Machine Learning

Quiz 2

OI II II II II I		
Student Name:		
Oludoni Namo.		

- 1. Consider a set of observations $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}^T$, $\mathbf{x}_n \in \mathbb{R}^D$, drawn independently from a multivariate Gaussian distribution with known covariance matrix Σ , $\mathcal{N}(\mathbf{x}_n \mid \mu, \Sigma)$.
 - (a) (2 points) State the *Maximum Likelihood* problem of finding the best estimate for the Gaussian mean, μ_{ML} , given the observed data \mathbf{X} (*Hint:* Your answer should include $\mathcal{N}(\mathbf{x}_n \mid \mu, \Sigma)$):

$$\mu_{\mathsf{ML}} = \underset{\mu}{\mathsf{arg\,max}}$$

(b) (1 point) What is the Maximum Likelihood estimate of the mean (actual solution to (a))?

$$\mu_{\mathsf{ML}} =$$

2. (1 point) In *Bayesian inference*, we maximize the *posterior probability* $p(\mu \mid \mathbf{X}) \propto p(\mathbf{X} \mid \mu, \Sigma) p(\mu)$, instead. Considering the prior $p(\mu) = \mathcal{N}(\mu \mid 0, \Sigma_0)$, how will the inferred μ_{MAP} differ from μ_{ML} ? (math expression or word answer is ok)