

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 05286131 A

(43) Date of publication of application: 02 . 11 . 93

(51) Int. CI

B41J 2/045 B41J 2/055 B41J 2/16 H01L 41/24

(21) Application number: 04095496

(71) Applicant:

ROHM CO LTD

(22) Date of filing: 15 . 04 . 92

(72) Inventor:

FUJII YASUHISA

(54) INK JET PRINT HEAD AND PRODUCTION THEREOF

(57) Abstract:

PURPOSE: To enable the high density/high accuracy mounting of PZT elements, the reduction of PZT elements in thickness and the low temp. baking of PIT elements.

CONSTITUTION: A vibration plate 3 fitted with an ITO electrode (common electrode 5) is bonded to a head base stand 1 having a large number of individual ink passages 2 formed thereto and a PZT octylate mixture is applied to the parts on the common electrode 5 positioned above the individual ink passages 2 by screen printing to form PZT films which are, in turn, baked to form PZT elements 4. Individual electrodes 6 are provided on the PZT elements 4 and, thereafter, the PZT elements 4 are polarized.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-286131

(43)公開日 平成5年(1993)11月2日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

B 4 1 J 2/045

> 2/055 2/16

9012-2C

B 4 1 J 3/04

103 A

9012-2C

103 H

審査請求 未請求 請求項の数 2(全 5 頁) 最終頁に続く

(21)出願番号

特願平4-95496

(71)出願人 000116024

ローム株式会社

(22)出願日

平成 4年(1992) 4月15日

京都府京都市右京区西院溝崎町21番地

(72)発明者 藤井 泰久

京都市右京区西院溝崎町21番地 ローム株

式会社内

(74)代理人 弁理士 中村 茂信

(54)【発明の名称】 インクジェットプリントヘッドの製造方法及びインクジェットプリントヘッド

(57)【要約】

【目的】 PΖT素子の高密度・高精度実装、PΖT素 子の薄膜化、PΖT膜の低温焼成を可能にする。

【構成】 多数の個別インク路2を形成したヘッド基台 1上に、ITO電極 (共通電極 5) 付きの振動板 3 を接 合し、個別インク路2上に位置する共通電極5上の部分 にPZTオクチル酸塩混合物をスクリーン印刷してPZ Tを成膜し、その後にPZT膜を焼成してPZT素子4 とし、各PZT素子4上に個別電極6を設け、次いで各 PΖT素子4を分極させる。

【特許請求の範囲】

【請求項1】多数の個別インク路を有するヘッド基台に 取付けた振動板上に、PΖTオクチル酸塩混合物をスピ ンコートしてPZTを成膜し、次いで個別インク路上に 位置する振動板上の各部分にPZT膜が残るようなパタ ーンでPZT膜をエッチングするか、若しくは個別イン ク路上に位置する振動板上の各部分にPZTオクチル酸 塩混合物をスクリーン印刷してPZTを成膜し、その後 にPZT膜を焼成し、更にPZT膜をそれぞれ分極させ ることにより振動板上にPZT素子を形成することを特 徴とするインクジェットプリントヘッドの製造方法。

【請求項2】一端から他端に延びる多数の個別インク路 を一定間隔を置いて形成したヘッド基台と、全ての個別 インク路を覆うようにヘッド基台に取付けた振動板と、 個別インク路上に位置する振動板上の部分に、PZTオ クチル酸塩混合物の成膜・焼成・分極により形成したP ZT素子とを備えることを特徴とするインクジェットプ リントヘッド。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、インク吐出の駆動源に PZTからなる圧電素子を使用するインクジェットプリ ントヘッドの製造方法及びインクジェットプリントヘッ ドに関する。

[0002]

【従来の技術】インク吐出の駆動源である電気-機械変 換素子としてPZTからなるPZT素子 (以下、PZT 素子という)を使用した圧電型インクジェットプリント ヘッドがある。このプリントヘッドは一般には、多数の 個別インク路を形成したヘッド基台と、全ての個別イン ク路を覆うようにヘッド基台に取付けた振動板と、個別 インク路上に相当する振動板上の各部分に貼付したPZ T素子とで構成される。そして、PZT素子に電界を加 えてPZT素子を変位させることにより、個別インク路 内のインクを個別インク路の先端口(ノズル)から押し 出す。

【0003】ヘッド基台の個別インク路とPZT素子と の位置関係をもう少し詳しくみてみる。例えば図5に示 すヘッド基台10においては、その一端から他端に等間 隔で延びる個別インク路11が形成され、個別インク路 40 11は、供給路12、圧力室13及びノズル14で構成 され、このような個別インク路11の各圧力室13上に PZT素子20が位置する。勿論、図5には便宜上示し ていないが、ヘッド基台10上には振動板が取付けら れ、この振動板上にPZT素子20が貼付されている。。 [0004]

【発明が解決しようとする課題】しかしながら、上記の ような従来の圧電型インクジェットプリントヘッドの製 造には、次の問題点①~⑤がある。

程度までであり、P2T素子の駆動電圧を低くするの に、これ以上薄いPZT素子を用いることができない。 ②: P Z T素子の作製時に P Z T素子を個別インク路の

圧力室サイズに切断するが、その際にチッピング等の不 具合が生ずるため、切断が容易でない。

③: P Z T素子のハンドリングが難しく、各圧力室に対 応する振動板上の位置にPZT素子を一枚一枚接着剤で 貼り付けて加圧する作業に時間が掛かり、量産性に欠け

10 ④:貼付したPZT素子を加圧する時に、全てのPZT 素子に対して均一な加圧制御を行うのが難しく、貼付後 にPZT素子の密着強度にバラツキが生ずる。甚だしい 場合、実駆動中にPZT素子が剥がれることもある。 ⑤: 例えば図6に示すように、ヘッド基台30に形成す る個別インク路31のノズル32を集結させたような高 密度プリントヘッドでは、PZT素子40を実装するの

【0005】これら問題点①~⑤を解決するためにペー スト化したPZTを用い、このペーストを個別インク路 上に位置する振動板上の部分にスクリーン印刷し、得ら れたPZT膜を焼成・分極させる手法も考えられてい る。しかし、焼成温度が1000℃以上と高温であるた め、それに耐え得る振動板(及び電極)の材料や振動板 の厚さを選定するのが難しい。

【0006】従って、本発明の目的は、上記問題点①~ ⑤及びPZTペーストを用いる場合の短所に鑑み、PZ T素子の切断・貼付工程を省き、高密度・高精度でPZ T素子を実装することができると共に、非常に薄いPZ T素子を形成することができ、しかもPZT膜を低温で 焼成することが可能であるインクジェットプリントヘッ ドの製造方法、並びにインクジェットプリントヘッドを 提供することにある。

[0007]

が困難である。

【課題を解決するための手段】前記目的を達成するため に、本発明のインクジェットプリントヘッドの製造方法 は、多数の個別インク路を有するヘッド基台に取付けた 振動板上に、PZTオクチル酸塩混合物をスピンコート してPZTを成膜し、次いで個別インク路上に位置する 振動板上の各部分にPZT膜が残るようなパターンでP ZT膜をエッチングするか、若しくは個別インク路上に 位置する振動板上の各部分にPΖTオクチル酸塩混合物 をスクリーン印刷してPZTを成膜し、その後にPZT 膜を焼成し、更にPZT膜をそれぞれ分極させることに より振動板上にPZT素子を形成することを特徴とす

【0008】又、本発明のインクジェットプリントへッ ドは、一端から他端に延びる多数の個別インク路を一定 間隔を置いて形成したヘッド基台と、全ての個別インク 路を覆うようにヘッド基台に取付けた振動板と、個別イ ①:市販されているPZT素子の厚みは最小150µm50 ンク路上に位置する振動板上の部分に、PZTオクチル

酸塩混合物の成膜・焼成・分極により形成したPZT素子とを備えることを特徴とする。

【0009】本発明の製造方法によれば、スピンコート・エッチング又はスクリーン印刷によりPZTオクチル酸塩混合物を振動板上に成膜するため、PZT素子の切断・貼付工程は不要になるだけでなく、数μm程度の非常に薄いPZT素子を形成することができる。しかも、500℃程度の焼成温度で原料(PZTオクチル酸塩混合物)が原子或いは分子レベルで混合されるため、PZT膜を低温で焼成することが可能となり、振動板及び電極の材料や振動板の厚さの選定が容易になる。

[0010]

【実施例】以下、本発明を実施例に基づいて説明する。図1は本発明の製造方法によって作製したインクジェットプリントヘッドの一部省略要部断面図である。このプリントヘッドは、基本的には図5に示した従来の構造と変わらず、複数の個別インク路2を有するヘッド基台1と、ヘッド基台1上に取付けられた振動板3と、個別インク路2に対応する振動板3上の位置に形成されたPZT素子4とを備える。但し、PZT素子4は実際には振20動板3上に設けられた共通電極5上に形成され、PZT素子4上には個別電極6が設けられている。

【0011】個別インク路2は、図5に示すような形状であり、ヘッド基台1の後端から前端に向かって供給路、圧力室及びノズルを有する。振動板3は全ての個別インク路2を密封するようにヘッド基台1に接合され、PZT素子4は個別インク路2の圧力室に対応する位置にある。かかるプリントヘッドでは、共通電極5と個別電極6に電圧を印加することで、両電極5、6で挟持されたPZT素子4に電界が加わり、PZT素子4が変位する。この変位によって振動板3の対応部分が変形し、個別インク路2のインク容積が増減し、インク容積が減少に転じた個別インク路2のインクがノズルから吐出される。

【0012】次に、上記プリントヘッドの製造方法を図 2~図4を参照して述べる。まず、図2において、ヘッ ド基台1に複数の個別インク路2を等間隔で形成する。 個別インク路2の形状は前述したとおりである。このへ ッド基台1上に、例えばITO電極付きのガラス製振動 板3を陽極接合等で接合する。このITO電極が共通電 極5となる。但し、共通電極5は、振動板3上に例えば 白金をスクリーン印刷することにより形成してもよい。 【0013】一方、PZTオクチル酸塩混合物として は、オクチル酸鉛(Pbの含有量:40%)、オクチル 酸ジルコニル(Zrの含有量:22.5%)、オクチル 酸チタン (Tiの含有量:12.2%) を、原子比P b:Zr:Ti=1:0.53:0.47で混合し、こ れに溶剤とレジンを添加し、十分混練する。得られたP 2Tオクチル酸塩混合物の液体を、個別インク路2の圧 力室に対応する振動板3上の部分にスクリーンにて所定 50 パターンで印刷し、PZTを成膜する。その後、120 ℃で3時間放置し、PZT膜中の溶媒を蒸発させ、続い

て500℃で15分程度焼成する。これにより焼結した PZT膜をPZT素子4とする(図3参照)。なお、1 回のスクリーン印刷ではPZT膜厚が2~3μmまでで あるため、厚膜にするにはスクリーン印刷・焼成の作業

を繰り返す。

【0014】次いで、図4に示すように、各PZT素子4上に例えば白金からなる個別電極6をスクリーン印刷やスパッタ等によって形成する。この後、共通電極5と個別電極6に電圧を印加し、各PZT素子4を所定方向(上下方向)に分極させる。ここで参考までに、市販されている厚さ150 μ mのPZT素子、及び本発明の製造方法で得られる厚さ7 μ mのPZT素子の印加電圧と歪量(変位量)とを比較してみる。PZT素子のサイズは、共に縦(個別インク路の長手方向)×横(個別インク路の幅方向)=8×0.8 μ mmであり、ヤング率は共に6.53×10 μ kgf/mm²である。又、振動板の厚さは0.05 μ mm²である。そして、PZT素子の圧電定数を3.8 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である。そして、PZT素子の圧電定数を3.8 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である。そして、PZT素子の圧電でなる4 μ mm²である6 μ mm²でかる6 μ mm²である6 μ mm²である6 μ mm²でかる6 μ mm²でかる6

【0015】これらの条件を踏まえると共に、PZT素子を両持梁とみなし、既知の両持梁の歪量の公式 (特に示さず)に上記値を代入して歪量を計算する。その結果、本発明では10 Vの電圧を印加すると0.11 μ mの歪量が得られるのに対し、従来では150 Vでも0.045 μ mに過ぎないことが分かる。従って、本発明の製法によれば、PZT素子をかなり薄膜にできることに伴って印加電圧を相当低くすることができ、省エネルギーが実現される。但し、本発明において、PZT素子のサイズは上記のように個別インク路の幅方向よりも長手方向を長くすることが好ましい。

【0016】なお、上記実施例ではスクリーン印刷を用いた場合であるが、スピンコート・エッチングを用いてPZTオクチル酸塩混合物からPZT素子を形成しても同等の作用効果が得られる。又、スクリーン印刷又はスピンコート・エッチングのいずれの場合も、PZTオクチル酸塩混合物を成膜する構成であるため、図6に示すような高密度のプリントヘッドであっても、振動板上の所定位置にPZT素子を実装することは容易である。

[0017]

【発明の効果】以上説明したように、本発明の製造方法 (及びインクジェットプリントヘッド)は、スピンコート・エッチング又はスクリーン印刷によってPZTオクチル酸塩混合物を成膜し、PZT膜を焼成・分極させることによりPZT素子を形成するため、下記の効果を奏する。

(1) PZT素子の切断・貼付工程が不要であり、生産

5

性が向上する。

- (2) 従来の精精 150μ m程度の厚さに比べて、数 μ mと非常に薄いP 2 T素子を形成することができるので、P 2 T素子の駆動電圧を下げることができ、省エネルギー化が達成される。
- (3) 相当高密度なプリントヘッドでも、PZT素子を 振動板上に高精度で実装することができる。
- (4) PZT膜を500℃程度の低温で焼成することが可能であり、振動板及び電極の材料、振動板の厚さの選定が容易になる。
- (5) P Z T 膜の焼成時に膜中の P b が蒸発する心配がないので、 P b の損失を防ぐために焼成炉や蒸気配管等を特別仕様にする必要がない。
- (6)焼成後のPZT膜の組成、組織を均一にできる。 【図面の簡単な説明】
- 【図1】本発明のインクジェットプリントヘッドの一部 省略要部断面図である。

【図1】

る。 【図3】本発明の製造方法における第2の工程図であ

【図2】本発明の製造方法における第1の工程図であ

- 【図3】本発明の製造方法における第2の工程図である。
- 【図4】本発明の製造方法における第3の工程図である。
- 【図5】従来例に係る圧電型インクジェットプリントへッドの一部省略平面図である。
- 【図 6 】高密度インクジェットプリントヘッドの平面図 10 である。

【符号の説明】

1	ヘッド基台
2	個別インク路
3	振動板
4	PZT素子
5	共通電極
6	個別電極

[図2]

【図3】

[図4]

【図5】

フロントページの続き

(51)Int.Cl.⁵ H 0 1 L 41/24

識別記号

庁内整理番号

FΙ

技術表示箇所

9274 - 4M

H 0 1 L 41/22