

Konzepte der Informatik

Algorithmik Dynamische Programmierung

Barbara Pampel

Universität Konstanz, WiSe 2023/2024

Beispiel

2/9

Optimierungsprobleme

- es gibt zu jeder Eingabe verschiedene zulässige Lösungen
- diese Lösungen haben Werte
- gesucht ist eine möglichst gute Lösung d.h. mit möglichst großem bzw. kleinem Wert

Abgrenzung

Greedy

- sukzessives Erweitern von Teillösungen
- lokal optimale Wahl
- aber, nur korrekt, wenn lokal optimale Wahl auch zu global optimalen Lösung fürt

Abgrenzung

Greedy

4/9

- sukzessives Erweitern von Teillösungen
- lokal optimale Wahl
- aber, nur korrekt, wenn lokal optimale Wahl auch zu global optimalen Lösung fürt

Divide and Conquer

- Eingabe wird in entkoppelte Teillösungen zerlegt
- getrennt gelöst
- ggf. dann wieder zusammengesetzt

Abgrenzung

Greedy

- sukzessives Erweitern von Teillösungen
- lokal optimale Wahl
- aber, nur korrekt, wenn lokal optimale Wahl auch zu global optimalen Lösung fürt

Divide and Conquer

- Eingabe wird in entkoppelte Teillösungen zerlegt
- getrennt gelöst
- ggf. dann wieder zusammengesetzt

Rekursive Aufrufe

Berechnung erfolgt bei Durchführung einer Methode

Dynamische Programmierung - Idee

- Rekursionsformel, aber Speichern und Wiederverwendung von Teillösungen
- schrittweise die überlappenden Teillösungen zur Gesamtlösung zusammensetzen
- aber, globale Werte im Auge behalten ⇒ Teilllösungen speichern
- typisch ist suksessives Füllen einer Matrix

Zur Verfügung stehen Steine der Längen $l_1 \dots l_n$. Ziel ist es, eine Mauer der geforderten Länge l_1 mit möglichst wenig Steinen zu bauen.

- Greedy nicht immer möglich
- Durchtesten aller möglichen Kombinationen sehr aufwändig
- Dynamische Programmierung: Füllen der Tabelle

Anzahle / Länge	<0	0	1	2	3	4	5	6	 l
Anzahl Steine l ₁	∞	0							
Anzahl Steine l ₂	∞	0							
Anzahl Steine l ₃	∞	0							
Anzahl Steine l_n	∞	0							
Anzahl gesamt	∞	0							

Das Lego-Mauern-Problem

Rekursionsformel

$$L[i] := egin{cases} 1 + min_{j=1...n}(L[i-l_j]) & ext{if } i > 0 \ 0 & ext{if } i = 0 \ \infty & ext{else} \end{cases}$$

Beispiel

Anzahlen / Länge	< 0	0	1	2	3	4	5	6
# Steine 1	∞	0	1	2	0	0	1	0
# Steine 3	∞	0	0	0	1	0	0	2
# Steine 4	∞	0	0	0	0	1	1	0
# gesamt	∞	0	1	2	1	1	2	2

Beispiel 2

lange Mauern mit begrenzten Kosten

- Steine haben Werte: s_i hat Länge l_i und Kosten k_i .
- Problemstellung: Baue eine möglist lange Mauer,
 welche eine gesetzte Kostengrenze k nicht überschreitet

Beispiel 2

lange Mauern mit begrenzten Kosten

- Steine haben Werte: s_i hat Länge l_i und Kosten k_i .
- Problemstellung: Baue eine möglist lange Mauer,
 welche eine gesetzte Kostengrenze k nicht überschreitet

Stein / Kosten	0	1	2	3	4	5	6	 k
s_1								
<i>s</i> ₂								
<i>S</i> ₃								
•								
•								
•								
s_n								
keiner	0	0	0	0	0	0	0	 0

Das Rucksackproblem - Knapsack

- Rekursionsformel: $R[i, j] := max(\underbrace{v(i) + R[i+1, j-w(i)]}_{\text{Element } i \text{ wird verwendet}}, \underbrace{R[i+1, j]}_{i \text{ wird nicht verwendet}})$

Das Rucksackproblem - Knapsack

```
- Rekursionsformel: R[i, j] := max(\underbrace{v(i) + R[i+1, j-w(i)]}_{\text{Element } i \text{ wird verwendet}}, \underbrace{R[i+1, j]}_{i \text{ wird nicht verwendet}})
```

```
Algorithm 2: Knapsack-Algorithmus
```

Input: Grenze k, Gewichte-Array w[] und Nutzwert-Array v[]

Data: Matrix $R := [1 \dots (n+1), 0 \dots k]$ mit Einträgen 0

begin