Section 2.4 – Cross Product

The Cross Product

To find a vector in 3-space that is perpendicular to two vectors; the type of vector multiplication that facilities this construction is the cross product.

Definition

The cross product of $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ is the vector

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} u_2 & v_2 \\ u_3 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & v_1 \\ u_3 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & v_2 \\ u_2 & v_1 \end{vmatrix} \mathbf{k}$$

$$= (u_2 v_3 - u_3 v_2) \mathbf{i} - (u_1 v_3 - u_3 v_1) \mathbf{j} + (u_1 v_2 - u_2 v_1) \mathbf{k}$$

$$= (u_2 v_3 - u_3 v_2, u_3 v_1 - u_1 v_3, u_1 v_2 - u_2 v_1)$$

In 1773, *Joseph Louis Lagrange* introduced the component form of both the dot and cross products in order to study the tetrahedron in three dimensions. In 1843 the Irish mathematical physicist Sir *William Rowan Hamilton* introduced the quaternion product, and with it the terms "vector" and "scalar". Given two quaternions [0, u] and [0, v], where u and v are vectors in \mathbb{R}^3 , their quaternion product can be summarized as $[-u \cdot v, u \times v]$. *James Clerk Maxwell* used Hamilton's quaternion tools to develop his famous electromagnetism equations, and for this and other reasons quaternions for a time were an essential part of physics education.

Example

Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$

Solution

$$\begin{bmatrix} 1 & 2 & -2 \\ 3 & 0 & 1 \end{bmatrix}$$

$$\boldsymbol{u} \times \boldsymbol{v} = \begin{pmatrix} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix}, & -\begin{vmatrix} 1 & -2 \\ 3 & 1 \end{vmatrix}, & \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} \end{pmatrix}$$

$$= (2, -7, -6)$$

Example

Consider the vectors $\hat{i} = (1, 0, 0) \quad \hat{j} = (0, 1, 0) \quad \hat{k} = (0, 0, 1)$

These vectors each have length of 1 and lie along the coordinate axes. They are called the *standard unit vectors* in 3-space.

For example: $(2, 3, -4) = 2\hat{i} + 3\hat{j} - 4\hat{k}$

Note:

$$\checkmark \quad \hat{i} \times \hat{i} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \mathbf{0}$$

$$\checkmark \quad \hat{j} \times \hat{i} = -\hat{k}, \quad \hat{k} \times \hat{j} = -\hat{i}, \quad \hat{i} \times \hat{k} = -\hat{j}$$

$$\checkmark \quad \hat{i} \times \hat{j} = \hat{k}, \quad \hat{j} \times \hat{k} = \hat{i}, \quad \hat{k} \times \hat{i} = \hat{j}$$

Properties

1. $u \times v$ reverses rows 2 and 3 in the determinant so it is equals $-(u \times v)$

2. The cross product $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} , then $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$

3. The cross product $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{v} , then $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = 0$

4. The cross product of any vector with itself (two equal rows) is $\mathbf{u} \times \mathbf{u} = 0$.

5. Lagrange's identity: $\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$ $= \|\mathbf{u}\| \|\mathbf{v}\| |\sin \theta|$

$$|\boldsymbol{u}.\boldsymbol{v}| = \|\boldsymbol{u}\| \|\boldsymbol{v}\| |\cos \theta|$$

Theorem

a) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$

b)
$$\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$$

c) $(u+v)\times w = (u\times w)+(v\times w)$

d) $k(\mathbf{u} \times \mathbf{v}) = (k\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k\mathbf{v})$

e) $\mathbf{u} \times 0 = 0 \times \mathbf{u} = 0$

f) $\mathbf{u} \times \mathbf{u} = 0$

Definition

If u, v, and w are vectors in 3-space, then $u \cdot (v \times w)$ is called the *scalar triple product* of u, v, and w.

Example

Calculate the scalar triple product $\vec{u} \cdot (\vec{u} \times \vec{v})$ of the vectors:

$$u = -2i + 6k$$
 $v = i - 3j + k$ $w = -5i - j + k$

Solution

$$\vec{u} \cdot (\vec{u} \times \vec{v}) = \begin{vmatrix} -2 & 0 & 6 \\ 1 & -3 & 1 \\ -5 & -1 & 1 \end{vmatrix} = -92$$

Area of a Parallelogram

Theorem

If u and v are vectors in 3-space, then $||u \times v||$ is equal to the area of the parallelogram determined by u and v.

Example

Find the area of the triangle determined by the points $P_1(2, 2, 0)$, $P_2(-1, 0, 2)$, and $P_3(0, 4, 3)$.

Solution

The area of the triangle is $\frac{1}{2}$ the area of the parallelogram determined by the vectors $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$

$$\overrightarrow{P_1P_2} = (-1, 0, 2) - (2, 2, 0) = (-3, -2, 2)$$

 $\overrightarrow{P_1P_3} = (0, 4, 3) - (2, 2, 0) = (-2, 2, 3)$

$$\overline{P_1 P_2} \times \overline{P_1 P_3} = \begin{pmatrix} \begin{vmatrix} -2 & 2 \\ 2 & 3 \end{vmatrix}, -\begin{vmatrix} -3 & 2 \\ -2 & 3 \end{vmatrix}, \begin{vmatrix} -3 & -2 \\ -2 & 2 \end{vmatrix} \\
= (-10, 5, -10)$$

Area =
$$\frac{1}{2} \| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \|$$

= $\frac{1}{2} \sqrt{(-10)^2 + 5^2 + (-10)^2}$
= $\frac{1}{2} (15)$
= 7.5

Volume

The Volume of the Parallelepiped is

$$V = (area\ of\ base).(height) = \|\vec{v} \times \vec{w}\| \frac{|\vec{u} \cdot (\vec{v} \times \vec{w})|}{\|\vec{v} \times \vec{w}\|} = |\vec{u} \cdot (\vec{u} \times \vec{v})|$$

$$V = \det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}$$

Theorem

If the vectors $\mathbf{u} = (u_1, u_2, u_3)$, $\mathbf{v} = (v_1, v_2, v_3)$, and $\mathbf{w} = (w_1, w_2, w_3)$ have the initial point, then they lie in the same plane if and only if

$$\boldsymbol{u} \bullet (\boldsymbol{v} \times \boldsymbol{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = 0$$

Example

Find the volume of the parallelepiped with sides $\mathbf{u} = (2, -6, 2)$, $\mathbf{v} = (0, 4, -2)$, and $\mathbf{w} = (2, 2, -4)$

Solution

$$V = \begin{vmatrix} \det \begin{bmatrix} 2 & -6 & 2 \\ 0 & 4 & -2 \\ 2 & 2 & -4 \end{vmatrix} = \underline{16}$$

Exercises Section 2.4 - Cross Product

- 1. Prove when the cross product $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} , then $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$
- 2. Find $\mathbf{u} \times \mathbf{v}$, where $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$ and show that $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} and to \mathbf{v} .
- 3. Given u = (3, 2, -1), v = (0, 2, -3), and w = (2, 6, 7) Compute the vectors
 - a) $\boldsymbol{u} \times \boldsymbol{v}$

- c) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$
- e) $u \times (v-2w)$

b) $\mathbf{v} \times \mathbf{w}$

- d) $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$
- **4.** Use the cross product to find a vector that is orthogonal to both
 - a) $\vec{u} = (-6, 4, 2), \vec{v} = (3, 1, 5)$
 - b) $\vec{u} = (1, 1, -2), \quad \vec{v} = (2, -1, 2)$
 - c) $\vec{u} = (-2, 1, 5), \quad \vec{v} = (3, 0, -3)$
- 5. Find the area of the parallelogram determined by the given vectors
 - a) $\vec{u} = (1, -1, 2)$ and $\vec{v} = (0, 3, 1)$
 - b) $\vec{u} = (3, -1, 4)$ and $\vec{v} = (6, -2, 8)$
 - c) $\vec{u} = (2, 3, 0)$ and $\vec{v} = (-1, 2, -2)$
- **6.** Find the area of the parallelogram with the given vertices

$$P_1(3, 2), P_2(5, 4), P_3(9, 4), P_4(7, 2)$$

- **7.** Find the area of the triangle with the given vertices:
 - a) A(2, 0) B(3, 4) C(-1, 2)
 - b) A(1, 1) B(2, 2) C(3, -3)
 - c) P(2, 6, -1) Q(1, 1, 1) R = (4, 6, 2)
- **8.** a) Find the area of the parallelogram with edges $\mathbf{v} = (3, 2)$ and $\mathbf{w} = (1, 4)$
 - b) Find the area of the triangle with sides v, w, and v + w. Draw it.
 - c) Find the area of the triangle with sides v, w, and v w. Draw it.
- **9.** Find the volume of the parallelepiped with sides u, v, and w.
 - a) $\mathbf{u} = (2, -6, 2), \quad \mathbf{v} = (0, 4, -2), \quad \mathbf{w} = (2, 2, -4)$
 - b) u = (3, 1, 2), v = (4, 5, 1), w = (1, 2, 4)

- 10. Compute the scalar triple product $u_{\cdot}(v \times w)$
 - a) $\mathbf{u} = (-2, 0, 6), \quad \mathbf{v} = (1, -3, 1), \quad \mathbf{w} = (-5, -1, 1)$
 - b) u = (-1, 2, 4), v = (3, 4, -2), w = (-1, 2, 5)
 - c) $\mathbf{u} = (a, 0, 0), \quad \mathbf{v} = (0, b, 0), \quad \mathbf{w} = (0, 0, c)$
 - d) $\mathbf{u} = 3\hat{\mathbf{i}} 2\hat{\mathbf{j}} 5\hat{\mathbf{k}}, \quad \mathbf{v} = \hat{\mathbf{i}} + 4\hat{\mathbf{j}} 4\hat{\mathbf{k}}, \quad \mathbf{w} = 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$
 - e) u = (3, -1, 6) v = (2, 4, 3) w = (5, -1, 2)
- 11. Use the cross product to find the sine of the angle between the vectors u = (2, 3, -6), v = (2, 3, 6)
- 12. Simplify $(u+v)\times(u-v)$
- **13.** Prove Lagrange's identity: $\|u \times v\|^2 = \|u\|^2 \|v\|^2 (u \cdot v)^2$
- **14.** Polar coordinates satisfy $x = r\cos\theta$ and $y = \sin\theta$. Polar area $J dr d\theta$ includes J:

$$J = \begin{bmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{bmatrix} = \begin{bmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{bmatrix}$$

The two columns are orthogonal. Their lengths are _____. Thus J = _____.

- **15.** Prove that $\|\vec{u} + \vec{v}\| = \|\vec{u}\| + \|\vec{v}\|$ if and only if \vec{u} and \vec{v} are parallel vectors.
- **16.** State the following statements as True or False
 - a) The cross product of two nonzero vectors \vec{u} and \vec{v} is a nonzero vector if and only if \vec{u} and \vec{v} are not parallel.
 - b) A normal vector to a plane can be obtained by taking the cross product of two nonzero and noncollinear vectors lying in the plane.
 - c) The scalar triple product of \vec{u} , \vec{v} , and \vec{w} determines a vector whose length is equal to the volume of the parallelepiped determined by \vec{u} , \vec{v} , and \vec{w} .
 - d) If \vec{u} and \vec{v} are vectors in 3-space, then $\|\vec{u} \times \vec{v}\|$ is equal to the area of the parallelogram determine by \vec{u} and \vec{v} .
 - e) For all vectors \vec{u} , \vec{v} , and \vec{w} in R^3 , the vectors $(\vec{u} \times \vec{v}) \times \vec{w}$ and $\vec{u} \times (\vec{v} \times \vec{w})$ are the same.
 - f) If \vec{u} , \vec{v} , and \vec{w} are vectors in \vec{R}^3 , where \vec{u} is nonzero and $\vec{u} \times \vec{v} = \vec{u} \times \vec{w}$, then $\vec{v} = \vec{w}$