Table 1: Results of the parameter sensitivity analysis of the parameters that may influence the MIC score. The baseline parameters and their values are shown in the table. For each system, we show the MIC score when the parameter changes. The values in the parentheses indicate the increase/decrease from the baseline MIC score.

Baseline Values: $K=500$, $II=10,000$, W cut-off=0.05								
Lowe New Value	r MIC	Highe New Value	r MIC					
Mylyn 1.0 (Baseline MIC = 0.54)								
	0.32 (-0.22)	600	0.40 (-0.14)					
$K = \frac{300}{400}$	0.38 (-0.16)	$K = \frac{600}{700}$	0.76 (+0.22)					
$II=_{9K}^{8K}$	0.49 (-0.05) 0.57 (+0.03)	$II = {}^{11}_{12}$ K	0.53 (-0.01) 0.47 (-0.07)					
W cut-off=0.025	0.46 (-0.08)	W cut-off=0.1	0.63 (+0.09)					
Mylyn 2.0 (Baseline MIC = 0.56)								
$K = {}^{300}_{400}$	0.38 (-0.18)	$K=\frac{600}{700}$	0.40 (-0.16)					
	0.46 (-0.10)		0.68 (+0.12)					
$II = {8 \text{K} \atop 9 \text{K}}$	0.49 (-0.07) 0.62 (+0.06)	$II = {}^{11}\text{K}_{12}$ K	0.53 (-0.03) 0.53 (-0.03)					
W cut-off=0.025	0.52 (+0.00)	W cut-off=0.1	0.63 (+0.07)					
Mylyn 3.0 (Baseline MIC = 0.36)								
$K = {}^{300}_{400}$	0.30 (-0.06)	$K=\frac{600}{700}$	0.28 (-0.08)					
	0.30 (-0.06)		$0.43 \ (+0.07)$					
$II = {8 \text{K} \atop 9 \text{K}}$	0.31 (-0.05)	$II = {11 \text{K} \atop 12 \text{K}}$	0.31 (-0.05)					
9K W cut-off=0.025	0.26 (-0.10) 0.33 (-0.03)	12K W cut-off=0.1	0.34 (-0.02) 0.30 (-0.06)					
Eclipse 2.0 (Baseline M		W Cut-on=0.1	0.50 (-0.00)					
	$\frac{10 - 0.20}{0.25 (+0.05)}$	1 600	0.21 (+0.01)					
$K = {}^{300}_{400}$	0.25 (+0.05) 0.25 (+0.05)	$K=\frac{600}{700}$	0.28 (+0.08)					
$II = \frac{8K}{9K}$	0.22 (+0.02)	$II = \frac{11 \text{K}}{12 \text{K}}$	0.19 (-0.01)					
	0.22 (+0.02)		0.22 (+0.02)					
W cut-off=0.025	0.21 (+0.01)	W cut-off=0.1	0.21 (+0.01)					
Eclipse 2.1 (Baseline M	IC = 0.21)							
$K=\frac{300}{400}$	0.27 (+0.06)	$K=\frac{600}{700}$	0.20 (-0.01)					
	0.18 (-0.03)		0.25 (+0.04)					
$II = {8 \mathrm{K} \atop 9 \mathrm{K}}$	0.27 (+0.06) 0.22 (+0.01)	$II = {}^{11}_{12}$ K	0.20 (-0.01) 0.24 (+0.03)					
W cut-off=0.025	0.25 (+0.04)	W cut-off=0.1	0.22 (+0.01)					
Eclipse 3.0 (Baseline M	IC = 0.24)							
$K=\frac{300}{400}$	0.28 (+0.04)	$K=\frac{600}{700}$	0.23 (-0.01)					
	0.25 (+0.01)		0.21 (-0.03)					
$II = {8 \text{K} \atop 9 \text{K}}$	0.25 (+0.01)	$II = {11 \text{K} \atop 12 \text{K}}$	0.20 (-0.04)					
W cut-off=0.025	0.21 (-0.03) 0.25 (+0.01)	W cut-off=0.1	0.24 (—) 0.22 (-0.02)					
NetBeans 4.0 (Baseline	, ,	<u> </u>	(/					
	0.20 (-0.04)	600	0.25 (+0.01)					
$K = {}^{300}_{400}$	0.19 (-0.05)	$K = \frac{600}{700}$	0.26 (+0.02)					
$II = {8 \text{K} \atop 9 \text{K}}$	0.24 (—)	$II = {11 \text{K} \atop 12 \text{K}}$	0.29 (+0.05)					
9K W cut-off=0.025	0.23 (-0.01)	12K W cut-off=0.1	0.28 (+0.04) 0.26 (+0.02)					
NetBeans 5.0 (Baseline	0.27 (+0.03)	W cut-on=0.1	0.20 (+0.02)					
$\frac{1 \text{VetBeams 3.0 (Basetine}}{K-300}$	<u> </u>	1 600	0.19 (-0.01)					
$K = {}^{300}_{400}$	$0.20 () \\ 0.21 (+0.01)$	$K=\frac{600}{700}$	0.19 (-0.01)					
$II = {8 \text{K} \atop 9 \text{K}}$	0.22 (+0.02)	11K	0.21 (+0.01)					
	0.23 (+0.03)	II = 12K	0.25 (+0.05)					
W cut-off=0.025	0.21 (+0.01)	W cut-off=0.1	0.19 (-0.01)					
,	NetBeans 5.5.1 (Baseline MIC = 0.19)							
$K=\frac{300}{400}$	0.19 (—)	$K=\frac{600}{700}$	0.18 (-0.01)					
100	0.18 (-0.01) 0.27 (+0.08)	11K	$0.23 (+0.04) \\ 0.20 (+0.01)$					
$II = {8 \mathrm{K} \atop 9 \mathrm{K}}$	0.18 (-0.01)	$II=_{12K}^{11K}$	0.27 (+0.08)					
W cut-off= 0.025	0.20 (+0.01)	W cut-off=0.1	0.19 (—)					

Table 2: Results of the parameter sensitivity analysis of the parameters that may influence the *prediction* result. The baseline parameters and their values are shown in the table. For each system, we show the precision and recall when the parameter changes. The values in the parentheses indicate the increase/decrease from the baseline precision and recall.

	Baseline Values: $K=500$, $II=10,000$, W cut-off=0.05, δ =0.01, PCA cut-off=90%						
	Lower	, , ,	1	Higher			
New Value	Precision	Recall	New Value	Precision	Recall		
	Mylyn 2.0 (Baseline Precision = 0.82, Base Recall = 0.92)						
	0.81 (-0.01)	0.76 (-0.16)	1 600	0.80 (-0.02)	0.89 (-0.03)		
$K = {}^{600}_{400}$	0.80 (-0.02)	0.91 (-0.01)	$K = {}^{600}_{700}$	0.90 (+0.08)	0.96 (+0.04)		
	0.85 (+0.03)	0.98 (+0.06)		0.78 (-0.04)	0.92 (—)		
$II = {8 \mathrm{K} \atop 9 \mathrm{K}}$	0.84 (+0.02)	0.97 (+0.05)	$II = {}^{11}_{12}K$	0.86 (+0.04)	0.95 (+0.03)		
W cut-off=0.025	$0.91\ (+0.09)$	0.89 (-0.03)	W cut-off=0.1	0.79 (-0.03)	0.93 (+0.01)		
$\delta = 0.005$	0.82(—)	0.95 (+0.03)	δ =0.02	0.82 (—)	0.92 (—)		
PCA cut-off= 80%	0.82 (—)	0.92 ()	PCA cut-off=95%	0.82 (—)	0.92 ()		
Mylyn 3.0 (Baseline Precision = 0.78 , Base Recall = 0.79)							
$K = {}^{300}_{400}$	0.88 (+0.09)	0.70 (-0.09)	$K=\frac{600}{700}$	0.63 (-0.15)	0.85 (+0.06)		
$\Lambda =_{400}$	0.74 (-0.04)	0.64 (-0.15)		0.52 (-0.26)	0.89 (+0.07)		
$II=_{9K}^{8K}$	0.79 (+0.01)	0.78 (-0.01)	$II = {}^{11}_{12}$ K	0.76 (-0.02)	0.74 (-0.05)		
	0.73 (-0.05)	0.78 (-0.01)		0.78 (—)	0.76 (-0.03)		
W cut-off= 0.025	0.77 (-0.01)	0.74 (-0.05)	W cut-off=0.1	0.71 (-0.07)	$0.76 \ (-0.03)$		
$\delta = 0.005$	0.78 (—)	0.78 (-0.01)	δ =0.02	0.78 (—)	0.79 ()		
PCA cut-off=80%	0.78 (—)	0.79 (—)	PCA cut-off=95%	0.78 (—)	0.79 (—)		
Eclipse 2.1 (Baseline Precision = 0.79 , Base Recall = 0.63)							
$K=^{300}_{400}$	0.86 (+0.07)	0.83 (+0.20)	_v _600	0.85 (+0.06)	0.72 (+0.09)		
	0.82 (+0.03)	0.63 (—)	$K = \frac{600}{700}$	0.74 (-0.05)	0.65 (+0.02)		
$II=_{9K}^{8K}$	0.79 (—)	0.62 (-0.01)	$II = {}^{11}_{12}$ K	0.80 (+0.01)	0.61 (-0.02)		
	0.77 (-0.02)	0.67 (+0.04)		0.80 (+0.01)	0.65 (+0.02)		
W cut-off= 0.025	0.79 (—)	0.62 (-0.01)	W cut-off=0.1	0.78 (-0.01)	0.65 (+0.02)		
$\delta = 0.005$	0.79 ()	0.63 ()	δ =0.02	0.81 (+0.02)	0.63 ()		
PCA cut-off=80%	0.79 (—)	0.63 (—)	PCA cut-off=95%	0.79 (—)	0.63 (—)		
Eclipse 3.0 (Baseline Precision = 0.84, Base Recall = 0.79)							
$K = {}^{300}_{400}$	0.73 (-0.11)	0.94 (+0.15)	600	0.77 (-0.07)	0.86 (+0.07)		
$^{\kappa}_{-400}$	0.78 (-0.06)	0.84 (+0.05)	$K = \frac{600}{700}$	0.75 (-0.09)	0.78 (-0.01)		
$II=_{9K}^{8K}$	0.80 (-0.04)	0.77 (-0.02)	$II=_{12\mathrm{K}}^{11\mathrm{K}}$	0.84 ()	0.78 (-0.01)		
	0.80 (-0.04)	0.79 (—)		0.81 (-0.03)	0.79 ()		
W cut-off=0.025	0.82 (-0.02)	0.78 (-0.01)	W cut-off=0.1	0.84 (—)	0.81 (+0.02)		
δ =0.005	0.84 (—)	0.81 (+0.02)	δ =0.02	0.81 (-0.03)	0.79 (—)		
PCA cut-off=80%	0.84 (—)	0.79 (—)	PCA cut-off=95%	0.84 (—)	0.79 (—)		
NetBeans 5.0 (Baseline Precision = 0.65, Base Recall = 0.60)							
$\kappa - 300$	0.56 (-0.09)	0.63 (+0.03)	_K _600	0.67 (+0.02)	0.58 (-0.02)		
$K = {}^{300}_{400}$	0.60 (-0.05)	0.63 (+0.03)	$K = {}^{600}_{700}$	0.68 (+0.03)	0.60 (—)		
$II=_{9K}^{8K}$	0.64 (-0.01)	0.62 (+0.02)		0.64 (-0.01)	0.59 (-0.01)		
	0.63 (-0.02)	0.59 (-0.01)	$II=_{12K}^{11K}$	0.61 (-0.04)	0.61 (+0.01)		
W cut-off=0.025	0.65 (—)	0.57 (-0.03)	W cut-off=0.1	0.65 (—)	0.63 (+0.03)		
δ =0.005	0.65 (—)	0.60 (—)	δ =0.02	0.63 (-0.02)	0.60 (—)		
PCA cut-off=80%	0.65 (—)	0.60 (—)	PCA cut-off=95%	0.65 (—)	0.60 (—)		
$NetBeans \ 5.5.1 \ (Baseline \ Precision = 0.64, \ Base \ Recall = 0.86)$							
$K = {}^{300}_{100}$	0.58 (-0.06)	0.88 (+0.02)	$K = \frac{600}{100}$	0.65 (+0.01)	0.79 (-0.07)		
$\kappa =_{400}$	0.67 (+0.03)	0.94 (+0.08)	700	0.68 (+0.04)	0.90 (+0.04)		
$_{II}$ $^{8\mathrm{K}}$	0.65 (+0.01)	0.88 (+0.02)	$II=_{12\mathrm{K}}^{11\mathrm{K}}$	0.65 (+0.01)	0.85 (-0.01)		
$II=_{9K}^{8K}$	0.68 (+0.04)	0.88 (+0.02)		0.63 (-0.01)	0.83 (-0.03)		
W cut-off= 0.025	0.66 (+0.02)	0.86 (—)	W cut-off=0.1	0.62 (-0.02)	0.85 (-0.01)		
δ =0.005	0.65 (+0.01)	0.86 (—)	δ =0.02	0.61 (-0.03)	0.85 (-0.01)		
PCA cut-off=80%	0.64 ()	0.86 (—)	PCA cut-off=95%	0.64 ()	0.86 ()		