Data mining

Many definitions

Introduction to Data Mining: "non-trivial extraction of implicit, previously unknown and potentially useful information from data."

Data mining differs from Statistics due to:

- It's focus on data storage and data manipulation methodologies
- It's focus on modeling methods that make few assumptions about the distribution of the training data, but that
 often have little theoretical support
- It's focus on commercial applications

In a pop-culture sense, the terms "analytics", "big data", "data science", and "machine learning" are all basically synonyms of data analysis. "Data mining" was perhaps the precursor of these terms.

The data analysis field in general suffers from non-standard vocabulary issues. For instance, see the many different terms used for the rows and columns of a data set.

Machine Learning

SUPERVISED LEARNING

- Regression
 - -LASSO regression -Logistic regression -Ridge regression
- Decision tree
 - Gradient boosting Random forests
- Know y
- Naïve Bayes
- Neighbors
- -Gaussian processes

UNSUPERVISED LEARNING

- A priori rules
- Clustering
 - k-means clustering - Mean shift clustering - Spectral clustering
- Don't
- know y

factorization

- PCA
 - Kernel PCA Sparse PCA
- Singular value decomposition

SEMI-SUPERVISED LEARNING

- Prediction and classification*
- Clustering*

Sometimes

- know y
- Multilayer perceptron
 Restricted Boltzmann
 machines

TRANSFER LEARNING

REINFORCEMENT LEARNING

EVOLUTIONARY LEARNING

*In semi-supervised learning, supervised prediction and classification algorithms are often combined with clustering.

80/20 rule

Most time is spent cleaning and preprocessing the data!

Data growth

ESTIMATION VS. PREDICTION

DIFFERENT GOALS, DIFFERENT MINDSETS

How do we turn our predictions into a production system?

Data science Venn diagram 1.0

Drew Conway, 2010

AUC 0.0001 increases "relevant"

If you do #kaggle to learn #machinelearning, you are missing out on 80% of things you need for ML in real life/production. -- Szilard Pafka

EMPIRE STRIKES BACK

Learning Although the Big Data
Hype Star has been destroyed,
Deep Learning troops armed with
GPUs are hunting down rebel
logistic regressions. A group of
freedom fighters led by gradient
boosting machines...

For lots of business problems GBMs beat deep learning. I was talking about efforts to make GBMs faster (optimized libraries, multicore, GPUs etc.) #machinelearning – Szilard Pafka

https://twitter.com/DataScienceLA/status/936653723568300033

Embrace Automation

- All industries move toward automation
- Algorithms are commodities
- Value-add above and beyond algorithms