Computational Electrokinetics: Numerical Solution of Ion-Exchanger Dynamics

Roman Zeyde, Irad Yavneh Ehud Yariv

Department of Computer Science, Technion Department of Mathematics, Technion

Physical phenomenon

An ion-selective conducting particle is suspended in an electrolyte solution and exposed to a uniform electric field.

Due to strong electrostatic forces, most of the electrolyte remains neutral, except for a thin ("Debye") layer around the particle. This scale separation allows for a mathematical analysis using singular expansions, leading to an effective macro-scale description.

The system achieves steady-state for a specific particle velocity, where the fluid and electrostatic forces are balanced.

Applications

Electrochemical surfaces

Nano-fluidic devices

Packed bed separation devices

Ion-selective particles

Desalination processes

Macro-scale Problem¹

Problem Variables

Φ – Electrostatic potential

C-Salt concentration

V, P – Fluid velocity and pressure

Differential Equations

- Charge conservation:
- 2. Salt conservation:
- Stokes flow: (coupled with Coulomb force)

$\nabla \cdot (\mathbf{C} \nabla \Phi) = 0$ $\Delta \mathbf{C} - \alpha \mathbf{V} \cdot \nabla \mathbf{C} = 0$ $\Delta \mathbf{V} - \nabla \mathbf{P} + \Delta \Phi \nabla \Phi = 0$ $\nabla \cdot \mathbf{V} = 0$

Boundary Conditions

At particle surface

- Potential drop due to electrical double layer
- Ion-selective kinetics
- Effective slip velocity

Far-field (away from the particle)

- Constant electric field \(\beta \)
- Ambient ionic concentration
- Fluid moves with velocity $(-\mathcal{U})$

Force-free particle

In steady-state, the total force acting on the particle vanishes:

$$\mathbf{F} = \oiint \mathbf{S} \cdot \hat{\mathbf{n}} dA$$

$$\mathbf{S} = \nabla \mathbf{V} + (\nabla \mathbf{V})^{\dagger} - \mathbf{P} \mathbf{I} + \nabla \Phi \nabla \Phi - \frac{1}{2} \|\nabla \Phi\|^{2} \mathbf{I}$$

The steady-state problem can be formulated as:

Given β (applied field), find \mathcal{U} (particle velocity) such that F=0 (steady-state).

Approximate analytic solution exists for weak-field regime ($\beta << 1$).

(1) Problem variables (Φ, C, V, P) and parameters $(\alpha, \beta, \mathcal{U})$ are dimensionless.

Solver Implementation

Discrete Problem

Axial symmetry for φ

- → Spherical coordinates.
- \rightarrow 2D Problem (r, θ)
- → Non-Cartesian operators

- → Discrete operators
- → Sparse matrices (MATLAB)

Iterative Solver

Coupled non-linear system

 \rightarrow Newton's method: $\underline{\mathbf{x}} = \begin{bmatrix} \Phi & \mathbf{C} & \mathbf{V} & \mathbf{P} \end{bmatrix}$

$$\mathcal{L}(\underline{x} + \underline{\delta x}) \approx \mathcal{L}(\underline{x}) + \nabla \mathcal{L}(\underline{x}) \cdot \underline{\delta x}$$

$$\mathcal{L}(\underline{x}) = \underline{0}$$

$$\downarrow \downarrow$$

$$\underline{\delta x} = -\left[\nabla \mathcal{L}(\underline{x})\right]^{-1} \cdot \mathcal{L}(\underline{x})$$

- → F is computed by 1D numerical integration.
- \rightarrow Steady-state velocity **V** is found by Secant method (**F**=**0**).

References

[1] E. Yariv, Migration of ion-exchange particles driven by a uniform electric field. Journal of Fluid Mechanics, 655:1-17, 2010.

[2] E. Yariv, An asymptotic derivation of the thin-Debye-layer limit for electrokinetic phenomena. Chemical Engineering Communications, 197 3-17, 2010