Sobel Filter

壹.電路合成與結果分析

第一部分:架構圖

電路運作架構圖

說明: TB 輸入 image data to linebuffer, 然後進行 register shift。當 start 輸入時,進行 Gx、Gy 的捲積計算,之後將資料進行二值化處理,if >=100 becomes 255,else 0。最後將資料輸回 TB。

Testbench 運作架構圖

說明: 先將採圖轉為灰階和寫入 bmp 的標頭資料,之後將灰階影像輸入 2D array 的 padded register, 再將 2D array 轉成 1D array,後將資料依序輸入 Sobel,並記錄已輸入多少資料, if data number

>=482*2+3 則 start = 1, else start= 0. If data number %483 = 481||482,then skip_n = 1 else skip_n = 0. 當 start = 1 且 skip_n = 0 時,寫出 $Gx \cdot Gy$ 圖像資料;當 $skip_n = 0$ || start = 0 不寫出圖像。

第二部分: 模擬結果

- \cdot Sobel

RTL:

SYN:

說明: signal RGB 皆正確讀取,Y 轉換正常,data_in 輸入正常,imagegx、imagegy 輸出正常,有正常圖像輸出且 presim and postsim simulation waveform 一樣,表示模擬正確。

Vivado:

Behavior

Implement

Name	Value	1,349,453,350 ps		1,349,453,400 ps		1,349,453,450 ps		[1,349,453,500 ps		1,349,453,590 ps		,590 ps	
¼ clk	0												
¼ rst	0												
> 🐶 img_in[31:0]	ffffb1e0							ffffb1e0					
> W img_black[31:0]	ffffb1e1							ffffblel					
> 🐶 img_outgx[31:0]	ffffb1e2							ffffb1€2					
> 🐶 img_outgy[31:0]	ffffb1e3							ffffb1€					
> W Gxout[7:0]	00							00					
> W Gyout[7:0]	00							00					
> W R[7:0]	38							la					
> 🐶 G[7:0]	5e							37					
> 🐶 B[7:0]	2d							19					
> 🐶 Y[19:0]	0004d							00026					
> W data_in[7:0]	00							00					

說明: signal RGB 皆正確讀取,Y轉換正常,data_in 輸入正常,imagegx、imagegy 輸出正常,有正常圖像輸出且 behavior and implement simulation waveform 一樣,表示模擬正確。

Overview

二、輸出圖像

Origin

black

Gx

Gy

第三部分: Between 合成結果- area、power、delay

- Comparison of Synthesis Results

		Area (um2)		Timing	Power(W)			
	Combonational	Seqential	Total	(ns)	Dynamic	Leakage	Total	
delay	418.2	42181.2	42599.4	3.2	8.48m	292.30u	8.78m	

說明:因 linebuffer很大,所以 sequential area 特別大。Dynamic power 佔整體大部分的 power 損耗。

二、area、power、delay 截圖

Sobel

Area Combinational area: 418.219189 Buf/Inv area: 18.597600 Noncombinational area: 42181.172058 Macro/Black Box area: 0.000000 Net Interconnect area: undefined (Wire load has zero net area) Total cell area: 42599.391247 undefined Total area: Delay

Gyout_reg_0_/D (DF data arrival time	0.00	3.0 3.0			
clock clk (rise ed	Je)		3.20	3.2	а
clock network dela	0.00		3.20		
·					
Gyout_reg_0_/CK (D	0.00	3.2	0 r		
library setup time	-0.06	3.1	3.14		
data required time			3.14		
data required time				3.1	 4
data arrival time		-3.0			
slack (MET)				0.0	 5
STACK (FILT)				0.0	
Power					
	8.4381 mW (99%) 46.3645 uW (1%)				
Total Dynamic Power =	8.4844 mW (100%)				
Cell Leakage Power =	292.3028 uW				
Internal	Switching	Leakage	Total		
Power Group Power	Power	Power	Power (%)	Attrs
io_pad 0.0000	0.0000	0.0000	0.0000 (0.00%)	
memory 0.0000	0.0000	0.0000	0.0000 (0.00%)	
black_box 0.0000	0.0000	0.0000	0.0000 (0.00%)	
clock_network 0.0000	0.0000	0.0000	0.0000 (0.00%)	
register 8.4249	3.9641e-02	286.8954	8.7509 (99.71%)	
sequential 0.0000	0.0000	0.0000	0.0000 (0.00%)	
combinational 1.3500e-02	6.7232e-03	5.4046	2.5628e-02 (0.29%)	
Total 8.4384	mW 4.6364e-02 mW	292.3000 uW	8.7765 mW		

參、問題與討論

1. Gx、Gy 如果用 signed [7:0]是-128~+127, 不夠表示圖像,所以需要變成 signed [8:0]才夠表示圖像。否則如下圖:

Gx Gy

2. 從 sobel 電路反饋到 testbench 的 linebuffer skip 訊號與 testbench 的時序是不同步的,需要用 testbench 控制才能正確顯示。

肆、結論

影像處理對資料寫入的順序與 pixel 的儲存大小敏感,需謹慎處理。此外,需注意 TB 計算的 skip 訊號與 Sobel 輸出的 skip 訊號並不同步,使用 TB 的才會正確。

心得

影像處理對於 linebuffer 的寫入順序與 pixel 的資料儲存大小很敏感,稍有差錯,輸出圖像就會發生問題。我遇到資料大小給不夠時,圖像會不夠清晰;當開始捲積的時機沒掌握好,會發生圖像歪曲,並且可能寫出的圖像資料不足,導致圖像錯誤。這次我還注意到電路計算的 skip 訊號竟然與TB 計算的 skip 訊號產生的時機不同,明明都是相同的計算邏輯,這是令我不解地事情。

我本以為影像處理的電路很好做,但真的很難除錯。在撰寫過程中,我認為邏輯都正確,但輸出圖像歪斜、錯誤、不清晰,參考許多人的作品也是覺得自己沒寫錯,後來我砍掉大部分的程式重作,仍然發生影像不清晰的問題,詢問助教才發現是 Gx、Gy 的資料大小給不夠,這是我意想不到的問題,在我原先的計算中並不會發生這樣的問題,然而其真是關鍵因素,這深深令我覺得,影像處理中有太多不清晰的觀念或是不明的理論存在,需要我花時間研究並接受前輩指導。