

WEST BENGAL STATE UNIVERSITY

B.Sc. Honours 6th Semester Examination, 2021

STSACOR14T-STATISTICS (CC14)

Time Allotted: 2 Hours Full Marks: 40

The figures in the margin indicate full marks.

Candidates should answer in their own words and adhere to the word limit as practicable.

All symbols are of usual significance.

GROUP-A

Answer any four from the following questions

 $5 \times 4 = 20$

- 1. Write the pdf of p-variate normal distribution with mean vector $\boldsymbol{\mu}$ and dispersion matrix Σ . Let $\boldsymbol{X} = (X_1, X_2, ..., X_p)' \sim \mathcal{N}_p(\boldsymbol{\mu}, \Sigma)$, where $\Sigma = ((\sigma_{ij}))$ is p.d. and \boldsymbol{a} is a fixed vector. If r_i is the correlation between X_i and $\boldsymbol{a}'\boldsymbol{X}$, show that $\boldsymbol{r} = (r_1, r_2, ..., r_p)' = c^{-1/2}D\Sigma\boldsymbol{a}$, where $c = \boldsymbol{a}'\boldsymbol{\Sigma}\boldsymbol{a}$ and D is a diagonal matrix with diagonal elements $\sigma_{ii}^{-1/2}$.
- 2. Let *X* and *Y* have the joint pdf

5

5

$$f_{X,Y}(x, y) = \exp\left(c + 4x + 4y - \frac{x^2}{2} - \frac{y^2}{2} - \frac{x^2y^2}{2}\right), (x, y)\varepsilon \mathbb{R}^2,$$

where c is a constant. Obtain the conditional distribution of X given Y = y and the conditional distribution of Y given X = x.

3. Let $X = (X_1, X_2, ..., X_7)'$ be a multivariate normal with mean vector μ and positive definite dispersion matrix Σ . Stating all necessary result(s), verify whether

$$P[(X - \mu)' \sum^{-1} (X - \mu) < 15] > P[(X - \mu)' \sum^{-1} (X - \mu) > 15]$$

What is your conclusion if the distribution of *X* is not normal?

4. Define moment generating function of a random vector $X^{p\times 1}$. The moment generating function of a bivariate normal random vector (X,Y)' is

$$E(e^{t_1X+t_2Y}) = e^{t_1^2+5t_2^2-t_1t_2-2t_2}$$

Find the moment generating function of (X - 2Y, X + 3Y)'.

5. Write nonparametric single sample location problem under symmetry. Justify whether your null hypothesis and alternative hypothesis are simple or composite.

CBCS/B.Sc./Hons./6th Sem./STSACOR14T/2021

6. For exporting mangoes of West Bengal to a foreign country, it is necessary to provide approximate upper and lower limits of weight of a mango. A random sample of *n* mangoes are available for this purpose. Without making any specific distributional assumption, estimate the limits with high confidence.

5

GROUP-B

Answer any two from the following questions

 $10 \times 2 = 20$

7. (a) Let, for a random vector $\boldsymbol{X}^{p\times 1}$, the partial regression coefficient of X_i on X_j for fixed $X_1, X_2, ..., X_{i-1}, X_{i+1}, ..., X_{j-1}, X_{j+1}, ..., X_p$ be denoted by $b_{ij.12...(i-1)(i+1)...(j-1)(j+1)...p}$.

7+3

- Show that $b_{12.34...(p-1)} = \frac{b_{12.34...p} + b_{1p.23...(p-1)} b_{p2.13...(p-1)}}{1 b_{1p.23...(p-1)} b_{p1.23...(p-1)}}$
- (b) The random variables $Y_1 = X_1 \mu$ and $Y_i = X_i X_i X_{i-1}$, i = 2, 3, ..., p, are independently distributed each as $\mathcal{N}(0,1)$. Find the joint distribution of $X_1, X_2, ..., X_p$.

, 6+4 e

- 8. (a) Suppose X_1 , X_2 , X_3 jointly follow a trinomial distribution with parameters n, p_1 , p_2 , p_3 . If ρ_{ij} is the correlation coefficient between X_i and X_j , find the expressions for ρ_{12} , ρ_{13} and ρ_{23} and hence deduce the expression for the partial correlation coefficient $\rho_{12\cdot 3}$.
 - (b) Explain the concept of ellipsoid of concentration corresponding to a given *p*-dimensional distribution.
- 9. Suppose the data $\{X_1, X_2, ..., X_n\}$ relate to the diameter of pine stem in a certain forest. From a historical study, it was found that the distribution function can be well approximated by $G(x) = \Phi((x-50)/2)$ with $\Phi(x)$: cdf of $\mathcal{N}(0,1)$ distribution. Verify on the basis of the present data, whether there is enough reason to support this believe. Formulate the problem statistically and provide a complete analysis. Also discuss the large sample situation.

8+2

Students have to complete submission of their Answer Scripts through E-mail / Whatsapp to their own respective colleges on the same day / date of examination within 1 hour after end of exam. University / College authorities will not be held responsible for wrong submission (at in proper address). Students are strongly advised not to submit multiple copies of the same answer script.

____×___

6083