

Polynômes

Exercice 1 (★):

Pour les trois cas listés, calculer la division euclidienne de ${\cal P}$ par ${\cal Q}.$

1.
$$P = X^4 + 5X^3 + 12X^2 + 19X - 7$$
 et $Q = X^2 + 3X - 1$.

2.
$$P = X^4 - 4X^3 - 9X^2 + 27X + 38$$
 et $Q = X^2 - X - 7$.

3.
$$P = X^5 - X^2 + 2$$
 et $Q = X^2 + 1$.

Exercice 2 (★ ★):

Soit $P \in \mathbb{R}[X]$, $a, b \in \mathbb{R}$, $a \neq b$. Sachant que le reste de la division euclidienne de P par (X-a) vaut 1 et que celui de P par (X-b) vaut -1.

- 1. Évaluer l'image P(a) et P(b)?
- 2. On note $R \in \mathbb{R}[X]$ le reste de la division euclidienne de P par (X-a)(X-b). Quel sera le degré de R?
- 3. En déduire l'expression de R.

Exercice 3 (★ ★):

On se propose de déterminer l'ensemble

$$E = \{ P \in \mathbb{R}[X] \ P(X^2) = (X^3 + 1)P(X) \}$$

- 1. Démontrer que le polynôme nul ainsi que le polynôme $X^3 1$ sont dans E.
- 2. Soit $P \in E$, non nul.
 - (a) Démontrer que P(1)=0 puis que $P^{'}(0)=P^{''}(0)=0$.
 - (b) En effectuant la division euclidienne de P par X^3-1 , démontrer qu'il existe $\lambda \in \mathbb{R}$ tel que

$$P(X) = \lambda(X^3 - 1)$$

3. En déduire l'ensemble E.

Exercice 4 (♠):

Pour chaque cas, déterminer le **PGCD** entre P et Q.

1.
$$P = X^4 - 3X^3 + X^2 + 4$$
 et $Q = X^3 - 3X^2 + 3X - 2$.

2.
$$P = X^5 - X^4 + 2X^3 - 2X^2 + 2X - 1$$
 et $Q = X^5 - X^4 + 2X^2 - 2X + 1$.

3.
$$P = X^n - 1$$
 et $Q = (X - 1)^n$.

Exercice 5 (*):

Trouver deux polynômes U et V de $\mathbb{R}[X]$ tel que

$$AU + BV = 1$$

où
$$A = X^7 - X - 1$$
 et $B = X^5 - 1$.

Exercice 6 (*):

Soient P et Q des polynômes de $\mathbb{C}[X]$ non constants. Montrer que l'équivalence entre:

- 1. P et Q ont un facteur commun.
- 2. il existe $A, B \in \mathbb{C}[X], A \neq 0, B \neq 0$, tel que

$$AP = BQ$$

$$\operatorname{et} \operatorname{deg}(A) < \operatorname{deg}(Q), \quad \operatorname{deg}(B) < \operatorname{deg}(P)$$

Exercice 7 (★):

Quel est pour $n \ge 1$ l'ordre de multiplicité de 2 du polynôme:

$$P_n(X) = nX^{n+2} - (4n+1)X^{n+1} + 4(n+1)X^n - 4X^{n-1}$$

Exercice 8 (★ ★):

Soit $P(X) = a_n X^n + \ldots + a_0$ un polynôme dans $\mathbb{Z}[X]$. On suppose aussi que P admet une racine rationnelle $r = \frac{p}{q}$ tel que $p \wedge q = 1$.

- 1. Développer que la forme P(r) = 0.
- 2. Démontrer que $p \mid a_0$.
- 3. Prouver que $q \mid a_n$

4. En déduire que $P=X^5-X^2+1$ n'admet pas de racines dans $\mathbb Q.$

Exercice 9 (*):

- 1. Le polynôme $P(X) = X^4 + X^2 + 1$ est il irréductible dans $\mathbb{R}[X]$? dans $\mathbb{C}[X]$?
- 2. La relation $PRQ \iff P$ divise Q est-elle une relation d'ordre?

Exercice 10 (♠):

Pour chaque polynôme, donner la décomposition en facteurs irréductibles dans $\mathbb{R}[X]$

- 1. $P_1(X) = X^4 + 1$
- 2. $P_2(X) = X^8 1$
- 3. $P_3(X) = (X^2 X + 1)^2 + 1$

Exercice 11 (★ ★):

Soit P le polynôme définit par:

$$P(X) = 2X^4 + X^2 - 3$$

1. Décomposer P en facteurs irréductibles dans $\mathbb{R}[X]$.

Exercice 12 (* * *):

Soit le polynôme $P(X) = X^4 - 6X^3 + 9X^2 + 9$.

- 1. Décomposer $X^4-6X^3+9X^2$ en produit de facteurs irréductibles dans $\mathbb{R}[X]$.
- 2. En déduire une décomposition de P dans $\mathbb{R}[X]$.
- 3. Même question pour $\mathbb{C}[X]$.

Exercice 13 (★ ★ ★):

On considère les deux polynômes suivants:

- $P(X) = X^3 9X^2 + 26X 24$
- $Q(X) = X^3 7X^2 + 7X + 15$.
- 1. Sachant que P et Q admettent une racine **commune** a, Quelle est la relation entre (X-a) et $\operatorname{pgcd}(P,Q)$?
- 2. En appliquant l'algorithme d'Euclide, montrer que le **pgcd** de P et Q est X-3?
- 3. Calculer le polynôme P_1 tel que

$$P = (X - 3)P_1$$

4. Même question pour Q_1 tel que:

$$Q = (X - 3)Q_1$$

5. En déduire une décomposition en facteurs irréductibles dans $\mathbb{R}[X]$ de P et Q.