CS 127/227A, Fall 2022

Optimization Models in Engineering

Gireeja Ranade, UC Berkeley Zhiyu An

Contents

	ear Algebra
1.a.	Least-Squares Problem Statement
1.b.	Norm
1.c.	Gram-Schimdt
1.d.	Symmetric Matrices
1.e.	Principal Component Analysis
1.f.	Singular Value Decomposition
1.g.	Low-Rank Approximation

1. Linear Algebra

1.a. Least-Squares Problem Statement

Definition 1.1 (Least Squares)

Assume matrix A and vectors \vec{x} and \vec{b} . The problem defined by

$$\min_{\vec{x}} \|A\vec{x} - \vec{b}\|^2$$

is a Least Squares Problem (LSP).

Example 1.2

Assume we have two dimensional data set \vec{x} and \vec{y} and we want to formalize a LSP to find a linear correlation between x and y. We first formalize the goal linear correlation as

$$y = mx + c$$

where we want to find the optimal values for m and c to minimize the squared loss across all data points. Summarizing the above equation for all data points gives us

$$\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ c \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Where

$$A = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots \\ x_n & 1 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} m \\ c \end{bmatrix}, \quad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

And therefore

$$\min_{\vec{x}} ||A\vec{x} - \vec{b}||^2 = \min_{m,c} \sum_{i=1}^{n} (y_i - (mx_i + c))^2$$

Theorem 1.3 (Ordinary Least Squares)

Given the column space of the matrix A, for vector \vec{b} not in the said column space, $A\vec{x} - \vec{b} = \vec{e}$ must be orthogonal to the columns of A. (Pythagora's theorem)

Therefore, the dot products of every column of A and \vec{e} must be zero, i.e.

$$A^{\mathsf{T}}(A\vec{x} - \vec{b}) = 0$$

$$A^{\mathsf{T}}A\vec{x} - A^{\mathsf{T}}\vec{b} = 0$$

$$A^{\mathsf{T}}A\vec{x} = A^{\mathsf{T}}\vec{b}$$

$$\vec{x} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{b}$$

We conclude that the solution for Ordinary Least Squares (OLS) is

$$\vec{x}^* = \underset{\vec{x}}{\operatorname{argmin}} \|A\vec{x} - \vec{b}\|^2 = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\vec{b}$$

1.b. Norm

Definition 1.4 (Norm)

A Norm is defined as

$$f\coloneqq \mathbf{X} \to \mathbb{R}$$

For vector space \mathbf{X} .

The norm of x is denoted as ||x||. For any vector x and y, we have

- $||x|| \ge 0$ and ||x|| = 0 iff $x = \vec{0}$
- $||x + y|| \le ||x|| + ||y||$
- $\bullet \|\alpha x\| = |\alpha| \star \|x\|$

Definition 1.5 (I-p Norm)

Generally, l-p norm is defined as

$$\|\vec{x}\|_p := \left(\sum |x_i|^p\right)^{\frac{1}{p}}; \ 1 \le p < \infty$$

Commonly used norms:

- $\|\vec{x}\|_1 \coloneqq \sum |x_i|$
- $\bullet \quad \|\vec{x}\|_2 \coloneqq \sqrt{\sum |x_i|^2}$
- $\|\vec{x}\|_{\infty} \coloneqq \max |x_i|$

Theorem 1.6 (Cauchy-Schwartz Inequality)

$$<\vec{x}, \vec{y}> = \vec{x}^{\mathsf{T}} \vec{y} = \|\vec{x}\|_2 \|\vec{y}\|_2 \cos \theta$$

Since $-1 \le \cos \theta \le 1$,

$$<\vec{x}, \vec{y}> = \vec{x}^{\mathsf{T}} \vec{y} \le \|\vec{x}\|_2 \|\vec{y}\|_2$$

Theorem 1.7 (Holder's Inequality)

For $p, q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$,

$$|\vec{x}^{\top}\vec{y}| \le \sum_{i=1}^{n} |x_i y_i| \le ||\vec{x}||_p ||\vec{y}||_p$$

i.e., Cauchy-Schwartz is a narrowed case of Holder's Inequality.

1.c. Gram-Schimdt

Theorem 1.8 (Gram-Schimdt/QR-decomposition)

Let X be a vector space with basis $\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$, which is orthonormal. For any matrix Α,

$$A = QR$$

$$[\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n] = [\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n] \begin{bmatrix} \vec{r}_{11} & \vec{r}_{12} & \cdots & \vec{r}_{1n} \\ 0 & \vec{r}_{22} & \cdots & \vec{r}_{2n} \\ 0 & 0 & \ddots & \vec{r}_{3n} \\ 0 & 0 & 0 & \vec{r}_{nn} \end{bmatrix}$$

Where Q is orthonormal and R is upper-triangular.

Theorem 1.9 (Fundamental Theorem of Linear Algebra)

For matrix $A \in \mathbb{R}^{m * n}$,

$$Null(A) \bigoplus Range(A^{\mathsf{T}}) = \mathbb{R}^n$$

Where \oplus denotes "direct sum" and $Range(A^{\mathsf{T}})$ is the column space of A^{T} . With the said equation we can also conclude that

$$Range(A) \bigoplus Null(A^{\mathsf{T}}) = \mathbb{R}^m$$

Theorem 1.10 (orthogonal decomposition theorem)

X a vector space and S a subspace of X. Then for any \vec{x} in X,

$$\vec{x} = \vec{s} + \vec{r}, \quad \vec{s} \in S, \quad \vec{r} \in S^{\perp}$$

Such that

$$S^\perp = \left\{ \vec{r} \mid <\vec{r}, \vec{s}> = 0, \ \forall \vec{s} \in S \right\}$$

Therefore,

$$\mathbf{X} = S \bigoplus S^{\perp}$$

Example 1.11 (Minimum Norm Problem)

We want to find

$$\min \|\vec{x}\|_2^2$$

subject to $A\vec{x} = \vec{b}$. From FTLA we know that

$$\vec{x} = \vec{y} + \vec{z} \quad s.t. \quad \vec{y} \in N(A; \quad \vec{z} \in R(A^{\mathsf{T}}).$$

And

$$A(\vec{y} + \vec{z}) = 0 + A\vec{z} = \vec{b}$$

Since $\vec{y} \perp \vec{z}$,

$$\|\vec{x}\|_2^2 = \|y\|_2^2 + \|z\|_2^2$$

Consider $\vec{z} = A^{\mathsf{T}} \vec{w}$,

$$A\vec{z} = \vec{b}$$

$$AA^{\mathsf{T}}\vec{w} = \vec{b}$$

$$\vec{w} = (AA^{\mathsf{T}})^{-1}\vec{b}$$

Therefore

$$\vec{z} = \min \|\vec{x}\|_2^2 = A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1} \vec{b}$$

1.d. Symmetric Matrices

Definition 1.12

Matrix A is symmetric if $A = A^{\mathsf{T}}$, i.e. $A_{ij} = A_{ji}$.

Set \mathbb{S}^n means the set of symmetric matrices of dimension n.

Theorem 1.13 (Spectral Theorem)

If matrix $A \in \mathbb{S}^{\kappa}$, then

- All eigenvalues of A are real numbers
- Eigenspaces are orthogonal
- $dim(N(\lambda_i I A)) = \mu_i$ where μ_i is the algebraic multiplicity of λ_i

This means that A is always diagonalizable. i.e.:

$$A = U\Lambda U^{\mathsf{T}}$$

where U orthonormal and Λ diagonal. Orthonormal (or, unitary) means that the columns of U are orthogonal and all columns are normalized, i.e.

$$U^{-1} = U^{\mathsf{T}}$$

Theorem 1.14

For a diagonalizable n*n matrix A that has n linearly independent eigenvectors, A can be factorized as

$$A = U\Lambda U^{\mathsf{T}}$$

Where U orthonormal and Λ is a diagonal matrix consists of the eigenvalues of A such that

$$\Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_i \end{bmatrix}$$

Therefore it is also called an eigenvalue decomposition.

1.e. Principal Component Analysis

Definition 1.15

For $A \in \mathbb{S}$, its Rayleigh coefficient is defined as

$$R = \frac{\vec{x}^{\mathsf{T}} A \vec{x}}{\vec{x}^{\mathsf{T}} \vec{x}}$$

The Rayleigh coefficient can bound the eigenvalues of A such that,

$$\lambda_{min}(A) \le \frac{\vec{x}^{\top} A \vec{x}}{\vec{x}^{\top} \vec{x}} \le \lambda_{max}(A)$$

PCA is very similar to Singular Value Decomposition (SVD). SVD has more nice properties than PCA.

1.f. Singular Value Decomposition

Theorem 1.16 (SVD)

Let $A \in \mathbb{R}^{m \times n}$, the SVD of A is given as

$$A = U\Sigma V^{\mathsf{T}}$$

Where

$$U \in \mathbb{R}^{m \times m}, \ \Sigma \in \mathbb{R}^{m \times n}, \ V \in \mathbb{R}^{n \times n}$$

and Σ has real entries in its diagonal (the singular values) and zero's else where. If Rank(A) = r, we can rewrite A as

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^{\mathsf{T}} + \sigma_1 \vec{u}_1 \vec{v}_1^{\mathsf{T}} + \dots + \sigma_r \vec{u}_r \vec{v}_r^{\mathsf{T}}$$

Remark 1.17 (geometric interpretation of SVD)

Consider linear transformation on vector \vec{x} given by matrix A, s.t.

$$A\vec{x} = U\Sigma V^{\mathsf{T}}\vec{x}$$

SVD helps breaking the transformation into three smaller steps, i.e.

- orthonormal transformation (rotate/reflect) by V,
- scaling by Σ ,
- orthonormal transformation by U.

The following illustration is an example of a 2D transformation $A\vec{x}$. It shows the decomposed linear transformation through the unit circles relative to the original unit circle at different stages of the transformation.

Theorem 1.18 (Proof of SVD)

For $A \in \mathbb{R}^{m \times n}$, consider symmetric matrix $A^{\mathsf{T}}A$ that has eigenvalues $\lambda_1 \cdots \lambda_r > 0$ with corresponding eigenvectors $v_1 \cdots v_r$ and $\lambda_{r+1} \cdots \lambda_n = 0$. Then we know that

$$A^{\mathsf{T}}A\vec{v}_i = \lambda_i \vec{v}_i$$

Let

$$V = \begin{bmatrix} | & & | \\ \vec{v}_1 & \cdots & \vec{v}_n \\ | & & | \end{bmatrix}$$

Define $\sigma_i = \sqrt{\lambda_i}$, let

$$A\vec{v}_i = \sigma_i \vec{u}_i \ i \leq r$$

for some vector \vec{u}_i .

Claim. \vec{u}_i are orthonormal.

Proof.

$$\vec{u}_{i}^{\mathsf{T}} \vec{u}_{j} = \frac{(A\vec{v}_{i})^{\mathsf{T}}}{\sigma_{i}} \frac{(A\vec{v}_{j})}{\sigma_{j}}$$

$$= \frac{1}{\sigma_{i}\sigma_{j}} \vec{v}_{i}^{\mathsf{T}} A^{\mathsf{T}} A \vec{v}_{j} \qquad A^{\mathsf{T}} A \vec{v}_{j} = \lambda_{j} \vec{v}_{j}$$

$$= \frac{1}{\sigma_{i}\sigma_{j}} \vec{v}_{i}^{\mathsf{T}} \lambda_{j} \vec{v}_{j}$$

$$= \frac{\lambda_{j}}{\sigma_{i}\sigma_{j}} \vec{v}_{i}^{\mathsf{T}} \vec{v}_{j} \qquad \vec{v}_{i} \vec{v}_{j} \text{ orthonormal}$$

$$= \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Therefore \vec{u}_i are orthonormal.

Recall that A has rank r, we let

$$V_r = V = \begin{bmatrix} | & & | \\ \vec{v}_1 & \cdots & \vec{v}_r \\ | & & | \end{bmatrix}$$

Hence

$$AV_r = \begin{bmatrix} \mid & & \mid \\ \vec{u}_1 & \cdots & \vec{u}_r \\ \mid & & \mid \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} = U_r \Sigma_r$$

$$A = U \Sigma V^{\top}$$

Since V orthonormal and $V^{-1} = V^{\mathsf{T}}$

1.g. Low-Rank Approximation

Definition 1.19 (matrix norms)

There are two ways to interpret a matrix, either as an operator or as a block of data. Frobenius norm consider the matrix as a block of data.

Frobenius norm of matrix A is defined as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2} = \sqrt{tr(A^{\mathsf{T}}A)}$$

Frobenius norm is invariant to orthonormal transformations, i.e. given U an orthonormal matrix,

$$\|UA\|_F = \|AU\|_F = \|A\|_F$$

Spectral norm, or l_2 norm, interpret the matrix as an operator and is defined as

$$||A||_2 = \max_{||\vec{x}||_2 = 1} ||A\vec{x}||_2 = \max_{||\vec{x}|| = 1} \sqrt{\vec{x}^{\mathsf{T}} A^{\mathsf{T}} A \vec{x}} = \sqrt{\lambda_{max}(A^{\mathsf{T}} A)} = \sigma_{max}(A^{\mathsf{T}} A)$$

Intuitively, the spectral norm of a matrix A is the largest scaling that A can do (recall the Σ matrix that is used to scale the unit circle in the three steps of transformation after SVD).

Theorem 1.20 (Eckart-Young-Mirsky Theorem)

 $A \in \mathbb{R}^{m \times n}$. Do SVD gives us

$$A = U\Sigma V^{\mathsf{T}} = \sum_{i=1}^{n} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\mathsf{T}}$$

Define

$$A_k = \sum_{i=1}^k \sigma_i \vec{u}_i \vec{v}_i^{\mathsf{T}}$$

We want to find the best k-rank (lower than r) approximation of A, i.e.

$$\underset{B \in \mathbb{R}^{m \times n}, \ Rank(B) = k}{\operatorname{argmin}} \|A - B\|_{F}$$

Suprisingly, Eckart-Young-Mirsky Theorem tells us that

$$\underset{B \in \mathbb{R}^{m \times n}, \; Rank(B) = k}{\operatorname{argmin}} \|A - B\|_F = A_k$$

Moreover,

$$\underset{B \in \mathbb{R}^{m \star n, \; Rank(B) = k}}{\operatorname{argmin}} \|A - B\|_2 = A_k$$

This theorem relates two completely different norms and is not obvious at all. It shows how fundamental SVD is, such that in any way of looking at a matrix, the decomposition shows up.

Remark 1.21

Eckart-Young-Mirsky Theorem can be used to **compress images**. For an image, the matrix that represents the pixels of the image can be reduced to a lower rank matrix, and hence a smaller set of data, while remains relatively high resolution. The A_k matrix captures the key features of the image because it keeps k largest singular values and their corresponding vectors that contribute most to the dataset/transformation.

Definition 1.22 (trace)

The trace of a matrix is defined as

$$trace := \mathbb{R}^{n * n} \to \mathbb{R}$$

$$trace(A) = \sum_{i=1}^{n} a_{ii}$$

Remark 1.23 (Orthonormal transformation invariance of Frobenius norm)

Proof that $||UA||_F = ||AU||_F = ||A||_F$

Proof. Recall that $||A||_F = \sqrt{tr(A^{\mathsf{T}}A)}$. By definition, for any matrices A and B, we have tr(AB) = tr(BA) Then,

$$||AU||_F = \sqrt{tr((AU)^{\mathsf{T}}(AU))}$$

$$= \sqrt{tr(U^{\mathsf{T}}A^{\mathsf{T}}AU)}$$

$$= \sqrt{tr(UU^{\mathsf{T}}A^{\mathsf{T}}A)}$$

$$= \sqrt{tr(A^{\mathsf{T}}A)}$$

$$= ||A||_F$$

Remark 1.24 (Frobenius norm is the sqrt of the sum of the squares of the singular values)

$$\begin{split} \|A\|_F &= \|U\Sigma V^{\intercal}\|_F = \|\Sigma\|_F \\ &= \sqrt{\sum_{i=1}^n \sigma_i^2} \end{split}$$

Remark 1.25 (Proof of Eckart-Young-Mirsky)

Goal: B: rank(k), $||A - B||_F \ge ||A - A_k||_F$

Proof.

$$||A - A_k||_F = ||\sum_{i=k+1}^n \sigma_i \vec{u}_i \vec{v}_i||_F = \sqrt{\sum_{i=k+1}^n \sigma_i^2}$$

Note that the goal is true iff

$$\sum_{i=1}^{n} \sigma_i^2(A - B) \ge \sum_{i=k+1}^{n} \sigma_i^2(A)$$

Further note that the previous statement is true iff:

$$\sigma_i^2(A-B) \ge \sigma_{k+i}^2(A)$$

Let $\sigma_{k+i}(A)$ be the k+ith largest singular value of A. Hence

$$\sigma_{k+i}(A) = \sigma_{max}(A - A_k)$$

Denote A-B = C. Then

$$\sigma_i(A - B) = \sigma_i(C) = ||C - C_{i-1}||_2$$

Since B has rank k,

$$||B - B_k||_2 = 0$$

Add it to the previous equation gives us

$$\sigma_i(A - B) = \|C - C_{i-1}\|_2 + \|B - B_k\|_2$$

$$\geq \|C + B - C_{i-1} - B_k\|_2$$

$$\geq \|A - C_{i-1} - B_k\|_2$$

Let $D = C_{i-1} + B_k$. Rank(D) \leq i-1+k. Then

$$\sigma_i(A-B) \ge ||A-D||_2$$

Consider the solution to the optimization problem

$$\underset{D, \, rank(D) \le i+k-1}{\operatorname{argmin}} \|A - D\|_2 = A_k + i - 1$$

$$\min_{rank(D) \le i+k-1} ||A - D||_2 = \sigma_{k+1}(A)$$

Finally, bring the above result back to the previous equation gives us

$$\sigma_i(A-B) \ge \sigma_{k+1}(A)$$

as desired.