Библиотека моделирования потоков.

Совместное использование библиотеки моделирования потоков и библиотеки моделирования процессов

Задание. Промоделировать процесс производства мороженого. Мороженое производится из молока, сахара и масла в пропорциях 60:10:30. Ингредиенты поступают в реактор-смеситель из резервуаров по трубопроводам — молоко и сахар, по контейнеру — масло. В смесителе составляющие смешиваются в заданных пропорциях и смесь настаивается 10 минут. Далее смесь по трубопроводу поступает в реактор заморозки. Процесс замораживания занимает 10 минут. Полученная смесь порциями по 100 граммов помещается в стаканчики. Стаканчики пакуются по 50 штук. Упаковки мороженого отправляются на склад.

Основные этапы решения

Этап 1. Процесса смешивания

Шаг 1. Моделирование источников смеси

В процессе изготовления мороженого используются жидкости и сыпучие продукты, для моделирования будем использовать библиотеку моделирования потоков.

Источники потоков моделируются блоком **FluidSource**. Нам потребуются 3 блока FluidSource.

Первый – источник молока, второй — сахара, третий — масла.

В свойствах блоков задается скорость потоков, с которой они будут поступать в модель, и ограничение по объему источника.

Шаг 2. Моделирование резервуаров ингредиентов

Скорости подачи ингредиентов в модели разные, поэтому понадобятся резервуары для их хранения после того, как они потупили в модель. Резервуары моделируются блоком **Tank**. Разместите три блока Tank и соедините их с источниками ингредиентов.

В свойствах объектов Tank задайте объем резервуаров и скорости потоков на их выходе.

Шаг 3. Моделирование доставки ингредиентов в смеситель

Доставка жидких ингредиентов в смеситель осуществляется по трубопроводу.

Трубопровод моделируется объектом **Pipeline**. Разместите два объекта Pipeline и соедините их входы с выходами резервуаров. Дайте названия трубопроводам pipeline milk и pipeline sugar.

Доставка масла выполняется по конвейеру. Конвейер конденсированных веществ моделируется объектом **BulkConveyor**. Разместите его на рабочем поле модели и соедините с выходом резервуара масла.

В свойствах объектов Pipeline укажите объем трубы и скорость потока.

В свойствах объекта BulkConveyor укажите его длину и скорость конвейера, скорость входного потока жидкости.

Шаг 4. Моделирование процесса смешивания

Процесс смешивания ингредиентов моделируется блоком **MixTank**. Этот блок имеет пять входов и один выход. Он принимает на вход составные части смеси и выдает на выходе смесь, сделанную в заданных пропорциях.

В свойствах объекта MixTank задайте объем смесителя, пропорции ингредиентов смеси и время смешивания, скорость выходного потока смеси.

Смесь на выходе из него имеет свойства, отличные от свойств ингредиентов. Для обозначения этого в пункте Партия на выходе укажите, что образуется другая партия, дайте ей название и поменяйте цвет.

Этап 2. Моделирование процесса замораживания смеси

Шаг 1. Моделирование доставки смеси до реактора замораживания

Доставка смеси до реактора заморозки осуществляется по трубопроводу

pipeline_Cream - Pipel	ine	
Имя:	pipeline_Cream	Отображать имя
□ Исключить		
Вместимость:	=_ 10	литров 🗸
Начальный объем:	=, 0	куб. метров 🔻
Скорость ограничена:	=, 🗸	
Максимальная скорость:	= 1	литров/сек 🗸
Другой приоритет:	=, 🗆	
Другая начальная партия:	=, 🗌	

Шаг 2. Моделирование процесса заморозки

Процесс заморозки моделируется объектом **ProcessTank**. Этот объект моделирует наполнение резервуара и процесс в нем.

В свойствах объекта ProcessTank задайте объем реактора, время заморозки и скорость смеси на выходе из реактора, укажите, что смесь в нем приобретает другие качества.

■ Свойства ⋈		₫ ▽ □
Имя:	freezsTank 🗸 Отображать	имя
□ Исключить		
Вместимость:	1 0	литров 🗡
Время задержки:	= 10	минуты 🗸
Скорость на выходе ограничена:	=, 💟	
Макс. скорость на выходе:	= 1	итров/сек ∨
Партия на выходе:	 Та же, что и вошла в блок По умолчанию Другая 	
Партия:	⊋	
Изменить цвет партии:	=, 🔽	
Цвет партии:	= lavender v	

Этап 3. Моделирование процесса разделения на порции и упаковки мороженого

Шаг 1. Моделирование доставки замороженной смеси для разделения на порции

Поскольку смесь заморожена, то доставка ее осуществляется конвейером для конденсированных веществ.

Шаг 2. Моделирование процесса разделения на порции

Порция мороженого — это уже не поток смеси, а отдельная порциязаявка, поэтому процесс разделения на порции моделируем блоком **FluidToAgent**. Этот блок создает агентов для заданного объема жидкости.

Этап 4. Моделирование процесса раскладки мороженого по стаканчикам

Шаг 1. Моделирование поставки стаканчиков для мороженого

Для моделирования появления стаканчиков в модели будем использовать библиотеку моделирования процессов (Подумайте, почему).

Для моделирования появления стаканчиков используем блок **Source**.

Поскольку мороженое в модели производится 20 минут, то поавать стаканчики раньше не нужно. Нужно указать в свойствах блока Source, что время начала его работы отложено. Для этого в разделе свойств Специфические установите галочку в пункте Установить время начала и задайте время задержки начала его работы.

Шаг 2. Моделирование накопителей мороженого и стаканчиков

Поскольку скорость производства мороженого и стаканчиков в модели разная, то необходимы их накопители. Накопители моделируем блоком **Queue.**

В свойствах очередей отметьте пункт Максимальная вместимость.

Шаг 3. Моделирование сборки мороженого

Сборка штучных заявок моделируется блоком **Assembler**. Этот блок имеет пять входов и один выход. Он может принимать до пяти агентов и собирать из них нового агента. Первый вход блока - выход очереди мороженого, второй — выход очереди стаканчиков. В свойствах блока укажите количество каждого ресурса для сборки конечного продукта. В нашем случае для одного стаканчика мороженого требуется одна порция мороженого и один стаканчик. В свойствах блока задайте время сборки.

Этап 5. Моделирование упаковки мороженого

Шаг 1. Моделирование доставки стаканчиков мороженого до упаковщика

Этот процесс моделируется конвейером (блоком Conveyor).

Шаг 2. Моделирование процесса упаковки

Любой процесс моделируется объектом Service, в свойствах которого задается время процесса и его ресурсы. Ресурсы мы создадим позже. Соедините Service с конвейером стаканчиков мороженого и задайте время упаковки — среднее 1 секунда.

packingProcess - Service			
Имя:	packingProcess	☑ Отображать имя	Исключить
Захватить:	1	ативный) набор ресурсов одного типа	
Тип ресурсов:	2		
Количество ресурсов:	2 1		
Вместимость очереди:	=_ 100		
Максимальная вместимость:	=_ [
Время задержки:	2 triangu	lar(0.5, 1, 1.5)	секу

Шаг 3. Моделирование упаковки мороженого

Упаковку мороженого промоделируем объектом Batch, который собирает партии из входящих в него заявок. В свойствах блока задайте объем партии — 50 штук.

Шаг 4. Моделирование увоза упаковок мороженого

Упаковки покидают модель – блок Sink.

В результате модель должна выглядеть примерно так:

Шаг 5. Проверка работоспособности модели

При прогоне модели выявите ее узкие места и предложите решения по их устранению. Промоделируйте варианты решений. Оформите отчет.