0. Revisões

- **0.1** Seja A o conjunto $\{0,1\}$.
 - a) Indique os elementos dos conjuntos A^2 e A^3 .
 - b) Qual é o número de relações unárias e de relações binárias sobre o conjunto A, i.e., qual é o número de subconjuntos de A e de A^2 , respetivamente?
 - c) Determine o número de funções f do tipo $f: A \to A$ e do tipo $f: A^2 \to A$.
- **0.2** Prove que, para qualquer $n \in \mathbb{N}$, $1 + \dots + n = n(n+1)/2$.
- **0.3** Prove que, para cada $n \in \mathbb{N}_0$:

a)
$$\sum_{i=0}^{n} 2i = n^2 + n;$$
 b) $\sum_{i=0}^{n} (2i+1) = (n+1)^2;$
c) $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6};$ d) $\sum_{i=0}^{n} x^i = \frac{x^{n+1}-1}{x-1}, \text{ com } x \in \mathbb{R} \setminus \{1\}.$

- **0.4** Para $n \in \mathbb{N}$, seja P(n) a propriedade: $2^n < n!$.
 - a) Mostre que: para $k \in \mathbb{N}$ e k > 3, se P(k) é verdadeira, P(k+1) também é verdadeira.
 - b) Indique, justificando, quais os naturais n para os quais P(n) é verdadeira.
- **0.5** Seja $f: \mathbb{N}_0 \to \mathbb{N}_0$ a função definida recursivamente por f(0) = 1 e f(n+1) = 2f(n), para cada $n \in \mathbb{N}_0$.
 - a) Calcule f(1) e f(2).
 - **b)** Mostre que, para cada $n \in \mathbb{N}_0$, $f(n) = 2^n$.
- **0.6** Seja $s: \mathbb{N} \to \mathbb{Q}$ a função definida por s(1) = 2 e $s(n+1) = \frac{2}{s(n)}$.
 - a) Determine $s(1), s(2) \in s(3)$.
 - b) Determine o contradomínio de s. Prove a sua afirmação por indução.
- **0.7** Sejam $a, b \in \mathbb{R}$ com $b \neq 1$ e seja $f : \mathbb{N} \to \mathbb{R}$ a função definida recursivamente por f(1) = a e $f(n+1) = f(n) + ab^n$ para cada $n \in \mathbb{N}$.
 - **a)** Verifique que $f(n) = \frac{a(1-b^n)}{1-b}$ para $n \in \{1, 2, 3\}$.
 - **b)** Mostre que, para cada $n \in \mathbb{N}$, $f(n) = \frac{a(1-b^n)}{1-b}$.
- **0.8** Seja A um conjunto finito.
 - a) Prove que, se A tem n subconjuntos e $a \notin A$, então $A \cup \{a\}$ tem 2n subconjuntos.
 - **b)** Prove que: $\#\mathcal{P}(A) = 2^{\#A}$.
 - c) Qual é o número de subconjuntos de A^3 , quando A é um conjunto com 3 elementos?

Indução e recursão estruturais

- 1.1 Seja S o subconjunto de $\mathbb{Q} \setminus \{0\}$ definido indutivamente pelas 3 regras seguintes.

 - $\begin{array}{ll} (1) & 2 \in S \\ (2) & q \in S \ \Rightarrow \ \frac{1}{q} \in S \\ (3) & p \in S \ \mathrm{e} \ q \in S \ \Rightarrow \ p \cdot q \in S \end{array}$
 - a) Mostre que o conjunto $\{\frac{1}{3}, \frac{1}{2}, 2, 3\}$ é fechado para a operação $f: \mathbb{Q} \setminus \{0\} \to \mathbb{Q} \setminus \{0\}$ tal que $f(q) = \frac{1}{q}$, para qualquer $q \in \mathbb{Q} \setminus \{0\}$.
 - **b)** Mostre que o conjunto $\{\frac{1}{2},2\}$ não é fechado para a operação $g:(\mathbb{Q}\setminus\{0\})^2\to\mathbb{Q}\setminus\{0\}$ definida, para quaisquer $p, q \in \mathbb{Q} \setminus \{0\}$, por $g(p, q) = p \cdot q$.
 - c) Determine o conjunto S.
- **1.2** Seja $A = \{a, b, c, d\}$ e seja $f: A \times A \to A$ a operação em A definida pela tabela que se

- a) Calcule os conjuntos indutivos, sobre A, de base $\{b\}$ e conjunto de operações $\{f\}$.
- b) Indique qual é o conjunto gerado pela definição indutiva ($\{b\}, \{f\}$). Justifique a sua resposta.
- c) Indique uma árvore de formação de c. A árvore de formação que encontrou é a única árvore de formação de c?
- d) A definição indutiva ($\{b\}, \{f\}$) é determinista? Justifique.
- 1.3 Apresente definições indutivas de cada um dos seguintes conjuntos:
 - a) o conjunto dos naturais múltiplos de 5;
 - b) o conjunto dos números inteiros;
 - c) o conjunto das palavras sobre o alfabeto $\Sigma = \{0, 1\}$ cujo comprimento é impar;
 - d) o conjunto das palavras sobre o alfabeto $\Sigma = \{a, b\}$ que têm um número par de ocorrências do símbolo a.

Em cada um dos casos anteriores, indique justificando se a definição indutiva apresentada é ou não determinista.

1.4 Sejam X um conjunto, f uma operação binária em X e B um subconjunto não vazio de X. Seja ainda S o conjunto de todos os subconjuntos de X que contêm B e são fechados para f e seja

$$G = \bigcap_{Y \in S} Y = \{ y \in X : \forall_{Y \in S} \ y \in Y \}.$$

- a) Mostre que G é um elemento de S.
- b) Mostre que G é o menor conjunto que contém B e é fechado para f.

1.5 Seja V o conjunto numerável formado pelos símbolos $v_0, v_1, v_2, ...$ (designados por variáveis) e seja A o alfabeto $V \cup \{c, f, g, h, (,), ,\}$. Consideremos que E é o conjunto gerado, sobre A^* , pela seguinte definição indutiva determinista.

$$\frac{c \in E}{c \in E} \ c \qquad \frac{t \in E}{v_n \ (n \in \mathbb{N}_0)} \qquad \frac{t \in E}{p(t) \in E} \ p \ (p \in \{f, h\}) \qquad \frac{t_1 \in E \ t_2 \in E}{g(t_1, t_2) \in E} \ g(t_1, t_2) \in E$$

- a) Dê exemplos de elementos de A^* que pertençam ao conjunto E e de elementos de A^* que não pertençam ao conjunto E. Justifique as suas respostas.
- b) Investigue se o conjunto E é fechado para cada uma das operações que se seguem.

- c) Para cada um dos seguintes elementos de E, indique o conjunto dos seus sub-objetos diretos e o conjunto dos seus sub-objetos.
 - i) c ii) $f(v_2)$ iii) $g(g(v_0,c),c)$ iv) $f(g(f(v_1),h(v_1)))$
- d) Para cada um dos elementos de E da alínea anterior, indique 2 sequências de formação cujos comprimentos sejam diferentes.
- 1.6 Seja E o conjunto de expressões definido no Exercício 1.5.

Considere o seguinte esquema de árvore de formação para elementos de E.

$$\frac{\overline{\varphi_1 \in E} \ r_1 \quad \overline{\varphi_2 \in E} \ r_3}{\underline{\varphi_4 \in E} \ r_4} \ \frac{\overline{\varphi_3 \in E}}{\varphi_5 \in E} \ r_5}{r_6} \ r_6$$

Considere ainda que X é o conjunto dos elementos de E com este esquema de árvore de formação tais que o seu conjunto de variáveis é um subconjunto de $\{v_1, v_2\}$.

- a) Indique, justificando, um elemento de X.
- b) Determine o número de elementos do conjunto X.
- c) Qual é o número mínimo de elementos possível numa sequência de formação de um elemento de X? Justifique.
- 1.7 Seja E o conjunto de expressões definido no Exercício 1.5.
 - a) Defina funções $n, a: E \longrightarrow \mathbb{N}_0$ que a cada elemento e de E façam corresponder, respetivamente, o número de nodos e a *altura* (número de nodos no ramo mais comprido) da árvore de formação de e.
 - **b**) Enuncie o teorema de indução estrutural para o conjunto E. Mostre que, para todo o $e \in E$, $a(e) \le n(e)$.

1.8 Seja X o conjunto das palavras sobre $\{0,1\}$ e seja G o conjunto gerado pela seguinte definição indutiva determinista sobre X.

$$\frac{x \in G}{1 \in G} 1 \qquad \frac{x \in G}{x0 \in G} f \qquad \frac{x \in G}{x1 \in G} g$$

Considere ainda a única função $i: G \longrightarrow \mathbb{N}$ que satisfaz as seguintes condições:

- i(1) = 1;
- para todo o $x \in G$, i(x0) = 2i(x);
- para todo o $x \in G$, i(x1) = 2i(x) + 1.
- a) Indique os elementos de G que admitem sequências de formação de comprimento inferior a 3.
- **b**) Defina por recursão estrutural a função $h:G\longrightarrow G$ tal que, para cada $x\in G$, h(x)=1x.
- c) Determine i(11) e i(101).
- **d**) Enuncie o princípio de indução estrutural para G.
- e) Mostre que, para todo o $x \in G$, $i(h(x)) = 2^n + i(x)$, em que n é o comprimento da palavra x.
- **1.9** Seja X o conjunto das palavras sobre o alfabeto $\{a, *, (,)\}$ e seja G o conjunto gerado pela seguinte definição indutiva determinista sobre X.

$$\frac{x \in G}{a \in G} \ 1 \qquad \frac{x \in G}{xa \in G} \ 2 \qquad \frac{x \in G \quad y \in G}{(x * y) \in G} \ 3$$

Seja ainda $i: G \longrightarrow \mathbb{N}$ a única função que satisfaz as seguintes condições:

- i(a) = 1:
- i(xa) = i(x) + 1, para todo o $x \in G$;
- i((x * y)) = i(x) + i(y), para todos os $x, y \in G$.
- a) Construa a árvore de formação do elemento u = ((aa * a)a * a) de G.
- b) Indique um elemento de X que não pertence a G.
- \mathbf{c}) Calcule i(u).
- **d**) Enuncie o teorema de indução estrutural para G.
- e) Mostre que, para todo o $x \in G$, i(x) é o número de ocorrências da letra a na palavra x.

2. Sintaxe do Cálculo Proposicional

- **2.1** Represente as seguintes frases através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar *frases atómicas*:
 - a) Se o Sr. João é feliz, a sua mulher é infeliz e se o Sr. João é infeliz, a sua mulher também o é.
 - b) Vou de comboio e perco o avião ou vou de camioneta e não perco o avião.
 - c) Uma condição necessária para que uma sucessão seja convergente é que seja limitada.
 - d) Se x é um número racional e y é um inteiro, então z não é real.
 - e) Se o Pedro não jogar, então o Miguel joga e a equipa perde o jogo.
 - f) Uma condição suficiente para um número ser ímpar é que seja primo.
- **2.2** Encontre exemplos de *frases verdadeiras* que possam ser representadas através das seguintes fórmulas:
 - **a**) $(p_1 \to ((\neg p_2) \lor p_3)).$
 - **b**) $((p_4 \wedge (\neg p_0)) \vee p_6)$.
 - c) $(p_{13} \leftrightarrow p_8)$.
 - **d**) $((p_{98} \rightarrow p_{99}) \rightarrow p_{2000}).$
- **2.3** De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :
 - **a**) $(\neg (p_1 \lor p_2))$.
 - **b**) $((\neg p_5) \to (\neg p_6))$.
 - **c**) $((p_3 \wedge p_1) \vee (.$
 - **d**) $((p_0 \land \neg p_0) \rightarrow \bot)$.
 - $\mathbf{e})$ (\perp).
 - **f**) $(((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot))).$
- 2.4 Para cada uma das seguintes fórmulas do Cálculo Proposicional:
 - i) p_{2012} .
 - ii) $\neg \bot \lor \bot$.
 - iii) $p_0 \rightarrow (\neg p_0 \rightarrow \neg p_1)$.
 - a) construa sequências de formação e árvores de formação;
 - b) indique o número mínimo de elementos numa sua sequência de formação e diga quantas destas sequências de formação de comprimento mínimo existem.

- **2.5** Para cada fórmula φ do exercício anterior, calcule:
 - a) $var(\varphi)$, $r(\varphi) \in h(\varphi)$.
 - **b)** $\varphi[p_{2011}/p_0], \varphi[p_{2011}/p_1] \in \varphi[p_{2011}/p_{2009}].$
- **2.6** Mostre que, para todo o $\varphi \in \mathcal{F}^{CP}$:
 - **a)** $h(\varphi) > 0$.
 - **b)** $h(\varphi) = 1 + r(\varphi)$.
- 2.7 Defina por recursão estrutural as seguintes funções
 - a) $p: \mathfrak{F}^{CP} \to \mathbb{N}_0$ tal que $p(\varphi) =$ número de ocorrências de parêntesis em φ .
 - b) $v: \mathcal{F}^{CP} \to \mathbb{N}_0$ tal que $v(\varphi) =$ número de ocorrências de variáveis proposicionais em φ .
 - **c)** $c: \mathfrak{F}^{CP} \to \mathfrak{P}(BIN)$ tal que $c(\varphi) = \{ \Box \in BIN : \Box \text{ ocorre em } \varphi \}$, onde $BIN = \{ \land, \lor, \rightarrow, \leftrightarrow \}$.
 - d) $[\perp/p_7]: \mathfrak{F}^{CP} \to \mathfrak{F}^{CP}$ tal que $\varphi[\perp/p_7] = \text{resultado de substituir em } \varphi \text{ todas as ocorrências de } p_7 \text{ por } \perp.$
- 2.8 Considere de novo as funções definidas no exercício anterior. Prove por indução estrutural cada uma das seguintes afirmações:
 - a) para todo o $\varphi \in \mathfrak{F}^{CP}$, $v(\varphi) \geq$ número de elementos de $var(\varphi)$.
 - **b)** para todo o $\varphi \in \mathcal{F}^{CP}$, $p(\varphi) \geq$ número de elementos de $c(\varphi)$.
 - c) para todo o $\varphi \in \mathcal{F}^{CP}$, $v(\varphi) \ge v(\varphi[\perp /p_7])$.
 - **d)** para todo o $\varphi \in \mathcal{F}^{CP}$, $c(\varphi) = c(\varphi[\perp /p_7])$.
 - e) para todo o $\varphi \in \mathfrak{F}^{CP}$, se $c(\varphi) \neq \emptyset$ então $p(\varphi) > 0$.
 - **f)** para todo o $\varphi \in \mathcal{F}^{CP}$, se $var(\varphi) = \{p_7\}$ então $v(\varphi[\perp /p_7]) = 0$.
 - **g)** para todo o $\varphi \in \mathcal{F}^{CP}$, se $p_7 \notin var(\varphi)$ então $\varphi[\perp /p_7] = \varphi$.
- **2.9** Pode demonstrar-se a proposição que se segue, a partir da definição de subfórmulas. **Proposição**: $Uma fórmula \varphi é uma subfórmula de uma fórmula <math>\psi$ se e só se:
 - i) $\varphi = \psi$; ou
 - ii) $\psi = \neg \psi_1$, para alguma fórmula ψ_1 , e φ é uma subfórmula de ψ_1 ; ou
 - iii) $\psi = \psi_1 \square \psi_2$, para algumas fórmulas ψ_1 e ψ_2 e para algum conectivo $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, e φ é uma subfórmula de ψ_1 ou de ψ_2 .

Com base nesta proposição, demonstre que:

- a) a fórmula $p_1 \to p_2$ não é uma subfórmula da fórmula $\neg p_1 \to p_2$;
- b) se S é uma sequência de formação de ψ e φ é uma subfórmula de ψ , então φ é um dos elementos de S;
- c) toda a fórmula ψ admite uma sequência de formação que contém apenas subfórmulas de ψ :
- d) uma fórmula ψ tem n subfórmulas se e só se as sequências de formação de ψ mais curtas têm n elementos.
- **2.10** Defina, por recursão estrutural em fórmulas, a função $subf: \mathfrak{F}^{CP} \longrightarrow \mathfrak{P}(\mathfrak{F}^{CP})$ que a cada fórmula φ faz corresponder o conjunto de subfórmulas de φ e demonstre que, para quaisquer fórmulas φ e ψ , $\varphi \in subf(\psi)$ se e só se φ é uma subfórmula de ψ .

3. Semântica do Cálculo Proposicional

3.1 Sejam v_1 e v_2 as únicas valorações tais que

$$v_1(p) = \begin{cases} 0 \text{ se } p \in \{p_0, p_1\} \\ 1 \text{ se } p \in \mathcal{V}^{CP} - \{p_0, p_1\} \end{cases}$$
 e $v_2(p) = \begin{cases} 1 \text{ se } p \in \{p_1, p_3\} \\ 0 \text{ se } p \in \mathcal{V}^{CP} - \{p_1, p_3\} \end{cases}$.

Considere as seguintes fórmulas: $\varphi_1 = (p_2 \vee (\neg p_1 \wedge p_3));$

$$\varphi_2 = (p_2 \lor p_0) \land \neg (p_2 \land p_0);$$

$$\varphi_3 = (p_1 \to ((p_5 \leftrightarrow p_3) \lor \bot)).$$

Calcule os valores lógicos das fórmulas φ_1 , φ_2 e φ_3 para as valorações v_1 e v_2 .

3.2 Considere as seguintes fórmulas

$$\varphi_1 = \neg p_3 \land (\neg p_1 \lor p_2); \qquad \qquad \varphi_2 = (\neg p_3 \lor \neg p_1) \leftrightarrow (p_1 \to p_2);$$

$$\varphi_3 = \neg p_3 \to (p_1 \land \neg p_2).$$

- a) Para cada um dos conjuntos $\{\varphi_1, \varphi_2\}$ e $\{\varphi_2, \varphi_3\}$, dê exemplo de uma valoração que atribua o valor lógico 1 a todos os seus elementos.
- b) Mostre que não existem valorações que, em simultâneo, atribuam o valor lógico 1 a $\varphi_1 \in \varphi_3$.
- **3.3** Seja v uma valoração. Quais das seguintes proposições são verdadeiras?
 - a) $v((p_3 \to p_2) \to p_1) = 0$ e $v(p_2) = 0$ é uma condição suficiente para $v(p_3) = 0$.
 - b) Uma condição necessária para $v(p_1 \to (p_2 \to p_3)) = 0$ é $v(p_1) = 1$ e $v(p_3) = 0$.
 - c) Uma condição necessária e suficiente para $v(p_1 \land \neg p_3) = 1$ é $v((p_3 \rightarrow (p_1 \rightarrow p_3)) = 1$.
- 3.4 De entre as seguintes fórmulas, indique aquelas que são tautologias e aquelas que são contradições.
 - **a)** $(p_1 \rightarrow \perp) \lor p_1$.

- **b)** $(p_1 \rightarrow p_2) \leftrightarrow (\neg p_2 \rightarrow \neg p_1).$ **d)** $(p_1 \vee \neg p_1) \rightarrow (p_1 \wedge \neg p_1).$
- $\mathbf{c)} \quad \neg (p_1 \wedge p_2) \rightarrow (p_1 \vee p_2).$
- **3.5** Das seguintes proposições, indique as verdadeiras. Justifique.
 - a) $\models \varphi \land \psi$ se e só se $\models \varphi$ e $\models \psi$.
- b) Se $\models \varphi \lor \psi$, então $\models \varphi$ ou $\models \psi$. d) Se $\models \varphi \leftrightarrow \psi$ e $\not\models \psi$, então $\not\models \varphi$.
- c) Se $\models \varphi$ ou $\models \psi$, então $\models \varphi \lor \psi$.

- **3.6** Seja $\varphi = (\neg p_2 \to \bot) \land p_1$.
 - a) Dê exemplo de:
 - i) uma valoração v tal que $v(\varphi) = v(\varphi[p_0 \wedge p_3/p_2]);$
 - ii) uma valoração v tal que $v(\varphi) \neq v(\varphi[p_0 \land p_3/p_2])$.
 - b) Seja ψ uma fórmula. Indique uma condição suficiente para que uma valoração vsatisfaça $v(\varphi) = v(\varphi[\psi/p_2])$. A condição que indicou é necessária?

3.7 Sejam v uma valoração, φ e ψ fórmulas e p_i uma variável proposicional. Seja v' a valoração definida, para cada $p_n \in \mathcal{V}^{CP}$, por

$$v'(p_n) = \begin{cases} v(\psi) \text{ se } n = i, \\ v(p_n) \text{ se } n \neq i. \end{cases}$$

Demonstre que $v'(\varphi) = v(\varphi[\psi/p_i])$.

3.8 Seja \mathcal{F} o conjunto das fórmulas cujos conectivos estão no conjunto $\{\vee, \wedge\}$, ou seja, \mathcal{F} é o conjunto definido indutivamente, sobre o alfabeto do Cálculo Proposicional, pelas seguintes regras:

$$\frac{\varphi \in \mathcal{F} \quad \psi \in \mathcal{F}}{(\varphi \lor \psi) \in \mathcal{F}} \lor \qquad \frac{\varphi \in \mathcal{F} \quad \psi \in \mathcal{F}}{(\varphi \land \psi) \in \mathcal{F}} \land$$

- a) Enuncie o princípio de indução estrutural para F.
- b) Seja v a valoração que a cada variável proposicional atribui o valor lógico 0. Mostre que $v(\varphi) = 0$ para qualquer $\varphi \in \mathcal{F}$.
- c) Existem tautologias no conjunto F? Justifique.
- 3.9 Para cada uma das seguintes fórmulas, encontre uma fórmula que lhe seja logicamente equivalente e que envolva apenas conectivos no conjunto $\{\neg, \lor\}$.
 - a) $(p_0 \wedge p_2) \rightarrow p_3$.
- **b)** $p_1 \vee (p_2 \rightarrow \perp)$.
- c) $\neg p_4 \leftrightarrow p_2$.
- **d)** $(p_1 \vee p_2) \rightarrow \neg (p_1 \wedge \bot).$
- **3.10** Investigue se os conjuntos de conectivos $\{\lor, \land\}$ e $\{\neg, \lor, \land\}$ são ou não completos.
- **3.11** Considere a extensão do conjunto das fórmulas proposicionais \mathfrak{F}^{CP} com o conectivo ternário \bullet (ou seja, considere que à definição indutiva de \mathcal{F}^{CP} é acrescentada uma regra que indica que $\bullet(\varphi, \psi, \sigma)$ é uma fórmula proposicional se φ, ψ e σ o forem). Considere ainda que, dada uma valoração v e dadas fórmulas proposicionais φ, ψ e σ se tem,

$$v(\bullet(\varphi, \psi, \sigma)) = 1$$
 se e só se $v(\varphi) = v(\psi) = v(\sigma) = 0$.

- a) Calcule $v(\bullet(p_0, p_0, p_0))$ e $v(\neg(\bullet(p_0, p_0 \vee p_1, \bot)))$ para a valoração v tal que $v(p_i) = 0$ para todo o $i \in \mathbb{N}_0$.
- **b)** Mostre que $\bullet(\varphi, \psi, \sigma) \Leftrightarrow \neg(\varphi \lor \psi \lor \sigma)$.
- c) Dê exemplo de tautologias e de contradições onde o único conectivo usado seja •.
- d) O conjunto {•} é completo? Justifique.
- 3.12 Calcule formas normais conjuntivas e disjuntivas logicamente equivalentes a cada uma das seguintes fórmulas:
 - **a**)
- **b)** $p_1 \wedge (p_2 \wedge p_3)$.
- c) $(p_1 \vee p_0) \vee \neg (p_2 \vee p_0)$.

- **d)** $(p_1 \rightarrow \bot)$. **e)** $(p_1 \lor p_0) \land (p_2 \lor (p_1 \land p_0))$. **f)** $(p_1 \rightarrow p_2) \leftrightarrow (\neg p_2 \rightarrow \neg p_1)$.

3.13 Considere que φ e ψ são fórmulas cujo conjunto de variáveis é $\{p_1, p_2\}$ e $\{p_1, p_2, p_3\}$, respetivamente, e que têm as seguintes tabelas de verdade:

p_1	p_2	φ
1	1	0
1	0	1
0	1	1
0	0	0

Determine FND's e FNC's logicamente equivalentes a cada uma das fórmulas.

3.14 Sejam $\varphi \in \mathcal{F}^{CP}$ e $\psi = \bigwedge_{i=1}^{m} (\bigvee_{j=1}^{n_i} \ell_{ij}) \in \mathcal{F}^{CP}$, onde cada ℓ_{ij} é um literal.

Para cada $i \in \{1, ..., m\}$, seja $\Gamma_i = \{\ell_{i1}, ..., \ell_{in_i}\}$.

- a) Mostre que, para toda a valoração $v, v(\psi) = 1$ se e só se, para todo o $i \in \{1, ..., m\}$, v satisfaz pelo menos um dos elementos de Γ_i .
- b) Considere que ψ é logicamente equivalente a $\neg \varphi$. Mostre que φ é uma tautologia se e só se não existe uma valoração v tal que, para todo $i \in \{1, ..., m\}$, v satisfaz pelo menos um dos elementos de Γ_i .
- **3.15** Considere as fórmulas

$$\varphi = (p_3 \to (p_1 \lor p_2)) \lor \neg(\neg p_1 \to p_2),$$

$$\psi = \neg p_2 \land p_3 \land (\neg p_3 \lor \neg p_1 \lor p_2) \land (p_2 \lor p_1).$$

- a) Mostre que ψ é logicamente equivalente a $\neg \varphi$.
- b) Recorrendo ao exercício 3.14 diga, justificando, se φ é uma tautologia.
- c) Resolva as alíneas anteriores considerando

$$\varphi = (p_2 \to p_1) \to (\neg p_2 \land p_3), \qquad \psi = (p_1 \lor \neg p_2) \land (p_2 \lor \neg p_3).$$

- **3.16** De entre os seguintes conjuntos de fórmulas, indique os que são consistentes e os que são inconsistentes.
 - a) $\{p_0 \land p_2, p_1 \to \neg p_3, p_1 \lor p_2\}.$
 - **b)** $\{p_0 \vee \neg p_1, p_1, p_0 \leftrightarrow (p_2 \vee p_3)\}.$
 - c) \mathfrak{F}^{CP} .
 - d) O conjunto F do exercício 3.8.
- **3.17** Sejam $\Gamma, \Delta \subseteq \mathcal{F}^{CP}$. Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações.
 - a) Se $\Gamma \cup \Delta$ é consistente, então Γ e Δ são conjuntos consistentes.
 - b) Se Γ e Δ são conjuntos consistentes, então $\Gamma \cup \Delta$ é consistente.
 - c) Se Γ é consistente e $\varphi \in \Gamma$, então $\neg \varphi \notin \Gamma$.
 - d) Se Γ contém uma contradição, então Γ é inconsistente.

- 3.18 Diga, justificando, se são verdadeiras ou falsas as seguintes afirmações:
 - **a)** $p_3 \vee p_0, \neg p_0 \models p_3.$
 - **b)** $p_0 \vee \neg p_1, p_1 \vee p_2 \models p_0 \vee p_2.$
 - c) $\neg p_2 \rightarrow (p_1 \vee p_3), p_3 \wedge \neg p_2 \models \neg p_1.$
 - **d)** $\varphi \to \psi$, $(\varphi \to \psi) \to \sigma \models \sigma \lor \varphi$, para quaisquer $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$.
 - e) $\varphi \to \psi$, $\neg \psi \to \sigma$, $\sigma \models \varphi$, para quaisquer $\varphi, \psi, \sigma \in \mathfrak{F}^{CP}$.
- **3.19** Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$ e Γ um conjunto de fórmulas. Demonstre que:
 - a) $\varphi \lor \psi, \neg \varphi \lor \sigma \models \psi \lor \sigma$.
- **b)** $\models \varphi \rightarrow \psi$ se e só se $\varphi \models \psi$.
- c) $\Gamma \models \varphi \lor \psi$ se e só se $\Gamma, \neg \varphi \models \psi$. d) Γ é inconsistente se e só se $\Gamma \models \bot$.
- **3.20** Considere as seguintes afirmações:
 - Se a dívida externa aumenta ou as taxas de juro descem, então os impostos são aumentados ou o desemprego diminui.
 - Os impostos são aumentados se a dívida externa aumenta.
 - Se as taxas de juro descem, então os impostos não são aumentados ou a dívida externa não aumenta.
 - O desemprego diminui ou os impostos não são aumentados com as taxas de juro a descer.
 - a) È possível que as afirmações anteriores sejam simultaneamente verdadeiras?
 - b) A proposição "Os impostos são aumentados" é ou não uma consequência das afirmações anteriores?
- **3.21** Seja $n \in \mathbb{N}$ e considere as seguintes afirmações.
 - Se n é par, então 3 divide n ou 2 divide n.
 - 2 divide n se e só se n é par e 3 divide n.
 - a) Diga, justificando, se as duas afirmações são consistentes.
 - b) A primeira afirmação é uma consequência da segunda?
 - c) Suponha que as duas afirmações são verdadeiras e que 3 não divide n. Nestas condições, n é par ou ímpar?
- 3.22 O Carlos, o João e o Manuel, suspeitos de um crime, fizeram os seguintes depoimentos, respetivamente:
 - O João é culpado, mas o Manuel é inocente.
 - Se o Carlos é culpado, o Manuel também o é.
 - Eu estou inocente, mas um dos outros dois é culpado.
 - a) Os três depoimentos são consistentes?
 - b) Algum dos depoimentos é consequência dos outros dois?
 - c) Supondo os três réus inocentes, quem mentiu?
 - d) Supondo que todos disseram a verdade, quem é culpado?
 - e) Supondo que os inocentes disseram a verdade e que os culpados mentiram, quem é culpado?

Dedução Natural para o Cálculo Proposicional

- **4.1** Sejam φ , ψ e σ fórmulas. Justifique as seguintes relações de derivabilidade, através da construção de derivações em Dedução Natural que reflitam os argumentos informais apresentados.
 - a) $\varphi \to \psi \vdash \neg \psi \to \neg \varphi$

Argumento: Admitamos $\neg \psi$. Admitamos ainda φ . De φ e da hipótese $\varphi \rightarrow \psi$ segue ψ , o que contraria $\neg \psi$. Assim, como a assunção de φ conduz a uma contradição, podemos concluir $\neg \varphi$.

b) $\varphi \lor \psi, \neg \psi \lor \sigma \vdash \varphi \lor \sigma$

Argumento: Por um lado, admitindo φ , por maioria de razão, temos $\varphi \vee \sigma$. Por outro lado, admitindo ψ , como da segunda hipótese temos $\neg \psi$ ou σ , chegamos, no primeiro caso, a uma contradição e, no segundo caso, segue $\varphi \lor \sigma$ por maioria de razão. Assim, destas duas observações e da primeira hipótese, podemos concluir $\varphi \vee \sigma$.

- **4.2** Sejam φ , ψ e σ fórmulas. Encontre derivações em DNP das fórmulas abaixo indicadas. Em duas alíneas à escolha, indique todos as sub-derivações da derivação que apresentar.

 - $\begin{array}{lll} \mathbf{a)} & (\varphi \wedge \psi) \to (\varphi \vee \psi). & \quad \mathbf{b)} & (\varphi \to (\psi \to \sigma)) \to ((\varphi \to \psi) \to (\varphi \to \sigma)). \\ \mathbf{c)} & \varphi \to \varphi. & \quad \mathbf{d)} & (\neg \varphi \vee \psi) \to (\varphi \to \psi). \\ \mathbf{e)} & \varphi \leftrightarrow \neg \neg \varphi. & \quad \mathbf{f)} & ((\varphi \to \psi) \wedge (\psi \to \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi). \\ \mathbf{g)} & (\varphi \vee \psi) \leftrightarrow (\psi \vee \varphi). & \quad \mathbf{h)} & (\varphi \wedge \psi) \leftrightarrow \neg (\neg \varphi \vee \neg \psi). \end{array}$

- **4.3** Sejam φ e ψ fórmulas. A fórmula $((\varphi \to \psi) \to \varphi) \to \varphi$ é chamada a *Lei de Peirce*.
 - a) Indique uma derivação da Lei de Peirce a partir do conjunto $\{\neg \varphi\}$.
 - b) Demonstre que a Lei de Peirce é um teorema. (Sugestão: Utilize a derivação construída na alínea anterior.)
- 4.4 Mostre que:

a)
$$p_0 \to p_1, p_5, p_4 \to (\neg p_1 \lor p_3) \vdash (p_0 \land p_4) \to p_3.$$

b)
$$p_0 \rightarrow p_1, p_1 \rightarrow p_2, p_2 \rightarrow p_0 \vdash (p_1 \leftrightarrow p_2) \land (p_2 \leftrightarrow p_0) \land (p_1 \leftrightarrow p_0).$$

- **4.5** Sejam Γ um conjunto de fórmulas e sejam φ , ψ e σ fórmulas. Mostre que:
 - a) $\Gamma \vdash \neg \varphi$ se e só se $\Gamma \cdot \varphi \vdash \bot$.
 - **b)** $\Gamma \vdash \varphi$ se e só se $\Gamma, \neg \varphi \vdash \bot$.
- **4.6** Seja Γ um conjunto de fórmulas e sejam φ e ψ fórmulas. Mostre que:
 - a) $\Gamma \vdash \varphi \in \Gamma \vdash \neg \varphi$ se e só se Γ é inconsistente.
 - b) Se $\Gamma, \varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.
 - c) $(p_0 \vee p_1) \rightarrow (p_0 \wedge p_1)$ não é um teorema de DNP.
 - **d)** $p_0 \vee p_1 \not\vdash p_0 \wedge p_1$.

Sugestão: Aplique o teorema da correção e o teorema da completude.

5. Sintaxe do Cálculo de Predicados

5.1 Seja $L=(\{0,f,g\},\{R\},\mathcal{N})$ o tipo de linguagem tal que $\mathcal{N}(0)=0,\ \mathcal{N}(f)=1,\ \mathcal{N}(g)=2,$ $\mathcal{N}(R)=2.$

- a) Explicite a definição indutiva do conjunto dos L-termos.
- b) Indique quais das seguintes sequências de símbolos constituem L-termos:
 - i) 0.
- ii) f
- **iii)** f(1).

- **iv)** $g(f(x_1, x_0), x_0)$.
- **v)** $g(x_0, f(x_1)).$
- **vi)** $R(x_0, x_1)$.
- c) Calcule o conjunto das variáveis de cada um dos seguintes L-termos:
 - i) 0.
- **ii)** $g(x_1, f(x_1)).$
- iii) $g(x_1, x_2)$.
- iv) $g(x_1, g(x_2, x_3)).$
- c) Para cada um dos L-termos t da alínea anterior, calcule $t[g(x_0,0)/x_1]$.
- **5.2** Seja L o tipo de linguagem do exercício anterior. Considere que t é um L-termo com uma árvore de formação da forma

$$\frac{\overline{t_1 \in \mathfrak{T}_L}}{\underbrace{t_2 \in \mathfrak{T}_L}} \, \frac{r_1}{r_2} \, \frac{r_3}{t_3 \in \mathfrak{T}_L} \, \frac{r_3}{r_4}$$

$$\frac{t_4 \in \mathfrak{T}_L}{t \in \mathfrak{T}_L} \, r_5$$

- a) Indique um L-termo que admita uma árvore de formação desta forma.
- b) Qual o número máximo de subtermos de t?
- c) Assumindo que t_1 e t_3 são L-termos distintos, qual o comprimento mínimo de uma sequência de formação de t?
- **5.3** Seja L o tipo de linguagem definido no exercício 5.1.
 - a) Enuncie os teoremas de indução estrutural e de recursão estrutural para o conjunto dos *L*-termos.
 - b) Defina, por recursão estrutural em L-termos, funções $r, h : \mathcal{T}_L \to \mathbb{N}_0$ que a cada L-termo t fazem corresponder o número de ocorrências de variáveis em t e o número de ocorrências de símbolos de função em t, respetivamente.
 - c) Dê exemplos de L-termos t_1 e t_2 tais que $\#VAR(t_1) = r(t_1)$ e $\#VAR(t_2) < r(t_2)$.
 - d) Demonstre que, para todo o L-termo t, $\#VAR(t) \leq r(t)$.
- **5.4** Dado um L-termo t, a notação SUBT(t) representa o conjunto de subtermos de t.
 - a) Defina, por recursão estrutural, uma função f que a cada termo t faça corresponder o conjunto SUBT(t).
 - **b)** Demonstre que: para todo o L-termo t, $VAR(t) \subseteq SUBT(t)$.

- 5.5 Escreva as seguintes afirmações como fórmulas para um tipo de linguagem apropriado.
 - a) Todo aquele que é persistente aprende Lógica.
 - b) Quem quer vai, quem não quer manda.
 - c) Nem todos os pássaros voam.
 - d) Se toda a gente consegue, também o João consegue.
 - e) Para todo o número natural que é maior do que 6, o seu dobro é maior do que 12.
 - f) Quaisquer dois conjuntos que têm os mesmos elementos são iguais.
 - g) Existe um inteiro positivo menor do que qualquer inteiro positivo.
 - h) Todo o inteiro positivo é menor do que algum inteiro positivo.
 - Não há barbeiro que barbeie precisamente aqueles homens que não se barbeiam a si próprios.
- **5.6** Seja $L = (\{0, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(-) = \mathcal{N}(<) = 2$.
 - a) Dê exemplos de L-fórmulas atómicas e de L-fórmulas não atómicas.
 - b) Calcule os conjuntos de variáveis livres e de variáveis ligadas das seguintes fórmulas:
 - i) $x_2 0 < x_1$.
 - ii) $\exists_{x_0} \forall_{x_1} (x_1 x_0 < 0).$
 - iii) $\forall_{x_2}(\exists_{x_0}(x_0 < x_1) \to \exists_{x_1}(x_2 < x_1 x_0)) \land P(x_2).$
 - iv) $\forall_{x_0}(x_0 < x_1) \vee \exists_{x_1}(x_1 < x_0)$.
 - c) A proposição "Para toda a L-fórmula φ , LIV $(\varphi) \cap \text{LIG}(\varphi) = \emptyset$ " é verdadeira?
- **5.7** Para cada uma das fórmulas φ do exercício 5.6 b), calcule $\varphi[x_2 x_0/x_1]$.
- **5.8** Considere o tipo de linguagem L do exercício 5.6. Para cada uma das fórmulas φ do exercício 5.6 b), indique quais das seguintes proposições são verdadeiras.
 - a) A variável x_1 é substituível pelo L-termo 0 em φ .
 - **b)** A variável x_1 é substituível pelo L-termo x_2 em φ .
 - c) A variável x_2 é substituível por qualquer L-termo em φ .
 - d) Toda a variável é substituível pelo L-termo $x_1 x_3$ em φ .
- **5.9** Seja L um tipo de linguagem.
 - a) Defina, por recursão estrutural em L-fórmulas, a função SUBFA : $\mathcal{F}_L \to \mathcal{P}(\mathcal{F}_L)$ que a cada L-fórmula φ faz corresponder o conjunto das subfórmulas atómicas de φ .
 - b) Sejam φ uma L-fórmula e x uma variável. Demonstre que: se $x \notin LIV(\psi)$ para todo o $\psi \in SUBFA(\varphi)$, então $x \notin LIV(\varphi)$.

Semântica do Cálculo de Predicados

- **6.1** Seja $L = (\{f_1, f_2, f_3, f_4\}, \{R_1, R_2\}, \mathcal{N})$ o tipo de linguagem em que $\mathcal{N}(f_1) = \mathcal{N}(f_2) = 0$, $\mathcal{N}(f_3) = 1$, $\mathcal{N}(f_4) = 2$, $\mathcal{N}(R_1) = 1$ e $\mathcal{N}(R_2) = 2$ e seja D o conjunto $\{d_1, d_2\}$.
 - a) Indique uma L-estrutura de domínio D.
 - b) Quantas L-estruturas de domínio D existem?
- **6.2** Considere o tipo de linguagem L_{Arit} , seja E_{Arit} a estrutura usual para este tipo de linguagem e sejam a_1 e a_2 atribuições em \mathbb{N}_0 tais que $a_1(x_i) = 0$, para todo $i \in \mathbb{N}_0$, e $a_2(x_i) = i$, para todo $i \in \mathbb{N}_0$.
 - a) Para cada um dos L_{Arit} -termos t que se seguem, calcule $t[a_1]_{E_{Arit}}$ e $t[a_2]_{E_{Arit}}$.
 - i) 0.
- iii) $s(x_2)$.

- iv) $+(s(0), x_3)$. v) $s(0 \times (x_2 \times x_3))$. vi) $(s(0) + x_7) \times s(x_1 + x_2)$.
- b) Para cada uma das L_{Arit} -fórmulas φ que se seguem, calcule $\varphi[a_1]_{E_{Arit}}$ e $\varphi[a_2]_{E_{Arit}}$.
- iii) $s(x_1) < (x_1 + 0)$. v) $(x_1 < x_2) \rightarrow (s(x_1) < s(x_2))$.
- ii) $x_1 = x_2$. iv) $\neg (x_1 = x_1)$. vi) $(x_1 < x_2) \rightarrow ((x_1 + x_3) < (x_2 + x_3))$.
- c) Para cada uma das fórmulas φ da alínea anterior, indique, para cada $n \in \mathbb{N}$, o valor de $\varphi[a_1\binom{x_1}{n}]_{E_{Arit}}$ e $\varphi[a_2\binom{x_1}{n}]_{E_{Arit}}$.
- d) Para cada uma das fórmulas φ da alínea b), indique $(\forall_{x_1}\varphi)[a_1]_{E_{Arit}}, (\forall_{x_1}\varphi)[a_2]_{E_{Arit}},$ $(\exists_{x_1}\varphi)[a_1]_{E_{Arit}} \in (\exists_{x_1}\varphi)[a_2]_{E_{Arit}}.$
- e) Indique se alguma das fórmulas da alínea b) é válida para a estrutura E_{Arit} .
- f) Indique se alguma das fórmulas da alínea b) é universalmente válida.
- **6.3** Seja $L = (\{0, \times\}, \{\leq\}, \mathbb{N})$ o tipo de linguagem em que $\mathbb{N}(0) = 0$, $\mathbb{N}(\times) = 2$ e $\mathbb{N}(\leq) = 2$. Seja $E=(\mathbb{N}_0,\overline{\ })$ a L-estrutura tal que: a interpretação $\overline{0}$ de 0 é o número inteiro zero; a interpretação $\overline{\times}$ de \times é a função multiplicação em interpretação $\overline{\leq}$ de \leq é a relação menor ou igual do que em inteiros. Seja $a:\mathcal{V}\to\mathbb{N}_0$ a atribuição, em E, tal que:

$$\forall_{i \in \mathbb{N}_0} \quad a(x_i) = \begin{cases} 0 & \text{se } i \in \{0\} \\ \\ 2i & \text{se } i \in \mathbb{N}_0 \setminus \{0\} \end{cases}.$$

Para cada um dos seguintes L-termos t, calcule $t[a]_E$.

a)

- c) $x_1 \times x_2$.
- **d)** $(0 \times (x_2 \times x_1)).$
- **6.4** Sejam L, E e a o tipo de linguagem, a estrutura e a atribuição, respetivamente, definidas no exercício 6.3 e sejam φ e ψ as L-fórmulas $0 \le x_1$ e $x_2 \le x_2 \times x_1$, respetivamente. Discuta se as fórmulas φ , $\forall_{x_2} \psi$ e $\forall_{x_1} \forall_{x_2} (\varphi \wedge \psi)$ são satisfeitas na estrutura E para a atribuição a. Discuta ainda a validade em E e a validade universal destas fórmulas.

6.5 Diga, justificando, quais das seguintes proposições são verdadeiras, para quaisquer fórmulas φ e ψ num tipo de linguagem L, para qualquer variável x.

a) $\exists_x \varphi \Leftrightarrow \forall_x \varphi$;

- **b)** $\models \exists_x (\varphi \land \psi) \rightarrow (\exists_x \varphi \land \exists_x \psi);$
- $\mathbf{c}) \models (\exists_x \varphi \land \exists_x \psi) \rightarrow \exists_x (\varphi \land \psi);$
- **d)** $\models (\forall_x \varphi \lor \forall_x \psi) \to \forall_x (\varphi \lor \psi);$
- $\mathbf{e}) \models \forall_x (\varphi \lor \psi) \to (\forall_x \varphi \lor \forall_x \psi); \qquad \mathbf{f} \models \exists_x \forall_y \varphi \to \forall_y \exists_x \varphi;$
- $\mathbf{g}) \models \forall_x \exists_y \varphi \to \exists_y \forall_x \varphi;$
- **h)** Para toda a *L*-estrutura $E, E \models \varphi$ ou $E \models \neg \varphi$.
- **6.6** Seja L um tipo de linguagem com uma constante 0 e um símbolo de relação binário = e seja φ a L-fórmula $\neg((\exists_{x_1}(x_1=0)) \lor (x_2=0)) \to (\neg(\exists_{x_1}(x_1=0)) \land \neg(x_2=0)).$
 - a) φ é uma instância de uma tautologia? b) φ é válida em todas as L-estruturas?
- 6.7 Considere as seguintes afirmações, relativas a um conjunto de números reais.
 - O valor absoluto de qualquer número negativo é maior do que algum número positivo.
 - Há irracionais negativos, mas todos os irracionais são maiores do que os racionais.
 - a) Represente as duas afirmações como fórmulas para um tipo de linguagem adequado, explicitando o tipo de linguagem utilizado.
 - b) Justifique se as duas afirmações são ou não contraditórias.
- **6.8** Sejam L um tipo de linguagem, φ uma L-fórmula e x uma variável. Mostre que:

 - a) $\exists_x \neg \varphi \not\Leftrightarrow \forall_x \varphi$; b) $\{\exists_x \neg \varphi, \forall_x \varphi\}$ é semanticamente inconsistente.
- **6.9** Sejam L um tipo de linguagem e $\Gamma \subseteq \mathcal{F}_L$. Mostre que as seguintes condições são equivalentes:
 - i) Γ é irrealizável;
- ii) Para todo $\varphi \in \mathcal{F}_L$, $\Gamma \models \varphi$;
- iii) $\Gamma \models \bot$;
- iv) Existe $\varphi \in \mathcal{F}_L$ tal que $\Gamma \models \varphi$ e $\Gamma \models \neg \varphi$.
- **6.10** Seja $L = (\{c_1, c_2\}, \{R\}, \mathcal{N})$, onde $\mathcal{N}(c_1) = \mathcal{N}(c_2) = 0$ e $\mathcal{N}(R) = 2$, um tipo de linguagem. Seja Γ o conjunto formado pelas seguintes L-sentenças:
 - $\bullet \ \forall_{x_0} R(x_0,x_0);$
 - $\forall_{x_0} \forall_{x_1} (R(x_0, x_1) \to R(x_1, x_0));$
 - $\forall_{x_0} \forall_{x_1} \forall_{x_2} ((R(x_0, x_1) \land R(x_1, x_2)) \rightarrow R(x_0, x_2)).$
 - a) Indique um modelo de Γ , i.e., uma L-estrutura que valide todas as fórmulas de Γ .
 - **b)** Mostre que existem modelos de $\Gamma \cup \{\neg R(c_1, c_2)\}\$ e de $\Gamma \cup \{R(c_1, c_2)\}\$.
 - c) Mostre que $\Gamma, R(c_1, c_2), R(c_2, c_3) \models R(c_3, c_1)$.
- 6.11 Considere as três proposições (i) "Todos os homens são mortais", (ii) "Camões é um homem" e (iii) "Camões é mortal".
 - a) Represente (i), (ii) e (iii) por L-fórmulas φ_1 , φ_2 e φ_3 , respetivamente; explicite L.
 - **b)** Mostre que $\{\varphi_1, \varphi_2\} \models \varphi_3$.