IN THE SPECIFICATION:

Please amend the paragraph beginning at page 17, line 8 as follows:

Particularly preferable examples of $[[R^6]]$ $\underline{R^{6a}}$ and $[[R^{11}]]$ $\underline{R^{11a}}$ include groups represented by the formula $-CH_2R^{12}$ wherein R^{12} is a straight- or branched-chain $C_{1.9}$ alkyl group in which at least one hydrogen atom is substituted by fluorine. Preferable examples of R^{12} include straight- or branched-chain $C_{1.6}$ alkyl groups in which at least one hydrogen atom is substituted by fluorine, such as fluoromethyl, difluoromethyl, trifluoromethyl, perfluoroethyl, perfluoropropyl, $CF_3CF_2(CH_2)_5$, HCF_2CF_2 , $H(CF_2)_4$, $H(CF_2)_6$, $(CF_3)_2CH$, CF_3CHFCF_2 , etc.

Please amend the paragraph beginning at page 18, line 9 and bridging to page 19, line 6 as follows:

X₁, X₂, X₃ and X₄ each represent an anionic moiety of the individual starting organic salts. The anionic moiety is a conjugate base of a Brönsted acid. Examples of such Brönsted acids include Brönsted acids with strong acidity, such as sulfuric acid; monomethyl sulfate, monoethyl sulfate and like sulfuric acid monoesters; methansulfonic acid, ethanesulfonic acid, chlorosulfonic acid, fluorosulfonic acid, benzenesulfonic acid, toluenesulfonic acid, nitrobenzenesulfonic acid, trichloromethanesulfonic acid, acids represented by the formula Rf'SO₃H wherein Rf' is a polyfluoroalkyl group, and like sulfonic acids; sulfonimides represented by the formula (RfSO₂)₂NH or (RfSO₂)(Rf'SO₂)NH wherein Rf and Rf' are different and each represents a polyfluoroalkyl group; formic acid, acetic acid, butyric acid, valeric acid, trifluoroacetic acid, perfluorobutyric acid,

perfluorooctanoic acid, 3H-octafluorobutyric acid, trichloroacetic acid and like carboxylic acids; $HB(OCOC_{5})_{4}$, $HB(OCOC_{5})_{5}$, $HB(OCOC_{5})_{5}$, $HB(OCOC_{5})_{5}$, $HB(OCOC_{5})_{5}$, and like organic acids; HBF_{4} , HPF_{6} , $HSbF_{6}$,

HAsF₆, HBCl₄, HBCl₃F, HSbCl₆, HSbCl₅F, HClO₄, HNO₃, HAlCl₄, HAl₂Cl₇ and like inorganic acids; etc.