

Modèle système dynamique pour l'analyse de la menace

Tithnara Nicolas SUN

Philippe Dhaussy (Lab-STICC)

Lionel Van Aertryck (DGA-MI)

Ciprian Teodorov (Lab-STICC)

Alain Plantec

Joaquin Garcia-Alfaro

05/09/2019

Sommaire

- Contexte
- Problématique
- Avancement
- Conclusion

Lab-STICC COILLAGE Cyber Threat Intelligence

Contexte Cyber Threat Intelligence

Contexte Cyber Threat Intelligence

Contexte Caractéristiques

- Système de contrôle industriel
 - Interfaces cyber-physiques
 - Systèmes hétérogènes (specs & plateformes)
 - Fonctionnement dynamique

Contexte Cyber Threat Intelligence

Comment attaquer le système?

- Comment modéliser le système ?
- Comment modéliser les attaques ?

SysML

Contexte Modéliser le système

RAFT

Contexte Modéliser l'attaque

Arbres d'Attaque

Contexte Modéliser l'attaquant

Modèle de Dolev-Yao

Modèle formel d'attaquant

Protocole de cryptographie

Cryptographie parfaite

Attaquant omnipotent dans le réseau

Basé sur des règles

[4]

Contexte Modéliser l'attaque

_	1/100	
	Attack Name	
1	ICS Insider	
2	IT Insider	
3	Common Ransomware	
4	Targeted Ransomware	
5	Zero-Day Ransomware	
6	Ukrainian Attack	
7	Sophisticated Ukrainian Attack	Г
8	Market Manipulation	
9	Sophisticated Market Manipulation	
10	Cell-Phone WIFI	(
11	Hijacked Two-Factor	1
12	Industrial Internet of Things Pivot	
13	Malicious Outsourcing	_
14	Compromised Vendor Website	
15	Compromised Remote Site	
16	Vendor Back Door	
17	Stuxnet	
18	Hardware Supply Chain	
19	Nation-State Crypto Compromise	

20 Sophisticated Credentialed ICS Insider

Exemples étalons

[5]

Contexte Modéliser l'ensemble

[6]

Moving Target Defense

[7]

Enjeux

- Raffinement localisé Degré de sophistication variable pour se tocaliser sur les points d'intérêts. ("Zoom")
- **2** Séparation système/attaque Modélisation du système dynamique indépendamment de la modélisation d'attaque. ("Comportement nominal du système")
- 3 Réification de la surface d'attaque Surface d'attaque explicite pour permettre la modélisation d'attaque. ("Points d'interaction /d'entrée explicites")
- 4 Multi-vues Modélisation de point de vue lié à un acteur. ("Vision, portée & capacités d'interaction restreintes")
- Support d'exécution Modélisation exécutable.
- •(6) "Opportunisme" Modélisation du comportement de l'attaquant.
- (7) Hétérogénéité sémantique Support de différents langages.

Problématique

• Capturer le système et son fonctionnement nominal.

Capturer des scenarios d'attaques.

• Comment évaluer la surface d'attaque du système ?

Approche envisagée

- Méthodologie basée sur l'intégration de trois DSL: Cyber Threat Application (CTA)
 - PimCA (Modéliser la structure)
 - Target system modeling TSM (Modéliser le comportement nominal)
 - Executable attack modeling EAM (Dérouler des scénarios d'attaque)
- Le lien PimCA-TSM-EAM est établi au niveau sémantique à travers la definition formelle des opérations sur la surface d'attaque. (opérations exposées par la sémantique TSM)

Avancement

<u>Avancement</u>

A)Terminologie

- B) Contribution
- C) Cas d'étude

Surface d'attaque :

Ensemble des **points d'entrée** et des **points de communication** qu'un système possède avec l'extérieur.[8]

Zone de contention entre l'attaquant & la défense.

<u>Attaquant, Threat Actor, Adversaire:</u>

Entité ayant pour objectif de **nuire** au système. [9][10]

Vulnérabilité, Faille:

Erreur ou faiblesse de conception, d'implémentation ou de fonctionnement. [9][10]

Menace, Threat:

Adversaire motivé et capable d'exploiter une vulnérabilité. [9][10]

<u>Attaque, Incident :</u>

Acte malveillant, moyen [séquence d'actions] d'exploiter une vulnérabilité. [9][10]

Cyber Threat Intelligence:

Connaissance sur les adversaires, leurs motivations, leurs intentions et leurs méthodes, collectée, analysée et partagée entre différents agents à différents niveaux pour protéger les biens critiques. [11]

Avancement

Avancement

A) Terminologie

B)Contribution

C) Cas d'étude

Contribution PimCA

Architecture statique du système

Contribution PimCA

Machinerie:

- **Performer** := Entité humaine.
- **Réseau** := Entité qui transmet les données/messages/matières d'une machinerie à l'autre.
- **Douane** := Entité qui bloque les échanges à moins d'avoir accès au passeport correspondant.
- **Interface** := Entité marque la séparation d'un espace à un autre.
- **Regroupement** := Ensemble de machineries.
- **Conteneur** := Entité qui contient des ressources.

Contribution PimCA

Ressource:

- Elément passif
- Instructions := Description d'un comportement de machinerie.
- Passeport := Ressource dont dépend une douane, nécessaire pour communiquer à travers la douane.

Contribution PimCA

Nom	Sens	Description
Echange	Bidirectionnel	Lien de communication générique entre deux entités, existence de variables partagées
Vérification	Unidirectionnel	Lien de droit en lecture, existence de variables observables chez la cible.
Contrôle	Unidirectionnel	Lien de droit en écriture, existence de variables observables et de comportements déclenchables chez la cible. Présuppose le lien de vérification.
Utilisation	Unidirectionnel	Lien de droit en écriture limité, existence de certain comportement déclenchable chez la cible.
Processus	Unidirectionnel	Lien de flux de matière/données. Peut être actif ou inactif.

Contribution Target System Modeling

• Machinerie dotée de comportement 7

Choix d'implémentation : Garde/Action

Ensemble de variables

Ensemble de Garde/Action

Contribution Target System Modeling

OpenFlexo

ExecutionUnit

Guard/Action

Contribution Executable Attack Modeling

Attack Name	Steps	
1 ICS Insider		
2 IT Insider		
3 Common Ransomware		(3)
4 Targeted Ransomware		9
5 Zero-Day Ransomware		
6 Ukrainian Attack		
7 Sophisticated Ukrainian Attack		
8 Market Manipulation		
9 Sophisticated Market Manipulation		
10 Cell-Phone WIFI		
11 Hijacked Two-Factor		Social engineering attack
12 Industrial Internet of Things Pivot		Malware injection
13 Malicious Outsourcing		Observation/Understanding/Design/Research
14 Compromised Vendor Website		Privilege elevation
15 Compromised Remote Site		Pivoting
16 Vendor Back Door		Malware execution
17 Stuxnet		Trace erasure
18 Hardware Supply Chain		
19 Nation-State Crypto Compromise		
20 Sophisticated Credentialed ICS Insider		

[5]

Contribution Cyber Threat Application

Modélisation de systèmes pour la cyber-sécurité:

• Basée sur PimCA 2

• Exécution de scenario pas-à-pas (5)

Validée par des cas d'études

Avancement

<u>Avancement</u>

- A) Terminologie
- B) Contribution
- C)Cas d'étude

Steps	Market Manipulation
1	Exploiting Internet-exposed vulnerable service
2	IT network foothold
3	Remote Access Tool downloaded into the system
4	IT Domain Privilege elevation
5	Pivoting to ICS
6	RAT propagation
7	ICS Observation/Understanding
8	Targeted mis-operation on a single physical piece
9	Trace erasure
10	Sell single physical piece at high price

Steps	Compromised Remote Site		
1	Breaking into physical site of unstaffed SCADA WAN node		
2	Plugging and hiding laptop into switch		
3	Remote controling of the laptop via WIFI		
4	Pivoting into the SCADA WAN		
5	Shutdown		

Social engineering attack Malware injection Observation/Understanding/Design/Research Privilege elevation Pivoting Malware execution Trace erasure

Implémentation 5

U simu1	X		
	simu1		
Description			
Exécuteurs	simu1 System Internet IT Target Service Customs Attacker	Machinerie Attacker Unité d'exécution Attacker Type GuardActionE Compteur (SystemNode)	Transition attackService() Garde Action Déclencher Update

Bilan:

• 3 Réification de la surface d'attaque

CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions, Marco Rocchetto & Nils Ole Tippenhauer, 2016

https://arxiv.org/pdf/1607.02562.pdf

[12]

- **1.**La valve d'entrée fait rentrer l'eau dans le réservoir.
- **2.**Le capteur vérifie le niveau d'eau dans le réservoir.
- 3.Le capteur communique sa mesure au PLC.
- **4.**Quand le niveau d'eau atteint un seuil (Instructions), le PLC ordonne à la valve de se fermer et à la pompe de se mettre en marche.
- **5.** Quand le niveau d'eau atteint un seuil (Instructions), le PLC ordonne à la valve de s'ouvrir et à la pompe de s'éteindre.
- **6.**La valve manuelle peut être ouverte ou fermée par un agent humain.
- **7.**Une centrale SCADA communique avec le PLC.

[12]

Exemple de scénario d'attaque:

- 1. L'attaquant ferme manuellement la valve de sortie.
- 2. L'attaquant force la valve d'entrée ouverte.
- 3. L'attaquant cause un débordement du réservoir.

[12]

Exécution : étude préliminaire 5

Exécution : étude préliminaire 5

Exécution : étude préliminaire (PLC) 5

Bilan:

- Raffinement localisé
- (2) Séparation système/attaque
- •(3) Réification de la surface d'attaque
- (5) Support d'exécution

Conclusion

Conclusion Bilan

Approche

- PimCA
- Target System Modeling
- Executable Attack Modeling
- Cyber Threat Application

Structure

Comportement nominal

Scénarios d'attaque

Eléments stabilisés...

- Méta-modèle TSM
- Outillage OpenFlexo
- Traitement de cas d'étude
- Exécution
- Raffinement localisé

...et à préciser

- PimCA
- EAM

Conclusion Enjeux

- •(I) Raffinement localisé
- •(2) Séparation système/attaque
- •(3) Réification de la surface d'attaque
- (4) Connaissance partielle
- •(5) Support d'exécution
- გ) Opportunisme 🤐
- 7) Hétérogénéité sémantique

Conclusion Formations

Rentrée des doctorants MathSTIC (2018 & 2019)

4 Soutenances de thèse (Théotime Bollengier, Fadi Obeid, Cyrielle Feron, Luka Le Roux)

Séminaire poster de l'équipe MOCS Journée des doctorants de l^{ère} année du Lab-Sticc Journée Méthodes Formelles pour la Sécurité MOOC Défis et enjeux de la cybersécurité

Formation LaTeX par la pratique par Vincent LE GARREC Formation Gestion du trac dans le cadre de la prise de parole en public Encadrement de TD Base de données (x2) Encadrement de Projet Informatique Python (x2)

Conclusion Perspectives (court terme)

- PimCA à MODELSWARD 2020 (Soumission Octobre 2019)
- Validation de l'ensemble du premier cas d'étude
- Réification de la surface d'attaque 3

Conclusion Perspectives (moyen terme)

- Rédaction d'un second article sur l'approche globale
- Traitement d'autres cas d'étude
- Enjeux restants 467
- Rédaction du manuscrit

Merci de votre attention

Bibliographie

- [1] Redefining the Center of Gravity in Joint Force Quarterly (JFQ) issue 59 / Dale C. Eikmeier / Washington D.C. USA / 2010
- [2] Attack Modeling for Information Security and Survivability / Andrew P. Moore, Robert J. Ellison, Richard C. Linger/ Software Engineering Institute, Carnegie Mellon University, USA / Mars 2001
- [3] Is my attack tree correct? / Maxime Audinot, Sophie Pinchinat, & Barbara Kordy / IRISA Rennes, University Rennes 1, INSA Rennes, France / Août 2017
- [4] On the Security of Public Key Protocols / Danny Dolev & Andrew C.Yao / IEEE Transactions on Information Theory / Mars 1983
- [5] The Top 20 Cyberattacks on Industrial Control Systems / Andrew Ginter / VP Industrial Security Waterfall Security Solutions / 2017
- [6] Standardizing Cyber Threat Inteligence Information with the Structured Threat Information eXpression (STIX) / Sean Barnum / The MITRE Corporation / 20 Février 2014
 - 60

Bibliographie

- [7] Towards a Theory of Moving Target Defense / Rui Zhuang, Scott A. DeLoach, Xinming Ou /Kansas State University, Manhattan, USA / 2014
- [8] Analyse et réduction de la surface d'attaque / Mickael Dorigny / https://www.information-security.fr/ / 19 Décembre 2015
- [9] Towards Threat, Attack, and Vulnerability Taxonomies / Dennis Hollingworth / Network Associates laboratories USA / 2003
- [10] Trust in Cyberspace / Fred B. Schneider / Committee on Information Systems Trustworthiness, Washington, D.C. USA / 1999
- [11] Definitive Guide to Cyber Threat Intelligence / Jon Friedman, Mark Bouchard, CISSP / CyberEdge Group Annapolis, USA / 2015
- [12] CPDY: Extending the Dolev-Yao Attacker with Physical-Layer Interactions / Marco Rocchetto & Nils Ole Tippenhauer / Université du Luxembourg, Université de Singapour / https://arxiv.org/pdf/1607.02562.pdf / 2016