Partie I: Calcul de l'intégrale de Gauss

Le but de cette partie est de calculer l'intégrale de Gauss :

$$I = \int_0^\infty e^{-t^2} dt$$

On considère, pour tout $x \in \mathbb{R}_+$, l'intégrale :

$$g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{t^2+1} dt$$

- 1. Montrer que g est continue sur \mathbb{R}_+ .
- 2. Montrer que g est dérivable et exprimer g'.
- 3. On note : $f(x) = \int_0^x e^{-u^2} du$. Montrer que g'(x) = -2f'(x).f(x).
- 4. Intégrant l'expression précédente, calculer g(x) en fonction de f(x).
- 5. Montrer que : $\lim_{x \to a} g(x) = 0$.
- 6. Montrer que : $\lim_{x\to +\infty} f(x) = \sqrt{\frac{\pi}{4}}$. En déduire la valeur de l'intégrale I.

Partie II: Propriétés de la fonction Γ

On définit la fonction Γ par $x\longmapsto \int_0^{+\infty} t^{x-1}e^{-t}\,\mathrm{d}t$

- 7. Déterminer l'ensemble des réels x tels que $\int_0^{+\infty} t^{x-1}e^{-t} dt$ converge. En déduire que l'ensemble de définition de la fonction Γ est \mathbb{R}_+^*
- 8. (a) Préciser le signe de Γ sur \mathbb{R}_+^*
 - (b) Prouver que $\lim_{x\to 0^+} \Gamma(x) = +\infty$
- 9. (a) Établir la relation : $\forall x \in \mathbb{R}_+^*, \ \Gamma(x+1) = x\Gamma(x)$
 - (b) En déduire une expression simple de $\Gamma(n)$ pour tout $n \in \mathbb{N}^*$
- 10. (a) En utilisant le changement de variable $s \mapsto s^2$. Montrer que $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$
 - (b) Pour $n \in \mathbb{N}$, montrer que $\Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$
- 11. (a) Pour x > 0 et $k \in \mathbb{N}^*$, prouver la convergence de l'intégrale $\int_0^{+\infty} (\ln t)^k t^{x-1} e^{-t} dt$
 - (b) En déduire que Γ est de classe \mathcal{C}^{∞} sur \mathbb{R}_{+}^{*}
- 12. (a) Montrer que Γ est strictement convexe sur \mathbb{R}_+^*
 - (b) Montrer que $\Gamma(x) \sim \frac{1}{x}$
 - (c) Calculer $\Gamma(1)$ et $\Gamma(2)$, puis en déduire l'existence d'un unique réel strictement positif x_0 tel que $\Gamma'(x_0) = 0$
 - (d) Étudier les variations de Γ et la nature de la branche infinie en $+\infty$. Donner une allure de son graphe.

Intégrale de Gauss, Fonctions Gamma et Bêta d'Euler

Partie III: Fonction Γ et fonction β d'Euler

- 13. Soit $n \in \mathbb{N}^*$; justifier que pour tout $x \in \mathbb{R}_+^*$, l'intégrale $\int_0^n \left(1 \frac{t}{n}\right)^n t^{x-1} dt$ converge et notons $J_n(x)$ sa valeur
- 14. On pose $u_n(t) := \begin{cases} \left(1 \frac{t}{n}\right)^n & \text{si } t \in [0, n] \\ 0 & \text{si } t > n \end{cases}$
 - (a) Montrer que $\forall n \in \mathbb{N}^*, \forall t \in \mathbb{R}_+^*, \ u_n(t) \leqslant e^{-t}$
 - (b) En déduire que : $\Gamma(x) = \lim_{n \to +\infty} J_n(x)$
- 15. Pour a et b, réels strictement positifs, on pose $\beta(a,b)=\int_0^1 \left(1-t\right)^{a-1}t^{b-1}\,\mathrm{d}t$
 - (a) Justifier l'existence de $\beta(a, b)$.
 - (b) Prouver que pour tout $x \in \mathbb{R}_{+}^{*}$, $\Gamma(x) = \lim_{n \to +\infty} n^{x} \beta(n+1, x)$
- 16. (a) Simplifier $\beta(a+1,b) + \beta(a,b+1)$
 - (b) Prouver que $\beta(a, b+1) = \frac{b}{a}\beta(a+1, b)$
 - (c) En déduire $\beta(a+1,b)$ en fonction de $\beta(a,b)$
- 17. Prouver que $\Gamma(x) = \lim_{n \to +\infty} \frac{n^x n!}{\prod_{k=0}^n (x+k)}$

Partie I: Calcul de l'intégrale de Gauss

- 1. Posons $h:(x,t) \in \mathbb{R}_+ \times [0,1] \longmapsto h(x,t) = \frac{e^{-(t^2+1)x^2}}{t^2+1}$.
 - $\forall t \in [0,1]$, l'application $x \mapsto h(x,t)$ est C^0 sur \mathbb{R}_+
 - $\forall x \in \mathbb{R}^+$, l'application $t \mapsto h(x,t)$ est C^0 sur [0,1]
 - $\forall (x,t) \in \mathbb{R}_+ \times [0,1], |h(x,t)| \leqslant \frac{1}{1+t^2} = \varphi(t)$ qui est continue sur [0,1], donc intégrable

On en déduit que l'application $g: x \mapsto \int_0^1 h(x,t)dt$ est continue sur \mathbb{R}^+

- 2. On remarque que $\frac{\partial h}{\partial x}(x,t) = -2xe^{-(t^2+1)x^2}$. Cette fonction est bien définie pour $(x,t) \in \mathbb{R}_+ \times [0,1]$. Soit $[a,b] \subset \mathbb{R}_+$
 - $\forall t \in [0, 1], l'application <math>x \mapsto \frac{\partial h}{\partial x}(x, t)$ est C^0 sur [a, b]
 - $\forall x \in [a, b]$, l'application $t \mapsto \frac{\partial h}{\partial x}(x, t)$ est C^0 sur [0, 1]
 - $\forall (x,t) \in [a,b] \times [0,1], \left| \frac{\partial h}{\partial x}(x,t) \right| \leqslant 2x \leqslant 2b = \psi(t)$ qui est continue sur [0,1], donc intégrable

On en déduit que l'application $g: x \mapsto \int_0^1 h(x,t)dt$ est de classe C^1 sur tout $[a,b] \subset \mathbb{R}_+$, donc sur \mathbb{R}_+ . De plus

$$\forall x \geqslant 0, g'(x) = \int_0^1 -2xe^{-(t^2+1)x^2} dt$$

3. Posons $f(x) = \int_0^x e^{-u^2} du$. f est définie et de classe C^1 sur \mathbb{R}_+ , $f'(x) = e^{-x^2}$.

D'autre part, avec le changement de variable u=xt, on a

$$g'(x) = -2xe^{-x^2} \int_0^1 e^{-t^2x^2} dt = -2e^{-x^2} \int_0^x e^{-u^2} du$$

Finalement : g'(x) = -2f'(x)f(x)

4. On a donc $g'(x) = -(f^2)'(x)$ donc par intégration, il existe une constante K telle que $\forall x \ge 0, g(x) = -f^2(x) + K$. Pour x = 0 on obtient en particulier,

$$g(0) = K = \int_{0}^{1} \frac{1}{t^2 + 1} dt = [\arctan t]_{0}^{1} = \frac{\pi}{4}$$

Finalement $g(x) = -\left(\int_0^x e^{-u^2} du\right)^2 + \frac{\pi}{4}$

- 5. Soit (x_n) une suite de réels telle que $\lim_{n\to\infty} x_n = +\infty$. Posons $f_n(t) = \frac{e^{-(t^2+1)x_n^2}}{t^2+1}$
 - $\bullet\,$ la suite de fonctions f_n converge simplement sur [0,1] vers la fonction nulle
 - $\forall n \in \mathbb{N}, |f_n(t)| \leq \frac{1}{1+t^2} = \varphi(t)$ function intégrable sur [0,1]

On en déduit grâce au théorème de convergence dominée que

$$\lim_{n \to \infty} \int_{0}^{1} \frac{e^{-(t^2+1)x_n^2}}{t^2+1} dt = \int_{0}^{1} (\lim_{n \to \infty} \frac{e^{-(t^2+1)x_n^2}}{t^2+1}) dt = 0$$

Puis, par la caractérisation séquentielle de la limite, on obtient bien

$$\lim_{x \to \infty} \int_{0}^{1} \frac{e^{-(t^2+1)x^2}}{t^2+1} dt = 0$$

6. On en déduit, de la question précédente, que
$$\lim_{x\to\infty} \left(\int_0^x e^{-u^2} du\right)^2 = \frac{\pi}{4}$$

donc
$$\lim_{x\to\infty}\int_0^x e^{-u^2}du=\sqrt{\frac{\pi}{4}}$$
 d'où

$$I = \int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$

Partie II: Propriétés de la fonction Γ

On définit la fonction Γ par $x \longmapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$

- 7. Soit $x \in \mathbb{R}$. On a $t \mapsto t^{x-1}e^{-t}$ est continue sur $]0, +\infty[$ donc intégrable sur tout segment de $]0, +\infty[$. Le problème se pose alors en 0 et $+\infty$.
 - Au voisinage de 0 : On a $t^{x-1}e^{-t} \sim t^{x-1} = \frac{1}{t^{1-x}}$ donc intégrable si, et seulement, si 1-x < 1 si, et seulement, si 0 < x.
 - Au voisinage de $+\infty$: On a $t^{x-1}e^{-t} = o\left(\frac{1}{t^2}\right)$ donc intégrable en $+\infty$.

On déduit que $t \mapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$ si, et seulement, si x > 0.

- 8. (a) Γ est positive sur \mathbb{R}_+^*
 - (b) Pour x > 0, on a

$$\Gamma(x) \geqslant \int_0^1 t^{x-1} e^{-t} dt \geqslant e^{-1} \int_0^1 t^{x-1} dt = \frac{1}{ex}$$

Or
$$\frac{1}{ex} \xrightarrow[x \to 0^+]{} +\infty$$
, donc $\lim_{x \to 0^+} \Gamma(x) = +\infty$

9. (a) $t \mapsto t^x$ et $t \mapsto e^{-t}$ sont de classe C^1 sur $]0, +\infty[$ et le produit $t \mapsto t^x e^{-t}$ admet des limites nulles en 0 et en $+\infty$. Par intégration par parties

$$\Gamma(x+1) = \int_0^{+\infty} t^x e^{-t} dt$$

$$= \left[-t^x e^{-t} \right]_0^{+\infty} + x \int_0^{+\infty} t^{x-1} e^{-t} dt$$

$$= x\Gamma(x)$$

- (b) Par récurrence : $\forall n \in \mathbb{N}^*, \quad \Gamma(n) = (n-1)!$
- 10. (a) En utilisant le changement de variable $s \mapsto s^2$ qui est une bijection de classe \mathcal{C}^1 de $]0, +\infty[$ vers $]0, +\infty[$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt = 2 \int_0^{+\infty} e^{-t^2} dt = \sqrt{\pi}$$

- (b) Par récurrence sur $n \in \mathbb{N}$, on montre que $\Gamma\left(n + \frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$
 - Pour n = 0, $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$;
 - Soit $n \geqslant 0$, on suppose que $\Gamma\left(n+\frac{1}{2}\right) = \frac{(2n)!}{2^{2n}n!}\sqrt{\pi}$. On a :

$$\begin{split} \Gamma\left(n+\frac{3}{2}\right) &= \Gamma\left(n+\frac{1}{2}+1\right) \\ &= \left(n+\frac{1}{2}\right)\Gamma\left(n+\frac{1}{2}\right) \\ &= \left(\frac{2n+1}{2}\right)\frac{(2n)!}{2^{2n}n!}\sqrt{\pi} \\ &= \frac{(2n+2)!}{2^{2n+2}(n+1)!}\sqrt{\pi} \end{split}$$

Intégrale de Gauss, Fonctions Gamma et Bêta d'Euler

11. (a) Soit x > 0 et $k \in \mathbb{N}^*$. La fonction $h: t \longmapsto (\ln t)^k t^{x-1} e^{-t}$ est continue par morceaux sur $]0, +\infty[$

• En
$$+\infty$$
: $(\ln t)^k t^{x+1} e^{-t} \xrightarrow[t \to +\infty]{} 0$, donc $h(t) = o\left(\frac{1}{t^2}\right)$

• En 0 : Pour
$$\delta \in]1-x,1[$$
, $t^{\delta}h(t) \sim t^{\delta+x-1} \left(\ln t\right)^k \xrightarrow[t \to 0^+]{} 0$, donc $h(t) = \circ \left(\frac{1}{t^{\delta}}\right)$

Ceci prouve la convergence de l'intégrale $\int_{0}^{+\infty} (\ln t)^k t^{x-1} e^{-t} dt$

(b) Soit $n \in \mathbb{N}^*$. On pose $\varphi(x,t) = t^{x-1}e^{-t}$ donc $\forall x,t > 0, \frac{\partial^n \varphi}{\partial x^n}(x,t) = (\ln t)^n t^{x-1}e^{-t}$.

Soit 0 < a < b. L'application $\frac{\partial^n \varphi}{\partial x^n}$ est continue sur $[a,b] \times]0, +\infty[$. On a $\forall x \in [a,b], \forall t \in]0, +\infty[, \left|\frac{\partial^n \varphi}{\partial x^n}\right| \leq |\ln t|^n (t^{a-1} + t^{b-1}) e^{-t}$ (Condition de domination) avec $t \mapsto 0$ $|\ln t|^n(t^{a-1}+t^{b-1})e^{-t}$ est intégrable sur $]0,+\infty[$.

Donc l'application Γ est \mathcal{C}^n sur [a,b] pour tout $n \in \mathbb{N}^*$, donc Γ est \mathcal{C}^∞ sur $]0,+\infty[$ et on a $\forall n \in \mathbb{N}^*, \forall x > \infty$ $0, \Gamma^{(n)}(x) = \int_{0}^{+\infty} (\ln t)^{n} t^{x-1} e^{-t} dt.$

- 12. (a) Pour tout $x \in \mathbb{R}_+^* : \Gamma''(x) = \int_0^{+\infty} (\ln t)^2 t^{x-1} e^{-t} dt > 0$, d'où la convexité stricte de Γ
 - (b) On a $\forall x > 0$, $\Gamma(x+1) = x\Gamma(x)$ donc $\lim_{x \to 0^+} x\Gamma(x) = \lim_{x \to 0^+} \Gamma(x+1) = \Gamma(1) = 1$. On déduit qu'au voisinage de $0 : \Gamma(x) \underset{0}{\sim} \frac{1}{x}$.
 - (c) $\Gamma(1) = \Gamma(2) = 1$. Les conditions du théorème de Rolle sont vérifiées, d'où l'existence d'un réel strictement positif $x_0 \in]1,2[$ tel que $\Gamma'(x_0)=0.$ Or la fonction Γ' est strictement croissante, donc l'unicité de x_0
 - (d) Soit a > 1. On a

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

$$\geqslant \int_a^{+\infty} t^{x-1} e^{-t} dt$$

$$\geqslant a^{x-1} \int_a^{+\infty} e^{-t} dt$$

$$\geqslant a^{x-1} e^{-a} \to +\infty$$

On déduit que $\lim_{x \to +\infty} \Gamma(x) = +\infty$.

D'autre part

$$\lim_{x \to +\infty} \frac{\Gamma(x)}{x} = \lim_{x \to +\infty} \frac{x-1}{x} \Gamma(x-1) = +\infty$$

Par conséquence Γ admet une branche parabolique en $+\infty$ de direction l'axe des ordonnées.

Partie III: Fonction Γ et fonction β d'Euler

- 13. Soit $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$. L'application $t \longmapsto \left(1 \frac{t}{n}\right)^n t^{x-1}$ est continue et positive sur]0, n]. En 0, on a $\left(1-\frac{t}{n}\right)^n t^{x-1} \sim \frac{1}{t^{1-x}}$ qui a une intégrale convergente car x>0. Donc $J_n(x)$ converge
- 14. On pose $u_n(t) := \begin{cases} \left(1 \frac{t}{n}\right)^n & \text{si } t \in [0, n] \\ 0 & \text{si } t > n \end{cases}$
 - (a) Pour $t \in [0, n]$, on a $u_n(t) = e^{n \ln \left(1 \frac{t}{n}\right)}$. On utilise l'inégalité de Bernoulli pour s > -1: $\ln (1 + s) \leqslant s$ pour obtenir $u_n(t) \leqslant e^{-t}$. Lorsque t > n, on a $u_n(t) = 0 \leqslant e^{-t}$

(b) Posons $\varphi_n: t \longmapsto u_n(t)t^{x-1}$. La suite (φ_n) , des fonctions continues par morceaux sur $]0, +\infty[$, converge simplement vers l'application $t \longmapsto t^{x-1}e^{-t}$ qui est continue par morceaux sur $]0, +\infty[$. D'après la question précédente :

$$\forall t \in]0, +\infty[, |\varphi_n(t)| \leqslant t^{x-1}e^{-t}$$

Où $t \longmapsto t^{x-1}e^{-t}$ est intégrable sur $]0, +\infty[$, donc, d'après le TCVD, $\Gamma(x) = \lim_{n \to +\infty} J_n(x)$

- 15. Pour a et b, réels strictement positifs, on pose $\beta(a,b) = \int_0^1 (1-t)^{a-1} t^{b-1} dt$
 - (a) $t \longmapsto (1-t)^{a-1} t^{b-1}$ est positive et continue sur]0,1[.
 - En 0 : $(1-t)^{a-1} t^{b-1} \sim t^{b-1}$ qui est intégrable car b>0
 - En 1 : $(1-t)^{a-1}t^{b-1} \sim (1-t)^{a-1}$ qui est intégrable car a > 0

D'où l'existence de cette intégrale.

(b) Avec le changement s = tn, on obtient

$$n^{x}\beta(n+1,x) = n^{x} \int_{0}^{1} (1-t)^{n} t^{x-1} dt$$
$$= \int_{0}^{n} \left(1 - \frac{s}{n}\right)^{n} s^{x-1} ds$$
$$= J_{n}(x) \xrightarrow[n \to +\infty]{} \Gamma(x)$$

Ainsi $\Gamma(x) = \lim_{n \to +\infty} n^x \beta(n+1, x)$

16. (a) On a:

$$\beta(a+1,b) + \beta(a,b+1) = \int_0^1 \left((1-t)^a t^{b-1} + (1-t)^{a-1} t^b \right) dt$$
$$= \int_0^1 (1-t)^{a-1} t^{b-1} dt = \beta(a,b)$$

- (b) Par intégration par parties $\beta(a, b+1) = \frac{b}{a}\beta(a+1, b)$
- (c) On déduit $\beta(a+1,b)\left(1+\frac{b}{a}\right)=\beta(a,b)$ donc $\beta(a+1,b)=\frac{a}{a+b}\beta(a,b)$
- 17. On a $\beta(n+1,x) = \frac{n}{n+x}\beta(n,x)$. Par récurrence, on obtient

$$\beta(n+1,x) = \frac{n!}{(x+1)\cdots(x+n)}\beta(1,x)$$

avec $\beta(1,x) = \frac{1}{x}$ d'où le résultat