- 一、理想运放组成的电路如图 1 所示。要求: (25 分)(19A)
 - (1) 说明 A1~A5分别组成何种基本应用电路;
 - (2) 说明 A1~A4中哪些存在虚地, A5工作于线性区还是非线性区;
- (3) 分别写出 u_{01} 、 u_{02} 、 u_{03} 、 u_{04} 与输入电压 u_{i1} 、 u_{i2} 和 u_{i3} 的关系式;要求先写表达式,再代入数据计算,并给出化简后结果;
- (4) 若 $u_{i1} = u_{i2} = u_{i3} = 1$ V,电容 C上的初始压降 $U_{C}(0)=0$,且运放的最大输出电压幅度为±12V,则 4s 后 $u_{o4}=$? $u_{o}=$?

图 1

二、电路如图 2 所示。

- (1) 说明 A₁~A₅分别组成何种基本应用电路; (25分)(19B)
- (2) 说明 A1~A5中哪些存在虚地, A5工作于线性区还是非线性区;
- (3) 分别写出 u_{01} 、 u_{02} 、 u_{03} 与输入电压 u_{i1} 、 u_{i2} 的关系式,以及 u_{0} 与 u_{04} 的关系式;要求先写表达式,再代入数据计算,并给出化简后结果;
- (4) 若 $u_{i1} = u_{i2} = 1$ V,电容 C 上的初始压降 $U_{C}(0)=0$,且运放的最大输出电压幅度为 ± 12 V,则 4s 后 u_{o3} 、 u_{o4} 和 u_{o} 各等于多少?

- 三、电路如图 3 所示, 设 A_1 、 A_2 为理想运放, 且在 t=0 时, $U_1=0$, $U_{01}=0$, $U_0=+12V$.
 - (1) 分别说明运放 A1、A2组成电路的名称; (25分)(22A)
 - (2) 写出 U_{01} 的表达式 (要求先写表达式, 再代入数据计算, 并给出化简后结果);
- (3) 写出运放 A_2 同相端电位 U_{2+} 的表达式,并求 U_0 从+12V 跃变到-12V 时 U_{01} 的大小 U_{T1} ,以及 U_0 从-12V 跃变到+12V 时 U_{01} 的大小 U_{T2} ;
 - (4) 若输入端接入一个+12V 的直流电压,求 U_0 从+12V 跃变到-12V 需经过多长时间?

- 四、理想运放 A 组成的电路如图 4 所示: (25 分) (22B)
 - (1) 写出 A 同相端电位 u+和反相端电位 u-的表达式;
- (2) 求 u。从+9V 跃变到-9V 时对应的门限电平 U_{T+} 、u。从-9V 跃变到+9V 时对应的门限电平 U_{T-} ,以及门限宽度 ΔU_{T} ;
 - (3) 画出电压传输特性 $u_o = f(u_i)$.

图 4