UNSW MATHEMATICS SOCIETY PRESENTS

MATH2501/2601 Revision Seminar

(Higher) Linear Algebra

Seminar II / II

Table of Contents

- Eigenvalues and Eigenvectors
 - Applications of Eigenvalues and Eigenvectors
 - Applications: Singular Value Decomposition (MATH2601)
- Canonical Jordan Form
 - Identifying Jordan Forms
 - Computing Jordan Forms
 - Applications: Finding Matrix Powers
- Matrix Exponentials
 - Computing Matrix Exponentials
 - Applications: Systems of Differential Equations
 - Application to Systems of Differential Equations

Credit to Rui Tong and Kabir Agarwal's 2019 slides

Eigenvalues and Eigenvectors

Eigenvectors, Eigenvalues and Eigenspaces

Definitions

Let V be a vector space and $T:V\mapsto V$ a linear transformation. If λ is a scalar and \mathbf{v} a non-zero vector in V such that $T(\mathbf{v})=\lambda\mathbf{v}$, then λ is an <u>eigenvalue</u> of T and \mathbf{v} is an <u>eigenvector</u> of T corresponding to λ . The set of eigenvalues of T is the <u>spectrum</u> of T.

Invariance

Definition

Let $T: V \mapsto V$ be a linear transformation. A subspace U of V is said to be T-invariant if $T(U) \subseteq U$, where:

$$T(U) = \{ T(\mathbf{u}) | \mathbf{u} \in U \}.$$

Properties

Basic properties of eigenspaces

Let $T: V \mapsto V$ be linear.

- **1** The eigenvalues of T are λ such that $T(\mathbf{v}) = \lambda \mathbf{v}$.
- ② The eigenspace corresponding to λ is given by $E_{\lambda} = \ker(\lambda I T)$.
- 3 Eigenspaces are *T*-invariant
- **4** If λ and μ are eigenvalues of T and $\lambda \neq \mu$, then $E_{\lambda} \cap E_{\mu} = \{\mathbf{0}\}$.
- If V is finite-dimensional, a basis B of V consists of eigenvectors of T if and only if the matrix of T with respect to B is diagonal.

More properties

More properties

- **①** A matrix $A \in M_{nn}(\mathbb{F})$ is diagonalisable if and only if it has n linearly independent eigenvectors associated with it.
- 2 Distinct eigenvalues correspond to linearly independent eigenvectors.
- **3 v** is an eigenvector of T with eigenvalue λ if and only if $[\mathbf{v}]_B$ (where $T: V \mapsto V$, and B is a basis of V) is an eigenvector of T with eigenvalue λ .

Definition

The eigenvalues of a matrix A are given by the solutions to the characteristic polynomial, the polynomial obtained by solving $det(A - \lambda I) = 0$.

Multiplicities

AM-GM Inequality Re-mastered

The <u>algebraic multiplicity</u> of an eigenvalue λ is the multiplicity of the root $z=\lambda$ for the characteristic equation $\det(A-\lambda I)=0$. The geometric multiplicity is the dimension of the eigenspace associated with λ , that is, $\dim(\ker(A-\lambda I))=\mathrm{GM}(\lambda)$. The relationship between these two can be described as $\mathrm{GM}(\lambda) \leq \mathrm{AM}(\lambda)$.

Corollary

A matrix A is diagonalisable if for every eigenvalue λ_i , we have $GM(\lambda_i) = AM(\lambda_i)$.

Examples of eigenvalues, eigenvectors and diagonalisation

Example

Find all the eigenvalues and eigenvectors of the following matrices:

- $\begin{array}{ccc}
 \bullet & \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix}
 \end{array}$
- $\bullet \begin{pmatrix} 1 & 4 \\ -1 & 1 \end{pmatrix}$
- $\begin{pmatrix}
 2 & 0 & 0 \\
 0 & 3 & 1 \\
 0 & 1 & 3
 \end{pmatrix}$

Note that in any matrix, the sum of the eigenvalues is the trace of the matrix, and the product of eigenvalues is the determinant.

- 1) Let the eigenvalues be λ_1, λ_2 . Then $\lambda_1 + \lambda_2 = 5, \lambda_1\lambda_2 = 6$. Therefore, $\lambda_1, \lambda_2 = 2, 3$ by inspection. The eigenvectors are given by the kernel of $A \lambda I$ for each eigenvalue. So the eigenvectors are given by: For $\lambda = 2$: $\ker\begin{pmatrix} -1 & 2 \\ -1 & 2 \end{pmatrix} = \operatorname{span}\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ For $\lambda = 3$: $\ker\begin{pmatrix} -2 & 2 \\ -1 & 1 \end{pmatrix} = \operatorname{span}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ So for $\lambda_1 = 2, \mathbf{v}_1 = (2, 1)$, and $\lambda_2 = 3, \mathbf{v}_2 = (1, 1)$.
- 2) Similarly, we obtain the eigenvalues to be $\lambda_1=1, \lambda_2=6$ upon using the same idea. The eigenvectors are then given by the following kernels respectively:

$$\ker\begin{pmatrix}1&-2\\-2&4\end{pmatrix}=\operatorname{span}\begin{pmatrix}2\\1\end{pmatrix}$$

• 3) Similarly, we obtain the eigenvalues to be $\lambda_1 = 1 - 2i$, $\lambda_2 = 1 + 2i$. The eigenvectors are of the form:

$$\operatorname{ker} \begin{pmatrix} 2i & 4 \\ -1 & 2i \end{pmatrix} = \operatorname{span} \begin{pmatrix} 2i \\ 1 \end{pmatrix}$$

$$\ker \begin{pmatrix} -2i & 4 \\ -1 & -2i \end{pmatrix} = \operatorname{span} \begin{pmatrix} -2i \\ 1 \end{pmatrix}$$

• 4) The characteristic polynomial of this matrix is going to be $\det(A-\lambda I)=(2-\lambda)\det\begin{pmatrix}3-\lambda&1\\1&3-\lambda\end{pmatrix}=(2-\lambda)((3-\lambda_2)^2-1).$ Solving for λ , we obtain $\lambda=2,2,4$. The corresponding eigenvectors are $\lambda_1=(1,0,0),(0,-1,1)$ for $\lambda=2$, and $\lambda=4$ means that the eigenvector is just (0,1,1).

Examples on AM, GM

Example

Find the algebraic and geometric multiplicity of each of the above matrices.

- $\textbf{ AM(2)} = 1, \ \mathsf{AM(3)} = 1. \ \mathsf{The \ corresponding \ GMs \ are \ } \mathsf{GM(2)} = 1, \\ \mathsf{GM(3)} = 1.$
- Same as above.
- Same as above.
- **4** AM(2) = 2, AM(4) = 1. GM(2) = 2, GM(4) = 1.

Examples on AM, GM

Example

For each of the following matrices, use the given additional information to find all eigenvalues and eigenvectors *without* calculating the characteristic polynomial. Also write down the algebraic and geometric multiplicities of each eigenvalue.

$$C = \begin{pmatrix} 2 & -5 & -5 \\ -4 & 8 & 4 \\ 4 & -11 & -7 \end{pmatrix}, \text{ given that 2 and } -3 \text{ are eigenvalues.}$$

$$D = \begin{pmatrix} 1 & 4 & 2 \\ 2 & 1 & -2 \\ -3 & 4 & 6 \end{pmatrix}, \text{ given that } \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \text{ are eigenvectors.}$$

- ① $\lambda_1 = 2, \lambda_2 = -3$. Since trace is equal to the sum of eigenvalues, we have $\lambda_3 = (2+8+-7)-(2+-3)=4$. The arithmetic multiplicity of each eigenvalue is 1, and since geometric multiplicity is positive and less than or equal to 1, the GM of each eigenvalue must be 1.
- ② The eigenvalue associated with (1,0,1) is given by $\lambda=3$, and for (2,-1,2) is given by 1. Therefore, the last eigenvalue must be 4 because of the trace of the matrix. Taking the kernel of 4, we obtain:

$$\begin{pmatrix} -3 & 4 & 2 \\ 2 & -3 & 2 \\ -3 & 4 & 2 \end{pmatrix}$$

which has a kernel of (-2, -2, 1).

More theorems

Conditions for diagonalisability

Let $T: V \mapsto V$ be a linear map on a finite dimensional vector space V. Then the following are equivalent:

- T is diagonalizable
- ② There is a basis for V consisting of the eigenvectors of T.
- $oldsymbol{\circ}$ V is the direct sum of the eigenspaces of each of the eigenvalues.
- The sum of geometric multiplicities of distinct eigenvalues is the dimension of V.

Examples

Example [2501 Eigenvalues Q8]

Let V be a vector space and $\{v_1, v_2, v_3\}$ a basis for V. Let T be a linear map from V to V such that:

$$\mathcal{T}(\textbf{v}_1) = 2\textbf{v}_1 + \textbf{v}_2 + \textbf{v}_3, \quad \mathcal{T}(\textbf{v}_2) = 2\textbf{v}_2. \quad \mathcal{T}(\textbf{v}_3) = \textbf{v}_2 + \textbf{v}_3.$$

Is there a basis B for V such that the matrix of T with respect to B is diagonal? Explain.

With respect to the basis, the linear map T can be written as:

$$T\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (2a)\mathbf{v}_1 + (a+3b+c)\mathbf{v}_2 + (a+c)\mathbf{v}_3 = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

The characteristic polynomial is given by $(2 - \lambda)(2 - \lambda)(1 - \lambda) = 0$. Thus the eigenvalues are given by $\lambda = 1, 2, 2$. Considering the kernel of A - 2I, we get:

$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

which has a dimension of 2. Therefore sum of GM is GM(1)+GM(2)=1+2=3. Diagonalisable.

Spectral Theorem

Theorem: SPECTRAL THEOREM

Let $A \in M_{n \times n}(\mathbb{R})$ be a real symmetric matrix. Then:

- All the eigenvalues are real.
- ② Eigenvectors corresponding to distinct eigenvalues are orthogonal
- **③** There exists an orthogonal matrix Q such that $Q^{-1}AQ$ is the diagonal matrix corresponding to distinct eigenvalues.
- A has n orthogonal, real eigenvalues.

Examples of Diagonalisation

Example [Lecture Slides]

Diagonalise the following matrix given that the characteristic polynomial is $p(\lambda) = (\lambda - 3)(\lambda^2 - 1)$:

$$\begin{pmatrix} -1 & -12 & 0 \\ 2 & 5 & 4 \\ 0 & 4 & -1 \end{pmatrix}$$

The eigenvalues are given by $\lambda = -1, 3, 1$. Finding the eigenvectors for each of the eigenvalues, we have: For $\lambda = -1$:

$$\begin{pmatrix}
0 & -12 & 0 \\
2 & 6 & 4 \\
0 & 4 & 0
\end{pmatrix}$$

which has a kernel spanned by the vector (-2,0,1). For the eigenvalue $\lambda=3$, we obtain:

$$\begin{pmatrix} -4 & -12 & 0 \\ 2 & 2 & 4 \\ 0 & 4 & -4 \end{pmatrix}$$

which has a kernel of (-3,1,1). For the eigenvalue $\lambda=1$:

$$\begin{pmatrix} -2 & -12 & 0 \\ 2 & 4 & 4 \\ 0 & 4 & -2 \end{pmatrix}$$

So the matrix can be diagonlised as follows:

$$\begin{pmatrix} -2 & -3 & -3 \\ 0 & 1 & \frac{1}{2} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & -3 & -3 \\ 0 & 1 & \frac{1}{2} \\ 1 & 1 & 1 \end{pmatrix}^{-1}$$

Normal Operators (MATH2601)

Definition

A linear transformation on an inner product space is <u>normal</u> if and only if the maps commute with their adjoints.

Theorem

- ① If T is normal, then $||T\mathbf{v}|| = ||T^*\mathbf{v}||$ for all $\mathbf{v} \in V$.
- ② If T is normal, then $T \alpha$ id is normal for any $\alpha \in \mathbb{F}$.
- **3** The eigenspace of T with eigenvalue λ is the same as the eigenspace of T^* with eigenvalue $\bar{\lambda}$.
- If *T* is normal, the 2 eigenspaces corresponding to distinct eigenvalues are orthogonal to each other.

Conic Sections and quadrics

Consider a quadratic equation of the form $ax^2 + 2bxy + cy^2 = k$ for some constant k. Then we can reframe this problem as a matrix equation:

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = k$$

You can check this by expansion of the matrix equation.

Graphing and identifying conics

Begin by diagonalising the real symmetric matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix} = A$ so as to obtain QDQ^T [This just follows from Spectral Theorem]. Let $\mathbf{X} = Q^T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} X \\ Y \end{pmatrix}$. This allows us to write the form:

$$\begin{pmatrix} X & Y \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = k \implies \lambda_1 X^2 + \lambda_2 Y^2 = k$$

WHICH IS A CONIC!!! We already know that Q consists of the eigenvectors, so the eigenvectors describe the axes of symmetry of the conic and becomes easy to construct from there.

Examples

Example

Sketch the curve $5x^2 + 4xy + 8y^2 = 36$ including all important features and points.

Rewriting the equation as the following expression:

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 36$$

Computing the eigenvalues of the matrix $\begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$, we have

 $\lambda=4,9.$ The eigenspaces are given by the span (-2,1) (for $\lambda=4$) and the span of (1,2) (for $\lambda=9$). Therefore, the new matrix form of the equation will be:

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} x \\ y \end{pmatrix} = 36$$

Creating an orthogonal matrix out of this, we write:

$$\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 36$$

Letting $X=\frac{1}{\sqrt{5}}(-2x+y)$ and $Y=\frac{1}{\sqrt{5}}(x+2y)$, we obtain the equation $4X^2+9Y^2=36$. So we take the graph of this ellipse with intercepts at $(X=\pm 3,0)$ and $(0,Y=\pm 2)$. Then we rotate the axes X,Y until they match the new axes given by X=0 and Y=0. So the axes of the ellipse are y=2x (along which we go 3 units) and $y=-\frac{1}{2}x$ (along which we go 2 units). Note that these will also give the closest and furthest points along the ellipse.

Rotations and reflections

Orthogonal matrices are special matrices with determinant such that det $Q=\pm 1$. This is equivalent to saying that the eigenvalues each have modulus of 1.

Rotations and reflections

Consider an orthogonal matrix R form \mathbb{R}^2 to \mathbb{R}^2 . Then we can always write R as:

$$R(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

where $e^{i\alpha}$ is an eigenvalue of the linear map T. This describes a ROTATION by an angle α about the origin.

Rotations and reflections

Consider a matrix R to be a 3×3 orthogonal matrix so that it's columns are an orthonormal basis for \mathbb{R}^3 . Then R is similar to one of the following 2 matrices:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

Angles and axes of reflection

The angles of rotation should not be difficult to work out. You can evaluate these by determining the trace, because the matrix map of T is similar to R described above (based on the diagonalisation procedure). The axis of rotation/reflection is given by the eigenvector corresponding the ± 1 eigenvalue.

Examples of Orthogonal maps

Example [Lecture Slides]

Give a geometric description of the following matrices:

$$A = rac{1}{9} egin{pmatrix} 4 & 7 & -4 \\ 1 & 4 & 8 \\ 8 & -4 & 1 \end{pmatrix}$$
, Given spectrum of A is $\lambda = 1, -i, i$

$$B=rac{1}{9}egin{pmatrix} 4&-7&-4\ 1&-4&8\ 8&4&1 \end{pmatrix}$$
 , Given one eigenvalue B is $\lambda=-1,\det(B)=-1$

First check A is orthogonal: the easiest way to do this is to use dot products of columns. Then check the determinant, which is 1. The axis for that is (2,2,1). Thus it's a rotation. The angle of rotation is given by $2\cos\alpha+1=1\implies\alpha=\frac{\pi}{2}$ using the idea of trace.

Likewise, check B is orthogonal. Then check the determinant, which is -1. The eigenvector corresponding to this is (-1,-3,2). Check the trace, trace is 1/9. That means, other eigenvalues will not include 1 as $|\lambda|=1$. So there is a reflection occurring about a plane, and the plane of reflection will be $(-1,-3,2)\cdot \mathbf{x}=0 \implies -x_1-3x_2+2x_3=0$. The angle of rotation about the axis is given by $2\cos\alpha-1=\frac{1}{9}\implies\alpha=\cos^{-1}\frac{5}{9}$.

Singular Values (MATH2601 only section)

Definition 1: Singular Values

A singular value of a $m \times n$ matrix A is the square root of an eigenvalue of A^*A .

Recall: A^*A denotes the adjoint of A.

Definition 2: Singular Value Decomposition

A SVD for an $m \times n$ matrix A is of the form $A = U \Sigma V^*$ where

- U is an $m \times m$ unitary matrix.
- V is an $n \times n$ unitary matrix.
- Σ has entries
 - $\sigma_{ii} > 0$. (These are determined by the singular values.)
 - $\sigma_{ij} = 0$ for all $i \neq j$.

SVD Algorithm

Algorithm 1: Finding a SVD

- Find all eigenvalues λ_i of A^*A and write in descending order. Also find their associated eigenvectors of unit length \mathbf{v}_i .
- 2 Find an orthonormal set of eigenvectors for A^*A .
 - Automatically occurs when all eigenvalues are distinct, which will usually be the case. Otherwise require Gram-Schmidt for any eigenspace with dimension strictly greater than 1.
- **3** Compute $\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{v}_i$ for each non-zero eigenvalue.
- **1** State U and V from the vectors found, Σ from the singular values.

Lemma 2: Used to speed up step 1

- A^*A and AA^* share the same non-zero eigenvalues.
- If rank(A) = r, then A^*A has r non-zero eigenvalues. All other eigenvalues are 0.

Example: MATH2601 2017 Q2 c)

For the matrix
$$A = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix}$$

- Find the eigenvalues of AA^* .
- **2** Explain why the eigenvalues in part 1 are also eigenvalues of A^*A , and state any other eigenvalues of A^*A .
- **3** Find all eigenvectors of A^*A .
- Find a singular value decomposition for A.

Part 1: We compute

$$AA^* = \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 11 & 1 \\ 1 & 11 \end{pmatrix}.$$

Canonical Jordan Form

This matrix has two eigenvalues, and they sum to $tr(AA^*)=22$ and multiply to $det(AA^*)=120$. By inspection, $\lambda_1=12$ and $\lambda_2=10$.

Part 2: Quoted word for word from the answers...

"We know that A^*A and AA^* have the same non-zero eigenvalues, so 12 and 10 are eigenvalues of A^*A .

Also, all eigenvalues of A^*A are real and non–negative, so its third eigenvalue is 0."

Part 3: We compute

$$A^*A = \begin{pmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{pmatrix}$$

For $\lambda = 12$:

$$A^*A - 12I = \begin{pmatrix} -2 & 0 & 2 \\ 0 & -2 & 4 \\ 2 & 4 & -10 \end{pmatrix}.$$

Looking at row 1, arbitrarily set first component to 1, and then the third component is 1. Equating row 2, the second component is 2.

$$\therefore \begin{vmatrix} \mathbf{v}_1 = t \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

Part 3: We compute

$$A^*A = \begin{pmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{pmatrix}$$

Canonical Jordan Form

For $\lambda = 10$:

$$A^*A - 10I = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 4 \\ 2 & 4 & -8 \end{pmatrix}.$$

Rows 1 and 2 force the third component to be 0. Looking at row 3, it is easier to set the second component to 1, and then the first component will be -2.

$$\therefore \begin{vmatrix} \mathbf{v}_2 = t \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \end{vmatrix}.$$

Matrix Exponentials

SVD Example

Part 3: We compute

$$A^*A = \begin{pmatrix} 3 & -1 \\ 1 & 3 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 2 \\ 0 & 10 & 4 \\ 2 & 4 & 2 \end{pmatrix}$$

For $\lambda=0$, looking at A^*A itself, there really are many possibilities we can go about it. But I follow the answers, which arbitrarily set the first component to -1. See if you can then show that

$$\mathbf{v}_3 = t \begin{pmatrix} -1 \\ -2 \\ 5 \end{pmatrix}$$
.

Note: In each case, $t \in \mathbb{R}$.

Part 4: In each case, choose the value of *t* that normalises the eigenvectors:

$$\mathbf{v}_1 = rac{1}{\sqrt{6}} egin{pmatrix} 1 \ 2 \ 1 \end{pmatrix} \qquad \qquad (\lambda_1 = 12)$$

$$\mathbf{v}_2 = \frac{1}{\sqrt{5}} \begin{pmatrix} -2\\1\\0 \end{pmatrix} \qquad (\lambda_2 = 10)$$

$$\mathbf{v}_3 = \frac{1}{\sqrt{30}} \begin{pmatrix} -1\\ -2\\ 5 \end{pmatrix} \qquad (\lambda_3 = 0)$$

Part 4: Compute $\mathbf{u}_i = \frac{1}{\sqrt{\lambda_i}} A \mathbf{v}_i$ for each non-zero eigenvector:

$$\mathbf{u}_{1} = \frac{1}{\sqrt{12}} \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\mathbf{u}_{2} = \frac{1}{\sqrt{10}} \begin{pmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Part 4: We conclude that a SVD for A is $A = U\Sigma V^*$, where

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} \sqrt{12} & 0 & 0 \\ 0 & \sqrt{10} & 0 \end{pmatrix}$$

$$V = \begin{pmatrix} \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{30}} \\ \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & 0 & \frac{5}{\sqrt{30}} \end{pmatrix}$$

Canonical Jordan Form

Jordan Blocks

Definition 3: Jordan blocks

The $k \times k$ Jordan block for λ is the matrix

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & \lambda \end{pmatrix} \in \mathcal{M}_{k \times k}(\mathbb{C}).$$

That is, put λ on every entry along the main diagonal, and a 1 immediately above each λ wherever possible.

It can be proved that every matrix can be decomposed into PJP^{-1} , where P is the matching eigenvector matrix, and J is a matrix of corresponding Jordan blocks joined together by direct sums.

Jordan Blocks

Quick examples:

$$J_3(-4) = \begin{pmatrix} -4 & 1 & 0 \\ 0 & -4 & 1 \\ 0 & 0 & -4 \end{pmatrix}$$

$$J_4(0) = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

Powers of Jordan Forms

Find the pattern.

$$J_{1}(\lambda)^{n} = \begin{pmatrix} \lambda^{n} \\ \lambda^{n} \\ 0 \\ \lambda^{n} \end{pmatrix}$$

$$J_{2}(\lambda)^{n} = \begin{pmatrix} \lambda^{n} \\ 0 \\ \lambda^{n} \\ 0 \\ \lambda^{n} \end{pmatrix}$$

$$J_{3}(\lambda)^{n} = \begin{pmatrix} \lambda^{n} \\ 0 \\ 0 \\ 0 \\ 0 \\ \lambda^{n} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-2} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-2} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-3} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \lambda^{n-1} \begin{pmatrix} n \\ 1 \\ 0 \\ 0 \end{pmatrix} \lambda^{$$

Powers of Jordan Forms

Lemma 3: Computing powers of Jordan forms

- ① Start with λ^n on every diagonal entry.
- 2 Put $\binom{n}{1}\lambda^{n-1}$ wherever you can immediately above λ^n
- 3 Put $\binom{n}{2}\lambda^{n-2}$ wherever you can immediately above $\binom{n}{1}\lambda^{n-1}$
- Meep doing this, increasing the binomial coefficient and decreasing the power on λ .

Note: Not quite the above. If you ever bump into $\binom{n}{n}$, that's the last diagonal you fill. Just put 0's everywhere else above.

Matrix Direct Sums

Definition 4: Direct sums of matrices

The direct sum of matrices A_1, A_2, \dots, A_n is the matrix formed by putting these matrices on the diagonals and zeroes everywhere else.

$$A_1 \oplus A_2 \oplus \cdots \oplus A_n = \begin{pmatrix} A_1 & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & A_2 & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & A_n \end{pmatrix}$$

In MATH2501 and MATH2601, we only worry about this with Jordan blocks.

Matrix Direct Sums

Quick example:

$$J_2(3) \oplus J_4(5) = \begin{pmatrix} 3 & 1 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 5 & 1 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 & 0 \\ 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

Matrix Direct Sums

Lemma 4: Powers on direct sums of Jordan blocks

The power of a Jordan form is the direct sum of powers on each individual block. I.e.,

$$(J_1 \oplus \cdots \oplus J_m)^n = J_1^n \oplus \cdots \oplus J_m^n.$$

Example:

$$[J_2(3) \oplus J_1(2)]^n = \begin{pmatrix} 3^n & \binom{n}{1}3^{n-1} & 0\\ 0 & 3^n & 0\\ 0 & 0 & 2^n \end{pmatrix}$$

The Generalised Eigenvector

Definition 5: Generalised Eigenvector

A generalised eigenvector corresponding to eigenvalue λ is a non-zero vector \mathbf{v} satisfying the property $(A - \lambda I)^k \mathbf{v} = \mathbf{0}$, for some k > 1.

This differs from the (usual) eigenvector in the sense that those must satisfy $(A - \lambda I)\mathbf{v} = \mathbf{0}$, i.e. we *must* take k = 1.

The Generalised Eigenvector

Example 2: MATH2601 2016 Q4 c)

Let
$$C = \begin{pmatrix} 9 & 7 & -3 \\ -2 & 2 & 1 \\ 2 & 5 & 2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$.

Show that for the matrix C, \mathbf{v} is a generalised eigenvector corresponding to $\lambda = 5$.

The Generalised Eigenvector

We compute that

$$C - 5I = \begin{pmatrix} 4 & 7 & -3 \\ -2 & -3 & 1 \\ 2 & 5 & -3 \end{pmatrix}$$

and continuously left-multiplying to \mathbf{v} ,

$$(C - 5I)\mathbf{v} = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$$
$$(C - 5I)^2\mathbf{v} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

so $\mathbf{v} \in GE_5$.

Generalised Eigenspaces

Definition 6: Generalised Eigenspace

The generalised eigenspace of λ , denoted GE_{λ} , is the set of all generalised eigenvectors corresponding to λ .

$$GE_{\lambda} = \{ \mathbf{v} \in \mathbb{C}^n \mid (A - \lambda I)^k \mathbf{v} = \mathbf{0} \text{ for some } k \geq 1 \}$$

Lemma 4: Alternate representation of GE_{λ}

$$GE_{\lambda} = \ker(A - \lambda I) \cup \ker(A - \lambda I)^{2} \cup \ker(A - \lambda I)^{3} \cup \dots$$

Definition 7: Jordan matrix

A Jordan matrix J is a direct sum of Jordan blocks.

Lemma 5: Uniqueness

Every matrix A has one unique Jordan matrix, up to some permutation (arrangement) of the Jordan blocks.

Theorem 1: Useful properties in computing Jordan forms

Let dim ker $(A - \lambda I)^k$, i.e. nullity $(A - \lambda I)^k = d_k$. Set $d_0 = 0$. Then

That is to say, the nullities must *not decrease*, but the *difference* in nullities must *not INcrease*.

Remark: Multiplicity

As a corollary, the algebraic multiplicity of an eigenvalue λ equals to $\dim GE_{\lambda}$. This allows us to not compute $(A - \lambda I)^k$ forever - we stop when $\operatorname{nullity}(A - \lambda I)^k = \operatorname{AM}$.

We use Jordan chains to find the matrices P and J, such that $A = PJP^{-1}$. For an eigenvalue λ with algebraic multiplicity k, we need to start with some vector \mathbf{v}_1 such that on multiplication, we have

$$\mathbf{v}_1 \xrightarrow{A-\lambda I} \mathbf{v}_2 \xrightarrow{A-\lambda I} \dots \xrightarrow{A-\lambda I} \mathbf{v}_k \xrightarrow{A-\lambda I} \mathbf{0}.$$

We then include (note the reverse order!)

$$\begin{pmatrix} \mathbf{v}_k & \dots & \mathbf{v}_2 & \mathbf{v}_1 \end{pmatrix}$$

to P. This corresponds to *one* Jordan block $J_k(\lambda)$ in the direct sum for the Jordan matrix J of A.

(Or maybe your lecturer taught things the other way around.) We consider this chain

$$\mathbf{v}_k \xrightarrow{A-\lambda I} \mathbf{v}_{k-1} \xrightarrow{A-\lambda I} \dots \xrightarrow{A-\lambda I} \mathbf{v}_1 \xrightarrow{A-\lambda I} \mathbf{0}.$$

and we include this to P instead.

$$\begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_{k-1} & \mathbf{v}_k \end{pmatrix}$$

We still use the Jordan block $J_k(\lambda)$.

Example: MATH2601 2016 Q4 c)

Let
$$C = \begin{pmatrix} 9 & 7 & -3 \\ -2 & 2 & 1 \\ 2 & 5 & 2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$.

- Calculate $(C-5I)\mathbf{v}$ and $(C-5I)^2\mathbf{v}$. (Done earlier)
- Without using any matrix calculations, write down all the eigenvalues of *C* and their algebraic and geometric multiplicities. Give reasons for your answers.
- **3** (Not originally in the exam:) Find an invertible matrix P and a Jordan matrix J such that $C = PJP^{-1}$.

Part 2: The trace is usually helpful, because it is the sum of the eigenvalues.

$$tr(C) = 9 + 2 + 2 = 13$$

From part 1, 5 is an eigenvalue of C with algebraic multiplicity at least 2. The third eigenvalue λ_3 satisfies

$$5+5+\lambda_3=13 \implies \lambda_3=3.$$

Part 2: The trace is usually helpful, because it is the sum of the eigenvalues.

$$tr(C) = 9 + 2 + 2 = 13$$

From part 1, 5 is an eigenvalue of C with algebraic multiplicity at least 2. The third eigenvalue λ_3 satisfies

$$5+5+\lambda_3=13 \implies \lambda_3=3.$$

Which is, of course, the only remaining eigenvalue and hence must have AM = 1. So we have:

- Eigenvalue 5: AM = 2, GM = 1
- Eigenvalue 3: AM = 1, GM = 1

Note: I haven't justified the GM's! Try doing that yourself!

Part 3: Row reducing C - 3I,

$$C - 3I = \begin{pmatrix} 6 & 7 & -3 \\ -2 & -1 & 1 \\ 2 & 5 & -1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 0 & -12 & 0 \\ -2 & -1 & 1 \\ 0 & 4 & 0 \end{pmatrix}$$

$$\sim \begin{pmatrix} -2 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

so we can take a corresponding eigenvector $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$.

So our chains are:

$$\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{C-5I} \mathbf{0}$$

$$\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{C-3I} \mathbf{0}$$

and hence $A = PJP^{-1}$ where

$$J = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix} \text{ and } P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & -3 & 2 \end{pmatrix}$$

Computing Jordan Forms: Example 2 (time permitting...)

Example: MATH2601 2017 Q3 a)

Let
$$A = \begin{pmatrix} 3 & 1 & -2 \\ 2 & 6 & -7 \\ 2 & 2 & -2 \end{pmatrix}$$
. We are **given** that

$$GE_2 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\} \text{ and } GE_3 = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix} \right\}.$$

- **1** Find the Jordan chain for $\lambda = 2$ starting with (0,1,1).
- Without any calculation, write down the geometric multiplicity of $\lambda=2$, giving reasons for your answer.
- § Find a Jordan form J and invertible matrix P for A, such that $A = PJP^{-1}$.

Computing Jordan Forms: Example 2 (time permitting...)

Canonical Jordan Form

Part 1:

$$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{A-2I} \begin{pmatrix} -1 \\ -3 \\ -2 \end{pmatrix} \xrightarrow{A-2I} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Part 2: The algebraic multiplicity is 2, since we have another distinct eigenvalue, so GM \leq 2. But GM \neq 2 since we have a chain of length 2, so GM = 1.

Part 3: $A = P J P^{-1}$ where

$$P = \begin{pmatrix} -1 & 0 & 1 \\ -3 & 1 & 4 \\ -2 & 1 & 2 \end{pmatrix}$$
$$J = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Computing Jordan Forms: Example 2 (time permitting...)

Example: MATH2601 2017 Q3 a)

4 Find $\mathbf{v} \in GE_2$ and $\mathbf{w} \in GE_3$ such that $\mathbf{v} + \mathbf{w} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$

Theorem 2: \mathbb{C}^n and the generalised eigenspaces

The direct sum of generalised eigenspaces of any $A \in M_{n \times n}$ span \mathbb{C}^n .

Computing Jordan Forms: Example 2 (time permitting...)

Hence we just need to express $\begin{pmatrix} 2\\1\\0 \end{pmatrix}$ as a linear combination of

$$\begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}$.

You can have fun with the row reduction... I'll just state the final answer:

$$\begin{pmatrix} 2\\1\\0 \end{pmatrix} = 3 \begin{pmatrix} 1\\3\\2 \end{pmatrix} - 4 \begin{pmatrix} 0\\1\\1 \end{pmatrix} - \begin{pmatrix} 1\\4\\2 \end{pmatrix}$$

$$= \begin{pmatrix} 3\\5\\2 \end{pmatrix} + \begin{pmatrix} -1\\-4\\-2 \end{pmatrix}$$

Presented by: Henry Lam and Alex Zhu

MATH2501/2601 Revision Seminar

Remark: Similarity Invariants

Theorem 3: Jordan forms are the complete similarity invariant

Two matrices A and B are similar, i.e. $A = PBP^{-1}$ for some invertible matrix P, if and only if they have the same Jordan forms. (At least, to within a different arrangement of direct sums.)

The Jordan matrix J can sometimes be found with less information if we don't need to find P.

Example: MATH2601 2016 Q4 b)

Let B be a 10×10 matrix and let λ be a scalar. Suppose it is known that

nullity
$$(B - \lambda I) = 5$$
,
nullity $(B - \lambda I)^2 = 8$,
nullity $(B - \lambda I)^3 = 9$.

Find all possible Jordan forms of B.

Idea: Our Jordan chains can be drawn on an onion diagram.

There are 5 eigenvectors in $ker(B - \lambda I)$. The idea is that there are 8-5=3 more generalised eigenvectors in $ker(B-\lambda I)^2$. This is because we know that $\ker(B - \lambda I) \subseteq \ker(B - \lambda I)^2$.

Similarly, there is another 9-8=1 in $ker(B-\lambda I)^3$.

We've addressed 9 of the 10 eigenvalues for B. There is only one more left to go.

Case 1: The tenth eigenvalue is NOT λ .

Then it must be some other value $\mu \neq \lambda$. It can only correspond to one eigenvector, so we include $J_1(\mu)$ to the direct sum.

The Jordan chains for λ have lengths 3, 2, 2, 1 and 1, so therefore (up to some permutation),

$$J = J_3(\lambda) \oplus J_2(\lambda) \oplus J_2(\lambda) \oplus J_1(\lambda) \oplus J_1(\lambda) \oplus J_1(\mu).$$

(again, up to some permutation of the Jordan blocks).

We've addressed 9 of the 10 eigenvalues for B. There is only one more left to go.

Case 2: The tenth eigenvalue IS also λ .

Problem: We cannot add it in $\ker(B - \lambda I)$, $\ker(B - \lambda I)^2$ or $\ker(B - \lambda I)^3$ without screwing up the nullities!

Recall that the difference is nullities is non-increasing. This means that the last generalised eigenvector must be in $\ker(B - \lambda I)^4$. Our original chain of length 3 also becomes chain of length 4. So we get

$$J = J_4(\lambda) \oplus J_2(\lambda) \oplus J_2(\lambda) \oplus J_1(\lambda) \oplus J_1(\lambda)$$

(again, up to some permutation of the Jordan blocks).

Remark: Why $ker(B - \lambda I)^4$? For completeness sake, here's a quick contradiction.

Suppose, say, the remaining generalised eigenvector was in $\ker(B-\lambda I)^5$ but *not* in $\ker(B-\lambda I)^4$. Then $\ker(B-\lambda I)^4$ must in fact be equal to $\ker(B-\lambda I)^3$, so $d_4=d_3$, i.e. $d_4-d_3=0$. Yet $d_5-d_4=1$. Therefore $d_5-d_4>d_4-d_3$, which cannot happen.

Invalid nullities

The property $d_1 - d_0 \ge d_2 - d_1 \ge d_3 - d_2 \ge \dots$ helps determine things that are impossible.

Example: David Angell's MATH2601 notes

Let A be a matrix with eigenvalue λ . Explain why this is not possible:

nullity
$$(A - \lambda I) = 5$$
,
nullity $(A - \lambda I)^2 = 8$,
nullity $(A - \lambda I)^3 = 9$,
nullity $(A - \lambda I)^4 = 12$,
nullity $(A - \lambda I)^k = 12$ for all $k > 4$.

Answer: $d_4 - d_3 = 3 > 1 = d_3 - d_2$, which can't happen.

From Jordan forms back to nullities

Example: Peter Brown's MATH2501 notes

If *A* is similar to $J = J_2(-4) \oplus J_2(-4) \oplus J_2(-4) \oplus J_3(5) \oplus J_1(5)$. find

$$\text{nullity}(A+4I)^k$$
 and $\text{nullity}(A-5I)^k$

for all $k \geq 1$.

Solution: Go backwards!

From Jordan forms back to nullities

We know the lengths of the chains...

From Jordan forms back to nullities

So we see that:

- nullity(A + 4I) = 3
- nullity $(A+4I)^k=6$ for all $k\geq 2$
- $\operatorname{nullity}(A 5I) = 2$
- $nullity(A 5I)^2 = 3$
- nullity $(A-5I)^k = 4$ for all $k \ge 3$

Matrix Exponentials

Matrix Exponential

Definition 11: Exponential of a matrix

The matrix exponential exp(tA) is defined as

$$\exp(tA) = e^{tA} = \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k.$$

We will illustrate the ideas...

Lemma 7: Properties of matrix exponentials

1 If
$$A = PBP^{-1}$$
, then $\exp(A) = P \exp(B)P^{-1}$.

② If
$$A = A_1 \oplus \cdots \oplus A_n$$
, then $\exp(A) = \exp(A_1) \oplus \cdots \oplus \exp(A_n)$

$$\bullet \ \exp\left(tJ_k(\lambda)\right) = e^{\lambda t} \begin{pmatrix} 1 & t & \frac{t^2}{2!} & \dots & \frac{t^{k-1}}{(k-1)!} \\ 0 & 1 & t & & & \\ 0 & 0 & 1 & \ddots & & \\ \vdots & \ddots & & & & \\ 0 & 0 & 0 & \dots & t \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Also nice to note is that if AB = BA, then exp(A) exp(B) = exp(A + B).

Example for a Jordan block:

$$\exp(tJ_5(2)) = e^{2t} egin{pmatrix} 1 & t & rac{t^2}{2!} & rac{t^3}{3!} & rac{t^4}{4!} \ 0 & 1 & t & rac{t^2}{2!} & rac{t^3}{3!} \ 0 & 0 & 1 & t & rac{t^2}{2!} \ 0 & 0 & 0 & 1 & t \ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

We're really filling the matrix in with terms from the power series of e^t , but then leaving a usual exponential in front.

Example: Not really an example...

Consider
$$C = \begin{pmatrix} 9 & 7 & -3 \\ -2 & 2 & 1 \\ 2 & 5 & 2 \end{pmatrix}$$
 from earlier. We want $\exp(tC)$.

We have

$$P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & -3 & 2 \end{pmatrix} \text{ and } J = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

The earlier results show that we can do powers of Jordan blocks one at a time. So we obtain

$$\exp(J) = \begin{pmatrix} e^{5t} & te^{5t} & 0\\ 0 & e^{5t} & 0\\ 0 & 0 & e^{3t} \end{pmatrix}$$

and hence

$$\exp(C) = P \begin{pmatrix} e^{5t} & te^{5t} & 0 \\ 0 & e^{5t} & 0 \\ 0 & 0 & e^{3t} \end{pmatrix} P^{-1}$$

A huge pain, as you can see.

So you probably won't be asked to do that in an exam. But you may be asked something else.

The 'Columns' technique

Theorem 6: Matrix Exponential times Generalised Eigenvector

If we have the Jordan chain

$$\mathbf{v}_1 \xrightarrow{A-\lambda I} \mathbf{v}_2 \xrightarrow{A-\lambda I} \mathbf{v}_3 \xrightarrow{A-\lambda I} \dots \xrightarrow{A-\lambda I} \mathbf{v}_k$$

then

$$\exp(tA)\mathbf{v}_1 = e^{\lambda t}\left(\mathbf{v}_1 + t\mathbf{v}_2 + \frac{t^2}{2}\mathbf{v}_3 + \dots + \frac{t^{k-1}}{(k-1)!}\mathbf{v}_k\right)$$

The 'Columns' technique

This does come with a caveat in that \mathbf{v}_1 must be a generalised eigenvector corresponding to λ .

(Otherwise, we have to decompose it into a linear combination of generalised eigenvectors first.)

More often than not, we just need to compute $\exp(tA)\mathbf{v}$ for some vector **v**, instead of the actual matrix exponential itself.

Theorem 7: Solution to a homogeneous system

The solution to $\frac{d\mathbf{y}}{dt} = A\mathbf{y}$ with initial condition $\mathbf{y}(0) = \mathbf{c}$ is

$$\mathbf{y} = \exp(tA)\mathbf{c}$$
.

Example: MATH2601 2016 Q4 c)

Recall for
$$C = \begin{pmatrix} 9 & 7 & -3 \\ -2 & 2 & 1 \\ 2 & 5 & 2 \end{pmatrix}$$
 and $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}$ we have the chain

$$\begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{C-5I} \mathbf{0}.$$

Use this to solve the initial value problem $\mathbf{y}' = C\mathbf{y}$, $\mathbf{y}(0) = \mathbf{v}$.

The solution is

$$\mathbf{y} = \exp(tA) \begin{pmatrix} 1 \\ -2 \\ -3 \end{pmatrix}.$$

So using the columns method,

$$\mathbf{y} = e^{5t} \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix} + t \begin{pmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
$$= e^{5t} \begin{pmatrix} 1 - t \\ -2 + t \\ -3 + t \end{pmatrix}$$

Example: MATH2601 2016 Q4 c)

Find a particular solution of $\mathbf{y}' = C\mathbf{y} + te^{5t}\mathbf{w}$, where

$$C = \begin{pmatrix} 9 & 7 & -3 \\ -2 & 2 & 1 \\ 2 & 5 & 2 \end{pmatrix} \text{ and } \mathbf{w} = \begin{pmatrix} -8 \\ 2 \\ -4 \end{pmatrix}, \text{ given that } \mathbf{w} \text{ is a}$$

generalised eigenvector of C.

Subbing
$$\mathbf{y} = e^{tC}\mathbf{z}$$
 gives

$$Ce^{tC}\mathbf{z} + e^{tC}\mathbf{z}' = Ce^{tC}\mathbf{z} + te^{5t}\mathbf{w}$$

 $\mathbf{z}' = te^{5t}e^{-tC}\mathbf{w}$

We need to construct a Jordan chain starting at w first:

$$\begin{pmatrix} -8 \\ 2 \\ -4 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} -6 \\ 6 \\ 6 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

so therefore

$$e^{tC}\mathbf{w} = e^{5t} \begin{bmatrix} \begin{pmatrix} -8\\2\\-4 \end{pmatrix} + t \begin{pmatrix} -6\\6\\6 \end{bmatrix} \end{bmatrix}.$$

But observe how we want the negative exponent e^{-tC} ! This means what we're really interested in is

$$e^{-tC}\mathbf{w} = e^{-5t} \begin{bmatrix} \begin{pmatrix} -8\\2\\-4 \end{pmatrix} - t \begin{pmatrix} -6\\6\\6 \end{bmatrix} \end{bmatrix}$$

Therefore

$$\mathbf{z}' = te^{5t}e^{-tC}\mathbf{w} = t\begin{pmatrix} -8\\2\\-4 \end{pmatrix} - t^2\begin{pmatrix} -6\\6\\6 \end{pmatrix}$$

so upon integrating,

$$\mathbf{z} = \frac{t^2}{2} \begin{pmatrix} -8\\2\\-4 \end{pmatrix} - \frac{t^3}{3} \begin{pmatrix} -6\\6\\6 \end{pmatrix} + \mathbf{c}$$

Question: How to deal with that constant of integration?

In general, you can only deal with it when you know what $\mathbf{y}(0)$ is, i.e. you have an initial value for the original systems of DEs. When that's the case, you let $\mathbf{z}(0) = \mathbf{y}(0)$ to find it.

Here we don't, so we just proceed as usual.

$$\mathbf{y}_P = e^{tC}\mathbf{z} = \frac{t^2}{2}e^{tC} \begin{pmatrix} -8\\2\\-4 \end{pmatrix} - \frac{t^3}{3}e^{tC} \begin{pmatrix} -6\\6\\6 \end{pmatrix} + e^{tC}\mathbf{c}.$$

To finish this off, we can recycle our Jordan chain from earlier:

$$\begin{pmatrix} -8 \\ 2 \\ -4 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} -6 \\ 6 \\ 6 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This gives us

$$\mathbf{y}_{P} = \frac{t^{2}}{2}e^{5t} \begin{bmatrix} \begin{pmatrix} -8\\2\\-4 \end{pmatrix} - t \begin{pmatrix} -6\\6\\6 \end{bmatrix} \end{bmatrix} - \frac{t^{3}}{3}e^{5t} \begin{pmatrix} -6\\6\\6 \end{pmatrix} + e^{tC}\mathbf{c}$$

To finish this off, we can recycle our Jordan chain from earlier:

$$\begin{pmatrix} -8 \\ 2 \\ -4 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} -6 \\ 6 \\ 6 \end{pmatrix} \xrightarrow{C-5I} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

This gives us

$$\mathbf{y}_{P} = \frac{t^{2}}{2} e^{5t} \begin{bmatrix} \begin{pmatrix} -8\\2\\-4 \end{pmatrix} - t \begin{pmatrix} -6\\6\\6 \end{pmatrix} \end{bmatrix} - \frac{t^{3}}{3} e^{5t} \begin{pmatrix} -6\\6\\6 \end{pmatrix} + e^{tC} \mathbf{c}$$

The remainder is trivial and is left as an exercise to the audience.

Note: The harsh reality is that if we knew what \mathbf{c} was, that would potentially be *another* Jordan chain we need to deal with. Fingers crossed you don't have to do that in your exam.