學號:B02705027 系級: 資管四 姓名:陳信豪

1. 請簡明扼要地闡述你如何抽取模型的輸入特徵 (feature) 答:

我資料抽取的方式是先將前九小時的所有 feature (一維)取出來做成長度為 162 (9 hr * 18 feature)的一維陣列 stat_list

二維或三維數據則是藉由直接將 stat_list 裡頭的數據做平方或立方再跟原本的 stat list 合併

the_stat_list = stat_list
stat_list = stat_list + [x**2 for x in the_stat_list]

另外我有設三個 Boolean 陣列 feature_Take 對應 18 個天氣指標 time_Take 對應前九小時到前一小時 param_Take 對應全部 162 個 feature

如果只取前7小時的PM2.5:

feature Take = [

False, Fa

time_Take = [False, False, True, True, True, True, True, True, True]

param_Take = np.repeat(feature_Take, 9) * np.tile(time_Take, 18)

x_Take = train_X[:, param_Take]

train_X 是 stat_list 的總集合,其 train_X.shape[1] 是 162

#x_Take 是 feature 塞選後的要訓練的資料集合,其x_Take.shape[1] 是7

2.請作圖比較不同訓練資料量對於 PM2.5 預測準確率的影響

答:

(作圖:hw1_q2.py)

取前 9 小時 PM2.5 一維作為 features

切 50% 總資料作為 Validation Set

再從剩下的 50% 總資料中取 10%、20%、30% ... 100% 的資料作為訓練用訓練出模型,觀察並紀錄 Validation Set 的 RMSE

結論是資料量與 Valid RMSE 呈負相關

也就是資料量越多,模型預測 PM2.5 的準確率愈高。

訓練資料比例	訓練資料量	Valid RMSE
10%	274	5.80577499154
20%	549	5.75516028391
30%	823	5.74218464446
40%	1098	5.71816274647
50%	1373	5.70927341202
60%	1647	5.73849114808
70%	1922	5.70737649023
80%	2196	5.69982396921
90%	2471	5.70800780233
100%	2746	5.70426224388

3. 請比較不同複雜度的模型對於 PM2.5 預測準確率的影響 答:

取前 9 小時 PM2.5 的資料
分別配對一維、二維和三維作為 features
並切 50% 總資料作為 Validation Set
以下為各組合(複雜度)訓練出來後的 RMSE
結論是模型複雜度並不是越複雜越好
我們可以看出在此情況下,一維就已有不錯的效果

	Valid RMSE	
複雜度	max_iteration = 1000	max_iteration = 3000
一維	5.75648	5.70759
二維	11.44504	10.46105
三維	17.61086	17.54742
一維 + 二維	6.90109	6.53077
二維 + 三維	51.00183	10.76510
一維 + 三維	10.04785	9.44541
一維 + 二維 + 三維	9.05310	8.32828

4. 請討論正規化(regularization)對於 PM2.5 預測準確率的影響

答:

(作圖:hw1_q4.py)

取前 9 小時 PM2.5 一維作為 features

切 50% 總資料作為 Validation Set

另外 50% 通通用來做訓練

分別以 lambda = [0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10] 來正規化

將原本的 loss function 加上 lambda * $\Sigma(W^2)$

訓練出模型並觀察並紀錄 Validation Set 的 RMSE

結論是 lambda 有助於降低 Valid RMSE, 其值通常不必太高

在這邊的情況是 lambda 約等於 0.05 時最合適

lambda	Valid RMSE
0	5.75661445687
0.001	5.75658710753
0.005	5.75648372625
0.01	5.75636803907
0.05	5.75598471407
0.1	5.75686352377
0.5	5.81837150599
1	6.00503199987
5	8.75156959083
10	14.9610170793

(左圖為全覽,右圖為放大 x 軸 0~0.1)

5. 在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 \mathbf{x}^n ,其標註(label)為一存量 \mathbf{y}^n ,模型參數為一向量 \mathbf{w} (此處忽略偏權值 \mathbf{b}),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n - w \cdot x^n)^2$ 。若將所有訓練資料的特徵值以矩陣 $\mathbf{X} = [\mathbf{x}^1 \, \mathbf{x}^2 \, ... \, \mathbf{x}^N]$ 表示,所有訓練資料的標註以向量 $\mathbf{y} = [\mathbf{y}^1 \, \mathbf{y}^2 \, ... \, \mathbf{y}^N]^\mathsf{T}$ 表示,請以 \mathbf{X} 和 \mathbf{y} 表示可以最小化損失函數的向量 \mathbf{w} 。 答:

假設有 P 個 feature

w 維度:1*P

xⁿ 維度:1*P

y 維度:N*1

X 維度:N*P

$$W = y^T X(X^T X)^{-1}$$