WELTORGANISATION FÜR GEISTIGES EIGENTUI Internationales Būro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :

B22D 11/16

A1

- (11) Internationale Veröffentlichungsnummer:
- WO 96/31304

(43) Internationales Veröffentlichungsdatum:

10. Oktober 1996 (10.10.96)

(21) Internationales Aktenzeichen:

PCT/EP96/01371

(22) Internationales Anmeldedatum:

28. März 1996 (28.03.96)

(30) Prioritätsdaten:

95104909.7

3. April 1995 (03.04.95)

EP

(34) Länder für die die regionale oder internationale Anmeldung eingereicht worden ist:

DE usw.

(71) Anmelder (für alle Bestimmungsstaaten ausser US): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ADAMY, Jürgen [DE/DE]; Birkenweg 1, D-91338 Igensdorf (DE).

(81) Bestimmungsstaaten: CA, CN, FI, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: DEVICE FOR EARLY DETECTION OF RUN-OUT IN CONTINUOUS CASTING
- (54) Bezeichnung: EINRICHTUNG ZUR DURCHBRUCH-FRÜHERKENNUNG BEIM STRANGGIESSEN

(57) Abstract

In order to ensure early detection of run-out in continuous casting, the surface temperature of the billet is taken and subsequently evaluated using temperature sensors distributed in the mould around the billet. To obtain the most accurate prediction possible of runouts with only modest computer processing resources, a pattern recognition device (11) is dedicated to each temperature sensor (10). The pattern recognition device, using fuzzy deductions, updates the internal state variable using the measured temperature and an internal state variable representing the previous temperature gradient and generates at the output a current predictive value (Pa) for run-out probability.

(57) Zusammenfassung

Durchbruch-Früherkennung Stranggießen wird die Oberflächentemperatur des Strangs mit Hilfe von Temperatursensoren, die in der Kokille um den Strang herum verteilt angeordnet sind, erfaßt und anschließend ausgewertet. Um bei nur geringem rechentechnischem Aufwand eine möglichst genaue Vorhersage für Durchbrüche erzielen zu können, ist jedem Temperatursensor (10) jeweils eine Mustererkennungseinrichtung (11) zugeordnet, die aus der erfaßten Temperatur und einer den bisherigen Temperaturverlauf repräsentierenden inneren Zustandsgröße auf der Grundlage von Fuzzy-Folgerungen die innere Zustandsgröße aktualisiert und ausgangsseitig einen aktuellen Vorhersagewert (Pa) für die Durchbruch-Wahrscheinlichkeit erzeugt.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

....

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger .
ΑU	Australien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungarn	NZ	Neuseeland
BF	Burkina Faso	IE	Irland	PL	Polen
BG	Bulgarien	IT	Italien	PT	Portugal
BJ	Benin	JP	Japan	RO	Rumānien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	LI	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamerun	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
Fi	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Frankreich	MR	Mauretanien	VN	Vietnam
GA	Gabon	MW	Malawi		

1

Beschreibung

30

35

Einrichtung zur Durchbruch-Früherkennung beim Stranggießen

Beim Stranggießen können in der Strangschale während des Wachstums in der Kokille Stellen auftreten, in denen die Strangschale nicht oder nur unzureichend erhärtet. Diese Wachstumsfehler führen, sobald der Strang die Kokille verläßt, zu einem Durchbruch im Strang, durch den flüssiger Stahl austritt. Die hierdurch hervorgerufene Beschädigung der Gießanlage erzwingt einen längeren Anlagenstillstand und verursacht hohe Instandsetzungskosten. Man versucht daher, Wachstumsfehler in der Schale vor ihrem Austritt aus der Kokille zu erkennen. Gelingt dies, so wird die Austrittsgeschwindigkeit so verringert, daß die potentielle Durchbruchstelle aushärten kann.

Mögliche Durchbruchstellen werden anhand der OberflächenTemperaturverläufe festgestellt, die durch in der Kokille im
20 Bereich der Kokilleninnenwand angebrachte Temperatursensoren
gemessen werden. Dabei ist es bekannt, die Temperatursensoren
in einer oder mehreren in Richtung des Stranges versetzten
Ebenen um den Strang herum verteilt anzuordnen. Wenn eine
Fehlstelle in der Strangschale an den Temperatursensoren vorbeiwandert, steigt die gemessene Temperatur bedingt durch die
nicht oder nur schwach ausgebildete Strangschale, hinter der
sich flüssiger Stahl befindet, an, wobei die erfaßten Temperaturverläufe im Fall eines drohenden Durchbruches eine charakteristische Form aufweisen.

Um aus den erfaßten Temperaturverläufen mögliche Durchbrüche vorhersagen zu können, ist es aus der US-A-4 949 777 bekannt, die Änderung der von jedem einzelnen Temperatursensor jeweils erfaßten Temperatur mit einem Mittelwert aus den mit allen Temperatursensoren erfaßten Temperaturänderungen zu verglei-

2

chen und das so erhaltene Vergleichsergebnis auf Überschreiten eines vorgegebenen Schwellenwertes zu überwachen. Wenn die zeitliche und örtliche Verteilung der Schwellenwertüberschreitungen einem vorgegebenen Muster entspricht, so ist dies ein Zeichen für einen bevorstehenden Durchbruch.

Aus T. Tanaka et al: "Trouble Forecasting System by Multi-Neural Network on Continuous Casting Process of Steel Production" in T. Kohonen et al (Ed.): Artificial Neural Networks; Proc. of the 1991 Int. Conf. on Artificial Neural Networks, Espoo, Finland, Elsevier Science Publishers B.V. (North-Holland), 1991, S. 835 bis 840, ist es bekannt, zur Durchbruch-Früherkennung im Rahmen einer Mustererkennung mit neuronalen Netzen die von den einzelnen Temperatursensoren erfaßten Temperaturverläufe zu speichern und auf charakteristische Muster zu untersuchen.

10

15

20

25

30

....

Bei einem aus der JP-A-4 172 160 bekannten Verfahren werden die mit den Temperatursensoren erfaßten Temperaturen einem neuronalen Netz zugeführt, welches ein Ausgangssignal erzeugt, wenn die räumliche Temperaturverteilung ein für einen drohenden Durchbruch charakteristisches Muster aufweist.

Eine einigermaßen zuverlässige Vorhersage von Durchbrüchen mittels neuronaler Netze setzt voraus, daß genügend Trainingsdaten für das neuronale Netz vorliegen. Dabei ergibt sich das Problem, daß Trainingsdaten von einer Anlage nicht ohne weiteres auf eine andere Anlage übertragen werden können. Hinzu kommt, daß die Entscheidungskriterien, nach denen die Vorhersage von Durchbrüchen erfolgt, für den Anlagenbetreiber im wesentlichen unsichtbar sind.

Darüberhinaus erfordern die bekannten Verfahren zur Mustererkennung vollständig vorliegende Temperatursmuster, z.B. Temperaturverläufe, was einen hohen Speicheraufwand zur Folge

3

hat. Gleichzeitig ist der Rechenaufwand sehr hoch, da bei jeder Änderung des Temperaturmusters, wenn also z.B. der Temperaturverlauf um einen neuen Temperaturvert ergänzt wird und gleichzeitig der älteste Temperaturvert gelöscht wird, eine vollständig neue Mustererkennung erforderlich ist.

Der Erfindung liegt die Aufgabe zugrunde, eine Einrichtung zur Durchbruch-Früherkennung anzugeben, die bei nur geringem rechentechnischem Aufwand eine sichere und für den Anlagenbetreiber nachvollziehbare Erkennung möglicher Durchbrüche gewährleistet.

Gemäß der Erfindung wird die Aufgabe durch die in dem Pa-Litentanspruch 1 angegebene Erfindung gelöst.

Vorteilhafte Weiterbildungen der erfindungsgemäßen Einrichtung sind in den Unteransprüchen angegeben.

Die erfindungsgemäße Durchbruch-Früherkennung beruht auf 🕾 einer Fuzzy-Mustererkennung, deren Regeln aus dem Prozeßwissen abgeleitet werden. Die zur Mustererkennung erforderlichen Informationen über die Temperaturverläufe bestehen dabei lediglich aus den aktuell erfaßten Temperaturen und einer den bisherigen Temperaturverlauf repräsentierenden und laufend aktualisierten inneren Zustandsgröße. Die Mustererkennung kann daher bei jedem neuen Temperaturwert auf den bisherigen Ergebnissen der Mustererkennung, also der inneren Zustandsgröße, aufbauen, so daß nicht jedes Mal eine vollständig neue Mustererkennung aufgrund des Temperaturverlaufs erforderlich ist. Außerdem entfällt das Speichern der Temperaturverläufe, so daß insgesamt die Mustererkennung mittels der erfindungsgemäßen Einrichtung schneller und effizienter als bei Verfahren ist, die die Mustererkennung auf der Grundlage von vollständig vorliegenden Mustern ausführen.

5

10

15

20

25

30

<u>ئۆرى</u>

Zur weiteren Erläuterung der Erfindung wird im folgenden auf die Figuren der Zeichnung Bezug genommen; im einzelnen zeigen

5	Figur 1	den prinzipiellen Aufbau einer Stranggieß- anlage,
,	Figur 3	
	Figur 2	eine in der Stranggießanlage verwendete Ko-
		kille mit Temperatursensoren in den Kokillen-
		innenwänden,
	Figuren 3 und 4	Beispiele für die mit den Temperatursensoren
10		erfaßten Temperaturverläufe bei unterschied-
		lichen Wachstumsfehlern in der Strangschale,
	Figur 5	ein Beispiel für eine Fuzzy-Mustererkennungs-
		einrichtung zur Bildung eines Vorhersagewer-
		tes für die Durchbruch-Wahrscheinlichkeit
15		aufgrund des mit einem Temperatursensor er-
		faßten Temperaturverlaufs,
	Figur 6	ein Beispiel für den beim Auftreten eines be-
		stimmten Wachstumsfehlers erfaßten Tempera-
		turverlauf zusammen mit der in Abhängigkeit
20		davon ermittelten Durchbruch-Wahrscheinlich-
		keit,
	Figur 7	ein Beispiel für die Fuzzy-Zustände der
Legal Legal		Fuzzy-Mustererkennungseinrichtung,
	Figur 8	ein Beispiel für das Fuzzy-Regelwerk der Mu-
25	_	stererkennungseinrichtung,
	Figur 9	ein verallgemeinertes Ausführungsbeispiel für
	_	die Mustererkennungseinrichtung,
	Figur 10	ein Beispiel für eine Einrichtung zur Vorher-
	.	sage der Gesamtwahrscheinlichkeit von Durch-
30		brüchen und
30	Figur 11	ein Beispiel für die Meßwertaufbereitung der
	11901 11	
		der Mustererkennungseinrichtung zugeführten
		Signale.

5

Figur 1 zeigt in schematischer Darstellung eine Stranggießanlage. Aus einer Gießpfanne 1 wird flüssiger Stahl 2 in einen Verteiler 3 gegossen, der den Stahl auf verschiedene Stränge 4 verteilt und außerdem als Puffer und Abscheider für nichtmetallische Partikel dient. Aus dem Verteiler 3 fließt der Stahl in eine Kokille 5, deren Innenwände aus Kupfer bestehen und wassergekühlte Kanäle 6 enthalten. Aufgrund der Wärmeabfuhr an den Kokilleninnenwänden kühlt der Stahl ab und es bildet sich eine feste Strangschale 7 aus. Diese umschließt den flüssigen Stahl, so daß der Strang 4 nach Verlassen der Kokille 5 über Rollen 8 transportiert und schließlich in einzelne Brammen 9 zerschnitten werden kann.

10

15

20

25

جي.

Probleme können entstehen, wenn die Strangschale 7 Wachstumsfehler aufweist. Dann bildet sich oft an einzelnen lokalen Stellen nur eine sehr dünne erhärtete Schicht aus, die nach Verlassen der Kokille 5 brechen kann. In einem solchen Fall tritt flüssiger Stahl aus, der die Anlage beschädigt, so daß ein Stillstand und entsprechende Reparaturen nötig werden. Um solche Durchbrüche in der Strangschale 7 zu verhindern, werden die Wachstumsfehler in der Strangschale 7 bei ihrer Entstehung in der Kokille 5 geortet.

Wie Figur 2 zeigt, sind hierzu in den Innenwänden der Kokille 5 Temperatursensoren 10 in zwei, in Strangrichtung versetzten Ebenen um den Strang herum verteilt angeordnet. Es können auch mehrere Ebenen oder nur eine Ebene vorgesehen werden. Aufgrund von Änderungen in den erfaßten Temperaturverläufen kann auf eine Schwachstelle in der Strangschale 7 geschlossen werden. Wird ein Fehler entdeckt, so wird die Gießgeschwindigkeit reduziert, so daß sich die Abkühlzeit in der Kokille 5 erhöht und sich eine ausreichend feste Strangschale an der Fehlstelle ausbilden kann.

6

Die weitaus häufigsten Wachstumsfehler, sogenannte Kleber, entstehen durch eine lokal erhöhte Reibung zwischen dem Strang 4 und der Innenwand der Kokille 5. An der Reibungsstelle haftet der Strang 4 stärker als in der Umgebung an der Kokilleninnenwand, weshalb sich dort auch seine Geschwindigkeit verringert. Dies führt zu Spannungen in der Strangschale 7, so daß diese aufbricht. Flüssiger Stahl gelangt an die Kokilleninnenwand und führt dort zu einem Temperaturanstieg.

In Figur 3 ist ein Beispiel für den mit einem der Temperatur-10 sensoren 10 erfaßten Temperaturverlauf dargestellt, wenn ein solcher Fehler an dem betreffenden Temperatursensor 10 vorbeiwandert. Während der Kleber an dem Temperatursensor 10 vorbeiläuft, wird ein deutlicher Temperaturanstieg gemessen.

Hat der Kleber den Temperatursensor 10 passiert, so sinkt die 15 Temperatur unter das Temperaturniveau ab, das bei normalen Gießbedingungen herrscht. Zurückzuführen ist diese Absenkung auf eine verdickte Strangschale hinter dem Kleber, die aufgrund einer verringerten Geschwindigkeit dort entstanden ist.

20

30

....

Eine weitere Ursache für Durchbrüche in der Strangschale sind Luftpolster, sogenannte Cracks, die sich zwischen dem Strang 4 und der Kokille 5 bilden.

25

Figur 4 zeigt ein Beispiel für den beim Auftreten eines solchen Fehlers erfaßten Temperaturverlauf. Durch die geringe Wärmeleitfähigkeit der Luft ist die Wärmeabfuhr vom Strang 4 zur Kokille 5 stark vermindert, so daß sich nur eine sehr dünne Strangschale 7 ausbildet. Passiert ein Crack einen der Temperatursensoren 10, so spiegelt er sich in dem erfaßten Temperaturverlauf als ausgeprägter Einbruch wieder. Zusammen bildet Kleber und Cracks die Ursache für über 90% aller Durchbrüche.

7

Die unterschiedlichen Wachstumsfehler in der Strangschale 7 verursachen also charakteristische Muster in den erfaßten Temperaturverläufen. Diese Muster entstehen sequentiell, indem neue Meßwerte einem Temperaturverlauf hinzugefügt werden.

5

10

15

35

Figur 5 zeigt ein Beispiel für eine Mustererkennungseinrichtung 11, die fortlaufend aus den mit einem Temperatursensor 10 in Zeitschritten i erfaßten aktuellen Temperaturwerten T(i) und den zeitlichen Temperaturänderungen $\Delta T(i) = T(i) - T(i-1)$ die Wahrscheinlichkeit P(i+1) dafür bestimmt, daß sich in dem erfaßten Temperaturverlauf ein Kleber- oder Crackmuster entwickelt. Da alleine anhand der ak-

stimmt, daß sich in dem erfaßten Temperaturverlauf ein Kleber- oder Crackmuster entwickelt. Da alleine anhand der aktuellen Werte T(i) und $\Delta T(i)$ keine Mustererkennung erfolgen kann, wird zusätzlich die jeweils zuvor ermittelte Durchbruch-Wahrscheinlichkeit P(i) als eine den bisherigen Tempe-

raturverlauf repräsentierende innere Zustandsgröße verwendet und gemeinsam mit den aktuellen Meßwerten T(i) und $\Delta T(i)$ einer Fuzzy-Logik 12 zugeführt, die daraus die aktuelle Durchbruch-Wahrscheinlichkeit P(i+1) bestimmt. Diese wird in einem Speicherglied 13 zwischengespeichert und im nächsten

einem Speicherglied 13 zwischengespeichert und im nächsten Zeitschritt auf den Eingang der Fuzzy-Logik 12 rückgekoppelt. Durch die Zwischenspeicherung und Rückkopplung der in dem jeweils vorangegangenen Zeitschritt ermittelten Durchbruch-Wahrscheinlichkeit P(i) ist die Fuzzy-Logik 12 in der Lage,

die Mustererkennung nur anhand der aktuellen Temperatur T(i) und ihrer Änderung $\Delta T(i)$, d.h. ohne Kenntnis des Temperaturverlaufs, durchzuführen.

Um die Arbeitsweise der Mustererkennungseinrichtung 11 zu 30 veranschaulichen, wird beispielhaft der Temperaturverlauf T eines Klebers, wie er in Figur 6 dargestellt ist, betrachtet:

Bei normalen Gießbedingungen ist die Temperatur T konstant und ihre zeitliche Änderung schwankt sehr geringfügig. Die Wahrscheinlichkeit P für eine Durchbruch ist hier Null.

8

Zu Beginn eines Klebers steigt die Temperatur T an. Die Wahrscheinlichkeit P wird deshalb auf einen kleinen positiven Wert, beispielsweise 0,1, erhöht.

5

Im weiteren Verlauf des Klebers steigt die Temperatur T, und auch die zeitliche Änderung der Temperatur T nimmt zu. Liegt nun aus dem vorherigen Schritt eine geringe Wahrscheinlichkeit P vor, was gleichbedeutend mit der Beobachtung eines Kleberbeginns ist, so wird die Wahrscheinlichkeit P auf einen mittleren Wert, z.B. 0,4, erhöht. Liegt dagegen aus dem vorherigen Schritt keine geringe Wahrscheinlichkeit P, d.h. der Beginn eines Klebers, vor, so wird die Wahrscheinlichkeit P auch nicht geändert.

15

20

25

10

Die durch den Kleber verursachte Temperaturerhöhung erreicht nun ihren maximalen Wert, wobei gleichzeitig die zeitliche Änderung der Temperatur T Null wird. Wurde bis zu diesem Zeitpunkt die typische Temperaturkurve eines Klebers durchlaufen und somit bisher eine mittlere Durchbruch-Wahrscheinlichkeit P festgestellt, so wird die Wahrscheinlichkeit P auf einen großen Wert, z.B. 0,7, erhöht.

<u> - حين</u>

Der Kleber hat nun den Temperatursensor 10 passiert, und die Temperatur T sinkt bei negativer Temperaturänderung auf mittlere Werte ab. Dem obigen Schema folgend wird dann die Wahrscheinlichkeit P weiter, z.B. auf 0,9, erhöht, allerdings unter der Voraussetzung, daß sie schon einen großen Wert aufweist.

30

35

Aufgrund der Verdickung der Strangschale am Ende eines Klebers nimmt die Temperatur T schließlich so weit ab, daß sie unterhalb des Temperaturniveaus bei normalen Gießbedingungen liegt. Sobald dies geschieht und die Wahrscheinlichkeit Paufgrund des bisherigen Geschehens einen sehr großen Wert

aufweist, wird die Wahrscheinlichkeit P auf ihren maximalen Wert, z.B. 1,0, erhöht.

Figur 7 zeigt den Fuzzy-Zustandsgraphen der Mustererkennungseinrichtung 11. Die Zustände, d.h. die linguistischen Werte der Durchbruch-Wahrscheinlichkeit P(i), bilden die Knoten 14 des Zustandsgraphen. Die Wahrscheinlichkeit P(i) kann dabei die folgenden linguistischen Werte annehmen:

Z = 0, T = sehr klein, S = klein, M = mittel, B = groß, 10 H = sehr groß.

15

20

ج

An den Übergangspfeilen 15 zwischen den Zuständen 14 stehen vor dem Schrägstrich die Übergangsbedingungen, d.h. die Fuzzy-Regeln, die einen Zustandswechsel bewirken ; der Wert nach dem Querstrich gibt den jeweils neu erreichten Zustand an. Im Verlauf der Mustererkennung wird die Wahrscheinlichkeit P(i) nur dann schrittweise von Z auf H erhöht, wenn das Temperaturmuster dazu führt, daß nacheinander die Regelsätze R2, R5, R9, R13 und R17 erfüllt sind. Das ist bei Kleberoder Crackmustern der Fall. Weicht das erfaßte Temperaturmuster nurgeringfügig von diesen Referenzmustern ab, so wird entweder der momentane Zustand beibehalten oder der nächst niedrigere Zustand eingenommen. Sind die Abweichungen größer, so wird je nach erreichtem aktuellen Zustand einer der Regel-25 sätze R3, R8, R12, R16 oder R20 aktiv und die Wahrscheinlichkeit P(i) wird Z.

Einen großen Einfluß auf die für Durchbrüche in der Strangschale 7 charakteristischen Temperaturverläufe haben Ände-3 C rungen der Gießgeschwindigkeit. Es ist daher sinnvoll, diese Änderungen $\Delta v(i)$ zusätzlich bei der Mustererkennung zu berücksichtigen, so wie dies in Figur 5 gestrichelt dargestellt ist. Erhöht sich beispielsweise die Gießgeschwindigkeit, so verringert sich die Verweildauer und damit auch die Kühldauer 10

des Stranges 4 in der Kokille 5. Dies bedeutet gleichzeitig eine Erhöhung der gemessenen Temperatur. Treten dann während einer Änderung der Gießgeschwindigkeit Wachstumsfehler in der Strangschale 7 auf, so werden die für sie typischen Temperaturverläufe verzerrt.

Figur 8 zeigt ein Beispiel für ein in der Fuzzy-Logik der Mustererkennungseinrichtung 11 implementiertes Fuzzy-Regelwerk, bei dem zusätzlich zu der erfaßten Temperatur T(i) und der Temperaturänderung $\Delta T(i)$ die Änderung der Gießgeschwindigkeit $\Delta v(i)$ zur Bestimmung Durchbruch-Wahrscheinlichkeit P(i) herangezogen wird. Im übrigen sind der in Figur 7 gezeigte Fuzzy-Zustandsgraph und das in Figur 8 dargestellte Fuzzy-Regelwerk zueinander äquivalent. Die Regeln des Regelwerks geben die Kombinationen von linguistischen Werten der Eingangsvariablen T(i), $\Delta T(i)$ und $\Delta v(i)$ an, die erfüllt sein müssen, damit die Mustererkennungseinrichtung 11 ihren Zustand verändert bzw. beibehält. Der Temperatur T(i) werden dabei folgende Werte zugeordnet:

20

5

10

15

NB = negativ groß, NS = negativ klein, Z = Null, PS = positiv klein, PM = positiv mittel, PB = positiv groß.

٠٠٠

Der Temperaturänderung $\Delta T(i)$ werden folgende Werte zugeord- 25 net:

NB = negativ groß, NS = negativ klein, Z = Null, PS = positiv klein, PB = positiv groß.

30 Für die Änderung der Gießgeschwindigkeit $\Delta v(i)$ sind folgende Werte vorgesehen:

N = negativ, Z = Null, PN = positiv normal, PE = positiv extrem.

11

Die innere Zustandsgröße, also die zwischengespeicherte Wahrscheinlichkeit P(i), nimmt die folgenden linguistischen Werte an:

5 Z = Null, T = sehr klein, S = klein, M = mittel, B = groß, H = sehr groß.

Für jede Wertekombination der Temperatur T(i), der Temperaturänderung ΔT(i), der Änderung der Gießgeschwindigkeit
Δv(i) und der zwischengespeicherten Wahrscheinlichkeit P(i) ergibt sich jeweils ein bestimmter linguistischer Wert für die von der Mustererkennungseinrichtung 11 vorhergesagte Durchbruch-Wahrscheinlichkeit P(i+1). Die linguistischen Werte der vorhergesagten Durchbruch-Wahrscheinlichkeit P(i+1) sind der Übersicht halber wie folgt codiert: Z = 1, T = 2, S = 3, M = 4, B = 5, H = 6.

Aus dem Regelwerk sind alle Regeln der Fuzzy-Logik 12 direkt ablesbar. So gilt beispielsweise: Wenn P(i) = Z und $\Delta V(i) = Z$ und T = Z und $\Delta T = Z$, dann P(i+1) = 1 (=Z).

Die Inferenz erfolgt nach der Max-Min-Methode und die Defuzzifizierung nach der Schwerpunktmethode.

-

Figur 9 zeigt ein verallgemeinertes Ausführungsbeispiel für die Mustererkennungseinrichtung, bei der die Eingangsgrößen T(i), ΔT(i) und Δv(i) in einem Eingangsvektor u(i) zusammengefaßt sind. Eine erste Fuzzy-Logik 16 erzeugt aus dem Eingangsvektor u(i) und einem zwischengespeicherten inneren Zustandsvektor z(i) einen aktualisierten Zustandsvektor z(i+1), der in einem Speicherglied 17 zwischengespeichert wird. Der zwischengespeicherte Zustandsvektor z(i) und der Eingangsvektor u(i) werden in einer zweiten Fuzzy-Logik 18 zu einem Ausgangsvektor witteinander verknüpft. Die in Figur 5 gezeigte Mustererkennungseinrichtung 11 ist ein Spezialfall der

12

in Figur 9 gezeigten Einrichtung mit nur einer inneren Zustandsgröße z(i) = P(i), einer Ausgangsgröße y(i) = P(i+1) und mit übereinstimmendem Übertragungsverhalten der ersten Fuzzy-Logik 16 und der zweiten Fuzzy-Logik 18, dh. f=g.

5

10

15

20

25

30

....

Figur 10 zeigt ein Beispiel für eine Einrichtung zur Vorhersage der Gesamtwahrscheinlichkeit von Durchbrüchen aufgrund der mit den Temperatursensoren 10 erfaßten einzelnen Temperaturverläufe. Die Muster von bestimmten Wachstumsstörungen der Strangschale finden sich nicht nur in einem Temperaturverlauf, sondern aufgrund der Ausdehnung des Wachstumsfehlers und der Strangbewegung auch in benachbart gemessenen Temperaturverläufen wieder. Wie Figur 10 zeigt, ist jedem Temperatursensor 10 eine eigene Mustererkennungseinrichtung 11 nachgeordnet, die den jeweils erfaßten Temperaturverlauf auf das Auftreten eines vorgegebenen Musters überwacht. Damit die Erkennung von Wachstumsfehlern in der Strangschale zuverlässiger erfolgt, werden die von den Mustererkennungseinrichtungen 11 jeweils zweier unmittelbar benachbarter Temperatursensoren 10 gelieferten Vorhersagewerte Pa und Pb in einer Verknüpfungseinrichtung 19 zu einer lokalen Durchbruch-Wahrscheinlichkeit Ploc kombiniert. So werden fehlerhafte Mustererkennungen einer einzelnen Mustererkennungseinrichtung 11 korrigiert, indem der lokalen Durchbruch-Wahrscheinlichkeit Ploc nur dann ein großer Wert zugeordnet wird, wenn sowohl P_a als auch Pb jeweils große Werte aufweisen. Weiterhin verbessert sich auch die Erkennung von Klebern oder Cracks, da aus erhöhten Werten für die Einzelwahrscheinlichkeiten Pa, Pb auf eine lokale Durchbruch-Wahrscheinlichkeit Ploc geschlossen werden kann, die größer ist als jede der Einzelwahrscheinlichkeiten Pa, Pb. Die Verknüpfung der Einzelwahrscheinlichkeiten Pa und Pb zu der lokalen Durchbruch-Wahrscheinlichkeit Ploc erfolgt daher vorzugsweise auf der Grundlage von Fuzzy-Folgerungen.

13

Da sich die Wachstumsfehler in der Strangschale an den einzelnen Temperatursensoren 10 vorbeibewegen, wobei die Bewegungsrichtung und Ausbreitung der Wachstumsfehler unterschiedlich erfolgen kann, können die Mustererkennungs-Ergebnisse P_a und P_b von den Mustererkennungseinrichtungen 11 zweier benachbarter Temperatursensoren 10 für denselben Wachstumsfehler einen zeitlichen Versatz aufweisen. Damit beide Mustererkennungs-Ergebnisse P_a und P_b in der Verknüpfungseinrichtung 19 kombiniert werden können, müssen sie jedoch gleichzeitig vorliegen. Aus diesem Grund ist jeder Mustererkennungseinrichtung 11 eine Verzögerungseinrichtung 20 nachgeordnet, mit der dieser zeitliche Versatz kompensiert wird. Die Verzögerungseinrichtungen 20 bestehen dabei jeweils aus einem Maximalwert-Halteglied, das von jeder Einzelwahrcheinichkeit P(i) am Ausgang der vorgeordneten Mustererkennungsinrichtung 11 den maximalen Wert $P_{max}(i) = max(P(i-k),$...,P(i)) der letzten k Zeitschritte ermittelt und der Verknüpfungseinrichtung 19 zuführt.

10

15

ئىيى. ئىلىتىد In einer allen Verknüpfungseinrichtungen 19 nachgeordneten Logikschaltung 21 wird der maximale Wert aller lokalen Durchbruch-Wahrscheinlichkeiten $P_{\rm loc}$ ermittelt, der dann die Gesamtwahrscheinlichkeit $P_{\rm ges}$ für einen Durchbruch darstellt.

Die Mustererkennung in den Mustererkennungseinrichtungen 11 muß unabhängig von unterschiedlichen Anlagen- und Betriebsbedingungen sein. Daher ist zwischen jedem Temperatursensor 10 und der zugeordneten Mustererkennungseinrichtung 11 eine Einrichtung 22 zur Meßwertaufbereitung angeordnet, in der die Eingangsgrößen der Mustererkennungseinrichtung 11, also die Temperatur T, die zeitliche Änderung der Temperatur ΔT und die zeitliche Änderung der Gießgeschwindigkeit Δv so normiert bzw. transformiert werden, daß unterschiedliche Anlagenverhältnisse oder sich ändernde Prozeßbedingungen die Erkennung

14

von Kleber- und Crackmustern nicht oder nur geringfügig beeinflussen.

Figur 11 zeigt ein Blockschaltbild einer solchen Einrichtung 22 zur Meßwertaufbereitung. Die in einem Zeitschritt i gemessenen Temperaturwerte T(i) liegen, abhängig von unterschiedlichen Anlagen- und Betriebsbedingungen, bei normalen Gießbedingungen relativ konstant zwischen ca. 100°C und 200°C. Kleber und Cracks verursachen Abweichungen um bis zu 50°C von 10 dieser konstanten Offset-Temperatur To. Die Mustererkennungseinrichtung 11 kann Kleber- und Crackmuster nur dann erkennen, wenn diese von einem immer gleichen Temperaturniveau ausgehen. Um dies zu erreichen, wird mittels eines zeitdiskreten Filters 23 erster Ordnung eine Offset-Temperatur To 15 bestimmt und in einer Subtrahiereinrichtung 24 von dem aktuellen Temperaturwert T(i) subtrahiert. Die so erhaltene Temperatur $T_A(i) = T(i) - T_0(i)$ wird gegebenenfalls zur Unterdrükkung von Rauschen in einem Filter 25 geglättet und anschlie-Bend einer Normierungseinrichtung 26 zugeführt, in der die 20 von typischen Wachstumsfehlern hervorgerufenen Temperaturabweichungen von dem normalen Temperaturniveau auf einen Wertebereich zwischen Null und Eins begrenzt sind. Der so erhaltene normierte Temperaturwert TA(i) wird dann der Mustererkennungseinrichtung 11 zugeführt.

25

30

35

Die Mustererkennungseinrichtung 11 erhält weiterhin die zeitliche Änderung der Temperatur $\Delta T_{\rm A}(i)$, die in einer Einrichtung 27 mittels des Differenzenquotienten aus dem Ausgangssignal der Subtrahiereinrichtung 24 gebildet wird und nachfolgend in einer weiteren Normierungseinrichtung 28 auf einen Wertebereich zwischen Null und Eins normiert wird.

Wie bereits obenstehend erläutert wurde, kann auch die zeitliche Änderung der Gießgeschwindigkeit eine Eingangsvariable der Mustererkennungseinrichtung 11 sein. Sie verändert dort

-

25

30

35

die Regeln für die Mustererkennung in der Weise, daß Kleber und Cracks auch dann noch sicher erkannt werden können, wenn ihre Muster aufgrund der Gießgeschwindigkeitsänderung verzerrt sind. Die zeitliche Änderung der Gießgeschwindigkeit $\Delta v(i)$ wird in einer Einrichtung 29 mittels des Differenzenquotienten aus der Gießgeschwindigkeit v(i) bestimmt. Oftmals wird die Gießgeschwindigkeit v(i) nicht stetig, sondern sprunghaft erhöht. Der resultierende Temperaturanstieg, der durch die geringere Abkühlzeit in der Kokille 5 entsteht, er-10 folgt jedoch stetig über einen gewissen Zeitraum hinweg. Um dann während des gesamten Temperaturanstiegs eine entsprechende Veränderung der Regeln für die Mustererkennung zu erreichen, muß der Wert $\Delta v(i)$ während des Temperaturanstiegs auf einen entsprechend hohen Wert gesetzt werden, der einen stetigen Anstieg der Gießgeschwindigkeit v(i) vortäuscht. 15 Dies geschieht mit einem Maximalwert-Halteglied 30, das ausgangsseitig jeweils den größten positiven Wert von $\Delta v(i)$ aus den letzten k Zeitschritten erzeugt. Es gilt also:

20 $\Delta v_A(i) = \max(\Delta v(i-k), ..., \Delta v(i) \text{ für } \Delta v(i) > 0 \text{ und}$ $\Delta v_A(i) = \Delta v(i) \text{ für } \Delta v(i) \le 0.$

Schließlich wird der so erhaltene Wert von $\Delta v_A(i)$ in einer Normierungseinrichtung 31 normiert, bevor er der Mustererkennungseinrichtung 11 zugeführt wird.

Wie bereits erwähnt wurde, kann der Einfluß von zeitlichen Änderungen der Gießgeschwindigkeit auf die Temperaturverläufe durch Änderung der Regeln für die Mustererkennung berücksichtigt werden. Eine weitere Möglichkeit, den Einfluß der Gießgeschwindigkeit-Änderungen zu verringern, besteht darin, die dadurch hervorgerufenen Temperaturänderungen in den erfaßten Temperaturverläufen noch vor der Mustererkennung zu eliminieren. Dies geschieht, indem man alle von den Temperatursensoren 10 jeweils einer Ebene in der Kokille 5 gleichzeitig ge-

16

lieferten Temperaturwerte T(i) mittelt und den so erhaltenen Mittelwert MT(i) in einer Subtrahiereinrichtung 32 von den einzelnen Temperaturwerten T(i) subtrahiert. Die so erhaltene Temperaturdifferenz $T_D(i)$ =T(i)-MT(i) ist von Temperaturänderungen, die durch Gießgeschwindigkeits-Änderungen verursacht werden, unabhängig und wird im weiteren dem Filter 23 und der Subtrahiereinrichtung 24 zugeführt. In diesem Fall kann auch die Anpassung der Mustererkennung durch $\Delta v_A(i)$ entfallen, so daß dadurch der Aufbau der Einrichtung zur Durchbruch-Früherkennung einfacher wird.

10

15

20

25

Alternativ kann vorgesehen werden, daß bei konstanter Gießgeschwindigkeit v(i) oder kleinen Änderungen der Gießgeschwindigkeit v(i) ohne die Gießgeschwindigkeits-Kompensation gearbeitet wird, um über den Mittelwert MT(i) keine Störungen in die einzelnen Temperaturverläufe $T_A(i)$ hineinzutragen. Hierzu wird der Mittelwert MT(i) der Vergleichseinrichtung 32 über eine steuerbare Schalteinrichtung 33 zugeführt, die den Mittelwert MT(i) nur dann an die Vergleichseinrichtung 32 weiterschaltet, wenn die Änderung der Gießgeschwindigkeit $\Delta v_A(i)$ einen vorgegebenen Schwellenwert vg überschreitet. Hierzu werden die Werte Δv_A (i) und v_S einem Schwellenwertdetektor 34 zugeführt, der ausgangsseitig die steuerbare Schalteinrichtung 33 steuert. Um zu vermeiden, daß durch die Zuschaltung des Mittelwertes MT(i) der Wert TA(i) sich sprungartig ändert, wird der Wert $T_0(i+1)$ des Filters 23 über den Ausgang einer Subtrahiereinrichtung 35 mit $T_0(i+1) = T(i)-MT(i)-T_A(i)$ so gesetzt, daß der Verlauf von $T_A(i)$ stetig fortgesetzt wird.

10

35

Patentansprüche

- 1. Einrichtung zur Durchbruch-Früherkennung beim Stranggießen mit einer Kokille (5), in der Temperatursensoren (10) um den Strang (4) herum verteilt angeordnet sind, wobei jedem Temperatursensor (10) jeweils eine Mustererkennungseinrichtung (11) zugeordnet ist, die aus der erfaßten Temperatur (T(i)) und einer den bisherigen Temperaturverlauf repräsentierenden inneren Zustandsgröße (P(i)) auf der Grundlage von Fuzzy-Folgerungen die innere Zustandsgröße (P(i)) aktualisiert und ausgangsseitig einen aktuellen Vorhersagewert (P(i+1)) für die Durchbruch-Wahrscheinlichkeit erzeugt.
- . 2. Einrichtung nach Anspruch 1,
- 15 dadurch gekennzeichnet,
 daß der Vorhersagewert (P(i+1)) mit der inneren Zustandsgröße
 identisch ist.
 - 3. Einrichtung nach Anspruch 1 oder 2,
- daß jede Mustererkennungseinrichtung (11) den aktuellen Wert (T(i)) und die Änderung ($\Delta T(i)$) der von dem jeweils zugeordneten Temperatursensor (10) erfaßten Temperatur auswertet.
- 25 4. Einrichtung nach einem der vorangehenden Ansprüche, dad urch gekennzeinrichtung (11) zur Erzeugung des Vorhersagewertes (P(i+1)) für die Durchbruch-Wahrscheinlichkeit zusätzlich die Änderung der Gießgeschwindigkeit ($\Delta v(i)$) auswertet.
 - 5. Einrichtung nach einem der vorangehenden Ansprüche, dad urch gekennzeich hnet, daß zwischen jedem Temperatursensor (10) und der zugeordneten Mustererkennungseinrichtung (11) eine Einrichtung (22) zur

Meßwertaufbereitung liegt, in der von der erfaßten Temperatur (T(i)) ein aufgrund des bisherigen Temperaturverlaufs ermittelter zeitlicher Mittelwert $(T_0(i))$ subtrahiert wird.

- 5 6. Einrichtung nach Anspruch 5,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß in der Einrichtung (22) zur Meßwertaufbereitung von der
 erfaßten Temperatur (T(i)) zusätzlich ein Mittelwert (MT(i))
 subtrahiert wird, der aus den mit allen jeweils in ein und
 derselben Ebene um den Strang (4) herum verteilten Temperatursensoren (10) gleichzeitig erfaßten Temperaturwerten gebildet wird.
 - 7. Einrichtung nach einem der vorangehenden Ansprüche,
- daß die jeweils mindestens zwei unmittelbar benachbarten Temperatursensoren (10) zugeordneten Mustererkennungseinrichtungen (11) ausgangsseitig jeweils an einer Verknüpfungseinrichtung (19) angeschlossen sind, die die von den Musterer-
- 20 kennungseinrichtungen (11) gelieferten Vorhersagewerte (Pa, Pb) zu einem Wahrscheinlichkeitswert (Ploc) für einen lokalen Durchbruch im Bereich der benachbarten Temperatursensoren (10) verknüpft.
 - 25 8. Einrichtung nach Anspruch 7,
 d a d u r c h g e k e n n z e i c h n e t ,
 daß zumindest denjenigen Mustererkennungseinrichtungen (11),
 deren zugeordnete Temperatursensoren (10) in der Kokille (5)
 oberhalb der übrigen Temperatursensoren (10) angeordnet sind,
 jeweils eine Verzögerungseinrichtung (20) nachgeordnet ist.
 - 9. Einrichtung nach Anspruch 8, dadurch gekennzeichnet,

19

daß die Verzögerungseinrichtung (20) ausgangsseitig jeweils den Maximalwert einer vorgegebenen Anzahl der ihr zuletzt zugeführten Vorhersagewerte (P(i+1)) erzeugt.

5 10. Einrichtung nach einem der Ansprüche 7 bis 9, dad urch gekennzeich net, daß den Verknüpfungseinrichtungen (19) eine gemeinsame Logikschaltung (21) nachgeordnet ist, die aus den Wahrscheinlichkeiten (Ploc) für lokale Durchbrüche einen Wert (Pges) für die Gesamtwahrscheinlichkeit eines Durchbruchs ermittelt.

1/6

FIG 1

FIG 2

.:<u>.</u>..

2/6

<u>ئىن</u> با 3/6

....

	T	1			
	E _				
1	~	-			
1	S.				
=	7	- :			
	12 m			•	
· F	NS NB Z				
	7 🕮 —	 :		_	
	E S			©	
<u> </u>	ئة ا			F16	
1	NS NS			됴	
	2 29		•		
	E E				
	1 2			•	
1_	PS T				
Σ	4 2		_		
- [NS 3 Z		-		
1			<u></u>		
	+) <u> </u>		
1					
လ	PS 7				
1	NS R		:		
	三 要				
					
	S P M		_		
	د م				
-			:		
1	l∽		 :		
	-		52		
	 		 : .		
	$\mathbf{\Sigma}$:
7	NS PS B Z P		1221	7-	· : : :
	7			7-1-1	7
	NB NB			1112	175
İ			77-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2077	7711
	'		m(0 10 m	m(0 (0 m	m (c)
16		NS NS NS PS PS PB	NS NS PB PB PB	RS 2 SS 2 SS 2 SS 2 SS 2 SS 2 SS 2 SS 2	高宏~SB
<u>13</u>	=/				
2 2	7 =			~	LL1
-1-	7	Z	7	<u>~</u>	표
=	V			<u> </u>	
=					

٠<u>٠</u>٠٠ - ١

FIG 11

INTERNATIONAL SEARCH REPORT

			101/21 30/02072
A. CLASS IPC 6	B22D11/16	-	
According	to International Patent Classification (IPC) or to both national clas	sification and IPC	
B. FIELD	S SEARCHED		
IPC 6	documentation searched (classification system followed by classific B22D	ation symbols)	
Documenta	ition searched other than minimum documentation to the extent tha	t such documents are inc	cluded in the fields searched
Electronic o	data base consulted during the international search (name of data b	ase and, where practical,	, search terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	US,A,4 949 777 (S. ITOYAMA ET AL August 1990 cited in the application see claim 1) 21	1
Α	T. KOHONEN ET AL.: "Proc. of th Int. Conf. on Artificial Neural Espo, Finland" 1991 , ELSEVIER SCIENCE PUBLISHE NORTH-HOLLAND, NL XP002004430 cited in the application T.Tanaka et al.: 'TROUBLE FORECA SYSTEM BY MULTI-NEURAL NETWORK OCONTINUOUS CASTING' see page 835 - page 840	Networks, RS B.V. , STING	
X Furt	her documents are listed in the continuation of box C.	X Patent family	members are listed in annex.
* Special ca	tegories of cited documents:		Allahada Obar da Sanara ang Sanara
'E' earlier filing ('L' docume which catation 'O' docume other to 'P' docume	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	or priority date an cited to understant invention "X" document of partic cannot be consider involve an invention "Y" document of partic cannot be consider document is comb ments, such combinin the art.	blished after the international filing date and not in conflict with the application but did the principle or theory underlying the cular relevance; the claimed invention ared novel or cannot be considered to live step when the document is taken alone cular relevance; the claimed invention ared to involve an inventive step when the bined with one or more other such documentation being obvious to a person skilled or of the same patent family
	actual completion of the international search		the international search report
ı	June 1996	2 1. 06	_
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Sutor,	W

1

Int. 10nal Application No PCT/EP 96/01371

		PCT/EP 96/01371	
(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
tegory *	Citation of document, with indication, where appropriate, of the relevant passages	-	Relevant to claim No.
1	PATENT ABSTRACTS OF JAPAN vol. 16, no. 474 (M-1319), 2 October 1992 & JP,A,04 172160 (NIPPON STEEL ET AL.), 19 June 1992, see abstract & JP,A,04 172 160 (NIPPON STEEL) cited in the application		1

ندو<u>ت</u> سازی

1

INTERNAL SEARCH REPORT

Information on patent family members

Interior Application No
PCT/EP 96/01371

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US-A-4949777	21-08-90	JP-A-	1091949	11-04-89
		JP-C-	1775464	28-07-93
		JP-B-	4061740	01-10-92
		JP-A-	1143748	06-06-89
		JP-B-	7071726	02-08-95
		AU-B-	625284	09-07-92
		DE-A-	3868578	02-04-92
		EP-A.B	0310420	05-04-89
		CA-A-	1328925	26-04-94

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 B22D11/16

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüßtoff (Klassifikationssystem und Klassifikationssymbole) IPK 6 B22D

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	US,A,4 949 777 (S. ITOYAMA ET AL.) 21.August 1990 in der Anmeldung erwähnt siehe Anspruch 1	1
A	T. KOHONEN ET AL.: "Proc. of the 1991 Int. Conf. on Artificial Neural Networks, Espo, Finland" 1991 , ELSEVIER SCIENCE PUBLISHERS B.V. , NORTH-HOLLAND, NL XP002004430 in der Anmeldung erwähnt T.Tanaka et al.: 'TROUBLE FORECASTING SYSTEM BY MULTI-NEURAL NETWORK ON CONTINUOUS CASTING' siehe Seite 835 - Seite 840 -/	1

* Besondere Kategorien von angegebenen Veröffentlichungen : *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	"I" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden
*E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist	Theorie angegeben ist 'X' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung
L Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)	'Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen
'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	*&* Veröffentlichung, die Mitglied derselben Patentfamilie ist
Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
4.Juni 1996	2 1. 06. 96

entnehmen

-

1

Name und Postanschrift der Internationale Recherchenbehörde Bevollmächtigter Bediensteter

Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu

Sutor, W

Siehe Anhang Patentfamilie

In. "nonales Aktenzerchen
PCT/EP 96/01371

		PC1/EP 9	0/013/1	
	rtsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN one* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr.			
Kategorie*	Bezeichnung der Veroffentlichung, soweit erforderlich unter Angabe der in Betracht kom	menden laic	Bed. Anspruch Nr.	
A	PATENT ABSTRACTS OF JAPAN vol. 16, no. 474 (M-1319), 2.0ktober 1992 & JP,A,04 172160 (NIPPON STEEL ET AL.), 19.Juni 1992, siehe Zusammenfassung & JP,A,04 172 160 (NIPPON STEEL) in der Anmeldung erwähnt		1	
			·	
	· ·			

1

! INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Int Consider Aktenzerchen
PCT/EP 96/01371

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffendichung	Mitglied(er) der Patentfamilie		Datum der Veröffendlichung
US-A-4949777	21-08-90	JP-A-	1091949	11-04-89
		JP-C- JP-B-	1775464 4061740	28-07-93 01-10-92
		JP-A- JP-B-	1143748 7071726	06-06-89 02-08-95
		AU-B-	625284	09-07-92
		DE-A- EP-A.B	3868578 0310420	02-04-92 05-04-89
		CA-A-	1328925	26-04-94