Online supplemental materials for "Tobit modeling for dependent-sample t-tests and moderated regression with ceiling or floor data"

Table S1. The dependent-sample t-test simulation results: Convergence rates (%) for conditions with $\rho = 0.5$

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
					Converg	ence rates under	Cohen's	s d = 0			
N = 50	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 100	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 200	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 500	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
					Converge	ence rates under	Cohen's	d = 0.5			
N = 50	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 100	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 200	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
<i>N</i> = 500	SDR = 1 SDR = 1.5	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100	100 100

Note. CP: ceiling proportion of pretest scores; SDR: the population standard deviation ratio.

Table S2. The dependent-sample t-test simulation results: Convergence rates (%) for conditions with $\rho=0$

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						ence rates under					J
N = 50	SDR = 1	100	100	100	100	100	100	100	100	100	100
1, 50	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 100	SDR = 1	100	100	100	100	100	100	100	100	100	100
1, 100	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 200	SDR = 1	100	100	100	100	100	100	100	100	100	100
11 200	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 500	SDR = 1	100	100	100	100	100	100	100	100	100	100
10 300	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
					Converge	nce rates under	Cohen's	d = 0.5			
N = 50	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 100	SDR = 1	100	100	100	100	100	100	100	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 200	SDR = 1	100	100	100	100	100	100	99.9	100	100	100
	SDR = 1.5	100	100	100	100	100	100	100	100	100	100
N = 500	SDR = 1	100	100	100	100	100	100	100	100	100	100
N CD	SDR = 1.5	100	100	100	100	100	100	100	100	100	100

Note. CP: ceiling proportion of pretest scores; SDR: the population standard deviation ratio.

Table S3. The dependent-sample t-test simulation results: Empirical bias and relative bias of mean difference estimates from conditions with $\rho=0$

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
					Estimation	empirical bias u	nder Coh	en's $d=0$			
N = 50	SDR = 1	0.006	-0.008	-0.009	-0.004	-0.003	-0.003	0.004	0.002	0.002	0.014
	SDR = 1.5	-0.008	-0.102	0.017	0.007	-0.154	0.006	-0.005	-0.184	-0.007	-0.018
N = 100	SDR = 1	0.007	-0.001	-0.001	0.001	-0.005	-0.006	0.000	0.002	0.005	0.012
	SDR = 1.5	0.001	-0.112	0.007	0.002	-0.164	-0.004	-0.008	-0.182	0.005	-0.007
N = 200	SDR = 1	-0.001	0.004	0.004	0.005	0.001	0.001	0.005	0.000	-0.002	0.005
	SDR = 1.5	-0.006	-0.117	0.000	0.000	-0.162	-0.003	-0.003	-0.179	0.004	-0.002
N = 500	SDR = 1	0.001	-0.003	-0.004	-0.001	0.000	0.000	0.002	0.000	-0.001	0.004
	SDR = 1.5	-0.001	-0.117	-0.001	0.000	-0.156	0.003	0.001	-0.180	0.003	0.000
					Estimation	relative bias und	ler Cohen	's $d = 0.5$			
N = 50	SDR = 1	0.003	-0.190	-0.007	0.030	-0.303	0.005	0.070	-0.433	0.008	0.084
	SDR = 1.5	-0.016	-0.424	0.009	0.024	-0.569	0.013	0.022	-0.684	0.013	0.010
N = 100	SDR = 1	0.002	-0.184	-0.002	0.024	-0.311	0.010	0.051	-0.439	-0.004	0.048
	SDR = 1.5	0.004	-0.423	0.002	0.014	-0.576	-0.006	-0.005	-0.683	0.001	-0.007
N = 200	SDR = 1	-0.003	-0.180	0.004	0.023	-0.310	0.009	0.039	-0.435	-0.002	0.040
	SDR = 1.5	-0.007	-0.422	0.001	0.013	-0.575	0.000	0.005	-0.682	0.010	0.008
N = 500	SDR = 1 SDR = 1.5	0.004 0.002	-0.183 -0.422	-0.001 0.002	0.012	-0.315 -0.573	0.002	0.022 0.009	-0.435 -0.683	-0.001 0.004	0.024 0.009

Note. CP: ceiling proportion; SDR: the population standard deviation ratio. Unsatisfactory results are highlighted in bold.

Table S4. The dependent-sample t-test simulation results: Empirical Type I error rates (%) and coverage rates (%) of mean difference estimates from conditions with $\rho=0$

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
				En	npirical Typ	e I error rates (%	6) under C	Cohen's $d =$	0		
N = 50	SDR = 1	5.1	3.6	4.2	4.5	4.9	6.0	6.0	4.7	6.0	5.8
	SDR = 1.5	5.2	6.9	6.7	6.5	11.1	5.3	4.8	16.3	6.0	6.4
N = 100	SDR = 1	5.5	4.9	5.0	4.8	5.3	5.2	5.4	4.5	5.1	5.2
	SDR = 1.5	3.7	10.8	5.7	6.1	20.3	4.5	4.5	25.1	4.7	5.4
N = 200	SDR = 1	4.9	5.5	5.4	5.5	4.9	5.7	5.6	5.1	4.9	5.8
	SDR = 1.5	4.9	18.2	5.1	5.5	36.7	4.6	5.2	49.7	6.2	6.3
N = 500	SDR = 1	5.5	5.6	5.7	6.5	3.7	4.3	4.4	5.5	5.1	5.9
	SDR = 1.5	5.5	38.8	5.7	6.1	70.0	5.1	5.2	88.0	5.9	6.4
					Coverage	rates (%) under	r Cohen's	d = 0.5			
N = 50	SDR = 1	94.6	88.3	93.9	94.1	70.0	96.1	94.3	37.0	95.1	93.2
	SDR = 1.5	94.8	49.7	95.4	94.4	13.6	94.6	94.0	1.4	94.6	93.4
N = 100	SDR = 1	95.9	82.5	93.8	94.6	44.2	95.5	94.9	8.5	95.8	94.2
	SDR = 1.5	95.0	20.3	93.8	93.6	0.7	96.1	95.2	0.0	96.0	95.2
N = 200	SDR = 1	94.0	67.7	95.4	95.1	16.1	94.5	94.7	0.3	95.4	94.5
	SDR = 1.5	94.7	1.8	94.9	95.3	0.0	94.8	94.5	0.0	96.0	95.9
N = 500	SDR = 1	94.3	32.7	94.8	94.5	0.5	95.4	95.4	0.0	95.1	95.1
	SDR = 1.5	95.5	0.0	95.5	95.9	0.0	96.3	94.9	0.0	95.1	95.2

Note. CP: ceiling proportion; SDR: the population standard deviation ratio. Unsatisfactory results are highlighted in bold.

Table S5. The dependent-sample t-test simulation results: Empirical Type I error rates (%) and coverage rates (%) of mean difference estimates when using the t-distributions with the degrees of freedom N-1 to construct confidence intervals for the Tobit ML approach

		$\rho = 0$			$\rho = 0.5$		
CP of pre- test scores =		10%	20%	30%	10%	20%	30%
			irical Type	I error rates	s (%) under Co		
N = 50	SDR = 1	3.5	5.2	5.1	4.4	4.7	4.6
	SDR = 1.5	6.2	5.0	5.2	4.5	5.1	4.4
N = 100	SDR = 1	4.2	5.0	5.0	3.7	5.4	5.1
	SDR = 1.5	5.0	4.2	4.6	5.6	4.6	5.4
N = 200	SDR = 1	5.4	5.6	4.7	4.7	4.9	4.9
	SDR = 1.5	4.8	4.4	5.6	4.8	3.7	4.6
N = 500	SDR = 1	5.7	4.3	5.1	5.4	4.0	4.5
	SDR = 1.5	5.7	5.1	5.9	4.4	4.8	5.6
	_		Coverage	rates (%) ur	nder Cohen's d	= 0.5	
N = 50	SDR = 1	94.7	96.6	95.4	95.1	95.5	95.4
	SDR = 1.5	96.2	95.5	94.9	94.5	95.5	95.8
N = 100	SDR = 1	93.8	95.9	96.0	96.6	95.3	94.9
	SDR = 1.5	94.1	96.4	96.3	94.6	95.4	94.7
N = 200	SDR = 1	95.5	94.6	95.6	94.8	95.1	95.0
	SDR = 1.5	94.9	94.8	96.2	95.4	95.5	94.5
N = 500	SDR = 1	94.8	95.4	95.1	96.0	94.0	95.3
	SDR = 1.5	95.5	96.3	95.3	95.4	95.5	94.7

Note. CP: ceiling proportion; SDR: the population standard deviation ratio.

Table S6. Moderated regression simulation results: Convergence rates (%) for conditions in Scenario 1 where the outcome and the focal predictor have ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$	3				
N = 50	$\beta_3 = 0$	100.0	100.0	98.1	100.0	100.0	92.2	100.0	100.0	81.8	100.0
	$\beta_3 = 0.39$	100.0	100.0	99.3	100.0	100.0	93.7	100.0	100.0	84.4	100.0
N = 100	$\beta_3 = 0$	100.0	100.0	99.8	100.0	100.0	97.0	100.0	100.0	85.3	100.0
	$\beta_3 = 0.39$	100.0	100.0	99.9	100.0	100.0	96.4	100.0	100.0	89.5	100.0
N = 200	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	99.3	100.0	100.0	94.9	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	99.4	100.0	100.0	94.4	100.0
N = 500	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.5	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.2	100.0
						$\rho = 0$					
N = 50	$\beta_3 = 0$	100.0	100.0	99.0	100.0	100.0	94.2	100.0	100.0	90.2	100.0
	$\beta_3 = 0.39$	100.0	100.0	99.1	100.0	100.0	94.7	100.0	100.0	86.2	100.0
N = 100	$\beta_3 = 0$	100.0	100.0	99.9	100.0	100.0	99.0	100.0	100.0	93.6	100.0
	$\beta_3 = 0.39$	100.0	100.0	99.9	100.0	100.0	98.1	100.0	100.0	93.9	100.0
N = 200	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	99.4	100.0	100.0	98.2	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	99.8	100.0	100.0	96.6	100.0
N = 500	$\beta_3 = 0$ $\beta_3 = 0.39$	100.0	100.0 100.0	100.0 100.0	100.0	100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0	100.0 99.7	100.0 100.0
	p ₃ - 0.39	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99./	100.0

Table S7. Moderated regression simulation results: Relative bias of regression coefficient β_1 for conditions in Scenario 1 where the outcome and the focal predictor have ceiling effects

		CP = 0%	CP = 10%	T-1:4	Т-1-:4	CP = 20%	T-1-14	T-1-14	CP = 30%	T-1-14	T-1-14
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	-0.007	-0.164	0.039	0.057	-0.199	0.027	0.056	-0.203	0.034	0.075
	$\beta_3 = 0.39$	-0.001	-0.244	0.029	0.047	-0.276	0.018	0.046	-0.272	0.037	0.068
N = 100	$\beta_3 = 0$	0.001	-0.187	0.004	0.005	-0.197	0.017	0.022	-0.199	0.015	0.030
	$\beta_3 = 0.39$	0.002	-0.252	0.021	0.023	-0.280	0.011	0.017	-0.277	0.006	0.021
N = 200	$\beta_3 = 0$	-0.002	-0.180	0.011	0.005	-0.202	0.013	0.009	-0.201	0.003	0.010
	$\beta_3 = 0.39$	0.002	-0.253	0.020	0.014	-0.274	0.009	0.005	-0.275	0.003	0.009
N = 500	$\beta_3 = 0$	-0.001	-0.181	0.012	0.002	-0.200	0.011	0.000	-0.205	-0.002	-0.005
	$\beta_3 = 0.39$	0.001	-0.261	0.010	-0.001	-0.279	0.009	-0.002	-0.274	0.004	0.001
						$\rho = 0$					
N = 50	$\beta_3 = 0$	0.003	-0.153	0.017	0.032	-0.156	0.028	0.057	-0.160	0.028	0.072
	$\beta_3 = 0.39$	0.002	-0.201	0.023	0.038	-0.226	0.014	0.039	-0.236	0.022	0.054
N = 100	$\beta_3 = 0$	-0.002	-0.146	0.015	0.017	-0.160	0.016	0.024	-0.163	0.010	0.028
	$\beta_3 = 0.39$	-0.003	-0.210	0.017	0.019	-0.223	0.021	0.029	-0.227	0.013	0.029
N = 200	$\beta_3 = 0$	0.002	-0.151	0.010	0.006	-0.165	0.008	0.008	-0.162	0.005	0.012
	$\beta_3 = 0.39$	0.000	-0.215	0.011	0.007	-0.227	0.013	0.013	-0.230	0.003	0.013
N = 500	$\beta_3 = 0$	0.000	-0.151	0.007	0.000	-0.162	0.008	0.003	-0.160	0.007	0.003
NI CD	$\beta_3 = 0.39$	-0.001	-0.214	0.013	0.005	-0.233	0.003	-0.001	-0.228	0.008	0.008

Table S8. Moderated regression simulation results: Relative bias of regression coefficient β_2 for conditions in Scenario 1 where the outcome and the focal predictor have ceiling effects

		CP = 0%	CP = 10%	T. 1. 4	т.1.4	CP = 20%	T. 1.24	т.1.2	CP = 30%	T. 1.24	T. 1.4
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$	1				
N = 50	$\beta_3 = 0$	0.000	-0.253	0.008	0.047	-0.348	0.013	0.070	-0.436	0.009	0.096
	$\beta_3 = 0.39$	-0.005	-0.331	0.002	0.039	-0.408	0.006	0.064	-0.468	0.021	0.096
N = 100	$\beta_3 = 0$	-0.001	-0.255	0.001	0.022	-0.356	0.000	0.035	-0.443	-0.006	0.045
	$\beta_3 = 0.39$	-0.003	-0.334	-0.001	0.019	-0.408	0.008	0.035	-0.477	-0.003	0.036
N = 200	$\beta_3 = 0$	-0.001	-0.260	-0.002	0.012	-0.356	0.003	0.026	-0.447	-0.007	0.023
	$\beta_3 = 0.39$	0.000	-0.339	0.001	0.013	-0.417	-0.003	0.013	-0.479	0.001	0.024
N = 500	$\beta_3 = 0$	0.003	-0.256	0.002	0.011	-0.358	-0.003	0.013	-0.442	0.001	0.023
	$\beta_3 = 0.39$	-0.002	-0.338	0.000	0.007	-0.419	-0.001	0.010	-0.480	-0.003	0.011
						ho = 0					
N = 50	$\beta_3 = 0$	0.003	-0.229	0.008	0.034	-0.329	0.014	0.055	-0.427	0.013	0.072
	$\beta_3 = 0.39$	-0.003	-0.279	0.005	0.032	-0.367	-0.006	0.031	-0.426	0.011	0.060
N = 100	$\beta_3 = 0$	-0.006	-0.230	0.006	0.018	-0.336	0.004	0.023	-0.434	-0.006	0.021
	$\beta_3 = 0.39$	-0.006	-0.280	0.009	0.021	-0.363	0.008	0.026	-0.420	0.009	0.032
N = 200	$\beta_3 = 0$	0.000	-0.238	-0.002	0.005	-0.339	0.000	0.009	-0.427	0.002	0.013
	$\beta_3 = 0.39$	0.002	-0.284	0.002	0.007	-0.363	0.003	0.011	-0.425	0.003	0.015
N = 500	$\beta_3 = 0$	0.000	-0.238	-0.003	0.000	-0.340	-0.003	0.001	-0.430	0.000	0.006
N. CD	$\beta_3 = 0.39$	0.000	-0.282	0.005	0.007	-0.363	0.000	0.004	-0.429	0.001	0.006

Table S9. Moderated regression simulation results: Empirical coverage rates (%) of regression coefficient β_1 for conditions in Scenario 1 where the outcome and the focal predictor have ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	92.7	76.1	94.2	94.4	69.8	95.8	96.7	71.5	93.4	94.0
	$\beta_3 = 0.39$	94.9	60.0	93.8	94.5	53.7	94.5	95.0	55.6	92.9	93.2
N = 100	$\beta_3 = 0$	94.9	52.8	93.9	94.7	51.1	94.1	94.6	53.6	92.7	93.7
	$\beta_3 = 0.39$	94.3	30.3	94.3	95.4	25.4	92.7	93.2	31.8	93.6	94.6
N = 200	$\beta_3 = 0$	93.7	26.8	94.4	94.7	21.4	94.4	94.8	28.1	93.2	95.6
	$\beta_3 = 0.39$	95.3	6.0	94.3	94.3	5.2	93.9	94.6	9.3	91.6	94.4
N = 500	$\beta_3 = 0$	96.0	1.5	95.4	96.1	1.3	94.6	94.2	1.9	92.0	94.4
	$\beta_3 = 0.39$	94.8	0.1	94.0	94.1	0.0	95.4	95.5	0.1	92.9	95.1
						ho = 0					
N = 50	$\beta_3 = 0$	92.8	79.4	94.1	95.0	78.3	94.3	94.7	75.6	93.6	95.5
	$\beta_3 = 0.39$	91.6	68.3	93.3	94.9	62.1	94.0	94.8	64.3	94.5	96.2
N = 100	$\beta_3 = 0$	93.9	65.8	95.3	95.2	60.1	93.9	94.5	63.4	94.0	94.8
	$\beta_3 = 0.39$	93.4	44.3	93.6	94.2	42.8	92.8	93.7	44.6	94.0	95.0
N = 200	$\beta_3 = 0$	94.5	37.8	94.2	94.4	35.0	93.2	93.5	39.6	94.8	95.5
	$\beta_3 = 0.39$	94.8	13.6	94.7	95.1	13.8	93.9	94.1	17.3	93.1	95.3
N = 500	$\beta_3 = 0$	94.9	5.9	93.9	95.1	3.3	96.2	96.3	8.4	95.2	95.2
NI CP	$\beta_3 = 0.39$	94.0	0.2	94.3	95.1	0.1	94.4	94.7	0.7	95.0	95.9

Table S10. Moderated regression simulation results: Empirical coverage rates (%) of regression coefficient β_2 for conditions in Scenario 1 where the outcome and the focal predictor have ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	92.6	48.1	92.7	94.6	20.2	93.1	93.1	7.6	93.8	93.6
	$\beta_3 = 0.39$	92.7	31.1	94.4	95.7	13.5	94.7	95.6	5.9	94.0	94.5
N = 100	$\beta_3 = 0$	93.1	19.7	95.9	95.5	1.9	93.1	94.0	0.3	93.3	94.2
	$\beta_3 = 0.39$	95.1	8.0	94.4	94.3	1.2	95.4	95.8	0.2	93.1	94.6
N = 200	$\beta_3 = 0$	94.7	2.5	94.2	93.9	0.0	95.7	94.9	0.0	93.7	94.6
	$\beta_3 = 0.39$	94.9	0.3	95.1	95.5	0.0	94.2	94.7	0.0	93.4	94.8
N = 500	$\beta_3 = 0$	95.2	0.1	96.5	96.6	0.0	94.2	94.7	0.0	92.9	94.3
	$\beta_3 = 0.39$	95.8	0.0	94.8	95.0	0.0	94.8	95.1	0.0	95.1	95.5
						$\rho = 0$					
N = 50	$\beta_3 = 0$	93.9	50.9	92.8	94.2	23.3	93.2	94.2	6.2	93.2	94.0
	$\beta_3 = 0.39$	91.6	40.2	94.6	95.0	16.5	93.9	94.6	8.0	93.2	94.2
N = 100	$\beta_3 = 0$	93.1	26.2	94.4	95.4	2.9	93.7	94.9	0.0	95.7	96.0
	$\beta_3 = 0.39$	93.2	13.8	93.6	93.8	2.9	93.8	94.1	0.3	95.4	96.2
N = 200	$\beta_3 = 0$	94.8	3.4	95.0	95.1	0.1	94.5	95.2	0.0	94.7	94.8
	$\beta_3 = 0.39$	94.4	1.2	96.5	96.6	0.0	95.3	95.2	0.0	94.4	95.0
N = 500	$\beta_3 = 0$	94.5	0.0	95.6	95.8	0.0	95.8	95.7	0.0	95.4	95.2
N. CD	$\beta_3 = 0.39$	96.9	0.0	94.6	94.7	0.0	95.2	95.2	0.0	95.0	94.9

Table S11. Moderated regression simulation results: Convergence rates (%) for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%	Tobit	Tobit	CP = 20%	Tobit	Tobit	CP = 30%	Tobit	Tobit
		Reference	Conventional	ML	Bayesian	Conventional	ML	Bayesian	Conventional	ML	Bayesian
						$\rho = 0.3$	3				
N = 50	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.8	100.0
N = 100	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N = 200	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N = 500	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
						$\rho = 0$					
N = 50	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.9	100.0
	$\beta_3 = 0.39$	100.0	100.0	99.8	100.0	100.0	99.8	100.0	100.0	99.6	100.0
N = 100	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N = 200	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N = 500	$\beta_3 = 0$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
N CD	$\beta_3 = 0.39$	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table S12. Moderated regression simulation results: Relative bias of regression coefficient β_1 for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	-0.007	0.021	0.008	0.016	0.034	-0.001	0.016	0.057	-0.002	0.025
	$\beta_3 = 0.39$	-0.001	0.033	0.001	0.009	0.071	-0.010	0.006	0.142	-0.008	0.018
N = 100	$\beta_3 = 0$	0.001	0.000	-0.015	-0.007	0.036	0.002	0.019	0.060	-0.001	0.025
	$\beta_3 = 0.39$	0.002	0.039	0.004	0.012	0.077	-0.008	0.008	0.158	-0.002	0.025
N = 200	$\beta_3 = 0$	-0.002	0.009	-0.006	0.003	0.030	-0.004	0.012	0.060	-0.001	0.026
	$\beta_3 = 0.39$	0.002	0.039	0.002	0.010	0.088	-0.001	0.015	0.160	0.000	0.026
N = 500	$\beta_3 = 0$	-0.001	0.012	-0.003	0.005	0.032	-0.003	0.013	0.059	-0.002	0.024
	$\beta_3 = 0.39$	0.001	0.032	-0.006	0.003	0.089	-0.001	0.014	0.157	-0.004	0.021
						$\rho = 0$					
N = 50	$\beta_3 = 0$	0.003	0.004	0.003	0.003	0.008	0.009	0.009	-0.004	-0.004	-0.004
	$\beta_3 = 0.39$	0.002	0.021	0.004	0.004	0.046	0.000	0.000	0.088	-0.001	0.000
N = 100	$\beta_3 = 0$	-0.002	-0.002	-0.001	-0.001	0.004	0.003	0.003	0.000	-0.001	-0.001
	$\beta_3 = 0.39$	-0.003	0.019	0.001	0.001	0.051	0.003	0.003	0.090	0.001	0.000
N = 200	$\beta_3 = 0$	0.002	0.000	0.000	0.000	-0.002	-0.003	-0.002	0.001	0.001	0.001
	$\beta_3 = 0.39$	0.000	0.019	-0.001	-0.001	0.050	0.002	0.001	0.093	0.003	0.002
N = 500	$\beta_3 = 0$	0.000	-0.001	-0.001	-0.001	0.001	0.001	0.001	-0.002	-0.002	-0.002
N. CD	$\beta_3 = 0.39$	-0.001	0.021	0.001	0.001	0.049	0.000	0.000	0.092	0.001	0.000

Table S13. Moderated regression simulation results: Relative bias of regression coefficient β_2 for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%	T 1.	T. 1.'.	CP = 20%	T. 1.	T. 1.'.	CP = 30%	m 1.5	T. 1.1.
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	0.000	0.075	0.014	0.001	0.154	0.004	-0.010	0.252	0.008	-0.008
	$\beta_3 = 0.39$	-0.005	0.085	0.007	-0.005	0.186	0.013	0.002	0.314	0.031	0.021
N = 100	$\beta_3 = 0$	-0.001	0.076	0.012	-0.001	0.159	0.010	-0.004	0.246	0.008	-0.007
	$\beta_3 = 0.39$	-0.003	0.085	0.007	-0.003	0.191	0.017	0.007	0.290	0.012	0.003
N = 200	$\beta_3 = 0$	-0.001	0.078	0.013	0.001	0.162	0.014	0.000	0.243	0.006	-0.009
	$\beta_3 = 0.39$	0.000	0.092	0.012	0.002	0.183	0.011	0.002	0.288	0.012	0.004
N = 500	$\beta_3 = 0$	0.003	0.079	0.014	0.002	0.158	0.013	-0.001	0.248	0.010	-0.004
	$\beta_3 = 0.39$	-0.001	0.091	0.011	0.001	0.185	0.014	0.005	0.290	0.014	0.006
						$\rho = 0$					
N = 50	$\beta_3 = 0$	0.003	0.076	0.012	0.001	0.165	0.017	0.006	0.258	0.014	0.003
	$\beta_3 = 0.39$	-0.003	0.072	0.007	-0.004	0.153	0.007	-0.004	0.253	0.012	0.000
N = 100	$\beta_3 = 0$	-0.006	0.075	0.011	0.001	0.155	0.010	0.000	0.239	0.002	-0.008
	$\beta_3 = 0.39$	-0.006	0.079	0.013	0.003	0.159	0.011	0.001	0.251	0.012	0.001
N = 200	$\beta_3 = 0$	0.000	0.072	0.008	-0.002	0.156	0.010	0.000	0.243	0.011	0.001
	$\beta_3 = 0.39$	0.002	0.075	0.010	-0.001	0.155	0.010	0.000	0.246	0.011	0.001
N = 500	$\beta_3 = 0$	-0.002	0.072	0.007	-0.003	0.155	0.010	0.000	0.241	0.009	-0.001
N. CD	$\beta_3 = 0.39$	0.000	0.078	0.012	0.002	0.154	0.011	0.001	0.243	0.009	0.000

Table S14. Moderated regression simulation results: Empirical bias and relative bias of regression coefficient β_3 for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%	T 1.4	T. 1.'	CP = 20%	T. 1.'	T. 1.'.	CP = 30%	T. 1.4	T. 1.'
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	-0.003	0.034	-0.006	0.003	0.081	0.007	0.027	0.115	0.007	0.038
	$\beta_3 = 0.39$	-0.004	0.217	0.035	0.052	0.370	0.017	0.065	0.540	0.006	0.085
N = 100	$\beta_3 = 0$	0.004	0.043	0.004	0.013	0.069	-0.002	0.017	0.098	0.000	0.029
	$\beta_3 = 0.39$	-0.011	0.199	0.020	0.036	0.350	0.007	0.050	0.543	0.019	0.092
N = 200	$\beta_3 = 0$	0.001	0.040	0.002	0.010	0.068	-0.001	0.017	0.097	0.001	0.029
	$\beta_3 = 0.39$	0.002	0.199	0.016	0.031	0.345	0.007	0.048	0.519	0.008	0.076
N = 500	$\beta_3 = 0$	-0.001	0.039	0.001	0.009	0.067	-0.001	0.017	0.098	0.003	0.031
	$\beta_3 = 0.39$	-0.007	0.188	0.010	0.024	0.350	0.014	0.053	0.518	0.014	0.079
						$\rho = 0$					
N = 50	$\beta_3 = 0$	0.002	0.003	0.003	0.003	0.000	0.000	0.000	0.004	0.003	0.003
	$\beta_3 = 0.39$	0.007	0.080	0.010	0.002	0.173	0.015	0.009	0.265	0.002	-0.001
N = 100	$\beta_3 = 0$	-0.002	-0.007	-0.006	-0.006	0.007	0.006	0.006	0.008	0.005	0.005
	$\beta_3 = 0.39$	-0.012	0.070	0.001	-0.007	0.167	0.016	0.007	0.245	0.008	-0.002
N = 200	$\beta_3 = 0$	-0.003	0.002	0.001	0.001	0.009	0.007	0.007	0.000	0.000	0.000
	$\beta_3 = 0.39$	0.008	0.081	0.014	0.005	0.156	0.011	0.001	0.247	0.016	0.004
N = 500	$\beta_3 = 0$	0.001	-0.001	-0.001	-0.001	0.002	0.001	0.001	-0.004	-0.003	-0.003
N. CD	$\beta_3 = 0.39$	-0.002	0.075	0.009	0.000	0.151	0.007	-0.003	0.244	0.011	-0.001

Note. CP: ceiling proportion. When $\beta_3 = 0$, the displayed values are empirical biases; when $\beta_3 = 0.39$, the displayed values are relative biases. Unsatisfactory results are highlighted in bold.

Table S15. Moderated regression simulation results: Empirical coverage rates (%) of regression coefficient β_1 for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	92.7	92.3	92.8	94.5	94.6	95.2	96.4	92.5	94.0	94.9
	$\beta_3 = 0.39$	94.9	92.9	94.3	95.6	89.6	93.1	94.7	82.4	93.9	95.3
N = 100	$\beta_3 = 0$	94.9	94.4	94.2	95.1	93.3	94.2	94.8	92.0	95.1	95.1
	$\beta_3 = 0.39$	94.3	91.5	93.4	93.8	86.3	93.0	93.7	70.6	93.7	93.3
N = 200	$\beta_3 = 0$	93.7	95.0	95.5	95.5	91.6	95.1	94.4	88.5	96.0	94.8
	$\beta_3 = 0.39$	95.3	91.3	94.5	94.0	78.5	95.0	94.2	52.6	93.3	93.2
N = 500	$\beta_3 = 0$	96.0	94.6	95.1	94.9	90.6	93.8	93.3	80.4	95.3	93.1
	$\beta_3 = 0.39$	95.2	88.3	94.3	94.3	57.8	94.6	94.0	16.7	94.6	91.6
						$\rho = 0$					
N = 50	$\beta_3 = 0$	92.8	92.1	92.3	93.8	94.6	94.1	95.5	92.2	91.7	93.3
	$\beta_3 = 0.39$	91.6	93.7	94.6	96.1	92.5	94.6	96.3	89.7	94.4	95.9
N = 100	$\beta_3 = 0$	93.9	95.0	95.1	95.8	93.8	93.9	94.5	94.8	94.9	95.9
	$\beta_3 = 0.39$	93.4	94.1	93.9	94.8	91.4	93.0	93.7	84.3	93.8	94.1
N = 200	$\beta_3 = 0$	94.5	95.0	95.6	95.8	94.7	94.8	94.8	95.0	95.7	95.5
	$\beta_3 = 0.39$	94.8	94.1	95.0	95.3	89.0	95.5	95.9	75.7	95.7	95.8
N = 500	$\beta_3 = 0$	94.7	95.1	95.2	95.0	95.3	95.3	95.2	94.6	94.9	94.5
N. CD	$\beta_3 = 0.39$	94.0	91.9	94.1	94.2	81.9	95.2	95.1	54.6	95.1	95.1

Table S16. Moderated regression simulation results: Empirical coverage rates (%) of regression coefficient β_2 for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	92.6	91.6	93.9	95.2	84.7	93.7	95.1	78.8	93.7	95.1
	$\beta_3 = 0.39$	92.7	88.9	93.0	94.7	82.5	93.5	94.8	71.8	93.3	94.6
N = 100	$\beta_3 = 0$	93.1	89.9	94.0	95.3	76.9	94.1	94.9	61.2	92.5	93.7
	$\beta_3 = 0.39$	95.1	87.0	93.4	94.0	69.9	95.3	95.6	55.0	93.6	94.5
N = 200	$\beta_3 = 0$	94.7	83.6	93.2	94.1	58.4	95.0	95.3	38.2	95.8	95.7
	$\beta_3 = 0.39$	94.9	81.6	94.7	94.9	51.6	95.8	96.3	26.1	94.9	94.9
N = 500	$\beta_3 = 0$	95.2	66.0	95.5	96.0	25.4	95.1	95.4	4.6	92.6	95.0
	$\beta_3 = 0.39$	94.9	58.5	94.5	96.0	11.8	93.7	94.4	1.0	92.4	93.7
						$\rho = 0$					
N = 50	$\beta_3 = 0$	93.9	90.2	93.4	95.4	83.7	92.8	94.3	74.7	93.5	94.5
	$\beta_3 = 0.39$	91.6	91.2	93.3	95.0	84.2	93.1	95.0	75.3	93.3	95.1
N = 100	$\beta_3 = 0$	93.1	90.2	94.9	95.4	76.2	93.7	94.2	62.1	93.9	94.6
	$\beta_3 = 0.39$	93.2	87.9	94.9	95.3	75.4	94.6	95.0	58.9	95.3	95.8
N = 200	$\beta_3 = 0$	94.8	85.0	95.1	94.9	59.1	94.5	94.7	31.1	94.6	95.2
	$\beta_3 = 0.39$	94.4	85.2	95.1	95.3	59.0	94.8	95.1	32.4	96.2	96.7
N = 500	$\beta_3 = 0$	95.3	68.6	96.0	96.0	21.7	94.6	95.2	3.1	95.0	95.2
AT . CD	$\beta_3 = 0.39$	96.9	65.4	93.8	94.5	22.1	92.9	94.0	2.9	95.1	95.3

Table S17. Moderated regression simulation results: Empirical Type I error rates (%) and coverage rates (%) of regression coefficient β_3 for conditions in Scenario 2 where the moderator has ceiling effects

		CP = 0%	CP = 10%			CP = 20%			CP = 30%		
		Reference	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian	Conventional	Tobit ML	Tobit Bayesian
						$\rho = 0.3$					
N = 50	$\beta_3 = 0$	6.4	8.2	6.7	5.6	8.2	5.7	4.7	10.4	7.1	5.5
	$\beta_3 = 0.39$	93.6	87.9	93.5	95.1	85.5	94.3	94.7	81.9	92.5	92.9
N = 100	$\beta_3 = 0$	5.3	8.9	5.5	4.8	10.2	6.4	5.5	11.1	5.7	6.8
	$\beta_3 = 0.39$	93.8	86.9	94.9	94.5	80.7	94.3	95.5	70.6	93.6	93.2
N = 200	$\beta_3 = 0$	5.4	8.3	5.6	5.2	13.8	5.9	6.2	14.9	5.8	5.8
	$\beta_3 = 0.39$	94.8	80.2	94.0	93.9	67.5	94.7	94.3	50.6	94.4	94.0
N = 500	$\beta_3 = 0$	4.6	13.3	5.3	5.6	22.8	5.1	6.8	34.6	4.2	10.3
	$\beta_3 = 0.39$	94.3	69.2	94.3	93.7	35.1	95.7	93.0	13.1	94.4	91.3
						$\rho = 0$					
N = 50	$\beta_3 = 0$	6.2	7.0	6.5	5.4	7.9	8.1	6.2	7.3	7.3	5.7
	$\beta_3 = 0.39$	93.0	94.3	95.0	96.3	92.2	93.9	95.2	90.8	93.7	95.3
N = 100	$\beta_3 = 0$	5.3	5.5	4.9	4.5	4.6	5.0	4.4	5.8	5.3	4.9
	$\beta_3 = 0.39$	94.6	92.0	94.7	95.2	91.0	94.7	95.2	89.2	94.5	95.6
N = 200	$\beta_3 = 0$	4.5	5.6	5.1	4.7	5.3	4.7	4.7	5.5	6.0	5.7
	$\beta_3 = 0.39$	95.7	91.7	94.4	94.6	87.6	93.6	93.4	81.9	93.8	93.8
N = 500	$\beta_3 = 0$ $\beta_3 = 0.39$	5.6 95.6	5.0 91.0	4.5 95.5	4.2 95.5	5.2 81.2	4.7 96.0	4.9 95.5	6.3 68.0	6.6 96.8	6.4 96.4

Note. CP: ceiling proportion. When $\beta_3 = 0$, the displayed values are empirical Type I error rates; when $\beta_3 = 0.39$, the displayed values are coverage rates. Unsatisfactory results are highlighted in bold.

Pilot simulation study for evaluating the Tobit ML moderation regression model without integrating latent variable modeling

- Design: The ceiling proportions of the predictor and the outcome were set to 10%, 20% and 30%. The regression coefficients of β_1 and β_2 were fixed to be 0. Two β_3 values were considered: 0 and 0.39. Three sample sizes were considered: 100, 200, and 500.
- Mplus code for the Tobit ML moderation regression model without integrating latent variable modeling:

data: file is data.txt;
variable:
names are x y z;
usevariables are x y z inter;
censored are x(a) y(a);
define:
inter=x*z;
analysis:
estimator = ML;
Model:
y on x z inter;
output: CINTERVAL;

Table S18. Moderated regression simulation results from Tobit ML moderation regression model without integrating latent variable modeling: Empirical Bias, relative bias, empirical Type I error rates (%), and coverage rates (%) of regression coefficient β_3 for conditions in the pilot simulation study.

		CP = 0%	CP = 10%	CP = 20%	CP = 30%
		Empirical I	Bias or relative l	bias	
N = 100	$\beta_3 = 0$	0.002	0.003	-0.002	0.010
	$\beta_3 = 0.39$	0.034	0.107	0.181	0.302
N = 200	$\beta_3 = 0$	0.000	0.000	-0.004	0.000
	$\beta_3 = 0.39$	0.019	0.092	0.175	0.269
N = 500	$\beta_3 = 0$	-0.001	-0.002	0.001	0.002
	$\beta_3 = 0.39$	0.009	0.083	0.164	0.272
	Empi	rical Type I e	rror rates or cov	erage rates	
N = 100	$\beta_3 = 0$	3.7	4.9	5.5	6.0
	$\beta_3 = 0.39$	92.9	93.7	91.7	89.5
N = 200	$\beta_3 = 0$	5.7	5.1	5.9	5.7
	$\beta_3 = 0.39$	93.6	93.5	88.3	86.0
N = 500	$\beta_3 = 0$	4.8	4.7	4.4	4.7
	$\beta_3 = 0.39$	95.4	88.3	80.6	65.9

Note. CP: ceiling proportion. When $\beta_3 = 0$, the displayed values are empirical bias or empirical Type I error rates; when $\beta_3 = 0.39$, the displayed values are relative bias or coverage rates. Unsatisfactory results are highlighted in bold.