Grundlagen der Künstlichen Intelligenz

13 Maschinelles Lernen

Lernen durch Beobachtung, Entscheidungsbäume

Volker Steinhage

Inhalt

Der lernende Agent

Induktives Lernen

Lernen von Entscheidungsbäumen

Lernen

Was ist Lernen im Agentenkontext?

Ein Agent lernt, wenn er durch Erfahrung seine Fähigkeit, eine Aufgabe zu lösen, verbessern kann

- Warum Lernen für Agenten?
 - → Lernen als Voraussetzung für Autonomie
 - → Lernen als effizienter Weg für Wissensakquisition
 - → Lernen als Weg für den Bau von High-Performance Systemen

Der lernende Agent

Aus der zweiten Vorlesung ist die Struktur des lernenden Agenten bekannt:

Bausteine des lernenden Agenten

Performance-Element: Verarbeitet Wahrnehmungen und wählt Aktionen aus

→ entspricht einem der bisherigen Agentenmodelle

Learning-Element: Durchführen von Verbesserungen

→ Braucht Wissen über sich selbst und wie sich der Agent in der Umwelt bewährt /

Critic: Bewertung des Agentenverhaltens auf der Grundlage eines gegebenen Verhaltensmaßstabs

→ Rückkopplung (feedback)

Critic

Sensors

Changes

Learning element

learning goals

Problem generator

Agent

Effectors

Problem-Generator: Vorschlagen von explorativen Aktionen,

die den Agenten zu neuen Erfahrungen führen

Das Learning-Element

Seine Funktionsweise wird von drei entscheidenden Fragen beeinflusst:

1. Welche *Komponenten der Performance-Elements* sollen verbessert werden (Zustandmodell, Änderungsmodell der Umwelt, Wechselwirkungsmodell mit Umwelt, Nutzenfunktion)?

- 2. Welche Repräsentation für die Komponenten wird gewählt (Logik, BNs, diskret, kontinuierlich,...)?
- 3. Welche Form von Rückkopplung (

 √ Critic) ist verfügbar?

Form der Rückkopplung ist wichtigster Beurteilungsfaktor eines Lernproblems!

Ziel des Lernens

Ein-/Ausgabekonzept des Agenten:

- Eingabe: Information aus der Umwelt über Perzepte
- Ausgabe: Effekte der Aktionen des Agenten

Betrachtung der Effekte:

- Effekte, die der Agent durch sein Handeln erzielen soll (Ideal)
- Effekte, die tatsächlich eintreten (Realität)

können sich unterscheiden

Ziel der Lernens: Annähern des tatsächlichen Handelns an das ideale Handeln

Induktives Lernens

In dieser und den folg. Vorlesungseinheiten werden Formen des induktiven Lernens behandelt

Induktives Lernen:

Eingabe: einzelne Beispielinstanzen (Stichproben)

Ausgabe: allgemeine Regeln, Funktionen, etc.

Kurz: Generalisierung vom Besonderen zum Allgemeinen

Deduktives Lernen:

Eingabe: allgemeine Regeln, Sätze, ...

Ausgabe: spezialisierte/instanziierte Regeln, Sätze, ...

Kurz: Spezialisierung vom Allgemeinen zum Besonderen

Repräsentationsformen

Es gibt verschiedene Lernverfahren für alle in der Vorlesung vorgekommenen Formen der Wissensrepräsentation:

- 1. Numerische Funktionen, z.B. Bewertungsfunktionen bei Spielen:
 - Neuronale Netze
 - Kernel-Methoden, z.B. Support-Vector-Maschinen
- 2. Logikbasierte Beschreibungen, z.B. für alle Komponenten logischer Agenten:
 - Entscheidungsbäume (für Aussagenlogik)
 - Induktive Logische Programmierung (Lernen von Prädikaten)
- 3. Probabilistische Beschreibungen, z.B. Bayes-Netze:
 - Bayessches Lernen
 - Unsupervised Clustering

Form der Rückkopplung: Überwachtes Lernen

Überwachtes Lernen (Supervised Learning):

- Es gibt eine Trainingsmenge T mit korrekten Ein-/Ausgabe-Paaren.
- Die Rückkopplung für den Agenten ist also:

für jede Eingabe aus *T* steht die entspr. korrekte Ausgabe (bzw. der Unterschied zw. errechneter und korrekter Ausgabe) zur Verfügung

→ Bezogen auf das Handlungslernen des Agenten:

Es ist so, als ob ein Lehrer dem Agenten die richtige Aktion zu jeder Zustandsbeschreibung aus der Trainingsmenge mitteilt

Form der Rückkopplung: Unüberwachtes Lernen

Unüberwachtes Lernen (Unsupervised Learning):

- Die Trainingsmenge T enthält nur Eingabewerte bzw. Eingabetupel.
 - keine Rückkopplung
 - ✓ Der Agent kann aus T nur Modelle für das Auftreten von Mustern bzw.
 Regelmäßigkeiten lernen, aber *nicht*, was er richtigerweise tun müsste
 - Annahme ist also, dass Tinhärente Muster enthält
 - Bspl.: Taxifahrer-Agent
 - Eingabe: Tupel der Art [Wochentag, Uhrzeit, Fahrdistanz, Fahrdauer]
 - Ziel: Der Agent lernt aus Korrelationen Konzepte für Haupt-, Normalund Schwachverkehrszeiten – ohne jemals explizit als solche bezeichnete Beispiele gesehen zu haben

Form der Rückkopplung: Verstärkendes Lernen

Verstärkendes Lernen (Reinforcement Learning):

- Die Trainingsmenge Tenthält Paare aus Eingabe- und Verstärkungswerten
- Die Rückkopplung ist also eine Verstärkung
- Eine Verstärkungen ist eine Belohnung oder ein Bestrafung, die mit dem in der Eingabe kodierten Zustand oder kodierten Aktion einher geht
- Bspl.: Taxifahrer-Agent
 - Die Höhe des Trinkgeldes sei die Verstärkung zu jedem Eingabetupel der Art [Wochentag, Uhrzeit, Fahrdistanz, Fahrdauer, Verhalten] zu einer Taxifahrt.
 - ✓ Der Agent kann so z.B. lernen, Fahrten zu bestimmten Zeiten zu bevorzugen, sein Verhalten gegenüber dem Fahrgast zu ändern, ...

Start: Überwachtes Lernen (1)

- Ein *überwachtes* Lernverfahren schätzt eine unbekannte Funktion f aus einer Trainingsmenge T von Ein-/Ausgabepaaren $(x_i, f(x_i))$ *
- Jedes Paar $(x_i, f(x_i))$ wird als Beispiel oder Stichprobe bezeichnet
- Umsetzung:

Eingabe: Trainingsmenge T von Stichproben $(x_i, f(x_i))$ der unbekannt. Funktion f

Ausgabe: eine Hypothese h, die f approximiert

^{*} Das Lernen von Funktionen ist keine starke Einschränkung, da jede Art von Lernen als das Lernen der Repräsentation einer Funktion verstanden werden kann

Überwachtes Lernen → Induktives Lernen (2)

- Eine Hypothese heißt konsistent mit der Trainingsmenge T, wenn sie alle Beispiele aus T erklärt
- \sim Wie wählen wir aber aus mehreren konsistenten Hypothesen h_i aus?

→ Eine Antwort ist *Ockhams Rasiermesser* (1) (*Occam's Razor*): von mehreren konsistenten Alternativen ist die *einfachste* Hypothese auszusuchen

⁽¹⁾ nach dem Theologen und Logiker *William von Ockham* (* 1285 Ockham (Grafschaft Surrey), † 9.4.1347 München)

Entscheidungsbäume

- Eingabe: Beschreibung einer Situation durch eine Menge von Eigenschaften bzw. Attributen (entsprechen Grundliteralen in FOL)
- Ausgabe: Ja/Nein-Entscheidung bezüglich eines Booleschen Zielprädikats
- Repräsentationsmächtigkeit: Boolesche Funktionen über Grundliteralen in FOL
- Aufbau
 - jeder innere Knoten repräsentiert den Test eines Attributs
 - ausgehende Kanten sind mit den möglichen Werten des Tests markiert
 - jeder Blattknoten trägt den Booleschen Wert für das Zielprädikat,
 der bei Erreichen des Blattes zurückgegeben werden soll
- Ziel des Lernprozesses: Definition eines Zielprädikats als Entscheidungsbaum

Restaurantbeispiel (Attribute)

Beschreibende Attribute:

- Patrons: Wieviele Gäste sind da? (None, Some, Full)
- WaitEstimate: Wie lange vorauss. warten? (0-10, 10-30, 30-60, >60)
- Alternate: Gibt es eine Alternative? (T/F)
- Hungry: Bin ich hungrig? (T/F)
- Reservation: Habe ich reserviert? (T/F)
- Bar: Hat das Restaurant eine Bar zum Warten? (T/F)
- Fri/Sat: Ist es Freitag oder Samstag? (T/F)
- Raining: Regnet es draußen? (T/F)
- Price: Wie teuer ist das Essen? (\$, \$\$, \$\$\$)
- Type: Art des Restaurants? (French, Italian, Thai, Burger)

Restaurantbeispiel (Entscheidungsbaum)

Repräsentation des Zielprädikats

Ein Entscheidungsbaum ist als Konjunktion von Implikationen und damit als KNF darstellbar.

Die Implikationen bzw. Disjunktionen in KNF entsprechen den Pfaden, die in YES-Knoten enden:


```
\forall r \{ \\ [\textit{Patrons}(r, \textit{Some}) \Rightarrow \textit{WillWait}(r) ] \\ \land \dots \\ \land [\textit{Patrons}(r, \textit{Full}) \land \textit{WaitEstimate}(r, 10-30) \land \textit{Hungry}(r, No) \Rightarrow \textit{WillWait}(r) ] \\ \land \dots \\ \}
```

```
{ [ Patrons(r, Some) , WillWait(r) ], ... [ Patrons(r, Full), WaitEstimate(r, 10-30), Hungry(r, No), WillWait(r) ], ... }
```

Ausdruckskraft von Entscheidungsbäumen

Die Sprache von klassischen Entscheidungsbäumen ist inhärent aussagenlogisch (bzw. die über Grundliteralen in FOL):

Theorem 1: Alle aussagenlogischen Formeln sind mit Entscheidungsbäumen darstellbar

Kompakte Repräsentationen

- Theoretisch kann jede Zeile einer Wahrheitswerttabelle in einen Pfad eines Entscheidungsbaums übertragen werden
 - Allerdings ist die Größe der Tabelle und damit eines so generierten Baums exponentiell in der Anzahl der Attribute
 - Ziel des Entscheidungsbaumlernens ist die Ableitung <u>kompakter</u> Entscheidungsbäume
- Aber es gibt Boolesche Funktionen, die einen Baum exponentieller Größe erfordern:
 - \rightarrow Parity Funktion: $p(x) = \begin{cases} 1 & \text{geradeAnzahkonEingaber} \\ 0 & \text{sonst} \end{cases}$
 - Es gibt keine kompakte Repräsentation für alle Booleschen Funktionen

Restaurantbeispiel: Lernen aus Trainingsmenge

Klassifizierung eines Beispiels = Wert des Zielprädikats:

Trainingsmenge: 6 positive und 6 negative Beispiele

Example	Attributes										Goal
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10–30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes
<i>X</i> 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes

Der triviale Entscheidungsbaum

Der triviale Entscheidungsbaum:

- ein Pfad für jedes Beispiel
- memorisiert lediglich die Beispiele der Trainingsmenge

- keine kompakte Repräsentation
- keine Extraktion eines allgemeinen Musters (keine Generalisierung)
- → keine Vorhersagekraft

Kompakte Entscheidungsbäume

Zur Erzielung von Kompaktheit, Generalisierung und Vorhersagekraft ist Ockham's Razor anzuwenden:

"Die wahrscheinlichste Hypothese ist die *einfachste*, die alle Beispiele umfasst"

Hier: der Baum mit der minimalen Anzahl von Tests

Aber: das Erzeugen des kleinsten Entscheidungsbaums ist nicht handhabbar

Daher: Einsatz von Heuristiken, die zu einer kleinen Menge von Tests führen

Gewichtung von Attributen (informell)

Heuristik: Wähle in jedem Aufbauschritt des Baumes das Attribut, das den maximalen Informationsgewinn für die richtige Klassifikation der Trainingsbeispiele liefert.

Rekursives Lernverfahren (1)

Der Aufbau eines Entscheidungsbaumes erfolgt rekursiv:

Nach jeder Auswahl eines inneren Entscheidungsknotens (Testknotens)

- liegt ein neues Entscheidungsbaum-Lernproblem vor
- mit weniger Beispielen, die noch nicht klassifizierbar sind
- mit reduzierter Zahl von noch nicht verwendeten Testattributen

Rekursives Lernverfahren (2)

Für jeden Aufbauschritt können die *vorläufigen Blattknoten* vier Fälle zeigen:

- Positive und negative Beispiele: wähle neues Attribut
- 2) Nur positive oder nur negative Beispiele: terminaler Blattknoten
- 3) Keine Attribute mehr, aber noch Beispiele mit unterschiedlicher Klassifikation: es lagen Fehler in den Daten vor (∼ NOISE) oder die Attribute sind unzureichend. Antworte JA, wenn die Mehrzahl der Beispiele positiv ist, sonst NEIN
- 4) Keine Beispiele: Es gab kein Beispiel mit dieser Eigenschaft. Antworte JA, wenn Mehrzahl der Beispiele des Elternknotens positiv ist, sonst NEIN

Der Algorithmus

Bewertung und Auswahl von Attributen

Bislang liegt nur eine informelle Darstellung der Heuristik zur Attributauswahl beim Lernen von Entscheidungsbäumen vor:

"Wähle in jedem Aufbauschritt des Baumes das Attribut, das den maximalen Informationsgewinn für die richtige Klassifikation der Trainingsbeispiele liefert."

Frage: wie ist dieser maximale Informationsgewinn zu ermitteln?

Quantifizierung durch Informationstheorie (1)

Die Entropie *H* ist ein Maß für die Unsicherheit einer Zufallsvariable:

Bei n möglichen (Ausgangs-)Werten v_i (i = 1,...,n) mit entsprechenden W'keiten $P(v_i)$ ist die Entropie H:

$$H(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} P(v_i) \log_2 \left(\frac{1}{P(v_i)}\right) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$$
mit $0 \cdot \log_2 0 = 0$

Quantifizierung durch Informationstheorie (2)

Bspl. Münzwurf:

$$H(P(v_1), ..., P(v_n)) = \sum_{i=1}^{n} P(v_i) \log_2 \left(\frac{1}{P(v_i)}\right) = \sum_{i=1}^{n} -P(v_i) \log_2 P(v_i)$$

mit $0 \cdot \log_2 0 = 0$

Gezinkte Münze mit P(Kopf) = 100% und P(Zahl) = 0% \sim minimale Unsicherheit $\sim H(1,0) = -1.0 + 0.0 = 0$ Faire Münze mit P(Kopf) = 50% und P(Zahl) = 50% \sim maximale Unsicherheit $\sim H(1/2, 1/2) = -0.5 \cdot -1 + -0.5 \cdot -1 = 1$ Gezinkte Münze mit P(Kopf) = 99% und P(Zahl) = 1% \sim geringe Unsicherheit $\sim H(0.99,0.01) = -0.01 \cdot -6.64 + -0.99 \cdot -0.015 = 0.08$

Attributselektion für Entscheidungsbäume (1)

Geg.: Trainingsmenge *T* mit *p* positiven Beispielen und *n* negativen Beispielen

→ Entropie zu Beginn des Ent'-Baum-Lernens:

$$H\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n} \log_2\left(\frac{p}{p+n}\right) - \frac{n}{p+n} \log_2\left(\frac{n}{p+n}\right). \tag{1}$$

Aufgabe: Auswahl des ersten/nächsten Attributs.

• Annahme: Ein Attribut A habe v Werte $\sim A$ unterteilt T in v Teilmengen T_1, \ldots, T_v . Jede Teilmenge T_i habe p_i positive und n_i negative Beispiele. Für jede Teilmenge T_i liegt noch folg. Entropie vor:

$$H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right). \tag{2}$$

Zufälliges Bspl. aus T gehört zu Teilmenge T_i , $i \in \{1, ..., v\}$, mit W'keit $\frac{p_i + n_i}{p + n}$. (3)

Attributselektion für Entscheidungsbäume (2)

✓ Verbleibender Informationsbedarf (Remainder) R(A) nach Auswahl von A ist (aus (2) und (3)):

$$R(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} \cdot H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right). \tag{4}$$

Informationsgewinn (Gain) durch Auswahl von Attribut A ist (aus (1) und (4)):

$$Gain(A) = H\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - R(A). \tag{5}$$

✓ Wähle Attribut A aus allen noch nicht im Entscheidungsbaum befindlichen

Attributen so, dass der Informationsgewinn Gain (A) maximiert wird.

Restaurantbeispiel: Auswahl des 1. Attributs

Vergleich der Informationsgewinne für die Attribute *Patrons* und *Type* als erstes Bewertungsattribut.

Beachte: Trainingsmenge T hat 6 positive und 6 negative Beispiele.

$$Gain(Patrons?) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H\left(\frac{2}{6},\frac{4}{6}\right)\right] \approx 0.541$$

$$H\left(\frac{p}{p+n},\frac{n}{p+n}\right)$$
French
Italian
Burger
Thai

$$Gain(Type?) = 1 - \left[\frac{2}{12}H\left(\frac{1}{2},\frac{1}{2}\right) + \frac{2}{12}H\left(\frac{1}{2},\frac{1}{2}\right) + \frac{4}{12}H\left(\frac{2}{4},\frac{2}{4}\right) + \frac{4}{12}H\left(\frac{2}{4},\frac{2}{4}\right)\right] = 0$$

Also liefert Patrons den größeren Informationsgewinn im Vergleich zu Type.

Anwendung auf die Restaurant-Daten

Bewertung eines Lernalgorithmus: Trainings- und Testmenge

Ansatz zur Beurteilung der Vorhersagekraft:

Sammle eine große Menge M von Stichproben

- Bei überwachtem Lernen wie hier: jede Stichprobe = Ein-/Ausgabepaar
- Unterteile *M* in zwei *disjunkte* Mengen: Trainingsmenge *T* und
 Testmenge *E* *
- Benutze Trainingsmenge T, um Hypothese h zu lernen
- Nutze Testmenge *E* für Evaluierung um den Anteil korrekt klassifizierter
 Stichproben zu messen.
- Wiederhole das Verfahren für zufällig gewählte Trainingsmengen unterschiedlicher Größe

35

^{*} Trainings- und Testmenge müssen unbedingt getrennt gehalten werden. Beliebter Fehler: Aufgrund des Testens wird der Lernalgorithmus verändert und danach mit den selben Trainings- und Testmengen getestet. Dadurch wird Wissen über die Testmenge in den Algorithmus gesteckt und es besteht keine Unabhängigkeit zwischen Trainings- und Testmengen mehr.

Lernkurve des Restaurantbeispiels

Fragen:

- 1) Die Vorhersagekraft nimmt hier mit wachsender Größe der Trainingsmenge zu
 - Welche Größe der Trainingsmenge ist hinreichend für "gutes Lernen"
 - Nächste Vorlesung
- 2) Optimierung von Lernverfahren? « s. Folgefolien
- 3) Gibt es weitere Bewertungsmaße für Lernverfahren? s. Folgefolien

Bewertung eines Lernalgm.: Trainings-, Validierungs- und Testmenge

Ansatz zur Beurteilung der Vorhersagekraft:

Sammle eine große Menge M von Stichproben

Bei überwachtem Lernen wie hier: jede Stichprobe = Ein-/Ausgabepaar

Unterteile *M* in drei disjunkte Mengen: Trainingsmenge *T*,

Validierungsmenge V und

Testmenge *E*

- Benutze Trainingsmenge T, um Hypothese h zu lernen
- Nutze Validierungsmenge V um Hyperparameter des Lernalgorithmus zu optimieren (z.B. Anzahl und Größen der Layer in KNNs, Zahl der Entscheidungsbäume in Entscheidungswäldern, etc.)
- Nutze Testmenge *E* für Evaluierung um den Anteil korrekt klassifizierter
 Stichproben zu messen

Bewertung eines Lernalgorithmus: Kreuzvalidierung

Kreuzvalidierung (cross validation) setzt den skizzierten Ansatz systematisch um

- Bei k-fachen Kreuzvalidierung (k-fold cross validation) wird die Beispielmenge M
 in k disjunkte Teilmengen unterteilt.
- In *k* Iterationen wird das Lernverfahren jedes Mal auf einer anderen Teilmenge getestet, nachdem es auf den jeweils restlichen *k*-1 Teilmengen *neu* trainiert wurde.
- Ergebnis der Bewertung ist der über die *k* Iterationen gemittelte Anteil korrekt klassifizierter Beispiele .
- Bei der *k*-fachen stratifizierten Kreuzvalidierung (*stratified k-fold cross-validation*) wird darauf geachtet, dass jede der *k* Teilmengen annähernd die gleiche Verteilung besitzt. Dadurch wird die Varianz der Abschätzung verringert.

Bewertung eines Lernalgorithmus: Bspl. Kreuzvalidierung

Beispiel einer 5-fachen stratifizierten Kreuzvalidierung mit Stichprobenmenge M, die je 10 Beispiele für zwei Klassen K_1 und K_2 zeigt:

$$K_1 = \{ k_{1,1}, k_{1,2}, k_{1,3}, k_{1,4}, k_{1,5}, k_{1,6}, k_{1,7}, k_{1,8}, k_{1,9}, k_{1,10} \},$$
 $K_2 = \{ k_{2,1}, k_{2,2}, k_{2,3}, k_{2,4}, k_{2,5}, k_{2,6}, k_{2,7}, k_{2,8}, k_{2,9}, k_{2,10} \}$

- Iteration 1: M_1 für Testen M_2 , M_3 , M_4 , M_5 für Training
- Iteration 2: M_2 für Testen M_1 , M_3 , M_4 , M_5 für Training
- Iteration 3: M_3 für Testen M_1 , M_2 , M_4 , M_5 für Training
- Iteration 4: M_4 für Testen M_1 , M_2 , M_3 , M_5 für Training
- Iteration 5: M_5 für Testen M_1 , M_2 , M_3 , M_4 für Training
- Ergebnis: gemittelter Anteil korrekt klassifizierter Beispiele in jeweil. Testmengen

Bewertungsmaße für Lernalgorithmen: Konfusionsmatrix (1)

Ein trainierter Lernalgorithmus L kann vier mögliche Ergebnisse für jede Stichprobe S des Testmenge E liefern:

- 1) S ist tatsächlich in Klasse C und L ordnet S auch Klasse C zu

 ~ richtig-positiver Fall (true positive)
- 2) S ist tatsächlich nicht in Klasse C, aber L ordnet S der Klasse C zu

 ✓ falsch-positiver Fall (false positive)
- 4) S ist tatsächlich in Klasse C, aber L ordnet S nicht der Klasse C zu

 ✓ falsch-negativer Fall (false negative)

Bewertungsmaße für Lernalgorithmen: Konfusionsmatrix (2)

Die Häufigkeiten der genannten vier Fälle werden in eine sog. Konfusionsmatrix

eingetragen:

		class C predicted by classifier				
		true	false			
actual class is C	true	true positive ↓ (correct) hits	false negative			
	false	false positive	true negative			

Aus der Konfusionsmatrix lassen sich verschiedene Bewertungsmaße ableiten.

Bewertungsmaße für Lernalgorithmen: Recall

Recall (Trefferquote) eines Lernalgorithmus *L* ist definiert als:

- → Hoher Recall → L erkennt die meisten Stichproben S aus Klasse C richtig
- \rightarrow Recall = 1 \rightarrow L erkennt alle Stichproben S aus Klasse C richtig

→ Aber keine Aussage zu den Stichproben S, die Klasse C fälschlicherweise zugeordnet werden

Bewertungsmaße für Lernalgorithmen: Precision

Precision (Genauigkeit) eines Lernalgorithmus *L* ist definiert als:

- → Hohe Precision → L ordnet Klasse C mehr richtige Stichproben (aus C) als falsche Stichproben (nicht aus C) zu
- → Precision = 1 → L ordnet Klasse C nur Stichproben S aus Klasse C zu

→ Aber keine Aussage zu den Stichproben S aus Klasse C, die fälschlicherweise C nicht zugeordnet werden

Bewertungsmaße für Lernalgorithmen: F-Score und Accuracy

F Score (F-Maß) ist als Kombination von Precision und Recall mittels des gewichteten harmonischen Mittels definiert:

$$F = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Accuracy (Korrektklassifikationsrate) eines Lernalgorithmus *L* wird vielen Evaluierungsgrafiken des Buchs von Russel und Norvig benutzt:

Zusammenfassung

- Lernverfahren wurden entsprechend der Rückkopplung unterteilt in
 - überwachte Lernverfahren
 - unüberwachte Lernverfahren
 - verstärkende Lernverfahren
- Entscheidungsbäume
 - sind eine Möglichkeit zum überwachten Lernen
 - sind eine Möglichkeit, Boolesche Funktionen zu repräsentieren
 - können in der Größe exponentiell in der Anzahl der Attribute sein
 - Es ist oft schwierig, den minimalen Entscheidungsbaum zu finden
 - Eine Methode zur Generierung von möglichst flachen Entscheidungsbäumen beruht auf der Gewichtung der Attribute
- Bewertung von Lernalgorithmen