Cytostatika och medel vid infektioner

Daniel Hovey daniel.hovey@neuro.gu.se

- Koncept
 Toxiska för den patogena organismen (eller cancerceller), men <u>oskadliga för värden</u>.
- Utnyttjar biokemiska skillnader mellan agens/cancercell och värd för att uppnå specificitet.

Biokemiska skillnader

<u>Kvalitativa</u> eller <u>kvantitativa</u> skillnader utnyttjas

Mest framgångsrikt med bakterier - lättare att utnyttja skillnader mellan agens och värd

Virus utnyttjar värdcellernas metabola maskineri - svårare att hitta mål

Cancerceller är mest lika - svårast att undvika toxicitet hos värden

Cellväggsinhibering

Cellmembranruptur

Proteinsynteshämning

Störning av DNA-syntes

Modifiering av cellmetabolism

Prekursorer till peptidoglykan aktiverar autolytiska hydrolaser

→ Lysering av cellen

Cellväggsinhibering

β -lactamer

- -Samma verkningsmekanism förhindra cellväggssyntes -Bakteriodia (med något undantag, som enbart inhiberas)
- -Kort halveringstid -Primärt utsöndring via njurar
- -KORSALLERGI!

Cellväggsinhibering

β -lactamer - penicilliner

Cellväggsinhibering

β -lactamer - penicilliner

 β -laktamas \rightarrow hydrolys av β -laktam-ring

Det finns över 1000 olika typer av β -laktamas - Olika affinitet för olika antibiotika

- Olika känslighet hos antibiotikaIngen enkel lösning

Cellväggsinhibering

β -lactamer - penicilliner

β-laktamas – strategier

- ı) Semisyntetiska (kemiskt modifierade) substanser $\Rightarrow \beta$ -laktamasresistens
- 2) Tillägg av β -laktamasinhibitor (till exempel klavulansyra)

Cellväggsinhibering

β -lactamer - penicilliner

Bredspektrumantibiotika = semisyntetiska (modifierade) antibiotika

Utökar spektrumet av känsliga bakterier

Cellväggsinhibering

β -lactamer - penicilliner

Penicilliner relativt biverkningsfria

Magbesvär p.g.a. ändrad balans i tarmfloran

Överkänslighetsreaktioner! Hudutslag och feber är vanliga Anafylaxi (ovanligare, men betydligt farligare)

Cellväggsinhibering

eta-lactamer - cefalosporiner

Första generationen

Viss nefrotoxicitet
 Relativt β-laktamas-stabila

Andra generationen
- Relativt β-laktama

Relativt β-laktama

Viss nefrotoxicitet Cefuroxim korsar blod-hjärn-barriären (meningit-behandling)

Tredje generationen

- Bredast spektrum av alla generationer
- Bredast spektrum av alla generationer
 Högst resistens mot β-laktamas
 Bäst penetrans över blod-hjärn-barriären
 Ingen nefrotoxicitet

Cefotaxim

Cellväggsinhibering

β -lactamer - cefalosporiner

Kan ges oralt, men ges oftast intravenöst Kan även ges intramuskulärt - kan vara smärtsamt

Magbesvär p.g.a. ändrad balans i tarmfloran

Njurtoxicitet av vissa - ha koll på njurfunktionen, dosanpassa

Överkänslighetsreaktioner! Hudutslag och feber är vanliga Anafylaxi

10% korsreaktivitet hos penicillinkänsliga individer

Cellväggsinhibering

β -lactamer – karbapenemer

Bredspektrum

Nervtoxicitet vid höga doser

Resistensutveckling ß-laktamas

Reserveras för svårare infektioner

Meropenem

β -lactamer – monobactamer

Resistent mot de flesta ß-laktamaser

I princip endast Gramnegativt spektrum

Korsreagerar INTE vid överkänslighet

Aztreonam

Cellväggsinhibering

Glykopeptider

Mest effektiva mot Grampositiva bakterier - inklusive MRSA

Binder till oligopeptiderna i peptidoglykan

Niurtoxicitet?

Vancomycin

Drug of last resort

Cellmembranruptur

Cellmembranrupterare

Interagerar med fosfolipider i yttre cellmembranet - särskilt mot LPS

Bakteriocida och snabba mot Gramnegativa bakterier

Användning begränsas av nerv-/njurtoxicitet - f.f.a. topikal behandling

<u>Polymixin B</u> Inflammation i yttre hörselgången (extern otit) Inflammation/infektion i ögat

Proteinsynteshämning

Tetracykliner

- Varierande utsöndringsväg lever-/njurskada
- Bakteriostatiska
- Brett spektrum
- Utveckling av korsresistens Missfärgning av tänder hos barn
- Fotosensitivitet

Doxycyklin

Proteinsynteshämning

Amfenikoler

Ganska liten användning

- -90% leverutsöndring -Bakteriostatiskt (med vissa undantag)
- -Hämmar peptidyltransferas efter bindning till 50S-subenhet
- -Benmärgssuppression -Stor försiktighet med barn

Kloramfenikol

Proteinsynteshämning

Makrolider

- -Troligen hämning av peptidyltransferas (som kloramfenikol) -Även translokationshämning
- -Liknande spektrum som penicillin
- -Bakteriostatiska (ibland bakteriocida) -Bra alternativ vid överkänslighet
- -Ges oftast oralt
- -Kan ges intravenöst, men kan då ge tromboflebit -Liten njurutsöndring potentiellt levertoxiskt
- -Magbesvär, hudutslag

Erythromycin Lunginflammation

Proteinsynteshämning

Aminoglykosider

- -Mekanism varierar något mellan aminoglykosider oklar -Stör translationen i ribosomen ightarrow funktionsodugliga proteiner
- -Bakteriocida
- -Reserveras generellt för livshotande infektioner (Gramnegativa) -Ges intravenöst, ofta "ett skott" i kombination med andra antibiotika
- -Se upp med njurfunktion
- -Ototoxicitet, nefrotoxicitet

<u>Tobramycin</u> Blodförgiftning (sepsis)

Störning av DNA-syntes

Kinoloner

- -Hämmar bakteriellt DNA-topoisomeras II (DNA-gyras) -Mycket högre koncentrationer behövs för att påverka däggdjurs DNA-gyras -Bred- och smalspektrumvarianter
- -Få och milda biverkningar (undantag Clostridium)

Ciprofloxacin

Modifiering av cellmetabolism

Däggdjur måste få i sig folat (folsyra) genom föda Bakterier måste syntetisera det själva Folsyra är nödvändigt för DNA-syntes

Virusmekanismer

- 1) Polypeptider på kapsid eller envelope binder till värdcell
- Endocytos
 DNA/RNA används för att med värdspecifikt maskineri bygga komponenter
- 4) Eventuell integrering av viralt DNA i värdens DNA (retrovirus)

Frouen Svårare att hitta virusspecifika mål De flesta läkemedel endast aktiva under replikation Asymptomatisk början ger fördröjd behandling

"An ounce of prevention is worth a pound of cure"

Virustyper

DNA-virus Smittkoppor Vattkoppor Halsont Vårtor Hepatit B

RNA-virus Influensa Mässlingen Rabies Förkylning

Hepatit A/C HIV

Retroviruset par excellence

Hämning av reverst transkriptas

- Huvudsakligen <u>nukleosidanaloger</u> som tävlar med byggstenar för proviralt DNA Fosforyleras av enzymer hos värdcellen Terminering av DNA-kedjan

- DNA-polymeras hos däggdjur relativt resistent mot detta Finns även vissa <u>icke-nukleosidanaloger</u>

Zidovudin

Proteashämmare

- mRNA översätts till inerta polyproteiner Klyvning m.h.a. virusspecifika proteaser till aktiva proteiner
- Proteashämmare binder till proteaserna och förhindrar klyvning Upp till 50 000 ggr högre affinitet för virusproteaser
- Ej aktiveringsbehov

Ritonavir

Kombinationsterapi vid HIV

Kombinationsterapi = synergieffekter

HAART (Highly Active AntiRetroviral Therapy)

Two nukleosidanaloger + en icke-nukleosidanalog, eller en-två proteashämmare

Livslång Compliance svårt Bieffekter

Hämning av DNA-polymeras

- <u>Nukleosidanaloger</u> som fosforyleras initalt via virusspecifika kinaser → höga koncentrationer i infekterade celler 30 ggr mer potent mot virus DNA-polymeras
- Inhiberar viralt DNA-polymeras

Acyclovir Vattkoppor

Herpes (genital och oral)

Minimala biverkningar - trötthet, illamående

Hämning av virusfrisättning

- Viralt neuroaminidas "klipper av" kopplingen till värdcellen vid frisättning
 Neuroaminidashämmare förhindrar frisättning

Immunomodulering

Immunoglobulin Antikroppar mot virus, t.ex. hepatit

Glykoproteiner (cytokiner) Inhiberar viral proteinsyntes genom bindning till receptorer på värdcellens yta och induktion av enzymsyntes som motverkar translation av virus-mRNA

Modulerar immunsvaret
Influensaliknande biverkningar

Cancer = malign neoplasm

Cancergenes

Princip: normal cell drabbas av ett antal mutationer i nyckelgener

Cancerbehandling

Tre huvudsakliga behandlingsformer

Kirurgi Radioterapi Kemoterapi

Behandling kan vara kurativ eller palliativ i sin intention

Oftast kombineras olika former

Generella principer för kemoterapi

Generellt svårt att skilja på normala celler och cancerceller.

De flesta slår till under aktiv cellcykel. Behandlingarna riktas i första Biverkningar hand mot celler i delning. Ju snabbare delning i tumören, desto effektivare terapi. Ingen egentlig effekt på invasion, dedifferentiering eller metastasering. Lågt terapeutiskt index.

Klassiska biverkningar

Beror i stor utsträckning på att man slår mot celler med hög delningshastighet

Benmärg > Leukopeni - infektionskänslighet Hårsäckar → Alopeci → Illamående, kräkningar GI-epitel Spermieproduktion — Infertilitet Växande barn Tillväxthämning Växande foster Teratogenicitet

Carcinogenes!

Cytotoxiska läkemedel

Alkylerande medel

Ofta derivat av senapsgas

Mycket reaktiva

Korslänkar DNA (förmodligen huvudsakligen guanin)

Cyklofosfamid

Cytotoxiska läkemedel

Antimetaboliter

Liknar endogena substanser - falska substrat

Exempel: folatantagonist

Metotrexat Folatanalog

Hämmar dihydrofolatreduktas genom högre affinitet

Cytotoxiska läkemedel

Mitoshämmare

Hämmar mitosen i metafasen Förhindrar polymerisering av mikrotubuli genom att binda till tubulin

Relativt icke-toxiska - parestesier, buksmärta, muskelsvaghet

Vincristin

Cytotoxiska läkemedel

Cytotoxiska antibiotika

Komplexbinder DNA och inhiberar syntes av DNA och RNA Huvudeffekt genom att binda till topoisomeras II (DNA-gyras)

Cytotoxiska läkemedel

Övriga

- Cisplatin
 Tungmetallkomplex med platina
 Tvärbinder samtliga baser inom och mellan
 DNA-kedjorna

- Radioaktivt jod

 Vid tyreoideacancer

 Jod anrikas och avger strålning

Doxorubicin

Monoklonala antikroppar

- Ganska nyaHögre specificitetDyra

Proteinkinashämmare

- Imatinib
 -Hämmar kinas som deltar i cellsignalering som svar på tillväxtfaktorer
 -Unik faktor i CML-patogenes
 -Betydligt bättre prognos

Hormonterapi

Tumörer som utgår från hormonkänslig vävnad kan vara hormonberoende (d.v.s. har receptorer som styr t.ex. bildningen av tillväxtfaktorer).

Detta kan motverkas genom:

- motverkan av ett hormons effekt med ett "motsatt" hormon
- hormonantagonister

Antitestosteron (flutamid) Prostata- och testiscancer Kemisk kastrering

Antiöstrogen (tamoxifen) Bröstcancer Blockerar östrogenreceptor Förhindrar transkription av vissa gener Menopaus-liknande biverkningar

Kombinationsterapi

Synergieffekter och minskade biverkningar

Exempel: metotrexat (benmärgssuppression) med vincristin (neurotoxicitet)

Ges ofta intermittent under lång tid, med 2-3 veckor mellan behandlingarna

Biverkningskontroll

Emesis Ondansetron

 ${\underline{\tt Benmärgssuppression}} \\ {\tt På förs\"{o}k \ autolog \ benm\"{a}rgstransplantation \ (efter \ att \ den \ renats \ fr\"{a}n \ tum\"{o}rceller)} \\$

