CS536 Science of Programming - Assignment 3

Batkhishig Dulamsurankhor - A20543498

February 22, 2024

Problem 1

Solution:

a) Let $S \equiv \mathbf{if} \ x > y \to x \coloneqq x - 1 \square x > y \to y \coloneqq y + 1 \square x + y = 4 \to x \coloneqq y/x \square x + y = 4 \to x \coloneqq x/y \ \mathbf{fi}$, and let $\sigma = \{x = 3, y = 1\}$. Calculate $M(S, \sigma)$.

```
 \langle S,\sigma\rangle = \langle \ \mathbf{if} \ x>y \to x \coloneqq x-1 \ \Box \ x>y \to y \coloneqq y+1 \ \Box \ x+y=4 \to x \coloneqq y/x \ \Box \ x+y=4 \to x \coloneqq x/y \ \mathbf{fi} \ , \sigma\rangle \\ = \langle \ \mathbf{if} \ x>y \to x \coloneqq x-1 \ \Box \ x>y \to y \coloneqq y+1 \ \Box \ x+y=4 \to x \coloneqq y/x \ \Box \ x+y=4 \to x \coloneqq x/y \ \mathbf{fi} \ , \{x=3,y=1\}\rangle \\ \to^* \langle \ \mathbf{if} \ T\to x \coloneqq x-1 \ \Box \ T\to y \coloneqq y+1 \ \Box \ T\to x \coloneqq y/x \ \Box \ T\to x \coloneqq x/y \ \mathbf{fi} \ , \{x=3,y=1\}\rangle \\ \langle S,\sigma\rangle \to \langle x \coloneqq x-1, \{x=3,y=1\}\rangle \to^* \langle E, \{x=2,y=1\}\rangle \\ \langle S,\sigma\rangle \to \langle y \coloneqq y+1, \{x=3,y=1\}\rangle \to^* \langle E, \{x=3,y=2\}\rangle \\ \langle S,\sigma\rangle \to \langle x \coloneqq y/x, \{x=3,y=1\}\rangle \to^* \langle E, \{x=0.33,y=1\}\rangle \\ \langle S,\sigma\rangle \to \langle x \coloneqq x/y, \{x=3,y=1\}\rangle \to^* \langle E, \{x=3,y=1\}\rangle \\ M(S,\sigma) = \{\{x=2,y=1\}, \{x=3,y=2\}, \{x=0.33,y=1\}, \{x=3,y=1\}\}
```

b) Let $W \equiv \operatorname{do} x > y \to x \coloneqq x - 1 \square x > y \to y \coloneqq y + 1 \square x + y = 4 \to x \coloneqq y/x \square x + y = 4 \to x \coloneqq x/y \text{ od}$, and let $\sigma = \{x = 3, y = 1\}$. Calculate $M(W, \sigma)$.

- After the first iteration, we have the following states as we calculated above: $\{\{x=2,y=1\},\{x=3,y=2\},\{x=0.33,y=1\},\{x=3,y=1\}\}$
- After the second iteration, from state $\{x=2,y=1\}$ we have: $\{\{x=1,y=1\},\{x=2,y=2\}\}$, from state $\{x=3,y=2\}$ we have: $\{\{x=2,y=2\},\{x=3,y=3\}\}$, state $\{x=0.33,y=1\}$ doesn't satisfy any conditions, and state $\{x=3,y=1\}$ appears again so it diverges \perp_d .
- After the third iteration, state $\{x=1,y=1\}$ and state $\{x=3,y=3\}$ doesn't satisfy any conditions, from state $\{x=2,y=2\}$ we have: $\{x=1,y=2\}$.
- Thus, $M(S, \sigma) = \{\{x = 0.33, y = 1\}, \bot_d, \{x = 1, y = 1\}, \{x = 3, y = 3\}, \{x = 1, y = 2\}\}$

Problem 2

Solution: