2º Exercício Escolar – Servomecanismo Resolução

$$G(s) = \frac{G_1G_2G_3}{1 + G_1G_2G_3 + G_2G_3H_2 - G_1G_2H_1}$$

Questão 2.

Ganho de Caminhos à Frente:

T1 = G1G2G3

Ganhos de Laços:

Ganhos de Laços que não se tocam 2 a 2: Nenhum

$$\Delta = 1 - [(1) + (2) + (3)] \tag{4}$$

$$\Delta 1 = 1$$

Regra de Mason:

$$G(s) = \frac{C(s)}{R(s)} = \frac{\sum_{k} T_{k} \Delta_{k}}{\Delta}$$
_{k=1}

$$G(s) = G1G2G3/\Delta$$

Questão 3:

$$x_1' = x_1 + 2.x_2$$

 $x_2' = 2.x_2 + x_3$
 $x_3' = -2.x_3 + r$
 $y = x_1 + x_2$

Lembrando que a representação em grafo de fluxo de sinal é no domínio da frequência, temos que aplicar a transformada de Laplace nas equações, considerando condições iniciais nulas:

$$sX_1 = X_1 + 2.X_2$$

 $sX_2' = 2.X_2 + X_3$
 $sX_3' = -2.X_3 + R$
 $Y = X_1 + X_2$

Como solicitado na questão, usando a notação padrão apresentada em sala, temos:

Questão 4:

$$T(s) = \frac{s^3 + 2s^2 + 3s + 1}{s^5 + s^4 + 3s^3 + s^2 + 3s + 2}$$

(Polos --0.6462 \pm 1.4799i; 0.4424 \pm 1.0482i; -0.5925) – Não precisava calcular!!!!

Tabela de Routh (para o denominador):

s ⁵	1	3	3	
s ⁴	1	1	2	
s ³	2	1	0	
s ²	1/2	2	0	x 2
s ¹	-7	0	0	x 1/7
s ⁰	1 2 1/2 -7 4	0	0	

- a) Tivemos duas mudanças de sinal na primeira coluna, logo temos dois polos no semi-plano direito. Como buscamos cinco polos e não tivemos linha nula, os outros três polos estão no semi-plano esquerdo.
- b) O sistema é instável, pois tem polos no semi-plano direito.

.