Doğrusal Bağımsızlık

Dr. Öğr. Üyesi Işık İlber Sırmatel

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı Kaynak (source)

Lecture Slides for Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe

Konu listesi

1. Tanım

2. Taban

3. Birim dikgen vektörler

4. Gram-Schmidt algoritması

Bölüm 1

Tanım

Doğrusal bağımlılık

▶ bir n-vektör kümesi $\{a_1, a_2, \ldots, a_k\}$ $(k \ge 1)$ için

$$\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k = 0$$

şartı, hepsi 0 olmayan bazı $\beta_1, \beta_2, \ldots, \beta_k$ için sağlanıyorsa, $\{a_1, a_2, \ldots, a_k\}$ doğrusal bağımlıdır (*linearly dependent*)

- lacktriangle şuna eşdeğerdir: en az bir a_i diğerlerinin bir doğrusal bileşimidir
- ightharpoonup bu durumda, " a_1,a_2,\ldots,a_k vektörleri doğrusal bağımlıdır" denir
- ▶ ancak $a_1 = 0$ ise $\{a_1\}$ doğrusal bağımlıdır
- lacktriangle ancak bir a_i diğerinin katı ise $\{a_1,a_2\}$ doğrusal bağımlıdır
- ▶ ikiden fazla vektör için basitçe belirtilecek bir şart yoktur

Doğrusal bağımlılık

örnek:

 \triangleright

$$a_1 = \begin{bmatrix} 0.2 \\ -7 \\ 8.6 \end{bmatrix}, \quad a_2 = \begin{bmatrix} -0.1 \\ 2 \\ -1 \end{bmatrix}, \quad a_3 = \begin{bmatrix} 0 \\ -1 \\ 2.2 \end{bmatrix}$$

vektörleri $a_1 + 2a_2 - 3a_3 = 0$ olduğundan dolayı doğrusal bağımlıdır

▶ bu vektörlerden herhangi biri diğer ikisinin doğrusal bileşimi olarak ifade edilebilir, örneğin

$$a_2 = -0.5a_1 + 1.5a_3$$

Doğrusal bağımsızlık

▶ bir n-vektör kümesi $\{a_1, a_2, \ldots, a_k\}$ $(k \ge 1)$ doğrusal bağımlı değilse, yani

$$\beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k = 0$$

şartı sadece $\beta_1=\beta_2=\ldots=\beta_k=0$ için sağlanıyorsa, $\{a_1,a_2,\ldots,a_k\}$ doğrusal bağımsızdır (*linearly independent*)

- ightharpoonup bu durumda, " a_1, a_2, \ldots, a_k vektörleri doğrusal bağımsızdır" denir
- ightharpoonup şuna eşdeğerdir: hiçbir a_i diğerlerinin bir doğrusal bileşimi değildir
- ightharpoonup örnek: birim n-vektörler e_1, e_2, \ldots, e_n doğrusal bağımsızdır

Doğrusal bağımsızlık

doğrusal bağımsız vektörlerin doğrusal bileşimleri

ightharpoonup x'in doğrusal bağımsız a_1, a_2, \ldots, a_k vektörlerinin doğrusal bileşimi olduğunu farz edelim:

$$x = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_k a_k$$

ightharpoonup katsayılar $(\beta_1, \beta_2, \dots, \beta_k)$ eşsizdir (*unique*), yani

$$x = \gamma_1 a_1 + \gamma_2 a_2 + \dots + \gamma_k a_k$$

ise
$$\beta_i = \gamma_i \ (i = 1, 2, \dots, k \ \text{için})$$

- ▶ bu, x verildiğinde katsayıların hesaplanabileceği anlamına gelir
- ▶ bu durum

$$(\beta_1 - \gamma_1)a_1 + (\beta_2 - \gamma_2)a_2 + \dots + (\beta_k - \gamma_k)a_k = 0$$
 eşitliğinden ve dolayısıyla (doğrusal bağımsızlık sebebiyle)

$$eta_1-\gamma_1=eta_2-\gamma_2=\cdots=eta_k-\gamma_k=0$$
 olmasından anlasılabilir

Bölüm 2

Taban

Bağımsızlık-boyut eşitsizliği

- n-vektörlerden oluşan bir doğrusal bağımsız küme en fazla
 n elemanlı olabilir
- lacktriangle diğer bir deyişle: n-vektörlerden oluşan, n+1 veya daha fazla elemanlı her küme doğrusal bağımlıdır

Taban

- ▶ n adet doğrusal bağımsız n-vektörden (a_1, a_2, \ldots, a_n) oluşan kümeye taban (basis) denir
- ightharpoonup her n-vektör b, bu kümenin elemanlarının bir doğrusal bileşimi olarak ifade edilebilir:

$$b = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n$$

(bazı $\beta_1, \beta_2, \ldots, \beta_n$ için)

- ightharpoonup bu $\beta_1, \beta_2, \dots, \beta_n$ katsayıları eşsizdir
- ▶ $b = \beta_1 a_1 + \beta_2 a_2 + \dots + \beta_n a_n$ formülüne "b'nin a_1, a_2, \dots, a_n tabanında açılımı (expansion)" denir
- ightharpoonup örnek: e_1, e_2, \ldots, e_n tabanında b'nin açılımı

$$b = b_1 e_1 + b_2 e_2 + \ldots + b_n e_n$$

Bölüm 3

Birim dikgen vektörler

Birim dikgen vektörler

- ▶ bir n-vektör kümesi a_1, a_2, \ldots, a_k , $i \neq j$ için $a_i \perp a_j$ ise (karşılıklı) dikgendir
- $ightharpoonup \|a_i\| = 1 \ (i=1,2,\ldots,k \ \text{için})$ ise vektörler düzgelenmiştir (normalized)
- ► vektörler hem dikgen hem de düzgelenmiş ise bu vektörlere birim dikgen (*orthonormal*) denir
- ► iç çarpım kullanılarak ifade edilebilir

$$a_i^T a_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- ▶ birim dikgen vektörlerden oluşan kümeler doğrusal bağımsızdır
- lackbox bağımsızlık-boyut eşitsizliğinden dolayı $k \geq n$ olmak zorundadır
- \blacktriangleright k=n olduğunda, a_1,a_2,\ldots,a_k bir birim dikgen tabandır

Birim dikgen tabanlara örnekler

- ightharpoonup standart birim n-vektörler e_1, e_2, \ldots, e_n
- ► aşağıda verilen 3-vektörler

$$\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

► aşağıda gösterilen 2-vektörler

Birim dikgen açılım

 $ightharpoonup a_1, a_2, \ldots, a_n$ bir birim dikgen taban ise, herhangi bir n-vektör x için

$$x = (a_1^T x)a_1 + (a_2^T x)a_2 + \dots + (a_n^T x)a_n$$

ifadesi geçerlidir

- ▶ bu ifadeye "x'in birim dikgen açılımı" denir
- lacktriangle ifadeyi doğrulamak için her iki tarafın a_i ile iç çarpımı alınır

Bölüm 4

Gram-Schmidt algoritması

Gram-Schmidt (dikgenleştirme) algoritması

- $ightharpoonup a_1, a_2, \ldots, a_k$ 'nin doğrusal bağımsız olup olmadığını sınamak için kullanılan bir algoritmadır
- ileride başka birçok farklı kullanım alanı olduğunu göreceğiz

Gram-Schmidt algoritması

verilenler: $a_1, a_2, \ldots, a_k \in \mathbb{R}^n$

tekrarla: $i = 1, 2, \dots, k$ için

- 1) Dikgenleştirme: $\tilde{q}_i = a_i (q_1^T a_i)q_1 \cdots (q_{i-1}^T a_i)q_{i-1}$
- 2) Doğrusal bağımlılık testi: $\tilde{q}_i = 0$ ise **dur**
- 3) Düzgeleme: $q_i = \tilde{q}_i/\|\tilde{q}_i\|$
- ► Gram-Schmidt algoritması erken durmazsa (2. adımda), a_1, a_2, \ldots, a_k doğrusal bağımsızdır
- ▶ Gram-Schmidt algoritması i=j yinelemesinde erken durursa, a_j $a_1, a_2, \ldots, a_{j-1}$ vektörlerinin bir doğrusal bileşimidir (dolayısıyla, a_1, a_2, \ldots, a_k doğrusal bağımlıdır)

Gram-Schmidt algoritması - Örnek

Gram-Schmidt algoritması - Analiz (1/2)

tümevarım (induction) kullanarak q_1, q_2, \ldots, q_i 'nin birim dikgen olduğunu gösterelim:

- ightharpoonup i-1 için gerçek olduğunu varsayalım
- ► dikgenleştirme adımı

$$\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}$$

olmasını (yani, \tilde{q}_i 'in q_1, q_2, \dots, q_{i-1} vektörlerinin hepsine dikgen olmasını) garantiler

bunu görmek için, her iki tarafın q_j (j < i) ile iç çarpımını alalım

$$q_j^T \tilde{q}_i = q_j^T a_i - (q_1^T a_i)(q_j^T q_1) - \dots - (q_{i-1}^T a_i)(q_j^T q_{i-1})$$

= $q_i^T a_i - q_i^T a_i = 0$

- ightharpoonup dolayısıyla $\tilde{q}_i \perp q_1, \ldots, \tilde{q}_i \perp q_{i-1}$ olur
- ightharpoonup düzgeleme adımı $||q_i||=1$ olmasını garantiler

Gram-Schmidt algoritması - Analiz (2/2)

algoritmanın yineleme *i*'den önce sonlanmadığını (*terminate*) varsayarak ilerlersek:

 $ightharpoonup a_i$, q_1, q_2, \ldots, q_i 'nin bir doğrusal bileşimidir:

$$a_i = \|\tilde{q}_i\|q_i + (q_1^T a_i)q_1 + \dots + (q_{i-1}^T a_i)q_{i-1}$$

 $ightharpoonup q_i$, a_1, a_2, \ldots, a_i 'nin bir doğrusal bileşimidir: i üzerinde tümevarımla:

$$q_i = \frac{1}{\|\tilde{q}_i\|} \left(a_i - (q_1^T a_i) q_1 - \dots - (q_{i-1}^T a_i) q_{i-1} \right)$$

ve (tümevarım varsayımından dolayı) q_1,q_2,\ldots,q_{i-1} vektörlerinden her biri a_1,a_2,\ldots,a_{i-1} 'in bir doğrusal bileşimidir

Erken sonlanma

algoritmanın j. adımda sonlandığını farz edelim

 $ightharpoonup a_j, q_1, q_2, \ldots, q_{j-1}$ 'nun bir doğrusal bileşimidir

$$a_j = (q_1^T a_j)q_1 + \dots + (q_{j-1}^T a_j)q_{j-1}$$

- $ightharpoonup q_1,q_2,\ldots,q_{j-1}$ vektörlerinden her biri a_1,a_2,\ldots,a_{j-1} 'nın bir doğrusal bileşimidir
- lacktriangle dolayısıyla a_j , $a_1, a_2, \ldots, a_{j-1}$ 'nın bir doğrusal bileşimidir

Gram-Schmidt algoritmasının karmaşıklığı

 $lackbox{1}$ i. yinelemenin 1. adımı için i-1 adet iç çarpım gerekir

$$q_1^T a_i, \ldots, q_{i-1}^T a_i$$

bunun toplam maliyeti (i-1)(2n-1) floptur

- lacktriangle $ilde{q}_i$ 'yi hesaplamak: 2n(i-1) flop
- $ightharpoonup \| ilde{q}_i\|$ ve q_i 'yi hesaplamak: 3n flop
- ► toplam maliyet:

$$\sum_{i=1}^{k} ((4n-1)(i-1) + 3n) = (4n-1)\frac{k(k-1)}{2} + 3nk \approx 2nk^{2}$$

$$\left(\sum_{i=1}^{k} (i-1) = k(k-1)/2 \text{ kullanılarak}\right)$$