Chapter 1: Introduction to Modelling & Estimation in Linear Dynamic Systems

Jan Skaloud* & Stéphane Guerrier¶

*École Polytechnique Fédérale de Lausanne; ¶Université de Genève

Material available online: https://gmwm.netlify.app/

EPFL - Spring 2025

Agenda - course

- D1.js: Intro to modelling w. examples (installations)
- D2.sg: Time series & Allan variance (AV exercises)
- D3.sg: General Methods of Wavelet Moments (GMWM exercises)
- D4.js: Impact of stoch. models on trajectory (project definition)
- D5.sg: Extended GMWM (multi series, model selection) & Statistical applications (regression settings with space-time dependence)

Agenda - today

- Stochastic and dynamic modelling where is it useful?
- State space notation
- Modelling examples
- Estimation
- 3-D examples

Where is useful stochastic and dynamic modelling?

Autonomous platform - principle

- Legend
 - G guidance, C control, A actuators
 - SI autonomous sensors (IMU, pressure, etc.)
 - SII non-autonomous sensors (GNSS, vision, ultrasound, etc.)
- Motion model
 - Kinematic (sensor based, i.e. observing forces, rates, ...)
 - Dynamic (model based, i.e. specifying forces, rates, ...)

Where is useful stochastic and dynamic modelling?

Moving platform - state estimation

- Why?
 - Platform needs to continuously maintain *believe* about many parameters (states) $\mathbf{x}(t)$
 - Not all needed parameters (states)^a are directly observable
 - ullet Errors exists in sensors (& models) o estimation is needed
- How?
 - Construct a model to maintain the state believe in time
 - Update the believe according to observations
- Models
 - sensor observations → sensor models (needs stoch. param.)
 - executed action → motion model & sensor models(s)

^arelated to trajectory, sensors or sensor assembly

Impact of sensor model on trajectory quality

Auto-motive example

- Different stoch. models are used to describe sensor (random) errors in accelerometers and gyroscopes within an inertial system (INS) that is integrated with satellite positioning.
- The realization of time correlated random errors in the sensors is estimated by a navigation filter and subtracted via a feedback.
- In the absence of satellite signals the trajectory is entirely based on INS, which performance depends partly on sensor models.

After Clausen et al. 2018.

Where is useful stochastic and dynamic modelling?

Inflation - state estimation

- Why?
 - The rate of price inflation is an important macroeconomic variable
 - Economists often assume that inflation has time correlated (latent) component(s) which is (are) not directly observable
- How?
 - Construct a model to identify the latent components
 - Update the believe according to observations
- Models
 - Various models have been proposed. On of the most common one decomposes inflation into permanent (X_t) and transitory (U_t) component:

$$X_t = X_{t-1} + U_t,$$
 $U_t \sim \mathcal{N}(0, \sigma_u^2)$
 $Z_t = X_t + V_t,$ $V_t \sim \mathcal{N}(0, \sigma_v^2)$

 This model can be extended in various way, including with time varying parameters (see e.g. Stock and Watson 2007)

Where is useful stochastic and dynamic modelling?

Natural phenomena - state estimation

- Why?
 - Natural phenomena have often random yet time-correlated character(s) that is possibly multi-dimensional with an unobserved (latent) component.
- How?
 - Identification of such character can be achieved via analysis of (time, spatial) series.
 - New (and possibly indirect) observations are used to estimate its actual realisation
- Models
 - Models vary according to phenomena and can be used for forecasting (weather, hydrology, biology, etc.)

Representation in time domain

The dynamics of linear (parameter) systems can be represented by a first-order "vector-matrix" differential equation

Continuous form

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{w}(t) + \mathbf{L}(t)\mathbf{u}(t)$$
(1.1)

- $\dot{\mathbf{x}}(t)$ system state vector
- $\mathbf{w}(t)$ random forcing function
- $\mathbf{u}(t)$ deterministic input
- $\mathbf{F}(t)$ dynamic matrix
- $\mathbf{G}(t)$ shaping matrix

Choice on x – any set of quantities *sufficient* to describe the motion at t

State space with higher order derivatives

Nth order linear differential equation

$$\left[\frac{\partial^n}{\partial t} + a_{n-1}(t)\frac{\partial^{n-1}}{\partial t} + \cdots + a_1(t)\frac{\partial}{\partial t} + a_0(t)\right]y(t) = w(t)$$
 (1.2)

From vector to a matrix form

Defining

$$x_1(t) := y(t), \quad x_2(t) := \dot{x}_1(t), \quad \dots \quad x_n(t) := \dot{x}_{n-1}(t)$$

Rewriting Eq. (1.2)

$$\dot{x}_1(t) = x_2(t)$$
 \vdots
 $\dot{x}_n(t) = -a_0(t)x_1(t) - a_1(t)x_2(t) - \dots - a_{n-1}(t)x_n(t) + w(t)$

Provides the desired matrix-vector form . . .

State space in matrix-vector form

Nth order linear differential equation

Companion form (single variable)

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-2} & -a_{n-1} \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ w(t) \end{bmatrix}$$

Note: if w = u, i.e., is the control input that this is the *controllable* canonical form

Generally

- random (w) and forcing (u) inputs are multi-variable
- F, & (G, L) matrices have non-zero (& non-trivial) elements outside the main diagonal

State evolution in time (= transition)

Homogeneous form (deterministic input $\mathbf{u}=0$ and random forcing inputs are of zero mean $\mathbb{E}\{\mathbf{w}\}=0$):

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\,\mathbf{x}(t) \tag{1.3}$$

with F being the dynamic matrix.

Solution

$$\mathbf{x}(t) = \Phi(t, t_0) \mathbf{x}(t_0) \tag{1.4}$$

with $\Phi(t, t_0)$ being the *transition* matrix that is related to F as:

$$\Phi(t - t_0) = e^{\mathbf{F}(t - t_0)} \tag{1.5}$$

State evolution in time (= transition)

Transition matrix allows calculation of the state vector at some time t, given the knowledge of state vector at t_0 ... in the absence of random forcing functions.

State transition - adding probability

Reality:

- All models are partially wrong or incomplete.
- Sensor observations are noisy and/or partial.
- Usually some prior knowledge on initial state at t_0 exists.

State incertitude

- Is generally expressed via a probability density function (PDF).
- Therefore propagation of samples \rightarrow propagation of PDF.

Special case

- Propagation of *multivariate* Gaussian can be realized by propagation of its 1^{st} and 2^{nd} moments (i.e., the mean and covariance).
- ullet Note #1 Gaussian remains Gaussian under a linear transformation.
- ullet Note #2 Intersection of several Gaussian(s) o remains Gaussian.

State confidence - covariance matrix

Forcing function

- If forcing function is based on (linearly transformed) white noise → has a zero mean (influence on state)
- ullet Hence, if the state ${f x}$ is unbiased at time (t), it will remain unbiased
- In a discrete case

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \boldsymbol{\Phi}_k \boldsymbol{x}_k + \boldsymbol{\Gamma}_k \boldsymbol{w}_k \\ \mathbb{E}\{\boldsymbol{x}_{k+1}\} &= \mathbb{E}\{\boldsymbol{\Phi}_k \boldsymbol{x}_k + \boldsymbol{\Gamma}_k \boldsymbol{w}_k\} \\ &= \boldsymbol{\Phi}_k \mathbb{E}\{\boldsymbol{x}_k\} + \boldsymbol{\Gamma}_k \mathbb{E}\{\boldsymbol{w}_k\} \end{aligned}$$

Randomness of state

- is described in terms of *covariance matrix* $\mathbf{P} := \mathbb{E}\{\check{\mathbf{x}}\check{\mathbf{x}}\}$
- where $\check{\mathbf{x}} := \hat{\mathbf{x}} \mathbf{x}$ is the error in estimate (estimated true)
- in a system with two variables $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\mathsf{T}$:

$$\textbf{P} := \mathbb{E} \left\{ \left[\begin{array}{cc} \check{x}_1^2 & \check{x}_1 \check{x}_2 \\ \check{x}_1 \check{x}_2 & \check{x}_2^2 \end{array} \right] \right\} = \left[\begin{array}{cc} \mathbb{E} \left\{ \check{x}_1^2 \right\} & \mathbb{E} \left\{ \check{x}_1 \check{x}_2 \right\} \\ \mathbb{E} \left\{ \check{x}_1 \check{x}_2 \right\} & \mathbb{E} \left\{ \check{x}_2^2 \right\} \end{array} \right]$$

Review point

Consider a dynamic system with zero deterministic input that is represented by a state \mathbf{x} . Given the knowledge of this state at time $\mathbf{x}(t)$ what is the *needed* and *sufficient* element to predict $\mathbf{x}(t + \Delta t)$?

1-D Accelerometer in space

Relation between the accelerometer error ε_a , velocity error δv and position error δp .

System equation

$$\left[\begin{array}{c} \delta \dot{p} \\ \delta \dot{v} \end{array}\right] = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right] \left[\begin{array}{c} \delta p \\ \delta v \end{array}\right] + \left[\begin{array}{c} 0 \\ \varepsilon_a \end{array}\right]$$

The forcing input is the random noise from a realisation i.e., $\varepsilon_{a} \sim \mathcal{N}\left(0, \sigma_{a}^{2}\right)$.

1-D Accelerometer on Earth (1-axis INS)

Relation between the accelerometer error ε_a , velocity error δv and position error δp with respect to platform tilt φ . The accelerometer error is coupled with platform tilt φ via gravity g, while the tilt φ is related to δv via Earth radius R and possibly gyro error ε_g .

System equation

$$\left[\begin{array}{c} \delta \dot{p} \\ \delta \dot{v} \\ \dot{\varphi} \end{array} \right] = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & -g \\ 0 & \frac{1}{R} & 0 \end{array} \right] \left[\begin{array}{c} \delta p \\ \delta v \\ \varphi \end{array} \right] + \left[\begin{array}{ccc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{c} \varepsilon_{a} \\ \varepsilon_{g} \end{array} \right]$$

With forcing inputs $\varepsilon_{a} \sim \mathcal{N}\left(0, \sigma_{a}^{2}\right)$ and possibly $\varepsilon_{g} \sim \mathcal{N}\left(0, \sigma_{g}^{2}\right)$

1-D Accelerometer in space with a random bias

Discrete case. Relation between the accelerometer error $\varepsilon_a(k)$, velocity error $\delta v(k)$ and position error $\delta p(k)$. The accelerometer error is composed of a realisation of white noise w(k) and a random bias $\varepsilon_b(k)$.

System equation

$$\begin{bmatrix} \delta \dot{p} \\ \delta \dot{v} \\ \dot{\varepsilon}_{b} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \delta p \\ \delta v \\ \varepsilon_{b} \end{bmatrix} + \begin{bmatrix} 0 \\ w \\ 0 \end{bmatrix}$$

The system is augmented by the one-time realisation of $\varepsilon_b(0) \sim \mathcal{N}\left(0, w_b^2\right)$

1-D Accelerometer in space - bias & latent process

Relation between the accelerometer error $\varepsilon_a(k)$, velocity error $\delta v(k)$ and position error $\delta p(k)$ in a discrete case.

Accelerometer error components

- white noise process w(k)
- random bias $\varepsilon_b(k)$
- correlated random noise ε_{ar} modelled by a 1-st order auto-regressive process, in a differential form: $\dot{\varepsilon}_{ar} = -\beta \varepsilon_{ar} + w_{ar}$

Review point

What is the system equation in the last example?

Estimation of time correlated dependencies

Situation

- Large family of processes (including sensor noise) can be modeled by putting white noise through a linear system.
- Such process/error models can be added to system model as long as the parameters (e.g., σ , β) are known.
- The realisation of such process (including time correlated noise) can be estimated by observing transformed quantities ^a. Bayesian estimation techniques are often used and the most popular filtering method will be summarized later.

^ae.g., position / velocity errors in the preceding example

Dependency on process (error) parameters

- The effectiveness of process estimation (error filtering) depends, among others, on the correctness of the parameters describing the process/error models.
- The determination of such parameters by time-series analysis is the main subject of this course.

General non-linear form

Ordinary differential equations (ODE) - components

$$\dot{\mathbf{x}}(t) = \mathbf{f}_1 \{ [\mathbf{x}_1(t), \mathbf{x}_2(t)], t \}$$
 (1.6)

where x_1 are system states related to known/observed forcing, x_2 are the augmented states related to the random forcing input \mathbf{w} .

Linearization for estimation

- True state is approximated: $\hat{\mathbf{x}}_1(t) = \mathbf{x}_1(t) \delta \mathbf{x}_1(t)$
- Eq. (1.6) takes the form: $\hat{\mathbf{x}}(t) = \mathbf{f}_1 \left\{ \left[\mathbf{x}_1(t) \delta \mathbf{x}_1(t), \mathbf{x}_2(t) \right], t \right\}$
- Taylor expansion: $\delta \dot{\mathbf{x}}_1(t) = \frac{\partial \mathbf{f}_1}{\partial \mathbf{x}_1} \delta \mathbf{x}_1(t) = \mathbf{F}_1(t) \delta \mathbf{x}_1(t)$, where $\delta \dot{\mathbf{x}}_1(t) = \dot{\mathbf{x}}_1(t) \hat{\dot{\mathbf{x}}}_1(t)$
- Augmented states are modelled: $\delta \dot{\mathbf{x}}_2(t) = \mathbf{F}_2(t) \delta \mathbf{x}_2(t) + \mathbf{G}_2(t) \mathbf{w}(t)$
- Both parts are put together in the general linearized form

General (compound) linearized form

The general linearized form $\delta \dot{\mathbf{x}}(t) = \mathbf{F}(t) + \mathbf{G}(t)$ is found as

$$\begin{bmatrix} \delta \mathbf{x}_{1}(t) \\ \delta \mathbf{x}_{2}(t) \end{bmatrix} = \begin{bmatrix} \mathbf{F}_{1}(t) & \mathbf{F}_{12}(t) \\ \mathbf{0} & \mathbf{F}_{2}(t) \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{G}_{2}(t) \end{bmatrix}$$
(1.7)

Estimation

Bayesian approach

- General probabilistic approach utilizing (any) PDF (probability density function)
- Prior probability of the system state P(x)
- Stream of observations z and actions (process) u: $(u_1, z_1, \ldots, u_t, z_t)$
- Action (process) model $P(\tilde{x}|x, u)$
- Sensor model P(z|x)

Markov chain assumptions for recursive estimation

- Current state depends only on previous state & current action.
- Observations depends only on a current state.
- Implementations: Hidden Markov models, Particle filter, Kalman filter, ...

Kalman Filter

Properties

- Bayes filter with continuous (or discrete) states
- State represented with normal distribution mean x, covariance P
- Very efficient (per state dim. n and obs. dim. k): $\mathcal{O}\left(k^{2.376}+n^2\right)$
- Most relevant filter in practice since 1950'...
- Optimal for linear Gaussian systems
- ullet Most systems are non-linear o linearization of process & observation is needed!

Drawbacks

- Spatial conditions between states are difficult to handle.
- Only one dynamic model is possible for the same phenomena.
- Alternatives: method(s) allowing expressing different or several dynamic, temporal and spatial constrains / models within one framework (e.g., dynamic network).

Kalman filter - 1D example

Discrete Kalman Filter

Relations

- State propagation
- Covariance propagation $(-)=(\sim)$
- Measurement z with covariance R
- Gain computation
- Covariance update (+)=("hat")
- State update

$$\mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}, \mathbf{u}_{k-1})_{k-1}$$

$$\mathbf{P}_{k}^{-} = \Phi_{k-1} \mathbf{P}_{k-1}^{+} \Phi_{k-1}^{T} + \Gamma_{k-1} \mathbf{Q}_{k-1} \Gamma_{k-1}^{T}$$

$$z_k = h(x_k) + v_k$$

$$\mathsf{K}_{k} = \mathsf{P}_{k}^{-} \mathsf{H}_{k}^{T} \left(\mathsf{H}_{k} \mathsf{P}_{k}^{-} \mathsf{H}_{k}^{T} + \mathsf{R}_{k} \right)^{-1}$$

$$\mathbf{P}_k^+ = (\mathbf{I} - \mathbf{K}_k \mathbf{H}_k) \mathbf{P}_k^-$$

$$\mathbf{x}_{k}^{+} = \mathbf{x}_{k}^{-} + \mathbf{K}_{k} \left[\mathbf{z}_{k} - \mathbf{h} \left(\mathbf{x}_{k}^{-} \right) \right]$$

Linearization

- Observations
- Process

$$\mathbf{H}_k = \frac{\partial \mathbf{h}(\mathbf{x}_k^*)}{\partial \mathbf{x}}$$

$$\mathbf{F}_{k-1} = \frac{\partial \mathbf{f} \left(\mathbf{x}_{k-1}^*, \mathbf{u}_{k-1} \right)}{\partial \mathbf{x}}$$

Extended Kalman Filter

Relations

• Approx. state $\mathbf{x}^* = \text{estimated state } \mathbf{x}^+$

$$\mathbf{x}_{k-1}^* = \mathbf{f}\left(\mathbf{x}_{k-1}^+, \mathbf{u}_{k-1}\right)$$

Transition matrix

$$\Phi = e^{\mathbf{F}\Delta t} = \mathbf{I} + \mathbf{F}\Delta t + \frac{1}{2}\mathbf{F}^2\Delta t^2 + \dots$$

Process noise

$$\mathbf{Q}_k = \int\limits_{k-1}^k \Phi \mathbf{G} Q(\tau) \mathbf{G}^T \Phi^T d\tau \approx \Phi_{k-1} \mathbf{G} Q \Delta t \mathbf{G}^T \Phi_{k-1}^T = \Gamma_{k-1} \mathbf{Q}_{k-1} \Gamma_{k-1}^T$$

Initial conditions

$$\mathbf{x}_0 = \mathbb{E}\left[\mathbf{x}(0)\right]$$

$$\mathbf{x}_0 = \mathbb{E}\left[\mathbf{x}(0)\right] \qquad \mathbf{P}_0 = \mathbb{E}\left[\left(\mathbf{x}(0) - \mathbf{x}_0\right)\left(\mathbf{x}(0) - \mathbf{x}_0\right)^T\right]$$

Assumptions

• Absence of correlations: process - observation

$$\mathbb{E}\left[\mathbf{w}_{k}\mathbf{v}_{j}^{T}
ight]=0,\;orall j,k\in\mathbb{Z}^{+}$$

Innovation sequence

$$\mathbf{v}_{k} = \mathbf{z}_{k} - \mathbf{h}\left(\mathbf{x}_{k}^{-}\right) \sim \mathcal{N}\left(0, \sigma_{v}^{2}\right)$$

Residual sequence

$$\mathbf{r}_{k}=\mathbf{z}_{k}-\mathbf{h}\left(\mathbf{x}_{k}^{+}
ight)\sim\mathcal{N}\left(0,\sigma_{r}^{2}
ight)$$

State estimation in time

Depending on the available (or used) span of data with respect to time t, the estimation distinguishes between

More on optimal estimation, e.g. Gelb 1988

3D integrated navigation example

Source: Stebler, 2012

Experiment Setup

Data:

- Static data collected during 4.5 hours @100Hz
- Constant temperature condition
- MEMS IMU (Xsens MTi-G \sim 2012)

Sensor calibration approaches:

- Allan Variance approach (IEEE standard)
- KF-(Self)-tuning approach
- new approach (GMWM)

Allan Variance Approach

EKF-(self)-tuning approach

Procedure:

- AV parameters used as initial approximation
- Ad-hoc adaptation of model parameters based on:
 - Analysis of KF residuals
 - Analysis of position drift during GNSS artificial outages with cm-level (GNSS-PPK) positioning as a reference

Model:

 $Y_t \sim F_{\theta}$ where F_{θ} is such that

$$Y_t = Y_{t,WN} + Y_{t,GM}$$

where $Y_{t,WN}$ and $Y_{t,GM}$ denote, respectively, a white noise and a Gauss-Markov process.

GMWM approach

Model:

 $Y_t \sim F_{\theta}$ where F_{θ} is such that

$$Y_t = Y_{t,WN} + \sum_{k=1}^{3} Y_{t,GM}^{(k)}$$

Validation

Models comparison is non-trival...

- True model F_{θ} is unknown...
- Calibration on signal acquired in static conditions.

Proposed procedure:

- **1** Reference solution (\sim 2-5 cm & \sim 0.005-0.01 $^{\circ}$ in position /attitude)
- 2 Emulation of synthetic IMU signals along the reference
- Addition of real (MEMS-IMU) static noise signal on IMU synthetic signals
- Introduction of artificial GNSS gaps
- Processing procedure using closed-loop EKF to implement the models
- Quality judged by analyzing the navigation error and EKF-predicted accuracy during inertial coasting model

Helicopter experiment - setup

Reference:

- Sensors #1: GNSS receivers
 Javad Legacy L1/L2 @10Hz in
 the helicopter & on the ground
- Sensor #2: tactical grad (LN-200) IMU @ 400 Hz
- Helicopter trajectory: post-processed (with optimal filtering / smoothing)

After Stebler et al. 2014

Helicopter experiment - impact

UAV experiment - impact

Interactive demo after Khaghani et al. 2019 - later in course (Day 4).

Motivation 1/3 - An easy latent time series model

Remarks:

Simple linear regression model:

$$y_{t} = \omega t + \varepsilon_{t}$$
$$\varepsilon_{t} \stackrel{iid}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$$

- MLE is perfectly fine.
- What if we add an AR1 process?

Motivation 2/3 - Adding an autoregressive process

Remarks:

- Not a linear regression model but a state space model.
- Computing the likelihood is not an easy task (Kalman filter).
- MLE (in fact EM-KF) fails.

Motivation 3/3 - Estimation of Latent Time Series Models

Existing methods:

- Main drawbacks
 - "Graphical": only few models, generally inconsistent & inefficient.
 - "Transformation to latent proc.": generally does not work or diverges.
 - "EM/KF": computationally intensive, diverges w. "complex" models.

GMWM estimated parameters:

	θ_0	$\hat{ heta}$	$IC(\theta_0, 0.95)$
σ^2	1.00	1.00	(0.99; 1.01)
β	0.60	0.58	(0.55; 0.61)
σ_G^2	10^{-1}	$1.07\cdot 10^{-1}$	$(0.99 \cdot 10^{-1}; 1.12 \cdot 10^{-1})$
ω	$5\cdot 10^{-5}$	$4.87 \cdot 10^{-5}$	$(4.67 \cdot 10^{-5}; 5.07 \cdot 10^{-5})$

1-D Accelerometer in space - bias & latent process

System equation

$$\begin{bmatrix} \delta \dot{p} \\ \delta \dot{v} \\ \dot{\varepsilon}_{b} \\ \dot{\varepsilon}_{ar} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\beta \end{bmatrix} \begin{bmatrix} \delta p \\ \delta v \\ \varepsilon_{b} \\ \varepsilon_{ar} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} w \\ w_{ar} \end{bmatrix}$$

The system is augmented time-correlated random errors:

- ullet the one-time realisation of $arepsilon_b(0) \sim \mathcal{N}\left(0,{\sigma_b}^2
 ight)$
- the auto-regressive process: $\varepsilon_{ar}(k) = e^{-\beta(t_k t_{k-1})} \varepsilon_{ar}(k-1) + w_{ar}(k)$ with $w_{ar} \sim \mathcal{N}\left(0, \sigma_{ar}^2\right)$

References I

- Clausen, P. et al. (2018). "Use of a new online calibration platform with applications to inertial sensors". In: IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE August, pp. 30–36. DOI: http://dx.doi.org/10.1109/MAES.2018.170153.
- Gelb, A. (1988). Applied Optimal Estimation. Cambridge, MA: The M.I.T. Press.
- Khaghani, M. et al. (2019). "Optimal stochastic sensor error modeling based on actual impact on quality of GNSS-INS integrated navigation". In: ION GNSS+. URL:
 - https://www.ion.org/publications/abstract.cfm?articleID=17057.
- Stebler, Y. et al. (2014). "The generalized method of wavelet moments for inertial navigation filter design". In: *IEEE Transactions on Aerospace and Electronic Systems* 50.3, pp. 2269–2283. DOI: https://doi.org/10.1109/TAES.2014.120751.
- Stock, James H and Mark W Watson (2007). "Why has US inflation become harder to forecast?" In: Journal of Money, Credit and banking 39, pp. 3–33.