Branden Fitelson

Philosophy @ Rutgers MCMP @ LMU branden@fitelson.org

Branden Fitelson

Belief & Credence: The view from naïve EUT

Setup

Stability Theory vs. MEEU

- Because suspensions are neither accurate nor inaccurate, our agent will attach zero epistemic utility to suspensions S(p), independently of the truth-value of p.
- Thus, we have the following piecewise definition of $u(\cdot, w)$.

$$u(B(p), w) \stackrel{\text{def}}{=} \begin{cases} -\mathbf{w} & \text{if } p \text{ is false at } w \\ \mathbf{r} & \text{if } p \text{ is true at } w \end{cases}$$

$$u(D(p), w) \stackrel{\text{def}}{=} \begin{cases} r & \text{if } p \text{ is false at } w \\ -w & \text{if } p \text{ is true at } w \end{cases}$$

$$u(S(p), w) \stackrel{\text{def}}{=} \begin{cases} 0 & \text{if } p \text{ is false at } w \\ 0 & \text{if } p \text{ is true at } w \end{cases}$$

• With this *accuracy-centered* epistemic utility function in hand, we can derive a naïve EUT coherence requirement.

• We assume that our agent has a credence function $b(\cdot)$. which is *probabilistic*. Probabilism for $b(\cdot)$ can itself be motivated *via* EUT [25]. But, this is *common ground* here.

Stability Theory vs. MEEU

Stability Theory vs. MEEU

- We assume that our agent takes exactly one of three qualitative attitudes (B, D, S) toward each member of a finite agenda \mathcal{A} of (classical, possible worlds) propositions.
- We do *not* assume that these qualitative judgments can be *reduced* to $b(\cdot)$. But, we will use $b(\cdot)$ to derive a *rational coherence constraint* for qualitative judgment sets **B** (on \mathcal{A}).
- This derivation requires both the agent's credence function $b(\cdot)$ and their epistemic utility function [11, 18, 22] $u(\cdot)$. Following Easwaran [3, 5], we assume our agent cares *only* about whether their qualitative judgments are accurate.
- Specifically, our agent attaches some *positive* utility (r) with making an accurate judgment, and some negative utility (-w) with making an *inaccurate* judgment (where $w \ge r > 0$).

Branden Fitelson

Coherence

Belief & Credence: The view from naïve EUT

• To do so, we'll also need a decision-theoretic principle.

- Applications of EUT to grounding probabilism as a (synchronic) requirement for $b(\cdot)$ typically appeal to a non-dominance (in epistemic utility) principle [14, 26, 25].
- But, some authors apply an expected epistemic utility maximization (or expected inaccuracy minimization) principle to derive rational requirements [17, 10, 4, 24].

Coherence. An agent's belief set **B** over an agenda \mathcal{A} should, from the point of view of their own credence function $b(\cdot)$, maximize expected epistemic utility (or minimize expected inaccuracy). That is, **B** should maximize

$$EEU(\mathbf{B}, b) \stackrel{\text{def}}{=} \sum_{p \in \mathcal{A}} \sum_{w \in W} b(w) \cdot u(\mathbf{B}(p), w)$$

where $\mathbf{B}(p)$ is the agent's attitude toward p, and $W \triangleq \bigcup \mathcal{A}$.

• For now, we assume "act-state independence": $\mathbf{B}(p)$ and pare *b-independent* [9, 2, 1, 15]. We'll return to this issue.

• The consequences of **Coherence** are rather simple and intuitive. It is straightforward to prove the following result.

Theorem ([3]). An agent with credence function $b(\cdot)$ and qualitative judgment set **B** over agenda \mathcal{A} satisfies **Coherence** *if and only if* for all $p \in \mathcal{A}$

$$\begin{split} B(p) \in \mathbf{B} & \textit{iff } b(p) > \frac{w}{r+w}, \\ D(p) \in \mathbf{B} & \textit{iff } b(p) < 1 - \frac{w}{r+w}, \\ S(p) \in \mathbf{B} & \textit{iff } b(p) \in \left[1 - \frac{w}{r+w}, \frac{w}{r+w}\right]. \end{split}$$

- In other words, **Coherence** *entails Lockean representability*, where the Lockean thresholds are determined by the way the agent (relatively) values accuracy *vs.* inaccuracy.
 - This provides an elegant, EUT-based explanation of why Lockean representability is a rational requirement for agents with *both* credences *and* qualitative attitudes.
 - Next, I will explain when **Coherence** entails *consistency*.

Branden Fitelson

Belief & Credence: The view from naïve EUT

5

Setup Cohere

 (\dagger)

From Coherence to Consiste

From Coherence to Consistency

• Suppose our (naïve) agent has a belief set \mathbf{B}_n on a *minimal*

inconsistent agenda of size n (e.g., (n-1)-ticket lottery).

 $Pr(\cdot)$, the $Pr(\cdot)$ -Lockean-representability of \mathbf{B}_n (with

• If we combine this with Easwaran's **Coherence** theorem, we

get the following result, regarding the conditions under

which the **Coherence** of \mathbf{B}_n entails the consistency of \mathbf{B}_n .

Theorem ([5]). For all $n \ge 2$ and any probability function

threshold *t*) *entails* deductive consistency of \mathbf{B}_n *iff* $t \ge \frac{n-1}{n}$.

Theorem. For all $n \ge 2$, an agent with an accuracy-centered

utility function u, a credence function $b(\cdot)$, and a belief set

 $w \geq (n-1) \cdot r$.

 \mathbf{B}_n , the **Coherence** of \mathbf{B}_n entails the consistency of \mathbf{B}_n iff

Stability Theory vs. MEEU

Reference

P Coherence oo Consistency Stability Theory vs. MEEU References oo ooooo

- Of course, there will be *some* agents with epistemic utility functions *u*, which *do* satisfy (†). But, it is very odd (from a traditional Bayesian perspective) to *mandate* that such an agent's epistemic utility function *must* satisfy (†).
- Assuming MEEU is *sufficient* for epistemic rationality, this is precisely what we would be doing to such agents, if we were to impose deductive consistency as a rational requirement. Clearly, this would be an unacceptable consequence.
- For example, in Lottery Paradox cases, we can make n as large as we like. And, the larger we make n, the stronger (and more implausible) the constraint (†) becomes.
- This is not to say that there won't be *some* MEEU-agents for whom consistency *is* a rational requirement, for *some* \mathbf{B}_n 's. But, \mathbf{B}_n -consistency won't be a *universal* MEEU-requirement.
- In other words, consistency *outstrips* the MEEU-theory of epistemic rationality. Leitgeb [16] defends an alternative.

Branden Fitelson Belief & Credence: The view from naïve EUT 6

requires (naïve) agents to disvalue inaccuracy at least

Insisting that **Coherence** implies consistency (wrt \mathbf{B}_n)

(n-1) times as much as they value accuracy.

- According to Hannes's Stability Theory [16], a rational agent with credence function b (over a set of possible worlds W) believes a proposition p, viz., B(p), iff $b(p \mid y) > t$, for all $y \in \mathcal{Y}$, where $\mathcal{Y} = \{y \mid b(y) > 0 \text{ and } \neg B(\neg p)\}$.
- As Hannes explains, his theory will require that "Stable" rational agents have *consistent* (and *closed*) belief sets (*e.g.*, let \mathbf{B}_n be a belief set over a minimal inconsistent set of n > 3 propositions in an (n-1)-ticket Lottery Paradox).
- So, by our argument above, Stability Theory must *outstrip* MEEU-theory, which does *not* require consistency of \mathbf{B}_n (at least, this is not required for *every* MEEU-rational agent).
- Next, I'll discuss some features of the Stability Theory (ST), with an eye toward (a) bringing out some of its distinctive properties, and (b) bridging the gap between MEEU and ST.
- I'll use a simple guiding example to illustrate just how differently MEEU and ST can behave (even in simple cases).

Branden Fitelson

Setup 00	Coherence 00	From Coherence to Consistency	Stability Theory vs. MEEU ○●○○○○	References
-------------	-----------------	-------------------------------	-------------------------------------	------------

- My guiding example will involve a set $W = \{w_1, w_2, w_3, w_4\}$ containing four possible worlds. We can think of the example as involving a language with two atomic sentences $\{X,Y\}$, so that the worlds correspond to state descriptions.
- The relevant underlying Boolean algebra will contain 16 propositions. This allows us to visualize the example using (stochastic) truth-tables representing the entire algebra.
- The example involves two (rational) agents: S_1 is an MEEU-agent and S_2 is an ST-agent. S_1 's belief state \mathbf{B}_1 is determined by her credence function b_1 and her u. S_2 's belief state \mathbf{B}_2 is determined by her credence function b_2 .
- In order to ensure a fair comparison, we will suppose that both agents have a 1/2-threshold for rational belief.
- For S_1 , this means her u is such that r = w. For S_2 , this means t = 1/2 in her criterion for stable belief (*i.e.*, S_2 believes q just in case q is p-stable, relative to b_2).

Branden Fitelson

Belief & Credence: The view from naïve EUT

Stability Theory vs. MEEU

Stability Theory vs. MEEU

Stability Theory vs. MEEU

•	There are (arbitrarily) small perturbations b' of b , which (a)
	do not alter the 1/2-credence n's. (b) lower the credence of

 $\neg X \lor \neg Y$, but (c) make it rational for S_2 to believe $\neg X \lor \neg Y$.

w's	p	b	b'	$\mathbf{B}_1 = \mathbf{B}_1'$	\mathbf{B}_2	B ₂
$\{w_1\}$	$\neg X \wedge \neg Y$	0.5	0.5	S	S	S
$\{w_2\}$	$X \wedge \neg Y$	0.25	0.2366	D	S	S
$\{w_3\}$	$X \wedge Y$	0.125	0.1295	D	S	D
$\{w_4\}$	$\neg X \wedge Y$	0.125	0.1339	D	S	S
$\{w_1, w_2\}$	$\neg Y$	0.75	0.7366	В	S	S
$\{w_1, w_3\}$	$X \equiv Y$	0.625	0.6295	В	S	S
$\{w_1, w_4\}$	$\neg X$	0.625	0.6339	В	S	S
$\{w_2, w_3\}$	X	0.375	0.3660	D	S	S
$\{w_2, w_4\}$	$X \not\equiv Y$	0.375	0.3705	D	S	S
$\{w_1, w_4\}$	Y	0.25	0.2634	D	S	S
$\{w_1, w_2, w_3\}$	$X \vee \neg Y$	0.875	0.8661	В	S	S
$\{w_1, w_2, w_4\}$	$\neg X \lor \neg Y$	0.875	0.8705	В	S	В
$\{w_1, w_3, w_4\}$	$\neg X \lor Y$	0.75	0.7634	В	S	S
$\{w_2, w_3, w_4\}$	$X \vee Y$	0.5	0.5	S	S	S

•	S_1 and S_2 share the same credence function $b_1 = b_2 = b$.
	But, they have <i>very different belief states</i> \mathbf{B}_1 and \mathbf{B}_2 [23]. The
	following table depicts b , \mathbf{B}_1 and \mathbf{B}_2 (on the <i>contingent</i> p 's).

<i>w</i> 's	p	b	\mathbf{B}_1	\mathbf{B}_2
$\{w_1\}$	$\neg X \wedge \neg Y$	0.5	S	S
w_{2}	$X \wedge \neg Y$	0.25	D	S
$\{w_3\}$	$X \wedge Y$	0.125	D	S
	$\neg X \wedge Y$	0.125	D	S
w_1, w_2	$\neg Y$	0.75	В	S
$\{w_1, w_3\}$	$X \equiv Y$	0.625	В	S
w_1, w_4	$\neg X$	0.625	В	S
w_2, w_3	X	0.375	D	S
$\{w_2, w_4\}$	$X \not\equiv Y$	0.375	D	S
$\{w_1, w_4\}$	Y	0.25	D	S
$\{w_1, w_2, w_3\}$	$X \vee \neg Y$	0.875	В	S
$\{w_1, w_2, w_4\}$	$\neg X \lor \neg Y$	0.875	В	S
$\{w_1, w_3, w_4\}$	$\neg X \lor Y$	0.75	В	S
$\{w_2, w_3, w_4\}$	$X \vee Y$	0.5	S	S

Branden Fitelson Belief & Credence: The view from naïve EUT

> • This example brings out just how different MEEU-theory and Stability Theory are. Note, also, that the MEEU belief set (\mathbf{B}_1) is *consistent* (although, it is *not closed*, since $\neg B(\neg X \& \neg Y)$).

> • Is there a way to bridge this gap between MEEU and ST? *I.e.*, is there some way to understand what ST requires (over-and-above MEEU), from an EUT perspective?

> • Here's a conjecture regarding one possible way of getting to something the resembles ST, using the machinery of EUT.

> > **Conjecture.** Let V be any set of W-propositions (with nonzero *b*-credence). If a belief set **B** (on \mathcal{A}) maximizes

$$EEU_{\mathcal{Y}}(\mathbf{B}, b) \stackrel{\text{def}}{=} \sum_{p \in \mathcal{A}} \sum_{w \in W} b(w \mid y) \cdot u(\mathbf{B}(p), w)$$

for all $y \in V$, then **B** is resiliently Lockean representable by $b(\cdot \mid y)$, for each $y \in \mathcal{Y}$, with threshold $t = \frac{w}{r+w}$.

• If this conjecture is true, then "Stability Theory" emerges from "resilient expected epistemic utility maximization."

Branden Fitelson

Setup	Coherence	From Coherence to Consistency	Stability Theory vs. MEEU	Referen
	• Thus, from	m a naïve EUT-perspecting u -funct es a much stronger, "res	ve, <i>either</i> ST imposes ions of rational agent	
	practical be too de	nt" MEEU a plausible rat case, it seems clear that manding (in general). Ma yould be rendered irratio	such a requirement wany actions we take to	vould be

- Why think the epistemic case is any different? Simply insisting that deductive cogency is a requirement of epistemic rationality is not a very illuminating answer here (especially in light of the results and examples above).
- Is there an independent (epistemic-value-theoretic) argument that *more than* MEEU is required for epistemic rationality (and, specifically, that "stability" is required)?
- Is there some alternative unified theory of (both practical and epistemic) rationality that undergirds "stability"?

Branden Fitelson Belief & Credence: The view from naïve EUT

13

References

Coherer

From Coherence to Consist

Stability Theory vs. MEI

Stability Theory vs. MEEU

References

- [1] M. Caie, Rational Probabilistic Incoherence, Philosophical Review, 2013.
- [2] J. Carr, Epistemic Utility Theory and the Aim of Belief, 2014.
- [3] K. Easwaran, *Dr. Truthlove or: How I Learned to Stop Worrying and Love Bayesian Probability*, manuscript, September 2014.
- [4] _______, Expected Accuracy Supports Conditionalization—and Conglomerability and Reflection, Philosophy of Science, 2013.
- [5] K. Easwaran and B. Fitelson, *Accuracy, Coherence, and Evidence*, to appear in *Oxford Studies in Epistemology V*, T. Szabo-Gendler and J. Hawthorne (*eds.*).
- [6] E. Eells, Rational Decision and Causality, CUP, 1982.
- [7] _____, Levi's "The Wrong Box", Journal of Philosophy, 1985.
- [8] A. Gibbard & W. Harper. Counterfactuals and two kinds of expected utility, 1981.
- [9] H. Greaves, Epistemic Decision Theory, Mind, 2013.
- [10] H. Greaves and D. Wallace, Justifying Conditionalization: Conditionalization Maximizes Expected Epistemic Utility, Mind, 2006.
- [11] C. Hempel, Deductive-Nomological vs. Statistical Explanation, 1962.
- [12] R. Jeffrey, The Logic of Decision, Chicago, 1990.
- [13] J. Joyce, The Foundations of Causal Decision Theory, CUP, 1999.
- [14] ______, Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief, in F. Huber & C. Schmidt-Petri (eds.), Degrees of Belief, 2009.

- A requirement on rational belief (or rational action) is *partition-invariant* (PI) iff its prescriptions do not depend on how the underlying space of possibilities is partitioned.
- In the case of practical rationality (*viz.*, rational action), many philosophers endorse (PI) as a *desideratum* [12, 6, 7, 19, 13].
- Savage's theory [27] and standard causal decision theories [8, 28, 20, 29] are partition-*dependent*. This has led various authors [12, 6, 13] to endorse evidential decision theories.
- We defined **Coherence** "Savage–style," and we assumed *act-state independence* (ASI) to ensure (PI). For our present examples (*e.g.*, Lotteries) this is OK. *But*, see [9, 2, 15].¹
- Lin & Kelly [21] show: *any* non-trivial, Lockean coherence constraint that entails *deductively cogency must be* partition *dependent even in Lottery cases* (*i.e.*, *even if* ASI obtains).

¹More generally, **Coherence** will satisfy (PI) if u satisfies following, for all partitions $\{X_i\}$ of W: $(\forall X_i) [u(\mathbf{B}(p), X_i) = \sum_{w \in W} b(w \mid X_i) \cdot u(\mathbf{B}(p), w)]$.

Branden Fitelson

Belief & Credence: The view from naïve EUT

- [15] J. Konek and B. Levinstein, *The Foundations of Epistemic Decision Theory*, 2014.
- [16] H. Leitgeb, The Stability Theory of Belief, Philosophical Review, 2014.
- [17] H. Leitgeb and R. Pettigrew, An Objective Justification of Bayesianism I & II, Philosophy of Science, 2010.
- [18] I. Levi, Gambling with Truth, 1967.
- [19] _____, The Wrong Box, Journal of Philosophy, 1985.
- [20] D. Lewis, Causal decision theory, Australasian Journal of Philosophy, 1981.
- [21] H. Lin and K. Kelly, A Geo-logical Solution to the Lottery Paradox, with Applications to Non-monotonic Logic, 2012.
- [22] P. Maher, Betting on Theories, 1993.
- [23] D. Makinson, Remarks on the Stability Theory of Belief, 2014.
- [24] G. Oddie, Conditionalization, cogency, and cognitive value, British Journal for the Philosophy of Science, 1997.
- [25] R. Pettigrew, Epistemic Utility Arguments for Probabilism, The Stanford Encyclopedia of Philosophy (Winter 2011 Edition), URL = http://plato.stanford.edu/archives/win2011/entries/epistemic-utility/.
- [26] J. Predd, R. Seringer, E. Loeb, D. Osherson, H.V. Poor and S., Kulkarni, *Probabilistic coherence and proper scoring rules, IEEE Transactions*, 2009.
- [27] L. Savage, The Foundations of Statistics, Dover, 1972.
- [28] B. Skyrms, Causal decision theory, Journal of Philosophy, 1982.
- [29] J.H. Sobel, Taking Chances: Essays on Rational Choice, 1994.

Branden Fitelson