杵允

东南大学考试卷(A卷)

课	程 名	称	算法设计基础					考	考试学期 2019-2020-2 得分								
适用专业			计算机			君	形式	开卷				考试时间长度			150	分钟	
(可	携	带	纸	质	教	材	•	课	件	`	讲	义	•	笔	记)
1. 判断题(共10分,每小题2分)																	
	a)	T(r)	n)=n	+ 77	(n/5)	$\theta = \theta$	(n) .									()
	b)	P ≱	き 问题	可多	项式时	计间验	证一	个解								()
	c)	ΚZ	目问题	可多.	项式时	计间内	规约	$(\leq_n)^{\frac{7}{2}}$	到集台	一覆盖	E问是	题的实 值	列			()

2. 给定n个班会活动 $A = \{a_1, a_2, ..., a_n\}$,以及两个教室,每个班会活动 a_i 可表示为 $[s_i, f_i]$,即<u>开始时间和结束时间</u>。请设计算法安排尽量多的班会活动到两个教室中,使得任意两个安排的班会活动不冲突。(共 15 分)

e) 随机算法是可能得到最优解的(

3. 给定一个正整数数组A[1,2,...,n],现要从中选出一些数,满足数组中任意相邻的 3 个数最多有一个可被选中(即对任意i,A[i-1],A[i],A[i+1]三个数最多可被选中一个)。请设计一算法使得选出的数总和最大。(共 10 分)

4. 考虑这样一个出租车派单问题:给定一个网络G = (V, D),其中 $\forall v_i \in V$ 表示节点, $D = \{d_{ij}\}, v_i, v_j \in V$ 表示任意两个节点之间的行程距离,满足三角不等式,即 $\forall v_i, v_j, v_k$,有 $d_{ij} + d_{jk} \geq d_{ik}$ 。假设现在有n辆出租车 $A = \{a_1, a_2, ..., a_n\}$ 和m个乘客 $R = \{r_1, r_2, ..., r_m\}$,其中 $n \geq m$ 。每辆出租车 $a_k \in A$ 的节点位置定义为 $v(a_k)$,每个乘客 r_i 的位置定义为 $v(r_i)$ 。现在出租车平台公司希望为每个乘客安排一辆出租车,目标是最小化空载距离和,即所有的出租车到乘客的空载距离总和最小。如图所示,有两辆出租车 a_1 和 a_2 ,他们所在节点分别是 v_1 和 v_4 ,同时有两个乘客 r_1 和 r_2 ,他们所在节点分别是 v_2 和 v_3 。如果将 a_1 分配给 a_1 0。现在某平台提出一种贪心方案,步骤如下:

Step1: 对于任意的乘客 η 以及任意的出租车 a_k ,如果他们之间的距离, $d_{v(a_k)v(r_l)}$ 最短,则匹配成功,即将出租车 a_k 分配给乘客 η ;

Step2: 移除 Step 1 中匹配成功的出租车和乘客;

Step3: 重复 Step 2~3, 直到所有的乘客分配完毕。

如图所示,首先匹配成功的是乘客 r_1 和出租车 a_1 ,因为他们之间的距离 $d_{v(a_1)v(r_1)}=4$ 最短。然后匹配成功的是乘客 r_2 和出租车 a_2 。

试问该贪心方法是否为最优方法?如果不是,请给出一个反例并且设计最优方法;如果是,请给出证明。(共 10 分)

絥

Kiz

)

5. 某电路板两侧分别有n个焊点,分别记做焊点1,2,...,n,如图所示。根据电路设计图,现在需要将顶层的焊点i ($1 \le i \le n$)与底层的焊点 $\pi(i)$ 用导线联通,即需要n条直线 ($i,\pi(i)$) ($1 \le i \le n$)来连接n对焊点。

两条直线 $(i,\pi(i))$ 与 $(j,\pi(j))$ 相交,如果i < j 但 $\pi(i) > \pi(j)$ 成立的话。反之亦然。两条直线的交点称为交叉点。如图所示的例子中,一共有 9 个交叉点。

请设计一个 $\frac{6}{6}$ 为任意给定的n对焊点计算总共的交叉点个数。你设计的算法复杂度不能高于 $O(n\log n)$ 。(共 15 分)

6. X 数轴上从左到右有n个不等间距的点a[1,2,...,n],给定一根长度为L的绳子,求绳子最多能覆盖其中的几个点。(共 15 分)

请设计一个 $O(n^2)$ 时间的<mark>算法</mark>。

请问是否存在O(n)时间的算法?请尝试说明要点。

- 7. 假定 0/1 背包问题中,有 3 个背包,每个背包容量分别为 C_1 , C_2 , C_3 ,给定 n个物品 $A = \{a_1, a_2, ..., a_n\}$,每个物品 a_i 可表示为 (v_i, w_i) ,即价值和重量。请设计一<mark>动态规划</mark>方法将物品装入这三个背包,使得每个背包装入物品重量不超过各自容量,且装入物品的总价值最大。(共 15 分)
- 8. 给定n个物体 $A = \{a_1, a_2, ..., a_n\}$,请分析随机取出两个物体的概率,并设计一个算法以等概率取出两个物体,给出算法思想及伪代码。(共 10 分)