Apply Master's Theorem for the following recurrence relation.

1.
$$T(n) = 8T\left(\frac{n}{2}\right) + 1000n^2$$

According to Master's theorem,

if, $f(n) = c * n^k$ where $d \ge 0$ in recurrence and

$$T(n) = aT\left(\frac{n}{h}\right) + f(n)$$
 then,

$$T(n) \in \theta(n^k)$$
 if a < b^k

$$T(n) \in \theta(n^k \log n)$$
 if $a = b^k$

$$T(n) \in \theta(n^{\log_b a})$$
 if $a > b^k$

Here a = 8, b = 2, k = 2 and since $a > b^k$

$$T(n) \in \theta(n^{\log_2 8})$$
 \approx $T(n) \in \theta(n^3)$

$$2. T(n) = 2T\left(\frac{n}{2}\right) + n^2$$

According to Master's theorem,

if, $f(n) = c * n^k$ where $d \ge 0$ in recurrence and

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 then,

$$T(n) \in \theta(n^k)$$
 if a < b^k

$$T(n) \in \theta(n^k \log n)$$
 if $a = b^k$

$$T(n) \in \theta(n^{\log_b a})$$
 if $a > b^k$

Here a = 2, b = 2, k = 2 and since $a < b^k$

$$T(n) \in \theta(n^2)$$

$$3. T(n) = 2T\left(\frac{n}{2}\right) + 10n$$

According to Master's theorem,

if, $f(n) = c * n^k$ where $d \ge 0$ in recurrance and

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
 then,

$$T(n) \in \theta(n^k)$$
 if a < b^k

$$T(n) \in \theta(n^k \log n)$$
 if $a = b^k$

$$T(n) \in \theta(n^{\log_b a})$$
 if $a > b^k$

Here a = 2, b = 2, k = 1 and since $a = b^k$

$$T(n) \in \theta(nlogn)$$