Minimizing the Spread of Drug Resistant Malaria using RL

AUGUSTE LALANDE

Motivation

- RL for social good
- Interesting problem:
 - Malaria is still very much a problem (731,000 deaths 2016)
 - Intermittent Preventive Treatment (IPT) is a malaria control strategy in which asymptomatic individuals are given a full curative dose of an antimalarial medication at specified intervals.
 - This makes a negative feedback loop decreasing the prevalence of the disease.
 - However, like over-prescription of antibiotics, this can lead to a rise in the drug resistant form of the disease.

- Partially observable state
- Necessity for transfer learning

Environment

Latent State		
S	Susceptible population	
I_s	Infected (sensitive strain)(symptomatic)	
I_a	Infected (sensitive strain)(asymptomatic)	
J_s	Infected (resistant strain)(symptomatic)	
J _a	Infected (resistant strain)(asymptomatic)	
T_s	Treated (infected symptomatic)	
T	IPT treated (not-infected)	
T_a	IPT treated (asymptomatic infected)	
R	Temporarily immune	

Observable State			
$I_s + J_s$	Infected (symptomatic)		
T_s	Treated (symptomatic)		
$T+T_a$	IPT Treated (asymptomatic)		
$S+I_a+J_a+R$	Asymptomatic other		

Action:	IPT rate (treatments per person per day)
Reward:	Number of (symptomatic) infected people at each time step

Evaluation

Two Models:

- 1. Linear Function Approximation
- 2. (Shallow) DQN with one hidden layer

Three scenarios:

- 1. Offline learning with the same model parametrization
- 2. Offline learning with different model parametrizations
- 3. Online learning

Evaluation

Future Work

- Improve environment (currently highly sensitive)
- Longer state sequence for learning
- Better hyperparameter tuning
- Better models (actor critic)