Um processador (CPU) pode apresentar menor _ um circuito dedicado, mas tem maior	como desvantagem, se comparado a como vantagem.
desempenho; flexibilidade	
eficiência energética; flexibilidade	
Um processador (CPU) pode apresentar maior _ circuito dedicado, mas tem menor cflexibilidade; desempenho	como vantagem, se comparado a um como desvantagem.
flexibilidade; eficiência energética	
Um processador (CPU) apresenta maiorse comparado com um circuito dedicado.	e menor como vantagens ,
flexibilidade; custo por unidade	
flexibilidade; custo	
flexibilidade; preço por unidade	
flexibilidade; preço	
Um processador (CPU) apresenta menorcomparado com um circuito dedicado.	e maior como vantagens , se
custo por unidade; flexibilidade	
custo; flexibilidade	
preço por unidade; flexibilidade	
preço; flexibilidade	
Um processador (CPU) apresenta menor desvantagens, se comparado com um circuito dedic	
eficiência energética, desempenho	
O DSP utiliza instruções do tipo SIMD. Isso perm eficiência energética.	ite diminuir o tempo de computação e a aumentar a
TRUE	
O é um exemplo de processador	soft-core.
MicroBlaze	
NIOS II	
NIOS 2	
OpenRISC	
Leon3	

Um processador soft-core (implementado em FPGA) apresenta maior desempenho (velocidade) que um processador "de prateleira" equivalente.

FALSE

Um processador soft-core (implementado em FPGA) apresenta menor eficiência energética que um processador "de prateleira" equivalente.

TRUE

Um processador "de prateleira" apresenta menor desempenho (velocidade) que um processador soft-core (implementado em FPGA) equivalente.

FALSE

Um processador "de prateleira" apresenta maior eficiência energética que um processador soft-core (implementado em FPGA) equivalente.

TRUE

O FPGA e o ASSP são tecnologias disponíveis para se implementar uma aplicação embarcada. O ASSP oferece maior eficiência energética.

TRUE

O ASSP e o FPGA são equivalentes em sua capacidade de produzir hardware específico. Entretanto, o FPGA pode oferecer maior desempenho (velocidade) e eficiência energética.

FALSE

O ASIC e o FPGA são equivalentes em sua capacidade de produzir hardware específico. Entretanto, o ASIC pode oferecer maior desempenho (velocidade) e eficiência energética.

TRUE

O FPGA e o ASIC são equivalentes em sua capacidade de produzir hardware específico. Entretanto, o FPGA pode oferecer maior flexibilidade e menor time-to-market.

TRUE

O FPGA e o ASIC são equivalentes em sua capacidade de produzir hardware específico. Entretanto, o ASIC apresenta menor time-to-market.

FALSE

O ASIC e o FPGA são equivalentes em sua capacidade de produzir hardware específico. Entretanto, o FPGA pode oferecer maior flexibilidade e menor tempo de projeto.

TRUE

Sistemas híbridos são SoC que oferecem	como parte de usa lógica interna.
um FPGA	
um módulo reconfigurável	
um reconfigurável	
SoC que oferecem como parte c híbridos.	le usa lógica interna são chamados sistemas
um FPGA	
um módulo reconfigurável	
um reconfigurável	
Quando é necessário prolongar os cabos de conexão UART, uma da estratégias é aumentar os níveis de te isso.	
drivers RS-232	
Os usados com a interface UART tensões aplicadas no cabo de conexão.	de um microcontrolador permitem elevar as
drivers RS-232	
Para aumentar o alcance da interface UART de um m no cabo de conexão. Isso pode ser feito pelo(s)	
drivers RS-232	
Um dos motivos para a Linguagem C ser predo embarcadas é a disponibilidade de compiladores para to	
TRUE	
A disponibilidade de compiladores para todas as plata ser predominante no desenvolvimento de aplicações en	
TRUE	
A linguagem C tem acesso mais facilitado ao hardwrápido, comparado com linguagens orientadas a objeto.	
FALSE	

foi a linguagem de programação usada nas primeiras aplicações embarcadas. Uma das razões para isso era
Assembly, a falta de compiladores
Assembly, a simplicidade das aplicações
Assembly, a baixa complexidade das aplicações
As aplicações embarcadas antigamente eram escritas em linguagem era uma das razões para isso.
Assembly, a falta de compiladores
Assembly, a baixa complexidade das aplicações
As primeiras aplicações embarcadas eram escritas em linguagem Uma das razões para isso era
Assembly, a falta de compiladores
Assembly, a baixa complexidade das aplicações
As primeiras aplicações embarcadas eram escritas em linguageme eram as razões para isso.
Assembly, A falta de compiladores, a baixa complexidade das aplicações
Assembly, A baixa complexidade das aplicações, a falta de compiladores
Assembly, A simplicidade das aplicações, a falta de compiladores
No padrão SPI o endereço de destino da mensagem vai na própria mensagem. FALSE
Na comunicação síncrona, transmissor e receptor usam o mesmo sinal de clock. É o caso do SPI. TRUE
O padrão I2C utiliza apenas um fio para tráfego de dados enquanto o SPI utiliza dois. TRUE
SPI e I2C adotam comunicação síncrona, transmissor e receptor usam o mesmo sinal de clock. TRUE
Os padrões I2C e SPI permitem operar a uma taxa de transmissão maior que a UART. TRUE

Nos barramentos de comunicação, como o I2C, os mesmos sinais conectam todos os dispositivos. Já no padrão UART, a conexão é ponto a ponto.

TRUE

Os processadores VLIW dissipam menor potência que os superescalares convencionais. Isso é conseqüência de seu menor desempenho.

FALSE

Os processadores VLIW apresentam menor desempenho que os superescalares convencionais, por isso dissipam menor potência.

FALSE

Os processadores VLIW possuem menor número de unidades funcionais que os superescalares convencionais, diminuindo a potência dissipada.

FALSE

Com os processadores VLIW (EPIC) a detecção de paralelismo é movida do processador para o compilador. Isso evita gastos com silício e energia em tempo de execução, aumentando a eficiência energética em relação aos superescalares normais.

TRUE

Um motor opera a 500 rpm quando submetido a uma tensão de 5,0V. Considere a disponibilidade de um driver PWM que fornece 5V quando em nível alto e 0V quando em nível baixo. O valor de ciclo de trabalho (razão cíclica ou Duty cycle) para que o motor opere a 300 rpm é ______.

0,6 (porcentagem)

Um motor opera a 600 rpm quando submetido a uma tensão de 5,0V. Considere a disponibilidade de um driver PWM que fornece 5V quando em nível alto e 0V quando em nível baixo. O valor de ciclo de trabalho (razão cíclica ou Duty cycle) para que o motor opere a 450 rpm é ______.

0,75 (porcentagem)

Um motor opera a 1000 rpm quando submetido a uma tensão de 5,0V. Considere a disponibilidade de um driver PWM que fornece 5V quando em nível alto e 0V quando em nível baixo. O valor de ciclo de trabalho (razão cíclica ou Duty cycle) para que o motor opere a 450 rpm é

0,45 (porcentagem)

O termo duty cycle (ciclo de trabalho), na modulação conhecida como PWM, descreve a proporção de tempo ligado em relação a um período de tempo.

TRUE

O uso de linguagens de mais alto nível de abstração em aplicações embarcadas vem sendo imposto pelo aumento da complexidade dessas aplicações.

TRUE

O aumento da complexidade das aplicações embarcadas levou ao uso de linguagens de mais alto nível de abstração.

TRUE

O aumento da complexidade das aplicações embarcadas levou à necessidade de combinar em um projeto diferentes linguagens, como Assembly e Python.

FALSE

O critério de Nyquist diz que a freqüência de amostragem para digitalização de um sinal deve ser maior ou igual ao dobro da maior freqüência contida no sinal.

TRUE

O critério de Nyquist diz que a freqüência de amostragem para digitalização de um sinal deve ser menor ou igual à metade da maior freqüência contida no sinal.

FALSE

Segundo o critério de Nyquist, a maior frequência contida num sinal não deve ultrapassar a metade da frequência de amostragem para digitalização do sinal.

TRUE

Segundo o critério de Nyquist, a frequência de amostragem para digitalização de um sinal deve ser maior ou igual à maior frequência contida no sinal.

FALSE

O(s)	apresentam n	nenor flexibilidade	e maior	tempo	de prototipação	como d	lesvantagens
em relação aos R	econfiguráveis						

ASIC

Os Reconfiguráveis oferecem como vantagens sobre o(s) _____ maior flexibilidade e menor tempo de prototipação.

ASIC

Uma estratégia para diminuir o tempo de computação de uma aplicação é a introdução de cache no sistema. A desvantagem desse método é o aumento da potência.

FALSE

A introdução de cache no sistema é uma estratégia para diminuir o tempo de computação de uma aplicação. A desvantagem desse método é o aumento da potência.

FALSE

A introdução de cache no sistema é uma estratégia para diminuir o tempo de computação de uma aplicação. Adicionalmente, esse método ajuda a diminuir a potência.

TRUE

Uma estratégia para diminuir o tempo de computação de uma aplicação é a introdução de cache no sistema. Adicionalmente, esse método ajuda a diminuir a potência.

TRUE

Um Cross compiler é um compilador sendo executado em uma plataforma e gerando código executável em outra plataforma.

TRUE

Um compilador sendo executado em uma plataforma e gerando código executável em outra plataforma é chamado Cross compiler.

TRUE

Uma estratégia para diminuir o tempo de computação de uma aplicação é substituir o algoritmo. A desvantagem desse método é o possível aumento da energia.

FALSE

Substituir o algoritmo é uma estratégia para diminuir o tempo de computação de uma aplicação. Adicionalmente, esse método pode diminuir a energia.

TRUE

Uma estratégia para diminuir o tempo de computação de uma aplicação é aumentar a frequência de operação do processador. A desvantagem desse método é o possível aumento da energia.

FALSE

Aumentar a frequência de operação do processador é uma estratégia para diminuir o tempo de computação de uma aplicação. A desvantagem desse método é o possível aumento da energia.

FALSE

Ao se aplicar uma estratégia que reduza a potência de um sistema digital haverá um benefício extra de também reduzir a sua energia.

FALSE

INCL

Diminuir a memória de um SoC tem um benefício duplo, no preço e na potência dissipada.

TRUE

Processador, Memórias e dispositivos de E/S são os elemento que compõem um SoC (System on Chip).

TRUE

Um SoC (System on Chip) é composto de Processador, Memórias e dispositivos de E/S.
TRUE
UART adota comunicação síncrona, transmissor e receptor usam o mesmo sinal de clock.
FALSE
Na comunicação síncrona, transmissor e receptor usam o mesmo sinal de clock. É o caso da UART.
FALSE
Estudos indicam que cerca de 75% do código de aplicações embarcadas em microcontroladores foi carrito em Assembly. Issa acerta parque a aquina do projeto usou
escrito em Assembly. Isso ocorre porque a equipe do projeto usou
bibliotecas escritas em assembly
Dado um ADC com resolução de 10 bits, frequência de clock de 200 kHz e que utiliza o método de
integração simples, o tempo de uma conversão é de
$(2^10)/200$ Khz = 5,12ms $(2^Bits/Frequencia.clk)$
Dado um ADC com resolução de 10 bits, frequência de clock de 200 kHz e que utiliza o método de
aproximação sucessiva, o tempo de uma conversão é de us.
10/200Khz = 50 (bits/frequencia.clk)
Dado um ADC com resolução de 12 bits, frequência de clock de 100 kHz e que utiliza o método de
aproximação sucessiva, o tempo de uma conversão é de us.
12/100Khz = 120 (bits/frequencia.clk)
12/100KHZ 120 (DRS/ITCQUCHCIA.CIK)
A técnica de salto de frequência do padrão Bluetooth contribui para diminuir a sua potência de
operação.
FALSE
A técnica de salto de frequência do padrão Bluetooth contribui para aumentar a sua taxa de
transmissão.
FALSE
A técnica de salto de frequência do padrão Bluetooth contribui para aumentar a sua robustez.
TRUE
O padrão Bluetooth opera a uma taxa de comunicação menor que o Wi-fi, mas o que o torna atraente é a menor potência dissipada.
TRUE
INUL

Um ASIC implementa uma lógica dedicada (específica) para uma aplicação. Essa estratégia permite uma menor potência dissipada pelo dispositivo podendo manter o tempo de computação de um processador de propósito geral.

TRUE

Compiladores não são muito eficientes ao traduzir código a partir da linguagem de alto nível. A solução para isso é os projetos de aplicações embarcadas contarem com algum desenvolvedor em Assembly.

FALSE

Um ASIP possui instruções especializadas para atender a um certo domínio de aplicações. Isso aumenta o seu time-to-market, comparado com um microprocessador, já que requer programadores especializados.

FALSE

As funções (em software) que usam os recursos de um ASIP (Application-Specific Instruction set Processor) são escritas originalmente em assembly.

TRUE

Medimos o tempo de execução de um trecho de código usando o osciloscópio para observar os sinais Tx e Rx.

FALSE

A taxa (ou frequência) de um conversor analógico-digital se refere ao numero de digitalizações feitas por unidade de tempo.

TRUE

é o tempo necessário desde a concepção de um projeto até o seu lançamento no mercado.

Time-to-market

O tempo necessário desde a concepção de um projeto até o seu lançamento no mercado e chamado

Time-to-market

Aumentar a memória de um SoC tem um prejuízo duplo, no preço e na potência dissipada. **TRUE**

Considere um sistema que é ativado em intervalos regulares de 20 minutos. O processo (computação/comunicação) dura 10 segundos e durante esse tempo o consumo é de 50mA. Depois disso o sistema entra em repouso e seu consumo é desprezível.

A alimentação é feita por baterias de 3V. As baterias devem ser capazes de fornecer uma potência de ___ mW. Se for usada uma bateria de 2000mAh, ele precisará ser substituída ou recarregada em ___ horas. *

50 mA x 3V = 150 mW; 4800

3v*2000mAh = 6000mWh = 6000 * 60 (min) * 60 (sec) = 21600000mWs

150 mW * 10 (sec) * 3(x por h) = 4500

21.600.000mWs / 4500 = 4800

21600000

60*30*3 = 6400

21600000/6400

3v

20 minutos

30 segundos

20mA

FORMS???????????????

A	comunicação	por pai	r trançado	é mais	robusta	que a tradi	cional ((sinalgnd).	Isso se	deve a	ao uso	de
cir	cuitos eletrôn	icos ma	is rápidos	pra imp	olementar	a conexão	com o	meio físico	de con	nunica	ção.	

FALSE

Dado um ADC com resolução de 12 bits, frequência de clock de 100 kHz e que utiliza o método de aproximação sucessiva, o tempo de uma conversão é de 120 us.

TRUE

Processadores com conjunto de instruções comprimidas (como o Thumb do ARM) permitem otimizar o tempo de computação pela diminuição do tempo de acesso à memória.

FALSE

É dada uma aplicação embarcada em uma plataforma que consome 400mA com uma tensão de 3,3V. Uma bateria de 3,6V deve ser capaz de fornecer no mínimo W para alimentar esse sistema. 1,32
Considere uma aplicação que é ativada em períodos regulares (T). Ela roda por um tempo (t1) e desliga o sistema no restante do tempo. Mantendo o algoritmo e a tensão do processador e diminuindo a freqüência de clock, a Potência máxima do sistema vai e a Energia vai; desde que o novo tempo de computação (t2) seja menor do que
diminuir; se manter; T
é um barramento de comunicação, em que os mesmos fios conectam todos os dispositivos (nós). Já no padrão, a conexão é ponto a ponto I2C; UART
Tanto o quanto o são chips projetados para uma aplicação específica. A diferença entre eles está no(a)
ASIC; ASSP; mercado alvo
Um motor opera a 500 rpm quando submetido a uma tensão de 5,0V. Considere a disponibilidade de um driver PWM que fornece 5V quando em nível alto e 0V quando em nível baixo é o valor do ciclo de trabalho (razão cíclica ou Duty cycle) para que o motor opere a 450 rpm. 0,9
Os processadores de 8 bits apresentam menor e menor como vantagens sobre os de 32 bits.
preço; potência

A de um Conversor Digital-Analógico está ligada ao número de bits que ele utiliza.
resolução
O modelo de programação "laço combinado com serviço de interrupção" é superior ao modelo para aplicações embarcadas com tarefas que sejam sensíveis a atrasos.
laço simples
Um System on Chip é composto de,e dispositivos de E/S.
Processador; Memórias
Defina time-to-market no contexto de sistemas embarcados. Tempo necessário desde a idealização de uma produto até a sua chega ao mercado. Fundamental na competição entre os produtos de eletrônica de consumo, principalmente.