

CNX35U CNX36U CNX38U CNX39U

DESCRIPTION

The CNX35U, CNX36U CNX38U and CNX39U are optically coupled isolators consisting of an infrared emitting GaAs diode and a silicon NPN phototransistor with accessible base. These devices are housed in 6-pin dual-inline packages (DIP).

FEATURES

- High output/input DC current transfer ratio
- Low saturation voltage
- UL recognized (File # E90700)
- VDE recognized (File # 94766)
 Ordering option '300' (e.g. CNX35U.300)

APPLICATIONS

- · Power supply regulators
- Digital logic inputs
- Microprocessor inputs
- Appliance sensor systems
- · Industrial controls

Parameters	Symbol	Device	Value	Units	
TOTAL DEVICE	_	All	55 to 1450	°C	
Storage Temperature	T _{STG}	All	-55 to +150	30	
Operating Temperature	T _{OPR}	All	-40 to +100	°C	
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C	
EMITTER	.,		_	.,	
Continuous Reverse Voltage	V_R	All	5	V	
Continuous Forward Current	I _F	All	100	mA	
Forward Current - Peak (10 μs pulse, δ = 0.01)	I _F (pk)	All	3.0	А	
Total Power Dissipation up to 25°C Ambient	5	All	200	mW	
Derate Linearly from 25°C	P_{D}	All	2.0	mW/°C	
DETECTOR		CNX38U	80	.,	
Collector to Emitter Voltage (open base)	V _{CEO}	CNX35U, CNX36U, CNX39U	30	V	
	.,	CNX38U	120	.,	
Collector to Base Voltage (open emitter)	V _{CBO}	CNX35U, CNX36U, CNX39U	70	V	
Emitter to Collector Voltage (open base)	V _{ECO}	All	7	V	
DC Collector Current	I _C	All	100	mA	
Detector Power Dissipation up to 25°C Ambient	5	All	200	mW	
Derate Linearly from 25°C	P_{D}	All	2.0	mW/°C	

CNX35U CNX36U CNX38U CNX39U

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameters	Test Conditions	Symbol	Device	Min	Тур	Max	Units
EMITTER							
Input Forward Voltage	$I_F = 10 \text{ mA}$	V_{F}	All		1.15	1.5	V
Reverse Current	V _R = 5 V	I _R	All			10	μA
DETECTOR	V _{CE} = 10 V		CNX35U, CNX36U,CNX39U		2	50	nA
	V _{CE} = 50 V] ,	CNX38U		2	50	nA
Leakage Current Collector to Emitter	$V_{CE} = 10 \text{ V}, T_A = 70^{\circ}\text{C}$	I _{CEO}	CNX35U, CNX36U, CNX39U			10	μΑ
	V _{CE} = 50 V, T _A = 70°C		CNX38U			10	μΑ
	V _{CE} = 10 V	I _{CBO}	All			20	nA
Breakdown Voltage							
Collector to Emitter		CNX35U, CNX36U, CNX39U	30			V	
	$I_C = 1 \text{ mA}, I_F = 0$	$I_C = 1 \text{ mA}, I_F = 0$ BV_{CEO}	CNX38U	80			1 V
Collector to Base	L 0.4 A L 0	D) /	CNX35U, CNX36U, CNX39U	70			V
	$I_C = 0.1 \text{ mA}, I_F = 0$	$I_C = 0.1 \text{ mA}, I_F = 0$ BV_{CBO}	CNX38U	120]
Emitter to Collector	$I_E = 0.1 \text{ mA}, I_F = 0$	BV _{ECO}	All	7			V

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Тур	Max	Units
Input-Output Isolation Voltage	t = 1 min.	V _{ISO}	5,300			V _{RMS}
Isolation Resistance	V _{I-O} = 500 VDC	R _{ISO}	1	10		TΩ
Isolation Capacitance	IF =0, V = 0V, f = 1 MHz	C _{ISO}		0.6	1.3	pF

CNX35U CNX36U CNX38U CNX39U

DC Characteristics	Test Conditions	Symbol	Device	Min	Тур	Max	Units	
Output/Input Current Transfer Ratio	$I_F = 10 \text{ mA}, V_{CE} = 0.4 \text{ V}$	CTR	CNX35U	40		160	%	
			CNX39U	60		100		
			CNX36U	80		200		
	$I_F = 10 \text{ mA}, V_{CE} = 10 \text{ V}$		ONIVOOLI	70		210		
	$I_F = 16 \text{ mA}, V_{CE} = 0.4 \text{ V}$		CNX38U	50				
	$I_F = 2 \text{ mA}, V_{CE} = 5 \text{ V}$		All	15				
	$I_F = 10 \text{ mA}, I_C = 2 \text{ mA}$		CNX35U, CNX39U		0.15	0.4	V	
Collector-Emitter Saturation Voltage	$I_F = 10 \text{ mA}, I_C = 4 \text{ mA}$	V _{CE(SAT)}	CNX36U		0.19	0.4		
	$I_F = 16 \text{ mA}, I_C = 2 \text{ mA}$, ,	CNX38U		0.2	0.4		
AC Characteristics	Test Conditions	Symbol	Device	Min	Тур	Max	Units	
Non-Saturated Switching Times	$R_L = 100 \Omega$, $I_C = 2 \text{mA}$, $V_{CC} = 5 \text{V}$	t _{on}	CNX35U			20	μs	
Turn-On Time See Fig. 1 and Fig. 2			CNX39U			20		
			CNX36U			20		
	$R_L = 100 \Omega$, $I_C = 4 \text{ mA}$, $V_{CC} = 5 \text{ V}$		CNX38U			20	1	
Turn-Off Time See Fig. 1 and Fig. 2	$R_L = 100 \ \Omega$, $I_C = 2 \ mA$, $V_{CC} = 5 \ V$	t _{off}	CNX35U			20	μs	
			CNX39U			20		
			CNX36U			20		
	$R_L = 100 \Omega$, $I_C = 4 \text{ mA}$, $V_{CC} = 5 \text{ V}$		CNX38U			20	1	
Saturated Switching Times			CNX35U			50		
Turn-On Time See Fig. 1 and Fig. 2	$R_L = 1 \text{ k}\Omega, I_C = 2 \text{ mA}, V_{CC} = 5 \text{ V}$	t _{on}	CNX39U			50	μs	
			CNX36U			50		
	$R_L = 1 \text{ k}\Omega$, $I_C = 4 \text{ mA}$, $V_{CC} = 5 \text{ V}$		CNX38U			50	1	
			CNX35U			50		
Turn-Off Time	n-Off Time $R_L = 1 \text{ k}\Omega$, $I_C = 2 \text{ mA}$, $V_{CC} = 5 \text{ V}$		CNX39U			50		
See Fig. 1 and Fig. 2		t _{off}	CNX36U			50	μs	
	$R_L = 1 \text{ k}\Omega$, $I_C = 4 \text{ mA}$, $V_{CC} = 5 \text{ V}$	1	CNX38U			50	1	

CNX35U CNX36U CNX38U CNX39U

Fig. 1 Switching Test Circuit

Fig. 2 Switching Test Waveforms

Fig. 5 Normalized CTR vs. Temperature 1.2 $I_F = 10mA$ 1.0 $I_F = 5mA$ NORMALIZED CTR Normalized To CTR at: 0.4 $V_{CE} = 5V$ $T_A = 25^{\circ}C$ 0.2 -75 125 -50 -25 25 50 100 AMBIENT TEMPERATURE T $_{\rm A}$ - (°C)

CNX35U CNX36U CNX38U CNX39U

Fig. 9 Normalized toff vs. RBE $V_{CC} = 10V$ $I_C = 2mA$ R_L = 100 NORMALIZED TO t_{off} AT RBE = OPEN 1.1 1.0 NORMALIZED t_{off} 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1 10 100 1000 10000 ${\rm R_{BE}}$ - BASE RESISTANCE (k $\Omega)$

Fig. 11 Collector-Emitter Saturation Voltage as a Function of Collector Current

CNX35U CNX36U CNX38U CNX39U

NOTE

All dimensions are in inches (millimeters)

CNX35U CNX36U CNX38U CNX39U

ORDERING INFORMATION

Option	Order Entry Identifier	Description			
S	.S	Surface Mount Lead Bend			
SD	.SD	Surface Mount; Tape and reel			
W	.W	0.4" Lead Spacing			
300	.300	VDE 0884			
300W	.300W	VDE 0884, 0.4" Lead Spacing			
3S	.3S	VDE 0884, Surface Mount			
3SD	.3SD	VDE 0884, Surface Mount, Tape & Reel			

NOTE

All dimensions are in inches (millimeters)

CNX35U CNX36U CNX38U CNX39U

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.