#### Санкт-Петербургский государственный университет

Направление: 01.03.02 «Прикладная математика и информатика»

ООП: Прикладная математика, фундаментальная информатика и программирование

### ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ ПРАКТИКЕ

**Тема задания**: Разработка системы распознавания речевых команд при помощи методов машинного обучения

Выполнил: Мирошниченко Александр Сергеевич группа 17.Б05

**Руководитель практики от СПбГУ :** Козынченко В. А., кандидат физ.-мат. наук, доцент

# Содержание

| Введение                         | 3 |
|----------------------------------|---|
| Постановка задачи                | 3 |
| Результаты вычислений            | 4 |
| Заключение                       | 7 |
| Список использованных источников | 8 |
| При помонио                      | a |

#### Введение

Распознавание речи является одной из важнейших задач взаимодействия человека и компьютера на сегодняшний день. Одним из способов решения задачи распознавания речи является ввод информации в вычислительное устройство при помощи микрофона; далее происходит преобразование звуковых колебаний в электрический сигнал, оцифровываемый компьютером и записываемый в определенный звуковой формат в виде набора числовых данных. Полученное числовое представление преобразованного звукового сигнала можно обрабатывать при помощи алгоритма для достижения поставленных целей. Одной из таких целей является преобразование в текст - набор слов, произнесенных человеком при записи звука в микрофон и последующее выполнение компьютером или исполнительными устройствами действий, согласно заданным условиям соответствия действия и полученного слова-команды.

Данная проблема была актуальна с времен появления компьютеров и остается таковой и по сей день. Изначально для решения данной задачи применялись такие алгоритмы, как скрытые Марковские модели, методы динамического программирования, методы дискриминантного анализа, основанные на Байесовской дискриминации и другие. В последнее время стали актуальны методы, основанные на нейронных сетях. С ростом вычислительной мощности компьютеров стало возможным выполнение большего количества математических операций и популярность нейронных сетей, требующих такой мощности, растет.

#### Постановка задачи

Была поставлена задача создания алгоритма распознавания звуковых команд в виде отдельных слов при помощи нейронной сети.

### Выбор инструментов для решения задачи

Для решения задачи был выбран язык программирования Python 3.8. Предобработку данных было решено реализовывать при помощи Python 3.8. В качестве библиотеки для реализации нейронной сети была выбрана библиотека Keras, включенная в библиотеку Tensorflow 2.4.1.

Для создания датасета был разработан веб-сервис на NodeJS, Javascript, HTML, CSS, который позволяет записывать команды и сохранять их в нужном для программы предобработки формате. Также это позволило записать необходимое количество дикторов, которые смогли довольно быстро наговорить команды.

### Результаты вычислений

Было проведено 3 вычислительных эксперемента для нейронной сети типа CNN. Структура сети приведена на рисунке 1.



Рис. 1: Структура модели нейронной сети типа CNN

Все звуковые файлы были предобработаны при помощи алгоритма MFCC. Звуковая дорожка делится на фреймы. Каждый фрейм - отрезок звуковой дорожки длительностью 20 мс. Каждый фрейм начинается с момента (10 мс. × номер\_фрейма), нумерация начинается с 0. Для каждой звуковой дорожки количество фреймов - 400. Если количество фреймов у дорожки меньше 400, то слева и справа добавляются нули. Это число было выбрано как максимально возможное количество фреймов для всех дорожек. Количество коэффициентов в алгоритме MFCC - 13, количество фильтров - 26. В итоге размерность данных, поступающих на вход нейронной сети - 400 × 13.

Датасет состоит из 6 дикторов. Каждый диктор записал 11 команд: 'back', 'down', 'menu', 'off',

'on', 'open', 'play', 'power', 'stop', 'up', 'volume'.

| Диктор   | Тип голоса | Кол-во звук. дорожек на каждую ко- | Сумм. кол-во звук. доро- |  |
|----------|------------|------------------------------------|--------------------------|--|
|          |            | манду                              | жек                      |  |
| speaker1 | Мужской    | 50                                 | 550                      |  |
| speaker2 | Мужской    | 40                                 | 440                      |  |
| speaker3 | Мужской    | 40                                 | 440                      |  |
| speaker4 | Мужской    | 40                                 | 440                      |  |
| speaker5 | Мужской    | 50                                 | 550                      |  |
| speaker6 | Женский    | 50                                 | 550                      |  |

Первый эксперимент: нейронная сеть обучается на первом дикторе с мужским голосом, тестирование производится на каждом дикторе.

Второй эксперимент: нейронная сеть обучается на всех дикторах с мужским голосом, тестирование производится на каждом дикторе.

Третий эксперимент: нейронная сеть обучается на всех дикторах, тестирование производится на каждом дикторе.

Датасет предварительно разделяется на тренировочную и тестовую части. На тренировочную часть отводится 70% данных диктора, на тестовую часть - 30%. В процессе тренировки после каждой эпохи тренировочные данные перемешиваются. 15% тренировочных данных в каждой эпохе - валидационные. В качестве метрики для оценки эффективности была выбрана метрика точности (ассигасу), а для валидации - функция потерь категориальной кросс-энтропии (val\_loss). Алгоритм оптимизации - Adam. Максимальное количество эпох - 50. Если значение метрики val\_loss не уменьшается в течение 20 эпох, то обучение останавливается.

Графики обучения для каждого из экспериментов приведены на рисунках 2, 3, 4. all\_speakers = [speaker1, speaker2, speaker3, speaker4, speaker5, speaker6] all\_male\_speakers = [speaker1, speaker2, speaker3, speaker4, speaker5]



Рис. 2: Графики функции потерь и точности в течение обучения на speaker1



Рис. 3: Графики функции потерь и точности в течение обучения на all\_male\_speakers



Рис. 4: Графики функции потерь и точности в течение обучения на all\_speakers

| train_data        | test_speaker | cnn_loss | mlp_loss | cnn_accuracy | mlp_accuracy |
|-------------------|--------------|----------|----------|--------------|--------------|
| speaker1          | speaker1     | 0.056    | 0.11     | 0.994        | 0.97         |
| speaker1          | speaker2     | 10.015   | 7.371    | 0.167        | 0.136        |
| speaker1          | speaker3     | 4.832    | 2.438    | 0.341        | 0.402        |
| speaker1          | speaker4     | 8.05     | 6.128    | 0.197        | 0.265        |
| speaker1          | speaker5     | 2.526    | 3.015    | 0.618        | 0.606        |
| speaker1          | speaker6     | 23.892   | 7.414    | 0.145        | 0.2          |
| all_male_speakers | speaker1     | 0.062    | 0.05     | 0.994        | 0.982        |
| all_male_speakers | speaker2     | 0.252    | 0.462    | 0.962        | 0.864        |
| all_male_speakers | speaker3     | 0.092    | 0.113    | 0.977        | 0.97         |
| all_male_speakers | speaker4     | 0.846    | 0.525    | 0.909        | 0.909        |
| all_male_speakers | speaker5     | 0.028    | 0.041    | 0.982        | 0.988        |
| all_male_speakers | speaker6     | 10.637   | 9.418    | 0.333        | 0.261        |
| all_speakers      | speaker1     | 0.058    | 0.112    | 0.988        | 0.982        |
| all_speakers      | speaker2     | 0.153    | 0.539    | 0.947        | 0.833        |
| all_speakers      | speaker3     | 0.085    | 0.089    | 0.985        | 0.977        |
| all_speakers      | speaker4     | 0.561    | 0.938    | 0.909        | 0.902        |
| all_speakers      | speaker5     | 0.015    | 0.037    | 0.988        | 0.988        |
| all_speakers      | speaker6     | 2.144    | 3.601    | 0.679        | 0.588        |

Таблица 1: Результаты вычислений

В конце эксперимента помимо тестирования производится построение матрицы ошибок (confusion matrix) для каждого диктора и для каждого из четырех пороговых значений: 0.5, 0.6, 0.7, 0.8.

#### Заключение

#### В данной работе:

- Проведена предобработка звуковых дорожек, содержащих команды в wav файлах
- Разработан алгоритм распознавания речевых команд
- Реализован алгоритм распознавания речевых команд
- Проведены вычислительные эксперименты, в результате которых показана работоспособность и эффективность работы алгоритма распознавания речевых команд.

#### Список литературы

- [1] Aurélien G. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems / Aurélien G. 2nd Edition O'Reilly Media, 2019.
- [2] Hendrik Purwins, Bo Li, Tuomas Virtanen, Jan Schlüter, Shuo-yiin Chang, Tara Sainath Deep Learning for Audio Signal Processing // Journal of Selected Topics of Signal Processing, Vol. 13, No. 2, May 2019,pages 206–219.
- [3] Документация TensorFlow [Электронный ресурс]. Режим доступа: https://www.tensorflow.org/api docs/python/tf
- [4] Портал ML Glossary [Электронный ресурс]. Режим доступа: https://ml-cheatsheet.readthedocs.io
- [5] Курс на платформе Coursera [Электронный ресурс]. Режим доступа: https://www.coursera.org/learn/getting-started-with-tensor-flow2

## Приложение

Ссылка на репозиторий с программой веб-сервисом для записи датасета, состоящего из звуковых файлов: https://gitlab.com/polotent/commandrecorder

Cсылка на репозиторий с программой предобработки данных, обучением и тестированием нейронной сети: https://gitlab.com/polotent/boxy