Jaringan Saraf Tiruan (Artificial Neural Networks)

Ali Akbar Septiandri September 20, 2017

Universitas Al Azhar Indonesia

Daftar isi

- 1. Ulasan Regresi Linear
- 2. Ulasan Regresi Logistik
- 3. Jaringan Saraf Tiruan (JST)
- 4. Variasi JST
- 5. Aplikasi JST

Ulasan Regresi Linear

Regresi linear

Figure 1: Regresi linear tarif taksi dari jarak tempuh

Regresi linear

Regresi Linear Satu Dimensi

$$y = w_0 + w_1 x_1$$

Regresi linear

Regresi Linear Multidimensi

$$y = w_0 + w_1 x_1 + ... + w_D x_D = \sum_{j=0}^{D} w_j x_j$$

Regresi Linear Multidimensi (notasi vektor)

$$y = \mathbf{w}^T \mathbf{x}$$

Optimasi analitis

Fungsi error

$$E(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{w} \cdot \phi(x_i))^2$$

• Solusi tertutupnya:

$$\hat{\mathbf{w}} = (\phi^T \phi)^{-1} \phi^T \mathbf{y}$$

• Bagian $(\phi^T \phi)^{-1} \phi^T$ dikenal sebagai *pseudo-inverse*

Ulasan Regresi Logistik

Figure 2: Fungsi logistik $\sigma(z) = \frac{1}{1 + \exp(-z)}$

Probabilitas kelas dengan fungsi logistik

ullet Fungsi logistik (sigmoid) mengubah nilai z dari $(-\infty,\infty)$ menjadi [0,1]

Probabilitas kelas dengan fungsi logistik

- Fungsi logistik (sigmoid) mengubah nilai z dari $(-\infty,\infty)$ menjadi [0,1]
- Nilai [0,1] dapat diartikan sebagai probabilitas dari kelas

Probabilitas kelas dengan fungsi logistik

- ullet Fungsi logistik (sigmoid) mengubah nilai z dari $(-\infty,\infty)$ menjadi [0,1]
- Nilai [0, 1] dapat diartikan sebagai probabilitas dari kelas
- Regresi linear + fungsi logistik = regresi logistik

Regresi Logistik

$$y = f(\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x})$$

Optimasi numerik

Figure 3: Menuruni lembah fungsi error J(w) [Raschka, 2015]

Jaringan Saraf Tiruan (JST)

Jaringan saraf manusia

Figure 4: Neuron pembentuk jaringan saraf [NicerWeb, 2016]

 Bagaimana kalau kita menumpuk neuron-neuron yang ada [McCulloch dan Pitts, 1943]?

- Bagaimana kalau kita menumpuk neuron-neuron yang ada [McCulloch dan Pitts, 1943]?
- Hasil keluaran dari suatu neuron dapat dijadikan sebagai masukan dari neuron yang lain

- Bagaimana kalau kita menumpuk neuron-neuron yang ada [McCulloch dan Pitts, 1943]?
- Hasil keluaran dari suatu neuron dapat dijadikan sebagai masukan dari neuron yang lain
- Neuron paling akhir lah yang akan melakukan prediksi

Figure 5: Jaringan saraf tiruan [Nielsen, 2016]

Figure 6: Lapisan jaringan saraf tiruan [Nielsen, 2016]

Terminologi

Beberapa terminologi yang digunakan:

- Input, hidden, output layers
- Tiap layer terdiri dari neuron atau lebih sering disebut sebagai unit
- Terkadang satu unit dikenal juga dengan nama perceptron
- ullet Fungsi sigmoid (σ) pada tiap unit merupakan salah satu contoh dari fungsi aktivasi

Hidden layers

• Jumlah hidden layers dapat ditentukan sendiri

Hidden layers

- Jumlah hidden layers dapat ditentukan sendiri
- Jaringan saraf tiruan merupakan penghampiran universal (universal approximator), i.e. dapat meniru berbagai fungsi kontinu dengan akurasi tertentu

Hidden layers

- Jumlah hidden layers dapat ditentukan sendiri
- Jaringan saraf tiruan merupakan penghampiran universal (universal approximator), i.e. dapat meniru berbagai fungsi kontinu dengan akurasi tertentu
- Penghampiran tersebut dapat dicapai dengan menggunakan dua hidden layers saja [Cybenko, 1988]!

Bagaimana cara menentukan weight-nya?

Weight matrix

Figure 7: Penulisan weight dalam skalar [Nielsen, 2016]

- Karena keluarannya menjadi masukan dari beberapa *units*, maka $y_k = \sum_{j=0}^D w_{kj} x_j$
- ullet Dalam notasi matriks-vektor, keluarannya di tiap *layer* menjadi $\mathbf{y}^l = \mathbf{W}^l \mathbf{x}^{l-1}$

Regresi logistik dalam jst

Fungsi Aktivasi

Untuk tiap *layer*, **y** menggunakan fungsi aktivasi sehingga sering diganti dengan notasi **a** dan **z**, maka formulanya menjadi $\mathbf{z}^l = \mathbf{W}^l \mathbf{a}^{l-1}$ dan $\mathbf{a}^l = g(\mathbf{z}^l)$, dengan $g(\cdot) = \sigma(\cdot)$

Optimasi solusi

 $\bullet\,$ Masalahnya, kita belum tahu nilai $\mathbf{W}!$

Optimasi solusi

- Masalahnya, kita belum tahu nilai W!
- Seperti regresi logistik, tidak ada solusi bentuk tertutup

Optimasi solusi

- Masalahnya, kita belum tahu nilai W!
- Seperti regresi logistik, tidak ada solusi bentuk tertutup
- Digunakanlah metode optimasi numerik, e.g. gradient descent

• Diperlukan fungsi galat 'error function' $E(\mathbf{w})$ yang dapat diminimalkan

- Diperlukan fungsi galat 'error function' $E(\mathbf{w})$ yang dapat diminimalkan
- Galatnya adalah perbedaan prediksi dengan nilai sebenarnya

- Diperlukan fungsi galat 'error function' $E(\mathbf{w})$ yang dapat diminimalkan
- Galatnya adalah perbedaan prediksi dengan nilai sebenarnya
- Pembelajaran ≡ menuruni permukaan fungsi galat

- Diperlukan fungsi galat 'error function' $E(\mathbf{w})$ yang dapat diminimalkan
- Galatnya adalah perbedaan prediksi dengan nilai sebenarnya
- Pembelajaran ≡ menuruni permukaan fungsi galat
- Akan sangat bergantung kepada inisialisasi nilai w!

Cross-entropy error function

Aturan rantai turunan

$$\frac{\partial E^n}{\partial w_j} = \frac{\partial E^n}{\partial y^n} \frac{\partial y^n}{\partial a^n} \frac{\partial a^n}{\partial w_j}$$

Fungsi galat entropi-silang (cross-entropy error function)

$$E^{n} = -(t^{n}ln(y^{n}) + (1 - t^{n})ln(1 - y^{n}))$$

$$\frac{\partial E^n}{\partial w_j} = (y^n - t^n)x_j$$

Squared error function

Fungsi galat kuadrat (squared error function)

$$E^n = \frac{1}{2}(y^n - t^n)^2$$

Fungsi rataan galat kuadrat (mean squared error (MSE) function)

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{n} (y^n - t^n)^2$$

Stochastic gradient descent

begin

end

```
Inisialisasi W dengan nilai yang kecil
Acak urutan data latih X
while not converged do
     for n \leftarrow 1, N do
          for k \leftarrow 1, K do
               y_k^n \leftarrow \sum_{i=0}^D w_{kj} x_i^n
               \delta_k^n \leftarrow y_k^n - t_k^n
           for j \leftarrow 1, D do
               w_{kj} \leftarrow w_{kj} - \eta \cdot \delta_k^n \cdot x_i^n
                end
          end
     end
end
```

Catatan

Gradient descent

$$\delta_k^n = \frac{\partial E_k^n}{\partial a_k^n} = \frac{\partial E_k^n}{\partial y_k^n} \frac{\partial y_k^n}{\partial a_k^n}$$

Learning rate

 η (terkadang juga ditulis sebagai $\alpha)$ disebut juga sebagai $\it learning$ $\it rate$ yang biasanya di-assign dengan nilai yang kecil (< 1)

 Bagusnya, metode latihan tersebut dapat diterapkan untuk tiap lapisan sebelumnya juga!

- Bagusnya, metode latihan tersebut dapat diterapkan untuk tiap lapisan sebelumnya juga!
- Dikenal dengan nama backpropagation

- Bagusnya, metode latihan tersebut dapat diterapkan untuk tiap lapisan sebelumnya juga!
- Dikenal dengan nama backpropagation
- Perlu disesuaikan dengan fungsi aktivasi yang digunakan pada lapisan tersebut

- Bagusnya, metode latihan tersebut dapat diterapkan untuk tiap lapisan sebelumnya juga!
- Dikenal dengan nama backpropagation
- Perlu disesuaikan dengan fungsi aktivasi yang digunakan pada lapisan tersebut
- Sayangnya, algoritma ini mungkin terjebak pada solusi optimum lokal

Variasi JST

Topologi JST

 Yang sudah kita pelajari dikenal juga sebagai feedforward neural networks, karena jaringannya berupa graf berarah asiklik 'directed acyclic graph'

Topologi JST

- Yang sudah kita pelajari dikenal juga sebagai feedforward neural networks, karena jaringannya berupa graf berarah asiklik 'directed acyclic graph'
- Jika keluaran dari suatu neuron dijadikan masukan kembali untuk neuron tersebut (siklik) → recurrent neural networks

Topologi JST

- Yang sudah kita pelajari dikenal juga sebagai feedforward neural networks, karena jaringannya berupa graf berarah asiklik 'directed acyclic graph'
- Jika keluaran dari suatu neuron dijadikan masukan kembali untuk neuron tersebut (siklik) → recurrent neural networks
- Recurrent neural networks biasa digunakan untuk tugas yang berhubungan dengan urutan, e.g. natural language processing, speech recognition

Recurrent neural networks (RNN; non-examinable)

Figure 8: Recurrent neural networks jika dilihat secara sekuensial [Olah, 2015]

• Fungsi sigmoid $\sigma(z)$ memiliki kelemahan, i.e. mudah sekali jenuh

Figure 9: Fungsi sigmoid yang jenuh karena asimtotik [Karpathy, 2016]

- Fungsi sigmoid $\sigma(z)$ memiliki kelemahan, i.e. mudah sekali jenuh
- Solusi: inisialisasi **W** dengan nilai yang kecil

Figure 9: Fungsi sigmoid yang jenuh karena asimtotik [Karpathy, 2016]

- Fungsi sigmoid $\sigma(z)$ memiliki kelemahan, i.e. mudah sekali jenuh
- Solusi: inisialisasi W dengan nilai yang kecil
- Diperkenalkan fungsi aktivasi lain, e.g. rectified linear unit (ReLU) g(z) = max(0, z)

Figure 9: Fungsi sigmoid yang jenuh karena asimtotik [Karpathy, 2016]

Beberapa fungsi aktivasi yang dapat digunakan

- $g(z) = \sigma(z) = \frac{1}{1+e^{-z}}$ sigmoid
- $g(z) = tanh(z) g(z) \in [-1, 1]$ (juga cepat jenuh)
- g(z) = z linear unit
- $g(z) = \Theta(z)$ threshold unit
- g(z) = max(0, z) rectified linear unit (ReLU)

• Penggunaan convolutional layer dan max pooling layer. CNN

- Penggunaan convolutional layer dan max pooling layer. CNN
- Pengembangan metode gradient descent, e.g. dengan momentum atau performance-based

- Penggunaan convolutional layer dan max pooling layer. CNN
- Pengembangan metode gradient descent, e.g. dengan momentum atau performance-based
- Penggunaan regularisasi L1 dan L2

- Penggunaan convolutional layer dan max pooling layer. CNN
- Pengembangan metode gradient descent, e.g. dengan momentum atau performance-based
- Penggunaan regularisasi L1 dan L2
- Inisialisasi dengan pralatih 'pretraining', e.g. autoencoder

Aplikasi JST

Contoh implementasi JST dengan keras.io

Aplikasi JST

- MNIST: pendeteksian digit yang ditulis tangan (LeCun dan Bengio, 1995)
- 2. Klasifikasi objek visual (Krizhevsky et al, 2012)
- 3. Speech recognition (Hinton et al, 2012)
- 4. Representasi vektor dari kata-kata (Mikolov et al, 2013)

Aplikasi JST

Figure 10: Prisma yang menggunakan JST jenis CNN (Gatys et al,)

Convolutional NNs (non-examinable)

Figure 11: Penggunaan lapisan *convolutional* dan *pooling* pada LeNet [Murphy, 2012] Fig. 16.14

Salindia ini dipersiapkan dengan sangat dipengaruhi oleh: Chris Williams (2015) dan Steve Renals (2015)

Ikhtisar

- Merupakan penghampir universal sangat mungkin terjadi overfitting
- Dapat terjebak dalam solusi optimum lokal
- Bisa jadi sangat lambat karena metode gradient descent
- Gradient descent dapat "diteruskan" ke layer sebelumnya, dikenal dengan nama backpropagation
- Punya beberapa alternatif fungsi aktivasi selain sigmoid
- Sulit diinterpretasi sangat terbuka untuk dikembangkan

Pertemuan berikutnya

- Nearest neighbours
- Evaluasi dan generalisasi

Referensi

NicerWeb (diakses tanggal 5 Desember 2016)

Neuron

http://www.nicerweb.com/bio1152/ Locked/media/ch48/neuron.html

Warren S. McCulloch dan Walter Pitts (1943)

A logical calculus of the ideas immanent in nervous activity

The bulletin of mathematical biophysics 5(4), 115 – 133.

Michael Nielsen (2016)

Neural Networks and Deep Learning

http://neuralnetworksanddeeplearning.com/

Referensi

G. Cybenko (1988)

Continuous valued neural networks with two hidden layers are sufficient

Center for Supercomputing Research and Development

Sebastian Raschka (2015)

Single-Layer Neural Networks and Gradient Descent

http://sebastianraschka.com/Articles/2015_singlelayer_neurons.html

Christopher Olah (2015)

Understanding LSTM Networks

http://colah.github.io/posts/ 2015-08-Understanding-LSTMs/

Referensi

Andrej Karpathy (2016)

Yes you should understand backprop

https://medium.com/@karpathy/ yes-you-should-understand-backprop-e2f06eab496b# .70lzt4tw2

Kevin P. Murphy (2012)

Machine Learning: a Probabilistic Perspective

MIT Press

Terima kasih