Back to Over-Determined System

• Let's start with the original problem:

Person ID	Weight	Height	ls_smoking	Life-span		\boldsymbol{A}		X			
1	60kg	5.5ft	Yes (=1)	66	[60	5.5	1]	$[x_1]$		[66]	
2	65kg	5.0ft	No (=0)	74	65	5.55.06.0	0	$ x_2 $	=	74	
3	55kg	6.0ft	Yes (=1)	78	L55	6.0	1	$[x_3]$		L78J	

• Using the inverse matrix, the solution is
$$\mathbf{x} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$$
.

Back to Over-Determined System

• Let's add an additional example:

Person ID Weight Height Is_smoking Life-span											
1	60kg	5.5ft	Yes (=1)	66							
2	65kg	5.0ft	No (=0)	74							
3	55kg	6.0ft	Yes (=1)	78							
4	50kg	5.0ft	Yes (=1)	72							

• Now, let's use the previous solution $\mathbf{x} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$

Back to Over-Determined System

• How about using slightly different solution $\mathbf{x} = \begin{bmatrix} 0.12 \\ 16 \\ -9.5 \end{bmatrix}$?

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.12 \\ 16 \\ -9.5 \end{bmatrix} = \begin{bmatrix} 71.3 \\ 72.2 \\ 79.9 \\ 64.5 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} -5.3 \\ 1.8 \\ -1.9 \\ 7.5 \end{bmatrix}$$

Which One is Better Solution?

Errors

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.12 \\ 16 \\ -9.5 \end{bmatrix} = \begin{bmatrix} 71.3 \\ 72.2 \\ 79.9 \\ 64.5 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} -5.3 \\ 1.8 \\ -1.9 \\ 7.5 \end{bmatrix}$$

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 12 \end{bmatrix}$$

Least Squares: Best Approximation Criterion

Let's use the squared sum of errors:

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \\ 50 & 5.0 & 1 \end{bmatrix} \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \\ 60 \end{bmatrix} \neq \begin{bmatrix} 66 \\ 74 \\ 78 \\ 72 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 12 \end{bmatrix} = (0^2 + 0^2 + 0^2 + 12^2)^{0.5}$$

Least Squares Problem

- Now, the sum of squared errors can be represented as $\|\mathbf{b} A\mathbf{x}\|$.
- **Definition**: Given an overdetermined system $A\mathbf{x} \simeq \mathbf{b}$ where $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^n$, and $m \gg n$, a least squares solution $\hat{\mathbf{x}}$ is defined a s

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} ||\mathbf{b} - A\mathbf{x}||$$

- The most important aspect of the least-squares problem is that no matter what \mathbf{x} we select, the vector $A\mathbf{x}$ will necessarily be in the column space Col A.
- Thus, we seek for \mathbf{x} that makes $A\mathbf{x}$ as the closest point in Col A to \mathbf{b} .