

# APRENDIZAJE NO SUPERVISADO

Introducción

# TABLA DE CONTENIDOS

O1. INTRODUCCIÓN

AUTOVALORES YAUTOVECTORES

O2. MODELO DE KOHONEN

O5. COMPONENTES PRINCIPALES

O3. MODELO DE HOPFIELD

o6. REGLA DE OJA Y SANGER

# O1 INTRODUCCIÓN

¿Qué es el Aprendizaje No Supervisado?

# SUPERVISADO vs NO SUPERVISADO

APRENDIZAJE SUPERVISADO

El agente tiene acceso a **etiquetas** 

Conocimiento de la variable de **respuesta** 

Tareas bien definidas que no cambian mucho en el tiempo

Clasificación y regresión

APRENDIZAJE **NO** SUPERVISADO

La variable de **respuesta no** es información **disponible** 

Puede resolver problemas menos definidos

Clustering, Asociación y Reducción de Dimensionalidad

# ¿QUÉ ES EL APRENDIZAJE NO SUPERVISADO?

### No se conoce el valor de verdad

¿Cómo sabemos si los resultados que obtenemos son significativos?

Construye modelos de predicción Estrategias para obtener características o patrones y sacar conclusiones

Para una investigación se seleccionan al azar 3500 pacientes hipertensos sobre los que se midieron las siguiente variables:

- Edad
- Duración de los síntomas (cantidad de días)
- Colesterol (mg/dl)
- Sexo
- Peso (kg)
- Presión arterial media (mm Hg)
- Medida del estrés

Se desea saber cuál es el riesgo de que un paciente presente una enfermedad arterial



La dimensión inicial del problema es 7.

Si consideramos 2 variables:

- Presión
- Edad

¿Qué nos dice este gráfico?

La dimensión inicial del problema es 7.

Si consideramos 3 variables:

- Presión
- Edad
- Peso

¿Qué nos dice este gráfico?

### Presión según la edad y el peso del paciente



¿Se puede definir un **índice** que cuantifique la situación de riesgo cardíaco de un paciente con **hipertensión arterial**, teniendo en cuenta **todas las variables**?

#### **PROBLEMAS A RESOLVER:**

- Agrupamiento o Clustering
- Asociaciones
- Reducción de dimensionalidad

# APRENDIZAJE NO SUPERVISADO



# CLUSTERING

- Agrupar observaciones de forma tal que el grado de similitud entre miembros de un mismo grupo sea lo más fuerte posible
- Identificar similitudes entre los datos y asignarlos a un grupo (cluster)
- Implica

definir

similitud



### CLUSTERING

Ej:

**Medicina:** Datos: edad, sexo, peso, colesterol ¿hay ciertos patrones en el conjunto de entrada que me indican si responderá bien ante cierto tratamiento médico?

**Detección de anomalías:** identificar outliers dentro de los clusters

**Estrategias de marketing:** ¿a qué tipos de usuarios está dirigida mi aplicación y cómo puedo mejorar su experiencia?



# ASOCIACIÓN

Encontrar **relaciones** entre los atributos del conjunto de

Memorias Asociativas:

El almacenamiento y recuperación de información por asociación con otros datos

Ej:

Modelo de **Hopfield** 







# **ASOCIACIÓN**

### **Aplicaciones**

Sistemas de recomendación

identificar qué artículos los clientes compran juntos con frecuencia. Se puede utilizar para mejorar la organización de productos y aumentar las ventas

Identificar relaciones entre diferentes síntomas enfermedades





# REDUCCIÓN DE DIMENSIÓN

La reducción de la dimensionalidad **proyecta** el conjunto de datos en un e**spacio menor**, dejando de lado las características menos relevantes

Ej: PCA, Autoencoders

variables



# REDUCCIÓN DE DIMENSIÓN

### **Aplicaciones**

- Identificar qué variables afectan más a cada país para luego invertir (educación, agricultura, inflación, etc)
- Comprimir una imagen y reducir el costo computacional

N variables



variables

### PROBLEMAS DEL APRENDIZAJE SUPERVISADO

### **Etiquetas**

Es costo generar/obtener un gran conjunto de datos donde todos estén **etiquetados**El Aprendizaje No Supervisado no necesita etiquetas

#### **Dimensionalidad**

Cuando tenemos muchas características (features) es costoso encontrar un buena aproximación El Aprendizaje No Supervisado permite la reducción de la dimensionalidad

### **Outliers**

La calidad del conjunto de datos es importante. Si se ignoran los outliers aprenderá de ellos y cometerá más errores

El Aprendizaje No Supervisado agrupa los outliers por un lado y el resto los datos por el otro

# **APLICACIONES**



#### Variables:

- Positive Actions: Likes and Saves
- Negative Actions: "See Fewer Posts Like This" (SFPLT)

Modelo: ResNets



Made For You
Your top mixes

Recommended for today

Inspired by your recent activity.



#### **TU COMPORTAMIENTO**

- Playlists
- Skips
- Favorites
- Shares
- Listening frequency
- Listening time

#### **COMPORTAMIENTO DE OTROS**

- Playlists
- Trending artists
- Artists similar to your favorite artists
- New songs of your liked artists

#### **AUDIO**

- Song spectogram
- Tempo
- Loudness
- Amplitude
- Lyrics

Modelo: CNN

### REDES NEURONALES

En esta materia se estudiarán Métodos de Aprendizaje No Supervisado usando modelos de **Redes Neuronales** 

- Red de Kohonen
- Red de Hopfield
- Modelo de Oja
- Modelo de Sanger

# BIBLIOGRAFÍA

- [1] McKay D.J.C. *Hopfield Networks*. Information Theory, Inference and Learning Algorithms, 2003.
- [2] Anders Krogh John Hertz and Richard Palmer. *Introduction to the Theory of Neural Computation.*Addison-Wesley, 1991.
- [3] T. Kohonen. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 1(43):59–69, 1982.
- [4] T. Kohonen. The self-organizing map. Neurocomputing, pages 1–6, 1998.
- [5] Hiran, K. K., Jain, R. K., Lakhwani, K., & Doshi, R. (2021). *Machine Learning: Master Supervised and Unsupervised Learning Algorithms with Real Examples* (English Edition). BPB Publications.