Билет 20

Бесконечно большие величины, действия над ними, классификация бесконечно больших величин *Билет не проверен*

Определение

Если $\lim_{n\to\infty} x_n = +\infty$ или $\lim_{n\to\infty} x_n = -\infty$, то последовательность $\{x_n\}$ является бесконечно большой. Отметим несколько свойств бесконечно больших последовательностей:

- 1. Сумма.
 - А) Если одно из слагаемых имеет конечный предел ($\lim_{x\to a} x_n = A$), другое бесконечный ($\lim_{y\to a} y_n = \infty$), тогда по свойству бесконечно больших функций предел их алгебраической суммы равен бесконечности. При помощи символов это можно записать следующим образом: $A\pm\infty=\pm infty$.
 - Б) Если оба слагаемых имеют бесконечные пределы, то важно знать какого знака эти пределы. Если обе функции имеют бесконечные пределы одинаковых знаков ($\lim_{y\to a} x_n = +\infty$; $\lim_{y\to a} y_n = +\infty$ или $\lim_{y\to a} x_n = -\infty$; $\lim_{y\to a} y_n = -\infty$), то по свойству бесконечно больших функций предел их суммы будет равен бесконечности того же знака: $+\infty + \infty = +\inf ty$ или $(-\infty) + (-\infty) = -\inf ty$. Если обе функции являются бесконечно большими разных знаков ($\lim_{y\to a} x_n = -\infty$; $\lim_{y\to a} y_n = +\infty$), то ничего определенного о пределе их суммы сказать нельзя (величина предела зависит от конкретного примера), $\infty \infty$ неопределенность.

2. Произведение.

- А) Если один из множителей имеет конечный предел, отличный от нуля, а другой множитель стремится к бесконечности ($\lim_{x\to a} x_n = A \neq 0$; $\lim_{y\to a} y_n = \infty$), то по свойству бесконечно больших функций предел произведения равен бесконечности: $A*\infty = \infty$.
- Б) Если оба множителя стремятся к бесконечности ($\lim_{y\to a} x_n = \infty; \lim_{y\to a} y_n = \infty$), то по свойству бесконечно больших функций предел произведения равен бесконечности, при чем со знаком плюс (минус), если эти функции являются бесконечно большими одного знака (разного знака): $\infty * \infty = \infty$.
- В) Если же предел одного множителя равен нулю, у другого бесконечности $(\lim_{y\to a} x_n = \infty; \lim_{y\to a} y_n = 0)$, то ничего определенного о пределе их произведения сказать нельзя: $\infty*0$ неопределенность.

3. Частное.

- А) Если $\lim_{x\to a} x_n = A \neq 0$; $\lim_{y\to a} y_n = 0$, то предел их частного по теореме о связи между бесконечно малыми и бесконечно большими функциями будет равен бесконечности: $\frac{A}{0} = \infty$, так как $\frac{A}{0} = A * \frac{1}{0} = A * \infty = \infty$.
- Б) Если $\lim_{x\to a} x_n = A$; $\lim_{y\to a} y_n = \infty$, то предел их частного по теореме о связи между бесконечно малыми и бесконечно большими функциями будет равен нулю: $\frac{A}{\infty} = 0$.

Действительно, $\frac{A}{\infty} = A * \frac{1}{\infty} = A * 0 = 0.$

C) Если наоборот $\lim_{x\to a} x_n = \infty$; $\lim_{y\to a} y_n = B$, то предел их частного равен бесконечности: $\frac{\infty}{B} = \infty$.

1

Д) Если же обе функции стремятся к бесконечности $(\lim_{y\to a} x_n = \infty; \lim_{y\to a} y_n = \infty)$, то ничего определенного о пределе их частного сказать нельзя: $\frac{\infty}{\infty}$ - неопределенности.

Классификация бесконечно больших величин:

Пусть $\exists \{x_n\}$ и $\{y_n\}$ - две бесконечно большие

- 1. Если $existsim \lim_{n \to \infty} \frac{x_n}{y_n}$, то последовательности $\{x_n\}$ и $\{y_n\}$ несравнимы.
- 2. Если $\lim_{n\to\infty} \frac{x_n}{y_n}=p\neq 0$, то последовательности $\{x_n\}$ и $\{y_n\}$ одного порядка $x_n=O(y_n); y_n=O(x_n)$
- 3. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 1$, то последовательности $\{x_n\}$ и $\{y_n\}$ эквивалентны.
- 4. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = \infty$, то x_n величина большего порядка малочти, чем y_n .
- 5. Если $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$, то y_n величина большего порядка малости, чем x_n .