Lógica e Sistemas Digitais

Mapas de Karnaugh

João Pedro Patriarca (jpatri@cc.isel.ipl.pt)

Diagrama de Venn

• Considerando a função $F = \bar{A}B + AC + BC$ representada num diagrama de Venn

- Este tipo de diagrama evidencia termos adjacentes: $\bar{A}BC + \bar{A}B\bar{C} = \bar{A}B(C + \bar{C}) = \bar{A}B$
- Evidencia igualmente termos redundantes (termo BC)
- Por análise do diagrama de Venn, extrai-se a função simplificada $F=\bar{A}B+AC$, sendo que a interceção BC já está incluída na união anterior
- A representação na forma deste diagrama torna-se impraticável para funções com mais do que três variáveis

Mapa de Karnaugh

Mapa de Karnaugh com três variáveis

$$F = \frac{B}{\overline{A}\overline{B}\overline{C}} \overline{A}\overline{B}C \overline{A}BC \overline{A}B\overline{C}$$

$$A \overline{B}\overline{C} A\overline{B}C ABC AB\overline{C}$$

$$C$$

• Para
$$F_{(A,B,C)}=ar{A}Bar{C}+ar{A}BC+Aar{B}C+ABC$$
 B F = 0 0 1 1 0

	Α	В	С	F _(A.B.C)
0	0	0	0	0
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

• Função simplificada $F_{(A,B,C)} = \bar{A}B + AC$

Mapa de Karnaugh com diferente número de variáveis

Regras para formação de grupos

- As regras são as mesmas para tirar pelos 0s ou pelos 1s
- Pelos Os, a expressão terá de ser negada
- Formar grupos com células vizinhas
- Entenda-se como vizinhas as células nas mesmas linhas e/ou colunas; células nas diagonais não são vizinhas
- O grupo formado tem de corresponder a uma potência inteira de 2 (1, 2, 4, ...)
- Uma ou mais células podem pertencer a vários grupos

Para resultar na expressão mais simples, tem de se formar o menor número de grupos e cada grupo deverá incluir o maior número de células possível

• O mapa Karnaug é uma representação planar de um Torus (figura geométrica) (donuts), logo são células vizinhas as células da primeira linha com as células da última linha e da primeira coluna com as células da última coluna. Inclusive, as células dos cantos são igualmente vizinhas (pontos a negro no torus e no mapa)

Exemplo 1 – forma AND-OR e OR-AND

Exemplo 2 (1 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

Exemplo 2 (2 de 13)

Exemplo 2 (3 de 13)

$$F2 = \overline{AD} + \overline{CD} + BD + A\overline{B}C + \overline{A}\overline{B}\overline{C}$$

$$F2 = \underline{C}$$

$$1$$

$$1$$

$$A$$

$$1$$

$$D$$

$$D$$

Exemplo 2 (4 de 13)

$$F2 = \overline{AD} + CD + \overline{BD} + A\overline{B}C + \overline{A}\overline{B}\overline{C}$$

$$F2 = \underline{C}$$

$$1 \quad 1$$

$$A \quad D$$

$$D$$

Exemplo 2 (5 de 13)

$$F2 = \overline{AD} + CD + BD + \overline{ABC} + \overline{ABC}$$

$$F2 = C$$

$$A = D$$

$$B$$

Exemplo 2 (6 de 13)

$$F2 = \overline{AD} + CD + BD + A\overline{B}C + \overline{A}\overline{B}\overline{C}$$

$$F2 = C$$

$$1 \quad 1 \quad B$$

$$A \quad D$$

Exemplo 2 (7 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

F2 =	C				
	1	1	1		
		1	1		
		1	1		B
A			1	1	

Exemplo 2 (8 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

F2 =		C			
	1	1	1	0	
	0	1	1	0	
	0	1	1	0	B
A	0	0	1	1	

Exemplo 2 (9 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

$$F2 = \bar{A}\bar{B}\bar{C}$$

Exemplo 2 (10 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

$$F2 = A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

Exemplo 2 (11 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

$$F2 = BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

Exemplo 2 (12 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

$$F2 = BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

$$F2 = BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

Exemplo 2 (13 de 13)

$$F2 = \bar{A}D + CD + BD + A\bar{B}C + \bar{A}\bar{B}\bar{C}$$

$$F2 = BD + A\bar{B}C + \bar{A}\bar{B}\bar{C} + \bar{A}D$$

$$F2 = BD + A\bar{B}C + \bar{A}\bar{B}\bar{C} + CD$$

Exemplo 3 (1 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

Exemplo 3 (2 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

F3 =			(
	1	1	1	1	
	1	1	1	1	
	1	0	0	1	B
A	1	0	0	1	
					-

Exemplo 3 (3 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F3 = \bar{A}$$

Exemplo 3 (4 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

Exemplo 3 (5 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F4 = \bar{A}\bar{B}\bar{D} + A\bar{B}\bar{C}\bar{D} + \bar{B}C\bar{D} + BC + BD + \bar{A}\bar{C}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

Exemplo 3 (6 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F4 = \bar{A}\bar{B}\bar{D} + A\bar{B}\bar{C}\bar{D} + \bar{B}C\bar{D} + BC + BD + \bar{A}\bar{C}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

Exemplo 3 (7 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F4 = \bar{A}\bar{B}\bar{D} + A\bar{B}\bar{C}\bar{D} + \bar{B}C\bar{D} + BC + BD + \bar{A}\bar{C}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

$$F4 = \overline{B}\overline{D}$$

Exemplo 3 (8 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F4 = \bar{A}\bar{B}\bar{D} + A\bar{B}\bar{C}\bar{D} + \bar{B}C\bar{D} + BC + BD + \bar{A}\bar{C}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

$$F4 = \overline{B}\overline{D} + BD$$

Exemplo 3 (9 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F4 = \bar{A}\bar{B}\bar{D} + A\bar{B}\bar{C}\bar{D} + \bar{B}C\bar{D} + BC + BD + \bar{A}\bar{C}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

$$F4 = \overline{B}\overline{D} + BD + BC$$

Exemplo 3 (10 de 10)

$$F3 = \bar{A}\bar{C} + \bar{A}D + \bar{A}B + A\bar{D} + \bar{B}\bar{D}$$

$$F4 = \bar{A}\bar{B}\bar{D} + A\bar{B}\bar{C}\bar{D} + \bar{B}C\bar{D} + BC + BD + \bar{A}\bar{C}\bar{D}$$

$$F3 = \overline{A} + \overline{D}$$

$$F4 = \bar{B}\bar{D} + BD + BC + \bar{A}B$$

Exemplo 4 – indiferenças (don't care)

- Por vezes, podem existir combinações entre variáveis da função que nunca ocorrem
- O resultado da função para essas combinações é indiferente

• Essas combinações são usadas como 0 ou 1 com o objetivo de

simplificar a função

$$F5 = CD + \overline{A}\overline{D}$$

Exemplo 5 – funções complexas

- Considere a função $F = (B\overline{C} + A(B \oplus C)) \cdot (A + B \cdot \overline{C} + \overline{D})$
- Para reduzir a possibilidade de engano, constrói-se dois mapas para representar termos parciais da função

Exercícios

Simplificação de funções por mapa de Karnaugh

1.
$$F1_{(A,B,C)} = (\bar{A}B + A.B.\bar{C}) \oplus (A.B.C + \bar{C}.D)$$

2.
$$F2_{(A,B,C,D)} = (\bar{A} + B.\bar{D}).(\bar{A}.B.C + \bar{C}.D)$$

3.
$$F3_{(W,X,Y,Z)} = \overline{(W + \overline{X}).(Z\overline{Y} + X).(W + Y + Z).(W + \overline{Y} + \overline{Z})}$$

Soluções

 Realize um mapa de quatro variáveis para cada um dos termos do XOR e um terceiro mapa com o resultado do XOR entre os dois primeiros mapas

$$F1_{(A,B,C,D)} = B\overline{D} + B.C + \overline{B}.\overline{C}.D$$

2. Adote a mesma técnica do exercício anterior ou, em alternativa, aplique a propriedade distributiva antes de passar a mapa

$$F2_{(A,B,C,D)} = \bar{A}.B.C + \bar{A}.\bar{C}.D$$

3. Antes de passar a mapa, aplique a lei de De Morgan

$$F3_{(W,X,Y,Z)} = \overline{W}.X + \overline{X}.\overline{Z} + \overline{X}.Y$$

