Project 3_b Target Customer Compass

1. Import Libraries

```
In [12]: # Data Manipulation
import pandas as pd
import numpy as np

# Visualization
import matplotlib.pyplot as plt
import seaborn as sns

# Clustering
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import silhouette_score
```

2. Load the Dataset

```
In [15]: # Load the dataset
    data = r"C:\Users\ssing\OneDrive\Desktop\Mall_Customers.csv"
    data = pd.read_csv('Mall_Customers.csv')
    data.head()
```

Out[15]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40

3. Explore Data

```
# Display basic information about the dataset
In [20]:
         data.info()
         # Check statistical summary
         data.describe()
         # Check for missing values
         data.isnull().sum()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 5 columns):
                                    Non-Null Count Dtype
           Column
        --- -----
                                    -----
             CustomerTD
                                    200 non-null
                                                    int64
           Genre
                                    200 non-null
                                                    object
         1
                                    200 non-null
            Age
                                                    int64
         3 Annual Income (k$)
                                    200 non-null
                                                    int64
            Spending Score (1-100) 200 non-null
                                                    int64
        dtypes: int64(4), object(1)
        memory usage: 7.9+ KB
Out[20]: CustomerID
                                   0
                                   0
         Genre
         Age
         Annual Income (k$)
         Spending Score (1-100)
         dtype: int64
         4. Data Cleaning
In [23]: # Handle missing values (if any)
         data = data.dropna()
         # Check for duplicates
         data = data.drop_duplicates()
         5. Data Visualization
In [26]: # Distribution of age
         sns.histplot(data['Age'], kde=True)
```

```
plt.title('Age Distribution')
plt.show()

# Spending Score vs Annual Income
sns.scatterplot(x='Annual Income (k$)', y='Spending Score (1-100)', data=data)
plt.title('Spending Score vs Annual Income')
plt.show()
```


6. Feature Selection

```
In [29]: # Select features for clustering
features = data[['Annual Income (k$)', 'Spending Score (1-100)']]
```

7. Standardize Data

```
In [38]: # Standardize features
scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)
```

8. Determine Optimal Number of Clusters

```
In [40]: # Elbow Method
         inertia = []
         for k in range(1, 11):
             kmeans = KMeans(n_clusters=k, random_state=42)
             kmeans.fit(scaled_features)
             inertia.append(kmeans.inertia_)
         # Plot Elbow Curve
         plt.plot(range(1, 11), inertia, marker='o')
         plt.title('Elbow Method')
         plt.xlabel('Number of Clusters')
         plt.ylabel('Inertia')
         plt.show()
         # Silhouette Score
         for k in range(2, 11):
             kmeans = KMeans(n_clusters=k, random_state=42)
             labels = kmeans.fit_predict(scaled_features)
             score = silhouette_score(scaled_features, labels)
             print(f'Silhouette Score for {k} clusters: {score}')
```

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

Silhouette Score for 2 clusters: 0.3973270007887498
Silhouette Score for 3 clusters: 0.46658474419000145
Silhouette Score for 4 clusters: 0.49434988482196784
Silhouette Score for 5 clusters: 0.5546571631111091
Silhouette Score for 6 clusters: 0.5138257534676561
Silhouette Score for 7 clusters: 0.50200146805547
Silhouette Score for 8 clusters: 0.4550112502601921
Silhouette Score for 9 clusters: 0.4566624374485964
Silhouette Score for 10 clusters: 0.44475993501732874

```
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP NUM THREADS=1.
  warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
 warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP NUM THREADS=1.
  warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
 warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\ kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
  warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
  warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
 warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
  warnings.warn(
C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster\_kmeans.py:1429: UserWarning: KMeans is known to have a me
mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env
ironment variable OMP_NUM_THREADS=1.
  warnings.warn(
```

9. Apply K-means Clustering

```
In [43]: # Apply K-means
    optimal_k = 5 # Replace with the chosen number of clusters
```

```
kmeans = KMeans(n_clusters=optimal_k, random_state=42)
data['Cluster'] = kmeans.fit_predict(scaled_features)
```

C:\Users\ssing\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1429: UserWarning: KMeans is known to have a me mory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by setting the env ironment variable OMP_NUM_THREADS=1.

warnings.warn(

10. Analyze and Visualize Clusters

11. Generate Insights

```
In [49]: for i in range(optimal_k):
    print(f"Cluster {i}:")
    print(data[data['Cluster'] == i].describe())
    print("\n")
```

Cluster 0:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	
count	81.000000	81.000000	81.000000	81.000000	
mean	86.320988	42.716049	55.296296	49.518519	
std	24.240889	16.447822	8.988109	6.530909	
min	44.000000	18.000000	39.000000	34.000000	
25%	66.000000	27.000000	48.000000	44.000000	
50%	86.000000	46.000000	54.000000	50.000000	
75%	106.000000	54.000000	62.000000	55.000000	
max	143.000000	70.000000	76.000000	61.000000	

Cluster

count	81.0
mean	0.0
std	0.0
min	0.0
25%	0.0
50%	0.0
75%	0.0
max	0.0

Cluster 1:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	39.000000	39.000000	39.000000	39.000000
mean	162.000000	32.692308	86.538462	82.128205
std	22.803509	3.728650	16.312485	9.364489
min	124.000000	27.000000	69.000000	63.000000
25%	143.000000	30.000000	75.500000	74.500000
50%	162.000000	32.000000	79.000000	83.000000
75%	181.000000	35.500000	95.000000	90.000000
max	200.000000	40.000000	137.000000	97.000000

Cluster

count	39.0
mean	1.0
std	0.0
min	1.0
25%	1.0
50%	1.0
75%	1.0
max	1.0

\sim 1			+~		า	
U. I	ш	IS:	ГΘ	Ι.	_	1

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	22.000000	22.000000	22.000000	22.000000
mean	23.090909	25.272727	25.727273	79.363636
std	13.147185	5.257030	7.566731	10.504174
min	2.000000	18.000000	15.000000	61.000000
25%	12.500000	21.250000	19.250000	73.000000
50%	23.000000	23.500000	24.500000	77.000000
75%	33.500000	29.750000	32.250000	85.750000
max	46.000000	35.000000	39.000000	99.000000

	Cluster
count	22.0
mean	2.0
std	0.0
min	2.0
25%	2.0
50%	2.0
75%	2.0
max	2.0

Cluster 3:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	35.000000	35.000000	35.000000	35.000000
mean	164.371429	41.114286	88.200000	17.114286
std	21.457325	11.341676	16.399067	9.952154
min	125.000000	19.000000	70.000000	1.000000
25%	148.000000	34.000000	77.500000	10.000000
50%	165.000000	42.000000	85.000000	16.000000
75%	182.000000	47.500000	97.500000	23.500000
max	199.000000	59.000000	137.000000	39.000000

	Cluster
count	35.0
mean	3.0
std	0.0
min	3.0
25%	3.0
50%	3.0

75% 3.0 max 3.0

Cluster 4:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	١
count	23.00000	23.000000	23.000000	23.000000	
mean	23.00000	45.217391	26.304348	20.913043	
std	13.56466	13.228607	7.893811	13.017167	
min	1.00000	19.000000	15.000000	3.000000	
25%	12.00000	35.500000	19.500000	9.500000	
50%	23.00000	46.000000	25.000000	17.000000	
75%	34.00000	53.500000	33.000000	33.500000	
max	45.00000	67.000000	39.000000	40.000000	

Cluster

count	23.0
mean	4.0
std	0.0
min	4.0
25%	4.0
50%	4.0
75%	4.0
max	4.0

In []: