Macroeconomia Dinâmica

A economia descentralizada: a dinâmica do consumo

João Ricardo Costa Filho

Modelos

Sobre modelos

Good ideas shine far more brightly when supported by good models

Avinash Dixit ("The making of Economic Policy", 1996, p. 17)

All models are wrong.

George Box

Models are to be used, not believed. **Henri Theil** ("Principles of Econometrics", 1971, p. vi)

A economia descentralizada

Mercados e agentes

No modelo "a la" Ramsey (1928), Cass (1965) e Koopmans (1965), nós trabalhamos com apenas um agente realizando todas as decisões: de consumo, de investimento, lazer, trabalho, investimento e acúmulo de capital, o chamado planejador central (Wickens 2012).

Mercados e agentes

- No modelo "a la" Ramsey (1928), Cass (1965) e Koopmans (1965), nós trabalhamos com apenas um agente realizando todas as decisões: de consumo, de investimento, lazer, trabalho, investimento e acúmulo de capital, o chamado planejador central (Wickens 2012).
- Alternativa: introduzir famílias e empresas que interagem em mercados.
 - Famílias: tomam as decisões de consumo, são donas das empresas, ofertam trabalho e poupam em ativos financeiros.
 - Empresas: produzem, investem, demandam trabalho, tomam emprestado a poupança das famílias, pagam salários e distribuem lucros.

Mercados e agentes

- No modelo "a la" Ramsey (1928), Cass (1965) e Koopmans (1965), nós trabalhamos com apenas um agente realizando todas as decisões: de consumo, de investimento, lazer, trabalho, investimento e acúmulo de capital, o chamado planejador central (Wickens 2012).
- Alternativa: introduzir famílias e empresas que interagem em mercados.
 - Famílias: tomam as decisões de consumo, são donas das empresas, ofertam trabalho e poupam em ativos financeiros.
 - Empresas: produzem, investem, demandam trabalho, tomam emprestado a poupança das famílias, pagam salários e distribuem lucros.
- Portanto, agora precisamos definir alguns mercados: mercado de bens e serviços, mercado de trabalho e mercado de capitais.

Consumo

A família representativa maximiza o valor presente da utilidade esperada,

$$\max_{\{c_{t+s}, a_{t+s}\}} V_t = \sum_{s=0}^{\infty} \beta^s U(c_{t+s}), \qquad (1)$$

s.a.

$$\Delta a_{t+1} + c_t = x_t + r_t a_t \tag{2}$$

com $U_t'>0$, $U_t''<0$, $0<\beta=1/(1+\theta)<1$ e onde a_t representa o estoque líquido de ativos financeiros no começo do período t, que têm taxa de retorno r_t e x_t é a renda (exógena, por enquanto).

• Note que no período t, as famílias escolhem $\{c_t, a_{t+1}\}$, ou seja, a_t é dado.

- Note que no período t, as famílias escolhem $\{c_t, a_{t+1}\}$, ou seja, a_t é dado.
- Em t+1, as famílias escolhem $\{c_{t+1}, a_{t+2}\}$ e assim por diante.

- Note que no período t, as famílias escolhem $\{c_t, a_{t+1}\}$, ou seja, a_t é dado.
- Em t+1, as famílias escolhem $\{c_{t+1}, a_{t+2}\}$ e assim por diante.
- Note que (i) isso é equivalente à escolha de todo caminho do consumo ao longo do tempo ({c_t, c_{t+1}, c_{t+2},...})

- Note que no período t, as famílias escolhem $\{c_t, a_{t+1}\}$, ou seja, a_t é dado.
- Em t+1, as famílias escolhem $\{c_{t+1}, a_{t+2}\}$ e assim por diante.
- Note que (i) isso é equivalente à escolha de todo caminho do consumo ao longo do tempo ({c_t, c_{t+1}, c_{t+2},...}) e (ii) em relação ao modelo anterior, trocamos a escolha sobre o estoque de capital pela de ativos financeiros,

- Note que no período t, as famílias escolhem $\{c_t, a_{t+1}\}$, ou seja, a_t é dado.
- Em t+1, as famílias escolhem $\{c_{t+1}, a_{t+2}\}$ e assim por diante.
- Note que (i) isso é equivalente à escolha de todo caminho do consumo ao longo do tempo ({c_t, c_{t+1}, c_{t+2},...}) e (ii) em relação ao modelo anterior, trocamos a escolha sobre o estoque de capital pela de ativos financeiros, introduzimos a taxa de juros

- Note que no período t, as famílias escolhem $\{c_t, a_{t+1}\}$, ou seja, a_t é dado.
- Em t+1, as famílias escolhem $\{c_{t+1}, a_{t+2}\}$ e assim por diante.
- Note que (i) isso é equivalente à escolha de todo caminho do consumo ao longo do tempo ({c_t, c_{t+1}, c_{t+2},...}) e (ii) em relação ao modelo anterior, trocamos a escolha sobre o estoque de capital pela de ativos financeiros, introduzimos a taxa de juros e colocamos a restrição orçamentária das famílias, não a de recursos da economia toda.

O Lagrangiano (Wickens 2012)

$$\mathcal{L} = \sum_{s=0}^{\infty} \left\{ \beta^{s} U(c_{t+s}) + \lambda_{t+s} \left[x_{t+s} + (1 + r_{t+s}) a_{t+s} - c_{t+s} - a_{t+s+1} \right] \right\}.$$
(3)

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_{t+s}} = \beta^{s} U'(c_{t+s}) - \lambda_{t+s} = 0, \quad s \geqslant 0.$$
 (4)

$$\frac{\partial \mathcal{L}}{\partial a_{t+s}} = \lambda_{t+s} \left(1 + r_{t+s} \right) - \lambda_{t+s-1} = 0, \quad s > 0$$
 (5)

A equação de Euler (Wickens 2012)

Ao resolvermos as C.P.O. para s=1, temos:

$$\frac{\beta U'(c_{t+1})}{U'(c_t)}(1+r_{t+1})=1.$$
 (6)

Interpretando a equação de Euler

$$V_{t} = U(c_{t}) + \beta U(C_{t+1}). \tag{7}$$

$$V_{t} = U(c_{t}) + \beta U(C_{t+1}). \tag{7}$$

$$0 = dV_{t} = dU_{t} + \beta dU_{t+1} = U'(c_{t}) dc_{t} + \beta U'(c_{t+1}) dc_{t+1}, (8)$$

$$V_{t} = U(c_{t}) + \beta U(C_{t+1}). \tag{7}$$

$$0 = dV_{t} = dU_{t} + \beta dU_{t+1} = U'(c_{t}) dc_{t} + \beta U'(c_{t+1}) dc_{t+1}, (8)$$

$$dc_{t+1} = -\frac{U'(c_t)}{\beta U'(c_{t+1})}dc_t$$
(9)

Da equação (6), sabemos que
$$\frac{\beta U'(c_{t+1})}{U'(c_t)}\left(1+r_{t+1}\right)=1 \iff \frac{U'(c_t)}{\beta U'(c_{t+1})}=\left(1+r_{t+1}\right). \text{ Portanto,}$$

$$dc_{t+1} = -(1 + r_{t+1}) dc_t \iff -\frac{dc_{t+1}}{dc_t} = 1 + r_{t+1}, \quad (10)$$

A equação de Euler: problema em dois períodos

Assuma uma taxa de retorno constante (r). Para encontrarmos onde a restrição orçamentária toca os dois eixos, temos que perceber que o maior valor de c_t ocorre quando $c_{t+1}=0$ e, analogamente, o maior valor de c_{t+1} ocorre quando $c_t=0$. Portanto,

$$\max c_t = x_t + \frac{x_{t+1}}{1+r} + (1+r)a_t$$

$$\max c_{t+1} = (1+r)x_t + x_{t+1} + (1+r)^2 a_t$$
(11)

A equação de Euler: problema em dois períodos

A equação de Euler: problema em dois períodos

A equação de Euler: aumento da taxa de juros

A equação de Euler: aumento da taxa de juros

A equação de Euler: aumento da taxa de juros

- Efeito substituição: Ponto A → Ponto B (troco consumo hoje por consumo amanhã).
- Efeito renda: Ponto B → Ponto C (maior juro, maior consumo amanhã, posso não consumir "tanto assim" amanhã).

Trabalhando com a restrição orçamentária intertemporal

As restrições para os períodos t, t+1 e t+2 são, respectivamente:

$$a_{t+1} + c_t = x_t + (1 + r_t) a_t,$$
 (12)

As restrições para os períodos t, t+1 e t+2 são, respectivamente:

$$a_{t+1} + c_t = x_t + (1 + r_t) a_t,$$
 (12)

$$a_{t+2} + c_{t+1} = x_{t+1} + (1 + r_{t+1}) a_{t+1},$$
 (13)

As restrições para os períodos t, t+1 e t+2 são, respectivamente:

$$a_{t+1} + c_t = x_t + (1 + r_t) a_t,$$
 (12)

$$a_{t+2} + c_{t+1} = x_{t+1} + (1 + r_{t+1}) a_{t+1},$$
 (13)

$$a_{t+3} + c_{t+2} = x_{t+2} + (1 + r_{t+2}) a_{t+2}$$
 (14)

As restrições para os períodos t, t+1 e t+2 são, respectivamente:

 $a_{t+2} + c_{t+1} = x_{t+1} + (1 + r_{t+1}) a_{t+1}$

$$a_{t+1} + c_t = x_t + (1 + r_t) a_t,$$
 (12)

$$a_{t+3} + c_{t+2} = x_{t+2} + (1 + r_{t+2}) a_{t+2}$$
 (14)

Ao combinarmos (12) e (13), temos:

(13)

A equação (15) pode ser reescrita como:

$$\frac{a_{t+2}}{1+r_{t+1}} + \frac{c_{t+1}}{1+r_{t+1}} + c_t = \frac{x_{t+1}}{1+r_{t+1}} + x_t + (1+r_t) a_t.$$
 (16)

A equação (15) pode ser reescrita como:

$$\frac{a_{t+2}}{1+r_{t+1}} + \frac{c_{t+1}}{1+r_{t+1}} + c_t = \frac{x_{t+1}}{1+r_{t+1}} + x_t + (1+r_t) a_t.$$
 (16)

Podemos reescrever a equação (14) da seguinte forma:

$$\frac{a_{t+3}}{1+r_{t+2}} + \frac{c_{t+2}}{1+r_{t+2}} = \frac{x_{t+2}}{1+r_{t+2}} + a_{t+2}. \tag{17}$$

A restrição orçamentária intertemporal (Wickens 2012)

Ao substituirmos (17) em (18), temos:

$$\frac{a_{t+3}}{(1+r_{t+2})(1+r_{t+1})} + \frac{c_{t+2}}{(1+r_{t+2})(1+r_{t+1})} + \frac{c_{t+1}}{1+r_{t+1}} + c_t = \frac{x_{t+2}}{(1+r_{t+2})(1+r_{t+1})} + \frac{x_{t+1}}{1+r_{t+1}} + x_t + (1+r_t)a_t.$$
(18)

A restrição orçamentária intertemporal (Wickens 2012)

Se continuarmos substituindo recursivamente $\{a_{t+3}, a_{t+4}, \dots\}$ em (18), teremos:

$$W_{t} = \frac{a_{t+n}}{\prod_{s=1}^{n-1} (1 + r_{t+s})} + \sum_{s=0}^{n-1} \frac{c_{t+s}}{\prod_{s=1}^{n-1} (1 + r_{t+s})}$$

$$= \sum_{s=0}^{n-1} \frac{x_{t+s}}{\prod_{s=1}^{n-1} (1 + r_{t+s})} + (1 + r_{t}) a_{t}.$$
(19)

A restrição orçamentária intertemporal (Wickens 2012)

Se assumirmos uma taxa de juros constante, com $n \to \infty$, como $(1+r)^{n-1}$ cresce mais rápido que a_{t+n} , temos:

$$W_{t} = \sum_{s=0}^{n-1} \frac{c_{t+s}}{(1+r)^{s}}$$

$$= \sum_{s=0}^{n-1} \frac{x_{t+s}}{(1+r)^{s}} + (1+r_{t}) a_{t}.$$
(20)

A condição de transversalidade (Wickens 2012)

$$\lim_{n\to\infty}\beta^n a_{t+n} U'(c_{t+n}) = 0, \tag{21}$$

e como $U'(c_{t+n}) > 0$, temos

$$\lim_{n\to\infty}\beta^n a_{t+n}=0. \tag{22}$$

Temos que:

$$\beta^{n} = \frac{1}{\prod_{s=1}^{n-1} (1 + r_{t+s})}$$
 (23)

A condição de transversalidade (Wickens 2012)

Finalmente podemos escrever a no-Ponzi-game condition:

$$\lim_{n \to \infty} \frac{a_{t+n}}{\prod_{s=1}^{n-1} (1 + r_{t+s})} \geqslant 0.$$
 (24)

A função de consumo

Façamos uma aproximação da equação de Euler:

$$\frac{U'\left(c_{t+1}\right)}{U'\left(c_{t}\right)} \simeq 1 + \frac{U''}{U'} \Delta c_{t+1}$$

$$= 1 - \sigma \frac{\Delta c_{t+1}}{c_{t}},$$
(25)

onde $\sigma = -cU''/U$ é o coeficiente de aversão relativa ao risco.

Portanto, ao usarmos a aproximação na equação de Euler, temos:

$$\frac{\Delta c_{t+1}}{c_t} = \frac{1}{\sigma} \left[1 - \frac{1}{\beta (1 + r_{t+1})} \right]$$
 (26)

Portanto, ao usarmos a aproximação na equação de Euler, temos:

$$\frac{\Delta c_{t+1}}{c_t} = \frac{1}{\sigma} \left[1 - \frac{1}{\beta (1 + r_{t+1})} \right]$$
 (26)

• Se $r_{t+1} = \theta \implies \frac{\Delta c_{t+1}}{c_t} = 0$. Esse é o equilíbrio de longo prazo.

Portanto, ao usarmos a aproximação na equação de Euler, temos:

$$\frac{\Delta c_{t+1}}{c_t} = \frac{1}{\sigma} \left[1 - \frac{1}{\beta (1 + r_{t+1})} \right]$$
 (26)

- Se $r_{t+1} = \theta \implies \frac{\Delta c_{t+1}}{c_t} = 0$. Esse é o equilíbrio de longo prazo.
- Se $r_{t+1} > \theta \implies \frac{\Delta c_{t+1}}{c_t} > 0$.

Portanto, ao usarmos a aproximação na equação de Euler, temos:

$$\frac{\Delta c_{t+1}}{c_t} = \frac{1}{\sigma} \left[1 - \frac{1}{\beta (1 + r_{t+1})} \right]$$
 (26)

- Se $r_{t+1} = \theta \implies \frac{\Delta c_{t+1}}{c_t} = 0$. Esse é o equilíbrio de longo prazo.
- Se $r_{t+1} > \theta \implies \frac{\Delta c_{t+1}}{c_t} > 0$. Se $r_{t+1} < \theta \implies \frac{\Delta c_{t+1}}{c_t} < 0$.

Assuma $r_t = r = \theta$ (ou seja, equilíbrio de longo prazo). Podemos substituir c_{t+s} por c_r na equação (20) para obtermos:

$$W_t = \sum_{0}^{\infty} \frac{c_t}{(1+r)^s} = \frac{1+r}{r} c_t =$$
$$\sum_{0}^{\infty} \frac{x_{t+s}}{(1+r)^s} + (1+r)a_t \iff$$

$$c_t = \frac{r}{1+r}W_t = r\sum_{0}^{\infty} \frac{x_{t+s}}{(1+r)^s} + ra_t.$$

Ou seja, em cada período, o consumo é proporcional à riqueza. Essa equação representa a hipótese da renda permanente de Friedman.

Choques: permanentes e temporários

Choques

Consideremos dois tipos de choques (permanentes e temporários) em duas variáveis:

- Choques na renda.
- Choques na taxa de juros.

Um choque **permanente** na renda no período t gera efeitos em $x_t, x_{t+1}, x_{t+2}, \ldots$ Considere a equação (29) com $x_{t+s} = x_t, \forall s \geq 0$:

$$c_t = r \sum_{s=0}^{\infty} \frac{x_t}{(1+r)^s} + ra_t$$

Um choque **permanente** na renda no período t gera efeitos em $x_t, x_{t+1}, x_{t+2}, \ldots$ Considere a equação (29) com $x_{t+s} = x_t, \forall s \geq 0$:

$$c_t = r \sum_{s=0}^{\infty} \frac{x_t}{(1+r)^s} + ra_t$$
$$c_t = rx_t \sum_{s=0}^{\infty} \frac{1}{(1+r)^s} + ra_t$$

Um choque **permanente** na renda no período t gera efeitos em $x_t, x_{t+1}, x_{t+2}, \ldots$ Considere a equação (29) com $x_{t+s} = x_t, \forall s \geq 0$:

$$c_t = r \sum_{s=0}^{\infty} \frac{x_t}{(1+r)^s} + ra_t$$

$$c_t = rx_t \sum_{s=0}^{\infty} \frac{1}{(1+r)^s} + ra_t$$

$$c_t = rx_t \frac{1}{r} + ra_t$$

Um choque **permanente** na renda no período t gera efeitos em $x_t, x_{t+1}, x_{t+2}, \ldots$ Considere a equação (29) com $x_{t+s} = x_t, \forall s \geq 0$:

$$c_t = r \sum_{s=0}^{\infty} \frac{x_t}{(1+r)^s} + ra_t$$

$$c_t = rx_t \sum_{s=0}^{\infty} \frac{1}{(1+r)^s} + ra_t$$

$$c_t = rx_t \frac{1}{r} + ra_t$$

$$c_t = x_t + ra_t$$

Assim, temos que $\partial c_t/\partial x_t=1$. Portanto, uma propensão marignal à consumir unitária assume, nesse arcabouço, que o aumento da renda é permanente.

Um choque **temporário** na renda no período t gera efeitos apenas em x_t . Considere a mesma equação (29):

$$c_t = \frac{r}{(1+r)}x_t + \frac{r}{(1+r)^2}x_{t+1} + \frac{r}{(1+r)^3}x_{t+2} + \dots + ra_t.$$

Assim, temos que $\partial c_t/\partial x_t=\frac{r}{(1+r)}$ e o resto é poupado. Por exemplo, se r=0.01, $\partial c_t/\partial x_t\approx 0$, 01!

Choque na renda

Choque na taxa de juros real (Wickens 2012)

Um choque **permanente** na taxa de juros no período t gera efeitos em t, t+1, t+2, Considere a equação (29) com $x_{t+s} = x_t$, $\forall s \geq 0$:

$$c_t = x_t + ra_t$$
.

Portanto, temos que $\partial c_t/\partial r=a_t$ será positiva (negativa) quando $a_t>0$ ($a_t<0$).

Choque na taxa de juros real (a < 0)

Choque na taxa de juros real (a > 0)

Consumo de bens duráveis e não-duráveis

Tipos de bens de consumo

Até agora, trabalhamos apenas com consumo de bens não-duráveis. Mas podemos diferenciá-lo em dois tipos:

- Bens de consumo não-duráveis (c_t) .
- Bens de consumo duráveis (d_t) .

Tipos de bens de consumo

Até agora, trabalhamos apenas com consumo de bens não-duráveis. Mas podemos diferenciá-lo em dois tipos:

- Bens de consumo não-duráveis (c_t) .
- Bens de consumo duráveis (d_t).
 - Neste caso, o estoque de bens duráveis (D_t) proporciona um fluxo de serviços ao longo do tempo (Wickens 2012).

A escolha das famílias com dois tipos de bens (Wickens 2012)

A equação de movimento dos bens duráveis é dada por:

$$\Delta D_{t+1} = d_t - \delta D_t. \tag{27}$$

A restrição orçamentária se torna, portanto:

$$\Delta a_{t+1} + c_t + p_t^D d_t = x_t + r_t a_t, \tag{28}$$

onde $p_t^{\rm D}$ representa o preço relativo dos bens duráveis sobre os não-duráveis.

A escolha das famílias com dois tipos de bens (Wickens 2012)

Combinando as duas equações, temos:

$$\Delta a_{t+1} + c_t + p_t^D \left[D_{t+1} - (1 - \delta) D_t \right] = x_t + r_t a_t.$$
 (29)

Trabalharemos com hipóteses análogas aos modelos anteriores:

$$U(c_t, D_t); U_D > 0, U_c > 0, U_{DD} \le 0, U_{cc} \le 0.$$

$$\max_{c_{t+s}, D_{t+s+1}, a_{t+s+1}} V_t = \sum_{s=0}^{\infty} \beta^s U(c_{t+s}, D_{t+s})$$
 (30)

s.a.

$$\Delta a_{t+1} + c_t + p_t^D \left[D_{t+1} - (1 - \delta) D_t \right] = x_t + r_t a_t.$$
 (29)

$$\mathcal{L} = \sum_{s=0}^{\infty} \{ \beta^{s} U(c_{t+s}, D_{t+s}) + \lambda_{t+s} [x_{t} + (1 + r_{t+s}) a_{t+s} - c_{t+s} - p_{t+s}^{D} D_{t+s+1} + p_{t+s}^{D} (1 - \delta) D_{t+s} - a_{t+s+1}] \}.$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_{t+s}} = \beta^s U_{c,t+s} - \lambda_{t+s} = 0, \quad s \geqslant 0, \tag{31}$$

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_{t+s}} = \beta^s U_{c,t+s} - \lambda_{t+s} = 0, \quad s \geqslant 0, \tag{31}$$

$$\frac{\partial L}{\partial D_{t+s}} = \beta^{s} U_{D,t+s} + \lambda_{t+s} p_{t+s}^{D} (1-\delta) - \lambda_{t+s-1} p_{t+s-1}^{D} = 0, \quad s > 0,$$
(32)

C.P.O.:

$$\frac{\partial \mathcal{L}}{\partial c_{t+s}} = \beta^{s} U_{c,t+s} - \lambda_{t+s} = 0, \quad s \geqslant 0, \tag{31}$$

$$\frac{\partial L}{\partial D_{t+s}} = \beta^{s} U_{D,t+s} + \lambda_{t+s} \rho_{t+s}^{D} (1-\delta) - \lambda_{t+s-1} \rho_{t+s-1}^{D} = 0, \quad s > 0,$$
(32)

$$\frac{\partial \mathcal{L}}{\partial a_{t+s}} = \lambda_{t+s} \left(1 + r_{t+s} \right) - \lambda_{t+s-1} = 0, \quad s > 0.$$
 (33)

C.P.O. 1 e 3 resultam na já conhecida equação de Euler:

$$\frac{\beta U_{c,t+1}}{U_{c,t}} (1 + r_{t+1}) = 1. \tag{34}$$

E ao combinarmos as três C.P.O., temos:

$$U_{D,t+1} = U_{c,t+1} p_{t+1}^{D} \left(r_{t+1} - \frac{\Delta p_{t+1}^{D}}{p_{t}^{D}} + \delta \right)$$
 (35)

Assuma $U(c_t, D_t) = c_t^{\alpha} D_t^{1-\alpha}$. As duas equações antereriores se tornam, portanto:

$$\beta \left(\frac{c_{t+1}/D_{t+1}}{c_t/D_t} \right)^{-(1-\alpha)} (1+r_{t+1}) = 1$$
 (36)

$$\frac{c_{t+1}}{p_{t+1}^D D_{t+1}} = \frac{\alpha}{1-\alpha} \left(r_{t+1} - \frac{\Delta p_{t+1}^D}{p_t^D} + \delta \right). \tag{37}$$

Gasto com bens duráveis em relação ao gasto com bens nãoduráveis (Wickens 2012)

Ao considerarmos as equações para a dinâmica do estoque de bens duráveis, (27) e a equação de Euler com a função utilidade Cobb-Douglas (36), temos:

$$\frac{p_t^D d_t}{c_t} = \frac{c_{t+1}}{c_t} \frac{p_t^D D_{t+1}}{c_{t+1}} - (1 - \delta) \frac{p_t^D D_t}{c_t}
= \left[\frac{c_{t+1}}{c_t} \left(\frac{1 + r_{t+1}}{1 + \theta} \right)^{-1/(1 - \alpha)} - 1 + \delta \right] \frac{p_t^D D_t}{c_t}
\simeq \left[\frac{\Delta c_{t+1}}{c_t} - \frac{1}{1 - \alpha} \left(r_{t+1} - \theta \right) + \delta \right] \frac{p_t^D D_t}{c_t}.$$
(38)

Referências i

Cass, David. 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation." *The Review of Economic Studies* 32 (3): 233–40.

Koopmans, Tjalling C. 1965. "On the Concept of Optimal Economic Growth," in the Econometric Approach to Development Planning, North Holland, Amsterdam."

Ramsey, Frank Plumpton. 1928. "A Mathematical Theory of Saving." *The Economic Journal* 38 (152): 543–59.

Wickens, Michael. 2012. *Macroeconomic Theory: A Dynamic General Equilibrium Approach*. Princeton University Press.