Postnikov System

概要

Griffiths-Morgan の教科書の Postnikov System の構成がちゃんと条件を満たすことを示せなかった。主に f_n の引き起こすホモトピー群の準同型の記述に困難性があった。前回終盤の議論により, $K(\pi,n)$ を codomain にもつホモトピー集合 $[X,K(\pi,n+1)]$ と,X 上の principal $K(\pi,n)$ ファイブレーション(with a section)の同値類の対応,および同一視 $K(\pi_n(X),n)=\pi_n(X)$ の扱いに気を付けながら丁寧に構成を追う必要があると思われた。

これを解決するために、別の文献(G.W.Whitehead)での Postnikov System の構成を見て、Eilenberg-MacLane 空間の扱いを学ぶとともに、Griffiths-Morgan で直面した f_{n*} を記述する手法を模索する.

目次

0	ホモトピーファイバー列	1
1	Postnikov System の構成	3
1.1	G. W. Whitehead の教科書の構成	3

0 ホモトピーファイバー列

空間対やファイブレーションに対してホモトピー完全列が構成された(河澄等を参照). ここでは記号の準備もかねて任意の連続写像に対して fibrant replacement を用いて,ファイブレーションに対するものと類似のホモトピー完全列を構成する.

■ファイブレーションに対するホモトピー完全列 $F\to E\to B$ を基点付きファイブレーション とする. このとき, $k\geq 1$ に対して $p_*\colon \pi_k(E,F)\to \pi_k(B)$ が同型になるのだった. よって, 対 (E,F) のホモトピー完全列(下図上段)により, ファイブレーション p のホモトピー完全列(下図 下段)を得る.

CCC, Δ_* if $\partial_* \circ (p_*)^{-1}$ resolution.

■fibrant replacement 基点付き連続写像のホモトピーファイバー列を、ファイブレーションのホモトピー完全列を利用して作る。そのために、連続写像をファイブレーションに置き換える。

定理 0.1 (fibrant replacement). $f:(X,x_0)\to (Y,y_0)$ を基点付き連続写像とする. また,

$$E_f := \{(x, \gamma) \in X \times Y^I \mid f(x) = \gamma(0)\}$$

$$p_f \colon E_f \to Y, \ (x, \gamma) \mapsto \gamma(1)$$

$$r_f \colon E_f \to X, \ (x, \gamma) \mapsto x$$

$$F_f := p_f^{-1}(y_0)$$

とおく. また i_f を包含 $F_f \to E_f$, π_f を合成 $r \circ i_f$ とおく.

このとき $p_f: (E_f, (x_0, c_{y_0})) \to (Y, y_0)$ は基点付きファイブレーションで下の図式(特に下の三角形)はホモトピー可換である.

Proof. 略. 玉木大のファイバー束とホモトピーを参照.

補題 0.2. $f\colon X\to Y$ を基点付き連続写像とする. Y の path fibration を f で引き戻したものを $\pi_f'\colon F_f'\to X$ とおく (左下図式). このとき,右下の図式が可換になるような同相写像 $\varphi\colon F_f\to F_f'$ がある.

$$F'_{f} \longrightarrow P(Y, y_{0}) \qquad F_{f} \xrightarrow{\varphi} F'_{f}$$

$$\pi'_{f} \downarrow \qquad \qquad \downarrow^{\text{ev}_{1}} \qquad \pi_{f} \downarrow \qquad \downarrow^{\pi'_{f}}$$

$$X \xrightarrow{f} Y \qquad X = == X$$

特に、 π_f はファイブレーションであり、 π_f と π_f' は X 上で同型である.

Proof. 略. F_f と F_f' を具体的に書き下せば φ をどう作ればよいかわかる.

■連続写像のホモトピー完全列

定理 0.3 (ホモトピーファイバー列). $f:(X,x_0)\to (Y,y_0)$ を基点付き連続写像とし, $F:=\pi_f^{-1}(x_0)$ (π_f は前段落のもの)とおき,F の F_f への包含を f とおく.f の fibrant replacement f のホモトピー完全列と f のホモトピー完全列を組み合わせて下の図式を得る.

$$\longrightarrow \pi_{k+1}(Y) \xrightarrow{\Delta_*} \pi_k(F_f) \xrightarrow{(i_f)_*} \pi_k(E_f) \xrightarrow{(p_f)_*} \pi_k(Y) \xrightarrow{\Delta_*} \pi_{k-1}(F_f) \longrightarrow$$

$$\parallel \qquad \qquad \cong \downarrow^{r_*} \qquad \qquad \parallel \qquad \qquad \parallel$$

$$\longrightarrow \pi_k(F) \xrightarrow{(j_f)_*} \pi_k(F_f) \xrightarrow{(\pi_f)_*} \pi_k(X) \xrightarrow{\Delta_*} \pi_{k-1}(F) \xrightarrow{(j_f)_*} \pi_{k-1}(F_f) \longrightarrow$$

上の図式の台形の部分以外は、連続写像のレベルでのホモトピー可換図式から引き起こされるので 可換である.よって、完全列

$$\longrightarrow \pi_{k+1}(Y) \xrightarrow{\Delta_*} \pi_k(F_f) \xrightarrow{(\pi_f)_*} \pi_k(X) \xrightarrow{f_*} \pi_k(Y) \xrightarrow{\Delta_*} \pi_{k-1}(F_f) \longrightarrow$$

を得る. これを f のホモトピファイバー列という.

1 Postnikov System の構成

1.1 G. W. Whitehead の教科書の構成

Griffiths-Morgan の教科書にある構成で本当に Postnikov Syaytem の条件を満たすものが作れているかチェックしきれなかった。とくに f_n の引き起こすホモトピー群の同型の部分が示せなかった。

そこでまず、G. W. Whitehead の教科書にある Postnikov system の構成を詳しく調べる. これは Griffiths-Morgan にあるものとは手順が少しだけ違う. まず、与えられた空間 X に対し、 $K(\pi_n(X),n)$ -fibration のタワーを先に作り、そのあと fibration の section に対する障害理論を使わずに各 $f_n: X \to X_n$ を構成するという手を取っている. この構成と Griffiths-Morgan の教科書の構成に類似点を見つけ、Griffiths-Morgan の教科書の構成の方を理解しようとしてみる.

■n-connective fibration X を弧状連結空間とする.このとき, $\pi_{n+1}(X)$ の生成元に沿って X に (n+2)-cell を接着することで新たな空間 X' で $\pi_{n+1}(X')=0$ なるものが作れる.これを繰り返すことで (n+1)-連結な相対 CW 複体 (X^*,X) であって $\pi_i(X^*)=0$ for $i\geq n+1$ を満たすものが作れる.

$$\longrightarrow \pi_{k+1}(X^*) \longrightarrow \pi_{k+1}(X^*, X) \longrightarrow \pi_k(X) \longrightarrow \pi_k(X^*) \longrightarrow \pi_k(X^*, X) \longrightarrow \pi_k(X) \longrightarrow \pi_k($$

さらに、包含 $i\colon X\hookrightarrow X^*$ に対し $X_n:=F_i$ 、 $p_n:=\pi_i$ とおく.記号は fibrant replacement の定義で使われているものに準ずる.i のファイバーホモトピー列より,ファイブレーション p_n は次を満たす.

$$\longrightarrow \pi_{k+1}(X^*) \xrightarrow{\Delta_*} \pi_k(X_n) \xrightarrow{p_{n*}} \pi_k(X) \longrightarrow \pi_k(X^*) \longrightarrow$$

- $\pi_k(X^*) = \pi_{k+1}(X^*) = 0$ for $k \ge n+1$ ゆえ p_{n*} は $k \ge n+1$ で同型.
- X^* は n+1 次元以下のセルを持たないので、包含準同型 $\pi_k(X) \to \pi_k(X^*)$ は $k \le n$ で同型,k=n+1 で全射.よって X_n は n-連結である.

以上をまとめると,次を得る.

定理 1.1 (n-connective fibration の存在). X を弧状連結空間とする. このとき, 任意の n>0 に対し, ファイブレーション $p_n\colon X_n\to X$ で次を満たすものが存在する.

- $p_{n*}: \pi_k(X_n) \to \pi_k(X)$ は $k \ge n+1$ で同型.
- *X_n* は *n*-連結.

定理の条件を満たすファイブレーションを n-connective fibration と呼ぶ. また, $\pi_i(Y) = 0$ ($i \le n$) を満たす空間 Y を n-anticonnected space と呼ぶ. X を含む空間 X^* が n-anticonnected で (X^*,X) が n-connected なら X^* を X の n-anticonnected extension と呼ぶ. さらに加えて (X^*,X) が相対 CW-複体で, X^* が n 次元以下のセルを持たないとき, X^* は X の regular n-anticonnected extension と呼ぶ.

とくに、上の定理の X_n を構成するときに使った X^* は、X の regular (n+1)-anticonnected extension である.

以下いくつかの命題を用いて、1.1 で構成された n-connective fibration のホモトピー一意性を示す.

定理 1.2 (連続写像をその anticonnected extension に延ばすための十分条件と延長のホモトピー一意性). X^* (resp. Y^*) をそれぞれ X (resp. Y) の regular m (resp. n)-anticonnected extension とし, $f: X \to Y$ を連続写像とする.このとき次が成立する.

- (1) m < n ならば、f は $\tilde{f}: X^* \to Y^*$ に延びる.
- (2) $m \le n+1$ ならば、2 つの延長 $g, g': X^* \to Y^*$ はホモトピック (rel. X) である.
- Proof. (1) X^* は n 次元以下のセルを持たないので,f は n-skeleton $(X^*)^{(n)} = X$ に延びる.f を $(X^*)^{(k)} \to Y^*$ に延長する障害類は $H^{k+1}(X^*,X;\pi_k(Y^*)) = 0$ に属する $(k \ge n)$.よって f は X^* に延長する.
- (2) g, g' を f の延長とする.これらは $(X^*)^{(n)}$ 上で f に一致する. $k \le n+1$ とする.g, g' のホモトピー (rel. X) を $X^{(k)}$ に延ばすための障害類は $H^k(X^*, X; \pi_k(Y^*)) = 0$ に属するので,g, g' はホモトピック (rel. X) である.

系 1.3 (anticonnected extension の一意性). X^*, X'^* をともに X の regular n-anticonnected extension とする. このとき, (X^*, X) と (X'^*, X) はホモトピー同値である.

Proof. 定理で m=n としたものより、X 上の恒等写像は $f:(X^*,X) \to (X'^*,X)$ 、 $g:(X'^*,X) \to (X^*,X)$ に延びる。合成 $f\circ g$ 、 $g\circ f$ はともに X 上の恒等写像の延長だから、定理よりこれらは恒等写像にホモトピック $({\rm rel.}\ X)$ である。よって対のホモトピー同値 $(X^*,X)\simeq (X'^*,X)$ を得る。

系 1.4 (1.1 で構成された n-connective fibration の一意性). X^*, X'^* を, X の regular (n+1)-connected extension とする. $p: \tilde{X} \to X, \ p': \tilde{X'} \to X$ をそれぞれ定理 1.1 で構成した n-connective fibration とする*1. このとき, p, p' はファイバーホモトピー同値である.

 $Proof.\ f\colon (X^*,X)\to (X'^*,X),\ g\colon (X'^*,X)\to (X^*,X)$ をそれぞれ id_X の延長とする. f_* を f が誘導する pointed path space*2上の射 $PX^*\to PX'^*$ とすると pullback の普遍性より $f_1\colon \tilde{X}\to \tilde{X'}$ が伸びる.

同様にして $g_1: \tilde{X'} \to \tilde{X}$ を得る. $H: X^* \times I \to X^*$ を id_{X^*} と $g \circ f$ のホモトピー (rel. X) とすると, $H_1((x,\gamma),t):=(x,H(\gamma(-),t))$ によりホモトピー $H_1: \tilde{X} \times I \to \tilde{X}$ が定まる.これは $\mathrm{id}_{\tilde{X}}$ と $g_1 \circ f_1$ の,X 上のホモトピーである.同様に, $\mathrm{id}_{\tilde{X'}}$ と $f_1 \circ g_1$ の X 上のホモトピーもあるの

^{*1} つまり, p は X^* の path fibration の inclusion による引き戻しである.

 $^{*^2}$ X^* と X'^* の基点は共通の部分集合 X の点を取ることにする.

で、 $p \ge p'$ はファイバーホモトピー同値である.