

CryptographyLecture 4: Elliptic Curves I

*Dr. Muhammad Hataba*Muhammad.Hataba@giu-uni.de

References and Legalities

This lecture makes use of the following resources:

- Understanding Cryptography Chapter 9
- https://www.youtube.com/watch?v=F3zzNa42-tQ
- Information Security Course, German International University, Amr ElMougy
- Cryptography Course, German International University, Alia El Bolock

Outline of Today's Lecture

- Public Key Cryptography
- From Modular Arithmetic to Elliptic Curves
- Elliptic Curves Intro
- Computations on Elliptic Curves
- Elliptic Curve Cryptography
- Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

Public-key Algorithms

Servers

ALICE

Categories of PKC

- RSA (Rivest–Shamir–Adleman)
- Diffie-Hellman
- Elliptic Curve Cryptography

All built on the concept of trapdoor functions

Trapdoor Functions

- Example 1:
 - Mixing colors together is easy
 - Separating them from each other is hard (computationally "infeasible")
- Example 2:
 - Multiplying large prime numbers together is easy
 - Factorising them is hard (computationally "infeasible")
- Trapdoor functions are functions that are easy to compute one way, but
 - difficult the other, i.e.,

$$A \rightarrow B$$

RSA (Rivest-Shamir-Adleman)

 Private and public key pairs (based on the factoring problem of large primes)

RSA Algorithm

Key Generation

```
Select p,q. p and q both prime; p \neq q. Calculate p(n) = (p-1)(q-1)
Select integer e p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q p = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q = q q =
```

Encryption

01.4.11	1 2
Plaintext:	M < n
Plaintext: Ciphertext:	$C = M^c \pmod{n}$

Decryption

Plaintext: Ciphertext:	С .		
Ciphertext:	$M = C^d \pmod{n}$		

Diffie-Hellman Key Exchange

- Two parties build a shared key together (<u>Public key cryptography Diffie-Hellman Key Exchange (full version)</u>)
- Based on Discrete Logarithm Problem in \mathbb{Z}_p^*

Diffie-Hellman Key Exchange

Two parties build a shared key together (based on modular arithmetic)
 (Public key cryptography - Diffie-Hellman Key Exchange (full version))

Diffie-Hellman Example

From Modular Arithmetic to Elliptic Curves

- RSA (Rivest-Shamir-Adleman)

 Diffie-Hellman (and ElGamal)
- Elliptic Curve Cryptography

All built on the concept of trapdoor functions

Why ECC?

Problem:

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields with parameters of more than 1000 bits.

- High computational effort on CPUs with 32-bit or 64-bit arithmetic
- Large parameter sizes critical for storage on small and embedded

Motivation:

Smaller field sizes providing equivalent security are desirable

Solution:

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes with coefficient sizes of 160-256 bits, reducing significantly the computational effort.

What's wrong with RSA?

- RSA is based upon the 'belief' that factoring is 'difficult' never been proven (NP complete)
- Prime numbers are getting too large
- Amount of research currently devoted to factoring algorithms
- Quantum computing will make RSA obsolete overnight

ECC vs RSA in a Nutshell

ECC Key Size (bits)	RSA Key Size(bits)	Key Size Ratio	Cost Ratio
160	1024	1:7	1:3
224	2048	1:10	1:6
256	3072	1:12	1:10
384	7680	1:20	1:32
521	15360	1:30	1:64

That covers why ECC

What is an Elliptic Curve?

Elliptic Curves

Let K be a field and $a \in K, b \in K$ constants such that

$$4a^3 + 27b^2 \neq 0$$

A non-singular elliptic curve is the set points E defined by the solutions $(x,y) \in KxK$ to the equation

$$y^2 \Rightarrow x^3 + ax + b$$

together with a special point Ocalled the point at infinity.

What is an Elliptic Curve?

Elliptic curves are polynomials that define points based on the (simplified) Weierstraß equation:

$$y^2 = x^3 + ax + b$$

for parameters a,b that specify the exact shape of the curve

- On the real numbers and with parameters $a,b \in \mathbb{R}$, an elliptic curve looks like this >>
- Elliptic curves can not just be defined over the real numbers \mathbb{R} but over many other types of finite fields.

Example: $y^2 = x^3 - 3x + 3$ over \mathbb{R}

Recall

Fields of Elliptic Curve

Kcan be:

Singular Elliptic Curve

- If $4a^3 + 27b^2 = 0$, then we have a singular elliptic curve
- This could potentially lead to not having 3 distinct roots
- Therefore, we must deal with non-singular elliptic curves with the condition $4\alpha^3 + 27b^2 \neq 0$, in order to assure that we have 3 distinct roots
- This will allow us to establish the fact that the solution set E forms an
 Abelian group

Recall: Abelian Group

Given two points P, Q in E(Fp), there is a third point, denoted by P+Qon E(Fp), and the following relations hold for all P,Q, R in E(Fp)

- P+Q=Q+P (commutativity)
- (P+Q)+R=P+(Q+R) (associativity)
- P+O=O+P=P (existence of an identity element)
- there exists (-P) such that -P+P=P+(-P)=O (existence of inverses)

Elliptic Curve Groups

O: the point at ∞

We can define an (abelian) group over elliptic curves with O

- the elements of the group are the points of an elliptic curve
- the identity element is the point O
- the inverse of a point P is the one symmetric about the x-axis
- addition is given by the following rule: given 3 aligned, non-zero points P,Q and P, their sum P+Q+R=0.

Computations on Elliptic Curves

Point Addition - Geometrically

Given two points P,Qon the elliptic curve, i.e., in the set

$$E = \{(x,y) | y^2 = x^3 + ax + b\} \cup \{0\}$$

$$P+Q=R$$

Point Addition - Algebraically

Given two points P,Qon the elliptic curve, i.e., in the set

$$E = \{(x,y) | y^2 = x^3 + ax + b\} \cup \{0\}$$

$$P+Q=R$$

$$s = \frac{y_P - y_Q}{x_P - x_Q}$$

$$x_R = s^2 - (x_P + x_Q)$$

$$y_R = s(x_P - x_R) - y_P$$

Adding Vertical Points

Given two points P,Qon the elliptic curve, i.e., in the set

$$E = \{(x,y) | y^2 = x^3 + ax + b\} \cup \{0\}$$

P+Q=Q, if
$$x_p = x_q$$
, i.e., Q=-P P+P=Q, if $x_p = 0$

Oserves as the identity

Point Addition

Adding two points on the curve

Pand Qare added to obtain P+Qwhich is a reflection of Ralong the X-axis

Point Doubling - Geometrically

Given two points P,Qon the elliptic curve, i.e., in the set

$$E = \{(x,y) | y^2 = x^3 + ax + b\} \cup \{0\}$$

$$P+P=R=2P$$

Point Doubling - Algebraically

Given two points P,Qon the elliptic curve, i.e., in the set

$$E = \{(x,y) | y^2 = x^2 + ax + b\} \cup \{0\}$$

$$P+P=R=2P$$

$$s = \frac{3x_P^2 + a}{2y_P}$$

$$x_R = s^2 - 2x_P$$

$$x_R = s^2 - 2x_P$$

$$y_R = s(x_P - x_R) - y_P$$

Scalar Multiplication

Given, $P \subseteq E$ and $k \subseteq \mathbb{Z}$

$$Q=kP=P+P+...+P$$
ktimes

Elliptic curves: scalar multiplication

Point Operations Summary

A tangent at P is extended to cut the curve at a point; its reflection is 2P

Adding Pand 2P gives 3P

Similarly, such operations can be performed as many times as desired to obtain Q=kP

Summary of Group Operations

- Main operations: point addition and point multiplication
- Adding two points that lie on an Elliptic Curve results in a third point on the curve
- Point multiplication is repeated addition