Wednesday, April 17, 2019 12:31 AM

$$\dot{n}_{1}(t) = u_{1}(t)$$
 $\dot{n}_{2}(t) = u_{2}(t)$
 $||u(t)|| = 1 \Rightarrow u_{1}^{2}(t) + u_{2}^{2}(t)^{2}|$
Starts at $n(0)$
Ends at $n(T)$
min $\int_{\Gamma} r(n(t)) dt$
 $r(\cdot) > 0$ and continuous
from $\bar{n} = (\bar{n}_{1}, \bar{n}_{2})$
we can so to $(\bar{n}_{1} + a_{1}, \bar{n}_{2})$

From $\bar{n} = (\bar{n}_1, \bar{n}_2)$ we can go to $(\bar{n}_1 + 0, \bar{n}_2)$ $\left(\overline{x}_{1}-\Delta,\overline{x}_{2}\right)$ $\left(\overline{x}_{1},\overline{x}_{2}+\Delta\right)$ $(\overline{n}_1,\overline{n}_2-\Delta)$

cost r(x) a

Consider going from (1,1) to (2,2)

With this discretization, let 2=0.5 at first

Here, we need 2 & steps in the a, dir and 2 & steps in the and in

Assume r(·) uniform everywhere= rak Cost for this path = $2\Delta r^4 + 2\Delta r^4$ = $4(0.6)r^4 = 2r^4$

Let's make \triangle smaller = $\frac{1}{k}$ where k large (2,2)

1 h \triangle steps

(1,1) $\stackrel{\leftarrow}{\rightarrow}$ k $\stackrel{\leftarrow}{\rightarrow}$ steps

Again, we need k a steps in (t) ve n_1 & k a steps in (t) ve n_2 Cost = $2k(\Delta) r^{\Delta} = 2r^{\Delta}$ Even in the limit $\Delta \rightarrow 0$ $k \rightarrow \infty$ $\cos t = 2r^{K}$

However, optimal cost of original problem is a straight line of length 12.

(2,2) (1,1)

The optimal path involves small steps δ in the $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ direction such that ||u(t)||=1. Cost of this path = $\delta(\frac{\sqrt{2}}{\delta})$ $r^{\alpha} = \sqrt{2}$ r^{α} step length π # of steps

True optimal=52 r* < Cost of discretized = 2r*

.°. This is a bad discretization of the original problem.