

Université Libre de Bruxelles

Reconfiguration problems

Jean Cardinal Prateeba Ruggoo

Table of contents

Introduction

Power Supply Reconfiguration problem

Reconfiguration problems
Definition

Main themes

SATISFIABILITY RECONFIGURATION SLIDING TOKENS RECONFIGURATION SUBSET SUM RECONFIGURATION

Open questions

Introductory problem: POWER SUPPLY problem

Let C be a set of customer with fixed demands, P be a set of power stations with fixed capacity and G = (V, E) be a bipartite graph where $V = \{C \cup P\}$ with weights on the vertices.

Introductory problem: POWER SUPPLY problem

Let C be a set of customer with fixed demands, P be a set of power stations with fixed capacity and G = (V, E) be a bipartite graph where $V = \{C \cup P\}$ with weights on the vertices.

Can G be partitioned into subtrees, such that each subtree contains exactly one power supply P s.t the sum of the demands of the C vertices (customers) in each subtree is no more than the capacity of the P vertex (power station) in it?

Figure: Input graph G where the blue vertices are the power stations and red vertices are the customers.

Figure: Input graph *G* where the blue vertices are the power stations and red vertices are the customers.

Figure: A feasible solution to the POWER SUPPLY problem.

Theorem (Ito et al.)

The POWER SUPPLY problem is NP-complete [6].

POWER SUPPLY RECONFIGURATION problem

Suppose now that we are given two feasible solutions s_0 and s_t of the POWER SUPPLY problem and are asked:

Can one solution be transformed into the other by moving only one customer at a time and always remaining feasible?

POWER SUPPLY RECONFIGURATION problem

Suppose now that we are given two feasible solutions s_0 and s_t of the POWER SUPPLY problem and are asked:

Can one solution be transformed into the other by moving only one customer at a time and always remaining feasible?

Figure: Feasible solution s_0 .

Figure: Feasible solution s_t .

POWER SUPPLY RECONFIGURATION problem

Figure: Feasible solution s_0 .

Figure: Intermediate feasible solution s_i where customer 10 is moved

Figure: Target feasible solution s_t where customer 7 is moved from previous intermediate solution.

Theorem (Ito et al.)

POWER SUPPLY RECONFIGURATION problem is PSPACE-complete [6].

RECONFIGURATION problems

Definition

Reconfiguration problems are computational problems in which we wish to find a step-by-step transformation between two feasible solutions of a problem such that all intermediate results are also feasible.

RECONFIGURATION problems

Graph-theoric perspective

- Reconfiguration graph where :
 - 1. The vertex set consists of all possible configurations (solutions).
 - Two nodes are connected if the corresponding configurations can each be obtained from the other by the application of a single transformation rule, a reconfiguration step.
- Any path or walk in the Reconfiguration graph = Reconfiguration sequence.

RECONFIGURATION problems

Main themes

- 1. SATISFIABILITY RECONFIGURATION problems.
- 2. SLIDING TOKENS problems.
- 3. SUBSET SUM RECONFIGURATION problems.

satisfiability problem

The satisfiability problem, also called SAT is to test whether a CNF formula is satisfiable. An example of a CNF formula is $\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3)$.

Theorem (Cook-Levin)

SAT is NP-complete [2].

SAT RECONFIGURATION problems

The solutions (satisfying assignments) of a given *n*-variable CNF φ induce a subgraph $G(\varphi)$ of the *n*-dimensional hypercube, introducing two decision problems :

- 1. Connectivity problem : Given a CNF formula φ , is $G(\varphi)$ connected?
- 2. st-Connectivity problem : Given a CNF formula φ and two solutions s_0 and s_t of φ , is there a path from s_0 to s_t in $G(\varphi)$?

Connectivity $\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3).$

Figure: Reconfiguration graph of φ .

Connectivity
$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3).$$

Figure: Reconfiguration graph of φ .

Figure: $G(\varphi)$.

st-Connectivity
$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3).$$

Figure: Reconfiguration graph of φ with two satisfying assignments s_0 and s_t .

st-Connectivity
$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3).$$

Figure: Reconfiguration graph of φ with two satisfying assignments s_0 and s_t .

Figure: Reconfiguration sequence transforming s_0 to s_t .

BOOLEAN SATISFIABILITY RECONFIGURATION

Theorem (Gopalan et al.)

The Connectivity problem is PSPACE-complete [3].

Theorem (Gopalan et al.)

The st-Connectivity problem is PSPACE-complete [3].

SLIDING TOKENS RECONFIGURATION

The SLIDING TOKENS problem

Input Instance: Two independent sets I_1 and I_2 of a graph G = (V, E) s.t $|I_1| = |I_2|$ with a token placed on each vertex in I_1 .

Question: Is there a reconfiguration sequence from l_1 to l_2 ?

Figure: Reconfiguration sequence from l_1 and l_2 .

SLIDING TOKENS RECONFIGURATION

Seen as the reconfiguration version of the Independent Set problem.

Theorem (E.Demaine & R.Hearn)

The SLIDING TOKENS problem is PSPACE-complete [4].

LABELLED SLIDING TOKENS

The LABELLED SLIDING TOKENS problem

Input Instance: Two independent sets I_1 and I_2 of a graph G = (V, E) s.t $|I_1| = |I_2|$ with a labelled token placed on each each vertex in I_1 and each label is unique.

Theorem

The LABELLED SLIDING TOKENS problem is PSPACE-complete.

Proof.

Reduction from the Nondeterministic Constraint Logic.

Nondeterministic Constraint Logic

Graph formulation

The computational model is a constraint graph G = (V, E) where :

- Each edge is assigned a weight.
- Each vertex has a minimum inflow constraint.
- A configuration = orientation of the edges.

Nondeterministic Constraint Logic

Restricted NCL

The constraint graph G = (V, E)

- 3-regular.
- Uses only weights $\in \{1, 2\}$ Red and blue edges.
- Uses only two types of vertices AND and OR vertices.
- The minimum inflow constraint = 2.

Figure: Restricted NCL instance.

Nondeterministic Constraint Logic

Configuration-to-edge for Restricted NCL.

Theorem (E.Demaine & R.Hearn)
CONFIGURATION-TO-EDGE for restricted NCL is
PSPACE-complete [4].

Subset Sum Problem

Given an integer x and a set of integers $S = \{a_1, a_2, \dots, a_n\}$, we wish to find a subset $A \subseteq [n]$ such that $\sum_{i \in A} a_i = x$.

SUBSET SUM RECONFIGURATION

Two variants:

- Add/remove y, keep sum in target range. (considered by Ito and Demaine, referred as SUBSET SUM RECONFIGURATION problem (SSR).)
- Swap y, z and y + z, keep target sum. (considered by Cardinal et al., referred as k-move SUBSET SUM RECONFIGURATION problem (k-move SSR).)

Figure: An instance of the k-move SSR problem where k = 3.

Figure: An instance of the k-move SSR problem where k = 3.

Figure: An instance of the SSR problem.

Theorem (Ito et al.)

The SUBSET SUM RECONFIGURATION problem is NP-hard [5].

Theorem (Cardinal et al.)

The k-move SUBSET SUM RECONFIGURATION Problem is PSPACE-complete for k = 3 [1].

Constrained Hypercube Path problem

Given two vertices s,t of the n-hypercube, both contained in a polytope $P:=\{x\in\mathbb{R}^n: Ax\leq b\}$ for some $A=(a_{ij})\in\mathbb{Z}^{d\times n}$ and $b\in\mathbb{Z}^d$, does there exist a path from s to t in the hypercube, all vertices of which lie in P?

SSR problem \rightarrow Constrained hypercube path

- Let $x \subseteq \{0,1\}^n$ Boolean variable indicating if an item is chosen or not.
- The solution space of an instance of the SSR problem is represented by an n-hypercube.
- The solutions to this given instance are the points of the n-hypercube that lie in the polytope
 P := {k ≤ ∑_{i=1}ⁿ x_iw_i ≤ c}.
- The SSR problem is equivalent to the Constrained Hypercube path problem where d = 2 since it involves exactly two linear constraints.

Example: SSR input instance

- $S = \{1, 3, 6\}.$
- The lower bound = 1.
- The upper bound = 7.
- $A_1 = \{6\}$ and $A_2 = \{1,3\}$.

 $\mathsf{SSR} \; \mathsf{instance} \to \mathsf{Constrained} \; \mathsf{Hypercube} \; \mathsf{path} \; \mathsf{problem}.$

Figure: *n*-hypercube induced by all possible configurations of the given input SSR instance.

$\mathsf{SSR} \; \mathsf{instance} \to \mathsf{Constrained} \; \mathsf{Hypercube} \; \mathsf{path} \; \mathsf{problem}.$

Figure: *n*-hypercube induced by all possible configurations of the given input SSR instance.

Figure: Polytope defined by the two linear constraints of the SSR problem.

SSR instance \rightarrow Constrained Hypercube path problem.

Figure: Polytope defined by the two linear constraints of the SSR problem.

Figure: Reconfiguration sequence S transforming A_1 to A_2 while satisfying the capacity and treshold constraint.

k-move SSR \rightarrow Constrained hypercube path

- Let $x \subseteq \{0,1\}^n$ Boolean variable indicating if an integer is chosen or not.
- The solution space of a k-move SSR instance is represented by H_n^k[Q] which is the kth power of the n-hypercube Q where two vertices are connected iff their symmetric difference is at most k.
- The solutions to this given instance are the points of the $H_n^k[Q]$ that lie in the polytope $P:=\{\sum_{i=1}^n x_i a_i = x\}$.
- The k-move SSR is equivalent to the Constrained Hypercube path problem where d = 1 since it involves exactly one linear constraint.

Example: 3-move SSR input instance

- $S = \{2, 3, 5\}.$
- Target sum x = 5.
- $A_1 = \{5\}$ and $A_2 = \{2,3\}$.

3-move SSR instance \rightarrow Constrained Hypercube path problem.

Figure: $H_3^3[Q]$.

Figure: Reconfiguration sequence S transforming A_1 to A_2 while satisfying the target sum constraint.

Open questions

SSR

Given an SSR instance, is the subgraph induced by all the feasible solutions connected ?

Open questions

k-move SSR

Given a k-move SSR, is the subgraph induced by all the feasible solutions connected ?

References I

Jean Cardinal et al. "Reconfiguration of Satisfying Assignments and Subset Sums: Easy to Find, Hard to Connect". en. In: arXiv:1805.04055 [cs] (May 2018). arXiv: 1805.04055. URL: http://arxiv.org/abs/1805.04055 (visited on 05/24/2019).

Stephen A. Cook. "The Complexity of Theorem-Proving Procedures". In: *Proceedings of the Third Annual ACM Symposium on Theory of Computing*. STOC '71. Shaker Heights, Ohio, USA: Association for Computing Machinery, 1971, pp. 151–158. ISBN: 9781450374644. DOI: 10.1145/800157.805047. URL: https://doi.org/10.1145/800157.805047.

References II

- Parikshit Gopalan et al. "The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies". en. In: arXiv:cs/0609072 (Sept. 2006). arXiv: cs/0609072. URL: http://arxiv.org/abs/cs/0609072 (visited on 05/24/2019).
- Robert Aubrey Hearn. "Games, Puzzles, and Computation". AAI0810083. PhD thesis. USA, 2006.
- Takehiro Ito and Erik D. Demaine. Approximability of the Subset Sum Reconfiguration Problem. 2011.
- Takehiro Ito et al. "On the complexity of reconfiguration problems". In: *Theor. Comput. Sci.* 412.12-14 (2011), pp. 1054–1065. DOI: 10.1016/j.tcs.2010.12.005. URL: https://doi.org/10.1016/j.tcs.2010.12.005.

Thank you for your attention.