

Red de sensores WiFi para sistema productivo

Autor:

Francisco G. Timez

Director:

Marcelo Pistarelli (UNR)

Jurados:

Nombre y Apellido (1) (pertenencia (1))

Nombre y Apellido (2) (pertenencia (2))

Nombre y Apellido (3) (pertenencia (3))

Índice

Registros de cambios	3
Acta de constitución del proyecto	4
Descripción técnica-conceptual del proyecto a realizar	5
Identificación y análisis de los interesados	6
1. Propósito del proyecto	6
2. Alcance del proyecto	6
3. Supuestos del proyecto	6
4. Requerimientos	7
$egin{aligned} ext{Historias de usuarios} & \left(ext{\it Product backlog} ight) & \dots & \dots & \dots & \dots & \dots & \dots \end{aligned}$	7
5. Entregables principales del proyecto	8
6. Desglose del trabajo en tareas	8
7. Diagrama de Activity On Node	9
8. Diagrama de Gantt	10
9. Matriz de uso de recursos de materiales	12
10. Presupuesto detallado del proyecto	12
11. Matriz de asignación de responsabilidades	12
12. Gestión de riesgos	13
13. Gestión de la calidad	14
14. Comunicación del proyecto	16
15. Gestión de Compras	17
16. Seguimiento y control	17
17 Procesos de cierre	17

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento	22/06/2020
1.1	Avances hasta capítulo 6. Desglose de tareas	10/07/2020
1.2	Se atendieron a las correcciones enviadas el día 14/07/2020	15/07/2020
1.3	Avances hasta capítulo 11. Matriz de asignación de responsabilida-	30/07/2020
	des.	
1.4	Avances hasta capítulo 17. Procesos de cierre	08/08/2020

Acta de constitución del proyecto

Buenos Aires, 22 de junio de 2020

Por medio de la presente se acuerda con el Ing. Francisco G. Timez que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Red de sensores WiFi para sistema productivo", consistirá esencialmente en el prototipo preliminar de un sensor de fácil configuración e instalación, para el registro de datos ambientales o de procesos específicos, y tendrá un presupuesto preliminar estimado en 640 hs y un costo estimado en xxxx pesos argentinos, con fecha de inicio 22 de junio de 2020 y fecha de presentación pública 22 de Julio de 2021.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Pablo Scherf Cerámica FELI

Marcelo Pistarelli Director del Trabajo Final

Nombre y Apellido (1) Jurado del Trabajo Final Nombre y Apellido (2) Jurado del Trabajo Final

Nombre y Apellido (3) Jurado del Trabajo Final

Descripción técnica-conceptual del proyecto a realizar

En las PyMEs dedicadas a la industria ceramista, en la mayoría de las situaciones los emprendedores corrigen, a prueba y error, los parámetros de sus procesos productivos en base a los resultados obtenidos de la producción. Las correcciones se realizan según la experiencia propia del emprendedor y en la mayoría de los casos no se realizan registro de las variables del proceso.

Partiendo de la premisa que "lo que no se puede medir, no se puede mejorar", se propone un sistema de fácil configuración e instalación, que les permita a estos emprendedores, en un principio, utilizar los criterios formados en la experiencia, y poder darles una base sólida en los datos para poder mejorar de manera continua.

Este proyecto debe ser de implementación sencilla, por dos motivos. Primero, no suelen tener un departamento dentro de la PyME dedicado al mantenimiento, pero si personal con conocimientos de electricidad industrial. Segundo, la estructura edilicia de la industria se modifica constantemente. Entonces debe ser un producto que se pueda reinstalar en otro sitio sin mayores inconvenientes.

Uno de los desafíos más importantes de este proyecto radica en reducir los costos de implementación, tiene que permitirle a la PyME instalar, desinstalar y reubicar los sensores con recursos propios, sin recurrir a mano de obra especializada.

El sistema consiste en nodos que se desarrollan en forma genérica y que pueden ser configurados según la necesidad de la PyME. Como se puede ver en la figura 1, los nodos son similares, pero pueden tener distintas funciones asignadas, el Nodo 01 sensa temperatura y humedad, el Nodo 02 sensa temperatura y un switch (podría funcionar como contador) y el Nodo 03 tiene un módulo de expansión I2C. De esta manera, si algún Nodo pierde utilidad en el lugar donde se encuentra instalado, puede ser reubicado cambiando su configuración o no.

Figura 1: Diagrama en bloques del sistema

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante			
Cliente	Pablo Scherf	Cerámica FELI	Gerente
Impulsor			
Responsable	Francisco G. Timez	FIUBA	Alumno
Orientador	Marcelo Pistarelli	UNR	Director Trabajo final
Usuario final	Personal técnico	PyME	-

1. Propósito del proyecto

El propósito de este proyecto es brindarle a la PyME un recurso técnico económico para lograr implementar un sistema de seguimiento a su proceso o línea productiva; que le permita sensar variables de producción y tener los datos disponibles en gráficos actualizados en tiempo real.

2. Alcance del proyecto

El desarrollo del presente proyecto incluye:

- Análisis, investigación y elección del hardware para el nodo.
- Desarrollo de un prototipo de nodo que soporte distintos sensores detallados en los requerimientos.
- Desarrollo del firmware del nodo.
- Software backend para almacenar los datos de los sensores en una base de datos tipo SQL.
- Instalación de una interfaz gráfica estándar para visualización de los datos almacenados en la base de datos.

El proyecto NO incluye:

- Desarrollo de una interfaz web o gráfica específica para interactuar con los datos.
- Desarrollo de una interfaz gráfica para configuración de los nodos.
- Desarrollo de módulos de sensores para el nodo.
- Pruebas de validación en campo.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

• Los componentes electrónicos necesarios se consiguen dentro de territorio Argentino.

- Se realizará un solo proceso de compra.
- Los sensores son todos con salida digital, se supone que no requieren un proceso de calibración y ajuste.
- La estructura de red WiFi existe y está en funcionamiento en la PyME.
- La cobertura de la red WiFi es la adecuada para la línea productiva de la PyME.

4. Requerimientos

Requerimientos del proyecto:

- 1. Requerimientos de hardware del nodo:
 - 1.1. Debe soportar tensiones de alimentación de 5 Vdc a 24 Vdc.
 - 1.2. Debe basarse en el microcontrolador ESP8266 ó ESP32.
 - 1.3. Debe tener puerto de I2C para conectar otros módulos de expansión.
 - 1.4. Entradas:
 - 1) Sensor de temperatura y humedad DHT22.
 - 2) Sensor de temperatura termopar K con MAX6675.
 - 3) Al menos una entrada para sensores con salida relé o transistorizados NPN.
- 2. Requerimientos de firmware del nodo:
 - 2.1. Comunicación WiFi y por protocolo MQTT.
 - 2.2. Se debe poder configurar los sensores mediante un archivo JSON, con posibilidad de actualización mediante OTA.
 - 2.3. Se debe soportar actualización del firmware mediante OTA.
 - 2.4. Se debe soportar el módulo de expansión PCF8574.
- 3. Requerimientos de software backend:
 - 3.1. Todos los servicios deben correr en una Raspberry Pi 3 o 4.
 - 3.2. Broker MQTT alojado en red local.
 - 3.3. Backend basado en Node-RED o NodeJS.
 - 3.4. Generación de tablas en base de datos SQL, según configuración del nodo.
 - 3.5. Dashboard web de variables sensadas mediante Grafana.

Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

5. Entregables principales del proyecto

- Manual de configuración
- Diagrama esquemático
- Código fuente
- Informe final

6. Desglose del trabajo en tareas

- 1. Planificación del Proyecto (40 hs)
 - 1.1. Elaboración del documento de planificación del proyecto (20 hs)
 - 1.2. Diseño de la arquitectura global del proyecto (20 hs)
- 2. Desarrollo del hardware del nodo (150 hs)
 - 2.1. Diseño del diagrama esquemático (40 hs)
 - 2.2. Selección y compra de componentes (20 hs)
 - 2.3. Routeo PCB (40 hs)
 - 2.4. Fabricación del PCB (30 hs)
 - 2.5. Verificación y testing básico del prototipo (20 hs)
- 3. Desarrollo del firmware del nodo (210 hs)
 - 3.1. Tests con freeRTOS (50 hs)
 - 1) Generar tareas con los parámetros cargados desde un archivo JSON (25 hs)
 - 2) Actualización de tareas con la actualización del archivo JSON (25 hs)
 - 3.2. Diseño de la arquitectura de software (20 hs)
 - 3.3. Desarrollo de tareas para comunicación WiFi con broker de mensajería (20 hs)
 - 3.4. Desarrollo de las tareas para gestión de sensores (40 hs)
 - 3.5. Desarrollo de las tareas para gestión de puerto de expansión I2C (40 hs)
 - 3.6. Integración de todas las tareas desarrolladas (40 hs)
- 4. Desarrollo del backend (240 hs)
 - 4.1. Diseño de la arquitectura de software (40 hs)
 - 4.2. Instalación de broker de mensajería (20 hs)
 - 4.3. Instalación de base de datos (20 hs)
 - 4.4. Desarrollo software de backend (100 hs)
 - 1) Introducción a NodeJS (50 hs)
 - 2) Desarrollo bloque para comunicación con broker de mensajería (25 hs)
 - 3) Desarrollo bloque para inserción de datos en la base de datos (25 hs)
 - 4.5. Instalación y configuración de Grafana (20 hs)
 - 4.6. Integración de los bloques desarrollados (40 hs)

Cantidad total de horas: (640 hs)

7. Diagrama de Activity On Node

En el diagrama de Activity On Node se utiliza "hora" como unidad de tiempo y las flechas gruesas marcan el camino crítico del proyecto.

Figura 2: Diagrama en Activity on Node

8. Diagrama de Gantt

En el diagrama de Gantt se supone que al proyecto se le dedicará 2 horas de trabajo por día, los 7 días de la semana. La cantidad de horas de trabajo por día es un estimativo promedio mensual. De esta forma la unidad de tiempo en el diagrama de Gantt es "día".

		GANTT			
		Nombre	Fecha de inicio	Fecha de fin	Duración
Ξ	0	1. Planificación del Proyecto	17/06/20	06/07/20	20
		1.1 Elaboración del documento de planificación del proyecto	17/06/20	26/06/20	10
		1.2 Diseño de la arquitectura global del proyecto	27/06/20	06/07/20	10
	0	2. Desarrollo del Hardware del nodo	07/07/20	19/09/20	75
		2.1 Diseño del diagrama esquemático	07/07/20	26/07/20	20 .
		2.2 Selección y compra de componentes	27/07/20	05/08/20	10
		2.3 Routeo PCB	06/08/20	25/08/20	20
		2.4 Fabricación del PCB	26/08/20	09/09/20	15
		 2.5 Verificación y testing básico del prototipo 	10/09/20	19/09/20	10
	0	3. Desarrollo del firmware del nodo	20/09/20	22/01/21	125
- 1		3.1 Tests con freeRTOS	20/09/20	14/10/20	25
		 3.1.1 Generar tareas con los parámetros dargados desde un JSON 	20/09/20	01/10/20	12
		 3.1.2 Actualización de tareas con la actualización del archivo JSON 	02/10/20	14/10/20	13
		3.2 Diseño de la arquitectura de software	15/10/20	24/10/20	10
		3.3 Desarrollo de tareas para comunicación WiFi con broker de mensajería	14/11/20	23/11/20	10
		 3.4 Desarrollo de las tareas para gestión de sensores 	24/11/20	13/12/20	20
		 3.5 Desarrollo de las tareas para gestión de puerto de expansión I2C 	14/12/20	02/01/21	20
		3.6 Integración de todas las tareas desarrolladas	03/01/21	22/01/21	20
\equiv	0	4. Desarrollo del backend	15/10/20	22/04/21	190
		4.1 Diseño de la arquitectura de software	15/10/20	03/11/20	20
		 4.2 Instalación de broker de mensajería 	04/11/20	13/11/20	10
		4.3 Instalación de base de datos	23/01/21	01/02/21	10
- 1	-	4.4 Desarrollo software de backend	12/02/21	02/04/21	50
		4.4.1 Introducción a NodeJS	12/02/21	08/03/21	25
		 4.4.2 Desarrollo bloque para comunicación con broker de mensajería 	09/03/21	21/03/21	13
		 4.4.3 Desarrollo bloque para inserción de datos en la base de datos 	22/03/21	02/04/21	12
		4.5 Instalación y configuración de Grafana	02/02/21	11/02/21	10
		4.6 Integración de los bloques desarrollados	03/04/21	22/04/21	20

Figura 3: Diagrama de Gantt

Figura 4: Diagrama de Gantt (Gráfico)

9. Matriz de uso de recursos de materiales

código		Recursos requeridos (horas)					
WBS	Nombre tarea		Raspberry Pi	Laboratorio	Kit de desarrollo	PCB	
1	Planificación del Proyecto						
1.1	Elaboración del documento de planificación del proyecto	20					
1.2	Diseño de la arquitectura global del proyecto	20					
2	Desarrollo del hardware del nodo						
2.1	Diseño del diagrama esquemático	40					
2.2	Selección y compra de componentes	20					
2.3	Routeo PCB	40					
2.4	Fabricación del PCB	5		25			
2.5	Verificación y testing básico del prototipo	20		20			
3	Desarrollo del firmware del nodo					,	
3.1	Tests con freeRTOS	50			50		
3.2	Diseño de la arquitectura de software	20					
3.3	Desarrollo de tareas para comunicación WiFi con broker de mensajería	20	20				
3.4	Desarrollo de las tareas para gestión de sensores	40			40		
3.5	Desarrollo de las tareas para gestión de puerto de expansión I2C	40			40		
3.6	Integración de todas las tareas desarrolladas	40				40	
4	Desarrollo del backend					,	
4.1	Diseño de la arquitectura de software	40					
4.2	Instalación de broker de mensajería	20	20				
4.3	Instalación de base de datos	20	20				
4.4	Desarrollo software de backend					'	
4.4.1	Introducción a NodeJS	50					
4.4.2	Desarrollo bloque para comunicación con broker de mensajería	25	25				
4.4.3	Desarrollo bloque para inserción de datos en la base de datos	25	25				
4.5	Instalación y configuración de Grafana	20	20				
4.6	Integración de los bloques desarrollados	40	40			40	
	Total de horas por recurso	615	170	45	130	80	

10. Presupuesto detallado del proyecto

COSTOS DIRECTOS							
Descripcion	Cantidad	Valor unitario	Valor total				
Trabajo directo	640 hs	\$750,00	\$480.000,00				
Raspberry Pi	1	\$15.000,00	\$15.000,00				
Fabricacion del PCB	10	\$5.000,00	\$50.000,00				
Kit de desarrollo	2	\$3.000,00	\$6.000,00				
SUBTOTAL			\$551.000,00				
COSTOS INDIRECTOS	5						
Descripcion	Cantidad	Valor unitario	Valor total				
30% de trabajo directo	192 hs	\$750,00	\$144.000,00				
SUBTOTAL	\$144.000,00						
TOTAL			\$695.000,00				

11. Matriz de asignación de responsabilidades

Referencias:

- ullet P = Responsabilidad Primaria
- ullet S = Responsabilidad Secundaria
- lacksquare A = Aprobación
- \blacksquare I = Informado

código WBS	Nombre tarea	Responsable Francisco G. Timez	Orientador Marcelo Pistarelli	Cliente Pablo Scherf
1	Planificación del Proyecto	Trancisco G. Timez	Marcoo I Buren	1 abio belieff
1.1	Elaboración del documento de planificación del proyecto	Р	I	I
1.2	Diseño de la arquitectura global del proyecto	P	I	I
2	Desarrollo del hardware del nodo			
2.1	Diseño del diagrama esquemático	P		С
2.2	Selección y compra de componentes	P		С
2.3	Routeo PCB	P		
2.4	Fabricación del PCB	P		I
2.5	Verificación y testing básico del prototipo	P		I
3	Desarrollo del firmware del nodo			
3.1	Tests con freeRTOS			
3.1.1	Generar tareas con los parámetros cargados desde un archivo JSON	P		
3.1.2	Actualización de tareas con la actualización del archivo JSON	P		
3.2	Diseño de la arquitectura de software	P	C	
3.3	Desarrollo de tareas para comunicación WiFi con broker de mensajería	P	I	
3.4	Desarrollo de las tareas para gestión de sensores	P	I	
3.5	Desarrollo de las tareas para gestión de puerto de expansión I2C	P	I	
3.6	Integración de todas las tareas desarrolladas	P	I	I
4	Desarrollo del backend			
4.1	Diseño de la arquitectura de software	P	С	
4.2	Instalación de broker de mensajería	P		
4.3	Instalación de base de datos	P		С
4.4	Desarrollo software de backend			
4.4.1	Introducción a NodeJS	P		
4.4.2	Desarrollo bloque para comunicación con broker de mensajería	P		
4.4.3	Desarrollo bloque para inserción de datos en la base de datos	P		
4.5	Instalación y configuración de Grafana	P		I
4.6	Integración de los bloques desarrollados	P	I	I

12. Gestión de riesgos

A continuación se describen los riesgos asociados al proyecto, junto con un plan de mitigación a los fines de reducir la probabilidad de errores.

- a) Identificación de los riesgos
 - Riesgo 1: falta de tiempo para la finalización del proyecto.
 - Severidad (5): implicaría no terminar la especialización en sistemas embebidos.
 - Probabilidad de ocurrencia (3): Se cuenta con una planificación detallada del proyecto.
 - Riesgo 2: retraso en el desarrollo de software de backend.
 - Severidad (8): debido a la capacidad técnica actual, esto puede retrasar la finalización del proyecto.
 - Probabilidad de ocurrencia (10): alta debido a que no se posee experiencia en el desarrollo de software de backend.
 - Riesgo 3: pérdida de archivos por falla, rotura o robo de las herramientas de desarrollo (Computadora Personal)
 - Severidad (8): implicaría perder gran parte del trabajo, junto con su documentación.
 - Probabilidad de ocurrencia (5): probabilidad media debido a que me movilizo con la computadora por la ciudad y además tiene acumulada muchas horas de uso.
 - Riesgo 4: no conseguir los componentes necesarios para el proyecto.
 - Severidad (5): implicaría volver a la etapa de diseño del PCB.

- Probabilidad de ocurrencia (5): hay pocos importadores de componentes electrónicos en el país, y traer a pedido implica una demora no aceptable para el proyecto.
- Riesgo 5: Falla en el PCB.
 - Severidad (5): demoraría las pruebas de integración del proyecto.
 - Probabilidad de ocurrencia (5): Al ser de fabricación artesanal pueden ocurrir cortocircuitos en las pistas con elementos extraños o errores en el revelado del PCB.
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*
Riesgo 1	5	3	15			
Riesgo 2	8	10	80	4	5	20
Riesgo 3	8	5	40	2	5	10
Riesgo 4	5	5	25			
Riesgo 5	5	5	25			

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a 30.

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

- c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:
 - Riesgo 2: Se utilizará como recursos cursos virtuales en plataformas como udemy, Platzi, códigofacilito, EducaciónIT o similares.
 - Severidad (4): se reduce la severidad debido a que se seguirá un plan de estudios, por lo tanto se reduce el tiempo de aprendizaje.
 - Probabilidad de ocurrencia (5): tener un plan de estudio reduce la probabilidad de ocurrencia ya que se generan objetivos intermedios agilizando la tarea.
 - Riesgo 3: Se utilizará un sistema de control de versiones en la nube, como por ejemplo Git y GitHub. Y se generarán alarmas para recordar de generar un guardado en la nube cada una semana.
 - Severidad (2): luego de la mitigación se reduce notoriamente la severidad ya que se perderá como máximo el trabajo de una semana.
 - Probabilidad de ocurrencia (5): la probabilidad de ocurrencia se mantiene debido a que depende de factores externos.

13. Gestión de la calidad

- 1. Requerimientos de hardware del nodo:
 - 1.1. Debe soportar tensiones de alimentación de 5 Vdc a 24 Vdc. Verificación y validación:

- Verificación: Se obtendrán de las hojas de datos de los componentes reguladores las tensiones máximas admitidas.
- Validación: Se energizará el dispositivo con una fuente de corriente continua regulable, desde los 5Vdc hasta los 24Vdc en incrementos de 1V.
- 1.2. Debe basarse en el microcontrolador ESP8266 ó ESP32.

Verificación y validación:

- Verificación: Se analizarán los costos y las características de cada microcontrolador y se elegirá el que mejor se ajuste al proyecto.
- Validación: Se harán testeos con placas de desarrollo.
- 1.3. Debe tener puerto de I2C para conectar otros módulos de expansión.

Verificación y validación:

- Verificación: Se investigará documentación del protocolo I2C para implementarlo correctamente.
- Validación: Se harán testeos con placas de desarrollo y dispositivos I2C.

1.4. Entradas:

1) Sensor de temperatura y humedad DHT22.

Verificación y validación:

- Verificación: Se analizará la hoja de datos del sensor verificando las condiciones de funcionamiento.
- Validación: Se realizarán testeos del sensor.
- 2) Sensor de temperatura termopar K con MAX6675.

Verificación y validación:

- Verificación: Se analizará la hoja de datos del CI conversor verificando las condiciones de funcionamiento.
- Validación: Se realizarán testeos con distintas termocuplas comparando las mediciones con sensores digitales como Ds18b20.
- 3) Al menos una entrada para sensores con salida relé o transistorizados NPN. Verificación y validación:
 - Verificación: Se analizarán distintos tipos de sensores para verificar las condiciones de funcionamiento.
 - Validación: Se harán testeos con sensores industriales disponibles.
- 2. Requerimientos de firmware del nodo:
 - 2.1. Comunicación WiFi y por protocolo MQTT.

Verificación y validación:

- Verificación: Se verifica mediante la hoja de datos del dispositivo y documentación necesaria.
- Validación: Se harán testeos enviando y recibiendo datos.
- 2.2. Se debe poder configurar los sensores mediante un archivo JSON, con posibilidad de actualización mediante OTA.

Verificación y validación:

- Verificación: Se construye un archivo JSON que contemple las configuraciones necesarias para las tareas.
- Validación: Se harán testeos con creando, actualizando y borrando tareas.
- 2.3. Se debe soportar actualización del firmware mediante OTA.

Verificación y validación:

- Verificación: Se analizará la documentación para la implementación de OTA por HTTP.
- Validación: Se harán testeos de actualización de firmware.
- 2.4. Se debe soportar el módulo de expansión PCF8574.

Verificación y validación:

- Verificación: Se analizará la hoja de datos del chip y se comprobará sus condiciones de funcionamiento.
- Validación: Se harán testeos con al menos un modulo de expansión.
- 3. Requerimientos de software backend:
 - $3.1.\ {\rm Todos\ los\ servicios\ deben\ correr\ en\ una\ Raspberry\ Pi\ 3\ o\ 4.}$

Verificación y validación:

- Verificación: Se verificará en la documentación adecuada si los servicios necesarios pueden ejecutarse en la plataforma.
- Validación: Se realizarán tests de cada servicio en forma individual y luego en forma integrada.
- 3.2. Broker MQTT alojado en red local.

Verificación y validación:

- Verificación: Se verificará en documentación adecuada la implementación en red local.
- Validación: Se enviarán y recibirán mensajes desde la consola de comandos a través del broker.
- 3.3. Backend basado en Node-RED o NodeJS.

Verificación y validación:

- Verificación: Se consultará a expertos o en documentación adecuada para la implementación.
- Validación: Se enviarán datos al backend para que los guarde en la base de datos y luego se consultaran esos datos con otra petición al backend.
- 3.4. Generación de tablas en base de datos SQL, según configuración del nodo.

Verificación y validación:

- Verificación: Se analizará la estructura de las tablas y se propondrá una estructura unificada.
- Validación: Se crearán tablas en forma automática según un archivo JSON de configuración.
- 3.5. Dashboard web de variables sensadas mediante Grafana.

Verificación y validación:

- Verificación: Se consultará la documentación para generar las pantallas adecuadas.
- Validación: Se generaran dashboards con los gráficos necesarios para ver los datos enviados por un nodo.

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

PLAN DE COMUNICACION DEL PROYECTO							
¿Qué comunicar?	Audiencia	Propósito	Frecuencia	Método de comunicación	Responsable		
Definición	Director	Evaluación	Inicio del	Correo	Francisco G. Timez		
de alcance y objetivos.	e y objetivos. y cliente. y		proyecto.	electrónico.	Francisco G. Timez		
Avances generales.	Director.	Recibir comentarios	Quincenal.	Correo	Francisco G. Timez		
Avances generales.	Director.	y recomendaciones.	recomendaciones.		Francisco G. Timez		
Informe de avance.	Director	Informar el estado	Unica vez.	Correo	Francisco G. Timez		
illiorine de avance.	y cliente.	del proyecto.	Offica vez.	electrónico.	Francisco G. Timez		
Finalizacion y cierre.	Director	Evaluación y finalización	Final del	Reunión.	Francisco G. Timez		
r manzacion y cierre.	y jurado.	del proyecto.	proyecto.	Reumon.	Francisco G. Timez		

15. Gestión de Compras

Para la compra de componentes electrónicos se considerará únicamente proveedores nacionales, y en situaciones particulares y a evaluar, según la situación, a proveedores internacionales. Se toma esta decisión en base a que en caso de falla o en caso de requerirse más de un prototipo se debe poder dar una respuesta en menos de 15 días.

16. Seguimiento y control

	SEGUIMIENTO DE AVANCE							
código	Indicador	Frecuencia	Resp. del	Persona a	Método de			
WBS	de avance	del reporte	seguimiento	ser informada	comunicación			
1	Versiones del documento	Semanal.	Francisco G. Timez	Director y	Correo			
1	de planificación.	Semanai.	Francisco G. Timez	docentes CESE.	electrónico.			
2	Sub-tarea finalizada.	Quincenal.	Francisco G. Timez	Director.	Correo			
	Sub tarea manzada.		Francisco G. Timez	Director.	electrónico.			
3	Sub-tarea finalizada.	Quincenal.	Francisco G. Timez	Director.	Correo			
3	Sub-tarea imanzada.	Quincenai.	Francisco G. Timez	Director.	electrónico.			
4	Sub-tarea finalizada.	Quincenal.	Francisco G. Timez	Director.	Correo			
4	Sub-tarea illianzada.	Quincenai.	Francisco G. Tilliez	Director.	electrónico.			

17. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original: Encargado: Francisco G. Timez.
 - Se evaluarán los requerimientos y los objetivos alcanzados en el prototipo en comparación con los planteados en el plan original.
 - Se avaluará los tiempos de ejecución real de las tareas junto con los planteados en el diagrama de Gantt.
- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron:
 Encargado: Francisco G. Timez.

- Se evaluará el impacto de las herramientas proporcionadas por la CESE en el desarrollo del proyecto.
- En caso de surgir problemas se evaluará la idea original, porqué no resultó adecuada, y la solución ejecutada.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores:
 Encargado: Francisco G. Timez.
 - Se realizará un agradecimiento a todos los colaboradores directos e indirectos del proyecto, director, jurados, compañeros, docentes y autoridades de la Carrera de Especialización en Sistemas Embebidos.