| l (a | ) (i) | Dis | tinguish between vector quantities and scalar quantities.                   |
|------|-------|-----|-----------------------------------------------------------------------------|
|      |       |     |                                                                             |
|      |       |     |                                                                             |
|      |       |     | [2]                                                                         |
|      | (ii)  | Sta | te whether each of the following is a vector quantity or a scalar quantity. |
|      |       | 1.  | temperature                                                                 |
|      |       |     | [1]                                                                         |
|      |       | 2.  | acceleration of free fall                                                   |
|      |       |     | [1]                                                                         |
|      |       | 3.  | electrical resistance                                                       |
|      |       |     | [1]                                                                         |

**(b)** A block of wood of weight 25 N is held stationary on a slope by means of a string, as shown in Fig. 1.1.



Fig. 1.1

The tension in the string is T and the slope pushes on the block with a force R that is normal to the slope.

Either by scale drawing on Fig. 1.1 or by calculation, determine the tension T in the string.

2 A ball is thrown from a point P, which is at ground level, as illustrated in Fig. 2.1.



Fig. 2.1

The initial velocity of the ball is  $12.4\,\mathrm{m\,s^{-1}}$  at an angle of  $36^\circ$  to the horizontal. The ball just passes over a wall of height h. The ball reaches the wall  $0.17\,\mathrm{s}$  after it has been thrown.

- (a) Assuming air resistance to be negligible, calculate
  - (i) the horizontal distance of point P from the wall,

distance = .....m [2]

|     | (ii) | the height <i>h</i> of the wall.                                                                                                                        |               |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      | h =                                                                                                                                                     | m [3]         |
| (b) | bal  | econd ball is thrown from point P with the same velocity as the ball in <b>(a)</b> . air resistance is not negligible. ball hits the wall and rebounds. | this          |
|     |      | Fig. 2.1, sketch the path of this ball between point P and the point where it firs ground.                                                              | t hits<br>[2] |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |
|     |      |                                                                                                                                                         |               |

| 3 | (a) | State what is meant by the <i>centre of gravity</i> of a body.                                                                             |  |  |  |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|   | (b) | A uniform rectangular sheet of card of weight <i>W</i> is suspended from a wooden rod. The card is held to one side, as shown in Fig. 3.1. |  |  |  |
|   |     | rod                                                                                                                                        |  |  |  |
|   |     | Fig. 3.1                                                                                                                                   |  |  |  |
|   |     | On Fig. 3.1,                                                                                                                               |  |  |  |
|   |     | (i) mark, and label with the letter C, the position of the centre of gravity of the card, [1]                                              |  |  |  |

[1]

(ii) mark with an arrow labelled  $\boldsymbol{W}$  the weight of the card.

| (c) | The  | card in <b>(b)</b> is released. The card swings on the rod and eventually comes to rest.                                                                     |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (i)  | List the two forces, other than its weight and air resistance, that act on the card during the time that it is swinging. State where the forces act.         |
|     |      | 1                                                                                                                                                            |
|     |      |                                                                                                                                                              |
|     |      | 2                                                                                                                                                            |
|     |      | [3]                                                                                                                                                          |
|     | (ii) | By reference to the completed diagram of Fig. 3.1, state the position in which the card comes to rest.  Explain why the card comes to rest in this position. |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      | [2]                                                                                                                                                          |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |
|     |      |                                                                                                                                                              |

**4 (a)** A metal wire has spring constant *k*. ces are applied to the ends of the wire to extend it within the limit of Hooke's law.

Show that, for an extension x, the strain energy E stored in the wire is given by

$$E = \frac{1}{2}kx^2.$$

[4]

**(b)** The wire in **(a)** is now extended beyond its elastic limit. The forces causing the extension are then removed.

The variation with extension x of the tension F in the wire is shown in Fig. 4.1.



Fig. 4.1

Energy  $E_{\rm S}$  is expended to cause a permanent extension of the wire.

(i) On Fig. 4.1, shade the area that represents the energy  $E_{\rm S}$ .

[1]

| (ii)  | Fig. 4.1 to calculate the energy $E_{\rm S}$ .                                             |
|-------|--------------------------------------------------------------------------------------------|
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       | <i>E</i> <sub>S</sub> = mJ [3]                                                             |
| (iii) | Suggest the change in the structure of the wire that is caused by the energy $E_{\rm S}$ . |
| ()    |                                                                                            |
|       |                                                                                            |
|       | [1]                                                                                        |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |
|       |                                                                                            |

**5** A student is studying a water wave in which all the wavefronts are parallel to one another. The variation with time *t* of the displacement *x* of a particular particle in the wave is shown in Fig. 5.1.



Fig. 5.1

The distance d of the oscillating particles from the source of the waves is measured. At a particular time, the variation of the displacement x with this distance d is shown in Fig. 5.2.



Fig. 5.2

| a) | Deli | line, for a wave, what is meant by |  |  |  |
|----|------|------------------------------------|--|--|--|
|    | (i)  | displacement,                      |  |  |  |
|    |      |                                    |  |  |  |
|    |      | [1                                 |  |  |  |
|    | (ii) | wavelength.                        |  |  |  |

| (b)     | Figs. 5.1 and 5.2 to determine, for the water wave,                           |
|---------|-------------------------------------------------------------------------------|
| (i)     | the period $T$ of vibration,                                                  |
|         | <i>T</i> =s [1]                                                               |
| (ii)    | the wavelength $\lambda$ ,                                                    |
|         | $\lambda = \dots $ cm [1]                                                     |
| (iii)   | the speed v.                                                                  |
|         |                                                                               |
|         |                                                                               |
|         |                                                                               |
|         |                                                                               |
|         | $v = \dots cms^{-1} [2]$                                                      |
| (c) (i) | Figs. 5.1 and 5.2 to state and explain whether the wave is losing power as it |
| (6) (1) | moves away from the source.                                                   |
|         |                                                                               |
|         |                                                                               |
|         | [2]                                                                           |
| (ii)    | Determine the ratio                                                           |
|         | intensity of wave at source intensity of wave 6.0 cm from source              |
|         |                                                                               |
|         |                                                                               |
|         |                                                                               |
|         |                                                                               |
|         |                                                                               |
|         | ratio =[3]                                                                    |

6 The variation with temperature of the resistance  $R_{\rm T}$  of a thermistor is shown in Fig. 6.1.



Fig. 6.1

The thermistor is connected into the circuit of Fig. 6.2.



Fig. 6.2

|     | The battery has e.m.f. 9.0V and negligible internal resistance. The voltmeter has infinite resistance. |                                                                         |  |
|-----|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|
| (a) |                                                                                                        | the thermistor at 22.5 °C, calculate                                    |  |
|     | (i)                                                                                                    | the total resistance between points A and B on Fig. 6.2,                |  |
|     | (ii)                                                                                                   | $\mbox{resistance} = \Omega \ [2]$ the reading on the voltmeter.        |  |
|     | ()                                                                                                     |                                                                         |  |
|     |                                                                                                        | voltmeter reading =V [2]                                                |  |
| (b) |                                                                                                        | temperature of the thermistor is changed. The voltmeter now reads 4.0V. |  |
|     | (i)                                                                                                    | the total resistance between points A and B on Fig. 6.2,                |  |
|     |                                                                                                        |                                                                         |  |
|     |                                                                                                        | resistance = $\Omega$ [2]                                               |  |

|     | (ii) | the temperature of the thermistor.                                                                                                                          |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      | temperature =°C [2]                                                                                                                                         |
| (c) |      | tudent suggests that the voltmeter, reading up to 10V, could be calibrated to measure sperature.                                                            |
|     |      | ggest two disadvantages of using the circuit of Fig. 6.2 with this voltmeter for the asurement of temperature in the range $0^{\circ}$ C to $25^{\circ}$ C. |
|     | 1    |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     | 2    |                                                                                                                                                             |
|     |      | [2]                                                                                                                                                         |
|     |      | [4]                                                                                                                                                         |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |
|     |      |                                                                                                                                                             |

| The results of the $\alpha$ -particle scattering experiment provided evidence for the existence and small size of the nucleus. |              |                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (a)                                                                                                                            | Stat         | re the result that provided evidence for                                                                                                                                                                               |  |  |
|                                                                                                                                | (i)          | the small size of the nucleus, compared with the atom,                                                                                                                                                                 |  |  |
|                                                                                                                                | (ii)         | the nucleus being charged and containing the majority of the mass of the atom.                                                                                                                                         |  |  |
|                                                                                                                                |              | [2]                                                                                                                                                                                                                    |  |  |
| (b)                                                                                                                            | Sug<br>for t | $\alpha$ -particles in this experiment originated from the decay of a radioactive nuclide. gest two reasons why $\beta$ -particles from a radioactive source would be inappropriate his type of scattering experiment. |  |  |
|                                                                                                                                |              |                                                                                                                                                                                                                        |  |  |
|                                                                                                                                |              | [2]                                                                                                                                                                                                                    |  |  |
|                                                                                                                                |              |                                                                                                                                                                                                                        |  |  |
|                                                                                                                                |              |                                                                                                                                                                                                                        |  |  |
|                                                                                                                                |              |                                                                                                                                                                                                                        |  |  |