$$\int x^3 \sqrt{ax^2 + b} dx$$

Todor Milev

2019

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Let
$$u = ?$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx$$
.

Let
$$u = 1 + x^3$$
.

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du =$?

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx.$$
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int \frac{3x^2}{x^3} \sqrt{1 + x^3} dx.$$
 Let $u = 1 + x^3$.
Then $du = \frac{3x^2}{x^3} dx$.

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3= \red{7}.$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int \sqrt{u}$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x \ = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int (u-1)\sqrt{u}$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int (u-1)\sqrt{u}\,\mathrm{d}u$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int (u-1)\sqrt{u}\,\mathrm{d}u$$

$$= \int \left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right)\mathrm{d}u$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) du$$

$$= \left(? -?\right)$$

Evaluate
$$\int 3x^5 \sqrt{1+x^3} dx = \int 3x^2 x^3 \sqrt{1+x^3} dx.$$
 Let $u=1+x^3$. Then $du=3x^2 dx$.
$$x^3=u-1.$$

$$\int 3x^2 x^3 \sqrt{1+x^3} dx = \int (u-1)\sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) du$$

$$= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}}-\mathbf{?}\right)$$

Evaluate
$$\int 3x^5\sqrt{1+x^3}\mathrm{d}x = \int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x.$$
 Let $u=1+x^3$. Then $\mathrm{d}u=3x^2\mathrm{d}x.$
$$x^3=u-1.$$

$$\int 3x^2x^3\sqrt{1+x^3}\mathrm{d}x = \int (u-1)\sqrt{u}\,\mathrm{d}u$$

$$= \int \left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right)\mathrm{d}u$$

$$= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}}-\frac{\mathbf{?}}{2}\right)$$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$
 $= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right)$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.
 $\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$
 $= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$
 $= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$

Evaluate
$$\int 3x^5 \sqrt{1 + x^3} dx = \int 3x^2 x^3 \sqrt{1 + x^3} dx$$
.
Let $u = 1 + x^3$.
Then $du = 3x^2 dx$.
 $x^3 = u - 1$.

$$\int 3x^2 x^3 \sqrt{1 + x^3} dx = \int (u - 1) \sqrt{u} du$$

$$= \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) du$$

$$= \left(\frac{u^{\frac{5}{2}}}{\frac{5}{2}} - \frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$$

$$= \frac{2}{5} \left(1 + x^3\right)^{\frac{5}{2}} - \frac{2}{3} \left(1 + x^3\right)^{\frac{3}{2}} + C$$
.