

헬스 웨어러블을 이용한 올바른 운동자세 예측

> 2023. 04. 12. 양진모

NDEX

기존 운동에 대한 인식

사전 준비

데이터 분석

머신러닝 모델링

모델링 결과 분석

고찰 및 향후 목표

스마트 웨어러블

https://i.vtimg.com/vi/UUsA3qUHW2M/maxresdefault.ipg

샤오미 미밴드

수면, 심박수, 칼로리,... 고중강도 활동

애플워치

운동 종목 설정, 시간 설정, 목표 설정, 운 동량

스마트 웨어러블

https://i.ytimg.com/vi/UUsA3qUHW2M/maxresdefault.jpg

샤오미 미밴드

수면, 심박수, 칼로리,... 고중강도 활동

스마트 웨어러블

https://i.vtimg.com/vi/UUsA3gUHW2M/maxresdefault.ipg

샤오미 미밴드

수면, 심박수, 칼로리,... 고중강도 활동

애플워치

운동 종목 설정, 시간 설정, 목표 설정, 운 동량

스마트 웨어러블

https://i.ytimg.com/vi/UUsA3qUHW2M/maxresdefault.jpg

샤오미 미밴드

수면, 심박수, 칼로리,... 고중강도 활동

애플워치

운동 종목 설정, 시간 설정, 목표 설정, 운 동량

운동 자세에 대한 고려 안 함

홈트레이닝과 퍼스널 트레이닝

올바른 자세 확인/지도를 위한 홈트레이닝 및 퍼스널 트레이닝

- 홈트레이닝
 - 골격의 차이 고려 안함
 - 피드백 없음
- 퍼스널 트레이닝
 - 비용
 - 신체 접촉

기존 운동에 대한 인식 변화

개인의 운동 자세에 대한 정보 제공

홈트레이닝, 퍼스널 트레이닝 문제점과 단점 해결 사전 준비

데이터셋 - 덤벨 컬

	user_name		accel_forearm_z	magnet_forearm_x	magnet_forearm_y	magnet_forearm_z	classe
0	eurico		184	-1160.0	1400.0	-876.0	Е
1	eurico		182	-1150.0	1410.0	-871.0	Е
2	eurico	•••	185	-1130.0	1400.0	-863.0	Е
3	eurico		188	-1120.0	1400.0	-855.0	Е
4	eurico		188	-1100.0	1400.0	-843.0	Е

- 5개의 자세: A E
 - 자세 별 10번 반복
- 6명의 피실험자
 - Adelmo, Carlitos, Charles, Eurico, Jeremy, Pedro
- 4개의 센서
 - 팔, 전완, 허리, 덤벨
- 159개의 센서 측정 수치
 - 자력계, 가속도, 회전수치

데이터셋 - 덤벨 컬

	user_name			
0	eurico			
1	eurico			
2	eurico	•••		
3	eurico			
4	eurico			

accel_forearm_z	magnet_forearm_x	magnet_forearm_y	magnet_forearm_z	classe
184	-1160.0	1400.0	-876.0	Е
182	-1150.0	1410.0	-871.0	Е
185	-1130.0	1400.0	-863.0	Е
188	-1120.0	1400.0	-855.0	Е
188	-1100.0	1400.0	-843.0	Е

- 5개의 자세: A E
- 6명의 피실험자

- A.정자세
- B.팔꿈치를 내밀면서 들기
- ○기의 자제. A C C.절반만 들기 (완전히 이완한 상태에서 90도까지만 들기) 자세 별 10번 반복 D.절반만 내리기 (완전히 수축한 상태에서 90도까지만 내리기)
 - E.골반을 내밀면서 들기
- Adelmo, Carlitos, Charles, Eurico, Jeremy, Pedro
- 4개의 센서
 - 팔, 전완, 허리, 덤벨
- 159개의 센서 측정 수치
 - 자력계, 가속도, 회전수치

데이터셋 - 덤벨 컬

	user_name	
0	eurico	
1	eurico	
2	eurico	•••
3	eurico	
4	eurico	

rear	magnet_f	earm_x	magnet_	_forearm_y	magnet_forearm_z	classe
-116		-1160.0		1400.0	-876.0	Е
-115		-1150.0		1410.0	-871.0	Е
-113		-1130.0		1400.0	-863.0	Е
-112		-1120.0		1400.0	-855.0	Е
-110		-1100.0		1400.0	-843.0	Е

- 5개의 자세: A E
 - 자세 별 10번 반복
- 6명의 피실험자
 - Adelmo, Carlitos, Charles, Eurico, Jeremy, Pedro
- 4개의 센서
 - 팔, 전완, 허리, 덤벨
- 159개의 센서 측정 수치
 - 자력계, 가속도, 회전수치

가설

A.정자세 B.팔꿈치를 내밀면서 들기 C.절반만 들기 D.절반만 내리기 E.골반을 내밀면서 들기

- 자세 구분
 - 골반 움직임: 허리 센서 감지로 E 구분 가능할 것
 - C와 D는 A, B, E의 일부 수치가 절반으로 감소 예상
 - 팔꿈치를 조금 밀어내는 B는 A와 구분하기 어려움 예상
 - 센서 보완 필요성
- 센서 미작동/오작동
 - 상관관계가 큰 센서 수치들로 인해 학습에 문제 없을 것

개별 특성 확인 - 10개 움직임 포착

센서 자체적 통계 수치 삭제

max_roll_belt	skewness_yaw_belt	skewness_roll_belt.1	skewness_roll_belt	kurtosis_yaw_belt	tosis_picth_belt
-80.8	#DIV/0!	1.482099	-0.995221	#DIV/0!	3.572235
-92.2	#DIV/0!	-0.910566	-0.224472	#DIV/0!	1.299859
-88.3	#DIV/0!	-2.000000	2.0	#DIV/0!	4.000000
137.0	#DIV/0!	0.510016	-0.42819	#DIV/0!	-0.435104
132.0	#DIV/0!	-0.930231	1.37255	#DIV/0!	-0.378581

데이터 분석

A.정자세 B.팔꿈치를 내밀면서 들기 C.절반만 들기 D.절반만 내리기 E.골반을 내밀면서 들기

골반 움직임: 허리 센서 감지로 E 구분 가능할 것

C와 D: A, B, E에 비해 일부 수치가 절반으로 감소

A.정자세 B.팔꿈치를 내밀면서 들기 C.절반만 들기 D.절반만 내리기 E.골반을 내밀면서 들기

A와 B: 팔꿈치를 조금 밀어내는 B는 A와 구분하기 어려움 예상 전완

A.정자세 B.팔꿈치를 내밀면서 들기 C.절반만 들기 D.절반만 내리기 E.골반을 내밀면서 들기

A와 B: 팔꿈치를 조금 밀어내는 B는 A와 구분하기 어려움 예상 팔

개별 움직임 구분

기준모델

Decision Tree Classifier

평가지표

micro F1 점수, micro AP 점수

평가지표: micro F1 점수, micro AP 점수

micro F1 점수

https://sumniya.tistory.com/26

micro F1 점수

https://sumniya.tistory.com/26

micro F1 점수

(recall)

micro F1 점수

정밀도 (precision)

https://sun재현율istory.com/26 (recall)

 $\mathbf{F1} = \mathbf{2} imes rac{ ext{정밀도} imes ext{재현율}}{ ext{정밀도} + ext{재현율}}$

micro Average Precision 점수

AP (Average Precision)

기준모델: Decision Tree Classifier

모델 선정:

모델 선정: Light GBM Classifier

Recall (재현율)

1.0

Class D

200

175

150

50

1.0

152

Ε

Gradient Boosting

Light GBM Classifier 튜닝

Learning Rate: 한 번에 학습하는 양

max_depth: 분기를 어느 만큼

min_child_samples: 최종 분기 필요 개수

subsample: 측정치 일부

colsample_bytree: 특성(센서) 일부

Light GBM Classifier 튜닝

Learning Rate: 한 번에 학습하는 양 - 0.2 max_depth: 분기를 어느 만큼 - 7

min_child_samples: 최종 분기 필요 개수

subsample: 측정치 일부

colsample_bytree: 특성(센서) 일부

Light GBM Classifier 튜닝

Learning Rate: 한 번에 학습하는 양 - 0.2 max_depth: 분기를 어느 만큼 - 8

min_child_samples: 최종 분기 필요 개수

subsample: 측정치 일부

colsample_bytree: 특성(센서) 일부

Light GBM Classifier 튜닝

Light GBM Classifier 튜닝

Learning Rate: 한 번에 학습하는 양 - 0.2 max_depth: 분기를 어느 만큼 - 8 min_child_samples: 최종 분기 필요 개수 - 70 subsample: 측정치 일부 - 0.9

colsample_bytree: 특성(센서) 일부 - 0.1

Light GBM Classifier 평가

Learning Rate: 한 번에 학습하는 양 - 0.2

max_depth: 분기를 어느 만큼 - 8

min_child_samples: 최종 분기 필요 개수 - 70

subsample: 측정치 일부 - 0.9

colsample_bytree: 특성(센서) 일부 - 0.1

특성 중요도 (Feature Importance)

팔꿈치를 조금 밀어내는 B는 A와 구분하기 어려움 예상

알고리즘은 눈이 잡아내 지 못한 특성 학습

(추가) 모델링 결과 분석

상관관계가 큰 센서 수치들로 인해 학습에 문제 없을 것

RandomForestClassifier Confusion Matrix (adelmo), 평균 Micro F1: 0.999

RandomForestClassifier Precision vs. Recall Curve (adelmo), 평균 Micro AP 점수: 1.0

자체적으로 자세가 올바른지 그렇지 않은지 구분할 수 없음

Eurico

자체적으로 자세가 올바른지 그렇지 않은지 구분할 수 없음

- 단기간 전문가/트레이너 감독 아래 모델 학습
- 이후 혼자 운동
- 특정기간 이후 전문가와 함께 다시 학습

센서 문제점

- 노이즈 및 비정상 수치: 모델 결과는 좋음
 - 센서 민감도 / 개발 비용 비교
 - 올바른 자세/잘못된 자세 구분을 위해 적정선 찾기
- 운동에 따른 센서 위치 변경

측정 단위 조정

- 반복적인 특징 학습으로 개별 움직임 단위 자체 구분
- 움직임 단위/세트 단위로 자세 유지/이탈여부, 심박수, 열량 소모 등의 수치 제공

THANK YOU

