

九九物联 WiFi 方案目录

- 1) 灯控照明系统单品方案 App +智能音箱语音控制
- 2) 开关量单品方案 开关插座 App +智能音箱控制
- 3)小家电智能方案 App +智能音箱控制(电磁炉,电风扇等等)
- 4)语音功能对接方案 以智能音箱语音控制为根基,语音控制模组 IO 输出
- 5)智能门锁对接方案 用户 ID 管理, App 远程通讯, 门锁电控板通讯
- 6) 电动窗帘对接方案 App +智能音箱控制
- 7)扫码支付通讯固件 多重加密通讯协议,高可靠性逻辑处理
- 8) 网络 WiFi 打印机固件 大数据量,多任务同时执行的固件
- 9) LED 控制卡固件 大数据量高速通讯,数据解析打包固件
- 10) 工业仪表控制固件 多种数据回传,状态参数回显,通讯优化
- 11)低功耗优化固件 快速进入低功耗模式,快速唤醒,多参数保存
- 12) SPI 高速通讯固件 高速透传应用,速率可达 3-5Mb
- 13)阿里飞燕平台固件 预先烧录 Alios 2.0 SDK
- 14)亚马逊平台通讯固件 预先烧录 Amazon 通讯协议
- 15) Wi-Fi+BLE4.2 mesh 共存方案 提供 Realtek 开源 SDK
- 17)智能家居语音控制 Wi-Fi 蓝牙 mesh 组网方案
- 18) WEB 网页设置透传固件 WEB 页面配置好网络参数, 进行数据通讯
- 19)单片机驱动 Wi-Fi 开源学习固件 STM32 驱动源代码, App 测试源代码
- 20)智能家电固件 mgtt 对接多种服务器,提供 5V 参考
- 21) 智能家居语音控制方案 Wi-Fi+蓝牙 mesh 组网智能家居方案
- 22) WiFi 低成本单品方案

方案持续增加中......

99

九九物联 WiFi 低功耗应用 固件说明 (低功耗应用篇) Ver. 1.1

固件应用说明:

应用产品:低功耗、POS 便携设备、热敏打印机便携设备、门锁

固件低功耗特点:

功耗模式: Tickless (保持连接睡眠)、Deep Standby (待机)、Deep sleep (深度睡眠)

功耗对比:

表1为三种模式的简单对比

内容	Tickless	Deep Standby	Deep sleep
Wi-Fi连接	保持	断开	断开
GPI0	保持	保持	保持
系统时钟	开启	关闭	关闭
电流	4.3mA(无连接Wi-Fi: 2mA)	300uA	70uA

模式介绍:

功耗模式	简单介绍
Tickless	连接 Wi-Fi 的情况下,模块的功耗电流保持 4.3mA,模块工作在 STA 模式下,模块在建立 Socket 连接后进入该模式,可保持模块与 Wi-Fi 连接、socket 连接条件下,在接收到网络数据后,能快速唤醒处理数据、快速响应指令的执行,完成操作后,在 8-10s 中进入睡眠。
Deep Standby	Deep Standby mode—模块上电后即可操作指令进入,模块会断开所有Wi-Fi 连接与数据连接,特殊的一些 I\0 在保持工作,低精度的定时器保持工作,保持该模式能实现定时唤醒;唤醒后,模块整个系统重新启动。

	Deep sleep mode—模块上电后即可操作指令进入,模块会断开所有
Doop gloop	Wi-Fi 连接与数据连接,特殊的一些 I\0 在保持工作,低精度的定时
Deep sleep	器保持工作,保持该模式能实现定时唤醒;唤醒后,模块整个系统重
	新启动。对比 Deep Standby,关闭了 RTC,Backup register;

唤醒方式:

功耗模式	唤醒方式	简单说明	
Tickless	GPIOA_5	设备主动唤醒模块,可触发拉低 GPIOA_5,有指令操作,5ms 后,模块能立即相应设备指令,执行完相关指令8-10s 后进入自主进入睡眠。无指令操作,模块会在 2s后自主进入睡眠模式。	
Deep Standby	特殊 GPIO	GPIOA_5、GPIOA_18、GPIOA_22、GPIOA_23 做为默认唤 醒管脚,设备可配置特定唤醒管脚,可配置这些管脚被 唤醒的电平,唤醒后,模块整个系统会重启。	
	定时唤醒	最大的睡眠时间为 130 分钟,设备可配置唤醒时间(单位:ms),唤醒后,模块整个系统会重启。	
Deep sleep	特殊 GPIO	GPIOA_5、GPIOA_18、GPIOA_22、GPIOA_23 做为默认唤 醒管脚,设备可配置特定唤醒管脚,可配置这些管脚被 唤醒的电平,唤醒后,模块整个系统会重启。	
	定是唤醒	最大的睡眠时间为 130 分钟,设备可配置唤醒时间(单位: ms),唤醒后,模块整个系统会重启。	

主要功能指令提示:

1, Tickless

设备发送指令AT+WLTICKPS=ON\OFF,模块进入\退出睡眠模式;

发送 AT+WLTICKPS=ON<CR><LF>,

模块会给设备回显"[WLTICKPS]ENTER SLEEP!<CR><LF>"

发送 AT+WLTICKPS=OFF<CR><LF>,

模块会给设备回显"[WLTICKPS]QUIT SLEEP!<CR><LF>"

2, Deep Standby, Deep SLEEP

设备发送指令: "AT+WLSLEEP=",等于号后面有5个参数;

"AT+WLSLEEP=<MODE>, <WAKE_ENENT>, <WAKE_PIN>, <SLEEP_TIME>, <WAKE_PIN ACTIVE>"

给设备回显: Enter DeepSleep Mode〈CR〉〈LF〉 进入 Deep sleep 模式 给设备回显: Enter DeepStandby Mode〈CR〉〈LF〉进入 Deep Standby 模式

第一个参数 MODE: 可填 Deep STANDBY \ DEEP SLEEP, 选择睡眠模式

第二个参数 WAKE_ENENT: 可填数字 0 \ 1, "0"代表唤醒源设置为定时唤醒方式,"1"代表唤醒源设置为 GPIO 管脚唤醒方式

第三个参数 WAKE_PIN: 可填数字 0 \ PA_5(PA_18\PA_22\PA_23), "0"代表上面的唤醒源设置定时唤醒方式,所以不用设置唤醒管脚, "PA_5"代表唤醒的管脚

第四个参数 SLEEP_TIME: 可填数字 时间数字 \ 0,"时间数字"代表上面第二个参数设置为定时唤醒,所以到了设置的时间长度自动唤醒(时间单位 ms), "0"代表上面设置的为管脚唤醒方式,所以不用设置时间

第五个参数 WAKE_PIN_ACTIVE: 可填数字 0 \ 1, "0"代表可表示两种,

一种是唤醒源为定时唤醒方式,表示不用设置管脚的唤醒电平,另一种是 唤醒源为 GPIO 管脚唤醒,表示低电平为唤醒电平; "1"代表唤醒方式 为 GPIO 管脚唤醒,表示高电平为唤醒电平

样品模组名称: AFW121TI-HOM1、AFW121TO-HOM1

模块名称	模块说明	
AFW121TI-LOW1	PCB 板载天线	
AFW121TO-LOW1	IPEX 外接天线	

关键词: MCU 控制 配网 低功耗 服务器 小体积 贴片式 WIFI 模块方案

固件适配模组:

型 号	AFW121T	AFW125TO	AFW126TO	AFW127PI	AFW121TI5V
九九物联 艾拉云 适配WiFi模组	APM PC CE MED	FIG. BANKS 4000 PM (1) C			
硬件参数		li.			'II.
Voltage	3. 0-3. 6V	3. 0-3. 6V	3. 0-3. 6V	3. 0-3. 6V	4. 5-5. 5V
Working Current	AP mode: 125mA STA mode: 70mA sleep mode: 4mA				
Dimension	贴片式: (L*W*H) 18x22x3.1mm	贴片式: (L*W*H) 18x16.5x3.1mm	贴片式: (L*W*H) 13x13x3.1mm	金手指: (L*W*H) 15.7x18x3.1mm	贴片式: (L*W*H) 23.5X33.5x4mm
Temperature	-20~85℃	-20~85℃	-20∼85°C	-20~85℃	-20~85℃
Corereles	ARM Cortex-M4F 62.5MHz				
RAM	256KB	256KB	256KB	256KB	256KB
Flash	2MB	2MB	2MB	2MB	2MB

模组性能

▶ 升级:支持 OTA 无线升级

》 低功耗模式:支持低功耗模式,2ms之内唤醒、连接并传递数据包

➤ Socket: 8 条 TCP 链接

▶ 配网:支持 SimpleConfig 快连、Airkiss 微信配网、AP 热点配网、WEB 配网

> APP demo:提供快连+softap 配网 app "99link" (可提供 app-SDK 源代码)

> PCB 控制:工业级应用设计,2层 PCB 设计,性能一致性保证

▶ FCC/CE 认证,符合 RoHS 标准

> 数据通讯:实测发送大数据不丢字节

专利权说明

@2017 九九物联(深圳)有限公司对于此文件保留所有权利。本文档的任何部分不得转载,不得存储在任何检索系统,或以任何未经过九九物联(深圳)有限公司书面统一的形式传送

目录

概:	要	8
	指令可分为:	9
	注意	9
1	AT+指令集简介	
	1.1 AT+指令格式	
	1.2 AT+指令集列表	
2	AT+指令集详细参数说明	
	2.1 基础指令	14
	2.1.1 AT+S?	14
	2.1.3 AT+CGPIO=R/W, PA_5, 0/1, PIN_OUTPUT/PIN_INPUT, PullNone 设置 GPIO 管脚输入/输	
	2.1.4 AT+SVER	16
	15 2.1.4 AT+SVER 查询固件版本	16
	2.1.6 AT+SWEB= <mode>, <wlan_mode> 启动/停止 Web 服务器</wlan_mode></mode>	17
	2.1.7 AT+WLTICKPS= <mode> 设置 Tickless 睡眠模式</mode>	
	2.1.8 AT+WLSLEEP= <mode>, <wake enent="">, <wake pin="">, <sleep time="">, <wake active="" pin=""></wake></sleep></wake></wake></mode>	
	低功耗模式	18
	2.1.9 AT+WLSC 切换模块程序运行区域	20
	2.1.10 AT+WLSETCHANNEL= <mode> 设置 Channel Plan</mode>	21
	2.1.11 AT+WLFASTCONNECT= <mode> 设置模块是否开启重连 Wi-Fi</mode>	21
	2.1.12 AT+WLFASTPARAM=〈Retry_Count〉,〈Idle_Time〉设置模块重连的次数与重连间隔时间	22
	2.1.13 AT+WLAUTOCONNECT= <mode></mode>	23
	2.1.14 AT+UARTBAUD= <baudrate>,[MODE] 设置串口波特率</baudrate>	23
	2.1.15 AT+UARTFLOW=FLOWCS 设置串口流控制	
	2.2 Wi-Fi 控制指令	25
	2.2.1 AT+WLMODE= <mode> 设置无线工作模式</mode>	25
	2.2.2 AT+WLAPDHCPGATE= <start_ip>, <end_ip>, <gateway> 设置 AP 模式下 DHCP 和网关</gateway></end_ip></start_ip>	26
	2.2.3 AT+WLAPDHCP= <mode〉 ap="" dhcp<="" td="" 模式下是否开启="" 设置=""><td>26</td></mode〉>	26
	2.2.4 AT+WLAPPARAM= <ssid>, <sec>, <psw> 设置 AP 模式参数</psw></sec></ssid>	27
	2.2.5 AT+WLSTADHCP= <cs> 设置 STA 模式下是否开启 DHCP</cs>	28
	2.2.6 AT+WLSTATICPARAM= <ip>, <mask>, <gate> 设置 STA 静态参数</gate></mask></ip>	29
	2.2.7 AT+WLSTAPARAM= <ssid>, [PSW] 设置 STA 模式参数</ssid>	
	2.2.8 AT+WLSETUP	
	2.2.9 AT+WLCLOSE 断开 Wi-Fi 连接	
	2.2.10 AT+WLPMAC= <mac> 设置 MAC 地址</mac>	
	2.2.11 AT+WLSIMPLECONFIG 启动快速配网	
	2.2.12 AT+WLAPCONFIG 连接模块热点配网	
		_

3

4 5

2.2.13 AT+AIRKISS 微信快速配网	34
2.3 TCP/IP 指令	35
2.3.1 AT+NWKCTCP= <role>, <loclalport>, [REMOTEIP], [REMOTEPORT] 创建 TCP 连</loclalport></role>	接35
2.3.2 AT+NWKCUDP= <type>, [REMOTEIP], [REMOTEPORT], <localport> 创建 UDP CL</localport></type>	LIENT 端36
2.3.3 AT+NWKTTCP= <localport>, <remoteip>, <remoteport> 开启 TCP CLIENT 透</remoteport></remoteip></localport>	传模式37
2.3.4 AT+NWKTCPSEND= <id>, <len>, <data> 发送 TCP 数据</data></len></id>	38
2.3.5 AT+NWKUDPSEND= <id>, <remoteip>, <remoteport><len>, <data> 发送 UDP 数</data></len></remoteport></remoteip></id>	[据39
2.3.6 AT+NWKCLOSE= <id> 关闭网络连接</id>	40
2.3.7 AT+NWKDNS= <host> DNS 解析</host>	40
2.3.8 AT+PING= <host> PING 指令</host>	
2.3.9 AT+WLHTTPGET= <host>, <port>, <resource> HTTP 请求(GET)</resource></port></host>	42
2.3.10 AT+WLHTTPPOST= <host>, <port>, <resource>, <type>, <data_1en>, <data_< td=""><td>>HTTP请求(POST)</td></data_<></data_1en></type></resource></port></host>	>HTTP请求(POST)
43	
2.3.11 AT+WLHTTPS= <request_len>, <request_port>, <request_domain>, <request_request_port></request_request_port></request_domain></request_port></request_len>	
HTTPS 请求2.3.12 AT+WLOTA= <server_ip>, <port> 空中升级</port></server_ip>	
2.3.13 AT+WLHTTPOTA= <ip>, <port>, <path> 通过 HTTP 进行升级</path></port></ip>	
2.3.14 AT+XMODEOTA 通过指令串口进行空中升级	
2.4 网络查询指令	
2.4.1 AT+WLIP 查询自身 IP	
2.4.2 AT+WLMASK 查询自身子网掩码	
2.4.3 AT+WLGATE 查询自身网关	
2.4.4 AT+WLMAC 查询自身 MAC 地址	
2.4.5 AT+WLSCAN 扫描附近所有 AP 信息	49
2.4.6 AT+WLGETINFO 获取当前 Wi-Fi 的 IP、掩码、网关	50
2.4.7 AT+WLGETAPINFO 获取当前连接 AP 的 SSID、加密方式、密码	51
2.4.8 AT+WLGETAPMAC 获取当前连接 AP 的 MAC 地址	
2.4.9 AT+WLGETOTAINDEX 查询当前执行的固件所在区域	52
2.4.10 AT+WLRSSI STA 模式下,连接 AP 后,查询 AP 的信号强度	53
2.5 提示指令	53
2.5.1 [AUTOCON] SUCCESS Wi-Fi 连接 AP 成功	53
2.5.2 [WLDIS]WLDISCON Wi-Fi 断开连接 AP	53
2.5.3 RSP:[ID],[TPYE][REMOTEIP],[REMOTEPORT],[LEN],[DATA] 接收网络数据	53
2.5.4 RSP: CLOSED <id> 网络连接被关闭</id>	54
硬件基础	
3.1 硬件板图	
3.2 硬件介绍说明	
硬件连接 固件烧录	
5.1 AFW121Tx-Broad 烧录说明	

	5. 2 单	单个模块烧录	57
6	通信相关转	欠件及默认参数	57
	6.1 ‡	省令发送、监听工具	57
	6. 2 ×	网络助手	57
7	AT+Comma	nd 使用实例	57
	7.1 W	i-Fi 配网、建网相关实例	58
	7.1.1	STATION 模式, 联网及相关设置	58
	7.1.2	AP 模式,建网及相关设置	58
	7.1.3	STATION+SoftAP 模式	59
	7.2 T	CP Server 传输	. 60
	7. 2. 1	SoftAP 模式	60
	7.2.2		62
	7.3 T	CP Client 传输	64
	7. 3. 1	SoftAP 模式	64
	7.3.2	STATION 模式	66
	7.4 U	DP 传输	68
	7.4.1	SoftAP 模式	68
	7.4.2	STATION 模式	70
历史	见版本更新说	兑明	72
8	购买与支持	ŧ	73

AT+ Command

概要

本文档不仅详细地讲解每个AT+指令的格式、参数、使用例子,而且作为一个指引说明,让用户在使用AT+指令集前,准备相应的工具以及调试软件。

指令可分为:

基础指令,Wi-Fi 控制指令,网络查询指令,网络数据传输指令(TCP/UDP指令)、提示指令

指令	说明	
基础指令	复位模块、设置串口波特率、GPIO 控制、设置省电模式等	
Wi-Fi 控制指令	设置 AP 模式参数、设置 STA 模式参数模式、DNS 解析、启动 Wi-Fi 等	
网络查询指令	自身 IP 查询,自身网关查询,扫描可用 AP,获取当前 Wi-Fi 信息等	
网络数据传输 指令	创建 TCP, 创建 UDP, TCP/UDP 数据收发,关闭网络连接、OTA 升级、下载文件,获取文件内容等	
提示指令	提示 Wi-Fi 已经连接、提示 Wi-Fi 断开连接、接受数据回显等	

注意

- 1、 波特率: 115200 bps (默认,可修改,最大可达 921600 bps)
- 2、 AT 指令都是用大写的格式,以回车换行符结尾"\r\n"〈CR〉〈LF〉
- 3、每个指令在执行后都会有回显信息,且回显信息带有相应指令指示。 例如:[WLSETUP]OK或者[WLSTAPARAM]ERROR
- 4、 模块准备好后回显 AT COMMAND READY, 回显时间与是否设置重连有关。

1 AT+指令集简介

1.1 AT+指令格式

无参数 : AT+<CMD><CR><LF>

有参数 : AT+〈CMD〉=〈···〉〈CR〉〈LF〉

主控主动: 指令回显[CMD] "OK" or "ERROR"

主控被动:接收指令 "RSP: …"

<>内为必填参数,[]内为可选参数, <CR>为换行, <LF>为回车 以上为大部分指令格式,其余部分指令需具体参照指令集列表

1.2 AT+指令集列表

AT 指令列表				
状态描述		指令		
	基础指令			
OK	查询 AT+ Command list	AT+S?		
OK	重启模块	AT+RST		
ОК	GPIO 操作	AT+CGPIO=R/W, PA_5, 0/1 , PIN_OUTPUT/PIN_INPUT, Pull None		
OK	查询 AT+软件版本信息	AT+SVER		
OK	恢复出厂设置(清 Flash)	AT+SFTY		
OK (串口版本)	启动 Web 服务器	AT+SWEB= <mode>, <wlan_mode></wlan_mode></mode>		
OK	进入 Tickless 睡眠模式	AT+WLTICKPS= <mode></mode>		
OK	设置省电电源模式	AT+WLSLEEP= <mode>, <wake_enent>, < WAKE_PIN>, <sleep_time>, <wak e_pin_active=""></wak></sleep_time></wake_enent></mode>		
OK	OTA 区域切换	AT+WLSC= <mode></mode>		
OK	设置 Channal Plan	AT+WLSETCHANNEL= <mode></mode>		
OK (串口版本)	设置是否开启重连 Wi-Fi	AT+WLSETFASTCONNECT= <mode></mode>		
OK (串口版本)	设置重连 Wi-Fi	AT+WLFASTCONNECT= <mode></mode>		
ОК	设置重连 Wi-Fi 参数	AT+WLFASTPARAM= <retry_count>, <idletime></idletime></retry_count>		
OK (SPI 版本)	设置重连 Wi-Fi	AT+WLAUTOCONNECT= <mode></mode>		
OK	设置串口波特率	AT+UARTBAUD= <baudrate>, <0\1></baudrate>		

OK	设置是否开启串口流控制	AT+UARTFLOW= <flowcs></flowcs>
	Wi-Fi 控制指	1 ◆
OK	设置 Wi-Fi 启动模式	AT+WLMODE= <mode></mode>
OK	设置AP模式下DHCP规则和 网关	AT+WLAPDHCPGATE= <start_ip>, <end _ip="">, <gateway></gateway></end></start_ip>
OK	设置 AP 模式下是否开启 DHCP	AT+WLAPDHCP= <mode></mode>
OK	设置 AP 模式参数	AT+WLAPPARAM= <ssid>, <sec>, <psw> 备注: 第二个参数加密方式为"OPEN", 则不用填第三个参数</psw></sec></ssid>
OK	设置 STA 模式下是否开启 DHCP	AT+WLSTADHCP= <mode></mode>
OK	设置 STA 静态参数	AT+WLSTATICPARAM= <ip>, <mask>, <g ATE></g </mask></ip>
OK	设置 STA 模式参数	AT+WLSTAPARAM= <ssid>, [PSW] 备注:对方 AP 加密方式为开放, PSW 可不填</ssid>
OK	启动 Wi-Fi	AT+WLSETUP
OK	断开 Wi-Fi	AT+WLCLOSE 备注: 断开 WiFi 之后不会重连, SSID 和密 码还会保存在 flash 内
OK	设置 MAC 地址	AT+WLPMAC= <mac> 备注:设置 MAC 地址要重启模块后才能生效</mac>
OK	Start simple config	AT+WLSIMPLECONFIG 备注:可结合九九物联的配网 APP— "JJLink"实现快速配网
OK	SoftAP 配网	AT+WLAPCONFIG 备注:可结合九九物联的配网 APP— "JJLink"实现手动配网
OK	Airkiss 配网	AT+AIRKISS 备注:可结合九九物联提供的配网工具 "AirKissDebugger"
	TCP/IP 指令	♦
OK	创建 TCP socket	AT+NWKCTCP= <role>, <loclalport>, [REMOTEIP], [REMOTEPORT] 备注: 模块作为 Server 端, "[REMOTEIP], [REMOTEPORT]"可不用填</loclalport></role>
OK	创建 UDP socket	AT+NWKCUDP= <type>, [REMOTEIP], [R EMOTEPORT], <localport><cr><lf></lf></cr></localport></type>
OK	开启 TCP 透传模式	AT+NWKTTCP= <localport>, <remotei p="">, <remoteport><cr><lf></lf></cr></remoteport></remotei></localport>
OK	发送 TCP 数据	AT+NWKTCPSEND= <id>, <len>, <data></data></len></id>

OK	发送 UDP 数据	AT+NWKUDPSEND= <id>, <remoteip>, < REMOTEPORT>, <len>, <data></data></len></remoteip></id>
OK	关闭网络连接	AT+NWKCLOSE= <id></id>
OK	DNS 解析	AT+NWKDNS= <host></host>
OK	Ping 包指令	AT+PING= <host><cr><lf></lf></cr></host>
OK	空中升级	AT+WLOTA= <server_ip>, <port></port></server_ip>
OK	通过 HTTP 进行 OTA 升级	AT+WLHTTPOTA= <ip>, <port>, <path></path></port></ip>
OK	通过命令串口,实现 Xmodem协议升级	AT+XMODEOTA
OK	HTTP 请求(GET)	AT+WLHTTPGET= <host>, <port>, <resource><cr><lf></lf></cr></resource></port></host>
OK	HTTP 请求(POST)	AT+WLHTTPPOST= <host>, <port>, <re source>, <type>, <data_len>, < data><cr><lf></lf></cr></data_len></type></re </port></host>
OK	HTTPS 请求	AT+WLHTTPS= <request_len>, <request_p ort="">, <request_domain>, < Request_Command ></request_domain></request_p></request_len>
	网络查询指	*
OK	获取自身 IP	AT+WLIP
OK	获取自身子网掩码	AT+WLMASK
OK	获取自身网关地址	AT+WLGATE
OK	获取自身 Mac 地址	AT+WLMAC
OK	扫描可用 AP	AT+WLSCAN
OK	获取连接 AP 的 IP、掩码、 网关	AT+WLGETINFO
OK	获取连接 AP 的 SSID、密码	AT+WLGETAPINFO
OK	获取当前代码执行区域	AT+WLGETOTAINDEX
OK	获取当前连接 AP 的 MAC	AT+WLGETAPMAC
OK	获取当前连接 AP 的信号强 度	AT+WLRSSI
	提示指令	
OK	Wi-Fi 连接成功(STA 模式 下)	[AUTOCON] SUCCESS!
OK	Wi-Fi 断开连接(STA 模式 下)	[WLDIS]WLDISCON
OK	接收网络数据	RSP: <id>, <type>, [REMOTEIP], [REMOTEPORT], <len>, <data></data></len></type></id>

AT+ Command

低功耗应用固件

OK	指示网络连接被中断	RSP:CLOSED <id></id>

AT+指令集详细参数说明 2

基础指令 2. 1

2.1.1 AT+S? 查询 AT+指令列表

AT	`+S
格式	AT+S <cr><lf></lf></cr>
功能说明	查询 AT+Command list
参数列表	无

返回值列表:

返回值	释义
[ATS] <cr><lf> <command list=""/> [ATS]OK<cr><lf></lf></cr></lf></cr>	返回指令列表
[ATS]ERROR <cr></cr>	查询失败

示例: AT+S<CR><LF> 返回: [ATS] <CR><LF><command list>[ATS] OK<CR><LF>

2.1.2 AT+RST 重启模块

AT+RST		
格式	AT+RST <cr><lf></lf></cr>	
功能说明	重启模块	
参数列表	无	
接收到回显 AT COMMAND READY 时间	460ms	

返回值: [RST]OK<CR><LF>

示例: AT+RST<CR><LF>(重启模块)

说明:回复「RST]OK<CR><LF>后模块马上重启。执行指令到模块准备好的时间为

不开启重连情况下测试。

设 2.1.3 AT+CGPIO=R/W, PA_5, 0/1 , PIN_OUTPUT/PIN_INPUT, PullNone 置 GPIO 管脚输入/输出模式

	AT+CGPIO
格式	AT+CGPIO= R/W, PA_5, 0/1 , PIN_OUTPUT/PIN_INPUT, MODE <cr><lf></lf></cr>
功能说明	设置 GPIO 管脚输入/输出模式

参数列表:

参数	属性	属性描述
R/W	R	管脚设置为读取模式
IV, II	W	管脚设置为写入模式
PA_5	I/O PIN	管脚选择
0/1	 高低电平	写 I/0 管脚电平输出
0, 1	1,4114 2 1	备注:读取 I/0 时,此参数可以任意填充,但参数不能缺失
PIN_OUTPUT/PIN INPUT	输出/输入	输出/输入选择
	PullDown	下拉
MODE	PullUp	上拉
	OpenDrain	开漏
	PullNone	高阻态

返回值列表:

返回值	释义	
[CGPIO]OK:1 <cr><lf></lf></cr>	读取 I/0	读到 I/0 的电平为高
[col rojon:1 \ch/ \text{\text{\text{L}}}	写入 I/0	写入 I/0 电平成功
[CGPIO]OK:0 <cr><lf></lf></cr>	读取 I/O	读取 I/O 的电平为低
[CGF10]ON:U\CN/\LF/	写入 I/O	写入 I/O 电平失败

2.1.4 AT+SVER 查询固件版本

AT+SVER		
格式	AT+SVER <cr><lf></lf></cr>	
功能说明	查询固件版本	
参数列表	无	

返回值列表:

返回值	释义
[ATSVER]OK, 99WSUR1N. 1807 18. A <cr><lf></lf></cr>	获取软件版本信息成功
[SVER]ERROR <cr><lf></lf></cr>	获取失败

示例: AT+SVER(CR)(LF) 返回: [ATSVER]OK, 99WSUR1N. 180718. A (CR)(LF) 版本信息说明:99-公司,W-WiFi,SUR1N-软件、接口、云支持,180718-release时间,A-当天版本 次数

2.1.5 AT+SFTY 恢复出厂参数设置

AT+SFTY		
格式	AT+SFTY <cr><lf></lf></cr>	
功能说明	恢复出厂参数设置,擦除 flash 保存的信息	
参数列表	无	
接收到回显 AT COMMAND READY 时间	460ms	

返回值列表

返回值	释义
[SFTY]OK <cr><lf></lf></cr>	清除 Flash 数据成功
[SFTY]ERROR <cr><lf></lf></cr>	指令格式或者参数错误

示例: AT+SFTY<CR><LF> 返回: [SFTY]OK<CR><LF>

注意:输入此指令返回成功后,模块立即复位。

2.1.6 AT+SWEB=<MODE>, <WLAN_MODE> 启动/停止Web服务器

AT+SWEB(串口版本)		
格式	AT+SWEB= <mode>, <wlan_mode><cr><lf></lf></cr></wlan_mode></mode>	
功能说明	启动/停止 Web 服务器,第三方设备输入模块的 IP 进入 Web 界面,目前界面只是做了 SSID、PASSWORD 的设置和配网	

参数列表:

参数	属性	属性描述
MODE	С	创建 Web 服务器
MODE	S	停止 Web 服务器
	STA	STA 模式下
WLAN_MODE	AP	AP 模式下
	STA+AP	STA+AP 共存模式下

返回值列表:

返回值		释义
[SWEB]OK <cr><lf></lf></cr>		创建成功
[SWEB] ERROR <cr><lf></lf></cr>		创建失败或者参数有误
[WEB]SSID:xxx,PWD:xxx <cr><lf></lf></cr>		打印出配网 AP 的 SSID 和 PASSWORD
设置 Web 页面后	[WEBSETPARAM]OK <cr><lf></lf></cr>	配网成功

示例: AT+SWEB=C, STA<CR><LF> 返回: [SWEB] OK<CR><LF>

2.1.7 AT+WLTICKPS=<MODE> 设置 Tickless 睡眠模式

AT+WLTICKPS		
格式	AT+WLTICKPS= <mode><cr><lf></lf></cr></mode>	
功能说明	进入/退出睡眠模式,此睡眠模式可保持 Socket 连接,发送指令后,10 秒钟后进入睡眠模式	
唤醒引脚	PA_5(拉低电平唤醒)	

参数列表:

参数	属性	属性描述
MODE	ON	进入睡眠模式
MODE	0FF	退出睡眠模式

返回值列表:

返回值	释义
[WLTICKPS]ENTER SLEEP! <cr><lf></lf></cr>	成功进入睡眠模式
[WLTICKPS]QUIT SLEEP! <cr><lf></lf></cr>	退出睡眠模式
[WLTICKPS]ERROR! <cr><lf></lf></cr>	进入睡眠模式失败

示例: AT+WLTICKPS=ON<CR><LF> 返回: [WLTICKPS]ENTER SLEEP!<CR><LF> 说明:模块唤醒操作;拉低PA_5 引脚大于 5ms 后再发 AT+WLTICKPS=OFF 指令,回显 [WLTICKPS]QUIT SLEEP!则表示唤醒成功。

2.1.8 AT+WLSLEEP=<MODE>, <WAKE ENENT>, <WAKE PIN>, <SLEEP TIME>, <WAKE PIN ACTIVE> 设置低功耗模式

AT+WLSLEEP		
格式	AT+WLSLEEP= <mode>, <wake_enent>, <wake_pin>, <sleep_time>, <wake_pin_active><cr><lf></lf></cr></wake_pin_active></sleep_time></wake_pin></wake_enent></mode>	
功能说明	启动低功耗模式,包含待机模式(STANDBY)和深度睡眠模式(DEEP SLEEP),该两种模式执行后不能保持模块的 AP 连接和 Socket 连	
	接,唤醒后会重启系统	

参数列表:

参数	指令输入属性			属性描述
MODE	DEEP STANDBY			待机
MODE	DEEP SLEEP			深度睡眠
参数	属性	适用模式	指令输 入属性	属性描述
WAKE_	SLEEP_WAKEUP_BY_STIMER DEEP STANDBY \ DEEP SLEEP		0	定时唤醒方式
EVENT	SLEEP_WAKEUP_BY_GPIO	DEEP STANDBY \DEEP SLEEP	1	特殊引脚唤醒(下个参数介绍)

参数	指令输入 属性描述		
WAVE DIN	PA_5	特殊唤醒管脚 PA_5、PA_18、 议使用 PA_5)	
WAKE_PIN	0	唤醒事件 WAKE_EVEN SLEEP_WAKEUP_BY_GPIO,真	
	时间数值	时间单位为ms(最大可以	做到 130 分钟)
SLEEP_TIME	0	唤醒事件 WAKE_EVEN SLEEP_WAKEUP_BY_STIMER,	
	1	高电平唤醒	!
WAKE_PIN_ACTIVE	0	唤醒事件 WAKE_EVENT 用到 SLEEP_WAKEUP_BY_GPIO	表示"低电平唤 醒"
	U	唤醒事件 WAKE_EVENT 没用 到 SLEEP_WAKEUP_BY_GPI0	就填参数"0"

返回值列表:

返回值	释义
Enter DeepSleep Mode <cr><lf></lf></cr>	进入深度睡眠 DEEP SLEEP 成功
Enter DeepStandby Mode <cr><lf></lf></cr>	进入待机模式 DEEP STANDBY 成功
AT COMMAND READY <cr><lf><lf>#</lf></lf></cr>	深度睡眠唤醒成功
AT COMMAND READINCRY/LF/H	待机模式唤醒成功

示例: AT+WLSLEEP=SLEEP, 0, 0, 10000, 0<CR><LF>

返回: Enter Sleep

Mode < CR > < LF >

2.1.9 AT+WLSC 切换模块程序运行区域

AT+WLSC		
格式	AT+WLSC= <mode><cr><lf></lf></cr></mode>	
	模块存在两个程序运行区域,每个区域的程	
功能说明	序都是独立存在和运行,用户可以通过该指	
	令切换模块程序运行区域,该指令可结合指	
	令 AT+WLGETOTAINDEX 使用	
接收到回显 AT COMMAND READY 时间	460ms	

参数列表:

参数	属性	属性描述
MODE	1	跳转到 OTA1 区域,模块重启执行相应区域
MODE	2	跳转到 OTA2 区域,模块重启执行相应区域

返回值列表:

返回值	释义
[WLSC]OK <cr><lf></lf></cr>	跳转成功
[WLSC]ERROR <cr><lf></lf></cr>	跳转失败,参数不是0或者1

示例: AT+WLSC=1<CR><LF> 返回:[WLSC]OK<CR><LF> 说明:模块返回[WLSC]OK<CR><LF>时模块马上进入复位。

2.1.10 AT+WLSETCHANNEL=<MODE> 设置 Channel Plan

	AT+WLSETCHANNEL
格式	AT+WLSETCHANNEL= <mode><cr><lf></lf></cr></mode>
功能说明	设置 Channel Plan,为了使用于国外区域要求,该指令不会
	保存 flash,需要用户上电发起该指令执行

参数列表:

参数	属性	属性描述
MODE	0	Worldwird 13(1-13)
	1	Europe 2G(1-13)
	2	US 2G (1-11)
	3	Japan 2G (1-13, 14)
	4	France 2G(10-13)
	5	US 2G(1-13)

返回值列表:

返回值	释义
[WLSETCHANNEL]OK <cr><lf></lf></cr>	设置 Channel Plan 成功
[WLSETCHANNEL]ERROR <cr><lf></lf></cr>	设置 Channel Plan 失败

示例: AT+WLSETCHANNEL=5<CR><LF> 返回: [WLSETCHANNEL]OK<CR><LF>

说明:用户可以根据自己产品的使用区域,上电发命令设置该参数

2.1.11 AT+WLFASTCONNECT=<MODE> 设置模块是否开启重连 Wi-Fi

AT+WLFASTCONNECT(串口版本)		
格式	AT+WLFASTCONNECT= <mode><cr><lf></lf></cr></mode>	
	设置模块是否开启重连 Wi-Fi, 该指令开关参数不	
	保存 flash;	
功能说明	注意: 1、如果只设置该指令的开关配置,模块会	
	进行无限重连 Wi-Fi,每次的间隔时间为 10 秒;	
	2、如果在设置该指令后,再发指令	

21 / 73

AT+WLFASTPARAM 设置重连次数和时间间隔,模块 会在 AP 断电后只执行设置的重连次数

参数列表:

参数	属性	属性描述
MODE	ON	开启重连 Wi-Fi 功能
MODE	0FF	关闭重连 Wi-Fi 功能

AT+ Command

返回值列表:

返回值	释义
[WLFASTCONNECT]OK! <cr><lf></lf></cr>	模块开启或关闭快速连接成功
[WLFASTCONNECT] ERROR <cr><lf></lf></cr>	模块开启或关闭连接失败

示例: AT+WLFASTCONNECT=ON<CR><LF>

返回: [WLFASTCONNECT]OK!<CR><LF>

2.1.12 AT+WLFASTPARAM=〈Retry_Count〉,〈Idle_Time〉设置模块重连的次数与重连间隔时间

	AT+WLFASTPARAM(串口版本)
格式	AT+WLFASTPARAM= <retry_count>, <idle_time><cr><lf></lf></cr></idle_time></retry_count>
功能说明	设置模块重连的次数与重连间隔时间

参数列表:

参数	属性	属性描述
Retry_Count	1-255	重连 Wi-Fi 次数
Idle Time	1-255	每次重连 Wi-Fi 间隔时间 (s)
	1 200	注意: 使用微信 Airkiss 配网功能时,这个值不能设置超过 8 秒

返回值列表:

返回值	释义
[WLFASTPARAM]OK <cr><lf></lf></cr>	设置重连参数成功
[WLFASTPARAM]ERROR <cr><lf></lf></cr>	设置重连参数失败

示例: AT+WLFASTPARAM=5, 8<CR><LF>

返回: [WLFASTPARAM]OK<CR><LF>

2.1.13 AT+WLAUTOCONNECT=<MODE>

AT+WLAUTOCONNECT (SPI 版本)			
格式	AT+WLAUTOCONNECT= <mode><cr><lf></lf></cr></mode>		
	设置模块是否开启重连 Wi-Fi, 该指令开关参数不		
功能说明	保存 flash; 上电不重连 Wi-Fi 注意: 1、如果只设置该指令的开关配置, 模块会 进行无限重连 Wi-Fi, 每次的间隔时间为 10 秒;		

参数列表:

参数	属性	属性描述
MODE	0	默认重连Wi-Fi 次数8次
	1	关闭重连 Wi-Fi
	2	无限重连 Wi-Fi

返回值列表:

	क्या है।
返回值 返回值	释义
[WLAUTOCONNECT]OK <cr><lf></lf></cr>	模块开启或关闭快速连接成功
[WLAUTOCONNECT] ERROR <cr><lf></lf></cr>	模块开启或关闭连接失败

示例: AT+WLAUTOCONNECT=1<CR><LF> 返回: [WLAUTOCONNECT]OK<CR><LF>

2.1.14 AT+UARTBAUD=<BAUDRATE>, [MODE] 设置串口波特率

AT+UARTBAUD		
格式	AT+UARTBAUD= <baudrate>, <mode><cr><lf></lf></cr></mode></baudrate>	
功能说明	设置串口波特率	

参数列表:

参数	属性	属性描述
	9600	波特率设置为 9600
	38400	波特率设置为 38400
DAUDDATE	115200	波特率设置为 115200
BAUDRATE		
	460800	波特率设置为 460800
	921600	波特率设置为 921600
MODE	0\1	0表示参数不保存,1表示参数保存

返回值列表:

返回值	释义
[UARTBAUD] OK <cr><lf></lf></cr>	设置成功
[UARTBAUD] ERROR <cr><lf></lf></cr>	设置失败

示例: AT+UARTBAUD=115200, O<CR><LF>

返回:[UARTBAUD]OK<CR><LF>

说明:第二个参数为0时表示更改的波特率本次有效,模块复位后失效。为1(将

值写入 flash)则表示保存此波特率,模块复位后依旧是更改过的波特率。

2.1.15 AT+UARTFLOW=FLOWCS 设置串口流控制

AT+UARTFLOW		
格式	AT+UARTFLOW= <flowcs><cr><lf></lf></cr></flowcs>	
功能说明	设置串口硬流控制,参数保存 flash	

参数列表:

参数	属性	属性描述
FLOWCS ENABLE DISABLE	使能流控制	
	DISABLE	关闭流控制

返回值列表:

返回值	释义
[UARTFLOW]OK <cr><lf></lf></cr>	设置成功
[UARTFLOW]ERROR <cr><lf></lf></cr>	设置失败

示例: AT+UARTFLOW=ENABLE<CR><LF>

返回 [UARTFLOW]OK<CR><LF>

2.2 Wi-Fi 控制指令

2.2.1 AT+WLMODE=<MODE> 设置无线工作模式

AT+WI	LMODE
格式	AT+WLMODE= <mode><cr><lf></lf></cr></mode>
功能说明	设置无线工作模式

参数列表:

参数	属性	属性描述
	1	STA 模式
MODE	2	AP 热点模式
	3	STA+AP 模式

返回值列表:

返回值	释义
[WLMODE]OK <cr><lf></lf></cr>	设置成功
[WLMODE]ERROR <cr><lf></lf></cr>	设置失败

示例: AT+WLMODE=1<CR><LF> 返回 [WLMODE] OK<CR><LF> (设置无线模式为 STA模式,系统返 回成功)

25 / 73

2.2.2 AT+WLAPDHCPGATE=<START_IP>, <END_IP>, <GATEWAY> 设 置 AP 模式下 DHCP 和网关

AT+WLAPDHCPGATE	
格式 AT+WLAPDHCPGATE= <start_ip>, <end_ip>, <gateway><cr><</cr></gateway></end_ip></start_ip>	
功能说明	设置 AP 模式下 DHCP 和网关,参数需要在启动指令 AT+WLAPPARAM 后才能被保存在 Flash 内

参数列表:

参数	属性	属性描述
START_IP	xxx. xxx. xxx	客户端开始 IP
END_IP	xxx. xxx. xxx	客户端结束 IP
GATEWAY	xxx. xxx. xxx	网关 IP

返回值列表:

返回值	释义
[WLAPDHCPGATE]OK <cr></cr>	设置成功
[WLAPDHCPGATE]ERROR <cr></cr>	设置失败

示例: AT+ WLAPDHCPGATE =192. 168. 2. 10, 192. 168. 2. 100, 192. 168. 2. 1<CR><LF> 返回[WLAPDHCPGATE]OK<CR><LF>

NOTE: 1. 默认网关 IP 是 192. 168. 43. 1

2. DHCP 模式下,配置 AP的 DHCP 规则

2.2.3 AT+WLAPDHCP=<MODE> 设置 AP 模式下是否开启 DHCP

AT+WL.	APDHCP
格式	AT+WLAPDHCP= <mode><cr><lf></lf></cr></mode>
功能说明	设置 AP 模式下是否开启 DHCP 备注:必须先执行 AT+WLMODE=2

参数列表:

参数	属性	属性描述
MODE	ON	DHCP 开启
MODE	0FF	DHCP 关闭

返回值列表:

返回值	释义
[WLAPDHCP]OK <cr><lf></lf></cr>	设置成功
[WLAPDHCP]ERROR <cr><lf></lf></cr>	设置失败

示例: AT+ WLAPDHCP =ON<CR> 返回[WLAPDHCP]OK<CR>

NOTE: 1. 默认是开启 DHCP 2. 必须先执行 AT+WLMODE=2

2.2.4 AT+WLAPPARAM=<SSID>, <SEC>, <PSW> 设置 AP 模式参数

	AT+WLA	PPARAM
格式	-//	AT+WLAPPARAM= <ssid>, <sec>, <psw><cr><lf></lf></cr></psw></sec></ssid>
功能说明		设置 AP 模式参数

参数列表:

参数	属性	属性描述
SSID	SSID	SoftAP的 SSID
SEC.	OPEN	无加密,设置该模式时,Password 需要随意填充字符串
SEC	AES	加密方式为 WEP
PSW	Password	SoftAP 的密码(仅在 SEC 属性为 AES 下有效且必须)

返回值列表:

返回值	释义
[WLAPPARAM]OK <cr><lf></lf></cr>	设置成功
[WLAPPARAM] ERROR <cr><lf></lf></cr>	设置失败

示例: AT+WLAPPARAM=99iot TEST, AES, 12345678<CR><LF>

返回:[WLAPPARAM]OK<CR><LF> (设置 SoftAP 的 SSID 为 99iot TEST, 加密方式为 AES, 密码位 12345678, 系统返回设置成功) 说明:模块为AP模式下的时候如果有设备连接上则回显[LINK]OK<CR><LF>,设备 断开连接回显「LINK]DIS<CR><LF>。

2.2.5 AT+WLSTADHCP=<CS> 设置 STA 模式下是否开启 DHCP

AT+WLS	STADHCP
格式	AT+WLSTADHCP= <cs><cr><lf></lf></cr></cs>
功能说明	设置 STA 模式下是否开启 DHCP 备注: 必须先执行 AT+WLMODE=1

参数列表:

参数	属性	属性描述
CS	ON	DHCP 开启
CS	OFF	DHCP 关闭

返回值列表:

返回值	释义
[WLSTADHCP]OK <cr><lf></lf></cr>	设置成功
[WLSTADHCP]ERROR <cr><lf></lf></cr>	设置失败

示例: AT+WLSTADHCP=OFF<CR><LF>

返回 [WLSTADHCP]OK<CR><LF>

1. STA模式下,默认是开启 DHCP NOTE:

必须先执行 AT+WLMODE=1

2.2.6 AT+WLSTATICPARAM=<IP>, <MASK>, <GATE> 设置 STA 静态参数

格式 AT+WLSTATICPARAM= <ip>, <mask>, <gate><cr at+wlstapa<="" sta="" th="" 模式下静态参数,参数需要在="" 设置=""><th></th><th></th><th></th></cr></gate></mask></ip>			
	> <lf></lf>	格式	
功能说明 令后被保存 Flash 备注:必须先用 AT+WLSTADHCP=OFF,关掉 DHC		功能说明	

参数列表:

参数	属性	属性描述
IP	XXX. XXX. XXX	设置 STA 模式下静态 IP
MASK	XXX. XXX. XXX	设置 STA 模式下静态子网掩码
GATE	XXX. XXX. XXX	设置 STA 模式下 静态网关

返回值列表:

返回值	释义
[WLSTATICPARAM]OK <cr><lf></lf></cr>	设置成功
[WLSTATICPARAM]ERROR <cr><lf></lf></cr>	设置失败

示例: AT+WLSTATICPARAM=192. 168. 1. 100, 255. 255. 255. 0, 192. 168. 1. 1<CR><LF>

29 / 73

返回: [WLSTATICPARAM]OK<CR>

NOTE: 必须启动 AT+WLSTAPARAM 配网指令才能保存下来

2.2.7 AT+WLSTAPARAM=<SSID>, [PSW] 设置 STA 模式参数

AT+WLSTAPARAM	
格式	AT+WLSTAPARAM= <ssid>, [PSW]<cr><lf></lf></cr></ssid>
功能说明	设置 STA 模式参数 备注:输入此指令后,模块进行配网

参数列表:

参数	属性	属性描述
SSID	SSID	对方 AP 的 SSID
PSW	Password	对方 AP 的密码(如果对方 AP 加密方式为开放,此属性可不填)

返回值列表:

返回值	释义
[WLSTAPARAM]OK <cr><lf></lf></cr>	设置成功,配网成功
[WLSTAPARAM]ERROR <cr><lf></lf></cr>	设置失败,配网失败

示例: AT+WLSTAPARAM=99iot, SZ99iot < CR> < LF> 返回[WLSTAPARAM] OK < CR> < LF> (设置 STA 模式下对方 AP 的 SSID 为99iot, 密码为SZ99iot)

2.2.8 AT+WLSETUP 启动 Wi-Fi 连接

AT+WLSETUP		
格式	AT+WLSETUP <cr><lf></lf></cr>	
功能说明	启动 Wi-Fi 连接	
参数列表	无	

返回值列表:

返回值	释义
[WLSETUP]OK <cr><lf></lf></cr>	启动成功
[WLSETUP]ERROR <cr><lf></lf></cr>	启动失败

示例: AT+WLSETUP<CR><LF>返回[WLSETUP]OK<CR> (启动无线连接)

2.2.9 AT+WLCLOSE 断开 Wi-Fi 连接

AT+WLCLOSE	
格式	AT+WLCLOSE <cr><lf></lf></cr>
功能说明	断开 Wi-Fi 连接 备注: 断开 WiFi 之后不会重连
参数列表	无

返回值列表:

返回值	释义
[WLCLOSE]OK <cr><lf></lf></cr>	断开成功
[WLCLOSE]ERROR <cr><lf></lf></cr>	断开失败

示例: AT+WLCLOSE <CR><LF> 返回[WLCLOSE]OK<CR><LF> (断开无线连接)

2.2.10 AT+WLPMAC=<MAC> 设置 MAC 地址

AT+WLPMAC(留意备注)		
格式	AT+WLPMAC= <mac><cr><lf></lf></cr></mac>	
功能说明	设置 MAC 地址	
	备注:采用此功能时,必须把模块出厂的MAC	
	地址记录下来,以免弄丢正常地址,MAC	
	地址不能重写,写入次数有限(慎重)	

参数列表:

参数	属性	属性描述
MAC	112233445566	格式: 6个 bytes Hex number

返回值列表:

返回值	释义
[WLPMAC]OK <cr><lf></lf></cr>	MAC 地址设置成功
[WLPMAC]ERROR <cr><lf></lf></cr>	MAC 地址设置失败

示例: AT+WLPMAC=112233445566<CR><LF> 返回 [WLPMAC]OK<CR>

NOTE: 1、此功能写入次数有限,不能随便写入

2、必须重启模块后 MAC 地址才生效

2.2.11 AT+WLSIMPLECONFIG 启动快速配网

AT+WLSIMPLECONFIG	
格式	AT+WLSIMPLECONFIG <cr><lf></lf></cr>
功能说明	启动快速配网 备注:可结合九九物联的配网 APP—"JJLink"实现 配网(快速入网)
参数列表	无

返回值列表:

返回值	释义		
[WLSIMPLECONFIG]OK, MODE, SSID, Channal, AES, Password CR	MODE	STA 模式	
	SSID	路由的 SSID	
	Channal	信道	快速入网成
	AES	加密方式	功
	Passwor	路由的 Password	
	[WLSIMPLECONFIG]OK	入网成功	
[WLSIMPLECONFIG]ERROR <cr><lf></lf></cr>	120s 没收到信息超时或者快速入网失败(请检查手机 app 发送的信息是否正确)		
[WLSIMPLECONFIG]TIMEOUT <cr><lf></lf></cr>	配网超时(1分钟)		

示例: AT+WLSIMPLECONFIG<CR><LF> 返回

[WLSIMPLECONFIG]OK, STA, 99iot, 11, AES, SZ99iot12345 <CR><LF>

NOTE: 1、结合九九物联的配网 APP——JJLink 实现快速入网

2、模块开始配网时返回[WLSIMPLECONFIG]OK<CR><LF>, 当模块连接上服务器时(TCP连接)进行此模式配网模块会返回RSP:CLOSED[ID]与

[WLDIS]WLDISCON,应用时需要与模式配网返回信息进行区分,以准确判断模块是否成功配网。

3、模块接收到信息后第一次连接失败后会进行重连,最多重连 5 次,如果 5 次都连接失败则返回[WLSIMPLECONFIG]ERROR(从模块接收到信息开始到返回此信息的时间大约为 30S),此时应该检测一下配网信息是否正确。

2.2.12 AT+WLAPCONFIG 连接模块热点配网

AT+WLAPCONFIG		
格式	AT+WLAPCONFIG <cr><lf></lf></cr>	
功能说明	启动模块热点配网 备注: 可结合九九物联的配网 APP—"JJLink"实现 配网(手动入网)	
参数列表	无	

返回值列表:

返回值	释义	
[WLAPCONFIG]START!	开始配网	等待接收手机 APP 信息
[WLAPCONFIG]OK!	配网成功	
SSID: "字符串"	返回路由的 SSID	同一时间返回的三个参数, 快速入网成功
PASSWORD: "字符串"	返回路由的 Password	
RECONNECT: 1 RECONNECT: 2 RECONNECT: 3 RECONNECT: 4 RECONNECT: 5	重连5次	快速入网失败(请检查手机 app 发送的信息是否正确)
[WLAPCONFIG]ERR <cr><lf></lf></cr>	配网失败	

示例: 1、让模块建立 AP 热点: AT+WLMODE=2, AT+WLAPPARAM=SSID, AES, Password 2、向模块发送指令: AT+WLAPCONFIG

- 3、手机连接模块 AP 热点, 进入手机 APP 的手动入网界面, 发送配网信息
- 4、如果连接路由第一次失败,则接下来会进行重连,最大重连次数为5 次,重连完后最后返回[WLAPCONFIG]ERROR 的时间为 50S 左右。

NOTE: 当模块连接上服务器时(TCP连接)进行此模式配网模块会返回 RSP:CLOSED[ID],与[WLDISCON]WLAN DISCONNECT,应用时需要与模式配 网返回信息进行区分,以准确判断模块是否成功配网。

2.2.13 AT+AIRKISS 微信快速配网

AT+AIRKISS		
格式	AT+AIRKISS <cr><lf></lf></cr>	
功能说明	启动微信快速配网 备注:可结合九九物联提供的配网工具 "AirKissDebugger"	
参数列表	无	

返回值列表:

返回值	释义	
[AIRKISS]START!	开始配网	等待接收手机 APP 信息
[AIRKISS]SC_OK!	配网成功	
SSID: "字符串"	返回路由的 SSID	同一时间返回的三个参数, 快速入网成功
PASSWORD: "字符串"	返回路由的 Password	
[AIRKISS]TIMOUT!	 配网超时 	模块没接收到信息
[AIRKISS]SC_ERR	配网失败	快速入网失败(请检查手机 app 发送的信息是否正确)

示例: 发送微信配网指令: AT+AIRKISS<CR><LF> 返回: [AIRKISS]START! 模块完成配网后返回: [AIRKISS]SC OK!

- NOTE: 1、当模块连接上服务器时(TCP连接)进行此模式配网模块会返回 RSP:CLOSED[ID],与[WLDISCON]WLAN DISCONNECT,应用时需要与模式配 网返回信息进行区分,以准确判断模块是否成功配网。
 - 2、模块如果收到信息后未连接路由成功,最多自动重连5次。重连完后 回显[AIRKISS]ERR 的时间大约为 50S。

TCP/IP 指令 2.3

2.3.1 AT+NWKCTCP=<ROLE>, <LOCLALPORT>, [REMOTEIP], [REMOTEP 创建 TCP 连接 ORT

AT+NWKCTCP			
格式	AT+NWKCTCP= <role>, <loclalport>, [REMOTEIP], [REMOTEPORT] <cr><lf></lf></cr></loclalport></role>		
功能说明	创建 TCP 连接 备注: 模块作为 Server 端, "[REMOTEIP], [REMOTEPORT]"可不用填		
TCP 建立时间为	500ms		
TCP 建立失败,超时时间	20s		

参数	属性	属性描述
ROLE	CLIENT	Client 模式
ROLE	SERVER	Server 模式
LOCLALPORT	端口号	本地端口号,0表示随机
REMOTEIP	IP 地址	Server 端 IP 地址(仅 CLIENT 模式下有效且必须)
REMOTEPORT	目标端口号	Server 端端口号 (仅 CLIENT 模式下有效且必须)

返回值列表:

返回值	释义
[NWKCTCP_ID]ID <cr><lf></lf></cr>	创建的网络连接 ID
[NWKCTCP_ID]ERROR <cr><lf></lf></cr>	创建失败

示例: AT+NWKCTCP=CLIENT, 1234, 192. 168. 1. 123, 4321〈CR〉〈LF〉 返回 [NWKCTCP_ID]1〈CR〉〈LF〉 (创建 TCP Client,本地端口号为 1234, Server 端 IP 为 192. 168. 1. 123, Server 端端口号为 4321,系统返回创建成功的连接 ID 为 1)

说明: 1、模块作为客户端连接服务器的时候同一端口只能成功连接一次。

2、模块连接服务器时,模块有 keepalive 机制,如果模块与服务器 4S 内无数据交互,模块则间隔 2S 发送一次保活探测,总共发送 4 次保活探测,也就是说最快能够在 12S 内检测服务器与模块断开连接(回显为 RSP: CLOSED, ID)。

2.3.2 AT+NWKCUDP=<TYPE>, [REMOTEIP], [REMOTEPORT], <LOCALPO RT> 创建 UDP CLIENT 端

AT+NWKCUDP			
格式 AT+NWKCUDP= <type>,[REMOTEIP],[REMOTEPORT],<localport><cr><lf></lf></cr></localport></type>			
功能说明	创建 UDP CLIENT 连接		

参数列表:

参数	属性	属性描述	
TYPE	CLIENT		客户端模式
TIPE	SERVER		服务端模式
REMOTEIP	目标 IP	TYPE 为 SERVER 时	XXX. XXX. XXX
REMOTEPORT	目标端口	不需要填充参数	(1-65535)
LOCALPORT	模块本地端口	(1-65535)	

返回值	释义
[NWKCUDP_ID]ID <cr><lf></lf></cr>	创建的网络连接 ID
[NWKCUDP_ID]ERROR <cr><lf></lf></cr>	创建 UDP 网络连接失败

示例:

- 1、建立 UDP CLIENT: AT+NWKCUDP=CLIENT, 192. 168. 3. 102, 8086, 8080<CR><LF>返回 [NWKCUDP_ID] 2<CR><LF>(创建 UDP Socket,目标 IP 为: 192. 168. 3. 102,目标端口为 8086,本地端口号为 8080, 系统返回创建成功且创建的连接 ID 为2)
- 2、建立 UDP SERVER: AT+NWKCUDP=SERVER, 8001〈CR〉〈LF〉 返回[NWKCUDP_ID]1〈CR〉〈LF〉(创建 UDP Socket, 本地端口号为 8001, 系 统返回创建成功且创建的连接 ID 为 1)

2.3.3 AT+NWKTTCP=<LOCALPORT>, <REMOTEIP>, <REMOTEPORT> 开 启 TCP CLIENT 透传模式

AT+NWKTTCP		
格式 AT+NWKTTCP= <localport>, <remoteip>, <remoteport><cr></cr></remoteport></remoteip></localport>		
开启 TCP CLIENT 透传模式,双方进行数据透传,发送特殊与		
	"++++"可临时退出透传模式,该连接保持,操作完成其他任务后,	
功能说明	发送 AT+NWKTTCP=ON 可再次进入透传模式。	
	如需退出透传模式并且关闭当下透传 Socket 连接, 在发送"++++"	
	后,发送 AT+NWKTTCP=0FF	

参数列表:

参数	属性	属性描述
LOCALPORT	模块本地端口	0/(1-65535), 0 代表随机生成端口
REMOTEIP	目标 IP	XXX. XXX. XXX
REMOTEPORT	目标端口	(1-65535)

返回值	释义
[NWKTTCP]OK <cr><lf></lf></cr>	进入透传成功
[NWKTTCP]QUITE <cr><lf></lf></cr>	临时退出透传模式成功,Socket 连接保持
[NWKTTCP]EXIT <cr><lf></lf></cr>	退出透传模式并关闭 Socket 连接成功

透传模式下衍生指令:

++++	临时退出透传模式,保存透传 TCP Socket 连接
AT+NWKTTCP=ON	重新进入透传指令
AT+NWKTTCP=OFF	完全退出透传模式,关闭透传 TCP Socket 连接

示例: AT+NWKTTCP=0, 192. 168. 1. 167, 8000 CR> LF> 返回: [NWKTTCP] OK CR> LF>

1、临时退出:发送 ++++ 返回:[NWKTTCP]QUITE<CR><LF>

2、 重新进入: AT+NWKTTCP=ON 返回: [NWKTTCP]OK<CR><LF>

3、 完全退出: 执行第 1 步后,发送 AT+NWKTTCP=OFF<CR><LF>

返回: [NWKTTCP]EXIT<CR><LF>

2.3.4 AT+NWKTCPSEND=<ID>, <LEN>, <DATA> 发送 TCP 数据

AT+NWKTCPSEND	
格式 AT+NWKTCPSEND= <id>, <len>, <data><cr><lf< th=""></lf<></cr></data></len></id>	
功能说明	发送 TCP 数据

参数列表:

参数	属性	属性描述
ID	ID	网络连接 ID
LEN	数据长度	发送数据的长度
DATA	数据	要发送的数据(不可超过 1500 个字节)

返回值	释义
[NWKTCPSEND]OK <cr><lf></lf></cr>	发送成功
[NWKTCPSEND]ERROR <cr><lf></lf></cr>	发送失败

示例: AT+NWKTCPSEND=1, 8, 99wulian < CR > < LF > 返回 [NWKTCPSEND] OK < CR > < LF > (给 ID 为1 的 TCP 连接发送数据,数据长度为 8, 数据为:99wulian)

2.3.5 AT+NWKUDPSEND=<ID>, <REMOTEIP>, <REMOTEPORT><LEN>, <D

ATA〉 发送 UDP 数据

AT+NWKUDPSEND		AT+NWKUDPSEND
	格式	AT+NWKUDPSEND= <id>, <remoteip>, <remoteport>, <len>, <data><cr><lf></lf></cr></data></len></remoteport></remoteip></id>
	功能说明	创建 TCP 连接

参数列表:

参数	属性	属性描述
ID	ID	网络连接 ID
REMOTEIP	IP 地址	要发送的远程 IP 地址
REMOTEPORT	端口号	要发送的远程端口号
LEN	数据长度	要发送的数据长度
DATA	数据	要发送的数据

返回值列表:

返回值	释义
[NWKUDPSEND]OK <cr><lf></lf></cr>	发送成功
[NWKUDPSEND]ERROR <cr><lf></lf></cr>	发送失败

示例: AT+NWKUDPSEND=1, 192. 168. 1. 123, 1234, 8, 99wulian<CR><LF>

返回 [NWKUDPSEND]OK<CR><LF>(给 ID 为 1 的 UDP 远程地址发送数据,目 的 IP 为 192. 168. 1. 123, 目的端口号为 1234, 发送的数据长度为 8, 发送的数据 为99wulian,系统返回发送成功)

2.3.6 AT+NWKCLOSE=<ID> 关闭网络连接

AT+NWKCLOSE	
格式	AT+NWKCLOSE= <id><cr><lf></lf></cr></id>
功能说明	关闭网络连接

参数列表:

参数	属性	属性描述
ID	ID	己建立网络连接的 ID

返回值列表:

返回值	释义
[NWKCLOSE]OK <cr><lf></lf></cr>	关闭网络连接成功
[NWKCUDP]ERROR <cr><lf></lf></cr>	关闭网络连接失败

示例: AT+NWKCLOSE =1<CR><LF> 返回 [NWKCLOSE] OK<OK><LF> (关闭 ID 为 1 的网 络连接,系统返回关闭成功)

2.3.7 AT+NWKDNS=<HOST> DNS 解析

AT+NWKDNS		
格式	AT+NWKDNS= <host><cr><lf></lf></cr></host>	
功能说明	DNS 解析	

参数列表:

参数	属性	属性描述
HOST	域名字符串	需要解析的域名

返回值	释义
[IP] <cr><lf></lf></cr>	域名的 IP
[NWKDNS]ERROR <cr><lf></lf></cr>	解析失败

示例: AT+NWKDNS=www.baidu.com<CR><LF> 返回 220. 181. 112. 244〈CR〉〈LF〉

2.3.8 AT+PING=<HOST> PING 指令

	AT+PING
格式	AT+PING= <host><cr><lf></lf></cr></host>
功能说明	PING 指令,模块往需要 PING 的地址发送 5 个包数据,每个包的数据 120
	个字节,查看是否丢包?延时时间多久?

参数列表:

参数	属性	属性描述
HOST	字符串	域名或者 IP 地址

返回值列表:

返回值列表:	
返回值	释义
[PING]transmitted:5, received:5, loss0%, average:33 ms <cr><lf></lf></cr>	发送 5 个包数据,接收 5 个包数据,丢包率 0%, 延时 33ms
[PING]min:2 ms, max:155 ms <cr><lf></lf></cr>	Ping 包延时最小/最大值
[PING]OK <cr><lf></lf></cr>	Ping 包执行成功

示例: AT+PING=www.baidu.com<CR><LF>

返回: [PING] transmitted: 5, received: 5, loss 0%, average: 33 ms < CR > < LF >

[PING]min:2 ms, max:155 ms<CR><LF>

[PING]OK<CR><LF>

2.3.9 AT+WLHTTPGET=<host>, <port>, <resource> HTTP 请求(GET)

	AT+WLHTTPGET
格式	AT+WLHTTPGET= <host>, <port>, <resource><cr><lf></lf></cr></resource></port></host>
功能说明	HTTP 请求(GET)

参数列表:

参数	属性	属性描述
host	长度字符串	网址
port	端口字符串	网站的端口号
resource	字符串	请求的资源

返回值列表:

返回值	释义
[WLHTTPGET]RET:	请求请求资源回显的头
[WLHTTPGET]RETEND <cr><lf></lf></cr>	请求请求资源回显的尾
[WLHTTPGET]ERRARG <cr><lf></lf></cr>	参数错误
[WLHTTPGET]ERROR <cr><lf></lf></cr>	指令执行出错

示例: AT+WLHTTPGET=www.baidu.com,80,/<CR><LF>

返回值: [WLHTTPGET]RET:HTTP/1.1 200 OK...Date(new Date().getTime() +

10*60*1000).toGMTString();</script>

</body></html>

[WLHTTPGET]RETEND<CR><LF>

在[WLHTTPGET]RET:到[WLHTTPGET]RETEND<CR><LF>之间的数据为请求后得到的数据。

2.3.10 AT+WLHTTPPOST=<host>, <port>, <resource>, <type>, <data_len>, <data> HTTP 请求(POST)

	AT+WLHTTPPOST
格式	AT+WLHTTPPOST= <host>, <port>, <resource>, <type>, <data_le n="">, <data><cr><lf></lf></cr></data></data_le></type></resource></port></host>
功能说明	HTTP 请求(POST)

参数列表:

参数	属性	属性描述
host	长度字符串	网址
port	端口字符串	网站的端口号
resource	字符串	请求的资源
type	字符串	POST 的数据类型
data_len	1-1500	数据长度
data	字符串数据	POST 的数据

返回值列表:

返回值	释义
[WLHTTPGET]RET:	请求请求资源回显的头
[WLHTTPGET]RETEND <cr><lf></lf></cr>	请求请求资源回显的尾
[WLHTTPGET]ERRARG <cr><lf></lf></cr>	参数错误
[WLHTTPGET]ERROR <cr><lf></lf></cr>	指令执行出错

示例:

AT+WLHTTPPOST=www.baidu.com,80,/huiyiShop-web/armChair,application/json,37,{ "deviceid":"0002","switchcase":"1"}<CR><LF>

返回值: [WLHTTPPOST]RET:HTTP/1.1 200 OK...

[WLHTTPPOST]RETEND<CR><LF>

在[WLHTTPPOST]RET:到[WLHTTPPOST]RETEND<CR><LF>之间的数据为请求后得到的数据。

2.3.11 AT+WLHTTPS=<Request_LEN>, <Request_PORT>, <Request_D
omain >, <Request_Command> HTTPS 请求

AT+WLHTTPS		
格式	AT+WLHTTPS= <request_len>, <request_port>, <request_domain>,</request_domain></request_port></request_len>	
恰 八	<request_command><cr><lf><cr><lf></lf></cr></lf></cr></request_command>	
功能说明	HTTPS 请求;在原有的 HTTP 上加上 SSL 协议	
	备注: 指令后面必须带上两个 0D 0A	

参数列表:

参数	属性	属性描述
Request_LEN	长度字符串	请求指令的字节数
Request_PORT	端口字符串	请求服务器的端口号
Request_Domain	域名或 IP字 符串	请求服务器的域名或 IP
Request_Command	指令字符串	请求的指令 例如: GET / HTTP/1.0

返回值列表:

返回值	释义
[WLHTTPS]SOCKET CLOSED! <cr><lf></lf></cr>	获取到服务器内容,关闭 socket 连接

示例:以百度网页为例

AT+WLHTTPS=18, 443, www. baidu.com, GET / HTTP/1.0 <CR><LF><CR><LF>

返回: 服务器内容字符串 ……

[WLHTTPS]SOCKET CLOSED!<CR><LF>

2.3.12 AT+WLOTA=<Server_IP>, <PORT> 空中升级

AT+WLOTA		
格式	AT+WLOTA= <server_ip>, <port><cr><lf></lf></cr></port></server_ip>	
功能说明	空中升级	

参数列表:

参数	属性	属性描述
Server_IP	xxx. xxx. xxx. xxx	服务器 IP 地址
PORT	8082	固定端口号 8082

返回值列表:

返回值	释义
[WLOTA]:OK! <cr><lf></lf></cr>	升级成功(模块会重启)
[WLOTA]:ERROR! <cr><lf></lf></cr>	升级失败

示例: AT+WLOTA=192.168.1.102,8082<CR><LF> 返回[WLOTA]:OK!<CR><LF> (具体流程请参考文件"OTA升级流程"中文档"AFW121T升级流程")

2.3.13 AT+WLHTTPOTA=<IP>, <PORT>, <PATH> 通过 HTTP 进行升级

	AT+WLHTTPOTA
格式	AT+WLHTTPOTA= <ip>, <port>, <path><cr><lf></lf></cr></path></port></ip>
功能说明	通过 HTTP 空中升级

参数列表:

参数	属性	属性描述
IP	XXX. XXX. XXX. XXX	服务器 IP 地址
PORT	0-65535	服务器端口号
PATH	字符串	文件存放路径(包含文件名)

返回值列表:

返回值	释义
[WLHTTPOTA]START <cr><lf></lf></cr>	开始下载固件进行升级
[WLHTTPOTA] SUCCESS <cr><lf></lf></cr>	下载固件成功,自动重启运行新固件
[WLHTTPOTA]ERRARG <cr><lf></lf></cr>	参数错误
[WLHTTPOTA]ERROR <cr><lf></lf></cr>	升级失败

示例:

AT+WLHTTPOTA=39. 108. 215. 168, 80, admin/uploadword/OTA_ALL1. bin<CR><LF>返回: [WLHTTPOTA] START<CR><LF> [WLHTTPOTA] SUCCESS<CR><LF> 说明: 1、模块通过 HTTP 方式升级完成的时间要看网络状况,九九物联测试的时间为 105 到 405。

2.3.14 AT+XMODEOTA

通过指令串口进行空中升级

AT+XMODEOTA(SPI 接口不支持)		
格式	AT+XMODEOTA <cr><lf></lf></cr>	
功能说明	通过指令串口进行空中升级	
波特率	460800	
参数列表	无	

返回值列表:

返回值	释义
[XMODEOTA]START <cr><lf></lf></cr>	开始下载固件进行升级
[XMODEOTA] SUCCESS <cr><lf></lf></cr>	升级成功,模块自动重启运行新固件
[XMODEOTA]ERR <cr><lf></lf></cr>	升级失败

说明: 1、使用 XMODEOTA 方式升级的时间大概为 30S(测试时分包大小为 1024bytes)。

2、客户主控需要支持 Xmodem 协议

2.4 网络查询指令

2.4.1 AT+WLIP 查询自身 IP

AT+WLIP	
格式	AT+WLIP <cr><lf></lf></cr>
功能说明	查询自身 IP
参数列表	无

返回值	释义
[WLIP]xxx.xxx.xxx <cr><lf></lf></cr>	自身 IP
[WLIP]ERROR <cr><lf></lf></cr>	查询失败

示例: AT+WLIP<CR><LF>

返回: [WLIP] 192. 168. 1. 100

2.4.2 AT+WLMASK 查询自身子网掩码

AT+WLMASK	
格式	AT+WLMASK <cr><lf></lf></cr>
功能说明	查询自身子网掩码
参数列表	无

返回值列表:

返回值	释义
[WLMASK]xxx.xxx.xxx <cr><lf></lf></cr>	自身子网掩码
[WLMASK]ERROR <cr><lf></lf></cr>	查询失败

示例: AT+WLMASK<CR><LF>

返回: [WLMASK] 255. 255. 255. 0

2.4.3 AT+WLGATE 查询自身网关

AT+WLGATE	
格式	AT+WLGATE <cr><lf></lf></cr>
功能说明	查询自身网关
参数列表	无

返回值	释义
[WLGATE]xxx.xxx.xxx <cr><lf></lf></cr>	自身网关
[WLGATE]ERROR <cr><lf></lf></cr>	查询失败

AT+ Command

示例: AT+WLGATE<CR><LF>

返回: [WLGATE] 192. 168. 1. 1

2.4.4 AT+WLMAC 查询自身 MAC 地址

AT+W	VLMAC
格式	AT+WLMAC <cr><lf></lf></cr>
功能说明	查询自身 MAC 地址
参数列表	无

返回值列表:

返回值	释义
[WLMAC]字符串〈CR〉〈LF〉	模块 MAC 地址 (6个 bytes Hex number)
[WLMAC]ERROR <cr><lf></lf></cr>	查询失败

示例: AT+WLMAC<CR><LF>

返回: [WLMAC]00:e0:4c:87:00:00

2.4.5 AT+WLSCAN 扫描附近所有 AP 信息

AT+WLSCAN	
格式	AT+WLSCAN <cr><lf></lf></cr>
功能说明	扫描附近所有 AP 信息
参数列表	无

返回值	释义
[WLSCAN] <ssid1>, <enctype1>, <rssi1>, <mac1>, <channel1> <cr> <lf></lf></cr></channel1></mac1></rssi1></enctype1></ssid1>	网络1
[WLSCAN] <ssid2>, <enctype2>, <rssi2>, <mac2>, <channel2> <cr> <lf></lf></cr></channel2></mac2></rssi2></enctype2></ssid2>	网络 2
[WLSCAN] <ssid3>, <enctype3>, <rssi3>, <mac3>, <channel3><cr><lf></lf></cr></channel3></mac3></rssi3></enctype3></ssid3>	网络3
[WLSCAN] <ssidn>, <enctypen>, <rssin>, <macn>, <channeln> <cr> <lf></lf></cr></channeln></macn></rssin></enctypen></ssidn>	网络 n
[WLSCAN] OK < CR > < LF >	获取结束

示例: AT+WLSCAN<CR><LF>

返回:区域内网络字符串〈CR〉〈LF〉[WLSCAN]OK〈CR〉〈LF〉

说明:扫描周围热点需要一些时间,大概是 2S,所以回显会稍慢。

2.4.6 AT+WLGETINFO 获取当前 Wi-Fi 的 IP、掩码、网关

AT+WLGETINFO	
格式	AT+WLGETINFO <cr><lf></lf></cr>
功能说明	获取当前 Wi-Fi 的信息 备注: 获取的信息取决于当前模块设置的 Wi-Fi, 如果是 STA+AP 模式, 将会获取 两个网络信息,建议联网成功再获取,否 则取到的数据是上次保存的信息
参数列表	无

返回值列表:

返回值	释义
[WLGETINFO]OK, <wi-fi 类型="">, <ip>, <mask>, <gate>, <mac><cr><lf></lf></cr></mac></gate></mask></ip></wi-fi>	当前模块所有信息

示例: AT+WLGETINFO<CR><LF>

返回: [WLGETINFO]OK, STA, 192. 168. 1. 104, 255. 255. 255. 0, 192. 168. 1. 1,

00:e0:4c:87:07:02<CR><LF> (查询 Wi-Fi 信息,返回当前 Wi-Fi 为 STA 模

式, IP 地址为 192.168.1.104

子网掩码为 255. 255. 255. 0, 网关地址为 192. 168. 1. 1, 模块 Mac 地址为

1c:1c:fd:1e:bd:72)

2.4.7 AT+WLGETAPINFO 获取当前连接 AP 的 SSID、加密方式、密码

AT+WLGI	ETAPINFO
格式	AT+WLGETAPINFO <cr><lf></lf></cr>
功能说明	获取当前连接 AP 的 SSID、加密方式、密码 备注:如果没有连接上 AP (路由),获取的信 息中,SSID、AP 的密码是空的,加密方 式为 OPEN;例如:STA,,2,OPEN,,
参数列表	无

返回值列表:

返回值	释义
[WLGETAPINFO]OK , <wi-fi 状态类型="">, <ssid>, <ap的channel>, <加密方式>, <ap的密码><cr><lf></lf></cr></ap的密码></ap的channel></ssid></wi-fi>	当前 AP 的信息

示例: AT+WLGETAPINFO<CR><LF>

返回: [WLGETAPINFO]OK, STA, 99iot, 4, AES, SZ99iotA<CR><LF>

2.4.8 AT+WLGETAPMAC 获取当前连接 AP 的 MAC 地址

	AT+WLGETAPMAC
格式	AT+WLGETAPMAC <cr><lf></lf></cr>
功能说明	获取当前连接 AP 的 MAC 地址
参数列表	无

返回值列表:

返回值	释义
[WLGETAPMAC]字符串〈CR〉〈LF〉	模块 MAC 地址(6 个 bytes Hex

示例: AT+WLGETAPMAC<CR><LF> 返回: 70:1D:08:1A:11:10

2.4.9 AT+WLGETOTAINDEX 查询当前执行的固件所在区域

AT+WLGETOTAINDEX	
格式	AT+WLGETOTAINDEX <cr><lf></lf></cr>
功能说明	查询当前执行的固件所在区域
参数列表	无

返回值列表:

返回值	释义
[WLGETOTAINDEX]CUR INDEX:OTA1 <cr><lf></lf></cr>	当前代码执行在 OTA1 区

示例: AT+WLGETOTAINDEX<CR><LF> 返回: 区域内网络字符串

2.4.10 AT+WLRSSI STA 模式下,连接 AP 后,查询 AP 的信号强度

	AT+WLRSSI
格式	AT+WLRSSI <cr><lf></lf></cr>
功能说明	STA 模式下,连接 AP 后,查询 AP 的信号强度
参数列表	无

返回值列表:

返回值	释	义
[WLRSSI]: -80 <cr><lf></lf></cr>	单位: dBm(分 贝毫瓦)	当前路由(AP) 的信号强度

返回: [WLRSSI]: -80<CR><LF> 示例: AT+WLRSSI<CR><LF>

2.5 提示指令

2.5.1 [AUTOCON] SUCCESS

Wi-Fi 连接 AP 成功

[AUTOCON] SUCCESS	
格式	[AUTOCON]SUCCESS <cr><lf></lf></cr>
功能说明	Wi-Fi 连接上 AP(STA 模式)
参数列表	无

2.5.2 [WLDIS] WLDISCON Wi-Fi 断开连接 AP

[WLDIS]	WLDISCON
格式	[WLDIS]WLDISCON <cr><lf></lf></cr>
功能说明	Wi-Fi 断开连接 AP(STA 模式)
参数列表	无

2.5.3 RSP: [ID], [TPYE] [REMOTEIP], [REMOTEPORT], [LEN], [DATA]

接收网络数据

RSP:[ID],[TPYE],[REMOTEIP],[REMOTEPORT],[LEN],[DATA]	
格式 RSP:[ID],[TPYE],[REMOTEIP],[REMOTEPORT],[LEN],[DATA] <cr><lf></lf></cr>	
功能说明	接收网络数据
参数列表	无

返回值列表:

参数	属性	属性描述		
ID	ID	网络连接 ID		
TPYE	UDP	网络连接类型为 UDP		
II IL	TCP	网络连接类型为 TCP		
REMOTEIP	IP 地址	要发送的远程 IP 地址		
REMOTEPORT	端口号	要发送的远程端口号		
LEN	数据长度	要发送的数据长度		
DATA	数据	要发送的数据		

示例: RSP: 1, UDP, 192. 168. 1. 127, 9876, 8, 99wulian (CR) (接受到网络数据,数据来源的网络连接 ID 为1,源 IP 地址为192. 168. 1. 127,源端口号为9876,接收到的数据长度为8,接收到的数据为: 99wulian)

2.5.4 RSP: CLOSED<ID> 网络连接被关闭

RSP: CLOSED <id></id>			
格式	RSP: CLOSED <id><cr><lf></lf></cr></id>		
功能	网络连接被关闭		
参数列表	无		

示例: RSP: CLOSED, 01 < CR > 网络 ID 为 01 的网络连接被关闭;

硬件基础 3

3. 1 硬件板图

3.2 硬件介绍说明

图 1 为 AFW121-Broad,集成 DC+serial port,带有 JTAG 接口,板上已经 为用户提供了"serial to USB driver", "serial to USB driver"可以 输出模块的 LOG 信息,如果用户需要看 LOG 信息,需要安装串口驱动:

CDM21218_Setup_720

图 2 为 USB 转串口模块,用户可以使用其他串口转换工具,常用的电平转 换芯片有 PL2303、CH340T、CP2102 等等

4 硬件连接

开发板的一组串口连接到串口工具上,实现指令和数据传输,具体连接如下说明:

5 固件烧录

5.1 AFW121Tx-Broad 烧录说明

- A、准备好烧录固件,板子用 Micro USB1 供电, 打开软件"Imgle Tool"
- B、按照如下图的四个步骤操作, 烧录的串口工具必须使用速度快的。
- C、烧录结束后,用户自行手动复位

56 / 73

5. 2 单个模块烧录

针对单个模块的独立烧录,用户需要从模块上接出两根线: PIN19、PIN20.

PIN11->VCC3.3v PIN12->GND PIN19->RX PIN20->TX

通信相关软件及默认参数 6

6. 1 指令发送、监听工具

SecureCRT MyCommToo1

6. 2 网络助手

NetAssist 或者 TCP&UDP 测试工具

AT+Command 使用实例 7

本章节主要介绍几种常用的 AT 指令使用示例, 更多的 AT 指令请参考以上的说明。

- 先做好硬件的连接,如章节"4"说明;
- 设备上电, PC 打开串口工具, 波特率设置为 115200, 输入 AT 指令, AT 指令 必须大写,以回车换行符结尾"\r\n".

Wi-Fi 配网、建网相关实例 7. 1

7.1.1 STATION模式,联网及相关设置

设置模块的 Wi-Fi 模式:

a、AT+WLMODE=1 回显: [WLMODE]OK

连接路由器 (AP):

b, AT+WLSTAPARAM=99iot, SZ99iot 回显: [WLSTAPARAM]OK

用户可以登录路由(AP)查看"主机状态"或者用户可以查询模块被分配的 IP:

c、AT+WLMAC 回显: [WLMAC]1c:1c:fd:1e:92:13

d, AT+WLIP 回显: [WLIP] 192. 168. 0. 109

7.1.2 AP 模式,建网及相关设置

设置模块的 Wi-Fi 模式:

a、AT+WLMODE=2 回显: [WLMODE]OK

设置模块作为 AP 的 SSID、PASSWORD、加密方式:

b、AT+WLAPPARAM=99iot TEST, AES, 12345678 回显: [WLAPPARAM] OK

用户可以在 PC、moblie 端查看新建热点:

7.1.3 STATION+SoftAP 模式

设置模块的 Wi-Fi 模式: (已经建立起 STATION+SoftAP 模式)

a、AT+WLMODE=3 回显: [WLMODE]OK

设置模块作为 AP 的 SSID、PASSWORD、加密方式:(必须先建立 AP 热点)

b、AT+WLAPPARAM=99iot_TEST, AES, 12345678 回显: [WLAPPARAM]OK

连接路由器 (AP):

c、AT+WLSTAPARAM=99iot, SZ99iot 回显: [WLSTAPARAM]OK

用户通过查询指令获取现有的网络信息:

d、AT+WLGETINFO 回显:

[WLGETINFO]OK, STA, 192. 168. 0. 110, 255. 255. 255. 0, 192. 168. 0. 11c:1c:fd:1e:92:13

[WLGETINFO] OK, AP, 192. 168. 43. 1, 255. 255. 255. 0, 192. 168. 43. 11c:1c:fd:1e:92:14

用户查看路由"主机状态"界面和PC、moblie 的Wi-Fi 扫描,验证STA+AP模式

下面是发出指令的回显:

7. 2 TCP Server 传输

7.2.1 SoftAP 模式

先让模块建网,建立一个TCP连接,模块做为TCP服务端,具体的操作如下:

序号	说明	发送指令(或操作)	回显(或现象)
1	模块建网,起 SoftAP 模式	请参考 <u>7.1.2</u> 的操作设置 AP 网络信息	
		PC 连接 AP: 99iot_TEST	成功连上模块 AP
2	PC 连接到模块 AP, 并获取 PC 的 IP 地	PC 端右击连接的网络,点击状态, 再点击详细信息,查看 IP 地址	PC 被分配 IP 地址:
	址	备注:模块与 PC 通讯,需要知道 PC 被分配的 IP 地址	192. 168. 43. 100
3	查看模块自身的 IP	AT+WLIP 备注: TCP 助手需要知道服务器 IP	[WLIP] 192. 168. 43
		AT+NWKCTCP=SERVER, 9100, 192. 1	. 1
4	建立 TCP 做服务器	68. 43. 100, 4001 备注: PC 的 IP 地址: 192. 168. 43. 100,	[NWKCTCP_ID]1
		作为模块建立 TCP 连接的目标地址	4# 14 16 7 190 1ED N
5	PC 端建立 Client, 并向模块发数据	如下图 7. 2. 1. b	模块收到数据为: RSP:2, TCP, 192. 168. 43
			. 100, 51579, 7, SZ99iot
6	模块向 PC 的 TCP 助	AT_NWKTCDSEND-1 9 001; an	[NWKTCPSEND] OK
U	手(Client 端)发 送数据	AT+NWKTCPSEND=1,8,99wulian	TCP 助手收到数据 如下图 7.2.1.b

PC 端利用网络调试助手测试软件创建 TCP 客户端,请参考图 7.2.1.a:

图 7.2.1.a TCP 客户端参数设置

TCP 的连接创建,模块与 PC 端数据的收发过程,请参考下图 7.2.1.b:

图的左边为 SecureCRT 串口工具的工作区,右边为网络助手工具工作区

图 7.2.1.b AP 模式下, PC 端与模块间的 TCP 通信演示

7.2.2 STATION 模式

先把模块配网连上路由(AP),建立一个TCP连接,模块做为TCP服务端,具体 的操作如下:

序号	说明	发送指令(或操作)	回显(或现象)
1	模块连接路由,起 STATION 模式	请参考 <u>7.1.1</u> 的操作,输入需要 连接路由的 SSID、PASSWORD	
2	查看模块 MAC 地址	AT+WLMAC	[WLMAC]1c:1c:fd:1 e:92:13
3	确定模块已经连接 上路由(AP),并获	打开路由的主机状态查看模块 MAC 地址 PC 端右击连接的网络,点击状态, 再点击详细信息,查看 IP 地址	成功连接上路由 PC 被分配 IP 地址:
	取 PC 的 IP 地址	备注:模块与 PC 通讯,需要知道 PC 被分配的 IP 地址	192. 168. 1. 104
4	查看模块自身的 IP	AT+WLIP 备注: TCP 助手需要知道服务器 IP	[WLIP] 192. 168. 1. 105
5	建立 TCP 做服务器	AT+NWKCTCP=SERVER, 9100, 192. 1 68. 1. 104, 4001	[NWKCTCP_ID]1
6	PC 端建立 Client, 并向模块发数据	如下图 7. 2. 2. b	模块收到数据为: RSP:2, TCP, 192.16 8.1.104, 50971, 7, SZ99iot
7	模块向 PC 的 TCP 助 手 (Client 端) 发 送数据	AT+NWKTCPSEND=1, 8, 99wulian	[NWKTCPSEND] OK TCP 助手收到数据 如下图 7. 2. 2. b

PC 端利用网络调试助手测试软件创建 TCP 客户端,请参考图 7.2.2.a:

图 7.2.2.a TCP 客户端参数设置

TCP 的连接创建,模块与 PC 端数据的收发过程,请参考下图 7.2.2.b:

图的左边为 SecureCRT 串口工具的工作区,右边为网络助手工具工作区

图 7.2.2.b STATION 模式下, PC 端与模块间的 TCP 通信演示

7.3 TCP Client 传输

7.3.1 SoftAP 模式

先让模块建网,建立一个TCP连接,模块做为TCP客户端,具体的操作如下:

序号	说明	发送指令(或操作)	回显(或现象)
1	模块建网,起 SoftAP 模式	请参考 <u>7.1.2</u> 的操作设置 AP 网络信息	
	DC 法按到掛扑 AD	PC 连接 AP: 99iot_TEST	成功连上模块 AP
2	PC 连接到模块 AP, 并获取 PC 的 IP 地 址	PC 端右击连接的网络,点击状态,再点击详细信息,查看 IP 地址 备注:模块与 PC 通讯,需要知道 PC 被分配的 IP 地址	PC 被分配 IP 地址: 192. 168. 43. 100
3	建立 TCP 做服务器	AT+NWKCTCP=CLIENT, 9100, 192. 1 68. 43. 100, 4001	[NWKCTCP_ID]1
4	PC 端建立 Client, 并向模块发数据	如下图 7.3.1.b	模块收到数据为: RSP:1, TCP, 192.16 8.43.100,4001,7, SZ99iot
5	模块向 PC 的 TCP 助 手(Server 端)发 送数据	AT+NWKTCPSEND=1,8,99wulian	[NWKTCPSEND] OK TCP 助手收到数据 如下图 7.3.1.b

PC 端利用网络调试助手测试软件创建 TCP 客户端,请参考图 7.3.1.a:

图 7.3.1.a TCP 服务器端参数设置

TCP 的连接创建,模块与 PC 端数据的收发过程,请参考下图 7.3.1.b:

图的左边为 SecureCRT 串口工具的工作区,右边为网络助手工具工作区

图 7.3.1.b AP 模式下, PC 端与模块间的 TCP 通信演示

7.3.2 STATION 模式

先把模块配网连上路由(AP),建立一个TCP连接,模块做为TCP客户端,具体 的操作如下:

序号	说明	发送指令(或操作)	回显 (或现象)
1	模块连接路由,起 STATION 模式	请参考 <u>7.1.1</u> 的操作,输入需要 连接路由的 SSID、PASSWORD	
2	查看模块 MAC 地址	AT+WLMAC	[WLMAC]1c:1c:fd:1 e:92:13
	なか# は コ <i>ね</i> なか	打开路由的主机状态查看模块 MAC 地址	成功连接上路由
3	确定模块已经连接 上路由(AP),并获 取 PC 的 IP 地址	PC 端右击连接的网络,点击状态,再点击详细信息,查看 IP 地址 备注:模块与PC 通讯,需要知道PC 被分配的 IP 地址	PC 被分配 IP 地址: 192. 168. 1. 104
4	建立 TCP 做服务器	AT+NWKCTCP=CLIENT, 9100, 192. 1 68. 1. 104, 4001 备注: 192. 168. 1. 104 是 PC 的 IP 地址, 作为模块建立 TCP 连接的目标地址	[NWKCTCP_ID]1
5	PC 端建立 Server, 并向模块发数据	如下图 7. 3. 2. b	模块收到数据为: RSP:1, TCP, 192. 16 8. 1. 104, 4001, 7, S Z99iot
6	模块向 PC 的 TCP 助 手(Server 端)发 送数据	AT+NWKTCPSEND=1,8,99wulian	[NWKTCPSEND] OK TCP 助手收到数据 如下图 7.3.2.b

PC 端利用网络调试助手测试软件创建 TCP 客户端,请参考图 7.3.2.a:

图 7.3.2.a TCP 服务器端参数设置

TCP 的连接创建,模块与 PC 端数据的收发过程,请参考下图 7.3.1.b:

图的左边为 SecureCRT 串口工具的工作区,右边为网络助手工具工作区

图 7.3.2.b STATION 模式下, PC 端与模块间的 TCP 通信演示

7.4 UDP 传输

UDP 传输不区分 Server 或者 Client, 可参考下面的两个例子

7.4.1 SoftAP 模式

先让模块建网,模块建立一个 UDP 连接, 监听网络工具的数据, 具体的操作如下:

序号	说明	发送指令(或操作)	回显 (或现象)
1	模块建网,起 SoftAP 模式	请参考 <u>7.1.2</u> 的操作设置 AP 网络信息	
	Solom DCD	PC 连接 AP: 99iot_TEST	成功连上模块 AP
2	PC 连接到模块 AP, 并获取 PC 的 IP 地 址	PC 端右击连接的网络,点击状态,再点击详细信息,查看 IP 地址 备注:模块与PC 通讯,需要知道PC 被分配的 IP 地址	PC 被分配 IP 地址: 192. 168. 43. 100
3	查看模块自身的 IP	AT+WLIP 备注: 网络助手需要知道模块的 IP	[WLIP] 192. 168. 43
4	建立 UDP 连接	AT+NWKCUDP=SERVER, 9001,	[NWKCUDP_ID]1
5	PC 端打开网络工具 设定好 IP 和端口, 并向模块发数据	如下图 7.4.1.b	模块收到数据为: RSP:1, UDP, 192. 168. 43. 100, 8 001, 7, SZ99iot
6	模块向 PC 端的 UDP 通道(网络助手) 发送数据	AT+NWKUDPSEND=1, 192. 168. 43. 1 00, 8001, 8,99wulian	[NWKUDPSEND]OK 网络助手收到数据 如下图 7.4.1.b

PC 端利用网络调试助手测试软件创建 UDP 端口, 请参考图 7.4.1.a:

图 7.4.1.a PC 端 UDP 网络连接参数设置

UDP 的连接创建, 模块与 PC 端数据的收发过程, 请参考下图 7.4.1.b:

图的左边为 SecureCRT 串口工具的工作区,右边为网络助手工具工作区

图 7.4.1.b AP 模式下, PC 端与模块间的 UDP 通信演示

7.4.2 STATION 模式

先把模块配网连上路由(AP),模块建立一个UDP连接,监听网络工具的数据, 具体的操作如下:

序号	说明	发送指令(或操作)	回显(或现象)
1	模块连接路由,起 STATION 模式	请参考 <u>7.1.1</u> 的操作,输入需要 连接路由的 SSID、PASSWORD	
2	查看模块 MAC 地址	AT+WLMAC	[WLMAC]1c:1c:fd:1 e:92:13
	<i>拉</i> 分铁轨 司 <i>伍</i> 发软	打开路由的主机状态查看模块 MAC 地址	成功连接上路由
3	确定模块已经连接 上路由(AP),并获 取 PC 的 IP 地址	PC 端右击连接的网络,点击状态,再点击详细信息,查看 IP 地址 备注:模块与PC 通讯,需要知道PC 被分配的 IP 地址	PC 被分配 IP 地址: 192. 168. 1. 104
4	查看模块自身的 IP	AT+WLIP 备注:网络助手需要知道模块的 IP	[WLIP] 192. 168. 1. 106
5	建立 UDP 连接	AT+NWKCUDP=SERVER, 9000	[NWKCUDP_ID]1
6	PC 端打开网络工具 设定好 IP 和端口, 并向模块发数据	如下图 7. 4. 2. b	模块收到数据为: RSP:1, UDP, 192.16 8.1.104, 8080, 7, S Z99iot
7	模块向 PC 端的 UDP 通道 (网络助手) 发 送数据	AT+NWKUDPSEND=1, 192. 168. 1. 10 4, 8080, 8,99wulian	[NWKUDPSEND] OK 网络助手收到数据 如下图 7.4.2.b

PC 端利用网络调试助手测试软件创建 UDP 端口,请参考图 7.4.2.a:

图 7.4.2.a PC 端 UDP 网络连接参数设置

UDP 的连接创建,模块与 PC 端数据的收发过程,请参考下图 7.4.2.b: 图的左边为 SecureCRT 串口工具的工作区,右边为网络助手工具工作区

图 7.4.2.b STATION 模式下, PC 端与模块间的 UDP 通信演示

历史版本更新说明

九九物联 (深圳) 有限公司

Revision	Release Data	Summary
V1.0	2017/07/05	初稿
V1.1	2019/02/18	添加了固件说明,低功耗特点

Created by..

Frank wong

Date:

2017-07-05

72 / 73

8 购买与支持

邮箱: sales@sz99iot.com

Frank@sz99iot.com

电话: 0755-88602663 13823278033

地址:深圳市福田区泰然七路苍松大厦北座 609C

特别说明:

我们会不断的改进和完善文档,本书中的图片和文字仅供参考, 所有信息均以实物和实际销售情况为准。