Task 4. There are N lines on a two-dimensional plane, represented in the form y = kx + b, where k and b are integers and k > 0. All lines are stored in the form of k and b, and there are no overlapping lines. There may be one intersection point between two straight lines, with a maximum of n*(n-1)/2 intersections. We want to cover all these intersection points with a rectangle parallel to the coordinate axes. What is the minimum area of this rectangle? Return 0 if there are no intersection points, only one intersection point, or all intersection points lie on the same line parallel to the coordinate axes.

Input data: The data is located in the **input.txt** file. The first line of the file contains respectively sizes m, and each of the next m lines contains the values of the elements of k and b.

Output data: The response (one integer) must be written to the output.txt file.

Program execution time: no more than 1 second.

Note: The return value should be a floating-point number. Results within an absolute or relative error of 10⁻⁴ from the standard answer are considered correct.

 $1 \le \text{lines.length} \le 10^5 \text{ and lines}[i].\text{length} == 2$

1 <= lines[0] <= 10000

-10000 <= lines[1] <= 10000

Examples:

Test1:	Answer1:	Test2:	Answer2:
3	48.00000	2	0.00000
2 3		88	
3 0		3 4	
41			