Recursive Notion of Importance

$$x_i^{(t+1)} \propto \sum_j A_{ij} x_j^{(t)}$$

, where $x_i^{(0)} = 1$ for all i.

- Values x_i increase with t.
- Relative values are important rather than absolute ones
 - normalize x_i at each step.

Recursive Notion of Importance

$$x_i^{(t+1)} = \frac{1}{\lambda} \sum_j A_{ij} x_j^{(t)}$$

vertex	$x^{(1)}$	$x^{(5)}$	$x^{(10)}$	$x^{(15)}$	$x^{(20)}$	degree, k
1	0.103	0.076	0.071	0.071	0.071	16
2	0.058	0.055	0.053	0.053	0.053	9
3	0.064	0.065	0.064	0.064	0.064	10
4	0.038	0.043	0.042	0.042	0.042	6
5	0.019	0.015	0.015	0.015	0.015	3
6	0.026	0.016	0.016	0.016	0.016	4
7	0.026	0.016	0.016	0.016	0.016	4
8	0.026	0.034	0.034	0.034	0.034	4
9	0.032	0.044	0.046	0.046	0.046	5
10	0.013	0.020	0.021	0.021	0.021	2

In-Depth:

• Suppose we take a random vector x(0) and multiply it by a matrix A whose elements are all non-negative. After t multiplications we get:

$$\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}(0) \quad ,$$

where $\mathbf{x}(0) = \sum_i c_i \mathbf{v}_i$ can be written as a linear combination of the eigenvectors \mathbf{v}_i of \mathbf{A} for some appropriate choice of constants c_i .

$$\mathbf{x}(t) = \mathbf{A}^t \mathbf{x}(0) = \lambda^t \mathbf{x}(0) = \sum_i c_i \lambda_i^t \mathbf{v}_i = \lambda_1^t \sum_i c_i \left(\frac{\lambda_i}{\lambda_1}\right)^t \mathbf{v}_i$$

• When $t \to \infty$, $\boldsymbol{x}(t) \to \lambda_1^t c_1 \boldsymbol{v}_1$

A limiting vector x(t) is proportional to leading eigenvector of an adjacency matrix.

Structural Importance – Eigenvector Centrality (Revisited)

Perron-Frobenius theorem:

• A matrix with all non-negative elements (e.g., adjacency matrix) has only one eigenvector whose elements are all non-negative (leading eigenvector) and the corresponding unique largest real eigenvalue.

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

- A node i's centrality (x_i) is the i-th element of the leading eigenvector x of an adjacency matrix A.
- $\blacksquare \lambda$ is the corresponding largest eigenvalue.

Exercise with Python – Degree vs Eigenvector Centrality

```
1 import networkx as nx
2 import matplotlib.pyplot as plt
3
4 G = nx.karate_club_graph()
5
6 dc= nx.degree_centrality(G) #degree centrality
7 ec = nx.eigenvector_centrality(G) #eigenvector centrality
8
9 x = list(dc.values())
10 y = list(ec.values())
11
12 plt.plot(x, y, 'ro')
13 plt.xlabel('Degree Centrality')
14 plt.ylabel('Eigenvector Centrality')
```


Exercise with Python – Degree vs Eigenvector Centrality

```
1 import networkx as nx
 2 import matplotlib.pyplot as plt
 4 G = nx.karate_club_graph()
 6 dc= nx.degree centrality(G) #degree centrality
 7 ec = nx.eigenvector centrality(G) #eigenvector centrality
 9 x = list(dc.values())
10 y = list(ec.values())
11
12 plt.plot(x, y, 'ro')
13 for i, txt in enumerate(dc.keys()):
      plt.annotate(txt, (x[i], y[i]))
16 plt.xlabel('Degree Centrality')
17 plt.ylabel('Eigenvector Centrality')
```


Directed Networks

 Generally consider nodes with larger incoming links more influential

$$x_i = \frac{1}{\lambda} \sum_j A_{ij} x_j$$
, where $A_{ij} \equiv A_{i \leftarrow j}$

Directed Networks

• What are the eigenvector centrality scores, x_A and x_B , of nodes A and B?

$$x_i = \frac{1}{\lambda} \sum_j A_{ij} x_j$$

Structural Importance – PageRank

Representative Variant of Eigenvector Centrality

- To resolve two major issues:
 - (1) Eigenvector centrality becomes zero for some nodes in a directed network.
 - (2) A node may be only one among many neighbors of an influential node.

Weight for balancing between the 1st and 2nd terms $x_i = \alpha \sum_j A_{ij} \frac{x_j}{k_j^{\text{out}}} + \beta$ (1) Base centrality for free

(2) Centrality divided by an influential node's outdegree

Structural Importance – PageRank

Googleplex, Mountain View, CA, USA

"Google provides access to the world's information in one click."

- Sergey Brin and Larry Page

Structural Importance – PageRank

All web pages are not equally important.

[Main Idea]

Let's rank web pages by hyperlink structure!