АНТЕННЫ

Лекция 3.

ПОЛЕ СМЕЩЁННОГО ИСТОЧНИКА. ЭЛЕКТРИЧЕСКИЙ И МАГНИТНЫЙ ДИПОЛИ НАД МЕТАЛЛИЧЕСКОЙ ПЛОСКОСТЬЮ, СИММЕТРИЧНЫЙ ВИБРАТОР

3.1 Поле излучения смещённого источника

До сих пор мы вычисляли выражения полей излучения источников, сосредоточенных в одной точке, в качестве которой мы выбирали **начало координат**. Как изменятся эти выражения, если точечный источник расположен в **произвольной** точке пространства? На рис.5 источник находится в точке, определяемой вектором \boldsymbol{r} , исходящим из начала координат. Вектор \boldsymbol{R} , начинающийся в точке источника, и \boldsymbol{R}_0 , исходящий из начала координат, направлены в одну и ту же точку на бесконечности. Выполнены соотношения:

$$\mathbf{R}_0 = \mathbf{r} + \mathbf{R}; \quad \mathbf{R}_0 = R_0 \mathbf{e}_R; \quad \mathbf{R} = R \mathbf{e}_R;$$
 (3-1)

Как это скажется на электрического поля излучения?

Рис.1. Источник в произвольной точке

Следующие вычисления показывают, что в дальней зоне добавится только фазовый множитель, зависящий от расположения источника.

$$R = (\mathbf{R}, \mathbf{e}_{R}) = (\mathbf{R}_{0} - \mathbf{r}, \mathbf{e}_{R}) = (\mathbf{R}_{0}, \mathbf{e}_{R}) - (\mathbf{r}, \mathbf{e}_{R}) = R_{0} - (\mathbf{r}, \mathbf{e}_{R});$$

$$\frac{e^{-ikR}}{R} = \frac{e^{-ikR}}{R_{0} - (\mathbf{r}, \mathbf{e}_{R})} = \frac{e^{-ik(R_{0} - (\mathbf{r}, \mathbf{e}_{R}))}}{R_{0}(1 - (\mathbf{r}, \mathbf{e}_{R})/R_{0})} \approx$$

$$\approx \frac{e^{-ikR_{0}}e^{ik(\mathbf{r}, \mathbf{e}_{R})}}{R_{0}} (1 + (\mathbf{r}, \mathbf{e}_{R})/R_{0}) \approx \frac{e^{-ikR_{0}}e^{ik(\mathbf{r}, \mathbf{e}_{R})}}{R_{0}} = \frac{e^{-ikR_{0}}}{R_{0}}e^{ik(\mathbf{r}, \mathbf{e}_{R})};$$
(3-2)

Выпишем результирующее выражение для электрического поля от элементарных источников - электрического и магнитного диполей, помещённых в точку, вынесенную из начала координат.

$$\boldsymbol{E} = \frac{e^{-ikR_0}}{R_0} \left(W_0 C^e \left[\left[\boldsymbol{e}_I^e, \boldsymbol{e}_R \right], \boldsymbol{e}_R \right] - C^m \left[\boldsymbol{e}_I^m, \boldsymbol{e}_R \right] \right) e^{ik(\boldsymbol{r}, \boldsymbol{e}_R)}; C^e = i \frac{I^e k l^e}{4\pi}; C^m = i \frac{I^m k l^m}{4\pi}; \quad (3-3)$$

Это выражение может быть использовано для вычисления поля излучения в дальней зоне нескольких источников, расположенных в разных точках, а также различающихся величиной и направлением токов. Для этого достаточно просуммировать векторы электрического поля. Рассмотрим несколько примеров.

3.2 Излучение электрического диполя над металлической плоскостью.

На рис. 2 показаны электрические (слева) и магнитные (справа), по-разному ориентированные в пространстве диполи.

Рассмотрим горизонтальный электрический диполь, ориентированный вдоль оси X, с током I, и расположенный на высоте h над идеально проводящей плоскостью, совпадающей с плоскостью XOY. Как известно, на поверхности проводящей плоскости выполнено граничное условие $E_{\tau}=0$. Это условие автоматически выполнено в системе, состоящей из двух диполей, заданного и его зеркального изображения в плоскости металлического листа, причём, направление тока в зеркально отражённом диполе противоположно току в заданном диполе. Таким образом, влияние плоскости заменяется на влияние "отражённого" диполя.

Рис. 2. Электрические и магнитные диполи и их отражения в металлической плоскости

Итак, чтобы рассчитать диаграмму направленности диполя над металлической плоскостью, достаточно рассчитать её для системы из двух таких диполей, и ограничиться направлениями в верхней полусфере.

Представим поле излучения электрического диполя в виде суммы двух слагаемых вида (3-3), положив в них $I^m = 0$, $\mathbf{r}_1 = h\mathbf{e}_z$, $\mathbf{r}_2 = -h\mathbf{e}_z$, $\mathbf{e}_{I1} = \mathbf{e}_x$, $\mathbf{e}_{I2} = -\mathbf{e}_x$; Получим следующий результат.

$$\mathbf{E} = \left(\left[\left[\mathbf{e}_{x}, \mathbf{e}_{R} \right], \mathbf{e}_{R} \right] e^{ikh(\mathbf{e}_{z}, \mathbf{e}_{R})} + \left[\left[-\mathbf{e}_{x}, \mathbf{e}_{R} \right], \mathbf{e}_{R} \right] e^{ikh(-\mathbf{e}_{z}, \mathbf{e}_{R})} \right) W_{0} C^{e} \frac{e^{-ikR_{0}}}{R_{0}} =$$

$$= \left(e^{ikh(\mathbf{e}_{z}, \mathbf{e}_{R})} - e^{-ikh(\mathbf{e}_{z}, \mathbf{e}_{R})} \right) \left[\left[\mathbf{e}_{x}, \mathbf{e}_{R} \right], \mathbf{e}_{R} \right] W_{0} C^{e} \frac{e^{-ikR_{0}}}{R_{0}} =$$

$$= -\sin\left(kh(\mathbf{e}_{z}, \mathbf{e}_{R}) \right) \left[\left[\mathbf{e}_{x}, \mathbf{e}_{R} \right], \mathbf{e}_{R} \right] 2iW_{0} C^{e} \frac{e^{-ikR_{0}}}{R_{0}};$$

$$(3-4)$$

Осталось вычислить скалярное и двойное векторное произведения (вычисляется по стандартной формуле векторной алгебры: $\left[a, \left[b, c \right] \right] = b \left(a, c \right) - c \left(a, b \right) ;)$

$$(\boldsymbol{e}_z, \boldsymbol{e}_R) = \cos \vartheta, \quad \left[[\boldsymbol{e}_x, \boldsymbol{e}_R], \boldsymbol{e}_R \right] = -\cos \vartheta \cos \varphi \, \boldsymbol{e}_\vartheta + \sin \varphi \, \boldsymbol{e}_\varphi;$$
 (3-5)

Окончательное выражение:

$$E = -2iW_0 C^e \frac{e^{-ikR_0}}{R_0} \sin(kh\cos\vartheta) \left(-\cos\vartheta\cos\varphi \,\boldsymbol{e}_\vartheta + \sin\varphi \,\boldsymbol{e}_\varphi\right); \tag{3-6}$$

Упражнение 3.1. Изобразите диаграмму направленности горизонтального электрического диполя над металлической плоскостью при $h = \lambda/4$, $\lambda/2$, λ . в плоскостях E- (XOZ) и H- (YOZ). Что произойдёт при $h \Rightarrow 0$?

Упражнение 3.2 Изобразите диаграмму направленности вертикального электрического диполя над плоскостью при тех же значениях высоты подвеса.

3.3 Излучение магнитного диполя над металлической плоскостью

Рис. 3. Горизонтальный магнитный диполь над плоскостью

Этот пример аналогичен предыдущему, но ток магнитного диполя, являющегося изображением исходного магнитного диполя, совпадает по направлению с током исходного диполя. Это наглядно показано в правой части рис. 3 в сечении плоскостью YOZ. Электрическое поле циркулирует вокруг магнитного диполя, при этом касательные составляющие на поверхности металлической плоскости компенсируют друг друга при одинаковом направлении токов в диполях. Для вычисления электрического поля в формуле (3-3) нужно положить:

$$I^{e} = 0, \mathbf{r}_{1} = h\mathbf{e}_{z}, \mathbf{r}_{2} = -h\mathbf{e}_{z}, \mathbf{e}_{I1} = \mathbf{e}_{I2} = \mathbf{e}_{x};$$

В остальном, вычисления аналогичны вычислениям в предыдущем примере. Поле излучения магнитного диполя над металлической плоскостью:

$$E = -2C^{m} \frac{e^{-ikR_{0}}}{R_{0}} \cos(kh\cos\vartheta) (\sin\varphi \, e_{\vartheta} + \cos\vartheta\cos\varphi); \tag{3-7}$$

Упражнение 3.3 Изобразите диаграмму направленности магнитного диполя над металлической плоскостью в Е- и Н- плоскостях при $h = \lambda/4$, $\lambda/2$, λ . Что произойдёт при $h \Rightarrow 0$? Сравните предельное выражение с выражением поля одиночного магнитного диполя, ориентированного вдоль оси X.

3.4 Излучение вибратора конечной длины. Симметричный вибратор.

На рис. 4 показан симметричный вибратор длины 21, ориентированный вдоль оси Z.

Чтобы вычислить поле излучения и другие характеристики симметричного вибратора, нужно знать распределение тока вдоль вибратора. По распределению тока можно найти векторный потенциал в окружающем пространстве. Предполагаем, что вибратор образован идеально проводящими цилиндрами. Решение задачи будем основывать на выполнении граничных условий на боковой поверхности цилиндра $E_{\tau}=0$:

$$A_{z}^{e} = \frac{1}{4\pi} \int_{-l}^{l} I_{z}(z') \frac{e^{-ikR}}{R} dz' e_{z}, \quad R = \sqrt{(z - z')^{2} + a^{2}}, \quad (3-8)$$

Рис. 4. Симметричный вибратор

Решаем задачу в цилиндрических координатах, связанных с вибратором радиуса a. Электрическое поле выражается через векторный потенциал по формуле:

$$E = -i\omega\mu A^{e} + \frac{1}{i\omega\varepsilon} \operatorname{grad} \operatorname{div} A^{e}; \quad H = \operatorname{rot} A^{e};$$

$$E_{z} = \frac{1}{i\omega\varepsilon} \left(\frac{\partial^{2} A_{z}^{e}}{\partial z^{2}} + k^{2} A_{z}^{e} \right); \quad E_{\rho} = \frac{1}{i\omega\varepsilon} \frac{\partial^{2} A_{z}^{e}}{\partial \rho \partial z};$$
(3-9)

Дифференциальное уравнение для векторного потенциала вертикального вибратора получается из условия, что на боковой поверхности идеально проводящего вибратора касательные составляющие вектора E равны нулю, а в зазоре равны величине стороннего поля.

$$E_{z/r=a} = \frac{1}{i\omega\varepsilon} \left(\frac{d^2}{dz^2} + k^2 \right) A_z^e(z) = \begin{cases} 0, & npu \ l > |z| > \Delta z/2 \\ E^c, & npu \ |z| \le \Delta z/2 \end{cases}$$
(3-10)

Общее решение этого уравнения при величине зазора, стремящейся к нулю, имеет вид:

$$A_z^e = C_1 \cos kz + C_2 \sin kz - \frac{iV_0}{2W_0} \sin k |z|, \qquad (3-11)$$

Здесь V_0 напряжение в зазоре. Если подставить в это решение выражение векторного потенциала, как интеграла от распределения тока по вибратору, получим интегральное уравнение Галлена:

$$\frac{1}{4\pi} \int_{-l}^{l} I_{z}(z') \frac{e^{-ikR}}{R} dz' = C_{1} \cos kz + C_{2} \sin kz - \frac{iV_{0}}{2W_{0}} \sin k|z|.$$

$$I_{z}(\pm l) = 0; \qquad -l \le z \le l \quad R = \sqrt{(z - z')^{2} + a^{2}};$$
(3-12)

Это интегральное уравнение первого рода относительно неизвестного распределения тока. Коэффициенты C_1 и C_2 определяются из условия равенства тока нулю на концах вибратора. В случае симметричного вибратора с одинаковыми плечами, распределение тока также симметрично и коэффициент при синусе обращается в нуль.

3.5 Современный метод решения интегрального уравнения

Как сейчас решают уравнения такого типа? Естественно приблизить интеграл интегральной суммой. Для этого нужно разбить интервал интегрирования на N частей:

$$-l = z'_0 < z'_1 < \dots < z'_m < \dots z'_N = l; \quad -l = z_0 < z_1 < \dots < z_m < \dots z_N = l;$$

При этом интегральное уравнение превратится в систему линейных алгебраических уравнений:

$$\frac{\Delta z'}{4\pi} \sum_{m=0}^{N} I_m \frac{e^{-ikR_{nm}}}{R_{nm}} \simeq C_1 \cos kz_n + C_2 \sin kz_n - \frac{iV_0}{2W_0} \sin k |z_n|.$$

$$I_{m} = I_{z}(z'_{m}); \quad I_{0} = I_{N} = 0; \quad R_{nm} = \sqrt{(z_{n} - z'_{m})^{2} + a^{2}};$$

Сейчас даже на персональных компьютерах нетрудно решить такую систему с матрицей R_{nm} даже тысячного порядка.

Этот метод решения интегральных уравнений имеет название "метод моментов". Метод моментов является корневым методом широкого комплекса методов решения интегральных и дифференциальных уравнений в самых разных областях науки и техники, и широко используется во всём мире. Но родился этот метод в России в 1911 году в публикации механика-судостроителя и математика Ивана Григорьевича Бубнова.

Примерно в это же время область применения метода была существенно расширена российским механиком Борисом Григорьевичем Галёркиным. Метод (Бубнова-Галёркина) стал использоваться для решения задач сначала при строительстве мостов, затем и других задач механики Степаном Прокофьевичем Тимошенко. крупнейшим учёным 20 века в области деформируемых твёрдых тел, который после революции эмигрировал за границу и дал толчок развитию методов решения задач механики за рубежом. Когда-то и Россия была родоначальником методов.

Почему метод называется "методом моментов"?. При изгибе стержней на элемент стержня действует изгибающий момент, величину которого нужно знать при решении задач механики.

Стали решать задачи в самых разных областях науки и техники, а название сохранилось.

Приближённое решение

Но мы займёмся приближённым аналитическим решением. Для его получения будем предполагать, что вибратор тонкий. В этом случае минимальное значение R=a, достигается, когда z=z', но очень быстро R возрастает при смещении точки истока. Поэтому наибольший вклад в интеграл будут давать те значения $I_z\left(z'\right)$, которые близки к значению в точке наблюдения $I_z\left(z\right)$. Чтобы сделать это явным, преобразуем интеграл,

выделив главную часть ядра интегрального уравнения $\frac{e^{-ikR}}{R}$. (Подробно аналитические выкладки приведены в УМК по антеннам и СВЧ)

$$\int_{-l}^{l} I_{z}(z') \frac{e^{-ikR(z,z')}}{R(z,z')} dz' \approx I_{z}(z) \left(2\ln\frac{2l}{a}\right), \quad R = \sqrt{(z-z')^{2} + a^{2}};$$
 (3-13)

Выпишем полученное упрощённое выражение интеграла

$$\frac{1}{4\pi} \int_{-l}^{l} I_z(z') \frac{e^{-ikR}}{R} dz' = \frac{\Omega}{4\pi} I_z(z) + F(I_z, z); \quad \Omega = 2\ln \frac{2l}{a};$$
 (3-14)

В этом интеграле параметр Ω считается большим, если радиус вибратора много меньше его длины. Более строгое вычисление этого параметра приводит к выражению:

$$\Omega = 2 \left(\ln \left(\frac{l}{a} \right) - 1 \right)$$
. В (3-14) введено также обозначение слагаемого, содержащего

интегральные операторы, которым можно пренебречь по сравнению с главным:

С учётом упрощения интегральное уравнение принимает вид, в котором главный член – оператор умножения на большой параметр, а интегралы сосредоточены в асимптотически малом члене, который в нулевом приближении при решении мы отбрасываем:

$$\frac{\Omega}{4\pi} I_z(z) = C_1 \cos kz + C_2 \sin kz - \frac{iV_0}{2W_0} \sin k|z|, \quad I_z(\pm l) = 0.$$
 (3-15)

3.5. Распределение тока в симметричном вибраторе

Выпишем главный член решения интегрального уравнения $I_z(z)$, выразив его через ток в точке питания $I_z(0)$ и «ток в пучности» I_{\max} 6 $I_z(z) \approx \frac{2\pi i V_0}{W_0 \Omega} \Big(\operatorname{tg} k l \cos k z - \sin k \left| z \right| \Big) = \frac{2\pi i V_0}{W_0 \Omega} \frac{\sin k \left(l - \left| z \right| \right)}{\cos k l};$ $I_z(0) = i \frac{2\pi}{W_0 \Omega} V_0 \operatorname{tg} k l = i \frac{V_0}{W_e} \operatorname{tg} k l;$

$$W_{e} = \frac{W_{0}\Omega}{2\pi} \approx \frac{120\pi * 2\left(\ln(l/a) - 1\right)}{2\pi} = 120\left(\ln\frac{l}{a} - 1\right);$$
(3-16)

$$I_{z}(z) = I_{z}(0) \frac{\sin k(l-|z|)}{\sin kl}; \quad I_{n} = \frac{I_{z}(0)}{\sin kl}; \quad I_{z}(z) = I_{n}\sin k(l-|z|);$$

Выражение тока в точке питания $I_z\left(0\right)=irac{V_0}{W_e}$ tg kl; имеет такую же форму, как выражение для тока на входе отрезка длинной линии холостого хода с эквивалентным волновым сопротивлением $W_e=rac{W_0\Omega}{2\pi}\approx 120 \left(\lnrac{l}{a}-1
ight);$

Эта аналогия положена в основу инженерных рассуждений относительно характеристик симметричного вибратора. На низких частотах kl мало, и проводимость вибратора имеет емкостной характер.

Рис.5 Распределение тока в отрезке линии передачи холостого хода

3.7. Распределение заряда в симметричном вибраторе

Определение распределения заряда основано на решении уравнения непрерывности электрического заряда:

$$\frac{dI}{dz} + i\omega Q = 0 ag{3-17}$$

$$Q = \frac{1}{i\omega} \frac{dI(z)}{dz} = \frac{I_n}{i\omega} \frac{d\sin k\left(l - |z|\right)}{dz} = \frac{I_n}{i\omega} \frac{d\sin k\left(l - |z|\right)}{dk\left(l - |z|\right)} \frac{dk\left(l - |z|\right)}{dz} =$$

$$= -\frac{kI_n}{i\omega} \cos k\left(l - |z|\right) \eta(z); \quad \eta(z) = \begin{cases} 1, & z > 0 \\ -1, & z < 0 \end{cases}; \quad \eta(z) = \frac{d|z|}{dz};$$
(3-18)

3.8. Диаграмма направленности симметричного вибратора

Определение диаграммы направленности базируется на интегрировании выражения поля электрического диполя с меняющемся вдоль вибратора током:

$$E_{\vartheta} = \frac{iI_{n}^{e}}{4\pi}W_{0}\sin\vartheta\int_{-l}^{l}\sin k\left(l-|z|\right)\frac{e^{-ikR}}{R}kdz \approx \frac{iI_{n}^{e}}{4\pi}W_{0}\frac{e^{-ikR_{0}}}{R_{0}}\sin\vartheta\int_{-l}^{l}\sin k\left(l-|z|\right)e^{ikz\cos\vartheta}kdz;$$
(3-19)

Использовано приближённое выражение R в дальней зоне.

$$R = \sqrt{R_0^2 - 2R_0z\cos\vartheta + z^2} = R_0\sqrt{1 - 2\frac{z\cos\vartheta}{R_0} + \frac{z^2}{R_0^2}} \approx R_0\left(1 - \frac{z\cos\vartheta}{R_0}\right) = R_0 - z\cos\vartheta \quad (3-20)$$

Вычисление интеграла в (3-19) приводит к выражению поля излучения вертикального симметричного вибратора. Проведём цепочку вычислений интеграла.

$$Int \equiv \sin \vartheta \int_{-l}^{l} \sin k \left(l - |z| \right) e^{ikz \cos \vartheta} k dz = 2 \sin \vartheta \int_{0}^{l} \sin \left(k \left(l - z \right) \right) \cos \left(kz \cos \vartheta \right) k dz; \tag{3-21}$$

Произведение синуса и косинуса заменяем с помощью известной тригонометрической формулы

$$2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} = \sin\alpha + \sin\beta; \alpha = kl - kz(1-\cos\vartheta), \beta = kl - kz(1+\cos\vartheta)$$
 (3-22)

Продолжаем вычисление интеграда:

$$\sin\vartheta\left(\frac{-1}{1-\cos\vartheta}\int_{kl}^{k\cos\vartheta}\sin\alpha d\alpha + \frac{-1}{1-\cos\vartheta}\int_{kl}^{-kl\cos\vartheta}\sin\beta d\beta\right) = 2\sin\vartheta\frac{\cos(kl\cos\vartheta) - \cos kl}{1-(\cos\vartheta)^2}; (3-23)$$

Окончательно получаем:

$$\boldsymbol{E} = E_{\vartheta} \boldsymbol{e}_{\vartheta} = \frac{2iI_{n}W_{0}}{4\pi} \frac{e^{-ikR_{0}}}{R_{0}} \frac{\cos(kl\cos\vartheta) - \cos(kl)}{\sin\vartheta} \boldsymbol{e}_{\vartheta};$$

$$\boldsymbol{H} = \frac{1}{W_{0}} [\boldsymbol{e}_{R}, \boldsymbol{E}] = \frac{E_{\vartheta}}{W_{0}} [\boldsymbol{e}_{R}, \boldsymbol{e}_{\vartheta}] = \frac{E_{\vartheta}}{W_{0}} \boldsymbol{e}_{\varphi}; \quad H_{\varphi} = \frac{E_{\vartheta}}{W_{0}};$$
(3-24)

Итак, простейшее выражение для диаграммы направленности симметричного вибратора с "электрической" длиной плеча kl имеет следующий вид:

$$F(\vartheta,\varphi) = \frac{\cos(kl\cos\vartheta) - \cos(kl)}{\sin\vartheta};$$
 (3-24_)

Малый симметричный вибратор можно считать диполем Герца длины 2l с эквивалентным током I(0)/2.

Сопоставление распределения тока по вибратору и его диаграммы направленности:

$kl=\pi/2$ КНД=2.15 дБ

 $kl=3\pi/4$ КНД=2.75 дБ

 $kl=\pi$ КНД=3.82 дБ

 $kl=5\pi/4$ КНД=5.16 дБ

 $kl=3\pi/2$ КНД=3.47 дБ

 $kl=7\pi/4$ КНД=3.25 дБ

$kl=2\pi$ КНД=4.03 дБ

$kl=9\pi/4$ КНД=4.87 дБ

Рис. 7. Изменение диаграмм направленности симметричного вибратора в зависимости от изменения его длины

Рис. 8

Упражнение 3-3.

Вычислите и постройте по формуле (3-24_) диаграмму направленности вибратора, с длиной плеча 1.5 λ , 2 λ ,, 2.5 λ . Вычислите величины КНД для этих вибраторов