

Instituto Politécnico de Tomar

Escola Superior de Tecnologia de Tomar

Área Interdepartamental de Matemática Análise Matemática I (Engenharias)

Tabela de Potências e Logaritmos

1.
$$a^x a^y = a^{x+y} \mid 6. \ \forall b \in]0, +\infty[$$
 $a^{\log_a b} = b$

2.
$$\frac{a^x}{a^y} = a^{x-y}$$
 7. $xy > 0 \implies \log_a(xy) = \log_a|x| + \log_a|y|$

2.
$$\frac{a^{x}}{a^{y}} = a^{x-y}$$
 7. $xy > 0 \implies \log_{a}(xy) = \log_{a}|x| + \log_{a}|y|$
3. $a^{x}b^{x} = (ab)^{x}$ 8. $\frac{x}{y} > 0 \implies \log_{a}\frac{x}{y} = \log_{a}|x| - \log_{a}|y|$

4.
$$\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$
5.
$$(a^x)^y = a^{xy}$$
9.
$$x > 0 \implies \log_a x^y = y \log_a x$$

Tabela de Trigonometria Hiperbólica

$\cosh x \frac{e^x + e^{-x}}{2} \qquad \sinh x = \frac{e^x - e^{-x}}{2}$	$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1}$	$\coth x = \frac{\cosh x}{\sinh x} = \frac{1}{\tanh x}$
--	---	---

1.
$$\cosh x + \sinh x = e^x$$

$$2. \cosh x - \sinh x = e^{-x}$$

$$3. \cosh^2 x - \sinh^2 x = 1$$

4.
$$1 - \tanh^2 x = \frac{1}{\cosh^2 x}$$

5.
$$\coth^2 x - 1 = \frac{1}{\sinh^2 x}$$

6.
$$\cosh x = \frac{1}{\sqrt{1-\tanh^2 x}}$$

6.
$$\cosh x = \frac{1}{\sqrt{1-\tanh^2 x}}$$
7.
$$\sinh x = \frac{1}{\sqrt{1-\tanh^2 x}}$$

8.
$$\cosh(x + \dot{y}) = \cosh x \cosh y + \sinh x \sinh y$$

9.
$$\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$$

10.
$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x}$$

10.
$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

11. $\coth(x+y) = \frac{1 + \coth x \coth y}{\coth x + \coth y}$

$$12. \cosh 2x = \cosh^2 x + \sinh^2 x$$

13.
$$\sinh 2x = 2 \sinh x \cosh x$$

14.
$$\tanh 2x = \frac{2\tanh x}{1+\tanh^2 x}$$

14.
$$\tanh 2x = \frac{2\tanh x}{1+\tanh^2 x}$$

15. $\coth 2x = \frac{1+\coth^2 x}{2\coth x}$

16.
$$\cosh x \cosh y = \frac{1}{2}(\cosh(x+y) + \cosh(x-y))$$

17.
$$\sinh x \sinh y = \frac{1}{2}(\cosh(x+y) - \cosh(x-y))$$

18.
$$\sinh x \cosh y = \frac{1}{2}(\sinh(x+y) + \sinh(x-y))$$

19.
$$\cosh a + \cosh b = 2 \cosh \frac{a+b}{2} \cosh \frac{a-b}{2}$$

20.
$$\cosh a - \cosh b = 2 \sinh \frac{a+b}{2} \sinh \frac{a-b}{2}$$

21.
$$\sinh a + \sinh b = 2 \sinh \frac{a+b}{2} \cosh \frac{a-b}{2}$$

22.
$$\sinh a - \sinh b = 2 \cosh \frac{a+b}{2} \sinh \frac{a-b}{2}$$

Fórmulas de Moivre

23.
$$\forall m \in \mathbb{R}(\cosh x + \sinh x)^m = \cosh mx + \sinh mx$$

24.
$$\forall m \in \mathbb{R}(\cosh x - \sinh x)^m = \cosh mx - \sinh mx$$