# MATLAB最小二乘法

作者: 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

#### 一、实验目的

对于一组数据 $(x_i, y_i)$  $(i = 1, 2, \cdots, m)$ ,这些数据在xOy平面直角坐标系下对应点的趋势,求出与这些点适当接近的曲线所对应的函数,以达到用曲线逼近数据点的目的。称为拟合。这次实验,主要是用多项式拟合所给的数据。采用的方法称为最小二乘法。

#### 二、实验原理

设
$$(x_i,y_i)(i=1,2,\cdots,m)$$
。选取 $n$ 次多项式 $P(x)=\sum_{j=0}^n a_j x^j$ ,记 $S=\sum_{i=1}^m [P(x_i)-y_i]^2$ ,选取 $a_j$ 使 $S$ 

达到最小值,这种方法就是最小二乘法令

显然A是n+1阶对称矩阵,方程组(\*)称为最小二乘法的正规方程组,或正则方程组解之得 $a_j(j=1,2,\cdots,n)$ 便可得最小二乘拟合多项式P(x)

#### 三、实验程序

输入 数据
$$(x_i, y_i)(i = 1, 2, \dots, m)$$
.

Step 1 对 $k = 0, 1, 2, \dots, m$  做 Step 2 对 $j = 1, 2, \dots, m$  做
$$A[k, j] = \sum_{i=1}^{m} x_i^k$$

$$b[j] = \sum_{i=1}^{m} x_i^k y_i$$

Step 3 解Ax = b,其中 $x = (a_0, a_1, \cdots, a_n)^T - -$ 用直接或选列主元的紧凑格式等方法输出 P(x).

### 四、实验内容

设有如下数据:

| $x_j$    | -3    | -2   | -1  | 0    | 1    | 2    | 3    |
|----------|-------|------|-----|------|------|------|------|
| $f(x_j)$ | -1.76 | 0.42 | 1.2 | 1.34 | 1.43 | 2.25 | 4.38 |

用3次多项式拟合这组数据.

## 五、解答(按如下顺序提交电子版)

## 1.(程序)

#### LSM1.m:

```
b(i+1) = sum(x. \hat{i}.*y);
end
a=A \setminus b';
p=fliplr(a');
2.(运算结果)
\Rightarrow x=[-3, -2, -1, 0, 1, 2, 3];
\Rightarrow y=[-1.76, 0.42, 1.2, 1.34, 1.43, 2.25, 4.38];
>> p=LSM1(x, y, 3)
p =
    0.1133 -0.0018
                        0.0035
                                   1.3300
3.(拓展 (方法改进、体会等))
MATLAB中有关于最小二乘法的现成的函数,如下编写程序:
ploy1.m:
function [p]=ploy1(x, y)
P=polyfit(x, y, 3);
xi = -4:.2:4;
p=polyfit(x, y, 3);
yi=polyval(P, xi);
plot(xi, yi, x, y, 'r*');
结果:
\Rightarrow x=[-3,-2,-1,0,1,2,3];
y=[-1.76, 0.42, 1.2, 1.34, 1.43, 2.25, 4.38]; [p]=ploy1(x, y)
p =
    0.1133 -0.0018
                        0.0035
                                   1.3300
```

则y=0.1133\*x^3-0.0018\*x^2+0.0035\*x+1.33



注:非线性曲线拟合见: MATLAB实例: 非线性曲线拟合