|            | UE18 MA25) Linear Algebra and its Applications                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Answer all.                                                                                                                                                                                |
|            | Find the equation of the parabola $y = A + Bx + Cx^2$ that passes through 3 points $(1, 1)$ , $(2, -1)$ and $(3, 1)$ .  uning Graussian Elimination.                                       |
| <b>3</b> . | Find the LV alexamposition for the analysis. $A = \begin{bmatrix} 2 & 5 & 2 & -5 \\ 4 & 12 & 3 & -14 \\ -10 & -29 & -5 & 38 \\ 10 & 21 & 21 & -6 \end{bmatrix}$                            |
| 3          | Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, 3) = (x + 3y - 3, y + 3, x + y - 23).$                                                                                          |
|            | i) Find the matrix T relative to the standard bank of RS.  (i) Find the ban's for 4 fundamental subspaces of T.  (ii) Find the eigen values and eigen vectors of T.  (iv) Decompose T= QR. |
| 4          | Fit a best straight line y=c+da for the following date uning least square principles.                                                                                                      |
|            | 9   H   6   10   8 ·                                                                                                                                                                       |
|            |                                                                                                                                                                                            |



- 5 Find the projection matrices P and Q onto the plane M+2+3×3+4×=0 and it orthogonal applement respectively.
- 6. For which range of number  $1a^{i}$ , the matrix A is positive definite?  $A = \begin{bmatrix} a & a & a \\ a & a & a \\ a & a & a \end{bmatrix}$

$$A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix}$$

Which 3x3 matrix (Symmetric) B produces these function.  $f = 2 \pi \pi \pi$ 

where f = 2(21+ x2+ 23- x1 x2- x2 x3).

7. Find the SVD of A, USVT where

$$A = \begin{bmatrix} 6 & -2 \\ 6 & -2 \end{bmatrix}$$

USHA