Оглавление

	0.1 Проолжаем функционалы	1 5 5
0.	1 Проолжаем функционалы	
	Свойство. Линейные функционалы пространства V над K образуют веторное пространство над K	
	Доказательство. Очевидно	l
	Определение 1. Пространство функционалов называется двойственным или сопряжённым	
O	бозначение. V^st	
	Теорема 1 (изоморфизм пространства и двойственного к нему).	
	1. V – конечномерное пространство над K	
	$\implies V^* \simeq V$	

Доказательство. Пусть $n := \dim V$

Достаточно доказать, что $\dim V^* = n$ (тогда можно будет построить изоморфизм из базиса в базис)

Зафиксируем базис:

Пусть $e_1,...,e_n$ – базис V

Пусть
$$\varphi: V^* \to K^n$$
 такое, что $\varphi(y) = \left(\underbrace{y(e_1)}_{\in K}, \dots, \underbrace{y(e_n)}_{\in K}\right)$

Мы знаем, что протранства одной размерности изоморфны, так что $K^n \simeq V$ Докажем, что это изоморфизм:

• Линейность:

— Надо проверить, что $\varphi(y_1 + y_2) \stackrel{?}{=} \varphi(y_1) + \varphi(y_2)$

$$\begin{split} \varphi(y_1+y_2) &= \bigg((y_1+y_2)(e_1), \dots, (y_1+y_2)(e_n) \bigg) = \\ &= \bigg(y_1(e_1) + y_2(e_1), \dots, y_1(e_n) + y_2(e_n) \bigg) \xrightarrow[\text{сложение в } K^n \text{ покомпонентно}} \\ &= \bigg(y_1(e_1), \dots, y_1(e_n) \bigg) + \bigg(y_2(e_1), \dots, y_2(e_n) \bigg) = \varphi(y_1) + \varphi(y_2) \end{split}$$

— Надо проверить, что $\varphi(ky)\stackrel{?}{=} k\varphi(y)$

$$\varphi(ky) = \left((ky)(e_1), \dots, (ky)(e_n)\right) = \left(ky(e_1), \dots, ky(e_n)\right) =$$

$$\xrightarrow{\text{умножение в } K^n \text{ покомпонентно}} k\left(y(e_1), \dots, y(e_n)\right) = k\varphi(y)$$

• Биективность:

Пусть
$$a \in K^n$$
, $a = (a_1, ..., a_n)$, $a_i \in K$

$$\exists ! y \in V^* : \quad \varphi(y) = a$$

так как

$$\exists ! y \in V^* : y(e_1) = a_1, \dots, y(e_n) = a_n$$

2. V – евклидово пространство

Для любого $v \in V$ определим $y_v \in V^*$ как $y_v(x) = (x,v)$

Тогда отображение $v\mapsto y_v$ является изоморфизмом

Доказательство.

• Проверим, что $y_v \in V^*$, т. е. что y_v линейно:

$$-y_v(x_1+x_2)=(x_1+x_2,v)$$
 = скалярное произведение линейно по первой координате $(x_1,v)+(x_2,v)=y_v(x_1)+y_v(x_2)$

- $y_v(kx) = (kx, v) = k(x, v) = ky_v(x)$
- Пусть $\varphi(v)=y_v$. Докажем, что φ изоморфизм $V\to V^*$:
 - Линейность:

*
$$\varphi(u+v) \stackrel{?}{=} \varphi(u) + \varphi(v)$$

$$\varphi(u+v) \stackrel{?}{=} \varphi(u) + \varphi(v) \iff y_{u+v} \stackrel{?}{=} y_u + y_v \iff y_{u+v}(x) \stackrel{?}{=} y_u(x) + y_v(x) \quad \forall x \iff (x,u+v) \xrightarrow{\text{лин. скалярного произв.}} (x,u) + (x,v)$$

Замечание. В унитарном пространстве не будет этого равенства

$$* \varphi(kv) \stackrel{?}{=} k\varphi(v)$$

$$\varphi(kv) \stackrel{?}{=} k\varphi(v) \iff y_{kv} \stackrel{?}{=} ky_v \iff y_{kv}(x) \stackrel{?}{=} ky_v(x) \quad \forall x \iff (x,kv) \xrightarrow{\text{лин. скалярного произв.}} k(x,v)$$

– Инъективность:

Пусть $\varphi(v) = 0$. Тогда

$$y_v = 0 \implies y_v(x) = 0 \quad \forall x \implies (x, v) = 0 \quad \forall x \implies v = 0$$

Вместе с тем, что $\dim V = \dim V^*$, это даёт биективность

Определение 2. Изоморфизм из пункта 2 называется каноническим изоморфизмом из V в V^*

Примечание. Каноническим обычно называется объект, который не зависит от выбора базиса

Замечание. В унитарном пространстве второй пункт теоремы не выполнится (y_v определить можно, но оно не будет линейным). Исправить это, поменяв координаты, нельзя

Пример (бесконечномерные пространства). K – поле, K^{∞} – пространство формальных многочленов (бесконечные последовательности с конечным количеством членов, отличных от нуля) Фунцкионалы:

$$a = (a_1, a_2, ..., a_n, ...)$$
 такой, что $a(x_1, x_2, ...) = a_1x_1 + a_2x_2 + ...$

Замечание. $a_i \in K$ (без ограничения на количество ненулевых членов)

Что-то здесь изоморфно, а что-то – нет. Надо смотреть

Теорема 2 (дважды двойственное пространство). V — векторное пространство над K Для любого $x \in V$ обозначим через z_x отображение $V^* \to K$, заданное формулой $z_x(\underbrace{y}_{\in V^*}) = \underbrace{y(x)}_{\in K}$

Тогда:

1. $\forall x \in K \quad z_x \in (V^*)^*$, т. е. z_x – линейный функционал на V^*

Доказательство.

• $z_x(y_1+y_2) \stackrel{?}{=} z_x(y_1) + z_x(y_2)$

$$z_x(y_1 + y_2) = (y_1 + y_2)(x)$$

$$z_x(y_1) + z_x(y_2) = y_1(x) + y_2(x)$$

• $z_x(ky) \stackrel{?}{=} kz_x(y)$

$$z_x(ky) = (ky)(x) = ky(x) = kz_x(y)$$

2. отображение $\varphi: V \to (V^*)^*$, заданное формулой $\varphi(x) = z_x$ является линейным

Доказательство.

• $\varphi(x_1+x_2) \stackrel{?}{=} \varphi(x_1) + \varphi(x_2)$

$$z_{x_1 + x_2} \stackrel{?}{=} z_{x_1} + z_{x_2}$$

$$\forall y \quad z_{x_1 + x_2}(y) = z_{x_1}(y) + z_{x_2}(y)$$

$$y(x_1 + x_2) \stackrel{?}{=} y(x_1) + y(x_2)$$

Это верно, так как у линейно

• $\varphi(kx) \stackrel{?}{=} k\varphi(x)$

$$z_{kx} \stackrel{?}{=} kz_x$$

$$\forall y \quad z_{kx}(y) \stackrel{?}{=} kz_x(y)$$

$$y(kx) \stackrel{?}{=} ky(x)$$

Это верно, так как y линейно

3. если V конечномерно, то φ – изоморфизм

Доказательство. Размерности равны, так что достаточно доказать инъективность:

 φ инъективно $\iff \varphi(x) = 0$ только при $x = 0 \iff z_x$ – нулевое отображение только при $x=0 \iff z_x(y)=0 \quad \forall y \iff y(x)=0 \quad \forall y$ Нужно проверить, что $\forall x \neq 0 \quad \exists$ линейное отображение $y: \quad y(x) \neq 0$

Дополним до базиса:

Пусть $x, e_2, ..., e_n$ – базис V

Определим $y: y(x) = 1, \quad y(e_i) = 0$

$$y(\alpha x + \beta_2 e_2 + \dots + \beta_n e_n) = \alpha$$

Оно линейно, $y(x) \neq 0$

Лемма 1. V – конечномерное векторное пространство, $e_1, ..., e_n$ – базис V $f_1,...,f_n\in V^*$ такие, что $f_i(e_i)=1,\quad f_i(e_j)=0$ при $i\neq j$ (здесь существование не утверждается, но понятно, что их всегда можно построить)

Тогда $f_1,..,f_n$ – базис V^*

Доказательство. Знаем, что $\dim V = \dim V^*$

Достаточно доказать ЛНЗ:

Возьмём ЛК:

Пусть $a_1,...,a_n\in K$ такие, что $f=a_1f_1+...+a_nf_n$ – нулевой функционал

$$0 = f(e_i) = a_1 \underbrace{f_1(e_i)}_0 + \dots + a_i \underbrace{f_i(e_i)}_1 + \dots + a_n \underbrace{f_n(e_i)}_0 = a_i \quad \forall i$$

Определение 3. $e_1,...,e_n$ – базис V, $f_1,...,f_n$ – базис $V^*,$ $f_i(e_i)=1,$ $f_i(e_j)=0$ при $i\neq j$ Тогда $f_1,...,f_n$ называется двойственным базисом к $e_1,...,e_n$

Напоминание. e_i, e'_i – базисы V

Матрицей перехода от e_i к e_i' называется такая матрица C, что в i-м столбце записаны координаты e_i' в

Пусть X, X' – координаты c в e_i, e'_i . Тогда X = CX'

Теорема 3. e_i, e'_i – базисы V, C – матрица перехода от e_i к e'_i f_i, f'_i – соответствующие двойственные базисы Тогда:

1. Матрица перехода от f_i к f'_i равна $(C^{-1})^T = (C^T)^{-1}$

Доказательство. Пусть $D=(d_{ij})$ – матрица перехода от f_i к f_i'

$$U = (u_{ij}), \qquad U = D^T C$$

Докажем, что U = E

$$e'_i = c_{1i}e_1 + c_{2i}e_2 + \dots,$$
 $f'_i = d_{1i}f_1 + d_{2i}f_2 + \dots$

Применим одно к другому:

$$\begin{vmatrix}
1, & i = j \\
0, & i \neq j
\end{vmatrix} = f'_j(e'_i) = d_{1j}f_1(c_{1i}e_1 + c_{2i}e_2 + \dots) + d_{2j}f_2(c_{1i}e_i + c_{2i}e_2 + \dots) + \dots = d_{1j}c_{1i} \cdot 1 + d_{1j}c_{2i} \cdot 0 + \dots + d_{2j}c_{1i} \cdot 0 + d_{2j}c_{2i} \cdot 1 + \dots = d_{1j}c_{1i} + d_{2j}c_{2i} + \dots = d_{1j}c_{1i} + d_{2j}c_{2i} + \dots$$

d – этой j-я строка $D^T, \quad c-i$ -й столбец CЗначит, $f'_{i}(e'_{i}) = u_{ji}$

2. Пусть Y, Y' – строки координат $y \in V^*$ в базисах f_i, f_i' Тогда Y' = YC

Доказательство. $(C^{-1})^T$ – матрица перехода от f_i к f_i' Y^T,Y'^T — столбцы координат y $Y^T=(C^{-1})^TY'^T$ — транспонированный

$$Y = Y'C^{-1} \implies YC = Y'$$

0.2Сопряжённые операторы

0.2.1Напоминание из второго семестра

Определение 4. A – оператор в евклидовом или унитарном пространстве \mathcal{B} называется сопряжённым к \mathcal{A} , если $(\mathcal{A}x,y)=(x,\mathcal{B}y)$ $\forall x,y$

Обозначение. \mathcal{A}^*

Теорема 4. $\forall A \exists !A^*$

Свойства.

- 1. $(mcA^*)^* = A$
- 2. Пусть A, A^* матрицы $\mathcal{A}, \mathcal{A}^*$ в некотором ОНБ Тогда

• $A^* = A^T$ в евклидовом пространстве

• $A^* = \overline{A}^T$ в унитарном пространстве

Определение 5. Оператор в веклидовом или унитарном пространстве назвыается

ullet нормальным, если $\mathcal{A}^*\mathcal{A}=\mathcal{A}\mathcal{A}^*$

ullet ортогональным (унитарным), если $\mathcal{A}\mathcal{A}^*=\mathcal{A}^*\mathcal{A}=\mathcal{E}$

ullet самосопряжённым, если $\mathcal{A}^* = \mathcal{A}$

Определение 6. Квадратная матрица называется

ullet симметричной (симметрической), если $A=A^T$

ullet эрмитовой, если $A=\overline{A}^T$

Свойство. ${\cal A}$ — оператор в евлидовом/унитарном пространстве, ${\cal A}$ — его матрица **в ОНБ** Тогда

 \mathcal{A} самосопряжённый $\iff A$ симметрична/эрмитова

Теорема 5. \mathcal{A} – нормальный оператор в унитарном пространстве Тогда

1. если λ – с. ч. $\mathcal{A},$ то $\overline{\lambda}$ – с. ч. \mathcal{A}^*

2. с. в. \mathcal{A}^* , соответствующие разным с. ч. ортогональны

3. Существует ОНБ, состоящий из с. в. $\mathcal{A} \implies$ он диагонализуем