Révisions 4 – Modélisation des systèmes du premier et du deuxième ordre

Sciences

Systèmes d'ordre 1

Définition Les systèmes du premier ordre sont régis par une équation différentielle de la forme suivante :

$$\tau \frac{\mathrm{d}s(t)}{\mathrm{d}t} + s(t) = Ke(t)$$

Dans le domaine de Laplace, la fonction de transfert de ce système est donc donnée par :

$$H(p) = \frac{S(p)}{E(p)} = \frac{K}{1 + \tau p}$$

On note:

- τ la constante de temps en secondes ($\tau > 0$);
- K le gain statique du système (K > 0).

Schéma-bloc d'un système du premier ordre :

$$E(p) \longrightarrow H(p) = \frac{K}{1 + \tau p} \qquad S(p)$$

Résultat — Réponse à un échelon d'un système du premier ordre.

On appelle réponse à un échelon, l'expression de la sortie s lorsque on soumet le système à un échelon d'amplitude E_0 . Lorsque $E_0 = 1$ (1/p dans le domaine de Laplace) on parle de **réponse indicielle**. Ainsi, dans le domaine de Laplace :

$$S(p) = E(p)H(p) = \frac{E_0}{p} \frac{K}{1 + \tau p}.$$

Analytiquement, on montre que $s(t) = KE_0 u(t) \left(1 - e^{-\frac{t}{\tau}}\right)$.

Si la réponse indicielle d'un système est caractéristique d'un modèle du premier ordre (pente à l'origine non nulle et pas d'oscillation), on détermine :

- le gain à partir de l'asymptote KE_0 ;
- la constante de temps à partir de $t_{5\%}$ ou du temps pour 63 % de la valeur finale.

Les caractéristiques de la courbe sont les suivantes :

- valeur finale $s_{\infty} = KE_0$;
- pente à l'origine non nulle;
- $t_{5\%} = 3\tau$;
- pour $t = \tau$, $s(\tau) = 0.63 s_{\infty}$.

Résultat — Réponse à un échelon d'un système du deuxième ordre.

On appelle réponse à une rampe, l'expression de la sortie s lorsque on soumet le système à une fonction linéaire de pente k:

$$S(p) = E(p)H(p) = \frac{k}{p^2} \frac{K}{1 + \tau p}.$$

Analytiquement, on montre que $s(t) = Kk \left(t - \tau + \tau e^{-\frac{t}{\tau}}\right) u(t)$. Les caractéristiques de la courbe sont les suivantes :

- pente de l'asymptote *Kk*;
- $\varepsilon_{\nu} = kK\tau$;
- intersection de l'asymptote avec l'axe des abscisses : $t = \tau$.

Temps (s)

Diagramme de Bode

2 Systèmes d'ordre 2

Définition Réponse à un échelon Réponse à une rampe Diagramme de Bode