Λύση

α) Το πεδίο ορισμού της συνάρτησης f είναι το \mathbb{R} , οπότε αν $x \in \mathbb{R}$ τότε και $-x \in \mathbb{R}$.

Επίσης είναι:
$$f(-x) = (-x)^6 - 3(-x)^2 + 2 = x^6 - 3x^2 + 2 = f(x)$$
.

Άρα, η f είναι άρτια.

β) Οι τετμημένες των σημείων τομής της γραφικής παράστασης της συνάρτησης f με τον άξονα x'x είναι οι λύσεις της εξίσωσης: $f(x) = 0 \Leftrightarrow x^6 - 3x^2 + 2 = 0$.

Θέτουμε $x^2 = y$ και η εξίσωση γίνεται

$$y^3 - 3y + 2 = 0 \quad (1).$$

Οι πιθανές ακέραιες ρίζες της εξίσωσης (1) είναι οι διαιρέτες του 2, δηλαδή οι $\pm 1, \pm 2$. Για $\rho=1$, κάνοντας τη διαίρεση με τη βοήθεια του σχήματος Horner, έχουμε:

1	0	-3	2	$\rho = 1$
	1	1	-2	
1	1	-2	0	

Οπότε, το 1 είναι ρίζα και η εξίσωση (1) γίνεται:

$$(y-1)(y^2+y-2)=0 \Leftrightarrow$$

$$y - 1 = 0 \Leftrightarrow y = 1 \acute{\eta} y^2 + y - 2 = 0.$$

Η εξίσωση $y^2 + y - 2 = 0$ έχει ρίζες τις $y_1 = -2$ και $y_2 = 1$.

Οπότε,
$$x^2 = -2$$
, αδύνατη ή $x^2 = 1 \Leftrightarrow x = 1$ ή $x = -1$.

Άρα τα σημεία τομής της γραφικής παράστασης της συνάρτησης f με τον άξονα x'x είναι: A(-1,0) και B(1,0).

γ) Επειδή η f είναι άρτια, η γραφική της παράσταση είναι συμμετρική ως προς τον άξονα y'y, οπότε έχει την ακόλουθη μορφή:

δ) Από τη γραφική παράσταση προκύπτει ότι η f είναι γνησίως φθίνουσα σε καθένα από τα διαστήματα $(-\infty, -1]$ και [0,1] και γνησίως αύξουσα σε καθένα από τα διαστήματα [-1,0] και $[1,+\infty)$.