Solutions to 2A:

2 Prove or give a counterexample: If
$$v_1, v_2, v_3, v_4$$
 spans V , then the list

$$v_1-v_2, v_2-v_3, v_3-v_4, v_4\\$$

also spans V.

It's equivalent to prove span $(v_1, v_2, v_3, v_4) = \text{span}(v_1 - v_2, v_2 - v_3, v_3 - v_4, v_4)$

$$v = \alpha v_1 + b v_2 + c v_3 + d v_4 = \alpha (v_1 - v_2) + (\alpha + b)(v_1 - v_3) + (\alpha + b + c)(v_3 - v_4) + (\alpha + b + c + d) v_4$$

Hence, span
$$(V_1, Y_2, V_3, V_4) \subseteq \text{span}(V_1 - V_1, V_2 - V_3, V_3 - V_4, V_4)$$

7 (a) Show that if we think of C as a vector space over
$$\mathbb{R}$$
, then the list $1+i, 1-i$ is linearly independent.

(b) Show that if we think of
$$C$$
 as a vector space over C , then the list $1+i, 1-i$ is linearly dependent.

(a). Let
$$0 = a(1+i) + b(1-i)$$
, $a,b \in \mathbb{R}$.

$$\Rightarrow$$
 a+b=0 and a-b=e \Rightarrow a=0 and b=0
i, the list 1+i, 1-i is linearly independent over R

cb).
$$\therefore$$
 $0 = (-1+i)(1+i) + (1+i)(1-i)$

8 Suppose
$$v_1, v_2, v_3, v_4$$
 is linearly independent in V . Prove that the list

$$v_1-v_2, v_2-v_3, v_3-v_4, v_4\\$$

is also linearly independent.

Prove or give a counterexample: If $v_1, ..., v_m$ and $w_1, ..., w_m$ are linearly independent lists of vectors in V, then the list $v_1 + w_1, ..., v_m + w_m$ is linearly independent.

(1,0)+(0,1)=(1,1), (0,1)+(1,0)=(1,1) is not linearly independent

12	Suppose $v_1,,v_m$ is linearly independent in V and $w \in V$. Prove													
	$v_1 + w,, v_m +$	w is linearl	ly depender	it, then $w \in$	$\operatorname{span}(v_1,$	$.,v_m).$								

If 11+w, ..., 1m+w is linearly dependent. From the linear dependence lemma, we have $\exists k \in \{1, \dots, m\}$, such that $1k+w \in Span(1, 1+w)$.

$$\exists ai \in F, i=1, \dots, k-1, \text{ such that } \forall k+w = \underbrace{\xi_{-1}}_{\xi_{-1}} ai(\forall i+w)$$

$$\Rightarrow (\underbrace{\xi_{-1}}_{\xi_{-1}} ai - 1)w = \forall k - \underbrace{\xi_{-1}}_{\xi_{-1}} ai(\forall i+w)$$

Assume that $\frac{k+1}{k-1}ai = 1$, which gives $0 = V_K - \frac{k+1}{k-1}aiNi$. This contradicts our suppose that V_1, \dots, V_m is linearly independent. Hence there must be $\frac{k+1}{k-1}ai \neq 1$.

This implies that $w = (-\frac{a_1}{b})v_1 + (-\frac{a_2}{b})v_2 + \dots + (-\frac{a_{n-1}}{b})v_{n_1} + \frac{1}{b}v_k$, where $b = \sum_{k=1}^{n-1} a_k - 1 \neq 0$. $\therefore w \in \text{span}(v_1, \dots, v_k) \subseteq \text{span}(v_1, \dots, v_m)$

13 Suppose $v_1, ..., v_m$ is linearly independent in V and $w \in V$. Show that

 $v_1,...,v_m,w$ is linearly independent $\iff w \notin \operatorname{span}(v_1,...,v_m).$

① suppose $w \in \text{span}(v_1, \dots, v_m)$, hence $\exists a : \in F$, $i = 1, \dots, m$, such that $w = \sum_{i=1}^m a_i v_i$ $\Rightarrow 0 = C-1)w + \sum_{i=1}^m a_i v_i$ $\Rightarrow v_1, \dots, v_m, w$ is linearly dependent

.: v1,..., vm, w is linearly independent ⇒ w ∉ span(v1,..., vm).

② suppose v1,..., vm, w is linearly dependent, hence ∃ a: b ∈ f, i=1,..., m, r

© suppose v_1, \dots, v_m, w is linearly dependent, hence $\exists a: b \in f$, $i=1,\dots, m$, not all 0, such that $0 = \sum_{i=1}^m a_i v_i + b w \implies (-b)w = a_i v_i + \dots + a_m v_m$

Assume that b=0, which gives $0=a_1v_1+\cdots+a_mv_m$. As v_1,\cdots,v_m is linearly independent, this gives $a_i=0$, $i=1,\cdots,m$. Hence a_i and b are all 0, contradicting

our suppose . So there must be $b \neq 0$, giving $W = (-\frac{a_1}{b})v_1 + \cdots + (-\frac{a_n}{b})v_m$

From O and O, both directions of the result are proved

5 Explain why there does not exist a list of six polynomials that is linearly

15 Explain why there does not exist a list of six polynomials that is linearly independent in $\mathcal{P}_4(\mathbf{F})$.

 $P_4(F) = Span(1, Z, Z^2, Z^3, Z^4)$, has a spanning (irt of length 5.

From result 2.22, we know that any linearly independent lirt in $P_4(F)$ will not have a length greater than 5.

17 Prove that V is infinite-dimensional if and only if there is a sequence $v_1, v_2, ...$ of vectors in V such that $v_1, ..., v_m$ is linearly independent for every positive

of vectors in V such that $v_1, ..., v_m$ is linearly independent for every positive integer m.

① Suppose V is finite-dimensional, such that there exists some list which spans V.

Assume the list has length m, denote it as 11, ..., vm. Thus, V = span(vn.....vm).

⇒ Vv ∈ V , ∃ ai ∈ F , i=1,..., m , such that 1 = a.v. +... + a.v. .

This gives $0 = (-1)v + a_1v_1 + \cdots + a_nv_m$, meaning v, v_1, \cdots, v_m is not linearly independent for any v. Hence, there doesn't exist a linearly independent list of length m+1.

	: there exists a linearly independent list of arbitrary length
	⇒ V is infinite-dimensional.
	Suppose such segmence doesn't exist. Now we construct a list L through the
	following steps:
	Step 1: Select an arbitrary vector v. 6 V into L.
	Step i = 2 to m: Select a vector 11:6 V into L, such that the expanded
	list L is linearly independent. If such vi doesn't exist, terminate the process.
	We claim that this process will eventually terminate, otherwise we will derive a sequence that contradicts our suppose. Assume the list L we derive has length m, we denite it
	as v_1, \dots, v_m . Hence, $\forall v \in V$, v_1, \dots, v_m, v is not linearly independent.
	$\Rightarrow \exists ai, b \in F$, not all 0 , such that $0 = \frac{m}{1-1} ai \pi i + b \nu$.
	If $b=0$, implying $0=a_1v_1+\cdots+a_mv_m$ \Rightarrow $a_i=0$ for v_1,\cdots,v_m is linearly independent
	⇒ Oil and b are all O . Contradicting our suppose .
	Thus, $b \neq 0$. This gives $v = (-\frac{\Omega_1}{b})v_1 + \dots + (-\frac{\Omega_{b}}{b})v_m$, meaning $v \in \text{Span}(v_1,\dots,v_m)$.
	Hence, V \(\infty\) span(\(\nu_1,\ldots,\nu_n\). And obviously, we have span(\(\nu_1,\ldots,\nu_n\)) \(\infty\).
	$V = span(v_1,, v_m)$. $\Rightarrow V$ is finite-dimensional.
	: V is infinite-dimensional => there exists a linearly independent list of arbitrary length.
	From O and O, both directions of the result are proved.
18	Prove that F^{∞} is infinite-dimensional.
	Consider sequence $11,12,\cdots$, where $11 \in F^{\infty}$ has 1 in i^{th} shot and 0 in all other slots.
	Obviously, for \forall m \in Z ⁺⁺ , \forall 1, \forall m is linearly independent.
	Hence, from the result of exercise 2A 1]. Foo is infinite-dimensional.
19	Prove that the real vector space of all continuous real-valued functions on
	the interval [0,1] is infinite-dimensional.
	Consider sequence x^0, x^1, x^2, \cdots , where x^i denotes the function $f(x) = x^i$ for $\forall x \in [0,1]$, which
	is continuous real-valued. Obviously, for $\forall m \in Z^{++}$, X^0, \dots, X^m is linearly independent.
	Hence, from the result of exercise 2A 17, the real vector space of all continuous real-valued
20	functions on the interval [0,1] is infinite-dimensional.
20	Suppose $p_0, p_1,, p_m$ are polynomials in $\mathcal{P}_m(\mathbf{F})$ such that $p_k(2) = 0$ for each $k \in \{0,, m\}$. Prove that $p_0, p_1,, p_m$ is not linearly independent in $\mathcal{P}_m(\mathbf{F})$.
	Denote $V = \{p: p \in p_n(F), p(L) = 0\}$
	OV is a subspace of pm(F):
	1). O(2) E V for O(2) = 0
	2). $\forall p_1, p_2 \in V$, $(p_1+p_2)(2) = p_1(2) + p_2(2) = 0 + 0 = 0 \Rightarrow p_1+p_2 \in V$
	3). Ype V, Yaef, (ap)(2) = a(p(w) = a·0 = 0 ⇒ ap € V

	<u>න</u> ነ	V = «	Span (7-1	2/2-1) , ,	7 ^{m-1} (2	-21)												
						z ⁱ (z-2			Z-1.	ע-ב <i>ו</i> ק		7 ^{m-1} (Z-	-ചി.	where	n: e	۴				
		., .				= 0														
		بد)		,		ause 1														
						+Q.Z-						, – 5	, w		, J-G					
						(z-1)				<i>a.</i> . 7	·M-(/z.	-11 6	CDAM	(>	7 (7-1	1	7m-1/4	-11]		
						pan (z						-) C	. span	(2-1,	2(2-2	,, ,	_ (_	· ~) .		
	Evan.	6										MA	ΔΙ	0.000	J	← 0 ×0	l			
						V ha			Ĭ I						auny	(0) (auct _			
	•					rt in				נטק	jin gr	emjer		,						
		/6 , Fi ,	, Pr	. 13	rio C	linearly	incu	genoce	٠.											