N 2005

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2004年12月23日(23.12.2004)

PCT

(10) 国際公開番号 WO 2004/112244 A1

(51) 国際特許分類7:

H03F 3/68, 1/32, 3/19

(21) 国際出願番号:

PCT/JP2003/007426

(22) 国際出願日:

2003 年6 月11 日 (11.06.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

- (71) 出願人 (米国を除く全ての指定国について):三 菱電機株式会社 (MITSUBISHI DENKI KABUSHIKI KAISHA) [JP/JP]; 〒100-8310 東京都 千代田区 丸の内 二丁目2番3号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 上田 博民 (UEDA,Hiroomi) [JP/JP]; 〒100-8310 東京都 千代田 区 丸の内二丁目2番3号 三菱電機株式会社内 Tokyo (JP). 新庄 真太郎 (SHINJO, Shintaro) [JP/JP]; 〒100-8310 東京都 千代田区 丸の内二丁目2番 3号 三菱電機株式会社内 Tokyo (JP). 末松 憲治

(SUEMATSU,Noriharu) [JP/JP]; 〒100-8310 東京都 千 代田区 丸の内二丁目2番3号 三菱電機株式会社 内 Tokyo (JP). 森一富 (MORI, Kazutomi) [JP/JP]; 〒 100-8310 東京都千代田区 丸の内二丁目2番3号三 菱電機株式会社内 Tokyo (JP). 井上 晃 (INOUE, Akira) [JP/JP]; 〒100-8310 東京都 千代田区 丸の内二丁目 2番3号三菱電機株式会社内 Tokyo (JP). 太田 彰 (OHTA,Akira) [JP/JP]; 〒100-8310 東京都 千代田区 丸の内二丁目2番3号 三菱電機株式会社内 Tokyo (JP). 関博昭 (SEKI,Hiroaki) [JP/JP]; 〒100-8310 東京 都 千代田区 丸の内二丁目 2番 3号 三菱電機株式会 社内 Tokyo (JP).

- (74) 代理人: 田澤 博昭 ,外(TAZAWA,Hiroaki et al.); 〒 100-0013 東京都千代田区 霞が関三丁目7番1号大 東ビル 7 階 Tokyo (JP).
- (81) 指定国 (国内): KR, US.
- (84) 指定国 (広域): ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

[続葉有]

(54) Title: HIGH-FREQUENCY AMPLIFIER

(54) 発明の名称: 高周波増幅器

bipolar transistor (8) the base of which is biased by a constant current. The idle current value of the constant current driven amplifier (2) is set low, and the idle current value of the constant voltage driven amplifier (1) is correspondingly adjusted, thus achieving parallel composition.

え、定電流駆動のアンプ2のアイドル電流値を低く設定し、これに対応させて定電圧駆動のアンプ1のアイドル電 🗲 流値を調整して並列合成した。

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

高周波增幅器

技術分野

この発明は、バイポーラトランジスタを使用した高周波増幅器に関するものである。

背景技術

デジタル携帯電話等に使用される高周波増幅器は、隣接チャネルとの 混信を防ぐために低い歪特性が要求される。そこで高周波増幅器は、増 幅に使用するトランジスタの利得を圧縮し、また位相の回転を抑制して 歪特性の改善を行っている。

従来の高周波増幅器は、増幅素子のトランジスタにダイオード、FET、バイポーラトランジスタ等を接続して増幅回路全体で位相の回転を抑制し、また利得を圧縮して低歪特性を補償していた。

第1図は、従来の高周波増幅器を示す構成図である。この図は、従来の高周波増幅器の一例として、特開平10-135750号公報に開示された2段構成高周波増幅器を示すものである。図において、101は前段のバイポーラトランジスタ、102は後段のバイポーラトランジスタ、101は8下入力端子、104はバイポーラトランジスタ101の入力整合回路、105は定電流源、106は電源電圧端子、107は段間整合回路、108は定電圧源、109はバイポーラトランジスタ102の出力整合回路、110はRF出力端子である。

次に動作について説明する。

バイポーラトランジスタ101のベース電流を一定に保持して前段の

増幅回路を動作させ、また、バイポーラトランジスタ102のベース電圧を一定に保持して後段の増幅回路を動作させる。前段の増幅回路のバイポーラトランジスタ101で増幅した信号に生じる位相の回転が、後段の増幅回路のバイポーラトランジスタ102で生じる位相の回転によって相殺され、当該高周波増幅器から出力される増幅信号は位相の回転が抑制されたものとなり、歪特性が改善される。

このように、ベース電流を一定に保持したバイポーラトランジスタ101と、ベース電圧を一定に保持したバイポーラトランジスタ102とを組み合わせた2段構成とすると、歪補償用の素子を新たに挿入することなく歪特性の改善を行うことができ、部品点数を削減することができる。

従来の高周波増幅器は以上のように構成されているので、ベース電流を一定に保持したバイポーラトランジスタの増幅回路と、ベース電圧を一定に保持したバイポーラトランジスタの増幅回路とを少なくとも2段組み合わせることから、当該高周波増幅器のサイズが大型化してしまうという課題があった。また、歪特性を改善するには、後段トランジスタのエミッタサイズを大きくし、また、アイドル電流値(DC電圧を印加した際にコレクタ・ベース間に流れる電流値)を大きく設定する必要があり、こうすると、特に低出力のとき付加効率が悪くなり、また、高出力のときにも付加効率が低下するという課題があった。

この発明は上記のような課題を解決するためになされたもので、高出力で優れた歪特性を有しながら付加効率が高く、また、特に低出力電力において付加効率が改善された高周波増幅器を得ることを目的とする。

また、小型化を図りながら歪特性および付加効率が改善された高周波増幅器を得ることを目的とする。

発明の開示

WO 2004/112244

この発明に係る高周波増幅器は、一定の電圧でバイアスする増幅素子を用いた定電圧駆動の増幅部と、一定の電流でバイアスする増幅素子を 用いた定電流駆動の増幅部とを並列合成したものである。

このことによって、優れた歪特性を有しながら良好な付加効率を得る ことができるという効果がある。

この発明に係る高周波増幅器は、n個(nは2以上の整数)の増幅部を備え、当該増幅部はm個(mは1以上n-1以下の整数)の定電流駆動の増幅部とn-m個の定電圧駆動の増幅部とを並列合成したものである。

このことによって、優れた歪特性を有しながら良好な付加効率を得る ことができるという効果がある。

この発明に係る高周波増幅器は、定電圧駆動の増幅部が、増幅素子としてバイポーラトランジスタを使用して当該バイポーラトランジスタのベースを一定の電圧でバイアスし、定電流駆動の増幅部が、増幅素子としてバイポーラトランジスタを使用して当該バイポーラトランジスタのベースを一定の電流でバイアスするものである。

このことによって、優れた歪特性を有しながら良好な付加効率を得る ことができるという効果がある。

この発明に係る高周波増幅器は、定電圧駆動の増幅部が、入力整合を 行うと共に一定のバイアス電圧を増幅素子に供給する入力整合定電圧バ イアス回路と、出力整合を行うと共に増幅素子に電源電力を供給する出 力整合電源回路とを備え、定電流駆動の増幅部が、入力整合を行うと共 に一定のバイアス電流を増幅素子に供給する入力整合定電流バイアス回 路と、出力整合を行うと共に増幅素子に電源電力を供給する出力整合電 源回路とを備えたものである。 このことによって、当該高周波増幅器を構成する部品点数が削減でき 、小型化が図れるという効果がある。

この発明に係る高周波増幅器は、定電圧駆動の増幅部および定電流駆動の増幅部に電源電力を供給すると共に定電圧駆動の増幅部および定電流駆動の増幅部の出力整合を行う出力整合電源回路を備え、定電圧駆動の増幅部が、入力の整合を行うと共に一定のバイアス電圧を増幅素子に供給する入力整合定電圧バイアス回路を備え、定電流駆動の増幅部が、入力の整合を行うと共に一定のバイアス電流を増幅素子に供給する入力整合定電流バイアス回路を備えたものである。

このことによって、当該高周波増幅器を構成する部品点数が削減でき 、小型化が図れるという効果がある。

この発明に係る高周波増幅器は、定電圧駆動の増幅部および定電流駆動の増幅部の入力整合を行う入力整合回路と、定電圧駆動の増幅部および定電流駆動の増幅部に電源電力を供給すると共に定電圧駆動の増幅部および定電流駆動の増幅部の出力整合を行う出力整合電源回路とを備え、定電圧駆動の増幅部が、一定のバイアス電圧を増幅素子に供給する定電圧バイアス回路を備え、定電流駆動の増幅部が、一定のバイアス電流を増幅素子に供給する定電流バイアス回路を備えたものである。

このことによって、当該高周波増幅器を構成する部品点数が削減でき 、小型化が図れるという効果がある。

この発明に係る高周波増幅器は、増幅素子が、同一チップ上に一定の電圧でバイアスするバイポーラトランジスタのベースと一定の電流でバイアスするバイポーラトランジスタのベースとを分離して構成し、一定の電圧でバイアスするバイポーラトランジスタのコレクタと一定の電流でバイアスするバイポーラトランジスタのコレクタとを一つのコレクタパッドに接続するコレクタ引き出しパターンと、一定の電圧でバイアス

するバイポーラトランジスタのエミッタと一定の電流でバイアスするバイポーラトランジスタのエミッタとを一つのエミッタパッドに接続するエミッタ引き出しパターンと、一定の電圧でバイアスするバイポーラトランジスタのベースと一定のバイアス電圧が供給されるベースパッドとを接続するベース引き出しパターンと、一定の電流でバイアスするバイポーラトランジスタのベースと一定のバイアス電流が供給されるベースパッドとを接続するベース引き出しパターンとを備え、ベース引き出しパターンとエミッタ引き出しパターンとが重なる部分を少なく構成したものである。

このことによって、良好な高周波特性を確保して小型化を図りながら 複数のバイポーラトランジスタを並列合成して同一チップ上に形成する ことができるという効果がある。

この発明に係る高周波増幅器は、定電圧駆動の増幅部が、増幅素子としてFETを使用して当該FETのゲートを一定の電圧でバイアスし、定電流駆動の増幅部が、増幅素子としてバイボーラトランジスタを使用して当該バイポーラトランジスタのベースを一定の電流でバイアスするものである。

このことによって、優れた歪特性を有しながら良好な付加効率を得る ことができるという効果がある。

図面の簡単な説明

第1図は、従来の高周波増幅器を示す構成図である。

第2図Aは、この発明の実施の形態1による高周波増幅器を示す回路 図である。

第2図Bは、第2図Aに示す高周波増幅器の具体的な回路構成の一例を示した図である。

第3図は、実施の形態1による高周波増幅器の入力電力に対する利得の特性を示す説明図である。

第4図は、実施の形態1による高周波増幅器の出力電力の歪特性を示す説明図である。

第5図は、実施の形態1による高周波増幅器の出力電力の付加効率を 示す説明図である。

第6図は、この発明の実施の形態2による高周波増幅器を示す回路図である。

第7図は、この発明の実施の形態3による高周波増幅器を示す回路図である。

第8図は、この発明の実施の形態4による高周波増幅器を示す回路図である。

第9図は、この発明の実施の形態5による高周波増幅器に用いられる 並列合成したバイポーラトランジスタの構成を示す説明図である。

発明を実施するための最良の形態

以下、この発明をより詳細に説明するために、この発明を実施するための最良の形態について、添付の図面にしたがって説明する。 実施の形態 1.

第2図Aは、この発明の実施の形態1による高周波増幅器を示す回路 図である。また、第2図Bは、第2図Aに示す高周波増幅器の具体的な 回路構成の一例を示した図である。

図において、1は増幅素子のバイポーラトランジスタ7とバイアス回路等によって構成され、バイポーラトランジスタ7のベースに定電圧を供給して駆動するアンプ(定電圧駆動の増幅部)である。2は増幅素子のバイポーラトランジスタ8とバイアス回路等によって構成され、バイ

ポーラトランジスタ8のベースに定電流を供給して駆動するアンプ (定電流駆動の増幅部)である。3はRF入力端子、4はRF出力端子、Aはアンプ1とアンプ2とを並列合成したアンプである。

7はアンプ1を構成する増幅素子のバイポーラトランジスタ、8はアンプ2を構成する増幅素子のバイポーラトランジスタ、9はバイポーラトランジスタ7のベースに装荷された容量性素子、10はバイポーラトランジスタ8のベースに装荷された容量性素子、11はアンプ1およびアンプ2の出力電力をRF出力端子4へ出力する容量性素子、12は定電圧ベースバイアス回路(定電圧バイアス回路)、13は定電流ベースバイアス回路(定電流バイアス回路)、14はバイポーラトランジスタ7のコレクタおよびバイポーラトランジスタ8のコレクタに電源電力を供給する電源回路である。

また、少なくともバイポーラトランジスタ 7 とバイポーラトランジスタ 8 は、同一のチップ上に形成される。

第3図は、実施の形態1による高周波増幅器の入力電力に対する利得の特性を示す説明図である。図において、15はアンプ1の入力電力(Pin)に対する利得(Gain)の特性曲線、16はアンプ2の入力電力に対する利得の特性曲線、17はアンプ1とアンプ2とを並列合成したアンプAの入力電力に対する利得の特性曲線である。

次に動作について説明する。

アンプ1はバイポーラトランジスタ7のベースに容量性素子9を装荷しており、アンプ2はバイポーラトランジスタ8のベースに容量性素子10を装荷していることから、アンプ1とアンプ2とは互いに異なるバイアス条件に設定することが可能で、アンプ1は定電圧駆動によって増幅動作を行い、アンプ2は定電流駆動によって増幅動作を行う。

アンプ1の基本的な増幅動作を説明する。RF入力端子3から入力さ

れた信号は容量性素子9を介してバイポーラトランジスタ7のベースに入力される。このときバイポーラトランジスタ7のベースには、定電圧ベースバイアス回路12によって一定のベースバイアス電圧が供給されている。また、バイポーラトランジスタ7のコレクタには電源回路14によって電源電力が供給され、増幅された信号は容量性素子11を介してRF出力端子4に出力される。なお、バイポーラトランジスタ7のエミッタは接地されている。

アンプ2の基本的な増幅動作を説明する。RF入力端子3から入力された信号は容量性素子10を介してバイポーラトランジスタ8のベースには、定に入力される。このとき、バイポーラトランジスタ8のベースには、定電流ベースバイアス回路13によって一定のベースバイアス電流が供給されている。また、バイポーラトランジスタ8のコレクタには電源回路14によって電源電力が供給され、増幅された信号は容量性素子11を介してRF出力端子4に出力される。なお、バイポーラトランジスタ8のエミッタは接地されている。

アンプ1において、バイポーラトランジスタ7のベースに、一定のバイアス電圧を供給し、また、アイドル電流値(DC電圧のみを入力した際にコレクタ・ベース間に流れる電流値)を適切に設定すると、アンプ1の利得特性は第3図に示す特性曲線15のようになり、入力信号の大きさが小さい範囲、即ち入力電力が低い範囲では利得が一定で、それ以上入力電力が大きくなると一定の範囲内において、入力電力と共に利得が増加し、さらに入力電力が大きくなると利得が減少する。

アンプ2において、入力電力を増幅するバイポーラトランジスタ8のベースに、一定のバイアス電流を供給し、また、アイドル電流値を適切に設定すると、アンプ2の利得特性は第3図に示す特性曲線16のようになり、入力電力が低い範囲では利得が一定で、それ以上入力電力が大

きくなると利得は減少する。

第2図に示す定電圧ベースバイアス回路12を用いたアンプ1と、定電流ベースバイアス回路13を用いたアンプ2とを並列合成したアンプAの利得は、第3図に示す特性曲線17のようになる。特性曲線17は、特性曲線15や特性曲線16に比べて入力電力の高い範囲まで利得が一定で、出力信号に生じる歪が少ないことを示している。アンプAのように、バイポーラトランジスタ7のベースに定電圧を供給して駆動するアンプ1とバイポーラトランジスタ8のベースに定電流を供給して駆動するアンプ2とを並列合成すると、出力歪が少なくなり広範囲の入力電力について一定の利得が得られ、歪特性の優れた高周波増幅器を成すことができる。

アンプ1とアンプ2を並列合成したアンプAは、第3図に示す特性曲線17のような入力電力・利得特性を得るため、アンプ1の入力電力・利得特性と、アンプ2の入力電力・利得特性とを調整する。これは、アンプ1の飽和出力電力とアンプ2の飽和出力電力の整合性や、アンプ1の歪特性とアンプ2の歪特性の整合性を考慮したもので、具体的には各々のアンプの増幅素子のトランジスタサイズを調整し、トランジスタサイズ比の最適化および各アンプのアイドル電流値の最適化を行って、アンプ1とアンプ2の整合性を最適化する。

第4図は、実施の形態1による高周波増幅器の出力電力(Pout) の歪特性を示す説明図である。図において、18はアンプ1の出力電力(Pout) の歪特性曲線、19はアンプ1とアンプ2を並列合成したアンプAの出力電力の歪特性曲線である。

通信システムの規格には歪特性の要求値が規定されており、例えば、W-CDMAの規格では、出力電力(Pout) = 26.5dBmのとき、隣接チャネル漏洩電力(ACPR) $\leq -38dBc$ となるように定

められている。定電圧駆動のアンプ1は、第4図の歪特性曲線18に示すように、低い出力電力から歪特性が良好で、出力電力が26.5dB mにおいて隣接チャネル漏洩電力が-38dBcとなる歪特性が得られる。また、低い出力電力範囲では隣接チャネル漏洩電力が-50dBc 以下となり、-38dBc以下を要求する規格を満足するものである。このような歪特性を有するアンプ1と定電流駆動のアンプ2を並列合成したアンプAの歪特性は、歪特性曲線19に示すようになる。

歪特性曲線19のような歪特性は、アンプ1のアイドル電流値とアンプ2のアイドル電流値の調整・設定によって得られる。具体的には、アンプ1が備えるバイポーラトランジスタ7のエミッタ面積AE1が、アンプ2が備えるバイポーラトランジスタ8のエミッタ面積AE2より大きくなるように(AE1>AE2)各トランジスタサイズを設定し、また、バイポーラトランジスタ7のベースバイアス電圧Vbe1がバイポーラトランジスタ8のベースバイアス電圧Vbe2より大きくなるように(Vbe1>Vbe2)当該回路を構成する。こうすると、低出力電力において隣接チャネル漏洩電力が約-40dBcとなり、また、出力電力が26.5dBmにおいて隣接チャネル漏洩電力が1~10dBcとなり、また、出力電力が26.5dBmにおいて隣接チャネル漏洩電力が一38dBcとなら好な歪特性が得られる。

また、定電流駆動のアンプ2のアイドル電流値を低く設定し、これに合わせて定電圧駆動のアンプ1のアイドル電流値を調整した場合にも、アンプ1とアンプ2を並列合成したアンプAの歪特性は前記説明のように良好なものとなる。アイドル電流値を低く設定して定電流駆動のアンプ2と定電圧駆動のアンプ1を並列合成すると、優れた歪特性を有しながら後述するように付加効率も良好な高周波増幅器が得られる。

次に、実施の形態 1 の高周波増幅器の付加効率について説明する。 第 5 図は、実施の形態 1 による高周波増幅器の出力電力 (P o u t) の付加効率を示す説明図である。図において、20はアンプ1の出力の付加効率を示す特性曲線、21はアンプAの出力の付加効率を示す特性曲線である。

アンプAを構成する定電流駆動のアンプ2のアイドル電流値を低く設定し、これに合わせて定電圧駆動のアンプ1のアイドル電流値を調整して最適化すると、第5図の特性曲線21に示すような付加効率が得られる。第5図の特性曲線21と特性曲線20を比較すると、どのような出力電力においても、アンプ1に比べてアンプAの付加特性が良好で、特に出力電力の低い範囲と飽和出力電力においてアンプAの付加効率がアンプ1に比べて良好であることがわかる。このように、定電流駆動のアンプ1のアイドル電流値を低く設定して、これに合わせて定電圧駆動のアンプ1のアイドル電流値を設定して並列合成すると、障害となるほど歪特性を劣化させることなく付加効率を良好にすることができる。

以上のように、この実施の形態1によれば、定電圧駆動のアンプ1と 定電流駆動のアンプ2とを並列合成したので、入力電力が高い範囲まで 利得を一定に保つことができ、優れた歪特性が得られるという効果があ る。

また、定電流駆動のアンプ2のアイドル電流値を低く設定して、これに対応させて定電圧駆動のアンプ1のアイドル電流値を調整したので、 良好な歪特性が得られ、特に低出力電力や飽和出力電力において優れた 付加効率が得られるという効果がある。

実施の形態2.

第6図は、この発明の実施の形態2による高周波増幅器を示す回路図である。図において、22はベースに供給される定電圧によって駆動される増幅素子のバイポーラトランジスタ、23はベースに供給される定

電流によって駆動される増幅素子のバイボーラトランジスタ、24はR F入力端子、25は入力整合回路と定電圧ベースバイアス回路とを一体 化した入力整合定電圧バイアス回路、26は出力整合回路と電源回路と を一体化した出力整合電源回路、27は入力整合回路と定電流ベースバイアス回路とを一体化した入力整合定電流バイアス回路、28は出力整合回路と電源回路とを一体化した出力整合電源回路、29はRF出力端子、30はバイボーラトランジスタ22のベースに装荷された容量性素子、31はバイボーラトランジスタ23のベースに装荷された容量性素子、201は増幅素子のバイポーラトランジスタ22と容量性素子30と入力整合定電圧バイアス回路25と出力整合電源回路26とを備えたアンプ(定電圧駆動の増幅部)、202は増幅素子のバイボーラトランジスタ23と容量性素子31と入力整合定電流バイアス回路27と出力整合電源回路28とを備えたアンプ(定電流駆動の増幅部)、Bはアンプ201とアンプ202とを並列合成したアンプである。

次に動作について説明する。

この実施の形態2による高周波増幅器は、定電圧駆動のアンプ201に入力整合定電圧バイアス回路25と出力整合電源回路26とを備え、また、定電流駆動のアンプ202に入力整合定電流バイアス回路27と出力整合電源回路28とを備えたもので、バイポーラトランジスタ22は第2図に示すバイポーラトランジスタ7に相当し、バイポーラトランジスタ23は第2図に示すバイポーラトランジスタ8に相当し、また、容量性素子30は第2図に示す容量性素子9に、容量性素子31は第2図に示す容量性素子10に相当するもので、それぞれ同様な作用効果が得られるものである。

実施の形態 2 によるアンプ 2 0 1 とアンプ 2 0 2 は、それぞれ実施の 形態 1 によるアンプ 1 とアンプ 2 に相当する動作を行うもので、増幅素 子のバイポーラトランジスタのエミッタ面積やVbe電圧によって設定されるアイドル電流値等は、実施の形態1の説明と同様に取り扱うことができるものである。また、高周波増幅も同様に動作し、出力電力の歪特性や付加効率も同様なものである。このように、実施の形態2によるアンプ201とアンプ202とを並列合成したアンプBは、実施の形態1のアンプ1とアンプ2とを並列合成したアンプAと同様に動作し、作用効果も同様であるため、これらの説明を省略し、実施の形態2のアンプ201とアンプ202の特徴的な動作を説明する。

アンプ201は、RF入力端子24から入力された信号を、入力整合定電圧バイアス回路25を用いて整合し、容量性素子30を介してバイボーラトランジスタ22のベースに入力する。このときバイポーラトランジスタ22のベースには、入力整合定電圧バイアス回路25によって一定のベースバイアス電圧が供給されている。また、バイポーラトランジスタ22のコレクタには出力整合電源回路26によって電源電力が供給されている。バイポーラトランジスタ22が増幅した信号は、出力整合電源回路26によって出力整合が行われ、出力整合電源回路28から出力された信号と共にRF出力端子29に出力される。なお、バイポーラトランジスタ22のエミッタは接地されている。

アンプ202は、入力整合定電流バイアス回路27を用いてRF入力端子24から入力された信号の入力整合を行い、容量性素子31を介してバイポーラトランジスタ23のベースに入力する。このときバイポーラトランジスタ23のベースには、入力整合定電流バイアス回路27によって一定のベースバイアス電流が供給されている。また、バイポーラトランジスタ23のコレクタには出力整合電源回路28によって電源電力が供給されている。バイポーラトランジスタ23が増幅した信号は、出力整合電源回路28によって出力整合が行われ、出力整合電源回路2

6から出力された出力電力と共にRF出力端子29に出力される。なお、バイポーラトランジスタ23のエミッタは接地されている。

以上のように、この実施の形態 2 によれば、アンプ 2 0 1 に入力整合 回路と定電圧ベースバイアス回路を一体化した入力整合定電圧バイアス 回路 2 5 と出力整合回路と電源回路とを一体化した出力整合電源回路 2 6 とを備え、アンプ 2 0 2 に入力整合回路と定電流ベースバイアス回路を一体化した入力整合定電流バイアス回路 2 7 と出力整合回路と電源回路とを一体化した出力整合電源回路 2 8 とを備えたので、高周波増幅器を構成する部品点数を削減することができ、また当該高周波増幅器の小型化を図ることができるという効果がある。

また、定電圧駆動のアンプ201と定電流駆動のアンプ202を並列合成したので、入力電力が高い範囲まで利得を一定に保つことができ、優れた歪特性が得られるという効果がある。

また、定電流駆動のアンプ202のアイドル電流値を低く設定して、これに対応させて定電圧駆動のアンプ201のアイドル電流値を調整したので、良好な歪特性が得られ、特に低出力電力や飽和出力電力において優れた付加効率が得られるという効果がある。

実施の形態3.

第7図は、この発明の実施の形態3による高周波増幅器を示す回路図である。図において、32はベースに供給された定電圧によって駆動される増幅素子のバイポーラトランジスタ、33はベースに供給された定電流によって駆動される増幅素子のバイポーラトランジスタ、34はRF入力端子、35は入力整合回路と定電圧ベースバイアス回路とを一体化した入力整合定電圧バイアス回路、36は出力整合回路と電源回路とを一体化した出力整合電源回路、37は入力整合回路と定電流ベースバ

イアス回路とを一体化した入力整合定電流バイアス回路、38はRF出力端子、39はバイポーラトランジスタ32のベースに装荷された容量性素子、40はバイポーラトランジスタ33のベースに装荷された容量性素子、301はバイポーラトランジスタ32を使用して増幅を行うアンプ(定電圧駆動の増幅部)、302はバイポーラトランジスタを使用して増幅を行うアンプ(定電流駆動の増幅部)、Cはアンプ301とアンプ302とを並列合成したアンプである。

次に動作について説明する。

この実施の形態3による高周波増幅器は、定電圧駆動のアンプ301に入力整合定電圧バイアス回路35を備え、また、定電流駆動のアンプ302に入力整合定電流バイアス回路37を備え、アンプ301とアンプ302を並列合成したアンプCに、アンプ301とアンプ302の出力を整合し、また電源電力を供給する出力整合電源回路36を備えたものである。アンプ301のバイポーラトランジスタ32は第2図に示すバイポーラトランジスタ7に相当し、アンプ302のバイポーラトランジスタ33は第2図に示すバイポーラトランジスタ8に相当し、また、容量性素子39は第2図に示す容量性素子9に、容量性素子40は第2図に示す容量性素子10に相当するもので、それぞれ同様な作用効果が得られるものである。

実施の形態3によるアンプ301とアンプ302は、それぞれ実施の形態1によるアンプ1とアンプ2に相当する動作を行うもので、増幅素子のバイポーラトランジスタのエミッタ面積やVbe電圧によって設定されるアイドル電流値等は、実施の形態1の説明と同様に取り扱うことができるものである。また、高周波増幅も同様に動作し、出力電力の歪特性や付加効率も同様なものである。このように、実施の形態3によるアンプ301とアンプ302とを並列合成したアンプCは、実施の形態

1のアンプ1とアンプ2とを並列合成したアンプAと同様に動作し、作用効果も同様であるため、これらの説明を省略し、実施の形態3のアンプ301とアンプ302の特徴的な動作を説明する。

アンプ301は、RF入力端子34から入力された信号を入力整合定電圧バイアス回路35を用いて整合し、容量性素子39を介してバイポーラトランジスタ32のベースに入力する。このときバイポーラトランジスタ32のベースには、入力整合定電圧バイアス回路35によって一定のベースバイアス電圧が供給されている。また、バイポーラトランジスタ32のコレクタには、出力整合電源回路36によって電源電力が供給されている。バイポーラトランジスタ32が増幅した信号は、出力整合電源回路36によってバイポーラトランジスタ33の出力信号と共に整合されてRF出力端子38へ出力される。なお、バイポーラトランジスタ32のエミッタは接地されている。

アンプ302は、RF入力端子34から入力された信号を入力整合定電流バイアス回路37を用いて整合し、容量性素子40を介してバイポーラトランジスタ33のベースに入力する。このときバイポーラトランジスタ33のベースには、入力整合定電流バイアス回路35によって一定のベースバイアス電流が供給されている。また、バイポーラトランジスタ33のコレクタには、出力整合電源回路36によって電源電力が供給され、バイポーラトランジスタ33が増幅した信号は、出力整合電源回路36によってバイポーラトランジスタ32の出力信号と共に整合されてRF出力端子38へ出力される。なお、バイポーラトランジスタ33のエミッタは接地されている。

以上のように、この実施の形態3によれば、定電圧駆動のアンプ30 1に入力整合回路と定電圧ベースバイアス回路とを一体化した入力整合 定電圧バイアス回路35を備え、定電流駆動のアンプ302に入力整合 回路と定電流ベースバイアス回路とを一体化した入力整合定電流バイアス回路37を備え、また、アンプ301とアンプ302の出力電力を整合する出力整合回路とアンプ301とアンプ302に電源電力を供給する電源回路とを一体化した出力整合電源回路36を備えたので、高周波増幅器の部品点数を削減することができ、また当該高周波増幅器の小型化を図ることができるという効果がある。

17

また、定電圧駆動のアンプ301と定電流駆動のアンプ302とを並 列合成したので、入力電力が高い範囲まで利得を一定に保つことができ 、優れた歪特性を得ることができるという効果がある。

また、定電流駆動のアンプ302のアイドル電流値を低く設定して、これに対応させて定電圧駆動のアンプ301のアイドル電流値を調整したので、良好な歪特性が得られ、特に低出力電力や飽和出力電力において優れた付加効率が得られるという効果がある。

実施の形態4.

第8図は、この発明の実施の形態4による高周波増幅器を示す回路図である。図において、41はベースに供給される定電圧によって駆動される増幅素子のバイポーラトランジスタ、42はベースに供給される定電流によって駆動される増幅素子のバイポーラトランジスタ、43はRF入力端子、44は定電圧ベースバイアス回路(定電圧バイアス回路)、45は出力整合回路と電源回路を一体化した出力整合電源回路、46は定電流ベースバイアス回路(定電流バイアス回路)、47はRF出力端子、48は入力整合回路、49はバイポーラトランジスタ41のベースに装荷された容量性素子、50はバイポーラトランジスタ41を使用して増幅を行うアンプ(定電圧駆動の増幅部)、402はバイポーラ

トランジスタ 4 2 を使用して増幅を行うアンプ(定電流駆動の増幅部) 、 D はアンプ 4 0 1 とアンプ 4 0 2 とを並列合成したアンプである。 次に動作について説明する。

この実施の形態4による高周波増幅器は、定電圧駆動のアンプ401に定電圧ベースバイアス回路44を備え、また、定電流駆動のアンプ402に定電流ベースバイアス回路46を備え、アンプ401とアンプ402を並列合成したアンプDに、アンプ401とアンプ402に入力する信号の整合を行う入力整合回路48と、アンプ401とアンプ402に電源電力を供給し、またアンプ401とアンプ402の出力信号の整合を行い、RF出力端子47へ出力する出力整合電源回路45を備えたものである。アンプ401のバイポーラトランジスタ41は第2図に示すバイポーラトランジスタ7に相当し、アンプ402のバイポーラトランジスタ42は第2図に示すバイポーラトランジスタ8に相当し、また、容量性素子49は第2図に示す容量性素子9に、容量性素子50は第2図に示す容量性素子9に、容量性素子50は第2図に示す容量性素子9に、容量性素子50は第2図に示す容量性素子9に、容量性素子50は第2図に示す容量性素子9に、容量性素子50は第

実施の形態4によるアンプ401とアンプ402は、それぞれ実施の形態1によるアンプ1とアンプ2に相当する動作を行うもので、増幅素子のバイポーラトランジスタのエミッタ面積やVbe電圧によって設定されるアイドル電流値等は、実施の形態1の説明と同様に取り扱うことができるものである。また、高周波増幅も同様に動作し、出力電力の歪特性や付加効率も同様なものである。このように、実施の形態4によるアンプ401とアンプ402とを並列合成したアンプDは、実施の形態1のアンプ1とアンプ2とを並列合成したアンプAと同様に動作し、作用効果も同様であるため、これらの説明を省略し、実施の形態4のアンプ401とアンプ402の特徴的な動作を説明する。

アンプDを構成するアンプ401は、RF入力端子43から入力され、入力整合回路48によって整合された信号を、定電圧ベースバイアス回路44を用いて一定の電圧にバイアスし、容量性素子49を介してバイポーラトランジスタ41のベースに入力する。このとき、バイポーラトランジスタ41のコレクタには、出力整合電源回路45によって電源電力が供給され、バイポーラトランジスタ41が増幅した信号は、出力整合電源回路45によってバイポーラトランジスタ42の出力信号と共に整合されてRF出力端子47に出力される。なお、バイポーラトランジスタ41のエミッタは接地されている。

アンプDを構成するアンプ402は、RF入力端子43から入力され、入力整合回路48によって整合された信号を、定電流ベースバイアス回路46を用いて一定の電流にバイアスし、容量性素子50を介してバイポーラトランジスタ42のベースに入力する。このとき、バイポーラトランジスタ42のコレクタには、出力整合電源回路45によって電源電力が供給され、バイポーラトランジスタ42が増幅した信号は、出力整合電源回路45によってバイポーラトランジスタ41の出力信号と共に整合されてRF出力端子47に出力される。なお、バイポーラトランジスタ42のエミッタは接地されている。

以上のように、この実施の形態4によれば、定電圧駆動のアンプ401と定電流駆動のアンプ402とを並列合成したアンプDに、入力信号の整合を行ってアンプ401およびアンプ402に電源電力を供給し、アンプ401およびアンプ402に電源電力を供給し、アンプ401およびアンプ402の出力信号を整合する出力整合電源回路45とを備えたので、高周波増幅器の部品点数を削減することができ、また当該高周波増幅器の小型化を図ることができるという効果がある。

また、定電圧駆動のアンプ401と定電流駆動のアンプ402とを並

列合成したので、入力電力が高い範囲まで利得を一定に保つことができ 、優れた歪特性を得ることができるという効果がある。

また、定電流駆動のアンプ402のアイドル電流値を低く設定し、これに対応させて定電圧駆動のアンプ401のアイドル電流値を調整したので、良好な歪特性が得られ、特に低出力電力や飽和出力電力において優れた付加効率が得られるという効果がある。

実施の形態5.

第9図は、この発明の実施の形態5による高周波増幅器に用いられる並列合成したバイポーラトランジスタの構成を示す説明図である。図示したものは複数のバイポーラトランジスタを同一チップ上に形成したもので、このチップ上に備えられた複数のベースを定電圧駆動するものと定分けて構成したものである。図において、51は定電圧駆動するバイポーラトランジスタのベースパッド、52は定電流駆動するバイポーラトランジスタのベースパッド、53は各バイポーラトランジスタのコレクタを並列合成するコレクタパッド、54 a は定電圧駆動するバイポーラトランジスタのベースとベースパッド51とを接続するベース引き出しパターン、54 b は定電流駆動するバイポーラトランジスタのベース とを接続するベース引き出しパターン、55 はエミッタ引き出しパターン、56 はコレクタ引き出しパターン、57 は各バイポーラトランジスタのエミッタを並列合成するエミッタパッドである。

第9図に示したものは、例えば、定電圧駆動するバイポーラトランジスタと定電流駆動するバイポーラトランジスタとのエミッタ面積比が2 :1になるように構成したものである。これらのバイポーラトランジスタは、コレクタ引き出しパターン56を用いて定電圧駆動するバイポー **?**

ラトランジスタと定電流駆動するバイポーラトランジスタの各コレクタを一つのコレクタパッド53に接続して合成し、また、エミッタ引き出しパターン55を用いて定電圧駆動するバイポーラトランジスタと定電流駆動するバイポーラトランジスタの各エミッタを一つのエミッタパッド57に接続して合成している。また、各バイポーラトランジスタのエミッタは、エミッタパッド57上に形成されたバイアホール(図示を省略したスルーホール)を介してグランド(図示省略)に接地されている

定電圧駆動するバイポーラトランジスタのベースは、当該ベースを構成する部分から引き出されたベース引き出しパターン 5 4 a によってベースパッド 5 1 に接続される。また、定電流駆動するバイポーラトランジスタのベースは、当該ベースを構成する部分から引き出されたベース引き出しパターン 5 4 b によってベースパッド 5 2 に接続される。なお、ベース引き出しパターン 5 4 a 、5 4 b とエミッタ引き出しパターン 5 5 とは、できるだけ重ならないように、好ましくは、できるだけ離れるように構成して、良好な高周波特性が得られるようにする。

このように構成して、ベースパッド51に一定のバイアス電圧を供給 し、また、ベースパッド52に一定のバイアス電流を供給すると、定電 圧駆動するバイポーラトランジスタのベースは一定の電圧でバイアスさ れ、また定電流駆動するバイポーラトランジスタのベースは一定の電流 でバイアスされる。

なお、実施の形態2の高周波増幅器のように、定電圧駆動のアンプと 定電流駆動のアンプに個別の電源回路を用いて電源電力を供給する構成 の場合には、各バイポーラトランジスタのコレクタを個別に備えたコレ クタパッドに接続して構成する。

また、この実施の形態5で説明したように定電圧で駆動するバイポー

ラトランジスタと定電流で駆動するバイポーラトランジスタとを並列合成して、実施の形態 1 ~ 4 で説明した高周波増幅器に用いることも可能である。

以上のように、この実施の形態5によれば、複数のバイポーラトランジスタを同一チップ上に形成して、定電圧を供給するベースと定電流を供給するベースとに分けて構成し、複数のコレクタをコレクタ引き出しパターン56を用いて一つのコレクタパッド53に接続し、複数のエミッタをエミッタ引き出しパターン55を用いて一つのエミッタパッド57に接続し、ベース引き出しパターン54aを用いて定電圧駆動するバイポーラトランジスタのベースと定電圧が供給されるベースパッド51とを接続し、ベース引き出しパターン54bを用いて定電流駆動するバイポーラトランジスタと定電流が供給されるベースパッド52とを接続するようにしたので、小型化を図りながら複数のバイポーラトランジスタを並列合成して同一チップ上に形成することができるという効果がある。

実施の形態 6.

次に、この発明の実施の形態6による高周波増幅器を説明する。実施の形態6による高周波増幅器は、実施の形態1~4で説明した高周波増幅器の定電圧駆動のアンプに用いる増幅素子に、バイポーラトランジスタに代えてFETを使用して構成したものである。FETのゲートに一定のバイアス電圧を供給することで、バイポーラトランジスタを使用したものと同様に増幅動作を行い、また同様な作用効果が得られる。

なお、実施の形態 1~4ではバイポーラトランジスタを増幅素子に使用した高周波増幅器を説明したが、SiBJT、SiGeBJT、In Gap等の化合物から成るHBTを増幅素子として使用しても同様な作

用効果が得られる。

また、前記各実施の形態では、定電圧ベースバイアスによって駆動さ れるバイポーラトランジスタと、定電流ベースバイアスによって駆動さ れるバイポーラトランジスタが、それぞれ一つずつ並列合成されたもの を例示して説明したが、この発明の高周波増幅器はこれに限定されず、 当該高周波増幅器を n 個 (n は 2 以上の整数)のアンプ (増幅部)で構 成し、m個(mは1以上n-1以下の整数)の定電流駆動のアンプと、 n-m個の定電圧駆動のアンプとを並列合成して実施することができる もので、このように構成したものであれば同様な作用効果が得られる。

以上のように、この実施の形態6によれば、定電圧駆動のアンプの増 幅素子にFETを用いて構成し、定電圧で駆動するアンプと定電流で駆 動するアンプとを並列合成したので、優れた歪特性を有しながら付加効 率も良好にできるという効果がある。

以上、この発明をその好適な実施の形態を参照しながら詳細に図示し て説明したが、請求の範囲に記載されたこの発明の趣旨および区域内で 、形式および細部に関する様々な変更が可能であることは当業者であれ ば理解できることだろう。かかる変更、代替、修正もこの発明の範囲に 含まれるものであると出願人は意図している。

産業上の利用可能性

以上のように、この発明に係る高周波増幅器は、高出力で優れた歪特 性を有しながら高い付加効率を実現し、また、低出力電力において付加 効率を改善するのに適している。

請 求 の 範 囲

24

- 1. 複数の増幅部を用いて高周波を増幅する高周波増幅器であって、
 - 一定の電圧でバイアスする増幅素子を用いた定電圧駆動の増幅部と、
- 一定の電流でバイアスする増幅素子を用いた定電流駆動の増幅部とを 並列合成したことを特徴とする高周波増幅器。
- 2. n個(nは2以上の整数)の増幅部を備え、当該増幅部はm個(mは1以上n-1以下の整数)の定電流駆動の増幅部とn-m個の定電圧駆動の増幅部とを並列合成したことを特徴とする請求の範囲第1項記載の高周波増幅器。
- 3. 定電圧駆動の増幅部は、増幅素子としてバイポーラトランジスタを使用して当該バイポーラトランジスタのベースを一定の電圧でバイアスし、

定電流駆動の増幅部は、増幅素子としてバイポーラトランジスタを使用して当該バイポーラトランジスタのベースを一定の電流でバイアスすることを特徴とする請求の範囲第2項記載の高周波増幅器。

4. 定電圧駆動の増幅部は、入力整合を行うと共に一定のバイアス電圧を増幅素子に供給する入力整合定電圧バイアス回路と、出力整合を行うと共に前記増幅素子に電源電力を供給する出力整合電源回路とを備え

定電流駆動の増幅部は、入力整合を行うと共に一定のバイアス電流を増幅素子に供給する入力整合定電流バイアス回路と、出力整合を行うと共に前記増幅素子に電源電力を供給する出力整合電源回路とを備えたこ

とを特徴とする請求の範囲第2項記載の高周波増幅器。

5. 定電圧駆動の増幅部および定電流駆動の増幅部に電源電力を供給すると共に前記定電圧駆動の増幅部および前記定電流駆動の増幅部の出力整合を行う出力整合電源回路を備え、

前記定電圧駆動の増幅部は、入力の整合を行うと共に一定のバイアス 電圧を増幅素子に供給する入力整合定電圧バイアス回路を備え、

前記定電流駆動の増幅部は、入力の整合を行うと共に一定のバイアス 電流を増幅素子に供給する入力整合定電流バイアス回路を備えたことを 特徴とする請求の範囲第2項記載の高周波増幅器。

6. 定電圧駆動の増幅部および定電流駆動の増幅部の入力整合を行う 入力整合回路と、

前記定電圧駆動の増幅部および前記定電流駆動の増幅部に電源電力を供給すると共に前記定電圧駆動の増幅部および前記定電流駆動の増幅部の出力整合を行う出力整合電源回路とを備え、

前記定電圧駆動の増幅部は、一定のバイアス電圧を増幅素子に供給する定電圧バイアス回路を備え、

前記定電流駆動の増幅部は、一定のバイアス電流を増幅素子に供給する定電流バイアス回路を備えたことを特徴とする請求の範囲第2項記載の高周波増幅器。

7. 増幅素子は、同一チップ上に一定の電圧でバイアスするバイポーラトランジスタのペースと一定の電流でバイアスするバイポーラトランジスタのベースとを分離して構成し、

前記一定の電圧でバイアスするバイポーラトランジスタのコレクタと

前記一定の電流でバイアスするバイポーラトランジスタのコレクタとを 一つのコレクタパッドに接続するコレクタ引き出しパターンと、

前記一定の電圧でバイアスするバイポーラトランジスタのエミッタと前記一定の電流でバイアスするバイポーラトランジスタのエミッタとを 一つのエミッタパッドに接続するエミッタ引き出しパターンと、

前記一定の電圧でバイアスするバイポーラトランジスタのベースと一定のバイアス電圧が供給されるベースパッドとを接続するベース引き出 しパターンと、

前記一定の電流でバイアスするバイポーラトランジスタのベースと一定のバイアス電流が供給されるベースパッドとを接続するベース引き出 しパターンとを備え、

前記ベース引き出しパターンと前記エミッタ引き出しパターンとが重なる部分を少なく構成したことを特徴とする請求の範囲第1項記載の高周波増幅器。

8. 定電圧駆動の増幅部は、増幅素子として F E T を使用して当該 F E T のゲートを一定の電圧でバイアスし、

定電流駆動の増幅部は、増幅素子としてバイポーラトランジスタを使用して当該バイポーラトランジスタのベースを一定の電流でバイアスすることを特徴とする請求の範囲第2項記載の高周波増幅器。

第2図A

第2図B

第3図

第4図

第5図

第6図

第7図

第8図

第9図

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP03/07426

A CTAC	CITECAMON OF CUID IDOM A CARMED							
A. CLAS	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H03F3/68, H03F1/32, H03F3/19							
	According to International Patent Classification (IPC) or to both national classification and IPC							
	S SEARCHED							
Minimum d Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ H03F3/68, H03F1/32, H03F3/19							
Documenta	tion searched other than minimum documentation to the	he evtent that such documents are included	in the fields searched					
Jits: Koka:	o 1994-2003 o 1996-2003							
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)								
	MENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where a	-	Relevant to claim No.					
E,X	JP 2003-229728 A (Mitsubish: 15 August, 2003 (15.08.03), (Family: none)	i Electric Corp.),	1-8					
A			1-8					
А	JP 10-135750 A (Mitsubishi E 22 May, 1998 (22.05.98), & DE 19733173 A1 & US & KR 98041703 A	Electric Corp.),	1-8					
- Foodba								
	er documents are listed in the continuation of Box C.	See patent family annex.						
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive						
 document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means 		"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art						
P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed								
Date of the actual completion of the international search 19 September, 2003 (19.09.03) Date of mailing of the international search report 07 October, 2003 (07.10.03)								
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer						
acsimile No.		Telephone No.						

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/07426

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A .	JP 5-110349 A (Matsushita Electric Industrial Co., Ltd.), 30 April, 1993 (30.04.93), (Family: none)	8

国際出願番号 PCT/JP03/07426

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' H03F3/68 H03F1/	′32 H03F3/19			
D 402-1-2 (-) () mm				
B. 調査を行った分野 調査を行った最小限资料(国際特許分類(IPC))				
Int. Cl 7 H03F3/68 H03F1/	32 H03F3/19			
最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1922-1996年 日本国公開実用新案公報 1971-2003年 日本国登録実用新案公報 1994-2003年				
日本国登録実用新案公報 1994-2003年 日本国実用新案登録公報 1996-2003年				
国際調査で使用した電子データベース(データベースの名称、	調査に使用した用語)			
C. 関連すると認められる文献				
引用文献の	関連する			
カテゴリー* 引用文献名 及び一部の箇所が関連する。 EX IP 2003-229728 A				
EX JP 2003-229728 A 2003. 08. 15 (ファミリーなし)	(三菱電機株式会社) 1-8			
·				
区 C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの			
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献				
国際調査を完了した日 19.09.03	国際調査報告の発送日 07.10.03			
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 佐藤 敬介 電話番号 03-3581-1101 内線 3574			

国際出願番号 PCT/JP03/07426

	四 际 和立 牧	国際出題番号「PCT/JPO:	07 0 7 4 2 6	
C (続き). 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは	、その関連する箇所の表示	関連する 請求の範囲の番号	
A	JP 2001-284984 A (株式: 2001. 10. 12 & WO 01/76060 A1 & AU 200144659 A & TW 503613 A & US 2003/0102924 A & CN 1422455 A	会社日立製作所)	1-8	
A	JP 10-135750 A (三菱電機 1998. 05. 22 & DE 19733173 A1 & US 5889434 A & KR 98041703 A	朱式会社)	1–8	
A	JP 5-110349 A(松下電器産業1993.04.30 (ファミリーなし)	業株式会社)	8	
•				