ET-540 – Introduction to Digital Computer Theory

Homework 6 – SR, D, and JK flip flops

Student's Name_____

Instructions:

- Show all works to receive full credit
- 1. For a given (NAND) S-R FF, find the output Q assuming that $Q_{initial} = 1$

Clock]		
	0	1	2	3	4	5	6	7
S								
	0	1	2	3	4	5	6	7
R				1				
	0	1	2	3	4	5	6	7
Q								
	0	1	2	3	4	5	6	7

2. For a given (NOR) S-R FF, find the output Q and \bar{Q} assuming that $Q_{\rm initial} = 0$

Clock								
	0	1	2	3	4	5	6	7
S								
	0	1	2	3	4	5	6	7
R								
	0	1	2	3	4	5	6	7
Q								
	0	1	2	3	4	5	6	7

3. For the following D-flip flop circuit, sketch output Q and $\overline{m{Q}}$ if $Q_{initial}$ is 0

4. For the following D-flip flop circuit, sketch output Q and $\overline{m{Q}}$ if $Q_{initial}$ is 1

5. For the following J-K flip flop circuit, sketch output Q and $\overline{m{Q}}$ if $Q_{initial}$ is 1

6. For the following J-K flip flop circuit, sketch output Q and $\overline{m{Q}}$ if $Q_{initial}$ is 0

----- End of Homework 6 -----