A Note on Semidefinite Programming Relaxations For Polynomial Optimization Over a Single Sphere

Jiang Hu

BICMR.PKU

Thanks: Bo Jiang, Xin Liu, Zaiwen Wen

2016 Workshop on Stochastic Optimization and Tensor Analysis, Changsha

June 24, 2019

Outline

- Two instances of polynomial optimization problem
- Overview of the existing SDP relaxation
- Deterministic and randomized algorithm for our SDP relaxation
- Numerical experiments

Best rank-1 tensor approximations

• Given tensor $\mathcal{F} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_m}$, find

$$\min_{\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_m}} \|\mathcal{F} - \mathcal{X}\|^2 \quad \text{ s.t. } \quad \text{rank}(\mathcal{X}) = 1,$$

- rank(X) = 1 is equivalent to $X = \lambda \cdot x^1 \otimes \cdots \otimes x^m$.
- The problem is equivalent to

$$\begin{cases} \max_{x^1 \in \mathbb{R}^{n_1}, \dots, x^m \in \mathbb{R}^{n_m}} |F(x^1, \dots, x^m)| \\ \text{s.t.} \quad ||x^1|| = \dots = ||x^m|| = 1, \end{cases}$$

where
$$F(x^1, \dots, x^m) = \sum_{i_1 i_2 \dots i_m} \mathcal{F}_{i_1 i_2 \dots i_m} X_{i_1}^{(1)} X_{i_2}^{(2)} \dots X_{i_m}^{(m)}$$
.

Best rank-1 tensor approximations

- ullet When $\mathcal F$ is symmetric, it always has an optimal symmetric tensor solution.
- Reduces to

$$\max_{\mathbf{x} \in \mathbb{R}^n} |f(\mathbf{x})| \quad \text{s.t.} \quad ||\mathbf{x}|| = 1,$$

where
$$x = x^1 = \cdots = x^m$$
, and $f(x) = F(x, \cdots, x)$.

- $\lambda \cdot x \otimes \cdots \otimes x$ is the best symmetric tensor iff x is a global maximizer and $\lambda = f(x)$.
- Polynomial function optimization problem over a single sphere

Bose-Einstein condensates

Gross-Pitaevskii equation

$$i\hbar \frac{\partial \psi(\mathbf{x},t)}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{x}) + NU_0|\psi(\mathbf{x},t)|^2 - \Omega L_z\right)\psi(\mathbf{x},t),$$

where
$$L_z = xp_y - yp_x = -i\hbar(x\partial_y - y\partial_x)$$
.

Minimization problem

$$\min_{\phi \in \mathcal{S}} E(\phi)$$
,

$$\begin{split} E(\phi) &= \int_{\mathbb{R}^d} \left[\frac{1}{2} |\nabla \phi(\mathbf{x})|^2 + V_d(\mathbf{x}) |\phi(\mathbf{x})|^2 + \frac{\beta_d}{2} |\phi(\mathbf{x})|^4 - \Omega \bar{\phi}(\mathbf{x}) L_z \phi(\mathbf{x}) \right] d\mathbf{x} \\ S &= \left\{ \phi \mid E(\phi) < \infty, \ \int_{\mathbb{R}^d} |\phi(\mathbf{x})|^2 d\mathbf{x} = 1 \right\}. \end{split}$$

Discretized Bose-Einstein condensates

- Sine pseudospectral discretization
- Fourier pseudospectral discretization

$$\min_{X \in \mathbf{C}^N} \mathcal{F}(X) := \frac{1}{2} X^* A X + \alpha \sum_{i=1}^N |X_i|^4, \text{ s.t. } ||X||_F = 1.$$

The first and second-order directional derivatives of $\mathcal{F}(X)$ along a direction $D \in \mathbf{C}^N$ are:

$$\nabla \mathcal{F}(X)[D] = \Re(D^*AX) + 4\alpha \sum_{i=1}^N (X_i^*X_i)\Re(X_i^*D_i),$$

$$\nabla^2 \mathcal{F}(X)[D,D] = D^*AD + \sum_{i=1}^N \left(4\alpha (X_i^*X_i)(D_i^*D_i) + 8\alpha \Re(X_i^*D_i)^2\right).$$

Homogeneous Quadratic and Quartic poly. (HQQS)

Consider

$$\min_{x} f(x) := \frac{1}{2}x^{T}Ax + \frac{\beta}{2}\sum_{i=1}^{n}x_{i}^{4}$$
s.t. $||x||_{2} = 1$,

It is equivalent to

$$\begin{cases} \min_{x} & f(x) = \frac{1}{2}x^{T}Axx^{T}x + \frac{\beta}{2}\sum_{i=1}^{n}x_{i}^{4} \\ \text{s.t.} & ||x||_{2} = 1. \end{cases}$$

ullet Best rank-1 tensor approximation to a 4-order symmetric tensor $\mathcal{F}.$

$$\mathcal{F}_{\pi(i,j,k,l)} = \begin{cases} a_{kl}/4, & i = j = k \neq l, \\ a_{kl}/12, & i = j, i \neq k, i \neq l, k \neq l, \\ (a_{ii} + a_{kk})/12, & i = j \neq k = l, \\ a_{ii}/2 + \beta/4, & i = j = k = l, \\ 0, & \text{others.} \end{cases}$$

Finding Global Optimal Solutions by SDP Relaxation

Nie and Wang consider

$$f_{\mathsf{max}} := \max_{x \in \mathbb{R}^n} \quad f(x) \quad \text{ s.t. } \quad x^{\top} x = 1.$$

• Let m = 2d, $c := \{c_{\alpha}\}$ and $g := \{g_{\alpha}\}$ be the coefficients of the polynomial functions f(x) and $x^{\top}x$ such that

$$f(\mathbf{x}) := \sum_{lpha \in \mathbb{N}_m^n} \mathbf{c}_{lpha} \mathbf{x}^{lpha}, \quad \mathbf{x}^{\mathsf{T}} \mathbf{x} := \sum_{lpha \in \mathbb{N}_m^n} \mathbf{g}_{lpha} \mathbf{x}^{lpha}.$$

• Introducing $[x^d] := [x_1^d, x_1^{d-1}x_2, \cdots, x_1^{d-1}x_n, \cdots, x_n^d]^{\top}$ of length $\binom{n+d-1}{d}$, we obtain a square matrix

$$M := [x^d][x^d]^{\top} = \sum_{\alpha \in \mathcal{N}_n^{\alpha}} A_{\alpha} x^{\alpha},$$

where A_{α} is a symmetric matrix with dimensions $\binom{n+d-1}{d} \times \binom{n+d-1}{d}$.

Finding Global Optimal Solutions by SDP Relaxation

- For each x^{α} , we assign a linear variable y_{α} to replace x^{α} .
- Given $y \in \mathbb{R}^{\mathcal{N}_m^n}$, we define linear functions

$$\langle c,y\rangle = \sum_{\alpha \in \mathbb{N}_m^n} c_\alpha y_\alpha, \quad \langle g,y\rangle := \sum_{\alpha \in \mathbb{N}_m^n} g_\alpha y_\alpha, \quad M_1(y) := \sum_{\alpha \in N_m^n} A_\alpha y_\alpha.$$

Therefore, the optimization is equivalent to

$$\max_{y \in \mathbb{R}^{N_m^n}} \langle c, y \rangle$$
 s.t. $M_1(y) \ge 0$, $\langle g, y \rangle = 1$, $\operatorname{rank}(M_1(y)) = 1$.

Removing the rank-1 constraint yields a SDP relaxation

$$f_{\mathsf{max}}^{\mathsf{sdp}} := \max_{y \in \mathbb{R}^{N_m^n}} \langle c, y \rangle \quad \text{ s.t. } \quad \textit{M}_1(y) \geq 0, \quad \langle g, y \rangle = 1.$$

• Global optimal solution of poly. opt. if $M_1(y)$ is rank one.

Finding Global Optimal Solutions by SDP Relaxation

Jiang, Ma and Zhang consider

$$f_{\mathsf{max}} := \max_{x \in \mathbb{R}^n} \quad f(x) \quad \text{ s.t. } \quad x^\top x = 1.$$

Matricization of symmetric tensor of order 2d

$$\textit{M}_{2}(\mathcal{F})_{\textit{kl}} := \mathcal{F}_{\textit{i}_{1}\cdots\textit{i}_{d}\textit{i}_{d+1}\cdots\textit{i}_{2d}}, 1 \leqslant \textit{i}_{1},\cdots\textit{i}_{d},\textit{i}_{d+1},\cdots\textit{i}_{2d} \leqslant \textit{n},$$

where

$$k = \sum_{j=1}^{d} (i_j - 1)n^{d-j} + 1$$
, and $I = \sum_{j=d+1}^{2d} (i_j - 1)n^{2d-j} + 1$.

Removing the rank-1 constraint yields a SDP relaxation

$$\begin{cases} \max & \langle F, X \rangle \quad \boxed{F = M_2(\mathcal{F})} \\ \text{s.t.} \quad \operatorname{trace}(X) = 1, \quad M_2^{-1}(X) \in S^{n^{2d}}, \\ & X \in S^{n^d \times n^d}, \quad \boxed{\operatorname{rank}(X) = 1 \to X \succeq 0}, \end{cases}$$

Equivalence of The Two SDP Relaxations

Define two sets

$$\Phi := \left\{ Y \in S^{\binom{n+d-1}{d}) \times \binom{n+d-1}{d}} \mid Y = \sum_{\alpha \in \mathcal{N}_m^n} y_\alpha A_\alpha, \ y \in \mathbb{R}^{\binom{n+2d-1}{2d}} \right\},$$

$$\Psi := \left\{ Y \in S^{n^d \times n^d} \mid Y = \sum_{\alpha \in \mathcal{N}_m^n} y_\alpha B_\alpha, \ y \in \mathbb{R}^{\binom{n+2d-1}{2d}} \right\}.$$

• Introduce a map $\tau: \Phi \rightarrow \Psi$:

$$ar{X} = au(X) = \sum_{lpha \in \mathcal{N}_m^n} y_lpha B_lpha (X = \sum_{lpha \in \mathcal{N}_m^n} y_lpha A_lpha \in \Phi).$$

• Key bijective map $\sigma: y \to Y$ as:

$$Y = \tau(M_1(y)) = \tau \left(\sum_{\alpha \in \mathcal{N}_m^n} y_\alpha A_\alpha\right).$$

Equivalence of The Two SDP Relaxations

- Lemma: For any SDP matrix $X \in \Phi$, if $\bar{X} = \tau(X)$, then \bar{X} is positive semidefinite and $\operatorname{rank}(\bar{X}) = \operatorname{rank}(X)$. For any matrix \bar{X} , it holds $\tau^{-1}(\bar{X})$ is semidefinite and $\operatorname{rank}(\bar{X}) = \operatorname{rank}(\tau^{-1}(\bar{X}))$.
- Theorem: Let y and Y be the optimal solutions of NW and JMZ respectively. Then there exists a bijective map σ , such that $\sigma^{-1}(Y)$ and $\sigma(y)$ are the optimal solutions of NW and JMZ respectively.

Quadratic SDP Relaxation

• Let $X = xx^{T}$, the HQQS problem is equivalent to

$$\begin{cases} \min_{X} & \frac{1}{2} \langle A, X \rangle + \frac{\beta}{2} \sum_{i=1}^{n} X_{ii}^{2} \\ \text{s.t.} & \operatorname{tr}(X) = 1, \quad \operatorname{rank}(X) = 1. \end{cases}$$

Remove the rank-one constraint, we obtain

(SDR)
$$\begin{cases} \min_{X} & \frac{1}{2} \langle A, X \rangle + \frac{\beta}{2} \sum_{i=1}^{n} X_{ii}^{2} \\ \text{s.t.} & \operatorname{tr}(X) = 1, \quad X \geq 0. \end{cases}$$

• Let X^* be a solution with $\operatorname{rank}(X^*) = r$. Let $X^* = \sum_{k=1}^r x^k (x^k)^{\mathsf{T}}$

$$\operatorname{tr}(x^k(x^k)^{\top}) = (x^k)^{\top} x^k = \operatorname{tr}(X^*)/r = 1/r, \ \forall \ k = 1, \dots, r.$$

Quadratic SDP Relaxation

Then we compute

$$\hat{x} = \arg\min_{x^k, k=1,...,r} \frac{1}{2} (x^k)^{\top} A x^k + \frac{\beta}{2} \sum_{i=1}^n (x_i^k)^4$$
 and $x^* = \sqrt{r} \hat{x}$.

Obviously $(x^*)^{\mathsf{T}} x^* = r(\hat{x})^{\mathsf{T}} \hat{x} = 1$ which means that x^* is feasible.

• Suppose that A is positive definite. Let X^* be optimal with $\operatorname{rank}(X^*) = r$ and x^* be constructed as above. Then x^* is an approximate solution to the HQQS problem with an approximation ratio $r \le n$, i.e.,

$$\frac{1}{2}(x^*)^{\top}Ax^* + \frac{\beta}{2}\sum_{i=1}^{n}(x_i^*)^4 \le r f_{\min}(HQQS),$$

Randomized SDP Relaxation

• We still consider the SDP relaxation:

$$\begin{cases} \min_{X} & \frac{1}{2} \langle A, X \rangle + \frac{\beta}{2} \sum_{i=1}^{n} X_{ii}^{2} \\ \text{s.t.} & \operatorname{tr}(X) = 1, \quad X \geq 0. \end{cases}$$

• Let X^* be optimal solu. to (SDR) and ξ is a random vector from a Gaussian distribution $\mathcal{N}(0, X^*)$, then $\mathsf{E}[\xi^{\mathsf{T}}\xi] = \mathrm{tr}(X^*) = 1$ and

$$\begin{split} \mathsf{E}\left[f(\xi)\right] &= \mathsf{E}\left[\frac{1}{2}\xi^{\top}A\xi + \frac{\beta}{2}\sum_{i=1}^{n}\xi_{i}^{4}\right] &= \frac{1}{2}\langle A, X^{*}\rangle + \frac{3\beta}{2}\sum_{i=1}^{n}(X_{ii}^{*})^{2} \\ &\leq 3\left(\frac{1}{2}\langle A, X^{*}\rangle + \frac{\beta}{2}\sum_{i=1}^{n}(X_{ii}^{*})^{2}\right) \\ &\leq 3\left(\frac{1}{2}(x^{*})^{\top}Ax^{*} + \frac{\beta}{2}\sum_{i=1}^{n}(X_{ii}^{*})^{4}\right) \\ &= 3f(x^{*}). \end{split}$$

Randomized SDP Relaxation

 Based on the above observations, we are interested in the following event:

$$\left\{ f(\xi) < \alpha \ \mathsf{E}[f(\xi)], \ \xi^{\top} \xi \ge \mathrm{tr}(X^*) \ge 1 \right\}.$$

• Once the above event does occur, we construct $\hat{x} = \xi/||\xi||_2$ and obtain

$$f(\hat{x}) = \frac{1}{2 \|\xi\|_{2}^{2}} \xi^{T} A \xi + \frac{\beta}{2 \|\xi\|_{2}^{4}} \sum_{i=1}^{n} \xi_{i}^{4} \leq \frac{1}{2} \xi^{T} A \xi + \frac{\beta}{2} \sum_{i=1}^{n} \xi_{i}^{4}$$

$$\leq \alpha \left(\frac{1}{2} \langle A, X^{*} \rangle + \frac{3\beta}{2} \sum_{i=1}^{n} (X_{ii}^{*})^{2} \right)$$

$$\leq 3\alpha f(x^{*}).$$

Thus \hat{x} is an approximate solution to problem HQQS with approximation ratio 3α .

Randomized SDP Relaxation

• Lemma: Let $Q \in S_+^{n \times n}$. Suppose $\eta \in \mathbb{R}^n$ is a random vector generated from Gaussian distribution $\mathcal{N}(0, I)$. Then,

$$\operatorname{prob}\left(\eta^{\top} Q \eta < \mathsf{E}[\eta^{\top} Q \eta]\right) \leq 1 - \theta$$

where $\theta := 1/960$.

• Suppose that A is positive definite, X^* is a solution to (SDR) and random variable ξ is drawn from $\mathcal{N}(0,X^*)$. Construct $\hat{x}=\xi/||\xi||_2$, then we have

$$\operatorname{prob}\left(f(\hat{x}) \leq 3\sqrt{2/\theta} \ f_{\min}(HQQS)\right) \geq \theta/2$$

with $\theta := 1/960$.

A Feasible Method for Solving (SDR)

- Suppose that the solution \bar{X} of (SDR) is rank p. Then \bar{X} can be decomposed as $\bar{X} = V^{\top}V$ with $V = [V_1, \cdots, V_n] \in \mathbb{R}^{p \times n}$.
- Consequently, we convert (SDR) into an equivalent problem

$$\label{eq:loss_equation} \begin{array}{ll} \max_{V = [V_1, \cdots, V_n]} & f(V) := & \frac{1}{2} \left\langle A, V^\top V \right\rangle + \frac{\beta}{2} \| \mathrm{diag}(V^\top V) \|_2^2, \\ \mathrm{s.t.} & \| V \|_F = 1, \ i = 1, \cdots, n, \end{array}$$

where diag($V^{T}V$) is the diagonals of $V^{T}V$.

Solve the above problem by a feasible gradient method.

Regularized Newton Method

using the exact Hessian:

$$\begin{split} \tilde{m}^k(X) &:= \nabla \mathcal{F}(X^{(k)})[X - X^{(k)}] + \frac{1}{2} \nabla^2 \mathcal{F}(X^{(k)})[X - X^{(k)}, X - X^{(k)}] \\ &+ \frac{\tau^k}{2} \|X - X^{(k)}\|_F^2, \end{split}$$

- The proximal term: trust region like strategy for ensuring global convergence.
- Compute the regularized Newton step:

min
$$\tilde{m}^k(X)$$

s.t. $||X||_F = I$.

Cartis, Gould, Toint '10, '11, '12 on cubic regularization

Numerical Results

- Example 1: Consider a BEC problem with d=1, $V(x)=\frac{1}{2}x^2$ and $\beta=400$. The problems are discretized by the finite difference scheme on a domain U=(-16,16) with different mesh sizes $h=2,1,\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8}$.
- Example 2: Consider a BEC problem with $d=1, V(x)=\frac{1}{2}x^2+25\sin^2(\frac{\pi x}{4})$ and $\beta=250$. We discretize the problem by the finite difference scheme on a domain U=(-16,16) with different mesh sizes $h=2,1,\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8}$.

Numerical Results: Example 1

h	time		λ	
	NW	JMZ	NW	JMZ
2	5.5782	22.3343	21.3773	21.3773
1	110.7321	1483.9856	21.3592	21.3592
1/2	_	_	_	_
1/4	_	_	_	_
1/6	_	_	_	_
1/8			_	_

Table: Computational results on a 1D BEC problem. "—" means that the computational time is more than 30 minutes.

h	λ		rank (ratio)		
	RN	SDR1	SDR2	SDR1	SDR2
2	21.3773	21.5434	22.5696	5(1.0077)	5(18.3641,4.9596,1.0558)
1	21.3592	21.3896	21.5076	5(1.0014)	5(43.2324,5.9762,1.0069)
1/2	21.3598	21.3858	21.7901	5(1.0012)	5(22.6133,4.8358,1.0201)
1/4	21.3600	21.3886	21.5701	5(1.0013)	5(35.6182,5.8311,1.0098)
1/6	21.3600	21.3952	21.7423	5(1.0016)	5(21.3470,4.6358,1.0179)
1/8	21.3601	21.3786	21.4868	5(1.0009)	5(41.1597,6.3262,1.0059)

Table: Computational results on a 1D BEC problem

Numerical Results: Example 2

h	time		λ	
	NW	JMZ	NW	JMZ
2	5.0423	26.0845	23.8977	23.8976
1/2	_	_	_	_
1/4	_	_	_	_
1/6	/6 — —		_	_
1/8	_	_	_	_

Table: Computational results on a BEC problem. "—" means that the computational time is more than 30 minutes.

h	λ		rank (ratio)		
	RN	SDR1	SDR2	SDR1	SDR2
2	23.8977	24.3978	24.7984	5(1.0209)	5(37.0336,6.0068,1.0377)
1	26.0573	26.0932	27.3979	5(1.0014)	5(10.6342,3.0240,1.0514)
1/2	26.0755	26.0865	26.4186	5(1.0004)	5(21.2076,5.3864,1.0132)
1/4	26.0818	26.1140	26.9123	5(1.0012)	5(50.9194,4.9634,1.0318)
1/6	26.0830	26.1078	26.6175	5(1.0009)	5(16.3740,3.9630,1.0215)
1/8	26.0834	26.1119	27.8197	5(1.0011)	5(35.7704,6.1598,1.0666)

Table: Computational results of on a 1D BEC problem

Many thanks for your attention!