

Dipartimento di Elettronica e Informazione Politecnico di Milano 20133 Milano (Italia) Riozza Leppardo de Vinci 23

20133 Milano (Italia) Piazza Leonardo da Vinci, 32 Tel. (+39) 02-2399.3400 Fax (+39) 02-2399.3411

Advanced Computer Architecture

May 10, 2023

Prof. D. Conficconi, and M. D. Santambrogio

Name	
Last Name	
Professor:	

The exam will last 75'

Problem 1 (10%)	
Problem 2 (30%)	
Problem 3 (20%)	
Problem 4 (30%)	
Problem 5 (10%)	
Total (100%)	

A VLIW Architecture has to have multiple Program Counters to load the necessary Multiple Data.

Given the previous statement, confirm if it is TRUE or FALSE and **effectively support** your answer.

Circle the **right** answer: True False

Question 1.5

Increasing the number of stages in a pipeline, it is always improving the performance.

Given the previous statement, confirm if it is TRUE or FALSE and **effectively support** your answer.

Circle the **right** answer: True False

Problem 2Assume that the following code has been executed on a CPU with SCOREBOARD.

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB
11	LD F5, 16 (R1)	1	2	6	7
12	ADDD F12, F5, F2	2	8	14	15
13	MULTD F2, F4, F3	3	4	15	16
14	DIVD F1, F12, F5	4	16	27	28
15	SD F1, 4 (R1)	5	29	33	34
16	SUBD F2, F12, F4	17	18	24	25

- A. List all the possible conflicts in the code.
- B. Is there a "configuration" that can respect the shown execution? How many units? Which kind? What latency?
- C. If the previous table was not correct, please, write the right one and specify the number, kind and latency for each unit.

Answer 2.B

A possible configuration consists of:

- 2 MUL/DIV units and 11 CC of latency
- 1 ADDD/SUBD unit and 6 CC of latency
- 2 Memory Unit and 4 CC of latency
- 1 write port is enough

Other solutions are possible.

Answer 2.C

Considering the previous answers, no answer is needed here.

	Instruction	ISSUE	READ OPERAND	EXE COMPLETE	WB
11	LD F5, 16 (R1)				
12	ADDD F12, F5, F2				
13	MULTD F2, F4, F3				
14	DIVD F1, F12, F5				
15	SD F1, 4 (R1)				
16	SUBD F2, F12, F4				

Explain the key idea of Dynamic Scheduling. Describe two dynamic-scheduling-based architectures and explain their main differences.

Considering the following VLIW "architecture":

Considering the following portion of assembly, describe the corresponding VLIW code:

Considering the following portion of assembly.

LOOP: beq \$t6,\$t7, END
lw \$t2,VECTB(\$t6)
lw \$t3,VECTC(\$t6)
sw \$t2,VECTA(\$t6)
addi \$t3,\$t3,4
sw \$0,VECTD(\$t6)
sw \$t3,VECTC(\$t6)
addi \$t6,\$t6,4
blt \$t6,\$t7, LOOP

- 4.A schedule the following code for the VLIW with an IN-ORDER ISSUE. Branch completed with 1 cycle delay slot (branch solved in ID stage).
- 4.B How the does the scheduling change if we consider an IN-ORDER ISSUE and pipelined FU?

Answer 4.A

	INT1	INT2	MU1	MU2	FPU1	FPU2
C1	-					
C2						
C3						
C4						
C5						
C6						
C7						
C8						
C9						
C10						
C11						
C12						
C13						
C14						
C15						

Answer 4.B

	FU1	FU2	FU3	FU4	FU5	Notes
C1			. ,			
C2						
C3						
C4			-			
C5	* **					
C6						
C7						
C8						
C9						
C10						
C11						
C12						
C13						
C14						
C15						

A VLIW Architecture has to have multiple Program Counters to load the necessary Multiple Data.

Given the previous statement, confirm if it is TRUE or FALSE and **effectively support** your answer.

Circle the **right** answer: True

False YLW -> SINGLE INSTRUCTORS

= ONLY ONE P.C.

Question 1.5

Increasing the number of stages in a pipeline, it is always improving the performance.

Given the previous statement, confirm if it is TRUE or FALSE and effectively **support** your answer.

Circle the **right** answer:

True

False

POTEMIANY HIGHER OVERMANNES AND STAGES WHORE TO SMU

2													
	LD	(F5) 16 (R	1)	RAW	F5	11-12	K	AR	FZ	2	2-	13	
	Αľ	DDD <mark>F12</mark> , F	5, F2										
		JLTD F2, F		RAW	F5	11-14	\v/	IR	F2	12-	16		
		VD F1, F12		RAW	F12	.12-14							
	SE	E1, 4 (R1)										
	SL	JBD F2, F1	2, F4	RAW	F42	12-16	\x//	łw/	F2	12	3-1	6	
				RAW	F1	14-15							
		Instruction	ISSUE	READ OPER	RAND	EXE COMPL	ETE V	VВ					
	—	LD F5, 16 (R1)	1	2		6		7)					
	-	ADDD F12, F5, F2	2	8		14		15					
		MULTD F2, F4, F3 DIVD F1, F12, F5	3	4 16		15 27		16) 28)					
	-	SD F1, 4 (R1)	5	29		33		34					
		SUBD F2, F12, F4	17	18		24		25					

2 MEM	4cc
1 ADDD/SUBD	6 CC
1 MULD	11 &
1 DIV D	11cc

3																					
٨.																					
דע	NA	MIC	54	Ked	ULI	N6	ाध	551	₩	(MPI	UPY	INS	HOU	(HO	V E	KEW	MON	_			
DYN	AM	Icau	y A	MP	+1 N	6 M	TH	કે ભા	ien (1100	2 X1	. /	/The	bu	es ()(<i>)</i> [-	-pt		KEW Ser	אשה	>
		•		7-111	1000																
								50	र्गव	eb(DAR	4									
4	-5	MGE	, PI	PEL	(Ne	AC	યના	eu	UZE												
	•	DIS	MNO	ws	H 1	SSV	E 5	HO	E A	ND	rea	D 0	44	AND	4A	廷					
										A A A											
	•	REL	(ES	ON	A	Cen	PAI	1 Zel	2 (0)	MA	PUPI										
								T	OMA	450	LO										
			No.	L oo																	
3	-51	Ace	P	PEU	NE	SJA	4411	eu	VIZE												
	•	REL	les	o V	A	Dist	N(B)	//T / }N	col	V 124	MER	. H4	At-		r _i /C	ь	// Ax/	orh'	ı w	40	
					•					-				1000			744			.,,	
		But	6	PEN	Pe	ON	HE	AVA	HLA	HE	kes	erv	Atto	N S	Aru	ans.	RS,	14	H		
		Ex) Not	rs <i>1</i>		11MI	W(I)	r	ટબસ			AMI	1625								
	•	(81	VH2,	SUP	67	COM	MIT	PH	ASE	W	MPY	30 A	34	a C	OMJ	lon	DA	M	Bus	U	B

A

	INT1	INT2	MU1	MU2	FPU1	FPU2
C1	bea \$t6, \$t7, END	1	IN \$62, VECTB (\$16)	IW \$03, VECTCC\$06)		
C2		2				
C3		3				
C4	alli \$13,\$13,4	4	JW \$12, VECTA (\$16)	24 40, VECT D(ACE)		
C5		2				
C6		3				
C7	addi 956,46,41		100 \$13, VECTC (\$16)			
C8	1 DELAYSUOT					
C9	616 \$66,857 LOOP					
C10						
C11						
C12						
C13						
C14						
C15						

PIPELINED FU => NO MEDS TO WAIT THE PRECEDING INSTRUMEN TO END UNLESS THEIRE ARE DEPENDENCIES

	FU1	FU2	FU3	FU4	FU5	Notes
C1	bea \$16, \$17, END	1	IW St2, YECTB (966)	IW St3 NECTC(St6)		
C2		2				
C3		3				
C4	add 1 3t3, \$t3,4	1	Sw SC2, VECTA (St6)	3W\$0,VBCTD(\$66)		
C5	addi 956180614	1	YM \$13 VECTCORD			
C6	DELAT					
C7	bit \$16, 957, 100p					
C8						
C9						
C10						
C11						
C12						
C13						
C14						
C15						