

Formal languages and syntax:

Logic: A Summary

Jacek Malec Dept. of Computer Science, Lund University, Sweden February 8, 2017

propositional variables: P, Q, R, S

operators (connectives): \neg , \lor , \land

formulae: $P, \neg Q \land R, \neg (Q \lor R)$

Language:

the set of all well-formed formulae (wff):

$$\{P, Q, \neg P, \neg Q, P \land Q, P \lor Q, \ldots\}$$

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

Assigning truth values to symbols:

P is TRUE Q is FALSE

Interpretation: an assignment to all of the variables. It determines the truth values for more complex formulae:

$$\neg P \lor Q$$

 $\neg P \lor P$

a tautology

 $\neg P \wedge P$

a contradiction

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

Logical equivalence:

$$Q \vee \neg P$$

$$\neg Q \lor P$$

$$\neg P \lor P$$

$$\neg P \wedge P$$

$$P \lor Q$$
$$\neg (\neg P \land \neg Q)$$

$$\neg P \lor Q$$

Formal systems:

- Axioms
- Axiom schemas
- Rules of inference

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

5(17)

Logi

Theoremhood:

- $\textbf{2} \quad Q \rightarrow R \\ \text{assume this is given as true}$
- P assume this is given as true
- Modus Ponens using 1 and 3
- 6 R Modus Ponens using 2 and 4

Lines 1–4 constitute a *proof* of *Q*. Lines 1–5 constitute a proof of *R*. *Q* is a *theorem*.

Rules of inference:

Modus Ponens:

$$\frac{A}{A \to B}$$

Conjunction:

$$\frac{A}{B}$$

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

6(1

Log

Satisfiability:

Is there an assignment to the variables such that the following formula is true?

$$\neg P \land (Q \lor \neg (R \land \ldots))$$

Satisfiability problem is $O(2^n)$ Similar questions:

- Is it a tautology?
- Is it a contradiction?

Knowledge representation:

P = (< (temp pump45) 85 degrees Celsius)

Q = (correctly_functioning pump45)

Logic

ON THE RVM

Knowledge representation:

P = (< (temp pump45) 85 degrees Celsius)

Q = (correctly functioning pump45)

 $B_{1,1}$ = no breeze in (1, 1)

 $P_{1,2}$ = no pit in (1, 2)

 $P_{2,1}$ = no pit in (2, 1)

$$B_{1,1} \to P_{1,2} \vee P_{2,1}$$

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

9(17

9(17)

Knowledge representation:

P = (< (temp pump45) 85 degrees Celsius)

Q = (correctly_functioning pump45)

$$P \rightarrow Q$$

 $B_{1,1}$ = no breeze in (1, 1)

 $P_{1,2}$ = no pit in (1, 2)

 $P_{2,1}$ = no pit in (2, 1)

$$B_{1,1} \to P_{1,2} \vee P_{2,1}$$

$$B_{1,1} \leftarrow P_{1,2} \vee P_{2,1}$$

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

Knowledge representation:

P = (< (temp pump45) 85 degrees Celsius)

Q = (correctly_functioning pump45)

 $B_{1,1}$ = no breeze in (1, 1)

 $P_{1,2}$ = no pit in (1, 2)

 $P_{2,1}$ = no pit in (2, 1)

$$B_{1,1} \to P_{1,2} \vee P_{2,1}$$

$$B_{1,1} \leftarrow P_{1,2} \vee P_{2,1}$$

$$B_{1,1} \leftrightarrow P_{1,2} \lor P_{2,1}$$

Expert or Rule-Based Systems:

```
(if (and p1 p2 ... pn) q)
```

Tasks:

prediction

diagnosis

(if
 (and engine_is_running_hot
 engine_coolant_levels_within_spec)
evidence_of_a_lubrication_problem)

acek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

10(17)

Logic

First Order Predicate Logic: Syntax

• Predicates (relations, properties):

Log

A note on Resolution:

It is a generalization of Modus Ponens

$$\frac{A_1 \vee A_2 \vee \ldots \vee \neg C \vee \ldots \vee A_m}{B_1 \vee B_2 \vee \ldots \vee C \vee \ldots B_n}$$
$$\frac{A_1 \vee A_2 \vee \ldots \vee A_m \vee B_1 \vee B_2 \vee \ldots \vee B_n}{A_1 \vee A_2 \vee \ldots \vee A_m \vee B_1 \vee B_2 \vee \ldots \vee B_n}$$

Modus Ponens:

$$\frac{\neg P \lor Q}{P}$$

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

1(17)

Logic

First Order Predicate Logic: Syntax

- Predicates (relations, properties):
 AgeOf, Bald, CapitalOf, YoungerThan, <, =, P, Q, ...</p>
- Constants:

First Order Predicate Logic: Syntax

- Predicates (relations, properties):
 AgeOf, Bald, CapitalOf, YoungerThan, <, =, P, Q, ...
- Constants:

 Jacek, 59, Stockholm, Lund, Sweden, Pierre, table59, c, d,
 ...
- Functions:

acek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

12(17

Logi

First Order Predicate Logic: Syntax

- Predicates (relations, properties):
 AgeOf, Bald, CapitalOf, YoungerThan, <, =, P, Q, ...
- Constants:
 Jacek, 59, Stockholm, Lund, Sweden, Pierre, table59, c, d,
 ...
- Functions: fatherOf, ageOf, lengthOf, locationOf, . . .
- Terms: constants, variables, functions thereof
- **Atomic sentences**: relation over appropriate amount of terms AgeOf(Jacek, 59), Bald(Jacek), 8 < x, YoungerThan(Jacek, fatherOf(Jacek)), P(x, y, z) IocationOf(TJR048) = PDammgården, ...
- Well-formed formulae: as before plus $\forall xA$ and $\exists xA$ are wffs if A is a wff

Log

First Order Predicate Logic: Syntax

- Predicates (relations, properties):
 AgeOf, Bald, CapitalOf, YoungerThan, <, =, P, Q, ...
- Constants:

 Jacek, 59, Stockholm, Lund, Sweden, Pierre, table59, c, d,
 ...
- Functions: fatherOf, ageOf, lengthOf, locationOf, ...
- Terms: constants, variables, functions thereof
- **Atomic sentences**: relation over appropriate amount of terms AgeOf(Jacek, 59), Bald(Jacek), 8 < x, YoungerThan(Jacek, fatherOf(Jacek)), P(x, y, z) IocationOf(TJR048) = PDammgården, ...

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

12(17)

Logic

Quantifiers:

 $\forall x (swedish - citizen(x) \rightarrow has - pnr(x))$

$$\exists y (polish - citizen(y) \land has - pnr(y))$$

 $\forall xA$ and $\exists xA$ are wffs if A is a wff

- scope of a quantifier
- free variable
- closed formula
- ground formula

Formal System for FOPC:

language of FOPC, axioms + RES and UI

where Universal Instantiation:

$$\frac{\forall xA}{A'(x\to t)}$$

e.g. from

$$\forall x, y(Pit(x, y) \rightarrow Breeze(x, y + 1) \land Breeze(x + 1, y))$$

we can infer

$$Pit(1,2) \rightarrow Breeze(1,3) \land Breeze(2,2),$$

lacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

14(17

Logic

Theories:

 $\forall x, y \neg clown(x) \lor loves(y, x)$

Everybody loves a clown.

$$\forall x, y \neg winner(x) \lor \neg game(y) \lor \neg plays(x, y) \lor wins(x, y)$$

A winner wins every game (s)he plays.

Pattern:

$$\forall x_1,...,x_n A$$

where A is in CNF

Logic

Formal System for FOPC:

language of FOPC, axioms + RES and UI

where Universal Instantiation:

$$\frac{\forall xA}{A'(x\to t)}$$

e.g. from

$$\forall x, y(Pit(x, y) \rightarrow Breeze(x, y + 1) \land Breeze(x + 1, y))$$

we can infer

$$Pit(1,2) \rightarrow Breeze(1,3) \land Breeze(2,2),$$

and

$$Pit(2,1) \rightarrow Breeze(2,2) \land Breeze(3,1),$$

and ...

acek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

14(1)

Log

Logically equivalent formulae:

1.

$$\forall x, y(\mathit{clown}(x) \rightarrow \mathit{loves}(y, x))$$

$$\forall x (clown(x) \rightarrow \forall y (loves(y, x)))$$

2.

$$\forall x A \leftrightarrow \neg \exists x \neg A$$

$$\exists x A \leftrightarrow \neg \forall x \neg A$$

Example:

$$(\forall x, y) \neg clown(x) \lor loves(y, x)$$

$$(\forall y) \neg ((\exists x)(clown(x) \land \neg loves(y, x)))$$

$$(\forall x) clown(x) \rightarrow \neg ((\exists y) \neg loves(y, x))$$

Theorem proving:

Show *loves*(*Pia*, *Kalle*) given axioms:

- \bigcirc $\forall x, y clown(x) \rightarrow loves(y, x)$
- @ clown(Kalle)

Proof:

- \bullet $\forall x, yclown(x) \rightarrow loves(y, x)$ (AXIOM)
- clown(Kalle) (AXIOM)
- \forall yclown(Kalle) \rightarrow loves(y, Kalle) UI $x \rightarrow$ Kalle
- $lacktriangledown(State) o loves(Pia, Kalle) \ UI \ y o Pia$
- loves(Pia, Kalle)
 MP 2,4

Loa

Search, search everywhere...

Theorem proving

is

a search in the space of proofs

Jacek Malec, http://rss.cs.lth.se, jacek.malec@cs.lth.se

18(17)