, Teijin Pharma Ltd., Hino, Tokyo 191-8512, Japan
- d Epimer LLC, North Smithfield, RI 02906, USA
- e Section of Endocrinology, Diabetes & Nutrition, Boston University School of Medicine, Boston, MA 02118, USA

ARTICLE INFO

Article history: Received 11 July 2014 Received in revised form 17 September 2014 Accepted 22 September 2014 Available online 26 September 2014

Keywords: Vitamin D₃ Trihydroxyvitamin D₃ Vitamin D receptor CYP3A4 CYP24A1 UCT

ABSTRACT

Three different A-ring perhydroxylated trihydroxyvitamin D₃ metabolites were synthesized from their appropriate A-ring precursors and CD-ring for their potential therapeutic applications. We first chemically synthesized $1\alpha,2\alpha,25$ -trihydroxyvitamin D_3 $[1\alpha,2\alpha,25(OH)_3D_3]$ to study its VDR binding affinity because this metabolite is a product of recombinant human CYP3A4 catalysis when 2α -(3-hydroxypropoxy)- 1α ,25-dihydroxyvitamin D₃ (O2C3), a more potent vitamin D receptor (VDR) binder than $1\alpha,25$ -dihydroxyvitamin D_3 [$1\alpha,25$ (OH) $_2D_3$], is used as the substrate. We found that this metabolite retained 27.3% of the VDR binding affinity compared to 1α ,25(OH)₂D₃. The k_{cat}/K_m value of CYP24A1 for $1\alpha_2\alpha_2$ 5(OH)₃D₃ is 60% of that for $1\alpha_2$ 5(OH)₂D₃. Since the biological activity and the metabolic fate of a naturally occurring C4-hydroxylated vitamin D₂ metabolite found in the serum of rats treated with pharmacological doses of vitamin D₂ have never been described, we next synthesized 1α , 4α , 25-trihydroxyvitamin D_3 and its diastereoisomer, 1α , 4β , 25-trihydroxyvitamin D_3 , to study their metabolism and biological activities. Both 4-hydroxylated isomers showed weaker VDR binding affinity than $1\alpha,25(OH)_2D_3$. Although either 4-hydroxylated isomer can be metabolized by CYP24A1 almost at the same level as $1\alpha,25(OH)_2D_3$, their metabolic patterns catalyzed by uridine 5'-diphosphoglucuronosyltransferase (UGT) are different; only the 4α -hydroxylated analog can be metabolized by UGT to produce a glucuronate conjugate. The results provide important information for the synthesis of new novel chemotherapeutic vitamin D analogs which would be less subjective to degradation and therefore more bioavailable than $1\alpha,25(OH)_2D_3$.

This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

© 2014 Elsevier Ltd. All rights reserved.

Contents

36
37
37
37

* Corresponding author. Tel.: +81 3 3964 8109; fax: +81 3 3964 8117. E-mail address: akittaka@pharm.teikyo-u.ac.jp (A. Kittaka).

1. Introduction

The physiologically active metabolite of vitamin D_3 , $1\alpha,25$ -dihydroxyvitamin D_3 $[1\alpha,25(OH)_2D_3]$, expresses its biological activity through binding to and modulation of the

¹ Present address: Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kitaku, Okayama 700-8530, Japan.

Fig. 1. Structures of $1\alpha,25(OH)_2D_3$ and its hydroxylated analogs O1C3, O2C3, $1\alpha,2\alpha,25(OH)_3D_3$, $1\alpha,4\alpha,25(OH)_3D_3$, and $1\alpha,4\beta,25(OH)_3D_3$.

vitamin D receptor (VDR) [1]. Previously, we synthesized 2α -(3-hydroxypropoxy)- 1α ,25(OH)₂D₃ (O2C3) which possesses 1.8-times greater binding affinity for VDR than the natural hormone 1α ,25(OH)₂D₃ [2–4]. The reason of being the better ligand can be explained by X-ray co-crystallographic analyses of the VDR-O2C3 complex, which shows additional hydrogen bonding between the terminal hydroxy group of the introduced 2α -side chain of the O2C3 and Arg274 in the ligand binding domain (LBD) of the VDR [5]. Although 1α ,25(OH)₂D₃ is inactivated by CYP24A1-dependent catabolism via C-24 and C-23 hydroxylation pathways to calcitroic acid and 26,23-lactone derivatives, respectively [6], it was found that some 2α -substituted active vitamin D analogs like O2C3 were highly resistant to the CYP24A1 catabolism. The k_{cat}/K_{m} value of O2C3 was only 3% of

that for $1\alpha,25(OH)_2D_3$ [7]. Since CYP24A1 is a specific enzyme induced by the VDR-ligand $[1\alpha,25(OH)_2D_3$ or its analogs] complex in the target tissue and inactivates $1\alpha,25(OH)_2D_3$ and its analogs, CYP24A1-resistant ligands would have longer-term biological effects and bioavailability in the target tissues [8]. On the other hand, CYP3A4 is the most important drug-metabolizing cytochrome P450 enzyme with a broad catalytic spectrum [9]. Although $1\alpha,25(OH)_2D_3$ and its analog $2\alpha-(3-hydroxypropyl)-1\alpha,25-dihydroxyvitamin D₃ (O1C3) are not the primary substrates for CYP3A4 [8], we demonstrated that O2C3 was metabolized by the human recombinant CYP3A4 to <math>1\alpha,2\alpha,25$ -trihydroxyvitamin D₃ $[1\alpha,2\alpha,25(OH)_3D_3, Fig. 1]$ [8]. Its 2β -isomer, a known compound, shows potent $1\alpha,25(OH)_2D_3$ -like activities [10], and is one of the eldecalcitol (ED-71) metabolites [11]. To study

Scheme 1. Synthesis of $1\alpha, 2\alpha, 25(OH)_3D_3$.

Scheme 2. Synthesis of 1α , 4α , 25(OH) $_3$ D $_3$ and 1α , 4β , 25(OH) $_3$ D $_3$.

biological activity of 1α , 2α ,25(OH) $_3$ D $_3$, we chemically synthesized 1α , 2α ,25(OH) $_3$ D $_3$ using the Trost Pd-mediated coupling reaction between an A-ring precursor **1** from p-glucose and a known CD-ring bromoolefin **2** (Scheme 1) [12–14].

On the other hand, a number of hydroxylated vitamin D metabolites were found in the circulation of mammals. For example, 4,25-dihydroxyvitamin D_2 was isolated and identified from the serum of rats intoxicated with pharmacological amounts of vitamin D_2 [15]. However, the biological significance of the 4-hydroxy group remains unclear. We therefore synthesized $1\alpha,4\alpha,25$ -trihydroxyvitamin D_3 [$1\alpha,4\alpha,25(OH)_3D_3$] and $1\alpha,4\beta,25$ -trihydroxyvitamin D_3 [$1\alpha,4\beta,25(OH)_3D_3$] by the similar manner as $1\alpha,2\alpha,25(OH)_3D_3$, and evaluated their hVDR binding affinity as well as their further metabolism by human CYP24A1 and human liver microsomal fraction to compare with those of the natural hormone $1\alpha,25(OH)_2D_3$.

2. Results and discussion

Synthesis of $1\alpha,2\alpha,25(OH)_3D_3$ was accomplished as shown in Scheme 1. We prepared chiral epoxide from methyl α -D-glucoside [2], which was converted to the enyne A-ring precursor 1 in

Table 1Relative hVDR binding affinity of A-ring perhydroxylated analogs.

Compound	VDR Binding affinity ^a
1α,25(OH) ₃ D ₃	100
O2C3	180 ^b
$1\alpha,2\alpha,25(OH)_3D_3$	27.3
$1\alpha,2\beta,25(OH)_3D_3$	110 ^c
$1\alpha,4\alpha,25(OH)_3D_3$	0.9
1α,4α,25(OH) ₃ D ₃ 1α,4β,25(OH) ₃ D ₃	2.9

^a The potency of $1\alpha,25(OH)_3D_3$ is normalised to 100.

11 steps [12]. The CD-ring bromoolefin **2** and enyne **1** were coupled using Pd-catalyst to give the seco-steroidal product [16,17]. Deprotection of O-silyl groups gave the target molecule $1\alpha,2\alpha,25(OH)_3D_3$. The isolated product was re-purified by HPLC to test its biological activity.

The other A-ring hydroxylated vitamin D_3 analogs of $1\alpha,4\alpha,25$ (OH) $_3D_3$ and $1\alpha,4\beta,25$ (OH) $_3D_3$ were synthesized as shown in Scheme 2 [18]. The same chiral epoxide from D-glucose was converted to aldehyde **3** [19] followed by ethynylation afforded alcohols as a diastereomeric mixture in a 1:3 ratio. Stereochemistry of each alcohol was determined by the modified Mosher's method [19,20]. After manipulation of the protecting groups, enynes **4a** and **4b** were connected with CD-ring bromoolefin **2** using Pd-catalyst to give the coupling products, and TBAF-deprotection followed by HPLC-separation gave the target molecules $1\alpha,4\alpha,25$ (OH) $_3D_3$ and $1\alpha,4\beta,25$ (OH) $_3D_3$ [18,19].

Next, hVDR binding affinity was performed for the above three new A-ring perhydroxylated vitamin D_3 metabolites, and the results are shown in Table 1. Eldecalcitol metabolite $1\alpha,2\beta,25$ (OH) $_3D_3$ showed strong VDR binding affinity as compared with O2C3 metabolite $1\alpha,2\alpha,25$ (OH) $_3D_3$ [10]. Although the 2-OH group is not a severe obstacle to VDR binding, the 4-OH group might be steric hindrance when this ligand binds to the ligand binding pocket of the VDR [12,18].

Regarding metabolism, O2C3 is resistant to CYP24A1, but its CYP3A4 metabolite $1\alpha,2\alpha,25(OH)_3D_3$ can be further metabolized by CYP24A1, similar to $1\alpha,25(OH)_2D_3$. The k_{cat}/K_m value of hCYP24A1 for $1\alpha,2\alpha,25(OH)_3D_3$ was found to be 60% of that for $1\alpha,25(OH)_2D_3$ [8]. On the other hand, $1\alpha,4\alpha,25(OH)_3D_3$ and $1\alpha,4\beta,25(OH)_3D_3$ are metabolized to several metabolites by CYP24A1-dependent multi-step oxidation pathways similar to that for $1\alpha,25(OH)_2D_3$ or its A-ring diastereomers. Interestingly, HPLC profile of the metabolites of $1\alpha,4\alpha,25(OH)_3D_3$ is quite similar to that of $1\alpha,25(OH)_2D_3$, whereas, the profile of $1\alpha,4\beta,25(OH)_3D_3$ is quite similar to that of 3-epimers of $1\alpha,25(OH)_2D_3$ (Fig. 2) [18,21]. After 60 min incubation, the % conversion of $1\alpha,4\alpha,25(OH)_3D_3$ and

^b Ref. [2].

c Ref. [10].

Fig. 2. HPLC profiles of 1α , 4α ,25- (A) and 1α , 4β ,25-trihydroxyvitamin D₃ (B) and their metabolites by human CYP24A1. The peaks with arrow heads show putative metabolites by human CYP24A1.

 1α ,4β,25(OH)₃D₃ are about 45% and 44%, respectively, which are nearly the same as those for 1α ,25(OH)₂D₃. Both 4-hydroxyvitamin D₃ analogs were treated with human liver microsomal fraction containing drug-metabolizing enzymes, and no metabolite from either analog was detected. The results suggest that both analogs are poor substrates for human hepatic cytochrome P450s. However, addition of UDP-glucuronic acid produced a metabolite (glucuronide) of 1α ,4α,25(OH)₃D₃ whereas no metabol|%1e[Accept]ite of 1α ,4β,25(OH)₃D₃ was observed [18]. Since β-glucuronidase treatment converted the metabolite of 1α ,4α,25(OH)₃D₃ back to 1α ,4α,25(OH)₃D₃ itself, this suggests that the metabolite is a glucuronide of 1α ,4α,25(OH)₃D₃. Neither 1α ,4β,25(OH)₃D₃ nor 1α ,25(OH)₂D₃ was converted to its glucuronide. Therefore, the 4α-OH group of 1α ,4α,25(OH)₃D₃ appeared to be glucuronidated by certain hepatic UGT(s) [18].

3. Conclusion

We synthesized three new A-ring perhydroxylated vitamin D_3 metabolites, $1\alpha,2\alpha,25(OH)_3D_3$, the major O2C3 metabolite catalyzed by CYP3A4, and $1\alpha,4\alpha,25(OH)_3D_3$ and $1\alpha,4\beta,25(OH)_3D_3$, the tentative $1\alpha,25(OH)_2D_3$ related metabolites. The position and stereochemistry of the synthetically introduced OH group to the A-ring influence hVDR binding affinity and their further metabolism by CYP enzymes. These finding would be useful for creating new novel potential chemotherapeutic ligands for VDR.

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (No. 25860011 to M.T.) as well as Grants-in-Aid from the Japan Society for the Promotion of Science (No. 23590015 to D.S. and 24590021 to A.K.).

References

- D. Feldman, J.W. Pike, J.S. Adams, Vitamin D, third ed., Elsevier Academic Press, New York, 2011.
- [2] N. Saito, Y. Suhara, M. Kurihara, T. Fujishima, S. Honzawa, H. Takayanagi, T. Kozono, M. Matsumoto, M. Ohmori, N. Miyata, H. Takayama, A. Kittaka, Design and efficient synthesis of 2α-(ω-hydroxyalkoxy)-1α,25-dihydroxyvitamin D₃ analogues, including 2-epi-ED-71 and their 20-epimers with HL-60 cell differentiation activity, J. Org. Chem. 69 (2004) 7463–7471.
- [3] For our review article, see:, N. Saito, S. Honzawa, A. Kittaka, Recent results on A-ring modification of 1α,25-dihydroxyvitamin D₃: design and synthesis of VDR-agonists and antagonists with high biological activity, Curr. Topics Med. Chem. 6 (2006) 1273–1288.
- [4] E. Takahashi, K. Nakagawa, Y. Suhara, A. Kittaka, K. Nihei, K. Konno, H. Takayama, K. Ozono, T. Okano, Biological activities of 2α-substituted analogues of 1α,25-dihydroxyvitamin D₃ in transcriptional regulation and human promyelocytic leukemia (HL-60) cell proliferation and differentiation, Biol. Pharm. Bull. 29 (2006) 2246–2250.
- [5] S. Hourai, T. Fujishima, A. Kittaka, Y. Suhara, H. Takayama, N. Rochel, D. Moras, Probing a water channel near the A-ring of receptor-bound 1α ,25-dihydroxy vitamin D₃ with selected 2α -substituted analogues, J. Med. Chem. 49 (2006) 5199–5205.
- [6] T. Sakaki, K. Yasuda, A. Kittaka, K. Yamamoto, T.C. Chen, CYP24A1 as a potential target for cancer therapy, Anti-Cancer Agents Med. Chem. 14 (2014) 97–108.
- [7] D. Abe, T. Sakaki, T. Kusudo, A. Kittaka, N. Saito, Y. Suhara, T. Fujishima, H. Takayama, H. Hamamoto, M. Kamakura, M. Ohta, K. Inouye, Metabolism of 2α-Propoxy-1α,25-dihydroxyvitamin D₃ and 2α-(3-Hydroxypropoxy)-1α,25-dihydroxyvitamin D₃ by Human CYP27A1 and CYP24A1, Drug Metab. Dispos. 33 (2005) 778-784.
- [8] K. Yasuda, S. Ikushiro, M. Kamakura, M. Takano, N. Saito, A. Kittaka, T.C. Chen, M. Ohta, T. Sakaki, J. Steroid Biochem. Mol. Biol. 133 (2013) 84–92.
- [9] J. Zhu, H.F. DeLuca, Vitamin D 25-hydroxylase four decades of searching are we there yet? Arch. Biochem. Biophys. 523 (2012) 30–36.
- [10] N. Tsugawa, K. Nakagawa, M. Kurobe, Y. Ono, N. Kubodera, K. Ozono, T. Okano, In vitro biological activities of a series of 2β-substituted analogues of 1α,25dihydroxyvitamin D₃, Biol. Pharm. Bull. 23 (2000) 66–71.
- [11] Y. Ono, Multifunctional and potent roles of the 3-hydroxypropoxy group provide eldecalcitol's benefit in osteoporosis treatment, J. Steroid Biochem. Mol. Biol. 139 (2014) 88–97.
- [12] A part of this review has been published as in the following article, see:, M. Takano, S. Ohya, K. Yasuda, M. Nishikawa, A. Takeuchi, D. Sawada, T. Sakaki, A. Kittaka, Synthesis and biological activity of 1α,2α,25-trihydroxyvitamin D₃: active metabolite of 2α-(3-hydroxypropoxy)-1α,25-dihydroxyvitamin D₃ by human CYP3A4, Chem. Pharm. Bull. 62 (2014) 182–184.
- [13] Synthesis of another A-ring precursor of 1α,2α,25(OH)₃D₃ was reported, see:, G.H. Posner, T.D. Nelson, Stereocontrolled synthesis of a trihydroxylated A-ring as an immediate precursor to 1α,2α,25-trihydroxyvitamin D₃, J. Org. Chem. 56 (1991) 4339–4341.
- [14] (a) Synthesis of 1α,2α,25-trihydroxy-19-norvitamin D₃ was reported, see:, R.R. Sicinski, K.L. Perlman, H.F. DeLuca, Synthesis and biological activity of 2-hydroxy and 2-alkoxy analogs of 1α,25-dihydroxy-19-norvitamin D₃, J. Med. Chem. 37 (1994) 3730–3738;
 - (b) M. Shimizu, Y. Iwasaki, Y. Shibamoto, M. Sato, H.F. DeLuca, S. Yamada, Novel synthesis of 2-substituted 19-norvitamin D A-ring phosphine oxide from p-glucose as a building block, Bioorg. Med. Chem. Lett. 13 (2003) 809–812; (c) K. Ono, A. Yoshida, N. Saito, T. Fujishima, S. Honzawa, Y. Suhara, S. Kishimoto, T. Sugiura, K. Waku, H. Takayama, A. Kittaka, J. Med. Chem. 68 (2003) 7407–7415.
- [15] D.S. Rao, R. Dayal, M.-L. Siu-Caldera, R.L. Horst, M.R. Uskokovic, K.-Y. Tserng, G.S. Reddy, Isolation and identification of 4,25-dihydroxyvitamin D₂: a novel A-ring hydroxylated metabolite of vitamin D₂, J. Steroid Biochem. Mol. Biol. 71 (1999) 63–70.
- [16] M. Matsuo, A. Hasegawa, M. Takano, Y. Nakamura, H. Saito, S. Kakuda, K. Takagi, E. Ochiai, K. Horie, M. Takimoto-Kamimura, K. Takenouchi, D. Sawada, A. Kittaka, Synthesis of 2α-heteroarylalkyl active vitamin D₃ with therapeutic effect on enhancing bone mineral density in vivo, ACS Med. Chem. Lett. 4 (2013) 671–674.
- [17] B.M. Trost, J. Dumas, M. Villa, New strategies for the synthesis of vitamin D metabolites via palladium-catalyzed reactions, J. Am. Chem. Soc. 114 (1992) 9836–9845.
- [18] A part of this review has been published as in the following article, see:, D. Sawada, Y. Tsukuda, K. Yasuda, T. Sakaki, H. Saito, K. Takagi, K. Takenouchi, T.C. Chen, G.S. Reddy, A. Kittaka, Synthesis and biological activities of 1α,4α,25-and 1α,4β,25-trihydroxyvitamin D₃ and their metabolism by human CYP24A1 and UDP-glucuronosyltransferase, Chem. Pharm. Bull. 60 (2012) 1343–1346.
- [19] D. Sawada, Y. Tsukuda, H. Saito, K. Takagi, K. Horie, E. Ochiai, K. Takenouchi, A. Kittaka, Synthesis and biological evaluation of 4-substituted vitamin D and 14-epi-previtamin D analogs, Chem. Pharm. Bull. 57 (2009) 1431–1433.
- [20] I. Ohtani, T. Kusumi, Y. Kashman, H. Kakisawa, High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids, J. Am. Chem. Soc. 113 (1991) 4092–4096.
- [21] T. Kusudo, T. Sakaki, D. Abe, T. Fujishima, A. Kittaka, H. Takayama, S. Hatakeyama, M. Ohta, K. Inouye, Metabolism of A-ring diastereomers of 1α,25-dihydroxyvitamin D₃ by CYP24A1, Biochem. Biophys. Res. Commun. 321 (2004) 774–782.