

SIM800系列_ 软件升级协议_应用文档

GPRS 模组

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路633号晨讯科技大楼B座6楼

电话: 86-21-31575100

技术支持邮箱: support@simcom.com 官网: www.simcom.com

名称:	SIM800 系列_软件升级协议_应用文档		
版本:	1.05		
日期:	2020.06.15		
状态:	已发布		

版权声明

本手册包含芯讯通无线科技(上海)有限公司(简称:芯讯通)的技术信息。除非经芯讯通书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,违反者将被追究法律责任。对技术信息涉及的专利、实用新型或者外观设计等知识产权,芯讯通保留一切权利。芯讯通有权在不通知的情况下随时更新本手册的具体内容。

本手册版权属于芯讯通,任何人未经我公司书面同意进行复制、引用或者修改本手册都将承担法律责任。

芯讯通无线科技(上海)有限公司

上海市长宁区金钟路 633 号晨讯科技大楼 B座 6楼

电话: 86-21-31575100

邮箱: simcom@simcom.com 官网: www.simcom.com

了解更多资料,请点击以下链接:

http://cn.simcom.com/download/list-230-cn.html

技术支持,请点击以下链接:

http://cn.simcom.com/ask/index-cn.html_或发送邮件至 support@simcom.com

版权所有 © 芯讯通无线科技(上海)有限公司 2020, 保留一切权利。

www.simcom.com 2 / 12

关于文档

版本历史

版本	日期	作者	备注
V1.00	2013-05-30	程延海	第一版
V1.01	2013-09-04	程延海	适用型号增加 SIM800
V1.02	2014-06-30	程延海	修改 Linux 命令行参数定义
V1.03	2015-10-10	勾中余	适用型号描述更改
V1.04	2016-11-17	来文洁	适用范围
V1.05	2020-06-15	曾福梅/来文洁	修改风格样式

适用范围

本手册描述了如何使用 PC 或者外部的 MCU 的串口升级 SIM800 系列模块的软件。

本手册适用于带串口升级功能(软件包里的 ROM_VIVA 文件)的 SIM800 系列版本。

www.simcom.com 3 / 12

目录

版	又声明		2
关	F文档		3
	版本历	i史	3
	适用范	围	3
目表			4
1	介绍		5
	1.1	文档目的	5
	1. 2	参考文档	5
	1.3	术语和缩写	5
2	升级	流程	6
	2. 1	命令字	7
	2. 2	启动升级流程	8
	2. 3	同步字检测(0xB5)	8
	2.4	发送头信息(0x01/0x81)	9
	2.5	升级 ROM_VIVA 文件到模块(0x03)	. 10
3	Linu	× 源码	12
	3. 1	Linux 源码编译	
	3. 2	Linux 系统上运行	. 12
	3. 3	命令行参数说明	. 12

1.1 文档目的

本章节主要介绍 SIM800 系列模块的软件协议升级。

1.2 参考文档

[1] SIM800 Series_AT Command Manual

1.3 术语和缩写

术语	描述
MCU	微控制单元
PC	个人计算机
UART	通用异步收发传输器
ROM	只读存储器

www.simcom.com 5 / 12

2 升级流程

本章节主要介绍 SIM800 系列模块软件升级流程。 升级流程如图 1 所示。

图 1: 升级流程图

www.simcom.com 6 / 12

2.1 命令字

命令字	描述	方向
0xB5	同步字	PC->MODULE
0x5B	同步字回应	MODULE->PC
0x01/0x81	设定地址及擦除空间	PC->MODULE
0x02	设定地址及擦除空间回应	MODULE->PC
0x03	发送升级数据包	PC->MODULE
0x04	发送升级数据包回应	MODULE->PC
0x05	数据发送结束	PC->MODULE
0x06	数据发送结束回应	MODULE->PC
'P'	写 flash 失败	MODULE->PC
'C'	校验位错误	MODULE->PC
'R'	擦除中	MODULE->PC
'E'	擦除失败	MODULE->PC
'S'	文件传输大小出错	MODULE->PC
'M'	命令错误	MODULE->PC
'T'	超时	MODULE->PC
'N'	数据包序号错误	MODULE->PC
'F'	指令之间时间超时	MODULE->PC
0x07	升级完模块开机	PC->MODULE
0x08	升级完模块开机回应	MODULE ->PC

※ 特别注意

- 1. 上位机应持续发送同步字(0xB5),两个同步字指令间隔应小于 50 毫秒,直到模块有同步字回应(0x5B)。
- 2. 指令有顺序要求,顺序为: 同步字(0xB5)->设定地址及擦除空间(0x01/0x81)->发送升级数据包(0x03)->数据包发送完毕(0x05)->模块开机(0x07)。
- 3. 设定地址及擦除空间(0x01/0x81)后只能发送升级数据包指令(0x03)。如果指令顺序错误的话,模块会回应错误码'M',并进入不可恢复错误状态,需要上位机重启模块并重新进行升级流程。
- 4. 升级过程中有两种异常错误类型,可恢复错误和不可恢复错误。可恢复错误上报一次错误码,不可恢复错误状态一直上报错误码。发生不可恢复错误时,就必须重启模块并重新升级。只有上报'T'和'C'的错误状态是可恢复错误以外,其他都为不可恢复错误。
- 5. 模块等待上位机指令的最大时间是 30 秒,在模块回应指令后开始计时,如果等待时间大于 30 秒,则模块进入异常处理流程,上报错误码,进入不可恢复错误状态,需要上位机重启模块并重新进行升级流程。
- 6. 该文档提到的重启模块或复位模块是指开关断电重新开机或者使用 reset 复位脚重启,务必不要使用 powerkey 关机。在 bootloader 阶段或者模块代码不全的情况下,powerkey 关机无效。

www.simcom.com 7 / 12

2.2 启动升级流程

- 1 确保模块正常供电,及上位机串口与模块 UART1 端口正确连接。
- 2 复位模块。

※ 特别注意

上位机的串口必须是如下设置: 115200bps, 8 bit, No parity bit, 1 stop bit, no flow control。

2.3 同步字检测(0xB5)

当模块的 bootloader 程序启动后,模块如果在 100ms 内接收到了同步字 0xB5,模块将会回复一个 0x5B,此时模块就进入了升级模式。

如果模块在 100ms 内,没有接收到同步字 0xB5,模块将进入正常的启动模式。

图 2: 等待同步字

www.simcom.com 8 / 12

图 3: 同步字检测

※ 特别注意

为了确保模块能够收到同步字节 0xB5,建议上位机从模块上电之前就持续发送同步字节 0xB5,直到模块有 0x5B 指令回应,两个同步字间隔时间应小于 50 毫秒。

2.4 发送头信息(0x01/0x81)

命令字 0x01 表示 MCU 不需要对模块的文件系统进行擦除,而 0x81 则表示需要对模块的文件系统进行擦除。 在版本升级时,比如从 B01 升级到 B02 时,要选择对文件系统进行擦除。给客户的特殊版本,升级时不需要 擦除文件系统。头信息为升级包的前面 128 字节。

在擦除过程中,会持续返回 ASCII 字符'R',即十六进制的 0x52,表示模块正在擦除内部 Flash,两个字符间隔 30 毫秒左右,最大超时时间为 1 秒。

擦除结束后,会返回指令 0x02。

发送头信息帧格式:

命令	数据
0x01/0x81	升级包前 128 字节数据

模块回应:

命令回应	允许的最大数据长度 N	
0x02	2 字节, 低位在前, 高位在后	

www.simcom.com 9 / 12

图 4: 发送头信息数据包图

2.5 升级 ROM_VIVA 文件到模块 (0x03)

升级 ROM_VIVA 文件到模块端,该帧主要包括 4 个部分,它们是帧头(0x03),3 字节的帧数据长度(最大值不能超过模块返回的 0x02 指令中的 N),以及 1 字节的序列号,数据域以及 4 字节的数据校验位。校验位的计算方法为:将数据域的所有字节相加得到的一个 4 字节值就是校验值。

帧格式如下:

命令	帧的数据长度	帧序号	数据域	校验位
0x03/0x05	3字节,低位在前	1字节,发送数据帧的序号	按照数据帧的	4 字节,低位在前高位
	高位在后		长度决定	在后

www.simcom.com

图 5: 升级 ROM VIVA 程序

※ 特别注意

1. 帧序号取值范围为 0x00~0xff。

如果为 0,则不检测帧序号,否则从 0x01 到 0xff 循环, $0x01->\cdots->0xff->0x01->0x01->\cdots->0xff->0x01$

- 2. 模块在接收数据期间的最大响应时间是2秒,如果2秒模块没有任何响应,则应该重启模块,重新开机升级流程。
- 3. 一帧数据发送最长时间为500毫秒,如果在500毫秒内模块没有收到完整数据帧,则模块会返回错误码,丢弃该次不完整数据包,等待该帧重新发送。
- 4. 数据发送结束的指令为 0x05。

www.simcom.com

3 Linux源码

SIMCom 提供 SIM800 升级工具的 Linux 源码 mtkdownload.c 文件,以及在 Ubuntu 11.10 64bit 系统下已经编译好的二进制文件。在该系统上客户可以直接运行,在其它 Linux 系统,或者客户 MCU 系统上,用户需要自行编译源码并运行。

3.1 Linux 源码编译

直接运行下列命令即可完成编译。 gcc -o mtkdownload mtkdownload.c

3.2 Linux 系统上运行

直接运行下列命令即可。
./mtkdownload <com> ROM_VIVA <format>

3.3 命令行参数说明

<com>可选参数:/dev/ttyS0,/dev/ttyS1,/dev/ttyS2,/dev/ttyS3,/dev/ttyUSB0分别代表:COM1,COM2,COM3,COM4 以及 USB 串口 ROM_VIVA 要升级的 ROM_VIVA 文件名。
<format>可选参数 Y,N
表示是否格式化文件系统。

例如:

./mtkdownload /dev/ttyUSB0 ROM VIVA Y

表示在 USB 转串口上升级 SIM800 的 ROM_VIVA 文件,并且格式化文件系统。

www.simcom.com 12 / 12