電子電路實驗五: RC 與 RL 電路之步級 響應

實驗結報

B02901178 江誠敏

2014/10/07

1 實驗結果

本實驗的電路圖如下:

1.1 RC 電路

量測 $C=10\mu F$

電阻	時間常數測量值	理論値	相對誤差
$9.95 \mathrm{k}\Omega$	740.00µs	1094.50µs	-32.4%
$7.52 \mathrm{k}\Omega$	704.00µs	827.20µs	-14.9%
$5.04 \mathrm{k}\Omega$	$460.00 \mu s$	$554.40 \mu s$	-17.0%
$3.24 \mathrm{k}\Omega$	330.00µs	356.40µs	-7.4%

1.2 RL 電路

電阻	時間常數測量值	理論値	相對誤差
4.95 k Ω	2.12µs	2.02µs	4.9%
$4.01 \mathrm{k}\Omega$	2.61µs	$2.49 \mu s$	4.7%
$2.97 \mathrm{k}\Omega$	$3.08 \mu s$	$3.37 \mu s$	-8.5%
1.99 k Ω	5.15µs	5.03µs	2.5%

2 結報問題

1. 在做一次電路時,輸入方波的週期最好為電路時間常數 (Time Constant) 的三倍以上,為什麼?

答:如果周期不夠長,電容可能還沒有被充滿,或是電感的感應電壓尙有一定的大小,這樣我們就不能直接用量測電壓從 5V 到 1.32V 的時間差這個方便的方法來計算時間常數,而要用其他方法了。

2. Duty Cycle 的定義為何?以何鈕調整?

答: Duty Cycle 原本的定義是機器工作的時間占所有時間的比列·而對於週期性方波即是指訊號高電位占所有時間的比列。而對於我們實驗使用的 SFG 系列的訊號產生器 (應該是吧…),調整的方法是先按下 shift 鍵,接者按下 DUTY 鍵,最後旋轉旋鈕即可調整比例。

3 心得

這次的實驗電容的部分好像哪裡弄錯了,處理數據的時後才發現誤差都蠻大的 (我猜是週期不夠長...)。實驗的時候我還不知道 1.32V 到底是怎麼來的,問了旁邊的人好像也沒人知道,看來以後還是要好好讀實驗講義。