

Državni izpitni center

JESENSKI IZPITNI ROK

NAVODILA ZA OCENJEVANJE

Torek, 28. avgust 2018

SPLOŠNA MATURA

Odgovor

8 + B

∪ ∪ m • • •

Naloga 28 29 30 31 32 33 34 35

ш •

⊕

IZPITNA POLA 1

Naloga	Odgovor
1	○
7	O ◆
ε	0
7	A A
9	□
9	◆ B
2	ɔ •
8	□ •
6	4 A

Naloga	Odgovor
19	Q •
20	• B
21	0 •
22	0 •
23	• D
24	○
25	A *
26	• C
27	B •

,	יייי	CONG.	
•	_	-	
		5	
	ć	•	
	ř	'n	
•	č	5	
	ē	5	
=	מפועמט		
	`	4	
	700	200	
	σ	7	

Skupno število točk IP 1: 35

1. Merjenje

Dodatna navodila	Dva pravilno izpolnjena stolpca1 točka. Trije pravilno izpolnjeni stolpci 2 točki.							Pravilno označene osi 1 točka. Pravilno vnesene točke 1 točka. Premica, ki se točkam najbolj prilega 1 točka.
		$\frac{L}{S} \left[\frac{m}{mm^2} \right]$	200	400	300	200	l. vpr.)	500 L mm ²
		S [mm²]		6	0,13		pravilno izpolnjen zadnji stolpec preglednice ($\frac{L}{S}$) (gl. 1. vpr.)	
		L [m]	25	20	38	62	dnice	400
	-	R $[\Omega]$	4,0	7,7	5,9	10	pregle	300
	F	ا _ [A]	0,25	0,13	0,17	0,10	tolpec	200
	F	<i>U</i> ∑	1,0	1,0	1,0	1,0	adnji s	200
		d [mm]		6	0,40		Injen z	9
	ednica:	"t [m]	0,040	0,040	0,020	0,025	odzi on	01 05 05 05 05 05 05 05 05 05 05 05 05 05
Rešitev	• preglednica:	N	100	200	300	400	• pravilı	• graf: 10 10 8,0 6,0 2,0
Točke	2						-	m
Vpr.	1.1						1.2	£.

4.1	7	• koeficient: $k = 2.0 \cdot 10^{-8} \Omega \text{m}$	Postopek 1 točka.
		$k = \frac{10 \Omega \text{ mm}^2}{500 \text{ m}} = 0,020 \cdot 10^{-6} \Omega \text{ m}$	Izlaculi i tocka.
1.5	_	◆ Koeficient premice predstavlja specifični upor.	
1.6	3	◆ absolutna napaka: 4·10 ⁻⁵ m ⁻¹	Postopek izračuna relativne napake 1 točka.
		$\Delta \left(\frac{L}{S}\right) = \delta \left(\frac{L}{S}\right) \cdot \left(\frac{L}{S}\right) = 8 \% \cdot 500 \frac{m}{mm^2} = 40 \frac{m}{mm^2}$	Postopek izracuna absolutne napake 1 tocka. Rezultata 1 točka.
		◆ relativna napaka: 8 %	
		$\delta\left(\frac{L}{S}\right) = \delta N + \delta r_{ m t} + 2\delta d = 8$ %	
1.7	-	• upor: 4,0 Ω	
		$R = \xi \cdot \frac{L}{S} = \frac{0.020 \ \Omega \text{mm}^2 \cdot 100 \ \text{m}}{3,14 \cdot 0,40^2 \ \text{mm}^2 \ \text{m}} = 4,0 \ \Omega$	
1.8	7	◆ vpliv: Strmina se zmanjša.	Odgovor 1 točka.
		 utemeljitev: Ker ampermeter kaže prevelike vrednosti, je 	Utemeljitev 1 točka.
		izračunana vrednost upora manjša od prave vrednosti in zato je strmina tudi maniša.	

2. Mehanika

Vpr.		Točke Rešitev	Dodatna navodila
2.1	-	• $A = Fs\cos\alpha$; F — sila, ki opravlja delo, s — premik prijemališča sile, α — kot med smerjo sile in smerjo premika Možen tudi zapis s skalarnim produktom.	
2.2	-	$lacktriangle$ kinetična energija: 12 mJ $W_{\rm k}=rac{1}{2}mv^2=rac{1}{2}$ 0,005 kg \cdot (2,2 m/s) $^2=$ 12 mJ	
2.3	_	* sprememba potencialne energije: -74 mJ $F \ \Delta W_{\rm p} = mg\Delta h = 0,005 \ {\rm kg \cdot 9.8 \ kg m^{-2} \cdot (-1,5 \ m)} = -74 \ {\rm mJ}$	
2.4	8	• čas padanja: 0,55 s $t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2 \cdot 1,5 \text{ m}}{9,8 \text{ m/s}}} = 0,55 \text{ s}$	Izraz1 točka. Rezultat 1točka.
2.5	ဧ	• hitrost: 5,8 m/s $v_y = gt = 9,81 \text{ m/s}^2 \cdot 0,55 \text{ s} = 5,4 \text{ m/s}$ $v = \sqrt{v_x^2 + v_y^2} = \sqrt{(2,2 \text{ m/s})^2 + (5,4 \text{ m/s})^2} = 5,8 \text{ m/s}$	Navpična komponenta hitrosti 1 točka. Izraz za hitrost 1 točka. Rezultat 1 točka. Možen je tudi račun z energijami.
2.6	က	• delo: -57 mJ $W_{\rm k}'=\frac{1}{2}mv^2=\frac{1}{2}$ 0,005 kg· $(3,4$ m/s) $^2=29$ mJ $A=\Delta W_{\rm k}+\Delta W_{\rm p}=29$ mJ -12 mJ -74 mJ $=-57$ mJ	Kinetična energija 1 točka. Izraz za delo 1 točka. Rezultat 1 točka.
2.7	7	$lacktriangle$ sprememba gibalne količine: 11 mN s $\Delta G = mv = 0,005~{ m kg} \cdot 2,2~{ m m/s} = 11~{ m mN} { m s}$	
2.8	ဧ	$lacktriangle$ čas pospeševanja: 0,55 s $\overline{F}=rac{F_{\max}}{2}=rac{40~{ m mN}}{2}=20~{ m mN}$ $\Delta t=rac{\Delta G}{\overline{F}}=0,55~{ m s}$	Povprečna sila 1 točka. Izraz za Δt 1 točka. Rezultat 1 točka.

3. Termodinamika

Vpr.	Točke	Točke Rešitev	Dodatna navodila
3.1	-	• izraz: $\Delta Q = mc\Delta T \rightarrow c = \frac{\Delta Q}{m\Delta T}$ • količine: c – specifična toplota, ΔQ – toplota, m – masa, ΔT – sprememba temperature	
3.2	7	• kinetična energija: 470 kJ $W_{\rm k} = \frac{mv^2}{2} = \frac{1500~{\rm kg}\cdot(25~{\rm ms^{-1}})^2}{2} = 469~{\rm kJ}$	Postopek 1 točka. Rezultat 1 točka.
3.3	7	• povprečni toplotni tok: 47 kW $P = \frac{\Delta Q}{t} = \frac{W_{\rm k}}{t} = \frac{mv^2}{2t} = \frac{1500~{\rm kg}\cdot(25~{\rm ms^{-1}})^2}{2\cdot 10~{\rm s}} = 46.9~{\rm kW}$	Postopek 1 točka. Rezultat 1 točka.
3.4	м	• sprememba temperature zavor: 18 K $ m_z c \Delta T = \Delta W_{\rm k} = \frac{1}{2} m \left(v_1^2 - v_2^2 \right) $ $ \Delta T = \frac{m \left(v_1^2 - v_2^2 \right)}{2 m_z c} = \frac{1500 \ {\rm kg} \left((25 \ {\rm m s^{-1}})^2 - (20 \ {\rm m s^{-1}})^2 \right)}{2 \cdot 4 \cdot 5,0 \ {\rm kg} \cdot 460 \ {\rm J kg}^{-1} \ {\rm K}^{-1}} = 18,3 \ {\rm K} $	Nastavitev $\Delta W_{\mathbf{k}}$ 1 točka. Izpeljava ΔT 1 točka. Rezultat 1 točka.
3.5	7	• povečanje debeline zavornega koluta: $2,2\cdot10^{-3}$ mm $\Delta d = \alpha d\Delta T = 12\cdot10^{-6}~{\rm K}^{-1}\cdot10~{\rm mm}\cdot18~{\rm K} = 2,16\cdot10^{-3}~{\rm mm}$	Postopek 1 točka. Rezultat 1 točka.
3.6	က	$lacktriangle$ sprememba temperature zraka: 15 K $W_{ m k} = rac{mv^2}{2} = m_{ m z} c_{p m z} \Delta T = V ho c_{p m z} \Delta T$ $\Delta T = rac{1500 \ { m kg} \cdot (25 \ { m m s}^{-1})^2}{1500 \ { m kg} \cdot (25 \ { m m s}^{-1})^2} = 15.4 \ { m K}$	Energijski zakon 1 točka. Izpeljava 1 točka. Rezultat 1 točka.
3.7	7	$ullet$ gostota segretega zraka: 1,1 kg m $^{-3}$ $pV=rac{mRT}{M}$ $rac{m}{V}=rac{pM}{R(T_0+\Delta T)}=rac{10^5~{ m Pa}\cdot 29~{ m kg}}{8300~{ m JK}^{-1}\cdot 305~{ m K}}=1,14~{ m kg}{ m m}^{-3}$	Postopek 1 točka. Rezultat 1 točka.

œ

4. Elektrika in magnetizem

Vpr.	Točke	Točke Rešitev	Dodatna navodila
4.1	-	$^{\bullet}\ C = \frac{e}{U}\ ;\ C \ - \ {\rm Kapaciteta}\ {\rm Kondenzatorja},\ e \ - \ {\rm naboj}\ {\rm na}\ {\rm ploščah}$ kondenzatorja, $U \ - \ {\rm napetost}\ {\rm med}\ {\rm ploščama}\ {\rm kondenzatorja}$	
4.2	-	♦ naboj: 50.10^{-6} As $e = CU = 5,0.10^{-6}$ F·10 V = 50.10^{-6} As	
4.3	7	• število elektronov: $3,1\cdot10^{14}$ $N = \frac{e}{e_0} = \frac{5,0\cdot10^{-5} \text{As}}{1,6\cdot10^{-19} \text{ As}} = 3,1\cdot10^{14}$	Postopek 1 točka. Rezultat 1 točka.
4.4	7	$lacktrick lacktrick$ jakost električnega polja: 5,0 kV/m $E = \frac{U}{l} = \frac{10 \text{ V}}{2,0 \text{ mm}} = 5,0 \text{ kV/m}$	Postopek 1 točka. Rezultat 1 točka.
4.5	2	ullet energija kondenzatorja: 0,25 mJ $W=rac{1}{2}CU^2=rac{1}{2}5,0~\mu { m F}\cdot ({ m 10~V})^2=0,25~{ m mJ}$	Postopek 1 točka. Rezultat 1 točka.
4.6	ო	• čas praznjenja: 16 μ s $t = \frac{t_0}{4} = \frac{2\pi}{4} \sqrt{LC} = \frac{\pi}{2} \sqrt{5.0 \ \mu \text{F} \cdot 20 \ \mu \text{H}} = 15.7 \ \mu \text{s}$	Ugotovitev, da $t=t_0/4$ 1 točka. Postopek 1 točka. Rezultat 1 točka.
4.7	7	$lacktriangle$ največji tok: 5,0 A $W_{\rm e}=W_{\rm m},~I=U\sqrt{\frac{C}{L}}=$ 10 V $\sqrt{\frac{5,0\cdot10^{-6}~{ m F}}{20\cdot10^{-6}~{ m H}}}=$ 5,0 A	Postopek 1 točka. Rezultat 1 točka.

10

5. Nihanje, valovanje in optika

Vpr.	Točke	Rešitev	Dodatna navodila
5.1	1	lacktriangle izraz: $c=\lambda u$ poimenovanja: hitrost valovanja, valovna dolžina, frekvenca	
5.2	2	• valovna dolžina: 300 cm $\lambda = 2l = 300$ cm • frekvenca: 1,7 kHz $\nu = \frac{c}{\lambda} = \frac{5100}{3s} = 1,7$ kHz	Valovna dolžina 1 točka. Frekvenca 1 točka.
5.3	-	$lacktriangle$ nihajni čas: 0,59 ms $t_0=rac{1}{ u}=0,59$ ms	
5.4	7	♦ hitrost: 0,11 m s ⁻¹ $v_0 = ωx_0 = 2πνx_0 = 0,11$ m s ⁻¹	Izraz 1 točka. Rezultat 1 točka.
5.5	က	• pospešek: 1100 m s ⁻² $a_0 = \omega^2 x_0 = 1100 \text{ m s}^{-2}$ • čas: 0,15 ms $t = \frac{t_0}{4} = 0,15 \text{ ms}$	Izraz za pospešek 1 točka. Rezultat pospeška 1 točka. Rezultat za čas 1 točka.
5.6	ო	$lackrel{}^{lack}$ valovna dolžina: 19 cm $\lambda=rac{c}{ u}=rac{d}{t u}=rac{33}{0,1.1700}$ m = 19 cm .	Hitrost zvoka 1 točka. Izraz za valovno dolžino 1 točka. Rezultat 1 točka.
5.7	က	• čas: 0,32 ms $t = \frac{d + \lambda/2}{c} = \frac{0,105}{330} \text{ s} = 0,32 \text{ ms}$	Razumevanje, da je destruktivna interferenca nasprotna faza 1 točka. Izraz 1 točka. Rezultat 1 točka.

7

6. naloga: Moderna fizika in astronomija

Vpr.	Točke	Rešitev	Dodatna navodila
6.1	1	◆ 2 protona, 2 nevtrona	
6.2	_	• 222 Rn \rightarrow 218 Po + 4 He	
6.3	က	• energija: 5,58 MeV $\Delta m = m_{\rm Rn} - m_{\rm Po} - m_{\rm He} = 0,005995 \ {\rm u}$ $W_1 = \Delta mc^2 = 0,005995 \cdot 931,494 \ {\rm MeV} = 5,58 \ {\rm MeV}$	Masni defekt 1 točka. Postopek 1 točka. Izračun 1 točka.
6.4	7	• razpolovni čas: 3,8 dneva $t_{4/2} = \frac{\ln 2}{\lambda} = \frac{\ln 2}{2,1\cdot 10^{-6} \text{ s}^{-1}} = 3,3\cdot 10^5 \text{ s} = 3,8 \text{ dneva}$	Postopek 1 točka. Izračun 1 točka.
6.5	7	• število atomov: $5,7\cdot10^9$ $m=7,0\cdot10^{-14} \text{ g/m}^3\cdot30 \text{ m}^3=2,1\cdot10^{-12} \text{ g}$ $N_0=\frac{mN_A}{M}=\frac{2,1\cdot10^{-12} \text{ g}\cdot6,02\cdot10^{23} \text{ mol}^{-1}}{222 \text{ g/mol}}=5,7\cdot10^9$	Masa radona 1 točka. Število atomov 1 točka.
9.9	1	♦ aktivnost: 12 kBq $A = \lambda N_0 = 2,1 \cdot 10^{-6} \text{ s}^{-1} \cdot 5,7 \cdot 10^9 = 12 \text{ kBq}$	
6.7	7	• število atomov: $1.6 \cdot 10^9$ $N = N_0 2^{-\frac{t}{4/\sqrt{2}}} = 5, 7 \cdot 10^9 \cdot 2^{-\frac{7}{3.8}} = 1, 6 \cdot 10^9$	Postopek 1 točka. Izračun 1 točka.
8.9	ო	• energija: 3,7 mJ $\Delta N = N_0 - N = (5,7-1,6) \cdot 10^9 = 4,1 \cdot 10^9$ $W = \Delta N W_1 = 4,1 \cdot 10^9 \cdot 5,58 \text{ MeV} = 2,3 \cdot 10^{10} \text{ MeV}$ $W = 2,3 \cdot 10^{10} \cdot 1,6 \cdot 10^{-19} \text{ J} = 3,7 \text{ mJ}$	Število razpadlih jeder 1 točka. Postopek 1 točka. Izračun 1 točka.