Übungsblatt 07 Elias Gestrich

Aufgabe 7.1:

(a) Zu zeigen für alle $z=(z_1,\ldots,z_n)\in\mathbb{Z}^n$ gilt $\sigma(\tau f)(z)=(\sigma\tau)f(z)$. Hierfür gilt (Umformungen mithilfe Def 12.3 und Produkt von Permutationen)

$$\sigma(\tau f)(z) = \sigma((\tau f)(z))$$

$$= \sigma\left(f\left(z_{\tau(1)}, \dots, z_{\tau(n)}\right)\right)$$

$$= f\left(z_{\sigma(\tau(1))}, \dots, z_{\sigma(\tau(n))}\right)$$

$$= f\left(z_{\sigma\tau(1)}, \dots, z_{\sigma\tau(n)}\right)$$

$$= (\sigma\tau)f(z)$$

(b) Zu zeigen für alle $z=(z_1,\ldots,z_n)\in\mathbb{Z}^n$ gilt $(\sigma(fg))(z)=((\sigma f)(\sigma g))(z)$. Hierfür gilt (Umformungen mithilfe Def 12.3 und Produkt von Funktionen)

$$(\sigma(fg))(z) = (fg) (z_{\sigma(1)}, \dots, z_{\sigma(n)})$$

$$= (f (z_{\sigma(1)}, \dots, z_{\sigma(n)})) (g (z_{\sigma(1)}, \dots, z_{\sigma(n)}))$$

$$= ((\sigma f)(z))((\sigma g)(z))$$

$$= ((\sigma f)(\sigma g))(z)$$

Aufgabe 7.2:

- (a) Da S_n für alle n schon eine Gruppe ist, reicht es zu zeigen, dass S_n genau dann kommutativ, wenn $n \leq 2$
 - Fall 1 S_1 : Da $S_1 = \{(1)\}$ gilt für alle σ, τ , dass $\sigma\tau = (1)(1) = \tau\sigma$, wodurch die Kommutativität schon gezeigt ist
 - Fall 2 S_2 : Da $S_2 = \{(1), (1 2)\}$. Für $\sigma, \tau \in S_2$ mit $\sigma = \tau$ folgt direkt, dass $\sigma \tau = \tau \sigma$. Wenn $\sigma \neq \tau$, dann ist entweder σ , oder τ das neutrale Element, und dann entsprechend entgegensetzt τ , oder σ gleich (1 2) ist, dadurch folgt $\sigma \tau = (1 2) = \tau \sigma$
 - Fall 3 S_n mit n > 2: Für n > 2 gilt, $\begin{pmatrix} 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 3 \end{pmatrix} \in S_n$, für die gilt: $\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \neq \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$

(Da nach Beweis von Satz 12.1 $\begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix}$ und $\begin{pmatrix} 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$)

(b) Sei $\sigma \in A_n$.

Für zwei Transpositionen $\tau_1, \tau_2 \in S_n$ gilt, $\tau_1 = \begin{pmatrix} i_1 & i_2 \end{pmatrix}, \tau_2 = \begin{pmatrix} i_3 & i_4 \end{pmatrix}$. Wenn also $\tau_1 = \tau_2$, dann gilt $\tau_1 \tau_2 = \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$, also $\tau_1 \tau_2$ durch 3-Zyklen darstellbar. Außerdem gilt im Allgemeinen $\begin{pmatrix} a & b \end{pmatrix} = \begin{pmatrix} b & a \end{pmatrix}$, da für $x \neq a, x \neq b$ gilt

$$(a \quad b)(x) = x = (b \quad a)(x),$$

$$(a \quad b)(a) = b = (b \quad a)(a)$$
 und

$$\begin{pmatrix} a & b \end{pmatrix} (b) = a = \begin{pmatrix} b & a \end{pmatrix} (b)$$

Es gibt also noch die Fälle, dass beide Transpositionen genau einen gemeinen nicht-Fixpunkt haben oder dass sie disjunkt sind. Denn Fall in dem die Transpositionen zwei gleiche nicht-Fixpunkte haben, bedeutet, dass $\tau_1 = \tau_2$, da eine Transposition nur zwei nicht-Fixpunkte hat.

Fall 1: Einen gemeinsamen nicht-Fixpunkt: Œ $i_1 = i_3$, also $\tau_2 = \begin{pmatrix} i_1 & i_4 \end{pmatrix}$. Beh. $\tau_1 \tau_2 = \begin{pmatrix} i_1 & i_4 \end{pmatrix}$, sei hierfür $x \in \mathbb{N}_n$ beliebig.

Falls $x \neq i_1, x \neq i_2, x \neq i_4$, dam:

$$\tau_1 \tau_2(x) = x = \begin{pmatrix} i_1 & i_4 & i_2 \end{pmatrix}$$

Falls $x = i_1$:

$$(i_1 \quad i_2) (i_1 \quad i_4) (i_1) = (i_1 \quad i_2) (i_4)$$

= i_4
= $(i_1 \quad i_4 \quad i_2) (i_1)$

Falls $x = i_2$:

$$(i_1 \quad i_2) (i_1 \quad i_4) (i_2) = (i_1 \quad i_2) (i_2)$$
$$= i_2$$
$$= (i_1 \quad i_4 \quad i_2) (i_2)$$

Falls $x = i_4$:

$$(i_1 \quad i_2) (i_1 \quad i_4) (i_4) = (i_1 \quad i_2) (i_1)$$
$$= i_2$$
$$= (i_1 \quad i_4 \quad i_2) (i_4)$$

Fall 2: i_1, i_2, i_3, i_4 paarweise verschieden

Beh. $(i_1 \ i_2)(i_3 \ i_4) = (i_1 \ i_3 \ i_2)(i_1 \ i_4 \ i_3)$.

Bew. sei $x \in \mathbb{N}_n$ Falls $x \neq i_1, x \neq i_2, x \neq i_3, x \neq i_4$, dann:

$$\tau_1 \tau_2(x) = x = \begin{pmatrix} i_1 & i_3 & i_2 \end{pmatrix} \begin{pmatrix} i_1 & i_4 & i_3 \end{pmatrix} (x)$$

Falls $x = i_1$:

$$(i_1 \quad i_2) (i_3 \quad i_4) (i_1) = (i_1 \quad i_2) (i_1)$$

$$= i_2$$

$$= (i_1 \quad i_3 \quad i_2) (i_3)$$

$$= (i_1 \quad i_3 \quad i_2) (i_1 \quad i_3 \quad i_4) (i_1)$$

Falls $x = i_2$:

$$(i_{1} \quad i_{2}) (i_{3} \quad i_{4}) (i_{2}) = (i_{1} \quad i_{2}) (i_{2})$$

$$= i_{1}$$

$$= (i_{1} \quad i_{3} \quad i_{2}) (i_{2})$$

$$= (i_{1} \quad i_{3} \quad i_{2}) (i_{1} \quad i_{3} \quad i_{4}) (i_{2})$$

Falls $x = i_3$:

$$(i_1 \quad i_2) (i_3 \quad i_4) (i_3) = (i_1 \quad i_2) (i_4)$$

$$= i_4$$

$$= (i_1 \quad i_3 \quad i_2) (i_4)$$

$$= (i_1 \quad i_3 \quad i_2) (i_1 \quad i_3 \quad i_4) (i_3)$$

Falls $x = i_4$:

$$(i_1 \quad i_2)(i_3 \quad i_4)(i_4) = (i_1 \quad i_2)(i_3) = i_3 = (i_1 \quad i_3 \quad i_2)(i_1) = (i_1 \quad i_3 \quad i_2)(i_1 \quad i_3 \quad i_4)(i_4)$$

Also lassen sich jewils zwei Transpositionen durch ein Produkt von 3-Zyklen darstellen. Da σ alternierend existieren Transpositionen $\tau_1, \tau_2, \dots, \tau_{2j-1}, \tau_{2j}$ mit $j \in \mathbb{N}_0$ sodass mit $\sigma = \tau_1 \tau_2 \dots \tau_{2j-1} \tau_{2j}$, Sei $\alpha_i = \tau_{2i-1}\tau_{2i}$ mit $1 \leq i \leq j$, so, dass $\tau_1\tau_2 \dots \tau_{2j-1}\tau_{2j} = \alpha_1 \dots \alpha_j$. Da jedes α_i ein Produkt zweier Transpositionen, welche sich durch Produkt von 3-Zyklen darstellen lassen, lässt sich also auch σ durch ein Produkt von (Produkten von) 3-Zyklen darstellen.

Aufgabe 7.3:

(a) Sei $\pi \in S_n$, dann gibt es τ_1, \ldots, τ_m Transpositionen mit $\tau_1 \cdots \tau_m = \pi$ und sign $(\pi) = (-1)^m$, da für m gerade sign $(\pi) = 1$ nach Definition, aber auch $(-1)^m = 1$ gilt, und für m ungerade sign $(\pi) = -1 = (-1)^m$ ebenfalls gilt.

Betrachte nun

 $\delta \left(z_{\pi(1)}, \dots, z_{\pi(n)} \right) = \delta \left(z_{\tau_1 \dots \tau_m(1)}, \dots, z_{\tau_1 \dots \tau_m(n)} \right)$ $\stackrel{\text{Lem. 13.6.}}{=} \left(-1 \right)^1 \delta \left(z_{\tau_1 \dots \tau_{m-1}(1)}, \dots, z_{\tau_1 \dots \tau_{m-1}(n)} \right)$ $\stackrel{\text{Lem. 13.6.}}{=} \left(-1 \right)^2 \delta \left(z_{\tau_1 \dots \tau_{m-2}(1)}, \dots, z_{\tau_1 \dots \tau_{m-2}(n)} \right)$

$$\stackrel{\text{Lem. 13.6.}}{=} (-1)^m \delta(z_1, \dots, z_n)
= \operatorname{sign}(\pi) \delta(z_1, \dots, z_n)$$

(b) Sei $z_1, \ldots, z_n \in V$ gegeben.

" \Longrightarrow ": Sei δ trivial zu zeigen $\delta(\alpha_1,\ldots,\alpha_n)=0$. Es folgt unmittelbar $\delta(\alpha_1,\ldots,\alpha_n)=0$

" ⇐= ": Sei

$$\delta': K^{n \times n} \to K$$

mit

$$\delta'\left(\begin{pmatrix} [a_1]_{\mathcal{B}} \\ \vdots \\ [a_n]_{\mathcal{B}} \end{pmatrix}\right) = \delta(a_1, \dots, a_n)$$

Sei $\delta(\alpha_1, \ldots, \alpha_n) = 0$, zu zeigen für alle $z_1, \ldots, z_n \in V : \delta(z_1, \ldots, z_n) = 0$. Sei $z_1, \ldots, z_n \in V$ gegeben.

Es gilt, für

$$B = \begin{pmatrix} [\alpha_1]_{\mathcal{B}} \\ \vdots \\ [\alpha_n]_{\mathcal{B}} \end{pmatrix} = \mathrm{Id},$$

dass

$$\delta'(\mathrm{Id}) = \delta'(B) = \delta(\alpha_1, \dots, \alpha_n) = 0$$

nach Korollar 14.4 folgt daraus, dass $\delta' = 0$, das heißt für alle $z_1, \ldots, z_n \in V$, gilt

$$\delta(z_1, \dots, z_n) = \delta' \begin{pmatrix} \begin{bmatrix} [z_1]_{\mathcal{B}} \\ \vdots \\ [z_n]_{\mathcal{B}} \end{pmatrix} \end{pmatrix} = 0.$$

Aufgabe 7.4:

 $\mathbb{A} \subset L^{(n)}(K^n \times \cdots \times K^n; K)$ per Definition.

Es reicht zu zeigen für alle $c \in K$, δ_1 , $\delta_2 \in \mathbb{A}$ gilt $\delta_1 + c\delta_2 \in \mathbb{A}$. Sei also $c \in K$, δ_1 , $\delta_2 \in \mathbb{A}$ gegeben, zu zeigen $\delta_1 + c\delta_2 \in \mathbb{A}$, also zu zeigen $(\delta_1 + c\delta_2)(z_1, \ldots, z_n) = 0$, wenn $i \neq j$ existieren mit $z_i = z_j$. Sei also z_1, \ldots, z_n gegeben, sodass $1 \leq i, j \leq n$ existieren mit $i \neq j$ und $z_i = z_j$, zu zeigen $(\delta_1 + c\delta_2)(z_1, \ldots, z_n) = 0$.

$$(\delta_1 + c\delta_2)(z_1, \dots, z_n) \stackrel{\text{def.}}{=} \underbrace{\delta_1(z_1, \dots, z_n)}_{\delta_1 \in \mathbb{A}_0} + c\underbrace{\delta_2(z_1, \dots, z_n)}_{\delta_2 \in \mathbb{A}_0}$$
$$= 0 + c \cdot 0$$