6. Operační systém a plánování procesů

- Charakteristika OS
- Typy jader OS
- Proces vs. vlákno
 - o Charakteristika
 - o PCB vs. TCB
- Přepínání kontextu
- Plánovače OS
 - o Preemptivní vs. nepreemptivní plánování
- Plánovací algoritmy
 - o FCFS
 - o SJF
 - o SRTF
 - o RR
 - o OPS
 - o MFQS

Charakteristika OS

- Základní programové vybavení PC
 - Kolekce programů tvořící spojující vrstvu mezi HW a uživatelskými programy
- Př startu je zaveden do OP, kde zůstane až do vypnutí
- Zajišťuje abstrakci pro různorodý HW
- Zajišťuje správu
 - o Procesů
 - o Paměti
 - o Souborového systému
 - o Periferií
 - o UI
- Shell=terminál
- Runtime library = knihovna s příkazy určené pro uživatele pro komunikaci s kernelem

Jádro OS

- Říká se mo CORE nebo Kernel
- Je to nejnižší, nejdůležitější a nejzákladnější část OS
- Systémové volání
 - o Využívá systém nebo uživatelské programy pro služby jádra
 - Speciální instrukce OS
 - o Kontrolovaný přechod do režimu jádra
- Volání jádra
 - o Kernel interface → přímé volání spec Instrukce
 - o Library Interface → Využití systémových knihoven → fopen, fwrite

- Služby jádra
 - o Open/close
 - o Read/write
 - o Kill[PID]
 - o Fork vytvoření potomka → duplikace
 - o Exec
 - o Exit

Typy jader

Monolitické

- Modulární
 - o MS-DOS
 - o WIN95/98, MAC OS do verze 8.6
- Nemodulární
 - o Linux, Net BSD, FreeBSD
- Komplexní jádro
 - Privilegovaný režim
 - Všechny subsystémy implementující služby jsou tak těsně provázány → vysoká efektivita
 - Dynamické nahrávání modulů
 - Vylepšení koncepce
 - Možnost nahrání za běhu bez nutnosti restartu
 - Zavedeny do adresního prostoru jádra
 - Jisté zpoždění

Mikrojádro

- Obsahuje jen základní služby
 - Správa procesů a pamětí
 - Meziprocesní komunikace
- Ostatní služby v podobě serverů běží v uživatelském režimu
 - o Správa souborového systému
 - Ovladače ařízení
 - o Rozšířená správa paměti
 - Síťové protokoly
- Jednodužší na programování abezpečnější
 - o Chyba v subsystému neznamená pád systému
- Vysoká režie
 - Volání služeb jádra je nahrazeno IPC komunikací mezi aplikačními a systémovými procesy
 - Vyžší počet přechodů při změně kontextu
 - Přechod mezi privilegovaným a uživ. Režimem
 - o Celkem 2 generace vývoje
 - o Jako celek se neprosadilo

Hybridní

- Kombinace vlastností/výhod monolitického a mikrojádra
- Mikrojádro doplněno o příslušné služby v podobě serverů

- o Snížení režie
- Souborový systém, síťový protokol
- Dynamické přidávání modulů
- Většina dnešních OS

Micro jádro je rozšířeno o kód, který by mohlo běžel ví podobě serveru v uživatelském režimu, ale za účelem zmenšení režie IPC je těsněji provázán a běží v privilegovaném režimu v podobě serveru

Exo

- Experimentální, poskytující velmi nízké rozhraní, zaměřené hlavně na bezpečné sdílení prostředků
- Menší než mikro
- Využíváno v MIT

Nano

- Menší než mikro
- Služby řešeny jako ovladače, umístěny mimo jádro

Proces x vlákno

- Proces běžící program
- Vlákno →Odlehčený proces, nemůže běžet samostatně

Proces

- Po dobu jeho běhu je umístěn v OP
- V OS je definován (PCB)
 - o PID
 - o Programem, kterým je řízen
 - Obsahem registrů
 - EIP→Čítač registrů
 - ESP→Adresa zásobníku
 - Záloha registrů z CPU, protože ty budou přepsány jiným procesem
 - Daty (konstanty, proměnné)
 - Limit paměti
 - o Použitím dalších zdrojů OS a vazbou na jeho objekty
 - UID, GID, signály, soubory
 - Seznam otevřených souborů
- Proces správa
 - o Process management
 - Context switch
 - Dispetcher
 - Memory management
 - o IPC komunikace
 - Inter process Communication
- Plánování

- o Přidělován strojový čas
 - Doba využití CPU než dojde k přepnutí kontextu (Interrupt ho pošle na WAIT nebo READY)
- o Jeden proces může v OS běžet víckrát
 - Třeba chrome, souborový systém
 - Respektive jeden program má spuštěných více procesů (jede paralelně víckrát)

Vlákno

- Odlehčený proces
 - o Thread
 - Sám nemůže existovat
- TCB
 - o TID
 - o Ukazatel na proces
 - Ukazatel na aktuální instrukci vlákna
 - Stav vlákna
 - o registry
- Snížení režie
 - o Méně časté přepínání kontextu
- Společný adresní prostor (paměťový)
 - o Menší nároky na paměť
 - Stejná práva v rámci procesu
 - Jednodužší předávání informací
- Podléhají plánování obdobně jako procesy
- V OS bez podpory vláken 1 vlákno = 1 proces
- Podpora a použití vláken urychluje samotný běh procesu
- Vlákno je možné použít na uživatelské úrovni nebo na úrovni jádra OS
 - Některé OS podporují obě
 - Windows 2000/XP, Free BSD
- Výhody
 - o Urychlení výpočtů a odezvy celkového běhu programu
 - o Efektivní využití systému
 - Jedno vlákno pracuje s diskem zatímco druhé čeká na data z Cache
 - o Přehlednější strukturalizace programu
- Nevýhody
 - o Složité sledování toku programu
 - o Omezení počtu vytvoření vláken
 - Synchronizace

Vlákno na uživatelské úrovni

- OS o nich neví
 - Nezávislé na OS
 - o Plně v režii programátora
- Pro přepínání není nutno volat Jádro OS
- Lze použít i v O, který neobsahuje žádnou podporu vláken
 - Nutno použít Thread library
- Výhody
 - o Ryhlé přepínání
 - Rychlá tvorba a jejich zánik
 - Uživatelský proces nad nimi má plnou kontrolu
- Nevýhody
 - o Jádro OS o nich neví, přiděluje čas celému procesu
 - Dva vlákna stejného procesu nemohou běžet současně
 - Při volání služby blokuje všechny ostatní vlákna

Vlákno na úrovni OS

- O vše se stará OS
 - o Plánování, přepínání, rušení
- Jeden proces může využít více CPU
- Volání služby neblokuje ostatní vlákna procesu
- Náročnější na správu
- Často nespravedlivé plánování
 - Strojový čas je přidělován vláknům

Vlákna na uživatelské úrovni

Vlákna na úrovni jádra OS

Přepínání kontextu

Přepínání kontextu je operace, při kterém operační systém ukládá stav běžícího procesu nebo vlákna a načítá stav jiného procesu nebo vlákna, aby mohl pokračovat ve svém provádění.

Plánovače OS → Preemtivní x Nepreemptivní

- Preemtivní→OS může přerušit úlohu a na CPU dát jinou
- Nepreemtivní > Běží dokud úloha neskončí, nebo se sama nepřeruší(Hrozí zaseknutí)

Plánovací Algoritmy

- FCFS
 - o Fronta, First Came First Served
- SJF
 - o Shortest Job First
 - Nepreemtivní
 - Vybere se nejkratší
- SRTF
 - o Shortest Remainnig time first
 - Funguje jako SJF, ale je preemtivní
 - Přijde kratší úloha tak tam dá kratší
- RR
- o Round Robin
- Dokolečka, všichni stejné časové kvantum
- PS
- o Priority Sheduling
- o Podle jejich priority
- MFQS
 - o Multilevel Feedback Queue Scheduling
 - Procesy rozděleny do několik fornt podle priority, každá fronta má svůj RR s časovým kvantem
 - o Procesy se můžou přesouvat mezi frontami na základě jejich chování
 - o Nižší fronty mohou jet až jsou vyžší prázdné