Package 'GEEaSPU'

October 12, 2022

Type Package
Title Adaptive Association Tests for Multiple Phenotypes using Generalized Estimating Equations (GEE)
Version 1.0.2
Date 2016-08-03
Author Junghi Kim and Wei Pan
Maintainer Junghi Kim <junghikim@gmail.com></junghikim@gmail.com>
Description Provides adaptive association tests for SNP level, gene level and pathway level analyses.
License GNU General Public License (>= 3)
Depends R ($>= 2.10$), gee, stats
Imports Rcpp (>= 0.12.6)
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 5.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-08-04 11:47:48
R topics documented:
GEEaSPU-package 2 GEEaSPU 2 GEEaSPUpath 4 GEEaSPUset 7
Index 10

GEEaSPU 2

GEEaSPU-package	Adaptive Association Tests for Multiple Phenotypes using Generalized Estimating Equations (GEE)

Description

Provides adaptive association tests for SNP level, gene level and pathway level analyses.

Details

Functions for adaptive association tests including GEEaSPU, GEEaSPUset and GEEaSPUpath. These methods use a weighting scheme for testing associations with multiple phenotypes. GEEaSPU function computes a SNP level p value; GEEaSPUset function can be used for the SNP-set (gene) level association test, while GEEaSPUpath function is for the gene-set (pathway) level analysis.

Author(s)

Junghi Kim and Wei Pan

References

Kim J, Zhang Y, and Pan W (2016). "Powerful and adaptive testing for multi-trait and multi-SNP associations with GWAS and sequencing data." *Genetics* 203(2), 715–731.

Zhang Y, Xu Z, Shen, X and Pan W (2014). "Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data." *NeuroImage* 96, 309–325.

GEEaSPU	An adaptive sum of powered score (SPU) test for single SNP and mu-
	tiple phenotypes

Description

Tests whether a SNP is associated with multivariate outcomes; provides a series of p-values of GEE-SPU(pow) and GEE-aSPU tests.

Usage

```
GEEaSPU(pheno, geno, Z = NULL, model = "gaussian", corstr = "independence", pow = c(1:8, Inf), n.perm = 1000, null.type = "perm", score.test = FALSE)
```

GEEaSPU 3

Arguments

pheno	a numeric phenotype matrix with each row as a different individual and each column as a separate phenotype.
geno	a numeric vector with each element for an individual genotype.
Z	a numeric covariate matrix with each row as a different individual and each column as a covariated to be adjested.
model	a character string specifying the model of the phenotypes. Models supported are "gaussian" for a quantitative trait and "binomial" for a binary trait (default = "gaussian").
corstr	a character string specifying the correlation structure of phenotypes. The following are permitted: "independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable", "AR-M" and "unstructured" (default = "independence").
pow	a vector of the power weight to be used at a trait level (default = $c(1:8, Inf)$).
n.perm	a numeric value of number of null statistics (default = 1000).
null.type	a character string specifying how to generate null statistics; "perm" is used when null statistics are generated using permutations and "sim" is used when null statistics are generated using simulations (default = "perm").
score.test	a logical value indicating whether to include GEEaSPU-Score test along with GEE-Score test (default = FALSE). If TRUE, it computes p-values of GEEaSPU-Score and GEE-Score as well as GEEaSPU test.

Details

Adaptive association tests for single SNP and multiple phenotypes using GEE.

Value

a vector of p-values from GEE-SPU(pow) tests and GEE-aSPU test.

Note

When large SNP-set (namely large gene size) or large number of phenotypes are included, the permuation based test (null.type = "perm") is recommended.

An option "binomial" model only supports the option, null.type = "sim".

Author(s)

Junghi Kim and Wei Pan

References

Kim J, Zhang Y, and Pan W (2016). "Powerful and adaptive testing for multi-trait and multi-SNP associations with GWAS and sequencing data." *Genetics* 203(2), 715–731.

Zhang Y, Xu Z, Shen, X and Pan W (2014). "Testing for association with multiple traits in generalized estimation equations, with application to neuroimaging data." *NeuroImage*, 96, 309–325.

4 GEEaSPUpath

Examples

```
# -- simulating phenotypes
# -- n.subjects: number of subjects
# -- n.traits: number of phenotypes
# -- Sigma: covariance matrix of phenotypes (e.g. AR(1))
set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- 2; rho <- 0.5
Sigma0 <- diag(n.traits);</pre>
Sigma <- sigma * rho^abs(row(Sigma0) - col(Sigma0))</pre>
eS <- eigen(Sigma, symmetric = TRUE)
ev <- eS$values
X <- matrix(rnorm(n.traits * n.subjects), n.subjects)</pre>
pheno <- X %*% diag(sqrt(pmax(ev, 0)), ncol(Sigma)) %*% eS$vectors</pre>
# -- simulating genotype
geno <- rbinom(n = n.subjects, size = 2, prob = 0.2)</pre>
# -- Computing the p-value of GEEaSPU test with the permutation based method
Pv1 \leftarrow GEEaSPU(pheno = pheno, geno = geno, Z = NULL, pow = c(1,2,4,Inf),
        n.perm = 1000, null.type = "perm", score.test = FALSE)
# -- Each element of Pvl is a p value of GEE-SPU(pow) in order
# -- The last element of Pvl is a p value of GEE-aSPU test
Pvl
Pvl[length(Pvl)]
# > Pvl
      SPU.1
                SPU.2
                           SPU.4 SPU.Inf
# 0.1890000 0.4070000 0.3520000 0.3040000 0.2917083
# > Pvl[length(Pvl)]
       aSPU
# 0.2917083
```

GEEaSPUpath

An adaptive sum of powered score (SPU) test for gene-set (pathway) and mutiple phenotypes

Description

Tests whether gene-set (pathway) is associated with multivariate outcomes; provides a series of p-values of GEE-SPU(pow, pow2, pow3) and GEEaSPUpath tests.

GEEaSPUpath 5

Usage

```
GEEaSPUpath(pheno, geno, nSNPs, Z = NULL, corstr = "independence",
pow = c(1,2,4,8), pow2 = c(1,2,4,8), pow3 = c(1,2,4,8), n.perm = 1000)
```

Arguments

pheno	a numeric phenotype matrix with each row as a different individual and each column as a separate phenotype.
geno	a numeric genotype matrix with each row as a different individual and each column as a snp; the SNPs (with the number stored in nSNPs) from one gene are stored consecutively from the first gene.
nSNPs	A numeric vector, whose length matches to the total number of genes; each element of vector indicate the number of SNPs in each gene.
Z	a numeric covariate matrix with each row as a different individual and each column as a covariated to be adjested.
corstr	a character string specifying the correlation structure of phenotypes. The following are permitted: "independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable", "AR-M" and "unstructured" (default = "independence").
pow	a vector of the power weight to be used at a SNP level (default = $c(1,2,4,8)$).
pow2	a vector of the power weight to be used at a trait level (default = $c(1,2,4,8)$).
pow3	a vector of the power weight to be used at a gene level (default = $c(1,2,4,8)$).
n.perm	a numeric value of number of null statistics (default = 1000).

Details

Adaptive association tests for gene-set (pathway) and multiple phenotypes using GEE.

Value

a vector of p-values from GEE-SPU(pow, pow2, pow3) tests and GEE-aSPUpath test.

Note

GEEaSPUpath function only supports a case for a quantitative trait (model = "gaussian") and a permutation based test (null.type = "perm").

Author(s)

Junghi Kim and Wei Pan

References

Kim J, Zhang Y, and Pan W (2016). "Powerful and adaptive testing for multi-trait and multi-SNP associations with GWAS and sequencing data." *Genetics*, 203(2), 715–731.

6 GEEaSPUpath

Examples

```
# -- simulating phenotypes
# -- n.subjects: number of subjects
# -- n.traits: number of phenotypes
# -- Sigma: covariance matrix of phenotypes (e.g. AR(1))
set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- 2; rho <- 0.5
Sigma0 <- diag(n.traits)</pre>
Sigma <- sigma * rho^abs(row(Sigma0) - col(Sigma0))</pre>
eS <- eigen(Sigma, symmetric = TRUE)</pre>
ev <- eS$values
X <- matrix(rnorm(n.subjects * n.traits), n.subjects)</pre>
pheno <- X %*% diag(sqrt(pmax(ev, 0)), ncol(Sigma)) %*% eS$vectors</pre>
# -- simulating genotype
# -- Assume we have two genes each of which has 3 and 5 SNPs respectively.
# -- n.geno1: number of SNPs included in the gene1
# -- n.geno2: number of SNPs included in the gene2
\# -- nSNPs <- c(3,5)
n.geno1 <- 3
n.geno2 <- 5
maf1 <- 0.2
maf2 <- 0.4
gene1 <- matrix(rbinom(n = n.subjects*n.geno1, size = 2, prob = maf1), ncol = n.geno1)</pre>
gene2 <- matrix(rbinom(n = n.subjects*n.geno2, size = 2, prob = maf2), ncol = n.geno2)</pre>
geno <- cbind(gene1, gene2)</pre>
# -- Computing the p-value of GEEaSPUpath test
Pv1 \leftarrow GEEaSPUpath(pheno = pheno, geno = geno, nSNPs = c(3,5), Z = NULL,
        corstr = "independence", pow = c(1,4,8), pow2 = c(1,4,8),
        pow3 = c(1,4,8), n.perm = 1000)
# -- Each element of Pvl is a p value of GEE-SPU(pow,pow2,pow3) in order
# -- The last element of Pvl is a p value of GEE-aSPUpath test
Pvl[length(Pvl)]
\# > Pv1
# SPU.1.1.1 SPU.1.1.4 SPU.1.1.8 SPU.1.4.1 SPU.1.4.4 SPU.1.4.8 SPU.1.8.1 SPU.1.8.4
# 0.00900000 0.05600000 0.07000000 0.06200000 0.08300000 0.11200000 0.06100000 0.08200000
# SPU.1.8.8 SPU.4.1.1 SPU.4.1.4 SPU.4.1.8 SPU.4.4.1 SPU.4.4.4 SPU.4.4.8 SPU.4.8.1
# 0.10600000 0.58100000 0.54300000 0.49200000 0.62400000 0.64000000 0.62700000 0.64900000
# SPU.4.8.4 SPU.4.8.8 SPU.8.1.1 SPU.8.1.4 SPU.8.1.8 SPU.8.4.1 SPU.8.4.4 SPU.8.4.8
# 0.67100000 0.67500000 0.58300000 0.53700000 0.48100000 0.63400000 0.64600000 0.63800000
```

GEEaSPUset 7

```
# SPU.8.8.1 SPU.8.8.4 SPU.8.8.8 aSPUpath
# 0.66000000 0.68100000 0.67900000 0.04395604

# > Pvl[length(Pvl)]
# aSPUpath
# 0.04395604
```

GEEaSPUset

An adaptive sum of powered score (SPU) test for SNP-set (gene) and mutiple phenotypes

Description

Tests whether SNP-set (gene) is associated with multivariate outcomes; provides a series of p-values of GEE-SPU(pow, pow2) and GEEaSPUset tests.

Usage

```
GEEaSPUset(pheno, geno, Z = NULL, model = "gaussian", corstr = "independence", pow = c(1,2,4,8), pow2 = c(1,2,4,8), n.perm = 1000, null.type = "perm", score.test = FALSE)
```

Arguments

pheno	a numeric phenotype matrix with each row as a different individual and each column as a separate phenotype.
geno	a numeric genotype matrix with each row as a different individual and each column as a snp.
Z	a numeric covariate matrix with each row as a different individual and each column as a covariated to be adjested.
model	a character string specifying the model of the phenotypes. Models supported are "gaussian" for a quantitative trait and "binomial" for a binary trait (default = "gaussian").
corstr	a character string specifying the correlation structure of phenotypes. The following are permitted: "independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable", "AR-M" and "unstructured" (default = "independence").
pow	a vector of the power weight to be used at a SNP level (default = $c(1,2,4,8)$).
pow2	a vector of the power weight to be used at a trait level (default = $c(1,2,4,8)$).
n.perm	a numeric value of number of null statistics (default = 1000).
null.type	a character string specifying how to generate null statistics; "perm" is used when null statistics are generated using permutations and "sim" is used when null statistics are generated using simulations (default = "perm").
score.test	a logical value indicating whether to include GEEaSPU-Score test along with GEE-Score test (default = FALSE). If TRUE, it computes p-values of GEEaSPU-Score and GEE-Score as well as GEEaSPU test.

8 GEEaSPUset

Details

Adaptive association tests for SNP-set (gene) and multiple phenotypes using GEE.

Value

a vector of p-values from GEE-SPU(pow, pow2) tests and GEE-aSPUset test.

Note

When large SNP-set (namely large gene size) or large number of phenotypes are included, the permuation based test (null.type = "perm") is recommended.

An option "binomial" model only supports the option, null.type="sim".

Author(s)

Junghi Kim and Wei Pan

References

Kim J, Zhang Y, and Pan W (2016). "Powerful and adaptive testing for multi-trait and multi-SNP associations with GWAS and sequencing data." *Genetics*, 203(2), 715–731.

Examples

```
# -- simulating phenotypes
# -- n.subjects: number of subjects
# -- n.traits: number of phenotypes
# -- Sigma: covariance matrix of phenotypes (e.g. AR(1))
set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- 2; rho <- 0.5
Sigma0 <- diag(n.traits);</pre>
Sigma <- sigma * rho^abs(row(Sigma0) - col(Sigma0))</pre>
eS <- eigen(Sigma, symmetric = TRUE)</pre>
ev <- eS$values
X <- matrix(rnorm(n.subjects * n.traits), n.subjects)</pre>
pheno <- X %*% diag(sqrt(pmax(ev, 0)), ncol(Sigma)) %*% eS$vectors</pre>
# -- simulating genotype
# -- n.geno: number of SNPs included in the SNP set/gene
n.geno <- 3
maf <- 0.2
geno <- matrix(rbinom(n = n.subjects * n.geno, size = 2, prob = maf), ncol = n.geno)
# -- Computing the p-value of GEEaSPUpath test with the permutation based method
Pvl <- GEEaSPUset(pheno = pheno, geno = geno, Z = NULL, model = "gaussian",
```

GEEaSPUset 9

Index

```
* SNP based
GEEaSPU, 2

* SNP-set/gene based
GEEaSPUset, 7

* gene-set/pathway based
GEEaSPUpath, 4

* multiple phenotypes
GEEaSPU, 2
GEEaSPUpath, 4
GEEaSPUset, 7

GEEaSPU, 2
GEEaSPUset, 7
```