Hydrogeologic Characterization of Acid Mine Drainage (AMD) Along Belt Creek Near Belt, Montana

Report No. 217

MONTANA University System

STATE MANY NYS COLLECTION

AUG \$ 0 2006

MONTANA STATE LIBRAR 1815 E. 6th AVE. HELENA, MONTANA 59620

WATER CENTER

Hydrogeologic Characterization of Acid Mine Drainage (AMD) Along Belt Creek Near Belt, Montana

Report No. 217

Jon Reiten, Shawn Reddish & Justin Brown University of Montana – Montana Tech Montana Bureau of Mines and Geology Billings, Montana

2005

A 104B Project initiated 2002

The project was financed in part by the Department of the Interior, U.S. Geological Survey, through the Montana University System Water Center, as authorized under the Water Resources Research Act of 1984 (PL98-242) as amended by Public Law 101-397.

The contents of this publication do not necessarily reflect the views and policies of the Department of the Interior or the Montana Water Center, nor does mention of trade names or commercial products constitute their endorsement or recommendation for use by the United States Government.

An electronic copy of this report is available on MONTANA WATER web site at:

http://watercenter.montana.edu/research

Hydrogeologic Characterization of Acid Mine Drainage (AMD) along Belt Creek near Belt, MT.

Final Technical Report

by Jon Reiten, Shawn Reddish, and Justin Brown
Montana Bureau of Mines and Geology

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY	1
INTRODUCTION	4
Background	5
Previous Investigations	
Project Sponsor and Funding Sources	
Methods	
PROJECT SETTING	16
Climate, Physiography, and Land Use	16
Geology	21
Structure	
HYDROGEOLOGY	25
Aquifers/Aquitards	25
Ground-Water Flow	
Water-Level Fluctuations	
Aquifer Properties	34
Specific Capacity Evaluation	
Slug Tests	
Surface Water	36
AMD Discharge	
Belt Creek	
Small Streams and Springs	45
WATER-QUALITY ASSESSMENT	48
AMD Water	
Surface Water	
Belt Creek and Box Elder Creek	55
Sunburst Springs	56
Ground Water	
Alluvial aquifer	60
Sunburst Aquifer	
Cutbank Aquifer	
Madison Aquifer	
Other Aquifers	65
ISOTOPE ASSESSMENT	
Stable Isotopes	
Average Residence Time of Ground Water	69

ACID	MINE DRAINAGE IMPACTS	76
	Loading from Direct AMD Discharge	
	Loading from Ground Water	
	Transects Across Belt Creek	
	Public Well	80
REM	EDIATION	80
REFI	ERENCES	84
	LIST OF FIGURES	
Figure 1.	The town of Belt is located on the north flank of the Little Belt Mountains in central Montana.	6
Figure 2.	Corroded municipal water line from the town of Belt	8
Figure 3.	Map showing locations of wells and springs inventoried in the Belt a	rea.12
Figure 4.	Map showing surface-water inventory sites.	13
Figure 5.	Comparison of Great Falls precipitation as cumulative departure from monthly normal to recorded monthly precipitation and average long-term monthly precipitation	18
Figure 6.	Comparison of precipitation from the Reddish Weather Station near Belt to long-term average precipitation at Great Falls	19
Figure 7.	Land use in the Belt area	20
Figure 8.	Geologic Map of the Belt area.	23
Figure 9.	Potentiometric surface map of the Kootenai aquifer system near the Anaconda Mine.	29
igure 10.	Hydrograph of water-level fluctuations in the Madison aquifer	31
igure 11.	Hydrographs comparing water-level fluctuations of Swift, alluvial, and Madison aquifers with stream flow	32
igure 12.	Hydrographs of water-level fluctuations in the Kootenai aquifer system.	33

Figure 13.	Anaconda Mine AMD discharge at the local "swimming hole" in Belt Creek
Figure 14.	The French Coulee Mine Drain collects AMD from several reclaimed mines
Figure 15.	Outlet of the Lewis Coulee Storm Drain where it enters Belt Creek40
Figure 16.	Collection area for AMD from "Lewis Coulee above Castner Park"41
Figure 17.	AMD from "Lewis Coulee above Castner Park" seeps into an unlined ditch.
Figure 18.	Stream flows along Belt Creek
Figure 19.	Hydrographs of small streams in the Belt area47
Figure 20.	Schoeller diagram depicting average major ion concentrations from water sources in the Belt area50
Figure 21.	Aluminum hydroxide (white material) discharging into Belt Creek at the Belt "city swimming hole"53
Figure 22.	Piper plot of AMD water in the Belt area54
Figure 23.	Piper plot of water samples from Belt Creek and Box Elder Creek58
Figure 24.	Piper plot of water samples from wells in the Kootenai formation59
Figure 25.	Piper plot of water samples from wells completed in alluvium of Belt Creek and Box Elder Creek
Figure 26.	Piper plot of water samples from the Madison aquifer in the Belt area64
Figure 27.	Piper plot of water samples from other aquifers in the Belt area
Figure 28.	Map and chart showing results of oxygen-18 isotope sampling by water source
Figure 29.	Map and chart showing tritium concentration by water source
Figure 30.	Map showing average residence time of ground water74
Figure 31.	Loading to Belt Creek calculated from AMD samples77
Figure 32.	Belt Creek transects

Figure 33.	Land use in ground-water recharge area	82
	LIST OF TABLES	
Table 1.	Stratigraphic units in the mine area.	22
Table 2.	Aquifer property analyses by specific capacity values	35
Table 3.	Aquifer properties estimated from median specific capacity values for selected aquifers.	35
Table 4.	The average concentration of major anion and cations (meq/L from each source and type of water based on dominate ions	49
Table 5.	Age date of ground water estimated from tritium concentrations	69
Table 6.	Summary of CFC results	75
Table 7.	Data used for loading calculations.	78
	LIST OF APPENDICES (in back of report)	
Appendix A.	Inventory data from wells, springs, and AMD in the Belt area	86
Appendix B.	Ground-Water Hydrographs	89
Appendix C.	Surface-Water Field Measurements	116
Appendix D.	AMD Hydrographs and Field Measurements	126
Appendix E.	Water-Quality Data	133
Appendix F.	Isotope Data	138

EXECUTIVE SUMMARY

Decades of underground coal mining have resulted in acid mine drainage (AMD) that has contaminated ground-water and surface-water resources in Belt, Montana. The AMD has lowered the pH of Belt Creek and increased trace metals concentrations in the stream. The overall goal of work in the Belt area was to define the hydrogeologic regime in the vicinity of Belt so that recharge to old mine workings, the source of acid mine drainage, could then be delineated with a reasonable level of certainty. This project was funded by the Montana Department of Environmental Quality (MDEQ) 319 Program with supplemental funding from the MDEQ Remediation Division-Abandoned Mine Lands, Montana Water Resource Center, and the Montana Bureau of Mines and Geology (MBMG). Work is continuing under additional task orders through MDEQ Remediation Division-Abandoned Mine Lands.

This project consisted of a phased approach to define and mitigate water quality problems in Belt Creek near the town of Belt, which is 23 miles southeast of Great Falls. Phase 1 is a hydrogeologic investigation to determine contaminant sources and their relative contributions, and to identify and evaluate mitigation measures. Phase 2 will be based on a later proposal to apply specific measures to reduce recharge to the Anaconda Mine and monitor their success.

Shawn Reddish, under the supervision of Jon Reiten, conducted work documenting the hydrogeologic conditions surrounding the abandoned Anaconda Copper Mining Company Mine (Anaconda Mine) near Belt. Specific tasks included inventorying, sampling for water quality and collecting samples for age dating water from wells, springs, adits and seeps. These tasks were conducted to determine if the recharge to the mine workings was local or regional. The inventory process included collecting Geographic Positioning System (GPS) coordinates of pertinent locations, measuring specific conductivity (SC), pH, oxidation-reduction potential (ORP), dissolved oxygen (DO); and determining the geologic source of water in wells, springs, adits and seeps. These field data were then evaluated to screen for the most useful sampling sites; all information was entered into MBMG Ground Water Information Center (GWIC) a database accessible by the public.

Water levels at 28 wells and discharges at 2 springs were monitored. Some of these wells were measured monthly for about 2 years to monitor the fluctuations of local aquifers. Several of these wells and springs have been sampled for tritium, helium-3/tritium and

chlorofluorocarbons (CFC) to determine the average residence time of the water. All sampled wells have tritium concentrations greater than background pre-nuclear testing levels. This suggests a modern (post nuclear testing) age for ground water in the alluvial, Kootenai, Morrison, Swift, and Madison aquifers. CFC samples also indicated that all of the recharge is relatively recent. Several samples from the Madison aquifer were supersaturated with CFCs, but the cause of this supersaturation is unknown. The results of helium-3/tritium dating of two water samples also supports the relatively young age of water in aquifers near Belt.

Stream flows at 9 sites were also measured monthly in the study area. Differences in flows between measuring sites were used to evaluate gaining or losing reaches of the streams. Field parameters, including SC, pH, ORP, and DO were measured at each site. The AMD discharge, including flow and field parameters, was monitored at 5 sites on a monthly basis for approximately 2 years. In addition to monthly measurements, an H-flume installed by another project in the area was set up with a pressure transducer to record the AMD discharge from the mine adit. Based on this work and other ongoing MBMG research, the direct loading to Belt Creek from AMD was estimated to be 103,300 pounds of iron per year and 64,986 pounds of aluminum per year. Indirect loading to Belt Creek from other AMD sources moving through alluvial sediments was estimated to be 40,080 pounds of iron per year and 28,327 pounds of aluminum per year. The main source of AMD is the discharge from the Anaconda Mine, which averages about 132 gallons per minute (gpm) or about 213 acre feet per year. The primary purpose of this work has been to identify the source of water recharging the mine workings and recommend possible methods to reduce the recharge which would result in a decrease or possible elimination of AMD loading to Belt Creek.

Several possible sources of recharge were suggested when this project started; others developed as new information became available. Possible sources include: 1) recharge from regional aquifers such as the Madison aquifer, 2) upward seepage from deep aquifers along fault planes, 3) localized recharge from precipitation directly overlying the mines or up-gradient recharge areas, 4) water loss from Box Elder Creek, and 5) focused recharge through shallow depressions overlying the mines. Water-level data from wells completed in the Madison aquifer, below the mine workings and in areas surrounding the mine, indicate the static water-level in the Madison aquifer to be about 400 feet below the mine voids.

Therefore, the Madison aquifer is not hydrologically connected to the workings, nor is it a likely source of recharge to the mines. Other regional aquifers do not appear to be likely sources either, although these have not been completely ruled out. Upward seepage along fault planes does not appear to be a likely source of recharge; based on the downward hydraulic gradients. Box Elder Creek is at a higher elevation than the mine workings and therefore has a potential for losses to the mine. Flow data along Box Elder are currently inconclusive to document stream losses. The most likely source of recharge to the mines is infiltration of precipitation on the land surface overlying the mine workings; including upgradient areas that recharge the localized Kootenai aquifer system.

A significant source of water to the Anaconda Mine (ACM) appears to be from the overlying Kootenai Formation; which is about 260 feet thick in the Belt area. A potentiometric-surface map of the Kootenai aquifer was constructed based on well inventory and monitoring measurements. This map was contoured using measurements from 48 wells and springs near the mine. The Kootenai potentiometric-surface map combines head data from aquifers in both the Sunburst and Cutbank Members of the Kootenai Formation. As a result, the map shows only general water-level conditions in the mapped area. Additional wells at critical locations will be needed to accurately depict ground-water flow. Ground water is interpreted to flow from a divide located about 3.5 miles south of the Anaconda Mine. The ground-water divide, south of the mine, appears to be both topographically and structurally controlled. The topographically high area forming the ground-water divide is located just north of a paired, anticline-syncline structure that trends north 45 degrees east. Only precipitation falling north of this divide has the potential to move towards the mine. Once recharge infiltrates vertically to the saturated zone, ground-water flow is generally to the north; perpendicular to the potentiometric contours illustrated in the predominant recharge area to the mine. The upland area between Belt Creek and Box Elder Creek is highly dissected by tributaries of the two streams. These tributaries, plus the main stems of the two streams, are discharge areas for ground water moving out of the Kootenai Formation. The potential recharge area covers about 2,100 acres overlying and up-gradient of the mine. The highly dissected nature of the upland appears to cause much of the precipitation to 1) recharge a shallow ground-water flow system, and 2) cause discharge to the surface-water drainages as seeps and springs in the valley walls. Several of the springs coincide with the

contact of the Sunburst Sandstone Member (aquifer) and the underlying unnamed finegrained unit (aquitard).

Based on the data collected, it appears that recharge to the Anaconda Mine is locally derived. The recharge appears to be relatively constant; as recorded in the discharges from the mine. Fluctuations in precipitation cause significant changes in discharge from the overlying Sunburst aquifer springs. However, the mine discharges remain stable. Apparently the head increase, caused by precipitation-derived recharge, is rapidly dissipated through leakage at contact springs. As a result of this localized flow system, the volume of AMD discharging from the mine could be reduced or possibly eliminated by changing land- use in the recharge area. Other possible remediation options would be diverting flow from overlying aquifers to prevent filling the mine voids or flooding the mine voids to reduce pyrite oxidation. Growing alfalfa or other water consumptive crops would have the potential to significantly reduce infiltration and possibly decrease the AMD discharges.

INTRODUCTION

In the vicinity of Belt, the water quality of Belt Creek is currently degraded by Acid Mine Drainage (AMD) from the abandoned Anaconda Mine, as well as, smaller acidic discharges from other abandoned coal mines along Belt Creek. The overall goal of all AMD work in the Belt area is to restore the water quality of Belt Creek by reducing or eliminating all sources of AMD pollution. This will improve stream habitat, restore native fish populations and improve ground-water quality of the alluvial aquifer. This project was designed to define hydrogeologic conditions in the vicinity of Belt so that recharge to old mine workings, the primary source of AMD, could be delineated with a reasonable level of certainty. Several possible sources of recharge were suggested when this project started and others developed as new information became available. The possible sources include: 1) recharge from regional aquifers such as the Madison aquifer, 2) upward seepage from deep aquifers along fault planes, 3) localized recharge from precipitation directly overlying the mines, or up-gradient recharge areas, 4) water loss from Box Elder Creek, and 5) focused recharge through shallow depressions overlying the mines. Hydrogeologic data and waterquality information were used to document the source of recharge and to estimate potential changes in recharge rates, ground-water flow rates, and acid mine drainage discharges under

various scenarios including combinations of cropping, dewatering or other techniques that might have been found to be appropriate. Water samples from a variety of sources potentially associated with AMD was age-dated by testing for tritium, helium3/tritium and chlorofluorocarbons. With this combined hydrogeologic knowledge, best-management practices can be developed to reduce future generation of acidic discharges into Belt Creek.

Background

The town of Belt is located on the north flank of the Little Belt Mountains in central Montana (Figure 1). Decades of underground coal mining have resulted in acid mine drainage (AMD) that has contaminated ground-water and surface-water resources in Belt, Montana. The Anaconda Mine is the largest mine in the area and was developed in 1895 (Fischer, 1907). Coal was extracted from a 6-foot thick seam located in a stratigraphic position near the top of the Morrison Formation (Fischer, 1909). Although mining ended about 80 years ago, water with a pH of 2.94 is still flowing out of abandoned mine workings adjacent to, and near, the town of Belt. Acid mine drainage continues to add metals and lower the pH of Belt Creek. Belt Creek discharges acidic, metal-laden, water into the Missouri River. Belt Creek also can not support fish below the town of Belt. Previous mitigation efforts involved a development of a series of wetlands to remediate the AMD. These wetlands, however, were unsuccessful in reducing acidic discharges. Acid water recharging the alluvial aquifer along Belt Creek has rendered that aquifer unusable in some areas (Koerth, oral communication, 2002).

In 1978, the city of Belt drilled 2 public water wells. These wells were drilled through the alluvium aquifer and completed in the Madison Formation. The town of Belt is concerned that acid ground water, in the shallow alluvium along Belt Creek, might corrode the casings of the town's water wells. If corrosion to the city's well casings were to occur (including the direct damage to the city's infrastructure,) metal-laden, acidic water from the alluvium aquifer could drain down to the Madison Formation and consequently degrade that watersource.

Figure 1. The town of Belt is located on the north flank of the Little Belt Mountains in central Montana.

Belt's #2 well (GWIC ID 2315) is located near Belt Creek on "Coke Oven Flats", where coal waste was stored during mining operations. This public well is located adjacent to reclaimed mine spoils and is only about 140 feet south east from monitor well #1(MW1-GWIC ID 214917). A water quality sample extracted from this monitor well indicated very corrosive water containing high concentrations of trace metals.

In the late 1980's, the MDEQ began the reclamation of a large burning pile of coal waste located on "Coke Oven Flats" and closed several open mine portals. In 1994, the water main between the pump house and water tanks corroded and leaked. These leaks were caused by reactions of acidic ground-water and acidic soils with the metal pipe (Figure 2). The leaks were repaired when the metal water mains were replaced with plastic PVC pipe (DEQ, 2000).

Figure 2. Corroded municipal water line from the town of Belt.

Water-quality problems at Belt are caused by geochemical processes enhanced by the method of mine abandonment. Oxygen-rich meteoric waters recharging the ground-water system overlying the coal mines eventually infiltrates into mine workings that contain pyriterich waste coal and are often overlain by pyrite-rich sandstone immediately above the coal, thereby producing acid mine drainage (Wheaton and Brown, 1999). These acidic discharges flow into Belt Creek at an average rate of 132 gpm. These inflows, in addition to data for stream flow at Belt Creek, were collected as part of this project to help identify loading to Belt Creek. The AMD problem is continuous. Other studies show a direct relationship of AMD production with precipitation and infiltration (Wheaton and Brown, 1999; Osborne and others, 1987). Of particular concern is the increase in ground-water recharge brought about by the crop/fallow cropping system that overlies much of the recharge area to the mine.

Previous Investigations

In the 1980's, as part of a larger project covering the entire Great Falls coal field, the Montana Department of State Lands (currently MDEQ Remediation Division-Abandoned Mine Lands) identified a number of environmental problems associated with the historic coal mines and their ancillary facilities in the Belt area. As part of MDEQ's activities, the mine adit for the No.2 Anaconda Mine was closed. A pipe was installed to carry the acidic water, discharging from the mine, downhill where it combined with acidic water from another discharge. This combined AMD water forms a channel that flows adjacent to reclaimed mine spoils before discharging into Belt Creek.

MDEQ, along with the U.S. Bureau of Mines (USBM), installed a series of wetlands for passive treatment of acid-mine water originating from the French Coulee Mine, located in the next coulee south of the Anaconda Mine. This water is also very acidic. However, the flow is considerably less than that from the Anaconda Mine. A portion of this water was diverted into the wetlands for treatment and then discharged to Belt Creek. However, due to the high iron concentrations and harsh winter weather in the area, the wetlands were not able to achieve an acceptable level of treatment and were abandoned. Water from this location flows under the existing railroad beds, down a steep hill, and then discharges into the same channel that receives the Anaconda Mine drain water.

The United States Geologic Survey (Karper, 1998) conducted an intensive water-quality study of a number of sites in the Belt area as part of a study of acid mine drainage problems in the Stockett-Sand Coulee and Belt areas. They installed a flume and stilling well for continuous monitoring of the discharge from the Anaconda Mine and collected periodic water quality samples from various sites.

When the coal-waste area below the Anaconda Mine (and adjacent to the channel receiving acid mine water discharge) was reclaimed, a series of six, shallow, monitoring wells were installed by the MDEQ for ground-water monitoring (Tetra Tech, 1995). These wells were installed for monitoring of a proposed grouting project aimed at mitigating the discharge of contaminated ground-water into Belt Creek. However, this project was postponed and no additional data was collected from these wells.

One project (Osbourne and others, 1987) characterized hydrogeologic conditions at several abandoned mines in a similar geologic setting in the Stockett-Sand Coulee area and possible recommendations for cleanup at these sites were developed. One of the approaches discussed was to change current land uses in the recharge areas of the mines from a cropfallow system to a more water consumptive cropping pattern. Another study done by Wheaton and Brown (1999) evaluated the hydrogeology and geochemistry of the Cottonwood Mine near Stockett-Sand Coulee. Local precipitation recharges the Cottonwood Mine workings. A previous land-use change from crop fallow to the Conservation Reserve Program (CRP) appears to have significantly reduced the recharge volume and, consequently, acidic discharges from the mine were also lowered.

A concurrent project, supervised by Ted Duaime of the MBMG and funded by the MDEQ, is focusing on the hydrogeology in the area immediately surrounding the Anaconda Mine. Work has included detailed geologic mapping, remote sensing mapping, AMD sampling, stream sampling, and surface flow monitoring of streams and other discharges. The construction of nested monitoring wells in significant aquifers in the Anaconda Mine area is nearly finished. Preliminary findings of this DEQ sponsored work has been published as a MBMG open file report (Duaime and others, 2004). This open file report also contains an excellent summary of the coal mining history in the Belt area.

Project Sponsor and Funding Sources

The city of Belt was the project sponsor. Funding sources came from MDEQ section 319 grant along with funds from the Montana Water Center, Task Orders through the MDEQ Remediation Division-Abandoned Mine Lands, and the Montana Bureau of Mines and Geology.

Methods

Data collected for this project include an inventory of ground-water and surface-water conditions, water-quality samples, stable-isotope samples, tritium samples and chlorofluorocarbon samples. All data are available on the Environmental Protection Agency (EPA) Storet data base. Ground-water, surface-water, and water-quality data are available on the Montana Bureau of Mines and the Geology Ground-Water Information Center (GWIC) at (www.mbmggwic.mtech.edu). GWIC ID numbers are attached to all wells used in this report.

During this project, 72 existing water wells, 6 AMD sites, 6 monitor wells, 2 ponds, 9 stream sites and 17 springs were inventoried in the vicinity of Belt (Figures 3 and 4). The locations of the inventory sites were determined using GPS, and surface elevations were estimated from 1:24,000 topographic maps or Digital Elevation Models (DEMs). As part of the well inventory, static-water level, pumping-water level, and well depth were measured when possible and water use was identified. At surface-water sites, stream flow and spring discharge were monitored as part of the inventory. Field water-quality parameters (pH, SC, Temperature, DO, Redox) were tested at all sites that water samples could be collected. All the inventory data are summarized in Appendix A.

Figure 3. Map showing locations of wells and springs inventoried in the Belt area.

Legend

AQUIFER

- Alluvium
- Kootenai Formation Undivided
 - Sunburst Member Cutbank Member
- Morrison Formation
- Madison Formation

Swift Formation

- Highway
 - ACM Boundary
- Township Boundary
 - Section Boundary
- River/Stream

1:118,359

12

Figure 4. Map showing surface-water and AMD inventory and monitoring sites.

Between September, 2002 and October, 2004, ground-water and surface-water measurements were collected to document water-level fluctuations and changes in field water-quality parameters. Water-levels were measured monthly at 31 of the inventoried wells. Six wells, originally installed in 1995 by the Abandoned Mine Reclamation Bureau to monitor AMD, were included in the monitoring network. Two wells (GWIC ID #'s 2315 and 31992) were also measured quarterly by the MBMG ground-water characterization program. Ground-water level hydrographs were plotted with daily precipitation or stream flow and are compiled in Appendix B. Selected hydrographs are also shown in several figures within this report.

Stream flow, spring water flow rates and field water-quality parameters (pH, SC, Temperature, DO, Redox) were monitored monthly from 9 surface-water sites in the study area. During low-flow conditions, stream flow was calculated by measuring stream velocities while wading the creek at specific transect locations. During high-flow conditions, a bridge crane and weighted "fish" were used for transects when conditions were too dangerous to wade. Parshall flumes were used to measure flow in Box Elder Creek and at several AMD discharges. At some locations, flows were calibrated by gauge height or volumetric measurements (bucket and stop watch). Refer to Appendix C for field chemistry, flow measurement method, and flow rate chart data.

Acid mine drainage flow rates and field-water quality parameters were also measured monthly at five sites. Flow rates were obtained by either H-flume gauge height or volumetric measurements (bucket and stop watch). Refer to Appendix D for field chemistry, flow measurement method, and flow rate chart data.

Several ground-water samples were collected for tritium, stable isotopes, helium-3/tritium and Chlorofluorocarbons. These ground-water samples were collected after purging three casing volumes from the well (or until field water-quality parameters stabilized). Surface-water samples were collected directly from the stream or discharge. Samples were not preserved and were shipped to the appropriate laboratory for analyses as soon as possible.

The stable-isotopes of oxygen were analyzed on 15 samples to better delineate the source(s) of ground-water recharge. The samples were analyzed by the University of Waterloo in Ontario, Canada. Isotope contents are expressed in terms of the difference

between the measured ratio of isotopes (i.e., sampled $^{18}O/^{16}O$) to a standard reference ratio of the isotopes (i.e. reference $^{18}O/^{16}O$) and are expressed in a delta notation (δ) in parts per thousand (permill). The formula for this expression (using ^{18}O as an example) is as follows:

$$\delta^{18}$$
O sample = $\frac{^{18}O/^{16}O \text{ sample} - ^{18}O/^{16}O \text{ VSMOW}}{^{18}O/^{16}O \text{ VSMOW}}$

The standard reference ratios (Coplen and kendall, 2000) for the isotopes used in this investigation are as follows:

Hydrogen (δ^2 H): VSMOW (Vienna Standard Mean Ocean Water) Oxygen (δ^{18} O): VSMOW

Tritium samples were collected to determine the age of ground-water, surface-water, and AMD-water in the study area. The tritium samples were collected from ground-water wells by purging wells and filling unpreserved bottles. Surface and AMD water were collected at the source. These tritium analyses were performed by The University of Waterloo in Ontario, Canada.

Chlorofluorocarbon (CFC) samples were also collected as another estimate of the average age of ground water. Samples were collected by attaching one end of low-permeability rubber viton tubing to an outside faucet, while placing the other end inside a small glass jar. The jars were then purged with water to avoid any atmospheric contamination. The samples were collected in bottles and sealed with tape and sent to the University of Miami for analysis.

Water samples were collected from 21 wells, 14 surface-water sites, and 4 AMD sites for common-ion and trace constituent analyses. Ground-water samples were collected after purging the well approximately three casing volumes. Stream-water samples were collected at individual flow measurement sites along stream transects and combined into a composite sample. Field parameters of pH, SC, ⁰C, DO, and ORP were also recorded at time of sample collection. The samples were collected in accordance with standard field and laboratory protocols. The analyses for the water-quality samples were conducted by the MBMG analytical laboratory in Butte, Montana. Refer to Appendix E for lab analyses.

PROJECT SETTING

Climate, Physiography and Land Use

Belt has a semiarid climate with warm summers, cold winters and moderate amounts of precipitation. Because of the location near the boundary between the Great Plains and the Rocky Mountains, the climate is influenced by characteristics of both regions. This climate summary is based on records from the closest long-term climatic station about 25 miles northwest of Belt at the Great Falls Airport (http://www.wrcc.dri.edu). The average annual precipitation for the period of record (July, 1948-December, 2004) is 14.77 inches. The average snowfall is 60.6 inches. Much of the precipitation falls during the growing season. The average monthly maximum temperature is 56.4 degrees F. and the average monthly minimum is 33.2 degrees F. Winter is cold, but temperatures are often moderated by extended periods of mild temperatures brought on by strong, southwesterly, Chinook winds. Spring is usually cloudy and cool with frequent episodes of rain or snow. Summer characteristically has warm days and cool nights with frequent afternoon and evening thunderstorms. Fall months cycle between cool, moist and warm, dry conditions.

Climatic conditions during the study period (2002-2004) were drier than normal (Figure 5). A local climate station was established in April, 2003, located approximately three miles southwest of Belt at the Reddish Ranch (T 18N R 6E NW1/4 Section 14). Data from this site, and the long-term monthly averages at the Great Falls Airport, are compared in Figure 6. During the 21 month period from April, 2003 through December, 2004, precipitation at Belt was 6 inches less than the average at the Great Falls Airport. Much of the deficit in precipitation was during the typically wet growing season months; especially in 2003.

The reclaimed main access to the Anaconda Mine is located within the city limits of Belt with the main haulage opening on the west side of the Belt Creek valley. The Anaconda Mine underlies the drainage divide between the Belt Creek watershed and the Box Elder Creek watershed (part of the Upper Missouri-Dearborn River watershed). The land surface rises to the southwest from an elevation at Belt, about 3,500 feet above sea level, towards the Little Belt Mountains. The highest elevation in the study area is about 5,000 feet. Many

springs exist in the area; especially in the Box Elder Creek drainage. These springs flow year round with pronounced seasonal fluctuations.

Several of the main streams in the area, including Belt Creek and Box Elder Creek, are intermittent. Most of the flow in Belt Creek is from snowmelt in the Little Belt Mountains. Stream flow in Belt Creek typically peaks in the late spring.

Farming and ranching are the main land uses in the Belt area (Figure 7). Small grain crops and hay meadows account for about 30,564 acres. Rangeland accounts for about 46,197 acres. Urban and commercial development account for about 303 acres. Other land uses make up the remaining 62 acres. Coal mining was historically important, but hasn't been a significant part of the economy for over 80 years. Recently, Belt has become a bedroom community for Great Falls and it appears associated housing development is likely to increase.

Figure 5. Comparison of Great Falls precipitation as cumulative departure from monthly normal to recorded monthly precipitation and average long-term monthly precipitation.

Figure 6. Comparison of precipitation from the Reddish Weather Station near Belt to long-term average precipitation at Great Falls.

Land Use	Acres	%
Other	61.60	0.07%
Urban	302.94	0.36%
Forest	6021.35	7.24%
Range/Pasture	46197.24	55.56%
Cropland	30564.46	36.76%
Total	83147.59	100.00%

Figure 7. Land use in the Belt area (USGS, 2000).

Geology

A geologic map of the Belt area (Vuke and others, 2002) showing the extent of surficial geologic units is illustrated in Figure 8. The topographic divide overlying the Anaconda Mine consists of weathered mudstone and sandstone of the Kootenai Formation. Thin soils are developed on the fractured sandstone beds. These soils contain abundant cobble and boulder-sized tabular slabs of weathered sandstone. The flood plain and alluvial deposits underlying the Belt Creek valley are up to 40 feet thick. The alluvium is composed of yellowish-brown to gray gravel, sand, silt, and clay. Coal was mined from the upper part of the Morrison Formation which is overlain by the lower Kootenai Formation. A few miles north of Belt, the upper Kootenai and overlying Blackleaf Formation are also exposed and are overlain by glacial and Tertiary terrace gravels. In the mine area, the Morrison Formation is underlain by the Swift Formation and the Madison Group. However, within a few miles south of Belt; other units of the Big Snowy Group appear between the Swift Formation and the Madison Group: the Sawtooth Formation, Otter Formation, and Kibbey Formation. Age, lithology, thickness, and depositional environments of these stratigraphic units are summarized in Table 1.

Several wells were constructed in and around the Anaconda Mine as part of an ongoing DEQ funded project. Based on lithologic logs of wells drilled in fall 2004, an average of about 256 feet of the Kootenai Formation overlies the Anaconda Mine (Duaime and others, 2004). The Kootenai Formation is comprised of five distinct members composed of interlayered beds of siltstone, mudstone, and sandstone; two of which are relatively clean and thick sandstone water-bearing units. The uppermost unit (Kk5) is predominantly red mudstone and sandstone, but is not present overlying the mine. The Fourth member (Kk4) is predominantly thin-bedded layers of sandstone at the land surface overlying the mine and averages about 80 feet thick. The Third member (Kk3) is the uppermost sandstone unit and is also referred to as the Sunburst Sandstone Member. This unit is about 45 feet thick at the mine and is composed of light-yellowish-brown, well sorted, resistant, quartzose sandstone. The Second member (Kk2) is about 115 feet thick at the mine and is predominantly red mudstone with limestone lenses. The basal unit is the Cutbank Sandstone Member (JKk1). The Cutbank Sandstone is resistant, well sorted, quartz sandstone up to 100 ft thick in some

locations (Vuke and others, 2002). The Cutbank Sandstone immediately overlies the Morrison coal bed above the old mine workings.

Table 1. Stratigraphic units in the mine area (Duaime and others, 2004)

Stratigraphle Unit	Period	Lithology	Thickness	Depositional Environment
Quaternary Alluvium	Quaternary	Interbedded clay, silt, sand, and gravel	Up to 40 feet thick in the Belt Creek valley	Stream channel and floodplain
Blackleaf Formation	Cretaceous	Black shale and sandstone beds	Not present at mine; 600' thick to north	Mostly marine
Kootenai Formation	Cretaceous			
Fifth member		Red mudstone and sandstone	Not present at mine; 120' thick to north	Alluvial plain
Fourth member		Fine-grained, thin-bedded red or brown sandstone	45' thick at mine	Deltaic and fluvial
Sunburst Sandstone		Clean, porous quartz sandstone	45' thick at mine	Marginal marine
Second member		Red mudstone with limestone lenses	115' thick at mine	Alluvial plain
Cutbank Sandstone		"Salt and pepper" sandstone, may be conglomeratic	20' thick at mine	Fluvial
Morrison Formation	Cretaceous and Jurassic			Alluvial plain
ELLIS GROUP	Jurassic			Marine
Swift Formation		Orange-brown sandstone, conglomeratic, fossiliferous	50' thick at mine	
Sawtooth (Piper) Formation		Oolitic limestone, shale and siltstone	Not present at mine; 30' thick to south	
BIG SNOWY GROUP	Mississippian			Marine
Otter Formation		Green shale, limestone and gypsum	Not present at mine; 300' thick to south	
Kibbey Formation		Red mudstone, siltstone and fine-grained sandstone	Not present at mine; 100' thick to south of mine	
MADISON GROUP	Mississippian			Marine
Mission Canyon Formation		Gray, thick- bedded limestone	800' thick to south of mine	
Lodgepole Formation		Gray, thin- bedded limestone and shale	700' thick to south of mine	

R₅E (Holocene) Grayish-oranga to brawnish-gray, poorly sorted to moderately well sorted downed sediment deposited on slopes, particle size ranges from day and still to grave depending an source. Columning generally pressent only on slopes steeper than 8 per Contains a significant component of glacial-take and loses deposits near glucioled an Thickness as much as 200 ft. (Halocena and Pleistocee). Light brown to light gray, unconsolidated crudely to well-stratified and moderately to well-sorted sand and gravel in alluvial terraces edjacent to and higher then modern meandering streoms. Thickness as much as 29 ft. (Plaistocare, Illinoian) Ractish-brown, nownish-gray, and gray unstrailled, compact unscribed clay, sitt, sand, and gravel with sparse matrix supported granules, pabbles, cot and boulders. Deposits mark approximate limit of linoian continental glaciation. Matrix dominantly calcareous clay loam, sity clay loam, and leam. Cladel arrabes are chely it cliolations, orthographics, and granules and melamorphic rocks. Thickness as much as: but generally 30 to 15 ft thick. **F20N** Qgl (Holocena) Yallowish-brown to gray gravel, sand, silt, and clay beneath flood plains and in velleys of active streams, Deposits are well to poorly stratified and moderately well sorted. Maximum clast diameter 12 ft. Thickness as much as 15 ft. Channels and flood plains (Holocene and Pielstocene). Mass-weating deposit that consists of stable to unstable, unsorted mintures at clay- to boulder-size particles or retated blocks at bedrock, include bloc-glide masses of bedrock, slumped blocks at bedrock and surficial sediment, entitle deposits, and mulfier deposits. Color and lithickgy reflect parent teck and transported surficial materials. Thickness as much as 200 ft, but generally less then 100 ft. (Holocene). Yellowish-brown to gray, poorly stretified and poody sorted clay, silt, sand, and sandy grovel in small tans at mouths of tribidary streams. Thickness as much as 15 Qgt Dark-gray to redrish-brown, massive, day, silt, and fine sand with scattered boulders, ∞ pebblas, and granulas. Thickenss as much as 20 ft alls deposit (Phocene). Light-brown to light-gray, crudely to well sorted, coarse sand and gravel. Upper part locally cemented by calcium carbonata. Thickness as much as 40 ft. but generally about 20 ft. race deposit Kk2 (Upper Craleceous). Lower part consists of dark-gray-weathered, calcareous shele lind contains a basel zone of gray septentian concretions and a thick partisteril bentonia bed. Upper part consists of thin beds of play, medium-gray- or grayssh-craine-weathered petrollienus lensione with blue fish scales, inoceramid, and dyster fragments. Thickness about 60 ft. (Upper Craticoscus). Dark-gray-weathered, fissile shale that contains several thin beds all grayish-orange-weathered sittation, fine-grained standstone, and also lightyridiush-gray, low-swelling, thin bentonite beds. Locally contains septianan concretions and ferruginaus diodistance concretions that weather to small chips semiliar to those to the Ferrigi Member. Thickness about 60 if (Upper Cretareous). Noncelcoreous, derh-gray-weethered, fissile shale that containe learliculer-badded sitistone, fine-grained sendstone, and distinctive reddish-grange famiginous dolostone concretions that weether into small chips. This bad of the-grained, plans-bedded sandstone or sitistone ere present in upper part. Thickness about 200 ft. T19N ias River Shale Kk4 (Upper and Lower Cretecacus): Vary Hight-gray and yellowish-gray-weathered porcellante, locally zealitized tuff, and bentonte. Sama porcellentle conteins contarted bedding produced by soft-sediment deformation. Unit occurs at base of the Mowry Formation where Mowry is present, or is within the Bordegger Member of the Blackled Farmation, Thickness ranges from 5 inches to 65 ft. Mowry and Blackleef Formstions (Lower Cratecous) Poorly exposed, very bentontic, sity, gray-weathered shale with thin bantonite beds. Thickness about 100 ft. (Lower Creloceous): Medium-dark-gray- to medium-lightgray-weathered, bentannic sitly shale with several from glauconitic sendstone beds. Member grades laterally into the Thermopolis Shale. Thickness about 120 ft. ackleaf Formation (Upper and Lower Crataceous), Dering-rep-weathered, fissle shells that contains 2 to 6 prominerd sensitions beds, sech 10 to 40 fithick, separated by 50 to 100 ft of shale. Tops of candidone beds locally contain black chert pebbles. A well-cemented chart-pebt conglomerate or coarsegrained sendsione is present at top of member. Trickness renge from 60 to 330 ft. of Blackleaf Formation (Lower Crelaceous). Black- to dark-gray-weethered fissile shale that contains pods and lenses of broturbated sendstone at its base. Lacks two prominent sendstone beds that are present west of the quadrenige. Member grades laterally into the Thermopolis Shale. Thickness ranges from 100 to 130 ft. (Lowar Cretaceous): Red-weathered mutistone that contains lenses of sandstane and limestone. Uppermost part of member consists of massive, color-bended, green grayish-red-purple, moderate-red and very dark red mudistone with lenses of fine-to medium-grained, trough-cross-bedded, greenish-gray-weathered sandstone. Thickness about 120 ft. (Lower Cretaceous). Dusky-red to pale-reddishbrawn-weathered, fine- to medium-prained, thin- to medium-bedded, ripple-lamineted, angillaceous. platybedded sandstone interbedded with very-dark-red-weathered mudstone Truckness about 100 ft. ootenal Formation (Lower Craleceous). Ught-yellowish-brownweathered, walt-sorted, resistant quartrose sendstone with interspersed limonae specks. Scour base with rip-ueates and charp publies cate into second member and locally into Cutbenk Sandstone Member. As much as 20 percent interstitied dark chart at base, but dark chart is almost completely lecking higher in the section, Member pinches and east of Raynesford. Thickness from 0 to 60 ft. Kk4 (Lower Crefeceous). Red-weathered, poorly resistant mudistone that conteme dense, madrum-gray micritie and argiflaceous, light-brawnish-gray micritie concretions that laterally become lenboush, irregular back. Tim, lenticular, chert-ich quartzose sandstone beds are prasent locally. A bed of intraformational, micritic-cleal configurations to prosent locally a bed of intraformational, micritic-cleal configurations. Kootenal Formation (Lower Crateceous). Basel, meistant, fastooncross-bedded, moderalely well sorted quartz sendsfore with 20 to 50 percent black, dark-gray, and lightgray chert, appears to be depositionely related to underlying Montson Formotion cost bed. Coarse-gramed sendstone, chert-granise conglomerate, or chert-pebble conglomerate present at scour bose of member, typically with rip-up clasts of coat, plant fregments, and plant impressions. Becomes fine-grained upward, and in some areas upper part of sandsons contains very little chert. Trickness ranges from 20 to 100 ft. Kks T18N (Lower Creteceous and Jurassic). Light-greenish-gray mudstone or locally light-red weethered-sendistone with interbedded lenses of medium-gray ments, and fine-to medium-graylined, cak-areous, then-bedded, yellowish-brown-reeithered sendistone. Subbituminous coals bed as much as 12 ft truck at or near-top of formation. Gradational contact with underlying Swift Formation and overlying Kootenal Formation, but contains a significant unconformity below the dark shele and coal of the upper Morrison. Thickness ranges from 100 to 200 ft. 1:100,000 0.5 Figure 8. Geologic Map of the Belt Area, Cent

The Jurassic Morrison Formation is about 100 feet to 300 feet thick in this area. The Morrison Formation is light-greenish- grey mudstone with lenses of yellowish-brown-weathering sandstone. A subituminous coal bed as thick as 12 feet is located at or near the top of the Morrison Formation (Vuke and others, 2002). The recent DEQ drilling project encountered voids where the coal had been mined out in this interval at several locations (Duaime, oral communications, 2004).

The Ellis Group contains the Swift Formation and is predominantly sandstone that ranges from 50-120 feet thick in the area. The Swift weathers grayish-orange and is composed of fine- to coarse-grained sandstone (Vuke and others, 2002).

Rocks of the Big Snowy Group do not appear to underlie the Anaconda Mine. These units thicken rapidly towards the Little Belt Mountains and make a significant difference in estimating depths to the Madison aquifer in the area south of Belt.

Limestone of the Mission Canyon Formation, which is up to 800 feet thick in the area, forms the upper unit of the Madison Group. The Madison Group is light-grey to dark-grey weathering, resistant, massive limestone (Vuke and others, 2002). Drill holes into the Mission Canyon Formation frequently encounter solution cavities. Sinkholes, caves, and other karst features are common in the Mission Canyon Formation.

Structure

The overall dip of surficial sedimentary rocks near the Anaconda Mine is about 4 degrees to the northeast (Vuke and others, 2002). The overall structural grain is shown by the strike of several small faults and folds (mapped in Figure 8) and trends northeast in the Belt area. The geologic structure controls deposition, erosion and exposure of geologic units in the Belt area. Tectonic forces that form faults, folds and other structures typically control development of secondary porosity such as cleat in coal beds and fractures in other rocks. This secondary porosity typically forms hydraulic connections between pore spaces and voids in the rocks to form aquifers. Several episodes of structural movement and deformation are summarized in the study done by Duaime and others (2004). Pre-Jurrassic uplift tilted the sedimentary units to the south that were subsequently eroded. Recurrent movement has been documented along the Great Falls Tectonic Zone; a northeast trending basement suture that may be responsible for much of the fracturing and folding in the Belt

The Jurassic Morrison Formation is about 100 feet to 300 feet thick in this area. The Morrison Formation is light-greenish- grey mudstone with lenses of yellowish-brown-weathering sandstone. A subituminous coal bed as thick as 12 feet is located at or near the top of the Morrison Formation (Vuke and others, 2002). The recent DEQ drilling project encountered voids where the coal had been mined out in this interval at several locations (Duaime, oral communications, 2004).

The Ellis Group contains the Swift Formation and is predominantly sandstone that ranges from 50-120 feet thick in the area. The Swift weathers grayish-orange and is composed of fine- to coarse-grained sandstone (Vuke and others, 2002).

Rocks of the Big Snowy Group do not appear to underlie the Anaconda Mine. These units thicken rapidly towards the Little Belt Mountains and make a significant difference in estimating depths to the Madison aquifer in the area south of Belt.

Limestone of the Mission Canyon Formation, which is up to 800 feet thick in the area, forms the upper unit of the Madison Group. The Madison Group is light-grey to dark-grey weathering, resistant, massive limestone (Vuke and others, 2002). Drill holes into the Mission Canyon Formation frequently encounter solution cavities. Sinkholes, caves, and other karst features are common in the Mission Canyon Formation.

Structure

The overall dip of surficial sedimentary rocks near the Anaconda Mine is about 4 degrees to the northeast (Vuke and others, 2002). The overall structural grain is shown by the strike of several small faults and folds (mapped in Figure 8) and trends northeast in the Belt area. The geologic structure controls deposition, erosion and exposure of geologic units in the Belt area. Tectonic forces that form faults, folds and other structures typically control development of secondary porosity such as cleat in coal beds and fractures in other rocks. This secondary porosity typically forms hydraulic connections between pore spaces and voids in the rocks to form aquifers. Several episodes of structural movement and deformation are summarized in the study done by Duaime and others (2004). Pre-Jurrassic uplift tilted the sedimentary units to the south that were subsequently eroded. Recurrent movement has been documented along the Great Falls Tectonic Zone; a northeast trending basement suture that may be responsible for much of the fracturing and folding in the Belt

area (O'Neill and Lopez, 1985). The Anaconda Mine is located on the southeast flank of the Sweetgrass Arch; another recurrent basement structure that appears to have influenced the distribution of the Sunburst Sandstone and also the development of fractures and folds. Faults and folds appear to coincide with hydrologic features such as ground-water divides and may control saturated versus dry regions in the abandoned mine workings.

Underground mining commonly causes collapse of the overlying roof rocks which can project to the surface. No obvious signs of roof collapse have been observed overlying the ACM mine near Belt. However, there is also a strong potential for fractures to develop over the mine workings. These fractures could provide conduits for infiltration of recharge through the overlying sediments. This has not been verified at Belt but may potentially enhance the development of AMD in the mine workings.

HYDROGEOLOGY

Aquifers/Aquitards

Several of the geologic units in the Belt area form aquifers of either regional or local extent. The Mission Canyon Formation of the Madison Group is probably the most prolific regional aquifer in the Belt area and is commonly referred to as the Madison aquifer. This aquifer supplies discharges of about 300 cubic feet per second (cfs) at Giant Springs in Great Falls (Patton, oral communications, 2004). The town of Belt has two production wells completed in the Madison aquifer. During the recent drought, many farmers and ranchers in the Belt area have either deepened their shallow wells or directly targeted the Madison aquifer. The Swift Formation of the Ellis Group forms an important local aquifer along many reaches of Belt Creek. Sandstone beds in the Morrison Formation (the coal bed located at the top of the Morrison) and the Cutbank Sandstone of the Kootenai Formation combine to form an important aquifer system of both local and regional extent in central Montana. The Sunburst Member of the Kootenai Formation is another significant aquifer and appears to be the source of numerous springs along Belt Creek and Box Elder Creek. Quaternary sand and gravel deposits along Belt Creek and Box Elder Creek are also important local aquifers. They are typically directly connected to the streams and therefore sensitive to surface flows.

Ground-Water Flow

Ground water moves through the primary porosity of sand, gravel and sandstone, secondary fractures in the sandstone, cleat in the coal, secondary fractures and solution cavities in limestone. Regional ground-water flow is both down-dip and down-slope to the north. Locally, the ground-water flow appears to be directed towards Belt Creek.

Ground-water flow in the Belt area can be characterized by individual aquifers. The primary question regarding ground-water flow for this project is: What primary source of water enters the Anaconda Mine and forms the acidic discharges? Significant differences in flow conditions are dependant on the depth and continuity of geologic units making up the aquifers. The deepest and most laterally continuous aquifer in the area is the Madison aquifer. Recharge to this aquifer is from snowmelt in the Little Belt Mountains, where the Mission Canyon Formation is at the land surface, and from infiltration of precipitation through overlying deposits down-slope from the outcrop area. The Madison aquifer receives recharge from overlying units until somewhere between Belt and the Missouri River. The potentiometric surface of the Madison aquifer ranges from 3,275 feet (above mean sea level) where it underlies the Anaconda Mine to 3,290 feet (above mean sea level) underlying the town of Belt. The potentiometric surface underlying the Anaconda Mine ranges from about 344 feet to 412 feet below the mined out coal horizon.

The Swift aquifer is typically only developed in stream valleys in the Belt area. Not enough data points are available to construct a ground-water flow map of this aquifer; but the potentiometric surface appears to be controlled by stream stage.

The well inventory and monitoring focused on identifying aquifers up-slope from and overlying the Anaconda Mine in areas that would potentially recharge the mines. The Kootenai aquifer system is the predominant water-bearing unit underlying this recharge area. Several layers of fine-grained mudstones, siltstones and clay beds form aquitards generally restricting the vertical flow of infiltrating recharge water and forming confining beds both above and underlying many of the aquifers in the Belt area. The vertical flow is restricted enough in places to allow perched aquifers to form and contact springs to flow at the lower contact of this aquifer. The Sunburst aquifer is perched on the Second member (Kk2) of the Kootenai Formation overlying the Anaconda Mine. Several springs issue from the base of the Sunburst aquifer along Box Elder Creek and Belt Creek. Other springs in the Belt area

appear to issue from the Cutbank sandstone which underlies the Second Member of the Kootenai Formation (Kk2). Although vertical flow is restricted, some water infiltrates through the aquitards recharging underlying aquifers and the mine workings. Much of this infiltration is through fractures in the sedimentary rocks. Unfortunately, only a few wells are located in this area making it difficult to verify our hydrogeologic interpretations. Supplemental drilling by the MDEQ has greatly enhanced our understanding of the hydrogeology directly overlying the Anaconda Mine. The hydrogeology is currently being interpreted through another MBMG project.

A potentiometric-surface map of the Kootenai aquifer was constructed based on well inventory and monitoring measurements. This map was contoured using measurements from 48 wells and springs near the mine (Figure 9). The Kootenai potentiometric surface map combines head data, collected in July, 2004, from aquifers in both the Sunburst and Cutbank Members of the Kootenai Formation. As a result, this map shows only general water-level conditions in the mapped area. Additional wells at critical locations will be needed to accurately depict ground-water flow. Ground water is interpreted to flow from a divide located about 3.5 miles south of the Anaconda Mine. The ground-water divide south of the mine appears to be both topographically and structurally controlled. The topographically high area forming the ground-water divide is located just north of a paired, anticline-syncline, structure that trends north 45 degrees east. Only precipitation falling north of this divide has the potential to move towards the mine. Once recharge infiltrates vertically to the saturated zone, ground-water flow is generally to the north, perpendicular to the potentiometric contours depicted in Figure 9. The upland area between Belt Creek and Box Elder Creek is highly dissected by tributaries of the two streams. These tributaries, plus the main stems of the two streams, are discharge areas for ground water moving out of the Kootenai Formation. The potential recharge area covers about 2,100 acres overlying and upgradient of the mine. The highly dissected nature of the upland appears to 1) cause much of the precipitation falling on the upland to recharge a shallow ground-water flow system, and 2) cause discharge to the surface-water drainages as seeps and springs in the valley walls. Several of the springs coincide with the contact of the Sunburst Sandstone Member aquifer and the underlying unnamed fine-grained unit (aquitard). North of the Anaconda Mine, the flow gradient in the Kootenai aquifer decreases. This may be in response to drainage into the

mine voids through secondary fractures. A more detailed well network could potentially indicate the southern ground-water flow in areas just north of the mine.

inventoried springs, ground-water elevations me

Figure 9. Potentiometric surface and ground water divide of the Kootenai aquifer system near the ACM mine based on elevations of inventoried springs, ground-water elevations measured in July 2004, and water levels from wells drilled.

Explanation

- Kootenai Wells
- Kootenai Springs
- Potentiometric Contours (CI = 100')

ACM Boundary

Recharge Area

Ground Water Flow Direction

Ground Water Divide

--- Faults

+ Anticline

Syncline

Streams

1:47,520 1 inch equals 0.75 miles

Based on these interpretations, a significant source of water to the Anaconda Mine appears to be from the overlying Kootenai Formation. The Kootenai Formation is about 260 feet thick in the Belt area. The lower sandstone unit (Cutbank Sandstone Member) forms an aquifer directly overlying the targeted coal bed. The Cutbank Sandstone Member is overlain by an unnamed fine-grained unit that forms an aquitard. The Sunburst Sandstone Member forms another aquifer overlying this aquitard. The upper unit of the Kootenai Formation is another unnamed fine-grained aquitard. The Kootenai Formation is highly fractured causing some degree of vertical hydraulic connection from the surface down to the underlying coal bed and mine voids.

Water in the alluvial aquifer adjacent to and underlying the Belt Creek valley is hydraulically connected to the stream channel. Flow is towards the stream during low stages, while flood waters reverse the ground-water flow and recharge the aquifers during high stages.

Water-Level Fluctuations

The observed water-level fluctuations in monitoring wells responded to several variables. These include the geologic source of each well, the precipitation, and the position of each well in the landscape. Hydrographs of all wells measured are shown in Appendix B. Hydrographs of selected wells that are good examples of documenting responses to specific hydrologic events are shown in Figures 10-12.

Based on these interpretations, a significant source of water to the Anaconda Mine appears to be from the overlying Kootenai Formation. The Kootenai Formation is about 260 feet thick in the Belt area. The lower sandstone unit (Cutbank Sandstone Member) forms an aquifer directly overlying the targeted coal bed. The Cutbank Sandstone Member is overlain by an unnamed fine-grained unit that forms an aquitard. The Sunburst Sandstone Member forms another aquifer overlying this aquitard. The upper unit of the Kootenai Formation is another unnamed fine-grained aquitard. The Kootenai Formation is highly fractured causing some degree of vertical hydraulic connection from the surface down to the underlying coal bed and mine voids.

Water in the alluvial aquifer adjacent to and underlying the Belt Creek valley is hydraulically connected to the stream channel. Flow is towards the stream during low stages, while flood waters reverse the ground-water flow and recharge the aquifers during high stages.

Water-Level Fluctuations

The observed water-level fluctuations in monitoring wells responded to several variables. These include the geologic source of each well, the precipitation, and the position of each well in the landscape. Hydrographs of all wells measured are shown in Appendix B. Hydrographs of selected wells that are good examples of documenting responses to specific hydrologic events are shown in Figures 10-12.

Cumulative Departure from Monthly Average -25.00 -30.00 -10.00 -15.00 -20.00 -5.00 0.00 12/29/04 Great Falls Precipitation 12/30/03 -SWL 12/30/02 12/30/01 12/30/00 Alt=3520 ft, TD=430 ft Aquifer= Madison 12/31/99 Date 12/31/98 12/31/97 12/31/96 96/1/1 96/1/1 t6/1/1 3320 3315 3310 3305 3285 3300 3290

Water-Level Elevation (Feet)

M: 2315 Belt City Well

T19N-R06E-26-ACAD

Precipitation in Great Falls (Inches)

Figure 10. Hydrograph of water-level fluctuations in the Madison aquifer at Belt compared to Great Falls precipitation.

Figure 11. Hydrographs comparing water-level fluctuations in the Swift, alluvial, and Madison aquifers with Belt Creek stream flow.

The upper two charts are from wells in uplands, up-gradient of the mine and depict low magnitude annual responses (2-3 feet). The lower two charts Figure 12. Hydrographs showing magnitude and pattern of water-level fluctuations in the Kootenai aquifer system close to the Anaconda Mine. are from wells near slope breaks along tributaries and depict higher magnitude annual responses (11 - 13 feet).

Hydrographs from wells completed in the Madison aquifers show the response of the extended drought in the Belt area. Figure 10 is a relatively long-term hydrograph for one of the Belt city wells (GWIC ID 2315). Water levels in deeper wells completed in the Madison aquifer rise slightly in early spring, but the overall trends are declining water levels. Water levels have steadily declined since about 1998. This closely corresponds to the extended drought in this area.

Hydrographs from wells completed in the Swift aquifer show annual responses to stream stage along Belt Creek (Figure 11). Most of these wells are located very close to Belt Creek. Water levels in these wells appear to rise during periods of high stream flow and fall as snow-melt derived runoff declines.

Kootenai aquifer wells completed in the uplands, up-gradient of the mine, demonstrated minor water-level fluctuations trending flat to a slight decline responding to the recent drought (Figure 12). However water levels in the Kootenai aquifer wells completed near the break-in slope, towards small tributaries, showed a greater magnitude of water-level fluctuations in response to the recent drought. Most upland Kootenai wells have a rapid water level increase after large precipitation events. Water-level responses in the Kootenai appear to be more dependent on the geographic setting than the specific aquifer; as can be observed in the two upper hydrographs in Figure 12. Both wells are located in an upland setting, but at different depths. The shallow well (GWIC ID 204516) is completed in the Sunburst aquifer at a depth of about 20 feet. In contrast, the deeper well (GWIC ID 199851) is completed in the Cutbank aquifer at a depth of about 160 feet.

Water levels in wells completed in the alluvial aquifer near Belt Creek tend to rise and decline with Belt Creek's seasonal variation; similar to the Swift water levels (Figure 11).

Aquifer Properties

Specific Capacity Evaluation

By accessing well drill logs in the study area, specific capacity (gpm/ft) values were calculated to estimate the aquifer properties (Table 2).

		Tat	is 2. Aqu	ifer pro	party s	nalys	es by specif	ic capa	ity					
Q.M.S	Wei name	Conseilin Titas	Legibe.	C Uncomfand a	Merinal Same	Premphin rate	Performed Obersal Michigan	Same water front	Paris Bulling	Distriction Pt	Totte branch	Santa Santa	Transmit and the	A STATE OF THE PARTY OF THE PAR
82040	Sieve Asseis	THE PARTY	Alluveum	U	•	36	S (open hole)	13	32	20	1	1.5	11	
1941	Harry Nisbel	Salate for	Allunum	U		20	O topen inales	24	36	13	2	2.5	933	
2015	Jim Larson ranch	C BRANGE AT	Alluvium	υ	7	40	9 (open hole)	14	30	16	1	2.5	119	
2027	Bob Pumperton	THANK BE DE	Aluxum	U	6	60	O (open hole)	21	40	19	1	32	154	
96493	Leray Spiller	Turistich is part	Altenum	U	5	1.57	5	15.60	17	0.32	3	4.9	271	94.2
J2172	Keaster \ Neison	THE STATE OF THE S	Komena	С	4	18	26	22	160	137	2	91	11	0,6
964 8%	Dawson Ranch	Paga Paga	Kesteria	c	4	24.5	20	55	117	62	3	04	41	23
1957	Nathan Horst	THE REPORT OF	Kootena	c	6	12	40	93 13	119.7	24.37	1	8.5	47	12
12233	Larry Murphy	TERRETE IS	Keelena	_ c_	4.5	15	30	233 63	275 3	21.65	1	8.0	62	21
14111	Keith Hoyer	SECTION OF SECTION	Koolena	С	4	60	20	1	70	69	.1.	09	96	48
2061	Albert Calerthik	110044071	Koolena	c	4	12	2	120	132	12	1	,	125	417
0562	G Jennson	PARK!	Kestena	<u>c</u>	6	20	15	25	35	15	1	1.3	146	97
71338	Mare Fellows	FACE	Koelena	ç		20	15	9	24	15	1	1.3	150	15
23195	Emilio Garza	Alles	Koelena	С	Ŗ	30	77	63	80	-11	2	2,7	285	30
07296	RogerNelson	Thatmen to	Kostene	c	5	15	30	21	24.2	3.2	2	47	568	16 9
2050	Ed Spragg	Tenancia Igge	Swell	C	5	12		27	45	22	1	0.5	60	7,5
65475	Watace Memanigle	11394-92126 2385	SWIT	С	- 5	70	11	5	3/5	30	,	5.7	73	86
2033	Charles Falter	BOOK.	Swill	С	6	40	9	6	40	34	1	12	132	14 7
11960	Caral Stevenson	THE CAUSE 23	Swift	_c_		30	26	52	70	18	1	1.7	179	6.3
45604	Linda Assels	Tayana,a Boga	BWR	c	6	29	10	40	61	11	0.5	25	286	20 6
50504	Brenda Denks	HISMANNE III	Madison	С	5	12	27	178	218	40	1	03	27	0.0
23477	Martin Winder	AND THE SE	Medison	c	•	18	•8	310	350	40	36	0.5	47	2.6
31989	Gary Fliginger	THE NOTE AS ASSOC THE PROPERTY IN	Medison	С	5	8 67	151	58.85	67,45	8.6	1	38	59	8.5
26959	Sweeney Runch	COM:	Madison	С	5	25	460	493	520	21	2	0.9	84	0.2

Using the median specific capacity, the transmissivity (ft²d) and hydraulic conductivity (ft/d) were also estimated for each aquifer and are shown in Table 3 (Lohman, 1979).

Table 3. Aquifer properties estimated from median specific capacity values for each aquifer.

Aquifer property analyses by specific capacity									
Aquifer	Specific capacity (gpm/ft)	Transmissivity (ft²/d)	Hydraulic conductivity (ft/d)						
Alluvium	2.5	139	-						
Kootenai	0.95	110.5	4.3						
Swift	1.2	132	7.5						
Madison	0.65	58	0.55						

Slug Tests

Slug tests were performed in the fall of 2004 on 5 of the 6 monitoring wells (MW) located on the reclaimed slag area on Coke Oven Flats. MW-3 (GWIC ID 217526) and MW-4 (GWIC ID 217527) had sufficient casing volume for the slug test to work properly. Slugtest data from these two wells were evaluated using the Hvorslev method (Hvorslev, 1951). The results of these analyses indicated the ground-water hydraulic conductivity ranged from about 0.6 to 32.5 feet per day. MW-4 represents an alluvial well with the hydraulic conductivity between 20 and 32 feet per day. Most wells were completed at a depth where hard, cemented gravel was encountered that could not be penetrated by the auger. Unlike the other five wells drilled in this area, MW-5 (GWIC ID 217528) was different because cemented gravel was not encountered during drilling. MW-2 (GWIC ID 217525) penetrated about 15 feet of reclaimed slag consisting of a mixture of scoria and river gravel. Based on the Hvorslev model, the hydraulic conductivity of the reclaimed waste site ranged from 0.6 to 3 feet per day.

Surface Water

Surface-water monitoring locations are shown in Figure 4. AMD discharges were monitored at 5 locations. Stream flows were periodically monitored at 3 tributaries to Belt Creek, 3 locations along Belt Creek, and 3 locations on Box Elder Creek. Flow data is summarized in Appendix C.

Acid Mine Discharges

AMD were identified at 5 sites in the Belt Creek Valley (figure 4). All sites were monitored and sampled for water-quality at least once for this project. Later, several flumes were added to collect more accurate flow measurements (Duaime and others, 2004).

In 1986, the Anaconda Mine's main entrance was sealed and the AMD was piped beneath the county road and Burlington Northern Sante Fe Railroad (BNSF RR) tracks to a ditch which drained into a local swimming hole at Belt Creek (Figure 13). On the east side of the railroad tracks, the area known as "Coke Oven Flats", 27 acres of waste was reclaimed in 1987. After decades of smoldering, the coal waste was extinguished and removed or buried on site (DEQ, 2000). The USGS flume recorded an average flow rate of 99 gpm

from July 1994 through July 1996 (Karper, 1998). The MBMG recorded flow readings from the same flume (GWIC ID 200616) from May, 2002 to December, 2004 with an average flow rate of 132 gpm.

The French Coulee Mine Drain (GWIC ID 200615) originates from several reclaimed mines buried on the north and south side of French Coulee adjacent to the US 87 highway fill (DEQ, 2000). AMD is collected and piped under the county road to a drainage ditch (Figure 14) that was designed to mix with the Anaconda Mine discharges flowing into Belt Creek (DEQ, 2000). The AMD from the French Coulee Mine, however, seeps into the ground and does not make it directly to Belt Creek. An average flow rate of 9 gpm was measured on the east side of the railroad tracks. Flows could not be compared from USGS data due to different flow collection points.

The Lewis Coulee Mine area was reclaimed in 1985 (DEQ, 2000). The two mine openings were plugged and spoil piles were graded. A large storm drain was also constructed to carry the Lewis Coulee water and AMD (GWIC ID 214915) directly to Belt Creek (Figure 15). The average flow rate of the Lewis Coulee AMD, recorded by the MBMG during 2002-2004, was 3 gpm. Following a large precipitation event in June, the runoff flow increased to 30 gpm. Stream-flow monitoring, done by the USGS in 1994 through 1996, revealed similar flow conditions of an average flow rate of 3 gpm (Karper, 1998). The USGS data also showed large precipitation events causing peak flows over 100 gpm.

Brodie, Meisted and Millard Mines were reclaimed on the east side of Belt Creek in 1986 (DEQ, 2000). The AMD discharging from these mines (GWIC ID 214914) has been referred to as "Lewis Coulee above Castner Park" in previous reports and is continued in this report (Figure 16). This AMD does not typically discharge directly into Belt Creek, but is discharged to an unlined drainage ditch where it seeps into the alluvial aquifer before entering Belt Creek (Figure 17). The MBMG estimated average flow rates to be about 2 gpm. Flow monitoring from the USGS in 1994 through 1996 averaged 5 gpm (Karper, 1998). A list of AMD sites including flow rate and field parameters are listed in Appendix D.

b.

Figure 13. Anaconda Mine AMD discharges into Belt Creek at the local "swimming hole".

a. View to the south. b. View to the north.

Figure 14. The French Coulee Mine Drain collects AMD from several reclaimed mines.

Figure 15. Outlet of the Lewis Coulee Storm Drain where it enters Belt Creek.

igure 16. Collection area for AMD from "Lewis Coulee above astner Park".

Figure 17. AMD from "Lewis Coulee above Castner Park" seeps into an unlined ditch.

Belt Creek

Belt Creek starts near the top of the Little Belt Mountains flowing generally in a northward direction through the town of Belt and empties into the Missouri River about 15 miles north of Belt. Belt Creek is an intermittent stream with flows ranging from no-flow in late summer to nearly 800 cfs in the spring (Figure 18). The annual average flow of Belt Creek is 154 cfs; based on two years of monitoring. The main recharge to Belt creek is snow melt from the Little Belt Mountains located about 20 miles south of Belt. Belt Creek has segments that are influent (losing water to the channel) and effluent (gaining water from the channel). The Belt alluvial valley is underlain by the Swift Formation of the Ellis Group. The Swift Formation is a fine to course grained sandstone with interbeds of shale fragments with a thickness of 50 to 120 feet (Vuke and others, 2002). The Swift and alluvial aquifers located along Belt Creek are being directly recharged by the spring run off delivered by Belt Creek.

Belt Creek looses water in the reach from the Armington Bridge (GWIC ID 214386) to the bridge in downtown Belt (Figure 18). A gaining reach of Belt Creek starts just below the Belt Bridge; based on higher flows and cooler average water temperatures which suggest the influence of ground water. Gains in flow are also evident between the Belt Bridge (GWIC ID 214387) and the downstream private bridge (GWIC ID 214389). Other minor gaining and losing reaches of Belt Creek have been observed, but were less significant than those identified in the above section. During periods of low flow, AMD discharges from the Anaconda Mine provide all the water to Belt Creek.

Figure 18. Stream flows along Belt Creek.

Small Streams and Springs

Within the study area, four tributary streams were monitored. Big Otter Creek, French Coulee Highway Drain and Little Belt Creek are all tributary streams that flow into Belt Creek. Box Elder Creek is a tributary of the Missouri River. Stream flow and field water-quality parameters were periodically monitored at these streams (Figure 19).

Big Otter Creek (GWIC 1D 214391) is located about 3.5 miles south of the town of Belt. Big Otter Creek is an intermittent stream which occasionally goes dry in late summer. The flows range from no-flow to 28 cfs with an average of 7 cfs flowing into Belt Creek.

French Coulee Highway Drain (GWIC ID 200617) is located about one mile south of Belt, near the main Anaconda Mine adit. The creek is piped under the highway fill, draining both the French Coulee and runoff from the highway. This drain is a perennial stream with flows ranging from 1 gpm to 171 gpm with an average flow of 27 gpm emptying into Belt Creek. The stream is of good water quality, but AMD appears to be seeping out of the hillside on the north embankment. On the south embankment, there is a 2-inch PVC pipe draining water from a small seep associated with the highway fill that is referred to as the Highway Drain Seep (GWIC ID 204710).

Little Belt Creek (GWIC ID 214392) is located about 3.5 miles north of the town of Belt. Little Belt Creek is a perennial stream with flows ranging from 0.1 cfs to 49 cfs with an average of 9 cfs emptying into Belt Creek.

Box Elder Creek is located about three miles to the west of Belt. This creek was monitored in three locations. The first monitoring site was a Parshall flume installed upstream, up-gradient from any possible mine workings. The flows ranged from no-flow to 145 gpm, with a mean flow of 18 gpm. The second monitoring site (GWIC ID 214393) was located down stream, about one mile where the stream is piped under the county road. The flows at this location ranged from no-flow to 709 gpm, with a mean flow of 81 gpm. The third monitoring site was a Parshall flume located about a half mile further downstream. The flows ranged from no-flow to 908 gpm, with a mean flow rate of 75 gpm. It has been speculated that water losses from Box Elder Creek may provide recharge to the Anaconda Mine. The hydraulic head is about 130 to 140 feet higher in Box Elder Creek than the elevation of the mine voids. This provides a potential head difference for flow from Box Elder Creek to the mine. Fractures in the Kootenai Formation could produce conduits

allowing flow from Box Elder Creek to the mine. Numerous springs enter into Box Elder Creek, between the upper and lower, flume making it difficult to assess gaining or losing conditions through this reach.

Several springs (GWIC ID's 213598, 205653, 207767, and 204516) were initially inventoried in our study area, but only a few were monitored on a regular basis. Most of the springs identified were contact springs discharging from the base of the Sunburst Formation. These springs flow all season with increased discharges corresponding to large precipitation events. Refer to Appendix C for flow rates and water-quality parameters on springs in this area.

Figure 19. Hydrographs of small streams in the Belt area.

WATER-QUALITY ASSESSMENT

Field water-quality parameters measured as part of the well inventory and water-quality monitoring are shown in Appendix E. The range of dissolved minerals concentrations, oxidizing-reducing conditions, Dissolved Oxygen concentrations, temperature and pH of each water source were determined by evaluating these data. Variability of these parameters was also used to help determine seasonal fluctuations and the best time to collect representative samples.

Water-quality samples collected as part of this project are summarized in Appendix E. Source information and concentration data used for constructing the modified Schoeller plots are listed in Table 4. Modified Schoeller diagrams of major cations and anions were constructed to compare and contrast water quality of several water sources in the Belt area by plotting the dominant ions (Figure 20). The results of water analyses were grouped by water source (plotting lines using the same color) and were distinguished from similar sources (using solid and dashed lines).

The standard Schoeller plots were modified by adding Iron (Fe) and Aluminum (Al) to the list of dominant ions. Average concentrations for each constituent were calculated and converted from milligrams per liter (mg/L) to milliequivilants per liter (meq/L). When concentrations of a particular ion were below detection limits, a concentration value on half of the listed detection limit was used. In acidic waters, a low concentration value (0.0001) for the bicarbonate ion was used to allow construction of logarithmic plots.

Table 4. The average concentrations of major cations and anions (meq/L) from each source and the type of water based on dominant ions.

Source	Ca	Mg	Na	Fe	Al	HCO ₃	SO ₄	CI	TYPE
AMD	10.674	8.283	0.571	28.863	31.488	0.000	86.880	0.381	Al-Fe-SO ₄
Sunburst									Mg-Ca-
springs	3.813	4.270	0.435	0.020	_0.010 _	5.426	2.532	0.150	HCO ₃
All									
Creeks	3.724	2.620	0.383	0.414	0.006	4.532	1.703	0.141	Ca-HCO ₃
Madison	4.000	0.050		0.004					Ca-HCO₃-
wells	4.232	2.353	0.205	0.001	0.002	3.850	2,955	0.048	SO ₄
Alluvial	2 707	0.074	0.400	0.004	0.000	5 455	4 477	0.400	0-1100
wells	3.797	2.674	0.466	0.001	0.002	5.455	1.477	0.120	Ca-HCO ₃
Till well	1.282	5.374	1.583	0.001	0.002	6.231	1.230	0.231	Mg-HCO ₃
Mine									
tailings well	23.603	52.912	1.157	0.172	41.481	0.000	119.424	0.353	Mg-Al-SO ₄
Sunburst									Mg-Ca-
wells	3.395	4.573	1.534	0.006	0.002	7.124	1.981	0.210	HCO ₃
Cutbank	0.400	0.540	0.000	0.000	0.000	4 0 4 0			Ca-Mg-
wells	3.480	2.540	0.360	0.026	0.002	4.848	1.418	0.086	HCO ₃
Coal well	4.000	2.025	0.000	0.005	0.000	0.000	0.004	0.000	Ca-Mg-
Coai well	4.990	3.925	0.966	0.005	0.002	6.826	2.394	0.080	HCO ₃
Swift well	4.291	2.000	0.347	0.001	0.002	2 662	2.510	0.460	Ca-HCO ₃ -
SAMIL MEIL	4.231	2.000	0.347	0.001	0.002	3.663	2.519	0.169	SO4

Figure 20. Schoeller diagram depicting average major ion concentrations from water sources in the Belt area.

Acid Mine Drainage (AMD) Water

Distinct characteristics of AMD discharges are visually, physically and chemically obvious. High iron concentrations form reddish-orange precipitates of iron-oxide minerals when exposed to oxygen in the atmosphere. These iron-oxide minerals frequently cement alluvial sand and gravel along streams impacted by AMD discharges. White to light gray colloidal discharges are common where high concentrations of aluminum hydroxide in ground water discharge into relatively fresh surface water; similar to what is found at the Belt "city swimming hole" (Figure 21). Field parameters of AMD discharges include pH values ranging from 1.75 to 3.99 and an average SC of 3,585 µmhos/cm. Sources of the iron, sulfate, and acidity are pyrite deposits commonly associated with coal deposits. Previous work in the Sand Coulee area identified high concentrations of acid-producing material in the Cutbank sandstone roof rock immediately above the coal (Wheaton and Brown, 1999). Since the same coal bed was mined in the Anaconda Mine at Belt, it appears that the source of acid is likely to be similar. No cores were collected in the Belt area, but pyrite deposits overlying or within the coal appear to be primary source of AMD.

AMD samples near Belt were collected from the Anaconda Mine (GWIC ID 200616 average discharge 132 gpm), French Coulee Mine (GWIC ID 200615 average discharge 9 gpm), and Lewis Coulee area mines (GWIC ID 214914 and GWIC ID 214915~average discharge 5 gpm). Samples of AMD discharges are dominated by ions of Aluminum (Al), Iron (Fe) and Sulfate (SO₄), (Al-Fe-SO₄ type water). The pH of the AMD ranged from 2.4 to 4.1. The average calculated dissolved solids (CDS) of the AMD discharges were 5,378 mg/L, average dissolved iron concentrations 537 mg/L, average dissolved aluminum concentrations 283 mg/L and average dissolved manganese (Mn) concentrations 0.682 mg/L. Piper plots (Figure 22) of AMD show a mixed dominance of Calcium (Ca) and Magnesium (Mg) cations and a strong dominance of Sulfate (SO₄) anions. These dominant cations are misleading however, since Al and Fe are the dominant cations; yet neither was included in the construction of the piper plots. The Schoeller diagram (Figure 20) more accurately depicts the dominant ions. The quality of AMD water was not uniform from the different sources. The Anaconda Mine had the freshest water with calculated dissolved solids (CDS) averaging 2,346 mg/L, average dissolved iron concentrations 152 mg/L, average dissolved aluminum concentrations 104 mg/L and average dissolved

manganese concentrations 0.417 mg/L. AMD water from the Lewis Coulee Mine and "Lewis Coulee above Castner Park" were similar at intermediate concentrations with an average CDS of 5,800 mg/L, average dissolved iron concentrations 615 mg/L, average dissolved aluminum concentrations 336 mg/L and average dissolved manganese concentrations 1.15 mg/L. The French Coulee Mine drainage had the most concentrated water with calculated dissolved solids (CDS) averaging 8,566 mg/L, average dissolved iron concentrations 939 mg/L, average dissolved aluminum concentrations 468 mg/L and average dissolved manganese concentrations 0.900 mg/L.

A sample of water extracted from a well completed in mine tailings near the Coke Oven Flats also shows impacts of AMD. Water from this well is dominated by ions of magnesium (Mg), aluminum (Al), and sulfate (SO₄), (Mg-Al-SO₄ type water). The mine tailings water was similar to AMD on the Schoeller diagram. In the mine tailings water, there were lower concentrations of dissolved iron and higher concentrations of dissolved magnesium. The pH and the CDS of the water in the mine tailings are 4.48 and 7,286 mg/L respectively. The concentrations of other significant constituents were the average dissolved iron concentrations 3.21 mg/L, average dissolved aluminum concentrations 373 mg/L, and average dissolved manganese concentrations 5.98 mg/L. Iron concentrations are significantly lower and manganese concentrations significantly higher than measured in any of the AMD discharges. These chemical differences suggest that dissolved iron may be depleted in the mine tailings, while dissolved magnesium and manganese are enriched. Water discharging into Belt Creek from the mine tailings appears related to the aluminum hydroxide discharges visible at the Belt "city swimming hole".

Figure 21. Aluminum hydroxide discharging into Belt Creek at the Belt "city swimming hole"

Figure 22. Piper plot of Acid Mine Drainage water in the Belt area.

Surface Water

Belt Creek and Box Elder Creek

The two main streams (Belt Creek and Box Elder Creek) in the vicinity of the Anaconda Mine contain relatively good quality water; where not impacted by AMD. Piper plot (Figure 23) of Belt and Box Elder Creek samples were dominated by ions of calcium (CA) and bicarbonate (HCO₃), (CA- HCO₃ type water). The laboratory pH of all samples from these Creeks ranged from 5.83 to 8.12 and the average CDS was 353 mg/L. Schoeller diagrams of major ions from Box Elder and Belt Creeks were very similar to the diagrams constructed using average concentrations in samples from alluvial wells (figure 20). This demonstrates the close hydrologic relationship between these sources. The two plots are virtually identical with the exception of elevated concentrations of dissolved iron and aluminum ions in the stream samples. The anomalies in the average concentrations of these ions were caused by elevated concentrations in Belt Creek that are clearly associated with AMD.

Water samples from Belt Creek were collected at several locations, including the following locations: Armington Bridge (GWIC ID 214386); Belt (GWIC ID 205836); Belt (GWIC ID 205838); Belt (GWIC ID 205839); near city well (GWIC ID 205508); below Lewis Coulee discharges (GWIC ID 214916); above swimming hole (GWIC ID 214911); and at the north extent of mine tailings (GWIC ID 214913). The pH of Belt Creek ranged from 5.83 to 7.83. The average calculated dissolved solids concentrations (CDS) of Belt Creek were 326 mg/L, average dissolved iron concentrations 1.03 mg/L, average dissolved aluminum concentrations 73 micrograms/L (μg/L), and average dissolved manganese concentrations 0.08 mg/L. The quality of water along Belt Creek showed impacts of AMD with elevated concentrations of metals associated with areas of surface and ground water acidic discharges. Metals loading to Belt Creek will be discussed in a later section of this report.

Water samples from Box Elder Creek were collected at the upper flume (GWIC ID 203450) and the lower flume (GWIC ID 203451). The pH of Box Elder Creek ranged from 6.44 to 8.26. The average calculated dissolved solids concentrations (CDS) of Box Elder Creek were 371 mg/L. The average dissolved iron concentrations were 0.03 mg/L. Average dissolved aluminum concentrations 84.4 µg/L and average dissolved manganese

concentrations 0.08 mg/L. The quality of water along Box Elder Creek does not appear to be impacted by AMD and no known AMD discharges have been identified along this creek.

Other small streams, including Little Belt Creek and Otter Creek, were not sampled. Based on field values, these streams are relatively fresh and have not been impacted by AMD.

Sunburst springs

Several springs discharging from the Sunburst aquifer were sampled. These include the French Coulee Highway Drain (GWIC ID 200617), a small seep referred to as the Highway Drain seep (GWIC ID 204710), and four relatively fresh springs along upper French Coulee and Box Elder Creek (GWIC ID's 213598, 205653, 207767, and 204516). Sunburst aquifer spring samples are dominated by ions of magnesium (Mg), calcium (Ca) and bicarbonate (HCO₃), (Mg-Ca- HCO₃ type water) as shown in the Piper Plot (Figure 24) and the Schoeller diagram (Figure 20). The laboratory pH of all samples from these sources ranged from 7.08 to 8.36 and the average CDS was 830 mg/L. Nitrate concentrations of the Sunburst springs range from less than 0.05 to 25.6 mg/L and nearly all of the samples had concentrations greater than 1 mg/L. The elevated nitrate concentrations appear to be associated with fertilizer applications on the small grain cropland that makes up most of the recharge areas to these springs.

The four fresh Sunburst springs had an average CDS concentration of 298 mg/L. These springs had very low average sulfate concentrations (29 mg/L) and chloride concentrations (3 mg/L). Nitrate concentrations were variable, but typically relatively high. The CDS of spring discharges in the French Coulee Highway Drain averaged 516 mg/L. This drain had intermediate average sulfate concentrations (164 mg/L) and low to intermediate chloride concentrations (6 mg/L). Nitrate concentrations were variable, but typically relatively high. The small seep in the Highway Drain has significantly different water quality than the other Sunburst springs. The average CDS of this water is 3,255 mg/L; nearly 3 times as concentrated as the fresh Sunburst springs. The average sulfate concentration is 2,109 mg/L, which is more than one order-of-magnitude greater than the Highway Drain and nearly two orders-of-magnitude greater than the fresh Sunburst springs. Water from this seep contains anomalously high concentrations of chloride ions.

Water qualities of the French Coulee Highway Drain and the small seep associated with the drain have relatively neutral pH and appear to have been degraded by a source other than AMD. The water appears to be associated with construction of the highway grade that these springs drain. The fill material may contain higher concentrations of salts than the typical Sunburst aquifer. In addition, pulses of calcium chloride appear to be cyclical and may relate to wintertime applications of road salt.

The water quality of samples from Sunburst springs is very similar to samples from Sunburst aquifer wells (Figure 20). The average dissolved concentration of most ions from the spring samples are higher than ions from well samples. Salts may be more available for leaching in the highway fill. In addition, elevated concentrations of dissolved iron and aluminum ions may indicate an additional source of AMD.

Figure 23. Piper plot of water samples from Belt Creek and Box Elder Creek. Table lists wells from upstream to downstream.

Figure 24. Piper plots of water samples from wells and springs in the Sunburst aquifer and wells in the Cutbank aquife Both aquifers are developed in sandstone of the Kootenai Formation.

Ground Water

Several aquifers were sampled and water-quality data compiled from the Belt area. These include the alluvial aquifer along Belt Creek and Box Elder Creek, the Kootenai aquifer system (including the Sunburst aquifer and the Cutbank aquifer), the Morrison aquifer (represented by one well into the coal bed), the Swift aquifer, and the Madison aquifer.

Alluvial aquifer

Three samples collected from two wells completed in the alluvial aquifer were analyzed for dissolved constituents. A well along Box Elder Creek (GWIC ID 32015) was sampled twice and a well along Belt Creek (GWIC ID 186483) was sampled once. The alluvial aquifer samples are very similar to each other and are dominated by ions of dissolved calcium (Ca) and bicarbonate (HCO₃), (Ca- HCO₃ type water) as shown in the Piper Plot (Figure 25) and the Schoeller diagram (Figure 20). The laboratory pH of all samples from these wells ranged from 7.66 to 7.68 and the average CDS was 372 mg/L. Dissolved nitrate concentrations from the alluvial well along Belt creek was 0.66mg/L and concentrations from the well along Box Elder Creek averaged 1.04 mg/L. The slightly elevated nitrate concentrations in the Box Elder Creek alluvium are associated with discharge of Sunburst springs that appear to be impacted by fertilizer applications. The average concentration of dissolved iron was 0.018 mg/L and ranged from 0.012 to 0.023. Neither of these wells appears to be impacted by AMD. As previously discussed, the water quality of alluvial aquifer water samples is very similar to the stream samples.

Figure 25. Piper plot of water samples from well completed in alluvium of Belt Creek (GWIC ID 186483) and Box Elder Creek Alluvium (GWIC ID 32015).

Sunburst aquifer

Nine wells completed in the Sunburst aguifer were sampled (GWIC ID's 210533, 30562, 31957, 213598, 207767, 205653, 204516, 207672, and 164111). Sunburst aquifer samples are dominated by ions of magnesium (Mg), calcium (Cg) and bicarbonate (HCO₃), (Mg-Ca- HCO₃ type water) as shown in the Piper Plot (Figure 24) and the Schoeller diagram (Figure 20). The laboratory pH of all samples from these sources ranged from 7.26 to 8.00 and the average CDS was 491 mg/L. Nitrate concentrations of the Sunburst aquifer ranged from less than 0.05 to 11.8 mg/L. Nearly all of the samples had concentrations greater than 1 mg/L. The elevated nitrate concentrations appear to be associated with fertilizer applications on the small grain cropland that makes up most of the recharge areas to these wells. Orthophosphate (OPO₄) concentrations ranging from 0.1 to 0.2 mg/L were identified in samples from two recently drilled wells located above or adjacent to the Anaconda Mine. No other Sunburst aquifer samples had detectable concentrations of this constituent and it is plausible that these observations are the result of fertilizer impacts with infiltration enhanced by fractures developed over the abandoned mine workings. As previously discussed, the water quality of Sunburst aquifer water samples is very similar to the Sunburst spring samples. The Sunburst wells have an overall lower CDS than the Sunburst springs. This observation is a result of the springs being impacted by AMD, whereas water quality of the wells is not impacted.

Cutbank aquifer

Three wells completed in the Cutbank aquifer were sampled (GWIC ID's 199851, 84937 and 207662). The average concentration of Cutbank aquifer samples are dominated by ions of calcium (Ca) magnesium (Mg), and bicarbonate (HCO₃), (Ca-Mg-HCO₃ type water) as shown in the Piper Plot (Figure 24) and the Schoeller diagram (Figure 20). The laboratory pH of all samples from these sources ranged from 7.26 to 7.58 and the average CDS was 339 mg/L. Nitrate concentrations of the Cutbank aquifer ranged from less than 0.05 to 2.17 mg/L. Orthophosphate concentrations of 0.054 mg/L were identified in one Cutbank aquifer well that is located adjacent to the Anaconda Mine. It is plausible that this observation is the result of fertilizer impacts with infiltration enhanced by fractures developed over the abandoned mine workings. Schoeller diagrams of major ions from the Cutbank aquifer were

very similar to the diagrams constructed using average concentrations in samples from a well completed in the coal bed at the top of the Morrison Formation (GWIC ID 215048). This demonstrates the close hydrologic relationship between these sources and supports well-log data indicating these units are part of a single aquifer.

Madison aquifer

Six wells completed in the Madison aquifer were sampled (GWIC ID's 196148, 150504, 31978, 2315, 215047 and 177163). Madison aquifer samples are dominated by ions of calcium (Ca), bicarbonate (HCO₃), and sulfate (SO₄) (Ca-Mg-HCO₃-SO₄ type water) as shown in the Piper Plot (Figure 26) and the Schoeller diagram (Figure 20). The laboratory pH of all samples from these sources ranged from 7.46 to 8.05 and the average CDS was 390 mg/L. Nitrate concentrations of the Madison aquifer were very low. AMD impacts were not evident in any of these samples. Sulfate ions are the second dominant anion in Madison water samples. Since no other metals have elevated concentrations, it appears that the Madison aquifer in the Belt area has relatively high concentrations of sulfate anions in comparison to other aquifers. Schoeller diagrams of major ions from the Madison aquifer were very similar to the diagrams constructed using average concentrations in samples from a well completed in the Swift aquifer (GWIC ID 145604). These aquifers are hydrologically connected in some areas and are likely to have similar water quality.

Figure 26. Piper plots of water samples from the Madison aquifer in the Belt area.

Other aquifers

Piper plots of water-quality data from other aquifers are shown in Figure 27 and the Schoeller diagram in Figure 20. These aquifers include a well completed in a glacial till aquifer (GWIC ID 231952), a well completed in the Morrison Coal (GWIC ID 215048), and a well completed in the Swift aquifer (GWIC ID 145604). All of these wells, except for the glacial till aquifer, have been covered in previous discussions. The glacial till well is located several miles north of the Anaconda Mine. The main interest in discussing the water quality from this well is to show the variability of water quality in the Belt area. Water in the till aquifer is dominated by ions of magnesium (Mg) and bicarbonate (HC0₃) (Mg-HC0₃ type water). The pH of the till well was 7.97 and CDS was 413 mg/L. Nitrate concentrations were 10.77 mg/L; which is above the drinking water standard. Water in this well appears to be impacted by an agricultural source; possibly fertilizer or animal waste. AMD impacts have not affected water in this well.

Figure 27. Fiper piot of water samples from other aquifers in the Belt area.

ISOTOPE ASSESSMENT

Stable Isotopes

The stable isotope of oxygen-18 (18 O) was analyzed in ground-water to determine recharge sources. The value of δ 18 O in precipitation is influenced by meteorological processes and particularly by the temperature, elevation, and latitude of the rain or snowfall event (Clark and Fritz, 1997). Precipitation occurring over warmer climates, low elevations, and low latitudes has higher (less depleted) δ 18 O values than precipitation occurring over colder climates, higher elevations, and higher latitudes (Olson and Reiten, 2002).

Values of δ ¹⁸O from 35 samples range from -19.79 to -15.34 per mill (Figure 28). Samples from the Madison aquifer have relativity low values ranging from -19.64 to -18.67 per mill. They also have a narrow value range, suggesting the recharge is likely from snowfall. The Kootenai aquifer has a wide value range from -19.79 to -15.34 per mill, implying the recharge is by snowfall mixing with rain events. AMD water plots near the midpoint of the range of Kootenai aquifer waters possibly suggesting this aquifer is the source of the AMD. Surface water, Swift Formation water, and alluvial water samples have a similar range; indicating a mixture of snowmelt and rainfall and possible mixing between these sources. A sample taken from the Missouri River, at Toston in May, 1986, indicated snow melt was the dominant recharge source, later mixing with rain fall (Coplan and Kendall, 2000). The map view of δ ¹⁸O values shows no obvious trend over the study area.

Figure 28. Map and chart showing Oxygen 18 isotopes by water source.

Average Residence Time of Ground Water

Tritium (³H) is a radioactive isotope of hydrogen that decays with a half-life of 12.43 years and is contained at ambient levels in precipitation as it falls to the earth. Tritium is produced naturally in the atmosphere by interaction of cosmic rays with nitrogen and oxygen; but nuclear bombs, tested between 1952 and 1969, released large quantities of tritium into the atmosphere. Therefore, precipitation during times of nuclear testing contained very high concentrations of tritium. According to the decay equation (Clark and Fritz, 1997), as the precipitation infiltrates into the ground, recharging the aquifers, the radioactive tritium decays to helium-3 (³He). The age of the water sample is determined by the ratio of the parent (³H) to the daughter (³He). The relative age can be estimated using the tritium concentration alone. Table 5 lists tritium concentration and age of water based upon a linear interpretation of data (Hendry and Schwartz, 1990).

Table 5. Age date of ground water estimated from tritium concentration.

Tritium							
Concentration	Age Interpretation (modified from Hendry,						
(Tu)	1988)						
	Average ground-water likely recharged						
	during peak of thermo-nuclear testing						
>38	between 1960-1965						
4-38	Average ground-water less than 50 years old						
1-4	Average ground-water less than 35 years old						
	Average ground-water older than 45 years						
<1,>0.1	old						
	Average ground-water older than 65 years						
< 0.1	old						

Most of the samples collected in Belt had tritium concentrations ranging from 4-38 Tritium Units (TU). This implies the average residence time of ground water is less than 50 years old. Some samples ranged between 1-4 TU. This implies the recharge is less than 35

years old. Figure 29 displays how tritium concentrations vary across each aquifer. There was no obvious trend of tritium concentrations or ages either within specific hydrogeologic sources or by map locations of the sample sites. A few general similarities within and between groups were noted. A similar range of tritium concentrations are shown in the surface-water samples, AMD water samples, the Swift Formation water samples, and alluvial water samples. Tritium concentrations from Madison aquifer wells demonstrated the tightest grouping with TU values ranging from 11-14 for all but one sample. The Kootenai Formation water samples displayed the widest spread with TU values ranging from about 1 to greater than 20. The range of tritium concentrations in the AMD water samples tended to concentrate near the midpoint of Kootenai aquifer water samples. One possible explanation of the large range in the Kootenai samples is that many parts of the aquifer have poor hydraulic connections.

Figure 29. Map and chart showing tritium concentration by water source.

The more specific apparent ages of ground water can be estimated using the helium-3/tritium method and the chlorofluorocarbon method. Helium-3/tritium ages were estimated from two samples. A Madison aquifer sample (GWIC ID 177163) was dated at 8 years and a Kootenai aquifer sample (GWIC ID 193220) was dated at 22 years (Figure 30).

Chlorofluorocarbons (CFC) are anthropogenic components of the atmosphere that have increased in concentrations from the 1940's to the 1990's. Chlorofluorocarbon samples were also collected as another method of age-dating ground-water from the Belt area. Concentrations of three different CFC compounds (CFC-11, CFC-12, and CFC-13) can be used to estimate the average residence time of ground water (Warner and Weiss, 1985; Bu and Warner, 1995; and Prinn and others, 2000). The best recharge age estimates are typically determined by measuring CFC-12 compounds because the concentration levels are still rising and they appear to exhibit the most conservative behavior (Cook and others, 1995). Both CFC-11 and CFC-13 have leveled off since the 1990's, making two recharge ages possible on either side of the curve (younger or older). If the CFC concentrations results are supersaturated, it indicates the atmosphere is not the sole source of CFCs to the aquifer. The sample could be contaminated by industrial or urban CFC sources. Other complications involve determining the temperature of the water, as it recharged the aquifer, and the elevation of the recharge area. Varying these factors can significantly change the estimated average residence time of ground water. CFC age estimates ranged from very recent to as old as 42 years (Table 6).

The CFC age estimates and the helium-3/tritium age estimates confirmed the modern ages of water indicated by the tritium concentrations. All valid samples confirmed that the age of water in these aquifers is less than 50 years old. The cause of the high rate of supersaturated CFC results is unknown.

Both CFC and helium-3/tritium age estimates were determined at two sample sites. At well (GWIC ID 193220), the relatively close agreement between the CFC age (17 years) and the helium-3/tritium age (22 years) suggest that the Kootenai aquifer water is about 20 years old. The water in the Madison aquifer at well (GWIC ID 177163) is about 8 years old based on the helium-3/tritium method, but cannot be determined based on the CFC method.

The relatively young age of the stratigraphically deeper Madison water suggests a higher rate of ground-water flux through the Madison aquifer than through the Kootenai aquifer.

It is difficult to have a great deal of confidence in apparent age dates from the various methods described above. The most significant observation from this assessment is that the water tested from all significant aquifers contained modern recharge.

Figure 30. Map showing average residence time of ground water.

GWIC	Sample	Recharge	Recharge	Aquifer	CFC12	error	CFC11	error	
ID	Date	Elev. (m)	Temp °C		years	years	years	years	
207258	5/5/2004	1152	10.66	Kootenai	14	2	26	2	
207258	5/5/2004	1152	10.66	Kootenai	13 2		26	2	
207258	5/5/2004	1152	10.66	Kootenai	13	2	26	2	
164111	5/6/2004	1039	10.37	Kootenai	Obscured by H ₂ S		47	2	
164111	5/6/2004	1039	10.37	Kootenai	42	2	47	2	
164111	5/7/2004	1039	10.37	Kootenai	42	2	47	2	
207662	5/7/2004	1177	10.02	Kootenai	41	2	39	2	
207662	5/7/2004	1177	10.02	Kootenai	42	2	39	2	
207662	5/6/2004	1177	10.02	Kootenai	43	2	39	2	
210533	5/6/2004	1338	8.17	Kootenai	18	2	21	2	
210533	5/6/2004	1338	8.17	Kootenai	17	2	21	2	
210533	5/6/2004	1338	8.17	Kootenai	17	2	21	2	
217056	10/28/2004	1213	8.88	Kootenai	Obscured by H ₂ S 2		41	2	
217056	10/28/2004	1213	8.88	Kootenai	40 2		39	2	
217056	10/28/2004	1213	8.88	Kootenai	40 2		38	2	
215048	10/27/2004	1213	8.83	Morrison	17 2		29	2	
215048	10/27/2004	1213	8.83	Morrison	Obscured by H₂S	2	31	2	
215048	10/27/2004	1213	8.83	Morrison	19	2	30	2	
217052	12/30/2004	1201	8.82	Morrison	34	2	38	2	
217052	12/31/2004	1201	8.82	Morrison	35	2	39	2	
217052	1/1/2005	1201	8.82	Morrison	34	2	37	2	
145604	5/6/2004	1067	9.11	Swift	1Supersaturated		1Supersaturated		
145604	5/6/2004	1067	9.11	Swift	1Supersaturated		1Supersaturated		
145604	5/6/2004	1067	9.11	Swift	1Supersaturated		1Supersaturated		
217922	7/14/2004	1085	9.5	Swift	1Supersaturated		1Supersaturated		
217922	7/14/2004	1085	9.5	Swift	1Supersaturated		1Supersaturated		
217922	7/14/2004	1085	9.5	Swift	1Supersaturated		1Supersaturated		
196148	5/3/2004	1676	10	Madison	28	2	30	2	
196148	5/3/2004	1676	10	Madison	27	2	29	2	
196148	5/3/2004	1676	10	Madison	28	2	29	2	
2315	5/6/2004	1676	11.1	Madison	1Supersaturated		22	2	
2315	5/6/2004	1676	11.1	Madison	1Supersaturated		22	2	
2315	5/6/2004	1676	11.1	Madison	1Supersaturated		23	2	
177163	7/29/2004	1676	9.63	Madison	1Supersaturated		1Supersaturated		
177163	7/29/2004	1676	9.63	Madison	1Supersaturated		1Supersaturated		
177163	7/29/2004	1676	9.63	Madison			1Supersaturated		
31978	7/29/2004	1676	11.39	Madison	1Supersaturated		1Supersaturated		
31978	7/29/2004	1676	11.39	Madison	1Supersaturated		1Supersaturated		
31978	7/29/2004	1676	11.39	Madison	1Supersaturated		1Supersaturated		

29/2004 1676 11.39 **Table 6. Summary of CFC results.**

ACID MINE DRAINAGE IMPACTS

Loading From AMD Discharge

Five sources of AMD discharges were identified in the Belt area. Two are direct discharges to Belt Creek: the main Anaconda Mine Drain and the Lewis Coulee Mine Drain. In addition, indirect discharges were identified from the French Coulee Main Drain and the Lewis Coulee Drain above Castner Park. Another source of indirect AMD discharge is not from a mine drain, but from seepage from Coke Oven Flats; a 27 acre area of reclaimed coal waste located near the Anaconda Mine Drain (DEQ, 2000).

Based on this work and other ongoing MBMG research, the direct loading to Belt Creek from AMD is estimated to be 103,300 pounds of iron per year and 64,986 pounds of aluminum per year (Figure 31). Indirect loading to Belt Creek, from other AMD drains moving through alluvial sediments, is estimated to be 40,080 pounds of iron per year and 28,327 pounds of aluminum per year. This indicates indirect loading from Coke Oven Flats estimated at about 80 pounds of iron per year and 8,780 pounds of aluminum per year (Table 7). The main direct source of AMD is the discharge from the Anaconda Mine; which averages about 132 gpm, or about 213 acre feet per year. The Lewis Coulee Mine Drain discharges an average of 3 gpm, or about 4.8 acre feet per year. The indirect sources discharge about 9 gpm, or 14.5 acre feet per year from the French Coulee Main Drain, and about 2 gpm, or 3.2 acre feet per year from the Lewis Coulee Drain above Castner Park. At both of these indirect sources, the AMD discharges seep into alluvial deposits prior to discharging into the creek. Indirect discharges from the Coke Oven Flats reclamation is through seeps along Belt Creek. The discharge volumes at this site were estimated based on a range of 1 to 3 percent of the year's annual precipitation recharging the 27 acre area of reclaimed waste coal that flows into Belt Creek. Using the high estimate (3 percent of precipitation), about 1 acre foot of this water discharges into Belt Creek annually. The metal loading from all known sources of AMD discharging into Belt Creek near Belt is estimated to be 143,380 pounds of iron per year and 93,313 pounds of aluminum per year.

Mnumber	Site Name	Average Flow Rate (gpm)	Iron (Fe) Ibs/year	Aluminum (Al) ibs/year	Loading to Belt Creek
200616	Main Anaconda Mine Drain	132	94,500	59,279	Direct
214915	Lewis Coulee Mine Drain	3	8,800	5,707	Direct
200615	French Coulee Mine Drain	9	35,100	17,484	Indirect
214914	Lewis Coulee above Castner Park	2	4,900	2,063	Indirect
214917	Coke Oven Flats	0.62	80	8,780	Indirect
Subtotal fro	m Direct Loading		103300	64,986	
Subtotal from Indirect Loading			40,080	28,327	
Total			143,380	93,313	

Figure 31. Loading to Belt Creek calculated from water quality samples taken from 1-2003 to 10-2004.

Table 7. Data used for loading calculations.

Mnumber	Site Name	Percent of Precipitation Infiltrated on 27 Acres		Iron (Fe)	Fe Pounds/Year	Aluminum (Al) mg/L	Al Pounds/Year
	MW1, A Well Located Within 27 Acres of Reclaimed Coal waste on						
214917	"Coke Oven Flats"	1%	•	3.210	30	373.061	2,930
214011	OOK O VOIT I I I I I	2%	•	3.210	50	373.061	5,850
		3%	•	3.210	80	373.061	8,780
	Belt Creek Al Above Swim				•	n newsonk - 6	
214911	Hole	•	900	0.169	700	0.568	2,230
Lifety William	Belt Creek at North	har drift skillfride stad	B rankagelin shiftangamera propredictoris (20	•		Andrew Andrews	Annella mar page of delicate and
214913	Extent of Spoil Piles		848	6.010	22,200	0.017	100
200616	Anaconda Mine Drain	•	132	171.000	94,500	102.846	59,280

Loading from Ground Water

Transects Across Belt Creek

The impacts of AMD discharges on Belt Creek are shown on Figure 32. This figure is based on data from eight stream transects that were conducted on October 24, 2004 along Belt Creek; from immediately above the first obvious source of AMD discharges to a point about ½ mile downstream. Field parameters pH, temperature, and specific conductance were collected as a composite sample at each transect. In addition, stream flow was measured at three of the transects. The overall flow decreased from about 2 cfs to about 1.3 cfs along this ½ mile reach of Belt Creek. Background conditions are assumed at mile point 0 (Belt Creek behind the city well). At this point, the specific conductance was less than 500 µmhos/cm, pH was about 7.8 S.U., and the water temperature was about 10.5 °C. For at least ½ mile downstream, AMD discharges were clearly evident by distinctive field parameter measurements from Belt Creek water; with lower pH and higher specific conductance values. The water temperature increased slightly from about mile point 0 to mile point 0.17. Near mile point 0.47, the water temperature had dropped by about 3 °C. This drop in temperature probably relates to a change from a losing to a gaining reach between mile points 0.17 and The AMD impacts to Belt Creek are likely to extend further downstream and consequences on aquatic life are more of a problem during periods of low flow.

Figure 32. Field measurements collected at 8 transects along Belt Creek show AMD impacts.

Public Well

The Belt Public water supply well #2 (GWIC ID 2315) is located on "Coke Oven Flats", adjacent to Belt Creek. It produces water from the Madison aquifer from a depth of 430 feet. In 1994, the water main line between the pump house and water tanks corroded and leaked. This public well is located only about 140 feet southeast from monitor well #1(MW1) on the reclaimed spoil area. A water-quality sample was extracted from MW1 (GWIC ID 214917). This water appears to be AMD that is very corrosive and high in trace elements. The corrosion in the main line appears to be directly caused due to action of contaminated shallow ground-water and acidic soils. To mitigate the problem, the main line was replaced with plastic pipe (DEQ, 2000). MBMG attempted to inspect the public water supply well for corrosion but we could not access the well casing with the down-hole camera. According to Ground-Water Information Center (GWIC), city well #2 is completed with an 8 inch steel casing. Public water supply rules require that the well be properly grouted. It is likely that cement grout is protecting the well casing from the corrosive shallow ground water. Our recommendation would be to periodically inspect the city well for corrosion, be aware of the corrosion potential, and to develop a plan to repair the casing in case of a leak.

REMEDIATION

Based on the data collected, it appears that recharge to the Anaconda Mine is locally derived. The key to reducing AMD discharges is to slow down, or stop, the infiltration of moisture into the abandoned mine. This recharge appears to be relatively constant as recorded in the discharges from the mine. Fluctuations in precipitation cause significant changes in discharge from the overlying Sunburst aquifer springs. However, the mine discharges remain stable. Apparently the head increase, caused by precipitation-derived recharge, is rapidly dissipated through leakage at contact springs. As a result of this localized flow system, the volume of AMD discharging from the mine could be reduced, or possibly eliminated, by changing land use in the recharge area. Figure 33 is a pie chart of land use in the recharge area towards the Anaconda Mine. Crop-fallow farming covers about 73 percent of the recharge area to the mine. This type of cropping allows significant

amounts of water to move below the root zone, recharging underlying ground-water systems. By changing the land use to permanent vegetation, more water consumption would be possible; preventing excess water from recharging the mine voids.

Land Use	Acres	%
Transportation	14.13	
Range/Pasture	486.10	24.00%
Forest	37.72	1.86%
Cropland	1,487.09	73.43%
Total	2,025.04	100.00%

Figure 33. Land use in ground water recharge area.

It is recommended to initially focus cropping changes to areas directly over the mine voids. The region over the mine workings are likely to be highly fractured as a result of collapse or settling of overlying rocks into the mine void. Reducing recharge in this area is likely to have a good potential to limit the movement of water into the mine voids. Land-use changes in other parts of the recharge area could be developed in the future. Long-term monitoring of the AMD discharges, and selected wells in and near the mine workings, should be conducted to document any change in the hydrogeologic system. Other possible remediation options including diverting flow from overlying aguifers to prevent water from filling the mine voids. This could be accomplished by constructing horizontal wells to drain overlying aquifers laterally, or by designing vertical wells to bypass the mine workings and recharge lower aquifer zones. Flooding the mine voids to reduce pyrite oxidation could conceivably reduce AMD, but may result in other unwanted discharges. It appears likely that the least engineered solution has the best potential for mitigating the AMD problem at Belt. Growing alfalfa or other water consumptive crops would have the potential to significantly reduce infiltration and possibly decrease or eliminate the AMD discharges.

REFERENCES

- Bu, X., and Warner, M.J., 1995, Solubility of chlorofluorocarbon 13 in water and seawater, Deep-Sea Res. I, 42, 1151-1161p.
- Clark, Ian D., and Fritz, P., 1997, Environmental isotopes in hydrology; Lewis Publishers, New York, Boca Raton, 328p.
- Cook, P. G., Solomon, D.K., Plummer, L.N., Busenberg, E. and Schiff, S.L., 1995, Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resources Research, 31: 425-434.
- Coplen, Tyler B., and Kendall, Carol, 2000, Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. Geological Survey's NASQAN and Benchmark Surface-Water Networks, U.S. Geological Survey Open File Report 00-160, 409p.
- Department of Environmental Quality Mine Waste Cleanup Bureau, 2000, Summary of abandoned mine reclamation work in areas adjacent to Belt Creek and its tributaries.
- Duaime, T.E., Sandau K.L., Vuke, S.M., Hanson, Jay, Reddish, Shawn, Reiten, J.C., 2004, Reevaluation of the hydrologic system in the vicinity of the Anaconda Mine at Belt, Cascade County, Montana.
- Fischer, C.A., 1907, Great Falls Coal Field, U.S. Geological Survey Bulletin 316.
- Fischer, C.A., 1909, Geology of the Great Falls Coal Field, Montana, U.S. Geological Survey Bulletin 356.
- Hendry, M.J., Schwartz, F.W., 1990, The chemical evolution of ground water in the Milk River aquifer, Canada. Water Resources Research, 24: 1747-1763.
- Hvorslev, M.J. 1951, Time lag and sol permeability in ground-water observations. U.S Army Corps Engineers. Waterways exp. Sta. Bull. 36, Vicksburg, Miss.
- Lohman, S. W., 1979, Ground-water hydraulics, U.S. Geological Survey Professional Paper 708.
- Montana Bureau of Mines and Geology well information: http://mbmggwic.mtech.edu/
- Karper, P.L., 1998, Water-quality data (July 1994 through September 1996) and statistical summaries of data for surface-water in the Sand Coulee Coal Area, Montana: U.S. Geological Society Open-File Report 94-98.

- Olson, John L., and Reiten, Jon C., 2002, Hydrogeology of the West Billings area: impacts of land-use changes on water resources, Montana Bureau of Mines and Geology RI.10.
- O'Neill, J.M., and Lopez, D.A., 1985, Character and regional significance of the Great Falls Tectonic Zone, east-central ldaho and west-central Montana: Bulletin of the American Association of Petroleum Geologists, v.69, 349-437p.
- Osborne, T.J., M. Zaluski, B.J. Harrison, and J.L. Sonderegger. 1987, Acid-mine drainage control in the Sand Coulee Creek and Belt Creek watershed, Montana, 1983-1987. V.1., Montana Bureau of Mines and Geology Open File Report 109. 54p.
- Prinn, R.G., and others, 2000, A history of chemically and raidiatively important gases in air deduced from ALE/GAGW/AGAGE, J. Geophys. Res., 105 (D14), 17751-1779 2p.
- Tetra Tech, Inc., 1995, Belt, Montana reclaimed coal burn monitoring well installation, Final Report. Montana Department of Environmental Quality, AMRB Contract # 94-012 T.O. #5.
- U.S. Geological Survey: 2000, National Landcover Dataset, Montana: http://nris.state.mt.us/nsdi/nris/nlcd/nlcdgrid.html
- Warner, M. J. and Weiss, R.F., 1985. Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep Sea Research, 32: 485-497.
- Western Regional Climate Center: http://www.wrcc.dri.edu/summary/.html
- Wheaton, John, and Brown, Terry, 1999. Acid mine drainage at the Number 6 mine near Stockett, Montana, Unpublished Final Report to the Department of Natural Resource and Conservation (DNRC) Resource Development Grant Program (RDGP).
- Vuke, Susan M., Berg, Richard B., Colton, Roger, B., and O'Brien, Hugh E., 2002. Geologic Map of the Belt 30 X 60 quadrangle, central Montana. Montana Bureau of Mines and Geology Geologic Map, MBMG 450, full color, Scale 1:1000,000.

APPENDIX A

Inventory Data

	Site Name	Latitude	Longitude	Township	Range	Section	Tract	Ground Elevation (ff)	Total depth (ft)	Date (mm/dd/yy)	Static water level from mp (ft)	Pumping water level (ft)	Water temperature (°C)	Field SC (umhos/cm)	Field pH	ORP (mV)	Field test nitrate (mg/L N)	Dissolved Oxygen (mg/L)
2315 30562 30562 31948 31952 31957 31957	TOWN OF BELT WELL 2 JOHNSON GERALD JOHNSON GERALD NISBET HARRY GOO EDWARD HORST NATHAN HORST NATHAN	47.3638 47.3052 47.3052 47.4342 47.4305 47.4296 47.4298	-110.9226 -110.9785 -110.9765 -110.9119 -110.9547 -110.9655 -110.9655	19N 16N 18N 19N 19N 19N	06E 06E 06E 06E 06E 06E	26 21 21 1 3 4	ACAD BABB BABB CDBC CDBA DACD DACD	3520 4280 4280 3450 3700 3715 3715	430 35 35 56 12 140 140	8/5/03 9/12/02 9/23/03 7/25/03 5/30/03 5/29/03 9/23/03	19.16 20.15 23.92 1.2 96 95.13	19.34 20.43 28.8	12.2 B.9 9.26 10 12.11 15 9.87	600 512 682 672 763 1123	7.06 7.42 6.69 7.26 7.78 7.07	258 276 209 -106 102.3 14.6	5 10 0	5.6 7.88 9.1
31957	HORST NATHAN	47.4296	-110.9655	19N	06E	4	DACD	3715	140	5/29/03	96	119.7 60.5 67.45 21 74.1 50.54 52.8 8.48 8.9 26.1 16.2 339.8 250 17.15 16.69 78.2 94.6	15				0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.1 9.13 5.61 5.59 6.7 0.24 6.87 5.29 5.8 4.24 3.3 8.7 7.91 6.09 0.32 3.9 0.87 10.6 8.22 7.65 6.82 0.36 5.74 4.35 0.34 3.65 4.73 3.54 4.42 3.57 3.12 3.54 4.42 3.57 3.72 6.83 6.87
200616 200616 200616 200616 200616 200617 200617	ANACONDA MINE DRAIN AT CULVERT FRENCH COULEE * HIGHWAY DRAIN FRENCH COULEE * HIGHWAY DRAIN	47.3766 47.3786 47.3788 47.3768 47.3766 47.3788 47.3722 47.3722	-110.9314 -110.9314 -110.9314 -110.9314 -110.9314 -110.9285 -110.9285	19N 19N 19N 19N 19N 19N 19N	06E 06E 06E	26 26 26 26 26 26	BDCD BDCD BDCD BDCD BDCD CDDA CDDA	3540 3540 3540 3540 3540 3540 3560 3560		6/19/03 9/18/03 10/23/03 4/24/04 6/24/04 8/12/04 1/30/03 3/15/03			9.9 9.94 9.91 9.8 11.91 9.9 3.5 4.1	2355 2390 2300 2275 2120 2465 810 440	2.56 2.7 2.99 2.8 2.75 2.88 7.79 6.17	607 623 264 460 495 630 82 144		2.1 1.54 1.83 3.78 1.61 11.09 10.9

	Site Name	Latitude	Longitude	Township	Range	Section	Tract	ind Elevation (ft)	Total depth (ft)	te (mm/dd/yy)	Static water level from mp (ft)	ping water level (ft)	er temperature (°C)	SC (umhos/cm)	Fleld pH	ORP (mV)	Field test nitrate (mg/L N)	solved Oxygen (mg/L)
								Ground	ř	Date	Sta	Pumpt	Water	рен			Fie	\$ C
200617 200617	FRENCH COULEE * HIGHWAY DRAIN FRENCH COULEE * HIGHWAY DRAIN	47.3722 47.3722	-110.9265 -110.9265	19N	06E	26 26	CDDA	3560 3560		4/22/03 5/28/03			8.6 13.6	805 740	7.78 8.13	114 50		10.8 9.05
200617 200617	FRENCH COULEE * HIGHWAY DRAIN FRENCH COULEE * HIGHWAY DRAIN	47.3722 47.3722	-110.9285 -110.9285	19N 19N	06E	26 26	CDDA	3560 3560		8/17/03 7/17/03			15.1	460	8.07	42		11.05
200617	FRENCH COULEE * HIGHWAY DRAIN FRENCH COULEE * HIGHWAY DRAIN	47.3722 47.3722	-110.9285 -110.9285	19N 19N	06E 08E	26 26	CODA	3560 3560		8/19/03 9/19/03			10.6 9.34	790 860	7.86 7.74	304 118		9.8 9.57
200617	FRENCH COULEE * HIGHWAY DRAIN FRENCH COULEE * HIGHWAY DRAIN	47.3722 47.3722	-110.9265 -110.9265	19N 19N	06E	26 26	CDDA CDDA	3560 3560		4/24/04 6/24/04			8.3 12.18	820 586	6.18 7.3	322 372		12.1
200617	FRENCH COULEE * HIGHWAY DRAIN RAY OGLE	47.3722 47.3149	-110.9265 -110.9475	19N	06E 06E	26 15	CDDA DBAC	3560 4060	1	8/12/04 9/12/02	131.92		12 13.2	765 553	9.72 7.32	171	0 1	10.4
201069 201123	DAVE FETTER GLEN MCCLELAND	47.2573 47.3774	-110.916 -110.9262	17N 19N	06E	1 26	CCCC	3830 3540	-11	9/12/02 9/10/02	9.18 20.6	10.61 22.15	14.6 9.8	417 634	7.81 7.41	147 -143.9	0	ĺ
201878 202378	PONDEROSA CAMPGROUND DANNY HARDINGER	47.3636 47.3241	-110.8996 -110.9747	19N 18N	06E 06E	36 9	DACC	3580 4240	505 0	8/19/03 5/16/03	208.55		7.6	601	6.86	300.9	2	8.49
202581	GENE ERBETTA UPPER BOX ELDER CREEK * LARSON	47.4318	-110.9159	19N	06E	12	8888	3440	35	9/11/02	9.26		13.4	446	7.69	163.9	0	0.48
203450	RANCH	47.3588	-110.9868	19N	06E	32		3840		5/28/03			19	875	8.1	240		7.32
203450	UPPER BOX ELDER CREEK * LARSON RANCH	47.3586	-110.9868	19N	06E	32		3840		6/17/03			18.2	400	7.89	299		7.81
203450	UPPER BOX ELDER CREEK * LARSON RANCH	47.3586	-110.9868	19N	06E	32		3840		7/17/03				}				
203450	UPPER BOX ELDER CREEK * LARSON RANCH	47.3588	-110.9866	19N	06E	32		3840		8/19/03			15.8	620	7.85	253		7.93
203450	UPPER BOX ELDER CREEK * LARSON RANCH	47.3586	-110.9868		06E	32		3840		9/18/03			8.7	620	7.58	245		9.13
203450	UPPER BOX ELDER CREEK * LARSON RANCH	47.3588	-110.9888		96E	32		3840		10/23/03			9.3	860	7.71	96		6.95
203450	UPPER BOX ELDER CREEK * LARSON RANCH	47.3586	-110.9866		06E	32		3840		4/25/04			13	635	8.48	296		12.8
203451	LOWER BOX ELDER CREEK * BELOW J HARRIS RANCH	47.3779	-110.9856			29		3745										
	LOWER BOX ELDER CREEK * BELOW J									5/28/03			24.5	680	8.2	236		5.73
203451	HARRIS RANCH LOWER BOX ELDER CREEK * BELOW J	47.3779	-110.9856	19N		29		3745		6/17/03			23.3	395	8.15	286		7.88
203451 204516	HARRIS RANCH JIM LARSON	47.3779 47.3651	-110.9856 -110.9484	19N 19N	06E	29 34	ACDC	3745 3926	19.6	4/25/04 11/27/02	12.9		17 8.1	570	8.67	288		14.3
204516 204887	JIM LARSON OSTERMAN DARIN AND NOEL	47.3651 47.3706	-110.9484 -110.9095	19N 19N	06E 06E	34 36	ACDC BACD	3926 3570	19.6 381	9/24/03 11/26/02	12.65 278.85	279.53	11.31	528	7.46	233.6		8.57
204710	SEEP ON LEFT SIDE OF HIGHWAY DRAIN * BELT MT	47.3757	-110.927	19N	06E	26		3600		7/17/03								
204710	SEEP ON LEFT SIDE OF HIGHWAY DRAIN * BELT MT	47.3757	-110.927	19N		26		3600		8/19/03								
204710	SEEP ON LEFT SIDE OF HIGHWAY DRAIN * BELT MT	47.3757	-110.927	19N	06E	26		3500		9/19/03			10.4	3510	7.4	240		
205508 205653	BELT CREEK * E OF TOWN WELL #2 JOHN HARRIS RANCH * SPRING	47.3812 47.3663	-110.9257	19N 19N	06E	26		3520	:	8/20/03			10.4	3510 460	7.4 7.48	210 253		9.11 8.28
205653	JOHN HARRIS RANCH * SPRING	47.3563	-110.9974 -110.9974	19N	06E	29 29		3920 3920		8/19/03 10/23/03			10 9.5	560 560	7.02 7.42	234 62		4.29 3.9
205836 205838	BELT CREEK BELT CREEK	47.3636 47.3753	-110.9056 -110.9163	18N	06E 06E	12 26	ABDA DDDA			8/27/03 8/27/03			17.9 18.4	297 371	7. 79 7.22	510 512		ŀĺ
205839 206358	BELT CREEK BONNIE ZANTO	47.3808 47.4478	-110.9253 -110.924	18N 20N	06E 06E	26 35	DCDB	3490	202	8/27/03 8/20/03	97.2		19.2 13.1	372 789	7.48 6.82	513 190	0	14.6
206360 206544	FRANK BALITOR HOYER JERRY T.	47.3788 47.4296	-110.9268 -110.9223	19N 19N	06E 06E	26 11	DBCB ABDD	3530	265	11/27/02 8/22/03	175.55				1			
207258	PLEASENT VALLEY COLONY PLEASENT VALLEY COLONY	47.3784 47.3784	-110.9834 -110.9834	19N 19N	06E	29 29	ACBB ACBB	3770 3770	72 72	5/27/03 8/21/03	30,59 38,13	38.3	10 10.7	137	7.21 7.55	85.8 137	1.5	8.03
207286 207463	NELSON ROGER IRVINE	47.292 47.3507	-111.0247 -110.9586	18N 18N	06E	19	CCCA	4150 4060	60 56.3	4/9/04 8/24/03	14.72 25.69	30.3	7.99	487	7.99	-18	0	0.52
207649 207662	BRUCE KEASTER BURGE EXPLORATION ACM WELL	47.4033 47.3787	-110.9775 -110.9794	19N 19N	06E 06E	16 29	CCB	3635 3860	30 186	5/28/03 8/20/03	4.11		19.8	892	7.02	75.5		3.9
207662	BURGE EXPLORATION ACM WELL BURGE EXPLORATION ACM WELL	47.3787 47.3787	-110.9794	19N	06E	29	DAAA	3860	186	4/25/04	125.4 118.58		11.1	220	7.21	310		4.9
207672 207767	IRVINE HARRIS JOHN * PONO	47.3559	-110.9794 -110.9597	19N 19N	06E	29 34	DAAA	3860 4022	166	9/24/03	118.3		10.02	606 558	6.92 7.18	76 178	0	2.82 10.91
207930	GARY CROWDER	47.37 47.3676	-110.9918 -110.9031	19N 19N	06E	29 36	ACAA	3780 3560	40	9/19/03	28	29.9	9.9 10.3	500 478	7.34 7.27	192 237	0	7.73 7.92
209498	JIM LARSON SPRING 3 JIM LARSON SPRING 2	47.3637 47.3587	-110.9809 -110.9816	19N 19N	06E	32 32	DAA	3860 4020		5/27/03 5/27/03			20.7 18.8	800	8.19 8.22	74.6 10S.S		5.4 6.9
209514 209515	JOHN HARRIS S-9 JOHN HARRIS S-8	47.369 47.3699	-110.9886 -110.9914	19N 19N	06E 06E	29 29	C	3840 3820		5/29/03 5/29/03			14.4 14.6	835 775	7.9 8.01	76 103		8.3 9
209516 209517	EDWARD GOO POND JIM LARSON S-1	47.4348 47.3583	-110.9527 -110.9891	19N 19N	06E	3 32	CDCB DBB	3700 3840		5/30/03 5/27/03			18.7 21.5	512 799	7.91 8.22	40.3 82.3		7.5
209526 209527	PLEASANT VALLEY COLONY SPRING PLEASANT VALLEY COLLONY S-4	47.3777 47.365	-110.9829 -110.9706	19N 19N	06E 06E	29 33	DCAA BD	3800 3910		5/27/03 5/27/03			18	878 574	7.65 8.58	106		6
209592 210402	ROGER NELSON BRUCE KEASTER	47.2901 47.3683	-111.0247 -110.9024	18N 19N	08E 08E	19	CCCD	4160 3580	27.5	4/9/04 10/21/03			6.83	484	7.02	224	0	2.22
210533 210533	MARRY EVANS MARRY EVANS	47.3128 47.3126	-110.9951 -110.9951	18N 18N	06E 06E	17 17	CAAD	4390	90	5/8/04	29.57	32.4	8.17	1019	7.51	90.8	10	9.03
210655 212233	JIM SNIDER MURPHY, LARRY	47.3988	-110.951	19N	06E	22	BDDB	4390 3860	90 76	7/29/04 5/7/04	25.77 34.65	0	9.83 9.83	601	7.28	107 173	5	8.14 8.1
213386	JIM SNIDER	47.4043 47.4484	-110.8911 -110.9604	19N 20N	07E 06E	18 33	DDDB	3765 3635	380 29	8/19/04 5/7/04	253.85 12.5	275.3	10.9 8.93	1889 1085	6.66 7.73	64 234	20	7.8
213598	PLEASANT VALLEY SPRING • OLD HARRIS HOMESTEAD	47.4131	-110.9716	19N		16		3670		8/12/04			12.8	850	9.71	381		9.36
214068	RICK BECKER JIM DAWSON	47.4318 47.3956	-110.9939 -110.9731	19N 19N	96E 06E	5 21	BDC	3730 3800		5/30/04 5/28/03			10.8 10.2	745	7.9	37.5		10.6
214078 214079	JIM DAWSON RICK BECKER	47.3994 47.413	-110.9667 -110.9486	19N 19N	06E	21 5	BAD	3790 3730		5/28/03 5/30/03	4.28		20.5 11.7	610 619	7.82 7.58	109 98		14.9 9.1
214093 214395	DOUG ZIMMERMAN GARY REDDISH LOWER SPRING	47.4345 47.3196	-110.9623 -110.9298	19N 18N	06E	4 14	CADC	3720 3 9 40		5/29/03 9/26/03	94.19		12.9 12.9	1398 500	6.67 7.85	14.8 230		1.6 8.65

Appendix B

Ground-Water Hydrographs

Precipitation (Inches)

0.8

0.4

-Daily Precipitation

92

-SWL

11/29/04

0/30/04

\$0/18/7

5/31/04

11/30/05

9/30/05

8/1/05

3615 4

3619

1.6

2

3635

3631

Water-Level Elevation (Feet)

3627

95

97

M: 132172

M: 210659 T19N-R06E22-BDDB Alt= 3860 ft, TD=16.6 ft Aquifer= Kootenai

M: 213386

M: 2315 Belt City Well T19N-R06E-26-ACAD Alt=3520 ft, TD=430 ft Aquifer= Madison

M: 165475

M: 31992 19N-06E-23-BADA Alt=3494 ft, TD=75 ft Aquifer= Swift

M: 123498 T19N-R06E-36-DACC Alt=3575 ft, TD=53 ft Aquifer= Swift

Appendix C

Surface and Spring Field Parameters and Flow Charts

Stream Flow on Otter Creek -110.8957 360	Tren Royze De 47,348 -110,8957 3800 327703 16.1 9.52 659 3.3 13 1387 14.4 Nodes of 27,240 15.5 8.2 813 13.5 250 9.3 Worden of 27,240 16.8 8.32 1053 13.8 13.1 239 0.6 Worden of 27,240 16.8 8.32 1053 13.8 13.1 239 0.6 Worden of 24,050 4 15.8 8.32 1053 13.8 13.1 239 0.6 Worden of 24,050 4 15.8 8.15 8.44 1 12.12 27.2 0 Shaff and 24,050 4 15.8 8.37 8.37 10.14 22.4 28 Worden of 24,050 4 15.8 8.37 10.14 22.4 28 Worden of 24,050 4 15.8 8.27 10.14 22.4 28 Word	- A	Mnumber Stream	Station Bridge	Location n (TRSt)	Latitude	Longitude	Elevation (feet)	Date	Depth to Water (feet)	푎	Conductivity (umhos/cm)	Temp (C)	DO (mg/l)	ORP (mv)	Flow (cfs)	Mesurment Method	Stream
17,203 15,5	1/2,000 1/2,	U	Otter Cree			47.348	-110.8957	3600	3/27/03	16.1	9.52	653	3.3	55	138.7	14.4	Staff and Wade	
10/22/03 16.8 8.32 10.53 13.8 13.1 239 0.6 Wedge	1072/04 16.8 8.32 105.3 13.8 13.1 239 0.6 Wedshammen 1072/04 16.6 8.15 8.48 14.55 13.6 283 7.4 Wedshammen 1707/04 16.8 8.18 9.47 14.41 12.12 12.2 255.5 Wedshammen 1740/04 16.8 8.21 8.92 19.23 9.06 14.4 7.5 Wedshammen 1740/04 16.8 8.21 19.23 9.06 14.4 7.5 Wedshammen 1740/04 16.8 17.2 10.14 2.24 28 Wedshammen 1740/04 16.8 17.2 10.14 2.24 28 Wedshammen 1740/04 16.5 7.22 10.21 12.4 7.5 Wedshammen 1740/04 16.5 7.22 10.21 12.4 10.7 (3.6) E 17.00 17.0								4/25/03 7/23/03 8/19/03 9/26/03	15.5	8.2	8 6 6	13.5		250	9.3 0 0 (4.8)	Staff and Wade	Dry Dry
Stream Flow on Otter Creek	29604 31/20								10/22/03	16.8	8.32	1053	13.8	13.1	239	9.0	Staff and Wade	
Stream Flow on Otter Creek	Stream Flow on Otter Creek								2/6/04		7.1	634	7.02	11.27	272	00		Frozen Frozen
Stream Flow on Otter Creek	Stream Flow on Otter Creek								4/6/04	16.6	8.15	848	14.55	13.56	283	7.4	Staff and Wade	
Stream Flow on Otter Creek	Stream Flow on Otter Creek 12.57 10.14 224 28 14.00 28 29.00								5/5/04	15.8	8.18	947	14.41	12.12	123	5.5	Staff and Wade	
7/14/04 16.6 8.21 892 19.23 9.28 144 7.5 8/18/04 16.7 7.98 1015 17.72 8.07 124 (3.9) 9/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) Flow measurements denoting E were calculated by using a Depth to Water method.	7/14/04 16.6 8.21 892 19.23 9.28 144 7.5 8/15/04 16.6 8.21 892 19.23 9.28 144 7.5 8/15/04 16.6 7.22 1015 17.72 8.07 124 (3.9) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) 8/15/04 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10			Stream	m Flow on Otter (Creek	1	low Measurments	6/17/04	14.8	8.37	663	12.57	10.14	224	28	Staff and Wade	
8/18/04 16.7 7.96 1015 17.72 8.07 124 (3.9) 9/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) From measurements denoting E were calculated by using a Depth to Water method.	17.00002 17.000								7/14/04	16.6	8.21	892	19.23	9.28	144	7.5	Staff and Wade	
Final	9/15/04 16.6 7.22 1021 11.46 12.4 107 (3.6) Flow measurements denoting E were calculated by using a Depth to Water method. 1/20/02 9/20/04 1/20/03 1/20/04 107 (3.6)		Process and		-	Subsect of all Mills	•		8/18/04	16.7	7.98	1015	17.72	8.07	124	(3.9)	ш	
Frozen Frozen	Procons and the second and the secon		dos later		\$4.700F	SECTION AND ADDRESS OF THE PARTY.	***	~~~	9/15/04	16.6	7,22	1021	11.46	12.4	107	(3.6)	w	
Lucian	E0/1/9 E0/06/11 E0/06/11				The state of the s			- 47 Von	Flow meas	urements denot	ing E wer	e calculated by using	g a Depth	to Water me	thod.			
Frazen	#0/16/2 #0/16/																	
Lucian	E0/16/2 E0/06/1 E0/06/1 E0/06/1			-	hige marries -	975 Br - 4	a dang											
Frezen	60/16/2 60/16/				***************************************	May 1												
Frazen	60/16/7 60/06/11 50/06/11 50/06/11	İ																
Frazen	HOVE / HO				**************************************	etaror i ven												
	HOVE/A HOVE/S HO						nozon	1										
	HOLES HOLES	1			1		7											

			Location			Flormile		1			,				Flow	
Mnumber Stream	Stream		(TRSt)	Latitude	Longitude	n (feet)	Date	Water (feet)	吾	Conductivity (umhos/cm)	Temp (၁)	(E)	ORP Y	Flow (cfs)	Mesurment	Stream
	Belt	Armington	Armington T19N R06E 36						1			(10)				
214386	Creek	Bridge	DBBB	47.3654	-110.9066	3560	5/31/02	12.32	8.04	153	12.3		130.8	647	Fish and Crane	
							7/17/02	16.1	8.38	270	7 5	96.2	72.5	60.7	Staff and Wade	
							9/23/02							(2 9)	п	Dry
							10/22/02									2 2 2
							3/27/03	16.8 14.65						(26.8)	mı	water From On
							5/14/03	14.9	8.3	216 not working	14.3	Ξ	219	308.1 308.1 8.77	Fish and Crane Staff and Wade	
							8/19/03			,	1					Dry
St	ream Flow o	in Belt Creek	Stream Flow on Belt Creek at Armington Bridge	-Bpµ	Messitments		10/21/03 11/25/03									<u>à</u> à à
		-	<u>.</u> .	-	•		2/6/04									G G
	-4	- 4.		. 1			3/12/04	16.5	7.17	623	8.43	22.5	27.1	19.9	Staff and Wade	
							4/6/04	16.25	8.48	336	14.21	10.94	234	48.3		
		-	de ten	mangra a			5/5/04	14.8	8.33	153	10.69	12.56	133	(141.9)	ш	To Fast To War
			-	Linky -			6/16/04	13.7	8.67	172	9.64	11.15	141	773.9	Fish and Crane	
							8/18/04	16.6	8.37	323	17.57	7.74	253	(31.4)	Stall allu wade	
	-						9/15/04	16.7	6.7	370	11.85	11.05	101	(29.)	ıш	
					- August		10/28/04	17.5	7.27	487	3.68	9.67	186	1.27	Staff and Wade	
	8-			à		_	low meas	urements deno	ting to wer	riow measurements denoting E were calculated by using a Depth to Water method	ig a Depth t	o Water m	ethod.			
1	1															
200/	200	50/		*0	100											
IE/S	DE/LI	ነ ው	OE/B	OCA I	V EXT											
			Date													

### 110.8266 3560 7/10/02 6.26 6.41 540 15.2 8.45 22.4 6 Shaff and Vided 4/25/02 6.35 7.6 5.70 2.3 12.27 109 12.6 Shaff and Vided 5/25/03 6.45 6.16 9.1 1.1 192.9 30 Videth 5/25/03 6.45 6.16 9.1 1.1 192.9 30 Videth 5/25/03 6.26 7.45 11.2 11.7 56.3 33 Videth 5/25/03 6.26 7.45 11.8 11.1 11.1 11.1 11.1 11.1 11.1 11.	### 173754 -110,6286 3560 71/1802 6.26 8.41 5.40 15.2 8.45 22.4 8 Sharf and Wade 21403 6.3 7.8 570 2.3 12.27 109 12.6 Sharf and Wade 32703 6.3 8.45 5.70 1.2 12.27 109 12.6 Sharf and Wade 472503 6.26 6.45 0.16 8.1 1.14 101.3 11.5 86.3 33 Watch 57203 6.26 7.45 11.9 11.14 101.3 11.5 86.3 33 Watch 57203 7.46 15.46 15.1 11.14 101.3 11.5 86.3 33 Watch 57203 7.46 15.46 15.1 11.14 101.3 11.5 86.3 33 Watch 57203 7.46 15.46 15.1 11.14 101.3 11.5 86.3 33 Watch 57203 7.46 15.46 15.1 11.14 101.3 11.5 86.3 33 Watch 57203 7.3 871 11.5 16.8 5.4 12 Watch 57203 7.3 871 11.5 16.8 5.4 12 Watch 57203 7.3 871 11.5 16.8 5.4 12 Watch 57203 7.3 871 10.8 11.14 10.3 11.3 11.3 8.4 Watch 57203 7.3 871 10.8 11.3 12.3 871 10.8	### 12754 -110,6266 3560 711,002 6.25 6.41 540 15.2 84.5 22.4 6 8 8baff and Wade Bucket Stop 4/25/23 6.3 8.45 5.07 4.6 13.1 198,9 30 Bucket Stop 4/25/23 6.29 6.27 12 11.7 58.3 39 Walch Stop 4/25/23 6.29 6.27 12 11.7 58.3 39 Walch Stop 6/22/23 7.24 6.29 11.8 11.1 11.1 11.1 11.1 11.1 11.1 11.	### 13774 -110,0206 3560 711602 6.25 6.41 540 15.2 84.5 22.4 8 5814 and Widdle 2114,03 6.3 7.8 5.7 4.6 13.1 190, 30 Bucket Stop 4.25703 6.3 8.45 507 4.6 13.1 190, 30 Bucket Stop 4.25703 6.20 6.27 12 11.7 58.3 33 Watch Placet Stop 6.22003 6.20 6.27 12 11.7 58.3 33 Watch Placet Stop 6.22003 7.40 15.40 11.9 11.14 101.3 11.5 Bucket Stop 6.22103 7.40 15.40 15.40 11.9 11.14 101.3 11.5 Bucket Stop 6.22103 7.40 15.40 1	### 110 872 86 315 90 771 80 23 1227 109 128 Stuff and Widels Stuff and Wi	47.3754 -110.226 3560 711002 6.28 0.41 540 15.2 6.45 22.4 6 Shaff and Wade Carlo Car	### 110 2266	110 2286 3560 77 100 22 6.25 6.41 540 15.2 1.27 1.09 1.26 510 510	Station C	(TRSt)	Lethide	Longitude	Elevation (fleet)	Dete	Depth to Water (faet)	£	Conductivity (umhos/cm)	Temp (C)	DO (mg/l)	ORP (mv)	Flow (gpm)	Flow Mesument Method	Nitrate	Flume size is .5 " H flume	Stream
22703 6.3 7.8 570 2.3 1227 109 12.8 Staff and Wade 245.00 2.3 1227 109 12.8 Staff and Wade 245.00 2.3 1227 109 12.8 Staff and Wade 245.00 2.3 12.27 109 12.8 Staff and Wade 245.00 2.3 12.27 109 12.8 Staff and Wade 245.00 2.3 12.2 1.4 1.5 1.5 1.5 1.3 1.4 10.1 1.1 1.5 1.5 1.5 1.5 1.3 1.4 10.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	12703 6.3 7.8 570 2.3 12.27 108 12.8 Staff and Wase 12.27 108 12.8 Staff and Wase 12.27 10.8 Staff and Wase 12.28 Staff and Was	12703 6.3 7.8 570 2.3 12.27 106 12.6 Staff water Staff water Staff and Water	1,1,2,6,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,4,0,3 1,3, 1,3, 1,3, 1,3, 1,3, 1,3, 1,3,	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	Siz703 6.3 7.8 570 2.3 7.27 198 7.2 5814 7.2	21/403 6.3 7.8 570 2.3 7.27 108 7.28 514 10.00 12.	1,1,2,0,1,3	Franch Coulee East side T19N R08E 26 Highway Drain of Filt CDDA	CDDA		-110.9286	3560	7/18/02		0.41	240	15.2	9.45	24	œ	Staff and Wede			
127/03 6.45 507 4.6 13.1 199.9 30 Watch	327/03	1,2,0,0,0 2,1,0,0,0,0 2,1 1,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0 2,1,0,0,0,0,0,0 2,1,0,0,0,0,0,0 2,1,0,0,0,0,0,0,0 2,1,0,0,0,0,0,0,0 2,1,0,0,0,0,0,0,0,0,0 2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	11/26/03 6.45 616 6.1 7.15 30 Watch 1.15 1.15 30 Watch 1.15	1,12,003 1,12,003 1,12 1,14 1,14 1,13 1,14 1,14 1,13 1,14 1,13 1,13 1,14 1,13	March Marc	March Marc						2/14/03		7.8	570	2.3	12.27	90	12.6	Staff and Wade Bucket Stop			
472503 6.45 916 9.1 -15 30 Budget Stop Bud	1,15,03	A15,03 B.15	475/03 6.45 016 9.1 -15 30 Hudder Stop Hudder Hudder Hudder Hudder Stop Hudder H	472503 6.45 616 9.1 -15 30 Bucket Stop B	472503 6.45 6.16 9.1 -15 30 Guident Stop Grazio 6.29 6.27 12 11.7 56.3 33 Watch Stop Grazio 6.29 7.45 11.9 11.14 101.3 11.5 Guident Stop Grazio 6.29 7.45 11.9 11.14 101.3 11.5 Guident Stop Grazio 7.74 15.82 8.60 14.5 16.65 5.4 1.2 Watch Grazio 7.73 6.73 6.73 11.19 11.19 11.3 11.5 Guident Stop Grazio 7.73 6.73 11.19 11.19 11.3 11.3 Guident Stop Grazio 7.73 6.73 11.30 11.13 11.3 Guident Stop Grazio 7.73 6.73 11.30 11.30 11.3 Guident Stop Grazio 6.70 6.70 6.70 6.70 6.70 6.70 6.70 6.70	1128-03 645 616 9.1 -15 30 Subset Stop Powled Stop P	National						3/27/03		8.45	507	4.6	13.1	189.9	30	Watch			
S/15/03 8.28 745 11.9 11.14 101.3 11.5 Walch 1723/03 7.48 1549 15.1 22 140 Walch 1723/03 7.48 1549 15.1 22 140 Walch 1723/03 7.48 1549 15.1 22 140 Walch 1723/03 7.3 871 10.93 11.19 12 Walch 1726/03 7.3 871 10.93 11.19 12 Walch 256/04 5.7 883 1.46 13.71 0.3 13.3 Walch 256/04 5.7 883 1.46 13.71 0.3 13.3 Walch 3711/04 8.19 801 5.46 19.7 0.5 27.3 Walch 1726/04 6.26 667 6.89 10.3 137 171.9 Staff and Wade 10 1726/04 6.26 667 6.89 10.3 137 171.9 Staff and Wade 10 1726/04 6.26 667 6.89 10.3 137 171.9 Staff and Wade 10 1726/04 6.26 667 6.89 10.3 137 171.9 Staff and Wade 10 1726/04 6.26 667 6.89 10.3 137 171.9 Staff and Wade 10 1726/04 6.26 667 6.89 10.3 137 171.9 Staff and Wade 10 1726/04 6.26 677 681 11.0 10.14 50 40.4 Flume Guage 0.19 1726/04 6.24 763 712 738 Flume Guage 0.19 1726/04 6.24 763 712 738 Flume Guage 0.19 1726/04 6.25 712 713.9 Flume Guage 0.19 1726/04 6.25 712 713.9 Flume Guage 0.19 1726/04 6.25 712 713.9 Flume Guage 0.19 1726/04 6.24 753 712 713.8 Flume Guage 0.19 1726/04 6.24 753 712 713.9 713.8 Flume Guage 0.19 1726/04 6.25 712 713.9 713.8 Flume Guage 0.19 1726/04 6.25 712 713.9 713.8 Flume Guage 0.19 1726/04 6.25 712 713.9 713	S/15/03 8.28 627 12 11.7 56.3 33 Watch	S/15/03 8.29 6.27 11.7 58.3 33 Bucket Biop	6/72/03 6.29 6.27 11.7 11.7 11.8 Bucket Stop 7/72/03 7.46 15.48 15.1 2.2 1.40 Watch 6/21/03 5.82 890 14.5 16.65 54 12 Watch 6/21/03 5.82 890 14.5 16.65 54 12 Watch 6/21/03 6.19 841 10.83 11.19 1.13 13 Watch 7/3 871 10.83 11.19 1.13 12 Watch 7/3 871 10.83 11.19 1.13 1.2 Bucket Stop 7/3 871 10.83 11.19 1.13 1.2 Bucket Stop 7/4 5.7 883 11.46 13.71 0.3 13.3 Watch 7/4 8.7 8.8 8.8 11.3 1.2 8.7 Watch 8/2 8/2 8/3 11.3 1.3 1.3 Watch 8/2 8/3 11.3 1.3 1.3 1.3 Staff and Wadch 8/2 8/3 11.3 1.3 1.3 1.3 Staff and Wadch 8/2 8/3 11.3 1.3 1.3 1.3 Staff and Wadch 8/2 8/3 11.3 1.3 1.3 Staff and Wadch 8/2 8/3 11.3 1.3 1.3 Flume Guage 8/3 11.3 1.3 1.3 Flume Guage 8/3 11.3 1.3 Flume Guage 8/4 8/4 1.3 1.3 1.3 Flume Guage 8/4 8/4 1.3 1.3 1.3 1.3 Flume Guage 8/4 8/4 1.3 1.3 1.3 1.3 1.3 Flume Guage 8/4 8/4 1.3 1.3 1.3 1.3 Flume Guage 8/4 8/4 1.3 1.3 1.3 1.3 1.3 1.3 Flume Guage 8/4 8/4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	S15/03 8.29 627 12 11,7 101.3 11.5 10.46th 10.5 11.5 10.5 11.5 10.5 10.46th 10.5 1	672203 6.29 6.27 12 11.7 56.3 33 Bucket Stop 772303 7.40 15.4 11.9 11.14 101.3 11.5 Bucket Stop 827103 5.62 8.90 14.5 16.65 54 1.2 Bucket Stop 872103 5.62 8.90 14.5 16.65 54 1.2 Watch 1772803 6.16 843 3.57 13.51 11.3 Watch 28704 5.7 883 11.36 11.3 12 Watch 28704 5.7 883 11.46 13.71 0.3 13.7 Watch 371704 6.26 8.85 10.3 13.7 13.81 11.3 Watch 47004 6.26 8.85 10.3 13.7 13.8 177.9 Bucket Stop 872103 6.54 8.55 10.3 13.7 13.8 177.9 Bucket Stop 872104 6.24 76.3 11.3 1.3 17.1 1.3 Watch 872104 6.24 76.3 11.3 1.3 17.1 1.3 Watch 872104 6.24 76.3 11.3 1.3 17.1 1.3 Watch 872104 6.24 76.3 11.3 1.3 17.1 1.3 17.1 1.3 Watch 872104 6.24 76.3 11.3 17.1 1.3 17.1 1.3 Watch 872104 6.24 76.3 11.3 17.1 1.3 17.1 1.3 Watch 872104 6.25 8.5 10.3 13.7 17.1 1.3 Watch 872104 6.25 8.5 10.3 13.7 13.8 Watch 872104 6.25 8.5 10.3 13.7 13.8 Watch 872104 6.25 8.5 10.3 13.7 17.1 17.1 17.1 17.1 17.1 17.1 17	Strict	STATION STAT						4/25/03		6,45	916	1.6		÷.	30	Bucket Stop Watch			
Strike S	STATEON STATE 11.7 SE.3 33 Watch	67203 6.29 627 12 11.7 56.3 33 Whatch can be seen a secretary form of the case of the color of the case of the cas	6/12/03	11.29.03 8.29 8.27 12 11.7 56.3 33 Bucker Stop	11.78 11.7 11.7 11.1 11.1 11.2 11.1 11.2 11.1 11.2 11.1 11.2 11.1 11.2 11.1 11.2 11.2 11.2 1.40 Which	11.250.3 12.9 12.1 17.5 15.3 33 Workshop	11.50 11.5														Bucket Step			
11.25003 2.28 745 11.9 11.14 101.3 11.5 Whitch	11.28.03 1.28 1.14 101.3 11.5 11	11.280.03 1.28 1.14 101.3 11.5 1	11.25/03 2.26 745 11.9 11.14 101.3 11.5 Whitch the part of the	1,130 1,14 1013 11,5 1,14 1013 11,5 1,14 1013 11,5 1,14 1013 11,5 1,14 1013 1,14 1013 1,14	11.29/03 12.66 15.1 11.14 101.3 11.15 11	12203 126 145 1114 1013 115 Welch Stop	11/2 12 13 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 13 14 10 14 10 13 14 10 14 14 14 14 14 14						5/15/03		6.29	627	12	44.7	56.3	33	Watch			
172303 7.46 1548 15.1 22 140 Welch Bucket Stop 14.5 16.65 54 1.2 140 Welch Bucket Stop 14.5 16.65 54 1.2 Welch Bucket Stop 11.28.03 1.	1723/03 7.46 1548 15.1 22 140 Weltch Bucket Stop Weltch Bucket Stop 14.5 16.65 54 12 Weltch Bucket Stop 17.3 871 10.03 11.16 14.3 6 Weltch Stop 11.26/03 13.7 13.91 14.3 6 Weltch Stop 11.26/03 13.7 13.91 14.3 6 Weltch Stop 11.26/03 13.7 13.91 14.3 6 Weltch Stop 14.6 13.7 13.9 13.3 Weltch 14.6 13.7 13.9 13.3 Weltch 14.6 13.7 13.9 14.3 14.3 14.3 Weltch 14.6 14.7 14.6 13.7 14.3 Weltch 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7 14.6 14.7	1723/03 7.46 1548 15.1 22 140 Whatch Bucket Stop 14.5 16.65 54 12 Whatch Bucket Stop 17.3 871 10.93 11.16 143 6 Whatch Bucket Stop 11.26/03 13.91 14.3 6 Whatch Bucket Stop 11.26/03 13.91 14.3 6 Whatch Bucket Stop 14.5 15.65 13.91 14.3 6 Whatch Bucket Stop 14.6 13.71 0.3 13.3 Whatch Bucket Stop 14.6 13.71 0.3 13.3 Whatch Bucket Stop 14.6 13.71 0.3 13.3 Whatch Bucket Stop 14.60 14.6 13.71 0.3 13.3 Whatch Bucket Stop 14.60 14.6 14.60 14.6 14.60 14.6	11/26/03 15.4 15.4 15.4 15.5 140 Whatch Bucket Stop 14.5 16.65 54 1.2 Whatch Bucket Stop 11/26/03 17.3 871 10.93 11.16 14.3 6 Whatch Bucket Stop 11/26/03 13.7 13.91 11.13 12 Whatch Bucket Stop 11/26/03 13.7 13.91 11.13 12 Whatch Bucket Stop 14.5 15.65 13.91 11.13 12.5 Whatch Bucket Stop 14.6 13.7 13.9 13.3 Whatch Bucket Stop 14.6 13.7 13.9 13.3 Whatch Bucket Stop 14.6 13.7 13.9 13.3 Whatch Bucket Stop 14.6 13.7 13.9 13.7 13.9 Staff and Whade 10 13.8 13.7 13.9 Staff and Whade 10 13.8 13.8 Staff and Whade 10 13.8 13.8 Staff and Whade 10 Staff and W	11/26/03 15.4 15.1 15.6 140 14.5 16.65 54 1.2 140 Watch Bucker Stop 11/26/03 17.3 871 10.93 11.16 14.3 6 Watch Bucker Stop 11/26/03 1.16 1.13 1.2 Watch Bucker Stop 11/26/03 1.16 1.13 1.2 Watch Bucker Stop 1.14 1.15 1.3 1.15 1.3 1.15 1.3 Watch Bucker Stop 1.15 1.15 1.2 Watch Bucker Stop 1.15 1.15 1.15 1.15 1.15 Watch Bucker Stop 1.15 1.15 1.15 1.15 Watch Bucker Stop 1.15 1.15 1.15 1.15 1.15 1.15 Watch Bucker Stop 1.15	1/23/03	1,29,03	1/2303 7,46 1546 15.1 22 14.0 Bucket Stop						6/22/03		9.26	745	11.9	11.14	101.3	11.5	Watch			
772303 7.40 1549 15.1 22 1.40 Watch 912405 912103 5.62 880 14.5 16.65 54 12 Watch 912403	7723/03 7.49 1548 15.1 22 1.40 Waich	1/26/03 7.49 15.1 22 1.40 Waich	1/2303 7.46 1548 15.1 22 140 Watch 8/26/03 7.3 8/7 10.83 11.16 143 6 Watch 1/28/03 7.3 8/7 10.83 11.16 143 6 Watch 1/28/03 7.3 8/7 10.83 11.16 143 6 Watch 2/8/04 5.7 8/83 1.46 13.71 0.3 13.3 Watch 3/11/04 8.19 8/01 5.49 19.7 0.5 70 Watch 3/11/04 8.19 8/01 11.37 -30 27.3 Watch 3/13/04 6.26 6.21 11.97 -30 27.3 Watch 3/13/04 6.26 6.27 11.97 -30 27.3 Watch 3/13/04 6.26 6.26 10.3 137 17.19 Sinf and Watch 3/13/04 6.26 6.26 10.3 137 17.19 Sinf and Watch 3/14/04 6.26 7/23 7/26 6.26 10.3 137 17.19 Sinf and Watch 3/14/04 6.26 7/23 7/26 6.26 10.4 5.27 17.19 Sinf and Watch 3/14/04 6.27 7/23 10.6 10.16 10.16 11.39 Flume Guage 3/14/04 6.27 7/23 10.26 7/26 10.3 13.7 13.19 3/14/04 6.27 7/23 7/26 6.26 7/26 6.27 13.35 Flume Guage 3/14/04 6.27 7/23 7/26 7/26 6.27 13.35 Flume Guage 3/14/04 6.27 7/23 7/26 7/26 6.27 13.35 Flume Guage 3/14/04 6.27 7/23 7/26 7/26 6.27 13.35 Flume Guage 3/14/04 6.27 7/23 7/26	172303														Bucket Stop						
## 12	11/26/03 5,62 860 14.5 16.65 54 12 Welch	11/28/03 5,62 880 14.5 16.65 54 12 Welch	## 143	## 12	## 17.28/03	### 12	11/26/03 7.3 871 10.83 11/16 143 6 Bucket Stop						7/23/03		7.40	1548	15.1		22	1,40	Watch Bucket Stop			
11/28/03 7.3 871 10.03 11.16 14.3 6 Watch	11/28/03 7.3 871 10.03 11.16 14.3 6 Watch	11/28/03 7.3 871 10.03 11.16 143 6 Watch	## 17.26/03	## 17.26/03	11/28/03 7.3 871 10.03 11.16 143 6 Watch	### ### ### ### ######################	## 11/28/03						0/21/03		5.62	980	14.5	16.65	Ž,	12	Watch Bucket Ston			
11/26/03 9.18 843 3.57 13.91 -113.9 12 Watch Watch Bucket Stop Watch Bucket Stop Watch Bucket Stop Watch Bucket Stop Watch S.70 Watch S.40 19.7 0.3 13.3 Watch S.40 19.7 0.5 14.3 Watch S.40 19.7 0.5 Watch S.40 19.7 0.5 17.3 Watch S.40 19.7 0.5 17.3 Watch S.40 17.3 S.47	11/26/03 6.18 843 3.57 13.91 -113.9 12 Watch	11/28/03 8-18 843 3.57 13.91 -113.9 12 Watch	11/26/03 0.16 843 3.57 13.91 -113.9 12 Watch	11/28/03 8-18 8-43 3.57 13.91 -113.9 12 Watch	11/26/03 6.16 843 3.57 13.91 -113.9 12 Watch	11/26/03 6.16 843 3.57 13.91 -113.9 12 Watch	11/26/03 6.16 843 3.57 13.91 -113.9 12 Watch						8/26/03		7,3	871	10.93	11.18	143	60	Watch			
11/26/03 8.19 843 3.57 13.91 -113.9 12 Warch	11/26/03 8.18 843 3.57 13.91 -113.9 12 Watch	11/26/03 8.16 843 3.57 13.91 -113.9 12 Warch	11/26/03 8.16 843 3.57 13.91 -113.9 12 Warich	11/26/03	11/26/03 8.16 843 3.57 13.91 -113.9 12 Warch	11/26/03 8.16 843 3.57 13.91 -113.9 12 Warch	11/26/03 8.16 843 3.57 13.91 -113.9 12 Warch														Bucket Stop			
2604 5.7 883 1.46 13.7 0.3 13.3 Watch 3/11/04 8.19 801 5.46 19.7 85 70 Watch 4/804 7.02 646 6.21 11.97 -39 27.3 Watch 6.26 6.8 11.3 -92 16.7 Watch 6.26 687 6.9 10.3 137 1719 Saff and Watch 6.26 687 6.9 10.3 137 1719 Saff and Watch 7.2904 6.54 763 12.56 7.86 69 10.4 Filtine Guage 0.15 174.004 6.54 763 12.56 7.86 69 10.4 Filtine Guage 0.15 174.004 6.54 763 12.56 7.86 69 10.4 Filtine Guage 0.15 17.004 6.54 763 12.56 7.86 69 10.4 Filtine Guage 0.15 17.004 6.54 763 12.56 7.86 69 10.4 Filtine Guage 0.15 17.004 6.54 772 10.6 10.16 9.2 11.33 Filtine Guage 0.16	26004 5.7 683 1.46 13.7 0.3 13.3 Watch	2604 5.7 683 1.46 13.7 0.3 13.3 Watch	STATION S.7 S.83 1.46 13.7 0.3 13.3 Watch	26/04 5.7 683 1.46 13.71 0.3 13.3 Watch 3/11/04 8.19 801 5.46 19.7 65 70 Buckat Stop Bucka	26/04 5.7 683 1.46 13.7 0.3 13.3 Watch 3/1/04 8.19 801 5.46 19.7 65 70 Buckat Stop Buckat	26/04 5.7 683 1.46 13.7 0.3 13.3 Watch 3/11/04 8.19 801 5.46 19.7 65 70 Buckat Stop Buckat	STATION						11/26/03		9.18	843	3.57	13.91	-113.9	12	Watch Bucket Stop			
3/1/04 8:19 801 5.46 19.7 85 70 Watch Charles Compared to the Compared Comp	3/1/04 8:19 801 5.46 19.7 85 70 Whith Buckst Stop Buck	3/1/04 8:19 801 5.46 19.7 85 70 Under the bottom of the bo	3/1/04 8:19 801 5.46 19.7 85 70 Under Supplementary 4/8/04 7.02 649 6.21 11.97 -39 27.3 Whitch Bucket Stop Bucket Stop Bucket Stop Bucket Stop Bucket Stop 6.26 11.3 -92 16.7 Whitch Bucket Stop 6.26 6.26 6.27 17.3 -92 16.7 Whitch Bucket Stop 6.27 17.3 17.1 8 Staff and Wade 10 17.28/04 6.24 763 12.26 7.89 69 10.4 Staff and Wade 10 17.28/04 6.24 772 10.6 10.16 8.2 11.83 Flume Guage 0.15 10.28/04 6.22 772 10.6 10.16 8.2 11.83 Flume Guage 0.16 10.28/04 10.28/04 6.22 772 10.6 10.16 8.2 11.83 Flume Guage 0.19 15.39 Flume Guage 0.19	3/1/04 8:19 801 5.46 19.7 85 70 Under the Bucket Stop Bu	3/1/04 8:18 801 5.46 19.7 85 70 Whitch Buckst Stop Buckst Stop Whitch Size 6.24 11.3 -92 16.7 Whitch Buckst Stop B	3/1/04 8:19 801 5.46 19.7 85 70 Whitch Buckat Stop Buckat Stop Whitch Airbord 6.26 6.21 11.97 -39 27.3 Whitch Buckat Stop Buckat Stop Buckat Stop Buckat Stop Buckat Stop Whitch 6.26 6.2 11.3 -92 16.7 Whitch Bucket Stop Whitch 6.26 6.2 11.3 -92 16.7 Whitch Bucket Stop Whitch 6.26 6.2 11.3 -92 16.7 Whitch Bucket Stop Whitch 6.26 6.2 17.2 6.2 16.7 17.9 Staff and Whide 10 0.21 17.2 10.6 10.16 6.2 11.83 Fillime Guage 0.15 10.2 10.2 11.83 Fillime Guage 0.16 10.2 10.2 11.83 Fillime Guage 0.16 11.83 Fillime G	3/1/04 8:18 801 5.46 19.7 85 70 Whitch Buckat Stop Buckat Stop Whitch S.5004 6.24 11.3 -92 15.7 Whitch Buckat Stop Buckat Stop Whitch G.26 867 6.8 11.3 -92 16.7 Whitch Buckat Stop Whitch G.26 867 6.8 10.3 137 171.9 Staff and Whitch G.26 867 6.8 10.3 137 171.9 Staff and Whitch G.26 867 6.8 10.3 137 171.9 Staff and Whitch G.26 17.8 0.15 17.3 17.1 Staff and Whitch G.26 17.8 0.15 17.2 10.6 10.16 8.2 11.83 Flume Guage 0.15 17.2 10.6 10.16 8.2 11.83 Flume Guage 0.16 17.2 10.2 Maler method.						2/6/04		5.7	683	1.46	13.71	0.3	13.3	Watch			
1.07 1.07	1.02 1.02 1.04 1.07 1.07 1.07 1.05 1.04 1.05	Alignost	String S	11.87 -39 27.3 Buckat Stop	11.97 -39 27.3 Buckat Stop	11.97 -39 27.3 Buckat Stop	11.97 -39 27.3 Buckat Stop						3/11/04		8.16	801	5.48	19.7	92	20	Watch			
1,10,10,004 1,02 646 6,21 11,91 -39 21,3 Watch	1,10 1,10	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1,10 1,10	1,10 1,10	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	4/8/04 7.02 646 6.21 11.91 -39 21.3 Vivalent Spin (1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	### 17.02 646 6.21 11.91 -39 21.3 Whatch ### 1.02 64.0 6.21 11.91 -39 21.3 Whatch ### 1.02 64.0 6.24 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3									;	;	;	;	;	Bucket Stop			
55504 6.84 645 6.8 11.3 -92 16.7 Watch 6.26 667 6.95 10.3 137 171.9 Staff and Wade 10 772804 6.54 763 12.56 69 10.4 Flure Guage 0.15 8/1904 6.52 772 10.6 10.16 6.2 11.53 Flure Guage 0.15 10.7004	55504 6.84 645 6.8 11.3 -92 16.7 Walch	55504 6.84 645 6.8 11.3 -92 16.7 Worldh	55504 6.84 645 6.8 11.3 -92 16.7 Worlch	55504 6.84 645 6.8 11.3 -92 16.7 Worldh	Sistrat Sist	55504 6.84 645 6.8 11.3 -92 16.7 Which (1.50 16.7 Which (1.50 16.2 16.7 Which (1.50 16.2 16.7 Which (1.50 16.2 16.3 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17	5504 6.84 645 6.8 11.3 -92 16.7 Which follows the following Exercises the foll	V French C	9	dee Highway C		Flore Measuments			7.02	848	6.21)6"LL	35-	5/.3	Watch Bucket Stop			was .4 now .5 In
6.26 667 6.95 10.3 137 171.9 Staff and Wade 6 6.7 661 11.8 10.14 50 40.4 Staff and Wade 10 0.21 21.5 Furne Guage 0.21 6.54 763 12.56 7.96 69 10.4 Flure Guage 0.15 6.62 712 10.6 10.16 6.2 11.33 Flure Guage 0.18 15.39 Flure Guage 0.18	6.26 867 6.95 10.3 137 171.9 Staff and Wade 6.27 661 11.6 10.14 50 40.4 Staff and Wade 10 0.21 21.5 Farmend Wade 10 0.21 21.5 Farmend Wade 10 0.21 21.5 Farme Guage 0.15 6.52 712 10.6 10.16 8.2 11.63 Flume Guage 0.16 11.53 Flume G	6.26 867 6.95 10.3 137 171.9 Staff and Wade 6 0.21 13.6 10.14 50 40.4 Staff and Wade 10 0.21 21.5 Falter and Wade 10 0.21 21.5 Falte	6/19/04 6.26 967 6.95 10.3 137 171.9 Sinf and Wade 10 2713.04 8.7 961 11.8 10.14 50 40.4 Sinf and Wade 10 0.21 2715.04 6.54 763 12.56 7.96 69 10.4 Flume Guage 0.15 10.28/04 6.62 712 10.6 10.16 0.2 11.83 Flume Guage 0.15 Flow measurements denoting E were calculated by using a Depth to Water method.	6/19/04 6.26 967 6.95 10.3 137 171.9 Sinf and Wade 10 2713.04 9.7 6.91 10.14 50 40.4 Sinf and Wade 10 0.21 7728/04 6.54 763 12.56 7.86 69 10.4 Flume Guage 0.15 9/14/04 6.62 772 10.6 10.16 8.2 11.83 Flume Guage 0.15 Flume Guage 0.16 10.28 7 10.28/04 10.28/	6/19/04 6.26 967 6.85 10.3 137 1719 Staff and Wade 10 7/73/04 9.7 681 11.8 10.14 50 40.4 Staff and Wade 10 0.21 7/73/04 6.54 76.3 12.56 7.89 6.9 10.4 Flurne Guage 0.15 10/28/04 6.62 772 10.6 10.16 8.2 11.53 Flurne Guage 0.18 10/28/04 Flurne Guage 0.18 15.39 Flurne Guage 0.18 10/28/04 10/28/	6/19/04 6.26 967 6.85 10.3 137 1719 Staff and Wade 10 7/25/04 9.7 681 11.8 10.14 50 40.4 Staff and Wade 10 0.21 7/25/04 6.54 76.3 12.56 7.89 6.9 10.4 Flurne Guage 0.15 10.78/04 6.62 772 10.6 10.16 8.2 11.53 Flurne Guage 0.18 10.78/04 Flurne Guage 0.18 10.28/04 10.78/04 Ewere calculated by using a Depth to Water method.	6.78 6.85 10.3 137 1719 Staff and Wade 10 77304 6.54 76.3 12.56 7.86 6.9 10.4 5.0 40.4 Staff and Wade 10 0.21 772804 6.54 76.3 12.56 7.86 6.9 10.4 Flurne Guage 0.15 10.7804 6.62 772 10.6 10.16 8.2 11.83 Flurne Guage 0.16 10.7804 Flurne Guage 0.18 10.7804 6.62 772 10.6 10.18 8.2 11.83 Flurne Guage 0.18 10.7804 6.62 772 10.6 10.18 6.2 11.83 Flurne Guage 0.18 10.7804 6.62 772 10.6 10.18 6.2 11.83 Flurne Guage 0.18 10.7804 6.62 772 10.6 10.18 6.780 Flurne Guage 0.18 10.7804 6.780	-	-	-	-	person bosts	5/5/04		6.84	845	6.8	11.3	-82	16.7	Watch			Япше
6.7 661 11.6 10.14 50 40.4 Single not Worker 10 21 6 54 763 12.56 7.86 69 10.4 Flurne Guage 0.15 6.62 712 10.6 10.16 8.2 11.93 Flurne Guage 0.16 15.39 Flurne Guage 0.18	6.7 661 11.6 10.14 50 40.4 Siaff and Wade 10 2.1 6.54 763 12.56 7.86 69 10.4 Flurne Guage 0.15 6.62 712 10.6 10.16 8.2 11.83 Flurne Guage 0.16 7.12 10.6 10.10 Flurne Guage 0.16 7.12 10.6 10.10 Flurne Guage 0.19 7.13 Flurne Guage 0.19 7.14 10.15 Flurne Guage 0.19 7.15 Flurne Guage 0.19 7.15 Flurne Guage 0.19 7.15 Flurne Guage 0.19 7.16 Flurne Guage 0.19 7.17 Flurne Guage 0.19 7.18 Flurne Guage 0.19 7.19 Flurne Guage 0.19 7.10 Flurne Guage 0	6.7 661 11.6 10.14 50 40.4 Slaff and Wade 10 2.1 6.54 763 12.56 7.86 69 10.4 Flurne Guage 0.15 6.62 712 10.6 10.16 8.2 11.83 Flurne Guage 0.16 712 10.6 10.10 Flurne Guage 0.16 713 8 Flurne Guage 0.18 714 9.5 715 10.6 10.10 Flurne Guage 0.18 715 10.10 Flurne Guage 0.18 716 10.10 Flurne Guage 0.18 717 10.10 Flurne Guage 0.18 718 10.10 Flurne Guage 0.18 719 10.10 Flurne Guage 0.18 719 10.10 Flurne Guage 0.18 710 10.10 Flurne Guage 0.18 710 10.10 Flurne Guage 0.18 711 10.10 Flurne Guage 0.18 712 10.10 Flurne Guage 0.18 713 10.10 Flurne Guage 0.18 714 10.10 Flurne Guage 0.18 715 10.10 Flurne Guage 0.18 716 10.10 Flurne Guage 0.18 717 10.10 Flurne Guage 0.18 718 10.10 Flurne Guage 0.18 719 10.10 Flurne Guage 0.18 710	7/13/04 8.7 661 11.8 10.14 50 40.4 Shiff and Wade 10 0.21 8/19/04 6.54 76.3 12.56 7.98 69 10.4 Flurne Guage 0.15 9/14/04 6.62 712 10.6 10.16 8.2 11.53 Flurne Guage 0.18 Flow measurements denoting E were calculated by using a Depth to Water method.	7/13/04 8.7 661 11.8 10.14 50 81ff and Wade 10 0.21 12/20/04 6.54 76.3 12.56 7.98 69 10.4 Flume Guage 0.15 10.28/04 6.62 712 10.6 10.16 8.2 11.53 Flume Guage 0.15 Flow massuraments denoting E were calculated by using a Depth to Water method.	7/13/04 8.7 661 11.8 10.14 50 40.4 Sittle end Wade 10 0.21 8/19/04 6.54 76.3 12.56 7.99 69 10.4 Flurne Guage 0.15 10.28/04 6.62 712 10.6 10.16 8.2 11.83 Flurne Guage 0.16 Flurne Guage 0.16 Flurne Guage 0.16 10.28/04 Flurne Guage 0.19 10.28/04 10.28/04 10.38/04 10.	7/13/04 8.7 661 11.8 10.14 50 40.4 Sittle end Wade 10 0.21 8/19/04 6.54 76.3 12.56 7.99 69 10.4 Flurne Guage 0.15 10.28/04 6.62 712 10.6 10.16 8.2 11.83 Flurne Guage 0.16 Flurne Guage 0.16 10.28/04 Flurne Guage 0.18 8.39 Flurne Guage 0.19 8.39 Flurne Guage 0.19 8.39 Flurne Guage 0.19 10.49 8.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7/1304 6.7 661 11.8 10.14 50 40.4 Silfa end Wade 10 0.21 17.8004 6.54 76.3 12.56 7.99 6.9 10.4 Flurne Guage 0.15 10.2004 6.62 712 10.6 10.16 0.2 11.53 Flurne Guage 0.16 10.2004 10.2004 10.2004 10.2004 10.2004 10.2004 10.300 10.3004 10.300				4		6/16/04		6.26	467	6.95	10.3	137	171.9	Staff and Wade			Overflowing
6.54 763 12.56 7.86 69 10.4 Flume Guage 6.62 712 10.6 10.16 8.2 11.63 Flume Guage 15.38 Flume Guage	6.54 763 12.56 7.86 69 10.4 Firms Guage 6.62 712 10.6 10.16 8.2 11.83 Firms Guage 7 messuments denoting E were calculated by using a Depth to Water method.	6.54 763 12.56 7.86 69 10.4 Furne Guage 6.62 712 10.6 10.16 8.2 11.83 Flume Guage 15.38 Flume Guage v messuraments denoting E were calculated by using a Depth to Water method.	7.728/04 6.54 763 12.56 7.86 69 10.4 Flurne Guage 6.62 712 10.6 10.16 8.2 11.93 Flurne Guage 10.28/04 6.62 712 10.6 10.16 8.2 11.93 Flurne Guage 7.728/04 measurements denoting E were calculated by using a Depth to Water method. 15.38 Flurne Guage	7.728/04 6.54 763 12.56 7.86 69 10.4 Flurne Guage 6.62 712 10.6 10.16 8.2 11.93 Flurne Guage 10.28/04 6.62 712 10.6 10.16 8.2 11.93 Flurne Guage Flow measurements denoting E were calculated by using a Depth to Water method. 15.38 Flurne Guage	7.728/04 6.54 76.3 12.56 7.89 69 10.4 Flurne Guage 6.62 712 10.6 10.16 0.2 11.83 Flurne Guage 7.72 10.6 10.16 0.2 11.83 Flurne Guage Flow massurements denoting E were calculated by using a Depth to Water method. 15.39 Flurne Guage	712 768 69 713 Flure Guage 6.54 763 1256 7,86 69 10.4 Flure Guage 9/14/04 6.52 712 10.6 10.16 0.2 11.83 Flure Guage Flow measurements denoting E were calculated by using a Depth to Water method. 15.38 Flure Guage 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Flow measurements denoting E were calculated by using a Depth to Water method. 10.580.4 6.54 763 12.56 7.96 69 10.4 Flurne Guage 10.780.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5					to lone of	7/13/04		6.7	199	11.0	10.14	20	40.4	Staff end Wade	2		Overnowing
6.62 712 10.6 10.16 0.2 11.63 Flume Guage	6.62 712 10.6 10.16 6.2 11.63 Flume Guage 15.38 Flume Guage vanessurements denoting E were calculated by using a Depth to Water method.	6.62 712 10.6 10.16 8.2 11.83 Flume Guage 15.38 Flume Guage v messurements denoting E were calculated by using a Depth to Water method.	9)14004 6.62 772 10.6 10.16 8.2 11.53 Flure Guage 10.28004 10.28004 15.38 Flure Guage Flow measurements denoting E were calculated by using a Depth to Water method.	9)14004 6.62 772 10.6 10.16 8.2 11.53 Flure Guage 10.28004 15.38 Flure Guage Flow measurements denoting E were calculated by using a Depth to Water method.	9)14004 6.62 772 10.6 10.16 8.2 11.53 Flure Guage 10.28004 Flow measurements denoting E were calculated by using a Depth to Water method.	Flow measurements denoting E were calculated by using a Depth to Water method. 15.38 Flume Guage 15.38 Flume Guage 8 8 8 8 8 8 8 8	Flow measurements denoting E were calculated by using a Depth to Water method.					gran.	7/29/04		77	763	12 56	7 68	69	10.4	Flume Guage		0.15	
15.38 Flume Guege	15.38 Flume Guege messurements denoting Ewere calculated by using a Depth to Water method.	15.38 Flume Guage v messurements denoting E were calculated by using a Depth to Water method.	10.79/04 Flow messurements denoting E were calculated by using a Depth to Water method.	10.78/04 Frow messurements denoting E were calculated by using a Depth to Water method.	10.78/04 Frow measurements denoting E were calculated by using a Depth to Water method.	Flow measurements denoting E were calculated by using a Depth to Water method. 15.39 Flume Guege 8 B B B B B	Flow measurements denoting E were calculated by using a Depth to Water method.			1		-	9/14/04		6.62	712	10.6	10.16	0.2	11.83	Flume Guage		0.16	
	Flow measurements denoting E were calculated by using a Depth to Water method.	Flow messurements denoting E were calculated by using a Depth to Water method.	0 mm b m m m m m m m m m m m m m m m m m			100	HORDS HONES HONES HONES HONES HONES		- 1				10/26/04			!				15.38	Flume Guage		0.18	

Mnumber	Mnumber Stream Station	Station	(TRSt)	Lattude	Longitude	Elevation (feet)	Date	Depth to Water (feet)	표	Conductivity (umhos/cm)	Temp (C°)	DO (mg/l)	ORP (mv)	Flow (cfs)	Flow Mesurment Method	Stream
	Belt	Belt	T19N R06E													
214387	Creek	Bridge	28 ABBC	47.387	-110.9289	3510	5/31/02	18.57	8.04	144	13.2		170	613	Fish and Crane	
							7/9/02	19.77	8.24	270	14.2			(81.8)	ш	
							7/17/02	20.1	8.14	300	24.4	7.96	60.1	58.3	Staff and Wade	
							9/23/02	50.6	,	615	Ξ;			(15.5)	ш	
							70///01		17:7	89/	15					:
																Creek is to sprea
							10/22/02	20.9	6.4	979	4.6	12	181	(9.6)	ш	flow.
							4/24/03	18.9	8.08	174	11.3		202	(280.4)	щ	
							5/14/03	19.32	79.2	213	14.2	10.74	220	228.3	Fish and Crane	
							6/20/03	19.3	8.28	231	14.3	10.55	168.5	(138.7)	ш	
							7/23/03	20.4	6.7		52		220	9.6	Staff and Wade	
																Creek is to spres
							8/19/03									flow.
							9/23/03									Dry except for Aft Discharge
	Stream F	low on Be	Stream Flow on Belt Creek at Belt Bridge	elt Bridge	<u>†</u>	Flow	10/21/03									Dry except for AN Discharge
	-	1	pro	and the state of t	e particular on the community of the com	Company of the contract of the	11/25/03									Dry except for Ah
				4g (•	-										Discring d
			of the Land	Magazin to to			3/12/04	20.5	6.28	587	4.52	13.24	148	8.5	Staff and Wade	
			-	Market or dispose			4/7/04	20	7.4	348	6.47	13.4	18.6	59.4	Fish and Crane	
			and the state of the	No see			5/5/04	19.1	7.76	163	11.08	11.22	185	(196.9)	ш	stopping meter
-	-		The state of the s	9,000		-	6/15/04	18	8.33	176	8.09	10.4	168	731.7	Fish and Crane	
	-	•					7/14/04	19.8	7.41	278	21.87	8.32	244	121.2	Staff and Wade	
	***			ndedition at		and disconnections	8/19/04	20.3	8.05	439	18.88	7.64	196	(25.4)	ш	
				Flow andy from AMD to shallow to measure			9/15/04 Flow measu	20.5 urements deno	7.95 oting E w	9/15/04 20.5 7.95 572 11.57 8.93 -116 Flow measurements denoting E were calculated by using a Depth to Water method.	11.57 ng a Deptl	8.93 to Water n	-115 rethod.	(18.5)	ш	
1				MARIA		1										
SOVER	20/0E/I	CO/1./P	- 60/1./g - 60/1./g	00/06/L	90/15/5 90/15/5	PO/06/6										
	ı		Date	L	:	i										

121

C7

Spring Conditions		everywhere											
Nitrate		20	10 to 20										
Flow Mesurment Method	Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch							
Flow (gpm)	0.33	3,53	0.88	0.68	0.63	0.36							
ORP (mv)	234	281	255	261									
DO (mg/l)	8.57	7.1	6.56	7.47									
Temp (C*)	11.31	6.73	10.22	10.73									
Conductivity (umhos/cm)	526	583	512	514			Flow Measuments	The state of the s	and a collection of the			- 40-voN	
H.	7.46	5.3	6.02	7.9					1			2eb-04	
Date	9/24/03	6/17/04	7/16/04	8/19/04	9/15/04	10/29/04					1.	+0-guA	
Elevation (feet)	3880					-			da	•	<u></u>	+0-nul +0-lul	
Aquifer	217SNRS						son Ranch		A.92			40-10A +00-ysM	•
Longitude	-110.9463						Spring on Larson Ranch Aquifer = Kootenai	and discount of the second				Feb-04 -	Date
Latitude	47,3658						Spr	and the state of t	To Mindry at Made value			Dec-03	
Location (TRSt)	T19N R06E 34 ACDB											E0-voN	
Station	Overflow T Pipe										1	Oct-03	
Spring S								4 (2 0	d5	- (50-guA	
er Sp									W	d 9			
Mnumber	214397												

rde Aquifer	Latitude Longitude A	ide Aqui	(feet) Date	五	(umhos/cm)	<u></u> <u></u>	(C') DO (mg/l) (mv)	E (E	(gpm)	Method
3940	217CBNK 394			3 7.85	200	12.93	8.65	230	0.5	Bucket Stop Watch
			3/10/04		396	6.2	14.65	302.1	7,5	Bucket Stop Watc
			6/15/04	6.79	440	10.11	9.29	305	3.7	Bucket Stop Watc
			7/14/04	_					7	Bucket Stop Wetc
			7/29/04	_					1.6	Bucket Stop Watc
			8/20/04	_					9.0	Bucket Stop Watch
			9/1/04						1.22	Bucket Stop Watch

Stream

Appendix D

AMD Hydrographs & Field Measurements

Longitude
-110.9292 3540

	Mnumber	AMD	Station	Location (TRSt)	Latitude	Longitude	Elevation (feet)	Date	표	Conductivity (umhos/cm)	Temp (C°)	DO (mg/l)	ORP (mv)	Flow (gpm)	Flow Mesurment Method
		L.	Below Pond East side of	Ĭ											
	200615	Discharge	RR tracks	CADD	47.3782	-110.9278	3550	10/7/02	2.39	4400	12.8				Bucket Stop Watch
								10/21/02	2.53	4180	10.5	3.93	442 476	7.5	Bucket Stop Watch
								3/27/03	2.67	4320	7.9	4.2	426	8,5	Bucket Stop Watch
								4/24/03	3.12	3520	10.5		415	60.6	Bucket Stop Watch
								5/15/03	2.68	4150	11.3	4.99	443	7.89	Bucket Stop Watch
								6/20/03	2.69	3160	12.1	4.54	438	8.57	Bucket Stop Watch
								7/23/03	2.64		14		444	10.71	Bucket Stop Watch
								8/19/03	2.91	4600	15.2		442	8.57	Bucket Stop Watch
								9/22/03	2.58	5764	12.31	4.7	457.4	7.5	Bucket Stop Watch
								10/22/03	2.76	4197	10.59	3.46	455	0	Bucket Stop Watch
								11/25/03	2.43	5875	7.28	4.52	472	8.14	Bucket Stop Watch
								2/6/04	2.68	0009	6.77	4.84	440	6.84	Bucket Stop Watch
								3/12/04	5.6	5365	7.42	3.52	445	6.25	Bucket Stop Watch
D3								4/8/04	2.57	4148	9.12	3.91	469	12	Bucket Stop Watch
3								10/2/2	2.7	4012	0 78	4 12	165	11 15	Bucket Ston Watch
								2/3/04	2.7	4013 2645	10.72	7 - 6	200		Bucket Ston Watch
								742004	2.33	2043	2 6	5.00	7 100	42.62	Bucket Ston Watch
								7/20/04	7.04 9.06	5077	12.09	2.5	104	13.63	Bucket Ston Watch
								1123104	2.30	0.10	12.03	, v.		ž (Bushed Ston Wetch
								8/19/04	2.6	5818	13.09	1.99	441	2 9	Bucket Stop Watch
		ì						9/14/04	7.6/	2898	11.98	79.7	461	2	Bucket Stop Watch
		FIOW IFOR	Flow from French Coules AMD	ulee AMD		→ Flow Measurments	nrments	10/28/04	3.21	5935	69.6	3.06	434	9	Bucket Stop Watch
	16			-	-	4									
	4					-									
mq	12				2										
	10 1		1	*	+	*									
	8			1	-										
	9	1				-	T								
	4			-	4.000										
	2				dat Pr										
					nontrola villa										
	. Z(- Z(- E(- E(- b (· þ(b (
)/1/ 6	0/0E/ 0/0E/	0/1/ 0 0/1/ 0 0/08/	0/1 / 8	0/1E/ 0/0E/ 0/0E/	0/16/ 0/16/)/0E/								
	9	6	•	6	/L	' L	11								
				Date											

Nitrite	1.5 to 3.0	
Nitrate	2 1.5-3.0	
Other		
Flow Mesurment Method	Bucket Stop Watch Bucket Stop Watch	Bucket Stop Watch
Flow (gpm)	1.3 1.3 0.6 0.6 0.67 0.67 0.68 0.83 1.02	1.43
ORP (mv)	507.8 494 509 499 491 486 475 475 475	89
DO (mg/l)	7.31 7 9.2 8.85 8.5 7.73 9.5 6.3 6.3 6.5 5.59	6.79
Temp (C°)	12.05 8.47 7.51 8.3 9.45 10.22 10.81 11.93 12.54	Flow Measuments 11/30/04
Conductivity (umhos/cm)	7322 7438 7397 7215 7203 7216 6941 6888 6888 6838 7087	MON PO/15/7
표	2.11 2.28 1.88 2.12 2.4 2.32 2.41 2.24	20116/6
Date	9/22/03 11/25/03 2/8/04 3/10/04 4/8/04 5/5/04 6/17/04 7/13/04 7/13/04 8/19/04	10/28/04 1/30/04
Elevation (feet)	3560	9/30/02 1/30/03 1/30/03 6/1/03 6/1/03 6/1/03 6/1/03 6/1/03 6/1/03 6/1/03 6/1/03
Location (TRSt)	26 CADC	F0/1/9
Station	French coulee 4" pvc pipe AMD	SO/05\11
AMD	French Coulee p Discharge	20/05/6
Mnumber	217524	GPM 41/02

Other Conditions					30 gpm runnott water	feeding into mine				Sampled
Mesurment Method		Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch		Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch	Bucket Stop Watch
Nitrate						ĸ				
Flow (gpm)		2.6	3.33	2.89		30	3.33	2.72	2.72	4
ORP (mv)		334	304	284		7	325	398	380	367
ORP DO (mg/l) (mv)		90'6	6.08	5.2		10,09	4.9	5.25	7.64	5.22
Temp (C)		9.54	12.5	9.85		9.41	14.47	17.44	11.62	9.25
Conductivity (umhos/cm)		3806	3735	3575		1132	3201	3741	3423	3791
Ħ		3.6	3.54	3.8		7.03	3.82	3.05	3.85	3.78
Date		3/11/04	4/9/04	5/5/04		6/18/04	7/13/04	8/19/04	9/15/04	10/28/04
Elevation (feet)		3540								
Lattude Longitude		-110.9193								
Latitude		47.388								
Location (TRSt)	et first AMD T19N R06E 28	AACD								
Statlon	_	flow								
AMD	Lewis	Confee								
Mnumber AMD		214915								

Other Conditions	sampled
ORP Flow (mv) (gpm)	2.67 427.7 2 estimate
ORP (mv)	427.7
Temp DO ORP (C°) (mg/l) (mv)	2.67
Temp DO (C°) (mg/l)	9.04
Conductivity (umhos/cm)	5319
됩	2.77
Date	10/28/04 2.77
Elevation (feet)	3520
Longitude	-110.9223
Latitude	47.3848
Location (TRSt)	T19N R06E 26 ACAA
Station	AMD at 3rd and Lewis street in Belt
AMD	AMD at Lewis Coulee above Castner Park
Mnumber	214914

Appendix E

Water-Quality Data

	Gwic ld Site Name	Water Source	4g/l) K (mg/	3)	Fe (mg/l) M	In (mg/l) S	iO2 (mg/l) HC	O3 (mg/l) CO	3 (mg/l) SO	4 (mg/l)
2005Q0283	214915 AMD AT LEWIS COULEE	AMD	7.6	0.523	672	1.07	105	0	0	5100
2005Q0287	214914 AMD 3RD AND LEWIS STREET IN BELT	AMD	5.1	6.97	558	1.23	69.9	0	0	3618
2003Q0848	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	1		166	0.403	52.6	0	0	1920
2003Q0866	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	10.3	3.24				0	0	1934
		AMD	10.5	3.3	173	0.5	52.5	_		
2003Q1018	200616 ANACONDA MINE DRAIN AT CULVERT		0.9	2.83	150	0.363	49.9	0	0	1900
2003Q1079	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	40.8	2.8	143	0.375	52.5	0	0	1523
2003Q1163	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	10.7	2.92	168	0.426	53.2	0	0	1606
2004Q0029	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	40.5	2.98	155	0.426	53	0	0	1610
2004Q0103	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	0.5	3.15	169	0.435	53.8	0	0	1851
2004Q0147	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	0.3		174	0.412	57.3	ō	0	1905
2004Q0241	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	1	3.16				0	0	2025
			19.9	3.14	173	0.411	58.5	_		
2004Q0470	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	9 11	2.93	120	0.406	54 9	0	0	1916
2004Q0574	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	10.5	2.85	83.1	0.406	56.3	0	0	1510
2005Q0075	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	111	3.28	103	0.428	58.5	0	0	1580
2005Q0288	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	108	3.21	171	0.433	59.1	0	0	1663
2005Q0358	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	0.8	3.08	174	0.44	56.9	0	0	1921
2005Q0419	200618 ANACONDA MINE DRAIN AT CULVERT	AMD	10.1	2.88	156	0.395	54	0	0	2099
2003Q0846	200615 FRENCH COULEE MINE	AMD	4	_	1050	0.963	101	ō	0	7990
2003Q0865	200615 FRENCH COULEE MINE	AMD	91.7	5.4				0	Ö	6975
			92.2	5.37	989	0.988	97.6	_		
2003O1020	200615 FRENCH COULEE MINE	AMD	43.5	4.2	808	0.703	90	0	0	6198
2003Q1081	200615 FRENCH COULEE MINE	AMD	476	3.38	665	0.531	85 2	0	0	4400
2003Q1164	200615 FRENCH COULEE MINE	AMD	46.6	3.34	761	0.65	89.8	0	0	5226
2004Q0031	200615 FRENCH COULEE MINE	AMD	44.4	2.82	821	0.833	103	0	0	5750
2004Q0095	200615 FRENCH COULEE MINE	AMD	43.8	4.15	843	0.888	106	0	0	6891
2004Q0149	200615 FRENCH COULEE MINE	AMD	4	4.15			105.4	0	0	7133
2004Q0235	200615 FRENCH COULEE MINE	AMD	43.2 <5.0		929	0.902			-	
			90.8	3.65	1185	1.03	109	0	0	8152
2004Q0472	200615 FRENCH COULEE MINE	AMD	19.3	3.28	673	0.528	83.2	0	0	4799
2004Q0572	200615 FRENCH COULEE MINE	AMD	42.9 < 0.50		950	1.52	160	0	0	7350
2005Q0077	200615 FRENCH COULEE MINE	AMD	44.7	3.75	1078	0.959	108	0	0	6244
2005Q0356	200615 FRENCH COULEE MINE	AMD	42.5	4.47		1.08	117	0	0	7878
2005Q0417	200615 FRENCH COULEE MINE	AMD	4			1.02	105	0	0	8694
200045			92.6	5.59	1221	1.02	105	· ·	Ŭ	0054
20250004	213598 PLEASANT VALLEY SPRING * OLD HARRI	24760006								-
2005Q0081		217SBRS	3.37	1.56	0.008 •	<0.001	8.09	285.48	0.867	20
2005Q0352	213598 PLEASANT VALLEY SPRING * OLD HARRI	217SBRS	4.34	1.94	0.011	0.002	7.62	309.6	6	26.3
2004Q0025	204710 SEEP ON LEFT SIDE OF HIGHWAY DRAIN	217SBRS	41.7	11	0.889	0.035	10.9	334.3	0	2116
2004Q0090	204710 SEEP ON LEFT SIDE OF HIGHWAY DRAIN	217SBRS	43.9	11.5		0.033	10.7	494.1	0	2105
2004Q0153	204710 SEEP ON LEFT SIDE OF HIGHWAY DRAIN	217SBR\$	43.2	11.2		0.042	10	407.5	0	2105
2003Q0850	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBR\$	4				9	344.7	0	72 7
2003Q0863	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	9.65	1.72		0.068			0	
			7.17	2.74		0.042	8.6	258.9		39.5
2003Q1024	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	49.1	1.76	0.156	0.066	8.21	322.5	0	64.9
2003Q1083	200617 FRENCH COULEE * HIGHWAY ORAIN	217SBRS	4 11	2.39	0.047	0.083	9.56	356.2	0	105
200301165	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	4 11	2.96	0.039	0.093	10.6	379.4	0	108.4
2004Q0027	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	46.5	4.59		0.147	13.3	411.5	0	457
2004Q0099	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	4.0.1	5.82		0.196	12.4	351.4	0	706
2004Q0151	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	4				12.4	393.3	0	198
2004Q0474	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBR\$	93.6	2.32		0.108			0	
			1 12	2.33		0.067	9.8	348.6		91.1
2004Q0570	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	47.87	2.58	0.024	0.034	10.7	317.2	0	68.1
2005Q0079	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	4.38	2.36	0.007	0.041	12.8	351.36	0	86
2005Q0354	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	4.25	2.16	2.59	0.066	12.1	338.3	0	81.2
2005Q0415	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS	48.86	1.8		0.027	8.98	341.9	0	59.2
2004Q0101	205653 JOHN HARRIS RANCH * SPRING	217SBR\$	4.96	2.31		<0.001	8.35	314.8	0	36.2
2004Q0157	207767 HARRIS JOHN * POND	217SBRS						278.5	0	39
2004Q0233	205653 JOHN HARRIS RANCH * SPRING	217SBRS	7.66	2.36		0.01	11.7			
			96.4	1.56		0.001	7.6	316.5	0	37.1
2004Q0159	204516 JIM LARSON	217SBRS	4.69	0.84	4 0.011	<0.001	10.7	270.1	0	14.7
2004Q0110	205836 BELT CREEK	BELT CREEK	44.4	1.61	0.027	0.095	7.07	157.4	0	54.7
2004Q0114	205839 BELT CREEK	BELT CREEK	4,97	1.67	7 0.028	0.006	9.52	212.6	0	49.9
2004Q0112	205838 BELT CREEK	BELT CREEK	45 27	1.85		0.003	8.39	217.9	0	46.5
2004Q0091	205508 BELT CREEK * E OF TOWN WELL #2	BELT CRK @CITY WELL	5.15	1.79		0.005	9.27	227.2	0	64.8
2005Q0285	214916 BELT CREEK AFTER LEWIS AMD DRAIN	BELT CRK @LEWIS	p. 10					134.8	0	201
2005Q0284	214911 BELT CREEK AL ABOVE SWIM HOLE		45.77	2.4		0.075	9.49			
		BELT CRK @SWIM	5.04	1.78	8 0.169	0.375	8.35	32.9	0	344
2005Q0282	214913 BELT CREEK AT NORTH SLAG EXTENT	BELT CRK @NSLAG	⁴ 5.47	1.88	B 6.01	0.074	11.9	148.7	0	193
2003Q1087	203451 LOWER BOX ELDER CREEK * BELOW J H	LOWER BOXELDER	40.4	2.	7 0.061	0.065	12.8	355.4	0	49.3
2003Q1182	203451 LOWER BOX ELDER CREEK * BELOW J H	LOWER BOXELDER	410.1	2.29		0.035	16.7	358.7	0	45.6
2004Q0478	203451 LOWER BOX ELDER CREEK * BELOW J H	LOWER BOXELDER	410.7	3.0		0.008	3.14	315.1	0	56.6
2005Q0411	203451 LOWER BOX ELDER CREEK * BELOW J H	LOWER BOXELDER				0.022	8.48	370.4	0	44.2
2003Q1085	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	49.88	2.4				351	0	59.2
			411.2	2.9		0.052	9.17	351	U	59.2
2003Q1166	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	411.3	2.6		0.032	12.8			
2004Q0033	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	411.9	2.3	7 0.032	0.024	11.8	287.3	0	53.5
2004Q0097	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	49.91	2.1		0.023	12.1	330.01	0	40.6
2004Q0155	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	⁴ 9.68	2.4		0.046	11.7	328.6	0	40.4
2004Q0237	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	410.3	2.		0.042	11.8	357.5	0	51.2
2004Q0476	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	414.0				8.13	389.6	0	66.7
2005Q0350	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	414.8	4.0		0.019			0	
			411.5	2.8			11.8	401.1		50.1
2005Q0413	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	4 10	2.2	1 0.015		10	335.5	0	49.8
2005Q0286	214386 BELT CREEK AT ARMINGTON BRIDGE IN	BELT CRK @ARMING	4 4.5	1.3	9 0.012	0.004	8.96	219.1	0	74.6
2004Q0166	196148 REDDISH GARY	330MDSN	45.32	1,7	9 0.043	0.004	8.46	277.6	0	53.1
			D. 02	1,7	- 0.0-0	0.00				

	County County	Water Source	Latituda Lagaticula Casar	ethod Datum Location (TRS)	Cough, State	s Site Type	Depth (ft) Agency S	Sample Date W	(ater Temp. E)	ald all tabe	N Field CC	Lab ec coe	(mell) Co./	m = (1) = 4 m	(mm/l) No	(mm)) 1/ (mm	-A) F- (- 5) - 1 - (6) - 0 (5)	0.40.4400	22 (4
2005Q0263	Swic kd Site Name 214915 AMD AT LEWIS COULEE	AMD		PS NAD83 19N06E26AACD				10/28/2004 16:00	9.25	3 78 3	oN Field SC 01 3,791.00	4300	6.728	226	152	27 8	9/1) Fe (IR 0.523 fi	9/1) Mri (mg/1) SiC 172 107	2 (mg/l) HCC 105	0 (1119/1)		5100
2005Q0287	214914 AMD 3RD AND LEWIS STREET IN BELT	AMD		DWN NAD83 19N06E26ACAA				10/28/2004 17:30	9.04		31 5319	3660		203	147	25 1		558 1.23	69 9	0		3618
2003Q0848	200616 ANACONDA MINE DRAIN AT CUI VERT	AMD		WN NAD27 19N06E26BDCD			MBMG	1/30/2003 11.30	9.8	2.99 3.		2285	2471	148	68.6	10.3		188 0.403	52.6	0		1920
2003@0866	200616 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E266DCD			MRMG	3/15/2003 11.15	10.7	3 01 2			2521	164	70 4	10.5		73 0.5	52 5	a	_	1934
200301018	200616 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E26BDCD			MBMG	4/22/2003 15 45	7.5	289 2			2430	153	69 7	10.9		50 0 363	499	0	-	1900
2003Q1079	200616 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E26BDCD			MBMG	5/28/2003 18.30	113	2 84 3			2043	140	87.5	10.8		43 0 375	52 5	D		1523
2003@1073	200616 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E26BDCD			MBMG	6/18/2003 11.50	9.9	2 51 2			2184	156	72 5	10.7		168 0 428	53.2	0	0	1606
2004/20029	200616 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E26BDCD			MBMG	7/17/2003 17 45		2.	79	2090	2180	162	73.3	10.5		155 0 426	53	0	0	1810
2004Q0103	200618 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E266DCD			MBMG	8/19/2003 16 30	9 9	2 58		2290	2434	150	72	10.5	3 15	189 0 435	53 8	0	0	1851
2004Q0147	200616 ANACONDA MINE DRAIN AT CULVERT	AMD		WN NAD27 19N06E266DCD				9/18/2003 18 45	9 94	27 2	93 2390	2350	2498	155	893	10.2	3 18 1	174 0 412	57.3	0	0	1905
2004Q0241	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	47.3788 -110.931 TRS-1	WN NAD27 19N08E26BDCD	CASCADE MT	MINE DRAINAGE	MBMG	10/23/2003 16:20	9.91	2.99 3	01 2300	2290	2620	168	71.2	99	3 14	173 0 411	58.5	0	0	2025
2004Q0470	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	47.3788 -110 931 TRS-1	WN NAD27 19N06E26BDCD	CASCADE MT	MINE DRAINAGE	MBMG	4/24/2004 15:20	9.8	28 3	.19 2275	2280	2475	163	73 5	11	2 93	120 0406	54 9	0	0	1916
2004 Q0574	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	47 3788 -110 931 TRS-1	WN NAD27 19N06E26BDCD	CASCADE MT	MINE DRAINAGE	MBMG	6/24/2004 16 50	11.91	2 75 3	34 2120	2230	2003	154	72 3	10 5	2 85 8	3.1 0 406	56 3	0	0	1510
2005Q0075	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	47.3788 -110 931 TRS-1	WN NAD27 19N06E26BDCD	CASCADE MT	MINE DRAINAGE	MBMG	8/12/2004 14:30	99	2.68	28 2465	2280	2094	163	72 3	11	3.28	103 0 428	58.5	0	Q	1580
2005Q0288	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	47.3788 -110.931 TRS-1	WN NAD27 19N06E28BDCD	CASCADE MT	MINE DRAINAGE	MBMG	10/28/2004 11:30	9 94	2.83 3	09 2470	2390	2264	177	72.9	108	3 21	171 0 433	59 1	0	0	1663
2005Q0358	200616 ANACONDA MINE DRAIN AT CULVERT	AMD	47.3788 -110.931 TRS-1	WN NAD27 19N06E268DCD	CASCADE MT	MINE DRAINAGE	MBMG	2/3/2005 16 25		3	13	2340	2514	187	726	10 8	3 08	174 0 44	56 9	0	0	1921
2005Q0419	200618 ANACONDA MINE DRAIN AT CULVERT	AMD	47.3788 -110.931 TRS-1	WN NAD27 19N06E26BDCD	CASCADE MT	MINE DRAINAGE	MBMG	4/8/2005 12:45			16	2220	2456	150	88 3	10.1	2 88	158 0 395	54	0	0	2099
2003Q0846	200615 FRENCH COULEE MINE	AMD	47.3722 -110 93 TRS-1	WN NAD27 19N06E28CDD6	CASCADE MT	MINE DRAINAGE	M6MG	1/29/2003 14:00	7	27 2	.75 5620	5625	10057	271	117	11.7		050 0.963	101	0	0	7990
2003Q0865	200615 FRENCH COULEE MINE	AMD		WN NAD27 19N06E26CDD6		MINE DRAINAGE	MBMG	3/15/2003 10:45	7 2	2.68 2		0.00	8960	284	122	12 2		989 0.988	97 6	0	0	6975
2003D1020	200615 FRENCH COULEE MINE	AMD		WN NAD27 19N06E26CDD6		MINE DRAINAGE	MBMG	4/22/2003 14:55	97		27 4660		7877	246	111	13 5		808 0 703	90	0	0	8198
2003Q1081	200615 FRENCH COULEE MINE	AMD		WN NAD27 19N06E28CDD6		MINE DRAINAGE	M8MG	5/28/2003 18:00	12 2		78 4410		5814	208	103	17.8		885 0 531	65 2	0	0	4400
200301164	200615 FRENCH COULEE MINE	AMD		WN NAD27 19N06E26CDDB			MBMG	6/16/2003		-	66	4030	8824	241	114	16.8		781 0.65	B9 8	Ω	0	5228
2004 Q0031	20061S FRENCH COULEE MINE	AMD		WN NAD27 19N06E26CDDB				7/17/2003 17.10			2 4	4400	7523	275	126	14.4		821 0 833	103	0	a	5750
2004Q0095	200615 FRENCH COULEE MINE	AMD		WN NAD27 19N06E28CDDB				8/19/2003 18:00	14.3	2 36 2			8770	277	122	13 8		843 0888	106	0	0	6891
2004Q0149	20061S FRENCH COULEE MINE	AMD		WN NAD27 19N06E26CDDB			MBMG	9/16/2003 19 05	11 3	2.41 2			9072	279	126	13 2 <5 0		929 0 902	105 4	0	0	7133
2004Q0235	20061S FRENCH COULEE MINE	AMD	47.3722 -110.93 TRS-	WN NAD27 19N06E26CDDB	CASCADE MT	MINE DRAINAGE		10/23/2003 15.50	10.3	2 73 2			10491	293	127	10.8		165 103	109	0	0	8152
2004Q0472	200615 FRENCH CDULEE MINE	AMD		WN NAD27 19N06E28CDD8			MBMG	4/24/2004 15 45	10 2		95 4080		6190	198	108	19.3		673 0 528	63 2	0	D	4799
2004Q0572	200615 FRENCH CDULEE MINE	AMD		WN NAD27 19N06E26CDDB			M8MG	8/24/2004 16:00	12 23		14 4090		9697	436	177	129 < 05		950 1 52	160	0	0	7350
2005Q0077	20061S FRENCH COULEE MINE	AMD	47.3722 -110.93 TRS-	WN NAD27 19N06E26CDDB	CASCADE MT	MINE DRAINAGE	M6MG	8/12/2004 15.15	12 2	3.99	4 1 6230	5180	8373	262	129	14 7		078 0 959	108	0	0	6244
2005Q0356	20061\$ FRENCH COULEE MINE	AMD	47 3722 -110.93 TRS-1	WN NAD27 19N06E26CDDB	CASCADE MT	MINE DRAINAGE	MBMG	2/3/2005 16 45			2 6	5760	1019B	292	138	12.5	4 47 1	1.08	117	0	a	7676
2005Q0417	200615 FRENCH COULEE MINE	AMD	47.3722 -110.93 TRS-	WN NAD27 19N06E26CDD6	CASCADE MT	MINE DRAINAGE	MBMG	4/8/2005 15:15		2	84	5400	10082	270	135	12 6	5.59 1	227 1 02	105	0	0	8694
2005Q0081	213598 PLEASANT VALLEY SPRING * OLD HARRI	217S6RS	47.4131 -110 972 NAV-	PS NAD27 19N06E16	CASCADE MT	SPRING	MBMG	8/12/2004 18:40	12.8	9.71 8	36 650		011	48.1	496	8.37	100	.006 <0.001	8 09	285 48	0 687	20
2005Q0352	213598 PLEASANT VALLEY SPRING * OLD HARRI	217SBRS	47 4131 -110.972 NAV-	PS NAD27 19N06E16	CASCADE MT	SPRING	MBMG	2/4/2005 13 10		6	36	637	301	44.3	496	9 34	1.94 0	011 0 002	7.62	309 6	6	26 3
2004Q0025	204710 SEEP ON LEFT SIDE OF HIGHWAY DRAIN	217S6RS	47 3757 -110 927 NAV-	PS NAD27 19N06E26	CASCADE MT	OTHER	MBMG	7/17/2003 14 15		7	.05	3340	3236	445	364	41.7	11 0	889 0.035	10 9	334 3	0	2116
2004Q0090	204710 SEEP ON LEFT SIDE OF HIGHWAY DRAIN	217SBRS	47.3757 -110.927 NAV-		CASCADE MT	OTHER	MBMG	8/19/2003 18.10		7	62	3350	3271	428	352	43 9	11.5 0	.534 0 033	10.7	494 1	0	2105
2004Q0153	204710 SEEP ON LEFT SIDE OF HIGHWAY DRAIN	217SBRS	47.3757 -110.927 NAV-		CASCADE MT	DTHER	M6MG	9/19/2003 10:30	10 4	74 7	68 3510	3520	3258	443	354	43 2	11 2	0 44 0 042	10	407 5	0	2105
2003Q0850	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA			MBMG	1/30/2003 14:10	3.5		.93 610	659	376	65.3	39 6	9 65	172 0	384 0 068	9	344 7	0	72 7
2003Q0863	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA			MBMG	3/15/2003 13:15	4.1	7 88 7	.88 440	494	276	53.8	29	7.17		646 0.042	66	258 9	0	39 5
200301024	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA			MBMG	4/22/2003 14:00	8.6	7.78 7	82 605	607	349	61.7	37.1	9.1	176 0	156 0 066	6 21	322 S	0	64 9
200301083	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA			MBMG	5/28/2003 17:25	13.6		7.71 740		431	74.1	48 4	11	2 39 0	047 0.063	6 56	356.2	0	105
200301165	200617 FRENCH COULEE * HIGHWAY DRAIN	217S6RS		WN NAD27 19N06E26CDDA			MBMG	6/17/2003 17.45	15.1		78 460		459	78.6	53 2	11		039 0.093	10.6	379 4	0	108 4
2004Q0027	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA			MBMG	7/17/2003 14.60			7.8	1412	967	152	103	16.5		.698 0 147	13.3	4115	0	457
2004Q0099	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA			MBMG	8/19/2003 17:45	10.6		7.69 790		12634	181	134	20.1		2 12 0.196	12.4	351 4	0	706
2004Q0151	200617 FRENCH COULEE * HIGHWAY DRAIN	217S6RS		WN NAD27 19N06E26CDDA			MAMG	9/19/2003 10:05	9.34		3 13 660		586	925	64.8	13.6	2 32 0	035 0 108	12 4	393 3	0	198
2004Q0131	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA		DTHER	M6MG	4/24/2004 18 00	8.3		3 05 620		417	72	51	12		.026 0 067	9 8	3466	0	911
2004Q0570	200617 FRENCH COULEE * HIGHWAY DRAIN	217SBRS		WN NAD27 19N06E26CDDA WN NAD27 19N06E26CDDA		DTHER	M6MG	6/24/2004 15:00	12 16		8 2 586		387	76 1	46.2	7 87		024 0.034	10.7	317 2	0	68 1
2005Q0079	200617 FRENCH COULEE * HIGHWAY DRAIN	217S6RS				OTHER	M6MG	8/12/2004 16:00	12		778 765		439	84.6	50	9 38		007 0 041	12 6	351.36	0	86
2005Q0079 2005Q0354	200617 FRENCH COULEE * HIGHWAY DRAIN	217S6RS 217S6RS		WN NAD27 19N06E26CDDA			MBMG	2/4/2005 9 55	12		3 0 6	653	402	76.1	44.2	9 25		2 59 D 066	12 1	336 3	0	81.2
2005Q0415	200617 FRENCH COULEE * HIGHWAY DRAIN	21756RS 217S6RS		WN NAD27 19N06E26CDDA			MBMG	4/8/2005 15 40			3 27	639	361	65 9	41.1	8 68		178 D 027	6 96	341.9	0	59 2
2004Q0101				WN NAD27 19N06E28CDDA		DTHER SPRING	MBMG	8/19/2003 14 10	1		7.54 560		315	56 7	40.4	7.96		019 <0.001	8.35	314 8	0	36.2
2004Q0101 2004Q0157	205653 JOHN HARRIS RANCH * SPRING	217SBRS	47.3663 -110 997 NAV-		CASCADE MT				99		7 97 500		294	51.9	38 5	7.66		056 001	11.7	278.5	0	39
2004Q0157	207767 HARRIS JOHN * POND	217S6RS		SPS NAD27 19N06E29	CASCADE MT		M6MG	9/19/2003 12.15	9.5		7.74 560		318	59.4	42.7	84		021 0 001	7.6	316.5	0	37 1
2004Q0233 2004Q0159	205653 JOHN HARRIS RANCH * SPRING 204516 JIM LARSON	217SBRS	47 3863 -110 997 NAV-		CASCADE MT		M6MG	10/23/2003 13 50 9/24/2003 15 00	11.31		7.74 560 7.8 526		248	57.5	25.3	4 69		0.011 < 0.001	10 7	270 1	0	14.7
2004020159	204316 JIM DAYSON	217S6RS	47.3551 -110 948 NAV-	SPS NAD27 19N06E34ACDC	CASCADE MI	SPRING	196 M6MG	9/24/2003 15 00	11.31	7 40	70 320	300	240	31.0	20.0	4 03	0.0-					
2004Q0110	205836 BELT CREEK	BELT CREEK	47 3836 ,110 006 81417	PS NAD27 18N06E12ABDA	CASCADE MT	STREAM	MBMG	8/27/2003 10 50	17 9	7.79	7 83 297	428	213	51.8	14 6	4.4	1.61 0	027 0 095	7.07	157 4	0	54 7
2004Q0114	205639 BELT CREEK	BELT CREEK		SPS NAD27 18N06E12ABDA SPS NAD27 18N06E26D68A			MBMG	8/27/2003 15:15	19.2		7 82 372		248	60.5	15.1	4 97		.028 0.006	9 52	2126	0	49 9
2004Q0112	205638 BELT CREEK	BELT CREEK		SPS NAD27 18N06E26DDDA			MBMG	8/27/2003	16.4		7 67 371		242	56 3	15	5 27		0.04 0.003	6 39	217 9	0	46.5
2004Q0091			47.3812 -110.916 NAV-	PS NADZ/ 18NOSEZSODOA	CASCADE MT		M6MG	8/20/2003 12:30	20 9		7.83 460		281	69.1	17.1	5 15	179 0	.036 0 005	9 27	227 2	0	64.8
2005Q0285	214916 BELT CREEK AFTER LEWIS AMD DRAIN						M6MG	10/28/2004 13 45	8 47		7.28 665		415	97	27 2	6.77		1.93 0 075	949	134 8	0	201
200500284	214811 BELT CREEK AL ABOVE SWIM HOLE	BELT CRK @SWIM		SPS NAD83 19N06E26ABA6			MBMG	10/28/2004 14:00	10.38		5 63 637		506	90.4	35.8	8 04		.169 0.375	8 35	32 9	0	344
2005Q0282	214913 BELT CREEK AT NORTH SLAG EXTENT	BELT CRK @NSLAG		SPS NAD83 16N06E26ACCC			MBMG	10/28/2004 16:00	11 29		7 31 645		413	92.5	25.8	6.47	1.88	6.01 0.074	11.9	148.7	0	193
2003Q1087	203451 LOWER BOX ELDER CREEK * BELOW JH			GPS NAD83 19N06E26BDAC			MBMG	5/28/2003 16.45	24 5		3.02 680		371	74.6	37.6	10.4		061 0 085	12.6	355 4	0	493
2003Q1162			47.3779 -110.986 NAV-		CASCADE MT				23.3		8 21 395		375	75.7	40.9	10.1		.042 0 035	16.7	358.7	D	45.6
2003Q1162	203451 LOWER BOX ELDER CREEK * GELOW JH		47 3779 -110.986 NAV-		CASCADE MT		MBMG	6/17/2003 16:05	23.3		8 21 393 8 26 570		3/3	66 7	39	10.7		.035 0 008	3.14	315 1	0	56 6
2005Q0411	203451 LOWER BOX ELDER CREEK * BELOW J H		47.3776 -110.986 NAV		CASCADE MT		MBMG	4/25/2004 14:10 4/8/2005 11.15	83		8.26 570 8.14 685		377	76.6	40 1	9.88		013 0 022	6.48	370 4	0	44 2
2005Q0411 2003Q1085	203451 LOWER BOX ELDER CREEK * BELOW J H			OPS NAD27 13N06E29	CASCADE MT		MBMG						377	78 2	34 2	11.2		039 0.052	9 17	351	0	59 2
2003Q1085 2003Q1166	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER		GPS NAD27 19N06E32	CASCADE MT		MBMG	5/28/2003 15:50	18		8 13 675		319	84.4	38 1	11.3		0.046 0.032	12.8			
2003Q1166 2004Q0033	203450 UPPER BOX ELDER CREEK * LARSON RA			GPS NAD27 19N06E32	CASCADE MT		MBMG	6/17/2003 17:15	18 2	7.69	400 8 44	834	340	68.2	36 f	11.3		032 0 024	11 8	287 3	0	53 5
2004Q0033	203450 UPPER BOX ELDER CREEK * LARSON RA			GPS NAD27 19N06E32	CASCADE MT		M6MG	7/17/2003 12 20	150		-		340	68.6	36.6	9 91		0.037 0.023	12 1	330.01	0	40.6
2004Q0097 2004Q0155	203450 UPPER BOX ELDER CREEK * LARSON RA			GPS NAD27 19N06E32	CASCADE MT		MBMG	8/19/2003 11.20	15.6		8.09 620		344	69 9	37.2	988		026 0 046	11.7	328 6	0	40.4
	203450 UPPER BOX ELDER CREEK * LARSON RA	UPPER BOXELDER	47.3586 -110 987 NAV		CASCADE MT		M6MG	9/18/2003 18:05	8.7	1.00	788 620		342 387	69 9 78 4	37.2 38.8	10.3		033 0.042	11.8	357 5	0	512
2004Q0237 2004Q0476	203450 UPPER BDX ELDER CREEK * LARSON RA			GPS NAD27 19N06E32	CASCADE MT		MBMG	10/23/2003 11.15	9.3		7.89 860		387 430	78.4 65.9	38.8 47.3	10.3		0.042	6 13	389.6	0	66.7
2004Q0478 2005Q0350	203450 UPPER BOX ELDER CREEK * LARSON RA			GPS NAD27 19N06E32	CASCADE MT		MBMG	4/25/2004 14 40	13		8 19 635		404	77 6	367	14.5		0.032 0.023	11.6	401 1	0	50.1
	203450 UPPER 60X ELDER CREEK * LARSON RA	UPPER BOXELDER		GPS NAD27 19N06E32	CASCADE MT		MBMD	2/4/2005 13:35			B 15	663		68.5	34 6	11.5		0.015 0.027	10	335 5	0	49 8
2005Q0413 2005Q0286	203450 UPPER BOX ELDER CREEK * LARSON RA		47.3588 -110 987 NAV	GPS NAD27 19N06E32	CASCADE MT		MBMG	4/8/2005 11 50	2.00		8 13	662	355 292	75.8	34 b 17.9	4.5		012 0 004	6.96	219.1	0	74.6
2005020286	214386 BELT CREEK AT ARMINGTON BRIDGE IN	BELT CRK @ARMING	47.3654 -110 907 NAV	GPS NAD83 19N06E36DBBB	CASCADE MT	STREAM	MBMG	10/28/2004 10:00	3 68	7.27	8 12 487	497	292	13.0	17.8	40	133 (0.2 0.004	0.00			
2004Q0166	196148 REDDISH GARY	330MDSN	47 2020 - 110 00 1	000 14003 (01005)	0450405 4-7	MELL.	600 M6MG	9/23/2003 9:00	10.00	7 32	788 530	542	200	85.9	23 5	5.32	1.79 0	.043 0 004	8 46	277 6	0	53 1
200-20-00		334/10314	-1.3232 -110 931 NAV	GPS NAD27 18N06E14BDBA	CASCADE MI	WELL	OUT MOME	3/23/2003 9 00	10.09	, 32	330	. 074	_33									

134

	Gwic ld Site Name	Water Source	no/l) I	K (mg/l)	Fe (mg/l)	Mn (mg/l)	SiO2 (mg/l) H	ICO3 (mg/l)	CO3 (mg/l) 3	SO4 (mg/l)
2004Q0330	150504 DANKS BRENDA	330MDSN	2.4	0.916		<0.001	7.1	187.9	0	198
2004Q0329	31978 DAWSON JIM AND DELORES	330MDSN	3.49	1.13	0.024	0.004	78	203.1	0	205
1982Q0356	2315 TOWN OF BELT WELL 2	330MDSN	2.4	0.7	0.015	0.001	9	190.8	0	135
2001Q0358	2315 TOWN OF BELT WELL 2	330MDSN	2.5	1.1	0.006	<.001	7.85	197.2	0	132
2003Q1129	2315 TOWN OF BELT WELL 2	330MDSN	3.78	1.35		< 0.001	7.92	208.3	0	150
2005Q0195	215047 BELT WELL 2A * MADISON WELL * LARSE	330MDSN	118	3.13	0.06	0.177	16	317.5	0	163
2004Q0328	177163 SPRAGG ED	330MDSN	5.96	5.26	0.013	0.005	7	296.7	0	99.3
200.200			1.00							
2004Q0160	186483 SPILLER LEROY AND FAYE	110ALVM	7.64	2.75	0.018	<0.001	9.38	282.1	0	89.2
2003Q1131	32015 JIM LARSON RANCH	110ALVM	12.6	2.45	0.023	< 0.001	9.71	349.5		64.6
2004Q0239	32015 JIM LARSON RANCH	110ALVM	11.9	2.47	0.012	<0.001	11	366.9	0	59
2004Q0163	31952 GOO EDWARD	112TILL	36.4	3.67	0.017	<0.001	15.3	380.2	0	59.1
							4.00	^	0	5736
2005Q0289	214917 DEQ RECLAIMED SITE MONITOR WELL 1	111MTLG	26.6	9.53	3.21	5. 98	4.22	0	U	3/30
2005Q0043	210533 MARRY EVANS	217SBRS	31	1.77	0.041	< 0.001	9.1	454.5	0	48.6
2003Q0043 2004Q0168	30562 JOHNSON GERALD	217SBRS 217SBRS	14.1	5.01		<0.001	10.2	316.8		26.9
2004Q0168 2004Q0169	31957 HORST NATHAN	217SBRS	46.1	5.72	0.012			588.8		121
2005Q0348	217048 BELT WELL 1C	217SBRS	11.1	4.03	0.178			568.1		51.1
2005Q0425	217048 BELT WELL 1C	217SBRS	11.5	3.95	0.170			553.1		51.5
2005Q0346	217050 BELT WELL 2C	217SBRS	6.58	1.67	0.008			357.2		20.1
2005Q0423	217050 BELT WELL 2C	217SBRS	8.62	2.09				348		25.9
2005Q0425 2005Q0344	217053 BELT WELL 3C	217SBRS	16	4.94				411.4	0	23.6
2005Q0421	217053 BELT WELL 3C	217SBRS	16.9	4.86				416	0	28.9
2004Q0161	207672 IRVINE	217SBRS	7.42	1.78				346.2	2 0	24.3
2004Q0165	186486 DAWSON RANCH	217SBRS	260					512.4	. 0	684
2004Q0162	164111 HOYER, KEITH AND HEATHER	217SBRS	9.16					274.5	5 0	97
2005Q0342	217056 BELT WELL 4C	217SBRS	20.1	8.1				505.5	5 0	35.9
			10	0.,						
2004Q0167	199851 ERIC JOHNSON	217CBNK	5.45	2.35	0.017	7 0.004	4 7.05	272.4	• 0	31.6
2004Q0093	84937 HARRIS JOHN JR.	217CBNK	11.9		1.3	1 0.0	9 6.35	350.4	4 0	107
2004Q0231	84937 HARRIS JOHN JR.	217CBNK	11.9		1,16	0.08	1 6.24	411.5	5 0	101
2004Q0468	207662 BURGE EXPLORATION ACM WELL	217CBNK	3.86				4 6.57	109.6	6 0	15.7
2004Q0513	207662 BURGE EXPLORATION ACM WELL	217CBNK	7.84		0.03	4 0.01	5 6.3	303.	в с	73.8
2005Q0340	207662 BURGE EXPLORATION ACM WELL	217CBNK	8.71			3 0.02	1 6.14	32	7 0	79.6
2005Q0290	215048 BELT WELL 48 COAL	221MRSN	22.2	5.88	0.08	7 0.37	6 7.48	416.	5 0	115
2004Q0164	145604 ASSELS STEVEN D. AND LINDA L.	221SWFT	7.98	3	0.01	5 0.00	8 8.29	223.	5 0	121

	Gwic Id	Site Name	Water Source	ng/i)	K (mg/l)	Fe (mg/l)	Mn (ma/l)	SiO2 (mg/l) h	ICO3 (mg/l)	CO3 (mg/l) S	SO4 (mg/l)
2004Q0330		DANKS BRENDA	330MDSN	2.4	0.916		<0.001	7.1	187.9	0	198
2004Q0329		DAWSON JIM AND DELORES	330MDSN	8.49	1.13	0.024	0.004	7.8	203.1	0	205
1982Q0356		TOWN OF BELT WELL 2	330MDSN	2.4	0.7	0.015	0.001	9	190.8	0	135
2001Q0358		TOWN OF BELT WELL 2	330MDSN	2.5	1.1		<.001	7.85	197.2	0	132
2003Q1129		TOWN OF BELT WELL 2	330MDSN	3.78	1.35	0.014	<0.001	7.92	208.3	0	150
2005Q0195		BELT WELL 2A * MADISON WELL * LARSE	330MDSN	11.8	3.13			16	317.5	0	163
2004Q0328		SPRAGG ED	330MDSN	5.96	5.26			7	296.7	0	99.3
200142020	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1.00	5.25						
2004Q0160	186483	SPILLER LEROY AND FAYE	110ALVM	7.64	2.75	0.018	<0.001	9.38	282.1	0	89.2
2003Q1131	32015	JIM LARSON RANCH	110ALVM	12.6	2.45	0.023	< 0.001	9.71	349.5		64.6
2004Q0239	32015	JIM LARSON RANCH	110ALVM	11.9	2.47	0.012	<0.001	11	366.9	0	59
2004Q0163	31952	GOO EDWARD	112TILL	36.4	3.67	0.017	<0.001	15.3	380.2	0	59.1
				1							5700
2005Q0289	214917	DEQ RECLAIMED SITE MONITOR WELL 1	111MTLG	26.6	9.53	3.21	5.98	4.22	0	0	5736
											40.0
2005Q0043		MARRY EVANS	217SBRS	31			< 0.001	9.1	454.5		46.6
2004Q0168		JOHNSON GERALD	217SBRS	14.1			<0.001	10.2	316.8		26.9 121
2004Q0169		HORST NATHAN	217SBRS	46.1					588.8		51.1
2005Q0348		BELT WELL 1C	217SBRS	11.1					568.1		
2005Q0425		BELT WELL 1C	217SBRS	11.5					553.1		51.5
2005Q0346		BELT WELL 2C	217SBRS	6.58					357.2		20.1
2005Q0423		BELT WELL 2C	217SBR\$	8.62					348		25.9
2005Q0344		BELT WELL 3C	217SBRS	16	4.94				411.4		23.6
2005Q0421	217053	BELT WELL 3C	217SBRS	16.9	4.80	0.28			416		28.9
2004Q0161	207672	IRVINE	217SBRS	7.42	1.78	0.0			346.2		24.3
2004Q0165	186486	DAWSON RANCH	217SBRS	260	6.49	5 0.02	7 0.14		512.4		684
2004Q0162		HOYER, KEITH AND HEATHER	217SBRS	9.16	2.50	6 0.10	2 0.213	3 10	274.5		97
2005Q0342	217056	BELT WELL 4C	217SBRS	20.1	6.1	1 0.32	4 0.05	1 6.02	505.5	5 0	35.9
											24.0
2004Q0167		ERIC JOHNSON	217CBNK	5.45					272.		31.6
2004Q0093		HARRIS JOHN JR.	217CBNK	11.9					350.4		107
2004Q0231		HARRIS JOHN JR.	217CBNK	11.9					411.		101
2004Q0468		BURGE EXPLORATION ACM WELL	217CBNK	3.80	3.1				109.		
2004Q0513		BURGE EXPLORATION ACM WELL	217CBNK	7.8	4 2.8	9 0.03			303.		
2005Q0340	207662	BURGE EXPLORATION ACM WELL	217CBNK	8.7	1 2.6	9 0.1	3 0.02	1 6.14	32	7 0	79.6
											445
2005Q0290	215048	BELT WELL 4B COAL	221MRSN	22.:	2 5.8	8 0.08	7 0.37	6 7.48	416.	5 0	115
									200	5 0	121
2004Q0164	145604	ASSELS STEVEN D. AND LINDA L.	221SWFT	7.9	8	2 0.01	5 0.00	8 8.29	223.	5 0	121

	Gwic kd Site Name	Water Source	Latitude Longillude Geomethod	Datum Location (TRS)	County State	Site Type	Depth (ft) Agency S	Sample Date	Water Temp F	leld pH L	ab pH Fie	id SC L	ab SC CDS (r	ng/i) Ca (r	an) Ma (mo/l) Na	(ma/l) K (n	na/l) F	e (ma/l) M	n (ma/l) SIO	2 (mg/l) HCC	03 (mg/l) CD3	(ma/l) SO4	(mo/l)
2004 Q0330	150504 DANKS BRENDA	330MDSN	47 4317 -110 923 NAV-GPS	NAD27 19N06E11ABAC	CASCADE MT	WELL	300 MBMG	11/25/2003 14:15	11.27	7 17	7 46	657	655			28 6	24		0 013 <		7.1	187.9	0	198
2004 Q0329	31978 DAWSON JIM AND DELORES	330MDSN	47.3913 -110 969 NAV-GPS	NAD27 19N06E21ACD8	CASCADE MT	WELL	670 MBMG	11/25/2003 1S:35	9 71		7.54		876	445	6.5	29 3	3 49		0 024		7.8	203.1	0	205
1982Q0356	2315 TOWN OF BELT WELL 2	330MDSN	47.3838 -110 923 NAV-GPS	NAD27 19N06E26ACAD	CASCADE MT	WELL	430 MBMG	1/6/1982 19:11	9.8	7 49	7 58	529			8.3	23	24	0.7	0.015		9	190.8	0	135
2001Q0358	2315 TOWN OF BELT WELL 2	330MDSN	47.3838 -110 923 NAV-GPS	NAD27 19N06E26ACAD	CASCADE MT	WELL	430 M8MG	8/4/2000 11:18	10 2	7.77		574	565		30.4	23 4	2.5	11	0.006 <		7 85	197 2	n	132
2003Q1129	2315 TOWN OF BELT WELL 2	330MDSN	47.3838 -110.923 NAV-GPS	NAD27 19N06E26ACAD	CASCADE MT	WELL	430 MBMG	6/5/2003 15 15	12 2	7 06		800			36.6	24.7	3.78		0.014 <		7 92	208 3	n	150
2005Q0195	215047 BELT WELL 2A * MADISON WELL * LARSE	330MDSN	47.3786 -110 946 NAV-GPS	NAD27 19N06E27	CASCADE MT	WELL	734 M8MG	9/22/2004 12:50	12.8			950	823		37.5	50 3	11.8	3.13	0.06		16	3175	0	183
2004Q0328	177163 SPRAGG ED	330MDSN	47.3592 -110 903 NAV-GPS				490 MBMG	11/26/2003 14:30	9 08	7 36		608			79 g	26	5.96	5.15	0 013		7	296 7	0	99.3
							150 1101110	7112012000 111100	• • • •	, 00	,	000	033	5,0			6.30	3 20	0013	0 000	,	2301	U	33.3
2004 Q0160	186483 SPILLER LEROY AND FAYE	110ALVM	47.3785 -110 927 NAV-GPS	NAD27 19N06E26D8CB	CASCADE MT	WELL	24 MBMG	9/22/2003 16 45	11.19	7 19	7 66	619	604	360	79 1	27 5	7 64	2.75	0.018 <	0.001	9.38	282 1	0	89.2
2003Q1131	32015 JIM LARSON RANCH	110ALVM	47.3534 -110 99 NAV-GPS	NAD27 19N06E32DCCB	CASCADE MT	WELL	32 M8MG	8/5/2003 13:40	10 2	7.27	7 67	845	622		743	35.4	126	2 45	0 023 <		971	349.5	0	64.8
2004 Q0239	32015 JIM LARSON RANCH	110ALVM	47 3534 -110.99 NAV-GPS	NAD27 19N06E32DCCB	CASCADE MT	WELL	32 MBMG	10/23/2003 12:20	10.5	7.34		830	855		74.9	34.6	11 9	2 47	0.012 <		11	366 9	0	59
																			0.012	3 00 .		0000	•	- 00
2004Q0163	31952 GOO EDWARD	112TILL	47 4357 -110 953 NAV-GPS	NAD27 19N06E03CD8A	CASCADE MT	WELL	12 M8MG	9/25/2003 14:15		6 62	7 97	752	758	413	25.7	65 3	38 4	3 67	0 017 <	0 001	15.3	380 2	0	59.1
2005Q0289	214917 DEO RECLAIMED SITE MONITOR WELL 1	111MTLG	47.3815 -110 928 NAV-GPS	NAD83 19N06E26BDDD	CASCADE MT	WELL	13 3 MBMG	10/29/2004 1S 15	10.58	4.48	4 45	5462	5230	286	473	643	26 6	9.53	3.21	5 98	4 22	0	0	5738
2005Q0043	210533 MARRY EVANS	217\$8RS	47.3126 -110.995 NAV-GPS	NAD27 18N06E17CAAD	CASCADE MT	WELL	90 MBMG	7/29/2004 15:30	8 81	7 26	8	886	898	473	71.3	83	31	1 77	0 041 <	0 001	91	454 5	0	48.8
2004Q0168	30562 JOHNSON GERALD	217SBRS	47.3052 -110.977 NAV-GPS	NAD27 18N06E218A8B	CASCADE MT	WELL	35 MBMG	9/23/2003 11:00	9 28	6 89	7.48	682	666	357	77.6	28.9	14.1	5 01	0 012 <	0 001	10 2	3168	0	28 9
2004Q0169	31957 HDRST NATHAN	217\$8RS	47 4359 -110 963 NAV-GPS	NAD27 19N06E04DACD	CASCADE MT	WELL	140 M8MG	9/23/2003 18 35		6 92	7 29	1077	1056	642	69.8	93 7	46 1	5 7 2	0 12	0.05	6 37	5888	0	121
2005@0348	217048 BELT WELL 1C	217SBRS	47.3839 -110 9S3 NAV-GPS	NAD83 19N06E27BACC	CASCADE MT	WELL	90 MBMG	2/3/2005 15.40			7 91		913	517	86 4	75.3	11.1	4 03	0.178	0.097	6.82	566.1	0	51 1
2005Q0425	217048 BELT WELL 1C	217SBRS	47.3839 -110.953 NAV-GPS	NAD83 19N06E27BACC	CASCADE MT	WELL	90 MBMG	4/8/2005 14:30			7 31		904	510	85	75.7	115	3.95	0 199	0.085	6 77	S53 1	0	51.5
2005Q0346	217050 BELT WELL 2C	217SBRS	47.3789 -110 947 NAV-GPS	NAD83 19N06E27CBBC	CASCADE MT	WELL	80 M8MG	2/3/2005 17:30			7 67		815	304	37 S	46.2	8.58	1 67	800.0	0.015	7.28	357 2	0	20 1
2005Q0423	217050 BELT WELL 2C	217SBR\$	47.3789 -110 947 NAV-GPS	NAD83 19N06E27CBBC	CASCADE MT	WELL	80 MBMG	4/8/2005 18:40			7 43		854	329	43.5	55.6	8 62	2 09	0.009	0.019	7.77	348	0	25 9
2005Q0344	217053 BELT WELL 3C	217SBRS	47.3726 -110.972 NAV-GPS	NAD83 19N06E28CDC	CASCADE MT	WELL	159 MBMG	2/4/2005 10:40			7 56		628		S0 6	44.7	16	4 94	0.217	0.104	6.33	411.4	0	23 6
2005@0421	217053 BELT WELL 3C	217SBR\$	47.3726 -110.972 NAV-GPS	NAD83 19N06E28CDC	CASCADE MT	WELL	1S9 MBMG	4/8/2005 18:50			7 S1		679		53 5	47.4	16.9	4 86	0.283	0.097	6 24	416	0	28 9
2004Q0161	207672 IRVINE	217SBR\$	47 3559 -110.96 NAV-GPS	NAD27 19N06E34CCCC	CASCADE MT	WELL	MBMG	9/24/2003			7 74		576		50.3	44 9	7 42	1.78	0.03	0 002	6 9	348 2	0	24 3
200400165	186486 DAWSON RANCH	217SBRS	47.3715 -110 865 NAV-GPS			WELL	200 MBMG	9/23/2003 13:30	9 15	7	7 58	2086		1418	119	69 4	260	8.45	0.027	0.14	7.85	5124	0	684
2004Q0162	164111 HOYER, KEITH AND HEATHER	217SBRS	47 4518 -110.918 NAV-GPS			WELL.	90 MBMG	9/23/2003 15:35	11.57	7 38		597	602	359	74.9	26.4	9.16	2.56		0 213	10	274 S	0	97
2005Q0342	217056 BELT WELL 4C	217SBRS	47.3651 -110 956 NAV-GPS		CASCADE MT		MBMG	2/3/200S 13.S0	96	6.83		735			65.1	51.2	20 1	8.1		0.051	6.02	505 5	0	35.9
								•																
2004Q0167	199851 ERIC JOHNSON	217CBNK	47 3099 -110 959 NAV-GPS	NAD27 18N06E15CCBC	CASCADE MT	WELL	180 MBMG	9/23/2003 10:25	10 22	6.84	7.26	482	484	265	51.2	28 3	5.45	2.35	0 017	0 004	7 05	272 4	0	316
2004Q0093	84937 HARRIS JOHN JR	217CBNK	47.3699 -110.99 NAV-GPS		CASCADE MT		200 MBMG	8/19/2003 13:20	99	6 86	7 28	740		444	94.5	41.3	11.8	4 06	1.31	0.09	6 3 5	350 4	0	107
2004Q0231	84937 HARRIS JOHN JR	217CBNK	47 3699 -110.99 NAV-GPS		CASCADE MT		200 MBMG	10/23/2003 13:20	9		7 54	730		467	97	38.9	11.9	4 08	1.16		6 24	411.5	0	101
2004Q0468	207662 BURGE EXPLORATION ACM WELL	217C8NK	47.3787 -110.979 NAV-GPS			WELL	186 MBMG	4/25/2004 13:00	11.1		7 28	220	295	133	24	10.7	3 86	3.19			6 57	109 6	0	15.7
2004Q0513	207662 BURGE EXPLORATION ACM WELL	217C8NK	47.3787 -110.979 NAV-GPS				186 MBMG	5/7/2004 11:00		,	7 58	220	577	354	75 2	34.1	7.84	2.89	0.034	0.015	83	303 8	0	73.8
2005Q0340	207662 BURGE EXPLORATION ACM WELL	217C8NK	47.3787 -110 979 NAV-GPS				186 MBMG	2/4/2005 12:40			7.32		612	371	76.5	31.9	871	2 69	0.13		6 14	327	0	79 6
200040040	THE STATE OF THE PARTY OF THE P	Z I I GOTTI	TOTAL STANFORS	INDEL ISHOUCESDAM	OF TOURDE IN	***	TOO IVIDATIO	24/2000 12 40			1.06		012	011	. 50	31.0	0.7.1	2 05	0.0	302.				
200500290	215048 BELT WELL 4B COAL	221MRSN	47.3625 -110.95 TRS-TWN	NAD27 10N06E34	CASCADE MT	WELL	MBMG	10/28/2004 10:00	8.83	6 59	7.37	877	921	507	100	477	22.2	S AA	0 087	0.376	7 48	416.5	0	115
200000020	THE TENTON	22 111111011	41.0020 -110.80 IRS-1VIN	HADET TRINUCES	ONSONDE WIT	***	UNDIVIO	10.00	0.03	0.29	1.51	977	341	507	.00	*/ /	24.6	0.00	0.001	3.010	,			
2004Q0164	145604 ASSELS STEVEN D AND LINDA L	221SWFT	47 3994 -110.93 NAV-GPS	NAD27 10NOSE23RDRA	CASCADE MT	WELL	66 MBMG	9/23/2003 15:00	11 69	7 29	7 87	637	623	367	86	24 3	7 98	2	0.015	800.0	8 29	223 5	0	121
200-00-04	The second section of the section of	2210111	-110 00 HAV-0P3	INCORT ISHOOCESONDON	CHOCKE WIT	***	ON MIGNIO	5.25.2500 10 00	,.00	, 12	1 01	031	020	~~,		2.0	,		0.0.0	2.000				

	Gwic Id	CI (mg/l)	NO3 (mg/l)	F (mg/l)	OPO4 (mg/l)	Ag (ug/l)	Al (ug/	1)	As (ı	ug/I
2005Q0283	214915		<2.50 P	<1.25	<2.50	<5		3295		
2005Q0287	214914 200616		<2 50 P		<2.50	<10		9000		
2003Q0848 2003Q0866	200616		<1.0 <0.5	<1.0	<1.0 <0.5	<5 <10	_	2000		
2003Q1018	200616		<1.0	<1.0	<1.0	<5		0700		
2003Q1079	200616	7.51	<0.50		<0.50	<5	96	0850	<5	
2003Q1163	200616		<0.25	0.549		<5		6252		
2004 00029	200616		<1.25		<1.25	<5		77 67 8575		
2004Q0103 2004Q0147	200616 200616		<0.5 <0.5	3.71	<0.5	<5 <5		8063		
2004Q0147 2004Q0241	200616		<0.5		<0.5	<5		5949		
2004Q0470	200616		<1.0		<1.0	<10		3252		
2004Q0574	200616	6.7	<2.5 P		<0.50	<5		1577		
2005Q0075	200616		<0.25	<0.25	< 0.25	<5		8934	_	
2005Q0288 2005Q0358	200616 200616		<1 25 P <5.0	<0.50 <5.0	<0.50 <5.0	<5 <5		2846		
2005Q0419	200616		<1.0	<1.0	<1.0	<5		5278		
2003Q0846	200615		<5.0	<5.0	<5.0	<10		5000		65.
2003Q0865	200615	<50.0	<5.0	<5.0	<5.0	<10	47	0000		51
2003Q1020	200615		<12.5	<12.5	<12.5	<10		2000		29.
2003Q1081	200615	16.3			<1.0	<10		5844		24
2003Q1164 2004Q0031	200615 200615		<5.0 <2.50	<5.0	<5.0 <2.50	<5 <10		8398 2685		27.
2004Q0031 2004Q0095	200615		<2.5 P		<2.50	<10		7327		31.
2004Q0149	200615		<2.5		<2.5	<10		3245		27.
2004Q0235	200615		<2.5		<2.5	<10		5625		45.
2004Q0472	200615		<6.3	<8.3	<6.3	<10		4001		
2004Q0572 2005Q0077	200615 200615		<2.5 <1.25	<2.5	<2.5 <1.25	<10 <10		0602 8913	<10	35.
2005Q0077 2005Q0356	200615		<12.5		<12.5	<10		8482		46.
2005Q0300 2005Q0417	200615		<2.5	<2.5	<2.5	<10		0947		48.
2005Q0081	213598	7.25	25.6		<0.05	<1		51.7		1
2005Q0352	213598		<0.05		<0.05	<1	<30		<1	
2004Q0025 2004Q0090	204710 204710	79.2 74.8	1.91	<0.25	<0.25	<5	<150	322	<50	
2004Q0033	204710	83.8	1.95	4.63	<0.5	<10	<300	522	<10	- {
2003Q0850	200617	2.47	4.09		<0.05	<1		68.3		
2003Q0863	200617	2.6	3.78	0.56	<0.05	<1		136	<1	
2003Q1024	200617	2.53	3.7		<0.05	<1		86.8		1
2003Q1083	200617 200617	- 3.97	2.41		<0.05	<1		113		
2003Q1165 2004Q0027	200617	4.8 14.8	1.882 1.22		<0.05 <0.25	<1 <5	<30	137	<5	
2004@0099	200617	26.1	1.04		<0.5	<1	<30		<1	
2004Q0151	200617	7.13	1,16	0.445	<0.10	<1		45.8	<1	
2004Q0474	200617	3.28	2.94		<0.10	<1		101		
2004Q0570	200617	4.61	14.1		<0.05	<1		11.1		- (
2005Q0079 2005Q0354	200617 200617	4.36 3.08	15.6 3.64		<0.05 <0.05	<1		51.6 631	<1	- 1
2005Q0415	200617	2.68	3.74		<0.05	<1		127		
2004Q0101	205653	3.52	3.72		<0.05	<1	<30		<1	
2004Q0157	207767	2.28	2.92		<0.05	<1	<30			1.9
2004Q0233	205653		4.4		<0.05	<1	<30		<1	
2004Q0159	204516	0.85	<0.5 P	0.392	<0.05	<1	<30		<1	
2004Q0110	205836	0.823	0.092	0.077	<0.05	<1		40.7	<1	
2004Q0110	205839		0.032		<0.05	<1		71.2		
2004Q0112	205838	1.45	<0.05		<0.05	<1		36.5		
2004Q0091	205508		0.112 P		<0.05	<1	<30		<1	
2005Q0285	214916		<0.25 P		<0.05	<1		16.1		
2005Q0284 2005Q0282	214911 214913	1.75	0.532 <0.25 P		<0.05 <0.05	<1 <1		568 16.5		
2003Q0282 2003Q1087	203451	6.07	1.22		<0.05	<1		40	-1	1.8
2003Q1162	203451		0.991		<0.05	<1		39.1		2.0
2004Q0478	203451	6.8	1.81		<0.10	<1	<30		<1	
2005Q0411	203451		6.95		<0.05	<1	<30		<1	-
2003Q1085	203450		2.51	0.401	<0.05	<1	<30	••		1.0
2003Q1166 2004Q0033	203450 203450		4.59	0.274	<0.05	<1 <1	<30	32	<1	1.0
2004Q0033 2004Q0097	203450				<0.05	<1	<30		<1	
2004Q0155	203450				<0.05	<1	<30		<1	
2004Q0237	203450	7.11	9.98		<0.05	<1		35.4		
2004Q0476	203450				<0.10	<1	<30		<1	
2005Q0350	203450				<0.05	<1	<30	20.4	<1	
2005Q0413 2005Q0286	203450 214386		5.81 <0.25 P		3 <0.05 1 <0.05	<1 <1	<10	32,4	<1	
2000000000	2,4550	5.550	-0.201	0.00	0.03	``	-10			
2004Q0166	196148	2.28	1.25	0.277	<0.05	<1	<30		<1	

	Gwic id	CI (mg/l)	NO3 (mg/l)	F (mg/l)	OPO4 (mg/l)	Ag (ug/l)	Al (ug/	1)	As (ı	Jg/l
2005Q0283	214915		<2.50 P	<1.25	<2.50	<5		6295		
2005Q0287	214914		<2 50 P		<2.50	<10		6600		
2003Q0848	200616 200616		<1.0	<1.0	<1.0	<5		2000		
2003Q0866 2003Q1018	200616		<0.5 <1.0	<1.0	<0.5 <1.0	<10 <5		0700		
2003Q1010 2003Q1079	200616		<0.50		<0.50	<5		0850		
2003Q1163	200616	4.65	<0.25	0.549	<0.25	<5	10	6252	<2	
2004Q0029	200616	<12.5	<1.25	2.18	<1.25	<5	10	7767	<5	
2004Q0103	200616		<0.5	3.71		<5		8575		
2004Q0147	200616		<0.5	2.15		<5		3063		
2004Q0241	200616 200616		<0.5 <1.0	1.78 4.23	<0.5	<5 <10		5949 6252		
2004Q0470 2004Q0574	200616		<2.5 P		<0.50	<5		1577		- 1
2005Q0075	200616		<0.25	<0.25	<0.25	<5		8934		
2005Q0288	200616	<5.0	<1 25 P	<0.50	<0.50	<5	10	2846	<5	
2005Q0358	200616		<5.0	<5.0	<5.0	<5		5027		- {
2005Q0419	200616		<1.0	<1.0	<1.0	<5		5278	<5	
2003Q0846 2003Q0865	200615 200615		<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10 <10		5000		65. 51.
2003Q0003 2003Q1020	200615		<12.5	<12.5	<12.5	<10		2000		29.
2003Q1081	200615	16.3			<1.0	<10		5844		24
2003Q1164	200615	<50.0	<5.0	<5.0	<5.0	<5	36	8398		27.
2004Q0031	200615		<2.50		<2.50	<10		2685		28.
2004Q0095	200615		<2.5 P		<2.5	<10		7327		31.
2004Q0149 2004Q0235	200615 200615		<2.5 <2.5	_	<2.5 <2.5	<10 <10		3245 5625		27. 45.
2004Q0233 2004Q0472	200615		<6.3	<8.3	<6.3	<10		4001	<10	70.
2004Q0572	200615		<2.5	<2.5	<2.5	<10		0602		
2005Q0077	200615	17,3	<1.25	2.57	<1.25	<10	50	6913		35.
2005Q0356	200615		<12.5		<12.5	<10		6482		46.
2005Q0417	200615	<25 0	<2.5	<2.5	<2.5	<10	56	0947		48.
2005Q0081	213598	7.25	25.6	1 25	<0.05	<1		51.7	~1	
2005Q0001 2005Q0352	213598		<0.05		<0.05	<1	<30	51.7	<1	ļ
2004Q0025	204710	79.2		<0.25	<0.25	<5	<150		<5	- 1
2004Q0090	204710	74.8						322	<50	
2004Q0153	204710	83.8	1.95	4.63	<0.5	<10	<300		<10	
2003Q0850	200617	2.47	4.09		<0.05	<1		68.3		
2003Q0863 2003Q1024	200617 200617	2.6 2.53	3.78 3.7		<0.05 <0.05	<1 <1		136 86.8		
2003Q1024 2003Q1083	200617	. 3.97	2,41		<0.05	<1		113		
2003Q1165	200617	4.8	1.882		<0.05	<1		137		-
2004Q0027	200617	14.8	1.22	0.517	<0.25	<5	<30		<5	
2004Q0099	200617	26.1	1.04	1.87	<0.5	<1	<30		<1	
2004Q0151	200617	7.13	1.16		<0.10	<1		45.8		
2004Q0474 2004Q0570	200617 200617	3.28 4.61	2.94 14.1		<0.10 <0.05	<1 <1		101		- }
2004Q0370 2005Q0079	200617	4.36	15.6		<0.05	<1			<1	-
2005Q0354	200617	3.08	3.64		<0.05	<1			<1	
2005Q0415	200617	2.68	3.74	0.46	<0.05	<1		127	<1	
2004Q0101	205653	3.52	3.72		<0.05	<1	<30		<1	
2004Q0157	207767	2.28	2.92		<0.05	<1	<30			1.9
2004Q0233 2004Q0159	205653 204516	1.8	4.4 <0.5 P		<0.05 <0.05	<1 <1	<30 <30		<1	
200440100	201010	0.00	10.01	0.002	40.00	-1	-00			
2004Q0110	205836	0.823	0.092	0.077	<0.05	<1		40.7	<1	
2004Q0114	205839		0.075		<0.05	<1		71.2		
2004Q0112	205838		<0.05		<0.05	<1	400	36.5		
2004Q0091 2005Q0285	205508 214916		0.112 P <0.25 P		<0.05 <0.05	<1 <1	<30	16.1	<1	
2005Q0265 2005Q0284	214910	1.75	0.532		<0.05	<1		568		
2005Q0282	214913		<0.25 P		<0.05	<1		16.5		
2003Q1087	203451	6.07	1.22	0.464	<0.05	<1		40		1.8
2003Q1162	203451		0.991		<0.05	<1		39.1		2.0
2004Q0478	203451		1.81		<0.10	<1	<30		<1	
2005Q0411 2003Q1085	203451 203450		6.95 2.51		<0.05 <0.05	<1 <1	<30 <30		<1	1.0
2003Q1065 2003Q1166	203450		2.51	0.401	<0.05	<1	\30	32		1.0
2004Q0033	203450		4.59	0.371	<0.05	<1	<30	72	<1	
2004Q0097	203450				<0.05	<1	<30		<1	
2004Q0155	203450				< 0.05	<1	<30		<1	
2004Q0237	203450		9.98		<0.05	<1		35.4		
2004Q0476 2005Q0350	203450 203450				<0.10	<1 <1	<30 <30		<1	
2005Q0350 2005Q0413	203450				<0.05 <0.05	<1	3 0	32.4		
2005Q0286	214386		<0.25 P		<0.05	<1	<10		<1	
2004Q0166	196148	2.28	1.25	0.277	<0.05	<1	<30		<1	

	Gwin Id. Cl (mo/l) NO3 (mo/l) E (mo/l)	POA (mall) An (ua)	D Alfuell) As (uell) B (uell) D	a lunit Da lunit Belunit Cd (in	an Colord Criudh Culudh Li	(uall) Mo (uall) Ni (uall) Ph (ua	(1) Sh (ug/l) Se (ug/l) S	Sr (ug/l) Tl (ug/l) Tl (ug/l) U (ug/l) V (ug/l) Zn (ug/l) Zr (ug/l)
2005Q0283		2 50 <5			74 661 143 98 6	701 <50 2975 <10	<10 <5	2227 <10 <25 127 <25 7823 <10
2005Q0287	214914 <25 0 <250 P 2 91 <	2 50 <10	238600 <10 <300 <	20 <20 <2500 <10	517 33.8 46.1	495 <100 1377 <20	<20 <10	1888 <10 <50 24 2 <50 4378 <20
2003Q0848		10 <5	99000 <5 <150 <	10 16.6 < 1000 6	59 265 28.3 <50	208 <10 618 <10	<10 <5	1630
2003@0866	200616 58 < 0.5 1.83 <		102000 <10 111 <		292 31.5 15.7	219 <10 777 <20	<20 <10	1780 < 5 < 50 < 50 2800 2.4
2003Q1018		10 <5	90700 <5 118 <		96 222 23.3 <10	192 <50 398 <10	<10 <5	1510 <1 <25 <25 <25 2790 4 49
2003Q1079	200616 7.51 < 0.50 1.87 <		90850 <5 95 <		.52 245 27 11.4	190 <50 416 <10	<10 <5	1598 <1 <25 2 94 17 3 2817 2 82
2003Q1163	200616 4 65 < 0 25 0 549 <		106252 <2 102		26 250 27.7 10.9	208 <10 450 <10	<10 <5	1930 <1 <25 3 01 <25 3121 2 66
2004 20029	200618 <12 5 <1 25 2 18 <		107767 <5 986 <		13 255 27.7 <10	210 <10 438 <10	<10 <5	1700 <1 <25 2 73 22 7 3171 3 01
2004 Q 0103	200616 8.6 < 0.5 3.71 <		108575 <5 105		.68 264 30 <10	212 <10 485 <10	<10 <5	1876 <1 <25 2 74 26 6 3249 3 39
2004Q0147	200616 <50 <05 2 15 <		116063 <5 109		33 260 384 <10	217 <10 454 <10	<10 <5	1806 < 1 < 20 2 9 18 6 3283 3 1
2004Q0241	200616 <5 0 <0 5 1 78 <		105949 <5 <150		.39 265 29.5 <10	217 <10 430 <10	<10 <5	1873 < 1 < 25
2004Q0470	200616 <10 0 <1 0 4 23 <	_	126252 < 5 82.5 <		57 254 24 1 <10	198 <10 456 <10	<10 <5	1864 <1 <25 2 67 <25 3100 <10
2004Q0574	200616 67 <25P 192 <		101577 <5 102 < 98934 <5 116		.97 247 22.3 10.9 05 253 27.8 <10	210 <10 452 <10	<10 <5 <10 <5	1773 <1 <20 3.13 <25 3261 <10 1743 1.5 <20 3.46 <10 3339 4.11
2005Q0075		25 <5	102846 <5 <150			218 <10 487 <10 216 <10 760 <10	<10 <5	0.00
2005Q0288 2005Q0358		50 <5 0 <5			26 250 26.6 <10 .25 239 26.3 <10	212 <10	<10 <5	1969 <1 <25 <3 21 2 3299 <2 1832 2.08 <20 <3 0 <25 3333 3.16
2005Q0358 2005Q0419		0 <5	95278 <5 109		5.8 240 18.2 <10	207 <10 443 <10	<10 <5	1633 <1 <20 <3 16 5 2715 <2
2003Q0419		0 <10			68 368 131 <200	684 <100 974 <20	<20 <10	2720 <10 <50 18 <50 5120 <20
2003Q0865	200615 <50 0 <5 0 <5.0 <		470000 51.8 178 <		0.7 363 130 97.5	659 <50 1080 <20	<20 <10	2880 <25 <50 <50 4090 <10
2003Q1020		2.5 <10	402000 29.5 <<300 <		287 95.4 93.9	547 <100 819 <20	<20 <10	2520 <10 <50 12.2 <50 3820 <20
2003Q1020	200615 16 3 < 1.0 5 84 <			20 20.7 <1000 <10	240 80.3 42 9	415 <100 356 <20	<20 <10	2119 <10 <50 14 <50 2845 21.8
2003Q1164	200615 <50.0 <5.0 <5.0 <	0 <5			3.7 227 80.7 31.3	488 <50 778 <10	<10 <5	2592 <5 <25 15 5 <25 3446 10 5
2004Q0031	200615 <25 0 <2.50 3 48 <			20 34.2 <250 <10	240 92 31	589 <100 344 <20	<20 <10	2974 <10 <50 16 3 <100 4245 28.3
2004Q0095	200615 296 <2.5 P 991 <				4.5 330 123 41.6	640 <100 1074 <20	<20 <10	3035 <10 <50 15.9 <50 4819 <20
2004Q0149	200615 <25.0 <2.5 6.79 <			20 45.8 <2500	55 339 125 412	667 <100 539 <20	<20 <10	3154 <100 <50 16 4 <50 5082 <20
2004Q0235	200615 <25 0 <2.5 7 94 <	5 <10	595625 45.1 <300 <	20 40.8 <2500 <10	406 152 28.7	714 <100 556 <20	<20 <10	3410 <10 <50 19 5 <50 5787 <20
2004(00472	200615 <63 0 <6 3 <6 3 <			20 28.6 <6300 <10	239 47.7 38 6	436 <100 399 <20	<20 <10	1962 <10 <50 16 <100 1835 <20
2004Q0572	200615 <25.0 <25 <25 <	5 <10	600602 <10 <300 <	20 51.4 <2500 <100	401 162 853	967 <100 781 <20	<20 <10	5420 <10 <50 26 8 <50 8401 <20
2005Q0077	200615 17 3 < 1.25 2 57 <	.25 <10	506913 35.9 < 300 <	20 38 1 <1250 <10	337 128 388	692 <100 589 <20	<20 <10	2926 <10 <50 21 1 <50 5275 <20
2005Q0356	200615 <12 5 <12.5 13 3 <	2.5 <10	566482 46.1 <300 <	20 43 9 < 12500 1	18 339 132 354	796 <100 588 <20	<20 <10	3600 <10 <50 15.6 <50 5982 <20
2005Q0417	200615 <250 <25 <25 <	5 <10	560947 48 5 <300 <	20 44 7 <2500	10 362 118 246	751 <100 600 <20	<20 <20	3058 <10 <50 13.8 4568 <20
2005Q0081	213598 7.25 25 6 1.25 <	05 <1	51 7 <1 84 2	216 <2 <50 <1	<2 2 24 <2	24 8 <10 5.81 <2	<2 2 31	581 <1 <5 4.77 <5 <2 <2
2005Q0352	213598 2.94 < 0.05 0.573 <		<30 <1 47.1	197 <2 <50 <1	<2 <2 <2	28.3 <10 3.77 <2	<2 2 54	577 <1 <55 3.64 <5 <2 <2
2004Q0025	204710 792 191 <025 <	25 <5	<150 <5 <150	11 1 <10 <250 <5	<10 <10 <10	69.3 <50 <10 <10	<10 <5	2224 <5 <25 22 <25 254 <10
2004Q0090	204710 74 8		322 <50 <150	10.3 <10 <5	<10 <50 <25	80 4 <50 <10 <50	<50 <75	2174 <5 <100 <50 337 12 1
2004Q0153	204710 838 195 463 <			20 <20 <500 <10	<20 <20 <20	73 1 <100 <20 <20	<20 <10	2355 <10 <50 23.3 <50 161 <20
2003Q0850	200617 247 4.09 0.52 <		68.3 <1 31.5	173 <2 <50 1	.17 <2 <2 <2	20.9 < 10 3.73 < 2	<2 2 43	442 <1 <5 4 57 <2 3.66 <2
2003Q0683	200817 26 378 0.56 <		136 <1 <30	158 <2 <50 <1	<2 <2 <2	18 2 <10 2 77 <2	<2 2 02	342 < 5 < 5 < 5 5 27 < 2
2003Q1024	200617 2 53 3 7 0 669 <		86 8 <1 <30	168 <2 <50 <1	<2 <2 <2	19 2 <10 2.28 <2	<2 1.82	436 <1 <5 4 06 <5 2 29 2 1
2003Q1083	200617 3.97 2.41 0.828 <		113 <1 <30	203 <2 <50 <1	<2 2.03 <2	24 5 <10 3.22 <2	<2 1 25	547 <1 <5 4.81 <5 3.89 <2
2003Q1185	200817 48 1.882 0812 <		137 <1 45.3	207 <2 <50 <1	<2 <2 <2	26 6 < 10 3.35 < 2	<2 1 35	586 <1 <5 4 86 <5 3.45 <2
2004Q0027	200617 148 122 0517 <		<30 <5 33.4	192 <2 <250 <1	<2 <10 <5	39 8 <10 4 12 <10	<10 <5	852 <1 <25 6 21 <10 33 7 2 42
2004Q0099	200617 28.1 1.04 1.87 < 200617 7.13 1.16 0.445 <	-	<30 <1 59.5	113 <2 <500 <1	3 15 < 2 < 2	47.4 <10 10 42 <2	<2 3.8	1041 <1 <5 8 4 <5 65 7 <2 621 <1 <5 5 45 <5 4 83 <2
2004Q0151 2004Q0474	1.10 0440 1		45 8 < 1 51 7 101 < 1 51	208 <2 <100 <1	<2 <2 <2	29 9 <10 4.72 <2		621 <1 <5 5 45 <5 4 83 <2 522 2 06 <5 6 31 <5 <2 <2
2004Q0474 2004Q0570				258 <2 <100 <1	<2 <2 <2	27 9 <10 3 4 <2	<2 1.93 <2 1.28	638 <1 <5 567 <5 199 <2
2004Q0570 2005Q0079	200617 4.61 14.1 0.533 < 200617 4.36 15.8 0.49 <		11.1 <1 52.8 51.6 <1 80.5	243 <2 <50 <1 227 <2 <50 <1	4 08 5 35 3.29 <2 3.05 <2	28 1 < 10 4.43 < 2 28 6 < 10 9 64 < 2	<2 1.84	572 1.1 <5 7.06 <5 <2 <2
2005Q0079 2005Q0354	200617 3.08 3.64 0.422 <		631 <1 <30			25.9 <10 9.64 <2	<2 2.69	599 <1 <5 48 <5 11 7 <2
2005Q0354	200617 2.68 3.74 0.46 <		127 <1 <30	185 <2 <50 <1 186 <2 <50 <1	<2 <2 <2 <2 <2 <2	25.9 < 10 7.94 < 2	<2 2 33	470 <1 <5 4.64 <5 2.32 <2
2004Q0101	205653 3.52 3.72 0.618 <		<30 <1 45.1	122 <2 127 <1	<2 <2 <2	19.1 <10 <2 <2	<2 1 89	446 <1 <5 24 <5 <2 <2
2004Q0157	207767 2 28 2 92 0 495 <		<30 1.92 39.7	150 <2 <50 <1	<2 <2 <2	195 <10 <2 <2	<2 1 28	385 <1 <5 <1 <5 <2 <2
2004Q0233	205653 18 44 0872 <		<30 <1 40.1	133 <2 <50 : <1	2 2 2	18 3 < 10 3.74 < 2	<2 1.77	443 <1 <5 271 <5 435 <2
2004Q0159	204516 0.85 < 0.5 P 0.392 <		<30 <1 <30	471 <2 <50 <1	\$ \$ \$	15.8 <10 <2 <2	<2 1.35	425 <1 <5 2 81 <5 3.83 <2
	3.002							
2004Q0110	205836 0.823 0.092 0.077 <	0.05 <1	40.7 <1 <30	74.1 <2 <50	.45 <2 <2 8.26	8 14 17.4 <2 <2	<2 <1	639 <1 <5 3 05 <5 29 <2
2004Q0114	205839 146 0.075 0.07 <	0 0 5 < 1	71.2 <1 <30	77 5 <2 <50 <1	<2 <2 <2	104<10 <2 <2	<2 <1	673 <1 <5 1.07 <5 10 4 <2
2004Q0112	205838 1.45 < 0.05 0.159 <	0 05 <1	36.5 <1 <30	66.1 <2 <50 <1	<2 <2 <2	107 <10 <2 <2	<2 <1	644 <1 <5 1.13 <5 10 3 <2
2004Q0091	205508 1 85 0.112 P 0 161 <	0.05 <1	<30 <1 <30	77.7 <2 <50 <1	<2 <2 <2	11 <10 <2 <2	<2 <1	714 <1 <5 1.17 <5 7.75 <2
2005Q0285	214918 2.11 <0.25 P 0.242 <	0 05 <1	16.1 <1 31 4	59 9 <2 <50 <1	25.1 <2 <2	35 <10 81 5 <2	<2 <1	799 <1 <5 <1 <5 104 <2
2005Q0284	214911 1.75 0.532 0.14 <		568 <1 47 4	71.3 <2 <50	1.36 45.1 <2 <2	85 2 <10 74 5 <2	<2 <1	734 <1 <5 <1 <5 145 <2
200500282	214913 1.69 < 0.25 P 0 195 <		18.5 <1 <30	83 6 < 2 < 50 < 1	28 2 <2 <2	34 9 <10 77.1 <2	<2 <1	814 <1 <5 <1 <5 212 <2
2003Q1087	203451 8.07 1.22 0.464 <		40 1.86 <30	244 <2 <50 <1	<2 3 24 3 343	16 7 <10 2 05 <2	<2 <1	436 <1 <5 2.56 <5 12 <2
2003Q1162	203451 55 0.991 0.481 <		39 1 2 07 37.7	294 <2 <50 <1	<2 <2 <2	17.7 <10 2.01 <2	<2 <1	444 <1 <5 2 74 <5 2 14 <2
2004Q0478	203451 68 181 0434		<30 <1 40.7		1,41 <2 <2 <2	25 3 <10 3 39 <2	<2 1 04	555 <1 <5 3 67 <5 7 79 <2
2005@0411	203451 5.81 6.95 0.348		<30 <1 <30	220 <2 <50 <1	<2 <2 <2	17 2 <10 2 79 <2	<2 <1	430 <1 <5 3.06 <5 <2 <2
2003Q1085	203450 7 91 2.51 0 401		<30 1.04 <30	213 <2 <50 <1	<2 2 82 <2	15 <10 2.08 <2	<2 <1	394 <1 <5 2 19 <5 <2 <2
2003Q1168 2004Q0033	203450 8.76 4.50 0.371	<1	32 1.08 <30	235 <2 <1	<2 <2 <2	15.8 <10 <2 <2	<2 <1	453 <1 <5 2.29 <5 <2 <2
2004Q0033 2004Q0097	200-000 0.10 435 0311		<30 <1 <30	253 <2 <50 <1	<2 <2 <2	18.9 <10 <2 <2	<2 <1	438 <1 <5 2.62 <5 <2 <2 442 <1 <5 2.71 <5 2.58 <2
2004Q0097 2004Q0155			<30 <1 398	286 <2 <50 <1	<2 <2 <2	18.1 <10 <2 <2	<2 1 14	442 <1 <5 2.71 <5 2.58 <2 450 <1 <5 3.01 <5 <2 <2
2004Q0135 2004Q0237	203450 6.96 1.33 0.43 203450 7.11 9.98 0.584		<30 <1 35.7	338 <2 <50 <1	<2 <2 <2	17 9 <10 2.49 <2	<2 14 <2 <1	450 <1 <5 3.01 <5 <2 <2 470 <1 <5 3.84 <5 10 8 <2
2004Q0237	203450 9.85 3.48 0.39		35.4 <1 <30 <30 <1 42	303 <2 <50 <1	<2 <2 <2	19 7 <10 4 67 <2 22 2 <10 3.85 <2	<2 <1 <2 1.01	470 <1 <5 3.84 <5 10.6 <2 533 <1 <5 548 <5 <2 <2
2005Q0350	203450 8.2 4.75 0.264		<30 <1 42 <30 <1 <30	265 <2 <100 <1	<2 <2 <2	22 2 <10 3.85 <2 18 <10 8 62 <2	<2 1.01	432 1.57 <5 3.02 <5 <2 <2
2005Q0330 2005Q0413	203450 8.04 5.81 0.328		32 4 <1 <30	232 <2 <50 <1	<2 <2 <2 <2 <2 <2	18 <10 8 62 <2 15.1 <10 2 45 <2	<2 <1	432 1.57 <5 3.02 <5 <2 <2 354 <1 <5 2.53 <5 <2 <2
2005Q0286	214388 0 938 <0 25 P 0.061		<10 <1 <30	203 <2 <50 <1 77.5 <2 <50 <1	<2 <2 <2 <2	8 4 <10 2 84 <2	Q <1	950 <1 <5 1 26 <5 17 <2
	0.001		17	77.3 12 430 41		34 10 204 2	- "	
2004Q0168	198148 2.28 1.25 0.277	:0 05 <1	<30 <1 <30	69 4 < 2 < 50 < 1	<2 <2 <2	8 42 <10 2 65 <2	<2 <1	441 <1 <5 1 28 <5 292 <2
					-			

	0.1.44	01 (a.	J
000100000			NO3 (mg/l)			(mg/I)				ᄾ
2004Q0330	150504		<0.5 P				<1	<30		1
2004Q0329	31978		<0.5 P	0.462	<0.05		<1	<30		۲
1982Q0356	2315	1.6	0.34		. 05		<2.	<30.		Ш
2001Q0358	2315		<.5 P		<.05		<1	<30		1
2003Q1129	2315		<0.5	<0.5	<0.5		<1	<30		1
2005Q0195	215047				<0.10		<1		12.3	Ш
2004Q0328	177163	2.6	<0.5 P	0.579	<0.05		<1	<30		~1
2004Q0160	186483	4.26	0.664	0.37	-0.0E		<1	<30		<1
2003Q1131	32015		1.05		<0.05		<1	<30		2
2003Q1131 2004Q0239	32015		1.03				<1	<30		
2004Q0239	32013	4,14	1.04	0.30	<0.05		<1	<30		`
2004Q0163	31052	8.2	10.77 P	1 10	<0.05		<1	<30		۱>
200400103	31302	0.2	10.77	1.10	<0.03		-1	~30		`
2005Q0289	214917	<25.0	7 84 P	2.62	<2.50		<10	37	3061	4
200040200	2	-20.0		2.02	-2.00		-,0	٠.		
2005Q0043	210533	25.5	<0.25 P	0.9	<0.05		<1	<10		4
2004Q0168	30562		14.35		<0.05		<1	<30		4
2004Q0169	31957		<0.5	0.966			<1	<30		4
2005Q0348	217048	2.98	<0.05	0.233		0.098	<1	<30		4
2005Q0425	217048	2.74	<0.05	0.359		0.167	<1		42.3	4
2005Q0348	217050	1.46	5.95		<0.05		<1		34.7	4
2005Q0423	217050	1.37	11.8	0.842	< 0.05		<1	<10		4
2005Q0344	217053	2.11	0.06	1.55		0.125	<1	<30		-
2005Q0421	217053	1.92	<0.05	1.34		0.108	<1		47.2	
2004Q0161	207672	3.53	7.96	0.778	<0.05		<1	<30		<∤
2004Q0185	186486	17.9	1.2	<1.0	<1.0		<5	<30		<
2004Q0162	164111	3.26	<0.5 P	0.221	<0.05		<1	<30		<∤
2005Q0342	217056	2.51	<0.05	1.35	<0.05		<1	<30		- 1
										1
2004Q0167	199851	2.57	1,12	1.07	<0.05		<1	<30		4
2004Q0093	84937	3.08	<0.05	1.41	< 0.05		<1	<30		1
2004Q0231	84937	2.75	<0.05	1.49	<0.05		<1	<30		<1
2004Q0468	207662	3.89	2.17	0.255	<0.05		<1		58.4	<1
2004Q0513	207662	2.9	<0.5	0.702	<0.05		<1	<30		<1
2005Q0340	207662	3.07	0.195	0.721		0.054	<1	<30		<
2005Q0290	215048	2.83	<0.25	0.609	<0.10		<1		16	
2004Q0164	145604	6	0.79 P	0.133	<0.05		<1	<30		<1

										Л
			NO3 (mg/l)			(mg/l)			/I)	4
2004Q0330	150504			0.802			<1	<30		1
2004Q0329	31978		<0.5 P	0.462	<0.05		<1	<30		4
1982Q0356	2315	1.6	0.34				<2.	<30.		1
2001Q0358	2315		<.5 P		<.05		<1	<30		4
2003Q1129	2315		<0.5	<0.5	<0.5		<1	<30		4
2005Q0195	215047		7.94		< 0.10		<1		12.3	1
2004Q0328	177163	2.6	<0.5 P	0.579	<0.05		<1	<30		<1
										-
2004Q0160	186483						<1	<30		4
2003Q1131	32015	4.38	1.05		<0.05		<1	<30		<1
2004Q0239	32015	4.14	1.04	0.36	<0.05		<1	<30		4
										- 1
2004Q0163	31952	8.2	10.77 P	1.18	<0.05		<1	<30		<1
										- [
2005Q0289	214917	<25.0	7.84 P	2.62	<2.50		<10	37	3061	1
										1
2005Q0043	210533		<0.25 P		<0.05		<1	<10		۲۱
2004Q0168	30562	23.9			<0.05		<1	<30		1
2004Q0169	31957	7.79	<0.5	0.966	<0.1		<1	<30		1
2005Q0348	217048		<0.05	0.233		0.098	<1	<30		4
2005Q0425	217048	2.74	<0.05	0.359		0.167	<1		42.3	4
2005Q0346	217050	1.46	5.95	0.906	< 0.05		<1		34.7	4
2005Q0423	217050	1.37	11.8	0.842	<0.05		<1	<10		<
2005Q0344	217053	2.11	0.06	1.55		0.125	<1	<30		-
2005Q0421	217053	1.92	<0.05	1.34		0.108	<1		47.2	-
2004Q0161	207672	3.53	7.96	0.778	<0.05		<1	<30		4
2004Q0165	186486	17.9	1.2	<1.0	<1.0		<5	<30		<\$
2004Q0162	164111	3.26	<0.5 P	0.221	<0.05		<1	<30		4
2005Q0342	217056	2.51	<0.05	1.35	<0.05		<1	<30		-1
										- 1
2004Q0167	199851	2.57	1.12	1.07	<0.05		<1	<30		4
2004Q0093	84937	3.08	<0.05	1.41	< 0.05		<1	<30		<1
2004Q0231	84937	2.75	<0.05	1.49	< 0.05		<1	<30		<1
2004Q0468	207662	3.89	2.17	0.255	< 0.05		<1		58.4	<1
2004Q0513	207662	2.9	<0.5	0.702	< 0.05		<1	<30		<1
2005Q0340	207662	3.07	0.195	0.721		0.054	<1	<30		<1
2005Q0290	215048	2.83	<0.25	0.609	<0.10		<1		16	
2004Q0164	145604	6	0.79 P	0.133	< 0.05		<1	<30		<1

	Gwic Id 0	CI (mg/l) NO3 (mg/l) I	F (mg/l) QPO4	4 (mg/l) Ag (ug/l)	Ai (ug/l) A	s (ug/l) B (ug/l) 8	Ba (ug/l) Be (i	ug/l) Br (ug/l) Co	1 (ug/l) Co	(ug/l) Cr (ug/l)	Cu (ug/l) L	f (ug/l) Ma (ug/l) f	Ni (ug/l) Pb (ug/l) Sb (ug/l)	Se (ug/l) S	r (ug/l) TI (ug/l) TI (u	g/l) U (ug/l) V (ug/l) Zn (ua/l) Zr (ua/l)
2004Q0330	150504	109 < 05P	0 802 <0 05	<1	<30 <		183 <2	<50 <1	<2	<2	38	6 35 12 9	3 46 <2	<2	1.88	995 <1 <5	2 95 <5	196 206
2004 Q0329	31978	0.98 < 0.5 P	0 462 <0 05	<1	<30 <	<30	20 <2		1.52 <2	<2	<2	7 49 <10	2.61 <2	<2	<1	1738 <1 <5	2 69 <5	503 <2
1982Q0356	2315	16 034	0.43	<2.	<30	140		<2	2.	<2	9	2 30 <	c10. 7	0		1090 31		2 120 8
2001Q0358	2315	0.751 <.5 P	0.41 < .05	<1	<30 <	1 <30	35.1 <2	<50 <2	2 <2	<2	<2	6 11 <10	2.17 <2	<2	<1	1190 <1 <5	<5	<2 <2
2003Q1129	2315 <	50 <05	<0.5 <0.5	<1	<30 <	<30	39.5 <2	<	< 2	<2	2 31	8 35 <10	<2 <2	<2	<1	1465 <1 <5	1.71 <5	4.78 <2
2005Q0195	215047	1.78 7.94	0.912 <0 10	<1	12 3	1 25 80 6	45.1 <2	<100 <1		5.6	<2	38 7 18 1	11.5 <2	<2	5 08	1109 <1 <5	4.89 <5	<2 <2
2004Q0328	177163	2.6 < 0.5 P	0.579 < 0.05		<30 <		29.2 <2	<50 <1		<2	2 89	27 8 <10	2 16 <2	<2	<1	1593 <1 <5	0.5 <5	4 298
200.000							20.2	-00	_	_	- 00		2 10 12	_			0.0	
2004Q0160	186483	4 26 0 664	0.37 <0 05	i <1	<30 <	1 325	51.9 <2	<50 <1	<2	<2	<2	15 7 <10	2.35 <2	<2	1.52	423 <1 <5	1 65 <5	8 5 <2
2003Q1131	32015	4 38 1 05	0.379 < 0.05	i <1	<30 <	1 <30	241 <2	<1	<2	<2	<2	157 <10	<2 <2	<2	<1	356 <1 <5	<2 23	7 <5 50
2004Q0239	32015	4 14 1 04	0.36 < 0.05	<1	<30 <	36.2	254 <2	<50 <1	<2	<2	3 98	16 <10	<2 <2	<2	<1	351 <1 <5	2.72 <5	128 <2
2004Q0163	31852	8.2 10 77 P	1.18 <0.05	<1	<30 <	1 132	88 2 <2	<50 <	< 2	<2	<2	50.8 <10	<2 <2	<2	3 03	544 <1 <5	9 12 <5	114 <2
2005Q0289	214917 <	25.0 7 84 P	2 62 <2 50	<10	373061 <	10 628	24 2	21 <2500 <	10	309 <20	<20	946 <100	753 <20	<20	<10	1621 <10 <50	39.8 <50	1196 <20
	010500								4.00 -0	-0	10	27.0 -40	F 0 -0	_	<1	558 <1 <5	407.5	0.00 -0
2005Q0043	210533	25 5 <0 25 P	09 < 005		<10 <		115 <2	<50	1,99 <2	<2	<2	27.9 <10	5.8 <2	<2			107 <5	2.69 <2
2004Q0188	30582	23 9 14 35	0 107 <0 05		<30 <		916 <2	<50 <	-	<2 <2	<2	8.3 < 10	2 96 <2	<2 <2	<1	346 <1 <5	4.92 <5	2.36 <2
2004Q0189	31957	7.79 < 0.5	0 966 <0 1	<1	<30 <		23 <2	<100 <		_	<2		<2 <2	_	<1	1233 <1 <5	1.36 <5	4.08 2.3
2005@0348	217048	2 98 <0 05	0 233	0 098 <1	<30 <		74 9 <2	<50 <	_	2 28		38 5 < 10	7.38 <2	<2	<1	640 1.54 <5	6.99 <5	<2 <2
2005Q0425	217048	2.74 <0.05	0.359	0.167 <1	423 <		75 4 <2	<50 <	-	3 83		35.4 <10	4 13 <2	<2	<1	829 <1 <5	6.76 <5	<2 <2
2005Q0348	217050	1.46 5.95	0 906 < 0.05		34 7 <		108 <2	<50 <	-	<2	<2	28 9 <10	3.86 <2	<2	4 06	487 <1 <5	3.59 <5	5.92 <2
2005Q0423	217050	1.37 11.8	0 842 <0 05		<10 <		124 <2	<50 <		<2	<2	35 7 < 10	2.23 <2	<2	3 58	545 <1 <5	3.53 <5	4.73 <2
2005Q0344	217053	2 11 0 06	1.55	0 125 <1	<30	5 41 115	94 1 <2	<50 <		5 07 2.03		65.5 < 10	23.3 <2	<2	<1	915 <1 <5	<1 <5	<2 <2
2005Q0421	217053	1 92 <0 05	1.34	0 108 <1	47 2	5 3 104	95.6 <2	<50 <		3.74 <2	<2	61.6 < 10	20.5 <2	<2	<1	909 <1 <5	<1 <5	<2 <2
2004Q0161	207672	3.53 7 98			<30 <		88 1 <2	<50 <	<2	_	2 7		<2 <2	<2	4 17	418 <1 <5	2.64 <5	40.6 <2
2004Q0185	186488		<1.0	<5	<30 <		15.7 <2	<1000 <		3.57 < 10	<5	195.8 <10	7.87 <10	<10	<5	1876 <1 <25	7.92 <10	40 7 <2
2004Q0162	164111	3.26 < 0.5 P	0 221 < 0.05		<30 <		58 6 <2	<50 <		<2	<2	152 < 10	3.34 <2	<2	<1	760 <1 <5	1.77 <5	32 7 <2
2005Q0342	217056	2 51 <0 05	1.35 <0.05	i <1	<30	1.14 175	59 7 <2	<50 <	1 <2	2.1	<2	106 <10	47 <2	<2	<1	1211 <1 <5	<1 <5	<2 <2
														_	0.00	274 -4 -5	201.0	04.2 -0
2004Q0167	199851	2 57 1 12	1.07 <0.05		<30 <		93 <2	100 <		<2	2 39	21.9 <10	3 45 <2	<2	2.33	371 <1 <5	3.04 <5	21.3 <2
2004Q0093	84937	3 08 <0 05	1.41 <0.05		<30 <		21 <2	76 <		<2	<2	52.4 <10	4 32 <2	<2	<1	889 <1 <5	1 13 <5	19 3 <2
2004Q0231	84937	2 75 <0 05	1 49 < 0.05		<30 <		22 5 <2	62 <		2 58		54 3 <10	7.71 <2	<2	<1	914 <1 <5	1 41 <5	197 <2
2004Q0468	207662	3 89 2 17	0 255 <0 05	i <1	58 4 <		71.9 <2	<50	1.85	4 42 <2	92 8	8 89 <10	7 09 <2	<2	<1	215 <1 <5	0 592 <5	8249 2
2004Q0513	207662	2.9 < 0.5	0 702 <0 05	5 <1	<30 <	1 55.7	67 6 <2	<50 <	1 <2	8 83		25.1 23 1	7.99 <2	<2	<1	536 1.26 <5	0 509 <5	573 <2
2005Q0340	207662	3 07 0 195	0.721	0.054 <1	<30 <	1 398	64 3 <2	109 <	1 <2	<2	<2	27.1 17.5	157 <2	<2	<1	609 <1 <5	0 908 <5	312 <2
2005Q0290	215048	2.83 < 0.25	0 609 <0 10) <1	16	1 26 89	64 1 <2	128 <	1	3.38 <2	<2	61 5 < 10	12 <2	<2	<1	1037 <1 <5	3.05 <5	13 <2
																704 -4	4 700 -	000 -0
2004Q0164	145604	6 0 79 P	0 133 <0.05	5 <1	<30 <	1 <30	739 <2	<50 <	1 <2	<2	<2	14.6 < 10	3.22 <2	<2	<1	761 <1 <5	1.72 <5	28.9 <2

Appendix F

Isotope Data

Appendix F

Isotope Data

Name		Isot	ope Data				
200616	mnumber	Sample Name	Date	Lab#			
200616	200616	Anaconda Mine Drain	1/30/03	57350	14.2		Х
200616		Anaconda Mine Drain	5/28/03	67115	16	-18.04	X
200616 Anaconda Mine Drain 10/23/03 72794 12.9 -18.46 X 200838 Belt Creak/Ł above AMD 7/17/03 67122 13.2 -17.94 X 150504 Brenda Danks 11/26/03 57353 18.6 X 31978 Jim Dawson 11/26/03 73725 12.6 -18.72 31978 Jim Dawson 11/26/03 73726 7.5 -19.64 199851 Eric Johnson 9/23/03 73716 8.6 -19.79 200615 French Coulee Drain 1/28/03 57351 15.3 X 200615 French Coulee Drain 7/17/03 67124 17.2 -18.04 X 200615 French Coulee Drain 10/23/03 72731 13.7 -18.28 X 196148 Gary Reddish 9/22/03 73713 13.7 -18.28 X 200617 Highway Drain 1/30/03 57352 26 X 200617 Highway Drain 5/28/03		Anaconda Mine Drain	7/17/03	67123	16	-18.22	X
205838 Belt Creek#2 above AMD		Anaconda Mine Drain	10/23/03	72794	12.9	-18.46	X
* Box Elder Creek, Harris Ranch 150504 Brenda Danks 11/25/03 73725 12.6 -18.72 131978 Jim Dawson 11/24/03 73725 12.6 -18.67 177163 Ed Spragg 11/26/03 73726 7.5 -19.64 199851 Eric Johnson 9/23/03 73716 8.6 -19.79 200615 French Coulee Drain 1/29/03 57351 15.3 X 200615 French Coulee Drain 1/29/03 57351 15.3 X 200615 French Coulee Drain 1/29/03 67116 19.5 -17.98 X 200615 French Coulee Drain 1/17/103 67124 17.2 -18.04 X 200615 French Coulee Drain 1/17/103 67124 17.2 -18.04 X 200615 French Coulee Drain 1/17/203 67124 17.2 -18.04 X 200615 French Coulee Drain 1/17/203 73713 13.7 -18.28 X 186483 Fye Spiller 9/22/03 73713 13.7 -18.28 196148 Gary Reddish 9/23/03 73729 15.7 -15.34 200617 Highway Drain 1/30/03 57352 26 200617 Highway Drain 1/30/03 57352 26 200617 Highway Drain 1/30/03 57352 26 200772 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 12.4 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 205653 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 10/23/03 72789 13.6 -17.91 X 14410 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 203450 Upper Box Elder Creek 10/23/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 10/23/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 20.2 -16.88 X		Belt Creek#2 above AMD	7/17/03	67122	13.2	-17.94	
150504 Brenda Danks 11/25/03 73725 12.6 -18.72 13.17 -18.67 17163 Ed Spragg 11/26/03 73726 7.5 -19.64 199851 Eric Johnson 9/23/03 73716 8.6 -19.79 -19.79 200615 French Coulee Drain 1/29/03 57351 15.3 X 200615 French Coulee Drain 7/17/03 67114 17.2 -18.04 X 200615 French Coulee Drain 7/17/03 67124 17.2 -18.04 X 200615 French Coulee Drain 7/17/03 67124 17.2 -18.04 X 200615 French Coulee Drain 10/23/03 72793 16 -18.28 X 186483 Fye Spiller 9/22/03 73713 13.7 -18.28 186483 Fye Spiller 9/22/03 73719 11.1 -18.69 31952 Edward Goo 9/25/03 73739 15.7 -15.34 200617 Highway Drain 1/30/03 57352 26 X 200617 Highway Drain 5/28/03 671147 23.6 -16.52 X 204710 HWD-Seep 7/17/03 67125 31.9 -17.36 X 207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 John Harris 8/19/03 68103 8.9 -18.59 X 34937 John Harris 8/19/03 68103 8.9 -18.59 X 34937 John Harris 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 73720 17.1 -18.46 204516 Larson Well 41 Creek Well 10/23/03 73720 17.1 -18.46 204516 Larson Well 10 Freek Well 11/23/03 73720 17.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72796 13.6 -19.04 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 23450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.	*	Box Elder Creek, Harris Ranch	1/29/03	57353	18.6		X
31978	150504		11/25/03	73725	12.6	-18.72	
177163 Ed Spragg 11/26/03 73726 7.5 -19.64 199851 Eric Johnson 9/23/03 73716 8.6 -19.79 200615 French Coulee Drain 1/28/03 67351 15.3 X 200615 French Coulee Drain 5/28/03 67116 19.5 -17.98 X 200615 French Coulee Drain 7/17/03 67124 17.2 -18.04 X 200615 French Coulee Drain 10/23/03 72793 16 -18.28 X 200615 French Coulee Drain 10/23/03 72793 16 -18.28 X 186483 Fye Spiller 9/22/03 73713 13.7 -18.28 196148 Gary Reddish 9/23/03 73719 11.1 -18.69 31952 Edward Goo 9/25/03 73723 15.7 -15.34 200617 Highway Drain 1/30/03 57352 26 X 200617 Highway Drain 5/28/03 67117 23.6 -16.52 X 204710 HWD-Seep 7/117/03 67125 31.9 -17.36 X 207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 9/23/03 73720 17.1 -18.46 205653 John Harris Spring 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73715 18.3 -17.81 203451 Lower Box Elder Creek 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 11/23/03 72796 13.6 -19.04 X 2315 Town of Belt Well #1 Creek Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8		Jim Dawson	11/24/03	73724	13.1	-18.67	
199851 Eric Johnson		Ed Spragg	11/26/03	73726	7.5	-19.64	
200615			9/23/03	73716	8.6	-19.79	
200615			1/29/03	57351	15.3		X
200615			5/28/03	67116	19.5	-17.98	X
200615			7/17/03	67124	17.2	-18.04	X
186483 Fye Spiller 9/22/03 73713 13.7 -18.28 196148 Gary Reddish 9/23/03 73719 11.1 -18.69 31952 Edward Goo 9/25/03 73723 15.7 -15.34 200617 Highway Drain 1/30/03 57352 26 X 200617 Highway Drain 5/28/03 67117 23.6 -16.52 X 204710 HWD-Seep 7/17/03 67125 31.9 -17.36 X 207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73714 14.4 -19.31 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris Spring 10/23/03 72789		French Coulee Drain		72793	16	-18.28	X
196148 Gary Reddish 9/23/03 73719 11.1 -18.69 31952 Edward Goo 9/25/03 73723 15.7 -15.34 200617 Highway Drain 1/30/03 57352 26 X 200617 Highway Drain 5/28/03 67117 23.6 -16.52 X 204710 HWD-Seep 7/17/03 67125 31.9 -17.36 X 207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X 203450 Upper Box Elder Creek 10/23/03 72				73713	13.7	-18.28	
31952 Edward Goo 9/25/03 73723 15.7 -15.34				73719	11.1	-18.69	
200617 Highway Drain 1/30/03 57352 26 X 200617 Highway Drain 5/28/03 67117 23.6 -16.52 X 204710 HWD-Seep 7/17/03 67125 31.9 -17.36 X 207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris Spring 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03						-15.34	
200617 Highway Drain 5/28/03 67117 23.6 -16.52 X							X
204710 HWD-Seep 7/17/03 67125 31.9 -17.36 X 207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris Spring 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604					23.6	-16.52	X
207672 Irvine 9/24/03 73721 2.4 -16.67 186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73725 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek						-17.36	
186486 Jeff Dawson 9/23/03 73718 12 -18.13 30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957		· · · · · · · · · · · · · · · · · · ·					
30562 Jerry Johnson 9/23/03 73714 14.4 -19.31 32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
32015 Jim Larson Well 6/5/03 67120 18.1 -16.99 X 32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek, Larson Ranch 5/28/03 67126 19.8 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
32015 Jim Larson Well 10/23/03 72791 16.8 -17.08 X 84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X		•					X
84937 John Harris 8/19/03 68103 8.9 -18.59 X 84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2315 Town of Belt Well #2 Park Well 11/23/03 72795 12.2 -18.99 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X							
84937 John Harris 10/23/03 72789 8.6 -18.6 X 205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2315 Town of Belt Well #2 Park Well 11/23/03 72795 12.2 -18.99 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X							
205653 John Harris Spring 8/19/03 68104 14.2 -17.81 X 205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 <							
205653 John Harris Spring 10/23/03 72790 13.6 -17.91 X 164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88							
164111 Keath Hoyer 9/23/03 73720 17.1 -18.46 204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X		•					
204516 Larson Well (Windmill) 9/24/03 73722 20.5 -15.82 145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
145604 Linda Assels 9/23/03 73715 18.3 -17.83 203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X		•					
203451 Lower Box Elder Creek 5/28/03 67118 20.3 -16.74 X 31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 5/28/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
31957 Nathanial Horst 9/23/03 73717 1.3 -16.78 2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 5/28/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							X
2316 Town of Belt Well #1 Creek Well 6/5/03 67121 13.1 -18.67 X 2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek 5/28/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
2316 Town of Belt Well #1 Creek Well 11/23/03 72795 12.2 -18.99 X 2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek, Larson Ranch 5/28/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							X
2315 Town of Belt Well #2 Park Well 11/23/03 72796 13.6 -19.04 X 203450 Upper Box Elder Creek, Larson Ranch 5/28/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
203450 Upper Box Elder Creek, Larson Ranch 5/28/03 67119 20.2 -17.11 X 203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
203450 Upper Box Elder Creek 7/17/03 67126 19.8 X 203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X							
203450 Upper Box Elder Creek 10/23/03 72792 23.2 -16.88 X		• •					
						-16.88	
	200,400	X = Open File Report No. 504					

F1 139

