Chapter 1 Diagrams for Understanding Chemical Processes

Department of Chemical Engineering
West Virginia University

3 Levels of Diagram

- Block Flow Diagram (BFD)
- Process Flow Diagram (PFD)
- Piping and Instrumentation Diagram (P&ID) often referred to as Mechanical Flow Diagram

As chemical engineers, we are most familiar with BFD and PFD.

The Block Flow Diagram (BFD)

- BFD shows overall processing picture of a chemical complex
 - Flow of raw materials and products may be included on a BFD
 - BFD is a superficial view of facility ChE information is missing

Definitions of BFD

- Block Flow Process Diagram
 - Figure 1.1
 - Similar to sketches in material and energy balances
- Block Flow Plant Diagram
 - Figure 1.2
 - Gives a general view of a large complex plant

The Block Flow Process Diagram

Reaction: $C_7H_8 + H_2 = C_6H_6 + CH_4$

Figure 1.1: Block Flow Process Diagram for the Production of Benzene

The Block Flow Plant Diagram

Figure 1.2: Block Flow Plant Diagram of a Coal to Higher Alcohol Fuels Process

The Process Flow Diagram

- PFD shows all process engineering information
 - Diagram developed in junior year design projects (especially the 2nd semester)
 - Often PFD is drawn on large paper textbook
 breaks down information into 1 diagram and
 2 tables

- The topology of the process showing the connectivity of all the streams and the equipment
 - Example for toluene HDA Figures 1.3 and 1.5
 - Tables 1.2 and 1.4 list information that should be on the PFD but cannot fit
 - Use appropriate conventions consistency is important in communication of process information
 ex. Table 1.2

E-102 E-105 V-101 P-101A/B E-101 C-101 A/B Tower Benzene Benzene Benzene Reactor HighPpres Low Pres. Reflux Reflux Product Toluene Toluene Feed Feed Reactor Recycle Gas Reboiler Column Condenser Drum Effluent Phase Sep. Phase Sep. Feed Pumps Cooler Storage Feed Pumps Preheater Heater Compressor Drum

Figure 1.5: Process flow diagram (PFD) for the production of benzene via the hydrodealkylation of toluene

Table 1.2: Conventions Used for Identifying Process Equipment

Process Equipment

General Format XX-YZZ A/B

XX are the identification letters for the equipment classification

C - Compressor or Turbine

E - Heat Exchanger

H - Fired Heater

P - Pump

R - Reactor

T - Tower

TK - Storage Tank

V - Vessel

Y designates an area within the plant

ZZ are the number designation for each item in an equipment class

A/B identifies parallel units or backup units not shown on a PFD

Supplemental Information

Additional description of equipment given on top of PFD

Equipment Numbering

- XX-YZZ A/B/...
 - XX represents a 1- or 2-letter designation for the equipment (P = pump)
 - Y is the 1 or 2 digit unit number (1-99)
 - ZZ designates the equipment number for the unit (1-99)
 - A/B/... represents the presence of spare equipment

Figure 1.5: Process flow diagram (PFD) for the production of benzene via the hydrodealkylation of toluene

Equipment Numbering (cont'd)

Thus, T-905 is the 5th tower in unit nine hundred P-301 A/B is the 1st Pump in unit three hundred plus a spare

- Use unambiguous letters for new equipment
 - Ex. Turbine use Tb or J not T (for tower)
 - Replace old vessel V-302 with a new one of different design - use V-319 (say) not V-302 – since it may be confused with original V-302

Stream Numbering and Drawing

- Number streams from left to right as much as possible
- Horizontal lines are dominant

V-104 E-103 E-106 T-101 E-104 V-103 P-102A/B E-105 V-101 P-101A/B E-102 V-102 E-101 H-101 R-101 C-101 A/B Tower Benzene Benzene Benzene Reflux Reactor HighPpres Low Pres. Reflux Product Toluene Toluene Feed Feed Reactor Recycle Gas Feed Reboiler Column Condenser Drum Pumps Cooler Storage Feed Pumps Preheater Heater Compressor Effluent Phase Sep. Phase Sep. Cooler Heater Drum

Figure 1.5: Process flow diagram (PFD) for the production of benzene via the hydrodealkylation of toluene

Stream Numbering and Drawing (cont'd)

- Add arrows for
 - Change in direction
 - Inlet of equipment
- Utility streams should use convention given in Table 1.3, lps, cw, fg, etc.

Stream Information

- Since diagrams are small, not much stream information can be included
- Include important data around reactors and towers, etc.
 - Flags are used see toluene HDA diagram
 - Full stream data, as indicated in Table 1.4, are included in a separate flow summary table – see Table 1.5

Figure 1.5: Process flow diagram (PFD) for the production of benzene via the hydrodealkylation of toluene

Stream Information - Flags

combustion products

Table 1.4: Information in a Flow Summary

Essential Information

Stream Number

Temperature (°C)

Pressure (bar)

Vapor Fraction

Total Mass Flow Rate (kg/h)

Total Mole Flow Rate (kmol/h)

Individual Component Flow Rates (kmol/h)

Optional Information

Component Mole Fractions

Component Mass Fractions

Individual Component Flow Rates (kg/h)

Volumetric Flow Rates (m³/h)

Significant Physical Properties

Density

Viscosity

Other

Thermodynamic Data

Heat Capacity

Stream Enthalpy

K-values

Stream Name

A Portion of Table 1.5

Stream Number	1	2	3	4	5	6	7	8	9	10
Temperature (°C)	25	59	25	225	41	600	41	38	654	90
Pressure (bar)	1.90	25.8	25.5	25.2	25.5	25.0	25.5	23.9	24.0	2.6
Vapor Fraction	0.0	0.0	1.00	1.0	1.0	1.0	1.0	1.0	1.0	0.0
Mass Flow (tonne/h)	10.0	13.3	0.82	20.5	6.41	20.5	0.36	9.2	20.9	11.6
Mole Flow (kmol/h)	108.7	144.2	301.0	1204.4	758.8	1204.4	42.6	1100.8	1247.0	142.2
Component Mole Flow (kmol/h)										
Hydrogen	0.0	0.0	286.0	735.4	449.4	735.4	25.2	651.9	652.6	0.02
Methane	0.0	0.0	15.0	317.3	302.2	317.3	16.95	438.3	442.3	0.88
Benzene	0.0	1.0	0.0	7.6	6.6	7.6	0.37	9.55	116.0	106.3
Toluene	108.7	143.2	0.0	144.0	0.7	144.0	0.04	1.05	36.0	35.0

Basic Control Loops

 Often the basic control loops (those involving maintaining material balance and reactor controls) are included on the PFD; instrumentation and other control loops are not shown

Basic Control Loops

Equipment Information

- Equipment are identified by number and a label (name) positioned above the equipment on the PFD
- Basic data such as size and key data are included in a separate table (Equipment Summary Table) Table 1.7 (and Table 1.6) in TBWS

Equipment Information

A Section of Table 1.7: Equipment Summary

Vessel	V-101	V-102		
Temperature (°C)	55	38		
Pressure (bar)	2.0	24		
Orientation	Horizontal	Vertical		
MOC	CS	CS		
Size				
Height/Length (m)	5.9	3.5		
Diameter (m)	1.9	1.1		
Internals		s.p. (splash plate)		

PFD Summary

- PFD, Equipment Summary Table, and Flow Summary Table represent a "true" PFD
- This information is sufficient for a preliminary estimation of capital investment (Chapter 7) and cost of manufacture (Chapter 8) to be made

The Piping and Instrument Diagram(P&ID)

P&ID - Construction Bible

- Contains: plant construction information (piping, process, instrumentation, and other diagrams)
- P&ID information is explained in Tables 1.8 and 1.9
- Conventions for instrumentation are shown in Figure 1.10

P&ID

Figure 1.7: Piping and Instrumentation Diagram for Benzene Distillation (adapted from Kauffman, D, Flow Sheets and Diagrams," AIChE Modular Instruction, Series G: Design of Equipment, series editor J. Beckman, AIChE, New York, 1986, vol 1, Chapter G.1.5, AIChE copyright © 1986 AIChE, all rights reserved)

Look at V-102 on P&ID

V-102 contains an LE (Level Element)

- LE senses liquid level in separator and adjusts flow rate leaving
- LE opens and closes a valve depending on liquid level
- LE and valve represent a feedback control loop

Other Common Diagrams

- Plot Plans plan or map drawn looking down on plant (drawn to scale with all major equipment identified)
- Elevation Diagrams show view from side and give information about equipments distance from ground

Other Common Diagrams

Section of Plot Plan

Section of Elevation Diagram

Other Common Diagrams (cont'd)

- Piping Isometrics show piping in 3dimensions
- Vessel Sketches show key dimensions of equipment and locations of inlet and outlet nozzles etc.

Scale Models and Virtual Plants

- 25 years ago physical models were used for review
- Now virtual or electronic models are generated using software (3-d plant diagrams)
- Purpose of Models catch errors such as
 - Piping clashes
 - Misaligned piping
 - Equipment not easily accessed
 - Sample points not easily reached by operators

OPERATOR AND 3-D IMMERSIVE TRAINING SIMULATORS

Figure 1.16 Example of an HMI Interface for an OTS (Reproduced by Permission of the DOE's National Energy Technical Laboratory and Invensys Systems Inc., Property and Copyright of Invensys plc, UK)

OPERATOR AND 3-D IMMERSIVE TRAINING SIMULATORS

Figure 1.17 An Example of a Computer-Generated Image of a Horizontal Drum (Reproduced by Permission of the DOE's National Energy Technical Laboratory and Invensys Systems Inc., Property and Copyright of Invensys plc, UK)

OPERATOR AND 3-D IMMERSIVE TRAINING SIMULATORS

Figure 1.18 Augmented Reality in ITS: (a) Reboiler (b) Bubble-Cap Distillation Column (Reproduced by Permission of the DOE's National Energy Technical Laboratory and Invensys Systems Inc., Property and Copyright of Invensys plc, UK)

Copyright - R. Turton and J. Shaeiwitz, 2012