Contents

1.	CP	U Benchmarking	2
	a.	Theoretical Performance	2
	b.	Linpack	2
	c.	Experiment Results	3
	d.	Analysis	3
2.	Mei	mory Benchmarking	5
	a.	Theoretical Performance	5
	b.	Stream	5
	c.	Experimental Results	5
	d.	Ananlysis	5
3.	Dis	k Benchmarking	6
	a.	Theoretical Performance	6
	b.	lozone	6
	c.	Experimental Results	6
	d.	Analysis	

1. Amazon EC2 Instance Details

Output of "Iscpu":

Architecture:	x86_64
CPU op-mode(s):	32-bit, 64-bit
Byte Order:	Little Endian
CPU(s):	1
On-line CPU(s) list:	0
Thread(s) per core:	1
Core(s) per socket:	1
Socket(s):	1
NUMA node(s):	1
Vendor ID:	Genuine-Intel
CPU family:	6
Model:	45
Stepping:	7
CPU MHz:	1795.672
BogoMIPS:	3591.34
Hypervisor vendor:	Xen
Virtualization type:	para
L1d cache:	32K
L1i cache:	32K
L2 cache:	256K
L3 cache:	20480K
NUMA node0 CPU(s):	0

2. CPU Benchmarking

a. Theoretical Performance

Theoretically maximum FLOPS can be calculated as:

 $Theoretical\ Peak = Number\ of\ Cores*Average\ frequency*Operations\ per\ cycle$

Number of cores and average frequency is known. Operations per cycle depends on the micro-architecture of the CPU which in this case is Sandy Bridge. Sandy Bridge processor (Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz) can perform 8 DP (Double Precision point) operations per cycle [1][2]. Therefore, theoretical peak value in this experiment is

Theoretical Peak FLOPS = 1 * 1.794 * 4 = 14.358 **GFLOPS**

b. Linpack Performance

The Linpack run on EC2 instance gives the **best performance to be 6.2814 GFLOPS**. Please find the results in file report/LinpackRun.txt

Efficiency of Linpack compared to theoretical performance: 6.2814*100/14.358 = 43.47%

c. Experiment Results

After running the cpu benchmarking on EC2 instance, these are the results:

	Experir	nent 1	Experiment 2		Experiment 3		Average		Standard Deviation	
Threads	GFLOPS	GIOPS	GFLOPS	GIOPS	GFLOPS	GIOPS	GIOPS	GIOPS	GFLOPS	GIOPS
1	0.232	0.243	0.233	0.242	0.236	0.245	0.23366	0.24333	0.002082	0.001528
2	0.237	0.246	0.235	0.244	0.233	0.243	0.235	0.24433	0.002	0.001528
3	0.233	0.244	0.236	0.238	0.235	0.243	0.23466	0.24166	0.001528	0.003215
4	0.233	0.363	0.234	0.243	0.235	0.245	0.234	0.28366	0.001	0.068712

All the samples for different runs can be found in data/*.data

d. Analysis:

Efficiency Achieved compared to theoretical performance: 2.239*100/14.358 = 1.62%

e. Sampling GFLOPS for 600 seconds:

f. Sampling GIOPS for 600 seconds:

3. Memory Benchmarking

a. Theoretical Performance

The type (Standard Name) of the RAM offered by the EC2 instance is not known. After running stream, it is expected to be ^[4] DDR3-1066/ DDR3-1333. For these RAMs the **theoretical peak throughput is 10666 MBPS.**

b. Stream

Stream's **best throughput value for copy is 8241.5 MBPS**. Please find the complete resource in report/StreamRun.txt.

c. Experimental Results

Acces	S- Block	Num -	Experiment 1		Experiment 2		Experiment 3		Average		Standard Deviation				
Type			Throu	Late	Throu	Laten	Throu	Laten	Throu	Laten	Throu	Laten			
1) 0		ads	ghput	ncy	ghput	су	ghput	су	ghput	су	ghput	су			
Sequ	В	1	103.43	9.98	103.35	9.5849	103.01	10.107	103.26	9.8917	0.2211	0.2728			
ential	Ь	1	43	291	6	6094	81	421	9467	6398	8233	9527			
Rand	В	1	9.7046	41.7	9.7278	41.738	9.6796	41.901	9.704	41.796	0.0241	0.0911			
om				5049		2813		855		8754	056	1969			
Sequ	В	2	69.280	9.56	103.99	19.343	103.11	9.7021	92.131	12.869	19.794	5.6065			
ential			2	4209	91	2617	46	484	3	873	5741	4328			
Rand	В	2	5.4232	72.9 5532	4.9264	73.262	5.69	76.447	5.3465	74.222	0.3875	1.9336			
om	ט				4.3204	9395		753	3333	0042	3009	8195			
Sequ	VD	КВ 1	9995.9	76.4	10519.	75.488	9162.4	75.551	9892.7	75.841	684.47	0.5576			
ential	KB		58	8438	686	2813	702	757	0473	4728	3966	7786			
Rand	VD	KB 1	5896.1	108.	6046.3	107.19	5663.7	107.87	5868.7	107.86	192.76	0.6653			
om	ND		76	5229	665	2383	688	841	7043	4564	5528	6665			
Sequ	КВ	2	5568.2	148.	5724.3	151.46	5228.2	146.30	5506.9	148.60	253.65	2.6235			
ential	ND	2	77	0591	712	3623	955	371	8123	8811	4594	1142			
Rand	I/D	2	3005.8	208.	3070.4	188.60	2967.1	221.54	3014.4	206.14	52.192	16.572			
om	KB	NB Z	12	2825	559	5957	54	296	7397	3806	8432	3279			
Sequ	N 4 D	MD	МВ	1	399.93	1160	535.44	17249	382.90	11179	439.42	13345	83.585	33873	
ential	IVIB	1	97	858	33	49.31	44	82.91	9133	96.74	8272	4.283			
Rand	МВ	1	393.20	1045	490.48	16196	355.67	99985	413.11	12217	69.576	34535			
om	IVID		01	826	02	83.24	1	7.336	71	88.86	5425	2.335			
Sequ	МВ	2	249.64	3213	253.28	32360	242.28	28661	248.40	31051	5.6073	20726			
ential			91	161	95	77.02	31	71	7233	36.34	0638	7.003			
Rand	MD	2	262.57	3250	253.98	25769	251.87	30551	256.14	29607	5.6703	34633			
om	IVIB	IVIB	MB	IVIB	2	78	012	37	42.48	25	92	4667	15.49	7871	7.989

d. Analysis

Peak Throughput Achieved: 9892.7 MBPS

Efficiency Achieved compared to theoretical performance: 9892.7*100/10666 = 92.74%

Disk Benchmarking

a. Theoretical Performance

Disks are always slower than memory. In this experiment, Amazon's t2.micro instance was having EBS General Purpose SSD (gp2) disk was used. These general purpose SSDs have Bandwidth no more than 800 MB/s [3]. Thus our **maximum theoretical value is 160 MB/s**.

b. lozone:

lozone run on EC2 instance gives the **best performance to be 7100.397 MBPS***. Please find the results in file report/lozoneRun.txt

Efficiency of lozone compared to theoretical performance: 7100.397*100/160 = 4437.748125%

Note: This value though seems unreasonable; but that is what is computed by IOZONE for **reread**. Even though we consider it to be because of cache and look for the average performance it is **2832.759 MB**/s which again doesn't seem to be a good result.

c. Experimental Results

Access Type	BlockSize	Operation	Threads	Average Throughput	Average Latency
Sequential	В	READ	1	0.46296	0.002059937
Random	В	READ	1	0.35461	0.002689362
Sequential	В	READ	2	1.00253	0.001180172
Random	В	READ	2	0.50736	0.002008677
Sequential	КВ	READ	1	456.12472	0.002140999
Random	KB	READ	1	398.44358	0.002450943
Sequential	KB	READ	2	512.3075	0.002045631
Random	KB	READ	2	456.1854	0.00217557
Sequential	MB	READ	1	3206.87509	0.311830044
Random	MB	READ	1	420.79588	2.376449108
Sequential	MB	READ	2	167.84226	5.958064795
Random	MB	READ	2	277.02659	3.609884977
Sequential	В	WRITE	1	0.00078	1.221017838
Random	В	WRITE	1	0.00041	2.315430641
Sequential	В	WRITE	2	0.00079	1.214181185
Random	В	WRITE	2	0.00078	1.22928977
Sequential	KB	WRITE	1	0.42299	2.308728695
Random	KB	WRITE	1	0.46558	2.097499371
Sequential	КВ	WRITE	2	0.7428	1.314893961
Random	КВ	WRITE	2	0.67589	1.445055008
Sequential	MB	WRITE	1	37.34241	26.77920103
Random	MB	WRITE	1	898.60933	1.112830639
Sequential	MB	WRITE	2	24.40337	41.1184752
Random	MB	WRITE	2	148.83694	6.936600208

- d. Analysis
- e. Peak Throughput Achieved: 3206 MBPS
- f. Efficiency Achieved compared to theoretical performance:3206*100/7100 = 45.16%
- [1] http://stackoverflow.com/questions/15655835/flops-per-cycle-for-sandy-bridge-and-haswell-sse2-avx-avx2
- [2] http://www.nas.nasa.gov/hecc/support/kb/sandy-bridge-processors_301.html
- [3] https://aws.amazon.com/ebs/details/
- [4] https://en.wikipedia.org/wiki/DDR3_SDRAM