* let
$$C \subseteq \mathbb{R}^3$$
 be a closed bounded convex set.

* let $B = DC$ be its boundary.

* let $D = \begin{cases} p+q \mid p,q \leq B \end{cases}$

show that D is also convex.

Proof:

Let $x_1, x_2 \in D$ and $\lambda \in [0,1]$

we want to show that $x = \lambda x_1 + (1-\lambda)x_2$

is in D .

* step 1: we show that $\frac{1}{2}x$ is in C

we can write $x_1 = a_1 + b_1$

an $x_2 = a_2 + b_2$

where $a_1, b_1, a_2, b_2 \in B$

then $\frac{1}{2}x = \frac{1}{2}\lambda x_1 + \frac{1}{2}(1-\lambda)x_2$
 $= \frac{1}{2}(\lambda a_1 + b_1) + \frac{1}{2}(1-\lambda)(a_2 + b_2)$
 $= \frac{1}{2}[\lambda a_1 + (1-\lambda)a_2] + \frac{1}{2}[\lambda b_1 + (1-\lambda)b_2]$

\$\frac{1}{2}x \in C\$

by convexity.

Step 2: we show that the intersection of c with the plane orthogonal to x going through the point at 1 x is a non empty closed bounded convex set.

* 1 x is in the intersection so it is not empty.

* the plane is also closed and convex so

the intersection is closed and convex.

* the intersection is bounded became C is bounded.

we denote I to be this intersection.

I is either the point {\frac{1}{2}x\rbrace}, a segment

en a closed bounded convex son face.

the first two cases are easier because $\frac{1}{2} \times 1s$ in the boundary and $x = \frac{1}{2} \times 1 \times 1$ is in D.

We then worsider the third case.

step 3: we find two points in the boundary of I to construct a parallelogram. * If In is on the boundary then by the previous argument & is in D. * If Ix is in the interior then we are in the fallowing situation: tracing a line going through $\frac{1}{2}$ x we can look at the quantity $\beta - \alpha$ as a function of O. this function is continuous and $f(t+\pi) = -f(\theta)$ so by continuity there must exist a θ_0 such that $f(\theta_0) = 0$ We denote a and b the associated points. By construction a and b are in B and

(0, a, b, x) is a parallelogram and $\vec{0a} + \vec{0b} = \vec{x}$ therefore x + D, QED