Bankruptcy Prediction: Final Report

1. Introduction

The goal of this project was to predict company bankruptcy using machine learning models trained on financial indicators. A significant challenge was addressing the class imbalance in the dataset, where bankrupt companies constituted only a small portion of the total samples. To tackle this, we used two methods: Class Weights: Assigning weights to classes to balance their impact on the model's loss function. SMOTE (Synthetic Minority Oversampling Technique): Generating synthetic samples for the minority class to achieve a balanced dataset. This report summarizes the findings from both approaches, highlights the best-performing model, and provides insights into feature importance.

2. Methodology

Addressing Class Imbalance

Class Weights:

- Applied to models that support weighted loss functions (e.g., Random Forest, Logistic Regression, Decision Tree).
- Allows the model to give more importance to the minority class without altering the dataset.

SMOTE:

- o Synthesizes new samples for the minority class to balance the dataset.
- Applied during the training phase using pipelines to integrate preprocessing seamlessly.

Models Evaluated

We trained the following machine learning models using both methods:

- 1. Logistic Regression
- 2. Support Vector Classifier (SVC)
- 3. Decision Tree
- 4. Random Forest
- 5. K-Nearest Neighbors (KNN)
- 6. Multi-Layer Perceptron (MLP)

3. Results

3.b Performance Using Class Weights

The table below summarizes the test set performance of all models trained using class weights:

Model	Accuracy	Balanced Accuracy	Recall	F1-Score	Precision	Log Loss	ROC- AUC
Random Forest	0.8944	0.8576	0.8182	0.3333	0.2093	0.2793	0.9317
Decision Tree	0.8585	0.8500	0.8409	0.2772	0.1659	0.3266	0.9217
Logistic Regression	0.8563	0.8489	0.8409	0.2741	0.1637	0.3791	0.8960
Support Vector Classifier (SVC)	0.8944	0.7697	0.6364	0.2800	0.1795	NA	NA
Multi-Layer Perceptron (MLP)	0.9641	0.5750	0.1591	0.2222	0.3684	0.1591	0.8609
K-Nearest Neighbors (KNN)	0.9641	0.5420	0.0909	0.1404	0.3077	0.5739	0.7546

Key Observations:

- Random Forest achieved the highest balanced accuracy (0.8576) and ROC-AUC (0.9317), making it the best-performing model using class weights.
- **Decision Tree** showed competitive performance but had lower precision and F1-score compared to Random Forest.
- Models like MLP and KNN achieved high accuracy but poor balanced accuracy and recall, indicating overfitting to the majority class.

3.c Performance Using SMOTE

The table below summarizes the test set performance of all models trained using SMOTE:

Model	Accuracy	Balanced Accuracy	Recall	F1-Score	Precision	Log Loss	ROC- AUC
Random Forest	0.8900	0.8663	0.8409	0.3304	0.2056	0.2374	0.9445
Multi-Layer Perceptron	0.8688	0.8663	0.8636	0.2980	0.1801	0.4475	0.9077
K-Nearest Neighbors	0.8372	0.8500	0.8636	0.2550	0.1496	0.9565	0.9124
Logistic Regression	0.8717	0.8458	0.8182	0.2915	0.1773	0.3177	0.9345
Decision Tree	0.8109	0.8254	0.8409	0.2229	0.1285	0.3109	0.8869
Support Vector Classifier	0.1598	0.4341	0.7273	0.0529	0.0274	NA	NA

Key Observations:

- **Random Forest** remains the best-performing model, achieving the highest balanced accuracy (0.8663) and ROC-AUC (0.9445).
- MLP matches Random Forest in balanced accuracy but lags in precision and ROC-AUC, making it a close second.
- Similar to class weights, **KNN** and **Logistic Regression** showed moderate performance, while **SVC** performed poorly even with SMOTE.

4. Feature Importance

Using the Random Forest model trained with SMOTE, the most important financial indicators were identified:

Feature	Importance		
Borrowing Dependency	0.1196		
Persistent EPS in the Last Four Seasons	0.0856		
Continuous interest rate (after tax)	0.0644		
Liability to Equity	0.0608		
Retained Earnings to Total Assets	0.0519		

These features highlight key financial indicators associated with bankruptcy risk, providing actionable insights for domain experts.

5. Conclusion

Best Model: The **Random Forest model with SMOTE** emerged as the best-performing approach, achieving the highest balanced accuracy (0.8663) and ROC-AUC (0.9445).

Comparison of Methods: While both class weights and SMOTE improved model performance, SMOTE yielded better results overall.

Recommendations:

- Deploy the Random Forest model trained with SMOTE for predicting company bankruptcy.
- o Regularly update the model with new data and re-evaluate its performance.
- Focus on the top features identified to prioritize financial indicators that contribute most to bankruptcy risk.