EMG Workshop w/ IEEE pt. 2

Recap: (first meeting)

- Motor Neurons
- What is EMG?
- Circuit basics (voltage as a vector, etc.)
- Arduino pins/chip pins (A0, GND, V+, V-)

Before we begin:

It works!

However,

Buy cheap, get cheap results

So not perfect results or methods

Hardware

Schematic of EMG Circuit

Hardware Setup

- 1. Connect the arduino to your laptop using the USB-A to USB-B cable. If required, use a USB-C to USB-A adapter.
- 2. Wire the EMG sensor to the arduino **GND** and **A0** pins. Use M-F jumper wires.
- 3. Connect the EMG sensor to the power supply via the breadboard. Use M-F jumper wires. (Be sure to use V-/V+)
- 4. Connect the electrodes to the EMG sensor.
- 5. Start up the Arduino IDE and connect to the Arduino board.
- 6. Attach the electrodes to the muscle. One for ground and two to measure the potential difference.
- 7. Put your code in the IDE and upload it to the Arduino.
- 8. Open the serial monitor or serial plotter to visualize the sensor readings.

Electrode Placement

3 electrodes:

- 1 GND (Yellow)
 - Boney part of the body
 - As a reference to muscle voltage
- 2 on muscle pathway for potential difference (Red/Green)*
 - Forearm muscle
 - Bicep brachii
 - Green in front of red

^{*}Ensure same muscle for both electrodes

Output - Define Limits

- In order to view the measured output of the sensor, we need to view the info in a set point of reference.
- Do this by defining two constant Serial values, 1 and 2.

Code - Define Limits

- Add two bounds:
 - One lower
 - One upper
- Use the "Serial.print(#)" function
 - Creates constant "limit" on serial monitor
- Change the numbers according to your data
 - Anywhere between 300-900 range

```
// Add "fake" plots to stabilize Y axis
Serial.print(0); // To freeze the lower limit
Serial.print(" ");
Serial.print(1000); // To freeze the upper limit
Serial.print(" ");
```

Output:

- After pressing run, open serial plotter or monitor
- Before flexing muscle, let the sensor sit to adjust to the voltage of the muscle.
 - It won't be exactly stable (due to noise)

Refining Signal

Rectified EMG signal:

- Applied ReLU (ramp function)
 - Holds positives, converts negative to 0
 - Remove negative polarity to simplify data

Integration

- Envelope Detection
 - Calculates areas under rectified curve
 - Captures general trend/energy content

Varies by application

So What?

Numbers on a graph are only interesting for so long

Neurotechnology Applications

- Emerging neurotechnologies rely on the principles performed today, just more complex
 - Locate Signal
 - Record
 - Read/visualize data in an coherent way
 - Use data to manipulate external system
- Technologies including:
 - BCI
 - Communication, limb/muscle control, everyday interaction, etc.
 - EEG
 - Understanding brain waves (Neurbale and focus state)

Need for Diverse Studies within Neurotechnology

Electrical Engineers:

Circuitry design, transferring electrical signal from body into computer data, etc.

Biomedical Engineers/Neuroscientists:

Understanding of nervous system to implement technologies in an effective/safe manner

Data/Computer Scientists:

 Extract and decode data in a readable manner to use with external systems like prosthetics

And Others!