Mengen

- Teilmenge (A \subseteq B) $x \in A \Rightarrow x \in B$
- \bullet Beschränkung

Es exisitieren C_1 , C_2 sodass $\forall x \in M$ gilt: $C_1 \leq x \leq C_2$

• Obere/Untere Schranke

Ist M nach oben beschränkt mit C_2 , dann nennt alle $C \leq C_2$ eine obere Schranke (dito untere Schranke)

- Supremum (sup A) = kleinste obere Schranke $a = \sup A$, falls $\forall x \in A : x \le a$
- Infimum (inf A) = grösste untere Schranke a = inf A, falls $\forall x \in A : x \geq a$
- Maximum / Minimum

muss immer zur Menge gehören $infM \in M \Rightarrow minM = infM$ $supM \in M \Rightarrow maxM = supM$

 \Rightarrow Stetige Funktion auf einem kompakten Bereich nimmt stets ihr Min. und Max. an (Satz von Weierstrass)

Identitäten / Tricks

$$\begin{array}{ll} A \cup B = \{x | x \in A \land x \in B\} & A \cap B = \{x | x \in A \lor x \in B\} \\ A^c = \{x | x \in A \land x \not\in B\} & A \backslash B = \{x | x \in A \lor x \in B\} \\ sup(-A) = -inf(A) & inf(-A) = -sup(A) \\ max(-A) = -min(A) & min(-A) = -max(A) \\ sup(A \cup B) = max\{supA, supB\} \\ inf(A \cup B) = min\{infA, infB\} \\ \text{Ist M abgeschlossen und beschränkt} \rightarrow \exists \text{ Min. und Max.} \end{array}$$

Funktionen

Sei f : X \rightarrow Y eine Abbildung

- surjektiv, falls jedes $y \in Y$ mind. ein Urbild hat. $\forall y \in Y \ \exists x \in X : y = f(x)$
- **injektiv**, falls jedes $y \in Y$ höchstens ein Urbild hat. $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \implies x_1 = x_2$
- bijektiv, falls jedes $y \in Y$ genau ein Urbild hat. $\forall y \in Y \; \exists ! x \in X : y = f(x)$
- monoton steigend/fallend, falls aus $x_1 < x_2$ immer $f(x_1) \le f(x_2)$ folgt (respektiv $> \to \ge$)
- streng mononton steigend/fallend, falls aus $x_1 < x_2$ immer $f(x_1) < f(x_2)$ folgt (respektiv $> \rightarrow >$)

Komplexe Zahlen

Normalform z = x+iyPolarform $z = r(\cos \phi + i \sin \phi) = r \cdot e^{i\phi}$ $x = r \cos \phi \quad y = r \sin \phi$ $r = |z| = \sqrt{x^2 + y^2}$

 $\arg \phi = \arg(\mathbf{z}) \qquad \left\{ \begin{array}{ll} +\arccos \frac{x}{|\mathbf{z}|} & \text{falls } y \geq 0 \\ -\arccos \frac{x}{|\mathbf{z}|} & \text{falls } y < 0 \\ \text{undef} & \text{falls } x = y = 0 \end{array} \right.$

(Tipps) $i = e^{i\frac{\pi}{2}} - i = e^{-i\frac{\pi}{2}} = e^{i\frac{3\pi}{2}}$ $1 = -e^{i\pi} = e^{0} - 1 = e^{i\pi} = i^{2}$ $z^{-1} = \frac{\overline{z}}{|z|^{2}}$

Konjugierte Form $\overline{z} = x - iy = r \cdot e^{-i\phi}$ Realteil $Re(z) = x = \frac{z + \overline{z}}{2}$ Imaginärteil $Im(z) = y = \frac{z - \overline{z}}{2i}$

Rechnen mit komplexen Zahlen

Addi. $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$ Multipl. $z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$ $z_1 \cdot z_2 = (r_1 r_2) \cdot e^{i(\phi_1 + \phi_2)}$

Potenz $z^n = (r \cdot e^{i\phi})^n = r^n \cdot e^{in\phi}$ Betrag $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} = r$

Bruch \rightarrow mit komplex konjugiertem Nenner erweitern $\frac{3+4i}{4-3i} = \frac{(3+4i)*(4+3i)}{(4-3i)*(4+3i)} = \frac{12+9i+16i-12}{16+12i-12i+9} = \frac{25i}{25} = i$

Wurzel $\sqrt{3i-1} \Rightarrow \text{Substitution } \sqrt{u} \text{ mit } u = \sqrt{3}i-1$ (1) u in Polarkord. $|u| = \sqrt{\sqrt{3}^2 + 1^2} = 2$ $\phi = \arccos(\frac{x}{|z|}) = \arccos(\frac{-1}{|2|}) = \frac{2\pi}{3}$ $\Rightarrow u = 2e^{i\frac{2\pi}{3}}$

> (2) einsetzen in $\sqrt{u} \rightarrow \sqrt{2e^{i\frac{2\pi}{3}}} = \sqrt{2}e^{\frac{\pi}{3}}$ (3) $x = r\cos(\phi)$, $y = r\sin(\phi) \Rightarrow \sqrt{2}(\frac{1}{2} + i\frac{\sqrt{3}}{2})$

Einheitswurzeln

Folgen

Eine reele Folge heisst...

konvergent: wenn $\lim_{n\to\infty} a_n$ existiert

divergent: wenn $\lim_{n \to \infty} a_n$ nicht existiert

Nullfolge: wenn $\lim_{n \to \infty} a_n = 0$ ist

alternierend: wenn die Vorzeichen der Folgenglieder

abwechseln

absolut konvergent: wenn $\lim_{n\to\infty} |a_n|$ existiert

unbeschränkt: falls a_n nicht beschränkt ist

→ Solche Fkt. sind stets divergent

Häufungspunkte

Ein Häufungspunkt ist ein Grenzwert (Limes) einer Teilfolge.

- Limes superior = grösster Häufungspunkt
- Limes inferior = kleinster Häufungspunkt
- (i) $\lim_{n\to\infty} a_n$, so ist der Limes a einziger Häufungspunkt der Folge a_n und jede Teilfolge konvergiert auch gegen a.
- (ii) a_n zwei verschiedene Häufungspunkte \rightarrow Folge ist divergent

Satz von Bolzano-Weierstrass

Jede beschränkte Folge a_n - d.h eine für die gilt $\exists M \ \forall n: |a_n| < M$ - besitzt eine konvergente Teilfolge bzw. einen Häufungspunkt. (Satz von Bolzano-Weierstrass)

Monotone Konvergenz

Sei a_n eine nach oben (unten) beschränkte Folge und monoton wachsend (fallend). Dann konvergiert a_n mit

$$\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n \quad \text{bzw.} \quad \lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

Cauchy-Folge

Folge bei welcher der Abstand zwischen den Folgeglieder im Verlauf der Folge beliebig klein wird.

$$\forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbb{N} \ \forall n, l \ge n_0 : |a_n - a_l| < \epsilon$$

Jede Cauchy-Folge \longleftrightarrow konvergente Folge (im \mathbb{R}^n)

Grenzwerte Regeln

Sei $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$, dann gilt:

- (i) $\lim_{n \to \infty} a_n + b_n = a + b$
- (ii) $\lim_{n\to\infty} a_n * b_n = a * b$
- (iii) $\lim_{n \to \infty} k * a_n = k * a$
- (iv) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$, falls $b\neq 0$
- (v) Falls $a_n \le b_n \implies a \le b$

Verfahren / Tricks (zur Grenzwertbestimmung)

Dominanz

$$\begin{array}{ll} x \to +\infty & \dots < \log(\log(x)) < \log(x) < x^{\alpha} < \alpha^{x} < x! < x^{x} \\ x \to 0 & \dots < \log(\log(x)) < \log(x) < (\frac{1}{x})^{\alpha} \end{array}$$

Brüche

 \rightarrow durch stärksten-wachsenden Term des Nenners dividieren

$$\lim_{n \to \infty} \frac{n^2 + \ln(n)}{\sqrt{n^4 - n^3}} = \lim_{n \to \infty} \frac{n^2 + \ln(n)}{n^2 \sqrt{1 - \frac{1}{n}}} = \lim_{n \to \infty} \frac{1 + \frac{\ln(n)}{n^2}}{\sqrt{1 - \frac{1}{n}}} \to 1$$

Wurzeln

$$\lim_{x \to \infty} \sqrt{\alpha} + \beta = \lim_{x \to \infty} (\sqrt{\alpha} + \beta) \frac{\sqrt{\alpha} - \beta}{\sqrt{\alpha} - \beta}$$

Bernoulli-de-l'hopital
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $0 * \infty$, $\infty - \infty$

Für
$$\frac{0}{0}$$
 / $\frac{\infty}{\infty}$: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$

Für
$$0 * \infty$$
: $\lim_{x \to a} f(x) * g(x) = \lim_{x \to a} \frac{f(x)}{\frac{1}{g(x)}}$
 $\to \text{Typ } \frac{0}{0} \text{ oder } \frac{\infty}{\infty} \longrightarrow \text{l'Hopital anwenden}$

Für
$$\infty - \infty$$
:
$$\lim_{x \to a} \frac{f(x)}{g(x)} - \frac{h(x)}{j(x)} = \lim_{x \to a} \frac{f(x)i(x) - h(x)g(x)}{g(x)i(x)}$$

$e^{log(x)}$ Trick

$$0^0$$
, ∞^0 , 1^∞

- (i) Funktion umschreiben: $f(x)^{g(x)} = e^{g(x)log(f(x))}$
- (ii) L'Hopital anwenden im Exponenten

(da e^x : $\mathbb{R} \longrightarrow \mathbb{R}_+$ stetig ist, dürfen wir den Limes in den Exponenten ziehen)

 $g(x) \le f(x) \le h(x)$ mit $\lim_{x \to a} g(x) = \lim_{x \to a} h(x)$ Sandwich

- (i) Term in f(x) abschätzen
- (ii) Grenzwerte von g(x) und h(x) bestimmen

Falls nun $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$ gilt, $\longrightarrow \lim_{x \to a} f(x) = L$

$$\underline{\operatorname{Bsp}} \colon \lim_{x \to 0} x^2 sin(\frac{1}{x}) \qquad \to \text{(i) } -1 \le sin(\frac{1}{x}) \le 1$$

$$g(x) = -x^2, h(x) = x^2 \rightarrow (ii) \lim_{x \to 0} g(x) = \lim_{x \to 0} h(x) = 0$$

Folg. Sandwich-Theorem: $\lim_{x\to 0} f(x) = 0$

Taylor

(bei Schwierigen)

Oft lassen sich schwierige Grenzwerte schneller mithilfe einer oder mehrer Taylorentwicklungen bestimmen. \rightarrow Dazu approximiert man einfach die Terme mithilfe Taylor! Es werden allerdings nur so viele Terme betrachtet bis sie sich gegenseitig nicht mehr aufheben.

Nützliche Taylorentwicklungen: (an x=0)

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$

$$sin(x) = x - \frac{x^{3}}{6} + \frac{x^{5}}{5!} + \dots$$

$$cos(x) = 1 + \frac{x^{3}}{6} + \frac{x^{5}}{5!} + \dots$$

$$log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots$$

Fundamental Limes

$$\lim_{x \to a} \frac{\sin \odot}{\odot} = \lim_{x \to a} \frac{\tan \odot}{\odot} = 1 \text{ mit } \odot \xrightarrow{x \to a} 0$$

$$\lim_{x \to a} (1 + \frac{1}{\odot})^{\odot} = e \text{ mit } \odot \xrightarrow{x \to a} \infty$$

$$\lim_{x \to a} (1 + \odot)^{\frac{1}{\odot}} = e \text{ mit } \odot \xrightarrow{x \to a} 0$$

Substitution

!! Eventuell Limes anpassen bei Substitution (siehe Beispiel)

$$\lim_{x \to \infty} x^2 \left(1 - \cos \frac{1}{x} \right) \longrightarrow \textbf{Substitution mit: } y = \frac{1}{x}$$

$$\lim_{y \to 0} \frac{1 - \cos y}{y^2} \stackrel{*}{=} \lim_{y \to 0} \frac{\sin y}{2y} \stackrel{*}{=} \lim_{y \to 0} \frac{\cos y}{2} = \frac{1}{2}$$

(*) Anwendung von L'Hopital

Wichtige Grenzwerte

$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \qquad \qquad \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a \qquad \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \qquad \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{\tan(x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0 \qquad \qquad \lim_{n \to \infty} \frac{e^n - 1}{n} = 1$$

$$\lim_{n \to \infty} \sqrt[n]{n!} = \infty \qquad \qquad \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\lim_{n \to \infty} \ln(n) = \infty \text{ (also divergent)} \qquad \lim_{x \to 0} \frac{\log_a(1 + x)}{x} = \frac{1}{\ln a}$$

Weitere Beispiele:

- $\lim_{x \to 1} \frac{x^p 1}{x^q 1}$ (mit $p, q \in \mathbb{Z}_+$) $\stackrel{\text{BdH}}{=} \lim_{x \to 1} \frac{px^{p-1}}{qx^{q-1}} = \frac{p}{q}$
- $\lim_{x \to 0} \frac{e^x e^{-x}}{\sin(x)}$ (Fall $\frac{0}{0}$) $\stackrel{\text{BdH}}{=} \lim_{x \to 0} \frac{e^x + e^{-x}}{\cos(x)} = 2$
- $\lim_{x \to 0} \frac{\tan^3 x}{x(1 \cos(x))} = \lim_{x \to 0} \frac{\tan^3 x}{x^3} * \frac{x^2}{1 \cos(x)} = 2$ Verwendung von $\lim_{x\to 0} \frac{1-\cos(x)}{x^2} = \frac{1}{2}$

Reihen

- Partialsumme $S_N c = a_0 + a_1 + ... + a_N = \sum_{n=0}^N a_n$
- Reihe $\sum_{n=1}^{\infty} a_n$ ist **konvergent** mit Grenzwert s, falls die Folge der Partialsummen (S_m) , $S_m := \sum_{n=1}^m a_n$ gegen s konvergiert.
- Absolut konvergent, falls sogar die Reihe der Absolutbeträge $\sum_{n=1}^{\infty} |a_n|$ konvergiert.

Absolute Konvergenz ⇒ Konvergenz (aber nicht retour)

Notwendige Kriterien für Konvergenz

- (i) Konvergiert $\sum_{n=1}^{\infty} a_n$, so ist $\lim_{n \to \infty} a_n = 0$
- (ii) Falls $\lim_{n\to\infty} a_n \neq 0$ Reihe bestimmt nicht konvergent!

Konvergenzkriterien

Quotientenkriterium (Faktoren wie $n!, a^n$ in a_n)

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $< 1 \Rightarrow$ konvergent
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Wurzelkriterium $(b_n = (a_n)^n)$

- 1. $\sum_{n} a_n \text{ mit } a_n \neq 0 \text{ gegeben}$
- 2. Grenzwert $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ berechnen
 - falls Grenzwert $> 1 \Rightarrow$ divergent
 - falls Grenzwert $\langle 1 \Rightarrow \mathbf{konvergent} \rangle$
 - falls Grenzwert = $1 \Rightarrow$ keine Aussage

Majoranten-, Minorantenkriterium (Verw. wichtiger Reihen)

Es seien a_n , $b_n > 0$ mit $a_n \ge b_n \ \forall n$ ab einem gewissen n_0 . Dann gilt:

$$\sum_{n} a_n \text{ konvergent } \Rightarrow \sum_{n} b_n \text{ konvergent } \text{ (Majorantenkrit.)}$$

$$\sum_{n} b_n \text{ divergent} \Rightarrow \sum_{n} a_n \text{ divergent}$$
 (Minorantenkrit.)

Cauchy-Kriterium

$$\left|\sum_{k=l}^{n} a_k\right| \to 0 \qquad (n \ge l, l \to \infty)$$

Leibnizkriterium

- 1. $\sum_{n} (-1)^n a_n$ gegeben
- 2. konvergent, falls:
 - (a) $a_n \geq 0$
 - (b) $\lim_{n\to\infty} a_n = 0$
 - (c) a_n monoton fallend

Umformen der Reihe (Wurzeltrick, PBZ, ...)

Oft kann die Reihe mithilfe der Partialbrüche oder des Wurzeltricks auf eine einfachere Form gebracht werden. Falls die Partialsumme S_m bestimmbar ist, kann man auch den Limes dieser berechnen, da gemäss Def. gilt:

$$\sum_{n=0}^{\infty} a_n \stackrel{\text{Def.}}{=} \lim_{n \to \infty} \sum_{n=0}^{N} a_n = \lim_{n \to \infty} S_n$$

Wichtige Reihen

<u>harmonische Reihe</u> (divergent)

$$\sum_{k=1}^{\infty} \frac{1}{k}$$

<u>alternierende harmonische Reihe</u> (konvergent)

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$$

geometrische Reihe

$$S_n = \sum_{k=0}^n q^k$$

konvergent für $|q|<1:\lim_{n\to\infty}S_n=\lim_{n\to\infty}\frac{1-q^{n+1}}{1-q}=\frac{1}{1-q}$

<u>Potenzreihe</u> (in z mit Zentrum c und Koeffizientenfolge a_n)

$$f(z) = \sum_{n=0}^{\infty} a_n (z - c)^n$$

konvergiert innerhalb des Konvergenzradius ρ

$$|z - c| < \rho := \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_k|}} = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

und divergiert ausserhalb, d.h $|z-c| > \rho$.

Die Ableitung f'(x) hat denselben Konvergenzradius wie f(x) und es gilt $f'(x) = \sum_{n=0}^{\infty} na_n (z-c)^{n-1}$

Weiter dürfen Potenzreihen im Innern ihres Konvergenzradius gliedweise integriert werden.

\rightarrow Potenzreihen-Darstellung (Aufgaben)

- Verwendung des Hauptsatzes der Diff./Integral Rechnung (Bsp: $\int_0^x f(x)dx \longrightarrow F(x) F(0)$ um F'(x) zu bestimmen)
- Verwendung der speziellen Taylorreihen + Integrieren
- Umformen.

Exponentialreihe

$$exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 konvergent für $|x| < e$

$$exp(1) = \frac{1}{k!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

Regeln:

- $exp(r) = e^r$
- exp(x + y) = exp(x) + exp(y)
- exp(ix) = cos(x) + isin(x)

Zeta-Funktion (konvergent für s > 1)

$$\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s} \qquad (s > 0)$$

 \to Verwendung für Minoranten/Majorantenkriterium !! \Rightarrow Auch möglich mit $c*\zeta(s)$ wobei c unabängig von k

Spezielle Taylorreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$e^{-x^{2}} = \sum_{n=0}^{\infty} \frac{(-x^{2})^{n}}{n!}$$

$$sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}x^{2n+1}}{(2n+1)!}$$

$$cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!}x^{2n}$$

$$ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{n}}{n}$$

Stetigkeit

- f(x) ist an der Stelle x_0 **stetig**, falls $\lim_{x \to x_0} f(x) = f(x_0)$ \to d.h. Grenzwert $\lim_{x \to x_0} f(x)$ exisitiert und ist gleich dem Funktionswert an der Stelle x_0 .
- $\lim_{x^+ \to x_0} f(x) = \lim_{x^- \to x_0} f(x) = f(x_0)$ (linker Grenzwert = rechter Grenzwert)
- f ist auf Ω stetig, falls f in jedem Punkt $a \in \Omega$ stetig ist.
- Ist f differenzierbar auf dem kompletten Def.-Bereich, dann ist f auch stetig (**Differenzierbarkeit** \rightarrow **Stetigkeit**)

Komposition / Addition stetiger Funktionen

Seien $f, g: \Omega \subset \mathbb{R}^d \to \mathbb{R}^n$, $h: \mathbb{R}^n \to \mathbb{R}^l$ stetig und $\alpha \in \mathbb{R}$, dann sind f+g, αf und $h \circ f: \Omega \subset \mathbb{R}^d \to \mathbb{R}^l$ stetig.

Weierstrass-Kriterium

Für alle $\epsilon > 0$ gibt es ein $\delta(\epsilon, a) > 0$, sodass für alle $|x - a| < \delta$ gilt:

$$|f(x) - f(a)| < \epsilon$$

Lipschitz-Stetigkeit

Es existiert eine Konstante $L \in \mathbb{R}$, sodass:

$$|f(x) - f(y)| \le L|f(x) - f(y)| \quad \forall x, y \in \Omega$$

- Ist f' auf Ω beschränkt $\Rightarrow f$ Lipschitz-stetig.
- \bullet Lipschitz-Stetigkeit \Rightarrow gleichmässige Stetigkeit.

Gleichmässige Stetigkeit

Für alle $\epsilon > 0$ gibt es ein $\delta(\epsilon) > 0$, sodass für alle $|x-y| < \delta$ gilt:

$$|f(x) - f(y)| < \epsilon$$

• Ist f stetig und kompakt \Rightarrow f ist gleichmässig stetig.

Stetig ergänzbar

Falls eine Funktion eine Unstetigkeitsstelle x_0 enthält, kann die Funktion stetig ergänzt werden, falls linker Grenzwert = rechter Grenzwert.

 \Rightarrow Fkt. ist dann mit $\lim_{x\to x_0} f(x)$ an der Stelle x_0 stetig ergänzbar (Beachtung der Notation).

Zwischenwertsatz

Seien $-\infty < a < b < \infty, f: [a,b] \to \mathbb{R}$ stetig mit $f(a) \le f(b)$. Dann gibt es zu jedem $y \in [f(a),f(b)]$ ein $x \in [a,b]$ mit f(x)=y.

Streng monoton wachsende Funktionen

Sei $f:[a,b]\to\mathbb{R}$ streng monoton wachsend und stetig mit c=f(a) und d=f(b). Dann ist die Funktion $f:[a,b]\to[c,d]$ bijektiv und die Umkehrabbildung stetig.

Punktweise Konvergenz

 $f_n(x)$ konvergiert punktweise falls:

$$\forall x \in \Omega \quad \lim_{n \to \infty} f_n(x) = f(x)$$

Gleichmässige Konvergenz

Grundsatz: Falls eine Folge stetiger Funktionen f_n gleichmässig gegen f konvergiert, ist f stetig.

 $f_n(x)$ konvergiert gleichmässig falls:

$$\lim_{n \to \infty} \sup |f_n(x) - f(x)| = 0$$

 $Bemerkung\colon$ Gleichmässige Konvergenz impliziert punktweise Konvergenz.

Rezpet für gleichmässige Konvergenz

(i) Punktweiser Limes berechnen

$$\lim_{n \to \infty} f_n(x) = f(x) = Grenzfunktion$$

(ii) Supremum bestimmen (Ableitung von $f_n(x)$ oder Abschätzung benutzen)

$$\sup |f_n(x) - f(x)|$$

(iii) Limes $n \to \infty$ bestimmen (vgl. Kriterium glm. Konvergenz)

$$\lim_{n\to\infty}\sup|f_n(x)-f(x)|$$

Limes = $0 \rightarrow Glm$. konvergent mit Grenzfunktion f(x)

- (iv) Indirekte Methode
 - f(x) unstetig auf $\Omega \Rightarrow$ keine glm. Konvergenz
 - f(x) stetig, $f_n(x) \leq f_{n+1}(x) \forall x \in \Omega$ und Ω kompakt \Rightarrow Glm. Konvergenz

Beispiele

Stetigkeit

Gleichmässige Konvergenz

(a) $f_n(x) = (1 + \frac{x}{n})^2$ konvergiert auf \mathbb{R} für $n \to \infty$ punktweise aber nicht gleichmässig. Sei $x_0 \in \mathbb{R}$ beliebig. Dann gilt in der Tat

$$\lim_{n \to \infty} f_n(x_0) = \left(1 + \lim_{n \to \infty} \frac{x_0}{n}\right)^2 = 1^2 = 1.$$

Folglich konvergiert f_n punktweise gegen die konstante Funktion f(x)=1. Allerdings gilt für alle $n\in\mathbb{N}$

$$\sup_{x \in \mathbb{R}} |f_n(x) - 1| \ge |f_n(-n) - 1| = |-1| = 1 \to 0.$$

Somit ist die Konvergenz nicht gleichmässig.

Differential rechnung in \mathbb{R}

Differenzierbarkeit

f heisst differenzierbar an der Stelle x_0 falls der Grenzwert

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) = \frac{df}{dx}(x_0)$$

existiert. In diesem Fall heisst $f'(x_0)$ die Ableitung oder das Differential von f an der Stelle x_0 .

Ist eine Funktion f an der Stelle x_0 diffbar, so ist f in diesem Punkt auch stetig. Die Umkehrung gilt aber im Allgemeinen nicht.

Klasse C^m

- $f: \Omega \to \mathbb{R}^n$ heisst von der Klasse $\mathbf{C}^1(\Omega)$ wenn die Funktion $x \mapsto f'(x)$ stetig ist.
- Die Funktion f heisst weiter von der Klasse $\mathbf{C}^{\mathbf{m}}(\Omega)$, falls f m-mal differenzierbar ist und die Ableitungsfunktionen $f = f^{(0)}, f' = f^{(1)}, \ldots, f^{(m)}$ stetig sind.

Ableitungsregeln

Seien $f,g:\Omega\to\mathbb{R}$ an der Stelle $x_o\in\Omega$ diffbar. Dann sind $f+g,\ fg$ und, falls $g(x_0)\neq 0$, auch f/g an der Stelle x_o diffbar, und es gilt

- $(f+q)'(x_0) = f'(x_0) + q'(x_0)$
- $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- $(f/g)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g^2(x_0)}$

Sei $f: \Omega \to \mathbb{R}$ an der Stelle $x_0 \in \Omega$ diffbar, und sei $g: \mathbb{R} \to \mathbb{R}$ diffbar an der Stelle $y_0 = f(x_0)$. Dann ist die Funktion $g \circ f: \Omega \to \mathbb{R}$ an der Stelle x_0 diffbar mit

•
$$(q \circ f)'(x_0) = q(f(x_0)) = q'(f(x_0)) f'(x_0)$$

Tangente

Sei $f:\Omega\to\mathbb{R}$ an der Stelle $x_0\in\Omega$ diffbar. Dann ist die Tangente im Punkt x_0

$$t(x; x_0) = f(x_0) + f'(x_0)(x - x_0)$$

Mittelwertsatz

Seien $-\infty < a < b < \infty$ und sei $f : [a, b] \to \mathbb{R}$ stetig sowie in [a, b] diffbar. Dann gibt es ein $x_0 \in]a, b[$ mit

$$f'(x_0) = \frac{f(b) - f(a)}{b - a}$$

Daraus folgt direkt: Falls $f' \ge 0$ $(f' > 0) \forall x \in]a, b[$, so ist f (streng) monoton wachsend.

Umkehrsatz

Seien $-\infty \le a < b \le \infty$ und sei $f:]a, b[\to \mathbb{R}$ diffbar mit f'(x) > 0 für alle $x \in]a, b[$. Setze

$$-\infty \le c := \inf_{a < x < b} f(x) < \sup_{a < x < b} f(x) =: d \le \infty$$

Dann ist $f:]a,b[\to]c,d[$ bijektiv und $f^{-1}:]c,d[\to\mathbb{R}$ ist diffbar mit

$$(f^{-1})'|_{y=f(x_0)} = \frac{1}{f'(x_0)}$$

oder äquivalent

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Nullstellen

- Sei $f: I \to \mathbb{R}$ stetig und besitzt zwei Nullstellen $x_1 < x_2$. Dann gibt es mindestens eine lokale Extremalstelle $x_0 \in]x_1, x_2[$.
- Sei $f: I \to \mathbb{R}$ diffbar und f' habe genau n Nullstellen. Dann hat die Funktion f höchstens n+1 Nullstellen.

Kurvendiskussion

	notwendig	hinreichend
Extremalstelle	f'(x) = 0	$f'(x) = 0 \land f''(x) \neq 0$
Minimalstelle	f'(x) = 0	$f'(x) = 0 \land f''(x) > 0$
Maximalstelle	f'(x) = 0	$f'(x) = 0 \wedge f''(x) < 0$
Wendepunkt	f''(x) = 0	$f''(x) = 0 \land f'''(x) \neq 0$
Sattelpunkt	f'(x) = 0	$f'(x) = 0 \land f''(x) = 0$
	$\wedge f''(x) = 0$	$\wedge f'''(x) \neq 0$

- $f'(x) \ge 0 \to f$ monoton steigend
- $f'(x) > 0 \to f$ streng monoton steigend
- $f'(x) \leq 0 \rightarrow f$ monoton fallend
- $f'(x) < 0 \rightarrow f$ streng monoton fallend

Taylor-Polynom

Das Taylorpolynom m-ter Ordnung der Funktion $f:]a, b[\to \mathbb{R}$ um den Punkt a

$$T_m f(x; a) = \sum_{n=0}^m \frac{f^{(n)}(a)}{n!} (x - a)^n$$
$$= f(a) + f'(a)(x - a) + \dots + f^{(m)}(a) \frac{(x - a)^m}{m!}$$

hat die Approximationseigenschaft

$$r_m f(x; a) = f(x) - T_m f(x; a)$$

$$= f^{(m+1)}(\xi) \frac{(x-a)^{m+1}}{(m+1)!} \text{ für ein } \xi \in]a, x[$$

$$\leq \sup_{a < \xi < x} |f^{(m+1)}(\xi)| \frac{(x-a)^{m+1}}{(m+1)!}$$

Ableitungstabelle (\rightarrow Komplett im Appendix)

f(x)	f'(x)
x^n	nx^{n-1}
$\frac{1}{x^n}$	$-n\frac{1}{x^{n+1}}$
$\sqrt[n]{x} = x^{\frac{1}{n}}$	$\frac{1}{n\sqrt[n]{n^{n-1}}} = \frac{x^{\frac{1}{n}-1}}{n} = \frac{1}{nx^{\frac{n-1}{n}}}$
\sqrt{x}	$\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$
$e^{\alpha x + \beta}$	$\alpha e^{\alpha x + \beta}$
$e^{x^{\alpha}}$	$\alpha x^{\alpha-1}e^{x^{\alpha}}$
α^x	$lpha^x ln(lpha)$
x^x	$x^x(ln(x)+1)$
$x^{x^{lpha}}$	$x^{x^a} \left(ax^{a-1} \ln \left(x \right) + x^{a-1} \right)$
	$=x^{x^{a}+a-1}\left(a\ln \left(x\right) +1\right)$
$ln(\alpha x + \beta)$	$\frac{\alpha}{\alpha x + \beta}$
$sin(\alpha x + \beta)$	$\alpha cos(\alpha x + \beta)$
$cos(\alpha x + \beta)$	$-\alpha sin(\alpha x + \beta)$
tan(x)	$\frac{1}{\cos^2(x)}$
$sinh(x) = \frac{e^x - e^{-x}}{2}$	cosh(x)
$cosh(x) = \frac{e^x + e^{-x}}{2}$	sinh(x)
tanh(x)	$\frac{1}{\cosh^2(x)}$

Differentialgleichungen

- linear, alle y-abhängigen Terme kommen linear vor (keine Potenzen)
- homogen, falls keine Terme vorkommen, die rein von x abhängen (also Gleichung = 0)
- inhomogen, falls Gleichung $\neq 0$ (Störterm vorhanden)
- Ordnung := höchst vorkommende Ableitung

Überblick der Verfahren

- ullet 1. Ordnung homogen o Trennung der Variablen
- ullet 1. Ordnung inhomogen o Variation der Konstanten
- n'ter Ordnung, linear, homogen \rightarrow Euler-Ansatz
- n'ter Ordnung, linear, inhomogen \rightarrow Direkter Ansatz

Differentialgleichungen erster Ordnung

Homogen (Trennung der Variablen)

$$y' = h(x)g(x)$$

- (i) $y' = \frac{dy}{dx}$
- (ii) Konstante Lösungen → Anfangsbedingung erfüllt?
- (iii) Gleichung separieren
- (iv) Auf beiden Seiten integrieren (Integrationskonstante c)
- (v) An fangsbeding. in $C=e^c\in\mathbb{R}$ einsetzen (falls vorhanden)

Beispiel: $y' + x \tan(y) = 0$, $y(0) = \frac{\pi}{2}$

- (i) $\frac{dy}{dx} = -x \tan(y)$
- (ii) Es existiert eine konstante Lösung y(x) = 0, welche allerdings die Anfangsbedingung nicht erfüllt!
- (iii) $\frac{dy}{tan(y)} = -xdx$
- (iv) $\int \frac{\cos(x)}{\sin(y)} dy = -\int x dx \Rightarrow \log|\sin(y)| = -\frac{x^2}{2} + c$ Daraus folgt: $|\sin(y)| = e^c e^{-x^2/2} \Rightarrow \sin(y) = \pm e^c e^{-x^2/2} = Ce^{-x^2/2} \text{ (wobei } C = \pm e^c \in \mathbb{R})$
- (v) An fangsbedingung einsetzen $\Rightarrow C = 1$ $\Rightarrow y(x) = \arcsin(e^{-x^2/2})$

Inhomogen (Variation der Konstanten)

$$y' = h(x)y + b(x)$$

Grundsatz: $y(x) = \text{homogene L\"{o}sung} + \text{partikul\"{a}re L\"{o}sung}$

- (i) Homogene Lösung berechnen (analog links)
- (ii) Partikuläre Lösung bestimmen
 - (a) $C \to C(x)$ $y_p(x) = C(x) \cdot y_{Homo}$
 - (b) in Diff'Gleichung einsetzten $y'(x) = C(x) \cdot y'_{Homo} + C'(x) \cdot y_{Homo}$ ($C(x) \cdot y'_{Homo}$ kürzt sich immer weg)
 - (c) Integrieren um C(x) zu erhalten
 - (d) Anfangsbedinung einsetzen in C(X)
- (iii) $y(x) = y_{Homo} + y_p$
- (iv) Anfangsbedingung in C einsetzen

Beispiel: y' - y = 1, y(0) = 0

- (i) **Homo.** Lsg von: y' y = 0
 - Konst. Lösung: y(x) = 0 löst die homogene Gleichung
 - Falls $y\neq 0,$ dürfen die Variabel
n getrennt werden:

$$\frac{dy}{dx} - y = 0 \Rightarrow \int \frac{dy}{y} = \int dx \Rightarrow \log|y| = x + c$$

Somit ist $y_{Homo} = Ce^x$ wobei $C = e^c \in \mathbb{R}$

- (ii) Partikuläre. Lsg
 - (a) $y_p(x) = C(x) \cdot e^x$
 - (b) Einsetzen: $C'e^x Ce^x Ce^x = 1 \Rightarrow C'e^x = 1$ $\Rightarrow C' = e^{-x}$
 - (c) $C(x) = \int e^{-x} dx = -e^{-x}$
 - (d) Anfangsbedingung einsetzen in C(x) $u_n(x) = C(x) \cdot e^x = -e^{-x} * e^x = -1$
- (iii) $y(x) = y_{Homo} + y_p = Ce^x 1$
- (iv) Mit der Anfangsbedingung erhalten wir: $y(0) = Ce^x 1 = 0 \Rightarrow C = 1$

also daher: $\Rightarrow y(x) = e^x - 1$

Systeme linearer DGL

Lineare Differentialgleichungen n'ter Ordnung

Homogen (Euler-Ansatz)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = 0$$

- (i) Einsetzen des Euler-Ansatzes $y(x) = e^{\lambda x}$ $a_n y^{(n)} e^{\lambda x} + a_{n-1} y^{(n-1)} e^{\lambda x} + \dots + a_0 e^{\lambda x} = 0$
- (ii) Euler wegkürzen = Charakteristisches Polynom bilden $a_n y^{(n)} + a_{n-1} y^{(n-1)} + \ldots + a_0 = 0$
- (iii) Nullstellen und deren Vielfachheit bestimmen
- (iv) Fundamentalsystem (F-Syst.)
 - Zu einer m-fachen Nullstelle λ gehören die m linear unabhängigen Lösungen: $e^{\lambda x}, xe^{\lambda x}, \dots, x^{m-1}e^{\lambda x}$
 - Zur m-fachen Nullstelle $\lambda=0$ gehören: $1,x,...,x^{m-1}$
- (v) Allgemeine Lösung bilden (anhand F-Syst.)
- (vi) Konstanten ermitteln mit Anfangsbedingungen
- (vii) Lösung mit berechneten Konstanten

Beispiel: y'' - 2y' - 8y = 0, y(1) = 1, y'(1) = 0

(i)
$$\lambda^2 e^{\lambda x} - 2\lambda e^{\lambda x} - 8e^{\lambda x} = 0$$

(ii)
$$\lambda^2 - 2\lambda - 8 = (\lambda - 4)(\lambda + 2) = 0$$

- (iii) Nullstellen 4, -2 mit je Vielfachheit 1
- (iv) Fundamentalsystem: e^{4x} , e^{-2x}
- (v) Allgemeine Lösung: $y(x) = Ae^{4x} + Be^{-2x}$
- (vi) Konstanten A, B bestimmen (mit Anfangsbedingungen) $y(1) = Ae^4 + Be^{-2} = 1 \text{ und } y'(1) = 4Ae^4 2Be^{-2} = 0$ $\Rightarrow A = \frac{1}{3}e^{-4} \text{ und } B = \frac{2}{3}e^2$
- (vii) Lsg: $y(x) = \frac{1}{3}e^{4x-4} + \frac{2}{3}e^{2-2x}$

Hinweis: Fundamentalsystem bei mehrfacher Nullstelle

Inhomogen (Direkter Ansatz)

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(x)$$

Grundsatz: $y(x) = \text{homogene L\"{o}sung} + \text{partikul\"{a}re L\"{o}sung}$

- (i) Homogene Lösung berechnen
- (ii) Partikuläre Lösung berechnen
 - (a) Wahl des Ansatzes $y_p(x)$ \Rightarrow Der Ansatz $y_p(x)$ hat dieselbe Form wie der inhomogene Term b(x)
 - (b) Notwendigen Ableitungen bestimmen
 - (c) Ansatz einsetzen in Diff'Gleichung
 - (d) Koeffizientenvergleich
 - (e) $y_p(x)$ bilden (Koeffizienten in Ansatz einsetzen)
- (iii) Gesamtlösung: $y(x) = y_{Homo} + y_p$

Wahl des Ansatzes:

Inhomogener Term $b(x)$	Ansatz für $y_p(x)$
Polynom	$ax^2 + bx + c$
ce^{kx}	ae^{kx}
$c\sin(kx)$ oder $c\cos(kx)$	$a\sin(kx) + b\cos(kx)$

Bei Verkettung mehrer Formen:

- \rightarrow Falls b(x) Summe/Produkt von zwei Formen sein sollte, kombiniert man die Ansätze nach dem selben Prinzip
- Bsp: $y_p(x) = Ax + B + (C\sin(x) + D\cos(x))e^{3x}$

Beispiel: $y'' + y' + \frac{1}{4}y = cos(x)$

- (i) Homo. Lsg:
 - Mit Euler-Ansatz $y(x) = e^{\lambda x}$ ergibt sich:

$$\lambda^2 + \lambda + \frac{1}{4} = \left(\lambda + \frac{1}{2}\right)^2$$

- Nst: $\lambda = -\frac{1}{2}$ mit Vielfachheit 2
- Fundamental-System.: $e^{-x/2}$, $xe^{-x/2}$
- $-y_{Homo} = Ae^{-x/2} + Bxe^{-x/2}$

(ii) Partikuläre Lösung

- (a) Ansatz-Wahl: b(x) hat die Form cos(x) \Rightarrow Ansatz $y_p(x) = a * cos(x) + b * sin(x)$
- (b) Vorkommen der 1'sten und 2'ten Ableitung $y_p'(x) = -a*sin(x) + b*cos(x) \\ y_p''(x) = -a*cos(x) b*sin(x)$
- (c) Eingesetzt in Diff'gleichung ergibt sich: $(-a+b+\frac{a}{4})cos(x)+(-b-a+\frac{1}{4}b)sin(x)=cos(x)$
- (d) Koeffizientenvergleich liefert: $-\frac{3}{4}a + b = 1 \text{ und } -a \frac{3}{4}b = 0$ $\Rightarrow a = -\frac{12}{25} \text{ und } b = \frac{16}{25}$
- (e) $y_p(x) = -\frac{12}{25}cos(x) + \frac{16}{25}sin(x)$
- (iii) Lsg: $y(x) = Ae^{-x/2} + Bxe^{-x/2} \frac{12}{25}cos(x) + \frac{16}{25}sin(x)$

Faktorisierung des charakteristischen Polynoms

- Nullstellen suchen und Polynomdivison anwenden
- Sobald quadratisch und keine einfachen Nullstellen mehr
- \rightarrow Mitternachtsformel, liefert komplexe Nullstellen

Bsp: $\lambda^3 - 5\lambda^2 + 15\lambda - 11 = 0 \rightarrow \text{Nullstelle 1: } \lambda_1 = 1$ $(\lambda^2 - 4\lambda + 11)(\lambda - 1) = 0 \rightarrow \text{Anw. Mitternachtformel}$ $\lambda_{1,2} = \frac{4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 11}}{2} = 2 \pm i\sqrt{7} \text{ (komplex. Nullstellenpaar)}$

Differentialgleichungen mit komplexen Nullstellen

Falls das charakteristische Polynom komplexe Lösungen besitzt, hat das Fundamentalsystem und die Lösung folgende Gestalt:

$$\lambda_i = a + ib$$
 \Rightarrow Fundamental system: $e^{ax} \cos(bx)$
 $\lambda_{i+1} = a - ib$ \Rightarrow Fundamental system: $e^{ax} \sin(bx)$

Komplexes Nullstellenpaar:

$$\begin{split} \lambda &= k \pm hi \rightarrow \text{Fundamentalystem: } e^{(k+ih)}, \, e^{(k-ih)} \\ y_{Homo} &= Ae^{(k+ih)} + Be^{(k-ih)} \\ \Rightarrow y_{Homo} &= e^{Re(\lambda)x} (\tilde{A} \, \sin(Im(\lambda)x) + \tilde{B} \, \cos(Im(\lambda)x)) \end{split}$$

$$\frac{\text{Bsp: } \lambda = 2 \pm 3i}{\Rightarrow y_{Homo} = e^{2x} (\tilde{A} \sin(3x) + \tilde{B} \cos(3x))}$$

Integration in \mathbb{R}

Hauptsatz der Differential/Integralrechnung (HDI)

Sei $f \in C^0([a, b])$. Dann ist die Funktion

$$F: x \to \int_a^x f \ dx, \ x \in [a, b]$$

auf [a,b] stetig differenzierbar mit F'=f

Bestimmte Integrale

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Eigenschaften des Integrals

Seien $f, g \in C^0(]a, b[)$ mit Stammfunktionen $F, G \in C^1(]a, b[)$, dann gelten folgende Eigenschaften des Integrals:

Linearität:

$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

Monotonie:

$$f \leq g \implies \int_{x_0}^{x_1} f(x) dx \leq \int_{x_0}^{x_1} g(x) dx$$
 (mit $a < x_0 < x_1 < b$)

Additivität:

$$\int_{x_0}^{x_1} f(x) \ dx + \int_{x_1}^{x_2} f(x) \ dx = \int_{x_0}^{x_2} f(x) \ dx$$
(mit $a < x_0 \le x_1 \le x_2 < b$)

Abschätzung:

$$\left| \int_a^b f \, dx \right| \le \int_a^b |f| \, dx \le ||f||_{C^0} (b-a) = \int_a^b ||f||_{C^0} \, dx$$

Direktes Integral

$$\int f(g(x)) \cdot g'(x) dx = F(g(x))$$

Bsp 1:

$$\int \frac{e^x}{e^x + 1} dx = \int \frac{1}{e^x + 1} e^x dx = \log(e^x + 1) + c$$
(da $f = \frac{1}{x}, g = e^x + 1$ und $g' = e^x$)

Bsp 2:

$$\int \frac{e^x}{\sqrt{1 - e^{2x}}} dx = \int \frac{1}{\sqrt{1 - e^{2x}}} e^x dx = \arcsin(e^x) + c$$
(da $f = \frac{1}{\sqrt{1 - x^2}}, g = e^x + 1 \text{ und } g' = e^x$)

Partielle Integration

$$\int f'(x) \cdot g(x) \, dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) \, dx$$

 \Rightarrow Tipp: Erweiterung mit $1 \cdot \dots$

 $(\rightarrow {\rm Part.~Integ.~evtl.~mehrmals~hintereinander~anwenden})$

Wahl von f' (\uparrow) und g (\downarrow)

- \uparrow : $x^n, \frac{1}{1-x^2}, \frac{1}{1+x^2}$
- \downarrow : x^n , arcsin, arccos, arctan, arsinh, ...
- "egal" : e^x , sin, cos, sinh, cosh

Bsp: (mehrfache Anw.)

$$\int x^{2}e^{x}dx = x^{2}e^{x} - \int 2x \cdot e^{x}dx$$

$$= x^{2}e^{x} - 2 \int x \cdot e^{x}dx = x^{2}e^{x} - 2xe^{x} + 2 \int e^{x}dx$$

$$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + c$$

Integration rationaler Funktionen

 $\int \frac{p(x)}{q(x)} dx$, wobei p(x) und q(x) Polynome sind.

- Fall Grad(p) \geq Grad(q) \Rightarrow Polynomdivision p(x):q(x) Resultat + $\frac{Rest}{Nenner} \Rightarrow$ Gebietsadd. nutzen
- Fall $Grad(p) < Grad(q) \Rightarrow PBZ$ (siehe Appendix) Gebietsadd, nutzen
- ⇒ Integration der umgewandelten Form

Integration durch Substitution

Unbestimmte Integrale:

$$\int f(g(t)) \cdot g'(t)dt = \int f(x)dx$$

$$g'(t) = \frac{dx}{dt} \Leftrightarrow dx = g'(t)dt$$

Bestimmte Integrale:

$$\int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$$

mit $x = \varphi(t)$, und $dx = \varphi'(t) dt$

 \Rightarrow Unbedingt Integrationsgrenzen beachten!

Standard-Substitutionen

- e^x , sinh(x), cosh(x) $e^x = t$ $\rightarrow x = log(t)$ und $dx = \frac{1}{t}dt$ wobei: $cosh(x) = \frac{1}{2}(e^x + e^{-x})$, $sinh(x) = \frac{1}{2}(e^x - e^{-x})$
- $log(x) = t \longrightarrow x = e^t \text{ und } dx = e^t dt$
- cos, sin, tan in geraden Potenzen $tan(x) = t \quad \rightarrow x = arctan(t) \text{ und } dx = \frac{1}{1+t^2}dt$ \rightarrow Sinus, Cosinus können wie folgt ersetzt werden: $sin^2(x) = \frac{t^2}{1+t^2} \qquad cos^2(x) = \frac{1}{1+t^2} \quad (\text{dx wie oben})$
- cos, sin, tan in ungeraden Potenzen $tan(\frac{x}{2}) = t \quad \rightarrow x = 2\arctan(t) \text{ und } dx = \frac{2}{1+t^2}dt$ \rightarrow Sinus, Cosinus können wie folgt ersetzt werden: $sin(x) = \frac{2t}{1+t^2} \qquad cos(x) = \frac{1-t^2}{1+t^2} \quad (\text{dx wie oben})$

Tipps

- Immer auf trigonometrische Teile achten um mit Sub. einfacher zu lösen

Uneigentliche Integrale

Einsatz falls ein Integral mind. an einer Integralgrenze nicht definiert ist (Unstetigkeit oder ∞). Oder auch bei einer Unstetigkeitsstelle im Integralintervall!

Trick: Mit endlichem R berechnen und Limes ermitteln

Bsp:
$$\int_0^\infty f(x)dx = \lim_{b \to \infty} \int_0^b f(x)dx$$
Allgemein:
$$\int_a^b f(x)dx = \lim_{R \to b, \epsilon \to a} \int_{\epsilon}^R f(x)dx$$

Bei zwei kritischen Grenzen:

$$\int_{a}^{b} f(x)dx := \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$
$$= \lim_{\alpha \to a} \int_{\alpha}^{c} f(x)dx + \lim_{\beta \to b} \int_{c}^{\beta} f(x)dx$$

→ Konvergenz/Integralwert unabhängig von der Wahl von c!

Bei kritischer Grenze innerhalb des Intervalls (Unstetigkeit):

$$\int_{a}^{b} f(x)dx := \lim_{\epsilon \to 0} \int_{a}^{c-\epsilon} f(x)dx + \lim_{\epsilon \to 0} \int_{c+\epsilon}^{b} f(x)dx$$

$$\to \text{ wobei } c \text{ die Unstetigkeitstelle ist.}$$

Beispiele:

1.
$$\int_0^1 \frac{1}{x^2} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^1 f(x) dx = \lim_{\epsilon \to 0} [-\frac{1}{x}]_1^{\epsilon}$$
$$= \lim_{\epsilon \to 0} -1 + \frac{1}{\epsilon} = \infty \text{ (Uneig. Integ. existiert nicht)}$$

2. $\int_0^\infty \frac{e^{-1/x}}{x^2} dx \to \text{Unstetig in 0 und unbeschränkt in } \infty$ $\longrightarrow \text{Beide Grenzen uneigentlich (Berechnung in 2 Teilen)}$

$$\int_{\varepsilon}^{1} \frac{e^{-\frac{1}{x}}}{x^{2}} dx = \int_{-\frac{1}{\varepsilon}}^{-1} e^{u} du = e^{-1} - e^{-\frac{1}{\varepsilon}} \xrightarrow{\varepsilon \to 0} e^{-1},$$

$$\int_{1}^{R} \frac{e^{-\frac{1}{x}}}{x^{2}} dx = \int_{-1}^{-\frac{1}{R}} e^{u} du = e^{-\frac{1}{R}} - e^{-1} \xrightarrow{R \to \infty} 1 - e^{-1}.$$

 \Rightarrow Unteigentliche Integral konvergent mit $e^{-1} + 1 - e^{-1} = 1$

Differential rechnung im \mathbb{R}^n

Differenzierbarkeit

Partielle Differenzierbarkeit

 $f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ heisst an der Stelle $x_0 \in \Omega$ in Richtung e_i partiell differenzierbar, falls:

$$\lim_{h \to 0} \frac{f(x_0 + he_i) - f(x_0)}{h} =: \frac{\partial f}{\partial x_i}(x_0)$$

existiert.

Totale Differenzierbarkeit

 $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}^m$ heisst an der Stelle $x_0\in\Omega$ differenzierbar, falls eine lineare Abbildung $A:\mathbb{R}^n\to\mathbb{R}$ existiert mit:

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{f(x) - f(x_0) - A(x - x_0)}{|x - x_0|} = 0$$

Hier ist $df(x_0) = A$ das Differential von f (Jaccobi-Matrix) an der Stelle x_0 .

Klasse C^m

 $f: \Omega \to \mathbb{R}$ heisst von der Klasse C^1 , $f \in C^1(\Omega)$, falls f an jeder Stelle $x_0 \in \Omega$ in jede Richting e_i partiell differenzierbar ist und falls jede partielle Ableitung stetig ist. Die Funktion f heisst weiter von der Klasse C^m , falls $\frac{\partial f}{\partial x^i} \in C^{m-1}(\Omega)_{1 \le i \le n}$.

Partielle Ableitungen

$$\frac{\partial f}{\partial x_i}(x_0)$$
 Partielle Ableitung von f nach x_i

 \Rightarrow Alle Variablen ausser x_i werden als Konstante betrachtet.

Richtungsableitung

$$D_v f(x,y) = \lim_{h \to 0} \frac{f(x + hv_1, y + hv_2) - f(x,y)}{h} = df(x,y) \cdot v$$

 \Rightarrow Richtungsvektor vnur auf |v|normieren falls nach der Steigung gefragt wird!

Bsp:
$$f(x,y) = (x-2y)^3$$
, $p_0 = (6,2)$, $v = \begin{pmatrix} 2\\1 \end{pmatrix}$
 $df(x,y) = (3(x-2y)^2, -2 \cdot 3(x-2y)^2$
 $D_v f(p_0) = df(p_0) \cdot v = (12, -24) \cdot \begin{pmatrix} 2\\1 \end{pmatrix} = 24 - 24 = 0$

Gradient

$$\operatorname{grad}(f) = \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \dots \\ \frac{\partial f}{\partial x_n} \end{pmatrix} = df^T$$

⇒ Zeigt in Richtung des stärksten Anstiegs

Hesse-Matrix

Matrix mit allen zweifachen partiellen Ableitungen der Funktion $f:\Omega\to\mathbb{R}$

$$\operatorname{Hess}(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

Identische gemischte Ableitungen $\frac{\partial^2}{\partial x_j \partial x_i} f$ und $\frac{\partial^2}{\partial x_i \partial x_j} f$ \Rightarrow Hesse-Matrix symmetrisch

Satz von Schwarz (Kommutativität 2ter Ableit.)

Sei $f \in C^2(\Omega)$. Dann gilt:

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i} \qquad \forall i, j \in 1, ..., n$$

Allgemein: Ist $f:\Omega\to\mathbb{R}$ auf Ω m-mal partiell diff'bar und sind alle m-ten Ableitungen in Ω stetig \Rightarrow Reihenfolge der Differentation spielt bei allen partiellen Ableitungen der Ordnung \leq m keine Rolle!

Vektorwertige Funktionen

Vekorwertige Funktionen

$$f: \Omega \subset \mathbb{R}^n \to \mathbb{R}^m, \quad f(x_1, ..., x_n) \to \begin{pmatrix} f_1(x_1, ..., x_n) \\ \vdots \\ f_m(x_1, ..., x_n) \end{pmatrix}$$

Differenzial / Jaccobi-Matrix

$$df = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

 \rightarrow enthält die npart. Ableit. aller m
 Komponenten von f

Ableitungsregeln

- Kettenregel

$$d(f \circ g)(x_o) = df(g(x_0)) dg(x_0)$$
 wobei: $f \circ g = f(g(x))$

Bsp:
$$f(x,y) = \begin{pmatrix} e^x \\ xy \end{pmatrix}$$
 $g(x,y,z) = \begin{pmatrix} xy \\ y+z \end{pmatrix}$
$$df(x,y) = \begin{pmatrix} e^x & 0 \\ y & x \end{pmatrix}$$
 $dg(x,y,z) = \begin{pmatrix} y & x & 0 \\ 0 & 1 & 1 \end{pmatrix}$
$$df(g(x,y,z)) = \begin{pmatrix} e^{xy} & 0 \\ y+z & xy \end{pmatrix}$$

$$df(g(x,y,z)) \cdot dg(x,y,z) = \begin{pmatrix} e^{xy} & 0 \\ y+z & xy \end{pmatrix} \cdot \begin{pmatrix} y & x & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} ye^{xy} & xe^{xy} & 0\\ y^2 + yz & 2xy + xz & xy \end{pmatrix}$$

- Umkehrsatz

Ist $det(df(x_0)) \neq 0$, so ist f lokal umkehrbar.

 $d(f^{-1})(y) = (df(x))^{-1}$ = Inverse der Jaccobi-Matrix von f

Taylorentwicklung mit mehreren Variabeln

$$f(x,y) = f(x_0, y_0) + \frac{\partial f}{\partial x} \Delta x + \frac{\partial f}{\partial y} \Delta y$$

$$+ \frac{1}{2!} \left(\frac{\partial^2 f}{\partial x^2} (\Delta x)^2 + 2 \frac{\partial^2 f}{\partial x \partial y} \Delta x \Delta y + \frac{\partial^2 f}{\partial y^2} (\Delta y)^2 \right)$$

$$+ \frac{1}{3!} \left(\frac{\partial^3 f}{\partial x^3} (\Delta x)^3 + 3 \frac{\partial^3 f}{\partial x^2 \partial y} (\Delta x)^2 \Delta y + 3 \frac{\partial^3 f}{\partial x \partial y^2} \Delta x (\Delta y)^2 + \frac{\partial^3 f}{\partial y^3} (\Delta y)^3 \right)$$

$$+ \cdots$$

wobei $\Delta x = x - x_0$, $\Delta y = y - y_0$ und alle Ableitungen an der Stelle (x_0, y_0) auszuwerten sind.

Kritische / Reguläre Punkte

- Fall $f: \mathbb{R}^n \to \mathbb{R}$ Kriterium: $df(p_0) = 0 \to \text{Kritischer Punkt}$
- Fall $f: \mathbb{R}^n \to \mathbb{R}^m$ Kriterium: Rang $(df(p_0))$ nicht max. \to Kritischer Punkt $(Rang(df(p_0)) \le min\{m,n\})$
- \Rightarrow Nicht kritische Punkte = Reguläre Punkte

Bei Funktionen mit mehreren Variablen werden alle partiellen Ableitungen = 0 gesetzt!

Extremwertaufgaben in mehreren Dim.

(1) Notwendige Bedingung:

Ist $x_0 \in \Omega$ ein lokaler Extremalpunkt (Max., Min.) von f, so gilt:

$$df(x_0) = 0$$
d.h. x_0 ist ein kritischer Punkt

 \rightarrow Kritische Punkte sind Kandidaten für Extremalstellen Sattelpunkte (keine Extrema) sind jedoch auch kritische Punkte.

(2) Kandidaten-Unterscheidung:

- $Hess(f)(x_0)$ positiv definit $\Rightarrow x_0$ lokales Min. von f
- $Hess(f)(x_0)$ negativ definit $\Rightarrow x_0$ lokales Max. von f
- $Hess(f)(x_0)$ indefinit $\Rightarrow x_0$ Sattelpunkt von f
- $det(Hess(f)(x_0)) = 0 \Rightarrow \text{Entartung}$
- Eigenwerte:
 - (i) Diagonale der Hesse-Matrix parametrisieren mit (- λ)
- (ii) Determinate = 0 setzen und λ 's ermitteln
- Definitheit:
 - positiv definit: nur positive Eigenwerte
 - negativ definit: nur negative Eigenwerte
 - indefinit: sowohl positive als auch negative. Eigenwerte
- Hesse-Matrix:

$$\operatorname{Hess}(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial^2 x_1^2} & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \dots & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix}$$

Extremwertaufgaben mit Nebenbedingungen

Gegeben: Fkt f und Nebenbedingung-Fkt g, ... Gesucht: Extremum der Fkt. f unter NB g=0

- (i) Linie (=) oder Fläche (\leq , <, >, \geq)
- (ii) NB umschreiben zu: g = 0
- (iii) Kandidaten ermitteln
 - (a) Linie
 - Nicht reguläre Punkte mit dg = 0 \rightarrow Testen ob NB auch erfüllt wird
 - Reguläre Punkte mit dL = 0 (Lagrange)
 - (b) Fläche
 - Kritische Punkte innerhalb mit df = 0 \rightarrow Prüfen ob innerhalb Fläche
 - Rand untersuchen mit Langrange
 - Falls einfacher Rand:
 - Verfahren wie bei einer Linie anwenden
 - Falls komplizierter Rand:
 - (a) Rand stückweise parametrisieren
 - → Kritische Punkte der Stücke ermitteln
 - (b) Eckpunkte
- (iv) Typen der Kandidaten ermitteln
 - \rightarrow Meistens durch Einsetzen in Fkt. oder ansonsten Hesse-Matrix
- Langrange Multiplikatoren Regel

 x_0 ist ein kritischer Punkt falls ein λ exisitert, s.d. $dL(x_0)=0$

Lagrange-Funktion: $L = f - \lambda \cdot g$

Kritische Punkte von L falls: $dL(x_0) = 0$

- Lagrange mit mehreren NB's

Lagrange-Funktion: $L = f - \lambda \cdot g_1 - \mu \cdot g_2$

- Verfahren zur Ermittlung:
- Fkt. L
 partiell ableiten nach $x_1,\,...,\,x_n$
- Gleichungssystem lösen
- $-\lambda$'s gleichsetzen und NB verwenden (evtl. Fallunterscheid.)
- Gleichungen in einander einsetzen (mit x, y oder z)
- ⇒ Keine Lösungen vergessen!!

Rand-Parametrisierung - Beispiel:

- Auf dem Viereck $D = \{(x, y) \in \mathbb{R}^2 | 0 \le x \le 2, 0 \le y \le 2\}$ mit $f(x, y) = x^2 + 2xy 4x 2y$
 - \rightarrow Unterteilung in 4 Teilstücke
 - (1) $f(0,y) = -2y \to \frac{df}{dy} = -2 \neq 0$
 - (2) $f(2,y) = 4 + 4y 4 2y \rightarrow \frac{df}{dy} = 2 \neq 0$
 - (3) $f(x,0) = x^2 4x \rightarrow \frac{df}{dx} = 2x 4 = 0 \Rightarrow x = 2$
 - (4) $f(x,2) = x^2 + 4x 4x 4 \rightarrow \frac{df}{dx} = 2x = 0 \Rightarrow x = 0$
 - + Eckpunkte (+ evtl. weiteren Kandidaten)

Viel verwendete NB's: (mit Ursprung 0)

- Kugeloberfläche $q(x, y, z) = x^2 + y^2 + z^2 radius^2 = 0$
- Kugelinhalt $g(x,y,z) = x^2 + y^2 + z^2 \le radius^2$ Rand + Inneres analysieren
- Kreis $g(x, y) = x^2 + y^2 radius^2 = 0$
- Kreisfläche $q(x,y) = x^2 + y^2 < radius^2$

Min./Max. Abstand - Beispiel / Trick

Abstandsfunktion von Punkt P:

$$f(x,y,z) = \left(\sqrt{(x-P_x)^2 + (y-P_y)^2 + (z-P_z)^2}\right)^2$$

Nun kann diese Fkt. unter der NB (Bsp.: Gleichung eines Körpers) minimiert(max.) werden mit Lagrange

→ Schlussendlich √ ziehen nicht vergessen!

Tangentialebene bestimmen

Gegeben: Funktion $f(x,y) = \dots$

Fläche S := $\{(x, y, z) \in \mathbb{R}^3 | z = f(x, y) \}$

Punkt Q := (x, y, f(x, y))

Gesucht: Tangentialebene an S in Punkt Q

 $\Sigma = \{(x, y, z) \in \mathbb{R}^3 | z = ...\}$

Verfahren: Falls $f(Q_x, Q_y)$ kritischer Punkt der Fkt. f

 \Rightarrow Tangentialebene konstant mit: $\Sigma = \{(x, y, z) \in \mathbb{R}^3 | z = f(Q_x, Q_y) \}$

Allg. Formel: $z = f(Q_x, Q_y) + \frac{\partial f}{\partial x}(x - Q_x) + \frac{\partial f}{\partial y}(y - Q_y)$

Implizite Funktionen

Ziel: Auflösung des GL-Systems f(x,y) = 0 nach x oder y

Der Satz über implizite Funktionen gibt Aussagen darüber, ob und unter welchen Bedingungen eine solche lokale Aufloesung existiert oder nicht.

Falls die Untermatrix M des Differentials Invertierbar $(det(M) \neq 0) \Rightarrow$ so ist f(x,y) nach x oder y (je nach Untermatrix M) auflösbar

 \Rightarrow Wenn wir nach x,z auflösen wollen betrachten wir die Ableitungen nach x und z (Spalten) in der Jaccobi-Matrix.

Implizite Funktion: $f(x, \phi(x)) = 0$ mit $y = \phi(x)$

Falls die Untermatrix M invertierbar ist, folgt mit dem Satz über implizite Funktionen die Existenz von der Umgebung $U \subset \mathbb{R}$ von $x_0 = ...$ (gegeben) und einer Funktion ϕ , so dass $f(x, \phi(x)) = 0$ für alle $x \in U$.

Bemerkung Die Funktion h lässt sich im allgemeinen nicht explizit angeben. Es gilt jedoch

$$\partial h(x) = -(M)^{-1} \cdot (\text{Rest der Matrix})$$

Bsp: nach y aufgelöst:

$$\partial h(x) = -(\partial_y f(x, h(x)))^{-1} \partial_x f(x, h(x))$$

Beispiele - Implizite Funktionen

- 10.2. Implizite Funktion \circ Gegeben sei die Gleichung $2x^2 4xy + y^2 3x + 4y = 0$.
- (a) Zeigen Sie: Die Gleichung definiert implizit eine Funktion $y = \phi(x)$ mit $\phi(1) = 1$.
- (b) Berechnen Sie $\phi'(1)$, ohne ϕ explizit zu kennen. Hinweis: Bemerkung 7.8.2.
- (a) Wegen 2-4+1-3+4=0 ist $(x_0,y_0)=(1,1)$ eine Lösung der Gleichung f(x,y)=0. Ferner gilt

$$\frac{\partial f}{\partial y}(x,y) = -4x + 2y + 4, \qquad \qquad \frac{\partial f}{\partial y}(1,1) = 2 \neq 0.$$

Die (1×1) -Matrix $\left(\frac{\partial f}{\partial y}(1,1)\right) = (2)$ ist also invertierbar. Aus dem Satz über implizite Funktionen folgt Existenz einer Umgebung $U \subset \mathbb{R}$ von $x_0 = 1$ und einer Funktion $\phi \in C^1(U;\mathbb{R})$ mit $\phi(1) = \phi(x_0) = y_0 = 1$, sodass $f(x,\phi(x)) = 0$ für alle $x \in U$ gilt.

(b) Es gilt $\frac{\partial f}{\partial x}(x,y)=4x-4y-3$, also $\frac{\partial f}{\partial x}(1,1)=-3$. Mit Hilfe der Formel für die Ableitung einer impliziten Funktion (Bemerkung 7.8.2) erhalten wir

$$\phi'(1) = -\left(\frac{\partial f}{\partial y}(1,1)\right)^{-1} \left(\frac{\partial f}{\partial x}(1,1)\right) = -\frac{1}{2} \cdot (-3) = \frac{3}{2}.$$

- 10.3. Urbildmenge \triangle Die Abbildung $g: \mathbb{R}^3 \to \mathbb{R}^2$ sei gegeben durch $g(x,y,z) = \left(x^3 zx + y, \ 2xyz\right)$.
- (a) Man zeige, dass der Punkt $(1,1,1) \in \mathbb{R}^3$ ein regulärer Punkt von g ist.
- (b) Zeigen Sie, dass eine Umgebung $U \subset \mathbb{R}$ von x=1 und Funktionen $\varphi_1, \varphi_2 \colon U \to \mathbb{R}$ existieren, sodass der Vektor $\gamma(x)=(x,\varphi_1(x),\varphi_2(x))$ für alle $x\in U$ ein Element der Urbildmenge $g^{-1}(\{(1,2)\})=\{(x,y,z)\;|\;g(x,y,z)=(1,2)\}$ ist. Berechnen Sie ausserdem den Tangentialvektor $\dot{\gamma}(1)$, ohne γ explizit zu kennen.
- (a) Wir berechnen zunächst die Jacobi-Matrix

$$dg(x,y,z) = \begin{pmatrix} 3x^2 - z & 1 & -x \\ 2yz & 2xz & 2xy \end{pmatrix}, \qquad \qquad dg(1,1,1) = \begin{pmatrix} 2 & 1 & -1 \\ 2 & 2 & 2 \end{pmatrix}.$$

Da die Zeilen der Matrix dg(1,1,1) linear unabhängig sind, ist ihr Rang maximal. Folglich ist (1,1,1) ein regulärer Punkt von q.

(b) Es gilt q(1, 1, 1) = (1, 2). Ferner ist die (2×2) -Matrix

$$M := \begin{pmatrix} \frac{\partial g_1}{\partial y}(1,1,1) & \frac{\partial g_1}{\partial z}(1,1,1) \\ \frac{\partial g_2}{\partial y}(1,1,1) & \frac{\partial g_2}{\partial z}(1,1,1) \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$$

invertierbar, denn ihre Determinante $1\cdot 2-(-1)\cdot 2=4$ verschwindet nicht. Aus dem Satz über implizite Funktionen folgt Existenz einer Umgebung $U\subset \mathbb{R}$ von $x_0=1$ und einer Funktion $\varphi=(\varphi_1,\varphi_2)\in C^1(U;\mathbb{R}^2),$ sodass $g(x,\varphi_1(x),\varphi_2(x))=(1,2)$ für alle $x\in U$ gilt. Insbesondere ist $\gamma(x)=(x,\varphi_1(x),\varphi_2(x))$ für alle $x\in U$ ein Element von $g^{-1}(\{(1,2)\})$. Für das Differential von φ gilt gemäss der Formel für die Ableitung impliziter Funktionen $d\varphi(x)=-\left(\frac{\partial g}{\partial y}(x,\varphi(x)),\,\frac{\partial g}{\partial z}(x,\varphi(x))\right)^{-1}\cdot\left(\frac{\partial g}{\partial z}(x,\varphi(x))\right),$ also

$$d\varphi(1) = -\begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = -\frac{1}{4} \begin{pmatrix} 2 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} \\ \frac{1}{2} \end{pmatrix}.$$

Es folgt $\dot{\gamma}(1) = (1, -\frac{3}{2}, \frac{1}{2}).$

Existenz von Lösungen - Satz von Picard-Lindelöf

Ist g(x,y) stetig auf Ω und erfüllt g(x,y) die Lipschitz-Bedingung, dann existiert ein Intervall $[x_0 - h, x_0 + h]$, in dem eine eindeutige Lösung $y = \phi(x)$ des Anfangswertproblems y' = g(x,y) mit $y(x_0) = y_0$ existiert.

Iterationsverfahren:

Ersten drei Picard-Iteration zu $v'(t) = g - cv(t)^2$ mit v(0) = 0 Dabei sind c = g = 1:

(b) Zum Anfangswertproblem $v'(t) = f(t, v(t)), v(0) = v_0$ betrachten wir

$$\left(\Phi_{v_0}(\varphi)\right)(t) = v_0 + \int_0^t f(s, \varphi(s)) ds.$$

In unserem Fall ist $f(t, v) = 1 - v^2$ und $v_0 = 0$. Dann gilt

$$\varphi_1(t) = \Phi_0(0)(t) = \int_0^t 1 - 0^2 ds = t,$$

$$\varphi_2(t) = \Phi_0(\varphi_1)(t) = \int_0^t 1 - s^2 ds = t - \frac{1}{3}t^2,$$

$$\varphi_3(t) = \Phi_0(\varphi_2)(t) = \int_0^t 1 - \left(s - \frac{1}{3}s^3\right)^2 ds$$

$$= \int_0^t 1 - s^2 + \frac{2}{3}s^4 - \frac{1}{9}s^6 ds = t - \frac{1}{3}t^3 + \frac{2}{15}t^5 - \frac{1}{63}t^7.$$

Beispiel: Anwendbarkeit Picard-Lindelöf

Richtungsfeld von $u'(t) = \frac{u(t)}{t}$ mit $t \neq 0$ zeichnen und Anwendbarkeit überprüfen:

(b) Da die Gleichung $u'(t) = \frac{u(t)}{t}$ nur für $t \neq 0$ definiert ist, existieren differenzierbare Lösungen nur für t > 0 oder t < 0. Auf jedem (festen) Zeitintervall $[\delta, \infty[$ beziehungsweise $]-\infty, -\delta]$ mit $\delta > 0$ ist die Gleichung linear mit stetigem Koeffizienten. Somit ist der Satz von Picard–Lindelöf lokal anwendbar, wenn wir Anfangsdaten $u(t_0) = u_0$ bei $t_0 \neq 0$ vorgeben.

Integration im \mathbb{R}^n

Vektorfelder, 1-Formen und Potentiale

Vekorfeld:

Funktion die jedem Punkt eines Raumes einen Vektor zuordnet

$$\vec{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

1-Form
$$\lambda$$
: ($\lambda = v^T$)

Bsp:
$$v_1 dx + v_2 dy + v_3 dz$$

Rotation:

$$rot(\vec{v}) = \nabla \times \vec{v} = \begin{pmatrix} \frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \\ \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \\ \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \end{pmatrix}$$

Divergenz:

$$div(\vec{v}) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}$$

Konservative Vektorfelder / Potentialfeld:

Es gilt:

$$rot(\vec{v}) = 0$$

 \rightarrow Wegintegral hängt dann nur vom Anfang und Ende ab

Potential ermitteln

- Partielle Ableitungen der Reihe nach integrieren
- \rightarrow Fehlende Funktion durch bsp. g(y,z) ausdrücken
- \rightarrow Konstante c
 nicht vergessen bei f

Bsp:
$$v(x,y) = \begin{pmatrix} e^y \\ z + xe^y \\ y \end{pmatrix}$$

 $\frac{\partial f}{\partial x} = e^y \to f = xe^y + g(y,z)$
 $\frac{\partial f}{\partial y} = xe^y + \frac{\partial g}{\partial y} = z + xe^y \to \frac{\partial g}{\partial y} = z \to g = yz + h(z)$

$$\frac{\partial f}{\partial z} = y + \frac{\partial h}{\partial z} = y \qquad \qquad \rightarrow \text{h nicht notwendig}$$

$$\Rightarrow f(x, y, z) = xe^y + yz + c$$
 wobei $c \in \mathbb{R}$

Linien-Integrale

- Wegintegral /Potentialmethode
- Vektorfeld \vec{v} ist meistens gegeben (manchmal auch als 1-Form λ wobei $\lambda = v^T$)
 - 1. (Prüfen ob ein Potential existiert \rightarrow Vereinfachung) - Falls ja \rightarrow Weiter mit Punkt 5
 - 2. Parametrisierung der Kurve γ

$$\vec{\gamma}: [a,b] \to \mathbb{R}^n, t \to \gamma(t)$$

- 3. Berechne $\dot{\vec{\gamma}}(t) = \frac{d}{dt}\vec{\gamma}(t)$ (jede Komp. nach t ableiten)
- 4. Formel benutzen (Aufpassen: Skalarprodukt)

$$\int_{\gamma} \vec{v} \cdot d\vec{s} = \int_{a}^{b} \langle \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) \rangle dt$$

5. Falls ein Potential mit $V = \nabla f$ existiert:

$$\int_{\gamma} \vec{v} \cdot d\vec{s} = f(\gamma(Ende)) - f(\gamma(Anfang))$$

- Satz von Green (zweidimensionale Wegintegrale)

Anforderung: Der Rand ∂C muss im mathematisch positiven Sinn umlaufen werden (d.h. im Gegenuhrzeigersinn)

$$\int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_{C} \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \right) dx dy$$
wobei:
$$\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} = rot(\vec{v})$$

⇒ Vorzeichen "−" setzen bei falscher Richtung

Tipp bei Verwendung von Green:

Bei der Anwendung von Green ist es von Vorteil, das Gebiet als Normalbereich zu schreiben, falls es nicht gerade klar angegeben ist, damit es beispielsweise mit Fubini integriert werden kann.

Tipp:

- Immer testen ob $rot(\vec{v}) = 0$
- \rightarrow Falls ja: Satz von Green mit $\int_C rot(\vec{v}) dx dy = 0$

- Beispiele - Linienintegrale:

Beispiel 1:

$$\begin{split} &\gamma_1 \colon [-1,0] \mapsto \mathbb{R}^2, \quad \gamma_1 \colon t \mapsto (1,t), \qquad \dot{\gamma}_1(t) = (0,1), \\ &\gamma_2 \colon [0,1] \mapsto \mathbb{R}^2, \quad \gamma_2 \colon t \mapsto (1-t,t), \quad \dot{\gamma}_2(t) = (-1,1), \\ &\gamma_3 \colon [-1,1] \mapsto \mathbb{R}^2, \quad \gamma_3 \colon t \mapsto (0,-t), \qquad \dot{\gamma}_3(t) = (0,-1), \\ &\gamma_4 \colon [0,1] \mapsto \mathbb{R}^2, \quad \gamma_4 \colon t \mapsto (t,-1), \qquad \dot{\gamma}_4(t) = (1,0). \end{split}$$

Das Integral von $\lambda = xy dx + e^x dy$ über ∂B lautet somit

$$\int_{\partial B} \lambda = \int_{\gamma_1} \lambda + \int_{\gamma_2} \lambda + \int_{\gamma_3} \lambda + \int_{\gamma_4} \lambda -1$$

$$= \int_{-1}^{0} e^1 dt + \int_{0}^{1} (1 - t)t(-1) + e^{1-t} dt + \int_{-1}^{1} e^0(-1) dt + \int_{0}^{1} -t dt$$

$$= e - (\frac{1}{2} - \frac{1}{3}) - (1 - e^1) - 2 - \frac{1}{2} = 2e - \frac{11}{3}.$$

B

Mit dem Satz von Green angewendet auf g(x,y)=xy und $h(x,y)=e^x$ gilt ebenfalls

$$\begin{split} \int_{\partial B} \lambda &= \int_{B} \left(\frac{\partial h}{\partial x} - \frac{\partial g}{\partial y} \right) d\mu = \int_{B} e^{x} - x \, d\mu = \int_{0}^{1} \int_{-1}^{1-x} e^{x} - x \, dy \, dx \\ &= \int_{0}^{1} (2-x)(e^{x} - x) \, dx = \left[(2-x)(e^{x} - \frac{1}{2}x^{2}) \right]_{0}^{1} + \int_{0}^{1} (e^{x} - \frac{1}{2}x^{2}) \, dx \\ &= (e - \frac{1}{2}) - 2 + (e - 1) - \frac{1}{6} = 2e - \frac{11}{3}. \end{split}$$

Beispiel 2:

$$\begin{split} & \gamma_1 \colon [-1,0] \to \mathbb{R}^2, & \gamma_1 \colon t \mapsto (\frac{\pi}{2},t), & \gamma_1(t) = (0,1), \\ & \gamma_2 \colon [-\frac{\pi}{2},\frac{\pi}{2}] \to \mathbb{R}^2, & \gamma_2 \colon t \mapsto (-t,\cos t), & \gamma_2(t) = (-1,-\sin t), \\ & \gamma_3 \colon [0,1] \to \mathbb{R}^2, & \gamma_3 \colon t \mapsto (-\frac{\pi}{2},-t), & \gamma_3(t) = (0,-1), \\ & \gamma_4 \colon [-\frac{\pi}{2},\frac{\pi}{2}] \to \mathbb{R}^2, & \gamma_4 \colon t \mapsto (t,-1). & \gamma_4(t) = (1,0), \end{split}$$

Das Integral der 1-Form $\lambda = x^2 dx + y^2 dy$ über ∂A lautet somit

$$\begin{split} \int_{\partial A} \lambda &= \int_{\gamma_1} \lambda + \int_{\gamma_2} \lambda + \int_{\gamma_3} \lambda + \int_{\gamma_4} \lambda \\ &= \int_{-1}^0 t^2 \, dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^2 (-1) + (\cos^2 t) (-\sin t) \, dt + \int_0^1 t^2 (-1) \, dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t^2 \, dt \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos^2 t) (-\sin t) \, dt = \left[\frac{1}{3} \cos^3 t \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 0. \end{split}$$

Mit dem Satz von Green angewendet auf $g(x,y) = x^2$ und $h(x,y) = y^2$ gilt ebenfalls

$$\int_{\partial A} \lambda = \int_{\partial A} \left(g(x,y) \, dx + h(x,y) \, dy \right) = \int_A \left(\frac{\partial h}{\partial x} - \frac{\partial g}{\partial y} \right) d\mu = \int_A \left(0 - 0 \right) d\mu = 0.$$

Flächen-Integrale

- Integration auf Normalbereichen:

Sei

$$\Omega = \{(x, y) \in \mathbb{R}^2 | a \le x \le b, f(x) \le y \le g(x) \}$$

mit stetigen Funktion f, g, und sei $F \in C^0$. Dann gilt:

$$\int_{\Omega} F d\mu = \int_{a}^{b} \int_{f(x)}^{g(x)} F(x, y) dy dx$$

Beispiel: mit Menge als Normalbereich schreiben + Tipps fr Betraege

- Satz von Green (Flächen):

1. Rand parametrisieren

$$\vec{\gamma}: [a,b] \to \mathbb{R}^n, t \to \gamma(t)$$

- 2. Berechne $\dot{\gamma}$ (Jede Komponente nach t ableiten)
- 3. \vec{v} wählen (beide haben $rot(\vec{v}) = 1$):

$$\vec{v} = \begin{pmatrix} 0 \\ x \end{pmatrix} \quad oder \quad \vec{v} = \begin{pmatrix} -y \\ 0 \end{pmatrix}$$

4. Formel anwenden:

$$\mu(C) \int_{\gamma = \partial C} \vec{v} \cdot d\vec{s}$$
 falls: $rot(\vec{v}) = 1$

$$= \int_{a}^{b} \langle \vec{v}(\vec{\gamma}(t)) \cdot \dot{\vec{\gamma}}(t) \rangle dt$$

- Satz von Fubini / Iterierte Integrale (Quader):

$$\int_{[a,b]\times[c,d]} f(x,y)d\mu(x,y) = \int_a^b \int_c^d f(x,y)dydx$$

Umgang mit anderen Koordinatensystemen:

Gewisse Aufgaben sind eifacher zu lösen mit alternativen Koordinatensystemen:

Polar-Koordinaten (\mathbb{R}^2)

$$x = r\cos(\phi)$$
 $y = r\sin(\phi)$ $dxdy = r drd\phi$

Kugel-Koordinaten (\mathbb{R}^3)

$$x = r\sin(\theta)\cos(\phi)$$
 $y = r\sin(\theta)\sin(\phi)$ $z = r\cos(\theta)$
 $dxdydz = r^2 dr \sin(\theta) d\theta d\phi$

Zylinder-Koordinaten (\mathbb{R}^3)

$$x = r\cos(\phi)$$
 $y = r\sin(\phi)$ $z = z$
 $dxdydz = r drd\phi dz$

Elliptische Koordinaten (\mathbb{R}^2)

$$x = ra\cos(\phi)$$
 $y = rb\sin(\phi)$
 $dxdy = abr \ drd\phi$

Beispiele- Flächen-Integrale

- Beispiel mit Normalbereich:

Somit ist

$$\begin{split} \int_{\Omega} xy \, d\mu &= \int_{0}^{\frac{1}{\sqrt{b}}} \int_{ax}^{bx} xy \, dy \, dx + \int_{\frac{1}{\sqrt{b}}}^{\frac{1}{\sqrt{a}}} \int_{ax}^{\frac{1}{x}} xy \, dy \, dx \\ &= \frac{1}{2} \int_{0}^{\frac{1}{\sqrt{b}}} \left(x(bx)^2 - x(ax)^2 \right) dx + \frac{1}{2} \int_{\frac{1}{\sqrt{b}}}^{\frac{1}{\sqrt{a}}} \left(x(\frac{1}{x})^2 - x(ax)^2 \right) dx \\ &= \frac{b^2}{2} \int_{0}^{\frac{1}{\sqrt{b}}} x^3 \, dx + \frac{1}{2} \int_{\frac{1}{\sqrt{b}}}^{\frac{1}{\sqrt{a}}} \frac{1}{x} \, dx - \frac{a^2}{2} \int_{0}^{\frac{1}{\sqrt{a}}} x^3 \, dx \\ &= \frac{b^2}{2} \left[\frac{x^4}{4} \right]_{0}^{\frac{1}{\sqrt{b}}} + \frac{1}{2} \left[\log|x| \right]_{\frac{1}{\sqrt{a}}}^{\frac{1}{\sqrt{a}}} - \frac{a^2}{2} \left[\frac{x^4}{4} \right]_{0}^{\frac{1}{\sqrt{a}}} = \frac{1}{2} \log \sqrt{\frac{b}{a}}. \end{split}$$

- Beispiel mit Polarkoordinaten:

Integration von $f(x,y) = |x|\sqrt{x^2 + y^2}$ über folgendem schraffierten Gebiet:

Für die Funktion f(x,y) gelten folgenden Eigenschaften: f(x,y) = f(-x,y) = f(x,-y) = f(-x,-y) \rightarrow Daher kann das Gebiet in 4 Teile unterteilt werden.

Mit den Polarkoordinaten folgt: $x = r\cos(\phi), y = r\sin(\phi), dxdy = rdrd\phi$

$$\int_{\Omega} f(x,y)dx \, dy = 4 \int_{0}^{1} \int_{0}^{\frac{\pi}{4}} r^{3} \cos \phi dr \, d\phi = 4 \left[\frac{r^{4}}{4} \right]_{0}^{1} \left[\sin \phi \right]_{0}^{\frac{\pi}{4}} = \frac{\sqrt{2}}{2}.$$

Fluss(Oberflächen)-Integrale

Fluss := "Flüssigkeitsvolumen, welches pro Zeiteinheit in Richtung \vec{n} durch das Flächenstück S hindurchfliesst."

- Normale Flussintegrale

1. Fläche S parametrisieren, d.h. finde:

$$\Phi: [a,b] \times [c,d] \to \mathbb{R}^3,$$

$$(u, v) \to \Phi(u, v) = (\Phi_1(u, v), \Phi_2(u, v), \Phi_3(u, v))$$

- 2. Berechne $\Phi_u = \frac{\partial \Phi}{\partial u}$ und $\Phi_v = \frac{\partial \Phi}{\partial v}$
- 3. Kreuzprodukt $\Phi_u \times \Phi_v$ berechnen
- 4. Formel benutzen und Vorzeichen wählen:

$$\int_{S} \langle \vec{v} \cdot \vec{n} \rangle do = \pm \int_{a}^{b} \int_{c}^{d} \langle \vec{v}(\Phi(u, v)) \cdot (\Phi_{u} \times \Phi_{v}) \rangle du dv$$

→ Oberfläche in Teile aufteilen und einzeln betrachten

Normalenvektoren bestimmen

Normalenvektor entweder nach Rezept berechnen oder geometrische Analyse (siehe Beispiel)

- Satz von Gauss

$$\int_{\partial V} \langle \vec{v} \cdot \vec{n} \rangle do = \int_{V} div(\vec{v}) d\mu$$

wobei:

$$div(\vec{v}) = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}$$

 \Rightarrow Häufig nützt auch hier eine Koordination
transformation in einen Zylinder oder eine Kugel

Tipps

- Falls der Strom durch den Mantel verlangt ist:
- $(1) \rightarrow \text{Strom kompletter K\"{o}rper (Gauss)}$
- (2) → Strom Deckel/Boden berechnen (normale Methode)
- $(3) \Rightarrow Fluss_{Final} = Fluss_{Mantel} Fluss_{Boden/Deckel}$

Beispiele Flussintegrale

Beispiel mit Fluss durch Kegelmantelfläche

Berechnung des Oberflächen
integrals $\int \int_M \vec{F} \cdot d\vec{M},$ wobei

$$\vec{F} = \begin{pmatrix} \frac{x^2}{2} \\ -xy \\ x^2 + 3z^2 - 3 \end{pmatrix}$$
 und M die Mantelfläche d. Kegels

(i) Divergenz berechnen von \vec{F}

$$div(\vec{F}) = x - x + 6z = 6z$$

(ii) Fluss durch ganzen Kegel berechnen (Gauss)

$$\iiint_{K} \operatorname{div}(\vec{F}) \, dV = \int_{-1}^{1} \int_{0}^{2\pi} \int_{0}^{\frac{z+1}{2}} 6zr dr \, d\phi \, dz$$
$$= 12\pi \int_{-1}^{1} z \frac{(z+1)^{2}}{8} dz$$
$$= \frac{3\pi}{2} \left[\frac{z^{4}}{4} + \frac{2z^{3}}{3} + \frac{z^{2}}{2} \right]_{-1}^{1}$$
$$= \frac{3\pi}{2} \frac{4}{3} = 2\pi.$$

(iii) Fluss durch Deckel (normale Methode) mit $\vec{n} = (0, 0, 1)$

$$\int \int_{D} \langle \vec{F} \cdot \vec{n} \rangle d\vec{D} = \int \int_{D} x^{2} dx dy \quad \text{da z=1}$$

Koord. Transformation: $= \int_0^{2\pi} \int_0^1 r^2 * cos(\phi)^2 * r * dr d\phi$

$$\left[\frac{r^4}{4}\right]_0^1 * \frac{1}{2} \left[\phi + \cos(\phi) * \sin(\phi)\right]_0^{2\pi} = \frac{\pi}{4}$$

(iv) $Fluss_{Mantel} = Fluss_{Komplett} - Fluss_{Deckel}$

$$\iint_M \vec{F} \cdot d\vec{M} = \iiint_K \operatorname{div}(\vec{F}) \, dV - \iint_D \vec{F} \cdot d\vec{D} = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}.$$

Beispiel - Gauss

13.4. Gauß Gegeben sind die Menge $Z=\{(x,y,z)\in\mathbb{R}^3\,;\;x^2+y^2\leq 1,\;-1\leq z\leq 1\}$ und das Vektorfeld $v\colon\mathbb{R}^3\to\mathbb{R}^3$ mit

$$v(x,y,z) = \begin{pmatrix} v^1(x,y,z) \\ v^2(x,y,z) \\ v^3(x,y,z) \end{pmatrix} = \begin{pmatrix} x-y+z \\ x+y+z \\ z+z^2 \end{pmatrix}.$$

(a) Zunächst berechnen wir die Divergenz

$$\operatorname{div}(v) = rac{\partial v^1}{\partial x} + rac{\partial v^2}{\partial y} + rac{\partial v^3}{\partial z} = 3 + 2z.$$

Gemäss des Satzes von Gauß beträgt der Fluss von v durch den Rand von Z

$$\int_{\mathbb{R}} \operatorname{div}(v) \, d\mu = \int_{\mathbb{R}} (3+2z) \, d\mu = \pi \int_{-1}^{1} (3+2z) \, dz = 6\pi,$$

wobei ausgenutzt wird, dass der Integrand nur von z und nicht von x,y abhängt, und die Schnitte $Z \cap \{(x,y,z);\ x,y\in\mathbb{R},\ z=c\}$ für jedes feste $c\in[-1,1]$ Kreisscheiben vom Flächeninhalt π sind.

(b) Um den Anteil des Flusses durch die Zylindermantelfläche zu bestimmen, subtrahieren wir die Flüsse durch Deckel D und Boden B vom Gesamtfluss. Es gilt

$$\begin{split} D &= \{(x,y,z) \in \mathbb{R}^3 \; ; \; x^2 + y^2 \leq 1, \; z = 1\}, \\ B &= \{(x,y,z) \in \mathbb{R}^3 \; ; \; x^2 + y^2 \leq 1, \; z = -1\}. \end{split}$$

 $n=\left(egin{smallmatrix} 0\\0\\1 \end{smallmatrix}\right)$ ist der äussere Einheitsnormalenvektor auf D. Der Fluss durch D beträgt

$$\int_D v \cdot n \, do = \int_D 2 \, do = 2 \cdot do(D) = 2\pi.$$

Auf B ist $\tilde{n}=\left(\begin{smallmatrix}0\\-1\\1\end{smallmatrix}\right)$ der äussere Einheitsnormalenvektor. Wegen z=-1 gilt jedoch $v\cdot\tilde{n}=0$ für alle x,y, das heisst der Fluss von v durch B ist Null.

Somit geht $\frac{(6\pi-2\pi)}{6\pi}=\frac{2}{3}$ des Flusses durch die Mantelfläche.

Tipps zur Berechnung

- Falls Fläche / Vol. bekannt $\Rightarrow do(D)$ / dV(V) nutzen
- Bei bekanntem Körper besser do(D), dV(V) verwenden, anstatt Integral zu berechnen (wobei diese das Flächenbzw. Volumenelement bezeichnen)

Satz von Stokes

Erlaubt es Flussintegrale mithilfe von Wegintegralen zu berechnen (und umgekehrt).

$$\int_{\gamma=\partial C} \vec{v} \cdot d\vec{s} = \int_C \langle rot(\vec{v}) \cdot \vec{n} \rangle do$$

Kurve γ (Rand ∂C) muss im Gegenuhrzeigersinn verlaufen.

$$rot(\vec{v}) = \nabla \times \vec{v} = \begin{pmatrix} \frac{\partial v_3}{\partial y} - \frac{\partial v_2}{\partial z} \\ \frac{\partial v_1}{\partial z} - \frac{\partial v_3}{\partial x} \\ \frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y} \end{pmatrix}$$

Flussintegrale mit Stokes

nicht behandelt im Unterricht!

We gintegrale in \mathbb{R}^3 mit Stokes

- (i) Rotation von \vec{v} berechnen
- (ii) Normalvektor (normiert) bestimmen
- (iii) Skalarprodukt $\langle rot(\vec{v}) \cdot \vec{n} \rangle$ berechnen
- (iv) Berechnung von $\int_{D} \langle rot(\vec{v}) \cdot \vec{n} \rangle do$

⇒ Falls Fläche bekannt:

$$\int_{D} \langle rot(\vec{v}) \cdot \vec{n} \rangle \; do = \langle rot(\vec{v}) \cdot \vec{n} \rangle \cdot do(D)$$

wobei do(D) die bekannte Fläche ist.

Alternativ kann es auch über eine Parametrisierung gelöst werden! (siehe Beispiel)

Beispiele - Stokes

Wegintegral berechnen mit Stokes - Bsp.

13.5. Stokes Gegeben sind die Kurve $\gamma = \gamma_1 \cup \gamma_2 \cup \gamma_3$ und das Vektorfeld

$$w(x,y,z) = \begin{pmatrix} w^1(x,y,z) \\ w^2(x,y,z) \\ w^3(x,y,z) \end{pmatrix} = \begin{pmatrix} x-y+z \\ y-z+x \\ z-x+y \end{pmatrix}$$

(a) Weil das Vektorfeld und die Kurven γ_i symmetrisch bezüglich zyklischer Vertauschung $x \leadsto y \leadsto z \leadsto x$ sind, gilt

$$\int_{\gamma} w \cdot d\vec{s} = \int_{\gamma_1} w \cdot d\vec{s} + \int_{\gamma_2} w \cdot d\vec{s} + \int_{\gamma_3} w \cdot d\vec{s} = 3 \int_{\gamma_1} w \cdot d\vec{s}.$$

Wir parametrisieren $\gamma_1 \colon [0,1] \to \mathbb{R}^3$ mit $\gamma_1(t) = (1-t,t,0)$ und erhalten

$$\int_{\gamma} w \cdot d\vec{s} = 3 \int_{0}^{1} w \left(\gamma_{1}(t) \right) \cdot \dot{\gamma_{1}}(t) dt = 3 \int_{0}^{1} \begin{pmatrix} (1-t) - t \\ t + (1-t) \\ -(1-t) + t \end{pmatrix} \cdot \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} dt$$
$$= 3 \int_{0}^{1} -(1-2t) + 1 + 0 dt = 3.$$

(b) Sei D das berandete, ebene Dreieck. Wir parametrisieren Dals Graph über $\Omega=\{(x,y)\in\mathbb{R}^2\,;\,0\leq x\leq 1,\ 0\leq y\leq 1-x\},$ das heisst, durch $\Phi\colon\Omega\to D$ mit

$$\Phi(x,y) = (x,y,1-x-y).$$

Es gil

$$\Phi_x \times \Phi_y = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \operatorname{rot}(w) = \begin{pmatrix} \partial_y w^3 - \partial_z w^2 \\ \partial_z w^1 - \partial_x w^3 \\ \partial_x w^2 - \partial_2 w^1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}.$$

Sei $n\colon D\to\mathbb{R}^3$ der Einheitsnormalenvektor auf D. Es gilt $(n\circ\Phi)|\Phi_x\times\Phi_y|=\Phi_x\times\Phi_y$. Aus dem Satz von Stokes und mit Definition 8.6.3 folgt

$$\begin{split} \int_{\partial D} w \cdot d\vec{s} &= \int_{D} \mathrm{rot}(w) \cdot n \, do = \int_{\Omega} \Bigl((\mathrm{rot}(w) \cdot n) \circ \Phi \Bigr) |\Phi_x \times \Phi_y| \, d\mu(x,y) \\ &= \int_{\Omega} \Bigl(\mathrm{rot}(w) \circ \Phi \Bigr) \times (\Phi_x \times \Phi_y) \, d\mu(x,y) = \int_{\Omega} (2+2+2) \, d\mu(x,y) \\ &= \int_{0}^{1} \int_{0}^{1-x} 6 \, dy \, dx = \int_{0}^{1} 6(1-x) \, dx = 3. \end{split}$$

(c) Da $\operatorname{rot}(w) = \binom{2}{2}$ konstant ist und $n = \frac{1}{\sqrt{2}} \binom{1}{1}$ gilt, so folgt

$$\int_{D} \operatorname{rot}(w) \cdot n \, do = \int_{D} \frac{6}{\sqrt{3}} \, do = \frac{6}{\sqrt{3}} \cdot \mu_{2}(D).$$

Als gleichseitiges Dreieck mit Seitenlänge $\sqrt{2}$ hat D den Flächeninhalt $\mu_2(D) = \frac{\sqrt{3}}{2}$.

Oft vorkommende Integrale

$$\int_0^{2\pi} \cos^4(t)dt = \int_0^{2\pi} \sin^4(t)dt = \frac{3\pi}{4}$$

$$\int_0^{2\pi} \cos^2(t)dt = \int_0^{2\pi} \sin^2(t)dt = \pi$$

$$\int_0^{2\pi} \sin(t) \cdot \cos(t)dt = \int_0^{2\pi} \cos(t)dt = \int_0^{2\pi} \sin(t)dt = 0$$

$$\int_0^{2\pi} \sin(t) \cdot \cos^2(t)dt = \int_0^{2\pi} \cos(t) \cdot \sin^2(t)dt = 0$$

$$\int_0^{2\pi} \cos^3(t)dt = \int_0^{2\pi} \sin^3(t)dt = 0$$

Appendix

Allgemeines

Mitternachtsformel

$$ax + bx + c = 0$$
 \Longrightarrow $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Kreuzprodukt

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Ntzliche Ungleichungen

Dreiecksungleichung: $\forall x, y \in \mathbb{C} : |x + y| \le |x| + |y|$

Youngsche Ungleichung: $\forall x, y \in \mathbb{R}, \ \epsilon > 0 : 2|xy| \le \epsilon x^2 + \frac{1}{\epsilon}y^2$

Cauchy-Schwarzsche Ungleichung: $\forall x, y \in \mathbb{R}^n : |x \cdot y| \le ||x|| ||y||$

Bernoullische Ungleichung: $(1+x)^n \ge 1 + nx$ für reelles $x \ge -1, n \in \mathbb{N}_0$

$\underline{\text{Potenzgesetze}}$

$$a^0 = 1$$

$$a^1 = a$$

$$a^m \cdot a^n = a^{m+n}$$

$$(a^n)^m = a^{nm}$$

$$\frac{a^n}{a^m} = a^{n-m}$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{\frac{b}{n}} = \sqrt[n]{a^b}$$

Wurzel-Reglen

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

${\bf Log\text{-}Reglen}$

$$y = \log_a x \Leftrightarrow x = a^y$$

$$\log_a 1 = 0$$

$$\log_a a^x = x$$

$$a^{\log_a x} = x$$

$$\log_a x \cdot y = \log_a x + \log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a \frac{1}{x} = -\log_a x$$

$$\log_a x^r = r \log_a x$$

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$\log_a x = \frac{\ln x}{\ln a}$$

Trigonometrie

Winkel	0	30	45	60	90	180	270
rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
Tangens	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	0	-

- Trigonometrische Identitäten:

$\cos^2(x) + \sin^2(x)$	= 1
$\sin(-\alpha)$	$=-\sin(\alpha)$
$\cos(-\alpha)$	$=\cos(\alpha)$
$\tan(-\alpha)$	$=-\tan(\alpha)$
$\sin(\alpha \pm \beta)$	$=\sin(\alpha)\cos(\beta)\pm\sin(\beta)\cos(\alpha)$
$\cos(\alpha \pm \beta)$	$=\cos(\alpha)\cos(\beta)\mp\sin(\alpha)\sin(\beta)$
$\tan(\alpha \pm \beta)$	$= \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$
$\sin(2\alpha)$	$= 2\sin(\alpha)\cos(\alpha)$
$\cos(2\alpha)$	$=\cos^2(\alpha)-\sin^2(\alpha)$
$\tan(2\alpha)$	$= \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$
$\sin(3\alpha)$	$= 3\sin(\alpha) - 4\sin^3(\alpha)$
$\cos(3\alpha)$	$=4\cos^3(\alpha)-3\cos(\alpha)$
$\tan(3\alpha)$	$= \frac{3\tan(\alpha) - \tan^3(\alpha)}{1 - 3\tan^2(\alpha)}$
$\sin(\arccos(\alpha))$	$= \sqrt{1 - \alpha^2} = \cos(\arcsin(\alpha))$

$$\cosh(x) \qquad \qquad = \frac{e^x + e^{-x}}{2} = -i\sin(ix)$$

$$\tanh(x) \qquad \qquad = \frac{\sinh(x)}{\cosh(x)} = -i\tan(ix)$$

 $= \cosh(x) \pm \sinh(x)$

 $e^{\pm x}$

Integral-Tabelle (Integrationskonstante C nicht vergessen)

f(x)	F(x)	f(x)	F(x)
x^n	$\frac{1}{n+1}x^{n+1}$	$\frac{1}{\sin(x)}$	$\ln\left \tan\left(\frac{x}{2}\right)\right $
$(ax+b)^n$	$\frac{1}{a \cdot (n+1)} (ax+b)^{n+1}$	$\frac{1}{\cos(x)}$	$\left \ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right \right $
\sqrt{x}	$\frac{2}{3}x^{\frac{3}{2}}$	$\sin^2(x)$	$\frac{1}{2}(x - \sin(x)\cos(x))$
$\sqrt[n]{x}$	$\frac{n}{n+1}x^{\frac{1}{n}+1}$	$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$
$\frac{1}{ax+b}$	$\frac{1}{a}\ln ax+b $	$\tan^2(x)$	$\tan(x) - x$
$\frac{ax+b}{cx+d}$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $	$\cot^2(x)$	$-\cot(x)-x$
		$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $	$\arccos(x)$	$x\arccos(x) - \sqrt{1-x^2}$
$\sqrt{a^2 + x^2}$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$	$\arctan(x)$	$x\arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\sqrt{a^2-x^2}$	$\frac{x}{2}\sqrt{a^2-x^2} - \frac{a^2}{2}\arcsin\frac{x}{ a }$	$\sinh(x)$	$\cosh(x)$ und umgekehrt
$\sqrt{x^2 - a^2}$	$\frac{x}{2}f(x) - \frac{a^2}{2}\ln\left(x + f(x)\right)$	$\tanh(x)$	$\ln(\cosh(x))$
$\frac{1}{\sqrt{x^2+a^2}}$	$\ln(x + \sqrt{x^2 + a^2})$	$\frac{1}{\cosh(x)}$	arctan(sinh(x))
$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln(x + \sqrt{x^2 - a^2})$	$\frac{f'(x)}{f(x)}$	
$\frac{1}{\sqrt{a^2-x^2}}$	$\arcsin(\frac{x}{ a })$	$\ln x $	$x \cdot (\ln x - 1)$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$\frac{1}{x}(\ln x)^n$	$\frac{1}{n+1}(\ln x)^{n+1} n \neq -1$
$\frac{-1}{\sqrt{1-x^2}}$	$\arccos(x)$	$\frac{1}{x} \ln x^n$	$\frac{1}{2n}(\ln x^n)^2 n \neq 0$
$\frac{1}{x^2 + a^2}$	$\frac{1}{a}\arctan(\frac{x}{a})$	$\frac{1}{x \ln x}$	
$\frac{-1}{1+x^2}$	$\operatorname{arccot}(x)$	a^{bx}	$\frac{1}{b \ln a} a^{bx}$
$\frac{1}{\sqrt{x^2+1}}$	arsinh(x)	e^{cx}	$\frac{1}{c}e^{cx}$
$\frac{-1}{\sqrt{x^2-1}}$	$\operatorname{arcosh}(x)$	$x \cdot e^{cx}$	$\frac{cx-1}{c^2} \cdot e^{cx}$
$\frac{1}{1-x^2}$	$\arctanh(x)$	$x^n \ln x$	$\frac{x^{n+1}}{n+1} \left(\ln x - \frac{1}{n+1} \right) n \neq -1$
		$e^{cx}\sin(ax+b)$	$\frac{e^{cx}(c\sin(ax+b) - a\cos(ax+b))}{a^2 + c^2}$
$\sin(ax+b)$	$-\frac{1}{a}\cos(ax+b)$	$e^{cx}\cos(ax+b)$	$\frac{e^{cx}(c\cos(ax+b)+a\sin(ax+b))}{a^2+c^2}$
$\cos(ax+b)$	$\frac{1}{a}\sin(ax+b)$	$\sin^n(x)$	$s_n = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} s_{n-2}$
tan(x)	$-\ln \cos(x) $		$s_0 = x s_1 = -\cos(x)$
$\cot(x)$	$ \ln \sin(x) $	$\cos^n(x)$	$c_n = \frac{1}{n}\sin x \cos^{n-1} x + \frac{n-1}{n}c_n$
			$ c_0 = x c_1 = \sin(x) $

Ableitungs-Tabelle

f(x)	f'(x)
$\frac{c}{c}$	0
x^n	nx^{n-1}
$\frac{1}{x^n}$	$-n\frac{1}{x^{n+1}}$
	x^{n+1} $x^{\frac{1}{n}-1}$
$\sqrt[n]{x} = x^{\frac{1}{n}}$	$\frac{1}{n\sqrt[n]{n^{n-1}}} = \frac{x^{\frac{1}{n}-1}}{n} = \frac{1}{nx^{\frac{n-1}{n}}}$
\sqrt{x}	$\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$
$e^{\alpha x + \beta}$	$\alpha e^{\alpha x + \beta}$
$e^{x^{\alpha}}$	$\alpha x^{\alpha-1}e^{x^{\alpha}}$
α^x	$lpha^x ln(lpha)$
a^{cx}	$a^{cx} \cdot c \ln a$
x^x	$x^x(ln(x)+1)$
$x^{x^{\alpha}}$	$x^{x^a} \left(ax^{a-1} \ln \left(x \right) + x^{a-1} \right)$
	$=x^{x^{a}+a-1}\left(a\ln \left(x\right) +1\right)$
$ln(\alpha x + \beta)$	$\frac{\alpha}{\alpha x + \beta}$
$log_a(x)$	$\frac{1}{ln(a)\cdot x}$
	、
$sin(\alpha x + \beta)$	$\alpha cos(\alpha x + \beta)$
$sin^2(x)$	$2 \cdot cos(x) \cdot sin(x)$
$cos(\alpha x + \beta)$	$-\alpha sin(\alpha x + eta)$
$cos^2(x)$	$-2 \cdot cos(x) \cdot sin(x)$
tan(x)	$1 + tan^2(x) = \frac{1}{\cos^2(x)}$
arcsin(x)	
arccos(x)	$ \frac{\frac{1}{\sqrt{1-x^2}}}{-\frac{1}{\sqrt{1-x^2}}} $
arctan(x)	$\begin{array}{c} \sqrt{1-x^2} \\ \frac{1}{1+x^2} \end{array}$
$sinh(x) = \frac{e^x - e^{-x}}{2}$	cosh(x)
$\cosh(x) = \frac{e^x + e^{-x}}{2}$	sinh(x)
tanh(x)	$\frac{1}{\cosh^2(x)}$
` '	$cosn^{-}(x)$
$\frac{1}{f(x)}$	$\frac{-f'(x)}{(f(x))^2}$
x^x	$x^x \cdot (1 + \ln x) x > 0$
$(x^x)^x$	$(x^x)^x(x+2x\ln(x)) x>0$
$x^{(x^x)}$	$x^{(x^x)}(x^{x-1} + \ln x \cdot x^x(1 + \ln x)))$
	((1 / 111 //))

Geometrie

Bekannte Körper und Formen

	Fläche	Oberfläche
- Parallelogramm	$A = b \cdot h$	
- Dreieck	$A = \frac{1}{2}b \cdot h$	
- Trapez	$A = \frac{1}{2}(a+b) \cdot h$	
- Kreis	$A=r^2\cdot \pi$	$U = 2r \cdot \pi \text{ (Umfang)}$
- Kugel	$A=4\pi\cdot r^2$	$V = \frac{4}{3} \cdot \pi \cdot r^3$
- Zylinder		$V = \pi \cdot r^2 \cdot h$
- Kegel		$V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h$
- Pyramide		$V = \frac{1}{3} \cdot G \cdot h$ $V = \frac{4}{3} \cdot \pi \cdot abc$
- Ellipsoid		$V = \frac{4}{3} \cdot \pi \cdot abc$

Tricks / Verfahren

Partialbruchzerlegung (PBZ)

- Nenner in Linear-Faktoren zerlegen (Faktorisieren \rightarrow nicht 2 identische Faktoren
- Gleichung aufstellen mit $\frac{A}{}$ + $\frac{B}{}$ + ...
- Gleichnahmig machen
- Koeffizientenverglich mittels Matrix (Gauss anwenden)

Zum Ansatz werden jeweils abhängig von der Art der Nullstellen folgende Summanden hinzugefügt:

- 1. einfache Nullstelle x_i : $\frac{a_{i1}}{x-x_i}$
- 2. j-fache Nullstelle x_i : $\frac{a_{i1}}{x-x_i} + \cdots + \frac{a_{ij}}{(x-x_i)^j}$
- 3. komplexe Nullstellenpaare: $\frac{b_i x + c_i}{x^2 + p_i x + q_i}$ mit $x^2 + p_i x + q_i = (x z_i)(x \overline{z_i})$ wobei das Nennerpolynom die beiden Nullstellen $z_i, \overline{z_i}$ hat.

Normen

Eine Norm auf \mathbb{R}^d ist eine Abbilung $\|\cdot\|:\mathbb{R}^d\to\mathbb{R}$

1.
$$||x|| \ge 0$$
, $||x|| = 0 \iff x = 0$

$$2. \|\alpha x\| = |\alpha| \|x\|$$

3.
$$||x + y|| \le ||x|| + ||y||$$

$p ext{-Norm}$

Für $1 \leq p \leq \infty$ ist die p-Norm definiert als

$$||x||_p = \sqrt[p]{\sum_{i=1}^d |x_i|^p}$$
 $||x||_{\infty} = \max_{1 \le i \le d} |x_i|$

C^m -Norm

Sei Ω beschränkt und sei $f:\Omega\to\mathbb{R}^n$ auf $\overline{\Omega}$ stetig ergänzbar und m mal diffbar. Dann gilt

$$||f||_{C_m(\overline{\Omega})} := \sup_{x \in \Omega} |f(x)| + \sup_{x \in \Omega} |f'(x)| + \dots + \sup_{x \in \Omega} |f^{(m)}(x)| < \infty$$
$$= ||f||_{C^0} + ||f'||_{C^0} + \dots + ||f^{(m)}||_{C^0}$$

Äquivalenz von Normen

Zwei Normen $\|\cdot\|^{(1)}$ und $\|\cdot\|^{(2)}$ sind äquivalent, falls ein C>0 existiert, so dass

$$\frac{1}{C} \| \cdot \|^{(1)} \le \| \cdot \|^{(2)} \le C \| \cdot \|^{(1)} \qquad \forall x \in \mathbb{R}^d$$

Je zwei Normen $\|\cdot\|^{(1)}$ und $\|\cdot\|^{(2)}$ auf \mathbb{R}^d sind äquivalent.