作业#3

(提交日期: 2023/11/7)

- 1. 公司决定使用 1000 万元新产品开发基金开发 A, B, C 三种新产品。经预测估计,开发 A, B, C 三种新产品的投资利润率分别为 5%, 7%, 10%。由于新产品开发有一定风险,公司研究后确定了下列优先顺序目标:
 - (1) A产品至少投资 300 万元;
 - (2)为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的35%;
 - (3) 应至少留有 10%的开发基金, 以备急用;
 - (4) 使总的投资利润最大。

试建立投资分配方案的目标规划模型。

解: 设分配给 A, B, C 三种新产品的开发投资额分别为 x_1, x_2, x_3

$$\min \ P_1d_1^- + P_2\left(d_2^+ + d_3^+ + d_4^+\right) + P_3d_5^- + P_4d_6^-$$

$$\begin{cases} x_1 + x_2 + x_3 \le 1000 \\ x_1 + d_1^- - d_1^+ = 300 \\ x_1 + d_2^- - d_2^+ = 350 \\ x_2 + d_3^- - d_3^+ = 350 \\ x_3 + d_4^- - d_4^+ = 350 \\ 1000 - \left(x_1 + x_2 + x_3\right) + d_5^- - d_5^+ = 100 \\ 0.05x_1 + 0.07x_2 + 0.1x_3 + d_6^- - d_6^+ = 100 \\ x_i \ge 0, i = 1, 2, 3; \ d_j^-, d_j^+ \ge 0, j = 1, \dots, 6 \end{cases}$$

- 2. 已知单位牛奶、牛肉、鸡蛋中的维生素及胆固醇含量等有关数据见下表。 如果只考虑这三种食物,并且设立了下列三个目标:
 - 第一,尽量满足三种维生素的每日最小需求量;
 - 第二,使每日摄入的胆固醇尽可能少;
 - 第三, 使每日购买食品的费用尽可能少。

请建立问题的目标规划模型。

项目	牛奶	牛肉	鸡蛋	每日最小需求量
火口	(500g)	(500g)	(500g)	/mg
维生素 A/mg	1	1	10	1
维生素 C/mg	100	10	10	30
维生素 D/mg	10	100	10	10

胆固醇/单位	70	50	120	
费用/元	1.5	8	4	

解: 设三种食物的每日摄入量分别为 x_1, x_2, x_3

$$\min \ P_1\Big(d_1^- + d_2^- + d_3^-\Big) + P_2d_4^+ + P_3d_5^+$$

$$\begin{cases} x_1 + x_2 + 10x_3 + d_1^- - d_1^+ = 1 \\ 100x_1 + 10x_2 + 10x_3 + d_2^- - d_2^+ = 30 \\ 10x_1 + 100x_2 + 10x_3 + d_3^- - d_3^+ = 10 \\ 70x_1 + 50x_2 + 120x_3 + d_4^- - d_4^+ = 0 \\ 1.5x_1 + 8x_2 + 4x_3 + d_5^- - d_5^+ = 0 \\ x_i \ge 0, i = 1, 2, 3; \ d_j^-, d_j^+ \ge 0, j = 1, \cdots, 5 \end{cases}$$

- 3. 下表中给出了一个运输问题及它的一个解,试问:
 - (1) 表中给出的解是否为最优解?请用位势法进行检验。
 - (2) 若价值系数 c_{24} 由 1 变为 3, 所给的解是否仍为最优解?若不是,请求出最优解。
 - (3) 若所有价值系数均增加1,最优解是否改变?为什么?
 - (4) 若所有价值系数均乘以 2, 最优解是否改变? 为什么?
 - (5) 写出该运输问题的对偶问题,并给出其对偶问题的最优解。

销地 产地	B_1	B_2	B_3	B_4	产量
$A_{\rm l}$	4	5 1	3 4	6	8
A_2	8 1	2	6	2 1	10
A_3	3	7	3 5	1 1	4
销量	8	5	6	3	22

解: (1) 采用位势法计算其检验数,结果如下:

销地产地	B_1		B_2		B_3		B_4		产量	и
A_1	(4)	4	5	1	3	4	(6)	6	8	0

A_2	8 1	(0) 2	(1) 6	2 1	10	1
A_3	(2) 3	(5) 7	3 5	1	4	1
销量	8	5	6	3	22	
v	0	1	4	0		

所有检验数非负,因此是最优解。

(2) 当价值系数 c_{24} 由 1 变为 3 时,重新计算其检验数,结果如下:

销地产地	B_1	B_2	B_3	B_4	产量	и
A_{l}	(6) 4	5 1	3 4	(6) 6	8	0
A_2	8 1	(- 2)	(-1)	2 3	10	3
A_3	(4) 3	(5) 7	3 5	1 1	4	1
销量	8	5	6	3	22	
v	-2	1	4	0		

有负的检验数,因此不是最优解。采用闭回路调整,得:

销地产地	B_1	B_2	B_3	B_4	产量	и
A_{l}	(4)	3	5 4	(6) 6	8	0
A_2	8 1	2	(1) 6	(2)	10	1
A_3	(2) 3	(5) 7	1 5	3	4	1
销量	8	5	6	3	22	
v	0	1	4	0		

此时检验数全部非负,得到最优解:

$$x_{12} = 3, x_{13} = 5, x_{21} = 8, x_{22} = 2, x_{33} = 1, x_{34} = 3$$

- (3) 最优解不变。
- (4) 最优解不变。
- (5) 对偶问题为:

max
$$w = 8u_1 + 10u_2 + 4u_3 + 8v_1 + 5v_2 + 6v_3 + 3v_4$$

s.t. $u_i + v_j \le c_{ij}$ $(i = 1, 2, 3; j = 1, 2, 3, 4)$

由(1)中所得检验数知,对偶问题的最优解为 $Y = (0,1,1,0,1,4,0)^T$ (对偶最 优解不唯一)。

4. 某市有三个面粉厂,它们供应三个面食加工厂所需的面粉。各面粉厂的产量、各面食加工厂加工面粉的能力、各面食加工厂和各面粉厂之间的单位运价,均示于下表中。假定在第 1,2 和 3 面食加工厂制作单位面粉食品的利润分别为 12、16 和 11,试确定使总效益最大的面粉分配计划(假定面粉厂和面食厂都属于同一个主管单位)。

食品厂面粉厂	1	2	3	面粉厂产量
I	3	10	2	20
II	4	11	8	30
III	8	11	4	20
食品厂需量	15	25	20	

解:据题意所得的新运价表:

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	-9	-6	-9	0	20
II	-8	-5	-3	0	30
III	-4	-5	-7	0	20
食品厂需量	15	25	20	10	

用西北角法获得初始可行解:

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
Ι	15	5	(-5)	(-3)	20
II	(0)	20	10	(-4)	30
III	(8)	(4)	10	10	20
食品厂需量	15	25	20	10	

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	15	(5)	5	(2)	20
II	(-5)	25	5	(-4)	30
III	(3)	(4)	10	10	20
食品厂需量	15	25	20	10	

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	10	(0)	10	(2)	20
II	5	25	(5)	(1)	30
III	(3)	(-1)	10	10	20
食品厂需量	15	25	20	10	

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	0	(0)	20	(1)	20
II	15	15	(5)	(0)	30
III	(4)	10	(1)	10	20
食品厂需量	15	25	20	10	

总效益为: 20×9+15×8+15×5+10×5=425。

由于有检验数为0,所以本题有无穷多最优解。

食品厂面粉厂	1	2	3	Dummy	面粉厂产量
I	0		20		20
II	15	5		10	30
III		20			20
食品厂需量	15	25	20	10	

总效益为: 20×9+15×8+5×5+20×5=425。

5. **[3.10]** 甲、乙、丙三个城市每年需要的煤炭由鸡西、鹤岗两处煤矿负责供应。这两处煤矿的价格和质量都基本相同。鸡西、鹤岗两处煤矿的供应能

力分别为 400 万 t,450 万 t,由煤矿至各城市的单位运价(万元 / 万 t)如表所示。

表 煤矿运价与供需表

销地 产地	甲城市	乙城市	丙城市	产量(万t)
鸡西煤矿	15	18	22	400
鹤岗煤矿	21	25	16	450
需求量 (万 t)	320	250	无上限	

由于供不应求,三个城市申报需求分别为 320 万 t, 250 万 t 和无上限。经协商决定甲城市供应量可减少 30 万 t; 乙城市应全部满足,丙城市不少于 270 万 t。试求总运费为最低的调运方案。

解:据题意所得的新运价表:

销地 产地	甲 1	甲 2	Z	丙 1	丙 2	产量(万t)
鸡西煤矿	15	15	18	22	22	400
鹤岗煤矿	21	21	25	16	16	450
虚拟产地	M	0	M	M	0	30
需求量 (万 t)	290	30	250	270	40	880

鸡西煤矿给甲公司 150 万 t, 乙公司 250 万 t; 鹤岗煤矿给甲公司 140 万 t, 丙公司 310 万 t。总调运费用为 14650 万元。

6. **[3.12]** 某农业贸易公司从事谷物买卖,现在农产品生产基地 A_1 、 A_2 、 A_3 分别购买了谷物 3 车皮、6 车皮、5 车皮。拟在 B_1 、 B_2 、 B_3 、 B_4 这 4 城市销售,各地的需求分别为 2 车皮、4 车皮、3 车皮、3 车皮。所有货物都要经过中转地 T_1 或 T_2 运往目的地。相关线路的运输价格如下表(单位:千元/车皮)。

表(1)

-	中转地 T ₁	中转地 T ₂
 农基地 A ₁	0	1 17 × 12
	0	0
农基地 A ₂	3	8
农基地 A3	9	3

表(2)

	城市 B ₁	城市 B ₂	城市 B ₃	城市 B4
中转地 T1	44	34	34	32
中转地 T2	57	35	28	24

试利用计算机求出最优的运输方案。

- **解:** (1) 总供给 S=14 车皮; 总需求 D=12 车皮; 供过于求。
 - (2) 总运输费用为 419 千元。农基地 A1 向中转地 T2 运 1 车皮;农基地 A2 向中转地 T1 运 6 车皮;中转地 T1 向城市 B1、B2 运 2、4 车皮;中转地 T2 向城市 B3、B4 运 3、3 车皮。