

	l	<u>Habib</u>	Unive	ersity -	- City	Camp	us
--	---	--------------	-------	----------	--------	------	----

Course Title: Math202: Engineering Mathematics

Instructor's name:

Class ID:

Examination: Final Term	Exam Date: 12/14/2019, Saturday
Total Marks: 49	Time/ Duration: 9:00AM - 12:00PM/ 3 hours

Instructions for students: (example)

- ATTEMPT ALL QUESTIONS.
- Use of a calculator is NOT allowed. You can leave the answers in surd form. For example, $\ln 2$ or $\sin \pi/3$ can be left just like that.
- All answers must be given on answer script.
- The solutions must contain all necessary steps and explanations.
- If you make assumptions, make them clear in your solution.
- If you introduce additional symbols, define them properly before using them.
- If no method is specified, you can use any method to solve the problem.
- Numerical solution of integrals is not required.
- 1. (7 Points) Consider a tank, which is being filled with water at a constant rate 30 l/min and leaking water at a rate twice the amount of water inside the tank. The rate of change of volume of water, V = V(t), in the tank can be given by the differential equation,

$$\frac{dV}{dt} = 30 - 2V$$

Solve the differential equation and determine the amount of water V(t) inside the tank at any time t, given that V(t=0)=10.

2. (09 Points) Our goal is to solve the initial value problem:

$$y'' + y = 4x + 10\sin x \tag{1}$$

with the initial conditions: $y(\pi) = 0$, $y'(\pi) = 2$.

- a. (3 Points) Find the general solution, y_c , of the associated homogeneous equation y'' + y = 0.
- b. (1 Point) Suggest a guess function y_p for the non-homogeneous part $r(x) = 4x + 10 \sin x$. Justify your answer.
- c. (3 Points) Solve for y_p using the Method of Undetermined Coefficients.
- d. (0.5 Points) Write down the general solution of the second-order non-homogeneous equation (1).
- e. (1.5 Point) Solve the initial value problem.
- 3. (11 Points) Use the power series method to find the solution, y = y(x), to the differential equation,

$$\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + y = 0$$

Expand the solution to x^5 .

- 4. (8 Points) Find the transforms,
 - a. $\mathcal{L}\{e^{2-t}u(t-2)\}$
 - b. $\mathcal{L}\left\{\frac{1}{s^2+s-20}\right\}$
- 5. (08 Points) Solve the ODE for y = y(x),

$$y'' - 6y' + 9y = t^2 e^{3t}, y(0) = 2, y'(0) = 6$$

Using the Laplace Transform method. Hint: You can use the shifting theorems to make your life a little easier.

6. **(6 Points)** Let k be a constant. Calculate the flux of the vector field,

 $\vec{F} = \vec{F}(x, y, z) = \left(2x + \tan^2 \frac{\pi}{k} (y + z)^2\right) \hat{a}_x + (\ln|\sin x + \cos z| + 5y) \hat{a}_y + (z) \hat{a}_z$ through the following closed surface, $r = r(\theta, \phi)$.

The volume enclosed in the closed surface is V.

List of Important Formulae

• Gradient of a scalar function $\phi = \phi(x, y, z)$,

$$\vec{\nabla}\phi = \frac{\partial\phi}{\partial x}\hat{a}_x + \frac{\partial\phi}{\partial y}\hat{a}_y + \frac{\partial\phi}{\partial z}\hat{a}_z$$

• Divergence of a vector field $\vec{F} = F_x \hat{\imath} + F_y \hat{\jmath} + F_z \hat{k}$,

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

• Curl of a vector field $\vec{F} = F_x \hat{\imath} + F_y \hat{\jmath} + F_z \hat{k}$,

$$\vec{\nabla} \times \vec{F} = \begin{vmatrix} \hat{a}_x & \hat{a}_y & \hat{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

• Line integral of a vector field \vec{F} ,

$$\int_{C} \vec{F}.d\vec{r}$$

• Closed line integral,

$$\oint_{C} \vec{F} \cdot d\vec{r}$$

• Surface integral of vector field \vec{F} over an open surface S, (u, v) are the parameters on the surface.

$$\iint\limits_{S} \vec{F} \cdot \vec{N} du dv \iint\limits_{S} \vec{F} \cdot \hat{N} dA$$

• Surface integral of vector field \vec{F} over a closed surface S, (u, v) are the parameters on the closed surface.

$$\iint\limits_{S} \vec{F} \cdot \vec{N} du dv = \iint\limits_{S} \vec{F} \cdot \hat{N} dA$$

• Volume integral of a scalar function f = f(x, y, z),

$$\iiint\limits_{V}fdV$$

• For conservative field \vec{F} ,

o For two different curves C and C' between points (x_a, y_a) and (x_b, y_b) ,

$$\int_{(x_a, y_a, z_a)_{C}} \vec{F} \cdot d\vec{r} = \int_{(x_a, y_a, z_a)_{C'}} \vec{F} \cdot d\vec{r}$$

Over a closed curve C,

$$\oint_C \vec{F} \cdot d\vec{r} = 0$$

 \circ For a scalar potential function ϕ ,

$$\vec{F} = \vec{\nabla} \phi$$

o In 2D plane,

$$\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}$$

o Fundamental theorem of line integral,

$$\int_{(x_a, y_a, z_a)_C}^{(x_b, y_b, z_b)} \vec{F} \cdot d\vec{r} = \int_{(x_a, y_a, z_a)_C}^{(x_b, y_b, z_b)} \vec{\nabla} \phi \cdot d\vec{r} = \phi(x_a, y_a, z_a) - \phi(x_b, y_b, z_b)$$

• Divergence theorem for a vector field \vec{F} ,

$$\iiint\limits_{V} \vec{\nabla} . \, \vec{F} \, dV = \oiint\limits_{S} \vec{F} . \, d\vec{A}$$

Here, V is the volume enclosed inside the closed surface S, (u, v) are the parameters on the closed surface.

• Green's theorem for a vector field \vec{F} ,

$$\iint\limits_{S} \left(\frac{\partial F_x}{\partial y} - \frac{\partial F_y}{\partial x} \right) dx dy = \oint\limits_{C} \vec{F} \cdot d\vec{r}$$

Here the closed curve C bounds the surface S in a two dimensional xy-plane.

• Stoke's Theorem for a vector field \vec{F} ,

$$\iint\limits_{S} (\vec{\nabla} \times \vec{F}) \cdot d\vec{A} = \oint\limits_{S} \vec{F} \cdot d\vec{r}$$

Here the closed curve C bounds the surface S in 3 dimensional space.

• Function guesses for Method of Undetermined Coefficient,

S(x)	Guess for $y_p(x)$	
k = Constant	K (Some other constant)	
ke ^{yx}	$Ke^{\gamma x}$	
kx^n , $(n = positive integer)$	$K_n x^n + K_{n-1} x^{n-1} + \dots + K_1 x + K_0$	
$k \sin \omega x$	$K\cos\omega x + M\sin\omega x$	
$k\cos\omega x$		
$ke^{\alpha x}\cos\omega x$	$e^{\alpha x}(K\cos\omega x + M\sin\omega x)$	
$ke^{\alpha x}\sin\omega x$		

Table 1: Short list of guesses of particular solutions for some forms of non-homogeneous part.

• The power series of y(x) about $x_0 = 0$,

$$y(x) = a_0 + a_1(x) + a_2(x)^2 + a_3(x)^3 + \dots = \sum_{n=0}^{\infty} a_n x^n$$