

Description

The μ PD7507 and μ PD7508 4-bit, single-chip CMOS microcomputers have the μ PD7500 series architecture. The subroutine stack is implemented in RAM for greater nesting depth and flexibility.

Thirty-two I/O lines are organized into eight 4-bit ports: input port/serial interface port 0, output ports 2 and 3, and I/O ports 1, 4, 5, 6, and 7.

The μ PD7507 and μ PD7508 execute 92 instructions of the μ PD7500 series A instruction set with a 5- μ s instruction cycle time.

Maximum power consumption is 900 μ A at 5 V, less in the HALT and STOP low-power modes.

The μ PD75CG08E is a piggyback EPROM prototyping chip that is pin-compatible with μ PD7507 and μ PD7508. A 2716 inserted into the top of the μ PD75CG08E emulates the μ PD7507's ROM. A 2732 emulates the μ PD7508's ROM. When emulating the μ PD7507, the user must take care to use only the first 128 RAM locations. Although the μ PD7507 and μ PD7508 can operate over a range of 2.5 to 6.0 V, μ PD75CG08E operation is limited to 5 V \pm 10%.

Table 1 summarizes the differences among μPD7507, μPD7508 and μPD75CG08E.

Table 1. Features Comparison

	μPD75C 608 E	μPD7507/75 0 8
Program memory	2K x 8 EPROM (2716) 4K x 8 EPROM (2732)	2K x 8 masked ROM (7507) 4K x 8 masked ROM (7508)
Data memory	224 x 4	128 x 4 (7507) 224 x 4 (7508)
Data retention mode	No	Yes
Power supply	5 V ±10%	2.7 to 6.0 V
Package types	40-pin ceramic piggyback DIP	40-pin plastic DIP 40-pin plastic shrink DIP 52-pin plastic QFP

Features

- ☐ Single chip microcomputer
- □ Program ROM
 - μPD7507: 2048 x 8-bit
 μPD7508: 4096 x 8-bit
 - μPD75CG08: piggyback EPROM
- □ Data RAM
 - μPD7507: 128 x 4-bit
 - $-\mu$ PD7508: 224 x 4-bit
 - μPD75CG08: 224 x 4-bit
- ☐ 8-bit timer/event counter
- ☐ Four 4-bit general purpose registers
- ☐ Four vectored, prioritized interrupts
- □ Executes 92 instructions of µPD7500 series A
 - instruction set
- □ 5 µs instruction cycle/400 kHz external clock
- □ Two standby modes
- ☐ 32 I/O lines
- ☐ Low-power HALT and STOP modes

Ordering Information

*Part Number	Package Type	Max Frequenc of Operation	
µPD7507C	40-pin plastic DIP	410 kHz	
μPD7507CU /	40-pin plastic shrink DIP	410 kHz	
μPD7507GC-00	52-pin plastic QFP	410 kHz	
μPD7508C	40-pin plastic DIP	410 kHz	
μPD7508CU -	40-pin plastic shrink DIP	410 kHz	
μPD7508GC-00	52-pin plastic QFP	410 kHz	
µPD75CG08E ✓	40-pin ceramic piggyback DIP	410 kHz	

A 3-digit mask identification code is added to the part number by NEC at the time of code verification.

Pin Configurations

40-Pin Plastic DIP and Plastic Shrink DIP

40-Pin Ceramic Piggyback DIP

52-Pin Plastic QFP

Pin Identification

40-Pin DIP, Shrink DIP and Piggyback DIP

No.	Symbol	Function
1, 40	X2, X1	Crystal clock/external event input port
2-5	P2 ₀ /PSTB, P2 ₁ /PT0UT, P2 ₂ , P2 ₃	Output port 2/output strobe pulse, timer out F/F signal
6-9	P1 ₀ -P1 ₃	I/0 port 1
10-13	P3 ₀ -P3 ₃	Output port 3
14-17	P7 ₀ -P7 ₃	I/0 port 7
18	RESET	RESET input
19, 21	CL1, CL2	System clock inputs
20	V _{DD}	Positive power supply
22	INT1	External interrupt
23-26	P0 ₀ /(NT0, P0 ₁ /SCK, P0 ₂ /S0, P0 ₃ /SI	Input port 0/external interrupt, serial I/0 interface
27-30	P6 ₀ -P6 ₃	I/0 port 6
31-34	P5 ₀ -P5 ₃	!/0 port 5
35-38	P4 ₃ -P4 ₀	1/0 port 4
39	V _{SS}	Ground

Pin Identification (cont)

28-Pin EPROM Socket on Piggyback DIP

No.	Symbol	Function		
1, 2	NC	Not connected		
3-10	A ₇ -A ₀	Address bits 7-0		
11-13	i ₀ -l ₂	Data bits 0-2		
14, 22	V _{SS}	Ground		
15-19	l ₃ -l ₇	Data bits 3-7		
20	CE	Chip enable		
21, 23	A ₁₀ -A ₁₁	Address bits 10, 11		
24, 25	A ₉ , A ₈	Address bits 9, 8		
26, 28	V _{DD}	Positive power supply		
27	MSEL	Memory select		

52-Pin OFP

No.	Symbol	Function	
1, 4, 6, 8, 13, 14, 27, 29, 35, 40, 45	NC	Not connected	
2, 50-52	P7 ₀ -P7 ₃	1/0 port 7	
3	RESET	RESET input	
5, 9	CL1, CL2	System clock inputs	
7	V _{DD}	Positive power supply	
10	INT1	External interrupt	
11, 12, 15, 16	P0 ₀ /INT0, P0 ₁ / SCK , P0 ₂ /S0, P0 ₃ /SI	Input port 0/external interrupt, serial 1/0 interface	
17-20	P6 ₀ -P6 ₃	I/O port 6	
21-24	P5 ₀ -P5 ₃	I/O port 5	
25, 26 28, 30	P4 ₃ -P4 ₀	1/0 port 4	
31	V _{SS}	Ground	
32, 34	X1, X2	Crystal clock/external event input	
33	V _{DD}	Positive power supply	
36-39	P2 ₀ /PSTB, P2 ₁ /PTOUT, P2 ₂ , P2 ₃	4-bit output port 2/outp strobe pulse, timer out F/F signal	
41-44	P1 ₀ -P1 ₃	1/0 port 1	
46-49	P3 ₀ -P3 ₃	Output port 3	

Pin Functions

P0₀/INT0, P0₁/SCK, P0₂/SO, P0₃/SI [Port 0/ External Interrupt, Serial Interface]

4-bit input port/serial I/O interface. This port can be configured as a 4-bit parallel input port or as the 8-bit serial I/O interface under control of the serial mode select register. The serial input SI, serial output SO (active low), and the serial clock \overline{SCK} (active low), used for synchronizing data transfer, make up the 8-bit serial I/O interface. Line P00 is always shared with external interrupt INTO, a rising edge-triggered interrupt. If P00/INTO is unused, it should be connected to V_{SS} . If P01/ \overline{SCK} , P02/SO, or P03/SI are unused, connect them to V_{SS} or V_{DD} .

P1₀-P1₃ [Port 1]

4-bit input/three-state output port. Data output to port 1 is strobed in synchronization with a P2₀/PSTB pulse. Connect unused pins to V_{SS} or V_{DD} .

P20/PSTB, P21/PTOUT, P22, P23 [Port 2]

4-bit latched three-state output port. Line $P2_0$ is shared with \overline{PSTB} , the port 1 output strobe pulse. Line $P2_1$ is shared with PTOUT, the timer out F/F signal. Leave unused pins open.

P30-P33 [Port 3]

4-bit latched three-state output port. Leave unused pins open.

P40-P43 [Port 4]

4-bit latched three-state output port. Can also perform 8-bit parallel I/O with port 5. In input mode, connect unused pins to V_{DD} or GND. In output mode, leave unused pins open.

P53-P50 [Port 5]

4-bit input/latched three-state output port. This port also performs 8-bit parallel I/O with port 4. In input mode, connect unused pins to V_{SS} or V_{DD} . In output mode, leave unused pins open.

P63-P60 [Port 6]

4-bit input/latched three-state output port. The port 6 mode select register configures individual lines as inputs or outputs. In input mode, connect unused pins to V_{SS} or V_{DD}. In output mode, leave unused pins open.

P70-P73 [Port 7]

4-bit input/latched three state output port. In input mode, connect unused pins to V_{SS} or V_{DD}. In output mode, leave unused pins open.

X2, X1 [Crystal Clock/External Event Input]

Connect a crystal oscillator circuit to input X1 and output X2 for crystal clock operation. Alternatively, connect external event pulses to input X1 and leave output X2 open for external event counting. If X1 is not used, connect it to ground. If X2 is not used, leave it open.

CL1, CL2 [System Clock Input]

Connect a 82 k\O resistor across CL1 and CL2, and connect a 33 pF capacitor from CL1 to VSS. Alternatively, connect an external clock source to CL1 and leave CL2 open.

RESET [Reset]

A high level input to this pin initializes the μ PD7507/08 after power up.

INT1 [Interrupt 1]

External rising edge-triggered interrupt. Connect to V_{SS} if unused.

VDD [Power Supply]

Positive power supply. Apply a single voltage in the range 2.7 to 6.0 V for proper operation.

Vss [Ground]

Ground.

Block Diagram

Memory Map

Figure 1 shows the ROM memory map of the μ PD7507/08.

Figure 1. ROM Map

Clock Control Circuit

The clock control circuit consists of a 4-bit clock mode register (bits CM_1 and CM_2), prescalers 1, 2, and 3, and a multiplexer. It takes the output of the system clock generator (CL) and count clock generator circuit (X). It also selects the clock source and divides the signal according to the setting in the clock mode register. It outputs the count pulse (CP) to the timer/event counter. Figure 2 shows the clock control circuit.

Table 2 lists the codes set in the clock mode register by the OP or OPL instruction to specify the count pulse frequency.

Table 2. Selecting the Count Pulse Frequency

CM ₂	CM ₁	CM ₀	Frequency Selected
0	0	0	CL/256
0	0	1	X/64
0	1	0	Х
0	1	1	Х
1	0	0	CL/32
1	0	1	X/8
1	1	0	Not used
1	1	1	Not used

CM3	TOUT Signal
0	Disabled
1	Enabled

Figure 2. Clock Control Circuit

Timer/Event Counter

The timer/event counter consists of an 8-bit counter, an 8-bit modulo register, an 8-bit comparator, and a timer out flip-flop as shown in figure 3.

The 8-bit count register is a binary 8-bit up-counter which is incremented each time a count pulse is input. The TIMER instruction, a RESET signal, or an INTT coincidence signal clears it to 00H.

The 8-bit modulo register determines the number of counts the count register holds. The TAMMOD instruction loads the contents of the modulo register. RESET sets the modulo register to FFH.

The 8-bit comparator compares the contents of the count register and the modulo register and outputs an INTT when they are equal.

Figure 3. Timer/Event Counter

Serial Interface

The 8-bit serial interface allows the μ PD7507/08 to communicate with peripheral devices such as the μ PD7001 A/D converter, the μ PD7227 dot matrix LCD controller/driver, and other microprocessors or microcomputers. Figure 4 shows the serial interface.

The serial interface consists of an 8-bit shift register, a 3-bit SCK pulse counter, the SI input port, the SO output port, the SCK serial clock I/O port, and a 4-bit serial mode select register (MSR). The MSR selects serial I/O or port 0 operation.

Figure 4. Serial Interface

Interrupts

The μ PD7507/08 has four vectored, prioritized interrupts. Two of these interrupts, INTT and INTS, are internally generated from the timer/event counter and serial interface, respectively. INTO and INT1 are externally generated. Table 3 is a summary of the four interrupts. Figure 5 is the block diagram.

Table 3. µPD7507/08 Interrupts

Source	Function	Location	Priority	ROM Vector Address
INTT	Coincidence in timer/event counter	Internal	1	10H
INTS	Transfer complete signal from serial interface	Internal	2	20H
INTO	INTO pin	External	2	20H
INT1	INT1 pin	External	3	30H

Figure 5. Interrupt Block Diagram

System Clock and Timing Circuitry

Timing for the μ PD7507/08 is internally generated except for a frequency reference, which can be an RC circuit or an external clock source. Connect the frequency reference to the on-chip oscillator for the feedback phase shift required for oscillation. Figure 6 shows the connection for an RC circuit. Figure 7 shows the connection for an external clock source.

The internal oscillator generates a frequency in the range 60 kHz to 300 kHz depending on the frequency reference. For example, at $V_{DD} = 5 \, \text{V}$, an 82-k Ω resistor and a 33-pF capacitor generate a frequency of 200 kHz. The oscillation frequency is fed to the clock control circuit. It is divided by two and the resulting signal is fed to the CPU and serial interface as shown in figure 8.

Table 4 shows the operating status of the various logic blocks under the three power down-modes.

Figure 6. RC Circuit Connection

Figure 7. External Clock Source Connection

Figure 8. System Clock Circuitry

μPD7507/08

Table 4. Power-Down Operating Status

	Power-Bown I	Aode	
Logic Block	HALT	STOP	Data Retention Mode
System clock	(Note 1)	Disabled	Disabled
X2	Normal	Normal	Disabled
CPU	Disabled	Disabled	Disabled
RAM	Data retained	Data retained	Data retained
Internal registers	Data retained	Data retained	Data retained
Timer/event counter	Normal	(Note 3)	Disabled
Serial interface	(Note 2)	(Note 2)	Disabled
INTO	Normal	Normal	Disabled
INT1	Normal	Disabled	Disabled
RESET	Normal	Normal	(Note 4)

Note:

- (1) Supplied to timer/event counter but not to CPU or serial interface.
- (2) Can function normally if the serial MSR is set to get the SCK signal externally or from the TOUT signal.
- (3) Can function normally if the clock MSR is set to use X1 as the source for the count pulse.
- (4) To enter the data retention mode, raise RESET while V_{DD} is lowered. To end the data retention mode, raise RESET when V_{DD} is raised, then lower it. INTT, INT0, INTS or RESET releases the STOP mode. RESET or any interrupt releases the HALT mode.

I/O Port Interfaces

Figure 9 shows the internal circuit configurations at the I/O ports.

Figure 9. Interface at Input/Output Ports

Absolute Maximum Ratings

T _A = 25°C	
Operating temperature, T _{OPT}	−10 to +70°C
Storage temperature, T _{STG}	-65 to +150°C
Power supply voltage, V _{DD}	-0.3 to +7.0 V
All input and output voltages	-0.3 to $V_{DD} + 0.3$ V
Output current high, l _{OH} One pin All pins, total	−17 mA −30 mA
Output current low, I _{OL} One pin Ports 1, 2, 3, 7 Ports 4, 5, 6	17 mA 25 mA 25 mA

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance $T_A = 25$ °C, $V_{DD} = 0$ V

		Limits			Test	
Parameter	Symbol	Тур	Max	Unit	Conditions	
Input capacitance	Cı		15	pF	f = 1 MHz;	
Output capacitance	CO		15	pF	unmeasured pins returned to V _{SS}	
I/O capacitance	C _{IO}		15	pF		

DC Characteristics 1

For $V_{DD} = 2.5$ to 3.3 V (7507, 7508 only) T_A = -10 to +70 °C

		Limits			Test	
Parameter	Symbol	Min	Тур	₩ax	Unit	Conditions
Input voltage, high	V _{IH1}	0.8 V _{DD}		V _{DD}	٧	Except CL1, X1
	V _{IH2}	V _{DD} - 0.3	_	V _{DD}	٧	CL1, X1
	V _{IHDR}	0.9 V _{DDDR}	-	$V_{DDDR} + 0.2$		RESET, data retention mode
Input voltage, low	V _{IL1}	0		0.2 V _{DD}	٧	Except CL1, X1
	V _{IL2}	0		0.3	٧	CL1, X1
Output voltage, high	V _{OH}	V _{DD} — 0.5		<u> </u>	٧	$I_{OH} = -80 \mu\text{A}$
Output voltage, low	V _{OL}			0.5	٧	$I_{OL} = 350 \mu\text{A}$
Input leakage current, high	I _{LIH1}		_	3	μΑ	Except CL1, X1; $V_1 = V_{DD}$
	V _{LIH2}	٠.		10	μΑ	CL1, X1
Input leakage current, low	I _{LIL1}			-3	μΑ	Except CL1, X1; V _i = 0 V
	V _{LIL2}	· -		-10	μΑ	CL1, X1
Output leakage current, high	ILOH			3	μΑ	$V_0 = V_{DD}$
Output leakage current, low	ILOL			-3	μΑ	$v_0 = 0 \ v$
Supply voltage	V _{DDDR}	2.0			V	Data retention mode
Supply current	I _{DD1}		50	250	μΑ	Normal operation, $V_{DD}=3~V~\pm 10\%$; $R=240~k\Omega~\pm 2\%,~C=33~pF~\pm 5\%$
			35	230	μΑ	Normal operation, $V_{DD}=2.5~V$; $R=240~k\Omega~\pm2\%,~C=33~pF~\pm5\%$
	DD2		0.3	10	μΑ	Stop mode, X1 = 0 V; V_{DD} = 3 V $\pm 10\%$
			0.2	10	μA	Stop mode, $X1 = 0 \text{ V}$; $V_{DD} = 2.5 \text{ V}$
	DDDR		0.2	10	μA	Data retention mode, V _{DDDR} = 2.0 V

DC Characteristics 2 (443)

For $V_{DD} = 2.7$ to 6.0 V (75CGO8E, 5 V \pm 10%) T_A = -10 to +70 °C

			Limits			Test	
Parameter	Symbol	Min	Тур	Max	Unit	Cenditions	
Input voltage, high	V _{IH1}	0.7 V _{DD}		V _{DD}	٧	Except CL1, X1	
	V _{IH2}	V _{DD} - 0.5		V _{DD}	٧	CL1, X1	
	V _{IHDR}	0.9 V _{DDDR}		V _{DDDR} + 0.2	٧	RESET, data retention mode, 7507/08 only	
Input voltage, low	V _{IL1}	0		0.3 V _{DD}	٧	Except CL1, X1	
	V _{IL2}	0		0.5	٧	CL1, X1	
Output voltage, high	V _{OH}	V _{DD} — 1.0			٧	$I_{OH} = -1.0$ mA; $V_{DD} = 4.5$ to 6.0 V, 7507/08 only	
		V _{DD} — 0.5			٧	$I_{OH} = -100 \mu\text{A}$, 7507/08 only	
	V _{OH1}	V _{DD} — 1.0			٧	I _{OH} = −1.0 mA, 75CG08E only	
	V _{OH2}	V _{DD} — 0.75			٧	I _{OH} = −5.0 mA, 75CG08E only	
Output voltage, low	V _{OL}			0.4	٧	$I_{OL} = 1.6 \text{ mA}$; $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$, 7507/08 only	
				0.5	V	$I_{OL} = 400 \mu\text{A}$, 7507/08 only	
				0.4	٧	$I_{OL} = -1.6$ mA, 75CG08E only	
Input current, high	ItH			300	μΑ	75CG08E only, V _I = V _{DD} , MSEL	
Input current, low	lμ			-200	μА	75CG08E only, V _I = 0 V, I ₀ -I ₇	
Input leakage current, high	luh1			3	μΑ	Except CL1, X1; $V_1 = V_{DD}$	
	I _{LIH2}			10	μΑ	CL1, X1	
Input leakage current, low	l _{LIL1}			-3	μΑ	Except CL1, X1; V _I = 0 V	
	LIL2			-10	μA	CL1, X1	
Output leakage current, high	ILOH			3	μΑ	$V_0 = V_{DD}$	
Output leakage current, low	lLOL			-3	μΑ	V ₀ = 0 V	
Supply voltage	V _{DDDR}	2.0			٧	Data retention mode, 7507/08 only	
Supply current	I _{D01}	_	300	900	μΑ	Normal operation, $V_{DD} = 5 \text{ V} \pm 10\%$; R = 82 k Ω ±2%, C = 33 pF ±5%	
		-	70	300	μΑ	Normal operation, $V_{DD}=3$ V $\pm 10\%$; R = 160 k Ω $\pm 2\%$, C = 33 pF $\pm 5\%$, 7507/08 only	
	D02		1.0	20	μΑ	Stop mode, $X1 = 0 \text{ V}$; $V_{DD} = 5 \text{ V} \pm 10\%$, 7507/08 only	
			0.3	10	μΑ	Stop mode, $X1 = 0 \text{ V}$; $V_{DD} = 3 \text{ V} \pm 10\%$, 7507/08 only	
			2	20	μΑ	Stop mode, X1 = 0 V; $V_{DD} = 5 \text{ V} \pm 10\%$, 75CG08E only	
	DDDR		0.2	10	μΑ	Data retention mode V _{DDDR} = 2.0 V, 7507/08 only	

AC Characteristics 1

For $V_{DD} = 2.7$ to 6.0 V (75CG08, 5 V $\pm 10\%$) T_A = -10 to +70 °C

	Symbol	Limits				Test		
Parameter		Min	Тур	Max	Unit	Conditions		
System clock frequency	fcc	150	200	240	kHz	$V_{DD} = 5.0 \text{ V} \pm 10\%; \text{ R} = 82 \text{ k}\Omega \pm 2\% \text{ (Note 1)}$		
		75	100	120	kHz	$V_{DD}=3.0\pm10\%;R=$ 160 k Ω $\pm2\%$ (Note 1), 7507/08 only		
		75	_	135	kHz	$V_{DD} = 3.0 \pm 10\%; R = 160 \text{ k}\Omega \pm 2\% \text{ (Note 1), 7507/08 only}$		
-	f _C	10		410	kHz	CL1, external clock, 50% duty; $V_{DD}=4.5$ to 6.0 V, 7507/08 only, $V_{DD}=5$ V $\pm5\%$, 75CG08E only		
		10	-	125	kHz	CL1, external clock, 50% duty; V _{DD} = 2.7 V, 7507/08 only		
		10		300	kHz	CL1, external clock, 50% duty; 75CG08E only		
System clock rise and fall imes	t _{CR} , t _{CF}			0.2	μS	CL1, external clock		
System clock pulse width	t _{CH} , t _{CL}	1.2		50	μS	CL1, external clock; $V_{DD} = 4.5$ to 6.0 V, 7507/08 only		
		4.0		50	μS	CL1, external clock; V _{DD} = 2.7 V, 7507/08 only		
		1.5		50	μS	CL1, external clock, 75CG08E only		
		1.2	_	50	μS	CL1, external clock; $V_{DD} = 5 \text{ V} \pm 5\%$, 75CG08E only		
Counter clock frequency	f _{XX}	25	32	50	kHz	X1, X2, crystal oscillator		
	f _X	0		410	kHz	X1, external pulse input; 50% duty; V _{DD} = 4.5 to 6.0 V, 7507/08 only		
		0		125	kHz	X1, external pulse input, 50% duty; V _{DD} = 2.7 V, 7507/08 only		
		0		300	kHz	X1, external pulse input; 50% duty, 75CG08 only		
		0		410	kHz	X1, external pulse input; 50% duty; V _{DD} = 5 V ±5%, 75CG08E only		
Counter clock rise and fall times	t _{XR} , t _{XF}			0.2	μS	X1, external pulse input		
Counter clock pulse width	t _{XH} , t _{XL}	1.2			μS	X1, external pulse input; $V_{DD} = 4.5$ to 6.0 V, 7507/08 only		
		4.0		_	μS	X1, external pulse input; V _{DD} = 2.7 V, 7507/08 only		
		1.5			μS	X1, external pulse input, 75CG08E only		
		1.2			μS	X1, external pulse input; $V_{DD} = 5 \text{ V} \pm 5\%$, 75CG08E only		
SCK cycle time	t _{KCY}	3.0	1		μS	\overline{SCK} as input; $V_{DD} = 4.5$ to 6.0 V, 7507/08 only $V_{DD} = 5$ V $\pm 5\%$, 75CG08E only		
		8.0			μS	SCK as input, 7507/08 only		
		4.9			μS	\overline{SCK} as output; $V_{DD}=4.5$ to 6.0 V, $7507/08$ only $V_{DD}=5$ V $\pm 5\%$, $75CG08E$ only		
		16.0			μS	SCK as output, 7507/08 only		
		4.0			μS	SCK as input, 75CG08E only		
		6.7			μS	SCK as output, 75CG08E only		
SCK pulse width	t _{KH} , t _{KL}	1.3	_		μS	\overline{SCK} as input; $V_{DD} = 4.5$ to 6.0 V, 7507/08 only $V_{DD} = 5$ V $\pm 5\%$, 75CG08E only		
		4.0			μS	SCK as input		

AC Characteristics 1 (cont)

For V_{DD} = 2.7 to 6.0 V (75CG08, 5 V ±10%) T_A = -10 to +70°C

	Symbol	1	Limits			Test Conditions	
Parameter		Min	Typ	Max	Unit		
SCK pulse width	t _{KH} , t _{KL}	2.2			μS	\overline{SCK} as output, $V_{DD} = 4.5$ to 6.0 V, 7507/08 only $V_{DD} = 5$ V $\pm 10\%$, 75CG08 only	
		8.0			μS	SCK as output, 7507/08 only	
		1.8			μS	SCK input, 75CG08E only	
		3.0			μS	SCK as output, 75CG08E only	
SI setup time to SCK ‡	tsik	300			ns		
SI hold time after SCK †	t _{KSI}	450			ns		
SO delay time after SCK ↓	t _{KSO}			850	ns	V _{DD} = 4.5 to 6.0 V, 7507/08 only V _{DD} = 5 V ±10%, 75CG08E only	
				1200	ns	7507/08 only	
Port 1 output setup time to PSTB 1	t _{PST}	(Note 2)			μS	V _{DD} = 4.5 to 6.0 V, 7507/08 only V _{DD} = 5 V ±10%, 75CG08E only	
	_	(Note 3)			μS	7507/08 only	
Port 1 output setup time to PSTB '	^t STP	100			ns	V _{DD} = 4.5 to 6.0 V, 7507/08 only V _{DD} = 5 V ±10%, 75CG08E only	
		100			ns	7507/08 only	
PSTB pulse width	^t stl	(Note 2)			μS	V _{DD} = 4.5 to 6.0 V, 7507/08 only V _{DD} = 5 V ±10%, 75CG08E only	
		(Note 3)			μS	7507/08 only	
INTO pulse width	t _{IOH} , t _{IOL}	10			μS		
NT1 pulse width	41H, 41L	2/f _{CC} or 2/f _C			μS		
RESET pulse width	t _{RSH} , t _{RSL}	10			μS		
RESET setup time	tsrs	0			ns	7507/08 only	
RESET hold time	t _{HRS}	0			ns	7007/08 only	

Note:

⁽¹⁾ RC network at CL1 and CL2; $C = 33 \text{ pF} \pm 5\%$, $|\Delta C/^{\circ}C| \leq 60 \text{ ppm}$.

⁽²⁾ $(10^3) \div 2(f_{CC} \text{ or } f_C \text{ in kHz}) - 0.8 \,\mu\text{s}.$

⁽³⁾ $(10^3) \div 2(f_{CC} \text{ or } f_C \text{ in kHz}) - 2.0 \,\mu\text{s}.$

AC Characteristics 2

For $V_{DD} = 2.5$ to 3.3 V (7507, 7508 only) $T_A = -10 \text{ to } +70 ^{\circ}\text{C}$

			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
System clock frequency	fcc	50		80	kHz	$R = 240 \text{ k}\Omega \pm 2\% \text{ (Note 1)}$
		50	64	77	kHz	$V_{D0} = 2.5 \text{ V}; R = 240 \text{ k}\Omega \pm 2\% \text{ (Note 1)}$
	fc	10		80	kHz	CL1, external clock, 50% duty
System clock rise and fall time	t _{CR} , t _{CF}			0.2	μS	CL1, external clock
System clock pulse width	t _{CH} , t _{CL}	6.25		50	μS	CL1, external clock
Counter clock frequency	f _{XX}	25	32	50	kHz	X1, X2, crystal oscillator
_	fχ	0		80	kHz	X1, external pulse input, 50% duty
Counter clock rise and fall time	t _{XR} , t _{XF}			0.2	μS	X1, external pulse input
Counter clock pulse width	t _{XH} , t _{XL}	6.25			μS	X1, external pulse input
SCK cycle time	tkcy	12.5			μS	SCK as input
•		25.0			μS	SCK as output
SCK pulse width	t _{KH} , t _{KL}	6.25			μS	SCK as input
	_	11.5			μS	SCK as output
SI setup time to SCK 1	tsik	1			μS	
SI hold time after SCK 1	tksi	1			μS	
SO delay time after SCK ↓	t _{KSO}			2	μS	
Port 1 output setup time to PSTB 1	t _{PST}	(Note 2)			μS	
Port 1 output hold time after PSTB 1	t _{STP}	100			ns	
PSTB pulse width	t _{STL}	(Note 2)			μ\$	
INTO pulse width	t _{IOH} , t _{IOL}	30			μ	
INT1 pulse width	t _{11H} , t _{11L}	(Note 3)			μS	
RESET pulse width	trsh. trsl	30			μS	
RESET setup time	t _{SRS}	0			ns	
RESET hold time	tHRS	0			ns	

Notes:

⁽¹⁾ RC network at CL1 and CL2; C = 33 pF $\pm 5\%$, $|\Delta C/^{\circ}C| \le 60$ ppm.

⁽²⁾ $10^3 \div 2$ (f_{CC} or f_C in kHz) -2.0.

⁽³⁾ $10^3 \div 2$ (f_{CC} or f_C in kHz).

Timing Waveforms

Timing Measurement Points

External Interrupts

RESET

Data Retention Mode

Serial Interface

Output Strobe

Operating Characteristics

 $T_A = 25$ °C

Operating Characteristics (cont) $T_A = 25$ °C

