Homework #1

1 Caratteristiche dell'homework

1.1 Obiettivo

L'obiettivo di questa esperienza è prendere confidenza con i concetti di calcolo di DFT, FFT e della stima dello spettro di energia attraverso il confronto di due brani con caratteristiche differenti con durata superiore a 20 secondi.

1.2 Software utilizzato

- 1. Matlab R2024b;
- 2. Libreria di Matlab per la FFT;
- 3. Brani scelti in formato wav.
 - Hans Zimmer, The Wormhole (brano classico);
 - Ozzy Osbourne, Crazy Train (Brano rock).

1.3 Algoritmi utilizzati

- 1. DFT con algoritmo della decimazione del tempo;
- 2. FFT (da libreria).

2 The Wormhole

Il file wav contenente questo brano ha una frequenza di campionamento pari a $f_c=44100\ Hz$. Per il teorema del campionamento sono necessari $N=2^{16}$ campioni per avere una corretta approssimazione attraverso l'algoritmo utilizzato per la DFT. Per consistenza, verrà utilizzato lo stesso numero di campioni anche per il calcolo della FFT.

2.1 Confronto tra DFT e FFT su brano intero

Attraverso l'esecuzione della sezione "Brano Classico" sullo script Matlab, si ottengono i seguenti grafici, dove il colore blu indica ciò che è stato ottenuto dalla

DFT e il colore rosso indica ciò che è stato ottenuto dalla FFT.

Si noti come il primo grafico definisce il risultato della DFT e FFT rispetto alla frequenza normalizzata, mentre il secondo definisce lo spettro risultante rispettivamente dalla DFT e dalla FFT sempre rispetto alla frequenza normalizzata.

2.1.1 Qualità dell'implementazione dell'algoritmo DFT

Attraverso un'osservazione qualitativa, si nota come non è presente alcun valore di colore blu. Ciò accade perché i valori ottenuti dalla DFT e dalla FFT sono così simili da avere differenze trascurabili, provando la correttezza dell'algoritmo implementato, che ci si aspetta risulti uguale rispetto alla FFT.

2.1.2 Tempo di esecuzione

Una differenza sostanziale è definita dal tempo utilizzato per l'esecuzione della DFT, che risulta molto più lungo rispetto a quello della FFT. Questo è un risultato atteso, poiché l'algoritmo implementato non è ottimizzato, mentre la FFT da libreria sì.

2.2 Analisi di finestre temporali specifiche

In questa sezione verrà utilizzata esclusivamente la FFT, per questioni di tempo di esecuzione. Il brano intero viene suddiviso in varie sotto-finestre temporali, ognuna di durata $T_0=5\ s$ e di cui si analizzeranno solo alcune.

2.2.1 Crescendo

La prima sotto-finestra temporale è definita sull'intervallo $[15,20]\ s$. In questa parte di brano è presente un suono che varia ripetutamente e ampiamente su determinate frequenze attraverso un crescendo. Si ottiene uno spettro meno concentrato e con valori più bassi, come ci si aspetta, data l'ampia variazione di frequenza.

2.2.2 Piccola variazione

La seconda sotto-finestra temporale è definita sull'intervallo $[30,35]\ s$. In questa parte di brano è presente la ripetizione di un suono che varia leggermente rispetto a una determinata frequenza. Si ottiene uno spettro più concentrato e con valori più alti, come ci si aspetta, data la piccola variazione di frequenza.

3 Crazy Train

Il file wav contenente questo brano ha una frequenza di campionamento pari a $f_c=44100\ Hz$. Per il teorema del campionamento sono necessari $N=2^{16}$ campioni per avere una corretta approssimazione attraverso l'algoritmo utilizzato per la DFT. Per consistenza, verrà utilizzato lo stesso numero di campioni anche per il calcolo della FFT.

3.1 Confronto tra DFT e FFT su brano intero

Attraverso l'esecuzione della sezione "Brano Rock" sullo script Matlab, si ottengono i seguenti grafici, dove il colore blu indica ciò che è stato ottenuto dalla DFT e il colore rosso indica ciò che è stato ottenuto dalla FFT.

Si noti come il primo grafico definisce il risultato della DFT e FFT rispetto alla frequenza normalizzata, mentre il secondo definisce lo spettro risultante rispettivamente dalla DFT e dalla FFT sempre rispetto alla frequenza normalizzata.

3.1.1 Qualità dell'implementazione dell'algoritmo DFT

Attraverso un'osservazione qualitativa, si nota come non è presente alcun valore di colore blu. Ciò accade perché i valori ottenuti dalla DFT e dalla FFT sono così simili da avere differenze trascurabili, provando la correttezza dell'algoritmo implementato, che ci si aspetta risulti uguale rispetto alla FFT.

3.1.2 Tempo di esecuzione

Una differenza sostanziale è definita dal tempo utilizzato per l'esecuzione della DFT, che risulta molto più lungo rispetto a quello della FFT. Questo è un risultato atteso, poiché l'algoritmo implementato non è ottimizzato, mentre la FFT da libreria sì.

3.2 Analisi di finestre temporali specifiche

In questa sezione verrà utilizzata esclusivamente la FFT, per questioni di tempo di esecuzione. Il brano intero viene suddiviso in varie sotto-finestre temporali, ognuna di durata $T_0=5\ s$ e di cui si analizzeranno solo alcune.

3.2.1 Grande variazione di frequenza

La prima sotto-finestra temporale è definita sull'intervallo $[10,15]\ s$. In questa parte di brano è presente la ripetizione di un suono che varia ampiamente su determinate frequenze attraverso delle oscillazioni da una frequenza a un'altra. Si ottiene uno spettro meno concentrato e con valori più bassi, come ci si aspetta, data l'ampia variazione di frequenza da un valore di frequenza ad un altro.

3.2.2 Piccola variazione di frequenza

La seconda sotto-finestra temporale è definita sull'intervallo $[35,40]\ s$. In questa parte di brano è presente la ripetizione di una serie di note che varia leggermente rispetto a determinate frequenze. Si ottiene uno spettro più concentrato e con valori più alti, come ci si aspetta, data la piccola variazione di frequenza.

3.2.3 Con la voce

La terza sotto-finestra temporale è definita sull'intervallo $[70,75]\ s$. In questa parte di brano è presente la voce del cantante (che varia ampiamente) unita alla musica (che ripete le stesse note). Si ottiene uno spettro concentrato su vari punti, dove i valori più alti indicano la musica (che è sempre presente), mentre i picchi più bassi indicano la voce del cantante, che varia rispetto alla frequenza.

4 Confronto tra i due brani

I due brani hanno uno spettro completamente diverso, come ci si aspetta, dato che le tipologie di brano sono diametralmente opposte dal punto di vista degli strumenti musicali e dal ritmo utilizzati.

Si noti anche come la distribuzione delle frequenze sia diversa:

- nel brano classico sono molto concentrate;
- nel brano rock sono più distribuite.

Ciò avviene per l'utilizzo di strumenti musicali variegati nel brano rock, che contribuiscono a diversi range di frequenze nel grafico, mentre nel brano classico si ha una quantità di strumenti minore che permette di avere range più costanti di frequenze.