

Introduction to Data Mining

Lecture #20: Analysis of Large Graphs-2

U Kang Seoul National University

In This Lecture

- Learn the min-cut problem in graphs, and its solutions
- Learn an example of spectral graph theory (how linear algebra and graph problems interact)
- Learn how to find small communities in graphs

U Kang

Outline

- **→** □ Spectral Clustering
 - ☐ Small Communities

Graph Partitioning

■ Undirected graph G(V, E):

Bi-partitioning task:

Divide vertices into two disjoint groups A, B

Questions:

- \square How can we define a "good" partition of G?
- How can we efficiently identify such a partition?

Graph Partitioning

What makes a good partition?

- Maximize the number of within-group connections
- Minimize the number of between-group connections

Graph Cuts

- Express partitioning objectives as a function of the "edge cut" of the partition
- Cut: Set of edges with only one vertex in a group:

$$cut(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

U Kang

Graph Cut Criterion

- Criterion: Minimum-cut
 - ullet Minimize weight of connections between groups ${f arg\ min}_{A,B}\ cut(A,B)$

Degenerate case:

Problem:

- Only considers external cluster connections
- Does not consider internal cluster connectivity

U Kang

Graph Cut Criteria

- Criterion: Normalized-cut [Shi-Malik, '97]
 - Connectivity between groups relative to the density of each group

$$ncut(A,B) = \frac{cut(A,B)}{vol(A)} + \frac{cut(A,B)}{vol(B)}$$

vol(A): total weight of the edges with at least one endpoint in A: $vol(A) = \sum_{i \in A} k_i$

- Why use this criterion?
 - Produces more balanced partitions
- How do we efficiently find a good partition?
 - Problem: Computing optimal cut is NP-hard

U Kang

Spectral Graph Partitioning

- A: adjacency matrix of undirected **G**
 - $\Box A_{ij} = 1$ if (i, j) is an edge, else 0
- x: a vector in \Re^n with components $(x_1, ..., x_n)$
 - □ Think of it as a label/value of each node of *G*
- What is the meaning of $A \cdot x$?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
$$y_i = \sum_{j=1}^n A_{ij} x_j = \sum_{(i,j) \in E} x_j$$

■ Entry y_i is a sum of labels x_j of neighbors of i

What is the meaning of Ax?

- of neighbors of *j*
- Make this a new value at node j

■
$$j^{th}$$
 coordinate of $A \cdot x$:

Sum of the x -values
$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \lambda \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

$$A \cdot x = \lambda \cdot x$$

Spectral Graph Theory:

- Analyze the "spectrum" of matrix representing G
- \square Spectrum: Eigenvectors x_i of a graph, ordered by the magnitude (strength) of their corresponding eigenvalues λ_i : $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$

$$\lambda_1 \le \lambda_2 \le \dots \le \lambda_n$$

Example: d-regular graph

Suppose all nodes in G have degree d
 and G is connected

definition of d-regular graph

11

■ What are some eigenvalues/vectors of *G*?

$$A \cdot x = \lambda \cdot x$$
 What is λ ? What x?

- \Box Let's try: x = (1, 1, ..., 1)
- □ Then: $A \cdot x = (d, d, ..., d) = \lambda \cdot x$. So: $\lambda = d$
- □ We found eigenpair of $G: x = (1, 1, ..., 1), \lambda = d$

Remember the meaning of $y = A \cdot x$:

$$y_{j} = \sum_{i=1}^{n} A_{ij} x_{i} = \sum_{(j,i) \in E} x_{i}$$

Matrix Representations

\blacksquare Adjacency matrix (A):

- \square $n \times n$ matrix
- $\Box A=[a_{ij}], a_{ij}=1$ if edge between node i and j

	1	2	3	4	5	6
1	0	1	1	0	1	0
2	1	0	1	0	0	0
3	1	1	0	1	0	0
4	0	0	1	0	1	1
5	1	0	0	1	0	1
6	0	0	0	1	1	0

Matrix Representations

Degree matrix (D):

- \square $n \times n$ diagonal matrix
- \Box $D=[d_{ii}], d_{ii}=$ degree of node i

	1	2	3	4	5	6
1	3	0	0	0	0	0
2	0	2	0	0	0	0
3	0	0	3	0	0	0
4	0	0	0	3	0	0
5	0	0	0	0	3	0
6	0	0	0	0	0	2

Matrix Representations

- Laplacian matrix (L):
 - □ *n*×*n* symmetric matrix

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

What is trivial eigenpair?

$$L = D - A$$

$$\mathbf{x}=(\mathbf{1},...,\mathbf{1})$$
 then $\mathbf{L}\cdot\mathbf{x}=\mathbf{0}$ and so $\pmb{\lambda}=\pmb{\lambda_1}=\mathbf{0}$

- Important properties of L:
 - □ **Eigenvalues** are non-negative real numbers
 - Eigenvectors are real and orthogonal

Our Goal

 Recall: our goal is to find the minimum cut (or normalized cut)

New Formulation of Min Cut [Fiedler'73]

Express partition (A,B) as a vector

$$y_i = \begin{cases} +1 & if \ i \in A \\ -1 & if \ i \in B \end{cases}$$

Problem 1: Find a non-trivial vector y that minimizes f(y):

$$\underset{y \in [-1,+1]^n}{\operatorname{arg\,min}} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2$$

- Problem 1 is equivalent to finding the min-cut (A,B)
 - Why?

New Formulation of Min Cut [Fiedler'73]

Connection of min-cut problem and Laplacian L

$$\underset{y \in [-1,+1]^n}{\operatorname{argmin}} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

■ Why?

$$y^{T}L y = \sum_{i,j=1}^{n} L_{ij} y_{i} y_{j} = \sum_{i,j=1}^{n} (D_{ij} - A_{ij}) y_{i} y_{j}$$

$$\Box = \sum_{i} D_{ii} y_i^2 - \sum_{(i,j) \in E} 2y_i y_j$$

$$= \sum_{(i,j)\in E} (y_i^2 + y_j^2 - 2y_i y_j) = \sum_{(i,j)\in E} (y_i - y_j)^2$$

New Formulation of Min Cut [Fiedler'73]

 Until now: finding the min-cut is equiv. to solving the following problem

$$\underset{y \in [-1,+1]^n}{\operatorname{arg\,min}} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

- But, the problem is NP-hard
- So, we relax the constraint to make it viable
 - ullet y_i can be any number
- Surprisingly, the solution of the problem is tightly connected with the eigenvector of L
 - Detail: next slide

Rayleigh Theorem

$$\min_{y \in \mathbb{R}^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

$$\underset{x_i}{\underbrace{\sum_{(i,j) \in E} (y_i - y_j)^2}} = y^T L y$$

- $\lambda_2 = \min_y f(y)$: The minimum value of f(y) is given by the 2nd smallest eigenvalue λ_2 of the Laplacian matrix L
- $\mathbf{x} = \underset{\mathbf{y}}{\operatorname{arg\,min}_{\mathbf{y}}} f(\mathbf{y})$: The optimal solution for \mathbf{y} is given by the corresponding eigenvector \mathbf{x} , referred as the Fiedler vector

Rayleigh Theorem

$$\min_{y \in \mathbb{R}^n} f(y) = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

$$x_i = \sum_{(i,j) \in E} (y_i - y_j)^2 = y^T L y$$

- In fact, the minimum solution is given by y = 1 vector (the smallest eigenvector w/ eigenvalue 0); however, this does not say anything about the partition
- Thus, we find the next best solution which is the Fiedler vector
- Let the Fiedler vector = $(\alpha_1, ..., \alpha_n)$. Then, $\sum \alpha_i^2 = 1$ (unit length), $\sum \alpha_i = 0$ (orthogonal to the first eigenvector).

So far...

- How to define a "good" partition of a graph?
 - Minimize a given graph cut criterion
 - How to efficiently identify such a partition?
 - Approximate using information provided by the eigenvalues and eigenvectors of Laplacian
 - Spectral Clustering

Spectral Clustering Algorithms

Three basic stages:

- □ 1) Pre-processing
 - Construct a matrix representation of the graph
- Decomposition
 - Compute eigenvalues and eigenvectors of Laplacian
 - Map each point to a lower-dimensional representation based on one or more eigenvectors
- 3) Grouping
 - Assign points to two or more clusters, based on the new representation

Spectral Partitioning Algorithm

■ 1) Pre-processing:

Build Laplacian matrix L of the graph

	1	2	3	4	5	6
1	3	-1	-1	0	-1	0
2	-1	2	-1	0	0	0
3	-1	-1	3	-1	0	0
4	0	0	-1	3	-1	-1
5	-1	0	0	-1	3	-1
6	0	0	0	-1	-1	2

2) Decomposition:

 \Box Find eigenvalues λ and eigenvectors x of the matrix L

Map vertices to corresponding components of x

	_					
	0.4	0.3	-0.5	-0.2	-0.4	-0.5
	0.4	0.6	0.4	-0.4	0.4	0.0
X =	0.4	0.3	0.1	0.6	-0.4	0.5
^ =	0.4	-0.3	0.1	0.6	0.4	-0.5
	0.4	-0.3	-0.5	-0.2	0.4	0.5
	0.4	0.6	0.4	-0.4	-0.4	0.0

1	0.3
2	0.6
3	0.3
4	- 0.3
5	- 0.3
6	- 0.6

Spectral Partitioning

■ 3) Grouping:

- Sort components of reduced 1-dimensional vector
- Identify clusters by splitting the sorted vector in two
- How to choose a splitting point?
 - Naïve approaches:
 - Split at 0 or median value
 - More expensive approaches:
 - Attempt to minimize normalized cut in 1-dimension (sweep over ordering of nodes induced by the eigenvector)

1	0.3
2	0.6
3	0.3
4	-0.3
5	-0.3
6	-0.6

Split at 0:

Cluster A: Positive points

Cluster B: Negative points

1	0.3		
2	0.6		
3	0.3		
	' U	Kand	ו

٠,	9		
	4	-0.3	
	5	-0.3	
	6	-0.6	

Example: Spectral Partitioning

Example: Spectral Partitioning

Example: Spectral partitioning

k-Way Spectral Clustering

- How do we partition a graph into k clusters?
- Two basic approaches:
 - □ Recursive bi-partitioning [Hagen et al., '92]
 - Recursively apply bi-partitioning algorithm in a hierarchical divisive manner
 - Disadvantages: Inefficient, unstable
 - Cluster multiple eigenvectors [Shi-Malik, '00]
 - Build a reduced space from multiple eigenvectors
 - Commonly used in recent papers
 - A preferable approach...

Outline

- Spectral Clustering
- **→** □ Small Communities

Small Communities in Web

What is the signature of a community / discussion in a Web graph?

Use this to define "topics": What the same people on the left talk about on the right Remember HITS!

Intuition: Many people all talking about the same things

Searching for Small Communities

A more well-defined problem:

Enumerate complete bipartite subgraphs $K_{s,t}$

□ Where $K_{s,t}$: s nodes on the "left" where each links to the same t other nodes on the "right"

$$|X| = s = 3$$

 $|Y| = t = 4$

Fully connected
UKang

Frequent Itemset Enumeration

- Market basket analysis. Setting:
 - \Box Market: Universe U of n items
 - □ Baskets: m subsets of $U: S_1, S_2, ..., S_m \subseteq U$ (S_i is a set of items one person bought)
 - lacksquare Support: minimum number of occurrence f
- Goal:
 - ullet Find all subsets T appearing in at least f sets S_i (items in T were bought together at least f times)
- What's the connection between the itemsets and complete bipartite graphs?

From Itemsets to Bipartite K_{s,t}

Frequent itemsets = complete bipartite graphs!

■ How?

- View each node *i* as a
 set *S_i* of nodes *i* points to
- □ $K_{s,t}$ = a set Y of size tthat occurs in s sets S_i
- Looking for K_{s,t} → finding frequent sets of size t
 with support s

s ... minimum support (|X|=s) **t** ... itemset size (|Y|=t)

From Itemsets to Bipartite K_{s,t}

View each node i as a set S_i of nodes i points to

Find frequent itemsets:

s ... minimum support

t ... itemset size

Say we find a **frequent itemset** *Y*={*a*,*b*,*c*} of supp *s*So, there are *s* nodes that link to all of {a,b,c}:

We found $K_{s,t}$!

 $K_{s,t}$ = a set Y of size t that occurs in s sets S_i

Example (1)

Itemsets:

$$d = \{e,f\}$$

$$e = \{b,d\}$$

$$f = \{\}$$

- Minimum support s=2
 - □ **{b,d}**: support 3
 - □ **{e,f}**: support 2
- And we just found 2 bipartite subgraphs:

Example (2)

Example of a community from a web graph

A community of Australian fire brigades

Nodes on the right	Nodes on the left		
NSW Rural Fire Service Internet Site	New South Wales Firial Australian Links		
NSW Fire Brigades	Feuerwehrlinks Australien		
Sutherland Rural Fire Service	FireNet Information Network		
CFA: County Fire Authority	The Cherrybrook Rurre Brigade Home Page		
"The National Centeted Children's Ho	New South Wales Firial Australian Links		
CRAFTI Internet Connexions-INFO	Fire Departments, F Information Network		
Welcome to Blackwoo Fire Safety Serv	The Australian Firefighter Page		
The World Famous Guestbook Server	Kristiansand brannvdens brannvesener		
Wilberforce County Fire Brigade	Australian Fire Services Links		
NEW SOUTH WALES FIRES 377 STATION	The 911 F,P,M., Firmp; Canada A Section		
Woronora Bushfire Brigade	Feuerwehrlinks Australien		
Mongarlowe Bush Fire – Home Page	Sanctuary Point Rural Fire Brigade		
Golden Square Fire Brigade	Fire Trails "1ghters around the		
FIREBREAK Home Page	FireSafe – Fire and Safety Directory		
Guises Creek Voluntfficial Home Page	Kristiansand Firededepartments of th		

Questions?