Задания отборочного тура Открытой Олимпиады СПбГУ среди студентов и молодых специалистов «Petropolitan Science (Re)Search» в 2023/24 учебном году по предмету «Вычислительные технологии» для обучающихся и выпускников бакалавриата

Задание 1. Необходимо написать программу на языке C/C++, которая решает судоку в общем случае. Запрещено использовать сторонние библиотеки. Напомним, что судоку - это популярная головоломка, которая состоит из квадратной сетки размером 9х9 клеток, разделенной на девять равных квадратных секций размером 3х3 клетки. В каждой клетке необходимо заполнить цифру от 1 до 9 таким образом, чтобы каждая строка, каждый столбец и каждая секция содержали все цифры от 1 до 9 без повторений. Заметим, что в общем случае, размер поля может быть любой, например, 4х4, 9х9 и т.д.

В качестве ответа необходимо предоставить текст с описанием алгоритма и анализом вариантов решения, а также ссылку на открытый репозиторий GitHub (или аналогичный) с кодом реализованной программы (дата последнего коммита не позже даты завершения отборочного тура олимпиады) или приложите ссылку на архив с кодом. Помните о необходимости соблюдения анонимности при предоставлении материалов.

Входные данные:

Первая строка содержит целое число n. Далее, если существует поле для судоку размера n x n, идут n строк, в каждой из которых через пробел записаны n целых чисел. Вместо пустой клетки поля программа выводит число 0 (для лучшего понимания посмотрите тестовый пример).

Выходные данные:

Если поля для судоку размером n x n не существует, выведите «Invalid field» и завершите программу. Если поле существует, считайте его, решите задачу и выведите ответ. Ответом для задачи является заполненная матрица размером n x n. Каждая новая строка матрицы должна выводиться с новой строки, а числа в каждой строке разделены пробелом. Гарантируется, что для входной матрицы существует решение.

Пример:

Ввод:

4

1432

0014

4123

2300

Вывод:

1432

3 2 1 4

4123

2341

Задание 2. Найти угол поворота изображения документа, содержащего печатный текст и фото. Скорректировать изображение путем поворота, используя найденный угол. Примеры исходного и повернутого изображения прилагаются.

В качестве ответа необходимо предоставить текст с описанием предлагаемого алгоритма, а также ссылку на открытый репозиторий GitHub (или аналогичный) с кодом реализованной программы (дата последнего

коммита не позже даты завершения отборочного тура олимпиады) либо ссылку на архив с кодом. Помните о необходимости соблюдения анонимности при предоставлении материалов.

Задание 3. Для защиты данных используют разные методы или техники, начиная от простых шифров до гомоморфного шифрования. Многие считают, что для защиты персональных данных хватит и обычных шифров, так как другие методы, такие как AES-128, SHA-512 и т.п. очень сложны или требуют существенных вычислительных ресурсов.

Ваша задача — определить алгоритм, с помощью которого зашифрованы представленные ниже данные; написать программу, предпочтительно используя язык программирования Python, которая деобезличивает этот набор данных.

Почта	Адрес
vaeqbt52@symux.oay	Ьмбшмщъоэцфх ысь.р.37 цо.399
zxtwc.hxcrtgt@vbpxa.rdb	юя. № 4914у.14 щс.284
zgzxov.cdgg@ojmkct.xjh	2-ф Дгяегчжяхф иа.щ.73 яч.70
yohflz@nsvcly.jvt	87-р су УСЗЛл.16 сй.158
wfiu.cvsjrtb@yreu.tfd	1-ъ Васвяюсьщуыяувыщъ ацб.х.35 ыу.167
rnpfdqf56@mtyrfnq.htr	шр. Межуручбкй.32 пз.476
ypobnct.qdnat@vddslxc.dgv	Адэуьфьащчш бвю.у.37 щс.368
rpqnsl@bnxtep.htr	Бужучузцпед шр.й.57 пз.41
pujggck@zglesad.uge	Баэчфтс еэ.ц.68 ьф.257
mzqjmzbw.tqvl@ouiqt.kwu	Иугфцки ыу.м.76 тк.49

В качестве ответа предоставить объяснение способа определения загаданного алгоритма обезличивания данных и назвать сам алгоритм, представить краткое описание реализованного решения, блок-схему алгоритма решения, результат работы программы: деобезличенный датасет с добавлением столбца, в котором указан ключ шифрования; предоставить ссылку на открытый репозиторий GitHub (или аналогичный) с кодом реализованной программы (дата последнего коммита не позже даты завершения отборочного тура олимпиады) либо ссылку на архив с кодом. Помните о необходимости соблюдения анонимности при предоставлении материалов.

Критерии оценки решений задач

Задание 1. Общий балл за решение задачи выставляется как сумма баллов за соответствие решения каждому из критериев.

- I. Программа корректно работает для n < 9 (2 балла)
- II. Анализ кода: программа написана понятно и красиво (1 балл)
- III. Медленное решение для любого n (4 балла)
- IV. Быстрое решение для любого n (6 баллов)
- V. Рассмотрены возможности распараллеливания алгоритма (описаны изменения алгоритма для применения параллельного выполнения, проанализированы варианты подходящих технологий параллельного программирования, представлена реализация) (4 балла)

Задание 2. Общий балл за решение задачи выставляется как сумма баллов за соответствие решения каждому из критериев.

- I. Выбраны подходящие алгоритмы для определения угла и проведения поворота изображения, приведено их описание (5 баллов)
- II. Представлено обоснование предложенного решения с точки зрения работы алгоритмов, занимаемой памяти и используемых ресурсов (4 балла)
- III. Представлен программный код, реализующий алгоритмы (4 балла)
- IV. Проведена экспериментальная оценка точности работы алгоритма с использованием программного решения. Оценка проводится на нескольких изображений (не менее трех) различных документов, содержащих фото в разных местах документов. (4 балла)

Задание 3. Общий балл за решение задачи выставляется как сумма баллов за соответствие решения каждому из критериев.

- І. Правильно определен использованный алгоритм обезличивания (2 балла)
- II. Представлена корректная блок-схема алгоритма деобезличивания (4 балла)
- III. Представлен программный код, реализующий предложенную задачу (5 баллов)
- IV. Программа выводит корректный результат: файл с деобезличенным набором данных (3 балла)
- V. В итоговом файле выведен столбец, где в каждой строке указан верный ключ шифрования (2 балла)

Максимальное количество баллов, которое можно получить за выполнение заданий:

Задание 1 - 17 баллов.

Задание 2 - 17 баллов.

Задание 3 – 16 баллов.

Максимальный балл за всю работу – 50 баллов.