CAPA

1. Introdução

O problema proposto foi a implementação de um "Ordenador Universal", que seria um ordenador "inteligente" e capaz de determinar, por si próprio, parâmetros para a minimização do custo da ordenação de estruturas de entrada, sendo utilizados, na ordenação, os algoritmos de Insertion Sort e Quick Sort (otimizado com mediana de 3 e Insertion para partições pequenas). Para tanto, o ordenador determina, baseando-se em fatores de custo pré-determinados e na configuração da entrada, os valores do Limiar de Quebras (que indica para qual número de quebras na entrada o Insertion é automaticamente menos custoso) e Limiar de Partição (que indica a partir de qual tamanho de partição devemos chamar o Insertion dentro do próprio Quick Sort), permitindo ordená-la com o menor custo possível seguindo o limite de custo desejado.

Esta documentação tem como objetivo descrever a implementação do TAD criado para a solução do problema (o que é feito na seção 2, "Implementação", e na 4, "Estratégias de Robustez") e realizar a análise de seu funcionamento e possíveis custos gerados (o que é feito na seção 3, "Análise de Complexidade", na 5, "Análise Experimental" e na 6, "Conclusões"). A seção 7 conta com a bibliografia utilizada no trabalho.

2. Método/Implementação

O programa foi desenvolvido em linguagem C++ e compilado com o compilador g++ da GNU Compiler Collection, especificamente na versão c++11.

O código está organizado em, além do Makefile, mais 5 arquivos, sendo 2 deles de tipo .hpp e 3 de tipo .cpp. O arquivo Ordenadores.cpp faz a implementação dos algoritmos Quick Sort e Insertion Sort como eles são utilizados pelo TAD Ordenador Universal, além da struct contador_t e dos métodos que lidam com ela. Em OrdenadorUniversal.cpp, temos a implementação da classe ordUniversal, que é o TAD em si. Em main.cpp, temos a interação com a entrada padrão e a chamada dos métodos necessários do TAD.

Para solucionar o problema, foram implementadas 3 structs e uma classe. A struct contador_t é utilizada para registrar os valores de comparações, chamadas e movimentações nos algoritmos de ordenação e no método ordenadorUniversal. A struct estatisticas_t é o tipo utilizado para o registro de estatísticas no método determinaLimiarParticao e tem como membros, além do valor de custo e do limiar de partição que devem ser armazenados nesse método, uma instância de contador_t. A struct estatisticasLQ tem estrutura similar e é utilizada para registrar as estatísticas necessárias para obter o limiar de quebras. Ela conta com um membro diffCusto, que armazena a diferença de custos entre o Insertion e o QuickSort, um campo para o valor do limiar de quebras, 2 instâncias de contador_t e 2 valores de custo, que armazenam separadamente os dados para a execução do Insertion e do Quicksort. A decisão de implementar a struct desta forma foi tomada com o fim de reduzir a

quantidade de adaptações necessárias no método CalculaNovaFaixa para obter a nova faixa de limiares de quebras. Por fim, a classe ordUniversal implementa de fato o TAD Ordenador Universal. Os principais métodos da classe são ordenadorUniversal, determinaLimiarParticao, CalculaNovaFaixa, determinaLimiarQuebras e CalculaNovaFaixaLQ. Os demais são métodos auxiliares que são utilizados por eles ou para obter e registrar informações sobre o TAD.

O método ordenadorUniversal traz a funcionalidade do TAD em si, definindo qual deve ser o algoritmo utilizado com base na quantidade de quebras da entrada e nos valores de limiar de quebras e limiar de partição, obtidos chamando os métodos correspondentes anteriormente.

O método determinaLimiarParticao tem como objetivo encontrar o limiar de partição a partir do qual devemos chamar o Insertion dentro do próprio Quick Sort. Para tanto, o método testa diferentes valores possíveis de limiares (limParticao), obtém os custos associados a cada valor de limiar, a diferença de custo entre minMPS e maxMPS (os extremos da faixa de valores possíveis) e refina a faixa para cálculo de limiares. Esse processo continua até que a diferença de custo obtida seja menor que o limiar de custo pré-determinado ou até que o número de possíveis partições obtido em uma dada iteração seja menor que 5. A primeira faixa testada vai de 2 a tam, que é o tamanho do vetor. Em cada iteração seguinte, dividimos a faixa em 5 intervalos equidistantes, é feita uma cópia do vetor de entrada, que é ordenada utilizando o método ordenadorUniversal, e são registradas, no array de estatísticas (estatisticas), o custo e os valores de comparações, movimentações e chamadas para cada um dos valores de partição testados. Após serem completadas todas as iterações (sendo que são sempre, no máximo, 6), é encontrado o índice no vetor que armazena o menor deles com o método menorCusto. É chamado o método CalculaNovaFaixa, que obtém os novos limites minMPS e maxMPS para a próxima iteração e, por fim, é obtida a diferença de custo (diffCusto) entre os limites da nova faixa. Ao fim do processo, quando alguma das condições iniciais falha, é retornado o valor final obtido para o limiar de partição. O método registraEstatisticas calcula o custo com base nos dados armazenados em contador_t, e o imprimeEstatisticas faz a impressão dos dados obtidos a cada iteração. Por fim, o método getMPS, utilizado em CalculaNovaFaixa, obtém o valor de limiar de partição armazenado em um índice específico do vetor.

O método determinaLimiarQuebras segue uma lógica parecida com o determinaLimiarParticao, tendo o objetivo de encontrar o limiar de quebras para o qual é menos custoso já chamar o Insertion Sort ao invés do Quick Sort. O método cria uma cópia do vetor de entrada, o ordena utilizando Quick Sort e, com o método shuffleVector, cria no vetor já ordenado a quantidade de quebras desejadas para cada teste. É feita uma nova cópia desse vetor e, então, ordenamos uma das cópias com o Insertion Sort e uma delas com o Quick Sort. Os custos (e comparações, chamadas e movimentações) da ordenação usando cada um dos algoritmos são registrados no vetor de estatísticas statsLQ. Quando finalizamos todas as iterações, o método calculaDiffCustosLQ calcula a diferença de custo entre Insertion e Quick Sort para

cada um dos valores de limiar de quebras testados. É obtido o índice no vetor da menor dentre essas diferenças de custo com o método menorCustoLQ, que é utilizado em calculaNovaFaixaLQ para obter a nova faixa de valores de quebras a serem testados. Assim, registramos o valor de diffCusto, correspondente à diferença de custo entre o maior e o menor custo de ordenação utilizando o Insertion Sort. O processo continua até que diffCusto seja menor que o limiar de custo pré-determinado ou que a quantidade de valores para limiares de quebras obtido seja menor que 5. Assim, é retornado o valor final obtido para o limiar de quebras. O método registra Estatisticas é o mesmo do utilizado em determinaLimiarParticao e calcula os custos com base nos coeficientes a, b, c e nas estatísticas de movimentações, comparações e chamadas, e o imprimeEstatisticasLQ imprime os dados obtidos. O método getLQ, utilizado em calculaNovaFaixaLQ, obtém o valor do limiar de quebras armazenado em um dado índice do vetor de estatísticas. Um ponto importante é que, como o valor de numLQ (quantidade de valores de limiar de quebras em uma faixa) não é fixo (como em numMPS), calculamos previamente qual será o valor de numLQ para alocar o vetor de estatisticas (estatisticasLQ) corretamente. Além disso, também temos, na classe ordUniversal, o construtor da classe e o método calculaQuebras, que conta o número de quebras no vetor de entrada.

O fluxo do programa é definido por main.cpp. É feita a leitura dos dados do arquivo de entrada, com tratamento para casos de erro relacionados à leitura, inicializada uma instância da classe com os dados lidos (coeficientes a, b, c, limiar de custo e seed) e, então, chamados os métodos determinaLimiarParticao e determinaLimiarQuebras. Esses valores também são registrados na instância usando os métodos set.

3. Análise de Complexidade

Consideramos n como o tamanho do vetor de entrada e, portanto, o tamanho do problema. Faremos a análise dos métodos auxiliares e, posteriormente, dos métodos que os utilizam.

- 1. calculaQuebras: o método itera de 0 a n-1 e realiza uma comparação e, possivelmente, uma operação de custo constante a cada iteração. Logo, a sua complexidade de tempo é O(n). O vetor analisado, de tamanho n, é recebido como parâmetro pelo método e são utilizadas apenas estruturas auxiliares unitárias O(1). Com isso, a complexidade de espaço é $\Theta(1)$.
- **2. getMPS e getLQ**: os métodos fazem uma única comparação (para checar possíveis erros de acesso a posições indevidas do vetor) e uma operação de custo constante (return). Logo, sua complexidade de tempo é O(1). Não há uso de memória extra, com complexidade de espaço O(1).
- **3.** menorCusto e menorCustoLQ: os métodos iteram sobre os vetores de estatísticas usados em determinaLimiarParticao e determinaLimiarQuebras, respectivamente. Sabe-se que o tamanho desses vetores não depende

- diretamente de n e, no for, a cada iteração é realizada uma comparação e possivelmente apenas operações de custo constante, como atribuições. Assim, a complexidade de tempo é O(1). Também não há uso de memória extra, com complexidade de espaço O(1).
- **4. encontra**Elemento e encontraElementoLQ: os métodos iteram sobre os vetores de estatísticas usados em determinaLimiarParticao e determinaLimiarQuebras, indo de 0 a numMPS-1 e de 0 a numLQ-1, respectivamente. É realizada uma comparação e possivelmente uma operação de custo constante a cada iteração do for. Como sabemos que numMPS e numLQ não são funções de n e, em geral, não assumem valores muito grandes, a complexidade de tempo é O(1). Já a complexidade de espaço é O(1), já que não há uso de estruturas de memória auxiliares.
- 5. registra Estatisticas: o método realiza somente operações de custo constante (atribuição, operações matemáticas) e uma única vez, com complexidade de tempo O(1). Já a complexidade de espaço é O(1), uma vez que não é utilizada memória auxiliar.
- 6. imprimeEstatisticas e imprimeEstatisticasLQ: os métodos apenas fazem impressões de dados, com complexidade de tempo O(1). Não há uso de memória auxiliar, com complexidade de tempo O(1).
- 7. calculaDiffCustosLQ: iteramos de 0 a numLQ-1, realizando apenas operações de custo constante a cada iteração. Com isso, a complexidade de tempo é O(1). O vetor analisado é recebido por parâmetro e não há alocação de novas variáveis ou vetores, com complexidade de espaço O(1).
- **8. shuffleVector:** o método itera de 0 a numShuffle-1, realizando somente operações de custo constante a cada iteração. Com isso, sua complexidade de tempo é O(numShuffle). Como o vetor utilizado é passado por parâmetro e há somente alocação de 3 variáveis, a complexidade de espaço é O(1).
- **9.** calculaNovaFaixa: o método CalculaNovaFaixa realiza uma quantidade constante de operações de custo também constante (comparações, atribuições e operações aritméticas). Além disso, a única função que chama é getMPS, cujos custos são também constantes. Com isso, a complexidade de tempo é O(1). Como há alocação unicamente de 2 variáveis de tipo int, a complexidade de espaço é O(1).
- **10.** calculaNovaFaixaLQ: similarmente a calculaNovaFaixa, realiza uma quantidade constante de comparações e operações de custo constante, além de não utilizar estruturas extras de memória. Com isso, a complexidade de tempo é O(1) e a complexidade de espaço é, também, O(1).
- 11. ordenadorUniversal: para este método, analisamos os casos possíveis de execução. Se nroQuebras < limQuebras, sabemos que o Insertion é eficiente e apresenta complexidade O(n). Se esse não é o caso, seguimos para a chamada do quicksort, já otimizado, que apresenta complexidade de tempo O(nlogn).

- Já para a complexidade de espaço, há o uso de memória extra na pilha de chamadas recursivas para o QuickSort, com complexidade O(nlogn).
- 12. determinaLimiarParticao: é o método mais "problemático", uma vez que utiliza grande parte dos demais métodos e, além disso, conta com um for aninhado com um while. A quantidade de vezes que o for roda não depende necessariamente de n e nunca é maior do que 6, ou seja, executa uma quantidade aproximadamente constante de vezes. Em cada iteração do for, são chamadas os métodos de custo constante resetcounter, registraEstatisticas e imprimeEstatisticas. Além disso, é chamado o ordenadorUniversal que, da forma como é utilizado no método, chama sempre somente o QuickSort, com custo O(nlogn). Ainda dentro do while, são chamados os métodos calculaNovaFaixa, menorCusto e encontraElemento, todos de custo constante, de forma que o desafio é determinar quantas vezes o while roda. Notamos que, a cada nova faixa, utilizamos % do intervalo obtido anteriormente. Com isso, a cada iteração do while, eliminamos % da faixa analisada, executando cerca de log(n) vezes. Com isso, a complexidade de tempo é de O(nlogn * log(n)), ou seja, $O(n * log^2(n))$ Já para a complexidade de espaço, a cada iteração fazemos uma única cópia do vetor de entrada para performar a ordenação e, ao final de cada iteração, esse vetor é desalocado. Assim, a quantidade de memória extra utilizada (contando com o vetor de estatísticas, de tamanho constante) nunca extrapola o valor de n, com complexidade de espaço O(n).
- 13. determinaLimiarQuebras: a análise de complexidade para este método é próxima da análise realizada para determinaLimiarParticao. O for executa um número de vezes que é independente de n e consideramos constante. Os métodos chamados em todo o método, com exceção do QuickSort e Insertion Sort, apresentam custo constante. Em cada iteração do for, chamamos o quicksort, com custo nlogn, e o Insertion, com custo $O(n^2)$, gerando um custo de $O(n^2)$ para o for. Para o while, também reduzimos cada vez em % do tamanho, executando cerca de $\log(n)$ vezes. Com isso, é produzida uma complexidade de tempo de $O(n^2*log(n))$. Já para o espaço, a cada iteração do for, alocamos 2 vetores de tamanho n para as cópias do vetor de entrada, que são desalocados ao fim do for. Com isso, nunca é utilizada memória extra que extrapole o valor de 2*n, gerando uma complexidade de espaço de O(n).

4. Estratégias de Robustez

A principal estratégia de robustez empregada foi o tratamento de exceções utilizando o método de try-catch-throw disponível na linguagem C++. Em especial, foi utilizado em main.cpp (o arquivo que de fato interage com a entrada padrão) com o fim de indicar erros na leitura do arquivo de entrada (evidenciando se houve algum problema na leitura ou se a entrada estava formatada indevidamente, por exemplo) ou

no recebimento do arquivo pela entrada padrão. Assim, caso ocorram erros nessa parte do sistema, eles são bem identificados, não se propagam e não geram comportamentos inesperados do programa. Além disso, também foi utilizado o tratamento de exceções nos momentos em que é utilizada a alocação dinâmica de memória (para verificar se foi bem-sucedida) e, em geral, nos métodos que poderiam possivelmente acessar posições inválidas em vetores (notadamente por terem os índices de acesso calculados por outros métodos no programa).

Por fim, também foi feita a modularização das classes empregadas. Os seus atributos principais são mantidos privados e, portanto, inacessíveis a alterações diretas e possivelmente maliciosas por parte de usuários.

5. Análise Experimental

5.1. Método e Resultados

Na primeira parte da análise, para obter os coeficiente a, b e c, fixamos os valores do tamanho de chave e do registro em 4 bytes (correspondentes ao tamanho de um int) e a configuração do vetor em próximo a medianamente ordenado, contando sempre com metade de seu tamanho em número de quebras. Os valores de tamanho de vetor empregados iniciaram em 512 e dobraram a cada teste, até que se chegasse ao tamanho de 32768. Uma vez que não é possível utilizar o ordenadorUniversal sem antes definir os limiares, o algoritmo utilizado para cálculo dos coeficientes foi o QuickSort com mediana de 3 e uso de Insertion Sort para partições menores que 50. Por fim, como a cada execução obtemos um tempo de execução levemente diferente, foram realizadas 5 execuções para cada caso e o tempo final empregado foi a média do tempo para essas execuções. Após a coleta desses dados, foi realizada a Regressão Linear com os dados da Tabela 1.

Com a calibragem de a, b e c, foram variados os demais parâmetros que estavam fixos antes (tamanho da chave, do registro e ordenação do vetor), sendo obtidos os resultados mostrados na Tabela 2. Para auxiliar na interpretação e visualização dos dados apresentados, também foram criados os gráficos 1 e 2.

Tam. Vetor =	cmp =	mv =	calls =	tempo =	a =	b =	c =
512	2536	1774	46	0,0000284	-	-	-
1024	6090	3550	94	0,0003184	-	-	-
2048	14220	7102	190	0,000334001	-	-	-
4096	32526	14206	382	0,000588	-	-	-
8192	73232	28414	766	0,0008501	-	-	-
16384	162834	56830	1534	0,0012531	-	-	-
32768	358420	113662	3070	0,00456469	-	-	-
-	-	-	-	-	0,0056893702	-0,002139839	-0,002139839

Tabela 1. Dados para calibragem dos coeficientes a, b e c.

Tam. Vetor	Tam. Chave =	Tam. Registı \Xi	Config. Vetor =	limCusto	limParticao ≡	limQuebras =	Tempo Execução 😑
2000	4	4	inversamente ordenado	20	1199	2	0,1376647
2000	4	4	25% ordenado	20	27	12	0,1023472
2000	4	4	75% ordenado	20	65	9	0,07882446
2000	4	4	ordenado	20	1199	2	0,0776174
2000	4	4	1011 quebras	20	12	13	0,096722
2000	4	8	1011 quebras	20	12	13	0,1158718
2000	4	16	1011 quebras	20	12	13	0,13315304
2000	4	32	1011 quebras	20	12	13	0,13809936
2000	2	8	1011 quebras	20	12	13	0,1105872
2000	4	8	1011 quebras	20	12	13	0,112445
2000	8	8	1011 quebras	20	12	13	0,1134344000

Tabela 2. Dados obtidos variando os parâmetros antes fixos.

Gráfico 1. Relação entre o tempo de execução e a configuração do vetor de entrada.

Gráfico 2. Relação entre o tamanho da chave (em vermelho) e o tempo de execução; e entre o tamanho do registro (em azul) e o tempo de execução.

Por fim, foram comparados os desempenhos do TAD Ordenador Universal (utilizando os limiares calibrados) e do algoritmo Quick Sort otimizado com mediana de 3 e Insertion para partições menores que 50. Para os testes, foram utilizados os exemplos de entradas fornecidos para o trabalho. Os resultados obtidos seguem na Tabela 3 e nos Gráficos 3 e 4.

teste =	tam. vet. =	Quebras =	cmp QS =	cmp OU =	moves QS =	moves OU =	calls QS =	calls OU =	tempo OU (s) =	tempo QS (s)	custo QS	custo OU
1	1500	758	19085	18594	12978	15545	2720	319	0,00029	0,0004082	196,2156	132,398068
2	1500	745	18855	18483	12885	15454	2678	343	0,0003306	0,00043626	193,322667	132,044103
3	1500	745	18855	23252	12885	21123	2678	159	0,0003244	0,0004246	193,322667	150,67788
4	1500	745	18855	23252	12885	21123	2678	159	0,0003082	0,0003988000	196,88262	155,072508
5	1500	747	18967	23287	12870	21242	2696	142	0,00046	0,000458	206,763786	154,877676
6	1500	747	18967	23287	12870	21242	2696	142	0,0004766	0,0014446	206,763786	154,877676
7	700	352	8059	7716	5427	6307	1258	184	0,0001872	0,0002628	90,399392	58,761279
8	200	93	1965	2000	1251	1737	358	34	0,0000546	0,0001402	23,54276	14,301264
9	2000	1011	28212	27596	17577	20923	3602	442	0,0004236	0,0006486	309,254533	216,193773
10	50	25	369	285	243	249	90	22	0,0000408	0,0000786	4,831524	2,376576

Tabela 3. Resultados dos testes comparativos entre QuickSort e Ordenador Universal.

Gráfico 3. Resultados comparativos em termos de estatísticas de comparações, movimentações e chamadas de função.

Gráfico 4. Resultados comparativos em termos de custo de execução para Quick Sort (QS) e Ordenador Universal (OU).

5.2 Conclusões

Na segunda parte da análise experimental, como esperado, nota-se que o tempo de execução do algoritmo cresce à medida que o nível de desordenação da entrada aumenta. Além disso, tem-se que os limiares de quebras e partição permanecem constantes nos extremos da faixa de testes e variam para valores intermediários de ordenação, evidenciando o impacto direto da organização inicial para o funcionamento do TAD.

Em seguida, observa-se que o tamanho do registro é o fator que mais gera aumentos no tempo de execução quando variado, com exceção do caso de entrada ordenada e inversamente ordenada, que gera a maior diferença de tempo observada. Este resultado é coerente já que valores maiores de registro geram maior gasto computacional para movimentações, o que gera o aumento do tempo de execução. A variação do tamanho da chave também gera aumento no tempo de execução, mas com alterações mais discretas. Este resultado também é esperado, já que operações de comparação (que se tornam mais caras à medida que a chave cresce) não são tão custosas quando as de movimentações de registro.

Por fim, a análise comparativa de algoritmos destaca a eficiência do TAD Ordenador Universal: para diversos tamanhos de entrada, coeficientes de custo e organizações do vetor de entrada, a ordenação do TAD é sempre menos custosa e pelo menos tão rápida quanto a do Quick Sort, que já é um método considerado ótimo. É interessante notar que o melhor desempenho do TAD não necessariamente ocorre porque as suas estatísticas são sempre menores que as do Quick Sort. Muitas vezes o método apresenta número de comparações e movimentações maior do que o próprio Quick Sort, por exemplo, sendo que a sua maior otimização ocorre para o número de calls, que é sempre consideravelmente menor em

comparação. Ainda assim, ao fim do cálculo de custo, o TAD obtém resultados melhores e tempos de execução menores, o que comprova sua adaptabilidade e superioridade prática frente a métodos clássicos como o Quick Sort.

- 6. Conclusões
- 7. Bibliografia