3	(a)	State Newton's third law of motion.										
										[2]		
	(b)	A block X of mass $m_{\rm X}$ slides in a straight line along a horizontal frictionless surface, as shown in Fig. 3.1.										
	mas	s m _X speed	5 <i>v</i>	Y	mass $m_{\rm Y}$		spec X	ed v				
		///////	Fig. 3.1	/////		/////	Fig.	3.2	////	,		
		The block X, moving with speed $5v$, collides head-on with a stationary block Y of mass m_{Y} . The two blocks stick together and then move with common speed v , as shown in Fig. 3.2.										
		(i) conservation of momentum to show that the ratio $\frac{m_Y}{m_X}$ is equal to 4.										
		(ii) Calculate th	ne ratio							[2]		
total kinetic energy of X and Y after collision												
			total kinet	ic energy of	X and Y before	collision						

((iii)	State the value	of the ratio in	(ii) for a	perfectly	/ elastic	collision

(c) The variation with time t of the momentum of block X in (b) is shown in Fig. 3.3.

Fig. 3.3

Block X makes contact with block Y at time $t = 20 \,\text{ms}$.

- (i) Describe, qualitatively, the magnitude and direction of the resultant force, if any, acting on block X in the time interval:
 - 1. t = 0 to t = 20 ms

.....

2. $t = 20 \,\text{ms}$ to $t = 40 \,\text{ms}$.

.....

[3]

(ii) On Fig. 3.3, sketch the variation of the momentum of block Y with time t from t = 0 to t = 60 ms. [3]

[Total: 14]