Proofs - Auxiliary ODE Grönwall Tools

Dustyn Stanley

May 2025

1 Generalized Grönwall inequalities

Lemma 1 (Integral and differential Grönwall inequalities). Let T > 0, and suppose $y : [0, T] \to [0, \infty)$ is continuous.

1. (Integral form) If there are nonnegative functions $a, b \in L^1(0,T)$ such that

$$y(t) \le a(t) + \int_0^t b(s) y(s) ds, \quad \forall t \in [0, T],$$

then

$$y(t) \le a(t) + \int_0^t a(s) b(s) \exp(\int_s^t b(\sigma) d\sigma) ds.$$

In particular, if a is nondecreasing then

$$y(t) \le a(t) \exp \left(\int_0^t b(s) \, ds \right).$$

2. (Differential form) If $y \in C^1([0,T])$ satisfies

$$\frac{dy}{dt} \le \alpha(t) y(t) + \beta(t), \quad \forall t \in [0, T],$$

for integrable functions α, β , then

$$y(t) \le y(0) \exp \left(\int_0^t \alpha(s) \, ds \right) + \int_0^t \beta(s) \exp \left(\int_s^t \alpha(\sigma) \, d\sigma \right) ds.$$

Proof. 1. Integral form. Define $z(t) = \int_0^t b(s) y(s) ds$. Then the hypothesis gives

$$y(t) \le a(t) + z(t) \implies z'(t) = b(t) y(t) \le b(t) a(t) + b(t) z(t).$$

Apply the differential-form Grönwall inequality (part 2) to z:

$$z(t) \le \int_0^t b(s) a(s) \exp \left(\int_s^t b(\sigma) d\sigma \right) ds.$$

Hence

$$y(t) \le a(t) + z(t) \le a(t) + \int_0^t a(s) b(s) \exp\left(\int_s^t b(\sigma) d\sigma\right) ds.$$

If a is nondecreasing then $a(s) \leq a(t)$ for $0 \leq s \leq t$, so

$$y(t) \leq a(t) \Big[1 + \int_0^t b(s) \, \exp\!\!\left(\int_s^t b(\sigma) \, d\sigma \right) ds \Big] = a(t) \, \exp\!\!\left(\int_0^t b(s) \, ds \right).$$

2. Differential form. Rearrange the inequality as

$$\frac{d}{dt} \left(e^{-\int_0^t \alpha} y(t) \right) = e^{-\int_0^t \alpha} \left(y'(t) - \alpha(t) y(t) \right) \le e^{-\int_0^t \alpha} \beta(t).$$

Integrate from 0 to t:

$$e^{-\int_0^t \alpha} y(t) - y(0) \le \int_0^t e^{-\int_0^s \alpha} \beta(s) \, ds.$$

Multiplying by $e^{\int_0^t \alpha}$ yields

$$y(t) \le y(0) e^{\int_0^t \alpha} + \int_0^t \beta(s) e^{\int_s^t \alpha} ds,$$

which is the claimed result.

2 ODE–comparison lemma for $\dot{y} \leq A y + B y^2$

Lemma 2 (Comparison for quadratic growth ODE). Let $A, B \geq 0$. Suppose $y \in C^1([0,T])$ satisfies

$$\frac{dy}{dt} \le Ay + By^2, \quad y(0) = y_0 \ge 0.$$

Then for all $t \in [0,T]$ with $1 - \frac{B}{A}y_0(e^{At} - 1) > 0$,

$$y(t) \le \frac{y_0 e^{At}}{1 - \frac{B}{A} y_0 (e^{At} - 1)}.$$

Proof. Consider the Riccati equation

$$\frac{dz}{dt} = Az + Bz^2, \quad z(0) = y_0,$$

whose explicit solution is

$$z(t) = \frac{y_0 e^{At}}{1 - \frac{B}{A} y_0 (e^{At} - 1)},$$

valid as long as the denominator stays positive. Since y satisfies $\dot{y} \leq Ay + By^2$ and y(0) = z(0), the standard comparison principle for ODEs implies $y(t) \leq z(t)$ for all t up to the blow-up time of z. This yields the stated bound.

3 Continuity-in-time lemmas

Lemma 3 (Weak-continuity in L^2). Let $u \in L^{\infty}(0,T;L^2_{\sigma}(\mathbb{T}^3))$ satisfy

$$\partial_t u \in L^{4/3}(0,T;(H^1_\sigma(\mathbb{T}^3))').$$

Then $u \in C_w([0,T]; L^2_{\sigma}(\mathbb{T}^3))$, i.e. $t \mapsto \langle u(t), \varphi \rangle$ is continuous for every $\varphi \in L^2_{\sigma}(\mathbb{T}^3)$.

Proof. Fix $\varphi \in H^1_{\sigma}(\mathbb{T}^3) \subset L^2_{\sigma}(\mathbb{T}^3)$. For a.e. $s, t \in [0, T]$,

$$\langle u(t) - u(s), \varphi \rangle = \int_{s}^{t} \langle \partial_{\tau} u(\tau), \varphi \rangle d\tau.$$

Since $\partial_t u \in L^{4/3}(0,T;(H^1)')$ and $\varphi \in H^1$, Hölder gives

$$|\langle u(t) - u(s), \varphi \rangle| \leq \|\partial_t u\|_{L^{4/3}(s,t;(H^1)')} \|\varphi\|_{L^4(s,t;H^1)} \leq C |t-s|^{1/4} \|\partial_t u\|_{L^{4/3}(0,T;(H^1)')} \|\varphi\|_{H^1}.$$

Thus $t\mapsto \langle u(t),\varphi\rangle$ is Hölder-continuous of exponent 1/4, hence continuous. Density of H^1_σ in L^2_σ and the uniform $L^\infty_t L^2_x$ -bound then upgrade this to continuity against all $\varphi\in L^2_\sigma$, proving $u\in C_w([0,T];L^2_\sigma)$.

Lemma 4 (Strong-continuity in L^2). Let

$$u \in L^2(0, T; H^1_{\sigma}(\mathbb{T}^3)), \quad \partial_t u \in L^2(0, T; (H^1_{\sigma}(\mathbb{T}^3))').$$

Then $u \in C([0,T]; L^2_{\sigma}(\mathbb{T}^3))$ and, moreover,

$$||u(t)||_{L^2}^2 = ||u(0)||_{L^2}^2 + 2\int_0^t \langle \partial_s u(s), u(s) \rangle_{(H^1)', H^1} ds.$$

Proof. This is the classical Lions–Magenes lemma (see e.g. [?]), specialized to the Gelfand triplet

$$H^1_{\sigma}(\mathbb{T}^3) \hookrightarrow L^2_{\sigma}(\mathbb{T}^3) \hookrightarrow (H^1_{\sigma}(\mathbb{T}^3))'.$$

Precisely, since $u \in L^2(0,T;H^1_\sigma)$ and $\partial_t u \in L^2(0,T;(H^1)')$, one has $u \in C([0,T];L^2_\sigma)$ and the above identity holds by differentiating $||u(t)||^2_{L^2}$ in time in the weak sense. A direct proof uses a mollification in time and passage to the limit, which recovers both continuity and the energy-identity formula.

4 Interpolation inequalities in time–space norms

Lemma 5 (Interpolation in mixed Lebesgue spaces). Let $0 \le \theta \le 1$, and let $1 \le p_0, p_1, q_0, q_1 \le \infty$. Define

$$\frac{1}{p} = \frac{\theta}{p_0} + \frac{1-\theta}{p_1}, \qquad \frac{1}{q} = \frac{\theta}{q_0} + \frac{1-\theta}{q_1}.$$

If $f: [0,T] \times \mathbb{T}^3 \to \mathbb{R}$ satisfies

$$f \in L^{p_0}(0, T; L^{q_0}(\mathbb{T}^3))$$
 and $f \in L^{p_1}(0, T; L^{q_1}(\mathbb{T}^3)),$

then $f \in L^p(0,T;L^q(\mathbb{T}^3))$ and there is a constant C, depending only on the indices, such that

$$||f||_{L_t^p L_x^q} \le ||f||_{L_t^{p_0} L_x^{q_0}}^{\theta} ||f||_{L_t^{p_1} L_x^{q_1}}^{1-\theta}.$$

In particular, for any $r \in [p_0, p_1]$ and $s \in [q_0, q_1]$ with $\frac{1}{r} = \frac{\theta}{p_0} + \frac{1-\theta}{p_1}$, $\frac{1}{s} = \frac{\theta}{q_0} + \frac{1-\theta}{q_1}$, one has $||f||_{L^r_t L^s_x} \le ||f||^{\theta}_{L^{p_0}_t L^{q_0}_x} ||f||^{1-\theta}_{L^{p_1}_t L^{q_1}_x}$.

 ${\it Proof.}$ Apply the Riesz–Thorin interpolation theorem first in x for each fixed t, to deduce

$$||f(t,\cdot)||_{L_x^q} \le ||f(t,\cdot)||_{L_x^{q_0}}^{\theta} ||f(t,\cdot)||_{L_x^{q_1}}^{1-\theta}.$$

Raising to the pth power and integrating in t gives

$$||f||_{L_{t}^{p}L_{x}^{q}}^{p} = \int_{0}^{T} ||f(t)||_{L_{x}^{q}}^{p} dt \le \int_{0}^{T} ||f(t)||_{L_{x}^{q_{0}}}^{\theta p} ||f(t)||_{L_{x}^{q_{1}}}^{(1-\theta)p} dt.$$

Now apply Hölder's inequality in time with exponents $\frac{p_0}{\theta p}$ and $\frac{p_1}{(1-\theta)p}$, which satisfy $\frac{\theta p}{p_0} + \frac{(1-\theta)p}{p_1} = 1$. One obtains

$$\|f\|_{L^p_t L^q_x}^p \ \leq \ \left(\int_0^T \|f(t)\|_{L^{q_0}_x}^{p_0} \ dt \right)^{\theta p/p_0} \ \left(\int_0^T \|f(t)\|_{L^{q_1}_x}^{p_1} \ dt \right)^{(1-\theta)p/p_1}.$$

Taking pth roots yields the stated interpolation inequality.