Exercise 05: Feedback Analysis and simulation

<Advanced Analogue Building Blocks>

Kirchhoff-Institute for Physics, Uni-Heidelberg

Zhenxiong Yuan

2017.06.10

Contents

- A short review of feedback loop-gain
- Return ratio analysis for feedback loop
- Exercise:
 - Analysis of a capacitive-feedback amplifier
 - "stb" simulation in virtuoso

Overview of feedback

- Basic diagram of negative feedback
 - Loop-gain (T), closed-loop gain (A), ...
 - Stability: phase margin, gain margin,...

$$\frac{S_o}{S_i} = A = \frac{a}{1 + af}$$

$$T = af$$

- it's not straight-forward to get the feedback diagram
 - Load effect from the feedback loop
 - Forward feedback by the feedback loop, ...
- How to analysis a feedback loop?
 - Two-port network analysis
 - Return ratio methods
- Simulation: "stb" in Spectre

Return ratio

- Procedure for analysis loop-gain using return-ratio method
 - Set all independent sources to zero
 - Disconnect the dependent source from the rest of the circuit, which introduces a break in the feedback loop
 - On the side of the break that is not connected to the dependent source, connect an independent test source S_t of the same sign and type as the dependent source
 - Find the return signal S_r generated by the dependent source.

$$T = -\frac{S_r}{S_t}$$

Return ratio

Analysis of closed-loop gain using return ratio method

$$A(s) = A_{\infty} \frac{T(s)}{1 + T(s)} + \frac{d(s)}{1 + T(s)}$$

- Very tedious to get this formula
 - A_{oo} : ideal closed-loop gain (idea amplifier, or set the coefficient of a dependent source to be infinity, and calculate the V_o/V_i)
 - d(s): gain of direct feed-through (set the coefficient of a dependent source to be zero, and calculate the V_o/V_i)

Exercise: analysis

- Capacitive-feedback amplifier with OTA used
 - Loop-gain
 - Closed-loop gain

Exercise: analysis loop-gain

- Derive Loop-gain expression *T(s)*
- Draw the bode-plot, calculate the bandwidth, unity gain-bandwidth
- Estimate the phase margin

Exercise: analysis loop-gain

$$v_x = \frac{C_f}{C_f + C_s + C_x} v_o = \beta v_o$$

$$\beta = \frac{C_f}{C_f + C_s + C_x}$$
 Feedback ratio

$$v_o = -i_t \left(R_o \| \frac{1}{sC_{L,tot}} \right)$$

Loading effect of feedback loop

$$i_r = -i_t (R_o \| \frac{1}{sC_{I_t tot}}) G_m \beta$$

$$T(s) = -\frac{i_r}{i_t} = \frac{\beta G_m R_o}{1 + sR_o C_{L,tot}}$$

$$T_0 = \beta G_m R_o$$
, $\omega_p = \frac{1}{R_o C_{L,tot}}$, $\omega_c = T_0 \omega_p$, $PM \approx 90$

Exercise: analysis closed-loop gain

- Calculate the full expression of d(s) and A_{oo}
- Simplify d(s) at frequency much higher than bandwidth of T(s)
- Simplify *d(s)* at low frequency and calculate the static gain-error

Exercise: analysis closed-loop gain

Small signal circuit

Small signal circuit for calculating d(s)

- 1. In the small signal circuit, set G_m to be infinity to calculate the A_{oo} $A_{\infty} = -\frac{C_s}{C}$

2. In the small signal circuit, set
$$G_m$$
 to be 0 to calculate the d(s)
$$d = \frac{\left(R_o \parallel \frac{1}{sC_L} + \frac{1}{sC_f}\right) \parallel \frac{1}{sC_s}}{\left(R_o \parallel \frac{1}{sC_L} + \frac{1}{sC_f}\right) \parallel \frac{1}{sC_s} + \frac{1}{sC_s}} \frac{R_o \parallel \frac{1}{sC_L}}{R_o \parallel \frac{1}{sC_L} + \frac{1}{sC_f}}$$

High frequency:

$$d \approx \frac{C_s C_f}{C_f C_L + (C_x + C_s)(C_f + C_L)}$$

low frequency:

$$d \approx 0 \qquad A_0 = -\frac{C_s}{C_f} \frac{T_0}{1 + T_0}$$

$$A(s) = -\frac{C_s}{C_f} \frac{1 - \frac{sC_f}{G_m}}{1 + \frac{sC_{L,tot}}{\beta G_m}}$$

Zero in right half plan?

-3dB bandwidth?

Static gain error:

$$\varepsilon = \frac{A_{\infty} - A_0}{A_{\infty}} = \frac{1}{1 + T_0} \approx \frac{1}{T_0}$$

Exercise: simulation

- The STB analysis linearizes the circuit about the DC operating poing and computes the loop-gain, gain and phase margins (if the sweep variable is frequency), for a feedback loop and a gain device.
- Refer to the Spectre Simulation Reference for details

 In "Ex05/OTA_LoopGain", using the stored states, do simulation. Try to understand the simulation result

Try to understand the results if the simulation go beyond your expectation... I am just too lazy to verify it when I prepare the exercise. Haha~