Engineering Sketch Pad (ESP)

Training Session 2.4 Sketcher Fundamentals

John F. Dannenhoffer, III

jfdannen@syr.edu Syracuse University

Bob Haimes

Marshall Galbraith

haimes@mit.edu galbramc@mit.edu

Massachusetts Institute of Technology

Overview

- Purpose of Sketches
- Sketching Segments
- Sketching methods
 - programmatically
 - interactively
- Hands-on exercises
 - U-shaped bracket (version 1)
 - U-shaped bracket (version 2)
 - oval
 - bi-convex airfoil (with arcs)
 - swivel base
 - V-slide plate
 - bi-convex airfoil (with splines)
 - fuselage cross-section (with Beziers)

- Method for generating a SheetBody, WireBody, or NodeBody
- Sketches are used a basis of grown Bodys
 - EXTRUDE, REVOLVE, RULE, and BLEND

Sketching Segments

- LINSEG straight line segment
- CIRARC circular arc
- BEZIER Bezier curve
- SPLINE cubic spline

Sketching Methods

- Programmatically
 - can generate Sketch in 3D
 - user does all required math
 - is very robust
- Interactively
 - can generate Sketch only in 2D
 - required math is done by solving constraints
 - is somewhat fragile

Sketching Programmatically

- Begin with a SKBEG statement, which provides an initial point
- Add LINSEG, CIRARC, BEZIER, or SPLINE Segments
 - for the BEZIER and SPLINE statements, one curve is created from the point before these statement, using all the BEZIER or SPLINE statements
 - to have two adjacent curves, put a zero-length LINSEG between them
- Ends with a SKEND statement
 - if there are no Segments, a NodeBody is created
 - if the last Segment does not end at the point specified in the SKBEG statement, a WireBody is created
 - if the Sketch is closed, a SheetBody is created (unless the wireonly flag on the SKEND statement is non-zero)

Programmatic Sketch Example

sketch

DESPMTR	L	2.0		
DESPMTR	H	1.0		
DESPMTR	Z	3.0		
SET	s2	1/sqrt	t(2)	
SKBEG	1.0		2.0	Z
LINSEG	1.0+L		2.0	Z
CIRARC	1.0+L-(1-s	s2)*H	2.0+s2*H	Z \
	1.0+L-H		2.0+H	Z
LINSEG	1.0		2.0+H	Z
LINSEG	1.0		2.0	Z
SKEND				

END

Steps to Creating a Sketch Interactively

- Define the Design Parameters
- 2 Create an empty Sketch
- Oraw the Segments
- Onstrain the Sketch
- Solve the Sketch

Step 1: Define the Design Parameters

- Press **Design Parameters** in the Tree window to create each of the Design Parameters
- Most Design Parameters are a scalar, so that they have only 1 row and 1 column
- Enter nominal value(s) in the box(es) that appears
- Press **OK** to proceed
- Repeat as needed

Step 2: Create an Empty Sketch

- Press **Branches** in the Tree window to create a SKBEG Branch
 - coordinates should be specified at one point on the boundary of the Sketch
 - coordinates can be defined in terms of a Design Parameter
- A SKEND is automatically created for you
- The Sketcher is entered automatically

Step 3: Draw the Segments (1)

- Start drawing the Sketch at the point defined in the SKBEG Branch
 - X and Y Constraints are automatically generated at the initial point
 - these constraints cannot be deleted
- Draw the Segments by proceeding counter-clockwise around the Sketch (which is consistent with the right-hand rule pointing out of the screen)
- Line between previous point and cursor shows proposed position of next Segment
 - blue is default color
 - if drawn in orange, a vertical (V) or horizontal constraint (H) will be added automatically

Step 3: Draw the Segments (2)

- Supported Segment types include:
 - (straight) line Segment
 - l or L or mouse click
 - (circular) arc Segment
 - c or C
 - Segment turns red until you press the mouse button to set its approximate radius
 - cubic spline
 - \bullet s or S
 - cubic splines are shown only as straight line Segments in the Sketcher
 - Bezier curve control points
 - b or B
 - . . .

Step 3: Draw the Segments (3)

- Supported Segment types include:
 - zero-length Segment
 - z or **Z**
 - constraints automatically set
 - leave Sketch open (and switch mode to "Constraining...")
 - o or O
- When Sketch is closed, its interior is filled with gray (and the mode is switched to "Constraining...")
- Pressing the Undo button will remove the last Segment

Step 4: Constrain the Sketch (1)

- As many constraints (**ncon**) must be defined as there are degrees of freedom (**ndof**) in the Sketch
 - these values are listed in the Key window
 - the fill turns to light green when they match (ncon=ndof)
 - having them match is necessary, but not sufficient, for a Sketch to be properly constrained

Step 4: Constrain the Sketch (2)

- Constraints that can be applied to Segments:
 - set the Segment's length
 - 1 or L
 - make the Segment horizontal $(y_{\text{beg}} = y_{\text{end}})$
 - h or H
 - might be automatically created if Segment was orange when created
 - make the Segment vertical $(x_{\text{beg}} = x_{\text{end}})$
 - v or V
 - might be automatically created if Segment was orange when created
 - set the inclination in degrees (measured counter-clockwise from the right horizontal)
 - i or I

Step 4: Constrain the Sketch (3)

- Constraints that can be applied to circular arcs:
 - acute radius (positive if convex when drawing counter-clockwise)
 - r or R.
 - X-coordinate at arc center
 - x or X
 - Y-coordinate at arc center
 - y or Y
 - sweep angle in degrees (positive if convex when drawing counter-clockwise)
 - s or S

Step 4: Constrain the Sketch (4)

- Constraints that can be applied to points:
 - specify X-coordinate
 - x or X
 - specify Y-coordinate
 - y or Y
 - adjacent Segments are perpendicular
 - p or P
 - adjacent Segment are tangent (parallel)
 - t or T
 - turning angle between adjacent Segments in degrees (positive if turning to the left)
 - a or A

esp

Creating a Sketch

Step 4: Constrain the Sketch (5)

- Constraints that can be applied to a pair of points:
 - specify width $(x_{\rm end} x_{\rm beg})$ between two points
 - w or W
 - if first point is toward the left, a positive value should be specified
 - if first point is toward the right, a negative value should be specified
 - specify depth $(y_{\text{end}} y_{\text{beg}})$ between two points
 - **d** of **D**
 - if first point is toward the bottom, a positive value should be specified
 - if first point is toward the top, a negative value should be specified

Step 4: Constrain the Sketch (6)

- Other options:
 - remove Constraints
 - <
 - if more than one constraint is present, you are asked which constraint to remove
 - inquire about constraints at current point or Segment
 - ?
- Pressing the **Undo** button will remove/restore the last constraint

Step 4: Constrain the Sketch (7)

- Special shortcuts
 - ::L[i] is the length of the Segment i
 - ::I[i] is the inclination of Segment i (in degrees)
 - ::R[i] is the radius of CIRARC Segment i
 - ::S[i] is the sweep of CIRARC Segment i (in degrees)
- Segment numbers can be determined by pressing? near the center of a Segment

Step 4: Constrain the Sketch (8)

- If you need help during the constraint process
 - Press the yellow Constraining... button
- Redundant constraints are shown in red
 - Use the < key to remove a redundant constraint
- Suggested new constraints are shown in green
 - Add the constraint using a key that matches the hint

- Press Press to Solve
 - if successful, Sketch will change on screen
 - if unsuccessful, read about error in Messages window to help you diagnose the problem
- Press Sketch→Save to return to normal (non-Sketching) mode
- Press Press to Re-build to see the completed Sketch

Editing an Existing Sketch

- Select one of the Branches between the SKBEG and SKEND Branches (inclusive) and press Enter Sketcher
- Follow directions given above

Deleting an Existing Sketch

- Select each of the Branches between the SKBEG and SKEND and press Delete Branch for each. Then delete the SKEND and SKBEG Branches.
- Select the SKBEG Branch and press **Delete Branch** (to delete whole sketch at once)

Image Manipulation in the Sketcher

- Recenter Sketch
 - Ctrl-h key or H button
- Move the Sketch to the left
 - Ctrl-1 key or L button or \leftarrow key
- Move the Sketch to the right
 - Ctrl-r key or R button or \rightarrow key
- Move the Sketch to the bottom
 - Ctrl-b key or B button or \downarrow key
- Move the Sketch to the top
 - Ctrl-t key or T button or \uparrow key
- Zoom in
 - Ctrl-i key or PgUp key or + button
- Zoom out
 - Ctrl-o key or PgDn key or button

Sketching Best Practices

- Try to start the Sketch at a point with known coordinates
- Proceed around the sketch in a counter-clockwise direction
- Constrain the X-coordinate at one or more points (or arc centers)
- Constrain the Y-coordinate at one of more points (or arc centers)
- Specify the orientation of one or more Segments
 - this is sometimes done by specifying the coordinates of both ends
- Avoid redundancies, such as:
 - points at which angles are constrained and which are adjacent to Segments in which the inclination is constrained
 - dimensions specified for both a series of Segments as well as their combination

Hands-on Exercises

- U-shaped bracket (version 1)
- U-shaped bracket (version 2)
- oval
- bi-convex airfoil (with arcs)
- swivel base
- V-slide plate
- bi-convex airfoil (with splines)
- fuselage cross-section (with Beziers)

Example: U-bracket (version 1)

Hint: move mouse until blue line turns orange to automatically generate horizontal and vertical constraints

Measurements

lenath = 4.00height = 3.00thick = 0.5

Solution: U-bracket (version 1)

Example: U-bracket (version 2)

Hint: You can specify the length of a Segment to be equal to Segment 5's length with :: L[5] (where the Segment number can be obtained with the "?" command).

Measurements

lenath = 4.00height = 3.00thick = 0.5slot = 2.00

Note: slot is centered

Solution: U-bracket (version 2)

Hint: tangency constraints may be useful for this case

esp Solution: Oval

Example: Biconvex airfoil (with arcs)

Hint: the radius() function can be used if one knows the bounding coordinates and the "dip" (see "Help" for details)

Measurements: chord = 2.00thick = 0.10

Note: Circular Arcs

Solution: Biconvex airfoil (with arcs)

Example: Swivel Base

Hint: nested Sketches can be generated with a series of Sketches

Solution: Swivel Base

Example: V-slide Plate

Hint: to make Segments parallel, set an inclination Constraint (and see "Expression rules" in Help)

Solution: V-slide Plate

Example: Biconvex Airfoil (with splines)

Hint: adjacent splines (with slope discontinuities) can be obtained by putting a zero-length line Segments between them

	X	У
A:	.255	.075
B:	.500	.100
C:	.745	.075
D:	1.00	0.00

Solution: Biconvex Airfoil (with splines)

Example: Fuselage X-section (with Beziers)

Hint: the Bezier control points are constrained in the same way as any other point

Solution: Fuselage X-section (with Beziers)

