AG H		Głosowa łączność z komputerem								
Kierunek:	Rok:	Grupa:	Data wykonania:	Data oddania:						
Inżynieria Biomedyczna	V	1	18.04.2018	19.04.2018						
Temat projektu: Rozpoznawanie komend głosowych										
Imię i nazwisko, nr. inde Karolina Gajewska, 2666										
Magdalena Hetmańska, 266684										
Aneta Kalamaszek, 266689										
Klaudia Kantor, 266691										
Katarzyna Zawada, 266685										

Cel projektu

Celem niniejszego projektu było utworzenie algorytmu przetwarzania i klasyfikacji sygnałów audio w celu rozpoznania wypowiadanych komend głosowych na potrzeby obsługi "inteligentnego domu".

Rozwiązanie

1. Przygotowanie sygnałów

Pierwszym etapem projektu była rejestracja wybranych komend głosowych, które zostały wybrane na drodze "burzy mózgów" i uznane zostały za najbardziej przydatne w obsłudze domu. Każda z osób nagrała czterokrotnie ten sam zestaw komend rano, przed południem, po południu oraz wieczorem. Następnie w programie Audacity dokonano oznaczenia poszczególnych słów.

2. Otrzymanie wektora cech

Kolejnym etapem było podzielenie sygnału na pliki zawierające oddzielnie każde słowo zgodnie ze wcześniejszym oznaczeniem. Po otrzymaniu słów w oddzielnych plikach, następnym krokiem było wyznaczenie wektora cech dla każdego ze słów. W tym celu wykorzystano bibliotekę *librosa*, która dedykowana jest dla analizy sygnałów dźwiękowych.

Z biblioteki tej do wyznaczenia wektora cech sygnału wykorzystano funkcję *mfcc()*, która posiada zaimplementowany algorytm Mel-frequency Cepstral Coefficients (MFCCs). Do obliczenia odległości między otrzymanymi wektorami cech, wykorzystano algorytm Dynamic Time Warping (DTW), znajdujący się w bibliotece *dtw*.

3. Klasyfikacja

Ostatnim etapem było przeprowadzenie klasyfikacji słów. W pierwszym etapie odbywało się to na podstawie otrzymanych z DTW odległości. Działanie prostego klasyfikatora polega na tym, że sprawdza on do którego słowa z zestawu testowego klasyfikowany dźwięk ma najmniejszą odległość i to słowo jest przyporządkowywane. Gdy minimalna odległość między słowami przekracza 200, słowo nie zostaje sklasyfikowane. K

Kolejnym etapem było rozszerzenie projektu o wykorzystanie uczenia maszynowego. Jako metodę uczenia wybrano metodę k najbliższych sąsiadów. Algorytm polega na porównaniu wartości zmiennych objaśniających dla obserwacji C z wartościami tych zmiennych dla każdej obserwacji w zbiorze uczącym. Następnie wyborze k (ustalona z góry liczba) najbliższych do C obserwacji ze zbioru uczącego. A na końcu uśrednieniu wartości zmiennej objaśnianej dla wybranych obserwacji, w wyniku czego uzyskujemy prognozę.

Całość kodu zawierająca przetwarzanie i klasyfikację, z dołączoną macierzą błędów znajduje się w pliku *classification with final matrix.ipynb*.

Rezultaty

Zaimplementowane algorytmy zostały przetestowane na zarejestrowanych sygnałach. Wykorzystany algorytm MFCC+DTW pozwolił na uzyskanie zadowalających rezultatów. Testująć algorytm na sygnałach osoby, na której był on uczony skuteczność wyniosła aż 91,28%. Wynikową macierz błędów dla tego przypadku przedstawia rysunek 1. Sprawdzono także skuteczność algorytmu dla sygnałów nagranych przez inną osobę niż zbiór sygnałów uczących. W tym przypadku skuteczność algorytmu znacząco się pogorszyłą i wyniosła jedynie 52.91%. Wynikową macierz błędów przedstawia rysunek 2, całość macierzy dostępna jest w generowanym pliku Excel.

	KWIATKI	W	ZAPARZ	RADIO	DO	ZMIEN	ZAMKNIJ	DRZWI	KAWE	KUCHNI	ZAGOTUJ	ROLETY	ALARM	SYPIALNI	WODE	STOPIEN	BRAM
KWIATKI	100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
w	0	56.25	0	0	18.75	0	0	0	0	0	0	0	0	0	0	0	
ZAPARZ	0	0	100	0	0	0	0	0	0	0	0	0	0	0	0	0	
RADIO	0	0	0	50	0	0	0	0	0	0	0	0	0	0	0	0	5
DO	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	0	-
ZMIEN	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	0	
ZAMKNIJ	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	0	
DRZWI	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	0	
KAWE	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	0	
KUCHNI	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	0	
ZAGOTUJ	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	0	
ROLETY	0	0	0	0	0	0	0	0	0	0	0	100	0	0	0	0	
ALARM	0	0	0	0	0	0	0	0	0	0	0	0	75	0	0	0	2
SYPIALNI	0	0	0	0	0	0	0	0	0	0	0	0	0	100	0	0	
WODE	0	0	0	0	12.5	0	0	0	0	0	0	0	0	0	75	0	
STOPIEN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	100	7
BRAME	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10

Rysunek 1. Wynikowa macierz błędów algorytmu MFCC+DTW przy zbiorze uczącym i testowym od tej samej osoby.

Rysunek 2. Wynikowa macierz błędów algorytmu MFCC+DTW przy różnym zbiorze uczącym i testowym.

Sprawdzono również skuteczność innych funkcji obliczających wektor cech, jednak nie przyniosły one pozytywnych rezultatów. Użycie funkcji *tonnetz()*, pozwoliło na uzyskanie skuteczności na poziomie 1,16 %, natomiast funkcja *spectral_centroid()*, obniżyła skuteczność algorytmu do 6,4 %. Można więc z całą pewnością stwierdzić, że połączenie MFCC i DTW daje najlepsze rezultaty, co również potwierdzają liczne publikacje wykorzystujące te metody w algorytmach rozpoznania mowy.

Zaimplementowaną funkcję wykorzystującą uczenie maszynowe metodą k najbliższych sąsiadów również przetestowano na zarejestrowanych sygnałach. Uzyskano

skuteczność na poziomie **78,5%**, co oznacza, iż zastosowany algorytm wpłynął na poprawę rozpoznawania komend. Wyniki zaprezentowano na rysunku 3.

	precision	recall	f1-score	support
ALARM	0.62	0.94	0.75	16
BRAME	0.83	0.62	0.71	8
DO	0.86	0.75	0.80	8
DRZWI	0.88	0.88	0.88	8
GARAZU	0.67	0.88	0.76	16
JEDEN	0.80	1.00	0.89	8
KANAL	0.29	0.25	0.27	8
KAWE	0.60	0.38	0.46	8
KUCHNI	1.00	0.75	0.86	8
KWIATKI	0.50	1.00	0.67	8
LAZIENCE	0.86	0.75	0.80	8
0	0.80	1.00	0.89	8
OGRZEWANIE	0.86	0.75	0.80	8
OTWORZ	0.80	1.00	0.89	8
PODLEJ	0.78	0.88	0.82	8
PODNIES	0.50	0.50	0.50	8
PRZYCISZ	0.78	0.88	0.82	8
RADIO	0.75	0.38	0.50	8
ROLETY	0.89	1.00	0.94	8
STOPIEN	0.89	1.00	0.94	8
SWIATLO	0.83	0.62	0.71	8
SYPIALNI	1.00	0.88	0.93	8
TELEWIZOR	0.80	0.50	0.62	8
USTAW	1.00	0.88	0.93	8
M	0.84	1.00	0.91	32
WLACZ	0.83	0.62	0.71	8
WODE	0.71	0.75	0.73	16
WYLACZ	0.81	0.81	0.81	16
ZAGOTUJ	1.00	0.62	0.77	8
ZAKREC	0.86	0.75	0.80	8
ZAMKNIJ	1.00	0.62	0.77	8
ZAPAL	0.75	0.38	0.50	8
ZAPARZ	1.00	1.00	1.00	8
ZMIEN	1.00	1.00	1.00	8
ZMYWARKE	0.88	0.88	0.88	8
ZWIEKSZ	0.80	0.50	0.62	8
avg / total	0.80	0.78	0.78	344

Rysunek 3. Wyniki uczenia maszynowego.