Advanced Parallel School 2022 Quantum Computing – Day 4 QC with Neutral Atoms and NISQ devices

Mengoni Riccardo, PhD

17 Feb 2022

Content

- Intro and Recap
- Pasqal Quantum Hardware: QC with Neutral Atoms
- Pulser: Control Software for Pasqal QC
- Quantum algorithms for NISQ Devices
- Application: QAOA & MIS problem

Intro and Recap

Hardware state of the art – qubit physical realization

Hardware state of the art – qubit physical realization

PASQAL

Hardware state of the art – qubit physical realization

- The project will last 4 years, during which it will be created the conditions to integrate quantum simulators with the European HPC network.
- The aim is to create an integrated ecosystem.
- PASQAL announced that it already has a quantum simulator prototype with 100 qubits (scalable up to 1000).

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

QAOA

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

QNN $\begin{array}{c} C & P & C \\ \hline U_1 & U_1 & U_2 & U_2$

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

Pasqal employs Rubidium Atoms for its Neutral Atoms Quantum Computer

Pasqal employs Rubidium Atoms in the construction of the QPU

State of a Qubit
$$\{|0
angle, |1
angle\}$$
 encoded in two electronic levels of the Rubidium Atom $\{|g
angle, |r
angle\}$

Since the **atoms** are **indistinguishable**, even the **qubits are strictly identical**. This is a **great advantage** for obtaining **low error levels** when calculating.

Pasqal employs Rubidium Atoms in the construction of the QPU

 $\{|g\rangle,|r\rangle\}$ are ground and «Rydberg» states characterized by:

- Long decay time: if excited to the state |r>, the atom tends to stay in that state and does not decays immediately in ground state |g>
- Strong interaction between atoms

Pasqal employs Rubidium Atoms in the construction of the QPU

The atomic vapor is introduced into an ultra-high vacuum system operating at room temperature

Rubidium atoms are trapped and held by laser beams, in particular:

- Optical Tweezers (purple beam) controlled by 2D acousto-optic laser deflector (AOD)
- Laser (red beam) reflected by spatial light modulator (SLM) which gives the correct phase

Every Tweezers traps a single atom

By moving the optical tweezers it is possible to arrange the topology of the Rubidium atoms and therefore of the qubits

Depending on the application, it is useful to vary the Topology which can be 1D, 2D or even 3D

Pasqal employs Rubidium Atoms in the construction of the QPU

How does quantum computation happen?

Local and global laser beams control the state of qubit registers and allow to:

Act on single qubit

e.g.
$$|g
angle
ightarrow |r
angle$$

Make qubit interact

e.g.
$$|gg
angle
ightarrow rac{1}{\sqrt{2}} \Big(|gr
angle + |rg
angle \Big)$$

Rydberg Blockade: principle used to create entangled states

Qubits that are **within range** of the Rydberg blockade **interact** with each other.

The interaction within this radius is strong enough to make the **state** |**rr**> **inaccessible**

The resulting state is an **entangled state**, the same as obtained after a Hadamard gate followed by a CNOT

Rydberg Blockade: principle used to create entangled states

Mathematically, lasers interact with qubits, modifying the Hamiltonian, which is a function that describes the energy of the entire qubit system

$$\left(H = \sum_{i} \frac{\hbar}{2} \left(\Omega(t) \sigma_{i}^{x} - \delta(t) \sigma_{i}^{z} \right) + \sum_{i < j} U_{ij} \hat{n}_{i} \hat{n}_{j} \right)$$

 $\hat{n}_j = (\mathbb{I} + \sigma_j^z)/2$

Rabi Frequency

Detuning

 $r_{ij} = rac{C_6}{r_{ij}^6}$ Modulates interaction between qubits

They vary by changing the **intensity** and **frequency** of the laser

Vary with **Topology**

At the end of the computation, the qubit register is measured by observing the final fluorescence image (green beam).

The measurement process is performed in such a way that each atom in the qubit state | 0
appears bright, while the atoms in the qubit state | 1
remain dark.

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

Quantum

register

Electronics

Detection system

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

Lower level programming

(b) Analog processing

Quantum computing is carried out by directly manipulating the mathematical operator (Hamiltonian) that describes the evolution of the quantum system

$$H = \sum_{i} \frac{\hbar}{2} \left(\Omega(t) \sigma_i^x - \delta(t) \sigma_i^z \right) + \sum_{i < j} U_{ij} \hat{n}_i \hat{n}_j$$

Possible by varying:

- Intensity and frequency of lasers
 - Qubit register topology

Lower level programming

(b) Analog processing

Higher level programming

(a) Digital processing

Python software library for programming Pasqal devices at the laser pulse level.

It allows to design pulse sequences that represent the physical parameters relevant to the computation.

The sequences can be read and executed by the QPU or by an emulator

In Pulser, local and global pulse sequences can be defined

Practice Session

Practice Session

https://github.com/pasqal-io/Pulser

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

NISQ Algorithms
(Noisy Intermidiate Scale Quantum)

Quantum Algorithms: Shor's algorithm (1994)

Exampe: Facorization

Given N, find $p \times q = N$

Hard for classical computer

Finding solution requires exponential time

Quantum Algorithms: Shor's algorithm (1994)

Efficiently solve Factorization

Exponential Speedup

Quantum Algorithms: Shor's algorithm (1994)

^{*} Assuming we have a fault-tolerant quantum computer capable of executing Shor's algorithm by applying gates at the speed of current quantum computers based on superconducting circuits

Quantum Algorithms: Grover search algorithm (1996)

Run-time brute-force algorithm: d^N

Run-time Grover search:

$$\sqrt{d^N}$$

Quantum Algorithms: Grover search algorithm (1996)

Original application: Database Search

NP

Solution can be verified efficiently

P Efficient solution

NP

Solution can be verified efficiently

Efficient solution

NPcomplete

NP

Solution can be verified efficiently

Efficient solution

Factorization: Shor's algorithm

NP-complete **Search Problems: Grover search Factorization:** NP Shor's algorithm Solution can be verified efficiently **BQP Efficient Efficiently** solution solved by a QC

Use a quantum system (the quantum computer)

to

simulate a quantum system (nature)

~10⁸⁶ bits to exactly decribe such molecule on a classical computer

286 quantum bits with an ideal QC

Quantum Simulation (exponential speedup)

It is believed that for any physically realistic Hamiltonian H on n degrees of freedom, the corresponding time evolution operator can be implemented using poly(n,t) gates. This problem is not solvable in general on a classical computer in polynomial time.

Ammonia NH₃

Used for fertilizers:

- Produced at High preassure and high temperatures
- Every year, 2% of the panet energy goes into the productuon of **NH3**

Ammonia NH₃

- Efficient Production
- Save energy and money

Used for fertilizers:

- Produced at High preassure and high temperatures
- Every year, 2% of the panet energy goes into the productuon of **NH3**

Simulate NH3 with a Quantum Computer could give us information about chemical properties and reactions

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Chemistry

Quantum Simualtion

Exponential Speedup

Before NISQ – Old School Quantum Algorithms

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Chemistry

Quantum Simualtion Exponential Speedup

These algorithms assume to have ideal qubits that are not subjected to noise and errors

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Chemistry

Quantum Simualtion Exponential Speedup

These algorithms assume to have ideal qubits that are not subjected to noise and errors

Common sources of errors in QC

- which are incorrectly applied
- Decoherence: errors due to the interaction with the environment
- Initialization errors: failing to prepare the correct initial state
 - Qubit loss

Old School Quantum Algorithms: Error correction

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Chemistry

Quantum Simualtion
Exponential Speedup

- Require error corrected quantum computers with about 1 million or 100 thousands of qubits
- Error correction comes with an overhead in the number of physical qubits
- Will be availabe in 10-20 years

How can we use the small and imperfect Quantum Devices (NISQ) we have today?

We entered the NISQ era

NISQ = Noisy Intermediate-Scale Quantum

1. General Purpose QC

2. Quantum Annealers

We entered the NISQ era

NISQ = Noisy Intermediate-Scale Quantum

Intermediate-Scale

General Purpose QC

50 up to hundreds of qubits

IBM: 127 Qubits

Google: 53 Qubits

Quantum Annealers

Thousands of qubits

D-Wave Advantage: 5000Q

We entered the NISQ era

NISQ = Noisy Intermediate-Scale Quantum

Noisy - noise due to interaction with environment

General Purpose QC

- No Quantum Error Correction: overhead in number of qubit
- Error rate per single gate affects the depth of the circuit: error rate of 0.1% means that we can run circuits with at most 1000 elementary gates (shallow circuits)

Quantum Annealers

- No need for Quantum Error Correction
- Still unclear: noise due to qubit quality could affect scalability (i.e. performance related to large problems)

NISQ-ready algorithms for general purpose QPU

Hybrid Quantum-Classical algorithms

NISQ-ready algorithms for general purpose QPU

Hybrid Quantum-Classical algorithms

NISQ-ready algorithms for general purpose QPU

Parametric Quantum Circuits

- Circuits that use gates, or in general, that apply parameter-dependent operations to qubits
 (e.g. Arbitrary rotations of angle γ)
- Circuits in which the **error is not corrected**
- Shallow circuits, i.e. of limited
 depth (1000 gates maximum, due
 to limited coherence times)

NISQ-ready algorithms for general purpose QPU Working principle

NISQ-ready algorithms for general purpose QPU

Working principle

1. Choose the parametric circuit you want to use (Variational Ansatz)

2. Implement Variational Ansatz on the QPU

NISQ-ready algorithms for general purpose QPU

Working principle

- 1. Choose the parametric circuit you want to use (Variational Ansatz)
 - 2. Implement Variational Ansatz on the QPU
 - 3. Measure the qubits and calculate the cost function

$$\mathsf{E}_{\vec{\theta}} = < \Psi(\vec{\theta}) | \mathbf{H} | \Psi(\vec{\theta}) >$$

 $|\Psi(\vec{\theta})>$

NISQ-ready algorithms for general purpose QPU

Working principle

- 1. Choose the parametric circuit you want to use (Variational Ansatz)
 - 2. Implement Variational Ansatz on the QPU
 - 3. Measure the qubits and calculate the cost function
- 4. Use a classic computer to optimize the circuit parameters

The optimization of the set of parameters could be gradient-based or gradient-free (BFGS, COBYLA, L-B, SPSA, Bayesian Opt.)
Depending on the type of cost function being evaluated

NISQ-ready algorithms for general purpose QPU

NISQ-ready algorithms for general purpose QPU

Working principle

- 1. Choose the parametric circuit you want to use (Variational Ansatz)
 - 2. Implement Variational Ansatz on the QPU
 - 3. Measure the qubits and calculate the cost function
- 4. Use a classic computer to optimize the circuit parameters

This cycle is repeated until convergence. The final state gives us an approximation of the solution

Heuristic Algorithm

NISQ-ready algorithms for general purpose QPU

NISQ-ready algorithms for general purpose QPU

The scientific community believes that NISQ technology could outperform traditional classical computers for specific applications

- Speed up
- Better quality solutions
- Lower energy consumption

- Quantum Chemistry
- Quantum Optimization
- Quantum Al/Machine Learning

NISQ-ready algorithms for general purpose QPU

Quantum Supremacy: demonstrating that a programmable quantum device can solve a problem that no classical computer can solve in any feasible amount of time.

In 2019, researchers at the Google Quantum AI Lab compared the performance of quantum computers to classical supercomputers, using their **Sycamore quantum computer** with **53 qubits.**

NISQ-ready algorithms for general purpose QPU

Quantum Supremacy: with just 53 qubits, their Sycamore quantum computer was able to run a specific algorithm, called the Random Quantum Circuit (RQC), in 200 seconds. Much less than the 2.5 days estimated to perform the same calculation with most powerful supercomputer.

VS

NISQ-ready algorithms for general purpose QPU

NASA and Google researchers, used a program called qFlex, believed to be the most efficient classic emulator quantum system to implement the RQC algorithm on one of the most powerful supercomputers in the world, Summit.

The qFlex implementation required 21 MWh on Summit, while the problem solved by Sycamore device used only 0.42 kWh.

NISQ-ready algorithms for general purpose QPU

The scientific community believes that NISQ technology could outperform traditional classical computers for specific applications

- Speed up
- Better quality solutions
- Lower energy consumption

- Quantum Chemistry
- Quantum Optimization
- Quantum Al/Machine Learning

NISQ-ready algorithms for general purpose QPU

Random Quantum Circuit (RQC) does not solve any useful (real-world) problem.

Its purpose is exactly to prove Quantum supremacy

Real World Problems?

NISQ-ready algorithms for general purpose QPU

Quantum Chemistry

Optimization

NISQ-ready algorithms for general purpose QPU

VQE

Quantum Chemistry

QAOA

Quantum Optimization

QNN

Quantum Machine Learning

The main difference
between VQE, QAOA and
QNN concerns the choice
of the parametric
quantum circuit
(Variational Ansatz)

NISQ-ready algorithms for general purpose QPU

Variational Quantum Eigensolver (VQE) – QUANTUM CHEMISTRY

NISQ-ready algorithms for general purpose QPU

Variational Quantum Eigensolver (VQE) – QUANTUM CHEMISTRY

Objective: to calculate the ground state of molecules (we want to go beyond the approximation of the mean field, which is classically very expensive in terms of resources)

Method: the VQE uses chemical-inspiredAnsatz, such as the Unitary Coupled Cluster(UCC) method or a "hardware-efficient" ansatz

NISQ-ready algorithms for general purpose QPU

Variational Quantum Eigensolver (VQE) – QUANTUM CHEMISTRY

- Ansatz is a provisional molecular ground state
- The classic optimizer evaluates the suitability of candidate solution based on its energy.

This holds the promise to study large molecules with unprecedented accuracy

NISQ-ready algorithms for general purpose QPU

Quantum Approximate Optimization Algorithm (QAOA) – QUANTUM OPTIMIZATION

Optimization Problems

Routing

Scheduling

Portfolio Optimization

NISQ-ready algorithms for general purpose QPU

Quantum Approximate Optimization Algorithm (QAOA) – QUANTUM OPTIMIZATION

Objective: to solve a combinatorial optimization problem

Method: Ansatz encodes two alternating circuits, U(C) and U(B), each parameterized by a number, γ and β.

Ideally, the circuit provides the solution |γ,β> to a combinatorial problem implicit in the definition of U(C).

$$|\boldsymbol{\gamma},\boldsymbol{\beta}\rangle = U(B,\beta_p) U(C,\gamma_p) \cdots U(B,\beta_1) U(C,\gamma_1) |s\rangle$$

NISQ-ready algorithms for general purpose QPU

Quantum Approximate Optimization Algorithm (QAOA) – QUANTUM OPTIMIZATION

It is a heuristic optimization algorithm

$$U(C,\gamma) = e^{-i\gamma C} = \prod_{\alpha=1}^{m} e^{-i\gamma C_{\alpha}}$$
$$U(B,\beta) = e^{-i\beta B} = \prod_{j=1}^{n} e^{-i\beta\sigma_{j}^{x}}$$

NISQ-ready algorithms for general purpose QPU

Quantum Approximate Optimization Algorithm (QAOA) – QUANTUM OPTIMIZATION

$$U(C,\gamma) = e^{-i\gamma C} = \prod_{\alpha=1}^{m} e^{-i\gamma C_{\alpha}}$$

Encodes the optimization problem to solve (e.g. C could be some Qubo problem)

$$U(B,\beta) = e^{-i\beta B} = \prod_{j=1}^{n} e^{-i\beta\sigma_{j}^{x}}$$

Allow the exploration of the solution space

NISQ-ready algorithms for general purpose QPU

Quantum Approximate Optimization Algorithm (QAOA) – QUANTUM OPTIMIZATION

<u>Challenge</u>: find a class of problems for which QAOA is strictly better than the best classical algorithms.

NISQ-ready algorithms for general purpose QPU

Quantum Neural Networks (QNN) – QUANTUM MACHINE LEARNING

Supervised learning: the algorithm is asked to **reproduce the relations** between some inputs and outputs.

If properly trained, the NN is able to classify new data, i.e. data that was not used during training

NISQ-ready algorithms for general purpose QPU

Quantum Neural Networks (QNN) – QUANTUM MACHINE LEARNING

NISQ-ready algorithms for general purpose QPU

Quantum Neural Networks (QNN) – QUANTUM MACHINE LEARNING

Goal: Address a supervised machine learning problem

Method: Ansatz consists of a feature map that serves to represent classical data and a variational part for learning

 $x \xrightarrow{\text{JDdNI}} |0\rangle \longrightarrow \mathcal{U}_{x} |0\rangle \otimes S = |\psi_{x}\rangle \qquad \mathcal{G}_{\theta} |\psi_{x}\rangle = |g_{\theta}(x)\rangle \qquad \mathcal{J}_{z_{2}} \xrightarrow{\text{JDdIDO}} y$ $\text{feature map} \qquad \text{variational model} \qquad \text{measurement}$ $\mathcal{U}_{x} \qquad \mathcal{G}_{\theta} \qquad f(z) = y$

The circuit learns to classify new inputs based on the examples seen in the training phase

NISQ-ready algorithms for general purpose QPU

Quantum Neural Networks (QNN) – QUANTUM MACHINE LEARNING

We can also have several Ansatz for QNNs

Standard QNN

Convolutional QNN

Dissipative QNN

https://arxiv.org/abs/2102.03879

NISQ-ready algorithms for general purpose QPU

Main Challenges

- Trainability / optimization of parameters: best optimization scheme or technique
 - Barren plateaus: Vanishing gradients that make it hard to optimize
 - Ansatz and initialization strategies: structure of the parametric circuit
- Efficiency: precision required in the output per the amount of resources consumed
- Accuracy: the degree to which output conforms to the correct value or a standard.
- Hardware noise / Error mitigation: optimal techniques to reduce errors without an overhead in resources

NISQ-ready algorithms

QUANTUM ADVANTAGE IN THE NISQ ERA?

Quantum Computing @ CINECA

CINECA: Italian HPC center

CINECA Quantum Computing Lab:

- Research with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

