Lab 8 - Multiple Indicator, Multiple Causes - MIMIC Models $_{\rm Adam\ Garber}$

Factor Analysis ED 216B - Instructor: Karen Nylund-Gibson

March 30, 2020

Contents

1	Lab	o 8 outline	2				
	1.1	Getting started - following the routine:	2				
	1.2	R-Project instructions:	2				
	1.3	loading (and installing when needed) packages:	2				
2	~~~	Lab 8 - Begin	3				
	2.1	read in data	3				
	2.2	take a look at the EFA data (same indicators used for lab 4) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	3				
	2.3	alternative way to make summary tables using package $\{gtsummary\}$					
	2.4	prepare data frame for analysis (select & reorder columns) $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	3				
3	Est	imate the Unconditional Confirmatory Factor Analysis (CFA) model	4				
	3.1	Lab exercise: How many parameters are there in this model?	4				
	3.2	Make a simple CFA path diagram using package {DiagrammeR}	4				
	3.3	Lab exercise: Count model parameters from the path diagram	6				
4	MI	MIC model 1 - single bivariate covariate	6				
5	MI	MIMIC model 2 - probe for covariate -> indicator DIFF					
6	MI	MIC model 3 - specify covariate -> indicator DIFF	10				
7	MI	MIC model 4 - two covariates & an interaction term	11				
	7.1	create a path diagram of MIMIC model 4	13				
8	MI	MIC model 5 - three continuous covariates	13				
	8.1	create a path diagram of MIMIC model 5 \hdots	14				
	8.2	practice some formatting with semPlot::semPaths()	14				
	8.3	read all models and create table	14				

9	End	l of Lab 8	15
	9.1	References	15

1 Lab 8 outline

- a. Prepare, wrangle, and explore data
- b. Run an unconditional CFA baseline model
- c. Specify a MIMIC model with a single binary covariate
- d. Specify a MIMIC model and probe for DIF
- e. Specify a MIMIC model with a DIF parameter
- f. Specify a MIMIC model with two binary covariates & an interaction
- g. Specify a MIMIC model with three continuous covariates
- h. Experiment with path diagram notation & formatting
- i. We will keep close track of parameters and their status throughout lab

1.1 Getting started - following the routine:

- a. Create an R-Project
- b. Load & istall packages (we will test a NEW method today)

1.2 R-Project instructions:

- a. click "NEW PROJECT" (upper right corner of window)
- b. choose option "NEW DIRECTORY"
- c. choose location of project (too many nested folders = bad for 'MplusObject' function)

Within R-studio under the files pane (bottom right):

- a. click "New Folder" and name folder "data"
- b. click "New Folder" and name folder "mimic_mplus"
- c. click "New Folder" and name folder "figures"

1.3 loading (and installing when needed) packages:

We are testing an alternative method for this procedure today (simply run the code below)

DATA SOURCE: This lab exercise utilizes the NCES public-use dataset: Education Longitudinal Study of 2002 (Lauff & Ingels, 2014) See website: nces.ed.gov

2 ~~~~~ Lab 8 - Begin ~~~~~~~

2.1 read in data

```
lab_data <- read_csv(here("data", "els_sub5_data.csv"))</pre>
```

2.2 take a look at the EFA data (same indicators used for lab 4)

```
stargazer(as.data.frame(lab_data), type="text", digits=1)
```

2.3 alternative way to make summary tables using package {gtsummary}

Characteristic	N	$0, N = 117^1$	$1, N = 632^1$	p-value ²
byincome	749	8.00 (6.00, 10.00)	10.00 (8.00, 11.00)	< 0.001
mth_test	749	48 (41, 55)	52 (45, 58)	< 0.001
rd_test	749	46 (40, 52)	51 (44, 58)	< 0.001
freelnch	685			< 0.001
1		23 (23%)	222 (38%)	
2		9(8.9%)	67 (11%)	
3		14 (14%)	82 (14%)	
4		9 (8.9%)	72(12%)	
5		15 (15%)	89 (15%)	
6		18 (18%)	30 (5.1%)	
7		13 (13%)	22(3.8%)	

¹Statistics presented: median (IQR); n (%)

2.4 prepare dataframe for analysis (select & reorder columns)

```
mimic_data <- lab_data %>%
select(bystlang, freelnch, byincome, # covariates
```

²Statistical tests performed: Wilcoxon rank-sum test; chi-square test of independence

```
stolen, t_hurt, p_fight, hit, damaged, bullied, # factor 1 (indicators)
safe, disrupt, gangs, rac_fght, # factor 2 (indicators)
late, skipped, mth_read, mth_test, rd_test) %>%
mutate(
freeInch = case_when( # Grade 10, percent free lunch - transform to binary
freeInch < 5 ~ 0, # < 50%
freeInch >= 5 ~ 1)) # > 50%
```

3 Estimate the Unconditional Confirmatory Factor Analysis (CFA) model

3.1 Lab exercise: How many parameters are there in this model?

```
(no cheating - i.e., jumping ahead)
```

Number of parameters for the Unconditional CFA model:

- ?? item loadings
- ?? intercepts
- ?? residual variances
- ?? factor variances
- ?? factor co-variance

3.2 Make a simple CFA path diagram using package {DiagrammeR}

```
# starting simple...
grViz(" digraph CFA_basic {
    node [shape=box]
    Y1; Y2; Y3; Y4; Y5;
    node [shape=circle, width = 0.9]
    F1;
    edge []
    F1->{Y1 Y2 Y3 Y4 Y5}
}")
```



```
cfa_m0 <- mplusObject(</pre>
  TITLE = "CFA model0 - LAB 8 mimic models",
  VARIABLE =
    "usevar = stolen-rac_fght;",
  ANALYSIS =
    "estimator = mlr;",
 MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
    FACTOR_2 BY safe disrupt gangs rac_fght;" ,
 PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(mimic_data),
 rdata = mimic_data)
cfa_m0_fit <- mplusModeler(cfa_m0,</pre>
                            dataout=here("mimic_mplus", "lab8_mimic_data.dat"),
                            modelout=here("mimic_mplus", "lab8_cfa_model0.inp"),
                            check=TRUE, run = TRUE, hashfilename = FALSE)
```

```
# Read in the model to R within the "mimic_mplus" folder
mimic_output1 <- readModels(here("Lab8_FA", "mimic_mplus", "lab8_cfa_model0.out"))</pre>
```

Reading model: /Users/agarber/github/project-site/Lab8_FA/mimic_mplus/lab8_cfa_model0.out

 ${\rm \#}~**~comment~out~the~arguments~"intercepts"~\&~"fixedStyle"~to~make~all~parameters~explicit$

3.3 Lab exercise: Count model parameters from the path diagram

(i.e., count number of arrows)

4 MIMIC model 1 - single bivariate covariate

Number of parameters for the MIMIC model 1 = 33

- 8 item loadings (10 items 2 fixed loadings)
- 10 intercepts
- 10 residual variances
- 2 factor variances
- 1 factor co-variance
- 1 covariate mean
- 1 covariate variance

Figure 1: MIMIC model with single covariate.

```
mimic_m1 <- mplusObject(</pre>
  TITLE = "MIMIC model1 - LAB 8",
  VARIABLE =
   "usevar = freelnch stolen-rac_fght;",
  ANALYSIS =
    "estimator = mlr;",
  MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
    FACTOR_2 by safe disrupt gangs rac_fght;
     FACTOR_1 on freelnch;
     FACTOR_2 on freelnch;" ,
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
  usevariables = colnames(mimic_data),
 rdata = mimic_data)
mimic_m1_fit <- mplusModeler(mimic_m1,</pre>
                            dataout=here("mimic_mplus", "lab8_mimic_data.dat"),
                            modelout=here("mimic_mplus", "lab8_mimic_model1.inp"),
                            check=TRUE, run = TRUE, hashfilename = FALSE)
```

5 MIMIC model 2 - probe for covariate -> indicator DIFF


```
mimic_m2 <- mplusObject(</pre>
  TITLE = "MIMIC model2 - LAB 8",
  VARIABLE =
    "usevar = freelnch stolen-rac_fght;",
  ANALYSIS =
    "estimator = mlr;",
  MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
    FACTOR_2 by safe disrupt gangs rac_fght;
    FACTOR_1 on freelnch;
    FACTOR_2 on freelnch;
     stolen-rac_fght on freelnch@O; ! to check DIFF see modification indices ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (.1);",
  usevariables = colnames(mimic_data),
  rdata = mimic_data)
```

6 MIMIC model 3 - specify covariate -> indicator DIFF

Number of parameters for MIMIC model 3 = 34

- 8 indicator loadings (10 items 2 fixed loadings)
- 10 intercepts
- 10 residual variances
- 2 factor variances
- 1 factor co-variance
- 1 covariate mean
- 1 covariate variance
- 1 DIF (covariate -> indicator)

```
grViz(" digraph mimic_mode_3 {
  graph [overlap = true, fontsize = 12, fontname = Times]
  node [shape = box]
  stolen; t_hurt; p_fight; hit; damaged; bullied; safe; disrupt; gangs; rac_fght;
  node [shape = box, label = 'Percent Free Lunch']
  X;
  node [shape = circle, fixedsize = true, width = 0.9, label = 'Factor 1']
  F1;
  node [shape = circle, fixedsize = true, width = 0.9, label = 'Factor 2']
  F2;
  edge [color = black]
  F1->{stolen t_hurt p_fight hit damaged bullied}
  F2->{safe disrupt gangs rac_fght}
  X->F1 X->F2 X->bullied
}")
```



```
mimic_m3 <- mplusObject(</pre>
 TITLE = "MIMIC model3 - LAB 8",
  VARIABLE =
    "usevar = freelnch stolen-rac_fght;",
  ANALYSIS =
    "estimator = mlr;",
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
    FACTOR_2 by safe disrupt gangs rac_fght;
    FACTOR 1 FACTOR 2 on freelnch;
     bullied on freelnch; ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
 usevariables = colnames(mimic_data),
 rdata = mimic_data)
mimic_m1_fit <- mplusModeler(mimic_m3,</pre>
                            dataout=here("mimic_mplus", "lab8_mimic_data.dat"),
                            modelout=here("mimic_mplus", "lab8_mimic_model3.inp"),
                            check=TRUE, run = TRUE, hashfilename = FALSE)
```

7 MIMIC model 4 - two covariates & an interaction term


```
mimic_m4 <- mplusObject(</pre>
  TITLE = "MIMIC model4 - LAB 8",
  VARIABLE =
    "usevar = freelnch stolen-rac_fght eng_2nd int;",
  ANALYSIS =
    "estimator = mlr;",
  DEFINE =
  "if bystlang == 1 THEN eng_2nd=0;
  if bystlang == 0 THEN eng_2nd=1;
  int = eng_2nd*freelnch;",
  MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;
     FACTOR_2 by safe disrupt gangs rac_fght;
     FACTOR_1 FACTOR_2 on freelnch eng_2nd int; ",
  PLOT = "type = plot3;",
  OUTPUT = "sampstat standardized residual modindices (3.84);",
  usevariables = colnames(mimic_data),
  rdata = mimic_data)
mimic_m4_fit <- mplusModeler(mimic_m4,</pre>
                            dataout=here("mimic_mplus", "lab8_mimic_data.dat"),
                            modelout=here("mimic_mplus", "lab8_mimic_model4.inp"),
                            check=TRUE, run = TRUE, hashfilename = FALSE)
```

7.1 create a path diagram of MIMIC model 4

8 MIMIC model 5 - three continuous covariates


```
mimic_m5 <- mplusObject(
  TITLE = "MIMIC model5 - LAB 8",
  VARIABLE =
    "usevar = byincome mth_test rd_test stolen-rac_fght;",

ANALYSIS =
    "estimator = mlr;",

MODEL =
    "FACTOR_1 by stolen t_hurt p_fight hit damaged bullied;

    FACTOR_2 by safe disrupt gangs rac_fght;</pre>
```

8.1 create a path diagram of MIMIC model 5

8.2 practice some formatting with semPlot::semPaths()

```
semPaths(mimic_output5,
    "stdyx", # plot the standardized parameter estimates (see output section: STDYX)
    intercepts=FALSE,
    fixedStyle = c(1),
    color= list(lat = c("light blue"," light green")),
    sizeMan = 10, sizeInt = 10, sizeLat = 10,
    edge.label.cex=.8,
    fade=FALSE
    )
```

8.3 read all models and create table

9 End of Lab 8

9.1 References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Horst, A. (2020). Course & Workshop Materials. GitHub Repositories, https://https://allisonhorst.github.io/Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidy verse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

UC **SANTA BARBARA**