1.

- a. Qual é a diferença entre as distribuições de Poisson e Binomial?
- b. Dê alguns exemplos de quando podemos aplicar a distribuição de Poisson.
- c. Dê a fórmula da distribuição de Poisson e o significado dos vários símbolos.
- d. Sob que condições pode a distribuição de Poisson ser usada como uma aproximação da distribuição Binomial? Por que isto pode ser útil?

Solução

- a. Enquanto a distribuição binomial pode ser usada para encontrar a probabilidade de um número designado de sucessos em n tentativas, a distribuição de Poisson é usada para encontrar a probabilidade de um número designado de sucessos por unidade de intervalo¹. As outras condições exigidas para se aplicar a distribuição Binomial são também exigidas para se aplicar a distribuição de Poisson; isto é, (1) deve existir somente dois resultados mutuamente exclusivos, (2) os eventos devem ser independentes, e (3) o número médio de sucessos por unidade de intervalo deve permanecer constante.
- b. A distribuição de Poisson é frequentemente usada em pesquisa operacional na solução de problemas administrativos. Alguns exemplos são o número de chamadas telefônicas para a polícia por hora, o número de clientes chegando a uma bomba de gasolina por hora, e o número de acidentes de tráfego num cruzamento por semana.
- c. A probabilidade de um número designado de sucessos por unidade de intervalo, P(X), pode ser encontrada por:

$$P(X) = \frac{\lambda^X e^{-\lambda}}{X!}$$

onde X: número designado de sucessos

 λ : o número médio de sucessos num intervalo específico

e: A base do logaritmo natural, ou 2,71828

Dado o valor de λ , podemos encontrar $e^{-\lambda}$, substituindo na fórmula, e encontrar P(X). Note que λ é a média e a variância da distribuição de Poisson.

- d. Podemos usar a distribuição de Poisson como uma aproximação da distribuição Binomial quando n, o número de tentativas, for grande e p ou 1 p for pequeno (eventos raros). Um bom princípio básico é usar a distribuição de Poisson quando n ≥ 30 e n.p ou n.(1-p) < 5. Quando n for grande, pode consumir muito tempo em usar a distribuição binomial e tabelas para probabilidades binomiais, para valores muito pequenos de p podem não estarem disponíveis. Se n(1-p) < 5, sucesso e fracasso deverão ser redefinidos de modo que Np < 5 para tornar a aproximação precisa.</p>
- 2. Um departamento de polícia recebe em média 5 solicitações por hora. Qual a probabilidade de receber 2 solicitações numa hora selecionada aleatoriamente?

Solução

X = número designado de sucessos = 2

 λ = o número médio de sucessos num intervalo específico (uma hora) = 5

$$P(2) = \frac{5^2 e^{-5}}{2!} = 0.08422434$$
 ou 8,42%

No Excel poderíamos construir uma planilha para resolver este problema assim:

¹ Tempo, comprimento, etc.

	Α	В	С
1	Dados		Descrição
2	2		O número de eventos
3	5		A média esperada
4	Fórmula		Descrição (resultado)
5	0,12465202	<=POISSON(A2;A3;VERDADEIRO)	A probabilidade cumulativa Poisson com os termos acima (0,124652)
6	0,08422434	<=POISSON(A2;A3;FALSO)	A função de probabilidade de massa Poisson com os termos acima (0,084224)
7			
8			OBS:- Função de probabilidade de massa = Função densidade de probabilidade

Você poderia também usar o procedimento que desenvolvemos em Javascript para a realização deste cálculo. Assim

O link² é:

http://www.bertolo.pro.br/FinEst/Estatistica/DistribuicaoProbabilidades/poisson.htm

- 3. A experiência passada indica que um número médio de 6 clientes por hora param para colocar gasolina numa bomba.
 - a. Qual é a probabilidade de 3 clientes pararem qualquer hora?
 - b. Qual é a probabilidade de 3 clientes ou menos pararem em qualquer hora?
 - c. Qual é o valor esperado, a média, e o desvio padrão para esta distribuição?

Solução

a.

$$P(3) = \frac{6^3 e^{-6}}{3!} = \frac{(216).(0,00248)}{3.2.1} = \frac{0,53568}{6} = 0,08928$$

²Outras distribuições poderão ser calculadas neste site: http://www.bertolo.pro.br/FinEst/Estatistica/index.html

	Α	В
1	Dados	
2	3	
3	6	
4	Fórmula	
5	0,15120388	<=POISSON(A2;A3;VERDADEIRO)
6	0,08923508	<=POISSON(A2;A3;FALSO)

b.
$$P(X \le 3) = P(0) + P(1) + P(2) + P(3)$$

$$P(0) = \frac{6^0 e^{-6}}{0!} = \frac{(1).(0,00248)}{1} = 0,00248$$

	Α	В
1	Dados	
2	0	
3	6	
4	Fórmula	
5	0,00247875	<=POISSON(A2;A3;VERDADEIRO)
6	0,00247875	<=POISSON(A2;A3;FALSO)

$$P(1) = \frac{6^1 e^{-6}}{1!} = \frac{(6).(0,00248)}{1} = 0,01488$$

	Α	В
1	Dados	
2	1	
3	6	
1	Fórmula	
_	FUITIUIA	
5	0,01735127	<=POISSON(A2;A3;VERDADEIRO)

$$P(2) = \frac{6^2 e^{-6}}{2!} = \frac{(36).(0,00248)}{2.1} = 0,04464$$

	А	В
1	Dados	
2	2	
3	6	
1	E 4	
4	Fórmula	
5	0,0619688	<=POISSON(A2;A3;VERDADEIRO)

$$P(3) = \frac{6^3 e^{-6}}{3!} = \frac{(216).(0,00248)}{3.2.1} = \frac{0,53568}{6} = 0,08928$$

	Α	В
1	Dados	
2	3	
3	6	
4	Fórmula	
5	0,15120388	<=POISSON(A2;A3;VERDADEIRO)
6	0,08923508	<=POISSON(A2;A3;FALSO)

Assim, $P(X \le 3) = 0.00248 + 0.01488 + 0.04464 + 0.08928 = 0.15128$

	Α	В	С	D	E
1	Dados				
2	0	1	2	3	
3	6				
4		Cálo	ulos		
5	0,00247875	0,01735127	0,0619688	0,1512039	<=POISSON(A2;\$A\$3;VERDADEIRO)
6	0,00247875	0,01487251	0,04461754	0,08923508	<=POISSON(A2;\$A\$3;FALSO)

- c. O valor esperado, ou média, desta distribuição de Poisson é λ = 6 clientes, e o desvio padrão é $\sqrt{\lambda}$ = $\sqrt{6}$ \cong 2,45 clientes.
- 4. A experiência passada mostra que 1% das lâmpadas incandescentes produzidas numa fábrica são defeituosas. Encontre a probabilidade de mais que uma lâmpada numa amostra aleatória de 30 lâmpadas sejam defeituosas, usando:
 - a. A distribuição Binomial e
 - b. A distribuição de Poisson.

Solução

- a. Aqui n = 30, p = 0,01, e queremos encontrar P(X > 1). Então $P(2) + P(3) + P(4) + \dots = 0,0328 + 0,0031 + 0,0002 = 0,0361 \text{ ou } 3,61\%.$
- b. Como n = 30 e n.p = (30).(0,01) = 0,3, podemos usar a aproximação de Poisson da distribuição binomial. Considerando λ = Np = 0,3, temos que encontrar P(X > 1) = 1 P(X \leq 1), onde X é o número de lâmpadas defeituosas. Agora,

$$P(1) = \frac{0.3^{1}e^{-0.3}}{1!} = (0.3).(0.74082) = 0.222246$$

	А	В
2	1	
3	0,3	
4	Fórmula	
5	0,96306369	<=POISSON(A2;A3;VERDADEIRO)
6	0,22224547	<=POISSON(A2;A3;FALSO)

$$P(0) = \frac{0.3^0 e^{-0.3}}{0!} = e^{-0.3} = 0.74082$$

	Α	В
1	Dados	
2	0	
3	0,3	
4	Fórmula	
5	0,74081822	<=POISSON(A2;A3;VERDADEIRO)
6	0,74081822	<=POISSON(A2;A3;FALSO)

$$P(X \le 1) = P(1) + P(0) = 0,222246 + 0,74082 = 0,963066$$

Assim,

$$P(X > 1) = 1 - P(X \le 1) = 1 - 0,963066 = 0,036934$$
 ou 3,69%

Quando n ficar maior, a aproximação torna-se mais estreita.

- 5. Um processo de produção produz 10 itens defeituosos por hora. Encontre a probabilidade que 4 ou menos itens sejam defeituosos numa retirada aleatória por hora usando, usando:
 - a. A distribuição de Poisson e
 - b. A aproximação normal da Poisson.

Solução

a. Aqui λ = 10 e queremos encontrar P(X \leq 4), onde X é o número de itens defeituosos da retirada aleatória por hora. O valor e^{-10} é 0,00005. Portanto,

$$P(0) = \frac{\lambda^{0}e^{-10}}{0!} = \frac{(1) \cdot e^{-10}}{1} = 0,00004540$$

$$P(1) = \frac{\lambda^{1}e^{-10}}{1!} = \frac{(10) \cdot (0,0000454)}{1} = 0,000454$$

$$P(2) = \frac{\lambda^{2}e^{-10}}{2!} = \frac{(10)^{2} \cdot (0,0000454)}{2 \cdot 1} = 0,00227$$

$$P(3) = \frac{\lambda^{3}e^{-10}}{3!} = \frac{(10)^{3} \cdot (0,0000454)}{3 \cdot 2 \cdot 1} = \frac{0,04539993}{6} = 0,00756665$$

$$P(4) = \frac{\lambda^{4}e^{-10}}{4!} = \frac{(10)^{4} \cdot (0,0000454)}{24} = 0,01891664$$

 $P(X \le 4) = P(0) + P(1) + P(2) + P(3) + P(4) = 0.0000454 + 0.000454 + 0.00227 + 0.00756665 + 0.01891664 = 0.02925254$ ou cerca de 2.92%

	Α	В	С	D	E	F
1	Dados					
2	0	1	2	3	4	
3	10					
4			Cálculos			
5	0,00004540	0,00049940	0,00276940	0,01033605	0,02925269	<=POISSON(E2;\$A\$3;VERDADEIRO)
6	0,00004540	0,00045400	0,00227000	0,00756665	0,01891664	<=POISSON(E2;\$A\$3;FALSO)

b. Tratando os itens como contínuos, queremos encontrar P(X \leq 4,5), onde X é o número de itens defeituosos, μ = λ = 10, e σ = $\sqrt{\lambda}$ = $\sqrt{10}$ \cong 3,16. Assim,

$$z = \frac{X - \mu}{\sigma} = \frac{4,5 - 10}{3,16} = \frac{-5,5}{3,16} = -1,74$$

Para z=1,74, obtemos da tabela 0,459. Isto significa que 0,5 - 0,4591 = 0,0409 da área (probabilidade) sob a curva normal padrão fica à esquerda de z=-1,74. Assim $P(X \le 4,5)=0,0409$ ou 4,09%. Quando λ tornar-se maior, obtemos uma aproximação melhor. (Se não tivermos tratado o número de itens defeituosos como uma variável contínua, teríamos encontrado que $P(X \le 4)=0,287$).

6. Se eventos ou sucessos seguem uma distribuição de Poisson, podemos determinar a probabilidade que o primeiro evento ocorra dentro de um período de tempo designado, P(T ≤ t), pela distribuição de probabilidades exponencial. Como estamos tratando com o tempo, a exponencial é uma distribuição de probabilidade contínua. Isto é dado por P(T ≤ t) = 1 - e^λ

onde λ é o número médio de ocorrências para o *intervalo de interesse* e e^{λ} é tabelado. O valor esperado e a variância são

$$E(T) = 1/\lambda e Var T = 1/\lambda^2$$

- a. Para Var $T = 1/\lambda^2$, encontre a probabilidade que iniciando num ponto aleatório no tempo, o primeiro cliente pare na bomba de gasolina dentro de meia hora.
- b. Qual é a probabilidade de que nenhum cliente pare na bomba de gasolina dentro de meia hora.

c. Qual é o valor esperado e a variância da distribuição exponencial, onde a variável contínua é o tempo T?

Solução

a. Como uma média de 6 clientes param na bomba por hora, λ = média de 3 clientes por meia hora. A probabilidade de que o primeiro cliente parará dentro da primeira meia hora é

$$1 - e^{-\lambda} = 1 - e^{-3} = 1 - 0.04979 = 0.9502$$
 ou 95.02%

- b. A probabilidade de que nenhum cliente pare na bomba dentro de meia hora é $e^{-\lambda} \,=\, e^{-3} \,=\, 0\,,04979$
- c. $E(T)=1/\lambda=1/6\cong 0.17$ h por carro, e Var $T=1/\lambda^2=1/36\cong 0.03$ h por carro quadrado. A distribuição exponencial pode ser também usada para calcular o tempo entre dois eventos sucessivos.