A Taste of Computational Mathematics

Introduction to Python and Digital Image Processing

Rhudaina Mohammad

Institute of Mathematics, UP Diliman rzmohammad@up.edu.ph

Mathematical Problem

Find x.

Mathematical Problem

Find x such that

$$\varphi(x;d) = 0$$

d, set of data which the solution depends on φ , functional relation between x and d

Mathematical Problem

image input
$$u_0 \rightarrow \boxed{\text{image processor } T} \rightarrow \text{desired output } F$$

Find T such that

$$T(u_0) = F$$

Computational Model

 $Physical\ Problem \rightarrow Mathematical\ Problem \rightarrow Computational\ Model$

Computational Model

Physical Problem \rightarrow Mathematical Problem \rightarrow Computational Model

■ Numerical analysis - a branch of Mathematics that is concerned with the development and investigation of constructive methods for the numerical solution of mathematical problems

- circuits in a computer's processor are made up of billions of transistors tiny switches activated by electronic signals
- on and off states of a transistor are reflected by the binary digits (bits): 1 and 0 – the smallest unit of data in computing

■ Numbers are stored in memory in bits – long strings of 0s and 1

$$9 \div 2 = 4$$
 remainder 1
 $4 \div 2 = 2$ remainder 0
 $2 \div 2 = 1$ remainder 0
 $1 \div 2 = 0$ remainder 1

$$9_{10} = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1001_2$$

■ Numbers are stored in memory in bits – long strings of 0s and 1

$$9 \div 2 = 4$$
 remainder 1
 $4 \div 2 = 2$ remainder 0
 $2 \div 2 = 1$ remainder 0
 $1 \div 2 = 0$ remainder 1

$$9_{10} = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1001_2$$

Exercise. Convert 156_{10} to binary (base 2).

■ Numbers are stored in memory in bits – long strings of 0s and 1

$$9 \div 2 = 4$$
 remainder 1
 $4 \div 2 = 2$ remainder 0
 $2 \div 2 = 1$ remainder 0
 $1 \div 2 = 0$ remainder 1

$$9_{10} = 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1001_2$$

Exercise. Convert 156_{10} to binary (base 2).

■ Computers may be powerful, but they are finite

■ Computers may be powerful, but they are finite

■ An 8-bit integer has a capacity of up to:

- Computers may be powerful, but they are finite
- An 8-bit integer has a capacity of up to:

- Computers may be powerful, but they are finite
- An 8-bit integer has a capacity of up to:

that is, the largest value it can take will be 255.

- Computers may be powerful, but they are finite
- An 8-bit integer has a capacity of up to:

that is, the largest value it can take will be 255.

- Computers may be powerful, but they are finite
- An 8-bit integer has a capacity of up to:

that is, the largest value it can take will be 255.

	0	0	0	0	0	0	0	0
--	---	---	---	---	---	---	---	---

- Computers may be powerful, but they are finite
- An 8-bit integer has a capacity of up to:

that is, the largest value it can take will be 255.

- Computers may be powerful, but they are finite
- An 8-bit integer has a capacity of up to:

that is, the largest value it can take will be 255.

■ CPU drops the overflow digit since the computer cannot store it.

Python Basics

- There are two types:
 - minimize human coding time (e.g. Python, Julia, R, MATLAB)
 - minimize computing time (e.g. C, C++, Fortran)
- Open and activate your DepEd Gmail account on https://colab.research.google.com

Python Basics

Open the following link

https://github.com/rhudaina/ CENTREX-for-STEM-DepEd-QCSHS in your browser.

► https://github.com/rhudaina/CENTREX-for-STEM-DepEd-QCSHS

Matrices and NumPy

■ A matrix is a 2-dimensional array of numbers arranged in rows and columns.

$$A = \begin{bmatrix} 7 & -2 & 1 & 1 \\ 3 & 0 & 0 & -1 \\ -1 & 9 & 0 & 0 \\ 1 & 5 & -1 & 1 \\ 0 & 1 & -2 & 2 \\ 0 & 1 & 0 & 5 \end{bmatrix}$$

Note that matrix A has 6 rows and 5 columns.

Sequence

Sequence expresses the trivial idea that unless you direct it otherwise, the computer code is to be implemented one instruction at a time

Selection

■ Single-alternative decision

```
1 if condition:
2 TRUE block
```


Repetition

■ Count-controlled loop performs a specified number of repetitions

or iterations

for item in sequence:
Block

Introduction to Image Processing

Often, images may have been degraded due to either poor imaging conditions or problems during storage and communication

image input $u_0 \to \lceil \text{image processor } T \rceil \to \text{output } F = T[u_0].$

Introduction to Image Processing

Open the following link

https://github.com/rhudaina/ CENTREX-for-STEM-DepEd-QCSHS in your browser.

► https://github.com/rhudaina/CENTREX-for-STEM-DepEd-QCSHS

Visible Spectrum

Color Wheel

Primary Colors

Image Denoising and Heat Equation

Heat flows from the warmer body to the cooler body until they reach the same temperature.

Image Denoising and Heat Equation

Heat flows from the warmer body to the cooler body until they reach the same temperature.

lacktriangle Let u be temperature of a system at point (x,y) at time t

$$u = u(t, x, y)$$

Heat (or diffusion) equation models how heat spreads in a body/system

$$\underbrace{u_t}_{\text{how }u \text{ changes in time}} = \underbrace{u_{xx} + u_{yy}}_{\text{how }u \text{ changes in space}}$$

- \blacksquare u_t , first partial derivative
- \blacksquare u_{xx} and u_{yy} , second partial derivatives

All routes to

STEM

Science, Technology, Engineering, and Mathematics involves

CALCULUS

study of change (motion)

Thank you for your attention!