Projet BNP: Groupe 4

Vassili Chesterkine Jules Deschamps Aymane Hanine Anas Ouled Sbouria Romain Piron

• 07/04/2021

Déroulé de la présentation

- 1. Dataset, Indice S&P 500 et mesures de risques
- 2. Stratégies d'optimisation avec positions short
- 3. Suppression des positions short (poids positifs)
- 4. Positions dont la somme des poids vaut 1
- 5. Positions alternatives

1. Dataset, Indice S&P 500 et mesures de risques

Données initiales :

- Portfolio mensuel, secteurs d'activité (Excel)
- Valeurs journalières des indices (yfinance)

Traitement des données:

- Nettoyage des erreurs
- Reconstitution de l'indice

Evaluation de la stratégie:

- Comparaison avec la feuille benchmark
- Mise en place d'indicateurs de risques

1. Dataset, Indice S&P 500

Écart de valeurs avec le benchmark mais même allure

Les indices de performance calculés ici nous serviront de référence pour tous les calculs d'optimisation suivants

1. Mesures de risques

1. Analyse par secteurs (indice S&P 500)

Stratégies d'optimisation avec positions short

Position short : poids négatif associé à un actif

 \rightarrow Si l'action de l'entreprise baisse, le client est gagnant

On autorise ici des poids négatifs ou positifs (pas de contraintes)

Méthode

Markowitz

2. Stratégies d'optimisation avec positions short

Trouver $w_{optimal}$ dans $argmax\{\mu^T w - \lambda w^T \Sigma w\}$

 λ

paramètre d'aversion au risque

$$\lambda \approx 14$$

Méthode Markow<u>itz</u>

2. Stratégies d'optimisation avec positions short

Allure du portefeuille ? Performances ? Mesures de risque ?

Performance moyenne	51,1%
Volatilité moyenne	133,18%
Max. drawdown	100%
Deuxième drawdown	85,73%
VaR (au niveau 95%)	14,66%
Ratio de sharpe	0,19
Tracking error	150%

Méthode Markowitz

2. Stratégies d'optimisation avec positions short

Allure du portefeuille ? Performances ? Mesures de risque ?

Méthode Markowitz

2. Stratégies d'optimisation avec positions short

CONSUMER DISCRETIONARY	0,16
CONSUMER STAPLES	0,17
ENERGY	-0,15
FINANCIALS	0,48
HEALTH CARE	0,45
INDUSTRIALS	-0,46
INFORMATION TECHNOLOGY	-0,12
MATERIALS	-0,49
UTILITIES	0,14

2. Stratégies d'optimisation avec positions short

Méthode Markowitz

→ Résultats peu satisfaisants pour le client

Explication: Aversion au risque trop faible

Méthode

Robust

2. Stratégies d'optimisation avec positions short

Deuxième stratégie : optimisation type Robuste

Trouver
$$w_{rob}$$
 dans $\operatorname{argmax}\left(\overline{\mu^T}w - \kappa\sqrt{w^T\Omega w} - \frac{\lambda}{2}w^T\Sigma w\right)$

 κ

paramètre d'aversion aux erreurs sur les rendements

 $\bar{\mu}$

vecteur de rendement

paramètre d'aversion au risque

matrice de variance-covariance des erreurs

2. Stratégies d'optimisation avec positions short

 $Premier cas: Considerons ici que \Omega = \Sigma$

Performance moyenne	40.98%
Volatilité moyenne	100.40%
Max. drawdown	100%
Deuxième drawdown	77.05%
VaR (au niveau 95%)	11.07%
Ratio de sharpe	0.21
Tracking error	113%

2. Stratégies d'optimisation avec positions short

 $Premier\, cas: Considerons\, ici\, que\, \Omega = \Sigma$

2. Stratégies d'optimisation avec positions short

CONSUMER DISCRETIONARY	0,11
CONSUMER STAPLES	0,13
ENERGY	-0,10
FINANCIALS	0,37
HEALTH CARE	0,34
INDUSTRIALS	-0.36
INFORMATION TECHNOLOGY	-0,09
MATERIALS	-0,37
UTILITIES	0,10

Méthode Robust

2. Stratégies d'optimisation avec positions short

 $Deuxieme \, cas : \, Considerons \, ici \, que \, \Omega = \operatorname{diag}(\Sigma)$

Performance moyenne	26.81%
Volatilité moyenne	34.42%
Max. drawdown	76.74%
Deuxième drawdown	77.05%
VaR (au niveau 95%)	49.94%
Ratio de sharpe	0.57
Tracking error	49.94%

2. Stratégies d'optimisation avec positions short

CONSUMER DISCRETIONARY	0,12
CONSUMER STAPLES	0,08
ENERGY	-0,03
FINANCIALS	0,04
HEALTH CARE	0,17
INDUSTRIALS	-0.08
INFORMATION TECHNOLOGY	-0,06
MATERIALS	-0,10
UTILITIES	-0.03

Méthode Robust

2. Stratégies d'optimisation avec positions short

 $\overline{Troisieme\, cas}: Considerons\, ici\, que\, \Omega = \mathbb{I}$

Performance moyenne	0.02%
Volatilité moyenne	0.01%
Max. drawdown	0.01%
Deuxième drawdown	0.01%
VaR (au niveau 95%)	0%
Ratio de sharpe	0.41
Tracking error	17.58%

2. Stratégies d'optimisation avec positions short

CONSUMER DISCRETIONARY	0
CONSUMER STAPLES	0
ENERGY	0
FINANCIALS	0
HEALTH CARE	0
INDUSTRIALS	0
INFORMATION TECHNOLOGY	0
MATERIALS	0
UTILITIES	0

Stratégies d'optimisation à poids positifs

On ne possède plus aucune position short

 \rightarrow Plus de gain possible sur la baisse d'un actif

Les poids sont positifs (mais pas encore de normalisation à 100%)

Méthode Markowitz

3. Suppression des positions short

Allure du portefeuille ? Performances ? Mesures de risque ?

Performance moyenne	16,73%
Volatilité moyenne	14,48%
Max. drawdown	32,07%
Deuxième drawdown	24,50%
VaR (au niveau 95%)	1,65%
Ratio de sharpe	0,97
Tracking error	15%

Méthode Markow<u>itz</u>

3. Suppression des positions short

CONSUMER DISCRETIONARY	0,50
CONSUMER STAPLES	0,48
ENERGY	0,97
FINANCIALS	0,67
HEALTH CARE	0,55
INDUSTRIALS	0,73
INFORMATION TECHNOLOGY	0,61
MATERIALS	0,84
UTILITIES	0,33

Méthode Robust

3. Suppression des positions shorts

 $Premier\, cas: Considerons\, ici\, que\, \Omega = \Sigma$

Performance moyenne	2.72%
Volatilité moyenne	2.2%
Max. drawdown	5.89%
Deuxième drawdown	5.81%
VaR (au niveau 95%)	0.32%
Ratio de sharpe	0.81
Tracking error	16%

3. Suppression des positions shorts

 $\overline{Deuxieme\, cas:\, Considerons\, ici\, que}\, \Omega = \operatorname{diag}(\Sigma)$

Performance moyenne	6.5%
Volatilité moyenne	7.24%
Max. drawdown	15.45%
Deuxième drawdown	14.6%
VaR (au niveau 95%)	0.32%
Ratio de sharpe	0.82
Tracking error	12%

Méthode Robust

3. Suppression des positions shorts

 $\overline{Troisieme\, cas}: Considerons\, ici\, que\, \Omega = \mathbb{I}$

Performance moyenne	0.02%
Volatilité moyenne	0.01%
Max. drawdown	0.01%
Deuxième drawdown	0.01%
VaR (au niveau 95%)	0%
Ratio de sharpe	0.41
Tracking error	17.58%

Contrainte supplémentaire : somme des poids égale à 1

On ne possède plus aucune position short

→ Plus de gain possible sur la baisse d'un actif

Les poids sont positifs et normalisés à 100

Méthode Markowitz

4. Positions dont la somme des poids vaut 1

Allure du portefeuille ? Performances ? Mesures de risque ?

Performance moyenne	16,76%
Volatilité moyenne	13,56%
Max. drawdown	31,80%
Deuxième drawdown	25,45%
VaR (au niveau 95%)	1,51%
Ratio de sharpe	1,06
Tracking error	14%

Méthode Markow<u>itz</u>

4. Positions dont la somme des poids vaut 1

CONSUMER DISCRETIONARY	0,61
CONSUMER STAPLES	0,63
ENERGY	1,35
FINANCIALS	1,06
HEALTH CARE	0,68
INDUSTRIALS	0,93
INFORMATION TECHNOLOGY	0,65
MATERIALS	1,14
UTILITIES	0,35

Méthode Robust

4. Positions dont la somme des poids vaut 1

 $\overline{Premier\,cas:Considrons\,ici\,que\,\Omega}=\Sigma$

Performance moyenne	7.68%
Volatilité moyenne	7.76%
Max. drawdown	24.87%
Deuxième drawdown	19.07%
VaR (au niveau 95%)	1.05%
Ratio de sharpe	0.79
Tracking error	16%

Méthode

Robust

4. Positions dont la somme des poids vaut 1

CONSUMER DISCRETIONARY	0,41
CONSUMER STAPLES	0,59
ENERGY	1,32
FINANCIALS	1,09
HEALTH CARE	0,43
INDUSTRIALS	0.99
INFORMATION TECHNOLOGY	0.44
MATERIALS	1,16
UTILITIES	0,32

Méthode Robust

4. Positions dont la somme des poids vaut 1

 $\overline{Deuxieme\, cas:\, Considerons\, ici\, que}\, \Omega = \operatorname{diag}(\Sigma)$

Performance moyenne	9.63%
Volatilité moyenne	9.32%
Max. drawdown	19.71%
Deuxième drawdown	19.53%
VaR (au niveau 95%)	1.09
Ratio de sharpe	0.91
Tracking error	12%

Méthode

Robust

4. Positions dont la somme des poids vaut 1

CONSUMER DISCRETIONARY	0.49
CONSUMER STAPLES	0.58
ENERGY	1.34
FINANCIALS	1.07
HEALTH CARE	0.54
INDUSTRIALS	0.99
INFORMATION TECHNOLOGY	0.52
MATERIALS	1.16
UTILITIES	0.36

Méthode Robust

4. Positions dont la somme des poids vaut 1

 $\overline{Troisieme\, cas}: Considerons\, ici\, que\, \Omega = \mathbb{I}$

Performance moyenne	14.52%
Volatilité moyenne	15.66%
Max. drawdown	47.59%
Deuxième drawdown	34.97%
VaR (au niveau 95%)	1.85%
Ratio de sharpe	0.82
Tracking error	3.5%

Méthode

Robust

4. Positions dont la somme des poids vaut 1

CONSUMER DISCRETIONARY	0,97
CONSUMER STAPLES	0,64
ENERGY	1,31
FINANCIALS	1,30
HEALTH CARE	0,82
INDUSTRIALS	1.04
INFORMATION TECHNOLOGY	1.02
MATERIALS	1,13
UTILITIES	0,63

5. Positions alternatives

• Réduction de position : hard constraint

Première optimisation :

- considération des 150/300 plus grosses capitalisations, autres poids pris nuls
- contraintes : volatilité majorée, positivité des poids
- pas d'aversion au risque

- On cherche une continuité dans la valeur du portefeuille : ajout de
- Limitation du turnover

Détermination des positions équivalentes sur n capitalisations, avec :

- aversion au risque
- permission de short

Réduction de position : hard constraint

Positions alternatives

n=200

Performance moyenne	6.24% et 31.12%
Volatilité moyenne	14.43% et 106%
Max. drawdown	52% et 70%
Deuxième drawdown	24% et 38%

Conjecture : La performance et la volatilité croissent avec le nombre de capitalisations considérées → on peut trouver un juste milieu

Ajout de contrainte "soft" : coût de transaction

Positions alternatives

Évolution du poids d'un actif selon le coût de transaction

Influence négligeable sur l' évolution de la valeur du portefeuille

- Modèle plus réaliste
 - Limitation du turnover

A combiner avec les autres stratégies de positionnement

Merci pour votre attention!