CSE141L Lab 2	Characterizing a	Perceptron

Instructions	
 Complete this worksheet while reading/working through the lab write up. The worksheet doesn't massense without the lab. 	ake
• The point values are listed for each question. Altering the size of the cells will cost you 1 point. There are 75 points total for the write up portion of the lab.	е
Enabling the Profiler	
P1 (1pt) Which function accounts for the most time?	
A:	
P2 (1pt) What percentage of time does it account for?	
A:	
P3 (1pt) According to Amdahl's Law, how much speedup could you possibly achieve by optimizing t function?	this
Your work here	

Taking a Closer Look at the Code

P3 (1pt) We noticed that fc_layer_t::activate(tensor_t const&) took 46.7% of the total execution time. If
we speed up this function by 3x, how much will the total program be sped up by?

Your work here		

What's the Compiler Doing?

A:	

Looking at Performance Counters

P1 (4pt) Compute the instruction mix for each of the dataset and enter them below (as %)

Dataset	Memory insts	Branches	uncond. branches
mnist			
emnist			
cifar10			
cifar100			
imagenet			

P2 (4pt) Fill out the table (total data processed is the product of the model size and the number of training inputs)

Dataset	Model size (B)	training_inputs_count	total data processed	Memory ops
mnist				
emnist				
cifar10				
cifar100				
imagenet				

	epare a bar graph and the number o	-	•	ta processed for each	•	uata
You	ır graph here					
Asking t	he Compiler	to Do M	ore			
-	ok at the demang op body of fc_lay	-			al number of instruction	ons in
A:		_				
below (as %	5)			·	zed code and enter the	em
Dataset	Memory insts	Branches	uncond. bra	anches ———		
mnist ———						
emnist				<u> </u>		
cifar10						
cifar100						
cifar100 imagenet						
imagenet P3 (4pt) Fill	out the table for mber of training in	nputs)	ed code (tota	I data processed is the	e product of the mode	l size
imagenet P3 (4pt) Fill and the nur	mber of training i	nputs)				l size
imagenet P3 (4pt) Fill and the nur Dataset	mber of training i	nputs)				l size
imagenet P3 (4pt) Fill and the nur Dataset mnist	mber of training i	nputs)				l size
imagenet P3 (4pt) Fill and the num Dataset mnist emnist	mber of training i	nputs)				l size

P4 (4pt) Prepare a bar graph from your table that plots the number of memory operation/byte of data

processed and the number of branc code.	hes per byte of data	a processed for each work	cload for the optimized
Your graph here			
For the following questions, compute across all the workloads.	the answers based o	n the total number of instru	uctions, cycles, etc.
P5 (1pt) Based on the data in optime change in IC?	nized-pe.csv, how m	uch speedup from '-O3' c	lo you expect due to
A:			
P6 (1pt) Based on the data in optime change in CPI?	nized-pe.csv, how m	uch speedup from '-O3' c	lo you expect due to
A:			
P7 (1pt) Based on the data in optime combination of IC and CPI?	nized-pe.csv, how m	uch speedup from '-O3' c	lo expect from the
A:			
P8 (4pt) Fill in the data below			
Assembly Code	Unoptimized	Optimized	
Instruction count			_
Cycle count			_
Cycle time			_
Projected execution time			-
Projected speedup vs unoptimized			_
Actual execution time			_ _

Actual speedup vs unoptimized

workloads?	ely did the PE accurately model the performance of this program on these
A:	
P10 (4pt) Based on proprimization.	rofile data with -O3 turned on, which functions should you target for
A:	
P11 (4pt) For the fund	ctions you listed, what's the largest speed up you could hope to achieve?
Your work h	ere

Measuring Actual Performance

For the following questions, compute the answers based on the total number of instructions, cycles, etc. across all the workloads.

P5 (1pt) How well does your O() match actual performance?	
A:	
Changing the Clock Rate and Measuring Power	
P1 (4pt) Draw a line graph with clock speed on the x-axis and execution time on the y-axis.	
Your Graph here	
P2 (4pt) Draw a line graph with clock speed on the x-axis and energy on the y-axis.	
Your Graph here	
P3 (4pt) Draw a line graph with clock speed on the x-axis and power on the y-axis.	
(4pt) Draw a line graph with clock speed on the x-axis and power on the y-axis.	
Your Graph here	