

TABLE OF CONTENTS

- (b) PLAYLIST
 - 01 Exploring
 - 02 Visualization
 - 03 Preprocessing
 - 04 Modelling

C THANKS!

MUSIC Genre Classification

Powered by -> ShAl For Al®

Yaser Zaidan

Fourth year Information Technology Engineering student Artificial Intelligence major

Table of contents

01

Exploring

First impression of the data and some numerical calcs

Visualization

Dive deeper in the data by plots and grams

Preprocessing

Cleaning and applying some transformations on the data

Modelling

Choosing the right model and hyperparameter tuning

Q

"If I were not a physicist, I would probably be a musician. I often think in music. I live my daydreams in music. I see my life in terms of music."

-Albert Einstein

- (Þ) PLAYLIST
 - O1 Problem Vs Solution
 - 02 Main Product
 - 03 Market & Competition
 - 04 Business Model

C THANKS!

First impression of the data and some numerical calcs

Columns

С

- 1. Danceability.
 - 2. Valence.
 - 3. Energy.
 - 4. Tempo.
 - 5. Loudness.
- 6. Speechiness.
- 7. Instrumentalness.
 - 8. Liveness.

- 9. Acousticness.
 - 10. Key.
 - 11. Mode.
 - 12. Duration.
- 13. Time_signature.
 - 14. Artist_name
 - 15. Track_name
 - 16. Popularity.
 - 17. Class

M

Column Description Q

$\overline{}$	
_	
$\overline{}$	

	count	mean	std	min	25%	50%	75%	max
Id	14396.0	7198.500000	4155.911573	1.000000	3599.750000	7198.50000	10797.25000	14396.000
Popularity	14063.0	44.525208	17.418940	1.000000	33.000000	44.00000	56.00000	100.000
danceability	14396.0	0.543105	0.165517	0.059600	0.432000	0.54500	0.65800	0.989
energy	14396.0	0.662422	0.235967	0.001210	0.508000	0.69900	0.86100	1.000
key	12787.0	5.953781	3.200013	1.000000	3.000000	6.00000	9.00000	11.000
loudness	14396.0	-7.900852	4.057362	-39.952000	-9.538000	-7.01350	-5.16200	1.342
mode	14396.0	0.640247	0.479944	0.000000	0.000000	1.00000	1.00000	1.000
speechiness	14396.0	0.080181	0.085157	0.022500	0.034800	0.04710	0.08310	0.955
acousticness	14396.0	0.246746	0.310922	0.000000	0.004280	0.08145	0.43225	0.996
instrumentalness	10855.0	0.178129	0.304266	0.000001	0.000088	0.00392	0.20100	0.996
liveness	14396.0	0.195782	0.159258	0.011900	0.097275	0.12900	0.25600	0.992
valence	14396.0	0.486379	0.239476	0.021500	0.299000	0.48050	0.67200	0.986
tempo	14396.0	122.695372	29.538490	30.557000	99.799000	120.06000	141.98825	217.416
duration_in min/ms	14396.0	200094.222824	111689.098211	0.501650	165445.750000	208941.00000	252247.00000	1477187.000
time_signature	14396.0	3.924354	0.359520	1.000000	4.000000	4.00000	4.00000	5.000
Class	14396.0	6.695679	3.206170	0.000000	5.000000	8.00000	10.00000	10.000

Presentation

M

2:54

TABLE OF CONTENTS

- **PLAYLIST**
 - Columns Histogram
 - Class Countplot
 - Columns Boxplot
 - Duration Scatter
 - Columns 05 Heatmap

Visualization

Dive deeper in the data by plots and grams

Presentation

Class Countplot

Columns Boxplot

Columns Heatmap

Th HOME

TABLE OF CONTENTS

PLAYLIST

- **Duplicates**
- **Null Values**
- Skewness & Outliers
- scaling

Cleaning and applying some transformations on the data

• Searching for duplicates we found:

1131

Duplicated rows

• They were removed from the dataset.

Yaser Zaidan

• Searching for Null values we found:

- After some experiments we found:
 - o Popularity and Instrumentalness best imputed by the median.
 - Key best imputed by a constant value = -1.

 We noticed earlier some skewness on some of the columns so we applied the following transformations on the columns.

Square Root

On duration.

Logarithm

On liveness and Instrumentalness

Cube Root

On loudness, acousticness and tempo

Reciprocal

On speechiness

Before and after transformations.:

Before and after transformations.:

After trying both Standard Scaler and Min Max Scaler, the first method gave better accuracy so the data got Scaled using Standard Scaler.

TABLE OF CONTENTS

- PLAYLIST
 - 01 Model Trial
 - **02** Hyperparameter Tuning
 - 03 Final Model Results
 - 04 Ensemble

Choosing the right model and hyperparameter tuning

Presentation

Yaser Zaidan

0.5641

Random Forest

Randomized Search

Max depth = 100 Max feature = sqrt Min samples leaf = 4 Min samples split = 10 Estimators = 800

0.5646

LightGBM

Randomized Search

Max depth = 4
Learning rate = 0.01563
Objective = multi:softmax
gamma = 4
Estimators = 1467
Num leaves = 10
Feature fraction = 0.80219
Subsample = 0.19872
Boosting type = dart

0.5632

XGBoost

Bayesian Optimization

Max depth = 4
Learning rate = 0.06491
Objective = multi:softmax
gamma = 0.595053
Estimators = 119
Random state = 42
Eval metric = merror

• Feature Importance :

• Learning Curve :

Confusion matrix:

• Classification report :

	precision	recall	f1-score	support	
0	0.65	0.80	0.72	161	
1	0.00	0.00	0.00	261	
2	0.57	0.36	0.44	343	
3	0.80	0.68	0.73	116	
4	0.61	0.57	0.59	106	
5	0.68	0.74	0.71	361	
6	0.47	0.33	0.38	610	
7	0.97	0.91	0.94	159	
8	0.67	0.58	0.62	457	
9	0.53	0.57	0.55	613	
10	0.49	0.71	0.58	1191	
accuracy			0.56	4378	
macro avg	0.59	0.57	0.57	4378	
weighted avg	0.54	0.56	0.54	4378	

Bagging

Bagging Classifier with LGBM classifier 10 estimators

0.5589

One Vs Rest

One Vs Rest Classifier with Random Forest Classifier

0.5249

Voting

Voting Classifier with XGB, LGBM and SVC Classifiers

0.5612

M

Failed Attempts!!

Here's a couple of failed attempts at raising the accuracy.

- Trying to make the key and time signature columns one hot-encoded.
- Converting the values in duration column.
- Deleting weak columns.

TABLE OF CONTENTS

- **PLAYLIST**
 - Exploring
 - Visualization
 - Preprocessing
 - Modelling

\bigcirc THANKS!

That's All!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon and infographics & images by Freepik

Presentation

