Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model

Conclusion and outlook

# PEPO cluster expansion of Tensor Exponential Subtitle

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

February 25, 2021



Construction 1D

Construction 2D

Solvers

2D Transvers

- 1 Intoduction
- 2 Construction 1D
- 3 Construction 2D
- 4 Solvers
- 5 2D Transversal Ising Model
- 6 Conclusion and outlook

Graphical notation
Cluster expansion

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

Conclusion and

# Intoduction

# Statistical Quantum mechanics

#### **Problem Statement**

$$\hat{\rho} = \frac{e^{-\beta \hat{H}}}{Z}$$

$$\hat{\rho} = \frac{e^{-\rho H}}{Z} \tag{3}$$

$$Z = \operatorname{Tr}\left(e^{-\beta \hat{H}}\right)$$
  $\langle X \rangle = \operatorname{Tr}\left(\rho \hat{X}\right)$  (2)

# Graphical notation

Problem Statement
Graphical notation

expansion

Solvers

2D Transversal Ising Model

Conclusion an



(5)

(3)

# Graphical notation

Intoduction

Problem Statemer

Graphical notation

Construction 11

Construction 2D

Solvers

2D Transversal Ising Model

$$\hat{H} = \left(\sum_{\langle ij \rangle} H_2^i H_2^j + \sum_i H_1^i\right)$$
 (6)

$$H(\bigcirc --\bigcirc) = H_1 \otimes 1 \otimes 1$$

$$+1 \otimes H_1 \otimes 1$$

$$+1 \otimes 1 \otimes H_1$$

$$+H_2 \otimes H_2 \otimes 1$$

$$+1 \otimes H_2 \otimes H_2$$

$$(7)$$

## General idea

Intoduction

Problem Statement Graphical notation

Cluster expansion

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

- represent as MPO/PEPO
- lacktriangle cluster by size, not in eta

# General idea

#### Intoduction

Problem Statement

Cluster expansion

Construction 10

Construction 2D

Solvers

2D Transversal

$$\bigcirc = \exp\left(-\beta H(\bigcirc)\right) \tag{8}$$

# General idea

Intoduction

Problem Statement

Cluster expansion

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model



# Advantages

- Intoduction
- Graphical notation
- Cluster expansion
- Construction 1
- Construction 2D
- Solvers
- 2D Transversal
- Conclusion and

- size extensive
- symmetry

## Construction 1D

Variant A

Variant B

Variant C

Comparison

Construction 2D

Solvers

2D Transversa Ising Model

Conclusion an

# Construction 1D

# Variant A



Constructi

Variant A

Variant B

Variant C Compariso

Results

Solvers

2D Trans

Conclusion an



(11)

# Variant B

Intoduction

Construction 1D

Variant B

Variant B

Comparison

Construction 2

Solvers

2D Transversal Ising Model

Conclusion and



(12)

# Variant C

Intoduction

Lonstruction 11

Variant E

Variant C

Communication

Results

Construction 2

Solvers

2D Transversa Ising Model

Conclusion and



(13)

#### Construction 1D

Variant A

Variant B

Variant C

Compari

Construction 2D

Solvers

2D Transversa Ising Model

- bond dimension
- "unwanted" chains

# Error measure

- 12 sites Results

- cyclic
- relative

Construction 1D

variant /

variant E

- -----

Comparison

Results

Construction 2E

Solvers

2D Transversal



#### Construction 1D

Variant A

- -----

.

Results

Construction 2D

Solvers

2D Transversal



Construction 1D

Construction 2D

Linear blocks

Loops

Solvers

2D Transvers

Ising Model

Conclusion and outlook

# Construction 2D

Intoductio

Construction 1

Construction 2
Linear blocks

Loops

Solve

2D Transve

Conclusion a

(14)

(15)

Intoduction

Construction 1D

Construction 2D

Linear blocks

Loons

Solvers

2D Transversa



Intoduction

Construction 1D

Construction 2
Linear blocks

Loops

Solvers

2D Transvers

Conclusion an



)



(18)

(17)

Intoduction

Construction 1D

Construction 2D

Linear blocks

Loops

Solvers

2D Transversa Ising Model

Conclusion and



And many more "linear" blocks

(19)

# Loops

Intoduction

Construction 11

Construction 2

Loops

Solvers

2D Transversa

Conclusion and

 $\beta' \qquad \beta^{\alpha} \qquad \beta^{\beta'} \qquad \beta$ 

 $\alpha$   $\alpha$   $\alpha$   $\alpha$ 

(20)

(21)

- bond dim
- solver: see later



# Unsolved

Intoduction

Construction 1D

Construction 2D

Daniel Heater

.

Solvers

2D Transversa

Conclusion and

(22)

Easy to solve on finite lattice, dificut in thermodynamic limit...

Construction 1L

Construction 2

## Solvers

Numerical considerations

Problem statement

Non-linear solvers

2D Transversa Ising Model

Conclusion an

# Solvers

# Numerical considerations

Numerical considerations

Normalisation: PEPS  $O \rightarrow O/\alpha$ 

$$\frac{\exp A}{\alpha^N} = \exp \left(A - N \ln \alpha \cdot I\right)$$

Avoid large values in tensor

(23)

## Fast cell contraction

- Bottleneck: find all possible contractions of virtual levels
  - Solution: Construct sparse PEPO, contract geometry

2 / 7 8

Intoductio

Construction 1D

Construction 2D

#### Solvers

Numerical considerations

Problem statement

Linear solver

Non-linear solvers

2D Transversa Ising Model

# Solver

- Intoduction
- Construction 11
- Construction 21

### Solvers

Numerical considerations

## Problem statement

Non linear solver

Non-linear solvers

- 2D Transversal Ising Model
- Conclusion an

- "Linear" problems
- non-linear problems

# Linear Solver

Intoduction

Construction 1D

Construction 2D

#### Solvers

Numerical considerations

Problem statement

### Linear solver

Non-linear solvers

2D Transversal Ising Model



## Linear solver

#### Intoduction

Construction 1D

Construction 2D

#### Solver

Numerical considerations

Problem statement

Linear solver

Non-linear solver

2D Transversal Ising Model

- types of inversion
- numerical stability
- implemented for any shape
- if connected -> split with SVD

# sequential linear

Intoduction

Construction IL

Construction 2D

Solvers

Numerical considerations

Problem statemen

Linear

Non-linear solvers

2D Transversal Ising Model

- initialize randomly
- use linear sovler for 1 tensor
- fast

# true non-linear solver

Intoduction

Construction 1D

Construction 2D

#### Solvers

Numerical considerations

Problem statement

Linear s

Non-linear solvers

2D Transversal Ising Model

- Matlab fsolve
- exact jocobian
- multiple patterns
- multiple maps

Construction 1D

Construction 2D

\_ .

Solvers

2D Transversal Ising Model

Overview

First results

Conclusion and outlook

# 2D Transversal Ising Model

## Overview

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transv

Ising Model

First results

$$\hat{H} = -J \left( \sum_{\langle ij \rangle} \sigma_i^{\mathsf{x}} \sigma_j^{\mathsf{x}} + \Gamma \sum_i \sigma_i^{\mathsf{z}} \right) \tag{24}$$

## Overview

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transvers Ising Model

Overview

First results



Figure: figure taken from [1]

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transvers Ising Model

First results



Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model

First results



Intoduction

Construction 1D

Construction 2D

Solvers

2D Transvers Ising Model

First results



Intoduction

Construction 1D

Construction 2D

Solvers

2D Transvers Ising Model

First results



Construction 1D

Construction 2D

Solvers

2D Transversa Ising Model

Conclusion and outlook

## Conclusion

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

- Working code for 1D and 2D
- General solvers
- Promising results in 1D and 2D

# Short term

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal

- Accurate estimate Transversal ising quantum critical point
- Improve blocks for loops

## Short term

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal Ising Model

- Incorporate symmetries Hamiltonian
- Look at other models
- Generalize for other lattice geometries
- Generalize to 3D

## References I

Intoduction

Construction 1D

Construction 2D

Solvers

2D Transversal

Conclusion and outlook



S. Hesselmann, S. Wessel, Thermal ising transitions in the vicinity of two-dimensional quantum critical points, Phys. Rev. B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.

URL https://link.aps.org/doi/10.1103/PhysRevB.93.155157