Fluxogramas e Condicionais Algoritmos e Estrutura de Dados I

Instituto de Engenharia – UFMT

Agenda

- Objetivos
- Estrutura de um Programa
- S Fluxogramas
- 4 Biblioteca <math.h>
- Operadores Relacionais
- **6** Operadores Lógicos
- Comandos de Decisão
- 8 Exercícios

Objetivos

- Apresentar o uso de fluxogramas.
- Demonstrar o uso da biblioteca math.h.
- Explicar o uso dos operadores relacionais, lógicos e de decisão.

Estrutura de um Programa em C

A estrutura básica de qualquer programa em C é a seguinte.

```
<inclusão_de_bibliotecas>
int main(<declaração_dos_parâmetros>) {
   instrução_1;
   instrução_2;
   instrução_3;
   ...
   instrução_n;
   return 0;
}
```

- Os fluxogramas são representações gráficas dos programas.
- São utilizados para nos ajudar a compreender um programa.
- Não estão associados a um linguagem específica.
- Apresentam a lógica do algoritmo e não as instruções da linguagem.
- Utilizam diferentes tipos de blocos para indicar os comandos (entradas, saídas, processamentos, decisões, etc) e setas para indicar a sequência de execução.

Fluxograma de um programa em C/C++:

Programa Hello World:

```
// Programa Hello World
#include<stdio.h>
int main() {
   // comentario explicativo
   printf("Hello World");
   return 0;
}
```


Exemplo 1

Faça um programa em C para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio r será digitado pelo usuário.

Exemplo 1

Fluxograma da solução do Exemplo 1:

Exemplo 1

Programa Área Círculo:

```
// Programa que calcula a area de um circulo
#include<stdio.h>
int main() {
 // declaracao da constante Pi
 const double PI = 3.141592;
 double raio;
 printf("Digite o raio do circulo: ");
 scanf("%lf", &raio);
 // calculando e imprimindo a area
 double area = PI * raio * raio:
 printf("\nArea do circulo: %lf\n", area);
 return 0;
```


O Qualificador const

- A palavra-chave const assegura que a variável associada não será alterada em todo o programa.
- Esse qualificador é indicado para declarar valores constantes.
- Obrigatoriamente, as variáveis associadas ao qualificador const devem ser inicializadas.

Dúvida

- Não existe área negativa.
- Portanto, o programa não pode calcular a área se o valor do raio for negativo.
- Como saber se o valor do raio digitado é positivo?
 - ▶ Responderemos no final da aula...

- Como calcular πr^2 ?
 - ▶ double area = PI * raio * raio;
- A linguagem C não possui um operador para potência, mas possui uma biblioteca com diversas funcões matemáticas, para usá-la devemos incluir a biblioteca math.h
- A função para potência é a pow(), sintaxe:
 - double pow(double base, double expoente);
- Exemplo

```
// Programa que calcula a area de um circulo
#include<math.h>
...
double area = PI * pow(raio, 2);
...
```

Parte I

Algumas funções matemáticas disponíveis na biblioteca #include <math.h>. Para usá-las é necessário: #include <math.h>

Função	Descrição	Exemplo
double ceil(x)	arredonda x para cima	$\texttt{ceil(9.1)} \rightarrow \texttt{10.0}$
double floor(x)	arredonda x para baixo	$\texttt{floor(9.8)} \rightarrow 9.0$
double round(x)	arredonda x	$\mathtt{round(9.5)} ightarrow \mathtt{10.0}$ $\mathtt{round(9.4)} ightarrow \mathtt{9.0}$
double trunc(x)	retorna a parte inteira de x	$ exttt{trunc(9.8)} ightarrow 9.0$

Parte I

Exemplo: Dada a tabela abaixo com os os valores de x, escreva os valores retornados pelas funções.

x	round(x)	floor(x)	ceil(x)	trunc(x)
2.3	2.0	2.0	3.0	2.0
3.8	4.0	3.0	4.0	3.0
5.5	6.0	5.0	6.0	5.0
-2.3	-2.0	-3.0	-2.0	-2.0
-3.8	-4.0	-4.0	-3.0	-3.0
-5.5	-6.0	-6.0	-5.0	-5.0

Parte II

Funções para Potências:

Função	Descrição	Exemplo
double pow(x, y)	${\sf x}$ elevado a y: x^y	pow(3, 2) $ ightarrow$ 9.0
double sqrt(x)	raiz quadrada de x: \sqrt{x}	$ exttt{sqrt(25)} ightarrow 5.0$
double cbrt(x)	raiz cúbica de x: $\sqrt[3]{x}$	$\texttt{cbrt(27)} \rightarrow 3.0$

Parte III

Funções trigonométricas:

Função	Descrição	Exemplo
double cos(x)*	retorna o cosseno x	$\cos(1.047) ightarrow 0.5$
double sin(x)*	retorna o seno x	$ exttt{sin(1.571)} ightarrow exttt{1.0}$
double tan(x)*	retorna a tangente x	an(0.785) ightarrow 1.0
double acos(x)**	retorna o arco cosseno	$acos(0.5) \rightarrow 1.047$
double asin(x)**	retorna o arco seno	$\texttt{asin(1.0)} \rightarrow \texttt{1.571}$
double atan(x)**	retorna o arco tangente	$\mathtt{atan(1.0)} \rightarrow 0.785$

^{*:} valores em radianos

 $^{^{**}:}$ valores de ${\bf x}$ entre [-1,1]

Parte IV

Funções Exponencias e Logarítmicas:

Função	Descrição	Exemplo
double exp(x)	retorna exponencial de \mathbf{x} : e^x	$\texttt{exp(5)} \rightarrow \texttt{148.4}$
double log(x)	logaritmo natural de x: $\ln(x)$	$log(5.5) \rightarrow 1.7$
double log10(x)	logaritmo de x: $\log(x)$	$\texttt{log10(1000)} \rightarrow \texttt{3.0}$

Operadores Relacionais

- Permite a um programa realizar uma ação alternativa, a partir de um resultado verdadeiro ou falso produzido por uma condição.
- As condições são formadas utilizando-se os operadores de igualdade e os operadores relacionais.
- Ambos operadores de igualdade têm o mesmo nível de precedência, o qual é inferior ao dos operadores relacionais, e associam-se da esquerda para a direita.

Operadores Relacionais

Operadores de igualdade e relacionais:

Operador algébrico de igualdade ou relacional padrão	Operador de igualdade ou relacional em C++	Exemplo de condição em C++	Significado da condição em C++
Operadores relacionais			
>	>	x > y	x é maior que y
<	<	x < y	x é menor que y
2	>=	x >= y	x é maior que ou igual a y
≤	<=	x <= y	x é menor que ou igual a y
Operadores de igualdade			
=		x == y	x é igual a y
≠	!=	x != y	x não é igual a y

Operadores Relacionais

Erros Comuns

Confundir o operador de igualdade == com o operador de atribuição =.

avalia a expressão (direita)
e atribui o resultado
à variável (esquerda)

verifica se a expressão da direita é IGUAL a expressão da esquerda (vice-versa).

- No século 18, George Boole, matemático e filósofo britânico, desenvolveu um sistema algébrico lógico, que passou a ser conhecido como Álgebra de Boole.
- Base para a lógica dos computadores digitais modernos.
- Expressões lógicas (expressões booleanas) possuem o valor true ou false.
- Em C os inteiros também são usados como valores booleanos:
 - qualquer valor n\u00e3o nulo (1) representa true e 0 representa false.

Expressões booleanas

- na matemática, podemos restringir uma temperatura a um intervalo fechado, $0 \le temp \le 100$
- ullet em C não podemos representar essa expressão por 0 <= temp <= 100.
- ullet A expressão 0 <= temp <= 100 é uma expressão válida na linguagem ${\sf C}.$
 - ▶ no entanto, o resultado não será o esperado.
- por exemplo, suponha que temp = 150;
 - não está no intervalo definido, logo esperamos que o resultado da expressão seja falso.

Expressões booleanas

 Os operadores relacionais são associativos a esquerda. A expressão será processada da seguinte forma:

$$0 <= 150$$
 $<= 100$

- A expressão (a) resulta em true, que é representado em C pelo inteiro 1 (ou outro inteiro diferente de 0).
- Assim, na segunda etapa da avaliação, a expressão resulta em:

$$1 <= 100$$

- que também é verdadeira e resulta em true.
- Entretanto, a expressão original deveria resultar false, como na matemática.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Expressões booleanas

• Para solucionar esse problema, reescrevemos a desigualdade como:

$$(temp >= 0)\&\&(temp <= 100)$$

- onde && é um operador lógico.
- Utilizamos os operadores lógicos para combinar expressões booleanas formando, assim, expressões booleanas compostas

Expressões booleanas

Operador	Ехр	res	são	Nome	Descrição
!		!p		NÃO	!p é falso, se p é verd.;
				(negação)	!p é verd., se p é falso.
&&	р	&&	q	E	p && q é verdadeiro,
				(conjunção)	se ambos, p e q são verd.;
					e falso, caso contrário.
11	р	П	q	OU	p q é verdadeiro,
				(disjunção)	se p, q ou ambos é verd.;
					e falso, caso contrário.

Tabela Verdade

se
9

P	q	p && q	p q
true	true	true	true
true	false	false	true
false	true	false	true
false	false	false	false

Precedência

Operator	Priority	Associativity
!,~	highest	Right
/, *, %		Left
+, -		Left
<, >, <=, >=		Left
==, !=		Left
&		Left
^		Left
		Left
&&		Left
		Left
=, +=, *=,	lowest	Right

- Permite a um programa realizar uma ação alternativa, a partir de um resultado verdadeiro ou falso produzido por uma condição.
- As condições são formadas utilizando-se os operadores de igualdade e os operadores relacionais.
- Ambos operadores de igualdade têm o mesmo nível de precedência, o qual é inferior ao dos operadores relacionais, e associam-se da esquerda para a direita.

Comando if:

- consiste de uma palavra-chave if seguida de uma expressão de teste entre parênteses. A instrução será executada apenas se a expressão de teste for verdadeira.
- O corpo de um comando if pode conter uma única instrução terminada por ponto-e-vírgula ou várias instruções entre chaves.

Fluxograma

Sintaxe

```
if ( <expressão_de_teste> )
    instrução_única;
```

ou

```
if ( <expressão_de_teste> )
{
    instrução1;
    instrução2;
    instrução3;
    ...
}
```

Exemplo 1

Faça um programa na linguagem C para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio r será digitado pelo usuário. Altere o programa anterior para calcular a área somente se o valor do raio for positivo.

Exemplo 2

```
// Programa que calcula a area de um circulo
#include<stdio.h>
int main() {
 // declaração da constante Pi
 const double PI = 3.141592;
 double raio;
 printf("Digite o raio do circulo: ");
 scanf("%lf", &raio);
 // calculando e imprimindo a area
 if (raio >= 0) {
    double area = PI * raio * raio:
    printf("\nArea do circulo: %lf\n", area);
 return 0:
```

Exercícios

Maior Número

Faça um programa na linguagem C que leia dois números inteiros e verifique qual deles é maior. Para isso, imprima uma mensagem informando qual deles é o maior. Exemplo de saída caso o usuário digite 10 e 20:

20 é o maior número

Fim

Fim

Referências

- Slides prof. Túlio Toffolo
- http://www3.decom.ufop.br/toffolo/pt-br/ensino/bcc201_20201/

Fluxogramas e Condicionais Algoritmos e Estrutura de Dados I

Instituto de Engenharia – UFMT