https://github.gatech.edu/rchen350/cs7642summer2018p1

Project 1: Desperately Seeking Sutton

ID: rchen350

Ran Chen email: ranchen@gatech.edu

Abstract

This report replicates the experiments generating Fig 3, 4, and 5 from Learning to Predict by the Methods of Temporal Differences¹ by Sutton, RS (referred to as the "Sutton Paper" in this report). Code used to run experiments described in this report is hosted here: https://github.gatech.edu/rchen350/cs7642summer2018p1, which is also linked in the header as required

1 Problem: Random Walk

Here is an simple example described in the Sutton Paper: as shown in **Fig** 1, we have game of bounded random walks with 7 states, in which the starting point is state D, and the probability of moving either right or left is 0.5, and the game ends when either of the edge states A and G is reached. The value of the game, or the outcome of the random walks, is defined as 0 if the end state is A, and 1 if the end state is G.

To formalize this random walks game as an Markov Decision Process (MDP), we define a state X_S in the form of a one-hot encoded vector of length 7, with the component corresponding to the state being 1, and the rest being 0, e.g., $X_A = [1,0,0,0,0,0,0]$, $X_D = [0,0,0,1,0,0,0]$, and $X_G = [0,0,0,0,0,0,0,1]$. The value prediction of a particular state S, is defined as $P(S) = \omega^T X_S$, which is simply the corresponding component of vector ω since only the corresponding component in X_S is 1.

In this particular game, since the game out come is defined as 1 for terminating at X_G and 0 for terminating at A, we can define the value of a state X_S to be the probability of terminating at state G, or equivalently the expected value of the game outcome, if the game is started from state X_S , this $P(X_A) = 0$ and $P(X_G) = 1$, which means the vector ω should take the form of $[0, \omega_B, \omega_C, \omega_D, \omega_E, \omega_F, 1]$ with all values of ω components being the probabilities of terminating at X_G . We can compute the ideal values of these probabilities: $\omega^* = [0, \frac{1}{6}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, 1]$, and we defined the error between ω generated from simulated data using TD learners and the ideal values ω^* to be the Euclidean distance between the two vectors divided by $\sqrt{5}$, so that we only take into account the non-terminal states (B to F).

Following derivation from the Sutton Paper, to iteratively improve our estimation of ω , at step t, the update is

$$\Delta\omega_t = \alpha(P_{t+1} - P_t) \sum_{k=1}^t \lambda^{t-k} \nabla_\omega P_k$$

let

$$e_t = \sum_{k=1}^t \lambda^{t-k} \nabla_\omega P_k$$

then

$$e_{t+1} = \sum_{k=1}^{t+1} \lambda^{t+1-k} \nabla_{\omega} P_k$$
$$= \nabla_{\omega} P_{t+1} + \sum_{k=1}^{t+1} \lambda^{t+1-k} \nabla_{\omega} P_k$$
$$= \nabla_{\omega} P_{t+1} + \lambda e_t$$

Note that when $\lambda = 0$: $\Delta \omega_t = \alpha(P_{t+1} - P_t) \nabla_{\omega} P_k$, and when $\lambda = 1$: $\Delta \omega_t = \alpha(P_{t+1} - P_t) \sum_{k=1}^t \nabla_{\omega} P_k$. Also since $P_k = \omega^T X_k$, $\nabla_{\omega} P_k = X_k$. Thus the update from step t to t+1 becomes $\Delta \omega_t = \alpha(P_{t+1} - P_t) e_t$ with $e_{t+1} = X_{T+1} + \lambda e_t$.

Figure 1: QL performances on the easy world. Variation of parameters: (a) initial Q, (b) initial Q (close-up), (c) learning rate, (d) epsilon, (e) epsilon decay rate, (f) optimal combination of parameters.

2 Experiments

Here we replicate 2 experiments performed in the Sutton Paper. These experiments utilizes simulated random walk data. First we generate 1000 random walk sequences, all of which start from X - D, and end in either X_A or X_G . These 1000 sequences are then divided into 100 training set, each containing 10 sequences.

2.1 Experiment 1

The first experiments iterate through all 10 sequences from a training set repeatedly until convergence. $\delta\omega_t$ accumulated over the steps within the sequence, and through all 10 sequences within a training set, ω is updated after one full iteration of the entire training set. Multiple α values are tested, mostly the algorithm converges for $\alpha < 0.1$, and always converge to the same values when it does. Here the learning rate α is set to be 0.01 in all cases.

The general algorithm is shown below:

Algorithm 1 $TD(\lambda)$ on training set TS until convergence

```
initialize: \omega = [0, 0.5, 0.5, 0.5, 0.5, 0.5, 1]
repeat
   \Delta\omega = [0, 0, 0, 0, 0, 0, 0]
   for all sequences in TS do
      X_0 is the first step
      e = [0, 0, 0, 0, 0, 0, 0]
      P_0 = \omega^T X_0
      for all steps in a sequence do
         current step is X_k
         P_0 = \omega^T X_k
         e = e + X_{k-1}
         \Delta\omega = \Delta\omega + \alpha(P_1 - P_0)e
         P_0 = P_1
         e = \lambda e
      end for
   end for
   \omega = \omega + \Delta\omega
until \Delta \omega < \epsilon
```

This algorithm is then run on all 100 training sets, and for each training set, a root mean square error (RMSE) is calculated, then averaged over 100 training sets to obtain the average RMSE. This procedure is performed with a range of λ values, and compared (**Fig** 2).

2.2 Experiment 2

The second experiments iterate through all 10 sequences from a training set just once. $\delta\omega_t$ accumulated over the steps within the sequence, and ω is updated after one full iteration of each sequence. The general algorithm is shown below:

Algorithm 2 $TD(\lambda)$ on training set TS once

```
initialize: \omega = [0, 0.5, 0.5, 0.5, 0.5, 0.5, 1]
\Delta\omega = [0, 0, 0, 0, 0, 0, 0]
for all sequences in TS do
   X_0 is the first step
   e = [0, 0, 0, 0, 0, 0, 0]
   P_0 = \omega^T X_0
   for all steps in a sequence do
      current step is X_k
      P_0 = \omega^T X_k
     e = e + X_{k-1}
      \Delta\omega = \Delta\omega + \alpha(P_1 - P_0)e
      P_0 = P_1
      e = \lambda e
   end for
   \omega = \omega + \Delta\omega
end for
```

Again this algorithm is then run on all 100 training sets, and for each training set, a root mean square error (RMSE) is calculated, then averaged over 100 training sets to obtain the average RMSE. This procedure is performed with a range of λ and α value combinations, and compared (**Fig** 3). The lowest average RMSE achieved at different λ is then plotted and compared (**Fig** 4).

3 Results

The results from the two experiments described above are presented in Fig 2, 3, and 4

3.1 Experiment 1

The shape of the curve in Fig 2 generated from experiment 1 matches almost identically to Fig 3 in the Sutton Paper, except errors at all λ values are consistently lower compare to Sutton's results. This is probably due to the difference in the quality of randomly generated data.

Figure 2: Average error on the random walk problem under repeated presentations.

3.2 Experiment 2

Again the shape of the curve generated from experiment 2 shown in Fig 3 matches those in Fig 4 from the Sutton Paper: for each λ , the lowest error is achieved at some α value between 0 and 0.6. $TD(\lambda=1)$ performed worst, while $TD(\lambda=0.3)$ performed best. However the rate of increasing error with increasing α is higher at some λ values compared to Fig 4 from the Sutton Paper. Again this is likely due to the quality of some training sequences. Since this result is generated from only one iteration of a training set, and with some high α values, the TD algorithm could diverge, thus giving higher error after being shown the sequences just once.

Figure 3: Average error on random walk problem after experiencing 10 sequences.

Experiment 2 is then run again with more λ and α values, at each λ the lowest error achieved by the best α is plotted against λ to show the best result achievable for each of them (**Fig** 4). This result is also very similar to Fig 5 from the Sutton Paper, with the exception of $\lambda = 0.2$ having the lowest error instead of

 $\lambda = 0.3$ from Sutton's result. Again this is due to the differences in training sets, also the error from $\lambda = 0.2$ and $\lambda = 0.3$ in Sutton's Fig 5 is actually very close.

Figure 4: Average error at best α value on random walk problem.

4 Difficulties

• Experiment 1

- The TD algorithm is not described very clearly in the paper, while the algorithm described in the lecture needs some modification to conform with the paper.
- Choosing the right α : Since the data is presented repeatedly until convergence, α can be small yet still converge. However if α is too larger, for the algorithm could diverge. A few tests was needed to figure out the proper α .
- Choosing the right ϵ as convergence criterion, and determining how ϵ is calculated. After a few trial, it was eventually decided to calculated as the average of the latest 20 updates toward vector ω , then averaged over the all intermediate states.

• Experiment 2

- Figuring out the reason for the slight difference in the plots, as some of the error shoots up faster as λ goes up. It turns out it is just due to the quality of the simulated game data.
- Cooling Rate: [0.15, 0.35, 0.55, 0.75, 0.95]

References

¹ Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences. *Machine Learning*, 3(1):9–44, August 1988.