

Jaringan Saraf Tiruan MADALINE

Pendahuluan

- Madaline adalah Jaringan baru yang dibentuk dari gabungan beberapa ADALINE (many ADALINE)
- Terdapat sebuah layar tersembunyi dalam MADALINE

• Arsitektur MADALINE untuk lebih dari 2 unit masukan (atau lebih dari 2 unit

tersembunyi) dapat dibentuk secara analog.

 Contoh: arsitektur MADALINE untuk 2 buah masukan x1 dan x2, sebuah layar tersembunyi yang terdiri dari 2 unit neuron tersembunyi z1 dan z2, dan sebuah keluaran Y

Lanjutan..

- Adanya unit tersembunyi dalam MADALINE akan meningkatkan kapabilitas komputasi dibandingkan ADALINE, meskipun pelatihannya juga lebih kompleks
- Pada awal ditemukannya MADALINE oleh Widrow dan Hoff (1960), bobot yang dimodifikasi hanyalah bobot dari unit input ke unit tersembunyi (w11, w12, w21, w22) saja yang dimodifikasi selama proses pelatihan.
- Sedangkan Bobot dari unit tersembunyi ke unit keluaran merupakan kuantitas yang tetap.
- Winter dan Baxter (1987)melakukan modifikasi MADALINE (Widrow) dengan melakukan modifikasi disemua bobotnya.

Algoritma MADALINE

- Dalam algoritma MADALINE mula-mula, bobot v1, v2, dan bias b3 yang diteruskan ke Y diatur sedemikian hingga keluaran Y akan = 1 jika salah satu keluaran dari z1 atau z2 (atau keduanya) = 1. Keluaran Y = -1 jika keluaran z1 maupun z2 = -1.
- Dengan kata lain, unit Y membentuk fungsi logika "atau" dengan masukan dari z1 dan z2. Maka diambil $v1 = v2 = \frac{1}{2}$ dan $b3 = \frac{1}{2}$.

Algoritma pelatihan MADALINE mula-mula untuk pola masukan dan target bipolar adalah sebagai berikut :

- Inisialisasi semua bobot dan bias dengan bilangan acak kecil. Inisialisasi laju pemahaman (= α) dengan bilangan kecil.
- Selama perubahan bobot lebih besar dari toleransi (atau jumlah epoch belum melebihi batas yang ditentukan), lakukan langkah 2.1 - 2.5
 - 2.1. Set aktifvasi unit masukan : x_i = s_i untuk semua i
 - 2.2. Hitung net input untuk setiap unit tersembunyi ADALINE (z₁, z₂, ...)

$$z_{in_j} = b_j + \sum_i x_i w_{ji}$$

2.3. Hitung keluaran setiap unit tersembunyi dengan menggunakan fungsi aktivasi bipolar :

$$z_{j} = f(z_{in_j}) = \begin{cases} 1 & jika \ z_{in_j} \ge 0 \\ -1 & jika \ z_{in_j} < 0 \end{cases}$$

2.4. Tentukan keluaran jaringan

$$y_{in} = b_k + \sum_j z_j v_j$$

$$y = f(y_{in}) = \begin{cases} 1 & jika \ y_{in} \ge 0 \\ -1 & jika \ y_{in} < 0 \end{cases}$$

2.5. Hitung error dan tentukan perubahan bobot

Jika y = target, maka tidak dilakukan perubahan bobot

Jika y ≠ target :

Untuk t = 1, ubah bobot ke unit z_j yang z_{in} nya terdekat dengan 0 (misal ke unit z_p) sebagai berikut:

$$b_p baru = b_p lama + \alpha (1 - z_{in p})$$

$$w_{pi}$$
 baru = w_{pi} lama + α (1 - z_{in_p}) x_i

Untuk t = -1, ubah semua bobot ke unit z_k yang z_m nya positip sebagai berikut:

$$b_k baru = b_k lama + \alpha (-1 - z_{in k})$$

$$w_{ki}$$
 baru = w_{ki} lama + α (-1 - z_{in_k}) x_i

Algoritma MADALINE

- Logika modifikasi bobot pada langkah 2.5 adalah sebagai berikut : Perhatikan MADALINE pada gambar. Jika $y \neq t$ dan t=1 (karena y bipolar berarti y=-1), maka f (net) di $z_1=z_2=-1$.
- Untuk mengenali pola, paling sedikit salah satu dari z tersebut harus dijadikan = 1. Bobot yang dimodifikasi adalah bobot ke unit z yang netnya paling dekat dengan 0.
- Misalkan unit z yang keluarannya terdekat dengan 0 adalah z_p . Maka bobot dan bias dimodifikasi menurut persamaan :

$$b_p$$
 baru = b_p lama + α (1 - z_{in_p})
 w_{pi} baru = w_{pi} lama + α (1 - z_{in_p}) x_i

Algoritma MADALINE

- Sebaliknya jika $y \neq t$ dan t = -1 (dengan kata lain y = 1), berarti minimal salah satu z memiliki f(net) = 1 (atau ada z yang netnya positip).
- Padahal semua z harus memiliki f(net) = -1. Maka bobot yang dimodifikasi adalah bobot yang netnya positip (misal unit z_k) menurut persamaan :

$$b_k baru = b_k lama + \alpha (-1 - z_{in_k})$$

 $w_{ki} baru = w_{ki} lama + \alpha (-1 - z_{in_k}) x_i$

Contoh:

Gunakan MADALINE mula-mula untuk mengenali pola fungsi logika "XOR" dengan 2 masukan x1 dan x2. Gunakan α = 0.5 dan toleransi = 0.1

Penyelesaian

Fungsi logika "XOR" memiliki pasangan masukan-target seperti yang tampak pada

tabel

Ması	ukan	Target
X ₁	X2	t
1	1	-1
1	-1	1
-1	1	1
-1	-1	-1

Contoh

• Inisialisasi dilakukan pada semua bobot ke unit tersembunyi dengan suatu bilangan acak kecil. Misalkan didapat hasil seperti pada tabel

	Ke unit tersembunyi		
Dari unit	z_1	\mathbf{z}_2	
x ₁	$W_{11} = 0.05$	$w_{21} = 0.1$	
X ₂	$W_{12} = 0.2$	$W_{22} = 0.2$	
bias	$b_1 = 0.3$	$b_2 = 0.15$	

• Bobot ke unit keluaran Y adalah : $v_1 = v_2 = b = 0.5$

Iterasi untuk pola ke-1

Masukan : x1 = 1, x2 = 1, t = -1

2.2 Hitung net untuk unit tersembunyi z1 dan z2:

$$z_{in_1} = b_1 + x_1 w_{11} + x_2 w_{12} = 0.3 + 1 (0.05) + 1 (0.2) = 0.55$$

$$z_{in_2} = b_2 + x_1 w_{21} + x_2 w_{22} = 0.15 + 1(0.1) + 1(0.2) = 0.45$$

2.3 Hitung keluaran unit tersembunyi z₁ dan z₂ menggunakan fungsi aktivasi bipolar. Didapat

$$z_1 = f(z_{in_1}) = 1$$
 dan $z_2 = f(z_{in_2}) = 1$

2.4 Tentukan keluaran jaringan Y:

$$v_{in} = b_3 + z_1 v_1 + z_2 v_2 = 0.5 + 1(0.5) + 1(0.5) = 1.5$$

Maka
$$y = f(y_{in}) = 1$$

2.5 t - y = -1 - 1 = -2 ≠ 0 dan t = -1. Maka semua bobot yang menghasilkan z_{in} yang positip dimodifikasi. Karena z_{in_1} > 0 dan z_{in_2} > 0, maka semua bobotnya dimodifikasi sebagai berikut:

Perubahan bobot ke unit tersembunyi z₁:

$$b_1 baru = b_1 lama + \alpha (-1 - z_{in_1}) = 0.3 + 0.5 (-1 - 0.55) = -0.475$$

$$w_{11}$$
 baru = w_{11} lama + α (-1 - z_{in_1}) x_1 = 0.05 + 0.5 (-1 - 0.55) = -0.725

$$w_{12}$$
 baru = w_{12} lama + α (-1 - z_{in_1}) x_2 = 0.2 + 0.5 (-1 - 0.55) = -0.575

Perubahan bobot ke unit tersembunyi z₂:

$$b_2 baru = b_2 lama + \alpha (-1 - z_{in,2}) = 0.15 + 0.5 (-1 - 0.45) = -0.575$$

$$w_{21}$$
 baru = w_{21} lama + α (-1 - z_{in_2}) x_1 = 0.1 + 0.5 (-1 - 0.45) = -0.625

$$w_{22}$$
 baru = w_{22} lama + α (-1 - z_{in_2}) x_2 = 0.2 + 0.5 (-1 - 0.45) = -0.525

Pengecekan perubahan nilai bobot :

	Bobot mula- mula	Bobot setelah iterasi	$ \Delta w $
b ₁	0.3	- 0.475	0.775
W11	0.05	- 0.725	0.73
W ₁₂	0.2	- 0.575	0.775
b_2	0.15	- 0.575	0.725
W ₂₁	0.1	- 0.625	0.725
W ₂₂	0.2	- 0.525	0.725

- Maksimum $\Delta w > 0.1$ maka iterasi akan dilanjutkan ke pola ke 2.
- Iterasi dilakukan untuk semua pola. Apabila ada perubahan bobot (Δw) yang masih lebih besar dari batas toleransi, maka iterasi dilanjutkan untuk epoch-2 dan seterusnya.

Tugas 2:

• Lanjutkan iterasi pada JST model Madaline untuk semua pola, jika maksimum $\Delta w>0.1$ lanjutkan ke epoch ke-2 untuk semua pola