

MASS: Empowering Wi-Fi Human Sensing with Metasurface-Assisted Sample Synthesis

Jiaming Gu¹, Shaonan Chen², Yimiao Sun¹, Yadong Xie¹, Rui Xi³, Qiang Cheng², Yuan He¹

¹ Tsinghua University

² Southeast University

³ University of Electronic Science and Technology of China

Background

High-performance models demand rich datasets

Insufficient data may lead to critical failures:

- Poor generalization
- Cross-domain failure

Yet, acquiring such datasets is costprohibitive

Labor cost

Hours of repetitive human actions

Re-collection for every new environment

Ethical cost

Significant ethical concerns in health monitoring

Background

Existing methods

How can we synthesize samples that are both physically-realistic AND environment-specific, without requiring massive initial data?

[1] This picture is taken from Huang, Teng, et al. "One Snapshot is All You Need: A Generalized Method for mmWave Signal Generation."

Our approach: metasurface-assisted sample synthesis

> Replace the human with a programmable "actor"

> One template, synthesize everywhere

Key issues

> Issue I: theory of the MASS

 $\boldsymbol{H}_n^{(1_r)}$

$$H_{n} = H_{n}^{(s)} + H_{n}^{(1r)} \Gamma_{n}^{(h)} H_{n}^{(1i)} + H_{n}^{(2r)} \Gamma_{n}^{(h)} H_{n}^{(2i)} + \dots$$

CSI

- Static component
- Compound of the multipath and the human's impact

To synthesize a sensing sample, we simply need to make the metasurface's impact mimic the human's:

If
$$\Gamma_n^{(m)} \approx \Gamma_n^{(h)}$$
, then $H_n' \approx H_n$.

 $oldsymbol{H}_n^{(1_i)}$

 $oldsymbol{H}_n^{(2_i)}$

 $\boldsymbol{H}_n^{(2_r)}$

Key issues

➤ Issue II: activity template collection

- Multipath effects are minimized.
- The echo signal is collected and bandpass filtered to be the activity template.

➤ Issue III: metasurface design and control

- Metasurface
 - Continuous phase modulation capability.
 - 16 × 8 atoms
- Phase prioritized modulation
 - Only $\angle \Gamma_n^{(m)} = \angle \Gamma_n^{(h)}$ is ensured

Fidelity of synthesized samples

Comparison at the Micro-Doppler signatures

(a) The Human-Based Sample

(b) The Synthetic Sample

Experimental setup

Environment

> End-to-end evaluation

- Metric: activity recognition accuracy
- Classifier: LeNet
- Preprocessing: CFO + static component removal

Dataset

- 7 daily activities (Walk, Run, Sit, etc.)
- 140 activity templates
- 659 human-based samples
- 1520 synthesized samples

Experimental result

Significant accuracy improvement with MASS

- Setup
 - Augment training set with different methods, and test on a common independent set of real samples.
 - Use k-fold cross-validation for reliability.
- Methods compared
 - MASS: synthesizing samples from our method
 - NSY: duplicating samples by adding Gaussian noise
- Significant accuracy boost up to 18% (from 73% to 91% at 350% augmentation)
- Clear superiority over NSY (9% higher)
- Higher stability (smaller error bars compared to NSY)

MASS captures essential motion features, offering superior training benefits over noise perturbation.

Experimental result

> Cross-domain sensing accuracy improvement with MASS

- Ref I (Ideal but unrealistic upper-bound)
 Train with samples from both the destination and the source domain.
- Ref II (Realistic Baseline)
 Train with samples from the source domain only.

- MASS outperforms the Realistic Baseline
 - Boosts accuracy by 22% over the real-world baseline (Re
- MASS closes the cross-domain gap
 - MASS (83%) reaches the level of the ideal upper-bound (Ref I at 81%).

MASS successfully captures domain-specific multipath features, validating it as a powerful solution for cross-domain sensing.

Future directions

> Several directions that address the limitations and unlock its full potential

- Our initial evaluation covers a limited set of activities.
- => Richer activities & more sensing domains

Human-free template collection

- Templates still rely on manual collection.
- => Fully automated, human-free pipeline.

Next-Gen Metasurface

- Phase-only control, relativelyhigh cost
- => More control capabilities & low-cost deployment.

Conclusion

- Data scarcity remains a critical bottleneck for practical Wi-Fi sensing.
- Metasurface offers a new, powerful paradigm.
 - It synthesizes samples that capture both motion dynamics and environment-specific features, offering a novel solution to the data scarcity problem.
- We contribute MASS, a complete framework to realize this paradigm.
- Our results validate the feasibility of MASS.
 - MASS boosts in-domain accuracy 18%.
 - More crucially, MASS enhances cross-domain accuracy by 22%, nearly matching the ideal upper-bound.

By fundamentally changing how data is acquired, MASS enables the creation of large-scale, diverse datasets at a significantly lower cost.

Thank You!

Please find more details in:

http://tns.thss.tsinghua.edu.cn/sun/