UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA

EMat Escuela de Matemática

MA-0501 Análisis Numérico I TAREA 3

Fecha de entrega: Viernes 08 de noviembre, 11:59pm. Instrucciones:

- La entrega de la tarea debe realizarse en la plataforma de Mediación Virtual, antes de la fecha y hora establecida.
- Debe subir dos archivos:
 - Un archivo en formato pdf con la resolución de los ejercicios y la discusión de los resultados. El documento debe llamarse ApellidosNombre.pdf
 - Un archivo MATLAB (ApellidosNombre.m o ApellidosNombre.mlx) con todos los códigos implementados, debidamente documentados y listos para ser ejecutados.
- Recuerde que *una imagen dice más que mil palabras*. Al mostrar resultados, presente gráficos claros debidamente rotulados, con escalas y leyendas adecuadas.
- El trabajo se puede realizar individualmente o en parejas. Si aplica, debe citar cualquier colaboración o referencia utilizada. En caso de ser en parejas, incluir en el nombre de los archivos Apellido1Nombre1_Apellido2Nombre2.m. Basta subir una entrega por pareja.
- Se evaluará sobre un total de 100 puntos (de 115 posibles); en caso de obtener un mayor puntaje, dichos puntos no serán acumulables ni transferibles.

Desarrollo

1. [MATLAB] Considere los siguientes tres algoritmos para obtener la factorización QR de una matriz A:

Data: Matriz $A \in \mathbb{R}^{m \times n}$

Result: Matriz unitaria $Q \in \mathbb{R}^{m \times n}$ y triangular superior $R \in \mathbb{R}^{n \times n}$ tales que A = QR

for j = 1 : n do $| \mathbf{v}_j = \mathbf{a}_j;$

$$egin{aligned} oldsymbol{v}_j &= oldsymbol{a}_j; \ \mathbf{for} \ i &= 1: j-1 \ \mathbf{do} \ egin{aligned} &r_{ij} &= oldsymbol{q}_i^T oldsymbol{a}_j; \ oldsymbol{v}_j &= oldsymbol{v}_j - r_{ij} oldsymbol{q}_i; \ \mathbf{end} \ &r_{jj} &= \|oldsymbol{v}_j\|_2; \ oldsymbol{q}_j &= oldsymbol{v}_j/r_{jj}; \ \mathbf{end} \end{aligned}$$

Algoritmo 1: Ortogonalización de Gram-Schmidt (inestable)

```
Data: Matriz A \in \mathbb{R}^{m \times n}

Result: Matriz unitaria Q \in \mathbb{R}^{m \times n} y triangular superior R \in \mathbb{R}^{n \times n} tales que A = QR V = A;

for i = 1 : n do
\begin{vmatrix} r_{ii} &= \|\mathbf{v}_i\|_2; \\ \mathbf{q}_i &= \mathbf{v}_i/r_{ii}; \\ \mathbf{for} & j &= i + 1 : n \text{ do} \\ & | r_{ij} &= \mathbf{q}_i^T \mathbf{v}_j; \\ & | \mathbf{v}_j &= \mathbf{v}_j - r_{ij} \mathbf{q}_i; \\ & \text{end} \end{vmatrix}
end
Algoritmo 2: Ortogonalización de Gram-Schmidt (estable)
```

```
Data: Matriz A \in \mathbb{R}^{m \times n}

Result: Matriz unitaria Q \in \mathbb{R}^{m \times m} y triangular superior R \in \mathbb{R}^{m \times n} tales que A = QR

R = A;

M = I;

for j = 1 : n do

\begin{vmatrix} \boldsymbol{x} = R_{j:m,j} & \text{wector de valores entre filas } j \text{ y } m \text{ de la columna } j;

\boldsymbol{v}_j = \text{sign}(x_1) \|\boldsymbol{x}\|_2 \boldsymbol{e}_1 + \boldsymbol{x};

\boldsymbol{v}_j = \boldsymbol{v}_j / \|\boldsymbol{v}_j\|_2;

R_{j:m,j:n} = R_{j:m,j:n} - 2\boldsymbol{v}_j \left(\boldsymbol{v}_j^T R_{j:m,j:n}\right);

M_{j:m,:} = M_{j:m,:} - 2\boldsymbol{v}_j \left(\boldsymbol{v}_j^T M_{j:m,:}\right);

end

Q = M^T;
```

Algoritmo 3: Triangularización de Householder

- a) (5 puntos) Implemente una función [Q,R] = qr1(A) que implemente el Algoritmo 1.
- b) (5 puntos) Implemente una función [Q,R] = qr2(A) que implemente el Algoritmo 2.
- c) (5 puntos) Implemente una función [Q,R] = qr3(A) que implemente el Algoritmo 3.
- d) (4 puntos) Tome m=n=20. Genere una matriz aleatoria A=rand(m). Calcule las tres factorizaciones QR con las tres funciones qr1, qr2, qr3. Para cada caso, calcule $||A-QR||_2$, $||QQ^T-I||_2$. ¿Se cumple que A=QR? ¿Se cumple que Q es ortogonal? Determine si algún algoritmo es mejor que otro.
- e) (4 puntos) Tome ahora m = n = 20. Defina A = hilb(m) como la matriz de Hilbert de tamaño $m \times m$. Repita el inciso anterior. Determine si algún algoritmo es *mejor* que otro. Compare con el algoritmo qr de MATLAB.
- 2. [MATLAB] En esta pregunta se deben usar los comandos de factorización propios de MATLAB (qr(A), lu(A), svd(A), chol(A)). Defina m=12, x = ones(m,1), A = hilb(m), b = A*x.

Buscamos resolver el sistema de ecuaciones Ax = b mediante estas factorizaciones. Note que la solución exacta es $x = [1, ..., 1]^T$ y denotamos por \hat{x} la solución aproximada numéricamente.

- a) (2 puntos) Calcule el número de condición de A. ¿Qué nos indica este número? Sugerencia: utilice el comando cond(A).
- b) (3 puntos) Calcule la factorización PA = LU y resuelva el sistema¹. Determine $||x \hat{x}||_2$.
- c) (3 puntos) Calcule la factorización A = QR y resuelva el sistema. Determine $||x \hat{x}||_2$.
- d) (3 puntos) Calcule la factorización $A = LL^T$ y resuelva el sistema. Determine $||x \hat{x}||_2$.
- e) (3 puntos) Calcule la factorización $A = USV^T$ y resuelva el sistema. Determine $||x \hat{x}||_2$.
- f) (1 punto) Determine si algún método brinda alguna solución aceptable en términos del error.
- g) (3 puntos) Utilizando la factorización en valores singulares de A, obtenga la aproximación de rango $\nu=9$ dada por $A_{\nu}=\sum_{i=1}^{\nu}\sigma_{i}u_{i}v_{i}^{T}$. Resuelva el sistema $A_{\nu}x=b$ y determine $\|x-\hat{x}\|_{2}$. Justifique sus resultados.
- 3. Para graficar una función en dos variables z = f(x, y), se puede generar una malla (matriz) de puntos xx, yy en las cuales se evalúa f. De esta forma, zz = f(xx, yy) es una matriz del mismo tamaño de xx y yy.
 - a) (2 puntos) [MATLAB] Defina los vectores

$$x = linspace(0,1,100), y = linspace(0,2,200).$$

La malla de puntos equidistantes en el dominio $D = [0,1] \times [0,2]$ se genera mediante el comando [xx,yy]=meshgrid(x,y) (note que xx y yy son matrices). Grafique la función

$$f(x,y) = \sin(2\pi(x+y))\sin(\pi(x-y))$$

en esta malla del dominio D. Sugerencia: utilice el comando surf(xx,yy,f(xx,yy)) y revise opciones de visualización como view, colorbar, shading.

- b) (4 puntos) [MATLAB] Defina zz = f(xx,yy), donde f es la función del inciso anterior. Calcule la descomposición en valores singulares de zz. Mediante el comando subplot, grafique en una misma ventana las mejores aproximaciones de rango 1,2,3 y 4. En una nueva ventana, grafique el error absoluto para cada una de las cuatro aproximaciones. ¿Qué observa?
- c) (2 puntos) [MATLAB] ¿Cuáles son los valores singulares y el rango de zz?

¹Para resolver sistemas triangulares superiores o inferiores Ly = b o Uz = b, basta ejecutar y=L\b o z=U\b, pues el comando \ chequea si las matrices son triangulares y realiza sustitución hacia adelante o atrás. De esta forma, realmente no se está invirtiendo ninguna matriz.

d) (4 puntos) Demuestre (a mano) que la matriz tiene el rango y los valores singulares correspondientes. Sugerencia: recuerde fórmulas para $\sin(x \pm y)$.

4. Sea

$$p(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}, \ x \in [0, 1].$$

Considere el problema de minimizar

$$E(c_0, \dots, c_{n-1}) := ||f - p||_2^2 = \int_0^1 |f(x) - p(x)|^2 dx \to \min.$$

- (a) (5 puntos) Obtenga las derivadas parciales $\partial E(c_0, \ldots, c_{n-1})/\partial c_k$ ($k = 0, \ldots, n-1$). Para obtener el punto crítico, exprese el resultado como un sistema de n ecuaciones con n incógnitas, $M\mathbf{c} = \mathbf{b}$. ¿Qué problema tiene este sistema?
- (b) (5 puntos) [MATLAB] Resuelva el sistema correspondiente para n = 10, $f(x) = \cos(4\pi x)$. Dibuje en un mismo gráfico f y p. ¿Cuál es el valor de $||f p||_2^2$? Sugerencia: puede utilizar el comando integral(f,0,1).
- (c) (5 puntos) [MATLAB] Para obtener una mejor aproximación, considere la base de polinomios ortogonales de Legendre $\{\phi_j\}_{j\geq 0}$. La proyección de f sobre el espacio de polinomios de grado n-1 viene dada por

$$p(x) = \beta_0 + \beta_1 \phi_1(x) + \dots + \beta_{n-1} \phi_{n-1}(x),$$

donde

$$\beta_k = \frac{\langle f, \phi_k \rangle}{\langle \phi_k, \phi_k \rangle}.$$

Calcule p para n=10, $f(x)=\cos(4\pi x)$. Compare con los resultados del apartado anterior. Dibuje en la misma gráfica la nueva aproximación y calcule la 2-norma del error.

- 5. Si $u, v \in \mathbb{R}^m$, la matriz $A = I + uv^T$ es llamada perturbación de rango uno de la identidad.
 - (a) (4 puntos) Muestre que si A es invertible, entonces su inversa tiene la forma $A^{-1} = I + \alpha u v^T$ con $\alpha \in \mathbb{R}$. Encuentre el valor de α explícitamente.
 - (b) (4 puntos) ¿Para qué valores de \boldsymbol{u} y \boldsymbol{v} es A singular? En este caso, determine el núcleo de A.
- 6. (6 puntos) Dada $A = U\Sigma V^T \in \mathbb{R}^{m\times n}$ una descomposición en valores singulares de A, defina su pseudoinversa como $A^+ = V\Sigma^+U^T$, donde Σ^+ se obtiene de Σ al invertir sus entradas no nulas; esto es $(\Sigma^+)_{ii} = 1/\sigma_{ii}$ si $\sigma_{ii} > 0$. Demuestre que si \boldsymbol{x} está en el espacio fila de A y $\boldsymbol{y} = A\boldsymbol{x}$ entonces $\boldsymbol{x} = A^+\boldsymbol{y}$.

7. Considere un conjunto de mediciones $\{(x_i, y_i)\}_{i=1}^m$. En este ejercicio deseamos resolver el problema de mínimos cuadrados, donde la función buscada $f(x, \mathbf{c})$ no depende linealmente de los coeficientes $\mathbf{c} = [c_1, \dots, c_n]^T \in \mathbb{R}^n$ (en clase analizaremos el caso donde f es un polinomio). De esta forma, deseamos hallar \mathbf{c} tal que

$$\sum_{i=1}^m |f(x_i, \boldsymbol{c}) - y_i|^2 \to \min.$$

Para x_i fijo y f con derivadas continuas (con respecto a c_1, \ldots, c_n), considere la aproximación de primer orden con centro $\mathbf{c}^{(k)}$ dada por

$$f(x_i, \mathbf{c}) \approx f(x_i, \mathbf{c}^{(k)}) + J_f(x_i, \mathbf{c}^{(k)})(\mathbf{c} - \mathbf{c}^{(k)}),$$

donde

$$J_f(x_i, \boldsymbol{c}) = \nabla_{\boldsymbol{c}} f(x_i, \boldsymbol{c}) \in \mathbb{R}^{1 \times n}$$

es el Jacobiano de f con derivadas parciales $\frac{\partial f}{\partial c_i}$ evaluado en x_i .

De esta forma, deseamos que

$$J_f(x_i, \boldsymbol{c}^{(k)})(\boldsymbol{c} - \boldsymbol{c}^{(k)}) \approx y_i - f(x_i, \boldsymbol{c}^{(k)}) \ \forall \ i = 1, \dots, m.$$
 (1)

Defina la matriz $J(\mathbf{c}^{(k)}) \in \mathbb{R}^{m \times n}$ donde su fila i viene dada por $J_f(x_i, \mathbf{c}^{(k)})$. Defina además

$$\boldsymbol{y} := [y_1, \dots, y_m]^T \in \mathbb{R}^m,$$

$$\boldsymbol{g}(\boldsymbol{c}) := [f(x_1, \boldsymbol{c}), \dots, f(x_m, \boldsymbol{c})]^T \in \mathbb{R}^m.$$

Podemos escribir así las ecuaciones dadas en (1) de forma matricial. Si sabemos que $c^{(k)}$ es cercano a c, buscamos encontrar c tal que

$$J(\boldsymbol{c}^{(k)})(\boldsymbol{c} - \boldsymbol{c}^{(k)}) \approx \boldsymbol{y} - \boldsymbol{g}(\boldsymbol{c}^{(k)}). \tag{2}$$

Para tal efecto, consideramos el siguiente algoritmo:

- Considere $c^{(0)}$ dado.
- Para k = 0, 1, 2, ...
 - Obtenga $\Delta \boldsymbol{c}^{(k)}$ tal que $||J(\boldsymbol{c}^{(k)})\Delta \boldsymbol{c}^{(k)} (\boldsymbol{y} \boldsymbol{g}(\boldsymbol{c}^{(k)}))||_2 \rightarrow \min$ (por ejemplo, mediante el uso de las ecuaciones normales).
 - Defina $\boldsymbol{c}^{(k+1)} = \boldsymbol{c}^{(k)} + \Delta \boldsymbol{c}^{(k)}$.

En este ejercicio asumimos que f tiene la forma

$$f(x, \mathbf{c}) = c_1 e^{-c_2 x} \sin(c_3 x + c_4), x \in [0, 10],$$

donde $\mathbf{c} = [c_1, c_2, c_3, c_4]^T \in \mathbb{R}^4$ es el vector de coeficientes que debemos de encontrar (los cuales corresponden a la amplitud, el decaimiento, el periodo y la fase de f, respectivamente). Para obtener cotas del error, asumiremos que la solución exacta viene dada por el vector

$$c_{\text{exact}} = [1, 1/2, 2, 0]^T.$$

- (a) (1 punto) Utilice el comando load data para cargar los datos guardados en el archivo data. dat suministrado. Este archivo incluye los valores $\{(x_i, y_i)\}_{i=1}^m$ para m = 100, guardados en dos vectores \boldsymbol{x} y \boldsymbol{y} .
- (b) (5 puntos) Implemente un programa que ejecute el algoritmo descrito. Para detener la iteración, utilice la condición $\|\Delta \mathbf{c}^{(k)}\|_{\infty} < 10^{-8}$.
- (c) (4 puntos) Corra su programa para $\mathbf{c}_0 = [1.1; 0.4; 2.1; 0.2]$. Reporte el número de iteraciones requeridas. Grafique los nodos $\{x_i, y_i\}_{i=1}^m$, la función exacta $f(x, \mathbf{c}_{\text{exact}})$ y la función aproximada $f(x, \mathbf{c}^{(k)})$. Grafique además $\|\Delta \mathbf{c}^{(k)}\|_{\infty}$ en función de k. ¿Qué puede deducir sobre la velocidad de convergencia?
- (d) (2 puntos) Para el valor inicial del inciso anterior, grafique el número de condición $\kappa(J(\boldsymbol{c}^{(k)}))$ en función de k. ¿Qué nos indica este gráfico? Sugerencia: utilice la función cond(J).
- (e) (2 puntos) Ahora considere $\mathbf{c}_0 = [1, 1, 1, 1]^T$. ¿Qué ocurre en este caso?
- 8. Considere un conjunto de m+1 puntos $\{(x_i,y_i)\}_{i=0}^m$, donde

$$0 = x_0 < x_1 < \ldots < x_{m-1} < x_m = 1$$

es una partición del intervalo [0,1] (no necesariamente con puntos equidistantes). En particular asumiremos que $y_0 = y_m$ pues consideraremos funciones periódicas. Deseamos construir una función $s_2 : \mathbb{R} \to \mathbb{R}$ tal que:

- s_2 es periódica con periodo 1; esto es, $s_2(x+1) = s_2(x) \ \forall \ x \in \mathbb{R}$.
- $s_2 \in C^1(\mathbb{R})$; esto es, s_2 tiene derivada continua.
- s_2 interpola los valores del conjunto de puntos; esto es, $s_2(x_i) = y_i \ \forall \ i = 0, 1, \dots, m$.
- la restricción de s_2 a cada subintervalo $[x_i, x_{i+1}]$ (i = 0, 1, ..., m-1) es un polinomio cuadrático.

Es claro que basta construir s_2 en el intervalo [0,1] al ser periódica.

- (a) (7 puntos) Escriba un sistema de ecuaciones que permita determinar $s_2:[0,1]\to\mathbb{R}$ (Sugerencia: puede seguir la construcción de los splines cúbicos naturales del Capítulo 7; en este caso defina $\sigma_i=s_2'(x_i),\ i=0,1,\ldots,m$ y genere un sistema para encontrar los σ_i . Otra idea es escribir la restricción de $s_2(x)$ en cada subintervalo $[x_i,x_{i+1}]$ de la forma $s_2(x)=\alpha_i+\sigma_i(x-x_i)+\beta_i(x-x_i)^2$. Recuerde además que s_2 debe ser periódica).
- (b) [MATLAB] (4 puntos) Fije m=15 y tome $f(x):=cos(2\pi x)$. Defina $\boldsymbol{x}=[x_0,\ldots,x_m]^T$ utilizando valores aleatorios con la función rand y calcule $y_i=f(x_i) \ \forall \ i=0,1,\ldots,m$. Construya s_2 para este conjunto de datos. Grafique f, s_2 y los puntos $\{(x_i,y_i)\}_{i=0}^m$ en un mismo gráfico. Grafique además el error absoluto $|f(x)-s_2(x)|$ y estime $||f-s_2||_{L^{\infty}([0,1])}$.
- (c) [MATLAB] (3 puntos) Repita el ejercicio anterior para x = linspace(0,1,m+1). Compare con los resultados del inciso anterior y comente sus resultados.
- (d) [MATLAB] (6 puntos) Uno puede aproximar f'(x) mediante $s'_2(x)$. Utilizando s_2 tal como se calculó en el inciso anterior, escriba un programa que calcule $s'_2(x)$. Grafique f' y s'_2 en el mismo gráfico. Grafique además el error absoluto $|f'(x) s'_2(x)|$ y estime $||f' s'_2||_{L^{\infty}([0,1])}$. Note que s'_2 es diferenciable a trozos. ¿Cómo podría aproximar f' por una función s de manera tal que s'' sea continua?