日本国特許庁 JAPAN PATENT OFFICE

30. 9. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 9月30日

出 願 番 号 Application Number:

特願2003-342274

[ST. 10/C]:

[JP2003-342274]

REC'D 18 NOV 2004

WIPO PCT

出 願 人
Applicant(s):

松下電器産業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2004年11月 4日

特許庁長官 Commissioner, Japan Patent Office 1)

BEST AVAILABLE COPY

【書類名】 特許願

【整理番号】2904750033【あて先】特許庁長官殿【国際特許分類】A61B 8/00

G01S 15/00

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式会社内

【氏名】 斉藤 孝悦

【発明者】

【住所又は居所】 大阪府門真市大字門真1006番地 松下電器産業株式会社内

【氏名】 武田 潤一

【特許出願人】

【識別番号】 000005821

【氏名又は名称】 松下電器産業株式会社

【代理人】

【識別番号】 100093067

【弁理士】

【氏名又は名称】 二瓶 正敬

【手数料の表示】

【予納台帳番号】 039103 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】明細書 1【物件名】図面 1【物件名】要約書 1【包括委任状番号】0003222

【書類名】特許請求の範囲

【請求項1】

超音波を送受信する圧電素子と、

前記圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の内部若しくは一部に設けられ、かつ、熱伝導率が前記背面負荷材の熱伝導率より大きい熱伝導材料とを、

有する超音波探触子。

【請求項2】

一方向に配列された超音波を送受信する複数の圧電素子と、

前記複数の圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の内部に深さ方向及び前記圧電素子の配列方向に沿って平行に設けられた、熱伝導率が前記背面負荷材の熱伝導率より大きい1つ又は複数のシート状の熱伝導材料とを、

有する超音波探触子。

【請求項3】

前記熱伝導材料の前記圧電素子側の端部が前記圧電素子の前記背面負荷材側の面に対して傾斜している形状であることを特徴とする請求項1又は2に記載の超音波探触子。

【請求項4】

前記熱伝導材料の前記圧電素子側の端部の傾斜面が前記圧電素子の背面に垂直な方向に対してなす角度は40度以下であるか、又は90度から超音波の臨界角度を差し引いた角度である請求項3に記載の超音波探触子。

【請求項5】

前記熱伝導材料に接続され、熱伝導率が前記背面負荷材の熱伝導率より大きい放熱プロックを更に設けた請求項1から4のいずれか1つに記載の超音波探触子。

【請求項6】

前記放熱ブロックが前記背面負荷材の背面に設けられ、前記熱伝導材料が更に前記放熱プロックと前記背面負荷材の間に設けられている請求項5に記載の超音波探触子。

【請求項7】

一方向に分割溝により分割されて超音波を送受信する複数の圧電素子と、

前記複数の圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の背面に設けられ、前記背面負荷材の熱伝導率より大きいプロック状の 熱伝導材料とを備え、

前記分割溝を前記熱伝導材料に到達しない深さで前記背面負荷材に形成した超音波探触子。

【請求項8】

一方向に分割溝により分割されて超音波を送受信する複数の圧電素子と、

前記複数の圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の背面に設けられ、前記背面負荷材の熱伝導率より大きいプロック状の熱伝導材料とを備え、

前記分割溝を前記熱伝導材料に到達する深さで形成して前記分割溝により前記熱伝導材料の表面に形成された凹凸面上に前記背面負荷材を形成した超音波探触子。

【請求項9】

前記熱伝導材料として、高分子フィルムをグラファイト化した高配行性のPGSグラファイトシート、グラファイト、カーボンナノチューブ、窒化アルミニウム、ボロンナイトライド、炭化珪素、酸化ベリリウム、銅及びアルミニウムのいずれかの材料を用いた請求項1から8のいずれか1つに記載の超音波探触子。

【書類名】明細書

【発明の名称】超音波探触子

【技術分野】

[0001]

本発明は、超音波診断装置などに用いる超音波探触子に関する。

【背景技術】

[0002]

従来の超音波探触子としては、図8に示すように、超音波を送受信するための複数個の 圧電素子21が図面と直交方向に配列され、個々の圧電素子21の前面、背面には、それ ぞ接地電極2、信号用電極22が設けられている(例えば下記の特許文献1参照)。接地 電極2の前面には、被検体(生体)に超音波を効率よく送受信するための音響整合層24 が設けられている。音響整合層24とは反対側の圧電素子21の背面には、圧電素子21 から送信した不要な超音波を減衰させ、かつ圧電素子21を信号用電極22を介して機械 的に保持する機能を有する背面負荷材25が設けられている。接地電極2は接地用電気端 子23に連結され、接地用電気端子23は熱伝導材26を経由して伝熱線27に接続した 構成となっている。

[0003]

この超音波探触子は、超音波診断装置などの本体から不図示の信号用電気端子、接地用電気端子 2 3 を介してそれぞれ信号用電極 2 2、接地電極 2 に電気信号を印加することにより、圧電素子 2 1 が機械振動して超音波を送信し、生体のような被検体から反射してきた超音波を圧電素子 2 1 で受信する。生体を被検体とする超音波診断装置用超音波探触子は、生体内に直接接触して生体に超音波を送信し、生体内から反射してきた反射波を再び超音波探触子で受信して、その信号を本体で処理してモニター上に診断画像を表示して診断するものに用いられるセンサである。

[0004]

このような超音波診断装置用超音波探触子は、生体に悪影響を与えないように、生体に接触する超音波探触子の表面温度を生体に影響が無いような温度にしなければならない。超音波探触子の表面温度は、生体に接触していない、つまり使用していない状態において、本体から送信信号を送り続けている状態で発熱し温度が上昇する。この主原因は、圧電素子21の誘電損失によるものと、探触子内の圧電素子21、音響整合層24、音響レンズ間の多重反射によるものと想定されている。このように超音波探触子の表面温度は、本体の送信信号と比例関係にあり、送信信号を低く抑えて調整し温度上昇しないように制限しているのが実態である。一方、送信信号レベルと生体を診断する深さとは比例関係にあり、送信信号を低く抑えることは、診断深さも浅くなるという短所にもなる。したがって、送信信号を高く(診断深さを深く)、しかも超音波探触子の表面温度も低くできるようにすることは極めて重要なことである。

[0005]

このように超音波診断装置に用いる超音波探触子は、生体に直接若しくは間接的に接触するものであるため、安全性を確保するために、探触子の表面温度は規制されており管理されなければならない。そのため、超音波診断装置本体から送信する電圧を調整して規制温度以下になるように低く設定して管理している。一方、超音波診断装置の診断領域、特に深さ方向を拡大したいという強い要求もある。前述の送信電圧と深さ方向の拡大は比例関係にあり、送信電圧を高くすれば診断深さも深くできるということであり、できるだけ送信電圧を高くすることが望ましい。このようなことから超音波探触子の表面温度を低減させる試みが、最近多く試みられている。図8に示した構造はその1つであり、圧電素子21の接地電極2から取り出している接地用電気端子23で熱を放熱する構成となっている。

【特許文献1】特開平5-244690号公報(図1)

【発明の開示】

【発明が解決しようとする課題】

[0006]

しかしながら、上記従来の超音波探触子の構成における放熱は、圧電素子21の接地用電気端子23の一部からの放熱であり、必ずしも十分と言えるものではないという問題がある。

[0007]

本発明は上記従来例の問題点に鑑み、放熱効果を高めることができ、ひいては超音波診断装置の送信電圧も高めて診断深さをより深くすることができる超音波探触子を提供することを目的とする。

【課題を解決するための手段】

[0008]

上記目的を達成するために、本発明の超音波探触子は、超音波を送受信する圧電素子と

前記圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の内部若しくは一部に設けられ、かつ、熱伝導率が前記背面負荷材の熱伝導率より大きい熱伝導材料とを有する構成とした。

この構成により、圧電素子が発した熱を、背面負荷材の内部若しくは一部に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0009]

また、本発明の超音波探触子は、一方向に配列された超音波を送受信する複数の圧電素子と、

前記複数の圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の内部に深さ方向及び前記圧電素子の配列方向に沿って平行に設けられた、熱伝導率が前記背面負荷材の熱伝導率より大きい1つ又は複数のシート状の熱伝導材料とを有する構成とした。

この構成により、圧電素子が発した熱を、背面負荷材の内部に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0010]

さらに本発明の超音波探触子は、前記熱伝導材料の前記圧電素子側の端部が前記圧電素 子の前記背面負荷材側の面に対して傾斜している形状である構成とした。

この構成により、圧電素子が発した熱を、背面負荷材の内部に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0011]

さらに本発明の超音波探触子は、前記熱伝導材料の前記圧電素子側の端部の傾斜面が前 記圧電素子の背面に垂直な方向に対してなす角度は40度以下であるか、又は90度から 超音波の臨界角度を差し引いた角度である構成とした。

この構成により、圧電素子が発した熱を、背面負荷材の内部に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0012]

さらに本発明の超音波探触子は、前記熱伝導材料に接続され、熱伝導率が前記背面負荷 材の熱伝導率より大きい放熱プロックを更に設けた構成とした。

この構成により、圧電素子が発した熱を、熱伝導率が背面負荷材より大きい材料により

吸熱して放熱ブロックを介して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0013]

さらに本発明の超音波探触子は、前記放熱プロックが前記背面負荷材の背面に設けられ、前記熱伝導材料が更に前記放熱プロックと前記背面負荷材の間に設けられている構成とした。

この構成により、圧電素子が発した熱を、背面負荷材の内部若しくは一部と背面に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱ブロックを介して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0014]

さらに本発明の超音波探触子は、一方向に分割溝により分割されて超音波を送受信する 複数の圧電素子と、

前記複数の圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の背面に設けられ、前記背面負荷材の熱伝導率より大きいプロック状の熱伝導材料とを備え、

前記分割溝を前記熱伝導材料に到達しない深さで前記背面負荷材に形成した構成とした

この構成により、圧電素子が発した熱を、背面負荷材の背面に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0015]

さらに本発明の超音波探触子は、一方向に分割溝により分割されて超音波を送受信する 複数の圧電素子と、

前記複数の圧電素子の背面に設けられた背面負荷材と、

前記背面負荷材の背面に設けられ、前記背面負荷材の熱伝導率より大きいブロック状の熱伝導材料とを備え、

前記分割溝を前記熱伝導材料に到達する深さで形成して前記分割溝により前記熱伝導材料の表面に形成された凹凸面上に前記背面負荷材を形成した構成とした。

この構成により、圧電素子が発した熱を、背面負荷材の背面に設けられた熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

[0016]

さらに本発明の超音波探触子は、前記熱伝導材料として、高分子フィルムをグラファイト化した高配行性のPGSグラファイトシート、グラファイト、カーボンナノチュープ、窒化アルミニウム、ボロンナイトライド、炭化珪素、酸化ベリリウム、銅及びアルミニウムのいずれかの材料を用いる構成とした。

この構成により、圧電素子が発した熱を、熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができる。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる超音波探触子を得ることができる。

【発明の効果】

[0017]

以上説明したように本発明によれば、圧電素子が発した熱を、熱伝導率が背面負荷材より大きい材料により吸熱して放熱することができ、超音波探触子表面の温度を低減させることができるので、超音波診断装置の送信電圧も高めることができるため、診断深さをよ

り深くすることができる。

【発明を実施するための最良の形態】

[0018]

<第1の実施の形態>

以下、本発明の実施の形態の超音波探触子について、図面を用いて説明する。本発明の 第1の実施の形態の超音波探触子を図1、図2に示す。図1は斜視図、図2は図1を上部 から見た図を示している。

[0019]

図1、図2において、第1の実施の形態の超音波探触子は、X方向に長く、Y方向に複数配列され、Z方向(診断深さ方向)に超音波を送受信する圧電素子1と、個々の圧電素子1の前面、背面にそれぞれ設けられた複数の接地電極2、信号用電極3と、個々の信号電極3からそれぞれ信号を取り出す複数の信号用電気端子4と、圧電素子1を信号用電極3を介して機械的に保持し、かつ必要に応じて不要な超音波信号を減衰させる機能を有する背面負荷材5と、背面負荷材5内に埋め込まれて圧電素子1から発生した熱を積極的に伝達するシート状の複数(図1、図2では3枚)の熱伝導材6と、背面負荷材5の背面側で熱伝導材6に連結されて熱伝導材6で伝達した熱を放熱する放熱ブロック7とを有する構成である。放熱ブロック7は熱伝導材6と熱的に伝達できるように接触若しくは接着されている。圧電素子1はP2T系などの圧電セラミック、単結晶などが用いられる。接地電極2、信号用電極3は金や銀を蒸着、スパッタリング、あるいは銀を焼き付けなどして圧電素子1の前面、背面にそれぞれ形成される。

[0020]

また、図示しないが圧電素子1の前面側には必要に応じて、接地電極2を介して超音波を効率良く送受信するために1層以上の音響整合層を設け、更にこの音響整合層の前面には超音波ビームを収束させる音響レンズを設けた構成にしてもよい。

[0021]

また、圧電素子1から送信された超音波は、背面負荷材5及び熱伝導材6にも伝搬するが、背面負荷材5及び熱伝導材6に伝搬した超音波は不要なものであるので、本発明では、背面負荷材6内で吸収若しくは散乱により減衰するようにして再び圧電素子1に戻らないようにしている。また、背面負荷材5の内部において深さ方向に伸びるように、かつ圧電素子1の配列方向に沿って平行に設けた複数のシート状の熱伝導材6により、超音波が圧電素子1に戻らないように背面負荷材5に散乱させる構造にしている。

[0022]

図1、図2では背面負荷材5の内部に熱伝導材6が3枚入った構成にしている。この熱伝導材6を背面負荷材5の内部若しくは一部に設ける枚数は1枚以上複数枚設けてもよいが、圧電素子1からの超音波を熱伝導材6が反射して悪影響しない程度の枚数にすることが必要となる。

[0023]

また、図1、図2では、熱伝導材6は圧電素子1の配列方向Yと同じ方向に連続してつながるように、またそれに直交する方向Xには分離している構成としている。これは個々の圧電素子1から発熱する熱を均一に吸熱することが容易な構造にするためである。このほか、圧電素子1の配列方向Yと直交する方向Xにも熱伝導材6を設けてもよいが、その場合には圧電素子1の配列する数と同じか又は圧電素子1を1個飛び若しくは数個飛びの間隔で熱伝導材6を設けるようにすることが必要である。更に他の方法として多数の針状の熱伝導材6を背面負荷材5の内部に2次元に配列して設けた構成にしてもよい。

[0024]

熱伝導材 6 は、熱伝導率が少なくとも背面負荷材 5 の値より大きい値のものが望ましい。通常、背面負荷材 5 としてはフェライト粉を充填した合成ゴムや、エポキシ樹脂若しくはウレタンゴムなどの高分子にタングステンやアルミナ若しくは減衰を大きくするために、ガラスや高分子の中空体を充填したものが用いられており、これらは減衰の大きい材料を得る目的で作られているものであり、熱伝導率には何ら考慮されていない。したがって

、熱伝導率は極めて小さい値の1W/mK前後であり、熱を伝導するには不向きな材料であるため、放熱するという効果は小さい。熱伝導材6は少なくとも背面負荷材5より大きい熱伝導率の材料を用いれば効果がある。さらに、より放熱の効果を向上させるには背面負荷材5の熱伝導率の10倍以上ある材料を用いるようにすればよい。熱伝導材6の材料としては、高分子フィルムをグラファイト化した高配行性のPGSグラファイトシート、グラファイト、カーボンナノチューブ、窒化アルミニウム、ボロンナイトライド、炭化珪素、酸化ベリリウム、銅及びアルミニウムなどのような熱伝導率の高い(60~600W/mK)材料を用いるのが望ましい。

[0025]

更に熱伝導材6は、圧電素子1の信号用電極3と直接接触する構成の場合には、電気的に絶縁できる材料を用いるが、信号用電極3と熱伝導材6が電気的に絶縁できる構成、例えば信号用電極3と熱伝導材6の間にエポキシ樹脂のような絶縁性の接着剤を薄く設けるような構成、あるいはポリイミドフィルムのような絶縁層を設けることによって、熱伝導材6は電気的な導電性あるいは絶縁性を有したどちらの材料を用いても実現できる。

[0026]

また、熱伝導材6で吸熱した熱を放熱プロック7に伝達して放熱するが、この放熱プロック7としては、熱伝導材6と同じ材料を用いてもよい。また、熱伝導材6と放熱プロック7が一体の構成でもよく、また接着して構成してもよい。

[0027]

また、熱伝導材6は放熱プロック7に対して、背面負荷材5の背面から熱が伝達できる構成にしているが、熱伝導材6を背面負荷材5の側面に延伸して、この延伸した熱伝導材6と放熱ブロック7と接続してもよい。この場合の放熱ブロック7は背面負荷材5の背面である必要はなく、背面負荷材5の側面あるいは離した場所に設けた構成にしても同様の効果が得られる。

[0028]

以上のような構成にすると、圧電素子1で発熱した熱及び超音波の多重反射により発熱した熱は、背面負荷材5の内部若しくは一部に設けた熱伝導材6で熱が伝達できるように接続した放熱プロック7によって吸熱して放熱できるため、超音波探触子の表面温度を低減できるという効果を有する。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる。

[0029]

なお、第1の実施の形態では、圧電素子1の配列方向Yと同じ方向に背面負荷材5の内部に熱伝導材6を3枚設けた構成の場合について説明したが、このほか熱伝導材6が圧電素子1の配列方向Yと直交する方向Xに設けた構成若しくは針状の熱伝導材6を1枚以上の複数個設けた構成にしても同様の効果が得られる。また、第1の実施の形態では、圧電素子1は複数個配列したいわゆるアレイ型にした場合について説明したが、このほか圧電素子1を単体若しくは2次元に配列したアレイ型の場合においても同様の効果が得られる

[0030]

<第2の実施の形態>

次に、本発明の第2の実施の形態の超音波探触子を図3、図4に示す。なお図4は図3のA部を拡大した図を示す。図3、図4の構成は、第1の実施の形態で説明した構成及び動作と同じであるのでここでは割愛し、第2の実施の形態の特徴を説明する。第2の実施の形態では、熱伝導材6の圧電素子1側の端部(先端部)が圧電素子1の背面負荷材5側の面に対して傾斜している形状であることを特徴とする。

[0031]

このような構成では、圧電素子1の表面、背面にそれぞれ設けた信号用電極3と接地電極2(図1参照)に印加した電圧により圧電素子1が機械振動し、接地電極2側と信号用電極3側の両側に超音波が発生するので、発生した超音波は背面負荷材5にも伝播して熱伝導材6の部分にも伝播し、図4に示す超音波8のように熱伝導材6の先端の傾斜面から

[0032]

このため、熱伝導材6の先端の傾斜面の角度(圧電素子1から発信した超音波が背面負荷材6の深さ方向に伝播する方向(圧電素子1の背面の垂直方向)に対する角度)を45度付近の角度以上にすると、超音波8は45度付近の角度では隣接する熱伝導材6の方向に伝播して再び反射し、超音波8は圧電素子1に戻る可能性があり、超音波画像の分解能の低下を招く。また、45度以上の角度にすると、同じように圧電素子1に超音波8が戻る経路となる。これらの圧電素子1に再び戻った超音波8は不要な超音波であるので、超音波画像にはノイズとなり分解能を低下させることになり、場合によっては診断上誤診になる可能性がある。したがって、かかる必要な超音波が必ず圧電素子1に戻らないようにしなければならない。

[0033]

そこで、熱伝導材6の先端の傾斜面の角度は、原理的には45度以下であれば反射した超音波8は圧電素子1に戻らないということになるが、しかし超音波8は拡散するという性質があるので、この拡散した場合には45度以下の場合でも超音波8が圧電素子1に戻る場合がある。そこで、熱伝導材6の先端の傾斜面の角度は、超音波8の拡散を考慮して40度以下にする。この角度にすることにより圧電素子1に超音波8が戻らない構成にしている。図3、図4では熱伝導材6は傾斜を両側(±X方向)に設けた構成で示している

[0034]

一方、超音波 8 は背面負荷材 5 に伝播して熱伝導材 6 の先端の傾斜面に入射すると、一部の超音波は熱伝導材 6 内に伝播し、他の超音波は反射して背面負荷材 5 に伝播することになる。しかしこれは既に知られていることであるが、熱伝導材 6 の先端の傾斜面の角度がある角度以上になると、背面負荷材 5 を伝播してきた超音波 8 は熱伝導材 6 内に入って行かない、つまり熱伝導材 6 の傾斜面から全反射するいわゆる臨界角が成立する。熱伝導材 6 は背面負荷材 5 とは違って超音波の減衰係数があまり大きくないため、熱伝導材 6 内に伝播した超音波は再び圧電素子 1 に戻る可能性が残っている。したがって、可能であれば熱伝導材 6 の内部に超音波を伝播させないような構成にすることが望ましい。

[0035]

例えば背面負荷材 5 として一般的に知られているフェライト粉を充填したゴム材のいわゆるフェライトゴムを用い、また熱伝導材 6 として一般的なグラファイトを用いた場合について説明する。図 4 において、超音波 8 が圧電素子 1 から発信して背面負荷材 5 を伝播し熱伝導材 6 の先端の傾斜面に入射したとき傾斜面の法線となす角度を θ 0 とすると、超音波が傾斜面で全反射するときの角度 θ 0 を臨界角 θ と呼び、臨界角 θ は以下の式(1)で算出される。

臨界角 $\theta = \sin^{-1} (C1/C2)$ (1)

- C1:背面負荷材5(フェライトゴム)の音速
- C2:熱伝導材6 (グラファイト) の音速
- C1<C2(背面負荷材5から熱伝導材6への場合)

[0036]

 する。

[0037]

以上のような構成にすると、圧電素子1で発熱した熱及び多重反射により発熱した熱は、背面負荷材5の内部若しくは一部に設けた熱伝導材6で熱が伝達できるようになり、しかも背面負荷材5内の超音波8が熱伝導材6から反射しても再び圧電素子1に戻らないようにしているため、分解能の劣化を防止することができ、更に超音波探触子の表面温度を低減できるという効果を有する。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さはより深くすることができる。

[0038]

なお、第2の実施の形態では、熱伝導材6の先端の傾斜面は両側(±X方向)に設けた構成について説明したが、このほか、熱伝導材6の傾斜は片側だけに設けても、若しくは円錐形状の構成にしても同様の効果が得られる。

[0039]

<第3の実施の形態>

次に、本発明の第3の実施の形態の超音波探触子を図5に示す。図5の構成は、第1の 実施の形態で説明した構成及び動作と同じであるのでここでは割愛し、第3の実施の形態 の特徴を説明する。第3の実施の形態では、熱伝導材16がさらに放熱ブロック17と背 面負荷材15の間に設けられている。

[0040]

熱伝導材16としては背面負荷材15の熱伝導率より大きい材料を用い、熱伝導材16で吸熱した熱を放熱プロック17で放熱するが、熱伝導材6と放熱プロック17が一体で構成できる場合は問題ないが、材料によっては必ずしも一体にできない場合がある。例えば、熱伝導材16として極めて熱伝導率(600~800W/mk)が高い高分子フィルムをグラファイト化した高配行性のPGSグラファイトシートを用いた場合には同じ材料で放熱プロック17は構成することができない。熱伝導材16は、放熱プロック17と接触面積が小さくなるので熱伝導材16から放熱プロック17に熱を伝える効率をもっと高めることにより、より放熱効果を上げるために、熱伝導材16を背面負荷材15の背面まで設ける構成にする。

[0041]

このような構成は、熱伝導材16の材料として前記のような高分子フィルムをグラファイト化した高配行性PGSグラファイトのシート状のものを用いれば容易に構成することができ、更に熱伝導材16とは違う材料を用いて放熱ブロック17を設ける。このような構成にすることにより熱伝導材16と放熱ブロック17の接触面積を大きくすることができるため、効果的な放熱を行うことができる。

[0042]

また、圧電素子11の両面に設けた信号用電極13と接地電極12に印加した電圧により圧電素子11が機械振動し、両側(接地電極12側と信号用電極13側)に超音波が発生するが、この発生した超音波8は背面負荷材15の内部で減衰し圧電素子11には戻らないような構成にしている。また、背面負荷材15の内部若しくは一部に熱伝導材16を設けており、圧電素子11から発熱した熱を吸熱して放熱する。

[0043]

なお、第3の実施の形態では、熱伝導材16はシート状のものを設けた構成について説明したが、このほか、熱伝導材16はブロックから加工して図5に示すような熱伝導材16の形状にして設けても同様の効果が得られる。

[0044]

<第4の実施の形態>

次に、本発明の第4の実施の形態の超音波探触子を図6に示す。図6の構成は、図1に示す圧電素子1をX方向から見た断面図を示したものと同様である。第1の実施の形態で説明した構成及び動作と同じであるのでここでは割愛し、第4の実施の形態の特徴を説明する。

[0045]

図6では、両面に信号用電極3と接地電極2とを設けた圧電素子・1に対して信号用電極3側に背面負荷材5を設け、背面負荷材5の背面にプロック状の熱伝導材6を設け、圧電素子1は機械加工などにより分割溝9を設けて複数個に分割して配列する。これは一般にいわれているアレイ型タイプである。圧電素子1を機械加工などにより分割するときは背面負荷材5の一部の深さまで切り込みを入れるようにする。これは分割した圧電素子1を個々に単独で振動させたときに背面負荷材5を通して隣接する圧電素子1に振動が伝わらないように、つまり、音響的なクロストークを低減させるために必要である。

[0046]

一方、背面負荷材5の背面に設けたブロック状の熱伝導材6は、圧電素子1の配列方向に連続してつながっている構成にしており、これは可能な限り熱を吸熱して放熱しやすいようにしているためである。このように熱伝導材6をブロック構成にしたときに背面負荷材5への分割溝9の深さの部分に熱伝導材6が存在すると、前述のように隣接する別の圧電素子1に背面負荷材5と熱伝導材6を経由して振動が伝播してしまい音響的なクロストークが大きくなる。特に熱伝導材6は音響的には伝播しやすく、減衰の小さい材料が用いられているので、圧電素子1の分割溝9にかからない深さに設ける構成にすることにより音響的なクロストークを防止することができる。ここで説明した背面負荷材5と熱伝導材6は、第1の実施の形態で説明したものと同じ材料を用いる。

[0047]

以上のような構成にすると、複数個配列した圧電素子1で発熱した熱及び多重反射により発熱した熱は、背面負荷材5の内部若しくは一部に設けた熱伝導材6で伝導できるようになり、しかも熱伝導材6による音響的なクロストークの影響を少なくする構成にすることにより分解能の劣化を防止することができ、更に超音波探触子の表面温度を低減できるという効果を有する。したがって、超音波診断装置の送信電圧も高めることができるため、診断深さをより深くすることができる。

[0048]

<第5の実施の形態>

また、第5の実施の形態として、図7に示すように分割溝9をブロック状の熱伝導材6に到達する深さで形成して分割溝9により熱伝導材6の表面に形成された凹凸面上に背面負荷材5を形成した構成にしても上述のような効果は得られる。

[0049]

<第6の実施の形態>

なお、上述の実施の形態では、圧電素子1を1次元に配列した構成について説明したが 、このほか、圧電素子1を2次元に配列した構成にしても同様の効果が得られる。

【産業上の利用可能性】

[0050]

本発明の超音波探触子は、超音波診断装置の他、超音波断層画像を得る他の装置に利用することができる。

【図面の簡単な説明】

[0051]

- 【図1】本発明の第1の実施の形態における超音波探触子の概略斜視図
- 【図2】本発明の第1の実施の形態における超音波探触子の概略平面図
- 【図3】本発明の第2の実施の形態における超音波探触子の概略断面図
- 【図4】図3のA部を拡大した図
- 【図5】本発明の第3の実施の形態における超音波探触子の概略断面図
- 【図6】本発明の第4の実施の形態における超音波探触子の概略断面図
- 【図7】本発明の第5の実施の形態における超音波探触子の概略断面図
- 【図8】従来の超音波探触子の概略断面図

【符号の説明】

[0052]

- 1、11 圧電素子
- 2、12 接地電極
- 3、13 信号用電極
- 4 信号用電気端子
- 5、15 背面負荷材
- 6、16 熱伝導材
- 7、17 放熱プロック
- 8 超音波
- 9 分割溝

【書類名】図面【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

[図8]

【書類名】要約書

【要約】

【課題】 放熱効果を高めることができ、ひいては超音波診断装置の送信電圧も高めて 診断深さをより深くする。

【解決手段】 超音波探触子は、X方向に長く、Y方向に複数配列され、Z方向(診断深さ方向)に超音波を送受信する圧電素子1と、個々の圧電素子の前面、背面にそれぞれ設けられた複数の接地電極2、信号用電極3と、個々の信号用電極からそれぞれ信号を取り出す複数の信号用電気端子4と、圧電素子を信号用電極を介して機械的に保持し、かつ必要に応じて不要な超音波信号を減衰させる機能を有する背面負荷材5と、背面負荷材内に埋め込まれて圧電素子から発生した熱を積極的に伝達するシート状の複数の熱伝導材6と、背面負荷材の背面側で熱伝導材に連結されて熱伝導材で伝達した熱を放熱する放熱プロック7とを有する。

【選択図】 図1

認定 · 付加情報

特許出願の番号 特願2003-342274

受付番号 50301623119

書類名 特許願

担当官 第一担当上席 0090

平成15年10月 1日

<認定情報・付加情報>

【提出日】 平成15年 9月30日

特願2003-342274

出願人履歴情報

識別番号

[000005821]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

大阪府門真市大字門真1006番地

氏 名 松下電器產業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

M BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.