

Forest cover type predication

Hello!

Group 16

Dina Ibrahim Mohammady 300389383 Nada Mohammed Zakaria 300389901

Sema Abdelnasser Helali 300389914

Problem Overview

The main objective is to predict the dominant forest cover type in 30 x 30 meter cells of the Roosevelt National Forest using cartographic variables, without employing remotely sensed data. The forest cover types in the four wilderness areas are primarily shaped by ecological processes due to minimal human-caused disturbances, emphasizing the significance of understanding the ecological relationships between cartographic features and forest cover types in these undisturbed wilderness areas.

Exploratory Data Analysis

Baseline Performance

For KNN

Training Accuracy for KNN: 0.8853

Testing Accuracy for KNN: 0.7384

Validation Accuracy for KNN: 0.7523

For Logistic Regression

Training Accuracy for Logistic Regression: 0.5782
Testing Accuracy for Logistic Regression: 0.4741
Validation Accuracy for Logistic Regression: 0.4773

For SVM

Training Accuracy for SVM: 0.6859 Testing Accuracy for SVM: 0.5613 Validation Accuracy for SVM: 0.5501

For Decision Tree

Training Accuracy for Decision Tree: 1.0000 Testing Accuracy for Decision Tree: 0.7600 Validation Accuracy for Decision Tree: 0.7530

For Naïve Bayes

Training Accuracy for Naive Bayes: 0.6417 Testing Accuracy for Naive Bayes: 0.6013 Validation Accuracy for Naive Bayes: 0.5995

Accuracy Comparison

The Best 2 Baseline are Decision Tree and KNN

Improvement Strategy

Improvement Strategy

Applying PCA

Comparing 2 models after PCA

Comparing 2 models after PCA

Training Accuracy for Decision Tree: 1.0000 Testing Accuracy for Decision Tree: 0.7056 Validation Accuracy for Decision Tree: 0.6883

Applying Filter

Applying Wrapper

VOTING Model

Accuracy of Voting Ensemble: 0.8131147540983606

Boosting Model

Accuracy of Boosting: 0.8144262295081968

Stacking Model

Accuracy of Stacking: 0.820983606557377

Random Forest Model

Testing Accuracy for Random Forest: 0.8131

Supervised & Unsupervised Combination via PKI

Best SOFM Structure: 10x10, Accuracy: 0.8425 Best PKI Structure: 5 Hidden Layers, 40 Neurons per Layer, Accuracy: 0.7921

conclusion

- First Improvement: Decision Tree with Filter-based Feature Selection (SelectKBest): By selecting the most informative features using SelectKBest and applying Decision Tree, we improved the model's accuracy compared to the baseline.
- Second Improvement :Random Forest: Utilizing Random Forest as an ensemble model further boosted the accuracy beyond the first improvement.
- **Third Improvement**: PKI Model (SOFM + DNN): Incorporating Self-Organizing Feature Map (SOFM) clustering information into a Deep Neural Network (DNN) model provided significant accuracy improvement compared to the previous strategies.

By sequentially applying these three improvement strategies, we achieved substantial enhancements in the supervised model's accuracy and performance, making it more capable of making accurate predictions on the target dataset.

