A few remarks regarding written exercise 1

Anders Hørsted – s082382

02433 Hidden Markov Models

May 31th 2012

Quick remarks

• I forgot to put a hat on the parameter estimates. The estimate of Γ should have been denoted $\widehat{\Gamma}$ etc.

Dataset for the exercise

Count data so Poisson seems natural. But $\bar{x}=5.44$ and $s^2=15.40$, so the data is overdispersed. Also the data is serially correlated so a simple Poisson mixture will not work. HMM to the rescue.

Direct maximmization vs EM

Comparing direct maximization (DM) vs EM was the main focus of the exercise

- Similar parameter estimates was obtained
- The likelihood for the EM algorithm was a bit higher as expected
- Relates to the fact that stationarity was assumed for DM but not for EM
- In principle EM solves a harder problem, but δ_0 can be shown to be a unit vector, and m different simpler maximizations can be performed.
- For some initial parameter values the nlm function gave NA values when using the DM method.

Direct maximmization vs EM performance

- In report it is concluded that no significant difference in performance is noticed. This was a qualitative remark.
- In section 4.4 in the course text book the DM method is mentioned to converge faster than EM.
- Let's try to time the performance of the two methods using the system.time function in R.

Comparing performance of Direct Maximization vs EM

Direct maximization

user system elapsed 3.732 0.000 3.740

user system elapsed 28.602 0.136 28.763

user system elapsed 60.595 0.092 60.747

EM algorithm

user system elapsed 3.784 0.008 3.795

user system elapsed 20.326 0.020 20.363

user system elapsed 26.138 0.076 26.234

Conclusion?

- Large difference in performance for 3-state and especially 4-state models.
- EM is seen to perform much better than DM for 4-states.
- Opposite of the remarks in section 4.4 in Zucchini 09

More time left?

If time permits...