S.E. (Computer Engineering) (Semester – III) (RC) Examination, Nov./Dec. 2012 LOGIC DESIGN

Durati	on : 3 Hours Max. Marks : 10	00
Insti	 Assume suitable data if necessary. Answer any five questions, attempt atleast one question from each Module. Draw neat diagrams wherever required. Write question numbers legibly while answering. Write answers for the questions based on marks allotted. Figures at the right inside "()" indicate marks. 	
	MODULE - I	
1. a)	Represent the following decimal numbers in 8-bit 1) Sign magnitude form 2) Sign 1's complement form and 3) Sign 2's complement form: A) +27 B) -36	6)
b)		4)
	Express the following decimal numbers in Excess-3 form and verify. 1) 245 2) 532	4)
d)	Convert the following into Gray numbers and verify: 1) (3A7) ₁₆ 2) (527) ₈	6)
2. a)	Detect and correct error, if any in the following even parity Hamming code word 0111101. Explain Hamming code concept.	8)
b)	Implement AB + C'D' using 3 NAND gates only. Draw logic diagram. Assume inverted input is available.	4)
c)	Expand A + BC' + ABD' + ABCD to minterms and maxterms. (4)	4)
d)	What is duality principle in Boolean Algebra ? Show that dual of EX-OR is same as its complement.	4)
	P.T.	350

MODULE-II

3.	A)	Convert a D flip to JK flip flop.	(6)
	B)	i) Synchronous and Asynchronous counters ii) Combinational and Sequential circuits	
		iii) Level Triggered and edge triggered flip flops.	(6)
	C)	Design an active high S-R flip flop using NAND gates. Also, draw its timing diagram.	(6)
	D)	How many flip flops are required to construct mod 1024 synchronous counter?	(2)
4.	A)	Design a full adder using 2 Half Adders and one OR gate and verify.	(6)
	B)	Design a 4 bit Binary to Gray code converter using combinational logic.	(6)
	C)	Design a 4-bit even parity bit generator using combinational logic.	(4)
	D)	Draw the logic diagram of 3-Line to-8 Line Decoder which has Active High outputs. Also, present the truth table of the same.	(4)
		MODULE - III	
5.	A)	Explain difference between counters and shift registers.	(2)
	B)	Design Mod-6 Asynchronous Up counter using T FF. Present the logic diagram, the timing diagram and table for Asynchronous Reset Inputs.	(9)
		Design a synchronous counter to produce the following binary sequence 1, 3, 5, 7, 1 Use JK flip flops.	(9)
ô.	A)	With a neat diagram explain the working of serial-in-parallel-out shift register.	(6)
	B)	The binary number 1101 is serially entered (right most bit first) into a 4-bit parallel out shift register that is initially clear. What are Q outputs after 2 clock pulses? Explain functioning of 4 bit SIPO register.	(6)
	C)	With neat diagram, explain the operation of ring counter. Also sketch output waveform.	(6)
	D)	While designing a N state counter, how do you decide on the number of flip flops in the counter?	(2)

MODULE-IV

- A) Design synchronous sequential circuit for Serial Binary Adder. Briefly explain its functioning. (10)
 - B) Design a sequential circuit with JK flip flops to satisfy the following state equations:

$$A(t+1) = A' B' CD + A' B' C + ACD + AC' D'$$

$$B(t + 1) = A'C + CD' + A'BC'$$

$$C(t+1) = B$$

$$D(t+1) = D'$$

- A, B, C and D are present states of the four JK flip-flops and A(t + 1), B(t + 1), C(t + 1) and D(t + 1) are next states of the four flip flops. (10)
- A) Write the PAL programming table used for implementation of the following Boolean functions using PAL with four inputs and 3-wide AND- OR structure.

F1 (A, B, C, D) =
$$\sum m(2, 12, 13)$$

F2 (A, B, C, D) =
$$\sum m(7, 8, 9, 10, 11, 12, 13, 14, 15)$$

F3 (A, B, C, D) =
$$\Sigma$$
 m(0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 15)

F4 (A, B, C, D) =
$$\Sigma$$
 m(1, 2, 8, 12 13) (10)

 B) Show how PLA circuit can be programmed to implement sum and carry output of full adder.

(10)