```
Ex 1:
```

(1).

= : Obvious:

$$\Rightarrow$$
: If $\Delta f = 0$, $0 = (\Delta f, f) = (df, df) > 0$. $\Rightarrow df = 0$ on M.

 $\Rightarrow f = constant.$

If
$$\Delta(f_{\mathcal{D}}) = 0$$
. $0 = (f_{\mathcal{D}}, \Delta(f_{\mathcal{D}})) = (\delta(f_{\mathcal{D}}), \delta(f_{\mathcal{D}})) > 0$.

$$\Rightarrow \delta(f\pi) = 0. \qquad (-1)^{n(n-1)+1} * d*(f\pi) = 0 \qquad * df = 0.$$

 $\Rightarrow f = constant.$

(2).

$$(=: \int_{M} f \pi = \int_{M} Ag \pi = (\Delta g, 1) = (g, \Delta 1) = 0.$$

=>: If
$$\int_{M} f_{JZ} = 0$$
. $\exists (n-1) - form η . S.t. $f_{Z} = d\eta$.$

From Hodge Theorem:

$$\Pi^{k}(M) = \mathcal{H}^{k}(M) \oplus Im(\Delta: \Pi^{k}(M) \rightarrow \Pi^{k}(M))$$

=
$$\mathcal{H}^{k}(M) \oplus I_{m}(d\delta) \oplus I_{m}(\delta d)$$
.

In-form T. S.t.

$$fr = dy = dst = \Delta t$$
.

$$\tau = g\Omega$$
 $\Rightarrow \Delta \tau = (\Delta g) \Omega$ = $f \pi$.
 $f = \Delta q$.

Ex Z:

(1). $\forall X. T \in D^2$. $\forall P \in M$, $\forall X. Y \in D^2$. $\forall P \in M$, $\forall X. Y \in D^2$. $\forall X \in T = 0$. $\forall X \in T = 0$. $\forall X \in T \in T = 0$. $\forall X \in T \in T = 0$. $\forall X \in T \in T = 0$. $\forall X \in T \in T = 0$. $\forall X \in T \in T = 0$. $\forall X \in T \in T = 0$.

12).

 $X_1 = (0.0.1)$. $X_2 = (\cos(2\pi z), -\sin(2\pi z), 0)$. Define $\alpha = \sin(2\pi z) dx + \cos(2\pi z) dy$, $(\cos(2\pi z) dy)$, $(\cos(2\pi z) dz) dz = 2\pi \cos(2\pi z) dz = 2\pi \sin(2\pi z) dz = 2\pi \cos(2\pi z) dz = 2\pi$

(3). $\gamma(t) = (\frac{1}{2\pi} \sin(2\pi t), \frac{1}{2\pi} \cos(2\pi t), t)$. $t \in [0.1]$. $\gamma(t) = \cos(2\pi t) \frac{1}{2\pi} - \sin(2\pi t) \frac{1}{2\pi} + \frac{1}{2\pi} = \chi_1 + \chi_2$

Ex3:

Let $f: S' \rightarrow S''$ be a smooth map. Sand's theorem $\Rightarrow \exists p \in S''$.

P is a regular value of $f: \bot$ et $\pi: S'' \setminus fp_1^2 \rightarrow \mathbb{R}^n$ be

the stereographic projection around p.If there is an $x \in S'$ s.t. $p = f(x) \Rightarrow cf_x: T_xS' \rightarrow T_pS''$ is a map which can not be swijertive $\Rightarrow p \neq imf.$ $\pi \circ f: S' \rightarrow S'' \setminus fp_1^2 \rightarrow \mathbb{R}^n$ is null-homotopic since \mathbb{R}^n is contractible. $\Rightarrow f$ is null-homotopic. $\Rightarrow S''$ is simply - connected.