Graph Neural Network

What is Graph?

A	-1.1	3.2	4.2
В	0.4	5.1	-1.2
с	1.2	1.3	2.1
D	1.4	-1.2	2.5
E	1.4	2.5	4.5

Node Feature

A	0	0	0	0	1
В	0	0	0	1	1
c	0	0	0	1	1
D	0	1	1	0	1
E	1	1	1	1	0

Why Graph is special?

Example of graph

type of Graph

Why must use graph neural network?

Graph is in complex domain

Graph structure not have a fixed size

Why must use graph neural network?

Neural network is not permutation equivariant

	1	2	3	4	5
1			1	1	
2				1	1
3	1				1
4 5	1	1			
5		1	1		

	1	2	3	4	5
1		1			1
2	1		1		
3		1		1	
4			1		1
5	1			1	

	1	2	3	4	5
1		1		1	
2	1				1
3				1	1
4	1		1		
5		1	1		

(a)

(b)

(c)

Type of Problem in graph neural network

EX. Scammer classification

Node Classification Link Prediction Graph Classification

EX. recommendation

EX. Molecule classification

How graph neural network work

- 1. Message passing layers
- 2. Graph pooling

Key idea: Update information of each node

(a) Input graph

(b) Neighborhood aggregation

$$\mathbf{h}_u = \phi\left(\mathbf{x}_u, igoplus_{v \in N_u} \psi(\mathbf{x}_u, \mathbf{x}_v, \mathbf{e}_{uv})
ight)$$
 Neigborhood aggregation

 \mathbf{h}_u Node embedding

 \mathbf{X}_{ii} Node feature

X_U Node feature neighborhood

 \mathbf{e}_{uv} edge feature

Graph Convolutional Network

Key idea : use self node for message aggregation

$$\mathbf{H} = \sigma \left(\mathbf{ ilde{D}}^{-rac{1}{2}} \mathbf{ ilde{A}} \mathbf{ ilde{D}}^{-rac{1}{2}} \mathbf{X} \mathbf{\Theta}
ight)$$
 aggregation

$$\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$$

		0	1	2	3
	0	1	1	0	1
Â	1	1	1	0	1
7	2	0	0	1	1
	3	1	1	1	1

	0	1	2	3
0	4	0	0	0
1	0	4	0	0
2	0	0	3	0
3	0	0	0	5

Graph Pooling

- Local pooling

Key idea : down-sample node in graph

Method	Select	Reduce	Connect
DiffPool [55]	$\mathbf{S} = \mathtt{GNN}_1(\mathbf{A}, \mathbf{X})$ (w/ auxiliary loss)	$\mathbf{X}' = \mathbf{S}^{ op} \cdot \mathtt{GNN}_2(\mathbf{A}, \mathbf{X})$	$\mathbf{A}' = \mathbf{S}^{\top} \mathbf{A} \mathbf{S}$
MinCut [6]	$\mathbf{S} = \mathtt{MLP}(\mathbf{X})$ (w/ auxiliary loss)	$\mathbf{X}' = \mathbf{S}^{\top}\mathbf{X}$	$\mathbf{A}' = \mathbf{S}^{\top} \mathbf{A} \mathbf{S}$
NMF [3]	Factorize: $\mathbf{A} = \mathbf{W}\mathbf{H} \to \mathbf{S} = \mathbf{H}^{\top}$	$\mathbf{X}' = \mathbf{S}^{\top}\mathbf{X}$	$\mathbf{A}' = \mathbf{S}^{\top} \mathbf{A} \mathbf{S}$
LaPool [42]	$\begin{cases} \mathbf{V} = \ \mathbf{L}\mathbf{X}\ _{d}; \\ \mathbf{i} = \{i \mid \forall j \in \mathcal{N}(i) : \mathbf{V}_{i} > \mathbf{V}_{j}\} \\ \mathbf{S} = \operatorname{SparseMax}\left(\beta \frac{\mathbf{X}\mathbf{X}_{i}^{\top}}{\ \mathbf{X}\ \ \mathbf{X}_{i}\ }\right) \end{cases}$	$\mathbf{X}' = \mathbf{S}^{\top}\mathbf{X}$	$\mathbf{A}' = \mathbf{S}^{\top} \mathbf{A} \mathbf{S}$
Graclus [16]	$\mathcal{S}_k = \left\{ \mathbf{x}_i, \mathbf{x}_j \mid \operatorname{argmax}_j \left(\frac{\mathbf{A}_{ij}}{\mathbf{D}_{ii}} + \frac{\mathbf{A}_{ij}}{\mathbf{D}_{jj}} \right) \right\}$	$\mathbf{X}' = \mathbf{S}^{\top}\mathbf{X}$	METIS [26]
NDP [7]	$\mathbf{i} = \{i \mid \mathbf{u}_{max,i} > 0\}$	$\mathbf{X}' = \mathbf{X_i}$	Kron r. [18]
Top-K [24]	$\mathbf{y} = \frac{\mathbf{X}\mathbf{p}}{\ \mathbf{p}\ }; \ \mathbf{i} = \mathrm{top}_K(\mathbf{y})$	$\mathbf{X}' = (\mathbf{X} \odot \sigma(\mathbf{y}))_{\mathbf{i}};$	$\mathbf{A}'=\mathbf{A_{i,i}}$
SAGPool [30]	$\mathbf{y} = \mathtt{GNN}(\mathbf{A}, \mathbf{X}); \ \mathbf{i} = \mathrm{top}_K(\mathbf{y})$	$\mathbf{X}' = (\mathbf{X} \odot \sigma(\mathbf{y}))_{\mathbf{i}};$	$\mathbf{A'} = \mathbf{A_{i,i}}$

- Global pooling

Key idea: fixed-size representation of the whole graph

- Mean pooling
- Max pooling

Graph Neural Network Pipe-line

implementation

Graph regression

 ESOL: Water solubility data(log solubility in mols per litre) for common organic small molecules.

Name	#graphs	#nodes	#edges	#features	#classes
ESOL	1,128	~13.3	~27.4	9	1

apply in graph (link node graph)

How graph neural network work

Message passing

Local pooling

Global pooling

Imprementation

implementation

DiffPool

$$S^{(l)} = \operatorname{softmax}\left(\operatorname{GNN}_{l,\operatorname{pool}}(A^{(l)},X^{(l)})\right),$$

$$X^{(l+1)} = S^{(l)}^T Z^{(l)} \in \mathbb{R}^{n_{l+1} \times d},$$

$$A^{(l+1)} = S^{(l)}{}^{T} A^{(l)} S^{(l)} \in \mathbb{R}^{n_{l+1} \times n_{l+1}}.$$