Domače naloge iz predmeta Dodatna poglavja iz matematike za fizike

19. januar 2018

Naloge je treba reševati samostojno.

Rok za oddajo: 5 dni pred ustnim izpitom in najkasneje do 3. septembra 2018.

Naloga 1. [15 točk]

Naj bo G grupa. Komutator $[g,h] \in G$ poljubnih dveh elementov $g,h \in G$ je podan s predpisom $[g,h] = g^{-1}h^{-1}gh$. Komutatorska podgrupa [G,G] grupe G je podgrupa grupe G, generirana z vsemi komutatorji elementov iz grupe G, torej

$$[G,G] = \langle \{[g,h] \mid g,h \in G\} \rangle < G.$$

Pokaži, da za vsako naravno število n velja

$$[GL(n, \mathbb{R}), GL(n, \mathbb{R})] = SL(n, \mathbb{R}),$$

kjer je $\mathrm{SL}(n,\mathbb{R})$ specialna linearna grupa reda n, ki jo sestavljajo vse matrike iz splošne linearne grupe $\mathrm{GL}(n,\mathbb{R})$ z determinanto 1.

Naloga 2. [15 točk]

Za vsako naravno število n sta unitarna grupa $\mathrm{U}(n)$ in specialna unitarna grupa $\mathrm{SU}(n)$ podgrupi splošne linearne grupe $\mathrm{GL}(n,\mathbb{C})$, podani s predpisoma

$$U(n) = \{ Q \in GL(n, \mathbb{C}) \mid Q^{h}Q = I \},$$

$$SU(n) = \{ Q \in U(n) \mid \det(Q) = 1 \}.$$

Pokaži, da je grupa U(n) izomorfna semi-direktnemu produktu grup U(1) in SU(n).

Naloga 3. [15 točk]

Naj bo A_4 podgrupa simetrične grupe $\operatorname{Sym}(4)$, sestavljena iz vseh sodih permutacij $\sigma \in \operatorname{Sym}(4)$. Poišči vse ireducibilne karakterje grupe A_4 .

Naloga 4. [20 točk]

Naj bosta G in H končni grupi. Za poljubno reprezentacijo $\rho: G \to \mathrm{GL}(V)$ grupe G in poljubno reprezentacijo $\tau: H \to \mathrm{GL}(W)$ grupe H definiramo reprezentacijo $\rho \boxtimes \tau: G \times H \to \mathrm{GL}(V \otimes W)$ grupe $G \times H$ s predpisom

$$(\rho \boxtimes \tau)(g,h)(v \otimes w) = \rho(g)(v) \otimes \tau(h)(w).$$

- (i) Poišči zvezo med karakterji reprezentacij ρ , τ in $\rho \boxtimes \tau$.
- (ii) Pokaži, da je reprezentacija $\rho\boxtimes\tau$ ireducibilna, če sta reprezentaciji ρ in τ ireducibilni.
- (iii) Pokaži, da je vsaka ireducibilna reprezentacija grupe $G \times H$ ekvivalentna reprezentaciji $\rho \boxtimes \tau$, za primerno izbrano ireducibilno reprezentacijo ρ grupe G in primerno izbrano ireducibilno reprezentacijo τ grupe H.

Naloga 5. [20 točk]

Naj bo G poljubna končna abelova grupa. Množico vseh ireducibilnih karakterjev $\chi: G \to \mathbb{C}$ grupe G označimo z \widehat{G} .

- (i) Pokaži, da je za poljubna ireducibilna karakterja $\chi,\chi'\in \widehat{G}$ njun produkt $\chi\chi': G \to \mathbb{C}, g \mapsto \chi(g)\chi'(g)$, prav tako ireducibilen karakter grupe G. Pokaži tudi, da je množica \widehat{G} s to operacijo končna abelova grupa, ki ima enako število elementov kot grupa G. Grupo \widehat{G} imenujemo dualna grupa
- (ii) Naj bo \hat{G} dualna grupa grupe \hat{G} . Za vsak $g \in G$ naj bo preslikava $\phi(g)$: $\widehat{G} \to \mathbb{C}$ dana s predpisom $\phi(g)(\chi) = \chi(g)$. Pokaži, da je $\phi(g)$ ireducibilen karakter grupe \widehat{G} in da je tako definirana preslikava

$$\phi: G \to \widehat{\widehat{G}}$$

izomorfizem grup.

Naloga 6. [15 točk]

Tok vektorskega polja X na gladki mnogoterosti M je takšna gladka preslikava $\Phi^X: D^X \to M$, definirana na odprti podmnožici D^X mnogoterosti $\mathbb{R} \times M$, da za vsako točko $p \in M$ velja:

- (a) množica $J_p^X=\{t\in\mathbb{R}\mid (t,p)\in D^X\}$ je odprt interval ki vsebuje 0, in (b) preslikava $J_p^X\to M,\,t\mapsto\Phi^X(p,t)$, je maksimalna integralna krivulja vektorskega polja X ki preslika 0 v točko p.

Za vsak $t \in \mathbb{R}$ imamo odprto podmnožico $D^X_t = \{p \in M \mid t \in J^X_p\}$ mnogoterosti M in difeomorfizem $\Phi^X_t : D^X_t \to D^X_{-t}, \, p \mapsto \Phi^X(t,p)$, ob tem pa velja enakost

$$\Phi_s^X(\Phi_t^X(p)) = \Phi_{s+t}^X(p)$$

za vse $s,t\in\mathbb{R}$ in za vse tiste točke $p\in M,$ za katere je kompozicija $\Phi^X_s(\Phi^X_t(p))$ definirana. Vektorsko polje X je kompletno, če je $D^X=\mathbb{R}\times M.$ Pokaži:

- (i) Vsako vektorsko polje X na mnogoterosti M je Φ_t^X -invariantno, za vsak
- (ii) Za poljuben difeomorfizem $f: N \to M$ med gladkima mnogoterostima, za vsako vektorsko polje $Y \in \mathfrak{X}(N)$ in za vsak $t \in \mathbb{R}$ je $f(D_t^Y) = D_t^{f_*Y}$ in

$$f\circ\Phi^Y_t=\Phi^{f_*Y}_t\circ f|_{D^Y_t}.$$

(iii) Naj boMgladka mnogoterost in $f:M\to M$ difeomorfizem. Kompletno vektorsko polje $X \in \mathfrak{X}(M)$ je f-invariantno če, in samo če, za vsak $t \in \mathbb{R}$ velja

$$f \circ \Phi_t^X = \Phi_t^X \circ f.$$