# Carpenili's Very Simple CPU

Submitted by SAJID IQUEBAL (22M1134)

18<sup>th</sup> August 2023

Design Description: We've created a VHDL-based processor named VSCPU, complete with specified Address and Data line widths. Our memory architecture consists of 255 storage locations, each capable of holding data of the defined width. The initial value of our program counter is set to "0000001". Our processor boasts input ports including clock, reset, start, writea, address, and data lines. A singular output port, "status", provides feedback.

The processor operates through four distinctive instructions: Add, Logical AND, Jump, and Increment.

Below are the simulation of each instructions:

#### 1. Addition:

- M[00011101]= 0000000000001010 {i.e. 10 in Decimal}
   M[00010101]= 000000000000010 {i.e. 2 in Decimal}
- AC <= M[00011101]
- AC= 0000000000001010 {i.e. 10 in Decimal}
- After addition
   AC= 0000000000001100 {i.e. 12 in Decimal}

#### Relevant screenshot attached:



#### 2. <u>Load</u>:

- Through the "Load" operation, the content of the memory location with address "00011101" will be stored in the Accumulator i.e. AC <= M[00011101]</li>
- Data stored in the aforementioned location is "00000000000000000"
   i.e. M[00011101]= 00000000000000000
- Therefore, after the "Load" operation, the content of the Accumulator is updated to: AC=000000000000100



## 3. AND Operation:

- M[00011101]= 1000001000001011
   M[00010110]= 1000001001100100
- AC <= M[00011101]
- AC= 1000001000001011
- After AND operation
   AC= 1000001000000000

#### Relevant screenshot attached:



## 4. Increment:

- M[00010100]= 100000100001000 {i.e. 33288 in Decimal}
- AC <= M[00010100]
- AC= 1000001000001000 {i.e. 33288 in Decimal}
- After decrementing AC= 1000001000001001 (i.e. 33289 in Decimal)



## 5. <u>Decrement:</u>

- M[00010100]= 000000000000011 {i.e. 3 in Decimal}
- AC <= M[00010100]</li>
- AC= 0000000000000011 {i.e. 3 in Decimal}

#### Relevant screenshot attached:



## 6. Subtraction:

- M[00011101]= 000000000001010 {i.e. 10 in Decimal}
   M[00011001]= 000000000000100 {i.e. 4 in Decimal}
- AC <= M[00011101]
- AC= 0000000000001010 {i.e. 10 in Decimal}
- After subtraction
   AC= 0000000000000110 {i.e. 6 in Decimal}



## 7. Multiplication:

- M[00011101]= 000000000001010 {i.e. 10 in Decimal}
   M[00011011]= 000000000000101 {i.e. 5 in Decimal}
- AC <= M[00011101]
- AC= 0000000000001010 {i.e. 10 in Decimal}
- After multiplication
   AC= 0000000000110010 {i.e. 50 in Decimal}

## Relevant screenshot attached:



## 8. Complement:

- M[00011101]= 1000011100000101
- AC <= M[00011101]
- AC= 1000011100000101
- After Complement operation AC= 0111100011111010



## 9. Store:

- M[00011101]= 000000000001010 {i.e. 10 in Decimal}
   M[00010111]= 0000000000100100
- AC <= M[00011101]
- AC= 0000000000001010 {i.e. 10 in Decimal}
- Storing the value of Accumulator in the Memory location 00010111 (23 in Decimal) M[00010111] = 0000000000001010 {i.e. 10 in Decimal}

#### Relevant screenshot attached:



## 10. Clear operation:

- M[00011101]= 0000000000000101
- AC <= M[00011101]
- AC= 000000000000101

| dk                                                                                             | Msgs<br>0                                       |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
|------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|-----------------------------|
| oreset                                                                                         | 0                                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| start start                                                                                    | o                                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| write_en                                                                                       | 0                                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| addr                                                                                           |                                                 | 00011101                                         |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| <b>&gt;</b> data                                                                               | 0000000000000101                                | 0000000000000101                                 |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| vscpu_a_width                                                                                  | 8                                               | 8                                                |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| vscpu_d_width                                                                                  |                                                 | 16                                               |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| pc_init                                                                                        | 00000001                                        | 00000001                                         |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| <b>c</b> lock                                                                                  | 0                                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| reset                                                                                          | 0                                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| start                                                                                          | 0                                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| write1<br>addr                                                                                 | 00011101                                        | 00011101                                         |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| data                                                                                           |                                                 | 00011101                                         |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      | _                           |
| mem                                                                                            |                                                 |                                                  | 0011100011101) (00000000 | 00000000) (0000000000000                                    | 20003 (000000000000000            | 3 (0000000000000) (0000                 | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000} {0000000000000000000                                                        | (00000000                   |
| s read                                                                                         | 0                                               | 100000000000000000000000000000000000000          | 0011100011101710000000   | 00000007,00000000000                                        | 3000710000000000000000            | 7/100000000000000007/0000               | 000000000000000000000000000000000000000 | 30000400007,000040000                   | 00000007,0000000000000000                                                            | 100000000                   |
| mem write                                                                                      | o l                                             |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| data read                                                                                      | 22222222222                                     | 00                                               |                          | (00000000000000000000000000000000000000                     |                                   | (00000000000000000                      |                                         |                                         | (00000000000000000                                                                   | _                           |
| address                                                                                        | 00000000                                        | 00000000                                         |                          | 100010011                                                   | 100000000                         |                                         |                                         |                                         | 00010100                                                                             | 100000000                   |
| ac_ff                                                                                          | 000000000000000000                              |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
|                                                                                                |                                                 | 0000000000000000                                 |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| ac_ns                                                                                          |                                                 | 00000000000000000                                |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
|                                                                                                | 00000000000000000                               |                                                  |                          |                                                             |                                   |                                         |                                         |                                         |                                                                                      |                             |
| dr_ff                                                                                          | 0000000000000000<br>000000000000000000          | 000000000000000000000000000000000000000          |                          | (00000000000000000000000000000000000000                     |                                   | (00000000000000000000000000000000000000 |                                         |                                         | [00000000000000000000000000000000000000                                              |                             |
| dr_ff<br>dr_ns                                                                                 | 0000000000000000<br>00000000000000000<br>00000  | 000000000000000000<br>000000000000000000<br>0000 |                          | [0000000000000000000000000000000000000                      | (00000000                         | [00000000000000000000000000000000000000 |                                         |                                         | (00000000000000000000000000000000000000                                              | 200000000                   |
| dr_ff<br>dr_ns<br>ar_ff<br>ar_ns                                                               | 00000000000000000<br>00000000000000000<br>0000  | 00000000000000000000000000000000000000           | 00010011                 |                                                             |                                   | (00000000000000000000000000000000000000 |                                         | (00010100                               |                                                                                      |                             |
| dr_ff<br>dr_ns<br>ar_ff<br>ar_ns<br>pc_ff                                                      | 00000000000000000000000000000000000000          | 00000000000000000000000000000000000000           | (00010011                | 00010011<br>100000000                                       | 00000000                          | [00000000000000000000000000000000000000 |                                         | 100010100                               | 00010100<br>00000000                                                                 | I 00000000<br>I 000 10 10 1 |
| dr_ff<br>dr_ns<br>ar_ff<br>ar_ns<br>pc_ff<br>pc_ns                                             | 000000000000000<br>0000000000000000<br>000000   | 00000000000000000000000000000000000000           | (00010011                | 00010011                                                    |                                   | 100000000000000000000000000000000000000 |                                         | .00010100                               | 00010100                                                                             |                             |
| ac_ns dr_ff dr_ns ar_ff ar_ns pc_ff pc_ns ir_ff                                                | 00000000000000000000000000000000000000          | 00000000000000000000000000000000000000           | (00010011                | 00010011<br>00000000<br>00010100                            |                                   | (00000000000000000000000000000000000000 |                                         | 700010100                               | 00010100<br>00000000<br>00010101                                                     |                             |
| dr_ff<br>dr_ns<br>ar_ff<br>ar_ns<br>pc_ff<br>pc_ns<br>ir_ff<br>ir_ns                           | 00000000000000000000000000000000000000          | 00000000000000000000000000000000000000           |                          | (00010011<br>(00000000<br>(00010100                         | (000 10 100                       |                                         |                                         |                                         | 100010100<br>100000000<br>100010101                                                  | 700010101                   |
| d_ff dr_ns ar_ff ar_ns pc_ff pc_ns ir_ff ir_ns stvar_ff                                        | 00000000000000000000000000000000000000          | 00000000000000000000000000000000000000           | 0000001                  | (00010011<br>(0000000<br>(00010100<br>(0000000<br>(00000001 | 00010100                          | (00000100                               | 00000101                                | [0000001                                | 00010100<br>0000000<br>00010101<br>00000000<br>000000                                | [00010101<br>[00000011      |
| dr_ff dr_ns ar_ff ar_ns pc_ff pc_ns ir_ff ir_ns stvar_ff stvar_ns                              | 00000000000000000000000000000000000000          | 00000000000000000000000000000000000000           |                          | (00010011<br>(00000000<br>(00010100                         | (000 10 100                       |                                         | .00000101<br>.0000001                   |                                         | 100010100<br>100000000<br>100010101                                                  | 700010101                   |
| d_ff  dr_ns  ar_ff  ar_ns  pc_ff  pc_ns  ir_ff  ir_ns  stvar_ff  stvar_ns  memsize             | 000000000000000000<br>00000000000000000<br>0000 | 90000000000000000000000000000000000000           | 0000001                  | (00010011<br>(0000000<br>(00010100<br>(0000000<br>(00000001 | 00010100                          | (00000100                               |                                         | [0000001                                | 00010100<br>0000000<br>00010101<br>00000000<br>000000                                | [00010101<br>[00000011      |
| dr_ff  dr_ns  ar_ff  ar_ns  pc_ff  pc_ns  ir_ff  ir_ns  stvar_ff  stvar_fs  memsize  instr_add | 00000000000000000000000000000000000000          | 90000000000000000000000000000000000000           | (0000001<br>(00000010    | 00010011<br>00000000<br>00010100<br>00000000<br>000000      | 000010100<br>00000011<br>00000100 | (00000100                               | (00000001                               | [0000001<br>[00000010                   | (00010100<br>(0000000<br>(0000000<br>(00010101<br>(0000000<br>(00000010<br>(00000011 | 0000011<br>0000010          |
| dr_ff dr_ns ar_ns pc_ff pc_ns ir_ff ir_ns stvar_ff stvar_ns                                    | 00000000000000000000000000000000000000          | 90000000000000000000000000000000000000           | (0000001<br>(00000010    | 00010011<br>00000000<br>00010100<br>00000000<br>000000      | 000010100<br>00000011<br>00000100 | (0000100<br>(0000101                    | (00000001                               | [0000001<br>[00000010                   | 00010100<br>0000000<br>00010101<br>00000000<br>000000                                | 0000011<br>0000010          |

## **CORDIC**

COordinate Rotation Digital Computer is designed to calculate trigonometric functions using simple operations. The algorithm can also compute division, square root after making small changes. The sine and cosine values for an angle are computed with the basic version. Steps to encode the angle ZO whose cosine/sine is to be computed:

- The acceptable range of Z0 is (-90°,90°) and is represented using 16 bits.
- The angle Z0 is converted into radians and the range becomes (-1.57c,+1.57c).
- MSB is '0' for positive angles and '1' otherwise.
- The second most significant bit is the integer part of Z0 in radians. It can be noted that only 1-bit is enough to store the integral part of the angle, provided the acceptable range.
- The fractional part is converted into binary and is stored in 14 bits.

For example,

 $Z0 = +22.5^{\circ} = +0.3926991 \text{ rad} = 0.0011001001001011111111}$  (MSB is '0' for positive angle)

= 0001100100100001111111 is the input to be given



Figure 11: Flowchart of the CORDIC algorithm

```
Verilog code:
```

```
module Cordic(clk, rst, x, y, z, S, C);
  input clk, rst;
  input x, y;
  // x=1, y=0 for required mode
                    // Sign || 0 or 1 || fraction
  input [15:0] z;
  output [15:0] S,C;
  wire [15:0] atan[0:15];
  assign atan[0] = 16'b001100100100100; //stored tan-1 values
  assign atan[1] = 16'b0001110110101100;
  assign atan[2] = 16'b0000111110101110;
  assign atan[3] = 16'b00000111111110101;
  assign atan[4] = 16'b00000011111111111;
  assign atan[5] = 16'b0000001000000000;
  assign atan[6] = 16'b0000000100000000;
  assign atan[7] = 16'b00000000100000000;
  assign atan[8] = 16'b0000000001000000;
  assign atan[9] = 16'b0000000000100000;
  assign atan[10] = 16'b0000000000010000;
  assign atan[11] = 16'b00000000000001000;
  assign atan[12] = 16'b00000000000000100;
  assign atan[13] = 16'b00000000000000010;
  assign atan[14] = 16'b00000000000000001;
  assign atan[15] = 16'b0000000000000000;
  reg [15:0] x r, y r, z r;
  reg [0:4] count;
  reg [15:0] S,C;
always@(posedge clk) begin
     if(rst == 1'b1) begin
           x r \le \{1'd0, x, 14'd0\};
           y r \le \{1'd0, y, 14'd0\};
           z r <= z;
           count <= 5'd0;
     end
     else begin
           if ( count <= 15 ) begin
                 if (z r[15] == 0) begin
                       x r \le x r - (y r >> count);
                       y r \le y r + (x r >> count);
```

```
z r <= z r - atan[count];
                end
                else begin
                     x_r \le x_r + (y_r >> count);
                     y_r \le y_r - (x_r >> count);
                     z_r <= z_r + atan[count];</pre>
                end
                count <= count+1;
          end
          else begin
                S \le x r; // +/- scaled Sine
                C <= y r; // +/- scaled Cos
          end
     end
end
endmodule
```

The final outputs x16 and y16 provide us the almost accurate scaled version of cosine and sine values. The obtained outputs are 1.646 times the actual values.

```
xn = An (x0 cos(z0) + y0 sin(z0))

yn = An (x0 sin(z0) + y0 cos(z0))

zn = 0

Let us suppose that Z0 = 56.5 = 0.986111 rad, after 16 iterations,

x16 = 0011101000101100 and y16 = 0101011111100101 are obtained.

Steps to decode the outputs:
```

- The 16-bit outputs also share the same format as the input angle. The MSB specifies the sign.
- The second most significant bit is directly the integral part. The output range is between -1.646 and +1.646 (i.e. 1.646\*Range(cos(Z0)) or sin(Z0))).
- The 14 LSBs are to be converted into the fractional part.

For example, obtained cosine value is

```
x16 = 0011101000101100 =
+0.11101000101100
x16 = +0.908935546875
```

Expected value is  $1.646*\cos(56.5^\circ) = 0.90848827782$ . Our 16-bit representation provides precision till 3 rd decimal point.

# GCD of two numbers

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity gcd_gauss_algorithm is
  Port (
    clk : in STD_LOGIC;
    rst_n : in STD_LOGIC;
        : in STD_LOGIC_VECTOR(31 downto 0);
        : in STD_LOGIC_VECTOR(31 downto 0);
    gcd : out STD_LOGIC_VECTOR(31 downto 0)
  );
end gcd_gauss_algorithm;
architecture Behavioral of gcd_gauss_algorithm is
  signal temp_a, temp_b : std_logic_vector(31 downto 0);
  signal swap : std_logic;
begin
  temp_a <= a;
  temp_b <= b;
  -- Ensure a >= b
  swap <= '1' when (temp_a < temp_b) else '0';</pre>
```

```
(temp_a, temp_b) <= (temp_b, temp_a) when swap = '1' else (temp_a, temp_b);
  -- Gauss algorithm loop
  process(clk)
  begin
    if rising_edge(clk) then
      if rst_n = '0' then
        temp_a <= (others => '0');
        temp_b <= (others => '0');
      else
         if temp_a >= temp_b then
           temp_a <= std_logic_vector(unsigned(temp_a) - unsigned(temp_b));</pre>
         end if;
      end if;
    end if;
  end process;
  gcd <= temp_a;</pre>
end Behavioral;
```