1. (18 points) Prove that the following language is in **P**.

Horn-satisfiability:

$$CNF_H = \{ \langle \phi \rangle | \phi \text{ is a Horn formula} \}$$

A Horn clause is a clause with at most one positive literal and any number of negative literals. A Horn formula is a propositional formula formed by conjunction of Horn clauses.

- 2. (14 points) Suppose $L_1, L_2 \in \mathbf{NP}$. Then is $L_1 \cup L_2 \in \mathbf{NP}$? What about $L_1 \cap L_2$?
- 3. (12 points) Prove that $L = \{w | w \text{ is a binary representation of a prime number}\}$ belongs to \mathcal{NP} . Tip: A natural number n is a prime number if and only if for every prime factor q of (n-1), there exists an $a \in \{2, \cdots, n-1\}$ such that $a^{n-1} = 1 \mod n$ and $a^{(n-1)/q} \neq 1 \mod n$.
- 4. (14 points) Let HALT be the Halting language. Show that HALT is NP-hard. Is it NP-complete?
- 5. (14 points) Show that, if P = NP, then every language $A \in P$, except $A = \emptyset$ and $A = \Sigma^*$, is NP-complete.
- 6. (28 points) Let ϕ be a 3CNF. An \neq -assignment to the variables of ϕ is one where each clause contains two literals with unequal truth values. In other words, an \neq -assignment satisfies ϕ without assigning three true literals in any clause.
 - Show that the negation of any \neq -assignment to ϕ is also an \neq -assignment.
 - Let ≠SAT be the collection of 3CNFs that have an ≠-assignment. Show that we obtain a polynomial time reduction from 3SAT to ≠SAT by replacing each clause

$$c_i = (y_1 \vee y_2 \vee y_3)$$

with the two clauses

$$(y_1 \lor y_2 \lor z_i)$$
 and $(\bar{z}_i \lor y_3 \lor b)$,

where z_i is a new variable for each clause c_i and b is a single additional new variable.

• Conclude that \neq SAT is **NP**-complete.