Análisis complejo

Taller 9

Logaritmos.

Fecha de entrega: 17 de octubre de 2024

1. Sea a > 0. Calcule las sigientes integrales:

$$\int_0^\infty \frac{\sqrt{x}}{x^2 + a^2} \, \mathrm{d}x, \qquad \qquad \int_0^\infty \frac{\sqrt{x}}{(x^2 + 4)^2} \, \mathrm{d}x.$$

- 2. Sean P,Q polinonmios con $Q(x)\neq 0$ para todo $x\geq 0$ y deg $Q\geq 2+\deg P$ y sea $R=\frac{P}{Q}$. Exprese $\int_0^\infty R(x)\,\mathrm{d}x$ en términos de los residuos de $\ln(\cdot)R(\cdot)$ donde ln es un logaritmo en $\mathbb{C}\setminus\{r\in\mathbb{R}:r\geq 0\}$.
- 3. Demuestre que $\int_0^\infty \frac{\ln x}{1+x^2} \, \mathrm{d}x = 0.$
- 4. Sea $\gamma:[0,1]\to\mathbb{C}$ un camino y sea $(f_t,U_t)_{t\in[0,1]}$ una continuación analítica a lo largo de γ . Para $t\in[0,1]$ sea R(t) el radio de convergencia de la serie de Taylor de f_t centrada en $\gamma(t)$. Demuestre que $R(t)=\infty$ para todo t o que $R:[0,1]\to(0,\infty)$ es continuo.
- 5. Ejercicio adicional para código 4. Sea $U \subset \mathbb{C} \setminus \{0\}$ un conjunto abierto y suponga que existe un camino en U con $\operatorname{ind}_{\gamma}(0) = 1$. Demuestre que no hay una raíz n-ésima holomorfa en U $(n \geq 2)$.