

A6

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12Q 1/68

A2

(11) International Publication Number: WO 98/26091
(43) International Publication Date: 18 June 1998 (18.06.98)

(21) International Application Number: PCT/CA97/00955

(22) International Filing Date: 12 December 1997 (12.12.97)

(30) Priority Data: 08/766,189 12 December 1996 (12.12.96)

(71) Applicant (for all designated States except US): VISIBLE GENETICS, INC. [CA/CA]; Suite 1000, 700 Bay Street, Toronto, Ontario M5G 1Z6 (CA).

(71)(72) Applicant and Inventor: BLASCZYK, Rainer, H. [DE/DE]; Braschzeile 32, D-14109 Berlin (DE).

(72) Inventor; and

(1)

3. A.M.

Ģ

(75) Inventor/Applicant (for US only): LEUSHNER, James [CA/CA]; 84 Sylvan Valley Way, North York, Ontario M5M 4M3 (CA).

(74) Agents: STRATTON, Robert, P. et al.; Gowling, Strathy & Henderson, Suite 4900, Commerce Court West, Toronto, Ontario M5L 1J3 (CA). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: METHOD AND KIT FOR HLA CLASS I TYPING

GROUP-SPECIFIC NON-CODING REGION PRIMERS

(57) Abstract

The present invention relates to methods and materials for determining the HLA Class I type of a subject, wherein group-specific sequences are used to design primer molecules which may be used in amplification protocols which accurately identify the HLA group(s) and/or allele(s) carried by the subject.

BNSD00ID: <WO__9826091A2_I_>

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain		LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	,	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	1	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon		LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom		MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	ŧ	MD	Republic of Moldova	TG	Togo
BB	Barbados	Ch	Ghana	*	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea		MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece			Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary		ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	IE	ireland		MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel		MR	Mauritania	UG	Uganda
BY	Belarus	IS	iceland		MW	Malawi	บร	United States of Americ
CA	Canada	IT	Italy		MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan		NE	Niger	· VN	Viet Nam
CG	Congo	KE	Kenya		NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	•	NO	Norway	; ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's		NZ	New Zealand	ŧ	
CM	Cameroon		Republic of Korea		PL	Poland	,	
CN	China	KR	Republic of Korea		PT	Portugal	:	
CU	Cuba	KZ	Kazakstan		RO	Romania	*	
CZ	Czech Republic	LC	Saint Lucia		RU	Russian Federation		
DE	Germany	LI	Liechtenstein		SD	Sudan		
DK	Denmark	LK	Sri Lanka		SE	Sweden		
EE	Estonia	LR	Liberia		SG	Singapore		

43

Description

Method And Kit For HLA Class I Typing

1. Introduction

The present invention relates to methods and materials for determining the HLA Class I type of a subject, wherein group-specific sequences are used to design primer molecules which may be used in amplification protocols which accurately identify the HLA group(s) and/or allele(s) carried by the subject.

2. Background Of The Invention

The Histocompatibility Locus Antigen ("HLA") Class I genes comprise three classical genes encoding the major transplantation antigens HLA-A, HLA-B, and HLA-C and seven other Class I genes of which HLA-E, HLA-F and HLA-G are probably functional genes and HLA-H, HLA-I, HLA-K and HLA-L are pseudogenes. The class I genes share a similar structure, which includes, *inter alia*, 5' -> 3', a 5' untranslated flanking region; a first exon ("exon 1") having a length of approximately 73 base pairs ("bp"); a first intron ("intron 1") having a length of approximately 130 bp; a second exon ("exon 2"), having a length of approximately 272 bp; a third exon ("exon 3"), having a length of approximately 276 bp; a third intron ("intron 3"), having a length of approximately 588 bp; and a fourth exon ("exon 4").

The HLA Class I genes are highly polymorphic among individuals. As of 1996, at least 73 alleles of HLA-A, 126 alleles of HLA-B and 35 alleles of HLA-C have been identified. This variability is of particular relevance when tissue transplantation between a donor and a host is contemplated. The histocompatibility antigens of donor and host should be as similar as possible to avoid both immune rejection of the transplanted tissue as well as graft-versus-host disease. It is therefore important to accurately identify the HLA types of donor and host. In view of the exigencies implicit in tissue transplantation, it is desirable that the typing be accomplished as efficiently as possible.

Methods for determining alleles of HLA-A, HLA-B, and HLA-C in a

()

patient sample have been heavily investigated because of the functional importance of these genes in transplant tissue matching and autoimmune diseases. The first tests developed used immunological methods to identify epitopes expressed by various HLA loci. These tests (e.g., the complement-dependent cytotoxicity assay described in Terasaki and McClelland, Nature, 204:998, (1964)) identified broad serological specificities but were not capable of distinguishing between allelic members of a group, and sometimes mis-identified groups altogether Unfortunately, even the most accurate of such low resolution assays cannot detect and distinguish all functionally significant transplant antigens (Anasetti et al. Hum. Immunol., 29:70 (1990)).

High resolution tests performed at the nucleic acid level which distinguish among alleles of each group have become the focus of recent research.

Current methods of high resolution typing include the following.

The Sequence Specific Oligonucleotide Probes ("SSOP") technique, as described in United States Patent No. 5,451,512 assigned to Hoffman-La Roche, Inc., uses a reverse dot blot format, wherein HLA-A probes are immobilized on a membrane, and the labelled target (patient sample) DNA is hybridized to the membrane-bound probe (as described in Saiki et al., 1989, Proc. Natl. Acad. Sci. 86:6230-6234). The pattern of hybridization to the probes on the dot-blot gives information regarding the HLA type of the individual. However, because hybridization is inherently not sufficiently specific to rule out minor differences in sequence between probe and patient sample, there is a possibility that the patient sample may contain an allelic variant which is not accounted for.

Another nucleic acid-based test is the Amplification Refractory

Mutation System (ARMS) as described in the "HLA Class I SSP ARMS-PCR Typing
Kit" Reference Manual, June 1995 edition, published by the Imperial Cancer
Research Fund. This assay is based on the need for complementarity (matching)
between the 3' end of an amplification primer and a target DNA sequence. Absent
such matching, the primer will not function properly and no fragment will be
amplified. Sequence information is deduced by determining, for various pairs of
primers acting on target DNA from a patient sample, whether or not a fragment is
successfully amplified. The accuracy of the technique is limited by the number of

新

が に という

...

di.

13

primer pairs tested and by the possibility that allelic variations exist in regions of DNA which lie between the primers.

In order to overcome the foregoing shortcomings, it has been proposed that typing be accomplished by direct DNA sequencing (Santamaria et al., "HLA Class I Sequence-Based Typing" Hum. Immunol. 37, 39-50 (1993); WO 9219771; US Pat. 5,424,184). However, while direct sequencing of a patient's Class I HLA locus may conceptually be the most accurate, such sequencing may require a time-frame unsuitable for clinical practice. The success of direct sequencing methods may be expected to rely upon the design of efficient protocols and relevant primer sequences.

Prior to the present invention, direct sequencing protocols have exhibited a number of disadvantages. For example, the method of Santamaria et al., supra, fails to provide sufficient information because it focuses on cDNA (exon) sequences which, in view of exon sequence diversity, offer a very limited selection of conserved primer hybridization sites. In addition, because the Santamaria sequencing primers hybridize within an exon, they do not provide information for DNA sequence upstream of the primer which is potentially decisive for distinguishing among alleles. Further, the sites disclosed were determined before the recent discovery of dozens of more alleles that now need to be considered in identifying HLA type.

Intron sequences could provide the preferred hybridization sites for amplification and sequencing primers for the HLA-A, HLA-B and HLA-C genes because they may provide the DNA sequence of the full exon. Intron sequences for an HLA Class I gene were disclosed at least as early as 1985 (Weiss et al Immunobiol 170:367-380, (1985)). Due to their substantial diversity, and the difficulties in sequencing, few intron sequences have been published subsequently.

A number of researchers have made limited use of intron based oligonucleotides for limited aspects of HLA Class I typing.

Blasczyk et al. (Tissue Antigens 1996: 47: 102-110) used exon based amplification primers to determine group specificity. After amplification, universal sequencing primers located in intron 2 were used to sequence the amplified fragment. The paper does not disclose any intron sequence motifs from intron 1 or 3 or the 5'

4

untranslated region.

Cereb et al. (Tissue Antigens 1995: 45:1-11), undertook the identification of intron sequences useful for locus-specific amplification primer sets for all Class I genes. These primer sets were designed to amplify all alleles of the same locus. No group specific amplification primers were sought or reported. Further, amplified fragments were characterized by SSOP and not by direct sequencing.

Johnston-Dow et al (Poster Presentation: 1995 ASHI Meeting, Dallas, TX) presented a system for direct sequence determination of HLA-A wherein degenerate exon based primers were used to amplify exons 1 to 5 of the genomic HLA-A DNA sequence. As in Cereb et al., supra, the degenerate primer pool was designed to amplify all alleles of the HLA-A locus. Group specificity was not sought or reported. Further, sequencing of the amplified fragment was obtained using a degenerate primer mix wherein primers hybridize to intron regions flanking exons 2 and 3.

A rational approach to typing of classical HLA Class I loci would provide a simplified series of steps for high resolution typing of each allele of each loci in a patient sample using intron based oligonucleotides. Further, this method would be able to identify new alleles without ambiguities.

できる

4

1703

*

(:)

 \odot

3. Summary Of The Invention

The present invention relates to materials and methods for high-resolution, nucleic acid-based typing of the three classical HLA Class I genes (comprising the loci HLA-A, HLA-B and HLA-C) in a patient sample. It is based, in part, on the discovery of group-specific sequence motifs, derived from the analysis of numerous patient samples, which include sequences of the 5' flanking region, intron 1, intron 2, and intron 3. Such sequence motifs may be used to design amplification primers which may be used to identify the HLA group or type of a subject. The invention is also based, in part, on the determination of numerous allele-specific sequences which may be used to confirm the precise allelic type of a subject.

The present invention provides for substantially purified nucleic acids which are capable of selectively hybridizing with group specific sequence motifs in untranslated regions of the HLA-A, HLA-B or HLA-C gene loci. Such nucleic acids, which may be comprised in a kit, may be used, alone or in conjunction with exonbased primers, to determine the group specificity of HLA-A, HLA-B, or HLA-C alleles contained in a patient sample and to identify the specific alleles present.

In particular embodiments, the present invention provides for methods of ascertaining the HLA Class I type of a subject which comprise performing a first amplification reaction which identifies the group type of the subject, and a second amplification reaction which produces allele-specific nucleic acids for sequencing.

3.1. Definitions

"Allele" means one of the alternative forms of the gene in question;

"Amplification" means the process of increasing the relative
abundance of one or more specific genes or gene fragments in a reaction mixture with
respect to the other genes. A method of amplification which is well known by those
skilled in the art is the polymerase chain reaction (PCR) as described in United States
Patents Nos. 4,683,194, 4,683,195 and 4,683,202, which are incorporated herein by
reference. The PCR process involves the use of pairs of primers, one for each
complementary strand of the duplex DNA (wherein the coding strand is referred to as

the "sense strand" and its complementary strand is referred to as the "antisense

strand"), that will hybridize at a site located near a region of interest in a gene. Chain

()

extension polymerization (without a chain terminating nucleotide) is then carried out in repetitive cycles to increase the number of copies of the region of interest many times. The amplified oligonucleotides are then separated from the reaction mixture and used as the starting sample for the sequencing reaction. Gelfand et al. have described a thermostable enzyme, "Taq polymerase," derived from the organism Thermus aquaticus, which is useful in this amplification process (see United States Patent Nos. 5,352,600 and 5,079,352 which are incorporated herein by reference);

"Group" as used herein, refers to a subset of alleles of one loci, all of which share sequence features which distinguish them from other groups. For example, serological group reactivity (in a lymphocytotoxicity assay) is the conventional basis for nomenclature of HLA alleles. The first two digits of an allele refer to the serological group; for example, the designation A*0201, A*0202, A*0217 all are members of the A2 group. Further, typically the nomenclature refers to the serological split group (e.g., A23 and A24 are serological splits of A9;

"Group-specific sequence motif" means a generally short, 1-25 nucleotide ("nt") sequence of nucleic acid which is found only in one or a few groups. Where a motif is shared by several groups in one region of the HLA locus, group-specific sequence motifs in other regions of the locus may serve as group-distinguishing features. The motif may share one or more nucleotides with the consensus sequence for the region;

"Haplotype" means the allele present on one chromosome;

"Heterozvoote" means the presence of at least two different alleles of a

gene;

7

"Homozygote" means the presence of a single species of allele of a gene;

"Locus" means a gene, such as HLA-A, HLA-B or HLA-C;
"Locus specific" means an event or thing associated with only one locus;

"Patient sample" means a sample collected from a patient in need of HLA typing which contains a sufficient amount and quality of nucleic acid (preferably DNA) for the performance of an amplification reaction. A nonlimiting example of a suitable source is peripheral blood lymphocytes, tissue (including cell

cultures derived therefrom, mucosal scrapes, spleen and bone marrow;

"Primer" means a polynucleotide generally of 5-50 nucleotides length which can serve to initiate a chain extension reaction;

"Sequencing" or "DNA requencing" means the determination of the order of nucleotides in at least a part of a gene. A well known method of sequencing is the "chain termination" method first described by Sanger et al., Proc. Nat'l Acad. Sci. (USA) 74(12): 5463-5467 (1977) (recently elabora ed in EP-B1-655506, and Sequenase 2.0 product literature (Amersham Life Sciences, Cleveland) incorporated herein by reference). Basically, in this process, DNA to be sequenced is isolated, rendered single stranded, and placed into four vessels. In each vessel are the necessary components to replicate the DNA strand, which include a templatedependant DNA polymerase, a short primer molecule complementary to a known region of the DNA to be sequenced, and individual nucleotide triphosphates in a buffer conducive to hybridization between the primer and the DNA to be sequenced and chain extension of the hybridized primer. In addition, each vessel contains a small quantity of one type of optionally detectably labeled dideoxynucleotide triphosphate, e.g., dideoxyadenosine triphosphate ("ddA"), dideoxyguanosine triphosphate ("ddG"), dideoxycytosine triphosphate ("ddC"), or dideoxythymidine triphosphate ("ddT"). In each vessel, each piece of the isolated DNA is hybridized with a primer. The primers are then extended, one base at a time to form a new nucleic acid polymer complementary to the isolated pieces of DNA. When a dideoxynucleotide is incorporated into the extending polymer, this terminates the polymer strand and prevents it from being further extended. Accordingly, in each vessel, a set of extended polymers of specific lengths are formed which are indicative of the positions of the nucleotide corresponding to the dideoxynucleic acid in that vessel. These sets of polymers are then evaluated using gel electrophoresis to determine the sequence.

"Specific hybridization" means hybridization of one strand of a nucleic acid to its complement.

"Target sequence" means the preferred site for specific hybridization of a primer; and

3563

でである

"Untranslated region" refers to a portion of an HLA locus which is not transcribed into RNA and eventually translated into protein. Examples of untranslated regions are the 5' and 3' flanking regions and intron sequences. For example, the 5' flanking region is neither transcribed nor translated, and intron sequences are transcribed but not translated.

4. Description Of The Figures

FIGURE 1 is an illustration of the principle for an HLA class I sequencing strategy. Group-specific primers are used for PCR amplification, and universal primers located in the 2nd intron are used for sequencing, regardless of the amplified group. 5'FR= 5' flanking region; 5' UTR= 5' untranslated region (-1 to -23 from the ATG start codon in exon 1).

FIGURE 2A and 2B depict, in schematic form, a method of the invention in which a cocktail of HLA-A group specific primers is used to amplify target DNA contained in a patient sample. The products of amplification are then separated electrophoretically in an agarose gel, allowing the identification, by fragment mobility, of fragments corresponding to groups A2 and A3. Primers specific for groups A2 and A3 are then used to amplify duplicate samples of target DNA in separate reactions, to produce A2 and A3 fragments which may then be sequenced using universal sequencing primers. FIGURE 2C and 2D depict a strategy wherein group type specificity is determined by reaction of aliquots of genomic DNA in separate reactions with a panel of primer pairs.

FIGURE 3 depicts the nucleic acid sequences of the HLA-A 5' flanking region in various alleles, including a consensus sequence (SEQ ID NO:1) as well as the sequences for the following alleles: A*0101 (SEQ ID NO:2); A*0301 (SEQ ID NC.2); A*1101 (SEQ ID NO:4); A*1102 (SEQ ID NO:5); A*3001 (SEQ ID NO:6); A*3002 (SEQ ID NO:7); A*3004 (SEQ ID NO:8); A*0201-11 (SEQ ID NO:9); A*0215 (SEQ ID NO:10); A*0217 (SEQ ID NO:11); A*6801 (SEQ ID NO:12); A*6802 (SEQ ID NO:13); A*6901 (SEQ ID NO:14); A*2301 (SEQ ID NO:15); A*2402 (SEQ ID NO:16); A*2403 (SEQ ID NO:17); A*2404 (SEQ ID NO:18); A*2405 (SEQ ID NO:19); A*2407 (SEQ ID NO:20); A*2501 (SEQ ID NO:21); A*2601 (SEQ ID NO:22); A*3402 (SEQ ID NO:23); A*4301 (SEQ ID NO:21); A*2601 (SEQ ID NO:22); A*3402 (SEQ ID NO:23); A*4301 (SEQ ID NO:21); A*2601 (SEQ ID NO:22); A*3402 (SEQ ID NO:23); A*4301 (SEQ ID NO:21); A*2601 (SEQ ID NO:22); A*3402 (SEQ ID NO:23); A*4301 (SEQ ID NO:23); A*4301 (SEQ ID NO:21); A*2601 (SEQ ID NO:22); A*3402 (SEQ ID NO:23); A*4301 (SEQ ID NO:

NO:24); A*6601 (SEQ ID NO:25); A*6602 (SEQ ID NO:26); A*6603 (SEQ ID NO:27); A*2901 (SEQ ID NO:28); A*2902 (SEQ ID NO:29); A*31012 (SEQ ID NO:30); A*3201 (SEQ ID NO:31); A*3301 (SEQ ID NO:32); A*3303 (SEQ ID NO:33); A*7401 (SEQ ID NO:34); A*7402 (SEQ ID NO:36); A*7403 (SEQ ID NO:37); and A*8001 (SEQ ID NO:38).

FIGURE 4 depicts the nucleic acid sequences of HLA-A intron 1 in various alleles, including a consensus sequence (SEQ ID NO:39) as well as the sequences for the following alleles: A*0101 (SEQ ID NO:40); A*0301 (SEQ ID NO:41); A*1101 (SEO ID NO:42); A*1102 (SEQ ID NO:43); A*3001 (SEQ ID NO:44); A*3002 (SEQ ID NO:45); A*3004 (SEQ ID NO:46); A*0201 (SEQ ID NO:47); A*0202 (SEQ ID NO:44); A*0203 (SEQ ID NO:49); A*0204 (SEQ ID NO:50); a*0205 (SEQ ID NO:51); A*0206 (SEQ ID NO:52); A*0207 (SEQ ID NO:53); A*0207 (SEQ ID NO:54); A*0208 (SEQ ID NO:55); A*0209 (SEQ ID NO:56); A*0210 (SEQ ID NO:57); A*0211 (SEQ ID NO:58); A*0215 (SEQ ID NO:59); A*0217 (SEQ ID NO:60); A*6801 (SEQ ID NO:61); A*6802 (SEQ ID NO:62); A*6901 (SEQ ID NO:63); A*2301 (SEQ ID NO:64); A*2402 (SEQ ID NO:65); A*2403 (SEQ ID NO:66); A*2404 (SEQ ID NO:67); A*2405 (SEQ ID NO:68); a*2407 (SEQ ID NO:69); A*2501 (SEQ ID NO:70); A*2601 (SEQ ID NO:71); A*3402 (SEQ ID NO:72); A*6601 (SEQ ID NO:73); A*6602 (SEQ ID NO:74) A*6603 (SEQ ID NO:75); A*4301 (SEQ ID NO:76); A*2901 (SFQ ID NO:77); A*2902 (SEQ ID NO:78); A*3101 (SEQ ID NO:79); A*3201 (SEQ ID NO:80); A*3301 (SEQ ID NO:81); A*3303 (SEQ ID NO:82); A*7401 (SEQ ID NO:83); A*7402 (SEQ ID NO:84); A*7403 (SEQ ID NO:85); and A*8001 (SEO:ID NO:86).

FIGURE 5 depicts the nucleic acid sequences of HLA-A intron 2 in various alleles, including a consensus sequence (SEQ ID NO:87) as well as sequences for the following alleles: A*0101 (SEQ ID NO:88); A*0201 (SEQ ID NO:89); A*0202 (SEQ ID NO:90); A*0203 (SEQ ID NO:91); A*0204 (SEQ ID NO:92); A*0205 (SEQ ID NO:93); A*0206 (SEQ ID NO:94); A*0207 (SEQ ID NO:95); A*0208 (SEQ ID NO:96); A*0209 (SEQ ID NO:97); A*0210 (SEQ ID NO:98); A*0211 (SEQ ID NO:99); A*0215 (SEQ ID NO:100); A*0217 (SEQ ID NO:101);

A*6801 (SEQ ID NO:102); A*6802 (SEQ ID NO:103); A*6901 (SEQ ID NO:104); A*2501 (SEQ ID NO:105); A*2601 (SEQ ID NO:106); A*4301 (SEQ ID NO:107); A*6601 (SEQ ID NO:108); A*6602 (SEQ ID NO:109); A*6603 (SEQ ID NO:110); A*3402 (SEQ ID NO:111); A*2901 (SEQ ID NO:112); A*2902 (SEQ ID NO:113); A*3101 (SEQ ID NO:114); A*3201 (SEQ ID NO:115); A*3301 (SEQ ID NO:116); A*3303 (SEQ ID NO:117); A*7401 (SEQ ID NO:118); A*7402 (SEQ ID NO:119); A*7403 (SEQ ID NO:120); A*2301 (SEQ ID NO:121); A*2402 (SEQ ID NO:122); A*2403 (SEQ ID NO:123); A*2404 (SEQ ID NO:124); A*2405 (SEQ ID NO:125); A*2407 (SEQ ID NO:126); A*0301 (SEQ ID NO:127); A*1101 (SEQ ID NO:128); A*1102 (SEQ ID NO:129); A*3001 (SEQ ID NO:130); A*3002 (SEQ ID NO:131); A*3004 (SEQ ID NO:132); and A*8001 (SEQ ID NO:133).

FIGURE 6 depicts the nucleic acid sequences of HLA-A intron 3 in various alleles, including a consensus sequence (SEQ ID NO:134) as well as sequences for the following alleles: A*0101 (SEQ ID NO:135); A*0301 (SEQ ID NO:136); A*1101 (SEO ID NO:137); A*1102 (SEQ ID NO:138); A*3001 (SEO ID NO:139); A*3002 (SEQ ID NO:140); A*3004 (SEQ ID NO:141); A*0201 (SEQ ID NO:142); A*0202 (SEQ ID NO:143); A*0203 (SEQ ID NO:144); A*0204 (SEQ ID NO:145); A*0205 (SEQ ID NO:146); A*0206 (SEQ ID NO:147); A*0207 (SEQ ID NO:148); A*0208 (SEQ ID NO:149); A*0209 (SEQ ID NO:150); A*0210 (SEQ ID NO:151); A*0211 (SEQ ID NO:152); A*0215 (SEQ ID NO:153); A*0217 (SEQ ID NO:154); A*6801 (SEQ ID NO:155); A*6802 (SEQ ID NO:156); A*6901 (SEQ ID NO:157); A*2301 (SEQ ID NO:158); A*2402 (SEQ ID NO:159); A*2403 (SEQ ID NO:160); A*2404 (SEQ ID NO:161); A*2405 (SEQ ID NO:162); A*2407 (SEQ ID NO:163); A*2501 (SEQ ID NO:164); A*2601 (SEQ ID NO:165); A*3402 (SEO ID NO:166); A*4301 (SEQ ID NO:167); A*6601 (SEQ ID NO:168); A*6602 (SEQ ID NO:169); A*6603 (SEQ ID NO:170); A*2901 (SEQ ID NO:171); A*2902 (SEQ ID NO:172); A*3101 (SEQ ID NO:173); A*3201 (SEQ ID NO:174); A*3301 (SEQ ID NO:175); A*3303 (SEQ ID NO:176); A*7401 (SEQ ID NO:177); A*7402 (SEQ ID NO:178); A*7403 (SEQ ID NO:179); and A*8001 (SEQ ID NO:180).

FIGURE 7 depicts a phylogenetic tree of the 5' flanking and 5' untranslated regions of HLA-A.

ではない。

.

··· j

FIGURE 8 depicts a phylogenetic tree of introns 1-3 of the HLA-A gene.

FIGURE 9 depicts a phylogenetic tree of introns 1-3 of the HLA-B gene.

FIGURE 10 depicts the results of amplification using group-specific exon region primers to determine HLA-A group type, wherein the group specificity is determined to be 6601 and 3201 (see Table 7).

FIGURE 11 depicts the results of amplification using group-specific exon region primers to determine HLA-A group type, wherein the group specificity is determined to be 020x and 680x (see Table 8).

5. Detailed Description Of The Invention

The present invention relates to compositions and methods which may be used to efficiently and accurately determine the HLA Class I type of a patient sample.

The present invention is based, in part, on the determination of group-specific sequence motifs in regions of HLA Class I loci. These motifs may be used to design oligonucleotides which may be used as group-specific primers in nucleic acid amplification reactions. The present invention is also based, in part, on the determination of the sequences of regions of a wide variety of alleles of HLA Class I loci; such sequences may be used to distinguish one allele from another. Sequences of regions including the Sanking region of HLA-A and introns 1, 2 and 3 of HLA-A are provided herein, and are set forth in Figures 3-6.

In general, the methods of the invention may be described as follows.

Comparison of nucleotide sequences of an HLA locus among members of an HLA

Class I group, which lie in either untranslated or exon regions, may be used to identify group-specific motif sequences. Identification of groups may be by establishing serological relationships or using phylogenetic information, as set forth in Figures 7
9. Based on the group-specific motif sequences, oligonucleotide primers may be designed, synthesized, and used to amplify a portion of the HLA locus.

Oligonucleotides used in this manner are referred to herein as "group-specific

primers" and, in particular, as "group-specific untranslated region primers" or "group-specific exon region primers", as the case may be.

In preferred nonlimiting embodiments of the invention, the primers correspond to untranslated regions of the HLA Class I locus ("group-specific untranslated region primers"). Such primers may be used in pairs, wherein each member of the pair hybridizes to an untranslated region lying on either side of at least one exon. For example, but not by way of limitation, primer pairs may be oligonucleotide pairs which hybridize to group-specific motifs in the 5' untranslated region and the first, second, or third intron; the first intron and the second or third intron; or the second and third intron.

The group-specific primers may be used in several different methods according to the invention. In a first series of nonlimiting embodiments, the group-specific primers may be used in a diagnostic manner to identify which allelic groups are present in a patient sample. In a second series of nonlimiting embodiments, the group-specific primers may be used to amplify sufficient amounts of a particular allelic fragment which is then subjected to direct nucleotide sequencing using universal sequencing primers.

According to the first series of embodiments, the present invention provides for a method of determining the HLA Class I group type of a subject comprising (i) combining a group-specific primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; and (ii) determining whether a nucleic acid product is produced by the amplification; wherein the ability of a primer pair to produce a nucleic acid product is associated with a particular HLA group type. The group-specific primers may be group-specific exon region primers or group-specific untranslated region primers. In related embodiments the present invention provides for a method of determining the HLA Class I group type of a subject comprising (i) combining a plurality of group-specific exon region primer pairs with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; (ii) determining the size of the nucleic acid products of the amplification; and (iii) correlating the size of the product with the predicted size of a fragment associated

J.

Y.

4

12

with a particular HLA group type. The plurality of primers is referred to as an HLA "cocktail" (see Figures 1 and 2). These first methods may be used to provide useful diagnostic information. For example, group type determination may serve as a first level of comparison for a histocompatibility analysis, even without identification of the specific allele(s) involved. For example, if a potential donor and host are being evaluated for tissue transplantation, if it is found that their group types do not match, no further comparison may be necessary. If, alternatively, their types do match, further analysis, for example by direct sequencing, may be desirable.

According to the second series of embodiments, the present invention provides for a method of determining the HLA Class I allelic type of a subject comprising (i) combining a group-specific oligonucleotide primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; (ii) collecting the nucleic acid product of the amplification; and (iii) determining the nucleic acid sequence of the product. The group-specific primer pair used may be determined based on the group type of the subject, as determined using the first method, described above. In preferred embodiments of the invention, group-specific untranslated region primers which span a region of the HLA locus containing allele-specific sequence may be utilized. If a subject is heterozygous, separate amplification reactions are performed for each group identified (e.g., separate reactions to amplify fragment for group A2 and group A3; see Figure 2). Sequencing may be performed using universal sequencing primers which will operate irrespective of HLA group or allelic type.

A more detailed description of the invention follows. Most alleles of the classical HLA Class I gene loci (consisting of HLA-A, HLA-B and HLA-C) can be distinguished on the basis of exon 2 and 3 alone. In one non-limiting embodiments, a method of the invention takes advantage of this fact, and employs the strategy generally described in Figure 2, using the example of HLA-A. A genomic DNA sample is prepared from a patient sample according to well known techniques. Aliquots of the genomic DNA may then separately be reacted with a panel of group-specific exon region primer pairs (Figure 2C), wherein the successful amplification of a DNA fragment is associated with a particular group type. Alteratively, as depicted

がの後

in Figure 2A), part of the sample may be treated with a cocktail of group-specific exon region primer pairs. Each primer pair in the cocktail will amplify only selected allelic groups because they specifically hybridize to group specific intron sequence motifs. Between them, under suitable polymerase chain reaction (PCR) conditions, the cocktail may amplify all known HLA-A groups, with each group specific amplification product having a different length. When reaction products are separated on an agarose gel the group(s) present in the patient sample may be identified by length.

Optionally, once the group specificity is determined, the direct sequence of alleles may be determined for precise allelic identification. As illustrated in Figure 2 B), a further part of the patient sample DNA may be treated under PCR conditions with a pair of primers that are specific for the previously determined group; preferably such primers are group specific untranslated region primers, which span greater distances of the locus. If two groups were detected, then two separate reactions are performed. At completion of the second amplification, the reaction products are sequenced using an intron based "universal primer" which hybridizes to an intron sequence which is conserved among all alleles of the locus. Though it is theoretically possible to use a sequencing primer which is specific for the amplified group only, it is found that using a universal primer simplifies the method and the preparation of a kit. Various universal sequencing primers are specifically provided herein (see *infra*) which hybridize, respectively, to intron sequences flanking the 5' end of exon 2, the 3' end of exon 2, the 5' end of exon 3 and the 3' end of exon 3.

The substantial advantage of the method of the invention is that the initial group specific amplification allows a PCR based separation of haplotypes in 95% of patient sar. les. The separation of the haplotypes is a major achievement of this protocol since it permits the resolution of cis/trans linkages of heterozygote sequencing results which cannot be achieved with other protocols. With the instant invention, a separation of the haplotypes may be achieved in serological heterozygous samples with the sequencing primer mixes ("PMs") described in Table 2 (infra) using group-specific amplification corresponding to the serological families. The selection of the PMs used for sequencing depends on the amplification patterns of the preceding

製品

"

2

œ.

1.0

1

PCR-SSP low-resolution typing. The primers are designed to work with a in a single cycle protocol including, but not limited to, a PCR protocol on a Perkin Elmer System 9600, maintaining typing capacities of the laboratory. All PCR products carry sufficient sequence information for a complete subtyping. This approach is superior to a typing system using a single pair of generic primers followed by direct sequencing or SSO hybridization, even if the amplification strategy is locus-specific. The substantial advantage of Sequence Based Typing (SBT) is the definition of the cis/trans linkage of sequence motifs. SBT after generic PCR amplification cannot define the cis/trans linkage of sequence motifs and therefore mimics oligotyping. The rapidly growing number of newly identified alleles confirms that new alleles have arisen mainly from gene conversion events which have usually taken place between different alleles of the same locus. Newly identified alleles are not characterized by new sequence motifs, but by a new combination of already existing sequence motifs. From this observation it may be concluded that the amount of alleles at each locus may theoretically represent all possible combinations of known sequence motifs. Of course, some of them will fall victim to negative selection. Nevertheless, it can be expected that still an enormous amount of alleles are yet unidentified. PCR-SSP subtyping strategies using a restricted number of oligonucleotides which do not cover all possible sequence motifs suffer from this limitation. If the cis/trans linkage of the analyzed polymorphic regions is not defined some new alleles may be mistyped as a heterozygous combination of known alleles. This has consequences with respect to SBT strategies. An unambiguous typing result of SBT after generic PCR amplification is only unambiguous with regard to the presently known HLA sequence databank. However, with the detection of new alleles this result can become ambiguous over the course of time. This observation has already been made in PCR based DRB1 typing during the last five years and will probably also occur in PCR based class I typing. Considering the above points, the idea of the instant SBT approach is not only to identify the HLA-A, HLA-B and HLA-C subtypes, but to cover as many of the polymorphic sites as possible and to define the cis/trans linkage of the polymorphic sequence motifs. Typing results obtained with this method will remain unambiguous independently of the growing HLA sequence databank.

ψ.

1

10.0

In general, group-specific primers are desirably designed to facilitate hybridization to their intended targets. It should be taken into account that homology between different groups, and indeed between group-specific motifs, may exist. Accordingly, in preferred embodiments of the invention, a primer may be designed such that it hybridizes to its group target under relatively stringent conditions. For example, one or more mismatched residues may be engineered into the 3' domain of the molecule. Further, the primer may be designed such that it differs from any naturally occurring or consensus sequence, but rather has mismatches inserted which serve to further reduce hybridization of the primer to target DNA of a group other than the intended target group. Under certain circumstarces, one or more mismatches may be introduced into the 5' end to destabilize internal hairpin loops; such changes are not generally expected to enhance the efficiency of the primer.

The following nucleic acid sequences may be comprised in groupspecific untranslated region primers for HLA-A which are specific for the groups as indicated in Table 1.

Table 1.

		Sequence	N	<u>Tm</u>	Specificity	<u>Position</u>
II-210m	S	5' ACC Cgg gAA gCC ggg CCT 3'	18	64 C	A10 et ál.	73-92
Il-230m	S	5' ggC Agg TCT CAg CgA Ctg 3'	18	60 C	A*01,03,11,30	102-119
I1-226	S	5' CTC TgT ggg gAg AAg CAA C.	3' 19	60 C	A*02	29-47
Il-221m11	S	5' ggg AgC ggC gCC ggg AC 3'	17	64 C	A*0301-	77-93
11-209	S	5' gAA gCA Agg ggC Ccg CCC	18	64 C	A10 et al.	41-58
Il-214m	S	5' CgC CTg gCg ggg gGg CAA 3'	18	66 C	A*2301,24	54-71
II-223d	S	5' gTg AgT gCg ggg TCg Tgg 3'	18	62 C	A19	1-19
Il-225m	S	5' gCC ggg Agg Agg gAC ggT 3'	18	64 C	A*30	86-103
Il-237m14	S	5' ggC gCg CCC ggC ggg gA 3'	17	65 C	A*29	49-65
Il-240	S	5' ggA ggA ggg Tcg ggC ggA 3'	18	64 C	A*31,33	90-107
5'FL-243	S	5' AgT gTC TTC gCg gTC gCT C 3	' 19	62 C	A*11 - 5	53-71
5'FR-257	S	5' CTC AgA TTC TCC CCA gAC g	3' 19	60 C	Aall, except for	A*11 6-24
5'FR-273	S	5' CAT gCC gAg ggT TTC TCC CA	3' 20	64 C	A*28,6602,6603	360-380
BP202	S	5' CTg gCC CTg ACC CAg ACC A	3' 19	64 C	A*7401,7403 I	Exon 1, 49-68
BP203	S	5' CCT gAC CCA gAC CTg ggC A	3' 19	64 C	A*8001	Exon 1, 55-73
RP142	24	S' C' AGG TAT CTG CGG AGC CO	rG 3' 10	64 C	A*0101/**24	227_245
-					•	
						• • •
II-221m11 I1-209 II-214m II-223d II-225m II-237m14 II-240 5'FL-243 5'FR-257 5'FR-273 BP202 BP203 BP142 I3-236 I3-239 I3-246 I3-247m6 I3-249 I3-280m18	S S S S S S S S S S AS AS AS AS AS	5' ggg AgC ggC gCC ggg AC 3' 5' gAA gCA Agg ggC Ccg CCC 5' CgC CTg gCg ggg gGg CAA 3' 5' gTg AgT gCg ggg TCg Tgg 3' 5' gCC ggg Agg Agg gAC ggT 3' 5' ggC gCg CCC ggC ggg gA 3' 5' ggA ggA ggg TCg ggC ggA 3' 5' AgT gTC TTC gCg gTC gCT C 3 5' CTC AgA TTC TCC CCA gAC g 5' CAT gCC gAg ggT TTC TCC CA 5' CTg gCC CTg ACC CAg ACC A	17 18 18 18 17 18 ' 19 3' 19 3' 19 3' 19 AA 3' 20 AA 3' 20 AA 3' 20 AA 3' 20 3' 19 AA 3' 21 AA 3' 21 A	64 C 66 C 62 C 64 C 65 C 64 C 64 C 64 C 64 C 64 C 64 C 62 C 62 C 62 C 62 C 62 C 62 C 62 C 62	A10 et al. A*2301,24 A19 A*30 A*29 A*31,33 A*11 Aall, except for A*28,6602,6603 A*7401,7403 A*8001 A*0101/**24 A*non 02.28 *multi,notA1,3,1 A*30 A*01,11	41-58 54-71 1-19 86-103 49-65 90-107 53-71 A*11 6-24 3 360-380 Exon 1, 49-68 Exon 1, 55-73 227-245 584+2 1,30.9 415-43 24-43 36-54

()

64

....

The sequences in Table 1 have the following sequence identifiers: Il-210 is SEQ ID NO:35 and the remaining sequences Il-230m through 13-282 have SEQ ID NO:181-202, respectively.

The present invention provides for nucleic acid molecules comprising regions having the foregoing sequences or their functional equivalents.

"Functional equivalents" of a nucleotide sequence, as defined herein, refers to nucleotide sequences which, when contained in a nucleic acid molecule, retain the specificity of the disclosed sequence and/or hybridize to the complement of the disclosed sequence under stringent hybridization conditions (e.g., 1 x SSC at 65°C).

In specific nonlimiting examples, oligonucleotides comprising the above sequences, or functional equivalents thereof which retain specificity, may be used in a PCR amplification reaction in the following pairwise combinations to generate group specific fragments of the lengths as indicated in Table 2.

18

Table 2.

		T			
No.	Primer Mix	Sense Primer	Antisense Primer	Size of Product	HLA-A Specificity
1	1.1	I1-230m	BP142	785 bp	A*01
2	1.2	5'FR-257	I3-247m6	1068 bp	A*01
3	1.3	I1-230m	I3-247mg	870 bp	A*01,11
4	2	I1-226	13-249	1056 bp	A*02
5	3	I1-221m11	I3-280m18	1078 bp	A*03
6	11	5'FL-243	13-249	1229 bp	A*11
7	9	I1-214m	I3-249	1033 bp	A*23,24
8	10.1	I1-210m	I3-236	1450 bp	A*10
9	10.2	I1-210m	I3-249	1014 bp	A*10,68,69
10	28	5'FR-273	13-249	1537 bp	A*68,69, 6602,6603
11	19.1	I1-223d	I3-239 or I3- 249	1084 bp	A*29,31,32, 33,74
12	19.2	I1-240	13-249	996 bp	A*31,33
13	29	I1-237m14	13-249	1037 bp	A*29
14	30	I1-225m	13-249	1000 bp	A*30
15	74	BP202 (Exon 1)	13-249	1109 bp	A*7401, 7403
16	80	BP203	I3-282	1103 bp	A*8001 (untested)

The following nucleic acid sequences may be comprised in group-specific exon region primers for HLA-A which are specific for the groups as indicated in Table 3 (sense primers) and Table 4 (antisense primers). The present invention provides for nucleic acid molecules comprising regions having the foregoing sequences or their functional equivalents. They may, in specific nonlimiting examples, be used in pairs as set forth in Table 5. The sequences in Table 3, primer numbers 85, 118, 120, 123, 127, 129, 134, 137, 140,160, 167, 175, 193 and 202 have SEQ ID NO:203-216, respectively. The sequences in Table 4, primer numbers 98, 115, 16, 117, 126, 133, 135, 136, 138, 142, 144, 145, 152, 153, 154, 155, 161, 165, 168 and 180, have SEQ ID NO:217-236, respectively, and primer number 119 has SEQ ID NO:245.

 $\widehat{\mathbb{R}}$

753

X,

: 71

7.5

20

T able 3.

Primer Number	Loca	lization	Sequence
85	Exon 2	-4 - 5	5' CTC CTC gTC CCC Agg CTC T 3'
118	Exon 2	6 - 19	5' TCC ATg Agg TAT TTC TAC ACC 3'
120	Exon 3	-6 - 12	5' ggC CAg gTT CTC AgA CCA 3'
123	Exon 2	36 - 53	5' CCC ggC CCg gCA gTg gA 3'
127	Exon 3	1 - 20	5' gTT CTC ACA CCA TCC AgA Tg 3'
129	Exon 3	4 - 25	5' TCA CAC CCT CCA gAT gAT gTT 3'
134	Exon 3	63 - 80	5' ggg TAC CAg CAg gAC gCT 3'
137	Exon 2	9 - 29	5' TCC ATg Agg TAT TTC ACC ACA 3'
140	Exon 3	-1 - 20	5' ggT TCT CAC ACC ATC CAg ATA 3'
160	Exon 3	1 - 20	5' gTT CTC ACA CCA TCC AgA gg 3'
167	Exon 2	54 - 71	5' gAg CCC CgC TTC AAC gCC 3'
175	Exon 3	63 - 71	5' CTT CCT CCg Cgg gTA TgA A 3'
193	Exon 2	167 - 184	5' gCC ggA gTA TTg ggA CCg 3'
202	Exon 1	49 - 67	5' CTg gCC CTg ACC CTg ACC A 3'

が

. 4

.

21 Table 4.

Antisense primers

Primer Number	Localization	Sequence
98	Exon 2 226 - 243	5' gCA ggg TCC CCA ggT CCA 3'
115	Exon 3 195 - 213	5' CCT CCA ggT Agg CTC TCA A 3'
116	Exon 3 195 - 213	5' CCT CCA ggT Agg CTC TCC A 3'
117	Exon 3 195-213	5' CCT CCA ggT Agg CTC TCT g 3'
119	Exon 2 184 - 203	5' CTT CAC ATT CCg TgT CTC CT 3'
126	Exon 3 212 - 230	5' CCA CTC CAC gCA CgT gCC A 3'
133	Exon 2 229 - 246	5' ggA gCg CgA TCC gcA ggC 3'
135	Exon 3 216 - 234	5' ggA gCC ACT CCA Cgg ACC g 3'
136	Exon 3 216 - 233	5' gAg CCA CTC CAC gCA CTC 3'
138	Exon 2 186 - 206	5' ggC CTT CAC ATT CCg TgT gTT 3'
142	Exon 3 228 - 246	5' CAg gTA TCT gCg gAg CCC g 3'
144	Exon 2 165 - 184	5' Tgg TCC CAA TAC TCA ggC CT 3'
145	Exon 2 226 - 243	5' gCA ggg TCC CCA ggT TCg 3'
152	Exon 3 163 - 179	5' ggg CCg CCT CCC AgT TgT 3'
153	Exon 2 179 - 197	5' TCT gTg AgT ggg CCT aCA CA 3'
154	Exon 2 184 - 204	5' CCT TCA CAT TCC gTg TCT gCA 3'
155	Exon 3 216 - 233	5' gAg CCA CTC CAC gCA CgT 3'
161	Exon 2 209 - 228	5' CCA CTC ggT CAg TCT CTg AC 3'
165	Exon 3 105 - 124	5' gAg CgCA ggT CCT CgT TCA A 3'
168	Exon 2 198 - 217	5' gTC TgT gAg Tgg gCC aTC AT 3'
180	Exon 2 12 - 31	5' CAg CCA TAC ATC CTC Agg AC 3'

Table 5.

Primer No.	Mix Name	Sense Primer	Antisense Primer	Size of Product	HLA-A Specificity
1	1	140	142	247 bp	A*0101,0102,8001
2	2	85	98	256 bp	A*0201-0220
3	3	140	126	230 bp	A*0301,0302,0303
4	36	167	168	164 bp	A*0101,3601
5	11	118	119	195 bp	A*1101-1103
6	23	129	115	209 bp	A*2301
7	24	129	116+117	209 BP	A*2402-2411
8	10.1	160	135	233 bp	A*2501,2601- 2603,2605,4301,6601
9	25	118	133	238 bp	A*2501,2502
10	26	118	145	235 bp	A*2601,2602,2604,4301
11	34	134	155	171 bp	A*3401,3402
12	6602	134	136	240 bp	A*6602,6603
13	10.2	118	161	222 bp	A*11,34,6601,6602,68011, 6802,6901
14	43	118	154	196 bp	A*4301
15	68	120	152	185 bp	A*68011,68012,6802,6803
16	69	193	180	375 bp	A*6901
17	19	127	165	124 bp	A*2901,2902,31012,3201, 3301-3303, A*7401-7403
18	29	137	145	236 bp	A*2901,2902
19	30	175	115+116	162 bp	A*3001-3002
20	31	167	144	176 bp	A*31012
21	32	167	133	159 bp	A*3201,3202,2501,2502
22	33	137	138	198 bp	A*3301-3303
23	74	202	153	370 bp	A*7401,7403
24	80	140	136	234 bp	A*8001

i y

ď,

No.

In general, the foregoing group-specific primers may be modified by addition, deletion, or substitution of bases, to produce functionally equivalent primers with the substantially the same specificity, that is to say, such that the group specific polymorphism(s) are not removed. Such modifications may be constrained by several parameters. First, exact matching at the 3' end is particularly important for primer extension. Preferably, at least 5 nt are complementary to target DNA. When the exactly conserved region is short, for example, less than 10 nt, it is not advisable to change the primer sequences. The primer is preferably less than 50% G or C. Also, the primers should be designed to avoid specific hybridization with pseudogenes or non-classical HLA Class I loci. In the examples which follow, the melting temperature of all primers used was about 62C to ensure uniform amplification conditions.

For sequencing purposes, the following nucleic acid sequences are sequences which hybridize to all alleles of the indicated loci, in the locations indicated (and hence are referred to as universal sequencing primers).

SUBSTITUTE SHEET (rule 26)

BNSDCCID: <WO__9826091A2_I_>

نطر

Table 6: 'Universal Sequencing Primers for HLA-A

Desig.	Sequence	Location	Melting Temp.
5'-Ex2(Aw3)	5' GCG CCG GGA GGA GGG TC 3'	Int-1	Tm=58-62°C
3'-Ex2	5' ATC TCG GAC CCG GAG ACT 3',	Int-2	Tm=58°C
5'-Ex3	5' GTT TCA TTT TCA GTT TAG GCC A	3' Int-2	Tm=60°C
3'-Ex3(Aw6)	5' CGG GAG ATC TAC AGG CGA TCA	GG 3' Int-3	Tm=58-62°C
;			
Desig.	Sequence	Location	Melting
j	·		Temp.
5'-Ex2(Aw3)	5'GCG CCG GGA GGA GGG TC 3'	Int-1	Tm=58-62°C
3'-Ex2	5'GTC GTG ACC TGC GCC CC 3',	Int-2	Tm=58-62°C
5'-Ex3	5'GGG CGG GGC GGG GCT CGG G 3,	Int-2	Tm=58-62°C
3'-Ex3(Aw6)	5'CGG GAG.ATC TAC AGG CGA TCA	GG 3' Int-3	Tm=58-62°C
1			
Desig.	Sequence	Location	Melting
			Temp.
5'-Ex2(Aw3)	5' GCG CCG GGA GGA GGG TC 3'	Int-1	Tm=58-62°C
3'-Ex2(ABCw1)	5' GGT CGT GAC CT(T/C)CGC CCC 3'	Int-2	Tm=58-62°C
5'-Ex3(ABCw2)	5' CCC GGT TTC ATT TTC 3'	Int-2	Tm=58-62°C
3'-Ex3(Aw6)	5'CGG GAG ATC TAC AGG CGA TCA G	G 3' Int-3	Tm=58-62°C

The primers in Table 6 are assigned, consecutively, SEQ ID NO: 237-

.244.

The foregoing three groups of primers include 5' and 3' primers for sequencing across exons 2 and 3, respectively.

The selection of suitable universal sequencing primers is constrained by a variety of rules including the following. Sequencing primer hybridization sites must lie within the fragment amplified by the group specific amplification primers. All primers are desirably selected to provide informative sequence and not start too far downstream of useful sequence. Preferred primers hybridize to conserved sites near the exon/intron boundaries.

Direct sequencing of the 2nd and 3rd exon may be performed from either the 5' or 3' end using the primers of Table 6 supra which are located in conserved regions of the 1st, 2nd and 3rd intron as indicated. These conserved regions were found to be identical in all samples investigated, regardless of the amplified group.

An important issue of direct sequencing for HLA class I genes is the generation of a specific PCR product, which is rather complicated due to the

بوبة

t/S

.

37

extensive sequence homologies between the different HLA class I loci including several pseudogenes. If an adequate PCR product has been generated, any sequencing chemistry should be applicable.

In the normal case, since group specific amplifications take place before sequencing, only one allele at a time is sequenced, resulting in unambiguous homozygous sequencing results. In these cases alleles are relatively easy to identify, even without software.

However, in about 5% of cases, both alleles come from the same group, but the sequence results show heterozygosity. In practice, when viewed by a fluorescence-detecting system, the sample appears as a normal sequence of bases with, sporadically, two bases at one site, each with half the peak height. This result flows from the high degree of similarity shared among all alleles of each HLA gene; sequence heterozygosity flows from base substitutions. The laborious task of determining which alleles are present in the test sequence may be simplified using computer analysis. A software program called GeneLibrarian developed by Visible Genetics, the assignee of the present application, rapidly compares the test sequence to a database which includes all possible homozygote and heterozygote combinations of the alleles. The program identifies those stored sequences that are closest matched to the test sequence. The operator can then determine which allelic pair is in the test sample. If no allelic pair shows an exact match, the software allows the operator to review the test sequence to determine if errors in base-calling or other artifacts are interfering with the analysis.

The order of sequencing reactions may be selected by the operator.

Each exon of each locus may be sequenced on the sense strand or anti-sense strand. A preferred method is to obtain sequence from one strand from each exon. If the results contain ambiguities, then the amplicon is re-sequenced using the other primer for the same exon. The availability of both sequencing primers provides redundancy to ensure robust results.

In some cases, it may be advantageous to employ an equimolar mixture of 2 or more oligonucleotide species. Mixtures of oligonucleotides may be selected such that between them they will effectively prime the sequencing reactions for all

. . .

THE STATE OF

٠.,

.25

 $\langle \phi \rangle$

()

(3)

alleles of the locus at the same site.

In an alternative technique, instead of using dye terminators, a dyelabelled primer may be employed. In this case, the selected sequencing primers is labelled on the 5' end with a detectable label, using phosphoramidite or NHS/dye ester techniques well known in the art. The label selected depends on the detection instrument employed. The label for use with an OpenGene System (Visible Genetics Inc., Toronto, ON) is the fluorophore Cy5.5 (Amersham Life Sciences, Cleveland OH). Fluorescein-isothio-cyanate may be used for detection with the ALF Automated Sequencer (Pharmacia, Piscataway NJ). In this method, which is well known to one skilled in the art, the sequencing reaction mixture is changed slightly to include only one ddNTP per reaction mixture. For detection of reaction products, the sample may be mixed with an equal volume of loading buffer (5% ficoll plus a coloured dye). 1.5 ul of these samples may be loaded per lane of a MicroCel electrophoresis cassette loaded in a MicroGene Blaster automated DNA sequencer (Visible Genetics Inc., Toronto). The sample may be electrophoresed and read.

Results may be displayed and analyzed with GeneObjects software.

The sequence of bases may be determined, and the HLA allele to which the sequence corresponds may then be identified. This process may be performed for each locus (HLA-A, HLA-B, HLA-C) and the results may then be reported to the patient file.

It is well known in the art that different variations of sequencing chemistry may be employed with different automated DNA sequencing instruments. Single dye instruments, such as the OpenGene System (Visible Genetics Inc., Toronto), the ALF Express (Pharmacia, Uppsala, Sweden) or the Li-Cor 4000L (Lincoln City, Nebraska) generally use dye-labeled primers. In these systems a single chain termination sequencing reaction mixture is run per lane.

Multi-dye sequencers, such as the Prism 377 (applied Biosystems, Inc., Foster City, California) detect multiple dyes in a single lane. This technology conveniently employs dye-terminator chemistry, where the chain-terminating nucleotides are themselves labeled with fluorophores (see United States Patent No. 5,332,666, to Dupont de Nemours and Co.). In this case, the reaction products carrying four different labels may be run in a single lane.

Either single dye or multi-dye chemistry may be employed according to the present invention, along with other sequencing chemistries. Additional methods for reducing the numbers of reactions required to obtain detailed sequence information from the classical HLA Class I loci are disclosed in commonly owned United States Patent Applications USSN 08/577,858 (for single-track sequencing) and USSN 08/640,672 and 08/684,498 (for single-tube sequencing), incorporated by reference herein.

The nucleic acids described above may be comprised in a kit for use in practicing the methods of the invention. In addition to the group-specific primers and primer pairs disclosed, such kits may further comprise buffers, reagents, and enzymes such as, amplification enzymes including but not limited to, *Taq* polymerase. In specific non-limiting embodiments, the kit may comprise group-specific exon region primers (for example, as a "cocktail" comprising a plurality of primers) as well as group-specific untranslated region primers; such primers may be contained in individual tubes.

6.Example: Determination Of HLA-A Group Type

Genomic DNA was prepared from patient samples according to standard methods, such as a standard salting-out procedure (as provided by the Puregene DNA Isolation Kit, Gentra Systems, Inc., Minneapolis) or by detergent and proteinase K treatment (Current Protocols in Molecular Biology, Eds. Ausubel, F.M. et al, (John Wiley & Sons; 1995)).

All princers were synthesized on a Gene Assembler plus (Pharmacia, Uppsala, Sweden), and purified by fast protein liquid chromatography. The sequence, length, melting temperature (Tm), group specificity localization of the primers are given in Tables 3 (sense primers), 4 (antisense primers) and 5 (primer pairs). Internal positive control primers were: 5' primer hGHI 5'GCC TTC CCA ACC ATT CCC TTA 3', 21mer, Tm=64°C, nucleotide position 5560-5580; 3' primer hGHI 5' TCC ATG TCC TTC CTG AAG CA 3', 20mer, Tm=60°C, nucleotide position 6614-6633. These control primers amplify a 1074 bp fragment of the human growth hormone gene.

Group-specific identification was performed as follows. Aliquots of

:::

.

.

2

genomic DNA were separately reacted with a panel of 24 group-specific exon region primer pairs set forth in Table 5, supra (see Blasczyk et al., 1995, Tissue Ant. 46:86-95). An amplification cocktail for pairs of primers was prepared in 10 µl volume using standard 10x Perkin-Elmer buffer (1x buffer: 50 mM KCl; 1.5 mM MgCl₂; 10 mM Tris-Hcl, pH 8.3; 0.001% (w/v) gelatin) supplemented with 5% glycerol and 0.1 µl Cresol-red, sodium salt (Cresol-red stock solution:10 mg/ml). The use of glycerol and cresol red avoids the necessity of using an agarose gel loading buffer.

Additionally, glycerol increases the PCR yield.

The PCR mix for a single SSP tube was as follows:

Genomic DNA 100 ng	= '	1.00 µl
Taq polymerase, 0.4 U	=	0.08 µl
dNTPs, 10 mM	=	0.80 µl
Buffer, 10x	·=	1.00 µl
Glycerol	=	0.50 μ1
Cresol red 10mg/ml	=	$0.10 \mu l$
dH_20	=	1.52 μΙ
Primer Pair + Control		
Primer Pair	=	<u>5.00 μ1</u>
	Total	10.00 μl

The PCR solution was prepared in volumes that would accommodate 30 reactions. The amount of primers used in each 10 μ l PCR volume was 3 pmol of each HLA-A primer and 0.8 pmol of each internal control primer.

The reaction mixture was mixed well, then heated in a Thermo-Cycler 9600 (Perkin-Elmer, Inc) and subjected to the following protocol. After an initial denaturation, a first round with 10 two-temperature cycles was followed by 20 three-temperature cycles.

- 1) Initial denaturation at 95°C for 5 min.
- 2) First 10 cycles
 - i) Denaturation at 95°C for 30 sec.
 - ii) Annealing and extension at 65°C for 50 sec.
- 3) Last 20 cycles
 - i) Denaturation at 95°C for 30 sec.
 - ii) Annealing at 62°C for 50 sec.
 - iii) Extension at 72°C for 30 sec.

1

- 7,

(:)

35,

1

The reaction tube was then cooled on ice. For visualization, 8 ul of the amplification product were run on a 2 % agarose gel prestained with ethidium bromide (0.2 ug/ml). The results were compared to a control lane with known size markers. The reaction products were visualized either as two bands (alleles from different groups) or a single band (alleles from same group). The size of the band(s) were determined and group specificity was assigned according to the length assignments in Table 5.

Figures 10 and 11 show typical gel results, which, as shown in Tables 10 and 11, were interpreted to determine what group specificities were present in genomic DNA samples tested. In Tables 7 and 8, the column titled "Position" refers to the primer mix no. of Table 5.

SUBSTITUTE SHEET (rule 26)

BNSDOCID: <WO__9826091A2_1_>

ź'n,

. 4

Table 7.

Position	HLA Specificity	Kontr.	Species ampl.	<u>PM</u>
Position				1
1	A*0101,0102,8001			2
2 3	A*0201-0217			3
3	A*0301.0302			36
4	A*0101,3601			11
5	A*1101,1102			
6	A*2301			23
7	A*2402-2407			24
8	A*2603,2605,6601		X	10.1
9	A*2501			25
10	A*2601,2602,2604,4301			26
11	A*3401,3402			34
12	A*6602			6602
13	A*1101,1102,3401,3402	••	X	10.2
10	6601,6602,			
	A*68011,6802,6901		•	
14	A*4301			43
15	A*68012,6802,6803			68
16	A*6901			69
17	A*2901,2902,3101,320	l	X	19
1,	3301-3303, A*7401			
18	A*2901,2902			29
19	A*3001-3004			30
20	A*3101			.31
21	A*3201,2501		X	32

iΩ`

4.4

31

Table 8.

·Position_	HLA Specificity	Kontr.	Species Ampl.	<u>PM</u>	
			÷		
1 A	*0101,0102,8001			1	
2 A	*0201-0217		\mathbf{X}^{-}	2	
	*0301,0302			3	
4 A	*0101,3601			.36	
	*1101,1102			11	
	x*2301			23	
	×2402-2407			24	
8 A	* 2501,2601-2603,			10.1	
2	605,6601				
A	X*2501			25	
10 A	x*2601,2602,2604,430	01		26	
	* 3401,3402			34	
-	A*6602			6602	
	A*1101,1102,3401,34	02	X	10.2	
6	6601,6602, A*68011,6	802,			
	5901		•		
14	A*4301			43	
	A*6801,6802		X	68	
	A*6901			69	
17	A*2901-2902,3101,32	:01,		19	
	3301-3303, A*7401				1
	A*2901,2902			29	
	A*3001-3004			30	

\$4

7. Example: Determination Of Group Specificity Using A Primer Cocktail

Group specific low-resolution typing of the patient sample may be performed as follows. First, a stock PCR amplification reaction mixture may be prepared for 30 reactions:

	<u>μ</u> ι
dNTPs 10mM	24
Glycerol 100%	15
10x PCR Buffer*	30
Cresol-red (10mg/ml)	3.0
H2O	<u>45</u>
final	117

*1 X PCR Buffer comprises 10 MM Tris-HCl pH 8.3, 50 mM KCl, 1.5 mM MgC12 and 0.001% (w/v) gelatin.

The stock mixture may be prepared in a large volume and be stored for at least one month at 4°C or be aliquoted (117.0 µl) and stored at -30°C for at least six months. Repeated thawing and freezing should be avoided.

A mixture containing all the HLA-A group specific amplification primers listed in Table 5 may be prepared separately (the "Cocktail"). One member of each primer pair is labelled on the 5' end with a fluorescent label. Final Cocktail concentrations may be designed to provide 3 pmol of each HLA-A primer per 5 µl. Optionally, an internal control primer may be added (to determine among other things, the success of amplification) in the amount of 0.8 pmol per 5 ul. Suitable internal control primers amplify a 1074 bp fragment of the human growth hormone gene (see *supra*).

41

To perform the low resolution amplification reaction, the reaction mixture may be prepared as follows:

		Volume
Stock Mixture		5 μl
Cocktail		5 μl
Patient sample DNA	100-250 ng	l μl
Taq Polymerase Enzy	0.08 μ1	

PCR cycle parameters may be adjusted for a Perkin-Elmer System 9600 thermal cycler. After an initial denaturation, a first round with 10 two-temperature cycles may be followed by 20 three-temperature cycles: 1) Initial Denaturation at 95°C for 5 min; 2) First 10 cycles i) Denaturation at 95°C for 30 seconds and ii) Annealing and extension at 65°C for 50 seconds; 3) Last 20 cycles i) Denaturation at 95°C for 30 seconds, ii) Annealing at 62°C for 50 seconds and iii) Extension at 72°C for 30 seconds.

The reaction tube may then be cooled on ice. For visualization, 2ul of the amplification product may be run on a polyacrylamide gel giving single nucleotide length resolution such as in a MicroGene Blaster. The results were compared to a control lane with known size markers. The reaction products may be visualized either as two bands (alleles from different groups) or a single band (alleles from same group). The size of the band(s) may be determined and group specificity may be assigned according to the length assignments in Table 5.

一年 の

8. Example: Determination Of Allelic Type By Sequencing

After determining group type specificity, group specific amplification of a fresh portion of the patient sample may be performed using a single pair of primers specific for the group in question to generate sequencing template. In a preferred, nonlimiting embodiment, amplification primers may be selected from Table 2, supra, which lists group-specific untranslated region primers. This second amplification serves two purposes. First, it confirms, by successful amplification, the group determination of the low resolution test. Second, it generates sequence information which may be used for accurate allele identification. If two groups are identified, two separate reactions may be performed each using a different primer pair.

8.1. PCR Protocol

The same PCR protocol may be used for all primer mixes used for template generation. The PCR amplification may be set up in a total volume of $50\mu l$ in order to produce enough PCR product for more than 10 sequencing reactions. This ensures that, if anything fails during the sequencing process, sequencing can be repeated without generation of a new template. The high stringency of the PCR primers and protocol detailed below makes the use of a "hot start approach" unnecessary. The following PCR reaction mix may be used:

泰湯

94

لىرىن ۋىزىم

		volume per reaction
5X PCR buffer*		10.0μ l
DMSO		1.0μ l
2.5mM each dNTP		5.0μ l
ddH2O		<u>27.8µ1</u>
Total		43.8μl
Sense primer**	(10pmol/μl)	1.0μ l
Antisense primer**	$(10\text{pmol}/\mu\text{l})$	1.0μ l
Taq Polymerase (51	0.2μ l	
Genomic DNA (100	\log/μ l)	4.0μ 1
Fina	l Total	50.0μ l

^{*}Composition of 5X PCR buffer:75mM (NH $_4$)2SO $_4$; 17.5mM MgCl $_2$; and 300mM Tris-HCL, pH 9.0

**The pair of group specific amplification primers may be selected from those disclosed in Table 2, supra.

PCR cycle parameters may be adjusted for a Perkin-Elmer System 9600 thermal cycler. After an initial denaturation, a first round with 10 two-temperature cycles may be followed by 20 three-temperature cycles.

- 1.) Initial Denaturation at 95 C for 5 min
- 2.) First 10 cycles
 - i) Denaturation at 95 C for 30 seconds
 - ii) Annealing and extension at 65 C for 50 seconds
- 3.) Last 20 cycles
 - i) Denaturation at 95 C for 30 seconds
 - ii) Annealing at 62 C for 50 seconds
 - iii) Extension at 72 C for 30 secondS

 $10\mu l$ of the PCR product may then be run on a 2 % agarose gel prestained with ethidium bromide (0,2 $\mu g/ml$). A distinct band of the expected size should be seen.

8.2. Sequencing Reaction Protocol

The sequencing reactions may be carried out with AmpliTaqTM DNA Polymerase FS dye terminator cycle sequencing chemistry using the Ready Reaction DyeDeoxy Terminator Cycle Sequencing Kit FS (Perkin Elmer Applied Biosystems

29

水色

Division, Foster City, CA) according to the manufacturer's protocol. This Kit contains the four ddNTPs with different fluorescence labels (=Dye Terminators). The PCR fragments may be used directly for sequencing without any prior purification step.

To simplify the pipetting steps, a master mix may be prepared consisting of the 5'Biotin labeled sequencing primer, ddH2O and the Kit reagents. This master mix should be prepared immediately prior to use and can be kept at room temperature until use. The sequencing master mix for one reaction may comprise 3.0 μ l of a 1pmol/ μ l solution of sequencing primer; 6.0 μ l ddH₂0, and 8.0 μ l of premixed sequencing reagents; for 36 + 1 reactions, these amounts are increased, respectively, to 111.0 μ l; 222.0 μ l; and 296.0 μ l, respectively. The sequencing primer may be selected from the sequencing primers for HLA-A set forth in Table 6, *supra*.:

The master mix may be aliquoted in a volume of 17μ l for each sequencing reaction in a 200μ l PCR tube and 3μ l of the unpurified PCR product are added. The reaction mixes may then be subjected to 25 cycles in a Perkin Elmer thermal cycler 9600. Each cycle consists of 10 sec 95 C, 5 sec 50 C and 4 min 60 C.

8.3. Purification Of Extension Products

After the sequencing reaction the extension products are desirably separated from the unincorporated Dye Terminators which would otherwise interfere with the fluorescence-based detection process of the electrophoretically separated sequencing fragments.

For each sequencing reaction, 50 µg (5 µl) Streptavidin-coated Dynabeads M-280 (Dynal Inc., Oslo, Norway) may be washed in 5 µl of 2x Binding and Washing buffer ("B&W"; 2X B&W buffer: 2M NaCl, 10mM Tris-HCl pH 7.5, 1mM EDTA). The beads may then be resuspended in 20 µl of 2x B&W.

To each $20\mu l$ sequencing reaction, $20\mu l$ of resuspended beads may be added, and the mixture may be incubated at room temperature (20-25 C) for 15 minutes. The beads may then be immobilized, the supernatant may be removed, and then the beads may be washed once in 70% ethanol by pipetting up and down five times. Then, as much as possible of the ethanol may desirably be removed, because residual ethanol may interfere with electrophoretic gel mobility.

For each sequencing reaction, 4µl of loading buffer (5:1 Formamide-

Ų.

......

...

25mM EDTA pH 8.0, 50mg/ml Dextran Blue) may be added.

8.4. Electrophoresis And Data Collection

Samples prepared by the foregoing methods may be used immediately or be stored at 4 C at least for 24 hours before starting the electrophoretic separation. Prior to the electrophoretic separation, each reaction may be incubated at 90 C for 2 minutes. 3μ l of each sample may be loaded on a prerun sequencing gel. For an automated ABI 377 sequencer (Applied Biosystems, Foster City, CA) a 0,2mm thick 5% polyacrylamide (acrylamide:bisacrylamide = 29:1) - 7 M urea gel may be used [gel composition: 21.0 g urea, 8.4 ml 30% acrylamide (stock solution: 58g acrylamide, 2g bisacrylamide in bidistilled water), 6.0 ml TBE buffer (10x TBE-buffer: 108.0 g tris base, 55.0 g bonc acid, 7.4 g Na2EDTA), 15 μ l TEMED, 350 μ l 10% Ammoniumpersulfate (1.0 g Ammoniumpersulfate in 10 ml ddH₂O), 20.0 ml ddH₂O]. Electrophoresis may be run at constant 48 watt for 8h. Data collection may be initiated immediately after starting the electrophoresis on the ABI377. Data analyses may be performed thereafter using the ABI analysis software (version 2.1.1).

8.5. Data Interpretation And HLA Typing

After data collection, the chromatograms may be printed and sequences may be compared manually to existing HLA data in the EMBL databank and the sequences compiled by Arnett and Parham. Due to the group-specific amplification and the lack of heterozygous positions, manual analysis is typically very fast. Alternatively, sequences may be checked with the data analysis chitor (Sequence NavigatorTM, Applied Biosystems) and aligned with any sequence alignment program.

Various publications are cited herein, the contents of which are hereby incorporated by reference in their entireties.

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT:
- (ii) TITLE OF THE INVENTION: Method and Kit for HLA Class
 I Typing
- (iii) NUMBER OF SEQUENCES: 245
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Baker & Botts, L.L.P.
 - (B) STREET: 30 Rockefeller Plaza
 - (C) CITY: New York
 - (D) STATE: NY
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 10112-0228
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: ASCII DOS text
 - (D) SOFTWARE: FastSEQ Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/766,189
 - (B) FILING DATE: 12 DEC 1996
 - (viii) ATTORNE, AGENT INFORMATION:
 - (A) NAME: Tenser, Arthur and Kole, Lisa
 - (B) REGISTRATION NUMBER: 18,839 and 35,225
 - (C) REFERENCE/DOCKET NUMBER: 30861
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 212-705-5000
 - (B) TELEFAX: 212-705-5020
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D)	TOPOLOGY:	linear
-----	-----------	--------

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
- (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele

consensus

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GAGCCGCAGA CCCCTCT	TAG ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG ACTAACC	GAA GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT CATAGGT	ÇT TETTECTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC CCCTTAG					240
ACTCTGGGAC TCTCGGT					300
CGGTTCGCGA GACAGAG	TTA CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG GGAGCCG	TAC CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGCATTAGAG	420
ACAGGGACTT GACCTGA	GGG ACTGAGGGTG	ŀ			450

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ÖRIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 0101

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGTCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	${\tt GAGACCTTTG}$	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	${\tt ACTTCCTGGG}$	ATGCATCCAA	CCCTCTCCCT	CLimmCLLLC	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGCTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TCCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

3

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
- (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 0301

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCCGAAATC	TTGTCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	ACTTCCTGGG	ATGCATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGAGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	.300
CGCTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TCCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 1101

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAGCCCCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTCTCGCTGG	60
CGCTTCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	ACTTCCTGGG	ATGCATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGAACA	.300
CGCTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TCCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG		r		450

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no

- (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
- (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A*1102

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAGCCCCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTCTCGCTGG	60
CGCTTCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	ACTTCCTGGG	ATGCATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGAĊTGGGGA	GACGAGAACA	300
CGCTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TCCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG	;	ÿ		450

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 3001
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCCGAAATC	TTGTLGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTITG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	ACTTCCTGGG	ATGCATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACACT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGCTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

- (2) INFORMATION FOR SEQ ID NO:7:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human

便民會

(ix) FEATURE:

(A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 3002

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCCGAAATC	TTGTCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	ACTTCCTGGG	ATGCATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACACT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGCTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 3004

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCCGAAATC	TTGTCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
				CCCTCTCCCT		180
ACGCCTCAAC						240
ACTCTGGGAC						300
				TTCTCGACAG		360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGTAATAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 0201-

书

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	ACTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAAGACA	300
CGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTGG	GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
CAGGGACTTG	ACCTGAGGGA	CTGAGGGTG		•		449

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 449 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 0215

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAAGACA	300
CGGTTCGCGA	GACAGAC - A	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTGG	GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
CAGGGACITG	ACCTGAGGGA	CTGAGGGTG				449

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 449 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 0217

S. S.

1,

44

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAAGACA	300
CGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTGG	GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
CAGGGACTTG	ACCTGAGGGA	CTGAGGGTG				449

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 6801

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GAGCCGCAGA CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGGTTCGCGA GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTA	360
CCCTCTTTGG GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
CAGGGACTTG ACCTGAGGGA	CTGAGGGTG				449

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 6802
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

湯湯

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTA	360
CCCTCTTTGG	GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
CAGGGACTTG	ACCTGAGGGA	CTGAGGGTG				449

- (2) INFORMATION FOR SEQ ID NO:14:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 6901
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTA	360
CCCTCTTTGG	GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
CAGGGACTTG	ACCTGAGGGA	CTGAGGGTG				449

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2301
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGTCGCTGG 60
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG 120

GCGCÁGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAAGACA	300
CGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	TAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGCATTAGAG	420
ACAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2402
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAGCCGCAGA CC	CCTCTTAG ACTCA	GGGCC .ACCCACG	CAC GCCTGAAATC	TTGTCGCTGG	60
CGCTGCTGTG AC	TAACCGAA GAGAC	CTTTG GGCTGTG	GGT TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT CA	TAGGTCCT TCTTC	CTGGG ATGTATC	CAA CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC CC	CTTAGGGG TTCCG	ACCCT GAGGGGT	TAG GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC TC	TCGGTGCG GACCC	CGGGA CCCTGAA	GCG GGACTGGGGA	GACGAAGACA	300
CGGTTCGCGA GA	CAGAGTTA CAGAG	GGACT TAGAACC	GGG TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG GG	AGCCGTAC CCGGG	GCAGG GAGAGGA	AAG TGAAAAGTAG	GGCATTAGAG	420
ACAGGGACTT GA	CCTGAGGG ACTGA	.GGGTG			450

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2403

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GAGÇCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGTCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240

WO 98/26091 PCT/CA97/00955

- 01/012	,,,,,,,
47	
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAAGACA CGGTTCGCGA GACAGAGTTA CAGAGGGACT TAGAACCGGG TTCTCGACAG ACTCTTTGTT CCCTCTTTTG GGAGCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG ACAGGGACTT GACCTGAGGG ACTGAGGGTG	300 360 420 450
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 450 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(A) NAME/KEY: HLA-A 5' Flanking Region Allele A*	2404
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGTCGCTGG CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAAGACA CGGTTCGCGA GACAGAGTTA CAGAGGGACT TAGAACCGGG TTCTCGACAG ACTCTTTGTT CCCTCTTTTG GGAGCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG ACAGGGACTT GACCTGAGGG ACTGAGGGTG	120 180 240 300 360 420
(2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 450 base pairs	
(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE:	
(A) NAME/KEY: HLA-A 5' Flanking Region Allele A*	2405
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGTCGCTGG CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG	12 18 24

ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAAGACA

CGGTTCGCGA GACAGAGTTA CAGAGGGACT TAGAACCGGG TTCTCGACAG ACTCTTTGTT

240

300

```
CCCTCTTTG GGAGCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG
                                                                      420
ACAGGGACTT GACCTGAGGG ACTGAGGGTG
                                                                      450
         (2) INFORMATION FOR SEQ ID NO:20:
      (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 450 base pairs
        (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
        (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: genomic DNA
            (iii) HYPOTHETICAL: no
            (iv) ANTI-SENSE: no
                  ORIGINAL SOURCE:
                  (A) ORGANISM: human
            (ix) FEATURE:
                  (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2407
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC; ACCCACGCAC GCCTGAAATC TTGTCGCTGG
CGCTGCTGTG ACTAACCGAA GAGACCTTTG; GGCTGTGGGT TACCCTCACT CTTGACCCAG
                                                                      120
GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG
                                                                      180
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG
                                                                      240
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAAGACA
                                                                     300
CGGTTCGCGA GACAGAGTTA CAGAGGGACT TAGAACCGGG TTCTCGACAG ACTCTTTGTT
                                                                      360
CCCTCTTTG GGAGCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG
                                                                      420
ACAGGGACTT GACCTGAGGG ACTGAGGGTG
                                                                      450
                       (2) INFORMATION FOR SEQ ID NO:21:
      (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 450 base pairs
        (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
        (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: genomic DNA
            (iii) HYPOTHETICAL: no
            (iv) ANTI-SENSE: no
                  ORIGINAL SOURCE:
            (v)
                  (A) ORGANISM: human
            (ix) FEATURE:
                  (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2501
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG
                                                                       60
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG
                                                                      120
GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCGTCTCCCT CTTTTCTTTG
                                                                      180
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG
                                                                      240
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA
                                                                      300
CGGTTCGAGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT
                                                                      360
CCCTCTTTTG GGAGCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG
                                                                      420
ACAGGGACTT GACCTGAGGG ACTGAGGGTG
                                                                      445
```

 $\cdot \ddot{\tilde{j}}$

京なの様

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 450 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2601

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
GCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACCCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATATGGCG	GAAGCCCCGG	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
ÇGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAATAG	GGCATTAGAG	420
ÀCAGGGACTT	GACCTGAGGG	ACTGAGGGTG				450

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 449 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 3402

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCGCTGG	60
CGCTGCTGTG	ACTAACCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT	CATAGGTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	Chalantantanta	180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCCC	240
ACTCTGGGAC	TCTCGGTGCG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGACGACA	300
CGGTTCGCGA	GACAGAGTTA	CAGAGGGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	350
CCCTCTTTGG	GAGCCGTACC	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	CCATTACACA	,
CAGGGACTTG	ACCTGAGGGA	CTGAGGGTG		CHIMMING	GCATTAGAGA	4,20
,						449

(2) INFORMATION FOR SEQ ID NO:24:

50 . (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 449 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (v) (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 4301 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG 60 CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG 120 GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG 180 ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATATGGCG GAAGCCCCGG 240 ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA 300 CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT 360 CCCTCTTTGG GAGCCGTACC CGGGGCAGGG AGAGGAAAGT GAAAAATAGG GCATTAGAGA 420 449 CAGGGACTTG ACCTGAGGGA CTGAGGGTG (2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 449 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (v) (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 6601 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GAGCCGCAGA CO	-сстсттаG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGGGCGCTGG	60
CGCTGCTGTG AC	CTANCCGAA	GAGACCTTTG	GGCTGTGGGT	TACCCTCACT	CTTGACCCAG	120
GCGCAGCACT CA	ATACCTCCT	TCTTCCTGGG	ATGTATCCAA	CCCTCTCCCT	CTTTTCTTTG	180
ACGCCTCAAC CO	CCTTACCCC	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACCCTCAAC CO	CCITAGGGG	GACCCCGGGA	CCCTGAAGCG	GGACTGGGGA	GACGAGGACA	300
CGGTTCGCGA G	CICGGIGCG	CACACCGACT	CAGAACCGGG	TTCTCGACAG	ACTCTTTGTT	360
CCCTCTTTGG G	ACAGAGIIA	CGGGGCAGGG	AGAGGAAAGT	GAAAAATAGG	GCATTAGAGA	420
					:	449
CAGGGACTTG A	CCTGAGGGA	CIGWGGGIG			•	

- (2) INFORMATION FOR SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 449 base pairs

- 51 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 6602 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: GATTCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG 60 CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG 240 ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTA CCCTCTTGG GAGCCGTACC CGGGGCAGGG AGAGGAAAGT GAAAAATAGG GCATTAGAGA 420 CAGGGACTTG ACCTGAGGGA CTGAGGGTG 449 (2) INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 449 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE: TYPE & genomic DNA (iii) HYPOTHETICAL: :no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 6603 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG CGCTGCTGTG ACTNACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTA CCCTCTTTGG GAGCCGTACC CGGGGCAGGG AGAGGAAAGT GAAAAATAGG GCATTAGAGA 420 CAGGGACTTG ACCTGAGGGA CTGAGGGTG 449

- (2) INFORMATION FOR SEQ ID NO:28:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

...

r. C

を言いる

180

240

300

360

420

450

(:)

52 (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2901 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28: GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCGTCTCCCT CTTTTCTTTG ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA

CGGTTCGAGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT

CCCTCTTTG GGAGCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

ACAGGGACTT GACCTGAGGG ACTGAGGGTG

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
- (ix) FEATURE:
 - (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 2902
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

GAGCCGCAGA	CCCCTCTTAG	ACTCAGGGCC	ACCCACGCAC	GCCTGAAATC	TTGGCCCTCC	C 0
CGCTGCTGTG						60
						120
GCGCAGCACT						180
ACGCCTCAAC	CCCTTAGGGG	TTCCGACCCT	GAGGGGTTAG	GTATGTGGCG	GAAGCCCCGG	240
ACTCTGGGAC						300
CGGTTCGAGA						
						360
CCCTCTTTTG	GGAGCCGTAC	CCGGGGCAGG	GAGAGGAAAG	TGAAAAGTAG	GGCATTAGAG	420
ACAGGGACTT						-20
,		1101001010			•	450

- (2) INFORMATION FOR SEQ ID NO:30:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

33	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	

(ix) FEATURE:	
(A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 31	012
P	
·	
/ '\ CDDTTUTT DESCRIPTION OF TO VO 30	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG	60
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG	120
	180
	240
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCATGAAGCG GGACTGGGGA GACGAGGACA	300
,	360
	420
ACAGGGACTT GACCTGAGGG ACTGAGGGTG	450
(2) INFORMATION FOR SEQ ID NO:31:	
(2) INFORMATION FOR SEQ ID NO. 31:	
Į.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 449 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 32	0.1
(A) MAIN THE A 3 Planking Region Affeld A 32	ΟI
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG	60
CCCTCCTCTC ACTARCOCAR CACACCTTCCC CCCCTCCCC TA CTCTCCC	
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	120
GCGCAGCACI CAIAGGICCI ICIICCIGGG AIGIATCCAA CCGTCTCCCT CTTTCTTTG	180
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG	240
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA	300
CCCTTCCCC CACACACTTA CACACCCACTT CACAACCCC TTCCCC	
CCCTCTTTCC CACCCCTACC CCCCCCACCA ACACCAAAACC	360
COLORITOR CARCOLINACE COGGGCAGGG AGAGGAAAGT GAAAAGTAGG GCATTAGAGA	420
CAGGGACTTG ACCTGAGGGTG	449
(2) INFORMATION FOR SEQ ID NO:32:	
<u> </u>	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 450 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) PADOTHERICAL	

(iv) ANTI-SENSE: no

```
ORIGINAL SOURCE:
            (v)
                  (A) ORGANISM: human
            (ix) FEATURE:
                  (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 3301
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG
                                                                      60
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG
                                                                      120
GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG
                                                                      180
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG
                                                                      240
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCATGAAGCG GGACTGGGGA GACGAGGACA
                                                                      300
CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT
                                                                      360
CCCTCTTTTG GGACCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG
                                                                      420
ACAGGGACTT GACCTGAGGG ACTGAGGGTG
                                                                      450
         (2) INFORMATION FOR SEQ ID NO:33:
      (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 450 base pairs
        (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
        (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: genomic DNA
            (iii) HYPOTHETICAL: no
            (iv) ANTI-SENSE: no
            (v)
                ORIGINAL SOURCE:
                  (A) ORGANISM: human
            (ix) FEATURE:
                  (A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 3303
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG
                                                                      60
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG
                                                                     120
GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG
                                                                     180
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG
                                                                     240
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCATGAAGCG GGACTGGGGA GACGAGGACA
CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT
                                                                     360
CCCTCTTTTG GGACCCGTAC CCGGGGCAGG GAGAGGAAAG TGAAAAGTAG GGCATTAGAG
                                                                     420
ACAGGGACTT GACCTGAGGG ACTGAGGGTG
                                                                     450
         (2) INFORMATION FOR SEQ ID NO:34:
      (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 449 base pairs
        (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
        (D) TOPOLOGY: linear
           (ii) MOLECULE TYPE: genomic DNA
            (iii) HYPOTHETICAL: no
```

(iv) ANTI-SENSE: no

ORIGINAL SOURCE:
(A) ORGANISM: human

 $\tilde{\chi}_{i}$

	((A) NAME/KEY:	HLA-A 5' FI	anking Re	gion Allel	e A*
					*	:
(xi)	SEQUENCE	E DESCRIPTION	SEQ ID NO	34:	•	
		TAG ACTCAGGGC				
		SAA GAGACCTIT				
		CCT TCTTCCTGG				
		EGG TTCCGACCC ECG GACCCCGGG				
		TTA CAGAGGGAC				
		ACC CGGGGCAGG				
		GA CTGAGGGTG	, HONGORDIO	CIDDING	.cc cc	1071
(:	2) INFOR	MATION FOR SE) ID NO:35:			
		CHARACTERIST:				
		: 18 base pai. nucleic acid	د.			
,-		EDNESS: single	<u>e</u>			
		GY: linear				
,		MOLECULE TYPE	: genomic Di	AI		
	(iii) I	HYPOTHETICAL:	no			
	(iv) 1	ANTI-SENSE: n	o		•	
	(v)	ORIGINAL SOUR	CE:			
		(A) ORGANISM:	human			
		FEATURE:	-3 000			
		(A) NAME/KEY:	11-210m			
(xi)	SEQUENC	E DESCRIPTION	: SEQ ID NO	:35:		
ACCCGGGAAG	CCGGGCC	T				
(2) INFOR	MATION FOR SE	Q ID NO:36:			
(i)	SEQUENCE	CHARACTERIST	ICS:			
		: 449 base pa	irs			
		nucleic acid				
		EDNESS: singl	e		•	
(D		GY: linear		173		
		MOLECULE TYPE HYPOTHETICAL:		MA		
		ANTI-SENSE: n				
	• - •	ORIGINAL SOUR			•	
		(A) ORGANISM:				
		FEATURE:	-			
		(A) NAME/KEY:	HLA-A 5' F	lanking Re	gion Allel	.e A*
/ se = 1	CEOMBIA	E DESCRIPTIÓN		.36.		
	arante.NU	E DEDUKTELION	. aeu lu NO	: 0 : :		

GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCGTCTCCCT CTTTTCTTTG

180

240

300

56	
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG 240	
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA 300	
CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT 360	
CCCTCTTTGG GAGCCGTACC CGGGGCAGGG AGAGGAAAGT GAAAAGTAGG GCATTAGAGA 420	
CAGGGACTTG ACCTGAGGGA CTGAGGGTG 449	
(2) INFORMATION FOR SEQ ID NO:37:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 449 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE: (A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 7403	
\(\frac{\paraboldon}{\paraboldon}\)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
: GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG 60	
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TACCCTCACT CTTGACCCAG 120	
GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCGTCTCCT CTTTTCTTTG 180	
ACGCCTCAAC CCCTTAGGGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG 240	
ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA 300	
CGGTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TTCTCGACAG ACTCTTTGTT 360	
CCCTCTTTGG GAGCCGTACC CGGGGCAGGG AGAGGAAAGT GAAAAGTAGG GCATTAGAGA 420	
CAGGGACTTG ACCTGAGGGA CTGAGGGTG 449	
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 449 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE: (A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A 5' Flanking Region Allele A* 8001	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
CACCCCACA CCCCCCCCCC	
GAGCCGCAGA CCCCTCTTAG ACTCAGGGCC ACCCACGCAC GCCTGAAATC TTGGCGCTGG 60	
CGCTGCTGTG ACTAACCGAA GAGACCTTTG GGCTGTGGGT TATCCTCACT CTTGACCCAG GCGCAGCACT CATAGGTCCT TCTTCCTGGG ATGTATCCAA CCCTCTCCCT CTTTTCTTTG 180	
180 180 180 180 180 180 180 180 180 180	

ACGCCTCAAC CCCTTAGAGG TTCCGACCCT GAGGGGTTAG GTATGTGGCG GAAGCCCCGG

ACTCTGGGAC TCTCGGTGCG GACCCCGGGA CCCTGAAGCG GGACTGGGGA GACGAGGACA

57	
CGCTTCGCGA GACAGAGTTA CAGAGGGACT CAGAACCGGG TCCTCGACAG ACTCTTTGTT CCCTCTTTGG GAGCCGTACC CGGGGCAGGG AGAGGAAAGT GAAAAGTAGG GCATTAGAGA CAGGGACTTG ACCTGAGGGA CTGAGGGTG	360 420 449
(2) INFORMATION FOR SEQ ID NO:39:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele consensus 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCTGGC GGGGGCGCAG GACCCGGGAA GCCGCGCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:40:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A 5' Intron Allele A* 0101	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
GTGAGTGCGG GGTCGGGAGG GAAACCGCCT CTGCGGGGAG AAGCAAGGGG CCCTCCTGGC GGGGGCGCAG GACCGGGGGA GCCGCCCGG GAGGAGGGTC GGGCAGGTCT CAGCCACTGC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:41:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: genomic DNA

: 77

(j)

		JIMELICAN:				
•	(iv) ANT	[-SENSE: no				
	(v) ORIC	SINAL SOURC	Ē:			
•	· (A)	ORGANISM:	human			
	(ix) FEA	TURE:				
			HLA-A Intro	n n Allele :	* 7271	
	. \/			. I PALLUAC I	K 0301	
(/) mr			and the			
(X1) SI	SQUENCE D	ESCRIPTION:	SEQ ID NO:	ŧΤ:		
GTGAGTGCGG GC	1					60
GGGGGCGCAG GA	ACCGGGGGA	GCCGCGCCGG	GACGAGGGTC	GGGCAGGTCT	CAGCCACTGC	120
TCGCCCCCAG	•		•			130
:	1					
(2)	INFORMAT:	ION FOR SEQ	ID NO:42:			
	į.	_				
(i) SEC	SUENCE CH	ARACTERISTI	CS:			
		30 base pai				
3	TYPE: nuc	_	13			
		ESS: single	;			
	ropology:		•			
((ii) MOL	ECULE TYPE:	genomic DNA	A		
((iii) HYP(OTHETICAL:	no			
9	(iv) ANT	-sense: no	:			
· : i	(v) ORIC	SINAL SOURC	E:			
1	(A)	ORGANISM:	human			
i	(ix) FEAT					
			HLA-A Intro	י הוחות היי	N+ 3101	
	(A)	WAME/ICI.	nua-a incidi	1 1 WITETE W	4° 1101	
	•		•	•		
, , , , , , , , , , , , , , , , , , , ,	, <u>{</u>					
(X1) SE	QUENCE DE	SCRIPTION:	SEQ ID NO:4	2:		
STGAGTGCGG GG						60
eggggcgcag ga	CCGGGGGA	GCCGCGCCGG	GAGGAGGGTC	GGGCAGGTCT	CAGCCACTGC	120
ICGCCCCCAG						130
(2)	INFORMAT	ON FOR SEQ	ID NO:43:			
(i) SEQ	UENCE CHA	RACTERISTI	CS:		•	
(A) L	ENGTH: 13	0 base pai:	cs		•	
	YPE: nucl					
		SS: single				
	OPOLOGY:	_			:	
·	iii mone	COLE TIPE:	genomic DNA			
		THETICAL: 1	10			
		-SENSE: no				
)		INAL SOURCE				
		ORGANISM: 1	numan			
).	(ix) FEAT					
	(A)	NAME/KEY: 1	HLA-A Intron	1 Allele A	* 1102	
į						
*						•
(xi) SE	QUENCE DE	SCRIPTION:	SEQ ID NO:4	3 :		
i			HO.1	- •		
STGAGTGCGG GG	TCGGGAGG	GAAACCGCCT	CTGCGGGGAAG	AACCAACCA	Ocemen	
GGGGCGCAG GA	CCGGGGGA	GCCGCGCCC	CICCOGGGAG	CCCCACCACC	CCCTCCTGGC	60
			CAGGAGGGTC	GGGCAGGTCT	CAGCCACTGC	120

3

427

130

TCGCCCCCAG							
(2)	INFORMATION	FOR S	SEQ	ID NO:44	:		

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 1 Allele A* 3001
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GTGAGTGCGG GGTCGGGAGG GAAACCGCCT CTGCGGGGAG AAGCAAGGGG CCCTCCTGGC 60
GGGGGCGCAG GACCGGGGAA GCCGCCCGG GAGGAGGGTC GGTCAGGTCT CAGCCACTGC 120
TCGCCCCCAG

- (2) INFORMATION FOR SEQ ID NO:45:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 1 Allele A* 3002
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

GTGAGTGCGG GGTCGGGAGG GAAACCGCCT CTGCGGGGAG AAGCAAGGGG CCCTCCTGGC 60
GGGGGCGCAG GACCGGGGGA GCCGCCCGG GAGGAGGGTC GGTCAGGTCT CAGCCACTGC 120
TCGCCCCCAG

- (2) INFORMATION FOR SEQ ID NO:46:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no

(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 3004	
, , , , , , , , , , , , , , , , , , , ,	
· · · · · · · · · · · · · · · · · · ·	
(-1) OPERATOR PROGRAMMENT CHO. TO 10.40.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:	
STGAGTGCGG GGTCGGGAGG GAAACCGCCT CTGCGGGGAG AAGCAAGGGG CCCTCCTGGC	60
GGGGGCGCAG GACCGGGGGA GCCGCCGCGG GAGGAGGGTC GGTCAGGTCT CAGCCACTGC	120
TCGCCCCCAG	130
(2) INFORMATION FOR SEQ ID NO:47:	
(2) INFORMATION FOR SEQ ID NO. 47.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
, ,	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 0201	
(all) energy an anathrates are to the	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	60
GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	120
CGTCCCCAG	129
(2) INFORMATION FOR SEQ ID NO:48:	
(a) Lindustran Ton Day 15 No. 10.	
(i) CEOUTAIGE CHAIN GERRI CONTOC	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no	
(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0202</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0202 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48: GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	60
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	60 120

技

(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0203	
(A) NAME/KEY: HLA-A INCION I	
and the NO.49:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	60
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG ARCCITCTC AGCCACTCCT	120
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAGCTCCT GGGGCGCAGG AQCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	129
CGTCCCCAG	
•	
(2) INFORMATION FOR SEQ ID NO:50:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) Type: nucleic acid	
(C) STRANDEDNESS: single	
(m) monorody, linear	
(ii) MOLECULE TYPE: Genomic Divi	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0204	
: WO FO:	;
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
	. 60
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	120
GTGAGTGCGG GGTCGGGAGG GAAACGGCC1 C1G10000110 IIIIIIIIIIIIIIIIIIIIIIIIIIIII	12
CGTCCCCAG ;	
(2) INFORMATION FOR SEQ ID NO:51:	
·	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(n) ropology: linear	·
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	

(ix) FEATURE:	į
(A) NAME/KEY: HLA-A Intron 1 Allele A* 0205	
	Ì
(and a provincial programmer), and the volume	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	1
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	60
GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	120
CGTCCCCAG	129
CGICCCCAG	1.29
\cdot	
(2) INFORMATION FOR SEQ ID NO:52:	:
	;
(i) SEQUENCE CHARACTERISTICS:	?
(A) LENGTH: 129 base pairs	§
(B) TYPE: nucleic acid	j
· - /	:
(C) STRANDEDNESS: single	į
(D) TOPOLOGY: linear	Š
(ii) MOLECULE TYPE: genomic DNA	The second control of the expension of the second control of the s
(iii) HYPOTHETICAL: no	\$ *
(iv) ANTI-SENSE: no	ą.
(v) ORIGINAL SOURCE:	1
	1
(A) ORGANISM: human	i
(ix) FEATURE:	y A
(A) NAME/KEY: HLA-A Intron 1 Allele A* 0206	
	\$
	4
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	!
(XI) SEQUENCE DESCRIPTION: SEQ 10 NO.32.	î
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	୍ରେ
GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	12,0
CGTCCCCAG	12:9
•	:
(2) INFORMATION FOR SEQ ID NO:53:	÷
(2) INFORMATION FOR SEQ ID NO. 33.	
41.	•
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
_	;
(iii) HYPOTHETICAL: no	•
(iv) ANTI-SENSE: no	•
(v) ORIGINAL SOURCE:	;
(A) ORGANISM: human	
(ix) FEATURE:	1.
(A) NAME/KEY: HLA-A Intron 1 Allele A* 0207	•
(A) MATE, REAL METER AT 0207	
	:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	ėn
GGGGCGCAGG ACCCGGGAAG CCGCCCGGG AGGAGGGTCG GGCGGTCTC AGCCACTCCT	60
CGTCCCCAG	120
COTOCCAG	129

(2) INFORMATION FOR SEQ ID NO:54:

3.7

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0207	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT CGTCCCCAG	60 120 129
(2) INFORMATION FOR SEQ ID NO: \$5:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0208	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT CGTCCCCAG	60 120 129
(2) INFORMATION FOR SEQ ID NO: 56:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE:	
(A) NAME/KEY: HLA-A Introp 1 Allele At 2000	

(1)

 J_{-}

 $\frac{\mathcal{H}}{\mathcal{Y}}$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT CGTCCCCAG	60 120 129
(2) INFORMATION FOR SEQ ID NO:57:	
<pre>(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT CGTCCCCAG	60 120 129
(2) INFORMATION FOR SEQ ID NO:58:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 0211 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT CGTCCCCAG ! (2) INFORMATION FOR SEQ ID NO:59:	60 120 129
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 129 base pairs	

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single	ž
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	ŧ.
(iii) HYPOTHETICAL: no	•
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	•
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 0215	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:	\$
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	5 60
GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	120
CGTCCCCAG	129
!	n i
(2) INFORMATION FOR SEQ ID NO:60:	ş
į į	<u> </u>
(i) SEQUENCE CHARACTERISTICS:	7/ 1
(A) LENGTH: 129 base pairs	į
(B) TYPE: nucleic acid	į
(C) STRANDEDNESS: single	1 2
(D) TOPOLOGY: linear	ř.
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	4
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	!
(A) ORGANISM: human	*
(ix) FEATURE:	*
(A) NAME/KEY: HLA-A Intron 1 Allele A* 0217.	:
	,
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	:
	•
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAACGGG CCGCCTGGCG	60
GGGGCGCAGG ACCCGGGAAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	
CGTCCCCAG	129
(2) INFORMATION FOR SEQ ID NO:61:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	•
(B) TYPE: nucleic acid)
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	;
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	:
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 6801	
·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:	

.00

- iğ

.

GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:62:	
<pre>(i) SEQUENCE CHARACTER FICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DFA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:63:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 6901 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:64:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA	

(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2301	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGAG AAGCAAGGGG CCCGCCTGGC	60
GGGGGCGCAA GACCCGGGAA GCCGCGCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
TCGTCCCCAG	130
(2) INFORMATION FOR SEQ ID NO:65:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2402	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGAG AAGCAAGGGG CCCGCCTGGC	60
GGGGGCGCAA GACCCGGGAA GCCGCGCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
TCGTCCCCAG	130
(2) THEODINATON BOD ONG TO NO CC	
(2) INFORMATION FOR SEQ ID NO:66:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	*
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	•
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	,
(v) ORIGINAL SOURCE:	-
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2403	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGAG AAGCAAGGGG CCCGCCTGGC	60
GGGGGCGCAA GACCCGGGAA GCCGCGCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120

68	
TCGTCCCCAG	130
(2) INFORMATION FOR SEQ ID NO:67:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2404	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGAG AAGCAAGGGG CCCGCCTGGC	60
GGGGGCGCAA GACCCGGGAA GCCGCCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	
TCGTCCCCAG	130
;	
(2) INFORMATION FOR SEQ ID NO:68:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2405	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGAG AAGCAAGGGG CCCGCCTGGC	
GGGGGCGCAA GACCCGGGAA GCCGCCCGG GAGGAGGGTC GGGCGGGTCT CAGCUACTCC	120
TCGTCCCCAG	120 130
	130
(2) INFORMATION FOR SEQ ID NO:69:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	

(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(V) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2407	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:	
(,,,,,,,	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGAG AAGCAAGGGG CCCGCCTGGC	60
GGGGGCGCAA GACCCGGGAA GCCGCGCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
TCGTCCCCAG	130
(2) INFORMATION FOR SEQ ID NO:70:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECTIE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2501	
:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGACGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGTGGGTCTC AGCCACTCCT	120
CGCCCCCAG	129
(2) INFORMATION FOR SEQ ID NO:71:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2601	
1 Many total and a finction I willing A. 2001	
(xi) SEQUENCE DESCRIPTION: SEO ID NO:71:	
(YY) SEGODUCE DESCRIBITON: DEG ID MO: \I:	
)	•
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC	60
GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
TCGCCCCAG	130

, ,	
(2) INFORMATION FOR SEQ ID NO:72:	
(i) SEQUENCE CHARACTERISTICS:	
(1) SEQUENCE CHARACTERISTICS	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 3402	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC	60
GTGAGTGCGG GGTCGGGAG GAAACGGCCT CTGTGGGAAA AACGTTCC GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
GGGGGCGCAG GACCCGGGAA GCCGCGCCIG GAGGIOTT	130
TCGCCCCAG	
·	
(2) INFORMATION FOR SEQ ID NO:73:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	:
(n) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI; SENSE: no	
(V) ORIGINAL SOURCE:	
(A) ORGANISM: human	
<pre>(ix) FEATURE: (A) NAME/KEY: HLA-A Intron 1 Allele A* 6601</pre>	
(A) NAME/REI: HIM A INSIGN	
•	
GEO ID NO.73:	•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:	
	60
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC	120
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	130
TCGCCCCAG	130
(2) INFORMATION FOR SEQ ID NO:74:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(II) MOUNTOUR IIII. Someway	

SUBSTITUTE SHEET (rule 26)

(iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no

(v)

ORIGINAL SOURCE:

(A) ORGANISM: human

(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 6602	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
(AI) Digolifed Bibelitition. Dig ib No. 14.	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:75:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human (ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 6603	
(15) Items (1612) India 11 and 15 and 16 and	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC TCGCCCCCAG	60 120 130
(2) INFORMATION FOR SEQ ID NO:76:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
<pre>(A) ORGANISM: human (ix) FEATURE:</pre>	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 4301	
(, Man, mar. mar-n inclose i Allete A. 4301	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGTGGGGAG AAGCAAGGGG CCCGCCCGGC	60
GGGGGCGCAG GACCCGGGAA GCCGCGCCTG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
TCGCCCCAG	130

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2901	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGACGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGTGGGTCTC AGCCACTCCT	120
CGCCCCAG	129
COCCCCA	123
(2) INFORMATION FOR SEO ID NO:78:	
(2) INFORMATION FOR BING ID NO. 70.	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 2902	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
<u> </u>	
STGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGACGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGTGGGTCTC AGCCACTCCT	120
CGCCCCAG	129
•	
(2) INFORMATION FOR SEQ ID NO:79:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 3101	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGATCTC AGCCACTCCT	120
CGCCCCCAG	129
· · · · · · · · · · · · · · · · · · ·	
(2) INFORMATION FOR SEQ ID NO:80:	
(-,	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ÖRIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 3201	
(A) thin that the state of a state of the st	
·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:	
(AI) bigointh bibotti izon. big ib No. 50.	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	120
CGCCCCCAG	129
- Cadecacero	
(2) INFORMATION FOR SEQ ID NO:81:	
the state of the same and the state of the state of the same and the s	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 1301	
, to man the state of a state of a state of	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
in sagana abbanatan, bag ab no.oz.	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	6
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGATCTC AGCCACTCCT	12
CGCCCCCAG	12:
	12
(2) INFORMATION FOR SEQ ID NO:82:	
The second secon	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	

(B) TYPE: nucleic acid

3.9

(C) SIRANDEDNESS: SINGIE	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 3303	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGATCTC AGCCACTCCT	120
CGCCCCAG	129
(2) INFORMATION FOR SEQ ID NO:83:	
() CHAIRNIGH CHIND CHIND CHICAG	
(i) SEQUENCE CHARACTERISTICS:	:
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	:
(A) NAME/KEY: HLA-A Intron 1 Allele A* 7401	:
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:	
CTC1CTCCCC CCTCCTCCCC	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	120
CGCCCCAG	129
(2) TUDADWATTAN DAD ODO TO 10	
(2) INFORMATION FOR SEQ ID NO:84:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
·	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 7402	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC CCGCCCGGCG	60
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	120
CGCCCCAG	129
(2) INFORMATION FOR SEQ ID NO:85:	
(2) INFORMATION FOR BEQ ID NO.83:	
(:\ chourseas outside	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 129 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 7403	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:	
(XI) SEQUENCE DESCRIPTION. SEQ ID NO.83.	
GTGAGTGCGG GGTCGTGGGG AAACCGCCTC TGCGGGGAGA AGCAAGGGGC TCGCCCGGCG	60
GGGGCGCAGG ACCCGGGTAG CCGCGCCGGG AGGAGGGTCG GGCGGGTCTC AGCCACTCCT	
4	
CGCCCCAG	129
(a) THEORYMETON FOR CEO ID NO. 96	
(2) INFORMATION FOR SEQ ID NO:86:	
(:) anathyan attanamentamen	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 130 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 1 Allele A* 8001	
· 7	
•	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
GTGAGTGCGG GGTCGGGAGG GAAACGGCCT CTGCGGGGGAG AAGCAAGGGG CCCGCCCGGC	60
GGGGGCGCAG GACCCGGGAA GCCGCGCCGG GAGGAGGGTC GGGCGGGTCT CAGCCACTCC	120
TCGCCCCAG	130
<i>:</i>	133
(2) INFORMATION FOR SEQ ID NO:87:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	

	(iii) HYPOTHETICAL: no	
	(iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:	
	(A) ORGANISM: human	
	(ix) FEATURE:	
	(A) NAME/KEY: HLA-A Intron 2 Allele consensus	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:87:	
CTCACTCACC (CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG	60
	TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC	120
	GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC	180
CCGGGTTGGT	CGGGGCCGGG CGGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA	240
G		241
(2) INFORMATION FOR SEQ ID NO:88:	
(i) S	EQUENCE CHARACTERISTICS:	
	LENGTH: 241 base pairs	
(B)	TYPE: nucleic acid	
(C)	STRANDEDNESS: single	
(D)	TOPOLOGY: linear	
	(ii) MOLECULE TYPE: genomic DNA	
	(iii) HYPOTHETICAL: no	
	(iv) ANTI-SENSE: no	
	(v) ORIGINAL SOURCE: (A) ORGANISM: human	
	(ix) FEATURE:	
	:(A) NAME/KEY: HLA-A Intron 2 Allele A* 0101	
•	, ,	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:88:	
GTGAGTGACC (CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG	60
	TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACTCCG AGACCCTTGT	120
	GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC	180
CCGGGTTGGT (CGGGGCGGGG CGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA	240
G		241
) INFORMATION FOR SEQ ID NO:89:	
	EQUENCE CHARACTERISTICS:	,
	LINGTH: 241 base pairs	
	TYPE: nucleic acid STRANDEDNESS: single	
	TOPOLOGY: linear	
, , , , , , , , , , , , , , , , , , , ,	(ii) MOLECULE TYPE: genomic DNA	
	(iii) HYPOTHETICAL: no	
	(iv) ANTI-SENSE: no	
	(v) ORIGINAL SOURCE:	
•	(A) ORGANISM: human	
	(ix) FEATURE:	
	(A) NAME/KEY: HLA-A Intron 2 Allele A* 0201	

-3

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:89:
1202	22627462	DEDUKTE LEON.	~~Q		110.00.

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCAGGTTGGT	CGGGGCGGGG	CGGGGCTCGG	GGGACCGGGC	TGACCGCGGG	GTCCGGGCCA	240
G						241

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron Allele A* 0202

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCAGGTTGGT	CGGGGCGGGG	CGGGGCTCGG	GGGACCGGGC	TGACCGCGGG	GTCCGGGCCA	240
G						241

(2) INFORMATION FOR SEQ ID NO:91:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron Allele A* 0203

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

GTGAGTGACC CCGGCCCGGG GC	CGCAGGTCA CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG TCTCCGGGTC CC	GAGATCCGC CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG GCCCAGGCGC CT	TTTACCCGG TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCAGGTTGGT CGGGGCGGGG CC	GGGGCTCGG GGGACCGGGC	TGACCGCGGG	GTCCGGGCCA	240
G				241

(2)	INFORMATION	FOR	SEO	מד	NO:92
\~,	THEOMPTION	LOK	باعدد	10	NO.52.

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 0204

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG 60
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 120
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180
CCAGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA 240
G 241

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 0205

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA T_CCCCCACGG ACGGGCCAGG 60
TCGCCCACAG TCTLUGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 120
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180
CCAGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA 240
G

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

يا پارس

γ.

<pre>(iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC CCAGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA G	60 120 180 240 241
(2) INFORMATION FOR SEQ ID NO:95:	
<pre>(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:	
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC CCAGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA	60 120 180 240 241
(2) INFORMATION FOR SEQ ID NO:96:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human	

4.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
;		CGGGGCTCGG				240
CCMCGITCGI		0000001000				241

- (2) INFORMATION FOR SEQ ID NO:97:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE.
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 0209
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

(GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
•	TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
1	CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
1	CCAGGTTGGT	CGGGGCGGG	CGGGGCTCGG	GGGACCGGGC	TGACCGCGGG	GTCCGGGCCA	240
(G i						241

- (2) INFORMATION FOR SEQ ID NO:98:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 0210
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	Julin Campulation	AGTTTAGGCC	AAAAATCCCC	
CCAGGTTGGT	CGGGGCGGGG	CGGGGGCTCGG	GGGVCCGCGG	TCACCCCCCC	GTCCGGGCCA	
G		0000001000	GGGACCGGGC	TGACCGCGGG	GTUCGGGCCA	240
-						241

1,00

(2) INFORMATION FOR	SEQ	תו	NO:55
---------------------	-----	----	-------

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 0211

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG 60
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 120
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180
CCAGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA 240
G 241

(2) INFORMATION FOR SEQ ID NO:100:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron Allele A* 0215

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

GTGAGTGACC CCCGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG 60
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCC CGGGACCCCG AGACCCTTGC 120
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180
CCAGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA 240
G 241

(2) INFORMATION FOR SEQ ID NO:101:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

25

4

(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no,
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: HLA-A Intron 2 Allele A* 0217
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 1
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG, TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1
CCAGGTTGGT CGGGGCGGGG CGGGGCTCGG GGGACCGGGC TGACCGCGGG GTCCGGGCCA 2
G 2
:
(2) INFORMATION FOR SEQID NO:102:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 241 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear %
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: HLA-A Intron 2 Allele A* 6801
· : :
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 1
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1
CCGGGTTGGT CGGGGCGGGG CGGGGCTCGG GGGACCGGGC TGACCTCGGG GTCCGGGCCA 2
G 2
(a)
(2) INFORMATION FOR SEQ ID NO:103:
(') CROUTINGS CUINS CORRESPONDE
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 241 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
for warman management and millionia

(A) NAME/KEY: HLA-A Intron 2 Allele A* 6802

**

(xi) SEQUENCE DESCRIPTION: SEO ID NO:103:						
	1-41	CECTENICE	DECCETEMENT .	CEO	TD	MO.IO.

F						
GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TITCATTITC	AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT	CGGGGGGGG	CGGGGCTCGG	GGGACCGGGC	TGACCTCGGG	GTCCGGGCCA	240
G .						241

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 6901

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

GŢGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
					GTCCGGGCCA	240
G [§]						241

(2) INFORMATION FOR SEQ ID NO:105:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 2501

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCAGG	66
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT	CGGGGCGGGG	CGGGGCTCGG	GGGACCGGGC	TGACCTCGGG	GTCCGGGCCA	240
G						241

(2)	INFORMATION	FOR	SEQ	ID	NO:106:
-----	-------------	-----	-----	----	---------

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 260,1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGCCCAGG 60
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 120
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180
CCGGGTTGGT CGGGGCGGG CGGGGCTCGG GGGACCGGGC TGACCTCGGG GTCCGGGCCA 240
G 241

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 4301

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

GTGAGTGACC CCGG	CCCGGG GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCAGG	60
	CGGGTC CGAGATCCGC				120
CCCGGGAGAG GCCC	AGGCGC CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT CGGG	GCGGGG CGGGGCTCGG	GGGACCGGGC	TGACCTCGGG	GTCCGGGCCA	240
G					241

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

į 85	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 6601	
,	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG	60
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 1:	20
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1	80
CCGGGTTGGT CGGGGCGGGG CGGGGCTCGG GGGACCGGGC TGACCTCGGG GTCCGGGCCA 24	40
G 24	41
(2) INFORMATION FOR SEQ ID NO:109:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 6602	
:	
<u> </u>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:	
GPG1 GPG1 CQ GGGGGGGGG COMPANIE COMPANI	
	50
TCGCCCACAG TCTCCGGGTC CGAGATCCGC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 12	20
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 18	30
	10
G	1
(2) THEORY MICH BOD GEO TO WO THE	
(2) INFORMATION FOR SEQ ID NO:110:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
1 m = 1	

(A) NAME/KEY: HLA-A Intron 2 Allele A* 660.

(xi)	SECUENCE	DESCRIPTION:	SEO	מד	NO:110:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCGC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT	CGGGGGGGG	CGGGGCTCGG	GGGACCGGGC	TGACCTCGGG	GTCCGGGCCA	240
G						241

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 241 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 3402

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCGGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCAC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT						240
G						241

(2) INFORMATION FOR SEQ ID NO:112:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDED! S: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 2901

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

•	GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCTCTCA	TCCCCCACGG	ACGGGCCGGG	C 0
,	TCGCCCACAG	TCTCCGGGTC	CCACATCCAC	CCCCyyaaaa	22222222	AGACCCTTGC	60
	CCCCCCAAA	20200010	CONGRICCAL	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
;	CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
	CCGGGTTGGT	CGGGGCCGGA	CGGGGCTCGG	GGGACTGGGC	TGACCGTGGG	GTCGGGGCCA	
	G				1000001000	GICGGGGCCA	240
	-						241

40)

 \odot

 r_{ij}

87	
(2) INFORMATION FOR SEQ ID NO:113:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE: (A) ORGANISM: human	
(in) EDATIDE.	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 2902	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGCCCGGG	60
The second concount of the con	20 80
COCCA COCCC CTTTA COCCC ATTAIN COCC ATTAIN COCC	40
CCCCCTTCCT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGACCGTGG	41
(2) INFORMATION FOR SEQ ID NO:114:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 2 Allele A× 3101	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:	
GTGAGTGACC CCAGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG	60
TCACCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC	120
CONGRADAG GCCCAGGCGC CITTACCCGG TITCATTITO NOTITIONS	180
CCGGGTTGGT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGTGGTGGC	240 241
G :	. -1⊥
(2) INFORMATION FOR SEQ ID NO:115:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs	

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

<pre>(iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC CCGGGTTGGT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGACCGTGGG GTCGGGGCCA G	180
(2) INFORMATION FOR SEQ ID NO:116:	
<pre>(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:	
GTGAGTGACC CCAGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG TCACCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC CCGGGTTGGT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGACCGTGGG GTCGGGGCCA G	60 120 180 240 241
(2) INFORMATION FOR SEQ ID NO:117:	
(i) SEOUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human	
(ix) FEATURE: (A) NAME/KEY: HLA-A Intron 2 Allele A* 3303	

69
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:
GTGAGTGACC CCAGCCCGGG GCGCAGGTCA CGACCTCTCA TCCCCCACGG ACGGGCCAGG
TCACCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTC AGTTTAGGCC AAAAATCCCC
CCGGGTTGGT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGACCGTGGG GTCGGGGCCA
G
G
(2) INFORMATION FOR SEQ ID NO:118:
(i) SEQUENCE · CHARACTERISTICS:
(A) LENGTH: 241 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: HLA-A Intron 2 Allele A* 7401
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:
(XI) SEQUENCE DESCRIPTION: SEQ ID NO:II8:
GTGAGTGACC CCGGCCGGGG GCGCAGGTCA GGACCCCTCA TCCCCCACGG ACGGGCCAGG
TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC
CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC
CCGGGTTGGT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGACCGTGGG GTCGGGGCCA
G
·
(2) INFORMATION FOR SEQ ID NO:119:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 241 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: HLA-A Intron 2 Allele A* 7402
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:
AND THE PERCEPTION: SEQ ID NO:119:

GTGAGTGACC CCGGCCCGGG GC	CGCAGGTCA CGAC	CTCTCA TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG TCTCCGGGTC CC	GAGATCCAC CCCG	AAGCCG CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG GCCCAGGCGC CI	TTTACCCGG TTTC	ATTTTC AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT CGGGGCCGGA CC	GGGGCTCGG GGGA	CTGGGC TGACCGTGGG	GTCGGGGCCA	240
G				241

20	
(2) INFORMATION FOR SEQ ID NO:120:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 7403	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:	
GTGAGTGACC CCGGCCGGGG GCGCAGGTCA GGACCCCTCA TCCCCCACGG ACGGGCCAGG TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC	
CCCGGGAGAG GCCCAGGCCC CTTTACCCG TTTCATTTTC AGTTTAGGCC AAAAATCCCC	
CCGGGTTGGT CGGGGCCGGA CGGGGCTCGG GGGACTGGGC TGACCGTGGG GTCGGGGCCA	
G	240 241
	241
(2) INFORMATION FOR SEQ ID NO:121:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 2301	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCGGG	60
TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC	120
CCCGGGAGAG GCCCAGGCGC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAAATCCCC CCGGGTTGGT CGGGGCCGGG CGGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA	180
G	240
	241
(2) INFORMATION FOR SEQ ID NO:122:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: genomic DNA

4

71	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 2402	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCGGG 60	
TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 120	
CCCGGGAGAG GCCCAGGCGC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180	
CCGGGTTGGT CGGGGCCGGG CGGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA 240	
G 241	
(2) INFORMATION FOR SEO ID NO:123:	
(a) Internation for buy 12 horizor	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 241 base pairs	
, , , , , , , , , , , , , , , , , , ,	
· · · · · · · · · · · · · · · · · · ·	
(A) NAME/KEY: HLA-A Intron 2 Allele A* 2403	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCGGG 60	
TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 120	
CCCGGGAGAG GCCCAGGCGC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 180	
CCGGGTTGGT CGGGGCCGGL 'GGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA 240	
G 241	
471	
(2) INFORMATION FOR SEQ ID NO:124:	
(iv) ANTI-SENSE: NO (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 2 Allele A* 2402 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122: GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCGGG TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 1 CCCGGGAGAG GCCCAGGGC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1 CCGGGTTGGT CGGGGCCGGG CGGGGCTCGG GGGACTGGC TGACCGCGGG GTCGGGGCCA (2) INFORMATION FOR SEQ ID NO:123: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 2 Allele A* 2403 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123: GTGAGTGACC CCGGCCCGGG GCGAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCGGG TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC 1 CCCGGGAGAG GCCCAGGCGC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1 CCCGGGGAGAG GCCCAGGCCG CGGGACCCCG AAAAATCCCC 1 CCCGGGTTGGT CGGGGCCGG GGGGCTCGG GGGACCCCG AAAAATCCCC 1 CCCGGGTTGGT CGGGGCCGG GGGGCTCGG GGGACCCCG GGGACCCCCG AAAAATCCCC 1 CCCGGGTTGGT CGGGGCCGG GGGGCTCGG GGGGACCCCG GGGGCCCAG CCCCGGGACCCCG AAAAATCCCC 1 CCCGGGTTGGT CGGGGCCGG GGGGCTCGG GGGACCCCGG GGGGCCCAG AAAAATCCCC 1 CCCGGGTTGGT CGGGGCCGG GGGGCCCCG GGGACCCCGG GTCGGGGCCA 2.6	
(iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A INTron 2 Allele A* 2402 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122: GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGCCCGGG TCCCCCACGG TCTCCCGGGTC CGGAACCCG CCGGAACCCG CGGAACCCG AAAAATCCCC 1 CCCGGGAGAG GCCCAGGCCG CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1 CCGGGTTGGT CGGGGCCGG CGGGCTCGG GGGACTGGG TGACCGCGGG GTCGGGGCCA (2) INFORMATION FOR SEQ ID NO:123: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FFATURE: (A) NAME/KEY: HLA-A INTRON 2 Allele A* 2403 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123: GTGAGTGACC CCGGGCCCGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGCCCGGG TCGCCCACAG TCTCCGGGTC CGAGGTCCA CCCCAAGCCG CGGGACCCCG AAAAATCCCC 1 CCCCGGGAGAG GCCCAGGGCC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1 CCCCGGGAGAG GCCCAGGGCC CTTAACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC 1 CCCCGGGTTGGT CGGGGCCGG, GGGGCTCGG GGGACTCGG GGGACCCCG GGGACCCCG GGGCCCCCCCCGGGGTGGC CGGGGCCCGG GTCGGGGCCA 2 (2) INFORMATION FOR SEQ ID NO:124: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (iv) ANTI-SENSE: no (iv) ORIGINAL SOURCE: (A) ORGANISM: human	
(11) MOLECULE TYPE: genomic DNA	

(A) NAME/KEY: HLA-A Intron 2 Allele A* 2404

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCGGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCAC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	120
CCCGGGAGAG	GCCCAGGCGC	CTTAACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC	180
CCGGGTTGGT	CGGGGCCGGG	CGGGGCTCGG	GGGACTGGGC	TGACCGCGGG	GTCGGGGCCA	240
G						241

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 2405

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCGGG		60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCAC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC		120
CCCGGGAGAG	GCCCAGGCGC	CTTAACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC		180
CCGGGTTGGT	CGGGGCCGGG	CGGGGCTCGG	GGGACTGGGC	TGACCGCGGG	GTCGGGGCCA	;	240
G							241

(2) INFORMATION FOR SEQ ID NO:126:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 2407

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

GTGAGTGACC	CCGGCCCGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCGGG	1	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCAC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGC	:	120
CCCGGGAGAG	GCCCAGGCGC	CTTAACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATCCCC		180
CCGGGTTGGT	CGGGGCCGGG	CGGGGCTCGG	GGGACTGGGC	TGACCGCGGG	GTCGGGGCCA		240
G							241

بائد م

93	
(2) INFORMATION FOR SEQ ID NO:127:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 2 Allele A* 0301	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:	
GTGAGTGACC CCGGCCGGGG GCGCAGGTCA GGACCCCTCA TCCCCCACGG ACGGGCCAGG TCGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC CCGGGTTGGT CGGGGCTGGG CGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA G	60 120 180 240 241
(2) INFORMATION FOR SEQ ID NO:128:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: HLA-A Intron 2 Allele A* 1101 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:	
GTGAGTGACC CCGGCCCGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG TGGCCCACAG TCTCCGGGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC CCCGGGAGAG GCCCAGGCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC CCGGGTTGGT CGGGGCCGGG CAGGGCTTGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA G (2) INFORMATION FOR SEQ ID NO:129:	60 120 180 240 241
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 241 base pairs (B) TYPE: nucleic acid	

(ii) MOLECULE TYPE: genomic DNA

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

G

18 M

3

幮

(iii) HYPOTHETICAL: no

	(iv)	ANTI-SENSE: no	
	(v)	ORIGINAL SOURCE:	
		(A) ORGANISM: human	
	(ix)	FEATURE:	
		(A) NAME/KEY: HLA-A Intron 2 Allele A* 1102	
(xi)	SEQUENC	CE DESCRIPTION: SEQ ID NO:129:	
GTGAGTGACC	CCGGCCC	CGGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG	60
		GGTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGC	120
		GCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATCCCC	180
		EGGG CAGGGCTTGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA	240
G	CGGGGCC	dog choogeting adorcined inacconno offendacta	
G		į	241
(2	2) INFOR	RMATION FOR SEQ ID NO:130:	
		CHARACTERISTICS:	
(A)	LENGTH	H; 241 pase pairs	
(B)	TYPE:	nucleic acid	
(C)	STRAND	DEDNESS: single	
(D)		OGY: linear	
	(ii)	MOLECULE TYPE: genomic DNA	
	(iii)	HYPOTHETICAL: no	
	(iv)	ANTI-SENSE: no	
	(v)	ORIGINAL SOURCE:	•
		(A) ORGANISM: human	
	(ix)	FEATURE:	
	;	(A) NAME/KEY: HLA-A Intron 2 Allele A* 3001	
		\$ · · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
(xi)	SEQUENC	CE DESCRIPTION: SEO ID NO:130:	
GTGAGTGACC	CCGGCCG	GGG GCGCAGGTCA CGACCCCTCA TCCCCCACGG ACGGGCCAGG	60
		GTC CGAGATCCAC CCCGAAGCCG CGGGACCCCG AGACCCTTGA	120
		GCGC CTTTACCCGG TTTCATTTTC AGTTTAGGCC AAAAATTCCC	180
		TGGG CGGGGCTCGG GGGACTGGGC TGACCGCGGG GTCGGGGCCA	
G		ACCORDITION DEBCEDART CONTINUES RECICED COST	240
J	•		241
13	ט דאדרט	MATION FOR SEQ ID NO:131:	
(2	./ INFOR	THATION FOR SEQ ID NO:131:	
/i\ c	POTTENCE	CHARACTERISTICS:	
		·	
		I: 241 base pairs nucleic acid	
		DEDNESS: single	
(1)		OGY: linear	
		MOLECULE TYPE: genomic DNA	
		HYPOTHETICAL: no	
		ANTI-SENSE: no	
		ORIGINAL SOURCE:	
		(A) ORGANISM: human	
	(1X)	FEATURE:	
		(A) NAME/KEY: HLA-A Intron 2 Allele A* 3002	

(xi)	SECUENCE	DESCRIPTION:	SEO	TD NO:131:

	•					
GTGAGTGACC	CCGCCCGGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG	TCTCCGGGTC	CGAGATCCAC	CCCGAAGCCG	CGGGACCCCG	AGACCCTTGA	120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATTCCC	180
CCGGGTTGGT	CGGGGCTGGG	CGGGGCTCGG	GGGACTGGGC	TGACCGCGGG	GTCGGGGCCA	240
G						241

(2) INFORMATION FOR SEQ ID NO:132:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 3004

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

GTGAGTGACC	CCGGCCGGGG	GCGCAGGTCA	CGACCCCTCA	TCCCCCACGG	ACGGGCCAGG	60
TCGCCCACAG						
						120
CCCGGGAGAG	GCCCAGGCGC	CTTTACCCGG	TTTCATTTTC	AGTTTAGGCC	AAAAATTCCC	180
CCGGGTTGGT	CGGGGCTGGG	CGGGGCTCGG	GGGACTGGGC	TGACCGCGGG	GTCGGGGCCA	240
G					•	247

(2) INFORMATION FOR SEQ ID NO:133:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 2 Allele A* 8001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

					:	
GTGAGTGACC	CCGGCCCGGG	CGCAGGTCAC	GACCCCTCAT	CCCCTACGGA	CGGGCCAGGT	60
						00
CGCCCACAGT	CTCCGGGTCC	GAGATCCACC	CCGAAGCCCC	CCCACCCCA	CXCCCCCCC	
	-1	ONONICCACC	CCGAAGCCGC	GOGACCCCGA	GACCCTTGCC	120
CCCCCACACC	CCCACCCCC	TOTAL COCOCO	COL 3 COCCO	~~~~~~~		
CCGGGAGAGG	CCCMGGCGCC	TTTAGCCGGT	TICATITICA	GTTTAGGCCA	AAAATCCCCC	180
aaaamaaama						
CGGGTGGGTC	GGGGGGGGC	GGGGCTCGGG	GGACCGGGCT	GACCGCGGGG	TCGGGGCCAG	240

(2) INFORMATION FOR SEQ ID NO:134:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 602 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele consensus

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134;

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATUCTS	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
CCTCTCTGAG	CACAATTAAG	GGATAAAAAT	CTCTGAAGGA	ATGACGGGAA	GACGATCCCT	240
CGAATACTGA	TGAGTGGTTC	CCTTTGACAC	ACACCGGCAG	CAGCCTTGGG	CCCGTGACTT	300
TTCCTCTCAG	GCCTTGTTCT	CTGCTTCACA	CTCAATGTGT	GTGGGGGTCT	GAGTCCAGCA	360
CTTCTGAGTC	CCTCAGCCTC	CACTCAGGTC	AGGACCAGAA	GTCGCTGTTC	CCTCTTCAGG	420
GACTAGAATT	TTCCACGGAA	TAGGAGATTA	TCCCAGGTGC	CTGTGTCCAG	GCTGGTGTCT	480
GGGTTCTGTG	CTCCCTTCCC	CATCCCAGGT	GTCCTGTCCA	TTCTCAAGAT	AGCCACATGT	540
GTGCTGGAGG	AGTGTCCCAT	GACAGATGCA	AAATGCCTGA	ATGTTCTGAC	TCTTCCTGAC	600
AG						602

(2) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0101

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

	GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTATAGA	TCTCCCGGGC	TGGCCTCCCA	60
	CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCAC	CCTCCCTCTG	GTCCTGAGGG	120
	AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
•	GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAG	TGACGGGAAG	ACGATCCCTC	240
					TTGGGCCCGT		300
					GGTCTGAGTC		360
	GAGTCTCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTTC	TCAGGG; ATA	420
	GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480

97	
TCCCGGGTGT CCTGTCCATT CTCAAGATGG CCACATGCGT GCTGGTGGAG TGTCCCATGA CAGATGCAAA ATGCCTGAAT TTTCTGACTC TTCCCGTCAG	540 580
(2) INFORMATION FOR SEQ ID NO:136:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 579 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v): ORÍGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 3 Allele A* 0301	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:	
GTACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA	60
CAAGGAGGG AGACAATTGG GACCAACACT AGAATATCAC CCTCCCTCTG GTCCTGAGGG	120
AGAGGAATCC TCCTGGGTTÇ CAGATCCTGT ACCAGAGAGT GACTCTGAGG TTCCGCCCTG	180
CTCTCTGAGC ACAATTAAGG GATAAAATCT CTGAAGGAGT GACGGGAAGA CGATCCCTCG	240
AATACTGATG AGTGGTTCCC TTTGACACCG GCAGCAGCCT TGGGCCCGTG ACTTTTCCTC	300
TCAGGCCTTG TTCTCTGCTT CACACTCAAT GTGTGTGGGG GTCTGAGTCC AGCACTTCTG	360
AGTCCCTCAG CCTCCACTCA GGTCAGGACC AGAAGTCGCT GTTCCCTTCT CAGGGAATAG	420
AAGATTATCC CAGGTGCCTG TGTCCAGGCT GGTGTCTGGG TTCTGTGCTC TCTTCCCCAT	480
CCCGGGTGTC CTGTCCATTC TCAAGATGGC CACATGCGTG CTGGTGGAGT GTCCCATGAC	540
AGATGCAAAA TGCCTGAATT TTCTGACTCT TCCCGTCAG	579
(2) INFORMATION FOR SEQ ID NO:137:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 580 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	•
(ii) MOLECULE TYPE: genomic DNA	•
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human (ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 3 Allele A* 1101	
(A) MANDA MILLON S RELECTE A FILL	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:	
ON) GO) GOOG GO) GOOGGOOG GOTTO TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE TO	
GTACCAGGGG CCACGGGGC CCTCCCTGAT CGCCTATAGA TCTCCCGGGC TGGCCTCCCA CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCAC CCTCCCTCTG GTCCTGAGGG	60
CAAGGAGGGG AGACAATIGG GACCAACACT AGAATATCAC CCTCCCTCTG GTCCTGAGGG AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT	120 180
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAG TGACGGGAAG ACGATCCCTC	240
GAATACTGAT GAGTGGTTCC CTTTGACACC GGCAGCAGCC TTGGGCCCGT GACTTTTCCT	300

CTCAGGCCTT GTTCTCTGCT TCACACTCAA TGTGTGTGGG GGTCTGAGTC CAGCACTTCT

 $\{r_i\}$

GAGTCTCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTTC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCGT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

- (2) INFORMATION FOR SEQ ID NO:138:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE.
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 1102
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

GTACCAGGGG	CCACGGGGGG	CCTCCTGAT	CGCCTATAGA	TCTCCCGGGC	TGGCCTCCCA	60
				_		
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCAC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAG	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGCCCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCTCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTTC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCGT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

- (2) INFORMATION FOR SEQ ID NO:139:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 3001
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

GTACCAGGGG	CCACGGGGCG	CCTTCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCAC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAG	TGACGGGAAG	ACGATCCCTC	240

 $: \mathcal{L}$

.

GAATACTGAT	GAGTGGTTCC	CITIGACACC	GGCAGCAGCC	TTGGGCCCGT	GACTITTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTTC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCGT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

- (2) INFORMATION FOR SEQ ID NO:140:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 3002
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

GTACCAGGGG	CCACGGGGCG	CCTTCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCAC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CTCAATTAAG	GGATAAAATC	TCTGAAGGAG	TGACĠGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGCCCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTTC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCGT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG	•		580

- (2) INFORMATION FOR SEQ ID NO:141:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear.
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 3004
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

GTACCAGGGG CCACGGGGCG CCTTCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA
CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCAC CCTCCCTCTG GTCCTGAGGG
120

WO 98/26091 PCT/CA97/00955

100

AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAG	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGCCCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTTC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCGT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

(2) INFORMATION FOR SEQ ID NO:142:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0201

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

GTACCAGGGG C	CACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG A	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC T	CCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG (CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT (GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG (CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC T	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT 1	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC 7	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA (GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:143:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0202
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

4.3

```
GTACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA 60
CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG 120
AGAGGAATCC TCCTGGGTTT CCAGGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT 180
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC 240
GAATACTGAT GAGTGGTTC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT 300
TCCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC 360
TTCTGAGTCC TTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG 420
ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGC TGTGTCCAGG CTGGTGTCTG 480
GGTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG 540
TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGATCTGACT CTTCCTGACA 600
G
```

(2) INFORMATION FOR SEQ ID NO:144:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICTTO no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0203

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120:
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	.360
TTCTGAGTCC	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:145:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0204

No.

. .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:146:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0205

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
•		• •				
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	:.ATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G .		•				601

(2) INFORMATION FOR SEQ ID NO:147:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no

WO 98/26091 PCT/CA97/00955

103

(\vee)	ORIGINAL SOURCE:						
	(A) ORGANISM:	human					
(ix)	FEATURE:						
	(A) NAME/KEY:	HLA-A	Intron	3	Allele	A *	0206

(xi) SEQUENCE DESCRIPTION. SEQ ID NO:147:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CUCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:148:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0207

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

GTACCAGGGG CCACGG	GGGCG CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG AGACAA	ATTGG GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC TCCTGG	GGTTT CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG CACAAT	TTAAG GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	.240
GAATACTGAT GAGTGO	GTTCC CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG CCTTGT	ITCTC TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC TTCAGC	CCTCC ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT TCCACC	GGAAT AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC TCCCTT	TCCCC ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA GTGTC	CCATG ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G ·					601

(2) INFORMATION FOR SEQ ID NO:149:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: genomic DNA
- (iii) HYPOTHETICAL: no
- (iv) ANTI-SENSE: no
- (v) ORIGINAL SOURCE:
 (A) ORGANISM: human
- (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0208

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

- (2) INFORMATION FOR SEQ ID NO:150:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0209

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

CAAGGAGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG 12	30 10
	30 10
2020022M00 M00M000MMM COLORMOND M200202020 M020M020 M020M020 CMM000000	10
AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT 18	
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC 24	٠.
GAATACTGAT GAGTGGTTCC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT 30	10
TCCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC 36	50
TTCTGAGTCC TTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG 42	20
ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG 48	30
GGTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG 54	10
TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGATCTGACT CTTCCTGACA 60	00
G 60	01

- (2) INFORMATION FOR SEQ ID NO:151:
- (i) SEQUENCE CHARACTERISTICS:

-:4

٧;

 $\mathcal{H}_{\mathcal{S}}$

600 601

	105	
(B) TYPE: (C) STRANI (D) TOPOLO (ii) (iii) (iv) (v)	H: 601 base pairs nucleic acid DEDNESS: single OGY: linear MOLECULE TYPE: genomic DNA HYPOTHETICAL: no ANTI-SENSE: no ORIGINAL SOURCE: (A) ORGANISM: human FEATURE: (A) NAME/KEY: HLA-A Intron 3 Allele A* 0210	
(xi) SEQUENC	CE DESCRIPTION: SEQ ID NO:151:	
CAAGGAGGG AGACAAT AGAGGAATCC TCCTGGG GCTCTCTGAG CACAATT GAATACTGAT GAGTGGT TCCTCTCAGG CCTTGTT TTCTGAGTCC TTCAGCC ACTAGAATTT TCCACGG GGTTCTGTGC TCCCTTC	GGGG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA TTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG GTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT TAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC TTCC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT TCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC CTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG GAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG CCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG CATG ACAGATGCAA AATGCCTGAA TGATCTGACT CTTCCTGACA	60 120 180 240 300 360 420 480 540 600
(2) INFOR	RMATION FOR SEQ ID NO:152:	
(A) LENGTH (B) TYPE: (C) STRANH (D) TOPOLO (ii) (iii) (iv) (v)	E CHARACTERISTICS: H: 601 base pairs nucleic acid DEDNESS: single OGY: linear MOLECULE TYPE: genomic DNA HYPOTHETICAL: no ANTI-SENSE: no ORIGINAL SOURCE: (A) ORGANISM: human FEATURE: (A) NAME/KEY: HLA-A Intron 3 Allele A* 0211	
(xi) SEQUENC	CE DESCRIPTION: SEQ ID NO:152:	
CAAGGAGGG AGACAA AGAGGAATCC TCCTGGG GCTCTCTGAG CACAAT GAATACTGAT GAGTGG TCCTCTCAGG CCTTGT TTCTGAGTCC TTCAGCG ACTAGAATTT TCCACGG	GGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA TTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG GTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT TAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC TTCC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT TCTC TGCTTCACAC TCAATGTGTG TGGGGGGTCTG AGTCCAGCAC CTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG GAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG CCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG	60 120 180 240 300 360 420 480

TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGATCTGACT CTTCCTGACA

(2) INFORMATION FOR SEQ ID NO:153:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0215
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

GTACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA 60
CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG 120
AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT 180
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC 240
GAATACTGAT GAGTGGTTCC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT 300
TCCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGT TGGGGGTCTG AGTCCAGCAC 360
TTCTGAGTCC TTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG 420
ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGC TGTGTCCAGG CTGGTGTCTG 480
GGTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG 540
TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGATCTGACT CTTCCTGACA 600
G

- (2) INFORMATION FOR SEQ ID NO:154:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no ;
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human

į

- (i~) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 0217
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

GTACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA 60
CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCTCTG GTCCTGAGGG 120
AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT 180
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC 240
GAATACTGAT GAGTGGTTC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT 300
TCCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC 360
TTCTGAGTCC TTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG 420
ACIAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG 480

107
GTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG
(2) INFORMATION FOR SEQ ID NO:155:
(2) INFORMATION FOR DAY ID NO. 133.
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 601 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: HLA-A Intron 3 Allele A* 6801
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:
STACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA
AAGGAGGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG
ACAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT
CTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC BAATACTGAT GAGTGGTTCC CTTTGACACA CACAGGCAGC AGCCTTGGGC CCGTGACTTT
PACTOTICAGE COTTETTOTO TECTTOACAC TOAATGTGTG TGGGGGTCTG AGTCCAGCAC
TTCTGAGTCC CTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG
ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG
GETTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG
IGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGATCTGACT CTTCCTGACA
3 [:]
. (0) YVTODIAMTON TOD GTO TO NO 150
(2) INFORMATION FOR SEQ ID NO:156:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 601 case pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cenomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: HLA-A Intron 3 Allele A* 6802
(and) approximate programmers and the second secon
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:
GTACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA
CAAGGAGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG
AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT

GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC

-37

GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	: 360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

- (2) INFORMATION FOR SEQ ID NO:157:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 6901
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACAGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	TTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGATCTGACT	CTTCCTGACA	600
G						601

- (2) INFORMATION FOR SEQ ID NO:158:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2301
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

GTACCAGGGG	CCACGGGGCG	CCTACCTGAT	CGCCTGTAGG	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGACGGAA	TGACGGAAAG	ACGATCCCTC	240
GAATACTGAT	GACTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGACCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTCC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCAT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

- (2) INFORMATION FOR SEQ ID NO:159:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2402
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

GTACCAGGGG	CCACGGGGCG	CCTACCTGAT	CGCCTGTAGG	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG:	GGATAAAATC	TCTGACGGAA	TGACGGAAAG	ACGATCCCTC	240
GAATACTGAT	GACTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGACCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTCC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCAT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

- (2) INFORMATION FOR SEQ ID NO:160:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2403

 $\{ 1 \}_{i=1}^{\infty}$

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

						,
GTACCAGGGG	CCACGGGGCG	CCTACCTGAT	CGCCTGTAGG	TCTCCCGGGC	TGGCCTCCCA	. 60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGACGGAA	TGACGGAAAG	ACGATCCCTC	240
GAATACTGAT	GACTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGACCGT	GACTITTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTCC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCAT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG			580

(2) INFORMATION FOR SEQ ID NO:161:

(4) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 580 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2404

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

GTACCAGGGG	CCACGGGGCG	CCTACCTGAT	CGCCTGTAGG	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGACGGAA	TGACGGAAAG	ACGATCCCTC	240
GAATACTGAT	GACTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGACCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTCC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCAT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG	•		579

(2) INFORMATION FOR SEQ ID NO:162:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2407

SUBSTITUTE SHEET (rule 26)

111 .

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

GTACCAGGGG	CCACGGGGCG	CCTACCTGAT	CGCCTGTAGG	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGACGGAA	TGACGGAAAG	ACGATCCCTC	240
GAATACTGAT	GACTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGACCGT	GACTTTTCCT	.300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTCC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCAT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATGCCTGAAT	TTTCTGACTC	TTCCCGTCAG		5	580

(2) INFORMATION FOR SEQ ID NO:163:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 580 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2407

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

GTACCAGGGG	CCACGGGGCG	CCTACCTGAT	CGCCTGTAGG	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGACGGAA	TGACGGAAAG	ACGATCCCTC	240
GAATACTGAT	GACTGGTTCC	CTTTGACACC	GGCAGCAGCC	TTGGGACCGT	GACTTTTCCT	300
CTCAGGCCTT	GTTCTCTGCT	TCACACTCAA	TGTGTGTGGG	GGTCTGAGTC	CAGCACTTCT	360
GAGTCCCTCA	GCCTCCACTC	AGGTCAGGAC	CAGAAGTCGC	TGTTCCCTCC	TCAGGGAATA	420
GAAGATTATC	CCAGGTGCCT	GTGTCCAGGC	TGGTGTCTGG	GTTCTGTGCT	CTCTTCCCCA	480
TCCCGGGTGT	CCTGTCCATT	CTCAAGATGG	CCACATGCAT	GCTGGTGGAG	TGTCCCATGA	540
CAGATGCAAA	ATCCCTGAAT	TITCTGACTC	TTCCCGTCAG		•	580

(2) INFORMATION FOR SEQ ID NO:164:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:

. .

1,51

(A) NAME/KEY: HLA-A Intron 3 Allele A* 2501

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:

GTACCAGGGG CC	ACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG AG	ACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC TC	CTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG CA	CAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT GA	GTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG CC	TTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC CT	CAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT TO	CACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC TC	CCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA GI	GTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:165:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2601

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

GTACCAGGGG	CCACGCGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						601

- (2) INFORMATION FOR SEQ ID NO:166:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid :
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no

**

(iv)	ANTI-SENSE: no
(v)	ORIGINAL SOURCE:
	(A) ORGANISM: human

(ix) FEATURE:

(A) NAME/KEY: HLA-A Intron 3 Allele A* 3402

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:167:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE: (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 4301

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G	•					601

(2) INFORMATION FOR SEQ ID NO:168:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid

í,

150

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 6601

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TATCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G	;					601

- (2) INFORMATION FOR SEQ ID NO:169:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 6602

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
		GGATAAAATC				240
		CTTTGACACA				300
		TGCTTCACAC				360
		ACTCAGGTCA				420
		AGGAGATTAT				480
		ATCCCAGGTG				540
	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:170:

3.

4

480

540

600

. 115	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 601 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 3 Allele A* 6603	
(vi) SEQUENCE DESCRIPTION: SEQ ID NO:170:	
GTACCAGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA	60
CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG	120
AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT	180
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC	240
GAATACTGAT GAGTGGTTCC CTTTGACACA CACCGGCAGC AGCCTTGGGC CCGTGACTTT	300
TTCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC	360
TTCTGAGTCC CTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG	420
ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG	480
GGTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG	540
TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGTTCTGACT CTTCCTGACA	600
G	601
(A) TITTODIA MTON DOD OTO TO NO 1 TO	
(2) INFORMATION FOR SEQ ID NO:171:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 601 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: genomic DNA	
(iii) HYPOTHETICAL: no	
(iv) ANTI-SENSE: no	
(v) ORIGINAL SOURCE:	
(A) ORGANISM: human	
(ix) FEATURE:	
(A) NAME/KEY: HLA-A Intron 3 Aliele A* 2901	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:	
GTACCGGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA	
CAAGGAGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG	60 720
AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT	120 180
GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC	240
GAATACTGAT GAGTGGTTCC CTTTBACACA CACCGGCAGC AGCCTTGGGC CCGTGACTTT	300
TCCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC	360
TTCTGAGTCC CTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG	420

ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG

GGTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG

TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGTTCTGACT CTTCCTGACA

G

```
(2) INFORMATION FOR SEQ ID NO:172:
```

```
(i) SEQUENCE CHARACTERISTICS:
```

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (y) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 2902

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

GTACCGGGGG CCACGGGGCG CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA CAAGGAGGG AGACAATTGG GACCAACACT AGAATATCGC CCTCCCTCTG GTCCTGAGGG 120 AGAGGAATCC TCCTGGGTTT CCAGATCCTG TACCAGAGAG TGACTCTGAG GTTCCGCCCT 180 GCTCTCTGAG CACAATTAAG GGATAAAATC TCTGAAGGAA TGACGGGAAG ACGATCCCTC GAATACTGAT GAGTGGTTCC CTTTGACACA CACCGGCAGC AGCCTTGGGC CCGTGACTTT 300 TCCTCTCAGG CCTTGTTCTC TGCTTCACAC TCAATGTGTG TGGGGGTCTG AGTCCAGCAC 360 TTCTGAGTCC CTCAGCCTCC ACTCAGGTCA GGACCAGAAG TCGCTGTTCC CTCTTCAGGG ACTAGAATTT TCCACGGAAT AGGAGATTAT CCCAGGTGCC TGTGTCCAGG CTGGTGTCTG GGTTCTGTGC TCCCTTCCCC ATCCCAGGTG TCCTGTCCAT TCTCAAGATA GCCACATGTG 540 TGCTGGAGGA GTGTCCCATG ACAGATGCAA AATGCCTGAA TGTTCTGACT CTTCCTGACA 600 601

(2) INFORMATION FOR SEQ ID NO:173:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 601 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (y) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 3101

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
	AGACAATTGG					120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTGTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360

TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATT	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G		•				601

(2) INFORMATION FOR SEQ ID NO:174:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KFV HLA-A Intron 3 Allele A* 3201

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

GTACCAGGGG (CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG A	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC T	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG (CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT (GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG .	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTĢ	AGTCCAGCAC	360
TTCTGAGTCC (CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT T	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC T	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA (GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:175:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid:
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 3301

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

GTACCAGGGG CCACGGGGC CCTCCCTGAT CGCCTGTAGA TCTCCCGGGC TGGCCTCCCA 60 CAAGGAGGGG AGACAATTGG GACCAACACT AGAATATCAC CCTCCCTCTG GTCCTGAGGG 120

AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTGTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	.AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATT	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						601

(2) INFORMATION FOR SEQ ID NO:176:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 3303

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCAC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTGTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATT	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGACA	600
G						602

(2) 1NFORMATION FOR SEQ ID NO:177:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 7401

, in

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

GTACCAGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TOTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCT CAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGT TCTGACT	CTTCCTGACA	600
G ;						601

(2) INFORMATION FOR SEQ ID NO:178:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 7402

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

ž.						
GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTI r	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTECAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGCG	420
ACTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCT	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CŢTCCTGACA	600
G ;						601

(2) INFORMATION FOR SEQ ID NO:179:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 601 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human

;;;

(ix) FEATURE:

(A) NAME/KEY: HLA-A Intron 3 Allele A* 7403

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

GTACCAGGGG	CCACGGGGCG	CCTCCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGAATATCGC	CCTCCCTCTG	GTCCTGAGGG	120
AGAGGAATCC	TCCTGGGTTT	CCAGATCCTG	TACCAGAGAG	TGACTCTGAG	GTTCCGCCCT	180
GCTCTCTGAG	CACAATTAAG	GGATAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCAGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCTTGTTCTC	TGCTTCACAC	TCAATGTGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCC	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCTTCAGGG	420
TCTAGAATTT	TCCACGGAAT	AGGAGATTAT	CCCAGGTGCC	TGTGTCCAGG	CTGGTGTCTG	480
GGTTCTGTGC	TCCCTTCCCC	ATCCCAGGTG	TCCTGTCCAT	TCTCAAGATA	GCCACATGTG	540
TGCTGGAGGA	GTGTCCCATG	ACAGATGCAA	AATGCCTGAA	TGTTCTGACT	CTTCCTGAÇA	600
G					ĺ	601

(2) INFORMATION FOR SEQ ID NO:180:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 584 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: HLA-A Intron 3 Allele A* 8001

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

GTACCAGGGG	CCACGGGGCG	CCTTCCTGAT	CGCCTGTAGA	TCTCCCGGGC	TGGCCTCCCA	. 60
CAAGGAGGGG	AGACAATTGG	GACCAACACT	AGATATCACC	CTCCCTCTGC	TCCTGAGGGA	120
GAGGAATCCT	CCTGGGTTTC	CAGATTCTGT	ACCAGAGAGT	GACTCTGAGG	TTCCGCCCTG	180
CTCTCTGAGC	ACARTTAAGG	GATAAAAATC	TCTGAAGGAA	TGACGGGAAG	ACGATCCCTC	240
GAATACTGAT	GAGTGGTTCC	CTTTGACACA	CACCGGCGGC	AGCCTTGGGC	CCGTGACTTT	300
TCCTCTCAGG	CCCTGTTCTC	TGCTTCACAC	TCAATATGTG	TGGGGGTCTG	AGTCCAGCAC	360
TTCTGAGTCT	CTCAGCCTCC	ACTCAGGTCA	GGACCAGAAG	TCGCTGTTCC	CTCGTCAGGG	. 420
AATAGAAGAT	TATLUCAGGT	GCCTGTGTCC	AGGCTGGTGT	CTGGGTTCTG	TGCTCTCTTC	480
CCCATCCCAG	GTGTCCTGTC	CATCCTCAAA	ATGGCCACAT	GCGTGCTGGT	GGAGTGTCCC	540
ATGACAGATG	CAAAATGGCT	GAATTTTCTG	ACTCTTCCCG	TCAG		584

(2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no

- (iv) ANTI-SENSE: no
 (v) ORIGINAL SOURCE:
 (A) ORGANISM: human
 (ix) FEATURE:
 (A) NAME/KEY: I1-230m
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

GGCAGGTCTC AGCGACTG

1

0

-1,4

· 10

18

- (2) INFORMATION FOR SEQ ID NO:182:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 11-226
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

CTCTGTGGGG AGAAGCAAC

19

- (2) INFORMATION FOR SEQ ID NO:183:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: Il-221mll
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

GGGAGCGGCG CCGGGAC

- (2) INFORMATION FOR SEQ ID NO:184:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

```
(D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: genomic DNA
            (iii) HYPOTHETICAL: no
            (iv) ANTI-SENSE: no
                ORIGINAL SOURCE:
            (v)
                  (A) ORGANISM: human
            (ix) FEATURE:
                  (A) NAME/KEY: Il-209
      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:
                                                                       18
GAAGCAAGGG GCCCGCCC
         (2) INFORMATION FOR SEQ ID NO:185:
      (i) SEQUENCE CHARACTERISTICS:
        (A) LENGTH: 18 base pairs
        (B) TYPE: nucleic acid
        (C) STRANDEDNESS: single
        (D) TOPOLOGY: linear
            (ii) MOLECULE TYPE: genomic DNA
             (iii) HYPOTHETICAL: no
             (iv) ANTI-SENSE: no
                  ORIGINAL SOURCE:
             (v)
                   (A) ORGANISM: human
             (ix) FEATURE:
                   (A) NAME/KEY: Il-214m
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:
                                                                        18
CGCCTGGCGG GGGGGCAA
          (2) INTORMATION FOR SEQ ID NO:186:
       (i) SEQUENCE CHARACTERISTICS:
         (A) LENGTH: 18 base pairs
         (B) TYPE: nucleic acid
         (C) STRANDEDNESS: single
         (D) TOPOLOGY: linear
             (ii) MOLECULE TYPE: genomic DNA
             (iii) HYPOTHETICAL: no
             (iv) ANTI-SENSE: no
                   ORIGINAL SOURCE:
                   (A) ORGANISM: human
              (ix) FEATURE:
                    (A) NAME/KEY: Il-223d
       (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:
                                                                         18
 GTGAGTGCGG GGTCGTGG
```

(2) INFORMATION FOR SEQ ID NO:187:

123		į	
(i) SEQUENCE CHARACTERISTICS:		1	
(A) LENGTH: 18 base pairs			
(B) TYPE: nucleic acid		į.	
(C) STRANDEDNESS: single		:	
(D) TOPOLOGY: linear		:	
(ii) MOLECULE TYPE: genomic DNA			
(iii) HYPOTHETICAL: no			
(iv) ANTI-SENSE: no			
(v) ORIGINAL SOURCE:			
(A) ORGANISM: human			
(ix) FEATURE:		;	
(A) NAME/KEY: I1-225m			
		!	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:	ţ	en en ioni, o of militar of marginary), but ordered (solve),	
(MI) DEGOLMED DEDOMILITION. DEG ID NO.101.		•	
GCCGGGAGGA GGGACGGT	:	ģ	18
GCCGGGACGC1	:	į	10
(2) INFORMATION FOR SEQ ID NO:188:	į	7	
(2) INFORMATION FOR SEQ ID NO:188:	,	Ą	
(i) SEQUENCE CHARACTERISTICS:		į	
	•	7	
(A) LENGTH: 17 base pairs (B) TYPE: nucleic acid		1	
		ř	
(C) STRANDEDNESS: single		į.	
(D) TOPOLOGY: linear		{	
(ii) MOLECULE TYPE: genomic DNA	:	1	
(iii) HYPOTHETICAL: no	1	Ť	
(iv) ANTI-SENSE: no	t ,		
(v) ORIGINAL SOURCE:	•	1	
(A) ORGANISM: human	,	;	
(ix) FEATURE:	:	š	
(A) NAME/KEY: Il-237m14		į	
		:	
		-	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:			
GGCGCGCCCG GCGGGGA		-	
COCCCCC CCCCCCA		:	17
(2) INFORMATION FOR SEQ ID NO:189:		•	
		:	
(i) SEQUENCE CHARACTERISTICS:		ŧ	
(A) LENGTH: 18 base pairs		4	
(B) TYPE: nucleic acid		į	
(C) STRANDEDNESS: single			
(D) TOPOLOGY: linear		÷	
(ii) MOLECULE TYPE: genomic DNA		•	
(iii) HYPOTHETICAL: no			
(iv) ANTI-SENSE: no		€	
(v) ORIGINAL SOURCE:			
(A) ORGANISM: human			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

(A) NAME/KEY: 11-240

(ix) FEATURE:

Эã.

GGAGGAGGT CGGGCGGA

18

- (2) INFORMATION FOR SEQ ID NO:190:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 5FL-243
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

AGTGTCTTCG CGGTCGCTC

19

- (2) INFORMATION FOR SEQ ID NO:191:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 5FR-257
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

CTCAGATTCT CCCCAGACG

19

- (2) INFORMATION FOR SEQ ID NO:192:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE: (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 5FR-273

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:	
CATGCCGAGG GTTTCTCCCA	20
(2) INFORMATION FOR SEQ ID NO:193:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: BP202	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:	
CTGGCCCTGA CCCAGACCA	19
(2) INFORMATION FOR SEQ ID NO:194:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: BP203	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:	
CCTGACCCAG ACCTGGGCA	1:
(2) INFORMATION FOR SEQ ID NO:195: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:	

ŢĴ.

(A) ORGANISM: human

(ix) FEATURE:

(A) NAME/KEY: BP142

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

CAGGTATCTG CGGAGCCCG

19

(2) INFORMATION FOR SEQ ID NO:196:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: I3-236

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

GTCTGTCAGG AAGAGTCAGA A

21

- (2) INFORMATION FOR SEQ ID NO:197:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single.
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYFOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 13-239

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

GTGGAAAATT CTAGTCCCTG AA

- (2) INFORMATION FOR SEQ ID NO:198:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

 C_{i}

- 127 (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (v) (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 13-246 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198: 20 AGATCTACAG GCGATCAGGA (2) INFORMATION FOR SEQ ID NO:199: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (v) (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: I3-247m6 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199: 19 GCCAGCCCGG GAGTTCTAT (2) INFORMATION FOR SEQ ID NO:200: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (ir) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: I3-249 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200: 21

 - CAGAGTCACT CTCTGGTACA G

(2) INFORMATION FOR SEQ ID NO:201:

(i) SEQUENCE CHARACTERISTICS:

SUBSTITUTE SHEET (rule 26)

 $\mathcal{L}_{\mathcal{A}}$

19

21

19

(A) LENGTH: 19 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: 13-280m18
; ;
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:
GCGATCGTCT TCCCGTCAC
(2) INFORMATION FOR SEQ ID NO:202:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NÂME/KEY: 13-282
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:
AGAGTCACTC TCTGGTACAG A
(2) INFORMATION FOR SEQ ID NO:203:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single (D) TOPOLCGY: linear
(ii) MOLECULE TYPE: genomic DNA
(iii) HYPOTHETICAL: no
(iv) ANTI-SENSE: no
(v) ORIGINAL SOURCE:
(A) ORGANISM: human
(ix) FEATURE:
(A) NAME/KEY: 85
•
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

CTCCTCGTCC CCAGGCTCT

(2) INFORMATION FOR SEQ ID NO:204:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 118
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

TCCATGAGGT ATTTCTACAC C

21

- (2) INFORMATION FOR SEQ ID NO:205:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 120
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

GGCCAGGTTC TCAGACCA

18

- (2) INFORMATION FOR SEQ ID NO:206:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 123

SUBSTITUTE SHEET (rule 26)

-7

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

CCCGGCCCGG CAGTGGA

17

- (2) INFORMATION FOR SEQ ID NO:207:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 (A) NAME/KEY: 127
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

GTTCTCACAC CATCCAGATG

20

- (2) INFORMATION FOR SEQ ID NO:208:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 129
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

TCACACCCTC CAGATGATGT T

21

- (2) INFORMATION EOR SEQ ID NO:209:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid(C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human

SUBSTITUTE SHEET (rule 26)

: 2:

131

(ix) FEATURE: (A) NAME/KEY: 134

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

GGGTACCAGC AGGACGCT

18

- (2) INFORMATION FOR SEQ ID NO:210:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nuçleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 137
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

TCCATGAGGT ATTTCACCAC A

21

- (2) INFORMATION FOR SEQ ID NO:211:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 140
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:

GGTTCTCACA CCATCCAGAT A

21

- (2) INFORMATION FOR SEQ ID NO:212:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

 \odot

132	
<pre>(iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:	
GTTCTCACAC CATCCAGAGG	2
(2) INFORMATION FOR SEQ ID NO:213:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 167 	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:	
GAGCCCCGCT TCAACGCC	1
(2) INFORMATION FOR SEQ ID NO:214:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

CTTCCTCCGC GGGTATGAA

19

- (2) INFORMATION FOR SEQ ID NO:215:
- (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs

- 1

1.75

(B)	TYPE:	nucleic	acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 193
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

GCCGGAGTAT TGGGACCG

18

- (2) INFORMATION FOR SEQ ID NO:216:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 202
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

CTGGCCCTGA CCCTGACCA

19

- (2) INFORMATION FOR SEQ ID NO:217:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 98
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:

GCAGGGTCCC CAGGTCCA

(2) INFORMATION FOR SEQ ID NO:218:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 115
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:

CCTCCAGGTA GGCTCTCAA

19

- (2) INFORMATION FOR SEQ ID NO:219:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - ORIGINAL SOURCE: (v) (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 116
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

CCTCCAGGTA GGCTCTCCA

- (2) INFORMATION FOR SEQ ID NO:220:
- (i) SEOUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - ORIGINAL SOURCE: (v)
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 117

()

135		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:		
CCTCCAGGTA GGCTCTCTG		19
(2) INFORMATION FOR SEQ ID NO:221:		
(i) SEQUENCE CHARACTERISTICS. (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: hum n (ix) FEATURE: (A) NAME/KEY: 126		
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:	t.) } \$
CCACTCCACG CACGTGCCA	•	19
(2) INFORMATION FOR SEQ ID NO:222: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 133	· · · · · · · · · · · · · · · · · · ·	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:		
GGAGCGCGAT CCGCAGGC		18
(2) INFORMATION FOR SEQ ID NO:223:		•
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no 		

ORIGINAL SOURCE:
(A) ORGANISM: human

وفتاة

1

72)

(ix) FEATURE: (A) NAME/KEY: 135	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:223	:
GGAGCCACTC CACGGACCG	19
(2) INFORMATION FOR SEQ ID NO:224:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 136 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22.	4:
GAGCCACTCC ACGCACTC	18
(2) INFORMATION FOR SEQ ID NO:225: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 138	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22	25 :
GGCCTTCACA TTCCGTGTGT T	21
(2) INFORMATION FOR SEQ ID NO:226:	•
(i) SEQUENCE CHARACTERISTICS:	,

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

SUBSTITUTE SHEET (rule 26)

ig.

14

12,

	<pre>(iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE:</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:	
	CAGGTATCTG CGGAGCCCG	19
	(2) INFORMATION FOR SEQ ID NO:227:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 144	
:	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:	
	TGGTCCCAAT ACTCAGGCCT	20
	(2) INFORMATION FOR SEQ ID NO:228:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 145	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:228:	
	GCAGGGTCCC CAGGTTCG (2) INFORMATION FOR SEQ ID NO:229:	18

SUBSTITUTE SHEET (rule 26)

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18 base pairs

		1. 0.25 11005
	138	
(C) (D)	TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 152	
(xi) S	EQUENCE DESCRIPTION: SEQ ID NO:229:	
GGGCCCTC C	CAGTTGT	18
(2)	INFORMATION FOR SEQ ID NO:230:	
(A) (B) (C) (D)	QUENCE CHARACTERISTICS: LENGTH: 20 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: 153	
(xi) S	EQUENCE DESCRIPTION: SEQ ID NO:230:	
TCTGTGAGTG G	GCCTACACA	20
(2)	INFCRMATION FOR SEQ ID NO:231:	
(A) (B) (C) (D)	QUENCE CHARACTERISTICS: LENGTH: 21 base pairs TYPE: nucleic acid STRANDEDNESS: single TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE:	
	(A) NAME/KEY: 154	•

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

CCTTCACATT CCGTGTCTGC A

(2) INFORMATION FOR SEQ ID NO:232:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 155
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

GAGCCACTCC ACGCACGT

18

- (2) INFORMATION FOR SEQ ID NO:233:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 161
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:

CCACTCGGTC AGTCTCTGAC

- (2) INFORMATION FOR SEQ ID NO:234:
- (i) SEQUENCE CHARACTERISTICS
 - (A) LFNGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 165

泛囊

140

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:

GAGCGCAGGT CCTCGTTCAA

20

- (2) INFORMATION FOR SEQ ID NO:235:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL:, no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE
 - (A) NAME/KEY 168
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:

GTCTGTGAGT GGGCCATCAT

20

- (2) INFORMATION FOR SEQ ID NO:236:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 180
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:

CAGCCATACA TCCTCAGGAC

20

- (2) INFORMATION FOR SEQ ID NO:237:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human

برينز

(ix) FEATURE:

(A) NAME/KEY: Ex2 (Aw3)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:

GCGCCGGGAG GAGGGTC

17

- (2) INFORMATION FOR SEQ ID NO:238:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: Ex2
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

ATCTCGGACC CGGAGACT

18

- (2) INFORMATION FOR SEQ ID NO:239:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 22 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: Ex3
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:

GTTTCATTTT CAGTTTAGGC CA

- (2) INFORMATION FOR SEQ ID NO:240:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA

(iii) HYPOTHETICAL: no

	(iv) ANTI-SENSE: no		į	
	(v) ORIGINAL SOURCE:		•	
	(A) ORGANISM: human			
	(ix) FEATURE:		ŧ	
	(A) NAME/KEY: Ex3 (Aw6)		ð	
3				
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:			
 S	CGGGAGATCT ACAGGCGATC AGG			23
	(2) INFORMATION FOR SEQ ID NO:241:		•	
	(i) SEQUENCE CHARACTERISTICS:	;	1	
			1	
.) -	(A) LENGTH: 17 base pairs (B) TYPE: nucleic acid	;	Çi	
4	(C) STRANDEDNESS: single	,	24	
•	(D) TOPOLOGY: linear		ž ž	
	(ii) MOLECULE TYPE: genomic DNA	;	1	
	(iii) HYPOTHETICAL: no		, ,	
	(iv) ANTI-SENSE: no			
	(v) ORIGINAL SOURCE:		ž	
	(A) ORGANISM: human		<u>;</u>	
.,	(ix) FEATURE:	*	\$	
á	(A) NAME/KEY: Ex2	3	•	
5			÷	
•	·			
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:	1	•	
	, , , , , , , , , , , , , , , , , , , ,	į.	"	
	GTCGTGACCT GCGCCCC	:	ś	17
	0100141.001		Ė	
	(2) INFORMATION FOR SEQ ID NO:242:		Ĭ.	
	(i) SEQUENCE CHARACTERISTICS:			
	(A) LENGTH: 19 base pairs			
	(B) TYPE: nucleic acid			
	(C) STRANDEDNESS: single		:	
:	(D) TOPOLOGY: linear			
7-	(ii) MOLECULE TYPE: genomic DNA			
	· · · · · · · · · · · · · · · · · · ·		₹	
	(iii) HYPOTHETICAL: no		+	
	(iv) ANTI-SENSE: no			
3	(v) ORIGINAL SOURCE:		:	
•	(A) ORGANISM: human		:	
	(ix) FEATURE:		;	
<i>`</i> .	(A) NAME/KEY: Ex3			
*.			÷	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:			
	GGGCGGGGC GGGCTCGGG		:	19
	(2) INFORMATION FOR SEQ ID NO:243:		;	
	(i) SEQUENCE CHARACTERISTICS:		•	

(A) LENGTH: 19 base pairs

15

- 143 (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: (A) NAME/KEY: Ex2 (ABCw1) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243: GGTCGTGACC TTCCGCCCC (2) INFORMATION FOR SEQ ID NO:244: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (iii) HYPOTHETICAL: no (iv) ANTI-SENSE: no (v) ORIGINAL SOURCE: (A) ORGANISM: human (ix) FEATURE: 5 (A) NAME/KEY: Ex3 (ABCw2) ź (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244: CCCGGTTTCA TTTTC (2) INFORMATION FOR SEQ ID NO:245: (i) SEQUENCE CHARACTERISTICS:
 - - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: genomic DNA
 - (iii) HYPOTHETICAL: no
 - (iv) ANTI-SENSE: no
 - (v) ORIGINAL SOURCE:
 - (A) ORGANISM: human
 - (ix) FEATURE:
 - (A) NAME/KEY: 119
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

CTTCACATTC CGTGTCTCCT

20

123

. 33

WHAT IS CLAIMED IS:

- 1. A method of determining the HLA Class I group type of a subject comprising the following steps:
- (i) combining a group-specific untranslated region primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur; and
- (ii) determining whether a nucleic acid product is produced by the amplification; wherein the ability of the primer pair to produce a nucleic acid product is associated with a particular HLA group type.
- 2. The method of claim 1, wherein the HLA Class I group to be determined is part of the HLA-A locus.
- 3. The method of claim 1, further comprising the step of (iii) determining the nucleic acid sequence of the nucleic acid product of step (ii).
- 4. The method of claim 1, wherein the primer pair comprises one or more oligonucleotide primers selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO: 184), I1-214m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEQ ID NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ ID NO:202).
- 5. The method of claim 1, wherein the primer pair is selected from the group of pairs consisting of I1-230m (SEQ ID NO:181) and BP142 (SEQ ID NO:195); 5'FR-257 (SEQ ID NO:191) and I3-247m6 (SEQ ID NO:199); I1-230m (SEQ ID NO:181) and I3-247m6 (SEQ ID NO:199); I1-226 (SEQ ID NO:182) and I3-249 (SEQ ID NO:200); I1-221m11 (SEQ ID NO:183) and I3-280m18 (SEQ ID NO:180)

10.7

-1

27

ā

113

BNSDOCID: <WO__9826091A2_1_>

NO:201); 5'FL-243 (SEQ ID NO:190) and I3-249 (SEQ ID NO:200); I1-214m (SEQ ID NO:185) and I3-249 (SEQ ID NO:200); I1-210m (SEQ ID NO:35) and I3-236 (SEQ ID NO:196); I1-210m (SEQ ID NO:35) and I3-249 (SEQ ID NO:200); 5'FR-273 (SEQ ID NO:192) and I3-249 (SEQ ID NO:200); I1-223d (SEQ ID NO:186) and I3-239 (SEQ ID NO:197); I1-223d (SEQ ID NO:186) and I3-249 (SEQ ID NO:187); I1-223d (SEQ ID NO:200); I1-240 (SEQ ID NO:189) and I3-249 (SEQ ID NO:200); I1-237m14 (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-225m (SEQ ID NO:187) and I3-249 (SEQ ID NO:200); BP202 (SEQ ID NO:193) and I3-249 (SEQ ID NO:200) and BP203 (SEQ ID NO:194) and I3-282 (SEQ ID NO:202).

- 6. A method of determining the HLA Class I allele type of a subject comprising the following steps:
- (i) combining a group-specific exon region primer pair with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur;
- (ii) determining whether a first nucleic acid product is produced by the amplification wherein the ability of the primer pair to produce a nucleic acid product is associated with a particular HLA group type, and thereby identifying the group type;
- (iii) combining a group-specific untranslated region primer pair corresponding to the group type of the subject, as determined by steps (i)-(ii), with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur and a second nucleic acid product is produced; and
- (iv) determining the nucleic acid sequence of the second nucleic acid product collected in step (iii).
- 7. The method of claim 6, wherein the HLA Class I allele to be determined is part of the HLA-A locus.
- 8. The method of claim 6, wherein the group-specific exon region primer pair used in step (i) comprises one or more oligonucleotide primers selected

e:

, ş

ij.

15

1

 $\widehat{})$

from the group consisting of primers 85 (SEQ ID NO:203), 118 (SEQ ID NO:204), 120 (SEQ ID NO:205), 123 (SEQ ID NO:206), 127 (SEQ ID NO:207), 129 (SEQ ID NO:208), 134 (SEQ ID NO:209), 137 (SEQ ID NO:210), 140 (SEQ ID NO:211), 160 (SEQ ID NO:212), 167 (SEQ ID NO:213), 175 (SEQ ID NO:214), 193 (SEQ ID NO:215), 202 (SEQ ID NO:216), 98 (SEQ ID NO:217), 115 (SEQ ID NO:218), 116 (SEQ ID NO:219), 117 (SEQ ID NO:220), 119 (SEQ ID NO:245), 126 (SEQ ID NO:221), 133 (SEQ ID NO:222), 135 (SEQ ID NO:223). 136 (SEQ ID NO:224), 138 (SEQ ID NO:225), 142 (SEQ ID NO:226), 144 (SEQ ID NO:227), 145 (SEQ ID NO:228), 152 (SEQ ID NO:229), 153 (SEQ ID NO:230), 154 (SEQ ID NO:231), 155 (SEQ ID NO:232), 161 (SEQ ID NO:233), 165 (SEQ ID NO:234), 168 (SEQ ID NO:235) and 180 (SEQ ID NO:236).

9. The method of claim 6, wherein the group-specific exon region primer pair used in step (i) is selected from the group of pairs consisting of 140 (SEQ ID NO:211) and 142 (SEQ ID NO:226); 85 (SEQ ID NO:203) and 98 (SEQ ID NO:217); 140 (SEQ ID NO:211) and 126 (SEQ ID NO:221); 167 (SEQ ID NO:213) and 168 (SEO ID NO:235); 118 (SEO ID NO:204) and 119 (SEO ID NO:245); 129 (SEQ ID NO:208) and 115 (SEQ ID NO:218); 129 (SEQ ID NO:208) and 116 (SEQ ID NO:219) and 117 (SEQ ID NO:220); 160 (SEQ ID NO:212) and 135 (SEQ ID NO:223); 118 (SEQ ID NO:204) and 133 (SEQ ID NO:222); 118 (SEQ ID NO:204) and 145 (SEQ ID NO:228); 134 (SEQ ID NO:209) and 155 (SEQ ID NO:232); 134 (SEQ ID NO:209) and 136 (SEQ ID NO:224); 118 (SEQ ID NO:204) and 161 (SEQ ID NO:233); 118 (SEQ ID NO:204) and 154 (SEQ ID NO:231); 120 (SEQ ID NO:205) and 152 (SEQ ID NO:229); 193 (SEQ ID NO:215) and 180 (SEO ID NO:236); 127 (SEQ ID NO:207) and 165 (SEQ ID NO:234); 137 (SEQ ID NO:210) and 145 (SEQ ID NO:228); 175 (SEQ ID NO:214) and 115 (SEQ ID NO:218) and 116 (SEQ ID NO:219); 167 (SEQ ID NO:213) and 144 (SEQ ID NO:227); 167 (SEQ ID NO:213) and 133 (SEQ ID NO:222); 137 (SEQ ID NO:210) and 138 (SEQ ID NO:225); 202 (SEQ ID NO:216) and 153 (SEQ ID NO:230); and 140 (SEQ ID NO:211) and 136 (SEQ ID NO:224).

:5

Section .

άŽ

'nŠ

10. The method of claim 6, wherein the group-specific untranslated region primer pair used in step (iii) comprises one or more oligonucleotide primers selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO:184), I1-214m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEQ ID NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ ID NO:202).

11. The method of claim 6, wherein the group-specific untranslated region primer pair used in step (iii) is selected from the group of oligonucleotide primer pairs consisting of I1-230m (SEQ ID NO:181) and BP142 (SEQ ID NO:195); 5'FR-257 (SEQ ID NO:191) and I3-247m6 (SEQ ID NO:189); I1-230m (SEQ ID NO:181) and I3-247m6 (SEQ ID NO:199); I1-226 (SEQ ID NO:182) and I3-249 (SEQ ID NO:200); I1-221m11 (SEQ ID NO:183) and I3-280m18 (SEQ ID NO:201); 5'FL-243 (SEQ ID NO:190) and I3-249 (SEQ ID NO:200); I1-214m (SEQ ID NO:185) and I3-249 (SEQ ID NO:200); I1-210m (SEQ ID NO:35) and I3-236 (SEQ ID NO:196); I1-210m (SEQ ID NO:35) and I3-249 (SEQ ID NO:196); I1-210m (SEQ ID NO:200); I1-223d (SEQ ID NO:186) and I3-249 (SEQ ID NO:197); I1-223d (SEQ ID NO:186) and I3-249 (SEQ ID NO:197); I1-223d (SEQ ID NO:200); I1-237m14 (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-225m (SEQ ID NO:187) and I3-249 (SEQ ID NO:193) and I3-249 (SEQ ID NO:200) and BP203 (SEQ ID NO:200); BP202 (SEQ ID NO:193) and I3-249 (SEQ ID NO:200) and BP203 (SEQ ID NO:194) and I3-282 (SEQ ID NO:202).

12. A method of determining the HLA Class I allele type of a subject comprising the following steps:

(i) combining a plurality of group-specific exon region primer pairs

4.

では

1

14

with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur and a first nucleic acid product is produced;

- (ii) determining the size of the first nucleic acid product of the amplification;
- (iii) correlating the size of the first nucleic acid product with the predicted size of a fragment associated with a particular HLA type;
- (iv) combining a group-specific untranslated region primer pair corresponding to the group type of the subject, as determined by steps (i)-(iii), with a target DNA sample from the subject under conditions such that primer-based amplification of the target DNA may occur and a second nucleic acid product is produced; and
- (v) determining the nucleic acid sequence of the second nucleic acid product.
- 13. The method of claim 12, wherein the HLA Class I allele to be determined is part of the HLA-A locus.
- 14. The method of claim 12, wherein the plurality of group-specific exon region primer pairs used in step (i) comprises one or more oligonucleotide primers selected from the group consisting of primers 85 (SEQ ID NO:203), 118 (SEQ ID NO:204), 120 (SEQ ID NO:205), 123 (SEQ ID NO:206), 127 (SEQ ID NO:207), 129 (SEQ ID NO:208), 134 (SEQ ID NO:209), 137 (SEQ ID NO:210), 140 (SEQ ID NO:211), 160 (SEQ ID NO:212), 167 (SEQ ID NO:213), 175 (SEQ ID NO:214), 193 (SEQ ID NO:215), 202 (SEQ ID NO:216), 98 (SEQ ID NO:217), 115 (SEQ ID NO:218), 116 (SEQ ID NO:219), 117 (SEQ ID NO:220), 126 (SEQ ID NO:221), 133 (SEQ ID NO:222), 135 (SEQ ID NO:223), 136 (SEQ ID NO:224), 138 (SEQ ID NO:225), 142 (SEQ ID NO:226), 144 SEQ ID NO:227), 145 (SEQ ID NO:228), 152 (SEQ ID NO:229), 153 SEQ ID NO:230), 154 (SEQ ID NO:231), 155 (SEQ ID NO:232), 161 (SEQ ID NO:233), 165 (SEQ ID NO:234), 168 (SEQ ID NO:235) and 180 (SEQ ID NO:236).

15. The method of claim 12, wherein the plurality of group-specific exon region primer pairs used in step (i) comprises one or more oligonucleotide primer pairs selected from the group of pairs consisting of 140 (SEQ ID NO:211) and 142 (SEQ ID NO:226); 85 (SEQ ID NO:203) and 98 (SEQ ID NO:217); 140 (SEQ ID NO:211) and 126 (SEQ ID NO:221); 167 (SEQ ID NO:213) and 168 (SEQ ID NO:235); 118 (SEQ ID NO:204) and 119 (SEQ ID NO:245); 129 (SEQ ID NO:208) and 115 (SEQ ID NO:218); 129 (SEQ ID NO:208) and 116 (SEQ ID NO:219) and 117 (SEQ ID NO:220); 160 (SEQ ID NO:212) and 135 (SEQ ID NO:223); 118 (SEQ ID NO:204) and 133 (SEQ ID NO:222); 118 (SEQ ID NO:204) and 145 (SEQ ID NO:228): 134 (SEO ID NO:209) and 155 (SEQ ID NO:232); 134 (SEQ ID NO:209) and 136 (SEQ ID NO:224); 118 (SEQ ID NO:204) and 161 (SEQ ID NO:233); 118 (SEQ ID NO:204) and 154 (SEQ ID NO:231); 120 (SEQ ID NO:205) and 152 (SEQ ID NO:229); 193 (SEQ ID NO:215) and 180 (SEQ ID NO:236); 127 (SEO ID NO:207) and 165 (SEO ID NO:234); 137 (SEO ID NO:210) and 145 (SEO ID NO:228); 175 (SEQ ID NO:214) and 115 (SEQ ID NO:218) and 116 (SEQ ID NO:219); 167 (SEQ ID NO:213) and 144 (SEQ ID NO:227); 167 (SEQ ID NO:213) and 133 (SEQ ID NO:222); 137 (SEQ ID NO:210) and 138 (SEQ ID NO:225); 202 (SEQ ID NO:216) and 153 (SEQ ID NO:230); and 140 (SEQ ID NO:211) and 136 (SEQ ID NO:224).

16. The method of claim 12, wherein the group-specific untranslated region primer pair used in step (iv) comprises one or more oligonucleotide primers selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO: 184), I1-224m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEQ ID NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ

(:)

15

ID NO:202).

ji,

ۇ: ي

.

Ž.

17. The method of claim 12, wherein the group-specific untranslated region primer pair used in step (iv) is selected from the group of oligonucleotide primer pairs consisting of I1-230m (SEQ ID NO:181) and BP142 (SEQ ID NO:195); 5′FR-257 (SEQ ID NO:191) and I3-247m6 (SEQ ID NO:199); I1-230m (SEQ ID NO:181) and I3-247m6 (SEQ ID NO:199); I1-226 (SEQ ID NO:182) and I3-249 (SEQ ID NO:200); I1-221m11 (SEQ ID NO:183) and I3-280m18 (SEQ ID NO:201); 5′FL-243 (SEQ ID NO:190) and I3-249 (SEQ ID NO:200); I1-214m (SEQ ID NO:185) and I3-249 (SEQ ID NO:200); I1-210m (SEQ ID NO:35) and I3-236 (SEQ ID NO:196); I1-210m (SEQ ID NO:35) and I3-249 (SEQ ID NO:196); I1-210m (SEQ ID NO:200); I1-223d (SEQ ID NO:192) and I3-249 (SEQ ID NO:200); I1-223d (SEQ ID NO:186) and I3-239 (SEQ ID NO:197); I1-223d (SEQ ID NO:186) and I3-249 (SEQ ID NO:187); I1-223d (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-225m (SEQ ID NO:187) and I3-249 (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-225m (SEQ ID NO:187) and I3-249 (SEQ ID NO:200); BP202 (SEQ ID NO:193) and I3-249 (SEQ ID NO:200) and BP203 (SEQ ID NO:194) and I3-282 (SEQ ID NO:202).

18. A composition comprising a plurality of oligonucleotide primer pairs comprising one or more primers selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO: 184), I1-214m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEQ ID NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ ID NO:202).

19. A composition comprising an oligonucleotide primer selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO: 184), I1-

ĠŤ.

214m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEQ ID NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ ID NO:202).

20. A composition comprising an oligonucleotide primer pair selected from the group consisting of I1-230m (CEQ ID NO:181) and BP142 (SEQ ID NO:195); 5'FR-257 (SEQ ID NO:191) and I3-247m6 (SEQ ID NO:199); I1-230m (SEQ ID NO:181) and I3-247m6 (SEQ ID NO:199); I1-226 (SEQ ID NO:182) and I3-249 (SEQ ID NO:200); I1-221m11 (SEQ ID NO:183) and I3-280m18 (SEQ ID NO:201); 5'FL-243 (SEQ ID NO:190) and I3-249 (SEQ ID NO:200); I1-214m (SEQ ID NO:185) and I3-249 (SEQ ID NO:35) and I3-236 (SEQ ID NO:196); I1-210m (SEQ ID NO:35) and I3-236 (SEQ ID NO:196); I1-210m (SEQ ID NO:35) and I3-249 (SEQ ID NO:192) and I3-249 (SEQ ID NO:200); I1-223d (SEQ ID NO:186) and I3-239 (SEQ ID NO:197); I1-223d (SEQ ID NO:186) and I3-249 (SEQ ID NO:187); I1-223d (SEQ ID NO:200); I1-237m14 (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-225m (SEQ ID NO:187) and I3-249 (SEQ ID NO:200); BP202 (SEQ ID NO:193) and I3-249 (SEQ ID NO:200) and BP203 (SEQ ID NO:194) and I3-282 (SEQ ID NO:202).

21. A kit comprising:

(a) a plurality of oligonucleotide group-specific untranslated region primer pairs comprising one or more primers selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO: 184), I1-214m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEO ID

(3)

4.

0

Æ.

1.0

37

40

?

NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ ID NO:202); and

- (b) an enzyme for nucleotide chain extension.
- 22. A kit comprising:
- (a) an oligonucleotide group-specific untranslated region primer selected from the group consisting of I1-210m (SEQ ID NO:35), I1-230m (SEQ ID NO:181), I1-226 (SEQ ID NO:182), I1-221m11 (SEQ ID NO:183), I1-209 (SEQ ID NO: 184), I1-214m (SEQ ID NO: 185), I1-223d (SEQ ID NO: 186), I1-225m (SEQ ID NO:187), I1-237m14 (SEQ ID NO:188), I1-240 (SEQ ID NO:189), 5'FL-243 (SEQ ID NO:190), 5'FR-257 (SEQ ID NO:191), 5'FR-273 (SEQ ID NO:192), BP202 (SEQ ID NO:193), BP203 (SEQ ID NO:194), BP142 (SEQ ID NO:195), I3-236 (SEQ ID NO:196), I3-239 (SEQ ID NO:197), I3-246 (SEQ ID NO:198), I3-247m6 (SEQ ID NO:199), I3-249 (SEQ ID NO:200), I3-280m18 (SEQ ID NO:201) and I3-282 (SEQ ID NO:202); and
 - (b) an enzyme for nucleotide chain extension.
 - 23. The kit of claim 22, further comprising:
- (c) a cocktail comprising group-specific exon region primers comprising one or more primer selected from the group consisting of 85 (SEQ ID NO:203), 118 (SEQ ID NO:204), 120 (SEQ ID NO:205), 123 (SEQ ID NO:206), 127 (SEQ ID NO:207), 129 (SEQ ID NO:208), 134 (SEQ ID NO:209), 137 (SEQ ID NO:210), 140 (SEQ ID NO:211), 160 (SEQ ID NO:212), 167 (SEQ ID NO:213), 175 (SEQ ID NO:214), 193 (SEQ ID NO:215), 202 (SEQ ID NO:216), 98 (SEQ ID NO:217), 115 (SEQ ID NO:218), 116 (SEQ ID NO:219), 117 (SEQ ID NO:220), 126 (SEQ ID NO:221), 133 (SEQ ID NO:222), 135 (SEQ ID NO:223), 136 (SEQ ID NO:224), 138 (SEQ ID NO:225), 142 (SEQ ID NO:226), 144 SEQ ID NO:227), 145 (SEQ ID NO:228), 152 (SEQ ID NO:229), 153 SEQ ID NO:230), 154 (SEQ ID NO:231), 155 (SEQ ID NO:232), 161 (SEQ ID NO:233), 165 (SEQ ID NO:234), 168 (SEQ ID NO:235) and 180 (SEQ ID NO:236).

:ZM

 \odot

•

άŠ

• • •

24. A kit comprising:

(a) an oligonucleotide primer pair selected from the group consisting of

11-230m (SEQ ID NO:181) and BP142 (SEQ ID NO:195); 5'FR-257 (SEQ ID NO:191) and I3-247m6 (SEQ ID NO:199); I1-230m (SEQ ID NO:181) and I3-247m6 (SEQ ID NO:199); I1-226 (SEQ ID NO:182) and I3-249 (SEQ ID NO:200); I1-221m11 (SEQ ID NO:183) and I3-280m18 (SEQ ID NO:201); 5'FL-243 (SEQ ID NO:190) and I3-249 (SEQ ID NO:200); I1-214m (SEQ ID NO:185) and I3-249 (SEQ ID NO:200); I1-210m (SEQ ID NO:35) and I3-236 (SEQ ID NO:196); I1-210m (SEQ ID NO:35) and I3-249 (SEQ ID NO:192) and I3-249 (SEQ ID NO:35) and I3-249 (SEQ ID NO:192) and I3-249 (SEQ ID NO:186) and I3-239 (SEQ ID NO:197); I1-223d (SEQ ID NO:186) and I3-249 (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-237m14 (SEQ ID NO:188) and I3-249 (SEQ ID NO:200); I1-225m (SEQ ID NO:187) and I3-249 (SEQ ID NO:200); BP202 (SEQ ID NO:193) and I3-249 (SEQ ID NO:200) and BP203 (SEQ ID NO:194) and I3-282 (SEQ ID NO:202); and

- (b) an enzyme for nucleotide chain extension..
- 25. The kit of claim 24, further comprising:
- (c) a cocktail comprising group-specific exon region primers comprising one or more primer selected from the group consisting of 85 (SEQ ID NO:203), 118 (SEQ ID NO:204), 120 (SEQ ID NO:205), 123 (SEQ ID NO:206), 127 (SEQ ID NO:207), 129 (SEQ ID NO:208), 134 (SEQ ID NO:209), 137 (SEQ ID NO:210), 140 (SEQ ID NO:211), 160 (SEQ ID NO:212), 167 (SEQ ID NO:213), 175 (SEQ ID NO:214), 193 (SEQ ID NO:215), 202 (SEQ ID NO:216), 98 (SEQ ID NO:217), 115 (SEQ ID NO:218), 116 (SEQ ID NO:219), 117 (SEQ ID NO:220), 126 (SEQ ID NO:221), 133 (SEQ ID NO:222), 135 (SEQ ID NO:223), 136 (SEQ ID NO:224), 138 (SEQ ID NO:225), 142 (SEQ ID NO:226), 144 SEQ ID NO:227), 145 (SEQ ID NO:228), 152 (SEQ ID NO:229), 153 SEQ ID NO:230), 154 (SEQ ID NO:231), 155 (SEQ ID NO:232), 161 (SEQ ID NO:233), 165 (SEQ ID NO:234), 168

ではいる時

(SEQ ID NO:235) and 180 (SEQ ID NO:236).

- (b) an enzyme for nucleotide chain extension..
- 26. The kit of claim 25, further comprising:
- (d) a sequencing primer selected from the group consisting of 5'EX2(Aw3) 5' GCG GCG GGA GGA GGG TC 3' (SEQ ID NO:237), 3'-Ex2 5' ATC
 TCG GAC CCG GAG ACT 3' (SEQ ID NO:238), 5' GTT TCA TTT TCA GTT TAG
 GCC A 3' (SEQ ID NO:239), 3'-Ex3 (Aw6) 5' CGG GAG ATC TAC AGG CGA
 TCA GG 3' (SEQ ID NO:241), 5'-Ex3 5'GGG CGG GGC GGG GCT CGG G'3
 (SEQ ID NO:242), 3'-Ex2 (ABCw1) 5' GGT CGT GAC CT(T/C)CGC CCC 3' (SEQ ID NO:243), and 5'-Ex3 (ABCw2) 5' CCC GGT TTC ATT TTC 3' (SEQ ID NO:244).

ξq¥

100000

j:

深河 光

....

(3)

SUBSTITUTE SHEET (rule 26)

Ť,

2/29

FIG.2(1)

4

FIG.2(2)

, k

 $\hat{\tau}_{k}^{(i)}$

で発える

....

(3)

BNSDOCID: <WO___9826091A2_1_>

En.

意言楽

-1G.3B

(四)秦第

大 大 大

·,~;

6/29

FIG.30

SUBSTITUTE SHEET (RULE 26)

 \bigcirc

4

FIG. 3[

を変える

:::

10000

8/29

FIG. 3E

SUBSTITUTE SHEET (RULE 26)

Ą.

接法學

4

1.5

1G.4A

BNSDOCID: <WO___9826091A2_1_>

9

**

13.

-74 -54 -84

		10/29	 •
V - V - V - V - V - V - V - V - V - V -	ن ن ن		

FIG.4B

<u>(</u>)

A#6801 A#6802 A#6802 A#6802 A#6802 A#6803 4.

海海灣

S. S.

34

....

BNSDOCID: <WO__9826091A2_I_>

J.

高級

FIG.5B

A A 3201 A A 43301 A A 40301 A A 3001 \mathcal{Z}

....

BNSDOCID: <WO __9826091A2_1_>

ž

沙沙灣

FIG.5E

BNSDOCID: <WO___9826091A2_I_>

 $-f'^2$

*

1888 E.

-61

47

	15/29
120 VGGGAGAGGAA	
40 50 60 70 80 90 100 110 120 CCTGTAGATCTCCCGGGCTGCCCACAAGGAGAGAAATTGGGACCAACACTAGAATATCGCCCTCCTCTGGTCCTGAGGAAAAGGAAAATTGGGACCAACACTAGAATATCGCCCTCCTCTGGTCCTGAGGAAAAGGAAAAAAAA	
100 A	
90 ACAC TAGAA I	
80 AATTGGGACCA	
70 1040606AGAC	
60 CCTCCCACAAC	
50	
40 -A	
30 :TCCCTGATCG	
ACCAGGGCCACGGGGCGCCTCC	
1e i 1 10 20 30 30 61ACCAGGGCCCCCCCCCCCGATGGC	
itron 3,	203 204 205 207 201 201 201 201 301 301
	AMO203 AMO203 AMO203 AMO203 AMO203 AMO210 AMO211 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO215 AMO216 AMO216 AMO217

16.6A

BNSDOCID: <WO___9826091A2_l_>

A AND

135

3. 3.

WH.

•	
<u> </u>	
9	
· · · · · · · · · · · · · · · · · · ·	
0	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	6/2
	29
	111777777777777777777777777777777777777

AR2402
AR2403
AR2404
AR2404
AR2407
AR2407
AR2407
AR2407
AR2401
AR2401
AR2601
AR2901
AR301
AR301
AR3201
AR3303
AR7401
AR7403

1000 M

·//·

35

· jo

16.6C

1880年

1888 H

įΣ

4 ·

45

,	-1		, ji	<u>j</u> 1.	١.	دام	! !	· •	!	18	/29	9		:	:	;	:	;	4	;	1	
		1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-)				4						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	3	ل د		, <u></u>	\dagger					1					1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
		 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									!						 			

FIG.6L

AR2301
AR2402
AR2403

E

37

FIG.6E

	2			1					19	/29	9	,	ı	, ,		!	į	į.	!	·	
	380 AGCCTCC						1	1	1 1 1			1 1 1 1 1 1	1 1 1				1	-			
	370 AGTCCCTC		-				1	1		1	1	<u> </u>	1	-	- <u> -</u>			1 1		[
	290 300 310 320 330 340 350 360 370 1000 250 350 350 370 350 370 350 370 350 370 370 370 370 370 370 370 370 370 37			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	350 GGTC TGAGTC						1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	340	1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1	1 1 1	1	
:	330 TCÁCACTCAA			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1					1	1	1 1 1 1 1 1 1 1 1			1 1 1 1 1 1		;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
:	320 161101001							1										1			
	310 Ctcaggcett									1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1						1		
	300 IGACTTTTCC1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1	1					
	290						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	 			1 1 1	1 1 1 1 1 1 1	1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		, , , , , , , ,	 		
	280 GGCAGCAGC							b							AA	AA	AA	AA			AA
,	270 Gacacacac		XXXX		XXXX						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				N			£	i		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
, Teil III	260 270 280 6 GGTTCCCTTTGACACACCGGGGGGCAGCATGGG		1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1		1	1 1 1 1 1					1 1 1 1 1 1				
HLA-A Intron 3, Teil III	Consensus		A*1101	A×1102	A*3001	Ax3004	CS Ax0201	S8 A×0202	Ax0203	101 Ax0204	mi A×0205	H Ax0206	Ax0207	AXOCO6	A*0210	5 Ax0211	9 Ax0215	A×0217	Ax6801	A*6802	A*6901
														•			•				

PCT/CA97/00955

 \dot{c}

 λY_{i}

	20/29	
жжж жжжж жжжж А — А — А — А — А — А — А — А — А — А —		1 1 1

AR2402 AR2403 AR2404 AR2404 AR2407 AR3402 AR3402 AR3402 AR3402 AR3402 AR3402 AR3403 AR3403

-5

100

75

(3)

H.A.A. Intron 3, Teil IV H.A.A. Intron 3, Teil IV Consensus ACICAGACCAGACCAGACCAGACTAGATTICCAGGCTGCTGCTCCTGGTCCTGTGCCTCTGTCCCAGGCTGCTGCTCCTCTGCTCTGCTCCTCTGCTCCTCTGCTCCTC

.IG.6G

/ \x

	22/29	
0		

AK6802 AK6802 AK6802 AK6803 AK6803 AK6603 AK6603

が変

~~

12

ψā

()

SUBSTITUTE SHEET (rule 26)

24/29

	-1-0
V V	<u></u>
25555	٠
	.gy

FIG.6J

0

Ax6801 Ax6901 Ax2301 Ax2403 Ax2403 Ax2403 Ax2407 Ax2407 Ax2601 Ax2601 Ax6602 Ax4301 Ax6603 Ax3301 Ax3301 Ax3301 Ax3301 Ax3301 Ax3402 Ax3402 Ax3401 Ax3402 Ax3401 Ax3401 Ax3401 Ax3401 Ax3401 Ax3401 Ax3401 Ax3401 Ax3401 e.É

Assessor.

1000

भ्रं

100 A

W.

<u>G</u>

ψ,

28/29

FIG.10

29/29

FIG.11

31

