Функціональні ряди

доц. І.В. Орловський

1. Основні поняття

Означення 1

Нехай $A\subset\mathbb{R}$, $\{u_n(x),\,x\in A,\,\,n\in\mathbb{N}\}$, тоді ряд

$$\sum_{n=1}^{\infty} u_n(x) = u_1(x) + u_2(x) + \dots + u_n(x) + \dots,$$

членами якого є функції називають функціональним рядом.

Важливими прикладами функціональних рядів є:

💿 степеневі ряди

$$\sum_{n=0}^{\infty} c_n (x - x_0)^n;$$

тригонометричні ряди

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega x) + b_n \sin(n\omega x) \right).$$

Покладаючи $x=x_0\in A$ у функціональному ряді, дістаємо числовий ряд

$$\sum_{n=1}^{\infty} u_n(x_0) = u_1(x_0) + u_2(x_0) + \dots + u_n(x_0) + \dots$$

Якщо отриманий числовий ряд $\sum\limits_{n=1}^{\infty}u_n(x_0)$ збігається (розбігається), то точку x_0 називають точкою збіжності (розбіжності) функціонального ряду $\sum\limits_{n=1}^{\infty}u_n(x)$, а сам ряд $\sum\limits_{n=1}^{\infty}u_n(x)$ збіжним (розбіжним) в цій точці.

Означення 2

Сукупність всіх точок збіжності функціонального ряду $\sum_{n=1}^{\infty} u_n(x)$ називають областю збіжності цього ряду.

Означення 3

Функціональний ряд $\sum\limits_{n=1}^{\infty}u_n(x)$ називають абсолютно збіжним в точці x_0 , якщо в цій точці збігається ряд $\sum\limits_{n=1}^{\infty}|u_n(x_0)|$. При цьому точку x_0 називають точкою абсолютної збіжності ряду $\sum\limits_{n=1}^{\infty}u_n(x)$.

Означення 4

Сукупність всіх точок абсолютної збіжності функціонального ряду $\sum_{n=1}^{\infty} u_n(x)$ називають областю абсолютної збіжності цього ряду.

Для функціонального ряду $\sum\limits_{n=1}^{\infty}\,u_n(x)$ означують його:

• n-ту часткову суму

$$S_n(x) = \sum_{k=1}^n u_k(x);$$

• n-й залишок

$$R_n(x) = \sum_{k=n+1}^{\infty} u_k(x);$$

ullet в області збіжності D функціонального ряду визначено його суму

$$S(x) = \lim_{n \to \infty} S_n(x), \ x \in D.$$

Приклад 1

Знайдіть область збіжності ряду

$$\sum_{n=1}^{\infty} (-1)^{n-1} n e^{nx}.$$

Приклад 2

Знайдіть область збіжності ряду

$$\sum_{n=1}^{\infty} \frac{(\ln x)^n}{n}.$$

2. Рівномірна збіжність функціональних рядів

Приклад 3

Знайдіть суму ряду

$$\sum_{n=1}^{\infty} \frac{x^2}{\left(1+x^2\right)^n}.$$

Приклад 4

Дослідити збіжність ряду

$$\sum_{n=1}^{\infty} \frac{\sin\left(n^2 x\right)}{n^2}.$$

Чи буде збіжним ряд з похідних.

Означення 5

 $i \ \forall x \in B$ виконцється нерівність

Функціональний ряд $\sum\limits_{n=1}^{\infty}u_n(x),\;x\in A,$ називають рівномірно збіжним на множині B, якщо $\forall \varepsilon>0\;\exists N=N(\varepsilon)\in\mathbb{N}$ (яке залежить лише від ε і не залежить від x) такий, що $\forall n>N$

$$|R_n(x)| < \varepsilon.$$

Позначають

$$\sum_{n=1}^{\infty} u_n(x) \implies S(x), \ x \in B.$$

Зацваження

Умову рівномірної збіжності функціонального ряду $\sum_{n=1}^{\infty} u_n(x)$ на множині B, з означення 5, можна замінити на наступну, рівносильну, умову:

$$d_n = \sup_{x \in B} |R_n(x)| \to 0, \ n \to \infty.$$

Практично рівномірна збіжність ряду означає, що суму ряду S(x) на проміжку (a;b) можна наближено, з наперед заданою точністю, замінити однією і тією самою частковою сумою $S_n(x)$:

$$S(x) \approx S_n(x), \ x \in (a;b).$$

Геометрично рівномірна збіжність ряду $\sum\limits_{n=1}^{\infty}u_n(x)$ на множині B (наприклад, $B=[a;\,b]$) означає, що графіки всіх n-х часткових сум $S_n(x),\;x\in[a;\,b]$, з номерами n>N розмістяться на всьому проміжку всередині ε -смуги, що обмежена кривими

$$y = S(x) - \varepsilon, \quad y = S(x) + \varepsilon.$$

Приклад 5

Довести рівномірну збіжність ряду

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{1-x^2}+n}$$

на відрізку [-1;1].

Теорема 1 (ознака Веєрштраса)

Якщо існує знакододатний збіжний числовий ряд $\sum\limits_{n=1}^{\infty}\,a_n$ такий, що

 $|u_n(x)| \leq a_n, \ \forall x \in B, \ n \in \mathbb{N}$, то функціональний ряд $\sum\limits_{n=1}^{\infty} u_n(x)$ абсолютно й рівномірно збіжний на множині B.

Означення 6

Числовий ряд $\sum\limits_{n=1}^{\infty}\,a_n\,$ називають мажорантою функціонального ряду $\sum\limits_{n=1}^{\infty}\,u_n(x).$

Приклад 6

Дослідити на рівномірну збіжність ряд

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}.$$

Приклад 7

Довести рівномірну збіжність ряду

$$\sum_{n=0}^{\infty} \frac{(\pi - x)\sin^2 nx}{\sqrt[3]{n^6 + 1}}$$

на відрізку $[0; \pi]$.

3. Властивості рівномірно збіжних рядів

I (про неперервність суми функціонального ряду)

Якщо функції $u_n(x),\;x\in A,\;n\in\mathbb{N}$, задовольняють умовам:

- lacktriangle для всіх $n\in\mathbb{N}$ функції $u_n(x)$ неперервні на множині A;
- $left ext{0} ext{ ряд } \sum_{n=1}^{\infty} u_n(x) = S(x)$ рівномірно збігається на A;

тоді сума ряду S(x) є функцією, неперервною на A.

II (про почленне інтегрування функціонального ряду)

Якщо функції $u_n(x),\;x\in[lpha;\,eta],\;n\in\mathbb{N}$, задовольняють умовам:

- lacktriangle для всіх $n\in\mathbb{N}$ функції $u_n(x)$ інтегровані на відрізку $[lpha;\,eta]$;
- left ряд $\sum\limits_{n=1}^{\infty}\,u_n(x)=S(x)$ рівномірно збігається на $[lpha;\,eta]$;

тоді сума ряду S(x) є функцією, інтегрованою на $[lpha;\,eta]$, причому

$$\int_{\alpha}^{\beta} S(x)dx = \int_{\alpha}^{\beta} \left(\sum_{n=1}^{\infty} u_n(x)\right) dx = \sum_{n=1}^{\infty} \int_{\alpha}^{\beta} u_n(x)dx.$$

III (про почленне диференціювання функціонального ряду)

Якщо функції $u_n(x),\;x\in[lpha;\,eta],\;n\in\mathbb{N}$, задовольняють умовам:

- lacktriangle існує $x_0 \in [lpha;\,eta]$, для якої ряд $\sum\limits_{n=1}^\infty \,u_n(x_0)$ збігається;
- lacktriangle для всіх $n\in\mathbb{N}$ функції $u_n(x)$ ϵ неперервно диференційовними на відрізку $[lpha;\,eta]$;
- $lackbox{0}$ ряд $\sum\limits_{n=1}^{\infty}u_n'(x)$ рівномірно збігається на $[lpha;\,eta];$

тоді ряд $\sum_{n=1}^{\infty}u_n(x)=S(x)$ збігається на $[\alpha;\,\beta]$, причому його сума S(x) є неперервно диференційовною на $[\alpha;\,\beta]$ та є вірною рівність

$$S'(x) = \left(\sum_{n=1}^{\infty} u_n(x)\right)' = \sum_{n=1}^{\infty} u'_n(x), \ x \in [\alpha; \beta].$$

Література

- [1] Ряди. Функції комплексної змінної. Операційне числення. Конспект лекцій / Уклад.: В.О. Гайдей, Л.Б. Федорова, І.В. Алєксєєва, О.О. Диховичний. К: НТУУ «КПІ», 2013. 108 с.
- [2] Дубовик В.П., Юрик І.І. *Вища математика,* К.: Вища школа, 1998.
- [3] Письменный Д.Т. Конспект лекций по высшей математике, 2 часть. М.: Рольф, 2000.