Algebraic Geometry 2 Tutorial session 8

Lecturer: Rami Aizenbud TA: Shai Shechter

June 13, 2020

Some properties of schemes

Let A be a ring. Show that the following are equivalent:

- Spec(A) is disconnected
- ② A has non-trivial idempodents, i.e $\exists e \in A \setminus \{0,1\}$ such that $e^2 = e$
- **3** $A \simeq A_1 \times A_2$ for A_1, A_2 non-zero subrings.

Let A be a ring. Show that the following are equivalent:

- \bullet Spec(A) is disconnected
- ② A has non-trivial idempodents, i.e $\exists e \in A \setminus \{0,1\}$ such that $e^2 = e$
- \bullet $A \simeq A_1 \times A_2$ for A_1, A_2 non-zero subrings.

Solution.

• $(1) \Rightarrow (2)$. Let $\operatorname{Spec}(A) = U_1 \sqcup U_2$ be a cover by two open and disjoint non-trivial open sets, and let $s_e \in \Gamma(\operatorname{Spec}(A), \mathcal{O}_A)$ be defined by

$$s_{\mathsf{e}}(\mathfrak{p}) = egin{cases} 1 \in A_{\mathfrak{p}} & ext{if } \mathfrak{p} \in U_1 \ 0 \in A_{\mathfrak{p}} & ext{if } \mathfrak{p} \in U_2. \end{cases}$$

Then the section s_e is a non-trivial idempodent of $\mathcal{O}_A(\operatorname{Spec}(A)) \simeq A$.

• $(2) \Rightarrow (3)$. Note that, if $e \in A$ is an idemopotent, then (1 - e) is an idempotent as well:

$$(1-e)^2 = 1-2e+e^2 = 1-e.$$

• $(2) \Rightarrow (3)$. Note that, if $e \in A$ is an idemopotent, then (1 - e) is an idempotent as well:

$$(1-e)^2 = 1 - 2e + e^2 = 1 - e.$$

Also, $A_1 = Ae$ and $A_2 = A(1 - e)$ are both subrings and ideals of A.

• $(2) \Rightarrow (3)$. Note that, if $e \in A$ is an idemopotent, then (1 - e) is an idempotent as well:

$$(1-e)^2 = 1-2e+e^2 = 1-e.$$

Also, $A_1 = Ae$ and $A_2 = A(1-e)$ are both subrings and ideals of A. The map $x \mapsto (xe, x(1-e)) : A \to A_1 \times A_2$ is a ring isomorphism.

• $(2) \Rightarrow (3)$. Note that, if $e \in A$ is an idemopotent, then (1 - e) is an idempotent as well:

$$(1-e)^2 = 1-2e+e^2 = 1-e.$$

Also, $A_1 = Ae$ and $A_2 = A(1-e)$ are both subrings and ideals of A. The map $x \mapsto (xe, x(1-e)) : A \to A_1 \times A_2$ is a ring isomorphism.

• $(3) \Rightarrow (1)$ Note that, assuming $A = A_1 \times A_2$ then A_1, A_2 are both ideals, and $\operatorname{Spec}(A) = V(A_1) \sqcup V(A_2)$.

Definition

Definition

Let X be a scheme.

• X is *irreducible* if, whenever $F_1, F_2 \subseteq X$ are closed such that $X = F_1 \cup F_2$ then either $F_1 = X$ or $F_2 = X$. Equivalently, X is irreducible if any two non-empty open subsets intersect.

Definition

- X is *irreducible* if, whenever $F_1, F_2 \subseteq X$ are closed such that $X = F_1 \cup F_2$ then either $F_1 = X$ or $F_2 = X$. Equivalently, X is irreducible if any two non-empty open subsets intersect.
- X is *reduced* if, for any $U \subseteq X$ open, the ring $\mathcal{O}_X(U)$ has no nilpotents.

Definition

- X is *irreducible* if, whenever $F_1, F_2 \subseteq X$ are closed such that $X = F_1 \cup F_2$ then either $F_1 = X$ or $F_2 = X$. Equivalently, X is irreducible if any two non-empty open subsets intersect.
- X is *reduced* if, for any $U \subseteq X$ open, the ring $\mathcal{O}_X(U)$ has no nilpotents.
- *X* is *integral* if it is reduced and irreducible.

Definition

- X is *irreducible* if, whenever $F_1, F_2 \subseteq X$ are closed such that $X = F_1 \cup F_2$ then either $F_1 = X$ or $F_2 = X$. Equivalently, X is irreducible if any two non-empty open subsets intersect.
- X is *reduced* if, for any $U \subseteq X$ open, the ring $\mathcal{O}_X(U)$ has no nilpotents.
- X is *integral* if it is reduced and irreducible. Equivalently, if for any $U \subseteq X$ open, $\mathcal{O}_X(U)$ is a domain.

Show that X is reduced and irreducible iff for any $U\subseteq X$, $\mathcal{O}_X(U)$ is a domain.

Show that X is reduced and irreducible iff for any $U \subseteq X$, $\mathcal{O}_X(U)$ is a domain.

Solution.

 \leftarrow If $\mathcal{O}_X(U)$ has a domain then it has no nilpotents, thus we have reducedness.

Show that X is reduced and irreducible iff for any $U \subseteq X$, $\mathcal{O}_X(U)$ is a domain.

Solution.

 \leftarrow If $\mathcal{O}_X(U)$ has a domain then it has no nilpotents, thus we have reducedness. Furthermore, if X is not irreducible then it contains two non-empty disjoint open subsets U_1, U_2 , and $\mathcal{O}_X(U_1 \cup U_2) = \mathcal{O}_X(U_1) \times \mathcal{O}_X(U_2)$, which is not a domain.

Show that X is reduced and irreducible iff for any $U \subseteq X$, $\mathcal{O}_X(U)$ is a domain.

- \leftarrow If $\mathcal{O}_X(U)$ has a domain then it has no nilpotents, thus we have reducedness. Furthermore, if X is not irreducible then it contains two non-empty disjoint open subsets U_1, U_2 , and $\mathcal{O}_X(U_1 \cup U_2) = \mathcal{O}_X(U_1) \times \mathcal{O}_X(U_2)$, which is not a domain.
- \Rightarrow Assume X is reduced and irreducible, and let $U\subseteq X$ be open. Let $f,g\in \mathcal{O}_X(U)$ be such that fg=0, and put $Y=\{x\in U:f_x\in \mathfrak{m}_x\subseteq \mathcal{O}_{X,x}\}\,,\ Z=\{x\in U:g_x\in \mathfrak{m}_x\}\,.$ Then Y,Z are closed (home exercise), and $U=Y\cup Z$. By irreducibility, wlog, Y=U.

Show that X is reduced and irreducible iff for any $U \subseteq X$, $\mathcal{O}_X(U)$ is a domain.

- \leftarrow If $\mathcal{O}_X(U)$ has a domain then it has no nilpotents, thus we have reducedness. Furthermore, if X is not irreducible then it contains two non-empty disjoint open subsets U_1, U_2 , and $\mathcal{O}_X(U_1 \cup U_2) = \mathcal{O}_X(U_1) \times \mathcal{O}_X(U_2)$, which is not a domain.
- \Rightarrow Assume X is reduced and irreducible, and let $U\subseteq X$ be open. Let $f,g\in \mathcal{O}_X(U)$ be such that fg=0, and put $Y=\{x\in U:f_x\in \mathfrak{m}_x\subseteq \mathcal{O}_{X,x}\}\,,\ Z=\{x\in U:g_x\in \mathfrak{m}_x\}\,.$ Then Y,Z are closed (home exercise), and $U=Y\cup Z$. By irreducibility, wlog, Y=U. Given $V=\operatorname{Spec}(A)\subseteq Y$ affine, we deduce that $f\mid_{V}\in \bigcap_{\mathfrak{p}\in\operatorname{Spec}(A)}\mathfrak{p}$, and hence $f\mid_{V}$ is nilpotent. By reducedness: $f\mid V=0$.

Show that X is reduced and irreducible iff for any $U \subseteq X$, $\mathcal{O}_X(U)$ is a domain.

- \leftarrow If $\mathcal{O}_X(U)$ has a domain then it has no nilpotents, thus we have reducedness. Furthermore, if X is not irreducible then it contains two non-empty disjoint open subsets U_1, U_2 , and $\mathcal{O}_X(U_1 \cup U_2) = \mathcal{O}_X(U_1) \times \mathcal{O}_X(U_2)$, which is not a domain.
- \Rightarrow Assume X is reduced and irreducible, and let $U\subseteq X$ be open. Let $f,g\in \mathcal{O}_X(U)$ be such that fg=0, and put $Y=\{x\in U:f_x\in \mathfrak{m}_x\subseteq \mathcal{O}_{X,x}\}\,,\ Z=\{x\in U:g_x\in \mathfrak{m}_x\}\,.$ Then Y,Z are closed (home exercise), and $U=Y\cup Z$. By irreducibility, wlog, Y=U. Given $V=\operatorname{Spec}(A)\subseteq Y$ affine, we deduce that $f\mid_{V}\in \bigcap_{\mathfrak{p}\in\operatorname{Spec}(A)}\mathfrak{p}$, and hence $f\mid_{V}$ is nilpotent. By reducedness: $f\mid V=0$. By locality, f=0.

Let $X = \operatorname{Spec}(A)$ be affine and let $\operatorname{nil}(A)$ denote the nilradical of A (=ideal given by the set of all nilpotents). Then

- **1** X is irreducible iff nil(A) is prime;
- 2 X is reduced iff nil(A) = 0;
- ullet X is integral iff A is a domain.

Let $X = \operatorname{Spec}(A)$ be affine and let $\operatorname{nil}(A)$ denote the nilradical of A (=ideal given by the set of all nilpotents). Then

- **1** X is irreducible iff nil(A) is prime;
- 2 X is reduced iff nil(A) = 0;
- \odot X is integral iff A is a domain.

The first assertion here is a correction to a false statement from a previous tutorial.

• If A is irr and $f_1, f_2 \in A$ are such that $f_1 f_2 \in \operatorname{nil}(A)$, then $V(f_1) \cup V(f_2) = V(f_1 f_2) = \operatorname{Spec}(A) = X$ and hence $X = V(f_1)$ or $X = V(f_2)$. Consequenly, $f_1 \in \operatorname{nil}(A)$ or $f_2 \in \operatorname{nil}(A)$.

If A is irr and $f_1, f_2 \in A$ are such that $f_1f_2 \in \operatorname{nil}(A)$, then $V(f_1) \cup V(f_2) = V(f_1f_2) = \operatorname{Spec}(A) = X$ and hence $X = V(f_1)$ or $X = V(f_2)$. Consequenly, $f_1 \in \operatorname{nil}(A)$ or $f_2 \in \operatorname{nil}(A)$. Conversely, if $\operatorname{nil}(A)$ is not prime, then $A/\operatorname{nil}(A)$ is not a domain, and hence $\operatorname{Spec}(A/\operatorname{nil}(A))$ is reducible. But $\operatorname{Spec}(A/\operatorname{nil}(A)) \simeq \operatorname{Spec}(A)$.

- If A is irr and $f_1, f_2 \in A$ are such that $f_1f_2 \in \operatorname{nil}(A)$, then $V(f_1) \cup V(f_2) = V(f_1f_2) = \operatorname{Spec}(A) = X$ and hence $X = V(f_1)$ or $X = V(f_2)$. Consequenly, $f_1 \in \operatorname{nil}(A)$ or $f_2 \in \operatorname{nil}(A)$. Conversely, if $\operatorname{nil}(A)$ is not prime, then $A/\operatorname{nil}(A)$ is not a domain, and hence $\operatorname{Spec}(A/\operatorname{nil}(A))$ is reducible. But $\operatorname{Spec}(A/\operatorname{nil}(A)) \simeq \operatorname{Spec}(A)$.
- ② Note that, if $\operatorname{nil}(A) = 0$ then $\operatorname{nil}(A_f) = 0$ for all $f \in A$. In particular, $\mathcal{O}_X(D(f))$ has no nilpotents for all f, and reducedness follows from locality.

- If A is irr and $f_1, f_2 \in A$ are such that $f_1f_2 \in \operatorname{nil}(A)$, then $V(f_1) \cup V(f_2) = V(f_1f_2) = \operatorname{Spec}(A) = X$ and hence $X = V(f_1)$ or $X = V(f_2)$. Consequenly, $f_1 \in \operatorname{nil}(A)$ or $f_2 \in \operatorname{nil}(A)$. Conversely, if $\operatorname{nil}(A)$ is not prime, then $A/\operatorname{nil}(A)$ is not a domain, and hence $\operatorname{Spec}(A/\operatorname{nil}(A))$ is reducible. But $\operatorname{Spec}(A/\operatorname{nil}(A)) \simeq \operatorname{Spec}(A)$.
- ② Note that, if $\operatorname{nil}(A) = 0$ then $\operatorname{nil}(A_f) = 0$ for all $f \in A$. In particular, $\mathcal{O}_X(D(f))$ has no nilpotents for all f, and reducedness follows from locality.
- Note that A is a domain iff (0) is prime, in which case it equals nil(A). The assertion follows.

The reduced scheme associated to a scheme

Exercise

- **①** Show that X is reduced iff, for any $x \in X$, the local ring $\mathcal{O}_{X,x}$ has no nilpotents.
- 2 Let $\mathcal{O}_{\mathrm{red}}$ be the sheafification of the presheaf $\widetilde{\mathcal{O}}_{\mathrm{red}}(U) = \mathcal{O}_X(U)_{\mathrm{red}}$, where $A_{\mathrm{red}} := A/\mathrm{nil}(A)$, for $U \subseteq X$ open. Show that $X_{\mathrm{red}} = (X, \mathcal{O}_{\mathrm{red}})$ is a scheme, and there is a natural morphism $X_{\mathrm{red}} \to X$, which is a homeo on the underlying topological spaces.

• Assume X is reduced and let $x \in X$ be arbitrary. Assume $f_x \in \mathcal{O}_{X,x}$ is nilpotent, with $n_x \in \mathbb{N}$ such that $f_x^{n_x} = 0$. Take $x \in U$ open and $f \in \mathcal{O}_X(U)$ st $[U, f] \equiv f_x$ in $\mathcal{O}_{X,x}$.

1 Assume X is reduced and let $x \in X$ be arbitrary. Assume $f_x \in \mathcal{O}_{X,x}$ is nilpotent, with $n_x \in \mathbb{N}$ such that $f_x^{n_x} = 0$. Take $x \in U$ open and $f \in \mathcal{O}_X(U)$ st $[U, f] \equiv f_x$ in $\mathcal{O}_{X,x}$. Then $[f^{n_x}, U] \equiv f_x^{n_x} \equiv 0$, and hence $\exists x \in V \subseteq U$ st $f^{n_x} \mid_{V} = 0$.

• Assume X is reduced and let $x \in X$ be arbitrary. Assume $f_x \in \mathcal{O}_{X,x}$ is nilpotent, with $n_x \in \mathbb{N}$ such that $f_x^{n_x} = 0$. Take $x \in U$ open and $f \in \mathcal{O}_X(U)$ st $[U,f] \equiv f_x$ in $\mathcal{O}_{X,x}$. Then $[f^{n_x},U] \equiv f_x^{n_x} \equiv 0$, and hence $\exists x \in V \subseteq U$ st $f^{n_x}|_{V} = 0$. But $\mathcal{O}_X(V)$ has no nilpotents, thus $f|_{V} = 0$ and

$$[V,f]=[U,f]=0\in\mathcal{O}_{X,x}.$$

• Assume X is reduced and let $x \in X$ be arbitrary. Assume $f_x \in \mathcal{O}_{X,x}$ is nilpotent, with $n_x \in \mathbb{N}$ such that $f_x^{n_x} = 0$. Take $x \in U$ open and $f \in \mathcal{O}_X(U)$ st $[U,f] \equiv f_x$ in $\mathcal{O}_{X,x}$. Then $[f^{n_x},U] \equiv f_x^{n_x} \equiv 0$, and hence $\exists x \in V \subseteq U$ st $f^{n_x}|_{V} = 0$. But $\mathcal{O}_X(V)$ has no nilpotents, thus $f|_{V} = 0$ and

$$[V,f]=[U,f]=0\in\mathcal{O}_{X,x}.$$

Conversely, given $U \subseteq X$ open, we have that

$$\mathcal{O}_X(U) \hookrightarrow \prod_{x \in X} \mathcal{O}_X(U).$$

• Assume X is reduced and let $x \in X$ be arbitrary. Assume $f_x \in \mathcal{O}_{X,x}$ is nilpotent, with $n_x \in \mathbb{N}$ such that $f_x^{n_x} = 0$. Take $x \in U$ open and $f \in \mathcal{O}_X(U)$ st $[U,f] \equiv f_x$ in $\mathcal{O}_{X,x}$. Then $[f^{n_x},U] \equiv f_x^{n_x} \equiv 0$, and hence $\exists x \in V \subseteq U$ st $f^{n_x}|_{V} = 0$. But $\mathcal{O}_X(V)$ has no nilpotents, thus $f|_{V} = 0$ and

$$[V, f] = [U, f] = 0 \in \mathcal{O}_{X, x}.$$

Conversely, given $U \subseteq X$ open, we have that

$$\mathcal{O}_X(U) \hookrightarrow \prod_{x \in X} \mathcal{O}_X(U).$$

The fact that $\mathcal{O}_X(U)$ has no non-zero nilpotents follows, since having no nilpotents is preserved under taking products and passing to a subring.

② Assume first that $X = \operatorname{Spec}(A)$ is affine. We claim $X_{\operatorname{red}} \simeq \operatorname{Spec}(A_{\operatorname{red}})$ (in particular, that X_{red} is affine).

② Assume first that $X = \operatorname{Spec}(A)$ is affine. We claim $X_{\operatorname{red}} \simeq \operatorname{Spec}(A_{\operatorname{red}})$ (in particular, that X_{red} is affine). To show this, it suffices to note that given $f \in A$ with image $\overline{f} \in A_{\operatorname{red}}$, we have a canonical isomorphism

$$(A_f)_{\mathrm{red}} \simeq (A_{\mathrm{red}})_{\bar{f}}.$$

② Assume first that $X = \operatorname{Spec}(A)$ is affine. We claim $X_{\operatorname{red}} \simeq \operatorname{Spec}(A_{\operatorname{red}})$ (in particular, that X_{red} is affine). To show this, it suffices to note that given $f \in A$ with image $\overline{f} \in A_{\operatorname{red}}$, we have a canonical isomorphism

$$(A_f)_{\mathrm{red}} \simeq (A_{\mathrm{red}})_{\bar{f}}.$$

In particular $\mathcal{O}_{\mathrm{red}}(D(f)) \simeq \Gamma(D(f), \operatorname{Spec}(A_{\mathrm{red}}))$, and hence the two presheaves agree on a basis for the topology.

② Assume first that $X = \operatorname{Spec}(A)$ is affine. We claim $X_{\operatorname{red}} \simeq \operatorname{Spec}(A_{\operatorname{red}})$ (in particular, that X_{red} is affine). To show this, it suffices to note that given $f \in A$ with image $\overline{f} \in A_{\operatorname{red}}$, we have a canonical isomorphism

$$(A_f)_{\mathrm{red}} \simeq (A_{\mathrm{red}})_{\bar{f}}.$$

In particular $\mathcal{O}_{\mathrm{red}}(D(f)) \simeq \Gamma(D(f), \operatorname{Spec}(A_{\mathrm{red}}))$, and hence the two presheaves agree on a basis for the topology.

Assume now that $X=\bigcup U_{\alpha}$ with $(U_{\alpha},\mathcal{O}_{U_{\alpha}}):=\mathcal{O}_{X}\mid_{U_{\alpha}}$ affine. We need to verify that $(\mathcal{O}_{U_{\alpha}})_{\mathrm{red}}\mid_{U_{\alpha}\cap U_{\beta}}\simeq (\mathcal{O}_{U_{\beta}})_{\mathrm{red}}\mid_{U_{\alpha}\cap U_{\beta}}$, and that these isomorphisms agree on triple intersection (home exercise; similar to affine case). Therefore, the schemes $(\mathcal{O}_{U_{\alpha}})_{\mathrm{red}}$ glue uniquely to a scheme on X.

Noetherity

Definition

A scheme X is *locally noetherian* if it can be covered by open affine subsets $\operatorname{Spec}(A_i)$ where each A_i is notherian.

Noetherity

Definition

A scheme X is *locally noetherian* if it can be covered by open affine subsets $\operatorname{Spec}(A_i)$ where each A_i is notherian.

X is noetherian if it is locally noetherian and quasi-compact.

Noetherity

Definition

A scheme X is *locally noetherian* if it can be covered by open affine subsets $\operatorname{Spec}(A_i)$ where each A_i is notherian.

X is *noetherian* if it is locally noetherian and quasi-compact.

Equivalently, if $X = \bigcup_{i=1}^{n} \operatorname{Spec}(A_i)$ for A_i noetherian.

By a theorem proved in class, if X is noetherian and $U = \subseteq X$ is open affine, then $A = \Gamma(U, \mathcal{O}_X)$ is noetherian. In particular, for $X = \operatorname{Spec}(A)$ affine, X is noetherian iff A is noetherian.

Noetherity vs noetherity

Recall that a topological space Ω is for any decreasing sequence $\Omega \supseteq F_1 \supseteq F_2 \supseteq \ldots$ of closed sets, there exists $n \in \mathbb{N}$ such that $V_{n+k} = V_n$ for all k > 0.

Noetherity vs noetherity

Recall that a topological space Ω is for any decreasing sequence $\Omega \supseteq F_1 \supseteq F_2 \supseteq \ldots$ of closed sets, there exists $n \in \mathbb{N}$ such that $V_{n+k} = V_n$ for all k > 0.

Exercise

Show that if X is a noetherian scheme then |X| is noetherian.

Noetherity vs noetherity

Recall that a topological space Ω is for any decreasing sequence $\Omega \supseteq F_1 \supseteq F_2 \supseteq \ldots$ of closed sets, there exists $n \in \mathbb{N}$ such that $V_{n+k} = V_n$ for all k > 0.

Exercise

Show that if X is a noetherian scheme then |X| is noetherian. Show that the converse is false.

Solution.

Let $X = \bigcup_{i=1}^n \operatorname{Spec}(A_i)$ be a finite cover with A_i noetherian, and let $F_1 \supseteq F_2 \supseteq \ldots$ be a decreasing sequence of closed sets. Then $F_j \cap \operatorname{Spec}(A_i)$ is closed and hence corresponds to an ideal I_j^i with $I_1^i \subseteq I_2^i \subseteq \ldots$ By noetherity of the A_i 's, each such sequence stabilizes at some j(i), and hence the sequence $(F_j = \bigcup_{i,j} (F_j \cap \operatorname{Spec}(A_i)))_{j \ge 1}$ stabilizes as well.

For an example of a scheme whose topological space is noetherian while the scheme is not, consider

$$A = \mathbb{C}[x_n : n = 1, 2, \ldots]/(x_n^n : n = 1, 2, \ldots).$$

and $X = \operatorname{Spec}(A)$. Then, as all variables x_n are nilpotent, we have that $\operatorname{Spec}(A) = \operatorname{Spec}(A_{\operatorname{red}}) = \operatorname{Spec}(\mathbb{C})$, which is a point and, consequently, noetherian.

On the other hand, the ideals $I_n = (x_1, ..., x_n)$ comprise a non-stabilizing increasing sequence. Therefore A is not noetherian and, by a theorem from class, $X = \operatorname{Spec}(A)$ is not noetherian.

Let X be a noetherian topological space, and let (P) be a property of closed subsets of X. Assume that, for any $Y \subseteq X$ closed, if (P) holds for all proper closed subsets of Y, then (P) holds for X.

Let X be a noetherian topological space, and let (P) be a property of closed subsets of X. Assume that, for any $Y \subseteq X$ closed, if (P) holds for all proper closed subsets of Y, then (P) holds for X.

Solution.

Assume towards a contradiction that (P) does not hold for X.

Let X be a noetherian topological space, and let (P) be a property of closed subsets of X. Assume that, for any $Y \subseteq X$ closed, if (P) holds for all proper closed subsets of Y, then (P) holds for X.

Solution.

Assume towards a contradiction that (P) does not hold for X. Note that (P) holds vacuously for the empty set.

Let X be a noetherian topological space, and let (P) be a property of closed subsets of X. Assume that, for any $Y \subseteq X$ closed, if (P) holds for all proper closed subsets of Y, then (P) holds for X.

Solution.

Assume towards a contradiction that (P) does not hold for X. Note that (P) holds vacuously for the empty set. By IH there necessarily exists $X_1 \subsetneq X$ proper closed such that (P) does not hold for X_1 , and in particular $X_1 \neq \emptyset$.

Let X be a noetherian topological space, and let (P) be a property of closed subsets of X. Assume that, for any $Y \subseteq X$ closed, if (P) holds for all proper closed subsets of Y, then (P) holds for X.

Solution.

Assume towards a contradiction that (P) does not hold for X. Note that (P) holds vacuously for the empty set. By IH there necessarily exists $X_1 \subsetneq X$ proper closed such that (P) does not hold for X_1 , and in particular $X_1 \neq \emptyset$. Arguing by (ordinary) induction, we may find an infinite descending chain of closed sets $X \supsetneq X_1 \supsetneq X_2 \supsetneq \ldots$, which does not stabilize at any X_n ; a contradiction.

Let X be a noetherian topological space. The exist irreducible subspaces X_1, \ldots, X_n such that $X = \bigcup_{i=1}^n X_i$.

Let X be a noetherian topological space. The exist irreducible subspaces X_1, \ldots, X_n such that $X = \bigcup_{i=1}^n X_i$.

The decomposition in the above application is unique, assuming it is irredundant. We won't prove this here.

Let X be a noetherian topological space. The exist irreducible subspaces X_1, \ldots, X_n such that $X = \bigcup_{i=1}^n X_i$.

The decomposition in the above application is unique, assuming it is irredundant. We won't prove this here.

Solution.

Assume the statement is false and let (P) be the property: "is equal to the union of finitely many irreducible subspaces".

Let X be a noetherian topological space. The exist irreducible subspaces X_1, \ldots, X_n such that $X = \bigcup_{i=1}^n X_i$.

The decomposition in the above application is unique, assuming it is irredundant. We won't prove this here.

Solution.

Assume the statement is false and let (P) be the property: "is equal to the union of finitely many irreducible subspaces". Let $\mathscr S$ be the set of all closed subset of X for which (P) does not hold. By noetherian induction $\mathscr S$ is not empty, and, by noetherity, it has a minimal element Y.

Let X be a noetherian topological space. The exist irreducible subspaces X_1, \ldots, X_n such that $X = \bigcup_{i=1}^n X_i$.

The decomposition in the above application is unique, assuming it is irredundant. We won't prove this here.

Solution.

Assume the statement is false and let (P) be the property: "is equal to the union of finitely many irreducible subspaces". Let $\mathscr S$ be the set of all closed subset of X for which (P) does not hold. By noetherian induction $\mathscr S$ is not empty, and, by noetherity, it has a minimal element Y. Since (P) holds for irreducible sets, Y is not irreducible, and hence $Y = Y_1 \cup Y_2$ for Y_1, Y_2 distinct proper closed subsets. But (P) does hold for Y_1 and Y_2 , hence also for Y. A contradiction.

Open and closed embeddings

Definition

An open subscheme of X is a scheme (U, \mathcal{O}_U) where $U \subseteq X$ is open and $\mathcal{O}_U \simeq \mathcal{O}_X \mid_U$.

An open embedding $f:Y\to X$ is a morphism such that there exists an open subset $U\subseteq X$ and an isomorphism $Y\simeq U$ such that

Definition

A closed embedding is a morphism $f: X \to Y$ such that f induces a homeo of |Y| on a closed subset of X, and such that the induced map $f^{\sharp}: \mathcal{O}_X \to f_*\mathcal{O}_Y$ is surjective.

The notion of closed subscheme is defined to be an equivalence class of of closed embeddings, under a suitable relation.

Specifically, for X affine and $Y \subseteq X$ closed, let $A = \Gamma(X, \mathcal{O}_X)$ and $I \triangleleft A$ be an ideal such that Y = V(I). Then one obtains a closed subscheme structure on Y by taking $f: Y \to X$ to be the map determine by the quotient $A \to A/I$.

Specifically, for X affine and $Y \subseteq X$ closed, let $A = \Gamma(X, \mathcal{O}_X)$ and $I \triangleleft A$ be an ideal such that Y = V(I). Then one obtains a closed subscheme structure on Y by taking $f: Y \to X$ to be the map determine by the quotient $A \to A/I$. However, there are **many** ideals I such that Y = V(I), and the associated structure sheaves are not isomorphic.

Specifically, for X affine and $Y \subseteq X$ closed, let $A = \Gamma(X, \mathcal{O}_X)$ and $I \triangleleft A$ be an ideal such that Y = V(I). Then one obtains a closed subscheme structure on Y by taking $f: Y \to X$ to be the map determine by the quotient $A \to A/I$. However, there are **many** ideals I such that Y = V(I), and the associated structure sheaves are not isomorphic.

For example, consider $X = \mathbb{A}^2_k$ and Y = V(x). Then Y may be endowed with the structure sheaf given from $k[x, y]/(x^n)$, for any $n = 1, 2, \ldots$

Dimension and codimension

Definition

Let X be a scheme. The dimension of X is the supremum of integers n such that there exist closed irreducible subsets

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \ldots \subsetneq X_n \subseteq X$$
.

Dimension and codimension

Definition

Let X be a scheme. The dimension of X is the supremum of integers n such that there exist closed irreducible subsets

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \ldots \subsetneq X_n \subseteq X$$
.

The codimension of a closed *irreducible* subset $Z \subseteq X$ is the supermum of integers n such that there exists a chain

$$Z = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \subseteq X$$

of closed irreducible subsets of X.

Dimension and codimension

Definition

Let X be a scheme. The dimension of X is the supremum of integers n such that there exist closed irreducible subsets

$$X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \ldots \subsetneq X_n \subseteq X$$
.

The codimension of a closed *irreducible* subset $Z \subseteq X$ is the supermum of integers n such that there exists a chain

$$Z = Z_0 \subsetneq Z_1 \subsetneq \ldots \subsetneq Z_n \subseteq X$$

of closed irreducible subsets of X. For an arbitrary closed subset Y we define

$$\operatorname{codim}(Y,X) = \inf_{Z \subseteq Y \text{ irr}} \operatorname{codim}(Z,X)$$

Examples

- ① dim $\operatorname{Spec}(k) = 0$ and dim $\mathbb{A}_k^n = n$ for any field k;
- \bigcirc dim Spec(\mathbb{Z}) = 1;
- **3** More generally, if $X = \operatorname{Spec}(A)$ then $\dim(X) = \dim(A)$, where the RHS is the Krull dimesion, i.e the length of a maximal descending chain of prime ideals.
- For a noetherian ring A, $\dim(\operatorname{Spec}(A[x_1,\ldots,x_n]))=\dim(A)+n$.

Let X be an integral scheme of finite type over a field k.

- For any closed point $x \in X$, dim $X = \dim \mathcal{O}_{X,x}$
- ② Given a closed subset $Y \subseteq X$, show that $\dim(Y) + \operatorname{codim}(Y, X) = \dim(X)$.
- **3** Let $U \subseteq X$ be a non-empty open subset. Show that $\dim(U) = \dim(X)$.

Solution.

• In general, we have an bijective map $\operatorname{Spec}(\mathcal{O}_{X,x}) \to X$, with image within an affine open subset, which implies

$$\text{dim}(\mathcal{O}_{X,x}) = \text{dim}(\operatorname{Spec}(\mathcal{O}_{X,x})) \leq \text{dim}(X).$$

Solution.

• In general, we have an bijective map $\operatorname{Spec}(\mathcal{O}_{X,x}) \to X$, with image within an affine open subset, which implies

$$\dim(\mathcal{O}_{X,x})=\dim(\operatorname{Spec}(\mathcal{O}_{X,x}))\leq\dim(X).$$

Conversely, assume first that $X = \operatorname{Spec}(A)$ for A a f.g. domain over k. Then $x = \mathfrak{m}$ is a maximal ideal and, by Theorem 1.8A in Hartshorne

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{m}) + \dim(A/\mathfrak{m}) = \dim(\mathcal{O}_{X,\mathfrak{m}}) + 0.$$

Solution.

1 In general, we have an bijective map $\operatorname{Spec}(\mathcal{O}_{X,x}) \to X$, with image within an affine open subset, which implies

$$\dim(\mathcal{O}_{X,x})=\dim(\operatorname{Spec}(\mathcal{O}_{X,x}))\leq\dim(X).$$

Conversely, assume first that $X = \operatorname{Spec}(A)$ for A a f.g. domain over k. Then $x = \mathfrak{m}$ is a maximal ideal and, by Theorem 1.8A in Hartshorne

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{m}) + \dim(A/\mathfrak{m}) = \dim(\mathcal{O}_{X,\mathfrak{m}}) + 0.$$

In the more general case, we have that $X = \bigcup_{i=1}^{n} X_i$, a finite union of spectra of f.g. domains over k. We have that

$$\dim(X) = \max\left\{\dim X_i : i = 1, \ldots, n\right\},\,$$

from which the claim follows.

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

If Y is reducible, then the result follows from the same equality applied to irreducible components.

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

If Y is reducible, then the result follows from the same equality applied to irreducible components. For $X = \bigcup X_i$, apply the same argument as before.

② Assume first that Y is irreducible and $X = \operatorname{Spec}(A)$ for A f.g. domain over k. Then $Y = V(\mathfrak{p})$ for a prime \mathfrak{p} and, by definition $\operatorname{codim}(Y,X) = \operatorname{ht}(\mathfrak{p})$ and $\dim(Y) = \dim(A/\mathfrak{p})$. The result then follows, again, from Theorem 1.8A:

$$\dim(X) = \dim(A) = \operatorname{ht}(\mathfrak{p}) + \dim(A/\mathfrak{p}) = \operatorname{codim}(Y,X) + \dim(Y).$$

If Y is reducible, then the result follows from the same equality applied to irreducible components. For $X = \bigcup X_i$, apply the same argument as before.

③ To prove the last item, it suffices to see that any non-empty open subset contains a closed point. For the case $X = \operatorname{Spec}(A)$ and $U = D(f) \neq \emptyset$, this is equivalent to finding a maximal ideal not containing f. But if no such maximal exists, then f is in the Jacobson radical of A, which is zero.

Let $R = \mathbb{C}[[x]]$ and $X = \operatorname{Spec}(R[t])$. Show that all statements in the previous exercise fail for X.

Let $R = \mathbb{C}[[x]]$ and $X = \operatorname{Spec}(R[t])$. Show that all statements in the previous exercise fail for X.

Solution.

Note that dim(X) = dim(R) + 1 = 2, since R is a dvr.

Consider $\mathfrak{p}=(xt-1)$. Then $\mathfrak{p}\supseteq (x-1,t-1)$ is prime of height 1, hence

$$\dim(\mathcal{O}_{X,\mathfrak{p}}) = \dim(R[t]_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}) = 1 < \dim X.$$

Moreover, taking $Y = V(\mathfrak{p})$, we have that $\operatorname{codim}(Y,X) = 1$. However,

$$\dim(Y) = \dim \operatorname{Spec}(\mathbb{C}[[x]][t]/(xt-1)) = \dim \operatorname{Spec}(\mathbb{C}((x))) = 0,$$

since the latter is a field. So $\dim(Y) + \operatorname{codim}(Y, X) < \dim(X)$.

Let $R = \mathbb{C}[[x]]$ and $X = \operatorname{Spec}(R[t])$. Show that all statements in the previous exercise fail for X.

Solution.

Note that dim(X) = dim(R) + 1 = 2, since R is a dvr.

Consider $\mathfrak{p}=(xt-1)$. Then $\mathfrak{p}\supseteq (x-1,t-1)$ is prime of height 1, hence

$$\dim(\mathcal{O}_{X,\mathfrak{p}}) = \dim(R[t]_{\mathfrak{p}}) = \operatorname{ht}(\mathfrak{p}) = 1 < \dim X.$$

Moreover, taking $Y = V(\mathfrak{p})$, we have that $\operatorname{codim}(Y, X) = 1$. However,

$$\dim(Y) = \dim \operatorname{Spec}(\mathbb{C}[[x]][t]/(xt-1)) = \dim \operatorname{Spec}(\mathbb{C}((x))) = 0,$$

since the latter is a field. So $\dim(Y) + \operatorname{codim}(Y, X) < \dim(X)$. Finally, the localization of R[t] by X is a polynomial ring over the field $\mathbb{C}((X))$, hence one-dimensional. So $\dim(D(X)) = 1 < \dim(X)$.

Questions?