AD643351

Bost Available Copy

ANNUAL JOB COMPLETION REPORT

MARSH ECOLOGY RESEARCH

April 1, 1965 to March 31, 1966

Part I

BEST AVAILABLE COPY

Department of Agronomy Cornell University Ithaca, New York

2004090L160

ANNUAL JOB COMPLETION REPORT RESEARCH

STATE OF: New York

NAME: Marsh Ecology Research

PROJECT NO.: W-94-R-8

TITLE: Study of the physical and

chemical properties of wate and soils of marshes as the properties relate to the sucess of waterfowl food and

cover plants.

PERIOD COVERED: April 1, 1965 to March 31, 1966

ABSTRACT:

Total alkalinity, pH, oxygen and temperature measurements were taken at 6-inch intervals of water depth in each of the 1/10 acre marshes every week during the growing season. The oxygen content ranged from 3.1 to 14.8 ppm during the period from 8:00 A.M. to 5:00 P.M. This change in oxygen level is a reflection of the active biological activity of the marshes.

Total alkalinity determinations showed a significant decrease for all marshes. In 1965, 94 percent of all determinations fell in the range of 0-50 ppm. The average alkalinity for the four marshes of any one depth was around 30 ppm.

The data from soil tests, taken every 3 months from the bottom soils of each of the marshes showed a trend toward higher levels of iron.

The water from the main water supply and the center feeding canal was sampled at weekly intervals throughout the season. These samples were analyzed by spectrographic methods for 15 nutrients. No significant changes from 1964 values were demonstrated.

RECOMMENDATIONS:

This job should be continued next year as outlined in the "Annual Job Report", submitted separately.

OBJECTIVES:

To define requirements for the successful growth of waterfowl food and cover plants on soils flooded from depths of one foot to three feet, at intervals of six inches.

TECHNIQUES:

Discussed in the separate report, "Annual Job Completion Report - Marsh Ecology Research - April 1, 1965 to March 31, 1966".

PREPARED BY: Project Leader	APPROVED BY: Levald D. Holey Supervising Wildlife
DATE: Mirane K 71 : 966	Ar P. B. Calson
	Chief, Bureau of Game

ANNUAL JOB COMPLETION REPORT

toject Name: Marsh Ecology Research

Project Title: Study of the Physical and Chemical Properties of Water and Soils of

Marshes as these Related to the Success of Waterfowl and Cover Plants.

Project Number: W-94-R-8. Job II-B.

'ersonnel: S. N. Fertig, J. E. Dawson, D. J. Lathwell and Edward Goyette

Period Covered: April 1, 1965 to March 31, 1966

lesearch Accomplishments of the Year:

I. Physical Facilities:

The 20 marshes involved in the study were maintained in good physical condition during the year. In the spring of 1965, all units were checked for winter damage and, where needed, the dykes repaired and seeded. An application of fertilizer was made on the outside of the dykes and the surrounding sod area to improve the general condition and appearance of the turf. During the summer, a weekly mowing program was maintained and hand pulling or cutting kept invading weed species under control. A power sickle-bar mower was used to trim areas not accessible to the larger tractor mower.

The summer of 1965 was the third year when limited rainfall put a real stress on the main water supply. The desired sampling period of June 1 to September 15 was maintained, but only by very close manipulation of the supply to prevent losses due to seepage and overfilling. Again, as in the fall of 1963 and 1964, earthmoving equipment was used to take more debris and soil from the main marsh. An additional 2 acres of the main marsh was cleared of timber and deepened. With anything resembling normal rainfall, the water supply should be adequate.

To permit rapid visual inspection of the fence line and to facilitate mowing, the two-foot swath on each side of the fence was again treated with soil sterilants. Maintaining a vegetation free area in the fence line not only speeds up mowing operations but permits a rapid daily inspection of the fence for burrowing rodents and any breaks that might occur due to wild or domestic animals.

Also, during the fall of 1965, the remaining brush, bulldozed from the fence line, at the time of construction were cleaned up and burned.

The efforts expended in clearing the main marsh of top soil, organic matter and timber resulted in continued improvement in the quality of water for the 1965 season. The additional work in the fall of 1965 should further improve the objectionable staining of the water supply due to organic matter. suspended material resulting in pump clogging, and the numbers of invading fish.

Using funds from the CRF-1 Aquatic Project, a service building 24×60 feet was constructed. This building has a 12×20 foot laboratory and area for storing supplies and equipment. The small building previously used as a laboratory will be maintained for storage.

II. Experimental Status:

The experimental program is designed to follow the chemical and physical changes in pater and soil which would result in the cessation of growth of plants. Initial treatments included pH and organic matter variables to determine their effect on the rate and nature of chemical and physical changes. There were no changes in the chemical or physical condition of the marshes during 1964 or 1965 which could be attributed to these two variables.

Water samples taken at weekly intervals from the main marsh, the center canal, and marsh No. 9, and analyzed for nutrient level, are reported in Tables 1, 2 and 3. Similar data are reported for the center canal, and ponds 25 and 41 from the CRF-1 project, adjacent to the Marsh Ecology Unit and supplied from the same water supply. Comparing the 1964 and 1965 data, the trend is toward higher levels of iron.

Comparing the values from the main marsh for 1964 and 1965, the pH values show no change but the nitrate, total nitrogen, and phosphorus values are higher for 1965. No significant constant changes occurred with the other nutrients.

Oxygen determinations were continued at 6-inch intervals of depth in each of the marshes every week. The content ranged from 3.1 ppm to 14.8 ppm. This compares favorably with the range of 2.15 to 13.4 ppm in 1964 and 2.3 to 14 ppm in 1963. The lowest oxygen readings normally occur early in the morning and the highest readings in the afternoon (Appendix - Tables 1-20). These changes in oxygen level are to be expected, since the degree of biological activity which is related to light intensity would follow this pattern. The changes in oxygen level with water depth and time of day for selected marshes for the 1965, 1964 and 1963 seasons are shown in Tables 8. 9 and 10.

The average total alkalinity values for all marshes showed a marked decrease in 1965 (Table 11). For 1962, seventy-eight percent of the determinations made showed alkalinities ranging from 50 to 100 parts per million. In 1963, only 35 percent fell in this range, while in 1964, it jumped to 66.5 percent of the total samples. The percentage in this range for 1965 was only 6 percent. Also, in 1964—44 percent of the determinations fell in the 50-59 ppm range, while in 1965, 48 percent fell in the 20-29 ppm range.

The average seasonal total alkalinity at each water depth is reported in Table 12. All marshes showed lower seasonal total alkalinity in 1965, compared to 1964. The 1965 values reflect the greatest change in alkalinity since the initiation of the study. The average values for the four marshes of each water depth in 1963, 1964 and 1965 are reported in Table 13.

REFERENCE MAP

Cornell No. 1 Aquatic Management Studies Project Initiated - 1960

18 2.0 13 17	15	14 2.0	1.5 8 1.0	atm 0	MO Ha I	10 tons per acre 4 tons (dry wt.)	<u>Submersed</u> Najas	Chara Sago pondweed Water celery
	21 22	20 19 18 17 16	1 3 5 7 9	2.5 3.0 1.5 2.5 Old Water Treatment New Old	2 3 7	7 2-1/2 H H Fertility 9 3.0 H L High lime - 10 to 11 1.0 L H High lime - 10 to 12 2-1/2 L H High OM - 4 to	Pla	1.0 H H Water 2-1/2 H L smartweed 1.5 H H Hardstem 1.5 L H bulrush 3.0 H H
Ponds 23 - 41 constructed during summer of 1952.		33	32 23	41 34 31 24	40 35 30 25 ² 3	39 36 29 26 6 5 7	38 37 28 27 9 10	12 13 14 15 15

Analysis of Water Samples Taken From the Main Marsh (Cornell #1) During the 1965 Growing Season

			İ						P. P. M.	×							
	•				Total												
Date	р.н.	О.М.	<u>گ</u>	NH/	Z	24	3	=	Mg	Ha	uz	표	Je.	3		VI VI	Sr
6/21	9.0		-	60.		N.D.	**	6.0	5.0	2.10	M.D.	M.D.	.140	.020	.020	.170	N.D.
6/28	£.0	•	ı	.25	1	0.2	21.	0.1	5.0	1.13	.003	.014	.183	.015	.030	.268	.016
9/1	×.	·01	.18	.:0	.35	0.3	24.	3.)	7.0	1.31	600.	.014	.224	.005	.011	.234	.020
1/12	7.5	20.1	.22	ar ;	.78	0.2	23.	1.0	7.0	1.48	.011	.011	.169	900.	910.	.234	.034
61/1	3.	27	.11		٤	4.0	24.	3.9	6.0	1.57	970.	.023	.130	.017	.028	.164	.029
7/26	9.1	67	.12	, U8	1.18	0.2	24.	3.0	6.9	1.60	-012	.014	107	.010	.024	.150	.015
8/2	9.0	29	.25	6.0	7.09	0.1	25.	7.0	9.0	1.11	.012	.023	.232	N.D.	900.	.250	.040
6/8	8.3	643	.22	.07	3.32	6.3	24.	3.0	6.0	1.83	.015	.011	.265	.010	.018	.258	.034
8/16	8.5	37	. 66	85	1.12	0.1	27.	2.0	0.8	1.83	•00	.014	.202	N.D.	.028	.266	.041
8/23	8.8	37	.36	.38	2.28	0.5	23,	2.0	9.0	2.00	.007	.014	.290	N.D.	.034	.356	.049
8/30	3.0	33	.29	· •	.33	0.3	31.	2.3	10.0	2.00	.013	.014	.680	N.D.	.046	.640	.039
1/6	7.6	33	3.5	(101	1.09	0.3	31.	2.0	9.0	2.14	.013	.014	.770	M.D.	.031	.760	.046
9/13	8.5	47	.40	90.	2.04	0.1	34.	7.0	10.0	2.07	.019	.011	.445	M.D.	.041	. 540	.058
9/20	7.8	13	.19	<.01	2.97	0.1	38.	2.0	11.0	2.00	.001	.011	.193	.011	.038	.286	.065
9/27	8.3	20	.35	<.01	1.05	0.1	33.	N.D.	9.0	1.96	N.D.	8 00.	.248	900.	.041	.356	.050
10/4	8.0	73	.41	.15	1.27	0.3	31.	1.0	9.0	2.00	600	.011	.740	.015	.021	.935	.052
10/11	7.7	7	.21	:.01	.76	0.5	32.	9.0	8.0	1.67	.004	.023	1.070	.018	.031	1.250	.043

*N.D. - None Detected

Table 2

Analysis of Water Samples Taken From the Center Canal (Cornell #1) During the 1965 Growing Season

									M d d	×							
					Total					·u·							
Date	p.H.	О.М.	NO3	NH,	Z	ρı	Ca	×	¥8	Na	Zu Zu	Mn	Pe	8	2	VI	S
6/21	8.7	NA.	NA N	60.	NR	N.D.	20.	2.0	3.0	1.0	10.	.07	.33	.03	.02	.15	2
6/28	9.2	i.R	NR	. 38	NR	0.2	23.	0.1	5.0	.788	.003	.014	.095	.015	.030	1.55	0.
9/1	0.6	₹.01	.24	41	.56	9.3	29.	6.5	0.9	1.28	.011	.014	.202	.008	.016	.250	0
7/12	9.5	09	.20	90.	.97	0.2	25.	2.0	6.0	1.64	.011	.014	.114	.016	.021	.140	Ŏ.
7/19	9.3	33	.07	.19	1.00	7.0	20.	2.0	4.0	1.38	.115	.019	1114	910.	.024	.087	0
7/26	9.6	02	.19	.47	1.87	0.2	24.	2.0	0.9	1.54	.003	.011	.054	.011	.018	780.	0
8/2	9.5	73	.25	<.01	.82	0.1	25.	9.0	7.0	1.71	700.	.008	.054	N.D.	.016	.100	ġ
6/8	9.3	33	.18	€.01	1.74	0.3	24.	3.0	6.0	1.60	.015	.011	.186	010	.018	.112	.0
8/16	9.3	20	.33	<.01	1.09	0.1	20.	1.0	5.0	1.41	.011	.011	.982	N.D.	.021	.209	.0
8/23	3.1	37	.22	.29	2.00	0.1	26.	2.0	7.0	1.93	.302	.011	.070	.002	.034	.100	ş
8/30	8.6	33	.15	.09	1.00	0.1	28.	1.3	9.0	2.05	1110.	.011	.169	N.D.	.034	.170	.00
1/6	7.6	70	.21	<.01	.78	0.1	28.	2.0	9.0	2.10	.010	.008	.100	N.D.	.024	.164	8.
9/13	8.7	33	.33	.01	1.48	N.D.	27.	7.0	9.0	2.05	010.	800	.153	N.D.	.026	.157	0
9/20	8.6	20	.28	<01	2.33	0.1	33.	2.0	10.0	2.05	900.	.008	.091	010.	.028	.145	0
9/27	8.1	g	.41	.11	.89	0.1	33.	7.0	10.0	2.18	.003	.011	160.	900	.031	.124	0
10/4 10/11 #N.D.	7.9 8.0 -	77 27	.44 .29	<.01 <.01	1.86 1.48	0.2 0.2 Not Rum	34.	2.0	9.0	2.32	.020	.008	.202	.013	.036	.176	00

Analysis of Water Samples Taken From Pond #9 (Cornell #1) During the 1965 Growing Season

										P.P.M.							
Date	р.Н.	0.M.	KO3	T NHV	Total N	Δı	g	×	МВ	Na	uz	Mn	Fe	ප	æ	A1	Sr
6/21	6 0			69.		N.D.	15	N.D.	3	0.1	N.D.	N.D.	.130	N.D.	N.D.	.070	.04
6/28	3.3	;	ì	65.	,	.2	15	.2	E)	06.	.001	.029	.125	.013	.018	.078	.05
9/1	9.6	C1	.12	(13	.31	4.	18	2.0	5	1.09	.013	.014	.139	.003	.018	.221	.07
7/12		6.7	.21	٤, ٠	.85	.2	21	2.0		1.19	600	.028	.146	.005	.018	.118	.08
61/1	€ &	33	.11	-	.12	e.	22	1.3	٧	66.	.027	.032	.224	.011	.024	.150	.08
7/26	9.0	29	.12	?	1.98	7	19	1.9	S	.02	600.	.023	.122	910.	.016	.132	•05
8/2	8.6	77	.19	.27	.54	N.D.	18	N.D.	2	1.09	.005	.028	.130	N.D.	.028	.118	.01
6/8	8.5	37	.18	A.01	1.14	E,	21	3.0	~	1.15	.012	.019	.146	. 308	.018	.118	.11
8/16	8.7	37	. 52	.11	.72	٦.	20	1.0	, 9	.93	.003	.032	.122	N.D.	.024	.118	.09
8/23	8.4	23	.20	2.13	.89	-:	28	ဆ	9	1.15	.003	.008	.070	N.D.	.041	.068	.13
8/30	5:	37	.13	.15	1.00	۲.	25	1.0	9	1.15	.012	.011	.114	N.D.	.031	.087	.10
2/6	7.8	50	.73	<.01	.65	.1	21	1.0	7	1.28	600.	300.	.054	N.D.	.034	.062	1.01
9/13	g.3	30	.29	.11	1.42	N.D.	29	N.D.	7	1.28	900.	.011	.202	N.D.	.021	.188	90.
9/20	8.8	10	.30	< .01	. 39	N.D.	20	4.	9	1.25	.002	.008	070	.005	.038	.050	.06
9/27	8.1	70	.33	<. 91	.67	,	25	N.D.	9	1.41	.001	.008	160.	900.	.044	.112	.10
10/4	8.0	02 .	.28	<.01	1.03		28	9.0	•	1.60	.008	.008	.076	.008	.011	.084	.12
10/11	8.0	,	.20	.25	1.07	N.D.	25	N.D.	9	1.67	.003	.014	.091	.018	.048	.157	.11
AN.D.		- None Detected	peq														

Analysis of Water Samplac Taken From The Canter Canal (23 to 41 Group; Cornell #1) During the 1965 Graving Season

					Total					P.P.H.							T
Date	р.Н.	0.M.	NO3	J.H.	N	ρ.,	ča	×		Na	Zn	Mn	ត	ಪ	ta	Į.	0.
6/21	9.1		,	0.10		1.0	28	7.0	5	1.200	010.	.050	.350	.020	. 330	. 780	7
6/28	9.5	•	1	0.09		.	18	N.D.	4	.613	N.D.	.010	.043	N.D.	. 307	.056	•
9//	9.0	₹ 01	.10	.18	1.17	.2	23	3.0	9	1.250	900.	.014	920.	900.	.311	.100	•
7/12	7.6	190	.21	.25	1.34	.2	18	1.0	7	1.540	.012	.011	160.	900.	. 280	890.	•
61//	9.3	27	.08	.10	.31	4.	21	3.0	9	1.380	.024	.023	.091	.018	. 326	.112	
7/26	9.8	11.	.10	.01	79.	7.	21	0.1	, •	1.510	900.	.011	.054	.005	. 318	.068	•
8/2	9.8	7.	.25	4.61	.63	۲.	22	2.0	•	1.800	600.	.011	.047	M.D.	.024	.034	•
6/8	9.3	33	.15	₹.01	.87	e.	21	4.0	٧.	1.600	.013	.014	.062	800.	.024	.079	•
9/16	9.5	37	.43	₹.01	1.09	۲.	22	6.0	9	1.510	010.	.011	.062	N.D.	.024	.074	•
8/23	9.5	43	.14	1.06	1.37	.1	22	1.0	7	1.830	900-	.011	.062	N.D.	.041	.079	•
8/30	9.0	33	.15	90.	٨.01	٦.	27	1.0	o.	1.830	900.	.011	.070	N.D.	.018	100	
1/6	7.8	30	. 24	.07	1.31	۲.	23	2.0	∞	2.030	.0 <u>1</u> 0	800.	.034	N.D.	.036	.087	
9/13	8.4	æ	.31	4 .01	1.56	N.D.	24	N.D.	6	2.000	.011	800.	.091	Z, D	.011	780	•
9/20	8.4	13	.36	c. 01	1.75	~	27	1.0	65	2.070	.003	.008	.076	.005	970	013	•
127	8.1	8	.36	₹.01	1.26	ᅼ	25	N.B.	ø.	2.000	.002	.011	.082	.011	.041	910.	, ,
7/01	7.8	73	.32	< .01	1.31	۲.	54	∞,	6	2.100	900.	800.	160.	.017	.016	182	, -
10/11	7.7	23	.29	₹.01	1.17	۲:	25	N.D.	6	1.930	Z.D.	.014	.146	.013	770.	.150	
N.D.	- None Detected	Je tec t.	ed													i i	,

*N.D. - None Detected

Table 5

Analysis of Water Sammes Taken From Pond #25 (Cornell #1) During the 1965 Growing Season

		1		1						P.P.H.							
					Tota												
Date	р.н.	ο. Υ.	Σ N	N.Y	Z	ŗ	Ca	×	Ě	Na	Zu	¥	Fe	Çn	8	A1	Sr
6/21	ာ သ		,		' 	2.	25	N.D.	9	1.000	N.D.	.050	.100	.020	.020	.100	N.D.
6/28	8.5	4	:	٠.	•	.2	23	.1	9	1.088	N.D.	.045	.059	900.	.014	870.	.021
9/1	٠ چ	4	;	.18	1.1/	.3	30	C• ĉ	က	1.510	900.	.088	101.	.003	.0i4	.132	5:5.
7/12	٠ ٠	í,	9	(§:	35	6.5	28	2 0	7	1.410	.036	.063	.091	.012	.036	.100	.024
7/19	٠ د.	30	0.	36.	.40	4.	56	2.0	«	1.480	.036	.088	.100	910.	.064	.112	.038
7/26	8.9	57	.20	2.50	1.40	e.	25	2.0	6	1.450	600.	.028	.062	.005	.048	.079	.022
8/2	8.6	20	.19	<.01	1.10	N.D.	25	1.0	&	1.600	.007	.028	.047	N.D.	.036	.079	.039
8/9	8.5	33	.22	<.01	1.37	e.	25	5.0	7	1.540	.018	.032	070	.011	.038	.084	.037
8/16	8.7	43	.70	< .01	1.12	N.D.	23	8.0	7	1.480	.003	.028	.047	N.D.	.026	990.	.037
8/23	رر. در:	33	.27	.30	1.58	N.D.	16	1.0	2	1.120	.004	.008	.027	N.D.	.041	.035	470.
8/30	8.3	30	.22	₹°.31	.72	.2	29	.4	6	1.570	.012	.023	JC1.	N.D.	.051	.084	. 137
1/6	7.7	33	.31	<.01	31.	~ .	29	2.0	6	1.710	.020	.011	.034	N.D.	.044	.074	.07
9/13	8.2	30	.39	<.01	1.43	N.D.	28	1.0	6	1.900	.011	.019	920.	N.D.	.046	.062	.047
9/20	8.3	13	.36	16.>	1.21	N.D.	29	1.0	8	1.640	.002	.011	.047	900.	.046	.056	.045
72/6	8.2	8	.36	.05	1.26	N.D.	31	N.D.	6	1.600	N.D.	.014	.054	.005	.038	890.	.047
10/4	8.0	73	.35	6.01	1.63	۳.	28	1.0	∞	2.240	.007	.011	.070	.007	.074	.106	.055
10/11	8.0	30	.31	<.01	1.00	~	31	4.	œ	1.670	.003	.019	.062	.020	2%4	.106	.045
W.D.	- None Detected	Detecto	þ														

Analysis of Veter Samples Taken Pron Pond \$41 (Cornell #1) During the 1965 Growing Season

				!						2							
					Tr to 1					r.r.a.							
Date	р.н.	0.M.	NO3	i.n4	N	ď	ខឹ	×	Mg	M.	Zn	¥,	, e	ಕ	m	¥	Sr
6/21	8.1			.04	:	N.D.	29	H.B.	2	%	K.D.	M.D.	.170	.020	.030	.170	N.D.
6/28	8.9	4	•	.10	,	.2	14	4.	m	.863	900.	.040	.191	\$10.	.033	.050	800.
9/1	8.3	< .01	.11	.20	1.05	.	17	2.0	4	096.	900.	.063	.232	.063	.016	990.	910.
1/12	9.3	83	.20	.08	2.33	e.	16	2.0	4	.750	.020	.032	.122	.010	.034	.062	600.
61/1	8.6	23	.05	90.	.31	4.0	11	2.0	4	.870	616.	.040	.122	.013	.026	.079	.017
1/26	8.6	57	.38	2.50	1.40	.2	19	2.0	\$	1.020	.011	.023	.100	.005	.025	.056	.012
8/2	8.9	73	.15	<.01	98.	M.B.	18	N.D.	٧	.877	900.	.011	.070	H.D.	.028	.050	.029
6/8	8.6	33	.11	₹.01	1.09	E.	18	2.0	٠	.930	.011	.019	.107	.007	.028	950.	.025
8/16	0.6	33	.36	<.01	1.26	:	18	9.	٠	. 780	900.	.028	.114	N.D.	.626	.064	.028
8/23	8.0	30	01.	1.14	TT.	r.	26	2.0	€	1.410	.009	.014	.062	4. D.	990.	4LC.	.046
8/30	7.9	13	.10	.50	.43	۲,	13	4.	•	900	.010	.014	.100	A.D.	.038	.045	.026
1/6	7.7	1	.18	<.01	<.01	- -	18	2.0	v	.990	.065	.014	.047		.036	.068	.021
9/13	7.7	27	.	4 .01	1.49	.1	18	1.0	5	1.250	.019	.014	.122	.005	440.	.050	.032
9/20	7.8	10	.25	<.01	1.40	M.D.	18	7.	(A)	1.340	.005	.008	.047	.007	.038	.045	.034
9/27	7.5	11	.27	<.01	1.03	N.D.	11	N.D.	9	1.220	M.D.	M.D.	.047	.83	.031	.035	.031
10/4	7.5	67	.22	<. 01	. 52	.1	17	N.D.	S	1.250	.005	Z.D.	.054	.003	.031	.040	.030
10/11	7.5	17	.25	.05	.78	N.D.	18	N.D.	'n	1.250	700	.011	920.	.016	.036	.068	.031
*N.D None Defected	None	Datecte	Ŗ														

Table 8

The Effect of Time of Day and Depth of Water on the Oxygen Content of Some 1/10 Acre Marshes

1965

Marsh No.	Date	Time	Surface		£2"	18"	26"	33"	3e"
12	6/29/65	10:00 an	7.5	5.3	4.7	•	•	•	
	6/21/65	10:20 an		8.6	8.7	-	•	•	-
	8/2/65	11:20 an		8.7	9.6	•	•	-	-
	7/6/65	1:45 pc		10.4	11.3	-	-	•	•
	8/23/65	3:00 pm		11.79	11.79	•	•	•	-
16	9/16/65	9:00 an	3.8	3.2	2.9	3.5	•	•	, •
	6/28/65	9:15 an	n 7.5	6.5	6.8	6.3	•	•	-
	7/7/65	10:05 am	8.6	7.7	8.3	8.1	-	•	-
	6/21/65	1:00 pm	12.0	11.5	11.5	11.5	•	-	•
	8/25/65	4:14 pa	14.7	14.2	13.1	14.4	•	-	-
9	7/27/65	8:45 an	a 3.1	3.1	4.2	3.5	3.3	-	•
	6/11/65	10:00 an	4.6	4.0	4.7	4.6	4.6	-	-
	8/9/65	11:15 ar	7.8	7.7	7.5	7.5	7.3	-	-
	8/16/65	1:00 pt	9.6	10.0	9.2	10.1	10.2	-	-
	6/18/65	3:30 pt	12.8	12.1	12.4	12.3	11.3	•	-
4	7/26/65	9:15 ar	-	6.3	6.2	7.0	5.9	5.4	-
	8/9/65	10:00 ar		7.5	6.4	6.7	6.4	6.6	-
	7/13/65	10:30 ar		7.9	8.0	7.8	7.8	8.0	-
	6/28/65	2:10 pt		9.0	9.5	9.9	9.6	9.6	-
	9/7/65	4:00 pr	n 10.1	9.2	9.1	10.0	9.9	5.7	-
17	6/10/65	9:00 ar		6.4	6.0	5.9	5.9	5.3	3.3
	6/28/65	9:30 ax		7.7	7.7	7.6	7.6	6.8	6.8
	8/2/65	1:00 pa		8.7	8.8	8.9	9.2	7.8	6.8
	8/16/65 8/23/65	3:30 pt 4:30 pt		11.3 12.2	10.8 12.4	9.2 13.5	1i.3 13.0	9.2 12.4	9.5 12.3

This Document Contains Missing Page/s That Are Unavailable In The Original Document

Table 8

The Effect of Time of Day and Depth of Water on the Oxygen Content of Some 1/10 Acre Marshes

1965

Marsh No.	Date	Time	xygen con Surface		£2"	18"	28"	30"	3£"
12	6/29/65	10:00 am	7.5	5.3	4.7	_		_	
12	6/21/65	10:00 Am		8.6	8.7	_	_		_
	8/2/65	11:20 am		8.7	9.6	_	_	_	_
	7/6/65	1:45 pm		10.4	11.3	_	_	_	_
	8/23/65	3:00 pm		11.79	11.79	-	-	-	•
16	9/16/65	9:00 am	3.8	3.2	2.9	3.5	•	-	,•
	6/28/65	9:15 am	7.5	6.5	6.8	6.3	•	•	-
	7/7/65	10:05 am	8.6	7.7	8.3	8.1	-	-	•
	6/21/65	1:00 pm	12.0	11.5	11.5	11.5	•	-	•
	8/25/65	4:14 pm	14.7	14.2	13.1	14.4	•	•	-
9	7/27/65	8:45 am	3.1	3.1	4.2	3.5	3.3	•	•
	6/11/65	10:00 am	4.6	4.0	4.7	4.6	4.6	•	-
	8/9/65	11:15 am	7.8	7.7	7.5	7.5	7.3	•	•
	8/16/65	1:00 pm	9.6	10.0	9.2	10.1	10.2	-	-
	6/18/65	3:30 pr	12.8	12.1	12.4	12.3	11.3	-	-
4	7/26/65	9:15 am		6.3	6.2	7.0	5.9	5.4	-
	8/9/65	10:00 am		7.5	6.4	6.7	6.4	6.6	-
	7/13/65	10:30 am		7.9	8.0	7.8	7.8	8.0	-
	6/28/65	2:10 pm		9.0	9.5	9.9	9.6	9.6	•
	9/7/65	4:00 pm	10.1	9.2	9.1	10.0	9.9	5.7	-
17	6/10/65	9:00 am		6.4	6.0	5.9	5.9	5.3	3.3
	6/28/65	9:30 am		7.7	7.7	7.6	7.6	6.8	6.8
	8/2/65	1:00 pa		8.7	8.8	8.9	9.2	7.8	6.8
	8/16/65 8/23/65	3:30 pm 4:30 pm		11.3 12.2	10.8 12.4	9.2 13.5	1i.3 13.0	9.2 12.4	9.5 12.3

Table 9

The Effect of Time of Day and Depth of Water on the Oxygen Content of Some 1/10 Acre Marshes

1964

March										er depth
No.	Date	Time		Surface	6''	12''	18"	24"	30''	36''
12	9/2/64	8:35	sm	5.5	5.6	5.9	-	•	-	•
	8/18/64	10.40	am	7.8	7.8	7.5	•	-	-	•
	7/7/64	1:00	pm	10.5	10.2	10.3	•	•	•	•
	8/4/64	3:45	ρm	10.9	11.6	12.9	•	-	•	•
	6/11/64	6:15	•	11.8	11.7	11.6	•	•	-	-
16	8/26/64	8:50	am	6.6	6.6	6.7	6.8	•	-	•
	9/10/64	10:45	am	7.9	7.9	8.0	7.8	***	-	-
	8/11/64	1:15	pm	10.3	10.3	10.3	10.3	•	•	•
	8/18/64	2:50	pm	10.8	10.8	10.9	10.9	•	-	-
9	7/29/64	8:45	am	5 .5	5.2	5.0	5.0	5.1	-	•
	6/18/64	10:40	am	8.9	8.7	8.9	8.7	8.6	-	-
	9/9/64	2:15	pm	9.1	9.6	9.4	9.0	3.2	•	-
	6/11/64	4:40	pm	11.4	11,3	11.5	11.3	10.7	•	•
4	7/16/64	8:50	зm	8.0	8.0	7.9	8.1	8.3	8.4	-
	8/4/64	10:50	am	8.7	8.7	8.7	8.7	8.7	8.7	-
	7/1/64	12:30	pm	8.2	8.4	8.4	9.2	9.0	3.2	•
	9/18/64	3:45	pm	10.7	10.4	10.4	10.4	10.5	10.7	-
17	6/12/64	9:25	am	9.2	9.0	9.2	9.5	10.0	8.6	7.5
	8/11/64	12:50	pm	10.2	10.1	9.9	10.0	6.7	10.5	9.1
	7/20/64	2:00	pm	9.9	9.5	12.5	12.2	13.0	7.8	1.5
	6/29/64	3:00	pm	10.1	9.9	9.8	11.3	12.6	7 .4	9.7

Table 10

The Effect of Time of Day and Depth of Water on the Oxygen Content on Some 1/10 Acre Marshes

1963

March No.		Time	Surface	oncentra 6"	tion in	n ppm a	s relat	<u>ad to w</u>	ater dep 36"	t
12	7/2/63		3.1	2.5	2.5				•	Ξ.
	8/16/63	11:40 am	9.6	8.9	9.8	-	•	-		
	7/30/63	1:55 pm	10.8	11.4	11.5	-	•	•	•	
	8/21/63	3:15 pm	10.1	10.8	12.1	-	•	•		
	8/8/63	4:40 pm	12.2	12.75	12.1	•	-	•	•	
16	7/24/63	9:00 am	10.3	9.7	9.6	9.6	-	•	•	
	6/26/63	11:20 am	8.4	8.5	8.7	8.6	•	•	-	
	6/15/63	1:15 pm	9.4	9.6	9.7	9.6	•	-	-	
	8/16/63	2:40 pm	10.1	9.7	11.3	10.7	•	•	-	
	7/30/63	3:45 pm	11.9	11.8	11.9	11.5	•	•	-	
9	8/22/63	8:40 am	9.2	9.3	9.2	10.2	6.3	•	. .	
	8/16/63	10:20 am	10.0	9.9	10.0	9.6	9.4	~	•	
	6/14/63	1:00 pm	10.6	10.5	10.4	10.5	10.5	•	•	
	8/26/63	2:55 pm	12.3	12.4	13.2	12.7	10.9	•	•	
4	7/3/63	8:00 am	6.9	6.7	6.7	6.5	6.6	6.4	-	
	7/29/63	10:50 am	9.1	9.1	9.2	9.2	9.3	11.1	•	
	8/26/63	11:27 am	10.0	10.3	10.3	10.8	11.3	11.7	-	
	8/22/63	12:55 pm	11.1	10.8	11.4	11.8	11.7	12.3	-	
17	7/31/63	9:00 am	8.1	8.5	8.1	8.1	8.1	7.9	8.1	
	6/5/63	10:45 am	9.0	8.5	8.5	9.2	9.3	9.4	7.6	
	6/19/63	11:40 am	9.9	9.7	9.7	10.5	10.5	10.5	10.2	
	8/9/63	1:40 pm	10.1	10.0	10.0	9.7	11.0	10.8	9.8	
	8/16/63	4:00 pm	10.5	10.0	10.1	11.6	11.4	10.6	11.5	

Table 11

Range of Total Alkalinity Values for 1962 to 1965

Range in Total		Number o	f determina	tions falling in e	ach range
lkalinity as opm of CaCO3		1962	1963	1964	1965
100 +		6	0	21	0
90-99		29	3	7	1
80-89		91	11	31	0
70-79		79	39	83	2
60-69		253	109	185	23
50-59		530	281	671	57
40-49		262	727	498	176
30-39		11	108	4	472
20-29		1	1	0	635
	Total	1262	1279	1500 (10-19) (0 - 9)	28 1 1395

Table 12

Changes in Average Seasonal Total Alkalinity from 1962 to 1965 Season

Marsh Ecology Project

Pond	Pond Depth	Average Se	easonal Total Al Expressed as	kalinity from	
No.	(feet)	1962	1963	1964	1965
6	1.0	55.0	58.5	71.1	44.4
6 8	1.0	52.8	41.2	50.6	32.9
12	1.0	51.7	63.3	70.6	40.7
18	1.0	52.8	45.3	59.3	35.2
3 .	1.5	55.2	46.6	53.6	31.0
14	1.5	52.3	52.7	78.6	47.3
15	1.5	48.6	48.3	59.3	35.3
16	1.5	54.5	46.5	56.2	33.3
9	2.0	54.6	47.9	61.2	29.1
10	2.0	54.9	49.2	63.1	28.2
11	2.0	71.4	43.9	53.4	33.9
20	2.0	69.9	51.8	57.1	28.5
1	2.5	69.4	43.2	46.0	28.8
. 4	2.5	73.4	53.0	65.2	29.8
7	2.5	59.9	46.9	54.0	29.8
13	2.5	44.3	40.9	49.0	26.9
2	3.0	70.0	43.0	50.0	32.6
5	3.0	63.8	52.6	50.6	27.4
17	3.0	54.1	53.3	59.2	30.4
19	3.0	55.3	51.7	48.3	24.7
33	4.0		••	77.6	

er Depth (feet)		lkalinity val ponds of each	
	1963	1964	1965
1'	52.1	62.9	38.3
1-1/2'	51.0	61.9	36.7
2'	48.2	58.7	29.9
2-1/2'	46.0	53.6	28.8
3'	50.2	52.0	28.5

The data from soil tests are reported in Table 14. The trend in these samples is toward higher levels of iron. No significant changes are evident in organic matter, pH, P, Ca, Mg, K or Mn.

.II. Vegetation Growth and Appearance:

A. Submersed Species:

The four submersed species initially planted in the marshes were: Najas, Chara, Sago Pondweed and Water Celery. These species were rated three times during the season by visually estimating the density of each compared to the marsh having the maximum density. The ratings are shown in Table 15.

Comparing the 1965 and 1964 ratings, significant changes have occurred. The density for most species is higher in 1965 compared to 1964. Provious observations on vegetation growth, both submersed and emergent, have no doubt been of little significance due to the activity of wildlife. The 1966 season should give a better evaluation of the recovery of plant growth.

B. Emergent Species:

The four emergent species made in the initial plants were: burreed, wild rice, water smartwend and hardstem bulrush. All species continue to be more prevalent at the shallower depths of 1-2 feat. The hardstem bulrush, burreed and wild rice have essentially disappeared from the marshes maintained at 2-1/2 and 3-foot depths. The 1965 evaluations would tend to support previous suspicions, of wildlife competition. This suspicion is supported by the stand of wild rice in marshes where it has not been recorded since 1963.

V. Weather Data:

Recording hydrothermographs were located at the north and south ends of the experimental area. In addition, a rain gauge, wind recorder, max-min thermometers, and relative humidity instruments were located at the south station. A weather summary covering the period April 1-November 30 is included under Appendix I.

Table 14. 1965 The Results of Soil Analyses Takan From the .1 Acre Marshes at Gornell No. 1

Mars No.		Organic Matter	: Hq	F	NO ₃	NH3 N	Са	Mg	ĸ	Мn	Fe	Αl
1	5/12/65 7/1/65 10/12/65 1/7/66	0.6 0.4 0.6 0.3	7.5 7.2 7.4 7.4	<1 <1 <1 <1	5 10 15 <1	3.0 7.0 6.0	25,000 15,500 15,600 20,000	1,300 1,375 1,150 960	35 20 25 30	190 110 168 170	75 45 70 75	25 15 15
2	5/12/65 7/1/65 10/12/6 1/7/66	1.2 0.6 5 0.7 0.1	7.7 7.4 7.7 7.8	<1 <1 <1 <1	8 10 10 <1	3.0 5.0 3.0 <1	19,000 15,000 9,800 18,400	1,500 1,275 770 1,200	29 21 15 35	155 132 100 155	80 140 75 30	25 26 15 4
3	5/12/65 7/1/65 10/12/6: 1/7/66	0.5 0.7 5 0.5 0.2	7.8 7.6 7.8 7.8	<1 <1 1 <1	2 10 20 5	5.0 2.0 4.0	24,000 15,500 17,600 18,000	1,550 1,375 1,000 1,520	35 18 28 35	145 88 118 145	35 60 80 12	15 15 20 5
4	5/12/65 7/1/65 10/12/69	1.8 1.1 5 0.8 0.2	7.8 7.5 7.8 7.8	<1 <1 1 <1	4 15 12 <1	5.0 7.0 3.0 5	18,500 16,000 6,600 19,200	1,400 1,100 305 1,200	34 23 25 35	170 120 50 175	70 150 42 64	15 25 10 8
5	5/12/65 7/1/65 10/12/69 1/7/66	0.5 0.6 5 1.0 0.8	7.7 7.7 7.7 7.7	<1 <1 1 <1	12 4 40 40	9.0 3.0 10.0	17,500 12,000 10,200 13,600	975 900 880 700	50 15 33 40	195 88 176 165	275 50 460 800	45 13 65 45
6	5/12/65 7/1/65 10/12/65 1/7/66	2.1 1.3 5 2.9 0.7	7.7 7.6 7.6 7.7	<1 <1 1 <1	8 10 10 2	1.0 8.0 6.0	14,000 18,000 12.000 18,800	1,250 1,500 1,150 900	27 25 30 45	1 30 1 24 1 44 2 2 0	80 50 72 150	15 13 20 18
7	5/12/65 7/1/65 10/12/6	1.3 1.0 5 0.8 0.5	7.7 7.6 7.7 7.8	<1 <1 1 <1	13 10 25 25	7.5 7.0 5.0	18,500 13,500 17,200 18, 8 00	1.070 1.225 1.000 900	37 20 35 40	195 108 168 210	245 100 120 280	30 25 25 25
8	5/12/65 7/1/65 10/12/6 1/7/66	0.5 0.7 5 0.6 0.7	7.9 7.7 7.8 7.8	<1 <1 1 <1	12 20 8 20	3.0 2.0 3.0 <1	20,000 17.500 12,000 18,000	1,500 1,250 1,080 900	35 25 30 35	160 132 114 230	50 170 57 220	15 25 25 23
9	5/12/65 7/1/65 10/12/6 1/7/66	1.2 3.1 5 0.7 1.8	7.8 7.6 7.5 7.6	<1 <1 1	18 5 27 15	9.0 8.0 3.0 <:1	19,000 9,750 7,600 9,000	1,200 1,000 700 880	40 25 30 30	245 124 156 215	230 140 290 340	25 28 35 37
10	5/12/65 7/1/65 10/12/6 1/7/66	4.7 5 1.0 3.6	7.5 7.8 7.6	- <1 -1	20 8 <1	7.0 6.0	21,250 12,000 18,000	- 600 1,000 700	45 25 35	132 152 155	 300 90 44	28 20 5

Table 14 (cont'd)

Marsh)rganı:			NO ₃	NH 3		 		, den e e e e e		
No.	Date N	fatter	pН	P	N	N	Ca	Mg	K	Mn	Fe	Al
11	5/12/65	0.7	7.8	<1	15	5.0	20,000	1,350	35	170	165	25
	7/1/65	0.6	7.7	<l< td=""><td>10</td><td>8.0</td><td>18,000</td><td>1,375</td><td>25</td><td>162</td><td>145</td><td>28</td></l<>	10	8.0	18,000	1,375	25	162	145	28
	10/12/65	0.5	7.7	1	10	3.0	16,800	1,060	20	1 30	120	20
	1/7/66	0.6	7.8	<1	15	<1	18,000	900	35	210	160	23
12	5/12/65	8.4	7.5	<1	12	6.0	14,000	550	17	90	280	1.5
	7/1/65	1.5	7.7	<1	10	3.0	16,500	1,150	25	132	115	28
	10/12/65	6.9	7.4	<1	23	15.0	16,000	710	25	126	290	25
	1/7/66	6.3	7.6	<1	20	<1	20,000	800	30	125	300	28
13	5/12/65	0.9	7.7	<1	20	7.5	15,000	1,050	25	220	320	40
	7/1/65	0.9	7.6	1	10	5.0	13,500	1,250	35	132	210	33
	10/12/65 1/7/66	0.9	7.5	1	38	7.0 4	8,000	780	20 20	144 110	440 3 40	85 40
	1///00	1.6	7.6	<1	30	<u></u>	6,000	800		110	340	40
14	5/12/65	6.1	7.5	<1	13	3.0	17,500	1,050	30	14.0	165	1.5
	7/1/65	3.9	7.7	<1	10	7.0	17,500	1,000	30	1.58	160	28
	10/12/65	2.5	7.6	<1	15	8.0	24,000	520	35	1 30	85	10
	1/7/66	0.6	7.7	<.1	25	<1	18.000	860	40	220	340	27
15	5/12/65	0.5	7.8	21	5	1.0	8,500	950	.5	50	10	10
	7/1/65	2.4	7.7	$s\Pi$	01	5.0	17.500	1,300	28	152	135	25
	10/12/65	4.0	7.6	< }	6	3.0	16,000	1,160	20	140	125	25
	1/7/66	1.3	7.7	<:1		<1	18 400	920	45	200	250	25
16	5/12/65	0.7	7.8	« 1	10	7.0	20,000	1,500	2.7	200	90	15
	7/1/65	0.7	7.7	<1	1	2.0	14.250	1.075	28	102	1.00	2 5
	10/12/63	0.6	7.7	<.1	18	4.0	15,000	1.150	25	148	i 45	2.5
-	1/7/66	0.7	7.8	<u> </u>	23	<1	14.800	1,200	30	220	340	_ 3 3
17	5/12/65	1.3	7.8	<:1	1.7	10.0	22.500	1 175	30	220	250	2C
	7/1/65	0.7	7.7	1	2	5.0	17,000	1,250	30	180	125	30
	10/12/65 1/7/66	0.6	7.8	< 1	12	6.0	16,000	1,160 700	28 25	172	140	22
	177700	0.8	7.8	<1 	15	<'1	9,600			120	210	25
18	5/12/65	0.5	7.9	<1	3	3.0	26.000	1,450	25	180	45	10
	7/1/65	0.7	7.7	1	2	5.0	22,500	1,000	33	108	80	12
	10/12/65 1/7/66	0.5	7.9 7.9	<1 	15 -25	5.0	16 800 23,200	1,320 830	25 45	140 220	92 145	2.5 20
19	5/12/65	0.5	7.9	<.1	6	2.5	20.000	1.475	25	170	35	20
	7/1/65 10/12/65	0.4	7.8 7.8	< 1 < 1	2 12	7.0 4.0	16,250	1,450 1,240	20 30	108	30	12
	1/7/66	0.7	7.8	< 1 < 1	15	4.0 1	17,600 19,200	770	55	156 235	L10 260	20 25
20	5/12/65	0.7	7.9	<u>~1</u>	5	14.0	30,000	1,175	30	210	45	10
	7/1/65	0.5	7.8	1	5	5.0	30.000	700	3 8	115	1 35	25
	10/12/63	0.4	7.8	< l	1 2	3.0	16,000	1,140	25	1 30	75	15
	1/7/66	0.6	7.8	< 1	25	s:11	14.000	6 ⁷ ()	50	160	410	50

Table 15.

Visual Evaluation of Stand Density by Species, Cornell #1, Marshes 1 to 20

1965

							Ma	rsh	Numb	-	New)	and S	tand	Rati	ng by	Date	1/				
Plant Species	Date	-	7	_	4	2	9	7	6 8	Ç.	12	=	12	\mathbb{C}		15	16	11	18	19	20
Sparaganlum	July 1	0	0	0	0	0	7	0	0	0	0	0	01	0	~	6	80	0	0	0	0
	July 22	0	0	0	0	0	7	0	0	0	0	0	10	0		6	1	0	0	0	0
	Aug. 20	-	-	-	-	-	4	-	-	-	-		2		-	6	9	-	-		
	1.1.	(-	9	•	c	c	~	c	u	~	<	۲	-	c	,	٥	o	c	(c
, 1,2411,4	July 1 Indo 22	-	→ ,	o c	o	-	, 6	٠ ٠	۰,	۳ ر	٠	t ~	ی ،	ستم إد	, ,	2 -	0 0	0 0	7 -	o c	> C
	Aug. 20	0	٠	0	· ၁	·	5 -	2		ی د	- 2	5	۸ د		,	10	9	9		0	0
		•	((((c	(r	ć	•	ć	,	•	,	•	(•	,	•	,
Polygonum	July 1	- ,)	7 (7 .	-	ν,	> (- ?	7 -	t	7 .	٠, ١)	<u> </u>	4 ()	⊸ ,	 - (- .	~ ·
		(o ·	~	- ,	o (4 1	o (2 :	(-	∽ '	O (x 0 1	7	0		0	-	ا ليمير
	Aug. 20	7	-	7			_		2		7	-	2	0	7	-	0	-		-	-
Scirpus	July 1	7	0	7	0	7	7	~	9	7	7	Ŋ	1~	7	10		٣	0	. 01	-	2
•	July 22	7	0	7	0	2	8	~	9	2	5	9	œ	~	10	2	Ś	0	10		7
	Aug. 20	ζ;	_	و	-	4	20	3	5	2	77	5	80		21	2	7		10		2
			ι	.	:	•	,		,	4	ı				•	,		,	,		
Najas	July 1	ς.	Λ.	^	7	-			2	-	_		9	0	0	0	<†	m	01	4	p==1
		2	'	ι ς 1 -			-		6	0	M	7		7	0	0	∞	ന	10	7	~
	Aug. 20	~	~	4	2	-	2	-	2		6		-	~			8	4	\neg	m	~
Chara	July 1	S	٣	9	7		10	2	9	9	0	5	œ		9	2	∞	9	m	7	9
	July 22	3	3	9	4		10	9	7	1	0	2	6	·-	7		œ	80	m	~	7
	Aug. 20	2		9	9	-	2	9	9	7	0	3	6		8	-	7	8	2	7	80
P. oectinatus	July	-	7	,4		01		7	~ب	س	10	2	C	٠		٠٠	6	۳,	~	7	<
	July 22		~		C	2		-ى .	~ ،	-بى ر	2	ı	•	.		٠.	۱	, ,	, ,	7	· c
	Aug. 20	۱			0	2 2	• 0	, v	· ~	7	21		0	t	-	· ~	7	7	7	• ~	,
	1	 																			

^{1/} Rating based on 0 to 10, with zero indicating an absence of the species and 10 representing the marsh with the maximum density. All other values based on the marsh with maximum density

	2 4		7	1 11	4 6	2 2	ar	1 11	Number 8 9	r (New) 9 1	W) and 10	و التا ك ^ر	1 ~11	Rating 13 4	14 by	Dates 15	1 11	17	188	161	20
	July 22 Aug. 20	2 4	~ ~	7	اه ع	a	6 6	2 1	0 6	6 01	1 7 6	~ ac	0, 8	7 - 7	t 3	, ~ 0	155	000	1 2	7 - 7	
natans	July 1 July 22 Aug. 20	9 01 01	000	000	000	000	000	0 0 0	000	0 0 0	000	200	000	000	000	000	000	v w 4	000	000	000
snsopou	July 1 July 22 Aug. 20	000	000	5 2 2	7	000	000	000	000	000	000	~ ~ ~	000	9	000	000	000	000	10 10 10	0 0 0	0
gramineus	July 1 July 22 Aug. 20	000	000	000	000	000	000	000	000	000	000	000	000	000	0 0	000	000	000	0	0 0	10 10 10
	July 1 July 22 Aug. 27	000	000	000	000	000	m	2 2 4	000	000	000	0 0	000	000	000	01 01 01	000	000	000	000	000
crispus	July 1 July 22 Aug. 20	000	000	000	000	000	000	0 0 0	000	000	0 0 0	000	2 m 0	000	000	000	000	000	000	000	000
richardronii	July 1 July 22 Aug 20	000	0 0	000	3 7 7	0 0	2 2	e = =	000	person bears	7 10 10		000	2 6 9	0	10 5 6	pur	000	426	000	800
illinoensis	July 1 July 22 Aug 20	9 01 01	ပဝဝ	•000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000

table 15 (core d)

							Marsh		Number	7	New) a	and St	Stand	Rating	ng by	Jates	S				
Plant Species	Date	-	1 2 3	~	4	5	9	7	8	6	2	11	12	13	14	15	16	17	18	19	20
			1		ļ !					 				1							
P. toliosus	July 1	0	0	9	၁	0	0	၁	0	0	0	0	0	၁	၁	0	0	0	0	0	0
	July 22	0	0	၁	0	0	0	9	0	0	0	0	0	0	0	0	0	၁	0	0	0
	Aug. 20 0 0 0	0	0	9	0	0	3	0	2	C	0	0	၁	0	0	0	0	0	0	0	0
						<u> </u>															
Heteranthera	July 1	0	0	0	0	01	2	4	0	၁	0	С	0	œ		0		0	0	0	0
dubia	July 22 0 0 0	0	0	0	0	01	2	7	0	0	0	၁	0	9	0	0		0	0	0	0
	Aug. 20	0	0	0	0	10	0	-	0	0	0	0	0	9	၁	0	0	0	0	0	0

Table 1

Cornell #1 - Marsh Ecology Project

Monthly Marsonological Summary 1/

Monthly Meteorological Summary 1/ Air Temperature (in degrees F.)

April 1965

Month	Day	Rainfall in	Wind velocity	Air tempe	rature - th	ernometer	Percent Relative
, conten	Duy	inches	in MPD	Maximum	Minimum	Mean	Humidity
pril	1	.08	100	37.5	18	27.8	68
-	2	0	260	35.5	25	30.2	94
	. 3	0	180	37	20	28.5	52
	4	0	110	43	20	31.5	65
•	5	0	90	50	20	35.0	50
	6	.21	250	57	25	41.0	45
	7	.02	230	÷2	36	39.0	98
	8	o	100	45.5	34.5	40.0	76
	9	O	19.7	44	31	37.5	92
*	10	0	160	51	30.5	40.8	75
	11	.27	270	55	30.5	42.8	55
	12	trace	410	62	37	49.5	86
	13	trace	33ა	37	32	34.5	96
	14	· O	160	52	32	42.0	77
	15	.24	2.50	50.5	31	40.8	60
	16	0	270	45.5	33	39.2	80
	17	.38	โรว	43	29.8	35.4	85
	18	.37	100	38	28	33.0	90
	19	0	130	46.5	30	38.2	87
	20	trace	100	56	30	43.0	75
	21	.11	240	64	30.5	47.2	63
	22	trace	140	51	35	43.0	92
	23	o	170	53	30	41.5	66
	24	o	110	46	29	37.5	61
	2.5	.22	300	53	28.5	40.8	77
	21	.16	170	- 51	34.	42.5	100
	27	.06	100	44	39	41.5	94
	28	trace	90	55	36	45.5	100
	29	0	180	59	32.5	45.8	69
	30	0	176	69	42	55.5	46
	Sum	2.10	5526	1473	909	1191	2268
•	Mean	.07	184.2	49.1	30.3	39.7	75.6

^{1/} All readings taken between 8 - 9:00 A.M. and except for relative humidity, cover the previous 24 hour period.

^{2/} Readings taken at 80 inches above the ground.

Table 2

Cornell #1 - Marsh Ecology Project

Monthly Meteorological Summary 1/
Air Temperature (in degrees F.)

May 1965

Non-Ali		Rainfall	Wind	Air tempe	rature - the	ermometer	Percent
Month	Day	in inches	velocity in MPD	Maximum	Minimum	Mean	Relative Humidity
May	1	0.01	74	66	33	49.5	62
	2 .	0	9 0	74.5	45.5	60.0	66
	3	O	180	85	54	69.5	59
	4	0.03	120	67	46	36.5	70
	5	0	3()	66	-39	52.5	61
f.	6	0.28	190	72	37	54.5	51
	7	0.40	260	61	43	52.0	100
	8	0	250	68	43	55.5	100
	9	0.65	149	81	5.	67.5	79
` .:	10	0.01	50	80.5	59	69.8	76
	11	0	190	66	49.5	37 . 8	63
5	12	Ö	120	69	41	55.0	74
	13	Ō	190	58	44.5	51.2	82
	14	Ō	100	62	33	47.5	56
	15	0	150	80	40	60.0	52
Transfer of	16	C.14	180	82	55.5	68.8	60
,	17	0.04	220	65	46.5	55.8	90
	18	0	160	61	45	53.0	87
	19	0.10	106	70	43	56.5	54
	20	0	120	65	38	51.5	56
	21	0	2*0	76	36	56.0	59
	22	0	130	73	[′] 58	63.5	86
	23	0	90	64	44.5	54.2	90
	24	0	100	73.5	35	54.2	60
	25	0	110	78	50	64.0	80
	26	0.01	110	84.5	67	75.8	77
4	27	0.17	120	80	59	69.5	76
	28	0	140	65	52	58.5	67
	29	trace	110	56	39	47.5	74
	30	0	60	56	35	45.5	68
*	31	0	110	66	34.5	50.3	60
	Sum	2.17	4203.6	2170	1401.2	1785.6	2194.8
	Mea	n 0.05	135.9	70.0	45.2	57.6	70.8

^{1/} All readings taken between 8-9:00 A M. and except for relative humidity, cover the previous 24 hour period.

^{2/} Readings taken at 80 inches above the ground.

Table 3

Cornell #1 - Marsh Ecology Project

Monthly Meteorological Summary 1/Air Temperature (in degrees F.)

June 1965

Month	Day	Rainfall in inches	Wind velocity in MPD	Air temper	rature - the Minimum	rmometer Mean	Percent Relative Humidity
June	1	.43	50	62	34	48.0	72
	2	•58	80	56	47.5	51.8	100
	3	trace	160	57	35	46.0	68
	4	0	100	66	34.5	50.2	94
	5 6	0	96)	77	42	59.5	64
	6	0	11.0	8.5	53.5	69.2	70
	7	.09	120	85	65	75.0	80
	8	.C8	60	81	66	73.5	86 🖡
	9	.22	100	81)	61	70.5	82
	10	O	140	77	5 3	65.0	76
	11	0	130	69.5	43	56.2	62
	12	0	170	80	45	62.5	94
	1 3	0	160	54.5	42	48.2	68
	14	0	90	53	47.5	50.2	86
	15	•04	40	61.5	42	51.8	88
	16	0	150	69	44	56.5	82
	17	.23	60	61	50	55.5	69
	18	02	9 0	68	49	58.5	100
	19	0	120	77	49	63.0	70
	20	0	120	82.5	51	66.8	50
	21	0	80	82	64	73	56
	22	0	70	82	61	71.5	70
	23	.56	160	84	59	71.5	93
	24	0	170	69.5	50.5	60.0	65
	25	0	124	67.5	46	56.8	80
	26	0	85	76	41	58.5	65
	27	0	161	80	50.5	65.2	75
	28	0	140	88.5	61	74.8	65
	29	.03	150	84	67.5	75.8	80
	30	trace	110	71	51.5	61.2	100
	Sum	2.40	3390	2187	1506	1848	2310
	Mean	.08	113.	72.9	50.2	61.6	77.0

^{1/} All readings taken between 8-9:00 A.M. and except for relative humidity, cover the previous 24 hour period.

^{2/} Readings taken at 80 inches above the ground.

Table 4

Cornell #1 - Marsh Ecology Project

Monthly Meteorological Summary 1/
Air Temperature (in degrees F.)

July 1965

		Rainfall	Wind	Air tempe	rature - th	nermometer	Percent	
Month	Day	in inches	velocity in MPD	Maximum	Minimum	Mean	Relative Humidity	خانوستىرى
July	1	0	105	76	43	59.5	75	
_	2	.30	265	80.5	47	63.8	52	
	3	.14	110	80 .	58	69.0	100	
	4	0	60	80	52	66.0	72	
	5	trace	180	84	53	68. <i>5</i> -	77	
	6	υ	150	70	53	61.5	. 36	
	7	.31	250	7.2	48.5	60.2	54	
	8	. 0	700	79	63	71.0	88	-
	9	.15	190	86.5	58.5	72.5	78	
•	10	0	120	76	56	66	100	
	11	0	90	72.5	48	60.2	62	
	12	0 '	100	78	45.5	61.8	61	
	13	0	150	88	53	70.5	62	
	14	0.72	110	8.7	66	76.5	6→	
	15	0	110	77	56	66.5	62	
	16	O	76	82.5	50	66.2	73	
	17	.59	87	80.5	60	70.2	60	
	18	.02	8-	74	56	65.0	100	
	19	0	140	67	50.5	58.8	82	
	20	Ç	100	68	45	56.5	90	
	21	0	80	74	41	57.5	62	
	22	trace	120	72.5	51	61.8	61	
	2 3	0	80	86	61	73.5	80	
	24	0	130	88	62	75.0	88	
	25	0	9υ	82	63	72.5	81	
	26	0	140	77	56	66.5	80	
	27	0	90	76	53	64.5	64	
•	28	trace	90	69	50	59.5	70	
	29	0	50	66	50	58	80	
	30	0	80	7 5	44	59.5	80	
	31	0	130	81	47.5	64.3	98	
,	Sum	2.17	3661.1	2405.6	1639.9	2024.3	2312.6	
	Mean	.07	118.1	77.6	52.9	65.3	74.6	

^{1/} All readings taken between 8-9:00 A.M. and except for relative humidity, cover the previous 24 hour period.

^{2/} Readings taken at 80 inches above the ground.

Table 5

Cornell #1 - Marsh Ecology Project

Monthly Meteorological Summary 1/
Air Temperature (in degrees F.)

August 1964

Month	Day	Rainfall in inches	Wind velocity in MPD ²⁷	Air temperature - thermometer			Percent Relative
				Maximum	Minimum	Mean	Humidity
August	1	•48	200	69	62	65.5	80
_	2	0	170	78	59	67.5	100
		0	105	71	54	62.5	88
	3 4 5 6	0	55	70	48	59	70
	5	0	100	83	31	67	52
	6	0	90	91	61	76	7.8
	7	0	200	92	68	80	-8
	8	.01	160	85	75	77.5	86
	9	0	140	86	67	76,5	88
•	10	.23	140	74	56	- 65	89
, ,	11	0	*/. 5	76	49	62.5	100
	12	0	105	87	49	68	74
	13	.23	70	79	65	72	66
	14	trace	5 0	8.5	61	;*3	100
	15	0	ω	96	63	74.5	100
	16	0	90	87	63	75	80
	17	trace	70	93	58	75.5	***
4	18	.16	60	86	65	75.5	100
	19	.06	150	72	60	66	94
	20	0	110	· 7 3	52	62.5	Ġ.
	21	0	100	73	48	60.5	86
	22	0	1-0	66	61	63 .3	88
	23	0	120	71	47	59	94
	24	0	80	76	42	59	76
	25	0	190	81	59	70	72
	26	.37	100	78	61	69,5	84
	27	0	190	79	60	69.5	88
	28	0	190	70	46	38 .	70
	29	.45	190	59	44	51,5	76
	30	trace	170	61	35	49	84
	31	.46	100	66	52	59	50
	Sum	2.48	3760.3	2411.8	1736.	2073.9	2591.6
	Mean	.08	121.3	77.8	56	66.9	83.6

^{1/} All readings taken between 8-9:00 A.M. and except for relative humidity, cover the previous 24 hour period.

 $[\]underline{2}$ / Readings taken at 80 inches above the ground.

Table 6

Cornell #1 - Marsh Ecology Project

Monthly Meteorological Summary 1/Air Temperature (in degrees F.)

September 1965

Month	Day	Rainfall in inches	Wind velocity in MPD	Air temperature - thermometer			Percent Relative	
				Maximum	Minimum	Mean	Humidity	
Septembe	r 1	.52	100	62	48	55	100	
	2	trace	300	7 0	45	58	100	
•	3	0 ·	115	74	43	58.5	82	
	4	U	215	73	52	62.5	94	
	5	0	1 *0	72	56	64	84	
	6	tracé	50	73	53	63	94	
v	7	0	30	. 81	56	. 68.5	100	
	8	.12	6 0	72	5.4	63	82	
	9	.12	180	7.5	51	63	100	
	10	.18	230	55 55	66	76	100	
	11	.01	ĢÛ	64	44	54	96	
	12	.36	120	57	48	32.5	100	
	13	.27	70	60	52	38	100	
	14	trace	40		±6	65.5	100	
	1.5	trace	200	75	58	66.5	96	
	16	.02	1.20	59	50	54.5	94	
	17	.23	1.10	7.3	55	64	150	
	18	0	30	82	62	72	100	
	19	Ú Č	130	85	67	76	100	
	20	.49	12 <i>a</i>	86	65	75.5	94	
	21	0	110	37	46	75.5	98	
	22	0	210	88	66	4.7	85	
	23	.17	90	82	60	71.	96	
	24	.35	90	66	46	56	100	
	25	0	100	61	40	50.5	92	
	26	0	190	69	42	55.5	81	
	27	0	120	50	32	41.	63	
	28	0	190	59	30	44.5	60	
	29	.06	60	65	49 .	57 .	86	
	30	.35	3 60	67	52	59.5	100	
	Sum	3.30	4101	2148	1566	1857	2778	
	Mean	.11	136.7	71.6	52.2	61.9	92.6	

^{1/} All readings taken between 8-9:00 A.M. and except for relative humidity, cover the previous 24 hour period.

^{2/} Readings taken at 80 inches above the ground.

Table 7
Cornell #1 - Marsh Ecology Project

Monthly Meteorological Summary / Air Temperature (in degrees F.)

October 1965

Month	Day	Rainfall in inches	Wind velocity in MPD	Air temperature - Thermometer			Percent
				Maximum	Minimum	Mean	Relative Humidity
October	1	.15	250	72	53	6245	100
	2	0	170	60	43	51.5	84
	3	trace	370	58	40	49	81
	4	O	340	40	31	35.5	76
		0	170	3 9	26	32.5	74
	5 6	0	70	45	26	37.5°	98
	7	.71	160	55	40	47.5	70
	8	.05	180	57	46	51.5	100
	9	.15	110	56	46	51	84
	10	.01	50	19	37	43	100
	11	.16	140	59	37	48	100
	12	.01	120	58	41	49.5	82
	13	trace	110	54	36	45	92
	14	.01	120	67	35	51	9 0
	15	.01	170	67	47	57	100
	16	trace	70	51	33	42	100
	17	0	100	60	28	44	100
	18	o ·	100	67	42	54.5	78
	19	Ö	100	72	42	57	78
	20	Ö	50	72	46	59	84
	21	.02	60	71	52	61.5	92
	22	.82	80	60	48	54	100
	23	.13	50	57	40	48.5	76
	24	.12	240	41	36	38.5	92
	25	0	150	52	34	43	70
	26	.01	80	56	42	49	58
	27	.08	190	46	38	42	74
	28	.04	150	39	24	31.5	80
	29	trace	120	37	23	30	100
	30	0	190	60	31	45.5	42
	31	Ō	100	65	40	52.5	40
	Sum	2.48	4358.6	1742.2	1184.2	1463.2	2594.7
	Mean	.08	140.6	56.2	38.2	47.2	83.7

^{1/} All readings taken between 8-9:00 A.M. and except for relative humidity, cover the previous 24 hour period.

^{2/} Readings taken at 80 inches above the ground.

2468301-2458 -----1 G. 200 1 MINERST RE - - 50---1 - 30 - 90 원() C. TEMPLOATURE . . -- . 3.,) --- 20- ----

in. 8.46 1.01 BELFORT INSTRUMENT COMPANY BALTIMORE 2. MARYLAND, U.S.A. HYGRO-THERMOGRAPH CHART NO. 5-207-W

A

14.5