Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 14/07/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Nota: nelle domande da Q1 a Q5 una risposta giusta da 1 punto, una risposta sbagliata sottrae 0.25 punti. Si puó scegliere di non rispondere, nel qual caso non vengono dati né sottratti punti.

Q1 (5 punti). Sia L un linguaggio decidibile da una TM non-deterministica in tempo T(n). Indica (con 'si' o 'no') per quali dei seguenti possibili valori di T(n) possiamo dire che L é nella classe NP.

	É in NP?
(a) $2^n + 1$	
(b) $2n^2$	
(c) n!	

	É in NP?
(d) 4	
(e) 2 ^{log₂ n}	

Q2 (5 punti). Nel seguito, sia code(-) una funzione iniettiva calcolabile che codifichi macchine di Turing come stringhe in $\{0,1\}^*$. Per ciascuno dei seguenti linguaggi, indica se é (1) decidibile, (2) indecidibile ma riconoscibile, (3) non riconoscibile.

	Linguaggio	Decidicible	Indecidibile ma riconoscibile	Non riconoscibile
(a)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M non si ferma sulla stringa 010 $\}$			
(b)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M si ferma su tutti gli input $\}$			
(c)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M ha cinque stati $\}$			
(d)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M \text{ e} M \text{ si ferma su almeno una string di lunghezza pari} \}$			
(e)	$\{\langle y,x\rangle\in\{0,1\}^\star\times\{0,1\}^\star\mid y=\operatorname{code}(M)\text{ e }x=\operatorname{code}(M')$ per qualche TM $M,M',\text{ e }M$ si ferma sulle stesse stringe di $M'\}$			

Q3 (5 punti). Indica (con un Si o No) a quali dei linguaggi di Q2 (indicati con (a), (b), (c), (d) e (e)) é applicabile il teorema di Rice.

	Rice?								
(a)		(b)		(c)		(d)		(e)	

Cognome	Nome
Matricola	Fila 1

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 14/07/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q4 (10 punti). Indica (senza dimostrazione) quali di queste affermazioni sono vere, quali sono false, e quali sono problemi aperti.

	Linguaggio	V	F	Aperto
	Il seguente problema é in NP			
(a)	$\{\langle G,k\rangle\mid G$ é un grafo diretto ed esiste un percorso in G con almeno k archi\}			
	Il seguente problema é in NP			
(b)	$\{\langle M, x, 1^k \rangle \mid \ M$ é una TM non-deterministica che accetta x in al piú k passi $\}$			
(c)	Se L é in NP , allora anche il suo complemento é in NP .			
(d)	Sia L in P . Se $3SAT \leq_p L$, allora $P = NP$.			
(e)	La classe dei linguaggi riconoscibili é chiusa sotto l'operazione di complemento.			
(f)	Se un linguaggio é in $NPSPACE$, allora lo é anche il complemento di quel linguaggio.			
(g)	Dato L decidibile, per qualsiasi linguaggio L' , abbiamo $L \leq L'$.			
(h)	Se $L \leq HALT$, allora L é indecidibile.			
(i)	$NP \subseteq PSPACE.$			
(j)	Alcuni linguaggi decidibili non sono in P .			

Co	ognome	Nome		
\mathbf{M}	atricola	Fila 1		
	Università degli Studi di Bologna, C Esame di INFORMATICA TEOR ilizzare i riquadri bianchi per le risposte. Solo se strettam coda con ulteriore testo, indicando in alto nome, cognome	AICA (6 CFU), 14/07/2023 ente necessario, si può allegare un foglio protocollo		
Q5 (6 punti).	Ricorda la definizione di formula booleana in cut formula booleana $\acute{\rm e}$ in n-cnf se $\acute{\rm e}$ in cnf ed ogni $\acute{\rm e}$ n letterali. Definiamo	_ ,		
	$nSAT = \{\langle \varphi \rangle \mid \varphi \text{ \'e una formula b}$	ooleana in n-cnf soddisfacibile.		
	Usando il fatto che $3SAT$ é NP-completo, dim completo.			