Exam 1

Key	
Name	

Don't get bogged down, and show your work! If you're stuck, try another problem. Remember to put units on everything!

True or False Section [2 points each; +2 for correct, 0 for no response, -1 for incorrect!]

- The chemical potentials of pure substances can be measured directly in the laboratory
- ii) For a two-component P-x-y diagram at constant T, an azeotrope exists at compositions where $\left(\frac{\partial P}{\partial x_{A}}\right)_{T} = \left(\frac{\partial P}{\partial y_{A}}\right)_{T} = 0$ True
- iii) For any pure component, the fugacity f_i approaches zero at low pressures (i.e., $P\rightarrow 0$). rue
- iv) An azeotrope occurs at a relative volatility of zero.
- v) The Boltzmann equation links the number of possible microstates with the enthalpy of a system.

Problem 1 [30 points]: (a) List three key assumptions that must be made during the derivation of Raoult's law $(y_iP = x_iP_i^{sat})$. For two of these three assumptions, show how Raoult's law can be generalized so that the assumptions are no longer necessary.

(b) A liquid mixture of 40 mole% M and 60% W is in equilibrium with a vapor consisting only of M and W. The temperature and pressure are 98°C and 1800 mm Hg. The vapor pressures of M and W at 98°C are 4533 mm Hg and 1392 mm Hg, respectively. Use the given data to provide a rationale for Raoult's law being valid or invalid for this system.

1800 mily = (0.4) (4533 mily) + (0.6) (1392 mily) 18 com/ly = 2648 mm Hg

i. R. L. ij Exam 1, Page 1 of 3

Problem 2 [30 points]: A binary mixture of benzene (1) and para-xylene (2) with a 60/40 molar ratio is kept in a tank at 90°C with adjustable pressure.

(a) Predict the range of pressures in the tank for which a vapor and a liquid phase will be observed if Raoult's law can be used to describe the system.

(b) For a pressure of 0.52 bar, predict the composition of the liquid and vapor phases, as well as the fraction of the mixture that is in the liquid phase.

the mixture that is in the liquid phase.

VLE: 0.52 Ban =
$$\times_1 \rho_1^A + (1-\chi_1)\rho_2^A$$
 $\longrightarrow \chi_1 = 0.676$
 $\searrow_1 = 0.676$
 $\searrow_2 = 0.676$
 $\searrow_3 = 0.676$
 $\searrow_4 = 0.676$
 $\searrow_4 = 0.676$
 $\searrow_5 = 0.676$
 $\searrow_5 = 0.676$
 $\searrow_7 = 0.676$
 $\searrow_7 = 0.676$
 $\searrow_7 = 0.676$

(c) The molar volume is given by the expression: $\hat{V} = 109.4 - 19.4 \, x_1 \, \left[\frac{cm^3}{mol}\right]$. Derive expressions for the partial molar volume of each component.

$$\frac{d\hat{V}}{dx} = -19.4 \qquad V_1 = \hat{V} + x_2 \frac{d\hat{V}}{dx} \qquad V_2 = \hat{V} - x_1 \frac{d\hat{V}}{dx}$$

$$V_1 = 109.4 - 19.4 \times_2 \qquad V_2 = 109.4 - 19.4 \times_1 - 19.4 \times_1$$

$$V_1 = 90 \text{ cm}^3 / \text{N}$$

$$V_2 = 109.4 \text{ cm}^3 / \text{N}$$

$$V_2 = 109.4 \text{ cm}^3 / \text{N}$$

$$Exam 1, Page 2 of 3$$

Problem 3 [30 points]:

(a) What is the chemical potential change of liquid ethanol going from 1 bar at 298K to 100 bar at 298K? [kJ/mol]

$$||\mathbf{k}||_{\mathcal{A}_{E}}||\mathbf{k}||_{\mathcal$$

(c) What is the free energy of mixing 1 mol water and 1 mol of ethanol at 298K? [kJ/mol]

$$\begin{array}{lll}
& \Delta G_{mix}, system = \Delta G_{mix} - \Delta G_{mix} \\
& \text{Freduced} & \text{faced} \\
& \text{Freduced} & \text{f$$

Table B.2: Constants for the Antoine Equation for Vapor Pressures of Pure Species

$$\ln P^{\text{sat}}/\text{kPa} = A - \frac{B}{t/^{\circ}\text{C} + C}$$

Latent heat of vaporization at the normal boiling point (ΔH_n) , and normal boiling point (t_n)

•		Parameters for Antoine Eqn.			Temp. Range	ΔH_n	t_n
Name	Formula	A [†]	В	C	°C	kJ/mol.	°C
Acetone	C ₃ H ₆ O	14.3145	2756.22	228.060	-26 - 77	29.10	56.
Acetic acid	$C_2H_4O_2$	15.0717	3580.80	224.650	24 142	23.70	117.
Acetonitrile*	C_2H_3N	14.8950	3413.10	250.523	-27 - 81	30.19	81.
Benzene	C_6H_6	13.7819	2726.81	217.572	6 - 104	30.72	80.
iso-Butane	C_4H_{10}	13.8254	2181.79	248.870	-83 7	21.30	-11.
n-Butane	C ₄ H ₁₀	13.6608	2154.70	238.789	-73 - 19	22.44	-0.
l-Butanol	$C_4H_{10}O$	15.3144	3212.43	182.739	37 138	43.29	117.
2-Butanol*	$C_4H_{10}O$	15.1989	3026.03	186.500	25 - 120	40.75	99.
iso-Butanol	$C_4H_{10}O$	14.6047	2740.95	166.670	30 - 128	41.82	107.
tert-Butanol	$C_4H_{10}O$	14.8445	2658.29	177.650	10 — 101	39.07	82.
Carbon tetrachloride	CCl ₄	14.0572	2914.23	232.148	-14 - 101	29.82	76.
Chlorobenzene	C ₆ H ₅ Cl	13.8635	3174.78	211.700	29 159	35.19	131.
1-Chlorobutane	C ₄ H ₉ Cl	13.7965	2723.73	218.265	-17 - 79	30.39	78.
Chloroform	CHCl ₃	13.7324	2548.74	218.552	-23 - 84	29.24	61
Cyclohexane	C_6H_{12}	13.6568	2723.44	220.618	9 105	29.97	80
Cyclopentane	C_5H_{10}	13.9727	2653.90	234.510	-35 - 71	27.30	49
n-Decane	$C_{10}H_{22}$	13.9748	3442.76	193.858	65 203	38.75	174
Dichloromethane	$CH_2\widetilde{Cl_2}$	13.9891	2463.93	223.240	-38 - 60	28.06	39
Diethyl ether	$C_4\tilde{H}_{10}\tilde{O}$	14.0735	2511.29	231.200	-43 55	26.52	34
1,4-Dioxane	$C_4H_8O_2$	15.0967	3579.78	240.337	20 105	34.16	101
n-Eicosane	C ₂₀ H ₄₂	14.4575	4680.46	132.100	208 - 379	57.49	343
Ethanol	C_2H_6O	16.8958	3795.17	230.918	3 96	38.56	78
Ethylbenzene	C_8H_{10}	13.9726	3259.93	212.300	33 - 163	35.57	136
Ethylene glycol*	$C_2H_6O_2$	15.7567	4187.46	178.650	100 - 222	50.73	197
n-Heptane	C_7H_{16}	13.8622	2910.26	216.432	4 — 123	31.77	98
<i>n</i> -Hexane	$C_{6}H_{14}$	13.8193	2696.04	224.317	-19 - 92	28.85	68
Methanol	CH ₄ O	16.5785	3638.27	239.500	-11 - 83	35.21	64
Methyl acetate	$C_3H_6O_2$	14.2456	2662.78	219.690	-23 - 78	30.32	56
Methyl ethyl ketone	C ₄ H ₈ O	14.1334	2838.24	218.690	-8 - 103	31.30	79
Nitromethane*	CH ₃ NO ₂	14.7513	3331.70	227.600	56 146	33.99	101
n-Nonane	C ₉ H ₂₀	13.9854	3311.19	202.694	46 178	36.91	150
iso-Octane	C_8H_{18}	13.6703	2896.31	220.767	2 - 125	30.79	99
<i>n</i> -Octane	C_8H_{18}	13.9346	3123.13	209.635	26 — 152	34.41	125
<i>n</i> -Pentane	C_5H_{12}	13.7667	2451.88	232.014	-45 58	25.79	36
Phenol	C ₆ H ₆ O	14.4387	3507.80	175.400	80 208	46.18	181
1-Propanol	C_3H_8O	16.1154	3483.67	205.807	20 116	41.44	97
2-Propanol	C_3H_8O	16.6796	3640.20	219.610	8 100	39.85	82
Toluene	C ₇ H ₈	13.9320	3056.96	217.625	13 136	33.18	110
Water	H ₂ O	16.3872	3885.70	230.170	0 — 200	40.66	100
o-Xylene	C ₈ H ₁₀	14.0415	3358.79	212.041	40 172	36.24	144
m-Xylene	C_8H_{10}	14.1387	3381.81	216.120	35 — 166	35.66	139
p-Xylene	C ₈ H ₁₀	14.0579	3331.45	214.627	35 — 166	35.67	138

Table A.2: Values of the Universal Gas Constant

$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1} = 8.314 \text{ m}^3 \text{ Pa mol}^{-1} \text{ K}^{-1}$	
$= 83.14 \text{ cm}^3 \text{ bar mol}^{-1} \text{ K}^{-1} = 8.314 \text{ cm}^3 \text{ kPa mol}^{-1} \text{ K}^{-1}$	
= $82.06 \text{ cm}^3 \text{ (atm) mol}^{-1} \text{ K}^{-1} = 62,356 \text{ cm}^3 \text{ (torr) mol}^{-1} \text{ K}^{-1}$	
= 1.987 (cal) mol ⁻¹ K ⁻¹ = 1.986 (Btu)(lb mole) ⁻¹ (R) ⁻¹	1
$= 0.7302(ft)^{3} (atm)(lb mol)^{-1}(R)^{-1} = 10.73(ft)^{3} (psia)(lb mol)^{-1}(R)^{-1}$. 1
$= 1,545(ft)(lb_f)(lb mol)^{-1}(R)^{-1}$	