

MONASH INFORMATION TECHNOLOGY

Where To?

Scheduled Final Assessment Preparation (previously Exam)

FIT9132 2021 Semester 2





# **Application Development**

- Database is the data store, need application as well
- Web based front ends
  - Wide range of approaches: PHP, ASP.NET, etc
  - Very Rudimentary:
    - Web page for a user to log in and then return a list of students in the enrolment database

```
?php
//SQL query statement
$query = "SELECT studid,
    rtrim(studfname) || ' ' || rtrim(studlname) as sname,
    to_char(studdob,'dd-Mon-yyyy') as sbdate,
    studemail
FROM uni.student
ORDER BY studid";
```

- PL/SQL
  - backend development
  - Triggers, functions, procedures and packages
  - Procedure to change employee departments (empno, new dept)
    - move\_employee (101, 2)



1 fit-db.infotech.monash.edu/~dwiraha/uni/login\_uni\_student.php



```
create or replace
procedure move_employee (
    arg empno in employee.emp no%type,
    arg newdeptno in department.dept no%type)
as
INVALID EMPLOYEE exception;
INVALID DEPARTMENT exception;
dept_count number;
emp count number;
currentempdeptno department.dept no%type;
begin
    select count(*) into emp count
        from employee where emp_no = arg_empno;
    if emp count = 1 then
        select count(*) into dept count
                from department where dept_no = arg_newdeptno;
        if dept count = 1 then
          -- get employees current department number
          select dept no into currentempdeptno
             from employee
             where emp no = arg empno;
          -- change employees department number
          update employee set dept_no = arg_newdeptno
                    where emp_no = arg_empno;
                -- decrement old department counter
                update department set dept empcnt = dept empcnt - 1
                   where dept no = currentempdeptno ;
                -- increment new department counter
          update department set dept empcnt = dept empcnt + 1
                   where dept_no = arg_newdeptno ;
                commit;
          dbms_output.put_line ('Employee successfully moved');
        else
            raise INVALID_DEPARTMENT;
        end if;
    else
        raise INVALID EMPLOYEE;
```



end if:

# **Operational Database - FIT9132 focus**





# **Usage of database**

- Example of a supermarket
- Decision making
  - –Operational level
    - •How often do we need to re-stock X-item?
  - -Strategic and tactical level
    - •Is there any branch that performs worse than the state average?
    - What is the total sales made by each state each year and across a number of years?



## Operational Data vs. Decision Support Data

- Operational data
  - Mostly stored in relational database
  - Optimized to support transactions representing daily operations
  - Example:
    - How many students enrolled in FIT9132?
- Decision support data differs from operational data in three main areas:
  - Time span
  - Granularity
  - Dimensionality
  - Example:
    - What is the total number of students in the foundation units in each year (subtotal of the two semesters numbers) and the total across years, across a single unit.







**FIGURE** The ETL process 13.4 Operational data Data warehouse **Transformation** Extraction Loading • Filter • Transform Integrated • Integrate • Subject-oriented Classify • Time-variant Aggregate Nonvolatile • Summarize SOURCE: Course Technology/Cengage Learning



# TABLE 13.5

#### **Contrasting Operational and Decision Support Data Characteristics**

| CHARACTERISTIC      | OPERATIONAL DATA                             | DECISION SUPPORT DATA                                                                |
|---------------------|----------------------------------------------|--------------------------------------------------------------------------------------|
| Data currency       | Current operations<br>Real-time data         | Historic data Snapshot of company data Time component (week/month/year)              |
| Granularity         | Atomic-detailed data                         | Summarized data                                                                      |
| Summarization level | Low; some aggregate yields                   | High; many aggregation levels                                                        |
| Data model          | Highly normalized<br>Mostly relational DBMSs | Non-normalized Complex structures Some relational, but mostly multidimensional DBMSs |
| Transaction type    | Mostly updates                               | Mostly query                                                                         |
| Transaction volumes | High update volumes                          | Periodic loads and summary calculations                                              |
| Transaction speed   | Updates are critical                         | Retrievals are critical                                                              |
| Query activity      | Low to medium                                | High                                                                                 |
| Query scope         | Narrow range                                 | Broad range                                                                          |
| Query complexity    | Simple to medium                             | Very complex                                                                         |
| Data volumes        | Hundreds of gigabytes                        | Terabytes to petabytes                                                               |



### The Data Warehouse

- Database size
  - 2014 world's largest data warehouse SAP at 12.1
     Petabytes (around 12,400 Terabytes)
  - DBMS must support very large databases (VLDBs)
- Integrated, subject-oriented, time-variant, and nonvolatile collection of data
  - Provides support for decision making
- Usually a read-only database optimized for data analysis and query processing
- Requires time, money, and considerable managerial effort to create



#### FIT5195 - Business intelligence and data warehousing

On successful completion of this unit, students should be able to:

- 1. describe the scope and application of data warehousing
- 2. design data warehousing systems
- 3. design multidimensional data models using star schemas
- 4. implement data warehousing in relational databases
- 5. use OLAP in SQL
- 6. explain the need for data warehousing architecture
- 7. explain query optimisation and its impact on multi-dimensional design



# IOT - the explosion - Data, Data, Data .....





#### **Issue 1: Data Volume**

### FIT5137 - Advanced Database Technology

- 1. Describe various types of non-relational database systems, including NoSQL;
- 2. Design and model document-store and wide column-store databases;
- 3. Compare and contrast between relational and non-relational database modelling;
- 4. Explain the concepts of transactions in non-relational systems;
- 5. Implement document-store and wide column-store systems;
- Construct applications using a graph database system;
- 7. Demonstrate graph query processing.



#### **Issue 2: Data Processing**

# **Big Data Processing**

#### Computer systems

- -Parallel computer
  - •A single machine with massive number of CPUs.
- -Cluster of computers
  - •Multiple machines connected via network.
  - •Commodity computer.

#### Database structure

- –Non-relational database (NoSQL)
  - •No update, append only.
  - •Optimised for a 'main' operation
  - •Examples: MongoDB, Cassandra
- -Distributed File Systems
  - •HDFS (Hadoop File Systems)
  - Parquee File Systems

#### Parallel data processing

- -Hadoop
- -Spark
- In Memory database



# FIT5202 - Data processing for big data

On successful completion of this unit, you should be able to:

- identify and explain big data concepts and technologies;
- 2. write and interpret parallel database processing algorithms and methods;
- 3. apply common data analytics and machine learning algorithms in a big data envir...
- use and evaluate streaming methods in big data processing;
- 5. use big data streaming technologies.



# **Data Processing Ecosystem**



http://www.clearpeaks.com/blog/big-data/big-data-ecosystem-spark-and-tableau



### "Horses for Courses"

- Conventional RDBMS will continue play an important and significant role in OLTP (Online Transactions Processing)
- Increasingly now a range of database products are available, need to select appropriate product/model for task at hand.



# FIT9132 Scheduled Final Assessment



### **2021 Final Assessment**

- 2 HOUR 10 minutes
  - Time includes reading time
  - eExam, closed Book, online supervision, no aids (eg. dictionary)
  - 2 working pages, 1 answer sheet (all three taken in as blank pages)
  - Rulers, pens, pencils allowed
  - Available via the eExam platform
    - https://www.monash.edu/exams/electronic-exams
  - The modelling question makes use of a hybrid question:
    - write answer on paper (*indicate* answered on e-exam)
      - submit one page with complete diagram (one answer sheet)
    - photograph with phone MUST NOT write after exam time expired
    - upload via QR code (<u>after paper has been completed</u>) <u>important</u> that you practice this process
      - Complete the e-exam General Knowledge 2021 practice



### 2021 Final Assessment Structure

- 100 marks 50% of your final mark in FIT9132.
  - Minimum to pass FIT9132 overall:
    - 45% in-semester, 45% final assessment and 50% overall
  - Assignment 2B marking will not be finalised before you sit your Final Assessment
- Questions:
  - Cover theory and application
  - Timing 100 marks, 120 mins 1 mark/minute target
  - SQL/NoSQL case study will be released on Moodle the day before the scheduled day, <u>do not bring</u> the case study to the Final Assessment or discuss it in the Ed forums
  - No tables/data for the case study will be available on our Oracle server
- Final Assessment when your responsibility to determine



### **2021 Final Assessment**

- All content specified during your semester of study in FIT9132 is examinable, including but not limited to:
  - Pre-reading (weekly Coronel & Morris chapters)
  - Workshop/Workshop Q&A Slides and Videos
  - Tutorial Notes, and
  - all other Moodle Materials (except where explicitly stated NOT EXAMINABLE).



### 2021 Mock Final Assessment

- Serves to provide an overview of the general structure of the final assessment paper only.
- Available Thursday, 21st October 2021 6 PM
  - Sample solution available Wednesday, 27th October 9AM (please attempt the mock paper before accessing the sample solution)
  - Both sample paper and solution close 6 hrs before Scheduled Final Assessment (Exam)
  - Forums also close 6 hrs before Scheduled Final Assessment (Exam)
- Link on Moodle "Scheduled Final Assessment" block/page
- To protect the integrity of the paper: NO ACTUAL FINAL ASSESSMENT PAPER QUESTIONS are included; and the COMPOSITION OF THE SUB QUESTIONS are SUBJECT TO CHANGE.
- Suggest you leave it until you can attempt it under time limit of 2 hours
   10 minutes (time control is critical)
- Allows multiple attempts



# Week 2 and 5 – Data Modelling

- Conceptual vs Logical Level
- Entity
  - Strong vs weak
  - Associative entity
- Types of attributes
- Relationship
  - Connectivity type : one-to-one, one-to-many, many-to-many
  - Cardinality
  - Participation
  - Identifying vs Non-identifying.
- Mapping from Conceptual to Logical
  - E.g. Mapping many-to-many



### Week 3 - Relational Model

- Relational model properties.
- Keys
  - Superkey, Candidate Key, Primary Key
  - Foreign Key
- Data Integrity
  - Entity integrity
  - Referential Integrity
- Relational Algebra
  - Understanding of efficiency



#### Week 4 – Normalisation

- ■UNF to 3NF
  - Mapping form to UNF
  - UNF to 1NF remove repeating group.
  - 1NF to 2NF remove partial dependency (general definition)
  - 2NF to 3NF remove transitive dependency.
- Dependency diagrams
  - For example: cust\_id -> cust\_name, cust\_phone, cust\_balance
- Be careful in choosing the PK!
- Mapping a set of 3NF relations to a logical model



# **Week 6 – Data Definition Language**

#### CREATE TABLE statements

- Primary key definition
- Foreign key definition
- Other Constraints
- ALTER
- INSERT
  - Adherence to referential integrity constraints
    - Order of insertion
- Oracle Sequence
- **-**UPDATE (DML)
- •DELETE (DML)



# Week 7, 9 and 10 – SQL

- Single table retrieval with predicate
- Join
  - Natural join
  - Outer join
- Aggregate functions
- Set Operators
- Subquery
- Oracle functions
  - TO\_CHAR, TO\_DATE, NVL, UPPER, LOWER, ROUND, RTRIM/LTRIM, LPAD/ RPAD
- PAYROLL SQL revision available



# **Week 8 – Transaction Management**

- Transactions
  - transaction boundaries (start and end)
  - use of commit/rollback
- ACID properties.
- Transaction problems.
- Transaction management with locks.
- Wait For Graphs
- Two-Phase Locking
- Restart and Recovery using Transaction Log.



#### Week 11 - noSQL

- Characteristics of Big Data
- Four major noSQL models
- Role of Hadoop (basic only)
- Using SQL to generate JSON document
- MongoDB CRUD commands
  - –C: insert (One and Many)
  - –R: find (predicates, count(), pretty())
  - –U: update (One and Many)
  - –D: delete (One and Many)



#### **Week 12 – Database Future Directions**

- The content of week 12's lecture
  - -Database Trends
  - -Future directions

Is NOT examinable (questions related to this week's new content will not appear on the paper)



#### **Consultations for Scheduled Final Assessment**

- Online consultation sessions will be provided.
  - -Details to be posted on Moodle
- Don't come to consultations in the hope of obtaining some 'extra' information about the paper
  - Session intended to clear up any issues YOU find as you prepare for the Scheduled Final Assessment





http://blog.proqc.com/administrative-professionals-quality-thank-you/

