Reg. No.:

Name

TERM END EXAMINATIONS (TEE) – August - September 2021

Programme	: B.Tech, M.Tech	Semester	: Interim 2021-22
Course Name	: Operating system	Course Code	: CSE3003
Faculty Name	: Dr. Pon Harshavardhanan	Slot / Class No	: A11+DA1 / 0086
Time	: 1½ hours	Max. Marks	: 50

Answer ALL the Questions

Q. No.		Question Description	Marks
1	(a)	PART - A (30 Marks) Illustrate the computer system organization.	10
		OR	
	(b)	Elucidate the concept of process in detail.	10
2	(a)	Consider the following set of processes, with the length of the CPU	10

Process	Burst Time	Priority	
P_1	2	2	
P_2	1	1	
P_3	8	4	
P_4	4	2	

burst given in milliseconds:

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5 all at time 0.

- a. Draw four Gantt charts that illustrate the execution of these processes using the following scheduling algorithms: FCFS, SJF, non-preemptive priority (a larger priority number implies a higher priority), and RR (quantum = 2).
- b. What is the turnaround time of each process for each of the scheduling algorithms in part a?
- c. What is the waiting time of each process for each of these scheduling algorithms?
- d. Which of the algorithms results in the minimum average waiting time (over all processes)?

OR

(b) Consider the following page reference string: 7, 2, 3, 1, 2, 5, 3, 4, 6, 7, 7, 1, 0, 5, 4, 6, 2, 3, 0, 1.

10

10

Assuming demand paging with three frames, how many page faults would occur for the following replacement algorithms?

- LRU replacement
- FIFO replacement
- Optimal replacement
- 3 (a) Suppose that a disk drive has 5,000 cylinders, numbered 0 to 4,999. The drive is currently serving a request at cylinder 2,150, and the previous request was at cylinder 1,805. The queue of pending requests, in FIFO order, is:

2,069, 1,212, 2,296, 2,800, 544, 1,618, 356, 1,523, 4,965, 3681.

Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves to satisfy all the pending requests for each of the following disk-scheduling algorithms?

- a. FCFS
- b. SSTF
- c. SCAN
- d. LOOK
- e. C-SCAN
- f. C-LOOK.

OR

(b) Compare and contrast the file allocation methods in detail.

10

PART - B (20 Marks)

4 Implement Banker's algorithm for deadlock avoidance in C program and find a safe sequence for the following system snapshot.

10

	Allocation	Max	Available
	ABC	ABC	ABC
P_0	010	753	332
P_1	200	322	
P_2	302	902	
P_3	211	222	
P_4	002	433	

5 Compare and contrast paging with segmentation.

10

