Large Language Models

Prompts and completions

Context window

 typically a few 1000 words.

LLM use cases & tasks

The significance of scale: language understanding

BLOOM ___

*Bert-base

How LLMs work -Transformers architecture

Transformers

Self-attention

Self-attention

Output **Transformers** Softmax output Decoder Encoder Embedding Embedding

Inputs

Transformers

Output **Transformers** X₁ X_3 X_4 X_2 e.g. 512 342 879 432 342 **Embedding Embedding** Embedding Inputs

Transformers

Transformers

Output **Transformers** Softmax output Multi-headed Multi-headed **Self-attention Self-attention** Embedding Embedding Inputs

Output **Transformers** Softmax output **Feed forward** network **Feed forward** Decoder network Encoder Embedding Embedding

Inputs

Transformers

Encoder

Encodes inputs ("prompts") with contextual understanding and produces one vector per input token.

Decoder

Accepts input tokens and generates new tokens.

Transformers

Summary of in-context learning (ICL)

Prompt // Zero Shot

Classify this review:
I loved this movie!
Sentiment:

Context Window (few thousand words)

Prompt // One Shot

Classify this review:
I loved this movie!
Sentiment: Positive

Classify this review:
I don't like this chair.
Sentiment:

Prompt // Few Shot >5 or 6 examples

```
Classify this review:
I loved this movie!
Sentiment: Positive
Classify this review:
I don't like this
chair.
Sentiment: Negative
Classify this review:
Who would use this
product?
Sentiment:
```


The significance of scale: task ability

BLOOM ₋

*Bert-base

Generative Al project lifecycle

Model size vs. time

Growth powered by:

- Introduction of transformer
- Access to massive datasets
- More powerful compute resources

2018 2022 2023

Model size vs. time

2018 2022

Computational challenges

OutOfMemoryError: CUDA out of memory.

Approximate GPU RAM needed to store 1B parameters

1 parameter = 4 bytes (32-bit float)

1B parameters = 4×10^9 bytes = 4GB

4GB @ 32-bit full precision

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf_train_gpu_one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

Additional GPU RAM needed to train 1B parameters

	Bytes per parameter		
Model Parameters (Weights)	4 bytes per parameter		

~20 extra bytes per parameter

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf train gpu one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

Approximate GPU RAM needed to train 1B-params

Memory needed to store model

4GB @ 32-bit full precision

Memory needed to train model

Quantization

FP32

32-bit floating point

Range:

From $-3e^{38}$ to $+3e^{38}$

FP16 | BFLOAT16 | INT8

16-bit floating point | 8-bit integer

Quantization: FP32

Quantization: FP16

Quantization: BFLOAT16

Quantization: INT8

Quantization: Summary

	Bits	Exponent	Fraction	Memory needed to store one value
FP32	32	8	23	4 bytes
FP16	16	5	10	2 bytes
BFLOAT16	16	8	7	2 bytes
INT8	8	-/-	7	1 byte

- Reduce required memory to store and train models
- Projects original 32-bit floating point numbers into lower precision spaces
- Quantization-aware training (QAT) learns the quantization scaling factors during training
- BFLOAT16 is a popular choice

Approximate GPU RAM needed to store 1B parameters

Fullprecision model

4GB @ 32-bit full precision

16-bit quantized model

2GB @ 16-bit half precision

Sources: https://huggingface.co/docs/transformers/v4.20.1/en/perf train gpu one#anatomy-of-models-memory, https://github.com/facebookresearch/bitsandbytes

GPU RAM needed to train larger models

1B param model

175B param model

4,200 GB @ 32-bit full precision

500B param model

12,000 GB @ 32-bit full precision

