Sp18 CS 61B Discussion 8

Welcome!

Wayne Li

wli2@berkeley.edu

https://wayne-li2.github.io/

Announcements

- Lab: Mandatory Project 2 checkoff!
- MT2 is close than it appears!
- Be on the lookout for HW2/HW3...

Quiz Instructions

- If you haven't yet, please also neatly put your email address outside the name box if you want to be emailed!
- Bubble number 41.

Aside

Procedural Generation: A History

- Rogue (1980) and Elite (1984)
 - Pioneers of 2D PCG
- Dwarf Fortress (2006) and Spore (2008)
 - Considered cutting edge 2D PCG
- Minecraft (2011): First 3D PCG (but in block-form)

No Man's Sky (2016)

- A beautiful game (realistic texture) all in PCG
 - 256 procedurally generated universes, each with ~17 quintillion distinct planets
 - Each planet's landscape automatically generated
 - Flora and fauna completely generated

Simple Terrain Generation Algorithm

- Called the **diamond-square algorithm**.
- Recursively divides a square into smaller squares with new vertices offset by a random height.
- At each recursion level, maximum offset shrinks.
- https://www.youtube.com/watch?v=9HJKrctqlJl

More Topics

- Perlin noise algorithm (realistic landscapes)
 - https://en.wikipedia.org/wiki/Perlin_noise
- Voronoi diagrams
- Take lots of stats classes! (Distributions are important)

Moral of the Story

There's more to CS than we can ever teach you!

References

- A PCG community:
 - https://www.reddit.com/r/proceduralgeneration/

Asymptotics

Notation: Big O, Big Omega, Big Theta

- Goal: Look at program complexity for large input
- Notations:
 - Big O bounds above (often used for worst case)
 - Big Omega bounds below (often used for best case)
 - Big Theta bounds above and below (both best and worst case)

O (Big O)

- Let f(n) and g(n) be positive real numbers on inputs of size n
- $f \in O(g)$ if there is a constant c > 0 s.t. f(n) <= c g(n)
- Upper bounded by g(n) when n gets significantly large.
- Bound does not have to be tight.

Ω (Big Omega)

- Let f(n) and g(n) be positive real numbers on inputs of size n
- $f \in O(g)$ if there is a constant c > 0 s.t. f(n) >= c g(n)
- Lower bounded by g(n) when n gets significantly large.
- Bound does not have to be tight.

Θ (Big Theta)

- Let f(n) and g(n) be positive real numbers on inputs of size n
- $f \in \Theta(g)$ if there is a constant c1 > 0 and c2 > 0 s.t.
 - \circ C1 g(n) <= f(n) <= c2 g(n) for all c1 <= c2
- Tightly bounded by g(n) when n gets significantly large.
- • $f \in \Omega(g)$ and $f \in O(g)$

Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein

Onto Discussion