中国科学技术大学

2020—2021学年第一学期考试试卷

	上してい	□ lur →	-) A	7 7 7		
	考试科	目 概率	<u> </u>	得分 _		
	所在系		生名	学号		
		(考试时间:	2021年 1月 18	日上午 8:30-10:	30)	
-、	(30分, 每小题3%	分) 填空题或 单	色选题,答案词	可以直接写在试	戈卷上 .	
	* /			的随机变量,具 $-\overline{X})^2]=$	有共同的期望 <i>μ</i> ·	和方差 σ^2 .
		(X,Y) 服从单 - Y ²] =		$y): x^2 + y^2 <$	1} 上的均匀分布	ī, 则数学期
	` '	. <i>ABC</i> 内部随 ⁵ 与边 <i>AB</i> 相交[BC 上随机取-	-点记为 Q ,
	(4) 将 m 个 0 和	n 个 1 随机排	成一行, 记 <i>X</i>	为第一个1前	0 的个数, 则 E X	· =
	` '	均匀的骰子, 期望为		欠出现时就立即]停止, 则停止时	所有出现的
		为独立的标准 $(B) \frac{2}{\sqrt{\pi}}$ (X > 0, Y > 0] =	()
		X 的特征函数 B) 2λ (C)	_		方差 $\mathbf{Var}(X)$ 为()
	` '				的秩为 1 < m < 引下列说法正确的	

- (8) 设 维
 - (A) X 为 m 维连续型随机向量 (B) X + Y 也服从退化 n 维正态分布
 - (C) 存在方阵 C, 使得 $CX \stackrel{d}{=} Y$ (D) 存在方阵 C, 使得 $CY \stackrel{d}{=} X$
- (9) 设随机变量序列 $\{X, X_1, X_2, \cdots\}$ 对应的分布函数序列为 $\{F(x), F_1(x), F_2(x), \cdots\}$, 且 $X_n \xrightarrow{d} X$, 则下列说法一定正确的是()
 - (A) $F_n(x) \to F(x), \forall x \in \mathbb{R}$ (B) 若函数 g 连续且有界, 则 $\mathbf{E}[g(X_n)] \to \mathbf{E}[g(X)]$
 - (C) 若期望均存在,则 $\mathbf{E}[X_n] \to \mathbf{E}X$ (D) 若 $Y_n \xrightarrow{d} Y$,则 $X_n + Y_n \xrightarrow{d} X + Y$
- (10) 设 X_1, X_2, \dots, X_n 为一列独立同分布的随机变量, C(F) 为其分布函数 F(x)连续 点集. 若对 $\forall x \in \mathbb{R}$, 记 $F_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \le x)$, 则 $F_n(x)$ 依概率收敛到() $(A) F(x), \forall x \in \mathbb{R}$ $(B) F(x-0), \forall x \in \mathbb{R}$ $(C) F(x), \forall x \in C(F)$ (D) 以上均不对

- 二、(10分) 将区间(0,2) 随机截成两段, 记较短一段的长度为X, 另一段长度为Y.
 - (1) 试求 X 和 Y 的相关系数 Corr(X,Y);
 - (2) 试求数学期望 $\mathbf{E}[\frac{X}{Y}]$.
- 三、 (18分) 设随机向量 (X,Y) 服从二维正态分布 $\mathcal{N}(0,0;\sigma_1^2,\sigma_2^2,r)$, 则有已知结论: 对任意 $y \in \mathbb{R}$, 在条件 Y = y 下 X 服从 $\mathcal{N}(\frac{r\sigma_1}{\sigma_2}y,\sigma_1^2(1-r^2))$ 分布.
 - (1) 证明: $\mathbf{E}[X|Y] = \frac{\text{Cov}(X,Y)}{\mathbf{Var}(Y)}Y;$
 - (2) 利用上述结论求 E[X|X+Y];
 - (3) 试问 X 和 Y^2 是否相关? 证明你的结论.
- **四、** (24分) 已知平面上有 $n (n \ge 3)$ 个点,且任意三点不共线.设任意两点之间独立地以概率 p (0 连有一条边或以概率 <math>1 p 不连边. 现以 X_n 表示以这 n 个点为顶点的三角形的个数.
 - (1) 求数学期望 $\mathbf{E}[X_n]$;
 - (2) 求方差 $Var[X_n]$;
 - (3) 试利用 Chebyshev 不等式证明: 当 $n \to \infty$ 时, 有 $\mathbf{P}(X_n \ge 1) \to 1$;
 - (4) 试证明: 当 $n \to \infty$ 时, $X_n/(np)^3$ 依概率收敛. 并请指出其极限.
- 五、 (18分) 设随机变量 X 的密度函数为 $p(x) = \frac{1}{\Gamma(s)} x^{s-1} e^{-x}, x > 0$, 其中 s > 0 为常数. 已知在给定 X = x 时, 随机变量 Y 服从参数为 x 的 Poisson 分布.
 - (1) 当 t < 1 时, 试求 X 的矩母函数 $\phi(t) = \mathbf{E}[e^{tX}];$
 - (2) 利用(1), 试求 Y 的特征函数 f(t);
 - (3) 利用(2), 证明: 当 $s \to \infty$ 时,

$$\frac{Y - \mathbf{E}Y}{\sqrt{\mathbf{Var}(Y)}} \xrightarrow{d} \mathcal{N}(0, 1).$$

六、 (附加题, 10分) 设 $\{X_n, n \geq 1\}$ 是一列独立的随机变量, 且 X_n 的分布律为

$$\mathbf{P}(X_n = 1) = \mathbf{P}(X_n = -1) = \frac{1 - 2^{-n}}{2}, \quad \mathbf{P}(X_n = 2^k) = 2^{-k}, \quad k = n + 1, n + 2, \dots$$

试问 $\frac{1}{\sqrt{n}}\sum_{j=1}^{n}X_{j}$ 是否依分布收敛? 证明你的结论.