臺北市立教育大學資訊科學系

數位電路實習報告

實習題目:行人號誌控制

學生姓名: 賴柔均、施尹涵、王若芸、張芸綺

班級:資科二

學號:u10016002、04、19、45

一、實習目的:

使用 VHDL、元件設計出紅綠燈實作

二、實習設備及使用零件:

- 1. 硬體設備
- 2. Quartus II
- 3. PC

三、工作原理及使用原件:

1.工作原理

- 1.兩位數七段顯示器:運用 clock 做觸發,當 clock=0 時顯示左邊的數字(十位數),當 clock=1 時顯示右邊的數字(個位數),將頻率調高到肉眼無法辨識切換間隔,就會看起來是亮兩位數
- 2.下數計時器:運用許多正反器所組成,如果計數值依序遞減,則稱為下數計數器 (Down-counter)

狀態:

- 1. 一運作時,行人號誌狀態會閃紅燈;車向紅綠燈狀態會閃綠燈。
- 2. 按下 SW1,行人號誌狀態會從原先的閃紅燈變成紅燈;車向紅綠燈狀態 會從原先的閃黃燈變成綠燈。
- 3. 行人號誌的狀態(亮紅燈)與車向紅綠燈的狀態(亮綠燈)接會持續 15 秒。
- 4. 默數完 15 秒後,行人號誌的狀態會從紅燈變成閃綠燈;車向紅綠燈的狀態會從原先的綠燈轉成亮黃燈 1 秒,再變成紅燈。除此之外,七段顯示器也會從 15 秒開始倒數,直到歸零。

	行人號誌	車向紅綠燈
原始狀態	閃紅燈	閃黃燈
按下按鈕	紅燈	綠燈(倒數 15 s)
按下過 15 s 後	綠燈(倒數 15 s)	黄燈維持 1s 轉紅燈

圖 1 紅綠燈狀態表格

紅路燈倒數秒數

2. 使用原件

1. 硬體:

a. LED 燈:L1 至 L6(pin 7 至 13)

Code	L1	L2	L3	L4	L5	L6	L7	L8
Device	Red	Yellow	Green	Red	Yellow	Green	Red	Yellow
Pin	Pin 7	Pin 8	Pin 9	Pin 10	Pin 11	Pin 12	Pin 13	Pin 14

圖3 LED

b. 7-segment display: (pin 23 \ 26 \ 27 \ 28 \ 29 \ 30 \ 31 \ 33)

Code	A	В	С	D	E	F	G	DP
Device	7 Segment Display							
Pin	Pin 23	Pin 26	Pin 27	Pin 28	Pin 29	Pin 30	Pin 31	Pin 32

Code	DE1	DE2	DE3	8==	5000		
Device	Device 74138			-		88	1-0
Pin	Pin33	Pin36	Pin37			 676	_

[†] DE1, DE2 and DE3 are connected to 74138 which outputs Y0~Y5 as C1~C6.

圖 4 7-segment diplay

 $[\]dagger$ C1 \sim C6 are the common cathodes of 6.7-segment display.

c. Data Switches: SW1(pin 47)

Code	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Device	Push Button							
Pin	Pin 47	Pin 48	Pin 49	Pin 51	Pin 59	Pin 60	Pin 62	Pin 63

圖 5 Data Switches

2. 元件:

圖 6 電路圖

第一階段:一運作時,行人號誌狀態會閃紅燈;車向紅綠燈狀態會閃綠燈

```
library IEEE;
                                  clk:計數器
     use IEEE.STD LOGIC 1164.all;
3
                                  R
                                     :行人狀態的紅燈
   mentity shine is
   mort( clk : IN STD_LOGIC;
5
                                  G:車向狀態的綠燈
 6
          R : OUT STD_LOGIC;
          G : OUT STD LOGIC);
8
9
10
                                  若clk=1
11
   marchitecture a of shine is
     SIGNAL Y, Z :STD_LOGIC;
                                  則行人狀態的紅燈與車向狀態的綠燈皆會閃
13
        process(clk,Y,Z)
                                  若clk=0
15
           if clk='1'then
                                  行人狀態的紅燈與車向狀態的綠燈皆不運行
17
            Y<='1':
18
            Z<='1';
              elsif clk='0' then
19
20
                Y<='0';
21
            Z<='0';
22
            end if;
23
        R < = Y;
24
         G <= Z;
         end process;
25
26
27 end a;
```

圖7 第一階段 VHDL 程式碼

第二階段:按下 SW1,行人號誌狀態會從原先的閃紅燈變成紅燈;車向紅綠燈 狀態會從原先的閃黃燈變成綠燈(行人號誌的狀態(亮紅燈)與車向紅綠燈的狀態 (亮綠燈)接會持續 15 秒)

```
library ieee;
use ieee.std_logic_1164.all;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
  3
       USE IEEE.STD_LOGIC_UNSIGNED.ALL;

entity pg_s is

port (CLK,SW,P:IN STD_LOGIC;--SW PIN 55 prestatement P is pause
Z:OUT STD_LOGIC;--Z PIN 33

N:OUT STD_LOGIC;--N next statement
R0,G0:IN STD_LOGIC;--light input
R,G:OUT STD_LOGIC;--light output
Y:OUT STD_LOGIC_VECTOR(6 downto 0)--ten,bit
10
11
12
               ) ;
         end pg_s;
13
       architecture a of pg_s is
SIGNAL QN : STD_LOGIC_VECTOR(3 DOWNTO 0);
SIGNAL op :STD_LOGIC_VECTOR(6 downto 0);
SIGNAL n1 :STD_LOGIC;
14
15
16
17
18
                                                                                Clk:接給下數計數器
19
                 2<=SW:
20
                  PROCESS (CLK, P) --down
                 BEGIN
n1<='0';
if P='0'then
21
22
                                                                                N:將此階段狀態傳給下一階段
23
       24
                                                                                R0:上一階段人行狀態之紅燈
25
                   G<=G0;
                 elsif P='1' then R<='1';
                                                                                G0:上一階段車向狀態之綠燈
27
                        IF CLK'event AND CLK='1' THEN
29
       R:行人狀態的紅燈
                        QN <= QN-1;
end if;
if QN="0001" then
30
31
                                                                                G:車向狀態的綠燈
32
                               n1<='1':
33
                        END IF;
         END IF:
35
                 N < = n1;
          end a;
```

圖 8 第二階段 VHDL 程式碼

當按下 p=1 時開始這個階段,否則繼續跑上一階段

下數計數器跑過一輪後,輸出 N=1 給下一階段,為了終止 clock 繼續跑影響之後的 狀態,解決辦法是將 N 取 not 和 clock 取 and

第三階段:默數完 15 秒後,行人號誌的狀態會從紅燈變成閃綠燈;車向紅綠燈的狀態會從原先的綠燈轉成亮黃燈 1 秒,再變成紅燈。除此之外,七段顯示器也會從 15 秒開始倒數,直到歸零。

```
library ieee;
      use ieee.std_logic_1164.all;
      use ieee.std logic UNSIGNED.all;
 3
 4
    entity final is
   port(clk,flag,cgin,prin,sw: in std_logic;
          cy,cr,pg,cg,pr,finish: out std_logic;
8
          seven:OUT STD_LOGIC_VECTOR(6 downto 0);
9
          Z:OUT STD LOGIC);
     end final;
10
11
12
   architecture a of final is
     signal qn:std logic vector(3 downto 0);
14
     SIGNAL cred, cyel, pgre, sign, cg1, pr1 :STD_LOGIC;
      SIGNAL op :STD_LOGIC_VECTOR(6 downto 0);
15
16
    ■ begin
17
          process(clk,cyel,cred,pgre,flag,sign)
18
          begin
19
         if(flag='1') then
20
21
              cg1<='0';
              pr1<='0';
22
              if clk'event AND clk='1' then
23
24
                  gn <= gn-1;
25
              end if;
              if (qn="0000") then
26
                  cyel <= '1';
27
                  cred <= '0';
28
                  pgre <= '0';
29
30
    else
31
                  cyel <= '0';
32
                  cred <= '1';
33
                  if(clk='1') then
34
    pgre <= '1';
35
                  elsif(clk='0') then
36 ■
37
                      pgre<='0';
```

```
pgre<='0';
38
                     end if;
                end if;
                Z<=SW;
40
                IF SW='1'THEN
41
42
                         case QN is
                              when "0000"=> op<="11111110";--0 bit
44
                              when "0001"=> op<="0110000"; --1
                              when "0010"=> op<="1101101" ;--2
45
46
                              when "0011"=> op<= "1111001";--3
                              when "0100"=> op<= "0110011";--4
47
48
                              when "0101"=> op<="1011011";--5
                              when "0110"=> op<= "1011111";--6
when "0111"=> op<= "1110000";--7
49
50
                              when "1000"=> op<= "1111111";--8
51
                              when "1001"=> op<="1111011" ;--9
52
                              when "1010"=> op<= "11111110";--10
53
                              when "1011"=> op<="0110000";--11
54
                              when "1100"=> op<= "1101101";--12
55
                              when "1101"=> op<= "1111001";--13
56
                              when "1110"=> op<= "0110011";--14
57
                              when "1111"=> op<= "1011011";--15
58
59
                         end case;
                ELSIF SW='0' THEN
60
                     case QN is
61
                              when "0000"=> op<= "1111110";--0 ten
62
                              when "0001"=> op<="11111110";--1
63
                              when "0010"=> op<= "1111110" ;--2
64
                              when "0011"=> op<="11111110";--3
65
                              when "0100"=> op<="1111110";--4
66
                              when "0101"=> op<= "1111110";--5
67
                              when "0110"=> op<= "11111110";--6
68
                              when "1001"=> op<= "1111110" ;--9
                              when "1010"=> op<= "0110000";--10
72
                              when "1011"=> op<= "0110000";--11
73
                             when "1100"=> op<="0110000";--12
when "1101"=> op<= "0110000";--13
74
75
                             when "1110"=> op<= "0110000";--14
when "1111"=> op<= "0110000";--15
76
77
78
                     end case;
           END IF;
80
            else
                qn<="00000";
81
                op<="00000000";
82
                cye1<='0';
83
                cred<='0';
84
                pgre<='0';
85
86
                cg1<=cgin;
                pr1<=prin;
87
           end if;
90
91
           end process:
92
           cy<=cyel;
           cr<=cred;
93
94
           pg<=pgre;
95
           cg<=cg1;
96
           pr<=pr1;
97
           seven<=op;
98
      end a;
```

接收上一個狀態的結束 flag(當上一個狀態結束後flag=1),車子綠燈,和行人紅燈。

設一個 clock,當 flag=1 時將上個狀態的燈號歸零,並利用 clock 開始做下數記數,再用交換顯示的方法,顯示兩位數在七段顯示器上。同時,第一秒時輛車子黃燈,第二秒開始閃行人綠燈。

當 flag=0 時,維持 上一個狀態的燈號,並 將下數計數歸零,且不 顯示七段顯示器。

圖 第三階段 VHDL 程式碼

四、預測結果:

圖 6 預測結果示意表格