On Nonconvex Quadratic Programming with Ball Constraints

Sam Burer

University of Iowa

Kurt-Fest! SIOPT Optimization Conference Seattle, WA June 2, 2023

Outline

- Introduction
- Conic Relaxations of QCQPs
- 3 Nonconvex QP Over the Intersection of Euclidean Balls
- Results
- Conclusions

Happy Retirement, Kurt!

Happy Retirement, Kurt!

Happy Retirement, Kurt!

What do you get the person who has...?

Outline

- Introduction
- Conic Relaxations of QCQPs
- 3 Nonconvex QP Over the Intersection of Euclidean Balls
- Results
- Conclusions

Quadratically Constrained Quadratic Programs

$$\min_{x \in \mathbb{R}^n} \left\{ x^T Q x + 2 q^T x : \begin{array}{c} x \in \mathcal{C} \\ x^T H_i x + 2 g_i^T x + f_i \leq 0 \quad \forall i \end{array} \right\}$$

Quadratically Constrained Quadratic Programs

$$\min_{x \in \mathbb{R}^n} \left\{ x^T Q x + 2 q^T x : \begin{array}{c} x \in \mathcal{C} \\ x^T H_i x + 2 g_i^T x + f_i \leq 0 \quad \forall \ i \end{array} \right\}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\text{CH} := \text{conv} \left\{ (x, X) : \begin{array}{c} x \text{ feasible} \\ X = x x^T \end{array} \right\}$$

The Shor Relaxation

Shor :=
$$\left\{ (x, X): H_i \bullet X + 2 g_i^T x + f_i \leq 0 \ \forall i \right\}$$

$$X \succeq xx^T$$

Notes: Introduced by Shor (1987). May need additional constraints to ensure SHOR is bounded, even when original feasible set is already bounded.

The RLT Relaxation

Given explicit $a^T x \leq \beta$ and $c^T x \leq \delta$ in C, we have:

$$(\beta - a^T x)(\delta - c^T x) \ge 0 \iff \beta \delta - (\beta c + \delta a)^T x + a^T x x^T c \ge 0$$
$$\implies \beta \delta - (\beta c + \delta a)^T x + a^T X c \ge 0$$

The RLT Relaxation

Given explicit $a^T x \leq \beta$ and $c^T x \leq \delta$ in C, we have:

$$(\beta - a^T x)(\delta - c^T x) \ge 0 \iff \beta \delta - (\beta c + \delta a)^T x + a^T x x^T c \ge 0$$
$$\implies \beta \delta - (\beta c + \delta a)^T x + a^T X c \ge 0$$

 $RLT := \{(x, X) : [all such linear inequalities] \}$

The RLT Relaxation

Given explicit $a^T x \leq \beta$ and $c^T x \leq \delta$ in C, we have:

$$(\beta - a^T x)(\delta - c^T x) \ge 0 \iff \beta \delta - (\beta c + \delta a)^T x + a^T x x^T c \ge 0$$
$$\implies \beta \delta - (\beta c + \delta a)^T x + a^T X c \ge 0$$

$$RLT := \{(x, X) : [all such linear inequalities] \}$$

Note: *RLT* stands for *reformulation linearization technique* and was popularized by McCormick (1976) and Sherali-Adams (1999).

The SOCRLT Relaxation

Let \mathcal{L} be the second-order cone. Given explicit $a^Tx \leq \beta$ and $b - Ax \in \mathcal{L}$ in \mathcal{C} , we have:

$$(\beta - a^T x)(b - Ax) \in \mathcal{L} \iff \beta b - \beta Ax - (a^T x)b + (a^T x)Ax \in \mathcal{L}$$
$$\implies \beta b - (\beta A + ba^T)x + AXa \in \mathcal{L}$$

The SOCRLT Relaxation

Let \mathcal{L} be the second-order cone. Given explicit $a^Tx \leq \beta$ and $b - Ax \in \mathcal{L}$ in \mathcal{C} , we have:

$$(\beta - a^T x)(b - Ax) \in \mathcal{L} \iff \beta b - \beta Ax - (a^T x)b + (a^T x)Ax \in \mathcal{L}$$
$$\implies \beta b - (\beta A + ba^T)x + AXa \in \mathcal{L}$$

 $SocRlt := \{(x, X) : [all such SOC constraints] \}$

The Socritical Relaxation

Let \mathcal{L} be the second-order cone. Given explicit $a^Tx \leq \beta$ and $b - Ax \in \mathcal{L}$ in \mathcal{C} , we have:

$$(\beta - a^T x)(b - Ax) \in \mathcal{L} \iff \beta b - \beta Ax - (a^T x)b + (a^T x)Ax \in \mathcal{L}$$
$$\implies \beta b - (\beta A + ba^T)x + AXa \in \mathcal{L}$$

$$SocRlt := \{(x, X) : [all such SOC constraints] \}$$

Note: First introduced by Sturm-Zhang (2003).

$$||x|| \le 1$$

$$||x - c|| \le \rho$$

$$||x|| \le 1 \iff \begin{pmatrix} 1 & x^T \\ x & I \end{pmatrix} \succeq 0, \qquad ||x - c|| \le \rho$$

$$||x|| \le 1 \iff \begin{pmatrix} 1 & x^T \\ x & I \end{pmatrix} \succeq 0, \qquad ||x - c|| \le \rho \iff \begin{pmatrix} \rho & (x - c)^T \\ x - c & \rho I \end{pmatrix} \succeq 0$$

$$KRON := \{(x, X) : [all such PSD constraints] \}$$

$$KRON := \{(x, X) : [all such PSD constraints] \}$$

Notes:

- Introduced by Anstreicher (2017).
- Kronecker matrix is big, e.g., size $n^2 \times n^2$. But can reduce the computational burden in some important cases.

A Combined Relaxation

$$CH \subseteq Shor \cap Rlt \cap SocRlt \cap Kron$$

A Combined Relaxation

$$CH \subseteq SHOR \cap RLT \cap SOCRLT \cap KRON$$

Note: Zhen et al (2022) consider other ways to "multiply" conic constraints to create strong relaxations. See Dick den Hertog's talk later today (MS240).

Outline

- Introduction
- Conic Relaxations of QCQPs
- 3 Nonconvex QP Over the Intersection of Euclidean Balls
- Results
- Conclusions

$$\min_{x \in \mathbb{R}^n} \left\{ x^T Q x + 2 q^T x : \begin{array}{l} ||x|| \le 1 \\ ||x - c_i|| \le \rho_i \ \forall \ i = 2, \dots, m \end{array} \right\}$$

$$\min_{x \in \mathbb{R}^n} \left\{ x^T Q x + 2 q^T x : \begin{array}{l} \|x\| \le 1 \\ \|x - c_i\| \le \rho_i \end{array} \forall i = 2, \dots, m \end{array} \right\}$$

$$\downarrow$$

$$\text{CH} := \text{conv} \left\{ (x, X) : X = x x^T \right\}$$

$$\min_{x \in \mathbb{R}^n} \left\{ x^T Q x + 2 \, q^T x : \begin{array}{l} \|x\| \leq 1 \\ \|x - c_i\| \leq \rho_i \end{array} \forall i = 2, \dots, m \end{array} \right\}$$

$$\downarrow$$

$$\text{CH} := \text{conv} \left\{ \begin{aligned} \|x\| \leq 1 \\ \|x - c_i\| \leq \rho_i \end{array} \forall i = 2, \dots, m \\ (x, X) : \begin{array}{l} x^T x \leq 1 \\ x^T x \leq \rho_i^2 + 2c_i^T x - c_i^T c_i \end{array} \forall i = 2, \dots, m \\ X = x x^T \end{aligned} \right\}$$

- Why do we care?
 - Trust-region subproblem and related variants
 - ▶ In particular, the CDT problem, also known as *TTRS* (Celis et al. 1985)
 - ► Similar problems such as optimal power flow (Chen et al. 2017)
 - Sparse source localization (Beck-Pan 2017)
 - Substructure in more general MINLPs

- Why do we care?
 - Trust-region subproblem and related variants
 - ▶ In particular, the CDT problem, also known as *TTRS* (Celis et al. 1985)
 - Similar problems such as optimal power flow (Chen et al. 2017)
 - Sparse source localization (Beck-Pan 2017)
 - Substructure in more general MINLPs
- Polynomial-time solvable to ϵ -accuracy for fixed m (Bienstock 2016)

- Why do we care?
 - Trust-region subproblem and related variants
 - ▶ In particular, the CDT problem, also known as *TTRS* (Celis et al. 1985)
 - Similar problems such as optimal power flow (Chen et al. 2017)
 - Sparse source localization (Beck-Pan 2017)
 - Substructure in more general MINLPs
- Polynomial-time solvable to ϵ -accuracy for fixed m (Bienstock 2016)
- Then what do we care about?
 - Want tight conic relaxations using relaxation machinery

- For m=1, Rendl-Wolkowicz (1997) proved $\mathrm{CH}=\mathrm{SHOR}$
- For m=2, Kelly et al. (2022) gave a disjunctive formulation of CH using two "copies" of X
- Questions
 - ▶ Is there a non-disjunctive formulation for m = 2?
 - ▶ How about when $m \ge 3$?

Case m=2

CH := conv
$$\left\{ (x, X) : \frac{\|x\| \le 1}{\|x - c\| \le \rho} \right\}$$
$$X = xx^{T}$$

Case m=2

CH := conv
$$\left\{ (x, X) : \frac{\|x\| \le 1}{\|x - c\| \le \rho} \right\}$$

$$\downarrow$$

 $CH \subseteq Shor \cap Kron$

Sam Burer (U of Iowa) Nonconvex QP with Ball Constraints

18 / 27

CH := conv
$$\left\{ (x, X) : \frac{\|x\| \le 1}{\|x - c\| \le \rho} \right\}$$

$$\downarrow$$

$$CH \subseteq Shor \cap Kron$$

Note: The containment is strict.

$$CH^{+} := conv \left\{ \begin{aligned} x^{T}x &\leq \beta \\ \beta &\leq 1 \\ \beta &\leq \rho^{2} + 2c^{T}x - c^{T}c \\ w &= \binom{x}{\beta} \\ W &= ww^{T} \end{aligned} \right\}$$

$$CH^{+} := conv \left\{ \begin{aligned} x^{T}x &\leq \beta \\ \beta &\leq 1 \\ \beta &\leq \rho^{2} + 2c^{T}x - c^{T}c \\ w &= \binom{x}{\beta} \\ W &= ww^{T} \end{aligned} \right\}$$

 $CH^+ \subseteq SHOR^+ \cap RLT^+ \cap SOCRLT^+$

$$CH^{+} := conv \left\{ \begin{aligned} x^{T}x &\leq \beta \\ \beta &\leq 1 \\ \beta &\leq \rho^{2} + 2c^{T}x - c^{T}c \\ (1-\beta)(\rho^{2} + 2c^{T}x - c^{T}c - \beta) &= 0 \\ w &= \binom{x}{\beta} \\ W &= ww^{T} \end{aligned} \right\}$$

$$CH^+ \subseteq SHOR^+ \cap RLT^+ \cap SOCRLT^+$$

$$CH^{+} := conv \left\{ \begin{aligned} x^{T}x &\leq \beta \\ \beta &\leq 1 \\ \beta &\leq \rho^{2} + 2c^{T}x - c^{T}c \\ (w, W) : & (1 - \beta)(\rho^{2} + 2c^{T}x - c^{T}c - \beta) = 0 \\ w &= {x \choose \beta} \\ W &= ww^{T} \end{aligned} \right\}$$

$$CH^+ \subseteq SHOR^+ \cap RLT_0^+ \cap SOCRLT^+$$

Non-Convex Problem	$Pre ext{-}eta$	$Post\text{-}\beta$	Comment
# variables	n	n+1	
# linear constraints	0	2	
# SOC constraints	2	1	each size $pprox n$
# quadratic constraints	0	1	

Relaxation (not including Shor)	$Pre ext{-}eta$	Post- β	Comment
$\# RLT_0$ constraints	0	1	
$\# \ \mathrm{SocRlt}$ constraints	0	2	each size $pprox n$
# Kronecker SDP constraints	1	0	size $pprox n^2 imes n^2$

General Case $m \geq 2$

Relaxation (not incl SHOR)	Pre - β	Post- β	Comment
# RLT	0	m^2	Regular RLT, not RLT_0
# SocRlt	0	m	size n
# Kronecker	m^2	0	each size $n^2 imes n^2$

Outline

- Introduction
- Conic Relaxations of QCQPs
- 3 Nonconvex QP Over the Intersection of Euclidean Balls
- 4 Results
- Conclusions

Theorem (B 2023 — but gifted to Kurt)

Theorem (B 2023 — but gifted to Kurt)

For m=2, it holds that $CH^+ = SHOR^+ \cap RLT_0^+ \cap SOCRLT^+$. Hence,

Theorem (B 2023 — but gifted to Kurt)

For m=2, it holds that $CH^+ = SHOR^+ \cap RLT_0^+ \cap SOCRLT^+$. Hence,

$$CH = proj(SHOR^+ \cap RLT_0^+ \cap SOCRLT^+).$$

Theorem (B 2023 — but gifted to Kurt)

For m=2, it holds that $CH^+ = SHOR^+ \cap RLT_0^+ \cap SOCRLT^+$. Hence,

$$CH = proj(SHOR^+ \cap RLT_0^+ \cap SOCRLT^+).$$

Proof.

Leverages key idea of Ye-Zhang (2003) with a key assist from Kurt.

General Case $m \geq 2$

n	m	# Instances	# Solved		Tot	tal Time (s)	
			Kron	Beta	Shor	Kron	BETA
2	5	1,000	211	976	0.3	14.9	1.0
2	9	1,000	429	978	0.3	194.8	1.9
4	9	1,000	0	891	0.7	2335.1	3.8

General Case m > 2

n	m	# Instances	# Solved		To ₁	tal Time (s)		
			Kron	Beta	Shor	Kron	BETA	
2	5	1,000	211	976	0.3	14.9	1.0	
2	9	1,000	429	978	0.3	194.8	1.9	
4	9	1,000	0	891	0.7	2335.1	3.8	

Note: In particular, for $m \geq 3$, the containment

$$CH \subseteq \operatorname{proj}(\operatorname{Shor}^+ \cap \operatorname{Rlt}^+ \cap \operatorname{SocRlt}^+)$$

is strict.

Outline

- Introduction
- Conic Relaxations of QCQPs
- 3 Nonconvex QP Over the Intersection of Euclidean Balls
- Results
- Conclusions

Conclusions

CONGRATULATIONS, KURT!