```
In [24]: import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as sps
import pandas as pd
from statsmodels.sandbox.stats.multicomp import multipletests
%matplotlib inline
```

Out[3]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	sample0	2.754	2.040	0.759	-0.974	0.040	0.334	-0.205	0.904	0.708	-0.159	0.586	0.960
1	sample1	0.506	0.424	2.434	0.554	3.560	0.092	1.214	-0.483	NaN	NaN	NaN	NaN
2	sample2	-0.102	0.609	-0.209	-0.777	-0.356	0.954	-0.590	0.426	-0.934	-0.204	NaN	NaN
3	sample3	-3.638	0.263	-0.336	0.445	-1.346	1.100	-0.659	1.462	0.659	NaN	NaN	NaN
4	sample4	1.379	-0.400	-3.323	-1.824	0.192	-1.063	-0.602	-0.009	NaN	NaN	NaN	NaN
5	sample5	-0.638	0.296	-2.296	-1.521	0.354	0.030	-1.219	-1.408	1.248	-0.579	0.516	1.858
6	sample6	-0.535	0.166	0.459	0.205	-0.482	-0.546	0.632	1.664	0.343	-0.191	-0.589	-0.299
7	sample7	1.326	1.035	1.082	-0.041	-1.384	0.019	-0.688	1.836	NaN	NaN	NaN	NaN
8	sample8	0.028	-0.954	0.229	-0.676	-0.604	-0.722	-3.432	0.114	0.676	-0.993	-0.119	0.003
9	sample9	0.965	0.690	0.823	0.605	-0.225	2.806	1.212	0.663	-1.813	0.967	-1.688	-0.276

1 of 3 05.04.2017 22:21

```
In [23]: for i in range(10):
                               print (samples[i])
                      [ 2.754 2.04
                                                         0.759 -0.974 0.04
                                                                                                         0.334 -0.205  0.904  0.708 -0.159
                          0.586 0.96
                                                         1.758 -0.241 0.7791
                      [ 0.506  0.424  2.434  0.554  3.56
                                                                                                         0.092 1.214 -0.4831
                     [-0.102 0.609 -0.209 -0.777 -0.356 0.954 -0.59
                                                                                                                                         0.426 -0.934 -0.2041
                      [-3.638  0.263  -0.336  0.445  -1.346  1.1
                                                                                                                   -0.659 1.462 0.6591
                      [ 1.379 -0.4
                                                    -3.323 -1.824 0.192 -1.063 -0.602 -0.009]
                      [-0.638 0.296 -2.296 -1.521 0.354 0.03 -1.219 -1.408 1.248 -0.579
                         0.516
                                        1.8581
                      [-0.535  0.166  0.459  0.205  -0.482  -0.546  0.632  1.664  0.343  -0.191
                        -0.589 -0.299]
                      2.80000000e-02 -9.54000000e-01 2.29000000e-01 -6.76000000e-01
                     -6.04000000e-01 -7.22000000e-01 -3.43200000e+00 1.14000000e-01 6.76000000e-01 -9.93000000e-01 -1.19000000e-01 3.00000000e-03] [ 0.965 0.69 0.823 0.605 -0.225 2.806 1.212 0.663 -1.813 0.967
                        -1.688 -0.276 -0.782 0.009]
In [29]: def normality(samples):
                               p_val = np.zeros(len(samples))
                               for i in range(len(samples)):
                                        p val[i] = sps.shapiro(samples[i])[1]
                               return multipletests(p val, alpha=0.05)
In [30]: normality(samples)
Out[30]: (array([False, False, False,
                     dtype=bool),
                       array([ 0.99489923,  0.84643734,  0.99489923,  0.83032883,  0.99489923,  0.99489923,  0.08167792,  0.97083459]
                                                                                                                                                                0.97083459]),
                       0.0051161968918237433,
                       0.005)
                     Нормальность выборок не отвергается
In [33]: def variance_test(samples):
                               return sps.levene(*samples)
In [34]: variance test(samples)
Out[34]: LeveneResult(statistic=0.80438359574895302, pvalue=0.61316086453348229)
                     Гипотеза H' не отвергается
In [38]: sps.f oneway(*samples)
Out[38]: F onewayResult(statistic=2.3297365017058489, pvalue=0.020115921363988196)
                     Условия выполнены, но гипотеза H'': \mu_0 = \mu_1 = \ldots = \mu_9 при уровне доверия 0.05 отвергается
```

2 of 3 05.04.2017 22:21

3 of 3 05.04.2017 22:21