ИЗПИТ

по Диференциално и интегрално с	смятане І част,	специалност '	"Компютърни	науки"
19 февруари 2014г.				

- Дайте дефиниция на сходяща редица. Докажете, че сходящите редици са ограничени.
 Дайте дефиниция на точка на сгъстяване на дадена редица от реални числа. Какво означава "редицата {a_n}_{n=1}[∞] от реални числа няма точка на сгъстяване"?
- 2. Дайте дефиниция на $\lim_{x\to x_0} f(x) = l$ във формата на Хайне и във формата на Коши, където $f:D\longrightarrow \mathbb{R},\, D\subset \mathbb{R}.$ Какво трябва да предположите за D, за да е смислена дадената дефиниция? Докажете, че ако $\lim_{x\to x_0} f(x) = l$ в смисъл на Хайне, то f клони към l, когато аргументът клони към x_0 , в смисъл на Коши.
- 3. Формулирайте и докажете Теоремата на Вайерщрас. Покажете, че всяко от условията на теоремата е съществено за валидността на заключението (достатъчни са скици на графики като примери). Скицирайте графиката на функцията

$$f(x) = \arcsin \frac{x}{x^2 - 1} ,$$

без да се интересувате от вдлъбнатост и изпъкналост. Достига ли тази функция най-голямата си стойност?

- 4. Напишете дефиницията за диференцируемост на функция в дадена точка. Докажете, че от диференцируемост в точка следва непрекъснатост на функцията в същата точка. Формулирайте и докажете теоремата на Рол.
- 5. Напишете формулата на Тейлър до n-ти ред за функция f около точката a с остатък във формата на Лагранж. Развийте $f(x) = \sqrt[3]{\sin(x^3)}$ до $o(x^{13})$.
- 6. Пресметнете неопределения интеграл

$$\int \frac{x \mathrm{d}x}{(x^2 + x + 1)^2} \ .$$

- 7. Дайте дефиниция на риманов интеграл чрез подхода на Дарбу. Формулирайте и докажете двете леми, необходими за това. Можете ли да дадете пример на функция, която е дефинирана в [0,1], диференцируема в (0,1), но не е интегруема?
- 8. Докажете, че интегралът е непрекъсната функция на горната си граница. Формулирайте теоремата на Нютон и Лайбниц. Пресметнете производната на функцията $f(x) = \int_{\sin x}^4 e^{t^2} dt$.