Econ 106

Lecture 4 Fall 2024

Large part of these slides are adapted from Nick Hagerty at Montana State University and

<u>Introduction to Data Science</u> by Rafael A. Irizarry, used under <u>CC BY-NC-SA 4.0</u>, and <u>"Data Science for Economists"</u> by Grant R. McDermott, used under the <u>MIT License</u>.

Reminders

- Lab 1 will be posted Sunday, due one week later
 - one-page writeup with tables
 - R script

https://pollev.com/vsovero

#tidytuesday

Co-occuring Words in Ramen Flavors among the 125 most common words

Source: TheRamenRater.com Visualization @Frau_Dr_Barber

data source

Outline

- summary tablesfrequency tables

filter()

Subset Observations (Rows)

arrange()

select()

Subset Variables (Columns)

mutate()

Make New Variables

Recap: key dplyr verbs

- **There are five key dplyr verbs that you need to learn.**
- 1. filter: Filter (i.e. subset) rows based on their values.
- 2. arrange: Arrange (i.e. reorder) rows based on their values.
- 3. select: Select (i.e. subset) columns by their names:
- 4. mutate: Create new columns.
- summarize: Collapse multiple rows into a single summary value

https://pollev.com/vsovero

Summarizing Variables

- How can we summarize/describe variables?
 - quantitative data
 - categorical data

Useful functions for quantitative variables

- Center: mean(), median()
- Spread: sd(), var()
- Range: min(), max(),
- Position: first(), last(),
- Total: sum()

Creating a summary table

Summarise Data

Creating a summary table

- summarize()
- Arguments: a specific summary statistic
 - e.g.: mean(), min(), max(), median(), sum()
- Output: a table with the calculated summary statistic

Creating a summary table

- the summarize function is similar to the mutate function
- you have to provide a name (mean_height) for where the new information will be stored

```
height_summary <- starwars %>%
```

summarize(mean_height = mean(height))

What happened?

```
height_summary <- starwars %>%
summarize(mean_height = mean(height))
```


Missing Data is What Happened

- R can't compute the mean of a numeric vector if there are any missing values (NA)
- We will have to tell it to ignore the rows that have missing values

Fixed With an Additional Argument

```
height_summary_without_NA <- starwars %>%
summarize(mean_height = mean(height, na.rm = TRUE))
```


Base R vs. Dplyr

- We could have also used Base R for this calculation
- The code is actually a bit simpler
- However, it's going to store the information as a vector

```
height_summary_without_NA <- mean(starwars$height, na.rm = TRUE)</pre>
```

Creating a less silly summary table

- We can summarize more than one variable
- Add a comma, then write out the next statistic

Exercise

- Calculate median and mean mass for characters in Naboo.
- What does this suggest about the distribution of mass?

https://pollev.com/vsovero

Summarizing Categorical Variables

 Econ 101 recap: we summarize/describe categorical variables with frequency tables

wage	Score	Rating	Gender	educ
11.42	3	average	male	16
3.91	3	average	female	12
8.76	3	average	male	16
7.69	4	above	male	16
5	3	average	female	16
3.89	3	average	female	12
3.45	5	above	female	12
4.03	4	above	male	16
5.14	2	below	male	17
3	3	average	male	16

Create a frequency table

- count ()
- Arguments: a categorical variable
- Output: a table with the frequency of each value of the categorical variable

Species Frequency Table

species_frequency<- starwars %>%
count(species)

*	species [‡]	n [‡]
1	Aleena	1
2	Besalisk	1
3	Cerean	1
4	Chagrian	1
5	Clawdite	1
6	Droid	6
7	Dug	1
8	Ewok	1
9	Geonosian	1
10	Gungan	3
11	Human	35
12	Шинн	1

Species Frequency Table (ordered by frequency)

Lecture 4.R* × species_count_ordered ×			
⇒ Filter Filter			
^	species [‡]	n [‡]	
1	Human	35	
2	Droid	6	
3	NA	4	
4	Gungan	3	
5	Kaminoan	2	
6	Mirialan	2	
7	Twi'lek	2	
8	Wookiee	2	
9	Zabrak	2	
10	Aleena	1	
11	Besalisk	1	
12	Cerean	1	
13	Chagrian	1	

Species Frequency Table (remove NA)

*	species [‡]	n [‡]
1	Human	35
2	Droid	6
3	Gungan	3
4	Kaminoan	2
5	Mirialan	2
6	Twi'lek	2
7	Wookiee	2
8	Zabrak	2
9	Aleena	1
10	Besalisk	1
11	Cerean	1
12	Chagrian	1
13	Clawdite	1
14	Dug	1
15	Ewok	1
Showing	1 to 15 of 37 ent	tries. 2 tot

showing 1 to 15 of 37 entries, 2 total columns

Shortening our tables with slice()

- slice_head(n) select the first n rows
- slice_tail(n) select the last n rows.
- slice_sample(n) randomly select n rows.
- slice_min(x, n) select n rows with the smallest values of variable x
- slice_max(x, n) select n rows with the largest values of variable x

Top 10 List of Most Frequent Species

```
top_ten_species<- starwars %>%

filter(!is.na (species)) %>%

count(species) %>%

arrange(desc( n)) %>%

slice_head(n=10)
```

Exercise

- filter out missing values of eye color
- order the eye colors in a frequency table from highest to lowest frequency
- report the top ten eye colors by frequency

Frequency Table (two variables)

species_gender_frequency<- starwars %>%
count(species, gender)

*	species [‡]	gender [‡]	n [‡]
1	Aleena	masculine	1
2	Besalisk	masculine	1
3	Cerean	masculine	1
4	Chagrian	masculine	1
5	Clawdite	feminine	1
6	Droid	feminine	1
7	Droid	masculine	5
8	Dug	masculine	1
9	Ewok	masculine	1
10	Geonosian	masculine	1
11	Gungan	masculine	3

Recap so far: How to Summarize/Describe Variables

- Quantitative variables:
 - mean, median, etc.
 - use summarize()

- Categorical variables:
 - frequencies (use count())

group_by()

Grouped summary table

- group_by()
- Arguments: set of variables
- Output: a table with the calculated summary statistic for each combination of unique values in the variables inside group_by()

Grouped summary table

Output

^	sex [‡]	mean_wt [‡]
1	female	54.68889
2	hermaphroditic	1358.00000
3	male	81.00455
4	none	69.75000
5	NA	48.00000

Grouped summary table (more than one group)

Output

what happened here?

Using group_by() to Create a Frequency Table

Exercise

- Let's load some data from a <u>tidytuesday challenge</u>
- we will use the read_csv() function from the tidyverse package
- it can read in csv files from your computer or from a URL

tidytuesday data

Data Dictionary

jobs_gender.csv

Data Dictionary

variable	class	description
year	integer	Year
occupation	character	Specific job/career
major_category	character	Broad category of occupation
minor_category	character	Fine category of occupation
total_workers	double	Total estimated full-time workers > 16 years old
workers_male	double	Estimated MALE full-time workers > 16 years old
workers_female	double	Estimated FEMALE full-time workers > 16 years old
percent_female	double	The percent of females for specific occupation
total_earnings	double	Total estimated median earnings for full-time workers > 16 years old
total_earnings_male	double	Estimated MALE median earnings for full-time workers > 16 years old
total_earnings_female	double	Estimated FEMALE median earnings for full-time workers > 16 years old
wage_percent_of_male	double	Female wages as percent of male wages - NA for occupations with small sample size