27.12.00

JP 00/859

玉

PATENT OFFICE JAPANESE GOVERNMENT

REC'D 1 9 JAN 2001

WIPO POT

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。 10/070827

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2000年11月28日

願 番 Application Number:

特願2000-361170

出 願 人 Applicant (s):

日本電気株式会社

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2000年12月15日

特許庁長官 Commissioner, Patent Office

出証番号 出証特2000-3104683

特2000-36117

殿

【書類名】

特許願

【整理番号】

33703886

【提出日】

平成12年11月28日

【あて先】

特許庁長官

【国際特許分類】

C08L 63/00

【発明者】

【住所又は居所】 東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

木内 幸浩

【発明者】

【住所又は居所】

東京都港区芝五丁目7番1号 日本電気株式会社内

【氏名】

位地 正年

【特許出願人】

【識別番号】

000004237

【氏名又は名称】 日本電気株式会社

【代理人】

【識別番号】

100088328

【弁理士】

【氏名又は名称】 金田 暢之

【電話番号】

03-3585-1882

【選任した代理人】

【識別番号】

100106297

【弁理士】

【氏名又は名称】 伊藤 克博

【選任した代理人】

【識別番号】

100106138

【弁理士】

【氏名又は名称】 石橋 政幸

【先の出願に基づく優先権主張】

【出願番号】

平成11年特許願第349440号

【出願日】

平成11年12月 8日

【手数料の表示】

【予納台帳番号】

089681

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9710078

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 難燃性エポキシ樹脂組成物

【特許請求の範囲】

【請求項1】 エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記硬化剤は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)であることを特徴とする難燃性エポキシ樹脂組成物。

【請求項2】 エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記エポキシ樹脂は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)のフェノール性水酸基がグリシジルエーテル化されたノボラック型エポキシ樹脂(D)であることを特徴とする難燃性エポキシ樹脂組成物

【請求項3】 エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記硬化剤は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)であって、

前記エポキシ樹脂は、フェノール類(A')から誘導される構成単位と該フェノール類(A')を除く芳香族類(B')から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C')のフェノール性水酸基がグリシジルエーテル化されたノボラック型エポキシ樹脂(D)であることを特徴とする難燃性エポキシ樹脂組成物。

【請求項4】 前記芳香族類(B)は、ビフェニルとその誘導体、ベンゼンとその誘導体、ジフェニルエーテルとその誘導体、ナフタレンとその誘導体、アントラセンとその誘導体、フルオレンとその誘導体、ビスフェノールアレンとその誘導体、ビスフェノールトとその誘導体

およびビスフェノールAとその誘導体からなる群から選択されるいずれかの化合物であることを特徴とする請求項1乃至3いずれかに記載の難燃性エポキシ樹脂組成物。

【請求項5】 前記フェノール系樹脂(C)が、下記式(I)から(IV)のいずれかに示される繰り返し単位を有することを特徴とする請求項1乃至4いずれかに記載の難燃性エポキシ樹脂組成物。

【化1】

$$\begin{array}{c|c}
\hline
OH \\
\hline
X_1 - R_1
\end{array}$$
(1)

$$\begin{array}{c|c} & OH \\ \hline & X_1 - X_2 \end{array}$$

$$\begin{array}{c|c}
\hline
 & OH \\
\hline
 & X_1 - X_2
\end{array}$$
(1V)

(式中、 X_1 および X_2 は、それぞれ独立に、炭素数 $1\sim 6$ の不飽和結合を含む鎖式構造の結合基または炭素数 $1\sim 6$ の置換または無置換のアルキレン基を示し、 R_1 はフェニレン基、ビフェニレン基、またはこれらの誘導基を示す。)

【請求項6】 前記金属水酸化物の含有率が、難燃性エポキシ樹脂組成物の

総量に対し、10質量%以上70質量%以下であることを特徴とする請求項1乃至5いずれかに記載の難燃性エポキシ樹脂組成物。

【請求項7】 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含むことを特徴とする請求項1乃至5いずれかに記載の難燃性エポキシ樹脂組成物。

【請求項8】 前記金属水酸化物の含有率が、難燃性エポキシ樹脂組成物の総量に対し、5質量%以上70質量%以下であることを特徴とする請求項7に記載の難燃性エポキシ樹脂組成物。

【請求項9】 前記シリコーン化合物が、式RSiO $_{1.5}$ で示される単位(T単位)を含むことを特徴とする請求項7または8に記載の難燃性エポキシ樹脂組成物。

【請求項10】 前記シリコーン化合物が、前記エポキシ樹脂および/または前記硬化剤と反応し得る反応性基を有することを特徴とする請求項7乃至9いずれかに記載の難燃性エポキシ樹脂組成物。

【請求項11】 前記反応性基が、水酸基、炭素数1~5のアルコキシ基、エポキシ基またはカルボキシル基であることを特徴とする請求項10に記載の難燃性エポキシ樹脂組成物。

【請求項12】 基材に含浸、硬化させ、積層板を形成するのに用いられる ことを特徴とする請求項1乃至11いずれかに記載の難燃性エポキシ樹脂組成物

【請求項13】 前記金属水酸化物が、アルミニウム、マグネシウム、亜鉛、ホウ素、カルシウム、ニッケル、コバルト、スズ、モリブデン、銅、鉄およびチタンからなる群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とする請求項1乃至12いずれかに記載の難燃性エポキシ樹脂組成物

【請求項14】 前記金属水酸化物が、水酸化アルミニウム、水酸化マグネシウムまたはホウ酸亜鉛であることを特徴とする請求項13に記載の難燃性エポキシ樹脂組成物。

【請求項15】 前記金属水酸化物が、水酸化アルミニウムであることを特

徴する請求項14に記載の難燃性エポキシ樹脂組成物。

【請求項16】 請求項1乃至15に記載の難燃性エポキシ樹脂組成物を有機溶剤に分散させてなるエポキシ樹脂ワニス溶液。

【請求項17】 請求項1乃至15に記載の難燃性エポキシ樹脂組成物を、 基材に含浸、硬化させてなるプリプレグ。

【請求項18】 請求項17に記載のプリプレグを複数枚重ね、加熱加圧してなる積層板。

【請求項19】 少なくとも一方の面に銅箔が接合された請求項18に記載の積層板。

【請求項20】 少なくとも一方の面に配線層が形成された請求項18または19に記載の積層板。

【請求項21】 請求項18に記載の積層板であって、下記条件(a)~(d)を満たすことを特徴とする積層板。

(a) $4.5 \le \sigma \le 1.00$, $3 \le E \le 1.2$

 $(\sigma$ は230±10℃における積層板の曲げ強度(MPa)、Eは230±10℃における積層板の曲げ弾性率(GPa)を表す。)

(b) $3.0 \le G \le 6.0$

(Gは、積層板の総量に占める基材の割合(質量%)を表す。)

(c) F≦45 (質量%)

F (質量%) = R×100/X

(Rは室温から500℃までに発生する、水分以外の熱分解生成物の量であり、 Xは積層板中の樹脂分の含有量を表す。)

(d) $4 \le V \le 13$

(Vは、昇温速度10℃/分、空気流量0.2リットル/分で熱分解したときに、室温から500℃までに発生する、積層板の総量に対する水蒸気量(V質量%)を表す。)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、難燃性および安全性に優れる難燃性エポキシ樹脂組成物、および、 これを用いて作成したワニス溶液、プリプレグ、積層板に関するものである。

[0002]

【従来の技術】

従来、火災防止のために、エポキシ樹脂組成物に難燃特性が要求される場合、 通常、難燃剤としてハロゲン系難燃剤が、また難燃助剤として三酸化アンチモン が使用されてきた。

[0003]

ところがエポキシ樹脂組成物において上記の難燃剤や難燃助剤を用いると、安全性の問題に加え、金属の腐食を促進することとなり、かかる点でその適用に課題を有していた。たとえばこのようなエポキシ樹脂組成物を電子部品の絶縁材として使用した場合、特に高温での耐配線腐食性が低下し、電子部品の信頼性を損なう場合があった。従って、ハロゲン系難燃剤や三酸化アンチモンを使用しないエポキシ樹脂組成物の開発が望まれていた。

[0004]

ハロゲン系難燃剤等を用いない難燃性付与手段として、エポキシ樹脂組成物中に金属水酸化物を配合する方法が知られている。しかしながら、金属水酸化物による難燃性発現は、樹脂硬化体の温度を下げる(吸熱)ことによる燃焼抑制作用によるものであり、難燃性の付与手段としては補助的なものと位置づけられるものである。したがって、上記吸熱作用によって充分な難燃性を得るためには大量の添加量が必要となる。このため、電子部品用途等においては、成形性等が大幅に低下するため、その適用は困難であった。

[0005]

特に、ガラス繊維等にエポキシ樹脂組成物を含浸・硬化させてなる積層板を作製するための難燃性エポキシ樹脂組成物に関しては、金属水酸化物を大量に添加した場合、種々の課題が生じる。この点について、以下、説明する。

[0006]

第一の課題は、積層板の加工性が損なわれることである。この点に関し、たとえば「最新 難燃剤・難燃化技術(技術情報協会 1999年7月30日発行)

」の第270頁~第271頁には、水酸化アルミを大量に加える(エポキシ樹脂組成物全体に対し75質量%)ことによりUL94V-0を達成できるものの、その配合量は実用的には非現実的なものであり、「プリント配線板加工工程時の打ち抜き・ドリル加工性、および部品実装時の半田処理工程において不具合が生じる」ことが記載されている。

[0007]

第二の課題は、誘電率が上昇すること、耐湿性やハンダ耐熱性が低下することである。積層板用途においてはこれらの物性が良好に維持されることが必須となるが、金属水酸化物は吸湿しやすい上、誘電率が高いため、大量に添加した場合、上記物性の低下をもたらすのである。

[0008]

以上のことから、既存のエポキシ樹脂に対し金属水酸化物を添加する手法では、積層板用途において要求される諸物性を高水準に維持しつつ、高度の難燃性を 実現することは困難であった。

[0009]

一方、エポキシ樹脂や硬化剤の分子構造を変えることにより難燃性を付与する検討も種々行われている。特開平11-140277号報には、分子中にビフェニル誘導体および/またはナフタレン誘導体を含むノボラック構造のフェノール系樹脂、分子中にビフェニル誘導体および/またはナフタレン誘導体を含むノボラック構造のエポキシ樹脂、無機充填材および硬化促進剤を必須成分とする、難燃剤無添加の半導体封止用エポキシ樹脂組成物が開示されている。

[0010]

上記半導体封止用エポキシ樹脂組成物は、構造中にビフェニル誘導体やナフタレン誘導体等の多芳香族類を含有するフェノール系樹脂やエポキシ樹脂が反応して架橋構造を形成しているために、着火した際に、樹脂組成物の表面がゴム状に膨張して発泡層を形成する。この発泡層により、未燃焼部への熱と酸素の供給が遮断され高度な難燃性が発現するのである。

[0011]

しかしながら、上記樹脂組成物は半導体封止用途に適するように設計されたも

のであり、積層板用途等に適用した場合、必ずしも充分な難燃性は得られない。 これは、積層板の構造中にはガラス織布やガラス不織布のような樹脂分の変形 (膨張)を妨げる基材が存在するため、着火時に安定な発泡層が充分に形成されに くいことに起因するものである。

[0012]

- = -:

【発明が解決しようとする課題】

本発明は上述した事情に鑑みてなされたものであり、従来にない高水準の難燃性と安全性を実現する難燃性エポキシ樹脂組成物を提供することを目的とする。

[0013]

特に、積層板の製造に使用される難燃性エポキシ樹脂組成物において、積層板に要求される諸物性、すなわち、積層板の加工性、誘電特性、耐湿性およびハンダ耐熱性等を良好に維持しつつ高度の難燃性を付与することを目的とする。

[0014]

【課題を解決するための手段】

上記課題を解決する本発明によれば、エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記硬化剤は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)であることを特徴とする難燃性エポキシ樹脂組成物が提供される

[0015]

また本発明によれば、エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記エポキシ樹脂は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)のフェノール性水酸基がグリシジルエーテル化されたノボラック型エポキシ樹脂(D)であることを特徴とする難燃性エポキシ樹脂組成物が提供される。

[0016]

また本発明によれば、エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記硬化剤は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)であって、

前記エポキシ樹脂は、フェノール類(A')から誘導される構成単位と該フェノール類(A')を除く芳香族類(B')から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C')のフェノール性水酸基がグリシジルエーテル化されたノボラック型エポキシ樹脂(D)であることを特徴とする難燃性エポキシ樹脂組成物が提供される。ここで、フェノール類(A)とフェノール類(A')、芳香族類(B)と芳香族類(B')、フェノール系樹脂(C)とフェノール系樹脂(C')は、それぞれ同じであっても異なっていてもよい。なお、本明細書中におけるフェノール類(A)、芳香族類(B)およびフェノール系樹脂(C)に関する記述は、フェノール類(A')、芳香族類(B')およびフェノール系樹脂(C)に対しても同様にあてはまる。

[0017]

また本発明によれば、上記難燃性エポキシ樹脂組成物を有機溶剤に分散させてなるエポキシ樹脂ワニス溶液、上記難燃性エポキシ樹脂組成物を基材に含浸、硬化させてなるプリプレグ、および、このプリプレグを複数枚重ね、加熱加圧してなる積層板が提供される。

[0018]

本発明は、上記特定構造のフェノール樹脂やエポキシ樹脂を用い、さらに金属水酸化物を併用することにより、高度な難燃効果を実現するものである。特に、上記特定構造のフェノール系樹脂と上記特定構造のエポキシ樹脂とを併用すれば、一層顕著な難燃効果が得られる。

[0019]

本発明の難燃性エポキシ樹脂組成物は、フェノール類(A)から誘導される構成単位と芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)および/またはこのフェノール系樹脂(C)のフェノール性水酸基

をグリシジルエーテル化したエポキシ樹脂(D)を含み、さらに、金属水酸化物を含んでいる。このため、以下に示すように、これらの相乗作用による高度の難燃効果が得られる。

[0020]

従来技術の項で述べたように、芳香族類(B)を分子骨格中に含有するフェノール系樹脂(C)および/またはエポキシ樹脂(D)が架橋構造を形成するエポキシ樹脂組成物の硬化物は、着火時に硬化物の内部で発生する分解ガスによって、表面の樹脂層がゴム状に膨張して安定な発泡層を形成して、難燃効果を発現する。しかしながら、この作用のみでは、ガラス織布やガラス不織布のような樹脂分の変形(膨張)を妨げる基材が内在する積層板などのエポキシ樹脂組成物では、高度な難燃効果を発現する発泡層を効率的に形成することが困難であり、充分な難燃性が得られなかった。

[0021]

そこで、本発明の難燃性エポキシ樹脂組成物は、上記特定構造のエポキシ樹脂 や硬化剤を用いるとともに、金属水酸化物を使用している。これにより、両者の 相乗作用により、従来技術にない顕著な難燃作用が得られる。この理由は必ずし も明らかではないが、この難燃性エポキシ樹脂組成物の難燃性が、以下の機構に より発現していることによるものと考えられる。

[0022]

本発明の難燃性エポキシ樹脂組成物の硬化体に着火すると、金属水酸化物が熱分解して水蒸気が発生する。発生した水蒸気は、熱により軟化した樹脂硬化体を変形、膨張させ、発泡層の形成を促す。このため、ガラス織布やガラス不織布のような樹脂分の変形(膨張)を妨げる基材が存在する構造体中にあっても、着火時に発泡層を充分に形成することができる。また、この発泡層は、特有のエポキシ樹脂と硬化剤の使用による特有の架橋構造のために、高い熱間強度を有し、熱により破泡しにくい構造となっている上、内部が水蒸気等によって満たされていることから、熱や酸素を効果的に遮断する燃焼抑止層として有効に機能するのである。

[0023]

また、金属水酸化物は燃焼により金属酸化物に転化するが、この金属酸化物が 樹脂体中に均一に残存することとなる。これが支持体として機能するとともに、 発泡層のサイズを均一にする役割を果たすものと考えられる。このように金属水 酸化物は発泡層の構造を好適に維持し、発泡層の燃焼抑止効果を向上させる役割 を果たしているものと考えられる。

[0024]

以上のように本発明は、特定構造のエポキシ樹脂や硬化剤と金属水酸化物を併用することにより、熱間強度の高い発泡層の発生を促進するとともに、この発泡層に水蒸気を充填して燃焼抑止効果を付与し、さらに、金属酸化物が支持体となって発泡層を燃焼抑止に適した構造にしており、これにより、高度の難燃作用を実現しているものと推定される。

[0025]

本発明においては、このような目的で金属水酸化物を用いているため、単に温度を下げる目的で金属水酸化物を添加する従来技術と比べ、少量の添加で充分な難燃効果が得られるのである。

[0026]

本発明において、特に、主鎖が分岐構造でその構造中に芳香族類を持つシリコーン化合物を添加すると難燃性を著しく向上できる。このようにした場合、シリコーン化合物が、エポキシ樹脂組成物中のエポキシ樹脂や硬化剤と反応して耐熱分解性に優れる難燃化物を形成するため、樹脂硬化体に着火した場合において、より破泡しにくい発泡層が形成され、一層高度な難燃性を実現することができる。加えて、前記シリコーン化合物を併用すれば、金属水酸化物の添加量をさらに低減できるので、エポキシ樹脂組成物の成形性や電気特性(誘電特性)の低下もより効果的に防止できる。

[0027]

【発明の実施の形態】

以下、本発明の実施の形態について説明する。なお、以下におけるフェノール類 (A)、芳香族類 (B)、フェノール系樹脂 (C) についての記述は、フェノール類 (A')、芳香族類 (B')、フェノール系樹脂 (C') についても同様

にあてはまる。

本発明におけるフェノール類(A)としては、フェノール性水酸基を有する芳香族化合物である限り、特に限定されるものではなく、例えば、フェノール、あるいは α ーナフトール、 β ーナフトール等のナフトール類、ビスフェノールフルオレン型フェノール、あるいはクレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコール等の多価フェノール類、フェニルフェノール、アミノフェノール等が挙げられる。また、これらのフェノール類は、その使用にあたって一種類に限定されるものではなく、二種類以上の併用も可能である。

[0028]

本発明における芳香族類は、前記フェノール類(A)を除く一または二以上の 芳香族化合物である。芳香族類(B)は、特に限定されるものではなく、例えば 、ビフェニルとその誘導体、ベンゼンとその誘導体、ジフェニルエーテルとその 誘導体、ナフタレンとその誘導体、アントラセンとその誘導体、フルオレンとそ の誘導体、ビスフェノールフルオレンとその誘導体、ビスフェノールSとその誘 導体、ビスフェノールFとその誘導体、ビスフェノールAとその誘導体等が挙げ られる。このうち、ビフェニルとその誘導体、ベンゼンとその誘導体が好ましく 用いられる。難燃化の効果が極めて高く、さらに疎水性に優れるので、これらを 導入すると樹脂組成物の耐湿性も大幅に改良されるからである。特にビフェニル 誘導体を含む芳香族類(B)は、難燃性向上の効果が高く、好ましい。この理由 は、必ずしも明らかではないが、ビフェニル誘導体を含有する樹脂の硬化体が発 泡化しやすいこと、さらに、ビフェニル誘導体自体の引火点が高いことが影響し たものと考える。すなわち、ビフェニル誘導体を含有すると、ベンゼン誘導体等 に比べ、樹脂硬化物の架橋点間の距離が長くなるため、着火時に一層発泡化しや すくなって、難燃化が促進されたものと想定できる。また、本発明の樹脂組成物 では、着火の際に発生するガス状の熱分解生成物が樹脂表面を発泡化させるが、 この熱分解生成物自体が引火しにくいことも難燃化には影響していると考える。 ビフェニル誘導体を含む樹脂組成物からは、ビフェニル自体も発生するので、こ

の引火点の高さ(ビフェニルは110 \mathbb{C} 、ベンゼンは-10 \mathbb{C})も、難燃化に寄与した可能性が高い。

[0029]

芳香族類(B)は、炭素数1乃至6の不飽和結合を含む鎖式構造の結合基または炭素数1乃至6の置換または無置換のアルキル基を有することが好ましい。

[0030]

上記不飽和結合を含む鎖式構造の結合基としてはアリル基が挙げられる。また、上記炭素数1万至6のアルキル基としてはメチル基、エチル基、プロピル基等が挙げられる。

[0031]

本発明におけるフェノール系樹脂(C)としては、フェノール類(A)およびフェノール類を除く芳香族類(B)を含むノボラック構造のフェノール系樹脂である限り、特に限定されるものではなく、例えば、フェノールビフェニルアラルキル型樹脂、フェノールフェニレンアラルキル型樹脂、フェノールジフェニルエーテルアラルキル型樹脂、ナフタレン含有フェノールノボラック型樹脂、アントラセン含有フェノールノボラック型樹脂、ビフェニレン含有フェノールノボラック型樹脂、ビスフェノールフルオレン含有フェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノールノボラック型樹脂、ビスフェノール系樹脂は、その使用にあたって一種類に限定されるものではなく、二種類以上の併用も可能である。

[0032]

以下、フェノール系樹脂(C)の具体例を示す。但し本発明はこれらの例に限定されるものではない。

[0033]

【化2】

$$\begin{array}{c} \text{OH} \\ \begin{array}{c} \text{OH} \\ \\ \end{array} \\ \begin{array}{c} \text{OH} \\ \end{array} \\ \begin{array}{c} \text$$

[0034]

【化3】

[0035]

【化4】

[0036]

【化5】

$$\begin{array}{c}
0 \text{ H} & 0 \text{ H} \\
\bigcirc \text{ CH}_{2} \\
\bigcirc \text{ O} \\
\bigcirc \text{ CH}_{2} \\
\bigcirc \text$$

このうち、芳香族類(B)が、ビフェニルとその誘導体またはベンゼンとその誘導体である、フェノールビフェニルアラルキル型樹脂またはフェノールフェニレンアラルキル型樹脂であることが好ましい。このようにすれば、適度に低い架橋密度を持つエポキシ樹脂組成物を得られる点で好ましく、着火時において耐熱分解性に優れたゴム状の発泡層が一層好適に形成される。さらに、ビフェニルとその誘導体や、ベンゼンとその誘導体は、疎水性に優れるので、これらを導入すると樹脂組成物の耐湿性も改良される。

[0037]

本発明におけるフェノール系樹脂(C)は、たとえば下記式(I)から(IV)のいずれかに示される繰り返し単位を有するものであることが好ましい。

[0038]

【化6】

$$\begin{array}{c|c}
\hline
OH \\
\hline
X_1 - R_1 - X_2
\end{array}$$
(11)

$$\begin{array}{c|c}
\hline
OH \\
\hline
X_1 - R_1
\end{array}$$

(式中、 X_1 および X_2 は、それぞれ独立に、炭素数 $1\sim 6$ の不飽和結合を含む鎖式構造の結合基または炭素数 $1\sim 6$ の置換または無置換のアルキレン基を示し、 R_1 はフェニレン基、ビフェニレン基、またはこれらの誘導基を示す。)

このような繰り返し単位を有する樹脂とすることにより、着火時において耐熱 分解性に優れたゴム状の発泡層が一層好適に形成され、さらに、樹脂組成物の耐 湿性も改良される。

[0039]

本発明の難燃性エポキシ樹脂組成物において、上記したフェノール系樹脂(C)以外のフェノール系樹脂を併用してもよい。この場合、総フェノール系樹脂量に対する上記フェノール系樹脂(C)の含有率を、5質量%以上、好ましくは3

○質量%以上配合することが好ましい。含有率が低すぎると難燃性が不十分となる場合がある。

[0040]

本発明の難燃性エポキシ樹脂組成物において、硬化剤として、上記フェノール系樹脂(C)以外に、その他のフェノール系樹脂やアミン系化合物を組み合わせて使用することができる。

[0041]

併用できるフェノール系樹脂は、特に限定されるものではないが、例えば、フェノールビフェニルトリアジン型樹脂、フェノールフェニレントリアジン型樹脂、フェノールトリアジン型樹脂、ビフェニルー4,4′ージヒドロキシルエーテールと3,3′,5,5′ーテトラメチルビフェニルー4,4′ージヒドロキシルエーテル、テトラフェニロールエタン、トリスフェニロールエタン、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型樹脂、ビスフェノールF型樹脂、ビスフェノールS型樹脂、ポリフェノール型樹脂、脂肪族フェノール樹脂、芳香族エステル型フェノール樹脂、環状脂肪族エステル型フェノール樹脂およびエーテルエステル型フェノール樹脂等が挙げられる。

[0042]

また、併用できるアミン系化合物は、特に限定されるものではないが、例えば、ジアミノジフェニルメタン、ジエチレントリアミンおよびジアミノジフェニルスルフォン等が挙げられる。これらのフェノール系樹脂やアミン系化合物を、単独または数種類混合して用いても差し支えない。これらの中で、フェノールビフェニルトリアジン型樹脂、フェノールフェニレントリアジン型樹脂、フェノールトリアジン型樹脂が難燃性強化の点で特に好ましい。

[0043]

本発明におけるノボラック型エポキシ樹脂(D)は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)のフェノール性水酸基がグリシジルエーテル化されたノボラック型エポキシ樹脂である。このようなノボラック型エポキシ樹脂として、例えば、フェノールビフェニルアラルキル型エポ

キシ樹脂、フェノールフェニレンアラルキル型エポキシ樹脂、フェノールジフェニルエーテルアラルキル型エポキシ樹脂、ナフタレン含有ノボラック型エポキシ樹脂、ビフェニレン含有ノボラック型エポキシ樹脂、ビフェニレン含有ノボラック型エポキシ樹脂、ビスフェノールフルオレン含有ノボラック型エポキシ樹脂、ビスフェノールS含有ノボラック型エポキシ樹脂、ビスフェノールS含有ノボラック型エポキシ樹脂、ビスフェノールA含有ノボラック型エポキシ樹脂等が挙げられる。また、これらのエポキシ樹脂は、その使用にあたって一種類に限定されるものではなく、二種類以上の併用も可能である。

[0044]

以下、ノボラック型エポキシ樹脂(D)の具体例を示す。但し本発明はこれらの例に限定されるものではない。なお、式中、「G」はグリシジル基を表す。

[0045]

【化7】

$$\begin{array}{c} 0G \\ \bigcirc CH_2 \\$$

[0046]

【化8】

[0047]

【化9】

[0048]

【化10】

$$\begin{array}{c}
0G & 0G & 0G \\
-CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2}
\end{array}$$

$$\begin{array}{c}
0G & 0G \\
-CH_{2} - CH_{2} - CH_{2} - CH_{2}
\end{array}$$

$$\begin{array}{c}
0G & 0G \\
-CH_{2} - CH_{2} - CH_{2} - CH_{2}
\end{array}$$

このうち、芳香族類(B)が、ビフェニルとその誘導体またはベンゼンとその 誘導体である、フェノールビフェニルアラルキル型エポキシ樹脂またはフェノー ルフェニレンアラルキル型エポキシ樹脂であることが好ましい。このようにすれ ば、適度に低い架橋密度を持つエポキシ樹脂組成物を得られる点で好ましく、着 火時において耐熱分解性に優れたゴム状の発泡層が一層好適に形成される。さら に、ビフェニルとその誘導体やベンゼンとその誘導体は難燃化の効果が極めて高 く、さらに、疎水性に優れるので、これらを導入すると樹脂組成物の耐湿性も改 良される。

[0049]

本発明の難燃性エポキシ樹脂組成物において、上記エポキシ樹脂(D)以外に、その他のエポキシ樹脂を組み合わせて使用することができる。この場合、総エポキシ樹脂量に対する上記エポキシ樹脂(D)の含有率を、5質量%以上、好ましくは30質量%以上配合することが好ましい。含有率が低すぎると難燃性が不十分となる場合がある。

[0050]

上記エポキシ樹脂(D)と併用できるエポキシ樹脂は、特に限定されるものではないが、例えば、フェノールビフェニルトリアジン型エポキシ樹脂、フェノールフェニレントリアジン型エポキシ樹脂、フェノールトリアジン型エポキシ樹脂、ビフェニルー4,4′ージグリシジルエーテールと3,3′,5,5′ーテトラメチルビフェニルー4,4′ージグリシジルエーテルの内の少なくとも一つまたは混合物、テトラフェニロールエタン型エポキシ樹脂、トリスフェニロールエ

タン型エポキシ樹脂、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ポリフェノール型エポキシ樹脂、脂肪族エポキシ樹脂、芳香族エステル型エポキシ樹脂等が挙げられる。また、ジアミノジフェニルメタン、ジエチレントリアミンおよびジアミノジフェニルスルフォン等のアミン系化合物のグリシジル化物を用いることもできる。これらのエポキシ樹脂を単独または数種類混合して用いても差し支えない。これらの中で、フェノールビフェニルトリアジン型エポキシ樹脂、フェノールフェニレントリアジン型エポキシ樹脂、フェノールフェニレントリアジン型エポキシ樹脂、フェノールフェニレントリアジン型エポキシ樹脂、フェノールフェニレントリアジン型エポキシ樹脂、フェノールアジン型エポキシ樹脂が難燃性強化の点で特に好ましい。

[0051]

本発明の難燃性エポキシ樹脂組成物に含まれるフェノール系樹脂(C)およびエポキシ樹脂(D)の重量平均分子量は、特に制限はないが、例えば300~1000とする。重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィ)により測定することができる。

[0052]

さらに、本発明の難燃性エポキシ樹脂組成物を構成する硬化剤とエポキシ樹脂について、硬化剤の水酸基数の合計 (○H)に対する、エポキシ樹脂のエポキシ基数の合計 (Ep)の比 (○H/Ep)が、0.7≦(○H/Ep)≦2.5であると、これらを硬化させてなる硬化物の難燃性を向上する上でより適当である。前記 (○H/Ep)が0.7に満たない場合には、前記硬化物中の硬化剤とエポキシ樹脂が形成した架橋構造に残余しているエポキシ基に由来する、アリルアルコール等の可燃成分の発生量が増加することから、難燃性の向上を阻害する可能性がある。また、前記 (○H/Ep)が2.5を超える場合には、前記エポキシ樹脂と硬化剤を反応させてなる、前記硬化物の架橋密度が低くなりすぎて硬化が不十分となる場合があり、硬化物の耐熱性や強度が不十分となることがある。

[0053]

また、本発明の難燃性エポキシ樹脂組成物に含まれる金属水酸化物は、アルミ

ニウム、マグネシウム、亜鉛、ホウ素、カルシウム、ニッケル、コバルト、スズ、モリブデン、銅、鉄、チタンから選ばれた少なくとも一つの元素から構成される金属水酸化物であることが好ましい。金属水酸化物の具体的な例としては、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、水酸化カルシウム、水酸化ニッケル、水酸化コバルト、水酸化スズ、モリブデン酸亜鉛、水酸化銅、水酸化鉄等を主成分とする金属水酸化物が挙げられる。これらの金属水酸化物を単独または、数種類を混合あるいは固溶化、あるいは、一方の金属水酸化物の表面に他の金属水酸化物を被覆させて用いても差し支えない。これらの中で、水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛が難燃性向上の点で好ましい。さらに、水酸化アルミニウムは、酸やアルカリに対する耐性に優れる上、硬化体の加工性に優れるので特に好ましい。

[0054]

本発明の難燃性エポキシ樹脂組成物の総重量に対する金属水酸化物の含有率は 、70質量%以下とすることが好ましい。ここで、上記難燃性エポキシ樹脂組成 物の総量とは、エポキシ樹脂、硬化剤のほか、硬化促進剤、シリコーン化合物や 充填剤等の各種添加剤を含む量をいい、積層板用途等に用いた場合におけるガラ ス繊維等の基材を除く量をいう。上記のような含有率にすれば、成形性や誘電特 性を良好に維持しつつ高度の難燃性を実現することができる。このため、特に積 層板用途に用いた場合、高度の難燃性を備えた高品質の積層板を得ることが可能 となる。また、上記含有率を60質量%以下とすれば、ハンダ耐熱性や耐湿性が 顕著に向上する。このため、たとえば積層板用途に用いた場合、ハンダ耐熱性に 優れた高品質の積層板を得ることができる。さらに上記含有率を55質量%以下 とすれば、成形性、誘電特性、耐湿性がさらに向上するため、好ましい。一方、 上記含有率の下限については、好ましくは10質量%以上、より好ましくは30 質量%以上とする。このようにすれば充分な難燃性を実現することができる。な お、溶融シリカや結晶シリカ等のシリカ粉末を併用する場合は、金属水酸化物の 含有量を低めにしても十分な難燃性を得ることができる。さらに、シリコーン化 合物と併用する場合は、上記したよりも少ない含有率としても十分な難燃性を得 ることができ、好ましくは5質量%以上、より好ましくは20質量%以上とする

[0055]

本発明の難燃性エポキシ樹脂組成物は、分岐構造の主鎖を有し芳香族誘導基を 有するシリコーン化合物をさらに含んでいてもよい。このようにすれば、難燃性 を一層向上させることができ、また、金属水酸化物の添加量をさらに低減できる ので、成形性や電気特性(誘電特性)の低下もより効果的に防止できる。

[0056]

本発明におけるシリコーン化合物に含まれる芳香族誘導基とは、芳香族類から 誘導される官能基であり、芳香族類とは、ベンゼン環、縮合ベンゼン環、多芳香 族環、非ベンゼン系芳香環、複素芳香環などの芳香環を有する化合物をいう。芳 香族類の例としてはベンゼン、ナフタレン、アントラセンのほか、ビフェニル、 ジフェニルエーテル、ビフェニレン、ピロール、ベンゾグアナミン、メラミン、 アセトグアナミン、またはこれらの誘導体等が例示される。誘導体としては、上 記化合物に炭素数1乃至10のアルキル基の付加したもの等が例示される。芳香 族誘導基の好ましい態様として、フェニル基が挙げられる。難燃性改良効果に優 れるからである。

[0057]

本発明におけるシリコーン化合物は、分岐構造の主鎖を有しており、その構造中に、式RSiO $_{1.5}$ で示される単位(T単位)を含むものであることが好ましい。さらに、式SiO $_{2.0}$ で示される単位(Q単位)を含有しても良い。さらに、前記シリコーン化合物の分岐構造が、式RSiO $_{1.5}$ で示される単位(T単位)、式R $_2$ SiO $_{1.0}$ で示される単位(D単位)、式R $_3$ SiO $_{0.5}$ で示される単位(M単位)から構成されていると難燃性改良の点で特に好ましい。このような構造のものであれば、耐熱分解性をより効果的に改善することができ、難燃性を一層向上することができる。このようなシリコーン化合物として、たとえば下記式のような構造のものが挙げられる。

[0058]

【化11】

なお、上記式はシリコーン化合物の構造の一例を示すことを意図したものであり、各々のRおよびR'は、それぞれ同じであっても異なっていても良い。

[0059]

本発明におけるシリコーン化合物は、エポキシ樹脂および/または硬化剤と反応し得る反応性基を有することが好ましい。たとえば、上記式中、RおよびR'が、エポキシ樹脂や硬化剤と反応できる反応性基、たとえば、水酸基、炭素数1乃至5のアルコキシ基、エポキシ基、カルボキシル基の内少なくとも一つを含むものであることが好ましい。これらの反応性基は一種類に限定されるものではなく、二種類以上を含有していてもよい。この他の官能基としては、芳香族類を除けば、炭素数1乃至10のアルキル基、特にメチル基が好ましい。

[0060]

本発明のシリコーン化合物を構成する官能基(RおよびR')の総量に占める、上記反応性基の割合は、0.05モル%以上20モル%未満が好ましく、さらに0.1モル%以上10モル%未満であることが好ましい。このような範囲とすることにより、シリコーン同士が反応して凝集体を形成することを防止できるとともに、耐熱分解性を効果的に改善することができる。

[0061]

本発明の難燃性エポキシ樹脂組成物に含まれる、主鎖が分岐構造でその構造中に芳香族類を持つシリコーン化合物の重量平均分子量は、特に制限されるものではないが、200~50万であることが好ましく、1000~10万であると特に好ましい。重量平均分子量が低すぎるとシリコーン化合物自体の難燃性が低下

する場合がある。一方、重量平均分子量が大きすぎると、エポキシ樹脂組成物中でのシリコーン化合物の分散性が不十分になって成形性が低下する場合がある。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィ)により測定することができる。

[0062]

また、本発明で使用するシリコーン化合物を構成するT単位(式RSiO $_{1.5}$ で示される単位)とD単位(式R $_2$ SiO $_{1.0}$ で示される単位)のモル比($_1$ D)は、(0. $_1$ D) $_1$ 1) $_2$ 1)であることが好ましい。($_1$ D)が、(0. $_1$ D)未満であると、シリコーン化合物自体の耐熱性が劣化するため、前記シリコーン化合物を含有するエポキシ樹脂組成物の難燃性が低下する場合がある。また、($_1$ D)が、($_1$ D)がの成形性が低下する場合がある。

[0063]

本発明のシリコーン化合物を構成する官能基(R、R')の総量に占める、フェニル基の割合が、20モル%以上であることが好ましく、特に40モル%以上であることが好ましい。上記割合が20モル%未満であると、本発明のエポキシ樹脂組成物を構成するフェノール系樹脂及びエポキシ樹脂に対する、シリコーン化合物の相溶性が低下するので、エポキシ樹脂組成物の成形性や難燃性が低下する場合がある。

[0064]

さらに、本発明の難燃性エポキシ樹脂組成物に含まれる、主鎖が分岐構造でその構造中に芳香族類を持つシリコーン化合物の含有量は、良好な難燃性と成形性を同時に達成する点で、難燃性エポキシ樹脂組成物を構成するフェノール系樹脂、エポキシ樹脂、金属水酸化物及び各種添加剤の総量に対して、0.1質量%以上20質量%以下であることが好ましい。0.1質量%未満であると難燃性が不十分の場合があり、20質量%を超えるとエポキシ樹脂組成物の成形性が低下する場合がある。

[0065]

さらに本発明のシリコーン化合物は、本発明のフェノール系樹脂やエポキシ樹

脂、さらに他の硬化剤やエポキシ樹脂とあらかじめ反応させて複合化させてから 用いることも可能である。

[0066]

さらに、本発明の難燃性エポキシ樹脂組成物に含まれる金属水酸化物に必要に応じて金属酸化物を併用してもよい。併用できる金属酸化物の具体的な例としては、酸化ケイ素、酸化カルシウムが挙げられるが、特に限定されるものではない。これらの金属酸化物を単独または、数種類を混合あるいは固溶化させたものを、金属水酸化物と混合または、金属水酸化物の表面に被覆あるいは金属水酸化物と固溶化させて用いても差し支えない。これらの中で、水酸化アルミニウムや水酸化マグネシウムと、酸化ケイ素の組み合わせが難燃性向上の点で好ましい。また、本発明のエポキシ樹脂組成物を構成する金属水酸化物を、フェノール樹脂をはじめとする各種ポリマー等の有機物によって表面処理したものも用いることができる。さらに、金属水酸化物の表面に金属酸化物を被覆したもの、あるいは、金属水酸化物に金属酸化物を固溶化したものを、フェノール系樹脂をはじめとする各種ポリマーなどの有機物によって表面処理したものを用いることもできる。

[0067]

また、本発明の難燃性エポキシ樹脂組成物は、必要に応じて、硬化促進剤、離型剤、表面処理剤、金属水酸化物以外の充填剤をはじめとする各種添加剤を含有してもよい。

[0068]

上記の各種添加剤のうち、硬化促進剤としては、一般にエポキシ樹脂と硬化剤の硬化に用いられているものが使用できる。例えば、1,8-ジアザビシクロ(5,4,0)ウンデセンー7等のジアザビシクロアルケン及びその誘導体、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニルー4ーメチルイミダゾール、2-ヘプタデシルイミダゾール等のイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラボレート等のテトラ

置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。これらの硬化促進剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。

[0069]

本発明の難燃性エポキシ樹脂組成物には、他の添加剤として、必要に応じて、 カーボンブラック等の着色剤、シリコーンオイル、シリコーンゴム等の低応力成 分、シリコーンパウダー等の可撓剤、天然ワックス、合成ワックス、高級脂肪酸 、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス、パラフ ィン等の離型剤、有機シラン化合物、有機チタネート化合物、有機アルミネート 化合物等のカップリング剤といった各種添加剤を適宜配合しても差し支えない。 特に、前記カップリング剤のうち有機シラン化合物、すなわち反応性官能基を有 するアルコキシシランは、本発明の難燃性エポキシ樹脂組成物の強度、耐薬品性 、電気特性の向上に重要である。前記アルコキシシランの具体例としては、 γ-アミノプロピルトリエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキ シシラン等のアミノシラン化合物、 γ-グリシドキシプロピルトリメトキシシラ ン、γ-グリシドキシプロピルメチルジエトキシシラン等のエポキシシラン化合 物、ビニルトリス (β メトキシエトキシ) シラン等のビニルシラン化合物、 γ -メタクリロキシプロピルトリメトキシシラン等のアクリルシラン化合物、 γ-メ ルカプトプロピルトリメトキシシラン等のメルカプトシラン化合物等が挙げられ る。これらのカップリング剤の中でも、本発明のエポキシ樹脂組成物を構成する 樹脂分と金属水酸化物の密着性を向上する点で、アミノシラン化合物やエポキシ シラン化合物が好ましく、さらに、アミノシラン化合物が特に好ましい。

[0070]

本発明の難燃性エポキシ樹脂組成物は、金属水酸化物以外に公知の充填剤を使用することができる。例えば、カーボンファイバー、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒素化ホウ素、ベリリア、タルク、酸化チタン、ジルコニア等の粉体、またはこれらを球形化したビーズ、チタン酸カリウム、炭化珪素、窒化珪素、アルミナ等の単結晶繊

[0071]

本発明の難燃性エポキシ樹脂組成物は、ガラス繊維、紙、アラミド繊維等の基材に含浸、硬化させてなるコンポジット材料用に用いた場合、一層効果的である。特に、本発明の難燃性エポキシ樹脂組成物をガラス繊維基材や紙基材に含浸、硬化させ、プリプレグや積層板を作製すると、成形性や誘電特性、耐湿性(ハンダ耐熱性)等の諸特性を良好に維持しつつ、高度の難燃性を実現することができる。

本発明に係る積層板は、下記条件(a) \sim (d)を満たすものとすることが好ましい。

- (a) $45 \le \sigma \le 100$ 、好ましく $50 \le \sigma \le 100$ 、かつ、
- $3 \le E \le 12$ 、好ましくは $3 \le E \le 10$

 σ は230±10 $^{\circ}$ における積層板の曲げ強度(MPa)、Eは230±10 $^{\circ}$ における積層板の曲げ弾性率(GPa)を表す。

このような範囲とすることにより、樹脂の発泡層が好適に形成され、かつ、発泡層の強度および靱性を充分に高くでき、この結果、発泡層の燃焼抑止作用を充分に高めることができる。弾性率が小さすぎると充分な強度の発泡層を得ることが困難となる。一方、弾性率が大きすぎると発泡層の靱性を充分に高めることが困難となる。

(b) 30≦G≦60

Gは、積層板の総量に占める基材の割合(質量%)を表す。

基材の量が少なすぎると成形時の樹脂の流出が顕著となり成形が困難となる場合がある。一方、基材の量が多すぎると充分な密着性が得られず層間剥離が発生する場合がある。

(c) F≤45 (質量%)、好ましくはF≤40 (質量%)

F (質量%) = R × 1 0 0 / X

R:室温(25℃)から500℃までに発生する、水分以外の熱分解生成物の量であって、次式により算出される。

R = 積層板総量(W_1) - 500℃での積層板の残存量(W_2) - 500℃での H_2 0発生量(W_1 100℃)

X:積層板中の樹脂分(エポキシ樹脂および硬化剤の総量をいう。難燃性エポキシ樹脂組成物中にカップリング剤や触媒を配合した場合は、これらの配合量も含む。)の含有量であって、次式により算出される。

X = 積層板の総量 $(W_1) - 800$ \mathbb{C} での残存量 $(W_3) - 800$ \mathbb{C} での \mathbb{H}_2 0発生量 $(W_3) - 800$ \mathbb{C} $(W_1) - 800$ (W_2)

なお、図1に、上記Fの値を求める方法を説明する模式図を示す。

水分以外の熱分解生成物の量は、樹脂の燃焼時における可燃成分の量を表す。 Fを上記範囲とすることにより、難燃性をより高めることができる。

(d) $4 \le V \le 13$

Vは、昇温速度10℃/分、空気流量0.2リットル/分で熱分解したときに、室温(25℃)から500℃までに発生する、積層板の総量に対する水蒸気量(V質量%)を表す。)

Vの値が小さすぎると発泡層を満たすべき水蒸気が充分に発生せず、充分な難燃性を得ることが困難である。一方、この値が大きすぎるとかえって難燃性が損なわれる場合がある。この理由は必ずしも明らかではないが、発泡層の破裂等が発生することによるものと考えられる。

[0072]

本発明の難燃性エポキシ樹脂組成物には、この他必要に応じて、メラミン、イソシアヌル酸化合物等の窒素系難燃剤、赤リン、リン酸化合物、有機リン化合物等のリン系難燃剤を難燃助剤として適宜添加することができる。但し、本発明の難燃性エポキシ樹脂組成物においては、上記難燃剤の添加量は少なくて済み、耐湿性等の他の物性が低下するのを抑えることができる。

[0073]

本発明の難燃性エポキシ樹脂組成物を、メチルエチルケトンやプロピレングリコールモノメチルエーテル等の好適な有機溶剤で希釈してワニスとし、このワニスをガラス織布やガラス不織布等の多孔質ガラス基材に塗布・含浸させ、加熱するという通常の方法によりプリプレグを製造することができる。また、このプリ

プレグを複数枚重ね合わせ、その積層構造の片面または両面に銅箔を重ね合わせた後に、これを通常の条件で加熱・加圧してガラスエポキシ銅張積層板を製造することができる。この時、銅箔を用いなければ、積層板が得られる。多層板は、銅張積層板(内層板)に回路を形成し、ついで銅箔をエッチング処理した後、内層板の少なくとも片面にプリプレグおよび銅箔を重ね合わせ、これを例えば170℃、40kg/cm²の圧力で90分間加熱するという通常の方法により製造することができる。さらに、プリント配線板は、銅張積層板もしくは多層板にスルーホールを形成し、スルーホールメッキを行った後、所定の回路を形成するという通常の方法により製造することができる。このようにして製造した本発明の積層板は、高度な難燃性と安全性に優れる。

[0074]

また、本発明の難燃性エポキシ樹脂組成物を半導体装置の封止材として使用する場合は、リボンブレンダーやヘンシェルミキサーなどで予備混練した後、加熱ロールやニーダーなどを用いて得られた本発明の難燃性エポキシ樹脂組成物の混合物を、必要に応じて水分を脱気してから使用する。この混合物を、トランスファー成型機等によって所定の成形条件で加熱して溶融させたものを、半導体装置の封止材として適用する。

[0075]

本発明の難燃性エポキシ樹脂組成物を封止材として使用した半導体装置は、難燃性と安全性に特に優れる。前記の半導体装置としては、半導体素子をリードフレームのダイパッド上に搭載し、これらをワイヤーボンディングして接続したものを、樹脂で封止してなる半導体装置、リードオンチップ方式の樹脂封止型半導体装置、ボールグリッドアレイ(BGA)の樹脂封止型半導体装置等を挙げることができるが、これらに限定されるものではなく、半導体素子等の電子部品を、本発明のエポキシ樹脂組成物で封止したものを全て包含する。

[0076]

加えて、本発明の難燃性エポキシ樹脂組成物は、この他の用途、すなわち、成 形材、注型材、接着剤、塗料等として使用した場合にも、難燃性と安全性に優れ る。 [0077]

【実施例】

以下、実施例により本発明をさらに詳細に説明する。

[0078]

まず、実施例および比較例で用いた原材料について説明する。

[0079]

(ガラス織布)

ガラス織布は、O. 18mm厚のEガラスクロスを用いた。

[0800]

(シランカップリング剤)

シランカップリング剤A:信越化学工業(株)製、KBE903 (γ-アミノ プロピルトリエトキシシラン)を用いた。

シランカプリング剤B:信越化学工業製、KBM403

[0081]

(硬化促進触媒)

硬化促進触媒A:サンアプロ(株)製、U-CAT-SA102(ジアザビシクロウンデセンーオクチル酸塩)を用いた。

硬化促進触媒B:四国化成工業製、2E4MZ

[0082]

(フェノール系樹脂およびエポキシ樹脂)

下記式(1)~(8)に示されるフェノール系樹脂およびエポキシ樹脂を用いた。

フェノールビフェニルアラルキル樹脂(フェノール系樹脂 1)

[0083]

【化12】

(n=0.0~10、軟化点120℃、水酸基当量205g/eq)

フェノールビフェニルアラルキルエポキシ樹脂(エポキシ樹脂1)

[0084]

【化13】

(式中、Gはグリシジル基を示す。n=0. $0\sim10$ 、軟化点57 \mathbb{C} 、エポキシ当量270 g \nearrow e q)

フェノールフェニレンアラルキル樹脂(フェノール系樹脂2)

[0085]

【化14】

(n=0.0~10、軟化点83℃、水酸基当量175g/eq) フェノールフェニレンアラルキルエポキシ樹脂(エポキシ樹脂2)式(4)

[0086]

【化15】

(式中、Gはグリシジル基を示す。n=0. $0\sim10$ 、軟化点55 \mathbb{C} 、エポキシ 当量234 g / e q)

フェノールノボラック樹脂(フェノール系樹脂3)

[0087]

【化16】

(n=0.0~10、軟化点106℃、水酸基当量106g/eq) クレゾールノボラックエポキシ樹脂(エポキシ樹脂3)

[0088]

【化17】

(式中、Gはグリシジル基を示す。 n = 0.0~10、軟化点68℃、エポキシ 当量194g/eq)

ビスフェノールA型エポキシ樹脂(エポキシ樹脂4)

[0089]

【化18】

(式中、Gはグリシジル基を示す。 n = 0. 0~10、25℃の粘度150po

ise、エポキシ当量180g/ eg)

エポキシ樹脂5 (ビスフェノールA型エポキシ樹脂2)

油化シェルエポキシ製、エピコート1001、エポキシ当量473

エポキシ樹脂6 (フェノールノボラックエポキシ樹脂)

日本化薬製、EPPN-201、エポキシ当量191

ジシアンジアミド

エアープロダクツジャパン製、AMICURE CG-NA、活性水素当量21

(シリコーン化合物)

表1に示すシリコーン化合物を用いた。

[0090]

【表1】

表1 シリコーン化合物の構造

	<u> </u>		10 10 10 V/14	AEL.	
官能基(R、R')の種類	シリコーン1	シリコーン2	シリコーン3	シリコーン4	シリコーン5
①反応性官能基	水酸基	カルボキシル基	メトキシ基	カルポキシル基	なし
	1モル%	3モル%	5モル%	3モル%	ロモル%
②フェニル基含量	80モル%	50モル%	30モル%	0モル%	Oモル%
①と②以外の他の言能基	メチル	メチル	メチル	メチル	メチル
重量平均分子量	5000	10000	40000	10000	10000
T/Dモル比	4/1	1/1	0.5/1	1/1	D単位のみ

(金属水酸化物)

水酸化アルミニウム:日本軽金属(株)製 BW103

水酸化マグネシウム:ブロモケム・ファーイースト (株) 製 FR-98-01

ホウ酸亜鉛: US Borax Inc.製 Firebrake@290

水酸化アルミニウムB:住友化学製、CL-310

(無機充填剤)

溶融破砕シリカ:電気化学工業 (株) 製 FS-892 平均粒径 18μ m 次に、実施例および比較例における難燃性、誘電率、成形性及びハンダ耐熱性の評価方法を示す。

[0091]

(難燃性)

成形板(長さ13cm×幅13mm×厚み1.6mm)の長さ方向と地面が垂直になるように、サンプル支持具(クランプ)で成形板を固定する。次に、クランプと反対側の成形板の端面にバーナーで10秒間接炎した後、バーナーを遠ざけて成形板上に炎が残っている時間(残炎時間、秒)を測定する(1回目の残炎

時間=F1)。この炎が消えたら、再度バーナーで10秒間接炎した後、バーナーを遠ざけて、1回目と同じように残炎時間(2回目の残炎時間=F2)を測定する。この試験を、一つの樹脂硬化物につき5枚の成形板を用いて行い、難燃性を評価した。ただし、難燃性の判定基準を最高のものから最低のものの順に並べると、UL94V-0、V-1、V-2、NOT V-2の順番になる。

(1)UL94V-0

- ・ Σ F \leq 5 0 秒(Σ F は、5 枚の成形板を用いて行った試験の残炎時間の合計を示す。すなわち、1 枚の成形板についてF 1 およびF 2 を測定し、これらを合計した時間を1 枚の成形板あたりの合計残炎時間F とする。このFを 5 枚の成形板について測定して、合計したものを Σ F とした。なお、表中の「残炎時間」は、上記 Σ F の値を示す。)
- ・Fmax≦10秒 (Fmaxは、試験で得られたF1またはF2の中で最長の 残炎時間を示す。)
- ・発煙物質または滴下物による標識用綿の着火なし、クランプまで燃えない。
- ②UL94V-1
- ・ Σ F \leq 2 5 0 秒、F m a x \leq 3 0 秒、発煙物質または滴下物による標識用綿の着火なし、クランプまで燃えない。
- 3UL94V-2
- ・ΣF≦250秒、Fmax≦30秒、発煙物質または滴下物による標識用綿の着火あり、クランプまで燃えない。
- 4UL94 NOT V-2
 - ·ΣF>250秒またはFmax>30秒。

[0092]

(誘電率の測定)

成形板 (縦2 c m×横2 c m×厚さ1. 6 m m) の比誘電率を、ヒューレットパッカード社製4291BRF IMPEDANCE/MATERIAL ANALYZERで測定した。なお、測定周波数は1 G H z とした。

[0093]

比誘電率の判定基準は以下の通りである。

比誘電率 5.0以下の場合:○

比誘電率 5.0を超える場合:△

(成形性)

成形性が良好:〇

含浸樹脂の流動不良による成形性の低下: △

シリコーン樹脂の染み出しによる成形性の低下:▲

(ハンダ耐熱性)

銅張両面積層板(25mm角×1.6mm厚)を、沸騰水(約100℃)で1時間煮沸した後、流水で30分間冷却してから、表面の水分をよくふき取って、約260℃のハンダ浴に、20秒間浮かべて、ハンダ耐熱性を評価した。ハンダ耐熱性の評価基準は以下の通りである。

ふくれなし→○

ふくれあり→△

実施例1

フェノールビフェニルアラルキルエポキシ樹脂(エポキシ樹脂 1)を33.48質量%、フェノールビフェニルアラルキル樹脂(フェノール系樹脂 1)を25.43質量%、水酸化アルミニウム40.0質量%、シランカップリング剤 0.80質量%、硬化促進触媒 0.29質量%から成る混合物に、メチルエチルケトンを加えて、不揮発成分が65質量%のエポキシ樹脂ワニスを調整した。

[0094]

得られたエポキシ樹脂ワニスをガラス織布に連続的に塗布・含浸させて、120 $^{\circ}$ $^$

[0095]

得られた積層板について難燃性、誘電率および成形性を評価した。結果を表 2 に示す。

[0096]

実施例1で得たエポキシ樹脂ワニスをガラス織布に連続的に塗布・含浸させて、120 $\mathbb C$ のオーブンで乾燥してプリプレグを製造した。こうして得られたプリプレグを 8 枚重ね合わせた積層体を、銅箔(厚み 18μ m)で挟んで、170 $\mathbb C$ 、40 kg/cm 2 の圧力で20分間加熱・加圧した後、さらに175 $\mathbb C$ $\mathbb C$ 6 時間後硬化させて、厚さ 1.6 mmのガラスエポキシ銅張積層板を得た。

[0097]

得られた銅張積層板についてハンダ耐熱性を評価した。

[0098]

実施例2~24

表2~5に示した配合の難燃性エポキシ樹脂組成物を用いたこと以外は実施例 1と同様にして積層板を成型し、難燃性の評価、誘電率の測定、成形性およびハ ンダ耐熱性の評価をそれぞれ行った。結果を表2~5に示す。

[0099]

比較例1~14

表6~8に示した配合のエポキシ樹脂組成物を用いたこと以外は実施例1と同様にして積層板を成型し、難燃性の評価、誘電率の測定、成形性およびハンダ耐熱性の評価をそれぞれ行った。結果を表6~8に示す。

[0100]

実施例25

フェノールビフェニルアラルキル樹脂(フェノール系樹脂 1)を 1 5. 5 9 質量%、ビスフェノールA型エポキシ樹脂(エポキシ樹脂 4)を 1 2. 5 7 質量%、水酸化アルミニウム 1 5. 0 質量%、溶融破砕シリカ粉末 5 5. 0 質量%、シランカップリング剤 1. 4 0 質量%、カルナバワックス 0. 2 0 質量%、トリフェニルホスフィン(T. P. P.) 0.2 4 質量%を、常温で予備混合した後、100℃のロール上で約5分間混練したものを、冷却後粉砕して樹脂組成物とした。

[0101]

実施例25に示した樹脂組成物を、錠剤状に圧縮したもの(タブレット)を、 85℃に予熱して、シングルプランジャータイプのトランスファー成形機を用い て、注入時間 15 秒、注入圧力 100 k g / c m 2 (実行圧)、成形温度 175 $^{\circ}$ 、成形時間 120 秒で、UL94難燃規格に従って成形した後、後硬化(175 $^{\circ}$ 、6時間)させて難燃性試験用の成形板を得た。

[0102]

. - J-

以下に、耐湿性の評価に用いた、半導体装置の成型方法を示す。

[0103]

線幅及び線間隔 10μ mのアルミニウム製の配線(ただし、パッド部は 70μ m角)を施した縦 $3.0 \,\mathrm{mm} \times$ 横 $3.5 \,\mathrm{mm} \times$ 厚さ 350μ mのシリコン製チップを、16ピン DIP用の42アロイのフレームに搭載して、前記パッド部に直径が 28μ mの金線をワイヤボンドした後、これをシングルプランジャータイプのトランスファー成形機を用いて、上記実施例 250 のタブレットで封入して(予熱温度 85 $\mathbb C$ 、注入時間 15 秒、注入圧力 100 kg/cm² 〈実行圧〉、成型温度 175 $\mathbb C$ 、成形時間 120 秒)、16 ピンDIP型(縦 $18\times$ 横 $5\times$ 厚さ 3 mm)の半導体装置を成型した。これを、175 $\mathbb C$ で 4 時間、後硬化させたものを、耐湿性の評価用の半導体装置とした。

[0104]

耐湿性試験

上記の16ピンDIP型の半導体装置10個を用いて、125℃、100RH%、印可電圧20Vの条件で、プレッシャー・クッカー・バイアス・試験(PCBT)を行い、回路のオープン不良率が、20%(不良が発生した前記装置が2個)に達した時間を測定し、これを耐湿性の指標とした。すなわち、この不良発生時間が長いほど耐湿性に優れているといえる。

[0105]

成形性を以下に示した基準で評価した。

[0106]

(成形性)

成形性が良好:〇

含浸樹脂の流動不良による成形性の低下:△

シリコーン樹脂の染み出しによる成形性の低下:▲

評価結果を表9に示す。

[0107]

実施例26~30

表9に示した配合の難燃性エポキシ樹脂組成物を用いたこと以外は実施例25 と同様にして成形体を作成し、難燃性の評価、耐湿性の評価、成形性の評価をそ れぞれ行った。結果を表9に示す。

[0108]

比較例15~17

表10に示した配合のエポキシ樹脂組成物を用いたこと以外は実施例25と同様にして成形体を作成し、難燃性の評価、耐湿性の評価、成形性の評価をそれぞれ行った。結果を表10に示す。

[0109]

【表2】

£2	0	0	0 -	- 3	6	1	1	7

双4			-				
	実施例1	実施例2	実施例3	吴施例4	実施例5	実施例6	実施例7
エポキシ樹脂1(フェノールピフェニルアラルキルエポキシ樹脂)	33.48	27.72	21.95	33.48	33.48	16.18	10.41
フェノール系樹脂1(フェノールビフェニルアラルキル樹脂)	25.43	21.04	16.66	25.43	25.43	12.28	7.90
エポキシ被略2(フェノールフェニフンアウルキルエポキシ権略)					*** 7072.370.31.41.720.000.710.000.0	07-0	
フェノール系樹脂2(フェノールフェニレンアラルキル樹脂)							***************************************
エポキシ樹脂3(クレゾールノボラックエポキシ樹脂)							
エポキシ樹脂4(ピスフェノールA型エポキシ樹脂)					7 1 9 3 9 5 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
ノボラックも							
水酸化アルミニウム(Al(OH)。)	40.0	50.0	0.09	15.0	7.0	70.0	0.08
大酸化マグネシウム(Mg(OH)。)					V 1 0 0 11 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1		
洛配破砕シリカ				25.0	33.0		
ンコーンー							
シントン2							
とく一口で							
サント サイトローグ							
ラベー にいぐ							
シランカップリング剤	0.80	1.00	1.20	08'0	08'0	1.40	1.60
便化促進触媒	0.29	0.24	0.19	0.29	0.29	0.14	60.0
	V-1	0-/	0-/	V-1	V-1	0-/\	0-/
残炎時間(秒)	90	30	15	81	120	11	7
誘電車	0	0	0	未実施	未実施	0	Δ
成形性	0	0	0	0	0	0	٧
ハンダ耐熱性	0	0	0	0	0	Δ	Δ

[0110]

【表3】

表3						
	実施例8	吳施例9	吳施例10	吴施例11	寒瓶例12	冥施例13
エポキシ樹脂1(フェノールビフェニルアラルキルエポキシ樹脂)	27.44	24.89	26.59	26.59	26.59	26.59
על	20.82	18.89	20.18	20.18	20.18	20.18
リスプ		6 4 6 5 4 6 5 5 8 6 7 5 6 7 5 6 7 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			**************************************	
7						
エポキシ樹脂3(クレゾールノボラックエポキシ樹脂)						
フェノール系樹脂3(フェノールノボラック樹脂)						
水酸化アルミニウム(AKOH)₃)	50.0	50.0	20.0	50.0	20.0	50.0
水酸化マグネシウム(Mg(OH)₂)			¥ 10000 6000 65 11 600 7000 661 8 11 1 1			
溶融破砕シリカ	***************************************	· · · · · · · · · · · · · · · · · · ·	********************	***************************************		
1ベーロ/ぐ				2.00		
ンレーン2	0.50	5.00	2.00	· · · · · · · · · · · · · · · · · · ·		
シーコンの					2.00	
ナノーこしぐ						
シーレン						2.00
シーンセップリングを	1.00	1.00	1.00	1.00	1.00	1.00
硬化促進触媒	0.24	0.22	0.23	0.23	0.23	0.23
	0-/	0-/	0-/	0-/\	0-/	0-/
残炎時間(秒)	23	 8	15_	20	17	38
誘電車	未実施	未実施	未実施	未実施	一未実施	未実施
成形性	Ö	Ō	0	0	0	\
こうが耐熱性	Q	_Q	Q	00	0	0

強3

[0111]

【表4】

女+		The second second				
	実施例14	実施例15	吳施例16	冥施例17	荚施例18	医施例19
1117						14.80
フェノール系被指1(フェノールビフェニルアラルキル被指)			26.98	25.88		9.58
	27.98	22.16				
: `\	20.92	16.56	***************************************		24.03	
エポキシ樹脂3(クレゾールノボラックエポキシ樹脂)						
エポキシ檊脂4(ビスフェノールA型エポキシ梯脂)			21.78	20.89	24.73	14.80
フェノール系樹脂3(フェノールノポラック樹脂)						9.58
水酸化アルミニウム(AKOH)₃)	50.0	0.09	50.0	50.0	20.0	50.0
木酸化マグネンウム(Mg(OH)₂)		, 6 = 2 7 = 6 = 1 7 9 = 5 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6				
容融破砕シリカ						
シュローソー				2.00		
ンノーン2						
ンしコーン3						
ンしコーン4						
ンジーン5						
シランカップリング剤	1.00	1.20	1.00	1.00	1.00	1.00
硬化促進触媒	0.10	90.0	0.24	0.23	0.24	0.24
	0-7	0-X	V-1	V-1	V-1	0-N
残炎時間(秒)	35	20	80	52	95	46
誘電率	0	未実施	未実施	未実施	未実施	未実施
成形性	0	0	0	0	0	0
こうが悪惑在	0	0	0	0	0	0

女女

[0112]

【表5】

柔 ち					
	奚施例20	実施例21	 	荚施例23	実施例24
「ボキシ樹脂1(フェノールピフェニルアラルキルエポキシ樹脂)	27.72			27.72	27.72
フェノール系徴脂1(フェノールピフェニルアラルキル樹脂)	21.04			21.04	21.04
エポキン被陥2(フェノールフェニレンアンルキルエポキン被陥)		27.98	26.84		
フェノール系樹脂2(フェノールフェニレンアラルキル樹脂)		20.92	20.07		
エポキン樹脂3(クレゾールノポラックエポキン樹脂)					
エポキシ樹脂4(ピスフェノールA型エポキシ樹脂)					
フェノール系樹脂3(フェノールノポラック樹脂)					
木酸化アルミニウム(Al(OH)。)					40.0
木酸化マグネシウム(Mg(OH)2)	50.0	50.0	50.0		
木ウ酸亜鉛(2ZnO・3B ₂ O ₃ ・3.5H ₂ O)				50.0	10.0
1/10/2					
シーン2			2.00		
シーン3					
シーン4		444	000000000000000000000000000000000000000		• • • • • • • • • • • • • • • • • • • •
シリコーン5					
シランカップリング割	1.00	1.00	1.00	1.00	1.00
硬化促進触媒	0.24	0.10	60'0	0.24	0.24
艦燃性 判定	0-/	0-/	0-/	0-/	0->
残炎時間(秒)	42	45	31	46	35
該電車	未実施	未実施	未実施	未実施	未実施
成形性	O	0	0	0	0
ハンダ耐熱性	00	0	0	0	0
ことでは発行	>)			İ

[0113]

液り	100		The second second	100		
	比較例1	比較例2	比較例3	比較例4	比較例5	比較例6
エポキシ樹脂1(フェノールピフェニルアラルキルエポキシ樹脂)	56.56	55.43				
フェノール系樹脂1(フェノールビフェニルアラルキル樹脂)	42.94	42.08				
エポキシ徴胎2(フェノールフェニレンアラルキルエポキシ樹脂)			57.10	55.96		
フェノール系樹脂2(フェノールフェニレンアラルキル樹脂)			42.70	41.84		
エポキシ樹脂3(クレゾールノボラックエポキシ樹脂)					31.53	30.24
エポキシ樹脂4(ピスフェノールA型エポキシ樹脂)						
フェノール系樹脂3(フェノールノボラック樹脂)					17.23	16.53
水酸化アルミニウム(AKOH)。)					50.0	50.0
木酸化マグネシウム(Mg(OH)2)	***************************************	**************************************	**************************************			
木ウ酸亜鉛(2ZnO・3B ₂ O ₃ ・3.5H ₂ O)						
ンプーン2	**************************************	2.00			***************************************	
シーレン3	7			7 0 0 0 0 0 0 0 0 0		0 T T T T T T T T T T T T T T T T T T T
シーン4			7			2.00
シブローン5				2.00		
					1.00	1.00
硬化促進触媒	0.50	0.49	0.20	0.20	0.24	0.23
機然性 地區	V-1	V-1	V-1	V-1	NOT V-2	NOT V-2
残炎時間(秒)	210	191	206	212	>250	>250
誘電車	0	未実施	0	0	未実施	未実施
成形性	0	0	0	▼	0	▼
こうが連続和	0	0	þ	4	0	

表6

[0114]

【表7】

矣/				
	比較例7	比較例8	比較例9	比較例10
エポキシ樹脂1(フェノールビフェニルアラルキルエポキシ樹脂)				
フェノール系樹脂1(フェノールビフェニルアラルキル樹脂)				
エポキシ根脂2(フェノールフェニレンアラルキルエポキシ被脂)	***************************************	000000000000000000000000000000000000000	T 4 0 2 4 4 5 4 5 5 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
フェノール系徴略2(フェノールフェニレンアラルキル樹脂)		000000000000000000000000000000000000000		
エポキシ樹脂3(クレゾールノボラックエポキシ樹脂)				
エポキシ樹脂4(ビスフェノールA型エポキシ樹脂)	62.63	30.69	29.44	11.53
フェノール系樹脂3(フェノールノポラック樹脂)	36.87	18.07	17.33	6.78
水酸化アルミニウム(Al(OH)3)		0.03	50.0	80.0
大酸 たマグネシウム(Mg(OH)2)			* * * * * * * * * * * * * * * * * * *	
ホウ酸亜鉛(2ZnO・3B ₂ O ₃ ・3.5H ₂ O)		***************************************		
ショーンコーンコーンコーンコーンコーンコーンコーンコーンコーンコーンコーンコーンコー			2.00	
シレーン2				
シーレる				
ケノーロング				
シリーン5				
シーンカップ・ングを		1.00	1.00	1.60
硬化促進触媒	0.50	0.24	0.23	0.09
機然性	NOT V-2	NOT V-2	7-V TON	_1-A_
残炎時間(秒	>250	>250	>250	180
誘電率	未実施	未実施	未実施	未実施
成形性	0	0	Ō	٥
ハンダ製製件	0	0	0	٧

支入

[0115]

Жo		-		
	上較例11	比較例12	比較例13 比較例14	比較例14
エポキシ樹脂1(フェノールピフェニルアラルキルエポキシ樹脂)				
フェノール系樹脂1(フェノールピフェニルアラルキル樹脂)	********************************			
ロポキシ神路2(フェノードフェニフンアレラキラコポキシ独略)				
フェノール系樹脂2(フェノールフェニレンアラルキル樹脂)	***************************************			
エポキシ樹脂3(クレゾールノボラックエポキシ樹脂)				
エポキシ供脂4(ビスフェノールA型エポキシ供脂)	30.69	29.44	30.69	30.69
(フェノール系樹脂3(フェノールノボラック樹脂)	18.07	17.33	18.07	18.07
1				40.0
木健化マグネンウム(Mg(OH)。)	50.0	50.0		
木勺酸亜鉛(2ZnO・3B ₂ O ₃ ・3.5H ₂ O)			50.0	10.0
シレーン1				
シント シンピー こく		2.00		
シレーン3				
サンコーン4				
シーロン				
シランカップリング剤	1.00	1.00	1.00	1.00
硬化促進触媒	0.24	0.23	0.24	0.24
整然性 制定	NOT V-2	NOT V-2	NOT V-2	NOT V-2
残炎時間(秒	>250	>250	>250	>250
誘電率	一未実施	未実施	未実施	未実施
成形性	0	0	0	0
こうが配象性	0	0	0	0

[0116]

【表9】

実施例30 ٥ \ 1.40 5.38 0.20 8.70 5.38 8.70 15.0 55.0 4 0 実施例29 V-0 30 420 8.05 5.03 8.05 5.03 15.0 55.0 2.00 0.20 1.40 0.23 0 実施例28 8.66 **3 40 8** 5.42 8.66 5.42 1.40 0.24 15.0 55.0 0.20 実施例27 14.49 우 > 0.20 1.40 0.23 208 55.0 2.00 15.0 実施例26 12.57 15.59 30.0 40.0 0.20 64. 0.24 아 > **%**O% 実施例25 15.59 12.57 9 1.40 15.0 55.0 0.20 없이떯 残炎時間(秒) エポキシ樹脂1(フェノールピフェニルアラルキルエポキシ樹脂) エポキシ御服2(フェノールフェニレンアラルキルエポキシ樹脂) フェノール系樹脂1(フェノールピフェニルアラルキル樹脂) フェノール系樹脂2(フェノールフェニレンアラルキル樹脂) エポキシ袋脂3(クフゾールノボレックエポキツ種脂) エポキシ樹脂4(ピスフェノールA型エポキシ徴脂) フェノール系御昭3(フェノールノボレック樹脂) 木酸化アルミニウム(Al(OH)3) **大製行いグネツウム(Mg(OH)₃)** 耐湿性(20%不良発生時間) シランカップリング剤 カルナウバWAX 溶融破砕シリカ 硬化促進触媒 シノコーン2 シートン3 シフローン5 シニン シブコーン4 監禁住 及形在 被9

[0117]

【表10】

数10	1		
	比較例15	比較例15 比較例16 比較例1	比較例17
エポキシ樹脂1(フェノールピフェニルアラルキルエポキシ樹脂)			
フェノール系樹脂1(フェノールビフェニルアラルキル樹脂)	P 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
エポキシ僧脂2(フェノールフェニレンアラルキルエポキシ樹脂)	-		8.66
フェノール系樹脂2(フェノールフェニレンアラルキル樹脂)	¥ 5 5 6 10 5 11 5 11 11 10 7 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		5.42
エポキシ樹脂3(クレゾールノポラックエポキシ樹脂)			8.66
エポキン樹脂4(ピスフェノールA型エポキン樹脂)	17.72	16.47	
フェノール系樹脂3(フェノールノボラック樹脂)	10.43	9.70	5.42
水酸化アルミニウム(Al(OH)₃)	15.0	15.0	
大酸 C マグネシウム(Mg(OH)。)	P		
溶融破砕シリカ	55.0	55.0	70.07
シリーン1			
ンーロン		•	***************************************
シレーン3			*******************
シリーン4		2.00	**********************
シノーこと			
カルナウパWAX	0.20	0.20	0.20
シウンセップこング独	1.40	1.40	1.40
硬化促進触媒	0.24	0.23	0.24
業 燃性 判定	V1	V-1	V-1
残炎時間(秒)	180	173	102
成形性	0	0	0
耐湿性(20%不良発生時間)	330	330	370
	The same of the sa		

510

[0118]

表に示した結果から、本発明に係る難燃性エポキシ樹脂組成物は、従来技術に 係る各比較例の難燃性エポキシ樹脂組成物よりも難燃性に優れていることが分か った。また、金属水酸化物の添加量を適切に設定することにより、誘電特性、成 形性、ハンダ耐熱性、耐湿性等の諸特性を効果的に改善できることが分かった。

[0119]

実施例31

フェノールフェニレンアラルキルエポキシ樹脂(エポキシ樹脂2)25.41

質量%、フェノールフェニレンアラルキル樹脂(フェノール系樹脂 2) 19.0 1質量%、水酸化アルミニウムB 5 5.0質量%、シランカップリング剤B 0.5 5質量%、硬化促進触媒B 0.0 3質量%からなる混合物(総量100質量%)に対して、メチルエチルケトン4 1 p h r を加えて、不揮発分が71質量%のエポキシ樹脂ワニスを作成した。

[0120]

得られたエポキシ樹脂ワニスをガラス織布に連続的に塗布・含浸させて、120 の $\mathbb C$ のオーブンで乾燥してプリプレグを製造した。このプリプレグを7 枚重ね合わせた積層体を、所定の条件(昇温速度 $5\mathbb C$ /分、 $180\mathbb C$ ・1 時間保持、30 分で $80\mathbb C$ まで冷却、32 k g/c m 2)で加熱・加圧して、厚さ1.6 m mのガラスエポキシ積層板を得た。

[0121]

得られたガラスエポキシ積層板について、高温曲げ特性および熱分解特性を以 下の条件で評価した。

①高温曲げ試験

JIS-C-6481、試験速度0.8mm/分、スパン25.6mm、試験片形状25×50×1.6mm、試験温度240℃(ノッチなし)

②熱分解方法

昇温速度10℃/分、空気流量0.2リットル/分で、室温から500及び800℃まで昇温。

得られた銅張積層板についてハンダ耐熱性を評価した。

[0122]

同様にして実施例32-43、比較例18、19、24、参考例25、26、29、30を行った(ただし不揮発分の含量及び成型圧力が異なる)。評価結果を表11~14に示す。

[0123]

比較例20

ジシアンジアミドをDMF(ジメチルホルムアミド)に溶かした溶液Aと、ビスフェノールA型エポキシ樹脂、水酸化アルミニウムB、シランカップリング剤Bをメチルエチルケトンに溶かした溶液Bを調整した。つぎに、これらの溶液AとBを混合した溶液Cに、硬化促進触媒Bを添加して、不揮発分が68.0質量%のエポキシ樹脂ワニスを作成した。このワニス中の不揮発分は、ジシアンジアミド1.89質量%、ビスフェノールA型エポキシ樹脂2(エポキシ樹脂5)42.46質量%、水酸化アルミニウムB55.0質量%、シランカップリング剤B0.55質量%、硬化促進触媒B0.10質量%の混合物である。上記ワニスの揮発分は、前記混合物100質量%に対する割合が、41phrのメチルエチルケトン及び6phrのDMFの混合溶剤である。

[0124]

比較例 2 0 で得たプリプレグを 7 枚重ね合わせた積層体を、銅箔(1 8 μ m)で挟んで、所定の条件(昇温速度 5 $\mathbb{C}/分、<math>1$ 8 0 \mathbb{C} ・ 1 時間保持、 3 0 分 \mathbb{C} 8 0 \mathbb{C} まで冷却、 3 2 k g / c m 2)で加熱・加圧して、厚さ 1 . 6 m m のガラスエポキシ銅張積層板を得た。

得られた銅張積層板についてハンダ耐熱性を評価した。

同様にして比較例21、22、23、参考例27、28を行った(ただし不揮発 分の含量及び成型圧力が異なる)。評価結果を表13~14に示す。

[0125]

表に示した結果から、本発明に係る難燃性エポキシ樹脂組成物は、従来技術に 係る各比較例の難燃性エポキシ樹脂組成物よりも難燃性に優れていることが分か った。また、金属水酸化物の添加量を適切に設定することにより、誘電特性、成 形性、ハンダ耐熱性、耐湿性等の諸特性を効果的に改善できることが分かった。 【0126】

¥								
		実施例31	実施例32	実施例33	実施例34	実施例35	実施例36	実施例37
	【エポキシ樹脂1(フェノールビフェニルアラルキルエポキシ樹脂)(質量%)】	1	1	1	-	ı	-	1
		l	١	I	١	ı	1	ł
	, .,	25.41	13.62	8.32	ł	39.85	19.64	2.83
	フェノール系樹脂2(フェノールフェニレンアラルキル樹脂)(質量%)	19.01	8.59	5.00	21.25	29.80	14.69	1.61
	エポキシ番脂3(クフゾールノボロックエポキツ番脂)	١	ı	1	ı	1	١	١
	エポキシ樹脂5(ピスフェノールA型エポキシ樹脂2)(質量%)		1	ı	l	1	ı	١
	エポキン機脂6(フェノールノボラックエポキン補脂)(質量や)	1	13.62	19.44	23.17	ı	ı	25.49
樹脂組成物	樹脂組成物 (フェノール系繊脂3(フェノールノボラック横脂)(質量%)		8.59	11.66	١	١	1	14.49
		_		1	-	1	-	ı
	水酸化アルミニウムB(質量%) W	55	55	55	55	30	65	55
	~:	0.55	0.55	0.55	0.55	0.30	0.65	0.55
	硬化促進触媒B(質量%)	0.03	0.03	0.03	0.03	0.05	0.02	0.03
	樹脂組成物の総重量(質量%)	100	100	100	100	100	100	100
	ガラスクロスの層数	7	7	7	7	7	7	7
	ガラスクロス含有量(質量%)/積層板の総重量	43	43	43	43	48	42	43
	難燃性	0-/	0-/	0-/	0-7	V-1	0-7	0-7
	残炎時間(秒)	22	25	30	27	70	18	40
	誘電率	0	0	0	0	0	0	0
	段宏朴	0	0	0	0	0	0	0
参 在	计繁件	0	0	0	0	0	0	0
	高温曲げ強度(MPa) σ	% O	용 O	8 O	% O	0 28	4 0	92 O
	高温曲げ弾性率(GPa)	6.5	7.7	8.2	7.6	4.5	7.1	9.0
		0	0	0	0	0	0	0
	水分以外の熱分解生成物の量(質量%) F	0 33	35 O	93	36 O	34	<u>ه</u> ٥	2 O
	水蒸気発生量(質量%)/積層板の総重量 V	<u>0</u>	20	01 O	9 O	ა ()	12	20
			A					

表11

[0127]

【表12】

数12							
		実施例38	実施例39	実施例40	実施例41	実施例42	実施例43
	エポキシ樹脂1(フェノールピフェニルアラルキルエポキシ槲脂)(質量%)	-		1	-	25.25	13.67
	ノールピフェニルアラルキル被陥)(質量名)	1	1	1	i	19.17	8.54
	エポキン樹脂2(フェノールフェニフンアラバキルエポキシ樹脂)(質量や)	34.07	2.85	39.85	25.41	I	1
	. <	25.49	1.59	29.80	19.01	1	i
	エポキシ雑間3(クレゾールノボラックエポキン雑間)	1	25.65	1	ı	ı	1
	_	1	ı	ı	ı	١	1
	7	;	ı	ı	ı	ı	13.67
樹脂組成物	エノールノボラック樹脂)(質量%)	1	14.33	١	1	1	8.54
	ジシアンジアミド(質量な)	1	1	l	1	1	1
	水酸化アルミニウムB(質量%) W	40	55	30	22	22	55
		9.4	0.55	0.30	0.55	0.55	0.55
	硬化促進触媒B(質量%)	0.04	0.03	0.05	0.03	0.03	0.03
		100	100	100	100	100	100
	ガラスクロスの層数	7	7	9	8	7	7
		45	43	40	52	43	43
	雑然性	V-1	0-/	0-/	0-/	0-/	0-/
	残炎時間(秒)	09	48	75	20	10	14
	誘 電 車	0	0	0	0	0	0
	成形件	0	0	0	0	0	0
本本	ハンダ耐繁性	0	0	0	0	0	0
	高温曲げ強度(MPa)	63	86	48	20	に	94
	σ	0	0	0	0	0	0
	高温曲(f彈性每(GPa)	5.3	9.5	3.3	8.7	5.8	6.9
		0	0	0	0	0	0
	水分以外の熱分解生成物の量(質量%)	33	43	34	32	<u>8</u>	34
	ц	0	0	0	0	0	0
	水蒸気発生量(質量%)/積層板の総重量	7	10	9 (ω (2 (유(
	۸	0	0	0	0	0	0

出証特2000-3104683

[0128]

【表13】

2		比較例18	比較例19	比較例20	比較例21	比較例22	比較例23	比較例24
	エポキシ樹脂2(フェノールフェニレンアラルキルエポキシ樹脂)(質量%)	-	١	1	,	1	-	25.41
	フェノール系域階2(フェノールフェニレンアラルキル機関)(質量%)	1	ı	١	1	١	١	19.01
	エポキン雑間3(クレゾールノボラックエポキン構脂)	1	1	1	1	ı	1	1
	エポキシ増脂5(ピスフェノールA型エポキシ機脂2)(質量%)	36.18	13.31	42.46	18.88	95.56	27.98	ı
		1	18.05	1	22.18	ı	1	1
销脂組成物	樹脂組成物 [フェノール系樹脂3(フェノールノボラック樹脂)(質量%)	8.18	13.00	I	ı	١	1	1
		_	1	1.89	3.29	4.24	1.25	١
	水酸化アルミニウムB(質量%)	55	55	55	55	0	70	1
	海融破砕シリカ	١	1	1	ş	ı	١	55
	シーンセップリング 型B(質量%)	0.55	0.55	0.55	0.55	1	0.70	0.55
	硬化促進触媒B(質量%)	0.09	0.09	0.10	0.10	0.20	0.07	0.03
	樹脂組成物の総量(質量%)	100	100	100	100	100	100	100
	ガラスクロスの層数	7	7	7	7	7	7	7
	/ ガラスクロス含有量(質量%)/積層板の総重量	43	43	43	43	50	40	43
	難燃性	V-1	V-1	NOT V-2	V-1	NOT V-2	V-1	V-1
	残炎時間(秒)	190	130	>250	200	>250	180	105
	誘電率	0	0	0	0	0	٥	0
	成形性	0	0	0	0	0	◁	0
参 在	ハンダ耐熱性	0	0	0	0	0	٥	0
	高温曲げ強度(MPa)	94	73	37	89	27	48	75
	Q	0	0	×	0	×	0	0
	高温曲げ彈性率(GPa)	3.7	6.3	1.7	5.3	0.2	3.4	7.0
	3	0	0	×	0	×	0	0
	水分以外の熱分解生成物の量(質量%)	22	4 8	26	25	22	55	34
	L	×	×	×	×	×	×	
	水蒸気発生量(質量%)/積層板の総置量	0 <u>,</u>	요(은 (우 (0	4	0
	>	0	0	0	0	×	×	×

表13

[0129]

【表14】

¥ 14							
		参考例25	参考例26	参考例27	参考例28	参考例29	参考例30
	エポキシ樹脂2(フェノールフェニレンアラルキルエポキシ樹脂)(質量%)	42.73	57.16	1		42.73	13.86
	ェノーパフェーフンアラバキ 万被階)(質量名)	31.97	42.77	ı	1	31.97	10.37
	エポキシ番階3(クレゾールノボラックエポキシ番脂)	1	1	١	1	1	1
	エポキシ樹脂5(ピスフェノールA型エポキシ樹脂2)(質量%)	ı	ì	85.91	42.46	1	1
	エポキシ樹脂6(フェノールノポラックエポキシ樹脂)(質量%)		1	1	ļ	1	1
新脂組成物	7.7.7	١	ı	١	ļ	1	1
	ンシアンジアミド(質量名)	1	ŀ	3.81	1.89	1	1
	水酸化アルミニウムB(質量%)	25	0	10	55	25	75
		1	_	ı	!	ı	1
	ツランセップリング 樹田(質量%)	0.25	1	0.10	0.55	0.25	0.75
		0.05	0.07	0.18	0.10	0.05	0.02
		100	100	100	100	100	100
	ガラスクロスの層数	5	5	4	œ	8	7
	ガラスクロス含有量(質量%)/積層板の総量量	41	42	49	52	56	38
	雑然性 割応	V-1	V-1	NOT V-2	NOTV-2	V-1	0-/
	残炎時間(秒)	120	215	>250	>250	115	6
	誘電車	0	0	0	0	0	△
	成形性	0	0	0	0	0	٥
沙 在		0	0	0	0	0	٥
	高温田(f 強度 (MPa)	42	4	53	38	42	80
	σ	×	×	×	×	×	0
	高温田げ弾性率(GPa)	2.7	2.0	0.5	4.4	4.9	8.1
		×	×	×	0	0	0
	水分以外の熱分解生成物の量(質量%)	33	35	56	26	33	29
		0	0	×	×	0	0
	水蒸気発生量(質量%)/積層板の総置量	ري ا	0	2	8	4	15
	<u> </u>	0	×	×	0	0	×

[0130]

【発明の効果】

以上説明したように、本発明の難燃性エポキシ樹脂組成物は、フェノール類(A)から誘導される構成単位と芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)および/またはこのフェノール系樹脂(C)のフェノール性水酸基をグリシジルエーテル化したエポキシ樹脂(D)を含み、さらに、金属水酸化物を含んでいる。このため、従来にない高水準の難燃性と安全性を実現することができる。特に、積層板の製造に使用された場合、積層板に要求される諸物性、すなわち、積層板の加工性、誘電特性、耐湿性およびハンダ耐熱性等を良好に維持しつつ高度の難燃性を付与することができる。

【図面の簡単な説明】

【図1】

本発明で用いたパラメータを説明するための図である。

【図1】

特2000-361170

【書類名】

要約書

【要約】

【課題】高水準の難燃性を備え、誘電特性や成形性等に優れる難燃性エポキシ樹脂組成物を提供すること。

【解決手段】エポキシ樹脂、硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物であって、

前記硬化剤は、フェノール類(A)から誘導される構成単位と該フェノール類(A)を除く芳香族類(B)から誘導される構成単位とを分子鎖中に含むフェノール系樹脂(C)であることを特徴とする難燃性エポキシ樹脂組成物。

【選択図】 なし

識別番号

[000004237]

1. 変更年月日 1990年 8月29日

[変更理由]

新規登録

住 所

東京都港区芝五丁目7番1号

氏 名

日本電気株式会社