LABORATOR #1

- **EX#1** (Paradoxul lui Bertrand pentru cercul unitate) Fie două cercuri concentrice de rază R=1, respectiv r=R/2. Vrem să estimăm numeric (frecvenționist) probabilitatea p ca o coardă generată aleator pe cercul de rază R să intersecteze cercul de rază r. Creați un fișier în Python® prin care:
 - (a) să se genereze aleator o coardă pe cercul de rază R prin generarea aleatoare uniformă a capetelor coardei P_1 , P_2 pe cercul de rază R (i.e. $P_1 = (R\cos(\theta_1), R\sin(\theta_1)), P_2 = (R\cos(\theta_2), R\sin(\theta_2))$, unde unghiurile θ_1 , θ_2 sunt generate aleator uniform în $[0, 2\pi)$);
 - (b) să se genereze aleator o coardă pe cercul de rază R prin generarea aleatoare a mijlocului coardei M astfel: $M = (\tilde{r}\cos\theta, \tilde{r}\sin\theta)$, unde raza \tilde{r} este generată aleator uniform în (0, R), iar unghiul θ este generat aleator uniform în $[0, 2\pi)$;
 - (c) să se genereze aleator o coardă pe cercul de rază R prin generarea aleatoare uniformă în discul de rază R a mijlocului coardei M (i.e. $M = (\sqrt{\tilde{r}}\cos\theta, \sqrt{\tilde{r}}\sin\theta)$, unde \tilde{r} este generat aleator uniform în $(0, R^2)$, iar unghiul θ este generat aleator uniform în $[0, 2\pi)$;
 - (d) să se estimeze numeric (frecvenţionist) probabilitatea p pentru fiecare dintre cele trei metode de generare aleatoare a coardei de la (a), (b), respectiv (c);
 - (e) să se reprezinte grafic într-un sistem xOy coardele generate la (d) împreună cu mijloacele lor, pentru fiecare dintre cele trei metode de generare de la (a), (b), respectiv (c).

Indicaţii Python®: numpy, numpy.random, matplotlib.pyplot