PREDICTING BANK CUSTOMER CHURN

CHETANA VYAS

Why does it matter?

Involuntary Churn

- Closing the business
- Outdated Equipments

Avoidable Churn

- Poor Customer Service
- Rigid Pricing
- Security Threats
- Complicated Interface

INITIAL EDA

Customer Profiles that tend to Churn

- Age
- Number Of Products
- Germany
- Female

Baseline
Model using
Logistic
Regression

F_Beta Score=0.80

Beta = 2.5

(prefer recall)

Recall = 0.21

Classification Model Comparisons (ROC AUC)

- Random Forest
- XGBoost (Extreme Gradient Boosting)

Classification Model Comparisons (F Beta Score)

Extreme Gradient Boosting

F_Beta Score=0.89 (Beta = 2.5)

Recall = 0.54

ELITE CUSTOMERS

PRECISION = 14%

RECALL = **62**%

Scoring the Random Forest Model on customers having

- Bank balance > 100K
- > Credit Score > 750

PRECISION = 38% RECALL = 10%

NON - ELITE

CUSTOMERS

Scoring the Random Forest Model on customers having

- Bank balance < 10K</p>
- Credit Score < 600</p>

SO WHAT DO WE DO WITH OUR GREAT MODEL?

RECOMMENDATIONS

DAILY CHURN DETECTION

Build powerful Machine Learning Models to analyze customer behaviour

CONTINUOUS OPTIMIZATION

On-demand access to predicted customers at risk of churning

THANKS

Chetana Vyas

APPENDIX - Precision & Recall Curve

Random Forest Classifier

APPENDIX - Pairplot

TOOLS

Seaborn

CLASSIFICATION ALGORITHMS

