Determinant

If A is an $(n \times n)$ matrix, the determinant of A, denoted det(A), is a number that we associate with A. Determinants are usually defined either in terms of cofactors or in terms of permutations, and we elect to use the cofactor definition here.

Determinant

Definition
Elementary Operations
Cramer's Rule
Applications of Determinants
Inverses
Elementary Matrices

Definition

Def. Cofactor

Let $A=(a_{i,j})$ be an $(n\times n)$ matrix, and let $M_{r,s}$ denote the $[(n-1)\times (n-1)]$ matrix obtained by deleting the rth row and sth column of A. Then $M_{r,s}$ is called a **minor matrix** of A, and the number $det(M_{r,s})$ is the minor of the (r,s)th entry, $a_{r,s}$. In addition, the numbers:

$$A_{i,j} = (-1)^{i+j} \det(M_{i,j})$$
(10)

are called cofactors (or signed minors).

Def. Determinant(cofactor)

Let $A = (a_{i,j})$ be an $(n \times n)$ matrix. Then the **determinant** of A is:

$$det(A) = a_{1,1}A_{1,1} + a_{1,2}A_{1,2} + \dots + a_{1,n}A_{1,n}$$
(1)

where $A_{i,j}$ is the cofactor of $a_{i,j}$

Def. Permutation

A **permutation** (j_1, j_2, \cdots, j_n) of the set $S = \{1, 2, \cdots, n\}$ is just a rearrangement of the numbers in S. In **inversion** of this permutation occurs whenever a number j_r is followed by a smaller number j_s , or $j_r > j_s$ but r < s. A permutation of S is called *odd* or *even* if it has an odd or even number of inversions.

Def. Determinant(Permutation)

It can be shown that det(A) is the sum of all possible terms of the form $\pm a_{1,j_1}a_{2,j_2}\cdots a_{n,j_n}$, where the sign is taken as + or -, depending on whether the permutation is even or odd.

Let $p = (j_1, j_2, \dots, j_n)$ be any permutation, we have:

$$det(A) = \sum_{(j_1, j_2, \dots, j_n)} (-1)^{\Gamma(j_1, j_2, \dots, j_n)} \prod_{i=1}^n a_{i, j_i}$$
 (2)

Th. Let $T=(t_{i,j})$ be an (n imes n) lower-triangular matrix. Then

$$det(T) = \prod_{i=1}^{n} t_{i,i} \tag{3}$$

Elementary Operations

Th. If A is an $(n \times n)$ matrix, then $det(A) = det(A^T)$

Th. Let $A = [\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n]$ be an $(n \times n)$ matrix. If B is obtained from A by interchanging two rows (or columns) of A, then det(B) = -det(A).

Th. If A is an $(n \times n)$ matrix, and if B is the $(n \times n)$ matrix resulting from multiplying the k th column (or row) of A by a scalar c, then $det(B) = c \cdot det(A)$.

Corollary. $det(cA) = c^n A$

Th. If A, B and C are $(n \times n)$ matrices that are equal except that the sth column (or row) if A is equal to the sum of the sth column (or row) of B and C, then det(A) = det(B) + det(C)

Note. $det(A + B) \neq det(A) + det(B)$

Th. Let A be an $(n \times n)$ matrix. If the jth column (or row) of A is a multiple of the kth column (or row) of A, then det(A) = 0.

Th. If A is an $(n \times n)$ matrix, and if a multiple of the kth column (or row) is added to the jth column (or row), then the determinant is not changed.

Cramer's Rule

Lemma. Let $A = [\mathbf{A}_1, \mathbf{A}_2, \cdots, \mathbf{A}_n]$ be an $(n \times n)$ matrix, and let \mathbf{b} be any vector in \mathbb{R}^n . For each $i, 1 \le i \le n$, let B_i be the $(n \times n)$ matrix:

$$B_i = [\mathbf{A}_1, \dots, \mathbf{A}_{i-1}, \mathbf{b}, \mathbf{A}_{i+1}, \dots, \mathbf{A}_n]. \tag{4}$$

If the system of equations $A\mathbf{x} = \mathbf{b}$ is consistent and x_i is the ith component of a solution, then:

$$x_i det(A) = det(B_i) \tag{5}$$

Th. If *A* is an $(n \times n)$ **singular** matrix, then det(A) = 0.

Proof. A is singular matrix, $A\mathbf{x} = \mathbf{b}$ has nontrivial solution. Choose i s.t. $x_i \neq 0$, we have $x_i det(A) = det(B_i)$. But $det(B_i) = 0$, and $x_i \neq 0$, so det(A) = 0.

Th. If A and B are $(n \times n)$ matrices, then

$$det(AB) = det(A)det(B) \tag{6}$$

Lemma. Let A and B be $(n \times n)$ matrices, and let C = AB. Let \hat{C} denote the result of applying an elementary column operation to C and let \hat{B} denote the result of applying the same column operation to B. Then $\hat{C} = A\hat{B}$

Th. If the $(n \times n)$ matrix A is nonsingular, then $det(A) \neq 0$. Moreover, $det(A^{-1}) = 1/det(A)$.

Th. Cramer's Rule

Let $A = [\mathbf{A}_1, \dots, \mathbf{A}_n]$ be a nonsingular $(n \times n)$ matrix, and let \mathbf{b} be any vector in \mathbb{R}^n . For each $i, 1 \le i \le n$, let B_i be the matrix $B_i = [\mathbf{A}_1, \dots, \mathbf{A}_{i-1}, \mathbf{b}, \mathbf{A}_{i+1}, \dots, \mathbf{A}_n]$. Then the ith component, x_i of the solution of $A\mathbf{x} = \mathbf{b}$ is given by:

$$x_i = \frac{\det(B_i)}{\det(A)}. (7)$$

Proof. From the first lemma in this section.

Note. Cramer's rule is a valuable theoretical tool instead of a practical tool for real computation.

Applications of Determinants

Inverses

Lemma. Let A be an $(n \times n)$ matrix. Then there is a nonsingular matrix $Q_{n \times n}$ such that AQ = L, where L is lower triangular. Moreover, $det(Q^T) = det(Q)$.

This Lemma can give the proof for the fact that $det(A) = det(A^T)$

Th. Let $A=(a_{i,j})$ be an $(n\times n)$ matrix, Then:

$$det(A) = a_{i,1}A_{i,1} + a_{i,2}A_{i,2} + \dots + a_{i,n}A_{i,n}$$

$$det(A) = a_{1,i}A_{1,i} + a_{2,i}A_{2,i} + \dots + a_{n,i}A_{n,i}$$
(8)

Lemma. If A is an (n imes n) matrix and if i
eq k, then $\sum_{j=1}^n a_{i,j} A_{k,j} = 0$.

Def. Adjoint Matrix

Let A be an $(n \times n)$ matrix, and let C denote the matrix of cofactors; $C = (c_{i,j})$ is $(n \times n)$, and $c_{i,j} = A_{i,j}$. The **adjoint matrix** of A, denoted Adj(A), is equal to C^T .

Th. If A is an $(n \times n)$ **nonsingular** matrix, then

$$A^{-1} = \frac{1}{\det(A)} \operatorname{Adj}(A). \tag{9}$$

Elementary Matrices

The result of applying a sequence of elementary column operations to a matrix A can be represented in matrix terms as multiplication of A by a sequence of elementary matrices.

Def. Let I denote the $(n \times n)$ identity matrix, and let E be the matrix that results when an elementary column operation is applied to I. Such a matrix E is called an **elementary** matrix.

Th. Let E be the $(n \times n)$ elementary matrix that results from performing a certain column operation on the $(n \times n)$ identity matrix. If A is any $(n \times n)$ matrix, then AE is the matrix that results when this same column operation is performed on A.