Автоматизированный способ поиска оптимального метода **УСТАНОВЛЕНИЯ** параметров преобразования плоских прямоугольных **СИСТЕМ КООРДИНАТ**

100 лет БНТУ

Будо Андрей Юрьевич,

кафедра Геодезии и аэрокосмических геотехнологий ФТК БНТУ (г.Минск)

AndrewBudo@gmail.com

Leica TS16, GS18, CS20, TCR1201. Trimble M3

Trimble TSC3

Исходные геодезические даты (4 метода)

Проекции (23 шт.)

Коррекции в плане и по высоте

Параметры коррекции в плане

Координаты пунктов в двух СК

№ п/п	Название	СК-95	зона 5	Локальная СК		
	пункта	Х, м	Ү, м	Х, м	Ү, м	
1	пп 1901	5968133.715	5571220.059	-7444.535	34604.949	
2	пп 1902	5954960.221	5551300.312	-20617.821	14685.132	
3	пп 1903	5975044.327	5554909.575	-533.857	18294.435	
4	пп 1904	5985700.939	5548793.641	10122.799	12178.531	
5	пп 1905	5986352.860	5553960.724	10774.690	17345.614	
6	пп 1906	5973036.526	5559036.576	-2541.626	22421.456	
7	пп 1907	5957441.402	5563367.017	-18136.732	26751.847	
8	пп 1908	5958054.333	5573079.570	-17523.903	36464.420	
9	пп 1909	5985470.638	5568215.978	9892.378	31600.888	
10	пп 1910	5965869.114	5552848.693	-9708.994	16233.543	

Схема расположения пунктов на вебкарте

Метод преобразования координат Гельмерта

В данном методе углы не изменяются, а длины линий изменяются по всем направлениям с учётом единого масштабного коэффициента. При этом преобразование координат осуществляется по формулам

$$X = x_2 + m \cdot \cos(\alpha) \cdot (x - x_1) - m \cdot \sin(\alpha) \cdot (y - y_1), \tag{1}$$

$$Y = y_2 + m \cdot \sin(\alpha) \cdot (x - x_1) + m \cdot \cos(\alpha) \cdot (y - y_1), \tag{2}$$

где m — масштаб (отношение расстояний во второй СК к соответствующим расстояниям в первой СК);

α – угол разворота второй СК относительно первой;

 x_1 , y_1 — центр тяжести первой СК (средние арифметические значения координат по абсциссам и ординатам соответственно);

 x_2 , y_2 — центр тяжести второй СК (локальной СК для рассматриваемого примера);

х, у — координаты пунктов первой СК (для рассматриваемого примера координаты десяти пунктов в СК-95 зона 5);

Х, У – рассчитанные координаты во второй СК (локальной).

По исходным данным с использованием формул МНК вычислим параметры:

$$x_1 = 5971006.4075 \text{ m}; \quad x_2 = -4571.7601 \text{ m}; \quad m = 0.999998890708;$$

$$y_1 = 5559673.2145 \text{ m}; \quad y_2 = 23058.0815 \text{ m}; \quad \alpha = 0^{\circ}00'01''.$$

Метод аффинного преобразования координат

В данном методе преобразования в зависимости от положения пункта изменяются длины линий и углы. Аффинное преобразование координат из одной плоской прямоугольной системы в другую производится по формулам

$$X = x_2 + a_1 \cdot (x - x_1) + b_1 \cdot (y - y_1), \tag{3}$$

$$Y = y_2 + a_2 \cdot (x - x_1) + b_2 \cdot (y - y_1), \tag{4}$$

где a_1 , a_2 , b_1 , b_2 — коэффициенты аффинного преобразования; x_1 , y_1 , x_2 , y_2 , x, y, X, Y — величины, аналогичные применяемым в методе преобразования координат по Гельмерту, описанному выше.

По исходным данным с использованием формул МНК вычислим параметры преобразования:

$$x_1 = 5971006.4075 \text{ M}$$
 $a_1 = 0.999996734750$ $y_1 = 5559673.2145 \text{ M}$ $a_2 = 0.000002365750$ $x_2 = -4571.7601 \text{ M}$ $b_1 = -0.000007195224$ $y_2 = 23058.0815 \text{ M}$ $b_2 = 1.000001405150$

Метод параллельного сдвига осей

В данном методе преобразование координат выполняется по формулам

$$X = x + (x_2 - x_1), (5)$$

$$Y = y + (y_2 - y_1), (6)$$

где х, у – координаты пунктов первой СК (СК-95 зона 5);

Х, У – рассчитанные координаты во второй СК (локальной).

 x_1, y_1 – центр тяжести первой СК;

 x_2 , y_2 – центр тяжести второй СК.

Вычисленные по исходным данным координаты центров тяжести и их разности dX, dY:

$$x_1 = 5971006.4075 \text{ m}; \qquad x_2 = -4571.7601 \text{ m}; \qquad dX = -5975578.1676 \text{ m}; $y_1 = 5559673.2145 \text{ m}; \qquad y_2 = 23058.0815 \text{ m}; \qquad dY = -5536615.1330 \text{ m}.$$$

Подставив найденные параметры в (1),(2); (3),(4); (5),(6), выполняем расчёт координат X, Y для десяти точек из СК-95 в локальную СК. Затем вычисляем разность (невязки $\varepsilon_{\rm X}$, $\varepsilon_{\rm Y}$) исходных координат в локальной СК и вычисленных по формулам, а также плановую невязку для каждого пункта по формуле

$$\varepsilon^2 = (\varepsilon_{\mathbf{X}})^2 + (\varepsilon_{\mathbf{Y}})^2. \tag{7}$$

Сводная таблица плановых невязок пунктов

Название пункта	Гельмерт		Аффинное		Параллельный				
	1 CIBMCP1			Аффинис			сдвиг		
	ε_{X} , M	ε _Y , M	ε, Μ	ε_{X} , M	ε _Y , M	ε, Μ	ε_{X} , M	ε _Y , M	ε, Μ
пп 1901	0.045	-0.046	0.064	0.009	-0.014	0.016	0.082	-0.023	0.086
пп 1902	-0.079	0.000	0.079	-0.013	-0.003	0.013	-0.126	0.047	0.134
пп 1903	0.029	0.026	0.039	0.037	0.010	0.039	0.016	0.007	0.018
пп 1904	-0.006	0.040	0.041	0.003	-0.004	0.004	-0.028	-0.023	0.036
пп 1905	0.005	0.037	0.037	-0.007	0.005	0.008	0.002	-0.023	0.023
пп 1906	-0.016	-0.005	0.016	-0.018	-0.009	0.020	-0.016	-0.013	0.020
пп 1907	-0.031	-0.014	0.035	-0.016	0.010	0.019	-0.034	0.037	0.050
пп 1908	0.036	-0.043	0.056	0.014	0.005	0.015	0.068	0.017	0.070
пп 1909	0.047	-0.002	0.047	-0.016	0.003	0.017	0.092	-0.043	0.102
пп 1910	-0.030	0.007	0.031	0.006	-0.005	0.008	-0.060	0.017	0.062
$\Sigma \epsilon^2$			0.0227			0.0034			0.0495
μ			0.0502			0.0193			0.0742

https://www.rusgeocom.ru/po/leica/captivate-dlja-kontrollerov-cs20

Leica Captivate для контроллеров CS20

кол: 48319

код: 48312

код: 48313

код: 48314

Leica Captivate TS Hidden Point...

30 000 p.

Съёмка скрытых точек с использованием специальной вешки с двумя минипризмами.

Leica Captivate Measure Plane ...

44 000 p.

Опорная плоскость и сканирование по сетке.

Leica Captivate Area Division CS...

44 000 p.

Разделение площади.

Leica Captivate DTM Stakeout C...

44 000 p.

Вынос в натуру по ЦММ.

код: 48315

код: 48320

код: 48321

код: 48311

Leica Captivate Volume Calculat...

44 000 p.

Вычисление объёмов по данным традиционных измерений в поле. Leica Captivate Traverse CS20

44 000 p.

Проложение и уравнивание тахеометрического хода.

Leica Captivate Sets of Angles C...

44 000 p.

Автоматическое выполнение круговых приёмов (только для TS16 с функцией ATRplus и любым тахеометром NOVA).

Leica Captivate Measure Stake L...

52 800 p.

Съёмка и разбивка относительно линейных элементов.

Leica Captivate TS

Автоматизация в геодезическом производстве

https://www.glassdoor.com/Jobs/Leica-Geosystems-software-developer-Jobs-EI_IE12287.0,16_KO17,35.htm

