

Accelerating DICe on FPGA

Status Update on Honeywell Research

Keaten Stokke & Atiyeh Panahi Advisor: Dr. David Andrews May 29th, 2019

Recent Accomplishments

- Migrated to the ZCU104
 - Successfully ported over our design
 - 64x48 image correlation
 - Successfully scaled up to 232x448 (¼ full frame)
 - o Upgraded to Vivado 2018.3.1
 - IP upgrades
 - Experience working with Zynq
- Arithmetic Functions
 - Compared with the built in Vivado FP IPs
 - Our FP IPs are still the best option
 - Optimized for 150 MHz
 - Localized within each IP
- FPGA Security
 - A thorough report is being developed
 - Over 30 papers on FPGA security have been used
 - Best practices
 - How the development cycle impacts FPGA security
 - Specific boards
 - Revolving around Zynq security
 - Older Virtex boards have been used to demonstrate attacks
 - Separate presentation if currently interested in the status of this research

Recent Accomplishments

KC705 vs. ZCU104 Execution Times

Test Case: 64x48 Design	Total Preprocessing Execution Time	Total Transfer Time	Total FPGA Correlation Time	Total GUI Correlation Time	Total FPGA Execution Time	Total GUI Execution Time
KC705	0.21 s	1.25 s	0.0025 s	0.016 s	1.48 s	0.058 s
ZCU104	0.21 s	0.104 s	0.0025 s	0.016 s	0.33 s	0.058 s
Results	No Change	12x faster	No Change	No Change	4.5x faster	No Change

- Total Execution Time (compared to the GUI)
 - o KC705: 25x slower
 - o ZCU104: 5.6x slower
 - ZCU104 without Python preprocessing: 1.8x slower [Multithreading!!!]
 - Ethernet transfer rate can theoretically be x10 faster [80Mbps \rightarrow 800Mbps]
 - After design optimizations & parallelizations total FPGA correlation time can be reduced

- SoC Targeting the new chips for speedup
 - Application Processing Unit (APU)
 - ARM Cortex-A53 (Quad-core)
 - Floating Point Unit
 - Real-Time Processing Unit (RTPU)
 - ARM Cortex-R5 (Dual-core)
 - Vector Floating Point Unit
 - Graphics Processing Unit (GPU)
 - Pixel Processor (x2)
 - Geometry Processor
- Our current design is almost entirely programmable logic (PL); we need to learn how to target these processing cores for a speed up now that we have them

- Configuration Security Unit [CSU]
 - Secure Boot Two methods
 - 1. **Hardware Root of Trust**: Asymmetric authentication and encryption to provide CIA of the boot and configuration files
 - 2. **Encryption Only**: No asymmetric authentication, but requires all configuration files loaded must be encrypted and authenticated with AES
 - Secure key storage and management
 - Volatile keys: operation key, key update register key (KUP)
 - Non-volatile keys: eFUSE, BBRAM, family key, PUF key encryption key (KEK)
 - Encryption key backup: BBRAM stores AES key even with power loss
 - Ring Oscillator Physically Unclonable Function [RO PUF]
 - Generates a device-unique key for authentication and identification
 - Process variations in manufacturing ensure uniqueness between two identical circuits

- Configuration Security Unit [CSU] (continued)
 - Encryption & Authentication
 - Configuration files & bitstreams
 - Triple redundant MicroBlaze processor
 - Controls boot operations
 - ARM TrustZone
 - Hardware isolation for trusted software
 - Cryptographic hardware acceleration
 - Crypto-Interface Block (CIB) for AES block ciphers that were adopted for efficiency and performance that provide integrity and confidentiality
 - AES-GCM, DMA, SHA-3, RSA, PCAP
 - Tamper Monitoring & Response
 - Temperature & Voltage alarms
 - I/O Port Monitoring
 - Zeroization of keys and bitstream

URAM

- 71% of SRAM memory
- Read is 1 clock cycle (2x faster)
- Synchronous ports and clock
- Less power consumption (sleep mode/disable unused cells)
- Fixed port width (72 bits) $(4 \times 72 = 288 \text{ Kb per cell})$

BRAM

- 29% of SRAM memory
- Read is 2 clock cycles
- True dual porting (asynchronous clocks)
- Ability to initialize with .COE file
- Configurable port width

Block Design

KC705 (MicroBlaze) [29 blocks]

Block Design

ZCU104 (Zynq) [24 blocks, only 20 required]

Resource Utilization

KC705 (MicroBlaze)

Resource	Utilization	Available	Utilization %
LUT	36101	203800	17.71
LUTRAM	2758	64000	4.31
FF	27389	407600	6.72
BRAM	59	445	13.26
DSP	12	840	1.43
10	136	500	27.20
MMCM	1	10	10.00
PLL	1	10	10.00

Resource Utilization

ZCU104 (Zynq)

Resource	Utilization	Available	Utilization %
LUT	22091	230400	9.59
LUTRAM	441	101760	0.43
FF	18380	460800	3.99
BRAM	1	312	0.32
URAM	5	96	5.21
DSP	12	1728	0.69
Ю	3	360	0.83
BUFG	3	544	0.55
MMCM	1	8	12.50

Power KC705 (MicroBlaze)

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 2.567 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 29.6°C

Thermal Margin: 55.4°C (30.4 W)

Effective 9JA: 1.8°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

Power ZCU104 (Zynq)

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 3.273 W

Design Power Budget: Not Specified

Power Budget Margin: N/A

Junction Temperature: 28.2°C

Thermal Margin: 71.8°C (72.7 W)

Effective 9JA: 1.0°C/W

Power supplied to off-chip devices: 0 W

Confidence level: Medium

Launch Power Constraint Advisor to find and fix

invalid switching activity

Next Steps

- Going back to the DICe Correlation IPs
 - Validating the results
 - Verify that each IP operates correctly
 - Compare image correlation between DICe GUI and FPGA
 - Scale up
 - Support for more than two frames
 - Larger image sizes (< 896x464)
 - We now have the URAM/BRAM resources to scale up
 - Currently scaling up to 464x448 (½ full frame)
 - Adding more DICe features
 - Unique subset shapes
 - Currently working on circle subsets
 - Dynamic subsets
 - Exclusions inside the area of interest (AOI)
 - Multiple subsets (< 14)
 - Image obstructions
 - Simplex & robust correlation
 - Optimize and parallelize
 - Target all of the processors cores
 - With URAM we can cut clock cycles in half for reads
 - We've identified sections of code that can be parallelized

Conclusion

Questions?