Q-Learning

Insoon Yang

Department of Electrical and Computer Engineering Seoul National University

Recap

MDP problem:

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

MDP problem:

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Known model:

MDP problem:

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Known model:

Policy iteration

MDP problem:

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Known model:

- Policy iteration
- Value iteration

MDP problem:

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Known model:

- Policy iteration
- Value iteration

Unknown model:

MDP problem:

$$\max_{\pi \in \Pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right]$$

Known model: Know reward & transition probability

- Policy iteration
- Value iteration

Unknown model:

Unknow reward & transition probability

- Temporal-difference learning
- Q-learning

Initialize a policy π_0 ;

• (Policy Evaluation) Compute the value v^{π_k} of π_k by solving the Bellman equation $v^{\pi_k} = T^{\pi_k}v^{\pi_k}$;

- (Policy Evaluation) Compute the value v^{π_k} of π_k by solving the Bellman equation $v^{\pi_k} = T^{\pi_k}v^{\pi_k}$;
- ② (Policy Improvement) Update the policy to π_{k+1} so that $\pi_{k+1}(s) \in \arg\max_a \{r(s,a) + \gamma \mathbb{E}_{s'}[v^{\pi_k}(s')]\}$

- (Policy Evaluation) Compute the value v^{π_k} of π_k by solving the Bellman equation $v^{\pi_k} = T^{\pi_k}v^{\pi_k}$;
- ② (Policy Improvement) Update the policy to π_{k+1} so that $\pi_{k+1}(s) \in \arg\max_a \{r(s,a) + \gamma \mathbb{E}_{s'}[v^{\pi_k}(s')]\}$
- **3** Set $k \leftarrow k + 1$; Repeat until convergence;

- (Policy Evaluation) Compute the value v^{π_k} of π_k by solving the Bellman equation $v^{\pi_k} = T^{\pi_k}v^{\pi_k}$;
- ② (Policy Improvement) Update the policy to π_{k+1} so that $\pi_{k+1}(s) \in \arg\max_a \{r(s,a) + \gamma \mathbb{E}_{s'}[v^{\pi_k}(s')]\}$
- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - Converged policy is optimal!

- (Policy Evaluation) Compute the value v^{π_k} of π_k by solving the Bellman equation $v^{\pi_k} = T^{\pi_k}v^{\pi_k}$;
- ② (Policy Improvement) Update the policy to π_{k+1} so that $\pi_{k+1}(s) \in \arg\max_a \{r(s,a) + \gamma \mathbb{E}_{s'}[v^{\pi_k}(s')]\}$
- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - Converged policy is optimal!
 - Q) Can we do something even simpler?

Initialize a value function v_0 ;

Update the value function by

$$v_{k+1} \leftarrow Tv_k;$$

Initialize a value function v_0 ;

Update the value function by

$$v_{k+1} \leftarrow Tv_k;$$

2 Set $k \leftarrow k + 1$; Repeat until convergence;

Initialize a value function v_0 ;

Update the value function by

$$v_{k+1} \leftarrow Tv_k;$$

- ② Set $k \leftarrow k+1$; Repeat until convergence;
 - Converged value function is optimal!

Initialize a value function v_0 ;

Update the value function by

$$v_{k+1} \leftarrow Tv_k;$$

- ② Set $k \leftarrow k+1$; Repeat until convergence;
 - Converged value function is optimal!
- Q) Can we do something similar even when we do not know model?

State-Action Value Functions (Q-Functions) state & action function

 Another very useful concept in MDP and RL is the state-action value functions (often called the Q-functions).

Definition (Q-function)

The optimal Q-function $Q^*(s,a)$ is the maximum expected return starting from state s, taking action a:

$$Q^*(\boldsymbol{s}, \boldsymbol{a}) := \max_{\pi} Q^{\pi}(\boldsymbol{s}, \boldsymbol{a}) = \max_{\pi} \mathbb{E}^{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = \boldsymbol{s}, a_0 = \boldsymbol{a} \right]$$

By definition, we have

$$v^*(\boldsymbol{s}) = \max_{\boldsymbol{a} \in A} Q^*(\boldsymbol{s}, \boldsymbol{a}).$$

Bellman Equation for Q-functions

$$\begin{aligned} Q^*(s, \textcolor{red}{a}) &= \underbrace{r(s, \textcolor{red}{a})}_{\text{immediate reward}} + \gamma \underbrace{\sum_{s' \in S} p(s'|s, \textcolor{red}{a}) v^*(s')}_{\text{optimal value of next state}} \\ &= r(s, \textcolor{red}{a}) + \gamma \sum_{s' \in S} p(s'|s, \textcolor{red}{a}) \max_{a' \in A} Q^*(s', a') \end{aligned}$$

ullet Define the Bellman operator ${\mathcal T}$ for Q-functions by

$$(\mathcal{T}Q)(\boldsymbol{s},\boldsymbol{a}) := r(\boldsymbol{s},\boldsymbol{a}) + \gamma \sum_{\boldsymbol{s}' \in S} p(\boldsymbol{s}'|\boldsymbol{s},\boldsymbol{a}) \max_{\boldsymbol{a}' \in A} Q(\boldsymbol{s}',\boldsymbol{a}').$$

Then, it is a monotone contraction mapping.

• Bellman equation:

$$Q = \mathcal{T}Q.$$

When the model is known...

When the model is known...

When the model is known...

When the model is known...

When the model is known...

- **3** Set $k \leftarrow k + 1$; Repeat until convergence;

When the model is known...

- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - Converged value functions are optimal!

When the model is known...

- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - Converged value functions are optimal!
 - Key observation: Step 2 is model-free!

When the model is known...

- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - Converged value functions are optimal!
 - Key observation: Step 2 is model-free!
 - Q) How can we perform Step 1 using samples?

When the model is unknown...

When the model is unknown...

When the model is unknown...

Initialize a value function v_0 ;

① Sample (s_t, a_t, s_{t+1}, r_t) by running some policy;

When the model is unknown...

- **1** Sample (s_t, a_t, s_{t+1}, r_t) by running some policy;
- ② Set $Q_{k+1}(s_t, a_t) \leftarrow (1 \alpha)Q_k(s_t, a_t) + \alpha[r_t + \gamma v_k(s_{t+1})];$

When the model is unknown...

- **1** Sample (s_t, a_t, s_{t+1}, r_t) by running some policy;
- ② Set $Q_{k+1}(s_t, a_t) \leftarrow (1 \alpha)Q_k(s_t, a_t) + \alpha[r_t + \gamma v_k(s_{t+1})];$

When the model is unknown...

- **①** Sample (s_t, a_t, s_{t+1}, r_t) by running some policy;

- Set $k \leftarrow k + 1$; Repeat until convergence;

When the model is unknown...

- **1** Sample (s_t, a_t, s_{t+1}, r_t) by running some policy;
- ② Set $Q_{k+1}(s_t, a_t) \leftarrow (1 \alpha)Q_k(s_t, a_t) + \alpha[r_t + \gamma v_k(s_{t+1})];$
- Set $k \leftarrow k + 1$; Repeat until convergence;
- Key observation: All steps are model-free!

Idea: Using samples to approximate transition probability (Stochastic Approximation)

When the model is unknown...

Initialize a value function v_0 ;

- **3** Sample (s_t, a_t, s_{t+1}, r_t) by running some policy;

- Set $k \leftarrow k + 1$; Repeat until convergence;
- Key observation: All steps are model-free!
- Q) Can we merge Steps 2 and 3?

Initialize a Q-function Q_0 ;

① Sample (s_t, a_t, r_t, s_{t+1}) by executing some policy;

- **1** Sample (s_t, a_t, r_t, s_{t+1}) by executing some policy;

- **1** Sample (s_t, a_t, r_t, s_{t+1}) by executing some policy;
- ② Set $Q_{k+1}(s_t, a_t) \leftarrow (1 \alpha)Q_k(s_t, a_t) + \alpha [r_t + \gamma \max_a Q_k(s_{t+1}, a)];$
- **3** Set $k \leftarrow k + 1$; Repeat until convergence;

- **1** Sample (s_t, a_t, r_t, s_{t+1}) by executing some policy;
- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - ullet Only updates Q-function (no need to use v_k)

- **1** Sample (s_t, a_t, r_t, s_{t+1}) by executing some policy;
- ② Set $Q_{k+1}(s_t, a_t) \leftarrow (1 \alpha)Q_k(s_t, a_t) + \alpha[r_t + \gamma \max_a Q_k(s_{t+1}, a)];$
- **3** Set $k \leftarrow k + 1$; Repeat until convergence;
 - ullet Only updates Q-function (no need to use v_k)
 - Q) How to obtain a policy from Q-function?

$$\max_{\boldsymbol{a} \in A} \bigg[r(\boldsymbol{s}, \boldsymbol{a}) + \gamma \sum_{\boldsymbol{s}' \in S} p(\boldsymbol{s}' | \boldsymbol{s}, \boldsymbol{a}) v(\boldsymbol{s}') \bigg].$$

Very simple

- Very simple
- Off-policy:
 Can use any policy to generate samples

- Very simple
- Off-policy:
 Can use any policy to generate samples
- Some useful theory: Converges when all (s,a)'s are visited infinitely many times

• Large-scale problems?

- Large-scale problems?
- Correlation between samples

- Large-scale problems?
- Correlation between samples
- Overestimation: Max-operator

- Large-scale problems?
- Correlation between samples
- Overestimation: Max-operator
- Exploration issue: ϵ -greedy

Approximate Q-Learning

Scalability Issue

"Curse of dimensionality"

- Rapid increase of the required computation and memory storage as the size of problems increases
- Suboptimal (approximation) methods with a reasonable balance between convenient implementation and adequate performance?

Two Approximation Approaches

1 Approximation in value space (parameters: θ)

$$v(s) \approx v_{\theta}(s)$$
 or $Q(s, a) \approx Q_{\theta}(s, a)$

Goal: Learning θ so that the approximate value function is close to the optimal one.

2 Approximation in policy space (parameters: θ)

$$\pi(s) pprox \pi_{ heta}(s)$$
 or $\pi(a|s) pprox \pi_{ heta}(a|s)$

Goal: Learning θ so that the approximate policy is close to the optimal one.

Approximation Architectures

- Linear (and nonlinear) feature-based architecture Two stages:
 - **1** feature extraction $s \to \phi_{\ell}(s)$, and
 - 2 linear mapping $\phi_\ell(s) \to \sum_\ell \theta_\ell \phi_\ell(s) \approx v(s)$
- Neural network-based architecture End-to-end

Feature-based vs End-to-end

Example I: Piecewise Constant Approximation

- Partition the state space into S_1, \ldots, S_m
- Define the ℓ th feature be defined by membership to S_{ℓ} :

$$\phi_{\ell}(s) := \left\{ egin{array}{ll} 1 & ext{if } s \in S_{\ell} \ 0 & ext{if } s
otin S_{\ell}. \end{array}
ight.$$

Consider the architecture:

$$v_{ heta}(oldsymbol{s}) := \sum_{\ell=1}^m heta_\ell \phi_\ell(oldsymbol{s})$$

Example II: Polynomial Approximation

- Suppose $S:=\{s_1,\ldots,s_n\}$.
- Let

$$\phi_0(s) = 1$$
, $\phi_k(s) = s_k$, $\phi_{k\ell}(s) = s_k s_\ell$, $k, \ell = 1, \dots, n$.

Linear architecture:

$$v_{\theta}(s) := \theta_0 + \sum_{k=1}^n \theta_k s_k + \sum_{k=1}^n \sum_{k=1}^n \theta_{k\ell} s_k s_\ell.$$

Example III: Feature Extraction from Data

- In many cases, we do not have enough prior knowledge to handcraft features.
- Suppose with some preliminary calculation using data, we have identified some suitable states s_ℓ that can serve as "anchors" for the construction of Gaussian basis functions of the form

$$\phi_{\ell}(\boldsymbol{s}) := e^{-\frac{\|\boldsymbol{s} - \boldsymbol{s}_{\ell}\|^2}{2\sigma^2}}$$

General Version of Model-Free PI

ullet Assume a nonlinear architecture: $Q(oldsymbol{s},oldsymbol{a})pprox Q_{ heta}(oldsymbol{s},oldsymbol{a})$

General Version of Model-Free PI

- ullet Assume a nonlinear architecture: $Q(oldsymbol{s},oldsymbol{a})pprox Q_{ heta}(oldsymbol{s},oldsymbol{a})$
- Idea:
 - (Approximate policy evaluation) Evaluate approximate Q-function Q^π_θ of current policy π

General Version of Model-Free PI

- ullet Assume a nonlinear architecture: $Q(oldsymbol{s},oldsymbol{a})pprox Q_{ heta}(oldsymbol{s},oldsymbol{a})$
- Idea:
 - (Approximate policy evaluation) Evaluate approximate Q-function Q^π_θ of current policy π
 - ② (Policy improvement)

 Generate improved policy π' :

$$\pi'(s) \in \operatorname*{arg\,max}_{oldsymbol{a} \in A} Q^\pi_{ heta}(oldsymbol{x}, oldsymbol{a})$$

Approximate Policy Evaluation in General Cases

- ullet Given a pair (s^i, a^i) , using the policy π , collect M sample trajectories starting from s^i with initial action a^i .
- \bullet Estimate $Q^{\pi}(\boldsymbol{s}^i, \boldsymbol{a}^i)$ as the sample mean $y^i.$
- Determine θ using a least-squares fit:

$$\theta \in \operatorname*{arg\,min}_{\theta} \sum_{i=1}^{N} (Q^{\pi}_{\theta}(\boldsymbol{s}^{i}, \boldsymbol{a}^{i}) - y^{i})^{2}$$

Q) What's the issue in this approach?

Several Issues

- Architectural issue
- Exploration issue
- Convergence issue

Q-Learning for Policy Evaluation

- **1** Initialize $Q \equiv 0$; Set $t \leftarrow 0$;
- ② Given state s_t in stage t, choose an arbitrary action a_t and simulate the system up to stage t+1;
- § Using the sample (s_t, a_t, r_t, s_{t+1}) , update the Q-function at (s_t, a_t) as

$$Q(x_t, a_t) \leftarrow Q(x_t, a_t) + \alpha_t \Big[r_t + \gamma Q(s_{t+1}, \pi(s_{t+1})) - Q(s_t, a_t) \Big];$$

- Set $t \leftarrow t + 1$ and go to Step 2;
- Idea: Use Q-learning for approximate policy evaluation
- Challenge: Step 3?

Value Function Approximation via Stochastic (Incremental) Gradient Descent

Approximate policy evaluation:

$$\theta \in \operatorname*{arg\,min}_{\theta} J(\theta) := \frac{1}{2} \mathbb{E}[(Q_{\theta}^{\pi}(s_t, a_t) - \underbrace{y_t}_{\text{estimate of } Q^{\pi}(s_t, a_t)})^2]$$

Value Function Approximation via Stochastic (Incremental) Gradient Descent

Approximate policy evaluation:

$$\theta \in \operatorname*{arg\,min}_{\theta} J(\theta) := \frac{1}{2} \mathbb{E}[(Q_{\theta}^{\pi}(s_t, a_t) - \underbrace{y_t}_{\text{estimate of } Q^{\pi}(s_t, a_t)})^2]$$

Stochastic gradient using a single sample:

$$g_t := (Q_\theta^{\pi}(s_t, a_t) - y_t) \nabla_\theta Q_\theta^{\pi}(s_t, a_t)$$

Note that

$$\mathbb{E}[g_t] = \nabla J(\theta).$$

Value Function Approximation via Stochastic (Incremental) Gradient Descent

Approximate policy evaluation:

$$\theta \in \operatorname*{arg\,min}_{\theta} J(\theta) := \frac{1}{2} \mathbb{E}[(Q_{\theta}^{\pi}(s_t, a_t) - \underbrace{y_t}_{\text{estimate of } Q^{\pi}(s_t, a_t)})^2]$$

Stochastic gradient using a single sample:

$$g_t := (Q_\theta^{\pi}(s_t, a_t) - y_t) \nabla_\theta Q_\theta^{\pi}(s_t, a_t)$$

Note that

$$\mathbb{E}[g_t] = \nabla J(\theta).$$

Update:

$$\theta \leftarrow \theta + \alpha_t (Q_{\theta}^{\pi}(s_t, a_t) - y_t) \nabla_{\theta} Q_{\theta}^{\pi}(s_t, a_t)$$

This gives an inexact policy evaluation.

Optimistic PI with Parametric Q-Function Approximation

Idea: Using Q-learning in approximate policy evaluation step

① Given state s_t in stage t, choose an arbitrary action a_t and simulate the system up to stage t+1 to collect

$$(s_t, a_t, r_t, s_{t+1})$$

② (Policy improvement) Generate the action a_{t+1} as

$$a_{t+1} \in \operatorname*{arg\,max}_{\boldsymbol{a} \in A} Q_{\theta}(s_{t+1}, \boldsymbol{a})$$

To enhance exploration, one can use an ϵ -greedy selection.

(Inexact policy evaluation) Update the parameters as

$$\theta \leftarrow \theta + \alpha_t \nabla_{\theta} Q_{\theta}(s_t, a_t) (Q_{\theta}(s_t, a_t) - y_t),$$

where target y_t is a sample-based estimate of $Q_{\theta}(s_t, a_t)$

SARSA

With single-step approximation, the target can be chosen as

$$y_t := r_t + \gamma Q_\theta(s_{t+1}, a_{t+1}).$$

- This extreme (single-sample) optimistic PI algorithm is often called SARSA (State-Action-Reward-State-Action).
- The behavior of this algorithm is very complex: its theoretical convergence properties are unclear and there are no associated error bounds in the literature.
- The algorithm is vulnerable to bias (like TD(0))
- You should be very careful when using SARSA with function approximation although it is very convenient to implement!
- We will learn a batch-based idea using a buffer in DQN.

Example: Mountain Car

- Goal: to drive a car up a steep mountain road
- Difficulty: gravity is stronger than the car's engine The only solution is to first move away from the goal and up the opposite slope on the left.
- Reward: -1 on all time steps until the car moves past its goal position at the top of the mountain, which ends the episode.
- Actions (acceleration): full throttle forward (+1), full throttle reverse (-1), and zero throttle (0)
- Function approximation using a regular grid

Mountain Car: Cost-to-go learning results $(-\max_a Q_{\theta}(s, a))$

Each episode started from a random position in $\left[-0.6, -0.4\right)$ and zero velocity.

n-Step Sarsa: On-Policy Control

ullet With n-step approximation, the target can be chosen as

$$y_t := r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n Q_{\theta}(s_{t+n}, a_{t+n}).$$

• Here, the sample data are generated using the policy

$$\pi(s) \in \operatorname*{arg\,max}_{oldsymbol{a} \in A} Q_{ heta}(s, oldsymbol{a})$$

because y_t is a target for Q^{π} . So this is an on-policy method!

n-Step Sarsa: On-Policy Control

ullet With n-step approximation, the target can be chosen as

$$y_t := r_t + \gamma r_{t+1} + \dots + \gamma^{n-1} r_{t+n-1} + \gamma^n Q_{\theta}(s_{t+n}, a_{t+n}).$$

• Here, the sample data are generated using the policy

$$\pi(s) \in \operatorname*{arg\,max}_{oldsymbol{a} \in A} Q_{ heta}(s, oldsymbol{a})$$

because y_t is a target for Q^{π} . So this is an on-policy method!

• Update the parameters as before:

$$\theta \leftarrow \theta + \alpha_t \nabla_\theta Q_\theta(s_t, a_t) (Q_\theta(s_t, a_t) - y_t)$$

More robust than single-step off-policy Sarsa.

Off-Policy Method?

Q-Learning (tabular):

Off-Policy Method?

Q-Learning (tabular):

Initialize Q;

1 Take some action and observe (s, a, s', r);

$$\textbf{ Set } Q(s,a) \leftarrow (1-\alpha) \underbrace{ \underbrace{Q(s,a)}_{\text{old estimate}}}_{\text{ old estimate}} + \alpha \underbrace{ \begin{bmatrix} r + \gamma \max_{a'} Q(s',a') \end{bmatrix}}_{\text{new estimate}};$$

Repeat until convergence;

Off-Policy Method?

Q-Learning (tabular):

Initialize Q;

1 Take some action and observe (s, a, s', r);

$$\textbf{ Set } Q(s,a) \leftarrow (1-\alpha) \underbrace{ \underbrace{Q(s,a)}_{\text{old estimate}}} + \alpha \underbrace{ \begin{bmatrix} r + \gamma \max_{a'} Q(s',a') \end{bmatrix}}_{\text{new estimate}};$$

Repeat until convergence;

Note:

- (s, a, s') gives information about transition p(s'|s, a)
- (s, a, r) gives information about reward r(s, a)

Approximate Q-Learning

For large-scale problems

Approximate Q-Learning

For large-scale problems

 \bullet Parameterize Q-function: $Q_{\theta}(s,a)$

Approximate Q-Learning

For large-scale problems

 \bullet Parameterize Q-function: $Q_{\theta}(s,a)$

Initialize θ ;

- Collect dataset $\{(s_i, a_i, s_i', r_i)\}$ using some policy;
- ② For i = 1:N

• Set
$$\underbrace{y_i}_{\text{target}} \leftarrow \underbrace{r_i + \gamma \max_a Q_{\phi}(s_i', a)}_{\text{new estimate}}$$
;

$$\mathbf{Set} \ \phi \leftarrow \arg\min_{\phi} \underbrace{\frac{1}{2} \sum_{i} \|Q_{\phi}(s_{i}, a_{i}) - y_{i}\|^{2}}_{};$$

loss function

Repeat until sufficient improvement;

Approximate Q-Learning (stochastic gradient version)

Initialize θ ;

- **1** Take some action and observe (s_i, a_i, s'_i, r_i) ;
- $2 \text{ Set } \underbrace{y_i}_{\text{target}} \leftarrow \underbrace{r_i + \gamma \max_a Q_{\theta}(s_i', a)}_{\text{new estimate}};$
- $\underbrace{ \text{Set } \theta \leftarrow \theta \underbrace{\alpha}_{\substack{\text{stepsize} \\ \text{converge} }} \underbrace{\nabla_{\theta}Q_{\theta}(Q_{\theta}(s_i,a_i) y_i)}_{\text{stochastic gradient}} ;$
- Repeat until sufficient improvement;
- This is an off-policy algorithm
- Can use mini-batch and experience replay (DQN)

ullet Unclear how to parameterize Q-function

Unclear how to parameterize Q-function
 (ex) linear parametrization (unclear feature selection):

$$Q_{\phi}(s,a) := \underbrace{\beta(s,a)^{\top}}_{\text{feature}} \phi$$

Unclear how to parameterize Q-function
 (ex) linear parametrization (unclear feature selection):

$$Q_{\phi}(s, a) := \underbrace{\beta(s, a)^{\top}}_{\text{feature}} \phi$$

• Correlation between samples $((s_t, a_t, s_{t+1}, r_t) \text{ and } (s_{t+1}, a_{t+1}, s_{t+2}, r_{t+1}))$

Unclear how to parameterize Q-function
 (ex) linear parametrization (unclear feature selection):

$$Q_{\phi}(s, a) := \underbrace{\beta(s, a)^{\top}}_{\text{feature}} \phi$$

- Correlation between samples $((s_t, a_t, s_{t+1}, r_t)$ and $(s_{t+1}, a_{t+1}, s_{t+2}, r_{t+1}))$
- Poor convergence property