课程编号: MTH17003

工科数学分析期末试题(A卷)(信二学习部整理)

班级_	学号							姓名				
(本试卷共6页,十一个大题.解答题必须有解题过程.试卷后面空白纸撕下做草稿纸.试卷不得拆散.)												
题号	_		三	四	五.	六	七	八	九	+	+ -	总分
得分												
签名												
一. 填空题(每小题 2 分, 共 10 分)												
1. 设 $p(x)$ 是多项式,且 $\lim_{x \to \infty} \frac{p(x) - x^3}{x^2} = 2$, $\lim_{x \to 0} \frac{p(x)}{x} = 3$,则 $p(x) = \underline{\qquad}$												
2. 曲线 $\rho = 1 - \cos \theta$ 在 $\theta = \frac{\pi}{4}$ 处的切线斜率等于												
3. 已知点(1,3)为曲线 $y = ax^3 + bx^2$ 的拐点,则 $a =$												
4. 设 $f(x) = \sqrt{1-x^2} + \arctan x \cdot \int_0^1 f(t)dt$,则 $f(x) = $												
5. 质量为 m 的降落伞从跳伞塔下落,所受空气阻力与速度成正比(比例系数为 $k > 0$),则												
降落伞的位移 y(t) 所满足的微分方程为												
二. (8 分) 求极限 $\lim_{x\to 0} \frac{x+\ln(1-x)}{e^{\tan^2 x}-1}$.												

三. (8 分) 设 $e^y - xy = e$ 确定函数 y = y(x), 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

四. (9 分) 设 $\lim_{x \to \infty} \left(\frac{x + 2a}{x - a} \right)^x = \int_0^{+\infty} \frac{8x}{e^x} dx \quad (a \neq 0), 求常数 a 的值.$

五. (9 分) 求微分方程 $\frac{dy}{dx} = \frac{y}{x+y^4}$ 的通解.

六. (9 分) 已知 $f(x) = a\cos x - \frac{1}{3}\sin 3x$ 在 $x = \frac{\pi}{3}$ 处取得极值,求 a 的值,并判断 $f(\frac{\pi}{3})$ 是极大值还是极小值.

七. (9分) 求曲线 $y^2 = x$ 与直线 y = x - 2 所围成平面图形的面积 A,以及此平面图形绕 y 轴 旋转一周所得旋转体的体积 V.

八. (9 分) 求不定积分 $\int \frac{1}{x} \sqrt{\frac{1+x}{x}} dx$.

九. (9分) 一圆锥形贮水池,深 3m,直径 4m,池中盛满了水,如果将水抽空,求所作的功. (要求画出带有坐标系的图形)

十. (12 分) 设 $f(x) + e^{-x} + \int_0^x (t-x)f(t)dt = 0$, 其中 f(x) 是连续函数, 求 f(x) 的表达式.

信息与电子二学部学生会

常区学

十一. (8 分) 设 f(x) 在 [0,1] 上非负连续,试证存在 $\xi \in (0,1)$,使得区间 $[\xi,1]$ 上以 $f(\xi)$ 为高的 矩形面积等于区间 $[0,\xi]$ 上以 y = f(x) 为曲边的曲边梯形的面积.