Mükəmməl uyğunluq

Zaman limiti: 1 s

Yaddaş limiti: 256 MB

Sizə N və M tam ədədləri verilir. $A = \{0,1,2,...,N-1\}$ və $B = \{M,...,M+N-1\}$ çoxluqlarından birə-bir uyğunlaşan elə N cüt düzəldin ki, bütün (x,y) cütləri $(x \in A \ v \ni y \in B)$ üçün x & y = x olsun. Burada $\& V \ni (AND)$ bit operatorunu bildirir.

Giriş verilənləri

Yeganə sətirdə iki tam ədəd, N və M verilir.

Çıxış verilənləri

Çıxışa N sətir verin. i-ci sətirdə iki tam ədəd, x_i və y_i verin. x_i A çoxluğuna, y_i isə B çoxluğuna aid olmalıdır. Çıxışa verdiyiniz bu cütlərin hər biri məsələnin şərtində deyildiyi kimi uyğunlaşan bir cüt olmalıdır.

Qeyd: İsbat etmək olar ki, həll həmişə mövcuddur.

Məhdudiyyətlər

- $1 \le N \le M$
- $N + M \le 10^6$
- $0 \le x_i \le N-1$ və istənilən $i \ne j$ üçün $x_i \ne x_j$ olmalıdır.
- $M \leq y_i \leq M + N 1$ və istənilən $i \neq j$ üçün $y_i \neq y_j$ olmalıdır.
- Bütün *i*-lər $(1 \le i \le N)$ üçün $x_i \& y_i = x_i$ olmalıdır.

Nümunələr

Giriş	Çıxış	İzah
3 4	0 4	-
	1 5	
	2 6	
6 7	0 8	-
	1 9	
	2 10	
	3 11	
	4 12	
	5 7	

Alt tapşırıqlar

Bu məsələ aşağıdakı kimi 4 alt tapşırıqdan ibarətdir:

Alt Tapşırıq	Məhdudiyyətlər	Qiymətləndirmə
1	$N=2^k$, k mənfi olmayan tam ədəddir	11 bal
2	$N+M=2^k$, k mənfi olmayan tam ədəddir	24 bal
3	$N+M \le 1000$	33 bal
4	Əlavə məhdudiyyət yoxdur	32 bal