US

Serial No.: 10/538,452

Filed : June 10, 2005 Page : 2 of 9

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

<u>Listing of Claims</u>:

1. (Currently Amended) A compound of formula (I):

$$R^{1} \xrightarrow{N} Het \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{6}} N$$

$$\downarrow N$$

R¹ is independently hydrogen, C₁₋₆ alkyl or C₃₋₆ cycloalkyl;

 R^2 is independently aryl, heteroaryl or a group C_{1-6} alkyl R^9 , $CO(C_{1-6}$ alkyl $)R^9$ or $SO_2(C_{1-6}$ alkyl $)R^9$; where R^9 is aryl or heteroaryl;

or R^4 and R^2 together with the nitrogen atom to which they are attached form a 4 to 7-membered saturated ring optionally containing a carbonyl group, O, S or N atom and optionally substituted by one or more $C_{1.6}$ alkyl, amino, hydroxy, $CO_2C_{1.6}$ alkyl, $COC_{1.6}$ alkyl, halogen, $C_{1.6}$ alkylhydroxy, $CO_2C_{1.6}$ alkylhydroxy, $CO_2C_{1.6}$ alkylhydroxy, $CO_2C_{1.6}$ alkylhydroxy, $CO_2C_{1.6}$ alkylhydrogen, $C_{1.6}$ alkyl or together with the nitrogen atom to which they are attached form a 5- or 6-membered saturated ring optionally containing a further $CO_2C_2C_3$ alkyl COC_3C_3 where COC_3C_3 alkyl COC_3C_3 alkyl, COC_3C_3 are independently hydrogen or CC_3C_3 alkyl, COC_3C_3 alkyl, COC_3C_3 are independently substituted by CC_3C_3 alkyl, CC_3C_3 are independently substituted by CC_3C_3 alkyl, CC_3C_3 are independently substituted by CC_3C_3 alkyl, CC_3C_3 are independently hydrogen or CC_3C_3 alkyl, CC_3C_3 are independently substituted by CC_3C_3 alkyl, CC_3C_3 alkyl, CC_3C_3 alkyl, CC_3C_3 are independently hydrogen or CC_3C_3 alkyl, CC_3C

Het is a heteroaryl ring chosen from pyridine, pyrimidine, pyrazine, pyridazine or triazine and optionally substituted by halogen, amino, hydroxy, cyano, nitro, carboxy, $CONR^{12}R^{13}$, $SO_2NR^{12}R^{13}$, SO_2R^{12} , trifluoromethyl, $NHSO_2R^{12}$, $NHCOR^{12}$, C_{1-6} alkyl, C_{1-6} alkoxy, SR^{12} or $NR^{10}R^{11}$;

Serial No.: 10/538,452

US

Filed : June 10, 2005

Page : 3 of 9

 R^3 is independently hydrogen, C_{1-6} alkyl or C_{3-6} cycloalkyl;

 R^4 is independently hydrogen, C_{1-8} alkyl, C_{3-8} cycloalkyl, aryl C_{1-5} alkyl or heteroaryl C_{1-5} alkyl, the latter three groups being optionally substituted by one or more halogen, amino, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, SR^{12} or $NR^{10}R^{11}$;

R⁵ is independently hydrogen, C₁₋₆ alkyl or C₃₋₆ cycloalkyl;

R⁶ is independently hydrogen, C₁₋₆ alkyl or C₃₋₆ cycloalkyl;

R⁷ is independently hydrogen, C₁₋₆ alkyl or C₃₋₆ cycloalkyl; and

 R^8 is independently hydrogen, aryl, heteroaryl or $C_{1\text{-}6}$ alkyl optionally substituted with one or more aryl, heteroaryl, halogen, amino, hydroxy, carboxy, $CONR^{12}R^{13}$, $SO_2NR^{12}R^{13}$, SO_2R^{12} , $NHSO_2R^{12}$, $NHCOR^{12}$, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}6}$ cycloalkyl, $C_{1\text{-}6}$ alkoxy, SR^{12} or $NR^{10}R^{11}$;

R⁹ is aryl or heteroaryl;

 R^{10} and R^{11} are independently hydrogen, C_{1-6} alkyl or together with the nitrogen atom to which they are attached form a 5- or 6-membered saturated ring optionally containing a further O, S or NR^1 group; and

 $\underline{R^{12}}$ and $\underline{R^{13}}$ are independently hydrogen or $\underline{C_{1-6}}$ alkyl;

or a pharmaceutically acceptable salt thereof.

- 2. (Original) A compound according to claim 1 in which R^1 is hydrogen or C_{1-6} alkyl and R^2 is CH_2R^9 or $CH_2CH_2R^9$ where R^9 is phenyl or a 5- or 6-membered aromatic ring containing one or two heteroatoms and optionally substituted by C_{1-6} alkyl.
 - 3. (Cancelled)
- 4. (Previously Presented) A compound according to claim 1 in which R³ is hydrogen.
- 5. (Previously Presented) A compound according to claim 1 in which R⁴ is hydrogen.

Serial No.: 10/538,452

Filed : June 10, 2005

Page : 4 of 9

6. (Currently Amended) A compound according to claim 1 in which R⁵ is hydrogen or phenyl optionally substituted by C₁₋₆ alkyl or C₁₋₆ alkoxy.

7. (Currently Amended) A compound of formula (I) selected from:

N~1~ [Cyano(2 methoxyphenyl)methyl] N~2~ (2 morpholin 4 ylpyrimidin 4 yl) L leucinamide.

N~1~ [Cyano(2-methoxyphenyl)methyl] N~2~ (2-piperazin-1-ylpyrimidin-4-yl) L-leucinamide,

N [Cyano(2 methoxyphenyl)methyl] N (2 morpholin 4 ylpyrimidin 4 yl) L phenylalaninamide,

N~1~ [Cyano(2-methoxyphenyl)methyl]-3-cyclohexyl-N~2~ (2-morpholin-4-ylpyrimidin-4-yl)-L-alaninamide,

N-[2-(Benzylamino)pyrimidin-4-yl]-N-(cyanomethyl)-L-phenylalaninamide,

 $N-\{2-[Benzyl(methyl)amino] pyrimidin-4-yl\}-N-(cyanomethyl)-L-phenylalanina mide,\\$

N-{2-[4-(4-Chlorophenyl)piperazin-1-yl]pyrimidin-4-yl}-N-(cyanomethyl)-L-phenylalaninamide,

 $N\sim2\sim-[2-(Benzylamino)pyrimidin-4-yl]-N\sim1\sim-(cyanomethyl)-3-cyclohexyl-L-alaninamide,$

 $N\sim2\sim-\{2-[Benzyl(methyl)amino]pyrimidin-4-yl\}-N\sim1\sim-(cyanomethyl)-3-cyclohexyl-L-alaninamide,$

N~2~ {2 [4 (4 Chlorophenyl)piperazin 1 yl]pyrimidin 4 yl} N~1~ (cyanomethyl) 3-cyclohexyl L alaninamide.

N-1- (Cyanomethyl) N-2- (4-morpholin-4-ylpyrimidin-2-yl) L-leucinamide,

N-1- (Cvanomethyl) N-2- (2-morpholin 4-ylpyrimidin 4-yl) L-leucinamide,

N~1~ (Cyanomethyl) N~2~ [2 (4 hydroxy 4 phenylpiperidin 1 yl)pyrimidin 4 yl] L leucinamide,

 $N\sim1\sim-(Cyanomethyl)-N\sim2\sim-\{2-[methyl(pyridin-3-ylmethyl)amino]pyrimidin-4-yl\}-L-leucinamide,$

 $N\sim 2\sim -\{2-[Benzyl(methyl)amino] pyrimidin-4-yl\}-N\sim 1\sim -(cyanomethyl)-L-leucinamide,$

Serial No.: 10/538,452

Filed : June 10, 2005

Page : 5 of 9

N~2~ {2 [4 (4 Chlorophenyl)piperazin 1 yl]pyrimidin 4 yl} N~1~ (cyanomethyl) L leucinamide,

N~2~ {2-[4-(5-Chloropyridin-2-yl)piperazin-1-yl]pyrimidin-4-yl}-N~1~ (cyanomethyl)-L leucinamide,

 $N\sim1\sim-(Cyanomethyl)-N\sim2\sim-\{2-[methyl(thien-3-ylmethyl)amino]pyrimidin-4-yl\}-L-leucinamide,$

N-1~ (Cyanomethyl) N-2~ (2-thiomorpholin 4-ylpyrimidin 4-yl) L-leucinamide,

N~1~ (Cyanomethyl) N~2~ [2 (4 phenylpiperazin 1 yl)pyrimidin 4 yl] L leucinamide,

N~1~ (Cyanomethyl) N~2~ {2 [2 (hydroxymethyl)piperidin 1 yl]pyrimidin 4 yl} L leucinamide.

N-1~ (Cyanomethyl) N-2~ [2-[(2R)-2 (hydroxymethyl)pyrrolidin-1-yl]pyrimidin-4-yl] L leucinamide,

N~1~ (Cyanomethyl) N~2~ [2 (4 hydroxypiperidin 1 yl)pyrimidin 4 yl] L leucinamide,

N~1~ (Cyanomethyl) N~2~ {2 [4 (2 furoyl)piperazin 1 yl]pyrimidin 4 yl} L

leucinamide,

N~2~ {2-[3-(Aminocarbonyl)piperidin-1-yl]pyrimidin-4-yl} N~1~ (cyanomethyl) L-leucinamide.

 $N\sim1\sim-(Cyanomethyl)-N\sim2\sim-\{2-[methyl(2-pyridin-2-ylethyl)amino]pyrimidin-4-yl\}-L-leucinamide,$

N~2~ [2-(4-Benzylpiperidin-1-yl)pyrimidin-4-yl]-N~1~ (cyanomethyl)-L-leucinamide,

N~1~ (Cyanomethyl) N~2~ [2 (4 pyridin 2 ylpiperazin 1 yl)pyrimidin 4 yl] L leucinamide.

N~1~-(Cyanomethyl)-N~2~-[2-(4-phenylpiperidin-1-yl)pyrimidin-4-yl]-L-leucinamide,

N~1~-(Cyanomethyl)-N~2~-{2-[4-(2-hydroxyethyl)piperidin-1-yl]pyrimidin-4-yl}-L-leucinamide,

N~2~ {2 [4 (3 Chlorophenyl)piperazin 1 yl]pyrimidin 4 yl} N~1~ (cyanomethyl) L leucinamide,

N-1-(Cyanomethyl)-N-2-[2-(4-phenoxypiperidin-1-yl)pyrimidin-4-yl]-L-leucinamide,

N~1~ (Cyanomethyl) N~2~ [2 (3 phenylpyrrolidin 1 yl)pyrimidin 4 yl] L leucinamide,

Serial No.: 10/538,452

Filed : June 10, 2005

Page : 6 of 9

 $N\sim1\sim-(Cyanomethyl)-N\sim2\sim-(2-\{methyl[(3-methylisoxazol-5-yl)methyl]amino\}$ pyrimidin-4-yl)-L-leucinamide,

and pharmaceutically acceptable salts thereof.

- 8. (Canceled)
- 9. (Previously Presented) A pharmaceutical composition which comprises a compound as defined in claim 1 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable diluent or carrier.

10-20. (Cancelled)

- 21. (New) A compound according to claim 1 in which R^4 is phenyl C_{1-5} alkyl being optionally substituted by one or more halogen, amino, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, SR^{12} or $NR^{10}R^{11}$.
 - 22. (New) A compound according to claim 1 in which R^5 is C_{1-6} alkyl.
 - 23. (New) A compound according to claim 1 in which R⁵ is iso-butyl.
 - 24. (New) A compound according to claim 1 in which R⁶ is hydrogen.
 - 25. (New) A compound according to claim 1 in which R^7 and R^8 are both hydrogen.
- 26. (New) A compound according to claim 1 in which R⁹ is phenyl, pyridyl or oxazole substituted by methyl.
- 27. (New) A pharmaceutical composition which comprises a compound according to claim 26 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable diluent or carrier.

Attorney's Docket No.: 06275-0455US1 / 100927-1P

Applicant: Judith McInally et al. Serial No.: 10/538,452 US

Filed : June 10, 2005

Page : 7 of 9

> 28. (New) A compound according to claim 1 in which Het is a pyrimidine ring.