VALIDATION

Model Selection and Cross

CROSS VALIDATION

Objective

- Cross validation is a method which tries to select the best model from a given set of models.
- ► Assumption: Quality measure is predictive performance.
- ▶ "Set of models" can simply mean "set of different parameter values".

Terminology

The problem of choosing a good model is called **model selection**.

SPECIFICALLY: SVM

Model selection problem for SVM

- ▶ The SVM is a *family* of models indexed by the margin parameter γ and the kernel parameter(s) σ .
- Our goal is to find a value of (γ, σ) for which we can expect small generalization error.

Naive approach

- We could include (γ, σ) into the optimization problem, i.e. train by minimizing over α and (γ, σ) .
- ► This leads to a phenomenon called **overfitting**: The classifier adapts too closely to specific properties of the training data, rather than the underlying distribution.

OVERFITTING: ILLUSTRATION

Overfitting is best illustrated with a nonlinear classifier.

- ▶ The classifier in this example only has a "bandwidth" parameter σ , similar to the parameter σ of the RBF kernel.
- ▶ Small σ permits curve with sharp bends; large σ : Smooth curve.

TRAINING VS TEST ERROR

Conceptual illustration

- If classifier can adapt (too) well to data: Small training error, but possibly large test error.
- ▶ If classifier can hardly adapt at all: Large training and test error.
- ► Somewhere in between, there is a sweet spot.
- ► Trade-off is controlled by the parameter.

MODEL SELECTION BY CROSS VALIDATION

(From now on, we just write γ to denote the entire set of model parameters.)

Cross Validation: Procedure

Model selection:

1. Randomly split data into three sets: training, validation and test data.

- 2. Train classifier on training data for different values of γ .
- 3. Evaluate each trained classifier on validation data (ie compute error rate).
- 4. Select the value of γ with lowest error rate.

Model assessment:

5. Finally: Estimate the error rate of the selected classifier on test data.

INTERPRETATION

Meaning

▶ The quality measure by which we are comparing different classifiers $f(.; \gamma)$ (for different parameter values γ) is the risk

$$R(f(.;\gamma)) = \mathbb{E}[L(y,f(x;\gamma))].$$

▶ Since we do not know the true risk, we estimate it from data as $\hat{R}(f(., \gamma))$.

Importance of model assessment step

- We always have to assume: Classifier is better adapted to any data used to select it than to actual data distribution.
- ▶ Model selection: Adapts classifier to *both* training and validation data.
- ▶ If we estimate error rate on this data, we will in general underestimate it.

CROSS VALIDATION

Procedure in detail

We consider possible parameter values $\gamma_1, \ldots, \gamma_m$.

- 1. For each value γ_j , train a classifier $f(.; \gamma_j)$ on the training set.
- 2. Use the validation set to estimate $R(f(.; \gamma_j))$ as the empirical risk

$$\hat{R}(f(x;\gamma_j)) = \frac{1}{n_v} \sum_{i=1}^{n_v} L(\tilde{y}_i, f(\tilde{\mathbf{x}}_i, \gamma_j)) .$$

 n_v is the size of the validation set.

- 3. Select the value γ^* which achieves the smallest estimated error.
- 4. Re-train the classifier with parameter γ^* on all data except the test set (i.e. on training + validation data).
- 5. Report error estimate $\hat{R}(f(.; \gamma^*))$ computed on the *test* set.

K-FOLD CROSS VALIDATION

Idea

Each of the error estimates computed on validation set is computed from a single example of a trained classifier. Can we improve the estimate?

Strategy

- Set aside the test set.
- ▶ Split the remaining data into *K* blocks (called "folds").
- Use each fold in turn as validation set. Perform cross validation and average the results over all K combinations.

This method is called **K-fold cross validation**.

K-FOLD CROSS VALIDATION: PROCEDURE

Risk estimation

To estimate the risk of a classifier $f(., \gamma_j)$:

- 1. Split data into *K* equally sized parts.
- 2. Train an instance $f_k(., \gamma_j)$ of the classifier, using all folds except fold k as training data.
- 3. Compute the cross validation estimate

$$\hat{R}_{\text{CV}}(f(\,.\,,\gamma_j)) := \frac{1}{K} \sum_{k=1}^K \frac{1}{|\text{fold } k|} \sum_{(\tilde{\mathbf{x}},\tilde{\mathbf{y}}) \in \text{fold } k} L(\tilde{\mathbf{y}}, f_k(\tilde{\mathbf{x}}, \gamma_j))$$

Repeat this for all parameter values $\gamma_1, \ldots, \gamma_m$.

Selecting a model

Choose the parameter value γ^* for which estimated risk is minimal.

Model assessment

Report risk estimate for $f(., \gamma^*)$ computed on *test* data.

How to Choose K?

Extremal cases

- ightharpoonup K = n, called **leave one out cross validation** (loocv)
- K=2

An often-cited problem with loocv is that we have to train many (= n) classifiers, but there is also a deeper problem.

Argument 1: K should be small, e.g. K = 2

- Unless we have a lot of data, variance between two distinct training sets may be considerable.
- ▶ **Important concept:** By removing substantial parts of the sample in turn and at random, we can simulate this variance.
- ▶ By removing a single point (loocv), we cannot make this variance visible.

ILLUSTRATION

$$K = 2, n = 20$$

•

•••••

ILLUSTRATION

$$K = 2, n = 20$$

•

ILLUSTRATION

$$K = 2, n = 20$$

• •

•

•

How to Choose K?

Argument 2: K should be large, e.g. K = n

- ► Classifiers generally perform better when trained on larger data sets.
- ▶ A small K means we substantially reduce the amount of training data used to train each f_k , so we may end up with weaker classifiers.
- ▶ This way, we will systematically overestimate the risk.

Common recommendation: K = 5 to K = 10

- K = 10 means number of samples removed from training is one order of magnitude below training sample size.
- ► This should not weaken the classifier considerably, but should be large enough to make measure variance effects.

SUMMARY: CROSS VALIDATION

Purpose

Estimates the risk $R(f) = \mathbb{E}[L(y, f(x))]$ of a classifier (or regression function) from data.

Application to parameter tuning

- \triangleright Compute one cross validation estimate of R(f) for each parameter value.
- Example above is margin parameter γ, but can be used for any parameter of a supervised learning algorithm.
- ▶ Note: Cross validation procedure does not involve the test data.

Tree Classifiers

TREES

Idea

- ▶ Recall: Classifiers classify according to location in \mathbb{R}^d
- ▶ Linear classifiers: Divide space into two halfspaces
- ► What if we are less sophisticated and divide space only along axes? We could classify e.g. according to

$$\mathbf{x} \in \begin{cases} \text{Class} + & \text{if } x_3 > 0.5\\ \text{Class} - & \text{if } x_3 \leq 0.5 \end{cases}$$

► This decision would correspond to an affine hyperplane perpendicular to the *x*₃-axis, with offset 0.5.

Tree classifier

A tree classifier is a binary tree in which

- ▶ Each inner node is a rule of the form $x_i > t_i$.
- ► The threshold values *t_i* are the parameters which specify the tree.
- ► Each leaf is a class label.

TREES

- ▶ Each leaf of the tree corresponds to a region R_m of \mathbb{R}^d .
- ▶ Classes $k \in \{1, ..., K\}$ (not restricted to two classes).
- \triangleright Training: Each node is assigned class to which most points in R_m belong,

$$k(m) := \arg\max_{k} \#\{x_i \in R_m \text{ with } y_i = k\}$$

FINDING A SPLIT POINT

- ▶ In training algorithm, we have to fix a region R_m and split it along an axis j at a point t_j .
- ▶ The split results in two new regions R_m^1 and R_m^2 .
- ▶ On each region, we obtain a new class assignment $k^1(m)$ and $k^2(m)$.
- ▶ Strategy is again: Define cost of split at t_j and minimize it to find t_j .

Cost of a split

$$Q(R_m, t_j) := \frac{\sum_{\tilde{\mathbf{x}}_i \in R_m^1} \mathbb{I}\{\tilde{y}_i \neq k^1(m)\} + \sum_{\tilde{\mathbf{x}}_i \in R_m^2} \mathbb{I}\{\tilde{y}_i \neq k^2(m)\}}{\#\{x_i \in R_m\}}$$

In words:

Q = proportion of training points in R_m that get misclassified if we choose to split at t_j

TRAINING ALGORITHM

Overall algorithm

- ▶ At each step: Current tree leaves define regions $R_1, ..., R_M$.
- ightharpoonup For each R_m , find the best split.
- ightharpoonup Continue splitting regions until tree has depth D (input parameter).

Step of training algorithm

At each step: Current tree leaves define regions R_1, \ldots, R_M . For each region R_m :

1. For each axis j: Compute best splitting point t_j as

$$t_j := \arg\min Q(R_m, t_j)$$

2. Select best splitting axis:

$$j := \arg\min_{i} Q(R_m, t_j)$$

3. Split R_m along axis j at t_j

EXAMPLE: SPAM FILTERING

Data

- ▶ 4601 email messages
- ► Classes: email, spam

	george										
spam	0.00										
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

Tree classifier

- ▶ 17 nodes
- ▶ Performance:

	Predicted				
True	Email	Spam			
Email Spam	57.3% 5.3%	4.0% 33.4%			

INFLUENCE OF TREE SIZE

Tree Size

- ▶ Tree of height D defines 2^D regions.
- ▶ *D* too small: Insufficient accuracy. *D* too large: Overfitting.
- D can be determined by cross validation or more sophisticated methods ("complexity pruning" etc), which we will not discuss here.

SPAM FILTERING: TREE

DECISION STUMPS

- ► The simplest possible tree classifier is a tree of depth 1. Such a classifier is called a **decision stump**.
- A decision stump is parameterized by a pair (j, t_j) of an axis j and a splitting point t_j .
- ▶ Splits \mathbb{R}^d into two regions.
- Decision boundary is an affine hyperplane which is perpendicular to axis j and intersects the axis at t_i.
- ▶ Often used in Boosting algorithms and other ensemble methods.