EPITA

Mathématiques

Examen S2-B4-ALM

Applications linéaires et matrices

durée : 2 heures

Mai 2025

Nom:
Prénom :
Classe:
NOTE:
Le barème est sur 40 points. La note sera ramenée à une note sur 20 par division par 2.
Consignes: — Lire le sujet en entier avant de commencer. Il y a en tout 5 exercices. — La rigueur de votre rédaction sera prise en compte dans la note.

— Un malus d'un point sur la note sur 20 sera appliqué aux copies manquant de propreté.

— Documents et calculatrices interdits.

— Aucune réponse au crayon de papier ne sera corrigée.

Exercice 1 : opérations matricielles (8 points)

Les questions sont indépendantes.

1.	Considérons les deux matrices à coefficients réels : $A = \begin{pmatrix} x & 5 \\ 0 & 2x \end{pmatrix}$ et $B = \begin{pmatrix} y & 7 \\ -1 & 3y \end{pmatrix}$.
	On pose $2A - 4B = (c_{i,j}) \in \mathcal{M}_2(\mathbb{R})$. Trouver les deux réels x et y tels que $c_{1,1} = -6$ et $c_{2,2} = -8$. Calculer alors $2A - 4B$.
2.	On se donne $A = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ -3 & 4 \\ 0 & 1 \end{pmatrix}$. Peut-on faire le produit AB ? BA ? Justifier dans tous les cas. Si oui, effectuer ce produit en détaillant vos calculs intermédiaires.

	/	1	4	1	\
3. Soit $A =$		0	-1	3	1
		-1	-3	-3	J

a) On admet que A est inversible. Trouvez A^{-1} . Vous ferez apparaître tous les détails de vos calculs.
b) Expliquez comment vous pouvez vérifier le résultat obtenu à la question précédente.

Exercice 2 : application linéaire (10 points)

On considère l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{R}_2[X] & \longrightarrow & \mathbb{R}^2 \\ aX^2 + bX + c & \longmapsto & (2a-b+c,a) \end{array} \right.$
1. Trouver proprement la dimension du noyau de f , en précisant une de ses bases.
2. Énoncer rigoureusement le théorème du rang. En déduire la dimension de l'image de f .
3. f est-elle injective? Justifier.
4. f est-elle surjective? Justifier.

Exercice 3: changement de bases (7 points)

On considère l'application linéaire $f: \left\{ \begin{array}{ccc} \mathbb{R}^3 & \longrightarrow & \mathbb{R}^3 \\ (x,y,z) & \longmapsto & (-2x-y,-2z-y,0) \end{array} \right.$ 1. Donner la matrice de f dans la base canonique de \mathbb{R}^3 au départ et à l'arrivée. Inutile de justifier. 2. Donner la matrice de f dans la base $\mathcal{B}_1 = ((1,0,0),(-1,1,0),(1,-2,1))$ au départ et la base canonique à l'arrivée. Faire apparaitre vos calculs. 3. Donner la matrice de f dans la base \mathcal{B}_1 au départ et à l'arrivée. On notera A cette matrice. Inutile de justifier. 4. Expliquer pourquoi « en regardant » la matrice A, vous pouvez en déduire que $\dim(\operatorname{Im}(f)) = 2$. 5. En déduire $\dim(\operatorname{Ker}(f))$. En déduire aussi une base. Justifier.

Exercice 4: projection (10 points)

Soient E un \mathbb{R} -espace vectoriel de dimension finie et F et G deux sous-espaces vectoriels de E.

On suppose que $F \oplus G = E$. Ainsi, on sait que : $\forall u \in E, \exists ! (v, w) \in F \times G$ tel que u = v + w.

Considérons l'application linéaire $p: \left\{ \begin{array}{ccc} E & \longrightarrow & E \\ u & \longmapsto & v \end{array} \right.$

La question 4 peut être traitée en admettant les questions précédentes!

2. Supposons $u \in G.$ Expliquer pourquoi $p(u) = 0_E$

.....

3. Soit $u \in E$ quelconque. Montrer que $p \circ p(u) = p(u)$.

.....

4. On suppose ici que $E = \mathbb{R}^2$, $F = \text{Vect}((\varepsilon_1))$ et $G = \text{Vect}((\varepsilon_2))$ où $\varepsilon_1 = (2, 1)$ et $\varepsilon_2 = (-2, 4)$.

(a) Dans le quadrillage ci dessous (1 unité=2 carreaux), dessiner les axes de \mathbb{R}^2 , F, G et u=(3,4). Graphiquement, trouver $v \in F$ et $w \in G$ tel que u=v+w. Lire graphiquement les coordonnées de p(u). Vous ferez apparaître **tous** les traits de construction.

(b) Justifier que $\mathcal{B} = (\varepsilon_1, \varepsilon_2)$ est une base de \mathbb{R}^2 .

.....

(c) Déterminer la matrice de p dans la base \mathcal{B} au	départ et à l'arrivée.
Exercice 5 : une démonstration guid	lée (5 points)
Soient E un \mathbb{R} -espace vectoriel de dimension 2 et F un \mathbb{R} note	\mathbb{R} -espace vectoriel de dimension 3. Soient $f \in \mathcal{L}(E, F)$ et $u \in E$. On
- $\mathcal{B} = (e_1, e_2)$ une base de E (pas forcément la base canonique)	canonique) et $\mathcal{B}'=(\varepsilon_1,\varepsilon_2,\varepsilon_3)$ une base de F (pas forcément la base
- $A=\left(egin{array}{cc} a_1 & a_2 \\ a_3 & a_4 \\ a_5 & a_6 \end{array} \right)$ la matrice à coefficients réels de	e f dans la base $\mathcal B$ au départ et la base $\mathcal B'$ à l'arrivée.
- $U = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ la matrice colonne formée des coordo	nnées de u dans la base \mathcal{B} c'est-à-dire $u = \alpha e_1 + \beta e_2$.
- V la matrice colonne formée des coordonnées de f	$f(u)$ dans la base \mathcal{B}' .
1. Écrire $f(e_1)$ et $f(e_2)$ en fonction de ε_1 , ε_2 et ε_3 et	des coefficients de la matrice A .
2. En déduire $f(u)$ comme combinaison linéaire de ε	$_{1},arepsilon_{2}\mathrm{et}arepsilon_{3}.$
3. En déduire une formule matricielle qui donne V et	n fonction de A et U .
4. Application. Prenons $E = \mathbb{R}^2$, $F = \mathbb{R}_2[X]$, $f \in \mathcal{L}(X)$	$E, F), \mathcal{B} = ((1, 2), (3, 4)), \mathcal{B}' = (1, X + 1, (X - 1)^2)$ et
$\begin{pmatrix} 1 & -1 \end{pmatrix}$	
$A = \begin{pmatrix} 1 & -1 \\ -2 & 3 \\ -3 & 1 \end{pmatrix} = \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(f)$ (même contexte	que dans la question précédente!).
Soit $u=(4,6)\in\mathbb{R}^2$. Trouver $(a,b,c)\in\mathbb{R}^3$ tel que	$f(u) = aX^2 + bX + c.$