

Potential outcomes, counterfactuals & conditional treatment effects, Pt. II

Causal Inference & Deep Learning
MIT IAP 2018

Fredrik D. Johansson

1. Potential outcomes framework

2. Supervised learning (risk minimization)

3. Adjusting for distributional shift

Recap: Estimating potential outcomes

- ▶ We consider learning hypotheses $f(x,t) \approx \mathbb{E}[Y \mid x,t]$
- ▶ Under ignorability, $\mathbb{E}[Y \mid x, t] = \mathbb{E}[Y(t) \mid x]$
- Want to do risk minimization for each outcome

$$f(\cdot,0) = \underset{h_0}{\operatorname{argmin}} R_p^0(h_0), \qquad R_p^0(h_0) \coloneqq \mathbb{E}_p \left[\left(h_0(x) - Y(0) \right)^2 \right]$$

$$f(\cdot,1) = \operatorname*{argmin}_{h_1} R_p^1(h_1), \qquad R_p^1(h_1) \coloneqq \mathbb{E}_p\left[\left(h_1(x) - Y(1)\right)^2\right]$$

Estimating potential outcomes

We don't have samples of $\mathbb{E}_p\left[\left(h_0(x)-Y(0)\right)^2\right]$ from p(X,T), only from $p(X\mid T=0)!$ We only see Y(0) for controls, t=0

No guarantee that
$$\mathbb{E}_p\left[\left(h_0(x)-Y(0)\right)^2\right] \approx \frac{1}{n}\sum_{i:t_i=0}(h_0(x_i)-y_i)^2$$
 Only control group

Counterfactuals

We can think of this as learning from one distribution (factual),
 and predicting in another (counterfactual)

Unsupervised domain adaptation

► This is exactly the setting of unsupervised domain adaptation

Labeled

Unlabeled

- ▶ Observe $(x_1, y_1), ..., (x_n, y_n) \sim p(x)$ and $(x_1'), ..., (x_m') \sim q(x)$
- ▶ Predict for $x' \sim q(x)$
- ► Covariate-shift assumption: $q(Y \mid X) = p(Y \mid X)$ Here, this follows from ignorability: $Y(0) \perp T \mid X$

Bound idea

Mentioned yesterday!

- 1. Show that $R_p^{\tau}(f)$ is bounded by outcome risks $R_p^0(f)$, $R_p^1(f)$
- 2. Show that $R_p^t(f)$ decomposes to factual and counterfactual components $R_p^t(f) = R_F^t(f) + R_{CF}^t(f)$
- 3. Show that counterfactual loss is bounded by observable quantities and an **Integral Probability Metric** (IPM)
- 4. $\frac{1}{2}R_p^{\tau}(f) \le R_F^0(f) + R_F^1(f) + IPM_G(p^{t=0}(x), p^{t=1}(x)) 2\sigma^2$

CATE and potential outcome MSE

We can relate the CATE MSE to potential outcome losses

$$R_{p}^{\tau}(f) = \int_{x} \left(\hat{\tau}_{f}(x) - \tau(x)\right)^{2} p(x) dx$$

$$= \int_{x} (f(x, 1) - f(x, 0) - \tau(x))^{2} p(x) dx$$

$$\leq 2 \int_{x} \left[(f(x, 0) - m_{0}(x))^{2} + \left(f(x, 1) - m_{1}(x)\right)^{2} \right] p(x) dx$$
Unobserved!

▶ We let $\ell_f(x,t) = (f(x,t) - Y(t))^2$ be the loss at (x,t) (an RV)

CATE and potential outcome MSE

We can now relate the CATE MSE to potential outcome losses

We assume that Y(t) are deterministic, going forward, for simplicity

Factual and counterfactual

Each potential outcome loss decomposes by treatment group

$$\begin{split} R_p^0(f) &= \int_{\mathcal{X}} \ell_f(x,0) p(x) dx \\ &= p(T=0) \int_{\mathcal{X}} \ell_f(x,0) p(x \mid T=0) dx \quad - \text{Factual} \\ &\quad \text{Control group} \\ &+ p(T=1) \int_{\mathcal{X}} \ell_f(x,0) p(x \mid T=1) dx \quad - \text{Counterfactual} \\ &\quad \text{Treatment group} \\ &=: (1-u) \cdot R_F^0(f) + u \cdot R_{CF}^0(f) \end{split}$$

▶ Where u = p(T = 1)

Bounding counterfactual loss

▶ Let $p^{t=t'}(x) = p(X = x \mid T = t')$. Then,

$$R_{CF}^{0} = \int \ell_{f}(x,0)p^{t=1}(x)dx$$

absorved gap!

Unsupervised domain adaptation

Estimate $\mathbb{E}_{q}[\ell]$ based on labeled samples from p

$$\mathbb{E}_{\mathbf{q}}[\ell] \le \mathbb{E}_{\mathbf{p}}[\ell] + \mathrm{IPM}(p, q)$$

 $J\chi$

$$\leq R_F^0 + \sup_{g \in G} \int_{\mathcal{X}} g(x) |p^{t-1}(x) - p^{t-0}(x)| dx$$

Assumption that $\ell_f \in G$

$$R_{CF}^{0}(f) \le R_{F}^{0}(f) + IPM_{G}(p^{t=0}(x), p^{t=1}(x))$$

Bringing it all together

Add results for each potential outcome (and let Y be stochastic again)

$$\frac{1}{2} \left(R_p^{\tau} + 4\sigma^2 \right) \le R_p^0 + R_p^1$$

$$= (1 - u) \cdot R_F^0 + u \cdot R_{CF}^0 + u \cdot R_F^1 + (1 - u) \cdot R_{CF}^1$$

$$\le (1 - u + u)R_F^0 + (1 - u + u)R_F^1$$

$$+ (1 - u + u)IPM_G \left(p^{t=0}(x), p^{t=1}(x) \right)$$

$$\frac{1}{2}R_p^{\tau} \le R_F^0 + R_F^1 + IPM_G(p^{t=0}(x), p^{t=1}(x)) - 2\sigma^2$$

What do we take from this bound?

$$\frac{1}{2}R_p^{\tau}(f) \le R_F^0(f) + R_F^1(f) + IPM_G(p^{t=0}(x), p^{t=1}(x)) - 2\sigma^2$$

- We can bound an unobservable quantity using observable quantities (under unverifiable assumptions)
- ► The factual error is more **representative** of the counterfactual when treatment groups are similar (surprise! ©)
- No immediate algorithmic framework! How can we shrink IPM?

Idea 1. Sample re-weighting

- Re-weight treatment groups to adjust for bias
- Importance sampling principle

$$\mathbb{E}_{q(x)}[f(x)] = E_{p(x)}\left[\frac{q(x)}{p(x)}f(x)\right] \approx \frac{1}{n}\sum_{i=1}^{n}\frac{q(x_i)}{p(x_i)}f(x_i)$$

Used to estimate e.g. average control outcome on treated population

What happens to our bound?

- For any distributions p, q, we have that $IPM_G\left(p, \frac{p}{q}q\right) = 0$
- So with $w_t(x) = \frac{p(x)}{p(x|T=t)} = \frac{p(T=t)}{p(T=t|x)}$ Propensities!

and $R_{p,w}^0 = \mathbb{E}_p[w(\mathbf{x})\ell_f(x,0)]$, we have

$$\frac{1}{2}R_p^{\tau}(f) \le R_{F,w_0}^0(f) + R_{F,w_1}^1(f) + \text{IPM}_G(w_0p^{t=0}, w_1p^{t=1}) - 2\sigma^2$$

$$= 0$$

This is an example of inverse propensity weighting (IPW)

Problems with importance sampling

▶ If we knew the weighting functions w_0 and w_1

$$\frac{1}{2}R_p^{\tau}(f) \le R_{F,w_0}^0(f) + R_{F,w_1}^1(f) - 2\sigma^2$$

- Great! However...
 - Importance sampling has severe variance problems, because of small effective sample size
 - ▶ We don't know the functions w_0 and w_1

Idea 2: Representation learning

A shared representation helps identify meaningful interactions

¹J., Shalit, Sontag, *ICML* 2016

Imbalance in representation space

▶ In general, treatment groups still not representative of population

Treatment group imbalance

¹J., Shalit, Sontag, *ICML* 2016

CATE generalization bound

Theorem*: (Representation learning)

$$R_p^{\tau} \leq 2 \sum_{t \in \{0,1\}} \left(R_{p,w_t}^t(\boldsymbol{\Phi}, \boldsymbol{h}) + B_{\boldsymbol{\Phi}} \operatorname{IPM}_G \left(p_{\boldsymbol{\Phi}}^{1-t}(\boldsymbol{x}), w_t \ p_{\boldsymbol{\Phi}}^t(\boldsymbol{x}) \right) \right)$$

Effect risk Re-weighted factual loss Imbalance of re-weighted representations

- Letting $\Phi(x) = x$, and $w_t(x)$ be inverse propensity weights, we recover the original result
- ▶ Work in submission on combining the two, and learning $w_{t(x)}$

^{*}Extension to finite samples available

Trading off accuracy for balance

• Our full architecture learns a representation $\Phi(x)$, a re-weighting $w_t(x)$ and hypotheses $h_t(\Phi)$ to trade-off between the re-weighted loss $w\ell$ and imbalance between re-weighted representations

Evaluating CATE estimates

- No ground truth, similar to off-policy evaluation in reinforcement learning
- Requires either:
 - Knowledge of the true outcome (synthetic)
 - Knowledge of the logging policy (e.g. a randomized controlled trial)
- Our framework has proven effective in both settings

Empirical results: IHDP

- ► IHDP¹ is a widely used benchmark for causal effect estimation
- Original randomized study examined the effect of home-visits and high-quality child care on child cognitive test scores
- Feature set contains aspects of the child, mother, pregnancy etc
- The benchmark was made observational by removing all non-white mothers from the dataset.
- ► The outcome was synthesized based on original features and treatment

Empirical results: IHDP

Error in Error in conditional effect average effect

INDD

Results on held-out units:

	IHDP			
	$\sqrt{\epsilon}$ CATE	$\epsilon_{ ext{ATE}}$		
OLS/LR ₁	$5.8 \pm .3$	$.94 \pm .06$		
-BNN	$2.1 \pm .1$	$.42 \pm .03$		
-TARNET	$95 \pm .02$	$.28 \pm .01$		
CFR _{MMD}	$.78 \pm .02$	$.31 \pm .01$		
CFRWASS	$.76 \pm .02$	$.27 \pm .01$		
RCFR	$.67 \pm .05$			

Concatenating Φ and T Twin-head neural net $(\alpha = 0)$ + IPM regularization

+ Re-weighting

Re-weighting variance penalty

¹Swaminathan & Joachims, *ICML* 2015

¹Swaminathan & Joachims, *ICML* 2015

¹Swaminathan & Joachims, *ICML* 2015

Re-weighting matters when we regularize imbalance!

Re-weighting variance penalty

¹Swaminathan & Joachims, *ICML* 2015

Conclusions

- Causal inference involve interesting estimation problems
- Deep learning alone can help with solving them
- Empirical risk does not bound counterfactual risk
- Domain adaptation inspires "solutions" and theory
- Many open questions!

Counterfactuals

Tabular records of patients

Age	Treatment	Outcome (Observed)	Counterfactual (Unobserved)	Effect
26	В	High	High	0
24	Α	Low	High	1
	•••	•••	•••	

Observe

Predict