PROBABILITY THEORY AND INTRODUCTORY STATISTICS

ALY6010, FALL 2019

WEEK 1 PROJECT ASSIGNMENT (US POPULATION AND MIGRATION RATES)

SUBMITTED BY: SHIVANI ADSAR, ANUPREETA MISHRA

NUID: 001399374, 001050752

<u>CRN</u>: 71447

SUBMITTED TO: DR. DEE CHILUIZA REYES

<u>DATE</u>: 09/22/2019

Introduction

The assignment aims at executing descriptive statistical methods on the data set. The project displays the population and migration rates of United States. Using descriptive statistics, we can represent the population of data using graphical methods. The data set is displayed in the form of Pareto Chart, Histogram, Scatter Plot, Line Chart, Box plot and Pie Chart using numerical and categorical data.

Analysis

Q1. Pareto Chart for populated states in United States

Pareto charts displays in order of importance of inputs that matter is simple in a presentable visual format. It is based on the 80-20 principle that states 80% of the effects come from 20% of the causes. According to the graph, it is observed that, California has the highest population and Wisconsin has the minimum population.

Graph 1: Pareto Chart for top 20 populated states in United States, 2017

Line graphs are easy to interpret the data easily to find the drastic differences in data. It is observed from the graph, that Los Angeles is the most populated and Shelby is the least populated county. Example of a line graph is ECG for monitoring the heart rate.

Graph 2: Line Chart for Most populated counties in top 20 populated states

Q2. Histogram to represent frequency of all states

The frequency and cumulative frequency histogram makes it is easier to identify the data, the frequency of data occurring in the data sets and categorizes the data, making it easy to interpret. The graph indicates, the frequency and cumulative frequency based on the International migration rate of the people in the United States in different States with Texas showing the highest frequency and Washington DC being the lowest.

Graph 3: Histogram to represent frequency of all states

Graph 4: Cumulative frequency for the States in United States

The cumulative frequency is calculated by adding the frequencies for each state.

Q3. Numerical Descriptive Statistics using Table

The data for East coast and West coast was collected and then segregated. It is observed from the tables that, mean, skewness and median of west coast is more than the mean of east coast. Firstly, we searched the states on the west and east coast, then used the V LOOKUP formula to differentiate between the states and then used the data analysis tools.

East Coast Natural Change	
Descriptive Stitistics	Value
Mean	371.954466
Standard Error	55.7266647
Median	16
Mode	-15
Standard Deviation	1331.62244
Sample Variance	1773218.32
Kurtosis	19.6147846
Skewness	3.93017104
Range	14261
Minimum	-3822
Maximum	10439
Sum	212386
Count	571
Largest(1)	10439
Smallest(1)	-3822
Confidence Level(95.0%	109.454668

West Coast Natural Change	
Descriptive Stitistics	Value
Mean	2065.91603
Standard Error	514.272334
Median	232
Mode	-44
Standard Deviation	5886.1159
Sample Variance	34646360.4
Kurtosis	54.0224104
Skewness	6.5181293
Range	56000
Minimum	-328
Maximum	55672
Sum	270635
Count	131
Largest(1)	55672
Smallest(1)	-328
Confidence Level(95.0%)	1017.42631

Graph 5: Numerical Descriptive Statistics for Natural Change in East coast and West Coast

Q5. Box Plot for International Migration Rate

Box plot provides details of data's symmetry, skewness and diversity of data. It is observed from the graph that, 0.2 is the 1st quartile, 1.6 is the 3rd quartile, 1.4 is the Interquartile range and 3.7 is the upper bound. There are some outliers in the data, 19.1 being the highest outlier.

Graph 6: Box Plot to plot International Migration Rate for all counties

Q6. Scatter Plot to compare migration rates

The scatter plot indicates that there exists a correlation between the International Migration Rate and the Domestic Migration Rate. The domestic migration rate is more than the international migration rate.

Graph 7: Scatter plot for International Migration Rate vs. Domestic Migration Rate

Q7. Pie Chart to display Population Density

Pie chart presents the data in a very understandable format. It displays the regions and shows comparisons at a glance. Hence, pie chart will be an appropriate to display the population density. After observation from the chart, it is seen that Washington DC has the highest population density and Alaska has the least population density.

Graph 8: Pie chart displaying the population density

Conclusion

It is inferred from the observations of the dataset that using visualization methods like graphs and charts are easy to interpret the data. Also, using statistics methods like mean, median, standard deviation and variance, help to understand the varying patterns and comparisons in the population. So, we can focus our efforts towards the solution according to the problem statement.

Reference

- 1. Size of States. (n.d.). Retrieved from https://statesymbolsusa.org/symbol-official-item/national-us/uncategorized/states-size
- 2. Bluman, A.G. (1992). *Elementary Statistics*. Retrieved from https://archive.org/details/ElementaryStatistics/page/n5