

PROJECTION CARTOGRAPHIQUE CONIQUE CONFORME DE LAMBERT

Algorithmes

1^{ère} édition Janvier 1995

ALGORITHMES NECESSAIRES A LA PROJECTION CARTOGRAPHIQUE CONIQUE CONFORME DE LAMBERT

SOMMAIRE	NOMBRE de PAGES
ALG0001	2
ALG0002	3
ALG0003	3
ALG0004	3
ALG0019	3
ALG0021	2
ALG0054	4
APPLICATION	1

ALG0001 1/2

CALCUL DE LA LATITUDE ISOMETRIQUE.

Numéro: ALG0001.

Description :

Calcul de la latitude isométrique sur un ellipsoïde de première excentricité e au point de latitude $\phi.$

Variables :

- paramètres en entrée :
 - ϕ : latitude.
 - e : première excentricité de l'ellipsoïde.
- paramètre en sortie :
 - \mathcal{L} : latitude isométrique.

Schéma séquentiel :

 \mathbf{E} : ϕ , e.

 $s : \mathcal{L}$

<u>ALG0001</u> 2/2

CALCUL DE LA LATITUDE ISOMETRIQUE.

Jeux d'essai :

φ(rad)	0,872 664 626 00	-0,300 000 000 00	0,199 989 033 70
е	0,081 991 889 98	0,081 991 889 98	0,081 991 889 98

|--|

Remarque :

On notera $\mathcal{L}(\phi,e)$ la valeur de la latitude isométrique sur l'ellipsoïde de première excentricité e au point de latitude ϕ .

ALG0002 1/3

CALCUL DE LA LATITUDE A PARTIR DE LA LATITUDE ISOMETRIQUE.

Numéro: ALG0002.

Description :

Calcul de la latitude ϕ à partir de la latitude isométrique $\mathcal{L}.$

Variables :

- paramètres en entrée :

 \mathcal{L} : latitude isométrique.

e : première excentricité de l'ellipsoïde.

 ϵ : tolérance de convergence.

- paramètre en sortie :

 ϕ : latitude en radian.

ALG0002 2/3

CALCUL DE LA LATITUDE A PARTIR DE LA LATITUDE ISOMETRIQUE.

Schéma séquentiel :

 ${\tt E}$: ${\it L}$, e , $\epsilon.$

 $s : \phi$.

ALG0002 3/3

CALCUL DE LA LATITUDE A PARTIR DE LA LATITUDE ISOMETRIQUE.

Schéma séquentiel (suite) :

Jeux d'essai :

L	1,005 526 536 48	-0,302 616 900 60	0,200 000 000 0
е	0,081 991 889 98	0,081 991 889 98	0,081 991 889 98
ε	1.10 ⁻¹¹	1.10 ⁻¹¹	1.10 ⁻¹¹

φ (rad) 0	,872 664 62	5 00	-0,299 9	999 999 9	97	0,199	989	033	69
-----------	-------------	------	----------	-----------	----	-------	-----	-----	----

Remarque :

On notera $\mathcal{L}^{-1}(\mathcal{L},\mathbf{e})$ la valeur de la latitude à partir de la latitude isométrique \mathcal{L} pour un ellipsoïde de première excentricité \mathbf{e} .

ALG0003 1/3

TRANSFORMATION DE COORDONNEES

 λ , ϕ \longrightarrow X , Y Lambert.

Numéro : ALG0003.

Description :

Transformation de coordonnées géographiques en coordonnées en projection **conique conforme de Lambert.**

Variables :

- paramètres en entrée :

 λ : longitude par rapport au méridien origine.

 φ : latitude.

n : exposant de la projection.
c : constante de la projection.

e : première excentricité de l'ellipsoïde.

 λ_{c} : longitude de l'origine par rapport au méridien origine.

 X_s , Y_s : coordonnées en projection du pôle.

- paramètres en sortie :

X, Y : coordonnées en projection du point.

Autre algorithme utilisé :

ALG0001 : calcul de la latitude isométrique

Algorithmes dont les résultats sont utilisés en entrée :

ALG0019 : détermination des paramètres de calcul n, c, λ_c , X_s , Y_s en fonction des paramètres de définition usuels, dans le cas tangent.

ALG0054 : détermination des paramètres de calcul n, c, λ_c , X_s , Y_s en fonction des paramètres de définition usuels, dans le cas sécant.

ALG0003 2/3

TRANSFORMATION DE COORDONNEES

 λ , ϕ \longrightarrow X , Y Lambert.

Schéma séquentiel :

E : e , n , c , λ_{c} , Xs , Ys , λ , $\phi.$ S : X , Y.

Notation utilisée :

 $\mathcal{L}(\phi, e)$: latitude isométrique croissante sur l'ellipsoïde

<u>ALG0003</u> 3/3

TRANSFORMATION DE COORDONNEES

 λ , ϕ \longrightarrow X , Y Lambert.

Jeu d'essai :

е	0,082 483 256 8	
n	0,760 405 966	
c (m)	11 603 796,976 7	
λ_{c} (rad)	0,040 792 344 33	
X _s (m)	600 000,000 0	
Y _s (m)	5 657 616,674 0	
λ (rad)	0,145 512 099 00	
φ (rad)	0,872 664 626 00	

X (m)	1 029 705,081 8
Y (m)	272 723,851 0

ALG0004 1/3

TRANSFORMATION DE COORDONNEES

X , Y Lambert \longrightarrow λ , ϕ .

Numéro: ALG0004.

Description :

Transformation de coordonnées en projection conique conforme de Lambert, en coordonnées géographiques.

Variables :

- paramètres en entrée :

X, Y : coordonnées en projection conique conforme de Lambert du point.

n : exposant de la projection.c : constante de la projection.

e : première excentricité de l'ellipsoïde.

 λ_{C} : longitude de l'origine par rapport au méridien origine.

 X_S , Y_S : coordonnées en projection du pôle.

ε : tolérance de convergence

- paramètres en sortie :

 λ : longitude par rapport au méridien origine.

 ϕ : latitude.

Autre algorithme utilisé :

ALG0002 : calcul de la latitude à partir de la latitude isométrique.

Algorithmes dont les résultats sont utilisés en entrée:

ALG0019: détermination des paramètres de calcul n, c, λ_{C} , \textbf{X}_{S} , \textbf{Y}_{S} dans le cas d'une projection Lambert tangente en fonction des paramètres de définition usuels.

ALG0054 : détermination des paramètres de calcul n, c, $\lambda_{\text{C}},~\text{X}_{\text{S}},~\text{Y}_{\text{S}}$ en fonction des paramètres de définition usuels, dans le cas sécant.

ALG0004 2/3

TRANSFORMATION DE COORDONNEES

Schéma séquentiel :

E: n , e , c , λ_{C} , X , Y , X , Y , $\epsilon.$ S: λ , $\phi.$

Notation utilisée :

 $\mathcal{L}^{-1}(\mathcal{L}, \mathbf{e})$: latitude à partir de la latitude isométrique \mathcal{L} , calculée avec la tolérance ϵ .

<u>ALG0004</u> 3/3

TRANSFORMATION DE COORDONNEES $\hbox{\tt X , Y Lambert} \ \longrightarrow \ \lambda \ , \ \phi \text{.}$

Jeux d'essai :

X (m)	1 029 705,083 0
Y (m)	272 723,849 0
n	0,760 405 966
c (m)	11 603 796,976 7
X _S (m)	600 000,000 0
Y _S (m)	5 657 616,674 0
λ _C (rad)	0,040 792 344 33
е	0,082 483 256 8
ε	1.10 ⁻¹¹

λ (rad)	0,145 512 099 25
φ (rad)	0,872 664 625 67

ALG0019 1/3

PARAMETRES DE PROJECTION

Projection Lambert conique conforme dans le cas tangent

Numéro: ALG0019.

Description :

Détermination des paramètres de calcul d'une projection Lambert conique conforme dans le cas tangent, avec ou sans facteur d'échelle en fonction des paramètres de définition usuels.

<u>Variables</u>:

- paramètres en entrée :

a : demi-grand axe de l'ellipsoïde.
 e : 1 ère excentricité de l'ellipsoïde.

 λ_0 : longitude origine par rapport au méridien origine.

 φ_0 : latitude origine.

ko : facteur d'échelle à l'origine.

X₀, Y₀ : coordonnées en projection du point origine.

- paramètres en sortie :

e : 1 ère excentricité de l'ellipsoïde.

 λ_{C} : longitude origine par rapport au méridien origine.

n : exposant de la projection.
C : constante de la projection.

 X_S , Y_S : coordonnées du pôle en projection.

Autres algorithmes utilisés :

ALG0001 : Calcul de la latitude isométrique.

ALG0021 : Calcul de la grande normale.

ALG0019 2/3

PARAMETRES DE PROJECTION

Projection Lambert conique conforme dans le cas tangent

Schéma séquentiel :

$$\begin{split} E &: \text{a , e , } \lambda_0 \text{ , } \phi_0 \text{ , } k_0 \text{ , } X_0 \text{ , } Y_0. \\ S &: \text{e , n , C , } \lambda_C \text{ , } X_S \text{ , } Y_S. \end{split}$$

Notation utilisée :

 $\mathcal{L}(\phi,e)$: latitude isométrique croissante sur l'ellipsoïde de première excentricité au point de latitude ϕ .

<u>ALG0019</u> 3/3

PARAMETRES DE PROJECTION

Projection Lambert conique conforme dans le cas tangent

Jeux d'essai:

λ0 (rad)	0,181 128 088 00	0,040 792 344 33	
φ0 (rad)	0,977 384 381 00	0,863 937 980 00	
k ₀	1,000 000 000 0	0,999 877 340 0	
x _{0 (m)}	0,000 0	600 000,000 0	
Y ₀ (m)	0,000 0	200 000,000 0	
a (m)	6 378 388,000 0	6 378 249,200 0	
е	0,081 991 890	0,082 483 256 8	

λ _C (rad)	0,181 128 088 00	0,040 792 344 33		
е	0,081 991 890	0,082 483 256 8		
n	0,829 037 572 5	0,760 405 965 8		
C (m)	11 464 828,219 2	11 603 796,976 0		
X _{s (m)}	0,000 0	600 000,000 0		
Ys (m)	4 312 250,971 8	5 657 616,671 2		

ALG0021 1/2

CALCUL DE LA GRANDE NORMALE

Numéro : ALG0021.

Description :

Calcul de la grande normale de l'ellipsoïde.

<u>Variables</u>:

- paramètres en entrée :

 ϕ : latitude.

a : demi-grand axe de l'ellipsoïde.

e : première excentricité de l'ellipsoïde.

- paramètre en sortie :

N : grande normale.

Schéma séquentiel :

$$\texttt{E}$$
 : ϕ , a , e.
 \texttt{S} : N.

<u>ALG0021</u> 2/2

CALCUL DE LA GRANDE NORMALE

Jeux d'essai :

φ(rad)	0,977 384 381 00	
a(m)	6 378 388,000 0	
е	0,081 991 890	

N(m)

Remarque :

On notera $N(\phi,e,a)$ la valeur de la grande normale d'un ellipsoïde donné (a,e) en un point de latitude $\phi.$

ALG0054 1/4

PARAMETRES DE PROJECTION

Projection Lambert sécante.

Numéro: ALG0054.

Description :

Calcul des constantes d'une projection Lambert conique conforme dans le cas sécant.

Variables :

- paramètres en entrée :

a : demi-grand axe de l'ellipsoïde.

e : première excentricité de l'ellipsoïde.

 λ_0 : longitude origine en radian par rapport au méridien origine.

 ϕ_0 : latitude origine.

 ϕ_1 : latitude en radian du 1^{er} parallèle automécoïque. ϕ_2 : latitude en radian du 2^{ème} parallèle automécoïque.

X₀, Y₀ : coordonnées en projection du point origine.

- paramètres en sortie :

e : première excentricité de l'ellipsoïde.

 λ_{C} : longitude origine par rapport au méridien origine.

n : exposant de la projection. c : constante de la projection.

 X_S , Y_S : coordonnées du pôle en projection.

Autres algorithmes utilisés :

ALG0001 : Calcul de la latitude isométrique.

ALG0021 : Calcul de la grande normale.

<u>ALG0054</u> 2/4

PARAMETRES DE PROJECTION

Projection Lambert sécante.

Schéma séquentiel :

$$\mathtt{E}$$
 : a , e , λ_0 , ϕ_0 , ϕ_1 , ϕ_2 , \mathtt{k}_0 , \mathtt{X}_0 , $\mathtt{Y}_0.$

$$S$$
 : e , n , c , λ_{C} , X_{S} , $Y_{S}.$

$\lambda_{\mathbf{C}} = \lambda_{0}$				
$n = \left(\begin{array}{c} \ln \left(\frac{N\left(\phi_{2}, a, e\right) \cdot \cos \phi_{2}}{N\left(\phi_{1}, a, e\right) \cdot \cos \phi_{1}}\right) \\ \\ \mathcal{L}\left(\phi_{1}, e\right) - \mathcal{L}\left(\phi_{2}, e\right) \end{array}\right)$	ALG0021 ALG0001			
$C = \frac{N (\phi_1, a, e) \cdot \cos \phi_1}{n} \cdot \exp (n \cdot \mathcal{L}(\phi_1, e))$	ALG0001 / ALG0021			
$x_s = x_0$				
$Y_s = Y_0$				

ALG0054 3/4

PARAMETRES DE PROJECTION

Projection Lambert sécante.

Schéma séquentiel (suite) :

Notation utilisée :

 $\mathcal{L}(\phi,e)$: latitude isométrique croissante sur l'ellipsoïde

<u>ALG0054</u> 4/4

PARAMETRES DE PROJECTION

Projection Lambert sécante.

Jeux d'essai:

λ0 (rad)	0,000 000 000 00	0,076 235 545 39		
Φ0 (rad)	0,000 000 000 00	1,570 796 327 00		
X _{0 (m)}	0,000 0	150 000,000 0		
Y0 (m)	0,000 0	5 400 000,000 0		
Φ 1 (rad)	-0,575 958 653 00	0,869 755 744 00		
φ2 (rad)	-0,785 398 163 00	0,893 026 801 00		
a (m)	6 378 388,000 0	6 378 388,000 0		
е	0,081 991 890	0,081 991 890		

λc (rad)	0,000 000 000 00	0,076 235 545 39	
е	0,081 991 890	0,081 991 890	
n	-0,630 496 330 0	0,771 642 186 7	
c (m)	-12 453 174,179 5	11 565 915,829 4	
X _{S (m)}	0,000 0	150 000,000 0	
Y _S (m) -12 453 174,179 5		5 400 000,000 0	

Lambert France 1/1

CONSTANTES DE PROJECTION

Projection Lambert France.

Description :

Valeurs des constantes n , c , $\rm X_S$, $\rm Y_S$, λ_0 des 5 projections de types Lambert conique conforme en usage en France et du Lambert II étendu.

Valeurs des constantes Lambert France :

	Lambert I	Lambert II	Lambert III	Lambert IV	Lambert-93
n	0,760 405 965 6	0,728 968 627 4	0,695 912 796 6	0,671 267 932 2	0,725 607 765 0
c (m)	11 603 796,98	11 745 793,39	11 947 992,52	12 136 281,99	11 754 255,426
X _S (m)	600 000,0	600 000,0	600 000,0	234,358	700 000,0
Y _S (m)	5 657 616,674	6 199 695,768	6 791 905,085	7 239 161,542	12 655 612,050

 λ_0 = 2°20′14,025″ **E** par rapport au méridien de Greenwich

= 0 grades par rapport au méridien de Paris.

Les constantes en usage pour le Lambert II étendu sont celles du Lambert II avec $Y_S = 8$ 199 695,768.