Méthodes numériques pour des modèles hybrides fluide-cinétique de plasmas

Josselin Massot

16 décembre 2021

Directeur de thèse : Nicolas Crouseilles Co-Directrice de thèse : Anaïs Crestetto

Outline

- 1 Introduction
- 2 Numerical methods
- 3 Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- **5** Conclusion

Outline

- 1 Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Vlasov-Maxwell 1dz — 3dv model

Transport of electron density distribution $f = f(t, z, \mathbf{v})$, $\mathbf{B}(t, z) = (B_x, B_y, 0)(t, z)$, $\mathbf{E}(t, z) = (E_x, E_y, 0)(t, z) \in \mathbb{R}^2$, $z \in [0, 2\pi]$, $\mathbf{B}_0 = (0, 0, B_0)^\top$, $\mathbf{v} \in \mathbb{R}^3$, $v_\perp = (v_x, v_y)^\top \in \mathbb{R}^2$:

Vlasov-Maxwell 1dz — 3dv model

Motivation:

- We want high order methods in (z, \mathbf{v})
 - FFT in z + WENO in v
- We want high order methods in time t
 - splitting method vs exponential integrator

• We consider an initial condition of the form $f = f_c + f_h$ with: $f_c(t = 0, z, \mathbf{v}) = \rho_c(t, z) \delta_{\mathbf{v} = \mathbf{u}_c(t, z)}(\mathbf{v})$

The idea

Grid methods can't have an initial condition like:

$$f_0(z, \mathbf{v}) = \underbrace{\rho_{c,0}(z)\delta_{\mathbf{v}-\mathbf{u}_c}(\mathbf{v})}_{f_{c,0}} + f_{h,0}(z, \mathbf{v})$$

The main idea is to derive an linearized hybrid fluid/kinetic model:

- Split $f = f_c + f_h$ (2 Vlasov equations)
- Compute momentum of f_c
 - Cold plasma approximation: $\frac{T_c}{T_h} \ll 1 \rightarrow f_c(t,z,v) \rightarrow j_c(t,z)$
 - Fluid dynamic for cold particles (no velocity grid)
 - Linearized fluid equations
- Hypothesis on hot particles: $\int_{\mathbb{R}^3} f_h(t, z, \mathbf{v}) d\mathbf{v} \ll \rho_c(t, z)$
 - Kinetic dynamic for hot particles

Tronci et al. 2014, *Plasma Physics and Controlled Fusion* Holderied et al. 2020, *Journal of Computational Physics*

Linearized hybrid Vlasov-Maxwell 1dz - 3dv model

The new model: a nonlinear transport in $(z, v_x, v_y, v_z) \in \Omega \times \mathbb{R}^3$ of:

- a cold (fluid) electron density distribution, reconstruction from current variable $\mathbf{j}_c(t,z) = q_e \rho_c(t,z) \mathbf{u}_c(t,z) = (j_{c,x},j_{c,y},0)(t,z)$
- a hot (kinetic) electron density distribution $f_h(t, z, \mathbf{v})$

$$\begin{cases} \partial_{t} \mathbf{j}_{c} = \Omega_{pe}^{2} \mathbf{E} - J \mathbf{j}_{c} B_{0} \\ \partial_{t} \mathbf{B} = J \partial_{z} \mathbf{E} \\ \partial_{t} \mathbf{E} = -J \partial_{z} \mathbf{B} - \mathbf{j}_{c} + \int_{\mathbb{R}^{3}} \mathbf{v}_{\perp} f_{h} \, \mathrm{d} \mathbf{v} \\ \partial_{t} f_{h} + \mathbf{v}_{z} \partial_{z} f_{h} - (\mathbf{E} + \mathbf{v} \times (\mathbf{B} + \mathbf{B}_{0})) \cdot \nabla_{\mathbf{v}} f_{h} = 0 \end{cases}$$

with:

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Convergence when $T_c \rightarrow 0$ for 1dx-1dv model

Figure: Simulation of initial condition (left) with kinetic model with $T_c=0.05$ (middle) and hybrid model (right) to the time $T_f=200$

✓ Good agreement between kinetic (f) model and hybrid model ($f_h + u_c$)

Outline

- 1 Introduction
- 2 Numerical methods
- Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Numerical methods

Two time integrators to compute a numerical solution of abstract model:

$$\dot{u} = L(t, u) + N(t, u), \quad u(0) = u_0$$

 $u \in \mathbb{R}^d$, L and N functions $(t, u) \in \mathbb{R}_+ \times \mathbb{R}^d \mapsto \mathbb{R}^d$, $d \in \mathbb{N}$.

- Splitting method (Lie, Strang, Suzuki)
- Lawson method (LRK(4,4), LDP4(3))

In space z: we use a Fourier transform (FFT). In velocity \mathbf{v} : we use WENO5 or Lagrange 5.

Splitting method

Successive resolution of:

$$\dot{u} = Lu$$
 $\rightarrow \tilde{u}_t = \varphi_t^{[L]}(u_0)$
 $\dot{u} = N(t, u)$ $\rightarrow \tilde{u}_t = \varphi_t^{[N]}(u_0)$

Solution at time t:

Lie: order 1 method, composition of sub-steps:

$$\varphi_t(u_0) \approx \varphi_t^{[L]} \circ \varphi_t^{[N]}(u_0)$$

Strang: order 2 method: $\varphi_t(u_0) \approx \mathcal{S}_t(u_0) = \varphi_{t/2}^{[L]} \circ \varphi_t^{[N]} \circ \varphi_{t/2}^{[L]}(u_0)$

Strang 1968, SIAM Journal on Numerical Analysis

Suzuki: order 4 method, composition of 5 Strang methods:

$$\varphi_t(u_0) \approx \mathcal{S}_{\alpha_1 t} \circ \mathcal{S}_{\alpha_2 t} \circ \mathcal{S}_{\alpha_3 t} \circ \mathcal{S}_{\alpha_2 t} \circ \mathcal{S}_{\alpha_1 t}(u_0)$$

with:
$$\alpha_1 = \alpha_2 = \frac{1}{4 - \sqrt[3]{4}}$$
 and $\alpha_3 = \frac{1}{1 - 4^{\frac{2}{3}}}$

Suzuki 1990, Physics Letters A

Splitting method Pros & Cons

- ✓ Good splitting leads to good long time behavior
- ✓ Error in time only depends on splitting method
- ✓ Split a difficult problem into small easier sub-problems
- Numerical cost for high order method

Lawson method

$$\partial_t u = Lu + N(t, u)$$

Change of variable: $v = e^{-tL}u$, we obtain:

$$\dot{v}(t) = -Le^{-tL}u(t) + e^{-tL}\underbrace{\left(Lu(t) + N(t, u)\right)}_{\dot{u}(t)}$$

$$= e^{-tL}N(t, e^{tL}v)$$

which can be solved with a Runge-Kutta method in v, that can be rewritten in u, for example with Euler method:

$$v(t^n + \Delta t) \approx v^{n+1} = v^n + \Delta t e^{-t^n L} N(t^n, e^{t^n L} v^n)$$

or as an expression of u:

$$u^{n+1} = e^{\Delta t L} u^n + \Delta t e^{\Delta t L} N(t^n, u^n)$$

Lawson 1967, SIAM Journal on Numerical Analysis

Hochbruck and Ostermann 2010, Acta Numerica

Hochbruck, Leibold, and Ostermann 2020, Numerische Mathematik

Lawson method

Pros & Cons

- ✓ Numerically efficient (order increases linearly-ish with the number of stages)
- ✓ Literature on Runge-Kutta method (embedded-RK, low storage methods, IMEX methods, DIRK methods...)
- ✓ Linear part is solved exactly
- ✗ Stability constraint (not from the linear part ✔)
- X Behavior in long time
- \sim Needs to compute (efficiently) $e^{ au L}$ for any $au = c_j \Delta t$ and L

Main idea of adaptive time step methods (error estimate)

For a generic ODE $\dot{u} = f(t, u)$, adaptive time step method needs 2 numerical estimations of solution $u(t^{n+1})$ of different order, p and p+1:

$$u_{[p]}^{n+1} = u(t^{n+1}) + \mathcal{O}(\Delta t^{p+1}), \qquad u_{[p+1]}^{n+1} = u(t^{n+1}) + \mathcal{O}(\Delta t^{p+2})$$

Estimate of local error:
$$L_{[\rho]}^{n+1} = \left| u_{[\rho+1]}^{n+1} - u_{[\rho]}^{n+1} \right|$$

If $L_{[n]}^{n+1} > tol$: we reject the step and start again from time t^n . Else we accept the step. In both cases, the optimal new time step is:

$$\Delta t_{
m opt} = \sqrt[p]{rac{tol}{L_{[p]}^{n+1}}} \Delta t^n$$

In practice $u_{[p]}^{n+1}$ is computed from sub-steps of $u_{[p+1]}^{n+1}$.

Dormand and Prince 1978, Celestial mechanics (for RK method)

Blanes, Casas, and Thalhammer 2019, Applied Numerical Mathematics (for splitting method)

Outline

- 1 Introduction
- 2 Numerical methods
- 3 Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Linearized hybrid Vlasov-Maxwell model

$$U = (\mathbf{j}_{c}, \mathbf{B}, \mathbf{E}, \mathbf{f}_{h})^{\top}, \mathbf{j}_{c}(t, z), \mathbf{B}(t, z), \mathbf{E}(t, z) \in \mathbb{R}^{2}, \mathbf{f}_{h}(t, z, \mathbf{v}) \in \mathbb{R}$$

$$\begin{cases} \partial_{t} \mathbf{j}_{c} = \Omega_{pe}^{2} \mathbf{E} - J \mathbf{j}_{c} B_{0} \\ \partial_{t} \mathbf{B} = J \partial_{z} \mathbf{E} \\ \partial_{t} \mathbf{E} = -J \partial_{z} \mathbf{B} - \mathbf{j}_{c} + \int v_{\perp} \mathbf{f}_{h} \, \mathrm{d}v_{\perp} \\ \partial_{t} \mathbf{f}_{h} + v_{z} \partial_{z} \mathbf{f}_{h} - (\mathbf{E} + \mathbf{v} \times (\mathbf{B} + \mathbf{B}_{0})) \cdot \nabla_{\mathbf{v}} \mathbf{f}_{h} = 0 \end{cases}$$

we define the Hamiltonian as:

$$\mathcal{H} = \underbrace{\frac{1}{2} \int \|\boldsymbol{E}\|^2 \, \mathrm{d}z}_{\mathcal{H}_E} + \underbrace{\frac{1}{2} \int \|\boldsymbol{B}\|^2 \, \mathrm{d}z}_{\mathcal{H}_B} + \underbrace{\frac{1}{2} \int \frac{1}{\Omega_{pe}^2} \|\boldsymbol{j}_c\|^2 \, \mathrm{d}z}_{\mathcal{H}_{j_c}}$$
$$+ \underbrace{\frac{1}{2} \int \int \|\boldsymbol{v}\|^2 f_h \, \mathrm{d}\boldsymbol{v} \, \mathrm{d}z}_{\mathcal{H}_{f_b}}$$

Following the Hamiltonian we built a Hamiltonian splitting.

Splitting method

5 subsystems $\varphi^{[E]}$, $\varphi^{[B]}$, $\varphi^{[j_c]}$, $\varphi^{[f_h]}$

Solution with Lie splitting method:

$$U^{n+1} = \varphi_{\Delta t}^{[E]} \circ \varphi_{\Delta t}^{[B]} \circ \varphi_{\Delta t}^{[j_c]} \circ \varphi_{\Delta t}^{[f_h]}(U^n)$$

or Strang method:

$$U^{n+1} = \varphi_{\Delta t/2}^{[E]} \circ \varphi_{\Delta t/2}^{[B]} \circ \varphi_{\Delta t/2}^{[j_c]} \circ \varphi_{\Delta t}^{[f_h]} \circ \varphi_{\Delta t/2}^{[j_c]} \circ \varphi_{\Delta t/2}^{[B]} \circ \varphi_{\Delta t/2}^{[E]} (U^n)$$

Numerical cost:

- $\varphi^{[B]}$ and $\varphi^{[j_c]}$: almost free $(\mathcal{O}(N_z))$
- $\varphi^{[E]}$: moderately expensive $(\mathcal{O}(N_z)$ + loop on phase space)
- $\varphi^{[f_h]}$: extremely expensive (multiple loops on phase space)

One of sub-steps of Hamiltonian splitting:

$$\varphi^{[E]}(U) = \begin{cases} \partial_t \mathbf{j}_c = \Omega_{pe}^2 \mathbf{E} \\ \partial_t \mathbf{B} = J \partial_z \mathbf{E} \\ \partial_t \mathbf{E} = 0 \\ \partial_t f_h = \mathbf{E} \cdot \nabla_{v_\perp} f_h \end{cases} \rightarrow \varphi_t^{[E]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) + t \Omega_{pe}^2 \mathbf{E}(0) \\ \mathbf{B}(0) + t J \partial_z \mathbf{E}(0) \\ \mathbf{E}(0) \\ f_h(0, z, v_\perp + t \mathbf{E}(0), v_z) \end{pmatrix}$$

Numerical tools:

• 2D interpolation with 2 Lagrange 5 interpolations to approximate $f_h(0, z, v_{\perp} + t\mathbf{E}(0), v_z)$

Lawson method

$$\partial_t U = LU + N(t, U)$$

with:

$$L = \begin{pmatrix} 0 & -B_0 & 0 & 0 & \Omega_{pe}^2 & 0 & 0 \\ B_0 & 0 & 0 & 0 & \Omega_{pe}^2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \partial_z & 0 \\ 0 & 0 & 0 & 0 & -\partial_z & 0 & 0 \\ -1 & 0 & 0 & -\partial_z & 0 & 0 & 0 \\ 0 & -1 & \partial_z & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -v_z \partial_z \end{pmatrix}, \quad N:t, U \mapsto \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \int v_x f_h \, \mathrm{d} \mathbf{v} \\ \int v_y f_h \, \mathrm{d} \mathbf{v} \\ (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_h \end{pmatrix}$$

But $e^{\tau L}$ can't be computed even with symbolic computation software.

How to compute $e^{\tau L}$?

2 solutions are proposed:

- Remove some terms of the linear part L and put them in nonlinear part N.
 - ✓ symbolic computation to write efficient code
 - add CFL stability condition
- 2 Approximate $e^{\tau L}$ with Taylor series or Padé approximant.
 - ✓ no CFL stability from all (local) linear terms
 - add error of approximation

Remove terms

Remove Maxwell equations from linear part L, and add them in nonlinear term N:

- \checkmark $e^{\tau L}$ is exactly computed with symbolic computation
- ✗ Add a CFL stability condition in z (coming from explicit resolution of Maxwell equations) which can be estimated.

Approximation of $e^{\tau L}$

Complete linear part L, after Fourier transform in $z: \partial_z \mapsto i\kappa$

We have:

$$\forall \kappa, \sigma(L(\kappa)) \subset i \mathbb{R}$$

So that : $\sigma(e^{\tau L(\kappa)}) \subset \mathcal{C}(0,1)$ IMPORTANT for numerical stability !

Taylor series

Simplest approximation:

$$T_p(\tau L) = \sum_{k=0}^p \frac{\tau^k}{k!} L^k = e^{\tau L} + \mathcal{O}(\tau^{p+1})$$

Proposition

 $\mathsf{sp}(L) \subset i\mathbb{R} \setminus i[-1,1]$ implies eigenvalues diverge

Proof: compute Taylor series outside of its convergence radius **Conclusion:**

- Bad behavior of eigenvalues
- X Numerical instability in scheme

Padé approximant

Best rational approximation of exponential function.

Defined (for order (p, q)) as:

$$h_{p,q}(M) = \sum_{i=0}^{p} \frac{\frac{p!}{(p-i)!}}{\frac{(p+q)!}{(p+q-i)!}} \frac{M^{i}}{i!} \quad , \quad k_{p,q}(M) = \sum_{j=0}^{q} (-1)^{j} \frac{\frac{q!}{(q-j)!}}{\frac{(p+q)!}{(p+q-j)!}} \frac{M^{j}}{j!}$$

Finally Padé approximant is:

$$P_{p,q}(\tau L) = h_{p,q}(\tau L) (k_{p,q}(\tau L))^{-1} = e^{\tau L} + \mathcal{O}(\tau^{p+q+1})$$

Theorem

$$sp(L) \subset i\mathbb{R} \implies sp(P_{p,p}(tL)) \subset \mathcal{C}(0,1)$$

Conclusion:

Needs matrix inversion, or some tricks:

Li, Zhu, and Gu 2011, Applied Mathematics

- ✔ Best approximation for this numerical cost
- ✔ Preserves eigenvalues

Proof

L diagonalizable \Rightarrow study only on diagonal terms $(iy, y \in \mathbb{R})$

$$\begin{split} P_{p,p}(iy) &= \left(\sum_{k=0}^{p} \frac{1}{k!} (iy)^{k}\right) \cdot \left(\sum_{\ell=0}^{p} (-1)^{\ell} \frac{1}{\ell!} (iy)^{\ell}\right)^{-1} \\ & \sum_{k=0}^{p} \frac{1}{k!} (iy)^{k} = \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor} (-1)^{k} \frac{y^{2k}}{2k!} + i \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor - 1} (-1)^{k} \frac{y^{2k+1}}{(2k+1)!} \\ & \sum_{\ell=0}^{p} (-1)^{\ell} \frac{1}{\ell!} (iy)^{\ell} = \sum_{\ell=0}^{\lfloor \frac{p}{2} \rfloor} (-1)^{\ell} \frac{y^{2\ell}}{2\ell!} - i \sum_{\ell=0}^{\lfloor \frac{p}{2} \rfloor - 1} (-1)^{\ell} \frac{y^{2\ell+1}}{(2\ell+1)!} \\ \lambda^{-} &= \overline{\lambda^{+}} \text{ so } \left| \frac{\lambda^{+}}{\lambda^{-}} \right| = 1. \end{split}$$

26 / 45

Eigenvalues of Padé approximant

Figure: $P_{2,2}(ix)$, $x \in [-5, 5]$

Eigenvalues of assymetric Padé approximants

Figure: $P_{2,1}(ix) \ x \in [-5, 5]$

Figure: $P_{1,2}(ix) \ x \in [-5, 5]$

WIP Splitting method

We can also approximate $e^{\tau L}$ with truncation of BCH formula or splitting method:

$$S_{\tau}(L) = e^{\frac{\tau}{2}L_1}e^{\tau L_2}e^{\frac{\tau}{2}L_1} = e^{\tau L} + \mathcal{O}(\tau^3)$$

Error on approximate Lawson method

We note $P_{p,q}(z) = \epsilon^{z}$. We recall:

$$\epsilon^{\tau L} = e^{\tau L} + \mathcal{O}(\tau^{r+1}), \text{ with } r = p + q$$

Lawson RK(3,3) method becomes:

$$u^{(1)} = \epsilon^{\Delta t L} u^{n} + \Delta t \epsilon^{\Delta t L} N(t^{n}, u^{n})$$

$$u^{(2)} = \frac{3}{4} \epsilon^{\frac{\Delta t}{2} L} u^{n} + \frac{1}{4} \epsilon^{-\frac{\Delta t}{2} L} u^{(1)} + \frac{\Delta t}{4} \epsilon^{-\frac{\Delta t}{2} L} N(t^{n} + \Delta t, u^{(1)})$$

$$u^{n+1} = \frac{1}{3} \epsilon^{\Delta t L} u^{n} + \frac{2}{3} \epsilon^{\frac{\Delta t}{2} L} u^{(2)} + \frac{2}{3} \Delta t \epsilon^{\frac{\Delta t}{2} L} N(t^{n} + \frac{\Delta t}{2}, u^{(2)})$$

If L and N commute: $u^{n+1} = \epsilon^{\Delta tL} \left(I + N + \frac{N^2}{2} + \frac{N^3}{6} \right) u^n$, stability is same as RK(3,3).

Crouseilles, Einkemmer, and Massot 2020, *Journal of Computational Physics* study of Lawson stability in scalar case

Else...

Error on approximate Lawson method

If L and N don't commute:

Lemma

Trucature error of modified Lawson RK(s,m) is in $\mathcal{O}(\Delta t^{\min(r,m)})$

Test 1: measure of order

Simulation of $\partial_t u + a \partial_x u + b \partial_y u = 0$ (2D translation test case).

Figure: Order of Lawson RK(3,3) P(p,q) approximant, $p=1,2,\ q=1,2$

Test 2: illustration of instability or stability

Simulation of $\partial_t u - y \partial_x u + x \partial_y u = 0$ (2D rotation)

Figure: Initial condition (left), solution with Lawson RK(3,3) T(3) series (middle) and Lawson RK(3,3) P(1,1) approximant (right)

Outline

- 1 Introduction
- 2 Numerical methods
- 3 Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- 5 Conclusion

Numerical results

We compare:

- Splitting method:
 - Strang (order 2)
 - Suzuki (order 4)
- Lawson method:
 - LRK(4,4) (order 4)
 - LDP4(3) (adaptive time step method)
- Lawson method with approximation of linear part:
 - LRK(4,4) with Padé (2,2) (order 4 + approximation of order <math>2 + 2 = 4)
 - LDP4(3) with Padé (2,2) (adaptive time step method)

But: Padé approximant implies a huge rational function (with invert of matrix), high order Lawson methods have a lot of coefficients, with 7 variables problem... → bug source !!!

Code generator

Numerical test

Anisotropic equilibrium, Weibel instability:

$$\begin{cases} \boldsymbol{j}_c(t=0,z) = 0 \\ \boldsymbol{B}(t=0,z) = (\epsilon \sin(Kz), 0) \\ \boldsymbol{E}(t=0,z) = 0 \\ f_h(t=0,z,\boldsymbol{v}) = \frac{\rho_h}{(2\pi)^{3/2} \bar{v}_{\perp}^2 \bar{v}_{\parallel}} \exp\left(-\frac{v_z^2}{2\bar{v}_{\parallel}^2} - \frac{(v_x^2 + v_y^2)}{2\bar{v}_{\perp}^2}\right) \end{cases}$$

with $z \in [0, \frac{2\pi}{K}]$, $\mathbf{v} \in [-3.6, 3.6] \times [-3.6, 3.6] \times [-2.4, 2.4]$, K = 2, $\bar{v}_{\parallel} = 0.2$, $\bar{v}_{\perp} = 0.6$, $\rho_h = 0.2$ and $\epsilon = 10^{-5}$.

Compare energies:

$$\mathcal{H}_{E}(t) = \frac{1}{2} \int \|\boldsymbol{E}(t,z)\|_{2}^{2} dz \qquad \mathcal{H}_{B}(t) = \frac{1}{2} \int \|\boldsymbol{B}(t,z)\|_{2}^{2} dz$$

$$\mathcal{H}_{c}(t) = \frac{1}{2\Omega_{pe}^{2}} \int \|\boldsymbol{j}_{c}(t,z)\|_{2}^{2} dz$$

Numerical results: splitting vs Lawson

 $N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$

Figure: Energies evolution, $\Delta t = 0.05$

Numerical results: splitting vs Lawson

$$N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$$

Figure: Relative error on total energy, $\Delta t = 0.05$

Numerical results: splitting vs Lawson

 $N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$

time integrator	simulation time
Lie splitting	13 h 25 min 10 s
Strang splitting	17 h 09 min 54 s
Suzuki splitting	3j 03h 05 min 24s
LRK(3,3)	11 h 29 min 09 s
LRK(4,4)	14 h 06 min 15 s

Table: Simulation time for some simulation, on mesh $N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$ and time step $\Delta t = 0.05$.

Numerical results: Padé-Lawson

Figure: Energies evolution, Lawson with Taylor or Padé approximation, $\Delta t = 0.12$

Numerical results: Padé-Lawson adaptive time step

Figure: Energies evolution, Lawson with Taylor or Padé approximation, Δt^n

Numerical results: Padé-Lawson adaptive time step

Figure: Time step evolution, classic Lawson (Maxwell outside) and approximate Lawson with Padé or Strang approximation, Δt^n

method	# of iterations	# of succeeded	ratio
LDP4(3) (Maxwell outside)	2794	1970	0.705
LDP4(3)-P _{2,2}	919	464	0.504
LDP4(3)-Strang	1131	583	0.515

Simulation time

time integrator	simulation time
LRK(3,3)	11 h 29 min 09 s
$LRK(3,3) - P_{1,1}$	10 h 54 min 11 s
LRK(3,3) - $P_{2,2}$	10 h 55 min 26 s
LRK(4,4)	14 h 06 min 15 s
$LRK(4,4) - P_{2,2}$	13 h 59 min 59 s
LDP4(3)	11 h 44 min 04 s
LDP4(3) - P _{2,2}	04 h 09 min 44 s
LDP4(3) - Strang	04 h 42 min 25 s

Table: Simulation time for some simulation, on mesh $N_z \times N_{v_x} \times N_{v_y} \times N_{v_z} = 27 \times 32 \times 32 \times 41$ and time step $\Delta t = 0.05$ (initial time step for adaptive time step strategy).

Outline

- 1 Introduction
- 2 Numerical methods
- 3 Application for hybrid Vlasov-Maxwell model
 - With splitting method
 - With Lawson method
- 4 Numerical results
- **5** Conclusion

Conclusion

- ✓ Numerical estimation of CFL with Python package
- Comparison between kinetic model and hybrid model thanks dispersion relation and simulations
- Numerical cost of splitting methods (not bad in 1dz 1dv but very bad in 1dz 3dv, must be very very bad in 3dx 3dv)
- ✓ Numerical cost of Lawson methods
- Behavior of total energy of Lawson method (but we can use high order method easily)
- Error of approximation with Padé approximant can be lower than time integrator
- Adaptive time step method with any linear part thanks to approximation of exponential function

Future works

- Add $\int v f_h dv$ in linear part (for 1dx 1dv model) WIP
- Parallelized with OpenMP or OpenACC (GPU)
- Improve code generator (easy to use for other problem) WIP

Thank you for your attention

backup Adaptive time step method for splitting method

Blanes, Casas, and Thalhammer 2019, Applied Numerical Mathematics for

Suzuki splitting method

$$u_{[4]}^{n+1} = \mathcal{S}_{\Delta t}(u^n) = S_{\alpha_1 \Delta t} \circ S_{\alpha_2 \Delta t} \circ S_{\alpha_3 \Delta t} \circ S_{\alpha_2 \Delta t} \circ \underbrace{S_{\alpha_1 \Delta t}(u^n)}_{u^{(1)}}.$$

We compute an order 3 approximation from U^n and $U^{(s)}$, s=1,2,3,4 :

$$u_{[3]}^{n+1} = -u^n + w_1(u^{(1)} + u^{(4)}) + w_2(u^{(2)} + u^{(3)})$$

with:

$$w_1 = \frac{g_2(1-g_2)}{g_1(g_1-1)-g_2(g_2-1)}, \quad w_2 = 1-w_1, \quad g_1 = \alpha_1 \\ g_2 = \alpha_1 + \alpha_2$$

and
$$L_{[3]}^n = \left\| u_{[4]}^{n+1} - u_{[3]}^{n+1} \right\|_2$$

backup Adaptive time step method for Lawson method

Lawson methods are built on Runge-Kutta method, embedded Lawson method are written with an underlying embedded Runge-Kutta method.

Dormand and Prince 1978, Celestial mechanics

With DP4(3) (Dormand-Prince method of order 4, with embedded 3 method):

$$\begin{vmatrix}
0 & & & & & \\
\frac{1}{2} & \frac{1}{2} & & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & & & \\
1 & 0 & 0 & 1 & & & \\
\hline
1 & \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & & \\
\hline
\frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{2}{30} & \frac{1}{10}
\end{vmatrix}$$
Classical RK(4,4)

We compute a 3rd order approximation from u^n , $u^{(s)}$, s=1,2,3,4 done by the last line of Butcher tableau.

And
$$L_{[3]}^n = \left\| u_{[4]}^{n+1} - u_{[3]}^{n+1} \right\|_2$$

backup Poisson bracket

For two given functionals \mathcal{F} , \mathcal{G} of \mathbf{j}_c , \mathbf{B} , \mathbf{E} , f_h , the Poisson bracket is given by

$$\begin{split} \{\mathcal{F},\mathcal{G}\}[\pmb{j}_c,\pmb{B},\pmb{E},f_h] &= \frac{1}{m_e} \int_{\Omega} \int_{\mathbb{R}^3} f_h \Big[\frac{\delta \mathcal{F}}{\delta f_h}, \frac{\delta \mathcal{G}}{\delta f_h} \Big]_{\pmb{x}\pmb{\nu}} \, \mathrm{d}\pmb{\nu} \, \mathrm{d}\pmb{x} \\ &+ \frac{q_e}{m_e \varepsilon_0} \int_{\Omega} \int_{\mathbb{R}^3} f_h \left(\nabla_{\pmb{\nu}} \frac{\delta \mathcal{F}}{\delta f_h} \cdot \frac{\delta \mathcal{G}}{\delta \pmb{E}} - \nabla_{\pmb{\nu}} \frac{\delta \mathcal{G}}{\delta f_h} \cdot \frac{\delta \mathcal{F}}{\delta \pmb{E}} \right) \mathrm{d}\pmb{\nu} \, \mathrm{d}\pmb{x} \\ &+ \frac{q_e}{m_e^2} \int_{\Omega} \int_{\mathbb{R}^3} f_h(\pmb{B} + \pmb{B}_0) \cdot \left(\nabla_{\pmb{\nu}} \frac{\delta \mathcal{F}}{\delta f_h} \times \nabla_{\pmb{\nu}} \frac{\delta \mathcal{G}}{\delta f_h} \right) \mathrm{d}\pmb{\nu} \, \mathrm{d}\pmb{x} \\ &+ \frac{1}{\varepsilon_0} \int_{\Omega} \left(\nabla \times \frac{\delta \mathcal{F}}{\delta \pmb{E}} \cdot \frac{\delta \mathcal{G}}{\delta \pmb{B}} - \nabla \times \frac{\delta \mathcal{G}}{\delta \pmb{E}} \cdot \frac{\delta \mathcal{F}}{\delta \pmb{B}} \right) \mathrm{d}\pmb{x} \\ &+ \int_{\Omega} \Omega_{pe}^2 \left(\frac{\delta \mathcal{F}}{\delta \pmb{j}_c} \cdot \frac{\delta \mathcal{G}}{\delta \pmb{E}} - \frac{\delta \mathcal{G}}{\delta \pmb{j}_c} \cdot \frac{\delta \mathcal{F}}{\delta \pmb{E}} \right) \mathrm{d}\pmb{x} \\ &+ \frac{q_e \varepsilon_0}{m_e} \int_{\Omega} \Omega_{pe}^2 \pmb{B}_0 \cdot \left(\frac{\delta \mathcal{F}}{\delta \pmb{j}_c} \times \frac{\delta \mathcal{G}}{\delta \pmb{j}_c} \right) \mathrm{d}\pmb{x} \, . \end{split}$$

backup Splitting method $\varphi^{[j_c]}$

$$\varphi^{[j_c]}(U) = \begin{cases} \partial_t \mathbf{j}_c = -J\mathbf{j}B_0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = -\mathbf{j}_c \\ \partial_t f_h = 0 \end{cases} \rightarrow \varphi_t^{[j_c]}(U^0) = \begin{pmatrix} e^{-tJ}\mathbf{j}_c(0)B_0 \\ \mathbf{B}(0) \\ \mathbf{E}(0) - J(e^{-tJ} - I)\mathbf{j}_c(0) \\ f_h(0) \end{pmatrix}$$

Obtain because: $\int_0^t \exp(-sJ) \boldsymbol{j}_c(0) ds = J(\exp(-tJ) - I) \boldsymbol{j}_c(0)$, with:

$$\exp(-tJ) = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$$

$$\varphi^{[B]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = -J \partial_z \mathbf{B} \\ \partial_t f_h = 0 \end{cases} \rightarrow \varphi_t^{[B]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) \\ \mathbf{B}(0) \\ \mathbf{E}(0) - tJ \partial_z \mathbf{B}(0) \\ f_h(0) \end{cases}$$

Numerical tools:

Solve in Fourier space

$$\varphi^{[E]}(U) = \begin{cases} \partial_t \mathbf{j}_c = \Omega_{pe}^2 \mathbf{E} \\ \partial_t \mathbf{B} = J \partial_z \mathbf{E} \\ \partial_t \mathbf{E} = 0 \\ \partial_t f_h = \mathbf{E} \cdot \nabla_{\mathbf{v}} f_h \end{cases} \rightarrow \varphi_t^{[E]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) + t \Omega_{pe}^2 \mathbf{E}(0) \\ \mathbf{B}(0) + t J \partial_z \mathbf{E}(0) \\ \mathbf{E}(0) \\ f_h(0, z, \mathbf{v} + t \mathbf{E}(0), v_z) \end{pmatrix}$$

Numerical tools:

• 2D interpolation with 2 Lagrange 5 interpolations to approximate $f_h(0, z, \mathbf{v} + t\mathbf{E}(0), v_z)$

$_{ extsf{backup}}$ Splitting method $arphi^{[f_h]}$

$$\varphi^{[f_h]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = \int \mathbf{v} f_h \, \mathrm{d} \mathbf{v} \\ \partial_t f_h = -v_z \partial_z f_h + (\mathbf{v} \times (\mathbf{B} + \mathbf{B}_0)) \cdot \nabla_{\mathbf{v}} f_h \end{cases}$$

This step is split again onto 3 parts.

$$\varphi^{[f_{h,x}]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t E_x = \int v_x f_h \, \mathrm{d} \mathbf{v} & \to \varphi_t^{[f_{h,x}]}(U^0) = \begin{pmatrix} \mathbf{j}_c(0) \\ \mathbf{B}(0) \\ E_x(0) + t \int v_x f_h(0) \, \mathrm{d} \mathbf{v} \\ E_y(0) \\ \partial_t E_y = 0 \\ \partial_t f_h = -v_x B_0 \partial_{v_y} f_h + v_x B_y \partial_{v_z} f_h \end{cases}$$

Numerical tools:

• 2D interpolation with Lagrange 5 interpolation to approximate $f_h(0, z, v_x, v_y - tv_x B_0, v_z + tB_y v_x)$

Same thing for $\varphi^{[f_{h,y}]}$ in v_y direction.

$$\varphi^{[f_{h,z}]}(U) = \begin{cases} \partial_t \mathbf{j}_c = 0 \\ \partial_t \mathbf{B} = 0 \\ \partial_t \mathbf{E} = 0 \\ \partial_t f_h = -v_z \partial_z f_h + (-v_z B_y \partial_{v_x} f_h + v_z B_x \partial_{v_y} f_h) \end{cases}$$

Numerical tools:

- Split **again** onto 3 parts, with change of variable $g(t, z, \mathbf{v}) := f(t, z + t v_z, \mathbf{v})$
- 2D interpolation with Lagrange 5 interpolation to approximate $g(0, z, v_x \sum_k \hat{B}_y(0, k) \frac{1}{ik} e^{ikz} (e^{iktv_z} 1), v_y + \sum_k \hat{B}_x(0, k) \frac{1}{ik} e^{ikz} (e^{iktv_z} 1), v_z)$
- Revert change of variable with Fourier transform

backup Splitting method

For Lie method:
$$U^{n+1} = \varphi_{\Delta t}^{[j_c]} \circ \varphi_{\Delta t}^{[B]} \circ \varphi_{\Delta t}^{[E_{v_x}]} \circ \varphi_{\Delta t}^{[F_{v_y}]} \circ \varphi_{\Delta t}^{[f_{h,x,v_x}]} \circ \varphi_{\Delta t}^{[f_{h,x,v_z}]} \circ \varphi_{\Delta t}^{[f_{h,$$

backup Suzuki vs Lawson (adaptive time step)

Figure: Time step size in 1dx-1dv

backup Suzuki vs Lawson (adaptive time step)

Figure: Local error estimate Lawson (left) and Suzuki (right)

backup Time comparaison

Figure: Simulation time of each step