Department of Computer Science & Engineering

University of Asia Pacific (UAP)

Program: B.Sc. in Computer Science and Engineering

Fall 2020

Final Examination

2nd Year 2nd Semester

Cou	rse Code: CSE 209	Course Title: Digital Logic & System Design	Credits: 4	
Full	Marks: 120* (Written)		Duration: 2 Hours	
 * Total Marks of Final Examination: 150 (Written: 120 + Viva: 30) Instructions: There are Four (4) Questions. Answer all of them. All questions are of equal value. Part marks are shown in the margins. Non-programmable calculators are allowed. 				
b) Desig(i) Out(ii) X vc) Draw	n a logic circuit that follo put X will be logical equi vill remain HIGH when B the block diagram of 4	\sum (0, 1, 2, 5, 7, 9, 10, 12, 13, 14, 15) ws the following requirements: valent to (A AND D) when B and C are different		10 10 10
OR				
b) Desig	n MOD 12 Johnson count n a BCD adder using IC	74293(Counter). Using this implement MOD 70 ter using JK flip-flop and describe its operation. # 7483 (4-bit parallel adder) and NAND gate.		10 10 10
SAP-1 b) Write c) How r d) Create	Computer? down the instruction set a nany operations are possi	and the corresponding op-code of SAP-1 Computed in SAP-1 computer? Explain your answer. Lage program and then generate the machine copers are in decimal form.	iter.	5 5

- 3. a) Design a synchronous counter using J-K FFs that has the following sequence: 000, 010, 100, 110, 111 and repeat. The undesired (unused) states 001, 011 and 101 must always go to 000 on the next clock pulse.
 - b) i) What are the values of J and K so that the J-K flip-flop can operate as a toggle FF (changes states on each clock pulse)? Then apply a 10-kHz clock signal to its CLK input and determine the frequency of the waveform at Q (output of J-K flip-flop).

20

05

12

- ii) Connect Q from this FF to the CLK input of a second J-K FF that also has same value of J and K of the first FF. Determine the frequency of the signal at this FF's output.
- c) Consider a counter circuit that contains five FFs wired in the arrangement Q_4 , Q_3 , Q_2 , Q_1 , Q_0 .
 - i) Determine the counter's MOD number.
 - ii) Determine the output frequency in Hz when the input clock frequency is 10-kHz.
 - iii) What is the range of counting states for this counter?
 - iv) Assume a starting state (count) of 01011. What will be the counter's state after 243 pulses?
- 4. a) Implement the function $F(A, B, C, D) = \sum (0, 1, 2, 5, 7, 8, 10, 12, 14, 15)$ using only one IC# 74151(Multiplexer). You can use other universal logic gate, if necessary.
 - **b**) Show how IC# 74151 can be used to generate the logic function $y = AC^+ + A^B + B^C$.
 - c) In the figure below, the signal Sub and some XOR gates alter the 4-bit parallel adder (IC # 10 7483) inputs.
 - i) Describe the operation of the circuit when Sub = 1.
 - ii) Describe the operation of the circuit when Sub = 0.

