

百度自定位系统说明书

目 录

百月	医自治	定位系统说明书	. 1
1	系统介绍		. 1
		系统结构	
	1.2	系统功能	.2
2	硬件	‡系统	.2
	2.1	硬件模块	.2
	2.2	硬件设备选型	.3
		2.2.1 推荐配置	.3
	2.3	硬件连接方案	.3
	2.4	系统安装说明	.4
3	自気	定位系统使用说明	.5
	3.1	系统参数与数据需求	.5

1 系统介绍

百度自定位系统(Baidu Ego Localization)为百度自主研发的定位系统,提供基于百度高精地图、GNSS等传感器数据的综合定位功能。百度自定位系统根据不同的应用场景可提供定制化的硬件、软件一体化产品,确保成本可控,精度可调。

1.1 系统结构

百度自定位系统结构如图 1.1 所示,其中箭头表示数据流或数据依赖,方框表示相关模块。

图 1.1 百度自定位系统结构

百度自定位系统结构图中相关模块的简单介绍如下:

- 1. 传感器
- a) Camera: 前向摄像头, 摄像头以每秒 15-30 帧的频率实时获取车道线特征, 用于自定位系统的特征匹配:
 - c) GNSS: GNSS 接收器, GNSS 用于提供当前位置的基准定位信息。
 - 2. 高精地图 (HD Map)

百度高精地图模块,提供特定区域范围内的道路信息。

3. 实时定位特征

自定位系统内部计算单元。系统根据 Camera 信息实时定位车道线以及标志

特征,用于自定位特征匹配。

4. 预存储定位特征

自定位系统内部计算单元。自定位系统通过获取 HD Map 模块内对应区域的 道路信息,预存储当前道路的数据特征。

5. 特征匹配

自定位系统内部计算单元。百度自定位系统将 Camera 定位特征以及百度高精地图预存储定位特征进行特征匹配,确定当前车辆在高精地图中的位置信息。

6. 运动补偿

自定位系统内部计算单元。运动补偿模块利用历史帧信息对当前帧信息进行 运动补偿,并调整匹配结果。

7. 定位结果

自定位系统输出定位信息,包括自定位坐标(X, Y, Z)以及当前车辆在百度 高精地图中的编号 ID。

1.2 系统功能

百度自定位系统包括以下定位功能:

1. 全局定位功能

全局定位功能提供车辆中心的经纬度坐标(X,Y,Z)。

2. 车道定位功能

车道定位功能提供车辆当前行驶车道在百度高精地图中的编号 ID。

2 硬件系统

2.1 硬件模块

1. 传感器

传感器包含视觉传感器与位置传感器。视觉传感器包括但不限于车载摄像头、工业相机 CCD 等图像收集传感器。位置传感器包括 GPS、GLONASS、北斗等 GNSS 板卡。

2. 处理器

自定位系统的核心硬件设备。处理器用于处理传感器收集到的数据,并将解析结果与高精地图匹配,进而获取自定位信息并输出。

3.外设

自定位系统进行人机交互所必要的鼠标、键盘、显示器等设备。

4.通信设备

自定位系统存在与云端服务器进行数据交互的需求。因此,系统需要通信设备以连接 Web 网络。

2.2 硬件设备选型

2.2.1 推荐配置

- 1.传感器
- a) 视觉传感器: SEKONIX SF3323
- b) 位置传感器: Ublox M8
- 2.处理器

NVIDIA PX2

3.外设

略

4.通信设备

略

2.3 硬件连接方案

图 2.1 自定位系统硬件连接方案

2.4 系统安装说明

前摄像头安装:位于车身前端,镜头朝向与汽车行驶方向平行,确保视野良好;应与车体固连,尽量避免相机与车体的相对震动。

Ublox M8 安装位置: GNSS 天线上方没有遮挡; 应与车体固连,尽量避免 GNSS 天线与车体的相对震动; 若采用输出行驶车道功能,应安装在车体对称 轴上。

安装位置如下图所示:

图 2.2 自定位系统硬件安装位置

3 自定位系统使用说明

3.1 系统参数与数据需求

自定位系统的参数与数据需求如表 3.1 所示。

表 3.1 自定位系统输入输出

输入

相机参数:

- x 方向焦距, 像素
- y方向焦距,像素
- x方向主点像素
- y方向主点像素

相机相对车身坐标系旋转角

相机相对车身坐标系平移

其他数据:

视觉传感器信息(BGR 格式图像数据,图像宽度、高度)

位置传感器信息

高精地图数据

输出

全局定位: 经纬度位置信息

车道定位: 当前车道在百度高精地图中的编号 ID