Bayesian Methods for Measurement Error Problems

Nicolas Escobar

Project 1: BQR for Scalar-on-Function Regression with Heteroskedastic Data

Project 1: BQR for Scalar-on-Function Regression with Heteroskedastic Data

General Introduction

- Quantile regression (QR) has gained popularity as a robust alternative to ordinary regression
- ▶ QR is formulated as an optimization problem using a loss function ρ_{τ} , where τ is the desired quantile
- Bayesian Quantile Regression (BQR) offers the usual adventages of the Bayesian framework, like quantifying uncertainty
- ▶ BQR is based on a likelihood function called the Asymmetric Laplace (AL) distribution whose kernel includes ρ_{τ}

GAL Distribution

- ► AL turns out to be too restrictive
- ➤ Yan and Kottas (2017) proposed the Generalized Asymmetric Laplace distribution (GAL)
- It can be reparametrized with:
 - ightharpoonup A location parameter μ
 - ightharpoonup A scale parameter σ
 - ightharpoonup A shape parameter γ
- Closed forms for the pdf and cdf can be derived, but they are cumbersome

Sampling from the posterior

- ▶ In Bayesian statistics, every parameter has a distribution
- \blacktriangleright We sample from the distribution of μ , σ and γ using MCMC
- In recent years, Hamiltonian Monte Carlo (HMC) has gained popularity
- Implemented in the brms library in R
- Uses the same formula syntax as lme4
- Supports non-parametric methods through mgcv

Low dimensional ilustration of our problem

► Consider data generated according to

$$y_i = x_i^2 + \epsilon_i$$
 where $\epsilon_i \sim N(0, \exp(4x))$

Figure 1: Heteroskedastic data

Warning

- Quantile regression should be able to handle this kind of heteroskedasticity
- Turns out you have to be careful:

