МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра САУ

ОТЧЕТ

по практической работе № 1

по дисциплине «Проектирование и конструирование электромеханических систем автономных сервисных роботов»

Тема: РАСЧЕТ ПРИВЕДЕННОГО МОМЕНТА ИНЕРЦИИ

Студент гр. 9492	 Викторов А.Д.
Преподаватель	Бельский Г.В.

Задание на работу

Дана система, состоящая из нескольких деталей, соединенных различными механическими передачами. Деталь, совершающая вращательное движение, описана собственным моментом инерции, а совершающая поступательное движение — массой. Механическая передача, изменяющая скорость вращения, описана коэффициентом передачи, а преобразующая вращательное движение в поступательное — радиусом шкива. Необходимо рассчитать приведенный к первой детали момент инерции.

Детали					
1	2	3	4	5	
J = 0,7 кг \cdot м 2	<i>m</i> = 1 кг	J = 7 кг \cdot м 2	J = 61 кг·м 2	<i>m</i> = 89 кг	

Механические передачи					
1 - 2	2 - 3	3 - 4	4 - 5		
R = 0,1 M	R = 0,1 M	1:6	R = 0,1 M		

Ход работы

Приведение масс и моментов инерции происходит при условии равенства кинетической энергии до и после приведения.

Кинетическая энергия поступательного движения:

$$E = \frac{m \cdot v^2}{2} \tag{1.1}$$

Кинетическая энергия вращательного движения:

$$E = \frac{J \cdot \omega^2}{2} \tag{1.2}$$

Скорость поступательного движения при известном радиусе шкива R может быть найдена по следующей формуле:

$$V = \omega \cdot R \tag{1.3}$$

Исходя из вышеприведенных выражений, можно сделать вывод, о том, что преобразование массы, движущейся поступательно к моменту инерции вращательного движения, может быть выполнено следующим образом:

$$\frac{m \cdot v^2}{2} = \frac{J \cdot \omega^2}{2} = \frac{m \cdot (\omega \cdot R)^2}{2} \Longrightarrow J_n = m \cdot R^2$$
 (1.4)

1. Выполним приведение второго механизма к первому:

$$J_{n1} = J_1 + m_2 \cdot R^2 = 0.7 + 1 \cdot (0.1)^2 = 0.71 \, \text{Ke} \cdot M^2$$
 (1.5)

2. Выполним приведение третьего механизма к первому:

Так как скорость вращения третьего механизма совпадает с первым приведение моментов инерции не требуется.

$$J_{n2} = J_{n1} + J_3 = 0.71 + 7 = 7.71 \, \kappa c \cdot M^2 \tag{1.6}$$

3. Выполним приведение четвертого механизма к первому:

$$J_{n3} = J_{n2} + J_4 \left(\frac{1}{6}\right)^2 = 7.71 + 61 \frac{1}{36} = 9,40(4) \kappa 2 \cdot M^2$$
 (1.7)

4. Выполним приведение пятого механизма к первому:

$$J_{n4} = J_{n3} + m_5 \cdot R^2 = 9,40(4) + 89 \cdot (0.1)^2 = 10.29(4) \kappa z \cdot M^2$$
 (1.8)

Таким образом приведенный момент инерции составляет $\approx 10.29 \, \kappa z \cdot M^2$