2.1.3 Определение C_p/C_v по скорости звука в газе

Цель работы:

- 1. измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу;
- 2. пределение показателя адиабаты с помощью уравнения состояния идеального газа.

В работе используется:

Звуковой генератор ГЗ; электронный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

Теория

Скорость звука в газах:

$$c = \sqrt{\gamma \frac{RT}{\mu}}$$

 γ — показатель адиабаты. Тогда:

$$\gamma = \frac{\mu}{RT}c^2$$

f – частота звука, λ – длина волны, тогда:

$$c = \lambda f$$

Чтобы возникали стоячие волны (резонансы), должно выполняться:

$$L = n\frac{\lambda}{2}$$

Для k-ой гармоники (относительно самого низкой частоты, при которой возникает стоячая волна):

$$f_k = f_1 + \frac{c}{2L} \cdot (k-1)$$

Экспериментальная установка

Важные константы:

Длина камеры во втором эксперименте: (740 ± 1) мм

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчётах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь. Первая установка (Рис. 1) содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 . Вторая установка (Рис. 2) содержит теплоизолированную трубу постоянной длины. Воздух в трубе нагревается водой из термостата. Температура газа принимается равной температуре воды, омывающей трубу. На этой установке измеряется зависимость скорости звука от температуры.

Ход эксперимента

- 1. Дадим осциллографу прогреться.
- 2. Убедимся, что колебания синусоидальной формы с большой амплитудой.
- 3. Продуем трубу. Таблица измерений для разных частот в конце, таблица полученной зависимости $\lambda(f)$

f, kHz	λ / 2, mm	с, м/с	$\sigma_c^{ ext{cuct}}$, м/с
4.02	43.2	347	0.05
5.32	54.6	686 = > 343	0.07
2.69	63.5	341	0.07
1.60	108	345	-

Таблица 1:
$$\sigma_c^{\text{сист}} = c \cdot \sqrt{(\frac{\sigma_f}{f})^2 + (\frac{\sigma_\lambda}{\lambda})^2}$$

σ_{λ} вычисляется по мнк

Оценим системную погрешность нулем а случайную – 6 м/с (по разности максимального и минимального значения). Наилучшее: $\boxed{344}$ м/с.

4. Продуем трубу углекислым газом. Аналогичная таблица:

f, kHz	λ / 2, mm	с, м/с
2.26	66	298
4.10	97	795 => 398

Таблица 2: при каждой частоте только 2 точки, поэтому расчитать погрешность не представляется возможным

Оценим системную погрешность нулем а случайную – $50~{\rm m/c}$ (по полуразности максимального и минимального значения). Наилучшее: $348~{\rm m/c}$.

5. Перейдём на вторую установку. Таблица для постоянной длины:

t, C	с, м/с
23.7	406
30.1	345
40.1	351
50.1	354

Таблица 3: $\sigma_c^{\text{сист}} = c \cdot \frac{\sigma_{\lambda}}{\lambda}$

σ_{λ} вычисляется по мнк

Аналогично оценим системную погрешность нулём, случайную – 9 м/c, лучшее значение: 350 м/c (первую точку откинули).

Вывод

Воьзмём среднее между полученными скоростями звука в воздухе $\gamma_{\text{воздуха}} = \frac{\mu_{air}}{RT} c_{air}^2 = \boxed{1.40}$ – сходиться с табличными значениями.

 $\gamma_{CO_2} = \frac{\mu_{CO_2}}{RT} c_{CO_2}^2 = 2.13$ — сильно отличается от табличных значений. Наибольшее влияние оказала слуачайная погрешность в измерении скорости звука.

Установки

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

Рис. 2: Установка для изучения зависимости скорости звука от температуры