

Machine Learning in Business John C. Hull

Chapter 7
Reinforcement Learning

Reinforcement Learning

- Reinforcement learning is concerned with finding a strategy for taking a series of decisions rather than just one
- The environment is usually changing unpredictably

Rewards and costs

- There are rewards and costs and the algorithm tries to maximize expected rewards (net of costs) in its interaction with the environment
- Exploitation vs. Exploration (Should you choose best decision based on evidence to date or try something new?)
- Action evaluated by the sum of expected rewards (net of costs) that come after it (possibly discounted)

A Simple example: K-armed bandits

- This is like a one-armed bandit except that you have to choose between *K* levers.
- Lever k provides a return from a normal distribution with mean m_k and standard deviation 1
- Objective is to maximize return over a large number of trials

Strategy

- You keep records of the average return from choosing each lever
- At each turn you have to decide between
 - Choose the lever that has given you the best average return so far (the "greedy action")
 - Try out a new action
- The first choice is exploitation; the second is exploration.
- We can choose a parameter ε equal to the probability of exploration
- Exploitation maximizes the immediate expected return but exploration may do better in the long run

The Math (page 149)

- Suppose that lever k has been chosen n-1 times and the total reward on the jth time it is chosen is R_j
- Expected reward is

$$Q_k^{old} = \frac{1}{n-1} \sum_{j=1}^{n-1} R_j$$

• If kth lever is chosen for the nth time and produces a reward R_n

$$Q_{k}^{new} = \frac{1}{n} \sum_{i=1}^{n} R_{i} = Q_{k}^{old} + \frac{1}{n} (R_{n} - Q_{k}^{old})$$

Example: Table 7.1, 4 bandits $(m_1=1.2, m_2=1, m_3=0.8, m_4=1.4)$; $\epsilon=0.1$

		Chosen		Action 1	L (stats)	Action 2	2 (stats)	Action	3 (stats)	Action 4	4 (stats)	Gain per
Trial	Decision	Action	Value	Ave	Nobs	Ave	Nobs	Ave	Nobs	Ave	Nobs	trial
				0		0		0		0		
1	Exploit	1	1.293	1.293	1	0.000	0	0.000	0	0.000	0	1.293
2	Exploit	1	0.160	0.726	2	0.000	0	0.000	0	0.000	0	0.726
3	Exploit	1	0.652	0.701	3	0.000	0	0.000	0	0.000	0	0.701
4	Explore	2	0.816	0.701	3	0.816	1	0.000	0	0.000	0	0.730
50	Exploit	1	0.113	1.220	45	-0.349	3	0.543	2	0.000	0	1.099
100	Exploit	4	2.368	1.102	72	0.420	6	0.044	3	1.373	19	1.081
500	Explore	3	1.632	1.124	85	1.070	17	0.659	11	1.366	387	1.299
1000	Exploit	4	2.753	1.132	97	0.986	32	0.675	25	1.386	846	1.331
5000	Exploit	4	1.281	1.107	206	0.858	137	0.924	130	1.382	4527	1.345

When $\varepsilon = 0.01$ (Table 7.2)

		Chosen		Action 2	1 (stats)	Action	2 (stats)	Action 3	3 (stats)	Action 4	4 (stats)	Gain per
Trial	Decision	Action	Value	Ave	Nobs	Ave	Nobs	Ave	Nobs	Ave	Nobs	trial
				0		0		0		0		
1	Exploit	1	1.458	1.458	1	0.000	0	0.000	0	0.000	0	1.458
2	Exploit	1	0.200	0.829	2	0.000	0	0.000	0	0.000	0	0.829
3	Exploit	1	2.529	1.396	3	0.000	0	0.000	0	0.000	0	1.396
4	Exploit	1	-0.851	0.834	4	0.000	0	0.000	0	0.000	0	0.834
50	Exploit	1	1.694	1.198	49	0.000	0	-0.254	1	0.000	0	1.169
100	Exploit	1	0.941	1.132	99	0.000	0	-0.254	1	0.000	0	1.118
500	Exploit	1	0.614	1.235	489	0.985	6	-0.182	2	0.837	3	1.224
1000	Exploit	1	1.623	1.256	986	0.902	7	-0.182	2	0.749	5	1.248
5000	Exploit	1	1.422	1.215	4952	1.022	18	0.270	8	1.148	22	1.213

When $\varepsilon = 0.5$ (Table 7.3)

		Chosen		Action 2	1 (stats)	Action	2 (stats)	Action 3	3 (stats)	Action 4	4 (stats)	Gain per
Trial	Decision	Action	Value	Ave	Nobs	Ave	Nobs	Ave	Nobs	Ave	Nobs	trial
				0		0		0		0		
1	Exploit	1	0.766	0.766	1	0.000	0	0.000	0	0.000	0	0.766
2	Explore	1	1.257	1.011	2	0.000	0	0.000	0	0.000	0	1.011
3	Exploit	1	-0.416	0.536	3	0.000	0	0.000	0	0.000	0	0.536
4	Explore	3	0.634	0.536	3	0.000	0	0.634	1	0.000	0	0.560
50	Explore	4	0.828	1.642	17	1.140	9	0.831	9	1.210	15	1.276
100	Explore	3	2.168	1.321	47	0.968	15	0.844	16	1.497	22	1.231
500	Explore	1	0.110	1.250	86	0.922	65	0.636	72	1.516	277	1.266
1000	Explore	4	1.815	1.332	154	1.004	129	0.621	131	1.394	586	1.233
5000	Explore	3	2.061	1.265	666	0.953	623	0.797	654	1.400	3057	1.247

The exploration parameter ε and initial values

- It makes sense to reduce ε over time. For example we can let it decline exponentially
- The initial Q-values make a difference. For example if they all set equal to 2 instead of 0 there would be early exploration
- If the standard deviation of the payoff is increased, a higher value of ε would be appropriate

Estarts at 1 but has a decay factor of 0.995

		Lever		Lever 1	(stats)	Lever 2	(stats)	Lever 3	(stats)	Lever 4	(stats)	Ave Gain
Trial	Decision	Chosen	Payoff	Q-val	Nobs	Q-val	Nobs	Q-val	Nobs	Q-val	Nobs	pertrial
1	Explore	2	1.4034	0	0	1.403	1	0	0	0.000	0	1.403
2	Explore	1	0.796	0.796	1	1.403	1	0.000	0	0.000	0	1.100
3	Explore	2	0.499	0.796	1	0.951	2	0.000	0	0.000	0	0.900
4	Explore	1	0.407	0.601	2	0.951	2	0.000	0	0.000	0	0.776
5	Explore	4	0.743	0.601	2	0.951	2	0.000	0	0.743	1	0.770
50	Explore	3	-1.253	0.719	8	1.640	18	0.729	11	1.698	13	1.308
100	Explore	1	0.100	0.852	19	1.326	31	0.681	20	1.391	30	1.126
500	Exploit	4	-0.448	1.148	37	1.184	51	0.815	51	1.349	361	1.263
1000	Exploit	4	2.486	1.174	44	1.225	53	0.819	53	1.387	850	1.339
5000	Exploit	4	3.607	1.148	45	1.225	53	0.819	53	1.391	4849	1.381

The More General Model: Actions and States (Figure 7.1)

Objective

Objective could be to maximize the expected value of rewards

$$G = R_1 + R_2 + R_3 + \dots + R_T$$

In some cases, particularly when there is a long or infinite horizon, the objective is to maximize the expected value of discounted rewards:

$$G=R_1+\gamma R_2+\gamma^2 R_3+\ldots$$

where γ is a discount factor

Updating

- Define Q(S,A) as the value of being in state S and taking action
- Suppose we have just completed the nth trial for state S and action A. Instead of

$$Q(S,A)^{new} = Q(S,A)^{old} + \frac{1}{n} \left[G - Q(S,A)^{old} \right]$$

we usually set

$$Q(S,A)^{new} = Q(S,A)^{old} + \alpha \left[G - Q(S,A)^{old} \right]$$

for some parameter α (e.g. 0.1)

A Simple Example: the game of Nim

- There is a pile of N matches. Two players take it in turns to pick up one, two, or three matches.
- Last player to pick up loses
- State is the number of matches. Action is number picked up. Reward occurs at the end (=+1 if you win and -1 if you lose)
- What is the optimal strategy?
- We can work back from the end of the game.
- What if it is your turn and there are 2, 3, 4, 5, 6,... matches?

Using Monte Carlo

- This works similarly to the 4-armed bandit example
- In that example we had 4 actions
- Here we consider state-action combinations
- \bullet Define Q(S,A) as the value of being in state S when action A is taken
- We might initially set all the Q(S,A) to zero
- We simulate a set of actions

Using Monte Carlo continued

- There is a chance (1- ϵ) that we choose the best action so far for any given state and ϵ that we randomly choose an action
- Define G as the total reward (possibly with discounting) for the complete set of actions taken in one trial
- For each $\{S,A\}$ combination that is encountered on the trial we update as follows

$$Q(S,A)^{new} = Q(S,A)^{old} + \alpha \left[G - Q(S,A)^{old} \right]$$

Nim with 8 matches in the pile initially

Here are the initial values for the state/action combinations

Matches picked up	State (=number of matches left)										
picked up	2	3	4	5	6	7	8				
1	0	0	0	0	0	0	0				
2	0	0	0	0	0	0	0				
3		0	0	0	0	0	0				

Nim continued

- Opponent behaves randomly
- ♦ Reward for winning is 1; reward for losing is -1

The matches picked up on first simulation (with opponent's choice in brackets) is

We assign a gain, G, of 1 to:

state 8, action 1

state 4, action 1

and apply updating formula, setting $\alpha = 0.05$

$$Q(S,A)^{new} = Q(S,A)^{old} + \alpha \left[G - Q(S,A)^{old} \right]$$

Nim after one trial (1,[3],1,[3])

Matches picked up	State (=number of matches left)										
picked up	2	3	4	5	6	7	8				
1	0	0	0.05	0	0	0	0.05				
2	0	0	0	0	0	0	0				
3		0	0	0	0	0	0				

Next trials

Second trial 1,[2],1,[3],1 (lose)

Matches		State (=number of matches left)										
picked up	2	3	4	5	6	7	8					
1	0	0	0.05	-0.05	0	0	-0.025					
2	0	0	0	0	0	0	0					
3		0	0	0	0	0	0					

Example of convergence, $\varepsilon=0.1$ (Tables 7.8 to 7.10)

After 1000 trials

Matches		State (= number of matches left)									
picked up	2	3	4	5	6	7	8				
1	0.999	-0.141	0.484	-0.122	0.155	0.000	0.272				
2	-0.994	0.999	-0.108	-0.276	-0.171	0.000	0.252				
3	0.000	-0.984	1.000	-0.070	-0.080	0.000	0.426				

After 5,000 trials

Matches		State (= number of matches left)									
picked up	2	3	4	5	6	7	8				
1	1.000	-0.127	0.382	0.069	0.898	0.000	0.786				
2	-1.000	1.000	0.222	0.297	-0.059	0.000	0.683				
3	0.000	-1.000	1.000	-0.106	0.041	0.000	0.936				

After 25,000 trials

Matches		State (= number of matches left)									
picked up	2	3	4	5	6	7	8				
1	1.000	0.080	0.104	0.069	0.936	0.000	0.741				
2	-1.000	1.000	0.103	0.412	-0.059	0.000	0.835				
3	0.000	-1.000	1.000	-0.106	0.041	0.000	1.000				

Dynamic Programming

$$V_{t}(S) = \max_{A} E \left[R_{t+1} + V_{t+1}(S^{new}) \right]$$

An alternative to Monte Carlo simulation is temporal difference learning which uses the ideas underlying dynamic programming

Temporal difference learning

Instead of using G (the total, possibly discounted, future rewards) to update, we can use the current value at the next step. The updating formula becomes

$$Q(S,A)^{new} = Q(S,A)^{old} + \alpha \left[R + V - Q(S,A)^{old} \right]$$

where V is the current estimate of the value of being in the state reached at the end the next step. If S^* is this state, V is the current maximum value of $Q(S^*,A)$ across all actions A that can be taken in the state.

This is referred to a Q-learning

Example (page 158-159)

Suppose that the current Q values are

Matches	State (= number of matches left)									
picked up	2	3	4	5	6	7	8			
1	1.000	-0.127	0.382	0.069	0.898	0.000	0.786			
2	-1.000	1.000	0.222	0.297	-0.059	0.000	0.683			
3	0.000	-1.000	1.000	-0.106	0.041	0.000	0.936			

The next trial is 1,[1],1,[3],1,[1] (explore, exploit, exploit)

$$Q^{new}(8,1) = Q^{old}(8,1) + 0.05[V(6) - Q^{old}(8,1)]$$

= 0.786 + 0.05 × (0.898 - 0.786) = 0.792
 $Q^{new}(6,1) = Q^{old}(6,1) + 0.05[V(2) - Q^{old}(6,1)]$
= 0.898 + 0.05 × (1.000 - 0.898) = 0.903
 $Q^{new}(2,1) = 1.000 + 0.05 \times (1.000 - 1.000) = 1.000$

n-step bootstrapping

- Monte Carlo bases updates on what happens over the complete life of the trial
- Temporal difference bases updates on what happens over the next period
- *n*-step bootstrapping algorithms is between the two. It bases updates on what happens over the next *n* periods

When there are many states or actions (or both)

- The cells of the state/action table do not get filled in very quickly
- It becomes necessary to estimate the Q(S,A) function from observed values.
- As this function is in general non-linear a natural approach is to use artificial neural networks (ANNs).
- We use an ANN to minimize the sum of squared errors between the estimates and the target
- This is known as deep Q-learning or deep reinforcement learning

Applications

- Games such as Go and chess
- Driverless cars
- Programming of traffic lights
- Healthcare
- Finance applications
 - Optimally selling a large block of shares
 - Portfolio management where there are transaction costs
 - Hedging