High-dimensional Multivariate Mediation with Application to Neuroimaging Data

Supplementary Materials

Proofs

Lemma 1 (Consistency Theorem): Suppose that $Q(\theta; \mathbf{Z}_n)$ is continuous in θ and there exists a function $Q_0(\theta)$ such that: $Q_0(\theta)$ is uniquely maximized at θ_0 ; Θ is compact; $Q_0(\theta)$ is continuous in θ ; and $Q(\theta; \mathbf{Z}_n)$ converges uniformly in probability to $Q_0(\theta)$. Then $\hat{\theta}(\mathbf{Z}_n)$ defined as the value of $\theta \in \Theta$ which for each $\mathbf{Z}_n = \mathbf{z}_n$ maximizes the objective function $Q(\theta; \mathbf{Z}_n)$ satisfies $\hat{\theta}(\mathbf{Z}_n) \xrightarrow{p} \theta_0$.

Proof of Lemma 1: See Theorem 2.1 in (Newey and McFadden, 1994).

Lemma 2: Consider a compact space Θ . Let

$$L(z, \mathbf{w}, \boldsymbol{\theta}, \lambda) = f^{\text{obj}}(z, \mathbf{w}, \boldsymbol{\theta}) + f^{\text{pen}}(z, \mathbf{w}, \lambda),$$

where $f^{\text{obj}}(z, \mathbf{w}, \boldsymbol{\theta})$ is an objective function and $f^{\text{pen}}(z, \mathbf{w}, \lambda) = \frac{\lambda \{f^{\text{cons}}(\mathbf{w}) - c\}}{n}$ is a penalization function, for some constant c. If both the objective function and the penalization function can be profiled by $\boldsymbol{\theta}$, defined as $f^{\text{obj}}(z, \boldsymbol{\theta})$ and $f^{\text{pen}}(\boldsymbol{\theta}) := \frac{\lambda(\boldsymbol{\theta})\{f^{\text{cons}}(\boldsymbol{\theta}) - c\}}{n}$; the objective function is a log likelihood function; both $f^{\text{obj}}(z, \boldsymbol{\theta})$ and $f^{\text{pen}}(\boldsymbol{\theta})$ are continuous in $\boldsymbol{\theta}$; and there exists a function $d_0(z)$ such that $|L(z, \boldsymbol{\theta})| := |f^{\text{obj}}(z, \boldsymbol{\theta}) + f^{\text{pen}}(\boldsymbol{\theta})| \le d_0(z)$ for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ and $z \in \mathcal{Z}$, and $\mathbb{E}_{\boldsymbol{\theta}_0}[d_0(x)] < \infty$, then

i. $q_0(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\theta}_0}[L(z, \boldsymbol{\theta})]$ is continuous in $\boldsymbol{\theta}$;

ii.
$$\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} | q(\boldsymbol{\theta}; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}) | \xrightarrow{p} 0$$
, where $q(\boldsymbol{\theta}; \mathbf{Z}_n) := \frac{1}{n} L(\mathbf{Z}_n, \boldsymbol{\theta})$.

Note: the above Lemma can be stated in a more general case where there are multiple sets of parameters and several constraint functions.

Proof of Lemma 2: Consider the regularity conditions stated in the Appendix.

 $\forall \boldsymbol{\theta} \in \boldsymbol{\Theta}$, choose a sequence $\boldsymbol{\theta}_k \in \boldsymbol{\Theta}$, such that $\boldsymbol{\theta}_k \to \boldsymbol{\theta}$. By (N-3), we have $L(x; \boldsymbol{\theta}_k) \to L(x; \boldsymbol{\theta})$. By (N-4) and the dominated convergence theorem (DCT), $q_0(\boldsymbol{\theta}_k) := \mathbb{E}_{\boldsymbol{\theta}_0}(L(Z, \boldsymbol{\theta}_k)) \to \mathbb{E}_{\boldsymbol{\theta}_0}(L(Z, \boldsymbol{\theta})) = q_0(\boldsymbol{\theta})$. Hence, $q_0(\boldsymbol{\theta})$ is continuous in $\boldsymbol{\theta}$.

 $L(z, \theta)$ is uniformly continuous since $f^{\text{obj}}(z, \theta)$ and $f^{\text{prof}}(\theta)$ are continuous in θ . Hence,

$$\Delta(z,\delta) = \sup_{\{(\boldsymbol{\theta}_1,\boldsymbol{\theta}_2): ||\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2|| < \delta\}} |L(z,\boldsymbol{\theta}_1) - L(z,\boldsymbol{\theta}_2)| \to 0$$

as $\delta \to 0$. By (N-4), $\Delta(z,\delta) \le 2d_0(z)$, $\forall \delta$. By DCT, $\mathbb{E}_{\theta_0}[\Delta(Z,\delta)] \to 0$ as $\delta \to 0$.

Define $B(\boldsymbol{\theta}_j, \delta) = \{\tilde{\boldsymbol{\theta}} : \parallel \tilde{\boldsymbol{\theta}} - \boldsymbol{\theta} \parallel < \delta\}$. Since $\boldsymbol{\Theta}$ is compact, for every fixed δ , \exists a subcover $\{B(\boldsymbol{\theta}_j, \delta), j = 1, \dots, J\}$ such that $\bigcup_{j=1}^{J < \infty} B(\boldsymbol{\theta}_j, \delta) \supset \boldsymbol{\Theta}$. Then, we have:

$$|q(\boldsymbol{\theta}; \mathbf{Z}_n) - q_0(\boldsymbol{\theta})| \leq |q(\boldsymbol{\theta}; \mathbf{Z}_n) - q(\boldsymbol{\theta}_j; \mathbf{Z}_n)|$$
 (1)

$$+ \mid q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) \mid \tag{2}$$

$$+ \mid q_0(\boldsymbol{\theta}_i) - q_0(\boldsymbol{\theta}) \mid . \tag{3}$$

Choose θ_j such that $\theta \in B(\theta_j; \delta)$. Since $\|\theta - \theta_j\| < \delta$, then:

(1) =
$$\left|\frac{1}{n}\sum_{i=1}^{n}\{L(Z_i, \boldsymbol{\theta}) - L(Z_i, \boldsymbol{\theta}_j)\}\right| \le \frac{1}{n}\sum_{i=1}^{n}|L(Z_i, \boldsymbol{\theta}) - L(Z_i, \boldsymbol{\theta}_j)| \le \frac{1}{n}\sum_{i=1}^{n}\Delta(Z_i, \delta).$$

Next, (2) $< \max_{j \in \{1,...,J\}} | q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) |$; and choose δ to be small, then (3) $\le \sup_{\{(\boldsymbol{\theta}_1,\boldsymbol{\theta}_2): \|\boldsymbol{\theta}_1 - \boldsymbol{\theta}_2\| < \delta\}} | q_0(\boldsymbol{\theta}_1) - q_0(\boldsymbol{\theta}_2) | \le \epsilon^*(\delta)$, where $\epsilon(\delta) \to 0$ as $\delta \to 0$.

Combining (1) - (3), we have:

 $\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} | q(\boldsymbol{\theta}; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}) | \leq \frac{1}{n} \sum_{i=1}^n \Delta(Z_i, \delta) + \max_{j \in \{1, \dots, J\}} | q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) | + \epsilon^*(\delta).$ Choose $\delta_1 \in \{\delta : \epsilon^*(\delta) \leq \frac{\epsilon}{3}\}$. Then for any $\delta < \delta_1$, we have:

$$P_{\boldsymbol{\theta}_{0}}[\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} | \ q(\boldsymbol{\theta}; \mathbf{Z}_{n}) - q_{0}(\boldsymbol{\theta}) \ | > \epsilon]$$

$$\leq P_{\boldsymbol{\theta}_{0}}[\frac{1}{n} \sum_{i=1}^{n} \Delta(Z_{i}, \delta) + \max_{j \in \{1, \dots, J\}} | \ q(\boldsymbol{\theta}_{j}; \mathbf{Z}_{n}) - q_{0}(\boldsymbol{\theta}_{j}) \ | > \frac{2\epsilon}{3}]$$

$$\leq P_{\boldsymbol{\theta}_{0}}[\frac{1}{n} \sum_{i=1}^{n} \Delta(Z_{i}, \delta) > \frac{\epsilon}{3}] +$$

$$P_{\boldsymbol{\theta}_{0}}[\max_{j \in \{1, \dots, J\}} | \ q(\boldsymbol{\theta}_{j}; \mathbf{Z}_{n}) - q_{0}(\boldsymbol{\theta}_{j}) \ | > \frac{\epsilon}{3}]$$

$$(4a)$$

Note that (4a) = $P_{\boldsymbol{\theta}_0}[\frac{1}{n}\sum_{i=1}^n \{\Delta(Z_i, \delta) - \mathbb{E}_{\boldsymbol{\theta}_0}[\Delta(Z; \delta)]\} + \mathbb{E}_{\boldsymbol{\theta}_0}[\Delta(Z; \delta)] > \frac{\epsilon}{3}]$, where $\mathbb{E}_{\boldsymbol{\theta}_0}[\Delta(Z; \delta)] \to 0$ as $\delta \to 0$. Choose $\delta_2 \in \{\delta : \mathbb{E}_{\boldsymbol{\theta}_0}[\Delta(Z; \delta)] < \frac{\epsilon}{6}\}$. Take $\delta < \min(\delta_1, \delta_2)$. Then:

$$P_{\boldsymbol{\theta}_0}\left[\frac{1}{n}\sum_{i=1}^n \{\Delta(Z_i, \delta) - \mathbb{E}_{\boldsymbol{\theta}_0}[\Delta(Z; \delta)]\} > \frac{\epsilon}{6}\right] := (4)'$$

By the Weak Law of Large Numbers (WLLN), $\exists N_1(\epsilon,\xi)$ such that $\forall n > N_1(\epsilon,\xi)$, (4) $< (4)' < \frac{\xi}{2}$.

Consider the finite subcover $\{B(\theta_j, \delta), j = 1, \dots, J\}$ for δ considered above. Note that:

$$(5) = P_{\boldsymbol{\theta}_0}[\bigcup_{j=1}^{J} \{ | q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) | > \frac{\epsilon}{3} \}] \leq \sum_{j=1}^{J} P_{\boldsymbol{\theta}_0}[| q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) | > \frac{\epsilon}{3}].$$

By the WLLN, $\forall \boldsymbol{\theta}_j$ and $\forall \epsilon, \xi > 0$, $\exists N_{2j}(\epsilon, \xi)$ such that $\forall n > N_{2j}(\epsilon, \xi)$: $P_{\boldsymbol{\theta}_0}[\mid q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) \mid > \frac{\epsilon}{3}] \leq \frac{\xi}{2J}$. Let $N_2(\epsilon, \xi) = \max_{j \in \{1, \dots, J\}} \{N_{2j}\}$. Then, $\forall n > N_2(\epsilon, \xi)$, we have: $\sum_{j=1}^J P_{\boldsymbol{\theta}_0}[\mid q(\boldsymbol{\theta}_j; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}_j) \mid > \frac{\epsilon}{3}] < \frac{\xi}{2}$. Hence, (4b) $< \frac{\xi}{2}$.

(4a) and (4b) show that \exists an $N(\epsilon, \xi) = \max(N_1(\epsilon, \xi), N_2(\epsilon, \xi))$ such that $\forall n > N(\epsilon, \xi)$, $P_{\theta_0}[\sup_{\theta \in \Theta} | q(\theta; \mathbf{Z}_n) - q_0(\theta) |] < \xi$.

Proof of Theorem 1:

Define $Q(\boldsymbol{\theta}; \mathbf{Z}_n) := \frac{1}{n} L(\boldsymbol{\theta}; \mathbf{Z}_n)$ and $Q_0(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\theta}_0}(L(\boldsymbol{\theta}_0; \mathbf{Z}_n)), L(\boldsymbol{\theta}; z) := f^{\text{obj}}(\boldsymbol{\theta}; z) + \frac{\lambda(\boldsymbol{\theta})(f^{\text{cons}} - c)}{n}$, and $\hat{\boldsymbol{\theta}}(\mathbf{Z}_n) := \operatorname{argmax}_{\boldsymbol{\theta}}\{L(\mathbf{Z}_n; \boldsymbol{\theta})\}$, henceforth $\hat{\boldsymbol{\theta}}$.

I. Consistency

To show

$$\hat{\boldsymbol{\theta}} \xrightarrow{p} \boldsymbol{\theta}_0,$$
 (5)

by Lemma 1, it suffices to show: (a) $Q(\boldsymbol{\theta}; \mathbf{Z}_n)$ is continuous in $\boldsymbol{\theta}$; (b) $Q_0(\boldsymbol{\theta})$ is continuous in $\boldsymbol{\theta}$; and (c) $\sup_{\boldsymbol{\theta} \in H} | Q(\boldsymbol{\theta}; \mathbf{Z}_n) - Q_0(\boldsymbol{\theta}) | \xrightarrow{p} 0$. Note that (a) is implied by (N-3); (N-3), (N-4), and Lemma 2 give (d) $q_0(\boldsymbol{\theta}) := \mathbb{E}_{\boldsymbol{\theta}_0}(L(z, \boldsymbol{\theta}))$ is continuous in $\boldsymbol{\theta}$; and (e) $\sup_{\boldsymbol{\theta} \in H} \| \hat{q}(\boldsymbol{\theta}; \mathbf{Z}_n) - q_0(\boldsymbol{\theta}) \| \xrightarrow{p} 0$, where $\hat{q}(\boldsymbol{\theta}; \mathbf{Z}_n) = \frac{1}{n} \sum_{i=1}^n L(Z_i, \boldsymbol{\theta})$. Then (d) implies (b); (e) implies (c).

II. Asymptotic Normality

$$\begin{split} \text{Let } \ell(z; \boldsymbol{\theta}) := \frac{\partial f^{\text{obj}}(z; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} + \frac{\nabla^{\boldsymbol{\theta}} \lambda(\boldsymbol{\theta}) (f^{\text{cons}}(\boldsymbol{\theta}) - c) + \lambda(\boldsymbol{\theta}) \nabla^{\boldsymbol{\theta}} f^{\text{cons}}(\boldsymbol{\theta})}{n}, \\ \hat{q}(\mathbf{Z}_n; \boldsymbol{\theta}) &= \frac{1}{n} \sum_{i=1}^n L(Z_i; \boldsymbol{\theta}), \\ q_0(\boldsymbol{\theta}) &= \mathbb{E}_{\boldsymbol{\theta}_0}(L(z; \boldsymbol{\theta})), \\ \hat{q}(\mathbf{Z}_n; \boldsymbol{\theta}) &= \frac{1}{n} \sum_{i=1}^n \ell(Z_i; \boldsymbol{\theta}), \\ \text{and } \dot{q}_0(\boldsymbol{\theta}) &= \mathbb{E}_{\boldsymbol{\theta}_0}(\ell(z; \boldsymbol{\theta})). \end{split}$$

$$\hat{\boldsymbol{\theta}}$$
 satisfies: $\frac{\partial L(\mathbf{Z}_n, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} /_{\boldsymbol{\theta} = \hat{\boldsymbol{\theta}}} = 0$. Hence, $\hat{q}(\mathbf{Z}_n; \hat{\boldsymbol{\theta}}) = 0$. (N-2) and (N-6) give,

$$\dot{q}_0(\boldsymbol{\theta}) = o_p(n^{-1/2}). \tag{6}$$

Expanding $\hat{q}(\mathbf{Z}_n; \hat{\boldsymbol{\theta}})$, we have:

$$0 = \hat{q}(\mathbf{Z}_n; \hat{\boldsymbol{\theta}}) = \hat{q}(\mathbf{Z}_n; \boldsymbol{\theta}_0) + D_n^*(\mathbf{Z}_n)(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0)$$
(7)

where $D_n^*(\mathbf{Z}_n) = \frac{\partial \hat{q}(\mathbf{Z}_n; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} /_{\boldsymbol{\theta} = \boldsymbol{\theta}^*}$, for some $\boldsymbol{\theta}^*$ in the open interval bounded by $\boldsymbol{\theta}_0$ and $\hat{\boldsymbol{\theta}}$.

(N-9), (N-10) and Lemma 2 give: $\sup \| \hat{D}(\mathbf{Z}_n; \boldsymbol{\theta}) - D_0(\boldsymbol{\theta}) \| \stackrel{p}{\to} 0$, where $D_0(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}_0}(\nabla^{\boldsymbol{\theta}}\ell(z; \boldsymbol{\theta}))$ and $D_0(\boldsymbol{\theta}_0) = \mathbb{E}_{\boldsymbol{\theta}_0}(\nabla^{\boldsymbol{\theta}}\ell(z; \boldsymbol{\theta}_0))$.

Since
$$\boldsymbol{\theta}^* \in \mathcal{N}_r(\boldsymbol{\theta}_0)$$
 w.p.1., then $D_n^*(\mathbf{Z}_n) \stackrel{p}{\to} D_0(\boldsymbol{\theta}_0)$. From (7), we have $\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) = -\{D_n^*(\mathbf{Z}_n)\}^{-1}\{\sqrt{n}\hat{q}(\mathbf{Z}_n;\boldsymbol{\theta}_0)\}$; From (6), we have $\sqrt{n}\hat{q}(\mathbf{Z}_n;\boldsymbol{\theta}_0) = \sqrt{n}\left(\frac{\sum_{i=1}^n \ell(Z_i;\boldsymbol{\theta}_0)}{n} - \frac{\sum_{i=1}^n \ell(Z_i;\boldsymbol{\theta}_0)}{n}\right)$

$$\dot{q}_0(m{ heta}) + \sqrt{n}\dot{q}_0(m{ heta}) o Nig(0,V(m{ heta}_0)ig), ext{ where } V(m{ heta}_0) = \mathbb{E}_{m{ heta}_0}igg(\ell(z;m{ heta})\ell^{\intercal}(z;m{ heta})igg).$$
 It follows:
$$\sqrt{n}(\hat{m{ heta}}-m{ heta}_0) o N(0,\Sigma(m{ heta}_0))$$

where
$$\Sigma(\boldsymbol{\theta}_0) = D_0^{-1}(\boldsymbol{\theta}_0)V(\boldsymbol{\theta}_0)\big)[D_0^{-1}(\boldsymbol{\theta}_0)]^\intercal$$
.

Proof of Theorem 2:

I. Consistency

(N-0), and Eqs. (5)-(7) in Section 3.3 show that, for every fixed estimate $\hat{\theta}$, there is an unique $\mathbf{w}: \mathbb{R}^{\dim(\hat{\theta})} \longmapsto \mathbb{R}^{\dim(\mathbf{w})}$, such that $\mathbf{w} = \mathbf{w}(\hat{\theta})$. Hence, under (N-13), (5) gives:

$$\mathbf{w}(\hat{\boldsymbol{\theta}}) \xrightarrow{p} \mathbf{w}(\boldsymbol{\theta}_0).$$

II. Asymptotic Normality

Under (N-12) and (N-13), and by the Multivariate Delta Method,

$$\sqrt{n}(\mathbf{w}(\hat{\boldsymbol{\theta}}) - \mathbf{w}(\boldsymbol{\theta}_0)) \to N\bigg(0, [\nabla \mathbf{w}(\boldsymbol{\theta})]^{\mathsf{T}} \Sigma(\boldsymbol{\theta}_0) \nabla \mathbf{w}(\boldsymbol{\theta})\bigg).$$

References and Notes

Newey, W. K. and D. McFadden (1994). Large sample estimation and hypothesis testing. *Hand-book of econometrics* 4, 2111–2245.