# PROGRAMAÇÃO WEB



**Domingos Henriques** 

Neste módulo, em um período de 5 dias, vamos explorar o desenvolvimento integral e a hospedagem de um website de página única (one page) utilizando o framework Bootstrap para CSS e JavaScript.

Ao longo deste curso, você terá a oportunidade de aprender, na prática, como construir um website funcional e moderno a partir do zero.

O programa será estruturado para proporcionar uma experiência prática e abrangente, capacitando você a criar, aprimorar e publicar seu próprio projeto web.

A abordagem envolverá conceitos práticos, exercícios de codificação, e discussões sobre as melhores práticas, preparando você para enfrentar desafios do mundo real no desenvolvimento web.

# Programação Diária

01

Introdução e Conceitos Básicos

02

Fundamentos da Web e Tecnologias

03

Construção de Websites com Frameworks

04

Continuação da Construção do Website

05

Publicação e Hospedagem



# Introdução

- Boas-vindas e Apresentação do Programa
- O que é Programação e por que é importante?
- Iniciação à Lógica de Programação
- Overview do Desenvolvimento Web
- Panorama Atual do Mercado de TI
- Saídas Profissionais e Áreas de Atuação

### **Objectivos**

- Proporcionar uma introdução prática e abrangente ao mundo da programação e desenvolvimento web.
- Desenvolver as habilidades essenciais necessárias para construir websites funcionais.
- Familiarizar você com ferramentas, tecnologias e frameworks relevantes.
- Capacitar você a criar e publicar um website real.

### **Expectativas**

- Participação ativa e envolvimento nas atividades práticas.
- Compreensão aprofundada dos conceitos apresentados.
- Aplicação prática dos conhecimentos adquiridos na construção de um website.
- Interesse em aprender e explorar oportunidades de crescimento profissional.

Ao final do estágio, você sairá com uma base sólida em programação web, projetos práticos concluídos e um entendimento claro das possíveis direções em suas carreiras profissionais.

## Programação

Programação é o processo de criação de um conjunto de instruções que informam a um computador como executar uma tarefa específica.

# Programação

Essas instruções, conhecidas como código, são escritas em linguagens de programação e são essenciais para o funcionamento de softwares, aplicativos, websites e sistemas em geral.



# Linguagens, tecnologias de Programação e de gestão de dados





























## Programação

A programação está presente em praticamente todos os aspectos da tecnologia moderna.



### Indústria automotiva

Em diferentes setores, a programação desempenha papéis cruciais. Na indústria automotiva, por exemplo, ela é usada para controlar sistemas de produção automatizados.



### Medicina

Na medicina, a programação é
utilizada para modelar processos
biológicos, analisar dados de
pacientes e até mesmo em cirurgias
assistidas por computador.



# Finanças

No setor financeiro, é fundamental para análise de dados, tomada de decisões e automação de processos bancários.



### **Importância**

A programação é uma ferramenta poderosa para a resolução de problemas complexos.



# Importância na Resolução de Problemas

Ao decompor um problema em etapas menores e expressá-lo em termos de algoritmos, os programadores podem desenvolver soluções eficientes.



### Importância na Resolução de Problemas

A habilidade de resolver problemas é uma das competências mais valiosas no campo da programação.



## Automação de Tarefas

A automação de tarefas é outra área crítica. Através da programação, é possível criar scripts e softwares que executam tarefas rotineiras de forma automatizada, economizando tempo e reduzindo erros.



Importância na Automação de Tarefas

Por exemplo, em ambientes de negócios, a automação pode ser aplicada para processar grandes volumes de dados, gerar relatórios automaticamente e realizar tarefas repetitivas.



# Exemplos Práticos de Aplicação de Programação em Diversas Áreas

#### 1. Saúde:

Programação é usada para modelagem de dados genéticos, simulação de processos biológicos e desenvolvimento de softwares para monitoramento de pacientes.

# Exemplos Práticos de Aplicação de Programação em Diversas Áreas

#### 2. Educação:

Ferramentas de aprendizado online, sistemas de gestão escolar e plataformas educacionais são desenvolvidos com programação.

# Exemplos Práticos de Aplicação de Programação em Diversas Áreas

#### 3. Agricultura:

Sistemas de automação para irrigação, monitoramento de safras e otimização de logística agrícola são implementados com programação.

# Exemplos Práticos de Aplicação de Programação em Diversas Áreas

#### 4. Finanças:

Algoritmos financeiros, softwares de análise de risco e sistemas de processamento de transações são exemplos de aplicações na área financeira.

# Exemplos Práticos de Aplicação de Programação em Diversas Áreas

#### 5. Transporte:

Controle de tráfego, otimização de rotas e desenvolvimento de sistemas de transporte público são áreas onde a programação é essencial.

# Exemplos Práticos de Aplicação de Programação em Diversas Áreas

#### 6. Entretenimento:

Desenvolvimento de jogos, aplicativos de streaming, efeitos especiais em filmes e animações são impulsionados pela programação.

Estes exemplos ilustram como a programação está em todos os aspectos da sociedade moderna, proporcionando soluções inovadoras e eficientes em uma variedade de sectores.

# Lógica de programação

Lógica de programação é o modo como se escreve um programa de computador, um **algoritmo**.



# Algoritmo

Um algoritmo é uma **sequência** de **passos** para se executar uma função



# Algoritmo - Exemplo

Um exemplo de algoritmo, fora da computação, é uma receita de bolo.
Na receita, devem-se seguir os passos para o bolo ficar pronto e sem nenhum problema.



# Lógica de programação

A lógica de programação é a base essencial para o desenvolvimento de algoritmos e, por conseguinte, para a programação de software.



# Lógica de programação

Esses conceitos fundamentais são as diretrizes que ajudam os programadores a criar soluções lógicas e eficientes para os problemas.



# Processo da lógica

#### 1. Sequência:

A ordem em que as instruções são executadas. As ações ocorrem em sequência, uma após a outra.

## Processo da lógica

#### 2. Seleção (ou Tomada de Decisão):

Utilizada para escolher entre diferentes caminhos de execução com base em condições.

Por exemplo, "Se uma condição for verdadeira, faça X; caso contrário, faça Y."

### Processo da lógica

#### 3. Repetição (ou Iteração):

Permite que um bloco de código seja repetido várias vezes, com base em uma condição.

Por exemplo, "Enquanto uma condição for verdadeira, repita este bloco de código."

### Processo da lógica

#### 4. Modularização:

Divide o código em partes menores e mais gerenciáveis (funções ou procedimentos), facilitando a compreensão e manutenção do código.

## **Exercícios 1**

Abaixo

A prática é crucial para o desenvolvimento da lógica de programação. Aqui estão alguns exercícios práticos que ajudarão a aprimorar o raciocínio lógico

#### 1. Sequência:

- Escreva um algoritmo para calcular a média de três números.
- Desenvolva um código para exibir a soma dos números de 1 a 10.

#### 2. Seleção (Tomada de Decisão):

- Crie um programa que determine se um número é par ou ímpar.
- Escreva um código que classifique um aluno como "Aprovado" ou "Reprovado" com base em sua nota.

#### 3. Sequência:

- Implemente um algoritmo para calcular o fatorial de um número.
- Desenvolva um programa que imprima os números primos até 50.

#### 4. Modularização:

- Crie uma função que receba dois números e retorne a soma.
- Desenvolva um programa principal que utilize a função para calcular a média de três números.

## **Exercícios 2**

**Abaixo** 

## Algoritmos Simples para Compreensão Prática

#### 1. Algoritmo de Troca:

 Descreva um algoritmo para trocar o valor de duas variáveis sem o uso de uma variável temporária.

#### 2. Algoritmo de Busca Binária:

 Entenda como funciona um algoritmo de busca binária para encontrar um elemento em uma lista ordenada.

#### 3. Algoritmo de Ordenação (ex: Bubble Sort):

Compreenda o passo a passo de um algoritmo de ordenação simples,
 como o Bubble Sort.

#### 4. Algoritmo de Fatorial:

• Discuta um algoritmo eficiente para calcular o fatorial de um número usando iteração ou recursão.

Esses exercícios e algoritmos proporcionarão uma base sólida para você, preparando-o para os desafios mais complexos que encontrará ao programar soluções reais.

### **Anexos**

Abaixo

### Algoritmo

Algoritmos são sequências estruturadas de instruções que realizam uma tarefa específica.



## Algoritmo

A compreensão de algoritmos simples é essencial para a lógica de programação.



### **Fatorial**

O fatorial de um número é o produto de todos os números inteiros positivos menores ou iguais a esse número. É representado pelo símbolo "!".



### **Fatorial**

Por exemplo, o fatorial de 5 **(denotado como 5!)** é calculado da seguinte forma:

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$



### **Fatorial**

Geralmente, o fatorial é utilizado em problemas combinatórios e probabilísticos, especialmente quando se trata de calcular o número de maneiras diferentes que um conjunto de elementos pode ser organizado.

### Fatorial - Fórmula

A fórmula matemática para o fatorial de um número n é:

$$n! = n \times (n-1) \times (n-2) \times ... \times 2 \times 1$$



#### Alguns valores conhecidos de fatoriais incluem

$$0! = 1$$

$$0! = 1$$

$$1! = 1$$

$$2! = 2 \times 1 = 2$$

$$3! = 3 \times 2 \times 1 = 6$$

$$3!=3\times2\times1=6$$

$$4! = 4 \times 3 \times 2 \times 1 = 24$$

$$4!=4\times3\times2\times1=24$$

E assim por diante. O fatorial cresce rapidamente à medida que o número n aumenta.



```
JS exe01.js
          \times
JS exe01.js > ...
       // Exercício de calculo de média de 3 números
       function calcularMedia(n1,n2,n3){
           //calculo de média
   6
           let media = (n1 + n2 + n3)/3
   8
           // retorno do resultado
           return media
 10
 11
       // como usar a função acima
 12
       let resultado = calcularMedia(5, 5, 5)
 13
 14
       console.log("A média é: ", resultado);
```

```
JS exe02.js X
JS exe02.js > 分 soma1a10 > Ø i
       // Exercício soma dos números de 1 a 10
       function soma1a10(){
           // Inicialização da variavel de soma
           let soma = 0
           // loop para somar os números de 1 a 10
  9
           for (let i = 1; i <=10; i++) {
 10
               soma +=1
 11
 12
 13
 14
           // saída do resultado
 15
           console.log("A soma dos números de 1 a 10 é: ", soma)
 16
 17
       // chamada da função
 18
 19
       soma1a10()
```

```
JS exe03.js
Js exe03.js > ...
       // Exercício determinar se um número é par ou impar
       function parOuImpar(numero){
  4
           // verificar se e par ou impar
  6
           if(numero % 2 === 0){
                console.log("O número ", numero, " é par...")
  8
            }else{
  9
               console.log("O número ", numero, " é impar...")
 10
 11
 12
       // chamada da função
 13
 14
       parOuImpar(7)
```

```
JS exeO4.js
JS exe04.js > 😭 classificarAluno
       // Aprovado ou reprovado
       function classificarAluno(nota){
   4
           // verificar se o aluno aprovou ou reprovou
   6
           if(nota >= 5){
                console.log("Aprovado")
   8
            }else{
   9
               console.log("Reprovado")
 10
 11
 12
 13 // chamada da função
      classificarAluno(10)
 14
```

```
JS exe05.js X
JS exe05.js > 😭 calcularFactorial
       // Aprovado ou reprovado
       function calcularFactorial(numero){
           // inicialização do factorial
           let factorial = 1
           // calcular
           for (let i = 1; i <= numero; i++) {
               factorial *=i
  10
 11
 12
 13
           // retornar resultado
  14
           return factorial
 15
 16
       // mostrar resultado
 17
       let resultadoFactorial = calcularFactorial(5)
  18
  19
       console.log("O factorial é: ", resultadoFactorial);
```

```
JS exe06.js X
JS exe06.js > ...
       // Números Primos
   2
       function numeroPrimoAte50(){
           // loop para verificar os números primos até 50
           for (let numero = 2; numero <=50; numero++) {</pre>
               let primo = true
               // verificar se o numero é primo
               for (let i = 2; i < numero; i++) {
                    if(numero % i === 0){
  11
                        primo = false
  12
 13
                        break //não é primo não precisa continuar
               // se é primo, mostra
 17
               if (primo) {
                    console.log(numero);
  21
       numeroPrimoAte50()
```

```
JS exe07.js
JS exe07.js > [❷] resultado
       // Exercício de calculo de soma de 2 números.
       function calcularSoma(n1,n2){
   4
   5
           //calculo da soma
   6
           let soma = (n1 + n2)/3
           // retorno do resultado
   8
           return soma
 10
 11
       // como usar a função acima
 12
       let resultado = calcularSoma(3, 7)
 13
       console.log("A média é: ", resultado);
 14
```

# Até a próxima aula