

MCIT AWS Machine Learning Training

Use Case – Bees Object Detection

Amgad Zaki, AWS Sr. Solutions Architect amgadz@amazon.com

© 2020 Amazon Web Services Inc. or its affiliates. All rights recovered

Use Case

- Using Python code, you need to create a training job for Bees Imgaes using Amazon SageMaker Object Detection algorithm.
- Dataset is shared with class materials.
- Use only 2% of radomly selected images.
- Amazon SageMaker Ground Truth is free for 500 images labeling only.

Dataset

Use Case

- Bonus task
 - Create Lambda function that invokes created endpoint.
 - Use API Gateway to create REST API by invoking the lambda function.

Use Case: Submission

Please submit the notebook by email, and avoid last minute submissions.

Failing to submit your notebook will impact your overall progress grading.

Introduction to Computer Vision (CV)

CV Problems

Image Classification: What category(ies) does this image belong to?

Breakfast? Lunch? Dinner?

CV Problems

Object Detection: What are the locations of detected object instances?

CV Problems

Semantic Segmentation: What are the boundaries and locations of detected objects?

Milk Hamburger Cookie Salad Orange French fries

Image Representations

Image Representation

- Images are made of pixels. Pixels have values between 0-255.
- We usually consider color and gray level images.

Color Images:

RGB (Red-Green-Blue) is a common representation.
We have 3 channels (Red, Green and Blue).

Grayscale Images:

- Made of single channel.
- Pixels have values between 0-255.
- 0: Darkest intensity
- 255: Brightest intensity

Image Representation

On a N x M grayscale image (N: # of rows, M: # of columns):

Image Representation

E.g., on a 16x16 grayscale image:

- Each channel has values (intensity) between 0-255.
- 0: Darkest intensity
- 255: Brightest intensity

		_									
			112	103	121	99	76	45	44	61	
	98	91	76	75	65	65	54	71	45 L	66	
	98	123	131	. 132	74	49	55	. 76	52	59	
43	31	37	42	45	45	44	61	72	125	123	
39	42	35	42	50	49	45	66	22	83	88	
61	64	65	63	69	65	67	59	21	85	79	
42	43	41	46	47	31	32	36	27	222	231	
141	141	55	55	54	47	48	43	67	231	230	
42	67	78	87	88	86	85	55	66	_		4
223	221	225	226	221	37	31	24	1		9	10
209	201	214	216	226	35	34	43	2	4		
$\overline{}$											

```
im[0, 0, 0] => Top left corner of "R" image (43) im[0, 0, 1] => Top left corner of "G" image (98) im[0, 0, 2] => Top left corner of "B" image (112)
```

```
im[N-1, M-1, 0] => Down right corner of "R" (43) im[N-1, M-1, 1] => Down right corner of "G" (66) im[N-1, M-1, 2] => Down right corner of "B" (230)
```


			_		-			_				
				112	103	121	99	76	45	44	61	
		98	91	76	75	65	65	54	71	45	66	
		98	123	131	132	74	49	55	76	52	59	
	43	31	37	42	45	45	44	61	72	125	123	
•	39	42	35	42	50	49	45	66	22	83	88	
	61	64	65	63	69	65	67	59	21	85	79	
	42	43	41	46	47	31	32	36	27	222	231	
	141	141	55	55	54	47	48	43	67	231	230	
	42	67	78	87	88	86	85	55	66	-		B
	223	221	225	226	221	37	31	24	- "		3	
	209	201	214	216	226	35	34	43	0	9		

```
im[0, 0, 0] => Top left corner of "R" image (43 im[0, 0, 1] => Top left corner of "G" image (98) im[0, 0, 2] => Top left corner of "B" image (112)
```

```
im[N-1, M-1, 0] => Down right corner of "R" (43)
im[N-1, M-1, 1] => Down right corner of "G" (66)
im[N-1, M-1, 2] => Down right corner of "B" (230)
```


		_	_					/			
			112	103	121	99	76	45	44	61	
	98	91	76	75	65	65	54	71	45	66	
	98	123	131	. 132	74	49	55	76	52	59	
43	31	37	42	45	45	44	61	72	125	123	
39	42	35	42	50	49	45	66	22	83	88	
61	64	65	63	69	65	67	59	21	85	79	
42	43	41	46	47	31	32	36	+	222	231	
141	141	55	55	54	47	48	43	27	231	230	
141	141	33	33	34	47	40	43	67		<u> </u>	ı
42	67	78	87	88	86	85	55	66			1
223	221	225	226	221	37	31	24		6	0	
209	201	214	216	226	35	34	43	0	*		

```
im[0, 0, 0] => Top left corner of "R" image (43) im[0, 0, 1] => Top left corner of "G" image (98) im[0, 0, 2] => Top left corner of "B" image (112)
```

```
im[N-1, M-1, 0] => Down right corner of "R" (43)
im[N-1, M-1, 1] => Down right corner of "G" (66)
im[N-1, M-1, 2] => Down right corner of "B" (230)
```


			•					/			
			112	103	121	99	76	45	44	61	
	98	91	76	75	65	65	54	71	45	66	
	98	123	131	132	2 74	49	55	76	52	59	
43	31	37	42	45	45	44	61	72	125	123	
39	42	35	42	50	49	45	66	22	83	88	
61	64	65	63	69	65	67	59	21	85	79	
42	43	41	46	47	31	32	36	27	-222	231	
141	141	55	55	54	47	48	43	67	231	230	
42	67	78	87	88	86	85	55	66	+ `		B 1
223	221	225	226	221	37	31	24			9	10.
209	201	214	216	226	35	34	43	0	4		
42	67	78 225	87 226	88	86	85	55	66	-	w	

```
im[0, 0, 0] => Top left corner of "R" image (43) im[0, 0, 1] => Top left corner of "G" image (98) im[0, 0, 2] => Top left corner of "B" image (112)
```

```
im[N-1, M-1, 0] => Down right corner of "R" (43)
im[N-1, M-1, 1] => Down right corner of "G" (66)
im[N-1, M-1, 2] => Down right corner of "B" (230)
```


Class Imbalance

Number of samples per class is **not equally distributed.**

The ML model may not work well for the infrequent classes.

Examples:

- Fraud Detection
- Anomaly Detection
- Medical Diagnosis

Amazon review dataset: The number of 5 star reviews almost equals the total of the other 4 types of star reviews combined.

Image Augmentation

Make series of random changes to the training images to produce similar, but different, training examples (w/o affecting the label!) For improving model's capability for generalization Common methods:

- Resizing (with different scales and ratios), zoom in/out
- Cropping and flipping, translations, rotations
- Changing color brightness, contrast, add noise (salt and pepper noise, etc)
- Apply these transformations during training, do not cache augmented images, generate them during training time!

More **G**etails

Image Augmentation

Image Augmentation

Changing color and brightness

Image Datasets

ango Amazon Web serviceserve

Image Classification Dataset

Publicly available CV datasets or benchmarks for classification task

- MNIST: http://yann.lecun.com/exdb/mnist/
- Fashion MNIST: https://github.com/zalandoresearch/fashion-mnist
- CIFAR 10: https://www.cs.toronto.edu/~kriz/cifar.html
- Open Images: https://github.com/open/mages/dataset
- Places: http://places2.csailmit.edu/ndex.html
- ImageNet: http://www.magenet.org/
- Caltech 101: http://www.vision.caltech.edu/Image_Datasets/Caltech101/
- Caltech 256: http://www.vision.caltech.edu/Image_Datasets/Caltech256/
- Vehicle make and model rec. dataset: http://vmmrdb.cecsresearch.org/

Many pretrained models here

MNIST

A dataset of handwritten digits (0,1..,9) images

- 28 x 28 grayscale
- Centered and scaled
- 50,000 training data
- 10,000 test data

Available for downloading here

Modified National Institute of Standards and Technology (MNIST)

Fashion - MNIST

A drop-in replacement of MNIST

There are 10 classes.

- 28 x 28 grayscale; Centered and scaled
- 60,000 training data and 10,000 test data

More details

CIFAR 10

An established computer-vision dataset used for object recognition.

- 32x32 color images
- 10 classes: 6,000 images per class
- 50000 training and 10000 test images
- Not centered and scaled

Canadian Institute For Advanced Research (CIFAR)

More details

Places Dataset*

More than 10M images with 400+ unique scene categories

- 5000 30,000 training images per class
- Consistent with real-world frequencies of occurrence

More details (MIT)

ImageNet Dataset

One of the most popular image classification datasets

- The largest dataset by 2012 (at the time orders of magnitude)
- 22,000 distinct categories over 14M images
- Li Fei-Fei, Stanford University

http://www.image-net.org/

ImageNet Competition

ImageNet Large Scale Visual Recognition Challenge (ILSVRC):

- Image classification competition started since 2010
- ML models are trained to classify 1000 image categories
- Training size: ~1.2M; Validation size: 50,000; Test size:
 100,000
- Dominated by deep neural networks since 2012
- AlexNet, VGGNet and ResNet models that were trained on this dataset (Coming soon!)

More details

Open Images Dataset

The largest existing dataset with object location annotations

- About 9M images with over 6000 categories
- 16M bounding boxes for 600 object classes on 1.9M images

Some Important CNNs

Convolutional Neural Networks:

- Alternate between convolutions, nonlinearities and pooling
- Ultimately the resolution of the input image is reduced prior to emitting an output via one (or more) dense layers

Important Convolutional Neural Networks:

- <u>LeNet</u> (1989 1998) <u>Yann LeCun</u> (NYU) (Facebook Al Research)
- AlexNet (2012) Alex Krizhevsky (U Toronto) (Google)
- VGGNet (2014) (Visual Geometry Group Oxford, Google DeepMind)
- Restlet (2015) (<u>Kaiming He</u>, Microsoft Research) (Facebook Al Research)

Neural Networks Perceptron

Neuron

Inspired by human brain with billions of connected neurons.

Perceptron

Input

Activation

function

Perceptron* Given $\{x_i\}$ predict y, where $y \in \{-1, 1\}$:

$$y = f(w_0 + w_1x_1 + ... + w_mx_m),$$

Weighted Sum

here f is the step function:

$$f(x) = \begin{cases} 1, & \text{if } x \ge 0 \\ -1, & \text{if } x < 0 \end{cases}$$

* Another non-linear activation function

Outpu

Artificial Neuron

Artificial Neuron*: Given $\{x_i\}$ predict y:

$$y = f(w_0 + w_1x_1 + ... + w_mx_m)$$
, Weighted Sum

here f is a **nonlinear activation function** (sigmoid, tanh, ReLU, etc.)

* Similar to how neurons in the brain function

Activation Functions

Name	Plot	Description				
Logistic (sigmoid)	0 1 x	 Range: (0,1) Outputs always greater than 0 Computationally expensive Cons: vanishing gradients 				
Hyperbolic tangent (tanh)	0 x x	 Range: (-1,1) O centered Computationally expensive Cons: vanishing gradients 				
Rectified Linear Unit (ReLU)	0 x	 Range: (0,+∞) Output always greater than 0 Computationally cheap Cons: "dead" neuron when inputs smaller than 0 				

Neural Networks Training

Multilayer Perceptron (MLP)

A standard Neural Network (or a Multilayer Perceptron):

- Consisting of input, hidden and output layers
- Layers are connected
- An activation function is applied on each hidden layer
- Can be "trained" to perform tasks
- More details

Forward Propagation

 $\mathbf{W}_1 \in \mathbb{R}^{m \times n}$ and $\mathbf{b}_1 \in \mathbb{R}^m$

Given weights

 $\mathbf{W}_2 \in \mathbb{R}^{m \times d}$ and $\mathbf{b}_2 \in \mathbb{R}^d$

 $\mathbf{x} \in \mathbb{R}^n$

 $\mathbf{h} = \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1)$

 $\mathbf{o} = \mathbf{w}_2^T \mathbf{h} + \mathbf{b}_2$

y = softmax(o)

Input

Hidden

Output

Output Function

"How to output/predict a result"

- Binary classification: Sigmoid
 - Outputs P(target class | x) in (0,1)
 - Logistic Regression of output of last layer

$$sigmoid(x) = \frac{1}{1 + e^{-x}}$$

 $\operatorname{softmax}(\boldsymbol{z})_i = \frac{\exp(z_i)}{\sum_i \exp(z_i)}.$

- Multi-class classification: Softmax
 - Still want probability for each class output in (0,1)
 - Want sum of output to be 1 (probability distribution)
 - Training drives value for target class up, others down
- Regression: Output activation can be linear or ReLU

Forward Propagation

Cost Functions

"How to compare the outputs with the truth?"

Binary classification: Cross entropy for logistic

$$C = -\frac{1}{n} \sum_{\text{examples}} y \ln p + (1 - y) \ln(1 - p)$$

Multiclass classification: Cross entropy for Softmax

$$C = -\frac{1}{n} \sum_{\text{examples classes}} y_j \ln p_j$$

Regression: Mean Squared Error:

$$G = \frac{1}{n} \sum_{\text{examples}} (y - p)^2$$

Notation for Classification

- n = training examples
- j = classes
- p = prediction (probability)
- y = true class (1/yes, 0/no)

Notation for Regression

- n = training examples
- $p = prediction (numeric, \hat{y})$
- y = true value

Dropout

Regularization technique to prevent overfitting.

Randomly removes some nodes with a fixed probability during the training.

More details

Backpropagation

Gradient descent:

- Optimization method used to 'learn'/'train' neural networks
- Finds the minimum of an objective/cost function C(w) by moving in the direction of the steepest descent iteratively.
- At each update;

w:= w -(learning_rate)*

Not too small, not too large... Gradient with respect to w

Gradient Descent: Learning Rate

Review: Activation Functions

Name	Plot	Description					
Logistic (sigmoid)	0 1 x	 Range: (0,1) Outputs always greater than 0 Computationally expensive Cons: vanishing gradients 					
Hyperbolic tangent (tanh)	0 x x 1	 Range: (-1,1) O centered Computationally expensive Cons: vanishing gradients 					
Rectified Linear Unit (ReLU)	0 x	 Range: (0,+∞) Output always greater than 0 Computationally cheap Cons: "dead" neuron when inputs smaller than 0 					

Neural Networks Convolutions & Poolings

Problem of MLPs

Too many parameters to train...

Can we reduce parameters?

Where is Waldo?

Our vision system...

1. Translation Invariance:

Our vision systems should, in some sense, respond similarly to the same object regardless of where it appears on the image.

Our vision system...

2. Locality:

Our visions systems should, in some sense, focus on somewhat local regions, without regard for what else is happening on the image at greater distances.

The idea of convolution

• Each pixel on the image can be realized as $x_{i,j}$

Each "weight" on the filter window can be defined by

$$h_{i,j} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} v_{a,b} x_{i+a,j+b}$$

 $v_{a,b}$

2D Convolution Example

$$h_{i,j} = \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} v_{a,b} x_{i+a,j+b}$$

2D Convolution Example

(vdumoulin@ Github)

- $\mathbf{X} : n_h \times n_w$ input matrix
- $\mathbf{W}: k_h \times k_w$ kernel matrix
- b : the bias scalar
- \mathbf{Y} : $(n_h k_h + 1) \times (n_w k_w + 1)$ output matrix

$$Y = X \star W + b$$

- W and b are the trainable parameters

Kernels (Filters)

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\left[egin{array}{ccc} 0 & -1 & 0 \ -1 & 5 & -1 \ 0 & -1 & 0 \ \end{array}
ight]$$

$$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

What will happen after the filters?

Kernels (Filters)

Edge Detection

(wikipedia)

 $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Sharpen

Gaussian Blur

What do we do near the boundary?

Padding

Padding adds rows/columns around the input.

Input				,	: · · ·		Kernel			Out	Inc. o.		
	0	0	1	2 5	0	*	0 1		9	3 19	8 25	4 10	elde
	0	6	7	8	0	*	2 3		21 6	37 7	43 8	16 0	
				:	3		o'lla						

(vdumoulin@ Github)

How about two nearly identical windows?

Stride

Stride is the number of "unit" the kernel shifted per slide over rows/columns. E.g.,

Strides of 3 for height and 2 for width

Input		Kernel		Output		
0 0 0 0 0 0 0 1 2 0 0 3 4 5 0 0 6 7 8 0 0 0 0 0 0	*	0 1 2 3	=	6	8	

Pooling

Pooling is used to reduce size (height and width) of the feature map.

Max Pooling: Returns the maximal value in the pooling window

Average Pooling: Returns the average in the window

Why Pooling?

Compared with convolutions, pooling progressively reduce

- the spatial size of the representation
- the amount of parameters and computation

Pooling can operate with padding and stride.

Thank you!

