Device Modeling Report

COMPONENTS: CMOS OPERATIONAL AMPLIFIER

PART NUMBER: NJU7098

MANUFACTURER: NEW JAPAN RADIO

Remark: VDD=5.0V

Bee Technologies Inc.

Pin Configuration

Spice Model (1/2)

```
*PART NUMBER: NJU7098
*MANUFACTURER: NEW JAPAN RADIO
*CMOS OPAMP
*All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
*Remark: VDD=5.0V
.SUBCKT NJU7098 IN+ IN- VDD VSS OUT SHDN
M M1
              3 IN- 2 VDD1 MbreakPD3
                                       L=6u W=19.89894m
M M2
              4 IN+ 2 VDD1 MbreakPD2
                                        L=6u W=10.10106m
M M3
              2 1 VDD1 VDD1 MbreakPD
              5 1 VDD1 VDD1 MbreakPD
M M4
M M5
              6 1 VDD1 VDD1 MbreakPD
              1 1 VDD1 VDD1 MbreakPD
М
 М6
 _M7
              5 5 VSS VSS MbreakND
M
M^{-}M8
              5 4 VSS VSS MbreakND
              3 3 8 VSS MbreakND1
                                        L=6u W=12m
M M9
M M10
              4 3 9 VSS MbreakND1
                                        L=6u W=5m
              1 6 10 10 MbreakND
M M11
              6 6 VSS VSS MbreakND
M M12
              7 5 VSS VSS MbreakND1
 M13
              7 7 VDD1 VDD1 MbreakPD
M M14
M_M15
              OUT 7 12 12 MbreakPD1
                                        L=6u W=203m
              11 4 VSS VSS MbreakND2
M M16
                                        L=6u W=55.5m
R R1
              10 VSS
                      315
R^-R2
              8 VSS
                     2k
              9 VSS
                     3.99k
 R3
             IN+ VSS
R R4
                       10E12
             IN- VSS
R
 R5
                       25E9
              2 N675617
R R6
                         7k
              VDD VSS
R R7
                        333.333k
R R8
              N675675 SHDNTH
 C1
              OUT 4 7p
  C2
              IN- N675617
                           17p
                         100p
              SHDNTH 0
 V1
             OUT 11 0.00091
 V2
             VDD1 12 0.026
E E1
            VDD1 VSS VALUE {
+ TF(V(SHDN,VSS)>V(SHDNTH),V(VDD,VSS),0.01) }
             N675675 0 VALUE { IF(V(VDD1,VSS)>1,0.5,2.5) }
E E2
G_G1
            VDD VSS VALUE { IF(V(SHDN,VSS)>V(SHDNTH),0.585m,0) }
```

Spice Model (2/2)

```
.model MbreakND NMOS ( LEVEL=3 L=6u W=3.2m VTO=0 RS=10.000E-3
+ RD=10.000E-3 RDS=1.000E6 TOX=2.0E-6 RG=5 RB=1.0000E-3
+ KP=10E-6)
.model MbreakND1 NMOS (LEVEL=3 L=6u W=500m VTO=0 RS=10.000E-3
+ RD=10.000E-3 RDS=10.000E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
+ KP=10E-6)
.model MbréakND2 NMOS ( LEVEL=3 VTO=0 RS=10.000E-3 RD=10.000E-3
+ RDS=1.0000E6 TOX=2.0000E-6 CBD=23.5E-10 RG=5 RB=1.0000E-3
+ KP=10E-6)
.model MbréakPD PMOS ( LEVEL=3 L=6u W=19.5m VTO=0 RS=10.000E-3
+ RD=10.00E-3 RDS=1.00E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
+ KP=1E-6)
.MODEL MbreakPD1 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.000E-3
+ RDS=1.00E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3 KP=1E-6 )
.MODEL MbreakPD2 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.00E-3
+ RDS=150E6 TOX=2.0000E-6 RG=5 RB=1.000E-3 KP=1E-6)
.MODEL MbreakPD3 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.00E-3
+ RDS=1.148E6 TOX=2.000E-6 RG=5 RB=1.000E-3 KP=1E-6 )
.ENDS NJU7098
```

Equivalent Circuit

MOSFET MODEL

PSpice model parameter	Model description
LEVEL	
L	Channel Length
W	Channel Width
KP	Transconductance
RS	Source Ohmic Resistance
RD	Ohmic Drain Resistance
VTO	Zero-bias Threshold Voltage
RDS	Drain-Source Shunt Resistance
TOX	Gate Oxide Thickness
CGSO	Zero-bias Gate-Source Capacitance
CGDO	Zero-bias Gate-Drain Capacitance
CBD	Zero-bias Bulk-Drain Junction Capacitance
MJ	Bulk Junction Grading Coefficient
PB	Bulk Junction Potential
FC	Bulk Junction Forward-bias Capacitance Coefficient
RG	Gate Ohmic Resistance
IS	Bulk Junction Saturation Current
N	Bulk Junction Emission Coefficient
RB	Bulk Series Resistance
PHI	Surface Inversion Potential
GAMMA	Body-effect Parameter
DELTA	Width effect on Threshold Voltage
ETA	Static Feedback on Threshold Voltage
THETA	Mobility Modulation
KAPPA	Saturation Field Factor
VMAX	Maximum Drift Velocity of Carriers
XJ	Metallurgical Junction Depth
UO	Surface Mobility

Output Voltage Swing - VOH, VOL

Simulation result

Evaluation circuit

Comparison table

(RL=2K Ω to GND)

Parameter	Measurement	Simulation	%Error
VOH[V]	4.940	4.939	-0.020
VOL[mV]	1.000	1.000	0.000

Output Source Current - IOH

Simulation result

Evaluation circuit

Comparison table

(Vo=4.5V)

Parameter	Measurement	Simulation	%Error
IOH[mA]	30.000	30.239	0.797

Output Sink Current - IOL

Simulation result

Evaluation circuit

Comparison table

(Vo=0.5V)

Parameter	Measurement	Simulation	%Error
IOL[mA]	40.000	40.368	0.920

Input Offset Voltage - VOS

Simulation result

Evaluation circuit

Comparison table

Parameter	Measurement	Simulation	%Error
VOS[uV]	3.000	3.078	2.600

Input Current - Ib, Ibos

Simulation result

Evaluation circuit

Comparison table

Parameter	Measurement	Simulation	%Error
lb[pA]	50.000	50.125	0.250
lbos[pA]	100.000	99.750	-0.250

Slew rate - SR

Simulation result

Evaluation circuit

Comparison table

(AV=1, VIN=2Vp-p, RL=10K Ω)

Parameter	Measurement	Simulation	%Error
+SR[V/us]	3.000	3.123	4.100
-SR[V/us]	12.000	12.442	3.683

Open loop voltage gain - AV

Simulation result

Evaluation Circuit

Comparison Table

(RL≥10KΩ)

Parameter	Measurement	Simulation	%Error
AV[dB]	140.000	142.644	1.889

Gain Bandwidth Product - FT

Simulation result

Evaluation Circuit

Comparison Table

(RL=10K Ω , CL=50pF)

AV=40[dB]	Measurement	Simulation	%Error
GBWP[MHz]	4.000	4.089	2.225
Phase magin θ [°]	30.000	30.279	0.930

Common-mode rejection voltage gain - CMRR

Simulation result

Evaluation circuit

* Common Mode Reject Ratio =20*LOG(13558136.44/21.327) = 116.065dB

Comparison Table

(Vicm=0 ~3.5V)

Parameter	Measurement	Simulation	%Error
CMRR[dB]	120.000	116.065	-3.279

Supply Current vs. Shutdown Pin Voltage

Simulation result

Evaluation Circuit

Comparison Table

(VDD=+5V, Gv=0dB,)

Parameter	Measurement	Simulation	%Error
Vshdnon [V]	2.4	2.5	4.17
VSHDNOFF [V]	0.5[Max.]	0.5	0