

planetmath.org

Math for the people, by the people.

σ -algebra at a stopping time

Canonical name sigmaalgebraAtAStoppingTime

Date of creation 2013-03-22 18:38:56 Last modified on 2013-03-22 18:38:56

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Definition Classification msc 60G40

 ${\it Related\ topic} \qquad {\it DoobsOptionalSamplingTheorem}$

Let $(\mathcal{F}_t)_{t\in\mathbb{T}}$ be a http://planetmath.org/FiltrationOfSigmaAlgebrasfiltration on a measurable space (Ω, \mathcal{F}) . For every $t \in \mathbb{T}$, the σ -algebra \mathcal{F}_t represents the collection of events which are observable up until time t. This concept can be generalized to any stopping time $\tau \colon \Omega \to \mathbb{T} \cup \{\infty\}$.

For a stopping time τ , the collection of events observable up until time τ is denoted by \mathcal{F}_{τ} and is generated by sampling progressively measurable processes

$$\mathcal{F}_{\tau} = \sigma\left(\left\{X_{\tau \wedge t} : X \text{ is progressive, } t \in \mathbb{T}\right\}\right).$$

The reason for sampling X at time $\tau \wedge t$ rather than at τ is to include the possibility that $\tau = \infty$, in which case X_{τ} is not defined.

A random variable V is \mathcal{F}_{τ} -measurable if and only if it is \mathcal{F}_{∞} -measurable and the process $X_t \equiv 1_{\{\tau \leq t\}} V$ is adapted.

This can be shown as follows. If X is a progressively measurable process, then the stopped process $X^{\tau \wedge s}$ is also progressive. In particular, $V \equiv X_{\tau \wedge s} = X_s^{\tau \wedge s}$ is \mathcal{F}_{∞} -measurable and $1_{\{\tau \leq t\}}V = 1_{\{\tau \leq t\}}X_t^{\tau \wedge s}$ is \mathcal{F}_t -measurable. Conversely, if V is \mathcal{F}_t -measurable then $X_s \equiv 1_{\{s>t\}}V$ is a progressive process and $1_{\{\tau > t\}}V = X_{\tau \wedge t}$ is \mathcal{F}_{τ} -measurable. By letting t increase to infinity, it follows that $1_{\{\tau = \infty\}}V$ is \mathcal{F}_{τ} -measurable for every \mathcal{F}_{∞} -measurable random variable V. Now suppose also that $X_t \equiv 1_{\{\tau \leq t\}}V$ is adapted, and hence progressive. Then, $1_{\{\tau \leq t\}}V = X_{\tau \wedge t}$ is \mathcal{F}_{τ} -measurable. Letting t increase to infinity shows that $V = 1_{\{\tau < \infty\}}V + 1_{\{\tau = \infty\}}V$ is \mathcal{F}_{τ} -measurable.

As a set A is \mathcal{F}_{τ} -measurable if and only if 1_A is an \mathcal{F}_{τ} -measurable random variable, this gives the following alternative definition,

$$\mathcal{F}_{\tau} = \{ A \in \mathcal{F}_{\infty} : A \cap \{ \tau \le t \} \in \mathcal{F}_t \text{ for all } t \in \mathbb{T} \}.$$

From this, it is not difficult to show that the following properties are satisfied

- 1. Any stopping time τ is \mathcal{F}_{τ} -measurable.
- 2. If $\tau(\omega) = t \in \mathbb{T} \cup \{\infty\}$ for all $\omega \in \Omega$ then $\mathcal{F}_{\tau} = \mathcal{F}_{t}$.
- 3. If σ, τ are stopping times and $A \in \mathcal{F}_{\sigma}$ then $A \cap \{\sigma \leq \tau\} \in \mathcal{F}_{\tau}$. In particular, if $\sigma \leq \tau$ then $\mathcal{F}_{\sigma} \subseteq \mathcal{F}_{\tau}$.
- 4. If σ, τ are stopping times and $A \in \mathcal{F}_{\sigma}$ then $A \cap {\sigma = \tau} \in \mathcal{F}_{\tau}$.

- 5. if the filtration (\mathcal{F}_t) is right-continuous and $\tau_n \geq \tau$ are stopping times with $\tau_n \to \tau$ then $\mathcal{F}_{\tau} = \bigcap_n \mathcal{F}_{\tau_n}$. More generally, if $\tau_n = \tau$ eventually then this is true irrespective of whether the filtration is right-continuous.
- 6. If τ_n are stopping times with $\tau_n = \tau$ eventually then $\mathcal{F}_{\tau_n} \to \mathcal{F}_{\tau}$. That is,

$$\mathcal{F}_{\tau} = \bigcap_{n} \sigma \left(\bigcup_{m > n} \mathcal{F}_{\tau_{m}} \right).$$

In continuous-time, for any stopping time τ the σ -algebra $\mathcal{F}_{\tau+}$ is the set of events observable up until time t with respect to the right-continuous filtration (\mathcal{F}_{t+}) . That is,

$$\mathcal{F}_{\tau+} = \{ A \in \mathcal{F}_{\infty} : A \cap \{ \tau \le t \} \in \mathcal{F}_{t+} \text{ for every } t \in \mathbb{T} \}$$
$$= \{ A \in \mathcal{F}_{\infty} : A \cap \{ \tau < t \} \in \mathcal{F}_{t} \text{ for every } t \in \mathbb{T} \}.$$

If $\tau_n \geq \tau$ are stopping times with $\tau_n > \tau$ whenever $\tau < \infty$ is not a maximal element of \mathbb{T} , and $\tau_n \to \tau$ then,

$$\mathcal{F}_{\tau+} = \bigcap_{n} \mathcal{F}_{\tau_n} = \bigcap_{n} \mathcal{F}_{\tau_n+}.$$

The σ -algebra of events observable up until just before time τ is denoted by $\mathcal{F}_{\tau-}$ and is generated by sampling predictable processes

$$\mathcal{F}_{\tau-} = \sigma\left(\left\{X_{\tau \wedge t} : X \text{ is predictable, } t \in \mathbb{T}\right\}\right).$$

Suppose that the index set $\mathbb{T} \subseteq \mathbb{R}$ has minimal element t_0 . As the predictable σ -algebra is generated by sets of the form $(s, \infty) \times A$ for $s \in \mathbb{T}$ and $A \in \mathcal{F}_s$, and $\{t_0\} \times A$ for $A \in \mathcal{F}_{t_0}$, the definition above can be rewritten as,

$$\mathcal{F}_{\tau-} = \sigma\left(\left\{A \cap \left\{\tau > s\right\} : s \in \mathbb{T}, A \in \mathcal{F}_s\right\} \cup \mathcal{F}_{t_0}\right).$$

Clearly, $\mathcal{F}_{\tau-} \subseteq \mathcal{F}_{\tau} \subseteq \mathcal{F}_{\tau+}$. Furthermore, for any stopping times σ, τ then $\mathcal{F}_{\sigma+} \subseteq \mathcal{F}_{\tau-}$ when restricted to the set $\{\sigma < \tau\}$.

If τ_n is a sequence of stopping times http://planetmath.org/PredictableStoppingTimeannou τ , so that τ is predictable, then

$$\mathcal{F}_{\tau-} = \sigma\left(\bigcup_{n} \mathcal{F}_{\tau_n}\right).$$