

Team e.Wölfe

Inhalt

Wolfsburg

1. Das Team

2. Der e.Wolf

- Funktionale Architektur
- Hardwarearchitektur
- Softwarearchitektur
- Energiebilanz
- Herstellungskosten

3. Dynamische Disziplinen

- Fahren auf der Straße
 - Simulation + Hardware in the loop
- Einparken
- Hindernisse und Kreuzung

4. Ausblick

Das Team

13 Bachelorstudenten im dritten und sechsten Fachsemester

Funktionale Architektur

Ziele:

- Carolo-Cup
 - Dynamische Disziplinen
 - Fahren auf Fahrbahn
 - Paralleles Einparken
 - Hindernisse und Kreuzungen

Aufgabenfelder:

- Fahrzeug
- Benutzereingabe
- Umfeldwahrnehmung
- Umfeldauswertung
 - Fahrspurerkennung
 - Hinderniserkennung
- Fahrmanöverumsetzung

Funktionale Architektur

Aufgabenfelder:

- Fahrzeug
- Benutzereingabe
- Umfeldwahrnehmung
- Umfeldauswertung
 - Fahrspurerkennung
 - Hinderniserkennung

Funktionale Architektur:

- Sensorik
- Situationserfassung
 - Rechnersystem
 - Echtzeitfähigkeit
- Aktorik

Funktionale Architektur:

- Sensorik
- Aktorik
- Situationserfassung
 - Rechnersystem
 - Echtzeitfähigkeit

Funktionale Architektur:

Hardwarearchitektur

Hardwarearchitektur

Hardwarearchitektur

Hardwarearchitektur

Package

Fahrwerk

Wolfsburg

Fahrzeuggrundlage:

HPI RTR Sprint 2 (1:10 Modell)

Breite: 20 cm

Länge: 28 cm

Radstand: 20,5 cm

Max. Lenkwinkel: 30 Grad

Fahrwerk: Härtere Federn, Eigenbau

Stromvers.: 2 LiPo Akkus

Motor: Absima Thrust 80T

Servo: Modelcraft RC-Car Servo 4519

Verarbeitende Hardware

Hochschule für angewandte Wissenschaften

Wolfsburg

Embest Evaluation Board, NXP LPC1768

32 Bit ARM Cortex M3

CPU – Geschwindigkeit: 100 MHz

Schnittstellen:

CAN, Ethernet, I2C, SPI, SSP, USB

Arbeitsspeicher: 32 KB

Betriebssystem: µC-OS III

Verarbeitende Hardware

Wolfsburg

PandaBoard ES

Dual-Core ARM Cortex-A9

CPU – Geschwindigkeit: 1,2 GHz

Schnittstellen:

WLAN, USB, RS232,...

Arbeitsspeicher: 1 GB DDR2

Betriebssystem: Ubuntu

Leistungsaufnahme: max. 6 Watt!

Sensorik

Wolfsburg

Drehzahlgeber

Eigenbau
Weiße LED und
Licht-Spannungswandler
Taos TSL 260
Lochscheibe mit 48 Löchern – 96 Impulsen

Sensorik

Wolfsburg

Ultraschallsensoren

Devantech SRF 08

Messbereich: 3 cm - 6 m

Ansteuerung: I2C

Einsatzgebiet: Positionserkennung von

Hindernissen

Der e.Wolf Sensorik

Ostfalia Hochschule für angewandte Wissenschaften

Wolfsburg

Rotlichtsensoren

Pepperl+Fuchs ML100

Einstellbereich: 100...1000mm

Ausgabe: 0 V oder 11 V

Einsatzgebiet: Einparken,

Hinderniserkennung

Sensorik

Wolfsburg

Kamera

Logitech QuickCam C905

Framerate: 60 fps

max. Auflösung: 1.600 x 1.200 Pixel

Verwendete A.: 320 x 240 Pixel

Einsatzgebiet: Spurerkennung

Regelung	Bildverarbeitung/ Gateway	Konfigurations- und Testsystem	
e.Wolf User Application Libraries			
	Ext. Libraries (Boo	ost, openCV, QT)	
μC-OS-III	Ubu	Ubuntu	
Board Abstraction Layer	Board Abstraction Layer	Board Abstraction Layer	
Chip Abstraction Layer	Chip Abstraction Layer	Chip Abstraction Layer	
Embest ev. Board	PandaBoard	x86 Laptop	

Wolfsburg

Performance

- Hohe Performance durch Programmierung in C/C++
- Auslagerung der rechenintensiven Bildverarbeitung auf performantes PandaBoard
- Trennung der Programmteile auf einzelne Tasks (Hohe Modularität und Wiederverwendbarkeit)

Echtzeitscheduling

Rate Monotonic Scheduling

Wolfsburg

Modularität

z.B. Network Library:

- Aus Applications extrahiert
- Einbindbar
- Programme sind von Netzwerkkommunikation entbunden

Wolfsburg

Schnittstellen

- Kommunikation innerhalb des Embest Boards:
 - Interprozesskommunikation (Mutex, Queue)
- Kommunikation zwischen den Boards:
 - Mavlink via RS232
- Kommunikation zwischen Laptop und PandaBoard
 - TCP/IP mit eigenem Protokoll

Wolfsburg

Telemetriefunktion via WLAN Kommunikation mit dem Pandaboard

- TCP/IP
- Deaktiviert f

 ür Wettkampf

Wolfsburg

Telemetriefunktion via WLAN Kommunikation mit dem PandaBoard

Simulierte Bilddaten

Kantendetektion

Testen und Erproben

Wolfsburg

Bilddatensimulation zur Weiterentwicklung der Bildverarbeitung

Wolfsburg

Hardware in the loop

Der e.Wolf Energiebilanz

Verbraucher	Leistungs- aufnahme [W]
Motor	27
Servo	16
Boards	8
Sensoren	4
Beleuchtungsanlage	1,2
Spannungswandler	0,22
Σ	56,42

Der e.Wolf Herstellungskosten

Ostfalia
Hochschule für angewandte
Wissenschaften

Komponente	Preis in €
Sensoren	415
Boards	270
Aktoren + Fernbedienung	160
Stromversorgung	140
Fahrzeugaufbau	130
Sonstiges	50
Σ	1.195

- Fahren auf der Straße
- Paralleles Einparken
- Hindernisse und Kreuzung

- Fahren auf der Straße
- Paralleles Einparken
- Hindernisse und Kreuzung

Dynamische Disziplin Fahren auf der Straße

Wolfsburg

Verwendete Sensorik:

- Kamera
 - Fahrbahndetektion
- Raddrehzahlsensor
 - Berechnung der Fahrzeuggeschwindigkeit

Dynamische Disziplin Fahren auf der Straße

Wolfsburg

Perspektiv-Transformation

Dynamische Disziplin

Fahren auf der Straße

Fahrspurschätzung

Systemmodell:

Fahrspur: Klothoid

Egofahrzeug: Einspur-Modell

- Schätzung mit Extended Kalman Filter
- Beschreibung mit 8-dimensionalen Zustandsvektor x
- Implementierung:

Fahrzeugintegration: c++ mit openCV

Simulation: matlab m-Script

Dynamische Disziplin Fahren auf der Straße

Dynamische Disziplin Fahren auf der Straße

Wolfsburg

Umgang mit Markierungsausfällen

Fahrzustand wird zunächst beibehalten.

Gerader Strecke:

Orientierung an anderer Linie

Kurve:

- Lenkwinkel beibehalten, tendenziell vergrößern
 - Fahren zur kurveninneren Markierung

Dynamische Disziplin Längs- und Querregler

Wolfsburg

Ein PID-Regler für alle Disziplinen

- Anpassung der Beiwerte über Konfigurations- und Testsystem
- Methode Ziegler und Nichols

Querregelung

Versatz zur Mitte der Sollfahrspur wird auf 0 geregelt

Längsregelung

- Sollgeschwindigkeit abhängig von Kurvenradius
- Sollgeschwindigkeit je Disziplin definiert

Dynamische Disziplin Längs- und Querregler

Wolfsburg

ABS und ESP

- Noch nicht notwendig, da dieser Grenzbereich nicht erreicht wird
- Mit aktuellem Sensorsetup nicht umsetzbar

Zuverlässigkeit

Langzeittest

- Fahren auf der Straße
- Paralleles Einparken
- Hindernisse und Kreuzung

Paralleles Einparken

Wolfsburg

Verwendete Sensorik:

- Kamera
 - Fahrbahndetektion
- Raddrehzahlsensor
 - Ermittlung der zurückgelegten Distanz
 - Berechnung der Fahrzeuggeschwindigkeit
- Ultraschallsensor
 - Messen des Abstands zum vorderen Fahrzeug
- Rotlichtsensor
 - Messen des Abstands zum vorderen Fahrzeug

Paralleles Einparken

Nein Starte im Warte auf das Warte auf 55 cm Folge Scanne Einpark-Ende des parkendes Parklücke? Lücke Fahrspur parkenden Autos Modus Auto Ende Parklückenerkennung

Paralleles Einparken

Nein Warte auf das Starte im Warte auf 55 cm Folge Scanne Einpark-Ende des parkendes Parklücke? Lücke Fahrspur parkenden Autos Modus Auto Ja Ende Parklückenerkennung

Paralleles Einparken

- Fahren auf der Straße
- Paralleles Einparken
- Hindernisse und Kreuzung

Hindernisse und Kreuzung

Wolfsburg

Verwendete Sensorik:

- Kamera
 - Fahrbahndetektion
 - Hindernisdetektion
 - Kreuzungsdetektion
- Raddrehzahlsensor
 - Ermittlung der zurückgelegten Distanz
 - Berechnung der Fahrzeuggeschwindigkeit
- Ultraschallsensor
 - Hindernisdetektion
- Rotlichtsensor
 - Hindernisdetektion

Hindernisse

Hindernisse

Dynamische Disziplin Hindernisse

Ostfalia
Hochschule für angewandte
Wissenschaften

Wolfeburg

Dynamische Disziplin Hindernisse

illideiilis

Dynamische Disziplin Hindernisse

Hindernisse

Ostfalia
Hochschule für angewandte
Wissenschaften

Ostfalia
Hochschule für angewandte
Wissenschaften

Ostfalia
Hochschule für angewandte
Wissenschaften

Ausblick

- Maussensor zur Unterstützung der Eigenzustandsschätzung
- Lage- und Beschleunigungssensor
- ABS/ESP
- Aufbau zwei identischer Fahrzeuge

Sponsoring

Herzlichen Dank unseren Sponsoren!

Institut für Fahrzeugsystem- und Servicetechnologien

Danke für Ihre Aufmerksamkeit!

