Intéraction Logiciel Architecture Les performances et leur mesure

Henri-Pierre Charles & Frédéric Rousseau

Motivation

Argumentation

•

Illustration

- Motivation
 - Motivation
 - Partie1 Intro
 - Metrics How to Measure Performance?
 - Amdahl2
 - Vocabulaire Amdahl
 - Vocabulaire : Cycle par seconds / Flops
 - Vocabulaire Peak / Sustained
 - Vocabulaire Lois
 - Vocabulaire Speedup

Partie1 Intro

Argumentation

•

Illustration

Metrics How to Measure Performance?

What scale?

- Application level (TPS, Frame/s, .../)
- Run to completion
- Method level
- Instruction level

Tools

- Wall clock
- gettimeofday
- Performance counters

Full application or function call?

- Cold start / warmup
- Statistic / multiple calls
- How many calls

Vocabulaire : Cycle par seconds / Flops

Units

```
Mips Million operation per second
```

Flops Floating point operation per second

http://www.top500.org

Flops/Watt Floating point operation per watt per second

http://www.green500.org

IPC: Instructions per Cycle

How to mesure

- Analytique (wall clock)
- Instrumentation
 - "Portable" (gettimeofday())
 - Hardware (hardware performance counter)

Vocabulaire Peak / Sustained

Notions

```
Peak performance : maximal theoretical performance, assuming no bubble
```

Sustain performance : real acheived performance, on a real benchmark

Cost

- What is the percentage you're ready to lose? 90% 95%?
- How many are you ready to pay (time, money) to minimise this loss?

http://www.top500.org

Vocabulaire Lois

- Moore http://en.wikipedia.org/wiki/Moore's_law
- Amdahl http://en.wikipedia.org/wiki/Amdahl's_law
- Memory bound http://en.wikipedia.org/wiki/IO_bound
- CPU bound http://en.wikipedia.org/wiki/CPU_bound

Vocabulaire Speedup

Notion

Speedup $S = 100 * \frac{T_{seq}}{T_{opt}}$ Can be between

- 1 and N processor
- 1 and vectorized
- non optimized versus optimized version

Mesure Quality what are the execution conditions : data set, computer workload, reproducibly, ...

Computer science has to use "human science" tools & methodology

Amdahl2

Argumentation

Assume that a task has two independent parts, A and B. B takes roughly 25% of the time of the whole computation. By working very hard, one may be able to make this part 5 times faster, but this only reduces the time for the whole computation by a little. In contrast, one may need to perform less work to make part A be twice as fast. This will make the computation much faster than by optimizing part B, even though B's speed-up is greater by ratio, (5x versus 2x)

Vocabulaire Amdahl

Argumentation

The speedup of a program using multiple processors in parallel computing is limited by the sequential fraction of the program. For example, if 95% of the program can be parallelized, the theoretical maximum speedup using parallel computing would be 20x as shown in the diagram, no matter how many processors are used.

