Accelerating Biomolecular Nuclear Magnetic Resonance Assignment with A*

Joel Venzke, Paxten Johnson, Rachel Davis, John Emmons, Katherine Roth, David Mascharka, Leah Robison, Timothy Urness and Adina Kilpatrick

> Department of Mathematics and Computer Science Drake University

> > joel.venzke@drake.edu

April 10,2014

Introduction

- Introduction
 - Motivation
 - Nuclear Magnetic Resonance Spectroscopy
- Assignment Process
 - Data Collection
 - Manual Assignment
- Automation Algorithm
 - Preprocessing
 - Assignment
- Conclusion
 - Results
 - Outlook

Introduction

Motivation

- Nuclear Magnetic Resonance Spectroscopy
 - Gain knowledge about protein structure
 - Study how mutations lead to diseases
- Problems
 - Generates large amounts of data
 - Data analysis is slow and error prone
- Goal
 - Automate the assignment process
 - Decrease human error
 - Increase productivity

Nuclear Magnetic Resonance (NMR)

- Used to obtain structural information
 - Chemical shift values
- HNCACB experiment
 - Generates C_{lpha} and C_{eta} residue i and i-1
- CBCA(CO) NH experiment
 - Generates C_{α} and C_{β} for residue i
 - Confirms residue data

Introduction ○ ○

Chemical Shift Values

HNCACB

Data Collection Time Line

- Protein production
 - At least 5 days [1]
- NMR Experiments
 - 1 to 2 days per spectrum involved [1]
- Assignment can begin
- ***** graphic ******

Manual Methods

Initialization

- Input
 - Expected amino acid sequence
 - Covered to expectation chemical shift values
 - Stored as the protein chain
 - NMR chemical shift data
 - C_{α} and C_{β} for residue i and i-1
 - Stored in a tile
- Missing data
 - Place holder tile generation
- Grouping

Grouping

Starting the assignment

• Include Diagram of first step in the assignment process

Cost Calculation

- Accuracy matching the protein chain residue
- Accuracy matching the tile above current tile
- Cost of all tiles place before current tile
 - Obtained from parent node

Assignment

Generating child nodes

The node with the lowest cost is selected

***** Include graphic ******

Goal State

- Child nodes are generated until goal state is reached
- Goal state
 - All tiles are placed

Time of Assignment

Assignment Issues

- Missing data decreases accuracy
 - increases assignment time
- ****** add more or remove slide *******

Future Goals

- Parallelization
 - Decrease assignment time
 - Allow for lager data sets
- Machine learning
 - Increase accuracy of assignment
 - Optimize cost calculation

Bibliography

Sean Cahill and Mark Girvin.

Introduction to 3d triple resonance experiments.

2012.