Devoir surveillé n°03: corrigé

Problème 1 – Tchebychev : premier contact

Partie I – Étude d'une application

- 1. Il s'agit de déterminer les solutions éventuelles de l'équation f(z) = i d'inconnue $z \in \mathbb{C}^*$. Cette équation équivaut à $z^2 iz + 1 = 0$ qui est une équation du second degré dont le discriminant est égal à $-5 = (i\sqrt{5})^2$. Les solutions de cette équation sont donc $\frac{i(1+\sqrt{5})}{2}$ et $\frac{i(1-\sqrt{5})}{2}$ qui sont donc également les antécédents de i par f.
- 2. On vient de voir que i admettait deux antécédents par f:f n'est donc pas injective.
- 3. Soit $Z \in \mathbb{C}$. On s'intéresse à l'équation (E) : f(z) = Z d'inconnue $z \in \mathbb{C}$. Celle-ci équivaut à $z^2 zZ + 1 = 0$. Il s'agit d'une équation du second degré dont 0 n'est manifestement pas solution. Cette dernière équation admet donc toujours au moins une solution non nulle donc Z admet au moins un antécédent par f. L'application f est donc surjective.

Partie II - Une suite d'applications

1. Pour tout $z \in \mathbb{C}$,

$$\varphi_2(z) = z\varphi_1(z) - \varphi_0(z) = z^2 - 2$$

$$\varphi_3(z) = z\varphi_2(z) - \varphi_1(z) = z^3 - 3z$$

$$\varphi_4(z) = z\varphi_3(z) - \varphi_2(z) = z^4 - 4z^2 + 2$$

2. Les solutions de l'équation $\varphi_2(z) = 0$ sont clairement $-\sqrt{2}$ et $\sqrt{2}$. De même, les solutions de l'équation $\varphi_3(z) = 0$ sont $0, -\sqrt{3}$ et $\sqrt{3}$.

L'équation $\varphi_4(z) = 0$ est une équation bicarrée. On la résout classiquement en effectuant le changement de variable $Z = z^2$. Les solutions de l'équation $Z^2 - 4Z + 2 = 0$ sont $2 + \sqrt{2}$ et $2 - \sqrt{2}$. On en déduit que les solutions de l'équation $\varphi_4(z) = 0$ sont

$$\sqrt{2+\sqrt{2}}$$
, $-\sqrt{2+\sqrt{2}}$, $\sqrt{2-\sqrt{2}}$, $-\sqrt{2-\sqrt{2}}$

3. On note P_n l'assertion

$$\forall z \in \mathbb{C}^*, \ \varphi_n(f(z)) = f(z^n)$$

Puisque pour tout $z \in \mathbb{C}^*$, $\varphi_0(z) = 2$ et $f(z^0) = f(1) = 2$, P_0 est vraie. De même, pour tout $z \in \mathbb{C}^*$, $\varphi_1(f(z)) = z + \frac{1}{z}$ et $f(z^1) = z + \frac{1}{z}$ donc P_1 est vraie.

Supposons P_n et P_{n+1} vraies pour un certain $n \in \mathbb{N}$. Alors pour tout $z \in \mathbb{C}^*$,

$$\begin{split} \varphi_{n+2}(f(z)) &= f(z)\varphi_{n+1}(f(z)) - \varphi_n(f(z)) \\ &= f(z)f(z^{n+1}) - f(z^n) \\ &= \left(z + \frac{1}{z}\right) \left(z^{n+1} + \frac{1}{z^{n+1}}\right) - \left(z^n + \frac{1}{z^n}\right) \\ &= z^{n+2} + \frac{1}{z^{n+2}} = f(z^{n+2}) \end{split}$$

Ainsi P_{n+2} est vraie.

Par récurrence double, P_n est vraie pour tout $n \in \mathbb{N}$.

4. L'équation $f(z^n) = 0$ équivaut à $z^{2n} = -1$. L'ensemble des solutions de cette équation est donc l'ensemble des racines $2n^{\text{èmes}}$ de -1, c'est-à-dire

$$A_n = \left\{ e^{\frac{(2k+1)i\pi}{2n}}, \ k \in [0, 2n-1] \right\}$$

5. Remarquons que pour $\omega \in A_n$,

$$\varphi_n(f(\omega)) = f(\omega^n) = 0$$

Donc les $f(\omega)$ pour $\omega \in A_n$ sont des solutions de l'équation $\varphi_n(z) = 0$. Via une formule d'Euler, ceci signifie que les réels $2\cos\left(\frac{(2k+1)\pi}{2n}\right)$ pour $k \in [0,2n-1]$ sont des solutions de l'équation $\varphi_n(z) = 0$.

Réciproquement, soit $\alpha \in \mathbb{C}$ une solution de l'équation $\varphi_n(z) = 0$. Puisque f est surjective, il existe donc $\omega \in \mathbb{C}^*$ tel que $\alpha = f(\omega)$. Alors $f(\omega^n) = \varphi_n(f(\omega)) = f(\omega^n) = 0$ de sorte que ω est solution de l'équation $f(z^n) = 0$. Il existe donc $k \in [0, 2n-1]$ tel que $\alpha = e^{\frac{(2k+1)i\pi}{2n}}$. Mais alors $\alpha = f(\omega) = 2\cos\left(\frac{(2k+1)\pi}{2n}\right)$.

Finalement l'ensemble des solutions de l'équations $\varphi_n(z) = 0$ est

$$\mathbf{B}_{n} = \left\{ 2\cos\left(\frac{(2k+1)\pi}{2n}\right), \ k \in [\![0,2n-1]\!] \right\}$$

On peut remarquer que certains éléments de \mathbf{B}_n figurent en double dans la description précédente. En effet,

$$\mathbf{B}_n = \left\{2\cos\left(\frac{(2k+1)\pi}{2n}\right),\; k \in \llbracket 0,n-1\rrbracket \right\} \cup \left\{2\cos\left(\frac{(2k+1)\pi}{2n}\right),\; k \in \llbracket n,2n-1\rrbracket \right\}$$

On montre alors que les deux ensembles de cette union sont égaux.

$$\begin{split} \left\{2\cos\left(\frac{(2k+1)\pi}{2n}\right),\,k\in\llbracket n,2n-1\rrbracket\right\} &= \left\{2\cos\left(\frac{(2(k+n)+1)\pi}{2n}\right),\,k\in\llbracket 0,n-1\rrbracket\right\} \\ &\quad \text{via le "changement d'indice" } k\to k+n \\ &= \left\{2\cos\left(\pi+\frac{(2k+1)\pi}{2n}\right),\,k\in\llbracket 0,n-1\rrbracket\right\} \\ &= \left\{-2\cos\left(\frac{(2k+1)\pi}{2n}\right),\,k\in\llbracket 0,n-1\rrbracket\right\} \\ &= \left\{-2\cos\left(\frac{(2(n-1-k)+1)\pi}{2n}\right),\,k\in\llbracket 0,n-1\rrbracket\right\} \\ &\quad \text{via le "changement d'indice" } k\to n-1-k \\ &= \left\{-2\cos\left(\pi-\frac{(2k+1)\pi}{2n}\right),\,k\in\llbracket 0,n-1\rrbracket\right\} \\ &= \left\{2\cos\left(\frac{(2k+1)\pi}{2n}\right),\,k\in\llbracket 0,n-1\rrbracket\right\} \end{split}$$

Finalement, on peut affirmer que

$$\mathbf{B}_n = \left\{ 2\cos\left(\frac{(2k+1)\pi}{2n}\right), \ k \in \llbracket 0, n-1 \rrbracket \right\}$$

Pour tout $k \in [0, n-1]$, $\frac{(2k+1)\pi}{2n} \in [0, \pi]$ et cos est injective sur $[0, \pi]$ puisqu'elle y est strictement décroissante. Les réels $2\cos\left(\frac{(2k+1)\pi}{2n}\right)$ pour $k \in [0, n-1]$ sont donc deux à deux distincts. Le nombre de solutions de l'équation $\varphi_n(z) = 0$ est donc n.

Remarque. Le lecteur cultivé aura remarqué que les fonctions φ_n sont reliées aux polynômes de Tchebychev.

SOLUTION 1.

1. Le discriminant de l'équation est $\Delta = -32 + 24i$. Or

$$\Delta = 4(-8+6i) = 2^2(1+3i)^2 = (2+6i)^2$$

donc les solutions de l'équation sont

$$a = \frac{4-2i+2+6i}{2} = 3+2i$$
 et $b = \frac{4-2i-2-6i}{2} = 1-4i$

2. Notons c l'affixe du point C. Le point C convient si et seulement si CA = CB et $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{2} [\pi]$, ce qui équivaut en termes d'affixes à

$$\left| \frac{b-c}{a-c} \right| = 1$$
 et $\arg \left(\frac{b-c}{a-c} \right) \equiv \frac{\pi}{2} [\pi]$

Autrement dit, c convient si et seulement si $\frac{b-c}{a-c}=\pm i$ autrement dit si et seulement si

$$c = \frac{b - ia}{1 - i} = 5 - 2i$$
 ou $c = \frac{b + ia}{1 + i} = -1$

3. On représente les deux triangles déterminés à la question précédente.

SOLUTION 2.

1.

$$\cos(3\theta) = \cos(2\theta + \theta)$$

$$= \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$$

$$= (2\cos^2 \theta - 1)\cos \theta - 2\sin^2 \theta \cos \theta$$

$$= 2\cos^3 \theta - \cos \theta - 2(1 - \cos^2 \theta)\cos \theta$$

$$= 4\cos^3 \theta - 3\cos \theta$$

2. f est dérivable sur $\mathbb R$ en tant que fonction polynomiale. De plus, pour tout $x \in \mathbb R$,

$$f'(x) = 12x^2 - 2x - 4 = 2(2x + 1)(3x - 2)$$

On en déduit le tableau de variations suivant.

x	$-\infty$		$-\frac{1}{2}$		<u>2</u> 3		+∞
f'(x)		+	0	_	0	+	
f(x)	-∞		13/4		$\frac{2}{27}$		+∞

3. D'après l'énoncé, on a $z = e^{i\theta}$. De plus,

$$|z^{3}-z+2|^{2} = (z^{3}-z+2)\overline{(z^{3}-z+2)}$$

$$= |z|^{6} + |z|^{2} + 4 - 2(z+\overline{z}) - |z|^{2}(z^{2} + \overline{z}^{2}) + 2(z^{3} + \overline{z}^{3})$$

$$= 6 - 2(z+\overline{z}) - (z^{2} + \overline{z}^{2}) + 2(z^{3} + \overline{z}^{3})\operatorname{car}|z| = 1$$

$$= 6 - 2(e^{i\theta} + e^{-i\theta}) - (e^{2i\theta} + e^{-2i\theta}) + 2(e^{3i\theta} + e^{-3i\theta}) \quad \operatorname{car} z = e^{i\theta}$$

$$= 6 - 4\cos\theta - 2\cos(2\theta) + 4\cos(3\theta) \quad \text{en vertu d'une relation d'Euler}$$

$$= 6 - 4\cos\theta - 2(2\cos^{2}\theta - 1) + 4(4\cos^{3}\theta - 3\cos\theta)$$

$$= 8 - 16\cos\theta - 4\cos^{2}\theta + 16\cos^{3}\theta$$

$$= 4f(\cos\theta)$$

4. Puisque $\mathbb{U} = \{e^{i\theta}, \theta \in \mathbb{R}\}$, on a en vertu de la première question

$$\max_{z \in \mathbb{U}} \varphi(z) = \max_{\theta \in \mathbb{R}} 2\sqrt{f(\cos \theta)}$$

Mais puisque Im cos = [-1, 1],

$$\max_{z \in \mathbb{U}} \varphi(z) = \max_{x \in [-1,1]} 2\sqrt{f(x)}$$

La question précédente nous renseigne sur les variations de f sur [-1,1].

On peut en déduire que

$$\max_{z \in \mathbb{U}} \varphi(z) = 2\sqrt{\frac{13}{4}} = \sqrt{13}$$

Ce maximum est atteint en un élément de \mathbb{U} dont un argument θ est tel que $\cos \theta = -\frac{1}{2}$ i.e. tel que $\theta \equiv \pm \frac{2\pi}{3} [2\pi]$. On en déduit donc que le maximum de φ est atteint en j et j^2 .

SOLUTION 3.

- **1.** Si on avait $\omega = 1$, on aurait $\omega^n = 1$ et donc -1 = 1, ce qui est faux. Ainsi $\omega \neq 1$.
- 2. On reconnaît la somme des termes d'une suite géométrique de raison $\omega \neq 1$. Ainsi

$$A_n = \frac{1 - \omega^n}{1 - \omega} = \frac{1 - e^{i\pi}}{1 - \omega} = \frac{2}{1 - \omega}$$

3. Classiquement

$$C_n = \sum_{k=0}^{n-1} \operatorname{Re}\left(e^{\frac{ik\pi}{n}}\right) = \sum_{k=0}^{n-1} \operatorname{Re}\left(\omega^k\right) = \operatorname{Re}\left(\sum_{k=0}^{n-1} \omega^k\right) = \operatorname{Re}(A_n)$$

$$S_n = \sum_{k=0}^{n-1} \operatorname{Im}\left(e^{\frac{ik\pi}{n}}\right) = \sum_{k=0}^{n-1} \operatorname{Im}\left(\omega^k\right) = \operatorname{Im}\left(\sum_{k=0}^{n-1} \omega^k\right) = \operatorname{Im}(A_n)$$

En utilisant la méthode de l'arc-moitié :

$$\mathbf{A}_{n} = \frac{2}{e^{\frac{i\pi}{2n}} \left(e^{-\frac{i\pi}{2n}} - e^{\frac{i\pi}{2n}}\right)} = \frac{2e^{-\frac{i\pi}{2n}}}{-2i\sin\frac{\pi}{2n}} = \frac{ie^{-\frac{i\pi}{2n}}}{\sin\frac{\pi}{2n}} = \frac{i\left(\cos\frac{\pi}{2n} - i\sin\frac{\pi}{2n}\right)}{\sin\frac{\pi}{2n}} = \frac{\sin\frac{\pi}{2n} + i\cos\frac{\pi}{2n}}{\sin\frac{\pi}{2n}} = 1 + i\frac{\cos\frac{\pi}{2n}}{\sin\frac{\pi}{2n}} = 1 + i\frac{\sin\frac{\pi}{2n}}{\sin\frac{\pi}{2n}} = 1 + i\frac{\sin\frac{\pi}{2n}}{\sin\frac{\pi}{2n}}$$

On en déduit les résultats voulus.

4. Pour tout $k \in [0, n-1]$,

$$\omega^{2k} - 1 = e^{\frac{2ik\pi}{n}} - 1 = 2ie^{\frac{ik\pi}{n}} \sin\frac{k\pi}{n}$$

Puisque $\frac{k\pi}{n} \in [0, \pi]$, $\sin \frac{k\pi}{n} \ge 0$ de sorte que

$$|\omega^{2k} - 1| = 2|i| \left| e^{\frac{ik\pi}{n}} \right| \left| \sin \frac{k\pi}{n} \right| = 2\sin \frac{k\pi}{n}$$

Ainsi

$$B_n = 2\sum_{k=0}^{n-1} \sin \frac{k\pi}{n} = 2S_n = \frac{2\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}}$$