Image Filters (Week 3)

Image

- An image is a visual representation of something.
- It can be 2D/3D, which can be fed into the visual system to convey information.
- In the context of signal processing, an image is a distributed amplitude of color(s).
- The smallest element of image is called pixel.
 - Pixel is a point on the image that takes on a specific shade or color. In data science, 2D/3D images usually represented in the following way:
 - Grayscale A pixel is an integer with a value between 0 to 255 (0 is completely black and 255 is completely white).
 - RGB A pixel is made up of 3 integers between 0 to 255 (the integers represent the intensity of red, green, and blue).

Image Filters

 The common image related artifacts during image acquisition are noise caused due to external interference and imbalance in illumination.

- Salt and pepper noise contains random occurrences of both black and white intensity values.
- Impulse noise contains only random occurrences of white intensity values.
- Gaussian noise contains variations in intensity that are drawn from a Gaussian or normal distribution and is a very good model for many kinds of camera sensor noise.
- Uneven illumination is one of the most unavoidable issues that make images look imperfect.

Mean Filter

 This filter is implemented by a local averaging operation where the value of each pixel is replaced by the average of all the values in the local neighborhood:

$$h[i,j] = \frac{1}{M} \sum_{(k,l) \in N} f[k,l]$$

where, M is the total number of pixels in the neighborhood N. For example, taking a 3x3 neighborhood about [i,j] yields:

$$h[i,j] = \frac{1}{9} \sum_{k=i-1}^{i+1} \sum_{l=j-1}^{j+1} f[k,l]$$

Mean Filter

Median Filter

- The main problem with local averaging operations is that they tend to blur sharp discontinuities in intensity values in an image.
- An alternative approach is to replace each pixel value with the median of the gray values in the local neighborhood. Filters using this technique are called median filters.
- Median filters work in successive image windows in a fashion similar to linear filters, i.e.
 - Sort the pixels into ascending order by gray level.
 - Select the value of the middle pixel as the new value for pixel [i, j].

Median Filter

Gaussian Filter

- The Gaussian filter is a modified version of the Mean filter where the weights of the impulse function are distributed normally around the origin.
 - Hence, the intensity falls in a Gaussian fashion away from the origin.
- Gaussian filters help to reduce noise by suppressing the high-frequency components which come at the cost of a final image being blurred, called Gaussian blur.

Gaussian blur

Gaussian Filter

 Designing Gaussian filters is to compute the mask weights directly from the discrete Gaussian distribution.

$$g[i,j] = ce^{-\frac{i^2+j^2}{2\sigma^2}}$$

where, c is a normalizing constant. By rewriting this as,

$$\frac{g[i,j]}{c} = e^{-\frac{i^2+j^2}{2\sigma^2}}$$

and choosing a value for σ^2 , we can evaluate it over an $n \times n$ window to obtain a kernel, or mask, for which the value at [0,0] equals 1.

Laplacian Filter

- Laplacian filters are also called second derivative filters used to find areas of rapid change (edges) in images.
- Since second derivative filters are very sensitive to noise, it is common to smooth the image (e.g., using a Gaussian filter) before applying the Laplacian.
- Recall Taylor series expansion (for x-direction):

•
$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(x) + \frac{1}{3!}h^3f'''(x) + O(h^4)$$

•
$$f(x-h) = f(x) - hf'(x) + \frac{1}{2}h^2f''(x) - \frac{1}{3!}h^3f'''(x) + O(h^4)$$

• Adding,
$$f(x-h) + f(x+h) = 2f(x) + h^2f''(x) + O(h^4)$$

•
$$\Rightarrow \frac{f(x-h)-2f(x)+f(x+h)}{h^2} = f''(x) + O(h^2)$$

Laplacian Filter

• To find the Laplacian filter, both x- and y-directional filters should be combined together.

$$I_{xx} + I_{yy} =$$

0	1	0			N.	
1	-4	1	*	Ι	$\nabla^2 I(x,y)$	Laplacian filter
0	1	0			/	

- However, it can be observed that, it tends to amplify the noise in the image. Like salt and pepper noise surrounding the center of the filter.
- Hence, first, we use a Gaussian filter on the noisy image data to smoothen it and then subsequently use the Laplacian filter for edge detection.

Laplacian Filter: Alternative Expression

- Let's recall how the partial derivative is calculated in 2D function f that represents a matrix.
- In continuous setting, partial derivative of f with respect to x is defined as follows:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

• However, in computer vision, we are dealing with matrix which is a discrete data. Thus, we approximate it by using finite differences.

$$\frac{\partial f(x,y)}{\partial x} = \frac{f(x+1,y) - f(x,y)}{1} \Rightarrow \boxed{1 -1}$$

• Second derivative by repeated convolution: 1 -1 * 1 -1

Laplacian Filter: Application

$$\frac{\partial^2 I(x,y)}{\partial x^2}$$

$$\frac{\partial^2 I(x,y)}{\partial x^2}$$

$$\frac{\partial^2 I(x,y)}{\partial x^2} + \frac{\partial^2 I(x,y)}{\partial x^2}$$