

EXAMEN DE FIN D'ÉTUDES SECONDAIRES

Session 2016

ÉPREUVE ÉCRITE	Branche : Mathématiques I
Section: B	N° d'ordre du candidat :
Date de l'épreuve : 15 septembre 2016	Durée de l'épreuve : 3 Å

Question I

15 points [(7+3)+(3+2)]

- 1) On donne le polynôme à variable complexe $P(z) = 2z^3 + (-12 12i)z^2 + 42iz + 30 10i$.
 - a) Résoudre P(z)=0 sachant que le polynôme P admet une racine imaginaire pure.
 - b) Soient A, B et C les points du plan complexe ayant comme affixes les racines de l'équation P(z) = 0. En utilisant les complexes étudier la nature du triangle ABC.
- 2) Dans le plan de Gauss on donne les points D d'affixe $z_D = \frac{1}{2} + \frac{\sqrt{3}}{2}i$, E d'affixe $z_E = \frac{1}{2} \frac{\sqrt{3}}{2}i$, F d'affixe $z_F = \frac{3}{2}i$ et G d'affixe $z_G = \frac{3\sqrt{3}}{4} \frac{3}{4}i$.
 - a) Calculer $\frac{z_D}{z_F}$ et $\frac{z_E}{z_G}$ et donner les résultats sous forme trigonométrique.
 - b) En déduire que le segment [DE] est l'image du segment [FG] par la composée $r \circ h$ d'une rotation r et d'une homothétie h desquelles on précisera les caractéristiques.

Question II 15 points [3+(3+3)+(3+3)]

- 1) On tire simultanément cinq cartes dans un jeu de 52 cartes. Combien y-a-t-il de mains différentes comportant exactement deux rois et deux cœurs.
- 2) Un joueur de basket marque un panier à trois points avec une probabilité de 0,42. Il tire neuf fois dans les mêmes conditions.
 - a) Calculer la probabilité pour qu'il marque au moins deux fois.
 - b) Combien de fois doit-il tirer pour que la probabilité de marquer au moins une fois dépasse 95%?
- 3) Une urne contient n boules rouges et 5 boules bleues (n ≥ 2). Un joueur tire simultanément deux boules de l'urne. Il gagne 10€ si les deux boules tirées sont rouges. Il gagne 2€ si les deux boules tirées sont bleues. Il perd 3€ si les deux boules sont de couleurs différentes. On note X la variable aléatoire donnant le gain (algébrique) du joueur sur un tirage.
 - a) Donner la loi de probabilité de X.
 - b) Calculer l'espérance mathématique de gain. Pour quelle(s) valeur(s) de n le jeu est-il équitable ?

Question III 16 points [(5+5)+6]

- 1) Dans un repère orthonormé $(O; \vec{i}, \vec{j})$, on donne la conique Γ d'équation $x^2 \frac{1}{2}y^2 + 4x + y + \frac{3}{2} = 0$.
 - a. Identifier Γ et donner ses éléments caractéristiques (centre, axe focal, sommets, foyers, directrices, asymptotes éventuelles, excentricité) dans $(0; \vec{\iota}, \vec{j})$.
 - b. Déterminer des équations réduites des tangentes à Γ perpendiculaires à la droite d d'équation $y = -\frac{1}{2}x + 15.$
- 2) Identifier la courbe Γ d'équation $2x-6=-\sqrt{15-5y^2-10y}$ et tracer Γ dans un repère orthonormé d'unité 2 cm.

Question IV 14 points (3+11)

1) Dans un repère orthonormé $\left(O;\vec{i},\vec{j}\right)$, on considère la courbe Γ suivante :

$$\Gamma : \begin{cases} x = -2 + 4\cos\theta \\ y = 3 + 3\sin\theta \end{cases} \quad \theta \in [0; 2\pi].$$

Identifier Γ .

2) Soit E l'ellipse d'équation $\frac{x^2}{4} + \frac{y^2}{9} = 1$. Soit M_0 un point quelconque de E , non situé sur l'axe des ordonnées, T la tangente à E en M_0 , Δ la perpendiculaire à T en M_0 . Si Δ et l'axe des ordonnées sont sécants, on appelle M_1 leur point d'intersection et I le milieu de $\left[M_0M_1\right]$. Déterminer l'ensemble L des points I lorsque M_0 décrit E .