

Figure 1: The data from Exercise 2

edges: there is no edge between two species,

terminal nodes can only be connected via

Steiner nodes. And each edge represents

either developing or disappearing one or

more genes.

Weights: the weight of each edge is the length of

longest common substring between two DNAs.

the datance function c is the chight.

nodes: each node represents a kind of ONA combination.

D terminal nodes: each kind of species.

@ Steiner nodes: intersection nodes—that connects—to	70
species, the DNA of steiner node	
is the longest common substring between to	Nο
species it connects, and the rest gen	ne
Will leave to O.	
o the longest common substring among each pair is	
'salmon' and 'literal'	
@ Connect Salmon and (72 and with a steiner nodes	
and the gene for that steiner nodes to 111000	>
B the next (ongest common substring among remaining	
Species is the previous steiner unde with sharf	
1 Create a new steiner node to connect the pre	
Steiner node and Shark.	
@ and the new steiner point his the gene (1000	0
6 Connect the lamprey with the newest steiner pos	
With a steiner point that has gone 00000	
O return the Steiner tree, and this tree is to	he
most parsimonious tree	

@ We can treat the M as m DNAs (species) that has
n Characters in each DNA.
1. to construct a parisomonious tree, we first calculate
the longest common substring for each pair (m DNAs).
s. And starting to construct the tree stron the most
Common two genes.
2. Connect the two genes with a steiner node that
has the gene the same as the longest common substraig
of the two genes.
4. and then choose the DNA genes that has the longest
common substring with the previous steiner node
J. connect the next gene and the steiner node with
a new steiner node
6, the new steiner node has gene that to
the longest common Substring of the previous steiner node
and the selected species.
1. Heratively construct the tree until all kind of species
are included.

prob 4:
@ construct a DP table with len(S) columns
and len(T) rows
e if stil = Ttjl;
return 1 + Table Ti-1, j-1j
el>f Scij # T[j];
return 0
@ ex. S= "abcxe", T="abce"
a b c x e
a 1 0 0 6 0
6 0 0 0
c o o 3 o o
e o o o o
@ Find the largest dement in the table, the
(argest number in the table is the length of largest
common substring. And, if we follow the
diagonal values starting from the largest number
cue can get the longeot Cammon Substiting.
ju v v v v v v v v v v v v v v v v v v v
6) the above example will return 3 as the length of
Longest common Substring and the longest common Substring
υ "αb ο".