

8086 Memory Banks

Dept. of Computer Science and Engineering BRAC University

CSE 341 Team

Book:

Microprocessors and Interfacing: Programming and Hardware,

Author: Douglas V. Hall

The 8086/8088 Family: Design, Programming, And Interfacing,

Author: John Uffenbeck.

RECAP:

- The 8086 has 22-6-hit address subjuso it can address 220 or 1,048,576 addresses.
- Each address can store a byte. Hence, 8086 can store upto MBB.
- Each read/write operation takes 1₁ bus cycle

Address	Contents	
0xFFFFF	1000 0000	
0x00008	0100 1001	
0x00007	1100 1100	
0x00006	0110 1110	
0x00005	0110 1110	
0x00004	0000 0000	
0x00003	0110 1011	
0x00002	0101 0001	
0x00001	1100 1001	
0x00000	0100 1111	

8086 Memory Organisation

- Each read white paper at lake takes a buse for all byte data
- Toreachdine the word bytes oblighted the percentage of the percent
- To solve this problem by saving processing three cessing time, memory is norganized, into memory banks
- ▶ Odd and even banks
- With the use of Apins BHE pins

Address	Contents
0xFFFFF	1000 0000
0x00008	0100 1001
0x00007	1100 1100
0x00006	0110 1110
0x00005	0110 1110
0x00004	0000 0000
0x00003	0110 1011
0x00002	0101 0001
0x00001	1100 1001
0x00000	0100 1111

- Addresses are consecutively numbered
- All even numbers end with a 0 and all odd numbers end with a 1

Even		Odd	
6 =	110	5 =	101
14 =	1110	13 =	1101
20 =	10100	27 =	11011
42 =	101010	35 =	100011

even

odd

8086 Memory Organisation

- ► Even addresses are considered as the even/low bank, which holds the content of the low byte while
- ► Odd addresses are considered as the odd/high bank, which holds the content of the high byte

8086 Pin Recapi:

- ▶ plins-fort16aringing 20abiying 120abiying 120abit address
- \blacktriangleright Dins for committee learn date by the dated by the byte D_{15} for high byte
- BIAFE Whedicatesidatesbustaurieschielebytehobytetof data

- The memory for an 8086 is set up in to 2 banks of up to 524,288 bytes or 512kB each
 - This makes it possible to read/write a word with one machine cycle

8086 Memory Addressing

Data can be accessed from the memory in 4 different ways:

- ▶8 bit data from Even Bank e.g. from address 00002
- ▶8 bit data from Odd Bank e.g. from address 00003
- ▶ 16 bit data starting from Even Address e.g. from 00002 and 00003
- ▶ 16 bit data starting from Odd Address. e.g. from 00003 and 00004

		Type of Transfer	Data Lines
0	0	Word i.e. a byte from each bank	
0	1	Byte from odd bank	
1	0	Byte from even bank	
1	1	None	-

A byte from Low/Even bank

- Requires one bus-cycle to read/write addatablyte.
- ▶ Valid address is provided via A_{Y} ith A_{Q} &vith A_{0} = 0 & \overline{BHE} = 1
- **B**yte of data fetched on $D_7 D_0$
- Low bank enabled, High bank disabled

		Type of Transfer	Data Lines
1	0	Byte from even bank	

A byte from High/Odd bank

- Requires one bus-cycle to read write a add at a byte.
- Valid address is provided via $A_{\text{with}} A_1 \approx \frac{1}{BHE} = 0$
- Byte of data fetched on $D_{15}-D_8$
- Low bank disabled, High bank enabled bank enabled

		Type of Transfer	Data Lines
0	1	Byte from odd bank	

An aligned word

starting from an **even** address

- Requires one bus-cycle to read/write addata wordd.
- ▶ Valid address is provided via A_{Y} ith A_0 & with A_0 = 0 & \overline{BHE} =0
- $lacksymbol{V}$ Worldoofdataafetaecbleeddoon $D_{15}-D_0$
- Low bank and High bank enabled

		Type of Transfer	Data Lines
0	0	Word i.e. a byte from each bank	

An unaligned word

starting from an **odd** address

- * Requires two busyers les tead early rite a data aword
- In the high memory bank via $D_{15} \times D_{80}$ of data bus; $A_0 = 1 \times \overline{BHE} = 0$

An unaligned word

starting from an **odd** address

CSE – 341: Microprocessors BRAC University

Thank You

Questions are welcome in the discussion class