

مقدمة في تعلم الآلة

تعلم الآلة (Machine Learning) تعلم الآلة

هو عملية تعليم الآلة إنجاز مهمة معينة دون كتابة كود صريح أو أوامر صريحة لتنفيذ هذا الأمر، ويمكن التعبير عنه بأنه جزء الذكاء الاصطناعي الذي يحتوي على احصائيات.

• أثناء عملية تعليم الآلة نقوم بإنشاء مايسمى بالنموذج (Model) الذي نقوم بتزويده بمجموعة البيانات و الخوارزمية - المناسطة المناسطة المناسطة المناسطة المناسطة على المناسطة المناططة المناطط المناطط المناطط المناططة المناططة المناططة المناططة المناططة المناططة المناطط المناطط المناططة المناططة المناطط ال

(algorithm) للتعلم من البيانات.

Artifical Machine Intelligence Learning Statistics

تعلم الآلة (Machine Learning) تعلم الآلة

- نقوم باستعمال البيانات لتعلم بناء دالة تكون قادرة على التنبؤ بنتيجة البيانات الجديدة على سبيل المثال لنقل أننا نريد بناء دالة تقوم
 بتحدید هل الصورة تحتوی علی قطة أم لا؟
 - في البداية سوف نقوم بإنشاء بيانات تحتوي صور للقطط وصور لاتحتوي ذلك .
 - ثم نقوم بتطبيق خوارزميات تعلم الآلة على مجموعة البيانات.
 - تقوم هذه الخوارزميات بتعلم الدالة التي تتنبأ بالصور هل الصورة تحتوى على قطة أم لا؟

أنواع البيانات

خوارزميات تعلم الآلة (Machine Learning Algorithms) خوارزميات

Supervised Learning

Labeled Data
Direct Feedback
Classification and Regression

Semi-supervised Learning

Labeled and Unlabeled Data Some Feedback Classification and Regression

Unsupervised Learning

Unlabeled Data
No Feedback
Clustering & Dimensionality Reduction

Reinforcement Learning

Reward Based Learning
Direct Feedback
Learn series of actions

خوارزميات تعلم الآلة (Machine Learning Algorithms) خوارزميات

(Supervised Learning) النوع الأول

يشير هذا النوع إلى العملية التي تتعلم فيها الآلات من مجموعات البيانات المصنفة أو المعروفة (labeled data) وتنتج نموذجًا دقيقًا قادرًا على التنبؤ بملصقات البيانات غير المرئية.

مثال: عندما نقوم بتدریب الآلة علی تصنیف البرید إلی برید مرزعج (spam) خلال هذه العملیة مرزعج (spam) خلال هذه العملیة تتعلم فیها الآلة من مجموعة من البیانات المصنفة إلی برید مزعج و غیر مزعج بهدف إنشاء نموذج (Model) قادر علی تصنیف أي برید جدید إلی برید مزعج وغیر مزعج.

خوارزمیات تعلم الآلة (Machine Learning Algorithms) خوارزمیات

عادة ما تكون الخوارزميات المستخدمة في هذا النوع مصنفة لنوعين:

خوارزمیات التصنیف (classification) مثل SVMs

خوارزميات الانحدار (Regression) مثل الانحدار الخطى (Linear Regression).

خوارزميات تعلم الآلة (Machine Learning Algorithms) خوارزميات

النوع الثاني (Unsupervised Learning)

يشير هذا النوع إلى العملية التي تتعلم فيها الآلات من مجموعات البيانات غير المصنفة بناءً على التشابه بين مجموعة البيانات. مثال: عندما نقوم بتدريب الآلة على تصنيف الفواكه، في هذه الحالة لا نخبر الآلة عن اسم الفاكهة، إذا كيف تقوم الآلة بالتصنيف؟ تقوم الآلة بالتصنيف بناء على خصائص الفواكهه مثلا: اللون والحجم والشكل فمثلا: إذا كان اللون أحمر يتم تصنيف الفاكهة إلى تفاح وهكذا. ومن أشهر الخوازميات على هذا النوع: خوارزمية k-Means.

خوارزمیات تعلم الآلة (Machine Learning Algorithms) خوارزمیات

النوع الثالث (Semi-Supervised Learning)

هذا النوع من التعلم نحتاجه بالغالب عندما يكون لدينا مجموعات البيانات الكبيرة ولكن عدد قليل من هذه البيانات قد تم تصنيفة، لذا تقوم الآلة بالتعلم من كلا النوعين البيانات المصنفة والغير مصنفة.

(Reinforcement Learning) النوع الرابع

يشير هذا النوع إلى العملية التي تتعلم فيها الآلات اتخاذ قرارات (actions) بناءً على البيئة الخارجية ثم مكافأة الآلة حتى نصل لتحقيق أقصى قدر من هدف معين.

مثال: بناء الرجل الآلي.

خوارزميات تعلم الآلة (Machine Learning Algorithms) خوارزميات

مراحل بناء نماذج تعلم الآلة (Machine Learning Models)

خوارزميات التصنيف (Classification Algorithms) خوارزميات

خوارزميات التصنيف (Classification Algorithms) خوارزميات

أمثلة على تطبيقات خوارزميات التصنيف

- (Credit/loan approval) عملیات
- (if a tumor is cancerous or benign) التشخيص الطبي
- (Fraud detection: if a transaction is fraudulent) كشف الاحتيال
- (Web page categorization: which category it is) تصنیف صفحات الویب

- Node في البداية تُسمى (Root).
- Decision Node تُسمى (Internal Node).
 - Sub-Tree يُسمى (Branch).

X	Y	Z	Class
1	1	1	Sick
1	1	0	Sick
	0	1	Healthy
1	0	0	Healthy

مقاييس السمات (Attribute Selection Measures)

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i),$$

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo_{\Delta}(D)}.$$

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2,$$

• النوع الأول: Information Gain • entropy يسمى Info(D)

• النوع الثاني: Gain Ratio

• النوع الثالث: Gini Index

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID	age	income	student	credit_rating	Class: buys_con	nputer							
1	youth	high	no	fair	no								
2	youth	high	no	excellent	no					ge?			
3	$middle_aged$	high	no	fair	yes								
4	senior	medium	no	fair	yes								
5	senior	low	yes	fair	yes			yo	uth	middle_aged	senior		
6	senior	low	yes	excellent	no								
7	$middle_aged$	low	yes	excellent	yes	income	student	credit_rating	class	income	student	credit_rating	class
8	youth	medium	no	fair	no	high	no	fair	no	medium	no	fair	yes
9	youth	low	yes	fair	yes	high medium	no no	excellent fair	no no	low low	yes yes	fair excellent	yes no
10	senior	medium	yes	fair	yes	low	yes	fair	yes	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes	medium	yes	excellent	yes	medium	no	excellent	no
12	middle_aged	medium	no	excellent	yes			income	student	credit_rating	class]	
13	middle_aged	high	yes	fair	yes			high	no	fair	yes		
14	senior	medium	no	excellent	no			low medium high	yes no yes	excellent excellent fair	yes yes yes		

Class-Labeled Training Tuples from the AllElectronics Custom

						0 (0) = (=
RID	age	income	student	credit_rating	Class:	$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right)$
1	youth	high	no	fair	no	14 14 14 14 14 14 14 14
2	youth	high	no	excellent	no	5 / 2 2 2
3	$middle_aged$	high	no	fair	yes	$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \right)$
4	senior	medium	no	fair	yes	$14 \left(\begin{array}{c} 5 \\ 5 \\ 5 \end{array} \right) = 5$
5	senior	low	yes	fair	yes	`
6	senior	low	yes	excellent	no	$+\frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4}\right)$
7	$middle_aged$	low	yes	excellent	yes	$14 4^{1052} 4$
8	youth	medium	no	fair	no	F / 2 2
9	youth	low	yes	fair	yes	$+\frac{5}{14}\times\left(-\frac{3}{5}\log_2\frac{3}{5}\right)$
10	senior	medium	yes	fair	yes	$14 \boxed{5}^{1082} 5$
11	youth	medium	yes	excellent	yes	0.0011:4-
12	$middle_aged$	medium	no	excellent	yes	= 0.694 bits.
13	$middle_aged$	high	yes	fair	yes	$Gain(age) = Info(D) - Info_{age}(D) =$
14	senior	medium	no	excellent	no	
						0.040 0.604 -

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bi}$$

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right)$$

$$+ \frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4}\right)$$

$$+ \frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$

$$= 0.694 \text{ bits.}$$

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 \text{ bi}$$

$$0.940 - 0.694 = 0.246$$
 bits.

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID	age	income	student	credit_rating	Class: buys_computer	
1	youth	high	no	fair	no	
2	youth	high	no	excellent	no	
3	$middle_aged$	high	no	fair	yes	$C_{cin}(incoma) = 0.020 \text{ hits}$
4	senior	medium	no	fair	yes	Gain(income) = 0.029 bits,
5	senior	low	yes	fair	yes	
6	senior	low	yes	excellent	no	Gain(student) = 0.151 bits,
7	$middle_aged$	low	yes	excellent	yes	
8	youth	medium	no	fair	no	$Gain(credit_rating) = 0.048$ bits.
9	youth	low	yes	fair	yes	Guille (Credit - 1010) - 0.010 010.
10	senior	medium	yes	fair	yes	
11	youth	medium	yes	excellent	yes	
12	$middle_aged$	medium	no	excellent	yes	
13	$middle_aged$	high	yes	fair	yes	
14	senior	medium	no	excellent	no	

خوارزمیات التصنیف (Decision Tree) خوارزمیات التصنیف Example Step (1): Learning

Example Step (2): Classification

أمثلة لتطبيقات خوازمية Decision Tree

مجال الرعاية الصحية

• يتم استخدام Decision Tree للتنبؤ بأمراض معينة.

التسويق

• لتحسين دقة الحملات الترويجية عن طريق مقارنة الاداء والمنتجات مع الشركات المنافسة.

إدارة الأعمال

• استخراج البيانات من قواعد البيانات واستخدامها في تطبيقات إدارة الأعمال.

إدارة العملاء

• لقياس العلاقة بين احتياجات العملاء وتفضيلاتهم، أيضا في قياس رضا العملاء في التسوق الإلكتروني.

تقييم نماذج التصنيف (Classification Evaluation Metrics)

Regression	Classification	Recommender System		
 Mean Absolute Error (MAE) Root Mean Squared Error (RMSE) R-Squared and Adjusted R-Squared 	 Recall Precision F1-Score Accuracy Area Under the Curve (AUC) 	 Mean Reciprocal Rank Root Mean Squared Error (RMSE) 		

تقييم نماذج التصنيف (Confusion Matrix)

DIAGNOSIS

False Positive Error is also referred to as the Type I error.

False Negative Error is also referred to as the Type II error.

تقييم نماذج التصنيف (Confusion Matrix)

DIAGNOSIS

•	Diagnosed Sick	Diagnosed Healthy
Sick	True Positive	False Negative
Healthy	False Positive	True Negative

$$F1\ score = 2*rac{Precision*Recall}{Precision+Recall}$$

خوارزميات التصنيف (Random Forest)

Random Forest Classifier

خوارزميات التصنيف (Random Forest)

Resources

- Data Science: The Big Picture [https://app.pluralsight.com/library/courses/data-science-big-picture/table-of-contents].
- Introduction to Data Science [https://link.springer.com/book/
 10.1007/978-3-319-50017-1].
- Data Mining: Concepts and Techniques [https://www.sciencedirect.com/book/9780123814791/data-mining-concepts-and-techniques].
- Deep-learning-nanodegree [https://www.udacity.com/course/deep-learning-nanodegree--nd101].