

EUROPEAN PATEMT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER : 01305288 PUBLICATION DATE : 08-12-89

APPLICATION DATE : 01-06-88 APPLICATION NUMBER : 63132797

APPLICANT: SHINAGAWA REFRACT CO LTD;

INVENTOR: UCHIDA TOSHIAKI;

INT.CL. : F27B 3/00

TITLE: NON-OXIDIZING ATMOSPHERE

CALCINING OF CARBON AND

CARBON-CONTAINING REFRACTORY

AND CALCINING FURNACE

THEREFOR

ABSTRACT :

PURPOSE: To calcine carbon and carbon-containing refractory in the furnace of non-oxidizing atmosphere, by a method wherein a part of furnace exhaust gas is circulated into a combustion gas chamber provided in the furnace utilizing the discharging speed of combustion gas to control the temperature of the combustion gas chamber.

CONSTITUTION: Oil, supplied to an oil atomizer 1, is sprayed into a combustion chamber 3 to mix with combustion air 4 and is burnt in the combustion chamber 3. Combustion air 4 enters into an air header chamber 5 and, thereafter, enters into the combustion chamber 3 uniformly through fine holes 6. Combustion generating gas 7 induces exhaust circulating gas 8 by ejector effect and enters into a combustion gas chamber 9 while combustion gas is discharged into a furnace 11 uniformly through ejection ports 10. The exhaust gas of the furnace 11 passes through a gas passage 12 and a part of it becomes the exhaust circulating gas 8. The temperature of the combustion gas chamber 9 can be controlled by a damper 14. According to this method, the atmosphere of the furnace may be brought into non-oxidizing atmosphere whereby long-time calcining of energy saving may be effected.

COPYRIGHT: (C)1989,JPO&Japio