DIIT Departamento de Ingenieria nvestigaciones Tecnológica

LIGADURAS

Los problemas marcados con (*) tienen alguna dificultad adicional, no dude en consultar.

1. Máquina de Atwood simple

Obtenga a partir de la ecuación de Euler-Lagrange la aceleración que presentan las pesas que cuelgan de una cuerda de longitud ℓ que pasa por sobre una polea de radio R y masa M.

- a) Resuelva el caso en que se considera M irrelevante.
- b) Resuelva ahora considerando M, y que la polea presenta una sección cilíndrica. El momento de inercia de tal cilindro ante rotaciones en torno a su eje de simetría longitudinal es $(M/2)R^2$.

2. Aro y polea

Una partícula de masa M se está ligada a un aro de radio R y masa despreciable dispuesto verticalmente que rota libremente en torno a su centro fijo. La partícula está atada por una cuerda que se enrolla parcialmente en torno al aro, luego asciende verticalmente y pasa por una polea de masa m_p . Otra partícula de masa m < M pende del otro extremo de la cuerda de longitud ℓ . El aro de masa m_a tiene un momento de inercia para rotaciones en torno a su eje de simetría longitudinal de mR^2 .

- a) (*) Describa la ligadura contemplando el ángulo de rotación del aro.
- b) Obtenga la ecuación de Euler-Lagrange para la dinámica.

3. Péndulo de pesas engarzadas y acopladas

Dos partículas de masa m_1 y m_2 están unidas por una barra rígida inextensible de longitud ℓ y masa despreciable frente a las anteriores. La de m_1 se mueve solo sobre el eje x y la de m_2 solo sobre el y.

a) Despeje la aceleración en la ecuación de Euler-Lagrange para una única coordenada generalizada $1)\ y\quad 2)\ \theta$

Tras resolver ambos casos, ¿cuál preferiría para trabajar?

b) (*) ¿Cuál es el período de movimiento de pequeñas oscilaciones para el caso $m_1=m_2=m$?

4. Maquina de Atwood compuesta [Marion (english) ex. 7.8]

- a) Obtenga las aceleraciones en este sistema resolviendo las ecuaciones de Euler-Lagrange. Las coordenadas se reducen a dos, x e y, pues con el vínculo de las cuerdas establece la posición de todas las masas y de la polea inferior. Simplifique el problema considerando que las poleas de radio R tienen masa nula (M=0).
- b) (*) Contemple ahora la masa de las poleas m_p . Recuerde que el momento de inercia de un cilindro es $(m/2)R^2$

