2.Teil: Elektromechanische Energieumformung

1. Aufgabe: Gleichstrommaschine

- 1.1 Mit welchen zwei Maßnahmen kann bei einer Gleichstrommaschine eine Drehrichtungsumkehr erreicht werden? [2 P]
- 1.2 Skizzieren Sie qualitativ die Ankerspannung, den Ankerstrom und die Leistung in Abhängigkeit von der Drehzahl für den Ankerstell- und Feldschwächbereich.[3 P]
- 1.3 Durch welche Ursache kann bei einer Gleichstrommaschine Bürstenfeuer entstehen? [1 P]
- 1.4 Mit welchen Maßnahmen kann die Leerlaufdrehzahl einer fremderregten Gleichstrommaschine erhöht werden? [2 P]

Eine fremderregte Gleichstrommaschine wird mit konstanter Erregung betrieben. Die Gleichstrommaschine hat folgende Daten für den Betrieb im Nennpunkt:

Ankerspannung : $U_{a,N} = 440 \text{ V}$

Ankerstrom : $I_{a,N} = 120 A$

Drehzahl : $n_N = 600 \text{ min}^{-1}$

Ankerwiderstand : $R_a = 0.3 \Omega$

Sättigungserscheinungen im Eisenkreis, Reibungs- und Eisenverluste sowie Verluste durch die Wendepol- oder Kompensationswicklung werden nicht berücksichtigt.

- 1.5 Nehmen Sie vereinfacht an, dass sich die Verluste nur aus den ohm schen Verlusten im Ankerwiderstand $R_{\rm a}$ zusammensetzen. Wie groß ist die elektrische Leistung $P_{\rm el,N}$, der Wirkungsgrad η_N (ohne Erregerverluste) und das Drehmoment $M_{\rm N}$ im Nennpunkt? [3 P]
- 1.6 Wie groß ist bei Betrieb mit Nennerregung und Nennankerspannung die induzierte Spannung U_i im Leerlauffall $(n = n_0)$? [1 P]
- 1.7 Berechnen Sie für den Betrieb mit Nennerregung und Nennankerspannung die Leerlaufdrehzahl n_0 . [3 P]

2. Aufgabe: Vollpol-Synchronmaschine

- 2.1 Warum dürfen Synchronmaschinen nicht im Stillstand ans Netz zugeschaltet werden? Welche Bedingungen müssen für das Zuschalten erfüllt sein? [2 P]
- 2.2 Wie kann bei einer Synchronmaschine die Drehzahl beeinflusst werden? [1 P]
- 2.3 Nennen Sie mindestens zwei Einsatzbereiche bzw. Anwendungsgebiete, für die der Einsatz von Synchronmaschinen besonders vorteilhaft ist und begründen Sie Ihre Antwort.
 [2 P]

Eine langsam laufende, elektrische erregte Vollpol-Synchronmaschine wird als Generator in einem Laufwasserkraftwerk eingesetzt. Sie ist im Stern verschaltet und besitzt im Nennpunkt folgende Daten:

Strangspannung: $U_{S,N} = 10 \text{ kV}$

Strangstrom: $I_{S,N} = 2 \text{ kA}$

Synchrone Reaktanz: $X_d = 2.6 \Omega$

Netzfrequenz: f = 50 Hz

Polpaarzahl: p = 20

Der Strangwiderstand ist klein und kann vernachlässigt werden ($R_s = 0$).

- 2.4 Wie groß sind die Synchrondrehzahl n_0 , die synchrone Winkelgeschwindigkeit Ω_0 und die Scheinleistung S_N im Nennpunkt? [3 P]
- 2.5 Zeichnen Sie das maßstäbliche Zeigerdiagramm für den Generatorbetrieb mit $U_{\rm S} = U_{\rm S,N}$, $I_{\rm S} = 80\%$ von $I_{\rm S,N}$ und $\cos \varphi = 0.7$ (übererregt). Benutzen Sie den Maßstab 1000 V/cm und 500 A/cm. [4 P]
- 2.6 Bestimmen Sie anhand des Zeigerdiagramms die Polradspannung U_p und den Polradwinkel. [2 P]

Die Maschine wird bei Nennerregung mit dem Nennmoment $M_{\rm N}$ = 1200 kNm mechanisch belastet:

2.7 Berechnen Sie für diesen Betriebspunkt die abgegebene mechanische Leistung $P_{\rm mech,N}$. [1 P]