Krzysztof Purgat 247771 Wtorek,10:30

METODY NUMERYCZNE – LABORATORIUM

Zadanie 4- Całkowanie numeryczne

Opis rozwiązania

Celem zadania było stworzenie programu implementującego dwie metody całkowania numerycznego: złożoną kwadraturę Newtona-Cotesa opartą na trzech węzłach (wzór Simpsona) oraz całkowanie na przedziale $(-\infty, +\infty)$ z wagą e^{-x^2} (wielomiany Hermite'a) całek postaci $\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx$.

W metodzie Newtona-Cotesa użytkownik podaje przedział (a,b) oraz dokładność. Zadany przedział jest dzielony na parzystą liczbę n podprzedziałów o równej długości $h=\frac{b-a}{n}$. Następnie liczone są wartości funkcji na krańcach przedziału a w pętli iterujemy po kolejnych węzłach wewnątrz przedziału, obliczając wartości funkcji. Sumujemy wartości funkcji, według wzoru Simpsona:

$$\int_{a}^{b} f(x)dx = \frac{h}{3} \left(f(a) + f(b) + 4 \sum_{i=1}^{k} f(x_{2i-1}) + 2 \sum_{i=1}^{k-1} f(x_{2i}) \right)$$

Do porównania wyników z obu metod do kwadratury Newtona-Cotesa została dodana funkcja wagowa.

Kwadratura Gaussa-Hermite'a stosowana jest do obliczania całek na przedziale $(-\infty, +\infty)$ postaci:

$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx \approx \sum_{i=0}^{n} \omega_i f(x_i)$$

gdzie:

n – liczba punktów (węzłów) użytych do przybliżenia całki,

 ω_i – waga dla i-tego punktu,

 x_i – współrzędna i-tego punktu.

Wartości wag oraz punktów zaczytujemy z pliku udostępnionego na stronie przedmiotu.

Wyniki

 $f(x) = x^2 + 18$, przedział (-10; 10), dokładność $\varepsilon = 0.001$

Wynik teoretyczny	Kwadratura złożona Newtona-Cotesa
32.7904	32.7898687694607

Wynik teoretyczny	Kwadratura Gaussa-Hermite'a	
32.7904	2 węzły	32.79039624175205
	3 węzły	32.79039624175205
	4 węzły	32.79039624175205
	5 węzłów	32.79039624175205

$f(x) = \cos{(2x)}$, przedział (-10; 10), dokładność $\varepsilon = 0.001$

Wynik teoretyczny	Kwadratura złożona Newtona-Cotesa
0.652049	0.6526899128193705

Wynik teoretyczny	Kwadratura Gaussa-Hermite'a	
0.652049	2 węzły	0.2764030023113222
	3 węzły	0.7267617754272044
	4 węzły	0.6414332984224324
	5 węzłów	0.6532237523816323

 $f(x) = \log(x + 4)$, przedział (-1; 1), dokładność $\varepsilon = 0.001$

Wynik teoretyczny	Kwadratura złożona Newtona-Cotesa
2.05859	2.0594904096651874

Wynik teoretyczny	Kwadratura Gaussa-Hermite'a	
2.42799	2 węzły	2.4290062275610946
	3 węzły	2.4280626978320075
	4 węzły	2.427994944446034
	5 węzłów	2.4279870558570478

Wnioski

- Dzięki odpowiedniemu doborowi punktów i ich wag, metoda Gaussa-Hermite'a może osiągnąć bardzo wysoką dokładność przybliżenia całki.
- Błąd kwadratury Newtona-Cotesa zależy od liczby podprzedziałów, na które jest dzielony przedział całkowania. Im więcej podprzedziałów, tym dokładniejsze przybliżenie całki.
- Kwadratura Gaussa-Hermite'a, wykorzystująca funkcję wagową w postaci e^{-x^2} , efektywniej całkuje funkcje szybko malejące w kierunku nieskończoności poprzez koncentrację punktów i wag w obszarach, gdzie wartości funkcji są większe.
- Kwadratura Gaussa-Hermite'a potrzebowała tylko dwóch węzłów, aby przybliżyć całkę funkcji x^2+18 , podczas gdy do przybliżenia funkcji $\cos{(2x)}$ potrzebowała pięciu węzłów.