

$$R_A = 2\sin 60 = 1.732 \text{ kN}$$
 Ans.

$$R_B = 2 \sin 30 = 1 \text{ kN}$$
 Ans.

(b)
$$R_A \longrightarrow 0.4 \text{ m} \longrightarrow B$$
 $R_O \longrightarrow 0.6 \text{ m}$
 $R_O \longrightarrow 0.6 \text{ m}$
 $R_O \longrightarrow 0.6 \text{ m}$

$$S = 0.6 \text{ m}$$

 $\alpha = \tan^{-1} \frac{0.6}{0.4 + 0.6} = 30.96^{\circ}$

$$\frac{R_A}{\sin 135} = \frac{800}{\sin 30.96} \implies R_A = 1100 \text{ N} \quad Ans.$$

$$\frac{R_O}{\sin 14.04} = \frac{800}{\sin 30.96} \implies R_O = 377 \text{ N} \quad Ans.$$

(c)
$$R_{o}$$

$$R_{o}$$

$$R_{A}$$

$$R_O = \frac{1.2}{\tan 30} = 2.078 \text{ kN}$$
 Ans.
 $R_A = \frac{1.2}{\sin 30} = 2.4 \text{ kN}$ Ans.

(d) Step 1: Find R_A and R_E

$$h = \frac{4.5}{\tan 30} = 7.794 \,\text{m}$$

$$\Box + \sum M_A = 0$$

$$9R_E - 7.794(400\cos 30) - 4.5(400\sin 30) = 0$$

$$R_E = 400 \,\text{N} \quad Ans.$$

$$\sum F_x = 0 \quad R_{Ax} + 400\cos 30 = 0 \quad \Rightarrow \quad R_{Ax} = -346.4 \text{ N}$$

$$\sum F_y = 0 \quad R_{Ay} + 400 - 400\sin 30 = 0 \quad \Rightarrow \quad R_{Ay} = -200 \text{ N}$$

$$R_A = \sqrt{346.4^2 + 200^2} = 400 \text{ N} \quad Ans.$$

$$R_A = \sqrt{346.4^2 + 200^2} = 400 \,\text{N}$$
 Ans.

Step 2: Find components of R_C on link 4 and R_D

Step 3: Find components of R_C on link 2

3-3
(a) $V = \begin{cases} 40 \text{ lbf} & 60 \text{ lbf} \\ 0 & A & B \\ R_1 & 30 \text{ lbf} & R_2 \end{cases}$ $V = \begin{cases} W_1 & W_2 & W_3 & W_4 & W_4$

 $M_4 = -240 + 60(4) = 0$ checks!

$$\sum F_y = 0$$

$$R_0 = 2 + 4(0.150) = 2.6 \text{ kN}$$

$$\sum M_0 = 0$$

$$M_0 = 2000(0.2) + 4000(0.150)(0.425)$$

$$= 655 \text{ N} \cdot \text{m}$$

$$M_1 = -655 + 2600(0.2) = -135 \text{ N} \cdot \text{m}$$

 $M_2 = -135 + 600(0.150) = -45 \text{ N} \cdot \text{m}$
 $M_3 = -45 + \frac{1}{2}600(0.150) = 0$ checks!

V (lbf)

$$\sum_{\substack{\text{4 ft} B \\ \text{R}_2}} M_0 = 0: 10R_2 - 6(1000) = 0 \quad \Rightarrow \quad R_2 = 600 \text{ lbf}$$

$$\sum_{R_2} F_y = 0: R_1 - 1000 + 600 = 0 \quad \Rightarrow \quad R_1 = 400 \text{ lbf}$$

$$M_1 = 400(6) = 2400 \text{ lbf} \cdot \text{ft}$$

 $M_2 = 2400 - 600(4) = 0$ checks!

$$M_1$$
 M_2 M_3

$$M_1 = 1200(2) = 2400 \text{ lbf} \cdot \text{ft}$$

 $M_2 = 2400 + 200(6) = 3600 \text{ lbf} \cdot \text{ft}$
 $M_3 = 3600 - 1800(2) = 0 \text{ checks}!$

$$\sum_{x} F_y = 0: -171.4 - 400 + R_2 - 800 = 0$$

$$R_2 = 1371.4 \text{ lbf}$$

$$M_1 = -171.4(4) = -685.7 \text{ lbf} \cdot \text{ft}$$

 $M_2 = -685.7 - 571.4(3) = -2400 \text{ lbf} \cdot \text{ft}$
 $M_3 = -2400 + 800(3) = 0 \text{ checks!}$

(f) Break at A

$$R_1 = V_A = \frac{1}{2}40(8) = 160 \text{ lbf}$$

$$\Box + \sum M_D = 0$$

 $12(160) - 10R_2 + 320(5) = 0$
 $R_2 = 352 \text{ lbf}$

$$M_1 = \frac{1}{2}160(4) = 320 \text{ lbf} \cdot \text{in}$$

 $M_2 = 320 - \frac{1}{2}160(4) = 0$ checks! (hinge)
 $M_3 = 0 - 160(2) = -320 \text{ lbf} \cdot \text{in}$
 $M_4 = -320 + 192(5) = 640 \text{ lbf} \cdot \text{in}$

 $M_5 = 640 - 128(5) = 0$ checks!

3-4

(a)
$$q = R_1 \langle x \rangle^{-1} - 40 \langle x - 4 \rangle^{-1} + 30 \langle x - 8 \rangle^{-1} + R_2 \langle x - 14 \rangle^{-1} - 60 \langle x - 18 \rangle^{-1}$$

$$V = R_1 - 40\langle x - 4 \rangle^0 + 30\langle x - 8 \rangle^0 + R_2\langle x - 14 \rangle^0 - 60\langle x - 18 \rangle^0$$
 (1)

$$M = R_1 x - 40\langle x - 4 \rangle^1 + 30\langle x - 8 \rangle^1 + R_2 \langle x - 14 \rangle^1 - 60\langle x - 18 \rangle^1$$
 (2)

for $x = 18^+$ V = 0 and M = 0 Eqs. (1) and (2) give

$$0 = R_1 - 40 + 30 + R_2 - 60 \quad \Rightarrow \quad R_1 + R_2 = 70 \tag{3}$$

$$0 = R_1(18) - 40(14) + 30(10) + 4R_2 \quad \Rightarrow \quad 9R_1 + 2R_2 = 130 \tag{4}$$

Solve (3) and (4) simultaneously to get $R_1 = -1.43$ lbf, $R_2 = 71.43$ lbf. Ans.

From Eqs. (1) and (2), at $x = 0^+$, $V = R_1 = -1.43$ lbf, M = 0

$$x = 4^+$$
: $V = -1.43 - 40 = -41.43$, $M = -1.43x$

$$x = 8^+$$
: $V = -1.43 - 40 + 30 = -11.43$

$$M = -1.43(8) - 40(8 - 4)^{1} = -171.44$$

$$x = 14^+$$
: $V = -1.43 - 40 + 30 + 71.43 = 60$

$$M = -1.43(14) - 40(14 - 4) + 30(14 - 8) = -240.$$

 $x = 18^+$: V = 0, M = 0 See curves of V and M in Prob. 3-3 solution.

(b)
$$q = R_0 \langle x \rangle^{-1} - M_0 \langle x \rangle^{-2} - 2000 \langle x - 0.2 \rangle^{-1} - 4000 \langle x - 0.35 \rangle^0 + 4000 \langle x - 0.5 \rangle^0$$

$$V = R_0 - M_0 \langle x \rangle^{-1} - 2000 \langle x - 0.2 \rangle^0 - 4000 \langle x - 0.35 \rangle^1 + 4000 \langle x - 0.5 \rangle^1$$
 (1)

$$M = R_0 x - M_0 - 2000 \langle x - 0.2 \rangle^1 - 2000 \langle x - 0.35 \rangle^2 + 2000 \langle x - 0.5 \rangle^2$$
 (2)

at $x = 0.5^+$ m, V = M = 0, Eqs. (1) and (2) give

$$R_0 - 2000 - 4000(0.5 - 0.35) = 0 \implies R_1 = 2600 \text{ N} = 2.6 \text{ kN}$$
 Ans.

$$R_0(0.5) - M_0 - 2000(0.5 - 0.2) - 2000(0.5 - 0.35)^2 = 0$$

with $R_0 = 2600 \text{ N}$, $M_0 = 655 \text{ N} \cdot \text{m}$ Ans.

With R_0 and M_0 , Eqs. (1) and (2) give the same V and M curves as Prob. 3-3 (note for V, $M_0\langle x\rangle^{-1}$ has no physical meaning).

(c)
$$q = R_1 \langle x \rangle^{-1} - 1000 \langle x - 6 \rangle^{-1} + R_2 \langle x - 10 \rangle^{-1}$$
$$V = R_1 - 1000 \langle x - 6 \rangle^0 + R_2 \langle x - 10 \rangle^0$$

$$M = R_1 x - 1000 (x - 6)^1 + R_2 (x - 10)^1$$
(2)

(1)

at $x = 10^+$ ft, V = M = 0, Eqs. (1) and (2) give

$$R_1 - 1000 + R_2 = 0 \implies R_1 + R_2 = 1000$$

$$10R_1 - 1000(10 - 6) = 0$$
 \Rightarrow $R_1 = 400 \,\text{lbf},$ $R_2 = 1000 - 400 = 600 \,\text{lbf}$

$$0 \le x \le 6$$
: $V = 400 \, \text{lbf}, \quad M = 400 x$

$$6 \le x \le 10$$
: $V = 400 - 1000(x - 6)^0 = 600 \text{ lbf}$

$$M = 400x - 1000(x - 6) = 6000 - 600x$$

See curves of Prob. 3-3 solution.

(d)
$$q = R_1 \langle x \rangle^{-1} - 1000 \langle x - 2 \rangle^{-1} - 2000 \langle x - 8 \rangle^{-1} + R_2 \langle x - 10 \rangle^{-1}$$

$$V = R_1 - 1000\langle x - 2 \rangle^0 - 2000\langle x - 8 \rangle^0 + R_2\langle x - 10 \rangle^0$$
 (1)

$$M = R_1 x - 1000 \langle x - 2 \rangle^1 - 2000 \langle x - 8 \rangle^1 + R_2 \langle x - 10 \rangle^1$$
 (2)

At
$$x = 10^+$$
, $V = M = 0$ from Eqs. (1) and (2)
 $R_1 - 1000 - 2000 + R_2 = 0 \implies R_1 + R_2 = 3000$
 $10R_1 - 1000(10 - 2) - 2000(10 - 8) = 0 \implies R_1 = 1200 \,\text{lbf},$
 $R_2 = 3000 - 1200 = 1800 \,\text{lbf}$

$$0 \le x \le 2$$
: $V = 1200 \, \text{lbf}, M = 1200 x \, \text{lbf} \cdot \text{ft}$

$$2 \le x \le 8$$
: $V = 1200 - 1000 = 200 \,\text{lbf}$
 $M = 1200x - 1000(x - 2) = 200x + 2000 \,\text{lbf} \cdot \text{ft}$

$$8 \le x \le 10$$
: $V = 1200 - 1000 - 2000 = -1800 \,\text{lbf}$
 $M = 1200x - 1000(x - 2) - 2000(x - 8) = -1800x + 18\,000 \,\text{lbf} \cdot \text{ft}$

Plots are the same as in Prob. 3-3.

(e)
$$q = R_1 \langle x \rangle^{-1} - 400 \langle x - 4 \rangle^{-1} + R_2 \langle x - 7 \rangle^{-1} - 800 \langle x - 10 \rangle^{-1}$$

$$V = R_1 - 400 \langle x - 4 \rangle^0 + R_2 \langle x - 7 \rangle^0 - 800 \langle x - 10 \rangle^0$$

$$M = R_1 x - 400 \langle x - 4 \rangle^1 + R_2 \langle x - 7 \rangle^1 - 800 \langle x - 10 \rangle^1$$
(2)

at $x = 10^+$, V = M = 0

$$R_1 - 400 + R_2 - 800 = 0 \Rightarrow R_1 + R_2 = 1200$$
 (3)

$$10R_1 - 400(6) + R_2(3) = 0 \quad \Rightarrow \quad 10R_1 + 3R_2 = 2400 \tag{4}$$

Solve Eqs. (3) and (4) simultaneously: $R_1 = -171.4$ lbf, $R_2 = 1371.4$ lbf

$$0 \le x \le 4$$
: $V = -171.4 \, \text{lbf}$, $M = -171.4x \, \text{lbf} \cdot \text{ft}$
 $4 \le x \le 7$: $V = -171.4 - 400 = -571.4 \, \text{lbf}$
 $M = -171.4x - 400(x - 4) \, \text{lbf} \cdot \text{ft} = -571.4x + 1600}$
 $7 \le x \le 10$: $V = -171.4 - 400 + 1371.4 = 800 \, \text{lbf}$
 $M = -171.4x - 400(x - 4) + 1371.4(x - 7) = 800x - 8000 \, \text{lbf} \cdot \text{ft}$

Plots are the same as in Prob. 3-3.

(f)
$$q = R_1 \langle x \rangle^{-1} - 40 \langle x \rangle^0 + 40 \langle x - 8 \rangle^0 + R_2 \langle x - 10 \rangle^{-1} - 320 \langle x - 15 \rangle^{-1} + R_3 \langle x - 20 \rangle$$

 $V = R_1 - 40x + 40 \langle x - 8 \rangle^1 + R_2 \langle x - 10 \rangle^0 - 320 \langle x - 15 \rangle^0 + R_3 \langle x - 20 \rangle^0$ (1)
 $M = R_1 x - 20x^2 + 20 \langle x - 8 \rangle^2 + R_2 \langle x - 10 \rangle^1 - 320 \langle x - 15 \rangle^1 + R_3 \langle x - 20 \rangle^1$ (2)
 $M = 0$ at $x = 8$ in $\therefore 8R_1 - 20(8)^2 = 0 \Rightarrow R_1 = 160$ lbf
at $x = 20^+$, V and $M = 0$

$$160 - 40(20) + 40(12) + R_2 - 320 + R_3 = 0 \Rightarrow R_2 + R_3 = 480$$

$$160(20) - 20(20)^2 + 20(12)^2 + 10R_2 - 320(5) = 0 \Rightarrow R_2 = 352 \text{ lbf}$$

$$R_3 = 480 - 352 = 128 \text{ lbf}$$

$$0 \le x \le 8$$
: $V = 160 - 40x$ lbf, $M = 160x - 20x^2$ lbf · in $8 \le x \le 10$: $V = 160 - 40x + 40(x - 8) = -160$ lbf, $M = 160x - 20x^2 + 20(x - 8)^2 = 1280 - 160x$ lbf · in $10 \le x \le 15$: $V = 160 - 40x + 40(x - 8) + 352 = 192$ lbf

$$M = 160x - 20x^2 + 20(x - 8) + 352(x - 10) = 192x - 2240$$

$$15 \le x \le 20: \quad V = 160 - 40x + 40(x - 8) + 352 - 320 = -128 \,\text{lbf}$$

$$M = 160x - 20x^2 - 20(x - 8) + 352(x - 10) - 320(x - 15)$$

$$= -128x + 2560$$

Plots of *V* and *M* are the same as in Prob. 3-3.

3-5 Solution depends upon the beam selected.

3-6

(a) Moment at center, $x_c = (l - 2a)/2$

$$M_c = \frac{w}{2} \left\lceil \frac{l}{2} (l - 2a) - \left(\frac{l}{2}\right)^2 \right\rceil = \frac{wl}{2} \left(\frac{l}{4} - a\right)$$

At reaction, $|M_r| = wa^2/2$

a = 2.25, l = 10 in, w = 100 lbf/in

$$M_c = \frac{100(10)}{2} \left(\frac{10}{4} - 2.25 \right) = 125 \text{ lbf} \cdot \text{in}$$

$$M_r = \frac{100(2.25^2)}{2} = 253.1 \text{ lbf} \cdot \text{in}$$
 Ans.

(b) Minimum occurs when $M_c = |M_r|$

$$\frac{wl}{2}\left(\frac{l}{4} - a\right) = \frac{wa^2}{2} \implies a^2 + al - 0.25l^2 = 0$$

Taking the positive root

$$a = \frac{1}{2} \left[-l + \sqrt{l^2 + 4(0.25l^2)} \right] = \frac{l}{2} \left(\sqrt{2} - 1 \right) = 0.2071l$$
 Ans.

for l = 10 in and w = 100 lbf, $M_{\min} = (100/2)[(0.2071)(10)]^2 = 214$ lbf · in

3-7 For the *i*th wire from bottom, from summing forces vertically

(a)
$$\int_{W}^{T_{i}} \int_{iW}^{T_{i}} T_{i} = (i+1)W$$

From summing moments about point a,

$$\sum M_a = W(l - x_i) - iWx_i = 0$$

Giving,

$$x_i = \frac{l}{i+1}$$

So

$$W = \frac{l}{1+1} = \frac{l}{2}$$

$$x = \frac{l}{2+1} = \frac{l}{3}$$

$$y = \frac{l}{3+1} = \frac{l}{4}$$

$$z = \frac{l}{4+1} = \frac{l}{5}$$

(b) With straight rigid wires, the mobile is not stable. Any perturbation can lead to all wires becoming collinear. Consider a wire of length *l* bent at its string support:

$$\sum_{W} M_{a} = 0$$

$$\sum_{iW} M_{a} = \frac{iWl}{i+1} \cos \alpha - \frac{ilW}{i+1} \cos \beta = 0$$

$$\frac{iWl}{i+1} (\cos \alpha - \cos \beta) = 0$$

Moment vanishes when $\alpha = \beta$ for any wire. Consider a ccw rotation angle β , which makes $\alpha \to \alpha + \beta$ and $\beta \to \alpha - \beta$

$$M_a = \frac{iWl}{i+1} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$
$$= \frac{2iWl}{i+1} \sin\alpha \sin\beta \doteq \frac{2iWl\beta}{i+1} \sin\alpha$$

There exists a correcting moment of opposite sense to arbitrary rotation β . An equation for an upward bend can be found by changing the sign of W. The moment will no longer be correcting. A curved, convex-upward bend of wire will produce stable equilibrium too, but the equation would change somewhat.

3-8

$$C = \frac{12+6}{2} = 9$$

$$CD = \frac{12 - 6}{2} = 3$$

$$R = \sqrt{3^2 + 4^2} = 5$$

$$\sigma_1 = 5 + 9 = 14$$

$$\sigma_2 = 9 - 5 = 4$$

23

$$\phi_p = \frac{1}{2} \tan^{-1} \left(\frac{4}{3} \right) = 26.6^{\circ} \text{ cw}$$

$$\tau_1 = R = 5$$
, $\phi_s = 45^\circ - 26.6^\circ = 18.4^\circ \text{ ccw}$

(b)
$$\tau^{\text{cw}}$$
 $(9, 5^{\text{cw}})$ T_1 T_2 T_3 T_4 T_4 T_5 T_5 T_6 T_7 T_7 T_8 T

$$C = \frac{9+16}{2} = 12.5$$

$$CD = \frac{16-9}{2} = 3.5$$

$$R = \sqrt{5^2 + 3.5^2} = 6.10$$

$$\sigma_1 = 6.1 + 12.5 = 18.6$$

$$\phi_p = \frac{1}{2} \tan^{-1} \frac{5}{3.5} = 27.5^{\circ} \text{ ccw}$$

$$\sigma_2 = 12.5 - 6.1 = 6.4$$

$$\tau_1 = R = 6.10, \quad \phi_s = 45^\circ - 27.5^\circ = 17.5^\circ \text{ cw}$$

$$C = \frac{24 + 10}{2} = 17$$

$$CD = \frac{24 - 10}{2} = 7$$

$$R = \sqrt{7^2 + 6^2} = 9.22$$

$$\sigma_1 = 17 + 9.22 = 26.22$$

$$\sigma_2 = 17 - 9.22 = 7.78$$

$$\phi_p = \frac{1}{2} \left[90 + \tan^{-1} \frac{7}{6} \right] = 69.7^{\circ} \text{ ccw}$$

$$\tau_1 = R = 9.22$$
, $\phi_s = 69.7^{\circ} - 45^{\circ} = 24.7^{\circ} \text{ ccw}$

(d)

$$C = \frac{9+19}{2} = 14$$

$$CD = \frac{19 - 9}{2} = 5$$

$$R = \sqrt{5^2 + 8^2} = 9.434$$

$$\sigma_1 = 14 + 9.43 = 23.43$$

$$\sigma_2 = 14 - 9.43 = 4.57$$

$$\phi_p = \frac{1}{2} \left[90 + \tan^{-1} \frac{5}{8} \right] = 61.0^{\circ} \text{ cw}$$

$$\tau_1 = R = 9.434, \quad \phi_s = 61^\circ - 45^\circ = 16^\circ \text{ cw}$$

(a)

$$C = \frac{12 - 4}{2} = 4$$

$$CD = \frac{12+4}{2} = 8$$

$$R = \sqrt{8^2 + 7^2} = 10.63$$

$$\sigma_1 = 4 + 10.63 = 14.63$$

$$\sigma_2 = 4 - 10.63 = -6.63$$

$$\phi_p = \frac{1}{2} \left[90 + \tan^{-1} \frac{8}{7} \right] = 69.4^{\circ} \text{ ccw}$$

$$\tau_1 = R = 10.63, \quad \phi_s = 69.4^{\circ} - 45^{\circ} = 24.4^{\circ} \text{ ccw}$$

(b)

$$C = \frac{6-5}{2} = 0.5$$

$$CD = \frac{6+5}{2} = 5.5$$

$$R = \sqrt{5.5^2 + 8^2} = 9.71$$

$$\sigma_1 = 0.5 + 9.71 = 10.21$$

$$\sigma_2 = 0.5 - 9.71 = -9.21$$

$$\phi_p = \frac{1}{2} \tan^{-1} \frac{8}{5.5} = 27.75^{\circ} \text{ ccw}$$

 $\tau_1 = R = 9.71$, $\phi_s = 45^\circ - 27.75^\circ = 17.25^\circ \text{ cw}$

(c) τ_1^{cw} $(-8, 6^{cw})$ σ_2 D C R $(7, 6^{ccw})$ y

$$C = \frac{-8+7}{2} = -0.5$$

$$CD = \frac{8+7}{2} = 7.5$$

$$R = \sqrt{7.5^2 + 6^2} = 9.60$$

$$\sigma_1 = 9.60 - 0.5 = 9.10$$

$$\sigma_1 = 9.66 \quad 6.5 = 9.16$$

$$\sigma_2 = -0.5 - 9.6 = -10.1$$

$$\phi_p = \frac{1}{2} \left[90 + \tan^{-1} \frac{7.5}{6} \right] = 70.67^{\circ} \text{ cw}$$

$$\tau_1 = R = 9.60, \quad \phi_s = 70.67^{\circ} - 45^{\circ} = 25.67^{\circ} \text{ cw}$$

$$C = \frac{9-6}{2} = 1.5$$

$$CD = \frac{9+6}{2} = 7.5$$

$$R = \sqrt{7.5^2 + 3^2} = 8.078$$

$$\sigma_1 = 1.5 + 8.078 = 9.58$$
 $\sigma_2 = 1.5 - 8.078 = -6.58$

$$\phi_p = \frac{1}{2} \tan^{-1} \frac{3}{7.5} = 10.9^{\circ} \text{ cw}$$

$$\tau_1 = R = 8.078$$
, $\phi_s = 45^{\circ} - 10.9^{\circ} = 34.1^{\circ}$ ccw

(a)

$$C = \frac{20 - 10}{2} = 5$$

$$CD = \frac{20 + 10}{2} = 15$$

$$R = \sqrt{15^2 + 8^2} = 17$$

$$\sigma_1 = 5 + 17 = 22$$

$$\sigma_2 = 5 - 17 = -12$$

$$\tau_1 = R = 17$$
, $\phi_s = 45^{\circ} - 14.04^{\circ} = 30.96^{\circ} \text{ ccw}$

$$C = \frac{30 - 10}{2} = 10$$

$$CD = \frac{30 + 10}{2} = 20$$

$$R = \sqrt{20^2 + 10^2} = 22.36$$

$$\sigma_1 = 10 + 22.36 = 32.36$$

$$\sigma_2 = 10 - 22.36 = -12.36$$

$$\phi_p = \frac{1}{2} \tan^{-1} \frac{10}{20} = 13.28^{\circ} \text{ ccw}$$

$$\tau_1 = R = 22.36$$
, $\phi_s = 45^{\circ} - 13.28^{\circ} = 31.72^{\circ}$ cw

$$C = \frac{-10 + 18}{2} = 4$$

$$CD = \frac{10 + 18}{2} = 14$$

$$R = \sqrt{14^2 + 9^2} = 16.64$$

$$\sigma_1 = 4 + 16.64 = 20.64$$

$$\sigma_2 = 4 - 16.64 = -12.64$$

$$\phi_p = \frac{1}{2} \left[90 + \tan^{-1} \frac{14}{9} \right] = 73.63^{\circ} \text{ cw}$$

$$\tau_1 = R = 16.64, \quad \phi_s = 73.63^\circ - 45^\circ = 28.63^\circ \text{ cw}$$

Chapter 3

29

$$C = \frac{-12 + 22}{2} = 5$$

$$CD = \frac{12 + 22}{2} = 17$$

$$R = \sqrt{17^2 + 12^2} = 20.81$$

$$\sigma_1 = 5 + 20.81 = 25.81$$

$$\sigma_2 = 5 - 20.81 = -15.81$$

$$\phi_p = \frac{1}{2} \left[90 + \tan^{-1} \frac{17}{12} \right] = 72.39^{\circ} \text{ cw}$$

$$\tau_1 = R = 20.81, \quad \phi_s = 72.39^{\circ} - 45^{\circ} = 27.39^{\circ} \text{ cw}$$

3-11

(a)

(b)
$$\tau$$
 $\tau_{1/3}$ $\tau_{1/2}$ $\tau_{1/2}$ $\tau_{2/3}$ σ_2 $\tau_{1/2}$ $\tau_{1/2}$

$$C = \frac{0+10}{2} = 5$$

$$CD = \frac{10 - 0}{2} = 5$$

$$R = \sqrt{5^2 + 4^2} = 6.40$$

$$\sigma_1 = 5 + 6.40 = 11.40$$

$$\sigma_2 = 0$$
, $\sigma_3 = 5 - 6.40 = -1.40$

$$\tau_{1/3} = R = 6.40, \quad \tau_{1/2} = \frac{11.40}{2} = 5.70, \quad \tau_{2/3} = \frac{1.40}{2} = 0.70$$

$$C = \frac{-2 - 8}{2} = -5$$

$$CD = \frac{8-2}{2} = 3$$

$$R = \sqrt{3^2 + 4^2} = 5$$

$$\sigma_1 = -5 + 5 = 0, \quad \sigma_2 = 0$$

$$\sigma_3 = -5 - 5 = -10$$

$$\tau_{1/3} = \frac{10}{2} = 5, \quad \tau_{1/2} = 0, \quad \tau_{2/3} = 5$$

$$C = \frac{10 - 30}{2} = -10$$

$$CD = \frac{10 + 30}{2} = 20$$

$$R = \sqrt{20^2 + 10^2} = 22.36$$

$$\sigma_1 = -10 + 22.36 = 12.36$$

$$\sigma_2 = 0$$

$$\sigma_3 = -10 - 22.36 = -32.36$$

$$\tau_{1/3} = 22.36$$
, $\tau_{1/2} = \frac{12.36}{2} = 6.18$, $\tau_{2/3} = \frac{32.36}{2} = 16.18$

$$\tau_{2/3} = \frac{32.36}{2} = 16.18$$

(a)

$$C = \frac{-80 - 30}{2} = -55$$

$$CD = \frac{80 - 30}{2} = 25$$

$$R = \sqrt{25^2 + 20^2} = 32.02$$

$$\sigma_1 = 0$$

$$\sigma_2 = -55 + 32.02 = -22.98 = -23.0$$

$$\sigma_3 = -55 - 32.0 = -87.0$$

$$\tau_{1/2} = \frac{23}{2} = 11.5$$
, $\tau_{2/3} = 32.0$, $\tau_{1/3} = \frac{87}{2} = 43.5$

$$C = \frac{30 - 60}{2} = -15$$

$$CD = \frac{60 + 30}{2} = 45$$

$$R = \sqrt{45^2 + 30^2} = 54.1$$

$$\sigma_1 = -15 + 54.1 = 39.1$$

$$\sigma_2 = 0$$

$$\sigma_3 = -15 - 54.1 = -69.1$$

$$\tau_{1/3} = \frac{39.1 + 69.1}{2} = 54.1, \quad \tau_{1/2} = \frac{39.1}{2} = 19.6, \quad \tau_{2/3} = \frac{69.1}{2} = 34.6$$

$$C = \frac{40+0}{2} = 20$$

$$CD = \frac{40 - 0}{2} = 20$$

$$R = \sqrt{20^2 + 20^2} = 28.3$$

$$\sigma_1 = 20 + 28.3 = 48.3$$

$$\sigma_2 = 20 - 28.3 = -8.3$$

$$\sigma_3 = \sigma_z = -30$$

$$\tau_{1/3} = \frac{48.3 + 30}{2} = 39.1, \quad \tau_{1/2} = 28.3, \quad \tau_{2/3} = \frac{30 - 8.3}{2} = 10.9$$

$$C = \frac{50}{2} = 25$$

$$CD = \frac{50}{2} = 25$$

$$R = \sqrt{25^2 + 30^2} = 39.1$$

$$\sigma_1 = 25 + 39.1 = 64.1$$

$$\sigma_2 = 25 - 39.1 = -14.1$$

$$\sigma_3 = \sigma_z = -20$$

$$\tau_{1/3} = \frac{64.1 + 20}{2} = 42.1, \quad \tau_{1/2} = 39.1, \quad \tau_{2/3} = \frac{20 - 14.1}{2} = 2.95$$

$$\sigma = \frac{F}{A} = \frac{2000}{(\pi/4)(0.5^2)} = 10\,190\,\text{psi} = 10.19\,\text{kpsi} \quad Ans.$$

$$\delta = \frac{FL}{AE} = \sigma \frac{L}{E} = 10\,190 \frac{72}{30(10^6)} = 0.024\,46\,\text{in} \quad Ans.$$

$$\epsilon_1 = \frac{\delta}{L} = \frac{0.024\,46}{72} = 340(10^{-6}) = 340\mu \quad Ans.$$

From Table A-5, $\nu = 0.292$

$$\epsilon_2 = -\nu \epsilon_1 = -0.292(340) = -99.3\mu$$
 Ans.
 $\Delta d = \epsilon_2 d = -99.3(10^{-6})(0.5) = -49.6(10^{-6})$ in Ans.

3-14 From Table A-5, E = 71.7 GPa

$$\delta = \sigma \frac{L}{E} = 135(10^6) \frac{3}{71.7(10^9)} = 5.65(10^{-3}) \text{ m} = 5.65 \text{ mm}$$
 Ans.

With $\sigma_z = 0$, solve the first two equations of Eq. (3-19) simultaneously. Place E on the left-hand side of both equations, and using Cramer's rule,

$$\sigma_{x} = \frac{\begin{vmatrix} E\epsilon_{x} & -\nu \\ E\epsilon_{y} & 1 \end{vmatrix}}{\begin{vmatrix} 1 & -\nu \\ -\nu & 1 \end{vmatrix}} = \frac{E\epsilon_{x} + \nu E\epsilon_{y}}{1 - \nu^{2}} = \frac{E(\epsilon_{x} + \nu \epsilon_{y})}{1 - \nu^{2}}$$

Likewise,

$$\sigma_y = \frac{E(\epsilon_y + \nu \epsilon_x)}{1 - \nu^2}$$

From Table A-5, E = 207 GPa and $\nu = 0.292$. Thus,

$$\sigma_x = \frac{E(\epsilon_x + \nu \epsilon_y)}{1 - \nu^2} = \frac{207(10^9)[0.0021 + 0.292(-0.00067)]}{1 - 0.292^2} (10^{-6}) = 431 \,\text{MPa} \quad Ans.$$

$$\sigma_y = \frac{207(10^9)[-0.00067 + 0.292(0.0021)]}{1 - 0.292^2}(10^{-6}) = -12.9 \,\text{MPa} \quad Ans.$$

3-16 The engineer has assumed the stress to be uniform. That is,

$$\sum F_t = -F\cos\theta + \tau A = 0 \quad \Rightarrow \quad \tau = \frac{F}{A}\cos\theta$$

When failure occurs in shear

$$S_{su} = \frac{F}{A}\cos\theta$$

The uniform stress assumption is common practice but is not exact. If interested in the details, see p. 570 of 6th edition.

3-17 From Eq. (3-15)

$$\sigma^{3} - (-2+6-4)\sigma^{2} + [-2(6) + (-2)(-4) + 6(-4) - 3^{2} - 2^{2} - (-5)^{2}]\sigma$$
$$-[-2(6)(-4) + 2(3)(2)(-5) - (-2)(2)^{2} - 6(-5)^{2} - (-4)(3)^{2}] = 0$$
$$\sigma^{3} - 66\sigma + 118 = 0$$

Roots are: 7.012, 1.89, -8.903 kpsi Ans.

$$\tau_{1/2} = \frac{7.012 - 1.89}{2} = 2.56 \text{ kpsi}$$

$$\tau_{2/3} = \frac{8.903 + 1.89}{2} = 5.40 \,\mathrm{kpsi}$$

$$\tau_{\text{max}} = \tau_{1/3} = \frac{8.903 + 7.012}{2} = 7.96 \text{ kpsi}$$
 Ans.

Note: For Probs. 3-17 to 3-19, one can also find the eigenvalues of the matrix

$$[\sigma] = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & \sigma_z \end{bmatrix}$$

for the principal stresses

3-18 From Eq. (3-15)

$$\sigma^{3} - (10 + 0 + 10)\sigma^{2} + \left[10(0) + 10(10) + 0(10) - 20^{2} - \left(-10\sqrt{2}\right)^{2} - 0^{2}\right]\sigma$$
$$-\left[10(0)(10) + 2(20)\left(-10\sqrt{2}\right)(0) - 10\left(-10\sqrt{2}\right)^{2} - 0(0)^{2} - 10(20)^{2}\right] = 0$$
$$\sigma^{3} - 20\sigma^{2} - 500\sigma + 6000 = 0$$

Roots are: 30, 10, -20 MPa Ans.

$$\tau_{1/2} = \frac{30-10}{2} = 10\,\text{MPa}$$

$$\tau_{2/3} = \frac{10 + 20}{2} = 15 \,\text{MPa}$$

$$\tau_{max} = \tau_{1/3} = \frac{30 + 20}{2} = 25 \text{ MPa}$$
 Ans.

3-19 From Eq. (3-15)

$$\sigma^{3} - (1+4+4)\sigma^{2} + [1(4)+1(4)+4(4)-2^{2}-(-4)^{2}-(-2)^{2}]\sigma$$
$$-[1(4)(4)+2(2)(-4)(-2)-1(-4)^{2}-4(-2)^{2}-4(2)^{2}] = 0$$
$$\sigma^{3} - 9\sigma^{2} = 0$$

Roots are: 9, 0, 0 kpsi

$$\tau_{2/3} = 0$$
, $\tau_{1/2} = \tau_{1/3} = \tau_{\text{max}} = \frac{9}{2} = 4.5 \text{ kpsi}$ Ans.

3-20

(a)
$$R_1 = \frac{c}{l}F$$
 $M_{\text{max}} = R_1 a = \frac{ac}{l}F$
$$\sigma = \frac{6M}{bh^2} = \frac{6}{bh^2} \frac{ac}{l}F \implies F = \frac{\sigma bh^2 l}{6ac} \quad Ans.$$

(b)
$$\frac{F_m}{F} = \frac{(\sigma_m/\sigma)(b_m/b)(h_m/h)^2(l_m/l)}{(a_m/a)(c_m/c)} = \frac{1(s)(s)^2(s)}{(s)(s)} = s^2$$
 Ans.

For equal stress, the model load varies by the square of the scale factor.

3-21

$$R_{1} = \frac{wl}{2}, \quad M_{\text{max}}|_{x=l/2} = \frac{w}{2} \frac{l}{2} \left(l - \frac{l}{2} \right) = \frac{wl^{2}}{8}$$

$$\sigma = \frac{6M}{bh^{2}} = \frac{6}{bh^{2}} \frac{wl^{2}}{8} = \frac{3Wl}{4bh^{2}} \quad \Rightarrow \quad W = \frac{4}{3} \frac{\sigma bh^{2}}{l} \quad Ans.$$

$$\frac{W_{m}}{W} = \frac{(\sigma_{m}/\sigma)(b_{m}/b)(h_{m}/h)^{2}}{l_{m}/l} = \frac{1(s)(s)^{2}}{s} = s^{2} \quad Ans.$$

$$\frac{w_{m}l_{m}}{wl} = s^{2} \quad \Rightarrow \quad \frac{w_{m}}{w} = \frac{s^{2}}{s} = s \quad Ans.$$

For equal stress, the model load w varies linearily with the scale factor.

(a) Can solve by iteration or derive equations for the general case.

Find maximum moment under wheel W_3

$$W_T = \sum W$$
 at centroid of W's

$$R_A = \frac{l - x_3 - d_3}{l} W_T$$

Under wheel 3

$$M_3 = R_A x_3 - W_1 a_{13} - W_2 a_{23} = \frac{(l - x_3 - d_3)}{l} W_T x_3 - W_1 a_{13} - W_2 a_{23}$$

For maximum,
$$\frac{dM_3}{dx_3} = 0 = (l - d_3 - 2x_3) \frac{W_T}{l} \implies x_3 = \frac{l - d_3}{2}$$

substitute into
$$M$$
, $\Rightarrow M_3 = \frac{(l - d_3)^2}{4l} W_T - W_1 a_{13} - W_2 a_{23}$

This means the midpoint of d_3 intersects the midpoint of the beam

For wheel
$$i$$
 $x_i = \frac{l - d_i}{2}$, $M_i = \frac{(l - d_i)^2}{4l} W_T - \sum_{i=1}^{i-1} W_j a_{ji}$

Note for wheel 1: $\sum W_i a_{ii} = 0$

$$W_T = 104.4$$
, $W_1 = W_2 = W_3 = W_4 = \frac{104.4}{4} = 26.1 \text{ kip}$

Wheel 1:
$$d_1 = \frac{476}{2} = 238 \text{ in}, \quad M_1 = \frac{(1200 - 238)^2}{4(1200)} (104.4) = 20128 \text{ kip} \cdot \text{in}$$

Wheel 2:
$$d_2 = 238 - 84 = 154 \text{ in}$$

$$M_2 = \frac{(1200 - 154)^2}{4(1200)}(104.4) - 26.1(84) = 21605 \,\mathrm{kip} \cdot \mathrm{in} = M_{\mathrm{max}}$$

Check if all of the wheels are on the rail

- **(b)** $x_{\text{max}} = 600 77 = 523 \text{ in}$
- (c) See above sketch.
- (d) inner axles

(a)

$$A_a = A_b = 0.25(1.5) = 0.375 \text{ in}^2$$

 $A = 3(0.375) = 1.125 \text{ in}^2$

$$\bar{y} = \frac{2(0.375)(0.75) + 0.375(0.5)}{1.125} = 0.667 \text{ in}$$

$$I_a = \frac{0.25(1.5)^3}{12} = 0.0703 \,\text{in}^4$$

$$I_b = \frac{1.5(0.25)^3}{12} = 0.00195 \,\text{in}^4$$

$$I_1 = 2[0.0703 + 0.375(0.083)^2] + [0.00195 + 0.375(0.167)^2] = 0.158 \text{ in}^4$$
 Ans.

$$\sigma_A = \frac{10\,000(0.667)}{0.158} = 42(10)^3 \,\text{psi}$$
 Ans.

$$\sigma_B = \frac{10\,000(0.667 - 0.375)}{0.158} = 18.5(10)^3 \,\text{psi}$$
 Ans.

$$\sigma_C = \frac{10\,000(0.167 - 0.125)}{0.158} = 2.7(10)^3 \,\text{psi}$$
 Ans.

$$\sigma_D = -\frac{10\,000(0.833)}{0.158} = -52.7(10)^3 \,\text{psi}$$
 Ans.

Here we treat the hole as a negative area.

$$A_a = 1.732 \text{ in}^2$$

$$A_b = 1.134 \left(\frac{0.982}{2} \right) = 0.557 \,\text{in}^2$$

$$\bar{A} = 1.732 - 0.557 = 1.175 \text{ in}^2$$

$$\bar{y} = \frac{1.732(0.577) - 0.557(0.577)}{1.175} = 0.577 \text{ in} \quad Ans.$$

$$I_a = \frac{bh^3}{36} = \frac{2(1.732)^3}{36} = 0.289 \text{ in}^4$$

$$I_b = \frac{1.134(0.982)^3}{36} = 0.0298 \text{ in}^4$$

$$I_1 = I_a - I_b = 0.289 - 0.0298 = 0.259 \text{ in}^4 \quad Ans.$$

because the centroids are coincident.

$$\sigma_A = \frac{10\,000(0.577)}{0.259} = 22.3(10)^3 \text{ psi} \quad Ans.$$

$$\sigma_B = \frac{10\,000(0.327)}{0.259} = 12.6(10)^3 \text{ psi} \quad Ans.$$

$$\sigma_C = -\frac{10\,000(0.982 - 0.327)}{0.259} = -25.3(10)^3 \text{ psi} \quad Ans.$$

$$\sigma_D = -\frac{10\,000(1.155)}{0.259} = -44.6(10)^3 \text{ psi} \quad Ans.$$

(c) Use two negative areas.

$$A_a = 1 \text{ in}^2$$
, $A_b = 9 \text{ in}^2$, $A_c = 16 \text{ in}^2$, $A = 16 - 9 - 1 = 6 \text{ in}^2$;
 $\bar{y}_a = 0.25 \text{ in}$, $\bar{y}_b = 2.0 \text{ in}$, $\bar{y}_c = 2 \text{ in}$
 $\bar{y} = \frac{16(2) - 9(2) - 1(0.25)}{6} = 2.292 \text{ in}$ Ans.
 $c_1 = 4 - 2.292 = 1.708 \text{ in}$
 $I_a = \frac{2(0.5)^3}{12} = 0.020 83 \text{ in}^4$
 $I_b = \frac{3(3)^3}{12} = 6.75 \text{ in}^4$
 $I_c = \frac{4(4)^3}{12} = 21.333 \text{ in}^4$

$$I_{1} = [21.333 + 16(0.292)^{2}] - [6.75 + 9(0.292)^{2}]$$

$$- [0.02083 + 1(2.292 - 0.25)^{2}]$$

$$= 10.99 \text{ in}^{4} \quad Ans.$$

$$\sigma_{A} = \frac{10000(2.292)}{10.99} = 2086 \text{ psi} \quad Ans.$$

$$\sigma_{B} = \frac{10000(2.292 - 0.5)}{10.99} = 1631 \text{ psi} \quad Ans.$$

$$\sigma_{C} = -\frac{10000(1.708 - 0.5)}{10.99} = -1099 \text{ psi} \quad Ans.$$

$$\sigma_{D} = -\frac{10000(1.708)}{10.99} = -1554 \text{ psi} \quad Ans.$$

(d) Use a as a negative area.

$$A_a = 6.928 \text{ in}^2, \quad A_b = 16 \text{ in}^2, \quad A = 9.072 \text{ in}^2;$$

$$\bar{y}_a = 1.155 \text{ in}, \quad \bar{y}_b = 2 \text{ in}$$

$$\bar{y} = \frac{2(16) - 1.155(6.928)}{9.072} = 2.645 \text{ in} \quad Ans.$$

$$c_1 = 4 - 2.645 = 1.355 \text{ in}$$

$$I_a = \frac{bh^3}{36} = \frac{4(3.464)^3}{36} = 4.618 \text{ in}^4$$

$$I_b = \frac{4(4)^3}{12} = 21.33 \text{ in}^4$$

$$I_1 = [21.33 + 16(0.645)^2] - [4.618 + 6.928(1.490)^2]$$

$$= 7.99 \text{ in}^4 \quad Ans.$$

$$\sigma_A = \frac{10000(2.645)}{7.99} = 3310 \text{ psi} \quad Ans.$$

$$\sigma_B = -\frac{10000(3.464 - 2.645)}{7.99} = -1025 \text{ psi} \quad Ans.$$

$$\sigma_C = -\frac{10000(1.355)}{7.99} = -1696 \text{ psi} \quad Ans.$$

(e)
$$C_1 = 1.422^n$$
 $C_2 = 2.828^n$
 $C_3 = 1.422^n$
 $C_4 = 1.422^n$
 $C_5 = 2.828^n$
 $C_5 = 2.828^n$
 $C_6 = 1.422^n$
 $C_6 = 1.$

(f) Let
$$a = \text{total area}$$

$$A = 1.5(3) - 1(1.25) = 3.25 \text{ in}^{2}$$

$$I = I_{a} - 2I_{b} = \frac{1}{12}(1.5)(3)^{3} - \frac{1}{12}(1.25)(1)^{3}$$

$$= 3.271 \text{ in}^{4} \quad Ans.$$

$$\sigma_{A} = \frac{10\,000(1.5)}{3.271} = 4586\,\text{psi}, \quad \sigma_{D} = -4586\,\text{psi}$$

$$\sigma_{B} = \frac{10\,000(0.5)}{3.271} = 1529\,\text{psi}, \quad \sigma_{C} = -1529\,\text{psi}$$

3-24

(a) The moment is maximum and constant between A and B

$$M = -50(20) = -1000 \text{ lbf} \cdot \text{in}, \quad I = \frac{1}{12}(0.5)(2)^3 = 0.3333 \text{ in}^4$$

$$\rho = \left| \frac{EI}{M} \right| = \frac{1.6(10^6)(0.3333)}{1000} = 533.3 \text{ in}$$

$$(x, y) = (30, -533.3) \text{ in} \quad Ans.$$

(b) The moment is maximum and constant between A and B

$$M = 50(5) = 250 \text{ lbf} \cdot \text{in}, \quad I = 0.3333 \text{ in}^4$$

$$\rho = \frac{1.6(10^6)(0.3333)}{250} = 2133 \text{ in} \quad Ans.$$

$$(x, y) = (20, 2133) \text{ in} \quad Ans.$$

120 lbf/in

(c)

$$I = \frac{1}{12}(0.75)(1.5)^3 = 0.2109 \,\mathrm{in}^4$$

$$A = 0.75(1.5) = 1.125 \text{ in}$$

 M_{max} is at A. At the bottom of the section,

$$\sigma_{\text{max}} = \frac{Mc}{I} = \frac{4000(0.75)}{0.2109} = 14\ 225\ \text{psi}$$
 Ans.

Due to V, τ_{max} constant is between A and Bat v = 0

$$\tau_{\text{max}} = \frac{3}{2} \frac{V}{A} = \frac{3}{2} \frac{667}{1.125} = 889 \,\text{psi}$$
 Ans.

$$I = \frac{1}{12}(1)(2)^3 = 0.6667 \,\text{in}^4$$

 M_{max} is at A at the top of the beam

$$\sigma_{\text{max}} = \frac{8000(1)}{0.6667} = 12\,000\,\text{psi}$$
 Ans.

 $|V_{\text{max}}| = 1000 \,\text{lbf}$ from O to B at y = 0

$$\tau_{\text{max}} = \frac{3}{2} \frac{V}{A} = \frac{3}{2} \frac{1000}{(2)(1)} = 750 \,\text{psi}$$
 Ans.

$$I = \frac{1}{12}(0.75)(2)^3 = 0.5 \text{ in}^4$$

$$M_1 = -\frac{1}{2}600(5) = -1500 \,\text{lbf} \cdot \text{in} = M_3$$

$$M_2 = -1500 + \frac{1}{2}(900)(7.5) = 1875 \,\text{lbf} \cdot \text{in}$$

 $M_{\rm max}$ is at span center. At the bottom of the

$$\sigma_{\text{max}} = \frac{1875(1)}{0.5} = 3750 \,\text{psi}$$
 Ans.

At
$$A$$
 and B at $y = 0$

$$\tau_{\text{max}} = \frac{3}{2} \frac{900}{(0.75)(2)} = 900 \,\text{psi}$$
 Ans.

$$I = \frac{1}{12}(1)(2)^3 = 0.6667 \,\text{in}^4$$

$$M_1 = -\frac{600}{2}(6) = -1800 \,\text{lbf} \cdot \text{in}$$

$$M_2 = -1800 + \frac{1}{2}750(7.5) = 1013 \text{ lbf} \cdot \text{in}$$

At A, top of beam

$$\sigma_{\text{max}} = \frac{1800(1)}{0.6667} = 2700 \,\text{psi}$$
 Ans.

At
$$A$$
, $v = 0$

$$\tau_{\text{max}} = \frac{3}{2} \frac{750}{(2)(1)} = 563 \,\text{psi}$$
 Ans.

3-26

$$M_{\rm max} = \frac{wl^2}{8} \quad \Rightarrow \quad \sigma_{\rm max} = \frac{wl^2c}{8I} \quad \Rightarrow \quad w = \frac{8\sigma I}{cl^2}$$

(a)
$$l = 12(12) = 144 \text{ in}, I = (1/12)(1.5)(9.5)^3 = 107.2 \text{ in}^4$$

$$w = \frac{8(1200)(107.2)}{4.75(144^2)} = 10.4 \text{ lbf/in}$$
 Ans.

(b)
$$l = 48 \text{ in}, I = (\pi/64)(2^4 - 1.25^4) = 0.6656 \text{ in}^4$$

$$w = \frac{8(12)(10^3)(0.6656)}{1(48)^2} = 27.7 \text{ lbf/in}$$
 Ans.

(c)
$$l = 48 \text{ in}, I \doteq (1/12)(2)(3^3) - (1/12)(1.625)(2.625^3) = 2.051 \text{ in}^4$$

$$w = \frac{8(12)(10^3)(2.051)}{1.5(48)^2} = 57.0 \text{ lbf/in}$$
 Ans.

(d)
$$l = 72$$
 in; Table A-6, $I = 2(1.24) = 2.48$ in⁴

$$c_{\text{max}} = 2.158$$
"
$$c_{\text{max}} = 2.158$$
"
$$w = \frac{8(12)(10^3)(2.48)}{2.158(72)^2} = 21.3 \text{ lbf/in} \quad Ans.$$

(e)
$$l = 72$$
 in; Table A-7, $I = 3.85$ in⁴

$$w = \frac{8(12)(10^3)(3.85)}{2(72^2)} = 35.6 \text{ lbf/in} \quad Ans.$$

(f)
$$l = 72 \text{ in}, I = (1/12)(1)(4^3) = 5.333 \text{ in}^4$$

$$w = \frac{8(12)(10^3)(5.333)}{(2)(72)^2} = 49.4 \text{ lbf/in}$$
 Ans.

3-27 (a) Model (c)

$I = \frac{\pi}{64}(0.5^4) = 3.068(10^{-3}) \text{ in}^4$

$$A = \frac{\pi}{4}(0.5^2) = 0.1963 \,\text{in}^2$$

$$\sigma = \frac{Mc}{I} = \frac{218.75(0.25)}{3.068(10^{-3})}$$

$$= 17825 \text{ psi} = 17.8 \text{ kpsi}$$
 Ans.

$$\tau_{\text{max}} = \frac{4}{3} \frac{V}{A} = \frac{4}{3} \frac{500}{0.1963} = 3400 \,\text{psi}$$
 Ans.

(b) Model (d)

$$M_{\text{max}} = 500(0.25) + \frac{1}{2}(500)(0.375)$$

= 218.75 lbf · in

$$V_{\text{max}} = 500 \text{ lbf}$$

Same M and V

$$\therefore \sigma = 17.8 \text{ kpsi}$$
 Ans.

$$\tau_{\text{max}} = 3400 \, \text{psi}$$
 Ans.

3-28

$$q = -F\langle x \rangle^{-1} + p_1 \langle x - l \rangle^0 - \frac{p_1 + p_2}{a} \langle x - l \rangle^1 + \text{ terms for } x > l + a$$

$$V = -F + p_1 \langle x - l \rangle^1 - \frac{p_1 + p_2}{2a} \langle x - l \rangle^2 + \text{ terms for } x > l + a$$

$$M = -Fx + \frac{p_1}{2}\langle x - l \rangle^2 - \frac{p_1 + p_2}{6a}\langle x - l \rangle^3 + \text{ terms for } x > l + a$$

At
$$x = (l + a)^+$$
, $V = M = 0$, terms for $x > l + a = 0$

$$-F + p_1 a - \frac{p_1 + p_2}{2a} a^2 = 0 \quad \Rightarrow \quad p_1 - p_2 = \frac{2F}{a} \tag{1}$$

$$-F(l+a) + \frac{p_1 a^2}{2} - \frac{p_1 + p_2}{6a} a^3 = 0 \quad \Rightarrow \quad 2p_1 - p_2 = \frac{6F(l+a)}{a^2} \tag{2}$$

From (1) and (2)
$$p_1 = \frac{2F}{a^2}(3l + 2a), \quad p_2 = \frac{2F}{a^2}(3l + a)$$
 (3)

From similar triangles
$$\frac{b}{p_2} = \frac{a}{p_1 + p_2} \Rightarrow b = \frac{ap_2}{p_1 + p_2}$$
 (4)

 M_{max} occurs where V = 0

$$M_{\text{max}} = -F(l+a-2b) + \frac{p_1}{2}(a-2b)^2 - \frac{p_1+p_2}{6a}(a-2b)^3$$
$$= -Fl - F(a-2b) + \frac{p_1}{2}(a-2b)^2 - \frac{p_1+p_2}{6a}(a-2b)^3$$

Normally $M_{\text{max}} = -Fl$

The fractional increase in the magnitude is

$$\Delta = \frac{F(a-2b) - (p_1/2)(a-2b)^2 - [(p_1+p_2)/6a](a-2b)^3}{FI}$$
 (5)

For example, consider F = 1500 lbf, a = 1.2 in, l = 1.5 in

(3)
$$p_1 = \frac{2(1500)}{1.2^2} [3(1.5) + 2(1.2)] = 14\,375 \text{ lbf/in}$$

$$p_2 = \frac{2(1500)}{1.2^2} [3(1.5) + 1.2] = 11\,875 \text{ lbf/in}$$
(4)
$$b = 1.2(11\,875)/(14\,375 + 11\,875) = 0.5429 \text{ in}$$

Substituting into (5) yields

$$\Delta = 0.03689$$
 or 3.7% higher than $-Fl$

$$R_1 = \frac{600(15)}{2} + \frac{20}{15}3000 = 8500 \text{ lbf}$$

$$R_2 = \frac{600(15)}{2} - \frac{5}{15}3000 = 3500 \text{ lbf}$$

$$V(lbf)$$

$$0$$

$$-3000$$

$$-3500$$

$$-3500$$

$$a = \frac{3500}{600} = 5.833 \text{ ft}$$

(a)
$$z = \begin{bmatrix} y \\ \hline y \\ \hline \end{bmatrix}$$

$$\bar{y} = \frac{1(12) + 5(12)}{24} = 3$$
 in

$$\bar{y} = \frac{1(12) + 5(12)}{24} = 3 \text{ in}$$

$$I_z = \frac{1}{3}[2(5^3) + 6(3^3) - 4(1^3)] = 136 \text{ in}^4$$

At
$$x = 5$$
 ft, $y = -3$ in,

$$y = -3 \text{ in}, \qquad \sigma_x = -\frac{-15000(12)(-3)}{136} = -3970 \text{ psi}$$

$$y = 5 \text{ in}, \qquad \sigma_x = -\frac{-15000(12)5}{136} = 6620 \text{ psi}$$

At
$$x = 14.17$$
 ft, $y = -3$ in, $\sigma_x = -\frac{20420(12)(-3)}{136} = 5405$ psi

$$y = 5 \text{ in}, \qquad \sigma_x = -\frac{20420(12)5}{136} = -9010 \text{ psi}$$

Max tension = 6620 psi Ans.

Max compression = -9010 psi Ans.

(b) $V_{\text{max}} = 5500 \text{ lbf}$

$$Q_{\text{n.a.}} = \bar{y}A = 2.5(5)(2) = 25 \text{ in}^3$$

$$\tau_{\text{max}} = \frac{VQ}{Ib} = \frac{5500(25)}{136(2)} = 506 \text{ psi} \quad Ans.$$

(c)
$$\tau_{\text{max}} = \frac{|\sigma_{\text{max}}|}{2} = \frac{9010}{2} = 4510 \text{ psi}$$
 Ans.

45 Chapter 3

3-30

3-31 From Prob. 3-30, $R_1 = \frac{c}{l} F = V$, $0 \le x \le a$

$$\tau_{\text{max}} = \frac{3}{2} \frac{V}{bh} = \frac{3}{2} \frac{(c/l)F}{bh} \qquad \therefore h = \frac{3}{2} \frac{Fc}{lb\tau_{\text{max}}} \quad Ans.$$

From Prob. 3-30 =
$$\sqrt{\frac{6Fcx}{lb\sigma_{\text{max}}}}$$
 sub in $x = e$ and equate to h above
$$\frac{3}{2} \frac{Fc}{lb\tau_{\text{max}}} = \sqrt{\frac{6Fce}{lb\sigma_{\text{max}}}}$$

$$\frac{3}{2} \frac{Fc}{lb\tau_{\text{max}}} = \sqrt{\frac{6Fce}{lb\sigma_{\text{max}}}}$$

$$e = \frac{3}{8} \frac{Fc\sigma_{\text{max}}}{lb\tau_{\text{max}}^2}$$
 Ans.

3-32

$$R_{1} = \frac{b}{l}F$$

$$R_{1} = \frac{b}{l}F$$

$$M = \frac{b}{l}Fx$$

$$\sigma_{\max} = \frac{32M}{\pi d^{3}} = \frac{32}{\pi d^{3}} \frac{b}{l}Fx$$

$$d = \left[\frac{32}{\pi} \frac{bFx}{l\sigma_{\max}}\right]^{1/3} \quad 0 \le x \le a \quad Ans.$$

3-33

Square:

$$A_m = (b - t)^2$$

$$T_{\rm sq} = 2A_m t \tau_{\rm all} = 2(b-t)^2 t \tau_{\rm all}$$

Round:

$$A_m = \pi (b - t)^2 / 4$$

$$T_{\rm rd} = 2\pi (b-t)^2 t \tau_{\rm all}/4$$

Ratio of torques

$$\frac{T_{\text{sq}}}{T_{\text{rd}}} = \frac{2(b-t)^2 t \tau_{\text{all}}}{\pi (b-t)^2 t \tau_{\text{all}}/2} = \frac{4}{\pi} = 1.27$$

Twist per unit length square:

$$\theta_{\text{sq}} = \frac{2G\theta_1 t}{t\tau_{\text{all}}} \left(\frac{L}{A}\right)_m = C \left|\frac{L}{A}\right|_m = C \frac{4(b-t)}{(b-t)^2}$$

Round:

$$\theta_{\rm rd} = C \left(\frac{L}{A}\right)_{\rm m} = C \frac{\pi(b-t)}{\pi(b-t)^2/4} = C \frac{4(b-t)}{(b-t)^2}$$

Ratio equals 1, twists are the same.

Note the weight ratio is

$$\frac{W_{\text{sq}}}{W_{\text{rd}}} = \frac{\rho l(b-t)^2}{\rho l \pi (b-t)(t)} = \frac{b-t}{\pi t}$$
 thin-walled assumes $b \ge 20t$

$$= \frac{19}{\pi} = 6.04$$
 with $b = 20t$

$$= 2.86$$
 with $b = 10t$

3-34
$$l = 40 \text{ in}, \tau_{\text{all}} = 11\,500 \text{ psi}, G = 11.5(10^6) \text{ psi}, t = 0.050 \text{ in}$$

$$r_m = r_i + t/2 = r_i + 0.025 \quad \text{for } r_i > 0$$

$$= 0 \qquad \qquad \text{for } r_i = 0$$

$$A_m = (1 - 0.05)^2 - 4\left(r_m^2 - \frac{\pi}{4}r_m^2\right) = 0.95^2 - (4 - \pi)r_m^2$$

$$L_m = 4(1 - 0.05 - 2r_m + 2\pi r_m/4) = 4[0.95 - (2 - \pi/2)r_m]$$
Eq. (3-45):
$$T = 2A_m t\tau = 2(0.05)(11\,500)A_m = 1150A_m$$
Eq. (3-46):
$$\theta(\deg) = \theta_1 l \frac{180}{\pi} = \frac{TL_m l}{4GA_m^2 t} \frac{180}{\pi} = \frac{TL_m(40)}{4(11.5)(10^6)A_m^2(0.05)} \frac{180}{\pi}$$

$$= 9.9645(10^{-4}) \frac{TL_m}{A^2}$$

Equations can then be put into a spreadsheet resulting in:

r_i	r_m	A_m	L_m	r_i	$T(lbf \cdot in)$	r_i	$\theta(\deg)$
0	0	0.9025	3.8	0	1037.9	0	4.825
0.10	0.125	0.889087	3.585 398	0.10	1022.5	0.10	4.621
0.20	0.225	0.859 043	3.413717	0.20	987.9	0.20	4.553
0.30	0.325	0.811831	3.242 035	0.30	933.6	0.30	4.576
0.40	0.425	0.747 450	3.070 354	0.40	859.6	0.40	4.707
0.45	0.475	0.708822	2.984 513	0.45	815.1	0.45	4.825

Torque carrying capacity reduces with r_i . However, this is based on an assumption of uniform stresses which is not the case for small r_i . Also note that weight also goes down with an increase in r_i .

3-35 From Eq. (3-47) where θ_1 is the same for each leg.

$$\begin{split} T_1 &= \frac{1}{3}G\theta_1 L_1 c_1^3, \quad T_2 = \frac{1}{3}G\theta_1 L_2 c_2^3 \\ T &= T_1 + T_2 = \frac{1}{3}G\theta_1 \left(L_1 c_1^3 + L_2 c_2^3 \right) = \frac{1}{3}G\theta_1 \sum L_i c_i^3 \quad \textit{Ans.} \\ \tau_1 &= G\theta_1 c_1, \quad \tau_2 = G\theta_1 c_2 \\ \tau_{\text{max}} &= G\theta_1 c_{\text{max}} \quad \textit{Ans.} \end{split}$$

3-36

(a)
$$\tau_{\text{max}} = G\theta_1 c_{\text{max}}$$

 $G\theta_1 = \frac{\tau_{\text{max}}}{c_{\text{max}}} = \frac{12\,000}{1/8} = 9.6(10^4) \text{ psi/in}$
 $T_{1/16} = \frac{1}{3}G\theta_1(Lc^3)_{1/16} = \frac{1}{3}(9.6)(10^4)(5/8)(1/16)^3 = 4.88 \text{ lbf} \cdot \text{in}$ Ans.

$$T_{1/8} = \frac{1}{3}(9.6)(10^4)(5/8)(1/8)^3 = 39.06 \text{ lbf} \cdot \text{in}$$
 Ans.

$$\tau_{1/16} = 9.6(10^4)1/16 = 6000 \text{ psi}, \quad \tau_{1/8} = 9.6(10^4)1/8 = 12000 \text{ psi} \quad Ans.$$

(b)
$$\theta_1 = \frac{9.6(10^4)}{12(10^6)} = 87(10^{-3}) \text{ rad/in} = 0.458^\circ/\text{in} \quad Ans.$$

3-37 *Separate strips:* For each 1/16 in thick strip,

$$T = \frac{Lc^2\tau}{3} = \frac{(1)(1/16)^2(12\,000)}{3} = 15.625$$
 lbf · in

$$T_{\text{max}} = 2(15.625) = 31.25 \text{ lbf} \cdot \text{in}$$
 Ans.

For each strip,

$$\theta = \frac{3Tl}{Lc^3G} = \frac{3(15.625)(12)}{(1)(1/16)^3(12)(10^6)} = 0.192 \text{ rad}$$
 Ans.

$$k_t = T/\theta = 31.25/0.192 = 162.8 \text{ lbf} \cdot \text{in/rad}$$
 Ans.

Solid strip: From Eq. (3-47),

$$T_{\text{max}} = \frac{Lc^2\tau}{3} = \frac{1(1/8)^2 12\,000}{3} = 62.5 \text{ lbf} \cdot \text{in}$$
 Ans.

$$\theta = \theta_1 l = \frac{\tau l}{Gc} = \frac{12\,000(12)}{12(10^6)(1/8)} = 0.0960 \text{ rad}$$
 Ans.

$$k_l = 62.5/0.0960 = 651 \text{ lbf} \cdot \text{in/rad}$$
 Ans.

3-38 $\tau_{\text{all}} = 60 \text{ MPa}, H = 35 \text{ kW}$

(a) n = 2000 rpm

Eq. (4-40)
$$T = \frac{9.55H}{n} = \frac{9.55(35)10^3}{2000} = 167.1 \text{ N} \cdot \text{m}$$

$$\tau_{\text{max}} = \frac{16T}{\pi d^3} \quad \Rightarrow \quad d = \left(\frac{16T}{\pi \tau_{\text{max}}}\right)^{1/3} = \left[\frac{16(167.1)}{\pi (60)10^6}\right]^{1/3} = 24.2(10^{-3}) \text{ m} = 24.2 \text{ mm} \quad Ans.$$

(b) n = 200 rpm : $T = 1671 \text{ N} \cdot \text{m}$

$$d = \left[\frac{16(1671)}{\pi(60)10^6}\right]^{1/3} = 52.2(10^{-3}) \text{ m} = 52.2 \text{ mm} \quad Ans.$$

3-39 $\tau_{\text{all}} = 110 \text{ MPa}, \theta = 30^{\circ}, d = 15 \text{ mm}, l = ?$

$$\tau = \frac{16T}{\pi d^3} \quad \Rightarrow \quad T = \frac{\pi}{16} \tau d^3$$

$$\theta = \frac{Tl}{JG} \left(\frac{180}{\pi} \right)$$

$$l = \frac{\pi}{180} \frac{JG\theta}{T} = \frac{\pi}{180} \left[\frac{\pi}{32} \frac{d^4G\theta}{(\pi/16)\tau d^3} \right] = \frac{\pi}{360} \frac{dG\theta}{\tau}$$
$$= \frac{\pi}{360} \frac{(0.015)(79.3)(10^9)(30)}{110(10^6)} = 2.83 \text{ m} \quad Ans.$$

3-40 d = 3 in, replaced by 3 in hollow with t = 1/4 in

(a)
$$T_{\text{solid}} = \frac{\pi}{16}\tau(3^3) \quad T_{\text{hollow}} = \frac{\pi}{32}\tau \frac{(3^4 - 2.5^4)}{1.5}$$
$$\%\Delta T = \frac{(\pi/16)(3^3) - (\pi/32)\left[(3^4 - 2.5^4)/1.5\right]}{(\pi/16)(3^3)}(100) = 48.2\% \quad Ans.$$

(b)
$$W_{\text{solid}} = kd^2 = k(3^2), \quad W_{\text{hollow}} = k(3^2 - 2.5^2)$$

$$\% \Delta W = \frac{k(3^2) - k(3^2 - 2.5^2)}{k(3^2)} (100) = 69.4\% \quad Ans.$$

3-41 $T = 5400 \text{ N} \cdot \text{m}, \ \tau_{\text{all}} = 150 \text{ MPa}$

(a)
$$\tau = \frac{Tc}{J} \implies 150(10^6) = \frac{5400(d/2)}{(\pi/32)[d^4 - (0.75d)^4]} = \frac{4.023(10^4)}{d^3}$$
$$d = \left(\frac{4.023(10^4)}{150(10^6)}\right)^{1/3} = 6.45(10^{-2}) \,\mathrm{m} = 64.5 \,\mathrm{mm}$$

From Table A-17, the next preferred size is d = 80 mm; ID = 60 mm Ans.

(b)
$$J = \frac{\pi}{32} (0.08^4 - 0.06^4) = 2.749 (10^{-6}) \text{ mm}^4$$
$$\tau_i = \frac{5400 (0.030)}{2.749 (10^{-6})} = 58.9 (10^6) \text{ Pa} = 58.9 \text{ MPa} \quad \textit{Ans}.$$

3-42

(a)
$$T = \frac{63\,025H}{n} = \frac{63\,025(1)}{5} = 12\,605 \text{ lbf} \cdot \text{in}$$

 $\tau = \frac{16T}{\pi d_C^3} \implies d_C = \left(\frac{16T}{\pi \tau}\right)^{1/3} = \left[\frac{16(12\,605)}{\pi(14\,000)}\right]^{1/3} = 1.66 \text{ in } Ans.$

From Table A-17, select 1 3/4 in

$$\tau_{\text{start}} = \frac{16(2)(12\,605)}{\pi(1.75^3)} = 23.96(10^3) \text{ psi} = 23.96 \text{ kpsi}$$

(b) design activity

3-43
$$\omega = 2\pi n/60 = 2\pi (8)/60 = 0.8378 \text{ rad/s}$$

$$T = \frac{H}{\omega} = \frac{1000}{0.8378} = 1194 \text{ N} \cdot \text{m}$$

$$d_C = \left(\frac{16T}{\pi \tau}\right)^{1/3} = \left[\frac{16(1194)}{\pi (75)(10^6)}\right]^{1/3} = 4.328(10^{-2}) \text{ m} = 43.3 \text{ mm}$$

From Table A-17, select 45 mm Ans.

3-44
$$s = \sqrt{A}, d = \sqrt{4A/\pi}$$

Square: Eq. (3-43) with b = c

$$\tau_{\text{max}} = \frac{4.8T}{c^3}$$

$$(\tau_{\text{max}})_{\text{sq}} = \frac{4.8T}{(A)^{3/2}}$$

Round:

$$(\tau_{\text{max}})_{\text{rd}} = \frac{16}{\pi} \frac{T}{d^3} = \frac{16T}{\pi (4A/\pi)^{3/2}} = \frac{3.545T}{(A)^{3/2}}$$
$$\frac{(\tau_{\text{max}})_{\text{sq}}}{(\tau_{\text{max}})_{\text{rd}}} = \frac{4.8}{3.545} = 1.354$$

Square stress is 1.354 times the round stress Ans.

3-45
$$s = \sqrt{A}, d = \sqrt{4A/\pi}$$

Square: Eq. (3-44) with b = c, $\beta = 0.141$

$$\theta_{\rm sq} = \frac{Tl}{0.141c^4G} = \frac{Tl}{0.141(A)^{4/2}G}$$

Round:

$$\theta_{\rm rd} = \frac{Tl}{JG} = \frac{Tl}{(\pi/32) (4A/\pi)^{4/2} G} = \frac{6.2832Tl}{(A)^{4/2} G}$$

$$\frac{\theta_{\rm sq}}{\theta_{\rm rd}} = \frac{1/0.141}{6.2832} = 1.129$$

Square has greater θ by a factor of 1.13 *Ans*.

$$\left(\sum M_D\right)_z = 7C_x - 4.3(92.8) - 3.9(362.8) = 0$$

$$C_x = 259.1 \text{ lbf}$$

$$\left(\sum M_C\right)_z = -7D_x - 2.7(92.8) + 3.9(362.8) = 0$$

$$D_x = 166.3 \, \text{lbf}$$

$$\left(\sum M_D\right)_x \quad \Rightarrow \quad C_z = \frac{4.3}{7} \, 808 = 496.3 \, \text{lbf}$$

$$\left(\sum M_C\right)_x \implies D_z = \frac{2.7}{7}808 = 311.7 \text{ lbf}$$

Torque : $T = 808(3.9) = 3151 \text{ lbf} \cdot \text{in}$ $x = 4.3^{+}_{in}$

Bending $Q: M = \sqrt{699.6^2 + 1340^2} = 1512 \,\text{lbf} \cdot \text{in}$ $x = 4.3^+_{\text{in}}$

Torque:

$$\tau = \frac{16T}{\pi d^3} = \frac{16(3151)}{\pi (1.25^3)} = 8217 \text{ psi}$$

Bending:

$$\sigma_b = \pm \frac{32(1512)}{\pi(1.25^3)} = \pm 7885 \text{ psi}$$

Axial:

$$\sigma_a = -\frac{F}{A} = -\frac{362.8}{(\pi/4)(1.25^2)} = -296 \text{ psi}$$

$$|\sigma_{\text{max}}| = 7885 + 296 = 8181 \text{ psi}$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{8181}{2}\right)^2 + 8217^2} = 9179 \text{ psi}$$
 Ans.

$$\sigma_{\text{max}} = \frac{7885 - 296}{2} + \sqrt{\left(\frac{7885 - 296}{2}\right)^2 + 8217^2} = 12\,845 \text{ psi}$$
 Ans.

3-47

$$\left(\sum M_B\right)_z = -5.6(362.8) + 1.3(92.8) + 3A_y = 0$$

$$A_{y} = 637.0 \text{ lbf}$$

$$\left(\sum M_A\right)_z = -2.6(362.8) + 1.3(92.8) + 3B_y = 0$$

$$B_{y} = 274.2 \text{ lbf}$$

$$\left(\sum M_B\right)_y = 0 \quad \Rightarrow \quad A_z = \frac{5.6}{3}808 = 1508.3 \text{ lbf}$$

$$\left(\sum M_A\right)_y = 0 \quad \Rightarrow \quad B_z = \frac{2.6}{3}808 = 700.3 \text{ lbf}$$

Torsion:
$$T = 808(1.3) = 1050 \, \text{lbf} \cdot \text{in}$$

$$\tau = \frac{16(1050)}{\pi(1^3)} = 5348 \, \text{psi}$$

Bending:
$$M_p = 92.8(1.3) = 120.6 \, \text{lbf} \cdot \text{in}$$

$$M_A = 3\sqrt{B_y^2 + B_z^2} = 3\sqrt{274.2^2 + 700.3^2}$$

$$= 2256 \text{ lbf} \cdot \text{in} = M_{\text{max}}$$

$$\sigma_b = \pm \frac{32(2256)}{\pi(1^3)} = \pm 22\,980 \text{ psi}$$

Axial:
$$\sigma = -\frac{92.8}{(\pi/4)1^2} = -120 \text{ psi}$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{-22980 - 120}{2}\right)^2 + 5348^2} = 12730 \text{ psi}$$
 Ans.

$$\sigma_{\max_{\text{tens}}} = \frac{22980 - 120}{2} + \sqrt{\left(\frac{22980 - 120}{2}\right)^2 + 5348^2} = 24\,049\,\text{psi} \quad \textit{Ans.}$$

53 Chapter 3

3-48

$$F_t = \frac{1000}{2.5} = 400 \, \text{lbf}$$

$$F_n = 400 \tan 20 = 145.6 \, \text{lbf}$$

Torque at C $T_C = 400(5) = 2000 \text{ lbf} \cdot \text{in}$

$$P = \frac{2000}{3} = 666.7 \, \text{lbf}$$

$$\sum (M_A)_z = 0 \quad \Rightarrow \quad 18R_{Dy} - 145.6(13) - 666.7(3) = 0 \quad \Rightarrow \quad R_{Dy} = 216.3 \text{ lbf}$$

$$\sum (M_A)_y = 0 \quad \Rightarrow \quad -18R_{Dz} + 400(13) = 0 \quad \Rightarrow \quad R_{Dz} = 288.9 \text{ lbf}$$

$$\sum F_y = 0 \quad \Rightarrow \quad R_{Ay} + 216.3 - 666.7 - 145.6 = 0 \quad \Rightarrow \quad R_{Ay} = 596.0 \text{ lbf}$$

$$\sum F_z = 0 \quad \Rightarrow \quad R_{Az} + 288.9 - 400 = 0 \quad \Rightarrow \quad R_{Az} = 111.1 \text{ lbf}$$

$$M_B = 3\sqrt{596^2 + 111.1^2} = 1819 \text{ lbf} \cdot \text{in}$$

$$M_C = 5\sqrt{216.3^2 + 288.9^2} = 1805 \text{ lbf} \cdot \text{in}$$

: Maximum stresses occur at B. Ans.

Maximum stresses occur at *B*. Ans.
$$\sigma_B = \frac{32M_B}{\pi d^3} = \frac{32(1819)}{\pi (1.25^3)} = 9486 \text{ psi}$$

$$\tau_B = \frac{16T_B}{\pi d^3} = \frac{16(2000)}{\pi (1.25^3)} = 5215 \text{ psi}$$

$$\sigma_{\text{max}} = \frac{\sigma_B}{2} + \sqrt{\left(\frac{\sigma_B}{2}\right)^2 + \tau_B^2} = \frac{9486}{2} + \sqrt{\left(\frac{9486}{2}\right)^2 + 5215^2} = 11792 \text{ psi} \quad \text{Ans.}$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_B}{2}\right)^2 + \tau_B^2} = 7049 \text{ psi} \quad \text{Ans.}$$

3-49
$$r = d/2$$

(a) For top, $\theta = 90^{\circ}$,

$$\sigma_r = \frac{\sigma}{2}[1 - 1 + (1 - 1)(1 - 3)\cos 180] = 0$$
 Ans.

$$\sigma_{\theta} = \frac{\sigma}{2}[1 + 1 - (1 + 3)\cos 180] = 3\sigma$$
 Ans.

$$\tau_{r\theta} = -\frac{\sigma}{2}(1-1)(1+3)\sin 180 = 0$$
 Ans.

For side, $\theta = 0^{\circ}$,

$$\sigma_r = \frac{\sigma}{2}[1 - 1 + (1 - 1)(1 - 3)\cos 0] = 0$$
 Ans.

$$\sigma_{\theta} = \frac{\sigma}{2}[1 + 1 - (1 + 3)\cos 0] = -\sigma$$
 Ans.

$$\tau_{r\theta} = -\frac{\sigma}{2}(1-1)(1+3)\sin 0 = 0$$
 Ans.

(b)

$$\sigma_{\theta}/\sigma = \frac{1}{2} \left[1 + \frac{100}{4r^2} - \left(1 + \frac{3}{16} \frac{10^4}{r^4} \right) \cos 180 \right] = \frac{1}{2} \left(2 + \frac{25}{r^2} + \frac{3}{16} \frac{10^4}{r^4} \right)$$

r	$\sigma_{ heta}/\sigma$
5	3.000
6	2.071
7	1.646
8	1.424
9	1.297
10	1.219
11	1.167
12	1.132
13	1.107
14	1.088
15	1.074
16	1.063
17	1.054
18	1.048
19	1.042
20	1.037

(c)
$$\sigma_{\theta}/\sigma = \frac{1}{2} \left[1 + \frac{100}{4r^2} - \left(1 + \frac{3}{16} \frac{10^4}{r^4} \right) \cos 0 \right] = \frac{1}{2} \left(\frac{25}{r^2} - \frac{3}{16} \frac{10^4}{r^4} \right)$$

r	$\sigma_{ heta}/\sigma$
5	-1.000
6	-0.376
7	-0.135
8	-0.034
9	0.011
10	0.031
11	0.039
12	0.042
13	0.041
14	0.039
15	0.037
16	0.035
17	0.032
18	0.030
19	0.027
20	0.025

3-50

$$D/d = \frac{1.5}{1} = 1.5$$
$$r/d = \frac{1/8}{1} = 0.125$$

Fig. A-15-8:

$$K_{ts} \doteq 1.39$$

Fig. A-15-9:

$$K_t \doteq 1.60$$

$$\sigma_A = K_t \frac{Mc}{I} = \frac{32K_t M}{\pi d^3} = \frac{32(1.6)(200)(14)}{\pi (1^3)} = 45630 \text{ psi}$$

$$\tau_A = K_{ts} \frac{Tc}{J} = \frac{16K_{ts}T}{\pi d^3} = \frac{16(1.39)(200)(15)}{\pi (1^3)} = 21240 \text{ psi}$$

$$\sigma_{\text{max}} = \frac{\sigma_A}{2} + \sqrt{\left(\frac{\sigma_A}{2}\right)^2 + \tau_A^2} = \frac{45.63}{2} + \sqrt{\left(\frac{45.63}{2}\right)^2 + 21.24^2}$$

$$= 54.0 \text{ kpsi}$$
 Ans.

$$\tau_{\text{max}} = \sqrt{\left(\frac{45.63}{2}\right)^2 + 21.24^2} = 31.2 \text{ kpsi}$$
 Ans.

$$\sigma_{t,\max} = \frac{r_i^2 p_i}{r_o^2 - r_i^2} \left(1 + \frac{r_o^2}{r_i^2} \right)$$

$$= p_i \left(\frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} \right) \quad Ans.$$

$$\sigma_{t,\max} = \frac{r_i^2 p_i}{r_o^2 - r_i^2} \left(1 - \frac{r_o^2}{r_i^2} \right) = -p_i \quad Ans.$$

3-52 If $p_i = 0$, Eq. (3-49) becomes

$$\sigma_t = \frac{-p_o r_o^2 - r_i^2 r_o^2 p_o / r^2}{r_o^2 - r_i^2}$$
$$= -\frac{p_o r_o^2}{r_o^2 - r_i^2} \left(1 + \frac{r_i^2}{r^2} \right)$$

The maximum tangential stress occurs at $r = r_i$. So

$$\sigma_{t,\max} = -\frac{2p_o r_o^2}{r_o^2 - r_i^2} \quad Ans.$$

For σ_r , we have

$$\sigma_r = \frac{-p_o r_o^2 + r_i^2 r_o^2 p_o / r^2}{r_o^2 - r_i^2}$$
$$= \frac{p_o r_o^2}{r_o^2 - r_i^2} \left(\frac{r_i^2}{r^2} - 1\right)$$

So $\sigma_r = 0$ at $r = r_i$. Thus at $r = r_o$

$$\sigma_{r,\text{max}} = \frac{p_o r_o^2}{r_o^2 - r_i^2} \left(\frac{r_i^2 - r_o^2}{r_o^2} \right) = -p_o$$
 Ans.

3-53

$$F = pA = \pi r_{\text{av}}^2 p$$

$$\sigma_1 = \sigma_2 = \frac{F}{A_{\text{wall}}} = \frac{\pi r_{\text{av}}^2 p}{2\pi r_{\text{av}} t} = \frac{pr_{\text{av}}}{2t} \quad Ans.$$

 $3-54 \quad \sigma_t > \sigma_l > \sigma_r$

 $\tau_{\text{max}} = (\sigma_t - \sigma_r)/2$ at $r = r_i$ where σ_l is intermediate in value. From Prob. 4-50

$$\tau_{\max} = \frac{1}{2}(\sigma_{t,\max} - \sigma_{r,\max})$$

$$\tau_{\text{max}} = \frac{p_i}{2} \left(\frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} + 1 \right)$$

Now solve for p_i using $r_o = 75$ mm, $r_i = 69$ mm, and $\tau_{\text{max}} = 25$ MPa. This gives $p_i = 3.84$ MPa Ans.

3-55 Given $r_o = 5$ in, $r_i = 4.625$ in and referring to the solution of Prob. 3-54,

$$\tau_{\text{max}} = \frac{350}{2} \left[\frac{(5)^2 + (4.625)^2}{(5)^2 - (4.625)^2} + 1 \right]$$
$$= 2424 \text{ psi} \quad Ans.$$

3-56 From Table A-20, $S_y = 57$ kpsi; also, $r_o = 0.875$ in and $r_i = 0.625$ in

From Prob. 3-52

$$\sigma_{t,\text{max}} = -\frac{2p_o r_o^2}{r_o^2 - r_i^2}$$

Rearranging

$$p_o = \frac{\left(r_o^2 - r_i^2\right)(0.8S_y)}{2r_o^2}$$

Solving, gives $p_o = 11\,200\,\mathrm{psi}$ Ans

3-57 From Table A-20, $S_y = 390 \,\text{MPa}$; also $r_o = 25 \,\text{mm}$, $r_i = 20 \,\text{mm}$.

From Prob. 3-51

$$\sigma_{t,\text{max}} = p_i \left(\frac{r_o^2 + r_i^2}{r_o^2 - r_i^2} \right) \quad \text{therefore} \quad p_i = 0.8 S_y \left(\frac{r_o^2 - r_i^2}{r_o^2 + r_i^2} \right)$$

solving gives $p_i = 68.5 \,\mathrm{MPa}$ Ans.

3-58 Since σ_t and σ_r are both positive and $\sigma_t > \sigma_r$

$$\tau_{\rm max} = (\sigma_t)_{\rm max}/2$$

where σ_t is max at r_i

Eq. (3-55) for
$$r = r_i = 0.375$$
 in

$$(\sigma_t)_{\text{max}} = \frac{0.282}{386} \left[\frac{2\pi (7200)}{60} \right]^2 \left(\frac{3 + 0.292}{8} \right)$$

$$\times \left[0.375^2 + 5^2 + \frac{(0.375^2)(5^2)}{0.375^2} - \frac{1 + 3(0.292)}{3 + 0.292} (0.375^2) \right] = 8556 \text{ psi}$$

$$\tau_{\text{max}} = \frac{8556}{2} = 4278 \text{ psi} \quad Ans.$$

Radial stress:

$$\sigma_r = k \left(r_i^2 + r_o^2 - \frac{r_i^2 r_o^2}{r^2} - r^2 \right)$$

Maxima:
$$\frac{d\sigma_r}{dr} = k \left(2\frac{r_i^2 r_o^2}{r^3} - 2r \right) = 0 \implies r = \sqrt{r_i r_o} = \sqrt{0.375(5)} = 1.3693 \text{ in}$$

$$(\sigma_r)_{\text{max}} = \frac{0.282}{386} \left[\frac{2\pi (7200)}{60} \right]^2 \left(\frac{3 + 0.292}{8} \right) \left[0.375^2 + 5^2 - \frac{0.375^2 (5^2)}{1.3693^2} - 1.3693^2 \right]$$

$$= 3656 \text{ psi} \quad Ans.$$

3-59
$$\omega = 2\pi (2069)/60 = 216.7 \text{ rad/s},$$

 $\rho = 3320 \text{ kg/m}^3, \nu = 0.24, r_i = 0.0125 \text{ m}, r_o = 0.15 \text{ m};$

use Eq. (3-55)

$$\sigma_t = 3320(216.7)^2 \left(\frac{3+0.24}{8}\right) \left[(0.0125)^2 + (0.15)^2 + (0.15)^2 - \frac{1+3(0.24)}{3+0.24} (0.0125)^2 \right] (10)^{-6}$$

= 2.85 MPa Ans.

3-60

$$\rho = \frac{(6/16)}{386(1/16)(\pi/4)(6^2 - 1^2)}$$
$$= 5.655(10^{-4}) \text{ lbf} \cdot \text{s}^2/\text{in}^4$$

 $\tau_{\rm max}$ is at bore and equals $\frac{\sigma_t}{2}$

Eq. (3-55)

$$(\sigma_t)_{\text{max}} = 5.655(10^{-4}) \left[\frac{2\pi (10\,000)}{60} \right]^2 \left(\frac{3+0.20}{8} \right) \left[0.5^2 + 3^2 + 3^2 - \frac{1+3(0.20)}{3+0.20} (0.5)^2 \right]$$

$$= 4496 \text{ psi}$$

$$\tau_{\text{max}} = \frac{4496}{2} = 2248 \text{ psi} \quad Ans.$$

$$\omega = 2\pi (3000)/60 = 314.2 \text{ rad/s}$$

$$m = \frac{0.282(1.25)(12)(0.125)}{386}$$

$$= 1.370(10^{-3}) \text{ lbf} \cdot \text{s}^2/\text{in}$$

$$F = m\omega^2 r = 1.370(10^{-3})(314.2^2)(6)$$

$$= 811.5 \text{ lbf}$$

$$A_{\text{nom}} = (1.25 - 0.5)(1/8) = 0.09375 \text{ in}^2$$

$$\sigma_{\text{nom}} = \frac{811.5}{0.09375} = 8656 \text{ psi} \quad Ans.$$

Note: Stress concentration Fig. A-15-1 gives $K_t \doteq 2.25$ which increases σ_{max} and fatigue

3-62 to 3-67

$$\nu = 0.292$$
, $E = 30$ Mpsi (207 GPa), $r_i = 0$
 $R = 0.75$ in (20 mm), $r_o = 1.5$ in (40 mm)

Eq. (3-57)

$$p_{\text{psi}} = \frac{30(10^6)\delta}{0.75^3} \left\lceil \frac{(1.5^2 - 0.75^2)(0.75^2 - 0)}{2(1.5^2 - 0)} \right\rceil = 1.5(10^7)\delta \tag{1}$$

$$p_{\text{Pa}} = \frac{207(10^9)\delta}{0.020^3} \left[\frac{(0.04^2 - 0.02^2)(0.02^2 - 0)}{2(0.04^2 - 0)} \right] = 3.881(10^{12})\delta \tag{2}$$

3-62

$$\delta_{\text{max}} = \frac{1}{2} [40.042 - 40.000] = 0.021 \text{ mm}$$
 Ans.
 $\delta_{\text{min}} = \frac{1}{2} [40.026 - 40.025] = 0.0005 \text{ mm}$ Ans.

From (2)

$$p_{\text{max}} = 81.5 \,\text{MPa}, \quad p_{\text{min}} = 1.94 \,\text{MPa} \quad Ans.$$

3-63

$$\delta_{\text{max}} = \frac{1}{2}(1.5016 - 1.5000) = 0.0008 \text{ in}$$
 Ans.
 $\delta_{\text{min}} = \frac{1}{2}(1.5010 - 1.5010) = 0$ Ans.
 $p_{\text{max}} = 12\,000\,\text{psi},$ $p_{\text{min}} = 0$ Ans.

Eq. (1)

3-64

$$\delta_{\text{max}} = \frac{1}{2}(40.059 - 40.000) = 0.0295 \,\text{mm}$$
 Ans.
 $\delta_{\text{min}} = \frac{1}{2}(40.043 - 40.025) = 0.009 \,\text{mm}$ Ans.
 $p_{\text{max}} = 114.5 \,\text{MPa}, \quad p_{\text{min}} = 34.9 \,\text{MPa}$ Ans.

Eq. (2)

3-65
$$\delta_{\text{max}} = \frac{1}{2}(1.5023 - 1.5000) = 0.001 \, 15 \, \text{in} \quad Ans.$$

$$\delta_{\text{min}} = \frac{1}{2}(1.5017 - 1.5010) = 0.000 \, 35 \, \text{in} \quad Ans.$$
 Eq. (1)
$$p_{\text{max}} = 17 \, 250 \, \text{psi} \quad p_{\text{min}} = 5250 \, \text{psi} \quad Ans.$$

3-66

$$\delta_{\text{max}} = \frac{1}{2}(40.076 - 40.000) = 0.038 \,\text{mm}$$
 Ans.
 $\delta_{\text{min}} = \frac{1}{2}(40.060 - 40.025) = 0.0175 \,\text{mm}$ Ans.
 $p_{\text{max}} = 147.5 \,\text{MPa}$ $p_{\text{min}} = 67.9 \,\text{MPa}$ Ans.

3-67

Eq. (2)

$$\delta_{\text{max}} = \frac{1}{2}(1.5030 - 1.500) = 0.0015 \text{ in} \quad Ans.$$

$$\delta_{\text{min}} = \frac{1}{2}(1.5024 - 1.5010) = 0.0007 \text{ in} \quad Ans.$$
 Eq. (1)
$$p_{\text{max}} = 22\,500\,\text{psi} \quad p_{\text{min}} = 10\,500\,\text{psi} \quad Ans.$$

3-68

$$\delta = \frac{1}{2}(1.002 - 1.000) = 0.001 \text{ in } r_i = 0, R = 0.5 \text{ in}, r_o = 1 \text{ in}$$
 $v = 0.292, E = 30 \text{ Mpsi}$

Eq. (3-57)

$$p = \frac{30(10^6)(0.001)}{0.5^3} \left[\frac{(1^2 - 0.5^2)(0.5^2 - 0)}{2(1^2 - 0)} \right] = 2.25(10^4) \text{ psi} \quad Ans.$$

Eq. (3-50) for outer member at $r_i = 0.5$ in

$$(\sigma_t)_o = \frac{0.5^2(2.25)(10^4)}{1^2 - 0.5^2} \left(1 + \frac{1^2}{0.5^2}\right) = 37\,500 \text{ psi}$$
 Ans.

Inner member, from Prob. 3-52

$$(\sigma_t)_i = -\frac{p_o r_o^2}{r_o^2 - r_i^2} \left(1 + \frac{r_i^2}{r_o^2} \right) = -\frac{2.25(10^4)(0.5^2)}{0.5^2 - 0} \left(1 + \frac{0}{0.5^2} \right) = -22\,500\,\mathrm{psi}$$
 Ans.

3-69

$$v_i = 0.292$$
, $E_i = 30(10^6)$ psi, $v_o = 0.211$, $E_o = 14.5(10^6)$ psi $\delta = \frac{1}{2}(1.002 - 1.000) = 0.001$ in, $r_i = 0$, $R = 0.5$, $r_o = 1$

Eq. (3-56)

$$0.001 = \left[\frac{0.5}{14.5(10^6)} \left(\frac{1^2 + 0.5^2}{1^2 - 0.5^2} + 0.211 \right) + \frac{0.5}{30(10^6)} \left(\frac{0.5^2 + 0}{0.5^2 - 0} - 0.292 \right) \right] p$$

$$p = 13\,064 \text{ psi} \quad Ans.$$

Eq. (3-50) for outer member at $r_i = 0.5$ in

$$(\sigma_t)_o = \frac{0.5^2(13\,064)}{1^2 - 0.5^2} \left(1 + \frac{1^2}{0.5^2}\right) = 21\,770 \text{ psi}$$
 Ans.

Inner member, from Prob. 3-52

$$(\sigma_t)_i = -\frac{13064(0.5^2)}{0.5^2 - 0} \left(1 + \frac{0}{0.5^2} \right) = -13064 \text{ psi}$$
 Ans.

3-70

$$\delta_{\text{max}} = \frac{1}{2}(1.003 - 1.000) = 0.0015 \text{ in } r_i = 0, \quad R = 0.5 \text{ in, } r_o = 1 \text{ in}$$

$$\delta_{\text{min}} = \frac{1}{2}(1.002 - 1.001) = 0.0005 \text{ in}$$

Eq. (3-57)

$$p_{\text{max}} = \frac{30(10^6)(0.0015)}{0.5^3} \left[\frac{(1^2 - 0.5^2)(0.5^2 - 0)}{2(1^2 - 0)} \right] = 33750 \text{ psi} \quad Ans.$$

Eq. (3-50) for outer member at r = 0.5 in

$$(\sigma_t)_o = \frac{0.5^2(33750)}{1^2 - 0.5^2} \left(1 + \frac{1^2}{0.5^2} \right) = 56250 \text{ psi}$$
 Ans.

For inner member, from Prob. 3-52, with r = 0.5 in

$$(\sigma_t)_i = -33750 \text{ psi}$$
 Ans.

For δ_{\min} all answers are 0.0005/0.0015 = 1/3 of above answers Ans.

$$v_i = 0.292, \quad E_i = 30 \text{ Mpsi}, \quad v_o = 0.334, \quad E_o = 10.4 \text{ Mpsi}$$

$$\delta_{\text{max}} = \frac{1}{2}(2.005 - 2.000) = 0.0025 \text{ in}$$

$$\delta_{\text{min}} = \frac{1}{2}(2.003 - 2.002) = 0.0005 \text{ in}$$

$$0.0025 = \left[\frac{1.0}{10.4(10^6)} \left(\frac{2^2 + 1^2}{2^2 - 1^2} + 0.334\right) + \frac{1.0}{30(10^6)} \left(\frac{1^2 + 0}{1^2 - 0} - 0.292\right)\right] p_{\text{max}}$$

$$p_{\text{max}} = 11576 \text{ psi} \quad Ans.$$

Eq. (3-50) for outer member at r = 1 in

$$(\sigma_t)_o = \frac{1^2(11\,576)}{2^2 - 1^2} \left(1 + \frac{2^2}{1^2}\right) = 19\,293 \text{ psi}$$
 Ans.

Inner member from Prob. 3-52 with r = 1 in

$$(\sigma_t)_i = -11\,576 \text{ psi}$$
 Ans.

For δ_{min} all above answers are 0.0005/0.0025 = 1/5 Ans.

3-72

(a) Axial resistance

Normal force at fit interface

$$N = pA = p(2\pi Rl) = 2\pi pRl$$

Fully-developed friction force

$$F_{ax} = fN = 2\pi f pRl$$
 Ans.

(b) Torsional resistance at fully developed friction is

$$T = fRN = 2\pi f p R^2 l$$
 Ans.

3-73
$$d = 1 \text{ in}, r_i = 1.5 \text{ in}, r_o = 2.5 \text{ in}.$$

From Table 3-4, for R = 0.5 in,

$$r_c = 1.5 + 0.5 = 2 \text{ in}$$

$$r_n = \frac{0.5^2}{2(2 - \sqrt{2^2 - 0.5^2})} = 1.9682458 \text{ in}$$

$$e = r_c - r_n = 2.0 - 1.9682458 = 0.031754 \text{ in}$$

$$c_i = r_n - r_i = 1.9682 - 1.5 = 0.4682 \text{ in}$$

$$c_o = r_o - r_n = 2.5 - 1.9682 = 0.5318 \text{ in}$$

$$A = \pi d^2/4 = \pi (1)^2/4 = 0.7854 \text{ in}^2$$

$$M = Fr_c = 1000(2) = 2000 \text{ lbf} \cdot \text{in}$$

Using Eq. (3-65)

$$\begin{split} \sigma_i &= \frac{F}{A} + \frac{Mc_i}{Aer_i} = \frac{1000}{0.7854} + \frac{2000(0.4682)}{0.7854(0.031\,754)(1.5)} = 26\,300\,\,\mathrm{psi} \quad Ans. \\ \sigma_o &= \frac{F}{A} - \frac{Mc_o}{Aer_o} = \frac{1000}{0.7854} - \frac{2000(0.5318)}{0.7854(0.031\,754)(2.5)} = -15\,800\,\,\mathrm{psi} \quad Ans. \end{split}$$

3-74 Section AA:

$$D=0.75 \text{ in, } r_i=0.75/2=0.375 \text{ in, } r_o=0.75/2+0.25=0.625 \text{ in}$$
 From Table 3-4, for $R=0.125$ in,
$$r_c=(0.75+0.25)/2=0.500 \text{ in}$$

$$r_n=\frac{0.125^2}{2\left(0.5-\sqrt{0.5^2-0.125^2}\right)}=0.492\,061\,5 \text{ in}$$

$$e=0.5-r_n=0.007\,939 \text{ in}$$

$$c_o=r_o-r_n=0.625-0.492\,06=0.132\,94 \text{ in}$$

$$c_i=r_n-r_i=0.492\,06-0.375=0.117\,06 \text{ in}$$

$$A=\pi(0.25)^2/4=0.049\,087$$

$$M=Fr_c=100(0.5)=50\,\text{lbf}\cdot\text{in}$$

$$\sigma_i=\frac{100}{0.049\,09}+\frac{50(0.117\,06)}{0.049\,09(0.007\,939)(0.375)}=42\,100\,\text{psi}\quad \textit{Ans.}$$

$$\sigma_o=\frac{100}{0.049\,09}-\frac{50(0.132\,94)}{0.049\,09(0.007\,939)(0.625)}=-25\,250\,\text{psi}\quad \textit{Ans.}$$

Section BB: Abscissa angle θ of line of radius centers is

$$\theta = \cos^{-1}\left(\frac{r_2 + d/2}{r_2 + d + D/2}\right)$$

$$= \cos^{-1}\left(\frac{0.375 + 0.25/2}{0.375 + 0.25 + 0.75/2}\right) = 60^{\circ}$$

$$M = F\frac{D+d}{2}\cos\theta = 100(0.5)\cos 60^{\circ} = 25 \text{ lbf} \cdot \text{in}$$

$$r_i = r_2 = 0.375 \text{ in}$$

$$r_o = r_2 + d = 0.375 + 0.25 = 0.625 \text{ in}$$

$$e = 0.007939 \text{ in (as before)}$$

$$\sigma_i = \frac{F\cos\theta}{A} - \frac{Mc_i}{Aer_i}$$

$$= \frac{100\cos 60^{\circ}}{0.04909} - \frac{25(0.11706)}{0.04909(0.007939)0.375} = -19000 \text{ psi} \quad Ans.$$

$$\sigma_o = \frac{100\cos 60^{\circ}}{0.04909} + \frac{25(0.13294)}{0.04909(0.007939)0.625} = 14700 \text{ psi} \quad Ans.$$

On section BB, the shear stress due to the shear force is zero at the surface.

3-75
$$r_i = 0.125 \text{ in}, r_o = 0.125 + 0.1094 = 0.2344 \text{ in}$$

From Table 3-4 for h = 0.1094

$$r_c = 0.125 + 0.1094/2 = 0.1797$$
 in
 $r_n = 0.1094/\ln(0.2344/0.125) = 0.174\,006$ in
 $e = r_c - r_n = 0.1797 - 0.174\,006 = 0.005\,694$ in
 $c_i = r_n - r_i = 0.174\,006 - 0.125 = 0.049\,006$ in
 $c_o = r_o - r_n = 0.2344 - 0.174\,006 = 0.060\,394$ in
 $A = 0.75(0.1094) = 0.082\,050$ in
 $M = F(4 + h/2) = 3(4 + 0.1094/2) = 12.16$ lbf · in
 $\sigma_i = -\frac{3}{0.082\,05} - \frac{12.16(0.0490)}{0.082\,05(0.005\,694)(0.125)} = -10\,240$ psi Ans.
 $\sigma_o = -\frac{3}{0.082\,05} + \frac{12.16(0.0604)}{0.082\,05(0.005\,694)(0.2344)} = 6670$ psi Ans.

3-76 Find the resultant of \mathbf{F}_1 and \mathbf{F}_2 .

$$F_x = F_{1x} + F_{2x} = 250\cos 60^\circ + 333\cos 0^\circ$$
= 458 lbf
$$F_y = F_{1y} + F_{2y} = 250\sin 60^\circ + 333\sin 0^\circ$$
= 216.5 lbf
$$F = (458^2 + 216.5^2)^{1/2} = 506.6 \text{ lbf}$$

This is the pin force on the lever which acts in a direction

$$\theta = \tan^{-1} \frac{F_y}{F_x} = \tan^{-1} \frac{216.5}{458} = 25.3^{\circ}$$

On the 25.3° surface from \mathbf{F}_1

The denominator of Eq. (3-63), given below, has four additive parts.

$$r_n = \frac{A}{\int (dA/r)}$$

For $\int dA/r$, add the results of the following equation for each of the four rectangles.

$$\int_{r_i}^{r_o} \frac{bdr}{r} = b \ln \frac{r_o}{r_i}, \qquad b = \text{width}$$

$$\int \frac{dA}{r} = 0.375 \ln \frac{1.8125}{1} + 1.25 \ln \frac{2.1875}{1.8125} + 1.25 \ln \frac{3.6875}{3.3125} + 0.375 \ln \frac{4.5}{3.6875}$$

$$= 0.666 810 6$$

$$r_n = \frac{1.546 875}{0.666 810 6} = 2.3198 \text{ in}$$

$$e = r_c - r_n = 2.75 - 2.3198 = 0.4302 \text{ in}$$

$$c_i = r_n - r_i = 2.320 - 1 = 1.320 \text{ in}$$

$$c_o = r_o - r_n = 4.5 - 2.320 = 2.180 \text{ in}$$

Shear stress due to 206 lbf force is zero at inner and outer surfaces.

$$\sigma_i = -\frac{142}{1.547} + \frac{2000(1.32)}{1.547(0.4302)(1)} = 3875 \text{ psi}$$
 Ans.
 $\sigma_o = -\frac{142}{1.547} - \frac{2000(2.18)}{1.547(0.4302)(4.5)} = -1548 \text{ psi}$ Ans.

3-77

$$A = (6 - 2 - 1)(0.75) = 2.25 \text{ in}^2$$

 $r_c = \frac{6+2}{2} = 4 \text{ in}$

Similar to Prob. 3-76,

$$\int \frac{dA}{r} = 0.75 \ln \frac{3.5}{2} + 0.75 \ln \frac{6}{4.5} = 0.6354734 \text{ in}$$

$$r_n = \frac{A}{\int (dA/r)} = \frac{2.25}{0.6354734} = 3.5407 \text{ in}$$

$$e = 4 - 3.5407 = 0.4593 \text{ in}$$

$$\sigma_i = \frac{5000}{2.25} + \frac{20000(3.5407 - 2)}{2.25(0.4593)(2)} = 17130 \text{ psi} \quad Ans.$$

$$\sigma_o = \frac{5000}{2.25} - \frac{20000(6 - 3.5407)}{2.25(0.4593)(6)} = -5710 \text{ psi} \quad Ans.$$

$$A = \int_{r_i}^{r_o} b \, dr = \int_2^6 \frac{2}{r} \, dr = 2 \ln \frac{6}{2}$$
$$= 2.197\,225 \text{ in}^2$$

$$r_c = \frac{1}{A} \int_{r_i}^{r_o} br \, dr = \frac{1}{2.197225} \int_{2}^{6} \frac{2r}{r} \, dr$$

$$= \frac{2}{2.197225} (6 - 2) = 3.640957 \text{ in}$$

$$r_n = \frac{A}{\int_{r_i}^{r_o} (b/r) \, dr} = \frac{2.197225}{\int_{2}^{6} (2/r^2) \, dr}$$

$$= \frac{2.197225}{2[1/2 - 1/6]} = 3.295837 \text{ in}$$

$$e = R - r_n = 3.640957 - 3.295837 = 0.34512$$

$$c_i = r_n - r_i = 3.2958 - 2 = 1.2958 \text{ in}$$

$$c_o = r_o - r_n = 6 - 3.2958 = 2.7042 \text{ in}$$

$$\sigma_i = \frac{20000}{2.197} + \frac{20000(3.641)(1.2958)}{2.197(0.34512)(2)} = 71330 \text{ psi} \quad Ans.$$

$$\sigma_o = \frac{20000}{2.197} - \frac{20000(3.641)(2.7042)}{2.197(0.34512)(6)} = -34180 \text{ psi} \quad Ans.$$

3-79
$$r_c = 12 \text{ in}, M = 20(2+2) = 80 \text{ kip} \cdot \text{in}$$

From statics book, $I = \frac{\pi}{4}a^3b = \frac{\pi}{4}(2^3)1 = 2\pi \text{ in}^4$

Inside: $\sigma_i = \frac{F}{A} + \frac{My}{I} \frac{r_c}{r_i} = \frac{20}{2\pi} + \frac{80(2)}{2\pi} \frac{12}{10} = 33.7 \text{ kpsi}$ Ans.

Outside:
$$\sigma_o = \frac{F}{A} - \frac{My}{I} \frac{r_c}{r_o} = \frac{20}{2\pi} - \frac{80(2)}{2\pi} \frac{12}{14} = -18.6 \text{ kpsi}$$
 Ans.

Note: A much more accurate solution (see the 7th edition) yields $\sigma_i = 32.25$ kpsi and $\sigma_o = -19.40$ kpsi

3-80

For circle,
$$\frac{A}{\int (dA/r)} = \frac{r^2}{2\left(r_c - \sqrt{r_c^2 - r^2}\right)}, \quad A_o = \pi r^2$$

$$\therefore \int \frac{dA}{r} = 2\pi \left(r_c - \sqrt{r_c^2 - r^2} \right)$$

$$\sum \int \frac{dA}{r} = 1 \ln \frac{2.6}{1} - 2\pi \left(1.8 - \sqrt{1.8^2 - 0.4^2} \right) = 0.6727234$$

$$A = 1(1.6) - \pi (0.4^2) = 1.0973452 \text{ in}^2$$

$$r_n = \frac{1.0973452}{0.6727234} = 1.6312 \text{ in}$$

$$e = 1.8 - r_n = 0.1688 \text{ in}$$

$$c_i = 1.6312 - 1 = 0.6312 \text{ in}$$

$$c_o = 2.6 - 1.6312 = 0.9688 \text{ in}$$

$$M = 3000(5.8) = 17400 \text{ lbf} \cdot \text{in}$$

$$\sigma_i = \frac{3}{1.0973} + \frac{17.4(0.6312)}{1.0973(0.1688)(1)} = 62.03 \text{ kpsi} \quad Ans.$$

$$\sigma_o = \frac{3}{1.0973} - \frac{17.4(0.9688)}{1.0973(0.1688)(2.6)} = -32.27 \text{ kpsi} \quad Ans.$$

3-81 From Eq. (3-68)

$$a = KF^{1/3} = F^{1/3} \left\{ \frac{3}{8} \frac{2[(1-v^2)/E]}{2(1/d)} \right\}^{1/3}$$

Use $\nu = 0.292$, F in newtons, E in N/mm² and d in mm, then

$$K = \left\{ \frac{3}{8} \frac{\left[(1 - 0.292^2) / 207\,000 \right]}{1/25} \right\}^{1/3} = 0.0346$$

$$p_{\text{max}} = \frac{3F}{2\pi a^2} = \frac{3F}{2\pi (KF^{1/3})^2}$$

$$= \frac{3F^{1/3}}{2\pi K^2} = \frac{3F^{1/3}}{2\pi (0.0346)^2}$$

$$= 399F^{1/3} \text{ MPa} = |\sigma_{\text{max}}| \qquad Ans.$$

$$\tau_{\text{max}} = 0.3 p_{\text{max}}$$

$$= 120F^{1/3} \text{ MPa} \qquad Ans.$$

3-82 From Prob. 3-81,

$$K = \left\{ \frac{3}{8} \frac{2[(1 - 0.292^2)/207000]}{1/25 + 0} \right\}^{1/3} = 0.0436$$

$$p_{\text{max}} = \frac{3F^{1/3}}{2\pi K^2} = \frac{3F^{1/3}}{2\pi (0.0436)^2} = 251F^{1/3}$$

and so, $\sigma_z = -251 F^{1/3} \text{ MPa}$ Ans.

$$\tau_{\text{max}} = 0.3(251)F^{1/3} = 75.3F^{1/3} \text{ MPa}$$
 Ans.

$$z = 0.48a = 0.48(0.0436)18^{1/3} = 0.055 \text{ mm}$$
 Ans.

3-83 $v_1 = 0.334$, $E_1 = 10.4$ Mpsi, l = 2 in, $d_1 = 1$ in, $v_2 = 0.211$, $E_2 = 14.5$ Mpsi, $d_2 = -8$ in. With $b = K_c F^{1/2}$, from Eq. (3-73),

$$K_c = \left(\frac{2}{\pi(2)} \frac{(1 - 0.334^2)/[10.4(10^6)] + (1 - 0.211^2)/[14.5(10^6)]}{1 - 0.125}\right)^{1/2}$$
$$= 0.0002346$$

Be sure to check σ_x for both ν_1 and ν_2 . Shear stress is maximum in the aluminum roller. So,

$$\tau_{\text{max}} = 0.3 p_{\text{max}}$$

$$p_{\text{max}} = \frac{4000}{0.3} = 13300 \text{ psi}$$

Since $p_{\text{max}} = 2F/(\pi bl)$ we have

$$p_{\text{max}} = \frac{2F}{\pi l K_c F^{1/2}} = \frac{2F^{1/2}}{\pi l K_c}$$

So,

$$F = \left(\frac{\pi l K_c p_{\text{max}}}{2}\right)^2$$

$$= \left(\frac{\pi (2)(0.0002346)(13300)}{2}\right)^2$$

$$= 96.1 \text{ lbf} \quad Ans.$$

3-84 Good class problem

3-85 From Table A-5, $\nu = 0.211$

$$\frac{\sigma_x}{p_{\text{max}}} = (1 + \nu) - \frac{1}{2} = (1 + 0.211) - \frac{1}{2} = 0.711$$

$$\frac{\sigma_y}{p_{\text{max}}} = 0.711$$

$$\frac{\sigma_z}{p_{\text{max}}} = 1$$

These are principal stresses

$$\frac{\tau_{\text{max}}}{p_{\text{max}}} = \frac{1}{2}(\sigma_1 - \sigma_3) = \frac{1}{2}(1 - 0.711) = 0.1445$$

3-86 From Table A-5: $v_1 = 0.211$, $v_2 = 0.292$, $E_1 = 14.5(10^6)$ psi, $E_2 = 30(10^6)$ psi, $d_1 = 6$ in, $d_2 = \infty$, l = 2 in

(a) Eq. (3-73):
$$b = \sqrt{\frac{2(800)}{\pi(2)} \frac{(1 - 0.211^2)/14.5(10^6) + (1 - 0.292^2)/[30(10^6)]}{1/6 + 1/\infty}}$$
$$= 0.012 135 \text{ in}$$
$$p_{\text{max}} = \frac{2(800)}{\pi(0.012 135)(2)} = 20 984 \text{ psi}$$

For z = 0 in,

$$\sigma_{x1} = -2\nu_1 p_{\text{max}} = -2(0.211)20\,984 = -8855$$
 psi in wheel $\sigma_{x2} = -2(0.292)20\,984 = -12\,254$ psi

In plate

$$\sigma_y = -p_{\text{max}} = -20\,984 \text{ psi}$$
 $\sigma_z = -20\,984 \text{ psi}$

These are principal stresses.

(b) For
$$z = 0.010$$
 in,

$$\sigma_{x1} = -4177 \text{ psi}$$
 in wheel
 $\sigma_{x2} = -5781 \text{ psi}$ in plate
 $\sigma_y = -3604 \text{ psi}$
 $\sigma_z = -16194 \text{ psi}$