TE1 AA09/10 (Teoria delle Eq												
COGNOME	esercizi acco ETTANO R	mpagi ISPOS	STE	o le ri SCRI	TTE	te con	spies LTR .	gazioi I <i>FO</i> (ni chi <i>GLI.</i> ,	are ed es Scrivere	ssenziali. Inserire le risposte r il proprio nome anche nell'ult	iegl
	FIRMA	1	2	3	4	5	6	7	8	TOT.		
1. Rispondere alle sequenti de		endo u	ına g	iustifi	icazio	ne di	una	riga:		I		
a. È vero che se un camp	o contiene u	n elen	nento	trase	$\operatorname{cend}\epsilon$	ente a	llora	ne co	ntien	e infiniti	?	
b. È vero che ogni campo	o finito con q	$y = 3^k$	elem	enti è	ison	norfo	al qu	ozien	te di	un oppo	rtuno anello di polinomi?	
c. É vero che ogni grupp	o abeliano fi	nito è	il gru	uppo	di Ga	alois s	su Q	di un	sotte	ocampo	di un campo ciclotomico?	

d. Dare un esempio di un polinomio a coefficienti razionali di grado 4 avente gruppo di Galois con 4 elementi e non ciclico.

2. Dimostrara cho sa F/F à un estansione algebrica a egni polinomia in $F[Y]$ si decompone completamente in $F[Y]$ allors	F
2. Dimostrare che se E/F è un estensione algebrica e ogni polinomio in $F[X]$ si decompone completamente in $E[X]$, allora è algebricamente chiuso.	Ľ
3. Dopo aver definito la nozione di numero reale costruibile, dimostrare che il campo di spezzamento del polinomio X^4-16X^2 - contiene solo numeri costruibili.	+4

. Determinare gruppo di Galois e campo di spezzamento del polinomio $f(X) = (x^2 - 3)(x^2 + 7)(x^{21} - 1) \in \mathbf{Q}[X]$.	
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in $\mathbb{Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in $\mathbf{Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	${ m ante}$
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${f Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimini è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in $\mathbf{Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimini è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimini è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimina è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimini è un quadrato perfetto.	ante
. Dimostrare che il gruppo di Galois di un polinomio irriducibile di grado 3 in ${\bf Q}[X]$ è ciclico se e solo se il suo discrimini è un quadrato perfetto.	ante

6. Si enunci e dimostri il Lemma di Artin.
7. Determinare il reticolo dei sottocampi del campo di spezzamento del polinomio $(X^{2^{12}} - X^{2^4})(X^{24} + X^{16} + 1)(X^5 + X^2 + X + 5) \in \mathbf{F}_2[X]$.
8. Calcolare il polinomio minimo di $\sqrt{1 + \cos(6\pi/7)}$.