431 Class 20

thomaselove.github.io/431

2020-11-05

Today's Agenda

- Comparing Proportions using Independent Samples
 - Working with 2x2 Tables
 - Working with more general two-way tables

Today's Setup and Data

```
knitr::opts chunk$set(comment = NA)
options(dplyr.summarise.inform = FALSE)
library(Epi) # new today
library(janitor)
library(knitr)
library(magrittr)
library(mosaic) # not usually something I load
library(broom)
library(tidyverse)
theme set(theme bw())
dm431 <- readRDS("data/dm431 2020.Rds")</pre>
source("data/Love-boost.R")
```

Comparing Two Proportions (A 2×2 table)

Using twobytwo from the Love-boost.R script

A1c < 8	A1c >= 8	Total
22	12	34
20	13	33
42	25	67
	22 20	20 13

Code we need is:

```
twobytwo(22, 12, 20, 13, # note order of counts
    "Never", "Current", # names of the rows
    "A1c<8", "A1c>=8", # names of the columns
    conf.level = 0.90) # default is 95% confidence
```

Complete Output shown on the next slide

2 by 2 table analysis:

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval Never 22 12 0.6471 0.5040 0.7679 Current 20 13 0.6061 0.4613 0.7343

90% conf. interval

Relative Risk: 1.0676 0.7823 1.4571

Conditional MLE Odds Ratio: 1.1885 0.4625 3.0712

Probability difference: 0.0410 -0.1486 0.2271

Exact P-value: 0.8032 Asymptotic P-value: 0.7288

Walking through the twobytwo Output

```
2 by 2 table analysis:
```

Outcome : A1c<8

Comparing : Never vs. Current

```
A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343
```

These are 90% confidence intervals for Pr(A1c < 8) conditional on the exposure, and while we've seen five other methods for making this estimate, we use a sixth method here.

The computational details are shown on the next two slides.

90% CI for $Pr(A1c < 8 \mid Never)$ (twobytwo)

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval Never 22 12 0.6471 0.5040 0.7679

This result is computed using the Normal approximation for log(odds), and I'll show the entire calculation on the next slide.

Key Facts:

- odds = prob / (1 prob) lets you convert from probability to odds
- ullet prob = odds / (1 + odds) lets you convert from odds to probability
- standard error of the log(odds) formula is

$$se_{log(odds)} = \sqrt{\frac{1}{np(1-p)}}$$

• 90% confidence interval (two-sided) requires $Z_{\alpha/2} = Z_{0.05} = 1.645$

Calculation for 90% CI for x = 22, n = 34

```
n \leftarrow 22 + 12; prob \leftarrow 22/(22+12)
odds <- prob / (1 - prob)
logodds <- log(odds)</pre>
se_logodds <- sqrt(1 / (n * prob * (1 - prob)))
ci logodds <- c(logodds - 1.645*se logodds,
                 logodds + 1.645*se_logodds)
  # that is the 90% CI on the log(odds) scale
  # so we exponentiate to get CI on odds scale
ci odds <- exp(ci logodds) # ci on odds scale
  # then convert odds to probability scale
ci_prob <- ci_odds / (1 + ci_odds) # ci on prob scale</pre>
ci prob
```

[1] 0.5039485 0.7678975

Returning to the twobytwo output

2 by 2 table analysis:

Outcome : A1c<8

Comparing : Never vs. Current

```
90% conf. interval
Relative Risk: 1.0676 0.7823 1.4571
Sample Odds Ratio: 1.1917 0.5187 2.7377
Conditional MLE Odds Ratio: 1.1885 0.4625 3.0712
Probability difference: 0.0410 -0.1486 0.2271
```

We get confidence intervals for four different measures comparing A1c<8 rates for Never to Current, but we'll only use three in 431.

- Relative Risk
- Odds Ratio (we'll use the sample version the cross-product version)
- Probability Difference

Relative Risk

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343

90% conf. interval

Relative Risk: 1.0676 0.7823 1.4571

$$RR = \frac{0.6471}{0.6061} = 1.0676$$

ullet What does RR = 1 imply about the probabilities we are comparing?

Relative Risk

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343

90% conf. interval Relative Risk: 1.0676 0.7823 1.4571

$$RR = \frac{0.6471}{0.6061} = 1.0676$$

- ullet What does RR = 1 imply about the probabilities we are comparing?
- How about RR > 1?

Relative Risk

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343

90% conf. interval Relative Risk: 1.0676 0.7823 1.4571

$$RR = \frac{0.6471}{0.6061} = 1.0676$$

- ullet What does RR = 1 imply about the probabilities we are comparing?
- How about RR > 1?
- What about RR < 1?

Odds Ratio (Sample Odds Ratio)

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343

90% conf. interval

Sample Odds Ratio: 1.1917 0.5187 2.7377

$$OR = \frac{22 \times 13}{12 \times 20} = 1.1917$$

ullet What does $\mathsf{OR}=1$ imply about the probabilities being compared?

Odds Ratio (Sample Odds Ratio)

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval Never 22 12 0.6471 0.5040 0.7679 Current 20 13 0.6061 0.4613 0.7343

90% conf. interval

Sample Odds Ratio: 1.1917 0.5187 2.7377

$$OR = \frac{22 \times 13}{12 \times 20} = 1.1917$$

- What does OR = 1 imply about the probabilities being compared?
- How about OR > 1?

Odds Ratio (Sample Odds Ratio)

Outcome : A1c<8

Comparing : Never vs. Current

```
A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343
```

90% conf. interval

Sample Odds Ratio: 1.1917 0.5187 2.7377

$$OR = \frac{22 \times 13}{12 \times 20} = 1.1917$$

- What does OR = 1 imply about the probabilities being compared?
- How about OR > 1?
- What about OR < 1?

Probability Difference (also called Risk Difference)

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343

90% conf. interval

Probability difference: 0.0410 -0.1486 0.2271

$$\Delta = 0.6471 - 0.6061 = 0.0410$$

• What will the probability difference be if the probabilities are the same?

Probability Difference (also called Risk Difference)

Outcome : A1c<8

Comparing : Never vs. Current

```
A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343
```

90% conf. interval Probability difference: 0.0410 -0.1486 0.2271

$$\Delta = 0.6471 - 0.6061 = 0.0410$$

- What will the probability difference be if the probabilities are the same?
- What does a positive risk difference imply?

Probability Difference (also called Risk Difference)

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval
Never 22 12 0.6471 0.5040 0.7679
Current 20 13 0.6061 0.4613 0.7343

90% conf. interval Probability difference: 0.0410 -0.1486 0.2271

$$\Delta = 0.6471 - 0.6061 = 0.0410$$

- What will the probability difference be if the probabilities are the same?
- What does a positive risk difference imply?
- How about a negative risk difference?

Hypothesis Testing?

At the bottom of the twobytwo output, we have two p values. . .

Exact P-value: 0.8032 Asymptotic P-value: 0.7288

The Exact P-value comes from Fisher's exact test, and is technically exact only if we treat the row and column totals as being fixed. The Asymptotic P-value comes from a Pearson χ^2 test. These test:

- H_0 : $Pr(A1c < 8 \mid Never) = Pr(A1c < 8 \mid Current) vs.$
- H_A : $Pr(A1c < 8 \mid Never) \neq Pr(A1c < 8 \mid Current)$.

We usually state this as:

- H_0 : rows and columns of the table are *independent* (Pr(A1c<8) is the same regardless of which row you're in) vs.
- H_A: the rows and columns of the table are associated.

Bayesian Augmentation in a 2x2 Table?

Original command:

```
twobytwo(22, 12, 20, 13,
          "Never", "Current",
          "A1c<8", "A1c>=8", conf.level = 0.90)
```

Bayesian augmentation approach: Add two successes and add two failures in each row. . .

Output shown on next slide.

2 by 2 table analysis:

Outcome : A1c<8

Comparing : Never vs. Current

A1c<8 A1c>=8 P(A1c<8) 90% conf. interval Never 24 14 0.6316 0.4965 0.7488 Current 22 15 0.5946 0.4582 0.7178

90% conf. interval

Relative Risk: 1.0622 0.7851 1.4371

Sample Odds Ratio: 1.1688 0.5355 2.5513

Conditional MLE Odds Ratio: 1.1664 0.4837 2.8243 Probability difference: 0.0370 -0.1437 0.2148

Probability difference: 0.0370 -0.1437 0.214

Exact P-value: 0.8147

Asymptotic P-value: 0.7424

Example B: Statin use in Medicaid vs. Uninsured

In the dm431 data, suppose we want to know whether statin prescriptions are more common among Medicaid patients than Uninsured subjects. So, we want a two-way table with "Medicaid", "Statin" in the top left.

```
dm431 %>%
  filter(insurance %in% c("Medicaid", "Uninsured")) %>%
  tabyl(insurance, statin)

insurance 0 1
Commercial 0 0
  Medicaid 17 83
  Medicare 0 0
```

But we want the tabyl just to show the levels of insurance we're studying...

Uninsured 15 29

Obtaining a 2x2 Table from a tibble

We want to know whether statin prescriptions are more common among Medicaid patients than Uninsured subjects.. So, we want a two-way table with "Medicaid", "Uninsured" in the top left.

```
dm431 %>%
  filter(insurance %in% c("Medicaid", "Uninsured")) %>%
  droplevels() %>%
  tabyl(insurance, statin)
```

```
insurance 0 1
Medicaid 17 83
Uninsured 15 29
```

But we want Medicaid in the top row (ok) and "statin = yes" in the left column (must fix)...

Building and Releveling Factors in the tibble

```
insur_f statin no_statin
Medicaid 83 17
Uninsured 29 15
```

Since Medicaid was already on top, we didn't have to set insur_f.

Adding percentages

```
exampleB %>% tabyl(insur_f, statin_f) %>%
  adorn_totals(where = c("row", "col")) %>%
  adorn_percentages(denom = "row") %>%
  adorn_pct_formatting(digits = 1) %>%
  adorn_ns(position = "front") %>%
  adorn_title(row = "Insurance", col = "Statin Status")
```

Statin Status

```
Insurance statin no_statin Total
Medicaid 83 (83.0%) 17 (17.0%) 100 (100.0%)
Uninsured 29 (65.9%) 15 (34.1%) 44 (100.0%)
Total 112 (77.8%) 32 (22.2%) 144 (100.0%)
```

Running twoby2 against a data table

The twoby2 function from the Epi package can operate with tables (but not, alas, tabyls) generated from data.

Original Data

```
twoby2(exampleB %%% table(insur_f, statin_f))
```

(output on next slide)

With Bayesian Augmentation

```
twoby2(exampleB %$% table(insur_f, statin_f) + 2)
```

(output on the slide after that)

2 by 2 table analysis:

Outcome : statin

Comparing : Medicaid vs. Uninsured

 statin no_statin
 P(statin) 95% conf. interval

 Medicaid
 83
 17
 0.8300
 0.7434
 0.8916

 Uninsured
 29
 15
 0.6591
 0.5090
 0.7829

95% conf. interval

Relative Risk: 1.2593 1.0003 1.5854

Sample Odds Ratio: 2.5254 1.1202 5.6933

Probability difference: 0.1709 0.0218 0.3307

Exact P-value: 0.0299 Asymptotic P-value: 0.0255

2 by 2 table analysis:

Outcome : statin

Comparing : Medicaid vs. Uninsured

 statin no_statin
 P(statin) 95% conf. interval

 Medicaid
 85
 19
 0.8173
 0.7312
 0.8803

 Uninsured
 31
 17
 0.6458
 0.5023
 0.7671

95% conf. interval

Relative Risk: 1.2655 1.0071 1.5901

Sample Odds Ratio: 2.4533 1.1327 5.3136

Probability difference: 0.1715 0.0245 0.3261

Exact P-value: 0.0251 Asymptotic P-value: 0.0228

Measuring Association using Categorical Variables with Chi-Squared Tests: Working with Two-Way Tables

A Two-Way Table

```
dm431 %>% tabyl(insurance, tobacco)
```

```
insurance Current Former Never
Commercial
              35
                    60
                          69
 Medicaid
              33
                    33
                          34
              17 58
 Medicare
                          48
Uninsured
              11
                    13
                          20
```

Is tobacco use status associated with insurance type?

- Two factors here (insurance, tobacco)
- This is a 4×3 table, with 4 rows and 3 columns.

Is tobacco use associated with insurance type?

 H_0 : Tobacco status is independent of insurance type

```
dm431 %>% tabyl(insurance, tobacco) %>%
  adorn_totals(where = "row") %>%
  adorn_percentages() %>% adorn_pct_formatting() %>%
  adorn_ns(position = "front") %>% adorn_title()
```

```
tobacco
```

```
insurance Current Former Never
Commercial 35 (21.3%) 60 (36.6%) 69 (42.1%)
Medicaid 33 (33.0%) 33 (33.0%) 34 (34.0%)
Medicare 17 (13.8%) 58 (47.2%) 48 (39.0%)
Uninsured 11 (25.0%) 13 (29.5%) 20 (45.5%)
Total 96 (22.3%) 164 (38.1%) 171 (39.7%)
```

Independence model: tobacco rates are 22.3%, 38.1%, 39.7% in each row

Independence Model for Insurance and Tobacco

Table shows observed counts + (expected under independence model)

- expected count = (row total) \times (col total) / (grand total)
- for example, Medicaid/Current expected count is 100*96/431 = 22.3

	Current	Former	Never	Total
Commercial	35 (36.5)	60 (62.4)	69 (65.1)	164
Medicaid	33 (22.3)	33 (38.1)	34 (39.7)	100
Medicare	17 (27.4)	58 (46.8)	48 (48.8)	123
Uninsured	11 (9.8)	13 (16.7)	20 (17.5)	44
Total	96	164	171	431

Since all of these expected counts exceed 10, the Pearson χ^2 test should provide a reasonably accurate approximate p value for H_0 : rows and columns are independent.

dm431 association of tobacco with insurance

```
tab43 <- dm431 %$% table(insurance, tobacco)
tab43</pre>
```

tobacco
insurance Current Former Never
Commercial 35 60 69
Medicaid 33 33 34
Medicare 17 58 48
Uninsured 11 13 20

chisq.test(tab43)

Pearson's Chi-squared test

data: tab43

X-squared = 15.033, df = 6, p-value = 0.02

Can obtain observed + expected counts

chisq.test(tab43)\$expected

tobacco

```
insurance Current Former Never
Commercial 36.529002 62.40371 65.06729
Medicaid 22.273782 38.05104 39.67517
Medicare 27.396752 46.80278 48.80046
Uninsured 9.800464 16.74246 17.45708
```

chisq.test(tab43)\$observed

tobacco

nsurance	${\tt Current}$	${\tt Former}$	Never
Commercial	35	60	69
Medicaid	33	33	34
Medicare	17	58	48
Uninsured	11	13	20

i

Can obtain residuals (observed - expected)

```
chisq.test(tab43)$residuals
```

tobacco

```
insurance Current Former Never
Commercial -0.2529818 -0.3042827 0.4875409
Medicaid 2.2727394 -0.8188378 -0.9009896
Medicare -1.9863151 1.6367193 -0.1145855
Uninsured 0.3831686 -0.9146343 0.6086218
```

chisq.test(tab43)\$stdres

tobacco

```
insurance Current Former Never
Commercial -0.3645763 -0.4911829 0.7975282
Medicaid 2.9416467 -1.1871498 -1.3237207
Medicare -2.6651867 2.4599172 -0.1745200
Uninsured 0.4586584 -1.2263477 0.8269565
```

Augmented test using mosaic::xchisq.test()

(see full output on next slide)

```
xchisq.test(tobacco ~ insurance, data = dm431)
```

Note that flipping the rows and columns here changes the table, but not the conclusions of the χ^2 test.

Pearson's Chi-squared test X-squared = 15.033, df = 6, p-value = 0.02 35 33 17 11 (36.53) (22.27)(27.40) (9.80)[0.064] [5.165] [3.945] [0.147] <-0.25> < 2.27> <-1.99> < 0.38 >key: 60 33 58 13 observed (62.40) (38.05) (46.80) (16.74) (expected) [0.093] [0.670] [2.679] [0.837] [X-square contribution] <-0.30> <-0.82> < 1.64> <-0.91> <Pearson residual> 69 34 48 20 (17.46)(65.07)(39.68)(48.80)

[0.238] [0.812]

< 0.49> <-0.90> <-0.11>

< 0.61 >

[0.013] [0.370]

Visualizing the Association

We have cell counts for a 4×3 table here. How to visualize?

- Use a tabyl (or table).
- 2 Consider the use of geom_count?
- Onsider a mosaicplot? The mosaicplot is a feature of the graphics package in base R, and has nothing to do with the mosaic package.
- Occupant of the contract of

Using geom_count

```
ggplot(dm431, aes(x = insurance, y = tobacco)) +
  geom_count()
```


Using mosaicplot to show what's in the table

Area of each box corresponds to its observed count

Flipping the coordinates of the mosaicplot

assocplot to show deviations from independence

Area of each box is proportional to (observed - expected count)

assocplot(tab43)

A Second Example (Statin Use by Practice)

```
dm431 %>% tabyl(practice, statin)
```

```
practice 0 1
Arlington 20 101
Bristol 26 107
Chester 16 34
Dover 14 49
Franklin 10 54
```

Is there an association between rates of statin usage and practice?

Include the Percentages

```
practice 0 1
Arlington 20 (16.5%) 101 (83.5%)
Bristol 26 (19.5%) 107 (80.5%)
Chester 16 (32.0%) 34 (68.0%)
Dover 14 (22.2%) 49 (77.8%)
Franklin 10 (15.6%) 54 (84.4%)
Total 86 (20.0%) 345 (80.0%)
```

Does H_0 hold up well?

Chi-Square Test

```
dm431 %>% tabyl(practice, statin) %>% chisq.test()
```

Pearson's Chi-squared test

data:

```
X-squared = 6.3987, df = 4, p-value = 0.1713
```

The association we see isn't strong enough to be detectable by this method. Is this because of the sample sizes?

Expected Counts for Practice - Statin Association

This is a 5×2 two-way table.

```
tab52 <- dm431 %>% tabyl(practice, statin) %>% chisq.test()
tab52$expected
```

```
practice 0 1
Arlington 24.143852 96.85615
Bristol 26.538283 106.46172
Chester 9.976798 40.02320
Dover 12.570766 50.42923
Franklin 12.770302 51.22970
```

The expected frequencies look like they are 10 or more (with one slight exception.)

assocplot for practice × statin

Which practice might we look at most closely?

```
assocplot(table(dm431$practice, dm431$statin))
```


What's Next?

- Mantel-Haenszel test for comparing a series of 2x2 tables.
- I'll skip paired comparisons of proportions in 431 this year.

Then we'll move on to power and sample size considerations.