

CS665: Advanced Data Mining

Lecture#17: SVD-3
U Kang
KAIST

Outline

- **⇒** □ SVD Properties
 - ☐ Query feedback
 - ☐ Conclusion

SVD - Other properties - summary

- can produce orthogonal basis (obvious)
- can solve over- and under-determined linear pr oblems (see C(1) property)
- can compute 'fixed points' (= 'steady state pro b. in Markov chains') (see C(4) property)

Properties – sneak preview.

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

B(5): $(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' \sim \text{(constant)} \mathbf{v}_1$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$: shortest, actual or least-squa res solution

$$C(4): A^T A v_1 = \lambda_1^2 v_1$$

U Kang (2015) CS665

SVD -outline of properties

■ (A): obvious

■ (B): less obvious

(C): least obvious (and most powerful!)

Properties - by defn.:

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

A(1):
$$\mathbf{U}^{\mathrm{T}}_{[\mathbf{r} \times \mathbf{n}]} \mathbf{U}_{[\mathbf{n} \times \mathbf{r}]} = \mathbf{I}_{[\mathbf{r} \times \mathbf{r}]} \text{ (identity matrix)}$$

$$\mathbf{A}(2): \mathbf{V}^{\mathrm{T}}_{[\mathbf{r} \times \mathbf{n}]} \mathbf{V}_{[\mathbf{n} \times \mathbf{r}]} = \mathbf{I}_{[\mathbf{r} \times \mathbf{r}]}$$

A(3):
$$\Lambda^k = \text{diag}(\lambda_1^k, \lambda_2^k, ... \lambda_r^k)$$
 (k: ANY real nu mber)

$$A(4)$$
: $A^T = V \Lambda U^T$

Reminder: 'column orthonormal'

$$V =$$

$$I_{[r \times r]}$$

 $\mathbf{v1}$

$$\mathbf{v_1}^{\mathrm{T}} \times \mathbf{v_1} = 1$$
$$\mathbf{v_1}^{\mathrm{T}} \times \mathbf{v_2} = 0$$

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

B(1):
$$\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = ??$$

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$
symmetric; Intuition?

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$
symmetric; Intuition?
'document-to-document' similarity matrix
B(2): symmetrically, for 'V'
 $(\mathbf{A}^{T})_{[m \times n]} \mathbf{A}_{[n \times m]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{T}$
Intuition?

A: term-to-term similarity matrix

B(3):
$$((\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]})^k = \mathbf{V} \Lambda^{2k} \mathbf{V}^T$$
 and

B(4):
$$(\mathbf{A}^T \mathbf{A})^k \sim \mathbf{v}_1 \lambda_1^{2k} \mathbf{v}_1^T$$
 for $k >> 1$ where

 \mathbf{v}_1 : [m x 1] first column (singular-vector) of \mathbf{V}

 λ_1 : strongest singular value

Proof of (B4)?

B(4): $({\bf A}^{\rm T} {\bf A})^k \sim {\bf v}_1 \lambda_1^{2k} {\bf v}_1^{\rm T}$ for k >> 1

B(5): $(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' \sim \text{(constant)} \mathbf{v}_1$

ie., for (almost) any \mathbf{v} , it converges to a vector \mathbf{p} arallel to \mathbf{v}_1

Thus, useful to compute first singular vector/value (as well as the next ones, too...)

Proof of (B5)?

- Intuition:
 - \Box (A^TA) v'
 - $\Box (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{k}} \mathbf{v}$

U Kang (2015) 15

Smith

- Smith's preferences
 - v,

- Intuition:
 - \Box (A^TA) v'
 - $\Box (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{\mathrm{k}} \mathbf{v}$

users products

- Intuition:
 - \Box (A^TA) v^{*}
 - $\Box (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{k}} \mathbf{v}$

- Intuition:
 - \Box (A^TA) v'
 - $\Box (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{k}} \mathbf{v}$

similarities to Smith

users

products

users products

- Intuition:
 - \Box (A^TA) v'
 - $\Box (\mathbf{A}^{\mathrm{T}}\mathbf{A})^{\mathrm{k}} \mathbf{v}$

■ Intuition:

 \Box (A^TA) v' what Smith's 'friends' like

 \Box (A^TA)^k v' what k-step-away-friends like

(ie., after *k* steps, we get what everybody likes, and Smith's initial opinions don't count)

Less obvious properties - repeated:

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$
B(2): $(\mathbf{A}^{T})_{[m \times n]} \mathbf{A}_{[n \times m]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{T}$
B(3): $((\mathbf{A}^{T})_{[m \times n]} \mathbf{A}_{[n \times m]})^{k} = \mathbf{V} \mathbf{\Lambda}^{2k} \mathbf{V}^{T}$
B(4): $(\mathbf{A}^{T} \mathbf{A})^{k} \sim \mathbf{v}_{1} \lambda_{1}^{2k} \mathbf{v}_{1}^{T}$
B(5): $(\mathbf{A}^{T} \mathbf{A})^{k} \mathbf{v}^{2} \sim \text{(constant)} \mathbf{v}_{1}$

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

C(1):
$$\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$$

let $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^T \mathbf{b}$
if under-specified, \mathbf{x}_0 gives 'shortest' solution
if over-specified, it gives the 'solution' with the small
est least squares error

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$
let $\mathbf{x}_{0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{T} \mathbf{b}$

U: column-

, orthonormal

Slowly:

U Kang (2015)

Illustration: under-specified, eg

[1 2] [w z]
T
 = 4 (ie, 1 w + 2 z = 4)

$$\mathbf{A} = [1 \ 2] \quad \mathbf{b} = [4]$$

$$\mathbf{A} = \mathbf{U} \, \Lambda \, \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{U} = ??$$

$$\mathbf{\Lambda} = ??$$

$$\mathbf{V} = ??$$

$$\mathbf{x_0} = \mathbf{V} \, \Lambda^{(-1)} \, \mathbf{U}^{\mathrm{T}} \, \mathbf{b}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 4 \end{bmatrix}$$

$$\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{U} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\mathbf{\Lambda} = \begin{bmatrix} \text{sqrt}(5) \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 1/\text{sqrt}(5) & 2/\text{sqrt}(5) \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{x_0} = \mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$$

Show that w=4/5, z=8/5 is

(a) A solution to 1*w + 2*z = 4 and

(b) Minimal (wrt Euclidean norm)

Show that w=4/5, z=8/5 is

- (a) A solution to 1*w + 2*z = 4 and A: easy
- (b) Minimal (wrt Euclidean norm)

A: [4/5 8/5] is perpenticular to [2 -1]

Least obvious properties – cont'd

Illustration: over-specified, eg

$$[3\ 2]^T [w] = [1\ 2]^T (ie, 3\ w = 1; 2\ w = 2)$$

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \end{bmatrix}^{\mathrm{T}} \quad \mathbf{b} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{U} = ??$$

$$\Lambda = ??$$

$$\mathbf{V} = ??$$

$$\mathbf{x_0} = \mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$$

$$\mathbf{A} = \begin{bmatrix} 3 & 2 \end{bmatrix}^{\mathrm{T}} \quad \mathbf{b} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{A} = \mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{U} = \begin{bmatrix} 3/\operatorname{sqrt}(13) & 2/\operatorname{sqrt}(13) \end{bmatrix}^{\mathrm{T}}$$

$$\mathbf{\Lambda} = \begin{bmatrix} \operatorname{sqrt}(13) \end{bmatrix}$$

$$\mathbf{V} = \begin{bmatrix} 1 \end{bmatrix}$$

$$\mathbf{x_0} = \mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b} = \begin{bmatrix} 7/13 \end{bmatrix}$$

Verify formula:

$$[3 \ 2]^T \ [7/13] = [1 \ 2]^T$$

 $[21/13 \ 14/13]^T -> \text{`red point'}$

Verify formula:

$$[3\ 2]^T$$
 $[7/13] = [1\ 2]^T$
 $[21/13\ 14/13\]^T -> \text{'red point'} - perpenticular?$

Verify formula:

A:
$$[3\ 2]$$
. $([1\ 2] - [21/13\ 14/13]) =$
 $[3\ 2]$. $[-8/13\ 12/13] = [3\ 2]$. $[-2\ 3] = 0$

Therefore:

Least obvious properties - cont'd

```
A(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}

C(2): \mathbf{A}_{[n \times m]} \mathbf{v}_{1[m \times 1]} = \lambda_{1} \mathbf{u}_{1[n \times 1]}

where \mathbf{v}_{1}, \mathbf{u}_{1} the first (column) vectors of \mathbf{V}, \mathbf{U}. (\mathbf{v}_{1} == right-singular-vector)

C(3): symmetrically: \mathbf{u}_{1}^{T} \mathbf{A} = \lambda_{1} \mathbf{v}_{1}^{T}

\mathbf{u}_{1} == \text{left-singular-vector}
```


Least obvious properties - cont'd

A(0):
$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

$$C(4)$$
: $A^T A v_1 = \lambda_1^2 v_1$

(fixed point - the dfn of eigenvector for a symmetric matrix)

Least obvious properties - altogeth er

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^T \mathbf{b}$: shortest, actual or least-squares solution

C(2):
$$\mathbf{A}_{[n \times m]} \mathbf{v}_{1[m \times 1]} = \lambda_1 \mathbf{u}_{1[n \times 1]}$$

C(3):
$$\mathbf{u_1}^T \mathbf{A} = \lambda_1 \mathbf{v_1}^T$$

C(4):
$$A^T A v_1 = \lambda_1^2 v_1$$

Properties - conclusions

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

B(5): $(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' \sim \text{(constant)} \mathbf{v}_1$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \Lambda^{(-1)} \mathbf{U}^T \mathbf{b}$: shortest, actual or least-squares solution $\mathbf{C}(4)$: $\mathbf{A}^T \mathbf{A} \mathbf{v}_1 = \lambda_1^2 \mathbf{v}_1$

$$C(4): A^T A v_1 = \lambda_1^2 v_1$$

Outline

- **☑** SVD Properties
- **→** □ Query feedback
 - ☐ Conclusion

[Chen & Roussopoulos, sigmod 94]

Sample problem:

estimate selectivities (e.g., 'how many movies we re made between 1940 and 1945?')

for query optimization,

LEARNING from the query results so far!!

- Given: past queries and their results
 - \square #movies(1925,1935) = 52
 - \square #movies(1948, 1990) = 123
 - **...**
 - □ And a new query, say #movies(1979,1980)?
- Give your best estimate

Idea #1: consider a function for the CDF (cummulat ive distr. function), eg., 6-th degree polynomial (o r splines, or anything else)

For example

$$F(x) = \#$$
 movies made until year 'x'
= $a_1 + a_2 * x + a_3 * x^2 + ... a_7 * x^6$

GREAT idea #2: adapt your model, as you see the a ctual counts of the actual queries

original estimate

original estimate

original estimate

Eventually, the problem becomes:

- estimate the parameters $a_1, \dots a_7$ of the model
- to minimize the least squares errors from the real a nswers so far.

Formally:

Formally, with *n* queries and 6-th degree polynomia ls:

where $x_{i,j}$ such that Sum $(x_{i,j} * a_i) = \text{our estimate for t}$ he # of movies and b_j : the actual

For example, for query 'find the count of movies during (1920-1932)':

$$a_1 + a_2 * 1932 + a_3 * 1932^2 + \dots$$

_

$$(a_1 + a_2 * 1920 + a_3 * 1920^2 + ...)$$

In matrix form:

X

a

b

1st query

n-th query

a1 a2 =

a7

b1 b2

bn

60

In matrix form:

$$X a = b$$

and the least-squares estimate for a is

$$\mathbf{a} = \mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathsf{T}} \mathbf{b}$$

according to property C(1)

$$(let \mathbf{X} = \mathbf{U} \Lambda \mathbf{V}^{\mathrm{T}})$$

The solution

$$\mathbf{a} = \mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathsf{T}} \mathbf{b}$$

works, but needs expensive SVD each time a new query arrives

GREAT Idea #3: Use 'Recursive Least Squ ares', to adapt a incrementally.

Details: in paper - intuition:

Intuition:

least squares fit

Intuition:

least squares fit

Intuition:

least squares fit

the new coefficients can be quickly computed from the old ones, plus statistics in a (7x7) matrix

(no need to know the details, although the RLS is a brilliant method)

KAIST Computer Science

Query feedbacks - enhancements

GREAT idea #4: 'forgetting' factor - we can even down-play the weight of olde r queries, since the data distribution mi ght have changed.

(comes for 'free' with RLS...)

Intuition:

least squares fit

Query feedbacks - conclusions

SVD helps find the Least Squares solution, to adapt to query feedbacks

(RLS = Recursive Least Squares is a gre at method to incrementally update least -squares fits)

Outline

- **☑** SVD Properties
- Query feedback
- **→** □ Conclusion

Conclusions

- SVD: a **valuable** tool
- given a document-term matrix, it finds 'concepts'(LSI)
- ... and can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)

Conclusions cont'd

- ... and can find fixed-points or steady-state probab ilities (google/ Kleinberg/ Markov Chains)
- ... and can solve optimally over- and under-constr aint linear systems (least squares / query feedback
 s)

References

• Chen, C. M. and N. Roussopoulos (May 1994). Ada ptive Selectivity Estimation Using Query Feedback. Proc. of the ACM-SIGMOD, Minneapolis, MN.