DL4H Final Project

Categorization of Free-text Drug Orders using Character-level Recurrent Neural Networks

Armaan R. Butt and Harikrishna Bojja {arbutt2, hbojja2}@illinois.edu

Group ID: 213, Paper ID: 283

Code link: https://github.com/c3armaanbutt/dl4h_final_project

Agenda

- Overview of the Paper
- Scope of Reproducibility
- Data Profiling & Analysis
- ML Pipeline
- Results
- Conclusion

Overview of the **Original Paper**: Motivation

The annotation of active ingredients of free-text drug order entries is currently a labor intensive task. Standardization of drug order entries can be useful in clinical decision support for a patient. The researchers wanted to investigate the use of deep learning techniques to annotated the drug order entries. [1]

Overview of the Original Paper: Results & Conclusions

The researchers were able to achieve an accuracy on 96% using the baseline Trigram SVM model and their Bidirectional GRU RNN achieved 98% accuracy. The feed-forward GRU, feed-forward & bidirectional LSTM models achieved similar performance to the baseline SVM.

Conclusion: Deep learning neural networks, specifically the bidirectional GRU, out performed current techniques and can help annotate free-text drug entries in EHR systems.[1]

Overview of the **Original Paper**: Dataset & Models

- The researchers used 26111 order entries from the University of Zurich Hospital System and manually labeled 2028 entries with 568 distinct drug codes (ATC).
- They employed fuzzy matching techniques (Jaccard Similarity) to automatically annotate the remaining records.
- The team trained a baseline trigram SVM model as well as feed-forward and bidirectional LSTM and GRU RNNs.[1]

Scope of Reproducibility

- The hypothesis that we wanted to show was that the GRU RNN can perform better than the baseline SVM as was shown in the paper.
- We reproduced the baseline trigram SVM model as well as the bidirectional GRU RNN with three hidden layer configurations (32, 64, 128).
- 4 distinct model configurations were used with a total of 25 models trained
 (22 SVM models and 3 RNNs)
- We trained the SVM model on 22 drug labels on 50000 records and the GRU RNN for binary classification on 50000 records.

Data Analysis: Initial Profile

Datasets: **PRESCRIPTIONS.csv** and **NOTEEVENTS.csv** from the MIMIC-III database.

Number of Patients: 13033

Total Number of Events: 50000

Unique Drugs: 4525

Unique NDC codes: 4204

Exploratory Data Analysis: Prescriptions

Drug Occurrences Conclusion:

- Prescriptions would have drugs that are prescribed hundreds of times
- Pick up the top n prescribed as there is better chances that these drugs would be a candidate for classification in corpus.

Drug to NDC Mappings Conclusion:

- A Drug could be mapped with more than one NDC code. One to many relation
- Pick the only one unique drug code to avoid ambiguity while training the model

Exploratory Data Analysis: Note Events

Count Vectorizer Feature Extraction:

- Count vectrorizer give weight to tokens/words based on number of occurrences
- Top 10 highest weighted words are not drugs
- Current classification problem may not be a best fit

TFIDF Vectorizer Feature Extraction:

- TFIDF vectrorizer assigns better weights to rarely occurred words
- We could evidently observe that drugs that are infrequent in corpus are assigned with better mean weight
- Current classification problem TFIDF Vectorizer seems to be better fit compared to count vectorizer

ML Pipeline Summary

EDA (Exploratory Data Analysis)	Feature Extraction	Model Training
 Found multiple NDC codes per drug in prescriptions. Extracted 22 drugs and corresponding uniques to train. Extracted 50K events out of 2M events. Events have ~14K features with tri-grams and a lot of noise 	 Used TFIDF vectorization to force higher weights drug names in events. Applied TrucatedSVD to reduce the training data dimensionality and noise. 	 Training accuracy was low with 2.7G event data. Found TFIDF Vectorization + TruncatedSVD produced better results and train faster.

Results: SVM (Baseline)

- Initial results of baseline model SVM trained on individual codes yielded an average accuracy of ~80%.
- Performance jumped to 92% after applying TFIDF and TruncatedSVD.

Results: Bidirectional GRU RNN

- Initial results with GRU RNN were 20%.
- Our data was more noisy than the original papers data set.
- Performance jumped to 75% after applying TFIDF and TruncatedSVD.
- Performance did not change significantly after multiple epochs.

Conclusion

- The original paper used the prescription data which has less noise than our clinical notes data.
- The paper reference that the GRU RNN was more susceptible to noise when compared to the SVM model and our project showed this [1].
- To apply an RNN to clinical notes and not just drug orders, we need to use dimensionality reduction to yield better results.
- Our team was able to reproduce the performance of the baseline SVM model but the performance of the GRU RNN is still behind claimed results.
- The event data that we contains lot of noise overfitting the dataset. We had to to improve the pipeline to include Trigram TFIDF and Truncated SVD.
- SVM is more robust than GRU RNNs when the input data is has noise.

References

[1] Raiskin Y, Eickhoff C, Beeler PE. Categorization of free-text drug orders using character-level recurrent neural networks. Int J Med Inform. 2019 Sep;129:20-28. doi: 10.1016/j.ijmedinf.2019.05.020. Epub 2019 May 23. PMID: 31445256.

Thank For Watching!

- We did not employee fuzzy matching techniques like the research team did and opted to annotate records based on an exact drug name.
- We used NDC instead of ATC as the output labels for each record.