Module 5A: Sets and set relationships

MTH 225 5 Oct 2020

Agenda

- Review of Daily Prep activity + Q/A time
- Activity: Writing list comprehensions to "comprehend" set builder notation
- Activity: Jamboard activity to translate from set builder
 → Roster notation
- Wrap up with ungraded quiz + feedback time

The set $\mathbb N$ written in "roster notation" is

$$\{1,2,3,\dots\}$$

$$\{0, 1, 2, 3, \dots\}$$

$$\{\ldots,-3,-2,-1,0,1,2,3,\ldots\}$$

None of the above

Consider the set $A=\{x^2\,:\,x\in\mathbb{N}\}$. Which of the following is a true statement? Select all that apply.

$$4 \in A$$

$$A\subseteq \mathbb{N}$$

$$A=\mathbb{N}$$

Let
$$A=\{2,4,8,16,32\}$$
 and $B=\{x\in\mathbb{Z}\,:\,x^2\,\mathrm{is\,even}\}$. Then

$$A \subseteq B$$

$$B \subseteq A$$

Both of the above

None of the above

List comprehension activity

https://colab.research.google.com/dri
ve/1VhueyYrYXYhFaUV gnzaQ-CYtIDcu Jl?
usp=sharing

Lists are like sets in roster notation.

List comprehensions are like sets in set-builder notation.

From the activity

The set of the first 100 powers of 2:

$$\{1,2,4,8,16,32,\ldots,2^{99}\}$$

 $\{2^n: n=0,1,2,\ldots,99\}$

Same set -- different presentations, different points of view

INFINITE sets can't be done in Python*

ALL of the powers of 2 (that are integers):

$$\{1,2,4,8,16,32,\ldots,\}$$
 $\{2^n\,:\,n\in\mathbb{N}\}$

Same set -- different presentations, different points of view

set notations

Jamboard activity: Working with the two

The set $\{3x:x\in\}$

Is a subset of \mathbb{N}

Is a subset of \mathbb{Z}

Is equal to $\{0, 3, 6, 9, 12, \dots\}$

Both (a) and (b) but not (c)

All of the above

Which of the following are equal to the set

$$\{x \in \mathbb{Z} : 2 \le x < 10\}$$
?

$${3,4,5,6,7,8,9}$$

$${2,3,4,5,6,7,8,9}$$

$$\{2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$\{\ldots,3,4,5,6,7,8,9,10\}$$

None of the above

Recall that \emptyset is the empty set or "null" set, i.e. the set with no elements. True or false: $\emptyset \subseteq A$ for every set A.

True

False

It depends on what A is

Have a great day 😜

Check in with email + campuswire + calendar to stay up to speed