

UNIVERSIDADE DO ESTADO DO PARÁ - CAMPUS XXII BACHARELADO EM ENGENHARIA DE SOFTWARE

ATHUS GABRIEL GUARANY SOARES DIEGO GABRIEL PESSOA AMORIM MARCELLO COSTA DOS SANTOS RYAN RICARDO DE SOUZA

ÁRVORES: GERENCIAMENTO DE LIVROS PARA BIBLIOTECA DA UEPA

Árvores: Gerenciamento de livros para biblioteca da UEPA.

SUMÁRIO

1.	Introdução	3
2.	2. Estrutura do Livro	
	2.1 Identificador Único (ID)	3
	2.2 Título	3
	2.3 Autor.	3
	2.4 Importância da Estrutura do Livro	4
3. Estrutura da Árvore Binária		4
	3.1 Estrutura "NoArvore"	4
	3.2 Importância da Estrutura "NoArvore"	5
4. Função para criar um nó		5
	4.1 Estrutura "criarNo"	5
	4.2 Importância da Função "criarNo"	6
5. Função para inserir um livro		6
	5.1 Estrutura "inserirLivro"	6
	5.2 Importância da Função "inserirLivro"	7
6. Função para buscar um livro por id		8
	6.1 Estrutura "buscarLivro"	8
	6.2 Importância da Função "buscarLivro"	8
7. Função para listar os livros em ordem crescente		9
	7.1 Estrutura "listarLivros"	9
	7.2 Importância da Função "listarLivros"	10
8. Função para remover livros		10
	8.1 Estrutura "removerLivro"	. 10
	8.2 Importância da Função "removerLivro"	11
9. Função principal		. 12
	9.1 Função Main	. 12
	9.2 Importância da Função main:	. 13
10	. Conclusão	13

1. Introdução

A gestão de acervos em bibliotecas tradicionais enfrenta desafios como busca demorada, organização complexa e atualização manual de dados. Para superar este desafio, o código desenvolvido implementa a estrutura de dados de árvores binárias de busca para armazenar informações bibliográficas, como id, título e autor. Cada livro é representado por um nó na árvore, com ponteiros para seus filhos (esquerdo e direito). A ordenação dos livros é realizada com base em um critério escolhido, como título ou autor, permitindo buscas eficientes.

2. Estrutura do Livro

A **estrutura do Livro** funciona como um armário organizado para cada exemplar em nossa biblioteca particular. Cada livro possui seu próprio compartimento com informações essenciais para identificá-lo e conhecê-lo melhor.

2.1 Identificador Único (ID)

- Um código exclusivo que serve como carteira de identidade do livro.
- Garante que cada livro tenha sua própria "casa" na árvore binária, sem confusões.

2.2 Título

- A capa do livro, que nos dá a primeira pista sobre a história que ele guarda.
- Armazenado como uma string, permitindo títulos longos e descritivos de até 100 caracteres.

2.3 Autor

- O criador da obra, responsável por dar vida à história.
- Também é armazenado como string, capturando nomes completos e pseudônimos de até 100 caracteres.

Exemplo:

Imagine um livro com ID 123, título "O Senhor dos Anéis" e autor J.R.R. Tolkien. Na estrutura do Livro, cada informação teria seu próprio espaço:

• **ID**: 123

• Título: "O Senhor dos Anéis"

• Autor: "J.R.R. Tolkien"

2.4 Importância da Estrutura do Livro

• Organização: Permite armazenar informações de forma estruturada e eficiente.

• Acessibilidade: Facilita a busca e recuperação de livros específicos na árvore binária.

• Flexibilidade: Suporta diferentes tipos de dados (strings, números), adaptando-se a diversas informações sobre os livros.

Ou seja, a estrutura do Livro é a base para organizar e gerenciar nossa coleção de livros na árvore binária, garantindo que cada exemplar tenha seu lugar e seja facilmente encontrado.

Estrutura da Árvore Binária 3.

A estrutura "NoArvore" é como a espinha dorsal da árvore binária de busca, dando forma e organização à coleção de livros. Cada nó dessa estrutura representa um ponto crucial na árvore, onde um livro reside e se conecta aos seus "descendentes".

3.1 Estrutura "NoArvore"

- Livro: No coração de cada nó reside um livro, com suas informações como ID, título e autor.
- Ponteiros Esquerda e Direita: Como mãos que apontam para o futuro, os ponteiros esquerda e direita guiam-nos para os filhos do nó.

 Organização Hierárquica: Através desses ponteiros, os nós se conectam em uma estrutura hierárquica, formando uma árvore onde cada livro se encontra em seu lugar correto, ordenado por ID.

3.2 Importância da Estrutura "NoArvore"

- Eficiência na Busca: Permite encontrar livros rapidamente, navegando pela árvore através dos ponteiros.
- Organização: Mantém os livros ordenados por ID, facilitando a consulta e manipulação da coleção.
- **Flexibilidade:** Adapta-se a qualquer número de livros, expandindo ou diminuindo a árvore conforme necessário.

Ou seja, a estrutura "NoArvore" é a base fundamental da nossa árvore binária de busca, organizando os livros em uma hierarquia eficiente e permitindo que os encontremos e gerenciemos com facilidade.

4. Função para criar um nó

A função "criarNo" atua como o broto da árvore binária de busca, concedendo vida a novos nódulos que abrigarão novos livros. O broto recebe um livro e retorna um ponteiro para o novo nó criado, pronto para se integrar à árvore.

4.1 Estrutura "criarNo"

- 1. Aloca Memória: O broto aloca memória suficiente para o novo nó.
- 2. Inicialização: O broto inicializa os valores do novo nó:
 - Livro: O livro recebido é armazenado no nó, pronto para ser encontrado e consultado.
 - Filhos: Os ponteiros esquerda e direita são inicializados como NULL, pois o novo nó ainda não possui filhos.

Retorno: O broto **retorna um ponteiro** para o novo nó criado, permitindo que ele seja inserido na árvore binária de busca e faça parte da biblioteca.

Exemplo:

Caso o broto receba o livro "O Senhor dos Anéis". Ele aloca memória, inicializa o livro no novo nó e os ponteiros esquerda e direita como NULL. Por fim, retorna o ponteiro para o novo nó, pronto para ser adicionado à árvore.

4.2 Importância da Função "criarNo"

- Criação de Nódulos: É essencial para expandir a árvore binária de busca, adicionando novos livros à nossa coleção.
- Gerenciamento de Memória: Aloca memória de forma eficiente, evitando desperdícios e garantindo a saúde da árvore.
- Inicialização Correta: Assegura que os novos nódulos sejam inicializados com os valores corretos, mantendo a organização da árvore.

Ou seja, a função "criarNo" é a chave para o **crescimento da árvore binária de busca**, permitindo que novos livros sejam acolhidos e organizados de forma eficaz e eficiente.

5. Função para inserir um livro

A função "inserirLivro" atua como **corretor imobiliário da árvore binária de busca**, buscando o **local ideal** para cada novo livro que chega à biblioteca. Ela recebe um livro como cliente e o guia pela árvore, comparando seu "ID" com os dos nós existentes até encontrar o lar ideal, sempre **mantendo a ordem da árvore**.

5.1 Estrutura "inserirLivro"

- Comparação de IDs: O corretor inicia a jornada comparando o "ID" do livro com o "ID" do nó raiz da árvore.
 - Se o "ID" do livro for menor que o do nó raiz, a busca segue pelo filho esquerdo.

- Se o "ID" do livro for **maior** que o do nó raiz, a busca segue pelo **filho direito**.
- Descida Recursiva: O corretor repete o processo de comparação de IDs com os nós filhos até encontrar o local ideal.
- Inserção do Livro: Ao encontrar o nó correto (onde o "ID" do livro se encaixa na ordenação), o corretor insere o livro nesse nó.
 - O livro é armazenado no nó, pronto para ser encontrado e consultado.
 - Os ponteiros esquerda e direita do nó são atualizados para manter a ordenação da árvore.
- Retorno: O corretor retorna a raiz da árvore atualizada, agora com o novo livro em seu devido lugar.

Exemplo:

Caso o corretor receba o livro "O Hobbit" como cliente. Ele inicia a busca no nó raiz, comparando o "ID" do livro com o do nó. Se o "ID" do livro for menor, ela segue pelo filho esquerdo, repetindo o processo até encontrar o local ideal. Ao encontrar, ele insere o livro no nó e atualiza os ponteiros esquerda e direita. Por fim, retorna a raiz da árvore atualizada com o novo livro em seu devido lugar.

5.2 Importância da Função "inserirLivro"

- Organização Eficiente: Mantém a propriedade de ordenação da árvore binária de busca, facilitando a busca por livros.
- Gerenciamento da Coleção: Permite adicionar novos livros à nossa biblioteca, expandindo a coleção.
- **Inserção Segura:** Garante que cada livro seja inserido no **local correto**, evitando duplicatas e desordens.

Ou seja, a função "inserirLivro" é a **alma da árvore binária de busca**, responsável por **organizar e gerenciar** a coleção de livros de forma eficiente, sempre buscando o local ideal para cada novo exemplar.

6. Função para buscar um livro por id

A função "buscarLivro" atua como arqueóloga **da árvore binária de busca**, como se fosse uma **caça ao tesouro** para encontrar o livro desejado. Ela recebe o "ID" do livro como mapa e navega pela árvore, comparando o "ID" alvo com os dos nós até encontrar o livro ou chegar a um beco sem saída.

6.1 Estrutura "buscarLivro"

- Comparação de IDs: A arqueóloga inicia a jornada comparando o "ID" do livro alvo com o "ID" do nó raiz da árvore.
 - Se o "ID" do livro for igual ao do nó raiz, a busca termina e o livro é encontrado nesse nó.
 - Se o "ID" do livro for menor que o do nó raiz, a busca segue pelo filho esquerdo.
 - Se o "ID" do livro for **maior** que o do nó raiz, a busca segue pelo **filho direito**.
- Descida Recursiva: A arqueóloga repete o processo de comparação de IDs com os nós filhos até encontrar o livro ou chegar a um nó nulo.
- Livro Encontrado: Se o livro for encontrado, a arqueóloga retorna o nó que o contém, permitindo o acesso às informações do livro.
- Livro Não Encontrado: Se o livro não for encontrado em nenhum nó da árvore, a arqueóloga retorna NULL, indicando que a caça ao tesouro não teve sucesso.

Exemplo:

Caso arqueóloga recebendo o "ID" 123 como mapa. Ela inicia a busca no nó raiz, comparando o "ID" 123 com o do nó. Se os IDs forem iguais, o livro foi encontrado e a arqueóloga retorna o nó com o livro. Se o "ID" 123 for menor, ela segue pelo filho esquerdo, repetindo o processo até encontrar o livro ou chegar a um nó nulo. Se o livro for encontrado, ela retorna o nó com o livro. Se o livro não for encontrado, ela retorna NULL.

6.2 Importância da Função "buscarLivro"

- Eficiência na Busca: Permite encontrar livros específicos rapidamente, navegando pela árvore binária de busca.
- Acesso à Informação: Fornece o nó que contém o livro desejado, permitindo o acesso às suas informações.

 Verificação de Existência: Indica se o livro está presente na árvore, facilitando o gerenciamento da coleção.

Ou seja, a função "buscarLivro" é a **bússola da árvore binária de busca**, guiando a **busca por livros específicos** de forma eficiente e precisa, permitindo que seja encontrado os tesouros literários almejados.

7. Função para listar os livros em ordem crescente

A função "listarLivros" atua como **narrador da biblioteca**, revelando **a coleção completa de livros** em ordem crescente de "ID". Ele realiza uma **travessia in-order** pela árvore binária de busca, como um contador de histórias experiente que visita cada livro em sua ordem natural.

7.1 Estrutura "listarLivros"

- Travessia in-order: O narrador inicia a jornada visitando a subárvore esquerda do nó atual.
 - Se a subárvore esquerda não for nula, ele chama a si mesmo recursivamente para listar os livros dessa subárvore.
- Revelando o Livro Atual: Após listar a subárvore esquerda, o narrador imprime as informações do livro do nó atual:
 - o Título: O nome do livro.
 - o Autor: A mente de autoria da obra.
 - o ID: O código único do livro.
- Travessia da Subárvore Direita: Após isso, o narrador visita a subárvore direita do nó atual.
 - Se a subárvore direita não for nula, ele chama a si mesmo recursivamente para listar os livros dessa subárvore.

Exemplo:

Caso o narrador inicie a jornada no nó raiz. Ele visita a subárvore esquerda, recursando a si mesmo para listar os livros dessa subárvore. Em seguida, revela as informações do livro do nó raiz (título, autor, ID) e por fim, visita a subárvore direita, recursando a si mesmo novamente.

Esse processo se repete até que todos os livros da árvore binária de busca tenham sido listados em ordem crescente de "ID".

7.2 Importância da Função "listarLivros"

- Organização e Visibilidade: Permite visualizar a coleção de livros ordenada por ID, facilitando a identificação dos livros.
- Gerenciamento Eficiente: Auxilia no gerenciamento da biblioteca, permitindo verificar a quantidade de livros e identificar duplicatas.
- Navegação Detalhada: Permite explorar a árvore binária de busca e seus livros de forma estruturada e completa.

Ou seja, a função "listarLivros" é como se fosse a **voz da nossa biblioteca**, guiando pela **coleção de livros** em ordem crescente de "ID" e listando todas as obras literárias.

8. Função para remover livros

A função "removerLivro" atua como uma **faxina da biblioteca**, livrando-a de **livros desatualizados ou indesejados** com base no "ID" fornecido. Através de uma análise precisa e de **três estratégias de remoção**, garante que a biblioteca permaneça organizada e eficiente, mesmo após a despedida de alguns livros.

8.1 Estrutura "removerLivro"

- Busca pelo Livro Condenado: A faxina é iniciada buscando o livro a ser removido na árvore binária de busca. Ela segue o caminho traçado pelo "ID", comparando-o com os IDs dos nós até encontrar o livro desejado.
- Analisando o Cenário: Ao encontrar o livro, a faxina analisa o cenário para determinar a melhor estratégia de remoção:
 - Nó com Zero Filhos: Se o livro estiver em um nó sem filhos, a faxina simplesmente remove o nó da árvore, como se estivesse retirando um livro empoeirado da estante.
 - Nó com Um Filho: Se o livro estiver em um nó com apenas um filho, a faxina promove o filho para substituir o nó removido, como se estivesse colocando um novo livro no lugar do antigo.

- Nó com Dois Filhos: Se o livro estiver em um nó com dois filhos, a faxina precisa de um sucessor para garantir a ordem da árvore. Ela busca o sucessor mais à esquerda na subárvore direita do nó a ser apagado, como se estivesse escolhendo o próximo livro da fila para ocupar o lugar vago.
- Removendo o Livro: Com a estratégia definida, a faxina remove o livro desejado da
 árvore, atualizando os ponteiros dos nós envolvidos para manter a integridade da
 estrutura
- Retorno: A faxina conclui sua missão, retornando o nó raiz da árvore atualizada,
 pronta para receber novos livros ou enfrentar novos desafios de remoção.

Exemplo:

Caso a faxina receba o "ID" 123 como missão. Ela busca o livro com esse "ID" na árvore, encontrando-o em um nó com dois filhos. A faxina então identifica o sucessor mais à esquerda na subárvore direita do nó a ser apagado, remove o livro a ser apagado e promove o sucessor para ocupar seu lugar. Por fim, ela atualiza os ponteiros dos nós envolvidos e retorna o nó raiz da árvore atualizada, com a missão cumprida.

8.2 Importância da Função "removerLivro"

- Organização da Biblioteca: Permite remover livros indesejados da árvore binária de busca, liberando espaço para novos livros e mantendo a biblioteca organizada.
- Eficiência da Estrutura: Garante que a remoção de livros não comprometa a
 estrutura da árvore binária de busca, preservando sua eficiência para operações
 como busca e listagem.
- Gerenciamento Inteligente: Oferece diferentes estratégias de remoção para lidar com diversos cenários, como nós com zero, um ou dois filhos.

Ou seja, a função "removerLivro" é a **guardiã da organização** da nossa biblioteca binária de busca. Através de sua atuação precisa e estratégica, ela garante que a biblioteca permaneça limpa, organizada e eficiente, mesmo após a remoção de livros, permitindo que novos títulos sejam acolhidos e que a experiência de leitura seja sempre a melhor possível.

9. Função principal

A função main atua como o **portal principal** para a biblioteca, fornecendo ao usuário um **menu de opções** que permite navegar pela árvore binária de busca e realizar diversas operações com os livros. Através de um **laço while infinito**, ela se transforma em um portal sempre aberto, pronto para atender aos comandos do usuário até que este decida partir.

9.1 Função Main

- Apresentação do Menu: O portal se abre, exibindo um menu de opções convidativo:
 - o **Inserir Livro:** Adiciona um novo livro à biblioteca, expandindo a coleção.
 - **Buscar Livro:** Encontra um livro específico na biblioteca.
 - Remover Livro: Exclui um livro da biblioteca, liberando espaço para outros novos.
 - Listar Livros: Apresenta todos os livros da biblioteca em ordem crescente de ID, como uma estante organizada.
 - Verificar se a Árvore Está Vazia: Informa se a biblioteca está sem livros.
 - Sair: Fecha o portal e encerra o programa.
- Aguardando o Comando do Usuário: O portal se coloca à disposição, aguardando
 o comando do usuário. O usuário digita sua escolha, pronto para interagir com a
 biblioteca.
- Analisando a Escolha: O portal analisa a escolha do usuário, como um decifrador de códigos.
 - Inserir Livro: Chama a função inserirLivro para adicionar o novo livro à árvore.
 - **Buscar Livro:** Chama a função buscarLivro para encontrar o livro desejado.
 - Remover Livro: Chama a função removerLivro para excluir o livro selecionado.
 - Listar Livros: Chama a função listarLivros para apresentar a lista completa de livros.
 - Verificar se a Árvore Está Vazia: Verifica se a árvore está sem livros e informa o resultado ao usuário.
 - Sair: Fecha o portal e encerra o programa, finalizando a interação.
- Loop Infinito: O portal se mantém aberto, pronto para receber novos comandos do usuário, até que a escolha seja "Sair".

• Fechando o Portal: Quando o usuário escolhe "Sair", o portal se fecha educadamente, encerrando o programa.

Exemplo:

Imagine o usuário digitando "Inserir Livro". O portal analisa a escolha, chama a função inserirLivro e solicita as informações do livro ao usuário. Após receber as informações, a função insere o livro na árvore e o portal retorna ao menu, aguardando o próximo comando.

9.2 Importância da Função main:

- Interação com o Usuário: Permite que o usuário interaja com a árvore binária de busca de forma amigável e intuitiva.
- Gerenciamento da Biblioteca: Oferece funcionalidades para gerenciar a coleção de livros, como adicionar, buscar, remover e listar livros.
- Controle do Programa: Permite ao usuário controlar o fluxo do programa, escolhendo as operações que deseja realizar e encerrando-o quando desejar.

Em resumo a função main é a **alma interativa** da biblioteca binária de busca, conectando o usuário à vasta coleção de livros e permitindo que ele explore, organize e gerencie a biblioteca de forma eficiente e prazerosa. Através do menu de opções e do laço while infinito, ela se torna um portal sempre aberto, pronto para atender às necessidades do usuário e garantir uma experiência de leitura enriquecedora.

10. Conclusão

O sistema ÁRVORES: Gerenciamento de Livros para Biblioteca representa um avanço significativo na gestão de acervos, oferecendo uma solução eficiente, organizada e acessível para bibliotecas de todos os portes. Sua implementação contribui para a otimização dos serviços bibliotecários e a promoção do acesso à informação para toda a comunidade acadêmica.