Zápisky k předmětu Využití počítačů ve fyzice

Pavel Stránský

9. března 2021

Obsah

1	Oby	Obyčejné diferenciální rovnice			
	1.1	Diferenciální rovnice prvního řádu			
		1.1.1	Pár důležitých pojmů	1	
		1.1.2	Eulerova metoda 1. řádu	2	
		1.1.3	Eulerova metoda 2. řádu	2	
	1.2	Runge	e-Kuttova metoda 4. řádu	3	

1 Obyčejné diferenciální rovnice

1.1 Diferenciální rovnice prvního řádu

Nejprve se budeme věnovat řešení jedné diferenciální rovnice prvního řádu,

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(y, t) \tag{1}$$

s počáteční podmínkou

$$y(t_0) = y_0. (2)$$

Zde y = y(t) je hledaná funkce a t je nezávisle proměnná.

Numerické řešení diferenciální rovnice spočívá v nahrazení infinitezimálních přírůstků přírůstky konečnými:

$$\frac{\Delta y}{\Delta t} = \phi(y, t) \tag{3}$$

kde ϕ je funkce, která udává směr, podél kterého se při numerickém řešení vydáme. Volbá této funkce je klíčová a záleží na ní, jak přesné řešení dostaneme a jak rychle ho dostaneme.

1.1.1 Pár důležitých pojmů

- Explicitní algoritmy: K výpočtu hodnoty funkce y_{i+1} se vyžadují pouze hodnoty z aktuálních a minulých kroků, tj. y_i , y_{i-1} , atd.
- **Jednokrokové algoritmy:** K výpočtu hodnoty funkce y_{i+1} v následujícím kroku vyžadují pouze znalost hodnoty funkce v aktuálním kroku y_i . Rozepsáním (3) dostaneme

$$y_{i+1} = y_i + \underbrace{\phi(y_i, t)}_{\phi_i} \Delta t, \tag{4}$$

přičemž počáteční hodnota y_0 je dána počáteční podmínkou. My se omezíme pouze na tyto algoritmy.

• Lokální diskretizační chyba:

$$\mathcal{L} = y(t + \Delta t) - y(t) - \phi(y(t), t)\Delta t, \tag{5}$$

kde y(t) udává přesné řešení v čase t.

• Akumulovaná diskretizační chyba:

$$\epsilon_i = y_i - y(t_i) \tag{6}$$

• Řád metody: Metoda je p-tého řádu, pokud

$$L(\Delta t) = \mathcal{O}(\Delta t^{p+1}). \tag{7}$$

• Kontrola chyby řešení: Chybu numerického řešení diferenciální rovnice lze zmenšit 1) menším krokem, 2) lepší metodou (metodou vyššího řádu). Menší krok však znamená vyšší výpočetní čas. Sofistikované metody proto průběžně mění velikost kroku: když se funkce mění pomalu, krok prodlouží, když se mění rychle, krok zkrátí (tzv. metody s adaptivním krokem). Tím se docílí vysoké přesnosti při co nejmenším výpočetním čase.

1.1.2 Eulerova metoda 1. řádu

$$\phi_i = f(y_i, t_i), \tag{8}$$

tj. krok do y_{i+1} děláme vždy ve směru tečny v bodě y_i .

- Nejjednodušší metoda integrace diferenciálních rovnic.
- Chyba je obrovská, k dosažení přesných hodnot je potřeba velmi malého kroku, což znamená dlouhý výpočetní čas.

1.1.3 Eulerova metoda 2. řádu

$$k_{1} = f(y_{i}, t_{i})$$

$$k_{2} = f(y_{i} + k_{1}\Delta t, t + \Delta t)$$

$$\phi_{i} = \frac{1}{2}(k_{1} + k_{2}),$$
(9)

tj. uděláme jednoduchý Eulerův krok ve směru k_1 , spočítáme derivaci k_2 po tomto kroku a vyrazíme z bodu y_i ve směru, který je průměrem obou směrů (doporučuji si nakreslit obrázek).

Ekvivalentní je udělat "Eulerův půlkrok" a vyrazit z bodu y_i ve směru derivace spočtené po tomto půlkroku:

$$k'_{1} = f(y_{i}, t_{i})$$

$$k'_{2} = f\left(y_{i} + k'_{1}\frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right)$$

$$\phi_{i} = k'_{2}$$

$$(10)$$

1.2 Runge-Kuttova metoda 4. řádu

$$k_{1} = f(y_{i}, t_{i})$$

$$k_{2} = f\left(y_{i} + k_{1}\frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right)$$

$$k_{3} = f\left(y_{i} + k_{2}\frac{\Delta t}{2}, t + \frac{\Delta t}{2}\right)$$

$$k_{4} = f\left(y_{i} + k_{3}\Delta t, t + \Delta t\right)$$

$$\phi_{i} = \frac{1}{6}\left(k_{1} + 2k_{2} + 2k_{3} + k_{4}\right)$$
(11)

- Jedna z nejčastěji používaných metod.
- Vysoká rychlost a přesnost při relativní jednoduchosti.
- Existují i Runge-Kuttovy metody vyššího řádu p, avšak vyžadují výpočet více než p dílčích derivací k_j . Obecně platí, že metoda řádu $p \le 4$ vyžaduje p derivací, metoda řádu $5 \le p \le 7$ vyžaduje p+1 derivací a metoda řádu p=8,9 vyřaduje p+2 derivací.

Úkol 1.1: Naprogramujte Eulerovu metodu 1. a 2. řádu a Runge-Kuttovu metodu. Vyřešte diferenciální relaxační rovnici

$$\frac{\mathrm{d}y}{\mathrm{d}t} = -y\tag{12}$$

s počátečními podmínkami $y_0 = 1$ (analytickým řešením je funkce e^{-t}). Integrační krok Δt ponechte jako volný parametr. Nakreslete grafy řešení y(t) pro rozdílné hodnoty integračních kroků, například $\Delta t = 0.01$ a $\Delta t = 0.1$ pro čas $t \in \langle 0; 10 \rangle$.

Úkol 1.2: Rozšiřte kód tak, aby počítal průměrnou kumulovanou chybu

$$\mathcal{E} = \sqrt{\frac{1}{n} \sum_{i=0}^{n-1} (y_i - e^{-t_i})^2}$$
 (13)

a nakreslete závislost $\mathcal{E}(\Delta t)$ pro $\Delta t \in \langle 0.002; 0.1 \rangle$ a pro různé metody. Jelikož očekáváme mocninnou závislost dle (7), kde exponent je tím větší, čím větší je řád metody, je výhodné graf $\mathcal{E}(\Delta t)$ kreslit v log-log měřítku. V Pythonu použijete místo $\operatorname{plot}(\ldots)$ funkci $\operatorname{loglog}(\ldots)$ z knihovny matplotlib.pyplot. Ověřte, že získané křivky jsou v souladu s řády použitých metod.

Úkol 1.3: Pomocí naprogramovaných metod vyřešte nelineární diferenciální rovnici

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \sin\left(ty\right) \tag{14}$$

s počáteční podmínkou $y_0=1$ a vykreslete graf jejího řešení.