Lecture 5: Regularisation

Irrelevant / Multicolinear features

- · Co-linearity between features
- Features not linearly independent
 - \circ E.g. If x_1 and x_2 are the same \Rightarrow perfectly correlated
- ullet For linear model, feature X_j is irrelevant if
 - $\circ \;\; X_j$ is a linear combination of other columns

$$X_{.i} = \Sigma_{l \neq i} \alpha_l X_{.l}$$

for some scalars α_l

- \circ Equivalently: Some eigenvalue of X'X is zero
- Problems
 - 1. The solution is not unique
 - Infinite number of solutions
 - 2. Lack of interpretability
 - cannot interpret the weights
 - 3. Optimising to learn parameter is ill-posed problem

III-posed problems

- Well-posed problem
 - 1. a solution exists
 - 2. the solution is unique
 - 3. the solution's behavior changes continuously with the initial condition
- If ill-posed, there is no closed form solution
 - Closed form solution $\hat{w} = (X'X)^{-1}X'y$
 - \circ But if irrelevant, X'X has no inverse (singular)
 - (Even near-irrelevance / colinearity can be problematic)

Re-conditioning the problem (Ridge Regression)

- Make it a well-posed solution and also prevent fitting noise / overfitting
- · Original problem: minimise squared error

$$||y-Xw||_2^2$$

• Regularised problem (L2, Ridge regression): minimise

$$||y-Xw||_2^2+\lambda||w||_2^2 ext{ for } \lambda>0$$

- Turns the ridge into a peak (⇒ unique solution)
- Adds λ to eigenvalues of X'X: makes invertible

Regulariser as a prior (Bayesian intepretation of ridge regression)

• Let prior distribution be:

$$W \sim N(0, 1/\lambda)$$

- Higher λ , more confidence at prior, therefore ignore data more
- Computing posterior and take MAP

$$\log(posterior) = \log(likelihood) + \log(prior) - \log(marg)$$

- can just ignore $\log(marg)$, since this term doesn't affect optimisation
- Arrive at the problem of minimising:

$$||y - Xw||_2^2 + \lambda ||w||_2^2$$

• Become equivalent problem: Ridge Regression

Regularisation in non-linear models

- There is trade-off between **overfitting** and **underfitting**
- Right model class Θ will sacrifice some training error, for test error
- Choosing model complexity (2 Methods)
 - 1. Explicit model selection
 - Choosing degree of polynomial model by CV or held out validation
 - 2. Regularisation

Explicit model selection

- Using hold-out or CV to select the model
- 1. Split data into D_{train} and $D_{validate}$ sets
- 2. For each degree d (# of parameters), we have model f_d
 - 1. Train f_d on D_{train}
 - 2. Test (evaluate) f_d on $D_{validate}$
- 3. Pick degree \hat{d} that gives the best test score
- 4. Re-train model $f_{\hat{d}}$ using all data (return this final model)

Regularisation

• Solving the problem:

$$\hat{ heta} \in rg \min_{ heta \in \Theta} (L(data, heta) + \lambda R(heta))$$

• E.g. Ridge regression

$$\hat{w} \in \argmin_{w \in W} ||y - Xw||_2^2 + \lambda ||w||_2^2$$

- Note: regulariser $R(\theta)$ doesn't depend on data
- ullet Use held-out validation / cross validation to choose λ

Regulariser as a constraint

Modified problem:

o minimise $||y-Xw||_2^2$ subject to $||w||_2^2 \le \lambda$ for $\lambda>0$ Solution to linear regression Contour lines of objective function Ridge regression ($||w||_2^2$) Lasso ($||w||_1$)

- $\circ w^*$ is the solution
- o Lasso encourages solution to sit on the axes
 - Some of the weights are set to zero ⇒ solution is sparse

Closed form solutions

1. Linear regression

$$(X'X)^{-1}X'y$$

2. Ridge regression

$$(X'X + \lambda I)^{-1}X'y$$

- 3. Lasso
 - No closed-form solution, but solutions are sparse and suitable for high-dim data

Bias-variance trade-off

- Model complexity is a major factor that influences the ability of the model to generalise
- Bias-variance decomposition
 - \circ Risk / test error = $Bias^2 + Variance + IrreducibleError(noise)$

$$E[l(Y,\hat{f}(X_0))] = E[(Y-\hat{f})^2] = (E[Y]-E[\hat{f}])^2 + Var[\hat{f}] + Var[Y]$$

· Squared loss for supervised-regression

$$l(Y, f(\hat{X}_0)) = (Y - \hat{f}(X_0))^2$$

- Simple model ⇒ high bias, low variance
- Complex model ⇒ low bias, high variance

Lecture 6: Perceptron

Artificial Neural Network (RNN, CNN, MLP)

- A network of processing elements
 - Each element converts inputs to output
 - o Output: a (activation) function of a weighted sum of inputs (linear combination)
- To use ANN, we need
 - To design network topology
 - Adjust weights to given data

 Training an ANN ⇒ adjusting weights for training data given a pre-defined network topology

Perceptron

- · Perceptron is a binary classifier
 - \circ $s = \sum_{i=0}^m x_i w_i$
 - lacksquare Predict class A if s>0
 - lacksquare Predict class B if s<0
- Loss function
 - Usually don't use 0-1 loss for training, since cannot calculate the gradient
 - Shouldn't give penalty for correctly classified examples
 - Penalty (loss) = s
 - \circ Can be re-written as L(s,y) = max(0,-sy)

Stochastic gradient descent (SGD)

- Stochastic = Random: shuffling training examples
- Randomly shuffle / split all training examples in B batches
- Choose initial $\theta^{(1)}$
- For i from 1 to T (epochs)
 - For j from 1 to B (batches)
 - Do gradient descent update using data from batch j
- Advantage: computational feasibility for large datasets

Perceptron training algorithm (SDG with batch size 1)

- ullet Choose initial guess $w^{(0)}$, k=0
- For i from 1 to T (epochs)
 - \circ For j from 1 to N (training examples)

 - $\qquad \qquad \textbf{Consider examples} \ \{\mathbf{x}_j, y_j\} \\ \\ \textbf{Update:} \ w^{(k++)} = w^{(k)} \eta \nabla L(w^{(k)}) \\ \\$
- Training rule (gradient descent)

 - $\begin{array}{l} \circ \quad \text{Correct: We have } \frac{\partial L}{\partial w_i} = 0 \text{ when } sy > 0 \\ \circ \quad \text{Misclassified: We have } \frac{\partial L}{\partial w_i} = -x_i \text{ when y = 1 and } s < 0 \\ \circ \quad \text{Misclassified: We have } \frac{\partial L}{\partial w_i} = x_i \text{ when y = -1 and } s > 0 \\ \end{array}$
 - For sy = 0, we can do either of these (doesn't matter)
- · When classified correctly, weights are unchanged
- When misclassified, update: $\mathbf{w}^{(k+1)} + = -\eta(\pm \mathbf{x})$
 - \circ $\pm x$ is gradient

- Convergence theorem: if the trianing data is linearly separable, the algorithm is guaranteed to converge to a solution. This is, there exist a finite K s.t. $L(\mathbf{w}^K)=0$
- Pros and cons:
 - Pros: if data is linearly separable, the perceptron trianing algorithm will converge to a correct solution
 - o Cons:
 - There are infinitely many possible solutions
 - If the data is not linearly separable, the training will fail completely rather than give some approx. solution