ЛАБОРАТОРНАЯ РАБОТА 1. ТЕОРИЯ ПОГРЕШНОСТЕЙ

Теоретический материал к данной теме содержится в [1, глава 2]. Варианты к задачам 1.1-1.3 даны в **ПРИЛОЖЕНИИ 1.A.**

В отчет следует включить постановки задач, результаты расчетов и их анализ.

Задача 1.1. Найти значения машинного нуля, машинной бесконечности и машинного эпсилон. (см. *Приложение 1.В*)

Задача 1.2. Исследовать поведение погрешности приближения функции F(x) частичными суммами на отрезке [a,b].

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Используя разложения стандартных функций в ряд Тейлора в окрестности нуля, получить разложение функции F(x) по степеням x.
- 2. Составить процедуру, вычисляющую частичную сумму N членов ряда S(x,N).
- 3. Построить графики исходной функции и первых пяти частичных сумм: S(x,1),...S(x.5).
- 4. Составить функции, вычисляющие абсолютную погрешность $\Delta(x,N) = |S(x,N) F(x)|_{\mathfrak{U}}$ относительную погрешность $\delta(x,N) = \Delta(x,N)/|S(x,N)|_{\mathfrak{U}}$. Построить графики погрешностей первых пяти частичных сумм.
- 5. Определить количество членов ряда N, при котором величина относительной погрешности в средней точке отрезка станет меньше машинного эпсилон. Величину относительной погрешности вычислять как отношение прибавляемого члена к накопленной частичной сумме S(x,N), взятое по модулю.
- 6. При найденном значении N построить графики абсолютной погрешности $^{\Delta(X,N)}$ и относительной погрешности $^{\delta(X,N)}$.
- 7. Составить программу округления вычислений результата до t разрядов мантиссы и произвести расчеты п. 4 с учетом округления.
- 8. Сравнить полученные результаты и составить отчет по задаче.

Задача 1.3. Дана функция f(a,b,c). Значения переменных указаны в варианте со всеми верными цифрами. Оценить погрешность результата двумя способами: а) используя оценки погрешности для арифметических операций, б) используя общую формулу погрешностей. Результат представить в двух формах записи: с явным указанием погрешностей и с учетом количества верных цифр. (см. *Приложение 2.B*)

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 1

ВНИМАНИЕ! Номер варианта N для **лабораторных работ** вычисляется по следующей формуле:

- 1) N=I для группы A-5-22;
- 2) N=15+I для группы A-13-22
- 3) N=20+I для группы A-14-22
- 4) N=51-I для группы A-16-22
- 5) N=31-I для группы A-18-22

(здесь I — индивидуальный номер студента по журналу).

ПРИЛОЖЕНИЕ 1.А

Таблица к задаче 1.1

'		F 13		Таблица к задаче 1.					
N₂	F(x)	[<i>a</i> , <i>b</i>]	N₂	F(x)	[<i>a</i> , <i>b</i>]	Nº	F(x)	[a,b]	
1.1.1	xe ^x	[-5,-3]	1.1.21	$x\cos(x)$	[1,4]	1.1.41	$x^2(1-\cos(x))$	[2,7]	
1.1.2	sin(x)	[0,1.6]	1.1.22	$x^2(e^x - x - 1)$	[-4,0]	1.1.42	$x\sin(x)$	[-8,-5]	
1.1.3	e ^x - 2	[-3,-1]	1.1.23	$x\cos(x^2)$	[1, 4.5]	1.1.43	x^2e^{-x}	[-7,-4]	
1.1.4	$\ln(1+x^2)$	[0.2, 0.8]	1.1.24	$\ln(1+x)-x$	[0,0.5]	1.1.44	$\ln(1+x)/x$	[0.3, 0.9]	
1.1.5	arctg(x)/x	[0.1, 0.9]	1.1.25	arctg(x)	[0,0.8]	1.1.45	arctg(x) - x	[0.2, 0.7]	
1.1. 6	$\sin(x^2)$	[-3,0]	1.1.26	$\ln(1+x^2) - x^2$	[0.5, 0.9]	1.1.46	$(1 - \cos(x))/x$	[-9,-6]	
1.1.7	$x(e^x - 1)$	[-4,0]	1.1.27	$\sin(x)/x$	[1,8]	1.1.47	e^{x} - 1	[-7,-1]	
1.1.8	cos(x)	[1,3]	1.1.28	$(e^{x} - x - 1) / x$	[6,9]	1.1.48	$1-\cos(x)$	[-6,-2]	
1.1.9	$x \ln(1+x)$	[0.2, 0.8]	1.1.29	1 - $\ln(1 + x)$	[0,0.5]	1.1.49	$\ln(1+x^2)/x$	[0.3, 0.9]	
1.1.10	$2x \cdot arctg(x)$	[0.1, 0.9]	1.1.30	x - $arctg(x)$	[0, 0.8]	1.1.50	$arctg(x^2)$	[-0.9,0]	
1.1.11	$x(1-\cos(x))$	[2,6]	1.1.31	2 - e ^{- x}	[2,5]	1.1.51	$\sin(x) - \cos(x)$	[-1,4]	
1.1.12	$(e^{x} - 1)/x$	[-7,-3]	1.1.32	1 - $\ln(1+x)/x$	[0.2, 0.7]	1.1.52	$e^{-x} + \cos(x)$	[1,7]	
1.1.13	$3x\sin(x)$	[1,7]	1.1.33	$e^X + \cos(x)$	[-2,2]	1.1.53	$\sin(x^2) - x^2$	[-5,-1]	
1.1.14	arctg(2x)	[-0.2, 0.4]	1.1.34	arctg(x) - 1/x	[0.1,1]	1.1.54	$\sin(x) - e^{-x}$	[-1,3]	
1.1.15	$\ln(1+x^2)$	[-0.8,0]	1.1.35	x^2 - $x\sin(x)$	[1,6]	1.1.55	$\ln(1+x) + x^2 / 2$	[-0.9,0]	
1.1.16	$x^2\cos(x)$	[-5,-2]	1.1.36	$e^{-x} + \sin(x)$	[-1,5]	1.1.56	$1/x + \cos(x)$	[1,8]	
1.1.17	$e^{x} - x - 1$	[-9,-5]	1.1.37	e^{x} - e^{-x}	[-2,1]	1.1.57	arctg(x)/x-1	[0.2, 0.8]	
1.1.18	$\ln(1+x) - x$	[0.4, 0.8]	1.1.38	$\sin(x) + \cos(x)$	[-6,2]	1.1.58	$e^{x} + e^{-x}$	[-3,4]	
	+x ² /2								
1.1.19	$x - \sin(x)$	[1.5, 4]	1.1.39	$\ln(1+x) + 1/x$	[0.3, 0.9]	1.1.59	$1/x + \sin(x)$	[1,8]	
1.1.20	$2 - \cos(x)$	[-5,0]	1.1.40	$2\sin(x^2)$	[-6,-4]	1.1.60	$x + \cos(x)$	[0,4]	

Таблица к задаче 1.2

N₂	f(a,b,c)	а	b	С	Nº	f(a,b,c)	а	b	С
1.2.1	$\frac{a}{a^2 + bc}$	0.0125	0.283	0.0187	1.2.31	$\frac{a+b^2}{a^2-bc}$	4.41	18.5	1.4

1.2.2	a - b	14.29	13.81	10.98	1.2.32	$a - c^2$	16.5	4.2	1.23
	$\frac{a^2 + bc}{a^2 + bc}$					$\frac{a}{a^2+b}$			
1.2.3	a^2	12.28	13.21	12.19	1.2.33	a + b	52.31	48.95	47.81
	$\frac{a}{ab-bc}$					$\frac{a \cdot b}{b \cdot c}$			
1.2.4	a + b	0.328	0.781	0.0129	1.2.34	ac + bc	4.81	4.52	9.28
				010 ==0		$\frac{ac+bc}{a^2-b^2}$			
1.2.5	$\frac{a^2 + bc}{a + c}$	14.85	15.49	10.1	1.2.35	a b- ac - bc	16.21	16.18	21.23
	$\frac{a+c}{a^2-b^2}$					$\frac{ac - bc}{a^2 + b^2}$			
1.2.6	a - b ab	12.31	0.035	10.82	1.2.36	$a + b$ $a^2 + b^2$	121	0.324	1.25
	$\frac{ab}{a^2 + bc}$		2						
1.2.7	a + bc	12.45	11.98		1.2.37	abc	25.18	24.98	23.18
1,2,1	$\frac{a-b}{a^2+b^2}$		12.00		1,2,0,	$\frac{a^2 + b^2}{}$	2372		25126
1.2.8		3.456	0.642	7.12	1.2.38	a - c	3.1415	3.1411	10.91
1.2.0	$\frac{a^2b}{}$	3.430	0.042	7.12	1.2.30	$\frac{C}{2}$	3.1413	3.1411	10.91
120	С	4.045	0.404	2.24	4.2.20	$\overline{a^2 - b^2}$	2.14	4.55	0.0024
1.2.9	a^3b	1.245	0.121	2.34	1.2.39	ab^2	3.14	1.57	0.0921
	С					С			
1.2.10	$ab + b^2$	13.12	0.145	15.18	1.2.40	<u>ac</u>	14.85	15.49	0.16
	$\overline{a^2 + c^2}$					$\overline{a^2 - b^2}$			
1.2.11	ab^3	0.643	2.17	5.843	1.2.41	ac + b	5.325	5.152	5.481
						ac - b			
1.2.12	ab	0.3575	2.63	0.854	1.2.42	a + c	71.4	4.82	49.5
	$\frac{\overline{c^2}}{}$					$\overline{a^2 + b^2}$			
1.2.13	$ab + b^2$	14.91	0.485	14.18	1.2.43	$a^2 + b$	4.356	4.32	0.246
	$\overline{a^2 - c^2}$								
1.2.14	ac	16.5	4.12	0.198	1.2.44	a^3 - b	3.42	5.124	0.221
	$\frac{a-b^2}{a-b^2}$					$\frac{C}{C}$			
1.2.15	c^2	5.21	14.9	0.295	1.2.45	ab	0.5761	3.622	0.0685
	$\frac{c}{a^2 + b}$					$\frac{1}{c^3}$			
	2a	1.25	2.83	0.0187	1.2.46	b^2	4.41	8.5	1.4
1.2.16	$\frac{2a}{a^2 + 2bc}$								
1.2.17	a - 3b	4.29	13.8	10.98	1.2.47	a - 6c	16.5	4.2	1.23
						$\frac{2a-c^2}{c^2}$			
1.2.18	$a^{2} + 3c$	12	13.21	3.2	1.2.48	$a^2 + b$	52.31	48.95	47.81
1,2,10	$\frac{a^2}{a}$	12	15.21	3.2	1.2.40	$\frac{a+b}{1}$	32.31	40.55	47.01
1 2 10	ab - 4bc	0.220	1 701	0.0120	1 2 40	b - c	4.01	4.52	0.20
1.2.19	$\frac{4a + b}{2}$	0.328	1.781	0.0129	1.2.49	$\frac{ac + bc}{ac + bc}$	4.81	4.52	9.28
1000	$a^2 + 2bc$	11.5	15.45	F 1	1250	$\overline{a^2 - b^2}$	10.04	10.10	21.22
1.2.20	$\frac{2a+c}{a}$	11.5	15.45	5.1	1.2.50	$\frac{ac - bc}{a}$	16.21	16.18	21.23
	$\overline{a^2 - 5b^2}$					$\overline{a^2 + b^2}$			

1.2.21	10 <i>ab</i>	12.315	0.035	10.82	1.2.51	$a^2 + b^2$	121	0.324	1.25
	$\overline{a^2 + c}$		_			abc			
1.2.22	a	12.45	11.98	8.6	1.2.52	$a^2 + b^2$	25.18	24.98	23.18
	$\frac{a}{b^2} + c$					a - c			
1.2.23	$\frac{b}{-} + a^2$	3.456	0.642	7.12	1.2.53	С	3.1415	3.1411	10.91
	— + u C					$\frac{a^2 - b^2}{a + b^2}$			
1.2.24	$a^3 - \frac{b}{a}$	1.245	12.1	2.34	1.2.54	$a + b^2$	3.14	1.57	0.0921
	<i>u C</i>								
1.2.25	a^2	13.123	1.45	3.18	1.2.55	ас	14.85	15.49	0.16
	$2b^2 - \frac{a}{c^2}$					$\overline{a^2 - b^2}$			
1.2.26	$5a + 2b^3$	0.643	1.17	0.5843	1.2.56	ac + b	5.325	5.152	5.481
						<u>ac - b</u>			
							<u> </u>		
1.2.27	b	0.675	12.63	1.54	1.2.57	<u>a + c</u>	71.4	4.82	49.5
	c^{2} - 4a					$a^2 + b^2$			
1.2.28	$c + \frac{5ab}{c^2}$	14.91	0.485	4.18	1.2.58	$a^2 + b$	4.356	4.32	0.246
	c^2								
1.2.29	a + 4c	16.5	4.12	0.198	1.2.59	a^3 - b	3.42	5.124	0.221
	$\overline{3ab^2}$								
1.2.30	c^2 - 8a	5.21	14.9	6.8	1.2.60		0.5761	3.622	0.0685
	$\frac{a^2 + b}{a^2 + b}$					$\frac{ab}{c^3}$			
	<u>u +υ</u>								

ПРИЛОЖЕНИЕ 1. В

Задача 1.1. Постановка задачи: для пакета найти значения машинного нуля, машинной бесконечности, машинного эпсилон.

$$\overline{\delta}(x^*) \approx \frac{\overline{\Delta}(x^*)}{|x^*|} \approx \frac{2^{-t-1} \cdot 2^p}{\mu \cdot 2^p} = \frac{2^{-t-1}}{\mu} \le \frac{2^{-t-1}}{2^{-1}} = 2^{-t}$$

Машинное эпсилон определяется разрядностью мантиссы и способом округления чисел, реализованным на конкретной

Примем следующие способы определения приближенных значений параметров, требуемых в задаче:

- 1. Положим $X_{\infty} = 2^n$, где n первое натуральное число, при котором происходит переполнение.
- $_{2.\,\Pi$ оложим $X_0=2^{-m}$
- $X_0=2^{-m}$, где m первое натуральное число , при котором 2^{-m} совпадает с нулем. 3. Положим $\varepsilon_M=2^{-k}$, где k наибольшее натуральное число, при котором сумма вычисленного значения 2^{-k} еще больше 1. Фактически $^{\mathcal{E}}M$ есть граница относительной погрешности представления числа * pprox 1 .

Результаты вычислительного эксперимента:

Машинная бесконечность $X_{\infty} pprox$

 $_{
m Mamuнный\ hyль}\ X_0 pprox$

Машинное эпсилон $\mathcal{E}_{\mathit{Mau}} \approx$

ПРИЛОЖЕНИЕ 2. В

Задача 1.3. Для нахождения погрешности функции следует использовать следующие утверждения.

Утверждение 1. Абсолютная погрешность алгебраической суммы не превосходит суммы абсолютных погрешностей слагаемых.

Утверждение 2. Если $\delta(a^*) << 1$ и $\delta(b^*) << 1$, то для оценки границ относительных погрешностей произведения и частного можно использовать приближенные равенства: $\delta(a^*b^*) \approx \delta(a^*) + \delta(b^*)$, $\delta(a^*/b^*) \approx \delta(a^*) + \delta(b^*)$

Утверждение 3. Пусть $f(x) = f(x_1, x_2, ... x_m)$ - дифференцируемая функция m переменных, вычисление которой производится при приближенно заданных значениях аргументов x_1^* , x_2^* , ... x_m^* . Тогда если x_m^* , то можно

 $\Delta f(x^*) \approx \sum_{j=1}^{m} \left| \frac{\partial f(x^*)}{\partial x_j} \right| \Delta(x_j^*) \delta f(x^*) \approx \frac{\Delta f(x^*)}{|f(x^*)|}$

использовать равенства:

ЛИТЕРАТУРА

- 1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.
- 2. Казенкин К.О. Указания к решению задач по вычислительной математике. Теория погрешностей. Нелинейные уравнения. Системы линейных алгебраических уравнений. М, Изд. Дом МЭИ, 2009. З.Амосова О.А., Вестфальский А.Е., Крупин Г.В. Упражнения по основам численных методов.М, Изд-во МЭИ, 2016.