Find a vector pa $\vec{r}(t) =$	erametric equation of with $0 \le t \le 1$		nent from P ₁ (2	, −6, 7) to F	P ₂ (0, 4, 1).	(Your inst	ructors pr	efer angl	le bracket	notation <	< > for ve	ectors.)		
7	= P2 - P													
V	12	1												
	= <-2,	10,	-67	>										
Ī	= <-21	4+7	Int	-/.	_ /	. .	+ 7	>						
	7 01			U	, ,	(. /							
Reparametrize t	the curve $r(t) = \langle e^t, $	$cos(t), e^{-t}$ us	$sing t = 3\tau + 2.$	(Your instru	ıctors prefe	r angle br	acket nota	ation < >	for vector	rs.)				
$\overrightarrow{r_1}(\tau) =$														
		7-												
r.	(7)=	57	12.10	c (2	3 T. +	(c)	م	3T.	- 2 \	>				
						<i>,</i>								
Find the point	where the helix $r(t)$	$=\langle \cos(t), \sin(t) \rangle$	t), t \rangle intersects	the plane z	$r=\frac{\pi}{2}$.									
$(x, y, z) = \left($)				2									
		_												
So	elve.	for	t											
	1= J	Ţ												
	<u> </u>	2												
		.10		• =	_ =	- \								
p :	=(cos	$(\frac{1}{2})$, Sin	世	$\frac{1}{2}$	-)								
Find the family	of antiderivatives of	$\frac{d}{dt}r(t) = \langle t^3, t \rangle$	$-9, t^2$). (Your	instructors p	prefer angle	bracket n	notation <	> for vec	ctors.)					
	$+\left\langle c_{1}^{},c_{2}^{},c_{3}^{}\right\rangle$													
	parametrized curve	that satisfies t	he initial condit	ion $r(0) = \langle 9 \rangle$), 3, -12). (Your instr	uctors pre	fer angle	bracket n	otation <	> for vec	tors.)		
$\vec{r}(t) =$			+ + + + + + + + + + + + + + + + + + + +											
Parf	A													
	<u> </u>	: \ <	T 3]	CI	12	\	11							
1 9	f dt =	.] /	τ, 1	7	, 1	/	at							

				<+	. 14	Τ (2_(74 I	1.	13.			<i>(</i>	•	,				
				*	t,	2 [1t	, 3	ι	/ 1	- ()	L,,	62	, L z	/			
Pa	γł	B																	
	I_{n}	i tic	1	Ccv	dit	in	7	(c)	=<	g,	3,	- 12	. > ,	, S	clve		fer	Cs	
		0 =	460)4 1	C 1	3	} = (9-0	} + (-2	-	-12	<i>O</i>	+ C	3				
		C1=	. q			C	2 =	3			((3 >	-12)					
	•			t*+						_									
Find the		$\overrightarrow{C_1}t + \overrightarrow{C_2}$		ns whose s				ut						efer angle	bracket n	otation <	> for vec	tors.)	

Find the unique parametrized curve that satisfies the initial conditions $r(0) = \langle 1, -1, 5 \rangle$ and $\frac{d}{dt}r(0) = \langle 2, -10, 7 \rangle$. (Your instructors prefer angle bracket notation < > for vectors.)

$$r(t) =$$

Part A
$$\iint_{0}^{\frac{d^{2}r}{dt^{2}}} dt = \iint_{0}^{2} \langle -2\cos(t), -2\sin(t), 9 \rangle dt$$

$$= \int_{0}^{2} \langle -2\sin(t), 2\cos(t), 9t \rangle dt + C_{1}$$

$$= \langle 2\cos(t), 2\sin(t), \frac{a}{2}t^{2} \rangle + C_{1}t + C_{2}$$
Part B

Twitial condition
$$\frac{1}{4t} V(0) = \langle 2, -10, 7 \rangle$$
, Solve for \overline{C} , $\langle 2, -10, 7 \rangle = \langle -2\sin(0), 2\cos(0), 0 \rangle + \overline{C}$, $\langle 2, -10, 7 \rangle = \langle C, 2, 0 \rangle \overline{C}$, $\overline{C}_1 = \langle 2, -12, 7 \rangle$

Thitial condition $V(0) = \langle 1, -1, 5 \rangle$, Solve for \overline{C}_2
 $\langle 1, -1, 5 \rangle = \langle 2\cos(0), 2\sin(0), 0 \rangle + \overline{C}_1 \cdot 0 + \overline{C}_2$
 $\overline{C}_2 = \langle -1, -1, 5 \rangle$
 $\overline{V}(t) = \langle 2\cos(t) + 2t - 1, 2\sin(t) - 12t - 1, \frac{4}{1}t^{-1}7t + 5 \rangle$

An object at the top of a building with height 122 feet is thrown upward with an initial speed of 29 ft/s. Find its position z(t) above the ground t seconds after being thrown. (Use g = 32 ft/sec².)

Find the time, in seconds, it takes for the object to hit the ground.

Part A V(t) = -32t - 20 $v(t) = -16t^{2} + 29t + 122$

downrange. (Use $g = 32 \text{ ft/sec}^2$.)

Find the maximum height and distance traveled downrange, in ft, at the optimal angle. (Round your answers to two decimal places.)

distance traveled downrange

Part A V(+) = < |v| (cs (a), -32+ + |v| sin (a)> r(+)=[v(+) d+ = (|v | cos (0) t, - 16 t2 + 1 v | sin (0) t>

Solve
$$|\vec{r}_{y}|(t) = 0$$
 for t in terms of 0
 $0 = -16t^{2} + |\vec{v}| \sin(\theta) t$
 $0 = -16t + |\vec{v}| \sin(\theta)$
 $|t| = |\vec{v}| \sin(\theta)$
 $|t| = |\vec{v}| \sin(\theta)$

Solve for Jistance as a function of 0
 $|\vec{v}| = |\vec{v}| \cos(\theta) = 16$
 $|\vec{v}| = |\vec{v}| \cos(\theta) \sin(\theta)$

Max $\vec{v} = |\vec{v}| \sin(\theta)$

Find max $\vec{v} = |\vec{v}| \cos(\theta) \cos(\theta)$
 $|\vec{v}| = |\vec{v}| \cos(\theta) \sin(\theta)$

Find $|\vec{v}| = |\vec{v}| \cos(\theta) \cos(\theta)$
 $|\vec{v}| = |\vec{v}| \cos(\theta) \sin(\theta)$
 $|\vec{v}| = |\vec{v}| \cos(\theta) \sin(\theta)$

nrt	. C	•																
T	ime							()	hit	S	the	SI	(CM	1				
	f	2	85	06	5:1	n CO)											
T	ihe									+ .	its	N	101×	h	risl	n F		
	ŧ	1	85.	06	Siv	CO.) .	12										
		=	. 8	&C)	(
٨	Non									_	llof	² +	171	Cila	(0)) 		
						8) ²	+ >	ζ5.	CE									
					335		L			7''		4						
	ajectory in												*				→	

Consider a trajectory in space with acceleration vector $\vec{d}(t) = \langle e^{-t}, -1, 2t \rangle$. Solve the initial value problem to find the trajectory $\vec{r}(t)$ for the problem with initial velocity $\vec{v}(0) = \langle 7, 0, -3 \rangle$ and initial position $\vec{r}(0) = \langle 5, 4, -9 \rangle$. (Your instructors prefer angle bracket notation < > for vectors.)

r(t) =

$$\vec{V}(t) = S\vec{\alpha}(t) dt$$

$$= \langle -e^{-t}, -t, t^2 \rangle + C,$$

$$\vec{V}(c) = \langle 7, 0, -3, 7 \rangle$$

$$\langle 7,0,-3 \rangle = \langle -1,0,0 \rangle + \overline{C}_{1}$$
 $\overline{C}_{1} = \langle 8,0,-3 \rangle$
 $\overline{V}(t) = \langle -e^{\dagger} + 8,-t, +^{2} - 3 \rangle$
 $\overline{V}(t) = \int V(t) dt$
 $= \langle e^{\dagger} + 8t, -\frac{1}{2}t^{2}, \frac{1}{3}t^{3} - 3t \rangle$
 $\overline{V}(t) = \langle 5,4,-9 \rangle = \langle 1,0,0 \rangle + \overline{C}_{1}$
 $\overline{C}_{1} = \langle 4,4,-9 \rangle$
 $\overline{V}(t) = \langle e^{\dagger} + 8t + 4, -\frac{1}{2}t^{2} + 4, \frac{1}{3}t^{3} - 3t - 9 \rangle$