Matching in *MAPF* met *M**

•••

Presentatie van het onderzoeksplan

probleemdefinitie

- Multi agent pathfinding
- Matching
- M*
 - "fancy independence detection"
 - plan routes onafhankelijk volgens individueel optimale route
 - o houd bij op welke plekken met elkaar in conflict komen
 - Stop met het plannen van routes met zulke conflicten
 - Voeg met verzamelde informatie over eerdere conflicten, nieuwe stappen aan de zoekwachtrij toe die om het conflict heen proberen werken
 - Alsof agents alleen rond conflicten gezamenlijk gepland worden

Onderzoeksvragen

- Kan *M** aangepast worden om op een efficiënte manier optimale oplossingen voor *MAPFM* te vinden?
 - Hoe kan M^* aangepast worden om ook matching te doen.
 - Zijn oplossingen in dit geval nog optimaal?
 - Zijn er meer manieren op matching te doen? Zijn deze allemaal optimaal en welke is het snelst?
 - Hoe vergelijkt de rekentijd van *M*MAPFM* tot de rekentijd van andere basisalgoritmen die matching toevoegen?
 - Zijn er manieren om met heuristics specifiek tot *MAPFM* betere resultaten te verkrijgen?
 - \circ Kan M^* en M^*MAPFM aangepast worden om operator decomposition te doen?
 - Wat gebeurt er als de hoeveelheid agents niet gelijk is aan de hoeveelheid doelposities?

Matching toevoegen

- Maak iedere staat waarin iedere agent op een eindpunt van de juiste kleur staat een eindstaat (dit kunnen dus meerdere staten zijn)
 - Agents volgen individueel optimale paden, niet rekening houdend met andere agents.
 - Dit optimale pad verandert, als een andere agent van dezelfde kleur op een doel komt dat optimaal
 is voor deze agent, dan wordt het optimale pad verkeerd.
- Vind iedere mogelijke matching, en draai M^* daarop
 - Erg traag
 - 0
- Network flow?
 - Lastig om toe te passen op algoritmen zoals A^* en M^*