- 1 (П. Волгин) В файле <u>17-7.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать значения от 0 до 300 включительно. Рассматривается множество элементов последовательности, которые удовлетворяют следующему условию: число в шестнадцатеричной записи оканчивается на 9, но не оканчивается на A9. Найдите количество таких чисел и максимальное из них.
- 2 (М. Шагитов) В файле <u>17-297.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000. Найдите все пары элементов последовательности, в которых ровно одно число больше своей последней цифры в 51 раз, а сумма чисел пары меньше, чем максимальный элемент последовательности кратный 51. В ответе запишите количество найденных пар, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- 3 В файле 17-1.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество троек, в которых хотя бы два из трёх элементов меньше, чем среднее арифметическое всех чисел в файле, и десятичная запись хотя бы одного из трёх элементов содержит цифру 6. В ответе запишите два числа: сначала количество найденных троек, а затем максимальную сумму элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.
- 4 (И. Женецкий) В файле <u>17-1.txt</u> содержится последовательность целых чисел. Элементы последовательности целые числа в диапазоне от –10 000 до 10 000. Рассматривается множество пар элементов последовательности, в которых оба числа нечётны и среднее арифметическое чисел пары не меньше, чем минимальное положительное число в последовательности, кратное 15. Найдите количество таких пар чисел и минимальное среднее арифметическое пары, удовлетворяющей условию. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- **5** В файле <u>17-243.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых ровно один из двух элементов больше, чем сумма цифр всех чисел в файле, делящихся на 61, а десятичная запись другого оканчивается на 33. В ответе запишите два числа: сначала количество найденных пар, а затем минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- 6 В файле <u>17-243.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых оба элемента меньше, чем наибольшее из всех чисел в файле, делящихся на 119. В ответе запишите два числа: сначала количество найденных пар, а затем максимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- 7 (В. Шубинкин) В файле <u>17-1.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество локальных максимумов в этой последовательности, затем наименьшее расстояние между двумя локальными максимумами. Под локальным максимумом подразумевается элемент последовательности, больший двух соседних элементов. Под расстоянием между элементами последовательности в данной задаче подразумевается разность номеров позиций этих элементов. Гарантируется наличие хотя бы двух локальных максимумов. Например, в последовательности 10; 4; 7; -2; -10; 12; 3; 5; -2 три локальных максимума (7, 12 и 5), поэтому правильным ответом для данного примера будет пара чисел 3 и 2.
- 8 (Е. Джобс) В файле 17-271.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от -10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество пар элементов, сумма последних цифр которых равна 7, затем максимальную сумму элементов таких из найденных пар, в которых оба значения меньше среднего арифметического всех элементов обрабатываемой последовательности. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.
- Например, рассмотрим последовательность из шести элементов: 12; 18; 2; -15; 11; 16. Подходит две пары: (2; -15), (11; 16). Среднее арифметическое всех элементов последовательности равно 9. Следовательно искомая сумма равна 2 + (-15) = -13. Ответ: 2 13.
- **9** В файле <u>17-243.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Определите количество пар чисел, в которых хотя бы один из двух элементов больше, чем наибольшее из всех чисел в файле, делящихся на 151, и в

шестнадцатеричной записи хотя бы одного элемента из двух содержится цифра 3. В ответе запишите два числа: сначала количество найденных пар, а затем — минимальную сумму элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.

- 10 В файле 17-1.txt содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите количество троек, в которых хотя бы один из трёх элементов меньше, чем среднее арифметическое всех чисел в файле, и десятичная запись хотя бы одного из трёх элементов содержит цифру 8. В ответе запишите два числа: сначала количество найденных троек, а затем максимальную сумму элементов таких троек. В данной задаче под тройкой подразумевается три идущих подряд элемента последовательности.
- 11 (А. Кабанов) Квадрат разлинован на $N \times N$ клеток (1 < N < 20). Исполнитель Буквоед может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Буквоед перемещается в соседнюю правую клетку, по команде вниз в соседнюю нижнюю. При попытке пересечь границы квадрата, обозначенные жирными линиями, Буквоед разрушается. В каждой клетке квадрата записано число от 10 до 99 или латинская буква Р. Посетив клетку, Буквоед платит за её посещение, плата равна значению числа в клетке; это также относится к начальной и конечной точке маршрута. За посещение клетки Р плата не взимается. Определите минимальную и максимальную плату, которую заплатит Буквоед, пройдя из левой верхней клетки в правую нижнюю, при этом маршрут должен проходить через две клетки Р. В ответе укажите два числа сначала минимальную, затем максимальную плату.

Исходные данные для Буквоеда записаны в файле <u>18-119.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата.

12 Квадрат разлинован на N×N клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из трёх команд: вправо, вверх или вправо-вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх − в соседнюю верхнюю, а по команде вправо-вверх − на одну клетку вправо и вверх по диагонали. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата записана величина вознаграждения от 1 до 100. Попав в клетку после хода вправо или вверх, Робот получает указанное в ней вознаграждение, а если он попал в клетку после выполнения команды вправо-вверх, вознаграждение удваивается. Это также относится к начальной и конечной клетке маршрута Робота. Определите максимальное и минимальное вознаграждение, которое может получить Робот, пройдя из левой нижней клетки в правую верхнюю. В ответе укажите два числа − сначала максимальное вознаграждение, затем минимальное.

Исходные данные для Робота записаны в файле <u>18-95.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата.

13 (Д. Муфаззалов) Квадрат разлинован на $N \times N$ клеток (1 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: влево или вверх. При попытке пересечь границы квадрата Робот разрушается. В каждой клетке квадрата указано одно из двух чисел: 0 или 1. Если в клетке записано число 1, Робот может попасть в эту клетку, а если в клетке записано число 0, то робот не может попасть в такую клетку. Определите количество способов, которыми Робот может попасть из правой нижней клетки в левую верхнюю. В ответе укажите искомое число.

Исходные данные для Робота записаны в файле <u>18-91.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата.

14 Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Исходные данные записаны в файле 18-5.x в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

15 (А. Рогов) Квадрат разлинован на $N \times N$ клеток (1 < N < 30). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из трех команд: **вправо**, **вниз** или **вправо_вниз**. По команде вправо Робот перемещается в соседнюю правую клетку; по команде вниз — в соседнюю нижнюю, по команде вправо_вниз робот перемещается одновременно вправо на одну клетку и вниз на одну клетку, т.е. на одну

клетку по диагонали. Исключением являются клетки, отмеченные желтым цветом. Находясь в них, робот **не может** выполнять команду **вправо**.

Перед запуском Робота в каждой клетке квадрата указан бонус, который Робот забирает после посещения клетки. Размер бонуса в каждой клетке – это натуральное число, не превышающее 100. Это правило относится к начальной и конечной клеткам маршрута Робота.

Определите минимальную и максимальную суммы бонусов, которые может собрать Робот, перемещаясь из левой верхней клетки квадрата в его правую нижнюю клетку. В ответе укажите два числа: сначала минимальную сумму, затем максимальную.

Исходные данные для Робота записаны в файле <u>18-132.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата. Пример входных данных:

1	8	8	4
10	1	1	3
1	3	12	2
2	3	5	6

Для указанных входных данных ответом является пара чисел: 16 41.

16 Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Исходные данные записаны в файле 18-1.x в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

17 Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз – в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Исходные данные записаны в файле 18-9.x в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой верхней клетки в правую нижнюю. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

18 (Е. Джобс) Квадрат разлинован на N×N клеток (3 < N < 15). В каждой клетке записано целое число. На поле работает исполнитель Контур, который суммирует все клетки вокруг клетки, в которой находится. Для клеток, находящихся на краю квадрата, находится сумма значений клеток, которые лежат внутри квадрата. Например, для ячейки А1 нужно найти сумму В1, А2, В2. Необходимо найти минимальный и максимальный результаты работы исполнителя Контур в заданном поле.

Исходные данные записаны в файле 18-3.x в виде электронной таблице размером N×N, каждая ячейка которой соответствует клетке квадрата. В ответе запишите два числа: минимальный и максимальный результаты работы исполнителя Контур в заданном поле.

19 Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается. Перед каждым запуском Робота в каждой клетке квадрата лежит монета достоинством от 1 до 100. Посетив клетку, Робот забирает монету с собой; это также относится к начальной и конечной клетке маршрута Робота.

Исходные данные записаны в файле 18-0.x в виде электронной таблице размером N \times N, каждая ячейка которой соответствует клетке квадрата. Определите максимальную и минимальную денежную сумму, которую может собрать Робот, пройдя из левой НИЖНЕЙ клетки в правую ВЕРХНЮЮ. В ответе укажите два числа — сначала максимальную сумму, затем минимальную.

20 Квадрат разлинован на $N \times N$ клеток (1 < N < 20), в каждой клетке записано целое число. В правом верхнем

углу квадрата стоит Робот. За один ход Робот может переместиться в пределах квадрата на одну клетку влево или на одну клетку вниз. Выходить за пределы квадрата робот не может. При этом ведётся подсчёт суммы по следующим правилам: число в очередной клетке, через которую проходит робот, включается в сумму, если оно больше числа в предыдущей клетке на пути робота. Если число в очередной клетке не больше числа в предыдущей, сумма не изменяется. Число в начальной клетке всегда включается в сумму. Определите минимальную и максимальную сумму, которую может получить Робот при перемещении из правого верхнего угла в левый нижний.

Исходные данные для Робота записаны в файле <u>18-109.xls</u> в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата. В ответе запишите сначала максимальную сумму, затем — минимальную.

	•
1	5 57
2	6344 9740
3	3617 8416
4	1193 60
5	41 5182
6	9752 19689
7	33162
8	792 -587
9	15 12582
10	6115 17979
11	1553 2545
12	738 349
13	8028
14	1350 686
15	702 2869
16	1236 717
17	1309 539
18	137 650
19	1133 522
20	1524 598
17 18 19	1309 539 137 650 1133 522