CMPT 210: Probability and Computing

Lecture 15

Sharan Vaswani

October 31, 2024

Recap

Bernoulli Distribution: $f_p(0) = 1 - p$, $f_p(1) = p$. Example: When tossing a coin such that Pr[heads] = p, random variable R is equal to 1 if we get a heads (and equal to 0 otherwise). In this case, $R \sim Ber(p)$.

Uniform Distribution: If $R: \mathcal{S} \to V$, then for all $v \in V$, f(v) = 1/|V|. *Example*: When throwing an *n*-sided die, random variable R is the number that comes up on the die. $V = \{1, 2, \ldots, n\}$. In this case, $R \sim \mathsf{Uniform}(1, n)$.

Binomial Distribution: $f_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k}$. Example: When tossing n independent coins such that $\Pr[\text{heads}] = p$, random variable R is the number of heads in n coin tosses. In this case, $R \sim \text{Bin}(n,p)$.

Geometric Distribution: $f_p(k) = (1-p)^{k-1}p$. Example: When repeatedly tossing a coin such that $\Pr[\text{heads}] = p$, random variable R is the number of tosses needed to get the first heads. In this case, $R \sim \text{Geo}(p)$.

Distributions - Examples

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back guarantee that at most 1 of the 10 disks is defective (the package can be returned if there is more than 1 defective disk). If someone buys three packages, what is the probability that exactly one of them will be returned?

Let F be the event that someone bought 3 packages and exactly one of them is returned.

Answer 1: Let E_i be the event that package i is returned. From the previous question, we know that $\Pr[E_i] = \Pr[\text{Package } i \text{ has more than 1 defective disk}] \approx 0.05$.

$$F = (E_1 \cap E_2^c \cap E_3^c) \cup (E_1^c \cap E_2^c \cap E_3) \cup (E_1^c \cap E_2 \cap E_3^c)$$

$$Pr[F] = Pr[E_1](1 - Pr[E_2])(1 - Pr[E_3]) + (1 - Pr[E_1])(1 - Pr[E_2]) Pr[E_3] + \dots$$

$$Pr[F] \approx 3 \times (0.05)(0.95)(0.95) \approx 0.15.$$

Answer 2: Let Y be the random variable corresponding to the number of packages returned. Y follows the Binomial distribution Bin(3, 0.05) and we wish to compute $Pr[F] = Pr[Y = 1] \approx \binom{3}{1}(0.05)^1(0.95)^2 \approx 0.15$.

Distributions - Examples

Q: You are randomly and independently throwing darts. The probability that you hit the bullseye in throw i is p. Once you hit the bullseye you win and can go collect your reward. (a) What is the probability that you win after exactly k throws? (b) What is the probability you win in less than k throws?

- (a) The number of throws (T) to hit the bullseye and win follows a geometric distribution Geo(p) and we wish to compute Pr[T=k]. Using the PDF for the Geometric distribution, this is equal to $(1-p)^{k-1}p$.
- (b) **Answer 1**: If E is the event that we win in less than k throws,

$$\Pr[E] = \Pr[T < k] = \sum_{i=1}^{k-1} \Pr[T = i] = p \sum_{i=1}^{k-1} (1-p)^{i-1} = 1 - (1-p)^{k-1}.$$

Answer 2:

$$Pr[E] = 1 - Pr[E^c] = 1 - Pr[do \text{ not hit the bullseye in } k - 1 \text{ throws}] = 1 - (1 - p)^{k-1}$$
.

Recall that a random variable R is a total function from $\mathcal{S} \to V$.

Definition: Expectation of R is denoted by $\mathbb{E}[R]$ and "summarizes" its distribution. Formally,

$$\mathbb{E}[R] := \sum_{\omega \in \mathcal{S}} \Pr[\omega] R[\omega]$$

 $\mathbb{E}[R]$ is also known as the "expected value" or the "mean" of the random variable R.

Q: We throw a standard dice, and define R to be the random variable equal to the number that comes up. Calculate $\mathbb{E}[R]$.

 $\mathcal{S}=\{1,2,3,4,5,6\}$ and for $\omega\in\mathcal{S}$, $R[\omega]=\omega$. Since this is a uniform probability space, $\Pr[\{1\}]=\Pr[\{2\}]=\ldots=\Pr[\{6\}]=\frac{1}{6}$.

 $\mathbb{E}[R] = \sum_{\omega \in \mathcal{S}} \Pr[\omega] R[\omega] = \sum_{\omega \in \{1,2,\dots,6\}} \Pr[\omega] \omega = \frac{1}{6}[1+2+3+4+5+6] = \frac{7}{2}$. Hence, a random variable does not necessarily achieve its expected value.

Q: Let S := 1/R. Is $\mathbb{E}[S] = 1/\mathbb{E}[R]$?

Alternate definition: $\mathbb{E}[R] = \sum_{x \in \mathsf{Range}(R)} x \, \mathsf{Pr}[R = x]$.

$$\begin{split} \mathbb{E}[R] &= \sum_{\omega \in \mathcal{S}} \Pr[\omega] \, R[\omega] = \sum_{x \in \mathsf{Range}(R)} \sum_{\omega \mid R(\omega) = x} \Pr[\omega] \, R[\omega] = \sum_{x \in \mathsf{Range}(R)} \sum_{\omega \mid R(\omega) = x} \Pr[\omega] \, x \\ &= \sum_{x \in \mathsf{Range}(R)} x \, \left[\sum_{\omega \mid R(\omega) = x} \Pr[\omega] \right] = \sum_{x \in \mathsf{Range}(R)} x \, \Pr[R = x] \end{split}$$

This definition does not depend on the sample space.

Q: We throw a standard dice, and define R to be the random variable equal to the number that comes up. Calculate $\mathbb{E}[R]$.

Range(R) = {1,2,3,4,5,6}. R has a uniform distribution i.e. $\Pr[R=1] = \ldots = \Pr[R=6] = \frac{1}{6}$. Hence, $\mathbb{E}[R] = \frac{1}{6}[1 + \ldots + 6] = \frac{7}{2}$.

Q: If $R \sim \text{Uniform}(\{v_1, v_2, \dots, v_n\})$, compute $\mathbb{E}[R]$.

Range of $R = \{v_1, v_2, \dots, v_n\}$ and $\Pr[R = v_1] = \Pr[R = v_2] = \dots = \Pr[R = v_n] = \frac{1}{n}$. Hence, $\mathbb{E}[R] = \frac{v_1 + v_2 + \dots + v_n}{n}$ and the expectation for a uniform random variable is the average of the possible outcomes.

Q: If $R \sim \text{Bernoulli}(p)$, compute $\mathbb{E}[R]$.

Range of R is $\{0,1\}$ and Pr[R=1] = p.

$$\mathbb{E}[R] = \sum_{x \in \{0,1\}} x \Pr[R = x] = (0)(1-p) + (1)(p) = p$$

Q: If \mathcal{I}_A is the indicator random variable for event A, calculate $\mathbb{E}[\mathcal{I}_A]$.

Range(\mathcal{I}_A) = {0,1} and \mathcal{I}_A = 1 iff event A happens.

$$\mathbb{E}[\mathcal{I}_A] = \mathsf{Pr}[\mathcal{I}_A = 1](1) + \mathsf{Pr}[\mathcal{I}_A = 0](0) = \mathsf{Pr}[A]$$

Hence, for \mathcal{I}_A , the expectation is equal to the probability that event A happens.

Q: If $R \sim \text{Geo}(p)$, compute $\mathbb{E}[R]$.

Range[R] =
$$\{1, 2, ...\}$$
 and $Pr[R = k] = (1 - p)^{k-1}p$.

$$\mathbb{E}[R] = \sum_{k=1}^{\infty} k (1-p)^{k-1} p \implies (1-p) \mathbb{E}[R] = \sum_{k=1}^{\infty} k (1-p)^k p$$

$$\implies (1-(1-p)) \mathbb{E}[R] = \sum_{k=1}^{\infty} k (1-p)^{k-1} p - \sum_{k=1}^{\infty} k (1-p)^k p$$

$$\implies \mathbb{E}[R] = \sum_{k=0}^{\infty} (k+1) (1-p)^k - \sum_{k=1}^{\infty} k (1-p)^k = 1 + \sum_{k=1}^{\infty} (1-p)^k = 1 + \frac{1-p}{1-(1-p)} = \frac{1}{p}$$

Implication: When tossing a coin multiple times, on average, it will take $\frac{1}{p}$ tosses to get the first heads.

Linearity of Expectation: For two random variables R_1 and R_2 , $\mathbb{E}[R_1 + R_2] = \mathbb{E}[R_1] + \mathbb{E}[R_2]$.

Proof:

Let $T:=R_1+R_2$, meaning that for $\omega\in\mathcal{S}$, $T(\omega)=R_1(\omega)+R_2(\omega)$.

$$\mathbb{E}[R_1 + R_2] = \mathbb{E}[T] = \sum_{\omega \in \mathcal{S}} T(\omega) \Pr[\omega] = \sum_{\omega \in \mathcal{S}} [R_1(\omega) \Pr[\omega] + R_2(\omega) \Pr[\omega]]$$

$$\implies \mathbb{E}[R_1 + R_2] = \mathbb{E}[R_1] + \mathbb{E}[R_2]$$

In general, for n random variables R_1, R_2, \ldots, R_n and constants a_1, a_2, \ldots, a_n ,

$$\mathbb{E}\left[\sum_{i=1}^n a_i R_i\right] = \sum_{i=1}^n a_i \,\mathbb{E}[R_i]$$

Back to throwing dice

Q: We throw two standard dice, and define R to be the random variable equal to the sum of the numbers that comes up on the dice. Calculate $\mathbb{E}[R]$.

Answer 1: Recall that $S = \{(1,1), \dots, (6,6)\}$ and the range of R is $V = \{2, \dots, 12\}$. Calculate $\Pr[R = 2], \Pr[R = 3], \dots, \Pr[R = 12]$, and calculate $\mathbb{E}[R] = \sum_{x \in \{2,3,\dots,12\}} x \Pr[R = x]$.

Answer 2: Let R_1 be the random variable equal to the number that comes up on the first dice, and R_2 be the random variable equal to the number on the second dice. We wish to compute $\mathbb{E}[R_1 + R_2]$. Using linearity of expectation, $\mathbb{E}[R] = \mathbb{E}[R_1] + \mathbb{E}[R_2]$. We know that for each of the dice, $\mathbb{E}[R_1] = \mathbb{E}[R_2] = \frac{7}{2}$ and hence, $\mathbb{E}[R] = 7$.

Expectation - Examples

Q: A construction firm has recently sent in bids for 3 jobs worth (in profits) 10, 20, and 40 (thousand) dollars. The firm can either win or lose the bid. If its probabilities of winning the bids are 0.2, 0.8, and 0.3 respectively, what is the firm's expected total profit?

 X_i is a random variable corresponding to the profits from job i. If the firm wins the bid for job 1, it gets a profit of 10 (thousand dollars), else if it loses the bid, it gets no profit. Hence, $Range(X_1) = \{0, 10\}$, $\Pr[X_1 = 10] = 0.2$ and $\Pr[X_1 = 0] = 1 - 0.2 = 0.8$. Similarly, we can compute the range and PDF for X_2 and X_3 . Let $X = X_1 + X_2 + X_3$ be the random variable corresponding to the total profit. We wish to compute $\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + X_3]$. By linearity of expectation, $\mathbb{E}[X] = \mathbb{E}[X_1 + X_2 + X_3] = \mathbb{E}[X_1] + \mathbb{E}[X_2] + \mathbb{E}[X_3]$. $\mathbb{E}[X_1] = (0.2)(10) + (0.8)(0) = 2$. Computing, $\mathbb{E}[X_2]$ and $\mathbb{E}[X_3]$ similarly, $\mathbb{E}[X] = (0.2)(10) + (0.8)(20) + (0.3)(40) = 30$.

Q: If the company loses 5 (thousand) dollars if it did not win the bid, what is the firm's expected profit.

Q: If $R \sim \text{Bin}(n, p)$, compute $\mathbb{E}[R]$.

Answer 1: For a binomial random variable, Range $[R] = \{0, 1, 2, ..., n\}$ and $\Pr[R = k] = \binom{n}{k} p^k (1-p)^{n-k}$. $\mathbb{E}[R] = \sum_{k=0}^n k \binom{n}{k} p^k (1-p)^{n-k}$. Painful computation!

Answer 2: Define R_i to be the indicator random variable that we get a heads in toss i of the coin. Recall that R is the random variable equal to the number of heads in n tosses. Hence,

$$R = R_1 + R_2 + \ldots + R_n \implies \mathbb{E}[R] = \mathbb{E}[R_1 + R_2 + \ldots + R_n]$$

By linearity of expectation,

$$\mathbb{E}[R] = \mathbb{E}[R_1] + \mathbb{E}[R_2] + \ldots + \mathbb{E}[R_n] = \Pr[R_1] + \Pr[R_2] + \ldots + \Pr[R_n] = np$$

If the probability of success is p and there are n trials, we expect np of the trials to succeed on average.

Expectation - Examples

Q: We have a program that crashes with probability 0.1 in every hour. What is the average time after which we expect that program to crash?

Q: It is known that disks produced by a certain company will be defective with probability 0.01 independently of each other. The company sells the disks in packages of 10 and offers a money-back offer of 2 dollars for every disk that crashes in the package. On average, how much will this money-back offer cost the company per package?