+

[1] Recurrent Neural Network (RNN)

Output of Activation Function at time t; "a depends on BOTH:-Input "X" and Previous activation Output "a<1-1>" Softmax a<1-1> tanh

Output of Activation Function at time t; "a<t>" depends on BOTH:Input "X<t>" and
Previous activation Output "a<t-1>"

Inputs at time t-1, t, t+1

$$a^{<1>}= F^{n} (W_{aa}a^{<0>} + W_{ax}X^{<1>} + b_{a})$$
 $y^{<1>}=F^{n} (W_{ya}a^{<1>} + b_{y})$

Non Linearity

$$a^{<1>}$$
 = tanh (W_{aa} $a^{<0>} + W_{ax}X^{<1>} + b_a$) May be tanh, ReLU, ...

$$y^{<1>}=Softmax (W_{ya} a^{<1>} + b_y)$$
 Segmoid for Binary O/P, Softmax for Multi-Class O/P

$$a^{} = tanh (W_{aa}a^{} + W_{ax}x^{} + b_a)$$
 May be tanh, ReLU, ...
$$y^{} = Softmax (W_{ya}a^{} + b_y)$$
 Segmoid for Binary O/P, Softmax for Multi-Class O/P

[2] Gated Recurrent Unit (GRU)

Define Memory Cell "C" in addition to Output of Activation function "a".

[1] Adding Update Gate G.

If G_u = 0 , Keep Memory Value "C<>>" Same as Previous Value "C<<-1>"

If G = 1, Forget Previous Memory Value "C<1-1>

C Candidate Value of Updated Memory

C Value of Updated Memory

C is the <u>Candidate</u> Update

G is the <u>Update</u> Gate

C is the <u>Actual</u> Update

Softmax

[2] Adding Relevance Gate G,

If $G_r = 1$, $C^{< t-1>}$ is Relevant to update Candidate Memory cell value " C^- If $G_r = 0$, $C^{< t-1>}$ is IrRelevant to update Candidate Memory cell value " C^- "

[2] Adding Relevance Gate G

[3] Long Short Term Memory (LSTM)

[1] Removing Relevance Gate G, W_{ue} can Do the same functionality It can Control the amount of relevance of C<+-1> Softmax ► G, O C-<b + (1 - G,) O C<t-1> - C<+> Update tanh Rele ance Wux Wrx X<D

Percentage of $C^{<t-1>}$ + Percentage of $C^{<t>}$ = 1 { G_u + (1- G_u) = 1 }

[4] Add "Output Control Gate"

LSTM Unit

$$G_f = Sigmoid (W_{fa}a^{} + W_{fx}X^{} + b_f)$$
 $c^{} = G_u \cdot c^{-} + G_f \cdot c^{}$

$$G_o = Sigmoid (W_{oa}a^{} + W_{ox}x^{} + b_o) | a^{} = G_o . tanh (c^{})$$

Outputs)

$$G_u = Sigmoid (W_{ua}a^{} + W_{ux}X^{} + b_u) c^{-} = tanh (W_{ca}a^{} + W_{cx}X^{} + b_c)$$

$$a^{} = G_0 \cdot tanh (C^{})$$

X<t>

Softmax

 W_{ya}

Input Sequence to LSTM

