

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 June 2001 (28.06.2001)

PCT

(10) International Publication Number
WO 01/45748 A1

(51) International Patent Classification⁷: **A61K 48/00, C12Q 1/70**

NJ 07065-0907 (US). **FU, Tong-Ming** [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(21) International Application Number: **PCT/US00/34724** (74) Common Representative: **MERCK & CO., INC.**; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

(22) International Filing Date:
21 December 2000 (21.12.2000)

(81) Designated States (national): AE, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GI, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, L.C, LK, L.R, L.S, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SI, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data:
60/171,542 22 December 1999 (22.12.1999) US

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): **MERCK & CO., INC.** [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US).

Published:
— *With international search report.*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors; and

(75) Inventors/Applicants (for US only): **SHIVER, John, W.** [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). **PERRY, Helen, C.** [US/US]; 126 East Lincoln Avenue, Rahway, NJ 07065-0907 (US). **CASIMIRO, Danilo, R.** [PH/US]; 126 East Lincoln Avenue, Rahway,

A1

WO 01/45748

(54) Title: POLYNUCLEOTIDE VACCINES EXPRESSING CODON OPTIMIZED HIV-1 POL AND MODIFIED HIV-1 POL

(57) Abstract: Pharmaceutical compositions which comprise HIV Pol DNA vaccines are disclosed, along with the production and use of these DNA vaccines. The pol-based DNA vaccines of the invention are administered directly introduced into living vertebrate tissue, preferably humans, and preferably express inactivated versions of the HIV Pol protein devoid of protease, reverse transcriptase activity, RNase H activity and integrase activity, inducing a cellular immune response which specifically recognizes human immunodeficiency virus-1 (HIV-1). The DNA molecules which comprise the open reading frame of these DNA vaccines are synthetic DNA molecules encoding codon optimized HIV-1 Pol and codon optimized inactive derivatives of optimized HIV-1 Pol, including DNA molecules which encode inactive Pol proteins which comprise an amino terminal leader peptide.

TITLE OF THE INVENTION

POLYNUCLEOTIDE VACCINES EXPRESSING CODON OPTIMIZED HIV-1

5 POL AND MODIFIED HIV-1 POL

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit, under 35 U.S.C. §119(e), of U.S. provisional application 60/171,542, filed December 22, 1999.

10

STATEMENT REGARDING FEDERALLY-SPONSORED R&D

Not Applicable

15 REFERENCE TO MICROFICHE APPENDIX

Not Applicable

FIELD OF THE INVENTION

The present invention relates to HIV Pol polynucleotide pharmaceutical products, as well as the production and use thereof which, when directly introduced into living vertebrate tissue, preferably a mammalian host such as a human or a non-human mammal of commercial or domestic veterinary importance, express the HIV Pol protein or biologically relevant portions thereof within the animal, inducing a cellular immune response which specifically recognizes human immunodeficiency virus-1 (HIV-1). The polynucleotides of the present invention are synthetic DNA molecules encoding codon optimized HIV-1 Pol and derivatives of optimized HIV-1 Pol, including constructs wherein protease, reverse transcriptase, RNase H and integrase activity of HIV-1 Pol is inactivated. The polynucleotide vaccines of the present invention should offer a prophylactic advantage to previously uninfected individuals and/or provide a therapeutic effect by reducing viral load levels within an infected individual, thus prolonging the asymptomatic phase of HIV-1 infection.

BACKGROUND OF THE INVENTION

Human Immunodeficiency Virus-1 (HIV-1) is the etiological agent of acquired human immune deficiency syndrome (AIDS) and related disorders. HIV-1 is an RNA virus of the Retroviridae family and exhibits the 5'LTR-gag-pol-env-

5 LTR 3' organization of all retroviruses. The integrated form of HIV-1, known as the provirus, is approximately 9.8 Kb in length. Each end of the viral genome contains flanking sequences known as long terminal repeats (LTRs). The HIV genes encode at least nine proteins and are divided into three classes; the major structural proteins (Gag, Pol, and Env), the regulatory proteins (Tat and Rev); and the accessory proteins

10 (Vpu, Vpr, Vif and Nef).

The *gag* gene encodes a 55-kilodalton (kDa) precursor protein (p55) which is expressed from the unspliced viral mRNA and is proteolytically processed by the HIV protease, a product of the *pol* gene. The mature p55 protein products are p17 (matrix), p24 (capsid), p9 (nucleocapsid) and p6.

15 The *pol* gene encodes proteins necessary for virus replication; a reverse transcriptase, a protease, integrase and RNase H. These viral proteins are expressed as a Gag-Pol fusion protein, a 160 kDa precursor protein which is generated via a ribosomal frame shifting. The viral encoded protease proteolytically cleaves the Pol polypeptide away from the Gag-Pol fusion and further cleaves the Pol polypeptide to

20 the mature proteins which provide protease (Pro, P10), reverse transcriptase (RT, P50), integrase (IN, p31) and RNase H (RNase, p15) activities.

The *nef* gene encodes an early accessory HIV protein (Nef) which has been shown to possess several activities such as down regulating CD4 expression, disturbing T-cell activation and stimulating HIV infectivity.

25 The *env* gene encodes the viral envelope glycoprotein that is translated as a 160-kilodalton (kDa) precursor (gp160) and then cleaved by a cellular protease to yield the external 120-kDa envelope glycoprotein (gp120) and the transmembrane 41-kDa envelope glycoprotein (gp41). Gp120 and gp41 remain associated and are displayed on the viral particles and the surface of HIV-infected cells.

30 The *tat* gene encodes a long form and a short form of the Tat protein, a RNA binding protein which is a transcriptional transactivator essential for HIV-1 replication.

The *rev* gene encodes the 13 kDa Rev protein, a RNA binding protein. The Rev protein binds to a region of the viral RNA termed the Rev response element

(RRE). The Rev protein is promotes transfer of unspliced viral RNA from the nucleus to the cytoplasm. The Rev protein is required for HIV late gene expression and in turn, HIV replication.

Gp120 binds to the CD4/chemokine receptor present on the surface of helper 5 T-lymphocytes, macrophages and other target cells in addition to other co-receptor molecules. X4 (macrophage tropic) virus show tropism for CD4/CXCR4 complexes while a R5 (T-cell line tropic) virus interacts with a CD4/CCR5 receptor complex. After gp120 binds to CD4, gp41 mediates the fusion event responsible for virus entry. The virus fuses with and enters the target cell, followed by reverse transcription of its 10 single stranded RNA genome into the double-stranded DNA via a RNA dependent DNA polymerase. The viral DNA, known as provirus, enters the cell nucleus, where the viral DNA directs the production of new viral RNA within the nucleus, expression of early and late HIV viral proteins, and subsequently the production and cellular release of new virus particles. Recent advances in the ability to detect viral load 15 within the host shows that the primary infection results in an extremely high generation and tissue distribution of the virus, followed by a steady state level of virus (albeit through a continual viral production and turnover during this phase), leading ultimately to another burst of virus load which leads to the onset of clinical AIDS. Productively infected cells have a half life of several days, whereas chronically or 20 latently infected cells have a 3-week half life, followed by non-productively infected cells which have a long half life (over 100 days) but do not significantly contribute to day to day viral loads seen throughout the course of disease.

Destruction of CD4 helper T lymphocytes, which are critical to immune 25 defense, is a major cause of the progressive immune dysfunction that is the hallmark of HIV infection. The loss of CD4 T-cells seriously impairs the body's ability to fight most invaders, but it has a particularly severe impact on the defenses against viruses, fungi, parasites and certain bacteria, including mycobacteria.

Effective treatment regimens for HIV-1 infected individuals have become 30 available recently. However, these drugs will not have a significant impact on the disease in many parts of the world and they will have a minimal impact in halting the spread of infection within the human population. As is true of many other infectious diseases, a significant epidemiologic impact on the spread of HIV-1 infection will only occur subsequent to the development and introduction of an effective vaccine. There are a number of factors that have contributed to the lack of successful vaccine

development to date. As noted above, it is now apparent that in a chronically infected person there exists constant virus production in spite of the presence of anti-HIV-1 humoral and cellular immune responses and destruction of virally infected cells. As in the case of other infectious diseases, the outcome of disease is the result of a

5 balance between the kinetics and the magnitude of the immune response and the pathogen replicative rate and accessibility to the immune response. Pre-existing immunity may be more successful with an acute infection than an evolving immune response can be with an established infection. A second factor is the considerable genetic variability of the virus. Although anti-HIV-1 antibodies exist that can

10 neutralize HIV-1 infectivity in cell culture, these antibodies are generally virus isolate-specific in their activity. It has proven impossible to define serological groupings of HIV-1 using traditional methods. Rather, the virus seems to define a serological "continuum" so that individual neutralizing antibody responses, at best, are effective against only a handful of viral variants. Given this latter observation, it

15 would be useful to identify immunogens and related delivery technologies that are likely to elicit anti-HIV-1 cellular immune responses. It is known that in order to generate CTL responses antigen must be synthesized within or introduced into cells, subsequently processed into small peptides by the proteasome complex, and translocated into the endoplasmic reticulum/Golgi complex secretory pathway for

20 eventual association with major histocompatibility complex (MHC) class I proteins. CD8⁺ T lymphocytes recognize antigen in association with class I MHC via the T cell receptor (TCR) and the CD8 cell surface protein. Activation of naive CD8⁺ T cells into activated effector or memory cells generally requires both TCR engagement of antigen as described above as well as engagement of costimulatory proteins. Optimal

25 induction of CTL responses usually requires "help" in the form of cytokines from CD4⁺ T lymphocytes which recognize antigen associated with MHC class II molecules via TCR and CD4 engagement.

Larder, et al., (1987, *Nature* 327: 716-717) and Larder, et al., (1989, *Proc. Natl. Acad. Sci.* 86: 4803-4807) disclose site specific mutagenesis of HIV-1 RT and

30 the effect such changes have on *in vitro* activity and infectivity related to interaction with known inhibitors of RT.

Davies, et al. (1991, *Science* 252: 88-95) disclose the crystal structure of the RNase H domain of HIV-1 Pol.

Schatz, et al. (1989, *FEBS Lett.* 257: 311-314) disclose that mutations Glu478Gln and His539Phe in a complete HIV-1 RT/RNase H DNA fragment results in defective RNase activity without effecting RT activity.

5 Mizrahi, et al. (1990, *Nucl. Acids. Res.* 18: pp. 5359-5353) disclose additional mutations Asp443Asn and Asp498Asn in the RNase region of the *pol* gene which also results in defective RNase activity. The authors note that the Asp498Asn mutant was difficult to characterize due to instability of this mutant protein.

10 Leavitt, et al. (1993, *J. Biol. Chem.* 268: 2113-2119) disclose several mutations, including a Asp64Val mutation, which show differing effect on HIV-1 integrase (IN) activity.

Wiskerchen, et al. (1995, *J. Virol.* 69: 376-386) disclose singe and double mutants, including mutation of aspartic acid residues which effect HIV-1 IN and viral replication functions.

15 It would be of great import in the battle against AIDS to produce a prophylactic- and/or therapeutic-based HIV vaccine which generates a strong cellular immune response against an HIV infection. The present invention addresses and meets this needs by disclosing a class of DNA vaccines based on host delivery and expression of modified versions of the HIV-1 gene, *pol*.

20 SUMMARY OF THE INVENTION

The present invention relates to synthetic DNA molecules (also referred to herein as "polynucleotides") and associated DNA vaccines (also referred to herein as "polynucleotide vaccines") which elicit cellular immune and humoral responses upon administration to the host, including primates and especially humans, and also including a non-human mammal of commercial or domestic veterinary importance. An effect of the cellular immune-directed vaccines of the present invention should be the lower transmission rate to previously uninfected individuals and/or reduction in the levels of the viral loads within an infected individual, so as to prolong the asymptomatic phase of HIV-1 infection. In particular, the present invention relates to DNA vaccines which encode various forms of HIV-1 Pol, wherein administration, intracellular delivery and expression of the HIV-1 Pol gene of interest elicits a host CTL and Th response. The preferred synthetic DNA molecules of the present invention encode codon optimized versions of wild type HIV-1 Pol, codon optimized versions of HIV-1 Pol fusion proteins, and codon optimized versions of HIV-1 Pol

proteins and fusion protein, including but not limited to *pol* modifications involving residues within the catalytic regions responsible for RT, RNase and IN activity within the host cell.

A particular embodiment of the present invention relates to codon optimized 5 wt-pol DNA constructs wherein DNA sequences encoding the protease (PR) activity are deleted, leaving codon optimized "wild type" sequences which encode RT (reverse transcriptase and RNase H activity) and IN integrase activity. The nucleotide sequence of a DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:1 and the corresponding amino acid sequence of the expressed protein is 10 disclosed herein as SEQ ID NO:2.

The present invention preferably relates to a HIV-1 DNA pol construct which is devoid of DNA sequences encoding any PR activity, as well as containing a mutation(s) which at least partially, and preferably substantially, abolishes RT, RNase and/or IN activity. One type of HIV-1 pol mutant may include but is not limited to a 15 mutated DNA molecule comprising at least one nucleotide substitution which results in a point mutation which effectively alters an active site within the RT, RNase and/or IN regions of the expressed protein, resulting in at least substantially decreased enzymatic activity for the RT, RNase H and/or IN functions of HIV-1 Pol. In a preferred embodiment of this portion of the invention, a HIV-1 DNA pol construct 20 contains a mutation or mutations within the Pol coding region which effectively abolishes RT, RNase H and IN activity. An especially preferable HIV-1 DNA pol construct in a DNA molecule which contains at least one point mutation which alters the active site of the RT, RNase H and IN domains of Pol, such that each activity is at least substantially abolished. Such a HIV-1 Pol mutant will most likely comprise at 25 least one point mutation in or around each catalytic domain responsible for RT, RNase H and IN activity, respectfully. To this end, an especially preferred HIV-1 DNA pol construct is exemplified herein and contains nine codon substitution mutations which results in an inactivated Pol protein (IA Pol: SEQ ID NO:4, Figure 2A-C) which has no PR, RT, RNase or IN activity, wherein three such point 30 mutations reside within each of the RT, RNase and IN catalytic domains. Any combination of the mutations disclosed herein may suitable and therefore may be utilized as an IA-Pol-based vaccine of the present invention. While addition and deletion mutations are contemplated and within the scope of the invention, the

preferred mutation is a point mutation resulting in a substitution of the wild type amino acid with an alternative amino acid residue.

Another aspect of the present invention is to generate HIV-1 Pol-based vaccine constructions which comprise a eukaryotic trafficking signal peptide such as 5 the leader peptide from human tPA. To this end, the present invention relates to a DNA molecule which encodes a codon optimized wt-pol DNA construct wherein the protease (PR) activity is deleted and a human tPA leader sequence is fused to the 5' end of the coding region. A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, the open reading frame disclosed herein as SEQ ID NO:6.

10 The present invention especially relates to a HIV-1 Pol mutant such as IA-Pol (SEQ ID NO:4) which comprises a leader peptide, such as the human tPA leader, at the amino terminal portion of the protein, which may effect cellular trafficking and hence, immunogenicity of the expressed protein within the host cell. Any such HIV-1 DNA pol mutant disclosed in the above paragraphs is suitable for fusion downstream of a leader peptide, including but by no means limited to the human tPA leader sequence. Therefore, 15 any such leader peptide-based HIV-1 pol mutant construct may include but is not limited to a mutated DNA molecule which effectively alters the catalytic activity of the RT, RNase and/or IN region of the expressed protein, resulting in at least substantially decreased enzymatic activity one or more of the RT, RNase H and/or IN functions of 20 HIV-1 Pol. In a preferred embodiment of this portion of the invention, a leader peptide/HIV-1 DNA pol construct contains a mutation or mutations within the Pol coding region which effectively abolishes RT, RNase H and IN activity. An especially preferable HIV-1 DNA pol construct is a DNA molecule which contains at least one point mutation which alters the active site and catalytic activity within the RT, RNase H and IN 25 domains of Pol, such that each activity is at least substantially abolished, and preferably totally abolished. Such a HIV-1 Pol mutant will most likely comprise at least one point mutation in or around each catalytic domain responsible for RT, RNase H and IN activity, respectfully. An especially preferred embodiment of this portion of the invention relates to a human tPA leader fused to the IA-Pol protein comprising the nine mutations shown 30 in Table 1. The DNA molecule is disclosed herein as SEQ ID NO:7 and the expressed tPA-IA Pol protein comprises a fusion junction as shown in Figure 3. The complete amino acid sequence of the expressed protein is set forth in SEQ ID NO:8.

The present invention also relates to a substantially purified protein expressed from the DNA polynucleotide vaccines of the present invention, especially the purified

proteins set forth below as SEQ ID NOs: 2, 4, 6, and 8. These purified proteins may be useful as protein-based HIV vaccines.

The present invention also relates to non-codon optimized versions of DNA molecules and associated polynucleotides and associated DNA vaccines which 5 encode the various wild type and modified forms of the HIV Pol protein disclosed herein. Partial or fully codon optimized DNA vaccine expression vector constructs are preferred, but it is within the scope of the present invention to utilize "non-codon optimized" versions of the constructs disclosed herein, especially modified versions of HIV Pol which are shown to promote a substantial cellular immune and humoral 10 immune responses subsequent to host administration.

The DNA backbone of the DNA vaccines of the present invention are preferably DNA plasmid expression vectors. DNA plasmid expression vectors utilized in the present invention include but are not limited to constructs which comprise the cytomegalovirus promoter with the intron A sequence (CMV-intA) and 15 a bovine growth hormone transcription termination sequence. In addition, DNA plasmid vectors of the present invention preferably comprise an antibiotic resistance marker, including but not limited to an ampicillin resistance gene, a neomycin resistance gene or any other pharmaceutically acceptable antibiotic resistance marker. In addition, an appropriate polylinker cloning site and a prokaryotic origin of 20 replication sequence are also preferred. Specific DNA vectors exemplified herein include V1, V1J (SEQ ID NO:13), V1Jneo (SEQ ID NO:14), V1Jns (Figure 1A, SEQ ID NO:15), V1R (SEQ ID NO:26), and any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to 25 V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:28.

The present invention especially relates to a DNA vaccine and a pharmaceutically active vaccine composition which contains this DNA vaccine, and the use as prophylactic and/or therapeutic vaccine for host immunization, preferably 30 human host immunization, against an HIV infection or to combat an existing HIV condition. These DNA vaccines are represented by codon optimized DNA molecules encoding codon optimized HIV-1 Pol (e.g. SEQ ID NO:2), codon optimized HIV-1 Pol fused to an amino terminal localized leader sequence (e.g. SEQ ID NO:6), and especially preferable, and the essence of the present invention, biologically inactive Pol proteins (IA Pol; e.g., SEQ ID NO:4) devoid of significant PR, RT, RNase or IN

activity associated with wild type Pol and a concomitant construct which contains a leader peptide at the amino terminal region of the IA Pol protein. These constructs are ligated within an appropriate DNA plasmid vector, with or without a nucleotide sequence encoding a functional leader peptide. Preferred DNA vaccines of the 5 present invention comprise codon optimized DNA molecules encoding codon optimized HIV-1 Pol and inactivated version of Pol, ligated in DNA vectors disclosed herein, or any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B 10 and SEQ ID NO:28.

Therefore, the present invention relates to DNA vaccines which include, but are in no way limited to V1Jns-WTPol (comprising the DNA molecule encoding WT Pol, as set forth in SEQ ID NO:2), V1Jns-tPA-WTPol, (comprising the DNA molecule encoding tPA Pol, as set forth in SEQ ID NO:6), V1Jns-IAPol (comprising the DNA molecule encoding IA Pol, as set forth in SEQ ID NO:4), and V1Jns-tPA-IAPol, (comprising the DNA molecule encoding tPA-IA Pol, as set forth in SEQ ID NO:8). Especially preferred are V1Jns-IAPol and V1Jns-tPA-IAPol, as exemplified in Example Section 2.

The present invention also relates to HIV Pol polynucleotide 20 pharmaceutical products, as well as the production and use thereof, wherein the DNA vaccines are formulated with an adjuvant or adjuvants which may increase immunogenicity of the DNA polynucleotide vaccines of the present invention, namely by promoting an enhanced cellular and/or humoral response subsequent to inoculation. A preferred adjuvant is an aluminum phosphate-based adjuvant or a 25 calcium phosphate based adjuvant, with an aluminum phosphate adjuvant being especially preferred. Another preferred adjuvant is a non-ionic block copolymer, preferably comprising the blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. These adjuvanted forms comprising the DNA vaccines disclosed herein are useful in 30 increasing cellular responses to DNA vaccination.

As used herein, a DNA vaccine or DNA polynucleotide vaccine is a DNA molecule (i.e., "nucleic acid", "polynucleotide") which contains essential regulatory elements such that upon introduction into a living, vertebrate cell, it is able to direct the cellular machinery to produce translation products encoded by the respective pol

genes of the present invention.

BRIEF DESCRIPTION OF THE FIGURES

Figure 1A-B shows schematic representation of DNA vaccine expression vectors V1Jns (A) and V1Jns-tPA (B) utilized for HIV-1 pol and HIV-1 modified pol constructs.

Figure 2A-C shows the nucleotide (SEQ ID NO:3) and amino acid sequence (SEQ ID NO:4) of IA-Pol. Underlined codons and amino acids denote mutations, as listed in Table 1.

Figure 3 shows the codon optimized nucleotide and amino acid sequences through the fusion junction of tPA-IA-Pol (contained within SEQ ID NOs: 7 and 8, respectively). The underlined portion represents the NH₂-terminal region of IA-Pol.

Figure 4 shows generation of a humoral response (measured as the geometric means of anti-RT endpoint titers) from mice immunized with one or two doses of codon optimized V1Jns-IApol and V1Jns-tpa-IApol. A portion of mice that received 30 ug of each plasmid was boosted at T=8 wks; sera from all mice were collected at 4 wk post dose 2.

Figure 5 shows the number of IFN-gamma secreting cells per 10e6 cells following stimulation with pools of either CD4⁺ (aa641-660, aa731-750) or CD8⁺ (aa201-220, aa311-330, aa571-590, aa781-800) specific peptides of splenocytes (pool of 5 spleens/cohort) from control mice and those vaccinated with increasing single dose of codon optimized V1Jns-IApol or 30 ug of codon optimized V1Jns-tpa-IApol (13 wks post dose 1). Mice (n=5) vaccinated with a second dose of 30 ug of either plasmid were analyzed in an Elispot assay at 6 wks post dose 2. Reported are the sums of the number of spots stimulated by each individual CD8⁺ peptides because the spots in the wells to which the pool was added are too dense to acquire accurate counts. The CD4⁺ cell counts are taken from the responses to the peptide pool. Error bars represent standard deviations for counts from triplicate wells per sample per antigen.

Figure 6A-C shows ELIspot analysis of peripheral blood cells collected from rhesus macaques immunized three times (T=0, 4, 8 wks) with 5 mgs of codon optimized HIV-1 Pol expressing plasmids. Antigen-specific IFN-gamma secretion was stimulated by adding one of two pools consisting of 20-mer peptides derived from vaccine sequence (mpol-1, aa1-420; mpol-2, aa411-850). (A) Frequencies of

spot-forming cells (SFC) as a function of time for 3 monkeys (Tag No. 94R008, 94R013, 94R033) vaccinated with V1Jns-IApol. The reported values are corrected for background responses without peptide restimulation. (B) Frequencies of spot-forming cells (SFC) as a function of time for 3 monkeys (Tag No. 920078, 920073, 5 94R028) vaccinated with 5mgs of V1Jns-tpa-IApol. (C) ELIspot responses were also measured from a monkey (920072) that did not receive any immunization.

Figure 7A-B show bulk CTL killing from rhesus macaques immunized with codon optimized V1Jns-IApol (A) or codon optimized V1Jns-tpa-IApol (B) at 8 weeks following the third vaccination. Restimulation was performed using recombinant 10 vaccinia virus expressing pol and target cells were prepared by pulsing with the peptide pools, mpol-1 and mpol-2.

Figure 8 shows detection of *in vitro* pol expression from cell lysates of 293 cells transfected with 10 ug of various pol constructs. Bands were detected using anti-serum from an HIV-1 seropositive human subject. Equal amounts of total protein 15 were loaded for each lane. The lanes contain the lysates from cells transfected with the following: 1: mock; 2: V1Jns-wt-pol; 3: V1Jns-IApol (codon optimized); 4: V1Jns-tpa-IApol (codon optimized); 5: V1Jns-tpa-pol (codon optimized); 6: V1R-wt-pol (codon optimized); 7: blank; and 8: 80 ng RT.

Figure 9 shows the geometric mean anti-RT titers (GMT) plus the standard 20 errors of the geometric means for cohorts of 5 mice that received one (open circles) or two doses (solid circles) of 1, 10, 100 μ g of V1R-wt-pol (codon optimized) or V1Jns-wt-pol. Sera from all animals were collected at 2 weeks post dose 2 (or 7 wks post dose 1) and assayed simultaneously. Statistical analyses were performed to compare cohorts that received the same amount and number of immunization of either 25 plasmids; p values (two-tail) less than 5% are above the bars the connect the correlated cohorts to reflect statistically significant differences.

Figure 10 shows cellular immune responses in BALB/c mice vaccinated i.m. with 1 (pd1) or 2 (pd2) doses of varying amounts of either wt-pol (virus derived) or 30 wt-pol (codon optimized) plasmids. At 3 wks post dose 2, frequencies of IFN- γ - secreting splenocytes are determined from pools of 5 spleens per cohort against mixtures of either CD4 $^{+}$ peptides (aa21-40, aa411-430, aa531-550, aa641-660, aa731-750, aa771-790) or CD8 $^{+}$ peptides (aa201-220, aa311-330) at 4 μ g/mL final concentration per peptide.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to synthetic DNA molecules and associated DNA vaccines which elicit CTL and Th cellular immune responses upon administration to the host, including primates and especially humans. An effect of the cellular immune-directed vaccines of the present invention should be a lower transmission rate to previously uninfected individuals and/or reduction in the levels of the viral loads within an infected individual, so as to prolong the asymptomatic phase of HIV-1 infection. In particular, the present invention relates to DNA vaccines which encode various forms of HIV-1 Pol, wherein administration, intracellular delivery and expression of the HIV-1 Pol gene of interest elicits a host CTL and Th response. The preferred synthetic DNA molecules of the present invention encode codon optimized wild type Pol (without Pro activity) and various codon optimized inactivated HIV-1 Pol proteins. The HIV-1 *pol* constructs disclosed herein are especially preferred for pharmaceutical uses, especially for human administration as a DNA vaccine. The HIV-1 genome employs predominantly uncommon codons compared to highly expressed human genes. Therefore, the pol open reading frame has been synthetically manipulated using optimal codons for human expression. As noted above, a preferred embodiment of the present invention relates to DNA molecules which comprise a HIV-1 pol open reading frame, whether encoding full length pol or a modification or fusion as described herein, wherein the codon usage has been optimized for expression in a mammal, especially a human.

The synthetic *pol* gene disclosed herein comprises the coding sequences for the reverse transcriptase (or RT which consists of a polymerase and RNase H activity) and integrase (IN). The protein sequence is based on that of Hxb2r, a clonal isolate of IIIB; this sequence has been shown to be closest to the consensus clade B sequence with only 16 nonidentical residues out of 848 (Korber, et al., 1998, Human retroviruses and AIDS, Los Alamos National Laboratory, Los Alamos, New Mexico). The skilled artisan will understand after review of this specification that any available HIV-1 or HIV-2 strain provides a potential template for the generation of HIV pol DNA vaccine constructs disclosed herein. It is further noted that the protease gene is excluded from the DNA vaccine constructs of the present invention to insure safety from any residual protease activity in spite of mutational inactivation. The design of the gene sequences for both wild-type (wt-pol) and inactivated pol (IA-pol) incorporates the use of human preferred ("humanized") codons for each amino acid

residue in the sequence in order to maximize *in vivo* mammalian expression (Lathe, 1985, J. Mol. Biol. 183:1-12). As can be discerned by inspecting the codon usage in SEQ ID NOs: 1, 3, 5 and 7, the following codon usage for mammalian optimization is preferred: Met (ATG), Gly (GGC), Lys (AAG), Trp (TGG), Ser (TCC), Arg (AGG), 5 Val (GTG), Pro (CCC), Thr (ACC), Glu (GAG); Leu (CTG), His (CAC), Ile (ATC), Asn (AAC), Cys (TGC), Ala (GCC), Gln (CAG), Phe (TTC) and Tyr (TAC). For an additional discussion relating to mammalian (human) codon optimization, see WO 97/31115 (PCT/US97/02294), which is hereby incorporated by reference. It is intended that the skilled artisan may use alternative versions of codon optimization or 10 may omit this step when generating HIV pol vaccine constructs within the scope of the present invention. Therefore, the present invention also relates to non-codon optimized versions of DNA molecules and associated DNA vaccines which encode the various wild type and modified forms of the HIV Pol protein disclosed herein. However, codon optimization of these constructs is a preferred embodiment of this 15 invention.

A particular embodiment of the present invention relates to codon optimized wt-pol DNA constructs (herein, "wt-pol" or "wt-pol (codon optimized)") wherein DNA sequences encoding the protease (PR) activity are deleted, leaving codon optimized "wild type" sequences which encode RT (reverse transcriptase and RNase 20 H activity) and IN integrase activity. A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:1, the open reading frame being contained from an initiating Met residue at nucleotides 10-12 to a termination codon from nucleotides 2560-2562. SEQ ID NO:1 is as follows:

AGATCTACCA TGGCCCCCAT CTCCCCCATT GAGACTGTGC CTGTGAAGCT GAAGCCTGGC
25 ATGGATGGCC CCAAGGTGAA GCAGTGGCCC CTGACTGAGG AGAAGATCAA GGCCCTGGTG
GAAATCTGCA CTGAGATGGA GAAGGAGGGC AAAATCTCCA AGATTGGCCC CGAGAACCCC
TACAACACCC CTGTGTTGC CATCAAGAAG AAGGACTCCA CCAAGTGGAG GAAGCTGGTG
GACTTCAGGG AGCTGAACAA GAGGACCCAG GACTTCTGGG AGGTGCAGCT GGGCATCCCC
CACCCCGCTG GCCTGAAGAA GAAGAAGTCT GTGACTGTGC TGGATGTGGG GGATGCCTAC
30 TTCTCTGTGC CCCTGGATGA GGACTTCAGG AAGTACACTG CCTTCACCAC CCCCTCCATC
AACAAATGAGA CCCCTGGCAT CAGGTACCAAG TACAATGTGC TGCCCCAGGG CTGGAAGGGC
TCCCCCTGCCA TCTTCCAGTC CTCCATGACC AAGATCCTGG AGCCCTTCAG GAAGCAGAAC
CCTGACATTG TGATCTACCA GTACATGGAT GACCTGTATG TGGGCTCTGA CCTGGAGATT
GGGCAGCACA GGACCAAGAT TGAGGAGCTG AGGCAGCACC TGCTGAGGTG GGGCCTGACC

ACCCCTGACA AGAACGACCA GAAGGGAGCCC CCCTTCCTGT GGATGGGCTA TGAGCTGCAC
CCCGACAAAGT GGACTGTGCA GCCCATTGTG CTGCCTGAGA AGGACTCCTG GACTGTGAAT
GACATCCAGA AGCTGGTGGG CAAGCTGAAC TGGGCCTCCC AAATCTACCC TGGCATCAAG
GTGAGGCAGC TGTGCAAGCT GCTGAGGGC ACCAAGGCC TGACTGAGGT GATCCCCCTG
5 ACTGAGGGAGG CTGAGCTGGA GCTGGCTGAG AACAGGGAGA TCCTGAAGGA GCCTGTGCAT
GGGGTGTACT ATGACCCCTC CAAGGACCTG ATTGCTGAGA TCCAGAAGCA GGCCAGGGC
CAGTGGACCT ACCAAATCTA CCAGGAGCCC TTCAAGAACC TGAAGACTGG CAAGTATGCC
AGGATGAGGG GGGCCCACAC CAATGATGTG AAGCAGCTGA CTGAGGTGT GCAGAAGATC
ACCACTGAGT CCATTGTGAT CTGGGGCAAG ACCCCCAAGT TCAAGCTGCC CATCCAGAAG
10 GAGACCTGGG AGACCTGGT GACTGAGTAC TGGCAGGCC CCTGGATCCC TGAGTGGAG
TTTGTGAACA CCCCCCCCCT GGTGAAGCTG TGGTACCAGC TGGAGAAGGA GCCCATTGTG
GGGGCTGAGA CCTTCTATGT GGATGGGCT GCCAACAGGG AGACCAAGCT GGGCAAGGCT
GGCTATGTGA CCAACAGGGG CAGGCAGAAG GTGGTGACCC TGACTGACAC CACCAACCAG
AAGACTGAGC TCCAGGCCAT CTACCTGGCC CTCCAGGACT CTGGCCTGGA GGTGAACATT
15 GTGACTGACT CCCAGTATGC CCTGGGCATC ATCCAGGCC AGCCTGATCA GTCTGAGTCT
GAGCTGGTGA ACCAGATCAT TGAGCAGCTG ATCAAGAACG AGAAGGTGTA CCTGGCCTGG
GTGCCTGCCA ACAAGGGCAT TGGGGGCAAT GAGCAGGTGG ACAAGCTGGT GTCTGCTGGC
ATCAGGAAGG TGCTGTTCCCT GGATGGCATT GACAAGGCC AGGATGAGCA TGAGAAGTAC
CACTCCAAGT GGAGGGCTAT GGCCTCTGAC TTCAACCTGC CCCCTGTGGT GGCTAAGGAG
20 ATTGTGGCCT CCTGTGACAA GTGCCAGCTG AAGGGGGAGG CCATGCATGG GCAGGTGGAC
TGCTCCCCCTG GCATCTGGCA GCTGGACTGC ACCCACCTGG AGGGCAAGGT GATCCTGGTG
GCTGTGCATG TGGCCTCCGG CTACATTGAG GCTGAGGTGA TCCCTGCTGA GACAGGCCAG
GAGACTGCCT ACTTCCTGCT GAAGCTGGCT GGCAGGTGGC CTGTGAAGAC CATCCACACT
GACAATGGCT CCAACTTCAC TGGGGCCACA GTGAGGGCTG CCTGCTGGTG GGCTGGCATC
25 AAGCAGGAGT TTGGCATCCC CTACAAACCC CAGTCCCAGG GGGTGGTGGA GTCCATGAAC
AAGGAGCTGA AGAAGATCAT TGGGCAGGTG AGGGACCAGG CTGAGCACCT GAAGACAGCT
GTGCAGATGG CTGTGTTCAT CCACAACTTC AAGAGGAAGG GGGCATCGG GGGCTACTCC
GCTGGGGAGA GGATTGTGGA CATCATTGCC ACAGACATCC AGACCAAGGA GCTCCAGAAG
CAGATCACCA AGATCCAGAA CTTCAAGGTG TACTACAGGG ACTCCAGGAA CCCCTGTGG
30 AAGGGCCCTG CCAAGCTGCT GTGGAAGGGG GAGGGGGCTG TGGTGATCCA GGACAACCT
GACATCAAGG TGGTGCCAG GAGGAAGGCC AAGATCATCA GGGACTATGG CAAGCAGATG
GCTGGGGATG ACTGTGTGGC CTCCAGGCAG GATGAGGACT AAAGCCCGGG CAGATCT (SEQ
ID NO:1).

The open reading frame of the wild type pol construct disclosed as SEQ ID NO:1 contains 850 amino acids, disclosed herein as SEQ ID NO:2, as follows:

Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro
Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys
5 Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys
Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala
Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg
Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile
10 Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Asp
Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys
Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile
Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala
Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln
Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly
15 Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg
Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln
Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys
Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val
Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile
20 Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr
Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu
Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr
Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln
Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys
25 Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys
Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile
Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp
Glu Thr Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp
Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu
30 Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala
Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly
Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Glu
Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn
Ile Val Thr Asp Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro

Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile
Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile
Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys
Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys
5 Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro
Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys
Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln
Leu Asp Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His
Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly
10 Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val
Lys Thr Ile His Thr Asp Asn Gly Ser Asn Phe Thr Gly Ala Thr Val
Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro
Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Lys Glu Leu
Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr
15 Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly
Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr
Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn
Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro
Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn
20 Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp
Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp
Glu Asp (SEQ ID NO:2).

The present invention especially relates to a codon optimized HIV-1 DNA pol construct wherein, in addition to deletion of the portion of the wild type sequence 25 encoding the protease activity, a combination of active site residue mutations are introduced which are deleterious to HIV-1 pol (RT-RH-IN) activity of the expressed protein. Therefore, the present invention preferably relates to a HIV-1 DNA pol construct which is devoid of DNA sequences encoding any PR activity, as well as containing a mutation(s) which at least partially, and preferably substantially, 30 abolishes RT, RNase and/or IN activity. One type of HIV-1 pol mutant may include but is not limited to a mutated DNA molecule comprising at least one nucleotide substitution which results in a point mutation which effectively alters an active site within the RT, RNase and/or IN regions of the expressed protein, resulting in at least substantially decreased enzymatic activity for the RT, RNase H and/or IN functions of

HIV-1 Pol. In a preferred embodiment of this portion of the invention, a HIV-1 DNA pol construct contains a mutation or mutations within the Pol coding region which effectively abolishes RT, RNase H and IN activity. An especially preferable HIV-1 DNA pol construct in a DNA molecule which contains at least one point mutation 5 which alters the active site of the RT, RNase H and IN domains of Pol, such that each activity is at least substantially abolished. Such a HIV-1 Pol mutant will most likely comprise at least one point mutation in or around each catalytic domain responsible for RT, RNase H and IN activity, respectfully. To this end, an especially preferred HIV-1 DNA pol construct is exemplified herein and contains nine codon substitution 10 mutations which results in an inactivated Pol protein (IA Pol: SEQ ID NO:4, Figure 2A-C) which has no PR, RT, RNase or IN activity, wherein three such point mutations reside within each of the RT, RNase and IN catalytic domains. Therefore, an especially preferred exemplification is a DNA molecule which encodes IA-pol, 15 which contains all nine mutations as shown below in Table 1. An additional preferred amino acid residue for substitution is Asp551, localized within the RNase domain of Pol. Any combination of the mutations disclosed herein may suitable and therefore may be utilized as an IA-Pol-based vaccine of the present invention. While addition and deletion mutations are contemplated and within the scope of the invention, the preferred mutation is a point mutation resulting in a substitution of the wild type 20 amino acid with an alternative amino acid residue.

Table 1

	<u>wt aa</u>	<u>aa residue</u>	<u>mutant aa</u>	<u>enzyme function</u>
25	Asp	112	Ala	RT
	Asp	187	Ala	RT
	Asp	188	Ala	RT
	Asp	445	Ala	RNase H
30	Glu	480	Ala	RNase H
	Asp	500	Ala	RNase H
	Asp	626	Ala	IN
	Asp	678	Ala	IN
	Glu	714	Ala	IN

It is preferred that point mutations be incorporated into the IApol mutant vaccines of the present invention so as to lessen the possibility of altering epitopes in and around the active site(s) of HIV-1 Pol.

To this end, SEQ ID NO:3 discloses the nucleotide sequence which codes for 5 a codon optimized pol in addition to the nine mutations shown in Table 1, disclosed as follows, and referred to herein as "IApol":

AGATCTACCA TGGCCCCAT CTCCCCATT GAGACTGTGC CTGTGAAGCT GAAGCCTGGC
ATGGATGGCC CCAAGGTGAA GCAGTGGCCC CTGACTGAGG AGAAGATCAA GGCCCTGGTG
GAAATCTGCA CTGAGATGGA GAAGGAGGGC AAAATCTCCA AGATTGGCCC CGAGAACCCC
10 TACAACACCC CTGTGTTGC CATCAAGAAC AAGGACTCCA CCAAGTGGAG GAAGCTGGTG
GACTTCAGGG AGCTGAACAA GAGGACCCAG GACTTCTGGG AGGTGCAGCT GGGCATCCCC
CACCCCGCTG GCCTGAAGAA GAAGAAGTCT GTGACTGTGC TGGCTGTGGG GGATGCCTAC
TTCTCTGTGC CCCTGGATGA GGACTTCAGG AAGTACACTG CCTTCACCAT CCCCTCCATC
AACAAATGAGA CCCCTGGCAT CAGGTACCAAG TACAATGTGC TGCCCCAGGG CTGGAAGGGC
15 TCCCCCTGCCA TCTTCCAGTC CTCCATGACC AAGATCCTGG AGCCCTTCAG GAAGCAGAAC
CCTGACATTG TGATCTACCA GTACATGGCT GCCCTGTATG TGGGCTCTGA CCTGGAGATT
GGGCAGCACA GGACCAAGAT TGAGGAGCTG AGGCAGCACC TGCTGAGGTG GGGCCTGACC
ACCCCTGACA AGAACCCACCA GAAGGAGCCC CCCTTCCTGT GGATGGGCTA TGAGCTGCAC
CCCGACAAAGT GGACTGTGCA GCCCATTGTG CTGCCTGAGA AGGACTCCTG GACTGTGAAT
20 GACATCCAGA AGCTGGTGGG CAAGCTGAAC TGGGCCTCCC AAATCTACCC TGGCATCAAG
GTGAGGCAGC TGTGCAAGCT GCTGAGGGC ACCAAGGCCC TGACTGAGGT GATCCCCCTG
ACTGAGGAGG CTGAGCTGGA GCTGGCTGAG AACAGGGAGA TCCTGAAGGA GCCTGTGCAT
GGGGTGTACT ATGACCCCTC CAAGGACCTG ATTGCTGAGA TCCAGAAGCA GGGCCAGGGC
CAGTGGACCT ACCAAATCTA CCAGGAGCCC TTCAAGAACC TGAAGACTGG CAAGTATGCC
25 AGGATGAGGG GGGCCCACAC CAATGATGTG AAGCAGCTGA CTGAGGCTGT GCAGAACATC
ACCACTGAGT CCATTGTGAT CTGGGGCAAG ACCCCCAAGT TCAAGCTGCC CATCCAGAAC
GAGACCTGGG AGACCTGGTG GACTGAGTAC TGGCAGGCCA CCTGGATCCC TGAGTGGAG
TTTGTGAACA CCCCCCCCCT GGTGAAGCTG TGGTACCAGC TGGAGAAGGA GCCCATTGTG
GGGGCTGAGA CCTTCTATGT GGCTGGGCT GCCAACAGGG AGACCAAGCT GGGCAAGGCT
30 GGCTATGTGA CCAACAGGGG CAGGCAGAAC GTGGTGACCC TGACTGACAC CACCAACCAG
AAGACTGCC TCCAGGCCAT CTACCTGGCC CTCCAGGACT CTGGCCTGGA GGTGAACATT
GTGACTGCCT CCCAGTATGC CCTGGGCATC ATCCAGGCC AGCCTGATCA GTCTGAGTCT
GAGCTGGTGA ACCAGATCAT TGAGCAGCTG ATCAAGAAC AGAAGGTGTA CCTGGCCTGG
GTGCCTGCC ACAAGGGCAT TGGGGCAAT GAGCAGGTGG ACAAGCTGGT GTCTGCTGGC

ATCAGGAAGG TGCTGTTCCCT GGATGGCATT GACAAGGCC AGGATGAGCA TGAGAAGTAC
 CACTCCAACG GGAGGGCTAT GGCTCTGAC TTCAACCTGC CCCCTGTGGT GGCTAAGGAG
 ATTGTGGCCT CCTGTGACAA GTGCCAGCTG AAGGGGGAGG CCATGCATGG GCAGGTGGAC
 5 TGCTCCCCTG GCATCTGGCA GCTGGCTGC ACCCACCTGG AGGGCAAGGT GATCCTGGTG
 GCTGTGCATG TGGCCTCCGG CTACATTGAG GCTGAGGTGA TCCCTGCTGA GACAGGCCAG
 GAGACTGCCT ACTTCCTGCT GAAGCTGGCT GGCAGGTGGC CTGTGAAGAC CATCCACACT
 GCCAATGGCT CCAACTTCAC TGGGGCCACA GTGAGGGCTG CCTGCTGGTG GGCTGGCATC
 AAGCAGGAGT TTGGCATCCC CTACAACCCC CAGTCCCAGG GGGTGGTGGC CTCCATGAAC
 AAGGAGCTGA AGAAGATCAT TGGGCAGGTG AGGGACCAGG CTGAGCACCT GAAGACAGCT
 10 GTGCAGATGG CTGTGTTCAT CCACAACTTC AAGAGGAAGG GGGGCATCGG GGGCTACTCC
 GCTGGGGAGA GGATTGTGGA CATCATTGCC ACAGACATCC AGACCAAGGA GCTCCAGAAG
 CAGATCACCA AGATCCAGAA CTTCAAGGTG TACTACAGGG ACTCCAGGAA CCCCTGTGG
 AAGGGCCCTG CCAAGCTGCT GTGGAAGGGG GAGGGGGCTG TGGTGATCCA GGACAACCT
 GACATCAAGG TGGTGCCCAG GAGGAAGGCC AAGATCATCA GGGACTATGG CAAGCAGATG
 15 GCTGGGGATG ACTGTGTGGC CTCCAGGCAG GATGAGGACT AAAGCCCGGG CAGATCT (SEQ ID
 NO:3).

In order to produce the IA-pol DNA vaccine construction, inactivation of the enzymatic functions was achieved by replacing a total of nine active-site residues from the enzyme subunits with alanine side-chains. As shown in Table 1, all residues that comprise the catalytic triad of the polymerase, namely Asp112, Asp187, and Asp188, were substituted with alanine (Ala) residues (Larder, et al., *Nature* 1987, 327: 716-717; Larder, et al., 1989, *Proc. Natl. Acad. Sci.* 1989, 86: 4803-4807). Three additional mutations were introduced at Asp445, Glu480 and Asp500 to abolish RNase H activity (Asp551 was left unchanged in this IA Pol construct), with each residue being substituted for an Ala residue, respectively (Davies, et al., 1991, *Science* 252: 88-95; Schatz, et al., 1989, *FEBS Lett.* 257: 311-314; Mizrahi, et al., 1990, *Nucl. Acids. Res.* 18: pp. 5359-5353). HIV pol integrase function was abolished through three mutations at Asp626, Asp678 and Glu714. Again, each of these residues has been substituted with an Ala residue (Wiskerchen, et al., 1995, *J. Virol.* 69: 376-386; Leavitt, et al., 1993, *J. Biol. Chem.* 268: 2113-2119). Amino acid residue Pro3 of SEQ ID NO:4 marks the start of the RT gene. The complete amino acid sequence of IA-Pol is disclosed herein as SEQ ID NO:4, as follows:
 Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro
 Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys

Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys
Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala
Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg
Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile
5 Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Ala
Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys
Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile
Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala
Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln
10 Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Ala Ala Leu Tyr Val Gly
Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg
Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln
Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys
Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val
15 Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile
Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr
Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu
Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr
Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln
20 Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys
Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys
Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile
Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp
Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp
25 Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu
Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala
Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly
Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Ala
Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn
30 Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro
Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile
Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile
Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys
Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys

Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro
val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys
Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln
Leu Ala Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His
5 Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly
Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val
Lys Thr Ile His Thr Ala Asn Gly Ser Asn Phe Thr Gly Ala Thr Val
Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro
Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys Glu Leu
10 Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr
Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly
Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr
Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn
Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro
15 Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn
Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp
Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp
Glu Asp (SEQ ID NO:4).

As noted above, it will be understood that any combination of the mutations disclosed above may be suitable and therefore be utilized as an IA-pol-based vaccine of the present invention. For example, it may be possible to mutate only 2 of the 3 residues within the respective reverse transcriptase, RNase H, and integrase coding regions while still abolishing these enzymatic activities. However, the IA-pol construct described above and disclosed as SEQ ID NO:3, as well as the expressed protein (SEQ ID NO:4) is preferred. It is also preferred that at least one mutation be present in each of the three catalytic domains.

Another aspect of the present invention is to generate codon optimized HIV-1 Pol-based vaccine constructions which comprise a eukaryotic trafficking signal peptide such as from tPA (tissue-type plasminogen activator) or by a leader peptide such as is found in highly expressed mammalian proteins such as immunoglobulin leader peptides. Any functional leader peptide may be tested for efficacy. However, a preferred embodiment of the present invention is to provide for HIV-1 Pol mutant vaccine constructions as disclosed herein which also comprise a leader peptide, preferably a leader peptide from human tPA. In other words, a codon optimized

HIV-1 Pol mutant such as IA-Pol (SEQ ID NO:4) may also comprise a leader peptide at the amino terminal portion of the protein, which may effect cellular trafficking and hence, immunogenicity of the expressed protein within the host cell. As shown in Figure 1A-B for the DNA vector V1Jns, a DNA vector which may be utilized to practice the present invention may be modified by known recombinant DNA methodology to contain a leader signal peptide of interest, such that downstream cloning of the modified HIV-1 protein of interest results in a nucleotide sequence which encodes a modified HIV-1 tPA/Pol protein. In the alternative, as noted above, insertion of a nucleotide sequence which encodes a leader peptide may be inserted into a DNA vector housing the open reading frame for the Pol protein of interest. Regardless of the cloning strategy, the end result is a polynucleotide vaccine which comprises vector components for effective gene expression in conjunction with nucleotide sequences which encode a modified HIV-1 Pol protein of interest, including but not limited to a HIV-1 Pol protein which contains a leader peptide. The amino acid sequence of the human tPA leader utilized herein is as follows:

MDAMKRGCCVLLCGAVFVSPSEISS (SEQ ID NO:28). Therefore, another aspect of the present invention is to generate HIV-1 Pol-based vaccine constructions which comprise a eukaryotic trafficking signal peptide such as from tPA. To this end, the present invention relates to a DNA molecule which encodes a codon optimized wt-pol DNA construct wherein the protease (PR) activity is deleted and a human tPA leader sequence is fused to the 5' end of the coding region. A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, the open reading frame disclosed herein as SEQ ID NO:6.

To this end, the present invention relates to a DNA molecule which encodes a codon optimized wt-pol DNA construct wherein the protease (PR) activity is deleted and a human tPA leader sequence is fused to the 5' end of the coding region (herein, "tPA-wt-pol"). A DNA molecule which encodes this protein is disclosed herein as SEQ ID NO:5, the open reading frame being contained from an initiating Met residue at nucleotides 8-10 to a termination codon from nucleotides 2633-2635. SEQ ID NO:5 is as follows:

GATCACCATG GATGCAATGA AGAGAGGGCT CTGCTGTGTG CTGCTGCTGT GTGGAGCACT
CTTCGTTTCG CCCAGCGAGA TCTCCGCCCC CATCTCCCCC ATTGAGACTG TGCCTGTGAA
GCTGAAGCCT GGCATGGATG GCCCCAAGGT GAAGCAGTGG CCCCTGACTG AGGAGAAGAT
CAAGGCCCTG GTGGAAATCT GCACTGAGAT GGAGAAGGAG GGCAAAATCT CCAAGATTGG

CCCCGAGAAC CCCTACAACA CCCCTGTGTT TGCCATCAAG AAGAAGGACT CCACCAAGTG
GAGGAAGCTG GTGGACTTCA GGGAGCTGAA CAAGAGGACC CAGGACTTCT GGGAGGTGCA
GCTGGGCATC CCCCACCCCG CTGGCCTGAA GAAGAAGAAG TCTGTGACTG TGCTGGATGT
GGGGGATGCC TACTTCTCTG TGCCCCTGGA TGAGGACTTC AGGAAGTACA CTGCCTTCAC
5 CATCCCCCTCC ATCAACAATG AGACCCCTGG CATCAGGTAC CAGTACAATG TGCTGCCCA
GGGCTGGAAG GGCTCCCCCTG CCATCTCCA GTCCTCCATG ACCAAGATCC TGGAGCCCTT
CAGGAAGCAG AACCCCTGACA TTGTGATCTA CCAGTACATG GATGACCTGT ATGTGGGCTC
TGACCTGGAG ATTGGGCAGC ACAGGACCAA GATTGAGGAG CTGAGGCAGC ACCTGCTGAG
GTGGGGCCTG ACCACCCCTG ACAAGAAGCA CCAGAAGGAG CCCCCCTTCC TGTGGATGGG
10 CTATGAGCTG CACCCCGACA AGTGGACTGT GCAGCCCATT GTGCTGCCTG AGAAGGACTC
CTGGACTGTG AATGACATCC AGAAGCTGGT GGGCAAGCTG AACTGGGCCT CCCAAATCTA
CCCTGGCATC AAGGTGAGGC AGCTGTGCAA GCTGCTGAGG GGCACCAAGG CCCTGACTGA
GGTGATCCCC CTGACTGAGG AGGCTGAGCT GGAGCTGGCT GAGAACAGGG AGATCCTGAA
GGAGCCTGTG CATGGGGTGT ACTATGACCC CTCCAAGGAC CTGATTGCTG AGATCCAGAA
15 GCAGGGCCAG GCCCAGTGGGA CCTACCAAAT CTACCAGGAG CCCTTCAAGA ACCTGAAGAC
TGGCAAGTAT GCCAGGATGA GGGGGGCCA CACCAATGAT GTGAAGCAGC TGACTGAGGC
TGTGCAGAAG ATCACCACTG AGTCCATTGT GATCTGGGC AAGACCCCCA AGTTCAAGCT
GCCCATCCAG AAGGAGACCT GGGAGACCTG GTGGACTGAG TACTGGCAGG CCACCTGGAT
CCCTGAGTGG GAGTTGTGA ACACCCCCCC CCTGGTGAAG CTGTGGTACC AGCTGGAGAA
20 GGAGCCCATT GTGGGGCTG AGACCTTCTA TGTGGATGGG GCTGCCAACA GGGAGACCAA
GCTGGCAAG GCTGGCTATG TGACCAAACAG GGGCAGGCAG AAGGTGGTGA CCCTGACTGA
CACCAAC CAGAAGACTG AGCTCCAGGC CATCTACCTG GCCCTCCAGG ACTCTGGCCT
GGAGGTGAAC ATTGTGACTG ACTCCCAGTA TGCCCTGGGC ATCATCCAGG CCCAGCCTGA
TCAGTCTGAG TCTGAGCTGG TGAACCAGAT CATTGAGCAG CTGATCAAGA AGGAGAAGGT
25 GTACCTGGCC TGGGTGCCTG CCCACAAGGG CATTGGGGC AATGAGCAGG TGGACAAGCT
GGTGTCTGCT GGCATCAGGA AGGTGCTGTT CCTGGATGGC ATTGACAAGG CCCAGGATGA
GCATGAGAAG TACCACTCCA ACTGGAGGGC TATGGCCTCT GACTTCAACC TGCCCCCTGT
GGTGGCTAAG GAGATTGTGG CCTCCTGTGA CAAGTGCCAG CTGAAGGGGG AGGCCATGCA
TGGGCAGGTG GACTGCTCCC CTGGCATCTG GCAGCTGGAC TGCACCCACC TGGAGGGCAA
30 GGTGATCCTG GTGGCTGTGC ATGTGGCCTC CGGCTACATT GAGGCTGAGG TGATCCCTGC
TGAGACAGGC CAGGAGACTG CCTACTTCCT GCTGAAGCTG GCTGGCAGGT GGCTGTGAA
GACCATCCAC ACTGACAATG GCTCCAACCT CACTGGGGCC ACAGTGAGGG CTGCCTGCTG
GTGGGCTGGC ATCAAGCAGG AGTTTGGCAT CCCCTACAAC CCCCAGTCCC AGGGGGTGGT
GGAGTCCATG AACAAAGGAGC TGAAGAAGAT CATTGGGCAG GTGAGGGACC AGGCTGAGCA

CCTGAAGACA GCTGTGCAGA TGGCTGTGTT CATCCACAAAC TTCAAGAGGA AGGGGGGCAT
 CGGGGGCTAC TCCGCTGGGG AGAGGATTGT GGACATCATT GCCACAGACA TCCAGACCAA
 GGAGCTCCAG AAGCAGATCA CCAAGATCCA GAACTTCAGG GTGTACTACA GGGACTCCAG
 GAACCCCCCTG TGGAAAGGGCC CTGCCAAGCT GCTGTGGAAG GGGGAGGGGG CTGTGGTGAT
 5 CCAGGACAAC TCTGACATCA AGGTGGTGCC CAGGAGGAAG GCCAAGATCA TCAGGGACTA
 TGGCAAGCAG ATGGCTGGGG ATGACTGTGT GCCCTCCAGG CAGGATGAGG ACTAAAGCCC
 GGGCAGATCT (SEQ ID NO:5).

The open reading frame of the wild type tPA-pol construct disclosed as SEQ ID NO:5 contains 875 amino acids, disclosed herein as SEQ ID NO:6, as follows:

10 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly
 Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser Pro Ile
 Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val
 Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile
 Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu
 15 Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Asp Ser Thr
 Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln
 Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys
 Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser
 Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro
 20 Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu
 Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr
 Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr
 Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln
 His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly
 25 Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp
 Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val
 Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val
 Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg
 Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile
 30 Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile
 Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu
 Ile Ala Glu Ile Gln Lys Gln Gly Gln Gln Trp Thr Tyr Gln Ile
 Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met
 Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln

Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe
Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr
Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro
Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala
5 Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly
Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu
Thr Asp Thr Thr Asn Gln Lys Thr Glu Leu Gln Ala Ile Tyr Leu Ala
Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser Gln Tyr
Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu
10 Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu
Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp
Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile
Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala
Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val
15 Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln
Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp Cys Thr His Leu Glu
Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu
Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu
Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Asp Asn
20 Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala
Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly
Val Val Glu Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val
Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe
Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly
25 Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu
Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp
Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly
Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro
Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly
30 Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp (SEQ ID NO:6).

The present invention also relates to a codon optimized HIV-1 Pol mutant such as IA-Pol (SEQ ID NO:4) which comprises a leader peptide at the amino terminal portion of the protein, which may effect cellular trafficking and hence, immunogenicity of the expressed protein within the host cell. Any such HIV-1 DNA

pol mutant disclosed in the above paragraphs is suitable for fusion downstream of a leader peptide, such as a leader peptide including but not limited to the human tPA leader sequence. Therefore, any such leader peptide-based HIV-1 pol mutant construct may include but is not limited to a mutated DNA molecule which effectively alters the catalytic activity of the RT, RNase and/or IN region of the expressed protein, resulting in at least substantially decreased enzymatic activity one or more of the RT, RNase H and/or IN functions of HIV-1 Pol. In a preferred embodiment of this portion of the invention, a leader peptide/HIV-1 DNA pol construct contains a mutation or mutations within the Pol coding region which effectively abolishes RT, RNase H and IN activity. An especially preferable HIV-1 DNA pol construct is a DNA molecule which contains at least one point mutation which alters the active site and catalytic activity within the RT, RNase H and IN domains of Pol, such that each activity is at least substantially abolished, and preferably totally abolished. Such a HIV-1 Pol mutant will most likely comprise at least one point mutation in or around each catalytic domain responsible for RT, RNase H and IN activity, respectfully. An especially preferred embodiment of this portion of the invention relates to a human tPA leader fused to the IA-Pol protein comprising the nine mutations shown in Table 1. The DNA molecule is disclosed herein as SEQ ID NO:7 and the expressed tPA-IA Pol protein comprises a fusion junction as shown in Figure 3. The complete amino acid sequence of the expressed protein is set forth in SEQ ID NO:8. To this end, SEQ ID NO:7 discloses the nucleotide sequence which codes for a human tPA leader fused to the IA Pol protein comprising the nine mutations shown in Table 1 (herein, "tPA-opt-IApol"). The open reading frame begins with the initiating Met (nucleotides 8-10) and terminates with a "TAA" codon at nucleotides 2633-2635. The nucleotide sequence encoding tPA-IAPol is also disclosed as follows:

GATCACCAGT GATGCAATGA AGAGAGGGCT CTGCTGTGTG CTGCTGCTGT GTGGAGCAGT
CTTCGTTTCG CCCAGCGAGA TCTCCGCCCT CATCTCCCCC ATTGAGACTG TGCCTGTGAA
GCTGAAGCCT GGCATGGATG GCCCCAAGGT GAAGCAGTGG CCCCTGACTG AGGAGAAGAT
CAAGGCCCTG GTGGAAATCT GCACTGAGAT GGAGAAGGAG GGCAAAATCT CCAAGATTGG
CCCCGAGAAC CCCTACAACA CCCCTGTGTT TGCCATCAAG AAGAAGGACT CCACCAAGTG
GAGGAAGCTG GTGGACTTCA GGGAGCTGAA CAAGAGGACC CAGGACTTCT GGGAGGTGCA
GCTGGGCATC CCCCACCCCG CTGGCCTGAA GAAGAAGAAG TCTGTGACTG TGCTGGCTGT
GGGGGATGCC TACTTCTCTG TGCCCCTGGA TGAGGACTTC AGGAAGTACA CTGCCTTCAC
CATCCCCCTCC ATCAACAATG AGACCCCTGG CATCAGGTAC CAGTACAATG TGCTGCCCA

GGGCTGGAAG GGCTCCCTG CCATCTCCA GTCCTCCATG ACCAAGATCC TGGAGCCCTT
CAGGAAGCAG AACCCCTGACA TTGTGATCTA CCAGTACATG GCTGCCCTGT ATGTGGGCTC
TGACCTGGAG ATTGGGCAGC ACAGGACCAA GATTGAGGAG CTGAGGCAGC ACCTGCTGAG
GTGGGCCCTG ACCACCCCTG ACAAGAAGCA CCAGAAGGAG CCCCCCTTCC TGTGGATGGG
5 CTATGAGCTG CACCCCGACA AGTGGACTGT GCAGCCCATT GTGCTGCCTG AGAAGGACTC
CTGGACTGTG AATGACATCC AGAAGCTGGT GGGCAAGCTG AACTGGGCCT CCCAAATCTA
CCCTGGCATC AAGGTGAGGC AGCTGTGCAA GCTGCTGAGG GGCACCAAGG CCCTGACTGA
GGTGATCCCC CTGACTGAGG AGGCTGAGCT GGAGCTGGCT GAGAACAGGG AGATCCTGAA
GGAGCCTGTG CATGGGGTGT ACTATGACCC CTCCAAGGAC CTGATTGCTG AGATCCAGAA
10 GCAGGGCCAG GCCCAGTGGA CCTACCAAAT CTACCAGGAG CCCTTCAAGA ACCTGAAGAC
TGGCAAGTAT GCCAGGATGA GGGGGGCCA CACCAATGAT GTGAAGCAGC TGACTGAGGC
TGTGCAGAAG ATCACCCTG AGTCCATTGT GATCTGGGC AAGACCCCCA AGTTCAAGCT
GCCCATCCAG AAGGAGACCT GGGAGACCTG GTGGACTGAG TACTGGCAGG CCACCTGGAT
CCCTGAGTGG GAGTTTGTGA ACACCCCCCC CCTGGTGAAG CTGTGGTACC AGCTGGAGAA
15 GGAGCCCATT GTGGGGCTG AGACCTTCTA TGTGGCTGGG GCTGCCAACAA GGGAGACCAA
GCTGGCAAG GCTGGCTATG TGACCAACAG GGGCAGGCAG AAGGTGGTGA CCCTGACTGA
CACCAAC CAGAAGACTG CCCTCCAGGC CATCTACCTG GCCCTCCAGG ACTCTGGCCT
GGAGGTGAAC ATTGTGACTG CCTCCAGTA TGCCCTGGC ATCATCCAGG CCCAGCCTGA
TCAGTCTGAG TCTGAGCTGG TGAACCAGAT CATTGAGCAG CTGATCAAGA AGGAGAAGGT
20 GTACCTGGCC TGGGTGCCTG CCCACAAGGG CATTGGGGC AATGAGCAGG TGGACAAGCT
GGTGTCTGCT GGCATCAGGA AGGTGCTGTT CCTGGATGGC ATTGACAAGG CCCAGGATGA
GCATGAGAAG TACCACTCCA ACTGGAGGGC TATGGCCTCT GACTTCAACC TGCCCCCTGT
GGTGGCTAAG GAGATTGTGG CCTCCTGTGA CAAGTGCCAG CTGAAGGGGG AGGCCATGCA
TGGGCAGGTG GACTGCTCCC CTGGCATCTG GCAGCTGGCC TGCACCCACC TGGAGGGCAA
25 GGTGATCCTG GTGGCTGTGC ATGTGGCCTC CGGCTACATT GAGGCTGAGG TGATCCCTGC
TGAGACAGGC CAGGAGACTG CCTACTTCCT GCTGAAGCTG GCTGGCAGGT GGCCTGTGAA
GACCATCCAC ACTGCCAATG GCTCCAACCT CACTGGGGCC ACAGTGAGGG CTGCCTGCTG
GTGGGCTGGC ATCAAGCAGG AGTTTGGCAT CCCCTACAAC CCCCAGTCCC AGGGGGTGGT
GGCCTCCATG AACAAAGGAGC TGAAGAAGAT CATTGGGCAG GTGAGGGACC AGGCTGAGCA
30 CCTGAAGACA GCTGTGCAGA TGGCTGTGTT CATCCACAAC TTCAAGAGGA AGGGGGCAT
CGGGGGCTAC TCCGCTGGGG AGAGGATTGT GGACATCATT GCCACAGACA TCCAGACCAA
GGAGCTCCAG AAGCAGATCA CCAAGATCCA GAACTTCAGG GTGTACTACA GGGACTCCAG
GAACCCCTG TGGAAAGGGCC CTGCCAAGCT GCTGTGGAAG GGGGAGGGGG CTGTGGTGAT
CCAGGACAAC TCTGACATCA AGGTGGTGCC CAGGAGGAAG GCCAAGATCA TCAGGGACTA

TGGCAAGCAG ATGGCTGGGG ATGACTGTGT GGCCTCCAGG CAGGATGAGG ACTAAAGCCC
GGGCAGATCT (SEQ ID NO:7).

The open reading frame of the tPA-IA-pol construct disclosed as SEQ ID NO:7 contains 875 amino acids, disclosed herein as tPA-IA-Pol and SEQ ID NO:8, as follows:

5 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser Pro Ile
Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val
Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile
10 Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu
Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Asp Ser Thr
Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln
Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys
Lys Lys Ser Val Thr Val Leu Ala Val Gly Asp Ala Tyr Phe Ser
15 Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro
Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu
Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr
Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr
Gln Tyr Met Ala Ala Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln
20 His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly
Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp
Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val
Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val
Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg
25 Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile
Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile
Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu
Ile Ala Glu Ile Gln Lys Gln Gly Gln Trp Thr Tyr Gln Ile
Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met
30 Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln
Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe
Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr
Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro
Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala

Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly
Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu
Thr Asp Thr Thr Asn Gln Lys Thr Ala Leu Gln Ala Ile Tyr Leu Ala
Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser Gln Tyr
5 Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu
Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu
Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp
Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile
Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala
10 Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val
Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln
Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr His Leu Glu
Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu
Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu
15 Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Ala Asn
Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala
Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly
Val Val Ala Ser Met Asn Lys Glu Leu Lys Ile Ile Gly Gln Val
Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe
20 Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly
Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu
Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp
Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly
Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro
25 Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly
Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp (SEQ ID NO:8).

The present invention also relates to a substantially purified protein expressed from the DNA polynucleotide vaccines of the present invention, especially the purified proteins set forth below as SEQ ID NOs: 2, 4, 6, and 8. These purified proteins may be useful as protein-based HIV vaccines.

The DNA backbone of the DNA vaccines of the present invention are preferably DNA plasmid expression vectors. DNA plasmid expression vectors are well known in the art and the present DNA vector vaccines may be comprised of any such expression backbone which contains at least a promoter for RNA polymerase

transcription, and a transcriptional terminator 3' to the HIV pol coding sequence. In one preferred embodiment, the promoter is the Rous sarcoma virus (RSV) long terminal repeat (LTR) which is a strong transcriptional promoter. A more preferred promoter is the cytomegalovirus promoter with the intron A sequence (CMV-intA).

5 A preferred transcriptional terminator is the bovine growth hormone terminator. In addition, to assist in large scale preparation of an HIV pol DNA vector vaccine, an antibiotic resistance marker is also preferably included in the expression vector. Ampicillin resistance genes, neomycin resistance genes or any other pharmaceutically acceptable antibiotic resistance marker may be used. In a preferred embodiment of

10 this invention, the antibiotic resistance gene encodes a gene product for neomycin resistance. Further, to aid in the high level production of the pharmaceutical by fermentation in prokaryotic organisms, it is advantageous for the vector to contain an origin of replication and be of high copy number. Any of a number of commercially available prokaryotic cloning vectors provide these benefits. In a preferred

15 embodiment of this invention, these functionalities are provided by the commercially available vectors known as pUC. It is desirable to remove non-essential DNA sequences. Thus, the lacZ and lacI coding sequences of pUC are removed in one embodiment of the invention.

DNA expression vectors which exemplify but in no way limit the present invention are disclosed in PCT International Application No. PCT/US94/02751, International Publication No. WO 94/21797, hereby incorporated by reference. A first DNA expression vector is the expression vector pnRSV, wherein the rous sarcoma virus (RSV) long terminal repeat (LTR) is used as the promoter. A second embodiment relates to plasmid V1, a mutated pBR322 vector into which the CMV promoter and the BGH transcriptional terminator is cloned. Another embodiment regarding DNA vector backbones relates to plasmid V1J. Plasmid V1J is derived from plasmid V1 and removes promoter and transcription termination elements in order to place them within a more defined context, create a more compact vector, and to improve plasmid purification yields. Therefore, V1J also contains the CMVintA promoter and (BGH) transcription termination elements which control the expression of the HIV pol-based genes disclosed herein. The backbone of V1J is provided by pUC18. It is known to produce high yields of plasmid, is well-characterized by sequence and function, and is of minimum size. The entire *lac* operon was removed and the remaining plasmid was purified from an agarose electrophoresis gel,

blunt-ended with the T4 DNA polymerase, treated with calf intestinal alkaline phosphatase, and ligated to the CMVintA/BGH element. In a preferred DNA expression vector, the ampicillin resistance gene is removed from V1J and replaced with a neomycin resistance gene, to generate V1Jneo. An especially preferred DNA expression vector is V1Jns, which is the same as V1J except that a unique Sfi1 restriction site has been engineered into the single Kpn1 site at position 2114 of V1J-
5 neo. The incidence of Sfi1 sites in human genomic DNA is very low (approximately 1 site per 100,000 bases). Thus, this vector allows careful monitoring for expression vector integration into host DNA, simply by Sfi1 digestion of extracted genomic
10 DNA. Yet another preferred DNA expression vector used as the backbone to the HIV-1 pol-based DNA vaccines of the present invention is V1R. In this vector, as much non-essential DNA as possible is "trimmed" from the vector to produce a highly compact vector. This vector is a derivative of V1Jns. This vector allows larger
15 inserts to be used, with less concern that undesirable sequences are encoded and optimizes uptake by cells when the construct encoding specific influenza virus genes is introduced into surrounding tissue. The specific DNA vectors of the present invention include but are not limited to V1, V1J (SEQ ID NO:13), V1Jneo (SEQ ID NO:14), V1Jns (Figure 1A, SEQ ID NO:15), V1R (SEQ ID NO:26), and any of the aforementioned vectors wherein a nucleotide sequence encoding a leader peptide,
20 preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:28.

The present invention especially relates to a DNA vaccine and a pharmaceutically active vaccine composition which contains this DNA vaccine, and
25 the use as prophylactic and/or therapeutic vaccine for host immunization, preferably human host immunization, against an HIV infection or to combat an existing HIV condition. These DNA vaccines are represented by codon optimized DNA molecules encoding HIV-1 Pol or biologically active Pol modifications or Pol-containing fusion proteins which are ligated within an appropriate DNA plasmid vector, with or without
30 a nucleotide sequence encoding a functional leader peptide. DNA vaccines of the present invention may comprise codon optimized DNA molecules encoding HIV-1 Pol or biologically active Pol modifications or Pol-containing fusion proteins ligated in DNA vectors V1, V1J (SEQ ID NO:14), V1Jneo (SEQ ID NO:15), V1Jns (Figure 1A, SEQ ID NO:16), V1R (SEQ ID NO:26), or any of the aforementioned vectors

wherein a nucleotide sequence encoding a leader peptide, preferably the human tPA leader, is fused directly downstream of the CMV-intA promoter, including but not limited to V1Jns-tpa, as shown in Figure 1B and SEQ ID NO:28. To this end, polynucleotide vaccine constructions include, V1Jns-wtpol and V1R-wtpol

5 (comprising the DNA molecule encoding WT Pol, as set forth in SEQ ID NO:2), V1Jns-tPA-WTPol, (comprising the DNA molecule encoding tPA Pol, as set forth in SEQ ID NO:6), V1Jns-IAPol (comprising the DNA molecule encoding IA Pol, as set forth in SEQ ID NO:4), and V1Jns-tPA-IAPol, (comprising the DNA molecule encoding tPA-IA Pol, as set forth in SEQ ID NO:8). Polynucleotide vaccine

10 constructions V1R-wtpol, V1Jns-IAPol, and V1Jns-tPA-IAPol, are exemplified in Example Sections 3-5.

It will be evident upon review of the teaching within this specification that numerous vector/Pol antigen constructs may be generated. While the exemplified constructs are preferred, any number of vector/Pol antigen combinations are within

15 the scope of the present invention, especially wild type or modified/inactivated Pol proteins which comprise at least one, preferably 5 or more and especially all nine mutations as shown in Table 1, with or without the inclusion of a leader sequence such as human tPA.

The DNA vector vaccines of the present invention may be formulated in any

20 pharmaceutically effective formulation for host administration. Any such formulation may be, for example, a saline solution such as phosphate buffered saline (PBS). It will be useful to utilize pharmaceutically acceptable formulations which also provide long-term stability of the DNA vector vaccines of the present invention. During storage as a pharmaceutical entity, DNA plasmid vaccines undergo a

25 physiochemical change in which the supercoiled plasmid converts to the open circular and linear form. A variety of storage conditions (low pH, high temperature, low ionic strength) can accelerate this process. Therefore, the removal and/or chelation of trace metal ions (with succinic or malic acid, or with chelators containing multiple phosphate ligands) from the DNA plasmid solution, from the formulation buffers or

30 from the vials and closures, stabilizes the DNA plasmid from this degradation pathway during storage. In addition, inclusion of non-reducing free radical scavengers, such as ethanol or glycerol, are useful to prevent damage of the DNA plasmid from free radical production that may still occur, even in apparently demetalated solutions. Furthermore, the buffer type, pH, salt concentration, light

exposure, as well as the type of sterilization process used to prepare the vials, may be controlled in the formulation to optimize the stability of the DNA vaccine. Therefore, formulations that will provide the highest stability of the DNA vaccine will be one that includes a demetalated solution containing a buffer (phosphate or bicarbonate) 5 with a pH in the range of 7-8, a salt (NaCl, KCl or LiCl) in the range of 100-200 mM, a metal ion chelator (e.g., EDTA, diethylenetriaminepenta-acetic acid (DTPA), malate, inositol hexaphosphate, tripolyphosphate or polyphosphoric acid), a non-reducing free radical scavenger (e.g. ethanol, glycerol, methionine or dimethyl sulfoxide) and the highest appropriate DNA concentration in a sterile glass vial, 10 packaged to protect the highly purified, nuclease free DNA from light. A particularly preferred formulation which will enhance long term stability of the DNA vector vaccines of the present invention would comprise a Tris-HCl buffer at a pH from about 8.0 to about 9.0; ethanol or glycerol at about 3% w/v; EDTA or DTPA in a concentration range up to about 5 mM; and NaCl at a concentration from about 50 15 mM to about 500 mM. The use of such stabilized DNA vector vaccines and various alternatives to this preferred formulation range is described in detail in PCT International Application No. PCT/US97/06655 and PCT International Publication No. WO 97/40839, both of which are hereby incorporated by reference.

The DNA vector vaccines of the present invention may also be formulated 20 with an adjuvant or adjuvants which may increase immunogenicity of the DNA polynucleotide vaccines of the present invention. A number of these adjuvants are known in the art and are available for use in a DNA vaccine, including but not limited to particle bombardment using DNA-coated gold beads, co-administration of DNA vaccines with plasmid DNA expressing cytokines, chemokines, or 25 costimulatory molecules, formulation of DNA with cationic lipids or with experimental adjuvants such as saponin, monophosphoryl lipid A or other compounds which increase immunogenicity of the DNA vaccine. Another adjuvant for use in the DNA vector vaccines of the present invention are one or 30 more forms of an aluminum phosphate-based adjuvant wherein the aluminum phosphate-based adjuvant possesses a molar PO_4/Al ratio of approximately 0.9. An additional mineral-based adjuvant may be generated from one or more forms of a calcium phosphate. These mineral-based adjuvants are useful in increasing cellular and humoral responses to DNA vaccination. These mineral-based compounds for use as DNA vaccines adjuvants are disclosed in PCT International

Application No. PCT/US98/02414, PCT International Publication No. WO 98/35562, which is hereby incorporated by reference. Another preferred adjuvant is a non-ionic block copolymer which shows adjuvant activity with DNA vaccines. The basic structure comprises blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. Newman et al. (1998, *Critical Reviews in Therapeutic Drug Carrier Systems* 15(2): 89-142) review a class of non-ionic block copolymers which show adjuvant activity. The basic structure comprises blocks of polyoxyethylene (POE) and polyoxypropylene (POP) such as a POE-POP-POE block copolymer. Newman et al. *id.*, disclose that certain POE-POP-POE block copolymers may be useful as adjuvants to an influenza protein-based vaccine, namely higher molecular weight POE-POP-POE block copolymers containing a central POP block having a molecular weight of over about 9000 daltons to about 20,000 daltons and flanking POE blocks which comprise up to about 20% of the total molecular weight of the copolymer (see also U.S. Reissue Patent No. 36,665, U.S. Patent No. 5,567,859, U.S. Patent No. 5,691,387, U.S. Patent No. 5,696,298 and U.S. Patent No. 5,990,241, all issued to Emanuele, et al., regarding these POE-POP-POE block copolymers). WO 96/04932 further discloses higher molecular weight POE/POP block copolymers which have surfactant characteristics and show biological efficacy as vaccine adjuvants. The above cited references within this paragraph are hereby incorporated by reference in their entirety. It is therefore within the purview of the skilled artisan to utilize available adjuvants which may increase the immune response of the polynucleotide vaccines of the present invention in comparison to administration of a non-adjuvanted polynucleotide vaccine.

The DNA vector vaccines of the present invention are administered to the host by any means known in the art, such as enteral and parenteral routes. These routes of delivery include but are not limited to intramuscular injection, intraperitoneal injection, intravenous injection, inhalation or intranasal delivery, oral delivery, sublingual administration, subcutaneous administration, transdermal administration, transcutaneous administration, percutaneous administration or any form of particle bombardment, such as a biolistic device such as a "gene gun" or by any available needle-free injection device. The preferred methods of delivery of the HIV-1 Pol-based DNA vaccines disclosed herein are intramuscular injection, subcutaneous administration and needle-free injection. An especially preferred method is

intramuscular delivery.

The amount of expressible DNA to be introduced to a vaccine recipient will depend on the strength of the transcriptional and translational promoters used in the DNA construct, and on the immunogenicity of the expressed gene product. In general, an immunologically or prophylactically effective dose of about 1 μ g to greater than about 20 mg, and preferably in doses from about 1 mg to about 5 mg is administered directly into muscle tissue. As noted above, subcutaneous injection, intradermal introduction, impression through the skin, and other modes of administration such as intraperitoneal, intravenous, inhalation and oral delivery are also contemplated. It is also contemplated that booster vaccinations are to be provided in a fashion which optimizes the overall immune response to the Pol-based DNA vector vaccines of the present invention.

The aforementioned polynucleotides, when directly introduced into a vertebrate *in vivo*, express the respective HIV-1 Pol protein within the animal and in turn induce a cellular immune response within the host to the expressed Pol antigen. To this end, the present invention also relates to methods of using the HIV-1 Pol-based polynucleotide vaccines of the present invention to provide effective immunoprophylaxis, to prevent establishment of an HIV-1 infection following exposure to this virus, or as a post-HIV infection therapeutic vaccine to mitigate the acute HIV-1 infection so as to result in the establishment of a lower virus load with beneficial long term consequences. As noted above, the present invention contemplates a method of administration or use of the DNA pol-based vaccines of the present invention using any of the known routes of introducing polynucleotides into living tissue to induce expression of proteins.

Therefore, the present invention provides for methods of using a DNA pol-based vaccine utilizing the various parameters disclosed herein as well as any additional parameters known in the art, which, upon introduction into mammalian tissue induces intracellular expression of these DNA pol-based vaccines. This intracellular expression of the Pol-based immunogen induces a cellular immune response which provides a substantial level of protection against an existing HIV-1 infection or provides a substantial level of protection against a future infection in a presently uninfected host.

The following examples are provided to illustrate the present invention without, however, limiting the same hereto.

EXAMPLE 1
Vaccine Vectors

V1 – Vaccine vector V1 was constructed from pCMVIE-AKI-DHFR (Whang et al., 1987, *J. Virol.* 61: 1796). The AKI and DHFR genes were removed by cutting the vector with EcoRI and self-ligating. This vector does not contain intron A in the CMV promoter, so it was added as a PCR fragment that had a deleted internal SacI site [at 1855 as numbered in Chapman, et al., 1991, *Nuc. Acids Res.* 19: 3979]. The template used for the PCR reactions was pCMVintA-Lux, made by ligating the 5 HindIII and NheI fragment from pCMV6a120 (see Chapman et al., *ibid.*), which includes hCMV-IE1 enhancer/promoter and intron A, into the HindIII and XbaI sites of pBL3 to generate pCMVIntBL. The 1881 base pair luciferase gene fragment (HindIII-SmaI Klenow filled-in) from RSV-Lux (de Wet et al., 1987, *Mol. Cell Biol.* 7: 725) was ligated into the SalI site of pCMVIntBL, which was Klenow filled-in and 10 phosphatase treated. The primers that spanned intron A are: 5' primer: 5'-CTATAT AAGCAGAGCTCGTTAG-3' (SEQ ID NO:10); 3' primer: 5'-GTAGCAAA GATCTAAGGACGGTGACTGCAG-3' (SEQ ID NO:11). The primers used to 15 remove the SacI site are: sense primer, 5'-GTATGTGTCTGAAAATGAGCG TGGAGATTGGGCTCGCAC-3' (SEQ ID NO:12) and the antisense primer, 20 5'-GTGCGAGCCCAATCTCCACGGCTCATTTCAGAC ACATAC-3' (SEQ ID NO:13). The PCR fragment was cut with Sac I and Bgl II and inserted into the vector which had been cut with the same enzymes.

V1J – Vaccine vector V1J was generated to remove the promoter and transcription termination elements from vector V1 in order to place them within a 25 more defined context, create a more compact vector, and to improve plasmid purification yields. V1J is derived from vectors V1 and pUC18, a commercially available plasmid. V1 was digested with SspI and EcoRI restriction enzymes producing two fragments of DNA. The smaller of these fragments, containing the CMVintA promoter and Bovine Growth Hormone (BGH) transcription termination 30 elements which control the expression of heterologous genes, was purified from an agarose electrophoresis gel. The ends of this DNA fragment were then "blunted" using the T4 DNA polymerase enzyme in order to facilitate its ligation to another "blunt-ended" DNA fragment. pUC18 was chosen to provide the "backbone" of the expression vector. It is known to produce high yields of plasmid, is well-

characterized by sequence and function, and is of small size. The entire *lac* operon was removed from this vector by partial digestion with the HaeII restriction enzyme. The remaining plasmid was purified from an agarose electrophoresis gel, blunt-ended with the T4 DNA polymerase treated with calf intestinal alkaline phosphatase, and 5 ligated to the CMVintA/BGH element described above. Plasmids exhibiting either of two possible orientations of the promoter elements within the pUC backbone were obtained. One of these plasmids gave much higher yields of DNA in *E. coli* and was designated V1J. This vector's structure was verified by sequence analysis of the junction regions and was subsequently demonstrated to give comparable or higher 10 expression of heterologous genes compared with V1. The nucleotide sequence of V1J is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
15 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG
CTATTGGCCA TTGCATACGT TGTATCCATA TCATAATATG TACATTATA TTGGCTCATG
TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC
GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCCGCGT ACATAACTTA CGGTAAATGG
CCCGCCTGGC TGACCGCCCA ACGACCCCG CCCATTGACG TCAATAATGA CGTATGTTCC
20 CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC
TGCCCACATTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA
TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA
CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA
25 CGTCAATGGG AGTTTGTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA
CTCCGCCCA TTGACGAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG
AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA
TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGAA CGGTGCATTG GAACGCGGAT
TCCCCGTGCC AAGAGTGACG TAAAGTACCGC CTATAGAGTC TATAGGCCA CCCCCTTGGC
30 TTCTTATGCA TGCTATACTG TTTTGCGCTT GGGGTCTATA CACCCCCGCT TCCTCATGTT
ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC
CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTGCC ACAACTCTCT
TTATTGGCTA TATGCCAATA CACTGTCCTT CAGAGACTGA CACGGACTCT GTATTTTAC
AGGATGGGGT CTCATTATT ATTACAAAT TCACATATAAC AACACCACCG TCCCCAGTGC

CCGCAGTTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTCGGGTA CGTGTCCGG
ACATGGGCTC TTCTCCGGTA GCGGCGGAGC TTCTACATCC GAGCCCTGCT CCCATGCCTC
CAGCGACTCA TGGTCGCTCG GCAGCTCCTT GCTCCTAACCA GTGGAGGCCA GACTTAGGCA
CAGCACCGATG CCCACCAACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC
5 TGAAAATGAG CTCGGGGAGC GGGCTTGAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC
GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACTCC
CGTTGCGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCCGC
GCGCGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCCTTTCCA TGGGTCTTTT
CTGCAGTCAC CGTCCTTAGA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTGTTGCC
10 CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA
ATGAGGAAAT TGCATCGCAT TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG
GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG
GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTC CTCCTGGGCC AGAAAGAAGC
AGGCACATCC CCTTCTCTGT GACACACCCCT GTCCACGCC CTTGGTTCTTA GTTCCAGCCC
15 CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCTTC AATCCCACCC GCTAAAGTAC
TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG
GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAGAGGGA GAGAAAATGC CTCCAACATG
TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCCGCTT CCTCGCTCAC TGACTCGCTG
CGCTCGGTGCG TTGGCTGCG GCGAGCGGT AAGCTCAGACT CAAAGGCGGT AATACGGTTA
20 TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC CCCTGACGAG
CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAAC
CAGGCCTTTC CCCCTGGAAG CTCCCTCGTG CGCTCTCCTG TTCCGACCCCT GCCGCTTACC
GGATACCTGT CCGCCTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG CTCACGCTGT
25 AGGTATCTCA GTTCGGTGTA GGTGCTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC
GTTCAAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA
CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAAACAGGA TTAGCAGAGC GAGGTATGTA
GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA
TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA
30 TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA GCAGATTACG
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGGTC TGACGCTCAG
TGGAACGAAA ACTCACGTAA AGGGATTGG GTCATGAGAT TATCAAAAAG GATCTTCACC
TAGATCCTTT TAAATTAAAA ATGAAGTTT AAATCAATCT AAAGTATATA TGAGTAAACT
TGGTCTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT CTGTCTATT

CGTTCATCCA TAGTTGCCTG ACTCCCCGTC GTGTAGATAA CTACGATACG GGAGGGCTTA
CCATCTGGCC CCAGTGCTGC AATGATACCG CGAGACCCAC GCTCACCGGC TCCAGATTAA
TCAGCAATAA ACCAGCCAGC CGGAAGGGCC GAGCGCAGAA GTGGTCCTGC AACTTTATCC
5 GCCTCCATCC AGTCTATTAA TTGTTGCCGG GAAGCTAGAG TAAGTAGTTC GCCAGTTAAT
AGTTTGCAGCA ACGTTGTTGC CATTGCTACA GGCATCGTGG TGTACGCTC GTCGTTGGT
ATGGCTTCAT TCAGCTCCGG TTCCCAACGA TCAAGGCGAG TTACATGATC CCCCATGTTG
TGCAAAAAAG CGGTTAGCTC CTCGGTCCT CCGATCGTTG TCAGAAGTAA GTTGGCCGCA
GTGTTATCAC TCATGGTTAT GGCAGCACTG CATAATTCTC TTACTGTCAT GCCATCCGTA
AGATGCTTT CTGTGACTGG TGAGTACTCA ACCAAGTCAT TCTGAGAATA GTGTATGCGG
10 CGACCGAGTT GCTCTTGCCTT GGCAGTCAATA CGGGATAATA CCGCGCCACA TAGCAGAACT
TTAAAAGTGC TCATCATTTGG AAAACGTTCT TCGGGGCGAA AACTCTCAAG GATCTTACCG
CTGTTGAGAT CCAGTTCGAT GTAACCCACT CGTGCACCCA ACTGATCTTC AGCATCTTT
ACTTTCACCA GCGTTCTGG GTGAGCAAAA ACAGGAAGGC AAAATGCCGC AAAAAAGGGA
ATAAGGGCGA CACGGAAATG TTGAATACTC ATACTCTTC TTTTCATAA TTATTGAAGC
15 ATTTATCAGG GTTATTGTCT CATGAGCGGA TACATATTG AATGTATTAA GAAAAATAAA
CAAATAGGGG TTCCGCGCAC ATTTCCCCGA AAAGTGCCAC CTGACGTCTA AGAAACCATT
ATTATCATGA CATTAAACCTA TAAAAATAGG CGTATCACGA GGCCCTTTCG TC (SEQ ID
NO:14).

V1Jneo – Construction of vaccine vector V1Jneo expression vector involved
20 removal of the *amp^r* gene and insertion of the *kan^r* gene (neomycin
phosphotransferase). The *amp^r* gene from the pUC backbone of V1J was removed by
digestion with *Ssp*I and *Eam*1105I restriction enzymes. The remaining plasmid was
purified by agarose gel electrophoresis, blunt-ended with T4 DNA polymerase, and
then treated with calf intestinal alkaline phosphatase. The commercially available
25 *kan^r* gene, derived from transposon 903 and contained within the pUC4K plasmid,
was excised using the *Pst*I restriction enzyme, purified by agarose gel electrophoresis,
and blunt-ended with T4 DNA polymerase. This fragment was ligated with the V1J
backbone and plasmids with the *kan^r* gene in either orientation were derived which
were designated as V1Jneo #'s 1 and 3. Each of these plasmids was confirmed by
30 restriction enzyme digestion analysis, DNA sequencing of the junction regions, and
was shown to produce similar quantities of plasmid as V1J. Expression of
heterologous gene products was also comparable to V1J for these V1Jneo vectors.
V1Jneo#3, referred to as V1Jneo hereafter, was selected which contains the *kan^r* gene
in the same orientation as the *amp^r* gene in V1J as the expression construct and

provides resistance to neomycin, kanamycin and G418. The nucleotide sequence of V1Jneo is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
5 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG
CTATTGGCCA TTGCATACTGT TGTATCCATA TCATAATATG TACATTATA TTGGCTCATG
TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC
GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG
10 CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC
CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC
TGCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA
TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTCCTAC
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA
15 CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATT TCAAAGTCTCC ACCCCATTGA
CGTCAATGGG AGTTTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAT GTCGTAACAA
CTCCGCCCA TTGACGCAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG
AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA
TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCGGAT
20 TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGAGTC TATAGGCCA CCCCCTGGC
TTCTTATGCA TGCTATACTG TTTTGCGCTT GGGGTCTATA CACCCCCGCT TCCTCATGTT
ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC
CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTGCC ACAACTCTCT
TTATTGGCTA TATGCCAATA CACTGTCCTT CAGAGACTGA CACGGACTCT GTATTTTAC
25 AGGATGGGGT CTCATTTATT ATTTACAAAT TCACATATAC AACACCACCG TCCCCAGTGC
CCGCAGTTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTCGGGTA CGTGTCCGG
ACATGGGCTC TTCTCCGGTA GCGGCGGAGC TTCTACATCC GAGCCCTGCT CCCATGCCTC
CAGCGACTCA TGGTCGCTCG GCAGCTCCTT GCTCCTAAC A GTGGAGGCCA GACTTAGGCA
CAGCACGATG CCCACCAACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC
30 TGAAAATGAG CTCGGGGAGC GGGCTTGCAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC
GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACCTCC
CGTTGCAGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCCGC
GCGCGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCTTTCCA TGGGTCTTTT
CTGCAGTCAC CGTCCTTACA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTGGCC

CCTCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCC TT CCAATAAAA
ATGAGGAAAT TGCATCGCAT TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG
GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG
GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTC CTCCTGGGCC AGAAAGAAGC
5 AGGCACATCC CCTTCTCTGT GACACACCCT GTCCACGCC CTGGTTCTTA GTTCCAGGCC
CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCTTC AATCCCACCC GCTAAAGTAC
TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG
GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAGAGGGAG GAGAAAATGC CTCCAACATG
TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCCGCTT CCTCGCTCAC TGACTCGCTG
10 CGCTCGGTG TTCGGCTGCG GCGAGCGGT A TCAGCTCACT CAAAGGGGT AATACGGTTA
TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCCA GCAAAAGGCC
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCATA GGCTCCGCC CCCTGACGAG
CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC
CAGGCCTTTC CCCCTGGAAG CTCCCTCGT CGCTCTCCTG TTCCGACCCCT GCCGCTTACC
15 GGATACCTGT CCGCCTTCT CCCTCGGGAG AGCGTGGCGC TTTCTCAATG CTCACGCTGT
AGGTATCTCA GTTCGGTGT A GGTCGTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCCC
GTTCAGCCCG ACCGCTGCAG CTTATCCGGT AACTATCGTC TTGAGTCAA CCCGGTAAGA
CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAAACAGGA TTAGCAGAGC GAGGTATGTA
GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA
20 TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTCTTGA
TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA GCAGATTACG
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGGTC TGACGCTCAG
TGGAACGAAA ACTCACGTTA AGGGATTGGT GTCATGAGAT TATCAAAAG GATCTTCACC
TAGATCCTTT TAAATTAAGA ATGAAGTTT AAATCAATCT AAAAGTATATA TGAGTAAACT
25 TGGTCTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT CTGTCTATT
CGTTCATCCA TAGTTGCCTG ACTCCGGGGGG GGGGGGGCGC TGAGGTCTGC CTCGTGAAGA
AGGTGTTGCT GACTCATACC AGGCCTGAAT CGCCCCATCA TCCAGCCAGA AAGTGAGGGAG
GCCACGGTTG ATGAGAGCTT TGTTGTAGGT GGACCAGTTG GTGATTTGA ACTTTGCTT
TGCCACGGAA CGGTCTGCAGT TGTCGGGAAG ATGCGTGATC TGATCCTCA ACTCAGCAA
30 AGTTCGATTT ATTCAACAAA GCCGCCGTCC CGTCAAGTCA GCGTAATGCT CTGCCAGTGT
TACAACCAAT TAACCAATT TGATTAGAAA AACTCATCGA GCATCAAATG AAACTGCAAT
TTATTCAAT CAGGATTATC AATACCATAT TTTGAAAAA GCCGTTCTG TAATGAAGGA
GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTG TGCGATTCCG
ACTCGTCAA CATCAATACA ACCTATTAAT TTCCCTCGT CAAAAATAAG GTTATCAAGT

GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG GCAAAAGCTT ATGCATTCT
 TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC
 AAACCGTTAT TCATTCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC GCTGTTAAA
 GGACAATTAC AAACAGGAAT CGAATGCAAC CGGCGCAGGA ACAC TGCCAG CGCATCAACA
 5 ATATTTCAC CTGAATCAGG ATATTCTTCT AATACCTGGA ATGCTGTTT CCCGGGGATC
 GCAGTGGTGA GTAACCATGC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA
 GGCATAAAATT CCGTCAGCCA GTTTAGTCTG ACCATCTCAT CTGTAACATC ATTGGCAACG
 CTACCTTGC CATGTTTCAG AAACAACCTCT GGCGCATCGG GCTTCCCATA CAATCGATAG
 ATTGTGCGCAC CTGATTGCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA
 10 TCCATGTTGG AATTTAATCG CGGCCTCGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA
 ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTA TTGTTCATGA TGATATATTT
 TTATCTTGTG CAATGTAACA TCAGAGATTT TGAGACACAA CGTGGCTTC CCCCCCCCCC
 CATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT
 TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC
 15 TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTT
 CGTC (SEQ ID NO:15).

V1Jns - The expression vector V1Jns was generated by adding an SfiI site to V1Jneo to facilitate integration studies. A commercially available 13 base pair SfiI linker (New England BioLabs) was added at the KpnI site within the BGH sequence 20 of the vector. V1Jneo was linearized with KpnI, gel purified, blunted by T4 DNA polymerase, and ligated to the blunt SfiI linker. Clonal isolates were chosen by restriction mapping and verified by sequencing through the linker. The new vector was designated V1Jns. Expression of heterologous genes in V1Jns (with SfiI) was comparable to expression of the same genes in V1Jneo (with KpnI).

25 The nucleotide sequence of V1Jns is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
 CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
 TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG
 30 CTATTGGCCA TTGCATACGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG
 TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC
 GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG
 CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC
 CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC

TGCCCACCTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA
 TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCCTAC
 TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA
 CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA
 5 CGTCAATGGG AGTTTGTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA
 CTCCGCCCA TTGACGAAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG
 AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA
 TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCAGGAT
 TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGACTC TATAGGCACA CCCCTTGGC
 10 TCTTATGCAT GCTATACTGT TTTTGGCTTG GGGCCTATAC ACCCCCCGCTT CCTTATGCTA
 TAGGTGATGG TATAGCTTAG CCTATAGGTG TGGGTTATTG ACCATTATTG ACCACTCCCC
 TATTGGTGAC GATACTTCC ATTACTAAC CATAACATGG CTCTTGCCA CAACTATCTC
 TATTGGCTAT ATGCCAATAC TCTGTCCTTC AGAGACTGAC ACGGACTCTG TATTGGTAC
 GGATGGGGTC CCATTTATTA TTTACAAATT CACATATACA ACAACGCCGT CCCCCGTGCC
 15 CGCAGTTTT ATTAAACATA GCGTGGGATC TCCACGCGAA TCTCGGGTAC GTGTTCCGGA
 CATGGGCTCT TCTCCGGTAG CGGCGGAGCT TCCACATCCG AGCCCTGGTC CCATGCCTCC
 AGCGGCTCAT GGTCGCTCGG CAGCTCCTTG CTCCCTAACAG TGGAGGCCAG ACTTAGGCAC
 AGCACAAATGC CCACCACAC CAGTGTGCCG CACAAGGCCG TGGCGGTAGG GTATGTGTCT
 GAAAATGAGC GTGGAGATTG GGCTCGCACG GCTGACGCAG ATGGAAGACT TAAGGCAGCG
 20 GCAGAAGAAG ATGCAGGCAG CTGAGTTGTT GTATTCTGAT AAGAGTCAGA GGTAACTCCC
 GTTGCGGTGC TGTTAACGGT GGAGGGCAGT GTAGTCTGAG CAGTACTCGT TGCTGCCGCG
 CGCGCCACCA GACATAATAG CTGACAGACT AACAGACTGT TCCTTCCAT GGGTCTTTTC
 TGCAGTCACC GTCCTTAGAT CTGCTGTGCC TTCTAGTTGC CAGCCATCTG TTGTTGCC
 CTCCCCGTG CCTTCCTGA CCCTGGAAGG TGCCACTCCC ACTGTCCTTT CCTAATAAAA
 25 TGAGGAAATT GCATCGCATT GTCTGAGTAG GTGTCATTCT ATTCTGGGG GTGGGGTGGG
 GCAGGACAGC AAGGGGGAGG ATTGGGAAGA CAATAGCAGG CATGCTGGGG ATGCGGTGGG
 CTCTATGGCC GCTGCGGCCA GGTGCTGAAG AATTGACCCG GTTCCTCCTG GGCCAGAAAG
 AAGCAGGCAC ATCCCCCTCT CTGTGACACA CCCTGTCCAC GCCCCTGGTT CTTAGTTCCA
 GCCCCACTCA TAGGACACTC ATAGCTCAGG AGGGCTCCGC CTTCAATCCC ACCCGCTAAA
 30 GTACTTGGAG CGGTCTCTCC CTCCCTCATC AGCCCACCAA ACCAACCTA GCCTCCAAGA
 GTGGGAAGAA ATTAAAGCAA GATAGGCTAT TAAGTGCAGA GGGAGAGAAA ATGCCTCCAA
 CATGTGAGGA AGTAATGAGA GAAATCATAG AATTCTTCC GCTTCCTCGC TCACTGACTC
 GCTGCGCTCG GTCGTTCGGC TGCAGGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG
 GTTATCCACA GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGAAAA

GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCCTTTTC CATAGGCTCC GCCCCCCCTGA
CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG
ATACCAGGCG TTTCCCCCTG GAAGCTCCCT CGTGCCTCT CCTGTTCCGA CCCTGCCGCT
TACCGGATAC CTGTCCGCCT TTCTCCCTTC GGGAAAGCGTG GCGCTTCTC ATAGCTCACG
5 CTGTAGGTAT CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC
CCCCGTTCAAG CCCGACCGCT GCGCCTTATC CGGTAACAT CGTCTTGAGT CCAACCCGGT
AAGACACGAC TTATGCCAC TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA
TGTAGGCGGT GCTACAGAGT TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGAAC
AGTATTGGT ATCTGCGCTC TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC
10 TTGATCCGGC AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTGCA AGCAGCAGAT
TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTGATC TTTTCTACGG GGTCTGACGC
TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT
CACCTAGATC CTTTAAATT AAAAATGAAG TTTTAAATCA ATCTAAAGTA TATATGAGTA
AACTGGTCT GACAGTTACC AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT
15 ATTTCGTTCA TCCATAGTTG CCTGACTCGG GGGGGGGGGG CGCTGAGGTC TGCCTCGTGA
AGAAGGTGTT GCTGACTCAT ACCAGGCCTG AATGCCCA TCATCCAGCC AGAAAGTGAG
GGAGCCACGG TTGATGAGAG CTTTGTGTA GGTGGACCAG TTGGTGATTT TGAACTTTG
CTTTGCCACG GAACGGTCTG CGTTGTGAGG AAGATGCGTG ATCTGATCCT TCAACTCAGC
AAAAGTCGA TTTATTCAAC AAAGCCGCCG TCCCGTCAAG TCAGCGTAAT GCTCTGCCAG
20 TGTTACAACC AATTAAACCA TTCTGATTAG AAAAACTCAT CGAGCATCAA ATGAAACTGC
AATTATTCA TATCAGGATT ATCAATACCA TATTTTGAA AAAGCCGTTT CTGTAATGAA
GGAGAAAAT CACCGAGGCA GTTCCATAGG ATGGCAAGAT CCTGGTATCG GTCTGCGATT
CCGACTCGTC CAACATCAAT ACAACCTATT AATTCCCT CGTAAAAAT AAGGTTATCA
AGTGAGAAAT CACCATGAGT GACGACTGAA TCCGGTGAGA ATGGCAAAAG CTTATGCATT
25 TCTTCCAGA CTTGTTCAAC AGGCCAGCCA TTACGCTCGT CATAAAATC ACTCGCATCA
ACCAAACCGT TATTCAATTG TGATTGCGCC TGAGCGAGAC GAAATACGCG ATCGCTGTTA
AAAGGACAAT TACAAACAGG AATCGAATGC AACCGGGCGCA GGAACACTGC CAGCGCATCA
ACAATATTTC CACCTGAATC AGGATATTCT TCTAATACCT GGAATGCTGT TTTCCGGGG
ATCGCAGTGG TGAGTAACCA TGCATCATCA GGAGTACGGA TAAAATGCTT GATGGTGGGA
30 AGAGGCATAA ATTCCGTCAG CCAGTTAGT CTGACCATCT CATCTGTAAC ATCATTGGCA
ACGCTACCTT TGCCATGTT CAGAAACAAAC TCTGGCGCAT CGGGCTTCCC ATACAATCGA
TAGATTGTCG CACCTGATTG CCCGACATTA TCGCGAGCCC ATTTATACCC ATATAAATCA
GCATCCATGT TGGAATTAA TCGCGGCCCTC GAGCAAGACG TTTCCCGTTG AATATGGCTC
ATAACACCCC TTGTATTACT GTTTATGTAA GCAGACAGTT TTATTGTTCA TGATGATATA

TTTTTATCTT GTGCAATGTA ACATCAGAGA TTTGAGACA CAACGTGGCT TTCCCCCCCC
CCCCATTATT GAAGCATTAA TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAATGT
ATTTAGAAAA ATAAACAAAT AGGGGTTCCG CGCACATTTC CCCGAAAAGT GCCACCTGAC
GTCTAAGAAA CCATTATTAT CATGACATTA ACCTATAAAA ATAGGCGTAT CACGAGGCC

5 TTTCGTC (SEQ ID NO:16).

The underlined nucleotides of SEQ ID NO:16 represent the Sfi1 site introduced into the Kpn 1 site of V1Jneo.

V1Jns-tPA – The vaccine vector V1Jns-tPA was constructed in order to fuse an heterologous leader peptide sequence to the pol DNA constructs of the present invention. More specifically, the vaccine vector V1Jns was modified to include the human tissue-specific plasminogen activator (tPA) leader. As an exemplification, but by no means a limitation of generating a pol DNA construct comprising an amino-terminal leader sequence, plasmid V1Jneo was modified to include the human tissue-specific plasminogen activator (tPA) leader. Two synthetic complementary oligomers were annealed and then ligated into V1Jneo which had been BglII digested. The 10 sense and antisense oligomers were 5'-GATCACCATGGATGCAATGAAGAG AGGGCTCTGCTGTGCTGCTGTGGAGCAGTCTCGTTGCCAG CGA-3' (SEQ ID NO:17); and, 5'-GATCTCGCTGGCGAAACGAAGACTGCTCC 15 ACACAGCAGCACACAGCAGAGCCCTCTTCATTGCATCCATGGT-3' (SEQ ID NO:18). The Kozak sequence is underlined in the sense oligomer. These oligomers have overhanging bases compatible for ligation to BglII-cleaved sequences. After ligation the upstream BglII site is destroyed while the downstream BglII is retained for subsequent ligations. Both the junction sites as well as the entire tPA 20 leader sequence were verified by DNA sequencing. Additionally, in order to conform with V1Jns (=V1Jneo with an SfiI site), an SfiI restriction site was placed at the KpnI site within the BGH terminator region of V1Jneo-tPA by blunting the KpnI site with T4 DNA polymerase followed by ligation with an SfiI linker (catalogue #1138, New 25 England Biolabs), resulting in V1Jns-tPA. This modification was verified by restriction digestion and agarose gel electrophoresis.

30 The V1Jns-tpa vector nucleotide sequence is as follows:

TCGGCGCTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA
CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG
TTGGCGGGTG TCGGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC
ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG

CTATTGGCCA TTGCATAACGT TGTATCCATA TCATAATATG TACATTTATA TTGGCTCATG
TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC
GGGGTCATTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG
CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC
5 CATACTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC
TGCCCACATTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA
TGACGGTAAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTCCTAC
TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA
CATCAATGGG CGTGGATAGC GGTTTGACTC ACGGGGATT CCAAGTCTCC ACCCCATTGA
10 CGTCAATGGG AGTTTGTTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA
CTCCGCCCA TTGACGCAA TGGGCGGTAG GCGTGTACGG TGGGAGGTCT ATATAAGCAG
AGCTCGTTA GTGAACCGTC AGATGCCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA
TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGGAA CGGTGCATTG GAACGCGGAT
TCCCCGTGCC AAGAGTGCACG TAAGTACCGC CTATAGACTC TATAGGCACA CCCCTTGCG
15 TCTTATGCAT GCTATACTGT TTTTGGCTTG GGGCCTATAC ACCCCCCGCTT CCTTATGCTA
TAGGTGATGG TATAGCTTAG CCTATAGGTG TGGGTTATTG ACCATTATTG ACCACTCCCC
TATTGGTGAC GATACTTCCTC ATTACTAAC CATAACATGG CTCTTGCCA CAACTATCTC
TATTGGCTAT ATGCCAATAC TCTGTCCTTC AGAGACTGAC ACGGACTCTG TATTTTTACA
GGATGGGGTC CCATTTATTA TTTACAAATT CACATATACA ACAACGCCGT CCCCCGTGCC
20 CGCAGTTTT ATTAAACATA GCGTGGGATC TCCACGCGAA TCTCGGGTAC GTGTTCCGGA
CATGGGCTCT TCTCCGGTAG CGGGGGAGCT TCCACATCCG AGCCCTGGTC CCATGCCCTCC
AGCGGCTCAT GGTCGCTCGG CAGCTCCTTG CTCCCTAACAG TGGAGGCCAG ACTTAGGCAC
AGCACAAATGC CCACCACCCAC CAGTGTGCCG CACAAGGCCG TGGCGGTAGG GTATGTGTCT
GAAAATGAGC GTGGAGATTG GGCTCGCACG GCTGACGCAG ATGGAAGACT TAAGGCAGCG
25 GCAGAAGAAG ATGCAGGCAG CTGAGTTGTT GTATTCTGAT AAGAGTCAGA GGTAACTCCC
GTTGCGGTGC TGTTAACGGT GGAGGGCAGT GTAGTCTGAG CAGTACTCGT TGCTGCCGCG
CGCGCCACCA GACATAATAG CTGACAGACT AACAGACTGT TCCTTCCAT GGGTCTTTTC
TGCAGTCACC GTCCTTAGAT CACCATGGAT GCAATGAAGA GAGGGCTCTG CTGTGTGCTG
CTGCTGTGTG GAGCAGTCTT CGTTCCGCC AGCGAGATCT GCTGTGCCCTT CTAGTTGCCA
30 GCCATCTGTT GTTTGCCCT CCCCCGTGCC TTCCCTGACC CTGGAAGGTG CCACTCCCAC
TGTCCCTTCC TAATAAAATG AGGAAATTGC ATCGCATTGT CTGAGTAGGT GTCATTCTAT
TCTGGGGGGT GGGGTGGGGC AGGACAGCAA GGGGGAGGAT TGGGAAGACA ATAGCAGGCA
TGCTGGGAT GCGGTGGGCT CTATGGCCGC TGCGGCCAGG TGCTGAAGAA TTGACCCGGT
TCCTCCTGGG CCAGAAAGAA GCAGGCACAT CCCCTCTCT GTGACACACC CTGTCCACGC

CCCTGGTTCT TAGTTCCAGC CCCACTCATA GGACACTCAT AGCTCAGGAG GGCTCCGCCT
TCAATCCCAC CCGCTAAAGT ACTTGGAGCG GTCTCTCCCT CCCTCATCAG CCCACCAAAC
CAAACCTAGC CTCCAAGAGT GGGAAAGAAAT TAAAGCAAGA TAGGCTATTA AGTGCAGAGG
GAGAGAAAAT GCCTCCAACA TGTGAGGAAG TAATGAGAGA AATCATAGAA TTTCTTCCGC
5 TTCCTCGCTC ACTGACTCGC TGGCCTCGGT CGTCGGCTG CGCGAGCGG TATCAGCTCA
CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG
AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTCCA
TAGGCTCCGC CCCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA
CCCGACAGGA CTATAAAGAT ACCAGGC GTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC
10 TGTTCCGACC CTGCCGCTTA CCGGATACT GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC
GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTCGGTG TAGTCGTTG GCTCCAAGCT
GGGCTGTGTG CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAATATCG
TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG
GATTAGCAGA GCGAGGTATG TAGGCAGTGC TACAGAGTTC TTGAAGTGGT GGCTTAACTA
15 CGGCTACACT AGAAGAACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG
AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAAACCACC GCTGGTAGCG GTGGTTTTTT
TGTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT
TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTG TGGTCATGAG
ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT
20 CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA GTGAGGCACC
TATCTCAGCG ATCTGTCTAT TTGTTCATC CATAGTTGCC TGACTCGGGG GGGGGGGCG
CTGAGGTCTG CCTCGTGAAG AAGGTGTTGC TGACTCATAAC CAGGCCTGAA TCGCCCCATC
ATCCAGCCAG AAAGTGAGGG AGCCACGGTT GATGAGAGCT TTGTTGTAGG TGGACCAGTT
GGTGATTTG AACTTTGCT TTGCCACGGA ACGGTCTGCG TTGTCGGGAA GATGCGTGAT
25 CTGATCCTTC AACTCAGCAA AAGTCGATT TATTCAACAA AGCCGCCGTC CCGTCAAGTC
AGCGTAATGC TCTGCCAGTG TTACAACCAA TTAACCAATT CTGATTAGAA AAACTCATCG
AGCATCAAAT GAAACTGCAA TTTATTACATA TCAGGATTAT CAATACCATA TTTTGAAAA
AGCCGTTCT GTAATGAAGG AGAAAACCTCA CCGAGGCAGT TCCATAGGAT GGCAAGATCC
TGGTATCGGT CTGCGATTCC GACTCGTCCA ACATCAATAC AACCTATTAA TTTCCCTCG
30 TCAAAAATAA GGTTATCAAG TGAGAAATCA CCATGAGTGA CGACTGAATC CGGTGAGAAT
GGCAAAAGCT TATGCATTTC TTTCCAGACT TGTTCAACAG GCCAGCCATT ACGCTCGTCA
TCAAAATCAC TCGCATCAAC CAAACCGTTA TTCATTCTG ATTGCGCCTG AGCGAGACGA
AATACGCGAT CGCTGTTAAA AGGACAATTA CAAACAGGAA TCGAATGCAA CCGGCGCAGG
AACACTGCCA GCGCATCAAC AATATTTCAT CCTGAATCAG GATATTCTTC TAATACCTGG

AATGCTGTTT TCCCAGGGAT CGCAGTGGTG AGTAACCATG CATCATCAGG AGTACGGATA
AAATGCTTGA TGGTCGGAAG AGGCATAAAAT TCCGTCAGCC AGTTTAGTCT GACCATCTCA
TCTGTAACAT CATTGGCAAC GCTACCTTG CCATGTTCA GAAACAACTC TGGCGCATCG
GGCTTCCCAT ACAATCGATA GATTGTCGCA CCTGATTGCC CGACATTATC GCGAGCCCAT
5 TTATACCCAT ATAAATCAGC ATCCATGTTG GAATTTAAC GCGGCCTCGA GCAAGACGTT
TCCCAGTTGAA TATGGCTCAT AACACCCCTT GTATTACTGT TTATGTAAGC AGACAGTTTT
ATTGTTCATG ATGATATATT TTTATCTTGT GCAATGTAAC ATCAGAGATT TTGAGACACA
ACGTGGCTTT CCCCCCCCCC CCATTATTGA AGCATTATC AGGGTTATTG TCTCATGAGC
GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG GGGTTCCGCG CACATTTCCC
10 CGAAAAGTGC CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC CTATAAAAAT
AGGCGTATCA CGAGGCCCTT TCGTC (SEQ ID NO:9).

V1R – Vaccine vector V1R was constructed to obtain a minimum-sized vaccine vector without unneeded DNA sequences, which still retained the overall optimized heterologous gene expression characteristics and high plasmid yields that V1J and V1Jns afford. It was determined that (1) regions within the pUC backbone comprising the *E. coli* origin of replication could be removed without affecting plasmid yield from bacteria; (2) the 3'-region of the *kan*^r gene following the kanamycin open reading frame could be removed if a bacterial terminator was inserted in its place; and, (3) ~300 bp from the 3'- half of the BGH terminator could be removed without affecting its regulatory function (following the original *Kpn*I restriction enzyme site within the BGH element). V1R was constructed by using PCR to synthesize three segments of DNA from V1Jns representing the CMVintA promoter/BGH terminator, origin of replication, and kanamycin resistance elements, respectively. Restriction enzymes unique for each segment were added to each segment end using the PCR oligomers: *Ssp*I and *Xho*I for CMVintA/BGH; *Eco*RV and *Bam*HI for the *kan*^r gene; and, *Bcl*II and *Sal*II for the *ori*^r. These enzyme sites were chosen because they allow directional ligation of each of the PCR-derived DNA segments with subsequent loss of each site: *Eco*RV and *Ssp*I leave blunt-ended DNAs which are compatible for ligation while *Bam*HI and *Bcl*II leave complementary overhangs as do *Sal*II and *Xho*I. After obtaining these segments by PCR each segment was digested with the appropriate restriction enzymes indicated above and then ligated together in a single reaction mixture containing all three DNA segments. The 5'-end of the *ori*^r was designed to include the T2 rho independent terminator sequence that is normally found in this region so that it could provide termination

information for the kanamycin resistance gene. The ligated product was confirmed by restriction enzyme digestion (>8 enzymes) as well as by DNA sequencing of the ligation junctions. DNA plasmid yields and heterologous expression using viral genes within V1R appear similar to V1Jns. The net reduction in vector size achieved was 5 1346 bp (V1Jns = 4.86 kb; V1R = 3.52 kb). PCR oligomer sequences used to synthesize V1R (restriction enzyme sites are underlined and identified in brackets following sequence) are as follows: (1) 5'-GGTACAAATATTGGCTATTGG CCATTGCATACG-3' (SEQ ID NO:19) [SspI]; (2) 5'-CCACATCTCGAGGAAC CGGGTCAATTCTTCAGCACC-3' (SEQ ID NO:20) [XhoI] (for CMVintA/BGH 10 segment); (3) 5'-GGTACAGATATCGGAAAGCCACGTTGTG TCTAAAATC-3' (SEQ ID NO:21) [EcoRV]; (4) 5'-CACATGGATCCGTAAAT GCTCTGCCAGTGT ACAACC-3' (SEQ ID NO:2) [BamHI], (for kanamycin resistance gene segment) (5) 5'-GGTACATG ATCACGTAGAAAAGATCA AAGGATCTTCITG-3' (SEQ ID NO:23) [BclI]; (6) 5'-CCACATGTCGACCCGTAAA AAGGCCGCGTTGCTGG-3' 15 (SEQ ID NO:24): [SalI], (for *E. coli* origin of replication).

The nucleotide sequence of vector V1R is as follows:

TCGCGCGTTT CGGTGATGAC GGTGAAAACC TCTGACACAT GCAGCTCCCG GAGACGGTCA CAGCTTGTCT GTAAGCGGAT GCCGGGAGCA GACAAGCCCG TCAGGGCGCG TCAGCGGGTG TTGGCGGGTG TCAGGGCTGG CTTAACTATG CGGCATCAGA GCAGATTGTA CTGAGAGTGC 20 ACCATATGCG GTGTGAAATA CCGCACAGAT GCGTAAGGAG AAAATACCGC ATCAGATTGG CTATTGGCCA TTGCATACTGT TGTATCCATA TCATAATATG TACATTATA TTGGCTCATG TCCAACATTA CCGCCATGTT GACATTGATT ATTGACTAGT TATTAATAGT AATCAATTAC GGGGTCACTTA GTTCATAGCC CATATATGGA GTTCCGCGTT ACATAACTTA CGGTAAATGG CCCGCCTGGC TGACCGCCCA ACGACCCCCG CCCATTGACG TCAATAATGA CGTATGTTCC 25 CATAGTAACG CCAATAGGGA CTTTCCATTG ACGTCAATGG GTGGAGTATT TACGGTAAAC TGCCCCACTTG GCAGTACATC AAGTGTATCA TATGCCAAGT ACGCCCCCTA TTGACGTCAA TGACGGTAA TGGCCCGCCT GGCATTATGC CCAGTACATG ACCTTATGGG ACTTTCTAC TTGGCAGTAC ATCTACGTAT TAGTCATCGC TATTACCATG GTGATGCGGT TTTGGCAGTA CATCAATGGG CGTGGATAGC GGTGACTC ACGGGGATTT CCAAGTCTCC ACCCCATTGA 30 CGTCAATGGG AGTTTGTGTTT GGCACCAAAA TCAACGGGAC TTTCCAAAAT GTCGTAACAA CTCCGCCCA TTGACGCAA TGGGCGGTAG CGGTGTACGG TGGGAGGTCT ATATAAGCAG AGCTCGTTA GTGAACCGTC AGATCGCCTG GAGACGCCAT CCACGCTGTT TTGACCTCCA TAGAAGACAC CGGGACCGAT CCAGCCTCCG CGGCCGGAA CGGTGCATTG GAACGCGGAT TCCCCGTGCC AAGAGTGACG TAAGTACCGC CTATAGAGTC TATAGGCCA CCCCCCTTGGC

TTCTTATGCA TGCTATACTG TTTTGCGCTT GGGGTCTATA CACCCCCGCT TCCTCATGTT
ATAGGTGATG GTATAGCTTA GCCTATAGGT GTGGGTTATT GACCATTATT GACCACTCCC
CTATTGGTGA CGATACTTTC CATTACTAAT CCATAACATG GCTCTTGCC ACAACTCTCT
TTATTGGCTA TATGCCAATA CACTGTCCTT CAGAGACTGA CACGGACTCT GTATTTTAC
5 AGGATGGGGT CTCATTTATT ATTTACAAAT TCACATATAC AACACCACCG TCCCCAGTGC
CCGCAGTTT TATTAAACAT AACGTGGGAT CTCCACGCGA ATCTCGGGTA CGTGTCCGG
ACATGGGCTC TTCTCCGGTA GCGGCGGAGC TTCTACATCC GAGCCCTGCT CCCATGCC
CAGCGACTCA TGGTCGCTCG GCAGCTCCTT GCTCCTAACCA GTGGAGGCCA GACTTAGGCA
CAGCACGATG CCCACCACCA CCAGTGTGCC GCACAAGGCC GTGGCGGTAG GGTATGTGTC
10 TGAAAATGAG CTCGGGGAGC GGGCTTGCAC CGCTGACGCA TTTGGAAGAC TTAAGGCAGC
GGCAGAAGAA GATGCAGGCA GCTGAGTTGT TGTGTTCTGA TAAGAGTCAG AGGTAACTCC
CGTTGCGGTG CTGTTAACGG TGGAGGGCAG TGTAGTCTGA GCAGTACTCG TTGCTGCC
GCGCGCCACC AGACATAATA GCTGACAGAC TAACAGACTG TTCCCTTCCA TGGGTCTTT
CTGCAGTCAC CGTCCTTAGA TCTGCTGTGC CTTCTAGTTG CCAGCCATCT GTTGTG
15 CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA
ATGAGGAAAT TGCATCGCAT TGTCTGAGTA GGTGTCATTTC TATTCTGGGG GGTGGGGTGG
GGCAGCACAG CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG
GCTCTATGGG TACCCAGGTG CTGAAGAATT GACCCGGTTC CTCCTGGGCC AGAAAGAAC
AGGCACATCC CCTTCTCTGT GACACACCCT GTCCACGCC CTGGTTCTTA GTTCCAGCCC
20 CACTCATAGG ACACTCATAG CTCAGGAGGG CTCCGCCTTC AATCCCACCC GCTAAAGTAC
TTGGAGCGGT CTCTCCCTCC CTCATCAGCC CACCAAACCA AACCTAGCCT CCAAGAGTGG
GAAGAAATTA AAGCAAGATA GGCTATTAAG TGCAAGAGGA GAGAAAATGC CTCCAACATG
TGAGGAAGTA ATGAGAGAAA TCATAGAATT TCTTCCGCTT CCTCGCTCAC TGACTCGCTG
CGCTCGGTG TTGGCTGCG GCGAGCGGT AACTCGTCACT CAAAGGC
25 TCCACAGAAT CAGGGGATAA CGCAGGAAAG AACATGTGAG CAAAAGGCC GCAAAAGGCC
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG TTTTCCATA GGCTCCGCC CCCTGACGAG
CATCACAAAA ATCGACGCTC AAGTCAGAGG TGGCGAAACC CGACAGGACT ATAAAGATAC
CAGGC
GGATACCTGT CCGCCTTCT CCCTTCGGGA AGCGTGGCGC TTTCTCAATG CTCACGCTGT
30 AGGTATCTCA GTTCGGTGTGTA GGTGCTTCGC TCCAAGCTGG GCTGTGTGCA CGAACCCCC
GTTCAGCCCG ACCGCTGCGC CTTATCCGGT AACTATCGTC TTGAGTCCAA CCCGGTAAGA
CACGACTTAT CGCCACTGGC AGCAGCCACT GGTAAACAGGA TTAGCAGAGC GAGGTATGTA
GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG CCTAACTACG GCTACACTAG AAGGACAGTA
TTTGGTATCT GCGCTCTGCT GAAGCCAGTT ACCTTCGGAA AAAGAGTTGG TAGCTTTGA

TCCGGCAAAC AAACCACCGC TGGTAGCGGT GGTTTTTTG TTTGCAAGCA GCAGATTACG
CGCAGAAAAA AAGGATCTCA AGAAGATCCT TTGATCTTT CTACGGGGTC TGACGCTCAG
TGGAACGAAA ACTCACGTTA AGGGATTIG GTCATGAGAT TATCAAAAAG GATCTTCACC
TAGATCCTTT TAAATTAAAA ATGAAGTTT AAATCAATCT AAAGTATATA TGAGTAACT
5 TGGTCTGACA GTTACCAATG CTTAACAGT GAGGCACCTA TCTCAGCGAT CTGCTATTT
CGTTCATCCA TAGTTGCCTG ACTCCGGGG GGGGGGGCGC TGAGGTCTGC CTCGTGAAGA
AGGTGTTGCT GACTCATAACC AGGCCTGAAT CGCCCCATCA TCCAGCCAGA AAGTGAGGGA
GCCACGGTTG ATGAGAGCTT TGTTGTAGGT GGACCAGTTG GTGATTTGA ACTTTGCTT
10 TGCCACGGAA CGGTCTGCGT TGTCGGGAAG ATGCGTGATC TGATCCTCA ACTCAGCAA
AGTCGATTT ATTCAACAAA GCCGCCGTCC CGTCAAGTCA GCGTAATGCT CTGCCAGTGT
TACAACCAAT TAACCAATTC TGATTAGAAA AACTCATCGA GCATCAAATG AAAC TGCAAT
TTATTCAAT CAGGATTATC AATACCATAT TTTGAAAAA GCCGTTCTG TAATGAAGGA
GAAAACTCAC CGAGGCAGTT CCATAGGATG GCAAGATCCT GGTATCGGTC TGCGATTCCG
15 ACTCGTCAA CATCAATACA ACCTATTAAT TTCCCCTCGT CAAAAATAAG GTTATCAAGT
GAGAAATCAC CATGAGTGAC GACTGAATCC GGTGAGAATG GCAAAAGCTT ATGCATTCT
TTCCAGACTT GTTCAACAGG CCAGCCATTA CGCTCGTCAT CAAAATCACT CGCATCAACC
AAACC GTTAT TCATTCGTGA TTGCGCCTGA GCGAGACGAA ATACGCGATC GCTGTTAAAA
GGACAATTAC AAACAGGAAT CGAATGCAAC CGGCGCAGGA ACAGGCCAG CGCATCAACA
20 ATATTTCAC CTGAATCAGG ATATTCTCT AATACCTGGA ATGCTGTTT CCCGGGGATC
GCAGTGGTGA GTAACCAGTC ATCATCAGGA GTACGGATAA AATGCTTGAT GGTCGGAAGA
GGCATAAATT CCGTCAGCCA GTTGTGCTG ACCATCTCAT CTGTAACATC ATTGGCAACG
CTACCTTCAG CATGTTTCAG AAACAATCT GGCGCATCGG GCTTCCCATA CAATCGATAG
ATTGTCGAC CTGATTGCC GACATTATCG CGAGCCCATT TATACCCATA TAAATCAGCA
TCCATGTTGG AATTTAATCG CGGCCTCGAG CAAGACGTTT CCCGTTGAAT ATGGCTCATA
25 ACACCCCTTG TATTACTGTT TATGTAAGCA GACAGTTTA TTGTTCATGA TGATATATT
TTATCTTG TG CAATGTAACA TCAGAGATT TGAGACACAA CGTGGCTTTC CCCCCCCCCC
CATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT
TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC
TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTT
30 CGTC (SEQ ID NO:25).

EXAMPLE 2

Codon Optimized HIV-1 Pol and HIV-1 IA Pol Derivatives as DNA Vector Vaccines

Synthesis of WT-optpol and IA-opt-pol Gene - Construction of both genes were conducted by Midland Certified Reagent Company (Midland, TX) following

5 established strategies. Ten double stranded oligonucleotides, ranging from 159 to 340 bases long and encompassing the entire pol gene, were synthesized by solid state methods and cloned separately into pUC18. For the wt-pol gene, the fragments are as follows:

	<i>Bgl</i> II#1- <i>Ecl</i> 136II half site at 282	= pJS6A1-7
10	<i>Pml</i> II half site at #285 - <i>Ecl</i> 136II half site at #597	= pJS6B2-5
	<i>Ssp</i> I half site at #600 - <i>Ecl</i> 136II half site at #866	= pJS6C1-4
	<i>Sma</i> I half site at #869 - <i>Apal</i> #1095	= pJS6D1-4
	<i>Apal</i> #1095 - <i>Kpn</i> I #1296	= pJS6E1-4
	<i>Kpn</i> I #1296 - <i>Xcm</i> I #1636	= pJS6F1-5
15	<i>Xcm</i> I #1636 - <i>Nsi</i> I #1847	= pJS6G1-2
	<i>Nsi</i> I #1847 - <i>Bcl</i> II half site at #2174	= pJS6H1-14
	<i>Bcl</i> II half site at #2174 - <i>Sac</i> I #2333	= pJS6I1-2
	<i>Sac</i> I #2333 - <i>Bgl</i> II #2577	= pJS6J1-1

20 *Eco*RI and *Hind*III sequences were added upstream of each 5' end and downstream of each 3' end, respectively, to allow cloning into the *Eco*RI-*Hind*III sites of pUC18.

The next stage of the synthesis was to consolidate these cassettes into three roughly equal fragments (alpha, beta, gamma) and was performed as follows:

25 Alpha: The *Ssp*I-*Hind*III small fragment of pJS6C1-4 was transferred into the *Ecl*136II-*Hind*III sites of pJS6B2-5 to give pJS6BC1-1. Into the *Eco*RI-*Pml*II sites of this plasmid was inserted the *Eco*RI-*Ecl*136II small fragment of pJS6A1-7 to give pJS6 α 1-8.

30 Beta: The *Eco*RI-*Apal* small fragment of pJS6D1-4 was inserted into the corresponding sites of pJS6E1-2 to give pJS6DE1-2. Also, the *Eco*RI-*Xcm*I small fragment of pJS6F1-5 was inserted into the corresponding sites of pJS6G1-2 to give pJS6FG1-1. Then the *Eco*RI-*Kpn*I small fragment of pJS6DE1-2 was inserted into the corresponding sites of pJS6FG1-1 to give pJS6 β 1-1.

Gamma: The *Sac*I-*Hind*III small fragment of pJS6J1-1 was inserted into the corresponding sites of pJS6I1-2 to give pJS6IJ1-1. This plasmid was propagated through *E. coli* SCS110 (*dam*-/*dcm*-) to permit subsequent cleavage at the *Bcl*II site.

The *BclI-HindIII* small fragment of the unmethylated pJS6IJ1-1 was inserted into the *BglII-HindIII* sites of pJS6H1-14 to give pJS6 χ 1-1.

The wt-pol alpha, beta, gamma were ligated into the entire sequence as follows:

5 The *EcoRI-Ecl136II* small fragment of pJS6 α 1-8 was inserted into the *EcoRI-SmaI* sites of pJS6 β 1-1 to give pJS6 α β 2-1.

Into the *NsiI-HindIII* sites of this plasmid was inserted the *NsiI-HindIII* small fragment of pJS6 χ 1-1 to give pUC18-wt-pol. This final plasmid was completely resequenced in both strands.

10 To construct the entire IA-pol gene, only 3 new small fragments were synthesized:

<i>PmlI</i> half site at #285 – <i>Ecl136II</i> half site at #597	= pJS7B1-1
<i>KpnI</i> #1296 – <i>XcmI</i> #1636	= pJS7F1-2
<i>NsiI</i> #1847 – <i>BglII</i> half site at #2174	= pJS7H1-5

15 These were then used in the same reconstruction strategy as described above to give pUC18-IA-pol.

Expression Vector Construction - pUC18-wt-pol and pUC18-IA-pol were digested with *BglII* in order to isolate fragments containing the entire pol genes. V1R, V1Jns, V1Jns-tpa (Shiver, et al., 1995, Immune responses to HIV gp120 elicited by 20 DNA vaccination. In *Vaccines 95* (eds. Chanock, R. M., Brown, F., Ginsberg, H.S., & Norrby, E.) @ pp. 95-98; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; see also Example Section 1) were digested with *BglII*. The cut vectors were then treated with calf intestinal alkaline phosphatase. Both wt-pol and IA-pol genes were ligated into cut V1R using T4 DNA ligase (16 °C, overnight). 25 Competent DH5 α cells were transformed with aliquots of the ligation mixtures. Colonies were screened by restriction digestion of amplified plasmid isolates. Following a similar strategy, the *BglII* fragment containing the IA-pol was subcloned into the *BglII* site of V1Jns. To ligate the IA-pol gene into V1Jns-tpa, the IA-pol gene was PCR-amplified from V1R-IA-pol using pfu polymerase and the following 30 pair of primers: 5'-GGTACAAGATCTCCGCCCATCTCCCCATTGAGA-3' (SEQ ID NO:26), and 5'-CCACATAGATCTGCCGGGCTTAGTCCTCATC-3' (SEQ ID NO:27). The upstream primer was designed to remove the initiation met codon and place the pol gene in frame with the tpa leader coding sequence from V1Jns-tpa. The PCR product was purified from the agarose gel slab using Sigma

DNA Purification spin columns. The purified products were digested with *Bgl*II and subcloned into the *Bgl*II site of V1Jns-tpa.

Results - The codon humanized wt- and IA-pol genes were constructed via stepwise ligation of 10 synthetic dsDNA fragments (Ferretti, et al., 1986, *Proc. Natl. Acad. Sci. USA* 83: 599-603). For expression in mammalian systems, the IA-pol gene was subcloned into V1R, V1Jns, and V1Jns-tpa. All these vectors place the gene under the control of the human cytomegalovirus/intron A hybrid promoter (hCMVIA). The DNA sequence of the IA-pol gene and the expressed protein product are shown in Figure 2A-B. Subcloning into V1Jns-tpa attaches the leader sequence from human tissue-specific plasminogen activator (tpa) to the N-terminus of the IA-pol (Pennica, et al., 1983, *Nature* 301: 214-221) to allow secretion of the protein. The sequences of the tpa leader and the fusion junction are shown in Figure 3.

EXAMPLE 3

15 HIV-1 POL Vaccine - Rodent Studies

Materials - *E. coli* DH5 α strain, penicillin, streptomycin, ACK lysis buffer, hepes, L-glutamine, RPMI1640, and ultrapure CsCl were obtained from Gibco/BRL (Grand Island, NY). Fetal bovine serum (FBS) was purchased from Hyclone. Kanamycin, Tween 20, bovine serum albumin, hydrogen peroxide (30%), concentrated sulfuric acid, β -mercaptoethanol (β -ME), and concanavalin A were obtained from Sigma (St. Louis, MO). Female balb/c mice at 4-6 wks of age were obtained from Taconic Farms (Germantown, NY). 0.3-mL insulin syringes were purchased from Myoderm. 96-well flat bottomed Maxisorp plates were obtained from NUNC (Rochester, NY). HIV-1_{IIIB} RT p66 recombinant protein was obtained from Advanced Biotechnologies, Inc. (Columbia, MD). 20-mer peptides were synthesized by Research Genetics (Huntsville, AL). Horseradish peroxidase (HRP)-conjugated rabbit anti-mouse IgG1 was obtained from ZYMED (San Francisco, CA). 1,2-phenylenediamine dihydrochloride (OPD) tablets was obtained from DAKO (Norway). Purified rat anti-mouse IFN-gamma (IgG1, clone R4-6A2), biotin-conjugated rat anti-mouse IFN-gamma (IgG1, clone XMG 1.2), and strepavidin-alkaline phosphatase conjugate were purchased from PharMingen (San Diego, CA). 1-STEP NBT/BCIP dye was obtained from Pierce Chemicals (Rockford, IL). 96-well Multiscreen membrane plate was purchased from Millipore (France). Cell strainer was obtained from Becton-Dickinson (Franklin Lakes, NJ).

Plasmid Preparation - *E. coli* DH5 α cells expressing the pol plasmids were grown to saturation in LB broth supplemented with 100 ug/mL kanamycin. Plasmid were purified by standard CsCl method and solubilized in saline at concentrations greater than 5 mg/mL until further use.

5 *Vaccination* - The plasmids were prepared in phosphate-buffered saline and administered into balb/c by needle injection (28-1/2G insulin syringe) of 50 uL aliquot into each quad muscle. V1Jns-IApol was administered at 0.3, 3, 30 ug dose and for comparison, V1Jns-tpa-IApol was given at 30 ug dose. Immunizations were conducted at T=0 and T=8 wks (for select animals from the 30-ug dose cohorts).

10 *ELISA Assay* - At T=12 wks, blood samples were collected by making an incision of a tail vein and the serum separated. Anti-RT titers were obtained following standard secondary antibody-based ELISA. Briefly, Maxisorp plates were coated by overnight incubation with 100 uL of 1 ug/mL HIV-1 RT protein (in PBS). The plates were washed with PBS/0.05% Tween 20 and incubated for approx. 2h with 15 200 uL/well of blocking solution (PBS/0.05% tween/1% BSA). The blocking solution was decanted; 100 uL aliquot of serially diluted serum samples were added per well and incubated for 2 h at room temperature. The plates were washed and 100 uL of 1/1000-diluted HRP-rabbit anti-mouse IgG were added with 1 h incubation. The plates were washed thoroughly and soaked with 100 uL OPD/H₂O₂ solution for 20 15 min. The reaction was quenched by adding 100 uL of 0.5M H₂SO₄ per well. OD₄₉₂ readings were recorded.

15 *ELIspot* - Spleens were collected from 5 mice/cohort at T=13-14 wks and pooled into a tube of 8-mL R10 medium (RPMI1640, 10% FBS, 2mM L-glutamine, 100U/mL Penicillin, 100 u/mL streptomycin, 10 mM Hepes, 50 uM β -ME). 20 25 Multiscreen opaque plates were coated with 100 μ l/well of capture mAb (purified R4-6A2 diluted in PBS to 5 μ g/ml) at 4°C overnight. The plates were washed with PBS/Pen/Strep in hood and blocked with 200 μ l/well of complete R10 medium for 37°C for at least 2 hrs. The mouse spleens were ground on steel mesh, collected into 15ml tubes and centrifuged at 1200rpm for 10min. The pellet was treated in ACK 30 buffer (4ml of lysis buffer per spleen) for 5min at room temperature to lyse red blood cells. The cell pellet was centrifuged as before, resuspended in K-medium (5ml per mouse spleen), filtered through a cell strainer and counted using a hemacytometer. Block medium was decanted from the plates and 100 μ l/well of cell samples (5.0x10⁵ cells per well) plus antigens were added. Pol-specific CD4 $^{+}$ cells were stimulated

using a mixture of previously identified two epitope-containing peptides (aa641-660, aa731-750). Antigen-specific CD8+ cells were stimulated using a pool of four peptide epitope-containing peptides (aa201-220, aa311-330, aa571-590, aa781-800) or with individual peptides. A final concentration of 4 ug/mL per peptide was used.

5 Each splenocyte sample is tested for IFN-gamma secretion by adding the mitogen, concanavalin A. Plates were incubated at 37°C, 5% CO₂ for 20-24 h. The plates were washed with PBS/0.05% Tween 20 and soaked with 100 uL/well of 5 ug/mL biotin-conjugated rat anti-mouse IFN- mAb (clone XMG1.2) at 4°C overnight. The plates were washed and soaked with 100 uL/well 1/2500 dilution of strepavidin-AP

10 (in PBS/0.005% Tween/5%FCS) for 30 min at 37 °C. Following a wash, spots were developed by incubating with 100uL/well 1-step NBT/BCIP for 6-10 min. The plates were washed with water and allowed to air dry. The number of spots in each wells were determined using a dissecting microscope and normalized to 10e6 cells.

Results - Single vaccination of balb/c mice with V1Jns-IApol is able to induce antigen-specific antibody (Figure 4) and T cell (Figure 5) responses in a dose response manner. IFN-gamma secretion from splenocytes can be detected from 3 and 30 ug cohort following stimulation with pools of peptides that contain CD4+ and CD8+ T cell epitopes. These epitopes were identified by (1) screening 20-mer peptides that encompass the entire pol sequence and overlap by 10 amino acid for ability to stimulate IFN-gamma secretion from vaccinee splenocytes, and (2) determining the T cell type (CD4+ or CD8+) by depleting either population in an Elispot assay. Addition of tpa leader sequence to the pol gene is able to induce comparable, if not slightly higher, frequencies of pol-specific CD4+ and CD8+ cells. A second immunization with either V1Jns-IApol and V1Jns-tpa-IApol resulted in effective boosting of the immune responses.

EXAMPLE 4

HIV-1 Pol Vaccine - Non Human Primate Studies

Materials - *E. coli* DH5 α strain, penicillin, streptomycin, and ultrapure CsCl

30 were obtained from Gibco/BRL (Grand Island, NY). Kanamycin and phytohemagglutinin (PHA-M) were obtained from Sigma (St. Louis, MO). 20-mer peptides were synthesized by SynPep (Dublin, CA) and Research Genetics (Huntsville, AL). 96-well Multiscreen Immobilon-P membrane plates were obtained from Millipore (France). Strepavidin-alkaline phosphatase conjugate were purchased

form Pharmingen (San Diego, CA). 1-Step NBT/BCIP dye was obtained from Pierce Chemicals (Rockford, IL). Rat anti-human IFN-gamma mAb and biotin-conjugated anti-human IFN-gamma reagent were obtained from R&D Systems (Minneapolis, MN). Dynabeads M-450 anti-human CD4 were obtained from Dynal (Norway).

5 HIVp24 antigen assay was purchased from Coulter Corporation (Miami, FL). HIV-1_{III B} RT p66 recombinant protein was obtained from Advanced Biotechnologies, Inc. (Columbia, MD). Plastic 8 well strips/plates, flat bottom, Maxisorp, are obtained from NUNC (Rochester, NY). HIV+ human serum 9711234 was obtained from Biological Specialty Corp.

10 *Plasmid Preparation* - *E. coli* DH5 α cells expressing the pol plasmids were grown to saturation in LB supplemented with 100 ug/mL kanamycin. Plasmid were purified by standard CsCl method and solubilized in saline at concentrations greater than 5 mg/mL until further use.

15 *Vaccination* - Cohorts of 3 rhesus macaques (approx. 5-10 kg) were vaccinated with 5 mg dose of either V1Jns-IApol or V1Jns-tpa-IApol. The vaccine was administered by needle injection of two 0.5 mL aliquots of 5 mg/mL plasmid solution (in phosphate-buffered saline, pH 7.2) into both deltoid muscles. Prior to vaccination, the monkeys were chemically restraint with i.m. injection of 10 mg/kg ketamine. The animals were immunized 3x at 4 week intervals (T=0, 4, 8 wks).

20 *Sample Collection* - Blood samples were collected at T = 0, 4, 8, 12, 16, 18 wks; sera and PBMCs were isolated using established protocols.

25 *ELIspot Assay* - Immobilon-IP plates were coated with 100 uL/well of rat anti-human IFN-gamma mAb at 15 ug/mL at 4 °C overnight. The plates are then washed with PBS and block by adding 200 uL/well of R10 medium. 4x10e5 peripheral blood cells were plated per well and to each well, either media or one of the pol peptide pools (final concentration of 4 ug/mL per peptide) or PHA, a known mitogen, is added to a final volume of 100 uL. Duplicate wells were set up per sample per antigen and stimulation was performed for 20-24 h at 37 °C. The plates are then washed; biotinylated anti-human IFN-gamma reagent is added (0.1 ug/mL, 100 uL per well) and allowed to incubate for overnight at 4 °C. The plates are again washed and 100 uL of 1:2500 dilution of the strepavidin-alkaline phosphatase reagent (in PBS/0.005% Tween/5% FCS) is added and allowed to incubate for 2 h at ambient room temperature. After another wash, spots are developed by incubating with 100 uL/well of 1-step NBT/BCIP for 6-10 min. CD4- T cell depletion was performed by

adding 1 bead particle/10 cell of Dynabeads M450 anti-human CD4, prewashed with PBS, and incubating on the shaker at 4 °C for 30 min. The beads are fractionated magnetically and the unbound cells collected and quantified before plating onto the ELISpot assay plates (at 4x10e5 cells per well).

5 *CTL Assay* - Procedures for establishing bulk CTL culture with fresh or cryopreserved peripheral blood mononuclear cells (PBMC) are as follows. Twenty percent total PBMC were infected in 0.5 ml volume with recombinant vaccinia virus, Vac-tpaPol, respectively, at multiplicity of infection (moi) of 5 for 1 hr at 37°C, and then combined with the remaining PBMC sample. The cells were washed once in 10
10 ml R-10 medium, and plated in a 12 well plate at approximately 5 to 10×10^6 cells/well in 4 ml R-10 medium. Recombinant human IL-7 was added to the culture at the concentration of 330 U/ml. Two or three days later, one milliliter of R-10 containing recombinant human IL-2 (100 U/ml) was added to each well. And twice weekly thereafter, two milliliters of cultured media were replaced with 2 ml fresh R-
15 10 medium with rhIL-2 (100 U/ml). The lymphocytes were cultured at 37°C in the presence of 5% CO₂ for approximately 2 weeks, and used in cytotoxicity assay as described below. The effector cells harvested from bulk CTL cultures were tested against autologous B lymphoid cell lines (BLCL) sensitized with peptide pools. To prepare for the peptide-sensitized targets, the BLCL cells were washed once with
20 R-10 medium, enumerated, and pulsed with peptide pool (about 4 to 8 μ g/ml concentration for each individual peptide) in 1 ml volume overnight. A mock target was prepared by pulsing cells with peptide-free DMSO diluent to match the DMSO concentration in the peptide-pulsed targets. The cells were enumerated the next morning, and 1×10^6 cells were resuspended in 0.5 ml R-10 medium. Five to ten
25 microliters of Na⁵¹CrO₄ were added to the tubes at the same time, and the cells were incubated for 1 to 2 hr 37°C. The cells were then washed 3 times and resuspended at 5×10^4 cells/ml in R-10 medium to be used as target cells. The cultured lymphocytes were plated with target cells at designated effector to target (E:T) ratios in triplicates in 96-well plates, and incubated at 37°C for 4 hours in the presence of 5% CO₂. A
30 sample of 30 μ l supernatant from each well of cell mixture was harvested onto a well of a Lumaplate-96 (Packard Instrument, Meriden, CT), and the plate was allowed to air dry overnight. The amount of ⁵¹Cr in the well was determined through beta-particle emission, using a plate counter from Packard Instrument. The percentage of specific lysis was calculated using the formula as: % specific lysis = (E-S) / (M-S).

The symbol E represents the average cpm released from target cells in the presence of effector cells, S is the spontaneous cpm released in the presence of medium only, and M is the maximum cpm released in the presence of 2% Triton X-100.

ELISA Assay - The pol-specific antibodies in the monkeys were measured in a competitive RT EIA assay, wherein sample activity is determined by the ability to block RT antigen from binding to coating antibody on the plate well. Briefly, Maxisorp plates were coated with saturating amounts of pol positive human serum (97111234). 250 μ L of each sample is incubated with 15 μ L of 266 ng/mL RT recombinant protein (in RCM 563, 1% BSA, 0.1% tween, 0.1% NaN_3) and 20 μ L of lysis buffer (Coulter p24 antigen assay kit) for 15 min at room temperature. Similar mixtures are prepared using serially diluted samples of a standard and a negative control which defines maximum RT binding. 200 μ L/well of each sample and standard were added to the washed plate and the plate incubated 16-24 h at room temperature. Bound RT is quantified following the procedures described in Coulter p24 assay kit and reported in milliMerck units per mL arbitrarily defined by the chosen standard.

Results - Repeated vaccinations with V1Jns-IApol induced in 1 of 3 monkeys (94R033) significant levels of antigen-specific T cell activation (Figure 6A-C and Table 2) and CTL killing of peptide-pulsed autologous cells (Figure 7A-B). A significant CD8+ component to the T cell responses in this animal was confirmed by peptide-stimulation of CD4-depleted PBMCs in an ELIspot assay (Table 2).

Immunization with V1Jns-tpa-IApol produced T cell responses from all 3 vaccinees (Figures 6A-C, Figure 7A-B; Table 2). Two (920078, 94R028) exhibited bulk CTL activity and detectable CD8+ components as measured by Elispot analyses of CD4-depleted PBMCs. For the third monkey (920073), the activated T cells were largely CD4+ (Table 2). Table 3 shows the time course data on the frequency of IFN-gamma secreting cells (SFC/million cells) upon antigen-specific stimulation for monkeys vaccinated 3x with either V1Jns-IApol or V1Jns-tpa-IApol (5 mg dose). At $T=18$ wks, CD4-cell depletion were performed; the reported values are the number of spots per million of fractionated cells and are not corrected for the resultant enrichment of CD8+ T cells. PBMCs were stimulated with peptide pools that represent either IA pol protein (mpol-1, mpol-2) or wt Pol (wtpol-1, wtpol-2).

TABLE 2

Vaccine	Animd No.	Antigen	T=0 wk	T=4 Wk	T=8 Wk	T=12 Wk	T=18 Wk	
			Dose 1	Dose 2	Dose 3		CD4-Dpd	
VIJns-1Apd 5 mgs	94R008	medium	1	15	6	11	11	11
		mpd-1	3	69	28	61	20	15
		mpd-2	0	25	21	19	28	16
		wmpd-1		49	20	53	18	
		wmpd-2		34	24	24	19	
	94R013	medium	0	14	6	9	18	11
		mpd-1	0	9	63	25	34	9
		mpd-2	1	15	24	36	24	15
		wmpd-1		9	50	33	18	
		wmpd-2		6	21	29	25	
	94R033	medium	4	15	11	14	13	8
		mpd-1	3	29	86	51	41	24
		mpd-2	0	24	25	43	59	64
		wmpd-1		30	38	60	53	
		wmpd-2		48	46	86	61	
VIJns-tpchApd 5 mgs	920078	medium	0	24	13	11	14	11
		mpd-1	3	110	120	119	155	11
		mpd-2	1	221	130	561	289	145
		wmpd-1		115	53	70	116	
		wmpd-2		218	204	490	194	
	920073	medium	0	13	3	15	15	6
		mpd-1	0	36	51	113	90	14
		mpd-2	0	29	16	83	115	34
		wmpd-1		20	35	100	74	
		wmpd-2		25	16	79	61	
	94R028	medium	0	18	11	18	19	9
		mpd-1	1	30	24	29	30	28
		mpd-2	1	24	23	66	59	95
		wmpd-1		23	25	34	29	
		wmpd-2		26	28	71	40	
Naïve	920072	medium	1	19	3	38	9	4
		mpd-1	0	24	11	25	4	6
		mpd-2	1	24	5	28	6	5
		wmpd-1		18	13	20	6	
		wmpd-2		23	14	33	14	

For the Elispot assay, antigen specific stimulation were performed by using pools of 20-mer peptide pools based on the vaccine sequence. The vaccine pol sequence differs from the wild-type HIV-1 sequence by 9 point mutations, thereby affecting 16 of the 20-mer peptides in the pool. Comparable responses were observed 5 in the vaccinees when these peptides are replaced with those using the wild-type sequences.

Four of the vaccinees gave anti-RT titers above background after 3 dosages of the plasmids (Table 2).

10

TABLE 3
Anti-RT levels in Rhesus Macaques Vaccinated 3x (4 week intervals) with 5 mgs of V1Jns-IApol or V1Jns-tpa-IApol expressed in mMU/mL.

VaccineMonkey	T=0 Wk	T=4	T=8	T=12	T=16
	DOSE 1	DOSE 2	DOSE 3		
<u>V1Jns-IApol, 5 mg</u>					
94R008	ND	<10	<10	15	14
94R013	ND	<10	<10	<10	<10
94R033	ND	<10	<10	25	19
<u>V1Jns-tpa-IApol, 5 mg</u>					
920078	ND	<10	<10	35	17
920073	ND	<10	<10	<10	<10
94R028	ND	<10	<10	20	63

15

EXAMPLE 5

Effect of Codon Optimization on In Vivo Expression and Cellular Immune Response of wt-pol

Materials and Methods - Extraction of virus-derived pol gene - The gene for RT-IN (wt-pol; a non-codon optimized wild type pol gene derived directly from the HIV IIIB genome) was extracted and amplified from the HIV IIIB genome using two primers, 20 5'-CAG GCG AGA TCT ACC ATG GCC CCC ATT AGC CCT ATT GAG ACT GTA-3' (SEQ ID NO:29) and 5'-CAG GCG AGA TCT GCC CGG GCT TTA ATC CTC ATC CTG TCT ACT TGC CAC-3' (SEQ ID NO:30), containing *Bgl*II sites. 25 The reaction contained 200 nmol of each primer, 2.5 U of pfu Turbo DNA polymerase (Stratagene, La Jolla, CA), 0.2 mM of each dNTPs, and the template DNA in 10mM KCl, 10mM (NH₄)₂SO₄, 20mM Tris-HCl pH 8.75, 2mM MgSO₄, 0.1% TritonX-100, 0.1mg/ml bovine serum albumin (BSA). Thermocycling

conditions were as follows: 20 cycles of 1 min at 95 °C, 1 min at 56 °C, and 4 mins at 72 °C with 15-min capping at 72 °C. The digested PCR fragment was subcloned into the *Bgl*II site of the expression plasmid V1Jns (Shiver, et al., 1995, Immune responses to HIV gp120 elicited by DNA vaccination. In Chanock, R. M., Brown, F., Ginsberg, H. S., and Norrby, E. (Eds.) *Vaccines 95*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 95-98; see also Example section 1 herein) expression plasmid following similar procedures as described above. The ligation mixtures were then used to transform competent *E. coli* DH5 cells and screened by PCR amplification of individual colonies. Sequence of the entire gene insert was confirmed. All plasmid constructs for animal immunization were purified by CsCl method (Sambrook, et al., 1989, Fritsch and Maniatis, T. (Eds) *Molecular cloning: a laboratory manual*. Cold Spring Harbor Laboratory Press, Cold Spring Harbor).

In vitro expression in mammalian cells - 1.5×10^6 293 cells were transfected with 1 or 10 µg of V1R-wt-pol (codon optimized) and V1Jns-wt-pol (virus derived) using the Cell Pfect kit and incubated for 48 h at 37 °C, 5% CO₂, 90% humidity. Supernatants and cell lysates were prepared and assayed for protein content using Pierce Protein Assay reagent (Rockford, IL). Aliquots containing equal amounts of total protein were loaded unto 10-20% Tris glycine gel (Novex, San Diego, CA) along with the appropriate molecular weight markers. The pol product was detected using anti-serum from a seropositive patient (Scripps Clinic, San Diego, CA) diluted 1:1000 and the bands developed using goat anti-human IgG-HRP (Bethyl, Montgomery, TX) at 1:2000 dilution and standard ECL reagent kit (Pharmacia LKB Biotechnology, Uppsala, Sweden).

Ultrasensitive RT activity assay of pol constructs - RT activities from codon optimized wt-pol and IA pol plasmids were analyzed by the Product-Enhanced Reverse Transcriptase (PERT) assay using Perkin Elmer 7700, Taqman technology (Arnold, et al., 1999, One-step fluorescent probe product-enhanced reverse transcriptase assay. In McClelland, M., Pardee, A. (Eds.) *Expression genetics: accelerated and high-throughput methods*. Biotechniques Books, Natick, MA, pp. 201-210). Background levels for this assay were determined using 1:100,000 dilution of lysates from mock (chemical treatment only, no vector) transfected 293 cells. This background range is set as RT/reaction tube of 0.00 to 56.28 which is taken from the mean value of 13.80 +/- 3 standard deviations (sd=14.16). Any individual value >56.28 would be considered positive for PERT assay. Cells lysates were prepared

similarly for the following samples: mock transfection with empty V1Jns vector; no vector control; transfection with V1Jns-tpa-pol (codon optimized); and transfection with V1Jns-IApol (codon optimized). Samples were serially diluted to 1:100,000 in PERT buffer and 24 replicates for each sample at this dilution were assayed for RT activity.

Rodent immunization with optimized and virus-derived pol plasmids - To compare the immunogenic properties of wt-pol (codon optimized) and virus-derived pol gene, cohorts of BALB/c mice (N=10) were vaccinated with 1 μ g, 10 μ g, and 100 μ g doses of V1R-wt-pol (codon optimized) and V1Jns-wt-pol plasmid (virus derived). 10 At 5 weeks post dose 1, 5 of 10 mice per cohort were boosted with the same dose of plasmid they initially received. In all cases, the vaccines were suspended or diluted in 6 mM sodium phosphate, 150 mM sodium chloride, pH 7.2, and the total dose was injected to both quadricep muscles in 50 μ L aliquots using a 0.3-mL insulin syringe with 28-1/2G needles (Becton-Dickinson, Franklin Lakes, NJ). 15 *Anti-RT ELISA* - Anti-RT titers were obtained following standard secondary antibody-based ELISA. Maxisorp plates (NUNC, Rochester, NY) were coated by overnight incubation with 100 μ L of 1 μ g /mL HIV-1 RT protein (Advanced Biotechnologies, Columbia, MD) in PBS. The plates were washed with PBS/0.05% Tween 20 using Titertek MAP instrument (Hunstville, AL) and incubated for 20 approximately 2h with 200 μ L/well of blocking solution (PBS/0.05% tween/1% BSA). The blocking solution was decanted; 100 μ L aliquot of serially diluted serum samples were added per well and incubated for 2 h at room temperature. An initial dilution of 100-fold is performed followed by 4-fold serial dilution. The plates were washed and 100 μ L of 1/1000-diluted HRP-rabbit anti-mouse IgG (ZYMED, San 25 Francisco, CA) were added with 1 h incubation. The plates were washed thoroughly and soaked with 100 μ L 1,2-phenylenediamine dihydrochloride/hydrogen peroxide (DAKO, Norway) solution for 15 min. The reaction was quenched by adding 100 μ L of 0.5M H₂SO₄ per well. OD₄₉₂ readings were recorded using Titertek Multiskan MCC/340 with S20 stacker. Endpoint titers were defined as the highest serum 30 dilution that resulted in an absorbance value of greater than or equal to 0.1 OD₄₉₂ (2.5 times the background value).

ELIspot assay - Antigen-specific INF γ -secreting cells from mouse spleens were detected using the ELIspot assay (Miyahira, et al., 1995, Quantification of antigen specific CD8 $^{+}$ T cells using an ELISPOT assay. *J. Immunol. Methods* 1995,

181, 45-54). Typically, spleens were collected from 3-5 mice/cohorts and pooled into a tube of 8-mL complete RPMI media (RPMI1640, 10% FBS, 2mM L-glutamine, 100U/mL Penicillin, 100 u/mL streptomycin, 10 mM Hepes, 50 uM β -ME). Multiscreen opaque plates (Millipore, France) were coated with 100 μ L/well of 5 μ g/mL purified rat anti-mouse IFN- γ IgG1, clone R4-6A2 (Pharmingen, San Diego, CA), in PBS at 4°C overnight. The plates were washed with PBS/penicillin/streptomycin in hood and blocked with 200 μ L/well of complete RPMI media for 37 °C for at least 2 h. The mouse spleens were ground on steel mesh, collected into 15ml tubes and centrifuged at 1200rpm for 10 min. The pellet was treated with 4 mL ACK buffer (Gibco/BRL) for 5 min at room temperature to lyse red blood cells. The cell pellet was centrifuged as before, resuspended in complete RPMI media (5 ml per mouse spleen), filtered through a cell strainer and counted using a hemacytometer. Block media was decanted from the plates and to each well, 100 μ L of cell samples (5×10^5 cells per well) and 100 μ L of the antigen solution were added. To the control well, 100 μ L of the media were added; for specific responses, peptide pools containing either CD4 $^+$ or CD8 $^+$ epitopes were added. In all cases, a final concentration of 4 μ g/mL per peptide was used. Each sample/antigen mixture were performed in triplicate wells. Plates were incubated at 37°C, 5% CO₂, 90% humidity for 20-24 h. The plates were washed with PBS/0.05% Tween 20 and incubated with 100 μ L/well of 1.25 μ g/mL biotin-conjugated rat anti-mouse IFN- γ mAb, clone XMG1.2 (Pharmingen) at 4°C overnight. The plates were washed and incubated with 100 μ L/well 1/2500 dilution of streptavidin-alkaline phosphatase conjugate (Pharmingen) in PBS/0.005% Tween/5% FBS for 30 min at 37 °C. Following a wash, spots were developed by incubating with 100 μ l/well 1-step NBT/BCIP (Pierce Chemicals) for 6-10 min. The plates were washed with water and allowed to air dry. The number of spots in each well was determined using a dissecting microscope and the data normalized to 10^6 cell input.

Results - In vitro expression of Pol in mammalian cells - Heterologous expression of the optimized wt or IA pol genes (V1R-wt-pol (codon optimized), V1Jns-IApol (codon optimized), V1Jns-tpa-IApol (codon optimized)) in 293 cells (Figure 8) yielded a single polypeptide of correct approximate molecular size (90-kDa) for the RT-IN fusion product. In contrast, no expression could be detected by transfecting cells with 1 and 10 μ g of the V1Jns-wt-pol, which bears the virus-derived pol.

Ultrasensitive RT assay of cells transfected with Pol constructs - Table 4 summarizes the levels of polymerase activity from mock (vector only) control, IApol (codon optimized) and wt-pol plasmids (codon optimized). Results indicate that the wild-type POL transfected cells contained RT activity approximately 4-5 logs higher than the 293 cell only baseline values. Mock transfected cells contained activity no higher than baseline values. The RT activity from opt-IApol-transfected cells was also found to be no different than baseline values; no individual reaction tube resulted in RT activity higher than the established cut-off value of 56.

10

Table 4

Sample	Avg. RT/tube	Standard deviation	Minimum	Maximum
Vector only	16.25	18.52	0.0	42.99
IApol (codon optimized)	2.99	8.01	0.0	35.20
Wt-pol (codon optimized)	126147	21338	68973	152007

*Comparative immunogenicity of optimized and virus-derived pol plasmid - To compare the *in vivo* potencies of both constructs, BALB/c mice (N=10 per group) were vaccinated with escalating doses (1, 10, 100 μ g) of either V1Jns-wt-pol (virus derived) or V1R-wt-pol (codon optimized). At 5 wks post dose 1, 5 of 10 animals were randomly boosted with the same vaccine and dose they received initially. Figure 9 shows the geometric mean titers of the BALB/c cohorts determined at 2 wks past boost. No significant anti-RT titers can be observed from animals immunized with one or two doses of the wt-pol plasmid (virus derived). In contrast, animals vaccinated with the humanized gene construct gave cohort anti-RT titers (>1000) significantly above background levels at doses above 10 ug. The responses seen at 10 and 100 ug dose of V1R-wt-pol (codon optimized) were boosted approximately 10-fold with a second immunization, reaching titers as high as 10^6 . Spleens from all mice in each of the cohorts were collected to be analyzed for IFN- γ secretion following stimulation with mixtures of either CD4+ peptide epitopes or CD8+ peptide epitopes. The results are shown in Figure 10. All wt-pol vaccinees did*

not show any significant cellular response above the background controls. In contrast, strong antigen-stimulated IFN- γ secretion were observed in a dose-responsive manner from animals vaccinated with one or two doses of 10 or more μ g of the wt-pol (codon optimized) construct.

5 The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.

10

WHAT IS CLAIMED IS:

1. A pharmaceutically acceptable DNA vaccine composition, which comprises:
 - (a) a DNA expression vector; and,
 - (b) a DNA molecule containing a codon optimized open reading frame encoding a Pol protein or inactivated Pol derivative thereof, wherein upon administration of the DNA vaccine to a host the Pol protein or inactivated Pol derivative is expressed and generates a cellular immune response against HIV-1 infection.
- 10 2. The DNA vaccine of claim 1 wherein the DNA molecule encodes wild type Pol.
- 15 3. The DNA vaccine of claim 2 wherein the DNA molecule comprises the nucleotide sequence as set forth in SEQ ID NO:1.
4. The DNA vaccine of claim 3 which is V1Jns-wt-pol.
5. The DNA vaccine of claim 1 wherein the DNA molecule encodes an inactivated Pol derivative which contains a nucleotide sequence encoding a human tissue plasminogen activator leader peptide.
- 20 6. The DNA vaccine of claim 5 wherein the DNA molecule comprises the nucleotide sequence as set forth in SEQ ID NO:5
- 25 7. The DNA vaccine of claim 6 which is V1Jns-tPA-wt-pol.
8. The DNA vaccine of claim 1 wherein the inactivated Pol protein contains at least one amino acid modification within each region of the Pol protein responsible for reverse transcriptase activity, RNase H activity and integrase activity, such that the inactivated Pol protein shows no substantial reverse transcriptase activity, RNase H activity and integrase activity.

9. The DNA vaccine of claim 8 wherein the DNA molecule comprises the nucleotide sequence as set forth in SEQ ID NO:3

10. The DNA vaccine of claim 9 which is V1Jns-IAPol.

5

11. The DNA vaccine of claim 8 wherein the DNA molecule encodes an inactivated Pol derivative which contains a nucleotide sequence encoding a human tissue plasminogen activator leader peptide.

10 12. The DNA vaccine of claim 11 wherein the DNA molecule comprises the nucleotide sequence as set forth in SEQ ID NO:7.

13. The DNA vaccine of claim 7 which is V1Jns-tPA-IAPol.

15 14. A method for inducing an immune response against infection or disease caused by virulent strains of HIV which comprises administering into the tissue of a mammalian host a pharmaceutically acceptable DNA vaccine composition which comprises a DNA expression vector and a DNA molecule containing a codon optimized open reading frame encoding a Pol protein or inactivated Pol derivative thereof, wherein upon administration of the DNA vaccine to the vertebrate host the Pol protein or inactivated Pol derivative is expressed and generates the immune response.

20 15. The method of claim 16 wherein the mammalian host is a human.

25

16. The method of claim 17 wherein the DNA vaccine is selected from the group consisting of V1Jns-WTPol, V1Jns-tPA-WTPol, V1Jns-IAPol and V1Jns-tPA-IAPol.

30 17. A substantially purified protein which comprises an amino acid sequence selected from the group consisting of SEQ ID NO:4, SEQ ID NO:6, and SEQ ID NO:8.

FIG.1A

FIG.1B

2/11

FIG. 2A

3/11

TGACTGAGGTGATCCCCCTGACTGAGGAGGCTGAGCTGGAGCTGGCTGAGAACAGGGAGATCCTGAAGGAGCCTGTGCAT
 EuThrGluValIleProLeuThrGluGluAlaGluLeuGluLeuAlaGluAsnArgGluIleLeuLysGluProValHis
 300 310

GGGGTGTACTATGACCCCTCCAAGGACCTGATTGCTGAGATCCAGAACGGCCAGGCCAGTGGACCTACCAAATCTA
 GlyValTyrTyrAspProSerLysAspLeuIleAlaGluIleGlnLysGlnGlyGlnGlyGlnTrpThrTyrGlnIleTy
 320 330 340

CCAGGAGCCCTTCAAGAACCTGAAGACTGGCAAGTATGCCAGGATGAGGGGGCCCACACCAATGATGTGAAGCAGCTGA
 rGlnGluProPheLysAsnLeuLysThrGlyLysTyrAlaArgMetArgGlyAlaHisThrAsnAspValLysGlnLeuT
 350 360 370

CTGAGGCTGTGCAGAACATACCACTGAGTCCATTGTGATCTGGGCAAGACCCCCAACGTTCAAGCTGCCCATCCAGAAC
 hrGluAlaValGlnLysIleThrThrGluSerIleValIleTrpGlyLysThrProLysPheLysLeuProIleGlnLys
 380 390

GAGACCTGGAGACCTGGTGGACTGAGTACTGGCAGGCCACCTGGATCCCTGACTGGGAGTTGTGAACACCCCCCCCCT
 GluThrTrpGluThrTrpTrpThrGluTyrTrpGlnAlaThrTrpIleProGluTrpGluPheValAsnThrProProLe
 400 410 420

GGTGAAGCTGTGGTACCACTGGAGAACGGAGCCATTGTGGGGCTGAGACCTCTATGTGGCTGGGCTGCCAACAGGG
 uValLysLeuTrpTyrGlnLeuGluLysGluProIleValGlyAlaGluThrPheTyrValAlaGlyAlaAlaAsnArgG
 430 440 450

AGACCAAGCTGGCAAGGCTGGCTATGTGACCAACAGGGCAGGAGAACGTGGTACCTGACTGACACCACCAACCAG
 IuThrLysLeuGlyLysAlaGlyTyrValThrAsnArgGlyArgGlnLysValValThrLeuThrAspThrThrAsnGln
 460 470

AAGACTGCCCTCCAGGCCACTACCTGGCCCTCCAGGACTCTGGCTGGAGGTGAAACATTGTGACTGCCCTCCAGTATGC
 LysThrAlaLeuGlnAlaIleTyrLeuAlaLeuGlnAspSerGlyLeuGluValAsnIleValThrAlaSerGlnTyrAl
 480 490 500

CCTGGGCATCATCCAGGCCAGCCTGATCAGTCTGAGCTGGTGAACCAGATATTGAGCAGCTGATCAAGAAC
 aLeuGlyIleIleGlnAlaGlnProAspGlnSerGluSerGluLeuValAsnGlnIleIleGluGlnLeuIleLysG
 510 520 530

AGAAGGTGTACCTGGCTGGCTGCCACAGGGCATTGGGGCAATGAGCAGGTGGACAAGCTGGTGTCTGCTGGC
 IuLysValTyrLeuAlaTrpValProAlaHisLysGlyIleGlyGlyAsnGluGlnValAspLysLeuValSerAlaGly
 540 550

ATCAGGAAGGTGCTGTTCTGGATGGCATTGACAAGGCCAGGATGAGCATGAGAACTTCAACTGGAGGGCTAT
 IleArgLysValLeuPheLeuAspGlyIleAspLysAlaGlnAspGluHisGluLysTyrHisSerAsnTrpArgAlaMe
 560 570 580

FIG.2B

SUBSTITUTE SHEET (RULE 26)

4/11

GGCCTCTGACTCAACCTGCCCTGTGGCTAAGGAGATTGTGGCTCTGTACAAGTGCCAGCTGAAGGGGAGG
 tAlaSerAspPheAsnLeuProProValValAlaLysGluIleValAlaSerCysAspLysCysGlnLeuLysGlyGluA
 590 600 610

CCATGCATGGCAGGTGGACTGCTCCCTGGCATCTGGCAGCTGGCCTGCACCCACCTGGAGGGCAAGGTGATCCTGGTC
 IaMetHisGlyGlnValAspCysSerProGlyIleTrpGlnLeuAlaCysThrHisLeuGluGlyLysValIleLeuVal
 620 630

GCTGTGCATGTGGCTCCGGTACATTGAGGCTGAGGTGATCCCTGCTGAGACAGGCCAGGAGACTGCCTACTTCCTGCT
 AlaValHisValAlaSerGlyTyrIleGluAlaGluValIleProAlaGluThrGlyGlnGluThrAlaTyrPheLeuLe
 640 650 660

GAAGCTGGCTGGCAGGTGGCTGTGAAGACCATCCACACTGCCAATGGCTCCAACCTCACTGGGCCACAGTGAGGCC
 uLysLeuAlaGlyArgTrpProValLysThrIleHisThrAlaAsnGlySerAsnPheThrGlyAlaThrValArgAlaA
 670 680 690

CCTGCTGGTGGCTGGCATCAAGCAGGACTTGGCATCCCTACAACCCCCAGTCCCAGGGGTGGTGGCTCCATGAAC
 IaCysTrpTrpAlaGlyIleLysGlnGluPheGlyIleProTyrAsnProGlnSerGlnGlyValValAlaSerMetAsn
 700 710

AAGGAGCTGAAGAACATCATTGGCAGGTGAGGACCCAGGCTGAGCACAGCTGTCAGATGGCTGTGTTCAT
 LysGluLeuLysLysIleIleGlyGlnValArgAspGlnAlaGluHisLeuLysThrAlaValGlnMetAlaValPheI
 720 730 740

CCACAACTCAAGAGGAAGGGGGCATGGGGCTACTCCGCTGGGAGAGGATTGTGGACATCATTGCCACAGACATCC
 eHisAsnPheLysArgLysGlyGlyIleGlyTyrSerAlaGlyGluArgIleValAspIleIleAlaThrAspIleG
 750 760 770

AGACCAAGGAGCTCCAGAACGAGATCACCAAGATCCAGAACCTCAGGGTGTACTACAGGGACTCCAGGAACCCCTGTGG
 GlnThrLysGluLeuGlnLysGlnIleThrLysIleGlnAsnPheArgValTyrTyrArgAspSerArgAsnProLeuTrp
 780 790

AAGGGCCCTGCCAAGCTGCTGGAAAGGGGGAGGGGCTGTGGTGTCCAGGACAACCTGACATCAAGGTGGTCCCCAG
 LysGlyProAlaLysLeuLeuTrpLysGlyGluGlyAlaValValIleGlnAspAsnSerAspIleLysValValProAr
 800 810 820

GAGGAAGGCCAAGATCATCAGGACTATGCAAGCAGATGGCTGGGATGACTGTGTGGCTCCAGGAGGATGAGGACT
 gArgLysAlaLysIleIleArgAspTyrGlyLysGlnMetAlaGlyAspAspCysValAlaSerArgGlnAspGluAspx
 830 840 850

AAAGCCGGCAGATCT (SEQ ID NO: 3)
 Xx BgII

FIG.2C

5/11

CATCACCATGGCAATGAAAGAGAGGGCTCTGGCTCTGGCTCTGGAGGAGTCITCGTTGCC
MetAspAlaMetLysArgGlyLeuCysCysValLeuLeuCysGlyAlaValPheValSerP
-10
-20
-25

CGAGCGAGATCTCCGGCCCCATCTCCCGCTCTGAGACTCTGCCCTGTGAAGCTGAAGCTGGCATGGATGCC (within SEQ ID NO: 7)
R0SerGluIleSerAlaProIleSerProIleSerProIleSerGluIleSerGlyMetAspGly (within SEQ ID NO: 8)
-1 2
10
20

FIG. 3

FIG.4

FIG.5

7/11

FIG. 6A

FIG. 6B

8/11

FIG.6C

9/11

FIG.7A

FIG.7B

10 / 11

FIG. 8

FIG.9

FIG.10

SEQUENCE LISTING

<110> Merck & Co., Inc.

<120> POLYNUCLEOTIDE VACCINES EXPRESSING CODON
OPTIMIZED HIV-1 POL AND MODIFIED HIV-1 POL

<130> 20608Y PCT

<160> 30

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2577

<212> DNA

<213> Human Immunodeficiency Virus-1

<220>

<221> CDS

<222> (10)...(2562)

<400> 1

agatctacc	atg	gcc	ccc	atc	tcc	ccc	att	gag	act	gtg	cct	gtg	aag	ctg	51
Met	Ala	Pro	Ile	Ser	Pro	Ile	Glu	Thr	Val	Pro	Val	Lys	Leu		
1														10	

aag	cct	ggc	atg	gat	ggc	ccc	aag	gtg	aag	cag	tgg	ccc	ctg	act	gag	99
Lys	Pro	Gly	Met	Asp	Gly	Pro	Lys	Val	Lys	Gln	Trp	Pro	Leu	Thr	Glu	
15														30		

gag	aag	atc	aag	gcc	ctg	gtg	gaa	atc	tgc	act	gag	atg	gag	aag	gag	147
Glu	Lys	Ile	Lys	Ala	Leu	Val	Glu	Ile	Cys	Thr	Glu	Met	Glu	Lys	Glu	
35														45		

ggc	aaa	atc	tcc	aag	att	ggc	ccc	gag	aac	ccc	tac	aac	acc	cct	gtg	195
Gly	Lys	Ile	Ser	Lys	Ile	Gly	Pro	Glu	Asn	Pro	Tyr	Asn	Thr	Pro	Val	
50														60		

ttt	gcc	atc	aag	aag	gac	tcc	acc	aag	tgg	agg	aag	ctg	gtg	gac	243
Phe	Ala	Ile	Lys	Lys	Asp	Ser	Thr	Lys	Trp	Arg	Lys	Leu	Val	Asp	
65														75	

ttc	agg	gag	ctg	aac	aag	agg	acc	cag	gac	ttc	tgg	gag	gtg	cag	ctg	291
Phe	Arg	Glu	Leu	Asn	Lys	Arg	Thr	Gln	Asp	Phe	Trp	Glu	Val	Gln	Leu	
80														90		

ggc	atc	ccc	cac	ccc	gct	ggc	ctg	aag	aag	aag	tct	gtg	act	gtg	339
Gly	Ile	Pro	His	Pro	Ala	Gly	Leu	Lys	Lys	Lys	Ser	Val	Thr	Val	
95														110	

ctg	gat	gtg	ggg	gat	gcc	tac	ttc	tct	gtg	ccc	ctg	gat	gag	gac	ttc	387
Leu	Asp	Val	Gly	Asp	Ala	Tyr	Phe	Ser	Val	Pro	Leu	Asp	Glu	Asp	Phe	
115														125		

agg	aag	tac	act	gcc	ttc	acc	atc	ccc	tcc	atc	aac	aat	gag	acc	cct	435
Arg	Lys	Tyr	Thr	Ala	Phe	Thr	Ile	Pro	Ser	Ile	Asn	Asn	Glu	Thr	Pro	
130														140		

ggc atc agg tac cag tac aat gtg ctg ccc cag ggc tgg aag ggc tcc Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser 145 150 155	483
cct gcc atc ttc cag tcc tcc atg acc aag atc ctg gag ccc ttc agg Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg 160 165 170	531
aag cag aac cct gac att gtg atc tac cag tac atg gat gac ctg tat Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr 175 180 185 190	579
gtg ggc tct gac ctg gag att ggg cag cac agg acc aag att gag gag Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu 195 200 205	627
ctg agg cag cac ctg ctg agg tgg ggc ctg acc acc cct gac aag aag Leu Arg Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys 210 215 220	675
cac cag aag gag ccc ccc ttc ctg tgg atg ggc tat gag ctg cac ccc His Gln Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro 225 230 235	723
gac aag tgg act gtg cag ccc att gtg ctg cct gag aag gac tcc tgg Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp 240 245 250	771
act gtg aat gac atc cag aag ctg gtg ggc aag ctg aac tgg gcc tcc Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser 255 260 265 270	819
caa atc tac cct ggc atc aag gtg agg cag ctg tgc aag ctg ctg agg Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg 275 280 285	867
ggc acc aag gcc ctg act gag gtg atc ccc ctg act gag gag gct gag Gly Thr Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu 290 295 300	915
ctg gag ctg gct gag aac agg gag atc ctg aag gag cct gtg cat ggg Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly 305 310 315	963
gtg tac tat gac ccc tcc aag gac ctg att gct gag atc cag aag cag Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln 320 325 330	1011
ggc cag ggc cag tgg acc tac caa atc tac cag gag ccc ttc aag aac Gly Gln Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn 335 340 345 350	1059
ctg aag act ggc aag tat gcc agg atg agg ggg gcc cac acc aat gat Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp 355 360 365	1107
gtg aag cag ctg act gag gct gtg cag aag atc acc act gag tcc att Val Lys Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile 370 375 380	1155

gtg atc tgg ggc aag acc ccc aag ttc aag ctg ccc atc cag aag gag	1203
Val Ile Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu	
385 390 395	
acc tgg gag acc tgg tgg act gag tac tgg cag gcc acc tgg atc cct	1251
Thr Trp Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro	
400 405 410	
gag tgg gag ttt gtg aac acc ccc ccc ctg gtg aag ctg tgg tac cag	1299
Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln	
415 420 425 430	
ctg gag aag gag ccc att gtg ggg gct gag acc ttc tat gtg gat ggg	1347
Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly	
435 440 445	
gct gcc aac agg gag acc aag ctg ggc aag gct ggc tat gtg acc aac	1395
Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn	
450 455 460	
agg ggc agg cag aag gtg gtg acc ctg act gac acc acc aac cag aag	1443
Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys	
465 470 475	
act gag ctc cag gcc atc tac ctg gcc ctc cag gac tct ggc ctg gag	1491
Thr Glu Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu	
480 485 490	
gtg aac att gtg act gac tcc cag tat gcc ctg ggc atc atc cag gcc	1539
Val Asn Ile Val Thr Asp Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala	
495 500 505 510	
cag cct gat cag tct gag tct gag ctg gtg aac cag atc att gag cag	1587
Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln	
515 520 525	
ctg atc aag aag gag aag gtg tac ctg gcc tgg gtg cct gcc cac aag	1635
Leu Ile Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys	
530 535 540	
ggc att ggg ggc aat gag cag gtg gac aag ctg gtg tct gct ggc atc	1683
Gly Ile Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile	
545 550 555	
agg aag gtg ctg ttc ctg gat ggc att gac aag gcc cag gat gag cat	1731
Arg Lys Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His	
560 565 570	
gag aag tac cac tcc aac tgg agg gct atg gcc tct gac ttc aac ctg	1779
Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu	
575 580 585 590	
ccc cct gtg gtg gct aag gag att gtg gcc tcc tgt gac aag tgc cag	1827
Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln	
595 600 605	
ctg aag ggg gag gcc atg cat ggg cag gtg gac tgc tcc cct ggc atc	1875
Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile	
610 615 620	

tgg cag ctg gac tgc acc cac ctg gag ggc aag gtg atc ctg gtg gct Trp Gln Leu Asp Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala 625 630 635	1923
gtg cat gtg gcc tcc ggc tac att gag gct gag gtg atc cct gct gag Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu 640 645 650	1971
aca ggc cag gag act gcc tac ttc ctg aag ctg gct ggc agg tgg Thr Gly Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp 655 660 665 670	2019
cct gtg aag acc atc cac act gac aat ggc tcc aac ttc act ggg gcc Pro Val Lys Thr Ile His Thr Asp Asn Gly Ser Asn Phe Thr Gly Ala 675 680 685	2067
aca gtg agg gct gcc tgc tgg gct ggc atc aag cag gag ttt ggc Thr Val Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly 690 695 700	2115
atc ccc tac aac ccc cag tcc cag ggg gtg gtg gag tcc atg aac aag Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Lys 705 710 715	2163
gag ctg aag aag atc att ggg cag gtg agg gac cag gct gag cac ctg Glu Leu Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu 720 725 730	2211
aag aca gct gtg cag atg gct gtg ttc atc cac aac ttc aag agg aag Lys Thr Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys 735 740 745 750	2259
ggg ggc atc ggg ggc tac tcc gct ggg gag agg att gtg gac atc att Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile 755 760 765	2307
gcc aca gac atc cag acc aag gag ctc cag aag cag atc acc aag atc Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile 770 775 780	2355
cag aac ttc agg gtg tac tac agg gac tcc agg aac ccc ctg tgg aag Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys 785 790 795	2403
ggc cct gcc aag ctg ctg tgg aag ggg gag ggg gct gtg gtg atc cag Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln 800 805 810	2451
gac aac tct gac atc aag gtg gtg ccc agg agg aag gcc aag atc atc Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile 815 820 825 830	2499
agg gac tat ggc aag cag atg gct ggg gat gac tgt gtg gcc tcc agg Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg 835 840 845	2547
cag gat gag gac taa agccgggca gatct Gln Asp Glu Asp * 850	2577

<211> 850

<212> PRT

<213> Human Immunodeficiency Virus-1

<400> 2

Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro
 1 5 10 15
 Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys
 20 25 30
 Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys
 35 40 45
 Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala
 50 55 60
 Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg
 65 70 75 80
 Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile
 85 90 95
 Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Asp
 100 105 110
 Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys
 115 120 125
 Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile
 130 135 140
 Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala
 145 150 155 160
 Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln
 165 170 175
 Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly
 180 185 190
 Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg
 195 200 205
 Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln
 210 215 220
 Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys
 225 230 235 240
 Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val
 245 250 255
 Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile
 260 265 270
 Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr
 275 280 285
 Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu
 290 295 300
 Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr
 305 310 315 320
 Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln
 325 330 335
 Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys
 340 345 350
 Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys
 355 360 365
 Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile
 370 375 380
 Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp
 385 390 395 400
 Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp
 405 410 415
 Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu
 420 425 430
 Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala
 435 440 445

Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly
 450 455 460
 Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Glu
 465 470 475 480
 Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn
 485 490 495
 Ile Val Thr Asp Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro
 500 505 510
 Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile
 515 520 525
 Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile
 530 535 540
 Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys
 545 550 555 560
 Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys
 565 570 575
 Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro
 580 585 590
 Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys
 595 600 605
 Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln
 610 615 620
 Leu Asp Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His
 625 630 635 640
 Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly
 645 650 655
 Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val
 660 665 670
 Lys Thr Ile His Thr Asp Asn Gly Ser Asn Phe Thr Gly Ala Thr Val
 675 680 685
 Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro
 690 695 700
 Tyr Asn Pro Gln Ser Gln Gly Val Val Glu Ser Met Asn Lys Glu Leu
 705 710 715 720
 Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr
 725 730 735
 Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly
 740 745 750
 Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr
 755 760 765
 Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn
 770 775 780
 Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro
 785 790 795 800
 Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn
 805 810 815
 Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp
 820 825 830
 Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp
 835 840 845
 Glu Asp
 850

<210> 3
 <211> 2577
 <212> DNA
 <213> Human Immunodeficiency Virus-1

 <220>
 <221> CDS
 <222> (10)...(2562)

<400> 3

agatctacc atg gcc ccc atc tcc ccc att gag act gtg cct gtg aag ctg	51
Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu	
1 5 10	
aag cct ggc atg gat ggc ccc aag gtg aag cag tgg ccc ctg act gag	99
Lys Pro Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu	
15 20 25 30	
gag aag atc aag gcc ctg gtg gaa atc tgc act gag atg gag aag gag	147
Glu Lys Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu	
35 40 45	
ggc aaa atc tcc aag att ggc ccc gag aac ccc tac aac acc cct gtg	195
Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val	
50 55 60	
ttt gcc atc aag aag gac tcc acc aag tgg agg aag ctg gtg gac	243
Phe Ala Ile Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp	
65 70 75	
ttc agg gag ctg aac aag agg acc cag gac ttc tgg gag gtg cag ctg	291
Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu	
80 85 90	
ggc atc ccc cac ccc gct ggc ctg aag aag aag tct gtg act gtg	339
Gly Ile Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val	
95 100 105 110	
ctg gct gtg ggg gat gcc tac ttc tct gtg ccc ctg gat gag gac ttc	387
Leu Ala Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe	
115 120 125	
agg aag tac act gcc ttc acc atc ccc tcc atc aac aat gag acc cct	435
Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro	
130 135 140	
ggc atc agg tac cag tac aat gtg ctg ccc cag ggc tgg aag ggc tcc	483
Gly Ile Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser	
145 150 155	
cct gcc atc ttc cag tcc atg acc aag atc ctg gag ccc ttc agg	531
Pro Ala Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg	
160 165 170	
aag cag aac cct gac att gtg atc tac cag tac atg gct gcc ctg tat	579
Lys Gln Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Ala Ala Leu Tyr	
175 180 185 190	
gtg ggc tct gac ctg gag att ggg cag cac agg acc aag att gag gag	627
Val Gly Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu	
195 200 205	
ctg agg cag cac ctg ctg agg tgg ggc ctg acc acc cct gac aag aag	675
Leu Arg Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys	
210 215 220	
cac cag aag gag ccc ccc ttc ctg tgg atg ggc tat gag ctg cac ccc	723
His Gln Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro	
225 230 235	

gac aag tgg act gtg cag ccc att gtg ctg cct gag aag gac tcc tgg	771
Asp Lys Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp	
240 245 250	
act gtg aat gac atc cag aag ctg gtg ggc aag ctg aac tgg gcc tcc	819
Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser	
255 260 265 270	
caa atc tac cct ggc atc aag gtg agg cag ctg tgc aag ctg ctg agg	867
Gln Ile Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Arg	
275 280 285	
ggc acc aag gcc ctg act gag gtg atc ccc ctg act gag gag gct gag	915
Gly Thr Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Ala Glu	
290 295 300	
ctg gag ctg gct gag aac agg gag atc ctg aag gag cct gtg cat ggg	963
Leu Glu Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly	
305 310 315	
gtg tac tat gac ccc tcc aag gac ctg att gct gag atc cag aag cag	1011
Val Tyr Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln	
320 325 330	
ggc cag ggc cag tgg acc tac caa atc tac cag gag ccc ttc aag aac	1059
Gly Gln Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn	
335 340 345 350	
ctg aag act ggc aag tat gcc agg atg agg ggg gcc cac acc aat gat	1107
Leu Lys Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp	
355 360 365	
gtg aag cag ctg act gag gct gtg cag aag atc acc act gag tcc att	1155
Val Lys Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile	
370 375 380	
gtg atc tgg ggc aag acc ccc aag ttc aag ctg ccc atc cag aag gag	1203
Val Ile Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu	
385 390 395	
acc tgg gag acc tgg tgg act gag tac tgg cag gcc acc tgg atc cct	1251
Thr Trp Glu Thr Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro	
400 405 410	
gag tgg gag ttt gtg aac acc ccc ccc ctg gtg aag ctg tgg tac cag	1299
Glu Trp Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln	
415 420 425 430	
ctg gag aag gag ccc att gtg ggg gct gag acc ttc tat gtg gct ggg	1347
Leu Glu Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Ala Gly	
435 440 445	
gct gcc aac agg gag acc aag ctg ggc aag gct ggc tat gtg acc aac	1395
Ala Ala Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn	
450 455 460	
agg ggc agg cag aag gtg gtg acc ctg act gac acc acc aac cag aag	1443
Arg Gly Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys	
465 470 475	

act gcc ctc cag gcc atc tac ctg gcc ctc cag gac tct ggc ctg gag	1491
Thr Ala Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu	
480 485 490	
gtg aac att gtg act gcc tcc cag tat gcc ctg ggc atc atc cag gcc	1539
Val Asn Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala	
495 500 505 510	
cag cct gat cag tct gag tct gag ctg gtg aac cag atc att gag cag	1587
Gln Pro Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln	
515 520 525	
ctg atc aag aag gag aag gtg tac ctg gcc tgg gtg cct gcc cac aag	1635
Leu Ile Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys	
530 535 540	
ggc att ggg ggc aat gag cag gtg gac aag ctg gtg tct gct ggc atc	1683
Gly Ile Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile	
545 550 555	
agg aag gtg ctg ttc ctg gat ggc att gac aag gcc cag gat gag cat	1731
Arg Lys Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His	
560 565 570	
gag aag tac cac tcc aac tgg agg gct atg gcc tct gac ttc aac ctg	1779
Glu Lys Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu	
575 580 585 590	
ccc cct gtg gct aag gag att gtg gcc tcc tgt gac aag tgc cag	1827
Pro Pro Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln	
595 600 605	
ctg aag ggg gag gcc atg cat ggg cag gtg gac tgc tcc cct ggc atc	1875
Leu Lys Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile	
610 615 620	
tgg cag ctg gcc tgc acc cac ctg gag ggc aag gtg atc ctg gtg gct	1923
Trp Gln Leu Ala Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala	
625 630 635	
gtg cat gtg gcc tcc ggc tac att gag gct gag gtg atc cct gct gag	1971
Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu	
640 645 650	
aca ggc cag gag act gcc tac ttc ctg ctg aag ctg gct ggc agg tgg	2019
Thr Gly Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp	
655 660 665 670	
cct gtg aag acc atc cac act gcc aat ggc tcc aac ttc act ggg gcc	2067
Pro Val Lys Thr Ile His Thr Ala Asn Gly Ser Asn Phe Thr Gly Ala	
675 680 685	
aca gtg agg gct gcc tgc tgg tgg gct ggc atc aag cag gag ttt ggc	2115
Thr Val Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly	
690 695 700	
atc ccc tac aac ccc cag tcc cag ggg gtg gtg gcc tcc atg aac aag	2163
Ile Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys	
705 710 715	

gag ctg aag aag atc att ggg cag gtg agg gac cag gct gag cac ctg Glu Leu Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu 720 725 730	2211
aag aca gct gtg cag atg gct gtg ttc atc cac aac ttc aag agg aag Lys Thr Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys 735 740 745 750	2259
ggg ggc atc ggg ggc tac tcc gct ggg gag agg att gtg gac atc att Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile 755 760 765	2307
gcc aca gac atc cag acc aag gag ctc cag aag cag atc acc aag atc Ala Thr Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile 770 775 780	2355
cag aac ttc agg gtg tac tac agg gac tcc agg aac ccc ctg tgg aag Gln Asn Phe Arg Val Tyr Tyr Arg Asp Ser Arg Asn Pro Leu Trp Lys 785 790 795	2403
ggc cct gcc aag ctg ctg tgg aag ggg gag ggg gct gtg gtg atc cag Gly Pro Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln 800 805 810	2451
gac aac tct gac atc aag gtg gtg ccc agg agg aag gcc aag atc atc Asp Asn Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile 815 820 825 830	2499
agg gac tat ggc aag cag atg gct ggg gat gac tgt gtg gcc tcc agg Arg Asp Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg 835 840 845	2547
cag gat gag gac taa agcccgccca gatct Gln Asp Glu Asp * 850	2577

<210> 4
 <211> 850
 <212> PRT
 <213> Human Immunodeficiency Virus-1

<400> 4
 Met Ala Pro Ile Ser Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro
 1 5 10 15
 Gly Met Asp Gly Pro Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys
 20 25 30
 Ile Lys Ala Leu Val Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys
 35 40 45
 Ile Ser Lys Ile Gly Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala
 50 55 60
 Ile Lys Lys Lys Asp Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg
 65 70 75 80
 Glu Leu Asn Lys Arg Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile
 85 90 95
 Pro His Pro Ala Gly Leu Lys Lys Lys Ser Val Thr Val Leu Ala
 100 105 110
 Val Gly Asp Ala Tyr Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys
 115 120 125
 Tyr Thr Ala Phe Thr Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile
 130 135 140

Arg Tyr Gln Tyr Asn Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala
 145 150 155 160
 Ile Phe Gln Ser Ser Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln
 165 170 175
 Asn Pro Asp Ile Val Ile Tyr Gln Tyr Met Ala Ala Leu Tyr Val Gly
 180 185 190
 Ser Asp Leu Glu Ile Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg
 195 200 205
 Gln His Leu Leu Arg Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln
 210 215 220
 Lys Glu Pro Pro Phe Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys
 225 230 235 240
 Trp Thr Val Gln Pro Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val
 245 250 255
 Asn Asp Ile Gln Lys Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile
 260 265 270
 Tyr Pro Gly Ile Lys Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr
 275 280 285
 Lys Ala Leu Thr Glu Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu
 290 295 300
 Leu Ala Glu Asn Arg Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr
 305 310 315 320
 Tyr Asp Pro Ser Lys Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln
 325 330 335
 Gly Gln Trp Thr Tyr Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys
 340 345 350
 Thr Gly Lys Tyr Ala Arg Met Arg Gly Ala His Thr Asn Asp Val Lys
 355 360 365
 Gln Leu Thr Glu Ala Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile
 370 375 380
 Trp Gly Lys Thr Pro Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp
 385 390 395 400
 Glu Thr Trp Trp Thr Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp
 405 410 415
 Glu Phe Val Asn Thr Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu
 420 425 430
 Lys Glu Pro Ile Val Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala
 435 440 445
 Asn Arg Glu Thr Lys Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly
 450 455 460
 Arg Gln Lys Val Val Thr Leu Thr Asp Thr Thr Asn Gln Lys Thr Ala
 465 470 475 480
 Leu Gln Ala Ile Tyr Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn
 485 490 495
 Ile Val Thr Ala Ser Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro
 500 505 510
 Asp Gln Ser Glu Ser Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile
 515 520 525
 Lys Lys Glu Lys Val Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile
 530 535 540
 Gly Gly Asn Glu Gln Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys
 545 550 555 560
 Val Leu Phe Leu Asp Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys
 565 570 575
 Tyr His Ser Asn Trp Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro
 580 585 590
 Val Val Ala Lys Glu Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys
 595 600 605
 Gly Glu Ala Met His Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln
 610 615 620
 Leu Ala Cys Thr His Leu Glu Gly Lys Val Ile Leu Val Ala Val His
 625 630 635 640

Val Ala Ser Gly Tyr Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly
 645 650 655
 Gln Glu Thr Ala Tyr Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val
 660 665 670
 Lys Thr Ile His Thr Ala Asn Gly Ser Asn Phe Thr Gly Ala Thr Val
 675 680 685
 Arg Ala Ala Cys Trp Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro
 690 695 700
 Tyr Asn Pro Gln Ser Gln Gly Val Val Ala Ser Met Asn Lys Glu Leu
 705 710 715 720
 Lys Lys Ile Ile Gly Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr
 725 730 735
 Ala Val Gln Met Ala Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly
 740 745 750
 Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr
 755 760 765
 Asp Ile Gln Thr Lys Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn
 770 775 780
 Phe Arg Val Tyr Tyr Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro
 785 790 795 800
 Ala Lys Leu Leu Trp Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn
 805 810 815
 Ser Asp Ile Lys Val Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp
 820 825 830
 Tyr Gly Lys Gln Met Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp
 835 840 845
 Glu Asp
 850

<210> 5
 <211> 2650
 <212> DNA
 <213> Human Immunodeficiency Virus-1

<220>
 <221> CDS
 <222> (8)...(2635)

<400> 5
 gatcacc atg gat gca atg aag aga ggg ctc tgc tgt gtg ctg ctg ctg
 Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu 49
 1 5 10

tgt gga gca gtc ttc gtt tcg ccc agc gag atc tcc gcc ccc atc tcc
 Cys Gly Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser 97
 15 20 25 30

ccc att gag act gtg cct gtg aag ctg aag cct ggc atg gat ggc ccc
 Pro Ile Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro 145
 35 40 45

aag gtg aag cag tgg ccc ctg act gag gag aag atc aag gcc ctg gtg
 Lys Val Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val 193
 50 55 60

gaa atc tgc act gag atg gag aag gag ggc aaa atc tcc aag att ggc
 Glu Ile Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly 241
 65 70 75

ccc gag aac ccc tac aac acc cct gtg ttt gcc atc aag aag gac
 Pro Glu Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp 289
 80 85 90

tcc acc aag tgg agg aag ctg gtg gac ttc agg gag ctg aac aag agg		337
Ser Thr Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg		
95 100 105 110		
acc cag gac ttc tgg gag gtg cag ctg ggc atc ccc cac ccc gct ggc		385
Thr Gln Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly		
115 120 125		
ctg aag aag aag aag tct gtg act gtg ctg gat gtg ggg gat gcc tac		433
Leu Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr		
130 135 140		
ttc tct gtg ccc ctg gat gag gac ttc agg aag tac act gcc ttc acc		481
Phe Ser Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr		
145 150 155		
atc ccc tcc atc aac aat gag acc cct ggc atc agg tac cag tac aat		529
Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn		
160 165 170		
gtg ctg ccc cag ggc tgg aag ggc tcc cct gcc atc ttc cag tcc tcc		577
Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser		
175 180 185 190		
atg acc aag atc ctg gag ccc ttc agg aag cag aac cct gac att gtg		625
Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val		
195 200 205		
atc tac cag tac atg gat gac ctg tat gtg ggc tct gac ctg gag att		673
Ile Tyr Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile		
210 215 220		
ggg cag cac agg acc aag att gag gag ctg agg cag cac ctg ctg agg		721
Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg		
225 230 235		
tgg ggc ctg acc acc cct gac aag aag cac cag aag gag ccc ccc ttc		769
Trp Gly Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe		
240 245 250		
ctg tgg atg ggc tat gag ctg cac ccc gac aag tgg act gtg cag ccc		817
Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro		
255 260 265 270		
att gtg ctg cct gag aag gac tcc tgg act gtg aat gac atc cag aag		865
Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys		
275 280 285		
ctg gtg ggc aag ctg aac tgg gcc tcc caa atc tac cct ggc atc aag		913
Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys		
290 295 300		
gtg agg cag ctg tgc aag ctg ctg agg ggc acc aag gcc ctg act gag		961
Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu		
305 310 315		
gtg atc ccc ctg act gag gag gct gag ctg gag ctg gct gag aac agg		1009
Val Ile Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg		
320 325 330		

gag atc ctg aag gag cct gtg cat ggg gtg tac tat gac ccc tcc aag	1057
Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys	
335 340 345 350	
gac ctg att gct gag atc cag aag cag ggc cag ggc cag tgg acc tac	1105
Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln Gln Trp Thr Tyr	
355 360 365	
caa atc tac cag gag ccc ttc aag aac ctg aag act ggc aag tat gcc	1153
Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala	
370 375 380	
agg atg agg ggg gcc cac acc aat gat gtg aag cag ctg act gag gct	1201
Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala	
385 390 395	
gtg cag aag atc acc act gag tcc att gtg atc tgg ggc aag acc ccc	1249
Val Gln Lys Ile Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro	
400 405 410	
aag ttc aag ctg ccc atc cag aag gag acc tgg gag acc tgg tgg act	1297
Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr	
415 420 425 430	
gag tac tgg cag gcc acc tgg atc cct gag tgg gag ttt gtg aac acc	1345
Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr	
435 440 445	
ccc ccc ctg gtg aag ctg tgg tac cag ctg gag aag gag ccc att gtg	1393
Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val	
450 455 460	
ggg gct gag acc ttc tat gtg gat ggg gct gcc aac agg gag acc aag	1441
Gly Ala Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys	
465 470 475	
ctg ggc aag gct ggc tat gtg acc aac agg ggc agg cag aag gtg gtg	1489
Leu Gly Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val	
480 485 490	
acc ctg act gac acc acc aac cag aag act gag ctc cag gcc atc tac	1537
Thr Leu Thr Asp Thr Asn Gln Lys Thr Glu Leu Gln Ala Ile Tyr	
495 500 505 510	
ctg gcc ctc cag gac tct ggc ctg gag gtg aac att gtg act gac tcc	1585
Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser	
515 520 525	
cag tat gcc ctg ggc atc atc cag gcc cag cct gat cag tct gag tct	1633
Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser	
530 535 540	
gag ctg gtg aac cag atc att gag cag ctg atc aag aag gag aag gtg	1681
Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val	
545 550 555	
tac ctg gcc tgg gtg cct gcc cac aag ggc att ggg ggc aat gag cag	1729
Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln	
560 565 570	

gtg gac aag ctg gtg tct gct ggc atc agg aag gtg ctg ttc ctg gat		1777
Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp		
575 580 585 590		
ggc att gac aag gcc cag gat gag cat gag aag tac cac tcc aac tgg		1825
Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp		
595 600 605		
agg gct atg gcc tct gac ttc aac ctg ccc cct gtg gtg gct aag gag		1873
Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu		
610 615 620		
att gtg gcc tcc tgt gac aag tgc cag ctg aag ggg gag gcc atg cat		1921
Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His		
625 630 635		
ggg cag gtg gac tgc tcc cct ggc atc tgg cag ctg gac tgc acc cac		1969
Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp Cys Thr His		
640 645 650		
ctg gag ggc aag gtg atc ctg gtg gct gtg cat gtg gcc tcc ggc tac		2017
Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr		
655 660 665 670		
att gag gct gag gtg atc cct gct gag aca ggc cag gag act gcc tac		2065
Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr		
675 680 685		
ttc ctg ctg aag ctg gct ggc agg tgg cct gtg aag acc atc cac act		2113
Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr		
690 695 700		
gac aat ggc tcc aac ttc act ggg gcc aca gtg agg gct gcc tgc tgg		2161
Asp Asn Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp		
705 710 715		
tgg gct ggc atc aag cag gag ttt ggc atc ccc tac aac ccc cag tcc		2209
Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser		
720 725 730		
cag ggg gtg gtg gag tcc atg aac aag gag ctg aag aag atc att ggg		2257
Gln Gly Val Val Glu Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly		
735 740 745 750		
cag gtg agg gac cag gct gag cac ctg aag aca gct gtg cag atg gct		2305
Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala		
755 760 765		
gtg ttc atc cac aac ttc aag agg aag ggg ggc atc ggg ggc tac tcc		2353
Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser		
770 775 780		
gct ggg gag agg att gtg gac atc att gcc aca gac atc cag acc aag		2401
Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys		
785 790 795		
gag ctc cag aag cag atc acc aag atc cag aac ttc agg gtg tac tac		2449
Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr		
800 805 810		

agg gac tcc agg aac ccc ctg tgg aag ggc cct gcc aag ctg ctg tgg	2497
Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp	
815 820 825 830	
aag ggg gag ggg gct gtg gtg atc cag gac aac tct gac atc aag gtg	2545
Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val	
835 840 845	
gtg ccc agg agg aag gcc aag atc atc agg gac tat ggc aag cag atg	2593
Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met	
850 855 860	
gct ggg gat gac tgt gtg gcc tcc agg cag gat gag gac taa	2635
Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp *	
865 870 875	
agccccgggca gatct	2650
<210> 6	
<211> 875	
<212> PRT	
<213> Human Immunodeficiency Virus-1	
<400> 6	
Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Cys Gly	
1 5 10 15	
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser Pro Ile	
20 25 30	
Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val	
35 40 45	
Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile	
50 55 60	
Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu	
65 70 75 80	
Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Asp Ser Thr	
85 90 95	
Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln	
100 105 110	
Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys	
115 120 125	
Lys Lys Lys Ser Val Thr Val Leu Asp Val Gly Asp Ala Tyr Phe Ser	
130 135 140	
Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro	
145 150 155 160	
Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu	
165 170 175	
Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr	
180 185 190	
Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr	
195 200 205	
Gln Tyr Met Asp Asp Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln	
210 215 220	
His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly	
225 230 235 240	
Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp	
245 250 255	
Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val	
260 265 270	
Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val	
275 280 285	
Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg	
290 295 300	

Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile
 305 310 315 320
 Pro Leu Thr Glu Glu Ala Glu Leu Glu Ala Glu Asn Arg Glu Ile
 325 330 335
 Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu
 340 345 350
 Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr Gln Ile
 355 360 365
 Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met
 370 375 380
 Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln
 385 390 395 400
 Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe
 405 410 415
 Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr
 420 425 430
 Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro
 435 440 445
 Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala
 450 455 460
 Glu Thr Phe Tyr Val Asp Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly
 465 470 475 480
 Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu
 485 490 495
 Thr Asp Thr Thr Asn Gln Lys Thr Glu Leu Gln Ala Ile Tyr Leu Ala
 500 505 510
 Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Asp Ser Gln Tyr
 515 520 525
 Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu
 530 535 540
 Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu
 545 550 555 560
 Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln Val Asp
 565 570 575
 Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile
 580 585 590
 Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala
 595 600 605
 Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val
 610 615 620
 Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln
 625 630 635 640
 Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Asp Cys Thr His Leu Glu
 645 650 655
 Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu
 660 665 670
 Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu
 675 680 685
 Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Asp Asn
 690 695 700
 Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala
 705 710 715 720
 Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly
 725 730 735
 Val Val Glu Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val
 740 745 750
 Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe
 755 760 765
 Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly
 770 775 780
 Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu
 785 790 795 800

Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp
 805 810 815
 Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly
 820 825 830
 Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro
 835 840 845
 Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly
 850 855 860
 Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp
 865 870 875

<210> 7
 <211> 2650

<212> DNA

<213> Human Immunodeficiency Virus-1

<220>

<221> CDS

<222> (8)...(2635)

<400> 7

gatcacc	atg	gat	gca	atg	aag	aga	ggg	ctc	tgc	tgt	gtg	ctg	ctg	ctg	49
	Met	Asp	Ala	Met	Lys	Arg	Gly	Leu	Cys	Cys	Val	Leu	Leu	Leu	
	1			5					10						

tgt	gga	gca	gtc	ttc	gtt	tcg	ccc	agc	gag	atc	tcc	gcc	ccc	atc	tcc	97
Cys	Gly	Ala	Val	Phe	Val	Ser	Pro	Ser	Glu	Ile	Ser	Ala	Pro	Ile	Ser	
15				20			25			30						

ccc	att	gag	act	gtg	cct	gtg	aag	ctg	aag	cct	ggc	atg	gat	ggc	ccc	145
Pro	Ile	Glu	Thr	Val	Pro	Val	Lys	Leu	Lys	Pro	Gly	Met	Asp	Gly	Pro	
	35				40				45							

aag	gtg	aag	cag	tgg	ccc	ctg	act	gag	gag	aag	atc	aag	gcc	ctg	gtg	193
Lys	Val	Lys	Gln	Trp	Pro	Leu	Thr	Glu	Glu	Lys	Ile	Lys	Ala	Leu	Val	
	50				55				60							

gaa	atc	tgc	act	gag	atg	gag	aag	ggc	aaa	atc	tcc	aag	att	ggc	241
Glu	Ile	Cys	Thr	Glu	Met	Glu	Lys	Glu	Gly	Ile	Ser	Lys	Ile	Gly	
	65			70				75							

ccc	gag	aac	ccc	tac	aac	acc	cct	gtg	ttt	gcc	atc	aag	aag	aag	gac	289
Pro	Glu	Asn	Pro	Tyr	Asn	Thr	Pro	Val	Phe	Ala	Ile	Lys	Lys	Lys	Asp	
	80				85				90							

tcc	acc	aag	tgg	agg	aag	ctg	gtg	gac	ttc	agg	gag	ctg	aac	aag	agg	337
Ser	Thr	Lys	Trp	Arg	Lys	Leu	Val	Asp	Phe	Arg	Glu	Leu	Asn	Lys	Arg	
	95				100				105			110				

acc	cag	gac	ttc	tgg	gag	gtg	cag	ctg	ggc	atc	ccc	cac	ccc	gct	ggc	385
Thr	Gln	Asp	Phe	Trp	Glu	Val	Gln	Leu	Gly	Ile	Pro	His	Pro	Ala	Gly	
	115				120				125							

ctg	aag	aag	aag	tct	gtg	act	gtg	ctg	gct	gtg	ggg	gat	gcc	tac	433
Leu	Lys	Lys	Lys	Ser	Val	Thr	Val	Leu	Ala	Val	Gly	Asp	Ala	Tyr	
	130				135				140						

ttc	tct	gtg	ccc	ctg	gat	gag	gac	ttc	agg	aag	tac	act	gcc	ttc	acc	481
Phe	Ser	Val	Pro	Leu	Asp	Glu	Asp	Phe	Arg	Lys	Tyr	Thr	Ala	Phe	Thr	
	145				150				155							

atc ccc tcc atc aac aat gag acc cct ggc atc agg tac cag tac aat	529
Ile Pro Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn	
160 165 170	
gtg ctg ccc cag ggc tgg aag ggc tcc cct gcc atc ttc cag tcc tcc	577
Val Leu Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser	
175 180 185 190	
atg acc aag atc ctg gag ccc ttc agg aag cag aac cct gac att gtg	625
Met Thr Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val	
195 200 205	
atc tac cag tac atg gct gcc ctg tat gtg ggc tct gac ctg gag att	673
Ile Tyr Gln Tyr Met Ala Ala Leu Tyr Val Gly Ser Asp Leu Glu Ile	
210 215 220	
ggg cag cac agg acc aag att gag gag ctg agg cag cac ctg ctg agg	721
Gly Gln His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg	
225 230 235	
tgg ggc ctg acc acc cct gac aag aag cac cag aag gag ccc ccc ttc	769
Trp Gly Leu Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe	
240 245 250	
ctg tgg atg ggc tat gag ctg cac ccc gac aag tgg act gtg cag ccc	817
Leu Trp Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro	
255 260 265 270	
att gtg ctg cct gag aag gac tcc tgg act gtg aat gac atc cag aag	865
Ile Val Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys	
275 280 285	
ctg gtg ggc aag ctg aac tgg gcc tcc caa atc tac cct ggc atc aag	913
Leu Val Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys	
290 295 300	
gtg agg cag ctg tgc aag ctg ctg agg ggc acc aag gcc ctg act gag	961
Val Arg Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu	
305 310 315	
gtg atc ccc ctg act gag gag gct gag ctg gag ctg gct gag aac agg	1009
Val Ile Pro Leu Thr Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg	
320 325 330	
gag atc ctg aag gag cct gtg cat ggg gtg tac tat gac ccc tcc aag	1057
Glu Ile Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys	
335 340 345 350	
gac ctg att gct gag atc cag aag cag ggc cag ggc cag tgg acc tac	1105
Asp Leu Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr	
355 360 365	
caa atc tac cag gag ccc ttc aag aac ctg aag act ggc aag tat gcc	1153
Gln Ile Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala	
370 375 380	
agg atg agg ggg gcc cac acc aat gat gtg aag cag ctg act gag gct	1201
Arg Met Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala	
385 390 395	

gtg cag aag atc acc act gag tcc att gtg atc tgg ggc aag acc ccc Val Gln Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro 400 405 410	1249
aag ttc aag ctg ccc atc cag aag gag acc tgg gag acc tgg tgg act Lys Phe Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr 415 420 425 430	1297
gag tac tgg cag gcc acc tgg atc cct gag tgg gag ttt gtg aac acc Glu Tyr Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr 435 440 445	1345
ccc ccc ctg gtg aag ctg tgg tac cag ctg gag aag gag ccc att gtg Pro Pro Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val 450 455 460	1393
ggg gct gag acc ttc tat gtg gct ggg gct gcc aac agg gag acc aag Gly Ala Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys 465 470 475	1441
ctg ggc aag gct ggc tat gtg acc aac agg ggc agg cag aag gtg gtg Leu Gly Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val 480 485 490	1489
acc ctg act gac acc acc aac cag aag act gcc ctc cag gcc atc tac Thr Leu Thr Asp Thr Asn Gln Lys Thr Ala Leu Gln Ala Ile Tyr 495 500 505 510	1537
ctg gcc ctc cag gac tct ggc ctg gag gtg aac att gtg act gcc tcc Leu Ala Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser 515 520 525	1585
cag tat gcc ctg ggc atc atc cag gcc cag cct gat cag tct gag tct Gln Tyr Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser 530 535 540	1633
gag ctg gtg aac cag atc att gag cag ctg atc aag aag gag aag gtg Glu Leu Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val 545 550 555	1681
tac ctg gcc tgg gtg cct gcc cac aag ggc att ggg ggc aat gag cag Tyr Leu Ala Trp Val Pro Ala His Lys Gly Ile Gly Gly Asn Glu Gln 560 565 570	1729
gtg gac aag ctg gtg tct gct ggc atc agg aag gtg ctg ttc ctg gat Val Asp Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp 575 580 585 590	1777
ggc att gac aag gcc cag gat gag cat gag aag tac cac tcc aac tgg Gly Ile Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp 595 600 605	1825
agg gct atg gcc tct gac ttc aac ctg ccc cct gtg gtg gct aag gag Arg Ala Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu 610 615 620	1873
att gtg gcc tcc tgt gac aag tgc cag ctg aag ggg gag gcc atg cat Ile Val Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His 625 630 635	1921

ggg cag gtg gac tgc tcc cct ggc atc tgg cag ctg gcc tgc acc cac		1969	
Gly Gln Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr His			
640	645	650	
ctg gag ggc aag gtg atc ctg gtg gct gtg cat gtg gcc tcc ggc tac		2017	
Leu Glu Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr			
655	660	665	670
att gag gct gag gtg atc cct gct gag aca ggc cag gag act gcc tac		2065	
Ile Glu Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr			
675	680	685	
ttc ctg ctg aag ctg gct ggc agg tgg cct gtg aag acc atc cac act		2113	
Phe Leu Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr			
690	695	700	
gcc aat ggc tcc aac ttc act ggg gcc aca gtg agg gct gcc tgc tgg		2161	
Ala Asn Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp			
705	710	715	
tgg gct ggc atc aag cag gag ttt ggc atc ccc tac aac ccc cag tcc		2209	
Trp Ala Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser			
720	725	730	
cag ggg gtg gtc gcc tcc atg aac aag gag ctg aag aag atc att ggg		2257	
Gln Gly Val Val Ala Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly			
735	740	745	750
cag gtg agg gac cag gct gag cac ctg aag aca gct gtg cag atg gct		2305	
Gln Val Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala			
755	760	765	
gtg ttc atc cac aac ttc aag agg aag ggg ggc atc ggg ggc tac tcc		2353	
Val Phe Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser			
770	775	780	
gct ggg gag agg att gtg gac atc att gcc aca gac atc cag acc aag		2401	
Ala Gly Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys			
785	790	795	
gag ctc cag aag cag atc acc aag atc cag aac ttc agg gtg tac tac		2449	
Glu Leu Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr			
800	805	810	
agg gac tcc agg aac ccc ctg tgg aag ggc cct gcc aag ctg ctg tgg		2497	
Arg Asp Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp			
815	820	825	830
aag ggg gag ggg gct gtg gtg atc cag gac aac tct gac atc aag gtg		2545	
Lys Gly Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val			
835	840	845	
gtg ccc agg agg aag gcc aag atc atc agg gac tat ggc aag cag atg		2593	
Val Pro Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met			
850	855	860	
gct ggg gat gac tgt gtg gcc tcc agg cag gat gag gac taa		2635	
Ala Gly Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp *			
865	870	875	
agccccgggca gatct		2650	

<210> 8
<211> 875
<212> PRT
<213> Human Immunodeficiency Virus-1

<400> 8
Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly
1 5 10 15
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ala Pro Ile Ser Pro Ile
20 25 30
Glu Thr Val Pro Val Lys Leu Lys Pro Gly Met Asp Gly Pro Lys Val
35 40 45
Lys Gln Trp Pro Leu Thr Glu Glu Lys Ile Lys Ala Leu Val Glu Ile
50 55 60
Cys Thr Glu Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu
65 70 75 80
Asn Pro Tyr Asn Thr Pro Val Phe Ala Ile Lys Lys Lys Asp Ser Thr
85 90 95
Lys Trp Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln
100 105 110
Asp Phe Trp Glu Val Gln Leu Gly Ile Pro His Pro Ala Gly Leu Lys
115 120 125
Lys Lys Ser Val Thr Val Leu Ala Val Gly Asp Ala Tyr Phe Ser
130 135 140
Val Pro Leu Asp Glu Asp Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro
145 150 155 160
Ser Ile Asn Asn Glu Thr Pro Gly Ile Arg Tyr Gln Tyr Asn Val Leu
165 170 175
Pro Gln Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ser Ser Met Thr
180 185 190
Lys Ile Leu Glu Pro Phe Arg Lys Gln Asn Pro Asp Ile Val Ile Tyr
195 200 205
Gln Tyr Met Ala Ala Leu Tyr Val Gly Ser Asp Leu Glu Ile Gly Gln
210 215 220
His Arg Thr Lys Ile Glu Glu Leu Arg Gln His Leu Leu Arg Trp Gly
225 230 235 240
Leu Thr Thr Pro Asp Lys Lys His Gln Lys Glu Pro Pro Phe Leu Trp
245 250 255
Met Gly Tyr Glu Leu His Pro Asp Lys Trp Thr Val Gln Pro Ile Val
260 265 270
Leu Pro Glu Lys Asp Ser Trp Thr Val Asn Asp Ile Gln Lys Leu Val
275 280 285
Gly Lys Leu Asn Trp Ala Ser Gln Ile Tyr Pro Gly Ile Lys Val Arg
290 295 300
Gln Leu Cys Lys Leu Leu Arg Gly Thr Lys Ala Leu Thr Glu Val Ile
305 310 315 320
Pro Leu Thr Glu Glu Ala Glu Leu Glu Leu Ala Glu Asn Arg Glu Ile
325 330 335
Leu Lys Glu Pro Val His Gly Val Tyr Tyr Asp Pro Ser Lys Asp Leu
340 345 350
Ile Ala Glu Ile Gln Lys Gln Gly Gln Gly Gln Trp Thr Tyr Gln Ile
355 360 365
Tyr Gln Glu Pro Phe Lys Asn Leu Lys Thr Gly Lys Tyr Ala Arg Met
370 375 380
Arg Gly Ala His Thr Asn Asp Val Lys Gln Leu Thr Glu Ala Val Gln
385 390 395 400
Lys Ile Thr Thr Glu Ser Ile Val Ile Trp Gly Lys Thr Pro Lys Phe
405 410 415
Lys Leu Pro Ile Gln Lys Glu Thr Trp Glu Thr Trp Trp Thr Glu Tyr
420 425 430
Trp Gln Ala Thr Trp Ile Pro Glu Trp Glu Phe Val Asn Thr Pro Pro
435 440 445

Leu Val Lys Leu Trp Tyr Gln Leu Glu Lys Glu Pro Ile Val Gly Ala
 450 455 460
 Glu Thr Phe Tyr Val Ala Gly Ala Ala Asn Arg Glu Thr Lys Leu Gly
 465 470 475 480
 Lys Ala Gly Tyr Val Thr Asn Arg Gly Arg Gln Lys Val Val Thr Leu
 485 490 495
 Thr Asp Thr Thr Asn Gln Lys Thr Ala Leu Gln Ala Ile Tyr Leu Ala
 500 505 510
 Leu Gln Asp Ser Gly Leu Glu Val Asn Ile Val Thr Ala Ser Gln Tyr
 515 520 525
 Ala Leu Gly Ile Ile Gln Ala Gln Pro Asp Gln Ser Glu Ser Glu Leu
 530 535 540
 Val Asn Gln Ile Ile Glu Gln Leu Ile Lys Lys Glu Lys Val Tyr Leu
 545 550 555 560
 Ala Trp Val Pro Ala His Lys Gly Ile Gly Asn Glu Gln Val Asp
 565 570 575
 Lys Leu Val Ser Ala Gly Ile Arg Lys Val Leu Phe Leu Asp Gly Ile
 580 585 590
 Asp Lys Ala Gln Asp Glu His Glu Lys Tyr His Ser Asn Trp Arg Ala
 595 600 605
 Met Ala Ser Asp Phe Asn Leu Pro Pro Val Val Ala Lys Glu Ile Val
 610 615 620
 Ala Ser Cys Asp Lys Cys Gln Leu Lys Gly Glu Ala Met His Gly Gln
 625 630 635 640
 Val Asp Cys Ser Pro Gly Ile Trp Gln Leu Ala Cys Thr His Leu Glu
 645 650 655
 Gly Lys Val Ile Leu Val Ala Val His Val Ala Ser Gly Tyr Ile Glu
 660 665 670
 Ala Glu Val Ile Pro Ala Glu Thr Gly Gln Glu Thr Ala Tyr Phe Leu
 675 680 685
 Leu Lys Leu Ala Gly Arg Trp Pro Val Lys Thr Ile His Thr Ala Asn
 690 695 700
 Gly Ser Asn Phe Thr Gly Ala Thr Val Arg Ala Ala Cys Trp Trp Ala
 705 710 715 720
 Gly Ile Lys Gln Glu Phe Gly Ile Pro Tyr Asn Pro Gln Ser Gln Gly
 725 730 735
 Val Val Ala Ser Met Asn Lys Glu Leu Lys Lys Ile Ile Gly Gln Val
 740 745 750
 Arg Asp Gln Ala Glu His Leu Lys Thr Ala Val Gln Met Ala Val Phe
 755 760 765
 Ile His Asn Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly
 770 775 780
 Glu Arg Ile Val Asp Ile Ile Ala Thr Asp Ile Gln Thr Lys Glu Leu
 785 790 795 800
 Gln Lys Gln Ile Thr Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Asp
 805 810 815
 Ser Arg Asn Pro Leu Trp Lys Gly Pro Ala Lys Leu Leu Trp Lys Gly
 820 825 830
 Glu Gly Ala Val Val Ile Gln Asp Asn Ser Asp Ile Lys Val Val Pro
 835 840 845
 Arg Arg Lys Ala Lys Ile Ile Arg Asp Tyr Gly Lys Gln Met Ala Gly
 850 855 860
 Asp Asp Cys Val Ala Ser Arg Gln Asp Glu Asp
 865 870 875

<210> 9
 <211> 4945
 <212> DNA
 <213> E. coli (V1Jns-tpa)

<400> 9
 tcgcgcgttt cggatgac ggtaaaaacc tctgacacat gcagctcccg gagacggta

cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
ttggcgggtg	tcggggctgg	cttaactatg	cgccatcaga	gcagattgta	ctgagagtgc	180
accatatgcg	gtgtgaaata	ccgcacagat	gcgttaaggag	aaaataccgc	atcagattgg	240
ctattggcca	ttgcatacgt	tgatccata	tcataatatg	tacatttata	ttggctcatg	300
tccaaacatta	ccgccatgtt	gacattgatt	attgactgt	tattaatagt	aatcaattac	360
ggggtcatta	gttcatagcc	catatatgga	gttccgcgtt	acataactta	cgttaaatgg	420
ccgcctggc	tgaccgccc	acgacccccc	cccattgacg	tcaataatga	cgtatgtcc	480
catagtaacg	ccaataggg	cttccatgg	acgtcaatgg	gtggagtatt	tacggtaaac	540
tgcccacttg	gcagtacatc	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	600
tgacggtaaa	tggcccgct	ggcattatgc	ccagtagatc	accttatggg	acttcctac	660
ttggcagtagc	atctacgtat	tagtcatcgc	tattaccatg	gtgatgcgtt	tttggcagta	720
catcaatggg	cgtggatagc	ggtttgactc	acggggattt	ccaagtctcc	accccattga	780
cgtcaatggg	agtttgttt	ggcaccaaaa	tcaacgggac	tttccaaaat	gtcgtacaa	840
ctccgcccc	ttgacgcaa	tggcggtag	gcgtgtacgg	tggaggtct	atataagcag	900
agctcggtt	gtgaaccg	tcgatcgcc	gagacgccc	ccacgctgtt	ttgacctcca	960
tagaagacac	cgggaccgat	ccagcctcc	cgccgggaa	cgtgcattt	gaacgcggat	1020
tccccgtgcc	aagagtgacg	taagtaccgc	ctatagactc	tataggcaca	ccccttggc	1080
tcttatgcat	gctatactgt	tttggctt	gggcctatac	accccgctt	ccttatgcta	1140
taggtgatgg	tatagcttag	cctataggtt	tgggttattt	accattattt	accactcccc	1200
tattggtgac	gatacttcc	attacta	cataacatgg	ctctttgcca	caactatctc	1260
tattggctat	atgccaatac	tctgtcc	agagactgac	acggactctg	tattttaca	1320
ggatgggtc	ccatttatta	tttacaaatt	cacatataca	acaacgccc	ccccgtgcc	1380
cgcagtttt	attaaacata	gcgtgggatc	tccacgc	tctcggtac	gtgttccgg	1440
catggctct	tctccgg	cgccggagct	tccacatcc	agccctggc	ccatgcctcc	1500
agcggctcat	ggtcgctcg	cagtcctt	tcccta	tggaggccag	acttaggcac	1560
agcacaatgc	ccaccacc	cagtgtcc	cacaaggcc	tggcggtagg	gtatgtgt	1620
gaaaatgagc	gtggagattt	ggctcgac	gctgacgc	atgaaagact	taaggcagcg	1680
gcagaagaag	atgcaggc	ctgagttt	gtattctgt	aagagtca	ggtactccc	1740
gttgcgg	tgttaacgg	ggagggc	gtactctgt	cagtactcg	tgctgccc	1800
cgcgccacca	gacataatag	ctgacagact	aacagactgt	tcctttccat	gggtctttt	1860
tgcagtcc	gtccttagat	caccatgg	gcaatga	gagggtct	ctgtgtgt	1920
ctgctgtgt	gagcagt	cggttcc	agcgagatc	gctgtgc	ctagttgcca	1980
gccatctgtt	gtttggcc	ccccgtgc	ttccttgacc	ctgaaagg	ccactcccac	2040
tgcctttcc	taataaaatg	aggaaattt	atcgcatgt	ctgagtaggt	gtcattctat	2100
tctgggggt	gggggtgg	aggacag	gggggaggat	tggaaagaca	atagcaggca	2160
tgctgggat	gcccgtgg	ctatggcc	tgccgcagg	tgctgaagaa	ttgacccgg	2220
tcctcctgg	ccagaaagaa	gcaggcacat	ccccttct	gtgacacacc	ctgtccacgc	2280
ccctgggtct	tagtcc	cccactcata	ggacactcat	agtcaggag	ggctccgc	2340
tcaatccac	ccgctaa	acttggag	gtctctcc	ccctcatc	cccaccaac	2400
caaacc	ctcca	ggaaagaa	taaagca	tagtattt	agtgcagagg	2460
gagagaaat	gcctcc	tgtgagga	taatgagaga	aatcatagaa	tttcttccgc	2520
ttcctcg	actgact	tgcgctcg	cggtcggt	cgccgaggg	tatcagctca	2580
ctcaaagg	gtaatac	tatcc	atcagg	aacgcaggaa	agaacatgt	2640
agcaaaaggc	cagcaaa	ccagga	taaaaagg	gcgttgct	cgttttcca	2700
taggc	cccc	tcgac	agcatcaca	aaatcgac	tcaagtca	2760
cccgac	ctataa	aggat	accagg	gtctcc	tgctctct	2820
tgttccg	ctgccc	cttgc	ccggat	gtccgc	ctccctcg	2880
gctttct	atgc	tcacg	gtatgtat	cagttcg	tagtgc	2940
gggctgtgt	cacga	cccc	ccgttc	cagc	gccttat	3000
tcttgagt	aacc	ggtaa	gacacg	actg	gtaactat	3060
gattagc	gca	ggat	taggc	gcagc	ctggtaac	3120
cggt	actt	ggat	tgat	gagc	ttgact	3180
cgct	atct	ttgc	ttgc	tcgt	ttac	3240
aaaa	ttgc	ttgc	ttgc	tcgt	tttt	3300
tttt	ttgc	ttgc	ttgc	tcgt	tttt	3360
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3420
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3480
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3540
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3600
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3660
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3720
ttt	ttgc	ttgc	ttgc	tcgt	tttt	3780

agcgtaatgc tctgccagtg ttacaaccaa ttaaccaatt ctgattagaa aaactcatcg	3840
agcatcaaat gaaaactgcaa ttattcata tcaggattat caataccata ttttgaaaaa	3900
agccgtttct gtaatgaagg agaaaactca ccgaggcagt tccataggat ggcaagatcc	3960
tggtatcggt ctgcgattcc gactcgtcca acatcaatac aacctattaa tttcccctcg	4020
tcaaaaataa ggttatcaag tgagaaatca ccatgagtg acaactgaatc cggtgagaat	4080
gcaaaaagct tatgcatttc ttccagact tttcaacag gccagccatt acgctcgtca	4140
tcaaaaatcac tcgcatcaac caaaccgtt ttcattcgtg attgcgcctg agcgagacga	4200
aatacgcgat cgctgttaaa aggacaatta caaacaggaa tcgaatgcaa ccggcgcagg	4260
aacactgcca ggcgcataac aatatttca cctgaatcag gatattcttc taatacctgg	4320
aatgctgtt tcccgggat cgcagtggtg agtaaccatg catcatcagg agtacggata	4380
aaatgcttga tggtcggaag aggataaaat tccgtcagcc agtttagtct gaccatctca	4440
tctgtAACAT cattggcaac gctaccttgc ccatgtttca gaaacaactc tggcgcatcg	4500
ggcttccat acaatcgata gattgtcgca cctgattgcc cgacattatc gcgagcccat	4560
ttataccat ataaatcagc atccatgttgc gaatttaatc gcggcctcga gcaagacgtt	4620
tcccgttgaa tatggctcat aacacccctt gtattactgt ttatgtaaagc agacagttt	4680
attgttcatg atgatatatt ttatcttgc gcaatgtaac atcagagatt ttgagacaca	4740
acgtggctt cccccccccc ccattattga agcattatc aggttatttgc tctcatgagc	4800
ggatacatat ttgaatgtat tttagaaaaat aaacaaatag gggttccgcg cacatttccc	4860
cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac ctataaaaat	4920
aggcgatca cgaggccctt tcgtc	4945

<210> 10
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligonucleotide

<400> 10
 ctatataaggc agagctcggt tag

23

<210> 11
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligonucleotide

<400> 11
 gtagcaaaga tctaaggacg gtgactgcag

30

<210> 12
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligonucleotide

<400> 12
 gtatgtgtct gaaaatgagc gtggagatttgc ggctcgac

39

<210> 13
 <211> 39
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> oligonucleotide

<400> 13
gtgcgagccc aatctccacg ctcattttca gacacatac

39

<210> 14
<211> 4432
<212> DNA
<213> E. coli (V1J plasmid)

<400> 14
tcgcgcgtt cggatgac ggtaaaaacc tctgacacat gcagctcccg gagacggta 60
cagcttgtct gtaagcgat gcccggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg ctttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcg gtgtaaaata ccgcacagat gcgttaaggag aaaataccgc atcagattgg 240
ctattggcca ttgcatacgt tttatccata tcataatatg tacatttata ttggctcatg 300
tccaacatta cggccatgtt gacattgatt attgactagt tattaatagt aatcaattac 360
gggtcatta gttcatagcc catatatggc gtccgcgtt acataactta cggtaaatgg 420
ccgcctggc tgaccgcca acgacccccc cccattgacg tcaataatga cgtatgttcc 480
catagtaacg ccaatagggc cttccattt acgtcaatgg gtggagtatt tacggtaaac 540
tgcccacttgc gcaatgtatc aagtgtatca tatgccaatgt acgcccccta ttgacgtcaa 600
tgacggtaaa tggcccgccct ggcattatgc ccagtacatg accttatggg actttctac 660
ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcgtt ttggcagta 720
catcaatggg cgtggatacg ggtttgcgtc acggggattt ccaagtctcc accccattga 780
cgtcaatggg agtttgcgtt ggcaccaaaa tcaacggac ttccaaaat gtcgtacaa 840
ctccgcggca ttgacgcaaa tggcggttag gcgtgtacgg tggaggtct atataagcag 900
agctcggtta gtgaaccgtc agatgcgtc gagacgccc ccaacgtgtt ttgacctcca 960
tagaagacac cgggaccgtt ccagcctccg cggccggaa cggcgttgcgtt gaaacgcggat 1020
tccccgtgcc aagagtgcg taagtaccgc ctatagatgc tataggccca ccccttggc 1080
ttcttatgca tgctatactg ttttgcgtt ggggtctata caccggcgtt tcctcatgtt 1140
ataggtgatg gtatagctt gcctatacggtt gtgggttatt gaccattatt gaccactccc 1200
ctattggta cgatactttc cattactaat ccataacatg gctcttgc acaactctct 1260
ttattggcta tatgccaata cactgtcctt cagagactga cacggactct gtattttac 1320
aggatgggtt ctcatttatt atttacaaat tcacatatac aacaccaccc tccccagtg 1380
ccgcagttt tattaaacat aacgtggat ctccacgcga atctcggtt cgtgttccgg 1440
acatgggctc ttctccggta gcggcggagc ttctacatcc gagccctgtt cccatgcctc 1500
cagcgactca tggtcgctcg gcagtcctt gtccttaaca gtggaggcca gacttaggca 1560
cagcacatgc cccaccacca ccagtgtgcc gcacaaggcc gtggcggttag ggtatgtgtc 1620
tgaaaatgag ctcggggagc gggcttgcac cgctgacgca ttggaaagac ttaaggcagc 1680
ggcagaagaa gatgcaggca gctgagttgt tggttctga taagagttagt aggttaactcc 1740
cgttgcgttgc ctgttaacgg tggagggcag tggatgttgc gcaatgttgc ttgtgtccgc 1800
gcgcgcacc accataata gctgacagac taacagactg ttcccttcca tgggtctttt 1860
ctgcagtcac cgtccttaga tctgctgtc cttctagttt ccagccatct gttgttgc 1920
cctcccccgtt gccttccttgc accctggaaat gtgcactcc cactgtcctt tcctaaataaa 1980
atgaggaat tgcatacgat tggatgttgc ggtgtcattt tattctgggg ggtgggggtgg 2040
ggcagcacag caagggggag gattggaaat acaatagcag gcatgctgg gatgcgttgg 2100
gctctatggg tacccaggtt ctgaagaatt gaccgggtt ctcctggggc agaaagaagc 2160
aggcacatcc cttctctgt gacacaccct gtccacgcgc ctgggttctt gttccagccc 2220
cactcatagg acactcatag ctcaggaggg ctccgcctt aatcccaccc gctaaagtac 2280
ttggagcggtt ctctccctcc ctcatcagcc caccggatcc aaccttagctt ccaagagtg 2340
gaagaaatcc aagcaagata ggttattaaat tggatgttgc tggatgttgc gggatgttgc 2400
tgaggaatcc atgagagaaa tcatagaatt tcttccgtt ctcgcgttgc tgactcgctg 2460
cgctcggtcg ttcggctgcg gcgagcggtt tggatgttgc tggatgttgc gggatgttgc 2520
tccacagaat cagggatcc cgcaggaaat aacatgttgc tggatgttgc gggatgttgc 2580
aggaaccgtt aaaaaggccgc gttgtggcg ttttccata ggttccgc cccgttgc 2640
catcacaaaa atcgacgctc aagtcaagg tggcgaaacc cggatgttgc tggatgttgc 2700
caggcggttc cccctggaaat ctccctcggtt cgttcttgc ttccgacccctt gggatgttgc 2760
ggatgttgcgtt ccgttccgtt ggttccgtt ggttccgtt ggttccgtt gggatgttgc 2820
aggatgttgcgtt gttcggttgc ggttccgtt ggttccgtt ggttccgtt gggatgttgc 2880
gttcaggccgc accgtcgccg cttatccgtt aactatcgat tggatgttgc gggatgttgc 2940
cacgacttat cggccactggc agcggccact ggttccgtt ggttccgtt gggatgttgc 3000
ggcggtgctt cagagtttgc ggttccgtt ggttccgtt ggttccgtt gggatgttgc 3060
tttggatgttgc ggttccgtt ggttccgtt ggttccgtt gggatgttgc 3120
tccggccaaat aaaccaccgc tggatgttgc ggttccgtt ggttccgtt gggatgttgc 3180

cgcagaaaaa	aaggatctca	agaagatcct	ttgatcttt	ctacgggtc	tgacgctcag	3240
tggAACGAAA	actcacgttA	agggattttG	gtcatgagatT	tatcaaaaAG	gatttcaccC	3300
tagatccTTT	taaattaaaaA	atgaagtttT	aaatcaatctA	aaagtatataA	ttagttaaactT	3360
tggTctgaca	gttaccaatgC	cttaatcgtG	gaggcacctaG	tctcagcgtT	ctgtctattT	3420
cgttcatcca	tagttgcctgA	actccccgtcT	gtttagataaG	ctacgataacG	ggagggcttaA	3480
ccatctggcc	ccagtgcTgc	aatgataccgA	cgagacccacG	gctcaccggcG	tccagatttaC	3540
tcaGcaataa	accagccAGC	cggaaggGCC	gagcgcagaaG	gtggcctgcG	aactttatccC	3600
gcctccatcc	agtctattaaT	ttgttgcCGG	gaagctagagG	taagtagttcG	gccagttaatA	3660
agtttgcgca	acgttgcTgc	cattgctacaA	ggcatcgTgg	tgtcacgcTc	gtcgTTggT	3720
atggcttcAT	tcaGctccggT	ttcccaacgaA	tcaaggcgagG	ttacatgatcC	ccccatgttgc	3780
tgcAAAAAAG	cggtagctcC	cttcggTcctC	ccgatcgTTG	tcagaagtaaG	gtggccgcA	3840
gtgttatcac	tcatggTTat	ggcagcactgA	cataattctcT	ttactgtcatG	gccatccgtA	3900
agatgctttT	ctgtgactggG	ttagtactcaA	accaagtcatC	tctgagaataA	gtgtatgcggG	3960
cgaccgagtt	gctcttgcCc	ggcgtcaataA	cgggataataA	ccgcgcCcacaA	tagcagaactA	4020
ttaaaagtgc	tcatcatTgg	aaaacgttctT	tcggggcgaaA	aactctcaagG	gatcttaccgG	4080
ctgtttagat	ccagttcgatG	gtaacccactC	cgtgcacccaA	actgatcttcG	agcatctttT	4140
actttcacca	gcgttctggG	gtgagcaaaaA	acaggaaggcA	aaaatgcgcG	aaaaaagggaA	4200
ataagggcga	cacggaaatgT	ttgaataactcA	atactcttccT	tttttcaataA	ttattgaagcA	4260
atttatcagg	gttattgtctT	catgagcggaA	tacatatttG	aatgtatttA	aaaaaataaaA	4320
caaatagggg	ttccgcgcacT	atttccccgaA	aaagtgcacC	ctgacgtctaA	agaaaccattA	4380
attatcatga	cattaacctaT	taaaaataggG	cgtatcacgaG	ggccctttcgT	tc	4432

<210> 15

<211> 4864

<212> DNA

<213> E. coli (V1Jneo plasmid)

<400> 15

tcgcgcgttt	cggtgatgac	ggtgaaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
cagcttgcT	gtaagcggat	gcccggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120
ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgttA	ctgagagtgcC	180
accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcagatttg	240
ctattggcca	ttgcatacgt	tgtatccata	tcataatatg	tacattata	ttggctcatg	300
tccaaCatta	ccgcccatttt	gacattgatt	attgactagt	tattaatagt	aatcaattac	360
ggggtcatta	gttcatagcc	catatatggA	gttccgcgtt	acataactta	cggtaaatgg	420
ccgcctTggc	tgaccgcccA	acgaccccccG	cccattgacG	tcaataatga	cgtatgttcc	480
catagtaacg	ccaataggGA	ctttccatttG	acgtcaatggG	gtggagtatt	tacggtaaac	540
tgcccacttG	gcagtgatcT	aagtgtatca	tatgccaatG	acgcccccta	ttgacgtcaa	600
tgacggtaaa	tggcccgctt	ggcattatgc	ccagtagatG	accttatggG	actttcttac	660
ttggcagtac	atctacgtat	tagtcatcgc	tattaccatG	gtgatgcggT	tttggcagta	720
catcaatggG	cgtggatagc	ggtttgcTtc	acggggattt	ccaaGtctcc	accccatgtA	780
cgtcaatggG	agtttgcTTT	ggcaccaaaa	tcaacgggac	tttccaaat	gtcgtaacaa	840
ctccgcCcCA	ttgacgcaaa	tgggcggtag	gcgtgtacgg	tgggaggtct	atataagcag	900
agctcgTTA	gtgaaccgTC	agatcgccTg	gagacgcCAt	ccacgcgtt	ttgacctccA	960
tagaagacac	cgggaccgat	ccagcctccG	cggccgggaa	cggtgcattG	gaacgcggat	1020
tccccgtgCC	aagagtgacG	taagtaccgc	ctatagagtc	tataggccca	cccccttggc	1080
ttcttatgca	tgctatactG	tttttggctt	gggtctata	caccccccgt	tcctcatgtt	1140
ataggtgatG	gtatagcttA	gcctataggt	gtgggttatt	gaccattatt	gaccactccc	1200
ctattggta	cgtactttc	cattactaat	ccataacatg	gctcttgcC	acaactctct	1260
ttattggcta	tatgccaata	cactgtcctt	cagagactga	cacggactct	gtatTTTAC	1320
aggatggggT	ctcatttatt	attacaaat	tcacatatac	aacaccacG	tccccagtgc	1380
ccgcagtTTT	tattaaacat	aacgtgggat	ctccacgcga	atctcggttA	cgtgttccgg	1440
acatgggctc	ttctccggta	gccccggagc	ttctacatcc	gagccctgt	cccatgcctc	1500
cagcgactca	tggtcgctcg	gcagctcctt	gctcctaaca	gtggaggcca	gacttaggca	1560
cagcacgatg	cccaccacca	ccagtgtgcC	gcacaaggcc	gtggcggtag	ggtatgtgtc	1620
tgaaaatgag	ctcggggagc	gggcttgcac	cgtgacgca	tttggaaagac	ttaaggcagc	1680
ggcagaagaa	gatgcaggca	gctgagttgt	tgtgttctga	taagagtcaG	aggttaactcc	1740
cgttgcgtg	ctgttaacgg	tggagggcag	tgttagtctga	gcagtactcg	ttgctgccgc	1800
gcgcgcCcAC	agacataata	gctgacagac	taacagactg	ttcctttca	tgggtctttt	1860
ctgcagtcaC	cgtccttaga	tctgctgtgc	cttctagttG	ccagccatct	gttgtttgcc	1920
cctcccccgt	gccttccttgc	accctggaaag	gtccactcc	cactgtcctt	tcctaataaa	1980
atgagggaaat	tgcatcgcat	tgtctgagta	ggtgtcatttC	tattctgggg	ggtgggggtgg	2040

ggcagcacag	caagggggag	gattgggaag	acaatagcag	gcatgctggg	gatgcgggtgg	2100
gctctatggg	tacccaggtg	ctgaagaatt	gaccgggttc	ctcctgggcc	agaaaagaagc	2160
aggcacatcc	ccttctctgt	gacacaccct	gtccacgccc	ctggttctta	gttccagccc	2220
cactcatagg	acactcatag	ctcaggaggg	ctccgccttc	aatcccaccc	gctaaagtac	2280
ttggagcggt	ctctccctcc	ctcatcagcc	caccaaacc	aacctagcct	ccaagagtgg	2340
gaagaaatta	aagcaagata	ggctattaaag	tgcaagaggga	gagaaaatgc	ctccaacatg	2400
tgaggaagta	atgagagaaa	tcatagaatt	tcttccgctt	cctcgctcac	tgactcgctg	2460
cgctcggctcg	ttcggctg	gcaagcggta	tcaagtcact	caaaggcggt	aatacggta	2520
tccacagaat	cagggataa	cgcaagaaag	aacatgtgag	caaaaggcca	gcaaaaggcc	2580
aggaaccgta	aaaaggccgc	gttgctggcg	ttttccata	ggctccgccc	ccctgacgag	2640
catcacaaaa	atcgacgctc	aagtcaaggg	tggcgaacc	cgacaggact	ataaaagatac	2700
caggcgttcc	ccccttggaa	ctccctcg	cgctctcctg	ttccgaccct	gccgcttacc	2760
ggataacctgt	ccgccttct	cccttggga	agcgtggcgc	tttctcaatg	ctcacgctgt	2820
aggtatctca	gttcgggt	gttcgttcgc	tccaagctgg	gctgtgtgca	cgaaccccc	2880
gttcagcccg	accgctgcgc	cttatccggt	aactatcg	ttgagtccaa	cccggttaaga	2940
cacgacttat	cgcactggc	agcagccact	ggtaacagga	ttacgagac	gaggatgt	3000
ggcgggtgta	cagagtctt	gaagtgggt	cctaactacg	gctacactag	aaggacagta	3060
tttggtatct	gctctgt	gaagccagg	accttcggaa	aaagagttgg	tagcttttg	3120
tccggcaaac	aaaccaccgc	tggtagcggt	ggttttttg	tttgcagca	gcagattacg	3180
cgcagaaaaa	aaggatctca	agaagatct	ttgatcttt	ctacgggtc	tgacgctcag	3240
tggAACGAAA	actcacgtt	aggattttg	gtcatgagat	tatcaaaaag	gatcttcacc	3300
tagatccctt	taaattaaaa	atgaagttt	aatcaatct	aaagtatata	tgagtaaact	3360
tggtctgaca	gttaccaatg	cttaatcgt	gaggcaccta	tctcagcgat	ctgtctattt	3420
cgttcatcca	tagttgc	actccgggg	ggggggggcgc	tgaggctgc	ctcgtaaga	3480
aggtgttgct	gactcatacc	aggcctgaat	cgcggccatca	tccagccaga	aagtgggaa	3540
gccacgggtt	atgagagctt	tgtttaggt	ggaccagtt	gtgattttg	actttgtt	3600
tgccacggaa	cggctcg	tgtcgggaag	atgcgtgatc	tgatccttca	actcagcaaa	3660
agttcgattt	attcaacaaa	gccggcg	cgtcaagtca	gcgtatgct	ctgcccagtgt	3720
tacaaccaat	taaccaattc	tgattagaaa	aactcatcga	gcatcaaatg	aaactgcaat	3780
ttattcatat	caggattatc	aataccat	tttgaaaaaa	gccgttctg	taatgaagga	3840
gaaaactcac	cgaggcagtt	ccataggat	gcaagatct	ggtatcggc	tgcgattccg	3900
actcgtccaa	catcaataca	acattaaat	ttccctcg	caaaaataag	gttatcaagt	3960
gagaaatcac	catgagt	gactgaatcc	ggtgagaatg	gcaaaagctt	atgcatttct	4020
ttccagactt	gttcaacagg	ccagccatta	cgctcg	caaaatcact	cgcacatcaacc	4080
aaaccgttat	tcattcg	ttgcgc	gcaagacgaa	atacgc	gctgttaaaa	4140
ggacaattac	aaacaggaat	cgaatgcac	cggcgcagga	acactgccc	cgcacatcaaca	4200
atattttcac	ctgaatcagg	atattcttct	aatacctg	atgctttt	cccggggatc	4260
gcagtgttga	gtaccatgc	atcatcagga	gtacggataa	aatgctt	ggtcggaaga	4320
ggcataaatt	cgtcagcc	gtttagtct	accatctcat	ctgtacatc	attggcaacg	4380
ctaccttgc	catgttct	aaacaactct	ggcgcatcg	gcttccata	caatcgatag	4440
attgtcgac	ctgattgccc	gacattatcg	cgagcccatt	tataccata	taatcagca	4500
tccatgttgg	aatttaatcg	cggcctcg	caagacgtt	cccggt	aatgctcata	4560
acacccctt	tattactgtt	tatgtaa	gacagttt	ttgttcatg	tgatataattt	4620
ttatcttgc	caatgtaa	tcagagattt	tgagacacaa	cgtggctt	cccccccccc	4680
cattattgaa	gcatttatca	gggttattgt	ctcatgagc	gatacatatt	tgaatgtatt	4740
tagaaaaata	aacaaatagg	gttccgcgc	acatttcccc	gaaaagtgc	acctgacgtc	4800
taagaaacca	ttattatcat	gacattaacc	tataaaaata	ggcgtatcac	gaggccctt	4860
cgtc						4864

<210> 16

<211> 4867

<212> DNA

<213> E. coli (V1Jns plasmid)

<400> 16

tcgcgcgttt	cggtgatgac	ggtaaaaacc	tctgacacat	gcagctcccg	gagacgggtca	60
cagcttgtct	gtaaaggat	gccgggagca	gacaagcccg	tcagggcgc	tcagcgggtg	120
ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgt	ctgagagtg	180
accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaaggag	aaaataccgc	atcagattgg	240
ctattggcca	ttgcatacg	tgtatccata	tcataatatg	tacattata	ttggctcatg	300
tccaaacatta	ccgcatgtt	gacattgatt	attgactgt	tattaatgt	aatcaattac	360
ggggtcattt	gttcatacg	catatatg	gttccgcgtt	acataactta	cgttaaatgg	420

ccgcctggc	tgaccgccc	acgaccccc	cccattgacg	tcaataatga	cgtatgttcc	480	
catagtaacg	ccaataggga	cttccattg	acgtcaatgg	gtggagtatt	tacggtaaac	540	
tgcccacttgc	gcagtacatc	aagtgtatca	tatgccaagt	acgcccccta	ttgacgtcaa	600	
tgacggtaaa	tggcccgct	ggcattatgc	ccagtacatg	accttatggg	actttcctac	660	
ttggcagttac	atctacgtat	tagtcatcg	tattaccatg	gtgatgcgg	tttggcagta	720	
catcaatggg	cgtggatagc	ggttgactc	acggggattt	ccaagtctcc	acccattga	780	
cgtcaatggg	agtttgttt	ggcaccaaaa	tcaacgggac	tttccaaaat	gtcgtaacaa	840	
ctccgccccca	ttgacgcaaa	tggcggtag	gcgtgtacgg	tggaggtct	atataagcag	900	
agctcggtta	gtgaaccgtc	agatgcctg	gagacgccc	ccacgctgtt	ttgacctcca	960	
tagaagacac	cgggaccgt	ccagcctccg	cggccggaa	cggcatttgc	gaacgcggat	1020	
tccccgtgcc	aagagtgcg	taagtaccgc	ctataactc	tataggcaca	ccccttggc	1080	
tcttatgcat	gctatactgt	tttggcttgc	ggcctatac	accccgctt	ccttatgcta	1140	
taggtgatgg	tatagcttag	cctataggtg	tgggttatttgc	accattatttgc	accactcccc	1200	
tattgggtgac	gatactttcc	attactaatac	cataacatgg	ctcttgc	caactatctc	1260	
tattggctat	atgccaatac	tctgtccttc	agagactgac	acggactctg	tattttaca	1320	
ggatggggtc	ccatttatta	tttacaaattt	cacatataca	acaacgcgt	ccccgtgcc	1380	
cgcagttttt	attaaacata	gcgtgggatc	tccacgcgaa	tctcgggtac	gtgttccgg	1440	
catgggctct	tctccggtag	cggcggagct	tccacatccg	agccctgg	ccatgcctcc	1500	
agcggctcat	ggtcgctcg	cagctccttgc	ctcctaacag	tggaggccag	acttaggcac	1560	
agcacaatgc	ccaccaccac	cagtgtccg	cacaaggccg	tggcggtag	gtatgtgtct	1620	
gaaaatgagc	gtggagatttgc	ggctcgac	gctgacgcag	atgaaagact	taaggcagcg	1680	
gcagaagaag	atgcaggcag	ctgagttgttgc	gtattctgtat	aagagtca	ggttaactccc	1740	
gttgcgggtgc	tgttaacggt	ggagggcagt	gtagtcttag	cagtaactgt	tgctgcccgc	1800	
cgcgccacca	gacataatag	ctgacagact	aacagactgt	tcctttccat	gggtcttttc	1860	
tgcagtcacc	gtccttagat	ctgctgtgc	ttctagttgc	cagccatctg	ttgtttgcc	1920	
ctccccctgt	ccttccttgc	ccctggaaagg	tgccactccc	actgtccttgc	cctaataaaaa	1980	
tgaggaaattt	gcatcgcat	gtctgagtag	gtgtcatttgc	attctgggg	gtgggggtgg	2040	
gcaggacagc	aagggggagg	attgggaa	caatagcagg	catgctgggg	atgcgggtgg	2100	
ctctatggcc	gctgcggcca	ggtgctgaag	aattgaccgg	gttcttc	ggccagaaag	2160	
aagcaggcac	atccccttgc	ctgtgacaca	ccctgtccac	gcccctgg	cttagttcca	2220	
ccccactca	taggacactc	atagctcagg	aggcgtccgc	cttcaatccc	acccgctaaa	2280	
gtacttggag	cggctctc	ctccctcatc	agcccaccaa	accaaacc	gcctccaaga	2340	
gtgggaagaa	attaaagcaa	gataggctat	taagtgcaga	gggagagaaa	atgcctccaa	2400	
catgtgagga	agtaatgaga	gaaatcatag	aatttcttgc	gcttcctcg	tcactgactc	2460	
gctgcgctcg	gtcggtcg	tgcggcgagc	ggtatcagct	cactcaaagg	cggtaatacg	2520	
gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	ttagcaaaag	gccagcaaaa	2580	
ggccaggaac	cgtaaaaaagg	ccgcgttgct	ggcg	cataggctcc	ccccccctga	2640	
cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	gactataaag	2700	
ataccaggcg	tttccccctg	gaagctccct	cgtgcgtct	cctgttccg	ccctggcg	2760	
tacccggatac	ctgtccgc	tttcccttgc	ggaaagcgt	gcgc	atagctcac	2820	
ctgttaggtat	ctcagttcg	tgttaggtcg	tcgttccaa	ctgggctgt	tgacgaaacc	2880	
ccccgttc	cccgaccg	ccgccttatac	cgttaactat	cgttttg	ccaacccgg	2940	
aagacacac	ttatcgccac	tggcagc	cactggta	aggattagca	gaggcaggta	3000	
tgttaggggt	gctacagat	tcttgaat	gtggcctaa	tacggctaca	ctagaagaac	3060	
agtatttgg	atctgcgtc	tgtgaagcc	atttac	ggaaaaagag	ttgttagctc	3120	
ttgatccggc	aaacaaacca	ccgctggtag	cgttgg	tttgc	agcagcagat	3180	
tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttg	tttctacgg	ggtctgacgc	3240	
tca	gttggaaac	gaaaactc	gttggat	tttgc	agattatcaa	aaaggatctt	3300
cacctagatc	ttttaaattt	aaaaatga	tttgc	atctaaag	tatatgagta	3360	
aacttgg	tacat	aatgc	cagtgg	cctatctc	cgatctgt	3420	
atttcg	ttca	tccat	ctgact	gggggggg	cgctgagg	3480	
agaagg	gt	gact	accagg	aatcg	tcatcc	3540	
ggagccac	ttgat	gagag	cttgc	ggat	gctctg	3600	
cttgc	gac	ggctc	cgttgc	ggat	tcactc	3660	
aaaat	ttt	ttca	aaagcc	tccgt	tcagcg	3720	
tgttaca	acc	tttgc	ccgt	taat	gctctg	3780	
aatttatt	atc	atc	tttgc	tttgc	atgaaact	3840	
ggagaaa	act	cacc	ggat	tttgc	ctgtat	3900	
ccgact	cc	caac	tttgc	tttgc	gtctgc	3960	
agt	accat	aca	tttgc	tttgc	actcg	4020	
tcttcc	aga	tttgc	tttgc	tttgc	catcaaaatc	4080	
accaaa	acc	tatt	tttgc	tttgc	actcg	4140	

aaaggacaat	tacaaacagg	aatcgaatgc	aaccggcgca	ggaacactgc	cagcgcatca	4200					
acaatatttt	cacctgaatc	aggatattct	tctaataacct	ggaatgctgt	tttcccgggg	4260					
atcgcagtgg	ttagtaacca	tgcatacatca	ggagtacgga	taaaatgctt	gatggtcgga	4320					
agaggcataa	attccgtcag	ccagtttagt	ctgaccatct	catctgtAAC	atcattggca	4380					
acgctacctt	tgccatgttt	cagaaacaac	tctggcgcat	cgggcttccc	atacaatcga	4440					
tagattgtcg	cacctgattg	cccgacatta	tcgcgagccc	atttataccc	atataaatca	4500					
gcatccatgt	tggaatttaa	tcgcggcctc	gagcaagacg	tttcccgtt	aatatggctc	4560					
ataacacccc	ttgttattact	gtttatgtaa	gcagacagtt	ttattgttca	tgatgatata	4620					
tttttatctt	gtgcaatgta	acatcagaga	tttgagaca	caacgtggct	ttccccccccc	4680					
ccccattatt	gaagcattta	tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	4740					
atttagaaaaa	ataaacaaat	aggggttccg	cgcacatttc	cccgaaaagt	gccacctgac	4800					
gtctaagaaa	ccattattat	catgacatta	acctataaaa	ataggcgtat	cacgaggccc	4860					
tttcgtc						4867					
<210> 17											
<211> 75											
<212> DNA											
<213> Artificial Sequence											
<220>											
<223> oligonucleotide											
<400> 17											
gatcaccatg						gatgcaatga	agagaggcgt	ctgtgtgctg	ctgctgtgtg	gaggcgttctt	60
cgtttcgccc						agcga					75
<210> 18											
<211> 78											
<212> DNA											
<213> Artificial Sequence											
<220>											
<223> oligonucleotide											
<400> 18											
gatctcgctg						ggcgaaacga	agactgctcc	acacagcagc	agcacacagc	agagccctct	60
cttcattgca						tccatggt					78
<210> 19											
<211> 33											
<212> DNA											
<213> Artificial Sequence											
<220>											
<223> oligonucleotide											
<400> 19											
ggtacaaata						ttggctattg	gccattgcat	acg		33	
<210> 20											
<211> 36											
<212> DNA											
<213> Artificial Sequence											
<220>											
<223> oligonucleotide											
<400> 20											
ccacatctcg						aggaaccggg	tcaattcttc	agcacc		36	
<210> 21											
<211> 38											

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> oligonucleotide

 <400> 21
 ggtacagata tcggaaagcc acgttgtgtc tcaaaaatc 38

 <210> 22
 <211> 36
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> oligonucleotide

 <400> 22
 cacatggatc cgtaatgctc tgccagtgtt acaacc 36

 <210> 23
 <211> 39
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> oligonucleotide

 <400> 23
 ggtacatgtat cacgtagaaa agatcaaagg atcttcttg 39

 <210> 24
 <211> 35
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> oligonucleotide

 <400> 24
 ccacatgtcg acccgtaaaa aggccgcgtt gctgg 35

 <210> 25
 <211> 4864
 <212> DNA
 <213> E. coli (V1R plasmid)

 <400> 25
 tcgcgcgttt cgggtatgac ggtaaaaacc tctgacacat gcagctcccg gagacggtca 60
 cagcttgcgtct gtaagcgat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
 ttggcgggtg tcggggctgg cttactatg cggcatcaga gcagattgtt ctgagagtgc 180
 accatatgcg gtgtgaaata cccgcacagat gcgttaaggag aaaataccgc atcagattgg 240
 ctattggcca ttgcatacgt tttatccata tcataatatg tacatttata ttggctcatg 300
 tccaaacatta cccgcatgtt gacattgatt attgactagt tattaatagt aatcaattac 360
 ggggtcatta gttcatagcc catatatggt gtccgcgtt acataactt cggtaaatgg 420
 cccgcctggc tgaccgcaca acgaccccg cccattgacg tcaataatga cgtatgttcc 480
 catagtaacg ccaataggaa ctttccattt acgtcaatgg gtggagtatt tacggtaaac 540
 tgcccacttgc gcagtacatc aagtgtatca tatgccaatgc acgcccccta ttgacgtcaa 600
 tgacggtaaa tggcccgctt ggcattatgc ccagtacatg accttattggg actttctac 660
 ttggcagtac atctacgtat tagtcatcgc tattaccatg gtgatgcgtt tttggcagta 720
 catcaatggg cgtggatagc gggttgactc acggggattt ccaagtctcc accccattga 780
 cgtcaatggg agtttgtttt ggcaccaaaa tcaacggac tttccaaaat gtcgtaaaca 840

ctccgccccca ttgacgcaaa tggcggttag gcgtgtacgg tggaggtct atataagcag	900
agctcgttta gtgaaccgtc agatcgcccg gagacgccc catccacgtt ttgaccca	960
tagaagacac cgggaccgat ccagcctccg cggccggaa cggtgcattt gaacgcggat	1020
tccccgtgcc aagagtgcg taagtaccgc ctatagagtc tataggccca ccccttggc	1080
ttcttatgca tgctatactg ttttggctt ggggtctata caccggcgt tcctcatgtt	1140
ataggtgatg gtatagctt gcctataggt gtgggtatt gaccattt gaccactccc	1200
ctattggta cgatacttc cattactaat ccataacatg gctcttgcc acaactctct	1260
ttattggcta tatgccaata cactgtccctt cagagactga cacggactct gtattttac	1320
aggatggggt ctcatttattt attacaat tcacatatac aacaccaccc tccccagtgc	1380
ccgcagttt tattaaacat aacgtgggat ctccacgcga atctcggtt cgtgttccgg	1440
acatgggctc ttctccggta gcggcggagc ttctacatcc gagccctgct cccatgcctc	1500
cagcgactca tggtcgctcg gcagctccctt gctcctaaca gtggaggcca gacttaggca	1560
cagcacatg cccaccacca ccagtgtgcc gcacaaggcc gtggcggtag ggtatgtgtc	1620
tgaaaatgag ctcggggagc gggcttgac cgcgtacgca tttggaaagac ttaaggcagc	1680
ggcagaagaa gatgcagggca gctgagttgt tggttctga taagagtca aggttaactcc	1740
cgttgcgggt ctgttaacgg tggagggcag tggtagtctga gcagtagtgc ttgctgccc	1800
gcccgcacc accacataata gctgacagac taacagactg ttccttcca tgggtctttt	1860
ctgcagtcac cgtccttaga tctgctgtgc ctcttagttt ccagccatctt gttgttgc	1920
cctccccgt gccttcctt acccttggaa gtcacactcc cactgtccctt tcctaataaa	1980
atgagggaaat tgcacatcgcat tgcctgat ggtgtcattt tattctgggg ggtgggtgg	2040
ggcagcacag caagggggag gattgggaa gcaatagcag gcatgctgg gatgcgggtgg	2100
gctctatggg taccctgggtt ctgaagaattt gaccgggtt ctcctgggccc agaaagaagc	2160
aggcacatcc cttctctgtt gacacacccctt gtccacgccc ctgggtcttta gttccagccc	2220
cactcatagg acactcatag ctcaggaggg ctccgccttc aatcccaccc gctaaagtac	2280
ttggagcgggt ctctccctcc ctcatcagcc caccacacca aacctagctt ccaagagtgg	2340
gaagaaatata aagcaagata ggctattaa gtcagaggaa gagaatgtc ctccaacatg	2400
tgaggaagta atgagagaaa tcatagaattt tcttccgcctt cctcgctcac tgactcgctg	2460
cgctcggtcg ttccggctcg gcgagcggta tcagctcaactt caaaggcggta aatacggtt	2520
tccacagaat cagggataa cgcaggaaag aacatgttagt caaaaggcca gcaaaaggcc	2580
aggaaccgtt aaaaaggccgc gttgctggcg ttttccata ggctccgccc ccctgacgag	2640
catcacaaaa atcgacgctc aagttaggg tggcgaaacc cgacaggact ataaagatac	2700
caggcggttc ccccttggaa gtcctcggt cgctctccctt ttccgacccctt gcccgttacc	2760
ggataacctgt ccgccttccctt cccttggaa agcgtggcgc ttttcaatg ctcacgctgt	2820
aggtatctca gttcggtgtt ggtcggttc tccaagctgg gctgtgtgc cgaaccccccc	2880
gttcagcccg accgctgccc cttatccgtt aactatcgctt ttgagtccaa cccggtaaga	2940
cacgacttat cggccactggc agcagccact ggttacagga ttacgagac gaggatgtta	3000
ggcgggtcta cagattttt gaagttggg ccttaactacg gctacactag aaggacagta	3060
tttggtatct gcgctctgtt gaagccagttt accttcggaa aaagatgg tagctcttgc	3120
tccggcaaaac aaaccaccgc ttgttagcggt gttttttttt tttgcaagca gcaagattac	3180
cgcagaaaaa aaggatctca agaagatctt ttgatctttt ctacggggc tgacgctcag	3240
tggaaacgaaa actcacgtt agggattttt gtcatgatgat tatcaaaaag gatcttcacc	3300
tagatcttt taaataaaaa atgaagttt aaatcaatct aaatgtatata tgataaaact	3360
ttggctgaca gttaccaatg cttaatcgtt gaggcacca ttcacgttgc ctgtcttattt	3420
cgttcatcca tagttgcctt actccgggg gggggggcgc tgaggtctgc ctcgtgaaga	3480
aggtgttgct gactcatacc aggcctgaat cggcccatca tccagccaga aatggggaa	3540
gccacggtt atgagagctt ttgttaggtt ggaccagttt gtgttttttacttttgc	3600
tgccacggaa cggctcggt ttgtggaaat atgcgtgatc tgatccttca actcagcaaa	3660
agttcgattt attcaacaaa gcccgcgtcc cgtcaagtca gctaatgtt ctgccagtgt	3720
tacaaccaat taaccaattt tgattagaaa aactcatcgat gcatcaaatg aaactgcaat	3780
ttattcatat caggattttt aataccatattttttttt gccgtttctt taatgtaaaggaa	3840
aaaaactcac cgaggcagttt ccataggatg gcaagatctt ggtatcggtt tgccattccg	3900
actcgccaa catcaataca acctttaat ttccctcgat caaaataatg gttatcaagt	3960
gagaaatcac catgagtgac gactgaatcc ggtgagaatg gcaaaagctt atgcatttct	4020
ttccagactt gttcaacagg ccagccattt cgctcgat caaaatctt cgcacatcaacc	4080
aaaccgttat tcattcgat ttgcgcctt gcgagacgaa atacgcgtt gctgtttttttt	4140
ggacaattac aaacagggaaat cgaatgcac cggcgccggaa acactgccc cgcacatcaaca	4200
atattttcac ctgaatcagg atattcttctt aataccgtt gtcgtttt cccggggatc	4260
gcagtgggtga gtaaccatgc atcatcgat gtcggatata aatgcttgc ggtcgaaaga	4320
ggcataaaatt ccgtcagcca gtttagtctt accatctcat ctgtacatc atggcaacg	4380
ctaccttgc catgtttcag aaacaactctt ggcgcacccgg gttccatata caatcgatag	4440
attgtcgac ctgatttccc gacattatcg cgagccattt tataccatata taaatcagca	4500
tccatgttgg aatttaatcg cggcctcgag caagacgtt cccgttcaat atggctcata	4560

acaccccttg tattactgtt tatgttaagca gacagttta ttgttcatga tgatatattt	4620
ttatcttgc caatgttaca tcagagat ttgagacacaa cgtggcttc cccccccccc	4680
cattattgaa gcatttatca ggttattgt ctcatgagcg gatacatatt tgaatgtatt	4740
tagaaaaata aacaaatagg gttccgcgc acatttcccc gaaaagtgcc acctgacgtc	4800
taagaaacca ttattatcat gacattaacc tataaaaata ggctgtatcac gaggccctt	4860
cgtc	4864
<210> 26	
<211> 36	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide	
<400> 26	
ggtacaagat ctccgcccccc atctccccc ttgaga	36
<210> 27	
<211> 33	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide	
<400> 27	
ccacatagat ctgcccgggc tttagtcctc atc	33
<210> 28	
<211> 27	
<212> PRT	
<213> Homo sapien	
<400> 28	
Met Asp Ala Met Lys Arg Gly Leu Cys Cys Val Leu Leu Leu Cys Gly	
1 5 10 15	
Ala Val Phe Val Ser Pro Ser Glu Ile Ser Ser	
20 25	
<210> 29	
<211> 45	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide	
<400> 29	
caggcgagat ctaccatggc ccccattagc cctattgaga ctgta	45
<210> 30	
<211> 48	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> oligonucleotide	
<400> 30	
caggcgagat ctgcccgggc tttaatcctc atcctgtcta cttgccac	48

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US00/34724

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A61K 48/00; C12Q 1/70.
US CL : 514/44; 435/5; 424/93.1.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/44; 435/5; 424/93.1.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Medline, embase, scisearch, biosis, caplus and WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y,P	US 6,099,848 A (FRANKEL et al) 08 August 2000 (08.08.2000), page 12 paragraph 6.	1-14, 17
Y	WO 97/31115 A2 (MERCK & CO. INC.), 28 August 1997, page 36.	4
X	WO 90/10230 A1 (UNIVERSITY OF OTTAWA) 07 September 1990, page 11.	17
Y	US 5,858,646 A (KANG) 12 January 1999 (12.01.1999), col. 2, lines 10-17	1-14, 17

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

22 February 2001

Date of mailing of the international search report

09 MAR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703)305-3230

Authorized officer
TERRY J. DEY
Eleanor Sorbello
PARALEGAL SPECIALIST
TECHNOLOGY CENTER 1600
Telephone No. 703-308-0196

INTERNATIONAL SEARCH REPORT

Internat application No.

PCT/US00/34724

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim Nos.: 15 & 16
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

THIS PAGE BLANK (USPTO)