NAIL062 V&P Logika: 6. cvičení

Témata: Ještě tablo metoda: aplikace a pokročilejší problémy. Ukázka rezoluční metody.

Příklad 1. Aladin našel v jeskyni dvě truhly, A a B. Ví, že každá truhla obsahuje buď poklad, nebo smrtonosnou past.

- Na truhle A je nápis: "Alespoň jedna z těchto dvou truhel obsahuje poklad."
- Na truhle B je nápis: "V truhle A je smrtonosná past."

Aladin ví, že buď jsou oba nápisy pravdivé, nebo jsou oba lživé.

- (a) Vyjádřete Aladinovy informace jako teorii T nad vhodně zvolenou množinou výrokových proměnných \mathbb{P} . (Vysvětlete význam jednotlivých výrokových proměnných v \mathbb{P} .)
- (b) Pomocí tablo metody najděte všechny modely teorie T.
- (c) Může Aladin zvolit truhlu tak, aby si byl jistý, že v ní bude poklad?

Příklad 2. V prezidentských volbách kandidují pan A a pan B.

- Pan A říká: "Budu zvolen nebo pan B lže."
- Pan B říká: "Pan A nebude zvolen nebo lžu."
- Bude zvolen právě jeden z nich.
- (a) Formalizujte jako teorii T v jazyce $\mathbb{P} = \{z_a, z_b, p_a, p_b\}$, kde z_a resp. z_b znamená, že zvolen bude pan A resp. pan B, a p_a resp. p_b znamená, že A resp. B mluví pravdu.
- (b) Sestrojte dokončená tabla z teorie T s položkami Fz_a resp. Fz_b v kořeni. Jaký z těchto tabel můžeme učinit závěr? [Tabla mohou být poměrně velká.]
- (c) Uveďte příklad výroku nad \mathbb{P} , který je v teorii T nezávislý, anebo zdůvodněte, proč takový výrok neexistuje.
- (d) Existuje teorie S nad $\{z_a, z_b\}$ taková, že T je konzervativní extenzí S? Uveďte příklad, nebo zdůvodněte, proč ne.

Příklad 3. Uvažme nekonečnou výrokovou teorii (a) $T = \{p_{i+1} \to p_i \mid i \in \mathbb{N}\}$ (b) $T = \{p_i \to p_{i+1} \mid i \in \mathbb{N}\}$. Pomocí tablo metody najděte všechny modely T. Je každý model T kanonickým modelem pro některou z větví tohoto tabla? (Můžete se pokusit sestrojit také systematické tablo.)

Příklad 4. Navrhněte vhodná atomická tabla a ukažte, že souhlasí-li model s kořenem vašich atomických tabel, souhlasí i s některou větví:

- pro Peirceovu spojku ↓ (NOR),
- pro Shefferovu spojku \(\gamma\) (NAND),
- pro \oplus (XOR),
- pro ternární operátor "if p then q else r" (IFTE).

Příklad 5. Half-adder circuit je logický obvod se dvěma vstupními bity (bit 1, bit 2) a dvěma výstupními bity (carry, sum) znázorněný v následujícím diagramu:

- (a) Formalizujte tento obvod ve výrokové logice. Konkrétně, vyjádřete jej jako výrokovou teorii $T = \{c \leftrightarrow \varphi, \ s \leftrightarrow \psi\}$ v jazyce $\mathbb{P} = \{b_1, b_2, c, s\}$, kde výrokové proměnné znamenají po řadě "bit 1", "bit 2", "carry" a "sum", a formule φ, ψ neobsahují proměnné c, s.
- (b) Dokažte tablo metodou, že $T \models c \rightarrow \neg s$.
- (c) Dokažte totéž rezoluční metodou (připomeňte si ji).

Příklad 6. Dokažte přímo (transformací tabel) větu o dedukci, tj. že pro každou teorii T a výroky φ , ψ platí

$$T \vdash \varphi \rightarrow \psi$$
 právě když $T, \varphi \vdash \psi$.

Příklad 7. Celá čísla postihla záhadná nemoc šířící se (v diskrétních krocích) dle následujících pravidel (platících pro všechna čísla ve všech krocích).

- (i) Zdravé číslo onemocní, právě když je právě jedno číslo nemocné (v předchozím čase).
- (ii) Nemocné číslo se uzdraví, právě když je předchozí číslo nemocné (v předchozím čase).
- (iii) V čase 0 bylo nemocné číslo 0, ostatní čísla byla zdravá.
- (a) Napište teorie T_1, T_2, T_3 vyjadřující (po řadě) tvrzení (i), (ii), (iii) nad množinou prvovýroků $\mathbb{P} = \{p_i^t \mid i \in \mathbb{Z}, t \in \mathbb{N}_0\}$, kde prvovýrok p_i^t vyjadřuje, že "číslo i je v čase t nemocné."
- (b) Převeďte axiomy z T_1, T_2, T_3 do CNF a napište teorii S v množinové reprezentaci, která je nesplnitelná, právě když $T_1 \cup T_2 \cup T_3 \models \neg p_1^2$, tj.: "*Číslo 1 je zdravé v čase 2.*" (Stačí převést jen konkrétní axiomy z T_1, T_2, T_3 , ze kterých plyne $\neg p_1^2$, a do S uvést jen příslušné klauzule.)
- (c) Rezolucí dokažte, že S je nesplnitelná. Zamítnutí znázorněte rezolučním stromem.