

WORKSHEET-3

for JEE (MAIN+ADVANCED) 2021 ENTHUSIAST COURSE

MATHEMATICS

CLASS-XII

FUNCTION

1. Domain and range of $f(x) = \sin^{-1}(\cos^{-1}[x])$ where [.] is G.I.F, are

(A)
$$[1,2),\{0\}$$

(B)
$$[0,1],\{-1,0,1\}$$

(C)
$$[-1,1], \{0, \sin^{-1}\left(\frac{\pi}{2}\right), \sin^{1}\left(\pi\right)\}$$

(D)
$$[-1,1], \left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$$

2. If $f(x) = log_{[x-1]} \left(\frac{|x|}{x}\right)$ where [.] is G.I.F then domain and range are

(A)
$$(2, \infty), (0, 1)$$

(B)
$$[3,\infty),\{0\}$$

(C)
$$[3,\infty),\{0,1\}$$

(D)
$$(-\infty \infty); \{0\}$$

3. Let f(x) and g(x) be bijective functions where $f:\{a,b,c,d\} \rightarrow \{1,2,3,4\}$ and $g:\{3,4,5,6\} \rightarrow \{w,x,y,z\}$ respectively. The no. of elements in the range set of g(f(x)) is (A) 1 (B) 2 (C) 3 (D) 4

4. The range of $f(x) = \frac{1}{|\sin x|} + \frac{1}{|\cos x|}$ is:

(A)
$$[2\sqrt{2}, \infty)$$

(B)
$$\left(\sqrt{2},2\sqrt{2}\right)$$

(C)
$$(0,2\sqrt{2})$$

(D)
$$(2\sqrt{2},4)$$

5. The range of $f(x) = \left[\frac{1}{\sin\{x\}}\right]$ is , where {.} is fractional part and [.] is G.I.F:

(A)
$$\{1, -1\}$$

(D) Z

6. The range of $f(x) = \frac{\tan(\pi[x^2 - x])}{1 + \sin(\cos x)}$ where [.] is G.I.F is:

(A)
$$\left(0, \frac{\pi}{2}\right)$$

(B)
$$\{0,1\}$$

(D)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

7. The range of $f(x) = \sqrt{a-x} + \sqrt{x-b}$ is (where a > b > 0)

(A)
$$\left[\sqrt{a-b}, \sqrt{2(a-b)}\right]$$

(B)
$$\left[\sqrt{a-b}, \sqrt{(a+b)}\right]$$

- The range of the function $f(x) = \log \sqrt{2} \left(2 \log_2(16\sin^2 x + 1)\right)$ is 8.
 - (A) $(-\infty,1)$

(B) $(-\infty, 2)$

(C) $(-\infty,1)$

- (D) $(-\infty, 2]$
- If $f(x) = \pi \left(\frac{\sqrt{x+7} 4}{x-9} \right)$, then the range of function $y = \sin(2f(x))$ is: 9.
 - (A)[0,1]

(B) $\left(0, \frac{1}{\sqrt{2}}\right)$

(C) $\left(0, \frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}, 1\right)$

- (D)(0,1]
- If the range of function $f(x) = \frac{x^2 + x + c}{x^2 + 2x + c}$, $x \in R$ is $\left[\frac{5}{6}, \frac{3}{2}\right]$, then **c** is equal to 10.
 - (A) 4

(B)3

(C) 4

(D)5

COMPREHENSION BASED QUESTIONS (11-15)

Let 'f' be a function satisfying $f(x) = \frac{a^x}{a^x + \sqrt{a}} = g_a(x)(a > 0)$

- Let $f(x) = g_9(x)$ then the value of $\left[\sum_{r=1}^{1995} f\left(\frac{r}{1996}\right)\right] = \text{ where [.] is G.I.F}$ (A) 995 (D) 998
- Let $f(x) = g_4(x)$ then $\sum_{r=1}^{1996} f\left(\frac{r}{1997}\right) =$ **12**.

 - (A) 100 (C) odd

- (D) neither even nor odd

- The value of $g_5(x) + g_5(1-x)$ is : (A) 1 (B) 5 13.

(C) 10

(D) 6

- The value of $\sum_{r=1}^{2n-1} 2.f\left(\frac{r}{2n}\right) =$ (A) 0 14.

(C) 2n

- (D) 2n-2
- If the value of $\sum_{r=0}^{2n} f\left(\frac{r}{2n+1}\right) = \frac{1}{1+\sqrt{a}} + 987$ then the value of 'n' is : **15**.

(C)987

(D) 988

MATRIX MATCH TYPE

16. Match the following functios with their ranges

COLUMN-I	COLUMN-II				
(A) $f(x) = \log_3(5 + 4x - x^2)$	(p) function is not defined				
(B) $f(x) = \log_3(x^2 - 4x - 5)$	(q) $[0,\infty)$				
(C) $f(x) = \log_3(x^2 - 4x + 5)$	(r) $(-\infty, 2]$				
(D) $f(x) = \log_3(4x - 5 - x^2)$	(s) R				

SUBJECTIVE QUESTION:

17. Find domain and range of the function $y = \log_e (3x^2 - 4x + 5)$.

ANSWER KEY

Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	Α	В	В	A	С	С	A	D	С	С	
Que.	11	12	13	14	15	16		17			
Ans.	С	В	Α	В	С	(A)-r, (B)-s, (C)-q, (D)-p		(A)-r, (B)-s, (C)-q, (D)-p $ \boxed{ \left[\log \left(\frac{11}{3} \right), \infty \right] }$			·)