Last time A sub X

the subspace topology on A induced by X is $\{A \ cap \ V \mid V \ is \ an \ open \ set \ in \ X\}$

if U sub A sub X then (U open in X) implies (U open in A) [why?] but converse can fail

Ex give R the analytic topology

$$\{0\}$$
 open $\{1\}$ open $A = \{0, 1\}$ y y $A = Q$ n n $A = \{0\}$ cup $\{1/n \mid n \text{ in } Z_+\}$ n y

Rem [how do subsp's interact with cts maps?]

- 1. if A sub X, then the inclusion map i : A to X def by i(a) = a is cts
- 2. compositions of cts maps are cts
- 3. so if f : X to Y is cts, then f|_A : A to Y is cts (compare to PS2, #6)

Rem if A is open in X itself then (U open in A) iff (U open in X) (see PS2, #3)

Thm if {B_i}_{i in I} is a basis for the top on X,
then {A cap B_i}_{i in I} is a basis for
the subspace top on A

by earlier criterion, just need to show: for all U open in A and x in U, have i s.t. x in A cap B_i sub U

indeed, U = A cap V for some V open in X then x in V, so have i s.t. x in B_i sub V so x in A cap B_i, and also, A cap B_i sub U

(Munkres §20) recall from real analysis:

 $\underline{\mathsf{Df}}$ a metric on X is a fn d : X × X to $[0, \infty)$

s.t., for all x, y, z in X, 1) d(x, y) = 0 implies x = y2) d(x, y) = d(y, x)

3) $d(x, y) + d(y, z) \ge d(x, z)$

given $\delta > 0$, let $B_d(x, \delta) = \{y \text{ in } X \mid d(x, y) < \delta\}$

<u>Df</u> the metric topology on X induced by d:

U is open in the metric topology iff for all x in U, there is a $\delta > 0$ s.t. B_d(x, δ) sub U ldea metric topology on X generalizes analytic topology on R^n

<u>Thm</u> the metric topology really is a topology

Pf exactly like the proof that the anlytic topology is a topology

[so how much weirder can it be?]

<u>Ex</u>	in any X: the discrete metric defined by $d(x, x) = 0$	the disc	he discrete metric induces the discrete topology	
	$d(x, y) = 1$ when x \neq y	Rem	metric → basis of balls → topology but recall:	
1) and 2) easy			different bases can give the same top	
3) [ho	w many cases to check? 5 but can combine]	<u>Thm</u>	suppose d induces T on X, d' induces T' on X	
if $x = z$:				
$d(x, y) + d(y, z) \ge 0 = d(x, z)$			then T is finer than T' iff	
[because $d(-, -) \ge 0$]			for all x in X and $\epsilon > 0$, there is $\delta > 0$ s.t.	
if $x \neq z$:			$B_d(x, \delta)$ sub $B_{d'}(x, \epsilon)$	
е	ither $y \neq x$ or $y \neq z$			
S	o $d(x, y) + d(y, z) \ge 1 = d(x, z)$	<u>Pf</u>	exercise (Munkres Lem 20.2)	

<u>Ex</u>

[picture of B_d(x, δ) versus B_ ρ (x, δ)]

observe $B_d(x, 1) = \{x\}$ for all x. thus:

euclidean metric:

$$d(x, y) = sqrt((x_1 - y_1)^2 + ... + (x_n - y_n)^2)$$

square metric:

$$\rho(x, y) = \max(|x_1 - y_1|, ..., |x_n - y_n|)$$

observe:

serve:

$$d(x, y) \leq \operatorname{sqrt}(\operatorname{n} \operatorname{max}_{i} (x_{i} - y_{i})^{2})$$

$$= \operatorname{sqrt}(\operatorname{n}) \rho(x, y)$$

$$\rho(x, y) = \operatorname{sqrt}(\operatorname{max}_{i} |x_{i} - y_{i}|^{2})$$

$$\leq d(x, y)$$

shows [note reverse directions!]:

$$B_{\rho}(x, \epsilon/\operatorname{sqrt}(n)) = \{y \mid \rho(x, y) < \epsilon/\operatorname{sqrt}(n)\}$$

$$= \{y \mid \operatorname{sqrt}(n) \rho(x, y) < \epsilon\}$$

$$\operatorname{sub} \{y \mid d(x, y) < \epsilon\}$$

$$= B_{d}(x, \epsilon)$$

similarly, B_d(x, ϵ) sub B_ ρ (x, ϵ)

<u>Thm</u> Euclidean and square metrics both induce the analytic topology on R^n

in general:

Df metrics d, d' are called <u>equivalent</u> iff there exist A, B > 0 s.t. $d(x, y) \le A d'(x, y)$ and $d'(x, y) \le B d(x, y)$ <u>uniformly</u> in x and y

Thm if two metrics are equivalent, then their metric topologies coincide

Rem converse is false: see PS2, #9–10

Q what about infinite-dim'l space?

Q

if each X_i has a topology, do we get a natural topology on prod {i in I} X i?

 $R^{\omega} = \{(x_1, x_2, ...) \mid x_i \text{ in } R \text{ for all } i\}$ $R^{\omega} = \{(x_1, x_2, ...) \mid x_i \neq 0 \text{ for only fin. many } i\}$

Euclidean and square metrics don't work on R^ω

Q do they still work on R[^]∞?

Q are there other metrics on R^{ω} ?

(Munkres §15, 19) given {X i} {i in I},