Matrices y más matrices

(tiempo límite: 1 segundo)

Para poder multiplicar dos matrices A y B es necesario que sean compatibles, es decir que el número de columnas de A sea igual al número de filas de B. En otras palabras, la matriz $A_{i \times h}$ se puede multiplicar por $B_{k \times h}$, dando como resultado $C_{i \times h}$ y dicho proceso implica i * k * h multiplicaciones individuales.

Para realizar la multiplicación de más de dos matrices compatibles existen varias maneras. Por ejemplo, para multiplicar tres matrices X, Y, Z se puede hacer (XY)Z o X(YZ) pero, dependiendo de las dimensiones de cada una, la cantidad total de operaciones individuales puede variar.

Por ejemplo, si X es tiene una dimensión de 5x10, Y de 10x20, Y de 20x35, hacer (XY)Z implicaría 4500 operaciones individuales, mientras que X(YZ) implicaría 8750.

Dado entonces un conjunto de matrices M_1 , M_2 , ..., M_N las cuales son compatibles para realizar el producto en ese orden, las cuales se pueden representar mediante un arreglo de enteros positivos no nulos $P = \{p_0, p_1, p_N\}$, tal que la matriz A_i tiene un orden $p_{i-1} \times p_i$, ¿cuál es el esquema óptimo para multiplicarlas? Es decir, ¿cuál es el esquema de parentización que minimiza la cantidad de operaciones individuales?

Entrada

La entrada comienza con una línea que contiene la cantidad C de casos de prueba (no más de 50). Luego siguen C líneas, cada una con N+1 valores enteros no negativos de P que corresponden a las dimensiones de las N matrices a multiplicar ($2 \le N \le 20$). Dichos valores no serán mayores a 50 y se encuentran separados entre sí por un espacio en blanco.

Salida

Asumiendo que las matrices se nombran M1, M2, ..., hasta MN, la salida debe contener C líneas, cada una con la expresión parentizada que representa el orden óptimo en que deben multiplicarse las matrices. Dicha expresión debe ceñirse estrictamente a la forma que se muestra en el ejemplo. Cada caso de prueba es tal que no existe más de un esquema de parentización óptimo.

Ejemplo de entrada

```
2
5 10 20 35
30 35 15 5 10 20 25
```

Ejemplo de salida

```
((M1 x M2) x M3)
((M1 x (M2 x M3)) x ((M4 x M5) x M6))
```