Question number	Scheme	Marks
5 (a)	rg 1 12 96	
	$[S_{\infty} =] \frac{12}{1 - \frac{3}{2}} = \frac{96}{5}$	M1 A1
	$1-\frac{1}{8}$	(2)
(b)	$ar^5 = 12\left(\frac{3}{8}\right)^5$	M1
	(8)	3.54
	$=\frac{2^2\times 3\times 3^5}{2^{15}}=\frac{3^6}{2^{13}}$	M1 A1cso
	2^{15} 2^{13}	(3)
(c)	e.g. $u_n = 12 \left(\frac{3}{8}\right)^{n-1}$	M1
	$\log_2 u_n = \log_2 12 + \log_2 \left(\frac{3}{8}\right)^{n-1}$	M1
	$\log_2 u_n = \log_2 12 + (n-1) [\log_2 3 - \log_2 8]$	M1
	$\log_2 u_n = \log_2 3 + 2\log_2 2 + (n-1)[\log_2 3 - 3\log_2 2]$	M1
	$\log_2 u_n = n \log_2 3 - 3n + 5 *$	A1 cso
	m / ·	(5)
Total 10 marks		

Part	Mark	Notes	
(a)	M1	For the correct use of $\frac{a}{1-r}$ For the correct value $\frac{96}{5}$	
	A1	For the correct value $\frac{96}{5}$	
(b)	M1	For the correct use of ar^{n-1}	
	M1	For expressing 12 $(2^2 \times 3)$ and 8 (2^3) as powers of 2	
	A1cso	For obtaining the given expression with no errors seen.	
(c)		For the correct use of ar^{n-1} and the given values of a and r to	
	M1	give $u_n = 12\left(\frac{3}{8}\right)^{n-1}$	
	M1	For taking logs [base 2] of both sides and applying the addition law.	
	M1	For applying the power law and subtraction laws to $\log_2 \left(\frac{3}{8}\right)^{n-1}$ $\log_2 \left(\frac{3}{8}\right)^{n-1} = (n-1)\left[\log_2 3 - \log_2 8\right]$	
	M1	For obtaining $\log_2 12 = \log_2 3 + 2\log_2 2$	
	A1cso	1cso For obtaining the given equation with no errors seen.	
	ALT		
	M1	For the correct use of ar^{n-1} and the given values of a and r to give $u_n = 12\left(\frac{3}{8}\right)^{n-1}$	
		For rearranging the equation to obtain:	
	M1	$U_n = 12\left(\frac{3}{8}\right)^{n-1} = 2^2 \times 3 \times \frac{3^{n-1}}{2^{3(n-1)}} = \frac{3^n}{2^{3n-5}}$	
	M1	For taking logs of both sides and applying the addition (subtraction) law. $\log_2 U_n = \log_2 3^n - \log_2 (3n - 5)$	
	M1	For applying the power law to obtain: $\log_2 U_n = n \log_2 3 - \log_2 (3n - 5)$	
	A1 cso	For obtaining the given equation with no errors seen.	