$$I = \sum_{i} m_i r_i^2$$

$$I = \int r^2 dm$$

$$x_{\rm cm} = \frac{1}{M} \sum_{i} x_i m_i$$

$$I = I_{\rm cm} + Md^2$$

$$K_{\rm rot} = \frac{1}{2}I\omega^2$$

$$\tau = F_{\perp} r$$

$$\tau = Fr_{\perp}$$

$$x_{\rm cm} = \frac{1}{M} \int x dm$$

$$I = \sum_{i} m_i r_i^2 \ \boxed{6}$$

$$I = \int r^2 dm \ \boxed{4}$$

$$x_{\rm cm} = \frac{1}{M} \sum_{i} x_i m_i \, \boxed{8}$$

$$I = I_{\rm cm} + Md^2$$

$$au = F_{\perp}r$$
 5

$$au = Fr_{\perp}$$
 1

$$x_{\rm cm} = \frac{1}{M} \int x dm \, 3$$

- (a) What is the equation used for?
- (b) What do each of the variables mean?
- (c) Make up a physical situation to illustrate.

Gravitational Torque

When I release the object what will happen?

- A) It will oscillate back and forth.
- B) Nothing. It will stay where you put it.
- C) It will first rotate and the quickly come to rest.

Question #21 Gravitational Torque

When I release the object what will happen?

- A) It will oscillate back and forth.
- B) Nothing. It will stay where you put it.
- C) It will first rotate and the quickly come to rest.

Rank the torques

Video question

- A) 10 cm from left end
- B) 25 cm from right end
- C) 10 cm from right end
- D) In the middle
- E) 25 cm from left end

Rotational Dynamics

- What does a torque do?
- For linear motion, a net force causes an object to accelerate.
- For rotation, a net torque causes an object to have angular acceleration.

$$\alpha = \frac{\tau_{\text{net}}}{I}$$

In the absence of a net torque ($\tau_{net} = 0$), the object either does not rotate ($\omega = 0$) or rotates with *constant* angular velocity ($\omega = 0$) constant).

Rotational Dynamics

- What does a torque do?
- For linear motion, a net force causes an object to accelerate.
- For rotation, a net torque causes an object to have angular acceleration.

$$\alpha = \frac{\tau_{\rm net}}{I}$$
Torque applet

In the absence of a net torque ($\tau_{net} = 0$), the object either does not rotate ($\omega = 0$) or rotates with *constant* angular velocity ($\omega = 0$) constant).

Analogies between linear and rotational dynamics

Rotational dynamics		Linear dynamics	Linear dynamics	
torque	$ au_{ m net}$	force	$ec{F}_{ m net}$	
moment of inertia	I	mass	m	
angular acceleration	α	acceleration	\vec{a}	
second law	$lpha= au_{ m net}/I$	second law	$\vec{a} = \vec{F}_{\rm net}/m$	

Rank the angular accelerations!

B)
$$a > b = c > d$$

D)
$$c > d = a > c$$

C)
$$a = b > c = d$$

E)
$$b > d = a > c$$

In which case will the block be moving faster just before it hits the floor?

$$m_1 = 20.0 \text{ kg}$$
 $m_2 = 12.5 \text{ kg}$ $M = 5.00 \text{ kg}$

$$R = 0.200 \text{ m}$$

m₁ is 4.00 m above m₂ initially. How long before m₁ hits the floor?

$$m_1 = 20.0 \text{ kg}$$
 $m_2 = 12.5 \text{ kg}$

$$m_2 = 12.5 \, \, \mathrm{kg}$$

$$M = 5.00 \text{ kg}$$

$$R = 0.200 \text{ m}$$

m₁ is 4.00 m above m₂ initially. How long before m₁ hits the floor?

 $a = 2.1 \text{ m/s}^2$

t = 1.95 s

Find T_1 , T_2 , and I(the moment of inertia of the pulley)

$$T_1 = 118 \text{ N}$$
 $T_2 = 156 \text{ N}$

$$I = 1.17 \text{ kg m}^2$$