Review

- 1. Give examples of the following or explain why they don't exist.
 - (a) Values of a and b so that the differential equation $y'' + ay' + by = 12x^2e^x$ has particular solution $y_P = x^4e^x$.

(b) A first-order differential equation with solution $x^2y^2 + e^{xy} = k$.

(c) A stepsize for Euler's method that overestimates the solution of the initial value problem y' = 2y, y(0) = 3 at the point x = 5.

Power Series

2. Show Euler's formula,

$$e^{i\theta} = \cos\theta + i\sin\theta,$$

by using the Taylor series for e^x , $\cos x$, and $\sin x$.

3. The power series

$$1 - x + x^{2} - x^{3} + \dots = \frac{1}{1 - (-x)}$$

can be thought of as a geometric series with multiplier -x.

(a) For what values of the multiplier x does the series converge?

(b) The derivative of $\ln(1+x)$ is $\frac{1}{1+x}$. Use the series above to derive a power series for $\ln(1+x)$ by integrating the series term by term.

4. Determine a power series solution to the following linear initial value problem.

$$y' = (x-1)^2 y$$
, $y(1) = -1$