My name is Base, Database

João Marcelo Borovina Josko marcelo.josko@ufabc.edu.br

June 10, 2017

Tópicos

- Introdução
 - Dados, Banco de Dados e SGBD
- A 1a. Onda
 - Os Primórdios
 - The World is ACID
- A Nova Onda
 - O mundo muda
 - A Tempestade
- Mew Players
 - NoSQL
 - NewSQL
 - In-memory DB
 - Visão Comparada

Tópicos

- Introdução
 - Dados, Banco de Dados e SGBD
- 2 A 1a. Onda
 - Os Primórdios
 - The World is ACID
- A Nova Onda
 - O mundo muda
 - A Tempestade
- Mew Players
 - NoSQL
 - NewSQL
 - In-memory DB
 - Visão Comparada

Nice to meet you, I am data!

- Remetem as propriedades que caracterizam fatos de um Universo de Discurso
- Crescente percepção de que dados organizacionais são ativos
- Volume de dados capturados geram desafios....
 - Organizar os dados para uso posterior
 - Procedimentos de anotação e publicação dos dados (data curation)

O que caracteriza um Banco de Dados?

- Representam fatos de interesse sobre objetos do Universo de Discurso
- Coleção de fatos relacionados
- Somos todos um banco de dados....
 - Livro de Receitas (Manual)
 - Notas Fiscais de um E-Commerce (Automatizado)

O que caracteriza um SGBD?

- Sistema Gerenciador de Banco de Dados
- Software de propósito geral que permite....
 - Definir, modificar e gerenciar a estrutura de um Banco de Dados
 - Manipular as instâncias de um Banco de Dados
 - Gerir a segurança das instâncias de um Banco de Dados
 - Construir objetos programados estáticos e dinâmicos
 - Aplicar estratégias de Recuperação de um Banco de Dados
 - Acessar itens de dados de modo concorrente
 - Recuperação automática de vários tipos de falhas
- Pero.....
 - Nem todos os SGBDs oferecem todo esse conjunto de recursos.

Highway to Hell

J. M. Borovina Josko

7 / 45

Database Market Share

Fonte: https://db-engines.com/en/ranking_trend

Why so many?

- SGBDs variam em propriedades e capacidades....
 - Arquiteturas de Processamento (Centralizada, Distribuída, etc.)
 - Algoritmos internos (Índexação, operadores de consultas, etc.)
 - Features (Administração, Programação, etc.)
 - Modelo de Dados
 - Conjunto de construtores para descrever os dados
 - E.g., Relacional, Documento, Objeto-Orientado, Grafo, etc.

Propriedades do SGBD

- Natureza Autodescritiva
- Abstração de Dados
- Suporte a múltiplas visões do mesmo dado
- Compartilhamento dos mesmos dados de modo Concorrente
- However.... os SGBDs oferecem esses recursos de modo desigual

Propriedades - Natureza Autodescritiva

J. M. Borovina Josko

11 / 45

Propriedades - Abstração de Dados

- Possibilita o isolamento entre dados e programas
- Capacidade de modificar um nível sem afetar o outro
- Exemplos de Modificações....
 - Ajuste de regras de integridade (Conceitual ⇒ Visão)
 - Criar um índice (Físico ⇒ Conceitual)

J. M. Borovina Josko

Propriedades - Demais

- Os mesmos dados podem ser observados segundo perspectivas diferentes
 - Notas Fiscais Sintéticas ou de SP
- Os mesmos dados serão utilizados (transacionados) de modo simultâneo
 - SGBD garante uso concorrente do mesmo dado
 - Uma transação \mathcal{A} não interfere em outras transações $\mathcal{B}, \mathcal{C}, ..., \mathcal{Z}$

J. M. Borovina Josko

Os Primórdios The World is ACID

Tópicos

- Introdução
 - Dados, Banco de Dados e SGBD
- 2 A 1a. Onda
 - Os Primórdios
 - The World is ACID
- A Nova Onda
 - O mundo muda
 - A Tempestade
- 4 New Players
 - NoSQL
 - NewSQL
 - In-memory DB
 - Visão Comparada

Os Primórdios The World is ACID

No início tudo era arquivo!

- Dados armazenados em arquivos do Sistema Operacional
 - Manipulação requeria vários programas
 - Não há independência entre a estrutura e as regras de negócio
 - Vários problemas...
 - Redundância de dados (Utiliza uma única perspectiva)
 - redundância de regras de negócio
 - Impossibilidade de acesso concorrente

Introdução A 1a. Onda A Nova Onda New Players Reference Os Primórdios The World is ACID

Depois viram os primeiros modelos de dados

- Dados representados por coleções de ponteiros
 - Modelo em Rede: Listas Encadeadas
 - Modelo Hierárquico: Organização em Árvore
 - Vários problemas...
 - Representação N:N
 - Enorme dificuldade de manutenção
 - Dependência de Implementação

Here I am

- A abordagem Relacional marcou o início de uma era
 - Relacionamentos estabelecidos a partir dos próprios valores dos dados
 - Proporcionou a independência entre a camada física e lógica dos dados
 - Disponibilizou uma sofisticada linguagem declarativa english-like
 - Facilitou a admistração e gestão de segurança
 - Formalização de execução consistente e com garantia de recuperação a falha

Tabela: CLIENTE			Tak	Tabela: Conta Corrente			
Nome	Ci dade	ID#	ID#	Agência	Conta	Saldo	
Jose Silva	Campinas	1 :	1	1200	1234-5	120,23	
Mariana Azevedo	São Paulo	2	2	1200	1290-1	2109,01	
Sebastião Araújo	São Paulo	3	2	1300	1801-0	219,99	
			3	1300	1803-3	424,11	

Here I am (Cont.)

Sua concepção bem feita propiciou...

- Enfocar nas necessidades da aplicação e não em detalhes técnicos
- Dividir com o SGBD a responsabilidade de consistência
- Sinônimo de confiança e consistência

J. M. Borovina Josko

"Sua força é também sua fraqueza"

- Nos anos 70, 80 até meados dos 90 os pressupostos eram [Stonebraker et al. 2007]...
 - Estruturas de dados altamente estruturados
 - Disponível antes de qualquer carga de dados
 - Tipos de dados baseados em números e texto
 - Garantia estrita de consistência
 - Transações curtas e de manutenção
 - Características do OLTP
 - Garantia de Recuperação baseada em LOG
 - Mundo Centralizado e baseado em disco
 - Capacidades de Processadores e Memória diferentes das atuais

Introdução A Ia, Onda A Nova Onda New Players Reference Os Primórdios The World is ACID

Arquiteturas

- Centralizada
 - Sistemas de Informação e o SGBD compartilham a mesma máquina
- Arquitetura Cliente-Servidor (N-Tier)
 - Cliente assume operações de interface gráfica Servidor assume responsabilidade pelas regras de negócio e controle de transações

J. M. Borovina Josko

Tópicos

- Introdução
 - Dados, Banco de Dados e SGBD
- 2 A 1a. Onda
 - Os Primórdios
 - The World is ACID
- A Nova Onda
 - O mundo muda
 - A Tempestade
- 4 New Players
 - NoSQL
 - NewSQL
 - In-memory DB
 - Visão Comparada

Surge uma brisa do mar

- Surgem certas necessidades acirradas pela WEB.....
 - Manipular outros tipos de dados
 - XML, BLOB, Espacial
 - Quero fazer mais análises do que transações
 - MOLAP, HOLAP, ROLAP
 - E-commerce não utiliza transações curtas
 - Transações longas (Long lived Transactions)
 - Maior escalabilidade, menor centralização
 - Gerenciadores de Banco de Dados Distribuídos e Paralelos

Surge uma brisa do mar (Cont.)

- Análise Tradicional
 - Modelos Multidimensionais
 - Permitem correlação de variáveis (Causa → Efeito)
 - Diferentes operações: Pivot, Roll-up, Drill-down, Slice, ...
 - Estrutura
 - Dimensões denotam as variáveis de análise
 - Fato denota os dados correlacionados pelas variáveis
 - Necessidade deu origem ao C-Store Databases (e.g., Vertica, MonetDB)

Surge uma brisa do mar (Cont.)

- Transações Curtas
 - Regidas pelas propriedades ACID [Borovina Josko 2012]
- Transações Longas
 - Atomicidade é garantida por operações de compensação [Alonso 2005]

Surge uma brisa do mar (Cont.)

Arquitetura Distribuída

Dados fragmentados (Vertical, Horizontal e Mista)

Compartilham um esquema global comum

Elementos de processamento

- Homogêneos com níveis de autonomia
- Heterogêneos autônomos (Federado)

Transparência de Replicação, Fragmentação e Execução

E a brisa era uma tempestade

- O Dilúvio de dados [Strauch et al. 2011, Leavitt 2010]
 - WEB 2.0, Sensores Remotos, Celulares, IoT geram enorme volume de dados
 - Novos dispositivos permite persistir o volume de dados
 - Dados agora em tipos e shapes variados
 - Relacionamentos mais complexos
 - Ter dados não significa nada (Desafios e Oportunidades)
 - Como organizá-los?
 - Como integrá-los?
 - Que padrões esses apresentam que podem ser úteis para mim?
 - Descompasso entre PRODUÇÃO e CAPTURA de dados e ANÁLISE

E a brisa era uma tempestade (Cont.)

- E o que impacta o mundo de Banco de Dados?
 - Aumento do volume de dados capturados e armazenados
 - Necessidade de maior throughput
 - Tratamento de diferentes tipos de dados (Documentos, imagem, vídeo)
 - Aplicações que não requerem consistência estrita em todas as situações
 - Dados menos estruturados e com relacionamentos mais complexos
 - Maior enfoque no Analítico e não em OLTP e OLAP
 - Latência próxima de zero (Rede com alta capacidade)

E a brisa era uma tempestade (Cont.)

- Novas necessidades determinaram limites do modelo de dados Relacional
 - Escalabilidade limitada e cara [Stonebraker et al. 2007]
 - Crescimento horizontal e baseado em máquinas baratas
 - Consistência estrita é um overhead em certos contextos [Leavitt 2010]
 - Troca de consistência por desempenho
 - Impendância Objeto → Relacional é um overhead
 - Dificuldade de acolher dados com relacionamentos mais complexos e estruturas dinâmicas
 - Gestão do desempenho é cara e baseada em pessoas
 - Self-tuning disponível não é abrangente

Qual seria a arquitetura apropriada?

- Disponibilidade de memória permite dados OLTP em memória [Stonebraker et al. 2007]
- Complexidade requer capacidades de self-tuning
- Modelo capaz de atender a dinâmica do negócio
- Persistência Poliglota (diferentes tipos de dados)
- Distribuir o processamento de dados de modo barato
 - Arquitetura Shared-nothing com máquinas baratas [Stonebraker et al. 2007]
 - Capacidade de Particionamento Horizontal do Processamento
 - Facilidade de Expansão
 - Alta disponibilidade com replicação dos dados

Principais Arquiteturas

Shared-nothing	Shared-Disk	Shared-Memory
Nada é compartilhado	Proc. compartilham Discos	Proc. compartilham Discos e Memórias
↓ Load Balancing Dependente (Estr. Particionamento)	Certa capacidade Load Balancing	↑ Load Balancing em tempo de execução
↑ Baixo custo	↑ Fácil migração do Centralizado	↑ Simplicidade
↑ Alta disponibilidade	Certa disponibilidade	Certa disponibilidade
↑ Fácil Expansão	Disco e capacidade de rede	↓ Limite no número de processadores
↑ Nós independentes	↓ Requer controle de Lock	Controle dos proc. por único SO
	(Coerência de cache)	↓ Requer conexões de rede especiais

Table: Comparação das Arquiteturas

J. M. Borovina Josko 30 / 45

Thread-off!!!

- Conjectura CAP propriedades para um mundo distribuído [Brewer 2000; 2012]
 - Consistency
 - Todos os nós observam o mesmo dado ao mesmo tempo
 - Availability
 - Cada requisição recebe uma resposta de sucesso ou falha
 - Partition Tolerance
 - Funcionamento contínuo com perda de mensagens ou queda parcial da network
- Não podemos perfeitamente ter todas as três propriedades!

erence O mundo muda A Tempestade

Thread-off!!! (Cont.)

Figure: Exemplo propriedades CAP (Fonte: BOROVINA JOSKO, J.M.)

J. M. Borovina Josko

O mundo muda A Tempestade

Thread-off!!! (Cont.)

Figure: Exemplo propriedades CAP (Fonte: BOROVINA JOSKO, J.M.)

J. M. Borovina Josko

So, Let's relax ACID!

- Proposto o modelo BASE [Brewer 2000; 2012]
 - Basically available
 - Soft-state
 - Eventual consistency
- "Estou disponível a qualquer momento, mas não tenho consistência estrita. Eventualmente, ao longo do tempo, serei consistente"
- Consistência e Isolamento são preteridas em favor da disponibilidade

So, Let's relax ACID! (Cont.)

ACID	BASE
Consistência estritra	Consistência Eventual (Não falha)
Isolamento	Disponibilidade (quero ver agora)
Abordagem Pessimista	Abordagem Otimista (Be happy!)
Foco no commit	Utiliza uma aproximação
Esquema Rígido	Schemaless
Garantia pelo SGBD	Garantia pelo programador

Table: ACID versus BASE

Introdução A 1a. Onda A Nova Onda New Players Reference NoSQL NewSQL In-memory DB Visão Comparada

Tópicos

- Introdução
 - Dados, Banco de Dados e SGBD
- 2 A 1a. Onda
 - Os Primórdios
 - The World is ACID
- A Nova Onda
 - O mundo muda
 - A Tempestade
- Mew Players
 - NoSQL
 - NewSQL
 - In-memory DB
 - Visão Comparada

Comment ça va? Je suis NoSQL

- Baseados nas propriedades do BASE
 - Resposta contrária ao ACID e ao mundo Relacional
- Orientados a distribuição massiva
 - Mecanismos de particionamento dos dados
 - Recursos de load-balancing
 - Uso intensivo de replicação de dados
 - It's a kind of magic?
- Estruturas flexíveis. Relacional NO MORE!
 - Novos modelos Grafo, Key-Value, Documento (extensão do key-value), etc.

Principais NoSQL

COLUMN

GRAPH

J. M. Borovina Josko

38 / 45

Principais Modelos de Dados do NoSQL

Não mexa no meu queijo!

Não mexa no meu ACID!

- Consigo ter desempenho compatível às necessidades atuais?
- Não dá para particionar horizontalmente?
- Não dá para ser mais tolerante a falhas na rede?

Comment ça va? Je suis NewSQL

- Novo OLTP (escalabilidade do NoSQL + ACID) [Stonebraker 2012, Pavlo e Aslett 2016]
 - Escritos para arquitetura distribuída baseada em recursos shared-nothing
 - Dados em memória (na maioria das opções)
 - Respostas analíticas em tempo-real
 - Controle de concorrência baseada em timestamp (MVCC) em não 2PL
- Asta la vista, baby!!!
 - Esquema OLTP + ETL + DW/BI está com os dias contados

¿Cómo estás? Me llamo In-memory Database

- Dados armazenados totalmente em memória RAM [Faerber et al. 2017]
 - Acesso mais rápido (Memória $\simeq 100$ ns, SDD $\simeq 150000$ ns)
 - Algoritmos não enfatizam o uso de disco
 - Compressão dos dados em memória
 - Mecanismos otimistas de controle de concorrência

Caracterização Comparada

Características	Relational Trad.	NoSQL	NewSQL
Relacional	Sim	Não	Sim
SQL	Sim	Não	Sim
Consistência Estrita	Sim	Não	Sim
Consistência Eventual	Não	Sim	Não
Suporte a transações	Sim	Não	Sim
Escalabilidade Horizontal	Não	Sim	Sim
Escalabilidade Vertical	Sim	Sim	Sim
Esquema Estático	Sim	Não	Sim
Alto Desempenho (Big Data)	Não	Sim	Sim
Dificuldades em atualizações não simétricas	Não	Sim	Não
Dificuldades em acessos não simétricos	Não	Sim^1	Não

Table: Comparativo das Características

1 - Exceto baseados em Grafo

Introdução A 1a. Onda A Nova Onda New Players Reference NoSQL NewSQL In-memory DB Visão Comparada

Hora de acordar!!!!

Calvin and Hobbes by William B. Watterson II

Um momento de análise...

- Quais problemas e desconfortos surgem nesse cenário?
- Quais oportunidades surgem nesse cenário?
- Como fica a integração?

Referências I

- Alonso (2005) Gustavo Alonso. Transactional business processes. Process-Aware Information Systems: Bridging People and Software through Process Technology, Wiley-Interscience, New York, páginas 257–278.
- Borovina Josko (2012) J.M. Borovina Josko. Transacões Aninhadas e Savepoints: Extensões ao Modelo Transacional Clássico. SQL magazine, 102:50 – 55.
- Brewer (2012) Eric Brewer. CAP twelve years later: How the" rules" have changed. Computer, 45(2):23-29.
- Brewer (2000) Eric A Brewer. Towards robust distributed systems. Em PODC. volume 7.
- Faerber et al. (2017) Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin Levandoski, Thomas Neumann, Andrew Pavlo et al. Main memory database systems. Foundations and Trends® in Databases, 8(1-2):1–130.
- Leavitt (2010) Neal Leavitt. Will NoSQL databases live up to their promise? Computer, 43(2).
- Pavlo e Aslett (2016) Andrew Pavlo e Matthew Aslett. What's Really New with NewSQL? ACM Sigmod Record, 45(2): 45–55.
- Stonebraker (2012) Michael Stonebraker. Newsgl: An alternative to nosql and old sql for new oltp apps.
- Stonebraker et al. (2007) Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Harizopoulos, Nabil Hachem e Pat Helland. The end of an architectural era:(it's time for a complete rewrite). Em Proceedings of the 33rd international conference on Very large data bases, páginas 1150–1160. VLDB Endowment.
- Strauch et al. (2011) Christof Strauch, Ultra-Large Scale Sites e Walter Kriha. NoSQL databases. Lecture Notes, Stuttgart Media University, 20.