Linguagens Formais, Autômatos e Computabilidade

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

23 de Abril de 2024

- Os AFNDs seguem a ideia do n\u00e3o determinismo;
- Reconhecedores das linguagens regulares;
- Múltiplos caminhos;
- Podendo ter mais de um estado ativo no AFD;
- Mais de um estado inicial;
- Mais de um função de transição com mesmo símbolo do alfabeto partindo do mesmo estado.

- Quando processamos uma palavra em um AFND, ela é aceita para uma linguagem se:
 - Pelo menos um dos estados ativos ao final do processamento é final;
 - A palavra é processada completamente;
- Caso contrário a palavra é rejeitada para a linguagem.

- A descrição formal de um AFD deve possuir:
 - E =Conjunto de estados.
 - \sum = Conjunto finitos de símbolos.
 - *I* = Conjunto estados iniciais.
 - F =Conjunto de estados finais.
 - $\delta = \text{Função de transição}$.
- AFD = $\{E, \sum, I, F, \delta\}$

- $E = \{q0, q1, q2\}.$
- $\sum = \{a, b\}.$
- $I = \{q0\}.$
- $F = \{q2\}.$
- $\delta = ?$.

- L = ?.
 - E = ?.
 - \bullet $\Sigma = ?.$
 - $\overline{I} = ?$.
 - F = ?.
 - $\delta = ?$.

- L = $\{a^n b^m c | n > 0, m \ge 0\}$
 - $E = \{q0, q1, q2\}.$
 - $\sum = \{a, b, c\}.$
 - $I = \{q0\}.$
 - $F = \{q2\}.$
 - $\delta = ?$.

Automato Finito Não Determinístico - Prefixo, Sufixo e Sub-Palavra

- O **Prefixo** é a sequência inicial de símbolos da palavra.
- O Sufixo é a sequência final de símbolos da palavra.
- Uma Sub-Palavra é a sequência de símbolos que compõem a palavra.

Automato Finito Não Determinístico - Prefixo, Sufixo e Sub-Palavra

- Exemplo:
 - Palavra abcb
 - **Prefixos** = λ , a, ab, abc, abcb;
 - **Sufixos** = λ , b, cb, bcb, abcb;
 - **Sub-Palavra** = λ , a, b, c, ab, bc, cb, abc, bcb, abcb;

Automato Finito Não Determinístico - Prefixo, Sufixo e Sub-Palavra

- Exemplo:
 - $L = \{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \text{ e } \mathbf{b} \text{ como prefixo}\}$
 - Prefixos = ab, aba, abb, abba, abaa, abbbab...;
 - L = $\{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \in \mathbf{b} \text{ como sufixo}\}$
 - Sufixos = ab, bab, bbbab, aab, aaaab, babab...;
 - L = $\{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \text{ e } \mathbf{b} \text{ como sub-palavra}\}$
 - Sub-Palavra = ab, aab, aaba, abaa,aaaaaabbabbb...;

Automato Finito Não Determinístico - Prefixo, Sufixo e Sub-Palavra

- Exemplo:
 - L = { $W \in \{a, b, c\} * | W \text{ tem } \mathbf{a} \mathbf{c} \mathbf{b} \text{ como prefixo}$ }
 - Prefixos =
 - L = $\{W \in \{a, b, c\} * | W \text{ tem } \mathbf{c} \mathbf{b} \mathbf{a} \text{ como sufixo}\}$
 - Sufixos =
 - L = { $W \in \{a, b, c\} * | W \text{ tem } \mathbf{b} \mathbf{c} \mathbf{a} \text{ como sub-palavra}\}$
 - Sub-Palavra =

Automato Finito Não Determinístico - Prefixo, Sufixo e Sub-Palavra

- Exemplo:
 - L = { $W \in \{a, b, c\} * | W \text{ tem } \mathbf{a} \mathbf{c} \mathbf{b} \text{ como prefixo}$ }
 - Prefixos = acb, acbab, acbab, acbabab, acbababc ...
 - L = { $W \in \{a, b, c\} * | W \text{ tem } \mathbf{c} \mathbf{b} \mathbf{a} \text{ como sufixo}$ }
 - Sufixos = cba, acba, bcba, abacabcba, acabacacba, cabcacba...
 - L = { $W \in \{a, b, c\} * | W \text{ tem } \mathbf{b} \mathbf{c} \mathbf{a} \text{ como sub-palavra}$ }
 - Sub-Palavra = bca, ababacbcaa, abcab, babca, abcaca ...

• Faça o AFD para $L = \{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \in \mathbf{b} \text{ como sufixo}\}$

• Faça o AFD para $L = \{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \in \mathbf{b} \text{ como sufixo}\}$

• Faça o AFND para $L = \{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \in \mathbf{b} \text{ como sufixo}\}$

• Faça o AFND para $L = \{W \in \{a, b\} * | W \text{ tem } \mathbf{a} \in \mathbf{b} \text{ como sufixo}\}$

- Faça o AFND para L = $\{W \in \{a, b, c\} * | W \text{ tem } \mathbf{abc} \text{ como prefixo}\}$
- Faça o AFND para $L = \{W \in \{a, b, c, d\} * | W \text{ tem } \mathbf{ab} \text{ como prefixo } \mathbf{e} \text{ } \mathbf{cd} \text{ } \text{ como sufixo}\}$
- Faça o AFND para $L = \{W \in \{a, b, c, d\} * | W \text{ tem } \mathbf{ab} \text{ como prefixo e } \mathbf{cd} \text{ como subpalavra}\}$
- Faça o AFND para L = $\{W \in \{a, b, c\} * | W \text{ tem como o 4}^\circ \text{ símbolo da direita para a esquerda um } \mathbf{a}\}$

• Faça o AFND para L = $\{W \in \{a, b, c\} * | W \text{ tem } \mathbf{abc} \text{ como prefixo}\}$

• Faça o AFND para $L = \{W \in \{a, b, c, d\} * | W \text{ tem } \mathbf{ab} \text{ como prefixo e } \mathbf{cd} \text{ como sufixo}\}$

• Faça o AFND para $L = \{W \in \{a, b, c, d\} * | W \text{ tem } \mathbf{ab} \text{ como prefixo e } \mathbf{cd} \text{ como subpalavra}\}$

• Faça o AFND para L = $\{W \in \{a, b, c\} * | W \text{ tem como o } 4^{\circ} \text{ símbolo da direita para a esquerda um } \mathbf{a}\}$

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2024