

第八章 机械波

机械波 —— 机械振动在连续介质内的传播

电磁波 —— 电磁振动在真空或介质中的传播

—— 电磁波__光波__X射线

物质波 —— 微观粒子具有波粒二象性

波函数 —— 描写粒子在空间各点出现的几率

—— 几率波

§ 8.1 地震波的产生与传播

几个问题:

? 地震波如何传播? 上下? 左右? 前后? 传播的速度?

- ? (地震)波如何描述?
- ? (地震)波的能量如何传播?

2015年3月份,美国普林斯顿大学的科学家对地震进行监测,利用检测到的地震波绘制出了精确度较高的地球内部模拟图

如图所示,太平洋下方的地幔,较慢的地震波呈红色和橙色,较快的地震波呈绿色和蓝色。

真空中的<u>闹钟</u>

8.1.1 波的基本概念

机械波产生的条件:

振源 和 传播振动的介质

8.1.2 波是振动相位的传播过程

Distance from equilibrium

8.1.2 横波和纵波

横波 —— 振动方向和传播方向垂直的波

横波的产生 —— 介质切向形变产生的切向弹性力而形成的

—— 质元a向下运动对质元b产生切向弹性力

—— 质元b向下运动对质元c产生切向弹性力

——相邻质元依次作用下去形成横波

—— 只有固体可产生切向弹性力,因此横波只能在固体中传播

纵波——振动方向和传播方向一致的波 纵波的产生——介质的拉伸和压缩 产生的纵向弹性力而形成的

—— 固体__液体__气体都能传播纵波

相邻两个密部或 疏部之间的距离 为纵波的波长

横波

纵波

—— 人们如何能够得知地球内部的构造?

——水面波

—— 从表面上来看水面波好像是横波 实际上水的质元在做圆(或椭圆)运动

8.1.3 波面和波线

波面 —— 某一时刻振动状态相同的质点构成的面

平面波

波线 —— 波的传播方向 在各向同性介质中 —— 波线垂直波面

球面波

球面波 —— 波面为球面

柱面波 —— 波面为柱面

8.1.4 平面简谐波

1 波的频率、波长和波速

—— O点完成一个完整振动__同时向前传出一个完整波形

O点的相 —— 位置12的质点相同

波的周期 —— 振动状态传播一个波长的距离所需时间

$$T = \frac{\lambda}{u}$$

—— 与质点振动的周期 是否相同?

相同!!!

P和Q具有相同的运动状态

波的频率 —— 单位时间通过垂直于传播方向 横截面的完整的波的数目

与质点振动的频率相同

$$\nu = \frac{1}{T}$$

波速 —— 质点的相在介质中传播的速度__与介质有关

$$\frac{dx}{dt} = u$$

- ——振动的相的传播速度
- ——波速和质点运动的速度是否相同?

不同!!!

——一些弹性介质中波的速度

★拉紧绳索或细线中

横波波速
$$u = \sqrt{\frac{F}{\rho_l}}$$

F —— 绳索或细线的张力

 ρ_l —— 质量线密度

★ 液体和气体中

纵波波速
$$u = \sqrt{\frac{K}{\rho}}$$

K — 介质的体变弹性模量

★ 固体(如弹性细棒)中

横波波速
$$u = \frac{G}{r}$$

纵波波速
$$u = \sqrt{\frac{Y}{r}}$$

G — 介质的切变模量

Y —— 介质的杨氏模量

 ρ —— 介质的密度

一般说来,同一固体 Y>G,

因而其中的 $u_{\text{纵波}} > u_{\text{横波}}$ 例如地震波中的纵波速度约为6m/s,而横波速度只有3.5m/s左右

所以**地**震发生后,人们往往 先感觉到纵波引起的上下振动, 再感到横波引起的前后或左右晃动

★ 固体(如弹性细棒)中

横波波速
$$u = \sqrt{\frac{G}{r}}$$

纵波波速
$$u = \frac{Y}{r}$$

G — 介质的切变模量

Y —— 介质的杨氏模量

 ρ —— 介质的密度

声音在不同介质中的传播速度

空气(25℃)

软木

煤油(25°C)

海水(25℃)

铜(棒)

大理石

铝(棒)

铁(棒)

水 (常温)

2 平面简谐波的波函数

——取任意一条波线为X轴原点 ——波线上任一点简谐波 ——沿X轴正方向以速度u传播质点沿Y轴振动

$$y = f(x,t)$$
 ——波动方程__波函数

O点处质点的简谐运动方程 $y_o(t) = A\cos(\omega t + \varphi_0)$

A —— O点振动的振幅

ω —— Ο点振动的角频率

 φ_0 —— O点振动的初相

$$y_o(t) = A\cos(\omega t + \varphi_0)$$
 —— 简谐波是振动状态的传播

——O点的相传到P点所需时间 $\frac{x}{u}$

——P点相比原点O落后 $\omega^{\frac{x}{u}}$

P点的振动方程

$$y(x,t) = A\cos\left[\omega(t-\frac{x}{u}) + \varphi_0\right]$$
 —— 时间和空间的周期性

★波函数的几种表示

$$\begin{cases} y(x,t) = A\cos[2\pi(vt - \frac{x}{\lambda}) + \varphi_0] \\ y(x,t) = A\cos[2\pi(\frac{t}{T} - \frac{x}{\lambda}) + \varphi_0] \\ y(x,t) = A\cos[\frac{2\pi}{\lambda}(ut - x) + \varphi_0] \end{cases}$$

讨论: 简谐波函数的物理意义及相关问题

1) 简谐波函数
$$y(x,t) = A\cos\left[2\pi(vt - \frac{x}{\lambda}) + \varphi_0\right]$$

给定的P点
$$y(t) = A\cos[2\pi(vt - \frac{x_0}{\lambda}) + \varphi_0]$$
 —振动方程

简谐波函数
$$y(x,t) = A\cos[2\pi(vt - \frac{x}{\lambda}) + \varphi_0]$$

当时间给定时 $t=t_0$

$$y(x) = A\cos[2\pi(vt_0 - \frac{x}{\lambda}) + \varphi_0]$$
 —— 各质元的位移

——波形图

波线上任意两点间的相位差为

$$\Delta \varphi = \frac{\omega}{u} \Delta x = \frac{2\pi}{\lambda} \Delta x$$

$$\begin{cases} y(x,t) = A\cos\{2\pi(\nu t - \frac{x}{\lambda}) + \varphi_0\} \\ y(x,t+\Delta t) = A\cos\{2\pi[\nu(t+\Delta t) - \frac{x}{\lambda}] + \varphi_0\} \end{cases}$$

----t时刻和 $t+\Delta t$ 时刻的波形图

2) 波沿X轴的负方向传播

O处质点的振动方程

$$y_o(t) = A\cos(\omega t + \varphi_0)$$

P点的相较O点的超前 $\frac{x}{u}$

P点的振动方程
$$y(x,t) = A\cos\left[\omega(t+\frac{x}{u}) + \varphi_0\right]$$
 ——波函数

★ 已知**M**点振动
$$y(x_0,t) = A\cos[\omega t + \varphi_M]$$

P点的相较M落后 $\omega \frac{x-x_0}{u}$

P点的振动方程

$$y(x,t) = A\cos[\omega(t - \frac{x - x_0}{u}) + \varphi_M]$$

3) 波动微分方程

简谐波的波函数

$$y(x,t) = A\cos[\omega(t - \frac{x}{u}) + \varphi_0]$$

——一维波动方程

对时间二阶偏微分

$$\frac{\partial y^{2}(x,t)}{\partial t^{2}} = -A\omega^{2}\cos[\omega(t-\frac{x}{u}) + \varphi_{0}]$$

对坐标二阶偏微分

$$\frac{\partial y^{2}(x,t)}{\partial x^{2}} = -A \frac{\omega^{2}}{u^{2}} \cos[\omega(t - \frac{x}{u}) + \varphi_{0}]$$

一维波动微分方程

$$\frac{\partial y^2(x,t)}{\partial x^2} = \frac{1}{u^2} \frac{\partial y^2(x,t)}{\partial t^2}$$

----任意一个物理量 ξ ,满足方程

$$\frac{\partial \xi^{2}(\vec{r},t)}{\partial x^{2}} + \frac{\partial \xi^{2}(\vec{r},t)}{\partial y^{2}} + \frac{\partial \xi^{2}(\vec{r},t)}{\partial z^{2}} = \frac{1}{u^{2}} \frac{\partial \xi^{2}(\vec{r},t)}{\partial t^{2}}$$

- —— **ξ**在三维空间中以波的形式传播
- —— 从麦克斯韦电磁场方程组得到自由空间中 电场强度和磁场强度具有波动微分方程形式

03 简谐波问题讨论

- 1) 建立坐标系 —— 原点和x轴正方向
- 2) 问题给出条件 a) 原点振动方程或其它点的振动方程
 - b) t=0 或者 $t=t_0$ 时刻的波形图
- 3) 写出原点 O的振动方程 $y(t) = A\cos(\omega t + \varphi_0)$
- **4)** 写出波动方程 $y(x,t) = A\cos[W(t \mp \frac{x}{u}) + j_0]$
- 5) 画出波形图,或给定一点的振动图形
- 6) 计算给定两点之间的相差,或一点振动速度和加速度

≥ 一平面简谐波沿x轴的正方向传播

已知波函数
$$y(x,t) = 0.02\cos\pi(25t - 0.10x) m$$

- 求: 1) 波的振幅、波长、周期和波速
 - 2) 质点振动的最大速度

$$y(x,t) = 0.02\cos 2\pi (\frac{25}{2}t - 0.05x)$$

$$\uparrow \qquad \qquad \downarrow \lambda = 20 m$$

$$T = 0.08 s$$

$$y(x,t) = A\cos[2\pi (\frac{t}{T} - \frac{x}{\lambda}) + \varphi_0]$$

$$u = \frac{\lambda}{T} = 250 m/s$$

波函数
$$y(x,t) = 0.02\cos\pi(25t - 0.1x)$$
 (m)

$$v = \frac{dy}{dt}$$

$$v = -0.02 \times 25\pi \sin \pi (25t - 0.10x) \quad (m)$$

$$v_{\text{max}} = 0.02 \times 25\pi = 1.57 \, m/s$$

- ৶ 如图为一平面简谐波在 t=0 时刻的波形图 设简谐波频率v=250 Hz,且此时质点P的运动方向向下 求:
 - 1) 该波的波动方程
 - 2) 在距原点 O为100 m处 质点的振动方程 与质点速度表达式

➡ t=0时刻P点向下运动 —— 波沿x轴负方向传播

O点的振动方程
$$y(0,t) = A\cos(500\pi t + \varphi_0)$$

$$\begin{cases} v = 250 \text{ Hz} \\ \lambda = 200 \text{ m} \end{cases}$$

据题意
$$t = 0:$$

$$\begin{cases} y_0 = \frac{\sqrt{2}}{2}A > 0 \\ v_0 < 0 \end{cases}$$

$$y(0,t) = A\cos(500\pi t + \frac{\pi}{4})$$

$$\begin{cases} t \longrightarrow t + \frac{x}{u} \\ u = \lambda v \end{cases}$$

$$\varphi_0 = \frac{\pi}{4}$$

波动方程
$$y(x,t) = A\cos(500\pi t + \frac{\pi x}{100} + \frac{\pi}{4})$$

2) 距原点x = 100 m 处质点的振动方程

波动方程
$$y(x,t) = A\cos(500\pi t + \frac{\pi x}{100} + \frac{\pi}{4})$$

$$\xrightarrow{x=100 m} y(t) = A\cos(500\pi t + \frac{5\pi}{4})$$

质点的速度
$$v = \frac{dy}{dt}$$

$$v = -500\pi A \sin(500\pi t + \frac{5\pi}{4})$$

3 波的能量

- ——波动是机械能的传播的过程
- 以在细绳中传播的波为例
 - —— 截面积为ΔS 绳子
 - ——波沿X轴的正方向传播
- ——振动方向为Y方向

简谐波函数

$$y(x,t) = A\cos[\omega(t - \frac{x}{u}) + \varphi_0]$$

——长度为 Δx 线元,质量线密度 ρ_l

质量
$$\Delta m = \rho_l \Delta x$$

线元速度
$$\upsilon = \frac{\partial y(x,t)}{\partial t} = -A\omega \sin[\omega(t - \frac{x}{u}) + \varphi_0]$$

线元动能
$$E_k = \frac{1}{2}\Delta m v^2 = \frac{1}{2}\rho_l \Delta x A^2 \omega^2 \sin^2[\omega(t-\frac{x}{u}) + \varphi_0]$$

线元的形变 $\Delta l - \Delta x$

线元很小
$$T_1 = T_2 = T$$

张力的功为线元的势能

$$E_p = T(\Delta l - \Delta x)$$

线元势能 $E_p = T(\Delta l - \Delta x)$

$$\Delta l = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \Delta x \left[1 + \left(\frac{\Delta y}{\Delta x}\right)^2\right]^{1/2} \approx \Delta x \left[1 + \left(\frac{\partial y}{\partial x}\right)^2\right]^{1/2}$$

$$\frac{\partial y}{\partial x} << 1$$
 $\sqrt{1+x^2} \approx 1 + \frac{1}{2}x^2$

$$\Delta l \approx \Delta x [1 + \frac{1}{2} (\frac{\partial y}{\partial x})^2]$$

$$E_p = \frac{1}{2}u^2 \rho_l (\frac{\partial y}{\partial x})^2 \Delta x$$

$$E_p = \frac{1}{2}u^2 \rho_l (\frac{\partial y}{\partial x})^2 \Delta x \qquad \frac{\partial y}{\partial x} = A \frac{\omega}{u} \sin[\omega(t - \frac{x}{u}) + \varphi_0]$$

★动能和势能变化的相一致

—— 任一线元的机械能随时间变化 能量以波速u__沿波传播方向传递

——波的传播过程 是能量的传播过程

$$\begin{cases} E_k = \frac{1}{2} \rho_l \Delta x A^2 \omega^2 \sin^2 \left[\omega (t - \frac{x}{u}) + \varphi_0\right] \\ E_p = \frac{1}{2} \rho_l \Delta x A^2 \omega^2 \sin^2 \left[\omega (t - \frac{x}{u}) + \varphi_0\right] \end{cases}$$

动能和势能变化的相位相同!

最大位移

—— 动能和势能为最小

平衡位置

—— 动能和势能为最大

—— 质量元的动能和势能同时达到最大__或最小

4 波的能量密度

质量元的机械能

$$W = \Delta m A^2 \omega^2 \sin^2 \left[\omega (t - \frac{x}{u}) + \varphi_0 \right]$$
$$= (\rho \Delta V) A^2 \omega^2 \sin^2 \left[\omega (t - \frac{x}{u}) + \varphi_0 \right]$$

能量密度
$$\varpi = \frac{W}{\Delta V} \longrightarrow \varpi = \rho A^2 \omega^2 \sin^2 \left[\omega (t - \frac{x}{u}) + \varphi_0\right]$$

平均能量密度
$$\overline{\varpi} = \frac{1}{T} \int_0^T \rho A^2 \omega^2 \sin^2[\omega(t - \frac{x}{u}) + \varphi_0)] dt$$

$$\left[\overline{\sigma} = \frac{1}{2} \rho A^2 \omega^2 \right] - \dots \text{ 能量密度一个周期的平均值}$$

5 波的强度

平均能流 —— 单位时间通过垂直波方向上dS的平均能量

$$\overline{P} = \frac{dW}{dt} = \frac{\overline{\varpi} \cdot [(udt)dS]}{dt}$$

$$\bar{P} = \bar{\varpi}udS$$

平均能量密度

$$\overline{\boldsymbol{\varpi}} = \frac{1}{2} \rho A^2 \omega^2$$

能流密度 —— 单位时间通过单位面积的平均能量

6 波的振幅

平面简谐波 $I = \frac{1}{2}\rho A^2 \omega^2 u$ — 垂直传播方向上 $S_1 = S_2$

单位时间通过平面的平均能量

$$\begin{cases} W_1 = I_1 S_1 = (\frac{1}{2} \rho A_1^2 \omega^2 u) S_1 \\ W_2 = I_2 S_2 = (\frac{1}{2} \rho A_2^2 \omega^2 u) S_2 \end{cases}$$

介质无吸收 $W_1 = W_2 \longrightarrow A_1 = A_2$

$$y(r,t) = A\cos[\omega(t - \frac{r}{u}) + \varphi_0]$$

- 平面简谐波 ——

► 球面波
$$I = \frac{1}{2}\rho A^2 \omega^2 u$$

单位时间通过球面的平均能量

$$W = IS = (\frac{1}{2}\rho A^2 \omega^2 u)S$$

介质无吸收 $W_1 = W_2$

$$\frac{1}{2}\rho A_1^2 \omega^2 u \cdot (4\pi r_1^2) = \frac{1}{2}\rho A_2^2 \omega^2 u \cdot (4\pi r_2^2)$$

$$\frac{A_1}{A_2} = \frac{r_2}{r_1} \xrightarrow{A_1 = A_0} \frac{A_0}{r_1 = 1} \Rightarrow \frac{A_0}{A} = \frac{r}{1}$$

——波面 S_1 和波面 S_2 ——

$$y(r,t) = \frac{A_0}{r} \cos[\omega(t - \frac{r}{u}) + \varphi_0]$$

— 球面简谐波的波函数

7 波的吸收

介质吸收波的能量 —— 部分能量转换为介质的内能

传播dx距离波的振幅增量-dA

$$\int_{A_0}^A \frac{dA}{A} = \int_0^x -\alpha dx$$

$$A = A_0 e^{-\alpha x}$$

$$I_0 = \frac{1}{2} \rho A_0^2 \omega^2 u$$

$$I = I_0 e^{-2\alpha x}$$

$$I = \frac{1}{2} \rho A^2 \omega^2 u$$

$$=I_0e^{-2\alpha x}$$
 —— 波的强度按指数衰减

区别	振动图像	波动图像
研究对象	简谐运动研究一个质点	简谐波研究沿波传播方向上所 有的质点
研究内容	振动研究一个质点的位移随时间的变 化规律	波动研究某一时刻所有质点的 空间分布规律
图形	y A A V T A T	у А Д А Д Д Д Д Д
横坐标	时间	空间位置
物理意义	表示一个质点在各个时刻的位移	表示某时刻各个质点的位移
图线变化	已有的形状不变	沿波的传播方向平移,图像随时间发生变化
横坐标上两同相点的距离	表示周期	表示波长
能量	能量总是在动能和势能之间转换, 总的机械能守恒	波动的传播过程也是能量的传播过程

用

WL

作业: W2-简谐波 波动方程

- **a)** $\mathbf{x_0}$ 点振动方程 $\mathbf{y}(t) = A\cos[\omega t + \varphi_0]$

$$t \longrightarrow t - \frac{x}{u}$$
 波函数 $y(x,t) = A\cos[\omega(t - \frac{x - x_0}{u}) + \varphi_0]$

b) \mathbf{x}_0 点振动方程 $y(t) = A\cos[\omega t + \varphi_0]$

O点振动方程

$$y_O(t) = A\cos[\omega(t - \frac{x_0}{u}) + \varphi_0]$$

$$t \longrightarrow t + \frac{x}{u}$$

波函数
$$y(x,t) = A\cos[\omega(t + \frac{x - x_0}{u}) + \varphi_0]$$

—— 坐标正方向向右
$$y(x,t) = A\cos\left[\omega\left(t - \frac{x - x_0}{u}\right) + \varphi_0\right]$$

—— 坐标正方向向左 $y(x,t) = A\cos\left[\omega(t + \frac{x - x_0}{u}) + \varphi_0\right]$

▶ 振幅 A= 10 cm的平面简谐波沿x轴正方向传播

波的角频率 ω=7π rad/s

当 t=1.0 s 时:

 x_1 =10cm处的A质点正通过其平衡位置向y轴的负方向运动当 t=1.0 s 时:

 x_2 =20cm处的B质点正通过y=5.0 cm的点y轴的正方向运动

设该波波长 λ >10 cm, 求平面波的波动方程。

设波长为
$$\begin{cases} A = 10 \ cm \\ \omega = 7\pi \ rad \ / \ s \\ \lambda > 10 \ cm \end{cases}$$
 波动方程
$$y(x,t) = 10\cos(\omega t - 2\pi \cdot \frac{x}{\lambda} + \varphi_0)$$

$$y(x,t) = 10\cos(7\pi t - 2\pi \cdot \frac{x}{\lambda} + \varphi_0)$$

 $t=1.0s: x_1=10cm处 正通过平衡位置向y轴的负方向运动 <math>t=1.0s: x_2=20cm处B正通过y=5.0cm的点y轴的正方向运动$

波动方程
$$y(x,t) = 10\cos(7\pi t - 2\pi \cdot \frac{x}{\lambda} + \varphi_0)$$

 $t = 1.0 \text{ s}$

$$u$$

$$y_A = 10\cos(7\pi - \frac{20\pi}{\lambda} + \varphi_0) = 0$$

$$7\pi - \frac{20\pi}{\lambda} + \varphi_0 = \frac{\pi}{2}$$

$$\Xi = \mathbf{P}$$

质点B

$$y_B = 10\cos(7\pi - \frac{40\pi}{\lambda} + \varphi_0) = 5$$
$$7\pi - \frac{40\pi}{\lambda} + \varphi_0 = -\frac{\pi}{3}$$

$$\begin{cases} A: 7\pi - \frac{20\pi}{\lambda} + \varphi_0 = \frac{\pi}{2} \\ B: 7\pi - \frac{40\pi}{\lambda} + \varphi_0 = -\frac{\pi}{3} \end{cases}$$
两式相减
$$\lambda = 24 cm$$

$$-\lambda = 24 \ cm \longrightarrow 7\pi - \frac{20\pi}{24} + \varphi_0 = \frac{\pi}{2}$$

$$\varphi_0 = -6\pi + \frac{\pi}{3}$$

波动方程
$$y(x,t) = 10\cos(7\pi t - \frac{\pi}{12}x - 6\pi + \frac{\pi}{3})$$

波动方程
$$y(x,t) = 10\cos(7\pi t - \frac{\pi}{12}x - 6\pi + \frac{\pi}{3})$$

t=1 s时刻O点、A点和B点旋转矢量位相比较

