Monetary Policy in Mexico: The Effects of Actions and Statements on Asset Prices and Portfolio Flows

Pavel Solís

Johns Hopkins University

SFA Annual Meeting 2020

Introduction

- In JMP on EM bonds:
 - Long-term yields **comove more** than short-term ones after GFC
 - Global financial cycle is more relevant for long- than short-term yields
- Currency and bond yields in Mexico respond to policy rate surprises
- Here: does monetary policy in Mexico has more than one dimension?
 - Do asset prices and portfolio flows respond to changes in policy statements?

Identification of Monetary Policy Surprises

- Asset price changes in **30-minute** windows around policy announcements
 - Surprises:
 - Swap rates: 3M, 6M, 9M, 1Y
 - Effects:
 - Bond yields: 2Y, 5Y, 10Y, 30Y
 - Exchange rate (pesos per U.S. dollar)
- Intraday data from Bloomberg starts in 2011 and ends in 2019

How Many Factors Drive Asset Price Changes?

• Cragg–Donald rank test to assess number of factors

	Frequency	$H_0: k = k_0$	Wald Statistic	Degrees of Freedom	p-value	Observations
		0	36.55	10	0.000	41
	Intraday	1	11.62	5	0.040	41
Exchange Rate		2	0.04	1	0.851	41
& Yield Curve		0	35.24	10	0.000	120
	Daily	1	14.60	5	0.012	120
		2	0.01	1	0.933	120

How Many Factors Drive Asset Price Changes?

	Frequency	$H_0: k = k_0$	Wald Statistic	Degrees of Freedom	p-value	Observations
	Intro dos	0	26.47	6	0.000	72
Swaps ———	Intraday	1	7.47	2	0.024	72
з жара	P 11	0	25.57	6	0.000	155
	Daily	1	9.49	2	0.009	155

• Asset prices react to more than just unanticipated changes in the policy rate

Structural Interpretation

- Two factors from **swaps** data:
 - Estimated by principal components
 - Rotated and rescaled for interpretation
- Two types of monetary policy surprises (Gürkaynak et al., 2005)
 - Target factor: *current* policy rate
 - Path factor: future path of policy rate from statements

Monetary Policy Dimensions

Measuring the Effects on Asset Prices

$$\Delta y_t = \beta_0 + \beta_1 Target_t + \beta_2 Path_t + \varepsilon_t$$

 Δy_t : intraday change in bond yields and the exchange rate

 $Target_t$ and $Path_t$: intraday monetary policy factors

- (+) tightenings
- (-) easings

 ε_t : error term

Asset Price Responses

	F	X	2Y-Yield		5Y-Yield		10Y-Yield		30Y-Yield	
Target Factor	-1.89**	-1.89**	0.67***	0.68***	0.35***	0.27***	0.42***	0.42***	0.30***	0.30***
	(0.77)	(0.78)	(0.09)	(0.08)	(0.10)	(0.09)	(0.09)	(0.08)	(0.08)	(0.07)
Path Factor		-0.14 (1.19)		0.48*** (0.09)		0.69*** (0.16)		0.56*** (0.12)		0.59*** (0.12)
Observations	72	72	56	56	41	41	56	56	56	56
R-squared	0.20	0.20	0.80	0.86	0.24	0.60	0.53	0.69	0.35	0.59

Notes: Robust standard errors in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Persistence of Yields to Monetary Policy Surprises

Portfolio Flow Data

- Portfolio flows involving U.S. investors particularly relevant for Mexico
- U.S. TIC system: Monthly flow data from 2011 to 2019
- Inflows and outflows in 4 categories
 - U.S. Treasury bonds and notes
 - U.S. government agency bonds
 - Non-U.S. (Mexican) bonds
 - Non-U.S. (Mexican) stocks

Measuring the Effects on Portfolio Flows

$$w_t = \beta_0 + \beta_1 Target_t + \beta_2 Path_t + \sum_{j=1}^p \alpha_j w_{t-j} + \nu_t$$

 w_t : category of portfolio flow

 w_{t-j} : lags capture persistence in flow data

 $Target_t$ and $Path_t$: **monthly** monetary policy factors

• Set to zero in non-announcement months

Portfolio Flow Responses

		Inf	lows		Outflows				
	T-Bonds	Agency	Non-U.S.	Non-U.S.	T-Bonds	Agency	Non-U.S.	Non-U.S.	
	T-Notes	Bonds	Bonds	Stocks	T-Notes	Bonds	Bonds	Stocks	
Target Factor	-0.048	0.010	-0.047	-0.019***	-0.007	0.011	-0.017	-0.013**	
	(0.055)	(0.018)	(0.035)	(0.005)	(0.028)	(0.008)	(0.033)	(0.006)	
Path Factor	0.088 (0.162)	$0.070** \\ (0.035)$	0.097 (0.102)	-0.003 (0.015)	0.169 (0.112)	0.008 (0.021)	0.028 (0.064)	0.001 (0.015)	
Lags	0	1	1	3	0	3	3	3	
Observations	107	107	107	107	107	107	107	107	
R-squared	0.016	0.228	0.125	0.601	0.026	0.225	0.255	0.589	

Notes: Robust standard errors in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Monetary Policy Asymmetries

- So far, symmetric responses to tightenings and easings
- AE currencies respond symmetrically (Ferrari et al., 2017)
- Asymmetric response of flows to EM (Curcuru et al., 2015)
- Are responses to monetary policy in Mexico asymmetric?

Measuring Asymmetric Responses to Monetary Policy

$$y_{t} = \beta_{0} + \beta_{1} Target_{t} \mathbb{1} \left(Target_{t} > 0 \right) + \beta_{2} Target_{t} \mathbb{1} \left(Target_{t} < 0 \right)$$
$$+ \beta_{3} Path_{t} \mathbb{1} \left(Path_{t} > 0 \right) + \beta_{4} Path_{t} \mathbb{1} \left(Path_{t} < 0 \right) + \varepsilon_{t}$$

 y_t : intraday asset price change or monthly portfolio flows

- y_t increases if
 - $\beta_2 < 0$ and $Target_t < 0$, or
 - $\beta_4 < 0$ and $Path_t < 0$

Asymmetric Asset Price Responses

	F	X	2Y-	Yield	5Y-	Yield	10Y-	Yield	30Y-	Yield
${\rm Target*1}({\rm Target}<0)$	-0.45 (0.40)	-0.44 (0.39)	0.74*** (0.08)	0.79*** (0.04)	0.76** (0.29)	0.73*** (0.13)	0.50*** (0.07)	0.55*** (0.03)	0.39*** (0.06)	0.43*** (0.03)
$\mathrm{Target*1}(\mathrm{Target}>0)$	-6.11*** (1.14)	-6.12*** (1.32)	0.47*** (0.08)	0.33***	0.18***	0.08 (0.05)	0.15 (0.09)	0.02 (0.08)	-0.01 (0.10)	-0.11 (0.09)
$\mathrm{Path} {*}1(\mathrm{Path} < 0)$	(1.11)	1.29 (1.31)	(0.00)	0.29**	(0.00)	0.59***	(0.00)	0.47***	(0.10)	0.61***
$\mathrm{Path}^*1(\mathrm{Path}>0)$		0.61 (1.90)		0.79*** (0.12)		0.80*** (0.19)		0.80*** (0.15)		0.73*** (0.11)
H_0 : Target Equality H_0 : Path Equality	0	0.00 0.55	0.02	0	0.06	0.00	0.00	0	0.00	0
Observations R-squared	$72 \\ 0.50$	72 0.51	$\frac{56}{0.82}$	56 0.91	$\frac{41}{0.36}$	41 0.72	$\frac{56}{0.60}$	56 0.80	$\frac{56}{0.46}$	56 0.74

Notes: Robust standard errors in parentheses. *, ***, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Persistence Asymmetric Yield Responses to Target Factor

Persistence Asymmetric Yield Responses to Path Factor

Asymmetric Portfolio Flow Responses

		Inf	lows		Outflows				
	T-Bonds T-Notes	Agency Bonds	Non-U.S. Bonds	Non-U.S. Stocks	T-Bonds T-Notes	Agency Bonds	Non-U.S. Bonds	Non-U.S. Stocks	
Target*1(Target<0)	0.010	-0.001	-0.079**	-0.023***	0.011	0.008	-0.020	-0.022***	
Target*1(Target > 0)	(0.031) -0.216***	(0.008) 0.042	(0.030) 0.049	(0.004) -0.005	(0.039) -0.058	(0.010) 0.021	(0.041) -0.007	(0.004) 0.011	
Path*1(Path<0)	(0.073) -0.184	(0.062) 0.108**	(0.070) -0.068	(0.012) -0.014	(0.051) 0.041	(0.016) -0.040	(0.092) -0.030	(0.012) -0.004	
Path*1(Path > 0)	(0.184) $0.436*$	(0.050) 0.017	$(0.158) \\ 0.212$	(0.021) 0.002	(0.124) 0.320	(0.031) 0.050	(0.098) 0.081	(0.024) -0.006	
-	(0.253)	(0.044)	(0.163)	(0.025)	(0.214)	(0.039)	(0.135)	(0.025)	
Lags	0	1	1	3	0	3	3	3	
H ₀ : Target Equality	0.005	0.506	0.107	0.140	0.334	0.498	0.906	0.016	
H_0 : Path Equality	0.192	0.071	0.433	0.805	0.260	0.262	0.829	0.951	
Observations R-squared	$\frac{107}{0.071}$	$ \begin{array}{r} 107 \\ 0.241 \end{array} $	0.166	$\frac{107}{0.605}$	$\frac{107}{0.036}$	$107 \\ 0.252$	$107 \\ 0.258$	$\frac{107}{0.600}$	

Notes: Robust standard errors in parentheses. *, **, *** asterisks respectively indicate significance at the 10%, 5% and 1% level.

Conclusions

- Multidimensionality of monetary policy in emerging markets
 - Surprises: Current and future path of the policy rate
 - Effects: Asset prices and portfolio flows
- Responses to tightenings and easings are asymmetric
 - Country-specific or an emerging market phenomenon?
 - Asymmetry in macroeconomic effects?