Projeto de um datalogger de baixo custo com interfaces Wi-Fi e Bluetooth

Otto Álan Pinto De Sousa

ottolopes20@gmail.com

Departamento de Engenharia de Teleinformática
Universidade Federal do Ceará

15 de julho de 2022

- 1 Introdução
- 2 Fundamentação Teórica

- 3 Metodologia
- 4 Resultados
- 5 Conclusão

Definição

Um dispositivo *datalogger* é um sistema embarcado que realiza e armazena leituras do ambiente em que está presente por meio de sensores.

- Manual Um operador deve ir ao local de instalação. Preço unitário acessível;
- Automatizada Envio de informações via interface sem fio. Eleva o preço unitário do datalogger.

Desenvolver os esquemáticos eletrônicos e leiaute da placa de circuito impresso de um *datalogger* de baixo custo, com interfaces Wi-Fi e *Bluetooth*, que possa realizar medições de temperatura, umidade e luminosidade.

Objetivos específicos

Os objetivos específicos desse trabalho são:

- Análise de soluções existentes;
- Levantamento de escopo e especificações;
- Criação de arquitetura;
- Seleção de componentes e criação de esquemáticos eletrônicos:
- Desenvolvimento de PCI:
- Mensuração dos custos;
- Definição da autonomia típica;
- Comparativo de mercado.

Sistemas Embarcados

Definição

São sistemas computacionais que são parte integrante de um produto ou ferramenta e são limitados em tamanho, consumo, poder de processamento e custo.

Produtos que possuem um sistema embarcado são:

- Controles remotos;
- Impressoras;
- Eletrodomésticos;
- Automóveis;

Possuem *hardwares* muito diferentes entre si mas há uma estrutura básica que consiste de:

- Unidade de processamento;
- Interfaces de entrada e saída para interação;
- Memórias de dados e de programa;
- Interfaces de comunicação;
- Unidade de fornecimento de energia elétrica;

Tecnologias de processamento

Característica chave em um sistema embarcado, categoriza as variadas formas de como a unidade de processamento é organizada para realizar uma dada tarefa.

- Dispositivos programáveis;
- Possuem grande número de instruções;
- Pode executar múltiplos processos simultaneamente;
- Menor tempo de desenvolvimento;
- Maior custo unitário.

Processadores especializados

- Número de instruções reduzidos;
- Menor custo e poder de processamento;
- Menor custo unitário;
- Maior tempo de desenvolvimento;
- Podem ser programados;

Processadores especializados

- Microcontroladores
 - CPU, RAM, I/O, UART, I²C e SPI em um mesmo chip;
 - Otimizado para aplicações de controle;
 - Não lida com grande volume de dados ou cálculos complexos;
- Digital Signal Processors
 - Semelhante a microcontroladores;
 - Realiza operações de adição e multiplicação mais eficientemente;
 - Processa grande volume de dados;
 - Otimizado para processamento de sinais;

- Não programáveis;
- Implementa instruções para uma aplicação em específica;
- Maior custo de desenvolvimento:

Processadores dedicados

- Application Specific Integrated Circuit (ASIC)
 - Circuito integrado de aplicação específica;
 - Possui a lógica necessária para execução de tarefas;
 - Não permite reconfiguração da lógica implementada;
- Field Programmable Gate Array
 - Semelhante ao ASIC:
 - Matriz de blocos lógicos reconfiguráveis;
 - Conexões programáveis interligam os blocos da matriz;
 - Permite a reconfiguração da lógica implementada;

- Circuito integrado formado por diversos módulos que compõem um sistema computacional;
- Visa reduzir o número de Cls utilizados em um sistema embarcado;
- Implementa módulos além de CPU, RAM e I/Os;
 - Módulos de comunicação sem fio;
 - Módulos de processamento de sinais.

- Um sistema embarcado deve atingir a dependabilidade;
 - Segurança da informação;
 - Confidencialidade;
 - Operação segura;
 - Confiabilidade;
 - Reparabilidade;
- Realizar uso eficiente dos recursos computacionais disponíveis;

Soluções existentes

- Busca de dispositivos com as seguintes propriedades:
 - Leitura de umidade e temperatura;
 - Comunicação sem fio;
 - Opção de alimentação por bateria;
- Análise de custo e propriedades de soluções existentes.

Modelo	Fabricante	Preço (R\$)	Mercado	Nível de Proteção	Interface sem Fio
RCW-360	Elitech	1.499,00	Nacional	IP64/IP65	WiFi
EL-WiFi-TH	Lascar Electronics	1.305,14	Estrangeiro	IP55	WiFi
TandD RTR-507B	TandD	2.242,57	Estrangeiro	IP64	Interface Própria
160 TH	testo	2.842,00	Nacional	IP20	WiFi

tiny: o autor

Tabela: Dataloggers: Propriedades

Modelo	Dimensões	Autonomia	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	Não informado	3 meses	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	82 x 70 x 23 mm	6 meses	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	62 x 47 x 19 mm	10 meses	-25 a 70	0,3	0 a 99	2,50
160 TH	76 x 64 x 22 mm	Não informado	-30 a 50	0,1	0 a 100	2

tiny: o autor

Escopo de projeto

Desenvolvimento um datalogger de baixo custo que seja capaz de ler temperatura, umidade relativa e luminosidade de um ambiente em que ele estiver instalado. Deve ser possível que essas leituras sejam realizadas periodicamente de forma que o intervalo mínimo entre cada possa estar na casa dos segundos e devem ser armazenadas em uma mídia de armazenamento de massa removível para facilitar o resgate dessas informações posteriormente.

Especificações técnicas

- Possuir a capacidade de ler a temperatura do ambiente;
- Possuir a capacidade de ler a umidade relativa do ambiente;
- Possuir a capacidade de ler o nível de luminosidade do ambiente;
- 4 Possuir alternativa de alimentação direta ou via bateria;
- Leitura de sensores via interfaces I²C, SPI e/ou UART;
- Persistir os dados em um cartão SD para facilitar a recuperação manual dos dados coletados;
- Persistência dos dados coletados por no mínimo 45 dias;
- Possuir interface de interação com o usuário;
- Permitir o envio de dados coletados via interface de comunicação sem fio;

Arquitetura de Hardware

- Unidade de processamento;
- Sensor de luminosidade;
- Sensor de temperatura;
- Sensor de umidade;
- Unidade de alimentação;
- Unidade de interface de usuário;
- Unidade de leitura e escrita de dados em cartão SD;

Figura: Diagrama de blocos.

Fonte: Elaborado pelo autor (2022)

Seleção de Componentes

Critérios

Foram definidos alguns critérios para se escolher um componente:

- Tempo de suporte de ciclo de vida maior 10 anos p/ componentes ativos;
- Selecionar componentes passivos com propriedades que facilitem sua substituição;
- 3 Possuir mais de uma solução para cada componente passivo;

Microcontrolador

Definição

- ESP32-S3-WROOM-1-N8
 - Baixo custo unitário;
 - 8MB de Flash e 36 GPIOs;
 - Wi-Fi 2.4GHz e BLE Radio;
 - ADC 10-bits;
 - 12 anos de suporte de ciclo de vida.

Figura: Diagrama de blocos do módulo

Fonte: Espressif Systems

Microcontrolador

Esquemático

Fonte: Elaborado pelo autor

Sensores

HDC1080

■ TI HDC1080

- ±2% de precisão de umidade relativa;
- ±0.2 °C precisão de temperatura;
- 1.3 μA p/ leitura e 100 nA hibernação;

- Light Dependant Resistor (LDR)
 - Baixo custo;
 - 10 a 10.000 lux;
 - Necessita de ADC;

Interface de usuário e suporte MicroSD

- LEDs e botões táteis
 - LEDs genéricos vermelho e verde:
 - Dois botões táteis:

Suporte microSD

Fonte: Elaborado pelo autor.

Requisitos

- Fornecer 3,3 V;
- Suportar alimentação por 4 pilhas;
- 3 "Chaveamento" entre pilhas e alimentação direta;

- Circuito "chaveador" pilha-alimentação direta:
 - MOSFET Canal P;
 - Resistor 10kΩ;
 - Diodo schottky;
- Schottky ON NSR0320MW2T1
 - Tensão direta típica: 0,3 V;

Fonte de alimentação

Regulação de tensão

Quatro pilhas do tipo AA fornecem até 6V de tensão. É preciso reduzi-lá para 3,3 V, nível de tensão operacional dos demais componentes.

- Regulador Linear
 - Baixo custo:
 - Baixa complexidade;
 - Baixa eficiência;
 - Step-down;

- Regulador Chaveado
 - Maior custo;
 - Alta complexidade;
 - Alta eficiência;
 - Step-up ou Step-down;

Regulador linear low-dropout

Reguladores lineares que podem regular a tensão de saída mesmo quando a tensão entrada se aproximar muito da tensão de saída.

- Diodes AP2114HA-3.3TRG1
 - Suporta até 6,5 V de entrada;
 - 3,3 V fixo como saída;
 - Queda típica de 0,1 V;

Fonte: Elaborado pelo autor.

Design PCI

Especificações

- Dimensões aproximadas de 50x50 mm;
- Placa de duas camada;

Stackup PCI

Define características e parâmetros do cobre e dielétrico de uma PCI.

Impedância típica: 50Ω

Fonte: Elaborado pelo autor.

Particionamento Funcional

- Posição de componentes;
- Auxílio de roteamento;
- Redução EMI;

Fonte: Elaborado pelo autor.

Design PCI

Posicionamento

Figura: PCB Placement

Fonte: Elaborado pelo autor

Design PCI

Roteamento

- Somente sinais inicialmente;
- Largura 10 mil;

Roteamento

- Evita ciclos;
- Largura 20 mil;

Fonte: Elaborado pelo autor

Plano de Terra

Propicia o menor caminho de retorno possível

Figura: Top Plane

Figura: Bottom Plane

Fonte: Elaborado pelo autor

Propriedades e Design finais

Propriedades:

- Temperaturas de -20 °C a 80 °C;
 - Precisão de ± 0,4 °C.
- Umidade relativa de 0% a 99%;
 - Precisão de \pm 2%.
- Luminosidade de 10 lux a 10.000 lux.
- microSD de até 4GB;
- Wi-Fi ou Bluetooth;

Propriedades e Design finais

Figura: Visualização 3D da PCI

- 3,3 V a 6,5 V;
- 39 componentes;
- 51 x 53 mm;

Fonte: Elaborado pelo autor.

Materiais

- Fornecedor de Componentes
 - LCSC Electronics
- Fabricação e Montagem PCI
 - JLCPCB

Tabela: Custo de materiais por unidades

Quantidade	Custo de Materiais
	1104 644 441
50	US\$ 502,60
100	US\$ 938,41
1000	US\$ 8.736,80

Produção

Fabricação e Montagem

Tabela: Custos de Fabricação e Montagem

Quantidade	Fabricação	Montagem	Total
50	US\$ 22,4	US\$ 64,47	US\$ 86,87
100	US\$ 34,4	US\$ 96,97	US\$ 131,37
1000	US\$ 249,70	US\$ 447,92	US\$ 667,62

Fonte: o autor.

Tabela: Custo Unitário

Quantidade	Custo Total	Custo Unitário
50	US\$ 582,42	US\$ 11,65
100	US\$ 1048,93	US\$ 10,49
1000	US\$ 9261,29	US\$ 9,26

Fatores considerados durante o cálculo dos custos de importação:

- Cotação: R\$5,13 p/ cada Dólar;
- Imposto de importação zerado;
- ICMS para o estado do Ceará.

Tabela: Custos de importação para o Brasil

Quantidade	Valor	Frete	IPI	PIS	COFINS	ICMS	Total	Valor Unitário
50	2.576,22	412,35	38,85	62,76	288,40	741,64	4.120,22	82,40
100	4.815,26	567,11	69,97	113,03	519,40	1.335,68	7.420,46	74,20
1000	44.831,14	2.691,32	617,79	997,97	4.585,92	11.793,10	65.517,24	65,52

Energia

Consumo por modo de operação

Tabela: Consumo por circuito em uso ativo

Circuito	Consumo
Controle	30 mA
Sensores	27 mA
Circuito microSD	100 mA
Interface de Usuário	60 mA
Total	217 mA

Fonte: o autor.

Tabela: Consumo por circuito em sono profundo

Circuito	Consumo
Controle	8 μΑ
Sensores	0,2 μΑ
Regulador de tensão	65 μA
Circuito microSD	450μA
Interface de Usuário	$0 \mu A$
Total	523,2 μA

Autonomia

O datalogger possui autonomia de até dois meses, de acordo com as seguintes condições:

- Considerado intervalo de 30 minutos;
- Duração em modo ativo: 10 segundos;
- Duração em modo sono profundo: 29m 50s;
- Quatro pilhas AA de 2500 mAh cada.

Estratégias de otimização

- Utilizar Flash interna;
 - Armazena 83.886 leituras;
- Desconectar microSD;
 - MOSFET Q600:

Dimensões e Autonomia

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informado
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

Fonte: o autor.

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (°C)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	-25 a 70	0,3	0 a 99	2,50
160 TH	-30 a 50	0,1	0 a 100	/ 2 - /
Hardware Proposto	-20 a 85	0,4	0 a 100	2

Comparativo de mercado

Dimensões e Autonomia

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informado
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

Fonte: o autor.

Tabela: Comparativo: Faixa de leitura e Precisão

Modelo	Faixa de Leitura (°C)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
RCW-360	-35 a 80	0,5	0 a 99	5
EL-WiFi-TH	-20 a 60	0,3	0 a 100	2
TandD RTR-507B	-25 a 70	0,3	0 a 99	2,50
160 TH	-30 a 50	0,1	0 a 100	/ 2 - /
Hardware Proposto	-20 a 85	0,4	0 a 100	2

Comparativo de mercado

Dimensões e Autonomia

Tabela: Comparativo: Dimensões e Autonomia

Modelo	Dimensões	Nível de Proteção	Autonomia
RCW-360	Não informado	IP64/IP65	3 meses
EL-WiFi-TH	82 x 70 x 23 mm	IP55	6 meses
TandD RTR-507B	62 x 47 x 19 mm	IP64	10 meses
160 TH	76 x 64 x 22 mm	IP20	Não informado
Hardware Proposto	51 x 53 x 25 mm	Não possui	2 meses

Fonte: o autor.

Tabela: Comparativo: Faixa de leitura e Precisão

	Modelo	Faixa de Leitura (ºC)	Precisão (ºC)	Umidade Relativa (%)	Precisão(%)
	RCW-360	-35 a 80	0,5	0 a 99	5
E	EL-WiFi-TH	-20 a 60	0,3	0 a 100	2
Tan	dD RTR-507B	-25 a 70	0,3	0 a 99	2,50
	160 TH	-30 a 50	0,1	0 a 100	/ 2 - /
Hard	dware Proposto	-20 a 85	0,4	0 a 100	2

Comparativo

Custo Unitário

Custos não considerados:

- Desenvolvimento de firmware;
- Invólucro de proteção;
- Homologação em órgãos competentes;

Tabela: Comparativo: Custo Unitário

Valor (R\$)	
1.499,00	
1.305,14	
2.242,57	
2.842,00	
65,52	

Comparativo

Revisão de Custo

Estimativas de custo

- Firmware
 - Salário desenvolvedor pleno: R\$ 7919,00
 - Três meses de projeto com dois profissionais: R\$47.514,00
- Invólucro IP65
 - Custo unitário: R\$20,00;
 - Custo com retrabalho: R\$50,00;
- Homologação ANATEL.
 - A verificar.

Comparativo

Revisão de Custo

Tabela: Comparativo: Custo unitário revisado

Modelo	Valor (R\$)
RCW-360	1.499,00
EL-WiFi-TH	1.305,14
TandD RTR-507B	2.242,57
160 TH	2.842,00
Hardware Proposto	142,35

Conclusão

Objetivos

Objetivos atingidos

Trabalhos Futuros

- Desenvolvimento de firmware que faça uso dos recursos de hardware do dispositivo e do módulo microcontrolador;
- Testes com protótipos para verificar o consumo energético real do dispositivo.

