DIGITAL LOGIC AND MICROPROCESSOR

Registration Number:	18BIT0272
Name:	PRIYAL BHARDWAJ
Slot:	L7+L8
Experiment Name:	Verification of GATES

OR GATE

Truth Table:

A	В	Output/C
0	0	0
0	1	1
1	0	1
1	1	1

A+B=C

NOR GATE

Truth Table:

A	В	Output/C
0	0	1
0	1	0
1	0	0
1	1	0

$$\overline{(A+B)}=C$$

AND GATE

Truth Table:

A	В	Output/C
0	0	0
0	1	0
1	0	0
1	1	1

AB=C

NAND GATE

Truth Table:

A	В	Output/C
0	0	1
0	1	1
1	0	1
1	1	0

 $\overline{A}\overline{B}=C$

NOT GATE

Truth Table:

A	Ā
0	1
1	0

$$A = \overline{A}$$

XOR GATE

Truth Table:

A	В	Output/C
0	0	0
0	1	1
1	0	1
1	1	0

 $\overline{A}B+A\overline{B}=C$

XNOR GATE

Truth Table:

A	В	Output/C
0	0	1
0	1	0
1	0	0
1	1	1

 $AB+\overline{AB}=C$

OR GATE:

NAND GATE:

EX-OR GATE:

Experiment Name: Impleme

Implementation of Boolean Expressions

- 1. Implement the following Boolean Expressions using Basic Logic Gates
 - a. F = AB + C'D

Truth Table:

Α	В	С	D	C'	AB	C'D	F
0	0	0	0	1	0	0	0
0	0	0	1	1	0	1	1
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	1
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	1	1
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	1
1	1	1	0	0	1	0	1
1	1	1	1	0	1	0	1

HARDWARE:

EXI	t. No							P		o. 4
	4mple	ment	ation o	Boo	lean	expr	essions			
(1)	4mple	ment	the foll	eriwa	boo	olean	expressi	ons usi	ng l	ogic gate
(a)		AB +								
-	A	В		D	Ē	AB	Q5	F		
	0	0	0	-0	1	0	0	0		
	0	0	0	1	1	0	1	1		
	0	0	11	٥	0	0	0	0		
	0	8	- 1	1	0	0	0	0		
	0	1	0	0	١	0	0	0		
	0	1	0	1	1	0	1	1		
	0	1	1	0	ð	٥	0	0		
	0	1	1	1	0	٥	D	0		
	18	0	٥	0	1	0	0	0		
	1	0	0	1	1	0	1	1		
	1	0	1	0	0	0	0	٥		
	Ve .	0	(- 1	0	0	0	0		
	1	l	97	0	l	- 1	0	- 1		
110	1	1	0	1	1	U	1	1		
	1	X	1	0	0	1	0	1		
	1/	1	1	1	0	1	0_			
	P									
							Teacher's Si	gnature :		

				<u>r</u>	<u> Γruth T</u>	able:				
Α	В	С	D	E	F	C'	E'	ABC'	DE'F	F
0	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	1	0	1	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0
0	0	0	1	0	0	1	1	0	0	0
0	0	0	1	0	1	1	1	0	1	1
0	0	0	1	1	0	1	0	0	0	0
0	0	0	1	1	1	1	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0
0	0	1	0	0	1	0	1	0	0	1
0	0	1	0	1	0	0	0	0	0	0
0	0	1	0	1	1	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0
0	0	1	1	0	1	0	1	0	1	1
0	0	1	1	1	0	0	0	0	0	0
0	0	1	1	1	1	0	0	0	0	0
0	1	0	0	0	0	1	1	0	0	0
0	1	0	0	0	1	1	1	0	0	0
0	1	0	0	1	0	1	0	0	0	0
0	1	0	0	1	1	1	0	0	0	0
0	1	0	1	0	0	1	1	0	0	0
0	1	0	1	0	1	1	1	0	1	1
0	1	0	1	1	0	1	0	0	0	0
0	1	0	1	1	1	1	0	0	0	0
0	1	1	0	0	0	0	1	0	0	0
0	1	1	0	0	1	0	1	0	0	0
0	1	1	0	1	0	0	0	0	0	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1	0	0	0
0	1	1	1	0	1	0	1	0	1	1
0	1	1	1	1	0	0	0	0	0	0
0	1	1	1	1	1	0	0	0	0	0
1	0	0	0	0	0	1	1	0	0	0
1	0	0	0	0	1	1	1	0	0	0
1	0	0	0	1	0	1	0	0	0	0
1	0	0	0	1	1	1	0	0	0	0
1	0	0	1	0	0	1	1	0	0	0
-				0		1	1			1
1	0	0	1	1	0	1	0	0	0	0
1	0	1	0	0	0	0	1	0	0	0
	0			0	1					0
1	U	1	0	U	T	0	1	0	0	U

1	0	1	0	1	0	0	0	0	0	0
1	0	1	0	1	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0
1	0	1	1	0	1	0	1	0	1	1
1	0	1	1	1	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0	0
1	1	0	0	0	0	1	1	1	0	0
1	1	0	0	0	1	1	1	1	0	0
1	1	0	0	1	0	1	0	1	0	0
1	1	0	0	1	1	1	0	1	0	0
1	1	0	1	0	0	1	1	1	0	0
1	1	0	1	0	1	1	1	1	1	1
1	1	0	1	1	0	1	0	1	0	0
1	1	0	1	1	1	1	0	1	0	0
1	1	1	0	0	0	0	1	0	0	0
1	1	1	0	0	1	0	1	0	0	0
1	1	1	0	1	0	0	0	0	0	0
1	1	1	0	1	1	0	0	0	0	0
1	1	1	1	0	0	0	1	0	0	0
1	1	1	1	0	1	0	1	0	1	1
1	1	1	1	1	0	0	0	0	0	0
1	1	1	1	1	1	0	0	0	0	0

2. Implement the NAND Equivalent circuit for the Boolean Expression

i.
$$F = AB + BC' + C'$$

|--|

Δ.	ь		
A	В	L L	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

ii. F=(ABC)(A+B+C)

Truth Table:

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table:

Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Experiment Name: Design of Combinational Circuits

- 1. A manufacturing plant needs to have a horn sound to signal quitting time. The horn should be activated when either of the following conditions is met:
 - a. It's after 5 o 'clock and all machines are shut down.
 - b. Its Friday, the production run for the day is complete, and all machines are shut down.

Design a logic circuit that will control the horn. (Hint: use four logic input variables to represent the various conditions, for example, input A will be High only when the time of day is 5 o'clock or later).

Truth Table:

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

2. A bank vault has three locks with a different key for each lock. Each key is owned by a different person. In order to open the door, at least two people must insert their keys into the assigned locks. The signals A, B, and C are 1 if there is a key inserted into lock 1, 2, or 3, respectively. Write an equation for the variable Z, which is 1 if the door should open. Implement the same using basic gates.

<u>Truth Table:</u>				
Α	В	С	Z	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Expression:

Z(A,B,C)=m(3,5,6,7)

Z=AB+BC+AC

<u>3.</u> Let variables T represent being tall, H being heavy and F being fast. Let's consider anyone who is not tall (T') as short, not heavy as light and not fast as slow. Write a Boolean equation to represent the following:

You may ride (represented by R) a particular amusement park ride only if you are either tall and light, or short and heavy and fast.

<u>Truth Table:</u>				
Т	Н	F	R	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	0	

$$R(T,H,F)=m(3,4,5)$$

HARDWARE:

E	pt, No	Page No
=	T = Tall 7	
9.3		
_	H = Heavy 3 input	
_	F = Fast J	
-	R = Allowed & 1 output on ride	
_	ory stage	
	THFR	
	0 0 0 0	
	0 0 1 0	
	0 1 60 0	
	0 1 1 1	
	1 0 0 1	
	1 0 1 1	
	1 1 0 0	
	1 1 1 0	
	R(T, 4, F) = & m(3,4,5)	
		T 100 01 11 10
	R= TH + THE	0 1
	1	
	/x -	
	8	
	hiv	
		Teacher's Signature ;

