

### CONDITIONAL EVENT PROBABILITIES

## Why

How should we modify probabilities, given that we know some aspect of the outcomes (i.e., that some event has occurred).

#### Definition

Let  $\mathbf{P}: \mathcal{P}(\Omega) \to \mathbf{R}$  be a finite probability measure. Let  $A, B \subset \Omega$  and  $\mathbf{P}(B) \neq 0$ . The *conditional probability* of A given B is fraction of the probability of  $A \cap B$  over the probability of B.

## Notation

In a slightly slippery but universally standard notation, we denote the conditional probability of A given B by  $\mathbf{P}(A \mid B)$ . In other words, we define

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)},$$

for all  $A, B \subset \Omega$ , whenever  $P(B) \neq 0$ .

For example, we can express the law of total probability (see Event Probabilities) as

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B \mid A_i),$$

where  $A_1, \ldots, A_n$  partition  $\Omega$  and  $B \subset \Omega$  with  $\mathbf{P}(B) > 0$ .

# Conditional probability measure

Suppose  $B \subset \Omega$  and  $\mathbf{P}(B) > 0$ . Then (i)  $\mathbf{P}(A \mid B) \geq 0$  for all  $A \subset \Omega$ , since  $\mathbf{P}(A \cap B) \geq 0$ . Moreover, (ii)

$$P(\Omega \mid B) = P(\Omega \cap B)/P(B) = P(B)/P(B) = 1$$

Similarly, 
$$\mathbf{P}(\varnothing \mid B) = \mathbf{P}(\varnothing \cap B)/\mathbf{P}(B) = 0/\mathbf{P}(B) = 0.$$

Finally, (iii) if  $A \cap C = \emptyset$ , then

$$\begin{aligned} \mathbf{P}(A \cap C \mid B) &= \mathbf{P}((A \cap C) \cap B)/\mathbf{P}(B) \\ &= \mathbf{P}((A \cap B) \cap (C \cap B)/\mathbf{P}(B) \\ &\stackrel{(a)}{=} (\mathbf{P}(A \cap B) + \mathbf{P}(C \cap B))/\mathbf{P}(B) \\ &= \mathbf{P}(A \cap B)/\mathbf{P}(B) + P(C \cap B)/\mathbf{P}(B) \\ &= \mathbf{P}(A \mid B) + P(C \mid B). \end{aligned}$$

where (a) follows since  $A \cap B$  and  $C \cap B$  are disjoint.

Together, (i)-(iii) mean that  $\mathbf{P}(\cdot \mid B)$  is itself a probability measure on  $\Omega$ . We therefore refer to  $\mathbf{P}(\cdot \mid B)$  as a conditional probability measure.

#### Induced conditional distribution

Therefore, we expect there to also correspond a new distribution on the set of outcomes. For  $P_p$ , define  $q: \Omega \to \mathbb{R}$  by

$$q(\omega) = \begin{cases} \frac{p(\omega)}{\mathbf{P}(B)} & \text{if } \omega \in B\\ 0 & \text{otherwise.} \end{cases}$$

In this case  $P_q(A) = P_p(A \mid B)$ . We call q the conditional distribution induced by conditioning on the event B.

