Astrophysics - Summary - Introduction	
1. [units]:-mers: rolar mass	
- length: AU, pc, hpc, Mpc, Gpc - time: regular time	
- coordinates: Da. Dec Egnatorial system - preces	Moh
l, b gatalist 8	
- brightness: magnitudes - log scale (absolute, apporent, to	lometri
m-M = 5log 10 de destance measurments	
+ colour of objects (B-V)	
Sources of astronomical information:	
- EM radiation - neutrinos - Sun + rupemovas	
- gravitational waves - o black hole & wentron star more	gers
- cornic vargs - o energetic abjects	
EM vadiation: - various wavelengths	
- atmosperic windows (throughput)	
- Imaging + Spectroscopy	
- Bladsbody or syncrotron topectral lines	
Optical: resolution $\Theta = 1.22 \frac{1}{D}$ have a fe	W
The first war to the fortune of	
X- vay astronomy: only from space the observator	
Infrared astronomy:	
Gamma-ray astronomy: directly only from space	

2) Radiation transfer - Summary Describes how vadiation interacts with matter - Macroscopic: using emission and absorption coeficients - Thoroscopic: calculating the emission & absorption coeficients Plandes law - blackbody vadiction Radiation transfer - how does vadiation propagate amount of vadiation dEydv = 1, cost dA dt dadv solid area time angle angle of direction F= JEdv Rediction Flux: Fy = 5/y cost of D to integrate over frequency Lo integrate the internity density of energy in a sylunder filled by radiation Energy dewrity: Uy= \(\frac{1\frac{1}{C}}{C} \d \O \) Redication pressure: pressure associated with vadiation Py= duy Radiative transport: how dos indication propagate trough things - in empty space: the radiation does not change - through matter: emersion and absorption emission coef: jr 3 all matter has this absorption coef &, radiation transfer equation: $\frac{dl_{v}}{ds} = j_{v} - d_{v} |_{v}$ if the matter only absorbes: $j\nu = 0$ $\frac{d|\nu}{ds} = -d\nu |\nu$ optical depth: $div = d\nu ds \rightarrow \tau_p = \int d\nu (s') ds'$ 1 (2) = 1 (9) e- 2,

3) & >1 optically thick
2 LL 1 optically thin (can neglect optical depth)
source function: Sy = Jx describes matter
Thirdofs law: In thermodynamic agnitionium:
$j_v = d_v B_v(T)$ emission coef. absorption coef x blackbody
- Thermodynamic equilibrium -> Maxwellian velocity dostribution (e.g. stars)
Boltzmann distribution law: $\frac{Ne}{N_o} = \exp\left(\frac{E}{16BT}\right)$ is fraction of excited
Saha equation: fraction of conised gas
- Local thermodynamical equilibrium
- Radiative transfer trough stellar atmospheres - Jeneral considerations
- plane parallel atmosphere = layers, no variation in sex directi
- LTE
- vadiation field is anisotropic (vadral temperature gradient)
- greag atmosphere model -o no dependence on V (mingolification)
- limb darrening : interrity depends on direction
- Formation of spectral lines (absorption)
-o layers with different & v
-o metter actually has I dependent on V
- Radiative energy transport curide stars:
- Radiative energy transport curide stars: opacity(X): $d_R = P X$ depends on dennity and absorption coef.
However: maity drops at low townerstates!
However: maity drops at low townerstates!

Thompson scattering: radiation ocattering on free electrons
elastic ocattering-wavelength does not change

- additional opacity due to thompson ocattering

Spectral lares: Equivalent width: the integral of the fractional dip in intervity for an absorption line

W₁ = $\int \frac{1c - 1v}{1c} d\lambda$ $V_2 = \int \frac{1c - 1v}{1c} d\lambda$ $V_3 = \int \frac{1c - 1v}{1c} d\lambda$ $V_3 = \int \frac{1c - 1v}{1c} d\lambda$ $V_4 = \int \frac{1c - 1v}{1c} d\lambda$

photon diffusion inside the Sun -v it tales a very long time for photons to get out from the core ~ 104 years