Table A2.1 ACI approximate design moments and shears for beams and one-way slabs

Positive	End spans			
moment	Discontinuous end unrestrained	$w_u \ell_n^2 / 11$		
	Discontinuous end integral with support	$w_u \ell_n^2 / 14$		
	Interior spans	$w_u \ell_n^2 / 16$		
Negative	At exterior face of the first interior support			
moment	Two spans	$w_u \ell_n^2 / 9$		
	More than two spans	$w_u \ell_n^2 / 10$		
	At other faces of interior supports	$w_u \ell_n^2 / 11$		
	At the face of all supports for SLABS with spans not exceeding 10 ft; and BEAMS where ratio of sum of column stiffnesses to beam stiffness exceeds 8 at each end of the span	$w_u \ell_n^2 / 12$		
	At interior face of exterior support for members built integrally with supports			
	Where support is a spandrel beam	$w_u \ell_n^2 / 24$		
	Where support is a column	$w_u \ell_n^2 / 16$		
Shear	In end members at the face of the first interior support	$1.15 w_u \ell_n/2$		
	At face of all other supports	$w_u \ell_n / 2$		

Table A2.2a Values of A_1 and B_1 for commonly used reinforcing steels

f_y (psi)	ϵ_{ty}	A_1	B_1
40,000	0.00138	0.555	69.1
60,000	0.00207	0.473	85.3
75,000	0.00259	0.381	103.7

Table A2.2b Values of A_2 and B_2 for commonly used reinforcing steels

f_y (psi)	d_t/c_b	c_b/d_t	A_2	B_2
40,000	1.460	0.685	0.345	0.208
60,000	1.690	0.592	0.233	0.250
75,000	1.863	0.537	0.067	0.312

Table A2.3 $\rho_{\rm max}$ and $\rho_{\rm rc}$ for common grades of steel and compressive strength of concrete (single layer of steel, i.e., $d=d_t$)

f_y (psi)	$f_{\rm c}' = 3,000{ m psi}$	$f_{\rm c}' = 4,000{ m psi}$	$f_{\rm c}' =$ 5,000 psi	ф	
	$ ho_{ ext{max}} \left(arepsilon_{ ext{t}} = 0.004 ight)$				
40,000	0.0232	0.0310	0.0364	0.83	
60,000	0.0155	0.0207	0.0243	0.81	
75,000	0.0124	0.0165	0.0194	0.80	
$ \rho_{tc} \left(\varepsilon_t = 0.005 \right) $					
40,000	0.0203	0.0270	0.0318	0.90	
60,000	0.0135	0.0180	0.0212	0.90	
75,000	0.0108	0.0144	0.0169	0.90	

 $\it Note$: For multiple layers of reinforcements, multiply the table values by $\frac{d_t}{d}$

Table A2.4 Minimum steel ratio (ρ_{min})

f (mai)	ρ _{min}			
f_{y} (psi)	$f_{\rm c}' =$ 3,000 psi	$f_{\rm c}' =$ 4,000 psi	$f_{\rm c}' =$ 5,000 psi	$f_{\rm c}' = 6,000 { m psi}$
40,000	0.0050	0.0050	0.0053	0.0058
60,000	0.0033	0.0033	0.0035	0.0039
75,000	0.0027	0.0027	0.0028	0.0031