

Multiplex Heterogeneous Graph Convolutional Networks

Pengyang Yu¹, Chaofan Fu¹, Yanwei Yu¹,
Chao Huang², Zhongying Zhao³, Junyu Dong¹

¹Ocean University of China

²The University of Hong Kong

³Shandong University of Science and Technology

What's Multiplex Heterogeneous Network?

Heterogeneous Network

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$
, with $\phi: \mathcal{V} \to \mathcal{O}$, $\psi: \mathcal{E} \to \mathcal{R}$ and $|\mathcal{O}| + |\mathcal{R}| > 2$

Multiplex Heterogeneous Network

If $|\mathcal{O}| + |\mathcal{R}| > 2$, and existing different types of edges between same node pairs.

Challenges

- Heterogeneity vs. Multiplexity
 - Diverse types of nodes and edges.
 - Multiple interactions between the same node pairs.

Challenges

- Heterogeneity vs. Multiplexity
 - Multiple types of nodes and edges.
 - Multiple interactions between the same node pairs.
- Accurate Meta-path design (MAGNN, etc.)
 - Different length.
 - Different interaction order.
- Embedding efficiency
 - Unable to handle large-scale network data

Architecture of Proposed MHGCN

Distinguish the importance of the relations

Automatically capture meta-path information

Multiplex Relation Aggregation

Adaptively adjust the relationaware weights during training.

- Decoupling multiplex networks
- Weighted aggregate subnetworks.
- Extracting node attribute features

How to Automatically Capture Heterogeneous Meta-paths?

- Distinguish the importance of different relations.
- > Automatically capture the meta-path information.

Multilayer Graph Convolution Module

Multilayer Graph Convolution Module

$$\mathbf{H} = \frac{1}{l} \sum_{i=1}^{l} \mathbf{H}^{(i)} = \frac{1}{l} \sum_{i=1}^{l} \mathbb{A} \cdot \mathbf{H}^{(i-1)} \cdot \mathbf{W}^{(i)}$$

Multilayer Graph Convolution Module

$$\mathcal{L} = -\sum_{(u,v)\in\Omega} \log \sigma(\langle \mathbf{H}_{u}^{\mathrm{T}}, \mathbf{H}_{v} \rangle)$$
$$-\sum_{(u',v')\in\Omega^{-}} \log \sigma(\langle \mathbf{H}_{u'}^{\mathrm{T}}, \mathbf{H}_{v'} \rangle)$$

$$\mathcal{L} = -\sum_{i \in \mathcal{V}_{ids}} \mathbf{Y}_i \ln(\mathbf{C} \cdot \mathbf{H}_i)$$

Experiments: Datasets and Baselines

Dataset	#nodes	#edges	#n-type	#e-type	#feat.	Mult.
Alibaba	21,318	41,676	2	4	19	✓
Amazon	10,166	148,865	1	2	1,156	✓
AMiner	58,068	118,939	3	3	4	×
IMDB	12,772	18,644	3	2	1,256	×
DBLP	26,128	119,783	4	3	4,635	×

- > Two multiplex heterogeneous networks.
- > Three heterogeneous networks.
- Five homogeneous network embedding methods.
- Five heterogeneous network embedding methods.
- Eight multiplex heterogeneous network embedding methods.

Method	He Node	ter. Edge	Multi.	Attr.	Unsup.	Auto.
node2vec	×	×	×	×	✓	×
RandNE	×	×	×	×	\checkmark	×
FastRP	×	×	×	×	\checkmark	×
SGC	×	×	×	\checkmark	√/×	×
AM-GCN	×	X	X	✓	X	x
R-GCN	✓	✓	×	✓	√/×	×
HAN	✓	✓	×	\checkmark	×	×
NARS	✓	\checkmark	×	\checkmark	×	×
MAGNN	✓	\checkmark	×	\checkmark	√/×	×
HPN	✓	✓	×	✓	√/×	×
PMNE	×	√	√	×	√	X
MNE	×	✓	\checkmark	×	✓	×
GATNE	✓	\checkmark	✓	\checkmark	✓	×
GTN	✓	\checkmark	✓	\checkmark	×	✓
DMGI	✓	\checkmark	✓	\checkmark	✓	×
FAME	✓	✓	✓	\checkmark	\checkmark	✓
HGSL	✓	✓	✓	✓	×	×
DualHGNN	_/	×	<u> </u>	<u> </u>	√	x_/
MHGCN	✓	✓	✓	✓	√/×	✓

Experiments: Overview

- Two downstream tasks
 - ➤ Link Prediction: vs. 15 baselines
 - ➤ Node Classification: vs. 17 baselines
- Ablation Study
 - ➤ Verify the effectiveness of each component of our MHGCN.
- Parameter Sensitivity
 - ➤ Verify the sensitivity of three important parameters?
- Model Efficiency Analysis
 - > Evaluate the efficiency of our proposed MHGCN?

Link Prediction

Method		AMiner			Alibaba			IMDB		1	Amazon			DBLP	
	R-AUC	PR-AUC	F1	R-AUC	PR-AUC	F1	R-AUC	PR-AUC	F1	R-AUC	PR-AUC	F1	R-AUC	PR-AUC	F1
node2vec	0.594	0.663	0.602	0.614	0.580	0.593	0.479	0.568	0.474	0.946	0.944	0.880	0.449	0.452	0.478
RandNE	0.607	0.630	0.608	0.877	0.888	0.826	0.901	0.933	0.839	0.950	0.941	0.903	0.492	0.491	0.493
FastRP	0.620	0.634	0.600	0.927	0.900	0.926	0.869	0.893	0.811	0.954	0.945	0.893	0.515	0.528	0.506
SGC	0.589	0.585	0.567	0.686	0.708	0.623	0.826	0.889	0.769	0.791	0.802	0.760	0.601	0.606	0.587
R-GCN	0.599	0.601	0.610	0.674	0.710	0.629	0.826	0.878	0.790	0.811	0.820	0.783	0.589	0.592	0.566
MAGNN	0.663	0.681	0.666	0.961	0.963	0.948	0.912	0.923	0.887	0.958	0.949	0.915	0.690	0.699	0.684
HPN	0.658	0.664	0.660	0.958	0.961	0.950	0.900	0.903	0.892	0.949	0.949	0.904	0.692	0.710	0.687
PMNE-n	0.651	0.669	0.677	0.966	0.973	0.891	0.674	0.683	0.646	0.956	0.945	0.893	0.672	0.679	0.663
PMNE-r	0.615	0.653	0.662	0.859	0.915	0.824	0.646	0.646	0.613	0.884	0.890	0.796	0.637	0.640	0.629
PMNE-c	0.613	0.635	0.657	0.597	0.591	0.664	0.651	0.634	0.630	0.934	0.934	0.868	0.622	0.625	0.609
MNE	0.660	0.672	0.681	0.944	0.946	0.901	0.688	0.701	0.681	0.941	0.943	0.912	0.657	0.660	0.635
GATNE	OOT	OOT	OOT	0.981	0.986	0.952	0.872	0.878	0.791	0.963	0.948	0.914	O av	verage	OOT
DMGI	OOM	OOM	OOM	0.857	0.781	0.784	0.926	0.935	0.873	0.905	0.878	0.847	0.0	5.68%	0.601
FAME	0.687	0.747	0.726	0.993	0.996	0.979	0.944	0.959	0.897	0.959	0.950	0.900	0	gains	0.633
DualHGNN	/	/	/	0.974	0.977	0.966	/	/	/	/	/	/		, <u>, </u>	/
MHGCN	0.711	0.753	0.730	0.997	0.997	0.992	0.967	0.966	0.959	0.972	0.974	0.961	0.718	0.722	0.703

MHGCN achieves average gains of 5.68% F1 score in comparison to the best performed GNN baselines across all datasets.

Node Classification

Mathad	AM	iner	Alib	oaba	IM	DB	DE	BLP
Method	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1
node2vec	0.522 (0.0032)	0.532 (0.0051)	0.238 (0.0125)	0.347 (0.0093)	0.363 (0.0237)	0.382 (0.0703)	0.352 (0.0103)	0.351 (0.0112)
RandNE	0.641 (0.0074)	0.672 (0.0064)	0.319 (0.0170)	0.358 (0.0093)	0.373 (0.0143)	0.392 (0.0185)	0.351 (0.0153)	0.372 (0.0150)
FastRP	0.650 (0.0086)	0.690 (0.0074)	0.301 (0.0180)	0.392 (0.0119)	0.363 (0.0236)	0.381 (0.0140)	0.343 (0.0201)	0.375 (0.0199)
MNE	0.643 (0.0069)	0.686 (0.0045)	0.289 (0.0155)	0.390 (0.0021)	0.374 (0.0153)	0.382 (0.0680)	0.366 (0.0117)	0.384 (0.0109)
GATNE	OOT	OOT	0.291 (0.0086)	0.390 (0.0014)	0.369 (0.0132)	0.333 (0.0005)	OOT	OOT
DMGI	0.473 (0.0155)	0.626 (0.0093)	0.220 (0.0214)	0.392 (0.0026)	0.548 (0.0190)	0.544 (0.0189)	0.781 (0.0303)	0.787 (0.0235)
FAME	0.722 (0.0114)	0.727 (0.0091)	0.323 (0.0154)	0.393 (0.0060)	0.593 (0.0135)	0.594 (0.0143)	0.842 (0.0183)	0.868 (0.0127)
DualHGNN	/	/	0.347 (0.0114)	0.402 (0.0127)	/	/	/	/
SGC	0.516 (0.0047)	0.587 (0.0157)	0.286 (0.0231)	0.361 (0.0175)	0.489 (0.0106)	0.563 (0.0133)	0.622 (0.0009)	0.623 (0.0009)
AM-GCN	0.702 (0.0175)	0.713 (0.0223)	0.307 (0.0232)	0.399 (0.0156)	0.610 (0.0021)	0.640 (0.0013)	0.867 (0.0105)	0.878 (0.0112)
R-GCN	0.690 (0.0078)	0.692 (0.0106)	0.265 (0.0326)	0.381 (0.0125)	0.544 (0.0172)	0.572 (0.0145)	0.862 (0.0053)	0.870 (0.0070)
HAN	0.690 (0.0149)	0.726 (0.0086)	0.275 (0.0327)	0.392 (0.0081)	0.552 (0.0112)	0.568 (0.0078)	0.806 (0.0078)	0.813 (0.0100)
NARS	0.722 (0.0103)	0.721 (0.0097)	0.297 (0.	20/:		.0048)	0.794 (0.0255)	0.804 (0.0320)
MAGNN	0.755 (0.0105)	0.757 (0.0133)	0.348 (0. 23.2	3% improver	nent on iviac	.0089)	0.881 (0.0284)	0.895 (0.0396)
HPN	0.710 (0.0612)	0.732 (0.0490)	0.263 (0. 22.1	.9% improver	ment on Micr	o-F1 .0021)	0.822 (0.0201)	0.830 (0.0201)
GTN	OOM	OOM	0.255 (0.0420)	0.392 (0.0071)	0.615 (0.0108)	0.616 (0.0093)	0.852 (0.0137)	0.868 (0.0125)
HGSL	0.754 (0.0100)	0.758 (0.0103)	0.338 (0.0121)	0.398 (0.0238)	0.620 (0.0048)	0.638 (0.0030)	0.893 (0.0284)	0.902 (0.0396)
MHGCN	0.868 (0.0160)	0.875 (0.0200)	0.351 (0.0204)	0.458 (0.0160)	0.764 (0.0145)	0.782 (0.0138)	0.945 (0.0221)	0.952 (0.0203)

Ablation Study

- MHGCN-R does not consider the importance of different relations.
 - ➤ Demonstrate the crucial role of our designed multiplex relation aggregation module.
- MHGCN-L uses only a two-layer GCN to obtain the embedding
 - ➤ Reflect the importance of our multilayer graph convolution module.

Parameter Sensitivity

- 1-length and 2-length meta-path already effectively capture the topological structures of network.
- Achieve the best performance when embedding dimension d = 128.
- Achieve the stable performance within 80 rounds on all tested datasets.

Model Efficiency Analysis

Method	AMiner	Alibaba	IMDB	DBLP
AM-GCN	8703.71	2519.82	24280.12	2786.73
R-GCN	153.04	301.25	155.40	192.85
HAN	87105.55	4226.95	70510	22315.36
NARS	172.21	211.54	75.81	108.54
MAGNN	10361.20	2320.62	731.03	2125.33
HPN	172.82	249.47	176.64	109.49
GTN	OOM	21166.83	4287.20	18233.64
HGSL	1684.03	2120.93	1758.21	2037.10
DualHGN	/	11295.92	/	/
MHGCN	645.20	996.52	677.23	970.29
Speedup [*]	135.05×	4.37×	104.15×	23.01×
Speedup	/	21.25×	6.33×	18.80×

^{*} Speedup of MHGCN over HAN.

OOM: Out Of Memory.

- Adopt the idea of simplifying graph convolutional networks
- Ensure efficiency with high performance
 - > 135 times faster than HAN on AMiner.
 - > 21 times faster than GTN on Alibaba.

^{**} Speedup of MHGCN over GTN.

Conclusion

- We propose an effective graph convolution network model for attaibuted multiplex heterogeneous networks.
- Our model can well deal with the multilayered nature of multiplex networks and distinguish the importance of different relations in heterogeneous networks.
- Our model can automatically capture the useful relation-aware meta-path information in multiplex heterogeneous networks.
- Experiments on five real-word datasets demonstrate the effectiveness and efficiency of the proposed model.

Thanks for Listening Q & A

ypy@stu.ouc.edu.cn