adjusted R²

- calculation
- uses

Dr. Mine Çetinkaya-Rundel Duke University


```
R
# load data
> states = read.csv("http://bit.ly/dasi states")
# fit model
> pov slr = lm(poverty ~ female house, data = states)
> summary(pov slr)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.3094 1.8970 1.745 0.0873.
female house 0.6911 0.1599 4.322 7.53e-05 ***
Residual standard error: 2.664 on 49 degrees of freedom
Multiple R-squared: 0.276, Adjusted R-squared: 0.2613
F-statistic: 18.68 on 1 and 49 DF, p-value: 7.534e-05
```

predicting poverty from % female householder

Linear model:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.31	1.90	1.74	0.09
female_house	0.69	0.16	4.32	0.00

another look at R²

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

$$R^2 = \frac{\text{explained variability}}{\text{total variability}} = \frac{132.57}{480.25} = 0.28$$

predicting poverty from % female householder + % white

R

- > pov_mlr = lm(poverty ~ female_house + white, data = states)
- > summary(pov_mlr)

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-2.58	5.78	-0.45	0.66
$female_house$	0.89	0.24	3.67	0.00
white	0.04	0.04	1.08	0.29

R

> anova(pov_mlr)

Df	Sum Sq	Mean Sq	F value	Pr(>F)
1	132.57	132.57	18.74	0.00
1	8.21	8.21	1.16	0.29
48	339.47	7.07		
50	480.25			
	1 1	1 132.57 1 8.21 48 339.47	1 132.57 132.57 1 8.21 8.21 48 339.47 7.07	1 132.57 132.57 18.74 1 8.21 8.21 1.16 48 339.47 7.07

$$R^2 = \frac{132.57 + 8.21}{480.25} = 0.29$$

adjusted R²

adjusted R²:
$$R_{adj}^2=1-\left(\frac{SSE}{SST}\times\frac{n-1}{n-k-1}\right)$$
 $k:$ number of predictors

Calculate adjusted R^2 for the multiple linear regression model predicting % living in poverty from % female householders and % white. Remember n = 51 (50 states + DC).

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.00
white	1	8.21	8.21	1.16	0.29
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R^{2}_{adj} = 1 - \left(\frac{SSE}{SST} \times \frac{n-1}{n-k-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right) = 0.26$$

R² vs. adjusted R²

	R ²	adjusted R ²
Model I (poverty vs. female_house)	0.28	0.26
Model 2 (poverty vs. female_house + white)	0.29	0.26

- ▶ When any variable is added to the model R² increases.
- ▶ But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R² does not increase.

properties of adjusted R²

$$R_{adj}^2 = 1 - \left(\frac{SSE}{SST} \times \frac{n-1}{n-k-1}\right)$$

- ▶ k is never negative \rightarrow adjusted R² < R²
- ▶ adjusted R² applies a penalty for the number of predictors included in the model
- we choose models with higher adjusted R² over others