Computação Natural - GridWorld Benchmark

Diogo Braga

University of Minho, Department of Informatics, 4710-057 Braga, Portugal e-mail: {a82547}@alunos.uminho.pt

1 Introdução e conceção

Neste benchmark do jogo GridWorld, muito utilizado como primeiro approach com o Reinforcement Learning, vão estar em foco as implementações Q-Learning e SARSA. Ambos são algoritmos que funcionam no sentido de aprender uma política, de forma a comunica-la a um agente, para que este saiba que ação executar em determinadas circunstâncias.

O **Q-Learning** segue uma abordagem *off-policy*, o que significa que a sua aprendizagem é realizada através do caminho ótimo em cada iteração. Devido a tal, esta implementação é considerada de *exploitation*, pois obtendo o primeiro melhor caminho, executa-o repetidamente nas seguintes iterações. É definido como sendo um algoritmo *greedy*.

O SARSA, por outro lado, segue uma abordagem *on-policy*, demorando um pouco mais a aprender o melhor caminho mas de uma forma mais segura, pois tenta sempre explorar outros caminhos que podem ter melhor recompensa que o primeiro melhor caminho encontrado. Esta implementação é, por isso, considerada de *exploration*. Este algoritmo, em comparação com o *Q-Learning*, pode demorar um pouco mais a convergir.

Neste documento, vai ser possível visualizar estes termos mais teóricos, mas aplicados de uma forma mais prática, comparando as duas técnicas. Este *benchmark* vai analisar dois principais fatores, são eles: **quantidade da recompensa** e **número de ações**.

2 Realização e resultados

Numa primeira fase, a análise dos resultados é realizada com os valores pré-definidos, de forma a ter uma ideia geral no ponto de partida. Deste modo, vai ser possível avaliar a importância das variáveis no cálculo dos *Q-Values* atribuídos às células do tabuleiro do jogo.

Os valores pré-definidos são:

- episodes: 20;
- alpha (learning rate): 0.7;
- gamma (discount reward of future decisions): 0.7;
- epsilon (greedy action selection): 0.3;
- epsilon_degradation (more exploitation over episode): 0.03.

Fig. 1. Benchmarking das ações

Fig. 2. Benchmarking das recompensas

Destes gráficos podemos retirar algumas conclusões:

- No Q-Learning, é possível verificar uma aproximação mais rápida aos valores próximos dos valores ideais, tanto nas ações como nas recompensas, pois este algoritmo segue uma abordagem de *exploitation*, optando sempre pelo caminho que apresenta o melhor *Q-Value* em todas as iterações (*greedy*).
- No SARSA, é possível verificar, nos episódios iniciais, variações mais acentuadas que se devem à abordagem de *exploration* que procura, desta forma, variados caminhos além do escolhido numa primeira fase. Verifica-se, na mesma, uma aproximação ao valor ótimo mas, neste caso, com influência da degradação aplicada no valor de *epsilon*, que vai aumentando os parâmetros de *exploitation*.
- Apesar das diferentes abordagens, ambas as implementações atingem a solução ótima.

2.1 Alteração do alpha

Fig. 3. Benchmarking das recompensas com *alpha* = 0.2

Deste gráfico é possível concluir:

- Em comparação com o gráfico inicial (alpha = 0.7, convergência no episódio 9), a convergência para a solução ótima acontece mais tarde, neste caso, no episódio 13.
- Reduzindo o ritmo de aprendizagem, a convergência dos algoritmos para a solução ótima demora, de facto, mais tempo a acontecer. Tal faz sentido acontecer pois, com o *learning rate* mais baixo, a propagação dos resultados para os *Q-Values* das células acontece com menos influência.
- No entanto, apesar de uma grande variação no valor do *alpha*, o número de episódios não sofreu um atraso tão considerado, pelo que, em alguns casos, diminuir este valor pode ser vantajoso para privilegiar uma exploração mais abrangente.

2.2 Alteração do gamma

Fig. 4. Benchmarking das recompensas com gamma = 0.0

Deste gráfico é possível concluir:

- Em comparação com o gráfico inicial (gamma = 0.7, convergência no episódio 9), a convergência para a solução ótima não acontece com gamma = 0.0.
- Colocando o valor das recompensas com influência nas decisões futuras igual a 0, o agente não vai conseguir tirar vantagens do conhecimento adquirido em cada iteração e vai sempre procurar um caminho novo, considerando apenas as recompensas atuais que adquire.

2.3 Alteração do epsilon

Fig. 5. Benchmarking das recompensas com epsilon = 0.1

Fig. 6. Benchmarking das recompensas com epsilon = 0.8 e sem degradação

Deste gráfico é possível concluir:

- No primeiro gráfico, em ambas as implementações é possível verificar uma semelhança do comportamento, e tal acontece devido ao baixo *epsilon* que torna ambas as abordagens *greedy*.
- No segundo gráfico, no Q-Learning é possível verificar uma normal convergência, pois a sua implementação por si é sem exploração. No entanto, no SARSA verificamse grandes variações nas recompensas devido ao elevado *epsilon*, o que aumenta ainda mais a exploração que já é implementada no método.
- Portanto um epsilon elevado leva a mais exploração, enquanto um epsilon baixo leva o algoritmo para uma tendência greedy.

3 Conclusão e principais dificuldades

Com este *benchmark* foi possível verificar os diferentes fins a que se podem chegar com variadas definições das variáveis. Nesta lógica, os valores devem ser ajustados de acordo com a finalidade do problema, no sentido de tentar tirar o melhor proveito destas duas implementações de *Reinforcement Learning*.

Com uma boa fundamentação teórica nas duas abordagens, a realização e análise deste *benchmark* foi acessível e bastante proveitosa para constatar os conceitos de uma forma prática.