Гипероктаэдральные комбинаторные типы

Сергей Воробьев

Санкт-Петербургский Государственный университет

2012

Введение

Обычные species $\widehat{\mathbb{B}}$ (Joyal)

$$F \colon \mathbb{B} \to \mathbf{Set}$$

Комбинаторная интерпретация — структуры на точках.

Введение

H-species (Bergeron)

$$F: \mathbb{HB} \to \mathbf{HSet}$$

Комбинаторная интерпретация — структуры на гранях куба.

$$\S, \S, \square, \square$$

Аналитический функтор

Аналогично species, аналитический функтор для h-species является левым расширением по Кану функтора F относительно i.

$$\mathcal{F} = \sum_{n} F[\bar{n}] \times A^{\bar{n}}/B_{n}$$

Где $A^{\bar{n}}$ задает отображение, сохраняющее инволюцию. Раскраска.

Цикленный индекс

- * Процедура декатегорификации.
- * Морфизм из моноидальной категории в какую-то алгебру функций.
- * Весовая функция (один вес для орбиты).
- * Коэффициент при мономе соотвествующий весу.
- * Моноцвета и бицвета.
- * Моноструктуры и биструктуры.
- * В отличии от обычных species, для h-species разумно рассматривать пару $(\mathcal{Z}^{(1)},\mathcal{Z}^{(2)})$ для моноструктур и биструктур.
- * Считаем относительно переменных x_i, y_i . В симметричных функциях $\psi_{\mathsf{x}}, \psi_{\mathsf{x},\mathsf{v},\mathsf{v}}$.

Формулы для цикленного индекса

$$\mathcal{Z}_{F}^{(1)} + 2\mathcal{Z}_{F}^{(2)} = \sum_{n} \frac{1}{2^{n} n!} \sum_{\sigma \in \mathcal{B}_{n}} \chi(\sigma) \psi_{x,y,y}^{\lambda^{1}(\sigma)} \psi_{x}^{\lambda^{2}(\sigma)} = \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1}\lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1}\lambda^{2}}}$$
(1)

$$\mathcal{Z}_{F}^{(1)} + \mathcal{Z}_{F}^{(2)} = \frac{1}{2} \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1}\lambda^{2}}) \frac{\psi_{x,y,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1}\lambda^{2}}} + \frac{1}{2} \sum_{n,\lambda_{o}^{1} + \lambda_{o}^{2} + \lambda_{o}^{1} + \lambda_{o}^{2} + \lambda_{e}^{1} + \lambda_{e}^{2} \vdash n} \chi(\sigma_{\lambda_{o}^{1}\lambda_{o}^{2}\lambda_{e}^{1}\lambda_{e}^{2}}) \frac{\psi_{x,y,y}^{\lambda_{e}^{1} + \lambda_{o}^{2}} \psi_{x}^{\lambda_{e}^{2} + \lambda_{o}^{1}}}{z_{\lambda_{o}^{1}\lambda_{o}^{2}\lambda_{e}^{1}\lambda_{e}^{2}}} \tag{2}$$

Где λ_o — циклы нечетной длинны, λ_e — циклы четной длинны.

Формула для композиционного произведения

$$\mathcal{Z}_{F\circ G}^{(1)/(2)}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y,y}^{1}, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{3}, \dots) = \\
\mathcal{Z}_{F}^{(1)/(2)}(\mathcal{Z}_{G}^{(1)}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y,y}^{1}, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{3}, \dots), \\
\mathcal{Z}_{G}^{(1)}(\psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{4}, \psi_{x,y,y}^{6}, \dots), \\
\mathcal{Z}_{G}^{(1)}(\psi_{x}^{3}, \psi_{x}^{6}, \psi_{x}^{9}, \dots, \psi_{x,y,y}^{3}, \psi_{x,y,y}^{6}, \psi_{x,y,y}^{9}, \dots), \\
\dots, \\
[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y,y}^{1}, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{3}, \dots), \\
[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots, \psi_{x,y,y}^{2}, \psi_{x,y,y}^{4}, \psi_{x,y,y}^{6}, \dots), \\
[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{3}, \psi_{x}^{6}, \psi_{y}^{9}, \dots, \psi_{x,y,y}^{3}, \psi_{x,y,y}^{6}, \psi_{x,y,y}^{9}, \dots), \\
\dots)$$
(3)

Формула для композиционного произведения для простых симметрических функций

$$\begin{split} \psi_{\mathsf{x}}^{i} \circ (\mathcal{Z}_{\mathsf{G}}^{(1)}, \mathcal{Z}_{\mathsf{G}}^{(2)}) &= \mathcal{Z}_{\mathsf{G}}^{(1)} (\psi_{\mathsf{x}}^{i}, \psi_{\mathsf{x}}^{2i}, \psi_{\mathsf{x}}^{3i}, \dots, \\ \psi_{\mathsf{x}}^{i}, \psi_{\mathsf{x}}^{2i}, \psi_{\mathsf{x}}^{3i}, \dots) \end{split}$$

$$\psi_{x,y,y}^{i} \circ (\mathcal{Z}_{G}^{(1)}, \mathcal{Z}_{G}^{(2)}) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}]_{G}(\psi_{x}^{i}, \psi_{x}^{2i}, \psi_{x}^{3i}, \dots, \psi_{x}^{i}, \psi_{x}^{2i}, \psi_{x}^{3i}, \dots)$$

Примеры

(1)

$$[\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\overset{\Diamond}{\bullet} \times \overset{\Diamond}{\bullet}) = [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\overset{\Diamond}{\bullet}) \times [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}](\overset{\Diamond}{\bullet}) = (\psi^1_{x,y,y})^2$$

Произведение сохраняется для $\mathcal{Z}^{(1)}, [\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}].$

(2)

$$A \circ \stackrel{\circ}{\bullet} = \stackrel{\circ}{\bullet} \circ A = A$$

← единица подстановки.

(3)

$$\square \circ \emptyset = \square$$

Подстановка $^{\lozenge}$, это «стирание различий между противоположными гранями».

Конец

Спасибо за внимание!