In [1]: import pandas as pd
import seaborn as sb

In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv") #reading the data
data

Out[2]:

8900 8800
8800
0000
4200
6000
5700
5200
4600
7500
5990
7900
42 60 57 46 75

1538 rows × 9 columns

In [4]: data['model']=data['model'].map({'lounge':1,'pop':2,'sport':3}) #mapping the data with respect to model colu
data

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	1	51	882	25000	1	44.907242	8.611560	8900
1	2	2	51	1186	32500	1	45.666359	12.241890	8800
2	3	3	74	4658	142228	1	45.503300	11.417840	4200
3	4	1	51	2739	160000	1	40.633171	17.634609	6000
4	5	2	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	3	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	1	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	2	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	1	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	2	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [5]: cor=data.corr() #getting the correlation
 cor

Out[5]:

	ID model engine_power		_power age_in_days km		previous_owners lat		lon	price	
ID	1.000000	-0.024740	-0.034059	-0.060753	-0.006537	0.007803	-0.058207	0.058941	0.028516
model	-0.024740	1.000000	0.189906	0.326508	0.319580	0.052480	0.044901	-0.013200	-0.349885
engine_power	-0.034059	0.189906	1.000000	0.319190	0.285495	-0.005030	0.005721	-0.005032	-0.277235
age_in_days	-0.060753	0.326508	0.319190	1.000000	0.833890	0.075775	0.062982	-0.042667	-0.893328
km	-0.006537	0.319580	0.285495	0.833890	1.000000	0.097539	0.035519	0.004839	-0.859373
previous_owners	0.007803	0.052480	-0.005030	0.075775	0.097539	1.000000	0.001697	-0.026836	-0.076274
lat	-0.058207	0.044901	0.005721	0.062982	0.035519	0.001697	1.000000	-0.766646	-0.011733
lon	0.058941	-0.013200	-0.005032	-0.042667	0.004839	-0.026836	-0.766646	1.000000	-0.003541
price	0.028516	-0.349885	-0.277235	-0.893328	-0.859373	-0.076274	-0.011733	-0.003541	1.000000

In [6]: data.head()

Out[6]:

		ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
•	0	1	1	51	882	25000	1	44.907242	8.611560	8900
	1	2	2	51	1186	32500	1	45.666359	12.241890	8800
	2	3	3	74	4658	142228	1	45.503300	11.417840	4200
	3	4	1	51	2739	160000	1	40.633171	17.634609	6000
	4	5	2	73	3074	106880	1	41.903221	12.495650	5700

In [9]: cor.plot("price") #ploting the price column

Out[9]: <Axes: xlabel='price'>

In [7]: not=**True**, linewidths=.5, cmap='bwr') #getting the correlation of the table with help of seaborn function and co

Out[7]: <Axes: >

In [8]: data.groupby(["previous_owners"]).count() #Grouping the given table by using previous owners column

Out[8]:

	ID	model	engine_power	age_in_days	km	lat	lon	price
previous_owners								
1	1389	1389	1389	1389	1389	1389	1389	1389
2	117	117	117	117	117	117	117	117
3	23	23	23	23	23	23	23	23
4	9	9	9	9	9	9	9	9