Spatially-Coupled LDGM/LDPC codes for Write-Once Memories

Santhosh Kumar[†], **Avinash Vem**[†], Henry D. Pfister[‡], Krishna Narayanan[†]

Texas A&M University[†], Duke University[‡]

Write-Once Memory

- In flash memory, changing a cell from 1 to 0 is easy. 0 to 1 requires rewriting whole block
- Write-once memory(WOM) models such storage system
- Given n memory units with some given state $\{0,1\}^n$, store a message $\in \{1, 2, ...2^{nR}\}$
- $0 \longrightarrow 1$ is allowed. $1 \longrightarrow 0$ is forbidden
- Referred to as rate-R WOM code

Capacity Region

- In 1985, Heegard gave the capacity for t-write system with no read or write errors.
- For the 2-write system it is

$$\{(R_1, R_2) \mid 0 \le R_1 < h(\delta), \ 0 \le R_2 < 1 - \delta\}$$

- WOM with read errors Message is decoded from a noisy version of the stored vector Y = X + Ber(p).
- Capacity region is not known.

Main Result

- Objective is to construct low complexity encoding and decoding schemes that achieve the capacity region of WOM system.
- Focus mainly on 2-write WOM system
 - We achieve the capacity of the 2-write noiseless WOM system.
- For WOM system with read errors, achievable rate region is

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

• Extension to multi-write WOM system seems possible with BPGD.

Compound LDGM/LDPC Codes

- (n, m k k') code.
- Message constraints

 $u_1 \oplus u_2 \oplus u_5 = s_1,$ $u_1 \oplus u_3 \oplus u_6 = 0$

• Codeword (x_1, \cdots, x_9) :

 $x_1=u_1\oplus u_4,$ $x_2 = u_1 \oplus u_3 \cdots$

- Parametrized by s^k : $C(s^k)$
- A natural coset decomposition: $\mathcal{C} = \bigcup_{s^k \in \{0,1\}^k} \mathcal{C}(s^k)$
- "Good" source code under optimal encoding
 - \exists a code of rate $R = 1 h(\delta) + \varepsilon$
- Encodes $Ber(\frac{1}{2})$ source with an average Hamming distortion at most δ
- "Good" channel code under optimal decoding
- \exists a code of rate $R = 1 h(p) \varepsilon$
- When used for channel coding on BSC(p), message est. with error probability at most ε

Coding scheme for 2-write: First write

- With message s^k , encode 0^n to x^n (Distortion $\approx \delta$). Store x^n
- Decoder has

$$y_i = x_i \oplus \mathsf{Ber}(p)$$

• Decode x^n using channel code \mathcal{C} and compute s^k

• $R_1 = \frac{k}{n} \approx h(\delta) - h(p)$

Coding scheme for 2-write: Second write

• Need to find a consistent codeword in $C(s^k)$

- Closely related to Binary Erasure Quantization (BEQ) (refer block below)
- To map to BEQ problem , change 0's to *
- With message s^k , encode seq. to $\mathcal{C}(s^k)$
- Decoder has

$$y_i = x_i \oplus \mathsf{Ber}(p)$$

- Decode x^n using channel code \mathcal{C} and compute s^k
- $R_2 = \frac{k}{n} \approx 1 \delta h(p)$

Binary Erasure Quantization

- Quantize a sequence in $\{0,1,*\}^n$ to $x^n \in \mathcal{C} \subset \{0,1\}^n$
- 0's and 1's should match exactly
- *'s can be changed to either 0 or 1
- BEQ is the dual of decoding on binary erasure channel • Martinian and Yedidia'03
- Can quan. all seq. with erasure pattern $e^n \in \{0,1\}^n$ to \mathcal{C} Chan. dec. for \mathcal{C}^{\perp} can correct all vectors with eras. $1^n \oplus e^n$
- Choose a good (dual) code $\mathcal{C}(s^k)$

Iterative Erasure Quantization Algorithm

- Peeling type encoder
 - while \exists non-erasures in V do
 - if \exists non-erased $u \in U$ such that only one of its neighbors $v \in V$ is not erased **then**
 - Pair (u, v).
 - Erase u and v.

else

FAIL.

break.

end if end while

Spatially-Coupled Compound Codes

Numerical Results

- Noiseless WOM
- $\delta^* = 1 R$ is the threshold
- L = 30, Single system length ≈ 30000

LDGM/LDPC	δ^*	δ	δ	δ
(d_v, d_c, d_v', d_c')		w = 2	w = 3	w = 4
(4,4,3,6)	0.500	0.461	0.491	0.492
(4,4,4,6)	0.333	0.278	0.323	0.325
(4,4,5,6)	0.167	0.086	0.155	0.159
(5,5,3,6)	0.500	0.436	0.488	0.491
(5,5,4,6)	0.333	0.260	0.320	0.324
(5,5,5,6)	0.167	0.079	0.154	0.159
i ·	I	I	1	

- WOM with Read Errors
- δ^* and p^* are the achievable thresholds
- L = 30, Single system length ≈ 30000

LDGM/LDPC	w	(δ^*, p^*)	(δ,p)
(d_v, d_c, d'_v, d'_c)			
(3, 3, 4, 6)	3	(0.333, 0.0615)	(0.321, 0.0585)
(3, 3, 4, 8)	3	(0.500, 0.0417)	(0.490, 0.0387)
(3, 3, 6, 8)	4	(0.250, 0.0724)	(0.239, 0.0684)
(4, 4, 4, 6)	4	(0.333, 0.0615)	(0.324, 0.0585)
(4, 4, 4, 8)	4	(0.500, 0.0417)	(0.492, 0.0387)
(4,4,6,8)	4	(0.250, 0.0724)	(0.241, 0.0694)

Conclusion

- Spatially-coupled compound codes achieve the capacity of 2-write systems
- Coupling structure is crucial
- to achieve optimum thresholds under practical schemes also for the encoding to succeed
- Will BPGD work for multi-write systems?

References

- [1] Heegard, Chris. "On the capacity of permanent memory." IEEE Trans. Inform Theory, vol. 31, no. 1,pp. 34-42,1985.
- [2] E. E. Gad, Eyal En, Y. Li, J. Bruck, "Rewriting flash memories by message passing. "in IEEE Int. Symp. Inf. Theory, June 2015.
- Wainwright, Martin J., Elitza Maneva, and E. Martinian. "Lossy source compression using low-density generator matrix codes: Analysis and algorithms." IEEE Trans. Inform Theory, vol. 56, no. 3, pp. 1351-1368, 2010.
- [4] Hsu, Chun-Hao, and A. Anastasopoulos. "Capacity-achieving codes with bounded graphical complexity and maximum likelihood decoding." IEEE Trans. Inform Theory on vol. 56, no. 3, pp. 992-1006, 2010.
- [5] E. Martinian and J. S. Yedidia, "Iterative quantization using codes on graphs." in Proc. Allerton. Conf. Comm., and Comp., 2003.