CONSTRUCTIBILITY LEVEL EQUIVALENCE RELATION

WILLIAM CHAN

ABSTRACT. Assume $\mathsf{ZF} + {}^\omega 2 = ({}^\omega 2)^L$. Define an equivalence relation E_L on ${}^\omega 2$ by x E_L y if and only if for all admissible levels L_α of Gödel's constructible hierarchy, $x \in L_\alpha$ if and only if $y \in L_\alpha$. E_L is a thin Δ^1_2 equivalence relation which is not Π^1_1 . E_L has the property that for all Σ^1_1 sets B, $[B]_E = \{y \in {}^\omega 2 : (\exists x \in B)(y E x)\}$ is either a countable or a co-countable set. There is no coloring $c: {}^\omega 2 \to \omega$ of E_L whose graph is Σ^1_1 .

1. Constructibility Level Equivalence Relation

Assume $\mathsf{ZF} + {}^{\omega}2 = ({}^{\omega}2)^L$, that is, all reals belong to Gödel's constructible universe L. The following equivalence relation is studied by the author in [1] Section 9.

Definition 1.1. Let KP denote Kripke-Platek set theory. If $x \in {}^{\omega}2$, then let $\iota(x)$ be the least ordinal α so that $L_{\alpha} \models \mathsf{KP}$ and $x \in L_{\alpha}$. (Any sufficiently strong fragment of ZFC such as ZFC – P would suffice in place of KP.) Define an equivalence relation E_L on ${}^{\omega}2$ by $x E_L y$ if and only if $\iota(x) = \iota(y)$.

This short note will collect some facts about E_L which answers some questions of Pikhurko and Tserunyan. E_L is a Π_2^1 equivalence relation and using an idea of Drucker [2], E_L is also Σ_2^1 and hence Δ_2^1 .

Fact 1.2. E_L is a Δ_2^1 equivalence relation.

Proof. Recall that a Σ_2^1 subset of ${}^{\omega}2$ is equivalently a set of reals which is Σ_1 definable over H_{\aleph_1} , the collection hereditarily countable sets.

Let $\psi(x,y)$ be the formula which assert that for all transitive set A, if $A \models \mathsf{KP} + V = L$, then $x \in A$ if and only if $y \in A$. Note that φ is a Π_1 formula in the language of set theory. $x E_L y$ if and only if $H_{\aleph_1} \models \psi(x,y)$. E_L is Π_1 definable in H_{\aleph_1} and thus is Π_2^1 .

Also $x \ E_L \ y$ if and only if $H_{\aleph_1} \models$ there is a transitive set M with $x,y \in M, M \models \mathsf{KP} + V = L$, and $M \models \psi(x,y)$. Since first order satisfaction is Δ_1 in the language of set theory, E_L is Σ_1 definable in H_{\aleph_1} and hence Σ_1^2 .

Fact 1.3. E_L has all classes countable and has uncountably many classes.

Proof. For any $x \in {}^{\omega}2$, $[x]_{E_L} \subseteq L_{\iota(x)}$. Since $|L_{\iota(x)}| \leq \aleph_0$, $|[x]_{E_L}| \leq \aleph_0$. Since E_L has all classes countable and ${}^{\omega}2$ is uncountable, E_L must have uncountably many classes.

The following is the main tool for studying E_L . A perfect tree p on 2 is a subset of ${}^{<\omega}2$ so that for all $t \in p$ if $s \subseteq t$ then $s \in p$ and for all $s \in p$, there is a $t \in p$ so that $t\hat{\ }0, t\hat{\ }1 \in p$. A $t \in p$ so that $t\hat{\ }0, t\hat{\ }1 \in p$ is called a split node of p.

If p is a perfect tree on 2, let $\Upsilon_p : {}^{<\omega}2 \to p$ be defined by recursion as follows: Let $\Upsilon_p(\emptyset)$ be the shortest split node of p. If $\Upsilon_p(s)$ has been defined, then let $\Upsilon_p(s)$ be the shortest split node of p extending $\Upsilon_p(s)$ i. Let $\Xi_p : {}^{\omega}2 \to [p]$ be defined by $\Xi_p(f) = \bigcup_{n \in \omega} \Upsilon_p(f \upharpoonright n)$. Ξ_p is the canonical homeomorphism between ${}^{\omega}2$ and [p].

Lemma 1.4. For any perfect tree p on 2, there is a $\zeta < \omega_1$ so that for all $x \in {}^{\omega}2$ with $\iota(x) \geq \zeta$, $\iota(x) = \iota(\Xi_p(x))$.

Proof. The set $\{x \in {}^{\omega}2 : \iota(\Xi_p(x)) < \iota(p)\}$ is countable. Let $\zeta' = \sup\{\iota(x) + 1 : \iota(\Xi_p(x)) < \iota(p)\}$. Let $\zeta = \max\{\iota(p), \zeta'\}$. Now suppose $\iota(x) \geq \zeta$. Since $p, x \in L_{\iota(x)}$ and $L_{\iota(x)} \models \mathsf{KP}$, $\Xi_p(x) \in L_{\iota(x)}$. Thus $\iota(\Xi_p(x)) \leq \iota(x)$. Since $\iota(x) \geq \zeta$, $\iota(\Xi_p(x)) \geq \iota(p)$. Thus $p, \Xi_p(x) \in L_{\iota(\Xi_p(x))}$. Since $L_{\iota_p(\Xi_p(x))} \models \mathsf{KP}$, one

November 20, 2020.

can recover $x = \Xi_p^{-1}(\Xi_p(x))$ within $L_{\iota(\Xi_p(x))}$ by using $\Xi_p(x)$ and the tree p. Thus $\iota(x) \leq \iota(\Xi_p(x))$. So $\iota(x) = \iota(\Xi_p(x))$.

Lemma 1.5. Let p be a perfect tree on 2. There is a $\zeta < \omega_1$ so that for all $\xi \geq \zeta$, there exist countably infinite many $z \in [p]$ so that $\iota(z) = \xi$.

Proof. By Lemma 1.4, let $\zeta < \omega_1$ be such that for all $x \in {}^{\omega}2$, if $\iota(x) \geq \zeta$, then $\iota(x) = \iota(\Xi_p(x))$. Let $\xi \geq \zeta$ and let $A = \{x \in {}^{\omega}2 : \iota(x) = \xi\}$ which is a countably infinite set. Since Ξ_p is an injection, if $x \neq y$, then $\Xi_p(x) \neq \Xi_p(y)$. If $x \in A$, then $\Xi_p(x) \in [p]$ and $\iota(\Xi_p(x)) = \iota(x) = \xi$.

An equivalence relation E on $^{\omega}2$ is thin if and only if there is no perfect tree p on 2 so that for all $x, y \in [p]$ with $x \neq y$, $\neg(x E y)$. The following is a different argument from [1] showing that E_L is thin.

Fact 1.6. (1) Proposition 9.7) E_L is a thin equivalence relation.

Proof. By Lemma 1.5, every perfect tree p has some $z_0, z_1 \in [p]$ so that $z_0 \neq z_1$ and $\iota(z_0) = \iota(z_1)$. Thus $z_0 \in E_L z_1$.

Fact 1.7. E_L is not Π_1^1 .

Proof. Since Fact 1.3 implies E_L has uncountable many classes, if E_L was Π_1^1 , then Silver's dichotomy ([3] and [4]) implies that E_L is not thin. This is impossible since Fact 1.6 asserts that E_L is thin.

Fact 1.8. If $B \subseteq {}^{\omega}2$ is Σ_1^1 , then $[B]_{E_L} = \{y \in {}^{\omega}2 : (\exists x \in B)(y \ E_L \ x)\}$ is either countable or co-countable.

Proof. If B is countable, then the set $K = \{\iota(x) : x \in B\}$ is countable. So $[B]_{E_L} \subseteq L_{\sup(K)}$. $[B]_{E_L}$ is countable. Suppose B is not countable. By the perfect set property for Σ^1 , there is a perfect tree p on 2 so that $[p] \subseteq B$. By Lemma 1.5, there is a ζ so that for all $\xi \geq \zeta$, there exists a $z \in [p]$ with $\iota(z) = \xi$. Let $H = \{x \in {}^{\omega}2 : \iota(x) \geq \zeta\}$ which is a co-countable set and observe that $[B]_{E_L} \supseteq [[p]]_{E_L} \supseteq H$. $[B]_{E_L}$ is co-countable.

Pikhurko asked whether an equivalence relation E with all classes countable and has the property that for all Δ_1^1 sets B, $[B]_E$ is Δ_1^1 must be a Δ_1^1 equivalence relation. The results above show that it is consistent with ZF that the answer is no.

A relation $G \subseteq {}^{\omega}2 \times {}^{\omega}2$ is a graph if and only if for all $x, y \in {}^{\omega}2$, $\neg(x \ G \ x)$ and $x \ G \ y$ implies $y \ Gx$. If $A \subseteq {}^{\omega}2$, let $N_G(A) = \{x \in {}^{\omega}2 : (\exists y \in A)(x \ E \ y)\}$ and $N_G^{\leq 1}(A) = A \cup N_G(A)$. The graph G is locally countable if and only if $|N_G(\{x\})| \leq \aleph_0$ for all $x \in {}^{\omega}2$. If E is an equivalence relation on ${}^{\omega}2$, then the graph G_E associated to E is defined on ${}^{\omega}2$ by $x \ G_E \ y$ if and only if $x \neq y \wedge x \ E \ y$. Note that if E is an equivalence relation, then for any $A \subseteq {}^{\omega}2$, $N_G^{\leq 1}(A) = [A]_E$. However, $N_G(A)$ may not be $[A]_E$. For example, if $x \in A$ and $[x]_E \cap A = \{x\}$, then $x \notin N_G(A)$.

Pikhurko asked if a locally countable graph has the property for all Δ_1^1 $B \subseteq {}^{\omega}2$, $N_G^{\leq 1}(B)$ is Δ_1^1 , then is G a Δ_1^1 graph. Since E_L is not Π_1^1 , G_{E_L} is not Π_1^1 . Thus the above result implies that it is consistent with ZF that the answer is no. He also asked if G is a locally countable graph with the property that for all Δ_1^1 $B \subseteq {}^{\omega}2$, $N_G(A)$ is Δ_1^1 , then is G a Δ_1^1 graph. Using the next result, the answer being no is consistent with ZF.

Fact 1.9. If $B \subseteq {}^{\omega}2$ is Σ_1^1 , then $N_{G_L}(B)$ is countable or co-countable.

Proof. If B is countable, then $N_G(B) \subseteq N_G^{\leq 1}(B) = [B]_{E_L}$ which is countable as noted in Fact 1.8. Suppose B is uncountable. By the perfect set property for Σ_1^1 , there is a perfect tree p on 2 so that $[p] \subseteq B$. By Lemma 1.5, there is a $\zeta < \omega_1$ so that for all $\xi \geq \zeta$, there exists at least two elements $z_0 \in [p]$ and $z_1 \in [p]$ so that $\iota(z_0) = \iota(z_1) = \xi$. Fix a $\xi \geq \zeta$ and let $z_0, z_1 \in [p]$ with $z_0 \neq z_1$ and $\iota(z_0) = \iota(z_1) = \xi$. Then $N_G(\{z_0\}) = \{x \in {}^{\omega}2 : x \neq z_0 \wedge \iota(x) = \xi\}$ and $N_G(\{z_1\}) = \{x \in {}^{\omega}2 : x \neq z_1 \wedge \iota(x) = \xi\}$. So $\{x \in {}^{\omega}2 : \iota(x) = \xi\} = N_G(\{z_0\}) \cup N_G(\{z_1\}) \subseteq N_G(B)$. Let $H = \{x \in {}^{\omega}2 : \iota(x) \geq \zeta\}$ which is co-countable. Then $H \subseteq N_G(B)$ and so $N_G(B)$ is co-countable.

A coloring of a graph G is a map $c: {}^{\omega}2 \to X$, where X is some Polish space, so that for all $x, y \in {}^{\omega}2$, if $x \ G \ y$, then $c(x) \neq c(y)$. Tserunyan asked if G_{E_L} has a Δ_1^1 coloring $c: {}^{\omega}2 \to \omega$. The following result shows that the answer is no.

Fact 1.10. There is no coloring $c: {}^{\omega}2 \to \omega$ of E_L so that graph of c is Σ_1^1 .

Proof. Since $\omega_2 = \bigcup_{n \in \omega} c^{-1}[\{n\}]$, there is an $n \in \omega$ so that $c^{-1}[\{n\}]$ is uncountable. Since the graph of c is Σ_1^1 , $c^{-1}[\{n\}]$ is an uncountable Σ_1^1 set. By the perfect set property for Σ_1^1 , there is a perfect tree p on 2 so that $[p] \subseteq c^{-1}[\{n\}]$. By Lemma 1.5, there exist $z_0, z_1 \in [p]$ with $z_0 \neq z_1$ and $\iota(z_0) = \iota(z_1)$. Hence z_0 G_{E_L} z_1 and $c(z_0) = n = c(z_1)$ which contradict c being a coloring.

References

- 1. William Chan, Equivalence relations which are Borel somewhere, J. Symb. Log. 82 (2017), no. 3, 893-930. MR 3694334
- Ohad Drucker, Borel canonization of analytic sets with Borel sections, Proc. Amer. Math. Soc. 146 (2018), no. 7, 3073–3084.
 MR 3787368
- 3. Leo Harrington, A powerless proof of a theorem of Silver, Unpublished.
- Jack H. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), no. 1, 1–28. MR 568914

Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213 $Email\ address$: wchan3@andrew.cmu.edu