STUDENT NAME - EID CS 341 Automata Theory

Homework 15

Due: Tuesday, April 30

Tł	nis assignment covers Cha	apters 2	2 and 24.			
1)	Solve the linear Diophar	ntine fa	rmer problem presen	ted in Section 22.1.		
	Solution.					
2)	Consider the following in one.	stance	of the Post Correspo	ndence problem. Doe	s it have a solution? If so	, show
			X	Y		
		1	a	bab		
		2	bbb	bb		
		3	aab	ab		
		4	b	a		
	Solution.					
4)	Proof.) Let $TILES = \{\langle T \rangle :$ the book, with the tile s	et T }.	Let s be the string the			□ bed in
	Is $s \in TILES$? Prove your answer.					
	Answer.					
	Proof.					
5)	Is $L = \{\langle M \rangle : M \text{ is a P answer.} \}$	DA and	$\mathrm{d}\ L(M) = \{x \ : \ x \in$	$\{a,b\}^*$ and $\exists m \ (x =$	$=2^{m})\}\}$ decidable? Prov	e your
	Answer.					
	Proof.					

6) A language L is **D-complete** iff (1) L is in D, and (2) for every language L' in D, $L' \leq_M L$. Consider the following claim: If $L \in D$ and $L \neq \Sigma^*$ and $L \neq \emptyset$, then L is D-complete. Prove or disprove this claim.

Proof.

7) Let $\Sigma = \{1\}$. Show that there exists at least one undecidable language with alphabet Σ . (Hint: Use a counting argument.)

Proof.

8) The following sequence of figures corresponds to a fractal called a Koch island:

These figures were drawn by interpreting strings as turtle programs, just as we did in Example 24.5 and Example 24.6. The strings were generated by an L-system G, defined with:

$$\Sigma = \{F, +, -\}.$$

$$\omega = F - F - F - F$$

To interpret the strings as turtle programs, attach meanings to the symbols in Σ as follows (assuming that some value for k has been chosen):

- F means move forward, drawing a line of length k.
- + means turn left 90° .
- - means turn right 90°.

Figure (a) was drawn by the first generation string ω . Figure (b) was drawn by the second generation string, and so forth. R_G contains a single rule. What is it?

Answer. \Box