Capital Gains and Wealth Taxation

Distributional Effects, Who Gains and Who Loses

Javier Ramos Perez

University Carlos III of Madrid

May 31, 2021

Overview

- 1. Introduction
- 2. Literature Review
- 3. Model
- 4. Calibration
- 5. Baseline Results (τ_r)
- 6. Shift to Wealth Taxation (τ_a)
- 7. Goverment's Role
- 8. Conclusion

Introduction

Who gains, and Who loses switching from capital gains to wealth taxation?

Some Motivation

- Governments tax all kind of goods
- Aim to redistribute revenues to increase everyone's welfare
- Efficient taxation
- Need of policy reforms
- ullet Evidence of persistent Heterogeneity in r_t in the cross section and life cycle.

Literature Review

- Original Idea comes from [Guvenen et al., 2019]
- OLG with entrepeneurial motivation
- Heterogeneity in (r_t)
- Balanced government budget

Combines many ingredients, so as it lais on other literature's

- Optimal Dynamic Taxation [Golosov et al., 2006]
- Wealth Concentration saving drivers [De Nardi et al., 2016]
- Entrepreneurship [Quadrini, 2000]

Prelude

Assume there are two possible returns r_t^s , and one agent is a systematically more successful investor than the other,

- Capital gains tax τ_r charges (relatively) more to the productive person.
- Wealth taxation τ_a shifts burden from **productive flows** (a'), to Unproductive stocks (a)

Similarity:

- Don't tax young Start-Ups CEO's flows,
- Tax the stock of Bill Gates, who once was extremely productive
- Life-Cycle considerations: shifting the burden from productive to unproductive *a* might be interpreted as smoothing taxation over Firms's Life-Cycle.

The Model: Agents' Problem

- Discrete Time Life Cycle Economy with incomplete markets populated by two agents
- Uncertainty on r_t , that follows a discrete Markov Process with transition probabilities $\Gamma^{(i)}$
- Households solve

$$\max_{\{c,a'\}_{t=0}^T} \mathbb{E}_0 \Big\{ \sum_{t=0}^I \beta^t u(c) \Big\}$$

• Subject to flow constraint, borrowing limit and transversality condition

$$a' = (1+r)(a+y-c)$$
 (1)

$$\mathsf{a}' > -\mathsf{a} \tag{2}$$

$$a'_{T+1} = 0 \tag{3}$$

• For now, forget about uncertainty notation, taxes and agents subscripts (i)

Model: Income Profile

• y is a Life cycle income profile that generates a roughly 90% increase from t=0 to the peak at t=35. After retirement, there is a constant pension benefit (b) equal to 50% of the last wage earned

Figure: Life Cycle Income profile. Same for both agents, no uncertainty.

Model: Recursive Formulation

- Dynamic Programming Approach,
- Bellman Equation $(V_t(\cdot))$ in terms of a' (the state)

$$V(a,r) = \max_{a' \in [\underline{a},(y+a)(1+r)]} \left\{ u\left(a+y-\frac{a'}{1+r}\right) + \beta \mathbb{E}\left[V(a',r')\big|r\right] \right\}$$

- Solved using Backward Iteration (Matlab code from class)
- From the transversality condition $a'_{71} = 0$ to t = 0
- Recall r is a Markov Chain

Model: Taxation I

- One Euler Eq for each tax schedule,
- EE for Capital Gains tax τ_r (baseline)

$$u'\Big(y+a-\frac{a'}{1+r(1-\tau_r)}\Big)=\beta(1+r(1-\tau_r))\mathbb{E}_t\Big[u'\Big(y'+a'-\frac{a''}{1+r'(1-\tau_r)}\Big)\Big]$$

• EE for Wealth tax τ_a

$$u'\Big(y+a(1-\tau_{\mathsf{a}})-\frac{\mathsf{a}'}{1+r}\Big)=\beta(1+r)\mathbb{E}_t\Big[u'\Big(y'+\mathsf{a}'(1-\tau_{\mathsf{a}})-\frac{\mathsf{a}''}{1+r'}\Big)\Big]$$

Model: Taxation II

- In absence of transfers taxation reduces welfare (unsurprisingly)
- Tax effects on the flow constraints (simplest case)

$$au_r$$
: $a' = (1 + r(1 - au_r))(a + y - c)$
 au_a : $a' = (1 + r)(a(1 - au_a) + y - c)$

Partial effects of taxation today with respect wealth saved for tomorrow?

$$au_r : rac{\partial a'}{\partial au_r} = -r(a+y-c)$$
 $au_a : rac{\partial a'}{\partial au_a} = -a(1+r)$

• Who is (relatively) more affected each case? The one who saves, and the one who owns. Up to what extent?

Calibration I

- Two targets
 - 1. Significant fraction of people with zero wealth (life cycle perspective)
 - 2. Certain degree of right skewness on the cross section distribution of a
- Parameters from the literature or class γ , \underline{a} , T, β , ϕ_1 , ϕ_2 ...
- Model calibrated $r_t^i(s)$, and transition probabilities,

$$r^{(1)} = \begin{pmatrix} 0.15 & 0.05 \end{pmatrix}$$
 $r^{(2)} = \begin{pmatrix} 0.1 & 0.01 \end{pmatrix}$ (4)

Whose transition probabilities are

$$\Gamma^{(1)} = \begin{pmatrix} 0.8 & 0.2 \\ 0.5 & 0.5 \end{pmatrix} \qquad \qquad \Gamma^{(2)} = \begin{pmatrix} 0.3 & 0.7 \\ 0.2 & 0.8 \end{pmatrix}$$
 (5)

Calibration II

• CES utility function $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$

Table: Baseline Calibration

$\beta = 0.98$	T = 70
$\gamma=2$	Retirement Age = 45
$ au_r = 25$	Retirement Benefit $=50\%$ last wage
<u>a</u> = 0	

Baseline Results (τ_r)

- Life Cycle (joint) wealth distribution. How does it extrapolate to the cross section?
- Asset Holdings by age and wealth profile.

Baseline Results (τ_r)

- Wealth Distribution for each agent
- Share of agents by asset level. For any asset, what is the probability of finding a productive guy?
- Idea: use the pdf $f_i(a) = \int_{\underline{a}}^{\bar{a}} F_i(a) da$, and compute $share_i(a) = \frac{f_i(a)}{\sum_{j \in I} f_j(a)}$

Baseline Results (τ_r)

- Non-Stationary moments for the productive agent
- Constant increase in mean for unproductive until t=10 and borrowing limit <u>a</u>

Wealth Taxation (τ_a)

- Replace $\tau_r = 25\%$ with $\tau_a = 1.5\%$, similar revenue according to [Guvenen et al., 2019]
- Now pays who has
- Expect the burden to shift from unproductive stock o wealth to productive flow of wealth
- Return of investments fully deductibles from taxation
- Unchanged transfers transfers G
- No Tax Enforcement problems

Wealth Taxation (τ_a)

- Unproductive Agent worse off
- Productive Agent better off

Wealth Taxation (au_{a})

- Higher prob at zero assets
- Unproductive slightly worse off
- Productive significantly better off

Government's Role

- Neglected government's actions up to here
- ullet Same transfers with changing revenue o improvable taxation
- Transfers may help everyone to be better off

Goverment's Role

• Poor periods are easy to mitigate

Discussion

- Many r_t 's...
- Cross Sectional differences: the wealthy do not necessarily coincide with the productive
- General Eq with optimal taxation
- Savings increases production via capital, not just precautionary saving

Conclusions

- Capital Gains tax hurts savers
- Adverse effect on wealth accumulation (capital creation)
- Wealth taxation burdens the unproductive person
- Effective Redistribution may make everyone better off

HOPE YOU HAVE ENJOYED

References

- De Nardi, M., French, E., and Jones, J. B. (2016). Savings after retirement: A survey.

 Annual Review of Economics, 8:177–204.
- Golosov, M., Tsyvinski, A., Werning, I., Diamond, P., and Judd, K. L. (2006). New dynamic public finance: A user's guide [with comments and discussion]. *NBER macroeconomics annual*, 21:317–387.
- Guvenen, F., Kambourov, G., Kuruscu, B., Ocampo-Diaz, S., and Chen, D. (2019). Use it or lose it: Efficiency gains from wealth taxation.

 Technical report, National Bureau of Economic Research.
- Quadrini, V. (2000). Entrepreneurship, saving, and social mobility. Review of economic dynamics, 3(1):1–40.