TIMESERIES 4

10.28.2020

PROBLEM SET 4

* is due Friday!

PROBLEM SET 5

- * will be posted Friday
- * but you will have 3 weeks to finish it

RECAP: SPECTROGRAM

- * if we compute the fourier transform for small snippets of time and then stack them together into an array
 - * this is the **spectrogram**
 - * it shows which frequencies are present in a timeseries at each point in time
 - * you should know how to read a spectrogram

THE SPECTROGRAM

- * each column is the fourier transform of a short snippet
- * what about each row? what does one row mean?

- * **filtering** is a process that removes some frequencies from a timeseries and lets others remain (or even amplifies them)
- * this is accomplished by convolving your timeseries with a **filter**, a small array that is designed to have a specific effect

- * low-pass filter: removes high frequencies, allows low frequencies through
- * high-pass filter: removes low frequencies, allows high frequencies through
- * band-pass filter: removes all frequencies except for a specific band (the "pass band")

- * low-pass filter: removes high frequencies, allows low frequencies through
- * high-pass filter: removes low frequencies, allows high frequencies through
- * band-pass filter: removes all frequencies except for a specific band (the "pass band")

- * back to the spectrogram:
 - * one row of a spectrogram is a lot like a band-pass filtered version of a timeseries

- * suppose we have some EEG data from a human subject and we want to filter it so that only alpha-band oscillations remain
 - * (this is a band-pass filter)
- * how do you make a filter that has the properties you want?

- * **scipy.signal** is a module in scipy that contains lots of useful functions for filter design
- * scipy.signal.firwin creates "finite impulse response" filters with desired properties

ANALYZING A FILTER

- * scipy.signal.freqz is a great function that tells you what the *frequency* response of your filter looks like
 - * i.e. it tells you what the filter is going to do to your signal

RECALL: FOURIER ANALYSIS

- * fourier transforms have an interesting property related to convolution:
- * given two timeseries, f and g, the fourier transform of their convolution = the element-wise product of their fourier transforms

$$FT(f*g) = F \cdot G$$

* the reverse is also true:

$$F * G = FT(f \cdot g)$$

Time Function Sinc Boxcar $-\frac{\tau}{2}$ 0 $\frac{\tau}{2}$ $G(t) = \begin{cases} 1-|t|/\tau, |t| < \tau \\ 0, |t| > \tau \end{cases}$ Sinc² Triangle 0 $G(t) = e^{-1/2t^2}$ Gaussian Gaussian τ DC Shift Impulse $G(t) = \delta(t)$ = 0, t ≠ 0 0 Single Freq. $G(t) = \cos \omega_0 t$ Sinusoid π/ω 0 π/ω 2π/ω G(t) = comb(t)Comb. Comb. $= \sum_{n=0}^{\infty} \delta(1-n\tau)$ 0 τ 2τ 3τ -2π

Frequency Function

 $S(f) = \tau \operatorname{sinc}(f\tau)$

 $S(f) = \tau \operatorname{sinc}^2(ft)$

 $= (1/\pi f) \sin (\pi f t)$

 $= (1/\pi^2 f^2 \tau) \sin^2 (\pi f t)$

-1/_{\tau} 0 1/_{\tau} 2/_{\tau} 3/_{\tau} 4/_{\tau}

 $S(f) = \frac{1}{2}(\delta(f+f_0) + \delta(f-f_0))$

2π

 4π

 $S(f) = \tau(2\pi)^{1/2} e^{-(\pi f \tau)^2}$

-1/_T 0 1/_T

0

0

 $S(f) = \sum_{-\infty}^{\infty} \delta(f-n/\tau)$

S(f) = 1

 $-f_0$

END