10215501406_ 钱凯恒 _ 作业 1

钱凯恒

September 2022

1 习题 1

2 习题 2

$$||\mathbf{A}_{1}||_{1} = \max\{1+1, 2+0\} = 2$$

$$||\mathbf{A}_{1}||_{\infty} = \max\{1+2, 1+0\} = 3$$
因为 $\mathbf{A}_{1}^{T} \mathbf{A}_{1} = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}, \text{由 } |\mathbf{I}\lambda - \mathbf{A}_{1}^{T} \mathbf{A}_{1}| = \begin{vmatrix} \lambda - 2 & 2 \\ -2 & \lambda - 4 \end{vmatrix} = 0$
解得 $\lambda_{1} = 5.236, \lambda_{2} = 0.763, \text{ 故 } ||\mathbf{A}_{1}||_{2} = \sqrt{5.236} = 2.288.$

$$||\mathbf{A}_{2}||_{1} = \max\{-1+1, 0+2\} = 2$$

$$||\mathbf{A}_{2}||_{\infty} = \max\{-1+0, 1+2\} = 3$$
因为 $\mathbf{A}_{2}^{T} \mathbf{A}_{2} = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}, \text{由 } |\mathbf{I}\lambda - \mathbf{A}_{2}^{T} \mathbf{A}_{2}| = \begin{vmatrix} \lambda - 2 & -2 \\ -2 & \lambda - 4 \end{vmatrix} = 0$
解得 $\lambda_{1} = 5.236, \lambda_{2} = 0.763, \text{ 故 } ||\mathbf{A}_{2}||_{2} = \sqrt{5.236} = 2.288.$

习题 4

(1) 当
$$\mathbf{A} = \mathbf{0}$$
 时, $||\mathbf{A}||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_i j|$ 显然成立;
当 $\mathbf{A} \neq \mathbf{0}$ 时,将 \mathbf{A} 按列分块为 $\mathbf{A} = [\mathbf{a}_1, \cdots, \mathbf{a}_n]$,并记 $\delta = ||\mathbf{a}_{j_0}||_1 = \max_{1 \le j \le n} ||\mathbf{a}_j||_1$,则对任意满足 $||\mathbf{x}||_1 = \sum_{i=1}^n |x_i| = 1$ 的 $x \in \mathbf{C}^n$,有

$$||\mathbf{A}\mathbf{x}||_{1} = \left\| \sum_{j=1}^{n} x_{j} \mathbf{a}_{j} \right\| \leq \sum_{j=1}^{n} |x_{j}| ||\mathbf{a}_{j}||_{1} \leq \sum_{j=1}^{n} |x_{j}| \max_{1 \leq j \leq n} ||\mathbf{a}_{j}||_{1} = ||\mathbf{a}_{j_{0}}||_{1} = \delta,$$
所以 $||\mathbf{A}||_{1} = \max_{\|\mathbf{A}\mathbf{x}\||_{1} \leq \delta} ||\mathbf{A}\mathbf{x}||_{1} \leq \delta$ 。
令 \mathbf{x} 为第 j_{0} 个元素为 1 ,其余分量为 0 的向量 $\mathbf{e}_{j_{0}}$,则有 $||\mathbf{e}_{j_{0}}||_{1} = 1$,而且

令 x 为第
$$j_0$$
 个元素为 1,其余分量为 0 的向量 \mathbf{e}_{j_0} ,则有 $||\mathbf{e}_{j_0}||_1 = 1$,而且 $||\mathbf{A}\mathbf{e}_{j_0}||_1 = ||\mathbf{a}_{j_0}||_1 = \delta$

所以存在满足
$$||\mathbf{x}||_1 = 1$$
 的 \mathbf{x} ,使得 $||\mathbf{A}\mathbf{x}||_1 = \delta$ 。

综上,可得
$$||\mathbf{A}||_1 = \max_{||\mathbf{x}||_1=1} ||\mathbf{A}\mathbf{x}||_1 = \delta = \max_{1 \le j \le n} ||\mathbf{a}_j||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_i j|_{\circ}$$

当
$$\mathbf{A} = \mathbf{0}$$
 时, $||\mathbf{A}||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|$ 显然成立;

当
$$\mathbf{A} \neq \mathbf{0}$$
 时,记 $\eta = \max_{1 \leq i \leq m} \sum_{j=1}^{n} |a_{ij}|$,则对任意满足 $||\mathbf{x}||_{\infty} = 1$ 的 $x \in \mathbf{C}^{n}$,有

||
$$\mathbf{A}\mathbf{x}$$
|| $_{\infty} = \max_{1 \le i \le m} |\sum_{j=1}^{n} a_{ij}x_{j}| \le \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}||x_{j}| \le \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}| = \eta,$
所以 || \mathbf{A} || $_{\infty} = \max_{\|\mathbf{x}\|_{\infty} = 1} ||\mathbf{A}\mathbf{x}||_{\infty} \le \eta$ 。

令
$$\tilde{\mathbf{x}} = (1, \dots, 1)^T$$
,则 $||\tilde{\mathbf{x}}||_{\infty} = 1$,有 $||\mathbf{A}\tilde{\mathbf{x}}||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}| = \eta$,所以存在满足 $||\mathbf{x}||_{\infty} = 1$ 的 \mathbf{x} ,使得 $||\mathbf{A}\mathbf{x}||_{\infty} = \eta$ 。 综上,可得 $||\mathbf{A}||_{\infty} = \eta = \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}|$ 。

(2) 对于给定的矩阵
$$\mathbf{A}$$
, $||\mathbf{A}||_1 \le ||\mathbf{A}||_1(l_1) \le m||\mathbf{A}||_1$, $||\mathbf{A}||_{\infty} \le ||\mathbf{A}||_1(l_1) \le n||\mathbf{A}||_{\infty}$.