Graph: Part 4 - Representation

Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

References and acknowledgements

- Materials of these slides are taken from:
 - Kenneth H. Rosen. Discrete Mathematics and Its Applications, 8ed. McGraw-Hill, 2019. Section 10.3.
 - Jean Gallier. Discrete Mathematics Second Edition in Progress, 2017 [Draft].
 Section 8.2.
 - Robin J. Wilson. *Introductio to Graph Theory*, 4ed, 1996. Chapter 1.
- Figures taken from the above books belong to their respective authors. I do not claim any rights whatsoever.

Representing graph

Besides the usual visualization, it is often useful to represent graphs using other types of structures. Here, we shall discuss

- adjacency list;
- adjacency matrix;
- incidence matrix.

Adjacency list

Definition

Let G=(V,E) be a graph. The **adjacency list** of G is a list L indexed using nodes in V and given a node x, L(x) contains the list of all neighbors of x (where duplicates are allowed).

- Adjacency list can be used for both directed and undirected graphs
- If G is undirected, then L(x) contains y iff L(y) contains x.
- If G has n loops at node x, then L(x) contains n copies of x.
- The more edges a graph can have, the longer each neighbor list tends to be.

Give the adjacency list of the following graph.

Give the adjacency list of the following graph.

Adjacency matrix of undirected graphs

Definition

Let G=(V,E,st) be an undirected graph with n nodes v_1,\ldots,v_n . An adjacency matrix \mathbf{A} (or \mathbf{A}_G) of G is the $n\times n$ matrix $[a_{ij}]$ whose (i,j)th entry is

$$a_{ij} = \begin{cases} 2k & \text{if } i = j \text{ and } k = |\{e \in E \mid st(e) = \{v_i\}\}| \\ k & \text{if } i \neq j \text{ and } k = |\{e \in E \mid st(e) = \{v_i, v_j\}\}| \end{cases}$$

- Each loop at node v_i adds 2 to the entry a_{ii} .
- Each edge between v_i and v_j adds 1 to each of the entry a_{ij} and a_{ji} .
- In particular, for a simple graph without loops and parallel edges, the adjacency matrix contains only zero or one and its diagonal entries are all zero.
- Adjacency matrix of undirected graphs are symmetric on the main diagonal.
- Sum over the *i*th row = sum over the *i*th column = $deg(v_i)$

Give the adjacency matrix of the following graph.

Adjacency matrix of directed graphs

Definition

Let G = (V, E, s, t) be a digraph with n nodes v_1, \ldots, v_n . An adjacency matrix \mathbf{A} (or \mathbf{A}_G) of G is the $n \times n$ matrix $[a_{ij}]$ whose (i, j)th entry is

$$a_{ij} = |\{e \in E \mid s(e) = v_i, t(e) = v_j\}|$$

- ullet (i,j)th entry is the number of edges from v_i to v_j
- Sum over the *i*th row = $\deg^+(v_i)$, i.e., outdegree of v_i .
- Sum over the *i*th column = $\deg^-(v_i)$, i.e., indegree of v_i .
- Diagonal entry a_{ii} is the number of loops at v_i .
- Adjacency matrix of directed graphs may not be symmetric.

Give the adjacency matrix of the following graph.

Incidence matrix of undirected graphs

Definition

Let G=(V,E,st) be an undirected graph with $V=\{v_1,\ldots,v_m\}$ and $E=\{e_1,\ldots,n\}$. The **incidence matrix** of \mathbf{D} (or \mathbf{D}_G) of G is the $m\times n$ matrix $[d_{ij}]$ whose (i,j)th entry is:

$$d_{ij} = \begin{cases} 2 & \text{if } \{v_i\} = st(e_j) \\ 1 & \text{if } \{v_i\} \subset st(e_j) \\ 0 & \text{otherwise} \end{cases}$$

- d_{ij} is 2 if e_i is a loop at v_i and 1 if e_i is not loop, but incident at v_i
- Sum over the *i*th row = $deg(v_i)$
- Sum over the jth column = 2.

Give the incidence matrix of the following graph

Incidence matrix of directed graphs

Definition

Let G=(V,E,s,t) be a digraph with $V=\{v_1,\ldots,v_m\}$ and $E=\{e_1,\ldots,n\}$. The incidence matrix of \mathbf{D} (or \mathbf{D}_G) of G is the $m\times n$ matrix $[d_{ij}]$ whose (i,j)th entry is:

$$d_{ij} = \begin{cases} 2 & \text{if } s(e_j) = t(e_j) = v_i \\ 1 & \text{if } s(e_j) = v_i \neq t(e_j) \\ -1 & \text{if } t(e_j) = v_i \neq s(e_j) \\ 0 & \text{otherwise} \end{cases}$$

- If e_j is a loop, d_{ij} is 2. Otherwise, d_{ij} is 1 if v_i is the source of e_j , and -1 if v_i is the target of e_j
- Outdegree $\deg^+(v_i) = \sum_{d_{ij}=1} d_{ij} + \frac{1}{2} \sum_{dij=2} d_{ij}$. Indegree $\deg^-(v_i) = \sum_{dij=-1} |d_{ij}| + \frac{1}{2} \sum_{dij=2} d_{ij}$
- Sum over the jth column is 2 if e_j is a loop and 0 otherwise.

Give the incidence matrix of the following graph

