Imogen Hergeth

January 2023

We will present the result from A.A. Razborov, "Lower Bounds for the Polynomial Calculus", in: Computational Complexity 7.4 (Dec. 2, 1998).

- Introduction
- 2 The Pigeonhole Principle
- The Pigeon Dance
- 4 Conclusion

The polynomial calculus

Introduction

Background

• Lower bounds for proofs in various systems

Introduction 00000

Background

- Lower bounds for proofs in various systems
- In particular for the pigeonhole principle

Background

- Lower bounds for proofs in various systems
- In particular for the pigeonhole principle
- Polynomial calculus is a strong proof system

The polynomial calculu

Background

- Lower bounds for proofs in various systems
- In particular for the pigeonhole principle
- Polynomial calculus is a strong proof system
- Provide a lower bound for it with the pigeonhole principle

Introduction

Definition

• Similar to sequent calculus, but lines are polynomials

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$
- Addition

$$\frac{f}{af + bg}$$

Definition

- Similar to sequent calculus, but lines are polynomials
- We use multilinear polynomials $S_n(\mathbb{K})$ $(xy + xz + v \equiv x^2y + x^3z^5 + v)$
- Addition

$$\frac{f}{af + bg}$$

Multiplication

$$\frac{f}{f \cdot x}$$

The polynomial calculus

Refutations

• g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them

Refutations

- g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- A proof of 1 exists if and only if f_1, \ldots, f_n have no common zeroes

Refutations

- g is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- A proof of 1 exists if and only if f_1, \ldots, f_n have no common zeroes
- We construct polynomials such that their zeroes correspond to satisfying assignments

Refutations

- q is provable from f_1, \ldots, f_n if and only if it is in the ideal generated by them
- A proof of 1 exists if and only if f_1, \ldots, f_n have no common zeroes
- We construct polynomials such that their zeroes correspond to satisfying assignments
- Proving 1 from them is a refutation

Introduction 0000•0

Example proof

• Try to prove xy + z from x + 1 and z

The polynomial calculus

Introduction

Example proof

• Try to prove xy + z from x + 1 and z

$$x + 1$$

The polynomial calculus

Introduction

Example proof

ullet Try to prove xy+z from x+1 and z

$$(\cdot y) \frac{x+1}{xy+y}$$

Example proof

• Try to prove xy + z from x + 1 and z

$$(\cdot y) \frac{\frac{x+1}{xy+y}}{\frac{xy+y+z}{}} (+)$$

Example proof

• Try to prove xy + z from x + 1 and z

$$\frac{(\cdot y)\frac{x+1}{xy+y}}{\frac{xy+y+z}{xy+y+z}}(+)$$

• We now want to subtract y

Example proof

• Try to prove xy + z from x + 1 and z

$$\frac{(y)}{\frac{x+1}{xy+y}} \frac{z}{z} (+)$$

- We now want to subtract y
- There is no way to prove y from x+1 and z

Example proof

• Try to prove xy + z from x + 1 and z

$$\frac{(y)}{xy+y} \frac{x+1}{xy+y+z} (+)$$

- We now want to subtract u
- There is no way to prove y from x+1 and z
- Closest to xy + z we can prove is xy + y + z

Introduction

Algebraic view of proofs

ullet V are polynomials we can prove

$$xy + y + z$$

Algebraic view of proofs

ullet V are polynomials we can prove

$$xy + y + z$$

 \bullet \triangle are leading terms of ones we cannot prove

Algebraic view of proofs

$$\bullet$$
 V are polynomials we can prove

•
$$\triangle$$
 are leading terms of ones we cannot prove

•
$$S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$$

$$xy + y + z$$

$$xy + z = -y + xy + y + z$$

Algebraic view of proofs

$$\bullet$$
 V are polynomials we can prove

$$\bullet$$
 \triangle are leading terms of ones we cannot prove

•
$$S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$$

• R is the projection onto Δ

$$xy + y + z$$

$$xy + z = -y + xy + y + z$$

$$R(xy+z) = y$$

Algebraic view of proofs

 \bullet V are polynomials we can prove

$$xy + y + z$$

ullet Δ are leading terms of ones we cannot prove

9

•
$$S_n(\mathbb{K}) \cong \mathbb{K}\Delta \oplus V$$

$$xy + z = -y + xy + y + z$$

• R is the projection onto Δ

$$R(xy+z) = y$$

• Similarly:

 V_d, Δ_d, R_d for polynomials up to degree d V_I, Δ_I, R_I for polynomials using variables for subset of pigeons I

The pigeonhole principle

 \bullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole

Overview

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$

e Pigeon Dance

Overview

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- ullet Formally: if m>n there is no injection $[m]\hookrightarrow [n]$
- Variables: $x_{ij}, i \in [m], n \in [n]$

Introduction

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$
- Variables: $x_{ij}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

The pigeonhole principle

- ullet If there are m pigeons, n pigeon holes, and m>n then at least two pigeons have to share a hole
- Formally: if m > n there is no injection $[m] \hookrightarrow [n]$
- Variables: $x_{ij}, i \in [m], n \in [n]$
- Assignment of $x_{3,5}$ corresponds to pigeon 3 being in hole 5

Definition $(\neg \mathcal{PHP}_n^m)$

$$Q_i \coloneqq 1 - \sum_{j \in [n]} x_{ij}$$
 for each $i \in [m]$

$$Q_{i_1,i_2,j}\coloneqq x_{i_1j}x_{i_2j}$$
 for each $i_1\neq i_2\in [m], j\in [n]$

Main result

Theorem

For any m>n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

Main result

Theorem

For any m > n, every polynomial calculus refutation of $\neg PHP_n^m$ must have degree at least n/2 + 1.

• Claim: derivable polynomials are locally consistent

Main result

Theorem

For any m > n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2 + 1.

- Claim: derivable polynomials are locally consistent
- Works if R_I agree on their intersections

Main result

Theorem

For any m > n, every polynomial calculus refutation of $\neg PHP_n^m$ must have degree at least n/2 + 1.

- Claim: derivable polynomials are locally consistent
- Works if R_I agree on their intersections
- Characterize R_I syntactically

Main result

Theorem

For any m>n, every polynomial calculus refutation of $\neg \mathcal{PHP}_n^m$ must have degree at least n/2+1.

- Claim: derivable polynomials are locally consistent
- ullet Works if R_I agree on their intersections
- Characterize R_I syntactically
- Show the different operators are identical

Valid Pigeon Arrangements

Semantics of $\neg \mathcal{PHP}_n^m$

• What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?

Valid Pigeon Arrangements

Semantics of $\neg \mathcal{PHP}_n^m$

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons cannot share holes

Semantics of $\neg \mathcal{PHP}_n^m$

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons cannot share holes
- Pigeon assignments are variable assignments

$$a(x) = \begin{cases} 1, & \text{if } x \in \{x_{1,2}, x_{2,4}, x_{3,1}\} \\ 0, & \text{otherwise} \end{cases}$$

Introduction

Semantics of $\neg \mathcal{PHP}_n^m$

- What polynomials are derivable from $\neg \mathcal{PHP}_n^m$?
- Pigeons cannot share holes
- Pigeon assignments are variable assignments

$$a(x) = \begin{cases} 1, & \text{if } x \in \{x_{1,2}, x_{2,4}, x_{3,1}\} \\ 0, & \text{otherwise} \end{cases}$$

Polynomials are evaluated to 0 if they allow the assignment

$$a(1 - x_{1,1} - x_{1,2} - x_{1,3} - x_{1,4}) = 0$$
$$a(x_{1,1}x_{3,1}) = a(x_{1,2}x_{2,2}) = 0$$

Idea

ullet Goal: define $R_I(t)$ so that it is independent of $I \setminus \mathrm{dom}(t)$

- Goal: define $R_I(t)$ so that it is independent of $I \setminus dom(t)$
- We first define Δ_I using the pigeon dance

Characterizing R

- Goal: define $R_I(t)$ so that it is independent of $I \setminus dom(t)$
- We first define Δ_I using the pigeon dance
- The first pigeon flies to an unoccupied hole to its right

Characterizing R

- Goal: define $R_I(t)$ so that it is independent of $I \setminus dom(t)$
- We first define Δ_I using the pigeon dance
- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once

Characterizing R

- Goal: define $R_I(t)$ so that it is independent of $I \setminus dom(t)$
- We first define Δ_I using the pigeon dance
- The first pigeon flies to an unoccupied hole to its right
- Repeat until all pigeons have moved once
- If a pigeon cannot find an empty hole, the dance is aborted

Formalization

ullet Consider terms $x_{i_1j_1}\cdots x_{i_dj_d}$ with all i and j pairwise different

Formalization

- Consider terms $x_{i_1j_1}\cdots x_{i_dj_d}$ with all i and j pairwise different
- Variables occuring in term correspond to pigeon positions

Formalization

- Consider terms $x_{i_1j_1}\cdots x_{i_dj_d}$ with all i and j pairwise different
- Variables occuring in term correspond to pigeon positions
- ullet Define Δ_I to be the set of terms that let pigeons complete the dance

Formalization

- Consider terms $x_{i_1j_1}\cdots x_{i_dj_d}$ with all i and j pairwise different
- Variables occuring in term correspond to pigeon positions
- Define Δ_I to be the set of terms that let pigeons complete the dance
- ullet $t \in \Delta_I$ independent of I since pigeons not in the dance do not affect it

Defining R_I

• We need $R_I(t) = f$ with $LT(f) \leq t$ and $t = f \mod V_I$

Defining R_I

- We need $R_I(t) = f$ with $\mathrm{LT}(f) \preceq t$ and $t = f \mod V_I$
- If $t \in \Delta_I$, then $f \coloneqq t$

Defining R_I

- We need $R_I(t) = f$ with $LT(f) \leq t$ and $t = f \mod V_I$
- If $t \in \Delta_I$, then f := t
- Otherwise, we use $Q_{i_1} = 0$ to derive

$$t = x_{i_1 j_1} \cdots x_{i_d j_d}$$

$$= -\sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} + x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_I.$$

Defining R_I

- We need $R_I(t) = f$ with $LT(f) \leq t$ and $t = f \mod V_I$
- If $t \in \Delta_I$, then f := t
- Otherwise, we use $Q_{i_1} = 0$ to derive

$$t = x_{i_1 j_1} \cdots x_{i_d j_d}$$

$$= -\sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} + x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_{I}.$$

ullet The first two summands are $\prec t$ and can be ignored

Defining R_I

- We need $R_I(t) = f$ with $LT(f) \leq t$ and $t = f \mod V_I$
- If $t \in \Delta_I$, then f := t
- Otherwise, we use $Q_{i_1} = 0$ to derive

$$t = x_{i_1 j_1} \cdots x_{i_d j_d}$$

$$= -\sum_{j' < j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} + x_{i_2 j_2} \cdots x_{i_d j_d} - \sum_{j' > j_1} x_{i_1 j'} x_{i_2 j_2} \cdots x_{i_d j_d} \mod V_{I}.$$

- ullet The first two summands are $\prec t$ and can be ignored
- ullet Any terms with $j' \in \{j_2, \dots, j_d\}$ are 0 and can be ignored

Defining R_I (cont.)

• Remaining terms have $i>i_1$, $j'>j_1$, and $j'\not\in\{j_2,\ldots,j_d\}$

- Remaining terms have $i > i_1, j' > j_1$, and $j' \notin \{j_2, \dots, j_d\}$
- Repeat the same process with all of them

Characterizing κ_I

- Remaining terms have $i > i_1$, $j' > j_1$, and $j' \notin \{j_2, \ldots, j_d\}$
- Repeat the same process with all of them
- ullet At each step the next i has x_{ij} replaced with $x_{ij'}$ for some unused j'>j

- Remaining terms have $i > i_1, j' > j_1$, and $j' \notin \{j_2, \dots, j_d\}$
- Repeat the same process with all of them
- At each step the next i has x_{ij} replaced with $x_{ij'}$ for some unused j' > j
- This is the pigeon dance!

- Remaining terms have $i > i_1, j' > j_1$, and $j' \notin \{j_2, \dots, j_d\}$
- Repeat the same process with all of them
- At each step the next i has x_{ij} replaced with $x_{ij'}$ for some unused j' > j
- This is the pigeon dance!
- Since $t \notin \Delta_I$ the dance cannot be completed

- Remaining terms have $i > i_1, j' > j_1$, and $j' \notin \{j_2, \dots, j_d\}$
- Repeat the same process with all of them
- ullet At each step the next i has x_{ij} replaced with $x_{ij'}$ for some unused j'>j
- This is the pigeon dance!
- Since $t \notin \Delta_I$ the dance cannot be completed
- Process terminates with $LT(f) \prec t$ and $t = f \mod V_I$

Properties of the dance

The Kill operator

• Idea: operator that lets us block specific holes

Properties of the dance

The Kill operator

- Idea: operator that lets us block specific holes
- The Kill operator kills the first pigeon and moves its hole to the left

The Kill operator

- Idea: operator that lets us block specific holes
- The Kill operator kills the first pigeon and moves its hole to the left
- $\operatorname{Kill}(x_{i_1j_1}\cdots x_{i_d,j_d})=x_{i_2j'_2}\cdots x_{i_dj'_d}$ with

$$j_k' \coloneqq \begin{cases} j_k + 1, & \text{if } j_k < j_1 \\ j_k, & \text{if } j_k > j_1. \end{cases}$$

The dance in terms of Kill

Theorem

 $x_{i_1j_1}\cdots x_{i_dj_d}\in \Delta_I$ if and only if there is a $j'>j_1$ such that $\mathrm{Kill}(x_{i_1j'}\cdots x_{i_dj_d})\in \Delta_I$.

Proof sketch

This operator effectively moves the first pigeon to an empty hole to its right and then kills it. This is the same as each step in the dance, where the first pigeon flies to some free hole to its right and then occupies it. \Box

Properties of the dance

Closure of Δ_I

Theorem

 Δ_I is closed under Kill.

Properties of the dance

Closure of Δ_I

Theorem

 Δ_I is closed under Kill.

Proof sketch

If $t \in \Delta_I$ then the pigeons can complete their dance. During this the first pigeon will start at j and fly to j'. Killing the pigeon frees up j' so any other pigeon that wanted to use j can use it instead.

Properties of the dance

The lower bound

Theorem 1

If $|I| \le (n+1)/2, t \in \Delta_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

The lower bound

Theorem

If $|I| \le (n+1)/2, t \in \Delta_I$ and the minimal element i of I is not in dom(t), then there exists a $j \in [n]$ such that $Kill(x_{ij}t) \in \Delta_I$.

Proof sketch

At most

$$|\operatorname{dom}(t)| \le |I \setminus \{i\}| \le \frac{n-1}{2}$$

pigeons involved in the dance, each occupying two holes. Thus the total number of holes is n-1 and one hole j remains free. For the purposes of the dance, $Kill(x_{ij}t)$ is the same as t since the only difference is j being moved to the left.

• Show that the two operators are identical

- Show that the two operators are identical
- Induction over |I| providing an $a \in M_I$ with $a(f) \neq 0$ for any $f \in \mathbb{K}\Delta_I$

- Show that the two operators are identical
- Induction over |I| providing an $a \in M_I$ with $a(f) \neq 0$ for any $f \in \mathbb{K}\Delta_I$
- Remove variables x_{ij} for minimal $i \in I$ from f

- Show that the two operators are identical
- Induction over |I| providing an $a \in M_I$ with $a(f) \neq 0$ for any $f \in \mathbb{K}\Delta_I$
- Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$

- Show that the two operators are identical
- Induction over |I| providing an $a \in M_I$ with $a(f) \neq 0$ for any $f \in \mathbb{K}\Delta_I$
- Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$
- Pick a j such that $Kill(x_{ij}t) \in \Delta_I$

- Show that the two operators are identical
- Induction over |I| providing an $a \in M_I$ with $a(f) \neq 0$ for any $f \in \mathbb{K}\Delta_I$
- Remove variables x_{ij} for minimal $i \in I$ from f
- Inductive assumption gives us $a' \in M_{I \setminus \{i\}}$ with $a'(f') \neq 0$
- Pick a j such that $Kill(x_{ij}t) \in \Delta_I$
- Extend assignment to I with $a(f) \neq 0$

• If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- ullet Pigeons not in the dance do not affect its success, so $R_I(t)=R_{\mathrm{dom}(t)}(t)$

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- ullet Pigeons not in the dance do not affect its success, so $R_I(t)=R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- ullet Pigeons not in the dance do not affect its success, so $R_I(t)=R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I
- $R_d \neq 0$

- If $d \leq n/2 + 1$, then definition of R_I via the pigeon dance and via M_I are identical
- ullet Pigeons not in the dance do not affect its success, so $R_I(t)=R_{\mathrm{dom}(t)}(t)$
- ullet V_d is precisely polynomials identically zero on M_I
- $R_d \neq 0$
- \bullet There is no refutation of $\neg \mathcal{PHP}_n^m$ with $d \leq n/2+1$