7.6.3 SHEET RESISTANCES

SHEET RESISTANCES - FRONT END							
Layer	MIN	TYP	MAX	TC1	TC2	lmax	
	(Ohm/sq)	(Ohm/sq)	(Ohm/sq)	(%/ K)	(%/K) ²	(mA/um) a	
Standard Process	*	!			*	•	
NWELL or NWELLGO2 under OD	250	500	650				
NWELL under Field Oxide	400	900	1200				
NWELL+NISO under Field Oxide	300	600	900				
NISO under PWELL under Field Oxide	500	800	1100				
PWELL or PWELLGO2 isolated by NISO	1500	2200	2600				
under Field oxide							
P-Substrate before back grind (775um,	140	192.5	245				
15Ohm cm) w/ P- EPI (4um, 15Ohm cm)							
N+ silicided Source/Drain	7	12	17				
P+ silicided Source/Drain	7	15	20				
N+ Polycide on field oxide	7	12	17	0.23	0	1.640	
P+ Polycide on field oxide	7	15	20				
Unsilicided P+ Source/Drain	200	250	300	0.145	9.3E-3		
Unsilicided N+ Source/Drain	90	130	170				
Unsilicided P+ poly	610	710	810	-0.036	6.8E-3	0.154	
Unsilicided N+ poly	100	150	200	0.011	3.3E-3	0.478	
Process Options	•	•	•		•	•	
HIPO resistor	4800	6000	7200				

a. Imax is the maximum current allowed prior to a temperature increase of 5C due to Joule self-heating.

SHEET RESISTANCES - BACK END a							
Layer (from bottom to top)	MIN	TYP	MAX		TCR (%/K)		
M1(for w < 0.16) (w = 0.090 um)	125 125	180 175	235 225	mOhm/sq	0.30		
M1(for w >= 0.16) (w = 0.270 um)	95 90	145 134	195 177	mOhm/sq	0.30		
MiX (for w < 0.16) (w = 0.100 um)	95 90	145 135	195 180	mOhm/sq	0.32		
MiX (for w >= 0.16) (w = 0.300 um)	75 76	115 110	155 143	mOhm/sq	0.32		
MiY	31	41	51	mOhm/sq	0.32		
MiZ	18	23	28	mOhm/sq	0.35		
	<u>19</u>	<u>24</u>	<u>29</u>				
AP	18	24	30	mOhm/sq	0.36		

a.For width dependent modeling of M1 and MiX sheet resistances see §7.6.5.1

7.6.4 CONTACT RESISTANCES

CONTACT RESISTANCES							
Contact type	MIN	TYP	MAX	UNIT			
CO "Kelvin" structures ^a				Ohm			
CO N+ Active	30	70	120	Ohm			
CO P+ Active	40	80	130	Ohm			
CO Polycide N+	30	70	120	Ohm			
CO Polycide P+	40	80	130	Ohm			
VIAiX	0.5 0.01	2.0 1.0	4.0 2.0	Ohm			
VIAiY	0.3	1.0	5.0	Ohm			
VIAiZ	0.1	0.5	1.0	Ohm			
CB 3um x 3um	0.05	0.1	0.25	Ohm			

a.for process monitoring only, "Kelvin Structure" resistance values are not to be used for design.

7.6.5 PARASITIC EXTRACTION - SPECIAL CONSIDERATIONS

7.6.5.1 Modeling of metal sheet resistances

The sheet resistance of Metal lines is modeled dependent on the metal line width:

rsh = $a_0 + a_1 \cdot \log(w) + a_2 \cdot \log(w)^2 + a_3 \cdot \log(w)^3$

<u>rsh</u> <u>sheet resistance [mOhm/sq]</u>

w line width [um]

a₀, a₁, a₂, a₃ model parameter [mOhm/sq]

METAL SHEET RESISTANCE - MODEL PARAMETER							
Metal Corner	a 0	a ₁	a 2	a 3	UNIT		
M1 min	100.61	45.16	25.66	-39.98	mOhm/sq		
M1 typ	147.71	54.82	24.292	-53.185	mOhm/sq		
M1 max	194.81	64.48	22.92	-66.49	mOhm/sq		
MiX min	63.64	-18.79	8.21		mOhm/sq		
MiX typ	91.59	-22.625	21.72		mOhm/sq		
MiX max	119.54	-26.46	35.23		mOhm/sq		
MiY min	31	\ .	· · · · · · · · · · · · · · · · · · ·	<u> </u>	mOhm/sq		
MiY typ	41	·····	<u> </u>	· · · · · · · · · · · · · · · · · · ·	mOhm/sq		
MiY max	51	<u>-</u>	-	-	mOhm/sq		
MiZ min	19	××××××××××××××××××××××××××××××××××××××	××××××××××××××××××××××××××××××××××××××		mOhm/sq		
MiZ typ	24	······	<u> </u>	-	mOhm/sq		
MiZ max	29		-	-	mOhm/sq		

7.6.5.2 Process corners

PARASITIC EXTRACTION - CORNER DEFINITIONS								
Corner	Metal th ^a	Metal w a	VIA th ^a	k1/k2 ^b	VIA res c	Metal res ^c	Temp ^c	
TYP	typ	typ	typ	typ/typ	typ	typ	typ (25C)	
RC min	min	min	max	min/min	min	min	typ (25C)	
RC max	max	max	min	max/max	max	max	typ (25C)	
C min	min	min	max	min/min	min	max	min (-40C)	
C max	max	max	min	max/max	max	min	max (105C)	
X-talk	max	max	max	max/min	min	min	min (-40C)	
Delay	min	min	min	min/max	max	max	max (105C)	

a.for capacitance calculation

7.6.5.3 Sizing / retargetting of isolated features

Isolated narrow metal and poly lines have to be upsized to achieve manufacturability as described in the reference document RADCS # R009441.

b.k1 = intra-layer dielectric, k2 = inter-layer dielectric.

c.for resistance calculation