DATA SAMPLE:
$$(x_1, \dots, x_n)$$
 (x_1, \dots, x_n) $(x_1, \dots, x_n) = (x_1, \dots, x_n)$ $(x_n, x_n) = (x_1, \dots, x_n)$

(1-
$$\alpha$$
)·100 % CI: 1) 2-sided: (L, U)

P(L \leq \mu \leq U) = 1- α

L = $\widehat{w}_{MLE} - \widehat{q}_{1-\frac{\alpha}{2}} \cdot \widehat{\frac{\sigma^{2}}{n}}$

U = $\widehat{w}_{MLE} + \widehat{q}_{1-\frac{\alpha}{2}} \cdot \widehat{\frac{\sigma^{2}}{n}}$

2) LEFT:
$$(L,\infty)$$

$$P(L \leq \mu) = 1 - \alpha$$

$$\vdots$$

$$L = \mu_{MLE} - q_{1-\alpha} \cdot q_{1-\alpha}$$

3) RIGHT:
$$(-\infty, \mathbf{U})$$

$$P(\omega \leq \mathbf{U}) = 1 - \omega$$

$$\vdots$$

$$\mathbf{U} = \widehat{\omega}_{MLE} + \varphi_{1-\alpha} \cdot \frac{\sigma^{2}}{\mathbf{n}}$$

 $\P_{1-\frac{\omega}{2}} \ | \ \P_{1-\omega}$ are the QUANTILES of: NORMAL distribution (σ^2 is known) STUDENT t-distribution (is not)