Delta-Attribution: Explaining What Changes When Models Change

1st Arshia Hemmat dept. Computer Engineering University of Isfahan Isfahan, Iran arshiahemmat@mehr.ui.ac.ir 2nd Afsaneh Fatemi dept. Computer Engineering University of Isfahan Isfahan, Iran a_fatemi@eng.ui.ac.ir

Abstract— Model updates (new hyperparameters, kernels, depths, solvers, or data) change performance, but the reason often remains opaque. We introduce Delta-Attribution (Δ -Attribution), a model-agnostic framework that explains what changed between versions A and B by differencing per-feature attributions: $\Delta\phi(x)=\phi_B(x)-\phi_A(x)$. We evaluate $\Delta\phi$ with a Δ -Attribution Quality Suite covering magnitude/sparsity (L1, Top-k, entropy), agreement/shift (rank-overlap@10, Jensen-Shannon divergence), behavioural alignment (Delta Conservation Error, DCE; Behaviour-Attribution Coupling, BAC; CO Δ F), and robustness (noise, baseline sensitivity, grouped occlusion).

Instantiated via fast occlusion/clamping in standardized space with a class-anchored margin and baseline averaging, we audit 45 settings: five classical families (Logistic Regression, SVC, Random Forests, Gradient Boosting, kNN), three datasets (Breast Cancer, Wine, Digits), and three A/B pairs per family. Findings. Inductive-bias changes yield large, behaviour-aligned deltas (e.g., SVC poly—rbf on Breast Cancer: BAC \approx 0.998, DCE \approx 6.6; Random Forest feature-rule swap on Digits: BAC \approx 0.997, DCE \approx 7.5), while "cosmetic" tweaks (SVC gamma=scale vs. auto, kNN search) show rank-overlap@10= 1.0 and DCE \approx 0. The largest redistribution appears for deeper GB on Breast Cancer (JSD \approx 0.357). Δ -Attribution offers a lightweight update audit that complements accuracy by distinguishing benign changes from behaviourally meaningful or risky reliance shifts.

Index Terms—Explainable AI, feature attribution, delta attribution, model updates, robustness, distribution shift.

I. INTRODUCTION

Models rarely stand still. In modern ML systems, practitioners routinely update models by changing hyperparameters, switching architectures, fine-tuning on fresh data, or compressing for deployment. These updates can shift performance in obvious ways (accuracy goes up or down), yet the *reason* for the shift often remains opaque: *what* parts of the decision logic changed, *where* did the model start relying more (or less) on particular features, and *do* those changes align with observed behaviour?

Most explanation methods answer a different question: they explain *one* model at a time—e.g., via additive attributions such as SHAP [1], [2], rule-based local explanations such as Anchors [3], or perturbation/occlusion maps [4]. A sizeable body of work highlights stability concerns for such explanations [5], [6], and recent papers begin to study monitoring of

explanations or "explanation shift" under distribution shift [7], [8]. However, in practical pipelines the more immediate need is often an *update audit*: when we replace model A with model B, how did the model's reliance on input features change, and is that change consistent with the observed change in outputs?

Problem. We study this update-audit question for supervised classification. Given any attribution method that produces perfeature scores $\phi_A(x)$ and $\phi_B(x)$ for models A and B, we define the *delta attribution*

$$\Delta\phi(x) = \phi_B(x) - \phi_A(x),$$

and we evaluate the quality of $\Delta \phi$ with respect to: (i) magnitude and concentration (are changes small and diffuse or large and focused?), (ii) agreement and distributional shift between the two explanation vectors, (iii) behavioural alignment with the observed output change $\Delta f(x)$, and (iv) robustness to noise and baseline choices. Intuitively, $\Delta \phi$ should highlight where the new model reallocated reliance; a good Δ explanation should co-move with behaviour changes and remain stable to small input perturbations or reasonable baseline choices.

Approach (Δ -Attribution). We propose Delta-Attribution (Δ -Attribution), a simple, model-agnostic framework that turns any local explainer into an *update explainer*. In this paper we instantiate it with a fast *occlusion/clamping* explainer in standardized feature space: for feature j, we set x_j to a baseline and measure the margin drop for a chosen class; the attribution is the drop, and $\Delta \phi$ is the difference between models. To connect explanations to behaviour, we define f(x) as the class-specific margin for a fixed reference class (in our runs, the class predicted by B), yielding $\Delta f(x) = f_B(x) - f_A(x)$. We then compute a Δ -Attribution Quality Suite comprising:

- Internal Δ metrics: Δ magnitude (ℓ_1), Top-K concentration, entropy, rank overlap@10, and Jensen–Shannon divergence between normalized $|\phi_A|$ and $|\phi_B|$.
- Behaviour-linked Δ metrics: the Delta Conservation Error (DCE) = $\mathbb{E}_x \left| \sum_j \Delta \phi_j(x) \Delta f(x) \right|$, the Behaviour-Attribution Coupling (BAC; Pearson corr of $\|\Delta \phi\|_1$ with $|\Delta f|$), and class-outcome focus (CO Δ F) that checks whether Δ mass concentrates on features deemed globally relevant by the updated model when fixes/regressions occur.

• <u>Robustness</u>: sensitivity of $\Delta \phi$ to Gaussian input noise and to alternative baselines (mean vs. median), plus a grouped-occlusion stress-test that jointly clamps top-k features to capture interactions.

Why not single-model explanations? Single-model inspections can show *what* a model currently relies on, but they leave the *update* unanswered. Directly differencing attributions provides a concrete, low-friction view of what changed. Importantly, our quality suite guards against over-interpretation: e.g., high DCE warns that a purely additive occlusion view may be unreliable; low rank overlap with high JSD indicates a genuine redistribution rather than mere reweighting; and robustness checks catch baseline- or noise-fragile deltas.

Scope and setting. We aim for a practical tool that is cheap enough to run during everyday model iteration. We therefore avoid heavy model-specific explanation tooling and large-scale hyperparameter sweeps. Our study intentionally targets classical ML families (logistic regression, SVM, random forests, gradient boosting, kNN) across three standard tabular/image datasets (Breast Cancer, Wine, Digits). For each family we construct three A/B pairs that toggle inductive bias (e.g., kernel, depth) or regularization/solver choices, so that we can observe small vs. large update regimes within the same learner.

Research questions. We organize the study around three questions:

- **RQ1** Internal change: How do Δ magnitude, sparsity/concentration, and rank agreement behave across small vs. large updates within and across algorithms?
- **RQ2 Behavioural alignment:** When performance changes, does $\|\Delta\phi\|_1$ increase and does DCE decrease? Do CO Δ F scores indicate that fixes concentrate Δ mass on globally relevant features for B?
- **RQ3 Robustness:** Are the observed Δ patterns stable under input noise and alternative baselines, and do grouped occlusions substantially alter conclusions (indicative of interactions)?

Contributions.

- We formalize *Delta-Attribution* as a model-agnostic lens for *explaining updates*: $\Delta\phi(x) = \phi_B(x) \phi_A(x)$, with a quality suite that measures magnitude/sparsity, agreement/shift, behavioural alignment (DCE, BAC, CO Δ F), and robustness.
- We provide an efficient instantiation via standardized occlusion with baseline averaging (mean/median) and a grouped-occlusion stress-test, together with implementation notes (class-anchored margins, reproducible pipelines).
- We run a broad empirical audit covering five ML families, three datasets, and nine A/B pairs per family. We show that changes in *inductive bias* (e.g., kernel or depth) produce large, behaviour-aligned Δ, whereas "cosmetic" knobs (e.g., SVC γ=scale vs. auto) yield tiny, concentrated Δ and near-perfect rank overlap.
- We release *Delta-Attribution* as a lightweight platform: scripts, metrics, and publication-ready assets for plug-in

updates and future benchmarks.

Positioning. Our focus complements single-model explainability [1], [3], [4] and explanation-stability work [5], [6], [9]. Unlike distribution-shift attribution [10], [11], [7], [8], we target *version-to-version* changes under fixed test distributions, mirroring the common operational reality of model updates. As rapid editing and fine-tuning become routine (e.g., model editing [12], [13], [14], [15]), update-centric explanations provide a governance signal that complements accuracy and fairness dashboards.

Takeaway. Δ -Attribution turns existing local explainers into a practical tool for update audits. By quantifying *how* reliance shifts and whether those shifts *explain* behaviour deltas, our framework helps practitioners decide when an update is benign, when it meaningfully improves reliance on task-relevant signals, and when it warrants further scrutiny.

II. RELATED WORK

Post-hoc explanations for a single model. Feature-attribution and exemplar methods explain individual model decisions via local scores or rules. Canonical approaches include LIME and Anchors [3], SHAP [1] and its tree-exact variant TreeSHAP [2], Integrated Gradients [16], SmoothGrad [17], gradient-based visualizations such as Grad-CAM [18], and occlusion/clamping [4]. While these tools are widely used, several works highlight pitfalls: saliency "sanity checks" show some maps ignore model or data [5]; ROAR finds many methods fail to remove truly important evidence upon retraining [19]; and input-perturbation methods can be manipulated adversarially [6]. These observations motivate explanation diagnostics beyond visual appeal. :contentReference[oaicite:0]index=0

Stability, monitoring, and evaluation. Beyond point explanations, recent work proposes to *measure* explanation reliability and track it over time. R2ET trains for stable top-k saliency at little extra cost [9]. Explanation-shift research argues that monitoring *changes* in explanation distributions can be a more sensitive indicator of behavior change than monitoring input/output distributions alone, with formal detectors on tabular data [7], [8]. Complementary studies evaluate robustness of attribution maps under perturbations and propose stronger evaluation protocols [20], [21]. Our work contributes here by defining a *version-to-version* suite (Δ -Attribution Quality Suite) that quantitatively captures magnitude, sparsity, rank agreement, distributional shift (JSD), behavior linkage (DCE, BAC, CO Δ F), and robustness (noise and grouped occlusion). :contentReference[oaicite:1]index=1

Explaining performance changes under distribution shift. A parallel line attributes *error changes* across environments. Federici et al. give an information-theoretic account of shift sources and error decompositions [10]; Zhang et al. attribute performance deltas to causal shift factors using Shapley-style games [11]. These focus on *what caused* performance change across datasets. In contrast, Δ -Attribution inspects *how a model's reliance redistributes over features* when the model itself changes (fine-tuning, hyperparameters, editing), and links

those reliance deltas to behavior deltas via DCE/BAC/CO Δ F. :contentReference[oaicite:2]index=2

Model editing and rapid updates. Frequent post-deployment updates—ROME [12], MEND [13], MEMIT [14], and stability fixes for sequential editing [15]—make version-aware explanations increasingly important. Our Δ -Attribution provides a lightweight audit for such updates, orthogonal to the editing method itself. :contentReference[oaicite:3]index=3

III. PROPOSED APPROACH

A. Setup and notation

Let f_A, f_B be two model versions on $x \in \mathbb{R}^d$. An explainer E returns per-feature scores $\phi_f(x) \in \mathbb{R}^d$. We study the delta attribution

$$\Delta\phi(x) = \phi_B(x) - \phi_A(x),$$

and assess its quality with a dedicated metric suite.

a) Reference class and score.: For each x we fix the reference class c(x) as the class predicted by f_B . We score that class using the model's margin or log-odds:

$$f(x) = \begin{cases} [\operatorname{dec}(x)]_{c(x)}, & \text{if function is available,} \\ \log \frac{p_{c(x)}(x)}{1 - p_{c(x)}(x)}, & \text{if probabilities are available,} \\ \log \frac{p_{c(x)}(x) + \varepsilon}{1 - p_{c(x)}(x) + \varepsilon}, & \text{otherwise, } \varepsilon = 10^{-9}. \end{cases}$$

Here $\operatorname{dec}(\cdot)$ denotes the model's decision function (decision_function); $p(\cdot)$ comes from predict_proba. Anchoring to c(x) compares the *same* class across versions and stabilizes behaviour-linked metrics (BAC, DCE).

B. Explainer: occlusion/clamping

We use a fast, model-agnostic occlusion explainer [4] in standardized space. Let b be a training-set baseline (mean by default; optionally averaged with the median). For feature j,

$$\phi_{f,j}(x) = f(x) - f(x_{-j}), \qquad x_{-j}: x_j \leftarrow b_j.$$

We compute ϕ_A, ϕ_B with the *same* baseline and the same c(x).

a) Grouped-occlusion stress test.: To probe interactions, jointly clamp the top-k features (by $|\phi_B|$), recompute $\Delta\phi$, and report

$$\rho = \mathbb{E}\left[\frac{\|\Delta\phi(x)\|_1}{\|\Delta\phi^{(\text{group-}k)}(x)\|_1 + \epsilon}\right].$$

Large ρ indicates a few features drive the change.

C. The Δ -Attribution Quality Suite

Averages are over the test set (or a stratified subset of up to 256 samples).

- a) Internal Δ metrics.: Let $u(x) = |\Delta \phi(x)|$ and $s(x) = u(x)/||u(x)||_1$ (skip if $||u||_1 = 0$).
- 1) Magnitude: $\mathbb{E} \|\Delta \phi(x)\|_1$.
- 2) Concentration: $\Delta \text{TopK}@10 = \mathbb{E}\left[\sum_{j \in \text{Top10}(u)} s_j(x)\right]$; Entropy: $\mathbb{E}\left[-\sum_j s_j(x) \log s_j(x)\right]$.
- 3) Rank agreement: Jaccard overlap of $Top10(|\phi_A|)$ vs. $Top10(|\phi_B|)$ (mean/median).
- 4) Distributional shift: $\mathbb{E}\left[JSD(p||q)\right]$ with $p = |\phi_A|/||\phi_A||_1$, $q = |\phi_B|/||\phi_B||_1$ [22].
- b) Behaviour-linked Δ metrics.: Let $\Delta f(x) = f_B(x) f_A(x)$.
- 1) DCE: $\mathbb{E} |\sum_j \Delta \phi_j(x) \Delta f(x)|$ (diagnostic; smaller is better).
- 2) BAC: $\operatorname{corr}_x(\|\Delta\phi(x)\|_1, |\Delta f(x)|)$.
- 3) CO Δ F: using the top-m relevant features for f_B from permutation importance (m=10), report the fraction of Δ mass on that set for *fixes* and for *regressions*.
 - c) Robustness.:
- 1) Δ -stability: for $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ with $\sigma \in \{0.01, 0.05\}$, $\mathbb{E} \|\Delta \phi(x + \varepsilon) \Delta \phi(x)\|_1/(\|\varepsilon\|_2 + \epsilon)$.
- 2) Grouped occlusion ratio: ρ above.
- d) Note on additivity.: Path methods such as Integrated Gradients [16] satisfy additivity; occlusion does not. Hence DCE is a diagnostic rather than expected to be zero.

IV. EXPERIMENTAL SETUP

A. Datasets and Preprocessing

We use three standard <code>scikit-learn</code> datasets: Breast Cancer (binary; n=569, d=30), Wine (3-class; n=178, d=13), and Digits (10-class; n=1797, 8×8 images flattened to d=64). Each dataset is split with a stratified 80/20 train—test split (random_state= 42). A <code>StandardScaler</code> is fit on training data and applied to test data. All models are wrapped in a <code>Pipeline</code> so that versions A and B share identical preprocessing.

B. Learners and A/B Configurations

We study five families: logistic regression (logreg), SVM (svc, probability=true), random forests (rf), gradient boosting (gb), and k-nearest neighbors (knn). Each family has three A/B pairs that toggle regularization, inductive bias (kernel/depth), or search strategy; see Table I.

C. Score Function and Explainer

For each test sample we anchor to the class predicted by f_B . We score that class using the model's margin when available (decision_function); otherwise we use log-odds from predict_proba. Attributions are computed with *occlusion/clamping* [4] in standardized space: for feature j, clamp x_j to a shared training baseline b_j and set $\phi_{f,j}(x) = f(x) - f(x_{-j})$ with x_{-j} : $x_j \leftarrow b_j$. To reduce baseline artefacts we average mean/median baselines (when both are available). We always use the *same* baseline and reference class for A and B.

Fig. 1. Overview of Δ -Attribution results across all (dataset, algorithm, pair). (a) BAC vs. DCE with marker size $\propto \|\Delta\phi\|_1$; (b) mean BAC and DCE by algorithm; (c) mean Δ -magnitude by algorithm.

TABLE I A/B configurations per learner family (all models in a shared $$\tt Pipeline)$.$

Family	Pair A	Pair B
logreg P1	C=1.0 (12, lbfgs) 12 (liblinear, C=1.0) lbfgs (12, C=1.0)	C=0.1 (l2, lbfgs) 11 (liblinear, C=1.0) saga (l2, C=1.0)
svcP1 svcP2 svcP3	rbf (C =1, γ =scale) rbf (γ =scale) poly (d =3, C =1)	linear (C =1) rbf (γ =auto) rbf (C =1, γ =scale)
rfP1 rfP2 rfP3	$n_{ m est}{=}100$, depth None depth None ($n_{ m est}{=}200$) max_feat=sqrt	$n_{ m est}{=}300$, depth None depth 5 ($n_{ m est}{=}200$) max_feat=log2
gb P1 gb P2 gb P3	$\begin{array}{l} \text{lr 0.1, } n_{\text{est}}{=}150\text{, depth 3} \\ n_{\text{est}}{=}100\text{ (lr 0.1, d=3)} \\ \text{depth 3 (lr 0.1, } n_{\text{est}}{=}150\text{)} \end{array}$	$\begin{array}{l} \text{lr 0.05, } n_{\text{est}}{=}150\text{, depth 3} \\ n_{\text{est}}{=}200\text{ (lr 0.1, d=3)} \\ \text{depth 5 (lr 0.1, } n_{\text{est}}{=}150) \end{array}$
knn P1 knn P2 knn P3	k=5 (uniform) weights=uniform (k =5) algorithm=auto (k =5)	k=10 (uniform) weights=distance (k =5) algorithm=ball_tree (k =5)

D. The Δ -Attribution Suite

Let $\Delta\phi(x)=\phi_B(x)-\phi_A(x),\ u(x)=|\Delta\phi(x)|,\ \text{and}\ s(x)=u(x)/\|u(x)\|_1$ (skip samples with $\|u\|_1=0$). We report the metrics in Table II. Briefly: (i) $\textit{Magnitude}\ \mathbb{E}\|\Delta\phi\|_1$; (ii) $\textit{Concentration}\ \Delta \text{TopK}@10=\mathbb{E}[\sum_{j\in \text{Top}10(u)}s_j]$ and entropy $\mathbb{E}[-\sum_j s_j\log s_j]$; (iii) $\textit{Rank}\ \textit{agreement}$ (Jaccard overlap of $\text{Top}-10(|\phi_A|)$ vs. $\text{Top}-10(|\phi_B|)$); (iv) $\textit{Distributional}\ \textit{shift}\ \text{JSD}(|\phi_A|,|\phi_B|)$ [22]; (v) $\textit{Behaviour}\ \textit{linkage}\ \text{with}\ \Delta f=f_B-f_A$: $\text{DCE}=\mathbb{E}[\sum_j \Delta\phi_j-\Delta f]$ and $\text{BAC}=\text{corr}(\|\Delta\phi\|_1,|\Delta f|)$; (vi) $\textit{Robustness:}\ \Delta\text{-stability to Gaussian}$ noise $(\sigma\in\{0.01,0.05\})$ and a grouped-occlusion ratio (jointly clamping top-k=2 features).

Assets used in this paper. We aggregate the Δ -suite by algorithm (Table III), plot a three-panel overview (Fig. 1), and list per-dataset Top-5 A/B pairs by Δ magnitude (Table IV).

a) Note on additivity.: Path methods such as Integrated Gradients [16] satisfy additivity; occlusion does not, so DCE is a *diagnostic* rather than expected to be zero.

TABLE II $\Delta\text{-Attribution metric glossary (averaged over test or a }\\ 256\text{-sample stratified subset)}.$

Metric	Definition / Intuition
Mag_{ℓ_1}	$\mathbb{E} \Delta\phi _1$; overall size of reliance change.
TopK@10	Fraction of $\ \Delta\phi\ _1$ on top-10 coords; higher = concentrated.
Entropy	Shannon entropy of $ \Delta \phi / \cdot _1$; lower = sparser.
RankOverlap@10	Jaccard of Top-10($ \phi_A $) vs. Top-10($ \phi_B $).
JSD	$JSD(\phi_A , \phi_B)$ [22], redistribution vs. reweighting.
DCE	$\mathbb{E}\left \sum_{j}\Delta\phi_{j}-\Delta f\right $; additive consistency diag.
BAC	$\operatorname{corr}(\ \Delta\phi\ _1, \Delta f)$; behaviour–attribution coupling.
Stability	$\mathbb{E} \ \Delta \phi(x+\varepsilon) - \Delta \phi(x)\ _1 / \ \varepsilon\ _2; \ \varepsilon \sim \mathcal{N}(0, \sigma^2 I).$
Group ratio	$\mathbb{E}[\ \Delta\phi\ _1/\ \Delta\phi^{(\text{group-2})}\ _1];$ interaction stress test.

V. RESULTS

A. What Δ -Attribution Achieves (with numbers)

Our suite surfaces *how* reliance shifts explain behavioural change and when updates are merely cosmetic. The key achievements below use the strongest instances across all 45 settings; see Table III (aggregate by algorithm) and Table IV (largest per-dataset shifts).

- Near-perfect behaviour-attribution coupling. The highest BAC scores are essentially perfect: breast_cancer-svc-pair3 has BAC≈ 0.9977, digits-rf-pair3 BAC≈ 0.9969, wine-rf-pair2 BAC≈ 0.9779, wine-svc-pair2 BAC≈ 0.9558, breast_cancer-rf-pair2 BAC≈ 0.9439. In each case, large structural changes (kernel/depth/feature rules) move Δφ in lock-step with the change in outputs.
- Exact conservation under occlusion in small-change controls. Five A/B pairs exhibit DCE = 0.0: digits-knn-pair3, breast_cancer-svc-pair2, wine-knn-pair3, wine-rf-pair3, and breast_cancer-knn-pair3. These serve as sanity checks that our explainer/baseline choices can yield perfect delta conservation when updates are cosmetic.
- Perfect rank agreement for cosmetic tweaks. RankOverlap@10 = 1.0 for five pairs (digits-knn-pair3, breast_cancer-knn-pair3, wine-knn-pair3, wine-rf-pair3, breast_cancer-svc-pair2), indicating the top-10 features of A and B are identical.
- When updates are focused, Δ concentrates heavily. On Wine, $\Delta \text{TopK}@10 = 1.00$ for rf-pair1, gb-pair1, gb-pair2,

and gb-pair3 (and 0.9997 for rf-pair2); almost the entire ℓ_1 mass of $\Delta \phi$ sits on ten features.

- Our suite separates redistribution from mere reweighting. The strongest distributional changes appear where inductive bias shifts: $breast_cancer-gb-pair3$ has the largest JSD \approx 0.357; other high-JSD cases include $breast_cancer-logreg-pair2$ (\approx 0.179), wine-knn-pair1 (\approx 0.167), digits-rf-pair2 (\approx 0.139), $breast_cancer-knn-pair1$ (\approx 0.130).
- Learner-level behaviour, aggregated. From Table III: Random Forests show the largest average reliance shifts with strong coupling ($\Delta {\rm Mag_{L1}}=36.23\pm25.94$, BAC = 0.81 ± 0.32) but higher DCE (29.61 \pm 21.20); kNN also moves substantially (19.36 \pm 29.26) with mixed coupling; Logistic Regression changes are small and stable (4.24 \pm 3.67, DCE 0.53 \pm 0.77); SVC averages are small deltas (2.19 \pm 4.00) but behaviour-relevant (BAC = 0.44 ± 0.46); Gradient Boosting sits in between.

B. Largest shifts by dataset (with context)

Table IV lists the top-5 A/B pairs per dataset by Δ -magnitude alongside BAC and DCE.

Breast Cancer. rf-pair2 (depth change) leads with $\Delta {\rm Mag_{L1}} = 78.55$ and high BAC 0.94; rf-pair3 and rf-pair1 follow (54.14, 38.79). DCE values (35–62) highlight non-additive interactions when tree structure changes.

Digits. knn–pair1 ($k: 5 \rightarrow 10$) has the largest shift 65.81 but weaker coupling (BAC 0.28); rf–pair2 couples strongly (BAC 0.94) at Δ 60.15.

Wine. knn-pair1 peaks at 46.55 (BAC 0.59); rf-pair2 shows smaller Δ 10.93 with near-perfect BAC 0.98, i.e., a precise reliance reallocation.

C. Reading the overview figure

In Fig. 1a, the largest dots (high $\|\Delta\phi\|_1$) cluster either at high BAC (behaviour-aligned structural changes) or low BAC (diffuse, NN-driven shifts). Panels (b) and (c) aggregate BAC/DCE and Δ -magnitude by algorithm, mirroring the patterns reported above.

a) Summary.: Concretely, our method delivers (i) BAC up to ≈ 0.998 on kernel/depth changes, (ii) exact DCE = 0 and RankOverlap@10 = 1 on multiple cosmetic controls, (iii) full Δ concentration on a handful of features in the Wine experiments, and (iv) clear separation of redistribution (high JSD) from simple reweighting. These achievements demonstrate that Δ -Attribution is an actionable audit for model updates, not just another explainer score.

TABLE III $\Delta ext{-Attribution metrics aggregated by algorithm (mean<math>\pm ext{std}$).

Algo	Δ Mag $_{ m L1}$	DCE	BAC	
	$\mu \pm \sigma$	$\mu \pm \sigma$	$\mu \pm \sigma$	
gb	9.30 ± 5.96	5.00 ± 3.38	0.17 ± 0.39	
knn	19.36 ± 29.26	17.97 ± 27.20	0.42 ± 0.37	
logreg	4.24 ± 3.67	0.53 ± 0.77	0.39 ± 0.40	
rf	36.23 ± 25.94	29.61 ± 21.20	0.81 ± 0.32	
svc	2.19 ± 4.00	0.94 ± 2.15	0.44 ± 0.46	

TABLE IV TOP-5 A/B pairs (per dataset) by $\Delta\textsc{-magnitude}.$ Larger values indicate bigger attribution shifts.

Dataset	Algo	Pair	ΔMag_{L1}	BAC	DCE
	rf	pair2	78.55	0.94	62.33
	knn	pair1	61.02	0.60	57.02
Breast Cancer	rf	pair3	54.14	0.93	40.45
	rf	pair1	38.79	0.69	35.81
	gb	pair3	17.49	0.35	11.45
	knn	pair1	65.81	0.28	60.91
	rf	pair2	60.15	0.94	50.80
Digits	rf	pair1	43.01	0.89	37.31
	gb	pair3	19.67	0.37	7.67
	gb	pair2	10.97	0.71	6.23
	knn	pair1	46.55	0.59	43.17
	rf	pair1	29.76	0.90	24.31
Wine	rf	pair2	10.93	0.98	8.00
	gb	pair3	9.50	0.04	6.50
	gb	pair1	4.49	-0.04	3.52

VI. CONCLUSION

We introduced **Delta-Attribution**, a model-agnostic framework that explains what changed when a model is updated. By differencing per-feature attributions, $\Delta \phi = \phi_B - \phi_A$, and evaluating them with a principled quality suite, we quantify magnitude and concentration of reliance shifts, rank agreement, distributional change, behaviour linkage, and robustness. Our instantiation—fast occlusion/clamping in standardized space with a shared class anchor and baseline averaging—makes the audit practical and reproducible.

Across 45 settings (5 learners \times 3 A/B pairs each \times 3 datasets), the suite delivers concrete, actionable signals. Inductive-bias updates (e.g., SVC kernel, forest depth/feature rules) produce large Δ that are strongly behaviour-aligned (BAC up to \approx 0.998), while cosmetic tweaks (e.g., SVC γ scale vs. auto, kNN search) show near-perfect rank overlap and, in several cases, DCE = 0, indicating no spurious attribution movement. The suite also separates redistribution from mere reweighting (JSD peaking around 0.357 in the most structural changes) and highlights when a few features dominate the update (TopK@10 \approx 1.0 on Wine). Aggregates reveal consistent learner-level tendencies: forests shift the most and couple well with behaviour; logistic regression is stable; nearest-neighbour changes are larger but more diffuse.

Implications. Δ -Attribution turns existing explainers into an *update audit* for CI/regression testing: it flags benign

updates, behaviour-aligned improvements, and risky reliance redistributions in a single pass and complements accuracy metrics.

Limitations and next steps. While occlusion is fast, it is not additive; high DCE should trigger alternate explainers (e.g., path-based) or grouped occlusion. Future work includes extending to text/vision and LLMs, integrating additional explainers (IG/SHAP/TreeSHAP), calibrating thresholds with human studies, and packaging the suite as a CI plug-in for model governance. We release code and assets to reproduce all results and figures.

REFERENCES

- [1] S. M. Lundberg and S.-I. Lee, "A unified approach to interpreting model predictions," in *NeurIPS*, 2017. [Online]. Available: https://proceedings.neurips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
- [2] S. M. Lundberg *et al.*, "From local explanations to global understanding with explainable AI for trees," *Nature Machine Intelligence*, vol. 2, no. 1, pp. 56–67, 2020.
- [3] M. T. Ribeiro, S. Singh, and C. Guestrin, "Anchors: High-precision model-agnostic explanations," in AAAI, 2018. [Online]. Available: https://homes.cs.washington.edu/~marcotcr/aaai18.pdf
- [4] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in ECCV, 2014, pp. 818–833.
- [5] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, "Sanity checks for saliency maps," in *NeurIPS*, 2018. [Online]. Available: https://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
- [6] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, "Fooling LIME and SHAP: Adversarial attacks on post hoc explanation methods," in AIES, 2020, pp. 180–186. [Online]. Available: https://www.aies-conference.com/2020/wp-content/papers/174.pdf
- [7] C. Mougan, K. Broelemann, G. Kasneci, T. Tiropanis, and S. Staab, "Explanation shift: Detecting distribution shifts on tabular data via the explanation space," arXiv:2210.12369, 2022. [Online]. Available: https://arxiv.org/abs/2210.12369
- [8] —, "Explanation shift: How did the distribution shift impact the model?" Transactions on Machine Learning Research, 2025. [Online]. Available: https://openreview.net/pdf?id=MO1slfU9xy
- [9] C. Chen, C. Guo, R. Chen, G. Ma, M. Zeng, X. Liao, X. Zhang, and S. Xie, "Training for stable explanation for free," in *NeurIPS*, 2024. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/ 2024/file/0626822954674a06ccd9c234e3f0d572-Paper-Conference.pdf
- [10] M. Federici, R. Tomioka, and P. Forré, "An information-theoretic approach to distribution shifts," in *NeurIPS*, 2021. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2021/file/93661c10ed346f9692f4d512319799b3-Paper.pdf
- [11] H. Zhang, H. Singh, M. Ghassemi, and S. Joshi, ""why did the model fail?": Attributing model performance changes to distribution shifts," in *ICML*, 2023, pp. 41824–41846. [Online]. Available: https://proceedings.mlr.press/v202/zhang23ai/zhang23ai.pdf
- [12] K. Meng, A. Andonian, D. Bau, and Y. Belinkov, "Locating and editing factual associations in GPT," in *NeurIPS*, 2022. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/ 2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
- [13] E. Mitchell, C. Lin, A. Bosselut, C. Finn, and C. D. Manning, "Fast model editing at scale," arXiv:2110.11309, 2022. [Online]. Available: https://arxiv.org/abs/2110.11309
- [14] K. Meng, A. Sen Sharma, A. Andonian, Y. Belinkov, and D. Bau, "Mass-editing memory in a transformer," in *ICLR*, 2023. [Online]. Available: https://openreview.net/forum?id=MkbcAHIYgyS
- [15] A. Gupta, S. Baskaran, and G. Anumanchipalli, "Rebuilding ROME: Resolving model collapse during sequential model editing," in EMNLP, 2024. [Online]. Available: https://aclanthology.org/2024.emnlp-main. 1210.pdf
- [16] M. Sundararajan, A. Taly, and Q. Yan, "Axiomatic attribution for deep networks," in *ICML*, 2017. [Online]. Available: https://arxiv.org/abs/1703.01365

- [17] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, "Smoothgrad: removing noise by adding noise," arXiv:1706.03825, 2017. [Online]. Available: https://arxiv.org/abs/1706.03825
- [18] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual explanations from deep networks via gradient-based localization," *International Journal of Computer Vision*, vol. 128, no. 2, pp. 336–359, 2020.
- [19] S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, "A benchmark for interpretability methods in deep neural networks," in *NeurIPS*, 2019. [Online]. Available: https://papers.nips.cc/paper_files/paper/2019/ file/fe4b8556000d0f0cae99daa5c5c5a410-Paper.pdf
- [20] L. Nieradzik, F. Müller, and D. Ward, "Reliable evaluation of attribution maps in cnns," *International Journal of Computer Vision*, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s11263-024-02282-6
- [21] Z. J. Wang and J. Jamieson, "Smoothed geometry for robust attribution," in *NeurIPS*, 2020. [Online]. Available: https://papers.nips.cc/paper/2020/ file/9d94c8981a48d12adfeecfe1ae6e0ec1-Paper.pdf
- [22] J. Lin, "Divergence measures based on the shannon entropy," *IEEE Transactions on Information Theory*, vol. 37, no. 1, pp. 145–151, 1991.