# **T3A CALOR ESPECÍFICA DE SÒLIDS**

### **OBJECTIUS**

Determinació de la calor específica de diferents sòlids.

Determinació de la massa equivalent en aigua d'un calorímetre de mescles.

#### **MATERIAL**

Calorímetre (vas Dewar), bany termostàtic, agitador elèctric, vasos de precipitat, balança digital, termòmetres analògics i digital, aigua destil·lada, sòlids problema (alumini, llautó i plom).

#### **FONAMENT TEÒRIC**

L'enunciat de Carathéodory del Primer Principi de la Termodinàmica estableix que "el treball termodinàmic total és el mateix per a tots els processos adiabàtics que uneixen dos estats d'equilibri 1 i 2 d'un sistema tancat". Aquest enunciat condueix a l'existència d'una funció d'estat U, l'energia interna, de la forma,

$$\Delta U \equiv U(2) - U(1) = W_{\rm ad}(1 \to 2)$$
 (1)

en què  $\Delta U$  és la variació de l'energia interna del sistema, i  $W_{\rm ad}$ , el treball realitzat en un procés adiabàtic  $1 \to 2$ , és a dir, que no intercanvia calor amb l'entorn.

Si s'uneixen els dos mateixos estats d'equilibri 1 i 2, mitjançant un procés  $\Pi$  no adiabàtic, trobem que el treball efectuat,  $W(1 \to 2; \Pi)$ , no coincideix amb el canvi d'energia interna. A l'energia,  $Q(1 \to 2; \Pi)$ , que és transferida en el procés per mitjans diferents del treball la denominem *calor*, i es verifica que:

$$Q(1 \to 2; \Pi) \equiv W_{\text{ad}}(1 \to 2) - W(1 \to 2; \Pi) = \Delta U - W(1 \to 2; \Pi)$$
 (2)

Aquesta equació també es pot escriure en forma diferencial de la forma:

$$dU = dQ + dW (3)$$

en la qual dQ i dW denoten, respectivament, transferències de calor i de treball en un procés infinitesimal. Hem de notar que Q i W no són funcions d'estat. El conveni de signes que hem seguit és el següent: quan la transferència de calor és cap al sistema es pren Q>0, i es parla de calor absorbida pel sistema; si la transferència de calor té lloc des del sistema Q<0, i es parla de calor cedida pel sistema; si el treball és realitzat sobre el sistema W>0 i si el treball és realitzat pel sistema W<0. Un sistema que absorbeix o cedeix calor pot o no canviar la seua temperatura. La calorimetria estudia la relació entre la calor transferida per un sistema i el seu canvi de temperatura.

La capacitat calorífica al llarg d'un procés  $\Pi$  és un coeficient termodinàmic que indica la variació de la temperatura d'un sistema quan absorbeix o cedeix calor, i es defineix de la forma:

$$C_{\Pi} \equiv \lim_{\Delta T \to 0} \left( \frac{Q_{\text{rev}}}{\Delta T} \right)_{\Pi} \tag{4}$$

en què  $Q_{\rm rev}$  és la calor en un procés reversible. Per a calcular la calor transferida en un procés finit cal efectuar la integral  $\int C_{\Pi} dT$ , cosa que requereix el coneixement de la dependència de la capacitat calorífica amb la temperatura.

Si suposem que  $C_{\Pi}$  no depèn de la temperatura T, tindrem:

$$Q(1 \to 2; \Pi) = C_{\Pi}(T_2 - T_1) = n\bar{c}_{\Pi}(T_2 - T_1) = mc_{\Pi}(T_2 - T_1)$$
(5)

en què  $T_1$  i  $T_2$  són les temperatures dels estats inicial i final del procés. En l'equació (5) també es pot interpretar  $C_\Pi$  com la capacitat calorífica mitjana en l'interval de temperatura  $(T_1,T_2)$  al llarg del procés  $\Pi$ . Noteu que hem definit la calor específica del procés  $\Pi$ ,  $c_\Pi=C_\Pi/m$  com la capacitat calorífica per unitat de massa; també és usual definir la capacitat calorífica molar o calor molar com a  $\bar{c}_\Pi=C_\Pi/n$ , en què n és el nombre de moles.

En el cas d'un sistema hidroestàtic, les capacitats calorífiques de més interès experimental són  $C_V$  i  $C_P$ , que corresponen, respectivament, a processos a volum constant i a pressió constant. Les dues magnituds són positives, cosa que indica que si a un sistema hidrodinàmic mantingut a volum o a pressió constants se li comunica calor, la seua temperatura sempre augmenta.

El 1819, els científics Pierre Louis Dulong i Alexis Thérèse Petit van establir experimentalment que, a temperatura ambient, la calor molar a volum constant dels sòlids, tant metàl·lics com no metàl·lics, és aproximadament  $3\nu R$ , en què R és la constant dels gasos i  $\nu$  el nombre d'àtoms per molècula ( $\nu=1$  per a sòlids metàl·lics,  $\nu=2$  per a sòlids diatòmics com el ClNa,  $\nu=3$  per al quars SiO<sub>2</sub>). Per tant, la calor específica a volum constant per als sòlids, que es coneix com a llei de Dulong-Petit, es pot expressar de la forma:

$$c_V \approx \frac{3vR}{M} \tag{6}$$

en què M és la massa molar del sòlid.

D'altra banda, el 1912 el físic holandès Petrus Josephus Wilhelmus Debye va proposar un model teòric per a explicar el comportament de la calor específica dels sòlids cristal·lins. Segons aquest model, els àtoms que componen un sòlid vibren al voltant dels punts de la xarxa del cristall i es comporten com a oscil·ladors quàntics amb unes freqüències que van des de 0 fins a un valor màxim  $f_D$ , coneguda com a freqüència de Debye, la qual és característica de cada sòlid. Aquest model condueix al fet que, a altes temperatures, la calor específica dels cristalls no metàl·lics verifique

la llei de Dulong-Petit, eq. (6), mentre que, per a temperatures molt baixes, la calor específica depèn de la temperatura, de la forma següent:

$$c_V = AT^3 \tag{7}$$

que es coneix com a llei  $T^3$  de Debye, en què A és una constant característica del sòlid.

En el cas de sòlids metàl·lics hi ha també una important contribució a la calor específica deguda als electrons de conducció, i a baixes temperatures l'eq.(7) es modifica de la manera:

$$c_V = BT + AT^3 \tag{8}$$

en què A i B són constants característiques del metall.

## **METODOLOGIA**

El mètode que utilitzarem per a obtenir la calor específica d'un sòlid és l'anomenat *mètode de les mescles*, que consisteix a mesurar el canvi de temperatura que es produeix en una massa d'aigua, a l'interior d'un calorímetre adiabàtic, quan se submergeix un sòlid a una temperatura coneguda.



Figura 1.- Muntatge experimental

Un calorímetre és un recipient aïllat tèrmicament, en el nostre cas un vas Dewar, a fi de reduir al màxim les pèrdues de calor, proveït d'un termòmetre i un agitador.

A partir del primer principi de la termodinàmica, el balanç energètic corresponent a introduir el sòlid, que es troba a una temperatura  $T_s$ , en el calorímetre, la temperatura inicial del qual és  $T_0$ , si es verifica que  $T_s > T_0$ , serà:

$$m_s c_s (T_s - T_f) = (m_a + k) c_a (T_f - T_0)$$
 (9)

en què  $m_{\rm S}$  és la massa del sòlid,  $c_{\rm S}$  la calor específica del sòlid,  $T_{\rm f}$  la temperatura d'equilibri entre el sòlid, el calorímetre, els seus accessoris i l'aigua,  $m_a$  la massa de l'aigua del calorímetre,  $c_a$  la calor específica de l'aigua i k la massa equivalent en aigua del calorímetre. Aquesta expressió denota que quan diversos cossos a diferent temperatura es troben en un recinte adiabàtic es produeixen intercanvis calorífics entre ells i s'arriba a una temperatura d'equilibri després de cert temps. Quan s'ha arribat a l'equilibri s'ha de complir que la suma de les quantitats de calor intercanviades és zero.

L'expressió (9) ens proporciona una relació entre la calor específica del sòlid i magnituds fàcilment mesurables en el laboratori com les masses de l'aigua i del sòlid, els seus increments de temperatura i la massa equivalent en aigua del calorímetre.

En primer lloc determinarem la massa equivalent en aigua del calorímetre k. S'introdueix una massa  $m_2$  d'aigua destil·lada coneguda en el calorímetre a temperatura  $T_2$ , i seguidament s'introdueix una altra massa d'aigua  $m_1$  coneguda a la temperatura  $T_1$ , en què  $T_1 > T_2$ . Prendrem aproximadament  $m_1 \approx m_2 \approx 200$  g,  $T_1 \approx 60$ °C i  $T_2$  la temperatura ambient del laboratori. La massa d'aigua  $m_1$  s'introdueix en el bany termostàtic fins que arribem a la temperatura desitjada. A continuació s'introdueix la massa  $m_1$  en el calorímetre i es comença a agitar la mescla contínuament; s'ha de mesurar el més ràpidament possible la temperatura de la mescla a intervals de temps molt xicotets. Representeu la temperatura en funció del temps per a determinar la temperatura d'equilibri  $T_f$ ; tingueu en compte que inevitablement hi ha pèrdues calorífiques, ja que el calorímetre no és un sistema adiabàtic ideal. S'ha de verificar que:

$$m_1 c_a |T_1 - T_f| = (m_2 + k) c_a |T_2 - T_f|$$
(10)

l a partir d'aquesta expressió podem obtenir la massa equivalent en aigua del calorímetre k.

A continuació, amb el calorímetre sec i buit, s'hi introdueix una massa  $m_a \approx 200\,\mathrm{g}$  d'aigua destil·lada a temperatura ambient  $T_0$ , i es connecta l'agitador elèctric. S'introdueix el sòlid problema, de massa  $m_s$ , en el bany termostàtic d'aigua durant un temps prou llarg (diversos minuts) perquè la temperatura del sòlid estiga en equilibri amb la temperatura del bany,  $T_s$ . Seguidament s'introdueix ràpidament el sòlid en el calorímetre, es penja d'un ganxo sense

que toque el fons de calorímetre i de tal manera que quede completament submergit en l'aigua, i s'anota la temperatura final d'equilibri  $T_f$ . A partir de l'eq. (9) i coneixent la calor específica de l'aigua podem calcular la calor específica del sòlid problema.

#### **RESULTATS**

Determineu la massa equivalent en aigua del calorímetre k. Encara que per a minimitzar l'error en el càlcul de k seria convenient repetir diverses vegades l'experiment, només el farem una vegada en vista del temps limitat de què disposem en la pràctica.

Calculeu la calor específica  $c_s$  dels sòlids problema. Realitzeu diversos mesuraments de  $c_s$  per a cada sòlid. Calculeu els errors absoluts i relatius de k i  $c_s$ . Esmenteu possibles fonts d'error en la realització d'aquesta experiència.

Amb l'ajuda d'una taula de calors específiques de sòlids i coneixent els valors de la calor específica que heu obtingut experimentalment, esbrineu de quins sòlids es tracta.

Compareu els valors obtinguts per a la calor específica dels sòlids amb el resultat que s'obtindria aplicant la llei de Dulong i Petit.

## **QÜESTIONS**

- **1.** Què enteneu per calor específica d'un sòlid? Per què no hem especificat si la calor específica és a pressió o volum constants?
- 2. Les capacitats calorífiques són magnituds extensives o intensives? Justifiqueu la resposta.
- **3.** Relacioneu  $C_V$  i  $C_P$  amb l'energia interna, l'entropia i l'entalpia d'un sistema.
- **4.** Expliqueu el significat físic de la massa equivalent en aigua del calorímetre.
- 5. Suggeriu un mètode que minimitze la pèrdua de calor del metall quan es trasllada des del bany de vapor al calorímetre.
- 6. Definiu què és la caloria. Relacioneu aquesta unitat amb la unitat corresponent en el sistema internacional.
- **7.** Realitzeu una taula amb la calor específica de diversos sòlids. Comenteu el comportament de l'alumini i el plom en relació amb la seua calor específica.