

Report No:CCISE170102204

FCC REPORT

(UNII)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin,

Hong Kong

Equipment Under Test (EUT)

Product Name: InVision 4K Media Player

Model No.: DTIV4K-G2

FCC ID: 2AB6ZDTIV4K-G2

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 16 Jan., 2017

Date of Test: 16 Jan., to 28 Feb., 2017

Date of report issued: 01 Mar., 2017

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	01 Mar., 2017	Original

Tested by: 01 Mar., 2017

Tos: Engineer

Reviewed by: 01 Mar., 2017

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT ANDMODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	MEASUREMENT UNCERTAINTY	
	5.8	TEST INSTRUMENTS LIST	
6	TES	T RESULTS ANDMEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	21
	6.5	POWER SPECTRAL DENSITY	38
	6.6	BAND EDGE	48
	6.7	Spurious Emission	57
	6.7.1	Restricted Band	57
	6.7.2	2 Unwanted Emissions out of the Restricted Bands	66
	6.8	FREQUENCY STABILITY	76
7	TES	T SETUP PHOTO	78
ጸ	FUT	CONSTRUCTIONAL DETAILS	80

4 Test Summary

Test Item	Section in CFR 47		
Antenna requirement	15.203/15.407 (g)		
AC Power Line Conducted Emission	15.207		
Conducted Peak Output Power	15.407 (a) (1) (iv) & (a) (3)		
26dB Occupied Bandwidth	15.407 (a) (5)		
6dB Emission Bandwidth	15.407(e)		
Power Spectral Density	15.407 (a) (1) (iv) &(a) (3)		
Band Edge	15.407(b)		
Spurious Emission	15.205/15.209		
Frequency Stability	15.407(g)		

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED		
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong		
Manufacturer/Factory:	HUNG WAI ELECTRONICS (HUIZHOU) LTD		
Address of Manufacturer/Factory:	3rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China		

5.2 General Description of E.U.T.

Product Name:	InVision 4K Media Player
Model No.:	DTIV4K-G2
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz
Channel numbers:	Band 1: 802.11a/802.11n20: 4,802.11n40: 2,802.11ac:1 Band 4: 802.11a/802.11n20: 5,802.11n40: 2,802.11ac:1
Channel separation:	802.11a/802.11n20:20MHz, 802.11n40:40MHz, 802.11ac : 80MHz
Modulation technology: (IEEE 802.11a)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM
Modulation technology: (IEEE 802.11ac)	BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps,24Mbps,36Mbps,48Mbps,54Mbps
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps,MCS1:13Mbps,MCS2:19.5Mbps,MCS3:26Mbps, MCS4:39Mbps,MCS5:52Mbps,MCS6:58.5Mbps,MCS7:65Mbps
Data speed (IEEE 802.11n40):	MCS0:15Mbps,MCS1:30Mbps,MCS2:45Mbps,MCS3:60Mbps, MCS4:90Mbps,MCS5:120Mbps,MCS6:135Mbps,MCS7:150Mbps
Data speed (IEEE 802.11ac):	Up to 433.3Mbps
Antenna Type:	External Antenna
Antenna gain:	2 dBi
AC adapter :	Model: PS12F120K1000UD Input: AC100-240V 50/60Hz 0.35A Output: DC 12.0V, 1000mA

Operation Frequency each of channel

Band 1							
802.11a/802.11n20		802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
36	5180MHz	38	5190MHz	42	5210MHz		
40	5200MHz	46	5230MHz				
44	5220MHz						
48	5240MHz						
	Band 4						
802.11a	/802.11n20	802.11n40		802.11ac			
Channel	Frequency	Channel	Frequency	Channel	Frequency		
149	5745MHz	151	5755MHz	155	5775MHz		
153	5765MHz	159	5795MHz				
157	5785MHz						
161	5805MHz						
165	5825MHz						

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1						
802.11a/802.11n20		802.11n40		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5180MHz	Lowest channel	5190MHz	Middle channel	5210MHz	
Middle channel	5200MHz	Highest channel	5230MHz			
Highest channel	5240MHz					
		Band 4				
802.11a/80	02.11n20	802.11n40		802.11ac		
Channel	Frequency	Channel	Frequency	Channel	Frequency	
Lowest channel	5745MHz	Lowest channel	5755MHz	Middle channel	5775MHz	
Middle channel	5785MHz	Highest channel	5795MHz			
Highest channel	5825MHz					

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.			

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.			
Mode	Data rate		
802.11a	6 Mbps		
802.11n20	6.5 Mbps		
802.11n40	13.5 Mbps		
802.11ac	23.9 Mbps		

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20, 13.5 Mbps for 802.11n40 and 29.3 Mbps for 802.11ac. All test items for 802.11a, 802.11ac and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX745	N/A	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC
FLY POWER	Switching Adapter	PS24A120K2000UD	N/A	VoC

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

●FCC- Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully describedin a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.7 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)		
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)		
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)		

5.8 Test Instruments list

Radi	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-25-2016	03-25-2017			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-25-2016	03-25-2017			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2016	03-31-2017			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2016	03-31-2017			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2016	03-31-2017			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2016	03-31-2017			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2016	03-28-2017			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2016	03-28-2017			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2016	03-31-2017			
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Cond	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-24-2016	03-24-2017			
3	LISN	CHASE	MN2050D	CCIS0074	03-26-2016	03-26-2017			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2016	03-31-2017			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirementdoes not apply to carrier currentdevices or to devices operated underthe provisions of §15.211, § 15.213,§ 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbances ensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The WiFi antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 1	5.207					
Test Method:	ANSI C63.10: 2013						
TestFrequencyRange:	150kHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kH	RBW=9kHz, VBW=30kHz					
Limit:	Frequency range Limit (dBuV)						
	(MHz)	Quasi-peak	,				
	0.15-0.5	66 to 56*	0.15-0.5				
	0.5-5	56	0.5-5				
	5-30	60	5-30				
	* Decreases with the log	arithm of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). Itprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test setup:	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under LISN: Line Impedence St. Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power				
Test Instruments:	Refer to section 5.6 for d	letails					
Test mode:	Refer to section 5.3 for d	letails.					
Test results:	Passed						

Measurement Data:

Line:

Trace: 29

: CCIS Shielding Room : FCC PART15 B QP LISN LINE : InVision 4K Media Player : DTIV4K-G2 Site Condition EUT

Model Test Mode : 5G Wifi Mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT Remark

remark –									
		Read	LISN	Cable		Limit	Over		
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
	MHz	dBu∀	₫₿	₫B	dBu∜	dBu√	₫B		
1	0.154	45.15	0.14	10.78	56.07	65.78	-9.71	QP	
2	0.174	42.96	0.15	10.77	53.88	64.77	-10.89	QP	
3	0.174	19.54	0.15	10.77	30.46	54.77	-24.31	Average	
4	0.202	19.32	0.15	10.76	30.23	53.54	-23.31	Average	
5	0.459	36.24	0.24	10.75	47.23	56.71	-9.48	QP	
6	0.459	19.59	0.24	10.75	30.58	46.71	-16.13	Average	
1 2 3 4 5 6 7 8 9	0.683	32.31	0.31	10.77	43.39	56.00	-12.61	QP	
8	0.731	14.94	0.31	10.78	26.03	46.00	-19.97	Average	
9	1.269	12.91	0.28	10.90	24.09	46.00	-21.91	Average	
10	1.276	29.46	0.28	10.90	40.64	56.00	-15.36	QP	
11	11.559	35.48	0.28	10.92	46.68	60.00	-13.32	QP	
12	11.621	21.07	0.28	10.92	32.27	50.00	-17.73	Average	

Neutral:

Trace: 31

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : InVision 4K Media Player Condition EUT

Model : DTIV4K-G2 Test Mode : 5G Wifi Mode Power Rating : AC 120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: MT

Remark

	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>dB</u>	₫B	dBu₹	dBu∀	<u>dB</u>	
1	0.150	22.37	0.12	10.78	33.27	56.00	-22.73	Average
2	0.170	43.79	0.13	10.77	54.69	64.94	-10.25	QP
3	0.202	39.32	0.15	10.76	50.23	63.54	-13.31	QP
4	0.454	36.76	0.24	10.74	47.74	56.80	-9.06	QP
2 3 4 5	0.459	24.08	0.24	10.75	35.07	46.71	-11.64	Average
6	0.694	17.07	0.33	10.77	28.17	46.00	-17.83	Average
7	0.994	15.56	0.26	10.87	26.69	46.00	-19.31	Average
8	1.276	30.45	0.26	10.90	41.61	56.00	-14.39	QP
8	8.412	31.77	0.28	10.87	42.92	60.00	-17.08	QP
10	8.546	19.17	0.28	10.88	30.33	50.00	-19.67	Average
11	11.377	36.97	0.25	10.93	48.15	60.00	-11.85	QP
12	11.683	21.80	0.25	10.92	32.97	50.00	-17.03	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)		
Test Method:	ANSI C63.10: 2013, KDB789033		
Limit:	Band 1: 24dBm Band 4: 30dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data:

Band 1							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	9.79	24.00	Pass			
802.11a	Middle	9.25	24.00	Pass			
	Highest	7.81	24.00	Pass			
	Lowest	9.48	24.00	Pass			
802.11n20	Middle	8.82	24.00	Pass			
	Highest	7.82	24.00	Pass			
802.11n40	Lowest	8.53	24.00	Pass			
	Highest	7.38	24.00	Pass			
802.11ac	Middle	8.32	24.00	Pass			

Band 4							
Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result			
	Lowest	8.33	30.00	Pass			
802.11a	Middle	7.12	30.00	Pass			
	Highest	5.92	30.00	Pass			
	Lowest	8.33	30.00	Pass			
802.11n20	Middle	7.10	30.00	Pass			
	Highest	5.65	30.00	Pass			
000 44 = 40	Lowest	7.48	30.00	Pass			
802.11n40	Highest	5.94	30.00	Pass			
802.11ac	Middle	6.80	30.00	Pass			

Test plot as follows:

Band 1

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Band 4:

Lowest channel

Middle channel

Highest channel

Lowest channel

Middle channel

Highest channel

Lowest channel

Highest channel

Lowest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)				
Test Method:	ANSI C63.10:2013 and KDB 789033				
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Band 1:

Toot Channal		Limit	Dogult			
Test Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	21.32	21.24	39.30			
Middle	21.66	21.44		79.80	N/A	N/A
Highest	19.44	20.01	39.64			
Test Channel	99% Occupy Bandwidth (MHz)					Dogult
rest Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	18.00	19.04	36.64			
Middle	18.16	18.96		75.84	N/A	N/A
Highest	17.84	18.72	36.64			

Band 4:

Toot Channal		Limit	Decult			
Test Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	26.08	29.84	44.32			
Middle	24.64	27.28		82.56	N/A	N/A
Highest	24.32	26.72	41.60			
Toot Channal	99% Occupy Bandwidth (MHz)					Danielt
Test Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	17.76	18.96	36.64			
Middle	17.60	18.80		75.84	N/A	N/A
Highest	17.60	18.72	36.64			
Took Channal		Lineit	Desuit			
Test Channel	802.11a	802.11n20	802.11n40	802.11ac	Limit	Result
Lowest	16.48	17.76	36.64			
Middle	16.48	17.68		76.48	>500kHz	N/A
Highest	16.56	17.76	36.64			

Test plot as follows: Band 1:

Date: 28.FEB.2017 12:54:52

Lowest channel

Date: 28.FEB.2017 12:54:23

Middle channel

Date: 28.FEB.2017 12:53:34

Highest channel

Date: 28.FEB.2017 12:55:32

Lowest channel

Date: 28.FEB.2017 12:55:59

Middle channel

Date: 28.FEB.2017 12:59:26

Highest channel

Date: 28.FEB.2017 13:00:11

Lowest channel

Date: 28.FEB.2017 13:01:00

Highest channel

Date: 28.FEB.2017 13:02:24

Middle channel

Date: 15.FEB.2017 01:11:54

Lowest channel

Date: 15.FEB.2017 01:12:19

Middle channel

Date: 15.FEB.2017 01:12:40

Highest channel

Date: 15.FEB.2017 01:16:05

Lowest channel

Date: 15.FEB.2017 01:15:44

Middle channel

Date: 15.FEB.2017 01:15:23

Highest channel

Date: 15.FEB.2017 01:21:27

Lowest channel

Date: 15.FEB.2017 01:21:53

Highest channel

Date: 22.FEB.2017 08:19:57

Middle channel

Band 4:

Date: 15.FEB.2017 01:16:58

Lowest channel

Date: 15.FEB.2017 01:17:18

Middle channel

Date: 15.FEB.2017 01:18:09

Highest channel

Date: 15.FEB.2017 01:18:54

Lowest channel

Date: 15.FEB.2017 01:19:22

Middle channel

Date: 15.FEB.2017 01:19:49

Highest channel

Date: 15.FEB.2017 01:23:04

Lowest channel

Date: 15.FEB.2017 01:23:57

Highest channel

Date: 22.FEB.2017 08:18:33

Lowest channel

Date: 15.FEB.2017 01:16:46

Lowest channel

Date: 15.FEB.2017 01:17:31

Middle channel

Date: 15.FEB.2017 01:17:57

Highest channel

Date: 15.FEB.2017 01:20:39

Lowest channel

Date: 15.FEB.2017 01:20:20

Middle channel

Date: 15.FEB.2017 01:20:00

Highest channel

Date: 15.FEB.2017 01:23:16

Lowest channel

Date: 15.FEB.2017 01:23:38

Highest channel

Date: 22.FEB.2017 08:21:01

Lowest channel

Date: 22.FEB.2017 08:34:14

Lowest channel

Date: 22.FEB.2017 08:36:41

Middle channel

Date: 22.FEB.2017 08:38:33

Highest channel

Date: 22.FEB.2017 08:54:39

Lowest channel

Date: 22.FEB.2017 08:52:07

Middle channel

Date: 22.FEB.2017 08:50:42

Highest channel

Date: 22.FEB.2017 08:56:54

Lowest channel

Date: 22.FEB.2017 08:58:34

Highest channel

Middle channel

Date: 22.FEB.2017 08:29:52

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) &(a) (3)				
Test Method:	ANSI C63.10:2013, KDB 789033				
Limit:	Band 1: 11 dBm/MHz Band 4: 30 dBm/500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

		Band 1		
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
	Lowest	-0.09	11.00	Pass
802.11a	Middle	-0.66	11.00	Pass
	Highest	-1.81	11.00	Pass
	Lowest	-0.61	11.00	Pass
802.11n20	Middle	-1.36	11.00	Pass
	Highest	-2.33	11.00	Pass
902 11540	Lowest	-4.67	11.00	Pass
802.11n40	Highest	-5.67	11.00	Pass
802.11ac	Middle	-7.95	11.00	Pass

		Band 4		
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
	Lowest	1.39	30.00	Pass
802.11a	Middle	-0.39	30.00	Pass
	Highest	-1.21	30.00	Pass
	Lowest	0.40	30.00	Pass
802.11n20	Middle	0.05	30.00	Pass
	Highest	-1.98	30.00	Pass
802.11n40	Lowest	-2.96	30.00	Pass
60Z.111140	Highest	-4.85	30.00	Pass
802.11ac	Middle	-7.01	30.00	Pass

Test plot as follows:

Band 1:

Date: 15.FEB.2017 01:29:16

Date: 15.FEB.2017 01:29:46

Date: 15.FEB.2017 01:30:11

Highest channel

Test mode:802.11n20

Date: 15.FEB.2017 01:30:59

Date: 15.FEB.2017 01:31:25

Date: 15.FEB.2017 01:31:50

Highest channel

Date: 15.FEB.2017 01:32:35

Lowest channel

Date: 15.FEB.2017 01:33:25

Highest channel

Date: 22.FEB.2017 08:23:49

Middle channel

Band 4:

Highest channel

Test mode:802.11n20

Lowest channel

Highest channel

Test mode:802.11n40

Lowest channel

Highest channel

Test mode:802.11ac

Middel channel

6.6 Band Edge

0.0 Ballu Luge							
Test Requirement:	FCC Part15 E Sect	ion 15.407 (b)					
Test Method:	ANSI C63.10:2013	, KDB 789033					
Receiver setup:	Detector	RBW	VBW	Remark			
·	Peak	1MHz	3MHz	Peak Value			
	RMS	1MHz	3MHz	Average Value			
Limit:	Band	Limit (dBu	V/m @3m)	Remark			
	Band 1	68	3.20	Peak Value			
	Danu 1		.00	Average Value			
	Band 4		3.20	Peak Value			
	Dana 4	54	.00	Average Value			
		P[dBm] + 95.2=68.					
Test Procedure:	 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:		(Turntable) Ground R Test Receiver	Hom Antenna Antenna International Antenna Ante	Tower			
Test Instruments:	Refer to section 5.6	for details					
Test mode:	Refer to section 5.3	for details					
Test results:	Passed						

Band 1:

				802.11a							
Test cl	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	42.11	36.23	7.05	41.93	43.46	68.20	-24.74	Horizontal			
5150.00	41.65	36.23	7.05	41.93	43.00	68.20	-25.20	Vertical			
802.11a											
Test cl	hannel		Lowest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	32.58	36.23	7.05	41.93	33.93	54.00	-20.07	Horizontal			
5150.00	31.36	36.23	7.05	41.93	32.71	54.00	-21.29	Vertical			
	802.11a										
Test cl	hannel	Highest			Level		F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	41.52	35.37	7.11	41.89	42.11	68.20	-26.09	Horizontal			
5350.00	42.78	35.37	7.11	41.89	43.37	68.20	-24.83	Vertical			
				802.11a							
Test cl	hannel		Highest		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	31.32	35.37	7.11	41.89	31.91	54.00	-22.09	Horizontal			
5350.00	32.49	35.37	7.11	41.89	33.08	54.00	-20.92	Vertical			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	302.11n-HT20)					
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	42.05	36.23	7.05	41.93	43.40	68.20	-24.80	Horizontal		
5150.00	41.11	36.23	7.05	41.93	42.46	68.20	-25.74	Vertical		
802.11n-HT20										
Test cl	nannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	32.78	36.23	7.05	41.93	34.13	54.00	-19.87	Horizontal		
5150.00	31.69	36.23	7.05	41.93	33.04	54.00	-20.96	Vertical		
			8	02.11n-HT20)					
Test cl	nannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.25	35.37	7.11	41.89	42.84	68.20	-25.36	Horizontal		
5350.00	41.36	35.37	7.11	41.89	41.95	68.20	-26.25	Vertical		
			3	02.11n-HT20)					
Test cl	nannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.81	35.37	7.11	41.89	33.40	54.00	-20.60	Horizontal		
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	302.11n-HT40)						
Test cl	hannel		Lowest		Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	55.11	36.23	7.05	41.93	56.46	68.20	-11.74	Horizontal			
5150.00	56.03	36.23	7.05	41.93	57.38	68.20	-10.82	Vertical			
802.11n-HT40											
Test cl	nannel		Lowest		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5150.00	32.14	36.23	7.05	41.93	33.49	54.00	-20.51	Horizontal			
5150.00	32.82	36.23	7.05	41.93	34.17	54.00	-19.83	Vertical			
	802.11n-HT40										
Test ch	nannel	Highest			Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	46.63	35.37	7.11	41.89	47.22	68.20	-20.98	Horizontal			
5350.00	50.87	35.37	7.11	41.89	51.46	68.20	-16.74	Vertical			
			8	02.11n-HT40)						
Test ch	nannel		Highest		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5350.00	35.58	35.37	7.11	41.89	36.17	54.00	-17.83	Horizontal			
5350.00	36.42	35.37	7.11	41.89	37.01	54.00	-16.99	Vertical			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	02.11ac-HT8	0					
Test cl	hannel		5210MHz	<u>.</u>	Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	55.46	36.23	7.05	41.93	56.81	68.20	-11.39	Horizontal		
5150.00	55.82	36.23	7.05	41.93	57.17	68.20	-11.03	Vertical		
802.11ac-HT80										
Test cl	nannel		5210MHz	_	Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	31.36	36.23	7.05	41.93	32.71	54.00	-21.29	Horizontal		
5150.00	32.42	36.23	7.05	41.93	33.77	54.00	-20.23	Vertical		
802.11ac-HT80										
Test ch	nannel	5210MHz			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	46.36	35.37	7.11	41.89	46.95	68.20	-21.25	Horizontal		
5350.00	50.89	35.37	7.11	41.89	51.48	68.20	-16.72	Vertical		
			80	02.11ac-HT8	0					
Test ch	nannel		5210MHz	_	Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	34.58	35.37	7.11	41.89	35.17	54.00	-18.83	Horizontal		
5350.00	35.76	35.37	7.11	41.89	36.35	54.00	-17.65	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

				802.11a						
Test cl	nannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	41.23	34.65	7.69	41.94	41.63	68.20	-26.57	Horizontal		
5725.00	42.52	34.65	7.69	41.94	42.92	68.20	-25.28	Vertical		
802.11a										
Test cl	hannel		Lowest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	31.38	34.65	7.69	41.94	31.78	54.00	-22.22	Horizontal		
5725.00	32.47	34.65	7.69	41.94	32.87	54.00	-21.13	Vertical		
802.11a										
Test ch	nannel	Highest			Level		Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	41.69	34.63	7.90	42.03	42.19	68.20	-26.01	Horizontal		
5850.00	40.52	34.63	7.90	42.03	41.02	68.20	-27.18	Vertical		
				802.11a						
Test cl	nannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	31.74	34.63	7.90	42.03	32.24	54.00	-21.76	Horizontal		
5850.00	30.85	34.63	7.90	42.03	31.35	54.00	-22.65	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	302.11n-HT20)					
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	42.58	34.65	7.69	41.94	42.98	68.20	-25.22	Horizontal		
5725.00	41.62	34.65	7.69	41.94	42.02	68.20	-26.18	Vertical		
	802.11n-HT20									
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5725.00	32.60	34.65	7.69	41.94	33.00	54.00	-21.00	Horizontal		
5725.00	31.37	34.65	7.69	41.94	31.77	54.00	-22.23	Vertical		
			8	02.11n-HT20)					
Test cl	hannel	Highest			Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	42.11	34.63	7.90	42.03	42.61	68.20	-25.59	Horizontal		
5850.00	41.35	34.63	7.90	42.03	41.85	68.20	-26.35	Vertical		
			3	02.11n-HT20)					
Test cl	hannel		Highest		Le	vel	Av	rerage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5850.00	33.02	34.63	7.90	42.03	33.52	54.00	-20.48	Horizontal		
5850.00	31.25	34.63	7.90	42.03	31.75	54.00	-22.25	Vertical		

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	302.11n-HT40)						
Test cl	hannel		Lowest		Le	vel	Peak				
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	43.02	34.65	7.69	41.94	43.42	68.20	-24.78	Horizontal			
5725.00	41.75	34.65	7.69	41.94	42.15	68.20	-26.05	Vertical			
802.11n-HT40											
Test cl	nannel		Lowest		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	33.15	34.65	7.69	41.94	33.55	54.00	-20.45	Horizontal			
5725.00	32.02	34.65	7.69	41.94	32.42	54.00	-21.58	Vertical			
	802.11n-HT40										
Test cl	nannel	Highest			Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	42.17	34.63	7.90	42.03	42.67	68.20	-25.53	Horizontal			
5850.00	41.47	34.63	7.90	42.03	41.97	68.20	-26.23	Vertical			
			8	302.11n-HT40)						
Test cl	nannel		Highest		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	33.16	34.63	7.90	42.03	33.66	54.00	-20.34	Horizontal			
5850.00	32.08	34.63	7.90	42.03	32.58	54.00	-21.42	Vertical			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

			8	02.11ac-HT8	0						
Test cl	hannel		5775MHz	<u>.</u>	Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	42.79	34.65	7.69	41.94	43.19	68.20	-25.01	Horizontal			
5725.00	42.06	34.65	7.69	41.94	42.46	68.20	-25.74	Vertical			
	802.11ac-HT80										
Test ch	nannel		5775MHz		Le	vel	Av	erage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5725.00	32.48	34.65	7.69	41.94	32.88	54.00	-21.12	Horizontal			
5725.00	32.19	34.65	7.69	41.94	32.59	54.00	-21.41	Vertical			
	802.11ac-HT80										
Test ch	nannel	5775MHz			Le	vel	F	Peak			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	43.03	34.63	7.90	42.03	43.53	68.20	-24.67	Horizontal			
5850.00	42.18	34.63	7.90	42.03	42.68	68.20	-25.52	Vertical			
			8	02.11ac-HT8	0						
Test cl	nannel		5775MHz		Le	vel	Av	rerage			
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
5850.00	34.07	34.63	7.90	42.03	34.57	54.00	-19.43	Horizontal			
5850.00	33.12	34.63	7.90	42.03	33.62	54.00	-20.38	Vertical			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	.7.1 Restricted Band								
	Test Requirement:	FCC Part15 E Se	ection 1	5.407(b)				
	Test Method:	ANSI C63.10: 20)13						
	TestFrequencyRange:	Band 1: 4.5 GHz				to 5.46	6GHz		
		Band 4: 5.35 GH	Iz to 5.4	6 GHz					
	Test site:	Measurement Di	stance:	3m					
	Receiver setup:	Frequency	Dete		RBW	VE		Remark	
		Above 1GHz	Pea RM		1MHz		Hz	Peak Value	
	Limit:	Frequency			1MHz t (dBuV/m @3		Hz	Average Value Remark	
	Littic				68.20	,,,		Peak Value	
		Above 1GH			54.00			verage Value	
	Test Procedure:	the ground a to determine 2. The EUT was antenna, who tower. 3. The antenna the ground to Both horizon make the m 4. For each su case and the meters and to find the m 5. The test-red Specified Ba 6. If the emission the limitspect of the EUT whave 10dB in the modern and to find the modern and the limitspect of the EUT whave 10dB in the limitspect of the EUT whave 10dB in the EUT was antennal to the EUT who in the EUT was antennal to the EUT wa	at a 3 me the po as set 3 nichwas a height to determental and easurer espected enthe anaximum beiver syandwidth ion lever cified, the wouldbemargin versus anaximum the treatment in the treatmen	eter casition of meters mount is variumine the vertication of the entes is report vould by the site of the entes is report vould by the site of the entes is report vould by the site of the entes is report vould by the site of the entes is report vould by the site of the entes is report vould by the site of the entes is report vould by the site of the entes is report vould by the site of the enter of the e	amber. The tape of the highest is away from the ed on the tope of from one remaximum valued from the ed on the EUT was turned from the ed on the EUT in peak ting could be ted. Otherwise	ble waradiat he interest of a value of a value of softh was a heighom 0 of ak Det lid Moode stoppe e the ene by of the lid was a lid Moode stoppe e the ene by of the lid was a	as rota ion. erferent erriable to four of the factor of th	meters above field strength. enna are set to ed to its worst in 1 meter to 4 is to 360 degrees anction and dodB lower than at the peak values ons that did not sing peak, quasi-	
		Hom Antenna Tower (Turntable) Ground Reference Plane Test Receiver Receiver Controller							
	Test Instruments:	Refer to section							
	Test mode:	Refer to section	5.3 for c	letails					
	Test results:	Passed							

Band 1:

802.11a

Test cl	nannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	43.21	34.50	6.80	42.05	42.46	74.00	-31.54	Horizontal
4500.00	42.18	34.50	6.80	42.05	41.43	74.00	-32.57	Vertical
Test cl	nannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.59	34.50	6.80	42.05	31.84	54.00	-22.16	Horizontal
4500.00	31.07	34.50	6.80	42.05	30.32	54.00	-23.68	Vertical
Test cl	nannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.39	34.90	7.18	41.85	41.62	74.00	-32.38	Horizontal
5460.00	42.54	34.90	7.18	41.85	42.77	74.00	-31.23	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.39	34.90	7.18	41.85	31.62	54.00	-22.38	Horizontal
5460.00	32.58	34.90	7.18	41.85	32.81	54.00	-21.19	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	41.74	34.50	6.80	42.05	40.99	74.00	-33.01	Horizontal
4500.00	42.25	34.50	6.80	42.05	41.50	74.00	-32.50	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	31.25	34.50	6.80	42.05	30.50	54.00	-23.50	Horizontal
4500.00	32.76	34.50	6.80	42.05	32.01	54.00	-21.99	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.69	34.90	7.18	41.85	41.92	74.00	-32.08	Horizontal
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.25	34.90	7.18	41.85	31.48	54.00	-22.52	Horizontal
5460.00	32.77	34.90	7.18	41.85	33.00	54.00	-21.00	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	42.25	34.50	6.80	42.05	41.50	74.00	-32.50	Horizontal
4500.00	41.63	34.50	6.80	42.05	40.88	74.00	-33.12	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	32.62	34.50	6.80	42.05	31.87	54.00	-22.13	Horizontal
4500.00	31.54	34.50	6.80	42.05	30.79	54.00	-23.21	Vertical
Test cl	hannel		Highest		Le	Level P		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	41.89	34.90	7.18	41.85	42.12	74.00	-31.88	Horizontal
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Vertical
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	31.25	34.90	7.18	41.85	31.48	54.00	-22.52	Horizontal
5460.00	32.86	34.90	7.18	41.85	33.09	54.00	-20.91	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	hannel		5210MHz		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	41.73	34.50	6.80	42.05	40.98	74.00	-33.02	Horizontal	
4500.00	42.62	34.50	6.80	42.05	41.87	74.00	-32.13	Vertical	
Test c	hannel		5210MHz	<u>'</u>	Le	vel	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4500.00	32.02	34.50	6.80	42.05	31.27	54.00	-22.73	Horizontal	
4500.00	32.45	34.50	6.80	42.05	31.70	54.00	-22.30	Vertical	
Test c	hannel		5210MHz		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	41.75	34.90	7.18	41.85	41.98	74.00	-32.02	Horizontal	
5460.00	42.26	34.90	7.18	41.85	42.49	74.00	-31.51	Vertical	
Test cl	hannel		5210MHz		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	32.77	34.90	7.18	41.85	33.00	54.00	-21.00	Horizontal	
5460.00	31.63	34.90	7.18	41.85	31.86	54.00	-22.14	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.39	35.37	7.11	41.89	42.98	74.00	-31.02	Horizontal
5350.00	41.74	35.37	7.11	41.89	42.33	74.00	-31.67	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.03	35.37	7.11	41.89	32.62	54.00	-21.38	Horizontal
5350.00	31.27	35.37	7.11	41.89	31.86	54.00	-22.14	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.71	34.90	7.18	41.85	42.94	74.00	-31.06	Horizontal
5460.00	41.29	34.90	7.18	41.85	41.52	74.00	-32.48	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	33.13	34.90	7.18	41.85	33.36	54.00	-20.64	Horizontal
5460.00	32.18	34.90	7.18	41.85	32.41	54.00	-21.59	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.75	35.37	7.11	41.89	43.34	74.00	-30.66	Horizontal
5350.00	41.31	35.37	7.11	41.89	41.90	74.00	-32.10	Vertical
	hannel		Lowest		Level Av			erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	32.64	35.37	7.11	41.89	33.23	54.00	-20.77	Horizontal
5350.00	31.23	35.37	7.11	41.89	31.82	54.00	-22.18	Vertical
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	42.25	34.90	7.18	41.85	42.48	74.00	-31.52	Horizontal
5460.00	43.36	34.90	7.18	41.85	43.59	74.00	-30.41	Vertical
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	32.17	34.90	7.18	41.85	32.40	54.00	-21.60	Horizontal
5460.00	32.25	34.90	7.18	41.85	32.48	54.00	-21.52	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT40

Test cl	hannel		Lowest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	43.02	35.37	7.11	41.89	43.61	74.00	-30.39	Horizontal	
5350.00	41.28	35.37	7.11	41.89	41.87	74.00	-32.13	Vertical	
Test c	hannel		Lowest		Le	vel	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.76	35.37	7.11	41.89	33.35	54.00	-20.65	Horizontal	
5350.00	32.03	35.37	7.11	41.89	32.62	54.00	-21.38	Vertical	
Test cl	hannel		Highest		Le	vel	F	Peak	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	42.74	34.90	7.18	41.85	42.97	74.00	-31.03	Horizontal	
5460.00	43.26	34.90	7.18	41.85	43.49	74.00	-30.51	Vertical	
Test cl	hannel		Highest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5460.00	32.18	34.90	7.18	41.85	32.41	54.00	-21.59	Horizontal	
5460.00	33.15	34.90	7.18	41.85	33.38	54.00	-20.62	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor .
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11ac-HT80

Test cl	hannel		5775MHz	7	Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	42.23	35.37	7.11	41.89	42.82	74.00	-31.18	Horizontal		
5350.00	42.01	35.37	7.11	41.89	42.60	74.00	-31.40	Vertical		
Test c	hannel		5775MHz	4	Le	vel	Av	Average		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	32.54	35.37	7.11	41.89	33.13	54.00	-20.87	Horizontal		
5350.00	31.18	35.37	7.11	41.89	31.77	54.00	-22.23	Vertical		
Test cl	hannel		5775MHz		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	42.63	34.90	7.18	41.85	42.86	74.00	-31.14	Horizontal		
5460.00	42.71	34.90	7.18	41.85	42.94	74.00	-31.06	Vertical		
Test cl	hannel		5775MHz		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5460.00	32.03	34.90	7.18	41.85	32.26	54.00	-21.74	Horizontal		
5460.00	32.84	34.90	7.18	41.85	33.07	54.00	-20.93	Vertical		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions out of the Restricted Bands

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10:20	13						
TestFrequencyRange:	30MHz to 40GH	Z						
Test site:	Measurement Di	stance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBV	N	Remark		
	30MHz-1GHz	Quasi-peak	120kHz	300kl	Hz	z Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MH	Hz Peak Value			
	Above 1GHz	RMS	1MHz	3МН	lz	Average Value		
Limit:	Frequency		mit (dBuV/m @3	m)		Remark		
	30MHz-88MHz 40.0 Quasi-peak Va							
	88MHz-216M	lHz	43.5			uasi-peak Value		
	216MHz-960N	ЛHz	46.0		Q	uasi-peak Value		
	960MHz-1GI	Hz	54.0		Q	uasi-peak Value		
	Above 1GH	lz	68.20			Peak Value		
			54.00			Average Value		
Test Procedure:	Remark: Above 1GHz limit: E[dBµV/m] = EIRF 1. The EUT wa	P[dBm] + 95.2=6	8.2 dBuV/m,for a					
	1GHz)/1.5m table was re radiation. 2. The EUT wa antenna, wh tower. 3. The antenna ground to de horizontal a measureme 4. For each su and thenthe and the rota maximum re 5. The test-rec Specified Ba 6. If the emiss limitspecifie EUT wouldt 10dB margi	n(above 1GHz) potated 360 deg as set 3 meters nichwas mount a height is vari etermine the m nd vertical policy ent. Ispected emiss a table was turn eading. Eaviver system v andwidth with ion level of the d, then testing pe reported. On m would bere-t	above the grorees to determ s away from the ed on the top of ed from one maximum value arizations of the timed to height ned from 0 deg was set to Peal Maximum Hold EUT in peak rould be stopptherwise the entermined to determined to the ed from th	e interfer of a variate antenia vas arrates from a variates from a variates from a vas arrates to a vas arrates from a vas arra	a 3 m positi erence iable-lifour mileld sona are 360 cet Funcias 10 if the ps that ing pea	eter camber. The ion of the highest e-receiving height antenna neters above the strength. Both e set to make the to its worst case ter to 4 meters degrees to find the ction and dB lower than the beak values of the did not have ak, quasi-peak or		

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : InVision 4K Media Player : DTIVAC-G2 Condition

EUT

Model Test mode : 5G Wifi Mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: MT

REMARK

	Freq		Antenna Factor						Remark
-									
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	49.881	42.55	15.30	1.26	29.82	29.29	40.00	-10.71	QP
2	73.103	50.93	6.50	1.59	29.69	29.33	40.00	-10.67	QP
2	113.316	50.54	10.85	2.09	29.43	34.05	43.50	-9.45	QP
4	191.745	51.97	9.79	2.81	28.89	35.68	43.50	-7.82	QP
5	530.101	43.05	17.60	3.78	29.04	35.39	46.00	-10.61	QP
6	824.597	40.65	20.82	4.27	28.10	37.64	46.00	-8.36	QP

Vertical:

THUTTAL									
	Freq		Antenna Factor						Remark
_	MHz	dBu₹	<u>dB</u> /m	ā	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	ā	
1	49.881	48.60	15.30	1.26	29.82	35.34	40.00	-4.66	QP
1 2 3	114.114	48.35	10.93	2.10	29.43	31.95	43.50	-11.55	QP
3	399.030	41.89	15.90	3.08	28.77	32.10	46.00	-13.90	QP
4	530.101	44.48	17.60	3.78	29.04	36.82	46.00	-9.18	QP
5	625.078	45.32	18.64	3.90	28.86	39.00	46.00	-7.00	QP
6	663.473	45.03	18.90	3.95	28.75	39.13	46.00	-6.87	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	49.58	40.10	9.82	41.97	57.53	68.20	-10.67	Vertical			
10360.00	48.63	40.10	9.82	41.97	56.58	68.20	-11.62	Horizontal			
		802.11	a mode Low	est channe	l (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	40.07	40.10	9.82	41.97	48.02	54.00	-5.98	Vertical			
10360.00	39.51	40.10	9.82	41.97	47.46	54.00	-6.54	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	50.13	40.00	9.85	41.95	58.03	68.20	-10.17	Vertical			
10400.00	50.06	40.00	9.85	41.95	57.96	68.20	-10.24	Horizontal			
		802.11	a mode Mido	dle channe	I (AverageVa	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	40.07	40.00	9.85	41.95	47.97	54.00	-6.03	Vertical			
10400.00	39.92	40.00	9.85	41.95	47.82	54.00	-6.18	Horizontal			

	802.11a mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	50.18	39.70	9.96	41.88	57.96	68.20	-10.24	Vertical		
10480.00	50.03	39.70	9.96	41.88	57.81	68.20	-10.39	Horizontal		
		802.11	a mode High	est channe	el (Average)	alue)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
10480.00	40.74	39.70	9.96	41.88	48.52	54.00	-5.48	Vertical		
10480.00	40.36	39.70	9.96	41.88	48.14	54.00	-5.86	Horizontal		

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	48.59	40.10	9.82	41.97	56.54	68.20	-11.66	Vertical			
10360.00	49.26	40.10	9.82	41.97	57.21	68.20	-10.99	Horizontal			
		802.11n	20 mode Lov	west chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	39.14	40.10	9.82	41.97	47.09	54.00	-6.91	Vertical			
10360.00	40.25	40.10	9.82	41.97	48.20	54.00	-5.80	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	50.01	40.00	9.85	41.95	57.91	68.20	-10.29	Vertical			
10400.00	49.63	40.00	9.85	41.95	57.53	68.20	-10.67	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average ^v	√alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	41.12	40.00	9.85	41.95	49.02	54.00	-4.98	Vertical			
10400.00	40.06	40.00	9.85	41.95	47.96	54.00	-6.04	Horizontal			

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	50.11	39.70	9.96	41.88	57.89	68.20	-10.31	Vertical			
10480.00	50.06	39.70	9.96	41.88	57.84	68.20	-10.36	Horizontal			
		802.11n2	20 mode Hig	hest chanr	nel (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	41.12	39.70	9.96	41.88	48.90	54.00	-5.10	Vertical			
10480.00	40.27	39.70	9.96	41.88	48.05	54.00	-5.95	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	48.69	40.00	9.85	41.95	56.59	68.20	-11.61	Vertical			
10380.00	48.75	40.00	9.85	41.95	56.65	68.20	-11.55	Horizontal			
		802.11n	40 mode Lov	west chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10380.00	39.62	40.00	9.85	41.95	47.52	54.00	-6.48	Vertical			
10380.00	38.81	40.00	9.85	41.95	46.71	54.00	-7.29	Horizontal			

	802.11n40 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	49.96	39.80	9.92	41.90	57.78	68.20	-10.42	Vertical			
10460.00	50.04	39.80	9.92	41.90	57.86	68.20	-10.34	Horizontal			
		802.11n	40 mode Hig	hest chanr	nel (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10460.00	39.69	39.80	9.92	41.90	47.51	54.00	-6.49	Vertical			
10460.00	40.15	39.80	9.92	41.90	47.97	54.00	-6.03	Horizontal			

	802.11ac-HT80MHz mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	49.58	39.90	9.89	41.93	57.44	68.20	-10.76	Vertical			
10420.00	48.26	39.90	9.89	41.93	56.12	68.20	-12.08	Horizontal			
	80)2.11ac-HT	80MHz mod	e Middle c	hannel (Ave	rageValue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10420.00	38.57	39.90	9.89	41.93	46.43	54.00	-7.57	Vertical			
10420.00	40.03	39.90	9.89	41.93	47.89	54.00	-6.11	Horizontal			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	47.36	41.50	10.81	42.29	57.38	74.00	-16.62	Vertical			
11490.00	46.59	41.50	10.81	42.29	56.61	74.00	-17.39	Horizontal			
		802.11	a mode Low	est channe	l (AverageV	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	36.25	41.50	10.81	42.29	46.27	54.00	-7.73	Vertical			
11490.00	37.15	41.50	10.81	42.29	47.17	54.00	-6.83	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	45.58	41.38	10.78	42.27	55.47	74.00	-18.53	Vertical			
11570.00	46.31	41.38	10.78	42.27	56.20	74.00	-17.80	Horizontal			
		802.11	a mode Mido	dle channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	36.03	41.38	10.78	42.27	45.92	54.00	-8.08	Vertical			
11570.00	35.58	41.38	10.78	42.27	45.47	54.00	-8.53	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	46.12	41.26	10.76	42.26	55.88	74.00	-18.12	Vertical			
11650.00	46.27	41.26	10.76	42.26	56.03	74.00	-17.97	Horizontal			
		802.11a	a mode High	est channe	I (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11650.00	36.69	41.26	10.76	42.26	46.45	54.00	-7.55	Vertical			
11650.00	35.81	41.26	10.76	42.26	45.57	54.00	-8.43	Horizontal			

Remark:

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	47.12	41.50	10.81	42.29	57.14	74.00	-16.86	Vertical		
11490.00	47.03	41.50	10.81	42.29	57.05	74.00	-16.95	Horizontal		
		802.11n2	20 mode Lov	vest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11490.00	36.17	41.50	10.81	42.29	46.19	54.00	-7.81	Vertical		
11490.00	37.06	41.50	10.81	42.29	47.08	54.00	-6.92	Horizontal		

	802.11n20 mode Middle channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	45.12	41.38	10.78	42.27	55.01	74.00	-18.99	Vertical		
11570.00	46.49	41.38	10.78	42.27	56.38	74.00	-17.62	Horizontal		
	802.11n20 mode Middle channel (Average Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11570.00	36.12	41.38	10.78	42.27	46.01	54.00	-7.99	Vertical		
11570.00	35.58	41.38	10.78	42.27	45.47	54.00	-8.53	Horizontal		

	802.11n20 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	46.36	41.26	10.76	42.26	56.12	74.00	-17.88	Vertical		
11650.00	46.27	41.26	10.76	42.26	56.03	74.00	-17.97	Horizontal		
		802.11n2	20 mode Higl	hest chann	el (Average	Value)				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11650.00	37.06	41.26	10.76	42.26	46.82	54.00	-7.18	Vertical		
11650.00	36.12	41.26	10.76	42.26	45.88	54.00	-8.12	Horizontal		

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n40 mode Lowest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11510.00	45.89	41.50	10.81	42.29	55.91	74.00	-18.09	Vertical		
11510.00	46.12	41.50	10.81	42.29	56.14	74.00	-17.86	Horizontal		
	802.11n40 mode Lowest channel (Average Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11510.00	35.58	41.50	10.81	42.29	45.60	54.00	-8.40	Vertical		
11510.00	36.85	41.50	10.81	42.29	46.87	54.00	-7.13	Horizontal		

	802.11n40 mode Highest channel (Peak Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11590.00	46.38	41.32	10.77	42.27	56.20	74.00	-17.80	Vertical		
11590.00	45.21	41.32	10.77	42.27	55.03	74.00	-18.97	Horizontal		
	802.11n40 mode Highest channel (Average Value)									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization		
11590.00	35.57	41.32	10.77	42.27	45.39	54.00	-8.61	Vertical		
11590.00	36.42	41.32	10.77	42.27	46.24	54.00	-7.76	Horizontal		

	802.11ac-HT80 mode Middle channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	47.46	39.90	9.89	41.93	55.32	74.00	-18.68	Vertical	
11550.00	48.58	39.90	9.89	41.93	56.44	74.00	-17.56	Horizontal	
		802.11ac-H	HT80 mode N	Middle cha	nnel (Averag	je Value)			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization	
11550.00	39.03	39.90	9.89	41.93	46.89	54.00	-7.11	Vertical	
11550.00	37.74	39.90	9.89	41.93	45.60	54.00	-8.40	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 75 of 80

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)			
Limit:	Manufacturers of U-NII devices are responsible for ensuringfrequency stability such that anemission is maintained within the band of operation under all conditions of normal operation asspecified in the user's manual.			
Test setup:	Spectrum analyzer EUT Variable Power Supply Note: Measurement setup for testing on Antenna connector			
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.			
Test results:	Passed			

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test co	onditions	5 (441.)	M. B. Istina (com)
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5179.997860	0.41
20	120V	5179.974490	4.92
	138V	5179.963639	7.02

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test co	nditions	Fragueney/MU=)	May Daviation (nam)
Voltage(ac)	Temp(°ℂ)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5179.987741	2.37
	-10	5179.995632	0.84
	0	5179.968552	6.07
120V	10	5179.987697	2.38
1200	20	5179.996784	0.62
	30	5179.974529	4.92
	40	5179.963895	6.97
	50	5179.974887	4.85

Band 4:

Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test co	Test conditions		
Temp(°C)	Voltage(ac)	Frequency(MHz)	Max. Deviation (ppm)
	102V	5744.974637	4.41
20	120V	5744.993748	1.09
	138V	5744.998960	0.18

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test co	nditions	Fraguency/MHz)	May Deviction (nnm)
Voltage(ac)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)
	-20	5744.994692	0.92
	-10	5744.993749	1.09
	0	5744.994639	0.93
120V	10	5744.985528	2.52
1200	20	5744.993748	1.09
	30	5744.994665	0.93
	40	5744.999790	0.04
	50	5744.992582	1.29