Chapter 14 - Complex Integration

Selected Problem set 14.1

7.
$$z(t) = 2 + 4e^{\pi i t/2}$$
 $(0 \le t \le 2)$

$$e^{\frac{\pi t}{2}} = \cos(\frac{\pi t}{2}t) + i \sin(\frac{\pi t}{2}t)$$

$$Z(0) = 2 + 4((+0)) = 6$$

$$z_{i}(t) = 2t + 4(0 + i) = 2t + 4i$$

$$Z(2) = 2 + 4(-1) + 0i) = -2$$

11-20

FIND A PARAMETRIC REPRESENTATION

and sketch the path.

11. Segment from (-1, 1) to (1, 3)

$$M = \frac{3-1}{1-(-1)} = 1$$

 $(-1+t, 1+t)$ $0 \le t \le 2$

13. Upper half of
$$|z - 2 + i| = 2$$
 from $(4, -1)$ to $(0, -1)$

$$Z(t) = 2 - i + 2e^{it} \qquad 0 \le t \le \pi$$

$$Im$$

21–30 INTEGRATION

Integrate by the first method or state why it does not apply and use the second method. Show the details.

23.
$$\int_C e^z dz$$
, C the shortest path from πi to $2\pi i$

$$C(z(t) = t\pi)$$

$$z(t) = \pi$$

$$\int_{1}^{2} e^{t\pi i} \pi i dt$$

$$= \pi i \int_{1}^{2} [cos(t\pi) + i Sin(t\pi)] dt$$

$$= \pi_{i} \left(0 + - \frac{1}{\pi} \right)$$

$$= 2$$

25.
$$\int_C z \exp(z^2) dz$$
, C from 1 along the axes to i

$$C_1$$
 $Z_1(t)=1-t$ $0 \le t \le 1$

$$Z_1(t) = -1$$
 $C_2 Z_1(t) = ti$
 $0 \in t = 1$
 $Z_2(t) = i$

The answer on PA37 IS very Simple and Straight forward Not Sure the application Condition

$$\int_{C} z \exp(z^{2}) = \int_{C_{1}} z \exp(z^{2}) + \int_{C_{2}} z \exp(z^{2}) \frac{1}{2} e^{z^{2}} \Big|_{z=-sm}^{z=-sm}$$

$$= \int_{0}^{1} (1-t) e^{(1-t)^{2}} (-1) dt + \int_{0}^{1} t_{1} e^{(t_{1})^{2}} dt$$

$$= \int_{0}^{1} (t-1) e^{(1-t)^{2}} - t e^{-t^{2}} dt = -smh$$

