6.842 Randomness and Computation

March 30, 2022

Lectures on Linearity Testing

Lecturer: Ronitt Rubinfield Scribe: Yuchong Pan

1 Linearity Testing

Definition 1. Let G and H be finite groups. Let $f: G \to H$. Then f is said to be *linear* (i.e., is a *homomorphism*) if for all $x, y \in G$,

$$f(x) +_H f(y) =_H f(x +_G y)$$
.

For all $\varepsilon > 0$, f is said to be ε -linear if there exists a linear function $g: G \to H$ such that f and g agree on at least $1 - \varepsilon$ fraction of inputs in G, i.e.,

$$\underset{x \in G}{\mathbb{P}}[f(x) = g(x)] \ge 1 - \varepsilon,$$

or equivalently,

$$\frac{|\{x\in G: f(x)=g(x)\}|}{|G|}\geq 1-\varepsilon.$$

Algorithm 1 is a natural test for the linearity of a function $f: G \to H$, where G and H are finite groups.

- 1 repeat ? times
- **2** pick random $x, y \in G$
- 3 if $f(x) + f(y) \neq f(x+y)$ then
- 4 return "fail"
- 5 return "pass"

Algorithm 1: A proposed test for the linearity of a function $f: G \to H$, where G and H are finite groups.

Observation 2. Let G be a finite group. For all $a, y \in G$, $\mathbb{P}_{x \in G}[y = a + x] = 1/|G|$. In other words, if x is chosen uniformly from G, then a + x is also uniformly distributed in G.

Proof. Since only x = y - a satisfies y = a + x, then $\mathbb{P}_{x \in G}[y = a + x] = \mathbb{P}_{x \in G}[x = y - a] = 1/|G|$. \square

2 Self-Correcting (Random Self-Reducibility)

Theorem 3. Let G be a finite group. Let $f: G \to G$ be a function such that there exists a linear function $g: G \to G$ and that $\mathbb{P}_{x \in G}[f(x) = g(x)] \ge 7/8$. Then for all $x \in G$, g(x) can be computed with only $O(\log(1/\beta))$ calls to f (with at most β probability of error).

Given input $x \in G$ and black box access to f, we define a self corrector in Algorithm 2.

Proposition 4. $\mathbb{P}[output = g(x)] \geq 1 - \beta$.

```
1 for i \leftarrow 1, \ldots, C \cdot \log(1/\beta) do
```

- \mathbf{p} pick y uniformly in G
- $answer_i \leftarrow f(y) + f(x-y)$
- 4 output the most common answer

Algorithm 2: A self corrector for a 1/8-linear function $f: G \to G$ on input x, where G is a finite group.

Proof. Let y be chosen uniformly in G. By Observation 2, x - y is also uniformly distributed in G. Therefore,

$$\mathbb{P}[f(y) \neq g(y)] \le \frac{1}{8}, \qquad \mathbb{P}[f(x-y) \neq g(x-y)] \le \frac{1}{8}.$$

By the union bound,

$$\mathbb{P}[f(y) + f(x - y)] = g(x)] = \mathbb{P}[f(y) + f(x - y)] = g(y) + g(x - y)]$$

$$\geq \mathbb{P}[f(y) = g(y), f(x - y) = g(x - y)]$$

$$\geq 1 - \left(\frac{1}{8} + \frac{1}{8}\right) = \frac{3}{4}.$$

This implies that $\mathbb{P}[answer_i = g(x)] \geq 3/4$ for all i. The proof is hence complete.

3 Coppersmith's Example

Let $m \in \mathbb{N}$. Let $f: \mathbb{Z}_m \to \mathbb{Z}_m$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x \equiv 1 \pmod{3}, \\ 0, & \text{if } x \equiv 0 \pmod{3}, \\ -1, & \text{if } x \equiv 2 \pmod{3}. \end{cases}$$

The graph of f is plotted in Figure 1.

Figure 1: The graph of Coppersmith's example.

Note that the closest linear function $g: \mathbb{Z}_m \to \mathbb{Z}_m$ to f is given by g(x) = 0 for all $x \in \mathbb{Z}_m$, so f is 2/3-far from being linear. Note that f fails for $x, y \in \mathbb{Z}_m$ with $x \equiv y \equiv 1 \pmod{3}$ or $x \equiv y \equiv 2 \pmod{3}$, and passes for all other $x, y \in \mathbb{Z}_m$. Therefore, the rejection probability of the linearity test for f, denoted by δ_f , is given by

$$\delta_f = \mathbb{P}_{x,y \in \mathbb{Z}_m} [f(x) + f(y) \neq f(x+y)] = \frac{2}{9}.$$

Fortunately, 2/9 is the threshold; in other words, Coppersmith's example is the worst example. If $\delta_f < 2/9$ for some function $f: G \to G$ and finite group G, then f must be δ_f -close to being linear.

4 Fourier Analysis for Boolean Functions

The *n*-dimensional Boolean hypercube $\{0,1\}^n$ can be interpreted as having n+1 layers, where the i^{th} layer consists of *n*-bit Boolean strings with i ones for each $i \in \{0,\ldots,n\}$, and where two *n*-bit Boolean strings in consecutive layers are joined by an edge if they differ at exactly one bit. What are linear maps $\{0,1\}^n \to \{0,1\}$?

Definition 5. Given $x, y \in \{0, 1\}^n$, the inner product of x and y is defined to be

$$x \cdot y = \sum_{i=1}^{n} x_i y_i \pmod{2}.$$

Note that addition modulo 2 is the XOR operation. Linear functions on $\{0,1\}^n$ are of the form

$$L_a(x) = a \cdot x,$$
 for fixed $a \in \{0, 1\}^n$,

or, alternatively,

$$L_A(x) = \sum_{i \in A} x_i \pmod{2},$$
 for fixed $A \subset [n]$.

Therefore, there are exactly 2^n linear functions on $\{0,1\}^n$.

To simplify the presentation, we change the notation by letting $a \mapsto (-1)^a$ for $a \in \{0, 1\}$ and by changing addition a+b to multiplication $(-1)^a(-1)^b = (-1)^{a+b}$. Hence, the condition of linearity $f(a)+f(b)=f(a\oplus b)$ for all $a,b\in\{0,1\}^n$ is changed to $f(a)\cdot f(b)=f(a\odot b)$ for all $a,b\in\{1,-1\}^n$, where $(x_1,\ldots,x_n)\oplus(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$ denotes the bitwise XOR (i.e., addition modulo 2) of two n-bit Boolean strings, and $(x_1,\ldots,x_n)\odot(y_1,\ldots,y_n)=(x_1\cdot y_1,\ldots,x_n\cdot y_n)$ denotes the bitwise multiplication of two n-bit $\{1,-1\}$ -valued strings. Moreover, linear functions on $\{1,-1\}^n$ are of the form

$$\chi_S(x) = \prod_{i \in S} x_i,$$
 for fixed $S \subset [n]$.

Now, the linearity test accepts if and only if $f(x) \cdot f(y) = f(x \odot y)$. Then

$$f(x)f(y)f(x \odot y) = \begin{cases} 1, & \text{if the test accepts,} \\ -1, & \text{if the test rejects.} \end{cases}$$

Therefore, the indicator variable for the event that the test rejects is given by

$$\mathbb{1}_{f(x)\cdot f(y)\neq f(x\odot y)} = \frac{1-f(x)f(y)f(x\odot y)}{2} = \begin{cases} 0, & \text{if the test accepts,} \\ 1, & \text{if the test rejects.} \end{cases}$$

This allows us to express the rejection probability in terms of the indicator variable:

$$\delta_f = \mathbb{P}_{x,y \in \{1,-1\}^n} [f(x) \cdot f(y) \neq f(x \odot y)] = \mathbb{E}_{x,y \in \{1,-1\}^n} \left[\frac{1 - f(x)f(y)f(x \odot y)}{2} \right].$$