PANC: Projeto e Análise de Algoritmos

Aula 11: Algoritmos de Ordenação III - Seleção:

Select Sort e Heap Sort

e outros Algoritmos:

Merge Sort e RadixSort

Breno Lisi Romano

20 a 26 de Setembro de 2020

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO

Campus São João da Sun Vista

Sumário

- Revisão de Conteúdo
- Introdução
- Algoritmos de Ordenação por Seleção:
 - Select Sort
 - Heap Sort
- Outros Algoritmos de Ordenação:
 - Merge Sort
 - Radix Sort
- Exemplos Práticos

Recapitulando...

Ordenação por Inserção:

- Caracterizados pelo princípio no qual se divide o array em dois segmentos, sendo um já ordenado e o outro a ser ordenado
- A partir disto, iterações são desenvolvidas sendo que, em cada uma delas, um elemento do segmento não ordenado é transferido para o segmento ordenado, na sua posição correta
- Métodos de Ordenação por Inserção:

Direta: T(n) = O(n²)

■ Binária: T(n) = lg (n-1)!

Shell Sort: T(n) = Conjectura 1: O(n^{1,25}) e Conjectura 2: O(n (lg n)²)

Ordenação por Troca:

- Diferentemente dos Métodos de Ordenação por Inserção, os Métodos de Ordenação por Troca fazem a permutação dos valores de um array para buscar a ordenação do mesmo
- Métodos de Ordenação por Troca:

Bubble Sort: T(n) = O(n²)

Shake Sort: T(n) = O(n²)

• Comb Sort: $T(n) = O(n^2)$

Quick Sort: T(n) = O(n lgn)

Método de Ordenação por Seleção

- Esta classe de ordenação é composta por algoritmos que constroem a sequência ordenada com um elemento de cada vez
- A cada passo, o elemento a ser adicionado a sequência ordenada é selecionado entre os elementos restantes, e o array a ser classificado fica reduzido de um elemento
- Os dois principais métodos por Seleção são:
 - Select Sort
 - Heap Sort

Detalhando...

ALGORITMOS DE ORDENAÇÃO POR SELEÇÃO

Select Sort e Heap Sort

Met. Ord. Seleção: Select Sort (1)

- Neste método, seleciona-se o menor elemento por pesquisa sequencial
- Uma vez encontrada a menor chave, ela é permutada com a que ocupa a posição inicial do array, que fica reduzido de um elemento
- O processo de seleção é repetido para a parte restante do array, sucessivamente, até que todos os elementos tenham sido selecionados e colocados em suas posições definitivas

Met. Ord. Seleção: Select Sort (2)

- Os passos necessários à execução destas tarefas são enumeradas a seguir:
 - Selecionar o elemento que representa o menor valor
 - 2. Trocá-lo com o primeiro elemento do array
 - 3. Repetir estas operações, envolvendo agora apenas N-1 elementos restantes, depois os N-2 elementos, etc... até restar um só elemento, o maior deles

Met. Ord. Seleção: Select Sort (3)

Simule a ordenação do seguinte array utilizando o Select Sort:

i	0	1	2	3	4	5	6	7
Vet[i]	44	55	12	42	92	18	06	67

	Iteração	0	1	2	3	4	5	6	7	Resultado
	1	44	55	12	42	92	18	<u>06</u>	67	Troca(Vet[0], Vet[6])
	2	06	55	<u>12</u>	42	92	18	44	67	Troca(Vet[1],Vet[2])
5	3	06	12	55	42	92	<u>18</u>	44	67	Troca(Vet[2],Vet[5])
Solução.	4	06	12	18	<u>42</u>	92	55	44	67	Troca(Vet[3],Vet[3])
	5	06	12	18	42	92	55	<u>44</u>	67	Troca(Vet[4],Vet[6])
	6	06	12	18	42	44	<u>55</u>	92	67	Troca(Vet[5],Vet[5])
	7	06	12	18	42	44	55	92	<u>67</u>	Troca(Vet[6],Vet[7])
	Array Ordenado	06	12	18	42	44	55	67	92	Não precisa ordenar a última posição, pois nela já se encontra o maior valor

Instituto Federal de São Paulo - IFSP São João da Boa Vista

Met. Ord. Seleção: Select Sort (2)

```
/*OrdenaSelecao(): Função que Ordena o array Vet[Max] aplicando o Método da
          Família de Classificação por Seleção chamado de Select Sort. */
void OrdenaSelecao(int Vet[])
  //Variaveis Locais
 int i, j, k, x, Comp;
 for(i=0; i<Max-1; i++)
   Comp=0;
   k=i;
   x = Vet[i];
   for(j=i+1; j < Max; j++)
     if(Vet[j] < x)
      k = j;
                                                       Algoritmo III
      x = Vet[k];
      Comp = 1;
   if(Comp == 1)
             Vet[k] = Vet[i];
             Vet[i] = x;
```


Ordenação por Select Sort: Análise da Complexidade

- Principais pontos a se destacar:
 - Realiza sempre uma busca sequencial pelo menor valor no segmento não ordenado a cada iteração
- Análise da Complexidade do Algoritmo:
 - Todos os Casos (Melhor, Pior e Caso Médio):
 - Definida pelo número de comparações envolvendo a quantidade de dados do Array
 - Número de comparações: (n-1) + (n-2) + (n-3) + ... + 2 + 1
 - Complexidade T(n): $\sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} \rightarrow O(n^2)$

Met. Ord. Seleção: Heap Sort (1)

- HeapSort também é um método de seleção:
 - Ordena através de sucessivas seleções do elemento correto a ser posicionado em um segmento ordenado
- Proposto por J. Williams (1964) apresentando uma melhoria drástica em relação aos métodos mais convencionais de ordenação
- O HeapSort utiliza um Heap Binário para manter o próximo elemento a ser selecionado:
 - Heap Binário: árvore binária mantida na forma de array
 - O Heap é gerado e mantido no próprio array a ser ordenado (no segmento não ordenado)

Met. Ord. Seleção: Heap Sort (2)

• Árvore representada pelo array A [] = {C₁, C₂, C₃, C₄,, C₇}

Met. Ord. Seleção: Heap Sort (3)

- O "Heap" é definido como sendo uma sequência de elementos C_L,
 C_{L+1}, C_{L+2}, ... C_R tal que as seguintes regras sejam observadas:
 - Regra 01: C_i representa a raiz da árvore
 - Regra 02: C_{2i} representa o sucessor a esquerda de C_i (se $C_{2i} \le C_i$) e (2_i < n)
 - Regra 03: C_{2i+1} representa o sucessor a direita de C_i (se C_{2i+1} ≤ C_i) e (2_{i+1} < n)

Como todas as raízes das subárvores satisfazem as condições $C_{2i} \le C_i$ e $C_{2i+1} \le C_i \rightarrow \text{Árvore \'e um Heap!}$

Met. Ord. Seleção: Heap Sort (4)

Exemplo de um "Heap" para o Array A[]:

i	1	2	3	4	5	6	7
A[]	12	09	13	25	18	10	22

Observe que o maior elemento do Array está na Raiz da Árvore!

Met. Ord. Seleção: Heap Sort (5)

Array Inicial antes de transformar em um Heap:

i	1	2	3	4	5	6	7
A[]	12	09	13	25	18	10	22

 Nova representação do Array A[] após a transformação para um Heap:

i	1	2	3	4	5	6	7
A[]	25	18	22	09	12	10	13

Met. Ord. Seleção: Heap Sort (6)

- Sempre que for encontrada uma subárvore que não forme um Heap, seus componentes devem ser rearranjados de modo a formar um Heap:
- Exemplo de uma transformação de Árvore em Heap:

- Pode ocorrer também que ao rearranjar uma subárvore isto venha a afetar outra subárvore diretamente relacionada a ela → A Árvore Completa deixa de ser Heap
 - Obriga a verificação de que, sempre que for rearranjada uma subárvore, se a sucessora do nível abaixo não teve a sua condição de Heap desfeita

Met. Ord. Seleção: Heap Sort Algoritmo

- Algoritmo do HeapSort é apresentado com 02 passos:
 - 1. Uma árvore binária (Heap) é construída com todos os elementos do Array
 - Sabe-se que em uma árvore binária, o valor contido em qualquer nó é maior do que os valores de seus sucessores
 - A árvore binária é estruturada no próprio array da seguinte maneira:
 - Sucessor à esquerda de A[i]: A[2i] (se 2i < n)
 - Sucessor à direita de A[i]: A[2i+1] (se 2i+1 < n)
 - A árvore é transformada em um Heap
 - Nesta transformação, que é realizada do maior nível da árvore até a raiz, troca-se cada nó com o maior de seus sucessores imediatos
 - Este passo é repetido até que cada nó seja maior que seus sucessores imediatos

2. Após a construção do Heap, é realizada a ordenação propriamente dita

- O valor que está na raiz da árvore é o maior valor contido em toda árvore → É colocado na sua posição correta, trocando-o com o elemento de maior índice da árvore
 - A árvore fica com um elemento a menor
- Existe a possibilidade desse novo elemento colocado na raiz violar a propriedade do Heap
 - Se sim, é necessário restaurar o Heap novamente
- Repete este procedimento até que a árvore fique com um único elemento

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (1)

Ordenar em ordem crescente o Array A[]:

i	1	2	3	4	5	6	7
A[]	12	09	13	25	18	10	22

- Primeiro Passo: Representar o Array Inicial como uma Árvore Binária:
 - Sucessor à esquerda de A[i]: A[2i] (se 2i < n)
 - Sucessor à direita de A[i]: A[2i+1] (se 2i+1 < n)

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (2)

Busca da primeira maior chave:

A[]

12

09

A transformação desta árvore em um Heap é iniciada pela subárvore cuja raiz é 13

 Comparamos a raiz da subárvore 13 com seus sucessores a esquerda e direita verificando qual é o maior → 22 é o maior e deve ser trocado de posição com o 13 na árvore → reflete no Array

25

18

10

13

22

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (3)

- Busca da primeira maior chave:
 - Próxima transformação é rearranjar a subárvore cuja raiz é 09

Comparamos a raiz da subárvore 09 com seus sucessores a esquerda e direita verificando qual é o maior → 25 é o maior e deve ser trocado de posição com o 09 na árvore → reflete no Array

i	1	2	3	4	5	6	7
A[]	12	25	22	09	18	10	13

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (4)

- Busca da primeira maior chave:
 - Próxima transformação é rearranjar a subárvore cuja raiz é 12

Comparamos a raiz da subárvore 12 com seus sucessores a esquerda e direita verificando qual é o maior → 25 é o maior e deve ser trocado de posição com o 12 na árvore → reflete no Array

i	1	2	3	4	5	6	7
A[]	25	12	22	09	18	10	13

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (5)

Busca da primeira maior chave:

A última transformação afetou uma subárvore → Deve rearranjar a subárvore em

 Comparamos a raiz da subárvore 12 com seus sucessores a esquerda e direita verificando qual é o maior → 18 é o maior e deve ser trocado de posição com o 12

i	1	2	3	4	5	6	7
A[]	25	18	22	09	12	10	13

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (6)

Busca da primeira maior chave:

- Elemento da raiz é o maior elemento do Array → Posição correta é no final do Array
 - Deve-se trocar o elemento da raiz com o elemento da última posição do Array → Trocar A[1] com A[n]
 - Após esta troca, consideramos a árvore com n-1 elementos

- Com este procedimento, encerramentos a primeira fase do Algoritmo HeapSort
- Fazemos o mesmo procedimento para encontrar os maiores elementos restantes da árvore, desconsiderando a última posição do Array

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (7)

Busca da segunda maior chave:

 Devemos fazer com que a árvore volte a ser um Heap → Manipular apenas a subárvore que sofreu alteração

Comparamos a raiz da subárvore 13 com seus sucessores a esquerda e direita verificando qual é o maior → 22 é o maior e deve ser trocado de posição com o 13 na árvore → reflete no Array

i	1	2	3	4	5	6	7
A[]	22	18	13	09	12	10	<u>25</u>

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (8)

- Busca da segunda maior chave:
 - Elemento da raiz é o maior elemento do Array → Posição correta é no final do Array
 - Deve-se trocar o elemento da raiz com o elemento da última posição do Array → Trocar A[1] com A[n]
 - Após esta troca, consideramos a árvore com n-1 elementos

i	1	2	3	4	5	6	7
A[]	10	18	13	09	12	<u>22</u>	<u>25</u>
					· ·	Array C	rdenado

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (8)

Busca da terceira maior chave (Resumido):

Array Ordenado

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (8)

Busca pelos demais elementos (Resumido):

A[] 09 12 10 13 18 22	i	1	2	3	4	5	6	7
	A[]	09	12	10	<u>13</u>	<u>18</u>	<u>22</u>	<u>25</u>

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (9)

Busca pelos demais elementos (Resumido):

i	1	2	3	4	5	6	7
A[]	10	09	<u>12</u>	<u>13</u>	<u>18</u>	<u>22</u>	<u>25</u>

Array Ordenado

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (10)

Busca pelos demais elementos (Resumido):

Met. Ord. Seleção: Heap Sort Exemplo Ilustrativo (11)

Busca pelos demais elementos (Resumido):

i=1

i	1	2	3	4	5	6	7
A[]	09	<u>10</u>	<u>12</u>	<u>13</u>	<u>18</u>	<u>22</u>	<u>25</u>

Array Ordenado

Instituto Federal de São Paulo - IFSP São João da Boa Vista

Met. Ord. Seleção: Heap Sort() Algoritmo Principal

```
/*OrdenaHeap(): Função que Ordena o array Vet[Max] aplicando o Método da
         Família de Classificação por Seleção chamado de Heap Sort. */
void OrdenaHeap(int Vet[])
  //Variaveis Locais
 int L, R, x;
 L = Max/2+1;
 R = Max-1;
 while (L > 0)
   L--;
   Heap(L, R, Vet);
                                                       Algoritmo
Importante!!
 while (R > 0)
   x = Vet[0];
   Vet[0] = Vet[R];
   Vet[R] = x;
   R---;
   Heap(L, R, Vet);
```


Instituto Federal de São Paulo - IFSP São João da Boa Vista

Met. Ord. Seleção: Heap Sort() Algoritmo Auxiliar para Montar o Heap

```
/*Heap(): Função Auxiliar a Função OrdenaHeap, que ajuda a Ordenar o array
      Vet[Max] aplicando o Método da Família de Classificação por Seleção
      chamado de Heap Sort*/
void Heap(int L, int R, int Vet[])
 //Variaveis Locais
 int i, j, x;
 //Inicialização das Variaveis
 i = L;
 i = 2*L;
 x = Vet[L];
 if((j < R) & (Vet[j] < Vet[j+1])) j++;
 while((i \le R) & (x \le Vet[i]))
                                                           Algoritmo III
   Vet[i] = Vet[i];
   i = j;
   j = 2*j;
   if((j < R) & (Vet[j] < Vet[j+1])) j++;
  Vet[i] = x;
```


Ordenação por HeapSort: Análise da Complexidade

- Etapas:
 - Construção do Heap → O(n)
 - Número de Comparações está sempre dentro do intervalo de (n, 2n)
 - Ordenação:
 - Troca (raiz com o final do segmento não ordenado) → O(1)
 - Ajuste do novo elemento raiz para transformar a Árvore em Heap novamente
 → O(lg n)
 - Executa até que o elemento seja transferido para a posição i > n/2

Executa-se n-1 vezes \rightarrow (n-1) . lg n \rightarrow O (n. lg n)

- Análise da Complexidade do Algoritmo (para qualquer caso):
 - T(n) = O (n. lg n)

Detalhando...

OUTROS ALGORITMOS DE ORDENAÇÃO

Merge Sort e Radix Sort

Merge Sort: Divisão e Conquista

- Mergesort é um algoritmo para resolver o problema de ordenação de arrays e um exemplo clássico do uso do paradigma de Divisão e Conquista (to merge = intercalar)
 - Duas abordagens: Top-Down (Recursiva) e Bottom-Up (Iterativa)
- Descrição do Mergesort em alto nível (Top-Down):
 - Divisão: Divide a sequência de n elementos que deve ser ordenada em duas subsequências de n/2 elementos cada uma
 - Conquista: Ordena as duas subsequências recursivamente, utilizando a ordenação por intercalação (Algoritmo Mergesort)
 - Combinação: Intercala as duas subsequências ordenadas para produzir a resposta ordenada (Algoritmo Intercala)
 - Condição de parada da Recursão: quando for ordenar apenas um elemento,
 este caso será a sub-solução elementar

Merge Sort: Ilustração para um Array (n=8)

Merge Sort: Algoritmo

 Mergesort: O objetivo é rearranjar um array A[p...r], com p ≤ r, em ordem crescente

```
\begin{array}{lll} \mathsf{MERGESORT}(A,p,r) \\ \mathsf{1} & \mathsf{se} \ p < r & \mathsf{Divisão} \\ \mathsf{2} & \mathsf{então} \ q \leftarrow \lfloor (p+r)/2 \rfloor \\ \mathsf{3} & \mathsf{MERGESORT}(A,p,q) & \mathsf{Conquista} \\ \mathsf{4} & \mathsf{MERGESORT}(A,q+1,r) \\ \mathsf{5} & \mathsf{INTERCALA}(A,p,q,r) & \mathsf{Combinação} \\ \end{array}
```


Merge Sort: Algoritmo Intercala()

- O que significa intercalar dois (sub)arrays ordenados?
- Problema: Dados A[p...q] e A[q+1...r] crescentes, rearranjar A[p...r]
 de modo que ele fique em ordem crescente

Merge Sort: Algoritmo Intercala() – Sem Sentinela (1)

```
A 11 22 33 44 55 66 77 88 99

j i

B 22 33 55 77 99 88 66 44 11
```


Merge Sort: Algoritmo Intercala() – Sem Sentinela (2)

```
INTERCALA(A, p, q, r)
      para i \leftarrow p até q faça
 2 B[i] \leftarrow A[i]
 3 para j \leftarrow q + 1 até r faça
 4 B[r+q+1-j] \leftarrow A[j]
 5 i \leftarrow p
 6 j \leftarrow r
 7 para k \leftarrow p até r faça
 8
           se B[i] \leq B[j]
               então A[k] \leftarrow B[i]
                        i \leftarrow i + 1
10
               senão A[k] \leftarrow B[j]
11
                        j \leftarrow j - 1
12
```


Merge Sort: Ilustração do Algoritmo Exemplo Completo

A[] = [14, 7, 3, 12, 9, 11, 6, 2]

Merge Sort: Análise da Complexidade Algoritmo Intercala

Pior Caso – T(n):

```
INTERCALA(A, p, q, r)

1 para i \leftarrow p até q faça

2 B[i] \leftarrow A[i]

3 para j \leftarrow q + 1 até r faça

4 B[r + q + 1 - j] \leftarrow A[j]

5 i \leftarrow p

6 j \leftarrow r

7 para k \leftarrow p até r faça

8 se B[i] \leq B[j]

9 então A[k] \leftarrow B[i]

10 i \leftarrow i + 1

11 senão A[k] \leftarrow B[j]

12 j \leftarrow j - 1
```

- Tamanho da Entrada: n = r p + 1
- Complexidade T(n): O(n) → Linear

Merge Sort: Análise da Complexidade Algoritmo Mergesort (1)

Pior Caso – T(n): Assumir que o Tamanho do Array é Par

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p + r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q + 1, r)

5 INTERCALA(A, p, q, r)
```

Linha	Consumo de Tempo			
1	1			
2	1			
3	T(n/2) $T([n/2])$ Se não fosse p	orl		
4	$T(n/2)$ $T(\lfloor n/2 \rfloor)$ Se não fosse p	oar!		
5	n: Complexidade do Intercala			
T(n)	T(n/2) + T(n/2) + O(n) + 2			

Merge Sort: Análise da Complexidade Algoritmo Mergesort (2)

 Fórmula de Recorrência (ou seja, uma fórmula definida em termos de si mesma):

•
$$T(n) = T(n/2) + T(n/2) + O(n)$$
 se n>1

- Em geral, ao utilizar-se do paradigma de Divisão e Conquista,
 adota-se recursividade → Complexidade T(n) é uma Fórmula de
 Recorrência
 - Precisamos aprender a resolver recorrência → Encontrar uma "Fórmula Fechada" para T(n)

Merge Sort: Análise da Complexidade Algoritmo Mergesort (3)

Fórmula de Recorrência:

$$-$$
 T(1) = c

•
$$T(n) = 2.T(n/2) + c.n$$

onde c é um a constante para o tempo exigido em resolver problemas de tamanho 1, bem como o tempo por elemento do (sub)array para as etapas de dividir e combinar

- Pelo teorema mestre, $n \log_a^b = n \log_2^2 = n \rightarrow Mesma Complexidade de f(n) = c.n$
 - Caso 2: T(n) = n . Ign


```
OrdenaMergeSort(): Função que ordena um vetor utilizando o MergeSort. */
void OrdenaMergeSort(int Vet[Max])
 //Variaveis Locais
 int tam=1;
                                 //Fusao de Arquivos de Tamanho 1
                                 //Limite Inferior e Superior do Primeiro Arquivo
 int L1, R1;
                                 //Limite Inferior e Superior do Segundo Arquivo
 int L2, R2;
 int i, j, k;
                                 //Indices Auxiliares
 int AuxFun[Max]; //Vetor Auxiliar da Funcao
 while(tam < Max)
    L1 = 0;
   k = 0;
   while (L1+tam < Max)
                L2 = L1 + tam;
     R1 = L2-1;
    if((L2+tam-1) < Max)
               R2 = L2 + tam - 1;
     else
               R2 = Max-1;
    //Trabalhando com os dois sub-Arquivos
     for(i=L1, j=L2; (i \le R1)&&(j \le R2); k++)
                                                                  Entender of Funcionamento é
Mais Importante que pecorar o
                               //Insere os menores no vetor auxiliar
       if(Vet[i] \le Vet[i])
        AuxFun[k] = Vet[i];
        i++;
       else
                 AuxFun[k] = Vet[i];
```


Sort Merge **Outros Métodos:**

```
//Neste ponto um arquivo foi esgotado
  //Insere os elementos restantes no outro
  while(i \le R1)
         AuxFun[k] = Vet[i];
   i++;
    k++;
  while(j \le R2)
         AuxFun[k] = Vet[i];
   j++;
    k++;
  //Avanca L1 para o proximo par de arquivos
                                                                 Entender of Lincionamento & OF Lincionamento & OF Lincionamento & Orante Que Decorar o Algoritmo!!!
  L1 = R2 + 1;
//Copia todo o arquivo restante
for(i=L1; k < Max; i++)
          AuxFun[k] = Vet[i];
  k++;
//Copia AuxFun em Aux e ajusta tam
for(i=0; i < Max; i++) Vet[i] = AuxFun[i];
tam = tam*2;
                                      //Dobra o tamanho do segmento
```


Outros Métodos: Radix Sort (1)

- Em determinadas condições especiais, é possível ordenar em tempo linear
- Por exemplo, isto ocorre quando:
 - os valores têm um comprimento limitado
 - a ordenação baseia-se em cálculos com esses valores
- Como funciona o RadixSort():
 - Os valores de entrada, escritos em alguma base numérica, têm exatamente d dígitos
 - A ordenação é realizada em d passos: um dígito por vez, começando a partir dos menos significativos

Outros Métodos: Radix Sort – Exemplo com 3 Dígitos (2)

Outros Métodos: Radix Sort – Exemplo com 3 Dígitos (3)

Outros Métodos: Radix Sort – Exemplo com 3 Dígitos (2)

Outros Exemplo de Radix Sort (1)

Para inteiros, o número de compartimentos é 10, de 0 a 9. A primeira passada distribui as chaves nos compartimentos com base no dígito menos significativo.

Outros Exemplo de Radix Sort (2)

A distribuição agora é feita com base no segundo dígito menos significativo

Resultado após a recomposição dos conjuntos

08 11 12 23 32	32 34 34	41 42 44	50 58 77 87
----------------	----------	----------	-------------

Outros Métodos: Radix Sort (2)

```
/*OrdenaRadixSort(): Funcao que ordena o vetor pelo método radix sort. */
void OrdenaRadixSort(int Vet[])
  int i, b[Max], m=0, exp=1;
   for(i=0;i<Max;i++)
               if(Vet[i]>m)
                  m=Vet[i];
  while(m/\exp>0)
               int bucket [10] = \{0\};
                                                                             Entender of Funcionamento é
Mais Importante que pecorar o
Mais Importante que pecorar o
               for(i=0;i<Max;i++)
                               bucket[Vet[i]/exp%10]++;
               for(i=1;i<10;i++)
                               bucket[i]+=bucket[i-1];
               for(i=Max-1;i>=0;i--)
                               b[--bucket[Vet[i]/exp%10]]=Vet[i];
               for(i=0;i\leq Max;i++)
                               Vet[i]=b[i];
               exp*=10;
```


Ordenação por Radix Sort: Análise da Complexidade

- Principais pontos a se destacar:
 - Algoritmo de ordenação por distribuição que ordena com base nos dígitos de um número -> prioriza os dígitos menos significativos
- Análise da Complexidade do Algoritmo:
 - Para todos os casos (Melhor, Pior e Caso Médio):
 - $T(n) = O(n.d) \rightarrow T(n) = O(n)$, pois d é uma constante
 - Justificativa: n é o número de elementos e d é a quantidade de dígitos

Trabalhos para Casa (1)

- Exercício 01 Implementar, na Linguagem C, os seguintes algoritmos:
 - Algoritmo de Select Sort
 - Algoritmo de Heap Sort
 - Algoritmo de Merge Sort
 - Algoritmo de Radix Sort

Trabalhos para Casa (2)

- Exercício 02 Simular o Array A[] = {44, 12, 55, 42, 94, 18, 02, 68} para os algoritmos de ordenação a seguir:
 - Algoritmo de Select Sort
 - Algoritmo de Heap Sort
 - Algoritmo de Merge Sort
 - Algoritmo de Radix Sort

Trabalhos para Casa (3)

- Exercício 03 Realizar uma pesquisa e apresentar a lógica, implementação e complexidade dos seguintes algoritmos de ordenação:
 - Algoritmo de Bucket Sort
 - Algoritmo de Counting Sort

PANC: Projeto e Análise de Algoritmos

Aula 11: Algoritmos de Ordenação III - Troca:

Select Sort e Heap Sort

e outros Algoritmos:

Merge Sort e RadixSort

Breno Lisi Romano

Dúvidas???

http://sites.google.com/site/blromano

Instituto Federal de São Paulo – IFSP São João da Boa Vista Bacharelado em Ciência da Computação – 3º Semestre

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO