Data Science Dojo

Overview

- What are Recommender Systems?
- How do they work?
 - Collaborative Recommendation
 - Content-Based Recommendation
- Example using Azure ML

What are Recommender Systems?

To solve information overload problem

 Automated systems to filter and recommend products based on users' interest and taste.

Example: Retail

Example: Entertainment

Example: Entertainment

Example: Social Media

Why recommendation systems?

For customer

- Narrow down the set of choices
- Discover new things
- Find things that are interesting
- Save time

Why recommendation systems?

For businesses

- Increase the number of items sold
- Sell more diverse items
- Increase the user satisfaction
- Better understand what the user wants

Recommender systems reduce information overload by estimating relevance

Collaborative Recommendation

Content-Based Recommendation

Collaborative Filtering

 Maintain a database of many users' ratings of a variety of items.

 For a given user, find other similar users whose ratings strongly correlate with the current user.

 Recommend items rated highly by these similar users, but not rated by the current user.

Collaborative Filtering (CF)

Collaborative Filtering

- Most popular recommendation algorithm
 - Used by large, commercial e-commerce sites
 - Well-understood, variety of algorithms
 - Applicable to many domain (books, movies, songs,...)

 Approach: borrow the "wisdom of the crowd" to recommend items

Collaborative Filtering

- Assumption:
 - Users give ratings to items
 - Users who has similar tastes in the past, have similar tastes in the future.
- User-based collaborative

Item-based collaborative

Movie Rating Example

Alice	5	3	4	4	(3)
Bob	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

Movie Rating Example

Goal: Given Alice is an "active" user, we want to predict the rating of movie *i* Alice hasn't seen before.

- Find set of users who liked the same items as Alice in the past and also had rated movie i
- Predict Alice rating on movie i
- Repeat for all items Alice has not seen and recommend the best rated.

User-Based collaborative filtering

How do we define similarity?

How many neighbor should we include?

How to generate prediction from neighbors' ratings?

User-Based collaborative filtering

Nearest neighbors

Pearson correlation

j,k : users

 $r_{i,p}$: rating of user j for item p

P: set of items, rated both by j and k

Possible similarity values between -1 and 1

$$sim(j,k) = \frac{\sum_{p \in P} (r_{j,p} - \bar{r}_j)(r_{k,p} - \bar{r}_k)}{\sqrt{\sum_{p \in P} (r_{j,p} - \bar{r}_j)^2} \sqrt{\sum_{p \in P} (r_{k,p} - \bar{r}_k)^2}}$$

j : Alicek: BobP: set of items, rated by Alice and Bob

Pearson Correlation

Alice	5	3	4	4	?	
Bob	3	1	2	3	3	4
Chris	4	3	4	3	5	•
Donna	3	3	1	5	4	4
Evi	1	5	5	2	1	4

Pearson Correlation

Making prediction

$$pred(j,i) = \overline{r_j} + \frac{\sum_{k \in N} sim(j,k) * (r_{k,i} - \overline{r_k})}{\sum_{k \in N} sim(j,k)}$$

j : Alice k: Bob i: movie Spirited Away

- Calculate, whether the neighbors' ratings for the unseen item i are higher or lower than their average
- Combine the rating differences use the similarity with j user as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Making recommendations

- Making predictions is typically not the ultimate goal
- Usual approach
 - Rank items based on their predicted ratings
- However
 - This might lead to the inclusion of (only) niche items
- Better approach
 - Optimize according to a given rank evaluation metric

Item-based collaborative filtering

- Basic idea:
 - Use the similarity between items (and not users) to make predictions
- Example:
 - Look for movies that are similar to movie 5
 - Take Alice's ratings for these items to predict the rating for movie 5

Movie Rating Example

	Godfather	DICTRIO WISIET TITANIC	JORD FRINGS	DUNRATED UNRATED	SPIRITED AWAY
Alice	5	3	4	4	?
Bob Chris	3	1	2	3	3
Chris	4	3	4	3	5
Donna	3	3	1	5	4
Evi	1	5	5	2	1

Other similarity measurement

cosine similarity

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| * |\vec{b}|}$$

Adjusted cosine similarity

$$sim\left(\overrightarrow{a},\overrightarrow{b}\right) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u})(r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Collaborative Filtering Issues

Pros:

 well-understood, works well in some domains, no knowledge engineering required, serendipity of results

Cons:

 requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results

Content-based recommendation

Goal: To learn user preferences

Recommend items that are "similar" to the user preferences

What do we need:

- Content of the items
- User profiles describing the preferences of the user.

Content-based recommendation

Content-based recommendation

Example of "content"?

- Information Retrieval (IR) based method
 - Goal is to find and rank relevant text documents (news articles, web pages)
 - Based on keywords
 - No expert recommendation knowledge involved

Content representation

Item content

Title	Genre	Author	Type	Price	Keywords
The Night of the Gun	Memoir	David Carr	Paperback	29.90	Press and jour- nalism, drug addiction, per- sonal memoirs, New York
The Lace Reader	Fiction, Mystery	Brunonia Barry	Hardcover	49.90	American contem- porary fiction, de- tective, historical
Into the Fire	Romance, Suspense	Suzanne Brock- mann	Hardcover	45.90	American fic- tion, Murder, Neo-nazism

User's preferred content

Title	Genre	Author	Type	Price	Keywords
	Fiction, Suspense	Brunonia Barry, Ken Follet,	Paperbac	ck 25.65	detective, murder, New York

Content representation

- Simple approach
 - Compute the similarity of an unseen item with the user profile based on the keyword overlap

•
$$sim(b_i, b_j) = \frac{2 * |keywords(b_i) \cap keywords(b_j)|}{|keywords(b_i)| + |keywords(b_j)|}$$

Issues with simple keyword count

 Simple keyword representation has its problems in particular when automatically extracted because

Not every word has similar importance

 Longer documents have a higher chance to have an overlap with the user profile

TF-IDF

- Standard measure: TF-IDF
 - TF: Measures, how often a term appears (density in a document)
 - Assuming that important terms appear more often
 - Normalization has to be done in order to take document length into account
 - IDF: Aims to reduce the weight of terms that appear in all documents

TF-IDF

Term frequency (TF)

- Let freq(t,d) number of occurrences of keyword t in document d
- Let max{freq(w,d)} denote the highest number of occurrences of another keyword of d

•
$$TF(t,d) = \frac{freq(t,d)}{\max\{freq(w,d): w \in d\}}$$

IDF

Inverse Document Frequency (IDF)

- N: number of all recommendable documents
- n(t): number of documents in which keyword t appears
- $IDF(t) = log \frac{N}{n(t)}$

TF-IDF

- Compute the overall importance of keywords
 - Given a keyword t and a document d

$$TF$$
- $IDF(t,d) = TF(t,d) * IDF(t)$

Example of TF

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	1.51	0	3	5	5	1
worser	1.37	0	1	1	1	0

TF-IDF weights

	Antony and Cleopa	Caesar			The Tempest		Hamlet	Othello	Macbeth		
Antony	157		73		0		0	0	0		
Brutus	4				tony		ulius	The	Hamlet	Othello	Macbeth
Caesar	232			and Cle	eopatra C		aesar	Tempest			
Calpurnia	0	Anto	Antony 5.2		5	3.	.18	0	0	0	0.35
Cleopatra	57	Brutus		1.21		6.	.1	0	1	0	0
mercy	1.51	Caesar		8.59		2.	.54	0	1.51	0.25	0
worser	1.37	Calpurnia		0	0		.54	0	0	0	0
		Cleo	patra	2.8	5	0		0	0	0	0
		mer	су	1.5	1	0		1.9	0.12	5.25	0.88
		wors	ser	1.3	7	0		0.11	4.15	0.25	1.95

Recommending items

- Simple method: nearest neighbors
 - Given a set of documents D already rated by the user (like/dislike, ratings)
 - Find the n nearest neighbors of a not-yet-seen item i in D
 - Take these ratings to predict a rating/vote for i

Recommending items

User's content

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95
Rating	4	3	2	5	1	3

Potential items to recommend

	The Hobbit
Bilbo	8.8
Gandalf	7.4
dwarf	4
Bombur	2.3
goblin	2.85
spider	1.51
Belladonna	0.3
Rating	?

Recommending items

- Query-based retrieval: Rocchio's method
- Probabilistic methods
- linear classification/regression algorithms
- etc

Content-based recommenders

Advantages

- No community required. Only have to analyze the items and user profile for recommendation.
- Transparency: CB method can tell you they recommend you the items based on features not other users.
- No cold start: new items can be suggested before being rated by a substantial number of users.

Content-based recommenders

Disadvantages

- Limited content analysis: required well annotated content for good recommendations.
- Over-specialization: no surprises
- New user: limited user information results in bad recommendation.

Evaluating Recommendation

- Among many techniques
 - Which one is the best in a given application domain?
 - What are the success factors of different techniques?
 - Comparative analysis based on an optimality criterion?

Evaluating Recommendation

- Research questions are:
 - Is a RS efficient with respect to a specific criteria like accuracy, user satisfaction, response time, serendipity, online conversion, ramp-up efforts,
 - Do customers like/buy recommended items?
 - Do customers buy items they otherwise would have not?

unleash the data scientist in you

Are they satisfied with a recommendation after purchase?

Evaluating Recommendation

- Metrics measure error rate
 - Mean Absolute Error (*MAE*) computes the deviation between predicted ratings and actual ratings $MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - r_i|$
 - Root Mean Square Error (RMSE) is similar to MAE, but places more emphasis on larger deviation $RMSE = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(p_i - r_i)^2}$

Metrics

- Discounted cumulative gain (DCG)
 - Logarithmic reduction factor

$$DCG_{pos} = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{\log_2 i}$$

Where:

- pos denotes the position up to which relevance is accumulated
- rel_i returns the relevance of recommendation at position i

Metrics

- Discounted cumulative gain (DCG)
 - Logarithmic reduction factor

$$DCG_{pos} = rel_1 + \sum_{i=2}^{pos} \frac{rel_i}{\log_2 i}$$

Where:

- pos denotes the position up to which relevance is accumulated
- rel_i returns the relevance of recommendation at position i

Metrics

- Idealized discounted cumulative gain (IDCG)
 - Assumption that items are ordered by decreasing relevance

$$IDCG_{pos} = rel_1 + \sum_{i=2}^{|h|-1} \frac{rel_i}{\log_2 i}$$

Normalized discounted cumulative gain (nDCG)

$$nDCG_{pos} \frac{DCG_{pos}}{IDCG_{pos}}$$

Normalized to the interval [0..1]

QUESTIONS

