

Exact bounds for distributed graph colouring

Joel Rybicki Helsinki Institute of Information Technology HIIT

Department of Computer Science, University of Helsinki

Federated Computer Science Event, Helsinki

Outline

- 1. What is distributed computing?
- 2. The graph colouring problem
- 3. The model of distributed computing
- 4. Attaining exact bounds: Techniques and results

The distributed setting

The distributed setting

Nodes = processors

The distributed setting

Nodes = processors, **edges = communication links**

Theory of distributed computing

Theory of distributed computing studies algorithmic problems in large networks.

- All processors run the same algorithm
- The network itself is the input
- Each node outputs its own part in the solution

Focus on graph problems

Dominating sets

Spanning trees

Matchings

Graph colouring

Graph colouring

The task is to give each node a colour such that

- colours = numerical labels
- adjacent nodes have different colours
- the total number of colours is small

Graph colouring

The task is to give each node a colour such that

- colours = numerical labels
- adjacent nodes have different colours
- the total number of colours is small

Graph colouring

The task is to give each node a colour such that

- colours = numerical labels
- adjacent nodes have different colours
- the total number of colours is small

Suppose we have a wireless sensor network..

- all nodes are equipped with radio transmitters
- near-by nodes cannot transmit simultaneously due to interference

Locality is an important theme in distributed computing:

- Many problems are global in nature (e.g., optimal colouring)
- But an efficient distributed algorithm cannot depend on global knowledge.

The aim is to find **global** solutions using **local** information.

The aim is to find **global** solutions using **local** information.

Minimal dependence with others

Think global, act local

The system proceeds in discrete synchronous communication rounds.

1. Send messages

1. Send messages

2. Wait for the messages to propagate

3. Receive messages

4. Perform local computation. Continue or declare output.

During a single communication round each node

- 1. sends messages to neighbours
- 2. waits for the messages to propagate
- 3. receives messages from neighbours
- 4. performs local computation

Repeat until all nodes have declared their output.

Time complexity = Number of communication rounds

During a single communication round each node

- 1. sends messages to neighbours
- 2. waits for the messages to propagate
- 3. receives messages from neighbours
- 4. performs local computation

Repeat until all nodes have declared their output.

Time complexity = Number of communication rounds

Space complexity = Size of sent messages

Unique identifiers

Local views

We can use so-called local views to reason about distributed algorithms.

Local views (0 rounds)

Local views (1 round)

Local views (2 rounds)

Algorithms as mappings

Algorithms as mappings

radius-2 neighbourhood = 2 rounds

Colour reduction in directed cycles

Input: a *k*-coloured directed cycle (UIDs = colouring)

Colour reduction in directed cycles

Output: a 3-colouring

Log-star

The \log^* function appears often in distributed computing.

Definition:
$$\log^* k = \min\{i : \overbrace{\log\left(\cdots \log(k)\right)}^{i \text{ times}} \le 1\}$$

Log-star

The \log^* function appears often in distributed computing.

Definition:
$$\log^* k = \min\{i : \overbrace{\log\left(\cdots \log(k)\right)}^{i \text{ times}} \le 1\}$$

The \log^* function grows *very* slowly:

- $\log^* 2 = 1$
- $\log^* 4 = 2$
- $\log^* 16 = 3$
- $\log^* 2^{16} = 4$
- $\log^* 2^{65536} = 5$

Colouring directed cycles

The work focuses on 3-colouring directed cycles:

- A fundamental problem in distributed computing
- ► Always possible in O(log* k) rounds (Cole and Vishkin 1986)
- ▶ Cannot be done in $o(\log^* k)$ rounds (Linial 1987)

What is the exact complexity of the problem?

The key idea: neighbourhood graphs

Colourability of certain graphs \iff existence of distributed colouring algorithms:

finding optimal colourings gives optimal algorithms

Solving finite combinatorial problems tells us how fast distributed algorithms exist!

The neighbourhood graph construction

Example: Consider a k-coloured cycle and radius-1 neighbourhoods.

Neighbourhood graphs construction

Neighbourhood graphs: nodes

Make a node of each neighbourhood in a coloured cycle.

Neighbourhood graphs: nodes

There are many possible neighbourhoods that could occur ("different worlds").

Neighbourhood graphs: nodes

Keep adding all the neighbourhoods.

Neighbourhood graphs: edges

Finally, connect neighbourhoods that can be adjacent.

Neighbourhood graphs

Exact bounds

Complexity of 3-colouring *k*-coloured cycles:

	Before	Now
Positive:	$\frac{1}{2}(\log^* k + 7)$	$\frac{1}{2}(\log^* k + 3)$

Exact bounds

Complexity of 3-colouring *k*-coloured cycles:

	Before	Now
Positive:	$\frac{1}{2}(\log^* k + 7)$	$\frac{1}{2}(\log^* k + 3)$
Negative:	$\frac{1}{2}(\log^* k - 3)$	$\frac{1}{2}(\log^* k + 1)$

- ► Earlier positive results follow from Cole and Vishkin (1986).
- Previous negative result due to Linial (1992).

Summary

In summary:

- distributed computing studies what can be computed efficiently in large networks
- efficient algorithms are local
- graph colouring is inherently global but can be computed with little communication
- existence of distributed algorithms can posed as a combinatorial problem

