WHAT IS CLAIMED IS:

1. A PPG phosphoramidite comprising a photolabile hydroxy protecting group, wherein said phosphoramidite nucleoside is of the formula:

wherein

R¹ is selected from the group consisting of hydrogen and alkyl;

R² is selected from the group consisting of hydrogen, alkyl, and an amine protecting group, or R¹ and R² together form an amine protecting group;

each of Z^1 , Z^2 , Z^4 , and Z^6 is independently selected from the group consisting of hydrogen, halide, alkyl, $-OR^{11}$, wherein each R^{11} is independently selected from the group consisting of hydrogen, alkyl, and a hydroxy protecting group or two R^{11} groups form a diol protecting group, or Z^2 and Z^4 together with the carbon atoms to which they are attached and C-3 carbon atom of the carbohydrate ring form a five-to seven membered ring; and

one of Z^3 or Z^5 is $-OR^{12}$ and the other is $-OR^{13}$, where R^{12} is a photolabile hydroxy protecting group and R^{13} is a phosphoramidite.

2. The PPG phosphoramidite according to Claim 1 of the formula:

wherein

 R^1 , R^2 , Z^3 and Z^5 are those defined in Claim 1.

- 3. The PPG phosphoramidite according to Claim 2, wherein Z^3 is $-OR^{13}$ and Z^5 is $-OR^{12}$, where R^{12} and R^{13} are those defined in Claim 1.
- 4. The PPG phosphoramidite according to Claim 3, wherein the photolabile hydroxy protecting group is selected from the group consisting of α-methyl-6-

nitropiperonyloxycarbonyl, 2-(2-nitrophenyl)-2-methylethoxycarbonyl, 2-(2-nitro-6-chlorophenyl)-2-methylethylsulfonyl, and 3',5'-dimethoxybezoinoxycarbonyl.

- 5. The PPG phosphoramidite according to Claim 4, wherein R¹ and R² together form an amine protecting group.
- 6. The PPG phosphoramidite according to Claim 5, wherein R^1 and R^2 together form an amine protecting group of the formula: =CH-N(CH₃)₂.
- 7. A process for producing a non-halogenated nucleoside base containing nucleoside comprising:
- (a) contacting a halogenated nucleoside base with an activated sugar under conditions sufficient to produce a halogenated nucleoside base containing nucleoside; and
- (b) reducing said halogenated nucleoside base containing nucleoside under conditions sufficient to produce said non-halogenated nucleoside base containing nucleoside.
- 8. The process of Claim 7, wherein said non-halogenated nucleoside base containing nucleoside is purified by recrystallization.
- 9. The process of Claim 7, wherein the yield of said non-halogenated nucleoside base containing nucleoside from said halogenated nucleoside base is at least about 50%.
- 10. The process of Claim 7, wherein said halogenated nucleoside base containing nucleoside reducing step comprises hydrogenation of said halogenated nucleoside base containing nucleoside in the presence of a hydrogenation catalyst.
- The process of Claim 7, wherein said non-halogenated nucleoside base containing nucleoside is used in a synthesis of a phosphoramidite nucleoside.
- 12. The process of Claim 11, wherein said phosphoramidite nucleoside is used in a synthesis of an oligonucleoside or an oligonucleotide.
- 1 13. A process for producing a nucleoside comprising a
- 2 hydropyrazolopyrimidine nucleoside base, said process comprising hydrolyzing and reducing
- 3 or reducing and hydrolyzing an iodopyrazolopyrimidine nucleoside of the formula:

6 under conditions sufficient to produce a hydropyrazolopyrimidine nucleoside of the formula:

$$\begin{array}{c|c}
 & O \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

8

7

13 14

15

16

17

18

9 wherein

group; and

10 R¹ is selected from the group consisting of hydrogen and alkyl;

11 R² is selected from the group consisting of hydrogen, alkyl, and an amine 12 protecting group, or R¹ and R² together form an amine protecting group;

R³ is selected from the group consisting of alkyl, and a hydroxy protecting

each of Y¹, Y², Y³, Y⁴, Y⁵, and Y⁶ is independently selected from the group consisting of hydrogen, halide, alkyl, -OR⁴, wherein each R⁴ is independently selected from the group consisting of hydrogen, alkyl, and a hydroxy protecting group or two R⁴ groups form a diol protecting group, or Y² and Y⁴ together with the carbon atoms to which they are

19 attached to and C-3 carbon atom of the carbohydrate ring form a five-to seven membered

20 ring.

- 1 14. The process of Claim 13, wherein R¹, R², Y¹, Y², Y⁴, and Y⁶ are 2 hydrogen, and Y³ and Y⁵ are -OR⁴.
- 1 15. The process of Claim 14, wherein R⁴ are hydrogen.
- 1 16. The process of Claim 15 further comprising producing a PPG
- 2 phosphoramidite of the formula:

6

7

8 9

11

12

13

4 from said hydropyrazolopyrimidine nucleoside,

5 wherein

R¹ is hydrogen and R² is an amine protecting group or R¹ and R² together form an amine protecting group; and

one of R^9 and R^{10} is a phosphoramidite and the other is a hydroxy protecting group,

said PPG phosphoramidite producing step comprises:

(a) (i) contacting said hydropyrazolopyrimidine nucleoside with an amine protecting reagent under conditions sufficient to produce an amine-protected nucleoside of the formula:

14

15 (ii) contacting said amine-protected nucleoside with a hydroxy

16 protecting reagent under conditions sufficient to produce an

amine/monohydroxy protected nucleoside of the formula:

18

19 or

20 (i) contacting said hydropyrazolopyrimidine with a hydroxy
21 protecting reagent under conditions sufficient to produce a

22 monohydroxy protected nucleoside of the formula:

26

24

(ii) contacting said monohydroxy protected nucleoside with an amine protecting reagent under conditions sufficient to produce an amine/monohydroxy protected nucleoside of the formula:

27

wherein

R¹ is hydrogen and R² is an amine protecting group or R¹ and R²
together form an amine protecting group; and
one of R⁷ and R⁸ is hydrogen and the other is a hydroxy protecting
group;

33 and

34

35

1

2

3.

1

2

1

2

- (b) contacting said amine/monohydroxy protected nucleoside with an activated phosphoramidite under conditions sufficient to produce said PPG phosphoramidite.
- 17. The process of Claim 16, wherein said amine protecting reagent is selected from the group consisting of N,N-dialkylformamide dialkylacetal, and N,N-dialkylacetamide dialkylacetal.
- 18. The process of Claim 16, wherein said hydroxy protecting reagent is a photolabile hydroxy protecting reagent.
- 1 19. The process of Claim 18, wherein said photolabile hydroxy protecting reagent is selected from the group consisting of 1-(3,4-methylenedioxy-6-nitrophenyl)ethyl chloroformate, 2-(2-nitrophenyl)-2-methylethyl chloroformate, 2-(2-nitro-6-chlorophenyl)-2-methylethylsulfonyl chloride and 3',5'-dimethoxybezoinoxyl chloroformate.
 - 20. The process of Claim 16, wherein said hydroxy protecting reagent is an acid labile hydroxy protecting reagent.

- 1 The process of Claim 20, wherein said acid labile hydroxy protecting 21. 2 reagent is selected from the group consisting of trityl halide, monomethoxytrityl halide and
- 3 dimethoxytrityl halide.
- The process of Claim 16, wherein said activated phosphoramidite is of 22. 1
- 2 the formula:

$$(i-Pr)_2N$$
 P
 X^2
 OCH_2CH_2CN

wherein 4

3

X² is a leaving group. 5

- The process of Claim 22, wherein X² is selected from the group 23. 1 2 consisting of halide and diisopropylamino.
- The process of Claim 22, wherein R⁹ is dimethoxytrityl and R¹⁰ is a 24. 1 phosphoramidite moiety of the formula -P[N(i-Pr)₂]OCH₂CH₂CN. 2
- 1 25. The process of Claim 13 further comprising producing said nucleoside 2 of Formula I, wherein said nucleoside of Formula I producing step comprises: 3
 - contacting an iodopyrazolopyrimidine of the formula:

5 with an activated sugar of the formula:

9

1

4

under conditions sufficient to produce said nucleoside of Formula I, 7

8 wherein

R¹, R², R³, Y¹, Y², Y³, Y⁴, Y⁵, and Y⁶ are those defined Claim 13; and

X¹ is a leaving group. 10

26. The process of Claim 25 further comprising producing said 2 iodopyrazolopyrimidine nucleoside of Formula I from a pyrimidinone of the formula: HN NOH

3

said iodopyrazolopyrimidine nucleoside producing process comprising:

5 (i) contacting said pyrimidinone with a halogenating agent and a

6 formylating agent under conditions sufficient to produce a dihalopyrimidine carboxyaldehyde

7 of the formula:

8

wherein

each X³ is independently selected from the group consisting of F, Cl, Br and I;

(ii) contacting said dihalopyrimidine carboxyaldehyde with hydrazine

under conditions sufficient to produce a halopyrazolopyrimidine of the formula:

13

12

14 (iii) contacting said halopyrazolopyrimidine with an alkoxide of the

15 formula R³-OM, wherein R³ is alkyl and M is a metal, to produce an

16 alkoxypyrazolopyrimidine of the formula:

17

1

2

1

2

18 and

19 (iv) iodinating said alkoxypyrazolopyrimidine with an iodinating agent

20 under conditions sufficient to produce said iodopyrazolopyrimidine.

1 27. The process of Claim 26, wherein said halogenating agent is selected

2 from the group consisting of POCl₃, iodine monochloride, N-iodosuccinamide and SOCl₂.

28. The process of Claim 26, wherein said formylating agent is a

compound comprising a formyl group attached to a secondary amino group.

29. The process of Claim 28, wherein said formylating agent is selected

from the group consisting of dimethyl formamide, 1-formylpiperidine, 1-formylmorpholine

3 and triformamide.

- 1 30. The process of Claim 26, wherein said iodinating agent is selected
- 2 from the group consisting of iodine monochloride and N-iodosuccinimide.
- 1 31. A process for producing a nucleoside comprising:
- 2 (a) contacting an iodopyrazolopyrimidine of the formula:

4 with an activated sugar of the formula:

$$R^5O$$
 Q
 X^1

- 6 under conditions sufficient to produce an deoxy iodopyrazolopyrimidine nucleoside of the
- 7 formula:

8 9

3

5

- (b) producing an amino dihydro hydropyrazolopyrimidine nucleoside from
- said deoxy iodopyrazolopyrimidine nucleoside, wherein said amino dihydro
- 11 hydropyrazolopyrimidine nucleoside is of the formula:

12

- 13 wherein
- 14 R³ is alkyl;
- R⁵ and R⁶ are hydroxy protecting groups; and
- 16 X¹ is a leaving group.
- 1 32. The process of Claim 31, wherein said step of producing said amino
- 2 dihydro hydropyrazolopyrimidine nucleoside comprises removing said hydroxy protecting
- 3 groups R⁵ and R⁶; hydrolyzing -OR³ group; and reducing the iodine.

- 33. The process of Claim 31 further comprising:
- 2 (c) contacting said amino dihydro hydropyrazolopyrimidine nucleoside
- 3 with an amine protecting reagent under conditions sufficient to produce an amine protected
- 4 nucleoside of the formula:

7

1

- (d) contacting said amine protected nucleoside with a hydroxy protecting reagent under conditions sufficient to produce an amine/monohydroxy protected nucleoside
- 8 of the formula:

9

10 and

- (e) contacting said amine/monohydroxy protected nucleoside with an
- 12 activated phosphoramidite of the formula:

13

under conditions sufficient to produce a PPG phosphoramidite of the formula:

15

16 wherein

- 17 R¹ is hydrogen;
- 18 R² is an amine protecting group;
- or R¹ and R² together form an amine protecting group;

- 20 R⁴ is a hydroxy protecting group; and 21 X² is a leaving group.
 - 1 34. The process of Claim 33, wherein X² is selected from the group 2 consisting of halide, and -N(i-Pr)₂.
- 1 35. The process of Claim 33, wherein R¹ and R² together form a nitrogen protecting group of the formula: =CH-N(CH₃)₂.
- 1 36. The process of Claim 35, wherein R⁴ is selected from the group 2 consisting of an acid labile hydroxy protecting group and a photolabile hydroxy protecting 3 group.
- 37. The process of Claim 36, wherein R⁴ is selected from the group
 consisting of dimethoxytrityl, trityl, pixyl, 1,1-bis(4-methoxyphenyl)-1-pyrenylmethyl, α methyl-6-nitropiperonyloxycarbonyl, 2-(2-nitrophenyl)-2-methylethoxycarbonyl, 2-(2-nitro 6-chlorophenyl)-2-methylethylsulfonyl and 3',5'-dimethoxybezoinoxycarbonyl.
 - 38. The process of Claim 31, wherein said step (b) comprises reducing the iodide by hydrogenation.
- 1 39. The process of Claim 31, wherein said iodopyrazolopyrimidine is 2 produced from a pyrimidinone of the formula:

4 said iodopyrazolopyrimidine producing step comprising:

1

2

3

5

6

7

8

10

11

(i) contacting said pyrimidinone with a halogenating agent and a formylating agent under conditions sufficient to produce a dihalopyrimidine carboxyaldehyde of the formula:

9 wherein each X³ is independently selected from the group consisting of F, Cl, Br and I;

(ii) contacting said dihalopyrimidine carboxyaldehyde with hydrazine under conditions sufficient to produce a halopyrazolopyrimidine of the formula:

(iii) contacting said halopyrazolopyrimidine with an alcohol of the formula

R³-OH to produce an alkoxypyrazolopyrimidine of the formula:

15

16 and

- 17 (iv) iodinating said alkoxypyrazolopyrimidine with an iodinating agent 18 under conditions sufficient to produce said iodopyrazolopyrimidine.
- 1 40. The process of Claim 39, wherein said halogenating agent is selected 2 from the group consisting of POCl₃, iodine monochloride, N-iodosuccinamide and SOCl₂.
- 1 41. The process of Claim 40, wherein said halogenating agent is selected 2 from the group consisting of POCl₃ and SOCl₂.
- 1 42. The process of Claim 39, wherein said formylating agent is selected 2 from the group consisting of dimethyl formamide, 1-formylpiperidine, 1-formylmorpholine 3 and triformamide.
- 1 43. The process of Claim 39, wherein said iodinating agent is selected 2 from the group consisting of iodine monochloride and N-iodosuccinimide.