Familienname:	Bsp.	1	2	3	4	$\sum /40$	
Vorname:							
Matrikelnummer:							
Studienkennzahl(en):		Note:					

Prüfung zu Grundbegriffe der Topologie

Sommerersemester 2015, Roland Steinbauer 3. Termin, 18.12.2015

1. Umqebunqssysteme und -basen

- (a) Definiere die Begriffe Umgebung, Umgebungssystem und Umgebungsbasis für einen Punkt x im topologischen Raum (X, \mathcal{O}) . (2 Punkte)
- (b) Zeige, dass die Durchschnitte zweier Umgebungen sowie die Obermengen von Umgebungen wieder Umgebungen sind. (2 Punkte)
- (c) Gib eine Umgebungsbasis für $x \in \mathbb{R}^2$ mit der natürlichen Topologie an, die aus abzählbar vielen, abgeschlossenen Mengen besteht. (1 Punkt)
- (d) Formuliere das 1. Abzählbarkeitsaxiom (AA1) und zeige, dass jeder topologische Raum, dessen Topologie von einer Metrik induziert wird AA1 ist. (2 Punkte)
- (e) Formuliere und beweise die Grundeigenschaft (U4) für Umgebungssysteme. Diskutiere inwiefern sie einen Ersatz für die Dreiecksungleichung in metrischen Räumen darstellt. (3 Punkte)

2. Kompaktheit

- (a) Definiere den Begriff eines kompakten topologischen Raumes und formuliere den Satz von Tychonoff. (2 Punkte).
- (b) In kompakten topologischen Räumen kann in spezifischer Weise von lokalen auf globale Eigenschaften geschlossen werden. Formuliere ein entsprechendes Theorem und beweise es. (5 Punkte)
- (c) Diskutiere Kompaktheit im Kontext der Analysis; Stichwort: Heine-Borel. (3 Punkte)

Bitte umblättern!

3. Vermischtes.

- (a) Dicht definierte stetige Abbildungen. Beweise: Seien f,g stetige Abbildungen von einem topologischen Raum in einen Hausdorff Raum. Stimmen f und g auf einer dichten Teilmenge überein, dann sind sie gleich. (3 Punkte)
- (b) Inneres, $Au\beta$ eres, Rand. Sei $A \subseteq X$ und (X, \mathcal{O}) topologischer Raum. Definiere int(A), ext(A) und ∂A und zeige, dass diese drei Mengen eine Partition von X bilden. (3 Punkte)
- (c) Niemytzki-Raum. Definiere die Niemytzki-Topologie auf der (abgeschlossenen) oberen Halbebene durch Angabe geeigneter Umgebungsbasen. Konvergieren die Folgen $y_n := (0, \frac{1}{n})$ und $x_n := (\frac{1}{n}, 0)$ "von oben" bzw. "von rechts" in der Niemytzki-Topologie gegen den Ursprung? Begründe beide Antworten. (4 Punkte)

4. Richtig oder falsch?

Sind die folgenden Aussagen richtig oder falsch? Gib ein (möglichst explizites und einfaches) Gegenbeispiel an oder argumentiere für oder gegen die Richtigkeit der Aussage. (je 2 Punkte)

- (a) Ist \mathcal{B} eine Basis einer Topologie \mathcal{O} , dann kann \mathcal{B} auch abgeschlossene Mengen enthalten.
- (b) Jedes beliebige Teilsystem der Potenzmenge 2^X der Menge X definiert als Subbasis eindeutig eine Topologie auf X.
- (c) Separable metrische Räume sind AA2.
- (d) Sei (X, \mathcal{O}) ein topologischer Raum. Dann sind X und \emptyset die einzigen offenen und abgeschlossenen Mengen.
- (e) Jede stetige Abbildung $f: X \to Y$ zwischen metrischen Räumen X, Y kann zu einer stetigen Abbildung $\hat{f}: \hat{X} \to \hat{Y}$ zwischen den Vervollständigungen \hat{X} und \hat{Y} von X bzw. Y fortgesetzt werden.

PRJ=JWGSAUSAZBEITUNG S. IERITIN

2015-12-06

11 (a) Uhailt Umjoburg von x, falls JOET: XE OSU Dos Umpchungssydem Ux bax ist die Fomilie olle Umge buyen vo- x, d.h. Ux := of V = X / Vist Ump. von x} Ein Tailsystem Wx von Ux heill Umpobuyshosis, folls YUEUx FVEWx: (xe)V=U

(b) Un. Uz & Ux => Un Uz & Ux, dans: JOA, OZE MIL XEDJEULA, XEDZEUZ =) XEDIND2 = UINU2 ED 40gen (03) UEUx, V2U => VEUx ist hise, do-JOGO. XEOGUEV

(c) B1(x) = { y = R2 / 11x - y 11 ≤ 1/m}

(d) Ein the enfalls (AA1), folls jeder Phil eine obtohlbure Unjebuyshosi; hot.

Jode FR Roun, Lower Top wor cine Public industrial ist estille AA1, down ushle fix xox ob obj. Ungehishow Wx = {By (x) / nex} mit By (x)= {yox/diagocal).

(e) (U4) Tueux JVEUx: VEUx TyeV: U6Uy

Bora's: UEUx => FOED: XEOEU; sake V:=0 TopPrfg15,p11

Ne Uy tye V do effen

(b)

U=V ist electeds Unyoly rong

Diconologe Aussoye 24 (U3) in 17 P, nombish

See $U = 3_{\xi}(x)$, $\xi' \in \xi \Rightarrow f(x' \in 3_{\xi'}(x) = V f(s')$; $B_{\xi}(x') \subseteq B_{\xi}(x)$ [who $B_{\xi}(x) = U$ ist Unyohus $f(x') \in V = B_{\xi'}(x)$]

bordist mon mittoh A- Ungl:

With $S = (\mathcal{E} - \mathcal{E}')/2 \ (>0!) => fg' \in B_S(x)$ $d(g',x) \leq d(g',x') + d(x',x') \leq \frac{\mathcal{E} - \mathcal{E}}{2} + \mathcal{E}' \leq \frac{\mathcal{E} - \mathcal{E}'}{2} \leq \mathcal{E}.$

12) Ein 12 X heint kp, falls jede offene Übededung Von X eine endhiche Tril übededug besitht.

Soft (Tychonov): Beliebije Produkte dop Poince sind prome dom lep vom jede Folker lep ich.

Dh: (X;D;) ic I t.R.

X= TX: by (=) Xi kp fic I

(b), THIT." Sa (E) and Eigensohold, die offenc Menger im

IR (X.O) zugeschrieben werden komm und die sich auf

Veränipungen vorribt (d.h. U, V hoben (E) => Uv V hot (E))

Cilt (E) lokal (dh FxeX: JU offenc Umpely ren x mit

(E)) und ist X bp, down hot X (E).

Borai: FXEX JUXE ON UX: Ux hol (E).
Wepen X=UUx, X bp => X= UX, U... UUX, (n+H)
x6X Da (E) slobil unto endl. Vereiniparjinist (Verewschy iteration once den) hat UUx; (E) und somit out X. I] (c) Im R' pill be Solz v. Hance Bord: A = M" kp (=) 6hp+ besch Diese Ausoje het i elle t. R. Leiner Sin (A = X besch. kom nicht Schniet worden). Dort wo sie wienn Sinn erpibl(+3.-772), ist sic i.o. folis. Tosoiblish p. Cl in TTR; A Lp => Objet bench. schon in co-lin NVR, 28. 62, doller Einhaltskupel nicht be ist. 3 (o) lig, X -> I shir, I To, A=x dicht, f/= g/A
-> f=g Jeves: Indir on Jx & X: f(x) = fry) = henne f(x) und UnV=b = f + goul f(U) of (V) disj. Menja U, V Abo f-1(1) of (v) ist office Unjebu-, we x und eatholf dobe en a ous de dichter Meye 4. 9 (b) inf(A) = A ? = {x & X |] U & Ux : U = A} $e_{x}(A) := \left\{ x \in X \mid \exists U \in \mathcal{U}_{x} : U \subseteq A^{c} \right\}$ $2A := \left\{ x \in X \mid \forall U \in \mathcal{U}_{x} : U \cap A \neq \emptyset \neq U \cap A^{c} \right\}$

Diese 3 Neger sind offensicht lich disjunkt und ihre
Verdnigg erjiht pont X, d.h. sie b. Iden eine Poshibion.
3/(c) Auf X = {x = (x1, x2) \in R2 x2 20} definieren wir aine
Tapologie durch Vorgobe einer Umpoburjshos. SUx fir jeden
Pal
Folls x2>0 SG: Wx = {B_E(x) / OLE = X2},
falls x2=0 si Wx = { (5(p) 8 >0 }, woba.
CE(x)= 1 y=(y, y2) EX/ / y-m/2 E] U/x],
$m:l m = (y_1, \varepsilon) \subset_{\varepsilon}(x)$
$y_n = (0, 1/n) \rightarrow (0, 0)$
den 1/2 ist sehlie Blich
in jedem ({ (0)
xn = (1/2,0) - \$ 10,0) do xn & CE(0) findle &;
der einzige Phil der Torm (X1, 0) = G(0) ist penon O.
(c) JA, sei J= {1×31×c×3 (b) JA, Subbose hobein kane (c) JA, sei J= fyn., y,] = x ob + & Liht, Crunleipensholk.
(c) JA, sai J= fyn, yn] = x ob + & Licht, Crunleigens dolk.
donn ist B= {B=1y1) n, le zel} 064. Bosis Lu Top.
(d) Nan, dos ist nur in 26h +12 so; hepen hsp
X= (0,1) U(1,2) mit de Spertop von IR dean
(0,1) and (1,2) sind baide offer Lobg.
(e) Wein, do du muss f plm. skhij sain; liegentsp
« Sprung on antschaidende Stelle"