Fenwick Tree Binary Indexing, Least Significant One-bit

beOI Training

OLYMPIADE BELGE D'INFORMATIQUE BELGISCHE INFORMATICA-OLYMPIADE

July 13, 2016

Table of Contents

Motivation

How it works

Segment Tree vs Fenwick Tree

Motivating Problem

Dynamic Range Sum Query

Well, can't we simply use a Segment Tree?

Yes we can, but the Fenwick Tree datastructure has some cool advantages.

Table of Contents

Motivation

How it works

Segment Tree vs Fenwick Tree

How it works

Let's define rsq(i) as the sum of the elements from 1 up to i

$$rsq(i) = A[1] + A[2] + \cdots + A[i]$$

We can then answer any range sum query by computing

$$rsq(a, b) = rsq(b) - rsq(a-1)$$

We also need a point update function update(k, v) which updates element k to a new value v.

Like segment trees, Fenwick trees address these functions in $\mathcal{O}(\log n)$.

Least Significant One-bit

The **least significant 1-bit** of an integer is the rightmost 1-bit of its **binary representation**.

$$(42)_{10} = (101010)_2$$

 $(1337)_{10} = (10100111001)_2$
 $(2016)_{10} = (11111100000)_2$

Let's define function LSOne(i) as the least significant 1-bit isolated from i

$$LSOne(42) = 000010$$

 $LSOne(1337) = 00000000001$
 $LSOne(2016) = 0000100000$

Binary Indexing

Like in segment trees, each node is responsible for (i.e. stores the sum of) a certain range of elements.

Specifically, node i is responsible for range

$$[i-LSOne(i)+1;i]$$

This range has size LSOne(i).

e.g. LSOne(2016) = 32, thus node 2016 will store sum of range [1985; 2016] which has size 32.

Visualization

Querying

One can observe that

$$rsq(13) = ft[1101] + ft[1100] + ft[1000]$$

= $rsq(13, 13) + rsq(9, 12) + rsq(1, 8)$

So to obtain rsq(i) we need to iteratively strip off LSOne(i) and sum the values stored at the nodes we come accross.

Query Visualization

Query Complexity

The number of iterations is equal to the number of 1-bits in the starting index.

If the starting index n consists of b bits, we need at most b operations to find rsq(n).

$$\mathcal{O}(b) = \mathcal{O}(\log n)$$

LSOne Implementation

There is a binary trick to compute the Least Significant One-bit really fast

$$LSOne(i) = (i \& (-i))$$

Query Implementation

```
int rsq(int i) {
   int sum = 0;
   for(; i > 0; i -= LSOne(i))
      sum += ft[i];
   return sum;
}
```

Updating

When updating index i, we need to update all nodes that are responsible for index i.

Specifically, if we update index i from $v_{\rm old}$ to $v_{\rm new}$, we need to add $v_{\rm new}-v_{\rm old}$ to each node responsible for index i.

Updating

One can prove that if node k is responsible for index i, then node k + LSOne(k) is the smallest node k + LSOne(k) is the smallest

$$38 = (100110)_2$$
$$38 + LSOne(38) = 40 = (101000)_2$$

Updating

i is the smallest node responsible for index i.

Thus, to find all nodes responsible for i, we can simply start from i and iteratively add the Least Significant 1-bit.

```
update (101)_2 = 5

update (110)_2 = 6

update (1000)_2 = 8

update (10000)_2 = 16

:
```

When do we stop? When we arrive at a node outside our initial array.

Update Visualization

Update Complexity

When adding LSOne(i), the least significant bit is shifted at least 1 place to the left.

So, in the worst case, we need to loop through all bits until we get to an index > n.

 $\mathcal{O}(\log n)$

Update Implementation

```
\label{eq:coid_adjust} \begin{array}{ll} \mbox{void adjust(int } k\,, & \mbox{int } v\,) \; \{ \\ & \mbox{for(}; \; k <= n\,; \; k \,+\!\!= \, LSOne(k\,)) \\ & \mbox{ft[}k\,] \; +\!\!= v\,; \\ \} \end{array}
```

Building

To build the Fenwick Tree from the array A, there is no better way than updating each index separately.

$$\mathcal{O}(n \log n)$$

Table of Contents

Motivation

How it works

Segment Tree vs Fenwick Tree

Time Complexity

	Segment Tree	Fenwick Tree
Query	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Update	$\mathcal{O}\left(\log n\right)$	$\mathcal{O}\left(\log n\right)$
Build	$\mathcal{O}\left(n\right)$	$\mathcal{O}(n \log n)$

In general, Fenwick Trees are slightly more efficient because of the fast bit trick and few memory accesses.

Memory Usage

Both use $\mathcal{O}(n)$ memory.

Code

Segment Tree: 40 lines of code

Fenwick Tree: 10 lines of code!

In contest, always use Fenwick if possible!

Applications

Beware: you cannot use Fenwick Trees for any function of your liking.

$$rsq(a, b) = rsq(b) - rsq(a - 1)$$

There is **no** such property for min/max, so Fenwick is not suitable for Dynamic RMQ.