WE 123-33

2014年数据仓库与知识发现试题

- 1. 数据仓库及其实现技术。
 - a) 试采用 BITMAP 索引方式对图 1 中的维度表进行索引。
 - b) 试采用 Join Index 对图 1 中的事实表和维表进行索引。

PID	SKU	TYPE	PRICE
01	BK-6573	BOOK	High
02	SW-8761	SOFTWARE	High
03	BK-7651	BOOK	Middle
04	CD-3413	CD	Middle
05	CD-6573	CD	Free
06	SW-9871	SOFTWARE	Middle

SID	Manager	TYPE
01	Bob	General
02	John	Exclusive
03	Smith	General

PID	SID)	TID	Quantity
03	03	T100	3
01	01	T200	7
04	02	T300	5
02	03	T400	1
04	02	T500	2
05	01	T600	4
01	03	T700	6
05	02	T900	1
06	01	T900	5
03	02	T10	00 3

图1产品维度表(左上)。商店提度表(左下)和销售事实表(右

2. 特征

给定图 2 中的目标集(DOG)和对比集(CAT),使用信息增益计算各个属性与当前概念描述任务之间的相关键。并采用 T=0.1 作为阅值, 对属性进行筛选。

Gender	Tail	Weight	Count
M	Long	5-10	2
М	Middle	0-5	3
F	Long	5-10	3
M	Middle	10-15	1
M	Short	10-15	3
F	Long	15-20	3

Gender	Tail	Weight	Count
M	Long	0-5	2
F	Middle	5-10	1
F	Short	0-5	2
F	Long	5-10	2
M	Middle	0-5	1
F	Short	5-10	2

图 2 目标集 DOG (左)、对比集 CAT (右)

3. 关联

a) 针对图 3 的交易事务数据,采用 FP 增长算法求取频繁项集, 假设最小支持度为≥30%

事务ID	购买项
1	(a. b. d. e)
2	(b, c, d)
3	(a, b, d, e)
4	{a, c, d, e}
5	{b, c, d, e}
6	(b, d, e)
7	{c, d}
8	(a, b, c)
9	{a, d, e}
10	{b, d}

b) 基于上述频繁项集,构造关联规则,要求最小置信度≥50%

4. 数据预处理与分类(25分)

- a) 针对图 4 中训练数据集进行离散化处理。要求采用等宽分桶的方式将 age 和 incoming 属性离散到 3 个区间。
- b) 依据训练集,采用<u>朴素</u>
 贝叶斯方法分类未知
 元组(24,75000,yes),
 对 分 类 属 性
 Class:buys_MP 进行预
 测。

ID	age	income	student	Class:buys_MP
1	23	68000	no	>2000
2	49	36000 •	no	10002000
3	55	22000 4	no	10002000
4	34	30000 V	yes	<1000
5	38	15000 v	yes	<1000
6	57	75000	no	>2000
7	21 V	52000 o	no	10002000
8	31	45000 °	yes	10002000
9	66 V	58000	no	10002000
10	34	12000 v	yes	<1000
11	40	40000 3	yes	10002000
12	50	78000	no	>2000
13	29	20000 v	yes	10002000
14	25	70000	no	<1000
15	61	55000 6	no	>2000
16	45	65000	no	>2000

图 4 训练数据集

聚类 (25 分)

- a) 针对图 5 中的数据,采用曼哈顿距离作为距离函数, 给出对应的相异矩阵。
- b) 采用被聚式层次式方法对该数据集进行聚类,聚类间 的距离使用聚类中数据之间的最大距离进行度量。

ID	×	Y
1	3	8
2	2	7
3	4	8
4	3	4
5	4	5

图 5 聚类数据集