An Introduction to SingleCellAssay

Andrew McDavid and Greg Finak

October 22, 2014

1 Philosophy

SingleCellAssayis an R/Bioconductor package for managing and analyzing Fluidigm single-cell gene expression data as well as data from other types of single-cell assays. Our goal is to support assays that have multiple features (genes, markers, etc) per well (cell, etc) in a flexible manner. Assays are assumed to be mostly complete in the sense that most wells contain measurements for all features.

1.1 Internals

A SingleCellAssay object can be manipulated as a matrix, with rows giving wells and columns giving features.

1.2 Statistical Testing

Apart from reading and storing single–cell assay data, the package also provides functionality for significance testing of differential expression using a combined binomial and normal–theory likelihood ratio test, as well as filtering of individual outlier wells. These methods are described our papers.

2 Examples

With the cursory background out of the way, we'll proceed with some examples to help understand how the package is used.

2.1 Reading Data

Data can be imported in a Fluidigm instrument-specific format (the details of which are undocumented, and likely subject-to-change) or some derived, annotated format, or in "long" (melted) format, in which each row is a measurement, so if there are N wells and M cells, then the data.frame should contain $N \times M$ rows. The use of key-value mappings makes the reading of various input formats very flexible, provided that they contain the minimal required information expected by the package.

For example, the following data set was provided in as a comma-separated value file. It has the cycle threshold (ct) recorded. Non-detected genes are recorded as NAs. For the Fluidigm/qPCR single cell expression functions to work as expected, we must use the expression threshold, defined as $et = c_{\text{max}} - ct$, which is proportional to the log-expression.

Below, we load the package and the data, then compute the expression threshold from the ct, and construct a FluidigmAssay.

We see that the variable vbeta is a data.frame from which we construct the FluidigmAssay object. The idvars is the set of column(s) in vbeta that uniquely identify a well (globally), the primerid is a column(s) that specify the feature measured at this well. The measurement gives the column name containing the log-expression measurement, ncells contains the number of cells (or other normalizing factor) for the well. geneid, cellvars, phenovars all specify additional columns to be included in the featureData, phenoData and cellData (TODO: wellData). The output is a FluidigmAssay object with 456 wells and 75 features.

We can access the feature-level metadata and the cell-level metadata using the fData and cData accessors.

```
head(fData(vbeta.fa),3)
##
          primerid
                      Gene
## B3GAT1
            B3GAT1 B3GAT1
## BAX
               RAX
                       RAX
## BCL2
              BCL2
                      BCL2
head(cData(vbeta.fa),3)
##
                                            Population
                                                            wellKey Subject.ID
               Number.of.Cells
## Sub01 1 A01
                              1 CD154+VbetaResponsive Sub01 1 A01
                                                                          Sub01
## Sub01 1 A02
                              1 CD154+VbetaResponsive Sub01 1 A02
                                                                          Sub01
## Sub01 1 A03
                              1 CD154+VbetaResponsive Sub01 1 A03
                                                                          Sub01
##
                Chip. Number Well Stim. Condition Time ncells
## Sub01 1 A01
                          1
                             A01
                                       Stim(SEB)
                                                   12
## Sub01 1 A02
                          1
                             A02
                                       Stim(SEB)
                                                   12
                                                            1
## Sub01 1 A03
                          1
                             A03
                                       Stim(SEB)
                                                   12
```

We see this gives us the set of genes measured in the assay, or the cell-level metadata (i.e. the number of cells measured in the well, the population this cell belongs to, the subject it came from, the chip it was run on, the well id, the stimulation it was subjected to, and the timepoint for the experiment this cell was part of). The wellKey is a hash of idvars columns, helping to ensure consistency when splitting and merging SingleCellAssayobjects. TODO: Some of this "cell-level" information could arguably be part of the @phenoData slot of the object. This functionality is forthcoming but doesn't limit what can be done with the package at this stage.

2.2 Subsetting, splitting, combining

It's possible to subset SingleCellAssayobjects by wells and features. Square brackets ("[") will index on the first index and by features on the second index. Integer and boolean and indices may be used, as well as character vectors naming the cellKey or the feature (via the primerid). There is also a subset method, which will evaluate its argument in the frame of the cData, hence will subset by wells.

```
sub1 <- vbeta.fa[1:10,]
show(sub1)

## FluidigmAssay on layer Et
## 1 Layers; 10 wells; 75 features
## id: vbeta all</pre>
```

```
sub2 <- subset(vbeta.fa, Well=='A01')</pre>
show(sub2)
## FluidigmAssay on layer Et
## 1 Layers; 5 wells; 75 features
   id: vbeta all
sub3 <- vbeta.fa[1:10,6:10]
show(sub3)
## FluidigmAssay on layer Et
## 1 Layers; 10 wells; 5 features
  id: vbeta all
cellData(sub3)
## An object of class 'AnnotatedDataFrame'
    rowNames: Sub01 1 A01 Sub01 1 A02 ... Sub01 1 A10 (10 total)
##
    varLabels: Number.of.Cells Population ... ncells (9 total)
    varMetadata: labelDescription
featureData(sub3)
## An object of class 'AnnotatedDataFrame'
    rowNames: CCL4 CCL5 ... CCR5 (5 total)
    varLabels: primerid Gene
##
    varMetadata: labelDescription
##
```

The cellData and featureData AnnotatedDataFrames are subset accordingly as well.

A SingleCellAssaymay be split into a list of SingleCellAssay, which is known as an SCASet. The split method takes an argument which names the column (factor) on which to split the data. Each level of the factor will be placed in its own SingleCellAssaywithin the SCASet.

```
sp1 <- split(vbeta.fa, 'Subject.ID')
show(sp1)

## SCASet of size 2
## Samples Sub01, Sub02</pre>
```

The splitting variable can either be a character vector naming column(s) of the SingleCellAssay, or may be a factor or list of factors.

It's possible to combine SingleCellAssayobjects or an SCASet with the combine method.

```
combine(x=sp1[[1]],y=sp1[[2]])

## Note: method with signature 'DataLayer*DataLayer' chosen for function 'combine',
## target signature 'SingleCellAssay#SingleCellAssay'.

## "SingleCellAssay#ANY" would also be valid

## FluidigmAssay on layer Et
## 1 Layers; 456 wells; 75 features

## id: Sub01

combine(sp1)

## FluidigmAssay on layer Et
## 1 Layers; 456 wells; 75 features
## id: Sub01
```

2.3 Filtering

We can filter and perform some significance tests on the SingleCellAssay. We may want to filter any wells with at least two outlier cells where the discrete and continuous parts of the signal are at least 9 standard deviations from the mean. This is a very conservative filtering criteria. We'll group the filtering by the number of cells.

We'll split the assay by the number of cells and look at the concordance plot after filtering.

The filtering function has several other options, including whether the filter shuld be applied (thus returning a new SingleCellAssay object) or returned as a matrix of boolean values.

```
## FluidigmAssay on layer Et
## 1 Layers; 456 wells; 75 features
## id: vbeta all

## Split by 'ncells', apply to each component, then recombine
vbeta.filtered <- filter(vbeta.fa, groups='ncells')
## Returned as boolean matrix
was.filtered <- filter(vbeta.fa, apply_filter=FALSE)
## Wells filtered for being discrete outliers
head(subset(was.filtered, pctout))</pre>
```

```
##
               intout null pctout
               FALSE TRUE
## Sub01 1 D05
                             TRUE
## Sub01 1 D06
                FALSE TRUE
                FALSE TRUE
## Sub01 1 D07
                             TRUE
  Sub01 1 D08
                FALSE TRUE
                             TRUE
## Sub01 1 D10
                FALSE TRUE
                             TRUE
## Sub01 1 D11 FALSE TRUE
                             TRUE
```

There's also some functionality for visualizing the filtering.

```
burdenOfFiltering(vbeta.fa, 'ncells', byGroup=TRUE)
```


2.4 Significance testing under the Hurdle model

There are two frameworks available in the package. The first framework zlm offers a full linear model to allow arbitrary comparisons and adjustment for covariates. The second framework LRT can be considered essentially performing t-tests (respecting the discrete/continuous nature of the data) between pairs of groups. LRT is subsumed by the first framework, but might be simpler for some users, so has been kept in the package.

We'll describe zlm. Models are specified in terms of the variable used as the measure and covariates present in the cellData using symbolic notation, just as the lm function in R.

```
vbeta.1 <- subset(vbeta.fa, ncells==1)
## Consider the first 20 genes
vbeta.1 <- vbeta.1[,1:20]
layername(vbeta.1)

## [1] "Et"
head(cData(vbeta.1))

## Number.of.Cells Population wellKey Subject.ID
## Sub01 1 A01 1 CD154+VbetaResponsive Sub01 1 A01 Sub01</pre>
```

```
## Sub01 1 A02
                              1 CD154+VbetaResponsive Sub01 1 A02
                                                                        Sub01
## Sub01 1 A03
                              1 CD154+VbetaResponsive Sub01 1 A03
                                                                        Sub01
## Sub01 1 A04
                              1 CD154+VbetaResponsive Sub01 1 A04
                                                                        Sub01
## Sub01 1 A05
                              1 CD154+VbetaResponsive Sub01 1 A05
                                                                        Sub01
## Sub01 1 A06
                              1 CD154+VbetaResponsive Sub01 1 A06
                                                                        Sub01
##
               Chip. Number Well Stim. Condition Time ncells
## Sub01 1 A01
                          1 A01
                                      Stim(SEB)
                                                  12
## Sub01 1 A02
                          1 A02
                                      Stim(SEB)
                                                  12
                                                           1
## Sub01 1 A03
                          1
                            A03
                                      Stim(SEB)
                                                   12
                                                           1
## Sub01 1 A04
                          1 A04
                                      Stim(SEB)
                                                   12
                                                           1
## Sub01 1 A05
                          1 A05
                                      Stim(SEB)
                                                   12
                                                           1
## Sub01 1 A06
                          1 A06
                                      Stim(SEB)
                                                   12
                                                           1
```

Now, for each gene, we can regress on Et the factors Population and Subject.ID.

In each gene, we'll test if the factor Population explains a significant amount of the variation by fitting models with and without Population as an explanatory factor. An array of genes, metrics and test types is returned. We'll plot the -log10 P values by gene and test type.

```
library(ggplot2)
library(reshape)
zlm.output <- zlm.SingleCellAssay(~ Stim.Condition + Subject.ID, vbeta.1,</pre>
                                   hypothesis='Stim.Condition', type='LRT')
dimnames(zlm.output)
## $primerid
                           "BCL2"
                                     "CCL2"
                                              "CCL3"
    [1] "B3GAT1" "BAX"
                                                        "CCL4"
                                                                 "CCL5"
    [8] "CCR2"
                  "CCR4"
                           "CCR5"
                                     "CCR7"
                                              "CD109" "CD27"
                                                                 "CD28"
##
   [15] "CD38"
                  "CD3d"
                           "CD3g"
                                     "CD4"
                                              "CD40LG" "CD45"
##
## $test.type
## [1] "cont"
                 "disc"
                          "hurdle"
##
## $metric
## [1] "lambda"
                     "df"
                                   "Pr(>Chisq)"
pvalue <- ggplot(melt(zlm.output[,,'Pr(>Chisq)']), aes(x=primerid, y=-log10(value)))+
    geom_bar(stat='identity')+facet_wrap(~test.type) + coord_flip()
print(pvalue)
```


It is possible to save the model fits so that coefficients can be examined. See ?zlm.SingleCellAssay.

2.5 Two-sample Likelihood Ratio Test

Another way to test for differential expression is available through the LRT function, which is analogous to two-sample T tests.

```
two.sample <- LRT(vbeta.1, 'Population', referent='CD154+VbetaResponsive')</pre>
car::some(two.sample)
##
                   Population test.type primerid direction lrstat
                                                                        p.value
## 13 CD154+VbetaUnresponsive
                                              CD27
                                                          -1 16.3362 2.836e-04
                                    comb
                                              CCL2
##
  24
        CD154-VbetaResponsive
                                    comb
                                                          -1 3.3431 1.880e-01
##
  31
        CD154-VbetaResponsive
                                    comb
                                              CCR7
                                                           1 58.7950 1.709e-13
## 37
        CD154-VbetaResponsive
                                    comb
                                              CD3g
                                                              0.6876 7.091e-01
```

## 4	1 CD154-VbetaUnresponsive	comb	B3GAT1	-1	0.6890 7.086e-01
## 4	6 CD154-VbetaUnresponsive	comb	CCL4	-1	3.2172 2.002e-01
## 5	7 CD154-VbetaUnresponsive	comb	CD3g	1	9.5537 8.423e-03
## 6	7 VbetaResponsive	comb	CCL5	-1	6.3559 4.167e-02
## 7	O VbetaResponsive	comb	CCR5	-1	2.7976 2.469e-01
## 9	5 VbetaUnresponsive	comb	CD38	-1	2.6963 2.597e-01

Here we compare each population (CD154-VbetaResponsive, CD154+VbetaUnresponsive, CD154-VbetaUnresponsive, VbetaUnresponsive) to CD154+VbetaResponsive. The Population column shows which population is being compared, while test.type is comb for the combined normal theory/binomial test. Column primerid gives the gene being tested, direction shows if the comparison group mean is greater (1) or less (-1) than the referent group, and lrtstat and p.value give the test statistic and χ^2 p-value (two degrees of freedom).

Other options are whether additional information about the tests are returned (returnall=TRUE) and if the testing should be stratified by a character vector naming columns in cData containing grouping variables (groups).

3 Implementation Details

Here we provide some background on the implementation of the package.

There are several fundamental new object types provided by the package. DataLayer is the base class, which is provides an array-like object to store tabular data that might have multiple derived representations. A SingleCellAssay object contains a DataLayer, plus cell and feature data. New types of single cell assays can be incorportated by extending SingleCellAssay.

Different derived classes of SingleCellAssayrequire different fields to be present in the cellData and featureData These requirements are set for each class by the slots cmap and fmap, giving required columns in cell and feature data, respectively.

We have found it useful to enforce naming conventions to reduce confusion when combining data across projects, so the constructor will rename the fields the user provides to match the values specified in cmap and fmap.

Sets of single cell assays are stored in the SCASet class. A constructor for SCASet is provided to construct an SCASet directly from a data frame. Alternatively, a SingleCellAssay or derived class can be split on an arbitray variable to produce an SCASet.

On construction of a SingleCellAssay object, the package tests for completeness, and will fill in the missing data (with NA) if it is not, so assays with lots of missing data can make reading marginally slower.