Seja A uma $m \times n$ matriz, B uma $n \times r$ matriz, e I_n a matriz identidade de ordem n. Mostre que

- $\bullet AI = A;$
- \bullet IB = B.

Demonstração:

Um elemento na posição (i,k) de AI é $\sum_{j=1}^{n} a_{ij}\alpha_{jk}$.

Como $\alpha_{jk}=0$ para $j\neq k$ e $\alpha_{jk}=1$ para j=k, $\sum_{j=1}^n a_{ij}\alpha_{jk}=a_{ik}.$

Analogamente para IB.

Quod Erat Demonstrandum.

Documento compilado em Thursday 13th March, 2025, 20:47, tempo no servidor.

Sugestões, comunicar erros: "a.vandre.g@gmail.com".

 ${\it Atribuição-Não Comercial-Compartilha Igual~(CC~BY-NC-SA)}.$