JANUARY 2006

ALGEBRA PRELIM

- 1. Let G be the alternating group A_6 .
 - (a) How many Sylow 2-subgroups does G have ?
 - (b) To what well-known group is a Sylow 2-subgroup of G isomorphic?
- 2. Let G be a group each of whose elements is its own inverse.
 - (a) Prove that G is abelian.
 - (b) If G is finite, what are the only possibilities for its order?
 - (c) Prove that if |G| > 2 and is finite, then its automorphism group Aut(G) is not abelian.
- 3. Let R be a commutative and associative ring with multiplicative identity $1 \neq 0$ and let I be an ideal of R. Suppose that I is not finitely generated and that the only ideal of R not finitely generated and containing I is I itself. Then show that I is a prime ideal. [Hint: You may want to make use of $J_a := \{r \in R : ra \in I\}$ for $a \in R$.]
- 4. For any vector spaces V and W over a field k, let $\text{Hom}_k(V, W)$ be the set of k-linear maps (= k-linear transformations) from V to W and let $V^* = \text{Hom}_k(V, k)$.

Now let V and W be finite-dimensional vector spaces over a field k. Then:

- (a) Show that $\text{Hom}_k(V, W)$ is a vector space over k under the natural operations of addition and k-scalar multiplication;
- (b) Calculate $\dim_k \operatorname{Hom}_k(V, W)$;
- (c) Calculate $\dim_k (V^* \otimes_k W)$; and
- (d) Construct an explicit isomorphism to show that $\operatorname{Hom}_k(V,W)$ and $V^*\otimes_k W$ are isomorphic as vector spaces over k.
- 5. Let K be a field of characteristic $p \neq 0$, and let $f = x^p x a \in K[x]$. Show that either f splits (completely) in K[x] or f is irreducible over K.
- 6. Find a splitting field L/\mathbb{Q} and the Galois group $G = \operatorname{Gal}(L/\mathbb{Q})$ for $f = x^5 3 \in \mathbb{Q}[x]$. Find 3 nontrivial, proper subgroups of G and the intermediate fields to which they correspond according to the fundamental theorem of Galois theory.

- 1. If P is a Sylow p-subgroup of a finite group G, where p is a prime factor of |G|, show that
 - (a) For any subgroup H of G containing $N_G(P)$, we have $N_G(H) = H$,
 - (b) $N_G(N_G(P)) = N_G(P)$.
- 2. Let G be a finite group for which $x^2 = 1$ for all $x \in G$.
 - (a) Prove that G is abelian of order 2^n for some n.
 - (b) Prove that the product of all elements of G is equal to the identity if the order of G is sufficiently large. (Your answer should make it clear what "sufficiently large" means.)
- 3. (a) Let $n \in \mathbb{Z}$, $n \ge 1$, and let I be the ideal generated by n and x in $\mathbb{Z}[x]$. Show that I is a maximal ideal if and only if n is prime.
 - (b) Show that $\mathbb{Z}[x]$ is not isomorphic, as a ring, to \mathbb{Z} .

Recall that if G is a group, the group ring $\mathbb{Z}G$ is the free \mathbb{Z} -module on G with associative multiplication inherited from the multiplication in G, so that every element in $\mathbb{Z}G$ is uniquely represented by a sum

$$\sum_{g_1 \in G} n_{g_1} g_1$$

with $n_{g_1} \in \mathbb{Z}$, and

$$\sum_{g_1 \in G} n_{g_1} g_1 \sum_{g_2 \in G} n_{g_2} g_2 = \sum_{g \in G} n_g g,$$

where $n_g = \sum_{g_1g_2=g} n_{g_1}n_{g_2}$.

- (c) Show that if G is any nontrivial group, the group ring $\mathbb{Z}G$ has at least four units. Deduce that $\mathbb{Z}[x]$ is not isomorphic to any group ring $\mathbb{Z}G$.
- 4. Let S be a commutative ring. We say that S is a graded ring if we can decompose S into the direct sum of additive subgroups $S = \bigoplus_{n\geq 0} S_n$, such that for all integers $k, l \geq 0$ we have $S_k S_l \subseteq S_{k+l}$. (For example, if R is a commutative ring, then $S = R[x_1, \ldots, x_m]$ is a graded ring, where S_n consists of the elements of total degree n.)
 - (a) If S is a graded ring, verify that S_0 is a subring, and that for every n, S_n is an S_0 -module.
 - (b) Show that if S is a graded ring, then $S_+ = \bigoplus_{n>0} S_n$ is an ideal of S, and that it is a prime ideal if and only if S_0 is an integral domain.
- 5. (a) Let p be an odd prime. By considering the action of the Frobenius automorphism, show that $x^p x 1$ is irreducible over \mathbb{F}_p , the field with p elements.
 - (b) Show that the Galois group of $x^5 6x 1$ over \mathbb{Q} is S_5 .
- 6. Let p_1, \ldots, p_n be distinct odd prime numbers, $m = \prod_{i=1}^n p_i$, and ζ a primitive m^{th} root of unity. Let $K = \mathbb{Q}(\zeta)$. Determine with proof the number of subfields $E, \mathbb{Q} \subseteq E \subseteq K$, with $[E : \mathbb{Q}] = 2$.

- 1. Show that Q under addition does not have any proper subgroup of finite index.
- 2. Show that if G is a group, |G| = 315, and G has a normal subgroup of order 9, then G is abelian. You may assume that if p < q are primes such that p does not divide q 1, then a group of order pq is cyclic, and if Z is the center of G and G/Z is cyclic, then G is abelian.
- 3. (a) (i) Prove that the integral domain $\mathbb{Z}[i]$ (the Gaussian integers) is a Euclidean domain.
 - (ii) What are its units?
 - (iii) Give an example of a maximal ideal of $\mathbb{Z}[i]$.
 - (b) (i) Prove that the integral domain $\mathbb{Z}[x]$ is not a Euclidean domain.
 - (ii) What are its units?
 - (iii) Give an example of a maximal ideal of $\mathbb{Z}[x]$.
 - (c) (i) Prove that the integral domain $\mathbb{Z}[\sqrt{-5}]$ is not a Euclidean domain.
 - (ii) What are its units?
- 4. Let R be a ring and M a left R-module. For N any submodule of M, define $A(N) = \{a \in R : aN = 0\}$. For J any ideal of R, define $N(J) = \{n \in M : Jn = 0\}$.
 - (a) Prove that A(N) is an ideal of R.
 - (b) Prove that RN is a submodule of M.
 - (c) Prove that N(J) is a submodule of M.
 - (d) Prove: If N and L are submodules of M and $N \subseteq L$, then $A(L) \subseteq A(N)$.
 - (e) Prove: If N_1 and N_2 are submodules of M, then $A(N_1 + N_2) = A(N_1) \cap A(N_2)$.
- In (f) and (g) assume that R is nilpotent, i.e., there exists a positive integer n such that the product of n elements of R is 0.
 - (f) Prove: If $N \neq 0$, then $RN \neq N$.
 - (g) Prove: If $RM \neq 0$, then M is not the direct sum of RM and N(R).
- 5. Suppose that L:K is a field extension, $\gamma\in L$ with γ transcendental over K. Suppose that $f\in K[x],\,\deg f\geq 1.$
 - (a) Show $f(\gamma)$ is transcendental over K.
 - (b) Suppose that $\beta \in L$ with $f(\beta) = \gamma$. Show β is transcendental over K.
 - (c) Suppose that $\alpha \in L$, $\alpha \notin K$, with α algebraic over K. Show $K(\alpha, \gamma)$ is not a simple extension of K.
 - (d) Suppose that α is a root of $f, f \in K[x]$ irreducible of degree n. Prove that $[K[\alpha] : K] = n$ by displaying a basis for $K[\alpha]$ over K; prove this is indeed a basis. Then prove $K[\alpha]$ is a field.
- 6. Find a splitting field L and the Galois group G for $x^4 2 \in \mathbb{Q}[x]$. Determine the degree of $L : \mathbb{Q}$. Find at least 3 subgroups and the intermediate fields to which they correspond according to the Fundamental Theorem of Galois Theory.

- 1. Show there is no simple group of order 90.
- 2. Let p and q be distinct prime numbers with $p \not\equiv 1 \mod q$, and $q \not\equiv 1 \mod p$. Show that every group of order pq is cyclic.
- 3. Let $d \ge 1$ be an integer. Let $R_d = \{a + b\sqrt{-d} : a, b \in \mathbb{Z}\} \subset \mathbb{C}$, which is a subring of \mathbb{C} . Recall that in a ring with multiplicative identity, an element is called a *unit* if it has a 2-sided multiplicative inverse. Recall also that in an integral domain, an element which is nonzero and not a unit is called *irreducible* if whenever it is written as a product of two elements, one of these elements is a unit.
 - (a) Show that complex conjugation restricts to an automorphism of R_d .
 - (b) Show that ± 1 are the only units of R_d if d > 1.
 - (c) Show that $2 + \sqrt{-5}$, $2 \sqrt{-5}$, and 3 are irreducible elements of R_5 .
 - (d) From the equation $3 \cdot 3 = (2 + \sqrt{-5})(2 \sqrt{-5})$, show that R_5 is not a principle ideal domain.
- 4. Let $(R, +, \cdot)$ be a ring that contains a field F as a subring. Then R has the structure of an F-vector space, where addition is given by + and scalar multiplication is performed via \cdot . Suppose that R is a finite-dimensional F-vector space. Show that if R is an integral domain, then R is a field.
- 5. Find the Galois group of $x^3 + 10x + 20$ over \mathbb{Q} .
- 6. Let p be an odd prime, and $\phi_p = (x^p 1)/(x 1) = x^{p-1} + \dots + 1 \in \mathbb{Z}[x]$. Let z be a root of ϕ_p in a splitting field over \mathbb{Q} , and let $K = \mathbb{Q}(z)$. Show there is precisely one subfield L of K such that [K:L] = 2. In addition, show that this L is $\mathbb{Q}(z+1/z)$.

- 1. Let p be a prime number. Show that
 - (a) The center of any p-group is a p-group (that is, the center cannot be trivial),
 - (b) Any group of order p^2 must be abelian.
- 2. Let G be a nonabelian group of order pq, with p, q prime and p < q.
 - (a) Prove that p divides q-1.
 - (b) Prove that the center of G is trivial.
 - (c) How many distinct conjugacy classes are there in G?
- 3. The 2×2 trace-zero Hermitian matrices form a real vector space H of dimension 3. Let $SU(2) = \{g = (g_{ij})_{2 \times 2} : g_{ij} \in \mathbb{C}, {}^t\overline{g}g = g{}^t\overline{g} = I_2, \det g = 1\}$; it is the special unitary group. An element $g \in SU(2)$ acts on H by $\rho(g) : x \in H \mapsto gx{}^t\overline{g} \in H$.
 - (a) Show that there is a (positive-definite) inner product on H that is invariant under the SU(2) action. (Hint: You may want to consider the determinant of the matrices in H.) Consequently, for any $g \in SU(2)$ we have $\rho(g) \in SO(3)$, where SO(3) is the special orthogonal group defined by $SO(3) = \{q = (q_{ij})_{3\times 3} : q_{ij} \in \mathbb{R}, ^t q q = q^t q = I_3, \det q = 1\}$.
 - (b) Show that $\rho: SU(2) \to SO(3)$ is a homomorphism.
 - (c) Find the kernel of $\rho: SU(2) \to SO(3)$.
 - (d) Show that $\rho: SU(2) \to SO(3)$ is surjective.
- 4. Prove that if R is a domain and $a \neq 0$ is not a unit in R, then $A = \langle a, x \rangle$ is not a principle ideal in R[x]. Explain why $\mathbb{Q}[x]$ is a Euclidean domain, but $\mathbb{Q}[x,y]$ is not.
- 5. Let R be a ring with identity 1 and let M be a left R-module on which 1 acts as the identity.
 - (a) Show that if $e \in R$ is in the center of R and satisfies $e^2 = e$, then we have $M = M_1 \oplus M_2$ as modules, where $M_1 = eM$ and $M_2 = (1 e)M$. Prove that $\operatorname{End}_R(M) \cong \operatorname{End}_R(M_1) \oplus \operatorname{End}_R(M_2)$ as rings.
 - (b) Now suppose $1 = e_1 + \cdots + e_n$, where e_i $(1 \le i \le n)$ are elements in the center of R and they are orthogonal idempotents, that is, they satisfy $e_i^2 = e_i$ (for all $1 \le i \le n$) and $e_i e_j = 0$ (for all $1 \le i \ne j \le n$). State and prove a generalization of the above result.
 - (c) Let $R = \mathbb{C}[\mathbb{Z}_5]$ be the group algebra¹ of \mathbb{Z}_5 . Find a decomposition of the unit element 1 into five nonzero orthogonal idempotents. Let M = R, with the R-action given by the left multiplication. Show that M is isomorphic to a direct sum of five one-dimensional submodules that are pairwise nonisomorphic.
- 6. Let ζ be a primitive complex ninth root of unity.
 - (a) What is its minimal polynomial over Q?
 - (b) What is the degree of $\mathbb{Q}(\zeta)$ over \mathbb{Q} ?
 - (c) Find primitive elements for each field intermediate between \mathbb{Q} and $\mathbb{Q}(\zeta)$. Express them as polynomials in ζ .

¹The group algebra of a finite group G is the set $\mathbb{C}[G]$ of formal sums $\sum_{g\in G} a_g g(a_g \in \mathbb{C})$ with the obvious multiplication

۶,

- 1. Let G be a group, G_L the group of left translates a_L ($a \in G$) of G, and $\operatorname{Aut}(G)$ the group of automorphisms of G. The set $G_L\operatorname{Aut}(G) = \{\sigma\tau : \sigma \in G_L, \tau \in \operatorname{Aut}(G)\}$ is called the *holomorph* of G and is denoted $\operatorname{Hol} G$.
 - (a) Show that $\operatorname{Hol} G$ is a group under composition and that if G is finite, then $|\operatorname{Hol} G| = |G| \times |\operatorname{Aut}(G)|$.
 - (b) Prove that $\operatorname{Hol}(\mathbb{Z}_2 \times \mathbb{Z}_2)$ is isomorphic to S_4 .
- 2. Let G be a group of order pqr where p < q < r are prime. Show that G has a normal Sylow subgroup.
- 3. Let R be a commutative ring with identity, I_1 and I_2 ideals in R, and $\phi: R \to R/I_1 \times R/I_2$ the canonical mapping.
 - (a) Describe $\ker \phi$ and show that if $I_1 + I_2 = R$ then $\ker \phi = I_1 I_2$.
 - (b) Prove that when $I_1 + I_2 = R$ the mapping ϕ is surjective.
 - (c) Show that $(\mathbb{Z}_{100})^{\times}$ is isomorphic to $(\mathbb{Z}_4)^{\times} \times (\mathbb{Z}_{25})^{\times}$.
- 4. Let V be a finite-dimensional vector space and let $T:V\to V$ be a linear transformation from V to itself. Define a mapping $T^*:V^*\to V^*$ by $T^*(f)=f\circ T$.
 - (a) Show that T^* is a linear transformation.
 - (b) Let $B = \{e_1, \ldots, e_n\}$ be a basis for V and let $B^* = \{e_1^*, \ldots, e_n^*\}$ be a basis for V^* . Show that the matrix for T^* relative to B^* is the transpose of the matrix for T relative to B.
- 5. Suppose that \mathbb{F} is a finite field and that $x^3 + ax + b \in \mathbb{F}[x]$ is irreducible. Explain why $-4a^3 27b^2$ must be a square in \mathbb{F} .
- 6. Let $g(x) = x^p x a \in \mathbb{Z}_p[x]$, where p is a prime and assume a is nonzero.
 - (a) Show that g(x) has no repeated roots in a splitting field extension.
 - (b) Show that g(x) has no roots in \mathbb{Z}_p .
 - (c) Show that if α is a root of g(x) in a splitting field extension then so is $\alpha + b$ for any $b \in \mathbb{Z}_p$. Conclude that $\{\alpha + b : b \in \mathbb{Z}_p\}$ is a complete set of roots of g(x).
 - (d) Show that g(x) is irreducible in $\mathbb{Z}_p[x]$.
 - (e) Construct a splitting field L for g(x) and determine $|Gal(L/\mathbb{Z}_p)|$.

JANUARY 2003

- 1. Let G be a finite simple group of order n. Determine the number of normal subgroups of $G \times G$.
- 2. (a) State the Feit-Thompson theorem.
 - (b) Without using the Feit-Thompson theorem, show that there is no simple group of order $6545 = 5 \cdot 7 \cdot 11 \cdot 17$.
- 3. (a) Let R be a ring with ideals I, J such that $I \subseteq J$. Prove that

$$(R/I)/(J/I) \simeq R/J$$
.

- (b) Give an example of an unique factorization domain that is not a principle ideal domain (PID). Prove that this ring is not a PID.
- (c) Suppose R is a PID. Say $a, b, c \in R$ such that gcd(a, b) = 1 = gcd(a, c). Show that gcd(a, bc) = 1.
- 4. (a) Let F be a field, V and W finite-dimensional vector spaces over F, and $T: V \to W$ a linear transformation. Let $\{w_1, w_2, \ldots, w_r\}$ be a basis for T(V), and take $v_1, \ldots, v_r \in V$ such that $T(v_j) = w_j$ $(1 \le j \le r)$. Show that v_1, \ldots, v_r are linearly independent. Then, let U be the space spanned by v_1, \ldots, v_r , and $K = \ker T$. Prove the theorem that states $rank(T) + nullity(T) = \dim(V)$ by showing V can be realized as a **direct** sum of U and K.
 - (b) Let V be as above. Show that any linearly independent subset $\{v_1, \ldots, v_m\}$ of V can be extended to a basis $\{v_1, \ldots, v_n\}$ of V.
- 5. Suppose that $K[\alpha]: K$ is an extension, that α is algebraic over K, but not in K, and that β is transcendental over K. Show that $K(\alpha, \beta)$ is not a simple extension of K.
- 6. Let $h(x) = x^4 + 1 \in \mathbb{Q}(x)$.
 - (a) Show that the four complex numbers $\pm \frac{\sqrt{2}}{2}(1 \pm i)$ are the four roots of h(x) in \mathbb{C} .
 - (b) Find an $\alpha \in \mathbb{C}$ such that $L = \mathbb{Q}(\alpha)$ is a splitting field extension for h(x) over \mathbb{Q} .
 - (c) Describe $Gal(L/\mathbb{Q})$ as a group of permutations of the roots of h(x), and as a group of automorphisms of L. (The latter means: write an arbitrary $a \in L$ out in terms of a basis for L over \mathbb{Q} , and then describe what $\sigma(a)$ looks like in terms of this basis, for each $\sigma \in Gal(L/\mathbb{Q})$.
 - (d) Find all intermediate fields M between L and \mathbb{Q} ; for each such field M find a subgroup H of $Gal(L/\mathbb{Q})$ such that M = Fix(H) and H = Gal(L/M). Which of the extensions $M:\mathbb{Q}$ are normal?

1. (a) Suppose that G is a finite group and that there is a group homomorphism

$$h: G \longrightarrow S$$

where S is the multiplicative group of roots of unity in the complex numbers, and which satisfies

$$\big(h(g)\big)^3=1$$

for every element $g \in G$, but for which not every h(g) has the value 1. Prove that G contains an element of order 3.

(b) Let \mathbb{F}_7 be the finite field of 7 elements, and $GL(2, \mathbb{F}_7)$ the group of nonsingular 2×2 matrices A with entries in \mathbb{F}_7 , and multiplication of matrices as group law. Use the determinant function to construct a homomorphism

$$t: GL(2, \mathbb{F}_7) \longrightarrow S$$

which satisfies

$$\big(t(A)\big)^3=1$$

for all $A \in GL(2, \mathbb{F}_7)$, but for which not every t(A) has the value 1.

- 2. (a) For which prime divisors p of n! are all the elements of the Sylow p-subgroups of the symmetric group S_n even permutations?
 - (b) In the symmetric group S_n the conjugacy class of a particular element a (i.e., the set of elements conjugate to a) consists of all elements with the same cycle structure as a (i.e., whose decomposition as a product of disjoint cycles agrees with that of a in having the same number of cycles and of the same lengths). For what even permutations a is this also the case for the conjugacy class of a in the alternating group A_n (n > 1)?
- 3. Let A be a commutative ring with identity 1, and let M be an A-module. If there exists a chain of submodules

$$M=M_0\supset M_1\supset M_2\supset\cdots\supset M_r=\{0\}$$

such that for $i=1,\ldots,r,\,M_{i-1}/M_i\simeq A/P_i$ for some maximal ideal P_i , then r is called the *length* of M and is denoted by $L_A(M)$, and M is said to have finite length.

- (a) Prove that $L_A(M)$ is well-defined.
- (b) If

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

is an exact sequence of A-modules and two of the modules have finite length, then the third module also has finite length. Furthermore,

$$L_A(M) = L_A(M') + L_A(M'').$$

(c) If

$$0 \longrightarrow M_n \longrightarrow M_{n-1} \longrightarrow \cdots \longrightarrow M_0 \longrightarrow 0$$

is an exact sequence of modules of finite length, then

$$\sum_{i=1}^{n} (-1)^{i} L_{A}(M_{i}) = 0.$$

AUGUST 2002

- 4. An ideal \mathfrak{a} in a commutative ring R is called *primary* iff $a,b\in R$ and $ab\in \mathfrak{a}$ implies that either $a\in \mathfrak{a}$ or there is an $n\in \mathbb{N}$ such that $b^n\in \mathfrak{a}$.
 - (a) Provide an example of a prime ideal in $\mathbb{C}[x,y]$.
 - (b) Let \mathfrak{a} be the ideal in $\mathbb{C}[x,y]$ generated by xy and x^2 . Prove that \mathfrak{a} is not primary.
 - (c) Prove that the radical of a, \sqrt{a} , is a prime ideal.
 - (d) Is $\sqrt{\mathfrak{a}}$ maximal?
- 5. (a) Prove that the polynomial $x^4 27$ is irreducible over \mathbb{Q} .
 - (b) Determine a (minimal) splitting field for the polynomial $x^4 27$ over \mathbb{Q} . Determine the order of its Galois group (over \mathbb{Q}) and prove that it is not commutative.
- 6. (a) Let \mathbb{Q} denote the field of rational numbers, and let K be a (minimal) splitting field for $x^2 2$ over \mathbb{Q} . For what other monic irreducible polynomial in $\mathbb{Q}[x]$ is K a splitting field?
 - (b) Let L be a (minimal) splitting field for $x^3 + x + 1$ over \mathbb{F}_2 , the field of 2 elements. Find all other irreducible polynomials in $\mathbb{F}_2[x]$ for which L is a splitting field over \mathbb{F}_2 .

- 1. Let G be a finite group and N a normal subgroup. Show that
 - (a) The intersection with N of a Sylow p-subgroup of G is a Sylow p-subgroup of N and every Sylow p-subgroup of N is obtained in this way.
 - (b) The image in G/N of a Sylow p-subgroup of G is a Sylow p-subgroup of G/N and every Sylow p-subgroup of G/N is obtained in this way.
- 2. Let G and H be groups and $\theta: H \to \operatorname{Aut}(G)$ a homomorphism. Let $G \times_{\theta} H$ be the set $G \times H$ with the following binary operation: $(g,h)(g',h') = (g[\theta(h)(g')],hh')$.
 - (a) Show that $G \times_{\theta} H$ is a group with the identity element (e, e') and $(g, h)^{-1} = (\theta(h^{-1})(g^{-1}), h^{-1})$. (You may assume without proving it that the operation is associative.)
 - (b) Use the construction of (a), with G a cyclic group of order 7, to show that there is a group K with 105 elements generated by elements a, b, c such that $a^5 = e$, $b^3 = e$, $c^7 = e$, ab = ba, bc = cb, ac = ca.
 - (c) In the group described in (b), determine the number of Sylow subgroups.
- 3. (a) Suppose $0 \to A' \to A \to A'' \to 0$ is a short exact sequence of abelian groups. Show that rank A is finite if and only if rank A' and rank A'' are finite. If so, show that rank $A = \operatorname{rank} A' + \operatorname{rank} A''$.
 - (b) Suppose $0 \longrightarrow C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots \longrightarrow C_2 \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \longrightarrow 0$ is a chain of abelian groups, i.e., C_i is an abelian group and $d_i: C_i \longrightarrow C_{i-1}$ is a homomorphism such that $d_{i-1} \circ d_i = 0$, for each i. Let $H_i = \frac{\ker d_i}{\operatorname{Im} d_{i+1}}$ $(i = 0, 1, \ldots, n)$. Assume that rank C_i is finite, for all i. Define two polynomials

$$m(t) = \sum_{i=0}^n \operatorname{rank} C_i t^i, \qquad p(t) = \sum_{i=1}^n \operatorname{rank} H_i t^i.$$

Show that there is a polynomial q(t) with nonnegative coefficients such that m(t) = p(t) + (1+t)q(t).

- 4. Let R be a commutative ring and M be a module over R. A submodule N is a characteristic submodule if $\varphi(N) \subset N$ for any R-endomorphism φ of M. Show that
 - (a) $\forall r \in R, rM$ and $Ann(r) = \{m \in M : rm = 0\}$ are characteristic submodules of M.
 - (b) If N is a characteristic submodule of M, and P, Q are complementary submodules of M, i.e., $P \oplus Q = M$, then $N \cap P$, $N \cap Q$ are complementary submodules of N.
- 5. (a) Suppose H is a subgroup of S_n $(n \ge 2)$ which contains both an n-cycle and a transposition. Show that $H = S_n$.
 - (b) Show that the roots of the polynomial $P(x) = x^5 6x + 3$ cannot be expressed by radicals.
- 6. Let K be a field of characteristic 0, and let K(x) be a simple transcendental extension. Let G be the subgroup of the group of K-automorphisms of K(x) generated by an automorphism that takes x to x + 1. Show that K is the fixed field of G.

- 1. Determine the Galois groups of the following polynomials in $\mathbb{Q}[x]$:
 - (a) $x^4 7x + 10$. —

 - (b) $x^3 2$. (c) $x^5 9x + 3$.
- 2. (a) If G is a group of order $5^3 \cdot 7 \cdot 17$ show that G has normal subgroups of sizes 5^3 , $5^3 \cdot 7$, and $5^3 \cdot 17$.
 - (b) Show that there is a nonabelian nilpotent group of order $5^3 \cdot 7 \cdot 17$. [Hint: To construct a nonabelian group of order 5^3 , work in S_{25} to find nonidentity elements a, b such that a is of order 25, b is of order 5, and $b^{-1}ab=a^6$. A finite group is nilpotent if it is the direct product of its Sylow subgroups.] (16 11 1621)/2 /3 /6
- 3. Let R be a ring with 1. An element x in R is called nilpotent if $x^m = 0$ for some positive integer m.
 - (a) Show that if $n = a^k b$ for some integers a and b then the coset \overline{ab} is a nilpotent element of $\mathbb{Z}/n\mathbb{Z}$.
 - (b) If $a \in \mathbb{Z}$ is an integer, show that the element $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ is nilpotent if and only if every prime divisor of n is also a divisor of a. In particular, determine the nilpotent elements of $\mathbb{Z}/36\mathbb{Z}$ explicitly.
 - (c) If R is any commutative ring with 1 and x is a nilpotent element, show that 1 + x is a unit for R (i.e., is invertible). [Hint: As motivation, think of the sum of the geometric series.]
- 4. Let R be a ring with 1 and M a left unitary R-module. An element m in M is called a torsion element if rm=0 for some nonzero element $r\in R$. The set of torsion elements is denoted $Tor(M) = \{m \in M : rm = 0 \text{ for some nonzero } r \in R\}.$
 - (a) Prove that if R is an integral domain then Tor(M) is a submodule of M (called the torsion submodule of M).
 - (b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule. [Hint: Consider letting R be itself a left R-module where R is some ring which is not an integral domain.]
 - (c) Show that if R has zero divisors then every nonzero R-module has nonzero torsion elements.
- 5. Give a representative element of each conjugacy class of the elements of the alternating group A_5 , and determine the number of elements in its class.
- 6. (a) Prove that $f(x) = x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Z}_2 .
 - (b) What are the other irreducible quartic polynomials over \mathbb{Z}_2 ?
 - (c) If θ is one of the roots of f(x), what are the others (expressed as polynomials in θ of least possible degree)?
 - (d) Give a method for finding an element φ (expressed as a polynomial in θ) of the splitting field $\mathbb{Z}_2(\theta)$ such that $[\mathbb{Z}_2(\varphi):\mathbb{Z}_2]=2$.

- 1. Let G be a finite group, and C be the center of G.
 - (a) Show that the index [G:C] is not a prime number.
 - (b) Give an example where [G:C]=4.
- 2. Let G be a finite group that acts transitively on a set S. Recall that G is said to act doubly transitively if for every pair (a,b),(c,d) there is a $g \in G$ such that g(a) = c and g(b) = d. In (a) and (b) below, assume that G is a finite group that acts transitively on a set S. Let s be in S, and let

$$H = \{g \in G : g(s) = s\}$$

be its isotropy group. Note then H acts on the complement $S-\{s\}$.

- (a) Show that G acts doubly transitively on S if and only if H acts transitively on $S \{s\}$.
- (b) Suppose there is a subgroup T of G of order two, T not contained in H, such that G acts doubly transitively on S.
- 3. Let R be a commutative ring with identity. Suppose that for some $a, b \in R$, the ideal Ra + Rb is principal. Prove that the ideal $Ra \cap Rb$ is principal.
- 4. Let S be a commutative ring with identity, $R = S[x_1, ..., x_n]$. Let I be the ideal of R generated by the quadratic monomials $\{x_ix_j : 1 \le i, j \le n\}$, and ϕ the natural projection

$$\phi: R \to R/I$$
.

- (a) Show that R/I is a free S-module and find its rank.
- (b) For $f \in R$ define $f' \in R/I$ by $f' = \phi(f) \phi(f(0, ..., 0))$. Show that

$$(fg)' = \phi(f)g' + \phi(g)f'.$$

- (c) Show that for all positive integers n, $(f^n)' = n\phi(f)^{n-1}f'$.
- 5. Determine the Galois group (using generators and relations if you would like) over K of x^5-3 when:
 - (a) $K = \mathbb{Q}$.
 - (b) $K = \mathbb{F}_{11}$, the finite field with 11 elements.
- 6. We call a six degree polynomial symmetric if $x^6 f(1/x) = f(x)$. Let f be a symmetric six degree polynomial in $\mathbb{Q}[x]$.
 - (a) Suppose r is a root of f in a splitting field of f. Show that $[\mathbb{Q}(r+1/r):\mathbb{Q}] \leq 3$.
 - (b) Deduce from (a) that the Galois group of f is solvable. [Hint: All groups of order less than 60 are solvable.]

JANUARY 1998

ALGEBRA PRELIM

- 1. (a) Show that there is no simple nonabelian group of order 76.
 - (b) Show that there is no simple nonabelian group of order 80.
- 2. Let p be an odd prime. Show that a group of order 2p is either cyclic, or is isomorphic to the dihedral group D_{2p} . (Recall that the dihedral group D_n is the group of symmetries of a regular n-gon in a plane.)
- 3. Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} : a, b \in \mathbb{Z}\}$, where $\sqrt{-3}$ is a root of $x^2 + 3$ in some splitting field. Let

$$S = \mathbb{Z}\left[rac{1+\sqrt{-3}}{2}
ight] \ = \left\{a+b\left(rac{1+\sqrt{-3}}{2}
ight) \ : \ a,b\in\mathbb{Z}
ight\}.$$

(a) Show that S is a Euclidean domain with respect to the norm

$$\delta\left(a+b\left(\frac{1+\sqrt{-3}}{2}\right)\right)=a^2+ab+b^2.$$

(b) Show that R is not a Euclidean domain with respect to the norm

$$\delta(a + b\sqrt{-3}) = a^2 + 3b^2.$$

[Hint: Is R a unique factorization domain?]

4. Let F be a field and let t be transcendental over F. Recall that if P(t) and Q(t) are nonzero relatively prime polynomials in F[t], which are not both constant, then

$$[F(t):F(P(t)/Q(t))]=\max\{\deg P,\deg Q\},$$

a fact you may use, if needed.

(a) Prove that $\operatorname{Aut}(F(t)/F)\cong GL_2(F)/\{\lambda I\ :\ \lambda\in F^{\times}\}$, where

$$GL_2(F) = \left\{ \left(egin{array}{cc} a & b \ c & d \end{array}
ight) \; : \; a,b,c,d \in F \; ext{and} \; ad - bc
eq 0
ight\} \quad ext{and} \quad I = \left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight).$$

- (b) Let \mathbb{F}_2 be the field with two elements. Show that $\operatorname{Aut}(\mathbb{F}_2(t)/\mathbb{F}_2) \cong S_3$.
- (c) Find the subfields of $\mathbb{F}_2(t)$ which are the fixed fields of the subgroups of $\mathrm{Aut}(\mathbb{F}_2(t)/\mathbb{F}_2)$.
- 5. Show that $f(x) = 2x^5 10x + 5$ is not solvable by radicals over the rational numbers.

- 6. An *ultrafilter* on $\mathbb{N} = \{0, 1, 2, ...\}$ is a collection U of subsets of \mathbb{N} such that the following conditions hold:
 - (i) $\mathbb{N} \in U$.
 - (ii) $\emptyset \notin U$.
 - (iii) If $x \in U$ and $x \subseteq y \subseteq \mathbb{N}$, then $y \in U$.
 - (iv) If $x, y \in U$, then $x \cap y \in U$.
 - (v) For any $x \subseteq \mathbb{N}$, $x \in U$ or $\mathbb{N} x \in U$. $(\mathbb{N} x \text{ is the complement of } x \text{ in } \mathbb{N}.)$

Suppose that $\langle F_i : i \in \mathbb{N} \rangle$ is a system of fields, and U is an ultrafilter on \mathbb{N} . Consider the full direct product $\prod_{i \in \mathbb{N}} F_i$, which is a commutative ring with identity, consisting of all functions a with domain \mathbb{N} , with $a_i = a(i) \in F_i$ for all i, the ring operations being coordinate-wise. Let $I = \{a \in \prod_{i \in \mathbb{N}} F_i : \{i \in \mathbb{N} : a_i = 0\} \in U\}$.

- (a) Show that I is a maximal ideal of $\prod_{i \in \mathbb{N}} F_i$.
- (b) Suppose that for each $i \in \mathbb{N}$, every polynomial in $F_i[x]$ of positive degree at most i has a root in F_i . Suppose that $\mathbb{N} F \in U$ for every finite subset F of \mathbb{N} . Show that $\prod_{i \in \mathbb{N}} F_i/I$ is an algebraically closed field.

AUGUST 1997

ALGEBRA PRELIM

- 1. Let G be a group of order $429 = 3 \cdot 11 \cdot 13$.
 - (a) Show that every subgroup of order 13 in G is normal in G. (Use the Sylow theorems.)
 - (b) Show that every subgroup of order 11 in G is normal in G.
 - (c) Classify (up to isomorphism) all groups of order 429.
- 2. Let \mathbb{Q} denote the field of rational numbers and let $K = \mathbb{Q}(\sqrt{5}, \sqrt{7})$.
 - (a) Find the Galois group of K over \mathbb{Q} and show that K is a Galois extension of \mathbb{Q} . Express all of the elements of the Galois group as permutations of the roots of $(x^2 5)(x^2 7)$.
 - (b) Find all the subfields of K and match them up with the subgroups of the Galois group as is indicated by the Fundamental Theorem of Galois Theory.
- 3. Let $K = GF(p^m)$ be the finite field with $q = p^m$ elements (p is a rational prime number). Let V be an n-dimensional vector space over K. Give explicit formulas for the following numbers:
 - (a) The number of elements of V.
 - (b) The number of distinct bases of V. Give it for both ordered and unordered bases.
 - (c) The order of the general linear group $GL_n(K)$.
 - (d) Let K = GF(3) be the field with 3 elements. Verify that there are 48 nonsingular 2×2 matrices over K. Also show that the only nonsingular 2×2 matrix A over K that satisfies the equation $A^5 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ is the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ itself.
- 4. Let V be an n-dimensional vector space over an arbitrary field K and let $f:V\to V$ be a linear transformation. Show that there exists a basis for V such that the matrix representation for f with respect to that basis is diagonal if and only if the minimal polynomial for f is a product of distinct linear factors.
- 5. Let Z_n denote the cyclic group of order n. Let $G = Z_{81} \oplus Z_{30} \oplus Z_{16} \oplus Z_{45}$.
 - (a) What is the largest cyclic subgroup of G? Give a generator for this group in terms of the generators for the cyclic components of G. Please denote the generators for the groups Z_{81} , Z_{30} , Z_{16} , and Z_{45} by a, b, c and d, respectively.
 - (b) How many elements of order three does G have?
 - (c) How many elements of order nine does G have?
- 6. Recall that a Euclidean domain is an integral domain R together with a natural number valued function N defined on the nonzero elements of R which has the property that, given a and b in R with b nonzero, we can find q and r in R such that a = bq + r and either r = 0 or N(r) < N(b). Now let $R = \mathbb{Z}[\sqrt{-2}] = \{m + n\sqrt{-2} : m, n \in \mathbb{Z}\}$, where \mathbb{Z} is the ring of rational integers. Let $N(m + n\sqrt{-2}) = m^2 + 2n^2$.
 - (a) Show that R is a Euclidean domain.
 - (b) Decide whether $x^3+2\sqrt{-2}x+4$ is irreducible in $\mathbb{Q}(x)$, where \mathbb{Q} is the field of rational numbers.
- 7. Let $R = \mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ and let $N\left(m+n\frac{1+\sqrt{-7}}{2}\right) = \frac{(2m+n)^2+7n^2}{4}$, where \mathbb{Z} is the ring of rational integers and $m, n \in \mathbb{Z}$. Show that R is a Euclidean domain. (Your proof should also work if -7 is replaced by -11 and $N\left(m+n\frac{1+\sqrt{-11}}{2}\right) = \frac{(2m+n)^2+11n^2}{4}$.

JANUARY 1997

1. Suppose the group G has a nontrivial subgroup H which is contained in every nontrivial subgroup of G. Prove that H is contained in the center of G.

2. Let n be an odd positive integer, and denote by S_n the group of all permutations of $\{1, 2, 3, ..., n\}$. Suppose that G is a subgroup of S_n of 2-power order. Prove that there exists $i \in \{1, 2, 3, ..., n\}$ such that for all $\sigma \in G$ one has $\sigma(i) = i$.

3. Let p be an odd prime and \mathbb{F}_p the field of p elements. How many elements of \mathbb{F}_p have square roots in \mathbb{F}_p ? How many have cube roots in \mathbb{F}_p ? Explain your answers.

4. Suppose that $W \subseteq V$ are vector spaces over a field with finite dimensions m and n (respectively). Let $T: V \to V$ be a linear transformation with $T(V) \subseteq W$. Denote the restriction of T to W by T_W . Identifying T and T_W with matrices, prove that $\det(I_n - xT) = \det(I_m - xT_W)$ where x is an indeterminate and I_m , I_n denote the $m \times m$, $n \times n$ identity matrices.

5. Let \mathbb{Q} be the field of rational numbers. For θ a real number, let $F_{\theta} = \mathbb{Q}(\sin \theta)$ and $E_{\theta} = \mathbb{Q}(\sin \frac{\theta}{3})$. Show that E_{θ} is an extension field of F_{θ} , and determine all possibilities for $\dim_{F_{\theta}} E_{\theta}$.

6. Let $g(x) = x^7 - 1 \in \mathbb{Q}[x]$, and let K be a splitting field for g(x) over \mathbb{Q} .

- (a) Show that g(x) = (x-1)h(x) where h(x) is irreducible in $\mathbb{Q}[x]$. (Hint: Study h(x+1) by first writing h(x) = g(x)/(x-1). Use Eisenstein's criterion to show h(x+1) is irreducible.)
- (b) Show that $G = \operatorname{Gal}(K/\mathbb{Q})$ is cyclic of order 6, and has as a generator the map that takes $\omega \mapsto \omega^3$ for any root ω of g(x).
- (c) Let ω be a complex 7^{th} root of 1. Let

$$x_1 = \omega + \omega^2 + \omega^4$$
, $x_2 = \omega + \omega^6$.

Find subgroups H_1 , H_2 of G such that $\mathbb{Q}(x_1)$ is the fixed field of H_1 and $\mathbb{Q}(x_2)$ is the fixed field of H_2 . Find $[\mathbb{Q}(x_1):\mathbb{Q}]$ and $[\mathbb{Q}(x_2):\mathbb{Q}]$.

(d) Show that $\mathbb{Q}(x_1)$ and $\mathbb{Q}(x_2)$ are the only fields M with $\mathbb{Q} \subset M \subset \mathbb{Q}(\omega)$. (Here \subset denotes proper containment.)

AUGUST 1996

1. Suppose p > q are prime numbers and that q does not divide p - 1. Show that every group G of order pq is cyclic.

- 2. Let R be a ring with multiplicative identity 1. An element $r \in R$ is called *nilpotent* if $r^n = 0$ for some positive integer n > 0. Let N denote the set of nilpotents in R.
 - (a) Show that if R is commutative then N is an ideal. Give an example of a noncommutative R for which N is not an ideal.
 - (b) An ideal I in a commutative ring is called *primary* if for every $xy \in I$, either $x \in I$ or $y^m \in I$ for some positive integer m. Suppose that R is commutative and that I is an ideal in R. Show that I is primary if and only if every zero divisor in R/I is nilpotent.
- 3. Consider the set of numbers $R = \left\{ a + b \left(\frac{1 + \sqrt{-15}}{2} \right) : a, b \in \mathbb{Z} \right\} \subset \mathbb{Q}(\sqrt{-15})$.
 - (a) Show that R is a ring, and that the automorphism $\sqrt{-15} \mapsto -\sqrt{-15}$ of $\mathbb{Q}(\sqrt{-15})$ induces an automorphism of R.
 - (b) What is the norm of $a + b\left(\frac{1+\sqrt{-15}}{2}\right)$ for integers a, b?
 - (c) Find all the units in R.
 - (d) Find all factorizations of 4 into irreducibles in R.
 - (e) Give an example in R of an irreducible which isn't prime.

- 4. Let ζ be a primitive 12^{th} root of unity.
 - (a) Find the Galois group of $\mathbb{Q}(\zeta)$ over \mathbb{Q} .
 - (b) Let $\Phi_n(x)$ denote the n^{th} cyclotomic polynomial over \mathbb{Q} . What is the degree of $\Phi_{24}(x)$ over \mathbb{Q} ?
 - (c) When $\Phi_{24}(x)$ is factored over $\mathbb{Q}(\zeta)$, how many factors are there, and what are their degrees? $\left(\frac{\lambda^2}{\lambda^2} \int_{12}^{12} \left(\frac{\lambda^2}{\lambda^2} \int_{12}^{$
- 5. Let q be a power of a prime, and r a positive integer. Let \mathbb{F}_q and \mathbb{F}_{q^r} denote, respectively, the fields with q and q^r elements. Let G denote the Galois group of \mathbb{F}_{q^r} over \mathbb{F}_q , and let N denote the norm map, $N(\alpha) = \prod_{\sigma \in G} \sigma(\alpha)$ from \mathbb{F}_{q^r} to \mathbb{F}_q . Show that

$$N:\mathbb{F}_{q^r}^{\times} \to \mathbb{F}_q^{\times}$$

is a surjective homomorphism.

6. Let G be a finite group of order n, and suppose for each prime p dividing n there is a unique Sylow p-subgroup. Show that G is solvable. (Be sure to carefully state any theorems about solvable groups that you use.)