PSI* 17-18

SUJET n°2 (CENTRALE PC 2015)

Dans ce problème, \mathbb{K} désigne le corps \mathbb{R} ou le corps \mathbb{C} et E est un \mathbb{K} -espace vectoriel non nul.

Si f est un endomorphisme de E, pour tout sous-espace F de E stable par f on note f_F l'endomorphisme de F induit par f, c'est-à-dire défini sur F par $f_F(x) = f(x)$ pour tout x dans F.

Pour tout endomorphisme f d'un \mathbb{K} -espace vectoriel E on définit la suite $(f^n)_{n\in\mathbb{N}}$ des puissances de f par

$$\begin{cases} f^0 = \mathrm{Id}_E, \\ f^{k+1} = f \circ f^k = f^k \circ f & \text{pour tout } k \text{ dans } \mathbb{N}. \end{cases}$$

On note $\mathbb{K}[X]$ l'espace vectoriel sur \mathbb{K} des polynômes à coefficients dans \mathbb{K} et, pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ le sous-espace de $\mathbb{K}[X]$ des polynômes de degré au plus égal à n.

Pour $n \ge 1$, $\mathcal{M}_n(\mathbb{K})$ est l'espace des matrices carrées à n lignes et à éléments dans \mathbb{K} et $\mathcal{M}_{n,1}(\mathbb{K})$ est l'espace des matrices colonnes à n lignes et à éléments dans \mathbb{K} .

Première partie

Dans cette partie, f est un endomorphisme d'un \mathbb{K} -espace vectoriel E.

- **I.A** Montrer qu'une droite F engendrée par un vecteur u est stable par f si et seulement si u est un vecteur propre de f.
- I.B -
- **I.B.1)** Montrer qu'il existe au moins deux sous-espaces de E stables par f et donner un exemple d'un endomorphisme de \mathbb{R}^2 qui n'admet que deux sous-espaces stables.
- **I.B.2)** Montrer que si E est de dimension finie $n \ge 2$ et si f est non nul et non injectif, alors il existe au moins trois sous-espaces de E stables par f et au moins quatre lorsque n est impair.

Donner un exemple d'endomorphisme de \mathbb{R}^2 qui n'admet que trois sous-espaces stables.

- I.C -
- **I.C.1)** Montrer que tout sous-espace engendré par une famille de vecteurs propres de f est stable par f. Préciser l'endomorphisme induit par f sur tout sous-espace propre de f.
- **I.C.2)** Montrer que si f admet un sous-espace propre de dimension au moins égale à 2 alors il existe une infinité de droites de E stables par f.
- **I.C.3)** Que dire de f si tous les sous-espaces de E sont stables par f?
- I.D Dans cette sous-partie, E est un espace de dimension finie.
- **I.D.1)** Montrer que si f est diagonalisable alors tout sous-espace F de E admet un supplémentaire dans E stable par f.

On pourra partir d'une base de F et d'une base de E constituée de vecteurs propres de f.

I.D.2) Montrer que si $\mathbb{K} = \mathbb{C}$ et si tout sous-espace de E stable par f admet un supplémentaire dans E stable par f, alors f est diagonalisable. Qu'en est-il si $\mathbb{K} = \mathbb{R}$?

- DS N°7 - **PSI* 17-18**

Deuxième partie

Dans cette partie, n et p sont deux entiers naturels au moins égaux à 2, f est un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel E de dimension n, qui admet p valeurs propres distinctes $\{\lambda_1, \ldots, \lambda_p\}$ et, pour tout i dans $[\![1,p]\!]$, on note E_i le sous-espace propre de f associé à la valeur propre λ_i .

- II.A Il s'agit ici de montrer qu'un sous-espace F de E est stable par f si et seulement si $F = \bigoplus_{i=1}^p (F \cap E_i).$
- II.A.1) Montrer que tout sous-espace F de E tel que $F = \bigoplus_{i=1}^{p} (F \cap E_i)$ est stable par f.
- II.A.2) Soit F un sous-espace de E stable par f et x un vecteur non nul de F.

 Justifier l'existence et l'unicité de $(x_i)_{1 \le i \le p}$ dans $E_1 \times \cdots \times E_p$ tel que $x = \sum_{i=1}^p x_i$.
- **II.A.3)** Si on pose $H_x = \{i \in [1; p] \mid x_i \neq 0\}$, H_x est non vide et, quitte à renuméroter les valeurs propres (et les sous-espaces propres), on peut supposer que $H_x = [1; r]$ avec $1 \leq r \leq p$. Ainsi on a $x = \sum_{i=1}^r x_i$ avec $x_i \in E_i \setminus \{0\}$ pour tout i de [1; r]. On pose $V_x = \operatorname{Vect}(x_1, \dots, x_r)$. Montrer que $\mathcal{B}_x = (x_1, \dots, x_r)$ est une base de V_x .
- **II.A.4)** Montrer que pour tout j de [1,r], $f^{j-1}(x)$ appartient à V_x et donner la matrice de la famille $(f^{j-1}(x))_{1 \le j \le r}$ dans la base \mathcal{B}_x .
- **II.A.5)** Montrer que $(f^{j-1}(x))_{1 \le j \le r}$ est une base de V_x .
- **II.A.6)** En déduire que pour tout i de [1, r], x_i appartient à F et conclure.
- II.B Dans cette sous-partie, on se place dans le cas où p = n.
- **II.B.1)** Préciser la dimension de E_i pour tout i dans [1; p].
- **II.B.2)** Combien y a-t-il de droites de E stables par f?
- **II.B.3)** Si $n \ge 3$ et $k \in [2; n-1]$, combien y a-t-il de sous-espaces de E de dimension k et stables par f?
- II.B.4) Combien y a-t-il de sous-espaces de E stables par f dans ce cas? Les donner tous.

Troisième partie

- III.A On considère l'endomorphisme D de dérivation sur $\mathbb{K}[X]$ défini par D(P) = P' pour tout P dans $\mathbb{K}[X]$.
- III.A.1) Vérifier que pour tout n de \mathbb{N} , $\mathbb{K}_n[X]$ est stable par D et donner la matrice A_n de l'endomorphisme induit par D sur $\mathbb{K}_n[X]$ dans la base canonique de $\mathbb{K}_n[X]$.
- III.A.2) Soit F un sous-espace de $\mathbb{K}[X]$, de dimension finie non nulle, stable par D.
 - a) Justifier l'existence d'un entier naturel n et d'un polynôme R de degré n tels que $R \in F$ et $F \subset \mathbb{K}_n[X]$.
 - b) Montrer que la famille $\left(D^i(R)\right)_{0\leqslant i\leqslant n}$ est une famille libre de F .
 - c) En déduire que $F = \mathbb{K}_n[X]$.
- III.A.3) Donner tous les sous-espaces de $\mathbb{K}[X]$ stables par D.
- III.B On considère un endomorphisme f d'un \mathbb{K} -espace vectoriel E de dimension $n \ge 2$ tel que $f^n = 0$ et $f^{n-1} \ne 0$.

- III.B.1) Déterminer l'ensemble des vecteurs u de E tels que la famille $\mathcal{B}_{f,u} = (f^{n-i}(u))_{1 \leq i \leq n}$ soit une base de E.
- III.B.2) Dans le cas où $\mathcal{B}_{f,u}$ est une base de E, quelle est la matrice de f dans $\mathcal{B}_{f,u}$?
- III.B.3) Déterminer une base de E telle que la matrice de f dans cette base soit A_{n-1} .
- III.B.4) Donner tous les sous-espaces de E stables par f. Combien y en a-t-il? Donner une relation simple entre ces sous-espaces stables et les noyaux $\operatorname{Ker}(f^i)$ pour i dans $\llbracket 0, n \rrbracket$.

Quatrième partie

Dans cette partie, n est un entier naturel non nul, M est dans $\mathcal{M}_n(\mathbb{R})$ et f est l'endomorphisme de $E = \mathcal{M}_{n,1}(\mathbb{R})$ défini par f(X) = MX pour tout X de E.

- **IV.A** Si on pose $X_i = \begin{pmatrix} \delta_{1,i} \\ \vdots \\ \delta_{n,i} \end{pmatrix}$ où $\delta_{k,\ell} = \begin{cases} 1 & \text{si } k = \ell, \\ 0 & \text{si } k \neq \ell \end{cases}$ et $\mathcal{B}_n = (X_i)_{1 \leq i \leq n}$ la base canonique de E, quelle est la matrice de f dans \mathcal{B}_n ?
- IV.B Montrer que si n est impair, alors f admet au moins une valeur propre réelle.
- IV.C Dans cette question, $\lambda = \alpha + i\beta$, avec (α, β) dans \mathbb{R}^2 , est une valeur propre non réelle de M et Z de $\mathcal{M}_{n,1}(\mathbb{C})$, non nul est tel que $MZ = \lambda Z$. Si $M = (m_{i,j})_{1 \leqslant i,j \leqslant n}$, on pose $\overline{M} = (m'_{i,j})_{1 \leqslant i,j \leqslant n}$ avec $m'_{i,j} = \overline{m_{i,j}}$ (conjugué du nombre complexe $m_{i,j}$) pour tout (i,j) de $[1;n]^2$ et si $Z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$, on pose $\overline{Z} = \begin{pmatrix} z'_1 \\ \vdots \\ z'_n \end{pmatrix}$ avec $z'_i = \overline{z_i}$ pour tout i de [1;n].

On pose
$$X = \frac{1}{2}(Z + \overline{Z})$$
 et $Y = \frac{1}{2i}(Z - \overline{Z})$.

- IV.C.1) Vérifier que X et Y sont dans E et montrer que la famille (X,Y) est libre dans E.
- **IV.C.2)** Montrer que le plan vectoriel F engendré par X et Y est stable par f et donner la matrice de f_F dans la base (X,Y).
- ${f IV.D}$ Que penser de l'affirmation : « tout endomorphisme d'un espace vectoriel réel de dimension finie admet au moins une droite ou un plan stable » ?
- $\mathbf{IV.E}$ Existe-t-il un endomorphisme de $\mathbb{R}[X]$ n'admettant ni droite ni plan stable ?
- IV.F Dans cette question on considère le système différentiel linéaire $\mathcal{S}: X' = AX$ associé à la matrice $A = \begin{pmatrix} 1 & -4 & 0 \\ 1 & -2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$.

On appelle trajectoires de \mathcal{S} les arcs de l'espace \mathbb{R}^3 paramétrés par les solutions de \mathcal{S} . On veut déterminer les trajectoires rectilignes et les trajectoires planes de \mathcal{S} .

- **IV.F.1)** Construire une matrice P inversible et une matrice $T = \begin{pmatrix} \alpha & \beta & 0 \\ -\beta & \alpha & 0 \\ 0 & 0 & \gamma \end{pmatrix}$ avec (α, β, γ) dans $(\mathbb{R}^*)^3$ telles que $P^{-1}AP = T$, et déterminer un plan F et une droite G stables par l'endomorphisme de \mathbb{R}^3 canoniquement associé à A et supplémentaires dans \mathbb{R}^3 .
- **IV.F.2**) Déterminer l'unique solution du problème de Cauchy \mathcal{P}_U : $\begin{cases} X' = AX \\ X(0) = U \end{cases}$ lorsque U appartient à G.

– DS N°7 – **PSI* 17-18**

- **IV.F.3)** Pour tout $\sigma = (a, b)$ de \mathbb{R}^2 , on considère le problème de Cauchy \mathcal{C}_{σ} : $\begin{cases} x' = -x + 2y, \\ y' = -2x y, \\ x(0) = a, \ y(0) = b, \end{cases}$ et $\varphi = (x, y)$ dans $\mathcal{C}^1(\mathbb{R}, \mathbb{R}^2)$ l'unique solution de \mathcal{C}_{σ} . Préciser x'(0) et y'(0); montrer que x et y sont solutions d'une même équation différentielle linéaire homogène du second ordre à coefficients constants et ainsi en déduire φ en fonction de a et de b.
- IV.F.4) Déterminer les trajectoires rectilignes et les trajectoires planes du système différentiel X' = AX.

Cinquième partie

Dans cette partie E est un espace vectoriel réel de dimension n muni d'une base $\mathcal{B} = (\varepsilon_i)_{1 \leq i \leq n}$. On considère un endomorphisme f de E et on note A sa matrice dans la base \mathcal{B} .

- V.A –
- **V.A.1)** Montrer qu'il existe un unique produit scalaire sur E pour lequel \mathcal{B} est orthonormée. Ce produit scalaire est noté de manière usuelle par $\langle u,v\rangle$ ou plus simplement $u\cdot v$ pour tout (u,v) de E^2 .
- **V.A.2)** Si u et v sont représentés par les matrices colonnes respectives U et V dans la base \mathcal{B} , quelle relation simple existe-t-il entre $u \cdot v$ et le produit matriciel tUV (où tU est la transposée de U)?
- **V.B** Soit H un hyperplan de E et D son supplémentaire orthogonal. Si (u) est une base de D et si U est la matrice colonne de u dans \mathcal{B} , montrer que H est stable par f si et seulement si U est un vecteur propre de la transposée de A.
- $\mathbf{V.C}$ Déterminer ainsi le(s) plan(s) stable(s) de f lorsque n=3 et A est la matrice considérée en \mathbf{IV} \mathbf{F}
- **V.D** Dans cette question, E est un espace vectoriel réel de dimension n et f est un endomorphisme de E.
- **V.D.1)** Montrer que si f est diagonalisable alors il existe n hyperplans de E, $(H_i)_{1 \le i \le n}$, tous stables par f, tels que $\bigcap_{i=1}^n H_i = \{0\}$.
- **V.D.2)** Un endomorphisme f de E pour lequel il existe n hyperplans de E stables par f et d'intersection réduite au vecteur nul est-il nécessairement diagonalisable?