Introduction and overview

HSE - IU Speech Recognition Workshop

What is speech recognition?

- A computer system that turns audible speech into readable text
- Also known as:
 - o speech to text (STT), automatic speech recognition (ASR), ...

Applications

- Automatic subtitling and dictation software
- Voice control in cars, home assistants, etc.
- Pronunciation training for L2 speakers
 - https://papareo.nz/docs/PapaReo_NeurIPS2020_Poster.pdf

Components

- Audio processing (or feature extraction):
 - Convert audio into a machine-readable and processable form
- Acoustic model:
 - Take sequences of audio frames and predict how likely each character in the alphabet is for that frame
- Decoder:
 - Take a sequence of predictions and produce a set of hypotheses
- Language model:
 - Include information about spelling and context to improve predictions

Audio processing

- Turn audio files into a machine-readable form (matrices of numbers)
- Go from **amplitude** over time to amplitude at frequency over time (2D \rightarrow 3D)
 - Note: The higher the amplitude the higher the energy (loudness)

Acoustic model

alphabet

а	b	С	 k	 t	 z
0.1	0.1	0.3	 0.4	 0.1	 0.0
0.0	0.1	0.3	 0.5	 0.1	 0.0
0.7	0.0	0.0	 0.1	 0.1	 0.1
0.7	0.0	0.0	 0.2	 0.1	 0.1
0.0	0.1	0.2	 0.1	 0.6	 0.0
0.0	0.0	0.1	 0.1	 0.7	 0.1

- Predicts for each frame the distribution over the alphabet
 - Alphabet is the set of possible output characters [a, b, c, ..., z]
- The best prediction here would be {k k a a t t}
 - Note: There are many more audio frames than alphabetic characters

Decoder

t=0	
me)	
(frai	
ime	
_	

t=5

а	b	С	 k	 t	 z
0.1	0.1	0.3	 0.4	 0.1	 0.0
0.0	0.1	0.3	 0.5	 0.1	 0.0
0.7	0.0	0.0	 0.1	 0.1	 0.1
0.7	0.0	0.0	 0.2	 0.1	 0.1
0.0	0.1	0.2	 0.1	 0.6	 0.0
0.0	0.0	0.1	 0.1	 0.7	 0.1

- Takes predictions from the acoustic model and outputs final hypotheses
- Solves two problems:
 - Multiple frames can correspond to a single character
 - Finding the most probable sequence of characters given the input frames

Language modelling

W	P(w)
cat	0.8
kat	0.1
catt	0.05
katt	0.05

- There is typically far less transcribed audio data than raw text data
- Language models are trained on raw text and provide additional information:
 - Spelling in context, e.g. /tu/ = {to, two, too}
 - Word segmentation, e.g. /aisorit/ = [i, saw, it]

Remainder of the workshop

- 11:00 11:15 Introductions and installation
- 11:15 11:30 1. Introduction and overview
- 11:30 12:15 2. Audio processing (Anurag)
- 12:15 12:30 Discussion and break
- 12:30 13:15 3. Acoustic models (Nastya)
- 13:15 14:00 4. Decoding (Fran)
- 14:00 14:15 Discussion and break
- 14:15 15:00 5. Language modelling (Nils)
- 15:00 15:15 Wrapping up

