Prepared by Phu Dang for Professor Sun

WI24 Week 8 Update

ULI H2H - LIHTC Data/ML Analysis

Model (Negative Binomial) n_units ~ yr_alloc + bond + credit + allocamt + dda + basis + fmha_514 + fmha_515 + fmha_538

The model applies the logarithm to the predictor in modeling the target variable using the iterative reweighted least squares optimization method

Highlights:

Bond and fmha_515 seem informative/influential as predictors for the number of units

Fmha_515 ~ FmHA (RHS) section 515 loan

Generalized Linear Model Regression Results

========	:=======	========	========	:=======	========	========	
Dep. Varia	able:	n ur	nits No.	Observation	s:	733	
Model:		_	GLM Df F	Residuals:		725	
Model Fami	llv: N	egativeBinor		Nodel:		7	
Link Funct		-8	Log Scal			1.0000	
Method:			J	Likelihood:		-3730.7	
Date:	c	at, 02 Mar 2	O	ance:		387.73	
Time:	3	06:1		rson chi2:		412.	
	•	00.1.			20)		
No. Iterat				ıdo R-squ. (CS):	0.1040	
Covariance	e Type:	nonrol	oust				
========		========				========	
	coef	std err	Z	P> z	[0.025	0.975]	
yr_alloc	0.0021	9.46e-05	21.755	0.000	0.002	0.002	
bond	0.9303	0.128	7.275	0.000	0.680	1.181	
credit	-0.1636	0.191	-0.855	0.393	-0.539	0.211	
allocamt	1.806e-08	1.13e-08	1.603	0.109	-4.02e-09	4.01e-08	
dda	-0.0718	0.117	-0.615	0.539	-0.301	0.157	
basis	0.0713	0.083	0.861	0.389	-0.091	0.234	
fmha_514	-2.016e-17	3.63e-18	-5.548	0.000	-2.73e-17	-1.3e-17	
fmha_515	-0.2475	0.135	-1.836	0.066	-0.512	0.017	
fmha_538	-0.5193	0.348	-1.493	0.136	-1.201	0.163	

Model (Negative Binomial) - (Same model for low-income units) li_units ~ yr_alloc + bond + credit + allocamt + dda + basis + fmha_514 + fmha_515 + fmha_538

Dep. Variable:

The model applies the logarithm to the predictor in modeling the target variable using the iterative reweighted least squares optimization method

Highlights:

Bond and fmha_515 seem informative/influential as predictors for the number of low-income units

Fmha_515 ~ FmHA (RHS) section 515 loan

Generalized Linear Model Regression Results

No. Observations:

733

li units

F:						10.50	
Model:			GLM	Df Res	siduals:		725
Model Fami	ily:	NegativeBino	mial	Df Mod	del:		7
Link Funct	tion:	Log		Scale			1.0000
Method:			IRLS	Log-Li	ikelihood:		-3662.3
Date:		Sat, 02 Mar	2024	Deviar	nce:		591.01
Time:		06:1	1:04	Pearso	on chi2:		436.
No. Iterat	tions:		10	Pseudo	R-squ. (C	S):	0.1164
Covariance	e Type:	nonro	bust				
=======			=====	======		-	
		std err			757		-
		9.46e-05					0.002
	0.9741	0.128	7	.615	0.000	0.723	1.225
credit	-0.2411	0.191	-1	.260	0.208	-0.616	0.134
allocamt	1.935e-08	1.13e-08	1	.716	0.086	-2.74e-09	4.14e-08
dda	-0.0872	0.117	-6	.746	0.456	-0.316	0.142
basis	0.1005	0.083	1	.214	0.225	-0.062	0.263
fmha_514	-1.554e-15	3.47e-16	-4	.477	0.000	-2.23e-15	-8.74e-16
fmha_515	-0.3074	0.135	-2	2.277	0.023	-0.572	-0.043
fmha_538	-0.4652	0.348	-1	336	0.181	-1.147	0.217
=======			=====			=======	=======

This plot shows that it's appropriate to use Negative Binomial regression to predict li_units as the variable is
(1) non-negative, and (2) right-skewed

→ Our use case is appropriate

Model (Linear Regression) - log(allocamt) ~ li_units + bond + credit + bias

The model uses the ordinary least squares approach to predict the log-transformed allocation amounts

Highlights:

li_units, bond, credit
(all appears to be decent predictors of
allocation amount)

RMSE ~ 1.378; the range of true target values is 18-ish

→ Distribution of true target values

OLS Regression Results

Don Vaniable		-11		D 69			0.053
Dep. Variable	:	all	.ocamt		uared:		
Model:			OLS		R-squared:		0.049
Method:		Least So	uares		atistic:		13.45
Date:		Sat, 02 Mar	2024	Prob	(F-statisti	c):	1.50e-08
Time:		06:	11:04	Log-	Likelihood:		-1266.6
No. Observati	ons:		728	AIC:			2541.
Df Residuals:			724	BIC:			2560.
Df Model:			3				
Covariance Ty	pe:	nonr	obust				
=========		========			========		========
	coef				P> t	-	-
li units	0.3335						
bond	-0.4602	0.201		-2.293	0.022	-0.854	-0.066
credit	-0.1778	0.073	3 .	-2,442	0.015	-0.321	-0.035
bias	13.5026	0.177	,	76.485	0.000	13.156	13.849
	======	========					
Omnibus:		67	0.454	Durb	in-Watson:		1.597
Prob(Omnibus)	;		0.000	Jarq	ue-Bera (JB)	:	34554.705
Skew:		-	3.948	Prob	(JB):		0.00
Kurtosis:		3	85.815		. No.		11.3
=========	======	=======	=====				========

Next: Predict tax-exempt bond status (received any or not)

I first plotted the bond values to get an idea of its distribution

Notes:

Projects that received tax-exempt bond only constitute about 10% of our dataset, there is potential for issues due to data imbalance

9.822646657571624

Model (Logit) bond ~ yr_alloc + dda + li_units + 0br + 1br + 2br + 3br + 4br → The #br variables are percentage of #-bedroom units

Notes:

Model structure: The logit transformation/link is the inverse of the logistic function

Takeaways:

- dda (difficulty dev. area) seems to be an informative predictor, not only based on weight but also accomodated by a lower p-value (statistically significant)
- The bedroom percentages have high coefficients but also high p-values, they may not be statistically significant, I will do more visualizations/exploratory analyses on these features to see why
- I also plan to try one-hot encoding for yr_alloc next. I'm a bit suspicious of the coefficients we're seeing because the year variable is in the thousands, which is a much higher scale than other variables, which could distort the weights

Generalized Linear Model Regression Results

========	========	-======	:=====::	=======	========	
Dep. Variab	le:	b	ond No. (Observation	s:	733
Model:			GLM Df R	esiduals:		724
Model Famil	y:	Binom	nial Df Mo	odel:		8
Link Functi	on:	Lo	git Scal	e:		1.0000
Method:		I	RLS Log-	Likelihood:		-166.70
Date:	Sa	at, 02 Mar 2	_	ance:		333.39
Time:		06:11		son chi2:		588.
No. Iterati	ons:			do R-squ. (cs):	0.1710
Covariance		nonrob				0,1,10
	coof	std onn		D \ l z l	[0.025	0 0751
	coer	stu ei i	Z	F7[2]	[0.025	0.9/5]
	224 0506	112 510	2 062	0.004	E47 22E	102 276
	-324.8506					-102.376
yr_alloc	0.1564	0.056	2.788	0.005	0.046	0.266
dda	0.8725	0.226	3.858	0.000	0.429	1.316
li_units	0.0229	0.003	8.744	0.000	0.018	0.028
0br	7.5332	10.181	0.740	0.459	-12.422	27.488
1br	5.9150	10.172	0.581	0.561	-14.023	25.853
2br	5.9399	10.171	0.584	0.559	-13.994	25.874
3br	5.4855	10.187	0.538	0.590	-14.481	25.452
4br	3.5189	10.345	0.340	0.734	-16.758	23.795
========	========		.=======		========	.=======

Notes:

The table to the right shows the correlations among features used in the last model. There isn't any extreme correlation I think. I will explore the relationships between the bedroom percentages, especially between 3br, 2br, and 1br → the numbers seem very interesting

The bottom table shows # low-income units to have highest correlation with the target variable (bond status)

	const	yr_alloc	dda	li_units	0br	1br	2br	3br	4br
const	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
yr_alloc	NaN	1.000000	-0.201236	-0.056933	-0.019778	0.023617	-0.122323	0.125489	-0.008213
dda	NaN	-0.201236	1.000000	-0.022779	-0.014489	-0.056921	-0.021319	0.071857	0.060222
li_units	NaN	-0.056933	-0.022779	1.000000	0.113240	0.052100	0.062826	-0.112445	-0.158945
0br	NaN	-0.019778	-0.014489	0.113240	1.000000	-0.058068	-0.233162	-0.139256	-0.072775
1br	NaN	0.023617	-0.056921	0.052100	-0.058068	1.000000	-0.480557	-0.538402	-0.293233
2br	NaN	-0.122323	-0.021319	0.062826	-0.233162	-0.480557	1.000000	-0.120143	-0.269329
3br	NaN	0.125489	0.071857	-0.112445	-0.139256	-0.538402	-0.120143	1.000000	0.005477
4br	NaN	-0.008213	0.060222	-0.158945	-0.072775	-0.293233	-0.269329	0.005477	1.000000

const	NaN
yr_alloc	0.046098
dda	0.093775
li_units	0.465914
0br	0.138382
1br	0.026645
2br	0.005428
3br	-0.056746
4br	-0.067888
target	1.000000

Model (Probit) - (Same as last model with different link function) bond ~ yr_alloc + dda + li_units + 0br + 1br + 2br + 3br + 4br → The #br variables are percentage of #-bedroom units

Notes:

Model structure: The probit link function transforms the predictions into probabilities using the inverse of the CDF of the standard normal distribution

Takeaways:

Similar to the same model with logit link function

- dda (difficulty dev. area) seems to be an informative predictor, also accomodated with a lower p-value (statistically significant)
- The bedroom percentages have high coefficients but also high p-values, they may not be statistically significant, need more EDA on these features to see why

Generalized Linear Model Regression Results

=======================================			
Dep. Variable:	bond	No. Observations:	733
Model:	GLM	Df Residuals:	724
Model Family:	Binomial	Df Model:	8
Link Function:	Probit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-164.74
Date:	Sat, 02 Mar 2024	Deviance:	329.48
Time:	06:11:04	Pearson chi2:	622.
No. Iterations:	10	Pseudo R-squ. (CS):	0.1754
Covariance Type:	nonrobust		

=======	=========			========	========	========
	coef	std err	Z	P> z	[0.025	0.975]
const	-161.6519	58.162	-2.779	0.005	-275.648	-47.656
yr_alloc	0.0777	0.029	2.699	0.007	0.021	0.134
dda	0.4617	0.121	3.825	0.000	0.225	0.698
li_units	0.0125	0.001	9.086	0.000	0.010	0.015
0br	3.8018	3.989	0.953	0.340	-4.016	11.619
1br	2.9132	3.977	0.732	0.464	-4.882	10.709
2br	2.9311	3.977	0.737	0.461	-4.864	10.727
3br	2.5937	3.989	0.650	0.516	-5.225	10.412
4br	1.8598	4.084	0.455	0.649	-6.145	9.865
========	=========	========			=========	========

Our imbalance data seems to be an issue. The last model has performance analogous to simply predicting 0 for everything.

I will try resampling and other data balancing techniques to hopefully amend this problem.

```
1  # Get accuracy
2
3  pred7 = pred7 > 0.5
4  np.mean((pred7 == y6))

$\square$ 0.0s
```

0.9045020463847203

```
1 # Get accuracy if we predict 0 for everything
2 np.mean(np.array([0]*X6.shape[0]) == y6)

$\square$ 0.0s
```

0.9017735334242838

Credit has an even more extreme data imbalance issue with only about 4% of projects that are TCEP only.

We can also stay with the original credit categories:

1=30 percent present value 2=70 percent present value 3=Both 4=TCEP only

TCEP - Tax Credit Exchange Program funds

4.092769440654844

Takeaways and next steps:

In addition to the next-steps I mentioned throughout the slides, there is still a good number of variables I haven't checked out yet (and models), so I will try to get to them.

Something interesting I think we can look into is deriving a list of patterns that could potentially be informative to our "LIHTC-score" scale. For ex, in the right plot, it's pretty rare for a project to receive bond while also getting a Section 515 loan.

