Font Comparison for Probability Cheatsheet

Choose Your Preferred Academic Font

1. Computer Modern (Default LaTeX) 1

1.1 **Fundamental Definitions**

Random Variable A function $X:\Omega\to\mathbb{R}$ that assigns a real number to each outcome in the sample space Ω .

Independence Events A and B are independent if:

$$P(A \cap B) = P(A)P(B)$$
$$P(A|B) = P(A)$$

Key Probability Rules

Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Law of Total Probability: For partition $\{B_i\}$: $P(A) = \sum_i P(A|B_i)P(B_i)$

1.3 **Expected Value**

The average value of a random variable:

$$E(X) = \sum_{x} x \cdot P(X = x)$$
 (discrete)

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (continuous)

Linearity: E(aX + bY + c) = aE(X) + bE(Y) + c

Variance: $Var(X) = E(X^2) - [E(X)]^2$

Common Distributions

Binomial: $X \sim \text{Bin}(n, p)$ has PMF $P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$ **Poisson:** $X \sim \text{Pois}(\lambda)$ has PMF $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ has PDF $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Properties: $E(X) = \mu$, $Var(X) = \sigma^2$

To use: No package needed (default LaTeX font)

2 2. Times New Roman (Most Professional)

2.1 Fundamental Definitions

Random Variable A function $X:\Omega\to\mathbb{R}$ that assigns a real number to each outcome in the sample space Ω .

Independence Events A and B are independent if:

$$P(A \cap B) = P(A)P(B)$$
$$P(A|B) = P(A)$$

2.2 Key Probability Rules

Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Law of Total Probability: For partition $\{B_i\}$: $P(A) = \sum_i P(A|B_i)P(B_i)$

2.3 Expected Value

The average value of a random variable:

$$E(X) = \sum_{x} x \cdot P(X = x)$$
 (discrete)

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (continuous)

Linearity: E(aX + bY + c) = aE(X) + bE(Y) + c

Variance: $Var(X) = E(X^2) - [E(X)]^2$

2.4 Common Distributions

Binomial: $X \sim \text{Bin}(n, p)$ has PMF $P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}$

Poisson: $X \sim \text{Pois}(\lambda)$ has PMF $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ has PDF $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

Properties: $E(X) = \mu$, $Var(X) = \sigma^2$

To use: \usepackage{newtxtext,newtxmath}

3. Palatino (Academic Elegance) 3

Fundamental Definitions 3.1

Random Variable A function $X: \Omega \to \mathbb{R}$ that assigns a real number to each outcome in the sample space Ω .

Independence Events A and B are independent if:

$$P(A \cap B) = P(A)P(B)$$
$$P(A|B) = P(A)$$

Key Probability Rules

Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Law of Total Probability: For partition $\{B_i\}$: $P(A) = \sum_i P(A|B_i)P(B_i)$

3.3 **Expected Value**

The average value of a random variable:

$$E(X) = \sum_{x} x \cdot P(X = x)$$
 (discrete)

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (continuous)

Linearity: E(aX + bY + c) = aE(X) + bE(Y) + c

Variance: $Var(X) = E(X^2) - [E(X)]^2$

Common Distributions

Binomial: $X \sim \text{Bin}(n, p)$ has PMF $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Poisson: $X \sim \text{Pois}(\lambda)$ has PMF $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ has PDF $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Properties: $E(X) = \mu$, $Var(X) = \sigma^2$

To use: \usepackage{mathpazo}

4. Charter (Clean & Readable) 4

Fundamental Definitions 4.1

Random Variable A function $X: \Omega \to \mathbb{R}$ that assigns a real number to each outcome in the sample space Ω .

Independence Events A and B are independent if:

$$P(A \cap B) = P(A)P(B)$$
$$P(A|B) = P(A)$$

Key Probability Rules 4.2

Bayes' Theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

Law of Total Probability: For partition $\{B_i\}$: $P(A) = \sum_i P(A|B_i)P(B_i)$

4.3 **Expected Value**

The average value of a random variable:

$$E(X) = \sum_{x} x \cdot P(X = x)$$
 (discrete)

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
 (continuous)

Linearity: E(aX + bY + c) = aE(X) + bE(Y) + c

Variance: $Var(X) = E(X^2) - [E(X)]^2$

Common Distributions

Binomial: $X \sim \text{Bin}(n, p)$ has PMF $P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$

Poisson: $X \sim \text{Pois}(\lambda)$ has PMF $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$

Normal: $X \sim \mathcal{N}(\mu, \sigma^2)$ has PDF $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Properties: $E(X) = \mu$, $Var(X) = \sigma^2$

To use: \usepackage{charter}

Font Comparison Summary

Quick Comparison Guide:

Times New Roman
Palatino
Charter
Computer Modern

Most professional, widely recognized
Elegant, excellent for academic work
Clean, great readability for dense math
Classic LaTeX, familiar to academics

My Recommendation:

For a probability cheatsheet that needs to look serious and professional, **Times New Roman** provides the best balance of professionalism and mathematical readability.

Instructions:

- 1. Review each font option in this PDF
- 2. Choose your preferred font
- 3. Add the corresponding package to your main cheatsheet file
- 4. Recompile to see the change