

Supplementary Material

1 SUPPLEMENTARY MATHEMATICS

1.1 The derivation of equation

$$|Q_L| = 2^{L-2}(2^{L-1} + 1) (S1)$$

Proof: For $L \geq 2$, there are 4^L IBD (identical by descent) probabilities $Q(i_1, i_2, \dots i_L)$ since $i_l = 1, 2, 3$ or 4 and furthermore they add up to 1. A number of these probabilities are equal because of two symmetries: (1) the two homologous chromosomes in each individual play identical roles, and (2) the siblings play identical roles (assuming no sex-dependence of meiosis, so that for instance the recombination rates $r_{l,l'}$ are sex-independent. It is thus appropriate to use only one representative of each symmetry equivalence class, so that for instance one may impose this representative to have its first index, i_1 , equal to zero. In fact one can identify exactly one element in each class by imposing that the indices of the representative Q's have either

1.
$$i_l \in \{0, 1\} \ \forall l \in \{2, .., L\}, or$$

2.
$$i_l \in \{0,1\} \ \forall l \in \{2,..,K-1\}, i_K = 2 \ \text{and} \ i_l \in \{0,1,2,3\} \ \forall l \in \{K+1,..,L\}$$

The number of equivalence classes and thus of Q's to consider is then

$$|Q_L| = 2^{L-1} + \sum_{l=2}^{L} 2^{l-2} 4^{L-l} = 2^{L-1} + 2^{2L-2} \sum_{l=2}^{L} 2^{-l}$$
 (S2)

Given that $\sum_{l=2}^{L} 2^{-l}$ is a geometric progression of common ratio 2^{-1} from 2 to L, the sum of its terms can be expressed as:

$$\sum_{l=2}^{L} 2^{-l} = \frac{2^{-2} - 2^{-(L-1)}}{1 - 2^{-1}} = 2^{-1} - 2^{-L}$$
 (S3)

Substituting S3 in S2, we get

$$|Q_L| = 2^{L-1} + 2^{2L-2}(2^{-1} - 2^{-L}) = 2^{L-1} + 2^{2L-3} - 2^{L-2}$$
(S4)

Factorizing with respect to 2^{L-2} and after simplification, this gives

$$|Q_L| = 2^{L-2}(1+2^{L-1}). (S5)$$

2 THE INHOMOGENEOUS EQUATION

$$4Q(0,0,0) + 4Q(0,0,1) + 8Q(0,0,2) + 4Q(0,1,0) + 4Q(0,1,1) + 8Q(1,1,2) + 8Q(0,2,0) + 8Q(0,2,1) + 8Q(0,2,2) + 8Q(0,2,3) = 1$$
(S6)

From equation S6 and Figures S9, S18, S27, S36, S45, S54, S54, S63, S72, S81, and S90 we get this system

where $\bar{r} = 1 - r$; the complement value of the recombination rate.

3 THE SCHP EQUATIONS

3.1

See Figure \$9

$$((1-r_{12})(1-r_{23})-1)Q(0,0,0) + \frac{1}{2}(1-r_{12})Q(0,0,2) + \frac{1}{2}(1-r_{13})Q(0,2,0) + \frac{1}{2}(1-r_{23})Q(0,2,2) = 0$$
(S8)

Figure S1. $Q(0,0,0): \frac{1}{2} \times (1-r_{12}) \times (1-r_{23}) \times Q(0,0,0)$

Figure S3. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{13}) \times Q(0,2,0)$

Figure S5. $Q(0,0,0): \frac{1}{2} \times (1-r_{12})(1-r_{23}) \times Q(2,2,2)$

Figure S7. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{13}) \times Q(2,0,2)$

Figure S2. $Q(0,0,0): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(0,0,2)$

Figure S4. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,2,2)$

Figure S6. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{12}) \times Q(2,2,0)$

Figure S8. $Q(0,0,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,0,0)$

Figure S9. Q(0, 0, 0)

See Figure \$18

$$(1 - r_{12})r_{23}Q(0,0,0) - Q(0,0,1) + \frac{1}{2}(1 - r_{12})Q(0,0,2) + \frac{1}{2}r_{13}Q(0,2,0) + \frac{1}{2}r_{23}Q(0,2,2) = 0$$
(S9)

Figure S10. $Q(0,0,1): \frac{1}{2} \times (1-r_{12}) \times r_{23} \times Q(0,0,0)$

Figure S12. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{12}) \times Q(0,0,2)$

Figure S14. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(2,0,2)$

Figure S16. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(2,0,0)$

Figure S18. Q(0, 0, 1)

Figure S11. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(0,2,0)$

Figure S13. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,2,2)$

Figure S15. $Q(0,0,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{12}) \times Q(2,2,0)$

Figure S17. $Q(0,0,1): \frac{1}{2} \times (1-r_{12}) \times r_{23} \times Q(2,2,2)$

See Figure S27.

$$\frac{1}{2}(1-r_{12})Q(0,0,1) + (\frac{1}{2}(1-r_{12})-1)Q(0,0,2) + \frac{1}{4}Q(0,2,1) + \frac{1}{4}Q(0,2,3) = 0$$
 (S10)

Figure S19. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(0,0,1)$

Figure S21. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(2,2,1)$

Figure S23. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,1)$

Figure S27. Q(0, 0, 2)

Figure S25. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,1)$

Figure S20. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(0,0,3)$

Figure S22. $Q(0,0,2): \frac{1}{2} \times (1-r_{12}) \times \frac{1}{2} \times Q(2,2,3)$

Figure S24. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,3)$

Figure S26. $Q(0,0,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,3)$

See Figure \$36.

$$r_{12}r_{23}Q(0,0,0) + \frac{1}{2}r_{12}Q(0,0,2) - Q(0,1,0) + \frac{1}{2}(1-r_{13})Q(0,2,0) + \frac{1}{2}r_{23}Q(0,2,2)$$
 (S11)

Figure S28. $Q(0,1,0): \frac{1}{2} \times r_{12} \times (1-r_{23}) \times Q(0,0,0)$

Figure S30. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(0,2,0)$

Figure S32. $Q(0,1,0): \frac{1}{2} \times r_{12}r_{23} \times Q(2,2,2)$

Figure S34. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times (1-r_{13}) \times Q(2,0,2)$

Figure S36. Q(0, 1, 0)

Figure S29. $Q(0,1,0): \frac{1}{2} \times r_{12} \times \frac{1}{2} \times Q(0,0,2)$

Figure S31. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,2,2)$

Figure S33. $Q(0,1,0): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(2,2,0)$

Figure S35. $Q(0,1,0): \frac{1}{2} \times r_{23} \times \frac{1}{2} \times Q(2,0,0)$

See Figure \$45

$$r_{12}(1-r_{23})Q(0,0,0) + \frac{1}{2}r_{12}Q(0,0,2) - Q(0,1,1) + \frac{1}{2}r_{13}Q(0,2,0) + \frac{1}{2}(1-r_{23})Q(0,2,2)$$
 (S12)

Figure S37. $Q(0,1,1): \frac{1}{2} \times r_{12} \times (1-r_{23}) \times Q(0,0,0)$

Figure S39. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times r_{13} \times Q(0,2,0)$

Figure S41. $Q(0,1,1): \frac{1}{2} \times r_{12} \times (1-r_{23}) \times Q(2,2,2)$

Figure S43. $Q(0,1,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(2,0,2)$

Figure S45. Q(0, 1, 1)

Figure S38. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(0,0,2)$

Figure S40. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,2,2)$

Figure S42. $Q(0,1,1): \frac{1}{2} \times r_{12} \times \frac{1}{2} \times Q(2,2,0)$

Figure S44. $Q(0,1,1): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,0,0)$

See Figure S54.

$$\frac{1}{2}r_{12}Q(0,0,1) + \frac{1}{2}r_{12}Q(0,0,2) - Q(0,1,2) + \frac{1}{4}Q(0,2,1) + \frac{1}{4}Q(0,2,3)$$
 (S13)

Figure S46. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(0,0,1)$

Figure S48. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \times r_{12} \times Q(2,2,1)$

Figure S50. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,1)$

Figure S52. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,1)$

Figure S54. Q(0, 1, 2)

Figure S47. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(0,0,3)$

Figure S49. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times r_{12} \times Q(2,2,3)$

Figure S51. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,2,3)$

Figure S53. $Q(0,1,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,0,3)$

See Figure S63.

$$\frac{1}{2}(1-r_{13})Q(0,1,0) + \frac{1}{4}Q(0,1,2) + (\frac{1}{2}(1-r_{13})-1)Q(0,2,0) + \frac{1}{4}Q(0,1,2)$$
 (S14)

Figure S55. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(0,1,0)$

Figure S57. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(2,1,2)$

Figure S59. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,0)$

Figure S61. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,2)$

Figure S63. Q(0, 2, 0)

Figure S56. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(0,3,0)$

Figure S58. $Q(0,2,0): \frac{1}{2} \times (1-r_{13}) \times \frac{1}{2} \times Q(2,3,2)$

Figure S60. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,0)$

Figure S62. $Q(0,2,0): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,3)$

See Figure S72.

$$\frac{1}{2}r_{13}Q(0,1,0) + \frac{1}{4}Q(0,1,2) + \frac{1}{2}r_{13}Q(0,2,0) - Q(0,2,1) + \frac{1}{4}Q(0,2,3)$$
 (S15)

Figure S64. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(0,1,0)$

Figure S66. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(2,1,2)$

Figure S68. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,0)$

Figure S70. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,2)$

Figure S72. Q(0,2,1)

Figure S65. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(0,3,0)$

Figure S67. $Q(0,2,1): \frac{1}{2} \times r_{13} \times \frac{1}{2} \times Q(2,3,2)$

Figure S69. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,0)$

Figure S71. $Q(0,2,1): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,3,2)$

See Figure \$81.

$$\frac{1}{2}(1-r_{23})Q(0,1,1) + \frac{1}{4}Q(0,1,2) + \frac{1}{4}Q(0,2,1) + (\frac{1}{2}(1-r_{23})-1)Q(0,2,2)$$
 (S16)

Figure S73. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,1,1)$

Figure S75. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,1,1)$

Figure S77. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,3)$

Figure S79. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,3)$

Figure S81. Q(0, 2, 2)

Figure S74. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(0,3,3)$

Figure S76. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times (1-r_{23}) \times Q(2,3,3)$

Figure S78. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(031)$

Figure S80. $Q(0,2,2): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,1)$

3.10

See Figure \$90.

$$\frac{1}{2}r_{23}Q(0,1,1) + \frac{1}{4}Q(0,1,2) + \frac{1}{4}Q(0,2,1) + \frac{1}{2}r_{23}Q(0,2,2) - Q(0,2,3)$$

Figure S82. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,1,1)$

Figure S84. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(2,1,1)$

Figure S86. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(0,1,3)$

Figure S88. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,1,3)$

Figure S90. Q(0,2,3)

Figure S83. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(0,3,3)$

Figure S85. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times r_{23} \times Q(2,3,3)$

Figure S87. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(031)$

Figure S89. $Q(0,2,3): \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times Q(2,3,1)$