$d: X \times X \to \mathbb{R}_{\geq 0}$ er en metrikk dersom: i) d(x,y) = 0 bare for x = y, ii) d(x,y) = d(y,x), iii) $d(x,y) \leq d(x,z) + d(z,y)$.

En avbildning $f:(X,d_X)\to (Y,d_Y)$ er kontinuerlig dersom:

$$\forall x_0 \in X, \forall \epsilon > 0, \exists \delta > 0 \text{ slik at } d_x(x, x_0) < \delta \Longrightarrow d_Y(f(x), f(x_0)) < \epsilon$$

 $f: X \to Y$ er en homeomorfi dersom f er kontinuerlig, bijektiv med kontinuerlig invers.

En mangfoldighet av dimensjon n er et metrisk rom X slik at for hvert punkt $p \in X$ fins en åpen omegn U og en homeomorfi $\phi: U \to \mathbb{R}^n$.

Et kart er et par (U, ϕ) , der $U \subset X$ er åpen, og $\phi : U \to \mathbb{R}^n$ er en homeomorfi.

En samling av kart som overdekker X kalles et atlas.

En differensiabel mangfoldighet er en mangfoldighet med et atlas $\{U_i, \phi_i\}$ slik at $\phi_i \circ \phi_j^{-1}$ er C^{∞} .

Oppgave 1

Vis at funksjonen d(x,y) definert ved d(x,x) = 0 og d(x,y) = 1 for $x \neq y$ definerer en metrikk.

Oppgave 2

Vis at alle linære avbildninger $T: \mathbb{R}^n \to \mathbb{R}^m$ er kontinuerlige. Når er T en homeomorfi?

Oppgave 3

Vis at hvis X har metrikken fra Oppgave 1, er alle avbildninger $f: X \to Y$ kontinuerlige.

Oppgave 4

Vis at alle ellipser er homeomorfe med sirkelen $S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. Hva med parabler og hyperbler?

Oppgave 5

Vis at den øvre halvsfæren $S_+^2=\{(x,y,z)\in\mathbb{R}^3|x^2+y^2+z^2=1,z\geq 0\}$ er homeomorf til enhetsdisken $D^2=\{(x,y)\in\mathbb{R}^2|x^2+y^2\leq 1\}$

Oppgave 6

Kan man definere en differensiabel struktur på S^1 med bare ett kart?

Oppgave 7

Er $C^0[0,1]$ en mangfoldighet?

Oppgave 8

De invertible $n \times n$ -matrisene betegnes med $GL_n(\mathbb{R})$. Dette rommet kan betraktes som

$$\{A \in \mathbb{R}^{n^2} | \det A \neq 0\}.$$

Vis at dette er en mangfoldighet. Er det også en differensiabel mangfoldighet?

Oppgave 9

Anta $S = \{(a_i,b_i)\}_{i \in I}$ er en mengde intervaller slik at

$$[0,1] = \bigcup_{i \in I} (a_i, b_i) \cap [0,1].$$

Vis at det fins endelig mange $(a_1, b_1), \ldots, (a_m, b_m) \in S$ slik at $[0, 1] = \bigcup_{i=1}^n (a_i, b_i) \cap [0, 1]$. Altså: enhver overdekning av [0, 1] har en endelig underoverdekning. Viser du dette har du vist det kjente *Heine-Borel teoremet*, som sier at [0, 1] er kompakt.