Current and Resistance

7. The quantity of charge q (in coulombs) that has passed through a surface of area 2.00 cm^2 varies with time according to the equation $q = 4t^3 + 5t + 6$, where t is in seconds. (a) What is the instantaneous current through the surface at t = 1.00 s? (b) What is the value of the current density?

34. Lightbulb A is marked "25 W 120 V," and lightbulb B is marked "100 W 120 V." These labels mean that each lightbulb has its respective power delivered to it when it is connected to a constant 120-V source. (a) Find the resistance of each lightbulb. (b) During what time interval does 1.00 C pass into lightbulb A? (c) Is this charge different upon its exit versus its entry into the lightbulb? Explain. (d) In what time interval does 1.00 J pass into lightbulb A? (e) By what mechanisms does this energy enter and exit the lightbulb? Explain. (f) Find the cost of running lightbulb A continuously for 30.0 days, assuming the electric company sells its product at \$0.110 per kWh.

7. (a)
$$\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{d(4t^3 + 5t + 6)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{dq(c)}{dt}$
 $\overline{f}(z) = \frac{dq(c)}{dt} = \frac{dq(c)}{dt}$

(b)
$$I = \frac{\Delta \Delta}{\Delta t}$$
 \Rightarrow $\Delta t = \frac{\Delta}{I}$ \Rightarrow $\Delta t = \frac{V \cdot \Delta Q}{P}$ \Rightarrow $\Delta t = \frac{V \cdot \Delta Q}{P}$

DC Circuit

19. Taking $R = 1.00 \text{ k}\Omega$ and $\mathcal{E} = 250 \text{ V}$ in Figure P27.19, determine the direction and magnitude of the current in the horizontal wire between a and e.

41. The circuit in Figure P27.41 contains two resistors, $R_1 = 2.00 \text{ k}\Omega$ and $R_2 = 3.00 \text{ k}\Omega$, and two capacitors, $C_1 = 2.00 \mu\text{F}$ and $C_2 = 3.00 \mu\text{F}$, connected to a battery with emf $\mathbf{\mathcal{E}} = 120 \text{ V}$. If there are no charges on the capacitors before switch S is closed, determine the charges on capacitors (a) C_1 and (b) C_2 as functions of time, after the switch is closed.

$$V(t) = \underbrace{\xi(1 - e^{-t/kc})}_{= 120} \left[1 - e^{-t/(12kG^3)(3\pi G^3)}\right]$$

$$= 120 \left[1 - e^{-t/(6\pi G^3)}\right]$$

$$\left(C = \frac{Q}{QV} \Rightarrow Q = C \Delta V\right)$$

$$Q_{C_1} = (2 \times 10^{-6}) 120 \left[1 - e^{-t/(6\pi G^3)}\right]$$

$$= 2.4 \times 10^{-4} \left[1 - e^{-t/(6\pi G^3)}\right]$$

$$Q_{C_2} = (3 \times 10^{-4}) 120 \left[1 - e^{-t/(6\pi G^3)}\right]$$

$$= 3.6 \times 10^{-4} \left[1 - e^{-t/(6\pi G^3)}\right]$$
##