Algebra und Diskrete Mathematik Übungsblatt 8

Beispiele 207, 232, 331

Aufgabe 207. Wie viele Möglichkeiten gibt es, 2n Punkte auf einer Geraden so oberhalb der Geraden paarweise zu verbinden, dass sich die Verbindungslinien nicht kreuzen?

Lösung. Dieses Problem kann mithilfe der Catalan-Zahlen gelöst werden:

$$C_n = \frac{1}{n+1} \cdot \binom{2n}{n}$$

wobei n die Anzahl der Punktpaare ist und C_n folglich alle Kombinationen diese Paare miteinander zu verbinden, ohne dass Überschneidungen stattfinden, darstellt. Das ganze als Rekursionsformel:

$$C_n = \sum_{k=1}^{n} C_{k-1} C_{n-k}$$

Aufgabe 232. Lösen Sie die Rekursion mit der Ansatzmethode:

$$a_n = 3a_{n-1} + 3^{n-1}$$
 $(n \ge 1), a_0 = 2$

Lösung.

Aufgabe 331. Gegeben seien die folgenden zweistelligen partiellen Operationen \bullet in der Menge M. Man untersuche, in welchem Fall eine Operation in M vorliegt. Welche der Operationen sind assoziativ, welche kommutativ?

- (a) $M = \{-1, 0, 1\}, \bullet$ gewöhnliche Addition bzw. Multiplikation
- (b) $M = \mathbb{N}, \ a \bullet b = 2^{ab}$
- (c) $M = \mathbb{Q}$, $a \bullet b = ab + 1$
- (d) $M = \mathbb{R}, a \bullet b = |a+b|$
- (e) $M \neq \emptyset$, $a \bullet b = a$

Lösung.

(a)

Addition Keine Operation in M, weil $1 + 1 = 2 \notin M$ (nicht abgeschlossen, kommutativ, assoziativ)

Multiplikation Operation in M, weil alle Multiplikationen Elemente aus M sind. (abgeschlossen, kommutativ, assoziativ)

(b)

(c)

(e)

Addition Operation in \mathbb{Q}

Assoziativ: nein

$$(a \bullet b) \bullet c = (ab + 1) \bullet c = (ab + 1) + c + 1 = ab + c + 2$$

$$a \bullet (b \bullet c) = a \bullet (bc + 1) = a + 1 + (bc + 1) = a + bc + 2$$

⇒ nicht gleich, daher nicht assoziativ

Kommutativ: ja

Multiplikation Operation in \mathbb{Q}

Assoziativ: nein

$$(a \bullet b) \bullet c = (ab+1) \bullet c = (ab+1) \cdot c + 1 = abc + c + 1$$

$$a \bullet (b \bullet c) = a \bullet (bc+1) = a \cdot (bc+1) + 1 = abc + a + 1$$

⇒ nicht gleich, daher nicht assoziativ

Kommutativ: ja

(d)

abgeschlossen ja, kommutativ ja assoziativ:

$$(a \bullet b) \bullet c = ||a + b| + c| = ||4 - 3| - 5| = 4$$

$$a \bullet (b \bullet c) = |a + |b + c|| = |4 + |-3 - 5|| = 12$$

⇒ nicht gleich, daher nicht assoziativ

abgeschlossen ja, kommutativ nein, denn $a \bullet b = a$, aber $b \bullet a = b$ assoziativ:

$$(a \bullet b) \bullet c = a \bullet c = a$$

$$a \bullet (b \bullet c) = a \bullet b = a$$

 \implies gleich, daher assoziativ