CLAIMS

1. A dyestuff of formula (I)

$$Z_{2}$$
 Z_{3}
 $N=N$
 $N=N$

wherein

5

10

R₁ is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl,

 R_2 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; -COOH; -COOCH₃; -CF₃;

 $-SO_3H$, -CN or SO_2NHR_6 ,

where R₆ is H, C₁₋₄ Alkyl, phenyl or substituted phenyl

and

 X_1 is NR_3R_4 ; SR_5 ; OH;

 X_2 is NR_3R_4 ; SR_5 ; OH;

15 wherein

R₃ is H, C₁₋₄alkyl; substituted C₁₋₄alkyl; substituted phenyl, naphthyl or substituted naphthyl

R₄ is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; substituted phenyl, naphthyl or substituted naphthyl

or R₃ and R₄ form 5- or 6-membered ring containing one or two hetero atoms, in addition to N, O or S,which heterocyclic ring is unsubstituted or substituted by one or two C₁₋₄alkyl groups

 R_5 is C_{1-4} alkyl; substituted C_{1-4} alkyl; phenyl or substituted phenyl and X_1 has not the meaning of X_2 unless X_1 or X_2 signifies SR_5 or OH;

25 and

is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; -OH; -COOH; -COOCH₃; -CF₃; -SO₃H; amino; alkylamino, -CN or SO₂NHR'₆,
 where R'₆ is H, C₁₋₄ alkyl, phenyl or substituted phenyl

 Z_2 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; OH; COOH; -SO₃H

WO 2005/073323 PCT/IB2004/004292

 Z_3 is H, C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; OH; COOH; -SO₃H as free acid or in salt form, as well as mixtures thereof.

2. A dyestuff according to claim 1 characterized in that

 R_1 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl,

 R_2 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; -COOH or -SO₃H

and

5 X_1 is NR_3R_4 ; SR_5 ; OH;

 X_2 is NR_3R_4 ; SR_5 ; OH;

wherein

R₃ is H, C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl, naphthyl or substituted naphthyl

10 R_4 is H; C_{1_4} alkyl; substituted C_{1_4} alkyl; phenyl or substituted phenyl, naphthyl or substituted naphthyl or

R₃ and R₄ form a 5- or 6-membered ring containing one or two hetero atoms, in addition to N, O or S, which heterocyclic ring is unsubstituted or substituted by one or two C₁₋₄alkyl groups

15 R_5 is C_{1-4} alkyl; substituted C_{1-4} alkyl; phenyl or substituted phenyl and X_1 has not the meaning of X_2 unless X_1 or X_2 signifies SR_5 or OH; and

Z₁ is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; -OH; -COOH; -COOCH₃; -CF₃; -SO₃H; amino; alkylamino, -CN or SO₂NHR'₆,

where R'_6 is H, C_{1-4} alkyl, phenyl or substituted phenyl

Z₂ is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; OH; COOH; -SO₃H

 Z_3 is H, C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; OH; COOH; -SO₃H as free acid or in salt form, as well as mixtures thereof

25 3. A dyestuff according to claim 2 characterized by the formula (Ia)

$$Z_2$$
 Z_3
 $N=N$
 $N=N$

wherein

20

 R_1 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl,

R₂ is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; -COOH or -SO₃H

and

 X_1 is NR_3R_4 ; SR_5 ; OH;

 X_2 is NR_3R_4 ; SR_5 ; OH;

wherein

10

is H, C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl, naphthyl or substituted naphthyl

R₄ is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl, naphthyl or substituted naphthyl or

R₃ and R₄ form a 5- or 6-membered ring containing one or two hetero atoms, in addition to N, O or S, which heterocyclic ring is unsubstituted or substituted by one or two C₁₋₄alkyl groups

 R_5 is C_{1-4} alkyl; substituted C_{1-4} alkyl; phenyl or substituted phenyl and X_1 has not the meaning of X_2 unless X_1 or X_2 signifies SR_5 or OH; and

is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; -OH; -COOH; -COOCH₃; -CF₃; -SO₃H; amino; alkylamino, -CN or SO₂NHR'₆, where R'₆ is H, C₁₋₄ alkyl, phenyl or substituted phenyl

 Z_2 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; OH; COOH; -SO₃H

 Z_3 is H, C_{1-4} alkyl; substituted C_{1-4} alkyl; C_{1-4} alkoxy; OH; COOH; -SO₃H

as free acid or in salt form, as well as mixtures thereof

4. A dyestuff according to claim 2 characterized by the formula (Ib)

$$Z_{2} \xrightarrow{Z_{1}} OH HN \xrightarrow{H} N \xrightarrow{X_{1}} X_{1}$$

$$HO_{3}S \xrightarrow{SO_{3}H} X_{2}$$

$$(Ib)$$

wherein

25 R_1 is H; C_{1-4} alkyl; substituted C_{1-4} alkyl,

 $R_2 \qquad \text{is H; C_{1-4}alkyl; substituted C_{1-4}alkyl; C_{1-4}alkoxy; -COOH or $-SO_3H$}$

and

 X_1 is NR_3R_4 ; SR_5 ; OH;

 X_2 is NR_3R_4 ; SR_5 ; OH;

30 wherein

- R_3 is H, C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl, naphthyl or substituted naphthyl
- R_4 is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl, naphthyl or substituted naphthyl or
- form a 5- or 6-membered ring containing one or two hetero atoms, in R₃ and R₄ 5 addition to N, O or S, which heterocyclic ring is unsubstituted or substituted by one or two C₁₋₄alkyl groups
 - is C₁₋₄alkyl; substituted C₁₋₄alkyl; phenyl or substituted phenyl R_5 and X_1 has not the meaning of X_2 unless X_1 or X_2 signifies SR_5 or OH;
- 10 and
 - Z_1 is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; -OH; -COOH; -COOCH₃; -CF₃; -SO₃H; amino; alkylamino, -CN or SO₂NHR'₆, where R'₆ is H, C₁₋₄ alkyl, phenyl or substituted phenyl
 - Z_2 is H; C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; OH; COOH; -SO₃H
- Z_3 15 is H, C₁₋₄alkyl; substituted C₁₋₄alkyl; C₁₋₄alkoxy; OH; COOH; -SO₃H as free acid or in salt form, as well as mixtures thereof
- 5. A process for the preparation of a compound according to the formula (I) characterized in that in a first step a compound of formula (II) 20

wherein all substituents have the meanings as defined above is reacted with a compound of formula (III)

$$\begin{array}{c|c} CI & & CI \\ & N & N \\ & & CI \end{array}$$

25 leading to compounds according to formula (IV)

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

and in a second step the product of formula (IV) is reacted with one part of a compound of formula HX_1 wherein X_1 has the formula as described above which leads to compound of formula (V)

$$\begin{array}{c|c}
OH & HN \\
\hline
OH & HN \\
\hline
R_2 & CI
\end{array}$$

$$\begin{array}{c}
V) \\
SO_3H
\end{array}$$

5

and in a third step the compound of formula (V) is condensated with a compound of formula HX_2 wherein X_2 has the formula as described above leading to compound of formula (VI)

$$\begin{array}{c|c}
OH & HN \\
\hline
OH & HN \\
R_2 & X_2
\end{array} (VI)$$

$$HO_3S$$

$$SO_3H$$

10

wherein substituents R_1 and R_2 have the same meanings as defined above and in a final step a compound of formula (VI) is coupled with the diazoniumsalt of a compound of formula (VII)

$$Z_1$$
 Z_2
 Z_3
 NH_2
(VII)

leading to the dyestuff of formula (I)

$$Z_{2}$$
 Z_{2}
 Z_{3}
 Z_{2}
 Z_{3}
 Z_{2}
 Z_{3}
 Z_{3}
 Z_{4}
 Z_{5}
 Z_{3}
 Z_{5}
 Z_{3}
 Z_{5}
 Z_{5}
 Z_{3}
 Z_{5}
 Z_{5

15

wherein all substituents have the same meanings as defined above.

5

10

15

20

- 6. An Ink Jet Ink comprising at least one compound according to claim 1 or 2 or 3 or 4.
- 7. An Ink Jet Ink according to Claims 6 characterized in that the total content of salts is less than 0.5% by weight, based on the total weight of the dyes.
 - 8. Use of compounds according to claim 1 or 2 or 3 or 4 for printing recording material and/or in an inkjet printing process for printing recording materials and/or dyeing substrates comprising cellulose.
- 9. Use according to claim 8 characterized in that the recording material is paper or a papery substrate.
- 10. A recording material or a papery substrate or substrates comprising cellulose printed or dyed with a compound according to claim 1 or 2 or 3 or 4.