CS 240		Complement and Logic Gates	42	18		
Computer Systems Aug. 31, 2021 · Wade Fagen-Ulmschneider		- <u>18</u>	- <u>42</u>			
For the past two DATA . Today, and into how da	tion: Binary Addition be lectures we have focused we are going to begin the to that applies to the CPU. Bir n, but with only 0s and 1s:	ransition away from data aary addition work just like	-42	31		
0b 010011 0b 0011		0011	- <u>32</u>	+ <u>42</u>		
+ 0b <u>001001</u>		<u>0111</u>	_	_		
Negative Nun 0b 010011 - 0b <u>001001</u>		0011 <u>0111</u>	Overflow Detection in Two's Complement:			
Two's Complement The Two's Complement is a way to represent signed (ex: positive vs. negative) numbers in a way!			Towards Multiplication With Two's Complement, we can add and subtract numbers! What about more complex operations?			
			10 x 2 =			
	let's imagine running on a	n 7-bit machine :	10 x 4 =			
-17 =			10 x 9 =			
-4 =			Bit Shift Operations: 1. [Left Shift]:			

-1 =

2. [Right Shift]:

Logic Gates and Truth TablesWe can begin to define the building blocks of the CPU by basic instructions with input bits and output bits through **logical gates**.

• By convention, you will see that the input bits are labeled A and **B** by default.

Logic Gate #1:
Logic Gate #2:
Logic Gate #3:
Logic Gate Challenge: A XOR B
Truth Table: Binary Addition Can we design a circuit to complete the binary addition?

Half Adder:

Α	В	A + B	<u>s</u> um	<u>C</u> ARRY

Truth Table for a Half Adder

Circuit Diagram for a "Half Adder":

Full Adder:

Α	В	CARRY _{in}			SUM	CARRY _{out}
			1 5 11 6	7 II 4 I		

Truth Table for a Full Adder

Circuit Diagram for a "Full Adder":

Chaining Circuits Together:

Disadvantages: