Vorname: Familienname: Matrikelnummer: Studienkennzahl(en):

1	
2	
3	
4	
\mathbf{G}	

Note:

Prüfung zu Funktionalanalysis 1 Wintersemester 2007/08, Roland Steinbauer 2. Termin, 7.3.2008

 $1. \ Operatoren \ und \ Funktionale$

Seien E, F normierte Vektorräume und $T \in L(E, F)$.

(a) Operatornorm

Zeige, dass die Operatornorm ||T|| von T die kleinste Konstante ist, sodass

$$||Tx|| \le ||T|| \, ||x|| \qquad \forall x \in E$$

gilt. (2 Punkte)

(b) Funktionale auf L^p

Sei I ein Intervall, $p \in [1, \infty]$ und 1/p+1/q=1. Zeige, dass jede $L^q(I)$ -Funktion ein lineares stetiges Funktional auf $L^p(I)$ definiert.

Beantworte die folgenden Fragen (ohne Beweis): Was ist die Norm obigen Funktionals? Gibt es noch weitere lineare Funktionale auf L^p ; mit anderen Worten, was ist der Dualraum des $L^p(I)$? (3 Punkte)

(c) Vollständigkeit von L(E, F)Zeige falls F ein Banachraum ist, so auch L(E, F) Gilt a

Zeige, falls F ein Banachraum ist, so auch L(E, F). Gilt auch die Umkehrung? (5 Punkte)

- 2. Hilberträume
 - (a) Orthogonal projektion

Wie ist die Orthogonalprojektion P_M in Hilberträumen definiert? Es gilt, dass $(x-P_Mx) \perp M$ erfüllt. Zeige, dass P_Mx dadurch eindeutig bestimmt ist. (3 Punkte)

(b) Entwicklungssatz

Sei $\{e_i\}_{i=1}^{\infty}$ abzählbare Orthonormalbasis im Hilbertraum H. Zeige, dass dann für jeden Vektor $x \in H$

$$x = \sum_{i=1}^{\infty} \langle x | e_i \rangle e_i$$

gilt. (4 Punkte)

(c) Orthonormalbasen

Sei $\{e_i\}_{i=1}^{\infty}$ abzählbares Orthonormalsystem im Hilbertraum H. Die Bedingung in (b) charakterisiert sogar die Eigenschaft von $\{e_i\}_{i=1}^{\infty}$ Orthonormalbasis zu sein. Gib midestens 3 weitere äquivalente Bedingungen an. (3 Punkte)

3. Hauptsätze der Funktionalanalysis

(a) Reichhaltigkeit von E'

Zeige, dass der Dualraum E' die Punkte des normierten Vektorraums E trennt und insbesondere nicht-trivial ist. (was bedeutet das jeweils genau?) (3 Punkte)

- (b) Prinzip der gleichmäßigen Beschränktheit Formuliere und beweise den Satz von Banach-Steinhaus. (5 Punkte)
- (c) Graphennorm

Sei $T: E \supseteq D \to F$ eine abgeschlossener Operator und seien E, F Banachräume. Definiere die Graphennorm $||| \quad |||$ auf D und zeige, dass $T: (D, ||| \quad |||) \to F$ stetig ist. (2 Punkte)

4. Beispiele

Gib jeweils ein Beispiel an und begründe kurz, dass es die geforderten Eigenschaften hat. (Jeweils 2 Punkte)

- (a) Ein unbeschränkter linearer Operator zwischen normierten Vektorräumen.
- (b) Ein nicht separabler normierter Vektorraum.
- (c) Ein reflexiver normierter Vektorraum.
- (d) Ein abgeschlossener Operator zwischen normierten Vektorräumen.
- (e) Einen Isomorphismus zwischen Banachräumen mit unbeschränktem inversen Operator.