

THIS PAGE IS INSERTED BY OIPE SCANNING

IMAGES WITHIN THIS DOCUMENT ARE BEST AVAILABLE COPY AND CONTAIN DEFECTIVE IMAGES SCANNED FROM ORIGINALS SUBMITTED BY THE APPLICANT.

DEFECTIVE IMAGES COULD INCLUDE BUT ARE NOT LIMITED TO:

BLACK BORDERS

TEXT CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT

ILLEGIBLE TEXT

SKEWED/SLANTED IMAGES

COLORED PHOTOS

BLACK OR VERY BLACK AND WHITE DARK PHOTOS

GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.
RESCANNING DOCUMENTS *WILL NOT*
CORRECT IMAGES.**

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Application No.	:	To Be Determined	Confirmation No. :
Applicant	:	Eberhard WEIHE, et al.	
Filed	:	March 24, 2004	
TC/A.U.	:	To Be Determined	
Examiner	:	To Be Determined	
Docket No.	:	029310.53352US	
Customer No.	:	23911	
Title	:	Screening Method for Various Indications Using BNPI and/or DNPI	

CLAIM FOR PRIORITY UNDER 35 U.S.C. §119

Mail Stop Patent Application
Director of the USPTO
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of prior foreign application Nos. DE 101 47 006.1 filed September 24, 2001, and DE 101 47 028.2 filed September 25, 2001, both filed in the Federal Republic of Germany, is hereby requested and the right of priority under 35 U.S.C. §119 is hereby claimed.

In support of this claim, duly certified copies of these foreign applications are submitted herewith.

Respectfully submitted,

J. D. Evans
Registration No. 26,269

Christopher T. McWhinney
Registration No. 42,875

CROWELL & MORING LLP
Intellectual Property Group
P.O. Box 14300
Washington, DC 20044-4300
Telephone No.: (202) 624-2500
Facsimile No.: (202) 628-8844

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 101 47 028.2
Anmeldetag: 25. September 2001
Anmelder/Inhaber: Grünenthal GmbH,
Aachen/DE
Bezeichnung: Screeningverfahren für verschiedene
Indikationen mit BNPI und/oder DNPI
IPC: C 12 Q 1/25

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. November 2003
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

A handwritten signature in black ink, appearing to read "Le.", which is likely the initials of the President of the German Patent and Trademark Office.

Stark

Patentanmeldung der Grünenthal GmbH, D-52078 Aachen
(eigenes Zeichen: GRA 3089)

Screeningverfahren für verschiedene Indikationen mit BNPI und/oder DNPI

5

DNPI

10

15

20

25

30

Die Erfindung betrifft ein Verfahren zur Auffindung pharmazeutisch wirksamer Substanzen unter Verwendung von BNPI und/oder DNPI bzw. davon abgeleiteter Biomoleküle und die Verwendung dadurch identifizierter Verbindungen, an BNPI und/oder DNPI bindender Wirkstoffe, gegen BNPI und/oder DNPI gerichteter Antikörper, von Antisensenukleotiden gegen BNPI und/oder DNPI, oder von BNPI und/oder DNPI bzw. Teilproteinen davon, bzw. entsprechenden Polynukleotiden zur Herstellung von Arzneimitteln zur Behandlung verschiedener Erkrankungen oder zu Therapie und Diagnostik.

Das Auffinden der Angriffsorte pharmazeutischer Wirkstoffe, der sogenannten „Targets“ ist eine der wichtigsten Aufgaben moderner Pharmaforschung. Über die Affinitäten an diesen Targets oder auch über die durch eine Wechselwirkung mit diesen Targets ausgelösten physiologischen Effekte lassen sich über sogenannte „Screeningverfahren“ aus der Vielzahl von bekannter Substanzen, beispielsweise aus den Substanzbibliotheken der pharmazeutischen Forschung, interessante Substanzen oder Substanzklassen herausfiltern, die in den mit diesem Target assoziierten Indikationen mit hoher Wahrscheinlichkeit wirksam sind. Zu den wichtigsten Vertretern dieser Targets gehören Proteine, im allgemeinen Rezeptoren, insbesondere G-Protein gekoppelte Rezeptoren, und Transportproteine. Die Auffindung dieser Targets gestaltet sich aber teilweise sehr schwierig, da die potentielle Auswahl sehr groß ist. Zur Orientierung und Identifizierung dienen zum einen Erkenntnisse über die (physiologische) Funktion mit der (potentiellen) Position in Signalkaskaden und Stoffwechselwegen zum anderen aber auch Lokalisation und

Expressionsgrad in den verschiedenen Geweben. Im Rahmen dieser Erfindung wurde dabei ein besonderes Augenmerk auf das zentrale Nervensystem gerichtet, wo es nicht nur auf eine generelle Lokalisation sondern auf eine sehr spezifische und präzise Verteilung in den verschiedenen Regionen ankommt.

Aufgabe der Erfindung war daher die Auffindung und Identifizierung eines oder mehrerer derartiger Targets, insbesondere mit zentralnervöser Lokalisation und Wirksamkeit, und die Entwicklung eines entsprechenden Screeningverfahrens. Die Erfindung betrifft daher ein Verfahren zur Auffindung pharmazeutisch relevanter Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien,
Depression, Schlaganfall, Hirntrauma, Querschnittslähmung,
amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation,
Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea
Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische
Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei
Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis,
Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen
oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob,
Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und
cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen
der Baroafferenz oder Chemoafferenz, Toxoplasmose, Asthma,
Autoimmunität im zentralen und peripheren Nervensystem,
diabetische Neuropathie, autoimmuner Diabetes, alkoholische
Neuropathie, HIV-Neuro-Aids; Störungen des autonomen
Nervensystems, Störungen des Nervensystems des
Verdauungstraktes, Übererregbarkeit, insbesondere
glutamatvermittelte Übererregbarkeit, Neurodegeneration

insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie; Encephalitis insbesondere virale oder bakterielle; Prionerkrankung, Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums, cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen des Pallidums, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen; Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Aggression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson

mit folgenden Verfahrensschritten:

- (a) Inkubation einer zu testenden Substanz unter geeigneten Bedingungen mit mindestens einem Biomolekül aus Gruppe I: dem Protein BNPI und/oder DNPI und/oder einem Protein gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder einem zu einem dieser vorgenannten Proteine zu mindestens 90 % ähnlichen Protein und/oder einem Protein, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 % ähnliches Polynukleotid kodiert, und/oder einem Protein, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder deren Antisense Polynukleotide bindet, oder einem mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilprotein eines der vorgenannten Proteine und/oder einer Zelle und/oder einer Präparation aus einer solchen Zelle, die mindestens eines der vorgenannten Proteine und Teilproteine, bzw. Biomoleküle, synthetisiert hat,
- (b) Messung der Bindung der Testsubstanz an dem oder den von der Zelle synthetisierten Protein/en und/oder Teilprotein/en oder Messung mindestens eines der durch die Bindung der Testsubstanz an das oder die Protein/e und/oder Teilprotein/e, bzw. Biomolekül/e veränderten funktionellen Parameter.

Dieses neue Screeningverfahren basiert darauf, daß hier eine potentielle medizinische Wirksamkeit einer Substanz über ihre Wechselwirkung mit mindestens einer physiologisch relevanten Protein- oder Peptidstruktur, einem Target, BNPI und/oder DNPI oder verwandten Strukturen, aufgefunden werden kann. BNPI und DNPI bzw. die davon abgeleiteten hier aufgezählten Proteine und Teilproteine bzw. Peptide oder für diese

kodierenden Nukleinsäuren wurden im Rahmen dieser Erfindung als interessante Targets identifiziert. Dabei zeigten BNPI und DNPI eine Lokalisation in den unterschiedlichsten ZNS-Bereichen, aber überraschenderweise - trotz teilweise engster Nachbarschaft - auch eine stets streng getrennte Lokalisation, wobei gerade diese strenge Trennung deutlich darauf hindeutet, daß über DNPI und BNPI wichtige physiologische Prozeße gesteuert werden. Da DNPI und BNPI auch in therapeutisch sehr interessanten Bereichen des ZNS lokalisiert sind und daher für eine entsprechende Vielzahl von Indikationen von Interesse sind, sind DNPI und BNPI entsprechend wichtige Targets, mit denen Screeningverfahren auf pharmakologisch wirksame Verbindungen durchgeführt werden können. Folglich ist auch bevorzugt, wenn in einem Screeningverfahren gleichzeitig BNPI und DNPI bzw. jeweils eines der davon abgeleiteten hier aufgezählten Proteine und Teilproteine bzw. Peptide oder eine für diese kodierende Nukleinsäure eingesetzt werden, oder das Ergebniss zweier getrennter Screeningverfahren einmal mit BNPI bzw. einem der davon abgeleiteten hier aufgezählten Proteine und Teilproteine bzw. Peptide oder einer für diese kodierenden Nukleinsäure und einmal mit DNPI bzw. einem der davon abgeleiteten hier aufgezählten Proteine und Teilproteine bzw. Peptide oder einer für diese kodierenden Nukleinsäure durchgeführt werden und in beiden Fällen durch differentiellen Abgleich der Daten optimiert pharmakologisch wirksame Substanzen identifiziert werden.

Dabei bezieht sich die Begriffe pharmazeutisch relevant oder pharmakologisch wirksam auf einen potentiell heilenden oder lindernden Einfluß der Substanz auf bestimmte Krankheitsbilder. Der Begriff Substanz umfaßt jede als Arzneimittel-Wirkstoff geeignete Verbindung, insbesondere also niedermolekulare Wirkstoffe, aber auch andere wie Nukleinsäuren, Fette, Zucker, Peptide oder Proteine wie Antikörper.

Die Inkubation unter geeigneten Bedingungen ist hier so zu verstehen, daß die zu untersuchende Substanz mit der Zelle oder der entsprechenden Präparation in einem wässrigen Medium eine definierte Zeit vor der Messung reagieren kann. Dabei kann das wässrige Medium temperiert werden, beispielsweise zwischen 4°C und 40°C, vorzugsweise bei Raumtemperatur oder bei 37°C. Die Inkubationszeit kann zwischen wenigen Sekunden und mehreren Stunden variiert werden, je nach der Wechselwirkung der Substanz mit dem Teilprotein oder Protein. Bevorzugt sind aber Zeiten zwischen 1 min und 60 min. Das wäßrige Medium kann geeignete Salze und/oder Puffersysteme enthalten, so daß bei der Inkubation beispielsweise ein pH zwischen 6 und 8, vorzugsweise pH 7,0 - 7,5 im Medium herrscht. Dem Medium können weiter geeignete Substanzen, wie Coenzyme, Nährstoffe etc. beigefügt werden. Die geeigneten Bedingungen können vom Fachmann in Abhängigkeit von der zu untersuchenden Wechselwirkung der Substanz mit dem Teilprotein oder Protein aufgrund seiner Erfahrung, der Literatur oder weniger, einfacher Vorversuche leicht festgelegt werden, um im Verfahren einen möglichst deutlichen Meßwert zu erhalten.

Eine Zelle, die ein bestimmtes Teilprotein oder Protein synthetisiert hat, ist eine Zelle, die dieses Teilprotein oder Protein bereits endogen exprimiert hat oder eine solche, die gentechnisch verändert wurden, so daß sie dieses Teilprotein oder Protein exprimiert und entsprechend vor Beginn des erfindungsgemäßen Verfahrens das Teilprotein oder Protein enthält.

Die Zellen können Zellen aus evtl. immortalisierten Zelllinien sein oder native aus Geweben stammende und aus diesen isolierte Zellen sein, wobei der Zellverband meist aufgelöst ist. Die Präparation aus diesen Zellen umfaßt insbesondere Homogenate aus den Zellen, das Cytosol, eine Membranfraktion der Zellen mit Membranfragmenten, eine Suspension isolierter Zellorganellen etc.

Aus welcher Spezies diese Proteine stammen, ist für die Funktion des Verfahrens unerheblich, es ist aber bevorzugt, die humane, Maus- oder Ratten-Variante zu verwenden. BNPI und DNPI sind in Hinblick auf die kodierende DNA- und die Aminosäure-Sequenz bekannt und auch in Ihrer generellen Funktion beschrieben. BNPI, der „brain Na⁺ dependent inorganic phosphate cotransporter“ ist in der WO 96/34288 beschrieben und der DNPI, der „differentiation-associated Na⁺ dependent inorganic phosphate Cotransporter“, wurde von Aihara et al. (2000) im J. Neurochem. 74, 2622-2625 beschrieben. Neben der Funktion als natriumabhängigen Phosphattransporter wurde für BNPI auch eine Funktion als vesikulärer Glutamat-Transporter beschrieben und BNPI als VGlutT1 bezeichnet (Bellocchio et al. (2000), Science 189:957-960; Takamori et al. (2000), Nature 407; 189-194).

Der Maßstab, über den das Verfahren die Auffindung interessanter Substanzen erlaubt, ist entweder die Bindung an das Biomolekül, das Protein oder Teilprotein, die z.B. durch Verdrängung eines bekannten Liganden oder das Ausmaß gebundener Substanz nachgewiesen werden kann, oder die Veränderung eines funktionellen Parameters durch die Wechselwirkung der Substanz mit dem Teilprotein oder Protein. Diese Wechselwirkung kann insbesondere in einer Regulation, Hemmung und/oder Aktivierung von Rezeptoren, Ionenkanälen und/oder Enzymen liegen und veränderte funktionelle Parameter können beispielsweise die Genexpression, das Ionenmilieus, der pH oder das Membranpotentials, bzw. die Veränderung der Enzymaktivität oder der Konzentration der 2nd messenger sein.

Zur Erläuterung der Erfindung werden im folgenden neben den im allgemeinen Text zu Begriffen gegebenen Erklärungen weitere Definitionen angegeben, um klarzustellen, wie bestimmte, insbesondere in den Ansprüchen verwendete Begriffe im Sinne dieser Erfindung zu verstehen und auszulegen sind.

- **Substanz**: Damit ist eine chemische Verbindung gemeint. Hier handelt es sich im engeren Sinne um Verbindungen, die potentiell eine Wirkung im Körper entfalten können, niedermolekulare Wirkstoffe, Nukleinsäuren, Fette, Zucker, Peptide oder Proteine, insbesondere hier niedermolekulare Wirkstoffe.
- **pharmazeutisch relevante Substanz**: Im Sinne der Erfindung ist eine pharmazeutisch relevante Substanz eine Substanz, die über die Bindung an die Biomoleküle der Gruppen I bis III in wenigstens einer der genannten Indikationen wirksam sein könnte und theoretisch das Potential besitzt, physiologisch die Symptome direkt oder indirekt zu beeinflussen, insbesondere so erscheint, als könne sie therapeutisch, beispielsweise in einem Arzneimittel, eingesetzt werden.
- **schmerzregulierend**: Im Sinne der Erfindung heißt schmerzregulierend, daß die Substanz die Wahrnehmung von Schmerz direkt oder indirekt beeinflußt, insbesondere natürlich analgetisch wirkt.
- **Schmerz**: Im Sinne der Erfindung bedeutet Schmerz insbesondere ein Schmerzempfinden, präziser akuter, chronischer, neuropathischer und entzündlicher Schmerz inclusive Migräne, insbesondere ist der Schmerz zugehörig zu folgenden Arten:
 - chronischem Schmerz, insbesondere muskuloskelettalem Schmerz; neuropathischem Schmerz, insbesondere allodynischem Schmerz, mechanischer Hyperalgesie oder diabetischer Neuropathie; viszeralem Schmerz, cerebralem Schmerz, peripherem Schmerz oder entzündungsbedingtem Schmerz, insbesondere peripherem Entzündungsschmerz; sowie Migräne, Cluster-Kopfschmerz oder den Schmerz bei Trigeminus Neuralgie.

- Inkubation: Unter Inkubation ist das Einbringen und Belassen eines biologischen Untersuchungsobjektes, beispielsweise einer Zelle oder eines Proteins, in einem temperierten Medium wie in einem Brutschrank oder auf einem Wasserbad zu verstehen. Dabei heißt hier unter geeigneten Bedingungen eine Inkubation unter physiologischen Bedingungen (z.B. 37°C pH7,2) oder bei den Bedingungen, bei denen eine optimale Messung im Verfahren möglich wird.
- 5
- Zelle: Die Zelle ist ein sich selbst regulierendes, offenes, mit seiner Umgebung durch permanenten Stoffaustausch in einem Fließgleichgewicht stehendes System mit eigenem Stoffwechsel, und Vermehrungsfähigkeit. Die Zelle kann separat kultiviert oder Teil eines Gewebes, insbesondere aus einem Organ, sein, und dort vereinzelt oder noch im Zellverband vorliegen.
- 10
- Präparation aus einer Zelle: Darunter versteht man Präparate, die mittels chemischer, biologischer, mechanischer oder physikalischer Methoden unter Änderung der Zellstruktur hergestellt werden, beispielsweise Membranfragmente, isolierte Zellkompartimente, isoliertes Cytosol, oder aus Gewebe gewonnenes Homogenat.
- 15
- Peptid: Verbindung aus über peptidische Bindungen zu Ketten verknüpften Aminosäuren. Ein Oligopeptid besteht aus zwischen 2 und 9 Aminosäuren, ein Polypeptid aus zwischen 10 und 100 Aminosäuren.
- 20
- Protein: Verbindung aus über peptidische Bindungen zu Ketten verknüpften mehr als 100 Aminosäuren u.U. mit einer definierten Raumstruktur.
- 25
- Teilprotein: Verbindung aus über peptidische Bindungen zu Ketten verknüpften mehr als 10 Aminosäuren u.U. mit einer definierten
- 30

Raumstruktur aber ausgeschnitten bzw. ausgewählt aus einem definierten Protein. Ein Teilprotein kann ein Peptid sein.

- **PIM1-Kinase; PIM3-Kinase:** Ein Proto-Oncogen und eine Serin-Threonin-Kinase.

- 5
- **Polynukleotid:** Das zugrundeliegende Nukleotid ist ein grundsätzlich aus Nucleinbase, Pentose und Phosphorsäure bestehender Grundbaustein der Nucleinsäuren. Diese entspricht einem hochmolekularen Polynucleotid aus mehreren Nukleotiden, die über Phosphorsäure-Pentose-Veresterung miteinander verknüpft sind. Unter dieser Erfindung fallen aber auch modifizierte Polynukleotide, die zwar die Basenabfolge beibehalten, aber über ein modifiziertes Rückrat statt der Phosphorsäure-Pentose verfügen.

10

- **zu mindestens 90 (95, 97)% ähnlich:** Darunter ist zu verstehen, daß die mit erfaßten Polynucleotide in ihrem kodierenden Bereich bezüglich der Basenabfolge zu mindestens 90% (95%, 97%) identisch mit der Referenz (Abbildung etc.) sind und die mit erfaßten Peptide und Proteine in ihrer Primärstruktur, der Abfolge der Aminosäuren zu mindestens 90% (95%, 97%) mit der Referenz identisch sind.

15

- 20
- **Gen:** Mit dem Begriff Gen wird ein Genomabschnitt mit einer definierten Nukleotidsequenz bezeichnet, der die Information zur Synthese einer m- oder prä-mRNA oder einer sonstigen RNA (z.B. tRNA, rRNA, snRNA etc.) enthält. Es besteht aus kodierenden und nicht kodierenden Abschnitten.
 - **Genfragment:** Nukleinsäureabschnitt, der in seiner Basenabfolge einen Teilbereich eines Gens beinhaltet

25

30

- Biomolekül: Allgemeiner Begriff für Nukleinsäuren oder Polyaminoäuren, insbesondere auch DNA, RNA, Peptide (Teilproteine) und Proteine, wobei diese Moleküle auch künstlich verändert sein dürfen. Im Sinne dieser Erfindung vorzugsweise Peptide (Teilproteine) und Proteine.
- 5
- Bindung an das Peptid, Teilprotein oder Protein: Wechselwirkung zwischen Substanz und Peptid, Teilprotein oder Protein, die zu Fixierung führt.
- 10
- funktionelle Parameter: darunter versteht man Meßgrößen eines Experimentes, die mit der Funktion eines Proteins (Ionenkanal, Rezeptor, Enzym) korrelieren
- 15
- gentechnisch manipuliert: Manipulation von Zellen, Geweben oder Organismen derart, daß hier genetisches Material eingebracht wird
- 20
- endogen exprimiert: Expression eines Proteins, die eine Zelllinie unter geeigneten Kulturbedingungen aufweist, ohne das dieses entsprechende Protein durch gentechnische Manipulation zur Expression veranlasst wurde
- 25
- G-Protein: International übliche Abkürzung für ein Gunaosintriphosphat (GTP)-bindendes Protein, das als Signalprotein durch G-Protein gekoppelte Rezeptoren aktiviert wird
- 30
- Reportergen: Generelle Bezeichnung für Gene, deren Genprodukte sich mit Hilfe einfacher biochemischer Methoden oder histochemischer Methoden einfach nachweisen lassen, wie z.B. Luziferase, alkalische Phosphatase oder Green Fluorescent Protein (GFP).

- **(rekombinantes) DNA-Konstrukt:** Generelle Bezeichnung für jede Art von DNA-Molekülen, die durch die in vitro-Verknüpfung von DNA-Molekülen entstanden sind.

- 5 - **Klonierungsvektor:** Generelle Bezeichnung für Nukleinsäure-Moleküle, die beim Klonieren als Träger von Fremdgenen oder Teilen dieser Gene dienen.

- 10 - **Expressionsvektor:** Bezeichnung für speziell konstruierte Klonierungsvektoren, die nach Einbringen in eine geeignete Wirtszelle die Transcription und Translation des in den Vektor einklonierten Fremdgens erlauben.

- 15 - **LTR-Sequenz:** Abkürzung für Long terminal repeat. Generelle Bezeichnung für längere Sequenzbereiche, die an beiden Enden eines linearen Genoms zu finden sind. Derartige Sequenzbereiche kommen z.B. in den Genomen von Retroviren und an den Enden eukaryontischer Transposons vor.

- 20 - **Poly-A-Schwanz:** die am 3'-Ende von messenger-RNAs durch Polyadenylierung angehefteten Adenyl-Reste (ca. 20-250).

- 25 - **Promotor-Sequenz:** Bezeichnung für einen DNA-Sequenzbereich, von dem aus die Transkription eines Gens, d.h. die Synthese der mRNA, gesteuert wird.

- **ORI-Sequenz:** Abkürzung für Origin of replication. Die ORI-Sequenz erlaubt einem DNA-Molekül, sich als autonome Einheit in der Zelle zu vermehren.

30

- Enhancer-Sequenz: Bezeichnung für relativ kurze, zum Teil als Repetitionen auftretende, genetische Elemente, die in der Regel die Expression mancher Gene in unterschiedlichem Maße verstärken.
- 5 - Transkriptionsfaktor: Bezeichnung für ein Protein, das über eine Bindung an spezifische DNA-Sequenzen, die Transkription eines Gens beeinflußt.
- 10 - kultivieren: Zellen oder Gewebe unter geeigneten Kulturbedingungen halten
- 15 - Bedingungen, die eine Expression erlauben, darunter versteht man die Auswahl und Anwendung von Kulturbedingungen die eine Expression des interessierenden Proteins erlauben, darunter gehören Temperaturänderung, Mediumwechsel, Zusatz von induzierenden Substanzen, Weglassen hemmender Substanzen.
- 20 - Inkubationszeit: Zeitdauer für die Zellen oder Gewebe inkubiert, d.h. einer definierten Temperatur ausgesetzt werden.
- 25 - Selektionsdruck: Anwendungen von Kulturbedingungen die Zellen mit einem bestimmtem Genprodukt, dem sog. Selektionsmarker, einen Wachstumsvorteil verschaffen.
- 30 - Amphibienzelle, Zelle aus einem Tier der Klasse der Amphibia
- Bakterienzelle, Zelle die dem Überreich der Eubacteria oder Archaeabacteria zuzuordnen ist, oder von ihr abstammt.
- Hefezelle, Zelle die der Ordnung der Endomycetalse zuzuordnen ist, oder von ihr abstammt.

- Insektenzelle, Zelle die der Ordnung der Hexapoda zuzuordnen ist, oder von ihr abstammt.
- 5
- native Säugetierzelle, aus einem Säugetier stammende Zelle, die in ihren relevanten Merkmalen der im Organismus befindlichen Zelle entspricht.
- 10
- immortalisierte Säugetierzelle: Zelle die durch die angewendeten Kulturbedingungen oder gentechnische Manipulation die Eigenschaft erlangt hat, sich über die normalerweise übliche Teilungshäufigkeit hinaus (ca.100) in der Kultur zu teilen.
- 15
- markiert: durch entsprechende Modifizierung oder Derivatisierung für eine Nachweisreaktion zugänglich gemacht. Beispielsweise radioaktiv, fluoreszierend oder lumineszierend.
- 20
- Ligand: Substanz, die an ein im Körper oder einer Zelle befindliches Molekül, im speziellen einen Rezeptor, bindet
- 25
- Verdrängung: vollständiges oder partielles Entfernen eines Liganden von seiner Bindungsstelle
 - gebundene Aktivität: Biochemisch oder physikalisch erfaßter Meßwert, der mit der an einem Rezeptor gebundenen Ligandenmenge korreliert
- 30
- Regulation: die als Teil eines Regelprozesse erfolgte Hemmung oder Aktivierung eines Vorgangs
 - Hemmung: als Sonderfall der Regulation die Verhinderung/Minderung eines Vorgangs

- Aktivierung: als Sonderfall der Regulation die Verstärkung eines Vorgangs
 - Rezeptoren, im weitesten Sinne alle im pro- oder eukaryotischen Organismus vorhandenen Moleküle, an die ein Wirkstoff binden kann. Im engeren Sinne membrangebundene Proteine oder Komplexe mehrerer Proteine, die durch Bindung eines Wirkstoffs eine Änderung in der Zelle hervorrufen.
- 5
- Ionenkanäle: Membrangebundene Proteine oder Komplexe mehrerer Proteine, durch die Kationen oder Anionen durch die Membran hindurchgelangen können.
- 10
- Enzyme: Bezeichnung für Proteine oder Komplexe aus einer aktivierenden Nichteiweißkomponente mit einem Protein, die katalytische Eigenschaften besitzen.
- 15
- Genexpression (exprimieren/exprimierbar): das Übersetzen der genetischen Information eines Genes in RNA (RNA-Expression) oder in Protein (Proteinexpression).
- 20
- Ionenmilieu: Ionenkonzentration eines oder mehrerer Ionen in einem bestimmten Kompartiment.
- 25
- Membranpotential: Spannungsdifferenz über eine Membran aufgrund eines Überschusses an Kationen auf der einen Seite und Anionen auf der anderen Seite der Membran.
- 30
- Veränderung der Enzymaktivität: Hemmung oder Induktion der katalytischen Aktivität eines Enzyms.

- 2nd messenger: kleines Molekül, das als Antwort auf ein extrazelluläres Signal entweder im Cytosol gebildet wird oder in das Cytosol hineinwandert und dabei hilft die Information an das Zellinnere weiterzugeben, wie zum Beispiel cAMP, IP₃.

5

- (Gen-)Sonde: Bezeichnung für jede Art von Nukleinsäuren, mit deren Hilfe man ein gesuchtes Gen oder eine bestimmte DNA-Sequenz nachweisen kann. Durch Derivatisierung der Gensonde (z.B. Biotin, magnetische Beads, Digoxinin) können zudem DNA-Moleküle aus einem Gemisch herausgezogen werden. Als Sonden werden klonierte Gene, Genfragmente, chemisch synthetisierte Oligonukleotide und auch RNA verwendet, die meist radioaktiv markiert ist.

10

- DNA: Internationale Bezeichnung für Desoxyribonukleinsäure

15

- genomische DNA: Generelle Bezeichnung für die bei eukaryontischen Organismen aus dem Zellkern einer Zelle stammenden DNA.

20

- cDNA: Abkürzung für complementary DNA. Bezeichnung für die einzel- bzw. doppelsträngige DNA-Kopie eines RNA-Moleküls.

25

- cDNA-Bank/Bibliothek: Bezeichnung für eine Sammlung von willkürlich klonierten cDNA-Fragmenten, die zusammengenommen die Gesamtheit aller von einer Zelle oder einem Gewebe synthetisierten RNA repräsentieren.

- cDNA-Klon: Bezeichnung für eine Population genetisch einheitlicher Zellen, die sich von einer einzigen Zelle ableiten, derart, daß diese Zelle eine künstlich eingebrachtes cDNA-Fragment enthält.

30

- Hybridisierung: Durch Basenpaarung bewirkte Ausbildung eines doppelsträngigen Nukleinsäuremoleküls aus zwei getrennten Einzelsträngen.
- 5 - stringente Bedingungen: Bedingungen, unter denen nur perfekt basengepaarte Nukleinsäure-Stränge gebildet werden und stabil bleiben.
- 10 - isolieren: ein gesuchtes Molekül aus einem Gemisch herausfinden und abtrennen.
- 15 - DNA-Sequenzierung: Bestimmung der Abfolge der von Basen in einem DNA-Molekül.
- 20 - Nukleinsäuresequenz: Bezeichnung für die Primärstruktur eines DNA-Moleküls, d.h. die Abfolge der einzelnen Basen, aus denen sich eine DNA zusammensetzt.
- 25 - Genspezifische Oligonukleotid Primer: Oligonukleinsäuren, also 10-40 Basen lange Nukleinsäurefragmente, die in ihrer Basenzusammensetzung eine stringente Hybridisierung an das gesuchte Gen oder die gesuchte cDNA erlauben.
- 30 - Ermitteln von Oligonukleotid Primern: Die manuelle oder Computerunterstützte Suche von Oligonukleotiden zu einer vorgegebenen DNA-Sequenz, die für eine Hybridisierung und/oder eine Polymerase-Ketten Reaktion optimal geeignet sind.
- PCR: Abkürzung für Polymerase-Kettenreaktion. In vitro-Verfahren zur selektiven Anreicherung von Nucleinsäure-Bereichen definierter Länge und definierter Sequenz aus einem Gemisch von Nukleinsäure-Molekülen.

- DNA-Template: Nukleinsäuremolekül oder ein Gemisch von Nukleinsäuremolekülen, aus denen ein DNA-Abschnitt mit Hilfe der PCR (s.o.) vervielfältigt wird.
- 5
- RNA: International gebräuchliche Abkürzung für Ribonukleinsäuren
- 10
- mRNA: International gebräuchliche Abkürzung für messenger-Ribonukleinsäuren, die am Transfer der genetischen Information aus dem Kern in die Zelle beteiligt sind und die Information für die Synthese eines Polypeptids oder eines Proteins beinhalten.
- 15
- Antisense Polynukleotid: Eine aus mehreren natürlichen oder modifizierten Nukleinsäuren bestehendes Molekül, deren Basenabfolge komplementär zur Basenabfolge eines Teilbereiches einer in der Natur vorkommenden RNA ist.
- 20
- PNA: International gebräuchliche Abkürzung für peptidic Nucleic Acids. Hierbei bilden peptidisch verknüpfte Aminosäuren eine Kette, wobei die Aminosäuren als Seitenkette eine für die Hybridisierung mit DNA oder RNA fähigen Base trägt.
- 25
- Sequenz: Abfolge von Nukleotiden oder Aminosäuren. Im spezifischen Sinne dieser Erfindung ist damit die Nukleinsäuresequenz gemeint.
- 30
- Ribozym: Bezeichnung für eine katalytisch aktive Ribonukleinsäure (z.B. Ligase, Endonuklease, Polymerase, Exonuklease)
 - DNA-Enzym: Bezeichnung für ein DNA-Molekül, das katalytische Aktivität beinhaltet (z.B. Ligase, Endonuklease, Polymerase, Exonuklease)

- katalytische RNA/DNA: generelle Bezeichnung für Ribozyme bzw. DNA-Enzyme (s.o.).
- 5
- Adenovirus: bei Vertebraten vorkommender cytopathogener Virus
- 10
- Adenoassoziiertes Virus (AAV): Gehört zur Familie der Parvoviren. Für eine effektive Vermehrung des AAV ist eine Coinfektion der Wirtszellen mit Helferviren (z.B. Herpes-, Vaccina- oder Adenoviren) erforderlich. Die Eigenschaft von AAV, stabil in das Wirtsgenom zu integrieren, macht es als Transduktionsvektor für Säugetierzellen besonders interessant.
- 15
- Herpesvirus: Viraler Erreger der Herpes-Infektion
- 20
- posttranskriptionale Modifikation: Veränderung an Proteinen oder Polypeptiden, die nach der Transkription durchgeführt wird, hierzu zählen z.B. Phosphorylierung, Glykosylierung, Amidierung, Acetylierung oder Proteolyse.
- 25
- glykosilieren: Bezeichnung für das Anhängen von einzelnen Zuckermolekülen oder ganzen Zuckerketten an Proteine.
 - phosphorylieren: Bezeichnung für das Anhängen von einem oder mehreren Phosphatresten an ein Protein, bevorzugt an die OH-Gruppen der Aminosäuren Serin, Threonin oder Tyrosin.
- 30
- amidieren: Die Bezeichnung für das Umwandeln einer Carboxylfunktion in eine Amidfunktion, z.B. an den carboxyterminalen Aminosäurerest eines Peptides oder Proteins.
 - mit Membrananker versehen: Posttranskriptionelle Modifikation eines Proteins, oder eines anderen organischen Moleküls, derart daß es

durch Anhängen eines hydrophoben Moleküls, geeigneterweise eine Fettsäure oder ein Derivat derselben, an die Lipiddoppelschicht-Membran von Zellen verankert wird.

- 5 - spalten: in diesem spezifischen Fall die Spaltung eines Peptids oder Proteins in mehrere Untersequenzen.

- verkürzen: Ein aus mehreren Einzelteilen bestehendes Molekül um eine oder mehrere Teile zu verkürzen.

10

- Antikörper: Lösliche, oder an Zellmembranen gebundene, als Immunglobuline bezeichnete Proteine mit einer spezifischen Bindungsstelle für Antigene.

15

- monoklonaler Antikörper: sind gegen eine einzige antigene Determinante eines Antigens gerichtete Antikörper mit extrem hoher Selektivität

20

- polyklonaler Antikörper: Gemisch aus Antikörpern, die gegen mehrere Determinanten eines Antigens gerichtet sind.

- transgen: genetisch verändert

25

- nichthumanes Säugetier: Die Gesamtheit der Säugetiere (Klasse der Mammalia) mit Ausnahme der Spezies Mensch.

- Keim-Zelle: Zelle mit haploidem Genom, die durch Verschmelzung mit einer zweiten Keimzelle die Bildung eines neuen Organismus ermöglicht.

30

- somatische Zelle: diploide Zelle als Bestandteil eines Organismus

- chromosomale Einbringung: Eingriff in die Nukleotidsequenz auf chromosomaler Ebene

 - Genom: Allgemeine Beschreibung für die Gesamtheit aller Gene in einem Organismus

 - Vorfahr des Tieres: Ein Tier (der Vorfahr), das auf natürliche oder künstliche Weise durch Weitergabe an seinem genetischen Material in direkter Linie mit einem anderen Tier (dem Nachfahren) verwandt ist.
- 10
- exprimierbar: Ein Nukleinsäuremolekül ist dann exprimierbar, wenn es die Information zur Synthese eines Proteins oder Polypeptids beinhaltet und mit entsprechenden regulatorischen Sequenzen versehen ist, die eine Synthese dieses Proteins oder Polypeptids *in vitro* oder *in vivo* erlauben. Wenn diese Voraussetzungen nicht mehr gegeben sind, beispielsweise durch Eingriff in der kodierenden Sequenz, ist das Nukleinsäuremolekül nicht mehr exprimierbar.
- 15
- Nagetier: Tier aus der Ordnung der Rodentia, z.B. Ratte oder Maus
- 20
- als schmerzregulierende Substanz identifizierbar: Substanz die bei Einbringung in einen lebenden Organismus eine Verhaltensänderung bewirkt, die der Fachmann als schmerzhemmend bezeichnet (antinozizeptiv, antihyperalgetisch oder antiallodynisch). Im Falle des Screeningverfahrens bezieht sich das darauf, daß die Substanz beim Screening durch stärkere Bindung oder Auslösung einer Änderung eines funktionellen Parameters deutlich, beispielsweise 100 %, die Bindung oder Wechselwirkung des Durchschnitts der getesteten Substanzen übertrifft.
- 25
- 30

- Verbindung: ein anderer Name für Molekül, als aus mehreren Atomen bestehend, hier ein durch das erfindungsgemäße Verfahren identifiziertes Molekül.
- 5 - Wirkstoff: Eine Verbindung, die bei Anwendung an einem Organismus eine Veränderung in diesem Organismus hervorruft. Im Besonderen werden darunter organisch-chemisch synthetisierte Moleküle verstanden, die auf den Organismus eine heilende Wirkung ausüben. Hier insbesondere Moleküle, die an die erfindungsgemäßen Proteine und Peptide binden.
- 10 - niedermolekular: Molekül mit einem Molekulargewicht < 2kDa
- 15 - Arzneimittel: ein Stoff entsprechend der Definition im Artikel 1 §2 des Gesetzes über den Verkehr mit Arzneimitteln
- 20 - Diagnostikum: Verbindung oder Verfahren, das verwendet werden kann, um eine Krankheit zu diagnostizieren
- 25 - Behandlung von Schmerz: Verfahren, mit dem Ziel Schmerzen zu lindern oder aufzuheben, oder das zu erwartende Auftreten von Schmerzen zu hemmen (preemptive Analgesie).
- 30 - chronischer Schmerz: eine Schmerzempfindung von länger anhaltender Dauer, oft dadurch gekennzeichnet, daß sie über Zeitpunkt und Ort des initialen Stimulus hinausreicht, die Schmerzempfindlichkeit des Körpers steigert.
- 35 - Gentherapie: Unter Gentherapie versteht man alle Verfahren, die das Ziel haben, genetische Erkrankungen durch geeignete Veränderungen des Genoms kausal zu behandeln.

- In-vivo-Gentherapie: Einbringen von genetischem Material in den lebenden Organismus mit dem Ziel der Gentherapie. Man kann zwischen somatischem und Keimbahn-Eingriff unterscheiden, der einmal an diploiden Zellen und einmal an haploiden Zellen stattfindet.

5

- In-vitro-Gentherapie: Einbringen von genetischem Material in Zellen außerhalb des menschlichen Körpers mit dem Ziel diese nachher wieder durch Einbringen in den menschlichen Körper zur Gentherapie zur verwenden.

10

- Diagnostik: Verfahren, um eine Krankheit zu identifizieren.
- Wirksamkeitsuntersuchung: Untersuchung mit dem Ziel die Wirksamkeit einer Verbindung nach Einwirkung auf einen lebenden Organismus zu untersuchen.

15

In einer bevorzugten Ausführungsform des Verfahrens wird die Zelle vor dem Schritt (a) gentechnisch manipuliert. Dabei wird genetisches Material in die Zelle eingebracht, insbesondere eine oder mehrere Polynukleotidsequenzen. In einer weiter bevorzugten Variante dieser Ausführungsform erlaubt die gentechnische Manipulation die Messung mindestens eines der durch die Testsubstanz veränderten funktionellen Parameter. In dieser Ausführungsform werden durch gentechnische Manipulation Voraussetzungen geschaffen unter denen die Veränderung eines funktionellen Parameters überhaupt oder verbessert gemessen werden kann. Dabei ist es insbesondere bevorzugt, daß durch die gentechnische Manipulation eine in der Zelle nicht endogen exprimierte Form eines G-Proteins exprimiert oder ein Reportergen eingeführt wird. Darunter ist insbesondere die gentechnische Einführung eines endogen nicht vorhandenen oder physiologisch nicht exprimierten G-Proteins (GTP-bindenden Proteins) in die Zelle zu verstehen, beispielsweise die Einführung eines chimären G-Proteins, das eine Veränderung des

Signalweges erlaubt oder eines promiskuitiven G-Proteins, das sehr bindungsfreudig ist. Die Einführung eines Reportergens wiederum erlaubt die Messung einer (extrazellulär ausgelösten) induzierten Expression des Genproduktes.

5

In einer weiteren bevorzugten Ausführungsform wird die Zelle gentechnisch so manipuliert wird, daß die Zelle mindestens ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise zu mindestens 95 %, insbesondere zu mindestens 97 % ähnliches Polynukleotid enthält. Damit kann beispielsweise erreicht werden, daß ein Teilprotein oder Protein, das in der im Verfahren verwendeten Zelle oder Präparation nicht endogen exprimiert wird, von der Zelle synthetisiert wird. Dabei ist es insbesondere bevorzugt, wenn das Polynukleotid in einem rekombinanten DNA-Konstrukt enthalten ist. Unter einem (rekombinanten) DNA-Konstrukt versteht man ein in-vitro hergestelltes DNA-Molekül.

10

Wenn beim Verfahren vor dem Schritt a) die Zelle gentechnisch manipuliert wird, ist es bevorzugt, daß die Zelle nach der gentechnischen Manipulation und vor dem Schritt (a) unter Bedingungen, die eine Expression erlauben, kultiviert wird, gegebenenfalls unter Selektionsdruck. Unter kultivieren versteht man, Zellen oder Gewebe bei Bedingungen, die ein Überleben der Zellen, bzw. deren Nachfolgegeneration sichern, zu halten. Dabei sollten die Bedingungen hier so gewählt werden, daß eine Expression des durch die gentechnische Manipulation eingefügten Materials ermöglicht wird. Dazu sollten pH, Sauerstoffgehalt, und Temperatur physiologisch gehalten sein und ausreichend Nährstoffe und notwendige Cofaktoren beigefügt sein. Der Selektionsdruck erlaubt, nur die Zellen weiter zu kultivieren, bei denen die gentechnische Manipulation zumindest teilweise erfolgreich war. Dazu gehört beispielsweise die Einführung einer Antibiotikaresistenz über das DNA-Konstrukt.

Es ist bei dem erfindungsgemäßen Verfahren besonders bevorzugt, wenn die verwendete Zelle eine Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder eine immortalisierte oder native Säugetierzelle ist. Beispiele für Amphibienzellen sind Xenopus Oocyten, für Bakterienzellen 5 E-coli-Zellen, für Hefezellen auch Saccharomyces cerevisiae, für Insektenzellen Sf9-Zellen, für immortalisierte Säugetierzelle HeLa-Zellen und für native Säugetierzellen die CHO (Chinese Hamster Ovary)-Zelle.

Bei einer bevorzugten Meßmethode zur Feststellung der Bindung der 10 Substanz an Teilprotein oder Protein im erfindungsgemäßen Verfahren erfolgt die Messung der Bindung über die Verdrängung eines bekannten markierten Liganden vom Teilprotein oder Protein und/oder über die daran gebundene Aktivität einer markierten Testsubstanz. Dabei ist ein Ligand 15 ein mit hoher Spezifität an das Protein oder Teilprotein bindendes Molekül, das durch eine ebenfalls bindende, zu testende Substanz aus der Bindungsstelle verdrängt wird. Unter Markierung ist eine den Nachweis erleichternde künstliche Modifikation am Molekül zu verstehen. Beispiele sind radioaktive, fluoreszierende oder lumineszierende Markierung.

Bei einer anderen bevorzugten Meßmethode zur Feststellung der durch die Bindung der Substanz an Teilprotein oder Protein im erfindungsgemäßen 20 Verfahren ausgelösten Veränderung der funktionellen Parameter, erfolgt die Messung mindestens eines der durch die Testsubstanz veränderten funktionellen Parameter über Messung der Regulation, Hemmung und/oder 25 Aktivierung von Rezeptoren, Ionenkanälen und/oder Enzymen, insbesondere über Messung der Veränderung der Genexpression, des Ionenmilieus, des pH oder des Membranpotentials, über Veränderung der Enzymaktivität oder der Konzentration der 2nd messenger. Damit ist auf der einen Seite direkt die Messung der Wirkung der Substanz über die 30 Beeinflussung von Rezeptoren, Ionenkanälen und/oder Enzymen erfaßt, auf der anderen Seite als bevorzugt zu messende Beispiele sich ändernder Parameter wie Genexpression, Ionenmilieu, pH, Membranpotential,

Enzymaktivität oder Konzentration der 2nd messenger. Dabei versteht man unter Ionenmilieu insbesondere die Konzentration eines oder mehrer Ionen in einem Zellkompartiment, insbesondere dem Cytosol, unter Membranpotential die Ladungsdifferenz zwischen zwei Seiten einer Biomembran und unter 2nd messenger Botenstoffe des intrazellulären Signalwegs wie z.B. zyklisches AMP (cAMP), Inositoltriphosphat (IP3) oder Diacylglycerol (DAG).

Ein besonders bevorzugter Gegenstand der Erfindung ist ein erfindungsgemäßes Verfahren, bei dem ein erstes erfindungsgemäßes Verfahren mit einem zweiten erfindungsgemäßem Verfahren derart gekoppelt wird, daß die Meßwerte und Ergebnisse des ersten Verfahrens hinsichtlich der zu messenden Substanz mit den Meßwerten und Ergebnissen des zweiten Verfahrens hinsichtlich der zu messenden Substanz verglichen werden, dadurch gekennzeichnet, daß in einem der zwei Verfahren, im folgenden Hauptverfahren genannt, im Schritt (a) die zu testende Substanz

entweder

mit einem Biomolekül aus Gruppe II: dem Protein BNPI und/oder einem Protein gemäß einer der Abbildungen 1b), 1d) oder 1f) und/oder einem zu einem dieser vorgenannten Proteine zu mindestens 90 % ähnlichen Protein und/oder einem Protein, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c) oder 1e) oder ein dazu zu mindestens 90 % ähnlichen Polynukleotid kodiert, und/oder einem Protein, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c) oder 1e) oder deren Antisense Polynukleotide bindet, oder einem mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilprotein eines der vorgenannten Proteine und/oder einer Zelle

und/oder einer Präparation aus einer solchen Zelle, die mindestens eines der vorgenannten Proteine und/oder Teilproteine synthetisiert hat,

5 oder

mit einem Biomolekül aus Gruppe III: dem Protein DNPI und/oder einem Protein gemäß einer der Abbildungen 2b) oder 2d) und/oder einem zu einem dieser vorgenannten Proteine zu mindestens 90 % ähnlichen Protein und/oder einem Protein, für das ein Polynukleotid gemäß einer der Abbildungen 2a) oder 2c) oder ein dazu zu mindestens 90 % ähnliches Polynukleotid kodiert, und/oder einem Protein, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 2a) oder 2c) oder deren Antisense Polynukleotide bindet, oder einem mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilprotein eines der vorgenannten Proteine und/oder einer Zelle und/oder einer Präparation aus einer solchen Zelle, die mindestens eines der vorgenannten Proteine und/oder Teilproteine synthetisiert hat, inkubiert wird,

und

25 daß im anderen der zwei Verfahren, im folgenden Nebenverfahren genannt, im Schritt (a) die zu testende Substanz mit einem Biomolekül aus der Gruppe I oder mit einem Biomolekül aus derjenigen Gruppe ausgewählt aus Gruppe II und Gruppe III inkubiert wird, aus der das Biomolekül, mit der die Substanz im Hauptverfahren inkubiert wird, nicht ausgewählt ist.

Unter dieser besonders bevorzugten Ausführungsform ist insbesondere die Kombination der Messung der Bindung an BNPI oder davon abgeleiteten Biomolekülen oder der Messung der daraus entstehenden Modifikation zellulärer Parameter auf der einen und der Bindung an DNPI und jeweils davon abgeleiteten Biomolekülen oder der Messung der daraus entstehenden Modifikation zellulärer Parameter auf der anderen Seite zu verstehen, da gerade ein Vergleich angesichts der vollkommen getrennten aber eng aneinanderliegenden Verteilung der beiden Kanäle im Gewebe einen wichtigen Aufschluß über physiologische Funktionen geben kann.

5 Damit erlaubt aber der differentielle Abgleich der Daten die Identifizierung optimiert pharmazeutisch bzw. medizinisch wirksamer Substanzen.

Weiter bevorzugt ist ein erfindungsgemäßes Verfahren worin die aufzufindenden Substanzen ausgewählt sind aus:

- 15 Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Morbus Parkinson, Katarakt, Virus-Infektionen oder bakterielle Infektionen, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Hör- und/oder Gleichgewichtsorgans,
- 20 25 Erkrankungen der Hörbahn oder Vesibularbahn, Schlafstörungen, Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Neuroinflammation, Insomnia, zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson
- 30 vorzugsweise

- Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe Lateralsklerose, Gewichtsregulation, Obesitas,
5 Katarakt, Virus-Infektionen oder bakterielle Infektionen, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Drogenabhängigkeit, -sucht und -entzug insbesondere bei
10 Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Neuroinflammation
insbesondere
- 15 Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Katarakt, Netzhautablösung, Retinadegeneration, Glaukom oder Nystagmus
und/oder
- 20 Hörstörungen, Tinnitus, M. Menière, Hörsturz, Erkrankungen des Hör- und/oder Gleichgewichtsorgans oder Erkrankungen der Hörbahn oder Vesibularbahn.
- Ein weiterer Gegenstand der Erfindung ist eine Verbindung identifizierbar
25 als pharmazeutisch relevante Substanz mit Wirksamkeit in mindestens einer der vorgenannten Indikationen durch ein erfindungsgemäßes Verfahren. Hierbei bezieht sich Verbindung insbesondere auf niedermolekulare Wirkstoffe, aber auch auf Peptide, Proteine und Nukleinsäuren. Dabei bedeutet identifizierbar, daß die Verbindung das
30 Merkmal aufweist, daß es beim erfindungsgemäßem Screeningverfahren bezüglich der Bindung deutlich stärker, vorzugsweise doppelt so stark bindet wie der Durchschnitt der zu testenden Substanzen oder bezüglich

der Änderung der funktionellen Parameter deutlich vom Durchschnitt der zu testenden Substanzen abweicht. Besonders bevorzugt ist es, wenn die erfindungsgemäße Verbindung eine niedermolekulare Verbindung ist.

5 Ein weiterer Gegenstand der Erfindung ist die Verwendung

- a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer der in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise zu wenigstens 95%, insbesondere zu wenigstens 97% oder genau entspricht,
- b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyms, eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- d. von BNPI und/oder DNPI und/oder eines Proteins gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder eines zu einem dieser vorgenannten Proteine zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnlichen Proteins und/oder eines Proteins,

für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnliches Polynukleotid kodiert, und/oder eines Proteins, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder dessen Antisense Polynukleotide bindet oder eines mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilproteins eines der vorgenannten Proteine, wobei das Protein oder Teilprotein gegebenenfalls posttranslational modifiziert, insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde,

5 e. eines Antikörpers, vorzugsweise eines monoklonalen oder polyklonalen Antikörpers, gegen eines der Proteine oder Teilproteine gemäß Punkt d),

10 f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), einen Vektor gemäß Punkt c), ein Protein oder Teilprotein gemäß Punkt d) oder einen Antikörper gemäß Punkt e)

15 g. einer erfindungsgemäßen Verbindung identifizierbar als pharmazeutisch relevante Substanz mit Wirksamkeit in mindestens einer der vorgenannten Indikationen wie oben beschrieben und/oder

20 h. eines Wirkstoffs, vorzugsweise eines niedermolekularen Wirkstoffs, der an ein Protein oder Teilprotein gemäß Punkt d) bindet,

zur Herstellung eines Arzneimittels zur Behandlung von

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien,
5 Depression, Schlaganfall, Hirntrauma, Querschnittslähmung,
amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas,
Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington,
Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken),
Emesis, insbesondere Hyperemesis beispielsweise bei
10 Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis,
Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen oder
bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob,
Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und
cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der
15 Baroaffenz oder Chemoaffenz, Toxoplasmose, Asthma,
Autoimmunität im zentralen und peripheren Nervensystem,
diabetische Neuropathie, autoimmuner Diabetes, alkoholische
Neuropathie, HIV-Neuro-Aids; Störungen des autonomen
Nervensystems, Störungen des Nervensystems des
20 Verdauungstraktes, Übererregbarkeit, insbesondere
glutamatvermittelte Übererregbarkeit, Neurodegeneration
insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie;
Encephalitis insbesondere virale oder bakterielle; Prionerkrankung,
Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung
25 insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom,
Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums,
cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen
des Pallidums, Erkrankungen des Hör- und/oder
Gleichgewichtsorgans, Erkrankungen der Hörbahn oder
30 Vesibularbahn, Störungen des Gedächtnisses, Störungen des
Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-
Syndrom, Angstzustände, Phobien, Schlafstörungen;

Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Agression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson.

Ein weiterer Gegenstand der Erfindung ist die Verwendung

- a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer der in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise zu wenigstens 95%, insbesondere zu wenigstens 97% entspricht,
- b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-

- Enzyms oder Ribozyms, eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- 5 c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- 10 d. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b) oder einen Vektor gemäß Punkt c)

zur Herstellung eines Arzneimittels zum Einsatz in der Gentherapie. Dabei
20 ist es besonders bevorzugt, wenn es sich um In-vivo oder In-vitro Gentherapie handelt. Unter Gentherapie versteht man eine Therapieform, bei der durch die Einführung von Nukleinsäuren in Zellen ein Effektogen, meist ein Protein, exprimiert wird. Man unterscheidet prinzipiell In-vivo- und In-vitro-Verfahren. In In-vitro-Verfahren werden Zellen aus dem Organismus entfernt und ex-vivo mit Vektoren transfiziert, um anschließend wieder in denselben oder in einen anderen Organismus eingebracht zu werden. Bei der In-vivo-Gentherapie werden Vektoren, beispielsweise zur Bekämpfung von Tumoren, systemisch (z.B. über die Blutbahn) oder direkt in das Zielgewebe (z.B. in einen Tumor) appliziert.

30 Bevorzugt ist es beim Einsatz in der Gentherapie weiter, wenn es sich um ein Arzneimittel mit Wirksamkeit in der Indikation oder zur Behandlung von

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien,
Depression, Schlaganfall, Hirntrauma, Querschnittslähmung,
5 amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation,
Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea
Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische
Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei
Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis,
10 Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen
oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob,
Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und
cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen
der Baroaffenz oder Chemoaffenz, Toxoplasmose, Asthma,
15 Autoimmunität im zentralen und peripheren Nervensystem,
diabetische Neuropathie, autoimmuner Diabetes, alkoholische
Neuropathie, HIV-Neuro-Aids; Störungen des autonomen
Nervensystems, Störungen des Nervensystems des
Verdauungstraktes, Übererregbarkeit, insbesondere
20 glutamatvermittelte Übererregbarkeit, Neurodegeneration
insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie;
Encephalitis insbesondere virale oder bakterielle; Prionerkrankung,
Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung
insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom,
25 Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums,
cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen
des Pallidums, Erkrankungen des Hör- und/oder
Gleichgewichtsorgans, Erkrankungen der Hörbahn oder
Vesibularbahn, Störungen des Gedächtnisses, Störungen des
Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless
30 Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen;
Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol,

Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Agression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson

handelt.

Bevorzugt beim Einsatz in der Gentherapie ist auch die Verwendung eines Polynukleotids, beim dem es sich um ein Antisense Polynukleotid oder PNA handelt, oder das Teil eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA ist.

Ein weiterer Gegenstand der Erfundung ist auch die Verwendung

a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer der in einer

- der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise 95%, insbesondere zu wenigstens 97% entspricht,
- 5 b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyme, eines Ribozyme oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- 10 c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- 15 d. von BNPI und/oder DNPI und/oder eines Proteins gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder eines zu einem dieser vorgenannten Proteine zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnlichen Proteins und/oder eines Proteins, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnliches Polynukleotid kodiert, und/oder eines Proteins, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder dessen Antisense Polynukleotide bindet oder eines mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilproteins eines der vorgenannten
- 20
- 25
- 30

- Proteine, wobei das Protein oder Teilprotein gegebenenfalls posttranslational modifiziert, insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde,
- 5 e. eines Antikörpers, vorzugsweise eines monoklonalen oder polyklonalen Antikörpers, gegen eines der Proteine oder Teilproteine gemäß Punkt d),
- 10 f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), einen Vektor gemäß Punkt c), ein Protein oder Teilprotein gemäß Punkt d) oder einen Antikörper gemäß Punkt e),
- 15 g. einer erfindungsgemäßen Verbindung identifizierbar als pharmazeutisch relevante Substanz mit Wirksamkeit in mindestens einer der vorgenannten Indikationen wie oben beschrieben und/oder
- 20 h. eines Wirkstoffs, vorzugsweise eines niedermolekularen Wirkstoffs, der an ein Protein oder Teilprotein gemäß Punkt d) bindet,

zur Herstellung eines Diagnostikums zur Diagnose eines Zustands ausgewählt aus

25 Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas,

30 Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei

Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis, Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob, Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der Baroafferenz oder Chemoafferenz, Toxoplasmose, Asthma, Autoimmunität im zentralen und peripheren Nervensystem, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Störungen des autonomen Nervensystems, Störungen des Nervensystems des Verdauungstraktes, Übererregbarkeit, insbesondere glutamatvermittelte Übererregbarkeit, Neurodegeneration insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie; Encephalitis insbesondere virale oder bakterielle; Prionerkrankung, Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums, cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen des Pallidums, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen; Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Aggression, Paranoia,

Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, 5 Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus.

Dabei versteht man unter Diagnostik die Analyse von einem Krankheitsbild zugeordneten Symptomen und unter Wirksamkeitsuntersuchungen 10 Untersuchungen über die Wirksamkeit zu testender Substanzen, insbesondere ihrer medizinischen Wirksamkeit.

Ein weiterer Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung eines erfindungsgemäßen Peptids oder Proteins, bei dem eine 15 erfindungsgemäße Zelle, die ein erfindungsgemäßes Polynukleotid und/oder einen erfindungsgemäßen Vektor enthält, kultiviert und gegebenenfalls das Peptid oder Protein isoliert wird.

- Ein weiterer Gegenstand der Erfindung ist die Verwendung 20
- a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer der in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise 95%, insbesondere zu wenigstens 25 97% entspricht,
 - b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyms, eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) 30 aufgeführten Polynukleotide zu binden,

- c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- d. von BNPI und/oder DNPI und/oder eines Proteins gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder eines zu einem dieser vorgenannten Proteine zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnlichen Proteins und/oder eines Proteins, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnliches Polynukleotid kodiert, und/oder eines Proteins, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder dessen Antisense Polynukleotide bindet oder eines mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilproteins eines der vorgenannten Proteine, wobei das Protein oder Teilprotein gegebenenfalls posttranslational modifiziert, insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde,
- e. eines Antikörpers, vorzugsweise eines monoklonalen oder polyklonalen Antikörpers, gegen eines der Proteine oder Teilproteine gemäß Punkt d),
- f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), einen Vektor gemäß Punkt c), ein Protein oder Teilprotein gemäß Punkt d) oder einen Antikörper gemäß Punkt e)

in einem Verfahren zur Auffindung pharmazeutisch relevanter Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von

5

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation,

10

Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis, Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen

15

oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob, Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der Baroafferenz oder Chemoafferenz, Toxoplasmose, Asthma, Autoimmunität im zentralen und peripheren Nervensystem,

20

diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Störungen des autonomen Nervensystems, Störungen des Nervensystems des Verdauungstraktes, Übererregbarkeit, insbesondere glutamatvermittelte Übererregbarkeit, Neurodegeneration

25

insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie; Encephalitis insbesondere virale oder bakterielle; Prionerkrankung, Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums,

30

cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen des Pallidums, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder

- Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen; Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Agression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson.
- Generell ist es bei allen vorgenannten erfindungsgemäßen Verwendungen bevorzugt, wenn die Indikation oder die zu behandelnde oder zu diagnostizierende Krankheit ausgewählt ist aus
- Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Morbus Parkinson, Katarakt, Virus-Infektionen oder bakterielle

- Infektionen, diabetische Neuropathie, autoimmuner Diabetes,
alkoholische Neuropathie, HIV-Neuro-Aids; Retinadegeneration,
Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des
Hör- und/oder Gleichgewichtsorgans, Erkrankungen der
5 Hörbahn oder Vesibularbahn, Schlafstörungen,
Drogenabhängigkeit, -sucht und -entzug insbesondere bei
Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain;
Neuroinflammation, Insomnia, zur adjuvanten Therapie per
Elektrostimulation des Nucleus subthalamicus bei Parkinson
- 10 vorzugsweise
- Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe
15 Lateralisklerose, Gewichtsregulation, Obesitas, Katarakt, Virus-
Infektionen oder bakterielle Infektionen, Retinadegeneration,
Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des
Hör- und/oder Gleichgewichtsorgans, Erkrankungen der
Hörbahn oder Vesibularbahn; Drogenabhängigkeit, -sucht und -
20 entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder
Kokain; Neuroinflammation
- insbesondere
- 25 Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Katarakt, Netzhautablösung, Retinadegeneration, Glaukom oder
Nystagmus
- oder
- 30

Hörstörungen, Tinnitus, M. Menière, Hörsturz, Erkrankungen des Hör- und/oder Gleichgewichtsorgans oder Erkrankungen der Hörbahn oder Vesibularbahn.

5

Mit den erfindungsgemäß verwendeten Polynukleotid sind auch die dargestellten Genfragmente selbst umfaßt, wie auch ein Polynukleotid, das entweder vollständig oder zumindest Teilen der kodierenden Sequenz des dem Fragment entsprechenden Gens entspricht. Damit sind auch Polynukleotide gemeint, die mindestens 90%-ige, vorzugsweise 95%-ige, insbesondere wenigstens 97%-ige Übereinstimmung in der Basenabfolge mit der kodierenden Sequenz der abgebildeten Polynukleotide oder der kodierenden Sequenz der Gens aufweisen. Es ist weiter bevorzugt, daß es sich bei dem Polynukleotid um RNA bzw. ein- oder doppelsträngige DNA, insbesondere mRNA oder cDNA handelt. Ebenso ist es bevorzugt, daß es sich bei dem Polynukleotid um ein Antisense-Polynukleotid oder PNA handelt, das eine Sequenz aufweist, die in der Lage ist, spezifisch an ein erfindungsgemäßes Polynukleotid zu binden. Dabei versteht man unter PNA „peptidic nucleic acid“ (peptidische Nukleinsäure), die zwar die Basenpaare trägt, aber dessen Rückrat peptidisch gebunden ist. Ein Antisense-Polynukleotid zeigt die komplementäre Basenabfolge zu mindestens einem Teil einer Basis-Nukleinsäure. Ebenfalls bevorzugt ist es, daß das Polynukleotid Teil eines Ribozym oder sonstigen DNA-Enzyms oder einer katalytischen RNA bzw. DNA ist. Unter Ribozym ist eine katalytisch aktive Ribonukleinsäure zu verstehen, unter DNA-Enzym ein entsprechende Desoxyribonukleinsäure, also katalytische RNA beziehungsweise DNA.

Ein ganz besonders bevorzugter Gegenstand der Erfindung ist ein, insbesondere erfindungsgemäß verwendetes Polynukleotid oder auch Oligonukleotid, bei dem mindestens eines der Nukleotide, insbesondere mehrere der Nukleotide, „Locked Nucleic Acids“ („LNA's“) sind oder mindestens eines der Nukleotide, insbesondere alle Nukleotide,

Phosphorothioate sind, vorzugsweise ein solches, bei dem mehrere der Nukleotide „Locked Nucleic Acids“ („LNA's“) sind. „Locked nucleic acids“ („LNA's“) sind Ribonukleotide, die eine Methylen-Brücke enthalten, die den 2'-Sauerstoff der Ribose mit dem 4'-Kohlenstoff verbindet (s. Abb. 27).
5 Einen Überblick über die LNA's geben Braasch D.A. und Corey, D.R. (2001), Locked nucleic acids (LNA); fine-tuning the recognition of DNA und RNA. Chem. Biol. 8, 1-7. Dieser Artikel ist ausdrücklich Mitbestandteil der vorliegenden Beschreibung und Offenbarung. LNA's werden beispielsweise von der Firma Proligo, Boulder, CO, USA angeboten. Auch
10 Phosphorothioate sind dem Fachmann bekannt und können beispielsweise bei MWG-Biotech AG, Ebersberg, Germany bestellt werden.

Unter dem erfindungsgemäß verwendeten Vektor versteht man ein Nukleinsäuremolekül, das bei gentechnischer Manipulation dazu dient, 15 Fremdgene zu enthalten bzw. zu übertragen. Besonders bevorzugt ist dabei, daß es sich um einen Expressionsvektor handelt. Er dient damit der Expression des enthaltenen Fremdgens, des Polynukleotids. Weiter bevorzugt ist ein derartiger Vektor, der abgeleitet ist von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus 20 und/oder er mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz enthält. Ein LTR ist ein „Long-TerminalRepeat“, ein am Ende befindlicher Abschnitt beispielsweise bei Viren. Poly-A-Sequenz ist ein mehr als 20 Adenosinreste langer Schwanz. Eine Promotorsequenz ist der Steuerungsbereich für die Transkription.

25 Bevorzugt ist es für ein verwendetes Protein bzw. ein daraus abgeleitetes Teilprotein, wenn diese posttranslational modifiziert wurde, es insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, 30 gespalten oder verkürzt wurde. Posttranskriptionale Modifikationen sind beispielsweise dem Voet/Voet, Biochemistry, 1st Edition, 1990, S. 935-938 zu entnehmen.

Dabei ist es für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn das Polynukleotid (gegebenfalls gemäß Punkt a) und/oder Punkt b)) eine RNA oder eine ein- oder doppelstängige DNA, insbesondere mRNA oder cDNA ist.

Dabei ist es für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn das Polynukleotid (gegebenfalls gemäß Punkt b)) Teil eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA ist.

Dabei ist es für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn der Vektor (gegebenfalls gemäß Punkt c)) ein Expressionsvektor ist.

Dabei ist es weiter für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn der Vektor (gegebenfalls gemäß Punkt c)) abgeleitet ist von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder er mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz enthält.

Dabei ist es für eine erfindungsgemäße Verwendung (nicht Gentherapie) besonders bevorzugt, wenn das Protein oder Teilprotein (gegebenfalls gemäß Punkt d)) posttranslational modifiziert wurde, es insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde.

Dabei ist es für eine erfindungsgemäße Verwendung (nicht Gentherapie) besonders bevorzugt, wenn der Antikörper (gegebenenfalls gemäß Punkt e)) ein monoklonaler oder polyklonaler Antikörper ist.

Dabei ist es für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn es sich bei der Zelle (gegebenenfalls gemäß Punkt f)) um eine Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder eine immortalisierte oder native Säugetierzelle handelt.

5

Dabei ist es für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn es sich bei der Verbindung (gegebenenfalls gemäß Punkt g)) um eine niedermolekulare Verbindung handelt.

10

Dabei ist es für eine erfindungsgemäße Verwendung besonders bevorzugt, wenn der genannte Wirkstoff gemäß Punkt h) ein niedermolekularer Wirkstoff ist.

15

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Behandlung, eines nichthumanen Säugetieres oder Menschen, das oder der eine Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, Alzheimer, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis, Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob, Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der Baroaffenz oder Chemoaffenz, Toxoplasmose, Asthma, Autoimmunität im zentralen und peripheren Nervensystem, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Störungen des autonomen Nervensystems, Störungen des Nervensystems des Verdauungstraktes, Übererregbarkeit, insbesondere glutamatvermittelte

20

25

30

Übererregbarkeit, Neurodegeneration insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie; Encephalitis insbesondere virale oder bakterielle; Prionerkrankung, Rasmussen-Encephalitis, HIV-Encephalitis, amyotrophe Lateralsklerose, Demyelinisierung insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums, cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen des Pallidums, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen, Anorexia nervosa; Drogenabhängigkeit, -sucht und -entzug, insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Agression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder eine Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, Neuroprotektion, Liquordiagnostik neurostatischer Erkrankungen oder adjuvante Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson benötigt, durch Verabreichung eines erfindungsgemäßen Arzneimittels, insbesondere solche enthaltend eine erfindungsgemäße Substanz und/oder einen an BNPI und/oder DNPI bindenden Wirkstoff.

Die Verabreichung kann beispielsweise in Form eines Arzneimittels wie oben beschrieben erfolgen.

5

Die folgenden Beispiele und Abbildungen sollen die Erfindung erläutern, ohne sie darauf zu beschränken.

10

Abbildungen und Beispiele

15 **Abbildungen:**

- Fig. 1a) cDNA-Sequenz von BNPI, human; AN: NM_020309
- Fig. 1b) Aminosäure-Sequenz von BNPI, human; AN: NM_020309
- Fig. 1c) cDNA-Sequenz von BNPI, human; Nr.: AAT42064 aus WO96/34288
- Fig. 1d) Aminosäure-Sequenz von BNPI, human; Nr.: AAT42064 aus WO96/34288
- Fig. 1e) cDNA-Sequenz von BNPI, Ratte; AN: U07609
- Fig. 1f) Aminosäure-Sequenz von BNPI, Ratte; AN: U07609
- Fig. 2a) cDNA-Sequenz von DNPI, human; AN: AB032435
- Fig. 2b) Aminosäure-Sequenz von DNPI, human; AN: AB032435
- Fig. 2c) cDNA-Sequenz von DNPI, Ratte; AN: AF271235
- Fig. 2d) Aminosäure-Sequenz von DNPI, Ratte; AN: AF271235
- Fig. 3) Differentielle Expression von DNPI und BNPI in Synapsen und motorischen Arealen des lumbalen Rückenmarks der Ratte (s. Beispiel 2a)
- Fig. 4) Differentielle Expression von DNPI und BNPI in Synapsen der Dorsalhorn-Arealen des lumbaren Rückenmarks der Ratte (s. Beispiel 2b)
- Fig. 5) Differentielle Expression von DNPI und BNPI in Synapsen des sakralen Rückenmarks der Ratte (s. Beispiel 2c)
- Fig. 6) Differentielle Expression von DNPI und BNPI in Synapsen der medullo-cervicospinalen Leitung des Trigeminalnervs der Ratte (s. Beispiel 2d)
- Fig. 7) Differentielle Expression von DNPI und BNPI in Hirnregionen der Ratte (s. Beispiel 2e)

- Fig. 8) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2f)
- Fig. 9) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2g)
- 5 Fig. 10) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2h)
- Fig. 11) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2i)
- 10 Fig. 12) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2j)
- Fig. 13) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2k)
- Fig. 14) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2l)
- 15 Fig. 15) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2m)
- Fig. 16) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2n)
- 20 Fig. 17) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2o)
- Fig. 18) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2p)
- Fig. 19) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte (s. Beispiel 2q)
- 25 Fig. 20) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte, dabei heißt AS Anti-sense und bezieht sich auf die Färbung.
- Fig. 21) Differentielle Expression von DNPI und BNPI in Hinregionen der Ratte, dabei heißt AS Anti-sense und bezieht sich auf die Färbung.
- 30

Beispiele:

35 Beispiel 1

Differentielle Betrachtung der Expression zwischen DNPI und BNPI über immuncytochemische Färbung

40 Zur immunhistochemischen Anfärbung wurden polyklonale Kanichen-Antiseren gegen das rekombinante DNPI- bzw. BNPI-Fusionsprotein verwendet. Generell wurden Schnitte verschiedener Regionen des ZNS angelegt und die Expression von DNPI mit der von BNPI verglichen. Das Vorgehen entsprach bezüglich der Schnitte und der Färbung dem bei

Persson S., Schäfer MK-H., Nohr D., Ekström G., Post C., Nyberg F. und Weihe E. (1994), Neuroscience 63; 313-326 bzw. Nohr D., Schäfer MK-H., Romeo H., Persson S., Nyberg F. Post C. und Weihe E. (1999), Neuroscience 93; 759-773 beschriebenen Verfahren, wobei die Offenbarung dieser Artikel ausdrücklich zum Teil der hier vorgelegten Offenbarung der Erfindung gemacht wird.

Beispiel 2a zu Abbildung 3)

Es ist die differentielle Verteilung der Immunreakтивität von BNPI und DNPI im lumbaren Rückenmark der Ratte zu sehen. Die angrenzenden deparafinierten Abschnitte A- bis D sind wie folgt gefärbt:

A = anti-DNPI;

B = anti-DNPI präadsorbiert mit DNPI-Fusionsprotein;

C = anti-BNPI;

D = anti-BNPI präadsorbiert mit BNPI-Fusionsprotein;

Die DNPI- (A) und BNPI- (C) Immunfarbstoffe waren voll mit homologem rekombinannten BNPI- (D) und BNPI- (B) Fusionsprotein präadsorbierbar, was die Spezifität der Immunreaktion beweist.

Bemerkenswert ist das gegenseitig ausschließende Verteilungsmuster von DNPI und BNPI-Immunfärbung im äußeren und tiefen Dorsalhorn.

(A;C).Punktierte Immunfärbung von DNPI ist in den synaptischen Endnerven des äußeren Dorsalhorns (Lamina 1 und Substantia gelatinosa) (Pfeil in A), während BNPI Immunreakтивität vollständig fehlt (Pfeile in B). Akkumulation von starker positiver punktierter BNPI-Immunfärbung liegt im tieferen Dorsalhorn vor, während DNPI-Färbung relativ niedrig ist. DNPI ist präsent in der lateralen spinalen Nukleus (LSN in A), während BNPI völlig fehlt (LSN in C). DNPI ist in der Lamina X um den

zentralen Kanal abundant, während BNPI selten ist. BNPI Immunfärbung ist im lateralen Ventralhorn schwach und gering oder fehlend im medialen Ventralhorn. Durch das ganze Ventralhorn ist punktförmige DNPI-Färbung abundant, etwas weniger im lateralen Horn im Vergleich zum medialen
5 Ventralhorn. Es gibt eine schwache BNPI und DNPI Färbung in einigen Zellkörpern der im Ventralhorn gelegenen Motoneurone, was aber nicht durch die homologen transporter Fusionsproteine präadsorbiert wurde und daher als nichtspezifisch eingestuft wurde.

10 **Beispiel 2b zu Abbildung 4)**

Es ist die differentielle Verteilung der Immunreaktivität von BNPI und DNPI im linken lateralen oberflächlichen dorsalen lumbaren Rückenmark (left lateral superficial dorsal lumbar spinal cord) der Ratte zu sehen. A und B jeweils für BNPI (A) und DNPI (B) gefärbt zeigen viele punktförmige Anfärbungen für DNPI, die in der Lamina I und substantia gelatinosa konzentriert sind wo BNPI fast vollständig fehlt. Weiter sind dichte Komplexe von DNPI positiven Punkten im lateralen spinalen Nukleus zu sehen, wo BNPI fast vollständig fehlt. Feine DNPI positive Punkte sind 20 auch in den tieferen dorsalen Horn zu finden, wenn auch mit geringerer Dichte.

Beispiel 2c zu Abbildung 5)

25 Es ist die differentielle Verteilung der Immunreaktivität von BNPI und DNPI im sakralen Rückenmark der Ratte zu sehen. Die angrenzenden Abschnitte A und B jeweils für BNPI (A) und DNPI (B) gefärbt, zeigen gegenseitige Exclusions-Zonen punktierter DNPI- und BNPI-Immunfärbung im Dorsalhorn. DNPI ist in der gesamten Grey Matter präsent und ist in den 30 sehr äußersten Schichten des Dorsalhorns konzentriert, wo es eine schmale Bande an der Grenze zu White Matter bildet. DNPI ist abundant

im lateralen spinalen Nukleus und in der Lamina X wie auch in der Lamina V/VI und im ganzen ventralen Horn. BNPI ist abundant im tiefen Dorsalhorn und selten in Ventralhorn.

5 **Beispiel 2d zu Abbildung 6)**

Es ist die differentielle Verteilung der Immunreaktivität von BNPI und DNPI in der unteren Medulla oblongata am Übergang zum cervicalen Rückenmark zu sehen. Die angrenzenden Abschnitte A und B jeweils für BNPI (A) und DNPI (B) gefärbt zeigen eine bevorzugte Akkumulation der BNPI-Färbung im medialen Teil des spinalen trigeminalen Nukleus und in dem mittleren und unteren Teil der dorsalen Medulla. es ist nur eine sehr schwache Färbung mit BNPI in den ventralen Medulla zu sehen. DNPI ist abundant in Grey Matter der Medulla. DNPI-Färbung überlappt mit der BNPI-Färbung im inneren spinalen Nucleus V. Es ist zu beachten, daß BNPI auch im oberen spinalen trigeminalen Nukleus, der gleich der spinalen substantia gelatinosa ist, zu finden ist. DNPI-Färbung ist in Gebieten schwächer, in denen BNPI präsent ist, schwächer als in Gebieten, wo BNPI niedrig ist oder fehlt. Einige wenige BNPI Punkte sind 10 im ventralen Grey Motor Gebiet zu sehen.
15
20

Beispiel 2e zu Abbildung 7)

Komplementär differentielle Verteilung von DNPI und BNPI Immunreaktivität in 2 Folgeschnitten des Rattenhirns in schmerzrelevanten Hirnregionen wie sensorischer parietaler Cortex; cingulärer Cortex, Thalamus, Corpus amygdaloideum sowie auch Hypothalamus. DNPI ist im Cortex in den granulären sensorischen Schichten insbesondere in Lamina IV konzentriert; BNPI ist im Cortex abundant aber schwächer in der Lamina IV als in anderen Laminae. Im cingulären Cortex (C vs D als Hochvergrößerung) ist die Verteilung von DNPI und BNPI komplementär
25
30

wechselseitig excludierend bzw. reziprok in der Dichte der jeweiligen Synapsen. DNPI überwiegt im Thalamus eindeutig über BNPI, BNPI ist im Hypothalamus spärlich, DNPI abundant. Abundantes BNPI überwirgt im Hypocampus über spärliches DNPI bei wechselseitig komplementärer Verteilung.

5 Thalamus = Th,

Amygdala = Amyg.

Hippocampus = Hip,

Cingulärer Cortex = Cg,

10 Hypothalamus = Hy,

parietaler Cortex = PC.

Beispiel 2f zu Abbildung 8)

15 Komplementär differentielle Verteilung von DNPI und BNPI Immunreaktivität in schmerzrelevanten Hirnregionen wie cingulärer Cortex (Cg) und Tectum sowie dorsalem periaquäductalen Grau. DNPI Dominanz im Tectum und dorsalem Grau. Folgeschnitte eines Rattenhirns durch das obere Mesencephalon.

20

Beispiel 2g zu Abbildung 9)

Komplementär differentielle Verteilung von DNPI und BNPI Immunreaktivität in schmerzrelevanten Hirnregionen wie Tectum (T) sowie periaquäductalen Grau (PAG). DNPI Dominanz im Tectum und dorsalem Grau. Man notiere differentielle Verteilung von DNPI und BNPI im corpus geniculatum mediale (cgm) der Hörbahn. Folgeschnitte eines Rattenhirns durch das obere Mesencephalon; Ebene colliculus superior.

Beispiel 2h zu Abbildung 10)

Abundanz von DNPI über BNPI in den Habenulae (Hb). DNPI ist präsent im gesamten Habenularkomplex (niedrige Vergrößerung, obere Abbildung; hohe Vergrößerung, mittlere Abb.). BNPI ist nur im medialen Habenularkern (mHb untere Abb., Folgeschnitt zu mittlerer Abbildung).

In den folgenden Beispielen 2i bis 2q und den zugehörigen Abbildungen 11- 19 wird der Begriff VGLUT1 für BNPI und VGLUT2 für DNPI verwendet. Die Begriffe sind jeweils vollkommen synonym, inhaltlich völlig gleich und betreffen den gleichen Gegenstand, also VGLUT1 = BNPI und VGLUT2 = DNPI. „preabs“ bedeutet die Präabsorption mit VGLUT1-oder VGLUT2-Fusionsprotein vor der Immunfärbung.

15 Beispiel 2i zu Abbildung 11)

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung und der Spezifität im lumbaren Rückenmark über die Immunreakтивität.

Die angrenzenden Abschnitte A-D sind abwechselnd mit anti-VGLUT2 (A), anti-VGLUT2, präabsorbiert mit VGLUT2-Fusionsprotein (B), anti-VGLUT1 (C) und anti-VGLUT1, präabsorbiert mit VGLUT1-Fusionsprotein (D) gefärbt. Die Immunreaktionen in (A) und (C) werden vollständig mit homologem rekombinannten Fusionsprotein präabsorbiert (B) und (D), was die Spezifität der Immunreaktion zeigt. Zu beachten ist das differentielle Verteilungsmuster im oberflächlichen und tiefen Dorsalhorn (A;C). Punktformige Immunfärbung für VGLUT2 ist im oberflächlichen Dorsalhorn zu erkennen (Pfeile kennzeichnen in A Lamina 1 und Substantia gelatinosa), wo die Immunreakтивität mit VGLUT1 minimal ist (Pfeile in C). Zu beachten ist weiter die Akkumulation stark positiver punktförmiger

VGLUT1 im tiefen Dorsalhorn, wo VGLUT2 relativ schwach ist. VGLUT2 ist im lateralen spinalen Nukleus vorhanden (LSN; Pfeile in A), wo VGLUT1 nur gering vertreten ist (Pfeile in C). VGLUT2 ist stark in Lamina X um den zentralen Kanal herum vertreten, wo VGLUT1 selten ist. Die Immunfärbung von VGLUT1 ist schwach bis mittelmäßig i lateralen ventralen Horn und sehr dünn im medialen ventralen Horn. Eine feine punktförmige VGLUT2-Anfärbung ist dicht und reichlich im Ventralhorn (VH).

Beispiel 2j zu Abbildung 12)

10

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung im Vorderhirn (1).

15

Paare von Low-Power- und High-Power-Micrographen von zwei angrenzenden Frontalsektionen sind alternativ für VGLUT2 (A-D, I, K, M) und VGLUT1 (E-H, J, L, N) gefärbt. Dies zeigt die deutliche Differenz und die teilweise gegenseitige Ausschließlichkeit in der Verteilung, Dichte und Intensität von VGLUT1 und VGLUT2 Immunoreaktivität (ir) in ausgewählten corticalen, hippocampalen, diencephalischen und limbischen Bereichen.

20

Hypothalamus und Thalamus (A,E): Punktförmige VGLUT2-ir is relativ stark über den ganzen Hypothalamus und Thalamus, wo VGLUT-2 eine beschränkte Verteilung auf den hypothalamischen, ventralen premammillaren Nukleus (PMV) und auf Teile des thalamischen Nukleus inclusive des lateralen hinteren thalamischen Nukleus (LP), dem dorsalen lateralen geniculaten Nukleus (DLG) und dem ventralen posteromedialen thalamischen Nukleus (VPM) zeigt. Olivarer prrectaler Nukleus (OPT); dorsaler vorderer prectaler Nukleus (APTD); precommisuraler Nukleus (PrC).

25

Cortex (A; E; I; J; K; L; M; N): Die VGLUT2-Färbung ist in einem Band des Neocortex enthaltend Lamina IV moderat. Sie ist schwach in einem

neocorticalem Band enthalten Lamina VI und minimal in den anderen neocorticalen Schichten. Intensive punktförmige VGLUT1-ir ist sehr stark im gesamten Cortex, inclusive des pririform Cortex (Pir) und etwas schwächer ausgeprägt im neocortikalen Band der Lamina VI, wo moderate VCGLUT2-Färbung akkumuliert. Zu beachten ist der gegenseitige Ausschluß von VGLUT1- und VGLUT2-Färbung in den Schichten des retrospenialen granularen Cortex (RSG in A und E), die in starker Vergrößerung in (I) und (J) gezeigt werden. Die großen Vergrößerungen M und N aus der Lamina IV in K und L zeigen verschiedene Dichten der punktförmigen VGLUT1- und VGLUT2-ir im Vergleich zwischen immunonegativen neuronalen Zellkörpern und -Prozessen.

Hippocampus (A, E; B-D, F-H): Dünne VGLUT2-ir-Punkte sind meist beschränkt auf die granularen Schichten (g) des dentaten Gyrus (DG) und der pyramidalen Schicht (p) der Felder CA1, CA2 und CA3 des Hippocampus. Dichte V-GLUT1-ir-Punkte sind sehr stark über den gesamten Hippocampus vertreten mit Ausnahme der granularen (g) und pyramidalen (p) Zell-Schichten. Mit Rechtecken gekennzeichnete Abschnitte in A und entsprechende Abschnitte auf angrenzenden Sektionen in E werden mit großer Vergrößerung jeweils in B-D und F-H gezeigt. Zu beachten sind die differentielle Verteilung und Dichte der VGLUT1-ir und VGLUT2-ir in der Oriens-Schicht (o), pyramidalen Schicht (p), im Stratum radiatum (r) und dem Stratum lacunosum molekulare (l) von CA1 (B,F) und CA3 (C, G) und in der molekularen (m), granularen (g) und polymorphen (p) Schicht des dentaten Gyrus (DG) (D,H).

Amygdala Complex: Hier ist eine gewisse Überlappung festzustellen, aber die differentielle Dichte und Intensität der Immunfärbung von VGLUT1-ir und VGLUT2-ir Punkten im hinteren basomedialen amygdaloiden Nukleus (BMP), im lateralen amygdaloiden Nukleus (La) und im kortikalen amygdaloiden Nukleus (Co.) wie auch im angrenzenden dorsalen endopiriformen Nukleus (DEn) ist deutlich zu sehen.

Es ist weiter festzustellen, daß „White Matter“ und Faser Trakte VGLUT1- und VGLUT2-negativ sind (hintere commissure (pc), fornix (f), fasciculus retroflexus (fr), mammillothalamicus Trakt (mt)).

5 Beispiel 2k zu Abbildung 13)

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung im Vorderhirn (2).

Paare von Low-Power- und High-Power-Micrographen von zwei angrenzenden Frontalsektionen sind alternativ für VGLUT2 (A-B, E, G) und VGLUT1 (C-D, F, H) gefärbt. Dies zeigt die deutliche Differenz und die teilweise gegenseitige Ausschließlichkeit in der Verteilung, Dichte und Intensität von VGLUT1- und VGLUT2-Immunoreaktivität (ir) im Neocortex (Lamina IV, VI) Caudate Putamen (CPu), Globulus pallidum (GP), piriform cortex (Pir), Nukleus accumbens Kern (AcC), Nukleus accumbens Rand (AcSh), ventralem Pallidum (VP), olfaktorischem Tuberkl (Tu), Inseln von Calleja (ICj), dem ventralen diagonalen Band (VDB) und dem lateralen Septum (LS). Im CPu ist VGLUT1 etwas schwächer vertreten als VGLUT2. VGLUT2 ist im Globus pallidum (GP) vorhanden (B), wo VGLUT1 fast vollständig fehlt (D). Im piriformen Cortex (Pir) und den Inseln von Calleja (ICj) ist die punktförmige VGLUT1-ir stärker und dichter als für VGLUT2-ir. Zu beachten ist die Akkumulation schwächer bis moderater VGLUT1-ir in den pyramidalen Zellschichten in (E), wo VGLUT2-ir fast völlig fehlt (F). Zu beachten ist auch eine gewisse Überlappung und Reziprozität in der Färbung von VGLUT1 und VGLUT2 in den ICj (G,H) wie auch die Abwesenheit von VGLUT1-ir und VGLUT2-ir im commissuralem Faser-Trakten /Corpus callosum (cc(, vordere commissure (ac)).

Balken in A, C = 1mm, in B, D = 500 µm; in E-H = 200 µm.

30 Beispiel 2l zu Abbildung 14)

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung im thalamischen und hypothalamischen Nucleus.

- Angrenzende frontale Sektionen (A,B) des Diencephalons zeigen die nukleus-spezifische differentielle starke Vorkommen von VGLUT2 (A) und VGLUT1 (B) im Thalamus und Hypothalamus. Zu beachten ist das sehr starke Vorkommen von VGLUT2-ir (A) im paraventrikulären thalamischen Nukleus (PVA), reunienten thalamischen Nukleus (Re), reticularen thalamischen Nukleus (Rt), paracentralem thalamischen Nukleus (PC) und anterodorsalem thalamischen Nukleus (AD). Hier fehlt VGLUT1-ir (B) fast vollständig oder kommt nur in niedriger Konzentration vor. VGLUT1 (B) kommt moderat im hinteren thalamischen Nukleus (PT) vor, wo VGLUT2 (A) selten ist. VGLUT1 ist fehlt fast völlig in der stria medullaris (sm), wo VGLUT2-ir selten ist.
- Angrenzende frontale Abschnitte C, D des Diencephalons zeigen die Häufigkeit von VGLUT2 (C) im vorderen hypothalamischen Nukleus (AH) aber die Seltenheit im paraventrikulären Nukleus (PVN) und extreme Seltenheit von VGLUT1-ir im vorderen hypothalamischen Nukleus (AH) und völliges Fehlen im PVN. Zu beachten ist auch die Gegenwart von VGLUT1 (D) im Gegensatz zur Abwesenheit von CGLUT2 (C) im ventromedialen thalamischen Nukleus (VM) und dem Reuniens thalamischen Nukleus (Re).
- Angrenzende frontale Sektionen des Hypothalamus (E,F) zeigen die Häufigkeit von VGLUT2 im LH, im ventromedialen thalamischen Nukleus (VHM) und dem dorsomedialen thalamischen Nukleus (DM) und die Seltenheit von VGLUT1 im Kern des VMH aber moderates Vorkommen in seinem Rand. Zu beachten ist die schwache Färbung von VGLUT2 in der medianen Eminenz (ME). VGLUT1 und VGLUT2 fehlen in den Fasertrakten des Formix (f) und des mammillothalamischen Traktes (mt).
- Dritter ventrikel (3V); Balken = 500 µm (für A-F).

Beispiel 2m zu Abbildung 15)

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung im Epithalamus.

- 5 High-Power-Micrographen von angrenzenden Sektionen, die alternativ für VGLUT2 (A) und VGLUT1 (B) gefärbt sind, zeigen den Überfluß an VGLUT2 in sowohl dem medialen habenularen Nukleus (MHb) und dem lateralen habenularen Nukleus (LHb). Es ist zu beachten, daß VGLUT1-ir im MHb weniger dicht ist als VGLUT2-ir. CGLUT1 fehlt fast vollständig im LHb.

10

Balken = 100 µm (für A,B).

Beispiel 2n zu Abbildung 16)

- 15 Dies ist ein Vergleich zwischen VGLUT1, Tyrosin-Hydroxylase und VGLUT2 bezüglich der Verteilung im Mesencephalon und Metathalamus. Low-Power- (A,C,E) und High-Power-Micrographen (B,D,F) von drei angrenzenden Sektionen sind alternierend für Tyrosin-Hydroxylase (TH), VGLUT2 und VGLUT1 gefärbt und zeigen die differentielle Verteilung, Dichte und Intensität der Immunfärbung für VGLUT1 und VGLUT2 im Vergleich zu TH. VGLUT2-ir Punkte sind im Tectum konzentriert, wobei die höchsten Mengen in der superficialen „Grey“-Schicht des oberen Colliculus (SuG) und geringere Mengen in der intermediären „Grey“-Schicht des oberen Colliculus (InG) zu finden sind, während diese in der optischen Nukleus-Schicht des oberen Colliculus (Op) selten sind. VGLUT2-ir Punkte liegen im gesamten Tegmentum inclusive des Nukleus ruber (R) und der TH-positiven pars compacta der substantia nigra (SNC) vor und sind im dorsalen periaquäductalem Grey (PAG) besonders angereichert und insbesondere im medialen terminalen Nukleus des „accessory optic tract“ (MT), des optischen Zugangstrakts, wie auch im mediocaudalen Teil des

lateralen hinteren Nukleus (LPMC), im hinteren intralaminaren thalamischen Nukleus (PIL) im peripeduncularen Nukleus (PP) und im suprageniculaten thalamischen Nukleus (SG). VGKUT1-ir ist hier minimal. VGLUT 1-Färbung zeigt sich in moderaten Mengen im ventralen medialen geniculaten Nukleus (MGV), wo VGLUT2-Mengen minimal sind. VGLUT1 ist im gesamten Tectum, dem periaqueductalem Grey und dem tegmetum nur minimal vorhanden und fehlt fast vollständig in der substantia nigra pars compacta (SNC) und der pars reticulais (SNR) Schwache VGLUT2-Färbung ist in den neuronalen Perikarya und Puncta in der SNR vorhanden
 5 (D, high-powered Micrograph aus der durch ein Rechteck gekennzeichneten in (C), wo VGLUT1 fast vollständig fehlt (korrespondierend in F)). Mesencephalischer Aquaedukt (Aq.)
 10 Balken in A, C, E =1mm; in B, D, F = 200 µm.

15 Beispiel 2o zu Abbildung 17)

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung im pontomedullären Hirnstamm.

Low-Power- und High-Power-Micrographen von zwei angrenzenden Frontalsektionen sind alternierend für VGLUT2 (A-D) und VGLUT1 (E-H) gefärbt. Dies zeigt eine starke Menge punktförmiger VGLUT2-Immunoreaktivität (ir) (B, D) in der medialen oberen Olive (MSO), wo VGLUT1-ir niedrig ist (F, H). VGLUT2-ir ist relativ schwach im Nukleus des trapezoiden Körpers (TZ) (B-C) ausgeprägt, wo VGLUT1-ir in großer Menge vorliegt (F-G). Es ist zu beachten, daß deutlich VGLUT1-positive confluente große Punkte immunonegative neuronale Zellkörper im TZ (G) umschließen. Starke VGLUT1-ir-Punkte sind in den zentralen sensorischen Nukleus des trigeminal Nervs (Pr5), wo VGLUT2-ir sehr niedrig ist. Moderat positive VGLUT1 Punkte sind in dem motorischen trigeminalen Nukleus (Mo5) vorhanden, wo VGLUT2-ir niedrig ist. VGLUT1-ir und VGLUT2-ir sind mit geringerer Menge im lateralen medialen parabrachialen
 20
 25
 30

Nukleus vertreten (LPB, MPB). Moderate VGLUT2-ir akkumuliert im locus coeruleus (LC), wo VGLUT1-ir sehr gering ist. VGLUT1-ir und VGLUT2-ir fehlen im pyramidalen Trakt (pyr). Angrenzende Sektoren (I,J) alternierend für VGLUT2 (I) und VGLUT1 (J) gefärbt, zeigen eine starke Menge punktförmiger VGLUT1-Immunoreaktivität (ir) im vorderen ventralen cochlearen Nukleus (VCA), wo VGLUT2 im Prinzip völlig fehlt. Ein High-Power-Micrograph (K) von J zeigt stark positive VGLUT-ir Punkte, die immunonegative neuronale Zellkörper und Prozesse einschliessen. VGLUT1-ir Punkte sind in größerer Zahl im dorsalen cochlearen Nukleus (DC) als VGLUT2-ir-positive Punkte.

Balken in A, E = 500 µm; in B, F, I, J = 200 µm; in C, D, G, H, K = 25 µm.

Beispiel 2p zu Abbildung 18)

- Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der Verteilung im unteren Hirnstamm.
- Low-Power- und High-Power-Micrographen von zwei angrenzenden Frontalsektionen sind alternierend für VGLUT2 (A, C, E, G) und VGLUT1 (B, D, F, H) gefärbt, zeigen eine moderate Menge kleiner punktförmiger VGLUT2-Immunoreaktivität (ir) im oberflächlichen spinalen trigeminalen Nukleus (Sp5), was durch Pfeile markiert ist (A, G), wo VGLUT1-ir im Prinzip völlig fehlt (Pfeile in B, H). VGLUT2 ist im dorsalen motorischen Nukleus des Vagus (10), hypoglossalen Nukleus (12), der retikulären Formation (Rt) und im ventralen Teil des solitären Traktes (SolV) (A,C,E,) moderat vorhanden, wo VGLUT1 im Prinzip völlig fehlt (B, D, F). VGLUT2-ir ist im dorsalen solitären Trakt (SolD) sehr niedrig. Zu beachten ist das Übergewicht VGLUT1 im tiefen Sp5 (B, F, H), im Cuneat (Cu) und dem grazilen Nukleus (GR), wo VGLUT2-ir niedrig ist. Sterne markieren den zentralen Kanal.
- Balken in A, B = 500 µm; C,D = 200 µm, E,F = 100 µm; G,H = 100 µm.

Beispiel 2q zu Abbildung 19)

Dies ist ein Vergleich zwischen VGLUT1 und VGLUT2 bezüglich der
5 Verteilung im Cerebellum.

Low-Power- und High-Power-Micrographen von zwei angrenzenden
Frontalsektionen, alternierend für VGLUT2 (A, B) und VGLUT1 (C, D)
gefärbt, zeigen eine extreme Dichte intensiv gefärbter VGLUT1-positiver
Punkte in der molekularen Schicht (m), sehr wenige VGLUT1 Punkte um
10 Somata der Purkinje Zelle in der Purkinje Zellschicht (p) und dichte
glomeruli-ähnliche Akkumulation stark gefärbter konfluenter VGLUT1
Punkte in der granulären Schicht (g). VGLUT2-ir Punkte sind viel weniger
dicht in der molekularen Schicht, wo Sie in einer bandförmigen Art
angeordnet sind. VGLUT2-ir Punkte, die glomerula-ähnliche Strukturen in
15 der granulären Schicht (g) bilden, sind weniger dicht als die, die für
VGLUT1 färben.

Balken in A, C = 500 µm; in B,D = 100 µm.

Diskussion und Analyse zu Beispiel 2 allgemein:

20 Die differentielle Verteilung von BNPI und DNPI in Synapsen des primärafferenten, spinalen trigeminalen und supraspinalen Systems ist eine starke Evidenz für eine selektive Beeinflussbarkeit sensorischer Funktionen durch selektive Modulation des DNPI bzw. BNPI-vermittelten Glutamat-Transports.

25

Die Präsenz von BNPI und DNP im DRG weist auf die Möglichkeit hin, periphere neurogene Entzündungen selektiv durch selektive Intervention am DNPI oder BNPI-Target zu beeinflussen. Die Präsenz im DRG indiziert auch eine immunmodulatorische Rolle und entsprechende Targetierung.

30 Eine Präsenz von BNPI und DNPI im sensorischen Vagus oder

Glossopharyngeus Ganglion indiziert das Target für Baroaffenz, Chemoaffenz, cardiovaskuläre oder cardiorespiratorische Funktion, inklusive Asthma, Hypertonie etc., wie auch für Emesis. Interessant ist die Verteilung auch für die Darm-Gehirn-Achse, also Regulation der Sättigung, der „Inflammatory bowel disease“ oder Morbus Crohn ebenso wie für Autoimmunität im zentralen odere peripheren Nervensystem, autoimmuner Diabetes, alkoholischer Neuropathie, Alkohol induzierter chronischer Pankreatitis mit Neuroproliferation (Fink et al. mit Weihe; Neuroscience). Alleine die Verteilung im ZNS und PNS macht diese Targets zu interessanten Objekten in den restlichen bereits oben genannten Indikationen.

Ein entscheidender Punkt war aber auch, daß BNPI und DNPI in den afferenten Bereichen zu den sensorischen Bereichen des Auges und des Ohres nachgewiesen werden konnten, was in Kombination mit den anderen Erkenntnissen eine wichtige Rolle bei Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Katarakt, Netzhautablösung, Retinadegeneration, Glaukom oder Nystagmus oder Hörstörungen, Tinnitus, M. Menière, Hörsturz, Erkrankungen des Hör- und/oder Gleichgewichtsorgans oder Erkrankungen der Hörbahn oder Vesibularbahn nahelegt.

Entscheidend ist weiter, daß die Verteilung von VGLUT2 in den meisten Regionen des Gehirns und des Rückenmarks komplementär und gegenseitig ausschließend zur Expression von VGLUT1 ist. Zusammen könnten die beiden Glutamat-Transporter für die Aufnahme von Glutamat durch synaptische Vesikel aller centralen glutamatergen Neuronen verantwortlich sein.

Es wurde hier gefunden, daß die thalamischen und Gehirnstamm-Relais-

Zentren des visuellen und statoakustischen Pfades durch differentielle VGLUT1- und VGLUT2- gesteuerte Signale getrieben werden. Thalamische und mesenephalische Relay-Zentren des visuellen Systems wie der colliculus superior und der dorsolaterale geniculate Nukleus und der mediale terminale Nukleus des „Accessory optic tracts“, des zugehörenden optischen Systems sind spezifisch VGLUT2-gesteuert, was nahelegt, daß die retinalen ganglionischen Zellen, die das dritte Neuron des optischen Sinnes repräsentieren, zumindest teilweise mit VGLUT2 beschichtet sind. Im Gegensatz dazu erhalten der Hirnstamm cochlear, olivary trapezoid und das metathalamische mediale geniculate Relay-Zenter des Gehör-Pfades einen starken Input von VGLUT1-beschichteten glutamatergen Synapsen.

Verschiedene Nuklei des Gehirnstamm visuellen Systems erhalten einen starken Input durch VGLUT2 synaptische Punkte. Daher scheint der Gehirnstamm des optischen Systems ausschließlich durch VGLUT2 glutamaterge Synapsen versorgt zu werden.

Es ergeben sich folgende Ergebnisse und Folgerungen aus den Untersuchungen: DNPI ist ein neuer Marker für glutamaterge synaptische Vesikel, wobei es 2 unterschiedliche Typen von Neuronen, bzw. Synapsen gibt. VGLUT1 und VGLUT2 zeigen ein differentielles Verteilungsmuster.

Insgesamt läßt sich aus der Verteilung der BNPI und DNPI im ZNS und PNS zeigen, daß diese eine Rolle bei den verschiedenen bereits oben genannten Indikationen spielen, für die mit dem erfindungsgemäßen Verfahren an diesen Targets ansetzende arzneilich wirksame Verbindungen gesucht werden.

Beispiel 3:

Durchführung des Screeningverfahrens mit Messung der Bindung über die Verdrängung eines radioaktiv markierten Liganden

Ein Nukleinsäureabschnitt, der für BNPI kodiert, wird in einem Expressionsvektor kloniert, der eine konstitutive Expression (z.B. CMV-

Promoter) oder eine induzierbare Expression in eukaryonten Zellen erlaubt. Die DNA wird mit geeignetem Transfektionsverfahren, z.B. mit Lipofectamin (Fa. Roche Diagnostics) in eukaryontischen Zellen (z.B. CHO-Zellen, HEK293-Zellen oder NIH-3T3-Zellen) hineingebracht. Die Zellen werden in Anwesenheit eines Selektionsreagenzen (z.B. Zeocin, Hygromycin oder Neomycin) kultiviert so daß nur die Zellen überleben, die das DNA-Konstrukt aufgenommen haben, und bei länger andauernder Selektion, auch in das Genom inkorporiert haben.

Ausgehend von diesen Zellen werden Membranfraktionen gewonnen, die BNPI in großer Menge enthalten und für einen Bindungsassay verwendet werden können. Dieser besteht aus 1.) dem BNPI enthaltenden Membranen 2.) einem radioaktiv markierten Liganden 3.) einem Bindungspuffer (z.B. 50 mM HEPES pH 7.4, 1 mM EDTA) und dem auf Bindung zu untersuchenden Liganden. Nach Inkubation der oben genannten Reaktionsgemische (für z.B. 30-60 min) bei einer geeigneten Temperatur (meistens Raumtemperatur) werden die nichtgebundenen radioaktiven Ligandenmoleküle abfiltriert. Die Restmenge an gebundenem Liganden wird nach Zugabe eines Szintillationscocktails in einem β -Counter (z.B. Trilux, Fa. Wallac) vermessen. Zeigt die Testsubstanz eine Bindung an BMPI, so wird dies als verringelter radioaktiver Einbau detektiert. Dieses Verfahren wird geeignetermaßen so miniaturisiert, daß es in (96-, 384- oder 1536-well) Mikrotiterplatten durchgeführt werden kann, um dieses Verfahren mittels eines Roboters im sogenannten Hightroughput-Screening (HTS)-Verfahren durchzuführen.

25

Beispiel 4:

Durchführung des erfindungsgemäßen Screeningverfahrens mit BNPI und Messung der durch die Bindung der Substanz veränderten funktionellen Parameter

30

Ein Nukleinsäureabschnitt, der für BNPI kodiert, wird in einem Expressionsvektor kloniert, der eine induzierbare Expression in Prokaryonten, wie z.B. E.coli erlaubt. Hierbei wird der Nukleinsäureabschnitt so modifiziert, daß er als Fusionsprotein mit einer zusätzlichen N- oder C-terminalen Aminosäuresequenz exprimiert wird. Diese Sequenz sollte bei unveränderter Funktion des BNPI eine Aufreinigung über ein spezifisches Verfahren erlauben, z.B. Glutathion S-Transferasefragment, das über Bindung an Glutathion eine Isolierung aus dem Proteingemisch erlaubt. Nach Transfektion der Bakterien, Induktion des Genes (z.B. mit IPTG beim lac-Promoter) und Aufschließen der Bakterien werden die Fusionsproteine aufgereinigt und in einem in vitro-Kinase Experiment eingesetzt. Hierbei werden 5 µg Protein bei 30°C für 30 Minuten in 50 µl Kinasepuffer (20 mM PIPES, pH 7.0, 5 mM MnCl₂, 7 mM β-Mercaptoethanol, 0.4 mM Spermin, 10 mM rATP) ergänzt mit 10 µCi [γ -³²P] ATP. Als Substrate werden gereinigtes Histon H1-Protein (Fa. Sigma) oder bakteriell exprimierte GST-NFATc1-Fusionsprotein hinzugegeben. Nach der Inkubationszeit wird das nicht-inkorporierte [γ -³²P] ATP abfiltriert und die Menge an eingebautem ³²Phosphat durch β-Szintillation (Trilux, Fa. Wallac) bestimmt. In einem Experiment zum Aufspüren neuer BNPI-Inhibitoren werden in diesem Ansatz die Testsubstanzen mitinkubiert und eine Abnahme der ³²P-Inkorporation als Indikator für einen Inhibitor benutzt. Dieses Verfahren wird geeignetermaßen so miniaturisiert, daß es in (96-, 384- oder 1536-well) Mikrotiterplatten durchgeführt werden kann, um dieses Verfahren mittels eines Roboters im sogenannten Hightroughput-Screening (HTS)-Verfahren durchzuführen.

Beispiel 5:

Durchführung des erfindungsgemäßen Screeningverfahrens mit DNPI und Messung der durch die Bindung der Substanz veränderten funktionellen Parameter

Das Verfahren wird wie in Beispiel 4 beschrieben durchgeführt mit der Ausnahme, daß statt eines Nukleinsäureabschnitt, der für BNPI kodiert, ein Nukleinsäureabschnitt eingesetzt wurde, der für DNPI kodiert.

5

Beispiel 6:

Beispiel für ein Arzneimittel zur Tinnitus-Behandlung enthaltend eine erfindungsgemäße Verbindung - Tablettenformulierung

- 10 Tabletten können durch direktes Verpressen von Mischungen der erfindungsgemäßen Verbindung mit entsprechenden Hilfsstoffen oder durch Verpressen von verbindungshaltigen Granulaten (mit gegebenenfalls weiteren Hilfsstoffen) hergestellt werden. Die Granulate können dabei entweder durch Feuchtgranulation mit z.B. wäßrigen Granulierflüssigkeiten
 15 und anschließender Trocknung dieser Granulate oder durch Trockengranulation z.B. über Kompaktierung hergestellt werden.

■ **Direktverpressung**

20	z.B. pro Tablette:	25 mg	erfindungsgemäße Verbindung
		271 mg	LudipressTM (Granulat zur Direkttablettierung aus Lactose monohydrat, Povidon K30 und Crospovidon)
25		4 mg	Magnesiumstearat
		300 mg	Gesamt

- Homogene Mischung des Wirkstoffes mit den Hilfsstoffen herstellen und diese auf einer Tablettenpresse zu Tabletten mit einem Ø von 10 mm
 30 verpressen.

■ Trockengranulation

	z.B. pro Tablette:	25 mg	erfindungsgemäße Verbindung
5		166 mg	Microcristalline Cellulose
		80 mg	Niedrig substituierte
			Hydroxypropylcellulose (I-HPC LH 11 TM)
10		5 mg	Hochdisperses Siliziumdioxid
		4 mg	Magnesiumstearat
		280 mg	Gesamt

Homogene Mischung der Verbindung mit der Mikrokristallinen Cellulose und der I-HPC herstellen und diese Kopaktieren. Nach dem Sieben der Komprimate wird das entstandene Granulat mit Magnesiumstearat und Siliziumdioxid gemischt und auf einer Tablettenpresse zu Tabletten mit einem Ø von 9 mm verpreßt.

20 ■ Feuchtgranulation

	z.B. pro Tablette:	25 mg	erfindungsgemäße Verbindung
		205 mg	Mikrokristalline Cellulose
		6 mg	Povidon K30
25		10 mg	Crospovidon
		4 mg	Magnesiumstearat
		250 mg	Gesamt

Homogene Mischung der Verbindung mit der Mikrokristallinen Cellulose und dem Crospovidon herstellen und diese in einem Granulator mit einer wäßrigen Lösung des Povidons granulieren. Das feuchte Granulat wird anschließend nachgranuliert und nach

der Trocknung im Trockenschrank (50°C) 10 h getrocknet. Das trockene Granulat wird mit dem Magnesiumstearat zusammen gesiebt, endgemischt und auf einer Tablettenpresse zu Tabletten mit einem Ø von 8 mm verpreßt.

5

Beispiel 7:**Beispiel für ein Arzneimittel zur Tinnitus-Behandlung enthaltend eine erfindungsgemäße Verbindung – parenterale Lösung**

- 10 1 g einer erfindungsgemäßen Verbindung wird in 1 l Wasser für Injektionszwecke bei Raumtemperatur gelöst und anschließend durch Zugabe von NaCl (Natriumchlorid) auf isotone Bedingungen eingestellt.

Literatur:

- Aihara Y, Mashima H, Onda H, Hisano Setsuji, Kasuya H., Hori T, Yamada S., Tomura H, Yamada Y., Inoue I., Kojima I. und Takeda J. (2000), J. Neurochem. 74: 2622 - 2625
- Akopian AN, Sivilotti L & Wood JN (1995) Nature 379: 257-262
- Ausubel FM, Brent R, Kingdton RE, Moore DD, Seidman JG, Smith JA & Struhl K eds.(1190) Current protocols in molecular biology. John Wiley & Sons, Inc. New York, NY.
- Baba H, Doubell TP, Woolf CJ 1999: Peripheral inflammation facilitates A β fiber-mediated synaptic input to the substantia gelatinosa of the adult rat spinal cord. J Neurosci 19: 859-867
- Bauer D, Müller H, Reich J, Riedel H, Ahrenkiel V, Warthoe P & Strauss M (1993): Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR) Nucl Acids Res 21: 4272-4280.
- Bonini A, Anderson SM, Steiner DF (1997) Molecular cloning and tissue expression of a novel orphan G Protein-coupled receptor from rat lung. Biochem Biophys Res Comm 234: 190-193.
- Chih-Cheng et al., (1995): A P2X prinoceptor expressed by a subset of sensory neurons. Nature 377:428-432
- Corderre TJ, Katz J, Vaccarino AL, Melzack R (1993): Contribution of central plasticity to pathological pain: review of clinical and experimental evidence. Pain 52: 259-285.
- Dickenson (1995) Novel pharmacological targets in the treatment of pain. Pain Rev., 2, 1-12.
- Dubuisson et al., 1997 Pain, 4:161-174.
- Feng Y & Gregor P (1997) Cloning of a novel member of the G Protein-coupled receptor family related to peptide receptors. Biochem Biophys Res Comm 231: 651-654.

- Furukawa T, Yang Y, Nakamoto B, Stamatoyannopoulos G, Papayannopoulou T (1996): Identification of new genes expressed in a human erythroleukemia cell line. *Bloods Cell Mol & Dis* 22:11-22.
- 5 Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE 1995: NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. *J Neurochem* 65: 2016-2021.
- 10 Hawes BE, Fried S, Yao X, Weig B, Graziano MP 1998: Nociceptin (ORL1) and μ -Opioid receptors mediate mitogen-activated protein kinase activation in CHO cells through a Gi-coupled signaling pathway: evidence for distinct mechanisms of agonist-mediated desensitization. *J Neurochem* 71: 1024-1033.
- 15 Hubank M & Schatz DG (1994): Identifying differences in mRNA expression by representational difference analysis of cDNA. *Nucl Acids Res* 22: 5640-5648.
- Klußmann S et al., 1996: *Nature Biotechnology* 14: 1112-1115.
- Li L-Y & Chang K-J 1996: The stimulatory effect of opioids on mitogen-activated protein kinase in chinese hamster ovary cells transfected to express μ -opioid receptors. *Mol Pharm* 50:599-602.
- 20 Liang P & Pardee AB 1992: Differential Display of eukaryotic messenger RNA by means of the polymerase chain reaction. *Science* 257:967-971.
- Methner A, Hermey G, Schinke B, Hermanns-Borgmeyer I (1997): A novel G Protein-coupled receptor with homology to neuropeptide and chemoattractant receptors expressed during bone development. *Biochem Biophys Res Comm* 233: 336-342.
- 25 Mohit AA, Martin JH & Miller CA 1995: p493F12 Kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system. *Neuron* 14: 67-78.

- Poirier GM-C, Pyati J, Wan JS, Erlander MG 1997: Screening differentially expressed cDNA clones obtained by differential display using amplified RNA. Nucleic Acids Research 25: 913-914.
- Sambrook J, Fritsch EF & Maniatis T 1989: Molecular Cloning: A Laboratory Manual. Second Edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
- Sompayrac L, Jane S, Burn TC, Tenen DG & Danna KJ 1995: Overcoming limitations of the mRNA differential display technique. Nucleic Acids Research 23: 4738-4739.
- 10 Tal M 1996: A novel antioxidant alleviates heat hyperalgesia in rats with an experimental painful neuropathy. Neurreport 7: 1382-1384.
- Tölle TR (1997): Chronischer Schmerz. In: Klinische Neurobiologie, Herdergen T, Tölle TR, Bähr M (Hrsg.): S. 307-336; Spektrum Verlag, Heidelberg.
- 15 U.S.Patent 5.262.311
- Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995): Serial analysis of gene expression. Science 270: 484-487.
- Wan JS, Sharp JS et al. (1996): Cloning differentially expressed mRNAs Nature Biotech 14:1685-1691.
- 20 Watson JB & Margulies JE (1993) Differential cDNA screening strategies to identify novel stage-specific proteins in the developing mammalian brain. Dev Neurosci 15: 77-86.
- Wilks AF (1989) Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction. Proc Natl Acad Sci USA 86: 1603-1607.
- 25 WO96/34288
- Woolf CJ, Shortland P, Coggeshall RE 1992: Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 355:75-78.

Zimmermann, M & Herdegen, T (1996): Plasticity of the nervous system at the systemic, cellular and molecular levels: a mechanism of chronic pain and hyperalgesia. Progr Brain Res 110: 233-259

Patentansprüche

1. Verfahren zur Auffindung pharmazeutisch relevanter Substanzen mit
5 Wirksamkeit in den Indikationen oder zur Behandlung von

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien,
10 Depression, Schlaganfall, Hirntrauma, Querschnittslähmung,
amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation,
Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea
Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische
Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei
15 Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis,
Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen
oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob,
Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und
cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen
der Baroafferenz oder Chemoafferenz, Toxoplasmose, Asthma,
20 Autoimmunität im zentralen und peripheren Nervensystem,
diabetische Neuropathie, autoimmuner Diabetes, alkoholische
Neuropathie, HIV-Neuro-Aids; Störungen des autonomen
Nervensystems, Störungen des Nervensystems des
Verdauungstraktes, Übererregbarkeit, insbesondere
25 glutamatvermittelte Übererregbarkeit, Neurodegeneration
insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie;
Encephalitis insbesondere virale oder bakterielle; Prionerkrankung,
Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung
insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom,
30 Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums,
cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen
des Pallidums, Erkrankungen des Hör- und/oder

Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen; 5 Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, 10 Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Aggression, Paranoia, Hirnerschütterung, 15 neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie 20 Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson

25

mit folgenden Verfahrensschritten:

- (a) Inkubation einer zu testenden Substanz unter geeigneten Bedingungen mit mindestens einem Biomolekül aus Gruppe I: dem Protein BNPI und/oder DNPI und/oder einem Protein gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder einem zu einem dieser vorgenannten Proteine zu 30

- mindestens 90 % ähnlichen Protein und/oder einem Protein, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 % ähnliches Polynukleotid kodiert, und/oder einem Protein, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder deren Antisense Polynukleotide bindet, oder einem mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilprotein eines der vorgenannten Proteine und/oder einer Zelle und/oder einer Präparation aus einer solchen Zelle, die mindestens eines der vorgenannten Proteine und Teilproteine, bzw. Biomoleküle, synthetisiert hat,
- (b) Messung der Bindung der Testsubstanz an dem oder den von der Zelle synthetisierten Protein/en und/oder Teilprotein/en oder Messung mindestens eines der durch die Bindung der Testsubstanz an das oder die Protein/e und/oder Teilprotein/e, bzw. Biomolekül/e veränderten funktionellen Parameter.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß die Zelle vor dem Schritt (a) gentechnisch manipuliert wird.
3. Verfahren gemäß Anspruch 2, dadurch gekennzeichnet, daß die gentechnische Manipulation die Messung mindestens eines der durch die Testsubstanz veränderten funktionellen Parameter erlaubt.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß durch die gentechnische Manipulation eine in der Zelle nicht endogen exprimierte Form eines G-Proteins exprimiert oder ein Reportergen eingeführt wird.

5. Verfahren gemäß einem der Ansprüche 2-4, dadurch gekennzeichnet, daß die Zelle gentechnisch so manipuliert wird, daß die Zelle mindestens ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise zu mindestens 95 %, insbesondere zu mindestens 97 % ähnliches Polynukleotid enthält.
- 10 6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß das Polynukleotid in einem rekombinanten DNA-Konstrukt enthalten ist.
- 15 7. Verfahren gemäß einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß die Zelle nach der gentechnischen Manipulation gemäß Anspruch 2 und vor dem Schritt (a) gemäß Anspruch 1 unter Bedingungen, die eine Expression erlauben, kultiviert wird, gegebenenfalls unter Selektionsdruck.
- 20 8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Zelle eine Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder eine immortalisierte oder native Säugetierzelle ist.
- 25 9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Messung der Bindung über die Verdrängung eines bekannten markierten Liganden des Teilproteins und/oder Proteins und/oder über die daran gebundene Aktivität einer markierten Testsubstanz erfolgt.
- 30 10. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Messung mindestens eines der durch die Testsubstanz veränderten funktionellen Parameter über Messung der Regulation, Hemmung und/oder Aktivierung von Rezeptoren, Ionenkanälen und/oder Enzymen erfolgt, insbesondere über Messung

der Veränderung der Genexpression, des Ionenmilieus, des pH oder des Membranpotentials, über Veränderung der Enzymaktivität oder der Konzentration der 2nd messenger.

- 5 11. Verfahren gemäß einem der Ansprüche 1 bis 10, bei dem ein erstes
 Verfahren gemäß einem der Ansprüche 1 bis 10 mit einem zweiten
 Verfahren gemäß einem der Ansprüche 1 bis 10 derart gekoppelt
 wird, daß die Meßwerte und Ergebnisse des ersten Verfahrens
 hinsichtlich der zu messenden Substanz mit den Meßwerten und
10 Ergebnissen des zweiten Verfahrens hinsichtlich der zu messenden
 Substanz verglichen werden, dadurch gekennzeichnet, daß in einem
 der zwei Verfahren, im folgenden Hauptverfahren genannt, im Schritt
 (a) die zu testende Substanz
- 15 entweder
- mit einem Biomolekül aus Gruppe II: dem Protein BNPI und/oder
 einem Protein gemäß einer der Abbildungen 1b), 1d) oder 1f)
 und/oder einem zu einem dieser vorgenannten Proteine zu
 mindestens 90 % ähnlichen Protein und/oder einem Protein, für das
 ein Polynukleotid gemäß einer der Abbildungen 1a), 1c) oder 1e)
 oder ein dazu zu mindestens 90 % ähnlichen Polynukleotid kodiert,
 und/oder einem Protein, das durch eine Nukleinsäure kodiert wird,
 die unter stringenten Bedingungen an ein Polynukleotid gemäß einer
20 der Abbildungen 1a), 1c) oder 1e) oder deren Antisense
 Polynukleotide bindet, oder einem mindestens 10, vorzugsweise
 mindestens 15, insbesondere mindestens 20 Aminosäuren langen
 Teilprotein eines der vorgenannten Proteine und/oder einer Zelle
 und/oder einer Präparation aus einer solchen Zelle, die mindestens
 eines der vorgenannten Proteine und/oder Teilproteine synthetisiert
25 hat,
- 30

oder

mit einem Biomolekül aus Gruppe III: dem Protein DNPI und/oder
5 einem Protein gemäß einer der Abbildungen 2b) oder 2d) und/oder
einem zu einem dieser vorgenannten Proteine zu mindestens 90 %
ähnlichen Protein und/oder einem Protein, für das ein Polynukleotid
gemäß einer der Abbildungen 2a) oder 2c) oder ein dazu zu
10 mindestens 90 % ähnliches Polynukleotid kodiert, und/oder einem
Protein, das durch eine Nukleinsäure kodiert wird, die unter
stringenten Bedingungen an ein Polynukleotid gemäß einer der
Abbildungen 2a) oder 2c) oder deren Antisense Polynukleotide
bindet, oder einem mindestens 10, vorzugsweise mindestens 15,
15 insbesondere mindestens 20 Aminosäuren langen Teilprotein eines
der vorgenannten Proteine und/oder einer Zelle und/oder einer
Präparation aus einer solchen Zelle, die mindestens eines der
vorgenannten Proteine und/oder Teilproteine synthetisiert hat,
inkubiert wird,

und

20 daß im anderen der zwei Verfahren, im folgenden Nebenverfahren
genannt, im Schritt (a) die zu testende Substanz mit einem
Biomolekül aus der Gruppe I oder mit einem Biomolekül aus
derjenigen Gruppe ausgewählt aus Gruppe II und Gruppe III
25 inkubiert wird, aus der das Biomolekül, mit der die Substanz im
Hauptverfahren inkubiert wird, nicht ausgewählt ist.

12. Verfahren gemäß einem der Ansprüche 1 bis 11, dadurch
gekennzeichnet, daß die aufzufindenden Substanzen ausgewählt sind
30 aus:

Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Morbus Parkinson, Katarakt, Virus-Infektionen oder bakterielle Infektionen, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Schlafstörungen, Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Neuroinflammation, Insomnia, zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson

15 vorzugsweise

Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe Lateralsklerose, Gewichtsregulation, Obesitas, Katarakt, Virus-Infektionen oder bakterielle Infektionen, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Neuroinflammation

30 insbesondere

Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Katarakt, Netzhautablösung, Retinadegeneration, Glaukom oder Nystagmus

5 und/oder

Hörstörungen, Tinnitus, M. Menière, Hörsturz, Erkrankungen des Hör- und/oder Gleichgewichtsorgans oder Erkrankungen der Hörbahn oder Vesibularbahn.

10 13. Verbindung identifizierbar durch ein Verfahren gemäß einem der Ansprüche 1 bis 12 als pharmazeutisch relevante Substanz mit Wirksamkeit in mindestens einer der Indikationen gemäß Anspruch 1 oder 12.

15 14. Verbindung gemäß Anspruch 13, dadurch gekennzeichnet, daß sie eine niedermolekulare Verbindung ist.

15. Verwendung

20 a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise zu wenigstens 95%, insbesondere zu wenigstens 97% oder genau entspricht,

25 b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyme, eines Ribozyme oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist,

- spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- 5 c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- 10 d. von BNPI und/oder DNPI und/oder eines Proteins gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder eines zu einem dieser vorgenannten Proteine zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnlichen Proteins und/oder eines Proteins, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnliches Polynukleotid kodiert, und/oder eines Proteins, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder dessen Antisense Polynukleotide bindet oder eines mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilproteins eines der vorgenannten Proteine, wobei das Protein oder Teilprotein gegebenenfalls posttranslational modifiziert, insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde,
- 15 e. eines Antikörpers, vorzugsweise eines monoklonalen oder polyklonalen Antikörpers, gegen eines der Proteine oder Teilproteine gemäß Punkt d),
- 20
- 25
- 30

- f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), einen Vektor gemäß Punkt c), ein Protein oder Teilprotein gemäß Punkt d) oder einen Antikörper gemäß Punkt e)
- 5 g. einer Verbindung gemäß einem der Ansprüche 13 oder 14 und/oder
- h. eines Wirkstoffs, vorzugsweise eines niedermolekularen Wirkstoffs, der an ein Protein oder Teilprotein gemäß Punkt d) bindet,
- 10

zur Herstellung eines Arzneimittels zur Behandlung von

15 Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis, Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob,

20

25 Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der Baroafferenz oder Chemoafferenz, Toxoplasmose, Asthma, Autoimmunität im zentralen und peripheren Nervensystem, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Störungen des autonomen Nervensystems, Störungen des Nervensystems des Verdauungstraktes, Übererregbarkeit, insbesondere

30

glutamatvermittelte Übererregbarkeit, Neurodegeneration
 insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie;
 Encephalitis insbesondere virale oder bakterielle; Prionerkrankung,
 Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung
 insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom,
 Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums,
 cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen
 des Pallidums, Erkrankungen des Hör- und/oder
 Gleichgewichtsorgans, Erkrankungen der Hörbahn oder
 Vesibularbahn, Störungen des Gedächtnisses, Störungen des
 Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-
 Syndrom, Angstzustände, Phobien, Schlafstörungen;
 Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol,
 Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit
 Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation,
 neurotoxikologisch bedingte Erkrankungen, Erkrankungen des
 spinalen Motoneurons, Muskelatrophien, Muskeldystrophien,
 Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien,
 Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder
 Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien,
 Chinese-Restaurant-Syndrom, Aggression, Paranoia,
 Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom,
 cerebrovaskuläre Spasmen, neuronale Apoptose,
 Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-
 Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt,
 Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen
 der Sexualfunktion, wie Impotenz oder Priapismus oder mit
 Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der
 Kognition oder des Gedächtnisses, zur Neuroprotektion, zur
 Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten
 Therapie per Elektrostimulation des Nucleus subthalamicus bei
 Parkinson.

16. Verwendung

- a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer der in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise zu wenigstens 95%, insbesondere zu wenigstens 97% entspricht,
- b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyme, eines Ribozyme oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b) oder einen Vektor gemäß Punkt c)

30

zur Herstellung eines Arzneimittels zum Einsatz in der Gentherapie.

17. Verwendung gemäß Anspruch 16, dadurch gekennzeichnet, daß es sich um In-vivo oder In-vitro Gentherapie handelt.

18. Verwendung gemäß einem der Ansprüche 16 oder 17, dadurch gekennzeichnet, daß es sich um ein Arzneimittel mit Wirksamkeit in der Indikation oder zur Behandlung von

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis, Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob, Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der Baroafferenz oder Chemoafferenz, Toxoplasmose, Asthma, Autoimmunität im zentralen und peripheren Nervensystem, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Störungen des autonomen Nervensystems, Störungen des Nervensystems des Verdauungstraktes, Übererregbarkeit, insbesondere glutamatvermittelte Übererregbarkeit, Neurodegeneration insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie; Encephalitis insbesondere virale oder bakterielle; Prionerkrankung, Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums, cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen

des Pallidums, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen; Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Aggression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson

handelt.

19. Verwendung

- a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids,

- vorzugsweise einer DNA oder RNA, welches einer der in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise 95%, insbesondere zu wenigstens 97% entspricht,
- 5 b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyms, eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- 10 c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- 15 d. von BNPI und/oder DNPI und/oder eines Proteins gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder eines zu einem dieser vorgenannten Proteine zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnlichen Proteins und/oder eines Proteins, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnliches Polynukleotid kodiert, und/oder eines Proteins, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder dessen Antisense Polynukleotide bindet oder eines mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20

5 Aminosäuren langen Teilproteins eines der vorgenannten Proteine, wobei das Protein oder Teilprotein gegebenenfalls posttranslational modifiziert, insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde,

- 10 e. eines Antikörpers, vorzugsweise eines monoklonalen oder polyklonalen Antikörpers, gegen eines der Proteine oder Teilproteine gemäß Punkt d),
- f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), einen Vektor gemäß Punkt c), ein Protein oder Teilprotein gemäß Punkt d) oder einen Antikörper gemäß Punkt e),
- 15 g. einer Verbindung gemäß einem der Ansprüche 13 oder 14 und/oder
- h. eines Wirkstoffs, vorzugsweise eines niedermolekularen Wirkstoffs, der an ein Protein oder Teilprotein gemäß Punkt d) bindet,

20 zur Herstellung eines Diagnostikums zur Diagnose eines Zustands ausgewählt aus

25 Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis,

Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob, Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen der Baroaffenz oder Chemoaffenz, Toxoplasmose, Asthma, Autoimmunität im zentralen und peripheren Nervensystem, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Störungen des autonomen Nervensystems, Störungen des Nervensystems des Verdauungstraktes, Übererregbarkeit, insbesondere glutamatvermittelte Übererregbarkeit, Neurodegeneration insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie; Encephalitis insbesondere virale oder bakterielle; Prionerkrankung, Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums, cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen des Pallidums, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Störungen des Gedächtnisses, Störungen des Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen; Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit Alkoholintoxikation, Hepatoencephalopathie ohne Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen, Erkrankungen des spinalen Motoneurons, Muskelatrophien, Muskeldystrophien, Erkrankungen der Hinterstrangbahnen, alkoholische Neuropathien, Neuroinflammation, Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress, Geschmacksstörungen, Nahrungsmittelallergien, Chinese-Restaurant-Syndrom, Aggression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom,

5 cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus.

20. Verwendung

- 10 a. eines Polynukleotids, vorzugsweise einer DNA oder RNA, kodierend für BNPI oder DNPI oder eines Polynukleotids, vorzugsweise einer DNA oder RNA, welches einer der in einer der Abbildungen 1a), 1c), 1e), 2a), 2c) oder 2e) dargestellten Nukleotidsequenzen zu wenigstens 90%, vorzugsweise 95%, insbesondere zu wenigstens 97% entspricht,
- 15 b. eines Polynukleotids, insbesondere eines Antisense Polynukleotids oder einer PNA, vorzugsweise eines DNA-Enzyms oder Ribozyms, eines Ribozyms oder sonstigen DNA-Enzyms oder einer katalytischen RNA oder DNA, das eine Nukleotid-Sequenz aufweist, die in der Lage ist, spezifisch an eines der unter Punkt a) aufgeführten Polynukleotide zu binden,
- 20 c. eines Vektors enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), insbesondere eines Expressionsvektors und/oder insbesondere abgeleitet von einem Virus, beispielsweise dem Adenovirus, Adenoassoziiertem Virus oder Herpesvirus und/oder insbesondere enthaltend mindestens eine LTR-, Poly A-, Promotor- und/oder ORI-Sequenz,
- 25 d. von BNPI und/oder DNPI und/oder eines Proteins gemäß einer der Abbildungen 1b), 1d), 1f), 2b) oder 2d) und/oder eines zu einem dieser vorgenannten Proteine zu mindestens 90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnlichen Proteins und/oder eines Proteins, für das ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder ein dazu zu mindestens

90 %, vorzugsweise mindestens 95%, insbesondere mindestens 97% ähnliches Polynukleotid kodiert, und/oder eines Proteins, das durch eine Nukleinsäure kodiert wird, die unter stringenten Bedingungen an ein Polynukleotid gemäß einer der Abbildungen 1a), 1c), 1e), 2a) oder 2c) oder dessen Antisense Polynukleotide bindet oder eines mindestens 10, vorzugsweise mindestens 15, insbesondere mindestens 20 Aminosäuren langen Teilproteins eines der vorgenannten Proteine, wobei das Protein oder Teilprotein gegebenenfalls posttranslational modifiziert, insbesondere glykosiliert, phosphoryliert, amidiert, methyliert, acetyliert, ADP-ribosyliert, hydroxyliert, mit einem Membrananker versehen, gespalten oder verkürzt wurde,

5 e. eines Antikörpers, vorzugsweise eines monoklonalen oder polyklonalen Antikörpers, gegen eines der Proteine oder Teilproteine gemäß Punkt d),

10 f. einer Zelle, vorzugsweise einer Amphibienzelle, Bakterienzelle, Hefezelle, Insektenzelle oder einer immortalisierten oder nativen Säugetierzelle, enthaltend ein Polynukleotid gemäß einem der Punkte a) oder b), einen Vektor gemäß Punkt c), ein Protein oder Teilprotein gemäß Punkt d) oder einen Antikörper gemäß Punkt e)

15 20 in einem Verfahren zur Auffindung pharmazeutisch relevanter Substanzen mit Wirksamkeit in den Indikationen oder zur Behandlung von

25 Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz, Schizophrenie, Manien, Depression, Schlaganfall, Hirntrauma, Querschnittslähmung, amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, 30 Obesitas, Anorexia nervosa, Epilepsie, Hemibalismus, Chorea Huntington, Stress, Morbus Parkinson, TIA (Transiente Ischämische Attacken), Emesis, insbesondere Hyperemesis beispielsweise bei

Chemotherapie, Schwindel, in jeglicher Form, Katarakt, Arthritis,
 Hyperaktivität, Entwicklungsstörungen, Tollwut, Virus-Infektionen
 oder bakterielle Infektionen, Grippe, Malaria, Creutzfeld-Jacob,
 Inflammatory Bowel disease, Morbus Crohn, cardiovaskuläre und
 5 cardiorespiratorische Funktionsstörungen, Hypertonie, Störungen
 der Baroaffenz oder Chemoaffenz, Toxoplasmose, Asthma,
 Autoimmunität im zentralen und peripheren Nervensystem,
 diabetische Neuropathie, autoimmuner Diabetes, alkoholische
 10 Neuropathie, HIV-Neuro-Aids; Störungen des autonomen
 Nervensystems, Störungen des Nervensystems des
 Verdauungstraktes, Übererregbarkeit, insbesondere
 glutamatvermittelte Übererregbarkeit, Neurodegeneration
 insbesondere bei Morbus Alzheimer, Morbus Alzheimer, Ischämie;
 Encephalitis insbesondere virale oder bakterielle; Prionerkrankung,
 15 Rasmussen-Encephalitis, HIV-Encephalitis, Demyelinisierung
 insbesondere bei multipler Sklerose, Retinadegeneration, Glaukom,
 Nystagmus, Netzhautablösung, Erkrankungen des Cerebellums,
 cerebelläre Ataxie, Erkrankungen der Basalganglien, Erkrankungen
 des Pallidums, Erkrankungen des Hör- und/oder
 20 Gleichgewichtsorgans, Erkrankungen der Hörbahn oder
 Vesibularbahn, Störungen des Gedächtnisses, Störungen des
 Lernens, Störungen der Kognition, Stiff-Man-Syndrom, Restless
 Leg-Syndrom, Angstzustände, Phobien, Schlafstörungen;
 Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol,
 25 Nikotin, Opiaten, Ecstasy oder Kokain; Hepatoencephalopathie mit
 Alkoholintoxikation, Hepatoencephalopathie ohne
 Alkoholintoxikation, neurotoxikologisch bedingte Erkrankungen,
 Erkrankungen des spinalen Motoneurons, Muskelatrophien,
 Muskeldystrophien, Erkrankungen der Hinterstrangbahnen,
 30 alkoholische Neuropathien, Neuroinflammation,
 Befindlichkeitsstörungen bei Infektionen oder Fieber, Stress,
 Geschmacksstörungen, Nahrungsmittelallergien, Chinese-

- Restaurant-Syndrom, Aggression, Paranoia, Hirnerschütterung, neuroendokrine Störungen, Tourrette-Syndrom, cerebrovaskuläre Spasmen, neuronale Apoptose, Neurodegeneration, neuronale Nekrose, Astrocytose, Burn-out-Syndrom, Sudden-Infant-Death (plötzlicher Kindstod), Herzinfarkt, Insomnia, retrograde Amnesie, multiple Sklerose, Jet-lag, Störungen der Sexualfunktion, wie Impotenz oder Priapismus oder mit Wirksamkeit zur Förderung der Mikrogliaaktivierung, des Lernens, der Kognition oder des Gedächtnisses, zur Neuroprotektion, zur Liquordiagnostik neurostatischer Erkrankungen oder zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson.
- 5
- 10
- 15
21. Verwendung gemäß einem der Ansprüche 15, 18, 19 oder 20, dadurch gekennzeichnet, daß die Indikation oder die zu behandelnde oder zu diagnostizierende Krankheit ausgewählt ist aus
- 20
- 25
- 30
- Sehstörungen, Retinitis pigmentosa, Opticus Degeneration, Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe Lateralsklerose, Neuralgie, Gewichtsregulation, Obesitas, Morbus Parkinson, Katarakt, Virus-Infektionen oder bakterielle Infektionen, diabetische Neuropathie, autoimmuner Diabetes, alkoholische Neuropathie, HIV-Neuro-Aids; Retinadegeneration, Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des Hör- und/oder Gleichgewichtsorgans, Erkrankungen der Hörbahn oder Vesibularbahn, Schlafstörungen, Drogenabhängigkeit, -sucht und -entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder Kokain; Neuroinflammation, Insomnia, zur adjuvanten Therapie per Elektrostimulation des Nucleus subthalamicus bei Parkinson vorzugsweise

Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Hörstörungen, Tinnitus, M. Menière, Hörsturz amyotrophe
Lateralsklerose, Gewichtsregulation, Obesitas, Katarakt, Virus-
Infektionen oder bakterielle Infektionen, Retinadegeneration,
5 Glaukom, Nystagmus, Netzhautablösung, Erkrankungen des
Hör- und/oder Gleichgewichtsorgans, Erkrankungen der
Hörbahn oder Vesibularbahn, Drogenabhängigkeit, -sucht und -
entzug insbesondere bei Alkohol, Nikotin, Opiaten, Ecstasy oder
Kokain; Neuroinflammation

10
insbesondere

15 Sehstörungen, Retinitis pigmentosa, Opticus Degeneration,
Katarakt, Netzhautablösung, Retinadegeneration, Glaukom oder
Nystagmus
oder
Hörstörungen, Tinnitus, M. Menière, Hörsturz, Erkrankungen des
Hör- und/oder Gleichgewichtsorgans oder Erkrankungen der
Hörbahn oder Vesibularbahn.

20

Zusammenfassung

Die Erfindung betrifft ein Verfahren zur Auffindung pharmazeutisch wirksamer Substanzen unter Verwendung von BNPI und/oder DNPI bzw. davon abgeleiteter Biomoleküle und die Verwendung dadurch identifizierter Verbindungen, an BNPI und/oder DNPI bindender Wirkstoffe, gegen BNPI und/oder DNPI gerichteter Antikörper, von Antisensenukleotiden gegen BNPI und/oder DNPI, oder von BNPI und/oder DNPI bzw. Teilproteinen davon, bzw. entsprechenden Polynukleotiden zur Herstellung von Arzneimitteln zur Behandlung verschiedener Erkrankungen oder zu Therapie und Diagnostik.

Fig. 1a)

ccggcggcag gagccgccac catggagttc cgccaggagg agttcgaa gctagcggt 60
 cgtgctctcg ggaagctgca cgccttctg gagaagcggc aggaaggcgc ggagacgctg 120
 gagctgatgtc cggatggcg cccgggtacc acgcagaccc gggacccgccc ggtgggtggac 180
 tgcacctgct tcggcctccc tcggcgtac attatcgcca tcatgagtgg tctgggcttc 240
 tgcatacgct ttggcatccg ctgcaacctg ggcgtggcca tcgtctccat ggtcaataac 300
 agcacgaccc accgcggggg ccacgtggtg gtgcagaaag cccagttcag ctggatcca 360
 gagactgtcg gcctcataca cggctcctt ttctgggct acattgtcac tcagattcca 420
 ggaggattta tctgtcaaaa atttgcagcc aacagagtt tcggcttgc tattgtggca 480
 acatccactc taaacatgct gatcccctca gctgcccgcg tccactatgg ctgtgtcatc 540
 ttcgtgagga tcctgcaggg gttggtagag ggggtcacat accccgcctg ccatgggatc 600
 tggagcaaat gggccccacc cttagaacgg agtgcgcctgg cgacgacagc cttttgtgg 660
 tcctatgctg gggcggtggt cgcgatgccc ctgcgggggg tccttgcgtca gtactcagga 720
 tggagctctg ttttctacgt ctacggcagc ttccggatct tctggtagct gttctggctg 780
 ctcgtctcct acgagtcccc cgcgctgcac cccagcatct cggaggagga ggcgaagtac 840
 atcgaggacg ccatcggaga gagcgcgaaa ctcatgaacc ccctcacgaa gtttagact 900
 ccctggcgcc gtttcttac gtctatgcca gtctatgcca tcatcgtggc caacttctgc 960
 cgcaagctgga cgttctaccc gctgctcatc tcccagcccg cctacttcga agaagtgttc 1020
 ggcttcgaga tcagcaaggt aggccctggtg tccgcgtgc cccacctggt catgaccatc 1080
 atcgtgcccc tcggcgccca gatcgccggac ttccctgcgga gccgcccgc catgtccacc 1140
 accaacgtgc gcaagttgat gaactgcggaa ggcttcggca tggaagccac gctgctgttg 1200
 gtggctggct actcgactc caagggcgtg gccatctcct tcctggctct agccgtggc 1260
 ttcagcggct tcgccatctc tgggttcaac gtgaaccacc tggacatagc cccgcgtac 1320
 gccagcatcc tcatggcat ctccaaacggc gtgggcacac tgcgggcat ggtgtgcccc 1380
 atcatcgtgg gggccatgac taagcacaag actcgggagg agtggcagta cgtttccta 1440
 attgcctccc tggtgacta tggaggtgtc atcttctacg gggctttgc ttctggagag 1500
 aagcagccgt gggcagagcc tgaggagatg agcgaggaga agtgtggctt cgttggccat 1560
 gaccagctgg ctggcagtga cgacagcgaa atggaggatg aggctgagcc cccgggggca 1620
 ccccctgcac ccccgccctc ctatggggcc acacacagca catttcagcc ccccaggccc 1680
 ccacccctg tcgggacta ctgaccatgt gcctccact gaatggcagt ttccaggacc 1740
 tccattccac tcatctctgg cctgagtgac agtgtcaagg aaccctgctc ctctctgtcc 1800
 tgcctcaggc ctaagaagca ctctcccttgc tgcggactct cttccatgc ttttccttc 1860
 ccaattgcct ctcaggggtt cccgttctgc ctcagtggtt tcaaattctt ctttcaggg 1920
 ccctaaagggt tccctctcca ctttatttga atggacagtt cgaccctta ctctcttttgc tggtttgag gcacccacac 2040
 ccccccgttt ctttatctc caggactct caggctaacc tttgagatca ctcagctccc 2100
 attccttttc agaaaaattt aaggctctcc tctagaagtt tcaaattctt cccaactctg 2160
 ttctgcattct tccagattgg tttaaccaat tactcgtccc cgccattcca gggattgatt 2220
 ctcaccagcg tttctgtatgg aaaatggcggt tttcaagttcc cgattccgt gcccacttca 2280
 catctccccctt accagcagat tctgcgaaag caccaaattt ctcaagaccc tcttctccct 2340
 agcttagcat aatgtctggg gaaaca

Fig. 1b)

1 MEFRQEEFRK LAGRALGKLH RLLEKRQEGA ETLELSADGR PVTTQTRDPP
51 VVDCTCFGLP RRYIIIAIMSG LGFCISFGIR CNLGVAIVSM VNNSTTHRGG
101 HVVVQKAQFS WDPETVGLIH GSFFWGYIYT QIPGGFICQK FAANRVFGFA
151 IVATSTLNML IPSAARVHYG CVIFVRILQG LVEGVTVYPAC HGIWSKWAPP
201 LERSRLATT A FCGSYAGAVV AMPLAGVLVQ YSGWSSVFYV YGSFGIFWYL
251 FWLLVSYEESP ALHPSISEEE RKYIEDAIGE SAKLMNPLTK FSTPWRRFFT
301 SMPVYAIIVA NFCRSWTFYL LLISQPAYFE EVFGFEISKV GLVSALPHLV
351 MTIIVPIGGQ IADFLRSRRI MSTTNVRKLM NCGGFGMEAT LLLVVVGYSHS
401 KGVAISFLVL AVGFSGFAIS GFNVNHLDIA PRYASILMGI SNGVGTLSGM
451 VCPIIVGAMT KHKTRREEWQY VFLIASLVHY GGVIFYGVFA SGEKQPWAEP
501 EEMSEEKCFG VGHDQLAGSD DSEMEDEAEP PGAPPAPPPS YGATHSTFQP
551 PRPPPVRDY

Fig. 1c)

cgataagctt gatatcgaaat tccggactct tgctcgcccg ccttaacccg gcgttcggtt 60
 catcccgca gcccaggttct gcttacccaaa agtggcccac taggcactcg cattccacgc 120
 ccggctccac gccagcgagc cgggcttctt acccattaa agtttgagaa taggttgaga 180
 tcgttccgc cccaagacct ctaatcattc gctttaccgg ataaaaactgc gtggcggggg 240
 tgcgtcgggt ctgcgagagc gccagctatc ctgagggaaa cttcggaggg aaccagctac 300
 tagatggttc gattagtctt tcgccccat acccaggtcg gacgaccgat ttgcacgtca 360
 ggacccgtac ggaccccttcc cagagttcc tctggcttcg ccctgcccag gcgatcgccg 420
 ggggggaccc gcgggggtgac cggcggcagg agccgccacc atggagttcc gccaggagga 480
 gtttcggaaag cttagcgggtc gtgctctcgg gaagctgcac cgccttctgg agaaggccca 540
 ggaaggcgcg gagacgctgg agctgagtc ggtatggccgc ccggtgacca cgcagacccg 600
 ggacccgccc gtgggtggact gcacctgctt cggcctccct cggcgtaca ttatcgccat 660
 catgagtggt ctgggcttct gcatcagctt tggcatccgc tgcaacctgg gcgtggccat 720
 cgtctccatg gtcaataaca gcacgaccca ccgcgggggc cacgtggtgg tgcagaaagc 780
 ccagttcagc tggatccag agactgtcgg cctcatacac ggctccttt tctggggcta 840
 cattgtcact cagattccag gaggattat ctgtcaaaaaa tttgcagcca acagagttt 900
 cggctttgtc attgtggcaa catccactct aaacatgctg atcccctcag ctgcccgcgt 960
 ccactatggc tgtgtcatct tcgtgaggat cctgcagggg ttggtagagg gggcacata 1020
 ccccccctgc catggatct ggagcaaatg ggccccaccc ttagaacggc gtcgcctggc 1080
 gacgacagcc ttttgtggt cctatgctgg ggcgggtggc gcgtatggcc tcgccccgg 1140
 ccttgtgcag tactcaggat ggagctctgt tttctacgtc tacggcagct tcggatctt 1200
 ctggtacctg ttctggctgc tcgtctccct ctagtcccccc gcgcgtgcacc ccagcatctc 1260
 ggaggaggag cgcaagtaca tcgaggacgc catcgagag agcgcgaaac tcatgaaccc 1320
 cctcacgaag ttttagcactc cttggcggcg ctcttcacg tctatgccag tctatgccc 1380
 catcggtggcc aacttctgcc gcagctggac gttctacctg ctgctcatct cccagccga 1440
 ctacttcgaa gaagtgttcg gtttcgagat cagcaaggta ggcctgggtt ccgcgtgccc 1500
 ccacctggtc atgaccatca tcgtgcccatt cggcggccag atcgcggact tcctgccc 1560
 ccgcgcacatc atgtccacca ccaacgtgcg caagttgatg aactgcggag gttcggcat 1620
 ggaagccacg ctgctgttgg tggtcggcta ctcgcactcc aaggcgtgg ccatctcctt 1680
 cctgttccta gccgtggct tcagcggctt cgccatctct gggttcaacg tgaaccac 1740
 ggacatagcc ccgcgtac ctagcatcct catggcattc tccaacggcg tggcacact 1800
 gtcgggcattg gtgtggccca tcatcggtgg ggcattgact aagcacaaga ctgggagga 1860
 gtggcagtac gtgttcctaa ttgcctccct ggtcactat ggaggtgtca tttctacgg 1920
 ggtctttgtc tctggagaga agcagccgtg ggcagagcct gaggagatga gcgaggagaa 1980
 gtgtggcttc gttggccatg accagctggc tggcagtgc gacagcgaaa tggaggatga 2040
 ggctgagccc ccggggccac cccctgcacc cccgcctcc tatggggcca cacacagcac 2100
 atttcagccc cccaggcccc caccctctgt cccggactac tgaccatgtg cctccactg 2160
 aatggcagtt tccagaccc ctatccact catctctggc ctgagtgcac gtgtcaagga 2220
 accctgtcc tctctgtctt gcctcaggcc taagaagcac tctcccttgc tcccagtgt 2280
 gtcaaattcct ctttcctcc caattgcctc tcaggggtag tgaagctgca gactgacagt 2340
 ttcaaggata cccaaattcc cctaaagggtt ccctctccac ccgttctgcc tcagtgggtt 2400
 caaatctctc ctttcaggcc ttatggaa tggacagttc gacctttac tctctttgt 2460
 ggttttgagg caccacacc ccccgcttc ctttatctcc aggactctc aggctaacct 2520
 ttgagatcac tcagctccca tctccttca gaaaaattca aggtcctcct ctagaagttt 2580
 caaatctctc ccaactctgt tctgcacattt ccagattgtt ttaaccaatt actcgcccc 2640
 gccattccag ggattgattc tcaccagcgt ttctgatgga aaatggccggg aattcctgca 2700
 gcccggggga tccact 2716

Fig. 1d)

1 MEFRQEEFRK LAGRALGKLH RLLEKRQEGA ETLELSADGR PVTTQTRDPP
51 VVDCTCFGGLP RRYIIAIMSG LGFCISFGIR CNLGVAIVSM VNNSTTHRGG
101 HVVVQKAQFS WDPETVGLIH GSFFWGYIYT QIPGGFICQK FAANRVFGFA
151 IVATSTLNML IPSAARVHYG CVIFVRILQG LVEGVTVYPAC HGIWSKWAPP
201 LERSRLATT A FCGSYAGAVV AMPLAGVLVQ YSGWSSVFYV YGSFGIFWYL
251 FWLLVSYESP ALHPSISEEE RKYIEDAIGE SAKLMNPLTK FSTPWRRFFT
301 SMPVYAIIVA NFCRSWTFYL LLISQPDYFE EVFGFEISKV GLVSALPHLV
351 MTIIVPIGGQ IADFLRSRRM MSTTNVRKLM NCGGFGMEAT LLLLGVGYSHS
401 KGVAISFLVL AVGFSGFAIS GFNVNHLDIA PRYASILMGI SNGVGTLSGM
451 VCPIIVGAMT KHKTREEWQY VFLIASLVHY GGVIFYGVFA SGEKQPWAEP
501 EEMSEEKGFG VGHDQLAGSD DSEMEDEAEP PGAPPAPPPS YGATHSTFQP
551 PRPPPVRDY

Fig. 1e)

gaattcggca cgagcggagc tgcggggccg ggccgggccc gggcgaccc cgggatcccg 60
 gacgcggccg cccggggccg cgggcggggg gattggcagg ggacccgcgt gggcacagcc 120
 accatggagt tccggcagga ggagttcgg aagctggcgg ggcgcgcctt ggggaggctg 180
 caccggttac tggagaagcg gcaggaaggc gcggagacat tggagctgag cggccacggg 240
 cgcccagtga ccacacacac gccccggacccg cccgggtggg actgcacttg ctggccctc 300
 cctcgccgct acatcatcgc gatcatgagc ggtctgggtt tctgcatcag ctggccatc 360
 cgctgcaacc tgggcgtggc catcgatccat atggtaaca acagtacaac ccaccgtggg 420
 ggccacgtgg tggtgcagaa agcccagtgc aactgggatc cagagactgt cggccatcata 480
 catggctctt tttctgggg gtacattgtc actcagattc ctggaggatt tatctgc当地 540
 aaattcgcag ccaacagggt ctttggctt gccattgtgg ctacccctccac cctaaatatg 600
 ttgatccctt cagcagcccg tggtaactat ggctgtgtca tcttcgttag gatccctttag 660
 ggattggtaggg agggggtcac ataccctgct tgccatggca tctggagcaa atggggccct 720
 cccttagaaac ggagtcggct ggcgacgaca gcctttgcg gttcttatgc cggggcagtg 780
 gttgccatgc ctctggctgg ggtcctggta cagtattcag gatggagttc tgtcttctat 840
 gtctatggca gttcgggat ctgggttac ctgttctggt tgcttgc当地 ctacgagtca 900
 cctgcactac accccagcat ctccgaggag gagcgcaat acattgagga tgccatcgga 960
 gaaagcgcca agctcatgaa ccctgttacg aagtttaca caccctggag gcgcttctt 1020
 acctccatgc cggcttatgc catcattgtc gc当地actttt gccgc当地ctg gactttctac 1080
 ctgctctca tctccagcc cgc当地actttt gaagaagtgt tcggcttga gatcagcaag 1140
 gtgggactgg tgc当地actgc gcctcacctt gtc当地actgtc tc当地ctgtacc catcgaggc 1200
 cagatcgccg acttc当地ctgcg cagtc当地tcat ataatgtcca cgaccaatgt gcgaaagctg 1260
 atgaactgcg ggggttcgg gatggaaagct acgctgtgc tggtagtgc当地 atactcacac 1320
 tccaaggcg tggccatctc ct当地ctggtc ctggctgtgg gtc当地actgg ct当地cttctc 1380
 tctgggtta acgtgaacca ct当地ggacatc gccc当地ctcgat atgccc当地atc ct当地gtggc 1440
 atttccaatg gctggggcac actgtctggg atggtagtgc当地 ccatc当地atcg ggtgcaatg 1500
 accaagcaca agacgc当地ggc当地 ggagtaggc当地 tacgtgttcc tc当地atgc当地tcc cctgggtgc当地 1560
 tatggaggtg tc当地atcttctc tggggctt gtc当地actggag agaaacagcc gtgggcaagag 1620
 ccggaggaga tgagc当地ggagga gaagtagtgc当地 tttgtagtgc当地 acgaccaatgt ggctggc当地 1680
 gacgaaatgt aaatgaaaga cgaggtttag cccccc当地ggggg caccccc当地gc acctccg当地ct 1740
 tc当地tacgggg ccacacacag cacagttcag ct当地ccaaaggc ccccaaaaaaaa tgc当地gggac 1800
 tactgaccac gtgc当地tccca ctggtagtgc当地 gttccaggat cctccactcg atacacctct 1860
 agcctaaacg gcagtagtgc当地 ggaacccac tc当地ctctctg cctcaggctt aagatgcaag 1920
 tcttcccttg tgccactgtc tgtagtgc当地 gccc当地ctctc ct当地ctcaact gc当地cttgca 1980
 ggggtgaagc tgc当地acttag cagttcaag ct当地gtggca attc

Fig. 1f)

1 MEFRQEEFRK LAGRALGRLH RLLEKRQEGR ETLELSADGR PVTTHTRDPP VVDCTCFGLP
51 RRYIIIAIMSG LGFCISFGIR CNLGVAIVSM VNINSTTHRGG HVVVQKAQFN WDPETVGLIH
101 GSFFFWGYIVT QIPGGFICQK FAANRVFGFA IVATSTLNML IPSAARVHYG CVIFVRILQG
151 LVEGVTVYPAC HGIWSKWAPP LERSRLATTA FCGSYAGAVV AMPLAGVLVQ YSGWSSVFYV
201 YGSFGIFWYL FWLLVSYESP ALHPSISEEE RKYIEDAIGE SAKLMNPVTK FNTPWRRFFT
251 SMPVYAIIVA NFCRSWTFYL LLISQPAYFE EVFGFEISKV GLVSALPHLV MTIIVPIGGQ
301 IADFLRSRHI MSTTNVRKLM NCGGFGMEAT LLLLVVGYSHS KGVAISFLVL AVGFSGFAIS
351 GFNVNHLDIA PRYASILMGI SNGVGTLSGM VCPIIVGAMT KHKTREEWQY VFLIASLVHY
401 GGVIFYGVFA SGEKQPWAEP EEMSEEKGCF VGHDQLAGSD ESEMEDEVEP PGAPPAPPPS
451 YGATHSTVQP PRPPPVRDY

Fig. 2a)

cgttaaaag ccatcagatt tgagagcaat aagtcttcaa aaccggaaat ttacattgtt 60
 tttcagctga ccgacttcca ggaaaaggac tcaaccgcac ctacccaaat accgtggcac 120
 tgcttgcgct cttgccacc ggatactccc cttccaatga gactttctga ttgtgtctac 180
 caactctcct attagaaaac ccgtgggttg catcagcta ttctgttgta ttctcattct 240
 cactctccct cccttctctc actctcactc ttgctggagg cgagccacta ccattctgct 300
 gagaaggaaa agccgcac tactttaaga gattaagaca atatgcgca tcctcgcc 360
 tccttagcaat cactattaa atctggcaag aactgacaac agtcttgca agaatggaat 420
 ccgtaaaaca aaggattttg gccccaggaa aagaggggt aaagaatttt gctggaaaat 480
 cactcggcca gatctacagg gtgctggaga aqaagcaaga caccggggag acaatcgagc 540
 tgacggagga tgggaagccc ctagaggtgc ccgagaggaa ggcggcctg tgcgactgca 600
 cgtgcttcgg cctgccccgc cgctacatta tcgccatcat gagcggcctg ggcttctgca 660
 tctccttcgg tatccgtgc aacctggcg tggccattgt ggacatggtc aacaacagca 720
 ccatccaccc cgggggcaag gtcatcaagg agaaagccaa attcaactgg gaccggaaa 780
 ccgtggggat gatccacggt tccttcttt ggggctacat catcactcag attccggag 840
 gctacatcgc gtctcggctg gcagccaaaca gggtttcgg agtgcctata cttcttacct 900
 ctaccctaaa tatgctaatt ccatcagcag ccagagtgc ttatggatgt gtcatctttg 960
 tcagaataact gcagggactt gttgagggtg tgacctaccc agcatgtcat gggatatgga 1020
 gcaaattggc cccacctcta gagaggagta gactggcaac caccccttt tgggttcct 1080
 atgccggagc tgtgattgca atgcctttag ctggcattct tggcgtac actggctggt 1140
 ctteagttttt ttatgtctac ggaagctttg gaatggctg gtacatgttt tggctttgg 1200
 tgtcttatga aagtctgca aagcatctta ctattacaga tgaagaacgt aggtacatag 1260
 aagaaaagcat tggagagagt gcaaatttt taggtgcaat ggaaaaattt aagactccat 1320
 ggaggaagtt ttatcatcc atgcagttc atgcaataat tggcaaaac ttctgcagaa 1380
 gctggacttt ttatattttg ctatttagtc agccagcata ttttggaa gtctttggat 1440
 ttgaaatttag caaggttggt atgctatctg ctgtgccaca cttagtaatg acaattattt 1500
 tgcctattgg gggacaaatt gcagatttc taagaagcaa gcagattctt tcaactacga 1560
 cagtgagaaa gatcatgaat tgggtgggtt ttggcatgga agccacactg ctcctggc 1620
 ttggctattc tcatactaga ggggtgcaat tctcattttt ggtacttgca gtgggattca 1680
 gtggatttgc tatatctggt ttcaatgtta accacttggc tattgcctca agatatgcca 1740
 gtatcttaat gggcatttcg aatgggtttg gcacatttgc aggaatgggt tgccttatca 1800
 ttgttggtgc aatgacaaag aataagtac gtgaagagt gcagtatgtc ttccgtatcg 1860
 ctgccctagt ccactatggt ggagtttat tttatgcaat attgcctca ggagagaaac 1920
 aaccctggc agaccggag gaaacaagtg aagaaaaatg tggattttt catgaagatg 1980
 aactcgatga agaaacacagg gacattactc aaaatttat aattatggt accaccaagt 2040
 cttatggc cacaacacag gccaatggag gttggcctag tgggtggaa aagaaagagg 2100
 aatttgcata aggagaagta caagactcac atagctataa ggaccgagtt gattattcat 2160
 aacaaaacta attactggat ttattttag tgggtgtat taaattcatt gtgattgcac 2220
 aaaaattttt aaaaacacgtg atgtaaactt gcaagcatat caaccaggca agtcttgctg 2280
 taaaaatgaa aacaaaacaa acccatgagg ttaccatcaa gtcaatctg taaaattgtg 2340
 aagttccatc attccattc aagtcatcca ttcttgatt tggactttaa aggttgactg 2400
 gtcaaaattt tagaaacaag tagtaccca ttggattcat atgagctaaa actcatcact 2460
 atttactaaa gcacaacatc tcattcataa aaagttaaa agccaaagct acttgatcat 2520
 gcaaaaatgca cttatattt tggatctg tattgcaaga tagcacacag aagttggctg 2580
 cgtcaagtag aggcgacatt tattaaatgtaa aatcatgga gttggatat ctctcaatta 2640
 aagaaataca ttgtgaacta tcagctacaa agttgtactg aataactatt agaattgcat 2700
 aatgtgagat attttgttag tcctcaaaag gaatatctg cagtgtttt tatgaaatgc 2760
 ttgggcacaa acacttattt ctgtgaaaga gaacatgtaa gttgaggggt atgcttcattg 2820
 ttcttccatc cattaccta atagttgaa acagttcaca ttcaataaaa atcaaacttt 2880
 tcattgttagc tatcacataa ctttttgca aaaaatataa aaagaaataa acttcaatgt 2940
 atttttattt acaactttgt actgggtgtt acttgcattt gaaaaaaaaa agagatatat 3000
 aaaccacaaa gaatctaata agaaatttt tatggagata tagcccttaa aatgcaat 3060
 taagaacaaa gaaatagaaa atggtttaga tatcttctt cttcataat taaataactat 3120
 atgaaacttg tgccacagag ctatatgtaa tatgaaaaga ttaacttcat agagatattg 3180
 taagtaggtt attttattt taaaagtcctt attaagaaat atttgtctt aatataatagg 3240

acaatacatt atattaaaat ggtctcttc tatatatatc tgtatatctt atacatgtcc 3300
atacacagaa acataataaa caatcttcac acgaaaccaa aaatagcata cacctaagt 3360
tgggttaggg aattgcaatt tctactttca tagagtata gaattttagg tgggaagag 3420
gcattttgct tgtcatttct taatataact caacaagaat tgcaacattt gtgtaccaag 3480
caataagtgc aatgcataaaa atttcctgtc tgtatattac cttcattttg cttgttagtag 3540
ctgtttgggt gggttggata attttatTT tcttttaaaa aagctaacat cagaccCCTT 3600
tataatgtcc taaaattatg ataatacatt tcccaattca actcaaaata ttattgggt 3660
atTTTgtcta ttctggatAT ttgatctgtt taatgtactg tgcttagtgac tggaggCCCT 3720
gctactgcaa atataaaacc taaagTTTGT ttaaaaaaaat gcaaattcatt ctttacCTTA 3780
agaaaaaaaaa aataccCTTT gCTTGTGCC tcaaagtgtat gtaatgtgtat cacagCTTT 3840
gttgtgttga atgaaaatAT gtggactgtc attttgttgc agcaaaaaaag tgtaataaaa 3900
atgcTctatt tATCCTTTT taaaaaaaaa aaaaaaaaaa aaaaaaa

Fig. 2 b)

1 MESVKQRILA PGKEGLKNFA GKSLGQIYRV LEKKQDTGET IELTEDGKPL EVPERKAPLC
51 DCTCFGMPRR YIIAIMSGLG FCISFGIRCN LGVAIVDMVN NSTIHRGKGKV IKEKAKFNWD
101 PETVGMIHGS FFWGYIITQI PGGYIASRLA ANRVRGAAIL LTSTLNMLIP SAARVHYGCV
151 IFVRILQGLV EGVTVYPACHG IWSKWAPPLE RSRLATTSFC GSYAGAVIAM PLAGILVQYT
201 GWSSVFYVYG SFGMVWYMFW LLVSYESPAK HPTITDEERR YIEESIGESA NLLGAMEKFK
251 TPWRKFFTSM PVYAIIVANF CRSWTFYLLL ISQPAYFEEV FGFEISKVGM LSAVPHLVMT
301 IIVPIGGQIA DFLRSKQILS TTTVRKIMNC GGFGEATLL LVVGYSHTRG VAISFLVLAV
351 GFSGFAISGF NVNHLDIAPR YASILMGISN GVGTLSGMVC PIIVGAMTKN KSREEWQYVF
401 LIAALVHYGG VIFYAIFASG EKQPWADPEE TSEEKCGFIH EDELDEETGD ITQNYINYGT
451 TKSYGATTQA NGGWPSGWEK KEEFVQGEVQ DSHSYKDRVD YS

Fig. 2c)

agacagtaag gttctttgc tttttccct tacacaagga ttcatgacg ttttggca 60
 atctgattaa aagacagcg atttggtgc gttaagactt caaaaccggg aatttacgtt 120
 gttttcggt gaggtgactt ccagaacggg gactcatcag caccggccca aataccacgg 180
 cactgcgcgc gccctcgccc accggatcct cccctccaa tgagacttt tgactgttg 240
 taccatttc cctatttagga aaccggggg ctgaatgcag ctattccgtt gtactcttt 300
 tctcgctctc cctccctct ccaactcaca gccttgctga aaagctcatc tctgctgaga 360
 agaaaacgtt ctacctaaccat tattaaagac tatgcgcaga actcgccctt catagccatc 420
 acaattaaa tctggtaagg ctggacacga gtcttacaa gaatggagtc ggtaaaacaa 480
 aggattttgg cccccggggaa agaggggata aagaattttg ctggaaaatc cctcgacag 540
 atctacaggg tgctggagaa gaagcaggat aaccggagaa ccatcgagct gacagaggac 600
 ggcaagcccc tggaggtgcc tgagaagaag gctccgctat gcgactgtac gtgcttcggc 660
 ctggcgccgc gctacatcat agccatcatg agcggcctcg gcttctgcat ctcccttgg 720
 atccgctgtt acctgggtgt ggccattgtg gacatggta acaacacgac catccaccgg 780
 ggtggcaaag ttatcaagga gaaagccaag tttaactggg accccgagac tgtggggatg 840
 attcacgggt cgttcttctg gggctatatac atcacgcaga ttccggcgg atacatcgca 900
 tcgcgactgg ctgctaaccg ggtcttggg gctgccatac tgcttacctc taccctcaat 960
 atgctgatcc catctgcagc cagagtgcatttgc tatggatgcg tcattttgt tagaatattt 1020
 caaggacttgc tggagggcgt cacctaccca gcctgtcacc gatatggag caagtggcc 1080
 cccctttgg agaggagtag gttggctacc acctccttct gtggctcta tgctggagca 1140
 gtcattgcaa tgccccttagc tggtatctg gtgcagtaca ctggatggtc ttcatgtt 1200
 tacgtatatg gaagcttgg tatggcttgg tataatgttct ggcttctgg gtcttacgg 1260
 agcccccgc当地 agcattccaa cataacacgac gaagaacgta ggtacataga agagagcatc 1320
 ggggagagcg caaatctgtt aggagcaatg gagaatttca agacccatg gaggaagttt 1380
 ttcacatcca tgcccgtcta tgcgataattt gttgcaaaact tctgcaggag ttggactttt 1440
 tatttactgc tcatcagtca accagttat ttcgaggagg ttttggatt tgaaatcagc 1500
 aagggttggca tggtgtctgc ggtcccacac ctggcatga caatcattgt gcctatcggg 1560
 gggcaatttgc cagactttctt aaggagcaag caaattctt caacaactac agtgcgaaag 1620
 atcatgaact gcgggggttt tggcatggaa gccacactgc ttctgggtt tggctactct 1680
 catactagag gggtgccat ctccttctg gtgcttgcag tggattcag tggatttgc 1740
 atctctgggtt tcaatgtgaa ccacttggat attgccccca gatatgccag tatcttaatg 1800
 ggcatttcaa atgggttgg cacgctgtcg ggaatggctt gcccgtcat tggtggca 1860
 atgacgaaga acaagtcccg tgaagaatgg cagttatgtt tcctcatcg tgcactggc 1920
 cactatgggt gagtcatattt ttagcacta ttgcctcag gagagaagca accttggca 1980
 gaccctgagg aaacaagcga agaaaagtgt ggcttcattt atgaagatga actggatgaa 2040
 gaaacgggggg acatcactca gaattacata aattacggta ccaccaatc ctacggcgcc 2100
 acctcacagg agaacggagg ctggcctaacc ggcctggaga aaaaggaaga atttgtgca 2160
 gaaagtgcgc aagacgcgtt ctcctataag gaccgagatg attattcata acgaagctag 2220
 ttgctggatt cttttgttagt gtttggattt aaattaattt tgattgcaca aaatcatttt 2280
 aagaaaatgtg gtgtaaacat taaaacacat caaccaagca agtcttgcgtt ttcaaaaaat 2340
 aataataata tgaattcaaa acagaccgtg agagtcccat caagtcaat ctgtggcgcc 2400
 agtcacgtga cgccatttcc attcaggcca ttgcctt tcgttgcgtt tttaaagggtt 2460
 tcctgttagaa ataagtaggt attcggttgc tccatcacca cgttagagag tacaactaca 2520
 acagttggca catgtcatcc tacggaaagtt aggaagccaa agtacttgc ttatgtgaac 2580
 tgcatttatttatttatttacttgc aaaatatccc agggaaatcc tgcatttgc 2640
 catagtagaa ctggaaagat ggcttagattt ggtactgacg ataattttgc tgcatttgc 2700
 atggagtggc tatattttt aattggagaa ctatatttgc tagctgcaaa aattgtactg 2760
 aatttatttacttggatggcacttgc ttttttttttgc ttttttttttgc ttttttttttgc 2820
 agtgtttgtt gaaacgcgtt ggcacaaaca cttatttttgc tgaacaagag ttgttgc 2880
 gaggagtttgc ctccatgcgtt cccatttgc tacctgcacag tatcaaaacct tcacatttca 2940
 atgaaatcca acgtccatgtt aacatatttgc atgactttt ttgcggggggaaatataaga 3000
 agaaatagac ttcaatgtat ttttttttttgc aacttttgc ttttttttttgc ttttttttttgc 3060
 aaaaatgtt gaaatgtt aatattatgtt taatcgtaaaa gaatctaataaaaatatttacttgc atgaaatgtt 3120
 agcccttaaaa atgcaatatttgc aacaaacaaa atatataaaaatatttacttgc atcccttgc 3180

ataaactagag actatatgga actcacacca caaagctata tataatatga aaagataaac 3240
aatagagatt gtatatgtag acgatttat gacctaagt cccatttaag aggtattgt 3300
ctttagtata tagtacaaag tatattaaa ttatatctac atccctgtat atcttataca 3360
tatccactca cacaacata acaaatactt ttccacacaga accaaaaaca agcatacacc 3420
taatgttggg tttgggatt gcaattcta cttcataga gtcatagaat tttagatggg 3480
aaaaaaaaag gcatttgct cgtcatttct taatataatt aattcaacag gaactgcaac 3540
atttgtgtac caagcaataa gtgcgaagca taaacctgt gtgtgtaaac tatccccata 3600
ctgcttgtgg tagcactgat ttctttctt taaagaacct aacatcgag ctcttacaa 3660
tgtttgcgc tgataagaat gcacatccca attaacgca aagtgtcacc tggtgtgttt 3720
acctgtctgt tttgggtatt tggtctgtt ggtgtcctgt gctctgact ggaggccctg 3780
ctactgcgaa tataaaacgt gaagttgtt tctaaatgca aaccactcct gacctaaga 3840
aactaaagtc cctctctgct ttgtgtctcc aagtactatc atgtgaccat aacccttgct 3900
gtgctgagta aaaagatgtg aactgtcatt ttgttgctgc gaagcaagtg ttaataaaat 3960
gttctattta aaaaaaaaaa aa

Fig. 2d)

1 MESVKQRILA PGKEGIKNFA GKSLGQIYRV LEKKQDNRET IELTEDGKPL
51 EVPEKKAPLC DCTCFGLPRR YIIAIMSGLG FCISFGIRCN LGVAIVDMVN
101 NSTIHGGKV IKEAKFNWD PETVGMIHGS FFWGYIITQI PGGYIASRLA
151 ANRVFGAAIL LTSTLNMLIP SAARVHYGCV IFVRILQGLV EGVTPACHG
201 IWSKWAPPLE RSRLATTSFC GSYAGAVIAM PLAGILVQYT GWSSVFYVYG
251 SFGMVWYMFW LLVSYESPAK HPTITDEERR YIEESIGESA NLLGAMEKFK
301 TPWRKFFTSM PVYAIIVANF CRSWTFYLLL ISQPAYFEEV FGFEISKVGM
351 LSAVPHLVMT IIVPIGGQIA DFLRSKQILS TTTVRKIMNC GGFMEATLL
401 LVVGYSHTRG VAISFLVLAV GFSGFAISGF NVNHLDIAPR YASILMGISN
451 GVGTLSGMVC PIIVGAMTKN KSREEWQYVF LIAALVHYGG VIFYALFASG
501 EKQPWADPEE TSEEKGFIH EDELDEETGD ITQNYINYGT TKSYGATSQE
551 NGGWPNGWEK KEEFVQESAQ DAYSYKDRDD YS

FIG 3)

Fig. 4)

DNPI

BNPI

FIG 5)

BNPI

DNPI

FIG 6)

FIG. 7)

FIG 8)

A

BNPI

B

DNPI

FIG 9

DNPI

BNPI

FIG. 10

DNPI

DNPI

mHb

BNPI

FIG 11)

VGLUT2

preabs

VGLUT1

preabs

mm

~~SECURITY SETTER~~

FIG 12)

as

FIG 13)

FIG 14)

~~scribble~~

FIG 15)

[Handwritten signature]

FIG 16)

Bar

FIG 17)

FIC 18)

VGLUT2

A

C

E

G

VGLUT1

B

D

F

H

area

FIG 19)

DR

4/6/2010

AS

sense

BNPI

DNPI

FIG 21)

BNPI

AS

sense

DNPI

