Show $E\left[\left(X_0\hat{8}-X\beta\right)'\left(X_0\hat{8}-X\beta\right)\right]=\sigma^2+r(M_0)+\beta'x'(1-M_0)X\beta$, where M_0 is p.p.m. onto $C(X_0)$ and $\hat{8}$ is L.S. estimator in simple model. Here: $Y=X\beta+\mathcal{E}$, $\mathcal{E}\sim N(0,\sigma^2I_n)\Rightarrow Y\sim N(X\beta,\sigma^2I_n)$, $E[Y]=X\beta$ $Cov(Y)=\sigma^2I_n$

Since \hat{x} is LS, $x_0\hat{x} = M_0Y$. $E[x_0\hat{x}] = E[M_0Y] = M_0 \cdot E[Y] = M_0 \times \beta$

The left side, above, can be written with terms swapped: $E[(x\beta-x_0\hat{x})'(x\beta-x_0\hat{x})] =$

Now call Z = XB-Xos, so that @ = E[z'z].

Using the variance identity: $E[Z'z] = cov(z) + E[Z]^2$

First, Simplify = xB-Xo8 = xB-MoY

Then find $E[z] = E[xB-MoY] = xB-Mo\cdot E[Y] = xB-MoXB = (1-Mo)xB$ and $Cov(z) = Cov(xB-MoY) = Mo\cdot Cov(Y)\cdot Mo' = Mo\cdot \sigma^2 I_n\cdot Mo' = \sigma^2 I_n\cdot Mo' = \sigma^2 I_n\cdot Mo'$ idempotent \int

Therefore $E[z'z] = \omega v(z) + E[z]^2$ $= \sigma^2 In \cdot M_0 + [(1-M_0) \times \beta]'[(1-M_0) \times \beta]$ $= \sigma^2 \cdot M_0 + \beta' x' (1-M_0)' (1-M_0) \times \beta$ $= \sigma^2 \cdot H(M_0) + \beta' x' (1-M_0) \times \beta \qquad \leftarrow idempotent$