Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur @]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 BS 25-02-2022

CONTINUOUS INTERNAL EVALUATION - 1

For Lateral Entry (Diploma) Students

Dept: BS	Sem: III CV	Sub: Transform Calculus, Fourier Series and Numerical Techniques	
Date: 26/02/2022	Time:1.00pm -2.30 pm	Max. Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

	N.	- Allswer as				stions	CONTRACTOR OF THE PARTY OF			Marks	RBT	CO's
					Landy.	PA	ART A	O'SEE	OUR IS	ichon si		
1	a	Obtain the Fourier series for the the function					of the	Rood				
		$ f(x)= x $ in the interval $-\pi \le x \le \pi$						8	L2	CO2		
80	b	Find Half range cosine series for $f(x) = (x - 1)^2$ in $0 \le x \le 1$						n 8	L2	CO2		
	c The following data gives the variation of periodic current over a period						•	L2	CO2			
		t(secs)	0	T/6	T/3	T/2	2T/3	5T/6	T	DUS-S	-	1
		A(amp)	1.98	1.3	1.05	1.3	-0.88	-0.25	1.98	ा शिश्वक	oning	MAG
		Find the co	onstai	nt ter	m and	d firs	t harn	nonics				
							OR				1	
2	a	Obtain the Fourier series for the function							1/			
		$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & \text{for } -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} & \text{for } 0 \le x \le \pi \end{cases}$						8	L2	CO2		
	b	Express $f(x) = x$ as half range sine series in the							8	L2	CO2	
		interval 0 < x < 2										
	C	Compute the constant term and the first two harmonics in the Fourier series of the function f(x) given by the following table) 9	L2	CO2			
		y=f(x	0 4		1 8	2 15	3	4	5 2			

		PART B					
3	a	Obtain the Fourier cosine transform of $f(x) = \begin{cases} 4x, & \text{for } 0 < x < 1 \\ 4 - x & \text{for } 1 < x < 2 \\ 0 & \text{for } 2 < x \end{cases}$	8	L2	CO3		
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	b	Find the Complex Fourier transform of $f(x) = \begin{cases} x \text{ for } x \le \alpha \\ 0 \text{ for } x > \alpha \end{cases}$	8	L2	CO3		
	С	Find the Fourier transform of $f(x) = \begin{cases} 1 \text{ for } x \le 1 \\ 0 \text{ for } x > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$	9	L2	CO3		
OR							
4	a	Find the Fourier sine transform of $e^{- x }$ and hence show that $\int_0^\infty \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}$	8	L2	CO3		
	b	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{for } x \le 1 \\ 0 & \text{for } x > 1 \end{cases}$	8	L2	CO3		
1	С	Find the inverse Fourier sine transform of $\frac{e^{-au}}{u}$ where a >0 and hence obtain the inverse Fourier sine transform of $\frac{1}{u}$	9	L2	CO3		

Prepared by: M Ramananda Kamath

Caralis 2 Stands