- 11.32. Показать, что для твёрдого тела с неподвижной точкой кинетическая энергия сохраняется в том и только в том случае, когда во всё время движения вектор момента импульса \mathbf{K}_{o} и вектор углового ускорения є ортогональны.
- **11.61.** Однородному круговому цилиндру (высота h, радиус основания R), который может двигаться вокруг своего неподвижного центра масс, сообщается вращение с угловой скоростью о вокруг оси, образующей угол а с плоскостью основания цилиндра. Определить движение цилиндра.

$$k_{x} = Ap = k_{0} \sin \Theta \sin \theta$$

$$k_{y} = Aq = k_{0} \sin \Theta \cos \theta$$

$$k_{z} = Cr = k_{0} \cos \Theta \Rightarrow \cos \Theta \Rightarrow k_{0} = \cos \theta$$

$$p = \psi \sin \Theta \sin \phi \Rightarrow k_{0} = A\psi \Rightarrow \psi \Rightarrow \frac{k_{0}}{A}$$

$$q = \psi \sin \Theta \cos \phi$$

$$k_{0} = \lambda \psi$$

$$k_$$

11.113. Велосипедное колесо радиуса ale D r и массы m, равномерно распределённой по ободу, установлено в раме. Колесо К задаче 11.113 вращается с постоянной угловой скоростью о вокруг своей оси AB. Рама вращается с постоянной угловой скоростью ω_1

143

My = W, Womr2 F= M3 = m2 w2w0

К задаче 11.113

СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ МЕХАНИКЕ

вокруг оси CD, перпендикулярной оси AB. Определить динамические реакции в подшипниках C и D рамы, если расстояние CD = 1.

T.10.
$$A\dot{p} + (C-\dot{p})qr = \dot{p} \left(\partial_{a}C - r_{3}b \right)$$
 $\beta \dot{q} + (A-C)rp = \dot{p} \left(r_{3}a - r_{1}C \right)$
 $C\dot{r} + (B-A)pq = \dot{p} \left(r_{1}b - r_{2}a \right)$
 $u(\dot{q} + 3Crp = mglr_{3})$
 $u(\dot{q} + 3pr = d\delta_{3})$
 $u(\dot{q} + 3pr =$

Typolepum,
$$to dL/dt = 0$$
, $L = Cr(p^2 + q^2) - mg Lpt_3$; have, $to Ko \cdot 8 = 0 = const - un - 98$.

$$\frac{dL}{dt} = Cr(p^2 + q^2) + 2(r(pp + qq) - mg Lpt_5 - mg (p(t_1q - t_2p) = 0))$$

$$= C\left(\frac{1}{16}(p_{3}+q_{3}) + 2r(pp_{3}+q_{3}) - 4p_{3}+ - 4p_{3}+ 2p_{3}+ 2p$$

11.75. Симметричное твёрдое тело $(A=B\neq C)$ с неподвижной точкой O совершает регулярную прецессию. Показать, что вектор момента импульса определяется выражением $\mathbf{K}_O = \left[C + (C-A)\frac{\omega_2}{\omega_1}\cos\theta\right]\mathbf{\omega}_1 + A\mathbf{\omega}_2$, где $\mathbf{\omega}_1$ и $\mathbf{\omega}_2$ – векторы угловых скоростей собственного вращения и прецессии соответственно, а θ – угол между ними. Используя это соотношение, получить выражение для момента импульса \mathbf{K}_O в случае движения сим-

метричного твёрдого тела по инерции.

$$\begin{array}{ll}
\rho = \omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
q = \omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
q = \omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
r = \omega_{\lambda} cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\rho = \omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
r = \omega_{\lambda} cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta} \\
cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{2} n_{\theta} \\
cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{2} n_{\theta} \\
cos \theta + \omega_{\lambda}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{2} n_{\theta} \\
\omega_{\lambda} s_{2} n_{\theta} s_{3} n_{\theta}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{2} n_{\theta} \\
\omega_{\lambda} s_{3} n_{\theta} s_{3} n_{\theta}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{3} n_{\theta}
\end{array}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta} s_{1} n_{\theta}$$

$$\begin{array}{ll}
\omega_{\lambda} s_{1} n_{\theta}$$