Assignment 02 of I2ML-s23

Q1 Use truth tables to prove the validity of the 3 hardest sequents you thought from the following list. Pay attention that A, B, C \vdash D is equivalent to A \wedge B \wedge C \rightarrow D. (3 * 10 = 30 pts)

1.
$$p \lor q \vdash q \lor p$$

2.
$$(p \land q) \land r \vdash p \land (q \land r)$$

3.
$$p \rightarrow q \vdash \neg q \rightarrow \neg p$$

4.
$$(p \land q) \lor (p \land r) \vdash p \land (q \lor r)$$

5.
$$\vdash \neg p \lor q \rightarrow (p \rightarrow q)$$

$$6. \vdash (p \rightarrow q) \rightarrow \neg p \lor q$$

7.
$$\neg (p \rightarrow q) \vdash q \rightarrow p$$

8.
$$W \rightarrow X$$
, $Y \rightarrow Z \vdash W \lor Y \rightarrow X \lor Z$

9.
$$\vdash \neg (A \land B) \rightarrow (A \rightarrow \neg B)$$

9.
$$\vdash \neg (A \land B) \rightarrow (A \rightarrow \neg B)$$
 10. $p \land q \rightarrow r \vdash (p \rightarrow r) \lor (q \rightarrow r)$

11.
$$\vdash \neg (A \leftrightarrow \neg A)$$

12.
$$A \leftrightarrow B \vdash \neg A \leftrightarrow \neg B$$

Q2 Use truth tables to prove the validity of the 3 hardest formulas you thought from the following list. Pay attention that do not repeat with Q1. (3 * 10 = 30 pts)

- 1. Commutativity of \wedge : $A \wedge B \leftrightarrow B \wedge A$
- 2. Commutativity of \vee : $A \vee B \leftrightarrow B \vee A$
- 3. Associativity of \wedge : $(A \wedge B) \wedge C \leftrightarrow A \wedge (B \wedge C)$
- 4. Associativity of \vee $(A \vee B) \vee C \leftrightarrow A \vee (B \vee C)$
- 5. Distributivity of \wedge over \vee : $A \wedge (B \vee C) \leftrightarrow (A \wedge B) \vee (A \wedge C)$
- 6. Distributivity of \vee over \wedge : $A \vee (B \wedge C) \leftrightarrow (A \vee B) \wedge (A \vee C)$
- 7. $(A \to (B \to C)) \leftrightarrow (A \land B \to C)$.
- 8. $(A \to B) \to ((B \to C) \to (A \to C))$
- 9. $((A \lor B) \to C) \leftrightarrow (A \to C) \land (B \to C)$
- 10. $\neg (A \lor B) \leftrightarrow \neg A \land \neg B$
- 11. $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$

- 12. $\neg (A \land \neg A)$
- 13. $\neg (A \to B) \leftrightarrow A \land \neg B$
- 14. $\neg A \rightarrow (A \rightarrow B)$
- 15. $(\neg A \lor B) \leftrightarrow (A \to B)$
- 16. $A \lor \bot \leftrightarrow A$
- 17. $A \wedge \bot \leftrightarrow \bot$
- 18. $A \vee \neg A$
- 19. $\neg (A \leftrightarrow \neg A)$
- 20. $(A \to B) \leftrightarrow (\neg B \to \neg A)$
- 21. $(A \rightarrow C \lor D) \rightarrow ((A \rightarrow C) \lor (A \rightarrow D))$
- 22. $(((A \rightarrow B) \rightarrow A) \rightarrow A)$

Q3 For the given formula below, draw its parse tree and list the set of its all subformulas. (10 + 10 = 20 pts)

$$((p \rightarrow \sim q) \lor (p \land r) \rightarrow s) \lor \sim r$$

Q4 Finish 3 tasks for each parse true in Figure A and Figure B: 1) List the corresponding formula with fully dressed parentheses; 2) List the shortest formula with proper precedence order and right associative discussed in lectures; 3) Given a valuation/model and a parse tree of a formula, compute the truth value of the formula for that valuation/model (as done in a bottom-up fashion in Figure 1.7 on page 40 of textB). (2*(5+5+5) = 30 pts)

- 4.1 **Figure A** in which *q* evaluates to *T* and *p* and *r* evaluate to *F*;
- 4.2 **Figure B** where we let *p* be *T*, *q* be *F* and *r* be *T*.

Figure A. In-order linear representation of the tree is a logical formula

Figure B. A parse tree of a negated implication

Figure 1.7. The evaluation of a logical formula under a given valuation (On page 40 of textB)