# **RA-DIT**

# 1. 解决什么问题(动机)

- 。 需要LLM针对检索得到的知识进行预训练
  - 开销大,成本高

atlas: https://arxiv.org/abs/2208.03299

REPLUG: https://arxiv.org/pdf/2301.12652

• 对检索得到的知识进行整合的方法可能会导致模型出现此优的结果

# 2. 如何解决

○ 解决方案:使用检索的知识微调LLM,使用微调后的LLM生成的回答来微调检索器

○ 实验配置: LLM (LLaMA 65B) 、检索器 (DRAGON+)

■ DRAGON+

□ 基础模型: BERT-base



Figure 1: Bi-encoder architecture for retrieval.



□ 如何构造对比学习样本?

Table 1: Categorization of existing DR models by their approaches to data augmentation.

| Type | Model                                | Qry Aug                     | Label Aug  | Corpus                         |
|------|--------------------------------------|-----------------------------|------------|--------------------------------|
| 1    | RocketQAv2<br>CL-DRD                 | ×                           | CE         | MS MARCO                       |
| 2    | coCondenser<br>Contriever<br>COCO-DR | cropping                    | ×          | MS MARCO<br>Wiki+CCnet<br>BEIR |
| 3    | GPL<br>PTR                           | GenQ                        | ×          | BEIR                           |
|      | DRAGON-S<br>DRAGON-Q<br>DRAGON       | cropping GenQ cropping+GenQ | retrievers | MS MARCO                       |

- □ Query部分:使用裁剪、LLM来做数据增强
- □ Label部分:使用教师模型,其中主要用了三个模型 (UnCOIL、Contriever、ColBERTv2)
  - 。 top10随机抽取一个作为正样本,46-50随机抽取一个作为负样本作 为负样本



#### 。 模型架构



### 训练步骤

- 第一阶段:使用检索器得到的知识来微调LLM
  - □ 两个好处:
    - 。 1.给了模型提示来训练LLM, 可以使得模型更好地利用这些提示信息;
    - 2.这些检索器可能会检索到不好的例子,模型在这些bad case的例子下进行优化可以提高模型的鲁棒性
  - prompt准备
    - 。 依据原始promot来检索相关的文本段
    - 。 检索到的文本段落拼接到prompt前

Table 10: Instruction template used for our fine-tuning datasets. <inst\_s>, <inst\_e> and <answer\_s> are special markers denoting the start and the end of a field.

| Category                      | Instruction Tuning Template                                                                                                                                        | Query Template                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Dialogue                      |                                                                                                                                                                    | $\{turn_1\} \{turn_2\} \{turn_3\} \dots$ |
| Open-domain QA                | {urn <sub>3</sub> } <u>A:</u> Background: {retrieved passage}\n\n <inst_s> {question}</inst_s>                                                                     | {question}                               |
| Reading Compre-               | <pre><inst_e> <answer_s> {answer} Background: {context}\n\n<inst_s> {question} <inst_e> <answer_s> {answer}</answer_s></inst_e></inst_s></answer_s></inst_e></pre> | {question}                               |
| Summarization                 | Background: {context}\n\nSummarize this article: <inst_e></inst_e>                                                                                                 |                                          |
| Chain-of-thought<br>Reasoning | <pre><answer_s> {summary} Background: {retrieved passage}\n\n<inst_s> {instructions} {reasoning chain} <answer_s> {answer}</answer_s></inst_s></answer_s></pre>    | {question}                               |

- 模型输入长度限制: 2048 tokens
- 每个pair使用<bos>和<eos>作为起始和结束分隔符
- □ 训练损失(加入了阅读理解和摘要抽取)
  - label-loss (预测任务)
  - 。 预测损失

$$p_R(c|x) = \frac{\exp s(x,c)}{\sum_{c' \in \mathcal{C}'} \exp s(x,c')}$$

$$p_{LM}(y|x,\mathcal{C}') = \sum_{c \in \mathcal{C}'} p_{LM}(y|c \circ x) \cdot p_R(c|x),$$

$$\mathcal{L}(\mathcal{D}_L) = -\sum_i \sum_j \log p_{LM}(y_i|c_{ij} \circ x_i).$$

#### □ 使用数据集

- 20个数据集包含5个不同类别(对话、开源问答、阅读理解、摘要、思维链)
  - 阅读理解使用了数据集: SQuAD 2.0
    - 包含"我不知道"的回复字段,用来训练模型在面对提示无用情况下的回复
  - 注意!
    - 在优化过程中,对于摘要数据集和部分只依赖于上下文的阅读理解任务, 作者没有使用检索来增强prompt
    - □ 对于部分阅读理解任务,会生成k个检索实例+原先就有的实例=k+1个

#### □ 实验参数

Table 8: Hyperparameters for retrieval-augmented LM fine-tuning.

| Model      | peak lr | end lr | lr scheduler | warm-up | # steps | early<br>stopping | batch size | model<br>parallel | seq len |
|------------|---------|--------|--------------|---------|---------|-------------------|------------|-------------------|---------|
| RA-DIT 7B  | 1e-5    | 1e-7   | cosine       | 200     | 500     | 500               | 64         | 1                 | 2048    |
| RA-DIT 13B | 1e-5    | 1e-7   | cosine       | 200     | 500     | 400               | 128        | 2                 | 2048    |
| RA-DIT 65B | 1e-5    | 1e-7   | cosine       | 200     | 500     | 300               | 128        | 8                 | 2048    |

。 机器: 8, 16 and 64 A100 GPUs

#### 关于早停

Table 11: Our evaluation datasets.  $^{\dagger}$  indicates the development datasets we used to select fine-tuning hyperparameters.

| Task           | Dataset name                                  | Acronym    | Metric  | Score     |
|----------------|-----------------------------------------------|------------|---------|-----------|
|                | MMLU (?)                                      | MMLU       | Acc.    | nll       |
| Onan damain    | Natural Questions (Kwiatkowski et al., 2019)  | NQ         | EM      | nll       |
| Open-domain    | TriviaQA (Joshi et al., 2017)                 | TQA        | EM      | nll       |
| QA             | †HotpotQA (Yang et al., 2018)                 | HoPo       | EM      | nll       |
|                | ELI5 (Fan et al., 2019)                       | ELI5       | Rouge-L | nll_token |
| Fact Checking  | FEVER (Thorne et al., 2018)                   | FEV        | Ācc.    | nll       |
| Entity Linking | TAIDA CONLL-YAGO (Hoffart et al., 2011)       | AĪDĀ       | Acc.    | nll       |
| Slot Filling   | <sup>†</sup> Zero-Shot RE (Levy et al., 2017) | zsRE       | Acc.    | nll       |
| Slot Filling   | <sup>†</sup> T-REx (Elsahar et al., 2018)     | T-REx      | Acc.    | nll       |
| Dialogue       | Wizard of Wikipedia (Dinan et al., 2019)      | WoW        | F1      | nll_token |
|                | BoolQ (Clark et al., 2019)                    | BoolQ      | Ācc.    | nll_compl |
|                | PIQA (Bisk et al., 2020)                      | PIQA       | Acc.    | nll_char  |
|                | SIQA (Sap et al., 2019)                       | SIQA       | Acc.    | nll_char  |
| Commonsense    | HellaSwag (Zellers et al., 2019)              | HellaSwag  | Acc.    | nll_char  |
| Reasoning      | WinoGrande (Sakaguchi et al., 2019)           | WinoGrande | Acc.    | nll_char  |
|                | ARC-Easy (Clark et al., 2018)                 | ARC-E      | Acc.    | nll_char  |
|                | ARC-Challenge (Clark et al., 2018)            | ARC-C      | Acc.    | nll_char  |
|                | OpenBookQA (Mihaylov et al., 2018)            | OBQA       | Acc.    | nll_compl |

- 第二阶段:使用更新后LLM生成的答案来微调检索器(只微调query编码器,微调两个编码器导致效果下降!)
  - □ prompt模版
    - 。 与第一阶段一样
  - □ 训练损失-LSR损失

0

$$p_R(c|x) = \frac{\exp s(x,c)}{\sum_{c' \in \mathcal{C}'} \exp s(x,c')}$$

$$p_{LSR}(c|x,y) = \frac{\exp\left(p_{LM}(y|c \circ x)/\tau\right)}{\sum_{c' \in \mathcal{C}} \exp\left(p_{LM}(y|c' \circ x)/\tau\right)} \approx \frac{\exp\left(p_{LM}(y|c \circ x)/\tau\right)}{\sum_{c' \in \mathcal{C}'} \exp\left(p_{LM}(y|c' \circ x)/\tau\right)},$$

$$\mathcal{L}(\mathcal{D}_R) = \mathbb{E}_{(x,y)\in\mathcal{D}_R} KL(p_R(c|x) \parallel p_{LSR}(c|x,y))$$

- 针对每一个检索的context都计算一次损失
- □ 使用数据集
  - 筛选了一部分QA的数据集合、FreebaseQA、MS-MARCO
- 使用的数据集统计

Table 1: Our intruction tuning datasets. All datasets are downloaded from Hugging Face (Lhoest et al., 2021), with the exception of those marked with ‡, which are taken from Tyer et al. (2022).

| Task          | HF identifier                | Dataset name                                            | $\mathcal{D}_L$ | $\mathcal{D}_R$ | #Train  |
|---------------|------------------------------|---------------------------------------------------------|-----------------|-----------------|---------|
| Dialogue      | oasst1                       | OpenAssistant Conversations Dataset (Köpf et al., 2023) | ✓               | ✓               | 31,598  |
|               | commonsense_qa               | CommonsenseQA (Talmor et al., 2019)                     | ~               | ~               | 9,741   |
|               | math_qa                      | MathQA (Amini et al., 2019)                             | ✓               | ✓               | 29,837  |
| Open-Domain   | web_questions                | Web Questions (Berant et al., 2013)                     | ✓               | ✓               | 3,778   |
|               | wiki_qa                      | Wiki Question Answering (Yang et al., 2015)             | ✓               | ✓               | 20,360  |
| QA            | yahoo_answers_qa             | Yahoo! Answers QA                                       | ✓               | ✓               | 87,362  |
|               | freebase_qa                  | FreebaseQA (Jiang et al., 2019)                         |                 | ✓               | 20,358  |
|               | ms_marco*                    | MS MARCO (Nguyen et al., 2016)                          |                 | ✓               | 80,143  |
|               | coqa                         | Conversational Question Answering (Reddy et al., 2019)  | ~~              |                 | 108,647 |
|               | drop                         | Discrete Reasoning Over Paragraphs (Dua et al., 2019)   | ✓               |                 | 77,400  |
|               | narrativeqa                  | NarrativeQA (Kočiský et al., 2018)                      | ✓               |                 | 32,747  |
| Reading Com-  | newsqa                       | NewsQA (Trischler et al., 2017)                         | ✓               |                 | 74,160  |
| prehension    | pubmed_qa                    | PubMedQA (Jin et al., 2019)                             | ✓               | ✓               | 1,000   |
|               | quail                        | QA for Artificial Intelligence (Rogers et al., 2020)    | ✓               |                 | 10,246  |
|               | quarel                       | QuaRel (Tafjord et al., 2019)                           | ✓               | ✓               | 1,941   |
|               | squad_v2                     | SQuAD v2 (Rajpurkar et al., 2018)                       | ✓               |                 | 130,319 |
| Summarization | cnn_dailymail                | CNN / DailyMail (Hermann et al., 2015)                  | ~               |                 | 287,113 |
|               | aqua_rat‡                    | Algebra QA with Rationales (Ling et al., 2017)          |                 |                 | 97,467  |
| Chain-of-     | ecqa <sup>‡</sup>            | Explanations for CommonsenseQ (Aggarwal et al., 2021)   | ✓               |                 | 7,598   |
| thought       | gsm8k <sup>‡</sup>           | Grade School Math 8K (Cobbe et al. 2021)                | <b>√</b>        |                 | 7,473   |
| Reasoning     | compeition_math <sup>‡</sup> | MATH (Hendrycks et al., 2021b)                          | 1               |                 | 7,500   |
|               | strategyqa <sup>‡</sup>      | StrategyQA (Geva et al., 2021)                          | ✓               |                 | 2,290   |

<sup>\*</sup> We only used the question-and-answer pairs in the MS MARCO dataset.

## 3. 实验结果

。 评估数据集

■ 知识密集型任务:不包含于微调任务中的数据集(MMLU、NQ、TriviaQA),还有 KILT的6个子集合(HotpotQA、FEVER、AIDA、CoNLL-YAGO、Zero-shotRE、 T-REx、Wizard、Wikipedia、ELI5)

## 。 评估的prompt模版

Table 12: Language model prompts and retriever query templates used for our evaluation datasets. We did not perform retrieval for commonsense reasoning tasks evaluation.

| Task                                            | LLM Prompt Template                                                                                                                                                                                                                                     | Query Template                                                 |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Knowledge-Intens                                | ive Tasks                                                                                                                                                                                                                                               |                                                                |
| MMLU                                            | Background: {retrieved passage} $\n\$ {question: {question} $\n\underline{A}$ .                                                                                                                                                                         | ${question}\n\underline{A.}$                                   |
|                                                 | $\label{eq:choice} $$ \ { choice} \ \underline{C}. \ { choice} \ \underline{C}. \ { choice} \ \underline{A}: \ { answer} $$$                                                                                                                            | {choice}\n <u>B.</u><br>{choice}\n <u>C.</u>                   |
| NQ, TQA, ELI5,<br>HoPo, zsRE                    | $\underline{\overline{Background:}} \; \{ \overline{retrieved} \; \overline{passage} \} \backslash \overline{n} \backslash \underline{n} \underline{Q:} \; \{ \overline{question} \} \backslash \overline{n} \underline{A:} \; \{ \overline{answer} \}$ | - {choice}\n <u>D.</u> {choice} - {question}                   |
| ĀĪDĀ                                            | Background: {retrieved passage}\n\n{context}\nOutput the                                                                                                                                                                                                | {context} tokens be-                                           |
|                                                 | Wikipedia page title of the entity mentioned between [START_ENT]                                                                                                                                                                                        |                                                                |
|                                                 | and [END_ENT] in the given text\nA: {answer}                                                                                                                                                                                                            | [END_ENT]                                                      |
| FEV                                             | Background: {retrieved passage}\n\n <u>Is this statement true?</u>                                                                                                                                                                                      | {statement}                                                    |
|                                                 | {statement} {answer}                                                                                                                                                                                                                                    |                                                                |
| T-REx                                           | Background: {retrieved passage}\n\n{entity_1} [SEP] {relation}                                                                                                                                                                                          | {entity_1} [SEP] {relation}                                    |
|                                                 | \nA: {answer}                                                                                                                                                                                                                                           |                                                                |
| $\overline{\mathrm{Wo}}\overline{\mathrm{W}}^-$ | Background: {retrieved passage} $\n\n\overline{Q}$ : {turn <sub>1</sub> } $\n\overline{A}$ : {turn <sub>2</sub> } $\n\overline{Q}$ :                                                                                                                    | {turn <sub>1</sub> } {turn <sub>2</sub> } {turn <sub>3</sub> } |
|                                                 | $\overline{\{\text{turn}_3\} \backslash n}\underline{A:} \{\text{answer}\}$                                                                                                                                                                             |                                                                |
| Commonsense Red                                 | asoning Tasks                                                                                                                                                                                                                                           |                                                                |
| ARC-E, ARC-C                                    | Question: {question}\nAnswer: {answer}                                                                                                                                                                                                                  |                                                                |
| BoolQ                                           | {context}\nQuestion: {question}\nAnswer: {answer}                                                                                                                                                                                                       |                                                                |
| HellaSwag                                       | {context} {ending}                                                                                                                                                                                                                                      |                                                                |
| OpenbookQA                                      | {question} {answer}                                                                                                                                                                                                                                     |                                                                |
| PIQA                                            | Question: {question}\nAnswer: {answer}                                                                                                                                                                                                                  |                                                                |
| SIQA                                            | $\overline{\text{\{context\}}}\ \underline{Q}$ : $\overline{\text{\{question\}}}\ \underline{A}$ : $\overline{\text{\{answer\}}}$                                                                                                                       |                                                                |
| WinoGrande                                      | {prefix} {answer} {suffix}                                                                                                                                                                                                                              |                                                                |

## 。 整体效果

Table 2: Main results: Performance on knowledge intensive tasks (test sets).

|                    | MMLU | NQ   | TQA         | ELI5   | HoPo    | FEV    | AIDA | zsRE | T-REx | WoW  | Avg⋄       | Avg  |
|--------------------|------|------|-------------|--------|---------|--------|------|------|-------|------|------------|------|
|                    |      |      |             | 0      | -shot   |        |      |      |       |      |            |      |
| Llama 65B          | 51.2 | 5.2  | 55.8        | 19.5   | 12.5    | 59.3   | 0.6  | 6.7  | 1.3   | 15.6 | 32.9       | 22.8 |
| Llama 65B RePlug   | 59.7 | 28.8 | 72.6        | 19.1   | 32.0    | 73.3   | 41.8 | 50.8 | 36.3  | 16.1 | 45.1       | 43.1 |
| RA-DIT 65B         | 64.6 | 35.2 | <b>75.4</b> | 21.2   | 39.7    | 80.7   | 45.1 | 73.7 | 53.1  | 16.4 | 49.1       | 50.5 |
|                    |      |      |             | 5-shot | in-cont | ext    |      |      |       |      |            |      |
| Llama 65B          | 63.4 | 31.6 | 71.8        | 22.1   | 22.6    | 81.5   | 48.2 | 39.4 | 52.1  | 17.4 | 47.2       | 45.0 |
| Llama 65B RePlug   | 64.4 | 42.3 | 74.9        | 22.8   | 41.1    | 89.4   | 46.4 | 60.4 | 68.9  | 16.8 | 51.1       | 52.7 |
| RA-DIT 65B         | 64.9 | 43.9 | 75.1        | 23.2   | 40.7    | 90.7   | 55.8 | 72.4 | 68.4  | 17.3 | 51.8       | 55.2 |
|                    | NO   | TO 1 | 77.7        |        | DDV.    | A ID A |      | DE   | T D F | ***  | <b>X</b> 7 |      |
| 64-shot fine-tuned | NQ   | TQA  | Hol         | 0      | FEV     | AIDA   | A ZS | RE   | T-REx | WoV  | W          | Avg  |
| ATLAS <sup>†</sup> | 42.4 | 74.5 | 34.         | 7      | 87.1    | 66.5   | 74   | 1.9  | 58.9  | 15.: | 5          | 56.8 |
| RA-DIT 65B         | 43.5 | 72.8 | 36.         | 6      | 86.9    | 80.5   | 78   | 8.1  | 72.8  | 15.  | 7          | 60.9 |

Average of MMLU, NQ, TQA, and ELI5.

# ■ 常识推理任务

Table 3: Performance on commonsense reasoning tasks (dev sets) without retrieval augmentation.

| 0-shot     | BoolQ       | PIQA        | SIQA        | HellaSwag   | WinoGrande  | ARC-E       | ARC-C       | OBQA             | Avg         |
|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|
| Llama 65B  | 85.3        | 82.8        | 52.3        | 84.2        | 77.0        | 78.9        | 56.0        | <b>60.2</b> 58.8 | 72.1        |
| RA-DIT 65B | <b>86.7</b> | <b>83.7</b> | <b>57.9</b> | <b>85.1</b> | <b>79.8</b> | <b>83.7</b> | <b>60.5</b> |                  | <b>74.5</b> |

# \_\_\_\_\_ 。 消融实验

■ 第一阶段模型微调的实验

<sup>†</sup> ATLAS conducts 64-shot fine-tuning for each individual task and evaluates task-specific models individually. For RA-DIT, we perform multi-task fine-tuning using 64-shot examples from each task combined, and report the performance of a unified model across tasks.

Table 4: Ablation of language model fine-tuning strategies. All rows report dev set performance.

| 0 / 5-shot          | HoPo        | FEV         | AIDA        | zsRE        | T-REx       | WoW         | Avg                |
|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------------|
| Llama 65B           | 12.5 / 23.8 | 59.6 / 83.7 | 0.9 / 64.1  | 9.7 / 36.0  | 1.2 / 52.3  | 15.7 / 17.4 | 16.6 / <b>46.2</b> |
| IT 65B              | 20.0 / 30.0 | 67.8 / 83.2 | 8.9 / 58.5  | 19.0 / 35.4 | 17.3 / 53.5 | 16.4 / 16.5 | 24.9 / <b>46.2</b> |
| RA-IT 65B           | 26.8 / 29.9 | 65.2 / 84.8 | 10.7 / 52.9 | 30.9 / 35.2 | 24.1 / 52.9 | 16.5 / 16.5 | <b>29.0</b> / 45.4 |
| top-1 chunk         |             |             |             |             |             |             |                    |
| LLAMA 65B + DRAGON+ | 25.8 / 39.4 | 72.8 / 89.8 | 39.1 / 50.7 | 48.8 / 59.6 | 31.4 / 69.1 | 15.8 / 17.1 | 39.0 / <b>54.3</b> |
| IT 65B + Dragon+    | 33.3 / 38.8 | 84.0 / 90.1 | 43.9 / 50.3 | 56.8 / 58.2 | 44.7 / 66.4 | 15.7 / 15.6 | 46.4 / 53.2        |
| RA-IT 65B + DRAGON+ | 37.6 / 39.1 | 81.0 / 90.4 | 41.6 / 52.3 | 59.6 / 57.9 | 49.6 / 65.8 | 16.6 / 16.6 | <b>47.7</b> / 53.7 |
| top-3 chunks        |             |             |             |             |             |             |                    |
| LLAMA 65B + DRAGON+ | 29.6 / 40.8 | 74.9 / 90.3 | 43.1 / 52.8 | 55.9 / 62.9 | 37.2 / 70.8 | 16.0 / 17.2 | 42.8 / <b>55.8</b> |
| IT 65B + DRAGON+    | 35.2 / 40.0 | 85.7 / 91.2 | 49.7 / 52.3 | 56.2 / 61.9 | 45.9 / 68.6 | 15.6 / 15.6 | 48.1 / 54.9        |
| RA-IT 65B + DRAGON+ | 39.9 / 40.6 | 82.4 / 91.7 | 45.2 / 53.4 | 63.4 / 61.3 | 52.8 / 67.6 | 16.6 / 16.7 | <b>50.1</b> / 55.2 |
| top-10 chunks       |             |             |             |             |             |             |                    |
| LLAMA 65B + DRAGON+ | 31.0 / 41.6 | 75.4 / 90.8 | 44.8 / 54.0 | 58.6 / 63.7 | 40.2 / 71.9 | 16.0 / 17.8 | 44.3 / <b>56.6</b> |
| IT 65B + DRAGON+    | 33.9 / 40.6 | 87.0 / 91.8 | 50.5 / 53.8 | 53.9 / 62.5 | 45.7 / 69.4 | 15.6 / 15.7 | 47.8 / 55.6        |
| RA-IT 65B + DRAGON+ | 40.0 / 41.2 | 82.8 / 92.1 | 47.2 / 53.5 | 65.0 / 62.3 | 54.3 / 69.0 | 16.5 / 16.6 | <b>51.0</b> / 55.8 |

# 第二阶段检索器微调的实验

Table 5: Ablation of retriever fine-tuning strategies. All rows use the LLAMA 65B model and report 5-shot performance on the dev sets.

| 5-shot                         | MMLU | NQ   | TQA  | HoPo | FEV  | AIDA | zsRE | T-REx | WoW  | Avg⋄ | Avg  |
|--------------------------------|------|------|------|------|------|------|------|-------|------|------|------|
| Dragon+                        | 62.6 | 41.8 | 72.9 | 41.5 | 90.6 | 54.1 | 63.7 | 72.1  | 17.5 | 56.6 | 57.4 |
| MTL instruction tuning data    | 61.1 | 43.6 | 74.0 | 36.5 | 91.4 | 64.6 | 56.7 | 72.1  | 17.1 | 56.4 | 57.5 |
| corpus data (FT both encoders) | 61.7 | 43.2 | 73.8 | 37.5 | 88.2 | 69.8 | 53.5 | 57.2  | 17.5 | 54.0 | 55.8 |
| corpus data                    | 62.9 | 43.0 | 74.3 | 41.1 | 91.6 | 54.4 | 63.4 | 71.8  | 17.4 | 56.6 | 57.8 |
| 95% corpus + 5% MTL data       | 63.0 | 42.1 | 74.9 | 41.2 | 91.6 | 54.9 | 65.2 | 71.6  | 17.5 | 57.0 | 58.0 |

### 检索数量对模型最后效果的影响



Figure 2: RA-IT model performance (combined with DRAGON+) across sizes 7B, 13B and 65B on our development tasks. 0-shot performance: dashed lines; 5-shot performance: solid lines.

# 4. 启发(可以借鉴的东西)

- · 可以借鉴该文章的思想,微调LLM&检索器
- 。 更换配置:原先DRAGON+使用的BERT-base,可以考虑使用RoBERT

# 5. 参考资料:

- 。 Re-Dit论文: https://arxiv.org/pdf/2310.01352
- DRAGON+论文: https://arxiv.org/pdf/2302.07452
  - code: https://github.com/facebookresearch/dpr-scale
- https://yach-doc-shimo.zhiyinlou.com/docs/1lq7MZORpxFmjxAe/ <RAG技术汇报>