ΦΥΣ 133 - Παραδείγματα - Διάλεξη 10

 Να βρεθούν οι εξισώσεις κίνησης του σφαιρικού εκκρεμούς. Το σφαιρικό εκκρεμές αποτελείται από μια μάζα m στερεωμένη σε ένα σταθερό σημείο Ο μέσω μιας αβαρούς στερεάς ράβδου μήκους l.

Στην περίπτωση του σφαιρικού εχχρεφούς το σύστημα υπόχωται στον δεσφο
$x^{2}+y^{2}+z^{2}-l^{2}=\phi$
$\Delta_{\eta} \lambda_{\eta} \lambda_{\eta} = 1 = 6 \cos \theta = 0$ $\Rightarrow r = 0$
Η εβίωως της ταχύτητας που βρικαμε παραπάνω θα χραφικί:
$v^2 = l^2 \sin^2 \theta + l^2 \theta^2$
Enoficions à kingtiki evèggera του enficion fugas m da sina:
$T = \frac{1}{2}mv^2 = \frac{1}{2}ml^2(sin^2\Theta\dot{\phi}^2 + \dot{\Theta}^2)$
H Swatury everyera (and en ordona exorte to bapos con cintaros mgh) Da Bredei and:
da boseder ano:
$B = -\nabla V \Rightarrow V = -\int \vec{B} \cdot d\vec{r} = -\int mg \hat{L} \cdot l d (\cos 0) \hat{L} \Rightarrow$ $V = -mg l \left(-\sin 0 \right) d\theta \Rightarrow V = -mg l \cos \theta + G$
8 JC / Mgc use I g
H Surapium Everylla Tierre con xaprolótegy Elpin Ens. V=0, eto enpero
O=\$ êta wate C=+mgl
Enopierus n efiewey 278 Surafungs erépyeurs prapezai:
$V = mgl(1-\omega s\Theta)$
Enofières y lagrangian con cocantiacos civas:
$l = \frac{1}{9}ml^{2}(sin^{2}0\phi^{2} + \phi^{2}) - mgl(1-\omega s0)$
Out of the state o
Oreficiosers nivigors Da pradovear: d (2L) - 2L = 0 = d (4ml²/sin²0\(\phi\)) = 0 => ml²sin²0\(\phi\) = \(\phi\)
Jt 00 00 4 dt 18
$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\phi}}\right) - \frac{\partial L}{\partial \phi} = \phi \Rightarrow \int_{\mathcal{A}} \left(\frac{1}{2} m l^{2} d\dot{\phi}\right) + \int_{\mathcal{A}} m l^{2} d\sin\theta \cos\theta \dot{\phi}^{2} - mg l\sin\theta = \phi \Rightarrow m l^{2} \sin\theta \sin\theta + \frac{1}{2} \sin\theta \sin\theta = \phi.$
dt (20/ 00 - 0+ 0+ 0+ 0 - mglsin0 = 0.

2. Μια σφαίρα αμελητέων διαστάσεων και μάζας m είναι περιορισμένη να κινείται σε ένα αβαρές στεφάνι ακτίνας R στερεωμένο σε ένα κατακόρυφο επίπεδο το οποίο περιστρέφεται γύρω από τον κατακόρυφο άξονα συμμετρίας του με μια σταθερή γωνιακή ταχύτητα ω. Να βρεθεί η εξίσωση Lagrange της κίνησης της σφαίρας υποθέτοντας ότι οι μόνες εξωτερικές δυνάμεις που ενεργούν προέρχονται από την βαρύτητα. Δείξτε ότι αν η γωνιακή ταχύτητα ω είναι μεγαλύτερη από μια οριακή τιμή ω₀, μπορεί να υπάρξει μιά λύση της εξίσωσης για την οποία η σφαίρα παραμένει σταθερή σε ένα σημείο διαφορετικό από το χαμηλότερο σημείο του στεφανιού, διαφορετικά δείξτε ότι για

ω<ω0 το μόνο σταθερό σημείο για τη σφαίρα είναι αυτό στο χαμηλότερο σημείο του στεφανιού. Ποια είναι η τιμή της οριακής αυτής γωνιακής ταχύτητας ω₀;

Opifoulie zis Eficiosus lutas prefuzichoù ano zis
rapre Gravés Gzis Charpexés Euteraghèves:
X=rsinOcosp
y= r 5100 5106
2 = r 0s0.
Ξέρουμε ωστόσο ότι η αντίνα είναι σταθερή ν= R από την αντίνα του
στεφανιού. Επίσης βερουμε ότι το στεφανι περιστρεφεται με σταθερή
γωνιακή ταχύτητα ω και εποξιένως η χωνία φείναι εβαναγιαστιένη
να κινείται με την χωνιακή ταχύτητα ω. Οι εβιωώσιι μετασχηματισμού
yeapovrai:
X=RsinOcoswt
y=RsinOsinwt
Z=R cos0
Τερνοντας τις παραχώχους ως προς χρόνο:
x = RoosOcoswt - Rsinowsinwt
y = RO OSO SMWt + RWSMO COSWt) (1)
2 = -RO SIMO
11 2
A KNYZIKÝ EVEDJELA Da cival: T= /mv²
2 (.7 .2 .2) ① (2.2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
onov $v^2 = (x + y + z^2) = (RO \cos 2\cos \omega t + R \sin 20\omega \sin \omega t - 2RO \omega \cos 0 \sin 0 \cos \omega t \sin t)$
+ R202050 sin wat + R2 2 sin Oco sat + 2 R20 wood sin Oco wit sin wit
$+ RO \sin O =$
= R 0 cos 0 + R w sin 0 + R 0 sin 0 =>
=> 5= K 0 + Kw sin0.
$+ \mathring{RO}^{2} \sin^{3}O) =$ $= R^{2} \mathring{O}^{2} \cos^{3}O + R^{2} \omega^{2} \sin^{3}O + R^{2} \mathring{O}^{2} \sin^{3}O \Rightarrow$ $\Rightarrow 25^{2} = R^{2} \mathring{O}^{2} + R^{2} \omega^{2} \sin^{3}O.$ Ettofierws & Kingtok's Everytea Einal $T = \frac{1}{2} mR^{2} (\mathring{O}^{2} + \omega^{2} \sin^{2}O)$
J Suvatriur Evépyera and envoncia anoppéer to bajos tou cufuatos Da eivar: V=mgz D V=mg R cos0
V=mgz => V=mg'Kcos&
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H lagrangian Enopièves: $\int = \frac{1}{2} m R^2 (\dot{\Theta}^2 + \omega^2 \sin^2 \Theta) - mg R \cos \Theta$.

	H efiewen vinnens poaperau:
	$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\phi}}\right) - \frac{\partial L}{\partial \theta} = \frac{d}{dt}\left(mR^{2}\dot{\theta}\right) + mR^{2}\omega^{2}\cos\theta\sin\theta - mgR\sin\theta = 0 \Rightarrow$
r r	⇒ mR° = mR° w° cosOsinO - mgRsinO = Ø.
	Nices ensefiewers nou avrictoixoir ce cradipis dieus tou cuscrifiare
	πρέπει να δίνουν Θ= Ø και αντικαθιστώντας στην ② έγουμε:
	$mR^2\omega^2\cos\theta\sin\theta+mgR\sin\theta=\phi\Rightarrow$
	\Rightarrow mRsin0 (Rw ² cos0+g)=0
	H relevana eliques Exer strodavis lies znv 0=0 var 0=11 6700
	SIMO = Ø. Tra àlles Oéscis da npéner o Seirepos opos vaivar Ø
	$S_{1}J_{a}S_{1}: R\omega^{2}\cos\Theta + g = 0 \Rightarrow \cos\Theta = -\frac{3}{R}\omega^{2}$ Suabopertuo
	n χωνιακή ταχύτητα δα πρέπει να ναι $ω^2 \ge \frac{9}{2} \Rightarrow ω > ω_0 = \sqrt{\frac{9}{8}}$