

Practices to enable the geophysical research spectrum: from fundamentals to applications

Seogi Kang, Lindsey Heagy, Rowan Cockett, Dominique Fournier, Michael Mitchell, Brendan Smithyman, Thibaut Astic, Guðni Karl Rosenkjær and the SimPEG Team

Collaboration in geophysics: SimPEG

Why?

- Want consistency between geophysical applications
- Want to work interactively and collaboratively
- Moving to large scale, integrated inversions
- Few well documented open source choices

How?

- Everything in Python
- Provide documentation, test everything
- Make everything modular and extensible
- Provide an extensible framework and a toolbox

What?

- Interactive finite volume simulation
- Forward and inversion frameworks
- Building applications: DC, IP, EM, MT, Flow, Seismic

Things!

- Unit testing, continuous integrations
- Version control, documentation
- Community

Synthetic Model

- Diamond bearing Kimberlite pipe
- Variable physical properties

 Synthetic model based on Tli Kwi Cho (TKC) complex in Northern Canada

UTM Northing (m)

	Conductivity	Susceptibility	Density	Velocity
Host	V. Low	Low	V. Low	Mod
Till	Mod	High	Mod	L. Mod
PK	High	Low	Low	L. Mod
HK	Mod	None	Low	V. Low
VK	Mod	None	High	High

Fundamentals: Physics

• Electrostatic Maxwell's equations:

$$ec{j} = \sigma \vec{e}$$
 $ec{e} = -\nabla \phi$
 $\nabla \cdot \vec{j} = -\vec{j}_s$

 \vec{i} : Current density (A/m²) \vec{e} : Electric field (V/m)

 \tilde{i}_s : current source (A/m²) σ : Conductivity (S/m)

Acoustic wave equation:

$$\left(\nabla \cdot \frac{1}{\rho} \nabla + \frac{\omega^2}{c^2 \rho}\right) \mathbf{u} = -\mathbf{s}$$

Multiple geophysical methods

DC resistivity

Magnetotellurics (MT)

Interpretation

Summary

Identify and build robust, modular pieces Define a consistent, extensible framework Work with people from other disciplines

