Idea Factory Intensive Program #2

답냉닝 롤로서기

이론강의/PyTorch실습/코드리뷰

딥러닝(Deep Learning)에 관심이 있는 학생 발굴을 통한 딥러닝의 이론적 배경 강의 및 오픈소스 딥러닝 라이브러리 PyTorch를 활용한 실습 #17

Topics to learn today

1. Review from last lecture

Assignment: CIFAR-10 classification with Pytorch Lecture: Overcoming overfitting and gradient vanishing

2. Batch/Stochastic Gradient Descent

3. Advanced Gradient Descent Algorithms

Momentum, NAG, AdaGrad, AdaDelta, RMSProp, ADAM

4. How to visualize the result

Pandas DataFrame, Seaborn

Review from Last Lecture

Overfitting: L2 Regularization / Dropout

Review from Last Lecture

Gradient Vanishing: ReLU Activation

Review from Last Lecture

Xavier Initialization / Batch Normalization

Batch/Stochastic Gradient Descent

Gradient Descent

$$\theta = \theta - \eta \nabla J(\theta)$$

heta : Parameter set of the model η : Learning rate J(heta) : Loss function

Batch Gradient Descent

Calculate gradient of parameters for whole training dataset.

Need a lot of memory depending on data.

Calculating gradient is too slow, thus optimization is slow.

Stochastic Gradient Descent (SGD)

Calculate gradient for small chunk of whole training dataset (mini-batch), rather than the whole training dataset (batch).

Stochastic since the gradient is not deterministic, but stochastic depending on the mini-batch.

Faster than batch gradient descent, while converging similar.

Can avoid local minima by stochasticity.

Advanced Gradient Descent Methods

Diagram of Gradient Descent Development

Problem of Vanilla SGD

Cannot escape local minima.

Momentum

$$\theta = \theta - v_t$$

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta)$$

Problem of Momentum

Can escape local minima, but cannot stop or slow at global minima.

Nesterov Accelerated Gradient (NAG)

$$\theta = \theta - v_t$$

$$v_t = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$

Momentum update

Nesterov momentum update

Problem of NAG

Step size is equal for every parameter

Adaptive Gradient (Adagrad)

$$\theta_{t+1} = \theta - \frac{\eta}{\sqrt{G_t + \epsilon}} \cdot \nabla_{\theta} J(\theta_t)$$

$$G_t = G_{t-1} + (\nabla_{\theta} J(\theta_t))^2$$

Problem of Adagrad

G keep increases, thus step size decays to zero

RMSProp

$$\theta_{t+1} = \theta - \frac{\eta}{\sqrt{G_t + \epsilon}} \cdot \nabla_{\theta} J(\theta_t)$$

$$G_t = \gamma G_{t-1} + (1 - \gamma)(\nabla_{\theta} J(\theta_t))^2$$

AdaDelta

$$\theta_{t+1} = \theta_t - \Delta_{\theta}$$

$$\Delta_{\theta} = \frac{\sqrt{s+\epsilon}}{\sqrt{G+\epsilon}} \cdot \nabla_{\theta} J(\theta_t)$$

$$s_{t+1} = \gamma s_t + (1-\gamma)\Delta_{\theta}$$

$$G_{t+1} = \gamma G_t + (1-\gamma)(\nabla_{\theta} J(\theta_t))^2$$

Adaptive Moment Estimation (ADAM)

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t} \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t + \epsilon}} \hat{m}_t$$

Diagram of Gradient Descent Development

How to use Advanced Optimizers in Pytorch

How to use Advanced Optimizers in Pytorch

```
optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum=0.9)
```