Report: MNIST Digit Classification with MLP

2018011365 张鹤潇

实验内容

在本次实验中,我们需要手动实现 MLP 的各个组件,包括线性层、激活函数、损失函数,并在 MNIST 数据集上测试模型的性能。

实验设置

我共实现了两类 MLP 网络,分别有1个和2个隐藏层,详细结构如下:

• MLP with One Hidden Layer (MLP1)

Layer	Туре	In Dim	Out Dim
0	Linear	784	256
1	Activation	256	256
2	Linear	256	10
3	Activation	10	10

• MLP with Two Hidden Layer (MLP2)

Layer	Туре	In Dim	Out Dim
0	Linear	784	512
1	Activation	512	512
2	Linear	512	256
3	Activation	256	256
4	Linear	256	10
5	Activation	10	10

为了节约训练时间,我在实验中引入了 Early Stopping,即在测试集准确率**连续 10 个 epoch 不上升**时停止训练。

其它超参数设置如下:

```
INIT_STD = 0.01
HINGE_LOSS_THRESHOLD = 5
config = {
    'learning_rate': 0.01,
    'weight_decay': 0.0,
    'momentum': 0.9,
    'batch_size': 100,
    'max_epoch': 100
}
```

实验结果

Layer	Loss	Activation	Test Acc	Test Loss	Train Acc	Train Loss
1	L2	Sigmoid	95.94	0.0155	96.22	0.0156
		Relu	97.97	0.013	98.88	0.0115
		Gelu	97.66	0.014	98.43	0.0128
	Cross Entropy	Sigmoid	97.78	0.076	98.79	0.0472
		Relu	98.05	0.0642	99.16	0.0316
		Gelu	98.06	0.0667	99.75	0.0145
	Hinge	Sigmoid	98.12	0.3836	99.55	0.0864
		Relu	98.22	0.3587	99.7	0.0591
		Gelu	98.24	0.3516	99.86	0.0316
2	L2	Sigmoid	94.69	0.0156	94.67	0.016
		Relu	98.56	0.0091	99.61	0.0065
		Gelu	98.26	0.0101	99.03	0.0087
	Cross Entropy	Sigmoid	97.63	0.0781	98.91	0.0403
		Relu	98.25	0.0652	99.78	0.0095
		Gelu	98.12	0.0683	99.21	0.0256
	Hinge	Sigmoid	97.91	0.4238	99.37	0.1058
		Relu	98.32	0.3599	99.52	0.0712
		Gelu	98.31	0.3664	99.83	0.0268

MLP1的Test Acc曲线

MLP1的Test Loss曲线

MLP1的Train Acc曲线

MLP1的Train Loss曲线

MLP2的Test Acc曲线

MLP2的Test Loss曲线

MLP2的Train Acc曲线

MLP2的Train Loss曲线

结论

网络层数的影响

除激活函数为 Sigmoid 的情况外,MLP2 的准确率略优于 MLP1,但是训练时间也明显变长。

激活函数的影响

使用 Gelu 和 Relu 的模型准确率优于使用 Sigmoid 的模型。Relu 的收敛速度快于 Sigmoid,与 Gelu 相当;但 Gelu 计算复杂,训练时间明显变长。

损失函数的影响

交叉熵和 Hinge Loss 的性能相当,略优于 L2 Loss.

数间回传的梯度会迅速减小,导致模型得不到有效训练。

L2 Loss 在与 Sigmoid 搭配时性能明显偏差。

总结反思

Sigmoid 与梯度消失

从实验结果可知,以 Sigmoid 为激活函数的单隐层模型比双隐层模型的性能更好,这种反常现象是由**梯度消失**导致的。

$$\sigma(x)=rac{1}{1+e^{-x}}\in(0,1)$$
 $\sigma'(x)=\sigma(x)(1-\sigma(x))\leqrac{1}{4}$

分析可知,Sigmoid 函数的导数 $\sigma'(x)\in(0,\frac14]$, $\sigma'(x)^n\leq 4^{-n}$ 。随着网络层数的增加,在 Sigmoid 函

Sigmoid 与 L2 Loss

对于 L2 Loss,

$$C = rac{1}{2}||y-y_t||_2^2 \ y = \sigma(z), \; z = x^TW + b \ rac{\partial C}{\partial W} = (y-y^T)\sigma'(z)x \ rac{\partial C}{\partial b} = (y-y^T)\sigma'(z)$$

权重 W 和偏置 b 的梯度与激活函数的导数成正比。激活函数的梯度越大,w和b的大小调整得越快,训练收敛得就越快。而对于 Sigmoid 函数来说,其导数在输入为0时取最大,输入较大导数反而变小。

当激活值很大,网络需要快速调整时,Sigmoid 的梯度较小,权重更新的步幅较小,这会导致网络收敛变慢;而当激活值很小时,sigmoid的梯度会比较大,权重更新的步幅也会较大,这会导致网络的震荡,使致模型难以收敛。

这就是 Sigmoid 与 L2 Loss 搭配时模型性能不佳的原因。

输出层是否需要激活函数

我个人认为输出层加或不加激活函数都是可以的。但要注意,如果在使用 Hinge Loss 的模型输出层加激活函数,需要调整 Hinge Loss 的 Δ 参数,否则模型可能不收敛。