Отчет по лабораторной работе №1

Операционные системы

Бельчуг Александр Константинович

Содержание

1	Цель работы	6
2	Задание	7
3		8 9 11 13
4	Выводы	15
5	Ответы на контрольные вопросы	16
6	Выполнение дополнительного задания	18

Список иллюстраций

5.1	OKHO VIRTUALDOX	Ŏ
3.2	Создание виртуальной машины	8
3.3	Указание объема памяти	8
3.4	Жесткий диск	8
3.5	Тип жесткого диска	9
3.6	Размер жесткого диска	9
3.7	Формат хранения жесткого диска	9
3.8	Выбор образа оптического диска	9
3.9	Выбранный образ оптического диска	9
3.10	Окно загрузчика	10
3.11	Интерфейс начальной конфигурации	10
3.12	Запуск терминала	10
3.13	Выбор языка интерфейса	10
3.14	Выбор раскладки клавиатуры	10
	Выбор места установки	10
	Создание аккаунта администратора	10
3.17	Запуск терминала	11
	Обновления	11
3.19	Установка tmux и mc	11
3.20	Установка программного обеспечения для автоматического обнов-	
	ления	11
3.21	Запуск таймера	11
3.22	Поиск файла	11
3.23	Изменение файла	12
	Перезагрузка виртуальной машины	12
	Запуск терминального мультиплексора	12
	Переключение на роль супер-пользователя	12
	Создание крнфигурационный файл	12
	Отредактируйте конфигурационный файл	12
3.29	Поиск файла, вход в тс	13
3.30	Редактирование файла	13
3.31	Перезагрузка виртуальной машины	13
	Переключение на роль супер-пользователя	13
3.33	Установка pandoc	13
3.34	Установка расширения pandoc-crossref	13
3.35	Установка texlive	14

6.1	Анализ последовательности загрузки системы	18
6.2	Поиск версии ядра	18
6.3	Поиск частоты процессора	18
6.4	Поиск модели процессора	18
6.5	Поиск объема доступной оперативной памяти	19
6.6	Поиск типа обнаруженного гипервизора	19
6.7	Поиск типа файловой системы корневого раздела	19
6.8	Последовательность монтирования файловых систем	19

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1. Создание виртуальной машины
- 2. Установка операционной системы
- 3. Работа с операционной системой после установки
- 4. Установка программного обеспечения для создания документации
- 5. Дополнительные задания

3 Выполнение лабораторной работы

3.1 Создание виртуальной машины

Virtualbox я устанавливала и настраивала при выполнении лабораторной работы в курсе "Архитектура компьютера и Операционные системы (раздел"Архитектура компьютера")", поэтому сразу открываю окно приложения (рис. fig. 3.1).

Окно Virtualbox

Рис. 3.1: Окно Virtualbox

Нажимая "создать", создаю новую виртуальную машину, указываю ее имя, путь к папке машины по умолчанию меня устраивает, выбираю тип ОС и версию (рис. fig. 3.2).

Создание виртуальной машины

Рис. 3.2: Создание виртуальной машины

Указываю объем основной памяти виртуальной машины размером 4096MБ (рис. fig. 3.3).

Указание объема памяти

Рис. 3.3: Указание объема памяти

Выбираю создание нового виртуального жесткого диска (рис. fig. 3.4).

Жесткий диск

Рис. 3.4: Жесткий диск

Задаю конфигурацию жесткого диска: загрузочеый VDI (рис. fig. 3.5).

Тип жесткого диска

Рис. 3.5: Тип жесткого диска

Задаю размер диска - 80 ГБ, оставляю расположение жесткого диска по умолчанию, т. к. работаю на собственной технике и значение по умолчанию меня устраивает (рис. fig. 3.6).

Размер жесткого диска

Рис. 3.6: Размер жесткого диска

Выбираю динамический виртуальный жесткого диска при указании формата хранения (рис. fig. 3.7).

Формат хранения жесткого диска

Рис. 3.7: Формат хранения жесткого диска

Выбираю в Virtualbox настройку своей виртуальной машины. Перехожу в "Носители", добавляю новый привод привод оптических дисков и выбираю скачанный образ операционной системы Fedora (рис. fig. 3.8).

Выбор образа оптического диска

Рис. 3.8: Выбор образа оптического диска

Скачанный образ ОС был успешно выбран (рис. fig. 3.9).

Выбранный образ оптического диска

Рис. 3.9: Выбранный образ оптического диска

3.2 Установка операционной системы

Запускаю созданную виртуальную машину для установки (рис. fig. 3.10).

Окно загрузчика

Рис. 3.10: Окно загрузчика

Вижу интерфейс начальной конфигурации. Нажимаю Enter для создания конфигурации по умолчанию, далее нажимаю Enter, чтобы выбрать в качестве модификатора кливишу Win (рис. fig. 3.11).

Интерфейс начальной конфигурации

Рис. 3.11: Интерфейс начальной конфигурации

Нажимаю Win+Enter для запуска терминала. В терминале запускаю liveinst (рис. fig. 3.12).

Запуск терминала

Рис. 3.12: Запуск терминала

Чтобы перейти к раскладке окон с табами, нажимаю Win+w. Выбираю язык для использования в процессе установки русски (рис. fig. 3.13).

Выбор языка интерфейса

Рис. 3.13: Выбор языка интерфейса

Раскладку клавиатуры выбираю и русскую, и английскую (рис. fig. 3.14).

Выбор раскладки клавиатуры

Рис. 3.14: Выбор раскладки клавиатуры

Проверяю место установки и сохраняю значение по умолчанию (рис. fig. 3.16).

Выбор места установки

Рис. 3.15: Выбор места установки

Создаю аккаунт администратора и создаю пароль для супер-пользователя (рис. fig. 3.18).

Создание аккаунта администратора

Рис. 3.16: Создание аккаунта администратора

3.3 Работа с операционной системой после установки

Нажимаю Win+Enter для запуска терминала и переключаюсь на роль суперпользователя(рис. fig. 3.24).

Запуск терминала

Рис. 3.17: Запуск терминала

Обновляю все пакеты (рис. fig. 3.25).

Обновления

Рис. 3.18: Обновления

Устанавливаю программы для удобства работы в концсоли: tmux для открытия нескольких "вкладок" в одном терминале, mc в качестве файлового менеджера в терминале (рис. fig. 3.26).

Установка tmux и mc

Рис. 3.19: Установка tmux и mc

Устанавливаю программы для автоматического обновления (рис. fig. 3.27).

Установка программного обеспечения для автоматического обновления Рис. 3.20: Установка программного обеспечения для автоматического обновления

Запускаю таймер (рис. fig. 3.28).

Запуск таймера

Рис. 3.21: Запуск таймера

Перемещаюсь в директорию /etc/selinux, открываю md, ищу нужный файл (рис. fig. 3.29).

Поиск файла

Рис. 3.22: Поиск файла

Изменяю открытый файл: SELINUX=enforcing меняю на значение SELINUX=permissive (рис. fig. 3.30).

Изменение файла

Рис. 3.23: Изменение файла

Перезагружаю виртуальную машину (рис. fig. 3.31).

Перезагрузка виртуальной машины

Рис. 3.24: Перезагрузка виртуальной машины

Снова вхожу в ОС, снова запускаю терминал, запускю терминальный мультиплексор (рис. fig. 3.32).

Запуск терминального мультиплексора

Рис. 3.25: Запуск терминального мультиплексора

Переключаюсь на роль супер-пользователя (рис. fig. 3.33).

Переключение на роль супер-пользователя

Рис. 3.26: Переключение на роль супер-пользователя

Создание крнфигурационный файл (рис. fig. 3.34).

Создание крнфигурационный файл

Рис. 3.27: Создание крнфигурационный файл

Отредактируйте конфигурационный файл (рис. fig. ??).

Отредактируйте конфигурационный файл

Рис. 3.28: Отредактируйте конфигурационный файл

Перехожу в директорию /tc/X11/xorg.conf.d, открываю mc для удобства, открываю файл 00-keyboard.conf (рис. fig. ??).

Поиск файла, вход в тс

Рис. 3.29: Поиск файла, вход в тс

Редактирую конфигурационный файл (рис. fig. 6.2).

Редактирование файла

Рис. 3.30: Редактирование файла

Перезагружаю виртуальную машину (рис. fig. 6.3).

Перезагрузка виртуальной машины

Рис. 3.31: Перезагрузка виртуальной машины

3.4 Установка программного обеспечения для создания документации

Запускаю терминал. Запускаю терминальный мультиплексор tmux, переключаюсь на роль супер-пользователя (рис. fig. 6.4).

Переключение на роль супер-пользователя

Рис. 3.32: Переключение на роль супер-пользователя

Устанавливаю pandoc с помощью утилиты dnf и флага -у, который автоматически на все вопросы системы отчевает "yes" (рис. fig. 6.5).

Установка pandoc

Рис. 3.33: Установка pandoc

Устанавливаю pandoc-crossref (рис. fig. 6.6).

Установка расширения pandoc-crossref

Рис. 3.34: Установка расширения pandoc-crossref

Устанавливаю дистрибутив texlive (рис. fig. 6.7).

Установка texlive

Рис. 3.35: Установка texlive

4 Выводы

При выполнении данной лабораторной работы я приобрела практические навыки установки операционной системы на виртуальную машину, а так же сделала настройки минимально необходимых для дальнейшей работы сервисов.

5 Ответы на контрольные вопросы

- 1. Учетная запись содержит необходимые для идентификации пользователя при подключении к системе данные, а так же информацию для авторизации и учета: системного имени (user name) (оно может содержать только латинские буквы и знак нижнее подчеркивание, еще оно должно быть уникальным), идентификатор пользователя (UID) (уникальный идентификатор пользователя в системе, целое положительное число), идентификатор группы (СID) (группа, к к-рой относится пользователь. Она, как минимум, одна, по умолчанию одна), полное имя (full name) (Могут быть ФИО), домашний каталог (home directory) (каталог, в к-рый попадает пользователь после входа в систему и в к-ром хранятся его данные), начальная оболочка (login shell) (командная оболочка, к-рая запускается при входе в систему).
- 2. Для получения справки по команде: –help; для перемещения по файловой системе cd; для просмотра содержимого каталога ls; для определения объёма каталога du; для создания / удаления каталогов mkdir/rmdir; для создания / удаления файлов touch/rm; для задания определённых прав на файл / каталог chmod; для просмотра истории команд history
- 3. Файловая система это порядок, определяющий способ организации и хранения и именования данных на различных носителях информации. Примеры: FAT32 представляет собой пространство, разделенное на три части: олна область для служебных структур, форма указателей в виде таблиц и зона для хранения самих файлов. ext3/ext4 журналируемая файловая система, используемая в основном в ОС с ядром Linux.

- 4. С помощью команды df, введя ее в терминале. Это утилита, которая показывает список всех файловых систем по именам устройств, сообщает их размер и данные о памяти. Также посмотреть подмонтированные файловые системы можно с помощью утилиты mount.
- 5. Чтобы удалить зависший процесс, вначале мы должны узнать, какой у него id: используем команду ps. Далее в терминале вводим команду kill < id процесса >. Или можно использовать утилиту killall, что "убьет" все процессы, которые есть в данный момент, для этого не нужно знать id процесса.

6 Выполнение дополнительного задания

Ввожу в терминале команду dmesg, чтобы проанализировать последователь-

ность загрузки системы (рис. fig. 6.8).

Анализ последовательности загрузки системы

Рис. 6.1: Анализ последовательности загрузки системы

С помощью поиска, осуществляемого командой 'dmesg | grep -i ', ищу версию

ядра Linux: 6.1.10-200.fc37.x86_64 (рис. fig. ??).

Поиск версии ядра

Рис. 6.2: Поиск версии ядра

К сожалению, если вводить "Detected Mhz processor" там, где нужно указывать,

что я ищу, то мне ничего не выведется. Это происходит потому, что запрос не

предусматривает дополнительные символы внутри него (я проверяла, будет ли

работать он с маской - не будет). В таком случае я оставила одно из ключевых

слов (могла оставить два: "Mhz processor") и получила результат: 1992 Mhz (рис.

fig. ??).

Поиск частоты процессора

Рис. 6.3: Поиск частоты процессора

Аналогично ищу модель процессора (рис. fig. ??).

Поиск модели процессора

Рис. 6.4: Поиск модели процессора

18

Объем доступной оперативной памяти ищу аналогично поиску частоты процессора, т. к. возникла та же проблема, что и там (рис. fig. 6.4).

Поиск объема доступной оперативной памяти Рис. 6.5: Поиск объема доступной оперативной памяти

Нахожу тип обнаруженного гипервизора (рис. fig. 6.4).

Поиск типа обнаруженного гипервизора Рис. 6.6: Поиск типа обнаруженного гипервизора

Тип файловой системы корневого раздела можно посомтреть с помощью утилиты fdisk (рис. fig. 6.5).

Поиск типа файловой системы корневого раздела Рис. 6.7: Поиск типа файловой системы корневого раздела

Последовательность монтирования файловых систем можно посмотреть, введя в поиск по результату dmesg слово mount (рис. fig. 6.6).

Последовательность монтирования файловых систем Рис. 6.8: Последовательность монтирования файловых систем

:::