Épreuve de Mathématiques

Les quatre problèmes sont indépendants; on veillera à bien numéroter les questions sur la copie.

Problème 1

Soit $\sum_{n\geqslant 1}u_n$ une série à termes réels positifs telle qu'il existe un $x_0\in]1,+\infty[$ pour lequel la série

$$\sum_{n\geq 1} u_n \left(1 - \frac{1}{x_0^n}\right)$$

converge.

<u>1.</u> Démontrer que la série $\sum u_n$ converge et que, pour tout $x \in [1, +\infty[$, la série

$$\sum_{n\geq 1} u_n \left(1 - \frac{1}{x^n}\right)$$

est convergente.

Dans la suite de ce problème on considère la fonction

$$S: [1, +\infty[\longrightarrow \mathbb{R} \\ x \longmapsto \sum_{n=1}^{\infty} u_n \left(1 - \frac{1}{x^n}\right).$$

- $\underline{2.}$ Montrer que la fonction S est de classe C^{∞} et croissante sur $[1, +\infty[$.
- 3. Montrer que $\lim_{x\to +\infty} S(x) = \sum_{n=1}^{\infty} u_n$ et que, pour tout $k \in \mathbb{N}^*$, $\lim_{x\to +\infty} S^{(k)}(x) = 0$.

Problème 2

Soient $\mathbb K$ un corps commutatif, E un $\mathbb K$ -espace vectoriel de dimension finie $n \in \mathbb N$ et ℓ un endomorphisme de E.

- $\underline{\mathbf{1.}}$ Démontrer qu'au sens de l'inclusion :
 - 1.1 la suite des images $(\operatorname{Im}(\ell^p))_{p\in\mathbb{N}}$ est décroissante;
 - $\underline{1.2}$ la suite des noyaux $(\ker(\ell^p))_{p\in\mathbb{N}}$ est croissante.

 $\underline{2}$.

 $\underline{2.1}$ Montrer qu'il existe un entier p_0 tel que

$$\forall p \in \mathbb{N}, \quad \begin{cases} (p < p_0) \Longrightarrow (\operatorname{Im}(\ell^p) \neq \operatorname{Im}(\ell^{p_0})) \\ (p \geqslant p_0) \Longrightarrow (\operatorname{Im}(\ell^p) = \operatorname{Im}(\ell^{p_0})) \end{cases}.$$

 $\underline{2.2}$ L'entier p_0 étant celui mis en évidence à la question précédente, montrer que

$$\forall p \in \mathbb{N}, \quad \begin{cases} (p < p_0) \Longrightarrow (\ker(\ell^p) \neq \ker(\ell^{p_0})) \\ (p \geqslant p_0) \Longrightarrow (\ker(\ell^p) = \operatorname{Im}(\ker^{p_0})). \end{cases}$$

- 2.3 Justifier que $p_0 \leqslant n$.
- 3. Montrer que $\ker(\ell^{p_0}) \oplus \operatorname{Im}(\ell^{p_0}) = E$.

Problème 3

Pour tout $n \in \mathbb{N}$ on définit la fonction

$$f_n: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \frac{1}{n!} \int_x^{+\infty} t^n e^{-t} dt.$

- 1. Montrer que les fonctions f_n sont bien définies.
- 2. Démontrer que

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, \quad f_n(x) = e^{-x} \sum_{k=0}^n \frac{x^k}{k!}.$$

- <u>3.</u> Démontrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers une fonction que l'on déterminera.
- <u>4.</u> Démontrer que la convergence de la suite $(f_n)_{n\in\mathbb{N}}$ est uniforme sur tout intervalle compact de \mathbb{R} .
- <u>5.</u> Soit $a \in \mathbb{R}$. La convergence de la suite $(f_n)_{n \in \mathbb{N}}$ est-elle uniforme sur $[a, +\infty[?]$ sur $]-\infty, a]$?

Problème 4

Soit a un réel strictement positif; on considère l'équation différentielle d'inconnue y fonction de la variable x suivante :

(E)
$$x(x+a)y'' - xy' + y = 0$$

- 1. Résoudre (E) sur] $-\infty$, -a[, sur] -a, 0[et sur]0, $+\infty$ [.
- $\underline{2}$. Résoudre (E) sur $]-\infty,0[$, sur $]-a,+\infty[$ et sur \mathbb{R} .