



## Урок 7

Работа, законы изменения и сохранения энергии

Курс подготовки к вузовским олимпиадам 11 класса №1. Лодка длиной L наезжает, двигаясь по инерции, на отмель и останавливается из-за трения, когда половина её длины оказывается на суше. Какова была начальная скорость лодки? Коэффициент трения µ.

№2. Лёгкая пружина жёсткостью k и длиной I стоит вертикально на столе. С высоты H на неё падает небольшой шарик массой m. Какую максимальную скорость будет иметь шарик при своём движении вниз? Трением пренебречь.



№3. Ребёнок скатывает с горки на санках. Какую скорость будут иметь санки у подножья горы, если её высота H=15 м, угол наклона  $\alpha=30^{\circ}$ , а коэффициент трения линейно нарастает вдоль пути от 0 до  $\mu_0=0,4$  у подножья?

№4. На доске, наклонённой под углом  $\alpha = 30^{\circ}$  к горизонту, удерживают в покое однородную гибкую верёвку длиной L = 40 см так, что на доске лежит 4/7 длины верёвки, а 3/7 висит вертикально. Трение верёвки о доску отсутствует. Верёвку отпускают, и она движется, оставаясь в одной и той же вертикальной плоскости. Найдите скорость верёвки в момент, когда она соскользнёт с доски и примет вертикальное положение.

№5. Из духового ружья стреляют в спичечный коробок, лежащий на расстоянии L от края стола. Пуля массой m, летящая горизонтально со скоростью  $V_0$ , пробивает коробок и вылетает из него со скоростью  $V_0/2$ . Масса коробка M. При каких значениях коэффициента трения между коробком и столом коробок упадёт со стола?



№6. На гладкой горизонтальной поверхности лежит доска длиной L и массой М. На краю доски покоится небольшой брусок. На брусок начинает действовать постоянная горизонтальная сила, так что он движется вдоль доски с ускорением, которое больше ускорения доски. Найдите ускорение, с которым двигалась доска, если за время движения по ней бруска выделилось количество теплоты Q.

№7. Шарик висит на пружине в поле тяжести. В положении равновесия в пружине запасена энергия, равная  $U_0$ . Шарик оттягивают вниз так, что в пружине запасается энергия  $U_1 = 9U_0/4$ , а затем отпускают.



- 1) Чему равна величина максимального ускорения  $a_{max}$ , с которым движется шарик во время возникших вертикальных колебаний?
- 2) Чему равна кинетическая энергия движения шарика в момент, когда его ускорение составляет половину максимального? Затуханием колебаний пренебречь.

№8. Небольшой груз соскальзывает без начальной скорости по наклонной плоскости. Известно, что коэффициент трения между грузом и плоскость изменяется по закону  $\mu(x) = \alpha x$ , где x — расстояние вдоль плоскости от начального положения груза. Опустившись на высоту H по вертикали, груз останавливается. Найдите максимальную скорость груза в процессе движения.

№9. Однородный гибкий канат массой m и длиной L прикреплён к бруску массой 2m, находящемуся на горизонтальной поверхности стола. Со стола свешивается половина длины каната. Коэффициент трения бруска о стол µ. Трением каната о стол и направляющий жёлоб пренебречь. Брусок удерживают в покое, а затем отпускают. Найти скорость бруска в момент, когда канат соскользнёт со стола.



№10. Космонавты, высадившиеся на Луну, должны возвратиться на базовый космический корабль, который летает по круговой орбите на высоте, равной радиусу Луны  $R_{\rm Л}=1700$  км. Какую начальную скорость V на поверхности Луны необходимо сообщить лунной кабине, чтобы стыковка с базовым кораблём стала возможной без дополнительной коррекции модуля скорости кабины? Ускорение свободного падения Луны  $g_{\rm Л}=1,7$  м/с².

№11. На гладкой горизонтальной поверхности стола находятся три бруска, соединённые лёгкой нитью и пружиной жёсткостью  $k=22\,$  H/м. Масса пружины  $m=0,2\,$  кг и равномерно распределена вдоль оси ненапряжённой пружины. Массы брусков  $m_1=m$ ,  $m_2=2m$ ,  $m_3=3m$ . Под действием горизонтальной силы  $F_0=2,1\,$  H, приложенной к бруску  $m_1$ , система движется по столу, а длина пружины увеличивается на 30% по сравнению с длиной ненапряжённой пружины.

- 1. Найти ускорение системы.
- 2. Найти силу натяжения Т нити.
- 3. Найти длину  $L_0$  нерастянутой пружины.





mapenkin.ru

## ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович ПЕНКИН

- w /penkin
- /mapenkin
- fmicky@gmail.com