Regularization for Deep Learning 7.1-7.4

Deep Learning輪講会(2017-06-21 Wednesday) 河野 晋策 @lapis zero09

Regularization and Under-Constrained Problems

Chap 7.1-7.3

Underfitting Overfitting

Underfitting Overfitting

Regularization

• "複雑度"の高いモデル

- 訓練誤差は低い
- 汎化誤差は高い
- ・汎化誤差を減らす方法
 - より多くのデータの収集(Chap7.4)
 - パラメータ数が少ない、単純なモデルを使う
 - データの次元数を減らす
 - Regularization(正則化)
 - モデルの"複雑さ"を制御

Deep Learning book. p.229より抜粋

"the true generation process essentially involves simulating the entire universe" we are always trying to fit a square peg into a round hole"

Regularization

元の目的関数 正則化項2)

- 罰則付き最適化(Chap7.2)
 - minimize $\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$
- $J(\theta; X, y)$ と $\Omega(\theta)$ 両方を最適化したい
 - *J*(*θ*; *X*, *y*):年金制度の充実
 - $\Omega(\boldsymbol{\theta})$:国民の税負担の増加

回帰

 $J(\theta; X, y)$:訓練誤差を最小化

 $\Omega(\boldsymbol{\theta})$: "複雑さ"を最小化

トレードオフパラメータ α で優先度を決める

Regularization

Memo:
$$ω Φ p / ν Δ$$

$$ω^T = (ω_1, ω_2, ..., ω_D)$$

$$||ω||_p = (\sum_{i=1}^D |ω^i|^p)^{\frac{1}{p}}$$

$$\widetilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

正則化された目的関数

L^2 Regularization(Chap7.1.1)

正則化パラメータ

- 元の目的関数: J(ω; X, y)
- L2正則化項入り: $\tilde{J}(\boldsymbol{\omega};\boldsymbol{X},\boldsymbol{y}) = J(\boldsymbol{\omega};\boldsymbol{X},\boldsymbol{y}) + \frac{\alpha}{2}\boldsymbol{\omega}^T\boldsymbol{\omega}$
- L2正則化項
 - ωの各要素が大きい値をとると大きくなる→"複雑さ"を抑制
 - ・ 凸関数の和は凸関数→唯一の局所最適解が求まる(嬉しい)
 - ・ 微分可能→解析解が求まる(嬉しい)
- 二乗誤差項 + L2正則化項 = リッジ回帰

L2ノルム

L2正則化項

L^2 Regularization(Chap7.1.2)

- 元の目的関数: J(ω; X, y)
- L1正則化項入り: $\tilde{J}(\boldsymbol{\omega}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\omega}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \sum_i |\omega_i|$
- L1正則化項
 - 原点からの遠さに対して線形で罰則
 - 凸関数の和は凸関数→唯一の局所最適解が求まる(嬉しい)

正則化パラメータ

- ・原点付近で微分不可能→解析解は求まらない(悲しい)
- 二乗誤差項 + L2正則化項 = ラッソ回帰

L2正則化項

L2 vs L1

- ・L2の方が嬉しいポイント高いけどなぜL1使うのか
 - 特徴量(予測に有用か不明)が大量にある場面:

Trevor Hastie et al. Statistical Learning with Sparsity: The Lasso and Generalizations. P.362.

L2 vs L1

特徴選択の観察

• **予測**:犯罪率

• 特徴量:アメリカ街別 警察予算, 高校卒業率,大学卒業率など

- 横軸:最小二乗推定量に対する相 対ノルム
- 縦軸:各特徴量に対する係数ベクトル

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city	funding	hs	not-hs	college	college4	crime rate
1	40	74	11	31	20	478
2	32	72	11	43	18	494
3	57	70	18	16	16	643
4	31	71	11	25	19	341
5	67	72	9	29	24	773
:	:	:	:	:		
50	66	67	26	18	16	940

Trevor Hastie et al. Statistical Learning with Sparsity: The Lasso and Generalizations. P.362.

Lassoで特徴選択の仕組み

Dataset Augmentation

Chap 7.4

Dataset Augmentation

- モデルをより一般化するにはより多くのデータで学習するのがいい
 - データの量は限られる → 疑似データを作成
- object recognition領域で有効
 - 画像の回転や拡大, etc...
 - Vincent et al. Extracting and Composing Robust Features with Denoising Autoencoders. ICML, 2008.
- speech recognition領域で有効
 - Jaitly and Hinton. Vocal Tract Length Perturbation (VTLP) improves speech recognition. ICML, 2013.

Dataset Augmentation(蛇足な知見)

- Imbalanced Data
 - データのクラスに偏りがあって学習が困難なデータ
- 提案手法
 - Under-sampling 多いクラスを減らす
 - Over-sampling 少ないクラスを増やす(疑似データの生成)
 - N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, "SMOTE: synthetic minority over-sampling technique," Journal of artificial intelligence research, 321-357, 2002.
 - He, Haibo, Yang Bai, Edwardo A. Garcia, and Shutao Li. "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," In IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322-1328, 2008.
 - その他 SMOTEの変形など

Dataset Augmentation(蛇足な知見)

- Model Compression
- 課題
 - データが少ない問題に対して, DeeeeeeepなNNを適用すると過学習する
 - 浅いNNだと精度が足りない
 - アンサンブルだと精度は出るけど大きいし、遅い
- 提案手法
 - 1. 元データに対してアンサンブルを訓練
 - 2. 元データから大量の正解ラベル無し疑似データを作成
 - 3. 訓練したアンサンブルで疑似データに正解ラベル付け
 - 4. 大量の疑似データでDeeeeeeepNNを訓練 → アンサンブルの近似と同義
 - Buciluă, Cristian; Caruana, Rich et al. Model compression. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2006, p. 535-541.