Artificial Intelligence

——A Programming-Oriented Course ——

Instructor
LE Thanh Sach, Ph.D.

Instructor's Information

LE Thanh Sach, Ph.D.

Office:

Department of Computer Science,

Faculty of Computer Science and Engineering,

HoChiMinh City University of Technology.

Office Address:

268 LyThuongKiet Str., Dist. 10, HoChiMinh City, Vietnam.

E-mail: LTSACH@cse.hcmut.edu.vn

E-home: http://cse.hcmut.edu.vn/~ltsach/

Tel: (+84) 83-864-7256 (Ext: 5839)

Outline

- Course's Objectives
- * References
- Course's Outcomes
- Course's Outline
- Grading Policy

Course's Objectives

- ❖ Introduce the development of Artificial Intelligence
 - <Time, Research Interests, Results>
- Train the students with general techniques, principals, and strategies for solving problems
- **❖** Side-effect:
 - Analyze, design, code, and debug a given problem

References

- [1] Stuart Russell & Peter Norvig (2003). **Artificial Intelligence A Modern Approach**, Prentice Hall, 2nd edition.
 - Web resources: http://aima.cs.berkeley.edu/
- [2] Elaine Rich & Kevin Knight (1991), **Artificial Intelligence**, McGraw-Hill, 2nd edition.
- [3] George Klir & Bo Yuan (1995), Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall
- [4] Tom Mitchell (1997), Machine Learning, McGraw-Hill.
- [5] Ivan Bratko (1990), **Prolog Programming for Artificial Intelligence**, Addison-Wesley.

Course's Outcomes

- ❖ Are able to explain techniques in knowledge representation and reasoning, in problem solving, and in machine learning.
- Are able to select suitable AI's techniques for solving any given problem.
- Are able to use and to select right tools and programming languages for solving problems in AI.
- Are able to develop basic intelligent systems.

- **\(\Chapter 1: Introduction**
 - Artificial Intelligence (AI): What, Why, and How?
 - > History and The State of The Art
 - > Typical Problems
 - Tools and Programming Languages for AI
- Chapter 2: Intelligent Agent
 - Agent and Behavior
 - Environment
 - > The Structure of Agents

- Chapter 3: State Space Search
 - Modeling State Spaces
 - Searching for Solutions
 - Uninformed Search Strategies
 - Problem Characteristics
- Chapter 4: Informed Search
 - > Path-based Search
 - Heuristic Functions

 - Search Search

- Chapter 5: Constraint Satisfaction Problem (CSP)
 - CSP: What? Applications?
 - Backtracking Search
 - Local Search + CSP
 - Simplifying CSP
- Chapter 6: Game Playing
 - Minimax Procedure
 - Alpha-beta Cutoffs
 - > Additional Refinements

- Chapter 7: Knowledge Representation and Reasoning
 - ➤ What is Knowledge Representation?

 - Rule-based Systems
- Chapter 8: Structured Knowledge
 - > Semantic Networks
 - Frames
 - Conceptual Graphs
 - Ontology: RDF, DAML, and OIL

- Chapter 9: Planning

 - > Planning with State-Space Search
 - Partial-Order Planning
 - > Planning Graphs
 - Planning with Propositional Logic
 - Analysis of Planning Approaches
- ❖ Chapter 10: Uncertain Knowledge and Reasoning
 - Review of Probabilistic Theory
 - Bayesian Network
 - ➣ Fuzzy Reasoning

- Chapter 11: Machine Learning

 - Concept Learning
 - Candidate-Elimination Algorithm
 - Maximum-Likelihood, EM, and GMM
 - Neural Network

Grading Policy

Midterm examination:	30%
Method: Grade writing exam.	
≥ Time: Week 8-9 (April 04-April 17)	
❖ Final examination:	50%
Method: Grade writing exam.	
≥ Time: Week 18-20 (June 13-July 03)	
* Assignments:	10%
Method: Grade the result of a mini-project	t.
➣ Time: final report on week 14	
& Labs:	10%
Method:	
✓ Grade the students' attendance	
✓ Grade the capability of coding artificial pro	blems
➣ Time: the whole semester	