MAS242 ANALYSIS I QUIZ 1

Problem 1. (15 points) Let S be a bounded infinite subset of \mathbb{R} .

Prove that there exists a sequence of distinct points of S that converges to some point in \mathbb{R}

Proof. Bolzano-Wierestrass theorem guarantees that there exists at least one limit point of S in \mathbb{R} .

Let x be a limit point of S.

 \implies Every $\delta > 0$, there exists $y \in S$ such that $0 < |x - y| < \delta$.

Choose $x_1 \in S$ such as $0 < |x - x_1| < 1$ and inductively, choose $x_{i+1} \in S$ such as $0 < |x - x_{i+1}| < \frac{|x - x_i|}{2}$. Then $\{x_n\}$ is a sequence of distinct points of S.

Given any $\epsilon > 0$, choose $N > \log \frac{1}{\epsilon}$.

 \implies For all n > N, $0 < |x - x_n| < \frac{1}{2^N} < \epsilon$.

 $\implies \{x_n\}$ converges to x.

Problem 2. (15 points) Prove or disprove following statements.

- (1) Any bounded sequence which has unique limit point converges in the domain \mathbb{R} .
- (2) There exists bounded convergent sequence which has two limit points in the domain \mathbb{R} .

Proof. (1) Consider a sequence such as $x_{2n} = 1$ and $x_{2n-1} = \frac{1}{2n-1}$ for all 0 < n. Then $\{x_n\}$ has unique limit point 0 as a set.(1 is a cluster point of a sequence but not a limit point of a set.)

However the sequence $\{x_n\}$ does not converge. False.

(Solution for cluster point instead of limit point)

Let x be the unique cluster point of a sequence.

Suppose $\{x_n\}$ does not converge to x.

Then for some $\epsilon > 0$, there is infinite subset S of $\{x_n\}$ such that $\forall y \in S, |x - y| > \epsilon$. Since S is bounded infinite set in \mathbb{R} , there is a cluster point of S different from x. Contradiction. True.

(2) In \mathbb{R} , any convergent sequence has only one cluster point. False.