

$$R_{3112} = \frac{75 \times 100}{100 + 75} = \frac{7500}{175}$$

$$\chi_{c} = \frac{-i}{2\pi 5c} = \frac{-i}{2\pi 7(103)(4.7 \times 10^{3})}$$

Therinin equivalent circluit

$$\frac{v}{z} = i$$

= 42.814 L 75.138° mA

Papparent = 25 ZPapparent = $(42.814 \times 10^{-3} \angle 75.1389) \times (89.857 - 338.627)$ Papparent = $0.64222 \angle 75.1386$

Pred = 15 R Pred = (42.814 × 10 3 × 75.138) × (89.857) Pred = 0.164717 ∠150.277

Preactive: 3 7 C

Preactive: 6 2 07 6 0 127 4 (-3) 8.62/j)

Preactive: 0.6207 60.1274 (-3) 8.62/j)

Preactive = 0.6207 60.2770

0.6929 0.6207 75.1380 0.1647

Z = 115.058 L54.996°/

$$5602$$
 R
 R
 $S = 10 \text{ kHz}$
 $S = 10 \text{ kHz}$

$$\chi_L = 3.865 \times 10^2$$

 $\chi_C = 386.5 \times 10^2$

Z = 560 + 386.5j

Z = 680,427 234,612°

11) Calculate the total current in each circuit of Figure 16 - 59 and express see in polor form. 66 2 150 mH 2 mf L = x2 X = 2 TT (100) (150×10) X, = 94,247 Z = 66 + 94,247j 7 = 43,456 L-54,996° MA

$$\chi_{L_1} = 2\pi f L = 2\pi (20 \times 10^3) (5 \times 10^{-3})$$
 $\chi_{L_1} = 628.318 \, \text{R}$
 $\chi_{L_2} = 2\pi (20 \times 13) (8 \times 10^{-3})$
 $\chi_{L_2} = 1005.309 \, \text{R}$

$$\chi_{L} = \frac{628.318 \times 1005.309}{628.318 + 1005.309}$$

$$\chi_{L} = \frac{861.001jn}{2}$$

$$Z = \frac{560 + 861.001jn}{2}$$

17) For the lag circuit in Figure 16-65, determine the phase lag of the output voltage with respect to the input for the Following Frequencies.

a) 1Hz d) 10 kHz

Vin Coov R = 3.9. 2

XL = 2 mfL

$$\chi_{L} = 2\pi f L$$

$$- ton^{-1} \left(\frac{\chi_{L}}{R} \right) = \theta$$

$$\chi_{L} = 2\pi r \left(1 \right) \left(10 r i \delta^{3} \right)$$

$$\chi_{L} = 2\pi r \left(10^{-2} \right)$$

$$- ton^{-1} \left(\frac{2\pi r (10^{-2})}{89} \right) = \theta$$

$$- 0. 092 = \theta \alpha$$

$$\chi_{L} = 2\pi f L$$

$$\chi_{L} = 2\pi f L$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

$$\chi_{L} = 2\pi r i \delta \times 10 r i \delta^{3}$$

19) express vout in Figure 16-66
in polar form for each Frequency
in problem 17.

L

10 mH

R Z392 Vout () 103 Hz

1400

4

b)

$$\chi_{L} = 2\pi (400)(10 \times 10^{-3})$$

()
$$\chi_{L} : 2\pi 5L$$

$$\chi_{L} : 2\pi \times 10^{3} \times 10 \times 10^{3}$$

$$\chi_{L} : 20 \text{ M}$$

comont be correct because of industry.

determine the following:

a) I total

b) Θ C) V_R , $V_S \Theta$ 1820° V_S 8, \$1.2 km R_L \$2.3 kg L238, d) V_R ,

e) Vr,

 $f) V_{L_1}$

2) ULZ

$$\chi_{L_{1}} = 2 \text{ Prf L}$$
 $\chi_{L_{1}} = 2 \text{ Prf L}$
 $\chi_{L_{1}} = 2 \text{ Pr}(80 \times 10^{3})(80 \times 10^{3})$
 $\chi_{L_{1}} = 2 \text{ Pr}(800)$
 $\chi_{L_{1}} = 5026.548 j$
 $\chi_{L_{2}} = 2 \text{ Pr}(80 \times 10^{3})(8 \times 10^{3})$
 $\chi_{L_{2}} = 2 \text{ Pr}(80 \times 10^{3})(8 \times 10^{3})$
 $\chi_{L_{2}} = 4021.238 j$

$$\delta = (i_2 - i_1)R_1 + (i_2 - i_1)R_1 + (i_2 - i_3)R_2$$

$$0 = (i_3 - i_2) R_2 + (i_3) R_3 + i_3 R_4$$

7, = 0.01891706-0,002049131 12 = 0.00391706 - 0.00204913j 7,: -0.00092105 + 0.00117596j 1, = 0.19028×163 2-61.823° 12 = 4.4207 x103 2-27.615° 23 = 1,4937 x10-3 = 1x28.070

1) .

1 total = $i_1 + i_2 + i_3$ 1 total = $(0.19028 \times 10^3 \angle -61.823^\circ) + (4.4207 \times 10^3 \angle -27.615^\circ) + (1.4937 \times 10^3 \angle 128.07^\circ)$

Feet = 1.9908

1 total = 0.19908 x 103 / 53.0010

6) 6

b) 53,000°

()
$$V_{R_1} = R_1 (i_1 - i_2)$$

 $V_{R_1} = 1200 (0.19028 \times 10^3 2-61.823^{\circ} - 4.4207 \times 10^3 2-27.615^{\circ})$

d)
$$V_{R_2} = R_1 (i_2 - i_3)$$

 $V_{R_2} = 3300 (4.4207 \times 10^3 2 - 27.615^{\circ} - 1.4937 \times 10^{-3} 2 (128.07^{\circ})$

$$V_{R_2} = 1.918$$

$$V_{R_2} = 19.183 \angle -33.685^{\circ}$$

e) $V_{R_3} = R_3 i_3$ $V_{R_3} = 5600 \times [.4937 \times 10^3] 128.87^\circ$ $V_{R_3} = 8.3608 \angle 128.07^\circ$

 $f) V_{L_1} = \chi_{L_1} i_2$ $V_{L_1} = 5026.548 j \times (4.4207 \times 10^3)$ $I_{-27.615°}$

VL, = 22.217 [62.3850]

 $V_{L_2} = \chi_{L_2} i_3$

VL2 = 4021. 236 j x (1.4937 x 103/128.079)

VLZ = 6.00372-141.930

41) Determine Ptrue, Preactive, Papport and PF for the curcuit in Figure 16-73.

Sketh the power triangle.

P = iV $V = 1826^{\circ}$ $V = 1826^{\circ}$ $total = 01.9908 \times 10^{3}$ 253.001°

Ptive = 2.1565 x 103

Preactive = 2.8619 x 103

Papparent = 3.5 839 x 103

Pf = 53.0010

3.5634 2.8619 x10 3 Var

2.8619 x10 3 VA