Treatment Effects in Bunching Designs: The Impact of the Federal Overtime Rule on Hours

Leonard Goff*

This version: September 19, 2021 For current version click here

Abstract

The Fair Labor Standards Act (FLSA) mandates overtime premium pay for most U.S. workers, but a lack of variability in the rule has made it difficult to assess its impacts on the labor market. This paper uses bunching at 40 hours to estimate the effect of the FLSA overtime rule on hours of work, leveraging an extension of the "bunching design" identification strategy and an administrative dataset of weekly paychecks. I develop a framework in which bunching at a choice-set kink reveals causal effects in a manner that is robust across underlying structural models, generalizing the canonical bunching-design approach. Under a non-parametric shape constraint on the distribution of hours and flexible assumptions on choice, I show that a local average treatment effect among bunchers is partially identified. The bounds are informative in the overtime context and suggest that directly affected hourly workers in the U.S. work an average of at least half an hour less per week, as a result of the FLSA mandate. This delivers an estimate of the wage elasticity of hours demand of −0.04.

^{*}Department of Economics, Columbia University. Email: leonard.goff@columbia.edu. I thank my coadvisors Simon Lee and Suresh Naidu, as well as Michael Best, Daniel Hamermesh, and Bernard Salanié for their for their gracious advice and support throughout this project. I have also benefited from discussions with Christopher Ackerman, Doug Almond, Joshua Angrist, Jushan Bai, Iain Bamford, Marc Bellemare, Sandra Black, Ivan Canay, Gregory Cox, Junlong Feng, Bhargav Gopal, Jonas Hjort, Wojciech Kopczuk, Bentley MacLeod, Serena Ng, José Luis Montiel Olea, Dilip Ravindran, Miguel Urquiola, and seminar participants at Columbia, Lehigh, Microsoft, the University of Georgia, the University of North Carolina Greensboro, the US Census Bureau, and Washington State University. I think my main data provider as well as the Bureau of Labor Statistics. Supplemental Material is available here.

1 Introduction

Many countries require premium pay for long work hours, in an effort to limit excessive work schedules and encourage hours to be distributed over more workers. In the U.S., such regulation comes through the "time-and-a-half" rule of the Fair Labor Standards Act (FLSA): workers must be paid one and a half times their normal hourly wage for any hours they work in excess of 40 within a single week. Although some workers are exempt from the overtime rule (and additionally some employers are not covered by the FLSA), the time-and-a-half rule applies to a majority of the U.S. workforce, including nearly all of its over 80 million hourly workers (U.S. Department of Labor, 2019). Workers in many industries average multiple overtime hours per week, making overtime premium pay the largest form of supplemental pay in the U.S. (Bishow, 2009).¹

Nevertheless, only a small literature has addressed the causal effects of the FLSA overtime rule on the U.S. labor market. This stands in marked contrast to the large body of work on the minimum wage, which was also introduced at the federal level by the FLSA in 1938. A key reason for this gap is that the overtime rule has varied little since then: the main parameters have remained as time-and-a-half after 40 hours within a week, for now more than 80 years.² This lack of variation has afforded few opportunities to leverage research designs that exploit policy changes to identify causal effects.³ In contrast to the minimum wage, reforms to overtime policy have been rare and have left the central parameters of the rule unaffected.

This paper takes a new approach to assessing the effect of the FLSA overtime rule on hours of work, by making use of variation within the rule itself: given a fixed hourly wage, hours in excess of 40 in a week from a single worker are more expensive to the firm than the first 40. This introduces a sharp discontinuity in the marginal cost of a worker-hour—a convex "kink" in firms' total costs—which provides firms with an incentive to set workers' hours exactly at 40. Models of optimizing behavior predict that the mass of workers with hours at 40 in a given week will be larger or smaller depending on how

¹Hart (2004) reports an average of 3 overtime hours per week among non-supervisory production workers. See Table E.2 for new estimates by industry from my sample. From a separate representative survey I estimate in Section 3 a grand average of about one overtime hour per week per worker, among all employed.

²While there are supplemental state overtime rules that vary somewhat by state (e.g. Minnesota has a 48 hour threshold), these rules bind for relatively few workers since the federal rules supersede the state rules.

 $^{^3}$ A notable exception is Hamermesh and Trejo (2003), who apply a difference-in-differences approach over the expansion of a daily overtime rule in California to men in 1980, estimating a price elasticity of demand for overtime hours of roughly -0.5. Costa (2000) and Johnson (2003) also consider the impact of the federal rule on hours, studying the initial phase-in of the FLSA and a supreme court decision clarifying the eligibility of public sector workers, respectively. Quach (2020) looks at very recent reforms to eligibility criteria for exemption from the FLSA, estimating effects on employment and incomes of salaried workers.

responsive firms are to the wage variation imposed by the FLSA. Combining this observation with assumptions about the shape of the distribution of hours that would be chosen in the absence of the FLSA, I use the bunching mass to identify the effect of the overtime rule on hours. This builds on a literature that has used bunching at kinks in tax liability to identify the elasticity of labor supply (e.g. Saez 2010; Chetty et al. 2011),⁴ which I refer to as the "bunching design".⁵

In order to operationalize a bunching-design approach to assessing the overtime rule, this paper requires two new ingredients relative to existing literature. First, my approach relies on high-resolution data on the hours of individual workers within a single week, in order to observe the precise distribution of hours close to 40. I obtain this through a novel dataset of individual paycheck records from a large payroll processing company, which reports the exact number of hours that a worker was paid for in a given week. Second, my approach requires a way to translate this observed hours distribution into causal estimates of the rule's effect, under credible assumptions about how weekly working hours are determined. This requires moving beyond the original bunching-design model popularized in public finance applications, which assumes a stylized labor supply model with isoelastic preferences and strong restrictions on heterogeneity.

The identifying assumptions of the bunching design can be separated into two parts: i) assumptions about how individual agents would make choices given counterfactual choice sets—a *choice model*, and ii) assumptions about the distribution of heterogeneity in choices across agents. I find that the class of choice models under which the bunching-design can be applied is considerably more general than has been previously appreciated. In particular, I show that the method does not require the researcher to suppose any explicit functional form for decision-makers' utility; rather, the core behavioral prediction driving identification rests on *convexity* of individual preferences (and of the kink itself). Agents in the bunching design may even have multiple underlying margins of choice, which can be unobserved to the researcher and vary by agent. These findings establish an important robustness property for the bunching design: it remains broadly valid even when the isoelastic utility model typically used to motivate the design is misspecified.⁶

⁴Variations of the bunching design have since been applied in a variety of settings from cell phone plan pricing (Huang, 2008) to fuel economy standards (Ito and Sallee, 2017), prescription drug spending (Einav et al., 2017) and Social Security (Gelber et al., 2020).

⁵This paper considers only the bunching design for kinks, and not the related method for bunching at *notches* (e.g. Kleven and Waseem 2013). Bunching can also be used to overcome endogeneity in settings where the variable exhibiting bunching is the treatment, as recently shown by Caetano et al. (2020).

⁶This may appear at odds with Einav et al. (2017), who demonstrate that alternative structural models calibrated from the bunching-design can yield very different predictions about counterfactuals. I highlight a particular type of counterfactual question that can be answered robustly across a class of such models, providing a response to this well-placed note of caution.

This generality is accomplished by recasting the bunching design in a potential outcomes framework, defining the parameter of interest in terms of counterfactual *choices* rather than as a preference parameter from a parametric choice model. I show that choice from a kinked choice set can be fully characterized by two such counterfactual choices, and that bunching directly identifies a feature of the joint distribution of these potential outcomes. In the overtime setting I take firms to choose the hours of workers, and these potential outcomes correspond to: a) the number of hours the firm would choose for the worker if the worker's normal wage rate applied to all hours; and b) the number that the firm would choose if the worker's overtime rate applied to all hours.

In addition to generalizing the choice model underlying the bunching design, I show that the assumptions about heterogeneity typically used in the bunching design can also be relaxed. In my formulation, these take the form of assumptions about the marginal distributions of the two potential outcomes, which are observed in only a censored manner. These distributions must be extrapolated to estimate causal effects, as emphasized by Blomquist and Newey (2017) in the context of the isoelastic model. To perform this extrapolation I impose a weak non-parametric shape constraint—*bi-log-concavity*—on the distribution of each potential outcome. Bi-log-concavity nests many previously proposed assumptions for bunching analyses, and leads to a natural falsification test. The restriction affords partial identification of a certain local average treatment effect among individuals who locate at the kink, a parameter I call the "buncher LATE". In the overtime context, the buncher LATE represents an average reduced-form wage elasticity of hours demand, which I then use to assess the overall impact of the FLSA.

This result supplements other partial identification approaches recently proposed for the bunching design. Importantly, the bounds I derive for the buncher-LATE are substantially narrowed by making extrapolation assumptions separately for *each* of the two counterfactuals. By contrast, existing approaches operate by constraining the distribution of a single scalar heterogeneity parameter that appears in the baseline choice model of isoelastic preferences (with a common elasticity value). In the context of this model, Bertanha et al. (2020) and Blomquist et al. (2020) obtain bounds on the elasticity when the researcher is willing to put an explicit limit on how variable the density of heterogeneity can be. My approach based on bi-log-concavity avoids the need to choose any such tuning parameters, in addition to being applicable in a general choice model.

The empirical setting of overtime pay involves two further challenges that are not typical to bunching-design analyses. Firstly, 40 hours is not an "arbitrary" point and bunching there could arise in part from factors other than it being the location of the kink. I use two strategies to estimate the amount of bunching that would exist at 40 absent the FLSA, and

deliver clean estimates of the rule's causal effect. My preferred strategy uses the fact that paid-time off hours do not count towards a week's overtime threshold, shifting the location of the kink in a plausibly idiosyncratic way. A second consideration in applying the bunching design to overtime is that work hours may not always be set unilaterally by one party—in principle either the firm or the worker could have control over a given worker's schedule, or the two might bargain over hours. I provide evidence that week-by-week variation in hours tends to be driven by the firm rather than the worker, and outline a conceptual framework to motivate this observation. I also extend the results to a model in which bargaining weight between workers and firms is arbitrary and heterogeneous.⁷

While there is some reason to question whether the FLSA overtime rule should be expected to ultimately have any effect on hours (Trejo, 1991), I find that the rule does in fact reduce hours of work among hourly workers. My preferred estimate suggests that about one quarter of the bunching observed at 40 among hourly workers is due to the FLSA, and those working at least 40 hours work, on average, about 30 minutes less than they would absent the time-and-a-half rule. While this paper focuses on the hours effects of the FLSA (rather than employment effects), a back-of-the-envelope calculation using this estimate suggests that FLSA regulation creates about 700,000 jobs. Across specifications I estimate that the local wage elasticity of hours demand close to 40 falls in the range -0.04 to -0.19. I also use these estimates to evaluate hypothetical reforms to the FLSA, showing that even my generalized bunching-design model can be informative about counterfactual policies that change the location or "sharpness" of the kink.

The structure of the paper is as follows. Section 2 lays out a motivating conceptual framework for work hours that draws on the existing literature on overtime. Section 3 introduces the payroll data I use in the empirical analysis. In Section 4 I develop the generalized bunching-design approach, with Appendix A developing some of the supporting formal results. Section 5 applies these results to estimate effect of the FLSA overtime rule on hours worked, as well as the effects of hypothetical reforms to the FLSA. Section 6 discusses the empirical findings from the standpoint of policy objectives, and 7 concludes.

2 Conceptual framework

This section outlines a framework for thinking about the role of overtime policy in determining hours, which then motivates the identification strategy of Section 4. Readers primarily interested in the bunching design may wish to skip directly to that section.

 $^{^{7}}$ In such cases discussed in Appendix B, the bunching estimator is informative about treatment effects among workers who do work 40 hours, and for whom their firm chooses hours.

The conceptual framework is centered around two observations borne out in the data: that weekly hours vary considerably between pay periods for an individual hourly worker, and hourly wages tend to change only infrequently. With a fixed wage, firms thus face a kinked cost schedule when choosing hours in a given week. I propose a conceptual model that views this as a two stage-process. First, workers are hired with an hourly wage set along with an "anticipated" number of hours they will work per week. Then, with that hourly wage fixed in the short-run, final scheduling of hours is controlled by the firm and varies by week given shocks to the firm's demand for labor.

Wages and anticipated hours set at hiring

Suppose that firms hire by posting an earnings-hours pair (z,h), where z is total weekly compensation offered to each worker, and h is the number of hours they are each expected to work per week, at time of hiring. The firm faces a labor supply function N(z,h) determined by workers' preferences over the labor-leisure tradeoff, and makes a choice of (z^*,h^*) given this labor supply function and their production technology. For simplicity, workers are here taken to be homogeneous in production, all paid hourly, and all covered by the FLSA. This model is spelled out formally in Appendix D.

Following the literature I refer to the hourly rate of pay that applies to the first 40 of a worker's hours as their *straight-time wage* or simply *straight wage*. While labor supply is viewed as a function over *total* compensation z and hours, there is always a unique straight wage associated with a particular (z, h) pair, such that h hours of work yields earnings of z, given the FLSA overtime rule:

$$w_s(z,h) = \frac{z}{h + 1(h > 40)0.5(h - 40)} \tag{1}$$

For the purposes of this section, assume that at hiring, the firm chooses z^* and h^* , and workers' straight-time wages are set endogenously according to Eq. (1) given these values. That is: straight wages are set to target an anticipated total pay given the FLSA overtime rule. The bunching design strategy of Section 4 will only require that *some* straight-time wage is agreed upon and fixed in the short-run for each worker, as indeed observed in the data. However, the idea that hourly wages are set based on a target total earnings z^* will play a role in my final evaluation of the FLSA, and helps to fix ideas.

For example, this earnings-hours posting model allows us to distinguish the two pri-

⁸This labor supply function can be viewed as an equilibrium object that reflects both worker preferences and the competitive environment for labor. In Supplemental Appendix 1, I endogenize this function in a simple extension of the imperfectly competitive Burdett and Mortensen (1998) search model.

mary views that the literature has proposed on the likely effects of overtime policy. To do so, let us for the moment abstract away from any dynamics or uncertainty that might cause the firm to deviate from the posted job package in a particular week, and suppose that workers in fact work h^* hours in all weeks. Then for a generic labor supply function N(z,h), the FLSA will have no effect on earnings, hours or employment (provided that $w_s(z^*,h^*)$ is above any applicable minimum wage). Indeed, the job package (z^*,h^*) posted by the firm will be the same as the one that would exist absent the FLSA, as the hourly wage rate simply adjusts to fully neutralize the overtime premium.⁹ This is what Trejo (1991) calls the *fixed-job* view of overtime.

The fixed-jobs view can be contrasted with what Trejo (1991) calls the *fixed-wage* view, in which the firm faces an exogenous straight-time wage when determining hours. ¹⁰ The fixed-wage view can be captured by a labor supply function N(z,h) that reflects perfect competition on the quantity $w_s(z,h)$. I show in Appendix D that in this case h^* and z^* are pinned down by the concavity of production with respect to hours and the scale of fixed costs (e.g. training) that do not depend on hours. The fixed-wage job makes the clear prediction that the FLSA will cause a reduction in hours, and bunching at 40; Figure 1 depicts the intuition. In a fixed-wage model the overall effect on employment is positive given plausible assumptions on substitution between labor and capital (Cahuc and Zylberberg, 2004), though the total number of labor-hours will decrease (Hamermesh, 1996).

Trejo (1991) and Barkume (2010) investigate whether the fixed-job or fixed-wage model better accords with the observed joint distribution of hourly wages and hours. They find that wages do tend to be lower among jobs with overtime pay provisions and more overtime hours, but by a magnitude smaller than would be predicted by the fixed-jobs model. However, these estimates could be driven by selection of lower skilled workers into covered jobs with longer hours. In Appendix E, I construct an empirical test of Equation (1) that is instead based on assuming that the conditional distribution (at the individual paycheck level) of z is smooth across h=40. Under this assumption I find that roughly one quarter of paychecks reflect the wage/hours relationship predicted by the fixed-job model, lending additional support to these previous findings.

⁹In Appendix D I give a closed form expression for (z^*, h^*) when both labor supply and production are iso-elastic: hours and earnings are each increasing in the elasticity of labor supply with respect to earnings, and decreasing in the magnitude of the elasticity of labor supply with respect to pay.

¹⁰Versions of this idea are considered in Brechling (1965), Rosen (1968), Ehrenberg (1971), Hamermesh (1996), Hart (2004) and Cahuc and Zylberberg (2004).

FIGURE 1: With a given worker's wages fixed at w labor costs as a function of hours have a convex kink at h=40, given the overtime rule. A simple model of hours choice yields bunching when the marginal product of an hour at 40 is between w and 1.5w for a mass of workers—see Section 4.1.

Dynamic adjustment to hours by week

The partial adjustment of wages noted in the last section is consistent with a model in which straight wages are set according to Equation (1) and then remain fixed over time, while hours ultimately worked vary from week to week. Indeed, Section 3 reports that while wages tend to be fixed in the short run, hours frequently change from week to week in my sample of hourly workers.¹¹

Confronted with this variation, I assume that it reflects firms' choices of the hours that an employee is ultimately paid for in a given week. There are many reasons to expect week-by-week variation in a firm's demand for hours. Shocks to product demand or productivity change the number of weekly hours that would be optimal that week from the firm's perspective. If demand for the firm's products is seasonal or volatile, it may not be worthwhile to hire additional workers only to reduce employment later. Similarly, variation in productivity across workers may only become apparent to supervisors after their straight wages have been set, and it may be profitable to increase the hours of the most productive workers.

Throughout Section 4, I maintain a strong version of the assumption that a firm—rather than a worker—chooses the hours I observe on each paycheck.¹² This eases nota-

¹¹See Table 3 for details. This dovetails other recent evidence of uniformity and discretion in wage-setting, including nominal wage rigidity in payroll data (Grigsby et al. 2020), standardized wages within multinationals (Hjort et al., 2020) and wage-bunching at round numbers (Dube et al., 2020).

¹²Recall that workers' preferences do matter in the determination of each worker's straight wage—the firm simply has final scheduling rights. This can be rationalized on the basis of workers generally having less

tion and emphasizes the intuition behind my identification strategy. Appendix B presents a generalization in which some fraction of workers choose their hours, along with intermediate cases in which the firm and worker bargain over hours each week. If some but not all workers have full control of their weekly hours, then the bunching-design strategy will only be informative about effects of the FLSA among workers whose final hours are chosen by the firm. Available survey evidence suggests that this group is the dominant one: a relatively small share of workers report that they choose their own schedules, despite recent increases in flexible work arrangements.¹³

3 Data and descriptive patterns

The main dataset I use comes from a large payroll processing company. They provided anonymized paychecks for the employees of 10,000 randomly sampled employers, for all pay periods in the years 2016 and 2017. At the paycheck level, I observe the check date, straight wage, and amount of pay and hours corresponding to itemized pay types, including normal (straight-time) pay, overtime pay, sick leave, holiday pay, and paid time off. The data also include state and industry for each employer and for employees: age, tenure, gender, state of residence, pay frequency and their salary if one is stored in the system.

3.1 Sample description

I construct a final sample for analysis based on two desiderata: a) the ability to observe hours within a single week; and b) a sample only of workers who are not exempt from the FLSA overtime rule. For the purposes of a), I keep paychecks from workers who are paid on a weekly basis (roughly half of the workers in the sample), and condition on paychecks that contain a record of positive hours for work, vacation, holidays, or sick leave, totaling fewer than 80 hours in a week.¹⁴

To achieve b) I focus on hourly workers, since nearly all workers who are paid hourly are subject to FLSA regulation. While the data include a field for the employer to in-

bargaining power: if the worker and firm fail to agree on a worker's hours, the worker's outside option may be unemployment while the firm's outside option is having one less worker (Stole and Zwiebel, 1996).

¹³For example, the 2017-2018 Job Flexibilities and Work Schedules Supplement of the American Time Use Survey asks workers whether they have some input into their schedule, or whether their firm decides it. Only 17% report that they have some input. In a survey of firms, about 10% report that most of their employees have control over their shifts (Society for Human Resource Management, 2018).

¹⁴This final restriction removes about 2% of the sample after the other restrictions. While a genuine 80 hour workweek is possible, I consider these observations to likely correspond to two weeks of work despite the worker's pay frequency being coded as weekly.

put a salary, there is no guarantee that employers actually use this feature in the payroll software. Therefore, I use a combination of sampling restrictions to ensure I remove all non-hourly workers from the sample. First, I drop workers that ever have a salary on file with the payroll system. Second, I only keep workers at firms for whom *some* workers have a salary on file, reflecting an assumption that employers either don't use the feature at all or use it for all of their salaried employees. I also drop paychecks from workers for whom hours are recorded as 40 in every week in the sample, ¹⁵ as it is possible that these workers are simply coded as working 40 hours despite being paid on a salary basis. I also drop workers who never receive overtime pay. ¹⁶ The final sample includes 630,217 paychecks for 12,488 workers across 566 firms.

Table 1 shows how the final sample compares to survey data that is constructed to be representative of the U.S. labor force. Column (1) reports variable means in the sample used in estimation. Column (3) reports means from the Current Population Survey (CPS) for the same years 2016–2017, among those reporting hourly employment. The "has overtime" variable for the CPS sample indicates that the worker usually receives overtime, tips, or commissions. The fourth column reports means for 2016–2017 from the National Compensation Survey (NCS), a representative establishment-level dataset accessed on a restricted basis from the Bureau of Labor Statistics. The NCS uses administrative data when available, and reports typical overtime worked at the quarterly level for each job in an establishment. Columns (3) and (4) both lack some variables, as the CPS does not specifically ask about number of overtime hours, while the NCS lacks worker-level information such as tenure, age and sex.

The sample I use is somewhat more male, earns lower straight-time wages, and works more overtime than a typical U.S. worker. The NCS does not distinguish between hourly and salaried workers, reporting only an average hourly rate that does not include overtime pay. This effective straight-time wage thus includes many salaried workers, who are on average paid more, likely explaining the higher value than the CPS and payroll samples. Column (2) in Table 1 also reveals that my sampling restrictions can explain why the estimation sample tilts male and has higher overtime hours than the workforce as a whole. In particular, conditioning on workers that are paid on a weekly basis oversamples industries that tend to have more men, and tend to pay somewhat lower wages. Appendix E compares the industry and regional distributions of the estimation sample to the CPS.

¹⁵For the purposes of this restriction, I count the "40 hours" event as occurring when either hours worked or hours paid is equal to 40.

¹⁶I also drop observations from California, which has a daily overtime rule that is binding for a significant number of workers, and could confound the effects of the weekly FLSA rule.

¹⁷The hourly wage variable for the CPS may mix straight-time and overtime rates, and is only present in

	(1)	(2)	(3)	(4)
	Estimation sample	Initial sample	CPS	NCS
Tenure (years)	3.21	2.81	6.34	•
Age (years)	37.15	35.89	39.58	
Female	0.23	0.46	0.50	•
Weekly hours	38.92	27.28	36.31	35.70
Has overtime (fraction of workers)	1.00	0.37	0.17	0.52
Straight-time wage	16.16	22.17	18.09	23.31
Weekly overtime hours	3.56	0.94		1.04
Number of workers in sample	12488	149459	63404	228773

TABLE 1: Comparison at the worker level of the sample with representative surveys. Column 1 reports means from the administrative payroll sample used in estimation, Column 2 from the Current Population Survey and Column 3 from the National Compensation Survey). Column 2 uses a larger sample from the payroll data, before sampling restrictions.

FIGURE 2: Empirical densities of hours worked pooling all paychecks in final estimation sample. Sample is restricted to hourly workers receiving overtime pay at some point (to ensure nearly all are non-exempt from FLSA, see text), and workers having hours variation. The right panel omits the points 40 and 32 to improve visibility elsewhere. Bins have a width of 1/8 of an hour, based on the observed granularity of hours (see Appendix Figure E.15 for details).

3.2 Hours and wages in the sample

I turn now to the main variables to be used in the analysis. Figure 2 reports the distribution of weekly hours in the pooled sample of paychecks. The graphs indicate a large mass of individuals who were paid for exactly 40 hours, amounting to about 11.6% of the sample. Appendix Figure E.12 makes clear that overtime pay is present in nearly all weekly paychecks that report more than 40 hours, in line with the assumption that the workers in

the outgoing rotation group sample. The tenure variable comes from the 2018 Job Tenure Supplement.

¹⁸The second largest mass occurs at 32 hours, and is explained by paid-time-off, holiday, and sick pay hours as discussed in Section 5.

my final sample are not exempt from the FLSA.¹⁹

Recall from the conceptual framework of Section 2 that firms face a kink in labor costs within a given pay period when straight-wages are fixed, and that this rigidity mediates the main causal effect of the FLSA on hours worked. Table 3 documents that while the hours paid in 70% of all pay checks in the final estimation sample differ from those of the last paycheck by at least one hour, just 4% of all paychecks record a different straight-time wage than the previous paycheck for the same worker. This latter figure is unchanged if I condition on the event of an hours change. Among the roughly 22,500 wage change events, the average change is about a 45 cent raise per hour. When hours change the magnitude is about 7 hours on average (see Supplemental Figure E.16 for the distribution of hours changes), with no average secular increase in hours over time.

	Mean	Std. dev.	N
Indicator for hours changed from last period	0.84	0.37	630,217.00
Indicator for hours changed by at least 1 hour	0.70	0.46	630,217.00
Indicator for wage changed from last period	0.04	0.19	630,217.00
Indicator for wage changed, if hours changed	0.04	0.19	529,791.00
Difference in hours, if hours changed	-0.02	10.69	529,791.00
Absolute value of hours difference, if hours changed	6.83	8.23	529,791.00
Difference in wage, if wage changed	0.45	26.46	22,501.00

FIGURE 3: Changes in hours or straight wages between a worker's consecutive paychecks.

Appendix Table E.5 reports a direct test of the Trejo (1991) model that straight-time wages are related to hours according to Equation (1). In particular, I show that under natural smoothness assumptions, the change in slopes of a regression function of straight wages on hours at 40 identifies the proportion of checks around 40 that reflect the wage-hours relationship described by Equation (1). This exercise suggests that about 25% of checks near 40 hours satisfy this relationship, consistent with straight wages being adjusted in response to overtime pay obligations but being updated only intermittently.

I report some further details on the variation present in the data in Appendix E. Appendix Table E.3 regresses hours, overtime hours, and an indicator for bunching on worker observables, and shows that after controlling for worker and date fixed effects bunching and overtime hours are both predicted by recent hiring at the firm. This lends further credibility to the assumption that shocks to labor demand drive variation in hours. Appendix Table E.4 shows that overall, about 63% of variation in total hours can be explained

¹⁹However, I cannot rule out that some of the overtime pay is based on voluntary firm overtime policies.

by worker and employer by date fixed effects. Appendix Figure E.2 documents heterogeneity in the prevalence of overtime pay across industry classifications. Industries with the most overtime pay include Health Care and Social Assistance, Administrative and Support, and Transportation and Warehousing.

4 Empirical strategy: a generalized kink bunching design

In this section I turn to the firm making its week-to-week choice of hours for a given worker, with that worker's wage fixed and costs a kinked function of hours as depicted in Figure 1. I show that under weak assumptions, firms facing such a kink will make a choice that can be completely characterized by choices they *would* make under two counterfactual linear cost schedules that differ with respect to a single worker's hourly wage. I then parlay the observable bunching at 40 hours into a statement about the joint distribution of these counterfactuals, which are interpreted in the language of treatment effects. I use these treatment effects to estimate my main parameter of interest: the average effect of the FLSA on hours.

The identification results in this section hold in a much more general setting in which a generic decision-maker faces a generic "kinked" choice set and has convex preferences. I present this general model in Appendix A. Throughout this section I refer to a worker i in week t as a unit: an observation of h_{it} for unit it is thus the hours recorded on a single paycheck. Probability statements are to be understood with respect to such paycheck-level units.

4.1 A benchmark model: hours chosen from marginal productivity

Let us start from the conceptual framework introduced in Section 2. In choosing the hours h_{it} of worker i in week t, worker i's employer faces a kinked cost schedule, given the worker's straight-time wage this week w_{it} .²⁰ If the firm chooses less than 40 hours, it will pay $w = w_{it}$ for each hour, and if the firm chooses h > 40 it will pay 40w for the first 40 hours and 1.5w(h-40) for the remaining hours, giving the convex shape to Figure 1. Let $B_{kit}(h) = w_{it}h + .5w_{it}\mathbb{1}(h > 40)(h-40)$ represent the kinked pay schedule for unit it as a function of hours this week h.

A natural view of weekly hours demand is that firms balance the cost $B_{kit}(h)$ against the value of h hours of the worker's labor, in order to maximize that week's profits. This

 $^{^{20}}$ A unit's straight-time wage w_{it} is fixed with respect to the choice of hours this week, but may depend on t due to e.g. occasional or automatic periodic raises.

leads to an intuitive characterization of when the firm will ask the worker to work overtime. Let $F_t(h, \mathbf{h}_{-i,t})$ denote production in dollars this week, where h are the hours for worker i and $\mathbf{h}_{-i,t}$ is the vector of hours for the other workers in the firm. Take F to be strictly concave in the total hours profile of its workers $\mathbf{h} = (h, \mathbf{h}_{-i,t})$, such that the marginal product of an hour $MPH_{it}(h) = \frac{\partial}{\partial h}F_t(h, \mathbf{h}_{-i,t})$ is declining as a function of h. The firm will choose a h < 40 if MPH equals the straight wage w_{it} for some such value of h. This situation is depicted by the leftmost indifference curve in Figure 1. If the MPH is still above $1.5w_{it}$ at h = 40, then tangency with the budget constraint $B_{kit}(h)$ will occur for some h > 40 where $MPH(h) = 1.5w_{it}$. This is depicted by the rightmost indifference curve in Figure 1. If the MPH at h = 40 is between w_{it} and $1.5w_{it}$, then the firm will choose to locate that worker at the corner solution h = 40.

These predictions may be summarized by separating the three cases based on the marginal productivity of a worker's hours at 40:

$$h_{it} = \begin{cases} MPH_{it}^{-1}(w_{it}) & \text{if } MPH_{it}(40) < w_{it} \\ 40 & \text{if } MPH_{it}(40) \in [w_{it}, 1.5w_{it}] \\ MPH_{it}^{-1}(1.5w_{it}) & \text{if } MPH_{it}(40) > 1.5w_{it} \end{cases}$$
(2)

Shocks to the function F_t , or to the hours $\mathbf{h}_{-i,t}$ worked by i's colleagues within the firm, may change which of the three cases holds in a given week.

While Eq. (2) provides fairly general intuition, it is useful to consider a still simpler context that ignores interdependencies between workers and assumes that heterogeneity in hours is driven by a scalar productivity parameter: $F_t(h, \mathbf{h}_{-i,t}) = a_{it} \cdot f(h)$, where f' > 0 and f'' < 0. Then $MPH_{it}(h) = a_{it} \cdot f'(h)$, where the function f is common across firms, workers, and time periods. If f(h) is furthermore an iso-elastic function, we arrive at the canonical approach from the bunching-design literature (Saez, 2010; Chetty et al., 2011; Kleven, 2016). The iso-elastic case is illustrative, and I will treat it as a benchmark.

In the iso-elastic model, firm profits from unit it take the form:

$$\pi_{it}(z,h) = a_{it} \cdot \frac{h^{1+\frac{1}{\epsilon}}}{1+\frac{1}{\epsilon}} - z \tag{3}$$

where $\epsilon < 0$ is common across units, and z represents wage costs for worker i in week t. Under a linear pay schedule z = wh, the profit maximizing number of hours is $\left(\frac{w}{a_{it}}\right)^{\epsilon}$, so ϵ yields the elasticity of hours demand. Let $\eta_{it} = a_{it}/w_{it}$ denote the ratio of a unit's current productivity factor to their straight wage. Hours are ranked across units by η_{it} , and Eq.

(2) becomes:

$$h_{it} = \begin{cases} h_{it} = \eta_{it}^{-\epsilon} & \text{if} \quad \eta_{it} < 40^{-1/\epsilon} \\ 40 & \text{if} \quad \eta_{it} \in [40^{-1/\epsilon}, 1.5 \cdot 40^{-1/\epsilon}] \\ 1.5^{\epsilon} \cdot \eta_{it}^{-\epsilon} & \text{if} \quad \eta_{it} > 1.5 \cdot 40^{-1/\epsilon} \end{cases}$$
(4)

If η_{it} is continuously distributed over a region containing the interval corresponding to $h_{it}=40$, then the observed distribution of h_{it} will feature a point mass at 40—"bunching"—and a density elsewhere.

Now consider identifying the effect of the FLSA, in the context of this simple iso-elastic model. Let $h_{0it} = \eta_{it}^{-\epsilon}$ denote the hours it would work if their employer paid the linear wage rate w_{it} for all hours. I will refer to the difference $h_{it} - h_{0it}$ as the *effect of the kink*. This gives the causal effect of the FLSA on unit it's hours when we ignore any effects of the policy on their straight wage, or interdependencies between units. In the iso-elastic model, the effect of the kink is 0 when $h_{it} < 40$, is $40 - h_{0it}$ when $h_{it} < 40$, and is equal to $h_{it} \cdot (1 - 1.5^{-\epsilon})$ when $h_{it} > 40$. Thus provided with the value of ϵ , we could evaluate the effect of the kink for any paycheck recording $h_{it} > 40$ using that unit's observed hours (and calculate, for example, the average effect of the kink among units working overtime).

A natural starting place for evaluating the FLSA via the bunching design is therefore to estimate ϵ . If we were willing to suppose η_{it} belongs to a parametric family, then the entire model could be estimated by maximum likelihood (Bertanha et al., 2020) given a random sample of paychecks h_{it} .²¹. The classic bunching-design method pioneered by Saez (2010) instead focuses on relating ϵ to the observable bunching probability

$$\mathcal{B} = P(h_{it} = 40) = \int_{40}^{1.5^{|\epsilon|} \cdot 40} f_0(h) \cdot dh \tag{5}$$

where f_0 is the density of h_0 . Figure 4 describes the intuition, which is convenient to express in terms of the log-hours distribution.

If the researcher is unwilling to assume anything about the density of h_0 in the missing region of Figure 4, then the data are compatible with any finite $\epsilon < 0$, a point emphasized by Blomquist and Newey (2017) and Bertanha et al. (2020). In particular, given the integration constraint (5), an arbitrarily small $|\epsilon|$ could be rationalized by a density that spikes sufficiently high just to the right of 40, while an arbitrarily large $|\epsilon|$ can be reconciled with the data by supposing that the density drops quickly to some very small level throughout the missing region.

Standard methods from the literature use parametric assumptions to point-identify

²¹The empirical implementation relaxes i.i.d. sampling and only assumes independence between firms.

FIGURE 4: The left panel depicts the distribution of observed log hours $\ln h_{it}$ in the iso-elastic model, while the right panel depicts the underlying full density of $\ln h_{0it}$. The full density is related to the observed density by "sliding" the observed density for h > 40 out by the unknown distance $\delta = |\epsilon| \ln 1.5$. The density of h_{0it} is not observed in the missing region between $\ln 40$ and $\ln 40 + \delta$, but the area total therein must equal the observed bunching mass \mathcal{B} .

 ϵ in the iso-elastic model. The approach of Saez (2010) would assume for example that the density of h_{0it} is linear through the corresponding region $[40,40\cdot 1.5^{-\epsilon}]$. The popular method of Chetty et al. (2011) would instead fit a global polynomial, using the distribution of hours outside the missing region to impute the density of h_{0it} within it. However, neither of these approaches is suitable in the overtime context. The linear method of Saez (2010) implies monotonicity of the density in the missing region, which is unlikely to hold given that 40 appears to be near the mode of the h_0 latent hours distribution. The method of Chetty et al. (2011) ignores the "shift" by δ in the right panel of Figure 4.²²

My approach instead imposes a non-parametric shape constraint on h_0 : bi-log-concavity. Bi-log-concavity (BLC) generalizes the familiar property of log-concavity, and importantly allows for a peak within the missing region (Dümbgen et al., 2017). I defer a detailed discussion of BLC to Section 4.3, after I move beyond the iso-elastic model, and indeed generalize further beyond a model in which hours are chosen on the basis of productivity alone. This generalization weakens the assumptions under which the effect of the FLSA on hours can be identified, and enables a wide range of underlying structural choice models that might be used to rationalize the results.

The robustness over models is important in the overtime context. The iso-elastic model applied to the data described in Section 3 yields values for ϵ that are implausible when

²²This is perhaps less problematic in typical settings where the bunching is somewhat diffuse around the kink. However in my setting bunching is exact, and the slope of the density is far from zero near 40.

interpreted through the lens of Equation (3). As reported in Appendix E.4, assuming either that h_0 is BLC or using the linear density method of Saez (2010) suggests that $\epsilon \approx -0.2$.²³ This value would suggest an hours production function of $f(h) = -\frac{1}{4}h^{-4}$ (up to an affine transformation), which features an unreasonable degree of concavity. Note that attributing just a portion of the observed bunching at 40 to the FLSA (as I do in Section 5.1) would only further reduce the magnitude of ϵ . Allowing a more general separable production function f(h) is also not much help, as the standard bunching design approach then estimates an averaged local inverse elasticity of f(h).²⁴

Put simply, the observed bunching is too small to be reconciled with a model in which ϵ parameterizes the concavity of weekly production with respect to hours. As I describe in the next section, the estimand of the bunching design should instead be interpreted as a *reduced-form* elasticity of the demand for hours.

4.2 Counterfactual choices in a larger class of choice models

Fortunately, the basic structure of what is observable in the bunching design is preserved when we relax the choice model from the iso-elastic model of Eq. (3). Not only can we relax the constant-elasticity assumption, but we can also allow the firm to have multiple choice-variables that may be responsive to the incentives created by the kink. This could explain the small elasticity found in the last section, as additional margins of choice can diminish the hours response that would occur on the basis of production alone.

Begin by observing that in the model of the last section, units who work overtime work the same number of hours that they would work if their firm paid the overtime rate $1.5w_{it}$ for any and all hours. This property, which is evident in Equation (2), holds quite generally. Letting h_{1it} be hours under the pay schedule $z = 1.5w_{it}h$, we have:

$$h_{it} = \begin{cases} h_{0it} & \text{if } h_{0it} < 40\\ 40 & \text{if } h_{1it} \le 40 \le h_{0it}\\ h_{1it} & \text{if } h_{1it} > 40 \end{cases}$$

$$(6)$$

This expression reveals that knowledge of the two counterfactual hours choices h_{0it} and

²³This estimate is from the pooled sample across all industries, and attributes all of the bunching observed at 40 to the FLSA. Also reported Appendix E.4, estimation by industry yields bounds on ϵ ranging from -0.26 to -0.06, which are similarly implausible as estimates of concavity of production.

²⁴In particular: $(h_{1it} - h_{0it})/h_{0it} = 1.5^{\bar{\epsilon}_{it}} - 1$ where $\bar{\epsilon}_{it}$ is a unit-specific weighted average of the inverse elasticity of production between $1.5\eta_{it}$ and η_{it} : $\bar{\epsilon}_{it} := \int_{\eta_{it}^{-1}}^{1.5\eta_{it}^{-1}} \lambda(m) \cdot \epsilon(g(m)) \cdot dm$ where $\epsilon(h) := \frac{f'(h)}{f''(h)h}$ is the reciprocal of the local elasticity of production, $g(m) := (f')^{-1}(m)$ yields the hours h at which f'(h) = m, and $\lambda(m) = \frac{1/m}{\ln 1.5}$ is a positive function integrating to one.

 h_{1it} are sufficient to pin down the actual hours of any given unit. The worker will work h_{0it} when h_{0it} is less than 40, h_{1it} when it is greater than 40, and be located at 40 if and only if the two counterfactual outcomes fall on either side, "straddling" the kink.²⁵

Equation (6) holds in a generic choice model in which each unit's firm optimizes some vector \mathbf{x} of choice variables that may include hours of work h as just one component. Firm preferences are taken to be convex in \mathbf{x} and a unit's wage costs z, but are not assumed to belong to any parametric form. Formally, I assume:

Assumption CHOICE. The outcomes h_{0it} , h_{1it} and h_{it} reflect choices the firm would make under counterfactual cost constraints $z \geq B(h)$, with B(h) given by $B_{0it}(h) = w_{it}h$, $B_{1it}(h) = 1.5w_{it}h - 20w_{it}$, and $B_{kit}(h) = \max\{B_{0it}(h), B_{1it}(h)\}$ respectively.

Assumption CONVEX. Firm choices maximize some $\pi_{it}(z, \mathbf{x})$ for each unit it, where π_{it} is strictly quasiconcave in (z, \mathbf{x}) and decreasing in z. h is a continuous deterministic function of \mathbf{x} .

Appendix Lemma 1 shows that Assumptions CHOICE and CONVEX imply Equation (6). Note that CHOICE simply reflects the assumption that hours are perfectly manipulable by firms. Together, I refer to assumptions CHOICE and CONVEX as "the choice model".

Further notes on the choice model: i) The importance of firms rather than workers choose hours enters in the assumption that utility π is decreasing, rather than increasing, in z. Appendix B relaxes this to allow some workers to set their hours; ii) the second term in the definition of h_{1it} keeps the firm indifferent between B_1 and B_0 at h=40, and is only necessary for Equation 6 (and the subsequent analysis) to hold when preferences π are not quasi-linear in z. Since quasi-linearity with respect to costs is implied by firms maximizing profits, I typically refer to h_{1it} as simply the hours chosen under $B_1(h)=1.5w_{it}h$; iii) Appendix A shows that the choice model still implies Eq. (6) under general "kinked" policies of the form $B_k(\mathbf{x}) = \max\{B_0(\mathbf{x}), B_1(\mathbf{x})\}$ where B_0 and B_1 are convex in \mathbf{x} , and also shows that bunching still has identifying power without CONVEX; iv) note that the counterfactuals h_{0it} and h_{1it} contemplate only changing the cost schedule for unit it. The hours of any other units that enter in the firm's optimization problem for it are held fixed at their realized values. See Example 3 below, and see Section 4.4 for a discussion of how this affects the interpretation of treatment effects.

²⁵This straddling can only occur in one "direction", with $h_{1it} \le k \le h_{0it}$. The other direction: $h_{0it} \le k \le h_{1it}$ with at least one inequality strict, is ruled out by the assumptions of the choice model.

²⁶This reflects the well-known observation that the bunching design yields a combination of compensated and uncompensated elasticities (Blomquist et al., 2015; Kleven, 2016).

To demonstrate the flexibility of the choice model, I below present some examples beyond the baseline model of the last section. These examples are illustrative, and each could apply to a different subset of units in the population.²⁷

Example 1: Substitution from bonus pay

Let the firm's choice vector be $\mathbf{x}=(h,b)'$, where $b\geq 0$ indicates a bonus (or other fringe benefit) paid to the worker. Firms may find it optimal to offer bonuses to improve worker satisfaction and reduce turnover. Suppose firm preferences are: $\pi(z,h,b)=f(h)+g(z+b-\nu(h))-z-b$, where z continues to denote wage compensation this week, $z+b-\nu(h)$ is the worker's utility with $\nu(h)$ a convex disutility from labor h, and $g(\cdot)$ increasing and concave. In this model firms will choose the surplus maximizing choice of hours $h_m:=\operatorname{argmax}_h f(h)-\nu(h)$, provided that the corresponding optimal bonus is non-negative. Bonuses fully adjust to counteract overtime costs, and $h_0=h_1=h_m$.

Example 2: Off-the-clock hours and paid breaks

Suppose firms choose a pair $\mathbf{x}=(h,o)'$ with h hours worked and o hours worked "off-the-clock", such that $y(\mathbf{x})=h-o$ are the hours for which the worker is ultimately paid. Evasion is harder the larger o is, which could be represented by firms facing a convex evasion cost $\phi(o)$, so that firm utility is $\pi(z,h,o)=f(h)-\phi(o)-z$. This model can also include some firms voluntarily offering paid breaks by allowing o to be negative.

Example 3: Complementaries between workers or weeks

Suppose the firm simultaneously chooses the hours $\mathbf{x}=(h,g)$ of two workers according to production that is iso-elastic in a CES aggregate (g could also denote planned hours next week): $\pi(z,h,g)=a\cdot\left((\gamma h^\rho+g^\rho)^{1/\rho}\right)^{1+\frac{1}{\epsilon}}-z$ with γ a relative productivity shock. Let g^* denote the firm's optimal choice of hours for the second worker. Optimal h then maximizes $\pi(z,h,g^*)$ subject to $z=B_k(h)$, as if the firm faced a single-worker production function of $f(h)=a\cdot\left((\gamma h^\rho+g^{*\rho})^{1/\rho}\right)^{1+\frac{1}{\epsilon}}$. This function is more elastic than $a\cdot h^{1+\frac{1}{\epsilon}}$ provided that $\rho<1+1/\epsilon$, attenuating the response to an increase in w implied by a given $\epsilon.^{29}$ Section 4.4 discusses how complementaries affect the final evaluation of the FLSA.

²⁷Appendix B discusses a further example in which the firm and worker bargain over this week's hours. This can also diminish the wage elasticity of hours since overtime pay gives the parties opposing incentives.

²⁸Note that the data observed in our sample are of hours of work $y(\mathbf{x})$ for which the worker is paid, when this differs from h. Appendix A describes how Equation 6 still holds, but for counterfactual values of hours paid y = h - o rather than hours worked h. The bunching design lets us investigate treatment effects on paid hours, without observing off-the-clock hours or break time o.

²⁹This expression overstates the degree of attenuation somewhat, since h_1 and h_0 maximize f(h) above

4.3 Identifying treatment effects in the bunching design

Given Assumption CHOICE that firms freely choose hours, h_0 and h_1 can be interpreted as potential outcomes, indicating what *would* have happened had the firm faced either of two counterfactual pay schedules instead of the kink. h_{0it} indicates the firm's choice of hours for worker i in week t if the worker were paid at their straight-time rate for all of week t's hours, while h_{1it} applies that workers' overtime rate for all such hours.

I thus refer to the difference $\Delta_{it} := h_{0it} - h_{1it}$ between these counterfactuals as unit it's treatment effect. This represents the causal effect of a one-time 50% increase in a worker's (linear) hourly wage on their hours this week. A unit's treatment effect can be contrasted with the "effect of the kink" quantity $h_{it} - h_{0it}$ introduced earlier, but importantly the two are related: the effect of the kink is $-\Delta_{it}$ for those units working overtime.³⁰

In the iso-elastic model $\Delta_{it} = h_{0it} \cdot (1-1.5^{\epsilon})$, representing a special case in which treatment effects are constant across all units after a log transformation of the outcome: $\ln h_{0it} - \ln h_{1it} = |\epsilon| \cdot \ln 1.5$. In general we can expect Δ_{it} to vary much more flexibly across units, and a reasonable parameter of interest becomes a summary statistic of Δ_{it} of some kind. A simple manipulation of Equation (6) suggests that bunching is informative about the distribution of Δ_{it} among units "near" the kink. To see this, let k=40 denote the location of the kink, and write the bunching probability as:

$$\mathcal{B} = P(h_{1it} \le k \le h_{0it}) = P(h_{0it} \in [k, k + \Delta_{it}]) = P(h_{1it} \in [k - \Delta_{it}, k]), \tag{7}$$

i.e. units bunch when either of their potential outcomes lie within their individual treatment effect of the kink. Note that by (6) we can also write bunching in terms of the marginal distributions of h_0 and h_1 : $\mathcal{B} = F_1(k) - F_0(k)$, provided that they are continuously distributed and with F_0 and F_1 their cumulative distribution functions.

Our goal is to invert (7) in some way to learn about the Δ_{it} from the observable bunching probability \mathcal{B} . In Figure 4 we've seen the intuition for this exercise in the context isoelastic model, in which there is only one dimension of heterogeneity and $h_{1it} = h_{0it} \cdot 1.5^{\epsilon}$. When responsiveness to incentives can vary by observational unit, it is somewhat less obvious how to proceed. Nonetheless the existing bunching design literature does contain a few relevant identification results, which I now briefly review. These results circle a common intuition that bunching is informative about a *local* average treatment effect, but rely on assumptions that would be unreasonable in our context.

for different values g^* , which leads to a larger gap between h_0 and h_1 compared with a fixed g^* by the Le Chatelier principle (Milgrom and Roberts, 1996). However h_1/h_0 still increases on net given $\rho < 1 + 1/\epsilon$.

³⁰Both of these treatment effects are "partial equilibrium" in the sense that they hold the hours worked by units other than *it* fixed at their actual values. Section 4.4 discusses this further when evaluating the FLSA.

For instance, Saez (2010) and Kleven (2016) consider a "small-kink" approximation that allows one to estimate $\mathbb{E}[\Delta_{it}|h_{0it}=k]$ in a model with heterogeneous elasticity parameters.³¹ The result requires h_0 to be constant throughout the region $[k,k+\Delta_{it}]$ conditional on each value of Δ_{it} . This is most naturally justified by a kink that produces only tiny responses, an approximation that is likely to be quite poor when treatment corresponds to a 50% increase in the hourly cost of labor. Another result comes from Blomquist et al. (2015): they show in a generic labor supply model that bunching identifies a certain weighted average of compensated elasticities, if the density of choices at a kink is assumed to be linear across counterfactual tax rates. But this parametric assumption is difficult to motivate, as these authors acknowledge.³²

I focus my identification analysis on a parameter I call the "buncher LATE":

$$\Delta_k^* = \mathbb{E}[\Delta_{it}|h_{it} = k, K_{it}^* = 0],$$

which yields the average treatment effect among units who locate at the kink, and who are not what I refer to as "counterfactual bunchers" ($K_{it}^*=0$). Recall that in the overtime setting it is natural to expect a mass of individuals who would locate at 40 hours even absent the kink. I suppose all such units have a zero treatment effect, such that $h_{0it}=h_{1it}=k$, and indicate them by an (unobserved) binary variable $K_{it}^*=1$. These units are not of particular interest (their $\Delta_{it}=0$ by assumption), but they complicate measurement of the bunching caused by kink if there is an unknown mass $p:=P(K_{it}^*=1)$ of counterfactual bunchers. In this section, I treat p as known, and estimate it empirically in Section 5.1. ³³

To simplify the discussion, suppose for now that there are no counterfactual bunchers, so that $\Delta_k^* = \mathbb{E}[\Delta_{it}|h_{it}=k]$. My approach assumes a weakened version of *rank invariance* between h_0 and h_1 . Rank invariance (Chernozhukov and Hansen 2005) says that:

$$F_0(h_{0it}) = F_1(h_{1it}). (8)$$

for all units, i.e. increasing each unit's wage by 50% does not change their rank in the hours distribution. For example, a worker at the median of the h_0 distribution also has a

³¹See Appendix A for a derivation in my generalized framework. The uniform density assumption is hard to justify except in the limit that the distribution of Δ_{it} concentrates around zero. Lemma SMALL in Appendix F makes this claim precise, while connecting the approach from Saez (2010) and Kleven (2016) to results from Blomquist et al. (2015).

³²In particular, the data identifies the density at the kink for two particular tax rates only (in the tax application), so cannot provide evidence of such linearity.

 $[\]bar{^{33}}$ Note that given p and the CDF F(h) of the data, one can construct the conditional distribution for the $K_{it}^*=0$ units by simply subtracting p from the observed bunching mass $\mathcal B$ and re-normalizing the distribution, i.e. $F_{h|K^*=0}(h)=\frac{F(h)-p\mathbb{1}(h\geq k)}{1-p}$.

median value of h_1 . Rank invariance is satisfied for instance by models in which there is perfect positive co-dependence between the potential outcomes (see left panel of Figure 6), such as the benchmark model from Section 4.1 with production $a_{it} \cdot f(h)$.

Rank invariance is useful because it allows us to translate statements about Δ_{it} into statements about the marginal distributions of h_{0it} and h_{1it} . In particular, under rank invariance the buncher LATE is equal to the quantile treatment effect $Q_0(u) - Q_1(u)$ averaged across all u between $F_0(k)$ and $F_1(k) = F_0(k) + \mathcal{B}$, with Q_d the quantile function of h_{dit} , i.e.:

$$\Delta_k^* = \frac{1}{\mathcal{B}} \int_{F_0(k)}^{F_1(k)} [Q_0(u) - Q_1(u)] du, \tag{9}$$

so long as $F_0(y)$ and $F_1(y)$ are continuous and strictly increasing. I focus on partial identification of the buncher LATE, for which it is sufficient to place point-wise bounds on the quantile functions $Q_0(u)$ and $Q_1(u)$ throughout the range $u \in [F_0(k), F_1(k)]$ as depicted in Figure 5.

FIGURE 5: Extrapolating the quantile functions for h_0 and h_1 (blue and orange, respectively) to place bounds on the buncher LATE. The observed portions of each quantile function are depicted by thick curves, while the unobserved portions are indicated by thinner curves. The dashed curves represent upper and lower bounds for this unobserved portion implied by bi-log-concavity (see text below). The buncher LATE is equal to the area shaded in green, divided by the bunching probability \mathcal{B} . The quantities Δ_0^* and Δ_1^* are defined in Assumption RANK below.

I obtain such bounds by assuming that both h_0 and h_1 have *bi-log-concave* distributions.

Bi-log-concavity is a non-parametric shape constraint that generalizes log-concavity, a property of many common parametric distributions:

Definition (BLC). A distribution function F is is bi-log-concave (BLC) if both $\ln F$ and $\ln(1-F)$ are concave functions.

If F is BLC then it admits a strictly positive density that is itself differentiable with the locally bounded derivative: $\frac{-f(h)^2}{1-F(h)} \le f'(h) \le \frac{f(h)^2}{F(h)}$ (Dümbgen et al., 2017). Intuitively, this rules out cases in which the density of h_0 or h_1 ever spikes or falls *too* quickly on the interior of its support, leading to non-identification of the type discussed in Section 4.1.³⁴

The family of BLC distributions includes parametric distributions assumed by previous bunching design studies, such as those with uniform or linear densities Saez (2010), or those with polynomial densities as in Chetty et al. 2011 (provided they have real roots). In fact all globally log-concave distributions are BLC.³⁵ Importantly, the BLC property is partially testable in the bunching design, since $F_0(y)$ is identified for all h < k and $F_1(h)$ is identified for all h > k. Appendix Figure E.11 shows that the observable portions of F_0 and F_1 are indeed consistent with BLC, passing this falsification test. Identification requires us to be believe that the unobserved portions of F_0 and F_1 also satisfy this weak shape constraint.

To summarize the logic so far: rank invariance converts identification of the buncher LATE into a pair of extrapolation problems, which can then be approached by placing an assumption like BLC on the marginal potential outcome distributions. In particular, assuming h_{dit} is BLC for each $d \in \{0,1\}$ yields point-wise upper and lower bounds on the quantile function $Q_d(u)$ appearing in Equation (9) that depend on $F_d(k)$ and $f_d(k)$, where f_d denotes the density of h_{dit} .³⁶

While rank invariance weakens the homogeneity assumptions typically made in the literature, a still weaker assumption proves sufficient for the RHS of (9) to recover the buncher LATE:

Assumption RANK. There exist fixed values Δ_0^* and Δ_1^* such that $h_{0it} \in [k, k + \Delta_{it}]$ iff $h_{0it} \in [k, k + \Delta_0^*]$, and $h_{1it} \in [k - \Delta_{it}, k]$ iff $h_{1it} \in [k - \Delta_1^*, k]$.

³⁴Bertanha et al. (2020) propose partial identification in an iso-elastic model by specifying a Lipschitz constant on the density of $\ln \eta_{it}$. This yields global rather than local bounds on f'.

³⁵BLC distributions can have multiple modes however, relaxing an important property of log-concave densities (Dümbgen et al., 2017).

 $^{^{36}}$ I also refer to a random variable as "BLC" if its distribution is BLC, as a shorthand. It is worth noting that under rank invariance, assuming BLC of h_1 and h_0 is sufficient to calculate bounds on the treatment effect $Q_1(u) - Q_0(u)$ at any quantile $u \in [0,1]$. However, these bounds quickly widen as one moves away from the kink in either direction. The narrowest bounds for a single rank are obtained for a "median" buncher roughly halfway between $F_0(k)$ and $F_1(k)$ when $f_0(k) \approx f_1(k)$. However, averaging over a larger group is more useful for meaningful ex-post evaluation of the FLSA, and reduces the sensitivity to departures from rank invariance (see Figure A.2). The buncher LATE balances these considerations.

Unlike (strict) rank invariance, Assumption RANK allows ranks to be reshuffled by treatment among bunchers and among the group of units that locates on each side of the kink.³⁷ For example, suppose that a 50% increase in the wage of worker i would result in their hours being reduced from $h_{0it} = 50$ to $h_{1it} = 45$. If another worker j's hours are instead reduced from $h_{0jt} = 48$ to $h_{1jt} = 46$ under a 50% wage increase, workers i and j will switch ranks, without violating RANK. Note also that RANK is compatible with the existence of counterfactual bunchers p > 0.

FIGURE 6: The joint distribution of (h_{0it}, h_{1it}) , comparing an example satisfying rank invariance (left) to a case satisfying Assumption RANK (right). RANK allows the support of the joint distribution to "fan-out" from perfect co-dependence of h_0 and h_1 , except when either outcome is equal to k. The large red dot in the right panel indicates a possible mass p of counterfactual bunchers. The observable data identifies the red portions of outcome's marginal distribution (depicted along the bottom and right edges), as well as the total mass \mathcal{B} in the (shaded) south-east quadrant.

The right panel of Figure 6 shows an example of a distribution satisfying RANK, which requires the support of (h_0, h_1) to narrow to a point as it crosses $h_0 = k$ or $h_1 = k$. When this is not perfectly satisfied, Appendix Figure A.2 demonstrates how the RHS of Equation (9) will then yield a lower bound on the true buncher LATE (and can still be interpreted as an averaged quantile treatment effect). Appendix Figure B.3 generalizes RANK to case in which some workers choose their hours, resulting in mass in the north-west quadrant of Figure 6.

We are now ready to state the main identification result. Theorem 1 gives sharp bounds

³⁷When p=0 Assumption RANK is equivalent to an instance of the *rank-similarity* assumption of Chernozhukov and Hansen (2005), in which the conditioning variable is which of the three cases of Equation (6) hold for the unit. Specifically, for both d=0 and d=1: $U_d|(h< k) \sim Unif[0,F_0(k)]$, $U_d|(h=k) \sim Unif[F_0(k),F_1(k)]$, and $U_d|(h>k) \sim Unif[F_1(k),1]$.

on the buncher LATE given the choice model, RANK and bi-log-concavity.

Theorem 1 (bi-log-concavity bounds on the buncher LATE). Assume CHOICE, CONVEX, RANK and that h_{0it} and h_{1it} have bi-log-concave distributions conditional on $K_{it}^* = 0$. Then:

- 1. Each of F(h), $F_0(h)$ and $F_1(h)$ are continuously differentiable for $h \neq k$. When p > 0, define the density $f_d(y)$ of h_{dit} at y = k to be $f_d(k) = \lim_{h \to k} f_d(h)$, for each $d \in \{0,1\}$. Then $F_0(k) = \lim_{h \uparrow k} F(h) + p$, $F_1(k) = F(k)$, $f_0(k) = \lim_{h \uparrow k} f(h)$ and $f_1(k) = \lim_{h \downarrow k} f(h)$.
- 2. The buncher LATE Δ_k^* lies in the interval $[\Delta_k^L, \Delta_k^U]$, where:

$$\Delta_k^L := g(F_0(k) - p, f_0(k), \mathcal{B} - p) + g(1 - F_1(k), f_1(k), \mathcal{B} - p)$$

and

$$\Delta_k^U := -g(1 - F_0(k), f_0(k), p - \mathcal{B}) - g(F_1(k) - p, f_1(k), p - \mathcal{B})$$

with $g(a,b,x) = \frac{a}{bx}(a+x)\ln\left(1+\frac{x}{a}\right) - \frac{a}{b}$, and the bounds are sharp.

Proof. See Appendix F.

Combining items 1. and 2. of Theorem 1, it follows that the sharp bounds Δ_k^L and Δ_k^U on the buncher LATE are identified, given the CDF of the data $F(h) := P(h_{it} \le h)$ and $p.^{38}$

Note: Inspection of the expressions appearing in Theorem 1 reveals that the bounds become wider the larger the net bunching probability $\mathcal{B}-p$. A second-order approximation to $\ln(1+\frac{x}{a})$ shows that when this probability is small, $\Delta_k^* \approx \frac{\mathcal{B}-p}{2f_0(k)} + \frac{\mathcal{B}-p}{2f_1(k)}$. This delivers a small-bunching approximation similar to one that has appeared in the literature (e.g. Kleven, 2016), and corresponds to the "excess mass" quantity in Chetty et al., 2011. When $f_0(k) \approx f_1(k)$ and p=0, the bounds will tend to be narrower when $F_0(k)$ is closer to $(1-\mathcal{B})/2$, i.e. the kink is close to the median of the latent hours distribution. This helps explain why the estimated bounds in Section 5 turn out to be quite informative.

4.4 Estimating policy relevant parameters

The buncher LATE yields the answer to a particular causal question, among a well-defined subgroup of the population. Namely: how would hours among bunched workers be

 $^{^{38}}$ Since the bounds depend only on the density of observations at k and the total amount of mass to the left/right of k, point masses elsewhere in the distributions of h_0 and h_1 have no effect on the bounds provided that such point masses are well-separated from the kink.

affected by a counterfactual change from linear pay at their straight-time wages to linear pay at their overtime rates? This section discusses how we may now use this quantity to both evaluate the overall ex-post effect of the FLSA on hours, as well as forecast the impacts of hypothetical changes to the FLSA. This requires some additional assumptions, which I continue to approach from a partial identification perspective.

4.4.1 From the buncher LATE to the ex-post hours effect of the FLSA

To consider the overall ex-post hours effect of the FLSA among covered workers, I proceed in two steps. I first relate the buncher LATE to the overall average effect of introducing the overtime kink, holding fixed the distributions of counterfactual hours h_{0it} and h_{1it} . Then, I allow straight-time wages to be affected by the FLSA, using the buncher LATE again to bound the additional effect of these wage changes on hours.

To motivate this strategy, let us first define the parameter of interest to be the difference in average weekly hours with and without the FLSA: $\theta := \mathbb{E}[h_{it}] - \mathbb{E}^*[h_{it}^*]$, where h_{it}^* indicates the hours unit it would work absent the FLSA, and the second expectation \mathbb{E}^* is over units corresponding to workers that would exist in the no-FLSA counterfactual and be eligible were it introduced. Defining θ in this way allows us to remain agnostic as to whether the FLSA changes employment, and hence the population of workers it applies to. However, I assume that the hours among any workers who enter or exit employment due to the FLSA are not systematically different from those who would exist anyways, so that we may rewrite θ as $\theta = \mathbb{E}[h_{it} - h_{it}^*]$, an average over individual-level causal effects in the population that does exist given the FLSA.

Next, I decompose θ as:

$$\theta = \mathbb{E}[h_{it}(w_{it}, \mathbf{h}_{-i,t}) - h_{0it}(w_{it}^*, \mathbf{h}_{-i,t}^*)] = \mathbb{E}[\underline{h_{it}(w_{it}, \mathbf{h}_{-i,t}) - h_{0it}(w_{it}, \mathbf{h}_{-i,t})}]$$
"effect of the kink"
$$+ \mathbb{E}[\underline{h_{0it}(w_{it}, \mathbf{h}_{-i,t}) - h_{0it}(w_{it}^*, \mathbf{h}_{-i,t})}] + \mathbb{E}[\underline{h_{0it}(w_{it}^*, \mathbf{h}_{-i,t}) - h_{0it}(w_{it}^*, \mathbf{h}_{-i,t}^*)}], \quad (10)$$
"wage effects"
"interdependencies"

where the notation makes explicit the dependence of h and h_0 on the worker's straighttime wage w_{it} , and possibly the hours \mathbf{h}_{-i} of other workers in their firm. In the notation of the last section: $h_{it} = h_{it}(w_{it}, \mathbf{h}_{-i,t})$, $h_{0it} = h_{0it}(w_{it}, \mathbf{h}_{-i,t})$ and $h_{1it} = h_{1it}(w_{it}, \mathbf{h}_{-i,t})$. I have used that $h_{it}^* = h_{0it}(w_{it}^*, \mathbf{h}_{-i,t}^*)$, since pay is linear in hours in the no-FLSA counterfactual.

The first term in Equation (10) reflects the "effect of the kink" quantity $h_{it} - h_{0it}$ examined in Section 4.1, and I view it as the first-order object of interest. The second term

 $^{^{39}}$ Note that h_{it}^* in this section differs from the "anticipated" hours quantity h^* in Section 2.

reflects that straight-time wages w_{it} may differ from those that workers would face without the FLSA, denoted by w_{it}^* . The third term is zero when firms' choice of hours for its workers decomposes into separate optimization problems for each unit, as in the benchmark model from Section 4.1. More generally, it will capture any interdependencies in hours across units, for instance due to different workers' hours being not linearly separable in production. In Appendix C I provide evidence that such effects do not play a large role in θ , and I thus treat this term as zero when estimating θ .⁴⁰

Turning first to the "effect of the kink" term, note that with straight-wages and the hours of other units fixed, the kink only has such direct effects on those units working at least k = 40 hours:

$$h_{it} - h_{0it} = \begin{cases} 0 & \text{if } h_{it} < k \\ k - h_{0it} & \text{if } h_{it} = k \\ -\Delta_{it} & \text{if } h_{it} > k \end{cases}$$
 (11)

and thus $\mathbb{E}[h_{it}-h_{0it}]=\mathcal{B}\cdot\mathbb{E}[k-h_{0it}|h_{it}=k]-P(h_{it}>k)\mathbb{E}[\Delta_{it}|h_{it}>k]$. To identify this quantity we must extrapolate from the buncher LATE to obtain an estimate of $\mathbb{E}[\Delta_{it}|h_{it}>k]$, the average effect for units who work overtime. To do this, I assume that Δ_{it} of units working more than 40 hours are at least as large on average as those who work 40, but that the reduced-form *elasticity* of their response is no greater than that of the bunchers. The logic is that assuming a constant percentage change between h_0 and h_1 over units would imply responses that grow in proportion to h_1 , eventually becoming implausibly large. On the other hand, it would be an underestimate to assume high-hours workers, say at 60 hours, have the same effect in levels h_0-h_1 as those closer to 40.41 To put bounds on the average effect of the kink among bunchers $\mathbb{E}[k-h_{0it}|h_{it}=k]$, I use the bi-log-concavity assumptions from Section 4.3. Details are provided in Supplemental Appendix 4.7.

The "wage effects" term in Equation (10) arises because the straight-time wages observed in the data may reflect some adjustment to the FLSA, as we would expect on the basis of the conceptual framework in Section 2. While the "effect of the kink" term is expected to be negative, this second term will be positive if FLSA causes a reduction in the straight-time wages set at hiring on the basis of expected hours. However, both terms ultimately depend on the same thing: responsiveness of hours to the cost of an hour of work.

⁴⁰In particular, I fail to find evidence of contemporaneous hours substitution in response to colleague sick pay, in an event study design. Another piece of evidence comes from obtaining similar "effect of the kink" estimates across small, medium and large firms, which suggests that a firm's ability to reallocate hours between existing workers does not tend to drive their hours response to the FLSA. See Appendix C.

⁴¹In the model of Section 4.1, constant treatment effects in levels corresponds to exponential production: $f(h) = \gamma(1 - e^{-h/\gamma})$ where $\gamma > 0$ and $h_{0it} - h_{1it} = \gamma \ln(1.5)$ for all units.

I thus use the buncher LATE to compute an approximate upper bound on wage effects by assuming that all straight-time wages are adjusted according to Equation (1) and that the hours response is iso-elastic in wages, with anticipated hours approximated by h_{it} . Supplemental Appendix 4.7 provides a visual depiction of these definitions. A lower bound on the "wage effects" term, on the other hand, is zero. Section 5 also reports results with and without this wage effect. The size of the wage effect $\mathbb{E}[h_{0it} - h_{0it}^*]$ is appreciable but still small in comparison with $\mathbb{E}[h_{it} - h_{0it}]$. This is because the average percentage wage change according to Equation (1) is fairly small near 40, where most of the mass is.

4.4.2 Forecasting the effects of policy changes

Apart from ex-post evaluation of the overtime rule, policymakers may also be interested in predicting what would happen if the parameters of overtime regulation were modified. Reforms that have been discussed in the U.S. include decreasing "standard hours" k at which overtime pay begins from 40 hours to 35 hours, ⁴² or increasing the overtime premium from time-and-a-half to "double-time" (Brown and Hamermesh, 2019). This section builds upon the model in Sections 4.2 and 4.3 to show that the bunching design can also be informative about the impact of such reforms on hours.

I begin by considering changes to standard hours k. For now, let us hold the distributions of h_0 and h_1 fixed across the policy change. Inspection of Equation (6) reveals that as the kink is moved upwards, say from k=40 hours to k'=44 hours, some workers who were previously bunching at k now work h_{0it} hours: namely those for whom $h_{0it} \in [k, k']$. By the same token, some individuals with values of $h_{1it} \in [k, k']$ now bunch at k'. Some individuals who were bunching at k now bunch at k'—namely those workers for whom $h_{1it} \leq k$ and $h_{0it} \geq k'$. I assume that the mass of counterfactual bunchers k'0 remains at k'1 after the shift. In the case of a reduction in overtime hours, say to k'2 35 this logic is reversed: some workers now work $h_{1it} \in [k', k]$, while workers with $h_{0it} \in [k', k]$ now bunch at k'5. Figure 8 depicts both of these cases.

Quantitatively assessing a change to double-time pay requires us to move beyond the two counterfactual choices h_{0it} and h_{1it} : hours that would be worked under straight-wage and time-and-a-half. Let $h_{it}(\rho)$ be the hours that it would work if their employer faced a linear pay schedule at rate $\rho \cdot w_{it}$ (with both the straight-wage w_{it} and hours of other

⁴²Several countries have implemented changes to standard hours; Brown and Hamermesh (2019) provides a review of the evidence.

 $^{^{43}}$ It is conceivable that some or all counterfactual bunchers locate at 40 because it is the FLSA threshold, while still being non-responsive to the incentives introduced there by the kink. In this case, we might imagine that they would all coordinate on k' after the change. The effects here should thus be seen as short-run effects before that occurs.

A downward shift of the kink

An upward shift of the kink

FIGURE 7: The left panel depicts a shift of the kink point downwards from k to k', while right panel depicts a shift of the kink point upwards. See text for details.

units fixed at their realized levels). In this notation, $h_{0it} = h_{it}(1)$ and $h_{0it} = h_{it}(1.5)$. Now consider a new overtime policy in which a premium pay factor of ρ_1 is required for hours in excess of k, e.g. $\rho_1 = 2$ for a "double-time" policy. Let $h_{it}^{[k,\rho_1]}$ denote realized hours under this overtime policy, and let $\mathcal{B}^{[k,\rho_1]} := P(h_{it}^{[k,\rho_1]} = k)$ the observable bunching that would occur.

Theorem 2 allows one to discuss the effects of small changes to k or ρ_1 . Results for the effect of changing standard hours k make use of an explicit assumption that firm preferences are quasi-linear with respect to costs:

Assumption SEPARABLE. $\pi_{it}(z, \mathbf{x})$ is additively separable and linear in z for all units it.

I continue to assume that counterfactual bunchers $K_{it}^* = 1$ stay at $k^* := 40$, regardless of ρ and k. To ease notation, let $p(k) = p \cdot \mathbb{1}(k = k^*)$ denote the possible mass of counterfactual bunchers as a function of k.

Theorem 2 (marginal comparative statics in the bunching design). *Under Assumptions CHOICE*, ⁴⁴ *CONVEX*, *SEPARABLE and SMOOTH*:

1.
$$\partial_k \left\{ \mathcal{B}^{[k,\rho_1]} - p(k) \right\} = f_1(k) - f_0(k)$$

2.
$$\partial_k \mathbb{E}[h_{it}^{[k,\rho_1]}] = \mathcal{B}^{[k,\rho_1]} - p(k)$$

3.
$$\partial_{\rho_1} \mathbb{E}[h_{it}^{[k,\rho_1]}] = -\int_k^\infty f_{\rho_1}(h) \mathbb{E}\left[\frac{dh_{it}(\rho_1)}{d\rho} \middle| h_{it}(\rho_1) = h\right] dh$$

Proof. See Appendix A.

⁴⁴See Appendix A for the version of CHOICE used here, which applies to all ρ .

Assumption SMOOTH is a set of regularity conditions which imply that $h_{it}(\rho)$ admits a density $f_{\rho}(h)$ for all ρ – see Appendix A for details.

Beginning from the actual FLSA policy of $k=40, \rho_1=1.5$, the RHS of the first two objects above are point identified from the data, provided that p is known. Item 1 says that if the location of the kink is changed marginally, the bunching probability will change according to the difference between the densities of h_{1i} and h_{0i} at k^* , which are in turn equal to the left and right limits of the observed density f(h) at the kink. This result is intuitive: given continuity of each potential outcome's density, a small increase in k will result in a mass proportional to $f_1(k)$ being "swept in" to the mass point at the kink, while a mass proportional to $f_0(k)$ is left behind. Item 2 aggregates this change in bunching with the changes to non-bunchers' hours as k is increased: the combined effect turns out to be to simply transport the mass of inframarginal bunchers to the new value of k. Making use of Theorem 2 for a discrete policy change like reducing standard hours to 35 requires integrating across the actual range of hypothesized policy variation. We lose point identification, but I use bi-log-concavity of the marginal distributions of h_0 and h_1 to retain bounds, as depicted by Figure 8.

Now consider the effect of moving from time-and-a-half to double time on average hours worked, in light of item 3. This scenario, similar to the effect of the kink term in Eq. (10), requires making assumptions about the response of individuals who may locate far from the kink, and for whom the buncher LATE is less directly informative. Note that integrating item 3 over ρ , we can write the average effect on hours from a move to double-time in terms of local average elasticities of response:

$$\mathbb{E}\left[h_{it}^{[k,\rho_1]} - h_{it}^{[k,\bar{\rho}_1]}\right] = \int_{\rho_1}^{\bar{\rho}_1} d\ln\rho \int_k^{\infty} f_{\rho}(h) h \cdot \mathbb{E}\left[\left.\frac{d\ln h_{it}(\rho)}{d\ln\rho}\right| h_{it}(\rho) = h\right] dh$$

Recall from the iso-elastic model that when the elasticity $\frac{d \ln h_{it}(\rho)}{d \ln \rho} = \frac{d h_{it}(\rho)}{h_{it}(\rho)} \frac{\rho}{h_{it}(\rho)}$ is constant across ρ and across units, it is partially identified. Just as an iso-elastic response is likely to overstate responsiveness at large $h_{it}(\rho)$, I argue it is likely to understate responsiveness to larger values of ρ , thus yielding a lower bound on the effect of moving to doubletime. For an upper bound on the magnitude of the effect, I assume rather that in levels $\mathbb{E}[h_{it}(\rho_1) - h_{it}(\bar{\rho}_1)|h_{1it}>k]$ is at least as large as $\mathbb{E}[h_{0it}-h_{1it}|h_{1it}>k]$, and that the increase in bunching from a change of ρ_1 to $\bar{\rho}_1$ is as large as the increase from ρ_0 to ρ_1 . I provide additional details in Supplemental Appendix 4.7.

In these calculations, I have held fixed the distributions of h_0 and h_1 , which can be seen

⁴⁵Intuitively, in the limit of a small change, bunchers who would choose exactly k under one of the two cost functions B_0 or B_1 cease to "bunch" as k increases, but they also do not change their realized k.

as describing the short-run before adjustment to straight-time wages or other factors that influence these latent hours distributions. In the empirical implementation I account for possible changes to straight wages when considering the average effects of policy changes on hours, as we saw with the ex-post effect of the FLSA. The effect of such corrections for the impact of changing k on the bunching probability is discussed in Section 6.

5 Implementation and Results

This section implements the empirical strategy described in the last section with the sample of administrative payroll data described in Section 3.

5.1 Identifying counterfactual bunching at 40 hours

To deliver final estimates of the effect of the FLSA overtime rule on hours, it is necessary to first return to an issue raised in the introduction and alluded to in Section 4: that there are other reasons to expect bunching at 40 hours, in addition to being the location of the FLSA kink. For one, 40 may be considered a "status-quo" choice, and it may be chosen even when it is not profit maximizing for the firm. Or, it may indeed be important for firms to synchronize the schedules of workers, requiring coordination on some common number of hours per week. Furthermore, for any salaried workers who were not successfully removed from the sample, firms may record the number of hours in a pay period as 40 even as actual hours worked vary.

In terms of the empirical strategy from Section A.2, all of these alternative explanations manifest in the same way: a point mass p at 40 in the distribution of hours that would occur even if workers were paid their straight-time wages for all hours. In the notation introduced in Section 4.3, these "counterfactual bunchers" are demarcated by $K_{it}^* = 1$; I refer to the $K_{it}^* = 0$ individuals who also locate at the kink as "active bunchers". The mass of active bunchers is $\mathcal{B} - p$. Theorem 1 shows that we can still partially identify the buncher LATE in the presence of counterfactual bunchers, so long as we know what proportion of the total bunchers are active and how many are counterfactual.

I leverage two strategies to provide plausible estimates for the mass of counterfactual bunchers p. My preferred estimate uses of the fact that when an employee is paid for hours that are not actually worked—including sick time, paid time off (PTO) and holidays—these hours do not contribute to the 40 hour overtime threshold of the FLSA. For example, if a worker applies PTO to miss a six hour shift, then they are not required to be paid overtime premium until they reach 46 total paid hours in that week, corresponding to 40

hours worked. These non-work hours thus shift the position of the kink in paid-hours.

The identifying assumption that I rely on is that individuals who still work 40 hours a week, even when they are paid for a positive number of non-work hours, are all active bunchers, and would not locate at forty hours in the counterfactuals h_{0it} and h_{1it} without the kink. This assumption reflects the idea that further reasons for bunching at 40 hours besides the overtime kink operate at the level of hours paid, rather than hours worked. Let n_{it} indicate non-worked hours for worker i in week t. Specifically, I make the following two assumptions:

1.
$$P(h_{it} = 40|n_{it} > 0) = P(h_{it} = 40 \text{ and } K_{it}^* = 0|n_{it} > 0)$$

2.
$$P(h_{it} = 40 \text{ and } K_{it}^* = 0 | n_{it} > 0) = P(h_{it} = 40 \text{ and } K_{it}^* = 0 | n_{it} = 0)$$

The first item states that all of the individuals who locate at the kink, despite having a positive number of non-work hours are indeed active bunchers. I thus know the mass of active bunchers in the $n_{it}>0$ conditional distribution of hours. The second item says that the $n_{it}>0$ distribution is representative of the unconditional distribution. Together, these two assumptions imply that $P(K_{it}^*=0 \text{ and } h_{it}=40)=P(h_{it}=40|\eta_{it}>0)$ and hence that $p=P(K_{it}^*=1 \text{ and } h_{it}=40)$ is identified as $\mathcal{B}-P(h_{it}=40|\eta_{it}>0)$.

I focus on paid time off as n_{it} because it is generally planned in advance, yet has somewhat idiosyncratic timing. This helps increase the plausibility of item 2. above. By contrast sick pay is often unanticipated, so the firm may not be able to re-optimize total hours within the week in which a worker calls in sick. Lastly holiday pay is known in advance, but holidays are unlikely to be representative in terms of product demand and other factors important for hours determination.

Figure 8 shows the conditional distribution of hours paid for work when the paycheck contains a positive number of PTO hours ($n_{it} > 0$). The figure reveals that when moving from the unconditional (left panel) to positive-PTO conditional (right panel) distribution, most of the point mass at 40 hours moves away, largely concentrating now at 32 hours (corresponding to the PTO covering a single eight hour shift). Of the total bunching of $\mathcal{B} \approx 11.6\%$ in the unconditional distribution, I estimate that only about $P(h_{it} = 40|n_{it} > 0) \approx 2.7\%$ are active bunchers, leaving $p \approx 8.9\%$. Thus roughly three quarters of the individuals at 40 hours are counterfactual rather than active bunchers.

As a secondary strategy, I estimate an upper bound for p by using the assumption that the potential outcomes of counterfactual bunchers are relatively immobile over time. The idea is that counterfactual bunchers have behavioral or administrative reasons for being at 40 hours, rather than 40 hours maximizing short-run profits. I assume that these external considerations are fairly static over time, preventing latent hours h_{0it} from changing much

FIGURE 8: The right panel shows a histogram of hours worked when paid time off hours are positive. The left panel shows the unconditional distribution. Bin width is 1/8 hour.

between adjacent weeks. In particular, assume that in a given week t nearly all of the counterfactual bunchers are also non-movers from week t-1, i.e.

$$p = P(h_{0it} = 40) \approx P(h_{0it} = h_{0it-1} = 40) \le P(h_{it} = h_{i,t-1} = 40)$$

where the inequality follows from $(h_{0it} = 40) \implies (h_{it} = 40)$ by Lemma 1. The probability $P(h_{it} = h_{i,t-1} = 40)$ can be directly estimated from the data, yielding $p \le 6\%$.

5.2 Estimation and inference

Estimating bounds on the buncher LATE requires estimates of the CDF and density of hours worked, in particular right and left limits of these objects at the kink. I use the local polynomial density estimator of Cattaneo, Jansson and Ma (2020) (CJM), which is well suited to estimating a CDF and its derivatives at boundary points. The CJM estimator provides a smoothed estimate of the left limit of the CDF and density at k as:

$$(\hat{F}_{-}(k), \hat{f}_{-}(k)) = \underset{(b_1, b_2)}{\operatorname{argmin}} \sum_{it: h_{it} < k} (F_n(h_{it}) - b_1 - b_2 h_{it})^2 \cdot K\left(\frac{h_{it} - k}{h}\right)$$
(12)

where $F_n(y) = \frac{1}{n} \sum_{it} \mathbb{I}(h_{it} \leq y)$ is the empirical CDF function, $K(\cdot)$ is a kernel function, and h is a bandwidth. The right limits $F_+(k)$ and $f_+(k)$ are estimated analogously using observations for which $h_{it} > k$. I use a triangular kernel, and choose h as follows: first, I use CJM's mean-squared error minimizing bandwidth selector to produce a bandwidth choice using the data on either side of k = 40 (for the left and right limits, respectively). I then average the two bandwidths, and use this as the bandwidth in the final calculation

of both the right and left limits, to mitigate any dependence on a differential bandwidth choice for each side. In the full sample, the bandwidth chosen by this procedure is about 1.7 hours, and is somewhat larger for subsamples that condition on a single industry.

To construct confidence intervals for parameters that are partially identified (e.g. the buncher LATE), I use the adaptive critical values proposed by Imbens and Manski (2004) and Stoye (2009) that are valid for the underlying parameter. In all cases, estimators of bounds or point identified quantities are functions of inputs that are \sqrt{n} -asymptotically normal.⁴⁶ To easily incorporate sampling uncertainty in $\hat{F}_{-}(k)$, $\hat{f}_{-}(k)$, $\hat{f}_{+}(k)$, $\hat{f}_{+}(k)$ and $\hat{p}_{+}(k)$, I estimate the variances by a cluster non-parametric bootstrap that resamples at the firm level. This allows arbitrary autocorrelation in hours across pay periods for a single worker, and between workers within a firm. All standard errors use 500 bootstrap replications.

5.3 Results of the bunching estimator: the buncher LATE

Table 2 reports treatment effect estimates based on Theorem 1, when p is either assumed zero or estimated by one of the two methods described in Section 5.1. These estimates use a sample that pools across workers in all industries. The first row reports the corresponding estimate of the net bunching probability $\mathcal{B}-p$, while the second row reports the bounds on the buncher LATE $\mathbb{E}[h_{0it}-h_{1it}|h_{it}=k]$ based on bi-log-concavity. Within a fixed estimate of p, the bounds on the buncher LATE based on BLC are quite informative: the upper and lower bounds are always close to each other and precisely estimated. Appendix E reports estimates based on alternative shape constraints and assumptions about effect heterogeneity, which deliver similar results.⁴⁷

The PTO-based estimate of p provides the most conservative treatment effect estimates, attributing roughly one quarter of the observed bunching to active rather than counterfactual bunchers. Nevertheless, this estimate still yields a highly statistically significant buncher LATE of about 2/3 of an hour, or 40 minutes. This estimate can be interpreted as follows: consider the group of workers who in fact work 40 hours in a given pay period and are not counterfactual bunchers. This group would work on average about 40 minutes more that week in a world in which they were paid their straight-time wage for all hours, compared with a world in which they were paid 1.5 times this wage for all hours.

⁴⁶For the effect of changing the kink point, I censor intermediate CDF estimates at zero and one. In principle, this could undermine asymptotic normality, but these constraints are not typically binding so I ignore this issue.

⁴⁷In particular, I present a point estimate based on Appendix Proposition 1, which assumes that treatment effects are constant and that the density is linear in the missing region, as well as results under a weaker assumption that the density is monotonic in the missing region. Monotonicity is not likely to hold in the overtime context, but the bounds based on monotonicity do not deliver vastly different results. See Tables E.10 and E.11, which applies the same assumptions to the distribution of log hours rather than hours.

On the other side of the spectrum, if all of the observed bunching mass is attributed to active bunchers, corresponding to p=0, then the estimated buncher LATE suggests a difference of at least 2.6 hours. In Appendix E I report estimates of the buncher LATE for each of the largest industries in the sample, and also plot estimates directly as a function of the assumed mass p of counterfactual bunchers at 40 hours.

	p=0	p from non-changers	p from PTO
Net bunching:	0.116	0.057	0.027
	[0.112, 0.120]	[0.055, 0.058]	[0.024, 0.030]
Buncher LATE	[2.614, 3.054]	[1.324, 1.435]	[0.640, 0.666]
	[2.493, 3.205]	[1.264, 1.501]	[0.574, 0.736]
Num observations	630217	630217	630217
Num clusters	566	566	566

TABLE 2: Estimates of net bunching $\mathcal{B}-p$ and the buncher LATE: $\Delta_k^*=\mathbb{E}[h_{0it}-h_{1it}|h_{it}=k,K_{it}^*=0]$, across various strategies to estimate counterfactual bunching $p=P(K_{it}^*=1)$. Unit of analysis is a paycheck, and 95% bootstrap confidence intervals (in gray) are clustered by firm.

5.4 Estimates of policy effects

I now use estimates of the buncher LATE and the results of Section 4.4 to estimate the overall causal effect of the FLSA overtime rule, and simulate changes based on modifying standard hours or the premium pay factor. Table 3 first reports an estimate of the buncher LATE expressed as a reduced-form hours demand elasticity, which I use as an input in these calculations. The next two rows report bounds on $\mathbb{E}[h_{it} - h_{it}^*]$ and $\mathbb{E}[h_{it} - h_{it}^*]h_{1it} \ge 40$, $K_{it}^* = 0$, respectively. The second row is the overall ex-post effect of the FLSA on hours, averaged over workers and pay periods, and the third row conditions on paychecks reporting at least 40 hours (omitting counterfactual bunchers). The final row reports an estimate of the effect of moving to double-time pay. I provide details of the calculations in Supplemental Appendix 4.7.

Taking the PTO-based estimate of p as a lower bound on responsiveness, the estimates suggest that FLSA eligible workers work at least 1/5 of an hour less in any given

⁴⁸ This is $\hat{\Delta}_k^*/(40\ln(1.5))$ where $\hat{\Delta}_k$ is the estimate of the buncher LATE presented in Table 2, which is numerically equivalent to the elasticity implied by the buncher LATE in logs $\mathbb{E}[\ln h_{0it} - \ln h_{1it}|h_{it} = k, K_{it}^* = 0]/(\ln 1.5)$ estimated under assumption that $\ln h_0$ and $\ln h_1$ are BLC.

week than they would absent overtime regulation: about one third the magnitude of the buncher LATE in levels. When I focus on those eligible workers that are directly affected in a given week, the figure is about twice as high: roughly 30 minutes. I estimate that a move to double-time pay would introduce a further reduction that may be comparable to the existing overall ex-post effect, but with substantially wider bounds. These estimates include the effects of possible adjustments to straight-time wages, which tend to attenuate the effects of the policy change. Appendix Table E.12 replicates Table 3 neglecting these wage adjustments, which might be viewed as a short-run response to the FLSA before wages have time to adjust.

	p=0	<i>p</i> from non-changers	p from PTO
Buncher LATE as elasticity	[-0.188,-0.161]	[-0.088,-0.082]	[-0.041,-0.039]
	[-0.198,-0.154]	[-0.093,-0.078]	[-0.045,-0.035]
Average effect of FLSA on hours	[-1.466, -1.026]	[-0.727, -0.486]	[-0.347, -0.227]
	[-1.535, -0.977]	[-0.762, -0.463]	[-0.384, -0.203]
Avg. effect among directly affected	[-2.620, -1.833]	[-1.453, -0.972]	[-0.738, -0.483]
	[-2.733, -1.750]	[-1.518, -0.929]	[-0.812, -0.434]
Double-time, average effect on hours	[-2.604, -0.569]	[-1.239, -0.314]	[-0.580, -0.159]
	[-2.707, -0.547]	[-1.285, -0.300]	[-0.638, -0.143]

TABLE 3: Estimates of the buncher LATE expressed as an elasticity, the average ex-post effect of the FLSA $\mathbb{E}[h_{it}-h_{it}^*]$, ⁴⁸ the effect among directly affected units $\mathbb{E}[h_{it}-h_{it}^*|h_{it} \geq k]$ and predicted effects of a change to double-time. 95% bootstrap confidence intervals in gray, clustered by firm.

Figure 9 breaks down estimates of the ex-post effect of the overtime rule by major industry, revealing considerable heterogeneity between them. The estimates suggest that the industries Real Estate & Rental and Leasing as well as Wholesale Trade see the highest average reduction in hours. The least-affected industries are Health Care and Social Assistance and Professional Scientific and Technical, with the average worker working just about 6 minutes less per week. Appendix Figure E.10 compares the hours distribution for Real Estate & Rental and Leasing with the distribution for of Professional Scientific and Technical, showing that the difference in their effects can be explained by $\mathcal{B}-p$ being larger for Real Estate & Rental and Leasing, while the density of hours close to the kink is smaller. Appendix Table E.6 reports numerical values as well as estimates based on assuming all of the bunching is due to the FLSA. Appendix E reports estimates broken down by gender, finding that the FLSA has considerably higher effects on the hours of

men compared with women.

FIGURE 9: 95% confidence intervals for the effect of the FLSA on hours by industry, using PTO-based estimates of p for each. Dots are point estimates of the upper and lower bounds. The number to the right of each range is the point estimate of the net bunching $\mathcal{B} - p$ for that industry.

Appendix Figure E.8 looks at the effect of changing the threshold for overtime hours k from 40 to alternative values k'. The left panel reports estimates of the identified bounds on $\mathcal{B}^{[k',\rho_1]}$ as well as point-wise 95% confidence intervals (gray) across values of k' between 35 and 45, for each of the three approaches to estimating p. In all cases, the upper bound on bunching approaches zero as k' is moved farther from 40. This is sensible if the h_0 and h_1 distributions are roughly unimodal with modes around 40: straddling of potential outcomes becomes less and less likely as one moves away from where most of the mass is. Appendix E.9 shows these bounds as k' ranges all the way from 0 to 80, for the p=0 case. These estimates should be viewed as short-run responses, as they do not account for adjustment to straight-time wages.

When p is estimated using PTO or non-changers between periods, we see that the upper bound of the identified set for $\mathcal{B}^{[k',\rho_1]}$ in fact reaches zero quite quickly. Moving

standard errors to k'=35 is predicted to completely eliminate bunching due to the overtime kink in the short run, before any adjustment to latent hours (e.g. through changes to straight-time wages). The right panel of Appendix Figure E.8 shows estimates for the average effect on hours of changing k, inclusive of wage effects (see Appendix F for details). Increases to k cause an increase in hours, as overtime policy becomes less stringent, and reductions to k reduce hours. The actual size of these effects is not precisely estimated for changes larger than a couple of hours, however the range of statistically significant effects depends on p. Even for the preferred estimate of p from PTO, increasing the overtime threshold as high as 43 hours is estimated to increase average working hours by an amount distinguishable from zero.

6 Implications of the estimates for overtime policy

The estimates from the preceding section suggest that FLSA regulation indeed has real effects on hours worked, in line with labor demand theory when wages do not fully adjust to absorb the added cost of overtime hours. When averaged over affected workers and across pay periods, I find that hourly workers in my sample work at least 30 minutes less per week than they would without the overtime rule (while a less conservative estimate of the bunching caused by the FLSA suggests the effect is between 1 and 1.5 hours). My preferred estimate of about half an hour is broadly comparable to the few causal estimates that exist in the literature, including Hamermesh and Trejo (2003) who assess the effects of expanding California's daily overtime rule to cover men in 1980, and Brown and Hamermesh (2019) who use the erosion of the real value of FLSA exemption thresholds over the last several decades. By contrast, my estimates carry the strengths of an approach to identification that does not require focusing on the sub-population affected by a natural experiment, and use much more recent data.

These estimates speak to the substitutability of hours of labor between workers. The primary justifications for overtime regulation have been to reduce excessive workweeks, while encouraging hours to be distributed over more workers (Ehrenberg and Schumann, 1982). How well this—and related policies such as work-sharing programs—play out in practice hinges on how easily an hour of work can be moved from one worker to another or across time, from the perspective of the firm. The results of this paper find hours de-

 $^{^{49}}$ Hamermesh and Trejo (2003) and Brown and Hamermesh (2019) report estimates of -0.5 and -0.18 for the elasticity of overtime hours with respect to the overtime rate. My preferred estimate of -0.04 for the buncher LATE as an elasticity is the elasticity of *total* hours, including the first 40. An elasticity of overtime hours can be computed by multiplying this by the ratio of mean hours to mean overtime hours in the sample, resulting in an estimate of roughly -0.45.

mand to be relatively inelastic: hours cannot be easily so reallocated. This suggests that ongoing efforts to expand coverage of the FLSA overtime rule (by increasing the earnings threshold at which some salaried workers are exempt) may have limited scope to drastically affect the hours of U.S. workers.

Nevertheless, the overall effects of the FLSA overtime rule on workers could be substantial. The data suggest that at least about 3% and as many as about 12% of workers' hours are adjusted to the threshold introduced by the policy, indicating that the policy may have distortionary impacts for a significant portion of the labor force. The policy may also still have important effects on unemployment. While a full assessment of the employment effects of the FLSA overtime rule is beyond the scope of this paper, the hours effects estimated here can be used to construct some back-of-the-envelope calculations. Following a simple calculation by Hamermesh (1996) which assumes a value for the rate at which firms substitute labor for capital (and the possibility of offsetting labor supply effects), I obtain a "best-guess" estimate that the FLSA overtime rule creates about 700,000 jobs. ⁵⁰ I can also put an overall upper bound on the size of employment effects, by attributing all of the bunching at 40 to the FLSA and assuming the total number of worker-hours is not reduced by the FLSA. By this estimate the FLSA increases employment by at most 3 million jobs, or 3% among covered workers. A reasonable range of parameter values rules out negative overall employment effects from the FLSA. See Appendix E.5 for details.

This paper has also considered the likely effects of adjusting the two parameters that characterize the FLSA overtime rule: standard hours and the overtime premium factor. Estimates suggest that moving to double-pay for overtime would have an average additional effect on hours that is at least as large as the effect of the current FLSA regulation, and moving standard hours to 35 rather than 40 would nearly eliminate bunching due to the FLSA, given workers' current wages.⁵¹⁵²

 $^{^{50}}$ Taking my prefered estimate that FLSA eligible workers work approximately 1/3 of an hour less per week on average because of the rule, hours per worker are reduced by just under 1%. If we ignore scale effects of the overtime rule on the total number of labor hours in FLSA-eligible jobs, this suggests employment among such jobs is 1% higher than it would be without the overtime premium. This serves as an upper bound, since overall total hours worked may decrease due to overtime regulation. The adjustment of Hamermesh (1996) assumes the percentage change in employment is $\Delta \ln E|_{EH} - \eta \cdot \Delta \ln LC \cdot \frac{\eta}{\alpha - \eta}$ where η is a constant-output demand elasticity for labor (rather than capital), α is a labor supply elasticity, and $\Delta \ln LC$ is the percentage change in total labor costs from the introduction of the FLSA. Here $\Delta \ln E|_{EH}$ is the quantity implied by my estimates: the percentage change in employment that would occur were the total number of worker-hours EH unchanged. Using plausible values for the remaining parameters (see Appendix E.5) yields 0.70 percentage points for the net increase in employment due to the FLSA overtime rule. This represents about 700,000 jobs, assuming 100 million FLSA eligible workers.

⁵¹Estimates of the average hours effect for changes to standard hours are consistent with estimates by Costa (2000), that hours fell by 0.2-0.4 on average during the phased introduction of the FLSA in which standard hours declined by 2 hours in 1939 and 1940.

 $^{^{52}}$ While my short run prediction under this policy counterfactual assumes away changes to straight-time

7 Conclusion

This paper has analyzed the effects of U.S. overtime policy on hours of work, by adapting the kink bunching-design method from public finance to be more generally applicable to reduced-form program evaluation questions. I have provided a re-interpretation of the bunching-design method in the language of causal inference, showing that the basic identifying power of the bunching design is robust to a variety of underlying structural choice models and functional form assumptions. Across such modeling choices, the parameter of interest is a reduced-form local average treatment effect between two appropriately-defined counterfactual choices. This opens the door to applying the bunching design in a broader variety of contexts, beyond those in which the researcher is prepared to posit a parametric model of decision-makers' preferences.

By leveraging these insights with a new payroll dataset recording exact weekly hours paid at the individual level, I estimate that U.S. workers subject to the FLSA indeed work shorter hours due to the overtime rule, which may lead to substantial employment effects. Given the large amount of within-worker variation in hours observed in the data, the modest size of the FLSA effects estimated in this paper suggest that firms do face significant incentives to maintain longer working hours, countervailing against the ones introduced by policies intended to reduce them.

References

BARKUME, A. (2010). "The Structure of Labor Costs with Overtime Work in U.S. Jobs". *Industrial and Labor Relations Review* 64 (1).

BERTANHA, M., MCCALLUM, A. H. and SEEGERT, N. (2020). "Better Bunching, Nicer Notching". SSRN Working Paper.

BEST, M. C., BROCKMEYER, A., KLEVEN, H. J., SPINNEWIJN, J. and WASEEM, M. (2015). "Production vs Revenue Efficiency With Limited Tax Capacity: Theory and Evidence From Pakistan". *Journal of Political Economy* 123 (6), p. 48.

wages, the reduction in bunching is likely to remain after allowing such adjustment over time. With 35 already to the left of the mode of the latent hours distributions h_{0i} and h_{1i} , it would become even further from the mode as these distributions move rightward due to lower wages.

- BISHOW, J. L. (2009). "A Look at Supplemental Pay: Overtime Pay, Bonuses, and Shift Differentials". *Monthly Labor Review*. Publisher: Bureau of Labor Statistics, U.S. Department of Labor.
- BLOMQUIST, S., KUMAR, A., LIANG, C.-Y. and NEWEY, W. (2020). "On Bunching and Identification of the Taxable Income Elasticity". *Journal of Political Economy* Forthcoming.
- BLOMQUIST, S., KUMAR, A., LIANG, C.-Y. and NEWEY, W. K. (2015). "Individual heterogeneity, nonlinear budget sets and taxable income". *The Institute for Fiscal Studies Working Paper* CWP21/15.
- BLOMQUIST, S. and NEWEY, W. (2017). "The Bunching Estimator Cannot Identify the Taxable Income Elasticity". *The Institute for Fiscal Studies Working Paper* CWP40/17.
- BRECHLING, F. P. R. (1965). "The Relationship Between Output and Employment in British Manufacturing Industries". *The Review of Economic Studies* 32 (3), p. 187.
- BROWN, C. and HAMERMESH, D. S. (2019). "Wages and Hours Laws: what do we know? what can be done?" *The Russell Sage Foundation Journal of the Social Sciences* 5 (5), pp. 68–87.
- BURDETT, K. and MORTENSEN, D. T. (1998). "Wage Differentials, Employer Size, and Unemployment". *International Economic Review* 39 (2), p. 257.
- CAETANO, C., CAETANO, G. and NIELSEN, E. (2020). "Correcting for Endogeneity in Models with Bunching". Federal Reserve Board Finance and Economics Discussion Series 2020-080.
- CAHUC, P. and ZYLBERBERG, A. (2004). *Labor economics*. OCLC: 265445233. Cambridge, Mass.: MIT Press.

- CATTANEO, M. D., JANSSON, M. and MA, X. (2020). "Simple Local Polynomial Density Estimators". *Journal of the American Statistical Association* 115 (531), pp. 1449–1455.
- CHERNOZHUKOV, V. and HANSEN, C. (2005). "An IV Model of Quantile Treatment Effects". *Econometrica* 73 (1), pp. 245–261.
- CHETTY, R., FRIEDMAN, J. N., OLSEN, T. and PISTAFERRI, L. (2011). "Adjustment Costs, Firm Responses, and Micro vs. Macro Labor Supply Elasticities: Evidence from Danish Tax Records." *Quarterly Journal of Economics* 126 (2), pp. 749–804.
- COSTA, D. L. (2000). "Hours of Work and the Fair Labor Standards Act: A Study of Retail and Wholesale Trade, 1938–1950". *Industrial and Labor Relations Review*, p. 17.
- DÜMBGEN, L., KOLESNYK, P. and WILKE, R. A. (2017). "Bi-log-concave distribution functions". *Journal of Statistical Planning and Inference* 184, pp. 1–17.
- DUBE, A., MANNING, A. and NAIDU, S. (2020). "Monopsony, Misoptimization, and Round Number Bunching in the Wage Distribution". *NBER Working Paper* w24991.
- EHRENBERG, R. and SCHUMANN, P. (1982). Longer hours or more jobs? : an investigation of amending hours legislation to create employment. New York State School of Industrial and Labor Relations, Cornell University.
- EHRENBERG, R. G. (1971). "The Impact of the Overtime Premium on Employment and Hours in U.S. Industry". *Economic Inquiry* 9 (2).
- EINAV, L., FINKELSTEIN, A. and SCHRIMPF, P. (2017). "Bunching at the kink: Implications for spending responses to health insurance contracts". *Journal of Public Economics* 146, pp. 27–40.

- GELBER, A. M., JONES, D. and SACKS, D. W. (2020). "Estimating Adjustment Frictions Using Nonlinear Budget Sets: Method and Evidence from the Earnings Test". *American Economic Journal: Applied Economics* 12 (1), pp. 1–31.
- GRIGSBY, J., HURST, E. and YILDIRMAZ, A. (2020). *Aggregate Nominal Wage Adjustments: New Evidence from Administrative Payroll Data*. American Economic Review, forthcoming.
- HAMERMESH, D. S. (1996). *Labor demand*. Princeton, NJ: Princeton Univ. Press.
- HAMERMESH, D. S. and TREJO, S. J. (2003). "The Demand for Hours of Labor: Direct Evidence from California". *The Review of Economics and Statistics* 82 (1), pp. 38–47.
- HART, R. A. (2004). *The economics of overtime working*. OCLC: 704550114. Cambridge, UK: Cambridge University Press.
- HJORT, J., LI, X. and SARSONS, H. (2020). "Across-Country Wage Compression in Multinationals". *NBER Working Paper* w26788.
- HUANG, C.-i. (2008). "Estimating demand for cellular phone service under nonlinear pricing". *Quantitative Marketing and Economics volume* 6, pp. 371–413.
- IMBENS, G. W. and MANSKI, C. F. (2004). "Confidence Intervals for Partially Identified Parameters". *Econometrica* 72, p. 14.
- ITO, K. and SALLEE, J. M. (2017). "The Economics of Attribute-Based Regulation: Theory and Evidence from Fuel-Economy Standards". *The Review of Economics and Statistics*, pp. 319–336.
- JOHNSON, J. H. (2003). "The Impact of Federal Overtime Legislation on Public Sector Labor Markets". *Journal of Labor Economics* 21 (1), pp. 43–69.

- KASY, M. (2017). "Who wins, who loses? Identification of the welfare impact of changing wages". *Working Paper*, pp. 1–26.
- KLEVEN, H. J. (2016). "Bunching". Annual Review of Economics 8 (June), pp. 435–464.
- KLEVEN, H. J. and WASEEM, M (2013). "Using notches to uncover optimization frictions and structural elasticities: Theory and evidence from Pakistan". *The Quarterly Journal of Economics* 128 (2), pp. 669–723.
- LEWIS, H. G. (1969). "Employer Interest in Employee Hours of Work". *Unpublished paper*.
- MILGROM, P. and ROBERTS, J. (1996). "The LeChatelier Principle". *American Economic Review* 1 (86), pp. 173–179.
- QUACH, S. (2020). "The Labor Market Effects of Expanding Overtime Coverage". MPRA Paper 100613.
- ROSEN, S. (1968). "Short-Run Employment Variation on Class-I Railroads in the U.S., 1947-1963". *Econometrica* 36 (3), p. 511.
- SAEZ, E. (2010). "Do Taxpayers Bunch at Kink Points?" *American Economic Journal: Economic Policy* 2 (3). ISBN: 1945-7731 _eprint: arXiv:1011.1669v3, pp. 180–212.
- SOCIETY FOR HUMAN RESOURCE MANAGEMENT (2018). "National Study of Employers", p. 79.
- STOLE, L. A. and ZWIEBEL, J. (1996). "Intra-Firm Bargaining under Non-Binding Contracts". *The Review of Economic Studies* 63 (3). Publisher: [Oxford University Press, Review of Economic Studies, Ltd.], pp. 375–410.
- STOYE, J. (2009). "More on Confidence Intervals for Partially Identified Parameters". *Econometrica* 77 (4), pp. 1299–1315.

TREJO, B. S. J. (1991). "The Effects of Overtime Pay Regulation on Worker Compensation". *American Economic Review* 81 (4), pp. 719–740.

U.S. DEPARTMENT OF LABOR (2019). "Defining and Delimiting the Exemptions for Executive, Administrative, Professional, Outside Sales and Computer Employees". *Federal Register* 84 (188).

A Identification in a generalized bunching design

This section present a generalization of the bunching-design model used in the paper. While the FLSA will provide a running example throughout, I largely abstract from the overtime context to emphasize the general applicability of the results.

To facilitate comparison with the existing literature on bunching at kinks – which has mostly considered cross-sectional data – I throughout this section suppress time indices and use the single index i to refer to each unit of observation (a paycheck in the overtime case). Further, the "running variable" of the bunching design is denoted throughout this section by Y rather than h. This is done to emphasize the link to the treatment effects literature, while allowing a distinction that is in some cases important (e.g. a model where hours of pay for work differ from actual hours of work).

A.1 A generalized bunching-design model

Consider a population of observational units indexed by i. For each i, a decision-maker d(i) chooses a point (z, \mathbf{x}) in some space $\mathcal{X} \subseteq \mathbb{R}^{m+1}$ where z is a scalar and \mathbf{x} a vector of m components, subject to a constraint of the form:

$$z \ge \max\{B_{0i}(\mathbf{x}), B_{1i}(\mathbf{x})\}\tag{A.1}$$

We require that $B_{0i}(\mathbf{x})$ and $B_{1i}(\mathbf{x})$ are continuous and weakly convex functions of the vector \mathbf{x} , and that there exist continuous scalar functions $y_i(\mathbf{x})$ and a scalar k such that:

$$B_{0i}(\mathbf{x}) > B_{1i}(\mathbf{x})$$
 whenever $y_i(\mathbf{x}) < k$ and $B_{0i}(\mathbf{x}) < B_{1i}(\mathbf{x})$ whenever $y_i(\mathbf{x}) > k$

The value k is taken to be common to all units i, and is assumed to be known by the researcher.⁵³ In the overtime setting, $y_i(\mathbf{x})$ represents the hours of work for which a worker

⁵³This comes at little cost of generality since with heterogeneous k_i this could be subsumed as a constant into the function $y_i(\mathbf{x})$, so long as the k_i are observed by the researcher.

is paid in a given week, and k=40. In most applications of the bunching design, the decision-maker d(i) is simply i themself, for example a worker choosing their labor supply subject to a tax kink. In the overtime application however i is a worker-week pair, and d(i) is that worker's firm.

Let X_i be i's realized outcome of \mathbf{x} , and $Y_i = y_i(X_i)$. I assume that Y_i is observed by the econometrician, but not that X_i is.

In a typical example, the functions B_{0i} , B_{1i} will represent a schedule of some kind of "cost" as a function of the choice vector \mathbf{x} , with two regimes of costs that are separated by the condition $y_i(\mathbf{x}) = k$, characterizing the locus of points at which the two cost functions cross. Let $B_{ki}(\mathbf{x}) := \max\{B_{0i}(\mathbf{x}), B_{1i}(\mathbf{x})\}$. Budget constraints like Eq. $z \geq B_{ki}(\mathbf{x})$ are typically "kinked" because while the function $B_{ki}(\mathbf{x})$ is continuous, it will generally be non-differentiable at the \mathbf{x} for which $y_i(\mathbf{x}) = k$. While the functions B_0 , B_1 and y can all depend on i, I will often suppress this dependency for clarity of notation.

In the most common cases from the literature, \mathbf{x} is assumed to be the scalar $y_i(x) = x$, i.e. there is no distinction between the "kink variable" y and underlying choice variables \mathbf{x} . For example, the seminal bunching design papers Saez (2010) and Chetty et al. (2011) considered progressive taxation with z being tax liability (or credits), both y = x corresponding to taxable income, and B_0 and B_1 linear tax functions on either side of a threshold y between two adjacent tax/benefit brackets. However, even when the functions B_0 and B_1 only depend on \mathbf{x} through $y_i(\mathbf{x})$, the bunching design is compatible with models in which multiple margins of choice respond to the incentives provided by the kink. ⁵⁵ In fact, the econometrician may be agnostic as to even what the full set of components of \mathbf{x} are, with $y(\cdot)$, $B_0(\cdot)$ or $B_1(\cdot)$ depending only on various subsets of them. The next section will discuss how the bunching design allows us to conduct causal inference on the variable Y_i , but not directly on the underlying choice variables X_i .

In the overtime context, z corresponds to the cost of a single-worker's labor in a single week, and in the simplest models of hours choice the vector \mathbf{x} is simply equal to hours of work y. The cost functions are:

$$B_{0i}(y) := w_{it}y$$
 and $B_{1i}(y) := 1.5w_iy - 20w_i$ (A.2)

 $^{^{55}}$ An example from the literature in which a distinction between y and x cannot be avoided is Best et al. (2015). These authors study firms in Pakistan, who pay either a tax on output or a tax on profit, whichever is higher. The two tax schedules cross when the ratio of profits to output crosses a certain threshold that is pinned down by the two respective tax rates. In this case, the variable y depends both on production and on reported costs, leading to two margins of response to the kink: one from choosing the scale of production and the other from choosing whether and how much to misreport costs.

The functions B_0 and B_1 are depicted in Figure A.1 for a single worker with wage $w_i = w$. B_0 describes a setting in which the worker is paid at their straight-time wage w for all hours, regardless of whether they work more or less than 40. B_1 describes a setting in which the worker is instead paid at their overtime rate 1.5w for all hours, but the firm is given a weekly "subsidy" that keeps them indifferent between the two cost schedules at y = 40. With these definitions, we can see that the actual labor cost to the firm of any number of hours h is $B_{ki}(y) := \max\{B_{0i}(y), B_{1i}(y)\}$ for worker i.

FIGURE A.1: Definition of counterfactual cost functions B_0 and B_1 that firms could have faced, absent the overtime kink. Dashed lines show the rest of actual cost function in comparison to the counterfactual as a solid line.

A.2 Potential outcomes as counterfactual choices

To introduce a notion of treatment effects in the bunching design, I define a pair of potential outcomes as what would occur if the decision-maker faced either of the functions B_0 or B_1 globally, without the kink.

Definition (potential outcomes). Let Y_{0i} be the value of $y_i(\mathbf{x})$ that would occur for unit i if d(i) faced the constraint $z \geq B_0(\mathbf{x})$, and let Y_{1i} be the value that would occur under the constraint $z \geq B_1(\mathbf{x})$.

To relate these potential outcomes to choices of the decision-maker, we make explicit the assumption that they control the value of $y_i(\mathbf{x})$. For any function B let Y_{Bi} be the outcome that would occur under the choice constraint $z \ge B(\mathbf{x})$, with Y_{0i} and Y_{1i} shorthands for Y_{B_0i} and Y_{B_0i} , respectively.⁵⁶

⁵⁶Note that in this notation Assumption CHOICE implies that the actual outcome Y_i observed by the econometrician is equal to $Y_{B_{ki}i}$.

Assumption CHOICE (perfect manipulation of y**).** For any function $B(\mathbf{x})$, $Y_{Bi} = y_i(\mathbf{x}_{B_i})$, where $(z_{Bi}, \mathbf{x}_{Bi})$ is the choice that d(i) would make under the constraint $z \geq B(\mathbf{x})$.

Assumption CHOICE rules out for example optimization error, which could limit the decision-maker's ability to exactly manipulate values of \mathbf{x} and hence y. It also takes for granted that counterfactual choices are unique, and rules out some kinds of extensive margin effects in which a decision-maker would not choose any value of Y at all under B_1 or B_0 . Assumption CHOICE may be relaxed somewhat while still allowing for meaningful causal inference, but I maintain this assumption throughout (however the decision-maker need not always be the firm only; see Appendix B). Note that CHOICE here differs from the version given in the main text in that it applies to all functions B, not just B_0 , B_1 and B_k (this is useful for Theorem 2).

The central behavioral assumption that allows us to reason about the counterfactuals Y_0 and Y_1 is that decision-makers have convex preferences over (c, \mathbf{x}) and dislike costs z:

Assumption CONVEX (strictly convex preferences, monotonic in z). For each agent i and function $B(\mathbf{x})$, choice is $(z_{Bi}, \mathbf{x}_{Bi}) = argmax_{z,\mathbf{x}}\{u_i(z,\mathbf{x}) : z \geq B(\mathbf{x})\}$ where $u_i(z,\mathbf{x})$ is continuous and strictly quasi-concave in (z,\mathbf{x}) , and strictly decreasing in z.

Note: The function $u_i(\cdot)$ represents preferences over choice variables for unit i, but the preferences are those of the decision maker d(i). I avoid more explicit notation like $u_{d(i),i}(\cdot)$ for brevity. In the overtime setting with firms choosing hours, $u_i(z, \mathbf{x})$ corresponds to the firm's profit function π as a function of the hours of a particular worker this week, and costs this week z for that worker.

The notation of Assumption CONVEX does not make explicit any dependence of the functions $u_i(\cdot)$ on the choices made for other observational units $i' \neq i$. When the functions $u_i(\cdot)$ are indeed invariant over such counterfactual choices, we have a version of the no-interference condition of the stable unit treatment values assumption (SUTVA). Maintaining SUTVA is not necessary to define treatment effects in the bunching design, provided that the variables y and z can be coherently defined at the individual unit i level (see Example 3 in Section 4.2). Nevertheless, the interpretation of the treatment effects identified by the bunching design is most straightforward when SUTVA does hold. This assumption is standard in the bunching design, but it may be a restrictive one in overtime context where a single firm chooses the hours of multiple workers.⁵⁷ I discuss this further in the overtime setting in Section 4.4 and Appendix C.

⁵⁷However I note that SUTVA issues could also occur in canonical bunching designs: for example if spouses choose their labor supply jointly, the introduction of a tax kink may cause one spouse to increase labor supply while the other decreases theirs.

A weaker assumption than convexity that will still have identifying power is simply that decision-makers' choices do not violate the weak axiom of revealed preference:

Assumption WARP (rationalizable choices). Consider two budget functions B and B' and any unit i. If d(i)'s choice under B' is feasible under B, i.e. $z_{B'i} \ge B(\mathbf{x}_{B'i})$, then $(z_{Bi}, \mathbf{x}_{Bi}) = (z_{B'i}, \mathbf{x}_{B'i})$.

I make the stronger assumption CONVEX for most of the identification results, but Assumption WARP still allows a version of many of them in which equalities become weak inequalities, indicating a degree of robustness with respect to departures from convexity. Note that the monotonicity assumption in CONVEX implies that choices will always satisfy $z = B(\mathbf{x})$, i.e. agents' choices will lay on their cost functions (despite Eq. A.1 being an inequality, indicating "free-disposal").

In the overtime application, the potential outcomes Y_{0i} and Y_{1i} are the hours that the firm would choose, respectively, in a situation a) in which there was no overtime premium and the firm always had to pay w_i for each hour; and b) a situation in which the firm were to pay $1.5w_i$ for all hours of labor, but receive a subsidy of $20w_i$ that keeps the firm indifferent between B_0 and B_1 when h=40 (cf. Eq. A.2). When firm preferences are quasilinear with respect to wage costs, the choice of hours Y_1 will be the same as what the firm would have chosen without the subsidy of 20w.

Further notes on the general model

I conclude this section with some further remarks on the generality of Eq. (A.1) given the above assumptions. The first is that the budget functions B_0 and B_1 can depend on a subset of the variables that enter into the function for y, and vice versa. In the former case, this is because the only restriction on $B_{0i}(\mathbf{x})$ and $B_{1i}(\mathbf{x})$ is that they are continuous and weakly convex in all components of \mathbf{x} ; thus, having zero dependence on a component of \mathbf{x} is permissible. This is of particular interest because while the variables entering into the budget functions are generally known from the empirical context generating the kink, the model can allow additional choice variables to enter into the threshold-crossing variable y, that may not even be known to the econometrician. Section 4.2 provides some examples of this in the overtime setting. Supplemental Material Section 2 details an example from the literature: Best et al. (2015), in which the functions B_0 and B_1 depend directly on two components of \mathbf{x} .

Suppose that $B_{di}(\mathbf{x}) = B_{di}(\bar{\mathbf{x}})$, where $\bar{\mathbf{x}}$ is a sub-vector of the first n components of \mathbf{x} , but $y_i(\mathbf{x})$ is still a function of all n + l components of \mathbf{x} . The values of the remaining l components affect the decision-maker's optimizing choice of y, because they affect the

value of y and hence which regime B_0 or B_1 the decision-maker's choice is in. Thus, observed bunching in y can reflect a response along any of these l additional margins, even though they correspond to variables that are unobserved are even unknown to the researcher. This can complicate identification of specific structural elasticities, but does not challenge the credibility of causal inference about y alone.

A.3 Observables in the kink bunching design

Lemma 1 outlines the core consequence of convexity of preferences for the relationship between observed Y_i and the potential outcomes introduced in the last section:

Lemma 1 (realized choices as truncated potential outcomes). *Under Assumptions CON-VEX and CHOICE:*

$$Y_{i} = \begin{cases} Y_{0i} & \text{if } Y_{0i} < k \\ k & \text{if } Y_{1i} \le k \le Y_{0i} \\ Y_{1i} & \text{if } Y_{1i} > k \end{cases}$$

Proof. See Appendix F.

Lemma 1 says that the pair of counterfactual outcomes (Y_{0i}, Y_{1i}) is sufficient to pin down actual choice Y_i , which can in fact can be seen as an observation of one or the other potential outcome depending on how they relate to the kink point k. When the Y_{0i} potential outcome is greater than k but the Y_{1i} potential outcome is below – when the potential outcomes "straddle" the kink – the decision will locate choose the corner solution of locating exactly the kink.⁵⁸

Lemma 1 differs from existing approaches to the bunching design in a basic way by expressing the condition for locating at $Y_i = k$ in terms of the counterfactual choices Y_{0i} and Y_{1i} , rather than primitives of the underlying utility functions $u_i(c, \mathbf{x})$. The typical approach in the literature has been to assume a particular parametric functional form for $u_i(c, \mathbf{x})$, then derive an expression for \mathcal{B} in terms of such parameters (typically an elasticity parameter). Instead, I treat the underlying utility function $u_i(c, \mathbf{x})$ as an intermediate step, only requiring the nonparametric restrictions of convexity and monotonicity. By expressing the bunching event in terms of the "reduced-form" quantity $y_i(\mathbf{x})$, we need only believe that there exists an underlying model of utility satisfying CONVEX, and do not need to know its form explicitly.

⁵⁸The opposite situation of $Y_{0i} \le k \le Y_{1i}$, what we might call "reverse straddling", is ruled out by WARP when it occurs by at least one strict inequality.

Consider a random sample of observations of Y_i . Under i.i.d. sampling of Y_i , the distribution F(y) of Y_i is identified.⁵⁹ Let $F_1(y) = P(Y_{0i} \le y)$ be the distribution function of the random variable Y_0 , and $F_1(y)$ the distribution function of Y_1 . From Lemma 1 it follows immediately that $F_0(y) = F(y)$ for all y < k, and $F_1(y) = F(y)$ for Y > k. Thus observations of Y_i are also informative about the marginal distributions of Y_{0i} and Y_{1i} . A weaker version of this also holds under WARP rather than CONVEX:

Corollary to Lemma 1 (identification of truncated densities). Suppose that F_0 and F_1 are continuously differentiable with derivatives f_0 and f_1 , and that F admits a derivative function f(y) for $y \neq k$. Under WARP and CHOICE: $f_0(y) \leq f(y)$ for y < k and $f_0(k) \leq \lim_{y \uparrow k} f(y)$, while $f_1(y) \leq f(y)$ for y > k and $f_1(k) \leq \lim_{y \downarrow k} f(y)$, with equalities under CONVEX.

Proof. See Appendix F. □

Let $\mathcal{B} := P(Y_i = k)$ be the observable probability that the decision-maker chooses to locate exactly at Y = k. By Lemma 1, this is equal to the probability of the event $Y_{1i} \le k \le Y_{0i}$. With convex preferences, a point mass $\mathcal{B} > 0$ in the distribution of Y_i occurs when the straddling event occurs with positive probability.

Define $\Delta_i = Y_{0i} - Y_{1i}$. This can be thought of as the treatment effect of a counterfactual change from the choice set under B_1 to the choice set under B_0 . The straddling event can be expressed in terms of Δ_i as $Y_{0i} \in [k, k + \Delta_i]$. This forms the basic link between the observable quantity \mathcal{B} and treatment effects. Proposition 1 states the general result.

Proposition 1 (relation between bunching and straddling). *a) Under CONVEX and CHOICE:* $\mathcal{B} = P(Y_{0i} \in [k, k + \Delta_i])$; *b) under WARP and CHOICE:* $\mathcal{B} \leq P(Y_{0i} \in [k, k + \Delta_i])$.

Proof. See Appendix F. □

Discussion of treatment effects vs. structural parameters:

The treatment effects Δ_i are "reduced form" in the sense that when the decision-maker has multiple margins of response \mathbf{x} to the incentives introduced by the kink, these may be bundled together in the treatment effect Δ_i . This clarifies a limitation sometimes levied against the bunching design, while also revealing a perhaps under-appreciated strength. On the one hand, it is not always clear "which elasticity" is elicited by bunching at a kink, complicating efforts to identify a elasticity parameter having a firm structural interpretation.

⁵⁹Note that in the overtime application sampling is actually at the firm level, which coincides with the level of decision-making units d(i).

On the other hand, the bunching design can be useful for ex-post policy evaluation and even forecasting effects of small policy changes (as described in Section 4.4), without committing to a tightly parameterized underlying model of choice. The "trick" of Lemma 1 is to express the observable data in terms of counterfactual choices, rather than of primitives of the utility function. The econometrician need not even know the full vector \mathbf{x} of choice variables underlying agents' value of y, they simply need to believe that preferences are convex in them, and verify that B_0 and B_1 are convex in a subset of them. This greatly increases the robustness of the method to potential misspecification of the underlying choice model. Appendix A further elucidates some of these issues through an example from the literature.

A.4 Additional identification results for the bunching design

While Theorem 1 of Section 4 developes the treatment effect identification result used to evaluate the FLSA, Supplemental Appendix 2 presents some further identification results for the bunching design that are not used in this paper, which can be considered alternatives to Theorem 1. This includes re-expressing various results in the general framework of this section, including the linear interpolation approach of Saez (2010), the polynomial approach of Chetty et al. (2011) and a "small-kink" approximation appearing in Saez (2010) and Kleven (2016). The Supplemental Appendix also outlines alternative shape constraints to bi-log-concavity, including monotonicity of densities. I also give there a result in which a lower bound to a certain local average treatment effect is identified under WARP, without requiring convexity of preferences.

A.5 The buncher LATE when Assumption RANK fails

This section picks up from the discussion in Section 4.3, which introduces the buncher LATE Δ_k^* parameter and Assumption RANK, but continues with the notation of this Appendix. When RANK fails (and p=0 for simplicity), the bounds from Theorem 1 are still valid for the averaged quantile treatment effect:

$$\frac{1}{\mathcal{B}} \int_{F_0(k)}^{F_1(k)} Q_0(u) - Q_1(u) = \mathbb{E}[Y_{0i}|Y_{0i} \in [k, k + \Delta_0^*]] - \mathbb{E}[Y_{1i}|Y_{1i} \in [k - \Delta_1^*, k]]$$
(A.3)

under BLC of Y_0 and Y_1 , where we define $\Delta_0^* := Q_0(F_1(k)) - Q_1(F_1(k)) = Q_0(F_1(k)) - k$ and $\Delta_1^* := Q_0(F_0(k)) - Q_1(F_0(k)) = k - Q_1(F_0(k))$. This can be seen to yield a lower bound on the buncher LATE, as described in Figure A.2 below.

Signing the bias when RANK fails

FIGURE A.2: When Assumption RANK fails, the average $E[Y_{0i}|Y_{0i} \in [k,k+\Delta_0^*]]$ will include the mass in the region S_0 , who are not bunchers (blue, NE lines) but will be missing the mass in the region A_0 (green, NW lines) who are. This causes an under-estimate of the desired quantity $E[Y_{0i}|Y_{1i} \leq k \leq Y_{0i}]$. Similarly, $E[Y_{1i}|Y_{1i} \in [k-\Delta_1^*,k]]$ will include the mass in the region S_1 , who are not bunchers but will be missing the mass in A_1 , who are. This causes an over-estimate of the desired quantity $E[Y_{1i}|Y_{1i} \leq k \leq Y_{0i}]$.

A.6 Policy changes in the bunching-design

Consider a bunching design in which the cost functions B_0 and B_1 can be viewed as members of family $B_i(\mathbf{x}; \rho, k)$ parameterized by a continuum of scalars ρ and k, where $B_{0i}(\mathbf{x}) = B_i(\mathbf{x}; \rho_0, k^*)$ and $B_{1i}(\mathbf{x}) = B_i(\mathbf{x}; \rho_1, k^*)$ for some $\rho_1 > \rho_0$ and value k^* of k. In the overtime setting ρ represents a wage-scaling factor, with $\rho = 1$ for straight-time and $\rho = 1.5$ for overtime:

$$B_i(y; \rho, k) = \rho w_i y - k w_i (\rho - 1)$$
(A.4)

where work hours y may continue to be a function $y(\mathbf{x})$ of a vector of choice variables to the firm. Here ρ represents an arbitrary wage-scaling factor, while k controls the size of a lump-sum subsidy that keeps $B_i(k; \rho, k)$ invariant across ρ .

Assume that ρ takes values in a convex subset of \mathbb{R} containing ρ_0 and ρ_1 , and that for any k and $\rho' > \rho$ the cost functions $B_i(\mathbf{x}; \rho, k)$ and $B_i(\mathbf{x}; \rho', k)$ satisfy the conditions of

the bunching design framework from Section 4, with the function $y_i(\mathbf{x})$ fixed across all such values. That is, $B_i(\mathbf{x}; \rho', k) > B_i(\mathbf{x}; \rho, k)$ iff $y_i(\mathbf{x}) > k$ with equality when $y_i(\mathbf{x}) = k$, the functions $B_i(\cdot; \rho, k)$ are weakly convex and continuous, and $y_i(\cdot)$ is continuous. It is readily verified that Equation (A.4) satisfies these requirements with $y_i(h) = h$.⁶⁰

For any value of ρ , let $Y_i(\rho, k)$ be agent i's realized value of $y_i(\mathbf{x})$ when a choice of (z, \mathbf{x}) is made under the constraint $c \geq B_i(\mathbf{x}; \rho, k)$. A natural restriction in the overtime setting that is that the function $Y_i(\rho, k)$ does not depend on k, and some of the results below will require this. A sufficient condition for $Y_i(\rho, k) = Y_i(\rho)$ is a family of cost functions that are linearly separable in k, as we have in Equation (A.4), along with quasi-linearity of preferences:

Assumption SEPARABLE (invariance of potential outcomes with respect to k). For all i, ρ and $k, B_i(\mathbf{x}; \rho, k)$ is additively separable between k and \mathbf{x} (e.g. $b_i(\mathbf{x}, \rho) + \phi_i(\rho, k)$ for some functions b_i and ϕ_i), and for all $i \ u_i(z, \mathbf{x})$ can be chosen to be additively separable and linear in z.

Quasilinearity of preferences is a property of profit-maximizing firms when c represents a cost, thus it is a natural assumption in the overtime setting. However, additive separability of $B(\mathbf{x}; \rho, k)$ in k may be context specific: in the example from Best et al. (2015) described in Appendix A, quasi-linearity of preferences is not sufficient since the cost functions are not additively separable in k. To maintain clarity of exposition, I will keep k implicit in $Y_i(\rho)$ throughout the foregoing discussion, but the proofs make it clear when SEPARABLE is being used.

Below I state two intermediate results that allow us to derive expressions for the effects of marginal changes to ρ_1 or k on hours. Lemma 2 generalizes an existing result from Blomquist et al. (2020), and makes use of a regularity condition I introduce in the proof as Assumption SMOOTH.⁶¹ Counterfactual bunchers $K_i^* = 1$ are assumed to stay at k^* , regardless of ρ and k. Let $p(k) = p \cdot \mathbb{I}(k = k^*)$ denote the possible counterfactual mass at the kink as a function of k. Let $f_{\rho}(y)$ be the density of $Y_i(\rho)$, which exists by SMOOTH and is defined for $y = k^*$ as a limit (see proof).

Lemma 2 (bunching from marginal responsiveness). Assume CHOICE, SMOOTH and WARP. Then:

$$\mathcal{B} - p(k) \le \int_{\rho_0}^{\rho_1} f_{\rho}(k) \mathbb{E} \left[-\frac{dY_i(\rho)}{d\rho} \middle| Y_i(\rho) = k \right] d\rho$$

⁶⁰As an alternative example, I construct in Appendix A functions $B_i(\mathbf{x}; \rho, k)$ for the bunching design setting from Best et al. (2015). In that case, ρ parameterizes a smooth transition between an output and a profit tax, where k enters into the rate applied to the tax base for that value of ρ .

⁶¹Blomquist et al. (2020) derive the special case of Lemma 2 with CONVEX and p=0, in the context of a more restricted model of labor supply under taxation. I establish it here for the general bunching design model where in particular, the $Y_i(\rho)$ may depend on an underlying vector \mathbf{x} which are not observed by the econometrician. I also use different regularity conditions.

with equality under CONVEX.

Proof. See Appendix F.

Lemma 2 is particularly useful when combined with a result from Kasy (2017), which considers how the distribution of a generic outcome variable changes as heterogeneous units flow to different values of that variable in response to marginal policy changes.

Lemma 3 (flows under a small change to ρ **).** *Under SMOOTH:*

$$\partial_{\rho} f_{\rho}(y) = \partial_{y} \left\{ f_{\rho}(y) \mathbb{E} \left[-\frac{dY_{i}(\rho)}{d\rho} \middle| Y_{i}(\rho) = y, K_{i}^{*} = 0 \right] \right\}$$

Proof. See Appendix F.

The intuition behind Lemma 3 comes from fluid dynamics. When ρ changes, a mass of units will "flow" out of a small neighborhood around any y, and this mass is proportional to the density at y and to the average rate at which units move in response to the change. When the magnitude of this net flow varies with y, the change to ρ will lead to a change in the density there.

With ρ_0 fixed at some value, let us index observed Y_i and bunching \mathcal{B} with the superscript $[k, \rho_1]$ when they occur in a kinked policy environment with cost functions $B_i(\cdot; \rho_0, k)$ and $B_i(\cdot; \rho_1, k)$. Lemmas 2 and 3 together imply Theorem 2, which I repeat here:

Theorem 2 (marginal comparative statics in the bunching design). *Under Assumptions CHOICE, CONVEX, SMOOTH, and SEPARABLE:*

1.
$$\partial_k \left\{ \mathcal{B}^{[k,\rho_1]} - p(k) \right\} = f_1(k) - f_0(k)$$

2.
$$\partial_k \mathbb{E}[Y_i^{[k,\rho_1]}] = \mathcal{B}^{[k,\rho_1]} - p(k)$$

3.
$$\partial_{\rho_1} \mathbb{E}[Y_i^{[k,\rho_1]}] = -\int_k^\infty f_{\rho_1}(y) \mathbb{E}\left[\frac{dY_i(\rho_1)}{d\rho}\middle| Y_i(\rho_1) = y\right] dy$$

Proof. See Appendix F.

Assumption SEPARABLE is only necessary for Items 1-2 in Theorem 2, Item 3 holds without it and with $\frac{\partial Y_i(\rho,k)}{\partial \rho}$ replacing $\frac{dY_i(\rho)}{d\rho}$.

B Incorporating workers that set their own hours

This section considers the robustness of the empirical strategy from Section 4 to a case where some workers are able to choose their own hours. In this case, a simple extension of the model leads to the bounds on the buncher LATE remaining valid, but it is only directly informative about the effects of the FLSA among workers who have their hours chosen by the firm. In this section I follow the notation from the main text where h_{it} indicate the hours of worker i in week t.

Suppose that some workers are able to choose their hours each week without restriction ("worker-choosers"), and that for the remaining workers ("firm-choosers") their employers set their hours. In general we can allow who chooses hours for a given worker to depend on the period, so let $W_{it} = 1$ indicate that i is a worker-chooser in period t. Additionally, we continue to allow conterfactual bunchers for whom counterfactual hours satisfy $h_{0it} = h_{1it} = 40$, regardless of who chooses them. This setup is general enough to also allow a stylized bargaining-inspired model in which choices maximize a weighted sum of quasilinear worker and firm utilities.⁶²

I replace Assumption CONVEX from Section 4 allow agents to either dislike pay (firm-choosers), or like pay (worker-choosers):

Assumption CONVEX* (convex preferences, monotonic in either direction). For each i, t and function $B(\mathbf{x})$, choice is $(c_{Bi}, \mathbf{x}_{Bi}) = argmax_{c,\mathbf{x}}\{u_i(c,\mathbf{x}) : c \geq B(\mathbf{x})\}$ where $u_i(c,\mathbf{x})$ is continuous and strictly quasi-concave in (c,\mathbf{x}) , and

- strictly increasing in c, if $W_{it} = 1$
- strictly decreasing in c, if $W_{it} = 0$

In this generalized model, bunching is prima-facie evidence that firm-choosers exist, because there is no prediction of bunching among worker-choosers provided that poten-

$$h = \underset{h}{\operatorname{argmax}} \beta \left(f(h) - c \right) + (1 - \beta)(c - \nu(h)) \quad with \quad c = B(h)$$
(B.5)

where f(h)-c is firm profits with concave production $f,c-\nu(h)$ is worker utility with a convex disutility of labor $\nu(h)$, and $\beta\in[0,1]$ governs the weight of each party in the negotiation (this corresponds to Nash bargaining in which outside options are strictly inferior to all h for both parties, and utility is log-linear in c). Rearranging the maximand of Equation (B.5) as $(1-2\beta)c+\{\beta f(h)-(1-\beta)\nu(h)\}$, we can observe that this setting delivers outcomes as-if chosen by a single agent with quasi-concave preferences, as $\beta f(h)-(1-\beta)\nu(h)$ is concave. For Assumption CONVEX from Section 4 to hold with the assumed direction of monotonicity in costs c, we would require that $\beta>1/2$ for all worker-firm pairs: informally, that firms have more say than workers do in determining hours. However CONVEX* holds regardless of the distribution of β over worker-firm pairs. If $\beta_{it}<1/2$, paycheck it will look exactly like a worker-chooser, and if $\beta_{it}>1/2$ paycheck it will look exactly like a firm-chooser.

 $[\]overline{}^{62}$ In particular, suppose that for any pay schedule B(h):

tial outcomes are continuously distributed (by contrast, k is a "hole" in the worker-chooser hours distribution). Indeed under regularity conditions all of the data local to 40 are from firm-choosers (and counterfactual bunchers). To make this claim precise, we assume that for worker-choosers hours are the only margin of response (i.e. their utility depends on \mathbf{x} only thought $y(\mathbf{x})$), and let $IC_{0it}(y)$ and $IC_{1it}(y)$ be the worker's indifference curves passing through h_{0it} and h_{1it} , respectively. I assume these indifference curves are twice Lipschitz differentiable, with $M_{it} := \sup_{y} \max\{|IC_{0it}''(y)|, |IC_{1it}''(y)|\}$, where the supremum is taken over the support of hours, and IC'' indicates second derivatives.

Proposition 2. Suppose that the joint distribution of h_{0it} and h_{1it} admits a continuous density conditional on $K_{it}^* = 0$, and that for any worker-chooser IC_{0it} and IC_{1it} are differentiable with M_{it}/w_{it} having bounded support. Then, under CHOICE and CONVEX*:

- $P(h_{it} = k \text{ and } K_{it}^* = 0) = P(h_{1it} \le k \le h_{0it} \text{ and } K_{it}^* = 0 \text{ and } W_{it} = 0)$
- $\lim_{h\uparrow k} f(h) = P(W_{it} = 0) \lim_{h\uparrow k} f_{0|W=0}(h)$
- $\lim_{h \downarrow k} f(h) = P(W_{it} = 0) \lim_{h \downarrow k} f_{1|W=0}(h)$

Proof. Omitted for brevity.

The first bullet of Proposition 2 says that all active bunchers are also firm-choosers, and have potential outcomes that straddle the kink. The second and third bullets state that the density of the data as hours approach 40 from either direction is composed only of worker-choosers. This result on density limits requires the stated regularity condition, which prevents worker indifference curves from becoming too close to themselves featuring a kink (plus a requirement that straight-time wages w_{it} be bounded away from zero).

Given the first item in Proposition 2, the buncher LATE introduced in Section 4 only includes firm-choosers:

$$\mathbb{E}[h_{0it} - h_{1it}|h_{it} - 40, K_{it}^* = 0] = \mathbb{E}[h_{0it} - h_{1it}|h_{it} - 40, K_{it}^* = 0, W_{it} = 0]$$

Accordingly, I assume rank invariance among the firm-chooser population only:

Assumption RANK* (near rank invariance and counterfactual bunchers). *The following* are true:

(a)
$$P(h_{0it} = k) = P(h_{1it} = k) = p$$

(b)
$$Y = k \text{ iff } h_0 \in [k, k + \Delta_0^*] \text{ and } W = 0 \text{ iff } h_1 \in [k - \Delta_1^*, k] \text{ and } W = 0, \text{ for some } \Delta_0^*, .1cm\Delta_1^*$$

where p continues to denote $P(K_{it}^* = 1)$.

We may now state a version of Theorem 2 that conditions all quantities on W = 0, provided that we assume bi-log concavity of h_0 and h_1 conditional on W = 0 and K = 0.

Theorem 1* (bi-log-concavity bounds on the buncher LATE, with worker-choosers). Assume CHOICE, CONVEX* and RANK* hold. If both h_{0it} and h_{1it} are bi-log concave conditional on the event ($W_{it} = 0$ and $K_{it}^* = 0$), then:

$$\mathbb{E}[h_{0it} - h_{1it}|h_{it} = k, K_{it}^* = 0] \in \left[\Delta_k^L, \Delta_k^U\right]$$

where

$$\Delta_k^L = g(F_{0|W=0,K^*=0}(k), f_{0|W=0,K^*=0}(k), \mathcal{B}^*) + g(1 - F_{1|W=0,K^*=0}(k), f_{1|W=0,K^*=0}(k), \mathcal{B}^*)$$

and

$$\Delta_k^U = -g(1 - F_{0|W=0,K^*=0}(k), f_{0|W=0,K^*=0}(k), -\mathcal{B}^*) - g(F_{1|W=0,K^*=0}(k), f_{1|W=0,K^*=0}(k), -\mathcal{B}^*)$$

where $\mathcal{B}^* = P(h_{it} = k | W_{it} = 0, K_{it}^* = 0)$ and

$$g(a, b, x) = \frac{a}{bx} (a + x) \ln \left(1 + \frac{x}{a}\right) - \frac{a}{b}$$

The bounds are sharp.

Theorem 1* does not immediately yield identification of the buncher-LATE bounds Δ_k^L and Δ_k^U , as we need to estimate each of the arguments to the function g. Using that the function g is homogenous of degree one, the bounds can be rewritten in terms of p, the identified quantities \mathcal{B} , $P(W_{it}=0)\lim_{y\uparrow k} f_{0|W=0}(y)$ and $P(W_{it}=0)\lim_{y\uparrow k} f_{1|W=0}(y)$, as well as the two probabilities $P(h_{it}<40 \text{ and } W_{it}=)$ and $P(h_{it}>40 \text{ and } W_{it}=0)$ (see proof for details).

Figure B.3 depicts an example of a joint distribution of (h_0, h_1) that includes worker-choosers and satisfies Assumption RANK*. The x-axis is h_0 , and the y-axis is h_1 , with the solid lines indicating 40 hours and the dotted diagonal line depicting $h_1 = h_0$. The dots show a hypothetical joint-distribution of the potential outcomes, with the (red) cloud south of the 45-degree line being firm-choosers, and the (green and blue) cloud above being worker-choosers. Green x's indicate worker-choosers who choose their value of h_0 , while blue circles indicate worker-choosers who choose their value of h_1 . The orange dot at (40, 40) represents a mass of counterfactual bunchers.

A distribution with worker-choosers

FIGURE B.3: The joint distribution of (h_{0it}, h_{1it}) , for a distribution including worker-choosers and satisfying assumption RANK*, cf. Figure 6. See text for description.

Observed to the the econometrician is the point mass at 40 as well as the truncated marginal distributions depicted at the bottom and the right of the figure, respectively. The observable $P(h_{it} \leq h)$ for h < 40 doesn't exactly identify $P(h_{0it} \leq h)$ because some green x's are missing – these are worker-choosers for whom $h_1 > 40 > h_0$ and choose to work overtime at their h_1 value. Thus they show up in the data at h > 40 even thoug they have $h_0 < 40$. Similarly, some blue circles are missing from the data above 40 – these are worker-choosers for whom $h_1 > 40 > h_0$ and choose to work their h_0 value, not working overtime. The probabilities $P(h_{it} < 40 \text{ and } W_{it} =)$ and $P(h_{it} > 40 \text{ and } W_{it} =0)$ can thus only be estimated with some error, with the size of the error depending on the mass of worker-choosers in the northwest quadrant of Figure B.3. However, this has little impact on the results.⁶³

Two further caveats of Theorem 1* are worth mentioning here. First, an evaluation of the FLSA would ideally account for worker-choosers (who are working longer hours

⁶³The components of the bounds $\Delta_k^L = L0 + L1$ and $\Delta_k^U = -U0 - U1$ are not sensitive to the values of the CDF inputs $F_{0|W=0,K^*=0}(k)$ and $F_{1|W=0,K^*=0}(k)$, as can be verified numerically (details available upon request). Intuitively, Δ_k^L and Δ_k^U mostly depend on the density estimates and the size of the bunching mass.

as a result of the policy) when averaging treatment effects. However, the proportion of worker-choosers and the size of their hours increases are not identified. Using the buncher LATE to estimate the overall ex-post effect of the FLSA – as described in Section 4.4 – may overstate its overall average net hours reduction. Secondly, note that we can no longer directly verify the bi-log concavity assumption of h_0 for h < k, and of h_1 for h > k, by looking at the data. The reason is that the observed data is a mixture of the firm-chooser and worker-chooser distributions, while our BLC assumption regards the subgroup of firm-choosers. If the proportion of worker-choosers is small, then these caveats should have only a minor impact on the interpretation of the results. The first problem is difficult to avoid: estimating the overall effect of the FLSA based on a subset of firm-choosers is inevitably going to miss the fact that overtime pay increases hours for some workers.

C Interdependencies among hours within the firm

In this section I consider the impact that interdependencies among the hours of different units may have on the estimates, reflected in the third term of Equation (10) from Section 4.4. I develop some structure to guide our intuition of this term, and then present some empirical evidence that it is likely to be small.

The basic issue is as follows: when a single firm chooses hours jointly among mulitple units—either across different workers or across multiple weeks, or both—this term may be nonzero and contribute to the overall effect of the FLSA. This can be thought of as a violation of the stable unit treatment value assumption (SUTVA) in assessing the overall average impact of the FLSA on hours, the effect of which is captured in the third term of Equation (10).

To simplify the notation, I'll assume that such SUTVA violations may occur across workers within a firm in a single week, suppressing the time index t and focusing on a single firm. As in Section 4.4 let $\mathbf{h}_{-\mathbf{i}}$ denote the vector of actual (observed) hours for all workers aside from i within i's firm. These hours are chosen according to the kinked cost schedule introduced by the FLSA. Let $\mathbf{h}_{0i}(\cdot)$ denote the hours that the firm would choose for worker i if they had to pay i' straight-wage w_i for all of i's hours, as a function of the hours profile of the other workers in the firm (suppressing dependence on straight-wages in this section). Define $\mathbf{h}_{1i}(\cdot)$ analogously with $1.5w_i$. In this notation, the potential outcomes from Section 4 are $h_{0i} = \mathbf{h}_{0i}(\mathbf{h}_{-\mathbf{i}})$ and $h_{1i} = \mathbf{h}_{1i}(\mathbf{h}_{-\mathbf{i}})$. As in Section 4.4 let $(h_i^*, \mathbf{h}^*_{-i})$ denote the hours profile that would occur absent the FLSA, so that the average ex-post effect of the FLSA is $\mathbb{E}[h_i - h_i^*]$.

For concreteness, we may consider the model introduced in the beginning of Section 4

in which hours are chosen to maximize profits with a joint-production function $F(\mathbf{h})$. In this case we have that $(h_i, \mathbf{h}_{-i}) = \operatorname{argmax} \{ F(\mathbf{h}) - \sum_j B_{kj}(h_j) \}$, where the sum is across workers j in the firm and $B_{kj}(h) := w_j h + .5w_j \mathbb{1}(h > 40)(h - 40)$. Similarly $(h_i^*, \mathbf{h}_{-i}^*) = \operatorname{argmax} \{ F(\mathbf{h}) - \sum_j w_j h_j \}$ (where for the moment we ignore changes in w_j). Whether $\mathbf{h}_{0i}(\mathbf{h}_{-i})$ is smaller or larger than h_i^* (with a fixed set of employees) will depend upon whether i's hours are complements or substitutes in production with those of each of their colleagues, and with what strength. It is natural to expect that both cases occur. Consider for example a production function in which workers are divided into groups $\theta_1 \dots \theta_M$ corresponding to different occupations, and:

$$F(\mathbf{h}) = \prod_{m=1}^{M} \left(\left(\sum_{i \in \theta_m} a_i \cdot h_i^{\rho_m} \right)^{1/\rho_m} \right)^{\alpha_m}$$
 (C.6)

where a_i is an individual productivity parameter for worker i. The hours of workers within an occupation enter as a CES aggregate with substitution parameter ρ_m , which then combine in a Cobb-Douglas form across occupations with exponents α_m . The hours of two workers i and j belonging to different occupations are always complements in production, i.e. $\partial_{h_i} F(\mathbf{h})$ is increasing in h_j . When i and j belong to the same occupation θ_m , it can be shown that worker i and j's hours are substitutes—i.e. $\partial_{h_i} F(\mathbf{h})$ is decreasing in h_j —when $\alpha_m \leq \rho_m$.

Thus both substitution and complementarity in hours can plausibly coexist within a firm, and it is difficult to sign theoretically the contribution of interdependencies to θ . Given that occupations or tasks are not observed in the data, it is also difficult to obtain direct evidence with the aid of structural assumptions like Eq. (C.6). I therefore turn to an indirect empirical test of whether these effects are likely to play a significant role in θ .

Figure C.4 shows that in weeks when a worker receives a positive number of sick-pay hours, their individual hours worked for that week decline by about 8 hours on average. Yet I fail to find evidence of a corresponding change in the hours of others in the same firm. This suggests that short term variation in the hours of a worker's colleagues does not tend to translate into contemporaneous changes in their own (for example, if the firm were dividing a fixed number of hours across workers).

Table C.1 shows another piece of evidence: that my overall effect estimates are similar between small, medium, and large firms. If firms were to compensate for overtime hours reductions by "giving" some hours to similar workers who would otherwise be working less than 40, for instance, then we would expect this to play a larger role in firms where there are a large number of substitutable workers—causing a bias that increases with firm size. I cannot reject that my strategy estimates the same parameter value across the three

firm size categories, in my preferred specification of estimating p using variation in PTO.

		<i>p</i> =0	p from PTO		
	Bunching	Effect of the kink	Net Bunching	Effect of the kink	
Small firms	0.198	[-1.525, -1.455]	0.027	[-0.231, -0.171]	
	[0.189, 0.208]	[-1.676, -1.299]	[0.023, 0.031]	[-0.274, -0.139]	
Medium firms	0.103	[-1.123, -0.786]	0.030	[-0.337, -0.224]	
	[0.095, 0.110]	[-1.237, -0.710]	[0.025, 0.035]	[-0.407, -0.178]	
Large firms	0.050	[-0.768, -0.468]	0.024	[-0.371, -0.224]	
	[0.047, 0.054]	[-0.861, -0.414]	[0.021, 0.028]	[-0.444, -0.180]	

TABLE C.1: Estimates of the ex-post effect of the kink by firm size. "Small" firms have between 1 and 25 workers in my estimation sample, "Medium" have 26 to 50, and "Large" have more than 50. Note that the estimated net bunching caused by the FLSA is similar across firm sizes (right), despite the raw bunching observed in the data differing by firm size category.

FIGURE C.4: Event study coefficients β_j and 95% confidence intervals across an instance of a worker receiving pay for non-work hours (either sick pay, holiday pay, or paid time off–'PTO'). Equation is $y_{it} = \mu_t + \lambda_i + \sum_{j=-3}^{10} \beta_j D_{it,j} + u_{it}$, where $D_{it,j} = 1$ if worker i in week t has a positive number of a given type of non-work hours j weeks ago (after a period of at least three weeks in which they did not), λ_i are worker fixed effects, and μ_t are calendar week effects. Rows correspond to choices of the non-work pay type: either sick, holiday, PTO. Columns indicate choices of the outcome y_{it} . "Colleague hours worked" sums the hours of work in t across all workers other than t in t's firm. The timing of holiday and PTO hours appears to be correlated across workers, leading to a decrease in the working hours of t's colleagues in weeks in which t takes either holiday or PTO pay (center-right and bottom-right graphs). However I cannot reject that colleague work hours are unrelated to an instance of sick pay: before, during and after it occurs (top-right). Since t's hours of work reduce by about 8 hours on average during an instance of sick pay (top-center), this suggests that there is no contemporaneous reallocation of t's forgone work hours to their colleagues.

D A simple model of wages and "typical" hours

Each firm faces a labor supply curve N(z,h), indicating the labor force N it can maintain if it offers total compensation z to each of its workers, when they are each expected to work h hours per week. The firm chooses a pair (z^*,h^*) based on the cost-minimization

problem:

$$\min_{z,h,K,N} N \cdot (z + \psi) + rK \text{ s.t. } F(Ne(h),K) \ge Q \text{ and } N \le N(z,h)$$
 (D.7)

where the labor supply function is increasing in z while decreasing in h, e(h) represents the "effective labor" from a single worker working h hours, and ψ represents non-wage costs per worker. The quantity ψ can include for example recruitment effort and training costs, administrative overhead and benefits that do not depend on h. Concavity of e(h) captures declining productivity at longer hours, for example from fatigue or morale effects. The function F maps total effective labor Ne(h) and capital into level of output or revenue that is required to meet a target Q, and r is the cost of capital. For simplicity, workers within a firm are here identical and all covered by the FLSA.

To understand the properties of the solution to Equation (D.7), let us examine two illustrative special cases.

Special case 1: an exogenous competitive straight-time wage

Much of the literature on hours determination has taken the hourly wage as a fixed input to the choice of hours, and assumed that at that wage the firm can hire any number of workers, regardless of hours. This can be motivated as a special case of Equation (D.7) in which there is perfect competition on the straight-time wage, i.e. $N(z,h) = \bar{N} \mathbb{1}(w_s(z,h) \ge w)$ for some large number \bar{N} and wage w exogenous to the firm. Then Equation (D.7) reduces to:

$$\min_{N,h,K} N \cdot (hw + \mathbb{1}(h > 40)(w/2)(h - 40) + \psi) + rK \text{ s.t. } F(Ne(h), K) \ge Q$$
 (D.8)

By limiting the scope of labor supply effects in the firm's decision, Equation (D.8) is well-suited to illustrating the competing forces that shape hours choice on the production side: namely the fixed costs ψ and the concavity of e(h). Were ψ equal to zero with e(h) strictly concave globally, a firm solving Equation (D.8) would always find it cheaper to produce a given level of output with more workers working less hours each. On the other hand, were ψ positive and e weakly convex, it would always be cheapest to hire a single worker to work all of the firm's hours. In general, fixed costs and declining hours productivity introduce a tradeoff that leads to an interior solution for hours.

 $^{^{64}}$ In the fixed-wage special case, these two forces along with the wage are in fact sufficient to pin down hours, which do not depend on the production function F or the chosen output level Q. See e.g. Cahuc and Zylberberg (2004) for the case in which e(h) is iso-elastic.

Equation (D.8) introduces a kink into the firm's costs as a function of hours, much as short-run wage rigidity does in my dynamic analysis. However, the assumption that the firm can demand any number of hours at a set straight-time wage rate is harder to defend when thinking about firms long-run expectations, a point emphasized by Lewis (1969). Equilibrium considerations will also tend to run against the independence of hourly wages and hours - a mechanism explored in Supplemental Appendix 1.

Special case 2: iso-elastic functional forms

By placing some functional form restrictions on Equation (D.7), we can obtain a closed-form expression for (z^*, h^*) . In particular, when labor supply and e(h) are iso-elastic, production is separable between capital and labor and linear in the latter, and firms set the output target Q to maximize profits, Proposition 3 characterizes the firm's choice of earnings and hours:

Proposition 3. When i) $e(h) = e_0 h^{\eta}$ and $N(z,h) = N_0 z^{\beta_z} h^{\beta_h}$; ii) $F(L,K) = L + \phi(K)$ for some function ϕ ; and iii) Q is chosen to maximize profits, the (z^*,h^*) that solve Equation (D.7) are:

$$h^* = \left[\frac{\psi}{e_0} \cdot \frac{\beta}{\beta - \eta}\right]^{1/\eta}$$
 and $z^* = \psi \cdot \frac{\beta_z}{\beta_z + 1} \frac{\eta}{\beta - \eta}$

where $\beta := \frac{|\beta_h|}{\beta_z+1}$, provided that $\psi > 0$, $\eta \in (0,\beta)$, $\beta_h < 0$ and $\beta_z > 0$. Hours and compensation are both decreasing in $|\beta_h|$ and increasing in β_z .

The proposition shows that the hours chosen depend on labor supply via $\beta=\frac{|\beta_h|}{1+\beta_z}$, which gages how elastic labor supply is with respect to hours compared with earnings. The more sensitive labor supply is to a marginal increase in hours as compared with compensation, the higher β will be and lower the optimal number of hours. The proof of Proposition 3 also shows that unlike Special case 1 of perfect competition on the straight-time wage, when N(z,h) is differentiable the general model can support an interior solution for hours even without fixed costs $\psi=0$.

Note: Broadly speaking, the function N(z,h) might be viewed as an equilibrium object that reflects both worker preferences over income and leisure and the competitive environment for labor. Thus it is conceivable that equilibrium forces lead to a labor supply function like that of the fixed-wage model, in which the FLSA has an effect on the hours set at hiring. In Supplemental Appendix 1, I show that the prediction of the fixed-job model that the FLSA has litte to no effect on h^* or z^* is robust to embedding Equation

(D.7) into an extension of the Burdett and Mortensen (1998) model of equilibrium with on-the-job search.⁶⁵ In the context of the search model, the only effect of the overtime rule on the distribution of h^* is mediated through the minimum wage, which rules out some of the (z^*, h^*) pairs that would occur in the unregulated equilibrium. In a numerical calibration, this effect is quite small, suggesting that equilibrium effects play only a minor role in how the FLSA overtime rule impacts anticipated hours or straight-time wages.

E Additional empirical results

E.1 A test of the Trejo (1991) model of straight-time wage adjustment

Another way to assess the role of the wage rigidity reported in Table 3 is to test directly whether straight-time wages and hours are plausibly related *at the weekly level* according to Equation (1). We can do this using the wage and hours reported on each paycheck, and given the kink in Eq. (1) making only weak differentiability assumptions on unobservables for identification.

Suppose that the wages for some workers are actively adjusted to the hours they work according to Equation (1), in order to target some total earnings z_{it} . Denote the corresponding observational units it by a latent variable $A_{it} = 1$. Units with $A_{it} = 1$ may be workers with almost no variation in their schedules, for whom their wages were set according to Eq. (1) at hiring, or their wages may be dynamic and adjust to week-by-week variation in their hours. Let $A_{it} = 0$ denote units for whom the worker's wage is determined in some other way.

Let $q(h) = P(A_{it} = 1 | h_{it} = h)$ denote the proportion of these two groups at various points in the hours distribution. An extreme version of the fixed-job model of Trejo (1991) for exmaple, would have q(h) = 1 for all h.

By the law of iterated expectations and some algebra we have that:

$$\mathbb{E}\left[\ln w_{it}|h_{it} = h\right] = q(h)\left\{\mathbb{E}\left[z_{it}|h_{it} = h, A_{it} = 1\right] - \ln\left(h + 0.5(h - 40)\mathbb{1}(h \ge 40)\right)\right\} - (1 - q(h))\mathbb{E}\left[\ln w_{it}|h_{it} = h, A_{it} = 0\right]$$

The middle term above introduces a kink in the conditional expectation of log wages with respect to hours. If we assume that $\mathbb{E}\left[\ln z_{it}|h_{it}=h,A_{it}=1\right]$, $\mathbb{E}\left[\ln w_{it}|h_{it}=h,A_{it}=0\right]$ and q(h) are all continuously differentiable in h, then the magnitude of this kink identifies

 $^{^{65}}$ This remains true even in the perfectly competitive limit of the model, the basic reason being that workers choose to accept jobs on the basis of their known total earnings z^* , rather than the straight-time wage.

q(40), the proportion of active wage responders local to h=40:

$$\lim_{h\downarrow 40} \frac{d}{dh} \mathbb{E}\left[\ln w_{it} | h_{it} = h\right] - \lim_{h\uparrow 40} \frac{d}{dh} \mathbb{E}\left[\ln w_{it} | h_{it} = h\right] = -\frac{1}{2} \cdot \frac{q(40)}{40}$$

These continuous differentiability assumptions are reasonable, if wage setting according to Equation (1) is the only force introducing non-smoothness in the relationship between wages and hours. For instance, we assume that production technologies do not have any special features at 40 hours that would cause the distribution of target earnings levels z_{it} among the $A_{it} = 1$ units to itself have a kink around $h_{it} = 40$.

Figure E.5 reports the results of fitting separate local linear functions to the CEF of log wages on either side of h=40. We can reject the hypothesis that the fixed-job model applies to all employees at all times, near 40. However, the data appear to be consistent with a proportion q(40) of about 0.25 of all paychecks close to 40 hours reflecting an hours/wage relationship governed by Equation (1). This can be rationalized by straightwages being updated intermittently to reflect expected or anticipated hours, which vary in practice quite a bit between pay periods.

FIGURE E.5: A kinked-CEF test of the fixed-jobs model presented in Trejo (1991). Regression lines fit on each side with a uniform kernel within 25 hours of the 40.

E.2 Further characteristics of the sample

FIGURE E.6: Industry distribution of estimation sample versus the Current Population Survey sample described in Section 3.

FIGURE E.7: Geographical distribution of estimation sample versus the Current Population Survey sample described in Section 3.

Industry	Avg. OT hours	OT % hours	OT % pay	Industry share
Accommodation and Food Services	2.37	0.06	0.11	0.08
Administrative and Support	5.69	0.13	0.18	0.08
Agriculture, Forestry, Fishing and Hunting	3.76	0.11	0.15	0.00
Arts, Entertainment, and Recreation	3.87	0.10	0.13	0.00
Construction	3.09	0.07	0.10	0.20
Educational Services	1.83	0.05	0.07	0.00
Finance and Insurance	0.31	0.00	0.01	0.00
Health Care and Social Assistance	4.59	0.12	0.12	0.02
Information	1.67	0.04	0.06	0.00
Manufacturing	3.37	0.08	0.11	0.18
Mining	2.26	0.07	0.12	0.00
Other Services	2.61	0.06	0.09	0.02
Professional, Scientific, and Technical Services	2.91	0.07	0.10	0.06
Public Administration	2.36	0.05	0.08	0.00
Real Estate and Rental and Leasing	2.85	0.07	0.09	0.02
Retail Trade	2.83	0.07	0.10	0.08
Transportation and Warehousing	5.24	0.12	0.17	0.04
Utilities	3.80	0.08	0.11	0.00
Wholesale Trade	5.15	0.11	0.14	0.10
Total Sample	3.55	0.08	0.12	0.98

TABLE E.2: Overtime prevalence by industry in the sample, including average number of OT hours per weekly paycheck, % OT hours among hours worked, % pay for hours work going to OT, and industry share of total hours in sample.

	(1)	(2)	(3)	(4)	(5)
	Work hours=40	OT hours	Total work hours	Work hours=40	OT hours
Tenure	0.000400	0.0515	0.0796		
	(0.95)	(3.95)	(3.31)		
Age	0.000690	0.00266	0.0250		
	(3.82)	(0.74)	(3.25)		
Female	0.0140	-1.322	-1.943		
	(2.08)	(-9.07)	(-6.08)		
Minimum wage worker	0.00121	-1.687	-5.352		
	(0.29)	(-2.39)	(-4.08)		
Firm just hired				-0.00572	0.553
				(-2.95)	(5.78)
Date FE	Yes	Yes	Yes	Yes	Yes
Employer FE	Yes	Yes	Yes		
Worker FE				Yes	Yes
Observations	499619	499619	499619	628449	628449
R squared	0.229	0.264	0.260	0.387	0.515

t statistics in parentheses

TABLE E.3: Columns (1)-(3) regress hours-related outcome variables on worker characteristics, with fixed effects for the date and employer. Standard errors clustered by firm. Columns (4)-(5) show that bunching and overtime hours among incumbent workers are both responsive to new workers being hired within a firm, even controlling for worker and day fixed effects. "Firm just hired" indicates that at least one new worker appears in payroll at the firm this week, and the new workers are dropped from the regression. "Minimum wage worker" indicates that the worker's straight-time wage is at or below the maximum minimum wage in their state of residence for the quarter. Tenure and age are measured in years, and age is missing for some workers.

	(1)	(2)	(3)
	Total work hours	Total work hours	Total work hours
R squared	0.366	0.499	0.626
Date FE		Yes	
Worker FE		Yes	Yes
Employer x date FE	Yes		Yes
Observations	621011	628449	620854

t statistics in parentheses

TABLE E.4: Decomposing variation in total hours. Worker fixed effects and employer by day fixed effects explain about 63% of the variation in total hours.

E.3 Additional treatment effect estimates and figures

	<i>p</i> =0		p from PTO		
	Bunching	Buncher LATE	Net Bunching	Buncher LATE	
Accommodation and Food Services	0.036	[0.937, 0.988]	0.036	[0.937, 0.988]	
(N=69427)	[0.029, 0.044]	[0.734, 1.212]	[0.029, 0.044]	[0.734, 1.212]	
Administrative and Support	0.062	[1.625, 1.771]	0.009	[0.251, 0.255]	
(N=49829)	[0.051, 0.074]	[1.313, 2.136]	[0.005, 0.013]	[0.143, 0.365]	
Construction	0.139	[2.759, 3.326]	0.029	[0.612, 0.638]	
(N=136815)	[0.128, 0.149]	[2.341, 3.854]	[0.022, 0.035]	[0.442, 0.821]	
Health Care and Social Assistance	0.051	[1.412, 1.522]	0.005	[0.146, 0.147]	
(N=13951)	[0.034, 0.069]	[0.570, 2.450]	[0.000, 0.010]	[-0.052, 0.348]	
Manufacturing	0.137	[2.098, 2.521]	0.018	[0.307, 0.316]	
(N=112555)	[0.126, 0.148]	[1.894, 2.785]	[0.016, 0.021]	[0.255, 0.370]	
Other Services	0.160	[1.804, 2.240]	0.037	[0.452, 0.478]	
(N=19263)	[0.132, 0.188]	[1.243, 2.996]	[0.024, 0.049]	[0.256, 0.693]	
Professional, Scientific, Technical	0.136	[2.281, 2.737]	0.010	[0.178, 0.180]	
(N=47705)	[0.117, 0.155]	[1.862, 3.297]	[0.003, 0.016]	[0.060, 0.302]	
Real Estate and Rental and Leasing	0.187	[3.477, 4.478]	0.097	[1.920, 2.215]	
(N=13498)	[0.141, 0.234]	[2.432, 6.053]	[0.060, 0.135]	[1.065, 3.316]	
Retail Trade	0.129	[3.694, 4.399]	0.032	[0.969, 1.016]	
(N=56403)	[0.112, 0.146]	[2.447, 5.935]	[0.024, 0.040]	[0.550, 1.463]	
Transportation and Warehousing	0.091	[2.230, 2.530]	0.015	[0.400, 0.409]	
(N=25926)	[0.070, 0.111]	[1.754, 3.127]	[0.009, 0.022]	[0.216, 0.602]	
Wholesale Trade	0.126	[2.751, 3.299]	0.046	[1.068, 1.149]	
(N=66678)	[0.110, 0.141]	[2.321, 3.848]	[0.037, 0.055]	[0.765, 1.490]	
All Industries	0.116	[2.614, 3.054]	0.027	[0.640, 0.666]	
(N=630217)	[0.112, 0.121]	[2.483, 3.217]	[0.024, 0.029]	[0.571, 0.740]	

TABLE E.5: Estimates of the buncher LATE by industry, based on p=0 (left) or p estimated from paid time off (right). Estimates are reported only for industries having at least 10,000 observations. 95% bootstrap confidence intervals in gray, clustered by firm.

		<i>p</i> =0	p from PTO		
	Bunching	Effect of the kink	Net Bunching	Effect of the kink	
Accommodation and Food Services	0.036	[-0.368, -0.248]	0.036	[-0.368, -0.248]	
(N=69427)	[0.029, 0.044]	[-0.450, -0.192]	[0.029, 0.044]	[-0.450, -0.192]	
Administrative and Support	0.062	[-1.190, -0.681]	0.009	[-0.178, -0.101]	
(N=49829)	[0.051, 0.074]	[-1.424, -0.548]	[0.005, 0.013]	[-0.256, -0.057]	
Construction	0.139	[-1.550, -1.121]	0.029	[-0.330, -0.219]	
(N=136815)	[0.128, 0.149]	[-1.771, -0.944]	[0.022, 0.035]	[-0.422, -0.157]	
Health Care and Social Assistance	0.051	[-0.633, -0.320]	0.005	[-0.065, -0.030]	
(N=13951)	[0.034, 0.069]	[-1.020, -0.129]	[0.000, 0.010]	[-0.155, 0.012]	
Manufacturing	0.137	[-1.167, -0.850]	0.018	[-0.162, -0.110]	
(N=112555)	[0.126, 0.148]	[-1.282, -0.766]	[0.016, 0.021]	[-0.192, -0.090]	
Other Services	0.160	[-0.977, -0.811]	0.037	[-0.235, -0.176]	
(N=19263)	[0.132, 0.188]	[-1.300, -0.538]	[0.024, 0.049]	[-0.345, -0.095]	
Professional, Scientific, Technical	0.136	[-1.192, -0.959]	0.010	[-0.090, -0.063]	
(N=47705)	[0.117, 0.155]	[-1.411, -0.767]	[0.003, 0.016]	[-0.150, -0.021]	
Real Estate and Rental and Leasing	0.187	[-1.766, -1.466]	0.097	[-0.954, -0.725]	
(N=13498)	[0.141, 0.234]	[-2.303, -1.002]	[0.060, 0.135]	[-1.378, -0.392]	
Retail Trade	0.129	[-1.685, -1.342]	0.032	[-0.434, -0.308]	
(N=56403)	[0.112, 0.146]	[-2.274, -0.908]	[0.024, 0.040]	[-0.626, -0.175]	
Transportation and Warehousing	0.091	[-1.590, -0.998]	0.015	[-0.274, -0.166]	
(N=25926)	[0.070, 0.111]	[-1.935, -0.783]	[0.009, 0.022]	[-0.406, -0.086]	
Wholesale Trade	0.126	[-2.122, -1.297]	0.046	[-0.776, -0.476]	
(N=66678)	[0.110, 0.141]	[-2.474, -1.088]	[0.037, 0.055]	[-1.016, -0.333]	
All Industries	0.116	[-1.466, -1.026]	0.027	[-0.347, -0.227]	
(N=630217)	[0.112, 0.121]	[-1.542, -0.972]	[0.024, 0.029]	[-0.386, -0.202]	

TABLE E.6: Estimates of the hours effect of the FLSA by industry, based on p=0 (left) or p estimated from paid time off (right). Estimates are reported only for industries having at least 10,000 observations. 95% bootstrap confidence intervals in gray, clustered by firm. In the case of Accommodation and Food Services, $P(h_{it}=40|\eta_{it}>0)>\mathcal{B}$, so I take the PTO-based estimate to be p=0.

TABLE E.7: Hours distribution by gender, conditional on different than 40 for visibility (size of point mass at 40 can be read from Figures E.8 and E.9).

	p=0	<i>p</i> from non-changers	p from PTO
Net bunching:	0.090	0.044	0.011
	[0.083, 0.098]	[0.041, 0.048]	[0.009, 0.012]
Buncher LATE	[1.507, 1.709]	[0.763, 0.814]	[0.187, 0.190]
	[1.387, 1.855]	[0.706, 0.877]	[0.150, 0.227]
Buncher LATE as elasticity	[0.093, 0.105]	[0.047, 0.050]	[0.012, 0.012]
·	[0.086, 0.114]	[0.044, 0.054]	[0.009, 0.014]
Average effect of kink on hours	[-0.633, -0.489]	[-0.319, -0.231]	[-0.078, -0.054]
	[-0.688, -0.446]	[-0.343, -0.213]	[-0.094, -0.043]
Num observations	147953	147953	147953
Num clusters	352	352	352

TABLE E.8: Hours distribution and results of the bunching estimator among women.

	p=0	p from non-changers	p from PTO
Net bunching:	0.124 0.060		0.031
	[0.119, 0.129]	[0.058, 0.063]	[0.028, 0.034]
Buncher LATE	[3.074, 3.635]	[1.560, 1.701]	[0.828, 0.868]
	[2.777, 3.991]	[1.407, 1.869]	[0.717, 0.986]
Buncher LATE as elasticity	[0.190, 0.224]	[0.096, 0.105]	[0.051, 0.053]
	[0.171, 0.246]	[0.087, 0.115]	[0.044, 0.061]
	[4067 4074]	F 0 004 0 0041	F 0 400 0 0441
Average effect of kink on hours	[-1.867, -1.271]	[-0.921, -0.604]	[-0.482, -0.311]
	[-2.060, -1.149]	[-1.015, -0.545]	[-0.549, -0.269]
			
Num observations	482264	482264	482264
Num clusters	524	524	524

TABLE E.9: Hours distribution and results of the bunching estimator among men.

FIGURE E.8: Bounds for the bunching that would exist at standard hours k if it were changed from 40 (left panel), as well as for the impact on average hours (right panel). Bounds of the effect on hours are clipped to the interval [-0.5, 0.5] for visibility. Pointwise bootstrapped 95% confidence intervals, cluster bootstrapped by firm, are shaded gray.

FIGURE E.9: Estimates of the bunching and average effect on hours were k changed to any value from 0 to 80, assuming p=0. Bounds are not informative far from 40.

	p=0	p from non-changers	p from PTO
Net bunching:	0.114	0.055	0.027
	[0.109, 0.118]	[0.054, 0.057]	[0.024, 0.029]
Treatment effect			
Linear interpolation	2.621	1.276	0.614
	[2.418, 2.825]	[1.178, 1.374]	[0.541, 0.686]
Monotonicity bounds	[2.320, 3.014]	[1.129, 1.467]	[0.543, 0.705]
	[2.140, 3.201]	[1.034, 1.550]	[0.485, 0.775]
BLC buncher LATE	[2.463, 2.706]	[1.247, 1.309]	[0.612, 0.627]
	[2.311, 2.876]	[1.171, 1.389]	[0.547, 0.695]
Num observations	643720	643720	643720
Num clusters	567	567	567

TABLE E.10: Treatment effects in levels with comparison to alternative shape constraints.

	p=0	p from non-changers	p from PTO
Net bunching:	0.114	0.055	0.027
	[0.109, 0.118]	[0.054, 0.057]	[0.024, 0.029]
Treatment effect			
			
Linear interpolation	0.162	0.079	0.038
	[0.150, 0.175]	[0.073, 0.085]	[0.033, 0.042]
Monotonicity bounds	[0.143, 0.186]	[0.070, 0.090]	[0.033, 0.043]
	[0.132, 0.197]	[0.064, 0.096]	[0.030, 0.048]
BLC buncher LATE	[0.152, 0.167]	[0.077, 0.081]	[0.038, 0.039]
	[0.142, 0.177]	[0.072, 0.086]	[0.034, 0.043]
<u> </u>			
Num observations	643720	643720	643720
Num clusters	567	567	567

TABLE E.11: Treatment effects expressed as elasticities, after applying each shape constraint to the distribution of log hours rather than hours.

	p=0	p from non-changers	p from PTO
Buncher LATE as elasticity	[0.161, 0.188]	[0.082, 0.088]	[0.039, 0.041]
	[0.153, 0.198]	[0.077, 0.093]	[0.035, 0.046]
Average effect of FLSA on hours	[-1.466, -1.329]	[-0.727, -0.629]	[-0.347, -0.294]
	[-1.541, -1.260]	[-0.769, -0.593]	[-0.385, -0.262]
Avg. effect among directly affected	[-2.620, -2.375]	[-1.453, -1.258]	[-0.738, -0.624]
,	[-2.743, -2.259]	[-1.532, -1.189]	[-0.814, -0.560]
Double-time, average effect on hours	[-2.604, -0.950]	[-1.239, -0.492]	[-0.580, -0.241]
G	[-2.716, -0.904]	[-1.293, -0.464]	[-0.639, -0.215]

TABLE E.12: Estimates of policy effects (replicating Table 3) ignoring the potential effects of changes to straight-time wages.

FIGURE E.10: Hours distribution for an industry with a low treatment effect (left), and a high one (right). Both industries exhibit a comparable amount of raw bunching (14% and 19% respectively, see Table E.6). In Professional, Scientific, and Technical Services, much more of the observable bunching is estimated to be counterfactual bunching, using the PTO-based method. Furthermore, the density of hours is higher just to the right of 40, meaning that the remaining bunching can be explained by a very small responsiveness of hours to the FLSA.

FIGURE E.11: Validating the assumption of bi-log-concavity away from the kink. The left panel plots estimates of $\ln F_0(h)$ and $\ln (1-F_0(h))$ for h<40, based on the empirical CDF of observed hours worked. Similarly the right panel plots estimates of $\ln F_1(h)$ and $\ln (1-F_1(h))$ for h>k, where I've conditioned the sample on $Y_i<80$. Bi-log-concavity requires that the four functions plotted be concave globally.

FIGURE E.12: Histogram of hours worked pooling all paychecks in sample, with one hour bins. Blue mass in the stacks indicate that the paycheck included no overtime pay, while red indicates that the paycheck does include overtime pay.

FIGURE E.13: Estimates of the buncher LATE Δ_k^* as a function of assumed counterfactual bunching p at 40, pooling across industries. Confidence intervals depicted here are 95% intervals for each of the bounds separately.

FIGURE E.14: Estimates of the buncher LATE Δ_k^* as a function of p, by each of the largest major industries.

E.4 Estimates from the iso-elastic model

This section estimates bounds on ϵ from the iso-elastic model under the assumption that the distribution of $h_{0it} = \eta_{it}^{-\epsilon}$ is bi-log-concave.

If h_{0it} is BLC, bounds on ϵ can be deduced from the fact that

$$F_0(40 \cdot 1.5^{-\epsilon}) = F_0(40) + \mathcal{B} = P(h_{it} \le 40)$$

where $F_0(h) := P(h_{0it} \le h)$ and the RHS of the above is observable in the data. $40 \cdot 1.5^{-\epsilon}$ is the location of this "marginal buncher" in the h_0 distribution. In particular,

$$\epsilon = -\ln(Q_0(F_0(40) + \mathcal{B})/40)/(\ln(1.5))$$

where $Q_0 := F_0^{-1}$ is guaranteed to exist by BLC (Dümbgen et al., 2017). In particular:

$$\epsilon \in \left[\frac{\ln\left(1 - \frac{1 - F_0(40)}{40f(40)}\ln\left(1 - \frac{\mathcal{B}}{1 - F_0(40)}\right)\right)}{-\ln(1.5)}, \frac{\ln\left(1 + \frac{F_0(40)}{40f(40)}\ln\left(1 + \frac{\mathcal{B}}{F_0(40)}\right)\right)}{-\ln(1.5)} \right]$$

where $F_0(k) = \lim_{h \uparrow 40} F(h)$ and $f_0(k) = \lim_{h \uparrow 40} f(h)$ are identified from the data. The bounds on ϵ estimated in this way are $\epsilon \in [-.210, -.167]$ in the full sample.

Since BLC is preserved when the random variable is multiplied by a scalar, BLC of h_{0it} implies BLC of $h_{1it} := \eta_{it}^{-\epsilon} \cdot 1.5^{\epsilon}$ as well. This implication can be checked in the data to the

right of 40, since $\eta_{it}^{-\epsilon} \cdot 1.5^{\epsilon}$ is observed there. BLC of h_{1it} implies a second set of bounds on ϵ , because:

$$F_1(40 \cdot 1.5^{\epsilon}) = F_1(40) - \mathcal{B} = P(h_{it} < 40)$$

and the RHS is again observable in the data, where $F_1(h) := P(h_{1it} \le h)$. Here $40 \cdot 1.5^{\epsilon}$ is the location of a second "marginal buncher" – for which $h_0 = 40$ – in the h_1 distribution. Now we have:

$$\epsilon \in \left[\frac{\ln\left(1 + \frac{F_1(40)}{40f_1(40)}\ln\left(1 - \frac{\mathcal{B}}{F_1(40)}\right)\right)}{\ln(1.5)}, \frac{\ln\left(1 - \frac{1 - F_1(40)}{40f_1(40)}\ln\left(1 + \frac{\mathcal{B}}{1 - F_1(40)}\right)\right)}{\ln(1.5)} \right]$$

where $F_1(k) = F(k)$ and $f_1(k) := \lim_{h\downarrow 40} f(h)$ are identified from the data. Empirically, these bounds are estimated as $\epsilon \in [-.179, -.141]$. Taking the intersection of these bounds with the range $\epsilon \in [-.210, -.168]$ estimated previously, we have that $\epsilon \in [-.179, -.168]$. The identified set is reduced from a length of .043 to .012, a factor of nearly 4.

Note that since a linear density satisfies BLC, the identification assumption of Saez, 2010, that the density of h_0 is linear, picks a point within the identified set under BLC. Table E.10 verifies that this is born out in estimation (with results are expressed there as level effects rather than an elasticity).

Table E.13 reports estimates broken down by industry, as well as estimates that allow counterfactual bunching at the kink to be estimated from PTO (see Section 5).

⁶⁶Note that this interval differs slightly from the identified set of the buncher LATE as elasticity for p=0 in Table 3. The latter quantity averages the effect in levels over bunchers and rescales: $\frac{1}{40\ln(1.5)}\mathbb{E}[h_{0it}(1-1.5^{\epsilon})|h_{it}=40]$, but the two are approximately equal under $1.5^{\epsilon}\approx 1+.5\epsilon$ and $\ln(1.5)\approx .5$.

	p=0		p from PTO	
	Bunching	Elasticity	Net Bunching	Elasticity
Accommodation and Food Services	0.036	[-0.059, -0.060]	0.036	[-0.059, -0.060]
(N=69427)	[0.029, 0.044]	[-0.073, -0.073]	[0.029, 0.044]	[-0.073, -0.073]
Administrative and Support	0.062	[-0.102, -0.106]	0.009	[-0.014, -0.017]
(N=49829)	[0.051, 0.074]	[-0.125, -0.125]	[0.005, 0.013]	[-0.020, -0.020]
Construction	0.139	[-0.190, -0.180]	0.029	[-0.034, -0.043]
(N=136815)	[0.128, 0.149]	[-0.218, -0.218]	[0.022, 0.035]	[-0.043, -0.043]
Health Care and Social Assistance	0.051	[-0.085, -0.095]	0.005	[-0.008, -0.010]
(N=13951)	[0.034, 0.069]	[-0.135, -0.135]	[0.000, 0.010]	[-0.018, -0.018]
Manufacturing	0.137	[-0.158, -0.127]	0.018	[-0.018, -0.020]
(N=112555)	[0.126, 0.148]	[-0.177, -0.177]	[0.016, 0.021]	[-0.022, -0.022]
Other Services	0.160	[-0.120, -0.123]	0.037	[-0.024, -0.033]
(N=19263)	[0.132, 0.188]	[-0.167, -0.167]	[0.024, 0.049]	[-0.034, -0.034]
Professional, Scientific, Technical	0.136	[-0.140, -0.160]	0.010	[-0.009, -0.013]
(N=47705)	[0.117, 0.155]	[-0.175, -0.175]	[0.003, 0.016]	[-0.014, -0.014]
Real Estate and Rental and Leasing	0.187	[-0.250, -0.230]	0.097	[-0.115, -0.133]
(N=13498)	[0.141, 0.234]	[-0.355, -0.355]	[0.060, 0.135]	[-0.177, -0.177]
Retail Trade	0.129	[-0.256, -0.238]	0.032	[-0.055, -0.066]
(N=56403)	[0.112, 0.146]	[-0.359, -0.359]	[0.024, 0.040]	[-0.084, -0.084]
Transportation and Warehousing	0.091	[-0.124, -0.161]	0.015	[-0.019, -0.031]
(N=25926)	[0.070, 0.111]	[-0.167, -0.167]	[0.009, 0.022]	[-0.029, -0.029]
Wholesale Trade	0.126	[-0.212, -0.163]	0.046	[-0.067, -0.068]
(N=66678)	[0.110, 0.141]	[-0.248, -0.248]	[0.037, 0.055]	[-0.088, -0.088]
All Industries	0.116	[-0.179, -0.168]	0.027	[-0.037, -0.043]
(N=630217)	[0.112, 0.121]	[-0.190, -0.190]	[0.024, 0.029]	[-0.041, -0.041]

TABLE E.13: Estimates of ϵ in the iso-elastic model based on assuming $h_{0it} = \eta_{it}^{-\epsilon}$ is bi-log-concave, by industry. 95% bootstrap confidence intervals in gray brackets, clustered by firm.

FIGURE E.15: Distribution of the largest integer $m = 1 \dots 10$ that maximizes the proportion of worker i's paychecks for which hours are divisible by m. This can be thought of as the granularity of hours reporting for worker i.

FIGURE E.16: Distribution of changes in total hours between subsequent pay periods (truncated at -20 and 20).

E.5 Results of the employment effect calculation

The percentage change in employment is assumed to decompose as:

$$\Delta \ln E|_{EH} - \eta \cdot \Delta \ln LC \cdot \frac{\eta}{\alpha - \eta} \tag{E.9}$$

where η is constant-output demand elasticity for labor, α is a labor supply elasticity. Following Hamermesh (1996) I use $\Delta \ln LC = 0.7\%$ based on Ehrenberg and Schumann (1982), calibrated assuming that 80% of labor costs come from wages with overtime representing 2% of total hours. Taking a preferred estimate of the average effect of the FLSA as reported in Table 3 to be about 1/3 of an hour, I use a value of $\Delta \ln E|_{EH} = \frac{1/3}{40} \approx 0.9\%$.

TABLE E.14: Back-of-the-envelope employment effects based on the average reduction in hours estimated via the bunching design and Equation (E.9), as a function of the demand elasticity for labor (rather than capital) η , and labor supply elasticity α . The bold entry reflects "best-guess" values of η and α .

"Best-guess" values for the other parameters used by Hamermesh, 1996 are $\eta=-0.3$ and $\alpha=0.1$, based on a review of empirical estimates. This yields 0.17 percentage points for the substitution term $\eta \cdot \Delta \ln LC \cdot \frac{\eta}{\alpha-\eta}$, suggesting that the effect of the FLSA is attenuated from roughly 0.87 percentage points to about a 0.70 percentage point net increase in employment—700,000 jobs assuming 100 million FLSA eligible workers.. Generating a negative overall employment response by assuming higher substitution to capital requires $\eta=-1.25$, well outside of empirical estimates.

F Main Proofs

F.1 Proof of Lemma 1

For any convex budget function $B(\mathbf{x})$, $(z_{Bi}, \mathbf{x}_{Bi}) = \operatorname{argmax}_{z,\mathbf{x}} \{u_i(z,\mathbf{x}) \text{ s.t. } z \geq B(\mathbf{x})\}$ exists and is unique since it maximizes the strictly quasi-concave function $u_i(z,\mathbf{x})$ over the convex domain $\{(z,\mathbf{x}): z \geq B(\mathbf{x})\}$. Furthermore, by monotonicity of $u(z,\mathbf{x})$ in z we may substitute in the constraint $z = B(\mathbf{x})$ and write

$$\mathbf{x}_{Bi} = \operatorname{argmax}_{\mathbf{x}} u_i(B(\mathbf{x}), \mathbf{x})$$

Consider any $\mathbf{x} \neq \mathbf{x}_{Bi}$, and let $\tilde{\mathbf{x}} = \theta \mathbf{x} + (1 - \theta) \mathbf{x}^*$ where $\mathbf{x}^* = \mathbf{x}_{Bi}$ and $\theta \in (0, 1)$. Since $B(\mathbf{x})$ is convex in \mathbf{x} and $u_i(z, \mathbf{x})$ is weakly decreasing in z:

$$u_i(B(\tilde{\mathbf{x}}), \tilde{\mathbf{x}}) \ge u_i(\theta B(\mathbf{x}) + (1 - \theta)B(\mathbf{x}^*), \tilde{\mathbf{x}}) > \min\{u_i(B(\mathbf{x}), \mathbf{x}), u_i(B(\mathbf{x}^*), \mathbf{x}^*)\} = u_i(B(\mathbf{x}), \mathbf{x})$$
(F.10)

where I have used strict quasi-concavity of $u_i(z, \mathbf{x})$ in the second step, and that \mathbf{x}^* is a maximizer in the third. This result implies that for any $\mathbf{x} \neq \mathbf{x}^*$, if one draws a line between \mathbf{x} and \mathbf{x}^* , the function $u_i(B(\mathbf{x}), \mathbf{x})$ is strictly increasing as one moves towards \mathbf{x}^* . When \mathbf{x} is a scalar, this argument is used by Blomquist et al. (2015) (see Lemma A2 therein) to show

that $u_i(B(\mathbf{x}), \mathbf{x})$ is strictly increasing to the left of \mathbf{x}^* , and strictly decreasing to the right of \mathbf{x}^* . Note that for any (binding) linear budget constraint $B(\mathbf{x})$, the result holds without monotonicity of $u_i(z, \mathbf{x})$ in z. This is useful for Theorem 2* in which some workers choose their hours.

Let $\mathcal{X}_{0i} = \{\mathbf{x} : y_i(\mathbf{x}) \leq k\}$ and $\mathcal{X}_{1i} = \{\mathbf{x} : y_i(\mathbf{x}) \geq k\}$. For any function B, let $u_{Bi}(\mathbf{x}) = u_i(B(\mathbf{x}), \mathbf{x})$, and note that

$$u_{B_k i}(\mathbf{x}) = \begin{cases} u_{B_0 i}(\mathbf{x}) & \text{if } \mathbf{x} \in \mathcal{X}_{0i} \\ u_{B_1 i}(\mathbf{x}) & \text{if } \mathbf{x} \in \mathcal{X}_{1i} \end{cases}$$

Let \mathbf{x}_{ki} be the unique maximizer of $u_{B_ki}(\mathbf{x})$, where $Y_i = y_i(\mathbf{x}_{ki})$. Suppose that $Y_i < k$. By continuity of $y_i(\mathbf{x})$, \mathcal{X}_{0i} is a closed set and \mathbf{x}_{ki} belongs to the interior of \mathcal{X}_{0i} . Suppose furthermore that $Y_{0i} \neq Y_i$, with \mathbf{x}_{0i} the maximizer of $u_{B_0i}(\mathbf{x})$. If this were the case, then there would exist a point $\tilde{\mathbf{x}} \in \mathcal{X}_{0i}$ along the line from \mathbf{x}_{0i} to \mathbf{x}_{ki} . By Eq. (F.10) with $B = B_k$, we must have $u_{B_ki}(\tilde{\mathbf{x}}) > u_{B_ki}(\mathbf{x}_{0i})$. Since $u_{B_0i}(\mathbf{x}) = u_{B_ki}(\mathbf{x})$ in \mathcal{X}_{0i} this means that $u_{B_0i}(\tilde{\mathbf{x}}) > u_{B_0i}(\mathbf{x}_{0i})$, contradicting the premise that \mathbf{x}_{0i} maximizes $u_{B_0i}(\mathbf{x})$. Figure F.17 depicts the logic visually. Thus, $Y_i < k$ implies $Y_i = Y_{0i}$. We can similarly show that $Y_i > k$ implies $Y_i = Y_{1i}$. Taking the contrapositive of each of these, we have that $Y_{1i} \leq k \leq Y_{0i}$ implies that $Y_i = k$.

It is easily demonstrated under WARP alone (see the proof of Theorem 1 below) that $Y_{0i} \le k$ implies that $Y_i = Y_{0i}$ and that $Y_{1i} \ge k$ implies that $Y_i = Y_{1i}$. Note that together these imply that $Y_{0i} < k \le Y_{1i}$ and $Y_{0i} \le k < Y_{1i}$ are both impossible (since we would then have both that $Y_i < k$ and $Y_i \ge k$ or that both that $Y_i \le k$ and $Y_i > k$). Thus, we can summarize the relationship between observable Y_i and potential outcomes in the remaining three cases as:

$$Y_{i} = \begin{cases} Y_{0i} & \text{if } Y_{0i} < k \\ k & \text{if } Y_{1i} \le k \le Y_{0i} \\ Y_{1i} & \text{if } Y_{1i} > k \end{cases}$$

F.2 Proof of Theorem 1

We first prove the statement in b). If $Y_{0i} \leq k$, then by CHOICE \mathbf{x}_{B_0} is in \mathcal{X}_0 , where \mathcal{X}_0 is defined in the proof of Lemma 1. Since $B_k(\mathbf{x}) = B_0(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}_0$, it follows that $z_{B_0i} \geq B_k(\mathbf{x}_{B_0i})$, i.e. Y_{0i} is feasible under B_k . Note that $B_{ki}(\mathbf{x}) \geq B_{0i}(\mathbf{x})$ for all \mathbf{x} . By WARP then $(z_{B_ki}, \mathbf{x}_{B_ki}) = (z_{B_0i}, \mathbf{x}_{B_0i})$. Thus $Y_i = y_i(\mathbf{x}_{B_k}) = y_i(\mathbf{x}_{B_0}) = Y_{0i}$. So $Y_{0i} \leq k \implies Y_i = Y_{0i}$.

FIGURE F.17: Depiction of the step establishing $(Y < k) \implies (Y = Y_0)$ in the proof of Lemma 1. In this example $z = (x_1, x_2)$ and $y(\mathbf{x}) = x_1 + x_2$. We suppress indices i for clarity. Proof is by contradiction. If $Y_0 \neq Y$, then $\mathbf{x}_k^* \neq \mathbf{x}_0^*$, where \mathbf{x}_k^* and \mathbf{x}_0^* are the unique maximizers of $u_{B_k}(\mathbf{x})$ and $u_{B_0}(\mathbf{x})$, respectively. By Equation F.10, we have that the function $u_{B_0}(\mathbf{x})$, depicted heuristically as a solid black curve, is strictly increasing as one moves along the dotted line from \mathbf{x}_k^* towards \mathbf{x}_0^* . Similarly, the function $u_{B_0}(\mathbf{x})$, depicted as a solid blue curve, is strictly increasing as one moves in the opposite direction along the same line, from \mathbf{x}_0^* towards z_k^* . By the assumption that Y < k, then using continuity of $y(\mathbf{x})$ it must be the case that \mathbf{x}_k^* lies in the interior of \mathcal{X}_0 , the set of \mathbf{x} 's that make $y(\mathbf{x}) \leq k$. This means that there is some interval of the dotted line that is within \mathcal{X}_0 (regardless of whether z_0^* is also within \mathcal{X}_0 , or it is not, as depicted). On this interval, the functions B_0 and B_k are equal, and thus so must be the functions u_{B_k} and u_{B_0} . Since the same function cannot be both strictly increasing and strictly decreasing, we have obtained a contradiction.

As an implication we have that $Y_{0i} < k \implies Y_i < k$.

By the same logic we can show that $Y_{1i} \ge k \implies Y_i = Y_{1i}$ and thusly that $Y_{1i} > k \implies Y_i > k$. Taking the contrapositives, we see that $Y_i = k \iff Y_i \le k \& Y_i \ge k$ implies $Y_{1i} \le k$ and $Y_{0i} \ge k$. Thus $Y_i = k$ implies $Y_{1i} \le k \le Y_{0i}$ and hence $\mathcal{B} \le P(Y_{1i} \le k \le Y_{0i})$.

This holds under CONVEX or WARP since CONVEX implies WARP. However under CONVEX we also have from Lemma 1 that $Y_{1i} \leq k \leq Y_{0i}$ implies $Y_i = k$, and thus $\mathcal{B} \geq P(Y_{1i} \leq k \leq Y_{0i})$. Together we have that both $\mathcal{B} \leq P(Y_{1i} \leq k \leq Y_{0i})$ and $\mathcal{B} \geq P(Y_{1i} \leq k \leq Y_{0i})$ and hence $\mathcal{B} = P(Y_{1i} \leq k \leq Y_{0i})$ under CONVEX.

F.3 Proof of the Corollary to Theorem 1

In the proof of Theorem 1 I showed that under WARP and CHOICE, $Y_{0i} \leq k \implies Y_i = Y_{0i}$. Thus, for any $\delta > 0$ and y < k: $Y_{0i} \in [y - \delta, y]$ implies that $Y_i \in [y - \delta, y]$ and hence $P(Y_{0i} \in [y - \delta, y]) - P(Y_i \in [y - \delta, y])$ is negative. This implies that $f_0(y) - f(y) = \lim_{\delta \downarrow 0} \frac{P(Y_{0i} \in [y - \delta, y]) - P(Y_i \in [y - \delta, y])}{\delta} \leq 0$, i.e. that $f(y) \geq f_0(y)$. An analogous argument holds for Y_1 , where we consider the event $Y_{1i} \in [y, y + \delta]$ any y > k. Under CONVEX instead of WARP, the inequalities are all equalities, by Lemma 1.

F.4 Proof of Theorem 1

By Theorem 1 of Dümbgen et al. (2017): for $d \in \{0, 1\}$ and any t, bi-log concavity implies that:

$$1 - (1 - F_{d|K^*=0}(k))e^{-\frac{f_{d|K^*=0}(k)}{1 - F_{d|K^*=0}(k)}t} \le F_{d|K^*=0}(k+t) \le F_{d|K^*=0}(k)e^{\frac{f_{d|K^*=0}(k)}{F_{d|K^*=0}(k)}t}$$

Defining $u = F_{0|K^*=0}(k+t)$, we can use the substitution $t = Q_{0|K^*=0}(u) - k$ to translate the above into bounds on the conditional quantile function of Y_{0i} , evaluated at u:

$$\frac{F_{0|K^*=0}(k)}{f_{0|K^*=0}(k)} \cdot \ln\left(\frac{u}{F_{0|K^*=0}(k)}\right) \le Q_{0|K^*=0}(u) - k \le -\frac{1 - F_{0|K^*=0}(k)}{f_{0|K^*=0}(k)} \cdot \ln\left(\frac{1 - u}{1 - F_{0|K^*=0}(k)}\right)$$

And similarly for Y_1 , letting $v = F_{1|K^*=0}(k-t)$:

$$\frac{1 - F_{1|K^*=0}(k)}{f_{1|K^*=0}(k)} \cdot \ln\left(\frac{1 - v}{1 - F_{1|K^*=0}(k)}\right) \le k - Q_{1|K^*=0}(v) \le -\frac{F_{1|K^*=0}(k)}{f_{1|K^*=0}(k)} \cdot \ln\left(\frac{v}{F_{1|K^*=0}(k)}\right)$$

Note that:

$$\begin{split} E[Y_{0i} - Y_{1i}|Y_i &= k, K_i^* = 0] &= \frac{1}{\mathcal{B}^*} \int_{F_{0|K^*=0}(k)}^{F_{0|K^*=0}(k) + \mathcal{B}^*} \{Q_{0|K^*=0}(u) - Q_{0|K^*=0}(u)\} du \\ &= \frac{1}{\mathcal{B}^*} \int_{F_{0|K^*=0}(k)}^{F_{0|K^*=0}(k) + \mathcal{B}^*} \{Q_{0|K^*=0}(u) - k\} du + \frac{1}{\mathcal{B}^*} \int_{F_{1|K^*=0}(k) - \mathcal{B}^*}^{F_{1|K^*=0}(k)} \{k - Q_{1|K^*=0}(v)\} dv \end{split}$$

where $\mathcal{B}^* := P(Y_i = k | K^* = 0)$. A lower bound for $E[Y_{0i} - Y_{1i} | Y_i = k, K_i^* = 0]$ is thus:

$$\frac{F_{0|K^*=0}(k)}{f_{0|K^*=0}(k)(\mathcal{B}^*)} \int_{F_{0|K^*=0}(k)}^{F_{0|K^*=0}(k)+\mathcal{B}^*} \ln\left(\frac{u}{F_{0|K^*=0}(k)}\right) du + \frac{1-F_{1|K^*=0}(k)}{f_{1|K^*=0}(k)(\mathcal{B}^*)} \int_{F_{1|K^*=0}(k)-(\mathcal{B}^*)}^{F_{1|K^*=0}(k)} \ln\left(\frac{1-v}{1-F_{1|K^*=0}(k)}\right) dv \\
= g(F_{0|K^*=0}(k), f_{0|K^*=0}(k), \mathcal{B}^*) + h(F_{1|K^*=0}(k), f_{1|K^*=0}(k), \mathcal{B}^*)$$

where

$$g(a,b,x) := \frac{a}{bx} \int_a^{a+x} \ln\left(\frac{u}{a}\right) du = \frac{a^2}{bx} \int_1^{1+\frac{x}{a}} \ln\left(u\right) du$$
$$= \frac{a^2}{bx} \left\{ u \ln(u) - u \right\} \Big|_1^{1+\frac{x}{a}}$$
$$= \frac{a^2}{bx} \left\{ \left(1 + \frac{x}{a}\right) \ln\left(1 + \frac{x}{a}\right) - \frac{x}{a} \right\}$$
$$= \frac{a}{bx} \left(a + x\right) \ln\left(1 + \frac{x}{a}\right) - \frac{a}{b}$$

and

$$h(a,b,x) := \frac{1-a}{bx} \int_{a-x}^{a} \ln\left(\frac{1-v}{1-a}\right) dv = \frac{(1-a)^2}{bx} \int_{1}^{1+\frac{x}{1-a}} \ln\left(u\right) du = g(1-a,b,x)$$

Similarly, an upper bound is:

$$-\frac{1 - F_{0|K^*=0}(k)}{f_{0|K^*=0}(k)(\mathcal{B}^*)} \int_{F_{0|K^*=0}(k)}^{F_{0|K^*=0}(k)+\mathcal{B}^*} \ln\left(\frac{1 - u}{1 - F_{0|K^*=0}(k)}\right) du$$

$$-\frac{F_{1|K^*=0}(k)}{f_{1|K^*=0}(k)(\mathcal{B}^*)} \int_{F_{1|K^*=0}(k)-(\mathcal{B}^*)}^{F_{1|K^*=0}(k)} \ln\left(\frac{v}{F_{1|K^*=0}(k)}\right) dv$$

$$= g'(F_{0|K^*=0}(k), f_{0|K^*=0}(k), \mathcal{B}^*) + h'(F_{1|K^*=0}(k), f_{1|K^*=0}(k), \mathcal{B}^*)$$

where

$$g'(a,b,x) := -\frac{1-a}{bx} \int_{a}^{a+x} \ln\left(\frac{1-u}{1-a}\right) du = -\frac{(1-a)^2}{bx} \int_{1-\frac{x}{1-a}}^{1} \ln\left(u\right) du$$

$$= \frac{(1-a)^2}{bx} \left\{ u - u \ln(u) \right\} \Big|_{1-\frac{x}{1-a}}^{1}$$

$$= \frac{1-a}{b} + \frac{1-a}{bx} \left(1 - a - x \right) \ln\left(1 - \frac{x}{1-a} \right)$$

$$= -g(1-a,b,-x)$$

and

$$h'(a,b,x) := -\frac{a}{bx} \int_{a-x}^{a} \ln\left(\frac{v}{a}\right) dv = -\frac{a^2}{bx} \int_{1-\frac{x}{a}}^{1} \ln\left(u\right) du = g'(1-a,b,x) = -g(a,b,-x)$$

Given p, we relate the $K^* = 0$ conditional quantities to their unconditional analogues:

$$F_{0|K^*=0}(k) = \frac{F_0(k) - p}{1 - p} \quad \text{and} \quad F_{1|K^*=0}(k) = \frac{F_1(k) - p}{1 - p}$$

$$f_{0|K^*=0}(k) = \frac{f_0(k)}{1 - p} \quad \text{and} \quad f_{1|K^*=0}(k) = \frac{f_1(k)}{1 - p}$$

$$\mathcal{B}^* := P(Y_i = k | K_i^* = 0) = \frac{\mathcal{B} - p}{1 - p}$$

which in turn are related to observables as:

$$F_0(k) = \lim_{h \uparrow k} F(h) + p,$$
 $F_1(k) = F(k),$ $f_0(k) = \lim_{h \uparrow k} f(h),$ and $f_1(k) = \lim_{h \downarrow k} f(h)$

where $F(h) = P(h_{it} \le h)$ is the CDF of the data, $f(h) = \frac{d}{dh}P(h_{it} \le h)$ for $h \ne k$. Then $F_0(k) = \lim_{h \uparrow k} F(h) + p$, $F_1(k) = F(k)$, $f_0(k) = \lim_{h \uparrow k} f(h)$ and $f_1(k) = \lim_{h \downarrow k} f(h)$. As shown by Dümbgen et al. (2017), BLC implies the existence of a continuous density function, which assures that the required density limits exist.

To obtain the final result, note that the function g(a,b,x) is homogeneous of degree zero. Thus $\Delta_k^* \in [\Delta_k^L, \Delta_k^U:]$ were

$$\Delta_k^L := g(F_-(k), f_-(k), \mathcal{B} - p) + g(1 - F(k), f_+(k), \mathcal{B} - p)$$

and

$$\Delta_k^U := -g (1 - p - F_-(k), f_-(k), p - \mathcal{B}) - g (F(k) - p, f_+(k), p - \mathcal{B})$$

The bounds are sharp as CHOICE, CONVEX and RANK imply no further restrictions on the marginal potential outcome distributions.

F.5 Proof of Lemma 2

Let $\Delta_i^k(\rho, \rho') := Y_i(\rho, k) - Y_i(\rho', k)$ for any $\rho, \rho' \in [\rho_0, \rho_1]$ and value of k.

Assumption SMOOTH (regularity conditions). The following hold:

- 1. $P(\Delta_i^k(\rho, \rho') \leq \Delta, Y_i(\rho, k) \leq y)$ is twice continuously differentiable at all $(\Delta, y) \neq (0, k^*)$, for any $\rho, \rho' \in [\rho_0, \rho_1]$ and k.
- 2. $Y_i(\rho, k) = Y(\rho, k, \epsilon_i)$, where ϵ_i has compact support $E \subset \mathbb{R}^m$ for some m. $Y(\cdot, k, \cdot)$ is continuously differentiable on all of $[\rho_0, \rho_1] \times E$, for every k.
- 3. there possibly exists a set $\mathcal{K}^* \subset E$ such that $Y(\rho, k, \epsilon) = k^*$ for all $\rho \in [\rho_0, \rho_1]$ and $\epsilon \in \mathcal{K}^*$. The quantity $\mathbb{E}\left[\left.\frac{\partial Y_i(\rho, k)}{\partial \rho}\right| Y_i(\rho, k) = y, \epsilon_i \notin \mathcal{K}^*\right]$ is continuously differentiable in y for all y including k^* .

In the remainder of this proof I keep k be implicit in the functions $Y_i(\rho,k)$ and $\Delta_i^k(\rho,\rho')$, as it will remained fixed. Item 1 of SMOOTH excludes the point $(0,k^*)$ on the basis that we may expect point masses at $Y_i(\rho)=k^*$, as in the overtime setting. Following Section 4, item 3 imposes that all such "counterfactual bunchers" have zero treatment effects, while also introducing a further condition that will be used later in Lemma 3. Let K_i^* be an indicator for $\epsilon_i \in \mathcal{K}^*$ and denote $p=P(K_i^*=1)$. Item 1 implies that the density $f_{\Delta(\rho,\rho'),Y(\rho)}(\Delta,y)$ is continuous in y whenever $y\neq k^*$ or $\Delta\neq 0$, so I define $f_{\Delta(\rho,\rho'),Y(\rho)}(\Delta,k^*)=\lim_{y\to k^*}f_{\Delta(\rho,\rho'),Y(\rho)}(\Delta,y)$ for any ρ,ρ' and Δ . Similarly, we can define the marginal density $f_{\rho}(y)$ of $Y_i(\rho)$ at k^* to be $\lim_{y\to k^*}f_{\rho}(y)$ for any ρ .

The main tool in the proof of Lemma 2 will be the following Lemma, which shows that the uniform density approximation of Theorem 6 becomes exact in the limit that the two cost functions approach one another.

Lemma SMALL (small kink limit). Assume CHOICE*, WARP, and SMOOTH. Then:

$$\lim_{\rho' \downarrow \rho} \frac{P(Y_i(\rho) \le k \le Y_i(\rho')) - p(k)}{\rho' - \rho} = -f_{\rho}(k) \mathbb{E} \left[\frac{dY_i(\rho)}{d\rho} \middle| Y_i(\rho) = k \right]$$

Proof. Throughout this proof we let f_W denote the density of a generic random variable or random vector W_i , if it exists. Write $\Delta_i(\rho, \rho') = \Delta_i(\rho, \rho', \epsilon_i)$ where $\Delta_i(\rho, \rho', \epsilon) := Y(\rho, \epsilon) - Y(\rho, \epsilon)$

 $Y(\rho', \epsilon)$.

$$\lim_{\rho'\downarrow\rho} \frac{P(Y_i(\rho) \le k \le Y_i(\rho')) - p(k)}{\rho' - \rho} = \lim_{\rho'\downarrow\rho} \frac{P(Y_i(\rho) \in [k, k + \Delta(\rho, \rho')_i]) - p(k)}{\rho' - \rho}$$

$$= \lim_{\rho'\downarrow\rho} \frac{P(Y_i(\rho) \in (k, k + \Delta(\rho, \rho')_i])}{\rho' - \rho}$$

$$= \lim_{\rho'\downarrow\rho} \frac{1}{\rho' - \rho} \int_0^\infty d\Delta \int_k^{k+\Delta} dy \cdot f_{\Delta(\rho, \rho'), Y(\rho)}(\Delta, y)$$

$$= \lim_{\rho'\downarrow\rho} \int_0^\infty d\Delta \int_k^{k+\Delta} dy \cdot \frac{f_{\Delta(\rho, \rho'), Y(\rho)}(\Delta, k) + (y - k)r_{\Delta(\rho, \rho'), Y(\rho)}(\Delta, k, y)}{\rho' - \rho}$$
(F.11)

where we have used that by item 1 the joint density of $\Delta_i(\rho, \rho')$ and $Y_i(\rho)$ exists for any ρ, ρ' and is differentiable and $r_{\Delta(\rho, \rho'), Y(\rho)}$ is a first-order Taylor remainder term satisfying

$$\lim_{y \downarrow k} |r_{\Delta(\rho, \rho'), Y(\rho)}(\Delta, y)| = |r_{\Delta(\rho, \rho'), Y(\rho)}(\Delta, k)| = 0$$

for any Δ .

I now show that the whole term corresponding to this remainder is zero. First, note that:

$$\left| \lim_{\rho' \downarrow \rho} \int_{0}^{\infty} d\Delta \int_{k}^{k+\Delta} dy \cdot \frac{(y-k)r_{\Delta_{i}(\rho,\rho'),Y_{i}(\rho)}(\Delta,y)}{\rho' - \rho} \right| = \lim_{\rho' \downarrow \rho} \left| \int_{0}^{\infty} d\Delta \int_{k}^{k+\Delta} dy \cdot \frac{(y-k)r_{\Delta_{i}(\rho,\rho'),Y_{i}(\rho)}(\Delta,y)}{\rho' - \rho} \right|$$

$$\leq \lim_{\rho' \downarrow \rho} \int_{0}^{\infty} d\Delta \int_{k}^{k+\Delta} dy \cdot \left| \frac{(y-k)r_{\Delta_{i}(\rho,\rho'),Y_{i}(\rho)}(\Delta,y)}{\rho' - \rho} \right|$$

$$\leq \lim_{\rho' \downarrow \rho} \int_{0}^{\infty} d\Delta \frac{\Delta}{\rho' - \rho} \int_{k}^{k+\Delta} dy \cdot \left| r_{\Delta_{i}(\rho,\rho'),Y_{i}(\rho)}(\Delta,y) \right|$$

where I've used continuity of the absolute value function and the Minkowski inequality. Define $\xi(\rho,\rho')=\sup_{\epsilon\in E}\Delta(\rho,\rho',\epsilon)$. The strategy will be show that $\lim_{\rho'\downarrow\rho}\xi(\rho,\rho')=0$, and then since $r_{\Delta_i(\rho,\rho'),Y_i(\rho)}(\Delta,y)=0$ for any $\Delta>\xi(\rho,\rho')$ and all y (since the marginal density $f_{\Delta(\rho,\rho')}(\Delta)$ would be zero for such Δ). With $\xi(\rho,\rho')$ so-defined:

RHS of above
$$\leq \lim_{\rho'\downarrow\rho} \int_{0}^{\xi(\rho,\rho')} d\Delta \frac{\xi(\rho,\rho')}{\rho'-\rho} \int_{k}^{k+\xi(\rho,\rho')} dy \cdot \left| r_{\Delta_{i}(\rho,\rho'),Y_{i}(\rho)}(\Delta,y) \right|$$

$$= \lim_{\rho'\downarrow\rho} \frac{\xi(\rho,\rho')}{\rho'-\rho} \cdot \lim_{\rho'\downarrow\rho} \int_{0}^{\xi(\rho,\rho')} d\Delta \int_{0}^{\xi(\rho,\rho')} dy \cdot \left| r_{\Delta_{i}(\rho,\rho'),Y_{i}(\rho)}(\Delta,k+y) \right| F.12)$$

where in the second step I have assumed that each limit exists (this will be demonstrated below). Let us first consider the inner integral of the above: $\int_k^{k+\xi(\rho,\rho')} dy \cdot \left| r_{\Delta_i(\rho,\rho'),Y_i(\rho)}(\Delta,y) \right|,$ for any Δ . Supposing that $\lim_{\rho'\downarrow\rho} \xi(\rho,\rho') = 0$, it follows that this inner integral evaluates to zero, by the Leibniz rule and using that $r_{\Delta_i(\rho,\rho'),Y_i(\rho)}(\Delta,k) = 0$. Thus the entire second

limit is equal to zero.

Now I prove that $\lim_{\rho'\downarrow\rho}\xi(\rho,\rho')=0$ and that $\lim_{\rho'\downarrow\rho}\frac{\xi(\rho,\rho')}{\rho'-\rho}$ exists. First, note that continuous differentiability of $Y(\rho,\epsilon_i)$ implies $Y_i(\rho)$ is continuous for each i so $\lim_{\rho'\downarrow\rho}\Delta_i(\rho,\rho')=0$ point-wise in ϵ . We seek to turn this point-wise convergence into uniform convergence over ϵ , i.e. that $\lim_{\rho'\downarrow\rho}\sup_{\epsilon\in E}\Delta(\rho,\rho',\epsilon)=\sup_{\epsilon\in E}\lim_{\rho'\downarrow\rho}\Delta(\rho,\rho',\epsilon)=\sup_{\epsilon\in E}0=0$. The strategy will be to use equicontinuity of the sequence and compactness of E. Consider any such sequence $\rho_n\stackrel{n}{\to}\rho$ from above, and let $f_n(\epsilon):=Y(\rho,\epsilon)-Y(\rho_n,\epsilon)$ and $f(\epsilon)=\lim_{n\to\infty}f_n(\epsilon)=0$. Equicontinuity of the sequence $f_n(\epsilon)$ says that for any $\epsilon,\epsilon'\in E$ and e>0, there exists a $\delta>0$ such that $||\epsilon-\epsilon'||<\delta\implies|f_n(\epsilon)-f_n(\epsilon')|< e$.

This follows from continuous differentiability of $Y(\rho, \epsilon)$. Let $M = \sup_{\rho \in [\rho_0, \rho_1], \epsilon \in E} |\nabla_{\rho, \epsilon} Y(\rho, \epsilon)|$. M exists and is finite given continuity of the gradient and compactness of $[\rho_0, \rho_1] \times E$. Then, for any two points $\epsilon, \epsilon' \in E$ and any $\rho \in [\rho_0, \rho_1]$:

$$|Y(\rho,\epsilon) - Y(\rho,\epsilon')| = \left| \int_{\epsilon'}^{\epsilon} \nabla_{\epsilon} Y(\rho,\epsilon) \cdot \mathbf{d}\epsilon \right| \le \int_{\epsilon'}^{\epsilon} |\nabla_{\epsilon} Y(\rho,\epsilon) \cdot \mathbf{d}\epsilon| \le M \int_{\epsilon'}^{\epsilon} ||\mathbf{d}\epsilon|| \le M||\epsilon - \epsilon'||$$

where $\mathbf{d}\epsilon$ is any path from ϵ to ϵ' and I have used the definition of M and Cauchy-Schwarz in the second inequality. The existence of a uniform Lipschitz constant M for $Y(\rho,\epsilon)$ implies a uniform equicontinuity of $Y(\rho,\epsilon)$ of the form that for any e>0 and $\epsilon,\epsilon'\in E$, there exists a $\delta>0$ such that $||\epsilon-\epsilon'||<\delta \implies \sup_{\rho\in[\rho_0,\rho_1]}|Y(\rho,\epsilon)-Y(\rho,\epsilon')|< e/2$, since we can simply take $\delta=e/(2M)$. This in turn implies that whenever $||\epsilon-\epsilon'||<\delta$:

$$|Y(\rho,\epsilon) - Y(\rho_n,\epsilon) - \{Y(\rho,\epsilon') - Y(\rho_n,\epsilon')\}| = |Y(\rho,\epsilon) - Y(\rho,\epsilon') - \{Y(\rho_n,\epsilon) - Y(\rho_n,\epsilon')\}|$$

$$\leq |Y(\rho,\epsilon) - Y(\rho,\epsilon')| + |Y(\rho_n,\epsilon) - Y(\rho_n,\epsilon')| \leq e,$$

our desired result. Together with compactness of E, equicontinuity implies that $\lim_{n\to\infty}\sup_{\epsilon\in E}f_n(\epsilon)=\sup_{\epsilon\in E}\lim_{n\to\infty}f_n(\epsilon)=0$.

We apply an analogous argument for $\lim_{\rho'\downarrow\rho}\frac{\xi(\rho,\rho')}{\rho'-\rho}$, where now $f_n(\epsilon)=\frac{Y(\rho,\epsilon)-Y(\rho_n,\epsilon)}{\rho_n-\rho}$. For this case it's easier to work directly with the function $\frac{Y(\rho,\epsilon)-Y(\rho_n,\epsilon)}{\rho_n-\rho}$, showing that it is Lipschitz in deviations of ϵ uniformly over $n\in\mathbb{N},\epsilon\in E$.

$$\left| \frac{Y(\rho, \epsilon) - Y(\rho_{n}, \epsilon)}{\rho_{n} - \rho} - \frac{Y(\rho, \epsilon') - Y(\rho_{n}, \epsilon')}{\rho_{n} - \rho} \right| = \frac{1}{\rho_{n} - \rho} \left| \int_{\epsilon'}^{\epsilon} \nabla_{\epsilon} Y(\rho, \epsilon) \cdot \mathbf{d} \epsilon - \int_{\epsilon'}^{\epsilon} \nabla_{\epsilon} Y(\rho_{n}, \epsilon) \cdot \mathbf{d} \epsilon \right|$$

$$\leq \frac{1}{\rho_{n} - \rho} \left(\left| \int_{\epsilon'}^{\epsilon} \nabla_{\epsilon} Y(\rho, \epsilon) \cdot \mathbf{d} \epsilon \right| + \left| \int_{\epsilon'}^{\epsilon} \nabla_{\epsilon} Y(\rho_{n}, \epsilon) \cdot \mathbf{d} \epsilon \right| \right)$$

$$\leq \frac{2M}{\rho_{n} - \rho} \int_{\epsilon'}^{\epsilon} ||\mathbf{d} \epsilon|| \leq \frac{2M}{\rho_{n} - \rho} ||\epsilon - \epsilon'||$$

This implies equicontinuity of $\frac{Y(\rho,\epsilon)-Y(\rho_n,\epsilon)}{\rho_n-\rho}$ with the choice $\delta=e(\rho_n-\rho)/(2M)$. As before, equicontinuity and compactness of E allow us to interchange the limit and the supremum, and thus:

$$\lim_{n \to \infty} \frac{\xi(\rho, \rho_n)}{\rho_n - \rho} = \lim_{n \to \infty} \frac{\sup_{\epsilon \in E} \{Y(\rho, \epsilon) - Y(\rho_n, \epsilon)\}}{\rho_n - \rho} = \lim_{n \to \infty} \sup_{\epsilon \in E} \frac{Y(\rho, \epsilon) - Y(\rho_n, \epsilon)}{\rho_n - \rho}$$
$$= \sup_{\epsilon \in E} \lim_{n \to \infty} \frac{Y(\rho, \epsilon) - Y(\rho_n, \epsilon)}{\rho_n - \rho} = \sup_{\epsilon \in E} \frac{\partial Y(\rho, \epsilon)}{\partial \rho} := M' < \infty$$

where finiteness of M' follows from it being defined as the supremum of a continuous function over a compact set. This establishes that the first limit in Eq. (F.12) exists and is finite, completing the proof that it evaluates to zero.

Given that the second term in Eq. (F.11) is zero, we can simplify the remaining term as:

$$\lim_{\rho'\downarrow\rho} \frac{P(Y_i(\rho) \le k \le Y_i(\rho')) - p(k)}{\rho' - \rho} = \lim_{\rho'\downarrow\rho} \frac{1}{\rho' - \rho} \int_0^\infty f_{\Delta(\rho,\rho'),Y(\rho)}(\Delta, k) \Delta d\Delta$$

$$= f_{\rho}(k) \lim_{\rho'\downarrow\rho} \frac{1}{\rho' - \rho} P(\Delta_i(\rho, \rho') \ge 0 | Y_i(\rho) = k)$$

$$\cdot \mathbb{E} \left[\Delta_i(\rho, \rho') | Y_i(\rho) = k, \Delta_i(\rho, \rho') \ge 0 \right]$$

$$= f_{\rho}(k)(k) \lim_{\rho'\downarrow\rho} \frac{1}{\rho' - \rho} \mathbb{E} \left[\Delta_i(\rho, \rho') | Y_i(\rho) = k, \Delta_i(\rho, \rho') \right]$$

$$= f_{\rho}(k)(k) \mathbb{E} \left[\lim_{\rho'\downarrow\rho} \frac{\Delta_i(\rho, \rho')}{\rho' - \rho} \middle| Y_i(\rho) = k \right]$$

$$= f_{\rho}(k) \mathbb{E} \left[-\frac{Y_i(\rho)}{d\rho} \middle| Y_i(\rho) = k \right]$$

where I have used Lemma POS and then finally the dominated convergence theorem. To see that we may use the latter, note that $\frac{dY_i(\rho)}{d\rho} = \frac{\partial Y(\rho,\epsilon_i)}{\partial \rho} < M$ uniformly over all $\epsilon_i \in E$, and $\mathbb{E}\left[M|Y_i(\rho)=k\right] = M < \infty$.

Now we return to the proof of Lemma 2. By item 1 of Assumption SMOOTH, the marginal $F_{\rho}(y) := P(Y_i(\rho) \leq y)$ is differentiable away from y = k with derivative $f_{\rho}(y)$. From the proof of Theorem 1 it follows that $\mathcal{B} \leq F_{\rho_1}(k) - F_{\rho_0}(k) + p(k)$ with equality

under CONVEX, and thus:

$$\mathcal{B} - p(k) \leq F_{\rho_1}(k) - F_{\rho_0}(k)$$

$$= \int_{\rho_0}^{\rho_1} \frac{d}{d\rho} F_{\rho}(k) d\rho$$

$$= \int_{\rho_0}^{\rho_1} \lim_{\delta \downarrow 0} \frac{F_{\rho + \delta}(k) - F_{\rho}(k)}{\delta} d\rho$$

$$= \int_{\rho_1}^{\rho_0} \lim_{\delta \downarrow 0} \frac{F_{\rho}(k) - F_{\rho + \delta}(k)}{\delta} d\rho$$

$$= \int_{\rho_1}^{\rho_0} \lim_{\delta \downarrow 0} \frac{P(Y_i(\rho) \leq k \leq Y_i(\rho + \delta)) - p(k)}{\delta} d\rho$$

$$= \int_{\rho_1}^{\rho_0} f_{\rho}(k) \mathbb{E} \left[\frac{Y_i(\rho)}{d\rho} \middle| Y_i(\rho) = k \right] d\rho$$

where the fourth equality has applied the identity $1 = P(Y_{0i} \le k) + P(Y_i(\rho) \le k \le Y_i(\rho + \delta)) + P(Y_{1i} > k)$ under CHOICE and WARP to the pair of choice constraints $B(\rho)$ and $B(\rho + \delta)$, noting that $P(Y_i(\rho) < k) = F_{\rho}(k) - p(k)$.

F.6 Proof of Lemma 3

This mostly follows the proof in Kasy (2017) adapted to our setting in which y is one-dimensional. As in the proof of Lemma 2 I leave k implicit in the functions $Y_i(\rho,k)$ and $Y(\rho,k,\epsilon)$, as k remains fixed throughout. One additional subtlety concerns the possibility of a point mass in the distribution of each $Y_i(\rho)$ at k^* . Note that Assumption SMOOTH implies a continuous density $f_\rho(y)$ for all $\rho \in [\rho_0,\rho_1]$ and $y \neq k^*$, which is also continuously differentiable in ρ . We define $f_\rho(k^*) = \lim_{y \to k} f_\rho(y)$ in the case that p > 0.

Consider any bounded differentiable function a(y) having the property that $a(k^*)=0$, and note that we may write $A(y):=\frac{d}{d\rho}\mathbb{E}[a(Y_i(\rho))]$ in two separate ways. Firstly:

$$A(y) = \frac{d}{d\rho} \int dy \cdot f_{\rho}(y) \cdot a(y) = \int dy \cdot a(y) \cdot \frac{d}{d\rho} f_{\rho}(y)$$
 (F.13)

and secondly:

$$A(y) = \frac{d}{d\rho} \mathbb{E}[a(Y_i(\rho, \epsilon_i))] = \int dF_{\epsilon}(\epsilon) \frac{d}{d\rho} a(Y(\rho, \epsilon)) = \int dF_{\epsilon}(\epsilon) a'(Y(\rho, \epsilon)) \cdot \partial_{\rho} Y(\rho, \epsilon)$$
(F.14)

The first representation integrates over the distribution of $Y_i(\rho)$, while the second integrates over the distribution of the underlying heterogeneity ϵ_i . In both cases we are justified in swapping the integral and derivative by boundedness of a(y).

Continuing with Eq. (F.14), we may apply the law of iterated expectations over values of $Y(\rho, \epsilon)$, and then integrate by parts:

$$A(y) = \int dy f_{\rho}(y) a'(y) \int dF_{\epsilon|Y(\rho,\epsilon)=y} \partial_{\rho} Y(\rho,\epsilon)$$

$$= \int dy f_{\rho}(y) a'(y) \cdot \mathbb{E} \left[\frac{\partial Y(\rho,\epsilon)}{\partial \rho} \middle| Y(\rho,\epsilon) = y \right]$$

$$= -\int dy \cdot a(y) \cdot \frac{\partial}{\partial y} \left\{ f_{\rho}(y) \cdot \mathbb{E} \left[\frac{\partial Y(\rho,\epsilon)}{\partial \rho} \middle| Y(\rho,\epsilon) = y \right] \right\}$$

where we've assumed the density $f_{\rho}(y)$ vanishes at the limits of y. Comparing with Eq. (F.13), we see that for this to be true of any bounded differentiable function a (satisfying $a(k^*) = 0$, we must have

$$\frac{d}{d\rho}f_{\rho}(y) = -\frac{\partial}{\partial y} \left\{ f_{\rho}(y) \cdot \mathbb{E} \left[\left. \frac{\partial Y(\rho, \epsilon)}{\partial \rho} \right| Y(\rho, \epsilon) = y \right] \right\}$$

point-wise for all $y \neq k^*$.

Now consider $y = k^*$. First note that

$$\frac{d}{d\rho}f_{\rho}(k^{*}) = \frac{d}{d\rho}\lim_{y \to k^{*}} f_{\rho}(y) = \lim_{y \to k^{*}} \frac{d}{d\rho}f_{\rho}(y) = -\lim_{y \to k^{*}} \frac{\partial}{\partial y} \left\{ f_{\rho}(y) \mathbb{E}\left[\left.\frac{\partial Y(\rho, \epsilon)}{\partial \rho}\right| Y(\rho, \epsilon) = y\right] \right\}$$

where we can interchange the limit and derivative by the Moore-Osgood theorem, since $\frac{d}{d\rho}f_{\rho}(y)$ is uniformly bounded over $\rho\in[\rho_1,\rho_0]$ by Assumption SMOOTH. Furthermore, for all $y\neq k^*$: $\mathbb{E}\left[\left.\frac{\partial Y(\rho,\epsilon)}{\partial\rho}\right|Y(\rho,\epsilon)=y\right]=\mathbb{E}\left[\left.\frac{\partial Y(\rho,\epsilon)}{\partial\rho}\right|Y(\rho,\epsilon)=y,K_i^*=0\right]$, and the latter of these is continuously differentiable at all y (including $y=k^*$) by item 3 of Assumption SMOOTH. Thus:

$$\frac{d}{d\rho}f_{\rho}(k^*) = -\frac{\partial}{\partial y} \left\{ f_{\rho}(k^*) \cdot \mathbb{E}\left[\frac{\partial Y(\rho, \epsilon)}{\partial \rho} \middle| Y(\rho, \epsilon) = k^*, K_i^* = 0 \right] \right\}$$

since $f_{\rho}(y)$ is also continuously differentiable at $y = k^*$, by SMOOTH and the definition of $f_{\rho}(k^*)$ as $\lim_{y \to k^*} f_{\rho}(y)$.

F.7 Proof of Theorem 2

This proof follows the notation of Appendix A. Throughout this proof we let $Y_i(\rho, k) = Y_i(\rho)$, given Assumption SEPARABLE.

First, consider the effect of changing k on the bunching probability:

$$\partial_{k} \left\{ \mathcal{B} - p(k) \right\} = -\frac{\partial}{\partial k} \int_{\rho_{0}}^{\rho_{1}} f_{\rho}(k) \mathbb{E} \left[\left. \frac{Y_{i}(\rho)}{d\rho} \right| Y_{i}(\rho) = k \right] d\rho$$

$$= -\int_{\rho_{0}}^{\rho_{1}} \frac{\partial}{\partial k} \left\{ f_{\rho}(k) \mathbb{E} \left[\left. \frac{Y_{i}(\rho)}{d\rho} \right| Y_{i}(\rho) = k \right] \right\} d\rho$$

$$= \int_{\rho_{0}}^{\rho_{1}} \partial_{\rho} f_{\rho}(k) d\rho = f_{1}(k) - f_{0}(k)$$

I turn now to the total effect on average hours.

$$\begin{split} \partial_k E[Y_i^{[k,\rho_1]}] &= \partial_k \left\{ P(Y_i(\rho_0) < k) \mathbb{E}[Y_i(\rho_0) | Y_i(\rho_0) < k] \right\} + k \partial_k \left(\mathcal{B}^{[k,\rho_1]} - p(k) \right) + \mathcal{B}^{[k,\rho_1]} - p(k) \\ &+ \partial_k \left\{ P(Y_i(\rho_1) > k) \mathbb{E}[Y_i(\rho_1) | Y_i(\rho_1) > k] \right\} \\ &= \partial_k \int_{-\infty}^k y \cdot f_{\rho_0}(y) \cdot dy + k \left(f_0(k) - f_1(k) \right) + \mathcal{B}^{[k,\rho_1]} - p(k) + \partial_k \int_k^\infty y \cdot f_{\rho_1}(y) \cdot dy \\ &= \underline{k} f_0(k) + \underline{k} \left(f_1(k) - f_0(k) \right) + \mathcal{B}^{[k,\rho_1]} - p(k) - \underline{k} f_1(k) \end{split}$$

Meanwhile:

$$\begin{split} \partial_{\rho_{1}}E[Y_{i}^{[k,\rho_{1}]}] &= k\partial_{\rho_{1}}\mathcal{B}^{[k,\rho_{1}]} + \partial_{\rho_{1}}\left\{P(Y_{i}(\rho_{1}) > k)\mathbb{E}[Y_{i}(\rho_{1})|Y_{i}(\rho_{1}) > k]\right\} \\ &= k\partial_{\rho_{1}}\mathcal{B}^{[k,\rho_{1}]} + \int_{k}^{\infty}y\cdot\partial_{\rho_{1}}f_{\rho_{1}}(y)\cdot dy \\ &= -kf_{\rho_{1}}(k)\mathbb{E}\left[\frac{Y_{i}(\rho_{1})}{d\rho}\bigg|Y_{i}(\rho_{1}) = k\right] - \int_{k}^{\infty}y\cdot\partial_{y}\left\{f_{\rho_{1}}(y)\mathbb{E}\left[\frac{dY_{i}(\rho_{1})}{d\rho}\bigg|Y_{i}(\rho_{1}) = y\right]\right\}dy \\ &= \underbrace{-kf_{\rho_{1}}(k)\mathbb{E}\left[\frac{Y_{i}(\rho_{1})}{d\rho}\bigg|Y_{i}(\rho_{1}) = k\right] + \underbrace{yf_{\rho_{1}}(y)\mathbb{E}\left[\frac{dY_{i}(\rho_{1})}{d\rho}\bigg|Y_{i}(\rho_{1}) = y\right]\bigg|_{\infty}^{k}}_{-\int_{k}^{\infty}f_{\rho_{1}}(y)\mathbb{E}\left[\frac{dY_{i}(\rho_{1})}{d\rho}\bigg|Y_{i}(\rho_{1}) = y\right]dy \end{split}$$

where I have used Theorem F.5 and Lemma 3, and then integration by parts along with the boundary condition that $\lim_{y\to\infty}y\cdot f_{\rho_1}(y)=0$., implied by Assumption SMOOTH.