2 Алгебраїчні структури

2.1 Алгебраїчні операції та їх властивості

Операцією на множині S називається функція f, яка є відображенням виду S^n →S, n∈N, де S^n — декартів добуток S×S×...×S.

Операція $S^n \to S$ має *порядок* n або є n-арною *операцією*.

Операції виду $S \rightarrow S$ називають *унарними*, а операції $S^2 \rightarrow S$ називають *бінарними*.

Елементи упорядкованого набору з n елементів в області визначення S^n називають *операндами*.

Приклад.

Операція нульового степеня – це константа.

Унарні операції: операція зміни знаку (-) на множині дійсних чисел R(-2,678; -56); операція піднесення до степеня на множині $R: 56^2, 7^2$.

Унарна операція в алгебрі множин: операція доповнення множин.

Приклад.

Бінарними операціями на множині дійсних чисел R ϵ арифметичні операції — додавання, віднімання, множення, ділення (+, -, *, /).

В алгебрі множин бінарними є операції — об'єднання (\cup), перетин (\cap), різниця (\setminus).

Існують три форми запису виразів — *префіксна*, *інфіксна* та *постфіксна*.

У першому випадку оператор ставиться між операндами (*infix*), у другому — перед операндами (*prefix*) і у третьому — після операндів (*postfix*).

Префіксна нотація також відома як *польська* нотація.

Постфіксну нотацію називають ще *зворотний польський запис* (зворотний бездужковий запис, польський інверсний запис (ПОЛІЗ).

Приклад. Три варіанти запису бінарної операції арифметичного виразу a + b.

infix: a + b,

prefix: +ab,

postfix: ab+.

Алгоритм обчислення значень виразу, що записаний у формі *postfix*:

- 1) при перегляді запису зліва направо виконується перша знайдена операція, якій безпосередньо передує достатня для неї кількість операндів;
- 2) на місці виконаної операції і використаних для цього операндів у рядок записується результат виконання операції;
 - 3) повертаємося до кроку 1.

Приклад. Нехай ϵ вираз у *infix*-формі:

$$1 + 2*3 + (4 + 5* (6 + 7)).$$

Результат переведення даного виразу до *postfix*:

$$123*+4567+*++$$
.

Обчислимо тепер значення виразу, використовуючи наведений алгоритм:

$$1 \ \underline{2} \ 3^{*} + 4 \ 5 \ 6 \ 7 + ^{*} + + = \underline{1} \ 6 + 4 \ 5 \ 6 \ 7 + ^{*} + + =$$

$$= 7 \ 4 \ 5 \ \underline{6} \ 7 + ^{*} + + = 7 \ 4 \ \underline{5} \ \underline{13} \ ^{*} + + = 7 \ \underline{4} \ \underline{65} \ + + =$$

$$= \underline{7} \ \underline{69} \ + = 76.$$

Символи \otimes і \oplus використовуються для позначення абстрактних бінарних операцій.

Таблиця, що задає деяку бінарну операцію \otimes на деякій множині A, називається *таблицею Келі*.

Приклад. Нехай операція \otimes визначена на множині $\{a, b, c\}$ за допомогою таблиці

\otimes	а	b	c
a	а	a	b
b	b	а	C
C	a	b	b

Отже, $a \otimes b = a$, $b \otimes b = a$, $c \otimes b = b$, ...

Нехай дано множину A, на якій визначено деяку бінарну операцію \otimes .

Якщо $a \otimes b = b \otimes a$ для всіх $a, b \in A$, то стверджують, що бінарна операція \otimes на множині A має властивість — *комутативність*.

Якщо $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ для всіх $a, b, c \in A$, то стверджують, що бінарна операція \otimes на множині A має властивість — *асоціативність*.

Нехай на множині A визначено дві бінарні операції \otimes і \oplus .

Якщо для всіх $a, b, c \in A$ виконується $a \otimes (b \oplus c)$ = $(a \otimes b) \oplus (a \otimes c)$, то стверджують, що операція \otimes має властивість — *дистрибутивність* відносно операції \oplus .

Приклад. Звичайна бінарна операція додавання (+) на множині дійсних чисел *R* комутативна і асоціативна, а операція віднімання (-) — некомутативна і неасоціативна, тобто

$$a+b=b+a$$
, але $a-b\neq b-a$; $(a+b)+c=a+(b+c)$, але $(a-b)-c\neq a-(b-c)$.

Приклад. На множині дійсних чисел *R* множення дистрибутивне відносно додавання, а додавання не дистрибутивне відносно множення, тобто

$$a*(b+c) = a*b + a*c, (a+b)*c = a*c + b*c,$$

але $a+(b*c) \neq (a+b)*(a+c).$

Якщо для бінарної операції \otimes на множині A існує елемент $e \in A$ такий, що для всіх $a \in A$

$$e \otimes a = a \otimes e = a$$
,

тоді e називається *одиницею* (*нейтральним елементом*) відносно до операції \otimes .

Нехай \otimes — операція на A з одиницею e і елементи $x, y \in A$ задовольняють рівності

$$x \otimes y = e = y \otimes x$$
.

Тоді y називається *оберненим* (*симетричним*) *елементом* до x відносно операції \otimes , і x називається *оберненим елементом* до y відносно операції \otimes .

Іноді розрізняють ліві та праві одиниці ($e_{\text{лів}}$. $\otimes a = a$ або $a \otimes e_{\text{прав}} = a$ для будь-якого $a \in A$) і ліві та праві обернені елементи, однак, у більшості випадків одиниці є двосторонніми.

У випадках, коли бінарна операція вважається аналогічною множенню (*), одиничний елемент позначається 1, а обернений до елемента x елемент записується у вигляді x^{-1} .

Коли бінарна операція вважається аналогічною додаванню (+), одиничний елемент позначається 0, а обернений до елемента x елемент записується у вигляді -x. Будемо також позначати обернений елемент до x як x'.

Приклад. На множині дійсних чисел R правою одиницею відносно віднімання та одиницею відносно додавання ϵ 0, оскільки

$$a - 0 = a$$
, але $0 - a \neq a$, якщо $a \neq 0$;

$$a + 0 = a$$
 і $0 + a = a$ для всіх a .

В алгебрі множин для операції об'єднання \cup одиничним елементом є порожня множина \emptyset , для операції перетину \cap одиницею є універсальна множина U.

Нехай n — довільне натуральне число.

Додаванням за модулем и цілих чисел a і b (позначення: \oplus_n) називається алгебраїчна операція, результатом якої є залишок від ділення суми a+b на n.

Множенням за модулем n чисел a і b (позначення: \otimes_n) називається алгебраїчна операція, результатом якої ϵ залишок від ділення добутку a*b на n.

Операції додавання та множення за модулем n визначені на множині цілих невід'ємних чисел \mathbb{Z}^+ :

 $a \oplus_{n} b = c$, так, що a + b = k * n + c, $0 \le c < n$; $a, b, k \in \mathbb{Z}^{+}$

 $a \otimes_{\mathrm{n}} b = d$, так, що a * b = f * n + d, $0 \le d < n$; $a, b, f \in \mathbb{Z}^+$

Областю значень цих операцій ϵ множина цілих невід'ємних чисел, менших за n:

$$Z_n = \{0, 1, ..., n-1\}.$$

Часто використовується позначення

$$a + b \equiv c \pmod{n}, \quad a \times b \equiv d \pmod{n}$$

для додавання та множення за модулем n.

Приклади додавання та множення за модулем n:

$$2 \oplus_3 2 = 3$$
ал. $(4/3) = 1$,

$$2 \otimes_3 2 = 3$$
ал. $(4/3) = 1$,

$$2 \oplus_4 2 = 3$$
ал. $(4/4) = 0$,

$$2 \otimes_4 2 = 3$$
ал. $(4/4) = 0$,

$$7 \oplus_{10} 8 = 3$$
ал. $(15/10) = 5$,

$$7 \oplus_{10} 8 = 3$$
ал. $(15/10) = 5$, $7 \otimes_{10} 8 = 3$ ал. $(56/10) = 6$,

$$7 \oplus_{12} 8 = 3$$
ал. $(15/12) = 3$

$$7 \oplus_{12} 8 = 3$$
ал. $(15/12) = 3$, $7 \otimes_{12} 8 = 3$ ал. $(56/12) = 8$.

2.2 Поняття алгебраїчної структури. Найпростіші алгебраїчні структури

2.2.1 Поняття алгебраїчної структури

Алгебраїчною структурою < S, O > називається множина разом із заданими операціями, визначеними і замкненими на цій множині.

Ця множина називається *носієм алгебраїчної структури*.

Приклад. Алгебраїчна структура з операцією додавання на множині N натуральних чисел позначається $\langle N, + \rangle$.

Приклад. Множина $Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$ разом із звичайною операцією додавання (+) не буде алгебраїчною структурою, оскільки результат виконання операції може не належати множині Z_7 , наприклад, 6 + 3 = 9, $9 \notin \mathbb{Z}_7$. Але $\langle \mathbb{Z}_7, \oplus_7 \rangle \in$ алгебраїчною структурою, оскільки область значень операції \oplus_7 лежить у \mathbb{Z}_7 .

Відношення між алгебраїчними структурами

Структура $S' = \langle A', \oplus' \rangle \in \mathbf{nidempyкmyрою}$ алгебраїчної структури $S = \langle A, \oplus \rangle$, якщо:

- 1. $A' \subseteq A$
- 2. \oplus ' і \oplus операції одного порядку і звуження операції \oplus на підмножині A' співпадає з операцією \oplus ' (наприклад, $a \oplus b = a \oplus$ ' b для всіх $a, b \in A$ ').

Найбільшою підструктурою структури $S \in \text{сама}$ структура S. У деяких випадках інших підструктур може не бути.

Приклад. Нехай E — множина парних натуральних чисел, тоді $\langle E, + \rangle$ буде підструктурою структури $\langle N, + \rangle$, де N — множина натуральних чисел.

2.2.2 Найпростіші алгебраїчні структури

Структури з однією операцією

Півгрупою називається алгебраїчна структура з множиною-носієм A і бінарною операцією $\otimes: A^2 \to A$, яка задовольняє властивості асоціативності:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z;$$
 $x, y, z \in A.$

Приклад. При обробці рядків символів використовується операція конкатенації $\alpha \cdot \beta = \alpha \beta$. Візьмемо рядки: «пар», «о», «воз». Застосувавши операції конкатенації, одержуємо такі рядки:

 $\langle\langle nap\rangle\rangle \bullet \langle\langle o\rangle\rangle = \langle\langle napo\rangle\rangle; \langle\langle napo\rangle\rangle \bullet \langle\langle napo\rangle\rangle = \langle\langle naponos\rangle\rangle.$

Ця операція асоціативна, оскільки

 $(\langle\langle nap\rangle\rangle \bullet \langle\langle o\rangle\rangle) \bullet \langle\langle Bo3\rangle\rangle = \langle\langle nap\rangle\rangle \bullet (\langle\langle o\rangle\rangle \bullet \langle\langle Bo3\rangle\rangle) = \langle\langle napobo3\rangle\rangle$.

Отже, $<A^+$, •> ϵ півгрупою, де A^+ — множина різних рядків, що складаються з букв українського алфавіту.

Моноїдом називають алгебраїчну структуру з множиною-носієм M і бінарною операцією $\otimes: M^2 {\to} M$ такою, що

1. ⊗ асоціативна:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$
, для всіх $x, y, z \in M$.

2. Існує e ∈ M — одиниця відносно ⊗:

$$e \otimes x = x = x \otimes e$$
 для всіх $x \in M$.

Моноїд — це півгрупа з одиницею.

Приклад. Якщо позначимо через A^* множину довільних рядків, що складаються з букв українського алфавіту і порожнього рядку $\varepsilon = \ll$, то одержимо структуру $\ll A^*$, $\ll *$, яка $\varepsilon = \ll *$ моноїдом з одиничним елементом $\varepsilon = \ll *$.

 $\langle\langle \text{паровоз}\rangle\rangle \bullet \langle\langle \rangle\rangle = \langle\langle \rangle\rangle \bullet \langle\langle \text{паровоз}\rangle\rangle = \langle\langle \text{паровоз}\rangle\rangle$

Групою називають множину G з бінарною операцією \otimes , що замкнена в G, такою, що

1. ⊗ асоціативна:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$
, для всіх $x, y, z \in G$.

2. Існує e ∈ G — одиниця відносно ⊗:

$$e \otimes x = x = x \otimes e$$
 для всіх $x \in G$.

3. Кожному елементу $x \in G$ відповідає обернений елемент $x' \in G$ відносно \otimes : $x' \otimes x = x \otimes x' = e$ для всіх $x \in G$.

Комутативна група називається *абелевою групою*.

Приклад. Групою є множина дійсних чисел разом з операцією додавання: $\langle R, + \rangle$, підгрупою цієї групи є $\langle Z, + \rangle$, де Z — множина цілих чисел.

Структура < K, +>, де K — множина цілих чисел, що кратні k, $k \in N$, є підгрупою групи < Z, +>. Для цих груп одиницею є 0, обернений елемент утворюється за допомогою застосування унарної операції зміни знака «-». Наведені групи є абелевими групами, оскільки додавання комутативне.

Приклад. Структура < N, +>, де N — множина натуральних чисел, не є групою, оскільки не існує обернених елементів і одиниці.

 $<\!\!N, +\!\!> -$ півгрупа.

Приклад. Структури $\langle R, * \rangle$ і $\langle N, * \rangle$ не є групами, а є моноїдами. Одиничним елементом для операції множення є 1. Обернені елементи існують на множині дійсних чисел R для всіх елементів, крім 0: не існує 0^{-1} , такого, що

$$0 * 0^{-1} = 1$$
.

Таким чином, операція множення задає групу на множині дійсних чисел, крім нуля $\langle R \setminus \{0\}, * \rangle$.

Додатна підмножина множини дійсних чисел з операцією множення $\langle R_+, * \rangle$ теж є групою — підгрупою групи $\langle R \setminus \{0\}, * \rangle$.

Приклад. Позначимо $M_n(R)$ множину всіх квадратних матриць порядку n з елементами з множини дійсних чисел.

Структура $< M_n(R)$, +> — комутативний моноїд з одиницею — нульовою матрицею.

Структура $< M_n(R)$, *> — некомутативний моноїд з одиницею — одиничною матрицею.

Приклад. Структура $\langle Z_n, \otimes_n \rangle$ — група з одиницею 0 і оберненим елементом x' = n - x; $\langle Z_n, \otimes_n \rangle$ — моноїд з одиницею 1.

Твердження 1. Нехай \otimes — операція на множині A й існує одиниця e відносно \otimes , тоді *одиничний елемент єдиний*.

Твердження 2. Нехай \otimes — асоціативна операція на множині A і e — одиниця відносно \otimes . Тоді, якщо $x \in A$ і x має обернений елемент, то обернений елемент єдиний відносно \otimes .

Структури з двома операціями

Операцію ⊗ називають множенням, а операцію ⊕ — додаванням.

Для \otimes одиничний елемент позначається 1, а обернений до елемента x відносно \otimes записується у вигляді x^{-1} .

Для \oplus одиничний елемент позначається 0, а обернений до елемента x відносно \oplus записується у вигляді -x.

Кільцем <*R*, $\{ \otimes, \oplus \} >$ називається множина *R* з визначеними на ній бінарними операціями \otimes і \oplus :

1. ⊕ асоціативна:

$$x \oplus (y \oplus z) = (x \oplus y) \oplus z$$
, для всіх $x, y, z \in R$.

$$x \oplus y = y \oplus x$$
 для всіх $x, y \in R$.

3. ⊕ має одиницю, яка називається нулем і позначається 0:

$$0 \oplus x = x$$
 для всіх $x \in R$.

4. Існує обернений елемент відносно \oplus для кожного $x \in R$:

$$(-x) \oplus x = x \oplus (-x) = 0$$
 для всіх $x \in R$.

5. ⊗ асоціативна:

$$x \otimes (y \otimes z) = (x \otimes y) \otimes z$$
 для всіх $x, y, z \in R$.

6. ⊗ дистрибутивна відносно ⊕ зліва і справа:

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z),$$

 $(x \oplus y) \otimes z = (x \otimes z) \oplus (y \otimes z)$ для всіх $x, y, z \in R$.

Кільце комутативне, якщо множення ⊗ комутативне і є *кільцем з одиницею*, якщо існує одиниця відносно множення.

Кільце з одиницею називається алгеброю.

В кільці $\langle R, \oplus, \otimes \rangle$ для будь-яких $a, b \in R$ виконуються співвідношення

$$0 \otimes a = a \otimes 0 = 0,$$

 $a \otimes (-b) = (-a) \otimes b = -(a \otimes b),$
 $(-a) \otimes (-b) = a \otimes b.$

В кільці $\langle R, \oplus, \otimes \rangle$ фактично присутня некомутативна бінарна операція віднімання Θ , визначена за правилом $a \Theta b = a \oplus (-b)$. Вона є правою оберненою відносно додавання в тому розумінні, що $(a \oplus b) \Theta b = a$.

Поле $\langle R, \oplus, \otimes \rangle$ — це комутативне кільце з одиницею 1 (що відрізняється від 0), в якому кожний елемент a (що відрізняється від 0) обернений за множенням.

Структуру < R, *, +> називають *полем дійсних чисел*.

2.3 Гратки

2.3.1 Основні означення

Тратками називається частково впорядкована множина, в якій два елемента x та y мають точну нижню межу, яка називається **перетином** (позначається $x \wedge y$), та точну верхню межу, яка називається $x \wedge y$).

Гратки називаються **повними**, якщо будь-яка їх підмножина має точні верхні та нижні межі.

<u>Лема 1.</u> Будь-який ланцюг є ґратками, в яких $x \wedge y$ співпадає з найменшим, а $x \vee y - 3$ найбільшим із елементів x та y.

Приклад. Будь-яку абсолютно впорядковану множину можна перетворити на гратки, означивши для будь-яких елементів x та y

 $x \wedge y = min(x, y), \quad x \vee y = max(x, y).$

Приклад. Система підмножин будь-якої множини A (булеан A) — частково впорядкована множина за включенням множин. Ця система є гратками, елементами яких є множини, а операціями — звичайні теоретико-множинні операції об'єднання та перерізу.

Приклад. Впорядкована множина раціональних чисел не є повними ґратками, тому що в ній немає універсальних меж 0 та 1.

У впорядкованій множині дійсних чисел умова повноти буде виконуватись, якщо додати до неї в якості універсальних меж $-\infty$ та $+\infty$.

Підгратками граток L називається підмножина $X \subset L$ така, що якщо $a \in X$, $b \in X$, то $a \wedge b \in X$ та $a \vee b \in X$.

Порожня підмножина та будь-яка одноелементна підмножина є підгратками.

Приклад. Підмножина $Y = \{\emptyset, \{b\}, \{c\}, \{b,c\}\}$ є підгратками.

Підмножина $Z = \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{c\}\}\}$ не є підгратками, тому що $\{a,b\} \lor \{a,c\} = \{a,b,c\} \not\in Z$. Ця підмножина також не є інтервалом.

Підгратками будуть також підмножини: $\{\emptyset, \{a\}\}, \{\{c\}, \{a,c\}\}, \{\{a\}, \{a,b\}\}\}$ і т.д., всі ланцюги, наприклад, $\{\emptyset, \{b\}\}, \{\emptyset, \{b,c\}\},$ а також всі елементи ґраток.

2.3.2 Булеві гратки

У повних ґратках елемент a' називається **доповненням** елемента a, якщо $a \wedge a' = 0$ та $a \vee a' = 1$.

Якщо кожний елемент граток має доповнення, то гратки називаються гратками із доповненням.

Дистрибутивні гратки з доповненням називаються булевими.

Теорема 1. У булевих гратках довільний елемент x має одне й тільки одне доповнення x'. При цьому виконується:

- 1) інволюція: (x')' = x,
- 2) межі доповнюють одна одну: 1' = 0, 0' = 1,
- 3) виконуються закони де Моргана:

$$(x \wedge y)' = x' \vee y', (x \vee y)' = x' \wedge y'.$$

Булевою алгеброю $B = \langle L, \vee, \wedge, ', 0, 1 \rangle$ називається алгебра з двома булевими операціями \vee та \wedge , однією унарною операцією ' та двома нульарними операціями (константами) 0 та 1, для яких виконуються:

1.
$$a \lor a = a$$
, $a \land a = a$;

самопоглинання

2.
$$a \lor b = b \lor a$$
, $a \land b = b \land a$

комутативність

3.
$$a\lor(b\lor c)=(a\lor b)\lor c, a\land(b\land c)=$$
 асоціативність

$$=(a \land b) \land c$$

4.
$$(a \land b) \lor a = a$$
, $(a \lor b) \land a = a$

поглинання

5.
$$a \lor (b \land c) = (a \land b) \lor (a \land c)$$

дистрибутивність

$$a \land (b \lor c) = (a \lor b) \land (a \lor c)$$

6.
$$a \lor 1 = 1$$
, $a \land 0 = 0$

властивості 0 та 1

$$a \lor 0 = a$$
, $a \land 1 = a$

7.
$$(a')' = a$$

властивості доповнення

8.
$$(a \land b)' = a' \lor b'$$
, $(a \lor b)' = a' \land b'$

закони де Моргана

9.
$$a \lor a' = 1$$
, $a \land a' = 0$

існування доповнення

Приклад. $\langle P(M); \cup, \cap, ' \rangle$ — булева алгебра, причому M — верхня межа, \varnothing — нижня межа, " \subset " — природній частковий порядок.

Приклад. $\langle \{0,1\}; \land, \lor, \neg \rangle$ — булева алгебра, причому 1 — верхня межа, 0 — нижня межа.

Приклад. Будь-яке поле множин і, зокрема, множина всіх підмножин деякої множини є булевою алгеброю. Довільна підалгебра булевої алгебри сама також є булевою алгеброю. Прямий (декартовий) добуток булевих алгебр ϵ булевою алгеброю.