Proof by Simplification

Overview

- Term rewriting foundations
- Term rewriting in Isabelle/HOL
 - Basic simplification
 - Extensions

Term rewriting foundations

Term rewriting means ...

Using equations l = r from left to right

Term rewriting means ...

Using equations l = r from left to right As long as possible

Term rewriting means ...

Using equations l = r from left to right As long as possible

Terminology: equation → *rewrite rule*

$$0 + n = n \tag{1}$$

Equations:

$$(Suc m) + n = Suc (m+n) (2)$$

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + n = n \tag{1}$$

Equations:

$$(Suc m) + n = Suc (m+n) (2)$$

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x$$

$$0 + n = n \tag{1}$$

Equations:

$$(Suc m) + n = Suc (m+n) (2)$$

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc \ 0 \le Suc \ 0 + x$$

$$0 + n = n \tag{1}$$

Equations:

$$(Suc m) + n = Suc (m+n) (2)$$

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x = \frac{1}{2}$$

$$Suc \ 0 \le Suc \ 0 + x \stackrel{(2)}{=}$$

$$Suc \ 0 \le Suc \ (0+x)$$

$$0 + n = n \tag{1}$$

Equations:

$$(Suc m) + n = Suc (m+n) (2)$$

$$(Suc \ m \le Suc \ n) = (m \le n) \tag{3}$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc 0 \leq Suc 0 + x \stackrel{(2)}{=}$$

$$Suc \ 0 \le Suc \ (0+x) \stackrel{(3)}{=}$$

$$0 \le 0 + x$$

$$(0 \le m) = True \tag{4}$$

$$0 + Suc \ 0 \le Suc \ 0 + x \stackrel{(1)}{=}$$

$$Suc \ 0 \le Suc \ 0 + x \stackrel{(2)}{=}$$

$$Suc \ 0 \le Suc \ (0 + x) \stackrel{(3)}{=}$$

$$0 \le 0 + x \stackrel{(4)}{=}$$

$$True$$

substitution = mapping from variables to terms

substitution = mapping from variables to terms

• l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$

substitution = mapping from variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$

substitution = mapping from variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

substitution = mapping from variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

substitution = mapping from variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

$$\sigma = \{n \mapsto b + c\}$$

substitution = mapping from variables to terms

- l=r is applicable to term t[s] if there is a substitution σ such that $\sigma(l)=s$
- Result: $t[\sigma(r)]$
- Note: $t[s] = t[\sigma(r)]$

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

$$\sigma = \{n \mapsto b + c\}$$

Result: a + (b + c)

Extension: conditional rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

Extension: conditional rewriting

Rewrite rules can be conditional:

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is *applicable* to term t[s] with σ if

- $\sigma(l) = s$ and
- $\sigma(P_1), \ldots, \sigma(P_n)$ are provable (again by rewriting).

Interlude: Variables in Isabelle

Three kinds of variables:

• bound: $\forall x. x = x$

• free: x = x

Three kinds of variables:

- bound: $\forall x. x = x$
- free: x = x
- schematic: ?x = ?x ("unknown")

Three kinds of variables:

- bound: $\forall x. x = x$
- free: x = x
- schematic: ?x = ?x ("unknown")

Schematic variables:

Three kinds of variables:

- bound: $\forall x. x = x$
- free: x = x
- schematic: ?x = ?x ("unknown")

Schematic variables:

Logically: free = schematic

Three kinds of variables:

- bound: $\forall x. x = x$
- free: x = x
- schematic: ?x = ?x ("unknown")

Schematic variables:

- Logically: free = schematic
- Operationally:
 - free variables are fixed
 - schematic variables are instantiated by substitutions

State lemmas with free variables:

lemma $app_Nil2[simp]$: xs @ [] = xs

```
State lemmas with free variables:

lemma app\_Nil2[simp]: xs @ [] = xs

:

done
```

```
State lemmas with free variables:
```

lemma $app_Nil2[simp]: xs @ [] = xs$

done

After the proof: Isabelle changes xs to ?xs (internally):

Now usable with arbitrary values for ?xs

State lemmas with free variables:

lemma $app_Nil2[simp]$: xs @ [] = xs

done

After the proof: Isabelle changes xs to ?xs (internally):

Now usable with arbitrary values for ?xs

Example: rewriting

using app_Nil2 with $\sigma = \{ ?xs \mapsto a \}$

Term rewriting in Isabelle

Goal: 1. $\llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C$

apply(simp add: $eq_1 \dots eq_n$)

```
Goal: 1. \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C
```

apply(simp add: $eq_1 \dots eq_n$)

Simplify $P_1 \dots P_m$ and C using

lemmas with attribute simp

```
Goal: 1. \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C
```

- apply(simp add: $eq_1 \dots eq_n$)
- Simplify $P_1 \dots P_m$ and C using
 - lemmas with attribute simp
 - rules from primrec, fun and datatype

```
Goal: 1. \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C
```

```
apply(simp add: eq_1 \dots eq_n)
```

Simplify $P_1 \dots P_m$ and C using

- lemmas with attribute simp
- rules from primrec, fun and datatype
- additional lemmas $eq_1 \dots eq_n$

Basic simplification

```
Goal: 1. \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C
```

```
apply(simp add: eq_1 \dots eq_n)
```

Simplify $P_1 \dots P_m$ and C using

- lemmas with attribute simp
- rules from primrec, fun and datatype
- additional lemmas eq₁ ... eq_n
- assumptions P₁ ... P_m

Basic simplification

```
Goal: 1. \llbracket P_1; \ldots; P_m \rrbracket \Longrightarrow C
```

```
apply(simp add: eq_1 \dots eq_n)
```

Simplify $P_1 \dots P_m$ and C using

- lemmas with attribute simp
- rules from primrec, fun and datatype
- additional lemmas eq₁ ... eq_n
- assumptions P₁ ... P_m

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

auto versus simp

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Example:
$$f(x) = g(x)$$
, $g(x) = f(x)$

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Example:
$$f(x) = g(x)$$
, $g(x) = f(x)$

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Example:
$$f(x) = g(x)$$
, $g(x) = f(x)$

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

$$n < m \Longrightarrow (n < Suc m) = True$$

Suc $n < m \Longrightarrow (n < m) = True$

Simplification may not terminate. Isabelle uses *simp*-rules (almost) blindly from left to right.

Example:
$$f(x) = g(x)$$
, $g(x) = f(x)$

$$\llbracket P_1 \dots P_n \rrbracket \Longrightarrow l = r$$

is suitable as a simp-rule only if l is "bigger" than r and each P_i

$$n < m \Longrightarrow (n < Suc m) = True YES$$

Suc $n < m \Longrightarrow (n < m) = True NO$

Rewriting with definitions

Definitions do not have the *simp* attribute.

Rewriting with definitions

Definitions do not have the *simp* attribute.

They must be used explicitly: (simp add: f_def ...)

Extensions of rewriting

Local assumptions

Simplification of $A \longrightarrow B$:

- 1. Simplify A to A'
- 2. Simplify B using A'

$$P(if A then s else t)$$

= $(A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$

$$(A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$$

Automatic

$$P(if A then s else t)$$

= $(A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$

Automatic

$$P(case\ e\ of\ 0\Rightarrow a\ |\ Suc\ n\Rightarrow b)$$

= $(e=0\longrightarrow P(a))\land (\forall\ n.\ e=Suc\ n\longrightarrow P(b))$

$$P(if A then s else t)$$

= $(A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$

Automatic

$$P(case\ e\ of\ 0\Rightarrow a\ |\ Suc\ n\Rightarrow b)$$

= $(e=0\longrightarrow P(a))\land (\forall\ n.\ e=Suc\ n\longrightarrow P(b))$

By hand: (simp split: nat.split)

$$P(if A then s else t)$$

= $(A \longrightarrow P(s)) \land (\neg A \longrightarrow P(t))$

Automatic

$$P(case\ e\ of\ 0\Rightarrow a\ |\ Suc\ n\Rightarrow b)$$

= $(e=0\longrightarrow P(a))\land (\forall\ n.\ e=Suc\ n\longrightarrow P(b))$

By hand: (simp split: nat.split)

Similar for any datatype t: t.split

Problem: ?x + ?y = ?y + ?x does not terminate

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative *simp*-rules are used only if the term

becomes lexicographically smaller.

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative simp-rules are used only if the term

becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative *simp*-rules are used only if the term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types *nat*, *int* etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Problem: ?x + ?y = ?y + ?x does not terminate

Solution: permutative *simp*-rules are used only if the term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types *nat*, *int* etc:

- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: (simp add: add_ac) yields

$$(b+c)+a \leadsto \cdots \leadsto a+(b+c)$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\neg A \mapsto A = False$$
 $A \longrightarrow B \mapsto A \Longrightarrow B$
 $A \wedge B \mapsto A, B$
 $\forall x.A(x) \mapsto A(?x)$
 $A \mapsto A = True$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\neg A \mapsto A = False$$
 $A \longrightarrow B \mapsto A \Longrightarrow B$
 $A \wedge B \mapsto A, B$
 $\forall x.A(x) \mapsto A(?x)$
 $A \mapsto A = True$

Example:

$$(p \longrightarrow q \land \neg r) \land s \mapsto$$

Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

$$\neg A \mapsto A = False$$
 $A \longrightarrow B \mapsto A \Longrightarrow B$
 $A \land B \mapsto A, B$
 $\forall x.A(x) \mapsto A(?x)$
 $A \mapsto A = True$

Example:

$$(p \longrightarrow q \land \neg r) \land s \mapsto \left\{ egin{array}{l} p \Longrightarrow q = True \\ p \Longrightarrow r = False \\ s = True \end{array} \right\}$$

When everything else fails: Tracing

Set trace mode on/off in Proof General:

Isabelle → Settings → Trace simplifier

Output in separate trace buffer

Demo: simp