Vorlesungsnotizen zu "Angewandte Stochastik I" an der Uni Ulm

Jonas Otto

Sommersemester 2020

Inhaltsverzeichnis

1	Einleitung			2
2	Wahrscheinlichkeitsräume			
	2.1	Ergebr	nisraum Omega	3
	2.2	Ereign	isse	3
	2.3	Sigma-	-Algebra	4
	2.4	Wahrs	Wahrscheinlichkeiten	
	2.5	Beispiele zum Wahrscheinlichkeitsraum		
		2.5.1	Münzwurf	6
		2.5.2	Würfeln	6
		2.5.3	Geschlecht von Neugeborenen	6
	2.6	Eigens	schaften von W-Maßen	6
	2.7	Endlic	he Wahrscheinlichkeitsräume	7
		2.7.1	Urnenmodelle	7
		2.7.2	Weitere W-Maße in endlichen W-Räumen	8
	2.8	Diskrete Wahrscheinlichkeitsräume		11
		2.8.1	Poisson Verteilung	11
		2.8.2	Geometrische Verteilung	11
	2.9	Stetige	e W-Räume	11
		2.9.1		12
		2.9.2	Definition von P	12
		2.9.3	Stetige Gleichverteilung	13
		2.9.4		13
		2.9.5	Normalverteilung	14
		gte Wahrscheinlichkeiten	15	
	2.11	Unabh	längigkeit	15
3	Zufallsvariablen			17
3	3.1 Zufallsvariablen			17
	5.1	3.1.1		18
		3.1.1	9	19
		3.1.2		19 19
		3.1.4	· ·	19 21
		0.1.4	Beispiele	41

Kapitel 1

Einleitung

Zentrales Objekt der Stochastik ist das **Zufallsexperiment**: Dies ist ein Experiment, bei dem mehrere Ergebnisse eintreten können. Es ist nicht vorhersagbar, welches Ergebnis eintritt.

Beispiele sind Münzwurf, oder das Werfen eines Würfels. Die Ergebnisse sind hier Kopf/Zahl respektive die Zahlen 1 bis 6. Ein Zufallsexperiment hat keine deterministische Regelmäßigkeit: Wiederholungen eines Zufallsexperiments können verschiedene Ergebnisse haben. Ein Zufallsexperiment hat aber eine statistische Regelmäßigkeit: Relative Häufigkeiten der einzelnen Ergebnisse stabilisieren sich nach vielen Wiederholungen. Beim 1000-facher Wiederholung des Münzwurfs zum Beispiel ist die relative Häufigkeit

$$=\frac{\text{Anzahl von Kopf}}{1000}\approx\frac{500}{1000}=\frac{1}{2}$$

Die statistische Regelmäßigkeit ermöglicht es, Vorhersagen bestimmter Art zu machen: Beim 1000-fachen Münzwurf wird Kopf mindestens 450 Mal auftreten mit Wahrscheinlichkeit 99.8%.

Kapitel 2

Wahrscheinlichkeitsräume

Ziel dieses Abschnittes ist die Mathematische Modellierung von Zufallsexperimenten

2.1 Ergebnisraum Omega

Der Ergebnisraum Ω ist die Menge aller möglichen Ergebnisse ω des Zufallsexperimentes.

Beispiel Eine Münze wird geworfen. $\Omega = \{K, Z\}$ (Kopf, Zahl), oder auch $\Omega = \{0, 1\}$.

Beispiel Ein Würfel wird geworfen. $\Omega = \{1, 2, 3, 4, 5, 6\}$

Beispiel Anzahl täglicher Bestellungen eines Artikels: $\Omega = \{0, 1, 2, \dots\} = \mathbb{N}_0$

Beispiel Temperatur am Schwörmontag an der Ulmer Adenauerbrücke: $\Omega = [-50, 50]$ oder $\Omega = \mathbb{R}$

Beachte:

- Bei der Wahl des Ergebnisraums gibt es kein "richtig" oder "falsch". Das Ziel ist, einen einfachen aber adäquaten Raum zu wählen.
- Der Ergebnisraum kann unterschiedliche Kardinalität haben (in den Beispielen: endlich, abzählbar unendlich, überabzählbar unendlich).

2.2 Ereignisse

Motivation: Oft ist nicht das tatsächliche Ergebnis des Experiments interessant, sondern nur ob das Ergebnis in eine vorgegebene Menge von Ergebnissen A fällt.

Beispiel: Würfeln Augenzahl ist gerade: $A = \{2, 4, 6\}$

Beispiel: Anzahl täglicher Bestellungen Vorrat von 100 Artikeln wird nicht überschritten: $A = \{0, 1, 2, ..., 100\}$.

Beispiel: Temperatur Temperatur beträgt über 25°: A = [25, 50] (falls $\Omega = [-50, 50]$) oder $A = [25, \infty)$ (falls $\Omega = \mathbb{R}$)

Diese TeilmengenA von Ω , denen Wahrscheinlichkeiten zugeordnet werden sollen, heißen **Ereignisse**. Man sagt "Das Ergebnis A tritt ein", falls das Ergebnis ω des Zufallexperimentes in dieser Menge A liegt (d.h. $\omega \in A$). Mittels Mengenoperationen können Ereignisse zu neuen Ereignissen verknüpft werden.

- $A \cup B$: Ereignis A oder Ereignis B tritt ein.
- $A \cap B$: Ereignis A und Ereignis B treten ein.
- $A \setminus B$: Ereignis A, nicht aber Ereignis B tritt ein.
- $A^{\complement} = \Omega \setminus A$: Ereignis A tritt nicht ein.
- $\bigcup_{i=1}^{\infty} A_i$: Mindestens eines der Ereignisse A_1, A_2, \ldots tritt ein.
- $\bigcap_{i=1}^{\infty} A_i$: Alle Ereignisse A_1, A_2, \ldots treten ein.

Beispiel Münze wird zwei Mal geworfen.

 $\Omega = \{KK, KZ, ZK, ZZ\}$

Sei A_1 das Ereignis "Im ersten Wurf fällt Kopf" und

sei A_2 das Ereignis "Im zweiten Wurf fällt Kopf". Dann gilt

 $A_1 = \{KK, KZ\}, A_2 = \{KK, ZK\}.$

Die Menge $A_1 \cup A_2 = \{KK, KZ, ZK\}$ ist das Ereignis "Es fällt mindestens ein Mal Kopf".

Die Menge $A_1 \cap A_2 = \{KK\}$ ist das Ereignis "Es fällt zwei Mal Kopf".

2.3 Sigma-Algebra

Welchen Teilmengen A von Ω sollen Wahrscheinlichkeiten P(A) zugeordnet werden? Ideal wäre: man definiert P(A) für alle $A \subset \Omega$, das heißt für alle $A \in \mathbb{P}(\Omega) := \{B : B \subset \Omega\}$, die Potenzmenge von Ω . Das geht, falls Ω endlich oder anzählbar ist. Es ist aber im Allgemeinen nicht möglich (z.B. falls $\Omega = \mathbb{R}$). Deswegen beschränkt man sich auf ein Teilsystem $\Sigma \subseteq \mathbb{P}(\Omega)$ von Ereignissen.

Forderungen an Σ : Mengenoperationen mit Ereignissen liefern wieder Ereignisse.

Definition 2.3.1. Sei $\Omega \neq \emptyset$ eine beliebige Menge. Eine Menge $\Sigma \subseteq \mathbb{P}(\Omega)$ heißt eine σ -Algebra, falls

- 1. $\Omega \in \Sigma$
- 2. Falls $A \in \Sigma$, dann gilt $A^{\complement} \in \Sigma$

3. Falls
$$A_1, A_2, \dots \in \Sigma$$
, dann gilt: $\bigcup_{i=1}^{\infty} A_i \in \Sigma$

Die Elemente der σ -Algebra heißen **Ereignis**. Es folgt, dass \emptyset ein Element jeder σ -Algebra ist. Dieses Ereignis heißt **unmögliches Ereignis** und tritt nie ein. Es folgt, dass endliche Vereinigungen von Ereignissen auch Ereignisse sind.

Beispiel: Münzwurf $\Omega = \{K, Z\}$. Die Mengen

$$\Sigma_1 = {\Omega, \emptyset}$$
 und

$$\Sigma_2 = {\Omega, \emptyset, \{K\}, \{Z\}} = \mathbb{P}(\Omega) \text{ sind } \sigma\text{-Algebren.}$$

Die σ -Algebra Σ_1 heißt die **triviale** σ -Algebra.

Beachte: $K \notin \Sigma_2$, aber $\{K\} \in \Sigma_2$, Ergebnisse sind **keine** Ereignisse!

Beispiel: $\Omega = \{1, 2, 3\}$

Dann sind die Mengen

$$\Sigma_1 = \{\Omega, \emptyset\},\$$

$$\Sigma_2 = {\Omega, \emptyset, \{1\}, \{2, 3\}},$$

$$\Sigma_3 = \{\Omega, \emptyset, \{2\}, \{1, 3\}\},\$$

$$\Sigma_4 = \{\Omega, \emptyset, \{3\}, \{1, 2\}\}\$$

$$Σ_4 = {Ω, \emptyset, {3}, {1, 2}},$$
 $Σ_5 = {Ω, \emptyset, {1}, {2}, {2, 3}, {1, 3}, {1, 2}, {3}} = \mathbb{P}(Ω) \sigma$ -Algebren

Theorem 2.3.1. Für jede σ -Algebra Σ gilt

1.
$$\emptyset \in \Sigma$$

2. falls
$$A, B \in \Sigma$$
 dann gilt: $A \cup B, A \cap B, A \setminus B \in \Sigma$

3. falls
$$A_1, A_2, \dots \in \Sigma$$
, dann gilt $\bigcap_{i=1}^{\infty} A_i \in \Sigma$

2.4 Wahrscheinlichkeiten

Wir definieren P(A) für alle $A \in \Sigma$.

Definition 2.4.1 (Disjunkte Mengen). Mengen A, B heißen disjunkt, falls $A \cap$ $B = \emptyset$

Mengen A_1, A_2, \ldots heißen paarweise disjunkt (p.d.) falls für alle $i \neq j$ gilt $A_i \cap A_j = \emptyset$

Idee: P soll folgende Eigenschaften haben:

- 1. Für alle $A \in \Sigma$ gilt: $0 \le P(A) \le 1$
- 2. $P(\Omega) = 1$ und $P(\emptyset) = 0$
- 3. $P(A^{\complement}) = 1 P(A)$ für alle $A \in \Sigma$
- 4. falls $A, B \in \Sigma$ disjunkt sind, so gilt $P(A \cup B) = P(A) + P(B)$.

5. falls
$$A_1, A_2, \dots \in \Sigma$$
 p.d., so gilt $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

Das motiviert folgende Definition

Definition 2.4.2 (Wahrscheinlichkeitsmaß). Sei $\Omega \neq \emptyset$ und Σ eine σ-Algebra auf Ω . Eine Abbildung $P: \Sigma \to [0,1]$ heißt Wahrscheinlichkeitsmaß (W-Maß) auf Σ falls

- 1. $P(\Omega) = 1$
- 2. Sind $A_1, A_2, \dots \in \Sigma$ paarweise disjunkt, dann gilt $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$ (σ -Additivität)

Das Tripel (Ω, Σ, P) heißt Wahrscheinlichkeitsraum (W-Raum).

2.5 Beispiele zum Wahrscheinlichkeitsraum

2.5.1 Münzwurf

Modellierung durch den Wahrscheinlichkeitsraum (Ω, Σ, P) mit $\Omega = \{K, Z\}$, $\Sigma = \mathbb{P}(\Omega) = \{\Omega, \emptyset, \{K\}, \{Z\}\}$ $P : \Sigma \to [0, 1] \text{ mit } P(\Omega) = 1, P(\emptyset) = 0, P(\{K\}) = 0.5, P(\{Z\}) = 0.5$

2.5.2 Würfeln

in A (Kardinalität von A).

Modellierung durch den Wahrscheinlichkeitsraum (Ω, Σ, P) mit $\Omega = \{1, 2, \dots, 6\}$ $\Sigma = \mathbb{P}(\Omega)$ $P: \Sigma \to [0, 1] \text{ mit } P(\Omega) = 1, P(\emptyset) = 0,$ $P(\{1\}) = \frac{1}{6}, P(\{2\}) = \frac{1}{6}, \dots$ $P(\{1, 2\}) = \frac{1}{3}, P(\{1, 2, 3\}) = \frac{1}{2}$ Also kann man kürzer schreiben $P(A) = \frac{|A|}{|\Omega|}$, mit |A| der Anzahl der Elemente

2.5.3 Geschlecht von Neugeborenen

Modellierung durch den Wahrscheinlichkeitsraum (Ω, Σ, P) mit $\Omega = \{W, M\}$ $\Sigma = \mathbb{P}(\Omega)$ $P : \Sigma \to [0, 1]$ mit $P(\Omega) = 1, P(\emptyset) = 0$ $P(\{W\}) = p, P(\{M\}) = 1 - p$, wobei $p \in [0, 1]$. Wahl von p: länderspezifisch auf Basis relativer Häufigkeiten, z.B. für Deutschland p = 0.4863 (1970-1999).

2.6 Eigenschaften von W-Maßen

Theorem 2.6.1 (Eigenschaften von W-Maßen). Sei (Ω, Σ, P) ein W-Raum, und seien $A, B, A_1, A_2, \dots \in \Sigma$.

1. Ist
$$A \subseteq B$$
, so gilt $P(B) = P(A) + P(B \setminus A)$ und $P(A) \le P(B)$ (Monotonie)

- 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 3. $P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$ (σ -Subadditivität)

2.7 Endliche Wahrscheinlichkeitsräume

In diesem Abschnitt: Ω ist endlich, d.h. $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$ für ein $n \in \mathbb{N}$. In diesem Fall kann man $\Sigma = \mathbb{P}(\Omega)$ wählen. Ferner ist ein W-Maß P bereits durch die Werte $p_i = P(\{\omega_i\}), i = 1, \dots, n$ von Elementarereignissen $\{\omega_i\}$ eindeutig bestimmt.

Definition 2.7.1 (Endlicher W-Raum). Ein W-Raum (Ω, Σ, P) heißt **endlicher W-Raum**, falls Ω endlich ist und $\Sigma = \mathbb{P}(\Omega)$ gilt.

Beachte: Sei (Ω, Σ, P) ein endlicher W-Raum. Im Allgemeinen ist es nicht der Fall, dass alle Elementarereignisse gleichwahrscheinlich sind.

Laplace W-Räume Ein besonders einfacher Fall liegt dann vor, wenn alle Elementarereignisse $\{\omega_i\}$ gleichwahrscheinlich sind.

Definition 2.7.2 (Laplace-W-Raum). Ein endlicher W-Raum (Ω, Σ, P) und $p_i = P(\{\omega_i\}) = \frac{1}{|\Omega|} = \frac{1}{n}$ für alle $i = 1, \ldots, n$ heißt **Laplace-W-Raum**. Das W-Maß P heißt **diskrete Gleichverteilung**. Man schreibt $P = U(\Omega)$ (uniform). Ein Zufallsexperiment, welches durch einen Laplace-Raum bechrieben ist, nennt man ein Laplace-Experiment.

Sei (Ω, Σ, P) ein Laplace W-Raum. Es folgt:

$$P(A) = \sum_{\omega_i \in A} P(\{\omega_i\}) = \sum_{\omega_i \in A} \frac{1}{|\Omega|} = \frac{|A|}{|\Omega|}$$

Die Bestimmung der Kardinalitäten von Ω und A kann nichttrivial sein.

Theorem 2.7.1. Seien A_1, \ldots, A_n endliche Mengen und $A = \{(a_1, \ldots, a_n) : a_1 \in A_1, \ldots, a_n \in A_n\} = A_1 \times \cdots \times A_n$. Dann gilt $|A| = |A_1| \cdot |A_2| \cdots |A_n|$

2.7.1 Urnenmodelle

- Urne mit n Kugeln, welche nummeriert sind mit $1, \ldots, n$.
- ullet Zufälliges Ziehen von k Kugeln

Das Ergebnis ist ein Vektor $(\omega_1, \ldots, \omega_k)$ wobei ein Element jeweils die Nummer einer Kugel ist.

Verschiedene Arten von Ziehungen

- 1. Mit Zurücklegen (z.B Ergebnis (1,1,2,2) möglich) Ohne Zurücklegen (z.B. Ergebnis (1,1,2,2) nicht möglich)
- 2. Mit Beachten der Reihenfolge Ohne Beachten der Reihenfolge
- \implies Insgesamt 4 mögliche Fälle.

Fall 1: Mit Zurücklegen und mit Beachtung der Reihenfolge

Die Menge aller Ergebnisse ist

$$\Omega_1 = \{(\omega_1, \dots, \omega_k) : \omega_1, \dots, \omega_k \in \{1, \dots, n\}\}$$
$$= \{1, \dots, n\}^k$$

Für die Kardinalität der Menge gilt

$$|\Omega_1| = n^k$$

Fall 2: Ohne Zurücklegen, mit Beachtung der Reihenfolge

 $\implies k \leq n.$

Menge aller Ergebnisse:

$$\Omega_2 = \{(\omega_1, \dots, \omega_k) : \omega_1, \dots, \omega_k \in \{1, \dots, n\} \text{ und } \omega_i \neq \omega_j \text{ für } i \neq j\}$$

Es gilt:

$$|\Omega_2| = n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) = \frac{n!}{(n-k)!}$$

Insbesondere gilt für n = k: $|\Omega_2| = n!$.

Fall 3: Ohne Zurücklegen, ohne Beachtung der Reihenfolge

 $\implies k \leq n.$

Vorgehen: Erst Beachten der Reihenfolge, dann sortieren der Vektoren in aufsteigender Reihenfolge.

$$\Omega_3 = \{(\omega_1, \dots, \omega_k) : 1 \le \omega_1 < \omega_2 < \dots < \omega_k \le k\}$$
$$|\Omega_3| = \frac{|\Omega_2|}{k!} = \frac{n!}{(n-k)! \cdot k!} = \binom{n}{k}$$

Fall 4: Mit Zurücklegen, ohne Beachtung der Reihenfolge

Analog zu Fall 3:

$$\Omega_4 = \{(\omega_1, \dots, \omega_k) : 1 \le \omega_1 \le \omega_2 \le \dots \le \omega_k \le k\}$$

Die Kardinalität ist (ohne Beweis):

$$|\Omega_4| = \binom{n+k-1}{k}$$

2.7.2 Weitere W-Maße in endlichen W-Räumen

Hypergeometrische Verteilung

Darstellung im Urnenmodell: Die Urne enthält n Kugeln, davon sind B blau, und n-B weiß. Dabei ist $B\in\{0,\ldots,n\}$. Es werden k Kugeln gezogen, ohne Zurücklegen und ohne beachten der Reihenfolge.

Es soll nun für $b \in \{0, ..., k\}$ die Wahrscheinlichkeit berechnet werden für das Ereignis $A_b =$ "genau b der gezogenen Kugeln sind blau".

Dazu wird das Experiment mit einen Laplace Raum modelliert, mit

$$\Omega = \{(\omega_1, \dots, \omega_k) : 1 \le \omega_1 < \omega_2 < \dots < \omega_k \le n\}$$

 (analog zu Urnenmodell, Fall 3). ω ist dabei die Nummer einer Kugel. Da
 es sich um einen Laplace Raum handelt, gilt

$$P(A_b) = \frac{|A_b|}{|\Omega|}$$

, und aus dem Urnenmodell ergibt sich

$$|\Omega| = \binom{n}{k}$$

. Nun muss die Kardinalität $|A_b|$ bestimmt werden. Für die Fälle "mehr blaue Kugeln als in der Urne vorhanden" und "mehr weiße Kugeln als in der Urne vorhanden", kann bereits festgestellt werden:

$$|A_b| = \begin{cases} 0 & \text{falls } b > B \\ 0 & \text{falls } b - k > n - B (\iff b < k - (n - B)) \end{cases}$$

In allen anderen Fällen gilt

Anzahl an Möglichkeiten für k-b weiße Kugeln

$$|A_b| = \underbrace{\binom{B}{b}} \cdot \underbrace{\binom{n-B}{k-b}}$$

Anzahl an Möglichkeiten für b blaue Kugeln

Damit folgt:

$$P(A_b) = \begin{cases} 0 & \text{falls } b > B \text{ oder } b < k - (n - B) \\ \frac{\binom{B}{b} \binom{n - B}{k - b}}{\binom{n}{k}} & \text{sonst} \end{cases}$$

Das gleiche Experiment kann auch anders modelliert werden:

$$\Omega = \{0, \ldots, k\}, \Sigma = \mathbb{P}(\Omega)$$

$$P(\{b\}) = \begin{cases} 0 & \text{falls } b > B \text{ oder } b < k - (n - B) \\ \frac{\binom{B}{b}\binom{n - B}{k - b}}{\binom{n}{k}} & \text{sonst} \end{cases}$$

$$P(A) = \sum_{b \in A} P(\{b\})$$

Dieses W-Maß heißt **Hypergeometrische Verteilung** mit Parametern n, B, k. Man schreibt P = H(n, B, k).

Bernoulli Verteilung

Hier sind die einzig möglichen Ergebnisse "Erfolg" und "Misserfolg": $\Omega = \{0, 1\}$, $\Sigma = P(\Omega)$. Die Erfolgswahrscheinlichkeit ist gegeben durch $p \in [0, 1]$:

$$P(\{1\}) = p$$

$$P(\{0\}) = 1 - p$$

$$P(\emptyset) = 0$$

$$P(\Omega) = 1$$

Dieses Wahrscheinlichkeitsmaß heißt Bernoulli Verteilung mit Parameter p. Man schreibt P = B(1, p).

Binomial Verteilung

Hier wird das Experiment der Bernoulli Verteilung n-malig wiederholt. Modellierung durch den W-Raum (Ω, Σ, P) mit:

$$\Omega = \{(\omega_1, \dots, \omega_n) : \omega_1, \dots, \omega_n \in \{0, 1\}\} = \{0, 1\}^n$$

$$\Sigma = P(\Omega)$$

$$P(\{\omega\}) = P(\{(\omega_1, \dots, \omega_n)\}) = p^k \cdot (1 - p)^{n - k}$$

Wobei $k = \sum_{i=1}^{n} \omega_i$ die Anzahl der Erfolge ist.

$$P(A) = \sum_{\omega \in A} P(\{\omega\}), \ A \in \Sigma$$

Betrachtet wird das Ereignis $A_k =$ "genau k Erfolge" mit $k \in \{0, \dots, n\}.$ Es gilt:

$$P(A_k) = \sum_{\omega \in A_k} P(\{\omega\})$$

$$= \sum_{\omega \in A_k} p^k (1-p)^{n-k}$$

$$= \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

Modellierung mit anderem W-Raum:

$$\Omega = \{0, 1, \dots, n\}$$

$$\Sigma = P(\Omega)$$

$$P(\{k\}) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$$

$$P(A) = \sum_{k \in A} P(\{k\}), \ A \in \Sigma$$

Hier ist das Ereignis nicht mehr der Vektor mit Resultaten, sondern direkt die Anzahl an Erfolgen. Dieses W-Maß heißt Binomialverteilung mit Parametern n und p. Man schreibt P = B(n, p).

2.8 Diskrete Wahrscheinlichkeitsräume

Bisher war Ω endlich. In diesem Abschnitt soll Ω abzählbar unendlich sein, d.h. $\Omega = \{\omega_1, \omega_2, \dots\}, \ \omega_i \neq \omega_j \ \text{für } i \neq j.$

2.8.1 Poisson Verteilung

 $\Omega = \mathbb{N}_0, \ \Sigma = P(\Omega)$

$$P(\lbrace k \rbrace) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}, \ k \in \mathbb{N}_0, \ \lambda > 0$$
$$P(A) = \sum_{k \in A} P(\lbrace k \rbrace), \ A \in \Sigma$$

Mit der Reihenentwicklung der Exponentialfunktion lässt sich zeigen dass $P(\Omega) = 1$. P heißt Poissonverteilung mit Parameter $\lambda > 0$: $P = P(\lambda)$

Theorem 2.8.1 (Poisson Approximation). Sei p_1, p_2, \ldots eine Folge mit $p_j \in [0,1]$ für $j \in \mathbb{N}$ und $n \cdot p_n \xrightarrow[n \to \infty]{} \lambda > 0$. Dann gilt

$$B(n, p_n)(\{k\}) \xrightarrow[n \to \infty]{} P(\lambda)(\{k\})$$

für alle $k \in \mathbb{N}_0$. D.h.

$$\binom{n}{k} \cdot p_n^k \cdot (1 - p_n)^{n-k} \xrightarrow[n \to \infty]{} \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$

Das heißt die Poissonverteilung taucht auf, wenn viele Versuche mit kleiner Erfolgswahrscheinlichkeit durchgeführt werden, d.h. falls n groß und p klein ist.

2.8.2 Geometrische Verteilung

Hier wird ein Zufallsexperiment so oft durchgeführt, bis das erste mal das Ergebnis "Erfolg" auftritt.

$$\begin{split} \Omega &= \mathbb{N} \\ \Sigma &= P(\Omega) \\ P(\{k\}) &= (1-p)^{k-1} \cdot p, \ k \in \mathbb{N} \\ P(A) &= \sum_{k \in A} P(\{k\}), \ A \in \Sigma \end{split}$$

Man schreibt P = G(p) für eine geometrische Verteilung mit Erfolgswahrscheinlichkeit $p \in (0, 1]$.

2.9 Stetige W-Räume

In diesem Abschnitt wählen wir $\Omega = \mathbb{R}$ In Fällen, in denen es intuitiv wäre, als Ergebnisraum ein Intervall zu wählen, werden wir trotzdem $\Omega = \mathbb{R}$ wählen, und das Intervall durch passendes W-Maß modellieren.

Wie sehen hier nun Ω und P aus?

2.9.1 Auswahl von Sigma

 $\Sigma=P(\Omega)$ ist nicht mehr möglich. $P(\mathbb{R})$ enthält viele pathologische Ereignisse, also ist $\Sigma=P(\mathbb{R})$ zu groß! Statdessen wird eine kleinere σ -Algebra gewählt.

Definition 2.9.1 (Borel- σ -Algebra). Die kleinste σ -Algebra auf \mathbb{R} , die alle Intervalle [a,b] mit a < b enthält, heißt die Borel- σ -Algebra und wird mit $B(\mathbb{R})$ bezeichnet.

"Kleinste" bedeutet: Für alle σ -Algebren Σ auf \mathbb{R} , die alle Intervalle [a,b] mit a < b enthält, gilt: $B(\mathbb{R}) \subseteq \Sigma$.

Bemerkungen

- $B(\mathbb{R})$ enthält alle "relevanten" Teilmengen von \mathbb{R} , sowie die Mengen [a,b], [a,b), $(-\infty,b]$, $\{a\}$ usw. für $a \leq b$.
- $B(\mathbb{R}) \neq P(\mathbb{R})$

2.9.2 Definition von P

Idee

- Aus der Folge p_1, p_2, \ldots wird eine Funktion $p: \mathbb{R} \to \mathbb{R}$
- Aus der Summe $(P(A) = \sum_{\omega_i \in A} p_i)$ wird ein Integral

Definition 2.9.2 (Wahrscheinlichkeitsdichte). Eine Funktion $p : \mathbb{R} \to \mathbb{R}$ heißt Wahrscheinlichkeitsdichte (Dichte), falls

1. $p(x) \ge 0 \ \forall x \in \mathbb{R}$

$$2. \int_{-\infty}^{\infty} p(x) \ dx = 1$$

Idee: Definiere P so, dass für alle [a, b] mit $a \le b$ gilt:

$$P([a,b]) = \int_{a}^{b} p(x)dx$$

Theorem 2.9.1. Sei $p: \mathbb{R} \to \mathbb{R}$ eine Dichte. Es existiert genau ein W-Maß P auf $B(\mathbb{R})$ mit $P([a,b]) = \int_a^b p(x)dx$ für alle $a \leq b$.

Definition 2.9.3. Sei $p: \mathbb{R} \to \mathbb{R}$ eine Dichte und sei P ein W-Maß auf $B(\mathbb{R})$ mit $P([a,b]) = \int_a^b p(x)dx$ für alle $a \leq b$. Dann heißt P **absolut stetig** mit Dichte p. Man sagt: P besitzt Dichte p.

Theorem 2.9.2. Sei P absolut stetig mit Dichte p. Dann gilt:

1. $P(\{a\}) = 0 \ \forall a \in \mathbb{R}$

2.
$$P([a,b]) = P((a,b)) = P((a,b)) = P([a,b)) = \int_a^b p(x)dx$$

Beachte: Theorem 2.9.2 liefgert, dass P nicht eindeutig durch die Werte $P(\{a\}), a \in \mathbb{R}$ definiert ist. Es folgt aus Theorem 2.9.1, dass P duch die Dichte p eindeutig bestimmt ist.

Es folgen einige wichtige absolut stetige W-Maße.

2.9.3 Stetige Gleichverteilung

Seien a < b und

$$p(x) = \begin{cases} \frac{1}{b-a} & , x \in [a, b] \\ 0 & , sonst \end{cases}$$

Abbildung 2.1: Stetige Gleichverteilung, Wahrscheinlichkeitsdichte

Besitzt P Dichte p, so nennt man P Stetige Gleichverteilung auf [a,b]. Man schreibt P=U([a,b]).

2.9.4 Exponential verteilung

Sei $\lambda > 0$ und

$$p(x) = \begin{cases} 0 & , fallsx < 0 \\ \lambda e^{-\lambda x} & , fallsx \ge 0 \end{cases}$$

Dann ist p eine Dichte, da

1. $p(x) > 0 \ \forall x \in \mathbb{R}$

2.
$$\int p(x)dx = \lambda \int e^{-\lambda x}dx = \lambda \left[-e^{-\lambda x} \cdot \frac{1}{\lambda} \right]_0^{\infty} = 1$$

Besitzt P die Dichte p, so nennt man P Exponentialverteilung mit Parameter $\lambda > 0$. Man schreibt $P = \text{Exp}(\lambda)$.

Bemerkung

- \bullet Eigenschaft der "Gedächtnislosigkeit" (\rightarrow später)
- Geeignet zur Modellierung von Lebensdauern und Wartezeiten

Abbildung 2.2: Exponentialverteilung, Wahrscheinlichkeitsdichte

2.9.5 Normalverteilung

Für $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ setze

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right) \ \forall x \in \mathbb{R}$$

Beachte Auch hier gilt $\int p(x)dx = 1$ und p(x) > 0, p ist also eine Dichte.

Besitzt P Dichte p, so nennt man P die Normalverteilung mit Parametern μ und σ^2 . $P = N(\mu, \sigma^2)$.

Falls $\mu=0$ und $\sigma^2=1$ gilt $p(x)=\frac{1}{\sqrt{2\pi}}\exp\left(\frac{-x^2}{2}\right) \forall x\in\mathbb{R}$. Man nennt P=N(0,1) die **Standardnormalverteilung**.

Beachte

- 1. N(0,1) spielt eine zentrale Rolle in der Stochastik, siehe der zentrale Grenzwertsatz (\rightarrow später)
- 2. Man verwendet die Normalverteilung oft zur Modellierung von Messfehlern, Blattlängen, Blutdruckwerten, Temperaturen, etc.

Abbildung 2.3: Normalverteilung, Wahrscheinlichkeitsdichte

2.10 Bedingte Wahrscheinlichkeiten

Die bedingte Wahrscheinlichkeit von A gegeben B ist definiert als

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{2.1}$$

Theorem 2.10.1 (Totale Wahrscheinlichkeit, Satz von Bayes). Sei (Ω, Σ, P) ein W-Raum und seien $B_1, \ldots, B_n \in \Sigma$ paarweise disjunkt mit $P(B_i) > 0$ für $i = 1, \ldots, n$ und $B_1 \cup \cdots \cup B_n = \Omega$

1. Satz von der totalen Wahrscheinlichkeit: Für alle $A \in \Sigma$ gilt:

$$P(A) = \sum P(A|B_i) \cdot P(B_i)$$

2. Satz von Bayes:

Für alle $A \in \Sigma$ mit P(A) > 0 und alle i = 1, ..., n gilt:

$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum_{j} P(A|B_j) \cdot P(B_j)}$$

Beachte: Für $A, B \in \Sigma$ gilt mit P(B) > 0:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B) - P(A^{\complement} \cap B)}{P(B)} = 1 - P(A^{\complement}|B)$$

2.11 Unabhängigkeit

Sei (Ω, Σ, P) ein W-Raum und $A, B \in \Sigma$ mit P(A), P(B) > 0.

Idee: Unabhängigkeit von A und B soll bedeuten, dass das Eintreten von A (bzw B) keinen Einfluss auf P(A) (bzw P(B)) hat, d.h.

$$P(A|B) \stackrel{\text{def}}{=} \frac{P(A \cap B)}{P(B)} \stackrel{!}{=} P(A)$$

$$P(B|A) \stackrel{\text{def}}{=} \frac{P(B \cap A)}{P(A)} \stackrel{!}{=} P(B)$$

also muss

$$P(A \cap B) = P(A) \cdot P(B)$$

gelten.

Definition 2.11.1 (Unabhängigkeit). Sei (Ω, Σ, P) ein W-Raum und $A, B \in \Sigma$. Dann heißen A und B **unabhängig**, falls gilt:

$$P(A \cap B) = P(A) \cdot P(B) \tag{2.2}$$

Definition 2.11.2 (Unabhängigkeit mehrerer Ereignisse). Sei (Ω, Σ, P) ein W-Raum und $A_1, A_2, \ldots, A_n \in \Sigma$. Dann heißen A_1, A_2, \ldots, A_n

- 1. paarweise unabhängig, falls A_i und A_j unabhängig sind für alle $i \neq j$.
- 2. unabhängig, falls für alle $T\subseteq\{1,\dots,n\}$ mit $|T|\geq 2$ gilt:

$$P\left(\bigcap_{i\in T} A_i\right) = \prod_{i\in T} P\left(A_i\right)$$

Bemerkung: Unabhängigkeit impliziert paarweise Unabhängigkeit. Umgekehrt nicht!

Kapitel 3

Zufallsvariablen

3.1 Zufallsvariablen

Bei einem Zufallsexperiment (Ω, Σ, P) interessiert man sich oft nicht für das Ergebnis $\omega \in \Omega$ sondern für eine Kennzahl $X(\omega)$, die von ω abhängt.

Beispiel: n-maliges Würfeln.

 $\Omega = \{1, 2, 3, 4, 5, 6\}^n = \{\omega = (\omega_1, \dots, \omega_n) : \omega_i \in \{1, \dots, 6\} \ \forall i = 1, \dots, n \ \}$ Mögliche Kennzahlen $X(\omega)$ wären:

$$X(\omega) = \min \omega_k$$

$$X(\omega) = \max \omega_k$$

$$X(\omega) = \sum \omega_k$$

Definition 3.1.1 (Zufallsvariable). Sei (Ω, Σ, P) ein W-Raum und $X : \Omega \to \mathbb{R}$ eine Abbildung. X heißt Zufallsvariable, falls für alle $B \in B(\mathbb{R})$ gilt:

$$\underbrace{\{\omega\in\Omega:X(\omega)\in B\}}_{\subset\Omega}\in\Sigma$$

Bemerkungen

- 1. Zufallsvariablen sind Abbildungen
- 2. Die Aussage aus Definition 3.1.1 muss hier nicht überprüft werden. Alle im folgenden auftauchenden Abbildungen sind Zufallsvariablen.
- 3. Wir schreiben $\{X \in B\}$ für das Ereignis $\{\omega \in \Omega : X(\omega) \in B\}$.

Definition 3.1.2 (Verteilung einer Zufallsvariable). Sei $X: \Omega \to \mathbb{R}$ eine Zufallsvariable und (Ω, Σ, P) ein W-Raum. Dann heißt das W-Maß $P_X: B(\mathbb{R}) \to [0, 1]$ mit $P_X(B) = P(\{X \in B\}) = P(\{\omega \in \Omega: X(\omega) \in B\}), B \in B(\mathbb{R}),$ die **Verteilung** von X.

Übung: Angeben von Verteilung mit Bsp

Beachte: X bildet den ursprünglichen W-Raum in einen neuen ab:

$$(\Omega, \Sigma, P)$$
 $(\mathbb{R}, B(\mathbb{R}), P_X)$

3.1.1 Diskrete Verteilungen

Definition 3.1.3 (Diskrete Zufallsvariablen). 1. Eine Zufallsvariable heißt diskret, falls eine Menge $D \subset \mathbb{R}$ existiert, die höchstens abzählbar ist mit $P(\{X \in D\}) = 1$.

2. Sei X diskret. Die Menge $D_X = \{x \in \mathbb{R} : P(\{X \in D\}) > 0\}$ heißt der **Träger** von X.

Beachte: Es gilt $P(X \in D_X) = 1$.

1. X heißt **Bernoulli** verteilt mit Parameter $p \in [0, 1]$, falls gilt:

$$P({X = 1}) = p$$

 $P({X = 0}) = 1 - p$

In diesem Fall gilt: $P(X \in \{0,1\}\}) = p + (1-p) = 1$ Ferner gilt:

$$D_X = \begin{cases} \{0, 1\} & \text{, falls } p \in (0, 1) \\ \{0\} & \text{, falls } p = 0 \\ \{1\} & \text{, falls } p = 1 \end{cases}$$

Wir schreiben:

$$X \sim B(1, p)$$

2. X heißt Gleichverteilt auf G, für $G \subset \mathbb{R}$, $G \neq \emptyset$ und endlich, falls

$$P(\{X=x\}) = \frac{1}{|G|} \ \forall x \in G$$

Wir schreiben:

$$X \sim U(G)$$

3. X heißt hypergeometrisch verteilt mit Parametern

$$n \in \mathbb{N}$$
 Anzahl Kugeln
 $B \in \{0, \dots, n\}$ blaue Kugeln
 $k \in \{1, \dots, n\}$ gezogene Kugeln

wenn gilt:

$$P\left(\left\{X=b\right\}\right) = \frac{\binom{B}{b}\binom{n-B}{k-b}}{\binom{n}{k}}$$

Wir schreiben:

$$X \sim H(n, B, k)$$

4. X heißt **Poissonverteilt** mit Parameter $\lambda > 0$, falls gilt:

$$P(\{X=k\}) = \frac{\lambda^k}{k!} e^{-\lambda} \ \forall k \in \mathbb{N}_0$$

Wir schreiben:

$$X \sim P(\lambda)$$

5. X heißt **geometrisch** verteilt mit Parameter $p \in (0, 1]$, falls

$$P(\lbrace X = k \rbrace) = p(1-p)^{k-1} \ \forall k \in \mathbb{N}$$

Wir schreiben:

$$X \sim G(p)$$

3.1.2 Absolut stetige Verteilungen

Definition 3.1.4 (Absolut stetige Verteilung). Eine Zufallsvariable X heißt absolut stetig verteilt, falls P_X absolut stetig ist, d.h. P_X besitzt eine Dichte.

Wir führen folgende Sprech- und Schreibweisen ein: Sei X eine Zufallsvariable.

1. X heißt gleichverteilt auf [a, b] mit a < b falls

$$P_X = U([a,b])$$

Man schreibt

$$X \sim U([a,b])$$

2. X heißt exponentialverteilt mit Parameter $\lambda > 0$ falls

$$P_X = \operatorname{Exp}(\lambda)$$

Man schreibt

$$X \sim \text{Exp}(\lambda)$$

3. X heißt normalverteilt mit Parametern $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ falls

$$P_X = N(\mu, \sigma^2)$$

Man schreibt

$$X \sim N(\mu, \sigma^2)$$

3.1.3 Verteilungsfunktion

Definition 3.1.5 (Verteilungsfunktion). Ist X eine Zufallsvariable auf (Ω, Σ, P) , dann ist die Verteilungsfunktion $F_X : \mathbb{R} \to [0, 1]$ von X gegeben durch

$$F_X(t) = P(\{X \le t\})$$

Verteilungsfunktion einer diskreten Zufallsvariable

$$F_X(t) = \sum_{k=0}^{t} P(\{X = k\})$$

 $P({X = k})$ ist die **Zähldichte** von X.

Zähldichte: Tut 3

Verteilungsfunktion einer absolut stetigen Zufallsvariable

$$F_X(t) = \int_{-\infty}^t p(x)dx$$

p(x) ist die Wahrscheinlichkeitsdichte von X.

Eigenschaften der Verteilungsfunktion

- \bullet F_X ist monoton wachsend
- Grenzwerte:

$$\lim_{t \to -\infty} F_X(t) = 0$$
$$\lim_{t \to \infty} F_X(t) = 1$$

$$\lim_{t \to \infty} F_X(t) = 1$$

• F_X ist rechtsseitig stetig:

$$\lim_{t_n \uparrow t} F_X(t_n) = F_X(t)$$

$$F_X(t-) = \lim_{t_n \downarrow t} F_X(t_n)$$

• Es gilt:

$$P({X = t}) = F_X(t) - F_X(-t)$$

• Für a < b gilt:

$$P(\{X \in [a,b]\}) = \int_a^b p(x)dx$$

• Die Verteilung einer Zufallsvariable ist eindeutig durch ihre Verteilungsfunktion bestimmt.

20

3.1.4 Beispiele

Definition einer Zufallsvariable

In Übungsblatt 6 wurde die Aufgabe gestellt: "Modellieren Sie das Zufallsexperiment durch Angabe eines geeigneten Wahrscheinlichkeitsraumes und definieren Sie X"

Der W-Raum kann unabhängig von der Zufallsvariablen durch Betrachten des Experiments aufgestellt werden. Das Beispiel hier ist das 3-malige Drehen eines Glücksrads, mit gleichen Wahrscheinlichkeiten. Es wird ein Laplace Raum mit $\Omega = \{1, 2, 3\}^3$ angegeben. Σ als Potenzmenge und $P(A) = \frac{|A|}{|\Omega|}$ folgt aus der Tatsache dass es sich um einen Laplace Raum handelt. Für $X: \Omega \to \mathbb{R}$ genügt es, eine Vorschrift $X(\omega)$, hier $X(\omega) = \omega_1 \cdot \omega_2 \cdot \omega_3$ mit

 $\omega = (\omega_1, \omega_2, \omega_3)$, anzugeben.