Author: Biaobin Li

Email: biaobin@ustc.edu.cn

Introduction

This python script could transform string-type input file into <code>ImpactZ.in</code> file. Users have experiences with <code>ELEGANT</code> will enjoy this tool. Right now, not all <code>IMPACT-Z</code> elements are added in the code. Users could go to the python scipts: <code>impactz_parser.py/__default_lattice()</code> and <code>impactz_parser.py/impactzin_lattice()</code> to add the new elements you want to use.

How to run it

Add genimpactzin into your PATH, for my case, add the following line to your .bashrc:

```
1 export PATH=/mnt/d/githubProj/IMPACT-Z/utilities/lattice_parser:$PATH
```

Given the Ite.impz input file:

```
1 genimpactzin lte.impz line
```

which will generate the ImpactZ.in file. Now you can run the ImpactZexe in parallel version as:

```
1 | mpirun -np 4 ImpactZexe
```

4 processes are used as $core_num_T \times core_num_L = 4$.

If you are using the single process version, core_num_T=1, core_num_L=1 should be given. Then just type:

```
1 | ImpactZ.exe
```

Impactz.in is automatically read.

The user is encouraged to have a look in utilities/lattice_parser/examples, one example is given to show how this work.

A simple example

For the convenience of illustration, <code>lte.impz</code> refers to the python level read-in file, <code>ImpactZ.in</code> refers to <code>ImpactZexe</code> read-in file. You can rename <code>lte.impz</code> any other names you like.

The <code>lte.impz</code> file mainly consists of three sections, <code>control</code>, <code>beam</code> and <code>lattice</code> sections. The detailed mapping relationships between <code>ImpactZ.in</code> and <code>lte.impz</code> are listed in the following section. Here we give a simple example for the usage of <code>lte.impz</code>:

```
1 !control section
 2
    !========
 3
   &control
4
 5
   core_num_T = 2;
 6
   core_num_L = 2;
 7
   meshx = 32;
8
   meshy = 32;
9
   meshz = 64;
   kinetic_energy = 300e6;
10
11
   freq_scale = 1.3e9;
12
13
    &end
14
15
   !beam section
16 !=======
17
   &beam
   mass = 0.511001e6;
18
19
   charge = -1.0;
20
21
   distribution_type = 2;
22
   Np = 5000;
23
   total_charge = 1e-9;
24
25
    emit_nx=0.176e-6, beta_x=12.73, alpha_x=-0.85;
26
    emit_ny=0.176e-6, beta_y=12.73, alpha_y=-0.85;
27
28
   sigz=1e-3, sigE=5e3;
29
30
   &end
31
32
   !lattice section
33
   !========
34
   &lattice
35
   !rpn expression is supported,
36
37
    !only a few mathematical operator are added, please see
38
    !lattice_parser.py/rpn_cal() for more details.
39
    ļ-----
40
   % 0.2 sto LB1
   % -4.410 pi * 180 / sto AB1 ! Bend angle
41
42
    BCX11: BEND, L= LB1, ANGLE=AB1, E2=AB1, steps=1,
43
    pipe_radius=2.1640E-02, fint=0.3893
44
    BCX12: BEND, L= LB1, ANGLE= "O AB1 -", E1= "O AB1 -", steps=1,
    pipe_radius=2.1640E-02, fint=0.3893
    BCX13: BEND, L= LB1, ANGLE= "0 AB1 -", E2= "0 AB1 -", steps=1,
45
    pipe_radius=2.1640E-02, fint=0.3893
46
    BCX14: BEND, L= LB1, ANGLE=AB1,
                                  E1=AB1, steps=1,
    pipe_radius=2.1640E-02, fint=0.3893
47
48 D1 : DRIF, L=5.0
49
   Dm : DRIF, L=0.5
50
   BC1 : LINE=(BCX11,D1,BCX12,Dm,BCX13,D1,BCX14)
51
```

Control and beam section

The mapping relationship between <code>ImpactZ.in</code> and <code>lte.impz</code> in <code>control</code> sections are listed as following:

```
1 | line1:
2
    core_num_T core_num_L
 3
4
   line2:
    6 Np integrator error output_ratio
5
7
    line3:
8
    meshx meshy meshz flagbc x_pipe_width y_pipe_width period_len
9
10
    line4:
11
    distribution_type restart sub_cycle 1
12
13
   line5:
14
    Np
15
16
    line6:
17
    current #Q*f_scale
18
19 | line7:
20 | # value defined automatically by charge/mass in the code;
    # the definition of charge and mass, see beam section.
21
22
23 line8-line10:
24 # defined by beam section
25
    alpha_x beta_x emit_x mismatchx mismatchpx offsetX
                                                         offsetPx
    alpha_y beta_y emit_y mismatchy mismatchpy offsetY offsetPy
26
    alpha_z beta_z emit_z mismatchz mismatchE offsetPhase offsetEnergy
27
28
29
   line11:
    current kinetic_energy mass charge freq_scale ini_phase
30
31
```

Control parameters

All control parameters in <a>1te.impz are listed:

Parameter Name	Units	Туре	Default	Description
core_num_T		int	1	processor number for the transverse direction.
core_num_L		int	1	processor number for the longitudinal direction.
integrator		int	1	1 for linear map integrator, 2 for nonlinear Lorentz integrator.
error		int	0	0 for OFF, 1 for ON error studies.
output_ratio		int	1	1 for standard output.
meshx		int	64	space charge grid for x-direction.
meshy		int	64	space charge grid for y-direction.
meshz		int	64	space charge grid for z-direction.
flagbc		int	1	space charge boundary situation, 1 for 3D open. See Ji's manual for more details.
x_pipe_width	m	double	0.014	x pipe width.
y_pipe_width	m	double	0.014	y pipe width.
period_len	m	double	0.10	period length.
restart		int	0	0 for OFF restart, 1 for ON. Restart from some point after stop.
sub_cycle		int	0	0 for no sub-cycle, 1 for ON.
kinetic_energy	eV	double	0	kinetic energy of the beam.
freq_rf_scale	Hz	double	2856e6	scale frequency f_{scal} , $Scxl = c/(2\pi f_{scal}).$
ini_phase		double	0.0	initial phase of the reference particle.
steps_permeter		int	0	how many sc kicks per meter in a single element. steps_permeter=0, element steps=1.
maps_permeter		int	0	how many maps per meter in a single element. maps_permeter=0, element maps=1.
sample_out		int	1e5	how many particles to sample out in watch elements.
slice_bin		int	128	how many slice bins are used in watch elements.

Parameter Name	Units	Туре	Default	Description
pipe_radius	m	double	0.014	pipe radius for all elements, which are not given values to pipe_radius by users in lattice section (default is pipe_radius=0.0 m).

Beam parameters

All beam section parameters in lte.impz are listed:

Parameter Name	Units	Туре	Default	Description
mass	eV	double	0.511e6	mass of the particle.
charge		double	-1.0	-1 for electron.
distribution_type		int	2	6D gaussian distribution. See more options in Ji's manual.
Np		int	1e3	particle number.
total_charge	С	double	1e-9	charge of the beam.
emit_x	m rad	double	0.0	emitance.
emit_nx	m rad	double	0.0	normalized emittance.
beta_x	m	double	1.0	twiss para.
alpha_x		double	0.0	twiss para.
sigx	m	double	0.0	rms bunch size.
sigpx		double	0.0	rms value of $\gammaeta_x/\gamma_0eta_0$
emit_y	m rad	double	0.0	emittance.
emit_ny	m rad	double	0.0	normalized emittance.
beta_y	m	double	1.0	twiss para.
alpha_y		double	0.0	twiss para.
sigy	m	double	0.0	rms bunch size.
sigpy		double	0.0	rms value of $\gammaeta_y/\gamma_0eta_0$
emit_z	deg MeV	double	0.0	twiss para.
beta_z	deg/MeV	double	1.0	twiss para.
alpha_z		double	0.0	twiss para.

Parameter Name	Units	Туре	Default	Description
sigz	m	double	0.0	rms bunch length.
sigE	eV	double	0.0	rms energy spread.

Users could either use twiss parameters to define initial beam distribution, or use rms values. For $\sigma_{ij} \neq 0$ cases, please use twiss-para.

Lattice section

Right now, only a few frequently used elements in ImpactZ.in are added into the python parser.

Elements

DRIFT

0 element.

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	length of drift
steps		int	0	how many sc kicks for this element.
maps		int	0	each half-drift involves computing a map for that half-element, computed by numerical integration with 1 maps
pipe_radius	m	double	0.0	pipe radius

QUAD

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	length
steps		int	0	how many sc kicks for this element.
maps		int	0	map steps.
K_1	$/\mathrm{m}^2$	double	0.0	quadrupole strength, $K_1 = rac{1}{(B ho)_0}rac{\partial B_y}{\partial x}$

Parameter Name	Units	Туре	Default	Description
pipe_radius	m	double	0.0	pipe radius
Dx	m	double	0.0	x misalignment error
Dy	m	double	0.0	y misalignment error
rotate_x	rad	double	0.0	rotation error in x direction
rotate_y	rad	double	0.0	rotation error in y direction
ratate_z	rad	double	0.0	rotation error in y direction

BEND

4 element. A magnetic dipole implemented as a matrix, up to 2nd order. See K. Brown paper for more information.

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	arc length
steps		int	0	how many SC/CSR kicks for this element.
maps		int	0	map steps
angle	rad	double	0.0	bend angle
E1	rad	double	0.0	entrance edge angle
E2	rad	double	0.0	exit edge angle
K_1	$1/\mathrm{m}^2$	double	0.0	quadrupole strength, $K_1=rac{1}{(B ho)_0}rac{\partial B_y}{\partial x}$, not added yet in V2.1 version.
PIPE_RADIUS	m	double	0.0	pipe radius
h1	1/m	double	0.0	entrance pole-face curvature
h2	1/m	double	0.0	exit pole-face curvature
fint		double	0.5	integrated fringe field, set to 0.5 to keep same with ELEGANT.
Dx	m	double	0.0	x misalignment error
Dy	m	double	0.0	y misalignment error
rotate_x	rad	double	0.0	rotation error in x direction

Parameter Name	Units	Туре	Default	Description
rotate_y	rad	double	0.0	rotation error in y direction
ratate_z	rad	double	0.0	rotation error in y direction. This parameter could be used as TILT from ELEGANT. BUT REMEMBER TO SET ERROR=1 IN CONTROL SECTION.
CSR		int	0	0/1, whether to include 1D-CSR effects or not.

RFCW

Ideal sinusoidal RF model, combined with -41 wake element.

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	length
steps		int	0	how many SC kicks for this element.
maps		int	0	map steps
volt	V	double	0.0	peak voltage
gradient	V/m	double	0.0	peak acceleration gradient.
phase	degree	double	0.0	driven phase, sin() function is used (same as ELEGANT, different with IMPACT-Z), $E_z=A\cdot\sin(\mathbf{kz}+\phi)\text{, phase=90 is the}$ crest for acceleration
freq	Hz	double	2.856e9	RF frequency
pipe_radius	m	double	0.0	pipe radius
Dx	m	double	0.0	x misalignment error
Dy	m	double	0.0	y misalignment error
rotate_x	rad	double	0.0	rotation error in x direction
rotate_y	rad	double	0.0	rotation error in y direction
ratate_z	rad	double	0.0	rotation error in z direction

Parameter Name	Units	Туре	Default	Description
wakeflag		int	-1	wakeflag=-1 turn off RF wakefield, wakeflag=5 only turn on longitudinal wake, wakeflag=15 include both longitudinal and transverse wake.
wakefile_ID		int	None	If WAKEFIEL_ID=41, it refers to rfdata41.in , which contains RF structure wakefield, 1st column is s [m], 2nd column is longitudinal wakefield w_L [V/C/m], 3rd and 4th columns are transverse wakefield w_x, w_y [V/C/m²].

DTL

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	length
steps		int	0	how many segments for the element. DIFFERENT from steps in control section, not nseg/m.
maps		int	0	map steps
scale		double	1.0	
freq	Hz	double	324e6	RF frequency
phase	degree	double	0.0	driven phase, sin() function is used (same as ELEGANT, different with IMPACT-Z), $E_z=A\cdot\sin({ m kz}+\phi)$, phase=90 is the crest for acceleration
ID		int	100	file ID for the external field
pipe_radius	m	double	0.0	pipe radius
Lq1	m	double	0.0	quad 1 length
grad1	T/m	double	0.0	quad 1 gradient
Lq2	m	double	0.0	quad 2 length
grad2	T/m	double	0.0	quad 2 gradient

Parameter Name	Units	Туре	Default	Description
Dx_q	m	double	0.0	x misalignment error for quad
Dy_q	m	double	0.0	y misalignment error
rotate_x_q	rad	double	0.0	rotation error in x direction
rotate_y_q	rad	double	0.0	rotation error in y direction
ratate_z_q	rad	double	0.0	rotation error in z direction
Dx_RF	m	double	0.0	x misalignment error for quad
Dy_RF	m	double	0.0	y misalignment error
rotate_x_RF	rad	double	0.0	rotation error in x direction
rotate_y_RF	rad	double	0.0	rotation error in y direction
ratate_z_RF	rad	double	0.0	rotation error in z direction

SC

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	length
steps		int	0	how many segments for the element. DIFFERENT from steps in control section, not nseg/m.
maps		int	0	map steps
scale		double	1.0	field scale factor
ID		int	100	file ID for the external field
phase	degree	double	0.0	driven phase, sin() function is used (same as ELEGANT, different with IMPACT-Z), $E_z=A\cdot\sin(\mathbf{kz}+\phi)\text{, phase=90 is the}$ crest for acceleration
freq	Hz	double	324e6	RF frequency
pipe_radius	m	double	0.0	pipe radius
Dx	m	double	0.0	x misalignment error

Parameter Name	Units	Туре	Default	Description
Dy	m	double	0.0	y misalignment error
rotate_x	rad	double	0.0	rotation error in x direction
rotate_y	rad	double	0.0	rotation error in y direction
ratate_z	rad	double	0.0	rotation error in z direction

FIELDMAP

Parameter Name	Units	Туре	Default	Description
L	m	double	0.0	length
steps		int	0	how many segments for the element. DIFFERENT from steps in control section, not nseg/m.
maps		int	0	map steps
scale		double	1.0	
ID		int	100	file ID for the external field
phase	degree	double	0.0	driven phase, sin() function is used (same as ELEGANT, different with IMPACT-Z), $E_z = A \cdot \sin(\mathbf{kz} + \phi) \text{, phase=90 is the}$ crest for acceleration
freq	Hz	double	324e6	RF frequency
Xradius	m	double	0.0	pipe radius
Yradius	m	double	0.0	pipe radius
Dx	m	double	0.0	x misalignment error
Dy	m	double	0.0	y misalignment error
rotate_x	rad	double	0.0	rotation error in x direction
rotate_y	rad	double	0.0	rotation error in y direction
ratate_z	rad	double	0.0	rotation error in z direction
datatype		int	1	1 using discrete data, 2 using both discrete data and analytical function, other using analytical function only

Parameter Name	Units	Туре	Default	Description
coordinate		int	2	1 in cylindrical coordinate, 2 in Cartesian

SHIFTCENTER

-1 and -19 element.

Parameter Name	Units	Туре	Default	Description
option		string	"zdE"	(1). option="zdE", then shift the beam longitudinally to the bunch centroid so that $< z> = <\Delta E> = 0. \ \mbox{(2). option="xy",}$ then shift the beam so that $< x> = < y> = 0.$

usage:

```
1 elem1: shiftcenter, option="zdE";
```

WATCH

-2 and -8 elements.

Parameter Name	Units	Туре	Default	Description
filename_ID		int	9999	number larger than 1000 is recommended.
sample_freq		int	0	particles sample out frequency. If not set, sample_out in control section will take effects.
slice_bin		int	0	bins number for getting histogram slice information. If not set, slice_bin in control section will take effects.
coord_info		int	1	0/1, whether to output particles phase space, i.e. whether to add -2 element.
slice_info		int	1	0/1, whether to output slice information, i.e. whether to add -8 element.

Output particle distribution and beam slice information into fort.N and fort.(N+1e4) files repectively, where N is the filename_ID.

If filename_ID = 1001, then the output file would be fort.1001 and fort.11001. fort.11001 refers to Impact-Z -8 element output file (+10000), which outputs slice information. The columns in this file are as following:

Column number	Units	Description
1	m	bunch length
2		particle number per slice
3	А	current per slice
4	mrad	x-direction normalized slice emittance
5	mrad	y-direction normalized slice emittance
6		relative slice energy spread, dE/E
7	eV	uncorrelated energy spread per slice
8	m	$\langle x \rangle$
9	m	$\langle y \rangle$

RCOL

-13 element, collimate the beam with transverse rectangular aperture sizes. Name same with Elegant.

Parameter Name	Units	Туре	Default	Description
x_max	m	double	0.04	xmax for x direction.
y_max	m	double	0.04	ymax for y direction.
x_min	m	double	None	By default, x_min=None, then x_min=-x_max is applied.
y_min	m	double	None	By default, y_min=None, then y_min=-y_max is applied.

The None default values are from the reason that ELEGANT only has x_max and y_max settings.

ECOL

-14 element, collimate the beam with transverse elliptical aperture size.

Parameter Name	Units	Туре	Default	Description
x_max	m	double	0.04	half-axis in x direction.

Parameter Name	Units	Туре	Default	Description
y_max	m	double	0.04	half-axis in y direction.

ROTATE

-18 element, rotate the beam with respect to the longitudinal axis.

Parameter Name	Units	Туре	Default	Description
angle	rad	double	0	Both (x,y), and (px,py) are rotated.

This element refers to -18 element, the souce code is:

```
do i = 1, innp
1
2
        tmpx = Pts1(1,i)*cos(phi)+Pts1(3,i)*sin(phi)
3
        tmpy = -Pts1(1,i)*sin(phi)+Pts1(3,i)*cos(phi)
        tmppx = Pts1(2,i)*cos(phi)+Pts1(4,i)*sin(phi)
4
        tmppy = -Pts1(2,i)*sin(phi)+Pts1(4,i)*cos(phi)
        Pts1(1,i) = tmpx
6
7
        Pts1(2,i) = tmppx
8
        Pts1(3,i) = tmpy
9
        Pts1(4,i) = tmppy
10 enddo
```

SCATTER

-20 element.

Parameter Name	Units	Туре	Default	Description
dE	eV	double	0	rms scattering for ΔE [eV]. dE=1000, then increase energy spread 1keV.