UNITED STATES AIR FORCE ACADEMY

ECE 281

Lesson 14 Notes

Objectives:

- Demonstrate ability to analyze and implement an ALU using a schematic diagram
- Given a hardware schematic, correctly identify a particular shifter or rotator
- Demonstrate how to multiply a number by 2^N using a LEFT bit shift of N bits
- Demonstrate how to divide a number by 2^N using a RIGHT bit shift of N bits
- Understand the difference between arithmetic and logical shifts and rotators

Arithmetic Logic Unit (ALU): component capable of performing various logic functions, like add, subtract, AND, OR, etc.

What are the engineering design considerations with an ALU vs individual components for the various logic functions?

<u>Design Challenge Problem</u>: build an ALU with the following functionality:

- Must be able to perform AND (both A AND B and A AND B')
- Must be able to perform OR (both A OR B and A OR B')
- Must be able to perform ADDITION (A + B)
- Must be able to perform SUBTRACTION (A B)
- Must be able to perform Magnitude Comparison (Test if A < B)

Required Components: given the above requirements, what components (i.e. building blocks) will be required?

Control Signals			
F ₂	F ₁	F ₀	Function
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Shifting: is a process used to reposition bits of data, either to the left or to the right. We will focus on logical and arithmetic shifts in this class.

Logical Shift:

Left Logical Shift:

Right Logical Shift:

Arithmetic Shift:

Left Arithmetic Shift:

Right Arithmetic Shift:

What is the significance of the Right Arithmetic Shift?

<u>Rotator:</u> similar to shifter, but the bit that falls off one end attaches to the other end.

Notation: 10110001 in 2's complement is:

Function	Input		Bits	Output	Decimal
Left Logical Shift	10110001	<<	1		
Left Arithmetic Shift	10110001	<<<	1		
Left Rotator	10110001	ROL	1		
Right Logical Shift	10110001	>>	1		
Right Arithmetic Shift	10110001	>>>	1		
Right Rotator	10110001	ROR	1		

Function	Input		Bits	Output	Decimal
Left Logical Shift	10110001	<<	2		
Left Arithmetic Shift	10110001	<<<	2		
Left Rotator	10110001	ROL	2		
Right Logical Shift	10110001	>>	2		
Right Arithmetic Shift	10110001	>>>	2		
Right Rotator	10110001	ROR	2		

Function	Input		Bits	Output	Decimal
Left Logical Shift	10110001	<<	3		
Left Arithmetic Shift	10110001	<<<	3		
Left Rotator	10110001	ROL	3		
Right Logical Shift	10110001	>>	3		
Right Arithmetic Shift	10110001	>>>	3		
Right Rotator	10110001	ROR	3		