This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

BUNDESREPUBLIK DEUTSCHLAND

Bescheinigung

REC'D 06 JUL 1998
WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Die Siemens Aktiengesellschaft in München/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Verfahren und Anordnung zur Ermittlung mindestens eines digitalen Signalwerts aus einem elektrischen Signal"

am 30. April 1997 beim Deutschen Patentamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole H 03 M, H 04 B und G 06 F der Internationalen Patentklassifikation erhalten.

München, den 9. April 1998

Der Präsident des Deutschen Patentamts

Im Auftrag

Schulen!---

Aktenzeichen: 197 18 424.3

Beschreibung

Verfahren und Anordnung zur Ermittlung mindestens eines digitalen Signalwerts aus einem elektrischen Signal

5

10

Ziel der von Claude Shannon 1948 begründeten Informationstheorie ist es, leistungsfähige Codes zur Codierung, Übertragung und Decodierung digitaler Daten zu entwickeln und bei der Decodierung die verfügbaren Informationen der codierten Daten möglichst optimal auszunutzen.

Bei der Decodierung digitaler Daten wird zwischen zwei Arten der Decodierung unterschieden:

- Bei der sog. Hard-Decision-Decodierung wird ein empfangenes, durch die Übertragung über einen Kanal verrauschtes Signal in eine Folge digitaler Daten decodiert, wobei lediglich
 der digitale Wert des jeweils empfangenen Signals klassifiziert wird;
- bei der sog. Soft-Decision-Decodierung wird für jedes zu
 decodierende Informationszeichen zusätzlich eine A posteriori-Wahrscheinlichkeit für den zu klassifizierenden Wert ermittelt. Solche A posteriori-Wahrscheinlichkeiten werden auch
 als Soft-Outputs bezeichnet und bilden ein Maß für die Zuverlässigkeit der Decodierung.

5

Im weiteren wird die Soft-Decision-Decodierung betrachtet.

Grundlagen über sog. Block-Codes sind aus [2] bekannt.

30 Aus [3] ist es bekannt, für einen binären linearen Blockcode eine Soft-Decision-Decodierung durchzuführen.

Im weiteren wird das Verfahren aus [3] zur exakten Berechnung digitaler Signalwerte aus einem elektrischen Signal unter Verwendung der sog. Log-Likelihood-Algebra erläutert.

20

25

30

können, wird ein weiterer Codierungsschritt, die Kanalcodierung, durchgeführt.

Bei der Kanalcodierung wird, wie in [1] beschrieben, den eingehenden Codewörtern \underline{u} gezielt Redundanz hinzugefügt, um mögliche Übertragungsfehler korrigieren zu können und somit eine hohe Übertragungszuverlässigkeit zu sichern. Im folgenden wird davon ausgegangen, daß bei der Kanalcodierung jedem Codewort $\underline{u} \in \{\pm 1\}^k$ ein Kanalcodewort $\underline{c} \in \{\pm 1\}^n$, n > k, $n \in \mathbb{N}$, zugeordnet wird. Die Ausgabe der Einrichtung zur Kanalcodierung besteht somit aus Codewörtern der Form $\underline{c} \in \{\pm 1\}^n$.

Die Kanalcodewörter werden über einen physikalischen Kanal, beispielsweise eine Teilnehmeranschlußleitung, Koaxialkabel, Mobilfunk, Richtfunk, etc., von einer Sendeeinrichtung zu einer Empfängseinrichtung übertragen.

Da der physikalische Kanal oftmals keine diskreten Symbole, sondern nur zeitkontinuierliche Signale (also spezielle Funktionen s: $\Re \to \Re$) übertragen kann, ist oftmals ein Modulator vorgesehen, durch den dem Kanalcodewort \underline{c} eine für die Übertragung über den physikalischen Kanal geeignete Funktion zugeordnet wird. Eine wichtige Kenngröße des gesendeten elektrischen Signals ist die mittlere Energie E_b , die für die Übertragung eines Informationsbits des Kanalcodeworts \underline{c} verwendet wird.

Da bei der Übertragung eines elektrischen Signals über einen physikalischen Kanal eine Störung auftreten kann, wird im allgemeinen ein elektrisches Signal $\tilde{\mathbf{s}}: \Re \to \Re$, welches gegenüber dem gesendeten elektrischen Signal verändert ist, empfangen.

Die Störung wird mit Methoden der stochastischen Signaltheorie beschrieben. Eine Kenngröße der Störung ist die bekannte einseitige Rauschleistungsdichte N_0 , die bestimmt ist durch den Kanal. Nach einer eventuellen Demodulation des empfangeFür das aus [3] bekannte Verfahren ergibt sich folgende Ausgangssituation: Gegeben sind natürliche Zahlen k, n und Mensen $J_{k+1},\ldots,J_n\subseteq\{1,\ldots,k\}$, die die Eigenschaften des Kanalcodierers beschreiben, sowie die nichtnegative reelle Zahl $\frac{N_0}{E_b}$. Mit k wird die Anzahl digitaler Werte des Codewortes \underline{u} bezeichnet. Mit n wird die Anzahl der digitalen Werte des Kanalcodewortes $\underline{c}\in\{\pm 1\}^n$, mit n>k, bezeichnet. Die n-k digitalen Werte, die dem Codewort \underline{u} bei der Bildung des Kanalcodewortes \underline{c} hinzugefügt werden, die auch als Prüfbits bezeichnet werden, werden durch $J_{k+1},\ldots,J_n\subseteq\{1,\ldots,k\}$ charakterisiert.

15 Ferner ist ein Wahrscheinlichkeitsraum (Ω, S, P) und eine n-dimensionale Zufallsvariable C

$$\underline{C}: \Omega \to \{\pm 1\}^{n} \tag{6}$$

20 mit folgenden Eigenschaften gegeben:- Komponenten

$$C_1, \ldots, C_k \colon \Omega \to \{\pm 1\}$$
 (7)

der n-dimensionalen Zufallsvariable C sind stochastisch unabhängig und es gilt für alle i=1,..., k:

$$P(\{\omega \in \Omega; C_{\dot{1}}(\omega) = -1\}) = P(\{\omega \in \Omega; C_{\dot{1}}(\omega) = +1\}) = \frac{1}{2}$$
(8).

30 - Für jedes i $\in \{k+1,\ldots,n\}$ und für alle $\omega \in \Omega$ gilt

Die durch diese Verteilung induzierten Wahrscheinlichkeiten werden als A posteriori-Wahrscheinlichkeiten bezeichnet.

Es werden für jedes ε > 0 die folgenden Größen betrachtet:

 $L_{\mathcal{E}}\left(U_{\mathbf{i}}|\underline{y}\right) := \ln \left(\frac{P\left(\left\{\omega \in \Omega; U_{\mathbf{i}}(\omega) = +1\right\} \middle| \left\{\omega \in \Omega; \underline{Y}(\omega) \in M_{\underline{Y}, \mathcal{E}}\right\}\right)}{P\left(\left\{\omega \in \Omega; U_{\mathbf{i}}(\omega) = -1\right\} \middle| \left\{\omega \in \Omega; \underline{Y}(\omega) \in M_{\underline{Y}, \mathcal{E}}\right\}\right)}\right)} = \left(\frac{\sum_{\underline{v} \in C} P\left(\left\{\omega \in \Omega; \underline{C}(\omega) = \underline{v}\right\} \middle| \left\{\omega \in \Omega; \underline{Y}(\omega) \in M_{\underline{Y}, \mathcal{E}}\right\}\right)}{\sum_{\underline{v} \in C} P\left(\left\{\omega \in \Omega; \underline{C}(\omega) = \underline{v}\right\} \middle| \left\{\omega \in \Omega; \underline{Y}(\omega) \in M_{\underline{Y}, \mathcal{E}}\right\}\right)}\right)}$

Für i = 1, ..., k, wobei

10

5

$$\mathsf{M}_{\underline{Y},\varepsilon} := \left[\mathsf{y}_1, \mathsf{y}_1 + \varepsilon \right] \times \ldots \times \left[\mathsf{y}_n, \mathsf{y}_n + \varepsilon \right] \tag{14}$$

und C die Menge aller Kanalcodewörter c bezeichnet.

15 Durch Verwendung des Satzes von Bayes ergibt sich:

15

20

25

30

$$L\begin{pmatrix} \bigoplus_{\mathbf{j} \in \mathbf{J_i}} \mathbf{U_j} | \underline{\mathbf{y}} \end{pmatrix} = \ln \begin{pmatrix} \sum_{\substack{\underline{\mathbf{v}} \in \mathbf{C} \\ \mathbf{v_i} = +1}} \exp \left(-\frac{\left(\underline{\mathbf{y}} - \underline{\mathbf{v}}\right)^T \left(\underline{\mathbf{y}} - \underline{\mathbf{v}}\right)}{\frac{N_0 n}{E_b k}} \right) \\ \sum_{\substack{\underline{\mathbf{v}} \in \mathbf{C} \\ \mathbf{v_i} = -1}} \exp \left(-\frac{\left(\underline{\mathbf{y}} - \underline{\mathbf{v}}\right)^T \left(\underline{\mathbf{y}} - \underline{\mathbf{v}}\right)}{\frac{N_0 n}{E_b k}} \right) \end{pmatrix}$$
(17)

Die Deocodierung bei dem bekannten Verfahren erfolgt derart, daß für den Fall, daß das Zuverlässigkeitsmaß einen Wert größer 0 aufweist, die i-te Komponente ui des zu rekonstruierenden Codewortes ü mit dem zweiten Wert (logisch "1" oder logisch "-1") rekonstruiert wird. Für einen Wert des Zuverlässigkeitsmaßes kleiner 0 wird dem digitalen Signalwert der erste Wert (logisch "0" oder logisch "+1") zugeordnet. Für den Wert des Zuverlässigkeitsmaßes gleich 0 kann man sich willkürlich für den ersten oder den zweiten Wert entscheiden. Der Absolutbetrag des Zuverlässigkeitsmaßes ist ein Maß für die Zuverlässigkeit der obigen Entscheidungsregeln. Je größer der Absolutbetrag ist, desto zuverlässiger ist die Rekonstruktion

Nachteilig an diesem bekannten Verfahren ist der Aufwand zur rechnergestützten Ermittlung des Zuverlässigkeitsmaßes. Die Ermittlung des Zuverlässigkeitsmaßes erfordert im allgemeinen einen Aufwand an Additionen, der proportional zu $\min(2^k,\ 2^{n-k})$ ist. Somit ist die direkte Berechnung der Zuverlässigkeitsmaße und die Ermittlung der digitalen Werte abhängig von den Zuverlässigkeitsmaßen häufig nicht numerisch realisierbar. Für den sog. BCH(255, 191)-Code (vgl. [2]) wären für die Berechnung der 191 Zuverlässigkeitsmaße und digitalen Signalwerte ca. 10^{20} Additionen erforderlich.

Somit liegt der Erfindung das Problem zugrunde, ein Verfahren und eine Anordnung zur Ermittlung mindestens eines digitalen

10

In einer Weiterbildung des Verfahrens ist es vorteilhaft, daß die Approximation des Zuverlässigkeitsmaßes derart erfolgt, daß eine Zielfunktion optimiert wird, wobei die Zielfunktion ein Modell eines Übertragungskanals, über den das elektrische Signal übertragen wurde, enthält.

Durch diese Ausgestaltung ist eine sehr einfache und somit schnell durchführbare Möglichkeit angegeben, die sogar die Eigenschaften des Übertragungskanals und somit die Störeigenschaften des gestörten Signals berücksichtigt.

Die Minimierung der Zielfunktion, die als Approximationskriterium die Eigenschaften des Kanals in Form des Modells enthält, führt dazu, daß die Effizienz des Verfahrens bzw. der Anordnung erheblich verbessert wird. Durch diese Weiterbildung wird eine gegenüber bekannten Verfahren bei gleicher Bitfehlerwahrscheinlichkeit bei der Ermittlung der digitalen Signalwerte eine erhebliche Reduktion des Signal-/Rausch-Verhältnisses $\frac{N_0}{E_{\rm b}}$ erreicht. Die Verbesserung des Signal-

rauschverhältnisses beträgt je nach verwendeter Kanalcodierung bis annähernd 3 dB, was der theoretisch maximal erreichbaren Verbesserung entspräche.

Schon eine Einsparung von 1 dB kann beispielsweise bei der
Funkübertragung von Raumsonden zu einer Kostenersparnis von
etwa 75 Mio US-\$ bei dem Bau der Raumsonde führen. Somit wird
auch für den Sender erhebliche Kosteneinsparung möglich, wenn
die Decodierung nach dieser Weiterbildung erfolgt, bzw. die
Anordnung gemäß der Weiterbildung derart eingerichtet ist,
daß die Approximation durch Optimierung einer Zielfunktion,
die ein Modell des Übertragungskanals enthält, erfolgt, erreicht wird.

Ferner ist es in einer Weiterbildung sowohl des Verfahrens 35 als auch der Anordnung vorteilhaft, daß die Zielfunktion nach folgender Vorschrift gebildet wird: dieser Anwendung ein verbessertes Signal-/Rausch-Verhältnis von erheblicher Bedeutung ist.

In den Figuren sind Ausführungsbeispiele der Erfindung beschrieben, die im weiteren näher erläutert werden.

Es zeigen

15

- Fig. 1 ein Ablaufdiagramm, in dem das Verfahren, welches in einer Recheneinheit durchgeführt wird, in seinen einzelnen Verfahrensschritten dargestellt ist;
 - Fig. 2 ein Blockschaltbild, bei dem das Senden, das Übertragen und das Empfangen des elektrischen Signals dargestellt ist;
- 15 Fig. 3 eine Skizze eines Funkübertragungssystems;
 - Fig. 4 eine Skizze eines Archivierungssystems zur Archivierung digitaler Daten.

In Fig. 2 ist symbolisch eine Quelle 201 dargestellt, von der aus eine Nachricht N zu einer Senke 209 übertragen werden soll.

Die zu übertragende Nachricht N wird einem Quellencodierer 202 zugeführt, wo sie derart komprimiert wird, daß zwar keine Informationen verloren gehen, aber für die Decodierung der Nachricht überflüssige Redundanzinformation eliminiert wird und somit die benötigte Übertragungskapazität verringert wird.

Ausgabe des Quellencodierers 202 ist das Codewort <u>u</u> ∈ {±1}^k, das aus einer Folge digitaler Werte besteht. Dabei ist für jedes Codewort <u>u</u> vorausgesetzt, daß jeder Wert u_i, i=1,...k des Codewortes <u>u</u> mit gleicher Wahrscheinlichkeit einen ersten Wert (logisch "0" oder logisch "+1") bzw. einen zweiten Wert (logisch "1" oder logisch "-1") annimmt.

Im Rahmen der weiteren Betrachtungen wird zur Modellierung des physikalischen Kanals 205 das Modell des sog. AWGN-Kanals, wie oben beschrieben wurde, verwendet. Zur Vereinfachung wird im weiteren sowohl die Einheit zur Modulation 204 als auch die Einheit zur Demodulation 206 des Senders 200 bzw. des Empfängers 211 in dem Modell des Übertragungskanals mit berücksichtigt.

Das elektrische Signal y wird in einer Einheit zur Kanaldecodierung 207 einer Kanaldecodierung unterzogen. Vektorkomponenten yi des elektrischen Signals y enthalten sowohl eine
Vorzeicheninformation als auch eine Betragsinformation.

Die Betragsinformation ist jeweils der Absolutbetrag der Vektorkomponente y_i , der auch als Zuverlässigkeitsinformation für das entsprechende Vorzeichen der Vektorkomponente y_i bezeichnet wird.

Bei der Kanaldecodierung besteht die Aufgabe, eine sog. Soft20 Decision-Decodierung durchzuführen. Dies bedeutet, daß zum einen ein rekonstruiertes Codewort $\underline{\tilde{u}}$ rekonstruiert wird und ferner für jede Komponente eine Zuverlässigkeitsinformation ermittelt wird, das die getroffene Entscheidung zur Rekonstruktion einer Komponente $\underline{\tilde{u}}_i$ des rekonstruierten Codeworts $\underline{\tilde{u}}$ beschreibt. Eine Komponente $\underline{\tilde{u}}_i$ des rekonstruierten Codeworts $\underline{\tilde{u}}$ wird im weiteren als digitaler Signalwert bezeichnet.

Das rekonstruierte Codewort $\tilde{\mathbf{u}}$, d.h. mindestens ein digitaler Signalwert wird einer Einheit zur Quellendecodierung 208 zugeführt, in der eine Quellendecodierung erfolgt. Das decodierte Signal wird schließlich der Senke 209 zugeführt.

In Fig. 1 ist die Kanaldecodierung 207 detaillierter in Form eines Ablaufdiagramms beschrieben.

- $J_{\dot{1}}$ eine Menge digitaler Werte der Redundanzinformation, und
- j ein weiterer Index

bezeichnet wird,

5 lassen sich im Zähler der Faktor

$$\exp\left(-\frac{\left(y_{i}-1\right)^{2}}{\frac{N_{0}n}{E_{b}k}}\right) \tag{18}$$

und im Nenner der Faktor

_0

$$\exp\left(-\frac{\left(y_{i}+1\right)^{2}}{\frac{N_{0}n}{E_{b}k}}\right) \tag{19}$$

ausklammern.

Nach der Ausklammerung ergibt sich für alle $i=1,\ldots,k$ mit entsprechenden Faktoren τ_i , die nun nicht mehr von den Komponenten y_i des elektrischen Signals abhängen, folgende Vorschrift:

$$20 \quad I(U_{i}|\underline{y}) = \ln \frac{\exp\left(-\frac{(y_{i}-1)^{2}}{\frac{N_{0}n}{E_{b}k}}\right)}{\exp\left(-\frac{(y_{i}+1)^{2}}{\frac{N_{0}n}{E_{b}k}}\right)} + \tau_{i} = \frac{4E_{b}k}{N_{0}n} y_{i} + \tau_{i}$$
(20).

Für $i = k + 1, \ldots, n$ gilt:

$$\frac{4E_{b}k}{N_{0}n} \underline{Y} = \begin{pmatrix} I(U_{1}|\underline{y}) \\ \vdots \\ I(U_{k}|\underline{y}) \\ \vdots \\ I(U_{k}|\underline{y}) \\ \vdots \\ I(U_{k}|\underline{y}) \\ \vdots \\ I(U_{k}|\underline{y}) \\ \vdots \\ I(U_{j}|\underline{y}) - 1 \\$$

Ersetzt man nun die Werte

5

für
$$i = 1, ..., k$$
 $L(U_i|\underline{y}) = \beta_i; -\tau_i = e_i$
für $i = k + 1, ..., n$ $\rho_i - \tau_i = e_i$ (24),

so folgt daraus das folgende nichtlineare Regressionsproblem:

Patentansprüche

- 1. Verfahren zur Ermittlung mindestens eines digitalen Signalwerts aus einem elektrischen Signal, welches Signalinformation und aus der Signalinformation ermitttelte Redundanzinformation zu der Signalinformation enthält,
- bei dem aus dem elektrischen Signal ein Zuverlässigkeitsmaß zur Bildung des Signalwerts approximiert wird, und
- bei dem abhängig von dem jeweiligen Zuverlässigkeitsmaß der 10 digitale Signalwert ermittelt wird.
 - 2. Verfahren nach Anspruch 1, bei dem mehrere digitale Signalwerte aus dem elektrischen Signal ermittelt werden.

15

- 3. Verfahren nach Anspruch 1 oder 2, bei dem die Approximation des Zuverlässigkeitsmaßes derart erfolgt, daß eine Zielfunktion, die ein Modell eines Übertragungskanals enthält, über den das elektrische Signal übertragen wurde, optimiert wird.
- 4. Verfahren nach Anspruch 3, bei dem das Modell ein nichtlineares Regressionsmodell des Übertragungskanals ist.

5

20

5. Verfahren nach Anspruch 4, bei dem die Zielfunktion nach folgender Vorschrift gebildet wird:

30
$$f = \sum_{i=1}^{k} \left(\beta_{i} - \frac{4E_{b}k}{N_{0}n} y_{i}\right)^{2} + \sum_{i=k+1}^{n} \left(\ln \left(\frac{1 + \prod_{j \in J_{i}} \frac{\exp(\beta_{j}) - 1}{\exp(\beta_{j}) + 1}}{1 - \prod_{j \in J_{i}} \frac{\exp(\beta_{j}) - 1}{\exp(\beta_{j}) + 1}} - \frac{4E_{b}k}{N_{0}n} y_{i} \right)^{2}$$

- 7. Verfahren nach einem der Ansprüche 1 bis 6,
- bei dem das Zuverlässigkeitsmaß eine Vorzeicheninformation und eine Betragsinformation aufweist, und
- bei dem die Ermittlung des Signalwerts nur abhängig von der Vorzeicheninformation erfolgt.
 - 8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem das elektrische Signal ein systematischer Blockcode ist.

- 9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem das elektrische Signal ein Funksignal ist.
- 10. Verfahren nach einem der Ansprüche 1 bis 8,
- 15 bei dem das elektrische Signal ein restauriertes Signal archivierter digitaler Daten ist.
 - 11. Anordnung zur zur Ermittlung mindestens eines digitalen Signalwerts aus einem elektrischen Signal, welches Signalin-
- formation und aus der Signalinformation ermittelte Redundanzinformation zu der Signalinformation enthält, mit einer Recheneinheit, die derart eingerichtet ist,
 - daß aus dem elektrischen Signal ein Zuverlässigkeitsmaß zur Bildung des Signalwerts approximiert wird, und
 - daß abhängig von dem jeweiligen Zuverlässigkeitsmaß der digitale Signalwert ermittelt wird.
- 12. Anordnung nach Anspruch 11,
 mit einer Empfängereinheit zum Empfangen des elektrischen Signals und zur Zuführung des elektrischen Signals zu der Recheneinheit.
- 13. Anordnung nach Anspruch 12,
 mit einer Demodulatoreinheit zur Demodulation des elektrischen Signals, die über einen Eingang mit der Empfängereinheit und über einen Ausgang mit der Recheneinheit verbunden ist.

- No eine einseitige Rauschleistungsdichte,
- n eine Anzahl von in dem Signal enthaltenen digitalen Signalwerten,
- Eb eine mittlere Signalenergie für einen der k Signalwerte,
- k eine Anzahl in dem elektrischen Signal enthaltener digitaler Signalwerte,
- y ein Vektor aus \Re^n , welcher das Signal beschreibt,
- 10 C die Menge aller Kanalcodeworte,
 - \underline{C} eine n-dimensionale Zufallsgröße zur Beschreibung des Signalwerts,
 - v ein Vektor aus C,
 - i ein Index zur eindeutigen Bezeichnung des Signal-
- 15 werts v_i ,

25

- $U_{\mathbf{i}}$ eine Zufallsvariable des Signalwerts $v_{\mathbf{i}}$,
- $L(U_i|y)$ das Zuverlässigkeitsmaß,
- J_i eine Menge digitaler Werte der Redundanzinformation, und
- j ein weiterer Index

bezeichnet wird.

- 19. Anordnung nach einem der Ansprüche 11 bis 18, bei der die Recheneinheit derart eingerichtet ist, daß die Zielfunktion einer globalen Minimierung unterzogen wird.
 - 20. Anordnung nach einem der Ansprüche 11 bis 19, welche einem Funkübertragungssystem zugeordnet ist.

Zusammenfassung

Verfahren und Anordnung zur Ermittlung mindestens eines digitalen Signalwerts aus einem elektrischen Signal

5

10

Das elektrische Signal enthält Signalinformation aus der Signalinformation ermittelte Redundanzinformation zu der Signalinformation. Aus dem elektrischen Signal wird ein Zuverlässigkeitsmaß zur Bildung mindestens eines Signalwertes approximiert und abhängig von dem Zuverlässigkeitsmaß wird der Signalwert ermittelt. Dies erfolgt dadurch, daß eine Zielfunktion, die ein Modell eines Übertragungskanals enthält, optimiert wird (Schritt 101) und die Approximation unter Verwendung der Zielfunktion (Schritt 102) erfolgt.

15

Sig. Fig. 1

420 Rec'd PCT/PTO 3 1 NOV 1999

Siemens AG New PCT application Our Case P-99,2243 GR 97 P 8046 P US Inventor: Schaeffler

Translation / October 26, 1999 / 911:849(911) / 5370 words