# The Calculus of Uncertainty: Stochastic Processes & Their Mathematical Universe

Hooman Zare

SUT

July 25, 2025

# Formal Definition & Measure-Theoretic Grounding

#### Definition

A stochastic process is a collection  $\{X_t : t \in T\}$  of random variables on probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , where:

- T: index set (time/space)
- ullet  $\Omega$ : sample space
- ullet  $\mathcal{F}$ :  $\sigma$ -algebra
- P: probability measure

#### **Classification:**

Time: 
$$T = egin{cases} \mathbb{Z}^+ & ext{(discrete)} \\ \mathbb{R}^+ & ext{(continuous)} \end{cases}$$
 State:  $S = egin{cases} ext{countable} & ext{(chain)} \\ \mathbb{R}^d & ext{(field)} \end{cases}$ 

# Theorem (Kolmogorov Consistency)

Finite-dimensional distributions must satisfy:

$$\mu_{t_1,\ldots,t_k}(A_1\times\cdots\times A_k)=\mu_{t_{\sigma(1)},\ldots,t_{\sigma(k)}}(A_{\sigma(1)}\times\cdots\times A_{\sigma(k)})$$

for any permutation  $\sigma$ .

# From Bernoulli to Kolmogorov: Foundational Theorems

#### **Landmark Contributions:**

- 1713: Bernoulli's LLN
- 1827: Brownian motion (Brown)
- 1905: Einstein's explanation
- 1913: Markov chains
- 1923: Wiener measure
- 1933: Kolmogorov axioms

# Theorem (Kolmogorov Extension)

If  $\{\mu_{t_1,...,t_k}\}$  satisfy consistency conditions, then  $\exists!$  probability measure  $\mathbb{P}$  on  $(\mathbb{R}^T, \mathcal{B}(\mathbb{R}^T))$  with those finite-dim distributions.

Andrey Kolmogorov (1903-1987)



# Markov's Linguistic Revolution

#### Markov's 1913 Analysis:

- Studied Pushkin's Eugene Onegin
- Vowel/Consonant sequences
- Discovered memoryless property

# Theorem (Markov Property)

$$\mathbb{P}(X_{t+1} = x_{t+1} | X_t = x_t, \dots, X_0 = x_0) = \mathbb{P}(X_{t+1} = x_{t+1} | X_t = x_t)$$

#### **Transition Matrix for Russian:**

$$P = \begin{pmatrix} 0.128 & 0.872 \\ 0.663 & 0.337 \end{pmatrix}$$

(Vowel  $\rightarrow$  Consonant: 87.2%)



# The Mathematical Zoo: Classification & Properties

#### Canonical Processes:

- Wiener process:  $dW_t \sim \mathcal{N}(0, dt)$
- Poisson process:

$$\mathbb{P}(N_t = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

- Markov chains:  $P(X_{n+1}|X_n)$
- Martingales:  $\mathbb{E}[X_t|\mathcal{F}_s] = X_s$

# Theorem (Lévy Characterization)

 $W_t$  is Brownian motion iff:

- Continuous paths a.s.
- $0 W_0 = 0$
- $\langle W \rangle_t = t$

Hooman Zare (SUT)





# Brownian Motion: The Universal Process

## **Properties:**

- $W_0 = 0$
- Independent increments
- $W_t W_s \sim \mathcal{N}(0, t s)$
- Continuous paths
- Nowhere differentiable



# Theorem (Scaling Property)

$$\{c^{-1/2}W_{ct}\}_{t\geq 0}\stackrel{d}{=}\{W_t\}_{t\geq 0}$$

Fractal Dimension = 1.5

# Theorem (Quadratic Variation)

$$\lim_{n\to\infty}\sum_{k=1}^{2^{n}}(W_{tk/2^{n}}-W_{t(k-1)/2^{n}})^{2}=t$$

# The Unifying Language of Randomness

| Field            | Key Process               | Fundamental Equation                            |
|------------------|---------------------------|-------------------------------------------------|
| Quantum Physics  | Wiener path integrals     | $K(x, t; x_0) = \int \mathcal{D}x  e^{iS[x]/t}$ |
| Finance          | Geometric Brownian motion | $dS_t = \mu S_t dt + \sigma S_t dW_t$           |
| Biology          | Branching processes       | $\mathbb{E}[Z_n]=m^n$                           |
| Control Theory   | Stochastic PDEs           | $du = Au dt + B dW_t$                           |
| Machine Learning | Diffusion models          | $dx_t = f(x_t, t)dt + g(t)d$                    |

Path integral tover Brownian traject



# Theorem (Feynman-Kac Formula)

Calution to DDE. Hooman Zare (SUT)

# Stochastic Calculus: Itô's Revolution

#### Itô's Lemma:

$$df(t, W_t) = \left(\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}\right)dt + \frac{\partial f}{\partial x}dW_t$$

#### **Black-Scholes PDE:**

$$\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = rV$$

### **Applications:**

- Option pricing
- Interest rate modeling
- Risk management



$$\int_0^t W_s dW_s = \frac{1}{2}W_t^2 - \frac{t}{2}$$

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□▶ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□

# When Probability Defies Expectation

#### Parrondo's Paradox



# Inspection Paradox

# Theorem (Renewal Theory)

For renewal process with i.i.d.  $\tau_i$ :

$$\mathbb{E}[ au_{\mathsf{observed}}] = \frac{\mathbb{E}[ au^2]}{\mathbb{E}[ au]} \geq \mathbb{E}[ au]$$

Equality iff  $\tau$  constant.



# Stochastic Resonance: Noise-Enhanced Detection

#### Phenomenon:

- Weak signal undetectable
- Add optimal noise
- Signal becomes detectable

#### **Mathematical Model:**

$$dx = [-U'(x) + A\cos(\omega t)]dt + \sigma dW_t$$

where U(x) is bistable potential

# Applications:

- Neuroscience: weak signal detection
- Medical: balance therapy
- Climate: ice age cycles





# Beyond Classical Theory: Current Research Horizons

### Rough Path Theory

$$dY_t = f(Y_t)d\mathbf{X}_t$$

where  $\mathbf{X}_t = (X_t, \mathbb{X}_{s,t})$  with:

$$\mathbb{X}_{s,t} = \int_{s}^{t} (X_{u} - X_{s}) \otimes dX_{u}$$

# **Stochastic Geometry**

#### **Active Research Areas:**

- Regularity structures (Hairer)
- Stochastic homogenization
- Kardar-Parisi-Zhang equation
- Neuro-stochastic processes
- Algorithmic randomness

# Theorem (Universality Principle)

Limiting behavior of complex systems depends only on aggregate statistics:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N X_i^{(N)} \xrightarrow{d} \mu$$

independent of microscopic details

# Stochastic PDEs: Modeling Complexity

#### **General Form:**

$$\partial_t u = \mathcal{A}u + \sigma(u)\dot{W}$$

where  $\dot{W}$  is space-time white noise

### **KPZ Equation:**

$$\partial_t h = \nu \partial_x^2 h + \lambda (\partial_x h)^2 + \eta(x, t)$$



#### Regularity Structures:

- Hairer's reconstruction theorem
- Renormalization techniques
- Models:  $\Phi_3^4$ , KPZ, etc.

# The Unreasonable Effectiveness of Randomness

#### **Core Principles:**

- Measure-theoretic foundation
- Universality across scales
- Emergent order from chaos
- Noise as information carrier

#### **Future Directions:**

- Quantum stochastic calculus
- Stochastic machine learning
- Randomness in number theory
- Biological computation

# Emergent Structure

#### Final Theorem:

# $\mathsf{Theorem}$ (Benjamini-Schramm)

Local weak convergence of random graphs preserves global properties.

# References & Further Reading

#### **Foundational Texts:**

- Doob: Stochastic Processes
- Karatzas & Shreve: Brownian Motion and Stochastic Calculus
- Revuz & Yor: Continuous Martingales and Brownian Motion

#### Modern Research:

- Hairer: Theory of Regularity Structures
- Stroock: Mathematics of Statistical Mechanics
- Van Handel: Stochastic Calculus and Applications

### Interdisciplinary:

- Oksendal: Stochastic Differential Equations
- Kallenberg: Foundations of Modern Probability
- Ebeling & Sokolov: Statistical Thermodynamics and Stochastic Theory