

Objetivos do módulo

- Compreender as propriedades-chave dos discos magnéticos.
- Entender as questões envolvidas no acesso ao disco magnético.
- Explicar o conceito de RAID e descrever seus vários níveis.
- Comparar os drives de discos rígidos com os de disco sólido.
- Compreender as diferenças entre as mídias de armazenamento de disco óptico.

Tipos de memória externa

- Disco magnético:
 - RAID* (Redundant Array of Independents Disks)
 - Removível
- Óptica:
 - ► CD-ROM
 - ► CD-Recordable (CD-R)
 - ► CD-R/W
 - DVD
 - ▶ Blu-ray
- ► Fita magnética
- SSD (solid-state drive)

*RAID: família de técnicas para utilização de múltiplos discos como um *array* paralelo de dispositivos de armazenamento de dados, com redundância embutida para compensar falha futura.

Disco magnético

- Substrato de disco coberto com material magnetizável (óxido de ferro)
- Substrato era de alumínio
- Substituído por vidro
 - ► Maior uniformidade da superfície do filme magnético
 - Aumenta confiabilidade
 - Redução nos defeitos gerais da superfície
 - ► Erros reduzidos de leitura/gravação
 - ► Melhor rigidez (para reduzir a dinâmica do disco)
 - Maior resistência a choques e danos

Mecanismos de leitura e gravação

- Gravação e leitura por bobina condutora, chamada cabeça
- Pode ser única cabeça de leitura/gravação ou separadas
- Durante leitura/gravação, cabeça fica parada, placas giram
- Gravação:
 - Corrente pela bobina produz campo magnético
 - Pulsos enviados à cabeça
 - Padrão magnético gravado na superfície abaixo dela (corrente positiva e negativa)
- Leitura (tradicional): disquetes e discos rígidos mais antigos
 - Campo magnético movendo-se em relação à bobina produz corrente
 - Bobina é a mesma para leitura e gravação
- Leitura (contemporânea):
 - Cabeça de leitura separada e próxima da cabeça de gravação
 - Sensor magnetorresistivo (MR) parcialmente blindado
 - Resistência elétrica depende da direção do campo magnético
 - Operação em alta frequência.
 - Densidade de armazenamento e velocidade mais altas

Cabeça de gravação indutora/leitura MR

Disco rígido

Organização e formatação de dados

- Anéis ou trilhas concêntricas
 - ► Lacunas entre as trilhas
 - Reduza a lacuna para aumentar a capacidade.
 - Mesmo número de bits por trilha (densidade de compactação variável)
 - Velocidade angular constante
- Trilhas divididas em setores
- ► Tamanho de bloco mínimo é de um setor
- Pode haver mais de um setor por bloco

Layout de dados de disco

Velocidade do disco

- Bit próximo do centro do disco girando passa por ponto fixo mais lento que o bit na borda do disco
- Aumente espaçamento entre bits de diferentes trilhas
- Gire disco em velocidade angular constante (CAV)
 - Setores em forma de fatia de torta e trilhas concêntricas
 - Trilhas e setores individuais endereçáveis
 - Mova cabeça para determinada trilha e espere por determinado setor
 - Perda de espaço nas trilhas externas
 - ▶ Menor densidade de dados
- Pode usar zonas para aumentar capacidade
 - Cada zona tem número fixo de bits por trilha
 - Circuito mais complexo

Diagrama de métodos de layout de disco

(a) Velocidade angular constante

(b) Gravação em múltiplas zonas

Localizando setores

- Deve ser capaz de identificar início da trilha e setor
- Formatar disco:
 - Informações adicionais não disponíveis ao usuário
 - Marca trilhas e setores

Formato de disco Winchester (Seagate ST506)

Características

- Cabeça fixa (rara) ou móvel em relação à direção radial do prato
- Removível ou fixo
- Única ou dupla (mais comum) face
- Prato único ou múltiplos
- Mecanismo da cabeça:
 - Contato (disquete)
 - ▶ Lacuna fixa
 - ► Lacuna aerodinâmica (Winchester)

Disco de cabeça fixa/móvel

- Cabeça fixa:
 - Uma cabeça de leitura por trilha
 - Cabeças montadas sobre braço rígido fixo
- Cabeça móvel:
 - ▶ Uma cabeça de leitura e escrita por lado
 - Montada sobre um braço móvel

Removível ou não

- Disco removível:
 - ▶ Pode ser removido da unidade e substituído por outro disco
 - Oferece capacidade de armazenamento ilimitada
 - ▶ Transferência de dados fácil entre sistemas
- Disco não removível:
 - Montado permanentemente na unidade

Múltiplas placas

- Uma cabeça por lado
- Cabeças são unidas e alinhadas
- Trilhas alinhadas em cada placa formam cilindros
- Dados são espalhados pelo cilindro:
 - ► Reduz movimento da cabeça
 - Aumenta velocidade (taxa de transferência)

Múltiplas placas

Trilhas e cilindros

Disquete

- **▶** 8", 5,25", 3,5"
- Pequena capacidade.
 - ► Até 1,44 MB (2,88 MB nunca foi popular)
- Lento
- Universal
- Barato

Disco rígido Winchester

- Desenvolvido pela IBM em Winchester (USA)
- Unidade selada
- Uma ou mais placas (discos)
- Cabeças voam na camada de limite de ar enquanto o disco gira
- Cabeça muito pequena para lacuna do disco
- Mais robusto

Velocidade

- ► Tempo de busca:
 - Movendo cabeça para trilha correta
- ► Latência (rotacional):
 - Esperando dados passarem sob a cabeça
- ► Tempo de acesso= Busca + Latência
- Taxa de transferência.

Parâmetro se desempenho de disco

- ► Tempo de busca (seek time):
 - ► Movendo cabeça para trilha correta
- ► Latência (rotacional):
 - Esperando dados passarem sob a cabeça
- ► Tempo de acesso= Busca + Latência
- ► Tempo de transferência = de ou para o disco depende da velocidade de rotação do disco

$$T = \frac{b}{r.N}$$

onde:

T = tempo de transferê ncia

b = número de bytes a ser transferido

N = número de bytes em uma trilha

r = velocidad e de rotação, em rotações por segundo

$$T_a = T_s + \frac{1}{2.r} + \frac{b}{r.N}$$

onde:

T_a = tempo de acesso médio total

T_s = tempo médio de busca

Exercícios

- 1) Considere uma unidade de disco magnético com 8 superfícies, 512 trilhas por superfícies e 64 setores por trilha. O tamanho do setor é de 1 KB. O tempo de busca médio é de 8 ms, o tempo de acesso de uma trilha pra outra é de 1,5 ms, e a unidade gira a 3600 rpm. As trilhas sucessivas de um cilindro podem ser lidas sem movimento da cabeça.
- a. Qual a capacidade do disco?
- b. Qual é o tempo médio de acesso?
- c. Estime o tempo necessário para transferir um arquivo de 5 MB. Suponha que esse arquivo seja armazenado em setores sucessivos e trilhas de cilindros sucessivos, começando no setor 0, trilha 0 do cilindro i.
- d. Qual a taxa de transferência de rajada (burst)?

Exercícios

- 2) Considere um disco com um único prato, com os seguintes parâmetros: velocidade de rotação de 7200 rpm; número de trilhas de um lado da placa: 30.000; número de setores por trilha: 600; tempo de busca: um ms para cada cem trilhas atravessadas. Considere que o disco recebe uma solicitação para acessar um setor aleatório em uma trilha aleatória e suponha que a cabeça do disco comece na trilha 0.
- a. Qual é o tempo médio de busca?
- b. Qual é o atraso rotacional médio?
- c. Qual é o tempo de transferência para um setor?
- d. Qual é o tempo total médio para atender uma solicitação?

Exercícios

- 3) Considere um disco que gira a 3600 rpm. O tempo de busca para mover a cabeça entre trilhas adjacentes é de 2 ms. Existem 32 setores por trilha, que são armazenados em ordem linear a partir do setor 0 até o setor 31. A cabeça vê os setores em ordem ascendente. Suponha que a cabeça de leitura/gravação esteja posicionada no início do setor 1 na trilha 9. Existe um buffer de memória principal grande o suficiente para manter uma trilha inteira. Os dados são transferidos entre os locais do disco lendo da trilha de origem para o buffer da memória principal e depois gravando os dados do buffer para a trilha de destino.
- a) Quanto tempo levará para transferir o setor 1 na trilha 8 para o setor 1 na trilha 9?
- b) Quanto tempo levará para transferir todos os setores da trilha 8 para os setores correspondentes da trilha 9?

Tecnologia em discos magnéticos

- Diversos padrões de comunicação (interfaces)
- ► Interfaces: especificam a forma que os dispositivos devem ser conectados fisicamente aos outros dispositivos do computador e qual o protocolo de comunicação a ser utilizado (envio e recebimento de dados)
- Interfaces:
 - ► IDE (Integrated Drive Electronics)
 - SCSI (Small Computer System Interface)
 - ► SATA (Serial ATA)
 - SAS (Serial Attached SCSI)

Tecnologia em discos magnéticos

- ► IDE: cabo utilizado composto por 40 fios (pinos)
 - ▶ 16 pinos para enviar e receber dados
 - 7 pinos terra para evitar ruído
 - ▶ 1 pino para seleção do modo master ou slave

- ▶ IDE ou ATA I: endereçamento CHS (*Cylinder, Head, Sector*), com 4, 10 e 6 bits respectivamente gerando uma capacidade máxima de endereçamento de 504 MB (16x63*1024*512 bytes). Taxa de transmissão máxima de 8.3 MB/s e ciclo de transferência de 240 ns.
- ▶ EIDE (Extend IDE) ou ATA II: suporte a LBA (Logical Block Address), suporte a comando de transferência em blocos e funções de auto-detecção das características físicas do disco. Taxa de transmissão máxima de 16.7 MB/s e ciclo de transferência de 120 ns.
- ► ATA III: tecnologia de auto-detecção de condições adversas e falhas (Self Monitoring Analysis and Reporting Tecnology SMART), proteção do disco por senha. Mesma taxa de transmissão máxima e ciclo de transferência do padrão ATA II.

Tecnologia em discos magnéticos

- ATA/ATAPI IV: permite que unidades de diquete, cd-rom, dvd-rom, utilize da mesma interface e se comportem como um disco ATA. Taxa de transmissão máxima de 33.3 MB/s e ciclo de transferência de 120 ns.
- ATA/ATAPI V: utiliza cabo de 80 vias em vez de 40, com o objetivo de diminuir a interferência entre as vias. Taxa de transmissão máxima de 66.7 MB/s e ciclo de transferência de 60 ns.
- ATA/ATAPI VI: controle automático de ruídos no disco. Taxa de transferência de 100 MB/s.
- ATA/ATAPI VII: taxa de transferência máxima de 133 MB/s.
- ATA/ATAPI VIII: taxa de transferência acima de 133 MB/s. Taxas acima desse valor aumentava o problema de interferência no cabo da interface.

Tecnologia em discos magnéticos

SERIAL ATA/SATA

- Nova tecnologia que veio a substituir a IDE, ATA.
- Tecnologia serial (transmissão de 1 bit por vez)
- Permite trabalhar com frequências maiores
- Cabo com 7 pinos: 3 pinos terra e os outros são os dois canais separados

- SATA 150 ou SATA I: taxa de transferência de 150 MB/s
- SATA II: recursos como NCQ (Native Command Queueing), técnicas para diminuir o movimento da cabeça de leitura (também utilizada na tecnologia SCSI). Taxa de transferência máxima de 150 MB/s.
- SATA 300 ou SATA/300: taxa de transferência máxima de 300 MB/s.
- SATA 600: taxa de transferência máxima de 600 MB/s.

Tecnologia em discos magnéticos

SCSI

- Tecnologia desenvolvida por Howard Shugart (inventor do disco flexível) em 1979 e em 1986 a ANSI padronizou a tecnologia com o nome de SCSI (scuzzi).
- Discos com a tecnologia SCSI são utilizados (padrão) em estações de trabalho SUN,
 HP, entre outras, e servidores de rede.
- A tecnologia (barramento) suporta a conexão de outros dispositivos como scanner, unidades de fita e outros periféricos SCSI. Os dispositivos recebem uma ID (15 no total) e tem dois conectores (I/O).
- Permite o acesso simultâneo de todos os dispositivos e utiliza o modo de transmissão full-duplex (envio e recebimento de dados de forma simultânea).
- O cabo possui 50 pinos: 25 são pinos terra, 8 utilizados para dados, 1 de paridade, 9 de controle e o restante dos pinos para energização. Os dispositivos de 16 bits (e 32 bits) precisam de um segundo cabo para sinais adicionais.

Tecnologia em discos magnéticos

- SCSI I: padrão do barramento SCSI, protocolo de sinalização e um conjunto de comandos de 6 a 10 bytes. Suporta 8 dispositivos no mesmo cabo. Taxa de transferência máxima de 3.5 MB/s em modo assíncrono, 5 MB/s em síncrono e tamanho máximo do cabo de 6 metros.
- SCSI II: conjunto mínimo de comandos utilizados por todos os dispositivos (Common Command Set CCS). Suporte a cd-rom, scanner, capacidade de execução de múltiplas requisições de I/O de forma simultânea. Taxa de transferência máxima de 10 MB/s na Fast SCSI e 20 MB/s com a Fast Wide SCSI.
- SCSI III: diversas versões SPI (SCSI Parallel Interface) foram normatizadas num conjunto de documentos de especificação do protocolo de comunicação e das características da camada física. Taxa de transferência máxima de 640 MB/s.

Tecnologia em discos magnéticos

SERIAL SCSI/SAS

- Tecnologia SAS (Serial Attached SCSI) utiliza os comandos SCSI de forma serializada.
- Compatível com a tecnologia SATA
- Possui conexão dedicada ou exclusiva para evita concorrência, porém pode ser compartilhada com o uso de um expansor
- Permite o uso de discos de várias taxas de transmissão , usando a taxa máxima do dispositivo
- Melhoria no desempenho e confiabilidade
- Capacidade de redundância de cabos no mesmo disco
- Interface serial ponto-a-ponto de simples cabeamento
- Possibilidade de aumento de configuração e desempenho
- Capacidade de expansão e atualização
- Possibilidade de clientes e usuários escolherem entre discos
- SAS de dupla redundância de cabos e alto desempenho ou discos SATA de alto desempenho e baixo custo no mesmo sistema.

RAID (Redundant Array of Independet Disks)

Família de técnicas para utilização de múltiplos discos como um *array* paralelo de dispositivos de armazenamento de dados, com a redundância embutida para compensar a falha futura.

- > 7 níveis (de 0 a 6)
- ▶ Não é uma hierarquia
- Conjunto dos principais discos vistos como uma única unidade lógica pelo S/O
- Dados distribuídos pelas unidades físicas (intercalação de dados striping)
- ▶ Pode usar capacidade redundante para armazenar informação de paridade.

RAID 0 (Categoria Striping)

- Não redundante
- N discos exigidos
- Dados espalhados por todos os discos
- Mapeamento Round Robin
- Maior velocidade
 - Múltiplas solicitações de dados provavelmente não no mesmo disco
 - Discos buscam em paralelo/redução do tempo de enfileiramento de solicitações de E/S
 - Um conjunto de dados provavelmente será espalhado por múltiplos discos

RAID 0 (Categoria Striping)

- Os dados são intercalados pelos discos disponíveis (striped)
- ► Todos os dados do usuário e do sistema são vistos como estando armazenados em um disco lógico
- O disco lógico é dividido em strips (faixas) /blocos físicos /setores físicos / ou outra unidade
- Um conjunto de strips logicamente consecutivos, que mapeia exatamente um strip em cada membro do array, é definido como stripe.

Mapeamento de dados para RAID 0

que o sistema praticamente soma a velocidade de transmissão de dados de cada unidade. Assim, pelo menos teoricamente, quanto mais discos houver no sistema, maior é a sua taxa de transferência.

RAID 1(Espelhamento)

- Discos espelhados
- 2N discos exigidos
- Dados espalhados pelos discos
- Cópias de cada stripe em discos separados
- ► <u>Leitura de qualquer um deles</u>
- Gravação em ambos
- Recuperação é simples:
 - Troca entre disco com defeito e espelho
 - Sem tempo de paralisação
- Custo elevado

RAID 1(Espelhamento)

- ▶ Difere dos níveis de RAID de 2 a 6 no modo como a redundância é obtida.
- ► A redundância na RAID 1 é obtida pelo simples expediente de duplicar todos os dados.
- ▶ Pode ser implementado sem o striping de dados (mas não é comum).
- Uma solicitação de leitura pode ser atendida por qualquer dos dois discos
- ► Uma solicitação de gravação requer que os dois strips correspondentes sejam atualizado, mas isso pode ser feito em paralelo.

RAID 1(Espelhamento)

- ▶ O desempenho da gravação é ditado pela mais lenta das duas gravações (ou seja, aquela que envolve o maior tempo de busca + latência rotacional).
- ► As RAID níveis 2 a 6 envolvem o uso de bits de paridade => quando um strip é atualizado, o software de gerenciamento do array deve primeiro calcular e atualizar os bits de paridade, além de atualizar o strip real em questão.
- RAID 1 oferece cópia em tempo real de todos os dados.

RAID 2 (acesso paralelo)

- Discos são sincronizados (técnica de acesso paralelo)
- N + m discos exigidos, onde m é proporcional a log(N)
- Stripes muito pequenos
 - Normalmente, único byte/palavra
- Correção de erro calculada pelos bits correspondentes nos discos
- Múltiplos discos de paridade armazenam correção de erro via código de Hamming em posições correspondentes
- Muita redundância
 - ► <u>Caro</u>
 - ► <u>Não utilizado</u>

RAID 3 (acesso paralelo)

- Semelhante a RAID 2
- ► N + 1 discos exigidos
- ► Somente um disco redundante, não importa o tamanho do array
- ▶ Bit de paridade simples para cada conjunto de bits correspondentes.
- Dados sobre unidade com defeito podem ser reconstruídos <u>a</u> partir de dados sobreviventes e informação de paridade
- <u>Taxas de transferência muito altas</u>

RAID 4 (acesso independente)

- Cada disco opera independentemente
- ▶ N + 1 discos exigidos
- ▶ Bom para taxa de solicitação de E/S alta
- Grandes stripes
- Paridade bit a bit calculada por stripes em cada disco.
- Paridade armazenada no disco de paridade

RAID 5 (acesso independente)

- Como RAID 4
- N + 1 discos exigidos
- Paridade espalhada por todos os discos
- Alocação round-robin para stripe de paridade
- Evita gargalo do RAID 4 no disco de paridade
- Normalmente usado em servidores de rede

RAID 6 (acesso independente)

- Dois cálculos de paridade
- ▶ N + 2 discos exigidos
- Armazenado em blocos separados em discos diferentes
- Requisito do usuário de N discos precisa de N+2
- Alta disponibilidade de dados
 - ► <u>Três discos precisam falhar para haver perda de dados</u>
 - Penalidade de gravação significativa (cada gravação afeta dois blocos de paridade)

RAID 0, 1, 2

RAID 3 e 4

RAID 5 e 6

Níveis de RAID

Categoria	Nível	Descrição	Discos exigidos	Disponibilidade dos dados	Capacidade para grande transferência de dados de E/S	Taxa para pequena solicitação de E/S
Striping	0	Não redundante	N	Menor que disco único	Muito alta	Muito alta para leitura e gravação
Espelhamento	1	Espelhado	2//	Maior que RAID 2, 3, 4 ou 5; menor que RAID 6	Maior que único disco para leitura; semelhante a único disco para gravação	Até o dobro de um único disco para leitura; semelhante a único disco para gravação
Acesso paralelo	2	Redundante via código de Hamming	N+m	Muito mais alta que único disco; comparável a RAID 3, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco
	3	Paridade de bit intercalada	N+1	Muito mais alta que único disco; comparável a RAID 2, 4 ou 5	Mais alta de todas as alternativas listadas	Aproximadamente o dobro de um único disco
	4	Paridade de bloco intercalada	N+1	Muito mais alta que único disco; comparável a RAID 2, 3 ou 5	Semelhante a RAID 0 para leitura; muito menor que único disco para gravação	Semelhante a RAID 0 para leitura; muito menor que único disco para gravação
Acesso independente	5	Paridade de bloco distribuída e intercalada	N + 1	Muito mais alta que único disco; comparável a RAID 2, 3 ou 4	Semelhante a RAID 0 para leitura/ menor que único disco para gravação	Semelhante a RAID 0 para leitura; geralmente, menor que único disco para gravação
	6	Paridade de bloco dual distribuída e intercalada	N+2	Mais alta de todas as alternativas listadas	Semelhante a RAID 0 para leitura; menor que RAID 5 para gravação	Semelhante a RAID 0 para leitura; muito menor que RAID 5 para gravação

Comparação de RAID

Nível	Vantagens	Desvantagens	Aplicações
0	Desempenho de E/S bastante melhorado, distribuindo a carga de E/S por muitos canais e unidades Não há <i>overhead</i> de cálculo de paridade envolvido Projeto muito simples Fácil de implementar	A falha de apenas uma unidade resultará na perda de todos os dados em um array	Produção e edição de vídeo Edição de imagens Aplicações de pré-impressão Qualquer aplicação exigindo alta largura de banda
1	100% de redundância de dados significa que não é preciso reconstruir em caso de falha do disco, apenas uma cópia para o disco substituto Sob certas circunstâncias, RAID 1 pode sustentar múltiplas falhas de unidade simultâneas Projeto mais simples do subsistema de armazenamento RAID	Overhead de disco mais alto de todos os tipos de RAID (100%) — ineficaz	Contabilidade Folha de pagamento Financeiras Qualquer aplicação exigindo disponibilidade muito alta
2	Taxas de transferência de dados extremamente altas são possíveis Quantidade mais alta a taxa de transferência de dados exigida, melhor a razão entre discos de dados e discos ECC Projeto de controlador relativamente simples em comparação com RAID 3, 4 e 5	Razão muito alta entre discos ECC e discos de dados com menores tamanhos de palavra — ineficaz Custo muito alto para cada nível — necessita requisitos de taxa de transferência muito altos para justificar	Nenhuma implementação comercial; inviável comercialmente

Comparação de RAID (continuação)

3	Taxa de transferência de dados para leitura muito alta Taxa de transferência de dados para gravação muito alta Falha de disco tem um impacto insignificante sobre o throughput Baixa razão entre discos de ECC (paridade) e discos de dados significa alta eficiência	Taxa de transação igual à de uma única unidade de disco no máximo (se os eixos forem sincronizados) Projeto de controlador muito complexo	Produção de vídeo e <i>streaming</i> ao vivo Edição de imagens Edição de vídeo Aplicações de pré-impressão Qualquer aplicação exigindo alta vazão
4	Taxa de transação de dados muito alta para leitura Baixa razão entre discos de ECC (paridade) e discos de dados significa alta eficiência	Projeto de controlador muito complexo Pior taxa de transação de gravação e taxa de transferência de gravação agregada Reconstrução de dados difícil e ineficaz no caso de falha de disco	Nenhuma implementação comercial; inviável comercialmente
5	Mais alta taxa de transação de dados para leitura Baixa razão entre discos de ECC (paridade) e discos de dados o que significa alta eficiência Bom tempo de transferência agregado	Projeto de controlador mais complexo de todos Difícil de reconstruir no caso de uma falha de disco (comparado com RAID nível 1)	Servidores de arquivo e aplicação Servidores de banco de dados Servidores Web, de e-mails e de notícias Servidores de intranet Nível RAID mais versátil
6	Oferece uma tolerância a falhas extremamente alta e pode sustentar múltiplas falhas de unidade simultâneas	Projeto de controlador mais complexo Overhead do controlador extremamente alto para calcular endereços de paridade	Solução perfeita para aplicações de missão crítica

Exercícios

Considere uma array RAID com 4 unidades, com 200 GB por unidade. Qual é a capacidade de armazenamento de dados disponíveis pra cada um dos níveis de RAID 0, 1, 3, 4, 5 e 6.

RAID 0: 800 GB

RAID 1: 400 GB

RAID 3: 600 GB

RAID 4: 600 GB

RAID 5: 600 GB

RAID 6: 400 GB

CD-ROM de armazenamento óptico

- Originalmente para áudio
- ► Tanto o CD de áudio quanto o CD-ROM compartilham uma tecnologia semelhante # CD-ROM => aparelhos de reprodução mais resistentes e utilizam correção de erro para garantir que os dados sejam transferidos corretamente do disco ao computador.
- ► Tecnologia de armazenamento de disco óptico de baixo custo
- 650 MB gerando mais de 70 minutos de áudio
- Policarbonato com cobertura altamente reflexiva, normalmente alumínio
- Dados armazenados como sulcos
- Lidos pela reflexão do laser
- Densidade de empacotamento constante
- Velocidade linear constante.

Operação do CD

Velocidade de unidade de CD-ROM

- Áudio tem velocidade única:
 - ▶ Velocidade linear constante
 - ► Trilha (espiral) tem 5,27 km de extensão
 - ► Oferece 4391 segundos= 73,2 minutos
- Outras velocidades indicadas por múltiplos
- ► Ex. 24x
- ▶ Valor indicado é o máximo que a unidade pode conseguir.

Formato do CD-ROM

- Modo 0 = campo de dados em branco.
- Modo 1 =2048 bytes de dados+correção de erro.
- Modo 2 =2336 bytes de dados sem correção de erro.

Acesso aleatório no CD-ROM

- Difícil
- Move cabeça para posição aproximada
- Define velocidade correta
- ▶ Lê endereço
- Ajusta para local solicitado

CD-ROM - vantagens e desvantagens

- Grande capacidade (?)
- Fácil de produzir em massa
- Removível
- Robusto
- Caro para pequenas quantidades
- Lento
- Somente de leitura

Outro armazenamento óptico

- CD-Recordable (CD-R):
 - Compatível com unidades de CD-ROM
- CD-RW:
 - Apagável
 - Em grande parte compatível com unidade de CD-ROM
 - Mudança de fase:
 - Material tem duas refletividades diferentes em diferentes estados de fase

DVD

- Digital Video Disk:
 - Usado para indicar um player para filmes
 - ► Só toca discos de vídeo
- Digital Versatile Disk:
 - Usado para indicar uma unidade de computador
 - ▶ Lê discos de computador e toca discos de vídeo.

DVD - tecnologia

- Multicamadas.
- Capacidade muito alta (4,7 G por camada)
- Filme de tamanho completo em único disco
 - Usando compactação MPEG
- Finalmente padronizado
- Filmes transportam codificação regional
- Players só tocam filmes da região correta
- Pode ser "reparado"

DVD - gravável

- Muito trabalho com padrões
- Unidades de DVD de primeira geração podem não ler discos DVD-W de primeira geração
- Unidades de DVD de primeira geração podem não ler discos CD-RW

CD e DVD

(a) CD-ROM - Capacidade de 682 MB

(b) DVD-ROM, dupla face, dupla camada — Capacidade de 17 GB

Discos ópticos de alta definição

- Projetados para vídeos de alta definição
- Capacidade muito mais alta que DVD
 - ► Laser com comprimento de onda mais curto
 - ► Faixa do azul violeta
 - Sulcos menores
- ► HD-DVD:
 - ▶ 15 GB de único lado, única camada
- Blue-ray:
 - Camada de dados mais próxima do laser
 - ► Foco mais estreito, menos distorção, sulcos menores.
 - > 25 GB em única camada
 - Disponível para apenas leitura (BD-ROM), regravável uma vez (BR-R) e re-regravável (BR-RE)

CD

Características da memória óptica

 $2,11 \mu m$

Fita magnética

- Acesso serial
- Lenta
- Muito barata
- Backup e arquivamento
- Unidades de fita Linear Tape Open (LTO)
 - Desenvolvida no final da década de 1990
 - Alternativa de fonte aberto para os diversos sistemas de fita patenteados

Drives de estado sólido

- > O termo estado sólido diz respeito ao circuito eletrônico construído com semicondutores.
- > Um SSD é um dispositivo de memória feito com componentes de estado sólido que pode ser usado em substituição ao drive de disco rígido.
- Como o custo de SSDs com base em flash caiu e o desempenho e a densidade de bits aumentaram, os SSDs tornaram-se mais competitivos que os HDDs.
- Os SSDs têm as seguintes vantagens sobre os HDDs:

Drives de estado sólido

- Aumenta significativamente o desempenho dos subsistemas de E/S.
- Menos suscetível a choque físico e vibração.
- Longa vida útil.
- Baixo consumo de energia.
- > Capacidade de funcionamento mais silenciosas e resfriadas.
- Menores tempos e acesso e taxas de latência.

Organização de SSD

Arquitetura de drive de estado sólido:

Organização de SSD

- Além da interface ao sistema hospedeiro, o SSD contém os seguintes componentes:
 - Controlador
 - > Endereçamento
 - Buffer de dados/cache
 - Correção de erros
 - Componentes de memória flash

Exercícios

- 1) Considere uma unidade de disco que tenha as seguintes características: 4 superfícies, 1024 trilhas por superfície, 128 setores pro trilha, 512 bytes/setor, tempo de posicionamento trilha-a-trilha de 5 ms, velocidade rotacional de 5000 RPM.
- a) Qual a capacidade da unidade?
- b) Qual o tempo de acesso?
- 2) Suponha que uma unidade de disco com as seguintes características: 5 superfícies, 1024 trilhas por superfície, 256 setores por trilha, 512 bytes/setor, tempo de posicionamento trilha-a-trilha de 8 ms, velocidade rotacional de 7500 RPM.
- a) Qual é a capacidade da unidade?
- b) Qual é o tempo de acesso?
- c) Este disco é mais rápido que o descrito no exercício 1? Explique.