Search and Knowledge

Von Frederik Janssen

Übersicht

- Kompromiss zwischen Suche und Wissen
- Diminishing Returns
 - Experimente mit DARKTHOUGHT
- Experimente mit HITECH und LOTECH

Motivation

- Suche allein reicht bei Schachprogrammen nicht, da es möglicherweise ab gewissen Suchtiefen Diminishing Returns gibt
 - Verbesserung des Wissens nötig
 - Wissen muss gemessen werden
- Wissen ist m\u00e4chtiger als Suchtiefe
- Wie hängen Wissen und Suche zusammen?
 - Kompromiss zwischen Suche und Wissen

Kompromiss zwischen Suche und Wissen

- Variable Kombinationen von Suche und Wissen bei gleichbleibender Performanz
- Suche ist gut messbar
- Wissen ist sehr schlecht messbar

Wissen messen

- Am Besten wäre ein perfektes Orakel (was es meist nicht gibt)
 - Man baut sich selber ein Orakel, indem man das selbe Schachprogramm mit größeren Suchtiefen benutzt
 - Aber: Dieses Orakel ist nicht perfekt, deswegen wird es als perfektes Orakel + Fehler gesehen
 - nun wird der Fehler gemessen, um die Güte des Wissens zu bestimmen

Diminishing Returns (abnehmende Erträge)

- Idee: Verbesserung des Programms bei geringen Suchtiefen größer als bei hohen
- bei Othello bereits nachgewiesen
- bei Schach eher das Gegenteil nachgewiesen
 - Fehlerraten auch bei hohen Suchtiefen noch groß, deswegen schwieriger nachweisbar
 - je länger das Spiel desto höher die Gewinnchancen des d+1 Suchtiefenprogramms
 - aber: bei abgeschnittenen Spielen gibt es Diminishing Returns

Historische Schach-Selbstspiel-Experimente

- von 1982 1997 wurden mit verschiedenen
 Programmen Selbstspiel-Experimente gemacht, um
 - Diminishing Returns zu beweisen oder zu widerlegen
 - den Profit der Spielstärke von einer zur nächsten Suchtiefe zu messen
- da es bei diesen Experimenten aber statistische Ungenauigkeiten gibt, ist keines wirklich aussagekräftig
- je tiefer die Suche und/oder je mehr Spiele, desto weniger statistische Ungenauigkeiten

Messen des Profits von einer zur nächsten Suchtiefe

- Man lässt die Programme gegen sich selber spielen, wobei man
 - die neuen besten Züge betrachtet und nicht wie bisher nur die besten Züge
 - da die neuen besten Züge wirkliche Veränderungen im Spiel des Programms bedeuten
 - und sogar frische Ideen, die das Programm noch nie vorher gefunden hat, liefern k\u00f6nnen

Newborns Hypothese zur Spielstärke von Schachprogrammen

- zur Bestimmung der neuen Spielstärke (RI (k)) in Iteration k im Vergleich mit Iteration k-1
- RI (k+1) = RI (k) * (BC (k+1) / BC (k))
 - BC (k) = Anzahl neuer bester Züge in Iteration k
 - anhand von Spielen ermittelt:
 - RI (k)
 - BC (k)
 - BC (k+1)
- festgemacht an BELLE mit Suchtiefe 11
- nie auf höheren Suchtiefen verifiziert

Experimente mit DARKTHOUGHT

- Experimente mit 343 Testpositionen
 - bestehend aus
 - 106 Eröffnungspositionen
 - 107 Mittelspielpositionen
 - und den 130 verbleibenden Spielpositionen
- Vergleich mit vorhandenen Tests von CRAFTY und BELLE, die auf den gleichen Testpositionen basieren

Besonderes der Experimente

- es wurde folgendes sowohl bei DARKTHOUGHT als auch nachträglich bei CRAFTY mitgeloggt:
 - BestChange
 - FreshBest
 - -(I-2) Best
 - -(I-3) Best

Beispieltabelle

Search	Best		Fresh		(I-2)		(I-3)	
Depth	Change	(#)	Best	(#)	Best	(#)	Best	(#)
2	35.28%	(121)	100.00%	(121)	0.00%	(0)	0.00%	(0)
3	39.65%	(136)	85.29%	(116)	14.71%	(20)	0.00%	(0)
4	31.78%	(109)	55.05%	(60)	31.19%	(34)	13.76%	(15)
5	29.45%	(101)	56.44%	(57)	24.75%	(25)	10.89%	(11)
6	24.49%	(84)	65.48%	(55)	19.05%	(16)	5.95%	(5)
7	21.28%	(73)	49.32%	(36)	28.77%	(21)	10.96%	(8)
8	25.07%	(86)	50.00%	(43)	24.42%	(21)	4.65%	(4)
9	21.57%	(74)	40.54%	(30)	28.38%	(21)	13.51%	(10)
10	24.20%	(83)	37.35%	(31)	34.94%	(29)	8.43%	(7)
11	17.49%	(60)	31.67%	(19)	36.67%	(22)	10.00%	(6)
12	15.45%	(53)	45.28%	(24)	20.76%	(11)	9.43%	(5)
13	16.62%	(57)	42.11%	(24)	28.07%	(16)	10.53%	(6)
14	13.70%	(47)	34.04%	(16)	25.53%	(12)	12.77%	(6)

Table 2: Results of DarkThought for All 343 Corrected Test Positions.

Vergleich der Schachprogramme 1

- Best Change Rates:
 - bei allen Programmen sehr ähnlich, obwohl die Evaluierungsfunktion, die Knotenexpandierung und die Suchstrategie unterschiedlich sind
 - Grund: alpha-beta Suche bei allen Schachprogrammen
- Fresh Best:
 - unterstützt Newborn's Hypothese:
 - (# BestChange(i)/# BestChange(i-1)) ~
 (#FreshBest(i)/#FreshBest(i-1)) für i>=8
 - bis zu Suchtiefen von 14

Vergleich der Schachprogramme 2

- (I − 2) Best:
 - bei 25 % aller Best Change Suchen sind Such Instabilitäten bei ungeraden und geraden Suchtiefen vorhanden
- reduziert man die Testmenge kommen Fluktuationen hinzu
- in Iteration 14 ist die Best Change Rate bei DARKTHOUGHT rapide nach unten gegangen, was auf Diminishing Returns hindeutet

Experimente mit HITECH und LOTECH

- LOTECH ist das gleiche Programm wie HITECH, nur mit einer künstlich verschlechterten Evaluierungsfunktion
- HITECH und LOTECH jeweils mit unterschiedlichen Suchtiefen gegeneinander spielen lassen

Ergebnistabelle

Table 3
Round-robin tournament results

	L_4	$L_{\scriptscriptstyle 5}$	L_{6}	L_7	L_8	L_9	H_4	$H_{\scriptscriptstyle 5}$	H_6	H_7	H_8	H_9	Total
$\overline{L_4}$	_	3	0	0.5	0	0	4	0	0	0	0	0	7.5
L_{5}	13		3	0.5	0	0	8	4	0	0	0	0	28.5
L_6	16	13		2	1.5	1.5	12.5	6.5	4	1	0	0	58
L_7	15.5	15.5	14		2	1.5	12.5	9.5	5.5	3	0	0	79
L_8	16	16	14.5	14		5.5	15	12.5	7	5	2.5	1	109
L_9	16	16	14.5	14.5	10.5	_	15.5	14	9.5	8.5	2	2.5	123.5
H_4	12	8	3.5	3.5	1	0.5		2.5	1.5	0.5	0	0	33
H_5	16	12	9.5	6.5	3.5	2	13.5		4	1.5	0	0	68.5
H_6	16	16	12	10.5	9	6.5	14.5	12	-	4	1	2.5	104
H_7	16	16	15	13	11	7.5	15.5	14.5	12		3	3	126.5
H_8	16	16	16	16	13.5	14	16	16	15	13	-	3	154.5
H_9	16	16	16	16	15	13.5	16	16	13.5	13	13	-	164

Erkenntnisse

- je höher die Suchtiefe desto weniger fällt ein zusätzlicher Halbzug tiefer auf
- ab einer Suchtiefe bei H von 6, ist HITECH besser als LOTECH für alle Suchtiefen
- bekommt H eine Suchtiefe mehr, so braucht man bei L, um dies auszugleichen 2 Suchtiefen, wobei sich dies bei höheren Suchtiefen noch steigert (nichtlinear)

Fazit der Experimente 1

- bei DARKTHOUGHT mit hohen Suchtiefen zu experimentieren hat Diminishing Returns weder bewiesen, noch widerlegt
- die BestChange Rate von Schachprogrammen ist auch bei hohen Suchtiefen bis 14 über 16 %
- Es sind Experimente mit Suchtiefen >14
 Halbzüge nötig, um abnehmende Erträge eindeutig nachzuweisen

Fazit der Experimente 2

- auch ohne Diminishing Returns ist eine Wissensverbesserung effizienter als die Suchtiefe zu steigern
- es ist schwieriger seine Spielstärke zu erhöhen, je besser man ist
 - Schachprogramme brauchen verbessertes Wissen, da Suchtiefe allein nicht genügt

Ausblick

- Eine Steigerung des Wissens könnte viel bessere Ergebnisse liefern, als eine Steigerung der Suche
- Eine Verbesserung des Wissens ist unbedingt nötig, da vieles auf die Existenz von Diminishing Returns hindeutet
- Um Weltmeisterniveau zu erreichen muss das Wissen verbessert werden

Quellen

- Hans J. Berliner, Gordon Goetsch, Murray S. Campbell, Carl Ebeling. Measuring the performance potential of chess programs. Artificial Intelligence Volume 43, Issue 1 (April 1990) Special issue on computer chess, pages 7 - 20.
- Andreas Junghanns, Jonathan Schaeffer: <u>Search</u> <u>Versus Knowledge in Game-Playing Programs</u> <u>Revisited</u>. IJCAI (1) 1997: 692-697
- Ernst A. Heinz. <u>DarkThought Goes Deep</u>. ICCA Journal, Vol. 21(4), pp. 228-244, Dec. 1998.

Ende

• Danke für die Aufmerksamkeit