HW6

author: 111062272 蕭登鴻

1

Notice: Since cache access happens at stage MEM, instruction executed in picture after is at stage MEM.

case a

before:

	31	65 32 0							
Access	address								
	Index	٧	D L	_RU	J Tag	Word 0			
	0	1	0	0	0x0000000000000040f	0x0000000700000008			
	U	0	0	1					
	1	1	0	0	0x0000000000000040f	0x0000000100000002			
	'	0	0	1					
	2	1	0	0	0x0000000000000040f	0x0000000900000000			
	2	0	0	1					
	3	0	0	1					
	3	0	0	1					
	4	1	1	0	0x0000000001ffffff	0×00000000000000000			
	7	0	0	1					
	5	1	1	0	0x0000000001ffffff	0×00000000000000000			
	3	0	0	1					
	6	0	0	1					
	O	0	0	1					
	7	0	0	1					
	,	0	0	1					

after:

instructions:

1032c:	03010413	addi x8 x2 48	
10330:	000107b7	lui x15 0x10	
10334:	3c078793	addi x15 x15 960	
10338:	0007b603	ld x12 0 x15	
1033c:	0087b683	ld x13 8 x15	
10340:	0107b703	ld x14 16 x15	WB
10344:	fcc43823	sd x12 -48 x8	MEM
10348:	fcd43c23	sd x13 -40 x8	EX
1034c:	fee43023	sd x14 -32 x8	ID
10350:	0187a783	lw x15 24 x15	IF
10354:	fef42423	sw x15 -24 x8	
10358:	00700793	addi x15 x0 7	
1035c:	fef42623	sw x15 -20 x8	

Explanation: Set 0 has 1 already-occupied block when a write-allocate (write miss) happens. Therefore, dirty bit is set to 1, and the ref. bit of two ways is swapped.

case b

before:

31				6	5 32 0
				р	5 32 0
Access address					
Index	٧	D L	.RL	J Tag	Word 0
	1	1	0	0x0000000001fffffc	0x000000007fffffc8
0	1	0	1	0x0000000001ffffff	0x0000000100000002
1	1	1	0	0x0000000001fffffc	0x000000007ffffc0
	1	0	1	0x0000000001ffffff	0×0000000600000000
2	1	1	1	0x0000000001fffffe	0x00000000000000006
2	1	1	0	0x0000000001fffffd	0x000000007fffff90
3	1	1	1	0x0000000001fffffd	0x0000000000010270
3	1	1	0	0x0000000001fffffc	0×0000000200000000
4	1	1	1	0x0000000001ffffff	0×00000000000000000
4	1	1	0	0x0000000001ffffd	0x000000000000000002
5	1	1	1	0x0000000001ffffd	0x000000007fffffc0
3	1	1	0	0x0000000001fffffc	0x000000007fffff60
6	1	1	0	0x0000000001fffffc	0x000000000000000002
0	1	1	1	0x0000000001fffffd	0×0000000600000000
7	1	1	0	0x0000000001fffffc	0x000000007ffffc0
'	1	1	1	0x0000000001fffffd	0x0000000200000006

after:

instructions:

100cc:	fef42623	sw x15 -20 x8	
100d0:	fd043783	ld x15 -48 x8	
100d4:	0007a703	lw x14 0 x15	
100d8:	fd843783	ld x15 -40 x8	
100dc:	00e7a023	sw x14 0 x15	MEM
100e0:	fd043783	ld x15 -48 x8	EX
100e4:	fec42703	lw x14 -20 x8	ID
100e8:	00e7a023	sw x14 0 x15	IF
100ec:	00000013	addi x0 x0 0	
100f0:	02813403	ld x8 40 x2	

Explanation: Way 1 of set 0 becomes dirty when a write hit happens. Therefore, dirty bit is changed from 0 to 1, and the ref. bit of two ways is swapped.

case c

before:

after:

instructions:

100f4:	03010113	addi x2 x2 48	
100f8:	00008067	jalr x0 x1 0	
100fc:	fd010113	addi x2 x2 -48	
10100:	02113423	sd x1 40 x2	
10104:	02813023	sd x8 32 x2	
10108:	03010413	addi x8 x2 48	WB
1010c:	fca43c23	sd x10 -40 x8	MEM
10110:	00058793	addi x15 x11 0	EX
10114:	00060713	addi x14 x12 0	ID
10118:	fcf42a23	sw x15 -44 x8	IF
1011c:	00070793	addi x15 x14 0	
10120:	fcf42823	sw x15 -48 x8	
10124:	fd042783	lw x15 -48 x8	

Explanation: A write miss happens at way 0 of set 5, which is marked dirty. Therefore, a write back is performed according to the WB counter on the left; dirty bit is changed from 0 to 1; the ref. bit of two ways is swapped.

d

original:

own-design:

Explanation: Owning to the frequent-array-accessing nature in quicksort algorithm, increasing the parameter Words/Line accords to the increasing ability of handling spacial locality; therefore increase the hit rate from 84.94% to 98.14%.

2

a

encoding	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10
bit pos	1	2	3	4	5	6	7	8	9	10	11	12	13	14
bit value			1		0	0	1		0	1	1	0	0	1
p1	X		Х		X		Х		Х		X		Х	
p2		X	X			X	X			X	X			X
p4				X	X	X	X					X	X	X
p8								X	X	X	X	X	X	X

(under xor addition)

$$p1 = 1 + 0 + 1 + 0 + 1 + 0 = 1$$

$$p2 = 1 + 0 + 1 + 1 + 1 + 1 = 1$$

$$p4 = 0 + 0 + 1 + 0 + 0 + 1 = 0$$

$$p8 = 0 + 1 + 1 + 0 + 0 + 1 = 1$$

$$C\setminus\{p11\} = 11\ 1\ 0\ 001\ 1\ 011001$$

$$p11 = sum(11\ 1\ 0\ 001\ 1\ 011001) = 0$$

b

No errors

decoding	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	p11
bit pos	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bit value	1	1	1	0	0	0	1	1	0	1	1	0	0	1	0
p1	X		X		X		X		X		X		X		
p2		X	X			X	X			X	X			X	
p4				X	X	X	X					X	X	X	
p8								X	X	X	X	X	X	X	

$$h1 = 1 + 1 + 0 + 1 + 0 + 1 + 0 = 0$$

$$h2 = 1 + 1 + 0 + 1 + 1 + 1 + 1 = 0$$

$$h4 = 0 + 0 + 0 + 1 + 0 + 0 + 1 = 0$$

$$h8 = 1 + 0 + 1 + 1 + 0 + 0 + 1 = 0$$

hn = 0

=> No errors

C

Suppose d5 of C is inverted

decoding	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	p11
bit pos	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bit value	1	1	1	0	0	0	1	1	1	1	1	0	0	1	0
p1	X		X		X		X		X		X		X		
p2		X	X			X	X			X	X			X	
p4				X	X	X	X					X	X	X	
p8								X	X	X	X	X	X	X	

$$h1 = 1 + 1 + 0 + 1 + 0 + 1 + 0 = 1$$

$$h2 = 1 + 1 + 0 + 1 + 1 + 1 + 1 = 0$$

$$h4 = 0 + 0 + 0 + 1 + 0 + 0 + 1 = 0$$

$$h8 = 1 + 0 + 1 + 1 + 0 + 0 + 1 = 1$$

hn = 1

=> Single error in pos 1001_2 = 9: d5

d

Suppose p1 and d8 of C are inverted

decoding	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	p11
bit pos	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bit value	0	1	1	0	0	0	1	1	0	1	1	1	0	1	0
p1	X		X		X		X		X		X		X		
p2		X	X			X	X			X	X			X	
p4				X	X	X	X					X	X	X	
p8								X	X	X	X	X	X	X	

$$h1 = 1 + 1 + 0 + 1 + 0 + 1 + 0 = 1$$

$$h2 = 1 + 1 + 0 + 1 + 1 + 1 + 1 = 0$$

$$h4 = 0 + 0 + 0 + 1 + 0 + 0 + 1 = 1$$

$$h8 = 1 + 0 + 1 + 1 + 0 + 0 + 1 = 1$$

hn = 0

=> Double error detected

e

decoding	p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	p11
bit pos	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
bit value	0	1	1	0	0	0	1	1	0	1	1	1	0	1	1
p1	Х		Х		X		Х		X		Х		Х		
p2		X	X			X	X			X	X			X	
p4				Х	X	Х	Х					X	Х	X	
p8								Х	X	Х	Х	X	Х	X	

$$h1 = 1 + 1 + 0 + 1 + 0 + 1 + 0 = 1$$

$$h2 = 1 + 1 + 0 + 1 + 1 + 1 + 1 = 0$$

$$h4 = 0 + 0 + 0 + 1 + 0 + 0 + 1 = 1$$

$$h8 = 1 + 0 + 1 + 1 + 0 + 0 + 1 = 1$$

hn = 1

 \Rightarrow Single error at pos $1101_2 = 13$: d9

=> In fact, however, not at d9 (error correction/detection failed)

f

Since p = 8 is the minimum solution to:

$$2^p > = p + 128 + 1$$

plus one additional parity bit => a total of 9 parity bits.

3

a

Size of a single block: 2^{3} $^2 \cdot 2^1$ 0 bytes $= 2^4$ bytes = 16bytes $\equiv A$

b

Number of blocks: $2^{8 \ 4} = 2^5 = 32 \equiv B$

C

Total cache size: $A \cdot B = 512 \mathrm{bytes}$

d

$$\frac{ \text{V} \quad \text{D} \quad \text{Tag} \quad \text{Data}}{\text{size} \quad 1\text{b} \quad 1\text{b} \quad 5\text{b} \quad 16\text{B}}$$
 => $2^5 \cdot (1+1+5+16\cdot 8) \text{bits} = 540 \text{bytes}$

e

Tag	Index	Block offset	byte offset
13.8	7:4	3:2	1.0

f

4

3-level designs:

$$ext{L1}
ightarrow \left\{ egin{matrix} ext{L2-DM} \ ext{L2-4Way} \end{matrix}
ight\}
ightarrow ext{L3-8Way}
ightarrow ext{Mem}.$$

2-level designs:

$$ext{L}_1
ightarrow egin{cases} ext{L2-DM} \ ext{L2-4Way} \end{pmatrix}
ightarrow ext{Mem}.$$

Design symbol

A: L1 -> L2-DM -> L3-8Way

B: L1 -> L2-4Way -> L3-8Way

C: L1 -> L2-DM

D: L1 -> L2-4Way

a

```
Effective CPI

A: 1 + 5\%(16 + 4\%(50 + 2\%(200))) = 1.908

B: 1 + 5\%(20 + 3.5\%(50 + 2\%(200))) = 2.0945

C: 1 + 5\%(16 + 4\%(200)) = 2.2

D: 1 + 5\%(20 + 3.5\%(200)) = 2.35
```

b

denote r=4%(50+2%(200))

$$\Rightarrow 1 + 5\%(x + r) < 1.8 \Rightarrow x < 13.84 \Rightarrow x_{\text{max}} = 13$$

5

of bits for:

• offset: lg(16) = 4

• Index: lg(4) = 2

• Tag: 12 - 4 - 2 = 6

initial:

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000-00f]	0			
1		0				0			
2		0				0			
3		0				0			

1. (# of no.) Read 0x340

Tag/Index/Offset: 001101 00 0000

=> \$miss, load

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	0	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1		0				0			
2		0				0			
3		0				0			

2. Read 0x000

Tag/Index/Offset: 000000 00 0000

=> \$hit

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1		0				0			
2		0				0			
3		0				0			

3. Read 0x1d8

Tag/Index/Offset: 000111 01 1000

=> \$miss, load

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	1	1	0	000111	Mem[0x1d0- 1df]	0			
2		0				0			
3		0				0			

4. Write 0x354

Tag/Index/Offset: 001101 01 0100

=> \$miss, write allo., mark dirty

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2		0				0			
3		0				0			

5. Read 0xa61

Tag/Index/Offset: 101001 10 0001

=> \$miss, load

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2	1	1	0	101001	Mem[0xa60- a6f]	0			
3		0				0			

6. Write 0xa61

Tag/Index/Offset: 101001 10 0001

=> \$hit, mark dirty

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2	1	1	1	101001	Mem[0xa60- a6f]'	0			
3		0				0			

7. Read 0x3ec

Tag/Index/Offset: 001111 10 1100

=> \$miss, load

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2	0	1	1	101001	Mem[0xa60- a6f]'	1	0	001111	Mem[0x3e0- 3ef]
3		0				0			

8. Read 0xa62

Tag/Index/Offset: 101001 10 0010

=> \$hit

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2	1	1	1	101001	Mem[0xa60- a6f]'	1	0	001111	Mem[0x3e0- 3ef]
3		0				0			

9. Read 0x3ea

Tag/Index/Offset: 001111 10 1010

=> \$hit

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2	0	1	1	101001	Mem[0xa60- a6f]'	1	0	001111	Mem[0x3e0- 3ef]
3		0				0			

10. Read 0x422

Tag/Index/Offset: 010000 10 0010

=> \$miss, block replacement: way 0, write back happens; after: load

set	R	V0	D0	Tag0	Data0	V1	D1	Tag1	Data1
0	1	1	0	000000	Mem[0x000- 00f]	1	0	001101	Mem[0x340- 34f]
1	0	1	0	000111	Mem[0x1d0- 1df]	1	1	001101	Mem[0x350- 35f]'
2	1	1	0	010000	Mem[0x420- 42f]	1	0	001111	Mem[0x3e0- 3ef]
3		0				0			

6

a

page size: 512 B = 2^9 B

=> offset: 9 bits

b

 $16 - 9 = 7 \Rightarrow 2^7 = 128 \text{ virtual pages}$

C

14 - 9 = 5 => $2^5 = 32$ virtual pages

d

$$2^7 \cdot 4 \text{ B} = 2^9 \text{ B} = 512 \text{ B}$$

e

tag bits: 7 - 4 = 3

	V	D	R	Tag	phy-page num.
size	1b	1b	1b	3b	5b
=> 2 ⁴ (11) =	= 17			

7

initial state:

TLB:

V	Tag	phy-page num.	R	Replacement Pointer
1	0x4	6	1	V
1	0x1	2	0	
1	0xa	3	1	
0	0x3	5	0	

Page table:

index	V	phy-page num or in disk		
0	0	D		
1	1	2		
2	0	D		
3	1	5		
4	1	6		
5	1	11		
6	1	7		
7	0	D		

	index	V	phy-page num or in disk
	8	0	D
	9	0	D
•	a	1	3
•	b	0	D

1. 0x5368

tag: 0x5

=> \$miss, no page fault

section in page table:

index	V	phy-page num or in disk
5	1	11

TLB:

V	Tag	phy-page num.	R	Replacement Pointer
1	0x4	6	1	V
1	0x1	2	0	
1	0xa	3	1	
1	0x5	11	1	

2. 0x02c3

tag: 0x0

=> \$miss + replacement, page fault

updated section in page table:

index	V	phy-page num or in disk
0	1	1

TLB:

V	Tag	phy-page num.	R	Replacement Pointer
1	0x4	6	0	
1	0x0	1	1	

	V	Tag	phy-page num.	R	Replacement Pointer
-	1	0xa	3	1	V
•	1	0x5	11	1	

3. 0x434b

tag: 0x4

=> \$hit, reset others's R

V	Tag	phy-page num.	R	Replacement Pointer
1	0x4	6	1	
1	0x0	1	0	
1	0xa	3	0	V
1	0x5	11	0	

4. 0x6812

tag: 0x6

=> \$miss + replacement, no page fault

section in page table:

index	V	phy-page num or in disk
6	1	7

TLB:

V	Tag	phy-page num.	R	Replacement Pointer
1	0x4	6	1	
1	0x0	1	0	_
1	0x6	7	1	
1	0x5	11	0	V

5. 0xaf50

tag: 0xa

=> \$miss + replacement, no page fault

section in page table:

index	V	phy-page num or in disk
a	1	3

TLB:

V	Tag	phy-page num.	R	Replacement Pointer
1	0x4	6	1	V
1	0x0	1	0	
1	0x6	7	1	
1	0xa	3	1	